Package 'Giotto'

November 13, 2019

```
Title Spatial single-cell transcriptomics pipeline.
Version 0.1.2
Description Pipeline to process, analyze and visualize (spatial) single-cell transcriptomic data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends data.table (>= 1.12.2),
      ggplot2 (>= 3.1.1),
      base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports Rtsne (>= 0.15),
      uwot (>= 0.0.0.9010),
      multinet (>= 3.0.2),
      FactoMineR (>= 1.34),
      factoextra (>= 1.0.5),
      cowplot (>= 0.9.4),
      grDevices,
      RColorBrewer,
      jackstraw (>= 1.3),
      dbscan (>= 1.1-3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      1fa (>= 1.12.0),
      igraph (>= 1.2.4.1),
      plotly,
      reticulate,
      magrittr,
      limma,
      png,
      tiff
Suggests knitr,
      rmarkdown,
      MAST,
      scran (>= 1.10.1)
```

biocViews

VignetteBuilder knitr

R topics documented:

addCellMetadata	5
addCellStatistics	6
addGeneMetadata	7
addGeneStatistics	7
addHMRF	8
addNetworkLayout	9
addStatistics	9
adjustGiottoMatrix	10
allCellCellcommunicationsScores	11
annotateGiotto	12
annotateSpatialNetwork	12
annotate_spatlocs_with_spatgrid_2D	13
annotate_spatlocs_with_spatgrid_3D	13
average_gene_gene_expression_in_groups	14
binGetSpatialGenes	15
calculateHVG	16
calculateMetaTable	17
calculateSpatialGenes	17
calculate_spatial_genes_python	19
cellProximityBarplot	20
cellProximityEnrichment	20
cellProximityHeatmap	21
cellProximityNetwork	22
cellProximityVisPlot	23
cellProximityVisPlot_2D_ggplot	24
cellProximityVisPlot_2D_plotly	26
cellProximityVisPlot_3D_plotly	27
clusterCells	28
createGiottoInstructions	30
createGiottoObject	
createHeatmap_DT	
createNearestNetwork	
createSpatialGrid	
createSpatialGrid_2D	
createSpatialGrid 3D	
createSpatialNetwork	
create_average_detection_DT	
create_average_DT	38
create_cell_type_random_cell_IDs	38
create cluster matrix	39
create_dimObject	39
decide cluster order	40
detectSpatialPatterns	41
direction_test_CPG	42
doHclust	42
LINDS	12

doKmeans	4
	5
doLeidenSubCluster	6
doLouvainCluster	
doLouvainCluster_community	.9
doLouvainCluster_multinet	0
doLouvainSubCluster	1
doLouvainSubCluster_community	2
doLouvainSubCluster_multinet	
doRandomWalkCluster	5
doSNNCluster	6
dt to matrix	
exportGiottoViewer	
exprOnlyCellCellcommunicationScores	
extended_gini_fun	
extractNearestNetwork	
fDataDT	
filterCombinations	
filterDistributions	
filterGiotto	
findGiniMarkers	
findGiniMarkers_one_vs_all	
findMarkers	
findMarkers_one_vs_all	
findMastMarkers	
findMastMarkers_one_vs_all	
findScranMarkers	9
findScranMarkers_one_vs_all	9
find_grid_2D	0
find_grid_3D	1
find_grid_x	1
find_grid_y	1
find_grid_z	1
fish function	2
fish function2	
FSV show	2
-	'3
	4
·	'5
	5
	6
	7
	' '8
<u> </u>	
<i>c</i> = <i>-c</i> =	8
	9
261	9
č	0
	1
	2
	3
	4
iterLouvainCluster_multinet	5

4

kmeans_binarize 87 loadHMRF 87
make_simulated_network
mergeClusters
mygini_fun
nnDT_to_kNN
node_clusters
OR_function2
r
plotCPGscores
plotGTGscores
plotHeatmap
plotly_axis_scale_2D
plotly_axis_scale_3D
plotly_grid
plotly_network
plotMetaDataHeatmap
plotPCA
plotTSNE
plotUMAP
plot_network_layer_ggplot
plot_point_layer_ggplot
print.giotto
rank_binarize
readGiottoInstructions
removeCellAnnotation
removeGeneAnnotation
runPCA
runtSNE
runUMAP
selectPatternGenes
select_expression_values
show,giotto-method
showClusterDendrogram
showClusterHeatmap
showCPGscores
showGeneExpressionProximityScore
showGTGscores
showIntExpressionProximityScore
showPattern
showPatternGenes
showProcessingSteps
showTopGeneToGene
signPCA
Spatial_AEH
_
Spatial_DE
specificCellCellcommunicationScores
split_dendrogram_in_two
stitchFieldCoordinates
subClusterCells
subsetGiotto

addCellMetadata 5

	viewHMRFresults	124
	violinPlot	124
	visDimGenePlot	125
	visDimGenePlot_2D_ggplot	127
	visDimGenePlot_3D_plotly	128
	visDimPlot	
	visDimPlot_2D_ggplot	
	visDimPlot_2D_plotly	
	visDimPlot_3D_plotly	
	visForceLayoutPlot	
	visGenePlot	
	visGenePlot_2D_ggplot	
	visGenePlot_3D_plotly	
	visPlot	
	visPlot_2D_ggplot	
	visPlot_2D_plotly	
	visPlot_3D_plotly	
	visSpatDimGenePlot	
	visSpatDimGenePlot_2D	
	visSpatDimGenePlot_3D	
	visSpatDimPlot	
	visSpatDimPlot_2D	
	visSpatDimPlot_3D	
	writeHMRFresults	
	write_giotto_viewer_annotation	
	write_giotto_viewer_dim_reduction	
Index		160

addCellMetadata

add Cell Metadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(gobject, new_metadata, by_column = F,
   column_cell_ID = NULL)
```

Arguments

gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on cell_ID column in pDataDT

column_cell_ID column name of new metadata to use if by_column = TRUE

Details

Description of how to add cell metadata ...

6 addCellStatistics

Value

giotto object

Examples

addCellMetadata(gobject)

 ${\tt addCellStatistics}$

addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

Arguments

Details

Details about cell statistics that are returned.

Value

```
giotto object if return_gobject = TRUE
```

```
addCellStatistics(gobject)
```

addGeneMetadata 7

addGeneMetadata addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F,
    column_gene_ID = NULL)
```

Arguments

gobject giotto object

by_column merge metadata based on gene_ID column in fDataDT column_cell_ID column name of new metadata to use if by_column = TRUE

Details

Description of how to add gene metadata ...

Value

giotto object

Examples

addGeneMetadata(gobject)

addGeneStatistics addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

Arguments

8 addHMRF

Details

Details about gene statistics that are returned.

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addGeneStatistics(gobject)
```

addHMRF

addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL,
hmrf_name = NULL)
```

Arguments

gobject giotto object

 $\label{eq:hmrf} HMRF \ output \ from \ do HMRF()$

k number of domains

 $betas_to_add \qquad results \ from \ different \ betas \ that \ you \ want \ to \ add$

name specify a custom name

Details

Description ...

Value

giotto object

```
addHMRF(gobject)
```

addNetworkLayout 9

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a select nearest neighbor network

Usage

```
addNetworkLayout(gobject, nn_network_to_use = NULL,
  network_name = NULL, layout_type = c("drl"), options_list = NULL,
  layout_name = "layout", return_gobject = TRUE)
```

Arguments

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of layouts and options.

Value

giotto object with updated layout for selected NN network

Examples

```
addNetworkLayout(gobject)
```

 ${\tt addStatistics}$

addStatistics

Description

adds genes and cells statistics to the giotto object

```
addStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

10 adjustGiottoMatrix

Arguments

Details

Details about gene and cell statistics that are returned.

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

```
adjustGiottoMatrix adjustGiottoMatrix
```

Description

normalize and/or scale expresion values of Giotto object

Usage

```
adjustGiottoMatrix(gobject, expression_values = c("normalized", "scaled",
   "custom"), batch_columns = NULL, covariate_columns = NULL,
   return_gobject = TRUE, update_slot = c("custom"))
```

Arguments

```
gobject giotto object

expression_values

expression values to use

batch_columns metadata columns that represent different batch

covariate_columns

metadata columns that represent covariates to regress out

return_gobject boolean: return giotto object (default = TRUE)

update_slot expression slot that will be updated (default = custom)
```

Details

Description of adjusting steps ...

Value

```
giotto object
```

Examples

```
adjustGiottoMatrix(gobject)
```

```
allCellCellcommunicationsScores
```

allCellCellcommunicationsScores

Description

All Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
allCellCellcommunicationsScores(gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types", random_iter = 100, gene_set_1,
  gene_set_2, log2FC_addendum = 0.1, min_observations = 2,
  verbose = c("a little", "a lot", "none"))
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
random\_iter
                  number of iterations
gene_set_1
                  first specific gene set from gene pairs
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

```
\verb|allCellCellcommunicationsScores(gobject)| \\
```

annotateGiotto

annotateGiotto

Description

adds cell annotation to giotto object based on clustering

Usage

```
annotateGiotto(gobject, annotation_vector = NULL,
   cluster_column = NULL, name = "cell_types")
```

Arguments

Details

Description of how to add cell metadata ...

Value

giotto object

Examples

```
annotateGiotto(gobject)
```

```
annotateSpatialNetwork
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(gobject, spatial_network_name = "spatial_network",
  cluster_column)
```

Arguments

Value

annotated network in data.table format

Examples

annotateSpatialNetwork(gobject)

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

```
annotate\_spatlocs\_with\_spatgrid\_3D \\ annotate\_spatlocs\_with\_spatgrid\_3D
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_3D()
```

```
average_gene_gene_expression_in_groups

average_gene_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(gobject,
  cluster_column = "cell_types", gene_set_1, gene_set_2)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs
```

Details

Details will follow.

Value

data.table with average expression scores for each cluster

```
average_gene_gene_expression_in_groups(gobject)
```

binGetSpatialGenes 15

binGetSpatialGenes binGetSpatialGenes

Description

compute genes that are spatially clustered

Usage

```
binGetSpatialGenes(gobject, bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network", nstart = 3,
  iter_max = 10, percentage_rank = 10, do_fisher_test = F,
  community_expectation = 5, verbose = F)
```

Arguments

gobject giotto object bin_method method to binarize gene expression expression_values expression values to use spatial_network_name name of spatial network to use (default = 'spatial_network') nstart kmeans: nstart parameter kmeans: iter.max parameter iter_max do_fisher_test perform fisher test $community_expectation$ cell degree expectation in spatial communities verbose be verbose rank_percentage

percentage of top cells for binarization

Details

Description of how we compute spatial genes.

Value

giotto object spatial genes appended to fDataDT

```
binGetSpatialGenes(gobject)
```

16 calculateHVG

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(gobject, expression_values = c("normalized", "scaled",
   "custom"), method = c("cov_loess", "cov_groups", "gini_loess"),
   reverse_log_scale = T, logbase = 2, expression_threshold = 0,
   nr_expression_groups = 20, zscore_threshold = 1.5, HVGname = "hvg",
   difference_in_variance = 1, show_plot = T, return_gobject = T)
```

Arguments

gobject giotto object

expression_values

expression values to use

method method to calculate highly variable genes

reverse_log_scale

reverse log-scale of expression values

logbase if reverse_log_scale is TRUE, which log base was used?

expression_threshold

expression threshold to consider a gene detected

nr_expression_groups

number of expression groups for cov_groups

zscore_threshold

zscore to select hvg for cov_groups

HVGname name for highly variable genes in cell metadata

difference_in_variance

minimum difference in variance required

show_plot show plots

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of how we compute highly variable genes.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

```
calculateHVG(gobject)
```

calculateMetaTable 17

calculateMetaTable calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(gobject, expression_values = c("normalized", "scaled",
   "custom"), metadata_cols = NULL, selected_genes = NULL)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

metadata_cols annotation columns found in pDataDT(gobject)

selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

 $calculate Spatial Genes \quad calculate Spatial Genes$

Description

compute genes that are spatially clustered

```
calculateSpatialGenes(gobject, expression_values = c("normalized",
   "scaled", "custom"), method = c("kmeans", "gini", "rank"),
   spatial_network_name = "spatial_network", simulations = 10,
   detection_threshold = 0, loess_span = 0.2, pred_difference = 0.01,
   split_gene_groups = 10, show_plot = T, rank_percentage = 10,
   pvalue = 0.01, OddsRatio = 2, min_N = 20, max_N = 5000,
   SVname = "SV", show_genes = T, nr_genes = 20, return_gobject = T)
```

18 calculateSpatialGenes

Arguments

gobject giotto object

expression_values

expression values to use

method method to calculate spatial genes

spatial_network_name

name of spatial network to use (default = 'spatial_network')

detection_threshold

detection threshold to consider a gene detected

loess_span loess span for loess regression

pred_difference

minimum difference between observed and predicted

split_gene_groups

number of groups to split genes in

show_plot show plots

rank_percentage

percentage of top cells for binarization

pvalue minimum p-value

OddsRatio minimum odds ratio

min_N minimum number of cells that need to display high expression upon binarization

max_N maximum number of cells that can display high expression upon binarization

SVname name for identified spatial genes (default = 'SV')

show_genes show top genes on plot

nr_genes # of genes to plot if show_genes = TRUE

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of how we compute spatial genes.

Value

giotto object spatial genes appended to fDataDT

Examples

 ${\tt calculateSpatialGenes(gobject)}$

Description

Calculate spatial genes using distance matrix.

Usage

```
calculate_spatial_genes_python(gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean", subset_genes = NULL, rbp_p = 0.95,
  examine_top = 0.3, python_path = NULL)
```

Arguments

Details

Description of how we compute spatial pattern genes.

