## PDB 2015 - otázky na půlsemestrálku bx

## 1. Vysvětlete, k čemu se používají deskriptory (realms) a jejich hlavní vlastnosti. [6b]

Úplné popisy, či deskriptory (realms) jsou vlastně jakýmsi souhrnným popisem všech objektů v databázi. Formálněji je to potom množina bodů, úseček, případně vyšších celků, nad sítí bodů, které mají tyto vlastnosti:

- každý (koncový) bod je bodem sítě
- každý koncový bod usečky (složitějšího útvaru) je bodem sítě
- žádný vnitřní bod úsečky (složitějšího útvaru) neni zaznamenán v síti
- žadné dvě úsečky (složitějši útvary) nemají ani průsečik, ani se nepřekrývají

## 2. Definujte pojem R-plocha a všechny další pojmy, které jsou k definici tohoto pojmu potřeba. [6b] (bez definice vnoření R-ploch - Dušan je alergický na odpovědi mimo otázku!)

<u>R-cyklus</u> (polygon bez děr) je uzavřená lomená úsečka. Je tvořený posloupností n úseček. Konec úsečky  $s_i$  je shodný se začátkem úsečky  $s_{(i+1) \mod n}$ . Žádné dvě z těchto úseček se neprotínají.

<u>R-plocha (polygon s dírami)</u> je dvojice (c,H= $\{h_1..h_n\}$ ) kde c je R-cyklus (vnější hranice) a H množina R-cyklů (vnitřních hranic - děr). Všechny díry jsou hranově vnořené v c. Každé dva R-cykly z H jsou hranově disjunktní. (díry se nepřekrývají ani se vzájemně nedotýkají)

## 3. Vysvětlete, proč pro vícedimenzionální prostorová data nelze použít klasické přístupy k indexování, jako např. B-stromy. [2b]

Pro 2,3,... -D prostor nelze jednoduše definovat předchůdce a následníka (v 1D by to bylo x-1 a x+1).

Nesplňuje vlastnosti sousednosti.

Pokud je model přípustný, složité transformace dotazů.

Slide 168?

## 4. Jaký je problém s rezprezentací prostorových dat na počítači a co z toho vyplývá? Uveďte výčtem jak se tento problém řeší. (6b)

Problém je s reprezentováním bodů, které neleží v síti. Pokud by došlo k průniku dvou úseček, tak se může stát, že bod, který by měl být nad průnikem těchto dvou úseček bude kvůli zaznamenání v síti pod průnikem úseček. Viz slide 63.

Vyplývá z toho, že je potřeba dodržovat tyto pravidla.

- V průběhu geometrických operací již neprovádět další výpočty průsečíků
- Oddělení dvou oblastí
  - definice typů a operací nad prostorovými daty

- ošetření číselných problémů vzhledem ke geometrickému modelu

#### Praktická řešení:

- simplexy použití jednoduchých geometrických entit pro skládání složitějších objektů
- úplné deskriptory/realms kompletní popis modelované oblasti

Viz dále simplexy, deskriptory (realmy) a segmenty "do obálky".

## 5. Jaký je problém s ukládáním prostorových dat na disku? Jaké informace je možné ukládat a jaké operace to ovlivní? (6b)

Důvodem je to, že typy pro prostorová data mají nestandardní a proměnlivou velikost a operace jsou silně závislé na konkrétní hodnotě typu (např. vzdálenost se jinak počítá pro 2 body a jinak pro polygon a kružnici).

Pro prostorová data se volí takový způsob uložení, aby byl konzistentní pro různou velikost dat. Pro každá prostorová data dojde k vyčlenění té části dat, která se nemění s charakterem vkládaného objektu. Ostatní data se ukládají buď do stejného prostoru, nebo do zvláštních datových bloků, na které potom tabulka má referenci.

