PATE 'T COOPERATION TREATY

	From the INTERNATIONAL BUREAU		
PCT	То:		
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 27 November 2001 (27.11.01)	HARRISON GODDARD FOOTE Belgrave Hall Belgrave Street Leeds LS2 8DD ROYAUME-UNI		
Applicant's or agent's file reference	<u> </u>		
LPB/P32059WO	IMPORTANT NOTIFICATION		
International application No.	International filing date (day/month/year)		
PCT/GB00/03568	18 September 2000 (18.09.00)		
	X the agent the common representative		
Name and Address HARRISON GODDARD FOOTE	State of Nationality State of Residence		
Tower House	Telephone No.		
Merrion Way Leeds LS2 8PA	+44 113 290 1400		
United Kingdom	Facsimile No.		
	+44 113 244 2829		
	Teleprinter No.		
2. The International Bureau hereby notifies the applicant that t	he following change has been recorded concerning:		
the person the name X the add	tress the nationality the residence		
Name and Address	State of Nationality State of Residence		
HARRISON GODDARD FOOTE Belgrave Hall			
Belgrave Street Leeds LS2 8DD	Telephone No. +44 113 233 0100		
United Kingdom	Facsimile No.		
	+44 113 233 0101		
	Teleprinter No.		
3. Further observations, if necessary:			
	•		
4. A copy of this notification has been sent to:			
X the receiving Office	the designated Offices concerned		
the International Searching Authority	X the elected Offices concerned		
X the International Preliminary Examining Authority	other:		
The International Bureau of WIPO	Authorized officer		
34, chemin des Colombettes 1211 Geneva 20, Switzerland	Maria Victoria CORTIELLO		
Facsimile No.: (41-22) 740.14.35	Telephone No.: (41-22) 338.83.38		

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference FOR FURTHER see Notification of Transmittal of International Search Report (Form PCT/ISA/220) as well as, where applicable, item 5 below.					
LPB/P32059W0	ACTION	,			
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)			
PCT/GB 00/03568	18/09/2000	17/09/1999			
Applicant					
THE HATHERSTEY OF YORK					
THE UNIVERSITY OF YORK					
This International Search Report has bee according to Article 18. A copy is being tra	n prepared by this International Searching Autransmitted to the International Bureau.	nority and is transmitted to the applicant			
This International Search Report consists X It is also accompanied by	of a total of8 sheets. a copy of each prior art document cited in this	report.			
Basis of the report					
	international search was carried out on the bases otherwise indicated under this item.	sis of the international application in the			
the international search w Authority (Rule 23.1(b)).	ras carried out on the basis of a translation of t	he international application furnished to this			
b. With regard to any nucleotide ar was carried out on the basis of th	e sequence listing:	nternational application, the international search			
l 🔀	onal application in written form. ernational application in computer readable forr	n			
	o this Authority in written form.				
	this Authority in computer readble form.				
	osequently furnished written sequence listing dustiled has been furnished.	loes not go beyond the disclosure in the			
1 555		s identical to the written sequence listing has been			
2. X Certain claims were fou	nd unsearchable (See Box I).				
3. Unity of invention is lac					
4. With regard to the title,					
500	ubmitted by the applicant.				
the text has been established by this Authority to read as follows:					
5. With regard to the abstract,					
,	ubmitted by the applicant.	the set have seen in Park III. The set is a second			
	the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box III. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority.				
6. The figure of the drawings to be pub	lished with the abstract is Figure No.				
as suggested by the app		None of the figures.			
because the applicant fai					
because this figure better	characterizes the invention.				

Continuation of Box I.2

Claims Nos.: 24-26, 30-32, 33

Present claim 33 relate to a compound defined by reference to a desirable characteristic or property, namely a drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or an E2NT crystal structure. The claim cover all compounds having this desirable characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

Although claims 24-26 could be, at least partially considered as mere presentation of information (Rule 39.1 (v) PCT / Art. 52(2d) EPC), and claims 30-32 at least partially as a computer program (Rule 39.1 (vi) PCT / Art. 52(2c) EPC), the search has been carried out as far as possible in our systematic documentation.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

al Application No PC1 00/03568

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO7K14/025 C12N15/37 A61K39/12 A61K38/16 A61P31/20 A61P17/00 A61P35/00 G06F13/00 G06F9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC & 7 & C12N & A61K \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
Y	WO 97 06246 A (VERTEX PHARMA) 20 February 1997 (1997-02-20) page 4, line 3 -page 5, line 6 page 6, line 22 -page 7, line 7 page 14, line 7 -page 16, line 6 page 17, line 12 -page 18, line 6 page 20, line 3 -page 28, line 6 8 US 5 978 740 A 2 November 1999 (1999-11-02)	6	1-33
	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.
"A" docume consid "E" earlier of filing of "L" docume which citatio "O" docume other other	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date and which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but nan the priority date claimed	 'T' later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention 'X' document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do 'Y' document of particular relevance; the cannot be considered to involve an indocument is combined with one or moments, such combined with one or moments, such combination being obvious in the art. '&' document member of the same patent 	the application but ecory underlying the staimed invention is be considered to cument is taken alone staimed invention ventive step when the ore other such docuust o a person skilled

3

9 March 2001 Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk Tel. (+31~70) 340~2040, Tx. 31 651 epo nl, Fax: (+31~70) 340~3016

23/03/2001

Mateo Rosell, A.M.

Authorized officer

Internation No PC 00/03568

0.40		
Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Oracion of document, with indication, where appropriate, or the relevant passages	ricovani to diaminio.
Y	GAUTHIER J-M ET AL: "TWO DNA-BOUND E2 DIMERS ARE REQUIRED FOR STRONG TRANSCRIPTIONAL ACTIVATION AND FOR COOPERATION WITH CELLULAR FACTORS IN MOST CELLS" NEW BIOLOGIST, vol. 3, no. 5, 1991, pages 498-509, XP000989622 ISSN: 1043-4674 cited in the application abstract page 504, right-hand column, last line -page 506, right-hand column, last line	1-33
Α	HARRIS SETH F ET AL: "Crystal structure of the human papillomavirus type 18 E2 activation domain." SCIENCE (WASHINGTON D C), vol. 284, no. 5420, 4 June 1999 (1999-06-04), pages 1673-1677, XP002162385 ISSN: 0036-8075 cited in the application the whole document	1,10,21,
Α	HEGDE RASHMI S ET AL: "Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1479-1489, XP002162386 ISSN: 0022-2836 cited in the application the whole document	1,10,21,
Α	HEGDE RASHMI S ET AL: "Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein." JOURNAL OF MOLECULAR BIOLOGY, vol. 276, no. 4, 6 March 1998 (1998-03-06), pages 797-808, XP002162387 ISSN: 0022-2836 cited in the application the whole document	1,10,21,

Internal Application No PCT 00/03568

0.70	ALL A DOMESTIC CONSIDERATION OF THE SYANT	FC1, 3 00/03368		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.				
	Oldford of document, with indication, where appropriate, of the relevant passages	Troisvani to ciaim No.		
A	MCBRIDE A A ET AL: "E2 POLYPEPTIDES ENCODED BY BOVINE PAPILLOMAVIRUS TYPE 1 FORM DIMERS THROUGH THE COMMON CARBOXYL-TERMINAL DOMAIN TRANSACTIVATION IS MEDIATED BY THE CONSERVED AMINO-TERMINAL DOMAIN" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 86, no. 2, 1989, pages 510-514, XP000982632 1989 ISSN: 0027-8424 cited in the application the whole document	1-8		
A	KNIGHT J D ET AL: "THE ACTIVATION DOMAIN OF THE BOVINE PAPILLOMAVIRUS E2 PROTEIN MEDIATES ASSOCIATION OF DNA-BOUND DIMERS TO FORM DNA LOOPS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 88, no. 8, 1991, pages 3204-3208, XP000982633 1991 ISSN: 0027-8424 cited in the application the whole document	1-8		
A	COOPER CHRISTOPHER S ET AL: "Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions." VIROLOGY, vol. 241, no. 2, 15 February 1998 (1998-02-15), pages 312-322, XPO02162388 ISSN: 0042-6822 cited in the application abstract page 316, right-hand column, last line -page 319, left-hand column, line 1	1,10		
A	SAKAI HIROYUKI ET AL: "Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions." JOURNAL OF VIROLOGY, vol. 70, no. 3, 1996, pages 1602-1611, XP002162389 ISSN: 0022-538X cited in the application the whole document	1,10		

PC 00/03568

		PCN 00/03568
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	YANG FAN ET AL: "Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping." JOURNAL OF MOLECULAR BIOLOGY, vol. 288, no. 3, 7 May 1999 (1999-05-07), pages 403-412, XPO02162390 ISSN: 0022-2836 cited in the application the whole document	1,11-15, 17,18, 24,33
Α	GHOSE A K ET AL: "DETERMINATION OF PHARMACOPHORIC GEOMETRY FOR COLLAGENASE INHIBITORS USING A NOVEL COMPUTATIONAL METHOD AND ITS VERIFICATION USING MOLECULAR DYNAMICS, NMR, AND X-RAY CRYSTAL" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 117, no. 16, 1995, pages 4671-4682, XP002051616 ISSN: 0002-7863 the whole document	1,11-20, 24-26,33
A	WIBLEY J E A ET AL: "A homology model of the three-dimensional structure of human O-6-alkylguanine-DNA alkyltransferase based on the crystal structure of the C-terminal domain of the Ada protein from Escherichia coli." ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, pages 75-95, XP000989520 ISSN: 0266-9536 the whole document -& WIBLEY J E A ET AL.,: "erratum" ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, page 439 XP002162457	1-33
P,X	ANTSON ALFRED A ET AL: "Structure of the intact transactivation domain of the human papillomavirus E2 protein." NATURE (LONDON), vol. 403, no. 6771, 17 February 2000 (2000-02-17), pages 805-809, XP000926219 ISSN: 0028-0836 the whole document -/	1-33

	PC 1 00	7 0 3 3 0 0
Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000-11), pages 950-952, XP002162391 ISSN: 1072-8368 the whole document		1-33
	MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000-11), pages 950-952, XP002162391 ISSN: 1072-8368	MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000-11), pages 950-952, XP002162391 ISSN: 1072-8368

		NATIONAL SEARCH		11	_	Application No 00/03568
Patent document cited in search repor	t	whication date	F	Patent family member(s)		Publication date
WO 9706246	A	20-02-1997	US AU EP JP	59787 67668 08461 115110	96 A 63 A	02-11-1999 05-03-1997 10-06-1998 28-09-1999

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 March 2001 (29.03.2001)

(10) International Publication Number WO 01/21645 A3

- (51) International Patent Classification7: C07K 14/025, C12N 15/37, A61K 39/12, 38/16, A61P 31/20, 17/00, 35/00, G06F 13/00, 9/00
- (21) International Application Number: PCT/GB00/03568
- (22) International Filing Date:

18 September 2000 (18.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

GB9921938.8 17 September 1999 (17.09.1999)

- (71) Applicant (for all designated States except US): THE UNIVERSITY OF YORK [GB/GB]; Heslington Hall, York YO10 5DD (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ANTSON, Alfred [GB/GB]; Department of Chemistry, University of York, York YO10 5DD (GB). MAITLAND, Norman [GB/GB]; Department of Biology, University of York, York YO10 5DD (GB).

- (74) Agent: HARRISON GODDARD FOOTE; Tower House, Merrion Way, Leeds LS2 8PA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 16 August 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: TARGET FOR ANTIVIRAL THERAPY

(57) Abstract: A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, that comprises residues vital for viral transcription and/or replication. The invention also provides for the use of the dimer protein and interactions at its dimerisation surface in rationalised antiviral drug design.

tional Application No PCT/GB 00/03568

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C07K14/025 C12N15/37

A61P17/00

A61P35/00

A61K39/12 G06F13/00 A61K38/16 G06F9/00

A61P31/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	WO 97 06246 A (VERTEX PHARMA) 20 February 1997 (1997-02-20) page 4, line 3 -page 5, line 6 page 6, line 22 -page 7, line 7 page 14, line 7 -page 16, line 2 page 17, line 12 -page 18, line 6 page 20, line 3 -page 28, line 30 & US 5 978 740 A 2 November 1999 (1999-11-02)	Relevant to claim No.
	-/	

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
9 March 2001	23/03/2001
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Mateo Rosell, A.M.

Inti :ional Application No PCT/GB 00/03568

		FC1/4B 00/03508
	Intion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Y	GAUTHIER J-M ET AL: "TWO DNA-BOUND E2 DIMERS ARE REQUIRED FOR STRONG TRANSCRIPTIONAL ACTIVATION AND FOR COOPERATION WITH CELLULAR FACTORS IN MOST CELLS" NEW BIOLOGIST, vol. 3, no. 5, 1991, pages 498-509, XP000989622 ISSN: 1043-4674 cited in the application abstract page 504, right-hand column, last line -page 506, right-hand column, last line	1-33
Α	HARRIS SETH F ET AL: "Crystal structure of the human papillomavirus type 18 E2 activation domain." SCIENCE (WASHINGTON D C), vol. 284, no. 5420, 4 June 1999 (1999-06-04), pages 1673-1677, XP002162385 ISSN: 0036-8075 cited in the application the whole document	1,10,21,
Α	HEGDE RASHMI S ET AL: "Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism." JOURNAL OF MOLECULAR BIOLOGY, vol. 284, no. 5, 18 December 1998 (1998-12-18), pages 1479-1489, XP002162386 ISSN: 0022-2836 cited in the application the whole document	1,10,21,
A	HEGDE RASHMI S ET AL: "Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein." JOURNAL OF MOLECULAR BIOLOGY, vol. 276, no. 4, 6 March 1998 (1998-03-06), pages 797-808, XP002162387 ISSN: 0022-2836 cited in the application the whole document	1,10,21,

0

Inte ional Application No PCT/GB 00/03568

CICantin	istion) DOCUMENTS CONCIDEDED TO BE DELEVANT	FC1/4B 00/03568
Category °	DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Α	MCBRIDE A A ET AL: "E2 POLYPEPTIDES ENCODED BY BOVINE PAPILLOMAVIRUS TYPE 1 FORM DIMERS THROUGH THE COMMON CARBOXYL-TERMINAL DOMAIN TRANSACTIVATION IS MEDIATED BY THE CONSERVED AMINO-TERMINAL DOMAIN" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 86, no. 2, 1989, pages 510-514, XP000982632 1989 ISSN: 0027-8424 cited in the application the whole document	1-8
Α	KNIGHT J D ET AL: "THE ACTIVATION DOMAIN OF THE BOVINE PAPILLOMAVIRUS E2 PROTEIN MEDIATES ASSOCIATION OF DNA-BOUND DIMERS TO FORM DNA LOOPS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 88, no. 8, 1991, pages 3204-3208, XP000982633 1991 ISSN: 0027-8424 cited in the application the whole document	1-8
Α	COOPER CHRISTOPHER S ET AL: "Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions." VIROLOGY, vol. 241, no. 2, 15 February 1998 (1998-02-15), pages 312-322, XPO02162388 ISSN: 0042-6822 cited in the application abstract page 316, right-hand column, last line -page 319, left-hand column, line 1	1,10
A	SAKAI HIROYUKI ET AL: "Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions." JOURNAL OF VIROLOGY, vol. 70, no. 3, 1996, pages 1602-1611, XP002162389 ISSN: 0022-538X cited in the application the whole document	1,10

:ional Application No

		PCT/GB 00/03568					
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.							
	oration of occurrent, with intication, where appropriate, of the relevant passages	Relevant to claim No.					
A	YANG FAN ET AL: "Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping." JOURNAL OF MOLECULAR BIOLOGY, vol. 288, no. 3, 7 May 1999 (1999-05-07), pages 403-412, XP002162390 ISSN: 0022-2836 cited in the application the whole document	1,11-15, 17,18, 24,33					
A	GHOSE A K ET AL: "DETERMINATION OF PHARMACOPHORIC GEOMETRY FOR COLLAGENASE INHIBITORS USING A NOVEL COMPUTATIONAL METHOD AND ITS VERIFICATION USING MOLECULAR DYNAMICS, NMR, AND X-RAY CRYSTAL" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 117, no. 16, 1995, pages 4671-4682, XP002051616 ISSN: 0002-7863 the whole document	1,11-20, 24-26,33					
A	WIBLEY J E A ET AL: "A homology model of the three-dimensional structure of human O-6-alkylguanine-DNA alkyltransferase based on the crystal structure of the C-terminal domain of the Ada protein from Escherichia coli." ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, pages 75-95, XP000989520 ISSN: 0266-9536 the whole document -& WIBLEY J E A ET AL.,: "erratum" ANTI-CANCER DRUG DESIGN, vol. 10, no. 1, 1995, page 439 XP002162457	1-33					
P,X	ANTSON ALFRED A ET AL: "Structure of the intact transactivation domain of the human papillomavirus E2 protein." NATURE (LONDON), vol. 403, no. 6771, 17 February 2000 (2000-02-17), pages 805-809, XP000926219 ISSN: 0028-0836 the whole document -/	1-33					

Int ional Application No PCT/GB 00/03568

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
ategory "	Citation of document, with indication, where appropriate, of the relevant passages	nelevant to claim No.
ategory°	Citation of document. with indication.where appropriate. of the relevant passages MEYERS THOMAS C ET AL: "Patent protection for protein structures and databases." NATURE STRUCTURAL BIOLOGY, vol. 7, no. Supplement, November 2000 (2000–11), pages 950–952, XP002162391 ISSN: 1072–8368 the whole document	Relevant to claim No.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 24-26, 30-32, 33

Present claim 33 relate to a compound defined by reference to a desirable characteristic or property, namely a drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or an E2NT crystal structure. The claim cover all compounds having this desirable characteristic or property, whereas the application does not provide support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

Although claims 24-26 could be, at least partially considered as mere presentation of information (Rule 39.1 (v) PCT / Art. 52(2d) EPC), and claims 30-32 at least partially as a computer program (Rule 39.1 (vi) PCT / Art. 52(2c) EPC), the search has been carried out as far as possible in our systematic documentation.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Int tional Application No PCT/GB 00/03568

	Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 970	5246	Α	20-02-1997	US AU EP JP	5978740 A 6766896 A 0846163 A 11511016 T	02-11-1999 05-03-1997 10-06-1998 28-09-1999

Target for Antiviral Therapy

The present invention provides a crystallised module of a nuclear phosphoprotein and an assay and method for determining interactions with human papillomavirus E2 for use in drug design, for use particularly but not exclusively in designing antiviral agents with potential use in treating warts, proliferative skin lesions and carcinoma of the cervix.

Background to the Invention

10

15

5

Human papillomaviruses (HPVs) cause warts and proliferative lesions in skin and other epithelia. In a minority of HPV types ("high risk", which include HPVs 16, 18, 31, 33, 45 and 56), further transformation of the wart lesions can produce tumours, most notably carcinoma of the cervix¹. HPVs have evolved a sophisticated system of control, mediated by protein:DNA and protein:protein interactions, that involves both cellular and viral proteins. The 45 kDalton nuclear phosphoprotein, E2, has two central roles in this control. It acts as the principal virally encoded transcription factor and, in association with the viral E1 protein, it creates the molecular complex at the origin of the viral DNA replication².

20

25

E2 has three distinct modules. The N-terminal module (E2NT) of about 200 amino acids is responsible for interactions with viral and host cell transcription factors. It is followed by a flexible, proline-rich, linker module and a C-terminal module (E2CT), each of about 100 amino acids ³ (Fig. 1a). The E2CT binds as a homodimer to DNA sites with a consensus sequence of ACCGN₄CGGT ⁴. In most HPVs a long upstream regulatory region (URR) precedes the viral genes and contains four spatially conserved E2 binding sites: three sites proximal to the transcription start site (p97 in HPV16) and one approximately 500bp upstream.

30

The dimer of E2CT serves to anchor E2 protein to its recognition sites on the DNA, the function of the E2NT is to bind and localise at least three cellular transcription

factors, Sp1, TFIIB and AMF-1, to the transcription initiation complex. In addition, E2 interacts with another viral protein, E1, which has ATPase and helicase activities. E1 itself binds to the viral origin of replication which consists of about 100 bp and is surrounded by the three E2-binding sites, proximal to the transcription start. The E2:E1 interaction greatly increases the rate of HPV genome replication^{2,5,6}, Fig. 1a. An intact E2 is essential for the normal productive (wart) life cycle of HPV, however during malignant progression HPV DNA is integrated into the host cell genome, which usually results in disruption of the E2/E1 ORFs and loss of E2 protein, in turn leading to dysregulated expression of the viral oncogenes E6 and E7.

10

15

Consistent with its role as a transcription regulator, E2 has been shown to direct the formation of loops in DNA containing E2 binding sites⁸. The loops were only formed with intact E2, and not with the E2CT alone. The E2 binding sites did not function independently and their co-operative effect was mediated by full length E2, leading the authors to suggest that there were specific interactions mediated by E2 that bridged across the set of DNA binding sites through its N-terminal. A similar DNA loop structure could also be achieved with Sp1, a cellular transcription factor, which forms a complex with distally bound E2 ⁹; Sp1/E2 interactions are critical for transcription activation in BPV¹⁰.

20

25

30

Eighty six known E2 proteins from different species and different human subtypes¹¹ are highly conserved, with sequence identities typically of 35% in the N and C-terminal modules (Fig. 1b). The crystal structure of the E2CT has been determined both alone and in complex with cognate DNA¹²⁻¹⁴. The module is a dimer with a barrel fold, and induces substantial bending (42-44°) of the DNA from its B-form double helix¹⁴.

The structure of the proteolytic fragment of HPV18 E2NT, missing 65 N-terminal residues, was recently reported at 2.1 Å spacing¹⁵. This allowed some analysis of mutational effects on function, although the missing 65 amino acids contain residues which are essential for the transcriptional and replication activities of the protein.

We report herein the structure of the complete E2NT determined by X-ray analysis at 1.9 Å. We have found that it is an L-shaped molecule with the residues vital for transcriptional and replication activities of the protein lying on opposite sides of the N-terminal domain. Surprisingly, our results show that the surface, vital for transcription activation, is in fact involved in association of two E2NT's into a dimer. We suggest that dimerisation of E2NT plays an important and key role in induction of DNA loop formation, the mechanism by which distally bound transcription factors would be brought close to the site of transcription initiation. More importantly, our results raise the possibility that dimer formation serves as a molecular switch between early gene expression and viral genome replication during HPV infection.

5

10

15

30

The process of rationalised drug design requires no explanation or teaching for the skilled person but a brief description is given here of computational design for the lay reader: various computational analyses are necessary to determine whether a molecule is sufficiently similar to the target moiety or structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and

rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a target. Again, these methods require no elucidation for the skilled person but are described here for the benefit of the unskilled reader. The screening process may begin by visual inspection of the target on the computer screen, generated from a machine-readable storage medium.

Selected fragments or chemical entities may then be positioned in a variety of orientations, or docked, within that binding pocket as defined supra. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as CHARMM and AMBER.

15

25

30

Specialized computer programs may also assist in the process of selecting fragments or chemical entities. These include:

- GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically
 Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem.,
 pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.
 - 2. MCSS (A. Miranker et al., "Functionality Maps of Binding Sites: A Multiple Copy Simultaneous Search Method." Proteins: Structure, Function and Genetics, 11, pp. 29-34 (1991)). MCSS is available from Molecular Simulations, Burlington, Mass.
 - 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, Calif.

4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, Calif.

Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of calcineurin. This would be followed by manual model building using software such as Quanta or Sybyl.

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

- CAVEAT (P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure Derived Design of Biologically Active Molecules". In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989)). CAVEAT is available from the University of California, Berkeley, Calif.
- 20 2. 3D Database systems such as MACCS-3D (MDL Information Systems, San Leandro, Calif). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992).
 - 3. HOOK (available from Molecular Simulations, Burlington, Mass.).

25

As the skilled reader will already know, instead of proceeding to build ligand for the target in a step-wise fashion, one fragment or chemical entity at a time as described above, inhibitory or other target-binding compounds may be designed as a whole or *de novo*. These methods include:

1. LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J. Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Biosym Technologies, San Diego, Calif.

- 5 2. LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985 (1991)). LEGEND is available from Molecular Simulations, Burlington, Mass.
 - 3. LeapFrog (available from Tripos Associates, St. Louis, Mo.).
- Other molecular modelling techniques may also be employed. See, e.g., N. C. Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990). See also, M. A. Navia et al., "The Use of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992).

15

20

25

30

Once a compound has been designed or selected by the above methods, the efficiency with which that entity may bind to a target may be tested and optimized by computational evaluation. For example, an effective ligand will preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient ligands should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. Ligands may interact with the target in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free entity and the average energy of the conformations observed when the inhibitor binds to the protein.

An entity designed or selected as binding to a target may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole

interactions. Specifically, the sum of all electrostatic interactions between the inhibitor or other ligand and the target, when the inhibitor is bound to the target, preferably make a neutral or favourable contribution to the enthalpy of binding.

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interaction. Examples of programs designed for such uses include: Gaussian 92, revision C [M. J. Frisch, Gaussian, Inc., Pittsburgh, Pa. .COPYRGT.1992]; AMBER, version 4.0 [P. A. Kollman, University of California at San Francisco, .COPYRGT.1994]; QUANTA/CHARMM [Molecular Simulations, Inc., Burlington, Mass. .COPYRGT.1994]; and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif. .COPYRGT.1994). These programs may be implemented, for instance, using a Silicon Graphics workstation, IRIS 4D/35 or IBM RISC/6000 workstation model 550. Other hardware systems and software packages will be known to those skilled in the art.

15

Once the ligand has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to a calcineurin-like binding pocket by the same computer methods described in detail, above. Again, all these facts are familiar to the skilled person.

25

30

20

Another approach is the computational screening of small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to a target. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy. E. C. Meng et al., J. Comp. Chem., 13, pp. 505-524 (1992).

The computational analysis and design of molecules, as well as software and computer systems therefor are described in US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig 4s and 5 thereof.

Statement of the Invention

According to a first aspect of the invention there is provided a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, for use in rationalised drug design. We have found that the dimer comprises residues vital for transcriptional and replicational activities of said protein lying on opposite sides of an N-terminal domain, for use in rationalised drug design.

15

5

Preferably the E2NT dimer protein is substantially as depicted in any of Figures 2c and/or 3a-d.

According to a second aspect of the invention there is provided an *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation.

Preferably, the method is for use in identifying and/or selecting an antiviral candidate therapeutic agent.

Preferably, the candidate therapeutic agent interferes or blocks interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.

According to a third aspect of the invention there is provided use of an E2NT dimerisation inhibitor in the preparation of a medicament for use in treating warts, proliferative skin lesions and/or cervical cancer.

According to a fourth aspect of the invention there is provided a method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of warts, proliferative skin lesions and/or cervical cancer comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

10

Thus it will be appreciated that a patient can be monitored at the start of therapy to test its effectiveness. Alternatively, a patient can be monitored once a therapy has been established so as to monitor its efficacy with a view to altering a therapy if found to be unsatisfactory.

15

20

25

30

The human papillomavirus E2 protein controls the primary transcription and replication of the viral genome. Both activities are governed by a ~200 amino acid N-terminal module (E2NT) which is connected to a DNA binding C-terminal module by a flexible linker. The crystal structure of the E2NT module from high-risk type 16 human papillomavirus reveals an L-shaped molecule with two closely packed domains, each with a novel fold. It forms a dimer in the crystal and in solution. The dimer structure is important in the interactions of E2NT with viral and cellular transcription factors and is the key to induction of DNA loops by E2. These loops may serve to target distal DNA-binding transcription factors to the region proximal to the start of transcription. The structure has implications for antiviral drug design and cervical cancer therapy.

The invention includes method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction. The method by which the E2NT crystal

structure is obtainable may comprise crystallisation using hanging-drop vapour diffusion. The method by which E2NT crystal structure is obtainable may comprise X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing. The crystal structure may comprise the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94. The rationalised drug design may comprise designing drugs which interact with the dimerisation surface of E2NT.

Further provided is a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

15

10

5

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

20

- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine readable data storage medium for processing said machine readable data into said three-dimensional representation; and
 - (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

In class of embodiments, the three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.

An additional aspect of the invention resides in a computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

10

25

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;
- 15 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and
 - (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 30 A yet further aspect of the invention relates to a crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT

amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å. The molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

27. A machine-readable data storage medium (e.g. a magnetic or optical storage medium, for example a hard disc, a floppy disc or a CD-ROM), comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

20

30

5

In the machine-readable data storage medium the molecule or molecular complex may be defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

25 1.5Å

The invention further provides a machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second

set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

5

In another aspect, the invention resides in a method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to the invention, comprising the steps of:

- 10 a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and
 - b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

Detailed Description f the Invention

The invention will now be described by way of example only with reference to the following Figures and Tables wherein:

5

Table 1 illustrates X-ray data and phasing statistics;

Table 2 illustrates refinement and model correlation;

10

Table 3 shows the structure coordinates of the E2NT module;

Figure 1a represents functional assignments of HPV 16 E2 protein;

types;

15

Figure 1b illustrates sequence alignment of E2NT modules from a subset of HPV

Figure 2a illustrates a stereo view of electron density with a final model at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis;

20

Figure 2b represents a stereo ribbon diagram of the E2NT module;

Figure 2c represents the E2NT dimer;

Figure 3a illustrates a schematic view of URR;

Figure 3b illustrates a schematic view of loop formation induced by binding of E2 proteins to two cognate sites;

Figure 3c illustrates a model of E2 dimer formation;

30

25

Figure 3d illustrates loops within URR as shown in Figure 3b:

Figure 4a illustrates the distribution of conserved residues on the E2NT monomer;

Figure 4b illustrates a first cluster of conserved residues on the E2NT monomer;

Figure 4c illustrates a second cluster of conserved residues on the E2NT monomer; and

Figure 4d illustrates conserved residues Gln12 and Glu39.

10

15

5

Those of skill in the art understand that a set of structure coordinates for an enzyme or an enzyme-complex or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations caused by acceptable errors in the individual coordinates will have little, if any effect on overall shape. In terms of binding pockets, these acceptable variations would not be expected to alter the nature of ligands that could associate with those pockets.

The term "associating with" refers to a condition of proximity between a chemical entity or compound, or portions thereof, and a calcineurin molecule or portions thereof. The association may be non-covalent--wherein the juxtaposition is energetically favored by hydrogen bonding or van der Waals or electrostatic interactions--or it may be covalent.

The invention is also described with reference to US Patent No 5,978,740 which is included herein by reference, including specifically but not by way of limitation the computer system diagram described with reference to and illustrated in Fig 3 thereof as well as the data storage media diagram described with reference to and illustrated in Fig s 4 and 5 thereof.

With reference to Figure 1a and functional assignments of E2. There is shown in a schematic view of NT, linker and CT modules of E2 indicating known functions of each module. Amino acid numbers which delimit the modules correspond to E2 from HPV16. In Figure 1b, there is shown the sequence alignment of the E2NT modules from a subset of HPV types (HPV16, HPV18, HPV11 and HPV2a) and one BPV type. Shaded blocks above the alignment indicate the experimentally determined secondary structure. Shaded blocks below the sequences indicate the minimal peptide sequences involved in protein:protein interactions, suggested by mutation studies. Residues with more than 90% identity among 86 PV types are coloured: red for internal structural residues, green for residues within the fulcrum region, blue for surface residues.

5

10

15

20

25

With reference to the structural features of E2, in Figure 2a there is shown a stereo view of the electron density with the final model, at the dimer interface of the E2NT module, viewed down the crystallographic two-fold axis. The likelihood weighted map is contoured at the 1.5 σ level. Ribbons of two independent monomers are coloured blue and yellow. Side chains of ARG37 and Ile73 which are known to be critical for transactivation ^{4,31}, are shown in dark green; side chain of other residues at the dimer interface are shown in light green. Oxygen atoms are in red, nitrogen in blue, water molecules are shown as orange spheres and hydrogen bonds as dashed sticks. In Figure 2b, there is shown a stereo ribbon diagram of the E2NT module. The N1 domain is shown in aquamarine and the N2 domain in pink, with the fulcrum in green. In Figure 2c, there is shown the dimer of E2NT, showing the extent of the interface between the two subunits. The view is as in Figure 2a but rotated clockwise by 90°. Side chains of Gln12 and Glu39 which are critical for interactions with E1 ^{31-33,37} are shown in magenta. Side chains of residues at the dimer interface are coloured as per Figure 2a.

With reference to Figures 3a-d there is shown loop formation in the URR of HPV16.

30 In Figure 3a, there is shown a schematic view of the URR. The four E2-binding sites are represented by boxes. Numbers in italics indicate distances between individual

sites upstream of the p97 promoter. Two possible E2 configurations, with separate or dimeric E2NT modules are shown. In Figure 3b, there is shown a schematic view of loop formation induced by binding of E2 proteins to two cognate sites, based on the experiments reported by Knight et al⁸. In Figure 3d, there is shown the possible DNA loops within the URR as depicted in Figure 3b. In Figure 3c, there is shown a model of the formation of E2 dimers, showing interactions between both the C-terminal and E2NT modules. The C-terminal dimer, with its bound DNA, is based on the crystal structure of this module¹². The E2NT dimer is proposed from the present work. The relative orientation and position of the E2NT and C-terminal modules is purely schematic.

With reference to Figures 4a-d there are shown functionally important residues. In Figure 4a, there is shown the distribution of conserved residues on the E2NT monomer. In Figures 4b and 4c there is shown the two clusters of conserved residues in the fulcrum of E2NT. In Figure 4d, there are shown conserved residues Gln12 and Glu39. Bonds in ball-and stick models are coloured aquamarine (N1 domain), pink (N2 domain) and green (fulcrum). Hydrogen bonds are shown as dashed lines, water molecules as orange spheres, oxygen atoms are in red, nitrogen atoms in blue and sulphur atoms in yellow.

There is convincing evidence that the E2 protein has an extended structure, is flexible and that its functions depend on this property. This is probably the reason why the intact protein has not yet been crystallised in spite of intensive efforts. A major problem is the extended flexible linker module, with around 100 residues. E2NT proved difficult to crystallise, and a number of different constructs were made and overexpressed before crystallisation with residues 1 to 201 was achieved, but even this construct possessed limited stability. The protein had to be crystallised within 2-3 days of purification; crystals grew within about 48 hours but only retained useful diffraction quality for a further 2-3 days. This necessitated that crystals be rapidly vitrified in cryoprotectant buffer and stored for use as soon as detector time became available 16.

Crystals of E2NT belong to the space group P3₁21 with unit-cell dimensions a=b=54.3 Å, c=155.5 Å. The structure was determined using two heavy atom derivatives and refined with data extending to 1.9 Å spacing (Fig. 2a). The main chain is well defined throughout with the exception of residues 125 and 126 which are in an exposed loop and are mobile. There was density for the last residue of the His-tag at the N-terminus, but none for the remainder of this entity. All amino acids lie in the allowed regions of the Ramachandran (ϕ, ψ) plot¹⁷ with 92.4% in most favoured regions¹⁸.

10

15

20

25

5

The transactivation module is composed of two domains, N1 and N2, arranged so as to give it an overall L-shaped appearance. Analysis of the PDB¹⁹using DALI²⁰shows that both have unique organisation of their secondary structures. Domain N1, which forms the N-terminus of the intact E2, is composed of residues 1 to 92, which fold into three long α -helices, Figure 2 (b,c). There is a tight loop between α 1 and α 2 and a more extended one between $\alpha 2$ and $\alpha 3$. The three helices pack antiparallel to one another in the form of a twisted plane, with angles of about 20° and 25° between the pairs of consecutive helices. DALI indicated a maximum Z-score of 5.7, that could suggest a significant correlation, for colicin la, a membrane protein which contains three 80 Å long α-helices arranged more or less coplanar²¹. This is the only other known protein that contains a true domain made up of such a packing of three helices. In addition there were 42 other structures which gave Z-scores above 4.0. most of which were four helix bundles, such as bacterioferritin²². However, in these only two of the three N1 helices superimposed simultaneously on two, not always adjacent, bundle helices as a result of a more planar arrangement of helices within N1. The indications are that the similarities observed reflect the optimum stacking angle of antiparallel helices against one another rather than suggesting a common ancestor for the evolution of these molecules.

30 Domain N2 is made up of residues 110 to 201 and is composed almost entirely of antiparallel β structure, with only one short helical segment from residues 171 to 178,

Figure 2 (b,c). The secondary structure has two short three and four stranded antiparallel β pleated sheets interconnected by two stranded β ribbons. For this domain DALI failed to identify any significant homologies to known structures, with a highest Z-score of only 2.1. From the analysis of Harris and Botchan¹⁵ and the present study, the N2 fold appears to be novel.

The structure between the N1 and N2 domains (residues 93 to 109) contains two consecutive single turns of helical structure, resulting in a compact and tight turn. It packs closely against elements of both domains and is not a truly independent structural domain. Rather it forms a fulcrum in the L-shape formed by N1 and N2 where it could act as a hinge, allowing the two domains to change their relative conformation in a specific way. Several of the interactions between adjacent regions of chain in the fulcrum are mediated indirectly through H-bonds involving water molecules, suggesting the possibility of flexibility.

15

20

25

30

10

5

One of the most striking features of the crystal structure is the association of two E2NT monomers into a tight dimer. The two E2NT monomers pack around the crystallographic 2-fold axis, as shown in Figure 2a. The dimer interface is formed mostly by amino acids from helices $\alpha 2$ and $\alpha 3$ of the N1 domain and by residues 142-144 from the N2 domain. The total buried surface area between the two E2NT is 2026 A° , comparable to the 2444 A° buried between the two E2CT¹², which are known to form a tight dimer with a $K_{\rm d}$ of 3-6 x 10⁻⁸ M ^{23,24}.

In the E2NT dimer interface, each subunit contributes a cluster of seven equivalent residues, invariant or conserved in the 86 known sequences of E2¹¹, with many direct and water-mediated hydrogen bonds and rather few non-polar contacts, Fig. 2. Analysis of the dimer forming surfaces shows that all the direct hydrogen bonds between monomers are made through these seven amino acids. For the invariant Arg37, all possible side-chain hydrogen bonds are made and all are well defined, Figure 2. Three of them are across the dimer interface. One hydrogen bond is critical, from NH2 to the main chain carbonyl oxygen of Leu77. A second hydrogen bond from NH2 is to OG1 of Thr81; in five out of 86 sequences this residue is

5

10

15

30

glutamine, and modelling shows a hydrogen bond is possible to the NE of Arg37. The NH1 of Arg71 H-bonds to the OE1 of residue 80, which is Glu or Gln in all but six variants. At the NE of Arg37 there is an ideal H-bond to water that itself makes another strong H-bond across the dimer interface to the main-chain carbonyl oxygen of residue 142. The role of the invariant Ile73 is the filling of the intersubunit nonpolar volume made up of the aliphatic parts of Arg37, Gln76 and of Leu77 - in this case from both monomers. The Leu77 is in a few sequences substituted by valine or isoleucine and in 9 out of 86 known sequences by methionine. Inspection of the structure shows that Leu77 is partially exposed to the solvent and therefore different hydrophobic side chains could be easily accommodated at this site. Another important non-polar side chain is Ala69. Its side chain methyl packs into the surface of the other monomer at van de Waals distance from the main chain of residue 142. The only observed mutation of Ala69 is to Gly, and is easily accommodated. Gln76 is conserved or has homologous substitutions in about 2/3 of E2 sequences; in about 1/4 of the sequences there is methionine or valine at this position¹¹. Although hydrophobic substitutions of Gln76 would disrupt the hydrogen bonding to Glu80 across the dimer interface, and to Arg37 from the same subunit, the hydrophobic side chain at residue 76 could instead make a compensating hydrophobic interaction with the adjacent intersubunit hydrophobic pocket formed by Ile73 and Leu77.

Modelling of the amino acid variations in the 86 known papillomavirus E2 proteins into the other contacts at the dimer interface shows that they generally can be accommodated (data not shown). The consistency of the hydrogen bonds and van de Waals contacts at the monomer-monomer interface in the various sequences suggests therefore that the E2NT dimer interactions are potentially present in all papillomaviruses.

The first experimental evidence for the E2NT dimerisation in the presence of DNA with multiple E2-binding sites was provided by Knight et al in 1991⁸. Their studies showed that intact E2 led to the formation of DNA loops on templates with widely separated E2 binding sites, while a truncated E2, containing the DNA-binding E2CT but missing the N-terminal 161 residues, did not. Such dimerisation is further

supported by the observed synergistic transcription activation by a complex of two DNA-bound E2 dimers²⁵.

5

10

15

20

25

30

To analyse the functional behaviour of the E2NT dimers further, we measured the sedimentation equilibrium dissociation constant by using ultracentrifugation of recombinant E2NT protein containing the 201 N-terminal amino acids. A value of $K_d = 8.1 \pm 4 \times 10^{-6}$ M was obtained, indicating mediumstrength association. The micromolar range of the E2NT dimer K_d is certainly physiologically significant, and compares well with values for other transcription factors which have relatively low dissociation constants, often with the K_d values between 1 µM and 20 µM ^{26,27}. In vivo, the interaction could be enhanced when the two E2NT modules are placed in close proximity. Indeed, E2CT forms dimers which bind to the multiple DNA-binding sites located within the URR of viral DNA with K_d of protein: DNA interactions usually in the nanomolar range²⁸. Consequently, the local concentration of E2NT, bound to the E2CT via the non-conserved, flexible ~80 amino-acid linker, is effectively increased.

