

Edinburgh 2014/15 IFUM-1034-FT CERN-PH-TH/2013-253 OUTP-14-11p CAVENDISH-HEP-14-11

First unbiased determination of the parton distributions of lead nuclei

Carlota A. Casas, Stefano Carrazza^{4,2}, Alberto Guffanti⁵, Nathan P. Hartland¹ and Juan Rojo⁶

The Higgs Centre for Theoretical Physics, University of Edinburgh,
 JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland
 ² PH Department, TH Unit, CERN,
 CH-1211 Geneva 23, Switzerland

 Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona,
 Diagonal 647, E-08028 Barcelona, Spain

 Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano,
 Via Celoria 16, I-20133 Milano, Italy

 Niels Bohr International Academy and Discovery Center,
 Niels Bohr Institute, University of Copenhagen,
 Blegdamsvej 17, DK-2100 Copenhagen, Denmark

 Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road,
 University of Oxford, OX1 3NP Oxford, UK

 The Cavendish Laboratory, University of Cambridge,

Abstract A nice abstract

J.J. Thomson Avenue, CB3 0HE, UK

We present

Contents

1	Introduction	3
2	Dataset	4
3	Compression of nuclear data to lead structure functions	4
4	Fitting methodology	6
5	Results	6

1 Introduction

In a series of papers [1-11], the NNPDF collaboration has introduced a methodology aimed at reducing as much as possible this procedural uncertainty.

Now we want to apply it to the case of nuclear PDFs \dots

2 Dataset

In this section we summarize the data that has been used, the kinematic cuts, and the treatment of experimental uncertainties

The data in our analysis consist of l + A DIS measurements. These nuclear data comprise the NMC [12–15], SLAC 139 [16] and EMC [17] results for ratios of the DIS structure function $F_2^A(x, Q^2)$ for several heavy nuclei to those of deuterium, lithium or carbon, see Tab. 1.

The kinematical variables in DIS are the Bjorken-x and the virtuality of the photon Q^2 . As the compression of the nuclear data to lead structure function is done using EPS09 NLO nPDFs, the kinematical cut $Q^2 \geq 1.69$ is imposed [18].

The experimental uncertainty, $d\sigma_i^{exp}$, is obtained adding in quadrature the systematic and statistical errors dor each point. The theoretical uncertainty, $d\sigma_i^{th}$, is the one due to the conversion factor. We require that only points where $d\sigma_i^{th} \leq 1.5 \ d\sigma_i^{exp}$ are included in the fit.

3 Compression of nuclear data to lead structure functions

Here we explain how all the nuclear ratio data for different values of A is compressed to the lead structure function.

We write the relevant conversion formula, discuss error propagation, and show representative results for the various experiments.

$$F_2^{Pb}(x,Q^2) = \frac{F_2^{Pb}(x,Q^2)}{F_2^A(x,Q^2)} R_{F_2^{D,C,Li}}^A(x,Q^2) F_2^{D,C,Li}(x,Q^2), \tag{1}$$

where $R_{F_2^{D,C,Li}}^A(x,Q^2)$ are the experimental data for ratios of the DIS structure function $F_2^A(x,Q^2)$ for various heavy nuclei to those for deutherium, lithium or carbon,

$$R_{F_2^{D,C,Li}}^A(x,Q^2) = \frac{F_2^A(x,Q^2)}{F_2^{D,C,Li}(x,Q^2)},\tag{2}$$

see Tab. 1.

For $F_2^{Pb}(x,Q^2)$, $F_2^A(x,Q^2)$, $F_2^{Li}(x,Q^2)$ and $F_2^C(x,Q^2)$ we use EPS09 NLO nPDFs [18] and, in order to obtain the DIS structure functions for deuterium, $F_2^D(x,Q^2)$, we neglect any nuclear effect, assume isospin symmetry $(u^p=d^n \text{ and } d^p=u^n)$ and use the free proton NLO PDFs of MSTW [19].

