Learning objectives:

- 1. Understand the definition of a definite integral.
- 2. Evaluating definite integral as limit of a sum.
- 3. Use areas to compute definite integrals.
- 4. Approximate definite integrals using the midpoint rule.
- 5. Learn the properties of definite integrals.

Definition of a definite integral

Let f be a function defined for $a \le x \le b$. Divide [a, b] into n subintervals of equal width and choose sample points x_i^* on every subinterval. Then

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x,$$

provided the above limit exists.

If the above limit exists we say f is integrable on [a, b].

Theorem

If f is continuous on [a, b], or if f only a finite number of jump discontinuities, then f is integrable on [a, b], that is, the definite integral $\int_a^b f(x) \, dx$ exists.

Theorem

If f is integrable on [a, b], then

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \Delta x.$$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i \Delta x$.

Properties of sums

$$\sum_{i=1}^{n} c = nc, \qquad \sum_{i=1}^{n} ca_{i} = c \sum_{i=1}^{n} a_{i}.$$

$$\sum_{i=1}^{n} (a_{i} + b_{i}) = \sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} b_{i}.$$

$$\sum_{i=1}^{n} (a_{i} - b_{i}) = \sum_{i=1}^{n} a_{i} - \sum_{i=1}^{n} b_{i}.$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \qquad \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \qquad \sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}.$$

Example 1. Evaluate $\int_0^3 (x^3 - 6x) dx$.

Example 2. Set up an expression for $\int_2^5 x^4 dx$ as a limit of a sum.

Example 3. Evaluate the following integrals by interpreting each in terms of areas.

1.
$$\int_0^1 \sqrt{1 - x^2} \, dx.$$

2.
$$\int_0^3 (x-1) dx$$
.

The Midpoint rule

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(\overline{x}_i) \Delta x = \Delta x (f(\overline{x}_1) + f(\overline{x}_2) + \dots + f(\overline{x}_n)),$$

where $\Delta x = \frac{b-a}{n}$ and $\overline{x}_i = \frac{1}{2}(x_{i-1} + x_i)$ is the midpoint of $[x_{i-1}, x_i]$.

Example 4. Use the midpoint rule with n = 5 to approximate $\int_{1}^{2} \frac{1}{x} dx$.

Properties of definite integral

- 1. $\int_{a}^{b} c \, dx = c(b-a)$, where *c* is any constant.
- 2. $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.
- 3. $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$.
- 4. $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$
- 5. $\int_{a}^{b} (f(x) g(x)) dx = \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx.$
- 6. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$, for a < c < b.
- 7. If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.
- 8. If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.
- 9. If $m \le f(x) \le M$ for $a \le x \le b$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

Example 5. Use the properties of integrals to evaluate $\int_0^1 (4 + 3x^2) dx$.

Example 6. If $\int_0^5 f(x) dx = 7$ and $\int_0^3 f(x) dx = 2$, then find $\int_3^5 f(x) dx$.

Example 7. Use property 9 to estimate $\int_1^4 \sqrt{x} dx$.