Capybara final update

03/28/2017

Outline

- Goals
- Datasets
- HTM network
- Dimensionality reduction techniques
- Supervised classification
- Unsupervised classification
- Conclusion

Goals

Capybara goals

Main goal

- Create a canonical example for online and semi-supervised classification using a HTM network.
 - This example is intended to be in the same spirit as the Hot Gym examples (anomaly detection and prediction) but for classification.

Detailed goals

- 1. Show value added of HTMs for unsupervised sequence classification
- 2. Collect meaningful datasets
- 3. Create reusable frameworks for the NuPIC community
- 4. Create visualizations of classification results

Status

- Was not able to complete subgoal #1
- Completed subgoals 2, 3 and 4.

4

Goal of this update

- Help anyone who would pick the project up again to:
 - Understand the project structure
 - Understand what has been tried
 - Understand what tooling is available

Datasets

Overview

- Code reference:
 - nupic.research/projects/capybara/datasets
- Dataset
 - UCI Human Activity Accelerometer data
 - UCR time series
 - Artificial data: motifs dataset and binary datasets
 - Sensortag data
 - Synapse.org data
- Tooling:
 - Scripts to download, format and visualize the input datasets.
 - Script to chunk datasets in smaller, homogeneous sequences

Dataset 1: UCI data

train data (body_acc_x)

UCI data sequences

Dataset 2: UCR data

Dataset 3: Motifs

Dataset 4: Sensortag accelerometer data

Dataset 5: artificial binary data

HTM network

Network factory

Code reference

htmresearch.frameworks.capybara.htm.network

Goal

- Run an HTM network on several datasets and generate HTM traces.
- HTM traces: non-zero indices of SP and TM cells over time, saved as a CSV.

Tooling

- Network factory class that uses a YAML as input to create a simple network with the research API.
- Can take 2 types of datasets as input:
 - Time-indexed
 - Sequence-indexed

Time-indexed VS sequence-indexed

- All datasets are labelled time series.
- For each time step, there is a value and a class (label) →

	body_acc_x	label
t0	0.000181	4
t1	0.010139	4
t2	0.009276	4
t3	0.005066	4
t4	0.010810	4

Each dataset is split into smaller sequences (~100 points)

-0.001015 0.001832

-0.000353 | 0.000120

sequence_3 4

sequence 4 4

ice have the same label) t3 t4 label t0 **t1** t2 sequence_0 4 0.000181 0.010139 0.009276 0.005066 0.010810 sequence_1 4 0.002162 -0.000946 | -0.006476 | -0.003423 | -0.000610 sequence_2 4 -0.001637 | -0.000097 | 0.001614 0.002619 0.004765

0.000362

0.002159

-0.002587

0.001069

0.001169

0.002108

Dimensionality reduction

Overview

Code reference: nupic.research/projects/capybara/dim_reduction

Dimensionality reduction algorithms to visualize clusters of SDRs

- MDS
- tSNE

MDS & T-SNE on artificially generated SDRs

Supervised classification

Approach #1

Code reference

nupic.research/projects/capybara/supervised_baseline/v1_no_sequences

Overview

- With time-indexed sequences
- Classify a rolling union of SDRs
- Voting mechanism to smooth out predictions.
- This approach did not work well

Approach #2

Code reference:

nupic.research/projects/capybara/supervised_baseline/v2_with_sequences

Instead of classifying a rolling union of SDRs:

- Chunk sequences
- Create an embedding of sequence chunks
 - Average
 - Logical and
- Use the euclidian distance to determine the distance between embeddings

Example

Run HTM on each sequence

Sequence chunking

Classification

Training data:

- Sequence 1: label, [embedding 1, ..., embedding K]
- Sequence 2: label, [embedding 1, ..., embedding K]
- Etc.

Classifier:

- 1-NN
- Distances
- ∘ Euclidian
- oLogical and

Results

- Increasing the number of chunks increases the accuracy
- In some cases (like the UCR synthetic data), adding the TM does not make a difference Test accuracy (SP)
 - UCI accelerometer data
 - # chunks = 1: 51.85%
 - # chunks = 2: 77.78%
 - # chunks = 5: 85.19%
 - UCR synthetic control
 - # chunks = 1: 27.33%
 - # chunks = 2 75.67%
 - # chunks = 5: 80.67%
 - Motifs
 - # chunks = 1: 97.00%
 - # chunks = 2 96.00%
 - # chunks = 5: 98.00%

Test accuracy (TM)

- UCI accelerometer data
 - # chunks = 1: 44.44%
 - # chunks = 2: 44.44%
 - # chunks = 5: 40.74%
- UCR synthetic control
 - # chunks = 1: 18.67%
 - # chunks = 2 47.33%
 - # chunks = 5: 73.33%
- Motifs
 - # chunks = 1: 100.00%
 - # chunks = 2 100.00%
 - # chunks = 5: 93.00%

Problem?

- This assumes sequence alignment.
- New distance: does not assume sequence alignment
- The same distance is used in the clustering experiments.
- Results are worse:

Test accuracy (SP)

- UCI accelerometer data
 - # chunks = 1: 51.85%
 - # chunks = 2: 77.78%
 - o # chunks = 5: 55.56%
- UCR synthetic control
 - # chunks = 1: 27.33%
 - # chunks = 2 49.33%
 - # chunks = 5: 48.67%
- Motifs

29

- # chunks = 1: 97.00%
- # chunks = 2 91.00%
- # chunks = 5: 90.00%

Test accuracy (TM)

- UCI accelerometer data
 - # chunks = 1: 44.44%
 - # chunks = 2: 44.44%
 - # chunks = 5: 44.44%
- UCR synthetic control
 - # chunks = 1: 18.67%
 - o # chunks = 2 23.00%
 - # chunks = 5: 29.00%
- Motifs
 - # chunks = 1: 100.00%
 - o # chunks = 2 100.00%
 - o # chunks = 5: 100.00%

Plot associated with these results live here:

Unsupervised classification

Binary artificial data

UCI accelerometer data with 4 classes

UCI dataset with 6 classes (1/2)

UCI dataset with 6 classes (2/2)

Summary

Binary data

- ✓ Detection of new clusters, online and in an unsupervised manner
- ✓ Good classification accuracy
- ✓ Distance metric is pretty good at distinguishing between different predictable sequences

Accelerometer data

- X Detects too many clusters
- X Bad classification accuracy
- X Distance metric struggles to distinguish between sequences with different levels of predictability

SDR clustering with OPTICS

- OPTICS algorithm
 - Group objects into meaningful subclasses
 - Density-based Clustering locates regions of high density that are separated from one another by regions of low density.
 - Density = number of points within a specified radius
- Demo 2D
- Demo with SDR
 - Average SDRs by sequence
 - Run OPTICS to find valleys
 - tSNE / MDS to project in 2D

OPTICS on binary data SDRs

Export to plot.ly »

Cluster 0 data

Cluster 1 data

Cluster 0 reachability distances

- Cluster 1 reachability distances

Takeaways

Conclusion

- Re-usable frameworks:
 - Data cleaning and visualizations
 - HTM network factory to generate traces
 - Cluster visualizations: OPTICS, tSNE, MDS
 - Supervised classifier for HTM traces
 - Unsupervised clustering for HTM traces
- List of things that have been tried