#### Ovlivní to:

- unární funkce nad objekty, jejichž hodnoty lze předpočítat a uložit. Funkce pak místo počítání jen hodnotu dohledají,
- operace pracující s aproximacemi.

### 6. Formální definice vnoření dvou R-ploch. (6b) (bez definice R-cyklu/R-plochy!)

Jak představit vnoření R-ploch: Zajímá nás, jestli z kusu látky g můžeme vystřihnout kus látky f.

 $f_0$ ,  $g_0$  představují vnější okraje obou kusů látky a F a G množiny děr (vnitřních hranic) v těchto látkách.

R-plocha  $f=(f_0, F)$  je plošně obsažena v R-ploše  $g=(g_0, G)$  tehdy, když:

- R-cyklus f<sub>0</sub> je plošně vnořený v R-cyklu g<sub>0</sub> (plocha f je uvnitř g, ale mohou mít společné hranice) a zároveň
- pro ∀g ∈ G platí: (každá díra g v látce g z které budeme stříhat musí být:)
  - g je plošně disjunktní s f<sub>0</sub> (plocha g je mimo plochu f<sub>0</sub> kusu látky f kterou chceme získat, ale mohou sdílet hranice) *nebo*
  - ∃f ∈ F: g je plošně vnořené v f (v místě, kde je díra g, je díra také v látce kterou chceme získat - pro díru g v g existuje odpovídající díra f v látce f, kterou chceme získat)



- 7. Jaká pravidla/normální formy porušují objektově-relační DB oproti relačním? (2b) Porušují 1NF (data v tabulce musí být jednoduchá).
- 8. Jaké datové typy se typicky používají pro PDT ve 2D? U kterých z nich se zkoumají vzájemné vztahy? Jak se tyto vztahy principiálně řeší? [6b]

GEO - všechny geometrické objekty

- POINT bod
- EXT extend (extended object) objekt který není bezrozměrný
  - o LINE lomená úsečka
  - o REG region = oddíl polygon bez děr, jehož hranice sebe samu neprotíná
    - AREA vzájemně se nepřekrývající regiony (jejich průnik je vždy prázdný) (ohraničená plocha, např. kruh)
    - PGON obecné regiony, mohou se vzájemně překrývat (pouze hranice bez plochy, např. kružnice)
- --*U kterých z nich se zkoumají vzájemné vztahy? Jak se tyto vztahy principiálně řeší?* Predikáty (operace jejichž výstupem je BOOL)
  - POINT x POINT -> BOOL (je rovno/není rovno)
  - LINE x LINE -> BOOL (je rovno/není rovno)
  - REG x REG -> BOOL (je rovno/není rovno)
  - GEO x REG -> BOOL (je uvnitř)
  - EXT x EXT -> BOOL (mají neprázdný průnik)
  - AREA x AREA -> BOOL (sousedí s)

Geometrické relace (operace jejichž výstupem jsou GEO)

- LINE\* x LINE\* -> POINT\* (průnik, výstupem všechny body, kde se úsečky protínají)
- LINE\* x REG\* -> LINE\* (průnik, výstupem výřezy lomených úseček)
- PGON\* x REG\* -> PGON\* (průnik oblastí, jen jedna z nich může být nepřekrývající)
- AREA\* x AREA\* -> AREA\* (překrytí)
- EXT\* -> POINT\* (uzly grafu)
- POINT\* x REG -> AREA\* (voronoi rozdělení oblasti na nepřekrývající se části podle bodů)
- POINT\* x POINT -> REL (nejbližší)

Operace vracející atomické objekty (jediný objekt)

- POINT\* -> PGON (konvexní obálka)
- POINT\* -> POINT (střed)
- EXT -> POINT (střed)

## Operace vracející číslo

- POINT x POINT -> NUM (vzdálenost dvou bodů)
- GEO x GEO -> NUM (minimální nebo maximální vzdálenost objektů)
- POINT\* -> NUM (průměr)
- LINE -> NUM (délka)
- REG -> NUM (plocha nebo obvod)

