

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

TEMA 2 : PRODUCCIÓN DE AIRE COMPRIMIDO

https://www.youtube.com/watch?v=AQVXxbZ3DY8

Objetivo de la sesión

"Que el estudiante identifique los tipos de compresores existentes en el mercado y comprenda el proceso de tratamiento de aire comprimido"

Contenido de la sesión

- Tratamiento del aire comprimido
- Compresores

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de identificar los tipos de compresores existentes en el mercado y comprenderá el proceso de tratamiento de aire comprimido..

Tratamiento del Aire Comprimido

Impurezas del aire comprimido

- Polvo.
- Hollín.
- Suciedad.
- Hidrocarburos.
- Gérmenes.
- Vapor de agua.
- Polvo de abrasión.
- Óxido.
- Aceite del compresor.
- Sellador.

Generación de partículas más grandes.

Daño de los equipos por abrasiór

- Obstrucción de equipos.
- Daño a la salud de los operarios.

Tabla de calidad del aire (DIN ISO 8573-1)

Clase de calidad del aire (DIN ISO 8573-1)	Tamaño máx. de las partí- culas en µm	Densidad máxi- ma de las partí- culas en mg/m3 (ISO 554)	Punto máx. de condensación bajo presión en °C	Contenido máx. de aceite residual en mg/m3 (ISO 554)	
1	0,1	0,1	-70	0,01	
2	1	1	-40	0,1	
3	5	5	-20	1	
4	15	8	3	5	
5	40	10	7	25	
6	-	-	10	_	
7	-	-	sin definir	-	

Eliminación de partículas

La separación de partículas grandes se realiza en el acumulador.

Punto de Rocio

El aire tiene una capacidad limitada de contener agua, excedida esta capacidad el agua se condensa. El punto de condensación depende de la temperatura y la humedad relativa, este punto de condensación es llamado punto de rocío.

Tabla de punto de rocío

		TEMPERATURA AMBIENTE °C									
	_	-5	0	5	10	15	20	25	30	35	40
AD RELATIVA	90	-6,5	-1,3	3,5	8,2	13,3	18,3	90	23,2	33	38,2
	85	-7,2	-2,0	2,6	7,3	12,5	17,4	85	22,1	32,0	37,1
	80	-7,7	-2,8	1,9	6,5	11,6	16,5	80	21,0	31,0	36,2
	75	-8,4	-3,6	0,9	5,6	10,4	15,4	75	19,9	29,6	35,0
	70	-9,2	-4,5	-0,2	4,5	9,1	14,2	70	18,6	28,1	33,5
	65	-10,0	-5,4	-1,0	3,3	8,0	13,0	65	17,4	26,8	32,0
	60	-10,8	-6,4	-2,1	2,3	6,7	11,9	60	16,2	25,3	30,5
G	55	-11,6	-7.4	-3,2	1,0	5,6	10,4	55	14,8	23,9	28,9
2	50	-12,8	-8,4	-4,4	-0,3	4,1	8,6	50	13,3	22,2	27,1
% НИМЕВАВ	45	-14,3	-9,6	-5,7	-1,5	2,6	7,0	45	11,7	20,2	25,2
	40	-15,9	-10,8	-7,3	-3,1	0,9	5,4	40	9,5	18,2	23,0
	35	-17,5	-12,1	-8,6	-4,7	-0,8	3,4	35	7,4	16,1	20,6
	30	-19,0	-14,3	-10,2	-6,9	-2,9	1,3	30	5,2	13,7	18,0

PUNTO DE ROCÍO

El aire con una temperatura de 20°C y una humedad relativa de 80% tiene un punto de rocío de 16,5°C, esto quiere decir que si la temperatura del aire baja a 16,5°C se condensará el agua contenida en el aire.

SECADO

Reducir la humedad relativa del aire para que el punto de rocío sea mucho menor que la temperatura de operación del sistema neumático. Para este fin se utilizan filtros secadores:

- Secado por frío (1,5 °C)
- Absorción (-15°C)
 - Membrana (-40°C)
 - Adsorción (-70°C)

Preparación fina (Unidad de Mantenimiento)

FILTRO

- Aceite.
- Contaminantes.
- Humedad.
- Se debe purgar periódicamente.