Value

data.table with spatial scores

```
{\tt calculate\_spatial\_genes\_python(gobject)}
```

```
cell Proximity Barplot \quad \textit{cell Proximity Barplot}
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(CPscore, min_orig_ints = 5, min_sim_ints = 5,
    p_val = 0.05)
```

Arguments

CPscore CPscore, output from cellProximityEnrichment()
min_orig_ints filter on minimum original cell-cell interactions
min_sim_ints filter on minimum simulated cell-cell interactions
p_val p-value

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

Examples

```
cellProximityBarplot(CPscore)
```

```
cellProximityEnrichment
```

cell Proximity Enrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

```
cellProximityEnrichment(gobject,
  spatial_network_name = "spatial_network", cluster_column,
  number_of_simulations = 100)
```

cellProximityHeatmap 21

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by random permutations of the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

Examples

```
cellProximityEnrichment(gobject)
```

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(CPscore, scale = T, order_cell_types = T,
  color_breaks = NULL, color_names = NULL)
```

Arguments

CPscore CPscore, output from cellProximityEnrichment()
scale scale cell-cell proximity interaction scores

order_cell_types

order cell types based on enrichment correlation

color_breaks numerical vector of length 3 to represent min, mean and maximum

color_names character color vector of length 3

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

22 cellProximityNetwork

Value

```
ggplot heatmap
```

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(CPscore, remove_self_edges = FALSE,
  color_depletion = "blue", color_enrichment = "red",
  rescale_edge_weights = TRUE, edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5), layout = "Fruchterman")
```

Arguments

```
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
edge_weight_range_depletion
                  numerical vector of length 2 to rescale depleted edge weights
edge_weight_range_enrichment
                  numerical vector of length 2 to rescale enriched edge weights
layout
                  layout algorithm to use to draw nodes and edges
```

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

```
cellProximityNetwork(CPscore)
```

cellProximityVisPlot 23

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(gobject, interaction_name = NULL,
  cluster_column = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
  cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
  show_other_cells = F, show_network = F, show_other_network = F,
  network_color = NULL, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL,
  spatial_grid_name = "spatial_grid", coord_fix_ratio = 1,
  show_legend = T, point_size_select = 2,
  point_select_border_col = "black", point_select_border_stroke = 0.05,
  point_size_other = 1, point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  z_ticks = NULL, plot_method = c("ggplot", "plotly"), ...)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
```

```
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
{\tt point\_select\_border\_col}
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
\verb"point_other_border_stroke"
                  stroke size of other points
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

```
cellProximityVisPlot_2D_ggplot(gobject, interaction_name = NULL,
    cluster_column = NULL, sdimx = NULL, sdimy = NULL,
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    show_other_cells = F, show_network = F, show_other_network = F,
    network_color = NULL, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", coord_fix_ratio = 1,
    show_legend = T, point_size_select = 2,
    point_select_border_col = "black", point_select_border_stroke = 0.05,
    point_size_other = 1, point_alpha_other = 0.3,
    point_other_border_col = "lightgrey",
    point_other_border_stroke = 0.01, ...)
```

Arguments

gobject giotto object interaction_name cell-cell interaction name cluster_column cluster column with cell clusters sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor show_other_cells decide if show cells not in network show underlying spatial network show_network network_color color of spatial network spatial_network_name name of spatial network to use show spatial grid show_grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

```
cell Proximity VisPlot\_2D\_plotly \\ cell Proximity VisPlot\_2D\_plotly
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(gobject, interaction_name = NULL,
    cluster_column = NULL, sdimx = NULL, sdimy = NULL,
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    show_other_cells = F, show_network = F, show_other_network = F,
    network_color = NULL, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", show_legend = T,
    point_size_select = 2, point_size_other = 1,
    point_alpha_other = 0.3, axis_scale = c("cube", "real", "custom"),
    custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL, ...)
```

Arguments

```
giotto object
gobject
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
                  show legend
show_legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_2D_plotly(gobject)
```

```
cell Proximity VisPlot\_3D\_plotly \\ cell Proximity VisPlot\_3D\_plotly
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_3D_plotly(gobject, interaction_name = NULL,
   cluster_column = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
   cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
   show_other_cells = F, show_network = F, show_other_network = F,
   network_color = NULL, spatial_network_name = "spatial_network",
   show_grid = F, grid_color = NULL,
   spatial_grid_name = "spatial_grid", show_legend = T,
   point_size_select = 2, point_size_other = 1,
   point_alpha_other = 0.5, axis_scale = c("cube", "real", "custom"),
   custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
   z_ticks = NULL, ...)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
```

28 clusterCells

```
show_network
                 show underlying spatial network
network_color
                 color of spatial network
spatial_network_name
                 name of spatial network to use
show_grid
                 show spatial grid
grid_color
                 color of spatial grid
spatial_grid_name
                 name of spatial grid to use
                 show legend
show_legend
point_size_select
                 size of selected points
coord_fix_ratio
                 fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

cellProximityVisPlot_3D_plotly(gobject)

clusterCells

clusterCells

Description

cluster cells using a NN-network and community detection algorithms

```
clusterCells(gobject, cluster_method = c("leiden", "louvain_community",
    "louvain_multinet", "randomwalk", "sNNclust", "kmeans", "hierarchical"),
    name = "cluster_name", nn_network_to_use = "sNN",
    network_name = "sNN.pca", pyth_leid_resolution = 1,
    pyth_leid_weight_col = "weight",
    pyth_leid_part_type = c("RBConfigurationVertexPartition",
    "ModularityVertexPartition"), pyth_leid_init_memb = NULL,
    pyth_leid_iterations = 1000, pyth_louv_resolution = 1,
    pyth_louv_weight_col = NULL, python_louv_random = F,
    python_path = NULL, louvain_gamma = 1, louvain_omega = 1,
    walk_steps = 4, walk_clusters = 10, walk_weights = NA,
    sNNclust_k = 20, sNNclust_eps = 4, sNNclust_minPts = 16,
    borderPoints = TRUE, expression_values = c("normalized", "scaled",
    "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
    "pca", "umap", "tsne"), dim_reduction_name = "pca",
```

clusterCells 29

```
dimensions_to_use = 1:10, distance_method = c("original", "pearson",
   "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary",
   "minkowski"), km_centers = 10, km_iter_max = 100, km_nstart = 1000,
km_algorithm = "Hartigan-Wong",
hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete",
   "average", "mcquitty", "median", "centroid"), hc_k = 10, hc_h = NULL,
   return_gobject = TRUE, set_seed = T, seed_number = 1234, ...)
```

Arguments

gobject giotto object cluster_method community cluster method to use name for new clustering result name nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name pyth_leid_resolution resolution for leiden pyth_leid_weight_col column to use for weights pyth_leid_part_type partition type to use pyth_leid_init_memb initial membership pyth_leid_iterations number of iterations pyth_louv_resolution resolution for louvain pyth_louv_weight_col python louvain param: weight column python_louv_random python louvain param: random specify specific path to python if required python_path louvain_gamma louvain param: gamma or resolution louvain_omega louvain param: omega randomwalk: number of steps walk_steps walk_clusters randomwalk: number of clusters randomwalk: weight column walk_weights sNNclust_k SNNclust: k neighbors to use SNNclust: epsilon sNNclust_eps sNNclust_minPts SNNclust: min points borderPoints SNNclust: border points expression_values expression values to use = NULL, genes_to_use

30 createGiottoInstructions

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

 $hc_agglomeration_method$

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

... additional parameters

Details

Description of different clustering methods.

Value

giotto object appended with new cluster

Examples

clusterCells(gobject)

createGiottoInstructions

create Giot to Instructions

Description

Function to create instructions for giotto functions

```
createGiottoInstructions(python_path = NULL, save_dir = NULL,
    plot_format = NULL, dpi = NULL, height = NULL, width = NULL)
```

createGiottoObject 31

Arguments

python_path path to python bin to use

save_dir path of directory to use to save figures dpi resolution for raster images to save

height height of the plots to save width width of the plots to save

Value

named vector with giotto instructions

Examples

createGiottoInstructions()

Description

Function to create a giotto object

Usage

```
createGiottoObject(raw_exprs, spatial_locs = NULL, norm_expr = NULL,
norm_scaled_expr = NULL, custom_expr = NULL, cell_metadata = NULL,
gene_metadata = NULL, spatial_network = NULL,
spatial_network_name = NULL, spatial_grid = NULL,
spatial_grid_name = NULL, dimension_reduction = NULL,
nn_network = NULL, offset_file = NULL, instructions = NULL)
```

Arguments

raw_exprs matrix with raw expression counts [required]

spatial_locs data.table with coordinates for cell centroids [required]

norm_expr normalized expression values

norm_scaled_expr

scaled expression values

custom_expr custom expression values

cell_metadata cell metadata gene_metadata gene metadata

spatial_network

list of spatial network(s)

 $spatial_network_name$

list of spatial network name(s)

spatial_grid list of spatial grid(s)

spatial_grid_name

list of spatial grid name(s)

32 createHeatmap_DT

```
dimension_reduction
```

list of dimension reduction(s)

nn_network list of nearest neighbor network(s)

offset_file file used to stitch fields together (optional)

Value

giotto object

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

Usage

```
createHeatmap_DT(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes, cluster_column = NULL, cluster_order = c("size",
   "correlation", "custom"), cluster_custom_order = NULL,
   cluster_cor_method = "pearson", cluster_hclust_method = "ward.D",
   gene_order = c("custom", "correlation"), gene_custom_order = NULL,
   gene_cor_method = "pearson", gene_hclust_method = "complete")
```

Arguments

```
gobject giotto object
expression_values
```

expression values to use

genes genes to use

cluster_column name of column to use for clusters cluster_order method to determine cluster order

cluster_custom_order

custom order for clusters

cluster_cor_method

method for cluster correlation

 ${\tt cluster_hclust_method}$

method for hierarchical clustering of clusters

gene_order method to determine gene order

gene_custom_order

custom order for genes

gene_cor_method

method for gene correlation

gene_hclust_method

method for hierarchical clustering of genes

createNearestNetwork 33

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
createHeatmap_DT(gobject)
```

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour network based on previously computed dimension reductions

Usage

```
createNearestNetwork(gobject, expression_values = c("normalized",
   "scaled", "custom"), type = c("sNN", "kNN"),
   dim_reduction_to_use = "pca", dim_reduction_name = "pca",
   dimensions_to_use = 1:10, genes_to_use = NULL, name = "sNN.pca",
   return_gobject = TRUE, k = 30, minimum_shared = 5,
   top_shared = 3, verbose = T, ...)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
type
                 kNN or sNN
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
                 number of k neighbors to use
minimum_shared minimum shared neighbors
top_shared
                 keep at ...
verbose
                 be verbose
                 additional parameters
. . .
```

34 createSpatialGrid

Details

Description of nearest neighbor network creation and filter steps.

Value

giotto object with updated NN network

Examples

```
createNearestNetwork(gobject)
```

createSpatialGrid

createSpatialGrid2

Description

```
create a spatial grid
```

Usage

```
createSpatialGrid(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, sdimz_stepsize = NULL, minimum_padding = 1,
   name = "spatial_grid", return_gobject = TRUE)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid2(gobject)
```

createSpatialGrid_2D 35

```
createSpatialGrid\_2D \quad \textit{createSpatialGrid}\_2D
```

Description

```
create a spatial grid
```

Usage

```
createSpatialGrid_2D(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, minimum_padding = 1, name = "spatial_grid",
   return_gobject = TRUE)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid\_3D \quad \textit{createSpatialGrid\_3D}
```

Description

```
create a spatial grid
```

```
createSpatialGrid_3D(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, sdimz_stepsize = NULL, minimum_padding = 1,
   name = "spatial_grid", return_gobject = TRUE)
```

36 createSpatialNetwork

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_3D(gobject)
```

createSpatialNetwork createSpatialNetwork

Description

Create a spatial network based on cell centroid distances.

Usage

```
createSpatialNetwork(gobject, k = 4, dimensions = "all",
   maximum_distance = NULL, minimum_k = 0, name = "spatial_network",
   verbose = F, return_gobject = TRUE)
```

Arguments

gobject giotto object

k number of nearest neighbors based on physical distance

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider

minimum_k minimum nearest neighbours if maximum_distance != NULL

name for spatial network (default = 'spatial_network')

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. Number of neighbors can be determined by k, maximum distance from each cell with or without setting a minimum k for each cell.

Value

giotto object with updated spatial network slot

Examples

```
createSpatialNetwork(gobject)
```

```
create\_average\_detection\_DT \\ create\_average\_detection\_DT
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(gobject, meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0)
```

Arguments

```
gobject giotto object

meta_data_name name of metadata column to use

expression_values

which expression values to use

detection_threshold

detection threshold to consider a gene detected
```

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(gobject, meta_data_name,
  expression_values = c("normalized", "scaled", "custom"))
```

Arguments

```
gobject giotto object

meta_data_name name of metadata column to use
expression_values

which expression values to use
```

Value

data.table with average gene epression values for each factor

```
create\_cell\_type\_random\_cell\_IDs \\ create\_cell\_type\_random\_cell\_IDs
```

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(gobject, cluster_column = "cell_types",
   needed_cell_types)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

create_cluster_matrix 39

Examples

```
create_cell_type_random_cell_IDs(gobject)
```

```
create_cluster_matrix create_cluster_matrix
```

Description

creates aggregated matrix for a given clustering

Usage

```
create_cluster_matrix(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, gene_subset = NULL)
```

Examples

```
create_cluster_matrix(gobject)
```

```
create_dimObject
```

Description

Creates an object that stores a dimension reduction output

Usage

```
create_dimObject(name = "test", reduction_method = NULL,
  coordinates = NULL, misc = NULL)
```

Arguments

```
name arbitrary name for object
reduction_method
method used to reduce dimensions
```

coordinates accepts the coordinates after dimension reduction
misc any additional information will be added to this slot

Value

number of distinct colors

40 decide_cluster_order

```
decide_cluster_order
    decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(gobject, expression_values = c("normalized",
   "scaled", "custom"), genes, cluster_column = NULL,
   cluster_order = c("size", "correlation", "custom"),
   cluster_custom_order = NULL, cor_method = "pearson",
   hclust_method = "ward.D")
```

Arguments

gobject giotto object

expression_values

expression values to use

genes genes to use

cluster_column name of column to use for clusters

cluster_order method to determine cluster order

cluster_custom_order

custom order for clusters

cor_method method for correlation

hclust_method method for hierarchical clustering

Details

Calculates order for clusters.