(nevím jak vy, ale já doufám že mu bude stačit pár příkladů od každého - tak je to ostatně i ve skriptech pro prostorové databáze)

# 9. Popsat rozdíl fyzického uloženi prostorovych dat oproti klasickým relačním datům. Nastínit problémy a jejich možné řešení. [6b]

Hledisko SŘBD: Problémy související s proměnlivou velikostí prostorových dat Zatímco běžně se do jedné stránky na disku ukládá několik řádků tabulky, jeden prostorový údaj (polygon s mnoha vrcholy) může zabírat více stránek. Některé operace pak mohou potřebovat přistupovat k celému polygonu najednou, ale natažení všech stránek do paměti nemusí být možné. Jedna operace může vyžadovat implementaci různými algoritmy pro různé typy geometrických objektů, nebo i pro různé hodnoty téhož typu.

## Hledisko prostorové algebry:

Hodnoty PDT (prostorových datových typů) se musejí mapovat na hodnoty ADT (abstraktních datových typů) programovacího jazyka - na složité hierarchické struktury. Je nezbytná podpora algoritmů numerické geometrie. Způsob uložení nestačí optimalizovat pro jeden z těchto algoritmů, ale je nutné podporovat všechny.

## Řešení:

Pro prostorová data se volí takový způsob uložení, aby byl konzistetní pro různou velikost dat - z každých takových dat je vyčleněna část, která se nemění s charakterem vkládaného objektu. Tato část je uložena vždy přímo v tabulce. Zbytek dat je, v závislosti na jeho velikosti, uložen na stejném místě nebo v samostatných datových blocích. V tabulce je pak jen odkaz na tuto souvislou oblast na disku.

Pro zefektivnění operací jsou do základních datových typů uloženy:

- 1. Statická data proměnlivé délky (jednotlivé úsečky hranice)
- 2. Aproximace (typicky boundary box)
- 3. Uložené hodnoty unárních funkcí (obvod, obsah, průměr, střed, ...)

## 10. Vyjmenovat SŘBD NoSQL databází [2b] ... braly se NoSQL databáze????

### NoSQL databáze klíc-hodnota

- Jeden klíc, jedna hodnota, žádný duplikát. (klíc muže být složený, napr. z hlavní a upresnující cásti, které lze použít jako ID struktury a ID její položky)
- Prístup podle klíce pres hash tabulky (brutálne rychlé)
- Hodnota je BLOB, databáze se to ani nesnaží chápat. (zpracování obsahu "hodnoty" je na aplikaci, databáze ji jen uchovává jako celek)
- Pokud nás zajímá jen cást hodnoty, ať pro dotazy, nebo pro zápis, tak je pomerne neefektivní. (lze rešit vyjmutí cásti pod záznam s vlastním "klícem", napr. supresnující cástí)

Napr. Oracle NoSQL, Dynamo (by Amazon), Berkeley DB, Memcache DB, Redis, Riak

## NoSQL dokumentové databáze

- V podstate "klíc-hodnota", ale hodnota je strukturovaná. (databáze vidí "dovnitr", hodnota je pochopena, analyzována)
- Hodnota napr. jako XML/JSON, nebo jako objekt. (možnost referení na jiné záznamy, vnorování struktur, kolekce)
- Dotazy i složitejší, než pres klíce. (napr. XPath nebo jako v objektových databázích)
   Napr. CouchDB, Couchbase, MarkLogic, MongoDB, eXist, Berkeley DB XML

## Sloupcové NoSQL databáze

- Rádky jako v RDB, urádku máme ruzné sloupce s hodnotami. (tj. u rádku je kolekce klíc-hodnota dvojic, kde "klíc" je název sloupce; sloupce mohou být pro každý rádek ruzné)
- Mužeme mít adresáre (supercolumn). (pakrádek obsahuje kolekci supersloupcu, z nichž každý obsahuje kolekci sloupcu)
- Rídká, vícedimenzionální, usporádaná mapovací funkce. (rádky × sloupce, ale struktura rádku není dána, každý muže mát ruzné sloupce)

