# RL: Планирование

### Обучение vs планирование

- □ Обучение
  - Среда black box
  - Исследование методом проб и ошибок
  - Минимизация сожаления (regret)
- □ Планирование
  - Имеем модель среды
  - Ищем оптимальное поведение
  - Действуем оптимально

## Настройка на основе модели

#### Что мы знаем

• Переходы между состояниями

$$P(s_{next}|s,a)$$
 или  $s_{next}=T(s,a)$ 



• Награда  $r(s_t, a_t)$ 

### Настройка на основе модели

#### Что мы знаем

 Переходы между состояниями

$$P(s_{next}|s,a)$$
 или  $s_{next}=T(s,a)$ 

Более слабая версия: мы можем

семплровать только из P(s'|s,a)



• Награда  $r(s_t, a_t)$ 

## Случай – состязательный агент

- Детерминированный случай, но есть второй агент...
- И он играет против нас!
- Мы хотим получить максимальное ожидаемое вознаграждение.
- Примеры:
  - Любая настольная игра: шахматы, шашки, го
  - Pong :)

# Случай – состязательный агент



# Общий случай: MDP

• Стохастичная среда

$$s \sim P(s_{next}|s,a)$$

• Мы хотим получить наибольшее ожидаемое вознаграждение или наименьшие ожидаемые затраты

# Общий случай: MDP



Как оценить ценность действия?

# Общий случай: MDP



Как оценить ценность действия?

#### Большое/непрерывное пространство состояний

- Мы не можем исследовать все узлы.
- Нужно выбрать наиболее интересные!
- Примеры:
  - ~ любой практический случай использования :)
  - Atari

#### Исследование на основе подсчета

□ UCB-1 for bandits

Идея

- Отдавайте приоритет действиям с неопределенными результатами!
- Меньше посещений = больше неопределенности.
- Математика: добавление верхней доверительной связи к вознаграждению.

## Исследование на основе подсчета

#### **UCB-1** для бандитов

Выбираем действие пропорционально  $\tilde{v}_a$ 



Верхняя доверительная граница для  $r \in [0,1]$ 

$$\tilde{v}_a = v_a + \sqrt{\frac{2\log N}{n_a}}$$

- N общее количество шагов
- $n_a$  количество случаев выбора действия  $m{a}$

### Исследование на основе подсчета

#### Обобщенный UCB для множества состояний

Выбираем действие пропорционально  $\tilde{v}_a$ 

Верхняя доверительная граница для  $r \in [0,1]$ 

$$\tilde{Q}(s,a) = Q(s,a) + \sqrt{\frac{2\log N_s}{n_{s,a}}}$$

- $N_s$  общее количество посещений состояния s
- $n_{s,a}$  количество случаев выбора действия **а** из состояния **s**

# **MCTS**



### **MCTS**: selection



Начиная с корня, рекурсивно выберите узел с наивысшей оценкой ucb-1

$$\tilde{Q}(s,a) = Q(s,a) + \alpha \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

# **MCTS**: expansion



Добавление одного или нескольких детей от выбранного узла.

Каждый ребенок является результатом одношаговой симуляции  $s \to s'$ , a, r

Простой случай: добавление одного узла на одно действие.

# MCTS: Rollout (sampling)



Оценить значение узла играя в игру от этого состояния до конца с простой политикой.

Например, применяя случайные действия (политику)

Запомним общую награду.

# MCTS: Rollout (sampling)



Оценить значение узла играя в игру от этого состояния до конца с простой политикой.

Например, применяя случайные действия (политику)

Запомним общую награду.

Можем ли мы добиться большего, чем случайность?

# **MCTS:** Backprop



Учитывая rollout reward, обновить значение листа и всех его родителей.

$$V(parent) = r + \gamma V(child)$$

Также увеличиваем счетчик посещений (N и  $n_a$  для ucb-1)

### **MCTS**



Как выбрать действие из корня?

### Model-based vs model-free

Model - free (DQN + hacks)

| Agent | B.Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders |
|-------|---------|----------|--------|------|--------|----------|------------|
| DQN   | 4092    | 168      | 470    | 20   | 1952   | 1705     | 581        |
| -best | 5184    | 225      | 661    | 21   | 4500   | 1740     | 1075       |

#### Model-based (MCTS + UCT)

| Agent | B.Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders |
|-------|---------|----------|--------|------|--------|----------|------------|
| UCT   | 7233    | 406      | 788    | 21   | 18850  | 3257     | 2354       |

источник: tinyurl.com/atari-mcts-guo

# Дерево MCTS

img source: nikcheerla.github.io



# Дерево MCTS

img source: nikcheerla.github.io



# Интеграция обучения и планирования



img source: <u>nikcheerla.github.io</u>

# AlphaGo, AlphaZero

Использование нейронной сети для улучшения поиска Использование MCTS для обучения нейронной сети

Простая ConvNet; слегка настроенный MCTS; множество хаков