Value

custom

```
decide_cluster_order(gobject)
```

detectSpatialPatterns 41

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(gobject, expression_values = c("normalized",
   "scaled", "custom"), spatial_grid_name = "spatial_grid",
   min_cells_per_grid = 4, scale_unit = F, ncp = 100, show_plot = T,
   PC_zscore = 1.5)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
scale_unit
                  scale features
                  number of principal components to calculate
ncp
                  show plots
show_plot
                  minimum z-score of variance explained by a PC
PC_zscore
```

Details

Description of how we compute spatial pattern genes.

Value

```
spatial pattern object 'spatPatObj'
```

```
detectSpatialPatterns(gobject)
```

42 doHclust

direction_test_CPG dir

direction_test_CPG

Description

shows direction of change

Usage

```
direction_test(x, min_pval = 0.05)
```

Examples

direction_test_CPG()

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
   "pca", "umap", "tsne"), dim_reduction_name = "pca",
   dimensions_to_use = 1:10, distance_method = c("pearson", "spearman",
   "original", "euclidean", "maximum", "manhattan", "canberra", "binary",
   "minkowski"), agglomeration_method = c("ward.D2", "ward.D", "single",
   "complete", "average", "mcquitty", "median", "centroid"), k = 10,
   h = NULL, name = "hclust", return_gobject = TRUE, set_seed = T,
   seed_number = 1234)
```

Arguments

doHMRF 43

```
agglomeration_method
```

agglomeration method for helust

k number of final clusters

h cut hierarchical tree at height = h
name name for hierarchical clustering

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

Details

Description on how to use Kmeans clustering method.

Value

giotto object appended with new cluster

Examples

doHclust(gobject)

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(gobject, expression_values = c("normalized", "scaled", "custom"),
   spatial_network_name = "spatial_network", spatial_genes = NULL,
   spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
   dim_reduction_to_use = NULL, dim_reduction_name = "pca",
   dimensions_to_use = 1:10, name = "test", k = 10, betas = c(0, 2,
   50), tolerance = 1e-10, zscore = c("none", "rowcol", "colrow"),
   numinit = 100, python_path = NULL, output_folder = NULL,
   overwrite_output = TRUE)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
spatial_network_name
name of spatial network to use for HMRF
spatial_genes spatial genes to use for HMRF
```

44 doKmeans

spatial_dimensions

select spatial dimensions to use, default is all possible dimensions

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name of HMRF run

k number of HMRF domains

betas betas to test for

tolerance tolerance zscore zscore

numinit number of initializations

python_path python path to use

output_folder output folder to save results

overwrite_output

overwrite output folder

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

Examples

doHMRF(gobject)

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

```
doKmeans(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
   "pca", "umap", "tsne"), dim_reduction_name = "pca",
   dimensions_to_use = 1:10, distance_method = c("original", "pearson",
   "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary",
   "minkowski"), centers = 10, iter_max = 100, nstart = 1000,
   algorithm = "Hartigan-Wong", name = "kmeans",
   return_gobject = TRUE, set_seed = T, seed_number = 1234)
```

doLeidenCluster 45

Arguments

gobject giotto object expression_values expression values to use genes_to_use subset of genes to use dim_reduction_to_use dimension reduction to use dim_reduction_name dimensions reduction name dimensions_to_use dimensions to use distance_method distance method centers number of final clusters kmeans maximum iterations iter_max nstart kmeans nstart algorithm kmeans algorithm name for kmeans clustering name return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed additional parameters . . .

Details

Description on how to use Kmeans clustering method.

Value

giotto object appended with new cluster

Examples

doKmeans(gobject)

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

```
doLeidenCluster(gobject, name = "leiden_clus",
  nn_network_to_use = "sNN", network_name = "sNN.pca",
  python_path = NULL, resolution = 1, weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition",
  "ModularityVertexPartition"), init_membership = NULL,
  n_iterations = 1000, return_gobject = TRUE, set_seed = T,
  seed_number = 1234, \ldots)
```

46 doLeidenSubCluster

Arguments

gobject giotto object name name for cluster nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use specify specific path to python if required python_path resolution resolution weight_col weight column partition_type partition type to use init_membership initial membership of cells n_iterations number of interations return_gobject boolean: return giotto object (default = TRUE) set_seed set seed seed_number number for seed

additional parameters

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

 ${\tt doLeidenCluster(gobject)}$

doLeidenSubCluster doLeidenSubCluster

Description

subcluster cells using a NN-network and the Leiden algorithm

```
doLeidenSubCluster(gobject, name = "sub_pleiden_clus",
   cluster_column = NULL, selected_clusters = NULL,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 10, resolution = 0.5, n_iterations = 500,
   python_path = NULL, nn_network_to_use = "sNN",
   network_name = "sNN.pca", return_gobject = TRUE, verbose = T, ...)
```

doLeidenSubCluster 47

Arguments

gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

 $hvg_mean_expr_det$

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution of Leiden clustering

n_iterations number of iterations

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

 ${\tt network_name} \qquad {\tt name} \ of \ NN \ network \ to \ use$

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

doLeidenSubCluster(gobject)

48 doLouvainCluster

doLouvainCluster doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(gobject, version = c("community", "multinet"),
  name = "louvain_clus", nn_network_to_use = "sNN",
  network_name = "sNN.pca", python_path = NULL, resolution = 1,
  weight_col = NULL, gamma = 1, omega = 1, louv_random = F,
  return_gobject = TRUE, set_seed = F, seed_number = 1234, ...)
```

Arguments

gobject giotto object

version implemented version of Louvain clustering to use

name name for cluster

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

python_path specify specific path to python if required

resolution resolution gamma gamma omega omega

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object appended with new cluster

```
doLouvainCluster(gobject)
```

```
\label{lower} do Louvain {\it Cluster\_community} \\ do Louvain {\it Cluster\_community}
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(gobject, name = "louvain_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    python_path = NULL, resolution = 1, weight_col = NULL,
    louv_random = F, return_gobject = TRUE, set_seed = F,
    seed_number = 1234, ...)
```

Arguments

```
giotto object
gobject
                 name for cluster
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 specify specific path to python if required
python_path
resolution
                 resolution
weight_col
                 weight column
louv_random
                 random
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
                 number for seed
seed_number
                 additional parameters
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

```
doLouvainCluster_community(gobject)
```

```
doLouvainCluster_multinet
```

doLouvainCluster_multinet

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

Usage

```
doLouvainCluster_multinet(gobject, name = "louvain_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    weight_col = NULL, gamma = 1, omega = 1, return_gobject = TRUE,
    set_seed = F, seed_number = 1234, ...)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

gamma gamma omega

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

... additional parameters

python_path specify specific path to python if required

Details

See louvain algorithm from the multinet package in R.

Value

giotto object appended with new cluster

```
doLouvainCluster_multinet(gobject)
```

doLouvainSubCluster 51

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

Usage

```
doLouvainSubCluster(gobject, name = "sub_louvain_clus",
  version = c("community", "multinet"), cluster_column = NULL,
  selected_clusters = NULL, hvg_param = list(reverse_log_scale = T,
  difference_in_variance = 1, expression_values = "normalized"),
  hvg_min_perc_cells = 5, hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE, min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20), k_neighbors = 10,
  resolution = 0.5, gamma = 1, omega = 1, python_path = NULL,
  nn_network_to_use = "sNN", network_name = "sNN.pca",
  return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result
version version of Louvain algorithm to use

cluster_column cluster column to subcluster

 $selected_clusters$

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

 $hvg_mean_expr_det$

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork resolution resolution for community algorithm

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

```
network_name name of NN network to use
return_gobject boolean: return giotto object (default = TRUE)
verbose verbose
... additional parameters
```

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

```
doLouvainSubCluster(gobject)
```

```
\label{lower} do Louvain SubCluster\_community \\ do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(gobject, name = "sub_louvain_comm_clus",
    cluster_column = NULL, selected_clusters = NULL,
    hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
    expression_values = "normalized"), hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
    scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 10, resolution = 0.5, python_path = NULL,
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    return_gobject = TRUE, verbose = T, ...)
```

Arguments

```
gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells
threshold for detection in min percentage of cells

hvg_mean_expr_det
threshold for mean expression level in cells with detection
```

```
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
pca_param
                 parameters for runPCA
                 parameters for parameters for createNearestNetwork
nn_param
                 number of k for createNearestNetwork
k_neighbors
                 resolution
resolution
python_path
                 specify specific path to python if required
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
return_gobject boolean: return giotto object (default = TRUE)
                  verbose
verbose
                 additional parameters
. . .
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

doLouvainSubCluster_community(gobject)

```
\label{lower_multinet} do Louvain SubCluster\_multinet \\ do Louvain SubCluster\_multinet
```

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

```
doLouvainSubCluster_multinet(gobject, name = "sub_louvain_mult_clus",
   cluster_column = NULL, selected_clusters = NULL,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 10, gamma = 1, omega = 1,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

 $hvg_mean_expr_det$

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma omega omega

nn_network_to_use

 $type\ of\ NN\ network\ to\ use\ (kNN\ vs\ sNN)$

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

python_path specify specific path to python if required

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

doLouvainSubCluster_multinet(gobject)

doRandomWalkCluster 55

doRandomWalkCluster doRandomWalkCluster

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(gobject, name = "random_walk_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    walk_steps = 4, walk_clusters = 10, walk_weights = NA,
    return_gobject = TRUE, set_seed = F, seed_number = 1234, ...)
```

Arguments

giotto object gobject name name for cluster nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name number of walking steps walk_steps walk_clusters number of final clusters cluster column defining the walk weights walk_weights return_gobject | boolean: return giotto object (default = TRUE) set_seed set seed number for seed seed_number additional parameters

Details

See random walk algorithm from the igraph package in R.

Value

giotto object appended with new cluster

```
{\tt doRandomWalkCluster(gobject)}
```

56 doSNNCluster

|--|

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(gobject, name = "sNN_clus", nn_network_to_use = "kNN",
  network_name = "kNN.pca", k = 20, eps = 4, minPts = 16,
  borderPoints = TRUE, return_gobject = TRUE, set_seed = F,
  seed_number = 1234, ...)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (only works on kNN)

network_name name of kNN network to use

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

Details

See sNNclust algorithm from dbscan package

Value

giotto object appended with new cluster

```
doSNNCluster(gobject)
```

dt_to_matrix 57

dt_to_matrix

dt_to_matrix

Description

converts data.table to matrix

Usage

```
dt_to_matrix(x)
```

Examples

```
dt_to_matrix(x)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

Usage

```
exportGiottoViewer(gobject, output_directory = NULL, annotations,
  dim_reductions, dim_reduction_names,
  expression_values = c("normalized", "scaled", "custom"),
  dim_red_rounding = NULL, dim_red_rescale = c(-20, 20),
  expression_rounding = NULL, overwrite_dir = F, verbose = T)
```

Arguments

verbose

```
gobject
                  giotto object
output_directory
                  directory where to save the files
                  giotto cell annotations to view
annotations
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
```

be verbose

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function.

Value

writes the necessary output to use in Giotto Viewer

Examples

```
exportGiottoViewer(gobject)
```

```
expr Only Cell Cell communication Scores \\ expr Only Cell Cell communication Scores
```

Description

Cell-Cell communication scores based on expression only

Usage

```
exprOnlyCellCellcommunicationScores(gobject,
  cluster_column = "cell_types", random_iter = 100, gene_set_1,
  gene_set_2, log2FC_addendum = 0.1, verbose = T)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

random_iter number of iterations

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

verbose verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on expression only

```
exprOnlyCellCellcommunicationScores(gobject)
```

extended_gini_fun 59

```
extended_gini_fun extended_gini_fun
```

Description

calculate gini coefficient on a minimum length vector

Usage

```
extended_gini_fun(x, weights = rep(1, length = length(x)),
    minimum_length = 16)
```

Value

gini coefficient

extractNearestNetwork extractNearestNetwork

Description

Extracts a NN-network from a Giotto object as an igraph object

Usage

```
extractNearestNetwork(gobject, nn_network_to_use = "sNN",
   network_name = "sNN.pca")
```

Arguments

```
\begin{array}{ccc} \text{gobject} & \text{giotto object} \\ & \text{nn\_network\_to\_use} \\ & & kNN \text{ or sNN} \\ \\ & \text{network\_name} & \text{name of NN network to be used} \end{array}
```

Value

igraph object

```
extractNearestNetwork(gobject)
```

60 filterCombinations

fDataDT

fDataDT

Description

show gene metadata

Usage

fDataDT(gobject)

Arguments

gobject

giotto object

Value

data.table

Examples

pDataDT(gobject)

filterCombinations

filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_thresholds = c(1, 2),
   gene_det_in_min_cells = c(5, 50), min_det_genes_per_cell = c(200,
   400), scale_x_axis = "identity", x_axis_offset = 0,
   scale_y_axis = "identity", y_axis_offset = 0, show_plot = TRUE)
```

Arguments

filterDistributions 61

```
scale_x_axis ggplot transformation for x-axis (e.g. log2)

x_axis_offset x-axis offset to be used together with the scaling transformation

scale_y_axis ggplot transformation for y-axis (e.g. log2)

y_axis_offset y-axis offset to be used together with the scaling transformation

show_plot show plot
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

```
filterCombinations(gobject)
```

```
filterDistributions filterDistributions
```

Description

show gene or cell filter distributions

Usage

```
filterDistributions(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_threshold = 1, detection = c("genes",
   "cells"), plot_type = c("histogram", "violin"), nr_bins = 30,
   fill_color = "lightblue", scale_axis = "identity", axis_offset = 0,
   show_plot = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
                  look at genes or cells
detection
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
```

filterGiotto

Value

ggplot object

Examples

```
filterDistributions(gobject)
```

filter Giotto

filter Giotto

Description

filter Giotto object

Usage

```
filterGiotto(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_threshold = 1,
   gene_det_in_min_cells = 100, min_det_genes_per_cell = 100,
   verbose = F)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Value

giotto object

```
filterGiotto(gobject)
```

findGiniMarkers 63

findGiniMarkers findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, subset_clusters = NULL, group_1 = NULL,
   group_2 = NULL, min_expr_gini_score = 0.5,
   min_det_gini_score = 0.5, detection_threshold = 0, rank_score = 1)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
                  rank scores to include
rank_score
```

Details

Description of parameters.

