Индексное гипергеометрическое преобразование

Неретин Ю.А.

Как известно, непрерывным аналогом рядов Фурье является преобразование Фурье. Оказывается, что разложение по многочленам Якоби тоже имеет непрерывный аналог – интегральное "преобразование Якоби" (о терминах см. ниже), ему и посвящено это добавление. Об этом преобразовании можно сказать много, к сожалению на сегодняшний день обстоятельного обзора его свойств и его применений в литературе нет, и настоящая статья таких целей не ставит. Разные дополнительные факты можно найти в работах [1], [3], [4], [9]–[11], [17]–[18], [26].

По аналогии с иерархией гипергеометрических ортогональных многочленов есть иерерхия гипергеометрических интегральных преобразований (см. [1]–[2], [6], [3], [8], [15], [19]–[20], [25], [26], а также ссылки Хекман—Опдам [1987*], Макдональд [1972*], Чередник [2005*] из основной библиографии). Обсуждаемое преобразование не относится ни к самым простым (скажем, преобразование Ганкеля и преобразование Конторовича—Лебедева явно проще), ни к самым сложным элементам иерархии. Оно достаточно просто, чтобы быть относительно гибким спецфункциональным инструментом (о чем ниже в §2), с другой стороны оно "контролирует" гармонический анализ на гиперболических симметрических пространствах (т.е. на пространствах Лобачевского и их комплексных и кватернионных аналогах), об этом чуть-чуть сказано ниже в §4, подробнее см. [10], [17].

1 Индексное гипергеометрическое преобразование

1.1. Многочлены Якоби. Рассмотрим ортогональную систему Якоби на отрезке [0,1],

$$\mathcal{P}_n^{\alpha,\beta}(x) = \frac{(-1)^n \Gamma(n+\beta+1)}{\Gamma(\beta+1)n!} {}_{2}F_1 \begin{bmatrix} -n, n+\alpha+\beta+1 \\ \beta+1 \end{bmatrix}; x$$

Тогда

$$\gamma_{n} := \|P_{n}^{\alpha,\beta}\|^{2} =$$

$$= \int_{0}^{1} \mathcal{P}_{n}^{\alpha,\beta}(x)^{2} x^{\beta} (1-x)^{\alpha} dx = \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1) n! \Gamma(n+\alpha+\beta+1)}$$
(1.1)

Для функции f(x) рассмотрим числа ("коэффициенты Фурье"), заданные формулой

$$c_n(f) := \int_0^1 f(x) \mathcal{P}_n^{\alpha,\beta}(x) x^{\alpha} (1-x)^{\beta} dx$$

Тогда функция f(x) восстанавливается по формуле

$$f(x) = \sum_{n=0}^{\infty} \frac{c_n(f)}{\gamma_n} \mathcal{P}_n^{\alpha,\beta}(x)$$
 (1.2)

Кроме того, верна формула Планшереля

$$\int_0^1 f(x) \, \overline{g(x)} \, x^{\beta} (1-x)^{\alpha} \, dx = \sum_{n=0}^{\infty} \frac{1}{\gamma_n} c_n(f) \, \overline{c_n(g)}$$

Разложение по многочленам Якоби имеет аналог, в котором ряды заменяются интегралами.

1.2. Индексное гипергеометрическое преобразование. Пусть $b,\ c>0.$ Для функции f, определенной на полупрямой $[0,\infty),$ определим функцию переменной $s\geqslant 0$

$$J_{b,c}f(s) = [\widehat{f}]_{b,c}(s) =$$

$$= \frac{1}{\Gamma(b+c)} \int_0^\infty f(x) \,_2F_1 \left[\begin{matrix} b+is, b-is \\ b+c \end{matrix}; -x \right] x^{b+c-1} (1+x)^{b+c-1} \, dx \quad (1.3)$$

Теорема 1.1 a) Оператор $J_{b,c}$ является унитарным оператором

$$J_{b,c}: L^2\Big([0,\infty), x^{b+c-1}(1+x)^{b+c-1}dx\Big) \to L^2\Big([0,\infty), \Big|\frac{\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)}\Big|^2ds\Big)$$

Иными словами, верна формула Планшереля

$$\int_0^\infty f_1(x)\,\overline{f_2(x)}x^{b+c-1}(1+x)^{b-c}\,dx = \int_0^\infty \left[\widehat{f}\right]_{b,c}(s)\left|\overline{\widehat{f}}\right|_{b,c}(s)\left|\frac{\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)}\right|^2ds$$

b) Обратный оператор задается формулой

$$f(x) = \frac{1}{\Gamma(a+b)} \int_0^\infty \left[\widehat{f} \right]_{b,c}(s) \, _2F_1 \left[\begin{matrix} b+is, \, b-is \\ b+c \end{matrix}; -x \right] \left| \frac{\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)} \right|^2 ds \tag{1.4}$$

Отметим, что утверждение b) выткает из а), т.к. для унитарного оператора U выполнено $U^{-1}=U^*.$

Как и в случае преобразования Фурье, возникает вопрос о точном определении. Можно, например, сказать, что преобразование $J_{b,c}$ определено на непрерывных функциях с компактным носителем, а далее оно продолжается по непрерывности до унитарного оператора, определенного в пространстве L^2 .

1.3. Голоморфное продолжение в полосу.

Лемма 1.2 Пусть f интегрируема на \mathbb{R}_+ , u

$$f(x) = o(x^{-\alpha - \varepsilon}), \qquad x \to +\infty$$

где $\varepsilon > 0$. Тогда $[\widehat{f}(s)]_{b,c}$ голоморфна в полосе

$$|\operatorname{Im} s| < \alpha - b$$

u удовлетворяет в ней условию $\widehat{f}(-s) = \widehat{f}(s)$.

ДОКАЗАТЕЛЬСТВО. Это вытекает из следующей асимптотики для гипергеометрической функции (см. Бейтмен, том 1, (2.3.2.9)) при $x \to +\infty$

$$_{2}F_{1}(b+is,b-is;b+c;-x) = \lambda_{1}x^{-b+is} + \lambda_{2}x^{-b-is} + O(x^{-b+is-1}) + O(x^{-b-is-1})$$

где $2s \notin \mathbb{Z}$, а λ_1 , λ_2 — некоторые константы (при $2s \in \mathbb{Z}$ появляется дополнительно множитель $\ln x$ при старшем слагаемом).

1.4. Операционное исчисление. Обозначим через D гипергеометрический дифференциальный оператор

$$D := -x(x+1)\frac{d^2}{dx^2} - \left[(c+b) + (2b+1)x \right] \frac{d}{dx} + b^2$$
 (1.5)

(мы заменили x на -x по сравнению с обычными обозначениями). Гипергеометрические функции в (1.3) суть (обобщенные) собственные функции оператора D:

$$D_{2}F_{1}\begin{bmatrix}b+is, b-is\\b+c\end{bmatrix} = -s^{2} {}_{2}F_{1}\begin{bmatrix}b+is, b-is\\b+c\end{bmatrix} (1.6)$$

Легко видеть, что D формально самосопряжен в следующем смысле

$$\int_0^\infty Df_1(x) \cdot f_2(x) \, x^{b+c-1} (1+x)^{b-c} dx = \int_0^\infty f_1(x) \cdot Df_2(x) \, x^{b+c-1} (1+x)^{b-c} dx$$

(и на самом деле существенно самосопряжен, см. ниже) и наша теорема 1.1 есть теорема о разложении оператора D по собственным функциям.

Теорема 1.3 Пусть f, $Df \in L^2$, тог да

$$[\widehat{Df}(s)]_{b,c} = -s^2 \widehat{f}(s) \tag{1.7}$$

Доказательство. Это перефразировка формулы (1.6).

