UNA NUEVA DINÁMICA EN RELATIVIDAD ESPECIAL

A. Blato

Licencia Creative Commons Atribución 3.0 (2016) Buenos Aires Argentina

En relatividad especial, este artículo presenta una nueva dinámica que puede ser aplicada en cualquier sistema de referencia inercial.

Introducción

En relatividad especial, la posición relativista (φ), la velocidad relativista ($\dot{\varphi}$) y la aceleración relativista ($\ddot{\varphi}$) de una partícula están dadas por:

$$\varphi \doteq \mathbf{r}$$

$$\dot{\varphi} \doteq \frac{d\varphi}{d\tau} = \frac{\mathbf{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$\ddot{\varphi} \doteq \frac{d\dot{\varphi}}{d\tau} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \left[\frac{\mathbf{a}}{\sqrt{1 - \frac{v^2}{c^2}}} + \frac{(\mathbf{a} \cdot \mathbf{v}) \mathbf{v}}{c^2 (1 - \frac{v^2}{c^2})^{3/2}} \right]$$

donde $(\mathbf{r}, \mathbf{v}, \mathbf{a})$ son la posición, la velocidad y la aceleración de la partícula. (τ) es el tiempo propio de la partícula. $d\tau = \sqrt{1-v^2/c^2}\ dt$

Dinámica Poincariana

En relatividad especial, sea una partícula con masa en reposo m_o entonces el momento lineal ${\bf P}$ de la partícula, la fuerza poincariana neta $\widehat{{\bf F}}$ que actúa sobre la partícula, el trabajo W realizado por la fuerza poincariana neta que actúa sobre la partícula y la energía cinética K de la partícula, para un sistema de referencia inercial, están dados por:

$$\mathbf{P} \doteq m_o \dot{\boldsymbol{\varphi}}$$

$$\widehat{\mathbf{F}} = \frac{d\mathbf{P}}{d\tau} = m_o \ddot{\boldsymbol{\varphi}}$$

$$\mathbf{W} \doteq \int_{1}^{2} \widehat{\mathbf{F}} \cdot d\boldsymbol{\varphi} = \Delta \mathbf{K}$$

$$K \doteq \frac{1}{2} m_o (\dot{\varphi} \cdot \dot{\varphi})$$

 $(\varphi, \dot{\varphi}, \ddot{\varphi})$ son la posición relativista, la velocidad relativista y la aceleración relativista de la partícula respecto al sistema de referencia inercial.

 $\hat{\bf F}=\gamma\,{f F}$ (donde γ es el factor de Lorentz y ${f F}$ es la fuerza einsteniana neta que actúa sobre la partícula)

La fuerza poincariana neta $\widehat{\mathbf{F}}$ que actúa sobre una partícula siempre tiene igual dirección y sentido que la aceleración relativista $\ddot{\varphi}$ de la partícula.