Faktorinė analizė

Doc. Dr. Rūta Simanavičienė

Įvadas

- Pasitaiko tokių užduočių, kada tiriamąjį objektą geriausiai apibūdina ne stebimi kintamieji, bet jų kombinacijos.
- Pvz., vietoj stebimų kintamųjų "ūgis" ir "svoris" įvedamas abstraktesnis kintamasis "dydis".
- Kartais objektui apibūdinti iš viso nėra tokių kintamųjų, kuriuos būtų galima tiesiogiai išmatuoti, todėl iš duomenų tenka išskirti taip vadinamus faktorius.
- Patys *faktoriai* dažnai neturi kiekybinio mato, pvz. *kūrybiškumas*, *agresija*, *altruizmas* negali būti išmatuoti betarpiškai, bet šias sąvokas galime įsivaizduoti kaip atitinkamas *požymių grupes* vienijančias kategorijas.

Faktorinės analizės uždavinio pavyzdys (idėja)

- Tarkime, tiriama, kodėl dalis pirmakursių neigiamai žiūri į dalyką "Matematinė analizė", t.y. kokie faktoriai sąlygoja neigiamą požiūrį.
- Respondentams pateikiama apie 30 klausimų apimančių įvairius neigiamo požiūrio aspektus.
- Atsakymai vertinami penkių balų sistema nuo "griežtai nesutinku" iki "pilnai sutinku".
- Faktorinėje analizėje pagal respondentų vertinimų koreliacijas studentai yra suskirstomi į kelias grupes. Tada sprendžiama, koks <u>faktorius</u> galėtų <u>vienyti</u> konkrečios grupės studentus.
- Pavadinimą <u>faktoriui</u> suteikia pats tyrėjas, išanalizavęs grupės sudėtį. Šiuo atveju, tai gali būti silpnos mokyklinės matematikos žinios, lėtas naujos medžiagos įsisavinimo greitis ir t.t.

Faktorinės analizės tikslas ir etapai

- Faktorinės analizes užduotis atsižvelgiant į kintamųjų tarpusavio koreliacijas, suskirstyti stebimus kintamuosius į grupes, kurias vienija koks nors tiesiogiai nestebimas (latentinis) faktorius. Koks tas faktorius, sprendžiame patys nagrinėdami grupes sudarančius kintamuosius.
- Faktorines analizes tikslas minimaliai prarandant informacijos pakeisti stebimą reiškinį charakterizuojančių požymių aibę kelių faktorių rinkiniu.
- Faktorinės analizes etapai:
 - 1. tikriname, ar duomenys tinka faktorinei analizei;
 - 2. faktorių skaičiaus nustatymas bei faktorių skaičiavimo metodo parinkimas;
 - 3. faktorių sukimas ir interpretavimas;
 - 4. faktorių reikšmių įverčių skaičiavimas.

Latentinis - (lot. latens, kilm. latentis - paslėptas, nematomas): nematomas, išoriškai nepastebimas.

Latentiniai faktoriai

- *Pavyzdžiui*, psichologas prieš tyrimą sudaro klausimyną žmogaus lyderio savybėms matuoti. Klausimyne yra dvi klausimų grupės: viena dalykiniams gebėjimams nustatyti, kita bendravimo gebėjimams įvertinti.
- Tiek dalykiniai gebėjimai, tiek bendravimo gebėjimai betarpiškai neišmatuojami (latentiniai) faktoriai.
- Ko siekiame taikydami faktorinę analizę? Sociologinių apklausų, medicininių tyrimų, psichologinių testų ir pan. rezultatai dešimčių ir šimtų požymių matavimų aibės.
- Faktorinė analizė padeda didelio skaičiaus kintamųjų tarpusavio koreliacijas paaiškinti tam tikrų bendrųjų faktorių įtaka.
- Nuo kintamųjų pereidami prie faktorių kondensuojame informaciją, padarome ją labiau aprėpiamą.
- Būtent dėl to faktorinė analizė dažnai taikoma kartu su kitais daugiamatės statistikos metodais (pavyzdžiui, latentinių faktorių reikšmių įverčiai gali būti naudojami kaip pradinių duomenų pakaitalas *klasterinėje* ar *regresinėje analizėje*).

