Contents

Li	List of Scilab Solutions		
1	To calculate the numerical aperture of the optical fiber.	5	
2	To calculate the Bending Loss in the optical fiber in the link.	7	
3	To plot the responsivity curve for the given detector material.	9	
4	To plot the characteristic curve for LED.	11	
5	To calculate material dispersion at various wavelength of operation.	13	
6	To do power budgeting for the link for given parameters.	15	
7	To do time budgeting for the link for given parameters.	17	
8	To calculate fiber parameters (dimensions, refractive index difference) for single mode operation.	19	

List of Experiments

Solution 1.1	Numerical aperture
Solution 2.2	Bending Loss
Solution 3.3	Responsivity
Solution 4.4	LEDcharacteristics
Solution 5.5	Material dispersion
Solution 6.6	Power Budgeting
Solution 7.7	Time Budgeting
Solution 8.8	Single Mode

List of Figures

1.1	Numerical aperture	(
2.1	Bending Loss	8
3.1	Responsivity	1(

To calculate the numerical aperture of the optical fiber.

Scilab code Solution 1.1 Numerical aperture

```
1 //Experiment no.1 To calculate the numerical
      aperture of the optical fiber.
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 //sample values
5 / n1 = 1.50
6 / n2 = 1.47
7 clear;
8 close;
9 clc:
10 n1=input ("enter the value of core refractive index")
11 n2=input ("enter the value of cladding refractive
     index")
12 delta=(n1^2-n2^2)/(2*n1^2)
13 NA=n1*sqrt(2*delta)
14 accept=asind(NA)
15 disp (NA, "numerical aperture=");
```

```
Solab SAI Console

File Edit Control Applications ?

Solab SAI Excess

Annex the value of core refractive indexi.5
enter the value of cladding refractive indexi.47
numerical aperture

0.2984962
acceptance angle=

17.367306

->>

A property of the value of cladding the value of cladding
```

Figure 1.1: Numerical aperture

16 disp (accept, "acceptance angle=");

To calculate the Bending Loss in the optical fiber in the link.

Scilab code Solution 2.2 Bending Loss

```
1 //Experiment no.2 To calculate the Bending Loss in
      the optical fiber in the link.
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 //sample values
5 / n1 = 1.50
6 / n2 = 1.47
7 / R = 1e - 2
8 / \text{lambda} = 0.82
9 clear;
10 close;
11 clc;
12 n1=input("enter the value of core refractive index="
13 n2=input ("enter the value of cladding refractive
      index=")
14 R=input("enter the value of radius of curvature of
```

Figure 2.1: Bending Loss

```
bend in m=")//curvature of bend
15 lambda=input("enter the value wavelength in micrometer=")
16 c1=1.2;//constant
17 c2=0.5//constant
18 delta=(n1^2-n2^2)/(2*n1^2);
19 Rc=(3*lambda*1e-6)/(4*3.14*2*delta);
20 alpha=c1*exp(-c2*R);
21 alphadb=10*log(alpha)
22 disp (alphadb, "Bending loss in db=");
23 disp (Rc, "critical radius in m=");
```

To plot the responsivity curve for the given detector material.

Scilab code Solution 3.3 Responsivity

```
1 //Experiment no.3 To plot the responsivity curve for
       the given detector material.
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 //sample values
5 / Eg = 1.43
6 clear;
7 close;
8 clc;
9 Eg=input("Band gap of material selected in eV=")
10 e=1.6e-19;
11 eta=0.65//quantum efficiency
12 h=6.626e-34; // planks constant
13 c=3e8//velocity of light
14 lambdacf=h*c/(Eg*e*1e-6);//wavelength in micrometer
15 lambda=0:0.25:2//range of wavelength
16 for i=1:9
```


Figure 3.1: Responsivity

```
if (lambda(i) < lambdacf)
responsivity(i) = eta*e*1e-6*lambda(i)/(h*c);
else responsivity(i) = 0
end
end
plot2d(lambda, responsivity);
xtitle('Responsivity curve', 'Lambda(um)', 'Responsivity');</pre>
```

To plot the characteristic curve for LED.

