SOLUTIONS

Math 5: Music and Sound. Quiz 1

30 mins (4 questions, Qu 3 worth less than the others)

Please write on this paper, show your working. The last page has useful information.

1. Consider the signal $24 \sin(400\pi t + \pi/4)$

Consider the signal
$$2\pi \sin(400\pi t + \pi)$$

(a) What is the period?

$$T = \frac{1}{F} = \frac{2\pi}{\omega} = \frac{2\pi}{400\pi} = \frac{1}{200}$$

(b) Rewrite it in the form $A\sin(\omega t) + B\cos(\omega t)$.

(b) Rewrite it in the form $A\sin(\omega t) + B\cos(\omega t)$.

(c) For ALB!

(gon can use addition formula in buck

use the triangle: C/B rotating gives $C \sin(\omega t + \emptyset) = A \sin \omega t + B \cos \omega t$ when $A = C \cos \emptyset$ $A = C \sin \emptyset$ $A = C \sin \emptyset$ $A = C \cos \emptyset$ A

2. (a) What musical pitch (give name and octave, e.g. D#3) is nearest the frequency 1047 Hz?

ratio r = 109

semitores above A4 = 12 Inr

≈ 16.0

12 + 4.

(b) Find the frequency ratio of the whole tone interval in the Pythagorean scale

CDEFGABCD (3)2.12 = 1/8

the interval on which Pythagorem scale (temperament) based.

2

		2 semitore	نا. د کا	
(c) Find the	e frequency ratio between this whole	tone and the equal-tem	pered whole tone in cents	
2 %	Pythag whole ton			
2	2 equal-tempered w	role tone		
R = -	$\frac{9/8}{2^{2/12}} = 1.00226, n$	mber of cents c	$c = 1200 \frac{\ln R}{\ln 2}$	
			=+3.9 cents.	
	since 9/8 > 22/12	the Pythay. is	shap relative to	equal tempered
3. What would (Give any rel	you hear if two pure tones at freque evant new frequencies)	encies 1000 Hz and 100	Hz were played together?	
You	world hear a pure	tone at 200	4 Hz	
	dulated' (ie with a			
3 at	8 Hz.	3		
The	'wah-wah' amplitude	modulation)	rus frequency f, -	fz = 8Hz.
you didn't This	follows from the sum	of sinusoids		
unite this	sin (201/t) + sin (201/2t)) = 2 cos	(211 fi-fit) sin (211)	F17 (26)
	5		-5	
multiply as functions	/ www.mww	MMMMMMM	mm <	
	- management	Mhewy	Mir	

2 notes are sounding, with the same pitch but different timbre (harmonic content).

The pitch is clearly the same because the partials form a harmonic series in both cases, with the fundamental to being the same.

Both are periodic signals.

Since such signals have

partials in a harmonic

Series. But their

C1, C2, C3 etc. coefficients

are different.

The first will be harsh, the second more mellow.

A pure tone with frequency decreasing but amplitude increasing, for instance

the graph could be moreasing, for instance

(or chord)

This is followed by a bell-like sound,

which is not a periodic signal (since

the partials are not in a harmonic

series). It may not have a

well-defined runsical pitch (there no common divisor)

It may be dissonant since there

are partials near each other (within

(0% in frequency).