PATENT ABSTRACTS OF JAPAN

(11)Publication number:

56-111340

(43)Date of publication of application: 03.09.1981

(51)Int.Cl.

H04B 9/00

H04L 11/00

(21)Application number: 55-013554

(22)Date of filing:

08.02.1980

(71)Applicant : TOSHIBA CORP

(72)Inventor: KOKKYO TOMOO

MASUKO HARUO

(54) OPTICAL COMMUNICATION SYSTEM

(57)Abstract:

PURPOSE: To form a reliable computer network of an optical communication system, by using a network as a loop network in terms of functions and as a star network in terms of physical arrangement. CONSTITUTION: Respective stations S1, S2...Sn are connected in a star shape via photocoupler A. Stations S1, S2...Sn provide transmission of wavelengths $\lambda 2$, 3... λn and $\lambda 1$ respectively and have light receivers for receiving independently signals of wavelengths except their own wavelengths. Then, what wavelength respective stations receive selectively signals with depends upon what kind of loop is formed in the network. For example, when a loop of S1, S2, S3, Sn, and S1 is formed, station S2 selects wavelength $\lambda 2$, and stations S3, Sn and S1 wavelengths $\lambda 3$, λn and $\lambda 1$, performing communication.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭56-111340

⑤Int. Cl.³H 04 B 9/00H 04 L 11/00

識別記号

庁内整理番号 6442-5K 7230-5K 砂公開 昭和56年(1981)9月3日

発明の数 1 審査請求 未請求

(全 5 頁)

9光通信方式

②特

願 昭55-13554

国京知雄

②出

願 昭55(1980) 2月8日

⑦発明 者

川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内 ⑦発 明 者 增子春雄

川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内

⑪出 願 人 東京芝浦電気株式会社

川崎市幸区堀川町72番地 砂代 理 人 弁理士 則近憲佑

外1名

明 絀 書

- 1. 希明の名称 光通信方式
- 2. 好許請求の範囲

3. 発明の辞細な説明

この発明はコンピューターネットワークに用いる光通信方式に関する。

一般的に小規模光過信方式として知られている ものには、易1凶に示すように、中心にコンピュ ーターCoを有し、とのコンピューターCoを介してコンピューターCi, Ci…Cnの相互適信を行うもの(例をは京都大学のKUIPNET)と第2図に示すような中心は受動業子で出来た単なる分配器Aを介してコンピューターCi, Ci…Onの相互通信をするもの(例えばゼロックス社のFIBERNET)のようなスターネットワーク方式がある。また第3図に示すようなステーション Cs, Si, Si, …, Sn を壊状に接続してコントロールステーションCsの制御により相互の通信を行うルーブ通信方式がある。

第1図に示す方式では、 $C_1 \ge C_2$ の間で通信する時でも C_0 のコンピューターを起動させる必要がある。またこの C_0 のコンピューターの信頼性がネットワーク全体の信頼性を支配する。

第2図に示す方式は、回線径路は受動素子Aで構成されるため、取扱や信頼性の面では使れているが、回線径路上の交通整理が行なわれないためコンピューターから送信された信号が回線上で衝突する欠点を有する。特に通信頻度が多くなるに

特開昭56-111340(2)

つれて衝突が多発して通信効率が低下する。

期3図に示す環状の方式では、例えばステーションS₁とS₂との間の通信を行う時でもコントロールステーションCsをはじめ残りのステーション
S₂… Sn のすべてのステーションが起動させる必要がある。またこの環状方式では回線の断線や接続されているステーションのうち1箇所でも故障するとすべての通信が不可能となる欠点がある。本発明は上配欠点を除いた光通信方式を提供す

本発明は、物理的には上記第2図に示した光スターネットワークと同じ構成となつているが、機械的には上記第3図に示した方式と同様にループが形成される。 すなわち、本発明は、複数のステーションを光暗合器及び光ファイバーケーブルにより星形に接続したネットワークにおいて、各ス

テーションは、予じめ各ステーションに割り当て

いれた間有の波長で送信を行なり光送信機と、他

ることを目的とする。

のステーションに固有な放長の信号を受信する複 故の先受信使と、受信した複数の放長の信号のな れる。いま $S_1 \to S_2 \to S_3 \to S_1 \to S_1$ なるルーブ を作成する場合では、ステーション S_2 は彼長 I_2 を