Faktorinė analizė savotiškai prieštaringa

- Faktorinė analizė gana sudėtinga ir prieštaringa daugiamatės statistinės analizės dalis, nes:
 - a) ne visada latentiniai faktoriai realiai egzistuoja ir ne visada patikimai pagal turimus duomenis juos galima išskirti;
 - b) tiems patiems duomenims taikydami skirtingus faktorinės analizės metodus, gauname keletą galimų faktorių rinkinių;
 - c) išskirtieji faktoriai ne visada lengvai interpretuojami.
- Tipinė faktorinė analizė "pasufleruoja" atsakymus į tokius klausimus:
 - a) kiek latentinių faktorių paaiškina tiriamų kintamųjų priklausomybės struktūrą;
 - b) kokie tie faktoriai;
 - c) kaip gerai faktoriai paaiškina duomenis.

Faktorinės analizės (FA) matematinis modelis

- Tarkime stebime k kintamųjų $X_1, X_2, ..., X_k$.
- Modelis grindžiamas prielaida, kad kiekvieno kintamojo X_i elgesį sąlygoja m bendrųjų latentinių faktorių F_1, F_2, \ldots, F_m ir specifinis (charakteringasis) latentinis faktorius $\varepsilon_i, i = \overline{1, k}$.
- Bendrųjų faktorių yra mažiau nei kintamųjų (m < k). Tarkim X_i , $i = \overline{1,k}$ nuo faktorių priklauso tiesiškai. Tada **FA matematinis modelis** užrašomas:

$$X_1 = \lambda_{11}F_1 + \lambda_{12}F_2 + \dots + \lambda_{1m}F_m + \varepsilon_1,$$

$$X_2 = \lambda_{21}F_1 + \lambda_{22}F_2 + \dots + \lambda_{2m}F_m + \varepsilon_2,$$

$$\vdots$$

$$X_k = \lambda_{k1}F_1 + \lambda_{k2}F_2 + \dots + \lambda_{km}F_m + \varepsilon_k.$$

- Daugikliai λ_{ij} , $i=\overline{1,k}$, $j=\overline{1,m}$ vadinami **faktorių svoriais**.
- Nors $\it FA$ modelis primena regresinės analizės modelį, tačiau $\it FA$ uždavinys žinant $\it X_i$ išsiaiškinti ką galima pasakyti apie bendruosius faktorius $\it F_j$.

FA modelio prielaidos

Faktorinės analizės modelio prielaidos:

- a) stebimi kintamieji pasiskirstę pagal normalųjį dėsnį, t. y. $X_i \sim N(\mu_i, \sigma_i^2)$;
- b) bendrieji faktoriai F_j nekoreliuoti ir $DF_j = 1$;
- c) charakteringieji faktoriai ε_i , nekoreliuoti ir $D\varepsilon_i = \tau_i$;
- d) faktoriai F_j ir ε_i nekoreliuoti, čia $i = \overline{1, k}$, $j = \overline{1, m}$.
- Kintamųjų pasiskirstymo pagal **normalųjį** dėsnį sąlyga nėra kritinė faktorinei analizei. Tikrinant modelio prielaidas turime stebėti tam tikras **statistines charakteristikas**: Stebimų kintamųjų dispersijas, Stebimų kintamųjų kovariacijas, Stebimų kintamųjų ir latentinių faktorių kovariacijas.

FA modelio savybės

Atsižvelgus į prielaidas, stebimų kintamųjų X_i ir X_j , $(i, j = \overline{1, k})$ dispersijas ir kovariacijas galima užrašyti taip:

- Kai $i \neq j$, tai $cov(X_i, X_j) = \lambda_{i1}\lambda_{j1} + \cdots + \lambda_{im}\lambda_{jm}$. (Naudodami $cov(X_i, X_j)$ ieškosime svorių λ_{ij}).
- Kai i=j, tai $cov(X_i,X_i)=\lambda_{i1}^2+\cdots+\lambda_{im}^2$ (empirinė dispersija), nes $cov(X_i,X_i)=\frac{1}{k-1}\sum_{i=1}^k(x_i-\bar{x})^2$.

