

Description

The VSM65P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-60V, I_{D} =-65A $R_{DS(ON)}$ <18m Ω @ V_{GS} =-10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

Load switch

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM65P06-T2	VSM65P06	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	-60	V
Gate-Source Voltage	Vgs	±20	V
Drain Current-Continuous	I _D	-65	А
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	-42.3	А
Pulsed Drain Current	I _{DM}	-260	А
Maximum Power Dissipation	P _D	130	W
Derating factor		0.87	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	722	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.15	°C/W	
--	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250µA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			'	•		•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$	-2.0	-2.6	-3.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	13	18	mΩ
Forward Transconductance	g Fs	V _{DS} =-5V,I _D =-20A	-	25	-	S
Dynamic Characteristics (Note4)			'	•		•
Input Capacitance	C _{lss}	V _{DS} =-25V,V _{GS} =0V,	-	5814	-	PF
Output Capacitance	C _{oss}		-	483	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	234	-	PF
Switching Characteristics (Note 4)	•		•	•		•
Turn-on Delay Time	t _{d(on)}		-	18	-	nS
Turn-on Rise Time	t _r	V_{DD} =-30V, R_L =1.5 Ω , V_{GS} =-10V, R_G =3 Ω	-	20	-	nS
Turn-Off Delay Time	$t_{d(off)}$		-	55	-	nS
Turn-Off Fall Time	t _f		-	35	-	nS
Total Gate Charge	Qg	- V _{DS} =-30,I _D =-20A,	-	75		nC
Gate-Source Charge	Q _{gs}		-	16		nC
Gate-Drain Charge	Q _{gd}	V _{GS} =-10V	-	19		nC
Drain-Source Diode Characteristics			1	U.		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-20A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-65	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, I _F =-20A	-	49		nS
Reverse Recovery Charge	Qrr	di/dt = -100A/µs ^(Note3)	-	71		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition: $Tj=25^{\circ}C$, $V_{DD}=-30V$, $V_{G}=-10V$,L=0.5mH, $Rg=25\Omega$

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 ID Current Derating vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance