National University of Computer and Emerging Sciences, Lahore Campus

	-	WAL U	NIVE	•
	~ A	*	NIVER	1
	CIENCE	X	IJ	COM,
7	SHI	MERG	1883	EL .
	1			

Course Name:	Design and Analysis of Algorithms	Course Code:	CS302
Degree Program:	BS(CS)	Semester:	Spring 2020
Duration:	20 Minutes	Total Marks:	4+3+3
Date:	Feb 21, 2020	Weight	2.5
Section:	6C	Page(s):	1
Exam Type:	Quiz		

Student : Section:	: Name: Roll No 	
Instruction/ Notes:	Attempt the quiz on this sheet and write concise answers.	

You are given a 2D sorted array (elements are in ascending order in each row and column) of size Q1) NxN. Your task is to devise a *linear time* algorithm to find an element *x* in the 2D array.

Assume that T(1)=1, T(2)=1, and T(n)=T(n-2)+n for $k \ge 3$. What is T(n) in terms of big O **Q2)** notation?

Q3) Justify your answer whether the following recurrences can be solved using Master theorem. Note: Show your working on the other side of the page.

1.
$$T(n)=3T\left(\frac{n}{3}\right)+n\lg n$$

2. $T(n)=2T\left(\frac{n}{4}\right)+\sqrt{n}$

2.
$$T(n) = 2T(\frac{n}{4}) + \sqrt{n}$$

3.
$$T(n)=T(n-2)+n^2$$

CS Department Page 2 of 1