Vadinasi kovariacijų matricos diagonalės elementai yra kintamųjų X_i , $i=\overline{1,k}$ dispersijos:

$$DX_i = \sigma_i^2 = \lambda_{i1}^2 + \dots + \lambda_{im}^2 + \tau_i = h_i^2 + \tau_i, \qquad i = \overline{1, k}.$$

Atsitiktinių dydžių koreliacija ir kovariacija

- Kovariacija ir koreliacijos koeficientas tai skaitinės charakteristikos, įvertinančios dviejų atsitiktinių dydžių tiesinę priklausomybę.
- Atsitiktinių dydžių X ir Y kovariacija skaičiuojama pagal formulę:

$$cov(X,Y) = EXY - EXEY$$

- Kovariacija yra skaičius, kuris gali būti ir teigiamas ir neigiamas. Kovariacijos savybės:
 - 1) Jeigu X ir Y yra nepriklausomi, tai cov(X,Y) = 0. Vadinasi X ir Y yra nekoreliuoti;
 - 2) $|cov(X,Y)| \le \sqrt{DXDY}$. Vadinasi $|cov(X,X)| \le DX$.
- Atsitiktinių dydžių X ir Y koreliacijos koeficientas skaičiuojamas pagal formulę:

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{DXDY}} = \frac{EXY - EXEY}{\sqrt{DXDY}}.$$

Iš kovariacijos apibrėžimo išplaukia:

- jeigu dydžiai koreliuoja, tai jie yra priklausomi;
- jeigu dydžiai nekoreliuoja, jie gali būti ir priklausomi, ir nepriklausomi.

Empiriniai: kovariacija ir koreliacijos koeficientas

• Kintamųjų $X=(x_1,x_2,\dots,x_n)$ ir $Y=(y_1,y_2,\dots,y_n)$ imčių empirine kovariacija vadinamas skaičius:

$$cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

• Kintamųjų $X=(x_1,x_2,\ldots,x_n)$ ir $Y=(y_1,y_2,\ldots,y_n)$ imčių empiriniu koreliacijos koeficientu vadinamas skaičius:

$$cor(X,Y) = \frac{cov(X,Y)}{s_x s_y}.$$

Čia \bar{x} , \bar{y} — atitinkamai kintamųjų X ir Y empiriniai vidurkiai; s_x , s_y — atitinkamai kintamųjų X ir Y empiriniai standartiniai nuokrypiai.

Redukuotoji kovariacijų matrica

• Matrica, kurios elementai a_{ij} yra $cov(X_i, X_j)$, $i \neq j$, o pagrindinėje įstrižainėje yra bendrumai h_i^2 , vadinama *redukuotąja* kovariacijų matrica.

Čia dydis $h_i^2 = \sum_{j=1}^m \lambda_{ij}^2$ - vadinami kintamojo X_i bendrumu, o dydis τ_i - vadinamas kintamojo X_i specifiškumu.

$$cov(X_{i}, X_{j}) = \lambda_{i1}\lambda_{j1} + \dots + \lambda_{im}\lambda_{jm}, \quad i \neq j.$$

$$DX_{i} = \sigma_{i}^{2} = \lambda_{i1}^{2} + \dots + \lambda_{im}^{2} + \tau_{i} = h_{i}^{2} + \tau_{i}, \quad |cov(X_{i}, X_{i})| \leq DX_{i}.$$

$$cov(X_{i}, F_{j}) = \lambda_{ij}, i = \overline{1, k}; j = \overline{1, m}.$$

- Kuo didesnis h_i^2 , palyginti su σ_i^2 , tuo daugiau informacijos apie kintamąjį X_i išsaugoma pereinant nuo pradinių kintamųjų prie bendrųjų faktorių.
- Jeigu visi $\varepsilon_i = 0$, tai *redukuotoji kovariacijų matrica* sutampa su pradine kovariacijų matrica ir bendrieji faktoriai F_i išsaugo visą informaciją apie kintamuosius X_i .

FA turi išspręsti šiuos uždavinius

- Matematiniai faktorinės analizės uždaviniai:
 - 1) Rasti faktorių svorių λ_{ij} ir specifinių dispersijų au_i įverčius;
 - 2) Rasti kiekvieno kintamojo X_i stebėjimų rinkinio latentinių faktorių F_1, F_2, \dots, F_m įverčius.

