Eleventh International Olympiad, 1969

1969/1.

Prove that there are infinitely many natural numbers a with the following property: the number z = n4 + a is not prime for any natural number n.

1969/2.

Let a_1, a_2, \ldots, a_n be real constants, x a real variable, and

$$f(x) = \cos(a_1 + x) + \frac{1}{2}\cos(a_2 + x) + \frac{1}{4}\cos(a_3 + x) + \dots + \frac{1}{2^{n-1}}\cos(a_n + x).$$
(1)

Given that $f(x_1) = f(x_2) = 0$, prove that $x_2 - x_1 = m\pi$ for some integer m.

1969/3

Let a_1, a_2, \ldots, a_n be real constants, x a real variable, and

$$f(x) = \cos(a_1 + x) + \frac{1}{2}\cos(a_2 + x) + \frac{1}{4}\cos(a_3 + x) + \dots + \frac{1}{2^{n-1}}\cos(a_n + x).$$
(2)

Given that $f(x_1) = f(x_2) = 0$, prove that $x_2 - x_1 = m\pi$ for some integer m.

1969/4

For each value of k = 1, 2, 3, 4, 5, find necessary and sufficient conditions on the number a > 0 so that there exists a tetrahedron with k edges of length a, and the remaining 6 - k edges of length 1.

1969/5

A semicircular arc γ is drawn on AB as diameter. C is a point on γ other than A and B, and D is the foot of the perpendicular from C to AB. We consider three circles, $\gamma_1, \gamma_2, \gamma_3$, all tangent to the line AB. Of these, γ_1 is inscribed in $\triangle ABC$, while γ_2 and γ_3 are both tangent to CD and to γ , one on each side of CD. Prove that γ_1, γ_2 , and γ_3 have a second tangent in common.

1969/6

Given n>4 points in the plane such that no three are collinear, prove that there are at least $\binom{n-3}{2}$ convex quadrilaterals whose vertices are four of the given points.

1969/7

Prove that for all real numbers x_1,x_2,y_1,y_2,z_1,z_2 , with $x_1>0,x_2>0,x_1y_1-z_1^2>0,x_2y_2-z_2^2>0$, the inequality

$$8(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2 \le \frac{1}{x_1 y_1 - z_1^2} + \frac{1}{x_2 y_2 - z_2^2}$$
 (3)

is satisfied. Give necessary and sufficient conditions for equality.