

Logic

Diana Gründlinger

Jamie Hochrainer

Christina Kohl

Aart Middeldorp

Fabian Mitterwallner

Thomas Oberroither

Outline

- 1. Summary of Previous Lecture
- 2. Horn Formulas
- 3. Intermezzo
- **4. SAT**
- 5. Tseitin's Transformation
- 6. Further Reading

lecture 2

Definitions

semantic entailment

$$\varphi_1, \varphi_2, \ldots, \varphi_n \vDash \psi$$

if
$$\bar{v}(\psi) = \mathsf{T}$$
 whenever $\bar{v}(\varphi_1) = \bar{v}(\varphi_2) = \cdots = \bar{v}(\varphi_n) = \mathsf{T}$ for every valuation v

- ▶ tautology is formula φ such that $\models \varphi$
- ightharpoonup formula φ is
 - ightharpoonup value if $\bar{v}(\varphi) = T$ for every valuation v
 - ightharpoonup satisfiable if $\bar{v}(\varphi) = T$ for some valuation v
- ightharpoonup formulas φ and ψ are semantically equivalent $(\varphi \equiv \psi)$ if both $\varphi \vDash \psi$ and $\psi \vDash \varphi$

Theorem

formula φ is valid $\iff \neg \varphi$ is unsatisfiable $\iff \varphi$ is tautology

Definitions

- **literal** is atom p or negation $\neg p$ of atom
- clause is disjunction $\ell_1 \vee \cdots \vee \ell_n$ of literals
- conjunctive normal form (CNF) is conjunction $C_1 \wedge \cdots \wedge C_n$ of clauses
- literals ℓ_1 and ℓ_2 are complementary if $\ell_1 = \neg \ell_2$ or $\neg \ell_1 = \ell_2$

Theorem

- ightharpoonup formula $\varphi \exists \mathsf{CNF} \ \psi$ such that $\varphi \equiv \psi$
- validity of CNFs is efficiently decidable:

CNF φ is valid \iff every clause of φ contains complementary literals

Part I: Propositional Logic

algebraic normal forms, binary decision diagrams, conjunctive normal forms, DPLL, Horn formulas, natural deduction, Post's adequacy theorem, resolution, SAT, semantics, soundness and completeness, syntax, Tseitin's transformation

Part II: Predicate Logic

natural deduction, quantifier equivalences, resolution, semantics, Skolemization, syntax, undecidability, unification

Part III: Model Checking

adequacy, branching-time temporal logic, CTL*, fairness, linear-time temporal logic, model checking algorithms, symbolic model checking

Outline

1. Summary of Previous Lecture

2. Horn Formulas

- 3. Intermezzo
- 4. SAT
- 5. Tseitin's Transformation
- 6. Further Reading

Definitions

► Horn clause is propositional formula

$$P_1 \wedge P_2 \wedge \cdots \wedge P_n \rightarrow Q$$

with $n \ge 1$ and where P_1, \ldots, P_n, Q are atoms, \perp or \top

Horn formula is conjunction of Horn clauses

Backus-Naur Form (*H*)

$$P ::= p \mid \bot \mid \top$$

$$A ::= P \mid P \wedge A$$

$$C ::= A \rightarrow P$$

$$P \wedge A$$

$$H ::= C \mid C \wedge H$$

Theorem

satisfiability of Horn formulas is efficiently decidable

Procedure

- ① maintain list of atoms, \bot , \top occurring in φ
- 2 mark \top if it appears in list
- ③ while Horn clause $P_1 \wedge \cdots \wedge P_n \to Q$ exists in φ such that all P_1, \ldots, P_n are marked and Q is unmarked

mark O

- ④ if ⊥ is marked then
 return upsatisfies
 - return unsatisfiable

else

return satisfiable

satisfying assignment: $v(P) = \begin{cases} T & \text{if } P \text{ is marked} \\ F & \text{if } P \text{ is unmarked} \end{cases}$

universität SS 2023 Logic lecture 2 2. **Horn Formulas** innsbruck

Examples

Horn formula

list $p q r s t u w \perp \top$

satisfiable
$$v(p) = v(q) = v(r) = v(s) = v(u) = T$$
 $v(t) = v(w) = F$

2 Horn formula

list $p q r t u w \perp \top$

unsatisfiable

Outline

- 1. Summary of Previous Lecture
- 2. Horn Formulas
- 3. Intermezzo
- 4. SAT
- 5. Tseitin's Transformation
- 6. Further Reading