Šių uždavinių sprendimui atliekami tokie veiksmai:

- 1. Imame pradinių duomenų matricą $X = (X_{ij})$, $i = \overline{1, n}$, $j = \overline{1, k}$.
- 2. Pradinius duomenis standartizuojame (rekomenduojama, nes tada bus $\sigma_i^2=1$);
- 3. Skaičiuojame kovariacijų matricą **S** ir koreliacinę (koreliacijų) matricą **R**. (stand. duomenų kovariacijų matrica = stand. Koreliacijų matricai = nestand. koreliacijų matricai).
- 3. Skaičiuojama **redukuotoji kovariacijų** matrica ir randami **faktorių svorių** įverčiai.
- 4. Faktorių svorių matricos sukimas ir faktorių reikšmių įverčių skaičiavimas.

Bendroji faktorinės analizės algoritmo schema

FA metodų klasifikacija

Duomenų tikimas faktorinei analizei

Ar duomenys tinka faktorinei analizei tikrinama:

- 1) Sudarant koreliacijų matrica;
- 2) Skaičiuojant Kaiserio-Meyerio-Olkino (KMO) matą;
- 3) Skaičiuojant *i-ojo kintamojo* stebėjimų tinkamumo matą MSA_i .

Duomenų tikimas faktorinei analizei (1)

1) Faktorinė analizė neturi prasmės nekoreliuotiems kintamiesiems.

- Todėl reikia isitikinti, ar stebimi kintamieji tarpusavyje koreliuoja. Tai padeda nustatyti
 Bartlett'o sferiškumo kriterijus, pagal kuri yra tikrinama hipotezė, kad kintamųjų koreliacijų
 matrica yra vienetine, t. y. visi stebimi kintamieji yra nekoreliuoti.
- Jeigu taikant Bartlett'o sferiškumo kriterijų p-reikšmė $p \ge \alpha$, tai turimiems duomenims faktorinė analizė yra netaikytina (α pasirinktas reikšmingumo lygmuo).

Duomenų tikimas faktorinei analizei (2)

2) Ar kintamieji tinka faktorinei analizei, *įvertina Kaiserio-Meyerio-Olkino (KMO) matas*. Tai – empirinių koreliacijos koeficientų didumų ir dalinių koreliacijos koeficientų didumų palyginamasis indeksas. Kuo arčiau vieneto, tuo kintamieji labiau tinka faktorinei analizei.

$$KMO = \frac{\sum \sum_{i \neq j} r_{ij}}{\sum \sum_{i \neq j} r_{ij} + \sum \sum_{i \neq j} \tilde{r}_{ij}}$$

Čia r_{ij} – kintamųjų X_i ir X_j koreliacijos koeficientas; \tilde{r}_{ij} yra X_i ir X_j dalinės koreliacijos koeficientas. Dalinės koreliacijos koeficientai leidžia įvertinti dviejų tiriamų kintamųjų tarpusavio ryšį, kai kitų kintamųjų įtaka yra **eliminuojama**.

- Jeigu KMO > 0.9 FA tinka puikiai;
- Jeigu $0.8 < KMO \le 0.9 FA$ tinka gerai;
- Jeigu $0.7 < KMO \le 0.8 FA$ tinka patenkinamai;
- Jeigu $0.6 < KMO \le 0.7 FA$ tinka pakenčiamai;
- Jeigu $0.5 < KMO \le 0.6 FA$ tinka blogai;
- Jeigu KMO < 0.5 FA nepriimtina.

Duomenų tikimas faktorinei analizei (3)

3) Kiekvieno *i-ojo* kintamojo stebėjimų tinkamumo matą MSA_i galima apskaičiuoti pagal formulę:

$$MSA_{i} = \frac{\sum_{j \neq i} r_{ij}}{\sum_{j \neq i} r_{ij} + \sum_{j \neq i} \tilde{r}_{ij}}$$

• Kintamuosius, kurių MSA_i reikšmės mažos, t.y. $MSA_i < 0.5$, reikia iš faktorinės analizės pašalinti, nes jie netinka **FA**.