Теорема 1.4 Пусть функция f на \mathbb{R}^+ непрерывна и удовлетворяет условию

$$f(x) = o(x^{-b-1-\varepsilon}); \qquad x \to +\infty$$
 (1.8)

Tог ∂a

$$\widehat{[xf(x)]}_{b,c} = P\widehat{[f(x)]}_{b,c} \tag{1.9}$$

где разностный оператор Рд задан формулой

$$Pg(s) = \frac{(b-is)(c-is)}{(-2is)(1-2is)}(g(s+i)-g(s)) + \frac{(b+is)(c+is)}{(2is)(1+2is)}(g(s-i)-g(s))$$
(1.10)

Замечание. Отметим две забавных особенности данной теоремы.

- 1. Оператор P есть разностный оператор, но сдвиг $s\mapsto s+i$ производится в мнимом направлении, а интегрирование идет вдоль вещественной оси.
- 2. Преобразование $J_{b,c}^{-1}$ переводит оператор P в оператор умножения на функцию x, т.е., наш оператор $J_{b,c}^{-1}$ задает спектральное разложение разностного оператора P.
- 3. Оператор P похож на разностные операторы, связанные с ортогональными многочленами Вильсона, Хана, Мейкснера—Поллачека, см. (6.10.6), (6.10.9), (6.10.12) и задачу 6.37.в. Рациональные коэффициенты оператора P "сцеплены" с гамма-множителями в формуле (1.4).

Доказательство. Это сводится к проверке тождества

$$P\ _2F_1{\left[\begin{matrix}b+is,\,b-is\\b+c\end{matrix};-x\right]}=x\ _2F_1{\left[\begin{matrix}b+is,\,b-is\\b+c\end{matrix};-x\right]}$$

Теорема 1.5 Пусть f и f' непрерывны и удовлетворяют условиям убывания (1.8). Тогда

$$[x(x+1)\frac{d}{dx}f]_{b,c} = H[\hat{f}]_{b,c}$$
 (1.11)

где разностный оператор Н задан формулой

$$Hg(s) = \frac{(b-is)(b+1-is)(c-is)}{(-2is)(1-2is)}(g(s+i)-g(s)) + \frac{(b+is)(b+1+is)(c+is)}{(+2is)(1+2is)}(g(s-i)-g(s)) - (b+c)g(s)$$
(1.12)

Доказательство. Мы можем вычислить $J_{b,c}$ -образ коммутатора [x,D].

1.5. Исторические замечания. Преобразование $J_{1/2,1/2}$ было введено Мелером [14] в 1881г. Он же без доказательства написал формулу обращения (надо сказать, совсем не очевидную). Доказательство было опубликовано В. А. Фоком[5] в 1943г., само преобразование $J_{1/2,1/2}$ в итоге называется преобразованием Мелера—Фока. Общее преобразование $J_{b,c}$ было введено Германом Вейлем в 1910 в работе [24] по спектральной теории дифференциальных операторов, но этот результат, как будто, не привлек к себе никакого внимания. Снова это преобразование "появляется на поверхности" в книге Титчмарша [23] 1946г. В 1949 оно было переоткрыто М. Н. Олевским [21], по-видимому, в связи с его исследованиями по многомерным пространствам Лобачевского.

Наиболее употребительные термины, используемые для $J_{b,c}$ – npeoбразование Олевского и npeoбразование Якоби (введен Коорнвиндером).

2 Спецфункциональные приложения

Наша первая цель — вычислить явно индексные преобразования для некоторых функций. Это сделано в пункте 2.2 с помощью преобразования Меллина. Далее в пп.2.3-2.4 мы демонстрируем эффективность индексного преобразования как инструмента теории спецфункций.

2.1. Преобразование Меллина. Напомним, что преобразование Меллина функции f(x), определенной на луче x > 0, задается формулой

$$F(s) = \mathfrak{M}f(s) := \int_0^\infty f(x)x^{is} \frac{dx}{x}$$

Область абсолютной сходимости этого интеграла— некоторая вертикальная полоса вида $u<\mathrm{Re}\,s< v$ (и функция g(s) тогда голоморфна в этой полосе), границы полосы могут входить или не входить в область сходимости, полоса может вырождаться в прямую вида $\mathrm{Re}\,s=u$. Разумеется, она может быть и пустой.

Отметим, что преобразование Меллина является унитарным оператором из $L^2(\mathbb{R}, dx/x)$ в L^2 на вертикальной прямой $\mathrm{Re}\, s = 1/2$. В частности,

$$\int_0^\infty f(x)\overline{g(x)}\,dx/x = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(1/2 + is)\overline{G(1/2 + is)}\,ds$$

Напомним также теорему о свертке. Если области определения $F(s)=\mathcal{M}f(s)$ и $G(s)=\mathcal{M}g(s)$ пересекаются (по полосе или прямой), то мультипликативная свертка

$$f * g(x) := \int_0^\infty f(y)g(x/y) \, dy/y$$

переходит в F(s)G(s) (на общей области определения).

Конечно, преобразование Меллина сводится к преобразованию Фурье подстановкой $x=e^y$, с точки зрения абстрактной теории между преобразованием Меллина и преобразованием Фурье разницы нет. Но для фиксированной функции f преобразования Меллина и Фурье, разумеется, различны; их роль в теории спецфункций тоже различна.

2.2. Игра в преобразование Меллина. Небольшая таблица индексных преобразований. Так как нам будут встречаться длинные произведения Г-функций, мы введем следующее обозначение

$$\Gamma\begin{bmatrix} a_1, & \dots, & a_k \\ b_1, & \dots, & b_l \end{bmatrix} := \frac{\Gamma(a_1) \dots \Gamma(a_k)}{\Gamma(b_1) \dots \Gamma(b_l)}$$

Теперь рассмотрим произвольный (сходящийся) барисовский интеграл вида

$$\frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \Gamma \begin{bmatrix} a_1 + s, \dots, a_k + s, b_1 - s, \dots, b_l - s \\ c_1 - s, \dots, c_m - s, d_1 + s, \dots, d_n + s \end{bmatrix} x^s ds$$

Он может быть представлен как линейная комбинация гипергеометрических функций вида $_pF_q$ с гамма-множителями. Как это делать, объясняется в книге в параграфе 2.4. Вычисление требует отслеживания некоторых асимптотик, но его можно раз и навсегда проделать "в общем случае". Окончательные "правила" можно найти в Слейтер[1966*], Маричев[1978*] или Прудников—Брычков—Маричев, т.3.

С другой стороны, есть неожиданно много случаев, когда интеграл допускает более простое выражение, чем это дается общим алгоритмом, см. таблицы Прудникова, Брычкова, Маричева, т.3, глава 8 (рациональных объяснений этого я не знаю).

Теперь мы вычислим два вспомогательных интеграла.

