Lecture 21 March 2023

21 March 2023 Kittapat Ratanaphupha

Lemma 3.6.12

Assuming $MA(\aleph_1)$. Let X be a ccc space and $\{U_\alpha : \alpha < \omega_1\}$ be a family of nonempty open subsets of X. Then there is an uncountable $A \subseteq \omega_1$ such that $\{U_\alpha : \alpha \in A\}$ has the fip.

Proof. For each $\alpha \in \omega_1$, define $V_{\alpha} = \bigcup_{\xi \in \alpha} U_{\xi}$. Note that $\langle V_{\alpha} : \alpha \in \omega_1 \rangle$ is \subseteq -decreasing. Claim there is some $\alpha \in \omega_1$ such that

$$\overline{V_{\beta}} = \overline{V_{\alpha}}$$
 for all $\beta \ge \alpha$.

(Using ccc; we will only consider V_{β} for $\beta \geq \alpha$.)

Suppose not. There for each $\alpha \in \omega_1$, there is some $\beta > \alpha$ such that $\overline{V_\beta} \subsetneq \overline{V_\alpha}$. Then, there is a strictly increasing sequence $\langle \alpha_\xi : \xi \in \omega_1 \rangle$ such that $\overline{V_{\alpha_{\xi+1}}} \subsetneq \overline{V_{\alpha_\xi}}$ for each ξ .

So, for each ξ , $\overline{V_{\alpha_{\xi}}} \not\subseteq \overline{V_{\alpha_{\xi+1}}}$ which implies $V_{\alpha_{\xi}} \not\subseteq \overline{V_{\alpha_{\xi+1}}}$. Then, for each ξ , $V_{\alpha_{\xi}} \setminus \overline{V_{\alpha_{\xi+1}}}$ is open and non-empty.

Hence $\{V_{\alpha_{\xi}} \setminus \overline{V_{\alpha_{\xi+1}}} : \xi \in \omega_1\}$ is an uncountable family of (pointwise) disjoint open non-empty sets.

This is impossible where X has ccc.

By the claim, we may assume, WLOG, that $\overline{V_{\beta}}$'s are equal for all $\beta \in \omega_1$ (i.e., α in the claim is 0).

 $V_0 \supseteq V_1 \supseteq V_2 \dots$

Define a poset (\mathcal{P}, \leq) by

 $\mathbb{P} = \{ p \subseteq V_0 : p \text{ is open and non-empty} \}.$

$$= \{ p \in \mathbb{O}_X : p \subseteq V_0 \}$$

and $p \leq q$ iff $p \subseteq q$. (Note: \mathbb{P} is a subposet of \mathbb{O}_X .)

This poset is ccc since X (and V_0) has ccc (subposet that has ccc also has ccc.)

The set has FIP!

For each $\beta \in \omega_1$, define

$$D_{\beta} = \{ p \in \mathbb{P} : \exists \xi > \beta \, (p \subseteq U_{\xi}) \}$$

To see that D_{β} is dense, let $p \in \mathbb{P}$. (Let $V_{\beta} = \bigcup_{\xi > \beta} U_{\xi}$.) Since $\overline{V_0} = \overline{V_{\beta}}$ and $p \subseteq V_0$,

$$p \cap V_{\beta} \neq \emptyset$$
.

(If $p \cap V_{\beta} = \emptyset$ then $p \cap \overline{V_{\beta}} = \emptyset$.) so $p \cap U_{\xi} \neq \emptyset$ for some $\xi > \beta$. Choose $q = p \cap U_{\xi}$. Then, $q \leq p$ and $q \in D_{\beta}$.

Now, we consider $\mathcal{D} = \{D_{\beta} : \beta \in \omega_1\}$ is a collection of dense subsets of \mathbb{P} , and $|\mathcal{D}| \leq \omega_1$.

By $MA(\aleph_1)$, there is a filter $G \subseteq \mathbb{P}$ such that $G \cap D_\beta \neq \emptyset$ for all $\beta \in \omega_1$.

Define,

$$A = \{ \xi \in \omega_1 : \exists p \in G(p \subseteq U_{\xi}) \}.$$

A is unbounded in ω_1 : Let $\beta \in \omega_1$. Since $G \cap D_{\beta} \neq \emptyset$, we can pick $p \in G \cap D_{\beta}$. As $p \in D_{\beta}$, $p \subseteq U_{\xi}$ for some $\xi > \beta$. So, $\xi \in A$.

 $\{U_{\xi}: \xi \in A\}$ has the fip: Let $U_{\alpha_1}, \ldots, U_{\alpha_n}$ with $\alpha_1, \ldots, \alpha_n \in A$. Then, for each $i \in \{1, \ldots, n\}, U_{\alpha_i} \supseteq p_i$ for some $p_i \in G$.

