

UNIVERSITI TEKNOLOGI MALAYSIA

Research Design and Analysis in Data Science MCST1043

Sentiment Analysis of Amazon Reviews Using Machine Learning

Done by: Omar Mohammed Ali Albaagari (MCS241021)

Prepared for: Prof. Madya.Ts.Dr. Mohd Shahizan bin Othman

OUTLINES

1 Introduction

4 Initial Results

2 Literature Review

Discussion and Future Work

3 Methodology

6 References

- Emotions are present in every single situation in which people engage with one another (De Saa and Ranathunga, 2020).
- In the twenty-first century, the internet has grown into a technology that is indispensable to our everyday life (Ripa et al., 2021).
- People are purchasing things from a large number of e-commerce websites in the current period, and it is more likely that they would first assess the products before purchasing them (Rathor et al., 2018).
- Sentimental analysis is one of the machine learning processing techniques that helps detect feelings (Rajat et al., 2021).

INTRODUCTION

INTRODUCTION

- This approach enables business owners to collect information about the perspectives of their customers via various online media, such as social media, and analyses of websites that allow for online shopping.
- Sentiment analysis represents the behaviour of the consumer with regard to the product, as well as the reputation of the company.

Problem Statement

- Customer ratings and reviews reflect buyer judgment but may not always convey true sentiment.
- Businesses face challenges in accurately assessing customer satisfaction based solely on star ratings.
- There is a need for advanced sentiment analysis techniques to interpret hidden emotions in customer reviews.

Research Goal

• To identify patterns in Office Products in Amazon to enhance the understanding of customers behavior by utilizing VADER and Roberta techniques in Office Products reviews

	Research Questions	Research Objectives
a)	What preprocessing steps to carry out for the analyzing sentiment analysis from office product dataset?	a) To conduct a preprocessing of the office products reviews datasets for sentiment analysis.
b)	What relevant keywords can be identified and retrieved by VADER and Roberta from the review's dataset?	b) To train a machine learning model that is capable of sorting customer evaluations into three unique sentiment categories, namely positive, neutral, and negative categories?
c)	What conclusions may be derived from the customers purchases?	c) To develop a dashboard that summarize the analysis and making conclusion of their behavior.

Literature Reviews

Several distinct degrees of investigation have been conducted on the subject of sentiment analysis. It is largely possible to identify sentiments and viewpoints at the level of the text, phrase, or aspect (Do et al., 2019). An illustration of the degrees of sentiment analysis may be seen in Figure 2.1. The first two levels are very great to go through, but they are also really challenging. In spite of this, the third level is more challenging than the levels that came before it since it demands a more comprehensive examination. (Cambria et al., 2017).

Figure 2.1 Various levels of emotional analysis (Wankhade et al., 2022).

Literature Review

Title	Author	Finding
A Comprehensive Survey on Sentiment Analysis: Approaches, Challenges and Trends	Birjali, M., Kasri, M., and Beni- Hssane, A. (2021)	Reviewed various sentiment analysis methods, highlighting traditional and deep learning models. Discussed challenges in sarcasm detection and trends in multilingual data and real-time sentiment tracking.
Sentiment Analysis Based on Deep Learning: A Comparative Study	Dang, N. C., Moreno-García, M. N., and De la Prieta, F. (2020)	Found that deep learning models like LSTM and GRU outperform traditional machine learning models, especially with word embeddings.
Returning the N to NLP: Towards Contextually Personalized Classification Models	Flek, L. (2020)	Emphasized the importance of contextually personalized NLP models by integrating user-specific data, improving tasks like sentiment analysis.
Sentiment Analysis of Amazon Product Reviews Using Machine Learning and Deep Learning Models	Gope, J. C., Tabassum, T., Mabrur, M. M., Yu, K., and Arifuzzaman, M. (2022)	Demonstrated that LSTM and CNN models outperform traditional machine learning models for sentiment analysis, with word embeddings enhancing performance.

Literature Review

Title	Author	Finding
Sentiment Analysis via Semi-Supervised Learning: A Model Based on Dynamic Threshold and Multi-Classifiers		Proposed a semi-supervised model using dynamic thresholding and multiple classifiers, improving accuracy with limited labeled data.

Research Methodology

Data Collection

• A dataset consisting of reviews of office products was gathered from the Amazon Reviews Repository collection [Amazon Reviews'23]. There are a total of 200,000 rows

	parent_asin	user_id	helpful_vote	asin	text	timestamp	images	verified_purchase	title	rating
O	B01MZ3SD2X	AFKZENTNBQ7A7V7UXW5JJI6UGRYQ	0	B01AHHL4X2	Lovely ink. Writes well. The right amount of w	1677939345945	0	True	Pretty & I love it!	5.0
1	B08L6H23JZ	AFKZENTNBQ7A7V7UXW5JJI6UGRYQ	0	B08L6H23JZ	Overall I'm pretty happy with this purchase bc	1677939160682	0	True	excellent 1 extremely dry (blue)	4.0
2	B07JDZ5J46	AFKZENTNBQ7A7V7UXW5JJI6UGRYQ	2	B07JDZ5J46	[[VIDEOID:63276c19932aa4f3687042b8b9f8613c]] U	1660188831933	0	True	I don't get the reviews. Mine are garbage.	1.0
3	B07BR2PBJN	AFKZENTNBQ7A7V7UXW5JJI6UGRYQ	0	B004MNX7EW	lt's a beautiful color, but even though it had	1659806066713	[('small_image_url': 'https://m.media- amazon.c	True	Ordering Ink online: never a good idea I guess.	4.0
4	B097SFY5ZS	AFKZENTNBQ7A7V7UXW5JJI6UGRYQ	0	B019YLRFFS	ldk if I just got a bad batch which is possibl	1659799390978	0	True	Mine are iffy at best.	3.0