選択し、ステーション Sı, Sn, Sıはそれぞれ 皮長

スッ, スn, ス, を選択するようにする。 **ポ5凶に本発明で用いられるステーションの一** 構成例を示す。凶において、 20 は 4 光受信機、 のステーションはネットワークで使用されるすべ ての彼長の信号を受信できる。23は送受信論理部、 24 は 固 有 波 長 送 信 機 、 25 は 信 号 処 維 装 麗 、 26 は 光 分配器である。送受信論理部23は波長選択回路27 を持つている。彼長導択回路27は光受信機 20~ 22円の1つの光受信機の受信信号を選択する機能 を持つている。送受信論理那23は選択された受信 信号が自己のステーションあての情報であれば情 戦処埋表達25K供給する。また受信信号が他のス テーションあての情報であればパツファ・シフト ・レジスタ28に収容する。このパツフア・シフト ・レジスタ28は1チャネル長の大きさを持つ。し

たがつて、あるステーションがループに移加して

かから特定の1つの波長の信号を選択する手段とを 備え、各ステーションが、選択した波長の信号が自己のステーションあての情報でない場合には この情報を送信することによつてルーブを形成したことを 特徴としている。

いるとそのパッフア・シフト・レジスタもループ
に参加し、ループの全長は1チャネル分長したる。
情報処理装置25からの他のステーションへ送信す
べき情報はパッフア・シフト・レジスタ28が空の
ときに供給される。またそのチャネルがループを
1周して戻つてきたときには、ひきつづき1チャネル分の情報をのせて送信するか、もしくは送信
が終了しているのであれば空チャネルに戻して終
了する。

バッフア・シフト・レジスタ28の内谷は1ビート 毎に送信機24に供給されステーションに固有の 放長の光信号に変換される。この光信号は光分配器26を介して光ファイバーケーブル10に出力される。

いま、弗 4 図において各ステーションが正常に 空送信をしている状態で、ステーションS,がステーションS,へ送信を開始するものとする。

まず、S」は送信元アドレス(S」のアドレス)と 送信先アドレス(S」のアドレス)とを付加した信 号を礼波長で送信する。この信号は光紹合器Aを 介するととによって各ステーションに到達する。 例えば、S₂では第5図の光ファイパーケーブル10、 光分配器26、光ファイパー12を介し光受信機21で 受信され、この受信信号は伝送線16を介して送受 信論理部23へ送られる。上記のようにS₂の波長週 択回路27はA₂波長を週択しているので、送受信論 理部23は受信信号のアドレスをチエックする。い まこの受信信号はS₃に送られるべきものであるか ら、送受信論理部23は受信信号をパッファ・シフト・レジスタ28に収容する。したがつて受信信号 は適有波長送信機24に供給され、S₂固有のA₃波長 の光信号に変換されて光ファイパーケーブル1.0に 出力される。

このとき S_s では、同様に λ_s 光受信機21が S_1 の送信した光信号を受信するが、 S_s の波長選択回路27は波長 λ_s を選択しているので、送受信論理部23は動作しない。同様に、 S_1 、 S_1 も S_1 が送信した光信号に対しては動作しない。

次にSzが送信したAz波長の光信号(その内容は Szが送信したものである)も結合器Aによりすべ

の送信が終るまで1時記憶される。前記1チャン オルの送信終了に続き前記記憶信号はス₃波長で送 信される。Sz は Sn 宛の 1 チャンネルと、S, より S,宛の1チャンネルを続けて送信する。 S, は l, 彼長の信号を週別して1チャンネル目のSn宛の信 号はそのままね皮長で送信し、2チャンネル目の 8.宛の信号は情報処理装置25に送るとともに受信 フラグを付加してスn皮長で2チャンネル目で送信 する。 Sn は la 波畏の信号を選別してSn宛の1チ ヤンネル目の信号を情報処理装置25に送るととも に 受信 フラグ を 付 加 し て λ ₁ 波 長 で 送 信 し 2 チ ヤ ン オル目の信号はそのままスi皮長で送信する。S,は λ,彼長の信号を受信選別して、S.宛の1チャンネ ル目の信号はそのままAz皮長で送信し、 2 チヤン ネル目の自己ステーション送信元プドレスとS.の 受信フラグを検知して8。ステーションに信号が受 け取られたことを確認して2チャンネルに含まれ るすべての信号を消去して適信を終る。引続き送 信する場合は前記2チャンネル目を使用できる。 一方kg波長でSeより送信された1チャンネル目の てのステーションに到達する。このうちS』のみが ス。放長を選択的に受信できるので、S』の送受信論 理部23がこの受信信号をチエックする。

この受信信号は8.まてであるので、8.の送受信論理部23はこの情報を伝送線18を介して8.の情報処理装置25へ供給するとともに、受信したことを示すフラグ信号をパッファ・シフト・レジスタ28にセットする。このフラグ信号は伝送線19を介し固有波長光送信機24により波長 λ 10に出力される。

上記フラグ信号(An 放長) はSn で An 放長に変換されるとSi がとれを受信し、受信処理を行なう。 とれによつてSi は送信先(Si)の受信を確認し次の情報の送信を行なう。

次に、第4図において、 S. が Sn に対して送信を開始すると同時に、 S. が S. に送信を開始した場合を説明する。送信した信号が受信されたフラグを検出して相手に届いた事を確認して次の信号を送る。このとき S. は J. 波長で送信し、 S. で受信遇別され、 この信号は S. が S. へ 1 チャンネル

信号は S * で X * 被長の信号が受信遇別され前配S * と同じ処理がされて通信が終る。前記説明のように役数ステーションが同時に送信を開始しても各ステーションが 1 チャンネル分の 1 時紀憶により連続したチャンネルに構成して送信するためネットワーク上での信号の衝突を防止できる。

前記説明の他に本発明ではステーションの故障、ケーブルの断線、ステーションの不参加等で適信不可能なステーションを回避して適信出来る効果がある、その動作を説明する。

例えば第6図に示すように、光ファイバーケーブルの断線またはステーションSョ自身の改輝から 原断で通信不可能となつた時の通信動作について 説明する。

特別昭56-111340(4)

遇別すべきであるがネットワーク上に存在しないのでSnからみて上流第2位ステーションが送信といいるA、放長となり第1個位でA、放長が受信選別される。このように通信不可能なステーションS。を回避して新たな通信を格が構成される。この状態でS1がSnに送信すると、S2で受信選別され、受信フラグを付加してA、放長で送信されS1に到達する。S1は A1 放長の信号を受信選別して、Snの受信フラグを検出し、送信元アドレスを含むすべての信号を消去して通信が終る。

前記説明のように不参加ステーションや故障ステーション、またケーブルの断線が起つても壊状ネットワークのようにシステム全体がダウンすることはない。

本発明の特長は衝突が発生しないことと、信頼性に優れていることである。本特許は物理的にはスターネントワークであるが、機能的にはループネントワークであり、両方のネントワーク方式の良い点を併せ保持している。すなわち機能的にル

用いられるステーションの一奪成凶、第 6 凶は本 発明の動作を説明するための図である。

1 , 2 , 3 , 4 ... ステーション

5 … 光結合器

6 , 7 , 8 , 9 … 光ファイバーケーブル

代理人 弁理士 則 近 憲 佑(ほか1名)

ープネットワークであるため、送受信は要然と順 序良く行われ、送受信データがパス上やステーションの入口で衝突を発生することはない。またか 変長を使用しているためスターカブラでの衝突も 発生しない。また物理的にはスター・ネットワークであるため、1部のステーションやファイバークーブルが断線してもその部分が動作不良となく、 全体の機能が停止することはない。

なお上記実施例のように各ステーションがすべての被長に対して光受信機を持つことにより、上記故障によつて故障に対応するステーション協有の被長の信号が伝送路に存在しなくなるので、簡単に故障の存在を検出することができるとともに、この故障検出に応じて被長退択回路を自動的に切り換えることができる。

4. 図面の簡単な説明

第1 図乃至第3 図は従来技術を示す凶、第4 図 は本発明の一実施例を示す図、第5 図は本発明で