Value

data.table with marker genes

```
find {\it GiniMarkers} (gobject)
```

```
\label{lem:cone_vs_all} find \textit{GiniMarkers\_one\_vs\_all} \textit{find GiniMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, subset_clusters = NULL,
   min_expr_gini_score = 0.5, min_det_gini_score = 0.5,
   detection_threshold = 0, min_genes = 10, verbose = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
verbose
                  be verbose
```

Details

Description of parameters.

Value

data.table with marker genes

```
findGiniMarkers_one_vs_all(gobject)
```

findMarkers 65

findMarkers	findMarkers	
-------------	-------------	--

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, method = c("scran", "gini", "mast"),
   subset_clusters = NULL, group_1 = NULL, group_2 = NULL,
   min_expr_gini_score = 0.5, min_det_gini_score = 0.5,
   detection_threshold = 0, rank_score = 1, group_1_name = NULL,
   group_2_name = NULL, adjust_columns = NULL, ...)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
                  method to use to detect differentially expressed genes
method
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
                  gini: rank scores to include
rank_score
                  mast: custom name for group_1 clusters
group_1_name
                  mast: custom name for group_2 clusters
group_2_name
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers, findGiniMarkers and FindMastMarkers.

Value

data.table with marker genes

Examples

```
findMarkers(gobject)
```

Description

Identify marker genes for all clusters.

Usage

```
findMarkers_one_vs_all(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, subset_clusters = NULL,
    method = c("scran", "gini", "mast"), pval = 0.01, logFC = 0.5,
    min_genes = 10, min_expr_gini_score = 0.5,
    min_det_gini_score = 0.5, detection_threshold = 0, rank_score = 1,
    adjust_columns = NULL, verbose = TRUE, ...)
```

Arguments

```
giotto object
gobject
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
method
                  method to use to detect differentially expressed genes
pval
                  scran & mast: filter on minimal p-value
logFC
                  scan & mast: filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
{\tt detection\_threshold}
                  gini: detection threshold for gene expression
rank_score
                  gini: rank scores to include
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  be verbose
verbose
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and FindMastMarkers_one_vs_all.

findMastMarkers 67

Value

data.table with marker genes

Examples

```
findMarkers_one_vs_all(gobject)
```

findMastMarkers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, group_1 = NULL, group_1_name = NULL,
   group_2 = NULL, group_2_name = NULL, adjust_columns = NULL, ...)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_1_name custom name for group_1 clusters
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
group_2_name custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
... additional parameters for the zlm function in MAST
```

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers(gobject)
```

```
findMastMarkers_one_vs_all findMastMarkers_one_vs_all
```

Description

Identify marker genes for all clusters based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, subset_clusters = NULL,
   adjust_columns = NULL, pval = 0.001, logFC = 1, min_genes = 10,
   verbose = TRUE, ...)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
pval
                  filter on minimal p-value
                  filter on logFC
logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
verbose
                  be verbose
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers_one_vs_all(gobject)
```

findScranMarkers 69

findScranMarkers	findScranMarkers

Description

Identify marker genes for selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, subset_clusters = NULL, group_1 = NULL,
   group_2 = NULL, ...)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

```
findScranMarkers(gobject)
```

```
find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

70 find_grid_2D

Usage

```
findScranMarkers_one_vs_all(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, subset_clusters = NULL,
   pval = 0.01, logFC = 0.5, min_genes = 10, verbose = TRUE, ...)
```

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

subset of clusters to use

pval filter on minimal p-value

logFC filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

... additional parameters for the findMarkers function in scran

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

findScranMarkers_one_vs_all(gobject)

find_grid_2D $find_grid_2D$

Description

find grid location in 2D

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

find_grid_3D 71

find_grid_3D

find_grid_3D

Description

find grid location in 3D

Usage

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

 $find_grid_x$

find_grid_x

Description

find grid location on x-axis

Usage

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

find_grid_y

Description

find grid location on y-axis

Usage

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

 $find_grid_z$

Description

find grid location on z-axis

```
find_grid_z(grid_DT, z_loc)
```

72 FSV_show

fish_function fish_function

Description

perform fisher exact test

Usage

```
fish_function(x_to, x_from)
```

fish_function2

fish_function2

Description

perform fisher exact test

Usage

```
fish_function2(A, B, C, D)
```

FSV_show

FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(results, ms_results = NULL, size = c(4, 2, 1),
color = c("blue", "green", "red"), sig_alpha = 0.5,
unsig_alpha = 0.5)
```

Arguments

results results caculated by spatial_DE
ms_results ms_results caculated by spatial_DE
size indicate different levels of qval
color indicate different SV features
sig_alpha transparency of significant genes
unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

GenePattern_show 73

Value

nothing

Examples

FSV_show(results)

GenePattern_show

GenePattern_show

Description

Visualize genes distribution patterns calculated by spatial_AEH

Usage

```
GenePattern_show(gobject = NULL, AEH_results = NULL, sdimx = NULL,
   sdimy = NULL, point_size = 3, point_alpha = 1,
   low_color = "blue", mid_color = "white", high_color = "red",
   midpoint = 0)
```

Arguments

gobject giotto object

AEH_results results from spatial_AEH sdimx x axis of spatial locus sdimy y axis of spatial locus

point_size size of points to indicate cells

point_alpha transparency of points to indicate cells

low_colorcolor to indicate low score levelmid_colorcolor to indicate middle score levelhigh_colorcolor to indicate high score level

midpoint point to set mid_color

Details

Description of parameters.

Value

nothing

```
GenePattern_show(gobject,AEH_results)
```

```
{\it getCellProximityGeneScores} \\ {\it getCellProximityGeneScores}
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
getCellProximityGeneScores(gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "louvain_clus.1",
  expression_values = c("normalized", "scaled", "custom"),
  fold_change_addendum = 0.1, in_two_directions = TRUE,
  exclude_selected_cells_from_test = F, verbose = T)
```

Arguments

Details

Give more details ...

Value

Cell Proximity Gene scores (CPGscores) in data.table format

```
getCellProximityGeneScores(gobject)
```

getClusterSimilarity 75

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"))
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
\verb"getClusterSimilarity" (\verb"gobject")
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

Usage

```
getDendrogramSplits(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"),
   distance = "ward.D", h = NULL, h_color = "red", show_dend = TRUE,
   verbose = TRUE)
```

76 getDistinctColors

Arguments

distance

gobject giotto object

expression_values

expression values to use

cluster_column name of column to use for clusters correlation score to calculate distance

cor distance method to use for hierarchical clustering

h height of horizontal lines to plot

h_color color of horizontal lines

show_dend show dendrogram

verbose be verbose

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

getDendrogramSplits(gobject)

getDistinctColorsgetDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

getDistinctColors(n)

Arguments

number of colors wanted n

Value

number of distinct colors

```
getGeneToGeneSelection
```

getGeneToGeneSelection

Description

Compute gene-gene enrichment scores.

Usage

```
getGeneToGeneSelection(CPGscore, selected_genes = NULL,
   specific_genes_1 = NULL, specific_genes_2 = NULL, min_cells = 5,
   min_pval = 0.05, min_spat_diff = 0.2, min_log2_fc = 0.5,
   direction = c("both", "up", "down"), fold_change_addendum = 0.1,
   verbose = TRUE)
```

Arguments

```
CPGscore
                  CPGscore, output from getCellProximityGeneScores()
selected_genes select subset of genes
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
min_cells
                  min number of cells threshold
min_pval
                  p-value threshold
min_spat_diff
                  spatial difference threshold
min_log2_fc
                  log2 fold-change threshold
direction
                  up or downregulation or both
fold_change_addendum
                  constant to add when calculating log2 fold-change
verbose
                  verbose
```

Details

Give more details ...

Value

Gene to gene scores in data.table format

```
getGeneToGeneSelection(CPGscore)
```

Description

creates unified cell-cell interaction names

Usage

```
get_cell_to_cell_sorted_name_conversion(all_cell_types)
```

Examples

```
get_cell_to_cell_sorted_name_conversion()
```

Description

Computes gene enrichment between all interactions

Usage

```
get_interaction_gene_enrichment(spatial_network,
  unified_int_col = "unified_int", source_col = "source_clus",
  source_IDs = "from", neighb_col = "neighb_clus", neighb_IDs = "to",
  expression_matrix, cell_annotation, annotation_ID = "uniq_ID",
  cell_type_col, do_diff_test = T,
  exclude_selected_cells_from_test = T, verbose = T)
```

```
get_interaction_gene_enrichment()
```

Description

Computes gene enrichment between specified interaction

Usage

```
get_specific_interaction_gene_enrichment(sub_spatial_network,
  source_col = "source_clus", source_IDs = "from",
  neighb_col = "neighb_clus", neighb_IDs = "to", expression_matrix,
  interaction_name = "to_specify", cell_annotation,
  annotation_ID = "uniq_ID", cell_type_col, do_diff_test = T,
  exclude_selected_cells_from_test = T)
```

Examples

```
get_specific_interaction_gene_enrichment()
```

```
ggplot_save_function ggplot_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
ggplot_save_function(gobject, plot_object = NULL, save_dir = NULL,
    save_folder = NULL, save_name = NULL, save_format = NULL,
    show_saved_plot = F, scale = 1, width = NA, height = NA,
    units = c("in", "cm", "mm"), dpi = NULL, limitsize = TRUE)
```

Arguments

```
gobject
                  giotto object
save_dir
                  directory to save to
                  folder in save_dir to save to
save_folder
                  name of plot
save_name
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
                  scale
scale
width
                  width
units
                  units
```

giotto-class

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

height height

See Also

```
ggplot2::ggsave
```

Examples

```
ggplot_save_function(gobject)
```

giotto-class

S4 giotto Class

Description

Framework of giotto object

Slots

```
raw_exprs raw expression counts

norm_expr normalized expression counts

norm_scaled_expr normalized and scaled expression counts

custom_expr custom normalized counts

spatial_locs spatial location coordinates for cells

cell_metadata metadata for cells

gene_metadata metadata for genes

cell_ID unique cell IDs

gene_ID unique gene IDs

spatial_network spatial network in data.table/data.frame format

spatial_grid spatial grid in data.table/data.frame format

dimension_reduction slot to save dimension reduction coordinates

nn_network nearest neighbor network in igraph format

parameters slot to save parameters that have been used

offset_file offset file used to stitch together image fields
```

iterCluster 81

iterCluster iterCluster

Description

cluster cells iteratively

Usage

```
iterCluster(gobject, cluster_method = c("leiden", "louvain_community",
    "louvain_multinet"), nr_rounds = 5,
    hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
    expression_values = "normalized"), hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
    scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 20, resolution = 1, gamma = 1, omega = 1,
    python_path = NULL, nn_network_to_use = "sNN",
    network_name = "sNN.pca", name = "iter_clus",
    return_gobject = TRUE, ...)
```

Arguments

gobject giotto object cluster_method clustering algorithm to use number of iterative rounds nr_rounds parameters for calculateHVG hvg_param hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg parameters for runPCA pca_param parameters for parameters for runPCA nn_param k for nn-network k_neighbors resolution resolution gamma gamma omega omega python path to use for Leiden clustering python_path nn_network_to_use NN network to use NN network name network_name name of clustering return_gobject boolean: return giotto object (default = TRUE) additional parameters

82 iterLeidenCluster

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

```
iterCluster(gobject)
```

iterLeidenCluster

iterLeidenCluster

Description

cluster cells iteratively

Usage

```
iterLeidenCluster(gobject, name = "iter_clus", nr_rounds = 5,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
 expression_values = "normalized"), hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
 scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 20, resolution = 1, n_iterations = 1000,
 python_path = NULL, nn_network_to_use = "sNN",
 network_name = "sNN.pca", return_gobject = TRUE, ...)
```

Arguments

n_iterations

giotto object gobject name name of clustering nr_rounds number of iterative rounds parameters for calculateHVG hvg_param hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg pca_param parameters for runPCA parameters for parameters for runPCA nn_param k for nn-network k_neighbors resolution resolution for Leiden clustering number of iterations for Leiden clustering

iterLouvainCluster 83

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLeidenCluster(gobject)

iterLouvainCluster

iterLouvainCluster

Description

cluster cells iteratively

Usage

```
iterLouvainCluster(gobject, version = c("community", "multinet"),
    nr_rounds = 5, hvg_param = list(reverse_log_scale = T,
    difference_in_variance = 1, expression_values = "normalized"),
    hvg_min_perc_cells = 5, hvg_mean_expr_det = 1,
    use_all_genes_as_hvg = FALSE, min_nr_of_hvg = 5,
    pca_param = list(expression_values = "normalized", scale_unit = T),
    nn_param = list(dimensions_to_use = 1:20), k_neighbors = 20,
    resolution = 1, gamma = 1, omega = 1, python_path = NULL,
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

version louvain clustering algorithm to use

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