REGULADOR

- Mantiene la presión constante en la línea.
- Regulación manual.

LUBRICADOR

- Aportar el lubricante necesario para un correcto funcionamiento.
- Aceite SAE 10.
- ISO VG 32
- Debe ubicarse a menos de 5 m del equipo neumático para que no se precipiten las gotas de aceite.

Otras consideraciones

La tubería de aire comprimido debe tener una pendiente del 1 al 3 % para que los contaminantes fluyan por la tubería y puedan ser purgadas del circuito de aire.

COMPRESORES DE AIRE

¿Qué es un compresor de aire?

Es un equipo que absorbe el aire y lo presuriza, entregándole energía, la cual puede ser utilizada luego por elementos neumáticos. En este proceso de incremento de presión, el aire incrementa su temperatura. Se clasifican de acuerdo a su configuración.

COMPRESORES CLASIFICACIÓN

COMPRESOR DE PISTON OSCILANTE

- Mecanismo que controla el movimiento alternativo de los pistones.
- Compresor más difundido a nivel industrial.
- Puede llegar a 200 bar
- Varias etapas.

COMPRESOR DE PISTON ROTATIVO

- Pistón está unido a un mecanismo rotatorio.
- Aire comprimido continuamente en una cámara hermética.

COMPRESOR DE DIAFRAGMA

- Una membrana separa el pistón de la cámara de trabajo.
- El aire no entra en contacto con el pistón entonces estará libre de aceite.
- Industria alimenticia, farmacéuticas, químicas y hospitales.

COMPRESOR DE PALETAS

- Rotor excéntrico provisto con paletas gira en un cárter cilíndrico
- Aire con aceite
- Dimensiones reducidas
- Silenciosos
- Caudal uniforme

https://www.youtube.com/watch?v=uc97KD1_TpI

COMPRESOR DE TORNILLO

- Dos tornillos helicoidales (hembra-macho) impulsan hacia un lado el aire axialmente.
- Los tornillos engranan entre si y al girar reducen el espacio comprimiendo el aire.
- Los tornillos no se tocan entre si, la trasmisión es externa.
- De 600 a 40000 m3/hr de aire y 25 bar.
- Ampliamente utilizados por su simpleza y capacidad.

COMPRESOR ROOTS

- El aire se lleva de un lado a otro sin que el volumen sea modificado.
- Impulsan aire
- Mueven gran caudal de aire, uso limitado

COMPRESOR AXIAL

- Turbina
- Rotor en forma cilíndrica que gira dentro de un estator
- El aire pasa de manera axial en el espacio entre el rotor y el estator
- Alto costo, menos robustos (álabes)

COMPRESOR RADIAL

- Compresor centrífugo
- El mismo principio del compresor Axial
- El aire circula de manera radial entre los álabes

Actividad (30 minutos)

Agruparse e investigar las características de los compresores de aire: usos, presiones de operación, caudal, precios, ventajas y desventajas.

G1: Compresor de pistón

G2: Compresor de diafragma

G3: Compresor de tornillo

G4: Compresor de lóbulos

G5: Compresor Axial

G6: Compresor Radial

Conclusiones

- La presencia de agua y otras impurezas en el aire son perjudiciales para los elementos neumáticos.
- El agua presente en el aire comprimido se condensa si el aire llega a la temperatura de punto de rocío.
- El tratamiento de aire comprimido tiene tres etapas: eliminación de partículas, secado y preparación fina.
- En el mercado podemos encontrar distintos tipos de compresores, debemos seleccionar el adecuado de acuerdo a la aplicación y requerimientos de presión y caudal.

LOGRO CONSEGUIDO

- Comprender el tratamiento que se debe realizar al aire comprimido.
- Identifican los tipos de compresores presentes en el mercado.

GRACIAS

