

数据结构与算法(十)

张铭 主讲

采用教材:张铭,王腾蛟,赵海燕编写 高等教育出版社,2008.6 ("十一五"国家级规划教材)

http://www.jpk.pku.edu.cn/pkujpk/course/sjjg

10.1 线性表的检索

第十章 检索

- 10.1 线性表的检索
- 10.2 集合的检索
- 10.3 散列表的检索
- 总结

散列检索

- 10.3.0 散列中的基本问题
- 10.3.1 散列函数碰撞的处理
- 10.3.2 开散列方法
- 10.3.3 闭散列方法
- 10.3.4 闭散列表的算法实现
- 10.3.5 散列方法的效率分析

闭散列表的算法实现

字典 (dictionary)

- 一种特殊的集合,其元素是(关键码,属性值)二元组。
 - 关键码必须是互不相同的(在同一个字典之内)
- 主要操作是依据关键码来插入和查找
 - bool hashInsert(const Elem&);
 // insert(key, value)
 - bool hashSearch(const Key& , Elem&) const;
 // lookup(key)

散列字典ADT(属性)

```
template <class Key , class Elem , class KEComp , class
EEComp> class hashdict
private:
  Elem* HT;
                          // 散列表
                          // 散列表大小
  int M;
                          // 现有元素数目
  int current;
                          // 空槽
  Elem EMPTY;
  int h(int x) const;
                         // 散列函数
                    // 字符串散列函数
  int h(char* x)const;
                         // 探查函数
  int p(Key K , int i)
```


散列字典ADT(方法)

```
public:
hashdict(int sz , Elem e) {
                                  // 构造函数
  M=sz; EMPTY=e;
  currcnt=0; HT=new Elem[sz];
  for (int i=0; i<M; i++) HT[i]=EMPTY;
~hashdict() { delete [] HT; }
bool hashSearch(const Key& , Elem&) const;
bool hashInsert(const Elem&);
Elem hashDelete(const Key& K);
int size() { return currcnt; }
                                  // 元素数目
};
```


插入算法

散列函数 h, 假设给定的值为 K

- 若表中该地址对应的空间未被占用,则把待插入记录填入该地址
- 如果该地址中的值与 K 相等,则报告"散列表中已有此记录"
- 否则,按设定的处理冲突方法查找探查序列的下一个地址,如此反复下去
 - 直到某个地址空间未被占用(可以插入)
 - 或者关键码比较相等(不需要插入)为止

散列表插入算法代码

```
// 将数据元素e插入到散列表 HT
template <class Key, class Elem, class KEComp, class EEComp>
bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const Elem& e)
                                      // home 存储基位置
  int home= h(getkey(e));
  int i=0;
  int pos = home;
                                      // 探查序列的初始位置
  while (!EEComp::eq(EMPTY, HT[pos])) {
    if (EEComp::eq(e, HT[pos])) return false;
    i++;
                                      // 探查
    pos = (home + p(getkey(e), i)) \% M;
  HT[pos] = e;
                                      // 插入元素e
  return true;
```


检索算法

- 与插入过程类似
 - 采用的探查序列也相同
- 假设散列函数 h,给定的值为 K
 - 若表中该地址对应的空间未被占用,则检索失败
 - 否则将该地址中的值与 K 比较, 若相等则检索成功
 - 否则,按建表时设定的处理冲突方法查找探查序列的下一个地址,如此反复下去
 - 关键码比较相等,检索成功
 - 走到探测序列尾部还没找到,检索失败


```
template <class Key, class Elem, class KEComp, class EEComp>
bool hashdict<Key, Elem, KEComp, EEComp>::
hashSearch(const Key& K, Elem& e) const {
  int i=0, pos= home= h(K);
                                            // 初始位置
  while (!EEComp::eq(EMPTY, HT[pos])) {
    if (KEComp::eq(K, HT[pos])) {
                                           // 找到
       e = HT[pos];
       return true;
    i++;
    pos = (home + p(K, i)) \% M;
  } // while
  return false;
```


