Якою б чудернацькою або незвичною не видалася вам теорема, якщо ціною найбільших зусиль, на які ви здатні, не вдається виявити жодних суперечностей, не відмовляйтесь від неї. Якщо єдиний недолік доведення — це незвичайність, нехай у вас вистачить сміливості прийняти і його, і цю незвичайність.

Норберт Вінер

ЛЕКЦІЯ 6

ВЕКТОРИ. ЛІНІЙНІ ДІЇ НАД ВЕКТОРАМИ. ВЕКТОРНИЙ ПРОСТІР ТА ЙОГО БАЗИС. КООРДИНАТИ ВЕКТОРА

Вектором називають напрямлений відрізок. Він визначається впорядкованою парою точок — початком і кінцем вектора або, по-іншому, точкою та її образом.

Вектор, початком якого ϵ точка A, а кінцем точка B, позначається \overrightarrow{AB} . Найчастіше вектори позначають однією малою латинською літерою зі стрілкою зверху: $\vec{a}, \vec{b}, \vec{c}$ тощо.

- lacktriangle Довжиною, або модулем вектора \overrightarrow{AB} , називається довжина відрізка \overrightarrow{AB} і позначається $|\overrightarrow{AB}|$.
- lacktriangledown Вектор, у якого кінець збігається з початком, називається **нульовим** вектором і позначається $\vec{0}$.

Нульовий вектор має довільний напрямок, а його довжина дорівнює нулю.

- Вектор, довжина якого дорівнює одиниці, називається одиничним.
- **В** Вектори називаються колінеарними, якщо вони лежать на одній або на паралельних прямих. Колінеарні вектори позначають так: $\vec{a} \parallel \vec{b}$. Колінеарні вектори можуть бути однаково напрямленими (співнапрямленими) $\vec{a} \uparrow \uparrow \vec{b}$ або протилежно напрямленими $\vec{a} \uparrow \downarrow \vec{b}$.
- **■** Вектори називаються **перпендикулярними**, якщо вони лежать на перпендикулярних прямих.
- \blacksquare Два вектори \vec{a} та \vec{b} називаються **рівними** $\vec{a} = \vec{b}$, якщо вони співнапрямлені і мають однакову довжину.

Це означає, що точка прикладання (початок вектора) є неістотною. Тобто, якщо один із векторів за допомогою паралельного перенесення можна сумістити з іншим, то ці вектори є одним і тим самим вектором. З огляду на це, можна дати інше означення вектора:

- **■ Вектор** це величина, яка характеризується довжиною і напрямом.
- Вектори називаються компланарними, якщо вони лежать в одній або у паралельних площинах.

Довільні два вектори є компланарними, оскільки існує площина, в яку за допомогою паралельного перенесення можна помістити два задані вектори. Це площина, яку визначають три точки: спільний початок та два кінці векторів.

Розглянемо множину всеможливих векторів і пригадаємо деякі відомі, а також означимо нові операції над векторами.

ДОДАВАННЯ ВЕКТОРІВ

Розглянемо два методи додавання двох векторів: метод трикутника та метод паралелограма.

I метод (ПРАВИЛО ТРИКУТНИКА)

початком вектора векторів \vec{a} і \vec{b} є вектор, початком паралелограм, то сумою векторів \vec{a} і \vec{b} якого ϵ початок вектора \vec{a} і кінець ϵ ϵ вектор, що виходить зі спільного кінцем вектора \vec{b} .

II метод (ПРАВИЛО ПАРАЛЕЛОГРАМА)

Якщо кінець вектора \vec{a} сумістити з Якщо сумістити початки векторів \vec{a} і \vec{b} , то сумою \vec{b} і на них, як на сторонах, побудувати початку векторів \vec{a} і \vec{b} , і лежить на діагоналі цього паралелограма.

МНОЖЕННЯ ВЕКТОРА НА ЧИСЛО

- Добутком вектора а на дійсне число λ називається вектор $\vec{b} = \lambda \cdot a$, для якого:
- 1) вектор \vec{b} колінеарний з вектором \vec{a} ;
- 2) $|\vec{b}| = |\lambda||\vec{a}|$, тобто довжина вектора $ec{b}$ в $|\lambda|$ разів більша (або менша) за довжину вектора \bar{a} ;

3) вектори \vec{a} і \vec{b} однаково напрямлені, якщо $\lambda > 0$, і протилежно напрямлені, якщо $\lambda < 0$.