```
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                 parameters for runPCA
pca_param
                 parameters for parameters for runPCA
nn_param
k_neighbors
                 k for nn-network
resolution
                 resolution
                 gamma
gamma
                 omega
omega
python_path
                 python path to use for Leiden clustering
nn_network_to_use
                 NN network to use
network_name
                 NN network name
name
                 name of clustering
return_gobject boolean: return giotto object (default = TRUE)
```

Details

. . .

Description of iterative clustering.

Value

giotto object appended with new cluster

additional parameters

Examples

iterLouvainCluster(gobject)

Description

cluster cells iteratively

Usage

```
iterLouvainCluster_community(gobject, nr_rounds = 5,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 20, resolution = 1, python_path = NULL,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

k_neighbors k for nn-network

resolution resolution for Leiden clustering

python_path python path to use for Leiden clustering

nn_network_to_use

NN network to use

network_name NN network name name of clustering

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLouvainCluster_community(gobject)

iterLouvainCluster_multinet

iterLouvainCluster_multinet

Description

cluster cells iteratively

Usage

```
iterLouvainCluster_multinet(gobject, nr_rounds = 5,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 20, gamma = 1, omega = 1,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

k_neighbors k for nn-network

gamma gamma omega omega nn_network_to_use

NN network to use

 $\begin{array}{ll} \text{network_name} & NN \text{ network name} \\ \text{name} & \text{name of clustering} \end{array}$

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

python_path python path to use for Leiden clustering

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

 $iter Louvain Cluster_multinet(gobject)$

kmeans_binarize 87

 ${\tt kmeans_binarize}$

kmeans_binarize

Description

create binarized scores using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(name_used = "test", output_folder_used, k_used = 10,
  betas_used, python_path_used)
```

Arguments

 $\begin{array}{cc} \text{name_used} & \text{name of HMRF that was run} \\ \text{output_folder_used} \end{array}$

output folder that was used

k_used number of HMRF domains that was tested

betas_used betas that were tested

python_path_used

python path that was used

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

loadHMRF(gobject)

88 mergeClusters

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(gobject, spatial_network_name = "spatial_network",
    cluster_column, number_of_simulations = 100)
```

Examples

```
make_simulated_network(gobject)
```

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
mergeClusters(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, cor = c("pearson", "spearman"),
   new_cluster_name = "merged_cluster", min_cor_score = 0.8,
   max_group_size = 20, force_min_group_size = 10,
   return_gobject = TRUE, verbose = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
min_cor_score min correlation score to merge pairwise clusters
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
return_gobject return giotto object
verbose
                  be verbose
```

mygini_fun 89

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value.

A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

mygini_fun

mygini_fun

Description

calculate gini coefficient

Usage

```
mygini_fun(x, weights = rep(1, length(x)))
```

Value

gini coefficient

nnDT_to_kNN

nnDT_to_kNN

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

90 normalizeGiotto

node_clusters	node_clusters
---------------	---------------

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

```
hclus_obj hclus object
verbose be verbose
```

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

normalize Giotto normalize Giotto

Description

normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(gobject, norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE, scalefactor = 6000, log_norm = TRUE,
  logbase = 2, scale_genes = T, scale_cells = T,
  scale_order = c("first_genes", "first_cells"), verbose = F)
```

Arguments

```
gobject giotto object
```

norm_methods normalization method to use

library_size_norm

normalize cells by library size

scalefactor scale factor to use after library size normalization

log_norm transform values to log-scale

logbase log base to use to log normalize expression values

scale_genes z-score genes over all cells scale_cells z-score cells over all genes scale_order order to scale genes and cells

verbose be verbose

OR_function2 91

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
- 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
- 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

normalizeGiotto(gobject)

OR_function2

OR_function2

Description

calculate odds-ratio

Usage

```
OR_function2(A, B, C, D)
```

pDataDT

pDataDT

Description

show cell metadata

Usage

pDataDT(gobject)

Arguments

gobject

giotto object

92 plotCPGscores

Value

data.table

Examples

```
pDataDT(gobject)
```

plotCPGscores

plotCPGscores

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotCPGscores(CPGscores, selected_interactions = NULL,
   selected_genes = NULL, detail_plot = T, simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed", facet_ncol = length(selected_genes),
   facet_nrow = length(selected_interactions), show_plot = F)
```

Arguments

```
CPGscores
                  CPGscores, output from getCellProximityGeneScores()
selected_interactions
                  interactions to show
selected_genes genes to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
show_plot
                  show plot
```

Details

Give more details ...

Value

ggplot barplot

```
plotCPGscores(CPGscores)
```

plotGTGscores 93

plotGTGscores	plotGTGscores
---------------	---------------

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotGTGscores(GTGscore, selected_interactions = NULL,
  selected_gene_to_gene = NULL, detail_plot = T, simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed", facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions), colors = c("blue",
  "red"), show_plot = F)
```

Arguments

```
GTGscore
                  GTGscore, output from getGeneToGeneScores()
selected_interactions
                  interactions to show
detail\_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with 2 colors to represent respectively all and selected cells
show_plot
                  show plot
selected_genes genes to show
```

Details

Give more details ...

Value

ggplot barplot

```
plotGTGscores(GTGscore)
```

94 plotHeatmap

plotHeatmap

plotHeatmap

Description

creates order for clusters

Usage

```
plotHeatmap(gobject, expression_values = c("normalized", "scaled",
    "custom"), genes, cluster_column = NULL, cluster_order = c("size",
    "correlation", "custom"), cluster_custom_order = NULL,
    cluster_color_code = NULL, cluster_cor_method = "pearson",
    cluster_hclust_method = "ward.D", gene_order = c("custom",
    "correlation"), gene_custom_order = NULL,
    gene_cor_method = "pearson", gene_hclust_method = "complete",
    show_values = c("rescaled", "z-scaled", "original"),
    size_vertical_lines = 1.1, gradient_colors = c("blue", "yellow",
    "red"), gene_label_selection = NULL, axis_text_y_size = NULL,
    legend_nrows = 1, show_plot = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
genes
                  genes to use
cluster_column name of column to use for clusters
cluster_order
                  method to determine cluster order
cluster_custom_order
                  custom order for clusters
cluster_color_code
                  color code for clusters
cluster_cor_method
                  method for cluster correlation
cluster_hclust_method
                  method for hierarchical clustering of clusters
gene_order
                  method to determine gene order
gene_custom_order
                  custom order for genes
gene_cor_method
                  method for gene correlation
gene_hclust_method
                  method for hierarchical clustering of genes
show_values
                  which values to show on heatmap
size_vertical_lines
                  sizes for vertical lines
```

plotly_axis_scale_2D 95

```
gradient_colors

colors for heatmap gradient

gene_label_selection
subset of genes to show on y-axis

axis_text_y_size
size for y-axis text

legend_nrows number of rows for the cluster legend
```

Details

Creates heatmap for genes and clusters.

Value

ggplot

Examples

```
plotHeatmap(gobject)
```

```
plotly_axis_scale_2D plotly_axis_scale_2D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_2D(cell_locations, sdimx = NULL, sdimy = NULL,
  mode = c("cube", "real", "custom"), custom_ratio = NULL)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

```
plotly_axis_scale_2D(gobject)
```

96 plotly_grid

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_3D(cell_locations, sdimx = NULL, sdimy = NULL,
    sdimz = NULL, mode = c("cube", "real", "custom"),
    custom_ratio = NULL)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
sdimz z axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_3D(gobject)
```

plotly_grid

plotly_grid

Description

```
provide grid segment to draw in plot_ly()
```

Usage

```
plotly_grid(spatial_grid, x_start = "x_start", y_start = "y_start",
    x_end = "x_end", y_end = "y_end")
```

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

```
edges in spatial grid as data.table()
```

plotly_network 97

Examples

```
plotly_grid(gobject)
```

plotly_network

plotly_network

Description

```
provide network segment to draw in 3D plot_ly()
```

Usage

```
plotly_network(network, x = "sdimx_begin", y = "sdimy_begin",
    z = "sdimz_begin", x_end = "sdimx_end", y_end = "sdimy_end",
    z_end = "sdimz_end")
```

Arguments

gobject

network in giotto object

Value

edges in network as data.table()

Examples

```
plotly_network(gobject)
```

plotMetaDataHeatmap

plotMetaDataHeatmap

Description

creates order for clusters

Usage

```
plotMetaDataHeatmap(gobject, expression_values = c("normalized",
    "scaled", "custom"), metadata_cols = NULL, selected_genes = NULL,
    first_meta_col = NULL, second_meta_col = NULL,
    show_values = c("zscores", "original", "zscores_rescaled"),
    custom_cluster_order = NULL, clus_cor_method = "pearson",
    clus_cluster_method = "complete", custom_gene_order = NULL,
    gene_cor_method = "pearson", gene_cluster_method = "complete",
    midpoint = 0, x_text_size = 8, x_text_angle = 45,
    y_text_size = 8, strip_text_size = 8, show_plot = T)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
metadata_cols
                  annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                  if more than 1 metadata column, select the facetting factor
show_values
                  which values to show on heatmap
custom_cluster_order
                  custom cluster order (default = NULL)
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
{\tt gene\_cor\_method}
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
midpoint
                  midpoint of show_values
                  size of x-axis text
x_text_size
x_text_angle
                  angle of x-axis text
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  print plot (default = TRUE)
```

Details

Creates heatmap for average the average expression of selected genes in the different annotation groups

Value

ggplot or data.table

```
plotMetaDataHeatmap(gobject)
```

plotPCA 99

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, ...)
```

Arguments

gobject giotto object

... other parameters that are part of visDimPlot()

Details

Description of parameters.

Value

ggplot

See Also

visDimPlot

Examples

```
plotPCA(gobject)
```

plotTSNE

plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, ...)
```

Arguments

gobject giotto object

... other parameters that are part of visDimPlot()

Details

Description of parameters.

100 plotUMAP

Value

ggplot

See Also

```
\verb|visDimPlot|
```

Examples

```
plotTSNE(gobject)
```

plotUMAP

plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, ...)
```

Arguments

gobject giotto object

... other parameters that are part of visDimPlot()

Details

Description of parameters.

Value

ggplot

See Also

```
visDimPlot
```

```
plotUMAP(gobject)
```

Description

Visualize cells in network layer according to dimension reduction coordinates

Usage

```
plot_network_layer_ggplot(ggobject, annotated_network_DT,
  edge_alpha = NULL, show_legend = T)
```

Arguments

```
annotated\_network\_DT
```

annotated network data.table of selected cells

edge_alpha alpha of network edges

show_legend show legend gobject giotto object

Details

Description of parameters.

Value

ggplot

Examples

```
plot_network_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates

Usage

```
plot_point_layer_ggplot(ggobject, annotated_DT_selected,
      annotated_DT_other, cell_color = NULL, color_as_factor = T,
      cell_color_code = NULL, select_cell_groups = NULL,
      select_cells = NULL, show_other_cells = T,
      other_cell_color = "lightgrey", other_point_size = 0.5,
      show_cluster_center = F, show_center_label = T,
      center_point_size = 4, center_point_border_col = "black",
      center_point_border_stroke = 0.1, label_size = 4,
      label_fontface = "bold", edge_alpha = NULL, point_size = 1,
      point_border_col = "black", point_border_stroke = 0.1,
      show_legend = T)
Arguments
    annotated_DT_selected
                     annotated data.table of selected cells
    annotated_DT_other
                     annotated data.table of not selected cells
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
   other_cell_color
                     color of not selected cells
   other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
    edge_alpha
                     column to use for alpha of the edges
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
    point_border_stroke
```

stroke size of border around points

show legend

giotto object

show_legend

gobject

print.giotto 103

Details

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot(gobject)
```

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print
nr_cells number of cells (columns) to print

rank_binarize

rank_binarize

Description

create binarized scores using arbitrary rank of top genes

Usage

```
rank_binarize(x, max_rank = 200)
```

104 removeCellAnnotation

```
readGiottoInstructions
```

readGiottoInstrunctions

Description

Function to read instructions for giotto functions

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

giotto object or result from createGiottoInstructions()

param parameter to retrieve

Value

specific parameter

Examples

readGiottoInstrunctions()

remove Cell Annotation remove Cell Annotation

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Value

giotto object

Examples

removeCellAnnotation(gobject)

removeGeneAnnotation 105

removeGeneAnnotation removeGeneAnnotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Value

giotto object

Examples

removeGeneAnnotation(gobject)

runPCA

runPCA

Description

run PCA

Usage

```
runPCA(gobject, expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), name = "pca", genes_to_use = NULL,
  return_gobject = TRUE, scale_unit = F, ncp = 200, ...)
```

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

name arbitrary name for PCA run genes_to_use subset of genes to use for PCA

return_gobject boolean: return giotto object (default = TRUE)

scale_unit scale features before PCA

ncp number of principal components to calculate

... additional parameters for PCA

106 runtSNE

Details

Description of PCA steps...