Figure 3.2 Review Dataset

Figure 3.1 Overall research methodology

Research Methodology

Data Preprocessing and Exploratory Data Analysis

Data Cleaning

- Remove any rows with missing product review data or ratings.
- Replace missing ratings (NaN) with the average of other ratings or remove the rows, as there's a large dataset.

Preprocess text by:

- Converting to lowercase
- Removing extra whitespaces
- Replacing digits and punctuation with spaces
- Eliminating extra spaces and tabs
- Tokenize the text into words or sub-words and apply stemming for word standardization.

Figure 3.1 Overall research methodology

Research Methodology

VADER and Roberta Sentiment Analysis

VADER for quick, rule-based sentiment analysis, providing polarity scores from -1 (negative) to +1 (positive), ideal for short texts. To capture deeper context, fine-tuned the RoBERTa model, a transformer-based framework with a stronger grasp of word relationships and subtle sentiment shifts. Combining VADER's speed with RoBERTa's contextual accuracy enhances overall sentiment classification.

Model Comparison

After implementing NLP, evaluate the model using accuracy, precision, recall, and F1-score, which balances precision and recall to assess sentiment classification. Finally, select the most accurate model.

Figure 3.1 Overall research methodology

In figure 4.3 shows the dataset information of each column also the type of the data that used. It can be seen that all columns are non-null, consisting of 6 objects, 3 int64, 1 bool, and 1 float64.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 10 columns):
     Column
                        Non-Null Count
     parent asin
                       200000 non-null
                                       object
     user id
                       200000 non-null
                                        object
     helpful vote
                       200000 non-null int64
     asin
                        200000 non-null
                                        object
                       199975 non-null object
     text
    timestamp
                       200000 non-null int64
     images
                       200000 non-null object
     verified purchase 200000 non-null bool
     title
                        199964 non-null object
    rating
                       200000 non-null float64
dtypes: bool(1), float64(1), int64(2), object(6)
memory usage: 13.9+ MB
df.columns
Index(['parent_asin', 'user_id', 'helpful_vote', 'asin', 'text', 'timestamp',
       'images', 'verified_purchase', 'title', 'rating'],
      dtype='object')
```

Figure 4.3 Data Information

In figure 4.4 shows the dataset description which is about the basic statistical analysis such as mean, standard deviation, minimum and maximum values

	helpful_vote	timestamp	rating
count	200000.000000	2.000000e+05	200000.000000
mean	1.108975	1.545500e+12	4.412790
std	10.618726	8.653161e+10	1.111684
min	0.000000	9.587741e+11	1.000000
25%	0.000000	1.482169e+12	4.000000
50%	0.000000	1.558833e+12	5.000000
75%	0.000000	1.614727e+12	5.000000
max	1561.000000	1.679245e+12	5.000000

Figure 4.4 Dataset Description

The positive sentiment word cloud highlighted frequent terms like "easy," "perfect," "love," "great," "nice," "beautiful," "good," "pen," and "better." Phrases like "good quality" and "works great" reflected product satisfaction, while "price" and "happy" indicated approval of affordability.

Figure 4.5 World Cloud of Positive Sentiment

The negative sentiment word cloud highlighted frequent terms like "small," "little," "bad," "waste," and "disappointed," reflecting dissatisfaction. Words like "time," "hard," and "small" indicated frustration with certain office products.

Figure 4.6 World Cloud of Negative Sentiment

Figure below illustrate the word cloud for neutral sentiment reviews. Word cloud analysis illustrated that "use," "color," "wish," "product," were the most frequent used words in the review. These words can represent that the products don't meet their meet as their expectation.

Neutral Reviews | Contact | Contact

Figure 4.7 World Cloud of Neutral Sentiment

Figure 4.8 shows the rating distribution (1–5) for office products on Amazon, with most ratings being five. This suggests high product quality and reasonable pricing, reflecting overall customer satisfaction.

Figure 4.8 Rating Distribution

Figure 4.9 illustrate the verified purchase distribution which indicate the majority of the customers are verified their purchase. Whereas smaller portion are not verifying their purchase

Figure 4.9 Verifies Purchase Distribution

A list of the top ten titles of reviews submitted by consumers is shown in the figure below. "Good Product" accounts for the smallest share, while "Five Star" is the term that receives the most amount of portion

Figure 4.10 Top 10 Most Frequent Review Titles

The scatter plot shows a positive association between ratings and helpful votes, indicating that higher-rated products are more likely to be seen as helpful by customers.

Figure 4.11 Scatter Plot between Rating and Helpful_vote

Model Development

In this research using two models in the sentiment analysis which are Valence Aware Dictionary and sEntiment Reasoner and Robustly Optimized BERT Pretraining Approach using Python. Some libraries were used including the NLTK, vaderSentiment, Transformers, Pandas, Scikit-learn, and seaborn. Those are helping to approach the sentiment analysis in effective way.

Vader Model

pos compound Product_ID Helpful_Vote Rating Time verified_purchase Summary Text 5.0 1677939345945 Lovely ink, Writes well. The right amount of w., excellent 2 0.051 0.771 0.178 4.0 1677939160682 Overall I'm pretty happy with this purchase bc.. extremely dry (blue) I don't [[VIDEOID:63276c19932aa4f3687042b8b9f8613c]] 2 3 0.070 0.815 0.115 reviews. garbage. Ordering **3** 4 0.072 0.755 0.173 4.0 1659806066713 It's a beautiful color, but even though it had... never a good idea I guess. Mine are 4 5 0.142 0.776 0.082 -0.9306 3.0 1659799390978 iffy at ldk if I just got a bad batch which is possibl... best.

Figure 4.15 Data Frame of VADER Model

Model Development

Model Development

Figure 4.16 Visualization of VADER Sentiment

Roberta Model

Text	Summary	verified_purchase	Time	Rating	Helpful_Vote	Product_ID	roberta_pos	roberta_neu	roberta_neg
Lovely ink. Writes well. The right amount wet/	Pretty & I love it!	True	1677939345945	5.0	0	B01MZ3SD2X	0.982284	0.016531	0.001184
Overall I'm pretty happy purchase bc ink good	excellent 1 extremely dry (blue)	True	1677939160682	4.0	0	B08L6H23JZ	0.730696	0.202709	0.066594
[[VIDEOID:63276c19932aa4f3687042b8b9f8613c]] U	l don't get reviews. Mine garbage.	True	1660188831933	1.0	2	B07JDZ5J46	0.010923	0.081818	0.907260
It's beautiful color, even though packed extre	Ordering Ink online: never good idea I guess.	True	1659806066713	4,0	0	B07BR2PBJN	0.420406	0.423542	0.156052
ldk I got bad batch possible I suppose bc let'	Mine iffy best.	True	1659799390978	3.0	0	B097SFY5ZS	0.034786	0.219413	0.745801

Figure 4.17 Data frame of Roberta Model

Discussion and

Future Work

Achievements for this research are:

- A cleaned dataset can be handled by removing the duplicates and handling the missing values and irrelevant information that occurred in the dataset.
- EDA has been done successfully
- VADER and Roberta models are half way developed

Future Work in this project

- (a) Get the sentiment analysis of both VADER and Roberta.
- (b) Determine the accuracy of both models to get which one is more accurate of the sentiment analysis
- (c) Visualization of the insights from office product reviews through dashboard

Cambria, E., Das, D., Bandyopadhyay, S., & Feraco, A. (2017). A practical guide to sentiment analysis (Vol. 5). Springer.

Rathor, A. S., Agarwal, A., & Dimri, P. (2018). Comparative study of machine learning approaches for Amazon reviews. Procedia Computer Science, 132, 1552–1561.

Do, H. H., Prasad, P. W., Maag, A., & Alsadoon, A. (2019). Deep learning for aspect-based sentiment analysis: A comparative review. Expert Systems with Applications, 118, 272–299.

De Saa, E., & Ranathunga, L. (2020). Self-reflective and introspective feature model for hate content detection in Sinhala YouTube videos. In 2020 From Innovation to Impact (FITI) (Vol. 1, pp. 1–6). IEEE.

Flek, L. (2020). Returning the N to NLP: Towards contextually personalized classification models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 7828–7838).

References

References

Han, Y., Liu, Y., & Jin, Z. (2020). Sentiment analysis via semi-supervised learning: A model based on dynamic threshold and multi-classifiers. Neural Computing and Applications, 32, 5117–5129.

Khalid, M., Ashraf, I., Mehmood, A., Ullah, S., Ahmad, M., & Choi, G. S. (2020). Gbsvm: Sentiment classification from unstructured reviews using ensemble classifier. Applied Sciences, 10(8), 2788.

Kumar, A., & Garg, G. (2020). Systematic literature review on context-based sentiment analysis in social multimedia. Multimedia Tools and Applications, 79(21), 15349–15380.

Ripa, S. P., Islam, F., & Arifuzzaman, M. (2021). The emerging threat of phishing attacks and the detection techniques using machine learning models. In 2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI) (pp. 1–6). IEEE.

References

Gope, J. C., Tabassum, T., Mabrur, M. M., Yu, K., & Arifuzzaman, M. (2022). Sentiment analysis of Amazon product reviews using machine learning and deep learning models. In 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE) (pp. 1–6). IEEE.

THANK YOU

f in univteknologimalaysia W b utm.my utmofficial