删除

- 删除记录的时候,有两点需要重点考虑:
 - (1) 删除一个记录一定不能影响后面的检索
 - (2) 释放的存储位置应该能够为将来插入使用
- 只有开散列方法(分离的同义词子表)可以真正删除
- 闭散列方法都只能作标记(墓碑),不能真正删除
 - 若真正删除了探查序列将断掉
 - 检索算法 "直到某个地址空间未被占用(检索失败)"
 - 墓碑标记增加了平均检索长度

删除带来的问题

0	1	2	3	4	5	6	7	8	9	10	11	12
	K1	K2	K1		K2	K2	K2			K2		

- 例,长度 M = 13 的散列表,假定关键码 k1 和 k2, h(k1) = 2, h(k2) = 6。
- 二次探查序列
 - *k*1 的二次探查序列是 **2、3、1**、**6**、11、11、6、5、12、...
 - *k*2 的二次探查序列是 **6、7、5、10**、**2**、2、10、9、3、...
- 删除位置 6, 用k2 序列的最后位置 2 的元素替换之, 位置 2 设为空
- 检索 k1 , 查不到 (事实上还可能存放在位置 3 和 1 上!)

墓碑

- 设置一个特殊的标记位,来记录散列表中的单元状态
 - 单元被占用
 - 空单元
 - 已删除
- 被删除标记值称为 墓碑(tombstone)
 - 标志一个记录曾经占用这个槽
 - 但是现在已经不再占用了

带墓碑的删除算法

```
template <class Key, class Elem, class KEComp, class EEComp>Elem
hashdict<Key,Elem,KEComp,EEComp>::hashDelete(const Key& K)
{ int i=0, pos = home= h(K); // 初始位置
  while (!EEComp::eq(EMPTY, HT[pos])) {
    if (KEComp::eq(K, HT[pos])){
      temp = HT[pos];
      HT[pos] = TOMB;
                                     // 设置墓碑
                                     // 返回目标
       return temp;
    i++;
    pos = (home + p(K, i)) \% M;
  return EMPTY;
```


带墓碑的插入操作

- 在插入时,如果遇到标志为墓碑的槽,可以把新记录存储在该槽中吗?
 - 避免插入两个相同的关键码
 - 检索过程仍然需要沿着探查序列下去,直到找到一个真正的空位置

带墓碑的插入操作改进版

```
template <class Key, class Elem, class KEComp, class EEComp>
bool hashdict<Key, Elem, KEComp, EEComp>::hashInsert(const
Elem &e) {
  int insplace, i = 0, pos = home = h(getkey(e));
  bool tomb_pos = false;
  while (!EEComp::eq(EMPTY, HT[pos])) {
    if (EEComp::eq(e, HT[pos])) return false;
    if (EEComp::eq(TOMB, HT[pos]) && !tomb_pos)
    {insplace = pos; tomb_pos = true;} // 第一
    pos = (home + p(getkey(e), ++ i)) \% M;
  if (!tomb_pos) insplace=pos;
                                              // 没有墓碑
    HT[insplace] = e; return true;
```


散列方法的效率分析

- 衡量标准:插入、删除和检索操作 所需要的记录访问次数
- 散列表的插入和删除操作 都基于检索进行
 - 删除:必须先找到该记录
 - 插入:必须找到探查序列的尾部,即对这条记录进行一次不成功的检索
 - 对于不考虑删除的情况,是尾部的空槽
 - 对于考虑删除的情况,也要找到尾部,才能确定是否有重复记录

影响检索的效率的重要因素

- 散列方法预期的代价与负载因子
- α= N/M 有关
 - α 较小时,散列表比较空,所插入的记录比较容易 插入到其空闲的基地址
 - α 较大时,插入记录很可能要靠冲突解决策略来寻 找探查序列中合适的另一个槽
- 随着 α 增加,越来越多的记录有可能放到离其 基地址更远的地方