Napr. Apache HBase, Apache Cassandra, Apache Accumulo, Hypertable, SimpleDB (Amazon.com)

### Grafové NoSQL databáze

- Grafy = uzly, vlastnosti uzlu, hrany spojující uzly.
- Ruzné implementace úložište. (nastavitelné, generické, uživatelovo)
- Použití pro reprezentaci síťí a jejich topologií. (napr. sociální ci dopravní síte, topologie pocíta cových sítí, . . . )
- RDF databáze jsou specifickou kategorií grafových NoSQL.

RDF je orientovaný ohodnocený graf, kde hrana zacíná v "subjektu", je ohodnocena "predikátem" a koncí v "predmetu".

Subjekt a predikát jsou reprezentovány URI.

Predmet (object) je hodnota nebo URI odkazující na nejaký predmet.

Nad RDF grafem je možno dokazovat fakta. (napr. pokud platí predikát na subjektu a predmetu, pak . . . )

Standardizovaný odtazovací jazyk SPARQL.

## 11. Co jsou a kde, jak a k čemu se v prostorových databázích využívají aproximace geometrických objektů. [6b]

- 1. Aproximace zefektivňuje provádění operací. V případě testování, zda bod leží v mnohoúhelníku se nejprve otestuje, zda leží v jeho aproximaci (boundary boxu). Jen pokud ano, je proveden výpočetně náročnější test zda bod leží v mnohoúhelníku určeném úsečkami hranice.
- 2. K mapování/zobrazení reálných čísel na konečný počet celých čísel / k diskretizaci euklidovského prostoru

---

řada operaci je vypočetně naročna, pokud se jedna o obecna data, pro jista konkretni data (např. kružnice, hyperkrychle, apod.) však mohou byt jednoducha, navic vhodně zvolena aproximace může mit konstantni prostorovou naročnost, takže je často uložena v konstantni časti také.

## 12. Co jsou to simplexy a jak řeší problém mapování spojitého prostoru do diskrétního. [6b]

Simplexy jsou nejmenši nevyplněne objekty dane dimenze. Často se tedy označuji jako d-simplexy. 0-simplex je potom bod, 1-simplex je usečka, 2-simplex je trojuhelnik, 3-simplex je čtyřstěn atd. Lze jednoduše vypozorovat, že d-simplex sestava z d+1 simplexů rozměru d-1

Simplexy mají mezi sebou jasně definované průsečíky - styky. Ty už se dále během geo. operací nepočítají.

## 13. Stručně popište, jak lze definovat míru vnoření a disjunkce. (Podle jiného přepisu popsat, jaké jsou "úrovně sousednosti") Definujte R-plochu. [6b]

### Míra vnoření dvou polygonů:

- plošně uvnitř (stačí když se překrývají plochy, hranice jednoho může ležet na hranici druhého)
- hranově vnořený (všechny hrany musí být uvnitř hranice, vrcholy mohou ležet na hranici)
- vrcholově vnořený (zcela vnořený, ani vrchol neleží na hranici)

#### Míra disjunkce:

- plošně disjunktní (plochy se nesmí překrývat, hranice se dotýkat mohou)
- hranově disjunktní (hrany ani plochy se nesmějí dotýkat, vrcholy mohou)
- zcela disjunktní (ani vrchol nesmí ležet na hranici druhého objektu)

<u>R-cyklus</u> (polygon bez děr) je uzavřená lomená úsečka, která je vytvořena podle pravidel ukládání deskriptorů (realms). Je tvořený posloupností n úseček. Konec úsečky  $s_i$  je shodný se začátkem úsečky  $s_{(i+1) \mod n}$ . Žádné dvě z těchto úseček se neprotínají.