Question

Consider the formula $\varphi = (p \land \neg q \to \top) \land (q \land \neg p \to q)$.

Which of the following statements hold for φ ?

- $\mathbf{A} \varphi$ is a CNF
- **B** φ is a Horn formula
- $\mathbf{C} \varphi \equiv \mathbf{p} \wedge \neg \mathbf{q}$
- $\mathbf{D} \ \varphi$ is satisfiable
- **E** φ is valid

Outline

- 1. Summary of Previous Lecture
- 2. Horn Formulas
- 3. Intermezzo
- 4. SAT
- 5. Tseitin's Transformation
- 6. Further Reading

Satisfiability (SAT)

instance: propositional formula φ question: is φ satisfiable?

Theorem

SAT is NP-complete

Links

- ► SAT competition
- ▶ Millennium Problems P vs NP

SS 2023 Logic

13/34

SAT Applications

- bounded model checking
- combinatorial design theory
- haplotyping in bioinformatics
- hardware verification
- logic puzzles
- package management in software distributions

- planning and scheduling
- software verification
- sorting networks
- statistical physics
- term rewriting

Popular SAT Solvers

MiniSat

PicoSAT

Z3

4. SAT

Example (数独 Sudoku)

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

11	12	13	14	15	16	17	18	19
21	22	23	24	25	26	27	28	29
31	32	33	34	35	36	37	38	39
41	42	43	44	45	46	47	48	49
51	52	53	54	55	56	57	58	59
61	62	63	64	65	66	67	68	69
71	72	73	74	75	76	77	78	79
81	82	83	84	85	86	87	88	89
91	92	93	94	95	96	97	98	99

Variables

- ▶ propositional atoms x_{ijd} for $i, j, d \in \{1, ..., 9\}$
- $\triangleright v(x_{ijd}) = T \iff \text{cell } ij \text{ contains digit } d$

11	12	13	14	15	16	17	18	19
21	22	23	24	25	26	27	28	29
31	32	33	34	35	36	37	38	39
41	42	43	44	45	46	47	48	49
51	52	53	54	55	56	57	58	59
61	62	63	64	65	66	67	68	69
71	72	73	74	75	76	77	78	79
81	82	83	84	85	86	87	88	89
91	92	93	94	95	96	97	98	99

Constraints

- every cell contains at least one digit
- every cell contains at most one digit
- ▶ in every row / column / 3 × 3 block every digit appears at most once

■ Iniversität SS 2023 Logic lecture 2 4. SAT Applications 16/34

Cardinality Constraints

for non-empty set A of propositional atoms:

at-least-one(A) =
$$\bigvee_{x \in A} x$$

$$at\text{-most-one}(A) = \bigwedge_{\substack{x,y \in A \\ x \neq y}} (\neg x \lor \neg y)$$

Example

at-least-one
$$(\{p,q,r\}) = p \lor q \lor r$$

at-most-one $(\{p,q,r\}) = (\neg p \lor \neg q) \land (\neg p \lor \neg r) \land (\neg q \lor \neg r)$

Useful Abbreviations

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
$$\mathcal{G} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}$$

$$C = \{\{x_{ijd} \mid j \in D\} \mid i, d \in D\} \cup \{\{x_{ijd} \mid i \in D\} \mid j, d \in D\} \cup \{\{x_{ijd} \mid (i,j) \in I \times J\} \mid I, J \in \mathcal{G}, d \in D\}$$