Since G is a filter, there is some $q \in G$ s.t. $q \leq p_i$ for all $i \in \{1, ..., n\}$. So $\emptyset \neq q \subseteq U_{\alpha_i}$ for all i. Hence, $\bigcap_{i=1}^{\infty} U_{\alpha_i} \neq \emptyset$.

Lemma 3.6.13

Assuming $MA(\aleph_1)$. Any product of two ccc spaces is also ccc.

Proof. Suppose X, Y are ccc spaces. Let $\mathcal{D} = \{U_{\alpha} \times C_{\alpha} : \alpha \in \omega_1\}$ be a collection of basic open subsets of $X \times Y$.

Idea: using Lemma 3.6.12 but the index may be not the same.

Consider $\{U_{\alpha} : \alpha \in \omega\}$ since X is ccc by Lemma 3.6.12, there is an uncountable $A \subseteq \omega_1$ such that

$$\{U_{\alpha}: \alpha \in A\}$$

has the fip. Consider $\{V_{\alpha} : \alpha \in A\}$. Since Y is ccc (and A is uncountable.) there exist distinct $\alpha, \beta \in A$ s.t. $V_{\alpha} \cap V_{\beta} \neq \emptyset$. By $(*), U_{\alpha} \cap U_{\beta} \neq \emptyset$.

X is a topological space. For any collection $\{U_{\alpha} : \alpha \in \omega_1\}$ of non-empty open sets. There exists $\{A \subseteq \omega_1\}$ with $|A| = \omega_1$ and $\{U_{\alpha} : \alpha \in A\}$ has the fip.

(The property will call \aleph_1 is precaliber of X has \aleph_1 as a precaliber to the ccc by $MA(\aleph_1)$

Lemma 3.6.7

There is a non-cc forcing poset \mathbb{P} such that $MA(\aleph_1)$ fails. Proof Consider $\mathbb{P} = \operatorname{Fn}(I, J)$. For each $i \in I$ and $j \in J$, define

$$D_i = \{ p \in P : i \in \text{dom}(p) \}$$

and

$$R_j = \{ p \in P : j \}$$

Since p is fintie $p \cup \{(i,j)\}$ and $p \cap \{(i',j')\}$. Similar as in the proof of Lemma 3.6.6, we can show taht D_i and R_j are dense in \mathbb{P} .

Consider $\mathcal{D} = \{D_i : i \in I\} \cup \{R_j : j \in J\}$. We have $|\mathcal{D}| \leq |I| + |J| = \aleph_1$.

By $MA(\aleph_1)$, we obtain a filter $G \subseteq \mathbb{P}$ s.t.

$$G \cap D_i \neq \emptyset \neq G \cap R_i$$

for any $i \in I$ and $j \in J$.

Similar as in the proof of Lemma 3.6.6. again. - f is a function (G is a filter) - dom(f) = I ($G \cap D_i \neq \emptyset$.) - ran(f) = J ($G \cap R_i \neq \emptyset$.) So $f: I \to J$ is onto, which is impossible.

Poset: Atom

Definition - $r \in \mathbb{P}$ is an atom if there is $p, q \leq r$ s.t. $p \perp q$. - \mathbb{P} is atomless if there are no atoms in \mathbb{P} ; i.e. $\forall p \in \mathbb{P} (q \leq p \land r \leq p \land q \perp r)$ (ccc and atom are independent to each other.)

Lemma 3.6.10

1. If \mathbb{P} has an atom, then $MA_{\mathbb{P}}(\kappa)$ holds for all κ

Proof. Define

$$G = \{ p \in \mathbb{P} : p \not\perp r \}.$$

Claim 1: $G \cap D \neq \emptyset$ for any dense $D \subseteq \mathbb{P}$.

Suppose $D \subseteq \mathbb{P}$ is dense.

Then, there is some $s \leq r$ s.t. $s \in D$. So, $s \in G \cap D$.

 $(\forall p \in \mathbb{P} \,\exists q \in D \, (q \le p))$

Claim 2: G is a filter.

Closed upwardness is clear.

Next, let $p, q \in G$.

We have s extends p, r and t extends q, r,

since r is an atom, we have u extending s, t.

So u extends p and q, and $u \in G$ (: $u \le r$.)

2. If \mathbb{P} is atomless, then $MA_{\mathbb{P}}(\kappa)$ is false for $\kappa = 2^{|\mathbb{P}|}$

Proof. Suppose that \mathbb{P} is atomless.

We show that for any filter $G \subseteq P$, there is some dense set $D \subseteq \mathbb{P}$ such that $G \cap D = \emptyset$.

Let G be a filter in \mathbb{P} .

Define $D = \mathbb{P} \setminus G$.

D is dense.

Let $p \in \mathbb{P}$.

If $p \notin G$, $p \in D$.

Suppose $p \in G$, p is not atom.

So, there exists $p, q \leq r$ s.t. $p \perp q$.

Since G is a filter, r or s lies outside G (i.e., lies inside D)