Faktorių išskyrimas (1)

- Pagrindinių komponenčių metodas vienas iš dažniausiai naudojamų faktorių išskyrimo metodų, grindžiamų pagrindinių komponenčių analize (angl. *Principal components analysis PCA*).
- Tarkim turim k kintamųjų $X_1, X_2, ..., X_k$. Daugelio kintamųjų tarpusavio priklausomybė gali būti įvertinta jų koreliacijomis arba kovariacijomis, bei dispersijomis.
- Taikant pagrindinių komponenčių analizę randamos tarpusavyje nekoreliuojančių kintamųjų X_1, X_2, \dots, X_k tiesinės daugdaros (kombinacijos) Y_1, Y_2, \dots, Y_k , t.y.

$$Y_1 = \sum_{j=1}^k \alpha_{1j} X_j, \ Y_2 = \sum_{j=1}^k \alpha_{2j} X_j, ..., Y_k = \sum_{j=1}^k \alpha_{kj} X_j,$$

tenkinančios sąlygas:

- 1) $cov(Y_i, Y_j) = 0, i, j = 1, 2, ..., k, i \neq j;$
- 2) $DY_1 \ge DY_2 \ge \cdots \ge DY_k$;
- 3) $\sum_{i=1}^{k} DY_i = \sum_{i=1}^{k} DX_i = D.$

Šios tiesinės daugdaros vadinamos pagrindinėmis komponentėmis.

Faktorių išskyrimas (2)

• Jeigu PCA naudotume standartizuotąsias kintamųjų $X_1, X_2, ..., X_k$ reikšmes (z-reikšmes), tai visos dispersijos būtų $DX_i = 1$, o bendroji dispersijų suma:

$$\sum_{i=1}^{K} DY_i = \sum_{i=1}^{K} DX_i = D = k.$$

 Dažniausiai PCA rekomenduojama naudoti ne pradines kintamųjų reikšmes, o kintamųjų standartizuotąsias reikšmes.

Faktorių išskyrimas (3)

- Matome, kad pagrindinių komponenčių paieška susiveda į jų koeficientų α_{ij} , i,j=1,2,...,k paiešką.
- Tarkim, $Y_1 = \alpha_{11}X_1 + \dots + \alpha_{1k}X_k$.
- Pradžioje ieškome $\alpha_{11}, \alpha_{12}, \dots, \alpha_{1k}$, su kuriais būtų DY_1 maksimizuojama (nes Y_j išdėstyti dispersijų mažėjimo tvarka), t.y.

$$DY_1 = \sum_{i=1}^k \sum_{j=1}^k \alpha_{1i} \alpha_{1j} \sigma_{ij}^2$$
,

su sąlyga, kad $\sum_{j=1}^k \alpha_{1j}^2 = 1$ (sąlyga reikalinga, norint gauti vienintelį sprendinį), čia $\sigma_{ij}^2 = cov(X_i, X_j)$.

- Taikant matricų algebros operacijas, galima įrodyti, kad šio **uždavinio sprendinys** $\alpha_1 = (\alpha_{11}, \alpha_{12}, ..., \alpha_{1k})$ **yra <u>pradinių</u> kintamųjų kovariacijų matricos S tikrinis vektorius,** kuris atitinka maksimalią matricos S tikrinę reikšmę. Ši tikrinė reikšmė lygi DY_1 .
- Taip gauta tiesinė daugdara $Y_1 = \alpha_{11}X_1 + \cdots + \alpha_{1k}X_k$ vadinama kintamųjų X_1, X_2, \ldots, X_k pirmąja **pagrindine komponente**. Ji paaiškina $100 \cdot DY_1/D$ procentų bendrosios dispersijos.
- Analogiškai apskaičiuojama $Y_2 = \alpha_{21}X_1 + \cdots + \alpha_{2k}X_k$ antroji pagrindinė komponentė, kuris paaiškina $100 \cdot DY_2/D$ procentų bendrosios dispersijos ir t.t.

