Exercise 1. Find $\frac{dy}{dx}$ when $F(x,y) = \sin xy + \pi y^2 - x = 0$.

$$\frac{f_{y} = y \cos(xy) + 0 - 1}{f_{y} = x \cos(xy) + 2\pi y - 0}$$
 $\frac{dy}{dx} = \frac{-y \cos(xy) + 1}{x \cos(xy) + 2\pi y}$

Exercise 2. Given function f(x,y), write a formula for $\frac{df}{ds}$ when $x=a+su_1$ and $y=b+su_2$.

Example 3. Let $f(x,y) = 3 - \frac{x^2}{10} + \frac{xy^2}{10}$. a. Compute $\nabla f(3,-1)$.

$$\nabla (= -\frac{x}{5} + \frac{9}{10} + \frac{xy}{5}$$

$$\frac{3}{5} + \frac{(-1)^{7}}{10}, \frac{3(-1)}{5}$$

$$\nabla (-1) = (-3/6), -3/5$$

b. Compute $D_{\mathbf{u}}f(3,-1)$ in the direction of the vector (1,-1).