Групповой проект на тему «Клиентская аналитика - Оптимизация списков клиентов на коммуникацию на основе истории контактов»

Выполнили: Чуканов Илья Зиновьев Павел Островская Кристина





Выполнили:

Чуканов Илья - чистка данных

Зиновьев Павел – тестирование моделей для решение задачи и интерпретация результатов

Островская Кристина – тестирование моделей и презентация

## Цели работы

Выделение целевой аудитории

Избежание затрат на взаимодействие с пользователем, который вероятно не заинтересован в предложении

Оптимизация маркетинга в компании

# Задачи

Чистка данных



Применить несколько моделей для предсказания



Выделить выборку из заинтересованных клиентов для последующего взаимодействия

#### данные на входе

#### данные на выходе

Датасет с информацией о клиентах и их откликах для е-mail и sms рассылок



Аналитические модели, предсказывающие заинтересованность клиентов в продукте (количество откликов)

#### Этапы реализации проекта – чистка данных

- Удаление строк с пропущенными значениями: age, lifetime, gender
- До чистки данных 985477 строк, после 733165

|    | Column Name    | Zero Count | Unique Count | Zero Percentage | Null Count | Unique Percentage | Null Percentage |
|----|----------------|------------|--------------|-----------------|------------|-------------------|-----------------|
| 0  | ID             | 0          | 985477       | 0.00            | 0          | 100.00            | 0.00            |
| 1  | Age            | 0          | 63           | 0.00            | 66958      | 0.01              | 6.79            |
| 2  | Ind_Household  | 640250     | 2            | 64.97           | 0          | 0.00              | 0.00            |
| 3  | Age_group      | 578936     | 4            | 58.75           | 0          | 0.00              | 0.00            |
| 4  | District       | 53206      | 56           | 5.40            | 0          | 0.01              | 0.00            |
| 5  | Region         | 382905     | 6            | 38.85           | 0          | 0.00              | 0.00            |
| 6  | Lifetime       | 2110       | 40           | 0.21            | 12608      | 0.00              | 1.28            |
| 7  | Income         | 0          | 51           | 0.00            | 0          | 0.01              | 0.00            |
| 8  | Segment        | 379739     | 4            | 38.53           | 0          | 0.00              | 0.00            |
| 9  | Ind_deposit    | 797999     | 2            | 80.98           | 0          | 0.00              | 0.00            |
| 10 | Ind_email      | 965956     | 2            | 98.02           | 0          | 0.00              | 0.00            |
| 11 | Ind_phone      | 961490     | 2            | 97.57           | 0          | 0.00              | 0.00            |
| 12 | Ind_salary     | 916207     | 2            | 92.97           | 0          | 0.00              | 0.00            |
| 13 | trans_6_month  | 0          | 42505        | 0.00            | 0          | 4.31              | 0.00            |
| 14 | trans_9_month  | 0          | 50868        | 0.00            | 0          | 5.16              | 0.00            |
| 15 | trans_12_month | 0          | 57702        | 0.00            | 0          | 5.86              | 0.00            |
| 16 | amont_trans    | 0          | 44           | 0.00            | 0          | 0.00              | 0.00            |
| 17 | amont_day_from | 0          | 31           | 0.00            | 0          | 0.00              | 0.00            |
| 18 | trans_3_month  | 0          | 65926        | 0.00            | 0          | 6.69              | 0.00            |
| 19 | Gender         | 538741     | 3            | 54.67           | 0          | 0.00              | 0.00            |

#### Этапы реализации проекта – кодировка данных

| trans_6_month | trans_9_month | trans_12_month | amont_trans | amont_day_from | trans_3_month |
|---------------|---------------|----------------|-------------|----------------|---------------|
| 0.509187      | 0.402909      | 0.448284       | 0.041667    | 0.34375        | 0.417452      |
| 0.593804      | 0.540197      | 0.586768       | 0.208333    | 0.18750        | 0.621387      |
| 0.509628      | 0.446867      | 0.412410       | 0.041667    | 0.15625        | 0.575128      |
| 0.674348      | 0.668199      | 0.713072       | 0.020833    | 0.50000        | 0.626156      |
| 0.345506      | 0.335473      | 0.451276       | 0.083333    | 0.62500        | 0.267821      |
|               |               |                |             |                |               |

Стандартизация числовых признаков:

Кодировка категориальных признаков:

| Ind_deposit_No | <pre>Ind_deposit_Yes</pre> | <pre>Ind_email_No</pre> | <pre>Ind_email_Yes</pre> | Ind_phone_No | Ind_phone_Yes | Ind_salary_No | Ind_salary_Yes |
|----------------|----------------------------|-------------------------|--------------------------|--------------|---------------|---------------|----------------|
| 1              | 0                          | 0                       | 1                        | 0            | 1             | 1             | 0              |
| 1              | 0                          | 0                       | 1                        | 0            | 1             | 1             | 0              |
| 0              | 1                          | 0                       | 1                        | 0            | 1             | 1             | 0              |
| 0              | 1                          | 0                       | 1                        | 0            | 1             | 1             | 0              |
| 0              | 1                          | 0                       | 1                        | 0            | 1             | 1             | 0              |

# Выбор модели

|                      | Decision Tree<br>Classifier | Random Forest<br>Classifier | XGB Classifier | Logistic Regression | Ada Boost Classifier |
|----------------------|-----------------------------|-----------------------------|----------------|---------------------|----------------------|
| f1 for e-mail        | 0.87                        | 0.84                        | 0.82           | 0.57                | 0.77                 |
| auc-pr for<br>e-mail | 0.79                        | 0.94                        | 0.92           | 0.67                | 0.86                 |
| gini for e-mail      | 0.81                        | 0.94                        | 0.90           | 0.64                | 0.83                 |
| f1 for sms           | 0.74                        | 0.38                        | 0.81           | 0.01                | 0.35                 |
| auc-pr for sms       | 0.57                        | 0.70                        | 0.90           | 0.22                | 0.66                 |
| gini for sms         | 0.70                        | 0.87                        | 0.97           | 0.47                | 0.88                 |

## Выбор модели

- Для **e-mail** лучше всего подойдет:
  - 1. Random Forest, если важно иметь наименьший процент игнорируемых рассылок
  - 2. Decision Tree, если важнее найти больше откликов на коммуникацию
- Для sms лучше всего подойдет XGB Classifier

| Тип коммуникации | Потенциальное число откликов (тыс) | Выявленное число<br>откликов (тыс) | Число игнорируемых рассылок (тыс) |
|------------------|------------------------------------|------------------------------------|-----------------------------------|
| e-mail           | 42,1                               | 32,4 (1) / 36,6 (2)                | 3,3 (1) / 5,4 (2)                 |
| sms              | 14,6                               | 10,9                               | 1,7                               |

### Выводы и итоги

Для разных коммуникаций лучше применять разные модели В зависимости от ограничений одна модель может быть выгоднее другой