

b-Tag Track Studies

Laurie McClymont (with Andreas and Tim)

Flav Tag Weekly 24 March 2015

Aims of Study

- To study the track selection of IP3D, SV1 and Jet Fitter Algorithms when applied to truth b-jets.
- Move towards harmonisation of track selections for release 21
- Optimise flavour tagging performance for high P_T by adjusting track selection

Sample Used for Studies

Validation Sample for r20.1.3.2

96,980 events

pile up = 0

Track Cuts

From Talk by R. Zaidan at Flav Tag Workshop 2015

In this study I have applied these cuts manually in my analysis code.

Definitions

From B = Any track associated to the

decay of the B Hadron

From Geant = Any track created by a GFANT interaction

Any track not From B or

From Frag = From Geant

From Other = Any track not From B

Selection = # Tracks FromX Selected By a Cut Efficiency # Truth Tracks From X

Fraction of Tracks = #Tracks FromX Selected By a Cut
Total # Tracks Selected by a Cut

	IP3D	SV1	JFit
p _T ≥	1000	700	769.2
η ≤	2.5	2.5	2.5
N _{SI} ≥	7	7	7
N _{SCT} ≥	-	4	4
N _{PIX} ≥	2	1	1
N _{IBL} ≥	1	-	-
N _{IBL} + N _{BL} ≥	-	-	-
$N^{SH}_{PIX} + \frac{N^{SH}_{SCT}}{2} \le$	-	-	1
N ^{HOLE} _{SI} ≤	-	-	-
N ^{HOLE} _{PIX} ≤	-	-	-
d ₀ ≤	1	5	3.5
$z_0^* \sin(\theta) \le$	1.5	25	5
$\sigma(d_0) \leq$	-	1	0.35
$\sigma(z_0) \leq$	-	5	2.5
χ2/NDF ≤	-	-	3.5

4 Selection Efficiencies

r20.1.3.2, 96980 entries, $\mu = 0$

Selection = #Tracks FromX Selected By a Cut #Truth Tracks From X

Analysis of Fraction of Tracks From X After Cuts

Analysis of Fraction of Tracks From X With Verticies

Track Pt [GeV]

r20.1.3.2, 96980 entries, $\mu = 0$

- Normalised for a given Jet P_T (vertical slices)
- (a) contains all tracks from a B hadron decay and (b) contains all tracks from Other (any tracks not From B).
- Plot c) is only filled with the track from B with the minimum track P_T for each b-jet.

Track P_T Distributions for a given Jet P_T - Zoom

valid3.110401.PowhegPythia_P2012_ttbar_ nonallhad.recon.AOD.e3099_s2579_r6162/

- Normalised for a given Jet P_T (vertical slices)
- (a) contains all tracks from a B hadron decay and (b) contains all tracks from Other (any tracks not From B).
- Plot c) is only filled with the track from B with the minimum track P_T for each b-jet.

valid3.110401.PowhegPythia_P2012_ttbar_
nonallhad.recon.A0D.e3099_s2579_r6162/

r20.1.3.2, 96980 entries, μ = 0

- This shows the P_T distributions for the average P_T of all tracks from B, average minimum P_T track from B, and average P_T of all tracks from other.
- Shows great opportunity for a track P_T cut that depends on jet P_T.
- As a first test I have used the min P_T from B (green line) as a test cut, probably too tight.

r20.1.3.2, 96980 entries, $\mu = 0$

Selection = #Tracks FromX Selected By a Cut #Truth Tracks From X

- varPtCut + IP3D is cutting the green line from the previous slide, applied alongside IP3D cuts from slide 3.
- varPtCut is very harsh.
- But there are flat Frag and Geant selection efficiencies, a desirable property.

Conclusions

- We aimed to study tracks accepted by IP3D, SV1 and Jet Fitter
 - To consider harmonisation of the track selections for release 21
 - To optimise track selections for high-P_T.
- Set-up tools to analyse tracks for harmonisation in r21
- There is promise for Jet P_T dependant cut for high-P_T.
 - Work is needed to tune and optimise.
 - Also need to optimise other cuts at high-P_T such as d0 and z0 cuts.
- Need to run on a larger data set which includes pile-up.
 - A request for release r20.1.4.1 sample with pile up and 500,000 events.
 - Final analysis will be done on 5,000,000 event sample.

Back Up!

Manual Cut

Algo Flag