4. SAT

11	12	13	14	15	16	17	18	19
21	22	23	24	25	26	27	28	29
31	32	33	34	35	36	37	38	39
41	42	43	44	45	46	47	48	49
51	52	53	54	55	56	57	58	59
61	62	63	64	65	66	67	68	69
71	72	73	74	75	76	77	78	79
81								
91	92	93	94	95	96	97	98	99

	6		1	4		5	
		8	3	5	6		
2							1
8			4	7			6
		6			3		
7			9	1			4
5							2
		7	2	6	9		
	4		5	8		7	

SAT Encoding

$$\varphi$$
: \bigwedge {at-least-one($\{x_{ijd} \mid d \in D\}$) $\mid i, j \in D\} \land \bigwedge$ {at-most-one(A) $\mid A \in C$ } $\land \bigwedge$ {at-most-one($\{x_{ijd} \mid d \in D\}$) $\mid i, j \in D\} \land x_{126} \land x_{141} \land x_{164} \land \cdots \land x_{987}$

- ightharpoonup arphi is satisfiable \iff Sudoku puzzle has solution
- satisfying assignment gives rise to Sudoku solution

universität innsbruck SS 2023 Logic

lecture 2

4. SAT

T Applications

18/34

$$D = \{1, 2, 3, 4\}$$

$$G = \{\{1, 2\}, \{3, 4\}\}\}$$

$$C = \{\{x_{ijd} \mid j \in D\} \mid i, d \in D\} \cup \{\{x_{ijd} \mid i \in D\} \mid j, d \in D\} \cup \{\{x_{ijd} \mid (i, j) \in I \times J\} \mid I, J \in G, d \in D\}$$

Example (2×2<u>数独</u> Sudoku)

SAT

$$C = \{\{x_{111}, x_{121}, x_{131}, x_{141}\}, \{x_{112}, x_{122}, x_{132}, x_{142}\}, \dots, \{x_{414}, x_{424}, x_{434}, x_{444}\}\}$$

$$\cup \{\{x_{111}, x_{211}, x_{311}, x_{411}\}, \{x_{121}, x_{221}, x_{321}, x_{421}\}, \dots, \{x_{144}, x_{244}, x_{344}, x_{444}\}\}$$

$$\cup \{\{x_{111}, x_{121}, x_{211}, x_{221}\}, \{x_{112}, x_{122}, x_{212}, x_{222}\}, \dots, \{x_{334}, x_{344}, x_{434}, x_{444}\}\}$$

Pythagorean Triples Problem

can one color all natural numbers with two colors such that whenever $x^2 + y^2 = z^2$ not all of x, y, z have same color?

Example

$$3^2 + 4^2 = 5^2$$
 $5^2 + 12^2 = 13^2$...

2 3 4 5 6 7 8 9 10 11 12 13 ... 🕲

SAT Encoding

SS 2023 Logic

- \triangleright propositional atoms x_i for $1 \le i \le n$ $\triangleright v(x_i) = T \iff \text{number } i \text{ is colored } \text{red}$
- encoding contains clauses $(x_a \lor x_b \lor x_c)$ and $(\neg x_a \lor \neg x_b \lor \neg x_c)$ for all $a^2 + b^2 = c^2$

4. **SAT**

Solution

- ▶ NO if (and only if) $n \ge 7825$
- ▶ 2 days (in May 2016) on University of Texas' Stampede supercomputer with 800 processors
- 200 terabyte proof of unsatisfiability
- extensive media coverage (Nature, der Spiegel)

4. **SAT**

Example (Sports League Scheduling)

