

POLITECNICO MILANO 1863

PERFORMANCE EVALUATION AND APPLICATIONS

- ZHANG YUEDONG
- Codice Persona: ******
- Email: yuedong.zhang@mail.polimi.it
- Professore: MARCO GRIBAUDO

Outline

- Simulation with MATLAB
 - Fit the unknown distribution
 - Rebuild the model with Phase-Type distributions
 - Solve the ode45 function, plot the probability of the various states for the time T = [0, 20] and T = [0, 10000]
 - Compute the steady-state
 - Compute the average energy consumption through state rewards
 - Computer the on frequency through transition reward
- Simulation with Java Modelling Tools (Double-check the result of MATLAB)
 - Build the model
 - Compute the average energy consumption through the steady-state
 - Compute the on frequency through the throughput

CTMC Model

Result

• Steady-state: pi = [0.8400, 0.0840, 0.0504, 0.0130, 0.0126]

• Average energy consumption: 1.7003 mW

• On frequency: 0.3360

JSIMgraph

• Double-Check the result of MATLAB simulation

Average energy consumption

```
[0.8372, 0.0850, 0.0503, 0.0256] \cdot [\varepsilon_{off}, \varepsilon_{on}, \varepsilon_{proc}, \varepsilon_{act}]^{\mathsf{T}} = 1.7002 \,\mathrm{mW}
```

On frequency