Tikrinis vektorius ir tikrinė reikšmė

• Sakome, kad kvadratinė matrica C turi **tikrinę** reikšmę (angl. *eigenvalue*) λ , atitinkančią tikrinį vektorių (angl. *eigenvector*) $\vec{\alpha}$, jei

$$C\vec{\alpha} = \lambda \vec{\alpha} \tag{1}$$

Reikšmė λ randama iš charakteringosios lygties $|C - \lambda I| = 0$, čia I yra vienetinė matrica, kurios matmenys sutampa su matricos C matmenimis.

Paprastai reikalaujama, kad tikrinio vektoriaus koordinačių kvadratų suma būtų lygi 1, t.y.

$$\sum_{i=1}^k \alpha_i^2 = 1. \tag{2}$$

 Kvadratinių simetrinių matricų (koreliacijų ir kovariacijų matricos yra simetrinės) tikrinių reikšmių skaičius yra lygus matricos eilučių skaičiui.

Pavyzdys. Matricos tikrinių reikšmių radimas

Rasti matricos R tikrines reikšmes λ_n , kai $R = \begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix}$.

Sprendimas.

Remiantis apibrėžimu:

 $|R - \lambda I_n| = 0$, **n** yra kvadratinės matricos **R** eilučių skaičius.

$$\begin{vmatrix} \begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{vmatrix} = 0$$
$$\begin{vmatrix} \begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{vmatrix} = 0$$
$$\begin{vmatrix} \begin{pmatrix} 1 - \lambda & 0.75 \\ 0.75 & 1 - \lambda \end{pmatrix} \end{vmatrix} = 0$$

Gauname lygtį: $\lambda^2 - 2\lambda + 0.4375 = 0$. Išsprendę gauname: $\lambda_1 = 1.75$ ir $\lambda_2 = 0.25$.

Pavyzdys. Matricos tikrinių vektorių radimas

Rasti matricos R tikrinius vektorius
$$\vec{\alpha}$$
, kai $R = \begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix}$.

Sprendimas. Iš ankstesnio etapo turime matricos R tikrines reikšmes. Su kiekviena reikšme randame ją atitinkantį tikrinį vektorių

1) Kai $\lambda_1 = 1.75$. Remiantis apibrėžimu: $R\vec{\alpha} = \lambda_n \vec{\alpha}$ sudarysime matricinę lygtį:

$$R\vec{\alpha} - \lambda_n\vec{\alpha} = \vec{0}, \ \vec{0} = \lambda_n\vec{\alpha} - R\vec{\alpha}$$

$$(R - \lambda_n \cdot I_n)\vec{\alpha} = \vec{0}$$

$$\left(\begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix} - \begin{pmatrix} 1.75 & 0 \\ 0 & 1.75 \end{pmatrix} \right) \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -0.75 & 0.75 \\ 0.75 & -0.75 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Gauname vieną lygtį: $-0.75\alpha_1 + 0.75\alpha_2 = 0$ iš kurios $\alpha_1 = \alpha_2$. Remiantis sąlyga (2) sudarome lygtį:

$$\alpha_1^2 + \alpha_2^2 = 1$$
, $\rightarrow 2\alpha_1^2 = 1 \rightarrow \alpha_1 = \pm \sqrt{0.5} = \pm 0.707$

Vadinasi, kai $\lambda_1=1,75$, tai $\vec{\alpha}=(0,707;0,707)$ ir $\vec{\alpha}=(-0,707;-0,707) \rightarrow \vec{\alpha}_1=(\mathbf{0},\mathbf{707};\mathbf{0},\mathbf{707})$

Analogiškai, kai $\lambda_2 = 0.25$, tai $\vec{\alpha} = (-0.707; 0.707)$ ir $\vec{\alpha} = (0.707; -0.707) \rightarrow \vec{\alpha}_2 = (-0.707; 0.707)$

Tikrinių reikšmių ir tikrinių vektorių prasmė PCA (1)

- Tikrines reikšmes ir tikrinius vektorių galime stebėti grafike. Kai n = 2, tai koreliacijos matricos R eilutės reiškia du taškus, kurių koordinatės a=(1; 0,75) ir b=(0,75; 1).
- Tikriniai vektoriai nusako elipsės, einančios per taškus a ir b, ašių kryptis, tikrinės reikšmės nusako ašių ilgius.