Scilab code Solution 4.4 LEDcharacteristics

```
1 //Experiment no.4 To plot the characteristic curve
      for LED. .
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 clear;
5 close;
6 clc;
7 h=6.626e-34; // planks constant
8 c=3e8; // velocity of light
9 e=1.6e-19;//charge of electron
10 lambda=0.87e-6//wavelength of light
11 tr=60e-9; //regenerative recombination
12 tnr=100e-9; //non regenerative recombination
13 t=tr*tnr/(tr+tnr);
14 Nint=t/tnr//internal quantum efficiency
15 \text{ for } i = 1:40
16
       L(i)=i;
```

To calculate material dispersion at various wavelength of operation.

Scilab code Solution 5.5 Material dispersion

```
//Experiment no.5 To calculate material dispersion
at various wavelength of operation.
//OS=Windows XP sp3
//Scilab version 5.4.0
//sample values
//L0=1.3 (zero dispersion wavelength psnm-2km-1)
//S0=0.095(Slope at zero dispersion wavelength in psnm-1km-1)

clear;
close;
L0=input("enter the value of zero dispersion wavelength in um")
S0=input("enter the value of Slope at zero
```

```
dispersion wavelength")
13 lambda=0.7:0.1:1.7//wavelength of light
14 MD=(lambda.*S0/4).*(1-(L0./lambda).^4);//Material
    Dispersion
15 plot2d(lambda, MD);
16 xtitle('Material Dispersion at various wavelength',
    'wavelength(meters)', 'Material Dispersion(psnm-1 km-1)');
```

To do power budgeting for the link for given parameters.

Scilab code Solution 6.6 Power Budgeting

```
1 //Experiment no.6 To do power budgeting for the link
       for given parameters
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 //sample values
5 //Ps=13 (input power in dBm)
6 / Pr = -31 (sensitivity of receiver)
7 / L = 80 (Link length in Km)
8 / Loss = 0.35 (fiber loss in dB/Km)
9 //SL=0.1(Splice Lossin dB)
10 //CL = 0.5 (coupling loss in dB)
11 //EL=1.5(excess loss)
12
13 clear;
14 close;
15 clc;
16 Ps=input("Power from source in dBm=");
```

```
17 Pr=input("sensitivity of receiver in dBm=");
18 L=input("Link length in Km=");
19 Loss=input("fiber loss in dB/Km=");
20 SL=input("Splice Lossin dB/Km=");
21 CL=input("coupling loss in dB=");
22 EL=input("excess loss in dB=");
23 Pt=Ps-Pr;
24 SM=Pt-(2*CL+Loss*L+SL*L)
25 disp ("dB",SM,"system margin=");
```

To do time budgeting for the link for given parameters.

Scilab code Solution 7.7 Time Budgeting

```
1 //Experiment no.7 To do rise time budgeting for the
     link for given parameters
2 //OS=Windows XP sp3
3 //Scilab version 5.4.0
4 //sample values
5 //ts=10 (rise time of the led source in ns)
6 //IMD=6(intermodal dispersion in ns/Km)
7 / L=10(link length in Km)
8 //PB=2(pulse broadening in ns/Km)
9 //td=8(response time of detector in ns)
10 //F=1(1-RZ return to zero format, 2-NRZ-non return
     to zero format)
11
12
13 clear;
14 close;
15 clc;
```

```
16 ts=input("rise time of the led source in ns=");
17 IMD=input("intermodal dispersion in ns/Km=");
18 L=input("Link length in Km=");
19 PB=input("pulse broadening in ns/Km=");
20 td=input("response time of detector in ns=");
21 disp ("Directory
                                    1—RZ return to zero
      format, 2-NRZ-non return to zero format");
22 F=input("Format=");
23 Tsys=1.1*sqrt(ts^2+(L*IMD)^2+td^2+(L*PB)^2);
24 if F==1 then Bt=0.35*1e3/Tsys //since Tsys is in
     nano sec and Bt is expressed in Mbps)
       else Bt=0.7*1e3/Tsys
25
26 \text{ end}
27 disp ("Mbps", Bt, "Maximum bit rate for the link =");
```

To calculate fiber parameters (dimensions, refractive index difference) for single mode operation.

Scilab code Solution 8.8 Single Mode

```
13 clc;
14 lambda=0.8e-6:0.1e-6:1.7e-6;
15 ric=input("refractive index of core=");
16 V=input("V mumber for singlr mode transmission=");
17 delta=input("refractive index difference=");
18 for i=1:10
19    a(i)=V*lambda(i)/(2*3.14*ric*sqrt(2*delta))
20 end
21 plot2d(lambda,a);
22 xtitle('Core daimeter versus wavelength of transmission', 'Wavelength (Lambda)(m)', 'Core diameter(m)');
```