Kraków 12 kwietnia 2017

Zadanie M Zakłady cukiernicze

Od roku 2017 jesteś nowym dyrektorem zakładów cukierniczych produkujących ulubione w Bajtocji cukierki *Bitominki*. Po przeanalizowaniu procesu produkcji zauważyłeś, że można do niego wprowadzić szereg poprawek, co pozwoli na wprowadzenie na rynek nowych wyrobów.

Każdego dnia w zakładzie wykonywanych jest n różnych zadań. Każde z nich musi być wykonywane przez określony czas. Dodatkowo, niektóre zadania nie mogą być wykonywane równocześnie, np. nie możemy równocześnie w tym samym kotle mieszać masy do produkcji Bitominek oraz batoników Bajtelków.

Może się zdarzyć, że w grafie utworzonym przez zależności między zadaniami powstaną cykle. Jeśli wszystkie takie cykle mają parzystą liczbę krawędzi, zadanie można rozwiązać w bardzo prosty i szybki sposób. Poprosiłeś zaprzyjaźnionego informatyka o napisanie programu, który wyznaczy minimalny czas realizacji wszystkich zadań oraz przydzieli godziny, w których będą wykonane poszczególne zadania.

W zadaniu należy zastosować struktury danych z biblioteki STL (np. vector, pair, queue lub stack).

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2 \cdot 10^9$) – liczbę zestawów danych, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:

Pierwsza linia zawiera dwie liczby naturalne: n - liczbę zadań do wykonania ($2 \le n \le 10^5$), m - liczbę zależności między zadaniami ($1 \le m \le 10^6$).

W kolejnej linii podanych jest n liczb oznaczających czasy wykonania w minutach dla kolejnych zadań.

W kolejnych m liniach znajdują się zależności. Każda linia zawiera dwa numery zadań oddzielone spacjami: a_i , b_i ($1 \le a_i$, $b_i \le n$), które nie mogą być wykonywane w tym samym czasie. Żadna zależność nie łączy zadania z samym sobą. Dodatkowo między dwoma zadaniami występuje najwyżej jedna zależność.

Wyjście

Dla każdego zestawu danych, jeśli graf zależności między zadaniami nie jest dwudzielny wypisz ERROR, w przeciwnym wypadku przypisz zadaniom czasy wykonań.

W pierwszej linii wypisz minimalny czas pozwalający na wykonanie wszystkich zadań. Następnie wypisz n linii: w i-tej linii wypisz dwie liczby całkowite oznaczające przedział czasu przeznaczony na wykonanie zadania i.

Dostępna pamięć: 20MB

Przykład

Dla danych wejściowych:

2						
7	10)				
2	5	6	7	3	9	10
1	2					
2	3					
4	2					
5	2					
4	5					
5	6					
3	6					
1	3					
4	7					
7	5					
6	5					
7	3	9	2	1	5	
6	2					
1	3					
4	1					
3	5					
5	4					

Poprawną odpowiedzią jest:

ERR	ERRUR					
16						
0 7						
0 3						
7 1	6					
14	16					
0 1						
11	16					