У випадку $\lambda = 0$ або $\vec{a} = \vec{0}$ добуток $\lambda \cdot \vec{a}$ дорівнює $\vec{0}$. Вважають, що нульовий вектор колінеарний з будь-яким вектором.

 \blacksquare Вектор $-\vec{a}=(-1)\cdot\vec{a}$ називають **протилежним** до вектора \vec{a} .

lacktriangle Різницею векторів $ec{a}$ і $ec{b}$ ϵ вектор \vec{c} , який дорівнює сумі вектора \vec{a} та вектора, протилежного до \vec{b} :

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}).$$

Якщо початки векторів \vec{a} і \vec{b} суміщені і на них, як на сторонах, побудований паралелограм, тоді вектор з початком у кінці вектора \vec{b} і кінцем у кінці вектора \vec{a} є різницею векторів \vec{a} і \vec{b} . Тобто сума векторів та їх різниця лежать на діагоналях паралелограма, побудованого на цих векторах, як на сторонах.

Операції додавання векторів та множення вектора на число називають лінійними операціями над векторами.

ПОНЯТТЯ ВЕКТОРНОГО ПРОСТОРУ ТА ЙОГО БАЗИСУ

Якщо \vec{a} , \vec{b} , \vec{c} – довільні вектори, а α , β – деякі дійсні числа, тоді для означених вище лінійних операцій виконуються властивості:

- 1) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (комутативний закон 4) $\vec{a} + (-\vec{a}) = \vec{0}$; 7) $(\alpha + \beta)\vec{a} = \alpha \ \vec{a} + \beta \ \vec{a}$; додавання);
- 2) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (асоціативний закон додавання);
- 3) $\vec{a} + \vec{0} = \vec{a}$;
- 5) $\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a} = \beta(\alpha \vec{a})$;

- 5) $\alpha(\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$ 3) $1 \cdot \vec{a} = \vec{a}$.

(дистрибутивний

закон);

 \blacksquare Множина V елементів a, b, c, \dots з означеними лінійними операціями суми $a+b \in V$ та добутку на число $\lambda a \in V$, для яких виконуються властивості (1) - 8), називається векторним, або лінійним простором.

Елементи векторного простору називають векторами.

Приклади: а) множина усіх векторів, які лежать на одній прямій, та множина усіх векторів, які лежать на одній площині, утворюють векторні простори;

б) множина усіх матриць розмірності $m \times n$ утворює лінійний простір. Нульовим елементом у цьому просторі буде нульова матриця розмірності $m \times n$.

ЛІНІЙНА ЗАЛЕЖНІСТЬ ВЕКТОРІВ

• Нехай $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ — сукупність векторів, а $\lambda_1, \lambda_2, ..., \lambda_n$ — деякі дійсні числа. Вираз вигляду $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \lambda_n \vec{a}_n$ називається **лінійною комбінацією** векторів $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, а числа $\lambda_1, \lambda_2, ..., \lambda_n$ — коефіцієнтами лінійної комбінації.

Лінійну комбінацію векторів можна розуміти як результат лінійних дій над ними.

lacktriangledown Вектори $ec{a}_1, ec{a}_2, ..., ec{a}_n$ називаються л**інійно незалежними**, якщо рівність

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \ldots + \lambda_i \vec{a}_i + \ldots \lambda_n \vec{a}_n = \vec{0}$$

можлива лише тоді , коли $\lambda_1=\lambda_2=...=\lambda_n=0$.

Інакше кажучи, вектори лінійно незалежні тоді і тільки тоді, коли їхня лінійна комбінація дорівнює нульовому вектору лише за умови рівності нулю усіх коефіцієнтів.

© Вектори $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ називаються л**інійно залежними**, якщо можна підібрати такі числа $\lambda_1, \lambda_2, ..., \lambda_n$, що не всі одночасно дорівнюють нулю, щоб виконувалась рівність $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \lambda_n \vec{a}_n = \vec{0}$.

Тобто, якщо хоча б один з векторів може бути виражений через лінійну комбінацію інших: $\vec{a}_i = \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + ... + \lambda_{i-1} \vec{a}_{i-1} + \lambda_{i+1} \vec{a}_{i+1} + ... + \lambda_n \vec{a}_n$, то ці вектори лінійно залежні.

