Linear Regression with Multiple Variables

Question 1

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	$midterm\ exam^2$	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score.

Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is $midterm\ score^2$.

Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(4)}$? (Hint; midterm = 69, final =78 is training example 4.)

Please round off your answer to two decimal places and enter in the text box below.

-0.46

Question 2

You run gradient descent for 15 iterations with lpha=0.3 and compute J(heta) after each iteration.

You find that the value of $J(\theta)$ **decreases slowly** and is still decreasing after 15 iterations.

Based on this, which of the following conclusions seems most plausible?

C	Rather than use the current value of $lpha$, it'd be more promising to try a smaller value of $lpha$
	(say $lpha=0.1$).

	$\int \alpha =$	0.3	is an	effective	choice	of	learning rat	e.
--	-----------------	-----	-------	-----------	--------	----	--------------	----

 $lap{ }$ Rather than use the current value of lpha, it'd be more promising to try a larger value of lpha (say lpha=0.1).

0		4 -	'	
	ues	TIO	n	≺
V	uCJ	LIU		J

Suppose you have m=14 training examples with n=3 features

(excluding the additional all-ones feature for the intercept term, which you should add).

The normal equation is $\theta = (X^T X)^{-1} X^T y$.

For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

- $\square X$ is 14×3 , y is 14×1 , θ is 3×3
- $\square X$ is 14×4 , y is 14×1 , θ is 4×4
- \checkmark X is 14×4 , y is 14×1 , θ is 4×1
- igspace X is 14 imes 3, y is 14 imes 1, heta is 3 imes 1

Question 4

Suppose you have a dataset with m=1000000 examples and n=200000 features for each example.

You want to use multivariate linear regression to fit the parameters θ to our data.

Should you prefer gradient descent or the normal equation?

- lacksquare Gradient descent, since $(X^TX)^{-1}$ will be very slow to compute in the normal equation.
- \Box The normal equation, since gradient might be unable to find the optimal θ .
- The normal equation, since it provides an efficient way to directly find the solution.
- \Box Gradient descent, since it will always converge to the optimal θ .

Question 5

Which of the following are reasons for using feature scaling?

- It is necessary to prevent the normal equation from getting stuck in local optima.
- It prevents the matrix X^TX (used in the normal equation) from being non-invertable (singular/degenerate).
- It speeds up gradient descent by making each iteration of gradient descent less expensive to compute.
- ☑ It speeds up gradient by making it require fewer iterations to get to a good solution.