- round robin tournament scheduling for n teams and p periods consisting of n-1 rounds, satisfying several other constraints like venue restrictions
- Austrian Football Bundesliga
 - 12 teams play 2 periods (of 11 rounds), periods 1 and 2 are mirrored
- SAT encoding
 - \triangleright variables x_{iipr} with $v(x_{iipr}) = T$ if team i plays team j at home in round r of period p
 - constraints (fragment):

$$\bigwedge_{i,p,r} \bigvee_{j\neq i} (X_{ijpr} \vee X_{jipr}) \qquad \bigwedge_{i,p,r} \bigwedge_{j\neq i}$$

$$\bigwedge_{i,p,r} \bigvee_{j \neq i} \left(x_{ijpr} \vee x_{jipr} \right) \qquad \bigwedge_{i,p,r} \bigwedge_{j \neq i} \bigwedge_{k \neq i} \left(x_{ijpr} \rightarrow \neg (x_{ikpr} \vee x_{kipr}) \right) \qquad \bigwedge_{i,j,r} \left(x_{ij1r} \rightarrow x_{ji2r} \right)$$

$$\bigwedge_{i,j,r} \left(x_{ij1r} \to x_{ji2r} \right)$$

further details

SS 2023 Logic

Outline

- 1. Summary of Previous Lecture
- 2. Horn Formulas
- 3. Intermezzo
- 4. SAT
- 5. Tseitin's Transformation
- 6. Further Reading

lecture 2

Remark

most SAT solvers require CNF as input

Theorem

deciding satisfiability of CNF formulas is NP-complete

DIMACS Input Format

c comments

- Comments

c p cnf 4 3 4 atoms and 3 clauses

 $X_1 \vee \neg X_2 \vee X_4$

 $\neg X_1 \lor X_2 \lor \neg X_3 \lor \neg X_4$

1 -2 4 0

3 - 2 0

universität innsbruck

 $x_3 \vee \neg x_2$

SS 2023 Logic

lecture 2 5. Tseitin's Transformation

Remarks

- translation from arbitrary formula to equivalent CNF is expensive
- translation to equisatisfiable CNF is possible in linear time

Definition

formulas φ and ψ are equisatisfiable $(\varphi \approx \psi)$ if

 φ is satisfiable $\iff \psi$ is satisfiable

Examples

 $(p \lor q) \land \neg p \approx \top$

 $(p \lor q) \land \neg p \not\approx q \land \neg q$

SS 2023 Logic

Example (Tseitin's Transformation)

$$\triangleright \varphi = \neg(q \vee \neg p) \wedge p$$

▶ introduce new variable for each propositional connective:

$$a_1 \neg (q \lor \neg p) \land p$$
 $a_3 q \lor \neg p$
 $a_2 \neg (q \lor \neg p)$ $a_4 \neg p$

$$\qquad \varphi \approx a_1 \wedge (a_1 \leftrightarrow a_2 \wedge p) \wedge (a_2 \leftrightarrow \neg a_3) \wedge (a_3 \leftrightarrow q \vee a_4) \wedge (a_4 \leftrightarrow \neg p)$$

Definition

new propositional connective

• equivalence
$$\leftrightarrow$$
 $p \leftrightarrow q$ "p is equivalent to q"

Notational Convention

binding precedence $\neg > \land, \lor > \rightarrow, \leftrightarrow$

Lemma

$$\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$$

Proof

φ	ψ	$\varphi \leftrightarrow \psi$	$(\varphi o \psi) \wedge (\psi o \varphi)$
		Т	Т
		F	F
F	Т	F	F
F	F	Т	Т

Lemma

Example (cont'd)

$$\varphi \approx a_1 \wedge (a_1 \leftrightarrow a_2 \wedge p) \wedge (a_2 \leftrightarrow \neg a_3) \wedge (a_3 \leftrightarrow q \vee a_4) \wedge (a_4 \leftrightarrow \neg p)$$

$$\equiv a_1 \wedge (\neg a_1 \vee a_2) \wedge (\neg a_1 \vee p) \wedge (a_1 \vee \neg a_2 \vee \neg p) \wedge (a_2 \vee a_3) \wedge (\neg a_2 \vee \neg a_3)$$

$$\wedge (a_3 \vee \neg q) \wedge (a_3 \vee \neg a_4) \wedge (\neg a_3 \vee q \vee a_4) \wedge (a_4 \vee p) \wedge (\neg a_4 \vee \neg p)$$