E2NT dimer interactions, as seen in the crystal structure, could form either between modules which are already part of a single E2 dimer, formed as a result of E2CT dimerisation interactions and bound to a single E2 binding site on the DNA (Fig. 3a), or between two preformed E2 dimers located on different E2 binding sites (Fig. 3b). The results of the electron microscopy suggest that the latter dimerisation does occur⁸. Although no direct experimental evidence exists for the former dimerisation, it does also seem possible due to the flexibility of the linker connecting the two modules. We propose that E2 molecules may initially keep their N-terminal modules within their internal dimers, but swap N-terminal modules and cross link to E2 molecules bound to distant DNA binding sites to form active loop structures during transcriptional activation and / or HPV DNA replication (Figure 3d). As discussed below, the effects of mutations on transcriptional transactivation can be explained in terms of the dimer being an essential element in this process.

E2 is a regulator of both transcription and viral DNA replication and thus interacts with other viral and host macromolecules in the infected cell. Indication of the possible importance of individual residues in the function comes firstly from the structure, secondly from the extensive set of sequences of the papillomaviral E2's and thirdly from mutagenesis studies on the individual proteins. In the following we make a primary attempt to map the molecule's function onto its structure.

The pattern of amino acid conservation for the 86 available papilloma sequences has been analysed using the GCG program suite²⁹. The sequences exhibit striking variation, characteristic of some virus families. However, 33 of the total 201 residues in the E2NT construct were totally or highly conserved. Fig. 4a illustrates the distribution of these 33 residues in the dimer. These were categorised into two sets: those with an essentially structural role and those exposed on the surface with a potential for intermolecular interactions. Thirteen residues (Fig. 1b) are buried or play a purely structural role within the monomer, they are not expected to be of functional importance and will not be discussed here.

A further 12 of these 33 residues stand out as having a structural role in the interface of the N1 and N2 domains. They form three clusters, the first making direct interactions between the two domains (Ile82, Glu90, Trp92, Lys112, Tyr138, Val145) and two separate sets of interactions, one from N2 (Pro106, Lys111, Phe168, Trp134) and the other from N1 (Trp33, Leu94) to the structure connecting them, referred to here as a fulcrum. The first two clusters are shown in Figure 4 b, c and it can be seen that Lys111 and Lys112 play key roles. Their side chains point in opposite directions to one another and their terminal amino groups are involved in near ideal patterns of hydrogen bonds. The flat surfaces of their extended side chains stack against Trp134 and Trp92, respectively. This clustering of invariant residues at the interface indicates a functional importance for the relative orientation of N1 and N2. The fulcrum could indeed provide a flexible pivot between the two domains, but there is no direct evidence for this as yet. Finally, while the side chain of Glu90 is held tightly in place by two H-bonds and could have a structural role, its OE2 atom is

exposed on the surface and is surrounded by near invariant side-chains, which may thus play a part in interactions with other molecules.

Of the remaining eight conserved residues, mutational substitutions of Glu20, Glu100 and Asp122 ³⁰⁻³³ had moderate effects on the transactivation and replication properties of E2, which depended on a particular viral strain. Glu20 lies on the top surface of N1. Asp122 lies far away on the distal surface of N2. Glu100 is completely exposed and points into the solvent at the junction of the L between the N1 and N2 domains. The functional role of these amino acids has yet to be clarified.

10

15

20

25

30

5

Three conserved amino acids (Arg37, Glu39 and Ile73) have been subjected to point mutation and the effects on the two principal functions of E2, i.e. transactivation and HPV DNA replication have been assessed (reviewed in⁴,also ^{31,34,35}). Together with the remaining two conserved amino acids, Gln12 and Ala69, these residues form two functionally important surfaces (see below).

Finally, a number of the mutational results (reviewed in ⁴, also ^{31,34,35}) correspond to residues that can be assigned to structural roles. Substitution of these residues will lead to substantial conformational changes and a probable inability to fold correctly. This is particularly true for some of the deletion mutants involving the core of the molecule. Knowledge of the structure will allow a more rational choice and design of mutants in the future.

The induction of DNA loops by E2NT dimerisation could be important for the construction of the active transcription bubble by targeting DNA-binding transcription factors, bound at distal sites, to the region proximal to the start of transcription (reviewed in ³⁶). In support of this, residues Arg37, Ile73 and Gln76 map onto the surface of E2NT involved in dimer formation, and mutations result in considerable disruption of transactivation, while having little effect on replication, ^{4,15,31}. The structure also shows that Ala69 which points its side chain methyl across the dimer interface, is also critical for transactivation. Mutational substitutions to

amino acids with longer side chains should have a knock out effect on E2NT dimer formation and consequently on transactivation.

The sites of association with cellular transcription factors AMF-1 (residues 74-134) and TFIIB (134-216) were previously mapped onto the E2NT module (Figure 1) using a series of deletion mutants as well as point mutations^{34,35}. These sites were mutually exclusive. In the structure, residues 74-134 include the fulcrum, while residues 134-216 correspond to domain N2. Further biochemical and structural studies can now be planned to characterise these interactions in more detail.

10

15

20

25

30

5

Replication of the viral genome is initiated by binding of another viral protein, E1, to the origin of DNA replication⁴ which is itself flanked by two E2 binding sites, Fig. 3a. While the function of E2CT dimers is to bind specifically to the DNA sites. E2NT interaction with E1 enhances the binding of E1 to this region. Mutational substitutions of Glu39 generally retained transcriptional activation while DNA replication was substantially reduced^{31-33,37}. In the structure, the conserved Glu39 makes every possible hydrogen bond by its side chain carboxyl oxygens, Fig. 4d. One hydrogen bond is to NE2 of Gln12, which is absolutely conserved in all known sequences of E2. The other three hydrogen bonds are to the water molecules which are part of an intimate net of well-defined water molecules surrounding Glu39 and mediating its interactions with adjacent residues. Interestingly, a number of these protein interactions with water molecules are conserved as they are made to the protein backbone, including carbonyl oxygens of Gln12, Met36 and Lys68. While mutation of Gln12 in BPV1 only slightly affected both transactivation and replication, it substantially reduced cooperative origin binding^{30,32}. positioning of Gln12 and Glu39 in the three-dimensional structure further enhances the notion that these two resides are involved in interactions with E1. The conserved set of interactions at Gln12/Glu39 suggests that the main chain carbonyl oxygens of Gln12 and Met36 and the conserved water molecules could be also involved in these interactions. Gln12/Glu39 are surrounded by Leu8, Ile15, Met36, Tyr43, Gln57 and

Lys68, which are unlikely to contribute into E2/E1 interactions, as these residues are not well conserved in E2 sequences from different papillomaviruses.

The Gln12/Glu39 cluster lies on a side of the N1 domain which is opposite to the side involved in transactivation (and dimerisation), Figure 2c. Notably, the spatial separation of the two functionally important surfaces suggests that E2NT module could be able to interact with E1 at the same time as it interacts through the dimerisation interface with another E2NT module.

The structure reported here for the entire E2 transactivation module, has several implications for understanding of E2 function. It is now possible to map known mutations onto the E2 three-dimensional structure, and to use the knowledge of amino acid conservation and the effects of mutations to assign roles in folding, structure and function to residues. To this end, our results indicate that molecular surfaces involved in transactivation and E1-binding are located at opposite sides of the N1 domain of E2NT, suggesting that both surfaces could be accessed simultaneously by other protein factors. In line with these observations, E1 has been shown to modulate transactivation by directly interacting with E2, leading to repression of transactivation in the presence of excess E1³⁸. It is not inconceivable that the docking of E2NT dimer with E1 is sufficient to block further association with other target proteins.

The structure shows that the transactivation surface is involved in the formation of the E2NT dimer, which could cross-link E2 molecules bound by their E2CT modules to well-separated DNA sites. Inevitably, such dimerisation would cause DNA to form a loop structure, targeting distally bound transcription factors to regions close to the promoter. While this process has been suggested to be essential for transactivation³⁶, the definition of interacting surfaces between E2 and other cellular transcription factors requires a great deal of further study.

25

5

Our results suggest that the process of DNA loop formation could involve swapping of E2NT modules across E2 dimers bound at separated DNA sites (Fig. 3a-d). The polar components of the monomer-monomer interactions may favour such exchange. Domain swapping is a well-recognised phenomenon that occurs relatively frequently between two individual monomers containing domains connected by a flexible linker ^{39,40}. E2 is to our knowledge the first example where the swapping event is predicted to occur between dimers.

5

10

15

20

25

30

The dimerisation surface of E2 represents a good target for designing anti-viral drugs, since it is essential for viral transcription, there is no homologous human protein and the residues forming the interface are highly conserved among different viral strains. Dynamic interactions between transcription factors play a central role in the regulation of transcription and replication. Dimerisation, heterodimerisation and the monomer-to-dimer transition may play important roles during the control of the papillomavirus life cycle. These processes themselves can be regulated through phosphorylation, proteolysis, interaction with small ligands or changes in their intracellular concentration. It has been suggested that E2 can regulate the switch between early gene expression and viral genome replication during HPV infection⁴¹. It is possible that dimerisation of E2NT modules plays an essential role during this process. One scenario would be to activate transcription via induction of DNA loop formation at early stages of the viral life cycle. At later stages, when the concentration of expressed E2 proteins within the cell becomes high and comparable with the K_d for E2 dimer formation, free E2NT modules could compete for dimerisation with those involved in DNA loop formation and titrate them away, switching off transcription and stimulating replication. It is also possible that other protein factors could be involved in this process, including, for example, E1.

The invention therefore includes the use of E2NT crystal structure in the design of anti-viral drugs, since it is essential for viral transcription. In the rationalised computational design of drugs using the crystal structure, computational analyses are therefore necessary to determine whether a molecule or the E2NT-binding portion

thereof is sufficiently similar to the E2NT structure. Such analyses may be carried out in current software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., Waltham, Mass.) version 3.3, and as described in the accompanying User's Guide, Volume 3 pages. 134-135.

5

10

15

30

The Molecular Similarity application permits comparisons between different structures, different conformations of the same structure, and different parts of the same structure. The procedure used in Molecular Similarity to compare structures is divided into four steps: 1) load the structures to be compared; 2) define the atom equivalences in these structures; 3) perform a fitting operation; and 4) analyze the results.

Each structure is identified by a name. One structure is identified as the target (i.e., the fixed structure); all remaining structures are working structures (i.e., moving structures). Atom equivalency within QUANTA is defined by user input and, for the purpose of this invention equivalent atoms may be defined as protein backbone atoms (N, C.alpha., C and O) for all conserved residues between the two structures being compared. We will also consider only rigid fitting operations.

When a rigid fitting method is used, the working structure is translated and rotated to obtain an optimum fit with the target structure. The fitting operation uses a least squares fitting algorithm that computes the optimum translation and rotation to be applied to the moving structure, such that the root mean square difference of the fit over the specified pairs of equivalent atom is an absolute minimum. This number, given in angstroms, is reported by QUANTA.

For the purpose of one class of embodiments this invention, any set of structure coordinates of a molecule or molecular complex that has a root mean square deviation of conserved residue backbone atoms (N, C.alpha., C, O) of less than 1.5 ANG. when superimposed--using backbone atoms--on the relevant structure coordinates of E2NT are considered identical. More preferably, the root mean square

deviation is less than 1.0 .ANG.. Most preferably, the root mean square deviation is less than 0.5 .ANG..

The term "root mean square deviation" means the square root of the arithmetic mean of the squares of the deviations from the mean. It is a way to express the deviation or variation from a trend or object. For purposes of this invention, the "root mean square deviation" defines the variation in the backbone of a protein from the backbone of E2NT a dimerising portion thereof, for example as defined by the structure coordinates of E2NT described herein.

10

20

25

5

The term "least squares" refers to a method based on the principle that the best estimate of a value is that in which the sum of the squares of the deviations of observed values is a minimum.

15 Materials and Methods

Purification and crystallisation.

Details of the purification and crystallisation of E2NT have been described previously ¹⁶. Briefly, the ORF encoding the N-terminal 201 residues of HPV-16 E2 was cloned into the prokaryotic expression plasmid pET15b downstream of the 20-residue His-tag leader sequence; protein was expressed in *E. coli*BL21(DE3)pLysS and purified using nickel affinity and anion exchange chromatography. Crystals were obtained by hanging drop vapour diffusion with 0.8-1.2M ammonium sulphate, 0.1M triethanolamine pH 8.0-8.3 and 3-5% 2-methyl-2,4-pentanediol. Crystals grew only with very fresh protein preparations and deteriorated in terms of diffraction quality in less than a week. This necessitated freezing and storage of crystals in liquid nitrogen immediately after growth, as discussed above.

Structure determination.

All data were recorded on cryogenically frozen crystals. A native crystal was frozen for which initial data were recorded to 3.4 Å¹⁶. For the screening of derivatives,

crystal stability was even more limiting. Nine crystals were soaked in various heavy atom reagents immediately after growth. The crystals were screened in-house using a MAR research imaging plate on a Rigaku RU200 rotating anode source, by recording 3° of data for each and analysing the fractional isomorphous difference from the native. Three derivatives showed promising differences from the native, in the range of 15-20% after scaling using SCALEPACK⁴² and were stored in liquid nitrogen. The native crystal was transported to EMBL Hamburg where 1.9 Å data were measured using synchrotron radiation from beam line X11, Table 1. In addition data were recorded at EMBL for the three promising derivatives to about 2.7 Å. Two of these derivatives proved useful in phase determination and the structure was solved by multiple isomorphous replacement with anomalous scattering (MIRAS) at 2.7 Å. The two derivatives were solved independently using the CCP4 suite⁴³ from the difference Patterson synthesis and by direct methods as implemented in SHELX⁴⁴. Both contained a single heavy atom site. Phases, calculated using MLPHARE, were enhanced by solvent flattening45 using a solvent content of 50 %. The resulting high quality density map was easily interpretable and the initial model was built using QUANTA (Molecular Simulations) for all but four residues of the construct, ignoring the His-tag. The model was completed with REFMAC (resolution 20-1.9 Å) using a bulk solvent correction, to an R-factor of 23.3 % (R_{Free} 29.7 % - for 5 % of the data). There are 221 residues in the recombinant protein: the first twenty comprise the His-Tag. The final model contains all but two of the 201 residues of the real protein: residues 125-126 are disordered and lie in a flexible surface loop. Only one residue, His0, of the His-tag has clear density and an ordered conformation. In addition there are 187 water molecules, which were selected using ARP⁴⁶during the course of refinement. The main statistics of the refined model are shown in Table 2.

Analytical ultracentrifugation.

5

10

15

20

25

Experiments were carried out in an Optima XL-A ultracentrifuge (Beckman-Coultier, CA, USA) using scanning UV optics. During the experiments, the recombinant E2NT was in 10mM TrisHCl pH 8.0, 5mM DTT, 0.2 mM EDTA, 300 mM NaCl.

Data were obtained at rotor speeds of 12,000 and 16,000 rpm, and the time to equilibrium was 10-12 hours. All runs were carried out at 293K, and all radial scans were at a wavelength of 280 nm. Dissociation constants were obtained by nonlinear regression using the Beckman ultracentrifuge software.

5 P32059WO

Table 1
X-ray data and phasing statistics

Data set	Native	UAc	AuCN	
Space Group	P3 ₁ 21	P3 ₁ 21	P3 ₁ 21	
a ,b (Å)	54.68	54.49	54.58	
c (Å)	155.73	155.66		
Resolution (Å)	30-1.9	20-2.7	156.50	
Temperature, K	120		20 - 2.7	
		120	120	
Wavelength (Å)	0.86	0.86	0.86	
Unique reflections	21751	7873	7937	
Completeness (%)	98.8 (89.3)	99.8 (96.1)	99.7 (93.8)	
(outer shell)				
R-merge (outer shell)	0.058 (0.339)	0.073 (0.271)	0.061 (0.268)	
Phasing Power: (centric	/ acentric)	1.55 / 2.07	0.95 / 1.40	
FOM: MIRAS		0.59		
FOM: DM 20-2.7 Å (2.	7 - 1.9 Å)	0.88 (0.61)		
DM: Mean phase chang	e (20-2.7 Å)	32 °		
R-factor (FreeR)	0.223 (0.295)		T	

Table 2

Refinement and model correlation

	Resolution		1.9 - 10.0 Å
	Number of protein atoms		1622
5	Number of solvent sites		. 211
	Number of reflections used in refinement		20637
	Number of reflections used for Rfree calculation	n 1111	
	R-factor ‡		0.232
	Rfree ‡		0.305
10	Average atomic B-factor*, Å ²	protein atoms	38.0
		water molecules	48.5
	R.m.s. deviations from ideal geometry (Å). Tar	gets in parentheses	
		bond distance	0.013 (0.020)
		angle distance	0.026 (0.040)
15		chiral volume	0.142 (0.200)

[‡]Crystallographic R-factor, $R(free) = \sum ||F_o| - |F_c|| / \sum |F_o|$.

20		<u>Table 3</u>											
25	CRYST SCALE1 SCALE2 SCALE3 ATOM	54. 1	0.0	54 1829 0000 0000 HIS	0 0	155.73 .01056 .02112 .00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00642 0.00000 5.469 -26.512 52.262 1.00 61.92	2					
	ATOM ATOM	2	CA C	HIS HIS	Α	0	6.434 -25.669 51.568 1.00 61.84 6.263 -25.743 50.051 1.00 53.91	1					
30	ATOM ATOM	4 5	O CB	HIS HIS		0	6.089 -24.713 49.607 1.00 69.59 7.837 -26.127 51.965 1.00 54.18	3					
	ATOM ATOM	6 7	CG ND1		Α	0	7.848 -26.468 53.431 0.00 99.00 7.914 -25.533 54.412 0.00 99.00)					
35	ATOM ATOM ATOM	8 9 10	CD2 CE1 NE2	HIS	Α	0 0 0	7.732 -27.728 54.027 0.00 99.00 7.828 -26.215 55.570 0.00 99.00 7.723 -27.531 55.370 0.00 99.00)					
	ATOM ATOM ATOM	11 12	N CA	MET MET	A	1	6.663 -26.896 49.478 1.00 56.24 6.435 -27.076 48.053 1.00 56.42	1					
40	ATOM ATOM	13 14	C O	MET MET	A	1	5.209 -26.282 47.619 1.00 56.07 5.293 -25.299 46.911 1.00 56.51	7					
	ATOM ATOM	15 16	CB CG	MET MET		1	6.216 -28.565 47.788 1.00 60.46 6.856 -29.020 46.477 0.00 99.00						
4.4	ATOM ATOM	17 18	SD CE	MET MET	Α	1 1·	7.244 -30.775 46.483 0.00 99.00 7.499 -30.975 44.711 0.00 99.00)					
45	ATOM ATOM	19 20	N CA	GLU GLU		2	4.035 -26.755 48.064 1.00 54.92 2.803 -26.044 47.744 1.00 53.59						

							46 477	0.00 99.00
	ATOM	16	CG	MET A	1	6.856 -29.020	46.477	
	ATOM	17	SD	MET A	1	7.244 -30.775	46.483	0.00 99.00
	ATOM	18	CE	MET A	1	7.499 -30.975	44.711	0.00 99.00 1.00 54.92
-	ATOM	19	N	GLU A	2	4.035 -26.755	48.064	
5	ATOM	20	CA	GLU A	2	2.803 -26.044	47.744	1.00 53.59
	ATOM	21	С	GLU A	2	2.870 -24.570	48.154	1.00 52.81 1.00 51.69
	ATOM	22	0_	GLU A	2	2.555 -23.664	47.393	1.00 56.88
	MOTA	23	CB	GLU A	2	1.661 -26.740	48.482	
10	ATOM	24	CG	GLU A	2 2	2.090 -28.092 1.019 -28.610	49.054 49.983	0.00 99.00 0.00 99.00
10	ATOM	25	CD	GLU A	2	0.454 ~27.819	50.722	0.00 99.00
	MOTA	26		GLU A	2	0.761 -29.811	49.963	0.00 99.00
	ATOM	27 28	OE2	GLU A THR A	3	3.260 -24.346	49.424	1.00 52.06
	ATOM	29	N CA	THR A	3	3.300 -22.980	49.940	1.00 52.60
15	ATOM ATOM	30	C	THR A	3	4.161 -22.059	49.070	1.00 50.30
IJ	ATOM	31	Ö	THR A	3	3.731 -21.006	48.617	1.00 49.91
	ATOM	32	CB	THR A	3	3.858 -23.023	51.364	1.00 54.31
	ATOM	33		THR A	3	2.975 -23.789	52.187	1.00 56.98
	ATOM	34	CG2		3	3.960 -21.605	51.935	1.00 55.18
20	ATOM	35	N	LEU A	4	5.372 -22.498	48.717	1.00 50.11
	ATOM	36	CA	LEU A	4	6.201 -21.696	47.808	1.00 50.48
	ATOM	37	c	LEU A	4	5.553 -21.516	46.444	1.00 50.18
	ATOM	38	ŏ	LEU A	4	5.520 -20.410	45.877	1.00 50.73
	ATOM	39	CB	LEU A	4	7.603 -22.286	47.626	1.00 52.72
25	ATOM	40	CG	LEU A	4	8.545 -22.252	48.826	1.00 56.58
	ATOM	41		LEU A	4	9.819 -23.035	48.583	1.00 55.37
	ATOM	42		LEU A	4	8.829 -20.828	49.288	1.00 56.27
	ATOM	43	N	CYS A	5	5.028 -22.615	45.885	1.00 49:77
	ATOM	44	CA	CYS A	5	4.362 -22.530	44.587	1.00 48.93
30	ATOM	45	С	CYS A	5	3.218 ~21.534	44.589	1.00 48.27
	ATOM	46	0	CYS A	5	3.136 ~20.698	43.682	1.00 47.03
	ATOM	47	CB	CYS A	5	3.865 -23.879	44.075	1.00 49.50
	MOTA	48	SG	CYS A	5	5.217 -24.972	43.626	1.00 50.79
	ATOM	49	N	GLN A	6	2.356 -21.627	45.610	1.00 46.85
35	MOTA	50	CA	GLN A	6	1.227 -20.718	45.675	1.00 47.22
	ATOM	51	С	GLN A	6	1.666 -19.276	45.865	1.00 46.83
	ATOM	52	0	GLN A	6	1.050 -18.382	45.276	1.00 48.60
	MOTA	53	CB	GLN A	6	0.272 -21.079	46.817	1.00 50.54
	MOTA	54	CG	GLN A	6	-0.681 -22.221	46.515	1.00 55.34
40	ATOM	55	CD	GLN A	6	-1.144 -22.875	47.806	1.00 59.63
	ATOM	56		GLN A	6	-1.101 -22.222	48.853	1.00 61.52
	ATOM	57		GLN A	6	-1.482 -24.156	47.775	1.00 57.45
	ATOM	58	N	ARG A	7	2.628 -19.035	46.757	1.00 46.33
45	ATOM	59	CA	ARG A	7	3.162 -17.700	46.938	1.00 46.38 1.00 44.90
45	ATOM	60	C	ARG A	7	3.780 -17.145 3.544 -15.986	45.650 45.355	1.00 45.29
	ATOM	61	O	ARG A	7 7	4.267 -17.682		1.00 50.84
	ATOM	62	CB	ARG A	7	3.690 -17.869	49.418	1.00 62.38
	MOTA MOTA	63 64	CG CD	ARG A	7	2.884 -16.616	49.765	1.00 71.41
50	ATOM	65	NE	ARG A	ż	3.786 -15.539	50.171	1.00 78.82
50	ATOM	66	CZ	ARG A	7	3.406 -14.307	50.474	1.00 83.50
	ATOM	67		ARG A	Ź	2.122 -13.965	50.423	1.00 85.24
	ATOM	68		ARG A	j	4.316 -13.410	50.841	1.00 85.59
	ATOM	69	N	LEU A	8	4.608 -17.918	44.984	1.00 45.22
55	ATOM	70	CA	LEU A	8	5.212 -17.429	43.728	1.00 45.85
	ATOM	71	C	LEU A	8	4.161 -17.110	42.672	1.00 46.67
	ATOM	72	ŏ	LEU A	8	4.197 -16.055	42.025	1.00 46.25
	ATOM	73	СВ	LEU A	8	6.185 -18.477	43.194	1.00 41.52
	ATOM	74	CG	LEU A	8	6.979 -18.054	41.944	1.00 44.17
60	ATOM	75		LEU A	8	7.941 -16.924	42.283	
	ATOM	76		LEU A	8	7.723 -19.246	41.373	1.00 44.18
	ATOM	77	N	ASN A	9	3.193 -18.014	42.508	1.00 47.73
	MOTA	78	CA	ASN A	9	2.065 -17.825	41.610	1.00 48.73

	MOTA	79	С	ASN A	9	1.351 -16.516	41.925	1.00 48.98
	ATOM	80	ō	ASN A	. 9	1.136 -15.727	40.999	1.00 48.98
	ATOM	81	CB	ASN A	9	1.011 -18.923	41.725	1.00 54.35
	ATOM	82	CG	ASN A	9	1.220 -20.167	40.912	1.00 58.01
5	ATOM	83	OD1	ASN A	9	2.281 -20.427	40.356	1.00 60.06
	ATOM	84	ND2	ASN A	9	0.174 - 20.991	40.841	1.00 63.02
	MOTA	85	N	VAL A	10	1.047 -16.267	43.206	1.00 48.31
	ATOM	86	CA	VAL A	10	0.388 -15.003	43.528	1.00 48.22
	MOTA	87	С	VAL A	10	1.338 -13.837	43.252	1.00 48.34
10	MOTA	88	0	VAL A	10	0.931 -12.816	42.688	1.00 47.81
	ATOM	89	CB	VAL A	10	-0.111 -14.918	44.981	1.00 53.07
	ATOM	90	CG1	VAL A	10	-0.501 -13.487	45.353	1.00 53.77
	ATOM	91	CG2	VAL A	10	 -1.328 -15.827	45.176	1.00 54.90
1.5	ATOM	92	N	CYS A	11	2.601 -14.011	43.661	1.00 47.68 1.00 47.78
15	ATOM	93	CA	CYS A	11	3.570 -12.938	43.426	1.00 47.78
	ATOM	94	C	CYS A	11	3.747 -12.615 3.632 -11.473	41.954 41.499	1.00 47.23
	MOTA	95	0	CYS A	11	4.893 -13.269	44.144	1.00 47.31
	ATOM	96	CB	CYS A	11	6.077 -11.884	44.144	1.00 44.06
20	ATOM	97 98	SG N	CYS A GLN A	11 12	3.903 -13.633	41.120	1.00 47.63
20	MOTA	99	CA	GLN A	12	4.150 -13.484	39.702	1.00 48.32
	ATOM		CA	GLN A	12	2.936 -12.946	38.951	1.00 48.82
	ATOM ATOM	100 101	0	GLN A	12	3.103 -12.258	37.946	1.00 48.64
	ATOM	102	CB	GLN A	12	4.657 -14.783	39.092	1.00 45.97
25	ATOM	103	CG	GLN A	12	6.018 -15.213	39.590	1.00 45.90
23	MOTA	104	CD	GLN A	12	6.659 -16.359	38.862	1.00 46.71
	ATOM	105	OE1	GLN A	12	6.028 -17.320	38.425	1.00 45.33
	ATOM	106		GLN A	12	7.983 -16.294	38.702	1.00 49.43
	ATOM	107	N	ASP A	13	1.736 -13.199	39.470	1.00 48.93
30	ATOM	108	CA	ASP A	13	0.516 -12.691	38.853	1.00 49.49
	ATOM	109	C	ASP A	13	0.413 -11.198	39.085	1.00 49.55
	ATOM	110	0	ASP A	13	0.082 - 10.444	38.171	1.00 49.73
	ATOM	111	CB	ASP A	13	-0.732 -13.392	39.411	1.00 52.95
	ATOM	112	CG	ASP A	13	-0.955 -14.680	38.932	0.00 99.00
35	ATOM	113	OD1	ASP A	13	-0.110 -15.160	38.175	0.00 99.00
	ATOM	114	OD2	ASP A	13	-2.054 -15.191	39.132	0.00 99.00
	ATOM	115	N	LYS A	14	0.801 - 10.735	40.269	1.00 48.95
	MOTA	116	CA	LYS A	14	0.809 -9.313	40.556	1.00 49.25
4.0	ATOM	117	С	LYS A	14	1.794 -8.575	39.658	1.00 49.07
40	ATOM	118	0	LYS A	14	1.470 -7.519	39.119	1.00 49.78
	MOTA	119	СВ	LYS A	14	1.109 -9.040	42.030	1.00 52.53
	ATOM	120	CG	LYS A	14	-0.070 -8.421	42.768	1.00 62.87 1.00 66.42
	MOTA	121	CD	LYS A	14	-0.269 -6.975	42.329 43.257	1.00 66.42
45	ATOM	122	CE	LYS A	14 14	-1.227 -6.247 -0.835 -4.824	43.452	1.00 70.38
43	ATOM	123	NZ N	LYS A	15	2.984 -9.131	39.468	1.00 48.82
	ATOM	124					38.595	1.00 49.56
	ATOM ATOM	125 126	CA C	ILE A	15 15	3.992 -8.530 3.467 -8.390	37.165	1.00 50.17
	ATOM	127	0	ILE A	15	3.538 -7.324	36.561	1.00 50.19
50	ATOM	128	CB	ILE A	15	5.288 -9.359	38.669	1.00 43.08
50	ATOM	129		ILE A	15	5.931 -9.100	40.054	1.00 45.94
	ATOM	130		ILE A	15	6.286 -8.951	37.597	1.00 47.46
	ATOM	131		ILE A	15	6.960 -10.120	40.472	1.00 42.94
	ATOM	132	N	LEU A	16	2.880 -9.437	36.623	1.00 51.16
55	ATOM	133	CA	LEU A	16	2.272 -9.406	35.291	1.00 52.54
	ATOM	134	С	LEU A	16	1.135 -8.414	35.191	1.00 52.81
	ATOM	135	ō	LEU A	16	1.023 -7.678	34.194	1.00 53.37
_	ATOM	136	СВ	LEU A	16	1.859 -10.810	34.847	1.00 56.20
	ATOM	137	CG	LEU A	16	3.067 -11.696	34.504	1.00 61.93
60	MOTA	138	CD1		16	2.816 -13.139	34.904	1.00 65.17
	ATOM	139		LEU A	16	 3.456 -11.572	33.041	1.00 62.31
	MOTA	140	N	THR A	17	0.274 - 8.336	36.204	1.00 52.95
	MOTA	141	CA	THR A	17	-0.789 -7.332	36.217	1.00 53.67

		• • •	_		17		0 000	F 016	26 172	1 00 54 20
	ATOM	142	Ç	THR A	17		-0.232	-5.916	36.173	1.00 54.28
	ATOM	143	0	THR A	17		-0.860	-5.026	35.590	1.00 54.21
	ATOM	144	CB	THR A	17		-1.677	-7.468	37.468	1.00 55.51
	MOTA	145	OG1	THR A	17		-2.321	-8.742	37.469	1.00 54.73
5	MOTA	146	CG2	THR A	17		-2.713	-6.355	37.551	1.00 52.35
	ATOM	147	N	HIS A	18		0.879	-5.647	36.878	1.00 53.99
	MOTA	148	CA	HIS A	18		1.495	-4.331	36.754	1.00 54.39
	ATOM	149	С	HIS A	18		1.960	-4.115	35.313	1.00 55.01
	ATOM	150	0	HIS A	18		1.722	-3.036	34.757	1.00 54.91
10	MOTA	151	CB	HIS A	18		2.663	-4.168	37.735	1.00 53.19
	ATOM	152	CG	HIS A	18		2.198	-3.867	39.130	1.00 52.86
	ATOM	153		HIS A	18		1.486	-2.733	39.432	1.00 52.60
	MOTA	154		HIS A	18		2.362	-4.553	40.296	1.00 52.72
	ATOM	155		HIS A	18	-	1.216	-2.720	40.730	1.00 53.99
15	ATOM	156		HIS A	18		1.735	-3.817	41.269	1.00 53.27
	MOTA	157	N	TYR A	19		2.580	-5.122	34.721	1.00 56.14
	ATOM	158	CA	TYR A	19		3.044	-5.034	33.337	1.00 58.17
	ATOM	159	C	TYR A	19		1.890	-4.733	32.380	1.00 58.92
	ATOM	160	õ	TYR A	19		1.957	-3.827	31.552	1.00 59.36
20	ATOM	161	СВ	TYR A	19		3.759	-6.320	32.950	1.00 59.47
20		162	CG	TYR A	19		5.097	-6.621	33.580	1.00 62.05
	ATOM			TYR A	19		5.983	-5.607	33.934	1.00 63.22
	ATOM	163			19		5.513	-7.934	33.787	1.00 62.96
	MOTA	164	CD2	TYR A			7.212		34.488	1.00 63.58
25	MOTA	165	CE1		19		6.745	-5.891		1.00 63.58
25	ATOM	166	CE2		19			-8.226	34.345	
	ATOM	167	CZ	TYR A	19		7.597	-7.199	34.703	1.00 63.46
	MOTA	168	OH	TYR A	19		8.828	-7.470	35.274	1.00 62.56
	ATOM	169	N	GLU A	20		0.779	-5.451	32.499	1.00 59.63
	MOTA	170	CA	GLU A	20		-0.426	-5.196	31.734	1.00 59.76
30	MOTA	171	С	GLU A	20		-0.990	-3.804	31.918	1.00 59.59
	ATOM	172	0	GLU A	20		-1.198	-3.103	30.928	1.00 59.90
	MOTA	173	CB	GLU A	20		-1.499	-6.241	32.056	1.00 66.29
	MOTA	174	CG	GLU A	20		-1.176	-7.583	31.409	1.00 73.88
	ATOM	175	CD	GLU A	20		-2.142	-8.678	31.815	1.00 78.60
35	MOTA	176	OE1	GLU A	20		-1.749	-9.862	31.692	1.00 82.52
	ATOM	177	OE2	GLU A	20		-3.272	-8.365	32.242	1.00 78.94
	ATOM	178	N	ASN A	21		-1.186	-3.340	33.145	1.00 59.04
	MOTA	179	CA	ASN A	21		-1.784	-2.053	33.404	1.00 57.97
	ATOM	180	С	ASN A	21		-1.002	-0.853	32.918	1.00 57.50
40	ATOM	181	0	ASN A	21		-1.637	0.118	32.496	1.00 57.19
	MOTA	182	CB	ASN A	21		-2.149	-1.876	34.875	1.00 61.71
	ATOM	183	CG	ASN A	21		-3.089	-2.964	35.362	1.00 63.07
	ATOM	184		ASN A	21		-3.691	-3.685	34.563	1.00 60.88
	ATOM	185		ASN A	21		-3.161	-3.066	36.685	1.00 62.59
45	ATOM	186	N	ASP A	22		0.327	-0.826	33.022	1.00 56.38
	ATOM	187	CA	ASP A	22		1.080	0.299	32.480	1.00 54.54
	ATOM	188	c	ASP A	22		0.710	1.630	33.112	1.00 53.00
	ATOM	189	ŏ	ASP A	22		0.632	2.652	32.424	1.00 52.65
	ATOM	190	СВ	ASP A	22		0.818	0.369	30.967	1.00 61.62
50	ATOM	191	CG	ASP A	22		2.107	0.655	30.214	1.00 65.99
50	ATOM	192	001	ASP A	22		2.946	1.402	30.765	1.00 64.95
	ATOM	193		ASP A	22		2.235	0.116	29.099	1.00 69.58
	ATOM		N	SER A	23		0.616	1.683	34.440	1.00 50.98
		194								1.00 49.25
55	ATOM	195	CA	SER A	23		0.213	2.879	35.148 35.095	
55	ATOM	196	C	SER A	23		1.294	3.960		1.00 48.02
	MOTA	197	0	SER A	23		2.450	3.746	34.740	1.00 47.57 1.00 46.04
	ATOM	198	CB	SER A	23		-0.101	2.633	36.640	
	MOTA	199	OG	SER A	23		0.549	1.424	36.984	1.00 56.16
60	ATOM	200	N	THR A	24		0.847	5.152	35.441	1.00 47.42
60	ATOM	201	CA	THR A	24		1.724	6.312	35.512	1.00 48.00
	ATOM	202	C	THR A	24		1.731	6.860	36.920	1.00 47.34
	ATOM	203	0	THR A	24		2.328	7.898	37.173	1.00 47.41
	ATOM	204	CB	THR A	24	,	1.369	7.421	34.505	1.00 50.50

	ATOM	205	OĞ1	THR A	24	0.042	7.871	34.734	1.00 51.02
	ATOM	206	CG2	THR A	24	1.558	6.901	33.094	1.00 48.60
	ATOM	207	N	ASP A	25	1.124	6.096	37.828	1.00 46.98
	ATOM	208	CA	ASP A	25	1.058	6.453	39.234	1.00 46.50
5	MOTA	209	С	ASP A	25	2.193	5.788	40.013	1.00 45.63
	ATOM	210	0	ASP A	25	2.376	4.578	40.042	1.00 44.95
	MOTA	211	CB	AŚP A	25	-0.286	6.024	39.847	1.00 53.36
	MOTA	212	CG	ASP A	25	-1.442	6.789	39.202	1.00 62.10
	ATOM	213	OD1	ASP A	25	-1.605	7.997	39.498	1.00 64.72
10	MOTA	214	OD2	ASP A	25	-2.185	6.192	38.392	1.00 62.72
	ATOM	215	N	LEU A	26	3.000	6.633	40.614	1.00 45.40
	ATOM	216	CA	LEU A	26	4.167	6.207	41.381	1.00 45.37
	MOTA	217	С	LEU A	26	3.834	5.157	42.418	1.00 45.85
	ATOM	218	0	LEU A	26	4.563	4.170	42.565	1.00 46.38
15	ATOM	219	CB	LEU A	26	4.763	7.483	41.982	1.00 44.87
	ATOM	220	CG	LEU A	26	6.056	7.341	42.783	1.00 44.69
	ATOM	221	CD1	LEU A	26	7.128	6.688	41.931	1.00 40.20
	MOTA	222	CD2	LEU A	26	6.529	8.703	43.267	1.00 46.93
	ATOM	223	N	ARG A	27	2.741	5.281	43.178	1.00 45.28
20	ATOM	224	CA	ARG A	27	2.266	4.241	44.065	1.00 45.19
	ATOM	225	С	ARG A	27	2.251	2.841	43.483	1.00 44.47
	ATOM	226	0	ARG A	27	2.610	1.886	44.187	1.00 44.56
	ATOM	227	CB	ARG A	27	0.852	4.494	44.607	1.00 51.04
	MOTA	228	CG	ARG A	27	0.713	5.531	45.690	1.00 61.27
25	ATOM	229	CD	ARG A	27	-0.715	6.081	45.714	1.00 66.89
	ATOM	230	NE	ARG A	27	-0.927	6.984	46.839	1.00 75.54
	ATOM	231	CZ	ARG A	27	-2.083	7.555	47.170	1.00 79.36
	ATOM	232		ARG A	27	-3.184	7.331	46.456	1.00 80.70
20	ATOM	233		ARG A	27	-2.152	8.359	48.228	1.00 79.78 1.00 43.06
30	ATOM	234	N	ASP A	28	1.771	2.632	42.255	1.00 43.06
	ATOM	235	CA	ASP A	28	1.785	1.318 0.797	41.648	1.00 41.77
	ATOM	236	C	ASP A	28	3.195	-0.409	41.402	1.00 41.18
	MOTA	237	0	ASP A	28	3.408	1.325	40.303	1.00 44.91
35	ATOM	238	CB	ASP A	28 28	1.014 -0.450	1.655	40.560	1.00 53.31
22	ATOM	239	CG	ASP A	28	-1.014	2.560	39.920	1.00 53.31
	MOTA	240		ASP A	28	-1.022	0.983	41.446	1.00 52.80
	ATOM	241 242	N	HIS A	29	4.132	1.700	41.062	1.00 40.87
	ATOM ATOM	243	CA	HIS A	29	5.510	1.269	40.787	1.00 40.10
40	ATOM	244	C	HIS A	29	6.208	0.795	42.073	1.00 39.08
40	MOTA	245	ŏ	HIS A	29	6.987	-0.143	42.045	1.00 38.12
	ATOM	246	ÇВ	HIS A	29	6.246	2.473	40.166	1.00 40.60
	ATOM	247	CG	HIS A	29	5.590	2.806	38.837	1.00 42.13
	ATOM	248		HIS A	29	5.069	1.810	38.042	1.00 42.28
45	ATOM	249		HIS A	29	5.373	3.980	38.192	1.00 44.10
••	ATOM	250		HIS A	29	4.552	2.348	36.943	1.00 43.73
	ATOM	251		HIS A	29	4.738	3.656	37.014	1.00 42.95
	ATOM	252	N	ILE A	30	5.896	1.454	43.152	1.00 39.44
	ATOM	253	CA	ILE A	30	6.339	0.990	44.501	1.00 39.95
50	ATOM	254	C	ILE A	30	5.899	-0.426	44.746	1.00 40.09
- •	ATOM	255	0	ILE A	30	6.658	-1.303	45.181	1.00 41.16
	ATOM	256	CB	ILE A	30	5.843	1.991	45.550	1.00 40.65
	ATOM	257		ILE A	30	6.563	3.321	45.334	1.00 40.86
	ATOM	258		ILE A	30	6.125	1.537	47.004	1.00 41.39
55	ATOM	259		ILE A	30	6.060	4.498	46.138	1.00 42.24
	ATOM	260	N	ASP A	31	4.631	-0.764	44.485	1.00 41.09
	ATOM	261	CA	ASP A	31	4.082	-2.089	44.758	1.00 40.37
	MOTA	262	C	ASP A	31	4.718	-3.130	43.856	1.00 40.59
	ATOM	263	Ô	ASP A	31	4.965	-4.277	44.244	1.00 40.70
60	ATOM	264	СВ	ASP A	31	2.566	-2.080	44.459	1.00 42.53
	MOTA	265	CG	ASP A	31	1.886	-3.379	44.801	1.00 44.66
	ATOM	266		ASP A	31	1.799	-4.311	43.991	1.00 46.03
	ATOM	267		ASP A	31	1.495	-3.517	45.987	1.00 53.28

