Author Index Volume 67

Bannert, 1., A trust region algorithm for nonsmooth optimization	(2) 247
Brown, J.R., Bounded knapsack sharing	(3)343
Coleman, T.F. and Y. Li, On the convergence of interior-reflective Newton methods for	
nonlinear minimization subject to bounds	(2) 189
Cominetti, R. and J. San Martín, Asymptotic analysis of the exponential penalty trajectory in	
linear programming	(2) 169
Conn, A.R., N. Gould and Ph.L. Toint, A note on exploiting structure when using slack variables	(1) 89
Freund, R.W. and F. Jarre, An interior-point method for fractional programs with convex constraints	(3) 407
Gould, N. see A.R. Conn	(1) 89
Güder, F. and J.G. Morris, Optimal objective function approximation for separable convex	(1) 0)
quadratic programming	(1) 133
Higle, J.L. and S. Sen, Finite master programs in regularized stochastic decomposition	(2) 143
Ibaraki, T. see H. Nagamochi	(3) 325
Jarre, F. see R.W. Freund	(3) 407
Li, Y. see T.F. Coleman	(2) 189
Luo, ZQ. and JS. Pang, Error bounds for analytic systems and their applications	(1) 1
Mizuno, S., Polynomiality of infeasible-interior-point algorithms for linear programming	(1) 109
Morris, J.G. see F. Güder	(1) 133
Nagamochi, H., T. Ono and T. Ibaraki, Implementing an efficient minimum capacity cut algorithm	(3) 325
Ono, T. see H. Nagamochi	(3) 325
Pang, JS. see ZQ. Luo	(1) 1
Penot, JP., Optimality conditions in mathematical programming and composite optimization	(2) 225
Pochet, Y. and L.A. Wolsey, Polyhedra for lot-sizing with Wagner–Whitin costs	(3) 297
Potra, F.A., A quadratically convergent predictor–corrector method for solving linear pro-	(3) 231
grams from infeasible starting points	(3) 383
San Martín, J. see R. Cominetti	(2) 169
Sen, S. see J.L. Higle	(2) 143
Shapiro, A., Quantitative stability in stochastic programming	(1) 99
Talluri, K.T. and D.K. Wagner, On the k-cut subgraph polytope	(1) 121
Toint, Ph.L. see A.R. Conn	(1) 89
Van Rooyen, M., X. Zhou and S. Zlobec, A saddle-point characterization of Pareto optima	(1) 77
Wagner, D.K. see K.T. Talluri	(1) 121
Wolsey, L.A. see Y. Pochet	(3) 297
Wright, M.H., Some properties of the Hessian of the logarithmic barrier function	(2) 265
Wright, S.J., An infeasible-interior-point algorithm for linear complementarity problems	(1) 29
Zhou, X. see M. Van Rooyen	(1) 77
Zhu, C., Solving large-scale minimax problems with the primal-dual steepest descent algo-	(-,
rithm	(1) 53
Zlobec, S. see M. Van Rooyen	(1) 77