Circuitando Sonhos

Projeto de extensão - UNESP

14.07.2025

Murilo Gonzaga

Sumário

₽.	•	\cap	\cap	\cap	\cap	\cap	\cap	\cap	\cap	\cap	0	\cap	\boldsymbol{c}
_	◛	v	v	v	•	~	$\mathbf{\mathcal{C}}$	•	$\mathbf{\mathcal{C}}$	v	$\mathbf{\circ}$	v	•

1	Visão geral	3
	1.a Componentes necessários	
	Piscar LEDS alternadamente	
	2.a Código + Montagem	6
	Semáforo de carros	
	3.a Código + Montagem	8
	EXTRA	
	4.a Abordagem	. 11
	4.b Integração	. 12

1 Visão geral

Tabela de componentes

Componente	Descrição	Quantidade
PROTOBOARD	Placa para montagem de circuitos temporários, sem solda	1
LEDS	Diodos emissores de luz para sinalização	min: 3
JUMPERS	Fios usados para conectar componentes na protoboard	muitos
ARDUINO UNO	Placa microcontroladora que executa o código	1

2 Piscar LEDS alternadamente

Código + Montagem

••••••0000000

Código em cpp

```
const int ledPin = 8:
const int ledPin2 = 7;
void setup() {
  pinMode(ledPin, OUTPUT);
  pinMode(ledPin2, OUTPUT);
void loop() {
  digitalWrite(ledPin, HIGH);
  digitalWrite(ledPin2, LOW);
  delay(1000);
  digitalWrite(ledPin, LOW);
  digitalWrite(ledPin2, HIGH);
  delay(1000);
```

Protoboard Montada

3 Semáforo de carros

Código em cpp

```
int vermelho = 1;
int amarelo = 2;
int verde = 3:
void setup()
  pinMode(vermelho, OUTPUT);
  pinMode(amarelo, OUTPUT);
  pinMode(verde, OUTPUT);
void loop()
  digitalWrite(vermelho, HIGH);
  digitalWrite(amarelo, LOW);
```

```
digitalWrite(verde, LOW);
delay(4000);
digitalWrite(vermelho, LOW);
digitalWrite(amarelo, HIGH);
digitalWrite(verde, LOW);
delay(3000);
digitalWrite(vermelho, LOW);
digitalWrite(amarelo, LOW);
digitalWrite(verde, HIGH);
delay(4000);
```


Código + Montagem (ii)

Protoboard montada

4 EXTRA

Abordagem

A partir do projeto anterior do semáforo de carros, adicione à protoboard um semáforo de pedestres com dois LEDs: vermelho e verde.

Programe o funcionamento de modo que:

- O LED verde dos pedestres acenda quando o semáforo dos carros estiver vermelho ou amarelo, indicando que é seguro atravessar.
- O LED vermelho dos pedestres acenda quando o semáforo dos carros estiver verde, indicando que os pedestres devem esperar.

DICA: Apenas integre! Não é necessário a exclusão do código anterior!

Declaração e setup

```
int vermelhoP = 4;
int verdeP = 5;

void setup()
{
   pinMode(vermelhoP, OUTPUT);
   pinMode(verdeP, OUTPUT);
}
```

Loop

```
void loop()
  //bloco de código onde vermelho é HIGH
  digitalWrite(vermelhoP, LOW);
  digitalWrite(verdeP, HIGH);
  //bloco de código onde amarelo é HIGH
  digitalWrite(vermelhoP, HIGH);
  digitalWrite(verdeP, LOW);
  //bloco de código onde verde é HIGH
  digitalWrite(vermelhoP, HIGH);
  digitalWrite(verdeP, LOW);
```


Integração (ii)

Protoboard completa