	ATOM	268	N	TYR A	32		4.945	-2.735	42.589	1.00 39.00
	ATOM	269	CA	TYR A	32		5.636	-3.647	41.677	1.00 38.51
	ATOM	270	С	TYR A	32		7.017	-4.030	42.231	1.00 36.55
	ATOM	271	0	TYR A	32		7.359	-5.204	42.252	1.00 36.44
5	MOTA	272	CB	TYR A	32		5.765	-2.921	40.324	1.00 39.37
	ATOM	273	CG	TYR A	32		6.750	-3.532	39.369	1.00 42.61
	ATOM	274	CD1	TYR A	32		6.374	-4.668	38.646	1.00 45.04
	ATOM	275	CD2	TYR A	32		8.005	-2.989	39.141	1.00 43.12
	ATOM	276	CE1	TYR A	32		7.245	-5.272	37.758	1.00 46.06
10	MOTA	277	CE2	TYR A	32		8.871	-3.576	38.235	1.00 44.10
	MOTA	278	CZ	TYR A	32		8.489	-4.707	37.545	1.00 45.75
	ATOM	279	OH	TYR A	32		9.322	-5.303	36.633	1.00 44.58
	MOTA	280	N	TRP A	33		7.850	-3.064	42.552	1.00 36.14
1.5	ATOM	281	CA	TRP A	33		9.183	-3.384	43.061	1.00 36.59
15	ATOM	282	C	TRP A	33		9.144	-4.146	44.391	1.00 36.80
	ATOM	283	0	TRP A	33		10.050	-4.951	44.634	1.00 37.42
	ATOM	284	CB	TRP A	33		10.054	-2.131	43.159	1.00 37.44
	ATOM	285	CG	TRP A	33		10.588	-1.813	41.780 40.979	1.00 34.77 1.00 35.47
20	ATOM	286	CD1	TRP A	33		10.244	-0.745 -2.605	40.979	1.00 33.47
20	MOTA	287	CD2		33		11.522	-0.822	39.805	1.00 32.86
	ATOM	288	NE1 CE2	TRP A	33 33		10.974 11.735	-1.947	39.799	1.00 32.84
	ATOM	289	CE2	TRP A	33		12.209	-3.792	41.301	1.00 33.43
	MOTA	290 291		TRP A	33		12.595	-2.444	38.832	1.00 32.55
25	ATOM ATOM	292	CZ3	TRP A	33		13.061	-4.282	40.337	1.00 33.33
23	ATOM	293		TRP A	33		13.245	-3.626	39.108	1.00 37.27
	MOTA	294	N	LYS A	34		8.150	-3.912	45.246	1.00 37.05
	ATOM	295	CA	LYS A	34		7.990	-4.765	46.437	1.00 37.56
	ATOM	296	C	LYS A	34		7.687	-6.205	46.060	1.00 37.90
30	ATOM	297	ŏ	LYS A	34		8.220	-7.124	46.684	1.00 37.29
50	ATOM	298	СВ	LYS A	34		6.860	-4.261	47.345	1.00 36.29
	ATOM	299	CG	LYS A	34		7.111	-2.871	47.891	1.00 41.05
	ATOM	300	CD	LYS A	34		6.095	-2.498	48.945	1.00 47.20
	ATOM	301	CE	LYS A	34		5.764	-1.032	48.964	1.00 49.66
35	ATOM	302	NZ	LYS A	34		5.046	-0.625	50.219	1.00 57.26
	ATOM	303	N	HIS A	35		6.853	-6.411	45.025	1.00 37.50
	ATOM	304	CA	HIS A	35		6.670	-7.779	44.525	1.00 36.43
	MOTA	305	С	HIS A	35		7.913	-8.328	43.875	1.00 35.96
	ATOM	306	0	HIS A	35		8.237	-9.523	43.986	1.00 34.61
40	ATOM	307	CB	HIS A	35		5.446	-7.901	43.587	1.00 40.23
	MOTA	308	CG ·	HIS A	35		4.200	-7.883	44.428	1.00 44.09
	ATOM	309	ND1	HIS A	35		3.567	-6.711	44.788	1.00 48.39
	ATOM	310		HIS A	35		3.539	-8.879	45.058	1.00 48.71
	MOTA	311		HIS A	35		2.538	-6.985	45.574	1.00 48.93
45	MOTA	312		HIS A	35		2.524	-8.283	45.774	1.00 47.98
	MOTA	313	N	MET A	36		8.665	-7.457	43.180	1.00 35.13
	MOTA	314	CA	MET A	36		9.927	-7.985	42.606	1.00 35.12
	ATOM	315	C	MET A	36		10.836	-8.474	43.753	1.00 35.05
50	ATOM	316	0	MET A	36		11.472	-9.504	43.634	1.00 34.78
50	ATOM	317	CB	MET A	36		10.584	-6.890	41.772	1.00 36.78
	ATOM	318	CG	MET A	36		9.832	-6.601	40.454	1.00 38.38
	ATOM	319	SD	MET A	36		10.026	-7.870	39.206	1.00 39.79
	ATOM	320	CE	MET A	36		11.681	-7.505	38.605	1.00 43.43
55	ATOM	321	N	ARG A	37		10.903	-7.746	44.853	1.00 35.39
55	ATOM	322	CA	ARG A	37	-	11.729	-8.145	46.004	1.00 35.09
	ATOM	323	C	ARG A	37		11.240	-9.438	46.667	1.00 34.61
	MOTA	324	0	ARG A	37 37			-10.319	46.996	1.00 33.53 1.00 34.72
	ATOM	325	CB	ARG A	37 37		11.555	-7.001 -7.186	47.018 48.305	1.00 34.72
60	ATOM	326	CG	ARG A	37		12.370 12.132	-5.981	48.303	1.00 34.13
UU	ATOM	327 328	CD NE	ARG A	37		12.132	-6.189	50.551	1.00 35.48
	ATOM ATOM	329	CZ	ARG A	37		12.420	-5.313	51.520	1.00 33.48
	ATOM	330		ARG A	37		11.676	-4.228	51.375	1.00 38.49
	111 OF1	550	****	· ····	٠,					

	MOTA	331	NH2	ARG A	37	12.948 -5.572	52.719	1.00 32.86
	ATOM	332	N	LEU A	38	9.920 -9.544	46.841	1.00 33.92
	ATOM	333	CA	LEU A	38	9.330 -10.768	47.372	1.00 34.82
	ATOM	334	С	LEU A	38	9.592 -11.985	46.532	1.00 36.08
5	ATOM	335	0	LEU A	38	9.879 -13.050	47.066	1.00 35.88
_	ATOM	336	CB	LEU A	38	7.806 - 10.549	47.542	1.00 37.00
	ATOM	337	ĊĠ	LEU A	38	7.048 -11.843	47.862	1.00 39.41
	ATOM	338		LEU A	38	7.338 -12.303	49.271	1.00 36.17
	ATOM	339		LEU A	38	5.544 -11.698	47.633	1.00 42.91
10	ATOM	340	N	GLU A	39	9.532 -11.873	45.176	1.00 36.01
10	ATOM	341	CA	GLU A	39	9.903 -12.982	44.328	1.00 35.41
		342	CA	GLU A	39	11.310 -13.492	44.650	1.00 35.41
	ATOM							1.00 33.33
	ATOM	343	0	GLU A	39	11.524 -14.706	44.610	
1.5	ATOM	344	CB	GLU A	39	9.826 -12.621	42.814	1.00 33.83
15	MOTA	345	CG	GLU A	39	9.999 -13.858	41.944	1.00 35.55
	MOTA	346	CD	GLU A	39	10.153 -13.499	40.467	1.00 44.56
	ATOM	347		GLU A	39	11.229 -12.997	40.106	1.00 42.84
	ATOM	348		GLU A	39	9.219 -13.700	39.690	1.00 42.80
•	ATOM	349	N	CYS A	40	12.280 -12.600	44.916	1.00 35.37
20	ATOM	350	CA	CYS A	40	13.616 -13.054	45.262	1.00 35.02
	ATOM	351	С	CYS A	40	13.603 -13.852	46.574	1.00 35.78
	ATOM	352	0	CYS A	40	14.329 -14.842	46.621	1.00 35.14
	ATOM	353	CB	CYS A	40	14.587 -11.879	45.434	1.00 34.19
	MOTA	354	SG	CYS A	40	14.743 -10.845	43.945	1.00 35.07
25	ATOM	355	N	ALA A	41	12.796 -13.419	47.540	1.00 36.59
	ATOM	356	CA	ALA A	41	12.772 -14.160	48.820	1.00 38.13
	MOTA	357	С	ALA A	41	12.191 -15.553	48.590	1.00 37.52
	ATOM	358	0	ALA A	41	12.659 -16.527	49.200	1.00 38.32
	MOTA	359	CB	ALA A	41	11.955 -13.380	49.827	1.00 36.08
30	ATOM	360	N	ILE A	42	11.221 -15.674	47.663	1.00 37.54
	ATOM	361	CA	ILE A	42	10.629 -16.995	47.397	1.00 36.18
	ATOM	362	C	ILE A	42	11.626 -17.922	46.753.	1.00 36.44
	ATOM	363	ō	ILE A	42	11.856 -19.069	47.133	1.00 35.31
	ATOM	364	СВ	ILE A	42	9.325 -16.907	46.581	1.00 36.30
35	ATOM	365		ILE A	42	8.225 -16.165	47.345	1.00 38.51
22	ATOM	366	CG2		42	8.865 -18.282	46.108	1.00 38.23
	ATOM	367		ILE A	42	7.114 -15.700	46.390	1.00 41.57
	MOTA	368	N	TYR A	43	12.321 -17.436	45.707	1.00 35.53
		369	CA	TYR A	43	13.341 -18.254	45.060	1.00 36.20
40	ATOM				43	14.479 -18.536	46.047	1.00 36.20
40	MOTA	370	C	TYR A		15.091 -19.597	45.993	1.00 36.21
	MOTA	371	O .	TYR A	43	13.884 -17.474	43.838	1.00 36.61
	ATOM	372	CB	TYR A	43			
	MOTA	373	CG	TYR A	43	13.065 -17.637	42.572	1.00 38.55
45	ATOM	374		TYR A	43	12.717 -16.512	41.820	1.00 39.59
45	ATOM	375	CD2		43	12.644 -18.871	42.116.	1.00 39.53
	MOTA	376		TYR A	43	11.998 -16.626	40.646	1.00 41.22
	ATOM	377		TYR A	43	11.943 -19.006	40.918	1.00 40.40
	ATOM	378	CZ	TYR A	43	11.604 -17.884	40.210	1.00 40.78
	ATOM	379	ОН	TYR A	43	10.847 -17.954	39.081	1.00 41.19
50	ATOM	380	N	TYR A	44	14.794 -17.563	46.906	1.00 35.43
	ATOM	381	CA	TYR A	44	15.933 -17.815	47.811	1.00 37.45
•	MOTA	382	С	TYR A	44	15.547 -19.008	48.716	1.00 37.65
	ATOM	383	0	TYR A	44	16.329 -19.945	48.876	1.00 38.00
	ATOM	384	CB	TYR A	44	16.205 -16.555	48.635	1.00 38.20
55 .	ATOM	385	CG	TYR A	44	17.445 -16.670	49.503	1.00 40.09
	ATOM	386		TYR A	44	17.398 -17.286	50.756	1.00 41.30
	ATOM	387		TYR A	44	18.663 -16.206	49.041	1.00 40.77
	ATOM	388		TYR A	44	18.569 -17.412	51.492	1.00 42.23
	ATOM	389		TYR A	44	19.833 -16.312	49.776	1.00 42.80
60	MOTA	390	CZ	TYR A	44.	19.746 -16.907	51.023	1.00 43.39
	ATOM	391	OH.	TYR A	44	20.863 -17.049	51.798	1.00 45.51
	ATOM	392	N	LYS A	45	14.334 -18.982	49.224	1.00 38.11
	ATOM	393	CA	LYS A		13.891 -20.078	50.118	1.00 40.98
		999	~					

	MOTA	394	С	LYS A	45			-21.403	49.387		41.49
	ATOM	395	0	LYS A	45			-22.472	49.789		42.02
	MOTA	396	CB	LYS A	45			-19.754	50.750		40.25
	MOTA	397	CG	LYS A	45			-20.894	51.614		48.19
5	ATOM	398	CD	LYS A	45	1	2.824	-21.269	52.813		51.93
	ATOM	399	CE	LYS A	45	1	2.671	-20.308	53.983		59.68
	ATOM	400	NZ	LYS A	45	1	3.979	-20.145	54.698	1.00	61.34
	ATOM	401	N	ALA A	46	1	3.307	-21.357	48.139	1.00	42.39
	ATOM	402	CA	ALA A	46	1	3.230	-22.586	47.356	1.00	41.88
10	ATOM	403	С	ALA A	46		4.613		47.179	1.00	41.96
	ATOM	404	0	ALA A		1	4.828	-24.368	47.347	1.00	42.06
	ATOM	405	СВ	ALA A	46			-22.294	46.004	1.00	45.41
	ATOM	406	N	ARG A				-22.341	46.839		42.18
	ATOM	407	CA	ARG A				-22.806	46.649	1.00	42.89
15	ATOM	408	C	ARG A				-23.364	47.949		44.97
1.5	ATOM	409	õ	ARG A	47			-24.377	47.899		44.85
	MOTA	410	СВ	ARG A	47			-21.700	46.134		39.95
		411		ARG A	47		9.278		45.751		44.08
	ATOM		CG					-23.087	44.564		51.87
20	ATOM	412	CD	ARG A	47						57.92
20	ATOM	413	NE	ARG A	47			-23.450	44.306		
	ATOM	414	CZ	ARG A	47			-24.042	43.351		62.27
	ATOM	415		ARG A	47			-24.506	42.243		60.85
	MOTA	416		ARG A	47			-24.175	43.516		66.76
	ATOM	417	Ν.	GLU A	48			-22.673	49.051		45.14
25	ATOM	418	CA	GLU A	48			-23.090	50.364		48.18
	MOTA	419	·C	GLU A	48	_		-24.500	50.681		48.66
	MOTA	420	0	GLU A	48			-25.362	51.122		49.01
	ATOM	421	CB	GLU A	48			-22.208	51.472		50.97
	MOTA	422	CG	GLU A	48			-21.039	51.955		59.37
30	MOTA	423	CD	GLU A	48	1	7.911	-20.689	53.432	1.00	58.91
	ATOM	424	OEl	GLU A	48	1	6.891		53.912	1.00	64.65
	ATOM	425	OE2	GLU A	48		3.904		54.156		64.43
	ATOM	426	N	MET A	49	1	5.000	-24.730	50.361	1.00	49.75
	ATOM	427	CA	MET A	49	1	5.358	-26.017	50.510	1.00	50.42
35	ATOM	428	С	MET A	49	1.	5.738	-27.106	49.543	1.00	50.69
	ATOM	429	0	MET A	49	1	5.197	-28.218	49.620	1.00	51.52
	ATOM	430	CB	MET A	49	1.	3.840	-25.835	50.513	1.00	53.09
	ATOM	431	CG	MET A	49	1.	3.351	-25.048	51.719	1.00	55.67
	ATOM	432	SD	MET A	49	1	1.617	-24.613	51.508	1.00	64.13
40	MOTA	433	CE	MET A	49	1	0.922	-24.927	53.123	1.00	64.34
	ATOM	434	N	GLY A	50			-26.852	48.592	1.00	50.09
	ATOM	435	CA	GLY A	50			-27.787	47.664	1.00	48.51
	MOTA	436	C	GLY A	50			-27.949	46.384		48.34
	ATOM	437	Õ	GLY A	50		6.603		45.679		47.16
45	ATOM	438	N	PHE A	51			-27.074	46.084		48.32
7.5	ATOM	439	CA	PHE A				-27.205			48.99
	ATOM	440	C	PHE A	51	1	5.442	-26.616	43.675		49.10
	ATOM	441	ŏ	PHE A				-25.659	43.884		48.66
	ATOM	442	CB	PHE A				-26.527	44.904		54.66
50		443	CG	PHE A	51			-27.030	46.005		62.30
50	MOTA			PHE A				-28.382	46.261		66.64
	ATOM	444						-26.142	46.784		64.64
	MOTA	445		PHE A					47.281		67.20
	MOTA	446		PHE A				-28.837			
55	ATOM	447		PHE A				-26.584	47.788		65.80
55	ATOM	448	CZ	PHE A				-27.937	48.047		65.88
	MOTA	449	N	LYS A				-27.331	42.554		49.49
	ATOM	450	CA	LYS A				-26.877	41.377		48.93
	ATOM	451	C	LYS A			5.254		40.393		47.94
	MOTA	452	0	LYS A				-25.414	39.516		46.65
60	ATOM	453	CB	LYS A				-28.073	40.739		54.00
	ATOM	454	CG	LYS A				-28.697	41.640		61.04
	MOTA	455	CD	LYS A				-29.536.			64.27
	MOTA	456	CE	LYS A	52	1:	9.717	-30.537	41.711	0.00	99.00

						-		
	ATOM	457	NZ	LYS A	52	20.300 -31.674	41.001	0.00 99.00
	ATOM	458	N	HIS A	53	13.968 -26.480	40.589	1.00 46.17
	ATOM	459	CA	HIS A	53	12.924 -25.816	39.834	1.00 45.58
	ATOM	460	C	HIS A	53	11.697 -25.685	40.724	1.00 44.64
5	ATOM	461	Ō	HIS A	53	11.566 -26.465	41.649	1.00 44.95
_	ATOM	462	СВ	HIS A	53	12.568 -26.542	38.531	1.00 44.28
	ATOM	463	CG	HIS A	53	11.635 -27.700	38.758	1.00 46.45
	ATOM	464		HIS A	53	10.277 -27.525	38.978	1.00 45.21
	ATOM	465		HIS A	53	11.868 -29.026	38.829	1.00 45.27
16	ATOM	466		HIS A	53	9.709 -28.698	39.163	1.00 45.18
10	MOTA	467		HIS A	53	10.655 -29.629	39.076	1.00 49.44
		468		ILE A	54	10.895 -24.693	40.468	1.00 43.90
	MOTA		N		54	9.598 -24.513	41.100	1.00 44.62
	ATOM	469	CA	ILE A		8.589 -24.354	39.976	1.00 43.53
15	ATOM	470	C	ILE A	54	8.704 -23.454	39.123	1.00 44.50
15	ATOM	471	0	ILE A	54			1.00 44.50
	ATOM	472	CB	ILE A	54		41.996	1.00 51.01
	ATOM	473		ILE A	54	8.222 -22.740	42.337	
	MOTA	474		ILE A	54	10.420 -22.138	41.313	1.00 54.51
	ATOM	475		ILE A	54~	8.293 -22.022	43.690	1.00 55.08
20	ATOM	476	N	ASN A	55	7.679 -25.327	39.853	1.00 42.57
	MOTA	477	CA	ASN A	5.5	6.719 -25.332	38.748	1.00 41.98
	MOTA	478	С	ASN A	55	7.391 -25.383	37.389	1.00 41.70
	ATOM	479	0	ASN A	55	6.958 -24.848	36.368	1.00 41.10
	MOTA	480	CB	ASN A	55	5.639 -24.266	38.828	1.00 41.18
25	ATOM	481	CG	ASN A	55	4.611 -24.596	39.915	1.00 45.37
	ATOM	482	OD1	ASN A	55	4.481 -25.766	40.285	1.00 42.95
	ATOM	483	ND2	ASN A	55	3.908 -23.589	40.393	1.00 49.59
	ATOM	484	N	HIS A	56	8.508 -26.115	37.343	1.00 42.09
	ATOM	485	CA	HIS A	56	9.304 -26.336	36.155	1.00 41.80
30	MOTA	486	С	HIS A	56	9.996 -25.085	35.651	1.00 42.37
	ATOM	487	0	HIS A	56	10.579 -25.115	34.573	1.00 41.39
	ATOM	488	СВ	HIS A	56	8.509 -27.081	35.059	1.00 38.13
	ATOM	489	CG	HIS A	56	8.140 -28.417	35.639	1.00 39.93
	ATOM	490		HIS A	56	8.997 -29.476	35.683	1.00 40.64
35	ATOM	491		HIS A	56	7.000 -28.811	36.253	1.00 40.69
55	ATOM	492		HIS A	56	8.401 -30.496	36.292	1.00 46.16
	ATOM	493		HIS A	56	7.192 -30.108	36.648	1.00 44.07
	ATOM	494	N	GLN A	57	10.115 -24.074	36.492	1.00 42.01
	ATOM	495	CA	GLN A	57	10.867 -22.845	36.209	1.00 43.31
40	ATOM	496	C	GLN A	57	12.178 -22.922	37.011	1.00 42.73
70	ATOM	497	o	GLN A	57 57	12.135 -23.367	38.159	1.00 42.65
		498	СВ	GLN A	57	10.017 -21.730	36.771	1.00 44.03
	ATOM	499	CG	GLN A	57	10.191 -20.286	36.476	1.00 54.62
	ATOM	500	CD	GLN A	57	8.889 -19.530	36.723	1.00 54.38
45	ATOM	501	OE1		57	8.881 -18.332	36.990	1.00 54.35
43	ATOM	502			57	7.774 -20.248	36.641	1.00 57.38
	ATOM			GLN A		13.308 -22.526	36.435	1.00 41.67
	ATOM	503	N	VAL A	58 ⁻	14.592 -22.695	37.122	1.00 41.06
	ATOM	504	CA	VAL A	58 50		38.395	1.00 39.90
50	MOTA	505	C	VAL A	58	14.654 -21.870		1.00 40.26
50	ATOM	506	0	VAL A	58	14.141 -20.751	38.425	
	ATOM	507	CB	VAL A	58	15.766 -22.343	36.168	1.00 41.94 1.00 41.59
	ATOM	508		VAL A	58	15.770 -20.860	35.859	
	ATOM	509		VAL A	58	17.085 -22.872	36.676	1.00 43.75
	ATOM	510	Ŋ	VAL A	59	15.193 -22.451	39.461	1.00 40.08
55	MOTA	511	CA	VAL A	59	15.414 -21.673	40.713	1.00 40.24
	ATOM	512	C	VAL A	59	16.878 -21.205	40.635	1.00 39.98
	MOTA	513	0	VAL A	59	17.761 -22.042	40.559	1.00 41.27
	MOTA	514	CB	VAL A	59	15.250 -22.591	41.945	1.00 40.48
	ATOM	515		VAL A	59	15.437 -21.777	43.243	1.00 44.12
60	ATOM	516	CG2	VAL A	59	13.830 -23.161	42.037	1.00 39.62
	MOTA	517	N	PRO A	60	17.121 -19.911	40.686	1.00 40.13
	MOTA	518	CA	PRO A	60	18.466 -19.380	40.576	1.00 40.49
	MOTA	519	С	PRO A	60	19.312 -19.737	41.806	1.00 40.57

				DDA 3	CO		10 766 20 030	12 063	1.00 39.38
	MOTA	520	0	PRO A	60		18.766 -20.039	42.863	1.00 40.12
	MOTA	521	CB	PRO A	60		18.272 -17.874	40.580	1.00 40.12
	MOTA	522	CG	PRO A	60		16.837 -17.576	40.657	1.00 40.20
_	MOTA	523	CD	PRO A	60		16.069 -18.866	40.722	1.00 39.59
. 5	ATOM	524	N	THR A	61		20.627 -19.662	41.632	
	ATOM	525	CA	THR A	61		21.502 -19.731	42.799	1.00 39.51
	ATOM	526	С	THR A	61		21.145 -18.651	43.803	1.00 38.37
	ATOM	527	0	THR A	61		20.503 -17.621	43.545	1.00 37.40
	ATOM	528	CB	THR A	61		23.000 -19.670	42.486	1.00 42.80
10	ATOM	529	OG1	THR A	61		23.259 -18.498	41.695	1.00 42.80
	ATOM	530	CG2	THR A	61		23.435 -20.914	41.722	1.00 42.91
	ATOM	531	N	LEU A	62		21.544 -18.931	45.058	1.00 37.77
	ATOM	532	CA	LEU A	62	•	21.280 -17.966	46.132	1.00 36.91
	MOTA	533	С	LEU A	62		21.841 -16.582	45.847	1.00 36.03
15	ATOM	534	0	LEU A	62		21.248 -15.566	46.209	1.00 36.36
	ATOM	535	CB	LEU A	62		21.904 -18.492	47.447	1.00 35.93
	ATOM	536	CG	LEU A	62		21.278 -19.807	47.950	1.00 36.47
	ATOM	537		LEU A	62		22.090 -20.339	49.139	1.00 44.24
	ATOM	538		LEU A	62		19.850 -19.557	48.450	1.00 33.58
20	ATOM	539	N	ALA A	63		23.053 -16.511	45.336	1.00 36.59
20	ATOM	540	CA	ALA A	63		23.729 -15.236	45.091	1.00 36.90
		541	C	ALA A	63		22.946 -14.476	44.014	1.00 36.28
	ATOM			ALA A	63		22.808 -13.263	44.128	1.00 35.61
	MOTA	542	0		63		25.153 -15.402	44.601	1.00 39.35
25	ATOM	543	CB	ALA A			22.430 -15.198	43.013	1.00 35.11
25	MOTA	544	N	VAL A	64			42.054	1.00 35.11
	ATOM	545	CA	VAL A	64		21.587 -14.456		1.00 35.12
	MOTA	546	С	VAL A	64		20.370 -13.842	42.720	
	ATOM	547	0	VAL A	64		20.062 -12.664	42.487	1.00 34.59
	ATOM	548	CB	VAL A	64		21.180 -15.331	40.855	1.00 37.44
30	ATOM	549		VAL A	64		20.071 -14.660	40.053	1.00 40.96
	ATOM	550	CG2	VAL A	64		22.390 -15.680	40.014	1.00 36.95
	ATOM	551	N	SER A	65		19.616 -14.592	43.540	1.00 35.09
	MOTA	552	CA	SER A	65		18.477 -14.039	44.238	1.00 34.42
	MOTA	553	С	SER A	65		18.854 -12.961	45.225	1.00 34.48
35	ATOM	554	0	SER A	65		18.110 -11.986	45.326	1.00 34.19
	MOTA	555	CB	SER A	65		17.583 -15.074	44.940	1.00 34.49
	MOTA	556	OG	SER A	65		17.165 -16.015	43.951	1.00 35.80
	MOTA	557	N	LYS A	66		19.977 -13.079	45.922	1.00 34.79
	ATOM	558	CA	LYS A	66		20.365 -11.976	46.828	1.00 35.44
40	MOTA	559	С	LYS A	66		20.611 -10.670	46.044	1.00 35.50
	ATOM	560	0	LYS A	66		20.219 -9.590	46.478	1.00 35.28
	ATOM	561	CB	LYS A	66		21.709 -12.362	47.478	1.00 36.28
	ATOM	562	CG	LYS A	66		21.492 -13.207	48.738	1.00 43.87
	ATOM	563	CD	LYS A	66		22.772 -13.202	49.570	1.00 52.29
45	ATOM	564	CE	LYS A	66		23.722 -14.338	49.256	1.00 56.53
	ATOM	565	NZ	LYS A	66		24.326 -14.857	50.541	1.00 60.41
	ATOM	566	N	ASN A	67		21.345 -10.788	44.956	1.00 35.53
	ATOM	567	CA	ASN A	67		21.679 -9.615	44.136	1.00 35.43
	MOTA	568	C	ASN A	67		20.452 -8.955	43.544	1.00 34.46
50	ATOM	569	Õ	ASN A	67		20.370 -7.741	43.518	1.00 33.85
50	MOTA	570	СB	ASN A	67		22.657 -10.003	43.019	1.00 39.24
			CG	ASN A	67		22.999 -8.797	42.163	1.00 49.34
	ATOM	571			67		22.646 -8.711	40.977	1.00 55.32
	MOTA	572		ASN A	•			42.784	1.00 51.11
E E	ATOM	573		ASN A	67 69		23.611 -7.794 19.505 -9.746	43.007	1.00 34.69
55	ATOM	574	N	LYS A	68				1.00 34.09
	ATOM	575	CA	LYS A	68		18.245 -9.160	42.532	
	ATOM	576	C	LYS A	68		17.421 -8.525	43.620	1.00 33.51
-	MOTA	577	0	LYS A	68		16.726 -7.530	43.412	1.00 32.16
	ATOM	578	CB	LYS A	68		17.439 -10.259	41.811	1.00 35.44
60	MOTA	579	CG	LYS A	68		18.132 -10.664	40.503	1.00 38.74
	ATOM	580	CD	LYS A	68		17.352 -11.710	39.729	1.00 44.24
	MOTA	581	CE	LYS A	68		15.976 -11.178	39.345	1.00 46.97
	ATOM	582	NZ	LYS A	68		15.414 -12.058	38.260	1.00 51.68

					~	17 205	0 000	44.056	1 00 33 40
	MOTA	583	N	ALA A		17.395	-9.098	44.856	1.00 33.48
	ATOM	584	CA	ALA A		16.654	-8.440	45.924	1.00 33.17
	MOTA	585	C	ALA A		17.299	-7.103	46.282	1.00 31.99
_	ATOM	586	0	ALA A		16.620	-6.105	46.498	1.00 31.80
5	ATOM	587	CB	ALA A		16.642	-9.315	47.213	1.00 31.02
	MOTA	588	N	LEU A		18.627	-7.019	46.312	1.00 32.54
	ATOM	589	CA	LEU A		19.278	-5.715	46.511	1.00 32.22
	ATOM	590	С	LEU A		18.830	-4.668	45.471	1.00 32.04
	ATOM	591	0	LEU A		18.604	-3.504	45.815	1.00 32.18
10	ATOM	592	CB	LEU A	. 70	20.800	-5.876	46.425	1.00 35.34
	MOTA	593	CG	LEU A	. 70	21.431	-6.582	47.652	1.00 41.35
	MOTA	594	CD1	LEU A	. 70	22.952	-6.614	47.488	1.00 47.21
	MOTA	595	CD2	LEU A	70	21.124	-5.797	48.927	1.00 42.20
	ATOM	596	N	GLN A	71	18.732	-5.068	44.222	1.00 32.28
15	ATOM	597	CA	GLN A	71	18.336	-4.184	43.118	1.00 32.66
	ATOM	598	С	GLN A		16.888	-3.744	43.319	1.00 33.12
	ATOM	599	ō	GLN A		16.599	-2.548	43.262	1.00 34.13
	ATOM	600	СB	GLN A		18.506	-4.847	41.767	1.00 32.48
	ATOM	601	CG	GLN A		19.933	-5.100	41.321	1.00 36.30
20	ATOM	602	CD	GLN A		20.143	-5.912	40.083	1.00 36.39
20	ATOM	603		GLN A		21.103	-5.642	39.339	1.00 42.50
	MOTA	604		GLN A		19.349	-6.917	39.755	1.00 33.68
							-4.697		1.00 33.00
	MOTA	605	N	ALA A		16.008	-4.358	43.668	
25	ATOM	606	CA	ALA A		14.624		43.963	1.00 32.73
25	MOTA	607	С	ALA A		14.529	-3.414	45.129	1.00 33.36
	ATOM	608	0	ALA A		13.741	-2.468	45.153	1.00 33.02
	ATOM	609	CB	ALA A		13.751	-5.597	44.164	1.00 31.63
	ATOM	610	N	ILE A		15.314	-3.700	46.205	1.00 32.96
• •	ATOM	611	CA	ILE A		15.341	-2.754	47.321	1.00 32.98
30	ATOM	612	С	ILE A		15.756	-1.358	46.932	1.00 33.05
	ATOM	613	0	ILE A		15.173	-0.371	47.407	1.00 31.52
	ATOM	614	CB	ILE A		16.262	-3.309	48.450	1.00 32.37
	ATOM	615	CG1	ILE A		15.549	-4.497	49.099	1.00 34.48
	MOTA	616	CG2	ILE A	73	16.564	-2.217	49.479	1.00 36.05
35	ATOM	617	CD1	ILE A	73	16.442	-5.452	49.895	1.00 36.56
	MOTA	618	N	GLU A	74	16.821	-1.221	46.107	1.00 33.20
	MOTA	619	CA	GLU A	74	17.249	0.135	45.770	1.00 34.02
	ATOM	620	С	GLU A	74	16.127	0.888	45.042	1.00 33.88
	ATOM	621	0	GLU A	74	15.924	2.077	45.333	1.00 33.58
40	ATOM	622	СВ	GLU A		18.483	0.128	44.849	1.00 42.88
	ATOM	623	CG	GLU A		19.730	-0.391	45.551	1.00 50.60
	ATOM	624	CD	GLU A		20.121	0.534	46.697	1.00 55.46
	ATOM	625		GLU A		19.809	0.219	47.869	1.00 54.43
	ATOM	626		GLU A	74	20.627	1.630	46.386	1.00 51.96
45	ATOM	627	N	LEU A		15.444	0.203	44.142	1.00 34.25
	ATOM	628	CA	LEU A		14.353	0.814	43.393	1.00 34.85
-	ATOM	629	C	LEU A		13.181	1.091	44.339	1.00 35.22
	ATOM	630	ŏ	LEU A		12.683	2.215	44.292	1.00 35.32
	MOTA	631	СВ	LEU A		13.895	-0.038	42.211	1.00 33.68
50	ATOM	632	CG	LEU A		14.632	0.175	40.849	1.00 40.28
30						14.246	1.524	40.263	1.00 38.74
	ATOM	633		LEU A					1.00 30.74
	ATOM	634		LEU A		16.134	0.148	41.044	
	ATOM	635	N	GLN A		12.769	0.098	45.129	1.00 35.20
~ ~	ATOM	636	CA	GLN A		11.711	0.401	46.107	1.00 34.63
55	ATOM	637	C	GLN A	76	12.023	1.622	46.951	1.00 34.20
	ATOM	638	0	GLN A	76	11.197	2.539	47.032	1.00 33.10
	MOTA	639	CB	GLN A	76	11.439	-0.800	47.043	1.00 37.30
	MOTA	640	CG	GLN A	76	10.346	-0.570	48.086	1.00 36.76
	MOTA	641	CD	GLN A		10.511	-1.541	49.275	1.00 38.06
60	MOTA	642		GLN A		11.019	-2.647	49.179	1.00 36.12
	MOTA	643	NE2	GLN A		10.136	-1.178	50.481	1.00 39.68
	MOTA	644	N	LEU A	77	13.195	1.702	47.596	1.00 34.42
	ATOM .	645	CA	LEU A	77	13.533	2.857	48.402	1.00 34.29

								•			
	MOTA	646	С	LEU A	77	13	.506	4.183	47.638		34.87
	ATOM	647		LEU A	77	13	.070	5.221	48.149		32.77
	MOTA	648		LEU A	77	14	.906	2.756	49.079	1.00	31.33
		649	CG	LEU A	77		.976	1.566	50.093	1.00	33.32
5	MOTA	650		LEU A	77		.417	1.466	50.566	1.00	35.24
3	ATOM			LEU A	77		.094	1.902	51.303	1.00	32.76
	MOTA	651					.094	4.162	46.440		35.43
	MOTA	652	N	THR A	78			5.391	45.644	-	35.16
	ATOM	653	CA	THR A	78		.147				34.62
	ATOM	654	С	THR A	78		.754	5.938	45.407		
10	MOTA	655	0	THR A	78		.561	7.128	45.655		35.48
	ATOM	656	CB	THR A	78		.869	5.117	44.306		33.75
	ATOM	657	OG1	THR A	78	16	.212	4.853	44.644		36.55
	ATOM	658		THR A	78	14	.710	6.309	43.359		35.96
	ATOM	659	N	LEU A	79		.867	5.059	44.971	1.00	35.23
15			CA	LEU A	79		.492	5.458	44.646	1.00	35.59
15	ATOM	660			79		.738	5.941	45.879	1.00	
	MOTA	661	C	LEU A			.923	6.848	45.814		34.44
	MOTA	662	0	LEU A	79						37.56
	ATOM	663	CB	LEU A	79		.744	4.326	43.961		
	MOTA	664	CG	LEU A	79		.302	3.825	42.611		40.81
20	ATOM	665	CD1	LEU A	79		.415	2.708	42.066		36.86
	ATOM	666	CD2	LEU A	79	10	.404	4.981	41.632		44.33
	ATOM	667	N	GLU A	80	10	.058	5.284	47.023		35.96
		668	CA	GLU A	80		.487	5.773	48.285	1.00	35.25
	MOTA			GLU A	80		.002	7.132	48.672	1.00	35.81
0.5	ATOM	669	C				241	7.941	49.182		36.57
25	ATOM	670	0	GLU A	80			4.764	49.414		33.47
	MOTA	671	CB	GLU A	80		805		49.368		36.03
	ATOM	672	CG	GLU A	80		923	3.555			39.80
	ATOM	673	CD	GLU A	80		3.390	2.431	50.293		
	ATOM	674	OE1	GLU A	80).528	2.453	50.789		38.34
30	ATOM	675	OE2	GLU A	80	8	3.587	1.482	50.397		40.54
50	ATOM	676	N	THR A	81	11	1.266	7.474	48.443		35.85
	ATOM	677	CA	THR A	81	11	1.759	8.819	48.714		37.65
		678	C	THR A	81		.074	9.798	47.742	1.00	39.27
	ATOM			THR A	81		0.711	10.894	48.159		38.93
25	MOTA	679	0		81		3.277	8.895	48.523		38.88
35	ATOM	680	CB	THR A				8.188	49.626		41.45
	ATOM	681	OG1		81		3.854	10.315	48.511		37.76
	MOTA	682	CG2		81		3.827				39.69
	ATOM	683	N	ILE A	82		0.887	9.360	46.500		
	ATOM	684	CA	ILE A	82		0.176	10.260	45.568	-	41.32
40	ATOM	685	C	ILE A	82		3.727	10.458	45.979		42.17
	ATOM	686	0 .	ILE A	82		3.195	11.566	45.910		42.11
	ATOM	687	CB	ILE A	82	10	0.199	9.735	44.134		38.27
	ATOM	688	CG1		82	1	1.619	9.500	43.651	1.00	39.22
	ATOM	689	CG2		82		9.462	10.697	43.194	1.00	37.66
15			CD1	ILE A	82		2.489	10.717	43.731	1.00	43.59
45	ATOM	690			83		8.097	9.376	46.426	1.00	43.95
	MOTA	691	N	TYR A			6.726	9.469	46.924		45.07
	ATOM	692	CA	TYR A	83				48.038		45.84
	ATOM	693	С	TYR A	83		6.597	10.496			
	MOTA	694	0	TYR A	83		5.613	11.234	48.097		44.82
50	MOTA	695	CB	TYR A	83		6.229	8.097	47.364		47.55
	ATOM	696	CG	TYR A	83		4.745	8.146	47.683		52.04
	ATOM	697		TYR A	83		3.826	8.070	46.643		53.71
	ATOM	698	CD2	TYR A	83		4.292	8.292	48.987		53.75
		699	CE1		83		2.469	8.119	46.899	1.00	55.59
EE	ATOM				83		2.932	8.343	49.245		55.42
55	ATOM	700		TYR A			2.036	8.252	48.199		56.63
	MOTA	701	CZ	TYR A	83						58.49
	ATOM	702	ОН	TYR A	83		0.691	8.313	48.454		45.54
	ATOM	703	N	ASN A	84		7.594	10.600	48.932		
	MOTA	704	CA	ASN A	84		7.519	11.621	49.959		46.22
60	ATOM	705	С	ASN A	84		7.965	12.989	49.446	1.00	45.99
	ATOM	706	ō	ASN A	84		7.812	13.930	50.226		46.80
	ATOM	707	CB	ASN A	84		8.199	11.252	51.257		45.97
	ATOM	708	CG	ASN A	84		7.995	9.970	52.011	1.00	42.27
	A I OLI	, 00									