Лемма 2.1

$$\int_{0}^{\infty} \frac{x^{\alpha-1}}{(x+z)^{\rho}} {}_{2}F_{1}(p,q;r;-x) dx =$$

$$= \frac{z^{\alpha-\rho}}{2\pi i} \Gamma \begin{bmatrix} r \\ p,q,\rho \end{bmatrix} \int_{-i\infty}^{i\infty} \Gamma \begin{bmatrix} s+\alpha,\rho-s-\alpha,p+s,q+s,-s \\ r+s \end{bmatrix} z^{s} ds \quad (2.1)$$

$$\int_{0}^{\infty} x^{\alpha-1} {}_{2}F_{1} \begin{bmatrix} p, q \\ r; -\omega x \end{bmatrix} {}_{2}F_{1} \begin{bmatrix} u, v \\ w; -\tilde{\omega} x \end{bmatrix} dx =$$

$$= \frac{\omega^{-\alpha}}{2\pi i} \Gamma \begin{bmatrix} r, w \\ u, v, p, q \end{bmatrix} \int_{-i\infty}^{i\infty} \Gamma \begin{bmatrix} \alpha + s, u + s, v + s, p - \alpha - s, q - \alpha - s, -s \\ r - \alpha - s, w + s \end{bmatrix} \left(\frac{\omega}{\tilde{\omega}} \right)^{-s} ds \tag{2.2}$$

Доказательство. Проверим, например, первое равенство. Преобразование Меллина от функции $f(x):=x^{\alpha-1}/(x+z)^{\rho}$ равно $B(s+\alpha,\rho-s-\alpha)z^{s+\alpha-\rho}$. Преобразование Меллина от $g(x):={}_2F_1(p,q;r;-x)$ было вычислено в параграфе 2.4 и равно некоторому произведению Γ -функций. Наш интеграл есть свертка функций xf(1/x) и g(x). Далее, мы замечаем, что преобразование Меллина функции xf(1/x) равно F(1-s). Далее, применяем теорему о свертке.

Итак, проведенное вычисление состоит в "перекладывании Γ -функций". В правой части стоят барисовские интегралы, которые можно представить как линейную комбинацию функций $_3F_2$ и $_4F_3$ соответственно. Выписывать их мы не будем, а вместо этого заметим, что при некоторых значениях параметров в правых частях интегралов могут происходить сокращения.

Лемма 2.2 Преобразование $J_{b,c}$ переводит

$$(1+x)^{-a-c} \longrightarrow \frac{\Gamma(c+is)\Gamma(c-is)}{\Gamma(c+a)\Gamma(c+b)}$$
(2.3)

$$\frac{(1+x)^{b-a}}{(x+z)^{c+b}} \longrightarrow \Gamma \begin{bmatrix} c+is, c-is \\ c+a, c+b \end{bmatrix} {}_{2}F_{1} \begin{bmatrix} c+is, c-is \\ c+a \end{bmatrix} (2.4)$$

$$x^{-u-a} \longrightarrow \frac{\Gamma(-u+b)}{\Gamma(a+u)} \cdot \frac{\Gamma(u+is)\Gamma(u-is)}{\Gamma(b+is)\Gamma(b-is)}$$
(2.5)

$$x^{-u-a}$$
 \longrightarrow $\frac{\Gamma(-u+b)}{\Gamma(a+u)} \cdot \frac{\Gamma(u+is)\Gamma(u-is)}{\Gamma(b+is)\Gamma(b-is)}$ (2.5)

$${}_{2}F_{1}\left[\begin{matrix} p+b,q+b\\a+b\end{matrix};-\frac{x}{y}\right](1+x)^{b-a}\longrightarrow$$

$$y^{b-q}\Gamma\left[\begin{matrix} a+b\\p+q,p+b,q+b\end{matrix}\right]\cdot\Gamma\left[\begin{matrix} p+is,p-is,q+is,q-is\\a+is,a-is\end{matrix}\right] {}_{2}F_{1}\left[\begin{matrix} p+is,p-is\\p+q\end{matrix};1-y\right]$$
(2.6)

$${}_{2}F_{1}\begin{bmatrix}p+b,q+b\\a+b\end{bmatrix};-x\left[(1+x)^{b-a}\longrightarrow\right]$$

$$\longrightarrow\Gamma\begin{bmatrix}a+b\\p+q,p+b,q+b\end{bmatrix}\cdot\Gamma\begin{bmatrix}p+is,p-is,q+is,q-is\\a+is,a-is\end{bmatrix}$$
(2.7)

$${}_{2}F_{1}\begin{bmatrix} a+c,a+d\\ a+b+c+d \end{bmatrix} \longrightarrow$$

$$\longrightarrow \frac{\Gamma(a+b+c+d) \cdot \Gamma(c+is)\Gamma(c-is)\Gamma(d+is)\Gamma(d-is)}{\Gamma(a+c)\Gamma(a+d)\Gamma(b+c)\Gamma(b+d)\Gamma(c+d)}$$
(2.8)

Доказательство. Посмотрим на правую часть тождества (2.2). Если $\alpha=r$, там сокращаются два Γ -множителя. То, что осталось – интегральное представление $_2F_1$. Это дает вторую формулу. Подставляя в нее z=1, получаем первую формулу.

Далее, если $z=1,\,r=p+q+\rho,\,$ то в правой части – один из интегралов Барнса (см. теорему 2.4.3 основного текста). Это дает (2.5).

Теперь отслеживаем возможные упрошения в правой части (2.2). Если в подставить $\alpha = w = r$, то в правой части четыре Г-множителя сокращаются. Это дает формулу (2.6). Подставляя y = 1 в (2.6), мы получаем (2.7).

Наконец, при попытке проверить (2.8), мы обнаружим, что один из Гмножителей в правой части (2.2) сократится, а дальше применяется та же теорема 2.4.3.

2.3. Игра в формулу Планшереля. Только что выписана короткая таблица из 6 строчек для преобразования $J_{b,c}$. Применяя к этим строчкам формулу Планшереля для $J_{b,c}$, можно получить забавный набор интегралов. Мы приведем лишь несколько примеров.

- а) Интеграл Де Бранжа-Вильсона. Применяя формулу Планшереля к паре функций $(1+x)^{-a-c}$ и $(1+x)^{-a-d}$, мы, после тривиальной выкдадки, получим интеграл де Бранжа-Вильсона (см. параграф 3.6 основного текста), Коорнвиндер [11].
- б) Другой бета-интеграл. Применяя формулу Планшереля к $x^{-u-a}, x^{-v-a},$ получим интеграл

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{\prod_{k=1}^{3} \Gamma(a_k + is)}{\Gamma(2is)\Gamma(b + is)} \right|^2 ds = \frac{\Gamma(b - a_1 - a_2 - a_3) \prod_{1 \le k < l \le 3} \Gamma(a_k + a_l)}{\prod_{k=1}^{3} \Gamma(b - a_k)}$$

в) Интегральное представление для $_3F_2(1)$. Пара функций

$$(1+x)^{-a-e}$$
 $u {}_{2}F_{1}\begin{bmatrix} a+c, a+d \\ a+b+c+d \end{bmatrix}$

приводит к забавному интегральному представлению $_3F_2(1)$,

$$\frac{1}{\pi} \int_0^\infty \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)\Gamma(d+is)\Gamma(e+is)}{\Gamma(2is)} \right|^2 ds =$$

$$= \frac{\Gamma(a+b)\Gamma(a+c)\Gamma(a+d)\Gamma(a+e)\Gamma(b+c)\Gamma(b+d)\Gamma(b+e)\Gamma(c+d)\Gamma(c+e)}{\Gamma(a+b+c+d)\Gamma(a+b+c+e)} \times$$

$$\times {}_3F_2 \left[\begin{array}{c} a+c,b+c,a+b \\ a+b+c+d,a+b+c+e \end{array}; 1 \right] \quad (2.9)$$

Левая часть симметрична по параметрам, поэтому симметрична и правая часть. Это тождество Куммера (см. следствие 3.3.5).

