STUDENT PERFORMANCE IN EXAMS

DYLAN JAMES N. DEJORAS

INITIAL DATAFRAME

df									
}	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score	E
0	female	Asian	bachelor's degree	standard	none	72	72	74	
1	female	Hispanic	some college	standard	completed	69	90	88	
2	female	Asian	master's degree	standard	none	90	95	93	
3	male	American	associate's degree	free/reduced	none	47	57	44	
4	male	Hispanic	some college	standard	none	76	78	75	
995	female	Indian	master's degree	standard	completed	88	99	95	
996	male	Hispanic	high school	free/reduced	none	62	55	55	
997	female	Hispanic	high school	free/reduced	completed	59	71	65	
998	female	Russian	some college	standard	completed	68	78	77	
999	female	Russian	some college	free/reduced	none	77	86	86	
1000	rows × 8 c	olumns							

STUDENT GENDER

OUT OF 1000 STUDENTS:

- FEMALE 518
- MALE 482

STUDENT PREPARATION

OUT OF 1000 STUDENTS:

- TOOK THE TEST PREPARATION COURSE- 358
- DID NOT TOOK
 THE TEST
 PREPARTION
 COURSE- 642

BAR GRAPH CODE

```
import pandas as pd
import matplotlib.pyplot as plt
# concatenate the DataFrames
df_concatenated = pd.concat([male, female], ignore_index=True)
# show number of students per gender
gender_counts = df_concatenated['gender'].value_counts()
print(gender_counts)
# plot the pie chart
plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%', startangle=90)
# plot the legend
legend_labels = [f'{count} {gender}' for gender, count in zip(gender_counts.index, gender_counts)]
plt.legend(legend_labels, title='Gender Counts', loc='upper right')
plt.title('Gender Distribution')
plt.show()
```

STUDENT RACE

- AMERICAN 89
- ASIAN 190
- **HISPANIC 319**
- RUSSIAN 262
- INDIAN 140

STUDENT EDUCATION

- BACHELOR'S
 DEGREE 118
- MASTER'S DEGREE- 59
- ASSOCIATE'S DEGREE- 222
- HIGH SCHOOL- 196
- SOME COLLEGE 226
- SOME HIGH
 SCHOOL 179

PIE GRAPH CODE

```
[409] import pandas as pd
     import matplotlib.pyplot as plt
     # concatenate the DataFrames
     df_concatenated = pd.concat([asians, americans, hispanics, russians, indians], ignore_index=True)
     # display counts for each race in the concatenated DataFrame
     race counts = df concatenated['race/ethnicity'].value counts()
     print(race_counts)
     # plot the pie chart
     plt.pie(race_counts, labels=race_counts.index, autopct='%1.1f%%', startangle=90)
     # plot the legend
     legend_labels = [f'{count} {race}' for race, count in zip(race_counts.index, race_counts)]
     plt.legend(legend_labels, title='Gender Counts', loc='upper right', bbox_to_anchor=(1.25,1.25))
     plt.title('Race Distribution',fontsize = 20)
     plt.show()
```

WHY IS FREQUENCY DISTRIBUTION IMPORTANT?

MEAN

- MATH SCORE 66.089
- READINGSCORE -69.169
- WRITING SCORE -68.054

MEDIAN

• MATH SCORE - 66

CODE

READINGSCORE - 70

```
[393] np.median(df[['math score','reading score', 'writing score']], axis = 0)
array([66., 70., 69.])
```

• WRITING SCORE - 69

MODE

- AMERICAN 89
- ASIAN 190
- HISPANIC 319
- RUSSIAN 262
- INDIAN 140

```
import scipy.stats

mode = df['race/ethnicity'].value_counts().idxmax()
mode_count = df['race/ethnicity'].value_counts().max()
mode = f"{mode} is the mode with a count of {mode_count}"

[85] print(mode)

Hispanic is the mode with a count of 319
```

STANDARD DEVIATION

- MATH SCORE 15.16
- READING SCORE 14.59
- WRITINGSCORE -15.19

IQR, MINIMUM, AND MAXIMUM

- MATH SCORE IQR 20.0
- MINIMUM MATH SCORE 27.0
- MAXIMUM MATH SCORE 107.0

```
[381] m_q1 = df['math score'].quantile(0.25)
     m_q3 = df['math score'].quantile(0.75)
     m_{iqr} = m_{q3} - m_{q1}
     m_{min} = m_{q1} - (1.5*m_{iqr})
     m_max = m_q3+(1.5*m_iqr)
     print('Math score IQR:', m_iqr)
     print('Minimum math score:', m_min)
     print('Maximum math score:', m_max)
     Math score IQR: 20.0
     Minimum math score: 27.0
     Maximum math score: 107.0
```

BOX PLOT

MATH SCORE

- **MEDIAN 66**
- IQR 20
- 1ST QUARTILE 57
- 3RD QUARTILE 77
- MINIMUM 27
- MAXIMUM -107

BOX PLOT CODE

```
import matplotlib.pyplot as plt

# plot box plot
plt.figure(figsize=(10, 6)) # Adjust the figure size as needed
plt.boxplot([df['math score'], df['reading score'], df['writing score']], labels=['Math Score', 'Reading Score', 'Writing Score'])
plt.title('Box Plot of Scores', fontsize=20)
plt.xlabel('Subjects', fontsize=20)
plt.xticks(fontsize=20)
plt.ylabel('Score', fontsize=20)
plt.yticks(fontsize=20)
plt.show()
```

THE END