Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №4

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	3
	4.1. Описание	3
	4.2. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

- 1. Решить СЛАУ методом простой итерации и методом Зейделя.
- 2. Сравнить погрешности решений и количество итераций в методе простой итерации и в методе Зейделя.

3. Теория

Итерационные методы заключаются в последовательном уточнении решения до тех пор, пока погрешность не станет приемлемой. Каждый последующий вектор х получают по рекуррентной формуле $x_{k+1} = F_k(x_0 \dots x_k)$. Простейшими итерационными методами являются метод простой итерации и метод Зейделя. В общем виде метод простой итерации выглядит следующим образом: $x_{k+1} = B_k x_k + c_k$. В общем виде метод Зейделя выглядит следующим образом: $x_{k+1} = -(D+L)^{-1}Rx_k + (D+L)^{-1}b$, где D, L, R — соответственно диагональная матрица, полученная из исходной, нижняя и верхняя треугольные матрицы с нулями на главной диагонали, полученные из исходной.

4. Численный эксперимент

4.1 Описание

Мы будем рассматривать данный метод на Гильбертовых матрицах размерностей 2x2, 3x3 и 4x4 и матрицы из методички Пакулиной.

- 1. Реализуем методы простой итерации и Зейделя.
- 2. Будем варьировать $\epsilon = |x_k x_{k+1}|$
- 3. Сравним количество итераций в методах и погрешности

4.2 Результаты

\	eps	Метод	ПИ	(К-во	итераций)	Метод	ПИ	x	-	x_a
ò	1.000000e-10				196		3	3.204	198	9e-11
1	1.000000e-09				180					8e-10
2	1.000000e-08				164					4e-09
3	1.000000e-07				148					7e-08
4	1.000000e-06				132		3	. 190	227	5e-07
5	1.000000e-05				116		3	.186	667	7e-06
6	1.000000e-04				100		3	.183	308	3e-05
7	1.000000e-03				84		3	179	949	3e-04
8	1.000000e-02				68		3	.175	590	7e-03
9	1.000000e-01				52		3	.172	232	5e-02
	Метод Зейделя	(К-во	ите	ераций	Методе 3					
0				93				4472		
utp	ut; double click to hi	de		85				212		
2				77				949		
3				69				86858		
4 5				63				34223		
5				53				1590		
6				45				8960		
7				37				6333		
8				29		_		3710		
9				2:	L	2	.32	1089	9e−	·01

Рис. 1: Матрица Гильберта 2*2

\	eps	Метод	ПИ	(К-во	итераций)	Метод	ПИ	x	-	x_a
ò	1.000000e-10				500)	2.	746	722	e+120
1	1.000000e-09				500)	2.	746	722	e+120
2	1.000000e-08				500)	2.	746	722	e+120
3	1.000000e-07				500)	2.	7467	722	e+120
4	1.000000e-06				500)	2.	7467	722	e+120
5	1.000000e-05				500)	2.	7467	722	e+120
6	1.000000e-04				500)				e+120
7	1.000000e-03				500					e+120
8	1.000000e-02				500					e+120
9	1.000000e-01				500)	2.	746	722	e+120
0 1 2 3 4 5 6 7 8 9	Метод Зейделя	(К-во	ите	ераций 1177 1058 939 820 700 580 462 343 224	7 3 9 9 1 1 1 2 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.08 5.06 5.02 5.02 5.02 5.08 5.08	2 - 3 32412 37862 4045 40329 26653 10850 96988 33163 55626	2e- 2e- 5e- 7e- 7e- 8e- 8e- 6e-	09 08 07 06 05 04 03 02

Рис. 2: Матрица Гильберта 3*3

Видно, что метод Зейделя достигает заданной точности за меньшее число итераций.

```
ерѕ Метод ПИ (К-во итераций) Метод ПИ ||x - x_a||

1.000000e-10
1.00000e-09
1.00000e-08
500
inf
1.00000e-08
500
inf
1.00000e-06
500
inf
1.00000e-05
500
inf
1.00000e-04
500
inf
1.00000e-03
500
inf
1.00000e-02
500
inf
1.00000e-01

Метод Зейделя (К-во итераций)
Метод Зейделя ||x - x_a||
19718
1.029257e-07
12601
1.028318e-05
1.029376e-04
10229
7857
1.029396e-02
5485
1.029376e-04
1.029378e-01
1.02878e-01
```

Рис. 3: Матрица Гильберта 4*4

```
Метод ПИ (K-во итераций) Метод ПИ ||x - x_a||
       1.000000e-10
1.000000e-09
                                                                                           500
500
                                                                                                                                 59.385291
0
1
2
3
4
5
6
7
8
9
                                                                                                                                59.385291
59.385291
59.385291
59.385291
59.385291
       1.000000e-09
1.000000e-08
1.000000e-07
1.000000e-06
1.000000e-05
                                                                                           500
500
                                                                                           500
500
       1.000000e-04
1.000000e-03
                                                                                           500
500
                                                                                                                                59.385291
59.385291
       1.000000e-02
1.000000e-01
                                                                                           500
500
                                                                                                                                 59.385291
59.385291
                                                                                Методе Зейделя ||x - x_a||
2.394337e-08
2.387655e-07
        Метод Зейделя (К-во итераций)
                                                                   5329
4777
                                                                   4224
3671
                                                                                                                  2.390972e-06
2.394298e-05
put; double click to hide

to the put; double click to hide

to the put; double click to hide

to the put; double click to hide
                                                                                                                  2.387662e-04
2.390984e-03
2.394312e-02
                                                                    3119
                                                                   2566
2013
1461
908
                                                                                                                  2.387675e-01
2.390997e+00
```

Рис. 4: Матрица из методички Пакулиной