R-plocha (polygon s dírami) je dvojice (c,H={h<sub>1</sub>..h<sub>n</sub>}) kde c je R-cyklus (vnější hranice) a H množina R-cyklů (vnitřních hranic - děr) hranově vnořených v c. Každé dva R-cykly z H jsou hranově disjunktní. (díry se nepřekrývají ani se vzájemně nedotýkají - mohou mít společné vrcholy)

## 14. Jaká jsou kritéria pro stanovení typů pro uložení prostorových dat v DB?

### Kriteria isou:

- "vzhledy" datových položek musí být uniformní v rámci množinových operací nad množinami objektů tvořící data i případný výsledek;
- systém musí obsahovat formální definice dat a funkci nad prostorovými datovými tvpv:
- v předchozím bodě zmíněné definice musejí zohledňovat aritmetiku s konečnou přesností;
- v systému musí být zahrnuta podpora pro konzistentní popis prostorově souvisejících objektů — objekty úzce souvislé, nebo dokonce těsně sousedící musí využívat pro popis shodné podčásti, . . . ;
- definice dat a operací by měla byt nezávislá na konkrétním SŘBD, ale přitom s daným SŘBD úzce spolupracující.

### 15. Jak vypadá záznam v NoSQL databázích typu klíč-hodnota. [2b]

Každý záznam v databázi je identifikován svým jedinečným (primárním) klíčem a k němu je přiřazena určitá hodnota. Dotazování na záznamy probíhá pouze pomocí primárního klíče záznamu, podle kterého je možné přistupovat k jeho hodnotě.

## 16. Navrhněte možnost, jak definovat způsob zobrazení prostorových dat?

- textové okno pro textovou reprezentaci objektů prostorovych datovych typů i standardních typů;
- 2. grafické okno pro grafické zobrazení objektů prostorových datových typů a vstupy do dotazů;
- 3. textove okno pro vkládání dotazů a zobrazovani systémových hlášení.

## 17. Adaptivní kD-tree [7b]

Oproti standardnímu KD-Tree rozděluje prostor hyperplochami (rovnoběžnými s osami x,y) tak, že na každé straně hyperplochy je stejný počet prvků (případně rozdíl o jeden prvek). Body jsou tak uloženy pouze v listech stromu (naopak u kD-tree jsou roztroušeny po celém stromu). Vhodný pro statická data.

## 18. demonstrujte na vhodnom priklade,preco nie je vhodne pouzit B-tree na indexaciu v 2D [6b]

Nemůžeme jednoduše určit předchůdce a následníka daného bodu.

### 19. Popsat implementaci a vlastnosti Grid File a jak se vztahuje k prostorovým DB. 7b

Sledovaný úsek prostoru je pokryt n-rozměrnou mřížkou (nikoliv nutně pravidelnou). Výsledné buňky tak obsahují různý počet bodů — různorodé obsazení. K tomuto základnímu rozdělení je dodán adresář, který každou buňku přiřazuje k datové jednotce (bucket). Adresář je poměrně velký a je proto vždy ukládán na disku. Mřížka je také uložena na disku, nicméně pro vyhledání datové jednotky stačí pouze 2 přístupy na disk, což je snesitelné. Algoritmus se může pyšnit až 69% využitím prostoru.

## 20. Důkladně rozdělte a popište problémy spojené s implementací prostorových dat do DB (né řešení!) 6b

### 21. K-D-B-Tree

Spojení adaptivního K-D Tree a vybalancováného B-Tree Vkládání může způsobit rozdělení

- heuristiky na optimální rozdělení
- propagace stromem

#### Mazání

- slučování při podtečení

Slidy 19f5

# 22. Aké dátové typy sa používajú na modelovanie priestorových dát. Pri ktorych sa riešia vzťahy a ako sa principiálne riešia.