散列表算法分析(1)

- 基地址被占用的可能性是 α
- 发生第 *i* 次冲突的可能性是

$$\frac{N(N-1)\cdots(N-i+1)}{M(M-1)\cdots(M-i+1)}$$

- 如果 N 和 M 都很大,那么可以近似地表达为 $(N/M)^i$
- 探查次数的期望值是 1 加上每个第 i 次 $(i \ge 1)$ 冲突的概率之和,即插入代价:

$$1 + \sum_{i=1}^{\infty} (N/M)^{i} = 1/(1-a)$$

散列表算法分析(2)

- 一次成功检索(或者一次删除)的代价与当时插入的代价相同
- 由于随着散列表中记录的不断增加,α 值也不断增大
- 我们可以根据从 0 到 α 的当前值的积分推导出插入操作的平均代价(实质上是所有插入代价的一个平均值):

$$\frac{1}{a} \int_0^a \frac{1}{1-x} dx = \frac{1}{a} \ln \frac{1}{1-a}$$

散列表算法分析(表)

编号	冲突解决 策略	成功检索 (删除)	不成功检索 (插入)
1	开散列法	$1+\frac{\alpha}{2}$	$\alpha + e^{-\alpha}$
2	双散列 探查法	$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$	$\frac{1}{1-\alpha}$
3	线性 探查法	$\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right)$	$\frac{1}{2}\left(1+\frac{1}{\left(1-\alpha\right)^{2}}\right)$

检索

10.3 散列检索

散列表算法分析(图)

• 用几种不同方法解决碰撞时散列表的平均检索长度

			i
编	冲突解决	成功检索	不成功检索
号	1 1 2 4/3 1 7/4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
5	策略	(删除)	(插入)
1	开散列法	α	
	711307314		$\alpha + e^{-\alpha}$
		2	
2	双散列	1, 1	1
	1 	$-\ln \frac{1}{1}$	
	探查法	α $1-\alpha$	$1-\alpha$
3	线性	1(1)	1(1)
	探查法	$\frac{1}{2} \left[1 + \frac{1}{1 - \alpha} \right]$	$\left \frac{1}{2}\left(1+\frac{1}{\left(1-\alpha\right)^{2}}\right)\right $
	沐旦法	$ 2 (1-\alpha) $	$ z (1-\alpha)$

散列表算法分析结论(1)

- 散列方法的代价一般接近于访问一个记录的时间,效率非常高,比需要 log n 次记录访问的二分检索好得多
 - 不依赖于 n , 只依赖于负载因子 $\alpha = n/M$
 - 随着 α 增加,预期的代价也会增加
 - $\alpha \leq 0.5$ 时,大部分操作的分析预期代价都小于 2 (也有人说1.5)
- 实际经验也表明散列表负载因子的临界值是 0.5(将近半满)
 - 大于这个临界值,性能就会急剧下降

散列表算法分析结论(2)

- 散列表的插入和删除操作如果很频繁,将降低散列表的检索效率
 - 大量的插入操作,将使得负载因子增加
 - 从而增加了同义词子表的长度,即增加了平均检索长度
 - 大量的删除操作,也将增加墓碑的数量
 - 这将增加记录本身到其基地址的平均长度
- 实际应用中,对于插入和删除操作比较频繁的散列表,可以定期对表进行重新散列
 - 把所有记录重新插入到一个新的表中
 - 清除墓碑
 - 把最频繁访问的记录放到其基地址

思考

- 是否可以把空单元、已删除这两种状态,用特殊的值标记,以区别于"单元被占用"状态?
- 调研除散列以外字典的其他实现方法

数据结构与算法

谢谢聆听

国家精品课"数据结构与算法" http://www.jpk.pku.edu.cn/pkujpk/course/sjjg/

> 张铭,王腾蛟,赵海燕 高等教育出版社,2008. 6。"十一五"国家级规划教材