г) Добавление еще одного гамма-множителя к числителю. Применяя формулу Планшереля к паре функций

$${}_2F_1\left[\begin{matrix} a+c,a+d\\ a+b+c+d \end{matrix};-x\right] \qquad \text{ if } \qquad {}_2F_1\left[\begin{matrix} a+e,a+f\\ a+b+e+f \end{matrix};-x\right],$$

мы получаем тождество

$$\begin{split} \frac{1}{\pi} \int_0^\infty \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)\Gamma(d+is)\Gamma(e+is)\Gamma(f+is)}{\Gamma(2is)} \right|^2 ds &= \\ &= \frac{1}{2\pi i} \Gamma(a+c)\Gamma(a+d)\Gamma(c+d)\Gamma(b+e)\Gamma(b+f)\Gamma(e+f) \times \\ &\times \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} \Gamma \left[\frac{a+b+s, a+e+s, a+f+s, d-a-s, c-a-s, -s}{c+d-s, a+b+e+f+s} \right] ds \end{split} \tag{2.10}$$

Правая часть — линейная комбинация трех функций $_4F_3(1)$ с гамма-коэффициетами. Впрочем, Барнсовский интеграл можно воспринимать как окончательный ответ.

д) Добавление гамма-множителя у знаменателю. Теперь мы применяяем формулу Планшереля к паре функций

$$_{2}F_{1}\begin{bmatrix}p+b,q+b\\a+b\end{bmatrix};-x$$
 $(1+x)^{b-a}$ \mathbf{n} $_{2}F_{1}\begin{bmatrix}u+b,v+b\\a+b\end{bmatrix};-x$ $(1+x)^{b-a}$

Опуская промежуточные выкладки, приводим окончательный результат

$$\frac{1}{\pi} \int_{0}^{\infty} \left| \frac{\Gamma(b+is)\Gamma(p+is)\Gamma(q+is)\Gamma(u+is)\Gamma(v+is)}{\Gamma(2is)\Gamma(a+is)} \right|^{2} ds =
= \frac{1}{2\pi i} \Gamma \left[\frac{u+v, p+q, p+b, q+b}{a-v, u-v} \right] \times
\times \int_{-i\infty}^{i\infty} \Gamma \left[\frac{u+p+s, u+q+s, b+u+s, a-v+s, v-u-s, -s}{u+a+s, u+b+p+q+s} \right].$$
(2.11)

Два последних тождества не столь эстетичны как предыдущие. Рассмотрим, однако, два частных случая последнего интеграла.

е) Интеграл Нассраллаха—Рахмана. Полагая в последнем интеграле a=b+u+v+p+q (это приведет к сокращению гамма-множителей) и применяя теорему 2.4.3 основного текста книги (и поменяв обозначения), мы получаем интеграл Нассраллаха—Рахмана (его q-вариант есть в основном тексте книги, теорема 10.8.2)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \frac{\prod_{j=1}^{5} \Gamma(a_j + is)}{\Gamma(2is) \Gamma(\sum_{j=1}^{5} a_j + is)} \right|^2 ds = 2 \frac{\prod_{1 \le k < l \le 5} \Gamma(a_k + a_l)}{\prod_{k=1}^{5} \Gamma(a_1 + a_2 + a_3 + a_4 + a_5 - a_k)}$$

ж) Тождество Уиппла и симметрия многочленов Вильсона по параметрам. Теперь мы выписываем правую часть (2.11) через ${}_4F_3$,

$$\begin{split} &\Gamma\left[\begin{matrix} u+v,p+q,p+b,q+b\\ a-v,u-v \end{matrix}\right] \times \\ &\times \left\{\Gamma\left[\begin{matrix} v-u,u+p,u+q,u+b,a-v\\ u+a,u+b+p+q \end{matrix}\right] \right. {}_{4}F_{3}\left[\begin{matrix} u+p,u+q,u+b,a-v\\ 1+u-v,u+a,u+b+p+q \end{matrix}; 1\right] + \\ &+\Gamma\left[\begin{matrix} u-v,p+v,q+v,b+v,a-u\\ v+a,v+b+p+q \end{matrix}\right] \right. {}_{4}F_{3}\left[\begin{matrix} p+v,q+v,b+v,a-u\\ 1-v+u,v+a,v+b+p+q \end{matrix}; 1\right] \right\}.) \end{split}$$

Левая часть (2.11) симметрична по параметрам b, p, q, u, v, а правая часть в форме (2.12) таковой не выглядит. Это дает соотношения симметрии для ${}_4F_3$ в форме "линейная комбинация четырех слагаемых равна 0". Это "необрывающееся тождество Уиппла". Его "обрывающийся" вариант (теорема 3.3.3), интенсивно используемый в книге (симметрия многочленов Вильсона относительно параметров), получается при подстановке a = v - m

с целым m, тогда два слагаемых исчезают за счет множителей $\Gamma(-m)$ в знаменателе.

з) Еще одно обобщение интеграла де Бранжа-Вильсона. Применяя формулу Планшереля к $(1+x)^{b-a}(1+x+y)^{-b-c}$ и $(1+x)^{b-a}(1+x+z)^{-b-d}$, получаем

$$\frac{1}{\pi} \int_{0}^{\infty} \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)\Gamma(d+is)}{\Gamma(2is)} \right|^{2} \times \left. \times {}_{2}F_{1} \left[\begin{matrix} c-is,c+is\\ a+c \end{matrix}; -y \right] {}_{2}F_{1} \left[\begin{matrix} d-is,d+is\\ a+d \end{matrix}; -y \right] ds = (2.13) \right.$$

$$= \frac{\pi\Gamma(a+b)\Gamma(a+c)\Gamma(a+d)\Gamma(b+c)\Gamma(b+d)\Gamma(c+d)}{\Gamma(a+b+c+d)} {}_{2}F_{1} \left[\begin{matrix} 2b+c+d,c+d\\ a+b+c+d \end{matrix}; -y \right]$$

2.4. Вывод соотношения ортогональности для многочленов Вильсона. Вычислим теперь образ относительно $J_{b,c}^{-1}$ функции

$$|\Gamma(a+is)|^2W_n(s)$$
, где $W_n(x)=W_n(a,b,c,d)$ – многочлен Вильсона.

Т.е., нам надо вычислить интеграл

$$\begin{split} \frac{1}{\Gamma(b+c)} \int_0^\infty \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)} \right|^2 \ _2F_1 \left[\begin{matrix} b+is,b-is \\ b+c \end{matrix}; -x \right] W_n(s) \, ds = \\ &= \frac{(a+b)_n(a+c)_n(a+d)_n}{\Gamma(b+c)} \int_0^\infty \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)} \right|^2 \times \\ &\times _2F_1 \left[\begin{matrix} b+is,b-is \\ b+c \end{matrix}; -x \right] \sum_{k=0}^n \frac{(-n)_k(n+a+b+c+d-1)_k(a+is)_k(a-is)_k}{k!(a+b)_k(a+c)_k(a+d)_k} \, ds \end{split}$$

Мы получили линейную комбинацию известных нам (в силу формулы обращения и (2.3)) интегралов вида

$$\int_0^\infty \left| \frac{\Gamma(a+k+is)\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)} \right|^2 \, _2F_1 \left[\begin{matrix} b+is,b-is \\ b+c \end{matrix}; -x \right] \, ds = \\ = \frac{\Gamma(a+b+k)\Gamma(a+c+k)}{(1+x)^{a+b}}$$

В итоге получаем

$$\frac{\Gamma(a+b)\Gamma(a+c)(a+b)_n}{\Gamma(b+c)}(1+x)^{-a-b} \, _2F_1\left[\begin{array}{c} -n, n+a+b+c+d-1 \\ a+d \end{array}; \frac{1}{1+x} \right]$$

Это многочлен Якоби, записанный через переменную 1/(1+x).

