

ESTRUCTURA DE LA CLASE

INTRODUCCIÓN

Presentación del tema de la clase Introducción al ML

CLASIFICACIÓN

Tipos de clasificación Aplicaciones

SISTEMAS DE RECOMENDACIÓN

Sistemas basados en contenido Sistemas colaborativos Matrices de utilidad Problema del arranque frío

CLUSTERIZACIÓN

Aprendizaje por clusterización Vecinos cercanos

ACTIVIDAD PRÁCTICA

ScreenBuddy

CONCLUSIONES

Recapitulación de los puntos clave de la clase

TIPOS DE CLASIFICACIÓN

BINARIA

Asignar una instancia a una de las dos clases posibles

MULTICLASE

Asignar una instancia a una de varias clases posibles

MULTIETIQUETA

Asignar una instancia a una o varias clases posibles.

CLASIFICACIÓN Y REGRESIÓN

- Predecir el precio de una casa en función de sus características
- Clasificar correos electrónicos como spam o no spam
- Determinar si una imagen contiene un gato o no
- Proyectar el rendimiento de un estudiante en función de sus horas de estudio.
- Clasificar opiniones de usuarios en positivas, negativas o neutrales.
- Predecir la temperatura máxima diaria en función de datos climáticos.
- Perfilar un criminal de acuerdo a sus características.

SISTEMAS DE RECOMENDACIÓN

CONTENIDO

Sugieren elementos similares a los que el usuario ha valorado en el pasado

COLABORATIVO

Sugieren elementos similares a los que otros usuarios con los mismos gustos han valorado en el pasado

MATRICES DE UTILIDAD

	Post 1	Post 2	Post 3
Usuario 1	Like	Dislike	Like
Usuario 2	Dislike	Dislike	Dislike
Usuario 3	Like	Dislike	Like

En filtrado colaborativo se usa la matriz de utilidad (Usuario - Item), donde la interacción es el valor

PROGRAMA DEL ARRANQUE FRÍO

Un sistema no puede extraer inferencias para los usuarios o temas sobre los que aún no ha reunido suficiente información.

APRENDIZAJE POR CLUSTERIZACIÓN

VECINOS CERCANOS

```
from sklearn.neighbors import NearestNeighbors

# Entrena el modelo
knn = NearestNeighbors(n_neighbors=numero_vecinos + 1,
algorithm=algoritmo, metric=metrica).fit(X)

# obtiene los vecinos mas cercanos a p
distancias, vecinos = nbrs.kneighbors(p)
```

CONCLUSIONES

CLASIFICACIÓN Y REGRESIÓN

La clasificación permite categorizar las instancias, la regresión permite predecir a partir de una o varias entradas

SISTEMAS DE RECOMENDACIÓN

Recomendaciones por contenido y por filtros colaborativos. Para evitar el arranque en frío usamos sistemas híbridos.

CLUSTERIZACIÓN

Agrupación de elementos por características comunes. Algoritmo de aprendizaje no supervisado.