								63 055	1 00 40 67
	ATOM	709		ASN A	84	6.960	9.292	51.955	1.00 48.67
	MOTA	710		ASN A	84	9.032	9.528	52.753	1.00 40.72
	ATOM	711	N	SER A	85	8.351	13.244	48.201	1.00 44.95
_	ATOM	712	CA	SER A	85	8.830	14.568	47.823	1.00 43.57
5	ATOM	713	C	SER A	85	7.800	15.337	46.988	1.00 43.08
	ATOM	714	0	SER A	85	6.747	14.845	46.627	1.00 41.05
	ATOM	715	CB	SER A	85	10.108	14.456	46.969	1.00 43.41
	ATOM	716	OG	SER A	85	9.782	14.024	45.656	1.00 38.06
10	ATOM	717	N	GLN A	86	8.199	16.543	46.586	1.00 43.58
10	ATOM	718	CA	GLN A	86	7.377 7.185	17.394	45.725	1.00 44.93 1.00 45.37
	ATOM	719	C	GLN A	86 86	6.311	16.853 17.326	44.331 43.581	1.00 45.37
	ATOM	720	0	GLN A		8.100	18.761	45.588	1.00 43.02
	ATOM	721 722	CB CG	GLN A GLN A	86 86	9.448	18.557	44.909	1.00 52.00
15	ATOM ATOM	723	CD	GLN A	86	10.263	19.798	44.692	1.00 50.47
13	ATOM	724		GLN A	86	11.330	19.736	45.303	1.00 70.12
	ATOM	725	NE2		86	9.786	20.668	43.810	1.00 65.51
	ATOM	726	N	TYR A	87	8.002	15.875	43.915	1.00 45.13
	ATOM	727	CA	TYR A	87	7.886	15.277	42.601	1.00 44.09
20	ATOM	728	C	TYR A	87	6.898	14.125	42.585	1.00 44.50
20	ATOM	729	ŏ	TYR A	87	6.682	13.536	41.536	1.00 43.83
	ATOM	730	CB	TYR A	87	9.231	14.748	42.072	1.00 42.80
	ATOM	731	CG	TYR A	87	10.318	15.782	42.226	1.00 41.15
	ATOM	732	CD1		87	11.376	15.539		1.00 41.11
25	ATOM	733	CD2	TYR A	87	10.272	17.010	41.567	1.00 39.57
	ATOM	734	CE1		87	12.344	16.496	43.319	1.00 41.24
	ATOM	735	CE2	TYR A	87	11.243	17.967	41.779	1.00 39.89
	ATOM	736	CZ	TYR A	87	12.295	17.693	42.614	1.00 40.85
	ATOM	737	ОН	TYR A	87	13.302	18.594	42.842	1.00 41.44
30	ATOM	738	N	SER A	88	6.318	13.805	43.743	1.00 45.60
-	ATOM	739	CA	SER A	88	5.478	12.626	43.844	1.00 46.49
	ATOM	740	С	SER A	88	4.368	12.534	42.814	1.00 47.16
	ATOM	741	0	SER A	88	4.080	11.467	42.270	1.00 46.71
	ATOM	742	CB	SER A	88	4.816	12.633	45.245	1.00 48.13
35	ATOM	743	OG	SER A	88	4.092	11.417	45.346	1.00 51.98
	ATOM	744	N	ASN A	89	3.667	13.642	42.565	1.00 48.16
	ATOM	745	CA	ASN A	89	2.563	13.593	41.604	1.00 49.94
	ATOM	746	С	ASN A	89	2.888	13.746	40.138	1.00 50.05
	ATOM	747	0	ASN A	89	1.922	13.898	39.362	1.00 49.81
40	ATOM	748	CB	ASN A	89	1.500	14.616	42.040	1.00 57.17
	ATOM	749	CG	ASN A	89	1.003	14.286	43.439	1.00 62.53
	ATOM	750	OD1	ASN A	89	0.752	15.195	44.234	1.00 67.35
	MOTA	751		ASN A	89	0.884	12.995	43.737	1.00 64.39
4.5	ATOM	752	N	GLU A	90	4.149	13.696	39.690	1.00 49.64
45	ATOM	753	CA	GLU A	90	4.384	13.669	38.238	1.00 49.09
	ATOM	754	C	GLU A	90	3.952	12.346	37.610	1.00 48.60
	ATOM	755	0	GLU A	90	3.715	11.386	38.327	1.00 47.76
	ATOM	756	CB	GLU A	90	5.891	13.782	37.891	1.00 47.16 1.00 42.61
50	ATOM	757	CG	GLU A	90	6.546	14.906	38.632	
50	ATOM	758	CD	GLU A	90 90	7.981 8.767	15.219 14.356	38.359 37.961	1.00 44.84 1.00 46.86
	ATOM	759 760	OE1	GLU A GLU A	90	8.343	16.400	38.592	1.00 45.57
	ATOM	761	N N	LYS A	91	3.961	12.276	36.269	1.00 47.66
	ATOM ATOM	762	CA	LYS A	91	3.798	10.985	35.595	1.00 47.27
55	ATOM	763	C	LYS A	91	5.099	10.180	35.749	1.00 46.58
55	ATOM	764	0	LYS A	91	6.181	10.745	35.610	1.00 45.68
	ATOM	765	CB	LYS A	91	3.615	11.124	34.076	1.00 48.52
	ATOM	766	CG	LYS A	91	2.234	10.887	33.509	1.00 55.86
		767	CD	LYS A	91	2.206	11.249	32.017	1.00 56.83
60	ATOM	768	CE	LYS A	91.	2.934	10.173	31.214	1.00 56.89
	ATOM	769	NZ	LYS A	91	3.771	10.752	30.132	1.00 54.96
	ATOM	770	N -	TRP A	92	4.971	8.888	36.019	1.00 46.05
	ATOM	771	CA	TRP A		6.082	7.961	36.101	1.00 45.89

	ATOM	772	С	TRP .		92	5.702	6.699	35.343	1.00 46.10
	ATOM	773	0	TRP .		92	4.701	6.079	35.668	1.00 46.31
	ATOM	774	CB	TRP .		92	6.454	7.556	37.550	1.00 42.18
	ATOM	775	CG	TRP .		92	6.876	8.733	38.372	1.00 37.28
5	MOTA	776	CD1	TRP		92	6.025	9.494	39.126	1.00 35.98
	ATOM	777	CD2	TRP .		92	8.170	9.326	38.526	1.00 35.45
	MOTA	778	NE1	TRP		92	6.703	10.512	39.704	1.00 37.68
	ATOM	779	CE2	TRP		92	8.031	10.426	39.359	1.00 34.31
	MOTA	780	CE3	TRP		92	9.436	9.034	38.009	1.00 35.29
10	MOTA	781	CZ2	TRP		92	9.085	11.251	39.784	1.00 37.71
	ATOM	782	CZ3	TRP		92	10.489	9.844	38.391	1.00 34.81
	ATOM	783	CH2	TRP		92	10.320	10.920	39.272	1.00 37.49
	ATOM	784	N	THR		93	6.468	6.302	34.333	1.00 46.29
	ATOM	785	CA	THR		93	6.122	5.105	33.583	1.00 47.56
15	MOTA	786	C	THR		93	6.901	3.910	34.110	1.00 48.41
	ATOM	787	0	THR		93	7.846	4.126	34.862	1.00 48.37
	ATOM	788	CB	THR		93	6.370	5.242	32.077	1.00 46.70
	MOTA	789	OG1	THR		93	7.740	4.928	31.792	1.00 44.41
	MOTA	790	CG2	THR		93	6.037	6.666	31.629	1.00 44.27
20	MOTA	791	N	LEU		94	6.507	2.716	33.705	1.00 48.40
	MOTA	792	CA	LEU		94	7.213	1.494	34.076	1.00 48.72
	ATOM	793	С	LEU		94	8.647	1.507	33.559	1.00 48.08
	MOTA	794	0	LEU		94	9.587	1.053	34.225	1.00 47.67
	MOTA	795	CB	LEU		94	6.462	0.294	33.479	1.00 56.38
25	ATOM	796	CG	LEU		94	6.488	-1.036	34.232	1.00 61.49
	MOTA	797		LEU		94	6.452	-0.872	35.741	1.00 61.80
	MOTA	798		LEU		94	5.310	-1.900	33.781	1.00 62.20
	MOTA	799	N	GLN		95	8.818	2.022	32.332	1.00 45.95
	MOTA	800	CA	GLN		95	10.175	2.149	31.805	1.00 43.86
30	ATOM	801	С	GLN		95	10.956	3.201	32.555	1.00 41.09
	MOTA	802	0	GLN		95	12.138	2.966	32.803	1.00 42.10
	ATOM	803	CB	GLN		95	10.226	2.431	30.291	1.00 47.51
	MOTA	804	CG	GLN		95	10.933	1.311	29.532	1.00 55.82
	ATOM	805	CD	GLN		95	12.441	1.369	29.531	1.00 58.57
35	MOTA	806	OE1			95	13.085	2.191	28.850	1.00 63.35
	MOTA	807	NE2	GLN		95	13.089	0.470	30.270	1.00 53.71
	ATOM	808	N	ASP		96	10.358	4.296	32.984	1.00 39.88
	ATOM	809	CA	ASP		96	11.048	5.272	33.814	1.00 39.85
	MOTA	810	С	ASP		96	11.651	4.615	35.076	1.00 40.22
40	MOTA	811	0	ASP		96	12.731	5.042	35.499	1.00 39.43
	MOTA	812	CB	ASP		96	10.115	6.397	34.246	1.00 40.26
	MOTA	813	CG	ASP		96	9.603	7.287	33.110	1.00 43.09 1.00 38.82
	MOTA	814	OD1			96	10.290	7.391	32.079	
4.5	ATOM	815		ASP		96	8.516	7.883	33.274	1.00 41.58 1.00 39.44
45	MOTA	816	N	VAL		97	10.956	3.643	35.651	
		817	CA	VAL		97	11.371	3.024	36.913 36.744	1.00 38.84 1.00 38.61
	ATOM	818	. C	VAL		97	11.979	1.641	37.707	1.00 38.87
	ATOM	819	0	VAL		97	12.059	0.843		1.00 30.57
50	ATOM	820	CB	VAL		97	10.186	2.955 4.325	37.903 38.123	1.00 40.30
50	ATOM	821		VAL		97	9.561	1.929	37.569	1.00 37.24
	ATOM	822		VAL		97	9.122 12.431	1.314	35.539	1.00 37.55
	ATOM	823	N	SER		98	12.451	0.014	35.183	1.00 37.33
,	ATOM	824	CA	SER		98		-0.046		1.00 36.46
	ATOM	825	С	SER		98	14.408		35.652 35.744	1.00 36.40
55	ATOM	826	0	SER		98	15.028	1.015	33.637	1.00 30.95
	ATOM	827	CB	SER		98	12.915	-0.142 0.716	32.996	1.00 41.00
	ATOM	828	OG .	SER		98	13.869		35.831	1.00 41.12
	ATOM	829	N	LEU		99	14.941	-1.247	36.203	1.00 36.36
60	ATOM	830	CA	LEU		99	16.345 17.251	-1.378 -0.939	35.042	1.00 36.81
60	ATOM	831	C	LEU		99 99	18.297	-0.339	35.258	1.00 36.14
	ATOM	832	O CB	LEU		99	16.636	-2.829		1.00 30.14
	ATOM	833	CB	LEU		99	18.056	-3.111	37.080	1.00 45.46
	ATOM	834	CG	LEU	м	フブ	10.030	-2.111	57.000	1.00 43.40

							-			
	ATOM	835	CD1	LEU	Α	99	18.330	-2.481	38.442	1.00 43.84
	ATOM	836		LEU		99	18.341	-4.606	37.072	1.00 45.55
	ATOM	837	N	GLÜ	Α	100	16.797	-1.199	33.818	1.00 36.41
	ATOM	838	CA	GLU			17.488	-0.765	32.611	1.00 37.21
5	ATOM	839	С	GLU			17.790	0.722	32.622	1.00 36.02
	ATOM	840	0	GLU			18.972	1.068	32.470	1.00 37.81
	MOTA	841	CB	GLU			16.690	-1.126	31.340	1.00 40.11
	ATOM	842	CG	GLU			17.528	-0.836	30.096	1.00 49.41
	ATOM	843	CD	GLU			16.866	-1.247	28.790	1.00 56.89
10	ATOM	844		GLU			15.724	-1.755	28.761	1.00 57.99
	MOTA	845		GLU			17.534	-1.025	27.753	1.00 62.25
	ATOM	846	N	VAL			16.808	1.580	32.792	1.00 35.41
	ATOM	847	CA	VAL			17.044	3.010	32.973	1.00 34.54
1.5	ATOM	848	C	VAL			17.897	3.329 4.082	34.185 34.151	1.00 34.02
15	ATOM	849	0	VAL			18.899 15.666	3.714	33.047	1.00 36.71
	ATOM	850	CB	VAL VAL			15.797	5.167	33.459	1.00 34.93
	ATOM	851 852		VAL			15.013	3.600	31.651	1.00 37.61
	ATOM ATOM	853	N	TYR			17.555	2.678	35.314	1.00 33.28
20	ATOM	854	CA	TYR			18.202	3.008	36.583	1.00 33.58
20	ATOM	855	C	TYR			19.711	2.817	36.484	1.00 33.46
	ATOM	856	Õ	TYR			20.424	3.624	37.071	1.00 33.95
	ATOM	857	СВ	TYR			17.653	2.091	37.691	1.00 34.23
	ATOM	858	CG	TYR			17.996	2.494	39.103	1.00 36.50
25	ATOM	859	CD1				17.325	3.559	39.676	1.00 36.36
	ATOM	860	CD2	TYR			18.961	1.811	39.855	1.00 36.63
	ATOM	861	CEI	TYR			17.582	3.949	40.979	1.00 37.25
	ATOM	862	CE2	TYR	Α	102	19.237	2.202	41.162	1.00 37.64
	ATOM	863	CZ	TYR	Α	102	18.537	3.253	41.707	1.00 36.95
30	ATOM	864	ОН	TYR	Α	102	18.795	3.693	42.966	1.00 36.81
	ATOM	865	N	LEU	Α	103	20.170	1.800	35.766	1.00 32.90
	MOTA	866	CA	LEU			21.575	1.513	35.625	1.00 34.69
	ATOM	867	С	LEU			22.225	2.188	34.422	1.00 35.97
	ATOM	868	0	LEU			23.434	2.037	34.247	1.00 37.11
35	ATOM	869	CB	LEU			21.811	0.003	35.568	1.00 34.47
	ATOM	870	CG	LEU			21.363	-0.757	36.853	1.00 39.98
	ATOM	871		LEU			21.588	-2.261	36.702	1.00 40.37 1.00 40.86
	ATOM	872		LEU			22.104	-0.231	38.073	1.00 40.86
40	ATOM	873	N	THR			21.460	2.913 3.606	33.614 32.468	1.00 33.72
40	ATOM	874	CA	THR			22.115 22.792	4.825	33.060	1.00 35.15
	ATOM	875	С	THR THR			22.792	5.345	34.004	1.00 35.13
	ATOM	876	O CB	THR			21.074	4.013	31.409	1.00 36.04
	ATOM ATOM	877 878	CB OC1	THR			20.507	2.790	30.928	1.00 34.78
45	ATOM	879	CG2				21.709	4.722	30.211	1.00 36.74
73	ATOM	880	N	ALA	A	105	23.907	5.292	32.541	1.00 35.32
	ATOM	881	CA	ALA			24.595	6.446	33.150	1.00 36.34
	ATOM	882	C	ALA			23.662	7.647	33.117	1.00 36.12
	ATOM	883	ŏ	ALA			23.031	7.852	32.074	1.00 35.49
50	ATOM	884	CB	ALA			25.840	6.710	32.281	1.00 36.09
	ATOM	885	N	PRO	Α	106	23.556	8.404	34.195	1.00 35.90
	ATOM	886	CA	PRO	Α	106	24.273	8.154	35.428	1.00 36.06
	ATOM	887	С	PRO	Α	106	23.617	7.057	36.275	1.00 35.41
	ATOM	888	0	PRO			22.426	7.141	36.602	1.00 34.13
55	ATOM	889		PRO			24.167	9.484	36.175	1.00 36.61
	ATOM	890	CG	PRO			22.880	10.077	35.695	1.00 36.41
	ATOM	891	CD	PRO			22.862	9.725	34.223	1.00 36.94
	ATOM	892	N	THR			24.407	6.045	36.646	1.00 35.50
	ATOM	893	CA	THR			23.833	4.857	37.287	1.00 34.62
60	ATOM	894	C	THR			23.256	5.142	38.651	1.00 34.93
	ATOM	895	0	THR			23.639	6.108	39.324	1.00 34.98
	ATOM	896	CB	THR			24.820	3.666	37.301	1.00 39.51 1.00 36.86
	ATOM	897	OG1	THR	Α	107	24.114	2.516	37.812	T.00 20.00

ATOM 999 N CLY A 108 22.272 4.352 39.091 1.00 35.80 ATOM 901 C GLY A 108 20.719 5.660 40.436 1.00 35.80 ATOM 901 C GLY A 108 20.719 5.660 40.436 1.00 35.77 ATOM 902 C GLY A 108 20.719 5.660 40.527 1.00 35.77 ATOM 903 N CYS A 109 20.099 6.080 39.427 1.00 34.86 ATOM 903 N CYS A 109 20.099 6.080 39.427 1.00 34.86 ATOM 905 C CYS A 109 17.997 6.934 38.551 1.00 35.39 ATOM 905 C CYS A 109 17.997 6.934 38.551 1.00 35.39 ATOM 905 C CYS A 109 17.997 6.934 38.551 1.00 35.39 ATOM 906 CYS A 109 18.79 6.934 38.551 1.00 35.39 ATOM 906 CYS A 109 18.79 6.934 38.551 1.00 35.39 ATOM 908 SG CYS A 109 19.987 8.395 38.600 1.00 35.03 ATOM 909 N ILE A 110 16.785 7.158 39.035 1.00 34.76 ATOM 909 N ILE A 110 16.785 7.158 39.035 1.00 34.76 ATOM 910 C ILE A 110 15.774 8.456 37.264 1.00 34.48 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.48 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.48 ATOM 913 CB ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 915 CCZ ILE A 110 14.315 7.444 38.954 1.00 37.69 ATOM 915 CCZ ILE A 110 14.315 7.444 38.954 1.00 37.69 ATOM 915 CCZ ILE A 110 13.100 7.594 38.094 1.00 39.85 ATOM 915 CCZ ILE A 110 13.100 7.594 38.094 1.00 39.85 ATOM 915 CCZ ILE A 110 13.100 7.594 38.094 1.00 39.85 ATOM 919 C LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 919 C LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 919 C LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 920 C LYS A 111 15.373 8.287 36.013 1.00 31.93 ATOM 920 C LYS A 111 19.943 6.344 49 1.00 39.11 ATOM 920 C LYS A 111 19.943 6.344 49 1.00 39.11 ATOM 920 C LYS A 111 19.950 7.707 34.207 1.00 35.93 ATOM 921 CB LYS A 111 19.950 7.707 34.207 1.00 35.93 ATOM 922 CC LYS A 111 19.950 7.707 34.207 1.00 35.93 ATOM 922 CC LYS A 111 19.953 6.340 34.494 1.00 37.10 ATOM 925 NZ LYS A 111 19.953 6.340 34.494 1.00 39.11 ATOM 925 NZ LYS A 111 19.953 6.360 31.402 1.00 36.81 ATOM 925 NZ LYS A 112 14.453 9.355 1.00 34.70 1.00 34.15 ATOM 925 NZ LYS A 112 14.453 9.355 1.00 34.70 1.00 34.15 ATOM 925 NZ LYS A 112 14.453 9.355 1.00 34.70 1.00 34.70 ATOM 925 NZ LYS A 112 14.362 12.368 31.402 1.00 37.7		ATOM	898	CG2	THR A	107		26.016	3.957	38.203	1.00 39.22
ATOM 901 C GLY A 108 21.709 4.504 40.436 1.00 35.25 ATOM 902 O GLY A 108 20.719 5.660 40.527 1.00 35.27 ATOM 903 N CYS A 109 20.699 6.140 41.646 1.00 35.27 ATOM 903 N CYS A 109 19.226 7.257 39.416 1.00 35.28 ATOM 905 C CYS A 109 19.226 7.257 39.416 1.00 35.48 ATOM 906 C CYS A 109 19.226 7.257 39.416 1.00 35.49 ATOM 907 C B CYS A 109 19.226 7.257 39.416 1.00 35.49 ATOM 908 SC CYS A 109 18.179 6.397 37.449 1.00 36.31 ATOM 908 N ILE A 109 19.877 8.395 38.610 1.00 35.03 ATOM 908 N ILE A 110 16.785 7.158 39.053 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 911 C ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 912 O ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 915 CGZ ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 915 CGZ ILE A 110 13.707 4.943 39.551 1.00 34.68 ATOM 915 CGZ ILE A 110 13.707 4.933 39.341 1.00 32.60 ATOM 916 CDI ILE A 110 13.707 4.933 39.341 1.00 39.85 ATOM 917 N ILE A 111 15.373 8.287 36.013 1.00 39.85 ATOM 918 CA ILS A 111 15.522 9.403 35.086 1.00 35.30 ATOM 919 C ILS A 111 15.522 9.403 35.086 1.00 35.33 ATOM 920 O ILS A 111 15.522 9.488 34.449 1.00 35.35 ATOM 921 CB ILS A 111 16.879 9.488 34.449 1.00 35.35 ATOM 922 CG ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 923 CD ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 924 CE ILS A 111 19.930 7.270 34.889 1.00 35.35 ATOM 925 CG ILS A 111 19.930 7.270 34.297 1.00 35.35 ATOM 926 C ILS A 111 19.930 7.270 34.891 1.00 35.35 ATOM 927 CA ILS A 111 19.930 7.270 34.297 1.00 35.35 ATOM 928 C ILS A 111 19.930 7.270 34.297 1.00 36.81 ATOM 928 C ILS A 111 19.930 7.270 34.297 1.00 36.81 ATOM 929 C ILS A 111 19.930 7.270 34.297 1.00 36.81 ATOM 920 C ILS A 111 19.930 7.270 34.297 1.00 36.81 ATOM 921 CB ILS A 111 19.930 7.270 34.297 1.00 36.81 ATOM 928 C ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 929 C ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 928 C ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 929 C ILS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 928 C ILS A 112 11.274 11.188 11.299 1.00 41.21 ATOM 938 C ILS A 112 11.274 11.189 1.299 1.00 41.											
5 ATOM 902 O GLY A 108 20.469 6.140 41.646 1.00 35.22 ATOM 903 N CYS A 109 19.226 7.257 39.416 1.00 34.86 ATOM 905 C CYS A 109 19.226 7.257 39.416 1.00 35.43 ATOM 905 C CYS A 109 19.226 7.257 39.416 1.00 35.43 ATOM 906 O CYS A 109 18.179 6.397 37.449 1.00 35.33 ATOM 907 O CB CYS A 109 18.179 6.397 37.449 1.00 35.33 ATOM 908 SG CYS A 109 21.181 9.249 39.651 1.00 42.26 ATOM 909 N ILE A 110 16.785 7.158 39.053 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 911 C ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 912 O ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 914 CCI ILE A 110 14.117 6.274 39.951 1.00 31.69 ATOM 915 CG2 ILE A 110 14.117 6.274 39.951 1.00 41.68 ATOM 915 CG2 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.700 4.943 39.384 1.00 43.84 ATOM 917 N ILY A 111 15.373 8.287 36.013 1.00 34.18 ATOM 919 C ILY A 111 15.522 9.400 35.086 1.00 35.30 ATOM 910 CD1 ILE A 111 14.453 9.355 34.002 1.00 35.33 ATOM 920 C ILY A 111 14.453 9.355 34.002 1.00 35.33 ATOM 921 CB ILY A 111 16.879 9.488 34.449 1.00 43.83 ATOM 921 CB ILY A 111 16.879 9.488 34.449 1.00 44.79 ATOM 922 CG ILY A 111 19.930 7.270 34.882 1.00 36.81 ATOM 922 CG ILY A 111 19.930 7.270 34.882 1.00 36.81 ATOM 922 CG ILY A 111 19.930 7.270 34.892 1.00 36.81 ATOM 922 CB ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 922 CB ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 922 CB ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 922 CB ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 922 CB ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 923 CD ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 925 NI ILY A 111 19.930 7.270 34.297 1.00 36.81 ATOM 925 NI ILY A 112 13.194 10.511 32.410 1.00 37.12 ATOM 926 C ILY A 112 13.194 10.511 32.410 1.00 37.40 ATOM 926 C ILY A 112 13.194 10.511 32.410 1.00 37.40 ATOM 926 C ILY A 112 13.194 10.511 32.410 1.00 37.90 ATOM 926 C ILY A 112 13.194 10.511 32.410 1.00 37.90 ATOM 926 C ILY A 112 13.194 10.51				CA	GLY F	108		21.709	4.504	40.436	1.00 35.25
ATOM 903 N CYS A 109 20.099 6.080 39.427 1.00 36.86 ATOM 905 C CYS A 109 17.997 6.934 38.551 1.00 35.49 ATOM 906 0 CYS A 109 17.997 6.934 38.551 1.00 36.31 ATOM 906 0 CYS A 109 19.987 8.395 38.610 1.00 36.31 ATOM 908 SC CYS A 109 19.987 8.395 38.610 1.00 36.31 ATOM 908 SC CYS A 109 19.987 8.395 38.610 1.00 34.76 ATOM 910 CA ILE A 110 16.785 7.158 39.035 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.158 39.035 1.00 34.76 ATOM 910 CA ILE A 110 15.774 8.456 37.264 1.00 34.78 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.78 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 37.69 ATOM 913 CB ILE A 110 14.117 6.274 39.551 1.00 37.69 ATOM 914 CGI ILE A 110 14.117 6.274 39.551 1.00 37.69 ATOM 916 CDI ILE A 110 14.117 6.274 39.551 1.00 37.69 ATOM 916 CDI ILE A 110 13.770 4.943 39.384 1.00 37.69 ATOM 916 CDI ILE A 110 13.770 4.943 39.384 1.00 34.58 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 33.15 ATOM 920 C LYS A 111 15.522 9.400 35.086 1.00 33.39 ATOM 921 CB LYS A 111 13.942 8.285 33.702 1.00 33.93 ATOM 921 CB LYS A 111 13.942 8.285 33.702 1.00 33.93 ATOM 922 CB LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.930 7.270 34.207 1.00 33.35 ATOM 924 CB LYS A 111 19.930 7.270 34.207 1.00 33.35 ATOM 925 CB LYS A 111 19.930 7.270 34.207 1.00 33.35 ATOM 925 CB LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 925 CB LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 925 CB LYS A 112 13.553 11.477 31.283 1.00 36.61 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 36.61 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 36.61 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 36.61 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.68 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.68 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.68 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.68 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 13.553 11.207 36.085 1.00 43.77 40.00 43.00 ATOM 930 CB		ATOM		С							
ATOM 905 C CYS A 109 19.226 7.257 39.416 1.00 35.49 ATOM 906 C CYS A 109 17.997 6.394 38.551 1.00 35.39 ATOM 907 CB CYS A 109 18.179 6.394 38.551 1.00 35.39 ATOM 908 SG CYS A 109 21.181 9.249 39.651 1.00 35.03 ATOM 909 N ILE A 110 16.785 7.158 39.055 1.00 34.76 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 911 C ILE A 110 15.673 7.181 38.156 1.00 34.76 ATOM 912 C ILE A 110 15.674 38.456 37.284 1.00 34.78 ATOM 913 CB ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 914 CG1 ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 915 CG2 ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 916 CD1 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.184 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 35.33 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.33 ATOM 920 O LYS A 111 14.453 9.355 34.002 1.00 35.35 ATOM 920 O LYS A 111 16.879 9.488 34.449 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 35.35 ATOM 922 CG LYS A 111 19.930 7.270 34.491 1.00 36.31 ATOM 923 CD LYS A 111 19.930 3.34 36.341 1.00 36.64 ATOM 924 CE LYS A 111 19.930 3.34 36.341 1.00 36.64 ATOM 927 CA LYS A 111 19.930 3.34 36.341 1.00 36.64 ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 929 C LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 920 C LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 931 CG LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 932 CB LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 933 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 931 CG LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 932 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 933 CB LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 934 CC LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 935 CB LYS A 112 13.553 11.477 31.283 1.00 38.57 ATOM 936 CB HIS A 113 12.241 11.188 29.965 1.00 42.37 ATOM 937 CB LYS A 112 13.553 11.477 31.283 1.00 38.57 ATOM 938 CB HIS A 113 12.241 12.207 36.085 1.00 38.57 ATOM 938 CB HIS A 113 12.2	5										
ATOM 906 C CYS A 109 17.997 6.934 38.551 1.00 35.31 10 ATOM 906 O CYS A 109 19.987 8.395 38.610 1.00 36.31 ATOM 908 SG CYS A 109 19.987 8.395 38.610 1.00 36.31 ATOM 908 SG CYS A 109 21.181 9.249 39.651 1.00 42.26 ATOM 909 N ILE A 110 16.785 7.158 39.035 1.00 34.74 ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.74 ATOM 911 C ILE A 110 15.613 7.181 38.156 1.00 34.74 ATOM 913 CB ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 913 CB ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 914 CGI ILE A 110 16.234 9.494 37.723 1.00 37.69 ATOM 915 CGZ ILE A 110 13.107 7.544 38.951 1.00 37.69 ATOM 915 CGZ ILE A 110 13.107 7.554 38.049 1.00 37.69 ATOM 916 CDI ILE A 110 13.707 4.943 39.384 1.00 37.69 ATOM 918 CA LYS A 111 15.523 8.287 36.013 1.00 34.15 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.93 ATOM 910 C LYS A 111 13.942 8.285 33.702 1.00 35.93 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.93 ATOM 921 CE LYS A 111 17.713 8.300 34.171 1.00 44.727 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.727 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.727 ATOM 924 CE LYS A 111 19.935 6.344 4.94 1.00 39.11 ATOM 925 CD LYS A 111 19.993 7.270 34.207 1.00 35.31 ATOM 926 N LYS A 112 19.993 7.270 34.207 1.00 31.681 ATOM 927 CA LYS A 112 19.993 7.270 34.207 1.00 41.27 ATOM 928 C LYS A 111 19.993 7.270 34.207 1.00 41.27 ATOM 928 C LYS A 112 19.993 7.270 34.207 1.00 41.27 ATOM 928 C LYS A 112 19.993 7.270 34.207 1.00 41.27 ATOM 928 C LYS A 112 19.993 7.270 34.207 1.00 41.27 ATOM 928 C LYS A 112 19.993 7.270 34.207 1.00 42.31 ATOM 928 C LYS A 112 19.993 7.270 34.207 1.00 43.71 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 43.71 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 43.71 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 43.71 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 43.71 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 42.31 ATOM 930 CB LYS A 112 19.993 7.270 34.207 1.00 42.31 ATOM 930 CB LYS A 112 19.995 10.00 42.808 1.00 40.92 ATOM 930 CB LYS A 112 19.996 10.00 42.808 1.00 40.92 ATOM 930 CB LYS A 113 19.998 10.00 42											
ATOM 906 O CYS A 109 18.179 6.397 37.449 1.00 35.30 ATOM 908 SG CYS A 109 21.181 9.249 39.651 1.00 35.03 ATOM 908 N ILE A 110 16.785 7.158 39.035 1.00 34.76 ATOM 910 CA ILE A 110 15.774 8.456 37.264 1.00 34.76 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.78 ATOM 912 O ILE A 110 15.774 8.456 37.264 1.00 34.78 ATOM 913 CB ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 914 CGI ILE A 110 14.315 7.414 38.954 1.00 37.66 ATOM 915 CG2 ILE A 110 14.17 6.274 39.951 1.00 41.68 ATOM 915 CG2 ILE A 110 13.700 7.594 38.049 1.00 33.84 ATOM 916 CD1 ILE A 110 13.700 7.594 38.049 1.00 33.84 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 33.84 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 14.453 9.355 34.002 1.00 35.35 ATOM 920 C LYS A 111 16.879 9.488 34.449 1.00 35.35 ATOM 921 CB LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.930 7.270 34.207 1.00 41.79 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.79 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 35.35 ATOM 926 N LYS A 111 19.930 7.270 34.207 1.00 35.35 ATOM 927 CA LYS A 111 19.930 7.270 34.404 1.00 41.79 ATOM 928 C LYS A 112 19.930 7.270 34.207 1.00 35.35 ATOM 928 C LYS A 112 19.930 7.270 34.207 1.00 35.35 ATOM 928 C LYS A 112 19.930 7.270 34.207 1.00 35.35 ATOM 928 C LYS A 112 19.930 7.270 34.207 1.00 35.35 ATOM 928 C LYS A 112 19.930 6.341 35.377 1.00 36.64 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.64 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 930 CB LYS A 112 19.958 8.574 34.494 1.00 41.21 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.84 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.84 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.84 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.64 ATOM 930 CB LYS A 112 19.943 6.341 35.377 1.00 36.64 ATOM 930 CB LYS A 112 19.943 6.341 30.941 1.00 41.79 ATOM 930 CB LYS A 112 19.943 6.341 30.941 1.00 37.40 ATOM 930 CB LYS A 112 19.943 6.341 30.941 1.00 37.40 ATOM 930 CB LYS A 112 19.943 6.341 30.941 1											
ATOM											
ATOM 908 SG CYS A 109 21.181 9.249 39.651 1.00 42.266 ATOM 910 CA ILE A 110 15.675 7.158 39.035 10.00 34.76 ATOM 910 CA ILE A 110 15.774 8.456 37.264 1.00 34.76 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.78 ATOM 913 CB ILE A 110 16.234 9.454 37.723 1.00 32.60 ATOM 913 CB ILE A 110 14.315 7.414 38.954 1.00 32.60 ATOM 915 CGI LE A 110 14.117 6.274 39.951 1.00 41.68 ATOM 915 CGI LE A 110 13.100 7.594 38.049 1.00 39.84 ATOM 916 CGI LE A 110 13.700 4.943 39.384 1.00 43.84 20 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 33.84 ATOM 919 C LYS A 111 15.372 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 39.11 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.77 ATOM 923 CD LYS A 111 19.935 7.270 34.207 1.00 31.91 ATOM 924 CE LYS A 111 19.935 7.270 34.207 1.00 41.27 ATOM 925 NZ LYS A 111 19.935 6.341 35.377 1.00 41.27 ATOM 926 N LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 927 CA LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 928 C LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 929 O LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 920 CB LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 920 CB LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 920 CB LYS A 112 11.784 11.083 4.092 1.00 37.40 ATOM 920 CB LYS A 112 11.784 11.083 4.092 1.00 37.40 ATOM 930 CB LYS A 112 11.784 11.08 34.092 1.00 37.40 ATOM 931 CG LYS A 112 11.784 11.108 34.092 1.00 37.40 ATOM 930 CB LYS A 112 11.784 11.108 34.092 1.00 45.17 ATOM 930 CB LYS A 112 11.784 11.108 34.092 1.00 45.17 ATOM 931 CG LYS A 112 11.784 11.108 34.092 1.00 45.17 ATOM 930 CB LYS A 112 11.794 11.108 34.092 1.00 43.74 ATOM 931 CG LYS A 112 11.794 11.108 34.092 1.00 43.74 ATOM 930 CB LYS A 112 11.794 11.108 34.092 1.00 43.74 ATOM 931 CG LYS A 112 11.794 11.108 34.092 1.00 43.70 ATOM 930 CB LYS A 112 11.794 11.109 30.266 1.00 43.70 ATOM 930 CB LYS A 112 11.794 11.109 30.266 1.00 43.70 ATOM 930 CB LYS A 113 11.294 11.295 2.296 1.00 42.05 ATOM 930 CB LYS A 113 11.	10										
ATOM 909 N ILE A 110 15.613 7.158 39.035 1.00 34.76 ATOM 911 C ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 912 O ILE A 110 15.613 7.181 38.156 1.00 34.76 ATOM 912 O ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 913 CB ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 914 CG1 ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 915 CG2 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.700 4.943 39.384 1.00 34.15 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 13.942 8.285 33.702 1.00 35.30 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 43.51 ATOM 923 CD LYS A 111 19.930 7.270 34.207 1.00 35.35 ATOM 922 CG LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 926 N LYS A 112 13.194 10.569 33.482 1.00 41.21 ATOM 927 CA LYS A 112 13.194 10.561 33.482 1.00 36.61 ATOM 928 C LYS A 112 13.194 10.561 33.482 1.00 36.61 ATOM 929 O LYS A 112 13.194 10.511 32.410 1.00 41.27 ATOM 929 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 920 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 921 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 922 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 923 CD LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 924 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 935 CB LYS A 112 13.353 11.477 31.283 1.00 38.56 ATOM 937 CB LYS A 112 13.353 11.477 31.283 1.00 38.56 ATOM 938 CB LYS A 112 13.594 10.511 32.410 1.00 37.140 ATOM 938 CB LYS A 112 13.594 10.511 32.410 1.00 37.140 ATOM 939 CB LYS A 112 13.595 11.497 31.283 1.00 38.56 ATOM 930 CB LYS A 112 13.593 10.494 10.511 32.410 1.00 37.50 ATOM 931 CB LYS A 112 13.593 10.494 10.511 32.410 1.00 37.50 ATOM 934 NZ LYS A 112 13.593 10.494 10.511 32.410 1.00 37.50 ATOM 935 CB LYS A 112 11.784 11.188 30.256 1.00 38.55 ATOM 936 CA HIS A 113 12.344 11.363 30.256 1.00 38.55 ATOM 937 C HIS A 113 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11.364 11	10										
ATOM 910 CA ILE A 110 15.613 7.181 38.156 1.00 34.74 ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.74 ATOM 912 O ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 913 CB ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 915 CG2 ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 916 CD1 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 918 CA LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 919 C LYS A 111 15.373 8.287 36.013 1.00 35.93 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.93 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 35.93 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 39.11 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 924 CE LYS A 111 19.915 8.574 34.494 1.00 41.27 ATOM 925 NZ LYS A 111 19.915 8.574 34.494 1.00 41.27 ATOM 926 N LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 927 CA LYS A 112 13.944 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.943 10.511 32.410 1.00 37.12 ATOM 929 CA LYS A 112 13.954 10.511 32.410 1.00 37.12 ATOM 929 CA LYS A 112 13.593 11.477 31.283 1.00 36.64 ATOM 930 CB LYS A 112 13.593 11.477 31.283 1.00 37.40 ATOM 931 CG LYS A 112 13.593 11.477 31.283 1.00 37.40 ATOM 933 CB LYS A 112 13.593 11.477 31.283 1.00 37.42 ATOM 933 CB LYS A 112 13.593 11.477 31.283 1.00 37.42 ATOM 934 CB LYS A 112 13.593 11.477 31.283 1.00 37.43 ATOM 935 N HIS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 937 CB HIS A 112 11.784 10.464 32.883 1.00 37.73 ATOM 938 CB LYS A 112 11.784 10.464 32.883 1.00 37.73 ATOM 938 CB HIS A 113 12.341 13.611 29.366 1.00 37.75 ATOM 938 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 937 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 938 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 940 CG HIS A 113 12.841 13.611 29.366 1.00 38.55 ATOM 940 CG HIS A 113 12.841 13.611 29.366 1.00 37.55 ATOM 940 CG HIS A 113 12.841 13.611 29.366 1.00 37.55 ATOM 940 CG HIS A 113 12.841 13.611 29.366 1.00 47.73 ATOM 940 CG HIS A 113 13.680 12.152 24.298 1.00 42.25 ATOM 940 CG HIS A 113 13.680 12.152 24.298 1.00 42.25 ATOM 940 CG HIS											
ATOM 911 C ILE A 110 15.774 8.456 37.264 1.00 34.48 ATOM 913 O ILE A 110 16.234 9.494 37.723 1.00 32.60 ATOM 913 CB ILE A 110 14.315 7.414 38.954 1.00 37.69 ATOM 914 CG1 ILE A 110 14.117 6.274 39.951 1.00 41.01 ATOM 915 CG2 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.770 4.943 39.384 1.00 34.84 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 14.453 9.355 34.002 1.00 35.30 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.935 8.574 34.494 1.00 44.77 ATOM 924 CE LYS A 111 19.935 8.574 34.494 1.00 41.27 ATOM 925 NZ LYS A 111 19.935 7.270 34.207 1.00 41.21 ATOM 926 N LYS A 111 19.935 8.574 34.494 1.00 41.27 ATOM 927 CA LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 928 C LYS A 112 13.194 10.561 33.482 1.00 36.81 ATOM 929 C LYS A 112 13.194 10.561 33.482 1.00 36.81 ATOM 929 C LYS A 112 13.194 10.561 33.482 1.00 36.81 ATOM 920 C LYS A 112 13.194 10.561 33.482 1.00 37.20 ATOM 921 CB LYS A 112 13.194 10.511 32.410 1.00 37.42 ATOM 922 CD LYS A 112 13.194 10.511 32.410 1.00 37.42 ATOM 923 CD LYS A 112 13.194 10.561 33.482 1.00 36.81 ATOM 926 C LYS A 112 13.194 10.561 33.482 1.00 36.81 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 935 N HIS A 113 12.244 11.08 34.092 1.00 43.77 ATOM 935 N HIS A 113 12.244 11.08 2.965 1.00 40.92 ATOM 935 N HIS A 113 12.341 13.30 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.341 13.30 3.5702 1.00 40.92 ATOM 936 CA HIS A 113 12.341 13.30 3.5702 1.00 40.92 ATOM 937 C HIS A 113 12.948 12.198 29.655 1.00 42.75 ATOM 938 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 938 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 43.75 ATOM 940 NCC HIS A 113 14.812 12.198 29.655 1.00 42.76 ATOM 940 NCC HIS A 113 14.813 12.341 13.30.518 1.00 45.70 ATOM 940 NCC HIS A 113 13											
15											_
ATOM 915 CG2 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 34.15 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 920 C LYS A 111 13.928 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 39.11 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 924 CE LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 926 N LYS A 111 19.930 7.270 34.207 1.00 36.81 ATOM 927 CA LYS A 112 19.930 7.270 34.207 1.00 36.81 ATOM 929 O LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 920 D LYS A 112 13.194 10.511 32.410 37.32 ATOM 920 O LYS A 112 11.784 10.464 32.883 1.00 36.64 ATOM 920 O LYS A 112 11.784 10.464 32.883 1.00 37.12 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 37.12 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 37.42 ATOM 932 CD LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 933 CD LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 935 N HIS A 13 12.273 11.203 30.256 1.00 42.31 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 43.77 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 38.55 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 43.77 ATOM 938 O HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 937 C HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 936 CA HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 937 C HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 938 O HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.55 ATOM 939 CB HIS A 113 12.341	15	ATOM		0	ILE F	110		16.234	9.494	37.723	
ATOM 916 CD1 ILE A 110 13.100 7.594 38.049 1.00 39.85 ATOM 916 CD1 ILE A 110 13.770 4.943 39.384 1.00 43.84 20 ATOM 917 N LYS A 111 15.572 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.93 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 49.11 25 ATOM 922 CG LYS A 111 19.195 8.574 34.494 1.00 41.27 ATOM 923 CD LYS A 111 19.195 8.574 34.494 1.00 41.27 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 925 NZ LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 926 N LYS A 112 19.943 6.341 35.377 1.00 36.81 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 36.54 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 932 CD LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 933 CC LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 935 N HIS A 112 12.734 11.108 34.092 1.00 45.17 ATOM 936 CA HIS A 113 12.274 11.108 34.092 1.00 45.17 ATOM 937 C HIS A 113 12.274 11.108 34.092 1.00 40.92 ATOM 938 N HIS A 113 12.734 11.353 30.256 1.00 40.92 ATOM 939 CB HIS A 113 12.734 11.353 30.256 1.00 40.92 ATOM 937 C HIS A 113 12.341 13.614 29.855 1.00 40.92 ATOM 938 O HIS A 113 12.341 13.614 29.855 1.00 40.92 ATOM 939 CB HIS A 113 12.341 13.616 29.366 1.00 43.77 ATOM 930 CB HIS A 113 12.341 13.616 29.366 1.00 38.75 ATOM 930 CB HIS A 113 12.834 13.636 30.115 1.00 39.66 40 ATOM 937 C HIS A 113 12.834 13.616 29.366 1.00 40.93 ATOM 938 O HIS A 113 12.834 13.636 30.115 1.00 39.66 40 ATOM 940 CG HIS A 113 12.846 12.110 28.430 1.00 39.88 ATOM 940 CG HIS A 113 12.846 12.110 28.400 1.00 42.07 ATOM 940 CG HIS A 113 12.846 12.110 28.400 1.00 42.07 ATOM 940 CG HIS A 113 12.846 12.110 28.400 1.00 42.07 ATOM 940 CG HIS A 113 12.846 12.110 28.400 1.00 42.09 ATOM 940 CG HIS A 113 13.99 21.24.29 1.00 42.09 ATOM 940 CG HIS A 113 13.99		ATOM	913	CB	ILE A	110					
20 ATOM 916 CD1 ILE A 110 13.770 4.943 39.384 1.00 43.84 ATOM 917 N LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 920 O LYS A 111 14.453 9.355 34.002 1.00 35.35 ATOM 921 CB LYS A 111 13.942 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 44.79 ATOM 923 CD LYS A 111 19.915 8.574 34.494 1.00 41.27 ATOM 924 CE LYS A 111 19.915 8.574 34.494 1.00 41.27 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 36.61 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 36.61 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 36.61 ATOM 926 NZ LYS A 112 19.930 1.251 35.34		MOTA									
ATOM 918 CA LYS A 111 15.373 8.287 36.013 1.00 34.15 ATOM 919 C LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 920 C LYS A 111 14.453 9.355 34.002 1.00 35.30 ATOM 921 CB LYS A 111 13.942 8.285 33.702 1.00 35.93 ATOM 922 CG LYS A 111 16.879 9.488 34.494 1.00 39.11 ATOM 923 CD LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.27 ATOM 925 CX LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 926 N LYS A 112 14.181 10.569 33.482 1.00 36.64 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.194 10.511 32.410 1.00 37.40 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 38.56 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 37.70 ATOM 933 CE LYS A 112 11.784 10.464 32.883 1.00 43.77 ATOM 933 CE LYS A 112 11.784 10.464 32.883 1.00 43.77 ATOM 933 CE LYS A 112 11.784 10.464 32.883 1.00 43.77 ATOM 934 NZ LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 935 CA HIS A 113 12.734 11.353 30.256 1.00 40.92 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 12.848 12.199 29.053 1.00 39.66 40 ATOM 936 CA HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 37.50 ATOM 941 ND1 HIS A 113 11.036 13.636 30.115 1.00 39.66 ATOM 943 CF HIS A 113 11.361 12.948 12.945 1.00 42.05 ATOM 944 NC2 HIS A 113 11.361 12.948 12.945 1.00 42.05											
ATOM 918 CA LYS A 111 15.522 9.400 35.086 1.00 35.30 ATOM 919 C LYS A 111 14.453 9.355 34.002 1.00 35.35 ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.35 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 39.15 25 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.950 7.270 34.207 1.00 36.61 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 36.61 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 36.64 ATOM 926 N LYS A 112 19.930 7.270 34.207 1.00 36.64 ATOM 927 CA LYS A 112 19.930 7.270 34.207 1.00 36.64 ATOM 928 C LYS A 112 13.194 10.569 33.482 1.00 36.64 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 920 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 11.274 11.108 34.092 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 933 CE LYS A 113 12.734 11.353 30.256 1.00 38.56 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.56 ATOM 937 C HIS A 113 12.341 13.513 22.317 1.00 38.75 ATOM 938 O HIS A 113 12.341 13.53 30.256 1.00 38.56 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.75 ATOM 931 CG LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 933 CB HIS A 113 12.341 13.611 29.366 1.00 38.75 ATOM 934 NZ LYS A 113 12.341 13.611 29.366 1.00 38.75 ATOM 935 CA HIS A 113 12.341 13.611 29.366 1.00 38.75 ATOM 940 CG HIS A 113 10.660 14.172 31.299 1.00 41.13 ATOM 941 NDI HIS A 113 9.924 12.958 29.655 1.00 42.07 ATOM 948 C GLY A 114 15.962 10.689 25.944 1.00 42.05 ATOM 949 NA TYR A 115 19.673 11.182 24.298 1.00 42.05 ATOM 940 CG HIS A 113 19.378 13.838 31.529 1.00 42.05 ATOM 940 CG HIS A 113 19.378 13.838 31.529 1.00 42.05 ATOM 940 CG HIS A 113 19.660 14.172 31.299 1.00 41.13 ATOM 940 CG HIS A 113 19.680 14.172 31.299 1.00 42.21 ATOM 940 CG HIS A 113 19.680 14.172 31.299 1.00 42.20 ATOM 940 CG HIS A 113 19.680 14.172 31.299 1.00 42.05 ATOM 940 CG HIS A 113 19.680 14.172 31.299 1.00 42.05 ATOM 940 CG HI	20										
ATOM 920 O LYS A 111 13.942 8.285 33.702 1.00 35.935 ATOM 921 CB LYS A 111 16.879 9.488 34.449 1.00 39.11 25 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.95 8.574 34.449 1.00 41.27 ATOM 924 CE LYS A 111 19.95 8.574 34.449 1.00 41.27 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 36.81 ATOM 926 N LYS A 112 19.930 7.270 34.207 1.00 36.81 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 11.274 11.108 34.092 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.655 10.826 34.592 1.00 42.31 ATOM 935 N HIS A 113 12.848 12.198 29.053 1.00 39.68 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.88 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 939 CB HIS A 113 12.848 12.198 29.053 1.00 39.88 ATOM 940 CG GIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 941 ND1 HIS A 113 12.848 13.102 28.197 1.00 40.77 ATOM 942 CD2 HIS A 113 19.361 12.988 29.655 1.00 42.21 ATOM 943 CE LYS A 113 19.366 13.636 30.115 1.00 39.88 ATOM 944 NE2 HIS A 113 10.660 14.772 31.299 1.00 42.75 ATOM 947 CC GLY A 114 15.982 10.869 25.944 1.00 37.50 ATOM 948 CD2 HIS A 113 10.660 14.172 31.299 1.00 41.13 ATOM 949 N TYR A 115 19.673 11.182 24.298 1.00 42.05 ATOM 949 N TYR A 115 18.822 11.155 33.637 1.00 42.78 ATOM 949 N TYR A 115 18.982 10.869 25.944 1.00 42.05 ATOM 955 CD TYR A 115 18.982 11.854 25.5579 1.00 47.78 ATOM 956 CD TYR A 115 19.673 11.182 24.298 1.00 47.76 ATOM 957 CEI TYR A 115 19.673 11.182 24.298 1.00 47.76 ATOM 958 CEZ TYR A 115 19.678 15.643 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.388 15.645 25.579 1.00 47.78	20										
ATOM 920 O LYS A 111 16.879 9.488 34.449 1.00 39.11 25 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 924 CE LYS A 111 19.195 8.574 34.494 1.00 41.27 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 36.81 ATOM 926 N LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 36.64 ATOM 920 C LYS A 112 13.553 11.477 31.283 1.00 37.12 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 37.40 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 37.40 ATOM 932 CD LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 933 CE LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 933 CE LYS A 112 9.655 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 9.655 11.830 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 939 O HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 940 CG HIS A 113 12.841 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.85 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.85 ATOM 940 CG HIS A 113 12.341 13.616 29.366 1.00 38.85 ATOM 940 CG HIS A 113 10.660 14.172 31.299 1.00 42.21 ATOM 943 CEI HIS A 113 10.660 14.172 31.299 1.00 42.21 ATOM 944 NE2 HIS A 113 10.660 14.172 31.299 1.00 42.20 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.07 ATOM 948 CE LYR A 115 17.369 11.182 24.526 1.00 40.07 ATOM 949 N TYR A 115 17.369 11.182 24.526 1.00 43.99 ATOM 950 CA TYR A 115 19.673 11.182 24.526 1.00 43.99 ATOM 951 C TYR A 115 19.673 11.182 24.526 1.00 47.70 ATOM 955 CD TYR A 115 19.673 11.182 24.298 1.00 47.04 ATOM 959 CZ TYR A 115 19.788 15.845 25.579 1.00 47.70 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 47.70				_							
25 ATOM 921 CB LYS A 111 17.713 8.300 34.171 1.00 39.11 ATOM 923 CD LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 923 CD LYS A 111 19.195 8.574 34.494 1.00 41.27 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 926 N LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 927 CA LYS A 112 14.181 10.569 33.482 1.00 36.64 ATOM 928 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 CA LYS A 112 13.194 10.511 32.410 1.00 37.40 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CL LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 39.66 40 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 39.68 ATOM 938 C HIS A 113 12.734 11.353 30.256 1.00 39.88 ATOM 939 CB HIS A 113 12.734 11.353 30.256 1.00 39.88 ATOM 939 C HIS A 113 12.734 11.353 30.256 1.00 39.88 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 938 C HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 939 CB HIS A 113 12.734 11.351 29.966 1.00 38.75 ATOM 940 CG HIS A 113 12.848 12.198 29.655 1.00 42.73 ATOM 941 NZ LYS A 112 12.341 13.611 29.366 1.00 38.75 ATOM 942 CDZ HIS A 113 12.341 13.611 29.366 1.00 38.75 ATOM 943 CEI HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 944 NZ HIS A 113 19.924 12.958 29.655 1.00 42.205 ATOM 945 N GLY A 114 15.948 10.634 27.465 1.00 42.70 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.70 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 940 CG TYR A 115 17.072 12.263 23.612 1.00 42.78 ATOM 950 CA TYR A 115 17.628 14.263 25.519 1.00 42.78 ATOM 950 CD TYR A 115 17.628 14.263 25.579 1.00 47.70 ATOM 955 CD TYR A 115 19.678 15.246 25.5579 1.00 48.85											
25 ATOM 922 CG LYS A 111 17.713 8.300 34.171 1.00 44.79 ATOM 924 CE LYS A 111 19.930 7.270 34.494 1.00 41.27 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 926 N LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 O LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 11.784 10.464 32.883 1.00 37.40 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 933 CE LYS A 112 11.274 11.108 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.655 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.655 11.830 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 38.75 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 38.75 ATOM 938 O HIS A 113 14.895 13.102 28.497 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.497 1.00 40.77 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 941 NDI HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 942 CD2 HIS A 113 11.036 13.636 30.115 1.00 38.57 ATOM 944 NE2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 944 NE2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 945 N GLY A 114 15.948 10.906 28.098 1.00 43.65 ATOM 946 CA GLY A 114 15.948 10.906 28.098 1.00 43.65 ATOM 947 C GLY A 114 15.948 10.906 28.098 1.00 43.65 ATOM 948 O GLY A 114 15.948 10.906 28.098 1.00 43.65 ATOM 949 N N TYR A 115 17.668 10.869 25.944 1.00 42.25 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.25 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.83 ATOM 951 C TYR A 115 17.628 14.263 25.579 1.00 42.83 ATOM 955 CD TYR A 115 17.628 14.263 25.579 1.00 47.70 ATOM 958 CE2 TYR A 115 19.673 11.182 24.506 1.00 47.70 ATOM 959 CZ TYR A 115 19.978 15.845 25.579 1.00 47.70											
ATOM 923 CD LYS A 111 19.195 8.574 34.494 1.00 41.27 ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 925 NZ LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 925 NZ LYS A 111 19.943 6.341 35.377 1.00 36.64 ATOM 926 N LYS A 112 14.181 10.569 33.482 1.00 36.64 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 11.382 12.368 31.442 1.00 37.40 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.86 ATOM 937 C HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 10.680 14.172 31.299 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 42.21 45 ATOM 943 CEI HIS A 113 10.680 14.172 31.299 1.00 42.21 45 ATOM 945 N GLY A 114 15.948 10.634 27.465 1.00 38.57 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.05 ATOM 947 C GLY A 114 15.948 10.634 27.465 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.05 ATOM 940 CG TYR A 115 17.099 12.863 23.612 1.00 43.39 ATOM 950 CA TYR A 115 17.628 14.263 23.612 1.00 43.99 ATOM 951 C TYR A 115 17.628 14.263 23.6612 1.00 43.99 ATOM 955 CD TYR A 115 17.628 14.263 25.614 1.00 47.78 ATOM 956 CD2 TYR A 115 19.673 11.182 24.526 1.00 47.78 ATOM 957 CEI TYR A 115 19.673 11.182 24.526 1.00 47.78 ATOM 959 CC2 TYR A 115 19.673 15.855 25.579 1.0	25										
ATOM 924 CE LYS A 111 19.930 7.270 34.207 1.00 41.21 ATOM 925 NZ LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 926 N LYS A 112 14.181 10.569 33.482 1.00 36.64 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 932 CD LYS A 112 11.274 11.108 34.092 1.00 42.31 ATOM 933 CE LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.108 29.053 1.00 39.68 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 938 O HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 938 O HIS A 113 12.848 12.198 29.053 1.00 39.68 ATOM 938 O HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 940 CG HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 941 ND1 HIS A 113 12.341 13.611 29.366 1.00 38.81 ATOM 941 ND1 HIS A 113 19.924 12.958 29.655 1.00 42.21 45 ATOM 944 N22 HIS A 113 10.660 14.172 31.299 1.00 41.13 ATOM 944 N22 HIS A 113 10.660 14.172 31.299 1.00 41.13 ATOM 944 N22 HIS A 113 19.378 13.638 31.529 1.00 43.65 ATOM 945 N GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 17.762 11.210 25.445 1.00 42.05 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 940 CG GIY A 114 15.948 10.634 27.465 1.00 42.07 ATO	25										
ATOM 925 NZ LYS A 111 19.943 6.341 35.377 1.00 36.81 ATOM 926 N LYS A 112 14.181 10.569 33.482 1.00 36.64 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 929 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 39.66 ATOM 937 C HIS A 113 12.734 11.353 30.256 1.00 39.66 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 NDI HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CEI HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CEI HIS A 113 9.378 13.838 31.529 1.00 42.21 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 N TYR A 115 17.772 11.210 25.445 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.05 ATOM 950 CA TYR A 115 17.877 13.912 24.298 1.00 43.99 ATOM 950 CA TYR A 115 17.877 13.912 24.298 1.00 43.99 ATOM 955 CD TYR A 115 17.628 14.263 25.579 1.00 48.85											
30 ATOM 927 CA LYS A 112 13.194 10.511 32.410 1.00 37.12 ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 35 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 39.66 40 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 942 CD2 HIS A 113 10.680 14.172 31.2958 29.655 1.00 42.21 ATOM 944 NE2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 944 NE2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 945 N GLY A 114 15.948 10.660 14.172 68.098 1.00 42.07 ATOM 949 N TYR A 115 1.5.948 10.660 25.196 1.00 42.07 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CDI TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 955 CDI TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CEI TYR A 115 17.628 14.263 25.579 1.00 47.05 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.77 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.77 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718				NZ	LYS F	111			6.341	35.377	1.00 36.81
ATOM 928 C LYS A 112 13.553 11.477 31.283 1.00 38.56 ATOM 929 O LYS A 112 14.382 12.368 31.442 1.00 37.40 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 937 C HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 29.655 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 29.655 1.00 38.57 ATOM 941 NDI HIS A 113 11.036 13.636 29.655 1.00 38.57 ATOM 942 CD2 HIS A 113 11.036 13.636 29.655 1.00 42.21 45 ATOM 945 N GLY A 114 15.948 10.634 27.465 1.00 42.21 ATOM 947 NDI HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 945 N GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.41 22.545 23.637 1.00 42.78 ATOM 949 N TYR A 115 17.369 11.41 22.42 24.526 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.41 24.263 25.614 1.00 42.78 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 47.36 ATOM 950 CD TYR A 115 17.029 12.863 25.614 1.00 47.36 ATOM 950 CD TYR A 115 17.029 12.863 25.614 1.00 47.36 ATOM 950 CD TYR A 115 17.029 12.863 25.614 1.00 47.36 ATOM 950 CD TYR A 115 17.628 14.263 25.614 1.00 47.78 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.00 45.80 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.00 45.80 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.00 47.36 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.00 47.36 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.00 47.36 ATOM 950 CD TYR A 115 19.673 11.42 24.298 1.		MOTA	926	N	LYS F	112		14.181	10.569	33.482	
ATOM 929 O LYS A 112 14.382 12.368 31.442 1.00 37.40 ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 35 ATOM 932 CD LYS A 112 9.655 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.655 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 937 C HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 939 CB HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 37.50 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.07 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 42.37 ATOM 950 CA TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 950 CC TYR A 115 17.029 12.863 23.612 1.00 47.34 ATOM 950 CC TYR A 115 17.029 12.863 23.612 1.00 47.34 ATOM 950 CC TYR A 115 17.029 12.863 25.614 1.00 47.05 ATOM 950 CC TYR A 115 19.078 11.442 24.263 25.614 1.00 47.05 ATOM 950 CC TYR A 115 19.078 11.5463 25.579 1.00 48.85	30	MOTA		CA							
ATOM 930 CB LYS A 112 11.784 10.464 32.883 1.00 45.17 ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 9.924 12.958 29.655 1.00 42.21 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 37.50 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 947 C GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.172 11.210 25.445 1.00 42.79 ATOM 951 C TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 954 CG TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CD TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 955 CD TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 955 CD TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.738 15.845 25.559 1.00 48.85											
ATOM 931 CG LYS A 112 11.274 11.108 34.092 1.00 43.77 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 38.81 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 946 CA GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.05 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 953 CB TYR A 115 17.628 14.263 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.628 14.263 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.75 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.76 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.76 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 47.76											
35 ATOM 932 CD LYS A 112 9.855 10.826 34.592 1.00 42.31 ATOM 934 NZ LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CEI HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 43.65 ATOM 946 CA GLY A 114 15.982 10.869 25.944 1.00 42.07 ATOM 948 O GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 953 CB TYR A 115 17.628 14.263 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 47.34 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 957 CEI TYR A 115 17.628 14.263 25.579 1.00 47.76 ATOM 957 CEI TYR A 115 17.628 14.263 25.579 1.00 47.76 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 933 CE LYS A 112 9.625 11.830 35.702 1.00 40.92 ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.844 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 946 CA GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 947 C GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 953 CB TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 953 CB TYR A 115 17.369 11.441 24.019 1.00 42.83 ATOM 953 CB TYR A 115 17.369 11.441 24.019 1.00 42.83 ATOM 955 CD1 TYR A 115 17.628 14.263 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 955 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 956 CD2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85	25										
ATOM 934 NZ LYS A 112 8.251 12.207 36.085 1.00 41.42 ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.87 ATOM 940 CG HIS A 113 12.341 13.611 29.366 1.00 38.81 ATOM 941 ND1 HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 949 N TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 950 CA TYR A 115 17.369 11.442 24.019 1.00 42.83 ATOM 951 C TYR A 115 17.369 11.442 24.019 1.00 42.83 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 955 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.76 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.76 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.76 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.76 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.76 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.76 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.718 15.463 25.579 1.00 48.85	33										
ATOM 935 N HIS A 113 12.734 11.353 30.256 1.00 38.75 ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 ATOM 942 CD2 HIS A 113 10.660 14.172 31.299 1.00 41.13 ATOM 944 NE2 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 949 N TYR A 115 15.948 10.634 27.465 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.83 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 42.83 ATOM 955 CD TYR A 115 17.628 14.546 24.298 1.00 47.34 ATOM 955 CD TYR A 115 17.628 14.546 24.298 1.00 47.34 ATOM 955 CD TYR A 115 17.628 14.546 24.291 1.00 47.05 ATOM 955 CD TYR A 115 17.628 14.546 24.291 1.00 47.05 ATOM 958 CE2 TYR A 115 17.628 14.546 24.291 1.00 47.05 ATOM 958 CE2 TYR A 115 19.578 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 936 CA HIS A 113 12.848 12.198 29.053 1.00 39.66 40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 952 C TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 957 CE1 TYR A 115 17.628 14.263 25.614 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
40 ATOM 937 C HIS A 113 14.221 12.110 28.430 1.00 39.88 ATOM 938 O HIS A 113 14.895 13.102 28.197 1.00 40.77 ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.948 10.634 27.465 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.55 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.83 ATOM 952 CD TYR A 115 17.628 11.155 23.637 1.00 42.83 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 955 CD1 TYR A 115 17.877 13.912 24.298 1.00 47.34 ATOM 955 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 955 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 957 CE1 TYR A 115 17.628 14.263 25.614 1.00 47.36 ATOM 958 CE2 TYR A 115 17.628 14.263 25.614 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 18.375 15.230 26.260 1.00 47.78											
ATOM 939 CB HIS A 113 12.341 13.611 29.366 1.00 38.57 ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.07 ATOM 948 O GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.78 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85	40			С						28.430	1.00 39.88
ATOM 940 CG HIS A 113 11.036 13.636 30.115 1.00 38.81 ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85		ATOM	938	0	HIS F	113					
ATOM 941 ND1 HIS A 113 9.924 12.958 29.655 1.00 42.21 45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85		ATOM									
45 ATOM 942 CD2 HIS A 113 10.680 14.172 31.299 1.00 41.13 ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 948 O GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 ATOM 953 CB TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.877 13.912 24.298 1.00 43.99 ATOM 955 CD1 TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 956 CD2 TYR A 115 19.718 15.463 24.291 1.00 47.05 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 943 CE1 HIS A 113 8.934 13.113 30.518 1.00 37.50 ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 956 CD2 TYR A 115 19.718 15.463 24.291 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85	10										
ATOM 944 NE2 HIS A 113 9.378 13.838 31.529 1.00 43.65 ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 17.628 14.263 25.614 1.00 47.34 ATOM 956 CD2 TYR A 115 19.718 15.463 24.291 1.00 47.05 60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85	45										
ATOM 945 N GLY A 114 14.678 10.906 28.098 1.00 40.03 ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 946 CA GLY A 114 15.948 10.634 27.465 1.00 42.07 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
50 ATOM 947 C GLY A 114 15.982 10.869 25.944 1.00 42.05 ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 948 O GLY A 114 15.006 10.756 25.196 1.00 43.10 ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 1.00 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	50										
ATOM 949 N TYR A 115 17.172 11.210 25.445 1.00 42.78 ATOM 950 CA TYR A 115 17.369 11.441 24.019 1.00 42.59 ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 1.00 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 19.718 15.463 24.291 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	50										
ATOM 951 C TYR A 115 18.822 11.155 23.637 1.00 42.83 55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85			949	N				17.172			1.00 42.78
55 ATOM 952 O TYR A 115 19.673 11.182 24.526 1.00 40.37 ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85		MOTA	950	CA	TYR A	. 115		17.369			
ATOM 953 CB TYR A 115 17.029 12.863 23.612 1.00 43.99 ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 954 CG TYR A 115 17.877 13.912 24.298 1.00 45.80 ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	55										
ATOM 955 CD1 TYR A 115 18.944 14.514 23.648 1.00 47.34 ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85											
ATOM 956 CD2 TYR A 115 17.628 14.263 25.614 1.00 47.05 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85											
60 ATOM 957 CE1 TYR A 115 19.718 15.463 24.291 1.00 47.70 ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	-										
ATOM 958 CE2 TYR A 115 18.375 15.230 26.260 1.00 47.78 ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	60										
ATOM 959 CZ TYR A 115 19.398 15.845 25.579 1.00 48.85	00										
							• •				

