Flavor wave model homework problems

March 23, 2023

- A. In this part, we will develop a method solving the ground state without diagonalizing the Hamiltonian.
- (1) Assume a particle can be discribed by spin only, with S=1. and the Hamiltonian is

$$H = S_z$$
.

Write down the matrix form for H, the eigenstates of H and their energies. We will write down the ground state to be $|a_0\rangle$ (2) Assume a initial state to be $|\psi_0\rangle = \frac{1}{\sqrt{3}}(|S_z = -1\rangle + |S_z = 0\rangle + |S_z = 1\rangle)$. Let $\varepsilon = 10^{-2}$. Calculate

$$|\phi_1\rangle = (1 - \varepsilon H) |\psi_0\rangle$$

$$|\psi_1\rangle = \frac{|\phi_1\rangle}{\langle\phi_1|\phi_1\rangle}$$

Look at the $|\psi_1\rangle$, and show that there are more weights of ground state in $|\psi_1\rangle$ than $|\psi_0\rangle$.

(3) Define

$$|\phi_{n+1}\rangle = (1 - \varepsilon H) |\psi_n\rangle$$

$$|\psi_{n+1}\rangle = \frac{|\phi_{n+1}\rangle}{\langle\phi_{n+1}|\phi_{n+1}\rangle}.$$

Draw (i) $|\langle a_0|\psi_n\rangle|^2$ as a function of n. and (ii) $\langle \psi_n|H|\psi_n\rangle$ as a function of n. Also try with difference positive values of ε and see how the value will change the speed of converging.

- (4) repeat (2) and (3) with $|\psi_0\rangle = |S_z = 0\rangle$. (Some weird thing could happen, depending on the computer.)
- (5) For a general Hamiltonian

$$H = \sum_{i=0}^{d-1} E_i |a_i\rangle \langle a_i|$$

with the eigenenergies $E_0 < E_1 \le E_2 \le \ldots \le E_{d-1}$, prove that $\forall |\psi_0\rangle$ that $\langle a_0|\psi_0\rangle \ne 0$, $\exists \varepsilon > 0$, the series $\{|\psi_n\rangle\}$ generated in (2) satisfies

$$\lim_{n \to \infty} |\langle a_0 | \psi_n \rangle|^2 = 1.$$

 $\text{Hint: Consider an } \varepsilon \text{ that } 0 < \varepsilon < 1/|E_{d-1}| \text{ and find a } q \text{ that } 0 < q < 1 \text{ and } \left(1 - \sqrt{\left|\langle a_0 | \psi_{n+1} \rangle\right|^2}\right) < q \left(1 - \sqrt{\left|\langle a_0 | \psi_n \rangle\right|^2}\right).$

(6) Now we know that this algorithm always converges. Let's figure out how to make it fast. Consider a Hamiltonian in (5) with conditions d > 2 and $E_0 < E_1 < E_{d-1}$. Define:

$$|\phi_{n+1}\rangle = (-H+z)|\psi_n\rangle$$

$$|\psi_{n+1}\rangle = \frac{|\phi_{n+1}\rangle}{\langle\phi_{n+1}|\phi_{n+1}\rangle}.$$

where z is a real number and define $x_n = 1 - |\langle a_0 | \psi_n \rangle|$. Prove that (i) $\forall z > \frac{-E_0 - E_{d-1}}{2}$, $\exists q, 0 < q < 1$ and

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = q,$$

and (ii) q is minimized when

$$z = -\frac{1}{2} \left(E_1 + E_{d-1} \right)$$

B. This part is to use the method in A to solve the ground state with mean-field approximation.