Value

giotto object with updated PCA dimension recuction

Examples

runPCA(gobject)

runtSNE

runtSNE

Description

run tSNE

Usage

```
runtSNE(gobject, expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), dim_reduction_to_use = "pca",
  dim_reduction_name = "pca", dimensions_to_use = 1:10,
  name = "tsne", genes_to_use = NULL, return_gobject = TRUE,
  dims = 2, perplexity = 30, theta = 0.5, do_PCA_first = F,
  set_seed = T, seed_number = 1234, ...)
```

Arguments

```
gobject giotto object
```

expression_values

expression values to use

reduction cells or genes

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name arbitrary name for tSNE run

genes_to_use if dim_reduction_to_use = NULL, which genes to use

return_gobject boolean: return giotto object (default = TRUE)
dims tSNE param: number of dimensions to return

perplexity tSNE param: perplexity theta tSNE param: theta

do_PCA_first tSNE param: do PCA before tSNE (default = FALSE)

set_seed use of seed

seed_number seed number to use

... additional tSNE parameters

runUMAP 107

Details

Description of tSNE steps and params ...

Value

giotto object with updated tSNE dimension recuction

Examples

runtSNE(gobject)

runUMAP

runUMAP

Description

run UMAP

Usage

```
runUMAP(gobject, expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), dim_reduction_to_use = "pca",
  dim_reduction_name = "pca", dimensions_to_use = 1:10,
  name = "umap", genes_to_use = NULL, return_gobject = TRUE,
  n_neighbors = 40, n_components = 2, n_epochs = 400,
  min_dist = 0.01, n_threads = 1, spread = 5, set_seed = T,
  seed_number = 1234, ...)
```

Arguments

n_threads

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                  number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
```

return_gobject boolean: return giotto object (default = TRUE)

UMAP param: threads to use

n_neighbors UMAP param: number of neighbors
n_components UMAP param: number of components
n_epochs UMAP param: number of epochs
min_dist UMAP param: minimum distance

108 selectPatternGenes

spread UMAP param: spread

set_seed use of seed

seed_number seed number to use

... additional UMAP parameters

Details

Description of UMAP steps...

Value

giotto object with updated UMAP dimension recuction

Examples

runUMAP(gobject)

selectPatternGenes selectPatternGenes

Description

create a spatial grid

Usage

```
selectPatternGenes(spatPatObj, dimensions = 1:5, top_pos_genes = 10,
  top_neg_genes = 10, min_pos_cor = 0.5, min_neg_cor = -0.5)
```

Arguments

spatPatObj Output from detectSpatialPatterns

dimensions dimensions to identify correlated genes for.

top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.

min_pos_cor Minimum positive correlation score to include a gene.

min_neg_cor Minimum negative correlation score to include a gene.

Details

Description.

Value

ggplot

Examples

selectPatternGenes(gobject)

select_expression_values 109

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

show,giotto-method

show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

 $show Cluster Dendrogram \quad show Cluster Dendrogram$

Description

Creates dendrogram based on identified clusters

```
showClusterDendrogram(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"),
   distance = "ward.D", h = NULL, h_color = "red")
```

110 showClusterHeatmap

Arguments

gobject giotto object
expression_values

expression values to use

cluster_column name of column to use for clusters
cor correlation score to calculate distance

distance method to use for hierarchical clustering

h height of horizontal lines to plot

h color color of horizontal lines

Details

Correlation dendrogram of selected clustering.

Value

ggplot

Examples

showClusterDendrogram(gobject)

showClusterHeatmap showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(gobject, expression_values = c("normalized", "scaled",
  "custom"), genes = "all", cluster_column, cor = c("pearson",
  "spearman"), distance = "ward.D", ...)
```

Arguments

gobject giotto object

expression_values

expression values to use

genes vector of genes to use, default to 'all' cluster_column name of column to use for clusters cor correlation score to calculate distance

distance method to use for hierarchical clustering

... additional parameters for the Heatmap function from ComplexHeatmap

Details

Correlation heatmap of selected clusters.

showCPGscores 111

Value

ggplot

Examples

showClusterHeatmap(gobject)

showCPGscores

showCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
showCPGscores(CPGscore, method = c("cell_barplot", "cell-cell",
   "cell_sankey"), min_cells = 5, min_pval = 0.05,
   min_spat_diff = 0.2, min_log2_fc = 0.5, direction = c("both", "up",
   "down"), cell_color_code = NULL, show_plot = T, return_DT = F)
```

Arguments

CPGscore CPGscore, output from getCellProximityGeneScores()

method visualization method

min_cells min number of cells threshold

min_pval p-value threshold

min_spat_diff spatial difference threshold
min_log2_fc min log2 fold-change

direction up or downregulation or both

cell_color_code

color code for cell types

show_plot print plot

return_DT return filtered data.table (boolean)

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

```
showCPGscores(CPGscore)
```

112 showGTGscores

```
show Gene Expression Proximity Score \\ show Gene Expression Proximity Score
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
showGeneExpressionProximityScore(scores, selected_gene,
    sort_column = "diff_spat")
```

Arguments

scores CPscore, output from getAverageCellProximityGeneScores()

selected_gene gene to show

sort_column column name to use for sorting

Details

Give more details ...

Value

ggplot barplot

Examples

show Gene Expression Proximity Score (scores)

showGTGscores

showGTGscores

Description

visualize Cell Proximity Gene enrichment scores

```
showGTGscores(GTGscore, method = c("cell_barplot", "cell-cell",
   "cell_sankey"), min_cells = 5, min_pval = 0.05,
   min_spat_diff = 0.2, min_log2_fc = 0.5, direction = c("both", "up",
   "down"), cell_color_code = NULL, show_plot = T,
   specific_genes_1 = NULL, specific_genes_2 = NULL,
   first_cell_name = "ligand cell", second_cell_name = "receptor cell",
   return_DT = F)
```

Arguments

visualization method method min number of cells threshold min_cells min_pval p-value threshold min_spat_diff spatial difference threshold min_log2_fc log2 fold-change threshold direction up or downregulation or both cell_color_code color code for cell types show_plot print plot specific_genes_1 subset of genes, matched with specific_genes_2 specific_genes_2 subset of genes, matched with specific_genes_1 first_cell_name name for first cells second_cell_name name for second cells

CPGscore, output from getCellProximityGeneScores()

Details

Give more details ...

Value

ggplot

CPGscore

Examples

showGTGscores(CPGscore)

```
show Int {\it Expression Proximity Score} \\ show Int {\it Expression Proximity Score}
```

Description

Create heatmap from cell-cell proximity scores

```
showIntExpressionProximityScore(scores, selected_interaction,
   sort_column = "diff_spat", show_enriched_n = 5,
   show_depleted_n = 5)
```

114 showPattern

Arguments

Details

Give more details ...

Value

ggplot barplot

Examples

showIntExpressionProximityScore(scores)

showPattern

showPattern

Description

create a spatial grid

Usage

```
showPattern(spatPatObj, dimension = 1, trim = c(0.02, 0.98),
background_color = "white", grid_border_color = "grey",
show_legend = T, plot_dim = 2, point_size = 1,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

Arguments

show_plot Show the plot.

showPatternGenes 115

Details

Description.

Value

ggplot

Examples

showPattern(gobject)

showPatternGenes

showPatternGenes

Description

create a spatial grid

Usage

```
showPatternGenes(spatPatObj, dimension = 1, top_pos_genes = 5,
top_neg_genes = 5, point_size = 1, show_plot = F)
```

Arguments

spatPatObj Output from detectSpatialPatterns dimension dimension to plot genes for.
top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.
point_size size of points
show_plot Show the plot.

Details

Description.

Value

ggplot

Examples

showPatternGenes(gobject)

116 showTopGeneToGene

```
showProcessingSteps showProcessingSteps
```

Description

shows the sequential processing steps that were performed

Usage

```
showProcessingSteps(gobject)
```

Arguments

gobject giotto object

Value

list of processing steps and names

Examples

```
showProcessingSteps(gobject)
```

showTopGeneToGene showTopGeneToGene

Description

Show enriched/depleted gene-gene enrichments

Usage

```
showTopGeneToGene(GTGscore, top_interactions = 10,
   direction = c("increased", "decreased"), complement_data = T,
   subset_cell_ints = NULL, subset_genes = NULL)
```

signPCA 117

Details

Give more details ...

Value

ggplot barplot

Examples

showTopGeneToGene(scores)

signPCA

signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(gobject, method = c("screeplot", "jackstraw"),
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), genes_to_use = NULL,
  scale_unit = T, ncp = 50, scree_labels = T, scree_ylim = c(0,
  10), jack_iter = 10, jack_threshold = 0.01, jack_verbose = T,
  show_plot = T, ...)
```

Arguments

gobject giotto object

method method to use to identify significant PCs

expression_values

expression values to use

reduction cells or genes

genes_to_use subset of genes to use for PCA scale_unit scale features before PCA

ncp number of principal components to calculate

scree_labels show labels on scree plot scree_ylim y-axis limits on scree plot

jack_iter number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
jack_verbose show progress of jackstraw method

show_plot show plots

... additional parameters for PCA

Details

Description of PCA steps...

Spatial_AEH

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

Spatial_AEH

Spatial_AEH

Description

calculate automatic expression histology with spatialDE method

Usage

```
Spatial_AEH(gobject = NULL, results = NULL, pattern_num = 5,
    l = 1.05, show_AEH = T, sdimx = NULL, sdimy = NULL,
    point_size = 3, point_alpha = 1, low_color = "blue",
    mid_color = "white", high_color = "red", midpoint = 0,
    python_path = NULL)
```

Arguments

gobject Giotto object

results output from spatial_DE

pattern_num the number of gene expression patterns

show_AEH show AEH plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

Spatial_DE 119

Spatial_DE

Spatial_DE

Description

calculate spatial varible genes with spatialDE method

Usage

```
Spatial_DE(gobject = NULL, show_plot = T, size = c(4, 2, 1),
color = c("blue", "green", "red"), sig_alpha = 0.5,
unsig_alpha = 0.5, python_path = NULL)
```

Arguments

gobject Giotto object show_plot show FSV plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

```
specificCellCellcommunicationScores(gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types", random_iter = 100,
  cell_type_1 = "astrocyte", cell_type_2 = "endothelial", gene_set_1,
  gene_set_2, log2FC_addendum = 0.1, min_observations = 2,
  verbose = T)
```

Arguments

gobject giotto object to use spatial_network_name spatial network to use for identifying interacting cells cluster_column cluster column with cell type information random_iter number of iterations first cell type cell_type_1 cell_type_2 second cell type gene_set_1 first specific gene set from gene pairs gene_set_2 second specific gene set from gene pairs log2FC_addendum addendum to add when calculating log2FC min_observations minimum number of interactions needed to be considered

Details

verbose

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
specificCellCellcommunicationScores(gobject)
```

verbose

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend dendrogram object

Value

list of two dendrograms and height of node

Examples

```
split_dendrogram_in_two(dend)
```

stitchFieldCoordinates 121

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

Usage

```
stitchFieldCoordinates(location_file, offset_file, cumulate_offset_x = F,
  cumulate_offset_y = F, field_col = "Field of View",
  X_coord_col = "X", Y_coord_col = "Y", reverse_final_x = F,
  reverse_final_y = T)
```

Arguments

```
location_file
                  location dataframe with X and Y coordinates
offset_file
                  dataframe that describes to offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Describe how stitching works.

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

Examples

```
stitchFieldCoordinates(gobject)
```

122 subClusterCells

subClusterCells subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(gobject, name = "sub_clus",
   cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
   cluster_column = NULL, selected_clusters = NULL,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 10, resolution = 1, gamma = 1, omega = 1,
   python_path = NULL, nn_network_to_use = "sNN",
   network_name = "sNN.pca", return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result

cluster_method clustering method to use

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

 $\label{eq:min_nr_of_hvg} \mbox{ minimum number of HVG, or all genes will be used as input for PCA}$

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

 $k_neighbors \qquad number \ of \ k \ for \ createNearestNetwork$

resolution resolution gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

subsetGiotto 123

```
network_name name of NN network to use
```

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous calculations

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL)
```

Arguments

gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep

Value

giotto object

Examples

```
subsetGiotto(gobject)
```

124 violinPlot

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(gobject, HMRFoutput, k = NULL, betas_to_view = NULL,
    third_dim = NULL, ...)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

visPlot

Examples

viewHMRFresults(gobject)

violinPlot

violinPlot

Description

Creates heatmap based on identified clusters

```
violinPlot(gobject, expression_values = c("normalized", "scaled",
  "custom"), genes, cluster_column, cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"), cluster_color_code = NULL,
  strip_text = 7, axis_text_x_size = 10, axis_text_y_size = 6)
```

visDimGenePlot 125

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to plot
cluster_column name of column to use for clusters
color_violin color violinplots according to genes or clusters
```

Details

Correlation heatmap of clusters vs genes.

Value

ggplot

Examples

violinPlot(gobject)

visDimGenePlot

visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes = NULL, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   dim3_to_use = NULL, show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", network_color = "lightgray",
   edge_alpha = NULL, scale_alpha_with_expression = TRUE,
   point_size = 1, genes_high_color = NULL, genes_mid_color = "white",
   genes_low_color = "blue", point_border_col = "black",
   point_border_stroke = 0.1, midpoint = 0, cow_n_col = 2,
   cow_rel_h = 1, cow_rel_w = 1, cow_align = "h", show_legend = T,
   plot_method = c("ggplot", "plotly"), show_plots = F)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
```

126 visDimGenePlot

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

dim3_to_use dimension to use on z-axis

 ${\sf show_NN_network}$

show underlying NN network

 $nn_network_to_use$

type of NN network to use (kNN vs sNN)

network_name name of NN network to use, if show_NN_network = TRUE

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot(gobject)

```
vis {\tt DimGenePlot\_2D\_ggplot} \\ vis {\tt DimGenePlot\_2D\_ggplot}
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes = NULL, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", network_color = "lightgray",
    edge_alpha = NULL, scale_alpha_with_expression = TRUE,
    point_size = 1, genes_high_color = "red",
    genes_mid_color = "white", genes_low_color = "blue",
    point_border_col = "black", point_border_stroke = 0.1,
    midpoint = 0, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
    cow_align = "h", show_legend = T, show_plots = F)
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale\_alpha\_with\_expression
                 scale expression with ggplot alpha parameter
                 size of point (cell)
point_size
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
```

```
midpoint size of point (cell)

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

show_legend show_plots

show plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimGenePlot_2D_ggplot(gobject)
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes = NULL, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    dim3_to_use = 3, show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", network_color = "lightgray",
    edge_alpha = NULL, point_size = 1, genes_high_color = NULL,
    genes_mid_color = "white", genes_low_color = "blue",
    show_legend = T, show_plots = F)
```

visDimPlot 129

```
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
                 show legend
show_legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot_3D_plotly(gobject)

visDimPlot visDimPlot

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot(gobject, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   dim3_to_use = NULL, show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
   cell_color_code = NULL, select_cell_groups = NULL,
   select_cells = NULL, show_other_cells = T,
   other_cell_color = "lightgrey", other_point_size = 0.5,
   show_cluster_center = F, show_center_label = T,
   center_point_size = 4, center_point_border_col = "black",
   center_point_border_stroke = 0.1, label_size = 4,
   label_fontface = "bold", edge_alpha = NULL, point_size = 3,
   point_border_col = "black", point_border_stroke = 0.1,
   plot_method = c("ggplot", "plotly"), show_legend = T)
```

130 visDimPlot

Arguments

gobject giotto object dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_legend show legend

Details

Description of parameters.

