Laboratorium 1

Arytmetyka komputerowa

Bartłomiej Szubiak

05.03.2024

7ad 1

Znaleźć "maszynowe epsilon", czyli najmniejszą liczbę a, taką że a+1>1

W standardzie IEEE 754, podczas dodawania liczb najpierw są one dostosowywane do wspólnego wykładnika, a następnie dodawane są ich mantysy.

Dlatego też, najmniejsza liczba, którą można dodać do jedynki, musi mieć ten sam wykładnik co 1, ale jednocześnie jak najmniejszą mantysę.

Wiec:

• Dla liczby 1:

o Wykładnik: 0

o Mantysa: 1

Dla maszynowego epsilon:

Wykładnik: taki sam jak dla liczby 1 czyli =0

o Mantysa: najmniejsza możliwa

Tak więc, maszynowe epsilon jest równe:

$$\varepsilon = B^{-(p-1)}$$

gdzie:

- p jest precyzją
- B jest podstawą systemu liczbowego.

Zad2

Rozważamy problem ewaluacji funkcji sin(x), m.in. propagację błędu danych wejściowych, tj. błąd wartości funkcji ze względu na zakłócenie h w argumencie x:

- a) Ocenić błąd bezwzględny przy ewaluacji sin(x)
- b) Ocenić błąd względny przy ewaluacji sin(x)
- c) Ocenić uwarunkowanie dla tego problemu
- d) Dla jakich wartości argumentu x problem jest bardzo czuły?

a) Błąd bezwzględny:

$$\Delta \sin x = |\sin x(1 + \epsilon) - \sin x|$$

b) b) Błąd względny:

$$\frac{\Delta \sin x}{\sin x} = \frac{|\sin x(1 + \epsilon) - \sin x|}{\sin x}$$

c) Uwarunkowanie:

Dla funkcji jednej zmiennej błąd uwarunkowanie wyraża się wzorem:

cond(f(x)) =
$$\left| \frac{xf'(x)}{f(x)} \right|$$

gdzie:

- f(x) to testowana funkcja w tym przypadku =sin(x)
- f'(x) to pochodna testowanej funkcji w tym przypadku =cos(x)

Więc:

$$\operatorname{cond}(f(x)) = \left| \frac{x \cos x}{\sin x} \right| = |x \operatorname{ctg} x|$$

Rysunek 1: Wykres funkcji y = |x ctg x|

Obserwacja:

Funkcja ta ucieka do $+\infty$ w wielokrotnościach π za wyjątkiem x = 0, oraz jest równa 0 dla 1.5 wielokrotnościach π

d) Problem staje się czuły w miejscach gdzie funkcja ucieka do +∞, czyli dla miejsc:

$$x = k\pi$$
, $gdzie k \in Z\setminus\{0\}$

Najlepiej uwarunkowany będzie problem w miejscach gdzie funkcja = 0, więc dla miejsc:

$$x = k\pi + \frac{\pi}{2}$$
, $gdzie k \in Z$

Wnioski:

Funkcja sin x jest najgorzej uwarunkowana dla swoich miejsc zerowych z wyjątkiem x=0 ($x = k\pi$, gdzie $k \in \mathbb{Z} \setminus \{0\}$)

Zaś dla swoich ekstremów lokalnych ($x=k\pi+\frac{\pi}{2}$, gdzie $k\in Z$) najlepiej.

Zad3

Funkcja sinus zadana jest nieskończonym ciągiem

$$\sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$$

- a) Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc tylko pierwszy człon rozwinięcia, tj. $\sin(x) \approx x$, dla x = 0.1, 0.5 i 1.0 ?
- b) Jakie są błędy progresywny i wsteczny jeśli przybliżamy funkcję sinus biorąc pierwsze dwa człony rozwinięcia, tj. $\sin(x) \approx x x^3/6$, dla x = 0.1, 0.5 i 1.0 ?