Меняя местами a с d, мы получаем обратное индексное преобразование от $|\Gamma(d+is)|^2W_m(s)$. Теперь вычисляем интеграл (см. (3.8.3)

$$\frac{1}{\Gamma(b+c)} \int_0^\infty \left| \frac{\Gamma(a+is)\Gamma(b+is)\Gamma(c+is)\Gamma(d+is)}{\Gamma(2is)} \right|^2 W_n(s) \, W_m(s) \, ds$$

с помощью формулы Планшереля. Получается выражение вида

Переходя к переменной y=1/(1+x), мы получаем интеграл, дающий соотношения ортогональности для многочленов Якоби.

На первый взгляд, рассуждение может показаться проверочным, но в действительности оно дает также следующее:

Ортогональная система Вильсона с a = d есть образ ортогональной системы Якобу при индексном преобразовании.

Если учесть, что индексное преобразование было обнаружено в 1910г и стало вполне известным с 1950г, выглядит странным, что многочлены Вильсона были обнаружены так поздно...

3 Вывод формулы обращения

Выводов известно много, см. [10]. Можно например, различными способами разлагать индексное преобразование в произведение более простых интегральных преобразований, а далее писать формулы обращения для каждого сомножителя. Впрочем, оригинальный путь Вейля, основанный на спектральной теории выглядит и сейчас наиболее естественным (см., например, [3], §13.8, или [23]). Мы приведем вариант вывода, использующий минимум теории, но требующий избыточных вычислений. Подробно спектральная теория дифференциальных операторов излагается у Титчмарша [23], Данфорда, Шварца [3], главы XII–XIII и Наймарка [16].

3.1. Скачок резольвенты. Напомним спектральную теорему. Рассмотрим конечный или счетный набор мер $\mu_1, \ \mu_2, \ldots$ на \mathbb{R} , пространство $V[\vec{\mu}] := \oplus_j L^2(\mathbb{R}, \mu_j)$ и оператор $Z_{\vec{\mu}} : V[\vec{\mu}] \to V[\vec{\mu}]$, заданный формулой

$$\left[Z_{\vec{u}}f_1 \oplus f_2 \oplus \dots\right](x) = xf_1(x) \oplus xf_2(x) \oplus \dots$$

Теорема 3.1 Для любого самосопряженного (вообще говоря, неограниченного) оператора в гильбертовом пространстве H существует набор мер μ_j и унитарный оператор $U: H \to V[\vec{\mu}]$ такой, что $A = U^{-1}Z_{\vec{\mu}}U$

Для любого борелевского подмножества $M \subset \mathbb{R}$ рассмотрим подпространство $W(M) \subset V[\vec{\mu}]$, соостоящее из функций, равных нулю вне множества M. Определим спектральное подпространство $\Omega(M) := U^{-1}W(M)$. Через $P[\Omega]$ обозначим проектор на это подпространство.

Предлжение 3.2 а) Для конечного интервала $(a,b)\subset\mathbb{R},$

$$P[(a,b)] = \frac{1}{2\pi i} \lim_{\delta \to +0} \lim_{\varepsilon \to +0} \int_{a+\delta}^{b-\delta} \left((\lambda - i\varepsilon - A)^{-1} - (\lambda + i\varepsilon - A)^{-1} \right) d\lambda$$

Здесь предел понимается как предел в сильной операторной топологии, $T_n \to T$, если для любого вектора v выполнено $||T_n v - T v|| \to 0$.

Проверка этого высказывания достаточно очевидна (и является хорошим упражнением, в частности, для конечномерных пространств), мы с самого начала можем считать, что наш оператор действует в $V[\vec{\mu}]$.

Аналогично, для любого вектора v,

$$v = \frac{1}{2\pi i} \lim_{N \to \infty} \lim_{\varepsilon \to +0} \int_{-N}^{N} ((\lambda - i\varepsilon - A)^{-1} (\lambda + i\varepsilon - A)^{-1} v \, d\lambda$$

Вычисление предела дает спектральное разложение. Сейчас мы это проделаем для дифференциального оператора D, заданного формулой (1.5).

3.2. Решения уравнения $(D-\lambda)f=0$. При каждом λ это уравнение имеет два линейно независимых решения. Мы выберем два базиса в пространстве решений (оба состоят из куммеровских рядов), см. Бейтмен., 2.9. Первый базис состоит из функций

$$\varphi(x,\lambda) = {}_{2}F_{1}[b + \sqrt{\lambda}, b - \sqrt{\lambda}; b + c; -x]$$
(3.1)

$$\psi(x,\lambda) = (-x)^{1-b-c} {}_{2}F_{1}[1 + \sqrt{\lambda} - c, 1 - \sqrt{\lambda} - c; 2 - b - c; -x]$$
(3.2)

Второй базис $u_+(x)$ задается формулами

$$u_{+}(x,\lambda) = (-x)^{-b \mp \sqrt{\lambda}} {}_{2}F_{1}[b \pm \sqrt{\lambda}, 1 \pm \sqrt{\lambda} - c; 1 \pm 2\sqrt{\lambda}; -x^{-1}]$$
 (3.3)

Мы полагаем, что плоскость λ разрезана по отрицательной полуоси.

У первой пары функций хорошо видно поведение вблизи нуля, у второй – вблизи бесконечности. Чуть ниже нам понадобится формула, выражающая φ через u_+ и u_-

$$\varphi(x,\lambda) = B_{+}(\lambda)u_{+}(x,\lambda) + B_{-}(\lambda)u_{-}(x\lambda)$$

где

$$B_{\pm}(\lambda) = \frac{\Gamma(b+c)\Gamma(\mp\sqrt{\lambda})}{\Gamma(b\mp\sqrt{\lambda})\Gamma(c\mp\sqrt{\lambda})}$$
(3.4)

3.3. Самосопряженность. Пусть b>0, c>0. Мы определим оператор D на пространстве $\mathcal{D}(\mathbb{R}_+)$ гладких функций с компактным носителем на $(0,\infty)$. Оператор D формально симметричен относительно веса $x^{b+c-1}(1+x)^{b-c}\,dx$, т.е.

$$\int_0^\infty (Df)(x)\overline{g(x)}x^{b+c-1}(1+x)^{b-c} \, dx = \int_0^\infty f(x)\overline{Dg(x)}x^{b+c-1}(1+x)^{b-c} \, dx$$

с $f, g \in \mathcal{D}(\mathbb{R}_+)$. Его сопряженный оператор D^* определяется из условия $D^*g = h$, если $f, g \in L^2(\mathbb{R}_+, x^{b+c-1}(1+x)^{b-c})$ и

$$\int_0^\infty (Df)(x)\overline{g(x)}x^{b+c-1}(1+x)^{b-c}\,dx = \int_0^\infty f(x)\overline{h(x)}x^{b+c-1}(1+x)^{b-c}\,dx$$

для всех $f \in \mathcal{D}(\mathbb{R}_+)$. Этот оператор по-прежнему задается формулой (1.5), но его область определения увеличилась.

Напомним, что для любого формально симметричного оператора A числа dim ker $(A^*-\lambda)$ (индексы дефекта) постоянны на полуплоскостях Im $\lambda>0$ и Im $\lambda<0$. Оператор A существенно самосопряжен, если эти числа нулевые. Тем самым мы должны проверить, существуют при Im $\lambda\neq0$ у дифференциального уравнения $Df=\lambda f$ решения, лежащие в L^2 по нашему весу. Лля определенности, положим Im $\lambda>0$ /

Легко видеть, что в случае b+c>2 таких решений нет. А именно ψ слишком велико́ вблизи нуля, а u_- слишком велико́ около ∞ . Поэтому L^2 -решение должно совпадать с φ и u_+ одновременно, а они различны.