Справедливі такі твердження:

□ Для того, щоб два вектори були лінійно залежними, необхідно й досить, щоб вони були колінеарними ■

Дійсно, нехай вектори \vec{a} і \vec{b} лінійно залежні, тоді існують такі числа λ_1 , λ_2 , для яких $\lambda_1 \vec{a} + \lambda_2 \vec{b} = \vec{0}$, причому хоча б одне з цих чисел відмінне від нуля. Нехай $\lambda_1 \neq 0$. Тоді поділимо обидві

частини рівності на λ_1 і позначимо частку $\frac{\lambda_2}{\lambda_1} = -\lambda$, тоді одержимо рівність

 $\vec{a} = \lambda \vec{b}$. Остання рівність ϵ , як відомо, умовою колінеарності двох векторів. Отже, \vec{a} і \vec{b} — колінеарні.

Достатність доведемо такими міркуваннями: нехай два вектори \vec{a} і \vec{b} колінеарні, тоді існує таке число λ , що $\vec{a} = \lambda \vec{b}$, або $\vec{a} - \lambda \vec{b} = \vec{0}$. Тобто існують такі відмінні від нуля коефіцієнти $\lambda_1 = 1 \neq 0$, $\lambda_2 = -\lambda$, за яких лінійна комбінація векторів \vec{a} і \vec{b} дорівнює нулеві. Тобто вектори лінійно залежні.

□ Для того, щоб три вектори були лінійно залежними необхідно й досить, щоб вони були компланарними.

Слід довести, що якщо три вектори лежать в одній площині, то один з них може бути виражений через лінійну комбінацію двох інших, і навпаки.

Нехай \vec{a}_1, \vec{a}_2 і \vec{a}_3 – три вектори на площині. Якщо, наприклад, два з них ще й колінеарні, наприклад, \vec{a}_1 і \vec{a}_2 , тоді перший з них може бути виражений через лінійну комбінацію вигляду: $\vec{a}_2 = \lambda_1 \vec{a}_1 + 0 \vec{a}_3$ і теорема доведена.

Якщо ж серед заданої трійки векторів немає колінеарних між собою, тоді приведемо ці вектори до спільного початку O і побудуємо паралелограм, зображений на рисунку: із спільного початку провели промені, які містять два вектори; із кінця третього вектора паралельно до променів провели прямі. Якщо позначити точки перетину прямих і променів літерами A та B, то за правилом паралелограма $\vec{a}_3 = \overrightarrow{OA} + \overrightarrow{OB}$. Але $\overrightarrow{OA} = \lambda_1 \vec{a}_1$; $\overrightarrow{OB} = \lambda_2 \vec{a}_2$, тому $\vec{a}_3 = \lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2$, що і доводить теорему.

□ **Наслідок.** Будь-які три і більше векторів на площині ϵ лінійно залежними. \blacksquare

БАЗИС ВЕКТОРНОГО ПРОСТОРУ

Лінійний простір, в якому існує n лінійно незалежних векторів, а система будь-яких n+1 векторів є лінійно залежною, називається n-вимірним лінійним простором.

Розмірність простору — це найбільша кількість лінійно незалежних векторів у цьому просторі.

■ Базисом векторного простору називається довільна впорядкована множина найбільшої кількості лінійно незалежних векторів у цьому просторі.

Згідно з означенням:

- \Box Довільний ненульовий вектор на прямій і ϵ базисом на цій прямій. \blacksquare
- □ Довільна впорядкована пара неколінеарних векторів на площині ϵ базисом ці ϵ ї площини. \blacksquare

Справді, будь-які три і більше векторів на площині ϵ лінійно залежними. Це означа ϵ , що найбільша кількість лінійно незалежних векторів на площині — це два. Тому, якщо два ветори неколінеарні, то вони утворюють базис на площині.

Базисні вектори найчастіше позначають буквами \bar{e}_1 , \bar{e}_2 , ... \bar{e}_n , а сам базис позначають $\mathbf{B} = \{\bar{e}_1, \bar{e}_2, ..., \bar{e}_n\}$.

Тепер означення розмірності лінійного простору може бути сформульоване так:

lacktriangledown Кількість n векторів базису векторного простору називають **розмірністю** (вимірністю) простору.

Сам простір у цьому випадку позначають R^n . Так пряма (усі вектори, які лежать на одній прямій) є одновимірним простором і позначається R^1 . Площина є двовимірним простором R^2 , а простір (у нашому розумінні цього слова) – тривимірним векторним простором R^3 .