Błąd progresywny to moduł różnicy między wartością uzyskaną w wyniku obliczeń a rzeczywistą wartością. W praktyce, błąd ten jest spowodowany niedokładnościami obliczeniowymi oraz ograniczeniami precyzji używanego sprzętu lub oprogramowania.

Natomiast błąd wsteczny to moduł różnicy między wartością podstawioną do funkcji (czyli argumentem) a argumentem, dla którego rzeczywista wartość tej funkcji jest równa wartości uzyskanej przez przybliżenie funkcji. Innymi słowy, jest to różnica między wartością, którą chcemy uzyskać za pomocą funkcji, a wartością argumentu, dla którego funkcja zwraca tę wartość.

Błąd progresywny: $|\hat{y} - y|$

Błąd wsteczny: $|\hat{x} - x|$

Rozpatrywaną funkcja będzie: $f(x) = \sin x$

a)
$$\hat{y} = \sin x \approx x$$
, $\hat{x} = \arcsin y$

х	$y = \sin x$	$\hat{y} = x$	$\hat{x} = \arcsin \hat{y}$	Błąd progresywny: $ \widehat{y} - y $	Błąd wsteczny: $ \hat{x} - x $
0.1	0.09983342	0.1	0.10016742	0.00016658	0.00016742
0.5	0.47942554	0.5	0.52359878	0.02057446	0.02359878
1	0.84147098	1	1.57079633	0.15852902	0.57079633

Tabela 1: Wartość błędów dla przybliżenia: $\sin x = x$

b)
$$\hat{y} = \sin x \approx x - \frac{x^3}{6}$$
, $\hat{x} = \arcsin(x - \frac{x^3}{6})$

х	$y = \sin x$	$\hat{y} = x - \frac{x^3}{6}$	$\hat{x} = \arcsin \hat{y}$	Błąd progresywny: $ \hat{y} - y $	Błąd wsteczny: $ \hat{x} - x $
0.1	0.09983342	0.10016667	0.10033493	0.00033325	0.00033493
0.5	0.47942554	0.52083333	0.54782685	0.04140779	0.04782685
1	0.84147098	0.83333333	0.98511078	0.00813765	0.01488922

Tabela 2: Wartości błędów dla przybliżenia: $\sin x = x - \frac{x^3}{6}$

Wnioski:

Można zauważyć, że przy użyciu większej ilości wyrazów szeregu Taylora (dla funkcji sin x) otrzymujemy dokładniejsze przybliżenia prawdziwego wyniku.

7ad4

Zakładamy że mamy znormalizowany system zmiennoprzecinkowy z β = 10, p = 3, L = -98

- a) Jaka jest wartość poziomu UFL (underflow) dla takiego systemu?
- b) Jeśli x = $6.87 \times 10^{\circ}(-97)$ i y = $6.81 \times 10^{\circ}(-97)$, jaki jest wynik operacji x y?
 - a) Wartość poziomu UFL to najmniejsza liczba dodatnia którą można zapisać w danym systemie znormalizowanym. Najmniejsza mantysa jaką jesteśmy w stanie uzyskać ma wartość 1, oraz najmniejszy wykładnik osiągalny w tym systemie ma wartość L, więc:

UFL =
$$\beta^L = 10^{-98}$$

b)
$$x - y = 6.87 \cdot 10^{-97} - 6.81 \cdot 10^{-97} = 0.06 \cdot 10^{-97} = 0.6 \cdot 10^{-98} < UFL$$

Więc w tym systemie wynik tej operacji będzie wynosił 0

Wnioski:

Przez to, że UFL jest miarą dokładności systemu zmiennoprzecinkowego to system aby operować na bardzo małych liczbach powinien mieć jak najmniejszy parametr L (wartość wykładnika wpływa na zakres możliwych do uzyskania liczb a mantysa ich dokładność)

Bibliografia:

https://en.wikipedia.org/wiki/Machine epsilon https://pl.wikipedia.org/wiki/IEEE 754 prezentacja podana na zajęciach