II-4 THE GOXETER VARIETY FOR SL

$$B = \left\{ \begin{pmatrix} \lambda & * \\ \cdot & \lambda^{-1} \end{pmatrix} \right\} \supseteq U = \left\{ \begin{pmatrix} 1 & * \\ \cdot & 1 \end{pmatrix} \right\} \quad \text{and} \quad s = \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix}$$

We have seen that the isomorphisms

and
$$P_{x} \xrightarrow{\sim} G/B$$

$$[x:y] \longrightarrow (x*)B$$

induce
$$X(s) \sim \{(a,y) \in A_2 \mid xy^9 - yx^9 = 1\}$$

 $\frac{1}{y^9 + 1}$
 $X(s) \sim \{[x:y] \in \mathbb{R} \mid xy^9 - yx^9 \neq 0\} = \mathbb{R}, \mathbb{R}, \mathbb{R}$

In addition the map
$$X(s) \longrightarrow \mathbb{G}_m$$

$$[x:y] \longmapsto \left(\frac{x}{y}\right)^q - \frac{x}{y}$$

induces an isomorphism
$$U^{F} \setminus X(s) \xrightarrow{\sim} G_{m}$$

Recall that for
$$G = Gl_n$$
 or Sl_n , $elts$ of B are flags of vector spaces $V_* = (\{0\} = V_n \subseteq V_n \subseteq V_n = \overline{\mathbb{F}_p}^n)$

$$\frac{\text{Prop: The map } \mathbb{G} \longrightarrow \mathbb{P}(\overline{\mathbb{F}_q}^n)}{V_* \longmapsto V_*}$$

induas an isomorphism

$$X((1,2,..,n)) \xrightarrow{\sim} \{L \in \mathbb{P}(\overline{\mathbb{F}_q}^n) \mid L+F(L)+\cdots+F^{-1}(L)=\overline{\mathbb{F}_q}^n \}$$

$$\underline{Proof}: X((1,2,..,n)) = \{ V_{\bullet} \in \mathcal{B} \mid V_{\bullet} \xrightarrow{w} F(V_{\bullet}) \}$$

Let
$$e_1,...,e_n$$
 be a basis adapted to V_* s.t $e_{w(1)},...,e_{w(n)}$ (= $e_2,...,e_n,e_n$) is adapted to $F(V_*)$

Then
$$F(V_1) = \langle e_1 \rangle \Rightarrow V_2 = \langle e_1, e_2 \rangle = V_1 \oplus F(V_1)$$

 $F(V_2) = \langle e_2, e_3 \rangle \Rightarrow V_3 = V_1 \oplus F(V_2)$
 $= V_1 \oplus (F(V_1) \oplus F^2(V_1))$
.... until $V_n = \overline{F_q}^n = V_1 \oplus F(V_1) \oplus \cdots \oplus F^{n-1}(V_1)$

Conversaly, if
$$L \in \mathbb{P}(\overline{\mathbb{F}_q}^n)$$
 is s.t $L + F(L) + \cdots + F^n(L) = \overline{\mathbb{F}_q}^n$
then $L + F(L) + \cdots + F^{i-1}(L)$ has dimension i and defines
a flag $V_* = (40) \le L \subseteq L \oplus F(L) \cdots$ such that $V_* \xrightarrow{W} F(V_*) \square$

Using wordinates we get
$$X((1,2,...,n)) = \left[\begin{bmatrix} x_1,...,x_n \end{bmatrix} \in \mathbb{P}_{n-1}(\overline{\mathbb{F}}) \mid \det \begin{pmatrix} x_1,x_1, & x_1 \\ \vdots & \vdots & \vdots \\ x_n,x_n, & x_n \end{pmatrix} \neq 0 \right]$$

$$\Delta(x_1,...,x_n)$$

(1,2,...,n) is a Coxeter elt of in and the Deligne-Lusztig var.

Xn = X((1,...,n)) is called a Coxeter variety

Prop: (i) Xn is an affine variety of dim n-1

$$\frac{(ii) \Delta(x_{11},...,x_{n}) = (-1) \prod_{i=1}^{\binom{n}{2}} \prod_{\alpha_{i+1},...,\alpha_{n} \in \overline{\mathbb{F}_{q}}} (x_{i} + \alpha_{i+1}x_{i+1} + ... + \alpha_{n}x_{n})}{\alpha_{i+1},...,\alpha_{n} \in \overline{\mathbb{F}_{q}}}$$

therefore $X_n = P_{n-1}$ rational hyperplanes (iii) $X_n^{F^i} = \emptyset$ for i = 1, ..., n-1

proof: $a_n = 0 \Rightarrow \Delta(a_1, ..., a_n) = 0$ and Δ is homogenous therefore

 $X_{n} \simeq \{(x_{1,...,}x_{n-1}) \in A_{n-1} \mid \Delta(x_{1,...,}x_{n-1,1}) \neq 0\}$ which proves (i)

For (ii) we observe that if $a_1x_1+\cdots+a_nx_n=0$ for some a_i 's in \mathbb{F}_q not all zero then $\triangle(x_1,...,x_n)=0$

Since \triangle is homogenous of degree $1+\cdots+q^{n-1}=\#P_{n-1}(\mathbb{F}_q)$ and vanishes on every rational hyperplanes, we deduce (ii) up to some scalar. (iii) is steaightforward since LnF(L)=0 for every LEXn and 1 < i < n-1 E_{x} : n=2 $\begin{vmatrix} x & x^{9} \\ y & y^{1} \end{vmatrix} = xy^{9} - yx^{9}$ 3) The ranety X(w) The n-cycle w can be lifted in Sh as (0) (-1)^n-1 and we can consider $\frac{X}{X} = \hat{X}(w)$ for this representative in $N_{c}(T)$ Prop: The map $gU \in G/U \mapsto g(e_i)$ induces an isomerphism $\widetilde{X}_{n} = \left\{ (\pi_{1}, \dots, \pi_{n}) \in \mathbb{A}_{n} \mid \triangle(\pi_{1}, \dots, \pi_{n}) = 1 \right\}$ Recall that $\widetilde{X}(w) \longrightarrow X(w)$ is the quotient by T^{wF} gu mas Here TwF = { (\land \la

So that this quotient map becomes $\widetilde{X}_n = \left\{ (x_1, ..., x_n) \in A_n \mid \Delta(x_1, ..., x_n) = 1 \right\}$ 1 / >1+9+..+9n-1 — homogenous degree of \triangle $X_{n} = \left\{ \left[a_{1}, \dots, a_{n} \right] \in \mathbb{P}_{h-1} \mid \Delta \left(a_{1}, \dots, a_{n} \right) \neq 0 \right\}$ With n=2 we recover the case of the Drinfeld cone