 \square Якщо у просторі R^n вибрано деякий базис $B = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$, то будьякий вектор цього простору в єдиний спосіб можна подати у вигляді лінійної комбінації базисних векторів

$$\vec{a} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + ... + a_n \vec{e}_n$$
.

Права частина цієї рівності називається розкладом вектора \vec{a} в базисі B, а числові коефіцієнти $a_1,...,a_n$ — компонентами вектора в базисі B (або координатами вектора). Записують $\vec{a}=(a_1,a_2,...,a_n)$ в $B \blacksquare$.

Приклад. Усі числові матриці другого порядку утворюють чотиривимірний векторний простір з таким, наприклад, базисом $\overrightarrow{e_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \overrightarrow{e_2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \overrightarrow{e_3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \overrightarrow{e_4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ Тоді довільна матриця другого порядку

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

тобто $A=(a_{11},a_{12},a_{21},a_{22})$ в базисі $B=\left\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3},\overrightarrow{e_4}\right\}.$

Зауваження. Якщо вибрати інший базис у просторі (а таких базисів ϵ безліч), то компоненти вектора зміняться.

Приклад. Переконатись в тому, що вектори $\overrightarrow{e_1} = (-1,3,0)$, $\overrightarrow{e_2} = (2,-3,1)$ та $\overrightarrow{e_3} = (5,1,-2)$ утворюють базис у тривимірному просторі і знайти компоненти вектора $\overrightarrow{a} = (-2,-4,4)$ у цьому базисі.

Розв'язання. Вектори $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ та $\overrightarrow{e_3}$ утворюють базис, якщо їх лінійна комбінація $\lambda_1\overrightarrow{e_1}+\lambda_2\overrightarrow{e_2}+\lambda_3\overrightarrow{e_3}$ дорівнює нульовому вектору лише за умови $\lambda_1=\lambda_2=\lambda_3=0$. Запишемо рівність $\lambda_1\overrightarrow{e_1}+\lambda_2\overrightarrow{e_2}+\lambda_3\overrightarrow{e_3}=\overrightarrow{0}$ у координатній формі $\lambda_1(-1,3,0)+\lambda_2(2,-3,1)+\lambda_3(5,1,-2)=(0,0,0)$ або $(-\lambda_1,3\lambda_1,0)+(2\lambda_2,-3\lambda_2,\lambda_2)+(5\lambda_3,\lambda_3,-2\lambda_3)=(0,0,0)$.

Звідси одержуємо однорідну систему $\begin{cases} -\lambda_1 + 2\lambda_2 + 5\lambda_3 = 0 \\ 3\lambda_1 - 3\lambda_2 + \lambda_3 = 0 \end{cases}, \quad \text{визначник якої} \\ \lambda_2 - 2\lambda_3 = 0 \end{cases}$

$$\begin{vmatrix} -1 & 2 & 5 \\ 3 & -3 & 1 \\ 0 & 1 & -2 \end{vmatrix} = 22 \neq 0$$
. Робимо висновок, що однорідна система має єдиний тривіальний роз-

в'язок $\lambda_1=\lambda_2=\lambda_3=0$, звідки випливає: вектори $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ та $\overrightarrow{e_3}$ утворюють базис. Позначимо компоненти вектора в базисі $\left\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\right\}\overrightarrow{a}=(a_1,a_2,a_3)$, тобто розклад вектора \overrightarrow{a} в новому базисі $\overrightarrow{a}=a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3}$, або $(-2,-4,4)=a_1(-1,3,0)+a_2(2,-3,1)+a_3(5,1,-2)$. Після додавання векторів у правій частині рівності $(-2,-4,4)=(-a_1+2a_2+5a_3,3a_1-3a_2+a_3,a_2-2a_3)$

одержуємо неоднорідну систему
$$\begin{cases} -a_1+2a_2+5a_3=-2\\ 3a_1-3a_2+a_3=-4 \end{cases}$$
, розв'язком якої є $\vec{a}=(1,2,-1)$.
$$a_2-2a_3=4$$

Простір, розмірність якого скінченна, називається *скінченновимірним*. Лінійний простір, у якому можна знайти як завгодно багато лінійно незалежних векторів, називається *нескінченновимірним*.

