TP3-ISE1-Groupe 7

Jean BATABATI, Dior MBENGUE, Francis HABA

2025-02-02

Exercice 42 - Série alternée

Écrire un algorithme en Python fournissant un encadrement à 10^{-5} près de la somme :

$$S = \sum_{n \ge 1} \frac{(-1)^n}{n \ln(n+1)}.$$

Exercice 43 - Très vite!

Soit pour $n \ge 1$, $u_n = \frac{1}{(2n-1)5^{2n-1}}$.

- 1. Montrer que la série de terme général u_n converge.
- 2. On note $R_n = \sum_{k=n+1}^{+\infty} u_k$. Montrer que :

$$R_n \le \frac{25}{24} u_{n+1}.$$

3. En déduire la valeur de $\sum_{n=1}^{+\infty} u_n$ à 0,001 près.

Exercice 44 - Développement asymptotique de la série harmonique

On pose $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

- 1. Prouver que $H_n \sim_{+\infty} \ln n$.
- 2. On pose $u_n = H_n \ln n$, et $v_n = u_{n+1} u_n$. Étudier la nature de la série $\sum v_n$. En déduire que la suite (u_n) est convergente. On notera γ sa limite.
- 3. Soit $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$. Donner un équivalent de R_n .
- 4. Soit w_n tel que $H_n = \ln n + \gamma + w_n$, et soit $t_n = w_{n+1} w_n$. Donner un équivalent du reste $\sum_{k \geq n} t_k$. En déduire que :

$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

Exercice 45 - Somme et développement asymptotique de la série des inverses des carrés

Le but de l'exercice est de calculer $\sum_{n\geq 1}\frac{1}{n^2}$ et de donner un développement asymptotique de la somme partielle $S_n=\sum_{k=1}^n\frac{1}{k^2}$.

1. 1.1. Soit $\alpha > 1$ et $k \geq 2$. Démontrer que :

$$\int_{k}^{k+1} \frac{dt}{t^{\alpha}} \le \frac{1}{k^{\alpha}} \le \int_{k-1}^{k} \frac{dt}{t^{\alpha}}.$$

1.2. En déduire que :

$$\sum_{k>n} \frac{1}{k^{\alpha}} \sim_{+\infty} \frac{1}{(\alpha - 1)n^{\alpha - 1}}.$$

2. Soit f une fonction de classe C^1 sur $[0,\pi]$. Démontrer que :

$$\int_0^{\pi} f(t) \sin\left(\frac{(2n+1)t}{2}\right) dt \to_{n \to +\infty} 0.$$

3. On pose $A_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos(kt)$. Vérifier que, pour $t \in [0, \pi]$, on a :

$$A_n(t) = \frac{\sin((2n+1)t/2)}{2\sin(t/2)}.$$

4. Déterminer deux réels a et b tels que, pour tout $n \ge 1$:

$$\int_0^{\pi} (at^2 + bt)\cos(nt)dt = \frac{1}{n^2}.$$

Vérifier alors que :

$$\int_{0}^{\pi} (at^{2} + bt) A_{n}(t) dt = S_{n} - \frac{\pi^{2}}{6}.$$

- 5. Déduire des questions précédentes que $S_n \to \frac{\pi^2}{6}$.
- 6. Déduire des questions précédentes que :

$$S_n = \frac{\pi^2}{6} - \frac{1}{n} + o\left(\frac{1}{n}\right).$$

Exercice 46 - Reste d'une série alternée

Le but de l'exercice est de déterminer un équivalent du reste de certaines séries alternées. On considère $(u_n)_{n\geq 0}$ une suite de réels positifs décroissants vers 0, et on considère la série $\sum_{n\geq 0} (-1)^n u_n$ dont on rappelle qu'elle est convergente. On note $R_n = \sum_{k=n+1}^{+\infty} (-1)^k u_k$ son reste. On suppose de plus que la suite (u_n) vérifie les deux conditions suivantes :

$$\forall n \ge 0$$
, $u_{n+2} - 2u_{n+1} + u_n \ge 0$ et $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$.

- 1. Démontrer que pour tout $n \ge 0$, $|R_n| + |R_{n+1}| = u_{n+1}$.
- 2. Démontrer que la suite $(|R_n|)$ est décroissante.
- 3. En déduire que

$$R_n \sim \frac{(-1)^{n+1}u_n}{2}.$$

Exercice 47 - Somme et produit de Cauchy

1. Soient $(a,b) \in \mathbb{C}^2$ tels que |a| < 1 et |b| < 1. Prouver que

$$\begin{cases} \frac{1}{(1-a)(1-b)} = \sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b}, & \text{si } a \neq b, \\ \frac{1}{(1-a)^2} = \sum_{n=0}^{+\infty} (n+1)a^n, & \text{si } a = b. \end{cases}$$

Exercice 48 - Somme d'une série par produit de Cauchy

Pour $n \ge 0$, on pose $w_n = 2^{-n} \sum_{k=0}^n \frac{4^k}{k!}$.

- 1. Montrer que la série de terme général w_n converge.
- 2. Calculer sa somme en utilisant le produit d'une série géométrique par une autre série classique.

Exercice 49 - Séries semi-convergentes et produit de Cauchy

Soit, pour $n \ge 0$, $u_n = \frac{(-1)^n}{\sqrt{n+1}}$.

- 1. Vérifier que $\sum_n u_n$ est semi-convergente.
 - 2. Montrer que le produit de Cauchy de $\sum_n u_n$ par $\sum_n u_n$ ne converge pas.
- 3. Soit $\sigma: \mathbb{N} \to \mathbb{N}$ définie par $\sigma(3p) = 2p$, $\sigma(3p+1) = 4p+1$, $\sigma(3p+2) = 4p+3$. Vérifier que σ est une permutation de \mathbb{N} . Que peut-on dire de la série $\sum_n u_{\sigma(n)}$?