								•		
	ATOM	961	N	THR A	116		19.071	10.953	22.342	1.00 41.33
	ATOM	962	CA	THR A			20.415	10.564	21.938	1.00 42.28
	ATOM	963	C	THR A			21.285	11.789	21.697	1.00 42.08
	ATOM	964	ō	THR A	116		20.858	12.791	21.136	1.00 42.54
5	ATOM	965	СВ	THR A			20.365	9.722	20.643	1.00 46.87
	ATOM	966		THR A			19.589	8.542	20.949	1.00 49.86
	ATOM	967		THR A			21.753	9.272	20.209	1.00 46.71
	ATOM	968	N	VAL A			22.552	11.650	22.045	1.00 40.95
	ATOM	969	CA	VAL A			23.575	12.638	21.686	1.00 40.83
10	ATOM	970	C	VAL A			24.538	11.818	20.830	1.00 41.40
10	ATOM	971	Ö	VAL A			24.850	10.689	21.222	1.00 41.22
	ATOM	972	CB	VAL A			24.297	13.196	22.928	1.00 39.95
	ATOM	973		VAL A			25.599	13.915	22.569	1.00 41.09
	ATOM	974		VAL A		•	23.375	14.216	23.617	1.00 38.93
15	ATOM	975	N N	GLU A			24.986	12.396	19.713	1.00 41.76
13	ATOM	976	CA	GLU A			25.908	11.573	18.905	1.00 42.29
		977	C	GLU A			27.254	12.265	18.832	1.00 42.60
	ATOM ATOM	978		GLU A			27.288	13.498	18.801	1.00 42.94
			0	GLU A			25.266	11.262	17.556	1.00 46.34
20	ATOM	979	CB				25.200	11.896	16.365	1.00 40.34
20	ATOM	980	CG	GLU A			25.542		15.029	1.00 55.37
	ATOM	981	CD	GLU A				11.270		1.00 54.40
	MOTA	982		GLU A			24.442	10.707	14.879	1.00 54.40
	MOTA	983		GLU A			26.425	11.358	14.155	
25	MOTA	984	N	VAL A			28.322	11.485	18.947	1.00 41.77
25	MOTA	985	CA	VAL A			29.661	12.031	18.909	1.00 42.33
	ATOM	986	С	VAL A			30.408	11.363	17.735	1.00 43.93
	ATOM	987	0	VAL A			30.499	10.136	17.672	1.00 42.59
	MOTA	988	CB	VAL A			30.486	11.790	20.187	1.00 42.91
20	MOTA	989		VAL A			31.894	12.330	19.963	1.00 40.51
30	MOTA	990		VAL A			29.868	12.517	21.398	1.00 38.33
	ATOM	991	N	GLN A			30.927	12.212	16.870	1.00 44.65
	ATOM	992	CA	GLN A			31.698	11.727	15.723	1.00 47.49
•	MOTA	993	С	GLN A			33.182	11.912	16.001	1.00 50.11
	ATOM	994	0	GLN A			33.676	13.040	16.117	1.00 48.28
35	ATOM	995	CB	GLN A			31.330	12.541	14.481	1.00 48.85
	ATOM	996	CG	GLN A			29.834	12.547	14.248	1.00 52.37
	MOTA	997	CD	GLN A	120		29.456	13.089	12.884	1.00 55.34
	ATOM	998	OE1	GLN A			30.319	13.536	12.135	1.00 59.08
	MOTA	999	NE2	GLN A	120		28.164	13.016	12.580	1.00 56.41
40	ATOM	1000	N	PHE A	121		33.872	10.771	16.065	1.00 52.87
	ATOM	1001	CA	PHE A			35.287	10.824	16.382	1.00 58.51
	MOTA	1002	С	PHE A	121		36.147	11.092	15.162	1.00 62.63
	ATOM	1003	0	PHE A			37.367	11.134	15.318	1.00 63.15
	MOTA	1004	CB	PHE A	121		35.764	9.660	17.219	1.00 54.96
45	ATOM	1005	CG	PHE A			35.110		18.571	1.00 55.06
	MOTA	1006	CD1	PHE A	121		33.983	8.822	18.763	1.00 54.70
	ATOM	1007	CD2	PHE A	121		35.627	10.295	19.641	1.00 52.63
	ATOM	1008	CE1	PHE A	121		33.389	8.726	20.000	1.00 54.52
	ATOM	1009	CE2	PHE A	121		35.032	10.209	20.885	1.00 53.27
50	ATOM	1010	CZ	PHE A	121		33.908	9.438	21.065	1.00 53.03
	ATOM	1011	N	ASP A	122		35.547	11.249	13.988	1.00 66.78
	ATOM	1012	CA	ASP A	122		36.246	11.801	12.847	1.00 72.12
	ATOM	1013	С	ASP A			35.414	12.152	11.632	1.00 74.59
	ATOM	1014	Ö	ASP A			35.591	13.228	11.042	1.00 75.06
55	ATOM	1015	СВ	ASP A			37.480	10.970	12.495	1.00 80.67
	ATOM	1016	CG	ASP A			38.640	11.910	12.201	1.00 84.98
	ATOM	1017		ASP A			38.366	13.018	11.687	1.00 87.13
	ATOM	1018		ASP A			39.782	11.512	12.508	1.00 89.25
	ATOM	1019	N	GLY A			34.511	11.277	11.204	1.00 77.06
60	ATOM	1020	CA	GLY A			33.653	11.544	10.050	1.00 79.12
	MOTA	1021	C	GLY A			32.499	10.546	9.975	1.00 80.59
	ATOM	1022	ŏ	GLY A			32.702	9.332	10.039	1.00 80.64
	ATOM	1023	N	ASP A			31.278	11.063	9.813	1.00 81.67
			_		_					

	ATOM	1024	CA	ASP A	124	30.122	10.180	9.717	1.00 82.77
	ATOM	1025	C	ASP A		30.000	9.574	8.324	1.00 82.77
	ATOM	1026	ŏ	ASP A		29.673	9.777	7.400	0.00 99.00
	ATOM	1027	СВ	ASP A		28.828	10.863	10.141	1.00 87.39
5	ATOM	1028	CG	ASP A		27.968	9.968	11.019	1.00 91.94
	ATOM	1029	OD1			28.495	8.933	11.489	1.00 93.18
	ATOM	1030	OD2	ASP A		26.779	10.288	11.244	1.00 93.68
	MOTA	1031	N	ASN A		34.160	6.401	13.268	1.00 58.22
10	ATOM	1032	CA	ASN A		33.743	5.964	14.601	1.00 58.81
10	ATOM	1033	C	ASN A		32.728	6.983	15.144	1.00 58.26
	ATOM ATOM	1034 1035	O CB	ASN A		33.132 34.919	8.096	15.487 15.579	1.00 58.82 1.00 58.33
	ATOM	1035	CG	ASN A		35.959	5.955 4.889	15.347	1.00 58.33
	ATOM	1037		ASN A		35.660	3.697	15.490	1.00 64.16
15	ATOM	1038		ASN A		37.179	5.307	15.008	1.00 60.87
	ATOM	1039	N	THR A		31.462	6.617	15.180	1.00 57.71
	MOTA	1040	CA	THR A		30.411	7.522	15.665	1.00 57.23
	ATOM	1041	С	THR A	128	29.652	6.846	16.795	1.00 56.48
	MOTA	1042	0	THR A		29.065	5.792	16.534	1.00 57.24
20	MOTA	1043	CB	THR A		29.452	7.842	14.501	1.00 56.65
	ATOM	1044		THR A		30.208	8.579	13.536	1.00 57.99
	ATOM	1045	CG2			28.244	8.653	14.901	1.00 56.34
	ATOM	1046	N	MET A		29.705	7.406	18.002	1.00 54.99
25	MOTA MOTA	1047 1048	CA C	MET A		29.082 27.768	6.817 7.511	19.175 19.533	1.00 52.19 1.00 50.42
23	ATOM	1049	Ö	MET A		27.788	8.705	19.333	1.00 30.42
	ATOM	1050	СВ	MET A		30.009	6.909	20.391	1.00 58.00
	ATOM	1051	CG	MET A		31.164	5.934	20.458	1.00 62.68
	ATOM	1052	SD	MET A		30.652	4.263	20.904	1.00 68.26
30	ATOM	1053	CE	MET A	129	29.906	4.518	22.510	1.00 68.01
	MOTA	1054	N	HIS A		26.859	6.735	20.126	1.00 49.01
	ATOM	1055	.CA	HIS A		25.554	7.194	20.571	1.00 47.13
	MOTA	1056	С	HIS A		25.485	7.057	22.095	1.00 46.21
35	MOTA	1057	O	HIS A		26.009	6.118	22.678	1.00 45.61
33	ATOM ATOM	1058 1059	CB CG	HIS A		24.436 23.967	6.345 6.751	19.956 18.602	1.00 53.82 1.00 62.48
	ATOM	1060		HIS A		24.816	7.119	17.581	1.00 62.46
	ATOM	1061		HIS A		22.711	6.825	18.084	1.00 65.45
	ATOM	1062		HIS A		24.114	7.424	16.505	1.00 67.80
40	ATOM	1063		HIS A		22.831	7.252	16.784	1.00 68.13
	MOTA	1064	N	TYR A	131	24.998	8.097	22.775	1.00 43.95
	MOTA	1065	CA	TYR A	131	24.923	8.130	24.227	1.00 42.51
	MOTA	1066	С	TYR A		23.536	8.666	24.576	1.00 41.94
4.5	ATOM	1067	0	TYR A		22.956	9.497	23.829	1.00 41.77
45	MOTA	1068	СВ	TYR A		25.948	9.151	24.762	1.00 42.89
	ATOM	1069	CG	TYR A		27.390	8.830	24.392	1.00 42.97
	ATOM ATOM	1070 1071	CD1 CD2	TYR A		27.910 28.205	9.421 7.993	23.240 25.131	1.00 42.76 1.00 43.24
	ATOM	1071	CE1			29.207	9.187	22.828	1.00 43.24
50	ATOM	1073		TYR A		29.502	7.765	24.728	1.00 45.47
	ATOM	1074	CZ	TYR A		29.991	8.365	23.587	1.00 46.72
	ATOM	1075	ОН	TYR A		31.295	8.087	23.222	1.00 49.71
	MOTA	1076	N	THR A	132	22.979	8.297	25.721	1.00 40.16
	MOTA	1077	CA	THR A	132	21.666	8.825	26.098	1.00 37.97
55	MOTA	1078	C	THR A		21.835	9.967	27.066	1.00 37.49
	ATOM	1079	0	THR A		22.535	9.779	28.077	1.00 38.05
	ATOM	1080	CB	THR A		20.792	7.731	26.746	1.00 38.81
	ATOM	1081	OG1	THR A		20.603	6.712	25.757	1.00 36.51
60	ATOM ATOM	1082 1083	CG2 N	THR A ASN A		19.452 21.212	8.267 11.104	27.216 26.792	1.00 36.18 1.00 35.61
50	ATOM	1083	CA	ASN A		21.212	12.167	27.803	1.00 35.61
	ATOM	1085	C	ASN A		19.749	12.266	28.321	1.00 35.53
	MI OU	1000	_	AON A		13.143		20.321	1.00 33.33

								•			
	ATOM	1087	CB	ASN A			21.662	13.500	27.280		36.82
	ATOM	1088	CG	ASN A			22.055	14.518	28.327		42.70
	ATOM	1089		ASN A			22.192	15.696	27.956		44.62
_	ATOM	1090	ND2	ASN A			22.275	14.088	29.562		37.77
5	ATOM	1091	N	TRP A			19.546	12.925	29.444		35.65
	ATOM	1092	CA	TRP A			18.238	12.908	30.127	1.00	36.02
	ATOM	1093	С	TRP A	134		17.856	14.318	30.510	1.00	36.37
	ATOM	1094	0	TRP A	134		18.686	15.002	31.095	1.00	37.57
	MOTA	1095	CB	TRP A	134		18.363	12.078	31.423	1.00	34.98
10	MOTA	1096	CG	TRP A	134		18.900	10.691	31.221	1.00	35.16
	ATOM	1097	CD1	TRP A	134		20.214	10.320	31.363	1.00	36.78
	ATOM	1098	CD2	TRP A	134		18.190	9.511	30.845	1.00	37.83
	ATOM	1099	NE1	TRP A	134		20.350	8.987	31.103	1.00	33.83
	ATOM	1100	CE2			•.	19.121	8.458	30.802	1.00	34.86
15	ATOM	1101	CE3	TRP A	134		16.836	9.240	30.593	1.00	35.07
	ATOM	1102	CZ2	TRP A			18.770	7.136	30.516		36.92
	ATOM	1103	CZ3				16.498	7.932	30.308		39.28
	ATOM	1104	CH2	TRP A			17.449	6.905	30.240		38.59
	ATOM	1105	N	THR A			16.634	14.807	30.259		36.82
20	ATOM	1106	CA	THR A			16.349	16.149	30.758		36.51
20	ATOM	1107	C	THR A			16.094	16.125	32.270		37.13
	ATOM	1108	Ö	THR A			16.234	17.149	32.927		35.77
	ATOM	1109	CB	THR A			15.214	16.871	30.031		41.31
		1110		THR A			13.214				39.42
25	ATOM							16.175	30.224		
23	ATOM	1111		THR A			15.461	16.910	28.512		43.30
	ATOM	1112	N	HIS A			15.650	15.007	32.831		36.50
	ATOM	1113	CA	HIS A			15.236	14.974	34.227		37.55
	ATOM	1114	С	HIS A			16.017	13.856	34.948		36.41
20	ATOM	1115	0	HIS A			15.783	12.717	34.570		37.39
30	ATOM	1116	CB	HIS A			13.731	14.716	34.346		42.28
	ATOM	1117	CG	HIS A			12.843	15.884	34.044		45.85
	ATOM	1118		HIS A			12.928	16.585	32.850		44.57
	ATOM	1119		HIS A			11.847	16.467	34.751		47.41
25	ATOM	1120		HIS A			12.039	17.564	32.853		45.33
35	MOTA	1121		HIS A			11.362	17.512	33.987		49.47
	ATOM	1122	N	ILE A			16.941	14.223	35.827		35.44
	ATOM	1123	CA	ILE A			17.696	13.165	36.526		34.42
	MOTA	1124	С	ILE A			17.396	13.291	38.023		34.06
	ATOM	1125	0	ILE A	137		17.573	14.396	38.537		34.29
40	ATOM	1126	CB	ILE A	137		19.209	13.314	36.268		33.02
	MOTA	1127	CG1	ILE A	137		19.527	13.053	34.780		33.98
	MOTA	1128	CG2	ILE A	137		19.995	12.315	37.126	1.00	34.85
	ATOM	1129	CD1	ILE A	137		20.948	13.484	34.427	1.00	35.15
	ATOM	1130	N	TYR A	138		16.902	12.217	38.643	1.00	33.90
45	ATOM	1131	CA	TYR A	138		16.497	12.371	40.067		34.35
	ATOM	1132	С	TYR A	138		17.618	11.920	40.998	1.00	34.35
	ATOM	1133	0	TYR A			17.925	10.740	40.954	1.00	35.52
	ATOM	1134	CB	TYR A			15.196	11.604	40.319	1.00	35.05
	ATOM	1135	CG	TYR A			14.075	12.281	39.524	1.00	37.41
50	ATOM	1136		TYR A			13.904	11.924	38.203		38.75
	ATOM	1137		TYR A			13.272	13.267	40.084	1.00	40.04
	ATOM	1138		TYR A			12.922	12.525	37.431		39.64
	ATOM	1139	CE2	TYR A	138		12.281	13.870	39.308		41.81
	ATOM	1140	CZ	TYR A			12.128	13.492	37.999		41.16
55	ATOM	1141	OH	TYR A			11.171	14.050	37.192		43.58
<i></i>	ATOM	1142	N	ILE A			18.255	12.823	41.721		34.48
	ATOM	1143	CA	ILE A			19.360	12.458	42.607		35.01
	ATOM	1143	C	ILE A			18.756	12.127	43.996		34.60
	ATOM	1144	0	ILE A			18.312	13.089	44.613		35.20
60		1145	СВ	ILE A			20.353	13.612	42.774	1.00	
50	ATOM	1146		ILE A			20.333	13.612	42.774	1.00	
	ATOM										
	ATOM	1148		ILE A			21.546	13.200	43.637	1.00	
	MOTA	1149	CDT	ILE A	133		21.487	12.956	40.588	1.00	20.2I