Усі описані раніше простори були, очевидно, скінченновимірними. Прикладом нескінченновимірного простору може бути сукупність усіх многочленів довільного степеня стосовно змінної x. Базисом у такому лінійному просторі може бути, наприклад, $B = (1, x, x^2..., x^n, ...)$. Очевидно, що довільний многочлен може бути поданий у вигляді лінійної комбінації базисних елементів: $P_3 = 2x^2 - 4x^3 = 0 \cdot 1 + 0 \cdot x + 2 \cdot x^2 + (-4) \cdot x^3 + 0 \cdot x^4 + ...$

Далі розглядатимемо лише скінченновимірні простори.

АФІННА ТА ДЕКАРТОВА СИСТЕМИ КООРДИНАТ

• Афінною системою координат в просторі називають систему, що складається з довільної точки (яка називається початком координат) та координатних осей, на яких лежать вектори базису цього простору \bar{e}_1 , \bar{e}_2 , \bar{e}_n , з початком у цій точці.

■ Кажуть, що три некомпланарні вектори \vec{a} , \vec{b} , \vec{c} з простору R^3 утворюють **праву трійку**, якщо найкоротиши поворот від вектора \vec{a} до \vec{b} здійснюється проти годинникової стрілки, якщо спостерігати з кінця вектора \vec{c} . B іншому випадку трійка векторів називається **лівою**.

- Базис називають **ортонормованим**, якщо усі його вектори є взаємно перпендикулярними (лежать на перпендикулярних прямих) і мають довжину, що дорівнює одиниці.
- **Декартовою системою координат** у просторі R^3 називають афінну систему з ортонормованим базисом \bar{i} , \bar{j} , \bar{k} , вектори якого утворюють праву трійку.

Вектори \overline{i} , \overline{j} і \overline{k} називають **декартовим ортогональним базисом**. Осі, які містять базисні вектори \overline{i} , \overline{j} та \overline{k} , позначають відповідно Ox, Oy та Oz (рис. 1). Їх називають **координатними осями.**

 \Box Будь-який вектор \overline{a} у просторі R^3 єдиним способом розкладається за базисом \overline{i} , \overline{j} , \overline{k} : $\overline{a} = a_x \overline{i} + a_y \overline{j} + a_z \overline{k}$ (рис. 2).

Числа a_x , a_y , a_z називаються **декартовими координатами вектора** \overline{a} , що позначається: $\overline{a}=(a_x,a_y,a_z)$.

Зауваження. Далі вважатимемо, що усі вектори розглядаються у декартовій системі координат, якщо не обумовлено інше.

ДЕКАРТОВІ КООРДИНАТИ ТОЧКИ

Вектор, початок якого збігається з початком координат називають **приведеним** до початку координат.

Для довільного вектора \bar{a} існує єдиний вектор, який дорівнює цьому вектору і є приведеним до початку координат.

Якщо точка M — кінець приведеного вектора \vec{a} , то кажуть, що вектор $\vec{a} = \overrightarrow{OM}$ ϵ радіус-вектором точки M. Компоненти вектора \overrightarrow{OM} називають координатами точки M. Отже, кожній точці простору R^n ставиться в єдиний спосіб у відповідність впорядкований набір n чисел. Так, у просторі R^3 з вибраною декартовою системою координат довільній точці M можна поставити у відповідність координати (x, y, z).

Нехай \overline{OA} та \overline{OB} – два приведені

вектори. 3 рис. 3 бачимо, що різницею цих векторів ϵ вектор \overline{AB} : $\overline{OB} - \overline{OA} = \overline{AB}$.

Puc. 3

Тоді очевидним стає відоме зі школи твердження:

 \Box Для того, щоб знайти координати вектора \overrightarrow{AB} , потрібно від координат кінця B відняти координати початку A.

Справді, нехай $A(x_1, y_1, z_1)$, а $B(x_2, y_2, z_2)$, тоді

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}) - (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}) =$$

$$= (x_2 - x_1) \vec{i} + (y_2 - y_1) \vec{j} + (z_2 - z_1) \vec{k}$$

тобто

$$\overrightarrow{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1)$$

 \Box Формулу для обчислення **довжини вектора** за відомими декартовими координатами в просторі R^3 можна одержати з таких міркувань. Як бачимо з рис. 4, вектор $\overline{a} = \overline{OM}$ є діагоналлю прямокутного паралелепіпеда, тому

$$|\overline{a}|^2 = |\overline{OM}|^2 = |\overline{OK}|^2 + |\overline{KM}|^2 = |\overline{OM_1}|^2 + |\overline{OM_2}|^2 + |\overline{OM_3}|^2 = a_x^2 + a_y^2 + a_z^2,$$

де M_1, M_2, M_3 — проекції точки M на осі Ox, Oy, Oz відповідно, а K — проекція точки M на площину Oxy.