GEO - všechny geometrické objekty

- POINT bod
- EXT extend (extended object) objekt který není bezrozměrný
  - LINE lomená úsečka
  - REG region = oddíl polygon bez děr, jehož hranice sebe samu neprotíná
    - AREA vzájemně se nepřekrývající regiony (jejich průnik je vždy prázdný) (ohraničená plocha, např. kruh)
    - PGON obecné regiony, mohou se vzájemně překrývat (pouze hranice bez plochy, např. kružnnice)

--U kterých z nich se zkoumají vzájemné vztahy? Jak se tyto vztahy principiálně řeší? Predikáty (operace jejichž výstupem je BOOL)

- POINT x POINT -> BOOL (je rovno/není rovno)
- LINE x LINE -> BOOL (je rovno/není rovno)

- REG x REG -> BOOL (je rovno/není rovno)
- GEO x REG -> BOOL (je uvnitř)
- EXT x EXT -> BOOL (mají neprázdný průnik)
- AREA x AREA -> BOOL (sousedí s)

Geometrické relace (operace jejichž výstupem jsou GEO)

- LINE\* x LINE\* -> POINT\* (průnik, výstupem všechny body, kde se úsečky protínají)
- LINE\* x REG\* -> LINE\* (průnik, výstupem výřezy lomených úseček)
- PGON\* x REG\* -> PGON\* (průnik oblastí, jen jedna z nich může být nepřekrývající)
- AREA\* x AREA\* -> AREA\* (překrytí)
- EXT\* -> POINT\* (uzly grafu)
- POINT\* x REG -> AREA\* (voronoi rozdělení oblasti na nepřekrývající se části podle bodů)
- POINT\* x POINT -> REL (nejbližší)

Operace vracející atomické objekty (jediný objekt)

- POINT\* -> PGON (konvexní obálka)
- POINT\* -> POINT (střed)
- EXT -> POINT (střed)

### Operace vracející číslo

- POINT x POINT -> NUM (vzdálenost dvou bodů)
- GEO x GEO -> NUM (minimální nebo maximální vzdálenost objektů)
- POINT\* -> NUM (průměr)
- LINE -> NUM (délka)
- REG -> NUM (plocha nebo obvod)

(nevím jak vy, ale já doufám že mu bude stačit pár příkladů od každého - tak je to ostatně i ve skriptech pro prostorové databáze)

### 23. Problémy pri implementácii priestorových databáz (nie riešenia).

#### 24. LSD-Tree

Local split decision
Nejen pro prostorová data
Adaptivní K-D Tree
Výškově vyvážený strom
Externí adresářová stránka
Slidy 198

### 26. Popsat princip a vlastnosti BSP Tree

Rozděluje prostor tak, aby na obou stranách byl stejný počet prvků. Dělení nemusí probíhat pouze rovnoběžně s osami x,y (jako Adaptivní K-D Tree). Body jsou uloženy pouze v listech stromu.

## 27. Two level grid file

2x aplikovaný Grid File. Změny jsou často lokální. Mřížka 2. úrovně se používá pro kořenové adresář, podadresář. Slidy 185

## 28. jake jsou potreba operace v prostorove geo-relacni algebre a jake jsou problemy pri jejich definovani (tak nejak priblizne)

- Predikáty
- Geometrické relace
- Operace vracející atomické objekty
- Operace vracející čísla

## 29. Kd-Tree

Rozděluje prostor v místě prvku. Strom ukládá jednotlivé prvky do uzlů stromu. Problém nastává při mazání uzlů.

30. Proč se pro indexaci prostorových dat používají specializované algoritmy? Jdou použít i obecné principy? Jestli ano, tak jak a jaké jsou s tím spojené problémy. Jestli ne tak proč ne

Z důvodu vyšší výkonnosti zpracování dotazů nad PDT. Ano jdou použít, ale jsou málo efektivní při zpracování PDT (naproti tomu je jednodušší implementace než u spec. algoritmů).