— 6 —

Convexité

I. Convexité, concavité

Définition 1

Soit f une fonction définie sur un intervalle I. On note C_f la courbe représentative de f dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

- On dit que f est **convexe** sur I si, **pour tous réels** a et b dans I, avec a < b, la sécante reliant les deux points de la courbe d'abscisses a et b se trouve au-dessus de la courbe C_f sur [a, b].
- On dit que f est **concave** sur I si, **pour tous réels** a et b dans I, avec a < b, la sécante reliant les deux points de la courbe d'abscisses a et b se trouve endessous de la courbe \mathcal{C}_f sur [a,b].

Fonction convexe

Fonction concave

Rappel de certaines courbes représentatives

$$x \mapsto x^3$$

Exemple :

Les fonction $x \mapsto x^2$ et $x \mapsto e^x$ sont convexes sur \mathbb{R} .

La fonction $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+ . La fonction $x \mapsto \ln(x)$ est concave sur \mathbb{R}_+^* . La fonction $x \mapsto x^3$ est concave sur \mathbb{R}_- et convexe sur \mathbb{R}_+ .

Exemple :

Attention : on parle bien de convexité sur un intervalle. Par ailleurs, ce n'est pas parce qu'une fonction f est convexe sur deux intervalles [a,b] et [b,c] que f est aussi convexe sur [a,c].

La fonction représentée ci-dessus est convexe sur [-3;0] et sur [0;3] mais n'est pas convexe sur [-3,3].

II. Fonctions dérivables

1. Caractérisation des fonctions convexes

Propriété 1

Soit f une fonction définie et dérivable sur un intervalle I. On note C_f la courbe représentative de f dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

- f est convexe sur I si et seulement si la courbe C_f se trouve au-dessus de toutes ses tangentes aux points d'abscisses $x \in I$.
- f est concave sur I si et seulement si la courbe C_f se trouve en-dessous de toutes ses tangentes aux points d'abscisses $x \in I$.

Année 2024/2025 Page 2/6

Fonction convexe

Fonction concave

Propriété 2

Soit f une fonction dérivable sur un intervalle I.

- f est convexe sur I si et seulement si f' est croissante sur I.
- f est concave sur I si et seulement si f' est décroissante sur I.

Définition 2

Soit f une fonction dérivable sur un intervalle I. On dit que f est deux fois dérivable sur I si sa dérivée f' est elle-même dérivable sur I.

On note f'' la dérivée de f', appelée dérivée seconde de f.

Propriété 3

Soit f une fonction deux fois dérivable sur un intervalle I.

- f est convexe sur I si et seulement si pour tout $x \in I$, $f''(x) \ge 0$.
- f est concave sur I si et seulement si pour tout $x \in I$, $f''(x) \leq 0$.

L'étude de la convexité d'une fonction revient à l'étude de signe de sa dérivée seconde (si celle-ci existe, bien entendu).

Preuve. Si $f'' \ge 0$, alors f est convexe : Soit f une fonction deux fois dérivable sur I telle que pour tout $x \in I$, $f''(x) \ge 0$.

Soit $a \in I$. La tangente à la courbe de f au point d'abscisse a a pour équation y = f'(a)(x-a) + f(a).

Pour tout $x \in I$, posons alors g(x) = f(x) - (f'(a)(x-a) + f(a)). g est deux fois dérivable sur I, et pour tout $x \in I$, on g'(x) = f'(x) - f'(a) et g''(x) = f''(x).

Ainsi, puisque pour tout $x \in I$, $f''(x) \ge 0$, on a aussi $g''(x) \ge 0$. g' est donc croissante sur I. Or, g'(a) = 0. Résumons toutes ces informations dans un tableau.

Année 2024/2025 Page 3/6

x	a
g''(x)	+
g'	0
g'(x)	- 0 +
g	
g(x)	+ 0 +

Finalement, pour tout $x \in I$, $g(x) \ge 0$, ce qui signifie que $f(x) \ge f'(a)(x-a) + f(a)$: la courbe de f est au-dessus de la tangente à cette courbe au point d'abscisse a.

Exemple :

Pour tout entier naturel pair $n \ge 2$, la fonction $x \mapsto x^n$ est convexe sur \mathbb{R} . En effet, la dérivée seconde de cette fonction est la fonction $x \mapsto n(n-1)x^{n-2}$. Or, n étant pair, n-2 l'est aussi, et pour tout réel x, on a donc $x^{n-2} \ge 0$.

2. Point d'inflexion

Définition 3

Soit f une fonction dérivable sur un intervalle I.

Un **point d'inflexion** est un point où la convexité de la fonction f change. La tangente à la courbe de f en un point d'inflexion traverse la courbe de f.

Propriété 4

Soit f une fonction deux fois dérivable sur un intervalle I.

- Si f présente un point d'inflexion à l'abscisse a, alors f''(a) = 0.
- Réciproquement, si f''(a) = 0 et si f'' change de signe en a, alors f présente un point d'inflexion en a.

Cela rappelle naturellement le cas des extremum locaux. Si f admet un extremum local en a, alors f'(a) = 0. Cependant, si f'(a) = 0, f admet un extremum local en a seulement si f' change de signe en a.

// Exemple :

Pour tout réel x, on pose $f(x) = \frac{x^3}{2} - x + 1$.

Année 2024/2025 Page 4/6

f est deux fois dérivable sur \mathbb{R} et pour tout réel x, on a f'(x) = $\frac{3x^2}{2} - 1$ et f''(x) = 3x.

La courbe de f présente un point d'inflexion à l'abscisse 0.

Attention: l'annulation de la dérivée seconde n'est pas une condition suffisante de présence d'un point d'inflexion!

Exemple :

Pour tout réel
$$x$$
, on pose $g(x) = \frac{1}{12}x^4 - \frac{2}{3}x^3 + 2x^2$.
 La fonction g est deux fois dérivable sur $\mathbb R$ et pour tout réel x , $g'(x) = \frac{1}{3}x^3 - 2x^2 + 4x$ et $g''(x) = x^2 - 4x + 4 = (x-2)^2$.
 Ainsi, pour tout réel x , $g''(x) \geqslant 0$. g est donc convexe sur $\mathbb R$.

Puisqu'il n'y a pas de changement de convexité, g ne présente pas de point d'inflexion, et pourtant g''(2) = 0.

TTT. Inégalités de convexité

Inégalités de milieux 1.

Propriété 5

Soient f une fonction définie sur un sur un intervalle I et $a, b \in I$.

- Si f est convexe, alors $f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}$. Si f est concave, alors $f\left(\frac{a+b}{2}\right) \geqslant \frac{f(a)+f(b)}{2}$.

Preuve. On considère les points A(a, f(a)) et B(b, f(b)). Le milieu du segment [AB] a pour coordonnées

$$\left(\left(\frac{a+b}{2}\right), \frac{f(a)+f(b)}{2}\right)$$

Or, la fonction f étant convexe sur I, le segment [AB]se situe au-dessus de la courbe représentative de f. En particulier,

$$f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}$$

// Exemple :

La fonction exponentielle est convexe sur \mathbb{R} . Pour tous réels a et b, $\exp\left(\frac{a+b}{2}\right) \leqslant \frac{e^a+e^b}{2}$.

// Exemple :

La fonction $x \mapsto \sqrt{x}$ est concave sur \mathbb{R}_+ . Ainsi, pour tous réels a et b positifs, $\sqrt{\frac{a+b}{2}} \geqslant \frac{\sqrt{a}+\sqrt{b}}{2}$.

Année 2024/2025 Page 6/6