Зауважимо, що формулу для обчислення довжини вектора одержали, застосувавши двічі теорему Піфагора. Цю саму формулу ми одержимо пізніше, враховуючи інші міркування. ■

ЛІНІЙНІ ОПЕРАЦІЇ НАД ВЕКТОРАМИ, ЗАДАНИМИ СВОЇМИ КООРДИНАТАМИ

Hехай $\overline{a}=a_x\overline{i}+a_y\overline{j}+a_z\overline{k}=\left(a_x;a_y;a_z\right)$, $\overline{b}=b_x\overline{i}+b_y\overline{j}+b_z\overline{k}=\left(b_x;b_y;b_z\right)$, тоді: 1) добутком числа λ на ветор $\overline{a}=a_x\overline{i}+a_y\overline{j}+a_z\overline{k}$ ϵ вектор з координатами: $\lambda\overline{a}=\lambda a_x\overline{i}+\lambda a_y\overline{j}+\lambda a_z\overline{k}=(\lambda a_x,\lambda a_y,\lambda a_z)$. Рисунок ілюструє випадок $\lambda=2$.

Звідси випливає:

 \Box Умова колінеарності векторів \overline{a} та \overrightarrow{b} в координатній формі ϵ такою: $\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$.

Справді, якщо два вектори $\overline{a}=a_x\overline{i}+a_y\overline{j}+a_z\overline{k}$ та $\overline{b}=b_x\overline{i}+b_y\overline{j}+b_z\overline{k}$ колінеарні, то існує таке дійсне число λ , що $\overrightarrow{a}=\lambda \overrightarrow{b}$, тобто: $a_x=\lambda b_x$; $a_y=\lambda b_y$; $a_z=\lambda b_z$. Звідси $\lambda=\frac{a_x}{b_x}=\frac{a_y}{b_y}=\frac{a_z}{b_z}$.

2) координати суми (різниці) двох векторів дорівнюють сумі (різниці) відповідних координат доданків: $(\overline{a}\pm\overline{b})=(a_x\pm b_x)\overline{i}+(a_y\pm b_y)\overline{j}+(a_z\pm b_z)\overline{k}=$ $=(a_x\pm b_x,a_y\pm b_y,a_z\pm b_z).$

НАПРЯМНІ КОСИНУСИ ВЕКТОРА

Напрям вектора $\bar{a} = (a_x, a_y, a_z)$ в просторі повністю визначається кутами α , β , γ , які утворює цей вектор з осями координат Ox, Oy, Oz відповідно.

 Косинуси кутів соѕ α, соѕ β, соѕ γ називають напрямними косинусами вектора, причому:

$$\cos \alpha = \frac{a_x}{|\overline{a}|}; \quad \cos \beta = \frac{a_y}{|\overline{a}|}; \quad \cos \gamma = \frac{a_z}{|\overline{a}|}.$$

Вектор з компонентами $(\cos\alpha;\cos\beta;\cos\gamma)$ називається *ортом* вектора $\overline{a}=(a_x,a_y,a_z)$ (вектором одиничної довжини, співнапрямленим з цим вектором). Справді

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

(переконайтесь самостійно).

ПРОЕКЦІЯ ВЕКТОРА НА ВЕКТОР

- **Ортогональною проекцією точки** A **на пряму** l називається точка A' основа перпендикуляра, опущеного з точки A на цю пряму.
- **Ортогональною** проекцією (проекцією) вектора \overrightarrow{AB} на вектор \overrightarrow{c} називається число, що дорівнює довжині відрізка \overrightarrow{AB} , початком і кінцем якого є проекції точок \overrightarrow{A} , \overrightarrow{B} на пряму \overrightarrow{l} , яка містить вектор \overrightarrow{c} , взяте зі знаком "+", якщо вектор \overrightarrow{AB} утворює з вектором \overrightarrow{c} гострий кут, і знаком "-", якщо цей кут тупий.

Зауважимо, що *кутом між двома векторами* ε кут між променями, які містять приведені до спільного початку вектори.

Проекцію вектора \overrightarrow{AB} на вектор \overrightarrow{c} позначають: $\Pi p_{\overrightarrow{c}} \overrightarrow{AB}$.