Definition (Tseitin's Transformation)

for propositional formula φ

- lacktriangleright atom $m{a}_{arphi}$ is defined as $m{a}_{arphi} = egin{cases} arphi & \varphi & \text{if } arphi \text{ is atom} \\ \text{fresh atom} & \text{otherwise} \end{cases}$
- ightharpoonup formula $\Pi(\varphi)$ is defined as

$$\Pi(\varphi) = \begin{cases} a_{\varphi} & \text{if } \varphi \text{ is atom} \\ a_{\varphi} \wedge \Pi'(a_{\varphi}, \varphi) & \text{otherwise} \end{cases}$$

with

$$\mathsf{TT}'(a,arphi) = egin{cases} (a \leftrightarrow
eg a_\psi) \land \mathsf{TT}'(a_\psi,\psi) & \text{if } arphi =
eg \psi \ (a \leftrightarrow (a_{\psi_1} \land a_{\psi_2})) \land \mathsf{TT}'(a_{\psi_1},\psi_1) \land \mathsf{TT}'(a_{\psi_2},\psi_2) & \text{if } arphi = \psi_1 \land \psi_2 \ (a \leftrightarrow (a_{\psi_1} \lor a_{\psi_2})) \land \mathsf{TT}'(a_{\psi_1},\psi_1) \land \mathsf{TT}'(a_{\psi_2},\psi_2) & \text{if } arphi = \psi_1 \lor \psi_2 \ (a \leftrightarrow (a_{\psi_1} \to a_{\psi_2})) \land \mathsf{TT}'(a_{\psi_1},\psi_1) \land \mathsf{TT}'(a_{\psi_2},\psi_2) & \text{if } arphi = \psi_1 \to \psi_2 \ \mathsf{T} & \text{if } arphi \text{ is atom} \end{cases}$$

Lemma

- f 0 any satisfying valuation for φ can be (uniquely) extended to satisfying valuation for $\mathsf{TT}(\varphi)$
- 2 restriction of any satisfying valuation for $\mathsf{TT}(\varphi)$ to atoms in φ is satisfying valuation for φ

5. Tseitin's Transformation

Logic Circuit

Equisatisfiable CNF

$$o \wedge (o \leftrightarrow o_1 \vee o_2) \wedge (o_1 \leftrightarrow a_1 \vee a_2) \wedge (o_2 \leftrightarrow a_3 \vee a_4) \wedge (a_1 \leftrightarrow n_1 \wedge y) \wedge (a_2 \leftrightarrow x \wedge z) \\ \wedge (a_3 \leftrightarrow y \wedge n_3) \wedge (a_4 \leftrightarrow x \wedge n_2) \wedge (n_1 \leftrightarrow \neg x) \wedge (n_2 \leftrightarrow \neg y) \wedge (n_3 \leftrightarrow \neg z)$$

universität innsbruck

SS 2023 Logic

lecture 2

5. Tseitin's Transformation

Outline

- 1. Summary of Previous Lecture
- 2. Horn Formulas
- 3. Intermezzo
- 4. SAT
- 5. Tseitin's Transformation
- 6. Further Reading

lecture 2

Huth and Ryan

Section 1.5

SAT

- SAT live!
- The Science of Brute Force
- Marijn J. H. Heule and Oliver Kullmann
- doi: 10.1145/3107239

- NP

Fifty Years of P vs. NP and the Possibility of the Impossible Lance Fortnow

Communications of the ACM 60(8), pp. 70-97, 2017

Communications of the ACM 65(1), pp. 76-85, 2022doi: 10.1145/3460351

[accessed December 3, 2022]

Important Concepts

DIMACS format

equivalence

equisatisfiability

- Horn clause
- ► Horn formula

- ► SAT
- ► Tseitin's transformation

homework for March 16