Value

ggplot or plotly

Examples

visDimPlot(gobject)

```
\verb|visDimPlot_2D_ggplot| | | visDimPlot_2D_ggplot| |
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_2D_ggplot(gobject, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
    cell_color_code = NULL, select_cell_groups = NULL,
    select_cells = NULL, show_other_cells = T,
    other_cell_color = "lightgrey", other_point_size = 0.5,
    show_cluster_center = F, show_center_label = T,
    center_point_size = 4, center_point_border_col = "black",
    center_point_border_stroke = 0.1, label_size = 4,
    label_fontface = "bold", edge_alpha = NULL, point_size = 1,
    point_border_col = "black", point_border_stroke = 0.1,
    show_legend = T)
```

```
gobject
                  giotto object
{\tt dim\_reduction\_to\_use}
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
                  dimension to use on x-axis
dim1_to_use
                  dimension to use on y-axis
dim2_to_use
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
```

```
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_plotly(gobject, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
   cell_color_code = NULL, show_cluster_center = F,
   show_center_label = T, center_point_size = 4, label_size = 4,
   edge_alpha = NULL, point_size = 5, show_legend = T)
```

visDimPlot_2D_plotly 133

Arguments

gobject giotto object

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis

dim2_to_use dimension to use on y-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use, if show_NN_network = TRUE

cell_color color for cells (see details)

color_as_factor

convert color column to factor

cell_color_code

named vector with colors

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

label_size size of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

show_legend show legend

Details

Description of parameters.

Value

plotly

Examples

visDimPlot_2D_plotly(gobject)

```
visDimPlot_3D_plotly
                       visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(gobject, dim_reduction_to_use = "umap",
 dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
 dim3_to_use = 3, show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = 4,
 edge_alpha = NULL, point_size = 1, show_legend = T)
```

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label_size
                 size of labels
                 column to use for alpha of the edges
edge_alpha
                 size of point (cell)
point_size
show_legend
                 show legend
```

visForceLayoutPlot 135

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_3D_plotly(gobject)
```

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

Usage

```
visForceLayoutPlot(gobject, nn_network_to_use = "sNN",
  network_name = "sNN.pca", layout_name = "layout", dim1_to_use = 1,
  dim2_to_use = 2, show_NN_network = T, cell_color = NULL,
  color_as_factor = F, cell_color_code = NULL, edge_alpha = NULL,
  point_size = 1, point_border_col = "black",
  point_border_stroke = 0.1, show_legend = T)
```

```
giotto object
gobject
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 NN network to use
network_name
layout_name
                 name of layout to use
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
show_legend
                 show legend
```

visGenePlot

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot

visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot(gobject, expression_values = c("normalized", "scaled",
    "custom"), genes, genes_high_color = NULL, genes_mid_color = "white",
    genes_low_color = "blue", show_network = F, network_color = NULL,
    spatial_network_name = "spatial_network", edge_alpha = NULL,
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", midpoint = 0,
    scale_alpha_with_expression = TRUE, point_size = 1,
    point_border_col = "black", point_border_stroke = 0.1,
    show_legend = T, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
    cow_align = "h", axis_scale = c("cube", "real", "custom"),
    custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
    z_ticks = NULL, plot_method = c("ggplot", "plotly"),
    show_plots = F)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
                  genes to show
genes
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
```

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align axis_scale three mode to adjust axis scale

x_ticks number of ticks on x axis
y_ticks number of ticks on y axis
z_ticks number of ticks on z axis
plot_method two methods of plot

show_plots show plots

Details

Description of parameters.

Value

ggplot or plotly

Examples

visGenePlot(gobject)

visGenePlot_2D_ggplot visGenePlot_2D_ggplot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_2D_ggplot(gobject, expression_values = c("normalized",
      "scaled", "custom"), genes, genes_high_color = "darkred",
     genes_mid_color = "white", genes_low_color = "darkblue",
     show_network = F, network_color = NULL,
      spatial_network_name = "spatial_network", edge_alpha = NULL,
      show_grid = F, grid_color = NULL,
      spatial_grid_name = "spatial_grid", midpoint = 0,
     scale_alpha_with_expression = TRUE, point_size = 1,
     point_border_col = "black", point_border_stroke = 0.1,
      show_legend = T, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
     cow_align = "h", show_plots = F)
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
                    genes to show
   genes
   genes_high_color
                    color represents high gene expression
   genes_mid_color
                    color represents middle gene expression
   genes_low_color
                    color represents low gene expression
                    show underlying spatial network
   show_network
```

color of spatial network

show spatial grid

color of spatial grid

expression midpoint

size of point (cell)

show legend

show plots

name of spatial grid to use

color of border around points

stroke size of border around points

cowplot param: how many columns

cowplot param: relative height

cowplot param: relative width

cowplot param: how to align

scale expression with ggplot alpha parameter

name of spatial network to use

network_color

show_grid

grid_color

midpoint

point_size point_border_col

show_legend

cow_n_col

cow_rel_h

cow_rel_w cow_align

show_plots

spatial_network_name

spatial_grid_name

point_border_stroke

scale_alpha_with_expression

Details

Description of parameters.

Value

ggplot

Examples

```
visGenePlot_2D_ggplot(gobject)
```

```
visGenePlot_3D_plotly
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_3D_plotly(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes, show_network = F, network_color = NULL,
    spatial_network_name = "spatial_network", edge_alpha = NULL,
    show_grid = F, genes_high_color = NULL, genes_mid_color = "white",
    genes_low_color = "blue", spatial_grid_name = "spatial_grid",
    point_size = 1, show_legend = T, axis_scale = c("cube", "real",
    "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
    z_ticks = NULL, show_plots = F)
```

```
giotto object
gobject
expression_values
                  gene expression values to use
genes
                  genes to show
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
```

140 visPlot

```
point_size
                  size of point (cell)
show_legend
                  show legend
                  three mode to adjust axis scale
axis_scale
x_ticks
                  number of ticks on x axis
y_ticks
                  number of ticks on y axis
                  number of ticks on z axis
z_ticks
show_plots
                  show plots
grid_color
                  color of spatial grid
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
```

Details

Description of parameters.

Value

plotly

Examples

visGenePlot_3D_plotly(gobject)

visPlot

visPlot

Description

Visualize cells according to spatial coordinates

```
visPlot(gobject, sdimx = NULL, sdimy = NULL, sdimz = NULL,
 point_size = 3, point_border_col = "black",
 point_border_stroke = 0.1, cell_color = NULL,
 cell_color_code = NULL, color_as_factor = T,
 select_cell_groups = NULL, select_cells = NULL,
 show_other_cells = T, other_cell_color = "lightgrey",
 show_network = F, network_color = NULL, network_alpha = 1,
 other_cells_alpha = 0.1, spatial_network_name = "spatial_network",
 show_grid = F, grid_color = NULL, grid_alpha = 1,
 spatial_grid_name = "spatial_grid", coord_fix_ratio = 0.6,
 title = "", show_legend = T, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
 z_ticks = NULL, plot_method = c("ggplot", "plotly"), show_plot = F,
 return_plot = TRUE, save_plot = F, save_dir = NULL,
 save_folder = NULL, save_name = NULL, save_format = NULL,
  show_saved_plot = F, ...)
```

visPlot 141

Arguments

gobject giotto object sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') sdimz z-axis dimension name (default = 'sdimz') size of point (cell) point_size point_border_col color of border around points point_border_stroke stroke size of border around points cell_color color for cells (see details) cell_color_code named vector with colors color_as_factor convert color column to factor select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells show_network show underlying spatial network network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid grid_color color of spatial grid spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_dir directory to save the plot (optional) folder in directory to save the plot save_folder name of plot save_name save_format format of plot (e.g. tiff, png, pdf, ...) show_saved_plot load & display the saved plot

visPlot_2D_ggplot

Details

Description of parameters.

Value

ggplot

Examples

visPlot(gobject)

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_ggplot(gobject, sdimx = NULL, sdimy = NULL,
  point_size = 3, point_border_col = "black",
  point_border_stroke = 0.1, cell_color = NULL,
  cell_color_code = NULL, color_as_factor = T,
  select_cell_groups = NULL, select_cells = NULL,
  show_other_cells = T, other_cell_color = "lightgrey",
  show_network = F, network_color = NULL, network_alpha = 1,
  other_cells_alpha = 0.1, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL,
  spatial_grid_name = "spatial_grid", coord_fix_ratio = 0.6,
  title = "", show_legend = T, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  z_ticks = NULL, show_plot = F, return_plot = TRUE, save_plot = F,
  save_dir = NULL, save_folder = NULL, save_name = NULL,
  save_format = NULL, show_saved_plot = F, ...)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
```

visPlot_2D_ggplot 143

color_as_factor

convert color column to factor

select_cell_groups

select subset of cells/clusters based on cell_color parameter

select_cells select subset of cells based on cell IDs

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

title title of plot show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

visPlot_2D_ggplot(gobject)

144 visPlot_2D_plotly

```
visPlot_2D_plotly visPlot_2D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(gobject, sdimx = NULL, sdimy = NULL,
  point_size = 3, cell_color = NULL, cell_color_code = NULL,
  color_as_factor = T, select_cell_groups = NULL,
  select_cells = NULL, show_other_cells = T, show_network = F,
  network_color = "lightgray", network_alpha = 1,
  other_cells_alpha = 0.5, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL, grid_alpha = 1,
  spatial_grid_name = "spatial_grid", show_legend = T,
  axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
  x_ticks = NULL, y_ticks = NULL, show_plot = F)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select a subset of the groups from cell color
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
grid_alpha
                  alpha of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
show_plot
                  show plot
```

Details

Description of parameters.

visPlot_3D_plotly 145

Value

plotly

Examples

```
visPlot_2D_plotly(gobject)
```

```
visPlot_3D_plotly
visPlot_3D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_3D_plotly(gobject, sdimx = NULL, sdimy = NULL, sdimz = NULL,
point_size = 3, point_border_col = "black",
point_border_stroke = 0.1, cell_color = NULL,
cell_color_code = NULL, color_as_factor = T,
select_cell_groups = NULL, select_cells = NULL,
show_other_cells = T, show_network = F, network_color = NULL,
network_alpha = 1, other_cells_alpha = 0.1,
spatial_network_name = "spatial_network", show_grid = F,
grid_color = NULL, spatial_grid_name = "spatial_grid",
coord_fix_ratio = 0.6, title = "", show_legend = T,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

```
giotto object
gobject
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
```

146 visSpatDimGenePlot

```
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
```

Details

Description of parameters.