Якщо позначити кут між векторами \overrightarrow{AB} і \overrightarrow{c} через φ , то:

 \Box Проекція вектора \overrightarrow{AB} на вектор \overrightarrow{c} дорівню ϵ добутку довжини вектора \overrightarrow{AB} на косинус кута φ (рис. 5), тобто

$$\Pi p_{\vec{c}} \overrightarrow{AB} = |\overrightarrow{AB}| \cdot \cos \varphi = \begin{cases} |A'B'|, & \text{якщо } 0 \le \varphi \le \frac{\pi}{2} \\ -|A'B'|, & \text{якщо } \frac{\pi}{2} < \varphi \le \pi \end{cases}. \blacksquare$$

Справді, якщо кут φ гострий, то його косинус додатний, тому і проекція вектора \overrightarrow{AB} на вектор \overrightarrow{c} \in додатною. Якщо ж кут φ – тупий, то його косинус від'ємний і проекція вектора \overrightarrow{AB} на вектор \overrightarrow{c} є від'ємною.

Зауважимо, що компоненти a_x , a_y , a_z довільного вектора \vec{a} в декартовій системі координат – це проекції вектора \vec{a} на вектори \vec{i} , \vec{j} , \vec{k} відповідно.

ПОДІЛ ВІДРІЗКА У ДАНОМУ ВІДНОШЕННІ

Поділити відрізок $M_1 M_2$ у даному відно- $M_1(x_1,y_1)$ шенні $\lambda>0$ означає знайти на ньому таку точку $M_2(x_2,y_2)$ M , для якої виконується рівність: $\frac{|M_1M|}{|MM_2|}=\lambda$

або | $M_1 M_2$ |= λ | $M M_2$ |. Нехай точки M_1 , M_2 мають відповідно координати: $M_1(x_1, y_1, z_1)$ i $M_2(x_2, y_2, z_2)$.

Одержимо формули для знаходження координат (x, y, z) точки M. Оскільки вектори $\overline{M_1M} = (x - x_1, y - y_1, z - z_1)$ та $\overline{MM_2} = (x_2 - x, y_2 - y, z_2 - z)$ співнапрямлені і довжина одного з них в λ разів більша за іншу, то $\overline{M_1M} = \lambda \cdot \overline{MM_2}$, що в координатній формі означає:

$$(x-x_1)\vec{i} + (y-y_1)\vec{j} + (z-z_1)\vec{k} = \lambda(x_2-x)\vec{i} + \lambda(y_2-y)\vec{j} + \lambda(z_2-z)\vec{k} \text{ afo}$$

$$((x-x_1)-\lambda(x_2-x))\vec{i} + ((y-y_1)-\lambda(y_2-y))\vec{j} + ((z-z_1)-\lambda(z_2-z))\vec{k} = \vec{0}.$$

Вектор дорівнює нульовому вектору, якщо усі його координати дорівнюють нулеві, тобто одержуємо систему:

$$\begin{cases} (x-x_1) - \lambda(x_2 - x) = 0 \\ (y-y_1) - \lambda(y_2 - y) = 0 \\ (z-z_1) - \lambda(z_2 - z) = 0 \end{cases} \Rightarrow \begin{cases} x + \lambda x = x_1 + \lambda x_2 \\ y + \lambda y = y_1 + \lambda y_2 \\ z + \lambda z = z_1 + \lambda z_2 \end{cases} \Rightarrow \begin{cases} x = \frac{x_1 + \lambda x_2}{1 + \lambda} \\ y = \frac{y_1 + \lambda y_2}{1 + \lambda} \\ z = \frac{z_1 + \lambda z_2}{1 + \lambda} \end{cases}$$

 \Box Отже, координати (x,y,z) точки M поділу відрізка M_1M_2 у відношенні λ обчислюють за формулами:

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \qquad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \qquad z = \frac{z_1 + \lambda z_2}{1 + \lambda}. \blacksquare$$

Наслідок. Якщо точка $M \in \textbf{\it cepeduholo відрізка } M_1M_2$, то $|M_1M| = |MM_2|$, тому $\lambda = 1$. У цьому разі формули набувають такого вигляду:

$$x = \frac{x_1 + x_2}{2}$$
, $y = \frac{y_1 + y_2}{2}$, $z = \frac{z_1 + z_2}{2}$,

Тобто координати середини відрізка дорівнюють середньому арифметичному координат кінців.