	ATOM	1150	N	CYS			18.581	10.861	44.301	1.00 35.26
	MOTA	1151	CA	CYS			17.938	10.511	45.590	1.00 37.11
	ATOM	1152	С	CYS	Α	140	18.952	10.174	46.664	1.00 37.66
	ATOM	1153	0	CYS	Α	140	19.865	9.384	46.448	1.00 37.82
5	ATOM	1154	CB	CYS			17.078		45.411	1.00 42.45
	ATOM	1155	SG	CYS	Α	140	15.483	9.689	44.680	1.00 49.17
	MOTA	1156	N	GLU			18.799	10.796	47.831	1.00 37.14
	ATOM	1157	CA	GLU	Α	141	19.664	10.484	48.966	1.00 37.88
	ATOM	1158	С	GLU	Α	141	18.845	9.929	50.125	1.00 36.63
10	ATOM	1159	0	GLU	Α	141	17.678	9.579	49.925	1.00 35.72
	MOTA	1160	CB	GLU	Α	141	20.509	11.709	49.297	1.00 43.42
	ATOM	1161	CG	GLU	Α	141	21.392	12.145	48.129	1.00 53.61
	ATOM	1162	CD	GLU	Α	141	22.122	13.446	48.352	1.00 58.09
	MOTA	1163	OE1	GLU	Α	141	21.544	14.528	48.139	1.00 57.53
15	MOTA	1164	OE2	GLU	Α	141	23.308	13.339	48.747	1.00 64.14
	ATOM	1165	N	GLU	Α	142	19.445	9.883	51.315	1.00 36.78
	ATOM	1166	CA	GLU			18.783	9.263	52.479	1.00 36.84
	ATOM	1167	С	GLU			17.515	9.941	52.907	1.00 35.85
	ATOM	1168	ō	GLU			16.496	9.267	53.166	1.00 36.59
20	ATOM	1169	CB	GLU			19.780	9.360	53.654	1.00 43.10
	ATOM	1170	CG.	GLU			21.150	8.763	53.466	1.00 54.03
	ATOM	1171	CD	GLU			22.322	9.696	53.311	1.00 60.55
	ATOM	1172		GLU			22.260	10.679	52.543	1.00 59.21
	ATOM	1173		GLU			23.401	9.470	53.924	1.00 64.17
25	ATOM	1174	N	ALA			17.477	11.272	52.922	1.00 34.96
23	ATOM	1175	CA	ALA			16.241	11.960	53.308	1.00 36.52
		1176	C	ALA			15.739	12.999	52.312	1.00 36.98
	ATOM	1177		ALA			15.739	14.019	52.787	1.00 38.22
	ATOM	1178	0	ALA			16.560	12.620	54.652	1.00 34.45
30	ATOM		CB				16.163	12.881	51.031	1.00 34.43
30	ATOM	1179	N	SER			15.754	13.884	50.048	1.00 35.70
	ATOM	1180	CA	SER			15.754	13.477	48.583	1.00 35.70
	ATOM	1181	C	SER					48.259	1.00 33.00
	ATOM	1182	0	SER			16.665 16.607	12.520 15.158	50.246	1.00 39.92
25	ATOM	1183	CB	SER				14.791	49.965	1.00 39.92
35	ATOM	1184	OG	SER			17.965			
	ATOM	1185	N	VAL			15.361	14.287	47.712	1.00 36.14
	ATOM	1186	CA	VAL			15.576	14.054	46.260	1.00 35.49
	ATOM	1187	C	VAL			15.546	15.410	45.563	1.00 36.78
40	ATOM	1188	0	VAL			14.806	16.307	45.979	1.00 34.89
40	ATOM	1189	CB	VAL			14.580	13.058	45.707	1.00 36.75
	MOTA	1190		VAL			13.141	13.446	46.028	1.00 36.76
	MOTA	1191		VAL			14.730	12.908	44.192	1.00 37.20
	MOTA	1192	N	THR			16.453	15.595	44.600	1.00 37.23
	ATOM	1193	CA	THR			16.434	16.814	43.769	1.00 39.11
45	ATOM	1194	С	THR			16.529	16.390	42.297	1.00 39.36
	MOTA	1195		THR			17.361	15.521	41.981	1.00 39.50
	MOTA	1196	CB	THR	Α	146	17.709	17.657	44.040	1.00 43.57
	MOTA	1197	OG1	THR			17.833	17.886	45.432	1.00 49.29
	MOTA	1198	CG2	THR	A	146	17.686	18.953	43.244	1.00 46.55
50	MOTA	1199	N	VAL	Α	147	15.699	16.998	41.454	1.00 39.48
	ATOM	1200	CA	VAL	Α	147	15.774	16.719	40.017	1.00 38.72
	ATOM	1201	С	VAL	Α	147	16.800	17.682	39.433	1.00 39.04
	ATOM	1202	0	VAL	Α	147	16.921	18.842	39.851	1.00 38.28
	ATOM	1203	CB	VAL	Α	147	14.451	16.800	39.268	1.00 40.51
55	ATOM	1204		VAL			13.871	18.209	39.197	1.00 42.34
	ATOM	1205		VAL			14.532	16.183	37.873	1.00 36.37
	ATOM	1206	N	VAL			17.711	17.103	38.634	1.00 39.16
	ATOM	1207	CA	VAL			18.685	17.909	37.910	1.00 38.86
	ATOM	1208	C	VAL			18.569	17.615	36.406	1.00 38.03
60	ATOM	1209	Õ	VAL			18.093	16.554	35.994	1.00 38.38
	ATOM	1210	СВ	VAL			20.117	17.663	38.437	1.00 37.94
	ATOM -	1211	_	VAL			20.196	17.921	39.948	1.00 37.81
	ATOM	1212		VAL			20.543	16.227	38.135	1.00 39.08

	2001	1213	N	GLU A	140	19.105	18.521	35.575	1.00 37.21
	ATOM ATOM	1213	CA	GLU A		19.010	18.272	34.118	1.00 37.63
	ATOM	1215	C	GLU A		20.309	17.767	33.517	1.00 36.45
	ATOM	1215	0	GLU A		21.385	18.214	33.912	1.00 37.57
5	ATOM	1217	CB	GLU A		18.519	19.530	33.403	1.00 48.95
5	ATOM	1218	CG	GLU A		19.598	20.527	33.046	1.00 53.64
	ATOM	1219	CD	GLU A		19.100	21.544	32.022	1.00 58.00
	ATOM	1220		GLU A		19.440	22.716	32.229	1.00 55.36
	ATOM	1221		GLU A		18.363	21.228	31.067	1.00 61.49
10	ATOM	1222	N	GLY A		20.200	16.861	32.559	1.00 37.43
10	ATOM	1223	CA	GLY A		21.399	16.289	31.923	1.00 37.28
	ATOM	1224	C	GLY A		21.910	17.392	30.970	1.00 37.55
	ATOM	1225	Ō	GLY A	150 .	21.071	18.016	30.338	1.00 37.62
	ATOM	1226	N	GLN A		23.181	17.714	31.014	1.00 37.21
15	ATOM	1227	CA	GLN A		23.713	18.812	30.210	1.00 36.92
	MOTA	1228	С	GLN A	151	24.833	18.247	29.331	1.00 37.46
	MOTA	1229	0	GLN A	151	25.351	17.166	29.610	1.00 35.27
	MOTA	1230	CB	GLN A	151	24.280	19.937	31.078	1.00 37.56
	ATOM	1231	CG	GLN A	151	23.177	20.667	31.852	1.00 43.46
20	MOTA	1232	CD	GLN A		23.691	21.877	32.581	1.00 48.78
	ATOM	1233		GLN A		23.987	22.896	31.946	1.00 49.56
	ATOM	1234	NE2	GLN A	151	23.820	21.769	33.905	1.00 44.12
	MOTA	1235	N	VAL A		25.173	19.028	28.294	1.00 36.05
	MOTA	1236	CA	VAL A		26.097	18.488	27.284	1.00 36.80
25	MOTA	1237	C	VAL A		27.209	19.494	26.986	1.00 37.21
	MOTA	1238	0	VAL A		26.949	20.667	26.795	1.00 36.72
	ATOM	1239	CB	VAL A		25.385	18.266	25.921	1.00 40.17
	MOTA	1240		VAL A		26.394	17.345	25.148	1.00 37.05
20	ATOM	1241		VAL A		24.181	17.350	26.088	1.00 42.64 1.00 37.01
30	MOTA	1242	N	ASP A		28.420	19.032	27.005	1.00 37.01
	MOTA	1243	CA	ASP A		29.712	19.530	26.819 25.554	1.00 37.91
	ATOM	1244	C	ASP A		30.452 30.094	19.060 18.059	24.955	1.00 37.68
	ATOM	1245	0	ASP A		30.034	19.123	28.066	1.00 37.00
35	ATOM	1246	CB CG	ASP A		30.713	20.514	28.634	1.00 39.47
33	ATOM	1247 1248		ASP A		30.469	21.441	27.840	1.00 53.60
	ATOM	1249		ASP A		31.411	20.767	29.695	1.00 41.06
	ATOM ATOM	1250	N	TYR A		31.550	19.785	25.263	1.00 36.73
	ATOM	1251	CA	TYR A		32.497	19.232	24.299	1.00 38.06
40	ATOM	1252	C	TYR A		33.107	17.950	24.912	1.00 38.77
40	MOTA	1253	Õ	TYR A		33.386	16.934	24.276	1.00 38.93
	ATOM	1254	СВ	TYR A		33.624	20.200	23.920	1.00 38.36
	MOTA	1255	CG	TYR A		34.637	19.489	23.038	1.00 38.72
	ATOM	1256		TYR A		34.295	19.193	21.714	1.00 39.88
45	ATOM	1257		TYR A		35.875	19.104	23.514	1.00 39.51
•	MOTA	1258	CE1	TYR A	154	35.184	18.532	20.873	1.00 39.95
	MOTA	1259		TYR A		36.759	18.454	22.687	1.00 41.22
	MOTA	1260	CZ	TYR A		36.412	18.174	21.376	1.00 41.17
	MOTA	1261	ОН	TYR A		37.332	17.516	20.610	1.00 42.16
50	MOTA	1262	N	TYR A	155	33.319	18.027	26.224	1.00 38.13
	MOTA	1263	CA	TYR A	155	33.883	16.968	27.018	1.00 38.84
	ATOM	1264	С	TYR A	155	32.959	15.819	27.350	1.00 37.80
	MOTA	1265	0	TYR A	155	33.530	14.735		1.00 37.77
	MOTA	1266	CB	TYR A		34.500	17.518	28.323	1.00 40.03
55	MOTA	1267	CG	TYR A		35.364	18.745	28.031	1.00 43.75
	MOTA	1268	-	TYR A		34.854	20.021	28.230	1.00 44.64
	MOTA	1269		TYR A		36.655	18.604	27.562	1.00 44.86
	MOTA	1270		TYR A			21.136	27.950	1.00 46.55
	MOTA	1271		TYR A		37.440	19.709	27.271	1.00 46.37
60	MOTA	1272	CZ	TYR A		36.920	20.963	27.485	1.00 48.04
						22 222			1 AA EA CA
	MOTA	1273	OH	TYR A		37.708	22.064	27.230	1.00 50.62
		1273 1274 1275	OH N CA	TYR A GLY A GLY A	156	37.708 31.651 30.784	22.064 16.005 14.894	27.230 27.491 27.833	1.00 50.62 1.00 36.89 1.00 36.27

					_					1 00 0	
	ATOM	1276	С	GLY			29.374	15.297	28.278	1.00 3	
	ATOM	1277	0	GLY			28.845	16.351	27.962	1.00 3	
	ATOM	1278	N	LEU			28.737	14.367	28.989	1.00 3	
~	ATOM	1279	CA	LEU				14.593	29.547	1.00 3	,
5	ATOM	1280	С	LEU			27.570	14.782	31.061	1.00 3	
	ATOM	1281	0	LEU			28.299	14.009	31.703	1.00 3	
	ATOM	1282	CB	LEU			26.472	13.404	29.348	1.00 3	
	MOTA	1283	CG	LEU			26.409	12.902	27.878	1.00 3	
	MOTA	1284		LEU			25.362	11.777	27.835	1.00 4	
10	MOTA	1285		LEU			25.944	14.021	26.948	1.00 3	
	ATOM	1286	N	TYR			26.860	15.773	31.583	1.00 3	
	ATOM	1287	CA	TYR			27.043	16.018	33.020	1.00 3	
	ATOM	1288	C	TYR			25.778	16.579	33.654	1.00 3	
	MOTA	1289	0	TYR			24.813	16.941	32.968	1.00 3	
15	MOTA	1290	CB	TYR	Α	158	28.202	17.007	33.172	1.00 3	
	MOTA	1291	CG	TYR			27.948	18.410	32.664	1.00 3	8.25
	MOTA	1292	CD1	TYR	Α	158	27.547	19.427	33.526	1.00 3	
	ATOM	1293	CD2	TYR	Α	158	28.158	18.721	31.322	1.00 3	8.51
	ATOM	1294	CE1	TYR	Α	158	27.355	20.718	33.056	1.00 3	8.42
20	ATOM	1295	CE2	TYR	Α	158	27.955	20.009	30.839	1.00 3	8.37
	MOTA	1296	CZ	TYR	Α	158	27.573	21.006	31.711.	1.00 3	8.61
	ATOM	1297	OH	TYR	Α	158	27.359	22.290	31.260	1.00 3	7.90
	ATOM	1298	N	TYR			25.799	16.661	34.979	1.00 3	6.65
	ATOM	1299	CA	TYR			24.758	17.394	35.694	1.00 3	7.45
25	ATOM	1300	C	TYR			25.493	18.169	36.801	1.00 3	7.16
	ATOM	1301	ō	TYR			26.659	17.920	37.045	1.00 3	7.16
	ATOM	1302	СВ	TYR			23.638	16.543	36.301	1.00 3	7.42
	MOTA	1303	CG	TYR			24.161	15.441	37.222	1.00 3	7.53
	MOTA	1304	CD1	TYR			24.429	14.181	36.732	1.00 3	
30	MOTA	1305		TYR			24.352	15.689	38.574	1.00 3	
50	ATOM	1306	CE1	TYR			24.902	13.169	37.564	1.00 3	
	ATOM	1307		TYR			24.823	14.699	39.407	1.00 3	
	ATOM	1308	CZ	TYR			25.101	13.454	38.893	1.00 3	
	ATOM	1309	OH	TYR			25.613	12.488	39.741	1.00 4	
35	ATOM	1310	N	VAL			24.779	19.122	37.356	1.00 3	
33	MOTA	1311	CA	VAL			25.251	19.943	38.452	1.00 3	
	ATOM	1312	C	VAL			24.277	19.714	39.629	1.00 3	
	ATOM	1313	Ö	VAL			23.078	19.922	39.514	1.00 3	
	ATOM	1314	СВ	VAL			25.295	21.439	38.094	1.00 4	
40	ATOM	1315		VAL			25.815	22.251	39.288	1.00 3	
70	ATOM	1316		VAL			26.254	21.687	36.916	1.00 3	
	ATOM	1317	N N	HIS			24.818	19.208	40.708	1.00 3	
				HIS			24.018	18.916	41.919	1.00 3	
	MOTA	1318	CA C	HIS			24.734	19.569	43.095	1.00 3	
45	ATOM ATOM	1319 1320		HIS			25.900	19.316	43.322	1.00 3	
40			0					17.418			
	ATOM	1321		HIS						1.00 3	
	ATOM	1322	CG	HIS			23.189	16.976	43.377	1.00 4	
	MOTA	1323		HIS			21.908	17.363	43.665 44.374	1.00 4	
50	MOTA	1324		HIS			23.571	16.163		1.00 3	
50	MOTA	1325		HIS			21.508	16.811	44.805		
	MOTA	1326		HIS			22.503	16.079	45.262	1.00 4	
	ATOM	1327	N	GLU			24.031	20.404	43.832	1.00 4	
	ATOM	1328	CA	GLU			24.557	21.115	44.998	1.00 4	
	ATOM	1329	С	GLU			25.795	21.928	44.616	1.00 4	
55	MOTA	1330	0	GLU			26.806	21.828	45.304	1.00 4	
	MOTA	1331	CB	GLU			24.930	20.138	46.121	1.00 4	
	MOTA	1332	CG	GLU			23.750	19.235	46.415	1.00 5	
	MOTA	1333	CD	GLU			23.494	18.891	47.854	1.00 6	
	ATOM	1334		GLU			22.551	19.508	48.387	1.00 6	
60	ATOM	1335	OE2	GLU			24.226	18.027	48.364	1.00 6	
	ATOM	1336	N	GLY			25.786	22.518	43.432	1.00 4	
	MOTA	1337	CA	GLY			26.930	23.253	42.929	1.00 4	
	MOTA,	1338	С	GLY	A	163	28.023	22.409	42.306	1.00 4	3.73

	ATOM	1339	0	GLY A	163	28.958	23.011	41.746	1.00 43.41
	ATOM	1340	N	ILE A		27.986	21.079		1.00 42.17
	MOTA	1341	CA	ILE A		29.078	20.258	41.896	1.00 41.52
	ATOM	1342	С	ILE A		28.743	19.687	40.513	1.00 41.11
5	MOTA	1343	0	ILE A	164	27.677	19.110	40.314	1.00 40.21
	ATOM	1344	CB	ILE A		29.442	19.081	42.820	1.00 41.77
	ATOM	1345	CG1	ILE A	164	29.730	19.597	44.228	1.00 46.60
	MOTA	1346		ILE A		30.651	18.346	42.258	1.00 43.25
	ATOM	1347		ILE A		29.708	18.526	45.303	1.00 50.89
10	MOTA	1348	N	ARG A		29.613	20.004	39.561	1.00 40.27 1.00 40.37
	MOTA	1349	CA	ARG A		29.428	19.508	38.202	1.00 40.37
	MOTA	1350	С	ARG A		29.979	18.082	38.132	1.00 40.10
	ATOM	1351	0	ARG A		31.139	17.889	38.436	1.00 43.98
1.5	ATOM	1352	CB	ARG A		30.211	20.389 19.775	37.205 35.799	1.00 48.81
15	MOTA	1353	CG	ARG A		30.190		34.844	1.00 50.67
	MOTA	1354	CD	ARG A		31.056 30.374	20.614 21.882	34.644	1.00 54.50
	ATOM	1355	NE	ARG A		30.245	22.592	33.535	1.00 51.25
	ATOM	1356	CZ	ARG A		30.788	22.392	32.399	1.00 52.55
20	MOTA	1357		ARG A		29.552	23.727	33.612	1.00 32.33
20	MOTA	1358		ARG A THR A		29.159	17.127	37.747	1.00 38.84
	MOTA	1359	N	THR A		29.502	15.722	37.710	1.00 37.91
	MOTA	1360	CA	THR A		29.318	15.152	36.310	1.00 36.66
	ATOM	1361	C	THR A		28.167	15.109	35.857	1.00 36.77
25	MOTA	1362	O CB	THR A		28.621	14.911	38.700	1.00 42.71
23	MOTA	1363 1364	OG1	THR A		28.895	15.399	40.034	1.00 43.09
	ATOM ATOM	1365	CG2	THR A		28.934	13.427	38.662	1.00 40.93
	ATOM	1366	N N	TYR A		30.398	14.733	35.667	1.00 36.29
	MOTA	1367	CA.	TYR A		30.309	14.112	34.342	1.00 36.95
30	ATOM	1368	C.	TYR A		29.970	12.639	34.466	1.00 37.76
50	ATOM	1369	Õ	TYR A		30.561	11.961	35.335	1.00 39.69
	MOTA	1370	СВ	TYR A		31.611	14.231	33.518	1.00 37.91
	MOTA	1371	CG	TYR A		31.797	15.617	32.933	1.00 38.45
	MOTA	1372		TYR A		32.311	16.637	33.726	1.00 39.32
35	ATOM	1373		TYR A		31.397	15.937	31.646	1.00 39.69
55	ATOM	1374		TYR A		32.458	17.919	33.243	1.00 38.98
	ATOM	1375		TYR A		31.535	17.214	31.133	1.00 39.08
	ATOM	1376	CZ	TYR A		32.064	18.201	31.946	1.00 40.35
	MOTA	1377	ОН	TYR A		32.216	19.488	31.494	1.00 39.61
40		1378	N	PHE A		28.924	12.172	33.821	1.00 37.39
	ATOM	1379	CA	PHE A	168	28.547	10.772	33.818	1.00 38.28
	ATOM	1380	С	PHE A	168	28.987	10.058	32.559	1.00 39.29
	ATOM	1381	0	PHE A		28.980	8.825	32.494	1.00 38.30
	MOTA	1382	CB	PHE A		27.085	10.508	34.167	1.00 38.07
45	ATOM	1383	CG	PHE A		26.068	11.226	33.320	1.00 34.93
	MOTA	1384		PHE A		25.596	10.661	32.153	1.00 36.11
	ATOM	1385	CD2	PHE A	168	25.609	12.470	33.722	1.00 35.04
	MOTA	1386	CE1	PHE A	168	24.656	11.337	31.364	1.00 34.93
	MOTA	1387		PHE A		24.672	13.140	32.951	1.00 35.38
50	MOTA	1388	CZ	PHE A		24.215	12.564	31.799	1.00 30.80
	MOTA	1389	N	VAL A		29.331	10.849	31.524	1.00 39.59
	ATOM	1390	CA	VAL A		30.019	10.310	30.354	1.00 40.03
	ATOM	1391	C	VAL A		31.149	11.322	30.039	1.00 41.32
	ATOM	1392	0	VAL A		30.904	12.530	30.018	1.00 39.98
55	ATOM	1393	CB	VAL A		29.136	10.155	29.112	1.00 39.59 1.00 41.55
	MOTA	1394		VAL A		29.988		27.917	1.00 41.55
• -	ATOM	1395		VAL A		28.019	9.107 10.844	29.242 29.870	1.00 38.14
	ATOM	1396	N	GLN A		32.377	11.693	29.870	1.00 42.70
60	MOTA	1397	CA	GLN A		33.464 33.833	11.093	27.990	1.00 42.70
	MOTA	1398	C	GLN A		34.348	10.097	27.861	1.00 43.33
	MOTA	1399	O CB	GLN A		34.546	11.627	30.293	1.00 39.48
	ATOM	1400	CB			34.448	12.220	31.676	1.00 45.31
	MOTA	1401	CG	GLN A	110	74.440	14.440	51.070	

		_				05 601	10 010	22 542	1.00 46.68
	MOTA	1402	CD	GLN A		35.691	12.212	32.542	1.00 46.68
	MOTA	1403		GLN A		35.649	11.848	33.717	1.00 32.69
	MOTA	1404		GLN A		36.816	12.618	31.998 26.982	1.00 47.38
_	ATOM	1405	N	PHE A		33.678	12.076	25.629	1.00 44.34
5	MOTA	1406	CA	PHE A		33.884	11.606 11.186	25.340	1.00 45.84
	MOTA	1407	C	PHE A		35.302 35.508	10.343	24.446	1.00 45.10
	ATOM	1408	0	PHE A		33.422	12.612	24.440	1.00 39.68
	ATOM	1409	CB	PHE P			12.012	24.639	1.00 38.24
10	MOTA	1410	CG	PHE P		31.016	11.986	24.875	1.00 40.47
10	ATOM	1411		PHE A		31.530	14.269	24.412	1.00 35.50
	MOTA	1412		PHE F		29.673	12.310	24.905	1.00 37.70
	ATOM	1413		PHE F		30.187	14.604	24.441	1.00 37.98
	ATOM ATOM	1414 1415	CZ	PHE P		29.248	13.621	24.690	1.00 37.99
15	ATOM	1415	N N	LYS A		36.287	11.662	26.080	1.00 45.69
13	ATOM	1417	CA	LYS A		37.660	11.223	25.889	1.00 47.54
	ATOM	1418	C	LYS F		37.949	9.748	26.138	1.00 48.27
	ATOM	1419	Õ	LYS F		38.884	9,175	25.570	1.00 48.26
	ATOM	1420	СВ	LYS F		38.594	12.102	26.708	1.00 52.42
20	ATOM	1421	CG	LYS A		40.022	12.159	26.201	1.00 57.12
20	ATOM	1422	CD	LYS A		40.904	12.971	27.157	1.00 64.24
	ATOM	1423	CE	LYS F		42.362	12.543	27.018	1.00 65.59
	ATOM	1424	NZ	LYS F		43.304	13.691	26.949	1.00 65.87
	ATOM	1425	N	ASP F		37.154	9.132	27.009	1.00 48.25
25	ATOM	1426	CA	ASP F		37.212	7.712	27.287	1.00 49.23
23	ATOM	1427	C	ASP A		36.954	6.925	26.007	1.00 49.36
	ATOM	1428	0	ASP F		37.788	6.072	25.701	1.00 49.13
	ATOM	1429	СВ	ASP F		36.263	7.269	28.394	1.00 46.27
	ATOM	1430	CG	ASP A		36.627	7.869	29.740	1.00 50.82
30	ATOM	1431		ASP A		35.740	8.056	30.605	1.00 51.86
50	ATOM	1432		ASP F		37.817	8.158	29.970	1.00 52.02
	ATOM	1433	N	ASP A		35.901	7.144	25.248	1.00 49.89
	ATOM	1434	CA	ASP A		35.671	6.430	24.007	1.00 50.79
	ATOM	1435	C	ASP F		36.647	6.784	22.897	1.00 52.00
35	ATOM	1436	ō	ASP A		37.085	5.884	22.165	1.00 51.37
50	ATOM	1437	CB	ASP A		34.231	6.582	23.539	1.00 51.65
	ATOM	1438	CG	ASP A		33.276	5.662	24.274	1.00 51.83
	ATOM	1439		ASP A		33.751	4.664	24.847	1.00 48.40
	ATOM	1440		ASP A		32.060	5.942	24.269	1.00 52.72
40	ATOM	1441	N	ALA A		37.040	8.053	22.808	1.00 52.36
. •	ATOM	1442	CA	ALA A		38.024	8.476	21.821	1.00 53.78
	ATOM	1443	С	ALA A		39.362	7.759	21.964	1.00 54.22
	ATOM	1444	0	ALA A		39.999	7.417	20.974	1.00 54.32
	ATOM	1445	CB	ALA A	175	38.226	9.986	21.910	1.00 51.67
45	ATOM	1446	N	GLU P		39.832	7.508	23.186	1.00 55.55
	ATOM	1447	CA	GLU A	176	41.120	6.865	23.409	1.00 56.73
	ATOM	1448	С	GLU A		41.015	5.357	23.234	1.00 57.74
	ATOM	1449	0	GLU F	176	42.025	4.646	23.187	1.00 58.14
	MOTA	1450	CB	GLU A	176	41.655	7.170	24.806	1.00 56.85
50	ATOM	1451	CG	GLU A	176	41.910	8.632	25.116	1.00 59.30
	MOTA	1452	CD	GLU A	176	42.180	8.743	26.537	0.00 99.00
	ATOM	1453	OE1	GLU F	176	41.740	8.063	27.454	0.00 99.00
	MOTA	1454	OE2	GLU F	176	43.073	9.574	26.687	0.00 99.00
	MOTA	1455	N	LYS F		39.790	4.852	23.170	1.00 58.44
55	ATOM	1456	CA	LYS A	177	39.555	3.420	23.024	1.00 59.70
	MOTA	1457	С	LYS A		39.312	3.069	21.561	1.00 60.20
	MOTA	1458	0	LYS F		39.326	1.895	21.198	1.00 60.71
	MOTA	1459	CB	LYS F	177	38.350	3.040	23.887	1.00 63.58
	ATOM	1460	CG	LYS A	177	38.054	1.569	24.029	1.00 67.87
60	MOTA	1461	CD	LYS A	177	37.047	1.277	25.140	1.00 70.02
	MOTA	1462	CE	LYS F		36.872	-0.235	25.242	1.00 73.46
	MOTA	1463	NZ	LYS F		36.221	-0.638	26.517	1.00 75.57
	ATOM _	1464	N	TYR A	178	38.908	4.057	20.758	1.00 60.36
		•							

