Московский физико-технический институт

Факультет инноваций и высоких технологий.

Математическая логика и теория алгоритмов, весна 2013.

Лямбда-исчисление: комбинаторы неподвидной точки и рекурсивное программирование.

Теорема (о неподвижной точке в λ -исчислении).

- (а) Для любого λ -терма F существует такой λ -терм X, что FX = X. Такой терм X называется nenodeu женой moчкой F.
- (б) Более того, существует такой комбинатор \mathbf{Y} , что для любого λ -терма F терм $(\mathbf{Y}F)$ является неподвижной точкой F, т.е., $F(\mathbf{Y}F) = \mathbf{Y}F$. (Такой комбинатор \mathbf{Y} называют комбинатором неподвидной точки.)

В следующих трёх задачах приводятся три варианта доказательства теоремы о неподвижной точке.

- **1.** Докажите, что комбинатор $\mathbf{Y} = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$ (комбинатор Хаскелла Карри) является комбинатором неподвижной точки.
- **2.** Обозначим $\Theta = (\lambda xy.y(xxy))(\lambda xy.y(xxy))$ (комбинатор Алана Тьюринга). Докажите, что для любого комбинатора F выполнено равенство $\Theta F = F(\Theta F)$, т.е., комбинатор (ΘF) является неподвижной точкой для F.
 - **3.** Обозначим через L комбинатор

 $\lambda abcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator)$

(комбинатор Яна Клопа). Докажите, что комбинатор

(произведение 26 копий L) является комбинатором неподвижной точки. Указание: обратите внимание на переменную r.

В следующих задачах теорема о неподвижной точке используется для «рекурсивного программирования» в λ -исчислении.

- **4.** Постройте комбинатор **Fac**, которые представляют функцию факториал натурального числа $n \mapsto n!$ (факториал числа).
- **5.** Прямым вычислением приведите к нормальной форме **Fac** $\underline{2}$ и **Fac** $\underline{3}$, где **Fac** комбинатор, представляющий функцию факториал.
- **6.** Постройте комбинатор, которые по нумералу Чёрча для числа n вычисляют нумерал Чёрча для n-ого число Фибоначчи числа φ_n ,

$$\varphi_n = \left\{ \begin{array}{cc} 0, & \text{если } n = 0, \\ 1, & \text{если } n = 1, \\ \varphi_{n-1} + \varphi_{n-2}, & \text{если } n > 1, \end{array} \right.$$

7. Найдите такой комбинатор F, который является неподвижной точкой каждого нумерала \underline{n} , т.е.,

$$nF = F$$

для всех натуральных n.

8. Постройте λ -терм F, для которого выполнено равенство

$$F = xF$$

(где x — переменная). Приводится ли данный терм F к нормальной форме?

- 9. Постройте комбинаторы, которые представляют следующие функции натуральных чисел:
 - a) $n \mapsto \lceil \log_2 n \rceil$,
 - b) остаток от деления n на m,
 - c) неполное частное от деления n на m.
- 10. Постройте комбинаторы, которые представляют следующие функции натуральных чисел:
 - a) $(n,m) \mapsto \max\{n,m\}$, b) $n \mapsto \lfloor \sqrt{n} \rfloor$, c) $n \mapsto \lceil \sqrt{n} \rceil$.
- **11.** Постройте комбинаторы, которые по нумералу Чёрча для числа n вычисляют нумерал Чёрча для числа φ_n , где

а)
$$\varphi_n = \left\{ \begin{array}{cc} 0, & \text{если } n = 0, \\ 1, & \text{если } n = 1, \\ \varphi_{n-1} + \varphi_{n-2} \bmod 3, & \text{если } n \geq 2, \end{array} \right.$$

b)
$$\varphi_n = \begin{cases} 1 & \text{если } n = 0, \\ 0 & \text{если } n = 1, \\ 2\varphi_{n-1} + \varphi_{n-2} & \text{если } n > 1, \end{cases}$$

c)
$$\varphi_n = \begin{cases} 2 & \text{если } n = 0, \\ 3 & \text{если } n = 1, \\ \varphi_{n-1} \cdot \varphi_{n-2} & \text{если } n > 1. \end{cases}$$

12. Постройте комбинатор, представляющий в λ -исчислении функцию чётности:

13. Постройте комбинаторы GT, LE, EQ такие, что

a)
$$\mathbf{GT} \ \underline{m} = \left\{ egin{array}{ll} \mathbf{True}, & \mathrm{если} \ n > m, \\ \mathbf{False}, & \mathrm{иначе}. \end{array} \right.$$
b) $\mathbf{LE} \ \underline{n} \ \underline{m} = \left\{ egin{array}{ll} \mathbf{True}, & \mathrm{если} \ n \leq m, \\ \mathbf{False}, & \mathrm{иначe}. \end{array} \right.$
c) $\mathbf{EQ} \ \underline{n} \ \underline{m} = \left\{ egin{array}{ll} \mathbf{True}, & \mathrm{если} \ n = m, \\ \mathbf{False}, & \mathrm{иначe}. \end{array} \right.$

14. Постройте комбинатор **choose**, который представляет функцию двух аргументов C_n^k (число сочетаний из n по k), определённую для $n \ge k$. Не забудьте проверить, что при n < k терм (**choose** \underline{n} \underline{k}) не имеет нормальной формы.