Поэтому D самосопряжен.

Замечание. Если b+c<2, то и φ и ψ лежат в L^2 вблизи 0. Поэтому $u_+\in L^2$, и тем самым D не самосопряжен. Мы рассширим область определения оператора D до пространства функций гладких на замкнутом луче $[0,\infty)$ и равных нулю при достаточно больших x. Тогда оператор становится самосопряженным. В дальнейшем мы не отслеживаем этот случай.

3.4. Резольвента.

Лемма 3.3 Резольвента $(D-\lambda)^{-1}$ оператора D определена в области $\mathbb{C}\setminus [-\infty,0)$ и задается формулой

$$L(\lambda)f(x) = \int_0^\infty K(x, y; \lambda) y^{b+c-1} (1+y)^{b+c} \, dy$$
 (3.5)

где ядро К – функция Грина –

$$K(x,y;\lambda) = \begin{cases} 2B_{-}(\lambda)^{-1}\lambda^{-1/2}\varphi(x,\lambda)u_{+}(y,\lambda), & ecau \ x \leqslant y \\ 2B_{-}(\lambda)^{-1}\lambda^{-1/2}\varphi(y,\lambda)u_{+}(x,\lambda), & ecau \ x \geqslant y \end{cases}$$
(3.6)

 $a B_{-}(\lambda)$ задается формулой (3.4)

Скачок резольвенты образуется на полуоси $\lambda \leqslant 0$ за счет скачка функции $\sqrt{\lambda}$ на разрезе. Вычисляя скачок резольвенты, мы получаем

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{0} \frac{d\lambda}{2\sqrt{\lambda}} \frac{\varphi(y,\lambda)}{B_{+}(\lambda)B_{-}(\lambda)} \int_{0}^{\infty} \varphi(z,\lambda)f(z)z^{b+c-1} (1+z)^{b-c} dz$$

Формула получается столь простой, потому что φ скачка не испытывает, а скачок u_+ оказывается пропорциональным φ .

Последняя формула и есть формула обращения.

Доказательство леммы. Прежде всего формально проверим, равенство $(D-\lambda)L(\lambda)=1$. Надо убедиться, что функция K удовлетворяет уравнению

$$(D_x - \lambda)K(x, y; \lambda)y^{b+c-1}(1+y)^{b+c} = \delta(x-y)$$
(3.7)

Очевидно, что вне диагонали x=y, равенство $(D_x-\lambda)K=0$ выполнено. На диагонали ядро K непрерывно, а первая производная испытывает скачок. Поэтому,

$$\begin{split} (D_x - \lambda) K(x, y; \lambda) &= x(x+1) \Big\{ \frac{\partial K(x, y, \lambda)}{\partial x} \Big|_{y=x+0} - \frac{\partial K(x, y, \lambda)}{\partial x} \Big|_{y=x-0} \Big\} \delta(x-y) = \\ &= 2B_-(\lambda)^{-1} \lambda^{-1/2} \Big[\varphi(y, \lambda)' u_+(y, \lambda) - \varphi(y, \lambda) u_+(y, \lambda)' \Big] \delta(x-y) \end{split}$$

В квадратных скобках стоит детерминант Вронского двух решений дифференциального уравнения $(D-\lambda)f$. С точностью до постоянного множителя, вронскиан пары решений определяется самим уравнением, в нашем случае он равен const $\cdot y^{-b-c}(1+y)^{c-b-1}$. Для вычисления постоянного множителя, мы отслеживаем асимптотику вронскиана при $y \to \infty$.

В действительности это вычисление достаточно для доказательства. Но не совсем очевидно, что наш оператор ограничен в L^2 . Эту трудность можно обойти следующим образом.

Так как D существенно самосопряжен, при $\lambda \notin \mathbb{R}$ оператор $(D-\lambda)^{-1}$ ограничен. В силу теоремы Лорана Шварца о ядре (см. [7]), этот оператор является интегральным, а ядро $K(x,y;\lambda)$ является обобщенной функцией двух переменных. Оно должно быть удовлетворять уравнению (3.7) и условию симметрии $K(y,x;\lambda) = \overline{K(x,y,\overline{\lambda})}$. Поэтому вне диагонали x=y функция должна удовлетворять системе уравнений

$$(D_x - \lambda)K = 0, \qquad (D_y - \lambda)K = 0$$

А дальше легко убедиться, что наше ядро K является единственным возможным кандидатом, все остальные решения системы слишком быстро растут.

3.5. Многочлены Романовского¹. Пусть теперь b < 0, b + c > 0. Пусть $m = 0, 1, \ldots, [-b]$. Рассмотрим многочлены p_m , заданные формулой

$$p_m(x) := \ _2F_1 \begin{bmatrix} -m, 2b+m \\ b+c \end{bmatrix} = \frac{\Gamma(b+c)\Gamma(-m-b)}{\Gamma(2b+m)\Gamma(c+b+m)} \ _2F_1 \begin{bmatrix} -m, 1-m-b-c \\ 2-b-c \end{bmatrix} = \frac{1}{x} \begin{bmatrix} -m, 1-m-b-c \\ 2-b-c \end{bmatrix} =$$

Теорема 3.4 а) Многочлены p_m содержатся в $L^2(\mathbb{R}_+, x^{b+c-1}(1+x)^{b-c})$

- b) $Dp_m = (b+m)^2 p_m$
- c) Многочлены p_m попарно ортогональны,

Утверждения a), b) очевидны, a c) следует из a) и b).

Таким образом, мы получили конечную систему ортогональных многочленов. Увеличить ее мы не можем, потому что одночлены x^N с бо́льшими номерами не лежат в L^2 .

 $^{^1\,\}rm Известный$ узбекский математик, основатель Ташкентского университета. Специалист по матстатистике

Таких систем странных конечных ортогональных систем известно довольно много (их перечислял П. Лески [12], [13], некоторые дополнения есть в [18]). Что это значит, видно из вышеприведенных рассмотрений.

А именно, при b < 0, b+c > 0 у нашего оператора D появляется конечное число дискретных собственных значений, которые и добавляются к нашему непрерывному спектру.

Разумеется, в наше вычисление будут внесены соответствующие изменения. А именно, у резольвенты (см. формулу (3.6)) появляются конечное число полюсов в точках $\lambda=(b+m)^2$, они связаны с появлением полюсов у $B_-(\lambda)^{-1}$. Чтобы найти скачок резольвенты нужно дополнительно посчитать вычеты резольвенты в этих полюсах.

4 Приложения к гармоническому анализу

4.1. Псевдоунитарные группы ранга 1. Пусть \mathbb{K} — это \mathbb{R} , \mathbb{C} или тело кватернионов \mathbb{H} . Отметим, что для первоначального ознакомления с ситуацией можно держать в голове лишь случай $\mathbb{K} = \mathbb{R}$. Ниже мы без доказательства приводим различные простые факты, читатель может или поверить на слово или проверить.

Через r мы обозначим размерность тела \mathbb{K} . Через \mathbb{K}^n мы обозначаем n-мерное пространство над \mathbb{K} со стандартным скалярным произведением.

$$\langle z, u \rangle = \sum z_j \overline{u}_j$$

Через $\mathrm{U}(1,n;\mathbb{K})$ мы обозначим $ncee \partial oyнumaphyo$ группу над \mathbb{K} , т.е. группу $(1+n)\times(1+n)$ -матриц $\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)$ над \mathbb{K} , удовлетворяющих условию

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^* = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Стандартные обозначения для групп $U(1, n; \mathbb{K})$ в случаях $\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ соответственно: O(1, n), U(1, n), Sp(1, n).