ATOM 1465 CA TYR A 178 38.551 3.798 19.361 1.00 61.69 ATOM 1466 C TYR A 178 39.669 4.563 18.361 1.00 62.25 ATOM 1467 O TYR A 178 39.821 3.923 17.409 1.00 63.37 ATOM 1469 CB TYR A 178 39.821 3.923 17.409 1.00 63.37 ATOM 1470 CD1 TYR A 178 36.139 3.197 20.010 1.00 61.34 ATOM 1471 CD1 TYR A 178 36.139 3.197 20.010 1.00 61.34 ATOM 1472 CD1 TYR A 178 35.189 3.821 20.798 1.00 62.10 ATOM 1473 CE2 TYR A 178 35.189 3.821 20.798 1.00 62.22 ATOM 1473 CE2 TYR A 178 35.189 3.821 20.798 1.00 62.23 ATOM 1473 CE2 TYR A 178 34.378 3.097 21.651 1.00 62.22 ATOM 1475 ON TYR A 178 34.378 3.097 21.651 1.00 62.25 ATOM 1475 ON TYR A 178 34.378 3.097 21.651 1.00 62.25 ATOM 1475 ON TYR A 178 34.378 3.097 21.651 1.00 62.25 ATOM 1476 CS TYR A 178 34.378 3.097 21.651 1.00 62.25 ATOM 1477 CA SER A 179 39.573 5.88 18.525 1.00 62.35 ATOM 1478 OSER A 179 39.573 5.88 18.525 1.00 62.35 ATOM 1478 OSER A 179 39.573 5.88 18.525 1.00 62.35 ATOM 1478 OSER A 179 39.982 8.923 17.631 1.00 64.198 ATOM 1481 OG SER A 179 39.982 8.923 17.651 1.00 66.198 ATOM 1481 OG SER A 179 39.982 8.923 17.651 1.00 66.198 ATOM 1481 OG SER A 179 39.982 8.923 16.650 1.00 65.54 ATOM 1482 CN LYS A 180 42.575 7.876 16.650 1.00 65.74 ATOM 1482 CN LYS A 180 42.675 7.876 16.650 1.00 65.74 ATOM 1482 CN LYS A 180 43.672 7.876 16.650 1.00 66.75 ATOM 1485 ON LYS A 180 43.672 7.876 16.650 1.00 66.75 ATOM 1485 ON LYS A 180 44.806 9.591 17.00 67.25 ATOM 1485 CN LYS A 180 44.806 9.591 17.100 67.25 ATOM 1485 CN LYS A 180 44.806 9.591 17.100 67.25 ATOM 1485 CN LYS A 180 44.806 9.591 17.100 67.25 ATOM 1487 CG LYS A 180 44.806 9.591 17.100 67.83 ATOM 1489 CN LYS A 180 46.806 9.591 17.100 67.83 ATOM 1489 CN LYS A 180 46.806 9.591 17.100 67.83 ATOM 1499 CN LYS A 180 46.806 9.591 17.100 67.83 ATOM 1499 CN LYS A 180 46.806 9.591 17.100 67.85 ATOM 1498 CN LYS A 180 46.806 9.591 17.100 67.85 ATOM 1498 CN LYS A 180 46.806 9.591 17.100 67.85 ATOM 1498 CN LYS A 180 46.806 9.591 17.100 67.85 ATOM 1498 CN LYS A 180 46.806 9.591 17.											
ATOM 1466 C TYR A 178 39,369 4.563 18.361 1.00 62.23 ATOM 1468 CB TYR A 178 37.057 3.988 19.100 1.00 63.34 ATOM 1469 CB TYR A 178 37.057 3.988 19.100 1.00 61.34 ATOM 1470 CD1 TYR A 178 36.249 1.811 20.081 1.00 62.10 ATOM 1471 CD2 TYR A 178 36.249 1.811 20.081 1.00 62.10 ATOM 1472 CEI TYR A 178 35.440 1.072 20.929 1.00 62.32 ATOM 1473 CEI TYR A 178 35.440 1.072 20.929 1.00 62.32 ATOM 1473 CEI TYR A 178 35.440 1.072 20.929 1.00 62.32 ATOM 1473 CEI TYR A 178 34.505 1.723 12.707 1.00 62.51 ATOM 1475 CB TYR A 178 34.505 1.723 12.707 1.00 62.51 ATOM 1475 CB TYR A 178 34.505 1.723 12.707 1.00 62.51 ATOM 1475 CB TYR A 178 34.505 1.723 12.707 1.00 62.51 ATOM 1475 CB SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1475 CB SER A 179 41.662 6.923 17.631 1.00 62.95 ATOM 1478 C SER A 179 41.662 6.923 17.631 1.00 62.95 ATOM 1478 C SER A 179 41.662 6.923 17.631 1.00 64.98 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 66.19 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 65.34 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 65.34 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 65.34 ATOM 1482 C LYS A 180 42.254 7.552 16.609 1.00 65.75 ATOM 1488 CD LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1488 CD LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1488 CD LYS A 180 44.431 7.615 15.360 1.00 64.98 ATOM 1488 CD LYS A 180 44.431 7.615 15.360 1.00 66.75 ATOM 1488 CD LYS A 180 44.431 7.615 15.360 1.00 66.75 ATOM 1488 CD LYS A 180 44.431 7.615 15.360 1.00 66.75 ATOM 1489 C LYS A 180 44.431 7.615 15.360 1.00 66.75 ATOM 1489 C LYS A 180 44.431 7.615 15.360 1.00 66.75 ATOM 1489 C LYS A 180 45.681 1.00 69.83 ATOM 1489 C C LYS A 180 45.681 1.00 69.83 ATOM 1490 NZ LYS A 180 45.681 1.00 69.83 ATOM 1490 NZ LYS A 180 45.681 1.00 69.83 ATOM 1490 NZ LYS A 180 45.681 1.00 69.83 ATOM 1490 NZ LYS A 180 45.681 1.00 69.80 ATOM 1490 NZ LYS A 180 45.681 1.00 69.80 ATOM 1490 NZ LYS A 180 45.681 1.00 69.80 ATOM 1490 NZ LYS A 180 45.681 1.00 69.80 ATOM 1499 NZ LYS A 180 45.681 1.00 69.80 ATOM 1499 NZ LYS A 182 40.751 1.00 60.55 1.00 66.90 ATOM 1499 NZ LYS A		ATOM	1465	CA	TYR A	178	38.551	3.798	19.381		
ATOM 1466 CB TYR A 178 39.821 3.923 17.409 1.00 63.37 ATOM 1469 CG TYR A 178 37.057 3.988 19.100 1.00 61.34 ATOM 1470 CD1 TYR A 178 36.139 3.197 20.010 1.00 61.34 ATOM 1471 CD2 TYR A 178 36.249 1.811 20.0981 1.00 62.10 ATOM 1472 CE1 TYR A 178 35.489 3.821 20.798 1.00 62.10 ATOM 1473 CE2 TYR A 178 35.489 3.821 20.798 1.00 62.21 ATOM 1474 CZ TYR A 178 35.489 3.821 20.798 1.00 62.22 ATOM 1475 OR 178 A 178 35.480 3.821 20.798 1.00 62.22 ATOM 1476 N SER A 178 34.505 1.723 21.707 1.00 62.22 ATOM 1476 N SER A 179 39.573 5.858 18.525 1.00 62.51 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.199 ATOM 1479 C SER A 179 40.159 6.703 17.498 1.00 64.199 ATOM 1480 CB SER A 179 42.279 6.550 18.630 1.00 64.99 ATOM 1481 CB SER A 179 39.982 8.923 16.491 1.00 66.93 ATOM 1482 CB SER A 179 39.982 8.923 16.491 1.00 66.574 ATOM 1483 CA LYS A 180 42.254 7.552 1.6699 1.00 65.75 ATOM 1485 C LYS A 180 43.866 9.591 17.887 1.00 67.25 ATOM 1486 CB LYS A 180 43.866 9.591 17.887 1.00 67.25 ATOM 1487 CG LYS A 180 44.31 7.615 15.360 1.00 67.85 ATOM 1488 C LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1488 C LYS A 180 44.806 9.591 17.887 1.00 73.65 ATOM 1490 NZ LYS A 180 46.681 8.326 14.427 1.00 73.65 ATOM 1491 N ASN A 181 43.126 11.609 17.113 1.00 66.93 ATOM 1493 C ANN A 181 43.126 11.609 17.113 1.00 66.93 ATOM 1494 O ANN A 181 41.133 11.131 18.348 1.00 65.55 ATOM 1495 CB ANN A 181 41.555 1.246 14.887 1.00 75.99 ATOM 1497 N ANN A 181 41.555 1.224 11.00 75.99 ATOM 1498 ND2 ANN A 181 41.53 1.74 1.254 16.6113 0.00 99.00 ATOM 1497 C CA ANN A 181 41.555 1.246 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.53 1.731 1.33 1.33 1.39 3.99 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.555 1.246 1.133 0.00 99.00 ATOM 1497 N ANN A 181 41.133 11.131 18.348 1.00 65.56 ATOM 1498 ND2 ANN A 181 41.555 1.755 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.555 1.755 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.555 1.755 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.555 1.755 1.00 66.93 ATOM 1498 ND2 ANN A 181 41.555 1.755 1.00 66.93 ATOM 1500 C ANN A 181 41.53 39.99			1466	С	TYR A	178	39.369	4.563			
ATOM				0	TYR A	178	39.821	3.923	17.409		
5 ATOM 1470 CD1 TYR A 178 36.139 3.197 20.010 1.00 61.39 ATOM 1470 CD1 TYR A 178 36.249 1.811 20.081 1.00 62.10 ATOM 1471 CD2 TYR A 178 35.189 3.821 20.798 1.00 61.28 ATOM 1472 CE1 TYR A 178 35.489 3.821 20.798 1.00 62.32 ATOM 1473 CE2 TYR A 178 34.378 3.097 21.651 1.00 62.32 ATOM 1474 CZ TYR A 178 34.505 1.723 21.707 1.00 62.32 ATOM 1475 OR TYR A 178 34.505 1.723 21.707 1.00 62.32 ATOM 1476 OR SER A 179 39.573 5.858 18.525 1.00 62.51 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1479 OR SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1479 OR SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1480 CB SER A 179 39.962 8.923 16.491 1.00 66.34 ATOM 1482 N LIS A 180 42.254 7.552 1.00 65.34 ATOM 1482 N LIS A 180 42.254 7.552 1.00 66.34 ATOM 1488 CB LIS A 180 42.254 7.552 1.00 66.93 ATOM 1486 CB LIS A 180 43.866 9.591 17.887 1.00 67.85 ATOM 1487 CG LIS A 180 44.431 7.615 15.360 1.00 67.85 ATOM 1487 CG LIS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1487 CG LIS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1487 CG LIS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1487 CG LIS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1487 CG LIS A 180 44.806 9.591 17.887 1.00 78.98 ATOM 1490 NZ LIS A 180 46.681 8.326 14.427 1.00 78.69 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.83 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1490 NZ LIS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 75.99 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.55 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.55 ATOM 1495 CB ASN A 181 41.525 LIS A 180 45.555 LIS A				CB	TYR A	178	37.057	3.988	19.100	1.00	61.34
ATOM	5						36.139	3.197	20.010	1.00	61.39
ATOM 1471 CD2 TYR A 178	7								20.081	1.00	62.10
ATOM 1472 CE1 TYR A 178 35.440 1.072 20.929 1.00 62.32 ATOM 1473 CE2 TYR A 178 34.378 3.097 21.651 1.00 62.22 1.00 ATOM 1474 CZ TYR A 178 34.505 1.723 21.707 1.00 62.21 ATOM 1476 N SER A 179 39.573 5.858 18.525 1.00 62.15 ATOM 1477 CA SER A 179 39.573 5.858 18.525 1.00 62.15 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1478 C SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1479 O SER A 179 40.279 6.550 18.630 1.00 64.79 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 65.34 ATOM 1481 OG SER A 179 39.982 8.923 16.631 1.00 64.99 ATOM 1480 CB SER A 179 39.982 8.923 16.491 1.00 69.36 ATOM 1480 C JYS A 180 43.672 7.876 16.699 1.00 65.75 ATOM 1480 C JYS A 180 43.866 9.361 17.00 7.00 67.25 ATOM 1485 O LYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1480 C JYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1480 C JYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1480 C JYS A 180 44.806 9.591 17.887 1.00 67.83 ATOM 1480 C JYS A 180 44.806 9.591 17.887 1.00 67.83 ATOM 1480 C JYS A 180 44.801 8.889 14.427 1.00 76.04 ATOM 1480 C JYS A 180 45.938 7.673 15.581 1.00 78.28 ATOM 1489 CE JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1491 N ASN A 181 43.101 10.016 1.00 65.34 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 8.889 14.887 1.00 78.28 ATOM 1490 C Z JYS A 180 48.016 JYS Z JYS										1.00	61.28
ATOM										1.00	62.32
10 ATOM 1474 CZ TYR A 178 34.505 1.723 21.707 1.00 62.15 ATOM 1475 OH TYR A 178 33.696 0.999 22.540 1.00 62.15 ATOM 1477 CA SER A 179 39.573 5.858 18.525 1.00 62.15 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1479 O SER A 179 41.662 6.923 17.631 1.00 64.98 ATOM 1480 CB SER A 179 42.279 6.550 18.630 1.00 64.98 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 65.34 ATOM 1481 OG SER A 179 39.982 8.923 16.491 1.00 65.34 ATOM 1481 OG SER A 179 39.982 8.923 16.491 1.00 65.55 ATOM 1480 CD LYS A 180 43.672 7.876 16.669 1.00 65.75 ATOM 1480 CD LYS A 180 43.672 7.876 16.669 1.00 65.75 ATOM 1485 O LYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1487 CG LYS A 180 44.806 9.591 17.887 1.00 67.83 ATOM 1488 CD LYS A 180 44.806 9.591 17.887 1.00 67.83 ATOM 1489 CE LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 46.681 8.326 14.427 1.00 75.99 ATOM 1491 NASN A 181 43.017 10.216 16.652 1.00 68.33 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1499 O ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1499 C ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1499 C ASN A 181 41.333 11.311 18.348 1.00 55.88 ATOM 1499 C ASN A 181 41.333 11.311 18.348 1.00 55.88 ATOM 1499 C ASN A 181 41.535 11.00 65.00 65.34 ATOM 1499 C ASN A 181 41.535 11.00 65.88 ATOM 1499 C ASN A 181 41.535 11.00 65.88 ATOM 1499 C ASN A 181 41.555 11.00 65.00 65.38 ATOM 1499 C ASN A 181 41.555 11.00 65.00 65.38 ATOM 1499 C ASN A 181 41.555 11.00 65.00 65.38 ATOM 1500 C ASN A 181 41.554 12.248 11.609 17.113 1.00 65.58 ATOM 1500 C ASN A 182 42.227 11.2454 61.113 0.00 69.00 69.00 69.00 69.00 69.00 69.00 69.00 6											
ATOM 1475 OH TYR X 178 ATOM 1476 N SER A 179 39.573 5.885 HS 525 1.00 62.95 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.99 ATOM 1478 C SER A 179 41.662 6.923 17.631 1.00 64.99 ATOM 1480 CB SER A 179 42.279 6.550 18.630 1.00 64.79 ATOM 1480 CB SER A 179 39.470 8.077 17.505 1.00 64.79 ATOM 1481 OG SER A 179 39.982 8.923 16.491 1.00 69.64 ATOM 1482 N LYS A 180 42.254 7.552 16.609 1.00 69.64 ATOM 1483 CA LYS A 180 43.672 7.876 16.658 1.00 66.93 ATOM 1485 CD LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1485 CD LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1486 CB LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1489 CC LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1489 CE LYS A 180 46.681 8.26 14.427 1.00 76.04 ATOM 1491 N ASN A 181 43.106 16.685 10.00 76.94 ATOM 1492 CA SEN A 181 43.107 10.216 16.652 1.00 76.94 ATOM 1493 C ASN A 181 43.126 11.609 17.113 1.00 78.28 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1497 CA SER A 180 46.681 8.89 14.887 1.00 75.99 ATOM 1490 CA SEN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1497 CA SER A 180 45.938 7.673 15.581 1.00 75.99 ATOM 1490 CA SER A 180 46.681 13.31 1.31 1.31 1.348 1.00 66.52 ATOM 1496 CG ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1497 CA SER A 180 46.681 13.30 00 99.00 ATOM 1497 CA SER A 180 46.681 13.30 00 99.00 ATOM 1497 CO ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1498 CG LYS A 180 46.681 13.30 00 99.00 99.00 ATOM 1497 CO ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1500 CG LYS A 182 41.462 13.626 22.774 1.00 76.98 ATOM 1500 CG LYS A 182 41.462 13.626 22.776 19.155 1.00 66.98 ATOM 1500 CG LYS A 182 41.462 13.626 22.776 19.05 0.09 9.00 ATOM 1500 CG LYS A 182 41.462 13.626 22.776 19.05 0.09 9.00 ATOM 1500 CG LYS A 182 41.462 13.626 22.776 19.05 0.09 9.00 ATOM 1500 CG LYS A 182 41.460 20.253 10.00 99.00 ATOM 1500 CG LYS	10										
ATOM 1476 N SER A 179 39.573 5.858 18.525 1.00 62.95 ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1477 CA SER A 179 41.662 6.923 17.631 1.00 64.19 ATOM 1479 O SER A 179 42.279 6.550 18.630 1.00 64.79 ATOM 1481 CB SER A 179 39.470 8.077 17.555 1.00 65.34 ATOM 1481 OG SER A 179 39.470 8.077 17.555 1.00 65.34 ATOM 1482 N LYS A 180 42.254 7.552 16.609 1.00 65.75 ATOM 1482 CA LYS A 180 43.672 7.876 16.658 1.00 65.75 ATOM 1483 CA LYS A 180 43.866 9.316 17.107 1.00 67.25 ATOM 1485 CB LYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1485 CB LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1485 CB LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1489 CE LYS A 180 45.938 7.673 15.581 1.00 75.99 ATOM 1489 CE LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1489 CE LYS A 180 46.861 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 76.94 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 76.93 ATOM 1491 N ASNA 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASNA 181 43.017 10.216 16.652 1.00 66.93 ATOM 1493 C ASNA 181 43.017 10.216 16.652 1.00 66.93 ATOM 1494 O ASNA 181 43.017 10.216 16.652 1.00 66.93 ATOM 1494 O ASNA 181 43.174 12.188 11.842 18.240 1.00 65.58 ATOM 1499 N LYS A 180 47.829 10.056 15.790 1.00 76.06 ATOM 1496 CG ASNA 181 41.314 12.288 11.842 18.240 1.00 65.58 ATOM 1499 N LYS A 182 41.433 11.131 18.348 1.00 65.58 ATOM 1499 N LYS A 182 41.433 11.311 18.348 1.00 65.58 ATOM 1499 N LYS A 182 41.433 11.311 18.348 1.00 65.86 ATOM 1495 CB ASNA 181 41.5545 12.248 15.833 0.00 99.00 ATOM 1497 ODI ASNA 181 41.5545 12.248 15.833 0.00 99.00 ATOM 1497 NZ LYS A 182 41.433 13.016 60 22.232 1.00 62.47 ATOM 1500 CB LYS A 182 41.433 13.016 60 22.232 1.00 62.47 ATOM 1500 CB LYS A 182 41.433 13.016 60 22.232 1.00 62.47 ATOM 1500 CB LYS A 182 41.433 13.096 20.232 1.00 62.47 ATOM 1500 CB LYS A 182 41.433 13.096 20.232 1.00 63.44 ATOM 1501 C LYS A 182 40.755 14.006 23.651 1.00 73.28 ATOM 1500 CB LYS A 182 40.755 14.006 22.653 1.00 73.80 ATOM 1500 CB LYS A 182 40.755 15.405 20.241 1.00 05.44 ATOM 1501 C LYS A 18	10										
ATOM 1477 CA SER A 179 40.159 6.703 17.498 1.00 64.19 ATOM 1478 C SER A 179 41.662 6.923 17.631 1.00 64.99 ATOM 1478 C SER A 179 41.662 6.923 17.631 1.00 64.79 ATOM 1480 CB SER A 179 39.970 8.077 17.505 1.00 65.34 ATOM 1481 N LYS A 180 42.254 7.552 16.609 1.00 69.64 ATOM 1482 N LYS A 180 42.254 7.552 16.609 1.00 69.64 ATOM 1483 CA LYS A 180 43.672 7.876 16.658 1.00 66.93 ATOM 1483 CA LYS A 180 43.866 9.361 17.107 1.00 67.25 ATOM 1484 C LYS A 180 43.866 9.361 17.107 1.00 67.85 ATOM 1485 C LYS A 180 44.816 9.591 17.887 1.00 67.85 ATOM 1486 CB LYS A 180 44.816 9.591 17.887 1.00 67.85 ATOM 1487 CG LYS A 180 44.816 9.591 17.887 1.00 67.85 ATOM 1487 CG LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1489 CD LYS A 180 46.661 8.326 14.427 1.00 76.04 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1493 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.609 17.113 18.348 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.609 17.113 18.348 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.609 17.113 18.348 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.609 17.113 18.348 1.00 65.58 ATOM 1495 CB ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1498 NDZ ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1500 C A LYS A 182 40.955 14.370 19.855 1.00 65.06 ATOM 1500 C CA LYS A 182 40.955 14.370 19.855 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 14.370 19.855 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 14.370 19.855 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 14.370 19.855 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 15.4370 19.855 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 15.450 19.155 1.00 60.84 ATOM 1500 C CA LYS A 182 40.955 15.450 19.											
ATOM											
15 ATOM 1479 O SER A 179											
ATOM 1480 CB SER A 179 39.8470 8.077 17.505 1.00 65.34 ATOM 1481 OG SER A 179 39.982 8.923 16.491 1.00 69.64 ATOM 1482 CA LYS A 180 42.254 7.552 16.609 1.00 65.75 ATOM 1483 CA LYS A 180 43.672 7.876 16.658 1.00 66.93 ATOM 1485 C LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1484 C LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1485 C LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1486 CB LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1486 CB LYS A 180 44.817 1.615 15.360 1.00 69.83 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 76.04 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 75.99 ATOM 1490 NZ LYS A 180 48.016 8.889 14.827 1.00 75.99 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1493 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1494 O ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1495 CB ASN A 181 43.126 11.33 11.131 18.348 1.00 65.86 ATOM 1497 ODI ASN A 181 43.174 12.454 16.113 0.00 99.00 ATOM 1497 ODI ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 NZ LYS A 180 44.528 12.902 15.624 0.00 99.00 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 66.93 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 66.93 ATOM 1500 CA LYS A 182 41.483 13.086 0.0232 1.00 62.47 ATOM 1501 C LYS A 182 40.951 15.4056 14.935 0.00 99.00 ATOM 1500 CA LYS A 182 41.483 13.086 0.033 1.00 99.00 ATOM 1500 CA LYS A 182 41.483 13.086 0.033 1.00 99.00 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 40.951 15.405 0.041 1.00 68.03 ATOM 1500 CA LYS A 182 41.483 39.946 17.751 1.00 52.42 ATOM 1500 CA LYS A 182 41.483 39.946 17.791 1.00 52.42 ATOM 1500 CA LYS A 182 41.483 39.946 17.302 11.00 60.87 ATOM 1510 CA LYS A 184 34.900	1.5										
ATOM 1481 OG SER A 179 39.982 8.923 16.491 1.00 69.64 ATOM 1482 N. LYS A 180 42.254 7.552 16.609 1.00 65.75 ATOM 1483 CA LYS A 180 43.866 9.316 17.107 1.00 67.25 ATOM 1485 O. LYS A 180 43.866 9.316 17.107 1.00 67.25 ATOM 1485 O. LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1485 O. LYS A 180 44.806 9.316 17.107 1.00 67.85 ATOM 1485 CB LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1487 CG LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1488 CD LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1489 CE LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 46.681 8.326 14.427 1.00 75.99 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1495 CB ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1495 CB ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.86 ATOM 1495 CB ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.242 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 40.755 14.370 19.855 1.00 62.47 ATOM 1500 CA LYS A 182 40.755 14.370 19.855 1.00 66.93 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 66.89 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.951 15.466 22.374 1.00 73.28 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 CB LYS A 182	15										
ATOM 1482 N LYS A 180 42.254 7.552 16.609 1.00 65.75 ATOM 1484 C LYS A 180 43.672 7.876 16.658 1.00 66.93 ATOM 1485 C LYS A 180 43.886 9.591 17.887 1.00 67.25 ATOM 1486 CB LYS A 180 44.886 9.591 17.887 1.00 67.85 ATOM 1486 CB LYS A 180 44.886 9.591 17.887 1.00 67.85 ATOM 1486 CB LYS A 180 44.811 7.615 15.360 1.00 69.83 ATOM 1487 CG LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1489 CE LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 46.681 8.326 14.427 1.00 75.99 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1494 O ASN A 181 42.128 11.842 18.240 1.00 65.586 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.586 ATOM 1494 O ASN A 181 41.133 11.131 18.348 1.00 65.86 ATOM 1495 CB ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 ODI ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.422 12.756 19.155 1.00 66.93 ATOM 1500 CA LYS A 182 40.951 15.405 0.039 19.00 ATOM 1500 CA LYS A 182 40.755 14.370 19.855 1.00 66.44 ATOM 1500 C LYS A 182 40.951 15.405 0.039 19.00 ATOM 1500 C LYS A 182 40.951 15.405 0.039 19.00 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.729 16.534 24.325 1.00 73.12 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.49 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1500 C LYS A 182 40.755 14.370 19.855 1.00 60.45 ATOM 1500 C R VAL A 183 39.936 16.462 17.732 1.00 73.28 ATOM 1500 C R VAL A 183 39.936 16.462 17.7302 1.00 74.63 ATOM 1510 C VAL A 183 39.936 16.462 17.7302 1.00 74.63 ATOM 1510 C TRP A 184 36.490 17.504 18.00 1.00 45.59 ATOM 1510 C TRP A 184 36.490 17.504 18.00 1.00 45.59 ATOM 1510 C TRP A 184 36.490 17.504 18.00 10.00 49.48											
20 ATOM 1485 C LYS A 180 43.672 7.876 16.658 1.00 66.93 ATOM 1485 C LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1485 C LYS A 180 44.806 9.591 17.887 1.00 67.85 ATOM 1487 CG LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1488 CD LYS A 180 44.431 7.615 15.360 1.00 76.04 ATOM 1488 CD LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1491 N ASN A 181 43.017 10.216 15.790 1.00 78.28 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.53 ATOM 1493 C ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1494 O ASN A 181 43.174 12.454 16.113 10.00 65.58 ATOM 1495 CB ASN A 181 44.528 11.842 18.240 1.00 65.86 ATOM 1496 CG ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 ODI ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.422 12.756 19.155 1.00 66.76 ATOM 1500 CA LYS A 182 42.212 12.756 19.155 1.00 66.76 ATOM 1501 C LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1500 CA LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1500 C LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1500 C LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1500 C LYS A 182 40.729 16.534 24.325 1.00 73.28 ATOM 1509 C LYS A 182 40.729 16.534 24.325 1.00 73.28 ATOM 1509 C LYS A 182 40.729 16.534 24.325 1.00 73.28 ATOM 1509 C LYS A 182 40.729 16.534 24.325 1.00 73.28 ATOM 1509 C LYS A 182 40.729 16.534 24.325 1.00 73.28 ATOM 1509 C LYS A 183 39.936 16.462 17.302 1.00 60.87 ATOM 1510 C VAL A 183 39.936 16.462 17.302 1.00 60.87 ATOM 1510 C T RP A 184 36.795 15.581 18.302 1.00 45.59 ATOM 1510 C T RP A 184 36.490 15.559 18.334 1.00 52.43 ATOM 1510 C T RP A 184 36.490 17.504 18.000 1.00 49.48 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 60.87 ATOM 1518 O TRP A 184 36.490 17.504 18.000 1.00 49.49 ATOM 1518 O TRP A 184 36.490 17.504 18.000 1.00 49.49 ATOM 1512 CB VAL A 183 39.936 16.462 17.706 1.00 45.59 ATOM 1518 O TRP A 184 36.109 14.271 21.216 1.00 45.59											
20 ATOM 1484 C LYS A 180 43.886 9.316 17.107 1.00 67.25 ATOM 1486 CB LYS A 180 44.806 9.591 17.887 1.00 67.25 ATOM 1486 CB LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1498 CE LYS A 180 48.016 8.889 14.887 1.00 75.99 ATOM 1491 N ASN A 181 43.017 10.216 16.552 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.552 1.00 66.93 ATOM 1493 C ASN A 181 43.017 10.216 16.552 1.00 66.93 ATOM 1494 O ASN A 181 41.133 11.131 18.348 1.00 65.58 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.58 ATOM 1496 CG ASN A 181 41.133 11.131 18.348 1.00 65.58 ATOM 1497 N ASN A 181 43.545 12.288 15.833 0.00 99.00 ATOM 1496 CG ASN A 181 44.525 12.902 15.624 0.00 99.00 ATOM 1497 N NDL ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1499 N NL XS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1501 C LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1502 CD LYS A 182 40.755 14.370 19.855 1.00 62.47 ATOM 1503 CB LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1504 CG LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1506 CE LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1506 CE LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1507 CD LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1508 N VAL A 183 37.902 14.202 15.44 1.00 68.03 ATOM 1507 CD LYS A 182 40.729 16.534 24.325 1.00 60.46 ATOM 1507 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1508 N VAL A 183 37.902 14.201 16.995 1.00 61.12 ATOM 1508 CD LYS A 182 41.360 15.246 22.774 1.00 70.69 ATOM 1507 CD LYS A 182 41.360 15.246 22.774 1.00 60.03 ATOM 1508 CD LYS A 182 41.360 15.246 22.774 1.00 60.03 ATOM 1507 CD LYS A 182 41.360 15.246 22.774 1.00 60.03 ATOM 1508 CD LYS A 182 41.462 13.626 22.774 1.00 60.03 ATOM 1508 CD LYS A 182 41.462 13.626 22.774 1.00 60.03 ATOM 1508 CD LYS A 182 41.462 13.626 22.774 1.00 60.03 ATOM 1508 CD LYS A 182 41.462 13.626 22.774 1.00 60.03 ATOM 1508 CD LYS A 1											
ATOM 1485 G LYS A 180											
ATOM 1486 CB LYS A 180 44.431 7.615 15.360 1.00 69.83 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1488 CD LYS A 180 45.938 7.673 15.581 1.00 73.65 ATOM 1498 CC LYS A 180 46.681 8.326 14.427 1.00 76.04 ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1493 C ASN A 181 43.126 11.609 17.113 10.0 66.5.88 ATOM 1494 O ASN A 181 41.133 11.131 18.348 1.00 65.58 ATOM 1495 CE ASN A 181 41.133 11.131 18.348 1.00 65.86 ATOM 1496 CG ASN A 181 45.28 12.902 15.624 0.00 99.00 ATOM 1496 CG ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1499 N LYS A 182 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1499 N LYS A 182 41.483 13.086 20.232 1.00 62.47 ATOM 1500 CA LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1501 C LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CE LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CE LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1507 NZ LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1508 N VAL A 183 37.899 15.073 17.781 1.00 55.16 ATOM 1509 CA VAL A 183 37.899 15.073 17.781 1.00 58.04 ATOM 1509 CA VAL A 183 37.899 15.073 17.781 1.00 58.04 ATOM 1510 C VAL A 183 37.902 14.220 16.888 1.00 52.42 ATOM 1510 C VAL A 183 37.902 14.220 16.880 1.00 58.84 ATOM 1515 CB VAL A 183 37.902 14.220 16.880 1.00 58.84 ATOM 1516 CB TRP A 184 36.791 17.353 17.913 1.00 42.88 ATOM 1518 O TRP A 184 36.049 17.551 18.302 1.00 49.48 ATOM 1518 O TRP A 184 36.049 17.551 1.00 67.508 ATOM 1518 O TRP A 184 36.049 13.526 22.380 1.00 39.37 ATOM 1520 CG TRP A 184 36.009 14.271 12.212 1.00 41.88	20	MOTA		С					•		
ATOM 1487 CG LYS A 180		MOTA	1485	0							
ATOM 1488 CD LYS A 180		ATOM	1486	CB							
25 ATOM 1498 CE LYS A 180		MOTA	1487	CG	LYS A	180					
ATOM 1490 NZ LYS A 180 47.829 10.056 15.790 1.00 78.28 ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1493 C ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1494 O ASN A 181 42.128 11.842 18.240 1.00 65.86 ATOM 1495 CB ASN A 181 42.128 11.842 18.240 1.00 65.86 ATOM 1496 CG ASN A 181 44.525 12.902 15.624 0.00 99.00 ATOM 1496 ND2 ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 65.06 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1503 CB LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.506 15.246 24.718 1.00 73.12 ATOM 1506 CE LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.360 15.246 24.718 1.00 55.16 ATOM 1507 NZ LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1507 NZ LYS A 182 41.360 15.246 24.718 1.00 55.16 ATOM 1507 NZ LYS A 182 41.360 15.246 24.718 1.00 55.16 ATOM 1510 C VAL A 183 37.902 14.200 16.689 1.00 49.48 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1515 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1515 CB VAL A 183 39.936 16.462 17.302 1.00 45.59 ATOM 1516 CA TRP A 184 36.791 17.353 17.913 1.00 42.62 ATOM 1516 CA TRP		MOTA	1488	CD	LYS A	180					
ATOM 1491 N ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1492 CA ASN A 181 43.017 10.216 16.652 1.00 66.93 ATOM 1493 C ASN A 181 43.126 11.609 17.113 1.00 65.58 ATOM 1494 O ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.86 ATOM 1495 CG ASN A 181 41.133 11.131 18.348 1.00 65.86 ATOM 1496 CG ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 OD1 ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1499 ND LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 41.483 13.086 20.232 1.00 62.47 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1504 CG LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1506 CE LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1508 N VAL A 183 39.240 15.559 18.324 1.00 73.28 ATOM 1508 N VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.902 14.220 16.898 1.00 52.42 ATOM 1511 C VAL A 183 37.902 14.220 16.898 1.00 52.42 ATOM 1511 C VAL A 183 37.902 14.220 16.898 1.00 52.42 ATOM 1511 C VAL A 183 37.902 14.220 16.898 1.00 52.42 ATOM 1515 N TRP A 184 36.785 15.504 18.300 1.00 49.48 ATOM 1515 N TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1522 CD2 TRP A 184 36.709 14.271 21.216 1.00 39.30 ATOM 1522 CD2 TRP A 184	25	ATOM	1489	CE	LYS A	180	48.016				
ATOM 1492 CA ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1493 C ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1494 O ASN A 181 42.128 11.842 18.240 1.00 65.86 ATOM 1495 CB ASN A 181 43.174 12.454 16.113 0.00 99.00 ATOM 1495 CG ASN A 181 43.174 12.454 16.113 0.00 99.00 ATOM 1496 CG ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 ND LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.257 13.224 21.544 1.00 70.69 ATOM 1507 NZ LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1513 CGI VAL A 183 37.899 15.073 17.781 1.00 52.43 ATOM 1513 CGI VAL A 183 39.902 14.220 16.898 1.00 52.43 ATOM 1515 CB VAL A 183 39.902 14.220 16.898 1.00 52.43 ATOM 1515 CB VAL A 183 39.902 14.220 16.898 1.00 52.43 ATOM 1515 CB VAL A 183 39.902 14.220 16.898 1.00 52.43 ATOM 1515 CB VAL A 183 38.965 17.219 16.395 1.00 61.12 ATOM 1516 CA TRP A 184 36.490 16.159 17.706 1.00 44.01 ATOM 1516 CA TRP A 184 36.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 36.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 34.491 15.541 22.123 1.00 39.37 ATOM 1522 CD2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1524 CE2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1525 CE3		ATOM	1490	NZ	LYS A	180	47.829		15.790	_	
ATOM 1492 CA ASN A 181 43.126 11.609 17.113 1.00 66.52 ATOM 1494 O ASN A 181 42.128 11.842 18.240 1.00 65.58 ATOM 1495 CB ASN A 181 41.133 11.131 18.348 1.00 65.58 ATOM 1495 CG ASN A 181 42.128 11.842 18.240 1.00 65.86 ATOM 1495 CG ASN A 181 43.174 12.454 16.113 0.00 99.00 ATOM 1496 ND2 ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CB LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1507 NZ LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1513 CGI VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1516 CA TRP A 184 36.785 15.591 18.302 1.00 44.01 ATOM 1516 CA TRP A 184 36.785 15.042 17.878 1.00 45.59 ATOM 1516 CA TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.491 17.353 17.913 1.00 42.88 ATOM 1510 CD TRP A 184 34.491 17.353 17.913 1.00 42.88 ATOM 1510 CD TRP A 184 34.491 17.353 17.913 1.00 42.88 ATOM 1510 CD TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1522 CD2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1524 CC2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1525 CC2 TRP A 184 34.491 15.561 22.123 1.00 39.30 ATOM 1525 CC2 TRP A 184 34.491 15.561 22.123 1.00 39.30 ATOM 1526 CC2 TRP A 184 34.491 15.561 22.123 1.00 39.30 ATOM 1526 CC2 TRP A 184 36.504 14.983 23.529 1.00 41.08 41.08			1491	N	ASN A	181	43.017	10.216	16.652		
ATOM			1492	CA.	ASN A	181	43.126	11.609	17.113		
ATOM				С	ASN A	181	42.128	11.842	18.240		
ATOM 1496 CG ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 OD1 ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 41.483 13.086 20.232 1.00 62.47 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1503 CB LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1506 CE LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1506 CE LYS A 182 41.360 15.246 24.718 1.00 73.28 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1513 CG1 VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 44.88 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1518 O TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1518 O TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1510 CB TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1510 CB TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1510 CB TRP A 184 36.785 15.581 18.302 1.00 44.01 ATOM 1510 CB TRP A 184 36.795 17.353 17.913 1.00 42.88 ATOM 1510 CB TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.08 ATOM 1520 CG2 TRP A 184 36.504 14.983 23.529 1.00 39.37 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 39.30	30						41.133	11.131	18.348	1.00	65.86
ATOM 1497 ODI ASN A 181 44.528 12.902 15.624 0.00 99.00 ATOM 1497 ODI ASN A 181 45.545 12.248 15.833 0.00 99.00 ATOM 1498 ND2 ASN A 181 44.525 14.056 14.935 0.00 99.00 35 ATOM 1499 N LYS A 182 42.432 12.756 19.155 1.00 65.06 ATOM 1500 CA LYS A 182 41.483 13.086 20.322 1.00 62.47 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1504 CG LYS A 182 42.257 13.224 21.544 1.00 70.69 ATOM 1505 CD LYS A 182 42.257 13.224 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1506 CE LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 58.04 ATOM 1507 NZ LYS A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 C VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1516 CG VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CG VAL A 183 39.936 16.462 17.302 1.00 60.87 ATOM 1517 C TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1518 O TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1518 O TRP A 184 36.785 15.581 18.302 1.00 42.85 ATOM 1520 CG TRP A 184 36.791 17.553 17.913 1.00 42.62 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 42.86 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1520 CG2 TRP A 184 36.501 14.983 23.529 1.00 39.37 ATOM 1520 CG2 TRP A 184 36.501 14.983 23.529 1.00 39.37 ATOM 1526 CZ2 TRP A 184 36.501 14.983 23.529 1.00 39.37 ATOM 15							43.174	12.454	16.113		
ATOM 1497 OD1 ASN A 181							44.528	12.902	15.624		
ATOM 1498 ND2 ASN A 181									15.833	0.00	99.00
35 ATOM 1499 N LYS A 182								14.056	14.935	0.00	99.00
ATOM 1500 CA LYS A 182 41.483 13.086 20.232 1.00 62.47 ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 40 ATOM 1504 CG LYS A 182 42.257 13.224 21.544 1.00 68.03 ATOM 1505 CD LYS A 182 42.223 14.606 23.651 1.00 70.69 ATOM 1506 CE LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 40.007 14.401 18.761 1.00 58.04 45 ATOM 1509 CA VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1517 C TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 42.88 ATOM 1521 CD1 TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 42.88 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1522 CD2 TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1522 CD2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1524 CE2 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1525 CE3 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	35							12.756	19.155	1.00	65.06
ATOM 1501 C LYS A 182 40.755 14.370 19.855 1.00 60.44 ATOM 1502 O LYS A 182 40.951 15.405 20.491 1.00 60.89 ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 40 ATOM 1504 CG LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 41.360 15.246 24.718 1.00 73.12 ATOM 1506 CE LYS A 182 41.360 15.246 24.718 1.00 73.12 ATOM 1508 N VAL A 183 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.992 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1510 CB TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1510 CB TRP A 184 34.490 16.159 17.706 1.00 42.88 ATOM 1512 CD TRP A 184 35.049 13.926 18.839 1.00 37.50 ATOM 1522 CD TRP A 184 34.491 15.546 20.830 1.00 37.50 ATOM 1522 CD TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1525 CE3 TRP A 184 34.491 15.541 22.123 1.00 39.30 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CE2 TRP A 184 36.504 14.983 23.529 1.00 41.08	33								20.232	1.00	62.47
ATOM 1502 O LYS A 182											
ATOM 1503 CB LYS A 182 42.257 13.224 21.544 1.00 68.03 40 ATOM 1504 CG LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1506 CE LYS A 182 41.360 15.246 24.718 1.00 73.28 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 40.007 14.401 18.761 1.00 58.04 45 ATOM 1509 CA VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.490 16.159 17.706 1.00 42.62 ATOM 1519 CB TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 37.50 ATOM 1520 CG TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30										1.00	60.89
40 ATOM 1503 CG LYS A 182 41.462 13.626 22.774 1.00 70.69 ATOM 1505 CD LYS A 182 42.223 14.606 23.651 1.00 73.12 ATOM 1506 CE LYS A 182 41.360 15.246 24.718 1.00 73.28 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 40.007 14.401 18.761 1.00 58.04 ATOM 1510 C VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 CB VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1517 C TRF A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 39.47 ATOM 1521 CD1 TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1522 CD2 TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1522 CD2 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1526 CZ2 TRP A 184 35.075 14.460 20.253 1.00 39.37 ATOM 1526 CZ2 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1526 CZ2 TRP A 184 35.075 14.460 20.253 1.00 39.37 ATOM 1526 CZ2 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1526 CZ2 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1526 CZ2 TRP A 184 34.491 15.541 22.123 1.00 39.37 ATOM 1526 CZ2 TRP A 184 35.074 14.963 22.380 1.00 39.37 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
ATOM 1505 CD LYS A 182	40							_			
ATOM 1506 CE LYS A 182 41.360 15.246 24.718 1.00 73.28 ATOM 1507 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 40.007 14.401 18.761 1.00 58.04 45 ATOM 1510 C VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1511 O VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1518 O TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.791 17.353 17.913 1.00 42.88 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 36.109 14.271 21.216 1.00 39.47 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	40										
ATOM 1500 NZ LYS A 182 40.729 16.534 24.325 1.00 74.63 ATOM 1508 N VAL A 183 40.007 14.401 18.761 1.00 58.04 45 ATOM 1509 CA VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1514 CG2 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 36.109 14.271 21.216 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 37.328 13.587 21.201 1.00 39.30											
ATOM 1508 N VAL A 183											
45 ATOM 1509 CA VAL A 183 39.240 15.559 18.324 1.00 55.16 ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1519 CB TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 42.88 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 42.88 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
ATOM 1510 C VAL A 183 37.899 15.073 17.781 1.00 52.42 ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.049 13.926 18.839 1.00 39.47 ATOM 1521 CD1 TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	15										
ATOM 1511 O VAL A 183 37.902 14.220 16.898 1.00 52.43 ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	45										
ATOM 1512 CB VAL A 183 39.936 16.462 17.302 1.00 58.84 ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.37 ATOM 1525 CE3 TRP A 184 36.504 14.983 23.529 1.00 41.08	•										
ATOM 1513 CG1 VAL A 183 38.965 17.219 16.395 1.00 61.12 50 ATOM 1514 CG2 VAL A 183 40.809 17.504 18.010 1.00 60.87 ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 37.328 13.587 21.201 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
50 ATOM 1514 CG2 VAL A 183											
ATOM 1515 N TRP A 184 36.785 15.581 18.302 1.00 49.48 ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
ATOM 1516 CA TRP A 184 35.495 15.042 17.878 1.00 45.59 ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	50										
ATOM 1517 C TRP A 184 34.490 16.159 17.706 1.00 44.01 ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 60 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
ATOM 1518 O TRP A 184 34.791 17.353 17.913 1.00 42.88 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08		ATOM									
55 ATOM 1519 CB TRP A 184 35.049 13.926 18.839 1.00 42.62 ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08		MOTA		С							
ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08		MOTA		0							
ATOM 1520 CG TRP A 184 35.075 14.460 20.253 1.00 39.47 ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	55	MOTA	1519								
ATOM 1521 CD1 TRP A 184 34.123 15.236 20.830 1.00 37.50 ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08		ATOM									
ATOM 1522 CD2 TRP A 184 36.109 14.271 21.216 1.00 41.84 ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
ATOM 1523 NE1 TRP A 184 34.491 15.541 22.123 1.00 36.00 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08			1522	CD2							
60 ATOM 1524 CE2 TRP A 184 35.717 14.963 22.380 1.00 39.37 ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08		ATOM									
ATOM 1525 CE3 TRP A 184 37.328 13.587 21.201 1.00 39.30 ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08	60	MOTA									
ATOM 1526 CZ2 TRP A 184 36.504 14.983 23.529 1.00 41.08											
				CZ2	TRP A	184					
				CZ3	TRP A	184	38.105	13.599	22.341	1.00	41.95

								00 406	1 00 42 27
	ATOM	1528	CH2	TRP A	184	37.692	14.293	23.486	1.00 42.37
	ATOM	1529		GLU A		33.292	15.809	17.270	1.00 42.34 1.00 42.70
	ATOM	1530		GLU A		32.211	16.770	17.099	1.00 42.70
	ATOM	1531	С	GLU A	185	30.950	16.204	17.765	1.00 43.74
5	MOTA	1532		GLU A		30.589	15.062	17.506	1.00 43.14
	ATOM	1533 [.]		GLU A		31.903	17.074	15.635	1.00 42.03
	ATOM	1534		GLU A		33.023	17.900	14.999	1.00 38.31
	ATOM	1535		GLU A		32.851	18.134	13.528	1.00 42.12
	MOTA	1536		GLU A		31.953	17.527	12.910	1.00 39.53
10	ATOM	1537		GLU A		33.641	18.955	13.015 18.653	1.00 43.76
	MOTA	1538		VAL A		30.374	17.021	19.400	1.00 43.51
	MOTA	1539		VAL A		29.211	16.563	18.791	1.00 45.37
	MOTA	1540		VAL A		27.943	17.165 18.379	18.647	1.00 43.51
	ATOM	1541		VAL A		27.804	17.008	20.872	1.00 41.67
15	ATOM	1542		VAL A		29.339 28.159	16.494	21.688	1.00 41.68
	MOTA	1543		VAL A			16.596	21.452	1.00 34.89
	ATOM	1544		VAL A		30.697 27.012	16.272	18.454	1.00 46.62
	MOTA	1545		HIS A		27.012	16.656	18.003	1.00 50.05
••	MOTA	1546		HIS A		24.620	16.050	19.023	1.00 52.23
20	ATOM	1547	-	HIS A		24.620	15.055	19.262	1.00 52.60
	MOTA	1548	0	HIS A		25.329	15.949	16.672	1.00 51.22
	MOTA	1549	CB	HIS A		26.356	16.159	15.600	1.00 53.27
	MOTA	1550	CG	HIS A		26.135	16.916	14.467	1.00 55.72
~~	ATOM	1551		HIS A		27.633	15.710	15.495	1.00 54.05
25	MOTA	1552		HIS A		27.216	16.925	13.713	1.00 49.24
	MOTA	1553		HIS A		28.134	16.205	14.329	1.00 53.78
	MOTA	1554		ALA A		23.836	17.199	19.524	1.00 54.61
	MOTA	1555	N	ALA A		22.883	16.882	20.591	1.00 57.68
20	MOTA	1556	CA	ALA A		21.502	17.477	20.393	1.00 59.90
30	ATOM	1557	C O	ALA A		20.747	17.673	21.356	1.00 60.86
	MOTA	1558 1559	CB	ALA A		23.501	17.291	21.929	1.00 57.50
	ATOM		N	GLY A		21.107	17.773	19.155	1.00 61.42
	ATOM	1560 1561	CA	GLY A		19.809	18.381	18.867	1.00 62.45
35	ATOM ATOM	1562	C	GLY A		19.862	19.892	18.710	1.00 62.76
33	ATOM	1563	ŏ	GLY A		18.863	20.613	18.809	1.00 63.40
	ATOM	1564	Ŋ	GLY A		21.051	20.429	18.448	1.00 62.37
	ATOM	1565	CA	GLY A		21.211	21.883	18.338	1.00 60.60
	ATOM	1566	C	GLY A		22.551	22.159	17.660	1.00 58.62
40	ATOM	1567	ō	GLY A	190	23.029	21.274	16.958	1.00 58.39
	ATOM	1568	N	GLN A		23.173	23.285	17.983	1.00 56.77
	ATOM	1569	CA	GLN A	191	24.466	23.554	17.336	1.00 54.69
	ATOM	1570	С	GLN A		25.462	22.451	17.687	1.00 52.57
	ATOM	1571	0	GLN A		25.599	22.082	18.858	1.00 52.69
45	ATOM	1572	CB	GLN A	191	24.972	24.927	17.760	1.00 58.35
	ATOM	1573	CG	GLN A	191	26.437	25.200	17.502	1.00 62.97
	MOTA	1574	CD	GLN A	191	26.166	26.948	17.561	0.00 99.00 0.00 99.00
	ATOM	1575		GLN A		25.459	27.683	16.891	0.00 99.00
	ATOM	1576	NE2	GLN A		27.070	27.403	18.451	1.00 49.07
50	MOTA	1577	N	VAL A		26.162	21.943	16.684	1.00 45.59
	ATOM	1578	CA	VAL A		27.264	21.012	16.898	1.00 43.33
	ATOM	1579	С	VAL A		28.237	21.647	17.875	1.00 45.15
	MOTA	1580	0	VAL A		28.473	22.853	17.803	1.00 43.13
	MOTA	1581	CB	VAL A	192	27.960	20.717	15.544	1.00 39.90
55	MOTA	1582		VAL A		29.047	19.665	15.684	1.00 40.84
	MOTA	1583		VAL A		26.874	20.237	14.584 18.775	1.00 40.84
	MOTA	1584	N		193	28.831	20.882	19.636	1.00 39.71
	MOTA	1585	CA		193	29.875	21.406	19.636	1.00 40.00
	MOTA	1586	C		193	31.246	21.009	19.127	1.00 40.00
60	MOTA	1587	0		A 193	31.569	19.822 20.868	21.104	1.00 36.14
	MOTA	1588	CB		A 193	29.715	21.218	21.573	1.00 38.63
	MOTA	1589	CG1	ILE A	A 193	28.303	21.216	21.957	1.00 38.85
	ATOM	1590	CG2	ILE A	4 193	30.765	21.303	21.701	

					_				
	ATOM	1591	CD1	ILE A	193 ⁻	27.916	20.591	22.922	1.00 41.29
	ATOM	1592	N	LEU A	194	32.075	22.008	18.852	1.00 39.67
	ATOM	1593	CA	LEU A		33.436	21.783	18.388	1.00 40.23
							21.944	19.486	1.00 40.97
_	MOTA	1594	С	LEU A		34.455			
5	MOTA	1595	0	LEU A		34.136	22.489	20.557	1.00 40.07
	ATOM	1596	CB	LEU A	194	33.741	22.794	17.252	1.00 38.19
	ATOM	1597	CG	LEU A	194	32.736	22.764	16.101	1.00 42.91
	ATOM	1598		LEU A		33.203	23.702	14.980	1.00 42.33
						32.593	21.362	15.514	1.00 41.05
	MOTA	1599		LEU A					
10	MOTA	1600	N	CYS A		35.658	21.430	19.269	1.00 41.29
	MOTA	1601	CA	CYS A	195	36.711	21.575	20.273	1.00 43.15
	MOTA	1602	С	CYS A		36.956	23.045	20.562	1.00 45.32
	ATOM	1603	ō	CYS A		37.083	23.872	19.671	1.00 44.47
						37.981		19.785	1.00 44.75
	ATOM	1604	CB	CYS A			20.893		
15	ATOM	1605	SG	CYS A		39.358	21.057	20.920	1.00 43.19
	ATOM	1606	N	PRO A	196	36.918	23.423	21.847	1.00 46.44
	ATOM	1607	CA	PRO A		36.978	24.814	22,245	1.00 47.49
		1608	C	PRO A		38.376	25.335	22.514	1.00 48.05
	MOTA			_				22.759	1.00 49.91
••	ATOM	1609	0	PRO A		38.575	26.531		
20	MOTA	1610	CB	PRO A	196	36.123	24.820	23.515	1.00 48.09
	ATOM	1611	CG	PRO A	196	36.293	23.449	24.079	1.00 47.48
	ATOM	1612	CD	PRO A	196	36.834	22.513	23.018	1.00 47.09
		1613	N	THR A		39.365	24.477	22.488	1.00 48.20
	ATOM							22.766	1.00 49.51
~ ~	ATOM	1614	CA	THR A		40.753			
25	ATOM	1615	С	THR A		41.610	24.697	21.491	1.00 48.70
	ATOM	1616	0	THR A	197	41.132	24.143	20.508	1.00 47.51
	ATOM	1617	CB	THR A	197	41.337	23.819	23.789	1.00 54.19
	ATOM	1618		THR A		42.063	22.755	23.133	1.00 60.20
				THR A		40.249	23.146	24.620	1.00 60.00
20	ATOM	1619							
30	MOTA	1620	N	SER A		42.874	25.104	21.600	1.00 48.43
	MOTA	1621	CA	SER A	198	43.755	25.011	20.443	1.00 49.41
	ATOM	1622	C	SER A	198	44.106	23.572	20.088	1.00 51.13
	ATOM	1623	0	SER A		44.340	22.748	20.974	1.00 50.32
		1624	СВ	SER A		45.022	25.837	20.600	1.00 41.67
25	ATOM								1.00 42.21
35	MOTA	1625	OG	SER A		44.689	27.176	20.863	
	MOTA	1626	N	VAL A	199	44.135	23.321	18.783	1.00 51.78
	ATOM	1627	CA	VAL A	199	44.448	22.018	18.210	1.00 54.21
	ATOM	1628	С	VAL A	199	45.846	22.063	17.593	1.00 55.85
	ATOM	1629	Ö	VAL A		46.229	23.043	16.958	1.00 55.32
40								17.105	1.00 55.83
40	ATOM	1630	СВ	VAL A		43.415	21.673		
	MOTA	1631		VAL A		43.848	20.450	16.311	1.00 58.48
	MOTA	1632	CG2	VAL A	199	42.081	21.363	17.794	1.00 58.90
	MOTA	1633	N	PHE A	200	46.643	21.031	17.823	1.00 57.80
	ATOM	1634	CA	PHE A		48.033	20.977	17.458	1.00 60.84
45				PHE A		48.501	19.863	16.538	1.00 63.34
43	ATOM	1635	C				19.003		
	MOTA	1636	0						1.00 63.71
	ATOM	1637	CB	PHE A	200	48.976	20.962	18.695	1.00 56.48
	ATOM	1638	CG	PHE A	200	49.009	22.350	19.286	1.00 51.93
	ATOM	1639		PHE A		49.867	23.304	18.779	1.00 50.53
50						48.118	22.686	20.298	1.00 52.06
50	MOTA	1640		PHE A					
	ATOM	1641		PHE A		49.844	24.596	19.289	1.00 48.79
	MOTA	1642	CE2	PHE A	200	48.104	23.972	20.813	1.00 46.67
	MOTA	1643	CZ	PHE A	200	48.952	24.921	20.283	1.00 48.73
	ATOM	1644	N	SER A		49.612	20.201	15.906	1.00 65.54
55						50.520	19.367	15.151	1.00 67.49
55	MOTA	1645	ÇA	SER A					
	MOTA	1646	С	SER A		50.543	17.927	15.652	1.00 68.56
	ATOM	1647	0	SER A	201	50.873	17.710	16.841	1.00 69.46
	ATOM	1648	CB		201 -	51.928	19.984	15.374	1.00 69.06
	ATOM	1649	OG	SER A		51.799	21.376	15.666	1.00 64.56
60				SER A		50.201	17.025	14.856	1.00 71.71
UU	MOTA	1650	OT						
	MOTA	1651		WAT W		16.850	8.350	41.749	1.00 33.70
	MOTA	1652	OWO	WAT W		14.700	3.706	36.739	1.00 34.70
	ATOM	1653	OWO	WAT W	. 3	23.512	-21.581	45.725	1.00 35.04

	ATOM	1654	OWO	WAT	W	4	19:01, 10:112	1.00 35.32
	ATOM	1655	OWO	WAT	W	5		1.00 35.70
	ATOM	1656	OWO	TAW	W	6	35.841 19.641 17.028	1.00 36.41
	ATOM	1657		WAT	W	7		1.00 36.46
5		1658		WAT	W	8		1.00 36.81
3	ATOM							1.00 38.24
	ATOM	1659			W	9	1,.502	1.00 38.55
	MOTA	1660			W	10	20.302	1.00 38.76
	MOTA	1661			W	11		
	MOTA	1662			W	12		1.00 38.96
10	ATOM	1663	OW0	TAW	W	13		1.00 38.84
	ATOM	1664	OWO	WAT	W	14		1.00 39.29
	ATOM	1665	OWO	WAT	W	15	19.948 -2.552 48.084	1.00 39.94
	MOTA	1666		WAT	W	16	13.394 -3.627 35.420	1.00 40.05
	ATOM	1667		WAT	W	17		1.00 40.12
15				WAT	W	18		1.00 40.24
13	ATOM	1668				19		1.00 40.10
	ATOM	1669		WAT	W			1.00 40.03
	MOTA	1670		WAT	M	20		
	MOTA	1671		WAT	W	21		1.00 40.85
	ATOM	1672	OWO	WAT	W	22		1.00 41.62
20	ATOM	1673	OW0	WAT	W	23		1.00 41.58
	ATOM	1674	OWO	WAT	W	24		1.00 41.18
	ATOM	1675	OWO	WAT	W	25	20.170 8.808 43.184	1.00 41.55
	ATOM.	1676		WAT	W	26		1.00 43.14
				WAT	W	27		1.00 41.48
25	ATOM	1677			M	28		1.00 41.77
25	MOTA	1678		WAT			220	1.00 41.81
	MOTA	1679		WAT	W	29		1.00 42.08
	ATOM	1680		TAW	W	30	23.200	
	ATOM	1681		WAT	W	31	221,00 ==	1.00 42.04
	ATOM	1682	OWO	TAW	W	32		1.00 42.18
30	ATOM	1683	OWO	WAT	W	33		1.00 42.93
	MOTA	1684	OWO	WAT	W	34		1.00 42.96
	ATOM	1685		WAT	W	35	22.835 -3.224 40.382	1.00 43.01
	ATOM	1686		WAT		36		1.00 43.00
	ATOM	1687		WAT	W	37		1.00 43.97
35				WAT		38		1.00 43.69
33	ATOM	1688						1.00 43.87
	ATOM	1689		WAT	W	39		1.00 44.06
	ATOM	1690		WAT		40		
	ATOM	1691		TAW		41		1.00 44.11
	ATOM	1692	OWO	WAT	W	42		1.00 44.27
40	ATOM	1693	OWO	WAT	W	43		1.00 44.34
	ATOM	1694	OWO	WAT	W	44		1.00 44.65
	ATOM	1695	OWO	WAT	W	45	16.203 7.540 48.658	1.00 44.83
	ATOM	1696	OWO	WAT	W	46	21.491 -11.431 40.332	1.00 44.88
	ATOM	1697		WAT	W	47		1.00 45.24
45	ATOM	1698		WAT		48		1.00 45.89
73						49	11.644 15.303 50.268	1.00 46.78
	ATOM	1699		WAT		50	35.864 19.699 14.264	1.00 46.41
	MOTA	1700		TAW				1.00 46.58
	MOTA	1701		TAW		51		
	MOTA	1702		WAT		52		1.00 47.45
50	ATOM	1703	· 0W0			53		1.00 47.44
	MOTA	1704	OWO	WAT	W	54		1.00 47.66
	ATOM	1705	OW0	WAT	W	55		1.00 47.48
	ATOM	1706		WAT		56	7.169 -27.314 41.711	1.00 48.17
	ATOM	1707		WAT		57	33.861 -1.778 23.374	1.00 48.53
55	ATOM	1708		WAT		58	33.357 8.082 26.362	1.00 48.51
))				WAT		59	26.396 24.163 13.998	1.00 49.70
	ATOM	1709					21.233 20.044 43.429	1.00 49.73
	ATOM	1710		TAW		60		1.00 49.28
	ATOM	1711		WAT		61		
	MOTA	1712		WAT		62	24.974 -18.827 45.601	1.00 50.87
60	MOTA	1713		WAT		63	21.207 -0.654 31.876	1.00 49.81
	ATOM	1714	OWO	WAT	W	64	13.203 8.179 28.792	1.00 50.30
	MOTA	1715	OWO	TAW	W	65	21.887 5.385 43.977	1.00 50.58
	MOTA	1716	OWO	WAT	W	66	24.468 6.206 27.276	1.00 50.23

	ATOM ·	1717	OWO	WAT	W	67	16.1	159	-6.928	39.274	1.00 50.79
	ATOM	1718	OWO	WAT	W	68	18.7	759	17.803	28.696	1.00 50.80
	ATOM	1719	OWO	WAT	W	69	13.8	321	14.472	25.933	1.00 52.01
	ATOM	1720	OWO	WAT	W	70	5.9	992	2.145	50.465	1.00 52.52
5	ATOM	1721	OWO	TAW	W	71	22.4	150	0.866	42.331	1.00 52.86
	MOTA	1722	OW0	WAT	W	72	37.4		14.455	29.856	1.00 52.16
	MOTA	1723	OWO	WAT	W	73	7.9	914	14.799	34.609	1.00 52.26
	ATOM	1724	OWO	WAT	W	74	33.0	74	14.728	12.928	1.00 52.80
	ATOM	1725	OWO	WAT	M	75	-2.1		5.177	35.817	1.00 53.07
10	ATOM	1726	OW0	TAW	W	76		349	6.339	29.567	1.00 53.08
	MOTA	1727	OWO	WAT	W	77		199	9.596	40.507	1.00 53.22
	ATOM	1728	OW0	WAT		78		153	-4.313	50.928	1.00 53.22
	ATOM	1729	OWO			79	13.9		-16.279	37.477	1.00 54.52
	ATOM	1730		WAT	W	80	29.3		23.613	25.169	1.00 53.94
15	ATOM	1731	OWO	WAT	W	81	10.6		17.607	37.556	1.00 53.87
	ATOM	1732	OWO	TAW	W	82	10.5		-28.803	42.420	1.00 54.34
	ATOM	1733	OWO	WAT	W	83		574	-0.659	35.990	1.00 54.11
	ATOM	1734	OWO	TAW	W	84	13.2		5.649	29.129	1.00 54.35
	MOTA	1735	OWO	WAT	W	85	23.1		23.184	42.047	1.00 53.98
20	ATOM	1736		WAT	W	86	25.5		-14.157	41.467	1.00 54.33
	ATOM	1737			W	87	39.5		4.678	27.285	1.00 55.10
	ATOM	1738		TAW	W	88	33.0		24.177	22.504	1.00 53.92
	MOTA	1739			M	89			-14.306	47.361	1.00 55.09
	MOTA	1740		WAT		90	10.8		5.199	27.990	1.00 54.87
25	MOTA	1741	OMO	TAW	W	91	13.2		-18.762	37.013	1.00 55.07
	MOTA	1742	OWO		W	92	19.6		23.135	34.883	1.00 56.03
	ATOM	1743		WAT		93		399	3.408	32.498	1.00 56.24
	MOTA	1744		WAT		94	17.3		5.781	50.106	1.00 56.35
	MOTA	1745		WAT		95	46.4		28.753	20.001	1.00 56.50
30	MOTA	1746		WAT		96	18.0		~25.950	38.021	1.00 56.78
	ATOM	1747		TAW		97	16.6		11.173	20.729	1.00 57.28
	ATOM	1748	OWO			98	-0.		-1.130	37.865	1.00 56.31
	ATOM	1749		WAT		99	13.		-29.887	42.473	1.00 56.28
	ATOM	1750		TAW		100	14.		-6.120	36.256	1.00 56.78
35	MOTA	1751		WAT		101	-0.5		-1.004	43.200	1.00 56.68 1.00 57.78
	MOTA	1752		TAW		102)34	2.268	29.920	
	MOTA	1753		WAT		103	39.6		16.983	21.840	1.00 57.56 1.00 57.82
	MOTA	1754		WAT		104	12.3		-7.683	34.772 39.197	1.00 57.82
40	ATOM	1755	OWO			105	21.		21.778	14.493	1.00 58.10
40	ATOM	1756		TAW		106	25.2		27.127	11.613	1.00 58.31
	MOTA	1757		TAW		107	37.	189	5.450 -17.600	47.916	1.00 58.58
	ATOM	1758		TAW		108				36.518	1.00 57.70
	MOTA	1759	OW0			109	25.5		0.503	24.315	1.00 57.70
45	MOTA	1760		WAT		110	21.		19.292	29.269	1.00 58.45
45	ATOM	1761		WAT			23.9		23.123 16.034	12.701	1.00 58.92
	ATOM	1762		WAT			30.0	140	-12.369	36.445	1.00 60.00
	ATOM	1763		WAT			45.9		18.908	19.720	1.00 59.22
	MOTA	1764		WAT WAT				382	16.171	43.893	1.00 59.38
50	ATOM	1765					26 (140	-17.629	41.513	1.00 58.92
50	ATOM	1766		TAW			13.9		-10.256	37.298	1.00 60.39
	ATOM	1767		WAT				342	10.062	31.734	1.00 60.14
	ATOM	1768		WAT WAT					-20.559	43.212	1.00 60.45
	ATOM	1769					18.		16.851	47.879	1.00 60.32
55	ATOM	1770 1771		WAT WAT			38.0		15.693	26.658	1.00 61.27
23	ATOM			WAT					-26.418	44.769	1.00 61.39
	ATOM	1772	OWU	WAT	7V [A7	123	17.2		-4.612	32.783	1.00 60.41
	ATOM	1773 1774		WAT			33.0		9.791	13.378	1.00 61.34
	ATOM	1775		WAT			29.		10.149	37.422	1.00 60.84
60	ATOM ATOM	1776		WAT			26.		13.297	42.367	1.00 60.80
JU	ATOM	1777		WAT			23.		-4.737	42.642	1.00 61.18
	ATOM	1778	OMO	WAT	W	128	10.0		-3.375	35.374	1.00 61.88.
	ATOM	1779		WAT					-13.947	38.339	1.00 62.52
	VIOG	1113	-MO	*****	71						•

	MOTA	1780	OWO	TAW			9.747 -0.992 36.212 1.00 59.32
	ATOM	1781	OWO				24.814 -11.997 45.661 1.00 62.19
	ATOM	1782	OWO	WAT	W	132	23.200 4.574 23.546 1.00 61.90
	MOTA	1783	OWO	TAW	W	133	24.938 30.370 17.496 1.00 62.23
5	ATOM	1784		TAW			35.459 1.260 16.603 1.00 62.66
-	ATOM	1785	OWO	WAT	W	135	24.178 20.068 20.090 1.00 61.73
	ATOM	1786	OWO				40.127 0.350 18.771 1.00 62.44
	ATOM	1787		WAT			19.279 14.663 46.778 1.00 63.59
	ATOM	1788	OMO	TAW	TAT	138	20.090 20.354 46.023 1.00 62.81
10		1789		WAT			15.250 18.974 46.516 1.00 63.68
10	MOTA						21.267 -25.030 39.386 1.00 63.31
	ATOM	1790		WAT			26.107 2.756 33.033 1.00 63.89
	MOTA	1791		TAW			
	MOTA	1792		WAT			
	ATOM	1793		WAT		143	
15	ATOM	1794		WAT			
	MOTA	1795		TAW			23.613 15.848 49.685 1.00 64.50
	MOTA	1796	OW0	TAW	W	146	21.834 -6.518 36.556 1.00 65.24
	MOTA	1797	OWO	WAT	W	147	10.139 -10.444 36.806 1.00 65.85
	MOTA	1798	OWO	TAW	W	148	32.489 10.232 33.677 1.00 64.60
20	ATOM	1799	OWO	WAT	W	149	31.655 6.263 27.510 1.00 64.29
	ATOM	1800		WAT			4.585 -20.934 39.031 1.00 66.94
	ATOM	1801		WAT			38.484 11.674 18.085 1.00 65.84
	MOTA	1802		WAT			42.438 8.992 21.219 1.00 65.71
	ATOM	1803		WAT			33.971 24.173 27.259 1.00 66.15
25		1804		WAT			24.597 -9.268 45.286 1.00 67.06
23	ATOM			WAT			-2.112 -26.008 50.039 1.00 66.08
	ATOM	1805		WAT			9.030 -32.481 39.896 1.00 66.14
	ATOM	1806					-3.216 -18.835 45.004 1.00 67.94
	MOTA	1807		TAW			
20	MOTA	1808		WAT			
30	MOTA	1809		WAT			= · · · · · · · · · · · · · · · · · · ·
	MOTA	1810		WAT			T
	MOTA	1811		WAT			24.071 24.303 35.784 1.00 67.51
	MOTA	1812		WAT			7.746 17.585 52.663 1.00 70.19
	MOTA	1813		TAW		163	19.301 4.980 47.873 1.00 68.23
35	MOTA	1814	OWO	WAT	W	164	10.439 -4.135 32.539 1.00 65.45
	MOTA	1815	OWO	WAT	W	165	23.798 -0.930 41.113 1.00 68.64
	ATOM	1816	OWO	WAT	W	166	2.464 5.318 30.549 1.00 65.77
	ATOM	1817	OWO	WAT	W	167	9.665 ~14.876 35.700 1.00 65.21
	ATOM	1818	OWO	WAT	W	168	1.759 10.431 44.227 1.00 69.25
40	ATOM	.1819	OWO	WAT	W	169	20.960 4.214 26.258 1.00 69.97
	ATOM	1820		WAT			28.769 24.807 27.878 1.00 67.86
	MOTA	1821		WAT			30.212 14.473 8.293 1.00 69.23
	ATOM	1822		WAT			20.178 0.312 50.589 1.00 70.29
	ATOM	1823		WAT			19.736 6.852 23.117 1.00 70.72
45	ATOM	1824		WAT			8.978 16.807 50.514 1.00 70.10
40				WAT			25.144 -1.759 34.429 1.00 71.96
	ATOM	1825					26.946 25.298 35.563 1.00 68.69
	MOTA	1826		TAW			
	MOTA	1827		TAW			
50	MOTA	1828		TAW			
50	MOTA	1829		WAT			-0.624 10.187 33.201 1.00 72.23
	ATOM	1830		WAT			11.015 17.856 47.520 1.00 71.42
	MOTA	1831		WAT			7.766 0.898 52.950 1.00 71.64
	MOTA	1832	OWO	WAT	W	182	3.469 -28.368 52.511 1.00 70.10

References

10

15

25

1. zur Hausen, H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. *Curr. Top. Microbiol. Immunol.* **186**, 131-156 (1994).

- 2. Mohr, I. J., Clark, R., Sun, S., Androphy, E. J., MacPherson, P. & Botchan, M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. *Science* **250**, 1694-1699 (1990).
 - 3. Giri, I. & Yaniv, M. Structural and mutational analysis of E2 trans-activating proteins of papillomaviruses reveals three distinct functional domains. *EMBO J.* 7, 2823-2829 (1988).
 - 4. McBride, A. & Myers, G. in *Human Papillomaviruses 1997* (eds Myers, G., Sverdrup, F., Baker, C., McBride, A., Münger, K. & Bernard, H.-U.) III-54-III-73 (Theoretical Biology and Biophysics, Los Alamos, 1997).
 - 5. Berg, M. & Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol. 71, 3853-3863 (1997).
 - 6. Gillette, T. G. & Borowiec, J. A. Distinct roles of two binding sites for the bovine papillomavirus (BPV) E2 transactivator on BPV DNA replication. *J. Virol.* 72, 5735-5744 (1998).
- Choo, K. B., Pan, C. C. & Han, S. H. Integration of human papillomavirus type 16
 into cellular DNA of cervical carcinoma: Preferential deletion of the E2 gene and invariable retention of the long control region and E6/E7 open reading frames.
 Virology 161, 261(1987).
 - 8. Knight, J. D., Li, R. & Botchan, M. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. *Proc. Natl. Acad. Sci. USA* 88, 3204-3208 (1991).
 - 9. Li, R., Knight, J. D., Jackson, S. P., Tjian, R. & Botchan, M. R. Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. *Cell* 65, 493-505 (1991).
- 10. Sandler, A. B., Baker, C. C. & Spalholz, B. A. Sp1 is critical for basal and E2 30 transactivated transcription from the bovine papillomavirus type 1 P₈₉ promoter. J. Gen. Virol. 77, 189-198 (1996).

- 11. E2 sequence database. (1999). http://hpv-web.lanl.gov:
- 12. Hegde, R. S., Grossman, S. R., Laimins, L. A. & Sigler, P. B. Crystal structure at
- 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. *Nature* **359**, 505-512 (1992).
- 13. Hegde, R. S. & Androphy, E. J. Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: Implications for its DNA binding-site selection mechanism. *J. Mol. Biol.* 284, 1479-1489 (1998).
 - 14. Hegde, R. S., Wang, A. F., Kim, S. S. & Schapira, M. Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2
- 10 protein. J. Mol. Biol. 276, 797-808 (1998).
 - 15. Harris, S. F. & Botchan, M. R. Crystal structure of the human papillomavirus type 18 E2 activation domain. *Science* 284, 1673-1677 (1999).
 - 16. Burns, J. E., Moroz, O. V., Antson, A. A., Sanders, C. M., Wilson, K. S. & Maitland, N. J. Expression, crystallization and preliminary X-ray analysis of the E2
- transactivation domain from papillomavirus type 16. Acta Crystallog. **D54**, 1471-1474 (1998).
 - 17. Ramakrishan, C. & Ramachandran, G. N. Stereochemical criteria for polypeptide and protein chain conformations. *Biophys. J.* 5, 909-933 (1995).
 - 18. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M.
- 20 PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291 (1993).
 - 19. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., et al. The protein data bank: a computer based archival file for macromolecular structures. *J. Mol. Biol.* 112, 535-542 (1977).
- 25 20. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123-138 (1993).
 - 21. Wiener, M., Freymann, D., Ghosh, P. & Stroud, R. M. Crystal structure of colicin 1a. Nature 385, 461-464 (1997).
- 22. Frolow, F., Kalb, A. G. & Yariv, J. The structure of a unique, two-fold symmetric, haem-binding protein. *Nature Struct. Biol.* 1, 453-460 (1994).

23. Mok, Y. K., Gay, G. D., Butler, P. J. & Bycroft, M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. *Protein Sci.* 5, 310-319 (1996).

- 24. Foguel, D., Silva, J. L. & de Prat-Gay, G. Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. *J. Biol. Chem.* 273, 9050-9057 (1998).
- 25. Gauthier, J.-M., Dostatni, N., Lusky, M. & Yaniv, M. Two DNA-bound E2 dimers are required for strong transcriptional activation and for cooperation with cellular factors in most cells. *The New Biologist* 3, 498-509 (1991).
- 26. Estojak, J., Brent, R. & Golemis, E. Correlation of two-hybrid affinity with in vitro measurements. *Mol. Cell. Biol.* 15, 5820-5829 (1995).
 - 27. Sengchanthalangsy, L., Datta, S., Huang, D., Anderson, E., Braswell, E. & Ghosh, G. Characterisation of the dimer interface of transcription factor NKkB p50 homodimer. *Journal of Molecular Biology* 289, 1029-1040 (1999).
- 15 28. Chao, S.-F., Rocque, W. J., Daniel, S., Czyzyk, L. E., Phelps, W. C. & Alexander, K. A. Subunit affinities and stoichiometries of the human papillomavirus type 11 E1:E2:DNA complex. *Biochemistry* 38, 4586-4594 (1999).
 - 29. Program manual for the Wisconsin package. (8): Madison, Wisconsin, USA: Genetics computer group. (1994).
- 30. Abroi, A., Kurg, R. & Ustav, M. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants. J. Virol. 70, 6169-6179 (1996).

- 31. Cooper, C. S., Upmeyer, S. N. & Winokur, P. L. Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. *Virology* 241, 312-322 (1998).
- 32. Brokaw, J. L., Blanco, M. & McBride, A. A. Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. *J. Virol.* **70**, 23-29 (1996).

33. Sakai, H., Yasugi, T., Benson, J. D., Dowhanick, J. J. & Howley, P. M. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions. *J. Virol.* 70, 1602-1611 (1996).

- 5 34. Breiding, D. E., Sverdrup, F., Grossel, M. J., Moscufo, N., Boonchai, W. & Androphy, E. J. Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. *Mol. Cell. Biol.* 17, 7208-7219 (1997).
 - 35. Yao, J. M., Breiding, D. E. & Androphy, E. J. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. J. Virol. 72, 1013-1019 (1998).
 - 36. Semenza, G. L. Transcription factors and human disease (Oxford University Press, New York and Oxford, 1998).
 - 37. Ferguson, M. K. & Botchan, M. R. Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication. *J. Virol.*
- 15 70, 4193-4199 (1996).

- 38. Le Moal, M. A., Yaniv, M. & Thierry, F. The bovine papillomavirus type 1 (BPV1) replication protein E1 modulates transcriptional activation by interacting with BPV1 E2. J. Virol. 68, 1085-1093 (1994).
- 39. Bennett, M. J., Schlunegger, M. P. & Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. *Protein Science* 4, 2455-2469 (1995).
 - 40. Yang, F., Bewley, C. A., Louis, J. M., et al. Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. *Journal of Molecular Biology* **288**, 403-412 (1999).
- 41. Desaintes, C. & Demeret, C. Control of papillomavirus DNA replication and transcription. Semin. Cancer. Biol. 7, 339-347 (1996).
 - 42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Meth. Enzymol.* 276, 307-326 (1997).
 - 43. Collaborative Computational Project, N. 4. The CCP4 suite: programs for protein crystallography. *Acta Crystallog.* **D50**, 760-763 (1994).
- 30 44. Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. Meth. Enzymol. 277, 319-343 (1997).

45. Cowtan, K. D. & Main, P. Phase combination and cross-validation in iterated density-modification calculations. *Acta Crystallog.* **D52**, 43-48 (1996).

46. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. *Acta Crystallog.* **D49**, 129-147 (1993).

Claims

- A crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof, comprising residues vital for transcriptional and replicational activities of said protein.
- 2. An E2NT dimer protein according to Claim 1 wherein the residues lie on opposite sides of an N-terminal domain.
 - 3. An E2NT dimer protein according to either preceding claim wherein the residues comprise a plurality of residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
 - 4. An E2NT dimer according to Claim 3 comprising three clusters.

15

- 5. An E2NT dimer according to either of Claims 3 or 4 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues Ile82, Glu90, Trp92, Lys112, Tyr138, Val145.
- An E2NT dimer according to any one of Claims 3-5 wherein a second cluster
 of residues is associated with N1 interactions and comprises either or both of residues
 Trp33 and Leu94.
 - 7. An E2NT dimer according to any one of Claims 3-6 wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues Pro106, Lys111, Phe168, Trp134.

8. An E2NT dimer according to any preceding claim further comprising residues associated with transactivation and/or replication properties of E2.

- An E2NT dimer according to Claim 8 wherein the residues comprise any one
 or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73,
 Gln12 and Ala69.
 - 10. Use of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein according to any preceding claim or homologue thereof in mapping mutations onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and the effect of mutations on folding of the E2 protein.
 - 11. Use according to Claim 10 in rationalised antiviral drug design.

10

- 15 12. An *in vitro* method for identifying and/or selecting a candidate therapeutic agent, the method comprising determining interaction of a E2 N-terminal module (E2NT) dimer in a sample by contacting said sample with said candidate therapeutic agent and measuring DNA loop formation in E2.
- 20 13. Use of the method according to Claim 12 in identifying and/or selecting an antiviral candidate therapeutic agent.
 - 14. Use according to Claim 13 wherein identification/selection of the candidate therapeutic agent depends on its ability to interfere with or block interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.
 - 15. Use of an E2NT dimerisation inhibitor for the preparation of a medicament for treatment of conditions that arise as a result of HPV infection.
- 30 16. Use according to Claim 15 for the treatment of warts, proliferative skin lesions and/or cervical cancer.

17. A method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of an HPV infection comprising taking a sample from said patient and measuring E2NT interactions and/or DNA loop formation.

5

10

15

- 18. Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein or homologue thereof according to any one of Claims 1-9 as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.
- 19. A method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction.
- 20. A method of claim 19, wherein the method by which the E2NT crystal structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 20 21. A method of claim 19 or claim 20 wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 Å spacing.
- 22. A method of any of claims 19 to 21, wherein the crystal structure comprises the portions of amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94.
 - 23. A method of any of claims 19 to 22, wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
 - 24. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a

three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:

5

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3;

10

- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machinereadable data storage medium for processing said machine readable data into said three-dimensional representation; and
 - (d) a display coupled to said central-processing unit for displaying said threedimensional representation.

20

25

- 25. The computer according to claim 24, wherein said three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 26. A computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises at least a portion of the structural coordinates according to Table 3;

- 5 (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
 - (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structure coordinates; and

15

- (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 27. A crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
 - 28. The crystallized molecule or molecular complex according to claim 27, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

29. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Ile82, Glu90, Trp92, Lys112, Tyr138, Val145, Pro106, Lys111, Phe168, Trp134, Trp33 and Leu94 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

10

- 30. The machine-readable data storage medium according to claim 7, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 15 amino acids
 - 31. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.

25

20

32. A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to claim 27 or claim 28 comprising the steps of:

a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and

b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

5

10

33. A drug or therapeutic agent identified, assessed or selected using a crystallised molecular complex of an E2NT protein or its crystal structure or using a complex of any of claims 1 to 9, a method of claim 12, a use of any of claims 13, claim 14 or 18. a method of any of claims 20 to 24 or 32 or a product of any of claims 25 to 31.

FIG. I. A

HPV 16 E2 Protein: Functional assignments

FG. 1. B

C= blue; monomer ribbon: D= yellow; monomer ribbon: E = dark green; side chauns of Arg = 7 and I = 73; F = light green; side chauns of other residues: G = 02; red: H = blue; N2; I = arange 1120: J = dashad sticks; hydrogen bonds]

figure . 2B

N = NI domain = aquamorine

m = fulcrum = green

L = N2 domain = pink

Fig. 2 C

Fig 3.A.

1.7

FIG. 3B

Fig. 3. C

Fig. 4 A.

0 = yellow; sulphur atoms.

Fig. 4.B

Fig. 4C

Flaure 4D.

TENT COOPERATION TREA

PCT

REC'D 17 JAN 2002

INTERNATIONAL PRELIMINARY EXAMINATION POT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference	T	See Notification of Transmittal of International							
LPB/P32059WO	FOR FURTHER ACTION	Preliminary Examination Report (Form PCT/IPEA/416)							
International application No.	International filing date (day/month	/year) Priority date (day/month/year)							
PCT/GB00/03568	18/09/2000	17/09/1999							
International Patent Classification (IPC) or national classification and IPC CO7K14/00									
Applicant									
THE UNIVERSITY OF YORK et al.									
 This international preliminary examination report has been prepared by this International Preliminary Examining Authority and is transmitted to the applicant according to Article 36. 									
2. This REPORT consists of a total of	6 sheets, including this cover si	neet.							
☐ This report is also accompanie	This report is also accompanied by ANNEXES, i.e. sheets of the description, claims and/or drawings which have been amended and are the basis for this report and/or sheets containing rectifications made before this Authority								
	07 of the Administrative Instruction								
These annexes consist of a total of 7 sheets.									
This report contains indications retains.	ating to the following items:								
_	they to the lonething terms								
I ⊠ Basis of the report									
II ⊠ Priority III ⊠ Non-establishment of o	nninion with record to novelty in	regard to novelty, inventive step and industrial applicability							
IV Lack of unity of invention									
V 🖾 Reasoned statement u		novelty, inventive step or industrial applicability;							
VI Certain documents cité	ed								
VII - Certain defects in the in	nternational application								
VIII Certain observations of	n the international application								
Date of submission of the demand	Date of	completion of this report							
17/04/2001	17.01,20	JU2							
Name and mailing address of the international preliminary examining authority:	al Authoriz	ed officer							
European Patent Office D-80298 Munich	Marino	oni, J-C							
Tel. +49 69 2399 - 0 Tx; 523656 Fax: +49 89 2399 - 4465	1	ne No. +49 89 2399 8563							

Form PCT/IPEA/409 (cover sheet) (January 1994)

INTERNATIONAL PRELIMINARY **EXAMINATION REPORT**

International application No. PCT/GB00/03568

		s of the report									
1.	the re	eceiving Office in I	response to an invitati	nal application (Replacement sheets which have been furnished to ion under Article 14 are referred to in this report as "originally filed" or do not contain amendments (Rules 70,16 and 70.17)):							
	1-66	:	as originally filed								
		•									
	Clair	ms, No.:									
	1-31		with telefax of	23/11/2001							
	Drawings, sheets:										
		-13/13	as originally filed								
	1/13	-13/13	as originally mod								
2.	With lang	regard to the language in which the	guage, all the elemen international applicati	ts marked above were available or furnished to this Authority in the on was filed, unless otherwise indicated under this item.							
	The	se elements were	available or furnished	to this Authority in the following language: , which is:							
		the language of a	translation furnished	for the purposes of the international search (under Rule 23.1(b)).							
	☐ the language of publication of the international application (under Rule 48.3(b)).										
	the language of a translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/or 55.3).										
3	. With inte	n regard to any nu rnational prelimina	cleotide and/or amin ry examination was ca	o acid sequence disclosed in the international application, the arried out on the basis of the sequence listing:							
		contained in the i	nternational applicatio	n in written form.							
		filed together with	the international app	lication in computer readable form.							
		furnished subseq	uently to this Authority	in written form.							
				in computer readable form.							
	The statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the international application as filed has been furnished.										
		The statement the listing has been f		orded in computer readable form is identical to the written sequence							
4	. The	amendments hav	ve resulted in the cand	ellation of:							
		the description,	pages:								
		the claims,	Nos.:								

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/03568

		•	
		the drawings,	sheets:
5.		considered to go bey	established as if (some of) the amendments had not been made, since they have bee yond the disclosure as filed (Rule 70.2(c)):
		(Any replacement st report.)	neet containing such amendments must be referred to under item 1 and annexed to this
6.	Add	itional observations,	if necessary:
II.	Pric	ority	
1.		This report has beer prescribed time limit	n established as if no priority had been claimed due to the failure to furnish within the the requested:
		□ copy of the ear	ier application whose priority has been claimed.
		☐ translation of th	e earlier application whose priority has been claimed.
2.		This report has been been found invalid.	n established as if no priority had been claimed due to the fact that the priority claim ha
	Thu dat		this report, the international filing date indicated above is considered to be the relevan
3.		ditional observations, e separate sheet	if necessary:
111	. No	n-establishment of o	opinion with regard to novelty, inventive step and industrial applicability
	The	e questions whether t	he claimed invention appears to be novel, to involve an inventive step (to be non- rially applicable have not been examined in respect of:
		the entire internatio	nal application.
	Ø	claims Nos. 23-25 a	and 28-30, all completely.
be	ecau	se:	
	×	the said internation following subject moses separate sheet	al application, or the said claims Nos. 23-25 and 28-30, all completely relate to the atter which does not require an international preliminary examination (specify):
		the description, cla that no meaningful	ims or drawings (<i>indicate particular elements below</i>) or said claims Nos. are so unclea opinion could be formed (<i>specify</i>):
	×	the claims, or said	claims Nos. are so inadequately supported by the description that no meaningful opini

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB00/03568

	could be formed.											
	no international sear	ch report h	as been (established for the said claims Nos								
2.	A meaningful internations and/or amino acid seque instructions:	meaningful international preliminary examination cannot be carried out due to the failure of the nucleotide d/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative structions:										
	☐ the written form has	not been fu	urnished o	or does not comply with the standard.								
	☐ the computer readat	ole form ha	s not bee	n furnished or does not comply with the standard.								
V.	Reasoned statement ur citations and explanation	nder Artick ons suppo	e 35(2) w rting suc	Ith regard to novelty, inventive step or industrial applicability;								
1.	Statement											
	Novelty (N)	Yes: No:	Claims Claims	1-22, 26, 27, 31 None								
	Inventive step (IS)	Yes: No:		None 1-22, 26, 27, 31								
	Industrial applicability (IA) Yes: No:	Claims Claims	1-22, 26, 27, 31 None								
	!											
2	Citations and explanation	าร										

Form PCT/IPEA/409 (Boxes I-VIII, Sheet 3) (July 1998)

see separate sheet

---- T/10 W. U/1T

Re Item I

Basis of the opinion

The amendments filed with the letter dated 23 November 2001 are considered to be formally allowable under Articles 19(2) and 34(2) PCT.

Re Item II

Priority

The claimed priority date appears to be valid. Therefore, the document Antson et al., NATURE, 17 February 2000, pages 805-809, which was cited as P,X by the ISA is not taken into account for the establishment of the present opinion.

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

Claims 23-25 and 28-30 merely amount to the presentation of information. According to Rule 67.1(v) PCT, examination of such claims is not required.

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

- The present application relates to crystals of a dimeric N-terminal domain of the Human Papillomavirus E2 activator (NT-HPVE2) type 18 and their use.
- It is not at present clear what could form the technical problem underlying the present application which does not disclose how the crystals claimed are linked to an invention other than the mere recitation of the possible uses of said crystal. The resolution of a three-dimensional structure of a protein is a priori a scientific problem: space coordinates of a given protein constitute an admittedly complex parameter but still remain nothing else than physical parameters. As such, threedimensional structure data do not automatically solve any technical problem, except if the determination of these data has produced a surprising technical

effect, e.g. if the methods based on this structure had provided a confirmed inhibitor/antagonist... In the absence of such a technical effect, it is concluded that the subject-matter of claims 26 and 27 does not meet the requirements of Article 33(3) PCT concerning inventive step.

- 3. It appear also obvious that the skilled person would set out to crystallize a E2NT protein dimer and would succeed in doing so, since obtaining crystals of any protein is nowadays more or less straightforward. Crystals are usually and obviously obtained for use in rationalized drug design: since obtaining the crystals of the invention did not appear to involve overcoming a technical prejudice (and since the claims do not refer to a particular method overcoming this prejudice) claims 1-22 and 31 are considered to merely recite what the skilled person would intend to do with said crystal(s). As such their subject-matter does not involve an inventive step and therefore does not meet the requirements of Article 33(3) PCT.
- 4. In other words, claims 1-22 and 31 are directed to uses and methods which have not been put into practice successfully within the limits of the invention or which refer to unclear or even undisclosed matter (like undefined "dimerisation surface"): their subject-matter merely amounts to the wording of the technical problem to be solved which does not involve an inventive step *per se* (Articles 6 and 33(3) PCT; see also the Guidelines of the PCT, Ch. III, 4.7).

<u>Claims</u>

- 1. Use, in rationalised drug design, of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, the E2NT dimer protein comprising residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.
- 2. Use of protein according to Claim 1 wherein the residues lie on opposite sides 10 of an N-terminal domain.
 - 3. Use of a protein according to either preceding claim wherein the residues comprise a plurality of further residue clusters associated with a structural role at an interface between N1 and N2 terminal domains of respective monomers within the dimer.
 - 4. Use of a protein according to Claim 3 wherein the E2NT dimer protein comprises three clusters.
- 5. Use of a protein according to either of Claims 3 or 4 wherein a first cluster of vital residues is associated with interactions between N1 and N2 domains and comprises any one or more of the following residues Ile82, Glu90, Trp92, Lys112, Tyr138, Val145.
- 25 6. Use of a protein according to any one of Claims 3 to 5 wherein a second cluster of residues is associated with N1 interactions and comprises either or both of residues Trp33 and Leu94.
- 7. Use of a protein according to any one of Claims 3 to 6 wherein a third cluster of residues is associated with N2 interactions and comprises any one or more of the following residues Pro106, Lys111, Phe168, Trp134.

- 8. Use of a protein according to any preceding claim wherein the crystallised molecular complex of the E2NT dimer protein is cryogenically frozen.
- 9. Use in mapping mutations onto an E2 three-dimensional structure so as to identify areas of amino acid conservation and/or the effect of mutations on folding of the E2 protein of a crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein, the E2NT dimer protein comprising residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69...
 - 10. Use of a protein according to claim 9 further including any one or more of the features receited in claims 2 to 8.
- 15 11. An in vitro method for identifying and/or selecting a candidate therapeutic agent, the method comprising the steps of
 - (i) determining interaction in a sample of a E2 N-terminal module

 (E2NT) dimer, the dimer comprising residues at its dimer interface
 that are vital for transcriptional and replicational activities of said

 protein and wherein the residues comprise any one or more of the
 following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73,
 Glu12 and Ala69
 - (ii) contacting the sample with the candidate therapeutic agent and;
 - (iii) measuring DNA loop formation in E2.
 - 12. A method according to claim 11 wherein the candidate therapeutic agent is for the treatment of warts, proliferative skin lesions and/or cervical cancer.
- 13. A method according to either claim 11 or 12 further including any one or more of the features receited in claims 2 to 8.

.... 20

- 14. Use of the method according to any one of claims 10 to 13 in identifying and/or selecting an antiviral candidate therapeutic agent.
- 15. Use according to Claim 14 wherein identification/selection of the candidate therapeutic agent depends on its ability to interfere with or block interactions of E2NT so as to interfere or block viral and/or cellular transcription factors.
 - 16. A method of monitoring the efficacy of an antiviral therapy in a patient receiving a medicament for the treatment of an HPV infection comprising the steps of:
 - (i) taking a sample from said patient

15

- (ii) contacting the sample with an E2 N-terminal module (E2NT) dimer, the dimer comprising residues at its dimer interface that are vital for transcriptional and replicational activities of said protein and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69 and;
- (iii) measuring E2NT interactions and/or DNA loop formation of the dimer.
- 20 17. Use of a dimerisation surface of an crystallised molecular complex of an E2 N-terminal module (E2NT) dimer protein according to any one of Claims 1-8 as a target site for interaction with putative antiviral agents and/or for measuring efficacy of said agents.
- 25 18. A method for identifying and/or selecting a candidate therapeutic agent, comprising applying rationalised drug design to a crystal structure obtainable by crystallising E2NT, cryogenically freezing the crystals and generating the crystal structure using X-ray diffraction the crystallised E2NT comprising residues at its dimer interface that are vital for transcriptional and replicational activities and wherein the residues comprise any one or more of the following residues Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69.

- 19. A method decraim 18, wherein the method by which the E2NT crystall structure is obtainable comprises crystallisation using hanging-drop vapour diffusion.
- 5 20. A method of claim 18 or 19 wherein the method by which E2NT crystal structure is obtainable comprises X-ray diffraction using uranium acetate and gold cyanide E2NT derivatives and refining with data extending to 1.9 A spacing.
- 10 21. A method of any of claims 18 to 20 further including any one or more of the features receited in claims 2 to 8...
 - 22. A method of any of claims 18 to 21, wherein the rationalised drug design comprises designing drugs which interact with the dimerisation surface of E2NT.
- 23. A computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å, wherein said computer comprises:
 - (a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises the structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Glu12 and Ala69;
 - (b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machine readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- 5 (d) a display coupled to said central-processing unit for displaying said threedimensional representation.
 - 24. The computer according to claim 23, wherein said three-dimensional representation is of a molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or wherein said three-dimensional representation is of a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5 Å.
- 25. A computer for determining at least a portion of the structure coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex, wherein said computer comprises:
- (a) a machine-readable data storage medium comprising a data storage material

 20 encoded with machine-readable data, wherein said data comprises at least a portion

 of the structural coordinates according to Table 3;
 - (b) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
 - (c) a working memory for storing instructions for processing said machine-readable data of (a) and (b);
- 30 (d) a central-processing unit coupled to said working memory and to said machinereadable data storage medium of (a) and (b) for performing a Fourier transform of the

10

10

machine readable data. (a) and for processing said machine restable data of (b) into structure coordinates; and

- (e) a display coupled to said central-processing unit for displaying said structure coordinates of said molecule or molecular complex.
- 26. A crystallised molecule or molecular complex comprising a dimerisation surface defined by structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Glu12 and Ala69 according to Table 3 or a homologue of said molecular or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 27. The crystallized molecule or molecular complex according to claim 26, wherein said molecule or molecular complex is defined by the set of structure coordinates according to Table 3, or a homologue thereof, wherein said homologue has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 28. A machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when using a machine programmed with instructions for using said data, is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex comprising a dimensation surface defined by structure coordinates of E2NT amino acids Glu20, Glu100, Asp122, Arg37, Glu39, Ile73, Gln12 and Ala69 according to Table 3, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.
- 30 29. The machine-readable data storage medium according to claim 28, wherein said molecule or molecular complex is defined by the set of structure coordinates

according to Table for a homologue of said molecule or molecular complex, said homologue having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.5Å.

- 30. A machine-readable data storage medium comprising a data storage material encoded with a first set of machine readable data which, when combined with a second set of machine readable data, using a machine programmed with instructions for using said first set of data and said second set of data, can determine at least a portion of the structure coordinates corresponding to the second set of machine readable data, wherein: said first set of data comprises a Fourier transform of at least a portion of the structural coordinates according to Table 3; and said second set of data comprises an x-ray diffraction pattern of a molecule or molecular complex.
- 31. A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex according to claim 26 or 27 comprising the steps of:
 - a. employing computational means to perform a fitting operation between the chemical entity and a dimerisation surface of the molecule or molecular complex; and
- 20 b. analysing the results of said fitting operation to quantify the association between the chemical entity and the dimerisation surface.

25

5

10

30

P32059woamandedolaims23-11-01