1. Interpreting Bode diagrams:

Given the bode diagram in Figure 1 representing a dynamical system, G(s), sketch the output trajectory, y(t), if this system is given a sinusoidal input with a frequency of 1 rad/s and amplitude of 1, e.g. $u(t) = \sin(t)$. Verify your sketch using MATLAB.

Figure 1: Bode diagram of G(s) for problem 1.

Solution:

From the Bode diagram we have that for a frequency of 1 rad/s we have a slight amplification (magnitude over 0 dB) and a bit of phase lag (phase below 0 deg). Hence we expect our output, y(t), to have an amplitude greater than 1 and it should be lagging behind our input, u(t). Indeed, if we use lsim in Matlab, we see that this is indeed the case, see Figure 2.

Figure 2: Input and output trajectory for exercise 1.

2. Drawing Bode diagrams (Exam Level Question):

Sketch Bode plots for the open-loop transfer functions G(s) using the drawing rules. Then, verify your results using MATLAB.

(a)
$$G(s) = \frac{100}{s(0.1s+1)(0.5s+1)}$$
,

- (b) $G(s) = \frac{(s+2)}{s(s+1)(s+5)(s+10)},$ (c) $G(s) = \frac{5000}{(s+7)(s+18)^3},$
- (d) $G(s) = \frac{s+5}{s^2+4s+5}$,
- (e) $G(s) = \frac{s^2 + 2s + 8}{s(s^2 + 2s + 10)}$,
- (f) $G(s) = \frac{s+2}{s(s-1)(s+6)^2}$,
- (g) $G(s) = \frac{s^2+1}{s(s+1)}$,
- (h) $G(s) = \frac{s+1}{s^2(s+5)(s+20)}$,
- (i) $G(s) = \frac{1}{s(s^2+s+42.5)}$,
- (j) $G(s) = \frac{s^2 + s + 12.5}{s^2(s+20)(s+10)}$.

Solution:

Figure 3: $G(s) = \frac{100}{s(0.1s+1)(0.5s+1)}$

Figure 4: $G(s) = \frac{(s+2)}{s(s+1)(s+5)(s+10)}$; Bode form: $G(s) = \frac{\frac{1}{25}(\frac{s}{2}+1)}{s(s+1)(\frac{s}{5}+1)(\frac{s}{10}+1)}$.

Figure 5: $G(s) = \frac{5000}{(s+7)(s+18)^3}$; Bode form: $G(s) = \frac{0.12248}{(1+s/18)^3(1+s/7)}$.

Figure 6: $G(s) = \frac{s+5}{s^2+4s+5}$; Bode form: $G(s) = \frac{(1+s/5)}{1+1.789(s/2.236)+(s/2.236)^2}$.

Figure 7: $G(s) = \frac{s^2 + 2s + 8}{s(s^2 + 2s + 10)}$; Bode form: $G(s) = \frac{4}{5}(s^{-1})\frac{1 + s/4 + s^2/8}{1 + s/5 + s^2/10}$

Figure 8: $G(s) = \frac{s+2}{s(s-1)(s+6)^2}$; Bode form: $G(s) = -\frac{1}{18} \frac{1+s/2}{s(1-s)(1+s/6)^2}$.

Figure 9: $G(s) = \frac{s^2+1}{s(s+1)}$.

Figure 10: $G(s) = \frac{s+1}{s^2(s+5)(s+20)}$; Bode form: $G(s) = \frac{0.01(1+s)}{s^2(1+s/20)(1+s/5)}$

Figure 11: $G(s) = \frac{1}{s(s^2 + s + 42.5)}$; Bode form: $G(s) = \frac{0.023529}{s(1 + 0.1534(s/6.519) + (s/6.519)^2)}$

Figure 12: $G(s) = \frac{s^2 + s + 12.5}{s^2(s+20)(s+10)}$; Bode form: $G(s) = \frac{0.0625(1+0.2828(s/3.536)+(s/3.536)^2)}{s^2(1+s/20)(1+s/10)}$

3. System type and steady state error from Bode plots:

Consider the closed-loop system (as shown in Figure 13), generated by the open-loop transfer function:

$$KG(s) = 10 \frac{s+1}{s^2(s+2)},$$

Figure 13: Block diagram for Problems 2 and 3.

- Sketch the bode plot of KG(s)
- Make a low frequency approximation of KG(s)
- Sketch the bode plot of the low frequency approximation of KG(s) and determine the system type
- Give the steady state error for the closed-loop system for a step, ramp and parabolic input

Solution:

Writing KG(s) in Bode form gives

$$KG(s) = 5\frac{1+s}{s^2(1+\frac{1}{2}s)}$$

resulting in the Bode diagram given by Figure 14.

Figure 14: Bode plot of KG(s)

Using the Bode form we can obtain a low frequency approximation of the form

$$KG(j\omega) = \frac{5}{(j\omega)^2}$$

It follows then that for low frequency the slope of magnitude is -40 dB/dec, hence, the system type is 2.

From the block diagram we have that

$$E(s) = R(s) - Y(s)$$

$$= R(s) - KG(s)E(s)$$

$$= \frac{1}{1 + KG(s)}R(s)$$

Pluggin in the low frequency approximation and applying the FVT we get

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + \frac{5}{s^2}} R(s) = \lim_{s \to 0} \frac{s^3}{s^2 + 5} R(s)$$

Note that for R(s) = 1/s (step) and $R(s) = 1/s^2$ (ramp) we get $e_{ss} = 0$. Instead, for $R(s) = 1/s^3$ (parabola), we have that

$$e_{ss} = \lim_{s \to 0} \frac{s^3}{s^2 + 5} \frac{1}{s^3} = \frac{1}{5} \neq 0$$