Elementary Linear Algebra - MATH 2250 - Day 25

Name:

- 1. The eigenvalues of a real symmetric matrix are ______ numbers. For example the eigenvalues of $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ are _____ and _____. But the eigenvalues of $\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$ are _____ and _____.
- 2. Let x = a + ib be a complex number. Find $\bar{x}x$. What do you know about this quantity?
- 3. Let $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$. Find $\bar{x}^T x$. What do you know about this quantity?
- 4. Let's see why are the eigenvalues of a real symmetric matrix are real. Recall that a number a is real if and only if its complex conjugate \bar{a} is equal to a. Assume that λ is an eigenvalue of A with corresponding eigenvector x. Then

$$Ax = \underline{\hspace{1cm}}$$
 (1)

Multiply both sides by \bar{x}^T from left:

$$\bar{x}^T A x = \underline{\qquad}. \tag{2}$$

Take the complex conjugate of both sides of (1):

$$\overline{Ax} = \underline{\hspace{1cm}}$$
 (3)

Since A is a real matrix, and $\overline{ab} = \overline{a}\overline{b}$:

$$A\bar{x} = \underline{\hspace{1cm}}. \tag{4}$$

Take transpose of both sides:

$$(A\bar{x})^T = \underline{\qquad}. (5)$$

Simplify:

$$\bar{x}^T A^T = \underline{\qquad}. \tag{6}$$

But A is symmetric, that is $A^T = \underline{\hspace{1cm}}$, hence

$$\bar{x}^T A = \underline{\qquad}. \tag{7}$$

Multiply both sides by x from right:

$$\bar{x}^T A x = \underline{\qquad}. \tag{8}$$

Compare (2) and (8):

$$\bar{x}^T \bar{\lambda} x = \underline{\qquad}. \tag{9}$$

But x is a nonzero vector (why?), so $\bar{x}^T x$ is a ______ number. Divide both sides by $\bar{x}^T x$:

$$\bar{\lambda} = \underline{\qquad}$$
 (10)

So λ is _____.

- 5. The eigenvectors of a real symmetric matrix can be chosen _____
- 6. For a (real or complex) matrix A if $\bar{A}^T = A$, then A is called to be a Hermitian matrix. Use problem 4 to show that the eigenvalues of A are ______.

7. What can you tell about the eigenvalues of real skew-symmetric matrices? (A is skew-symmetric if $A^T = -A$.)

8. Let A be symmetric with eigenvalues $\lambda_1, \ldots, \lambda_n$, with corresponding eigenvectors q_1, \ldots, q_n , such that $Q = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}$ is orthonormal. Then $A = Q\Lambda Q^T$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Then

$$A = \lambda_1 \underline{\hspace{1cm}} + \lambda_2 \underline{\hspace{1cm}} + \cdots + \lambda_n \underline{\hspace{1cm}}.$$

This is called the spectral decomposition of A.

- 9. Recall that the eigenvalues of a matrix are not the same as the pivots of it. But the _____ of the eigenvalues of a matrix are the same as the _____ of the pivots of it, and the product of the eigenvalues of a matrix is equal to the product of the _____.
- 10. What is the determinant and the signs of the eigenvalues of $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix}$? Is it positive definite?