```
import pandas as pd
import numpy as np
import scipy.stats as stats

df = pd.read_csv('/content/Mall_Customers.csv')
df
```

| <b>→</b> |        | CustomerID     | Genre  | Age | Annual Income (k\$) | Spending Score (1-100) |     |
|----------|--------|----------------|--------|-----|---------------------|------------------------|-----|
| ,        | 0      | 1              | Male   | 19  | 15                  | 39                     | ıl. |
|          | 1      | 2              | Male   | 21  | 15                  | 81                     | +/  |
|          | 2      | 3              | Female | 20  | 16                  | 6                      |     |
|          | 3      | 4              | Female | 23  | 16                  | 77                     |     |
|          | 4      | 5              | Female | 31  | 17                  | 40                     |     |
|          |        |                |        |     |                     |                        |     |
|          | 195    | 196            | Female | 35  | 120                 | 79                     |     |
|          | 196    | 197            | Female | 45  | 126                 | 28                     |     |
|          | 197    | 198            | Male   | 32  | 126                 | 74                     |     |
|          | 198    | 199            | Male   | 32  | 137                 | 18                     |     |
|          | 199    | 200            | Male   | 30  | 137                 | 83                     |     |
|          | 200 rd | ows x 5 column | 19     |     |                     |                        |     |

200 rows × 5 columns

Next steps: (Generate code with df)



**New interactive sheet** 

## 2. Display summary statistics for each column

df.describe()

 $\rightarrow$ 

|   |      | CustomerID | Age        | Annual Income (k\$) | Spending Score (1-100) |     |
|---|------|------------|------------|---------------------|------------------------|-----|
| C | ount | 200.000000 | 200.000000 | 200.000000          | 200.000000             | ılı |
| m | nean | 100.500000 | 38.850000  | 60.560000           | 50.200000              |     |
| ; | std  | 57.879185  | 13.969007  | 26.264721           | 25.823522              |     |
| r | min  | 1.000000   | 18.000000  | 15.000000           | 1.000000               |     |
| 2 | 25%  | 50.750000  | 28.750000  | 41.500000           | 34.750000              |     |
| 5 | 50%  | 100.500000 | 36.000000  | 61.500000           | 50.000000              |     |
| 7 | 75%  | 150.250000 | 49.000000  | 78.000000           | 73.000000              |     |
| n | nax  | 200.000000 | 70.000000  | 137.000000          | 99.000000              |     |

## 3. Display Measures of Dispersion

```
numeric_df = df.select_dtypes(include=['float64', 'int64'])

dispersion_measures = {
    "Mean Absolute Deviation": numeric_df.mean(),
    "Variance": numeric_df.var(),
    "Standard Deviation": numeric_df.std(),
    "Range": numeric_df.max() - numeric_df.min(),
    "1st Quartile": numeric_df.quantile(0.25),
    "3rd Quartile": numeric_df.quantile(0.75),
    "Skewness": numeric_df.skew()
}

dispersion_df = pd.DataFrame(dispersion_measures)
dispersion_df
```

| <b>-</b> |            | Mean<br>Absolute<br>Deviation | Variance    | Standard<br>Deviation | Range | 1st<br>Quartile | 3rd<br>Quartile | Skewness |  |
|----------|------------|-------------------------------|-------------|-----------------------|-------|-----------------|-----------------|----------|--|
|          | CustomerID | 100.50                        | 3350.000000 | 57.879185             | 199   | 50.75           | 150.25          | 0.000000 |  |
|          | Age        | 38.85                         | 195.133166  | 13.969007             | 52    | 28.75           | 49.00           | 0.485569 |  |
|          | Annual     | 60 E6                         | 600 02EE70  | 06 06/704             | 100   | /1 EO           | 70 00           | 0 201012 |  |

Next steps: Generate code with dispersion\_df

View recommended plots

New interactive sheet

## 4. Summary statistics of income grouped by age groups (categorical vs quantitative)

```
income_summary = df.groupby("Age")["Annual Income (k$)"].agg(["min", "max"])
income_summary.head()
```

| Age |    |    | 11. |  |  |
|-----|----|----|-----|--|--|
| 18  | 33 | 65 |     |  |  |
| 19  | 15 | 81 |     |  |  |
| 20  | 16 | 73 |     |  |  |
| 21  | 15 | 62 |     |  |  |
| 22  | 17 | 57 |     |  |  |

Start coding or generate with AI.