4.2. Однородные гиперболические пространства. Через $B_n(\mathbb{K})$ мы обозначим шар $\langle z,z\rangle<1$ в \mathbb{K}^n . Через S^{rn-1} мы обозначим сферу $\langle z,z\rangle=1$. Группа $\mathrm{U}(1,n;\mathbb{K})$ действует на $\mathrm{B}_n(\mathbb{K})$ дробно-линейными преобразованиями

$$z \mapsto z^{[g]} := (a + zc)^{-1}(b + zd)$$
 (4.1)

Стабилизатор K точки $0 \in \mathrm{B}_n(\mathbb{K})$ состоит из матриц вида

$$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \qquad |a| = 1, \quad d \in U(n; \mathbb{K})$$
 (4.2)

Поэтому $B_n(\mathbb{K})$ есть однородное пространство

$$B_n(\mathbb{K}) = U(1, n; \mathbb{K})/U(1; \mathbb{K}) \times U(n; \mathbb{K})$$

Замечание. В случае $\mathbb{K}=\mathbb{R}$, наш шар — это n-мерное пространство Лобачевского в модели Бельтрами–Клейна. Напомним, что в этом случае прямые в смысле Лобачевского являются отрезками, а наша сфера S^{n-1} является абсолютом в смысле Лобачевского. Группа O(1,n) является группой движений пространства Лобачевского. В случае $\mathbb{K}=\mathbb{C}$ или \mathbb{H} мы получаем т.н. гиперболические пространства, комплексные или кватернионные.

Якобиан преобразования (1.5) равен

$$J(g;z) = |a + zc|^{-r(1+n)}$$

Отметим простую формулу

$$1 - \langle z^{[g]}, u^{[g]} \rangle = (a + zc)^{-1} (1 - \langle z, u \rangle) \overline{(a + uc)}^{-1}$$

Отсюда видно, что $U(1, n; \mathbb{K})$ -инвариантная мера на $B_n(\mathbb{K})$ имеет вид

$$dm(z) = (1 - \langle z, z \rangle)^{-(n+1)r/2} dz$$

где через dz обозначена мера Лебега на $B_n(\mathbb{K})$.

Группа $U(1, n; \mathbb{K})$ действует в $L^2(B_n(\mathbb{K}), dm(z))$ заменами переменной

$$\rho(g)f(z) = f((a+zc)^{-1}(b+zd)) \tag{4.3}$$

Легко видеть, что эти операторы унитарны. Иными словами, мы получили унитарное бесконечномерное представление группы $\mathrm{O}(1,n)$.

Наша следующая задача — разложть это представление на неприводимые подпредставления.

4.3. Сферическая основная серия. Пусть $s \in \mathbb{R}$. Представление T_s сферической основной унитарной серии группы $\mathrm{U}(1,n;\mathbb{K})$ реализуется в $L^2(S^{rn-1})$ и задается формулой

$$T_s \begin{pmatrix} a & b \\ c & d \end{pmatrix} f(h) = f((a+hc)^{-1}(b+hd)) |a+hc|^{-(n+1)r/2+1+is}$$
 (4.4)

где $h \in S^{rn-1}$.

Замечание. Все эти представления неприводимы, представления T_s и T_{-s} эквивалентны (это не совсем очевидно, см. Виленкин [1968]).

Замечание. Слово "серия" употребляется потому что эти группы имеют несколько разных типов представлений. Слово "сферическая" в названии серии означает, что любое такое представление содержит (единственный) вектор, инвариантный относительно подгруппы K. В нашей модели это функция f=1.

4.4. Сплетающий оператор. Теперь рассмотрим пространство функций $\varphi(h,s)$ на полуцилиндре $S^{rn-1} \times \mathbb{R}_+$ (какое именно пространство, мы уточним ниже), пусть $\mathrm{U}(1,n;\mathbb{K})$ действует на этом пространстве по формуле

$$\tau(g)\varphi(h,s) = T_s(g)\varphi(h,s)$$

при любом фиксированном s мы получаем представление $T_s(g)$. Т.е., мы имеем что-то вроде прямой суммы всех представлений T_s по непрерывному параметру s (это называется "прямым интегралом").

Теперь определим оператор A из пространства $L^2(\mathbf{B}_n(\mathbb{K}), dm(z))$ в пространство функций на $S^{rn-1} \times \mathbb{R}_+$, заданный формулой

$$Af(h,s) = \int_{\mathbf{B}_{r}(\mathbb{K})} f(z) \frac{|1 - \langle z, h \rangle|^{-(n+1)r/2 + 1 + is}}{|1 - \langle z, z \rangle|^{(n+1)r/4 + 1/2 + is/2}} dz$$
(4.5)

Лемма 4.1 Оператор А является сплетающим, т.е.,

$$A\rho(q) = \tau(q)A$$
, для всех q .

Это утверждение является полезным двухшаговым упражнением. Вопервых, стоит "в лоб" проверить эту лемму, а во-вторых интересно придумать соображения, из которых можно придумать формулу для оператора A, заранее ее не зная.

4.5. Формула Планшереля.

Теорема 4.2 Оператор A является унитарным оператором из пространства

$$L^2(\mathbf{B}_n(\mathbb{K}), dm(z)) \to L^2\left(S^{rn-1} \times \mathbb{R}_+, \left| \frac{\Gamma(b+is)\Gamma(c+is)}{\Gamma(2is)} \right|^2 ds dh \right)$$
 (4.6)

где

$$b = (n+1)r/4 - 1/2;$$
 $c = (n-1)r/4 + 1/2$ (4.7)

Учитывая предудущую лемму, мы получаем, что оператор A отождествляет представление группы $\mathrm{U}(1,n;\mathbb{K})$ в L^2 на шаре с непрерывной прямой суммой представлений основной серии.

Доказательство. Прежде всего объясним внезапное появление Г-множителя. Для этого ограничим оператор A на пространство функций, зависящих лишь от радиуса. Удобно ввести переменную

$$x = \frac{|h|^2}{1 - |h|^2}$$

и положить f = f(x). Тогда соответствующая функция G(h, s) зависит лишь от переменной s, и несложное вычисление дает знакомую формулу

$$G(s) = \operatorname{const} \cdot \int_0^\infty f(x) \,_2 F_1(b + is, b - is; b + c; -x) x^{b+c-1} (1+x)^{b-c} dx \quad (4.8)$$

Итак, мы видим, что оператор A является унитарным оператором из пространства L^2 -функций на шаре, зависящих лишь от радиуса, в пространство функций на полуцилиндре, зависящих лишь от s.

Это – основное сображение², остался лишь розыгрыш стандартных теоретикопредставленческих трюков.

4.6. Окончание доказательства. Обозначим $G:=\mathrm{U}(1,n;\mathbb{K}),\ K:=\mathrm{U}(n,\mathbb{K}).$ Обозначим гильбертовы пространства L^2 из строчки (4.6) соответственно через V и W. Через V^K и W^K обозначим пространства K-неподвижных функций в V и W. Через P_V и P_W мы обозначим проекторы на V^K и W^K .

Напомним следующее стандартное утверждение.

Лемма 4.3 Пусть $\rho(k)$ — унитарное представление компактной группы K. Тогда проектор на подпространство K-неподвижных векторов задается формулой

$$P = \int_{K} \rho(k) \, dk$$

где K — мера Хаара на K, нормированная так, что мера всей группы равна 1

Следствие 4.4 $P_W A = A P_V$

Лемма 4.5 Каждое G-инвариантное пространство в V содержит глад-кую ненулевую функцию.

