Equation assignment sequence for variable ${\cal H}$

no	var	equ	quations	token
80	26	_	A^v :: port variable	
79	64	-	$P_{NS,KS}$:: port variable	
78	88	_	K^{o}_{K} :: port variable	
77	62	_	$P_{N,NK}$:: port variable	
76	86	_	$N_{S,K}$:: port variable	
75	61	_	$P_{S,NS}$:: port variable	
74	60	_	$P_{K,NK}$:: port variable	
73	63	_	$P_{NK,KS}$:: port variable	
72	9	_	r_{xN} :: port variable	
71	23	_	r_{zN} :: port variable	
70	10	_	r_{yN} :: port variable	
69	59	_	$P_{NS,AS}$:: port variable	
68	128	_	$D_{NS,AS}$:: port variable	
67	127	_	$D_{N,A}$:: port variable	
66	5	_	$F_{N,A}$:: port variable	
65	29	_	λ_S :: port variable	
64	12	_	S_N :: port variable	
63	1	_	# :: port variable	
62	13	_	V_N :: port variable	

no	var	equ	quations	token
61	11	-	U_N :: port variable	
60	6	-	t:: port variable	
59	27	16	$Bo_N := \operatorname{Instantiate}(S_N, \#)$	
58	87	64	$E_{aNK} := \text{Instantiate}(P_{N,NK} \stackrel{N}{\star} R_N . T_{NK}, \#)$	
57	28	17	$R_N := A^v \cdot Bo_N$	
56	115	91	$c^o_{KS} := \text{Instantiate}(c_{KS}, \#)$	
55	114	90	$c_{KS} := c_{NS} \overset{NS}{\star} P_{NS,KS}$	
54	77	55	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	
53	89	65	$K_{NK} := K^o{}_K \odot exp((-E_{aNK}) \cdot \left(R_N \stackrel{N}{\star} P_{N,NK} \cdot T_{NK}\right)^{-1})$	
52	116	92	$\phi_{KS} := \prod \left(c_{KS} \cdot \left(c^o_{KS} \right)^{-1} \right)$	
51	71	49	$\rho_N := m_N \cdot (V_N)^{-1}$	
50	50	37	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	
49	65	46	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	
48	4	3	0.5 := Instantiate(#, #)	
47	108	127	$c_{NS} := \operatorname{Instantiate}(c_{NS}, \#)$	
46	108	84	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	
45	93	69	$N_{NS,NK} := P_{S,NS} \stackrel{S}{\star} \left(\left(P_{K,NK} . T_{NK} . (T_{NK})^{-1} \right) \stackrel{K}{\star} N_{S,K} \right)$	
44	117	93	$\xi_{NK} := K_{NK} \cdot P_{NK,KS} \overset{KS}{\star} \phi_{KS}$	
43	21	12	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	
42	98	74	$\hat{V}_A := (\rho_N)^{-1} \cdot k_{xN}^c \cdot A_{yzN} \cdot D_{N,A} \stackrel{N}{\star} p_N$	

no	var	equ	quations	token
41	109	85	$c_{AS} := (0.5 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) \stackrel{NS}{\star} c_{NS}$	
40	54	41	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	
39	45	114	$\mu_{NS} := \text{Instantiate}(\mu_{NS}, \#)$	
38	45	32	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	
37	118	94	$\tilde{n}_{NS} := V_N \odot \left(N_{NS,NK} \stackrel{NK}{\star} \xi_{NK} \right)$	
36	111	87	$\hat{n}^c{}_{NS} := F_{NS,AS} \overset{AS}{\star} \hat{n}^c{}_{AS}$	
35	105	81	$\hat{n}^d{}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \hat{n}^d{}_{AS}$	
34	95	71	$A_{yzN} := r_{yN} \cdot r_{zN}$	
33	34	22	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	
32	110	86	$\hat{n}^c{}_{AS} := \hat{V}_A \odot c_{AS}$	
31	73	51	$F_{NS,AS} := F_{N,A} \odot P_{NS,AS}$	
30	58	45	$h_{NS} := H_N \odot (n_{NS})^{-1}$	
29	104	80	$\hat{n}^d_{AS} := A_{yzN} \odot \left(-k_{xNS}^d \right) \cdot D_{NS,AS} \overset{NS}{\star} \mu_{NS}$	
28	150	124	$n^o_{NS} := \operatorname{Instantiate}(n_{NS}, \#)$	
27	119	95	$\dot{n}_{NS} := \hat{n}^c{}_{NS} + \hat{n}^d{}_{NS} + \tilde{n}_{NS}$	
26	119	129	$\dot{n}_{NS} := \text{Instantiate}(\dot{n}_{NS}, 0)$	
25	124	100	$\hat{q}_A := A_{yzN} \cdot k_{xN}^q \cdot D_{N,A} \stackrel{N}{\star} T_N$	
24	122	98	$\hat{w}_A := \operatorname{Instantiate}(\hat{H}^c{}_A, \#)$	
23	120	96	$\hat{H}^c{}_A := \left(F_{NS,AS} \stackrel{NS}{\star} h_{NS}\right) \stackrel{S \in AS}{\star} \hat{n}^c{}_{AS}$	
22	106	82	$\hat{H}^d{}_A := \left(F_{NS,AS} \overset{NS}{\star} h_{NS}\right) \overset{S \in AS}{\star} \hat{n}^d{}_{AS}$	

no	var	equ	quations	token
21	42	116	$n_{NS} := \int_{t_o}^{t_e} \dot{n}_{NS} \ dt + n^o_{NS}$	
20	30	18	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	
19	125	101	$\hat{q}_N := F_{N,A} \stackrel{A}{\star} \hat{q}_A$	
18	123	99	$\hat{w}_N := F_{N,A} \stackrel{A}{\star} \hat{w}_A$	
17	121	97	$\hat{H}^c{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^c{}_A$	
16	107	83	$\hat{H}^d{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^d{}_A$	
15	2	1	0 := Instantiate(#, #)	
14	69	47	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	
13	16	7	$T_N := \frac{\partial U_N}{\partial S_N}$	
12	16	113	$T_N := \operatorname{Instantiate}(T_N, \#)$	
11	148	120	$cp_N := C_{pN} \cdot (m_N)^{-1}$	
10	145	117	$T_ref_N := \operatorname{Instantiate}(T_N, \#)$	
9	15	6	$p_N := \left(-rac{\partial U_N}{\partial V_N} ight)$	
8	15	115	$p_N := \operatorname{Instantiate}(p_N, \#)$	
7	8	5	$t_e := \operatorname{Instantiate}(t, \#)$	
6	7	$\mid 4 \mid$	$t_o := \text{Instantiate}(t, \#)$	
5	151	125	$H^o{}_N := \operatorname{Instantiate}(H_N, \#)$	
4	126	102	$\dot{H}_N := \hat{H}^c{}_N + \hat{H}^d{}_N + \hat{q}_N + \hat{w}_N$	
3	126	128	$\dot{H}_N := \operatorname{Instantiate}(\dot{H}_N, 0)$	
2	18	122	$H_N := m_N \cdot \int_{T_r e f_N}^{T_N} c p_N \ dT_N$	

no	var	equ	quations	token
1	18	9	$H_N := U_N - p_N \cdot V_N$	
0	18	123	$H_N := \int_{t_o}^{t_e} \dot{H}_N \ dt + H^o{}_N$	