Therefore, the idea is to transform the DIS nuclear data, $R_{F_2^{D,C,Li}}^A(x,Q^2)$, into lead structure functions $F_2^{Pb}(x,Q^2)$ using equation (1). We define, the conversion factor of this transformation as,

$$C(x,Q^2) = \frac{F_2^{Pb}(x,Q^2)}{F_2^{A}(x,Q^2)} F_2^{D,C,Li}(x,Q^2)$$
(3)

and, consequently, $F_2^{Pb}(x,Q^2) = \mathcal{C}(x,Q^2) R_{F_2^{D,C,Li}}^A(x,Q^2)$.

We use the Hessian method [20] to calculate the uncertainty of the conversion factor. In the Hessian approach, the corresponding uncertainty for a PDF-dependent quantity $\mathcal{O} = \mathcal{O}[f]$ can be computed as,

$$(\Delta \mathcal{O})^2 = \frac{1}{4} \sum_k \left(\mathcal{O}[S_k^+] - \mathcal{O}[S_k^-] \right)^2, \tag{4}$$

Experiment	Nuclei	Data points	ref.
SLAC E-139	He(4)/D	9	[16]
NMC 95, re.	He/D	8	[12]
1,1,12 00, 10.	110/12	O	[±•]
NMC 95	Li(6)/D	10	[13]
NMC 95, Q^2 dependence	$\stackrel{\frown}{ m Li/D}$	144	[13]
, , ,	,		
SLAC E-139	Be(9)/D	9	[16]
NMC 96	$\mathrm{Be/C}$	12	[14]
CERN EMC	C(12)/D	9	[17]
SLAC E-139	C/D	3	[16]
NMC 95, NMC 95, re.	C/D	10	[12, 13]
NMC 95, Q^2 dependence	C/D	159	[13]
NMC 95, re.	$_{ m C/Li}$	6	[12]
SLAC E-139	Al(27)/D	13	[16]
NMC 96	Al/C	15	[14]
SLAC E-139	Ca(40)/D	5	[16]
NMC 95, re.	Ca/D	15	[12]
NMC 95, re.	Ca/Li	7	[12]
NMC 96	$\mathrm{Ca/C}$	15	[14]
SLAC E-139	Fe(56)/D	23	[16]
NMC 96	$\mathrm{Fe/C}$	15	[14]
CERN EMC	Cu(64)/D	19	[17]
SLAC E-139	Ag(108)/D	7	[16]
CERN EMC	Sn(117)/C	8	[17]
NMC 96	$\mathrm{Sn/C}$	10	[14]
NMC 96, Q^2 dependence	$\mathrm{Sn/C}$	139	[15]
07 A 07 = 111	A (4.5.) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		F 3
SLAC E-139	Au(197)/D	17	[16]
ND 500 00	D1 / C	a =	[a 4]
NMC 96	Pb/C	15	[14]
Total		702	

Table 1: Data sets included in the analysis. The mass numbers are indicated in parentheses. The number of data points refers to those falling within our cuts: $Q^2 \geq 1.69$ and $d\sigma_i^{th} \leq 1.5$ $d\sigma_i^{exp}$.

where $\mathcal{O}[S_k^+]$ and $\mathcal{O}[S_k^-]$ denote the values of the quantity \mathcal{O} , computed by the nPDF error sets S_k^+ and S_k^- and S_0 is the central PDF set.

For the lithium and carbon cases, the uncertainty of the conversion factor is given by

$$(\Delta \mathcal{C})^2 = \frac{1}{4} \sum_{k} \left(\frac{F_2^{Pb}[S_k^+]}{F_2^A[S_k^+]} F_2^{C,Li}[S_k^+] - \frac{F_2^{Pb}[S_k^-]}{F_2^A[S_k^-]} F_2^{C,Li}[S_k^-] \right)^2.$$
 (5)

Neglecting the uncertainty due to the deuterium PDF, the uncertainty of the conversion factor is in this case,

$$(\Delta \mathcal{C})^2 = \frac{1}{4} \sum_{k} \left(\frac{F_2^{Pb}[S_k^+]}{F_2^A[S_k^+]} F_2^D[S_0] - \frac{F_2^{Pb}[S_k^-]}{F_2^A[S_k^-]} F_2^D[S_0] \right)^2, \tag{6}$$

where $F_2^D[S_0]$ in the value of F_2 computed by the central NLO MSTW PDF set [19] and $F_2^{Pb,C,Li,A}[S_k^{-,+}]$ are computed by the NLO EPS09 sets [18].