Value

ggplot

Examples

visPlot_3D_plotly(gobject)

visSpatDimGenePlot visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

Usage

```
visSpatDimGenePlot(gobject, plot_method = c("ggplot", "plotly"),
    expression_values = c("normalized", "scaled", "custom"),
    plot_alignment = c("horizontal", "vertical"),
    dim_reduction_to_use = "umap", dim_reduction_name = "umap",
    dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
    sdimx = NULL, sdimy = NULL, sdimz = NULL, genes,
    dim_point_border_col = "black", dim_point_border_stroke = 0.1,
    show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", edge_alpha_dim = NULL,
    scale_alpha_with_expression = TRUE, label_size = 16,
    genes_low_color = "blue", genes_mid_color = "white",
    genes_high_color = "red", dim_point_size = 3,
    nn_network_alpha = 0.5, show_spatial_network = F,
    spatial_network_name = "spatial_network",
    network_color = "lightgray", spatial_network_alpha = 0.5,
```

visSpatDimGenePlot 147

```
show_spatial_grid = F, spatial_grid_name = "spatial_grid",
spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
spatial_point_size = 3, spatial_point_border_col = "black",
spatial_point_border_stroke = 0.1, legend_text_size = 12,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, midpoint = 0,
point_size = 1, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
cow_align = "h", show_legend = T, show_plots = F)
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
                 x-axis dimension name (default = 'sdimx')
sdimx
                 y-axis dimension name (default = 'sdimy')
sdimy
                 z-axis dimension name (default = 'sdimz')
sdimz
                 genes to show
genes
dim_point_border_col
                 color of border around points
dim_point_border_stroke
                 stroke size of border around points
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
                 size for the label
label_size
genes_low_color
                 color to represent low expression of gene
genes_high_color
                 color to represent high expression of gene
dim_point_size dim reduction plot: point size
spatial_network_name
                 name of spatial network to use
```

```
spatial_grid_name
```

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

legend_text_size

the size of the text in legend

axis_scale three modes to adjust axis scale ratio

custom_ratio set the axis scale ratio on custom

x_ticks number of ticks on x axis
y_ticks number of ticks on y axis
z_ticks number of ticks on z axis

midpoint size of point (cell)
point_size size of point (cell)

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show_plot show plot

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimGenePlot(gobject)

 $\verb|visSpatDimGenePlot_2D| | \textit{visSpatDimGenePlot}_2D|$

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
visSpatDimGenePlot_2D(gobject, expression_values = c("normalized",
 "scaled", "custom"), plot_alignment = c("horizontal", "vertical"),
 genes, dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, point_size = 1,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
  show_NN_network = F, show_spatial_network = F,
  show_spatial_grid = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", edge_alpha_dim = NULL,
 scale_alpha_with_expression = TRUE,
  spatial_network_name = "spatial_network",
 spatial_grid_name = "spatial_grid", spatial_point_size = 1,
 spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, midpoint = 0,
 genes_high_color = "red", genes_mid_color = "white"
 genes_low_color = "blue", cow_n_col = 2, cow_rel_h = 1,
 cow_rel_w = 1, cow_align = "h", axis_scale = c("cube", "real",
 "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  show_legend = T, show_plots = F)
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
plot_alignment direction to align plot
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
point_size
                 size of point (cell)
dim_point_border_col
                 color of border around points
dim_point_border_stroke
                 stroke size of border around points
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
spatial_network_name
                 name of spatial network to use
```

```
spatial_grid_name
                  name of spatial grid to use
spatial_point_size
                  spatial plot: point size
{\tt spatial\_point\_border\_col}
                  color of border around points
spatial_point_border_stroke
                  stroke size of border around points
midpoint
                  size of point (cell)
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_legend
                  show legend
dim_point_size dim reduction plot: point size
show_plot
                  show plot
```

Details

Description of parameters.

Value

ggplot

Examples

 $\verb|visSpatDimGenePlot_2D(gobject)| \\$

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimGenePlot_3D(gobject, expression_values = c("normalized",
   "scaled", "custom"), plot_alignment = c("horizontal", "vertical"),
   dim_reduction_to_use = "umap", dim_reduction_name = "umap",
   dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
   sdimx = NULL, sdimy = NULL, sdimz = NULL, genes,
   show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", label_size = 16,
   genes_low_color = "blue", genes_mid_color = "white",
   genes_high_color = "red", dim_point_size = 3,
   nn_network_alpha = 0.5, show_spatial_network = F,
   spatial_network_name = "spatial_network",
```

```
network_color = "lightgray", spatial_network_alpha = 0.5,
show_spatial_grid = F, spatial_grid_name = "spatial_grid",
spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
spatial_point_size = 3, legend_text_size = 12,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL)
```

Arguments

show_plot

show plot

giotto object gobject plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dimension to use on z-axis dim3_to_use show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE genes_low_color color represent high gene expression (see details) genes_high_color color represent high gene expression (see details) nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use network_color color of spatial/nn network spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_grid_alpha alpha of spatial grid legend_text_size text size of legend show_legend show legend

152 visSpatDimPlot

Details

Description of parameters.

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

visSpatDimPlot

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

Usage

```
visSpatDimPlot(gobject, plot_method = c("ggplot", "plotly"),
 plot_alignment = NULL, dim_reduction_to_use = "umap",
 dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
 dim3_to_use = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = NULL,
 label_fontface = "bold", cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, select_cell_groups = NULL,
  select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", dim_point_size = 3,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
 nn_network_alpha = NULL, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
  spatial_point_size = 3, legend_text_size = 12,
 spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, show_legend = T,
 axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
 x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

visSpatDimPlot 153

```
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
select_cells
                 select subset of cells based on cell IDs
show_other_cells
                 display not selected cells
other_cell_color
                 color of not selected cells
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
show_legend
                 show legend
                 show plot
show_plot
plot_mode
                 choose the mode to draw plot: ggplot or plotly
spatial_network_color
                 color of spatial network
```

Details

Description of parameters.

154 visSpatDimPlot_2D

Value

```
ggplot or plotly
```

Examples

visSpatDimPlot(gobject)

visSpatDimPlot_2D

visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

Usage

```
visSpatDimPlot_2D(gobject, plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, sdimx = NULL, sdimy = NULL,
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = 4,
 label_fontface = "bold", cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, select_cell_groups = NULL,
 select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", dim_plot_mode = NULL,
 dim_point_size = 1, dim_point_border_col = "black",
 dim_point_border_stroke = 0.1, nn_network_alpha = 0.05,
 show_spatial_network = F, spatial_network_name = "spatial_network",
 spatial_network_color = NULL, show_spatial_grid = F,
 spatial_grid_name = "spatial_grid", spatial_grid_color = NULL,
 spatial_point_size = 1, spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1, show_legend = T, show_plot = F,
 plot_method = "ggplot")
```

155

```
name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
nn_network_alpha
                  column to use for alpha of the edges
show\_spatial\_network
                  show spatial network
spatial_network_name
                  name of spatial network to use
spatial_network_color
                  color of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
show_legend
                  show legend
                  show plot
show_plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
\verb|visSpatDimPlot_2D(gobject)|\\
```

visSpatDimPlot_3D

```
visSpatDimPlot_3D
visSpatDimPlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimPlot_3D(gobject, plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = NULL, sdimy = NULL, sdimz = NULL, show_NN_network = F,
 nn_network_to_use = "sNN", network_name = "sNN.pca",
 show_cluster_center = F, show_center_label = T,
 center_point_size = 4, label_size = 16, cell_color = NULL,
 color_as_factor = T, cell_color_code = NULL, dim_point_size = 3,
 nn_network_alpha = 0.5, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
 spatial_point_size = 3, axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
 z_ticks = NULL, legend_text_size = 12)
```

```
giotto object
gobject
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
nn_network_alpha
                 column to use for alpha of the edges
```

writeHMRFresults 157

```
show_spatial_network
```

show spatial network

spatial_network_name

name of spatial network to use

spatial_network_alpha

alpha of spatial network

show_spatial_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

spatial_grid_alpha

alpha of spatial grid

 ${\tt legend_text_size}$

text size of legend

spatial_network_color

color of spatial network

show_legend show legend show_plot show plot

Details

Description of parameters.

Value

plotly

Examples

visSpatDimPlot_3D(gobject)

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(gobject, HMRFoutput, k = NULL, betas_to_view = NULL,
    print_command = F)
```

Arguments

gobject giotto object

HMRF output From doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

```
write\_giotto\_viewer\_annotation \\ write\_giotto\_viewer\_annotation
```

Description

write out annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_annotation(annotation, annot_name = "test",
  output_directory = getwd())
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(dim_reduction_cell, dim_red = NULL,
  dim_red_name = NULL, dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20), output_directory = getwd())
```

Arguments

dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files

Value

write a .txt and .annot file for the selection annotation

Index

T	
*Topic giotto ,	create_cell_type_random_cell_IDs, 38
giotto-class, 80	create_cluster_matrix, 39
print.giotto, 103	create_dimObject, 39
show, giotto-method, 109	createGiottoInstructions, 30
*Topic giotto	createGiottoObject, 31
createGiottoObject, 31	createHeatmap_DT, 32
*Topic object	createNearestNetwork, 33
giotto-class, 80	createSpatialGrid, 34
print.giotto, 103	createSpatialGrid_2D, 35
show,giotto-method,109	createSpatialGrid_3D, 35
110 334 + 1 + 5	createSpatialNetwork, 36
addCellMetadata, 5	
addCellStatistics, 6	decide_cluster_order, 40
addGeneMetadata, 7	detectSpatialPatterns, 41
addGeneStatistics, 7	direction_test (direction_test_CPG), 42
addHMRF, 8	direction_test_CPG, 42
addNetworkLayout, 9	doHclust, 42
addStatistics, 9	doHMRF, 43
${\sf adjustGiottoMatrix}, 10$	doKmeans, 44
allCellCellcommunicationsScores, 11	doLeidenCluster, 45
<pre>annotate_spatlocs_with_spatgrid_2D, 13</pre>	doLeidenSubCluster,46
<pre>annotate_spatlocs_with_spatgrid_3D, 13</pre>	doLouvainCluster,48
annotateGiotto, 12	doLouvainCluster_community,49
annotateSpatialNetwork, 12	<pre>doLouvainCluster_multinet, 50</pre>
<pre>average_gene_gene_expression_in_groups,</pre>	doLouvainSubCluster, 51
14	<pre>doLouvainSubCluster_community, 52</pre>
	<pre>doLouvainSubCluster_multinet, 53</pre>
binGetSpatialGenes, 15	doRandomWalkCluster, 55
	doSNNCluster, 56
calculate_spatial_genes_python, 19	dt_to_matrix, 57
calculateHVG, 16	
calculateMetaTable, 17	exportGiottoViewer, 57
calculateSpatialGenes, 17	exprOnlyCellCellcommunicationScores,
cellProximityBarplot, 20	58
cellProximityEnrichment, 20	extended_gini_fun, 59
cellProximityHeatmap, 21	extractNearestNetwork, 59
cellProximityNetwork, 22	
cellProximityVisPlot, 23	fDataDT, 60
<pre>cellProximityVisPlot_2D_ggplot, 24</pre>	filterCombinations, 60
cellProximityVisPlot_2D_plotly, 26	filterDistributions, 61
cellProximityVisPlot_3D_plotly, 27	filterGiotto, 62
clusterCells, 28	find_grid_2D,70
<pre>create_average_detection_DT, 37</pre>	find_grid_3D, 71
create_average_DT, 38	find_grid_x,71

INDEX 161

find_grid_y, 71	plotGTGscores, 93
find_grid_z, 71	plotHeatmap, 94
findGiniMarkers, 63	plotly_axis_scale_2D,95
findGiniMarkers_one_vs_all, 64	plotly_axis_scale_3D, 96
findMarkers, 65	plotly_grid, 96
findMarkers_one_vs_all,66	plotly_network, 97
findMastMarkers, 67	plotMetaDataHeatmap, 97
findMastMarkers_one_vs_all, 68	plotPCA, 99
findScranMarkers, 69	plotTSNE, 99
findScranMarkers_one_vs_all, 69	plotUMAP, 100
fish_function, 72	print.giotto, 103
	print.grotto, 103
fish_function2, 72	rank hinariza 103
FSV_show, 72	rank_binarize, 103
CanaDattama ahaw 72	readGiottoInstructions, 104
GenePattern_show, 73	removeCellAnnotation, 104
<pre>get_cell_to_cell_sorted_name_conversion,</pre>	removeGeneAnnotation, 105
78	runPCA, 105
get_interaction_gene_enrichment, 78	runtSNE, 106
<pre>get_specific_interaction_gene_enrichment,</pre>	runUMAP, 107
getCellProximityGeneScores, 74	select_expression_values, 109
getClusterSimilarity, 75	selectPatternGenes, 108
getDendrogramSplits, 75	show, giotto-method, 109
<pre>getDistinctColors, 76</pre>	showClusterDendrogram, 109
getGeneToGeneSelection, 77	showClusterHeatmap, 110
ggplot2::ggsave, 80	showCPGscores, 111
ggplot_save_function, 79	showGeneExpressionProximityScore, 112
giotto (giotto-class), 80	showGTGscores, 112
giotto-class, 80	showIntExpressionProximityScore, 113
610110 01005, 00	showPattern, 114
iterCluster, 81	showPatternGenes, 115
iterLeidenCluster, 82	showProcessingSteps, 116
iterLouvainCluster, 83	
iterLouvainCluster_community, 84	showTopGeneToGene, 116
iterLouvainCluster_multinet, 85	signPCA, 117
Tter Louvaincluster_multimet, 65	Spatial_AEH, 118
kmeans_binarize, 87	Spatial_DE, 119
Killediis_billal 12e, 87	specificCellCellcommunicationScores,
loadHMRF, 87	119
104411111, 07	<pre>split_dendrogram_in_two, 120</pre>
make_simulated_network, 88	stitchFieldCoordinates, 121
mergeClusters, 88	subClusterCells, 122
mygini_fun, 89	subsetGiotto, 123
, S2111_1 d, 05	
nnDT_to_kNN, 89	viewHMRFresults, 124
node_clusters, 90	violinPlot, 124
normalizeGiotto, 90	visDimGenePlot, 125
1101 1111111111111111111111111111111111	<pre>visDimGenePlot_2D_ggplot, 127</pre>
OR_function2, 91	visDimGenePlot_3D_plotly, 128
· · · · · · · · · · · · · · · ·	visDimPlot, 99, 100, 129
pDataDT, 91	visDimPlot_2D_ggplot, 131
plot_network_layer_ggplot, 101	visDimPlot_2D_plotly, 132
plot_point_layer_ggplot, 101	visDimPlot_3D_plotly, 134
plotCPGscores, 92	visForceLayoutPlot, 135

INDEX

```
visGenePlot, 136
\verb|visGenePlot_2D_ggplot|, 137|
\verb|visGenePlot_3D_plotly|, 139|
visPlot, 124, 140
visPlot_2D_ggplot, 142
visPlot_2D_plotly, 144
visPlot\_3D\_plotly, \\ 145
visSpatDimGenePlot, 146
visSpatDimGenePlot_2D, 148
visSpatDimGenePlot_3D, 150
visSpatDimPlot, 152
visSpatDimPlot_2D, 154
visSpatDimPlot_3D, 156
write_giotto_viewer_annotation, 158
write\_giotto\_viewer\_dim\_reduction, 158
writeHMRFresults, 157
```