ДОКАЗАТЕЛЬСТВО. Рассмотрим последовательность гладких положительных функций r_j на G с компактным носителем, аппроксимирующих δ -функцию в единице. Для вектора $v \neq 0$ из подпространства рассмотрим последовательность (гладких) функций $\int r_j(g)\rho(g)v\,dg$, сходящуюся к v. \square

Лемма 4.6 Каждое G-инвариантное подпространство в V содержит K-инвариантный вектор.

Доказательство. Рассмотрим гладкую функцию f из подпространства. Пусть $f(a) \neq 0$. Рассмотрим $g \in G$ такой что $0^{[g]} = a$. Далее усредняем функцию $f(x^{[g]})$ по K.

Следствие 4.7 Линейная оболочка векторов вида $\rho(g)v$, где g пробегает G, а v пробегает V^K , плотна в V.

Доказательство. В противном случае берем ортогональное дополнение к этой линейной оболочке. В ней есть K-инвариантный вектор. \square

Лемма 4.8 Линейная оболочка векторов вида $\tau(g)w$, где g пробегает G, а w пробегает W^K , плотна в W.

 $^{^2}$ В случае $\mathbb{K}=\mathbb{C}$ можно также рассматривать действие группы $\mathrm{U}(1,n)$ в линейных расслоениях над шаром. Задача тоже сводится к индексному преобразованию (с другими параметрами), представление имеет конечный дискретный спектр, который контролируется многочленами Романовского.

Доказательство. Мы используем неприводимость представлений T_s основной серии. В качестве векторов w берем функции вида f(x,s)=1, если $|s-s_0|<\varepsilon$ и 0 в противном случае. Легко убедитсься, что функций, ортогональных ко всевозможным $\tau_q(g)f$, нет.

Теперь перейдем к собственно доказательству теоремы. Пусть $\rho(g)v$, $\rho(g')v'$ — два вектора только что упомянутого вида. Тогда

$$\begin{split} &\langle \rho(g)v, \rho(g')v'\rangle_{V} \stackrel{(\text{представление}\ U\ \text{унитарно})}{=} &\langle v, \rho(g^{-1}g')v'\rangle_{V} \stackrel{(P_{V}\ -\ \text{проектор})}{=} \\ &= &\langle v, P_{V}\rho(g^{-1}g')v'\rangle_{V} \stackrel{(\text{формула}\ \Pi,\text{паншереля})}{=} &\langle Av, AP_{W}\rho(g^{-1}g')v'\rangle_{W} = \\ &\stackrel{(A\ -\ \text{сплетающий оператор})}{=} &\langle Av, P_{W}\tau(g^{-1}g')Av'\rangle_{W} \stackrel{(P_{W}\ -\ \text{проектор})}{=} \\ &= &\langle Av, \tau(g^{-1}g)Av'\rangle_{W} \stackrel{(\text{представление}\ \tau\ \text{унитарно})}{=} &\langle \tau(g)Av, \tau(g')Av'\rangle_{W} \end{split}$$

References

- [1] Cherednik I. Harish-Chandra transform and difference operators. Preprint, available via http://xxx.lanl.gov.9706010
- [2] Cherednik, I.; Ostrik, V. From double Hecke algebra to Fourier transform. Selecta Math. (N.S.) 9 (2003), no. 2, 161–249.
- [3] Dunford, N., Schwartz, J.T. *Linear operators*, v.2, Wiley & Sons (1963): Русский перевод: Москва, Мир, 1966
- [4] Flensted-Jensen, M., Koornwinder, T. The convolution structure for Jacobi function expansions. Ark. Math., 11 (1973), 245–262.
- [5] Fock, V. A. On the representation of an arbitrary function by an integral involving Legendre's functions with a complex index. Доклады АН СССР 39, (1943). 253–256.
- [6] Groenevelt, W. The Wilson function transform. Int. Math. Res. Not. 2003, no. 52, 2779–2817.
- [7] Hörmander, L. The analysis of linear partial differential operators. V. 1. Distribution theory and Fourier analysis. Springer, Berlin, 1983.
- [8] Koelink E., Stockman J.V. Askey-Wilson transform scheme. Preprint available via http://xxx.lanl.gov/math/9912140
- [9] Koornwinder, T.H., A new proof of a Paley-Wiener theorem for Jacobi transform, Ark. Math., 13 (1975), 145-159.
- [10] Koornwinder, T.H., Jacobi functions and analysis on noncompact symmetric spaces in Special functions: group theoretical aspects and applications, eds. Askey R., Koornwinder T., Schempp, 1–85, Reidel, Dodrecht–Boston(1984)

- [11] Koornwinder, T.H. Special orthogonal polynomial systems mapping to each other by Fourier-Jacobi transform., Lect. Notes Math., 1171 (1985), 174–183.
- [12] Lesky, P. A. Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen. (German) Z. Angew. Math. Mech. 76 (1996), no. 3, 181–184.
- [13] Lesky, P. A. Unendliche und endliche Orthogonalsysteme von continuous Hahnpolynomen. (German), Results Math. 31 (1997), no. 1-2, 127–135.
- [14] Mehler, F.G., Ueber eine mit den Kugel und Cylindrfunctionen verwandte Function und ihre Anwedung in der Theorie der Elektricitatsvertheilung. Math. Ann., 18 (1881), 161–194.
- [15] Молчанов В.Ф. Формула Планшереля для псевдоримановых симметрических пространств ранга 1. Докл. АН СССР, 290 (1986), 3, 545–549.
- [16] Наймарк М. А. Линейные дифференциальные операторы. Москва, Наука, 1969
- [17] Неретин Ю.А., Индексное гипергеометрическое преобразование и имитация анализа ядер Березина на гиперболических пространствах, Мат. Сборник, 192 (2001), 3, 83–114;
- [18] Неретин Ю. А. Бета-интегралы и конечные ортогональные системы многочленов Вильсона. Мат. Сборник, 193 (2002), по. 7, 131–148;
- [19] Неретин Ю.А. Непрерывные аналоги разложения по многочленам Якоби и векторно-значные гипергеометрические ортогональные базисы. Функц. Анализ и прилож., the expansion in Jacobi polynomials, and vector-valued orthogonal bases. (Russian. Russian summary) Funktsional. Anal. i Prilozhen. 39 (2005), no. 2, 31–46, 94; translation in 39 (2005), no. 2, 106–119
- [20] Неретин Ю.А. Возмущение многочленов Якоби и кусочно-гипергеометрические ортогональные системы. Мат.сборник, 197 (2006) 1607-1633
- [21] Олевский М.Н. О представлении произвольной функции через интеграл с ядром, включающим гипергеометрическую функцию, Докл. АН СССР, 69 (1949), №1, 11–14
- [22] Romanovski, V.I. Sur quelques classes nouwels of polynomes orthogonaux. Compt. Rend. Acad. Sci. Paris 188 (1929), 1023–1025
- [23] Titchmarsh E.C. Eigenfunction expansions with second-order differential operators., Oxford, Clarendon Press (1946); Русский перевод: Издательство иностранной литературы (1960).

- [24] Weyl H. Uber gewonliche lineare Differentialgleichungen mis singularen Stellen und ihre Eigenfunktionen (2 Note). Nachr. Konig. Gess. Wissen. Gottingen. Math.-Phys., 1910, 442–467; Reprinted in Weyl H. Gessamelte Abhandlungen, Bd. 1, 222–247, Springer, 1968.
- [25] Wimp, Jet A class of integral transforms. Proc. Edinburgh Math. Soc. (2) $14\ 1964/1965\ 33{-}40$
- [26] Yakubovich, S.B., Luchko Yu.F., The hypergeometric approach to integral transforms and convolutions., Kluwer (1994).