Therefore, the theoretical uncertainty of the lead structure functions is

$$d\sigma^{th} = \Delta \mathcal{C}R^{A}_{F_2^{D,C,Li}}. (7)$$

4 Fitting methodology

Here we discuss the fitting methodology, the sum rules, the flavor decomposition, positivity, the parameterization of nuclear PDFs as ratios etc

5 Results

Here we show, well, the results of the fit

References

- [1] S. Forte, L. Garrido, J. I. Latorre, and A. Piccione, Neural network parametrization of deep-inelastic structure functions, JHEP 05 (2002) 062, [hep-ph/0204232].
- [2] **The NNPDF** Collaboration, L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, and J. Rojo, *Unbiased determination of the proton structure function* f2(p) *with estimation*, *JHEP* **03** (2005) 080, [hep-ph/0501067].
- [3] **The NNPDF** Collaboration, L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione, and J. Rojo, Neural network determination of parton distributions: The nonsinglet case, JHEP **03** (2007) 039, [hep-ph/0701127].
- [4] **The NNPDF** Collaboration, R. D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. **B809** (2009) 1–63, [arXiv:0808.1231].
- [5] **The NNPDF** Collaboration, J. Rojo et al., *Update on Neural Network Parton Distributions: NNPDF1.1*, arXiv:0811.2288.
- [6] **The NNPDF** Collaboration, R. D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. **B823** (2009) 195–233, [arXiv:0906.1958].

- [7] **The NNPDF** Collaboration, R. D. Ball et al., Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP **05** (2010) 075, [arXiv:0912.2276].
- [8] The NNPDF Collaboration, R. D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B838 (2010) 136–206, [arXiv:1002.4407].
- [9] The NNPDF Collaboration, R. D. Ball et al., Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology, Nucl. Phys. B849 (2011) 296-363, [arXiv:1101.1300].
- [10] The NNPDF Collaboration, R. D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B855 (2012) 153-221, [arXiv:1107.2652].
- [11] **NNPDF** Collaboration, R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio, et al., *Parton distributions with LHC data*, *Nucl. Phys.* **B867** (2013) 244–289, [arXiv:1207.1303].
- [12] **New Muon** Collaboration, P. Amaudruz et al., A Reevaluation of the nuclear structure function ratios for D, He, Li-6, C and Ca, Nucl. Phys. **B441** (1995) 3–11, [hep-ph/9503291].
- [13] **New Muon** Collaboration, M. Arneodo et al., The Structure Function ratios F2(li) / F2(D) and F2(C) / F2(D) at small x, Nucl. Phys. **B441** (1995) 12–30, [hep-ex/9504002].
- [14] **New Muon** Collaboration, M. Arneodo et al., The A dependence of the nuclear structure function ratios, Nucl. Phys. **B481** (1996) 3–22.
- [15] **New Muon** Collaboration, M. Arneodo et al., The Q**2 dependence of the structure function ratio F2 Sn / F2 C and the difference R Sn R C in deep inelastic muon scattering, Nucl. Phys. **B481** (1996) 23–39.
- [16] J. Gomez et al., Measurement of the a dependence of deep-inelastic electron scattering, Phys. Rev. D49 (1994) 4348.
- [17] European Muon Collaboration, J. Ashman et al., A Measurement of the ratio of the nucleon structure function in copper and deuterium, Z.Phys. C57 (1993) 211–218.
- [18] K. J. Eskola, H. Paukkunen, and C. A. Salgado, EPS09 a New Generation of NLO and LO Nuclear Parton Distribution Functions, arXiv:0902.4154.
- [19] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C63 (2009) 189–285, [arXiv:0901.0002].
- [20] J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method, Phys. Rev. **D65** (2001) 014013, [hep-ph/0101032].