- Kaip žinome, koreliacijų matricos tikrinių vektorių koordinatės yra pagrindinių komponenčių koeficientai, o tikrinės reikšmės komponenčių dispersijos DY_i .
- **Iš grafiko a)** galima pasakyti, kad $\frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot 100\% = \frac{1,75}{1,75 + 0,25} \cdot 100\% = 87,5\%$ pirmoji komponentė paaiškina bendrosios kintamųjų dispersijos. Atsisakydami antrosios komponentės, prarastume 12,5% informacijos apie kintamųjų įgyjamų reikšmių sklaidą.

Tikrinių reikšmių ir tikrinių vektorių prasmė PCA (2)

- Kuo kintamieji stipriau koreliuoja, tuo didžioji elipsės ašis ilgesnė, o mažoji trumpesnė. Ilgesnė ašis atitinka svarbesnę komponentę.
- Jeigu kintamųjų koreliacija būtų lygi 1, tuomet didžiosios ašies ilgis = 2, mažosios ilgis = 0.
- Vienetinė koreliacija reikštų, kad visą informaciją apie pradinius kintamuosius suteikia pirmoji pagrindinė komponentė. Vadinasi jeigu koreliacija nėra lygi 1, vienos pagrindinės komponentės nepakanka norint apimti kuo daugiau pradinių kintamųjų informacijos.
- Kuo daugiau bendrosios kintamųjų dispersijos paaiškina pagrindine komponente, tuo ji svarbesne kaip akumuliuojanti informacija apie kintamuosius.
- Visos pagrindines komponentės (jų yra tiek, kiek ir pradinių kintamųjų) paaiškina visą bendrąją kintamųjų dispersiją, tačiau tik m pirmųjų komponenčių Y_1, \ldots, Y_m , paaiškinančių didžiąją dalį bendrosios dispersijos, panaudojamos faktoriams nustatyti (m < k).

Faktorių išskyrimas (4)

Turint k kintamųjų stebėjimus $(x_{1j}, x_{2j}, ..., x_{kj}), j = \overline{1, m}$ apskaičiuojami k pagrindinių komponenčių įverčiai:

$$\widehat{Y}_i = \sum_{j=1}^k \widehat{a}_{ij} X_j, i = \overline{1, k}$$

Čia \hat{a}_{ij} yra koeficientų α_{ij} empiriniai įverčiai.

Latentiniais bendraisiais faktoriais laikomos *m* pirmųjų pagrindinių komponenčių, normuotų standartiniais nuokrypiais, t.y.

$$\widehat{F}_{j} = \frac{\widehat{Y}_{j}}{\sqrt{s^{2}(\widehat{Y}_{j})}}, \qquad j = \overline{1, m}$$

Čia $s^2(\widehat{Y}_j)$ yra *i-osios* pagrindinės komponentės dispersijos įvertis **lygus** *i-ajai* pagal dydį koreliacijos matricos **tikrinei reikšmei**.

Faktorių išskyrimas (5)

• Faktorių svorių įverčiai išreiškiami lygybe:

$$\hat{\lambda}_{ij} = \hat{\alpha}_{ji} \sqrt{s^2(\hat{Y}_j)}, i = 1, \dots, k, j = 1, \dots, m.$$

Specifinių faktorių įverčiai išreiškiami lygybe

$$\hat{\varepsilon}_i = \sum_{j=m+1}^k \hat{\alpha}_{ji} \hat{Y}_i, i = 1, \dots, k.$$

Tuomet

$$\hat{X}_i = \sum_{j=1}^m \hat{\lambda}_{ij} \hat{F}_j + \hat{\varepsilon}_i, i = 1, \dots, k.$$

- Paskutinėje lygtyje pateikta faktorių matrica, kuri aprašo faktorių ir atskirų kintamųjų priklausomybę.
- Faktorius F_j laikomas susijęs su tais kintamaisiais, kurių svorių įverčiai $\left|\hat{\lambda}_{ij}\right| \geq 0,4$. Teigiamas svoris rodo, jog kintamasis su faktoriumi koreliuoja teigiamai, neigiamas neigiamai.