Poset Paper

Bow yow Wang and Chih chen Yuan

Institute of Information Science, Academia Sinica

Abstract. hello world

1 Introduction

Intro part here

2 Preliminaries

A partial order is a binary relation \leq that is reflexive, antisymmetric, and transitive. A set $\mathcal S$ with a partial order is called a partially ordered set(poset). A linear order < is a partial order that is total. If $\leq = \emptyset$, we call \leq the discreet order. A linear extension < of a partial order \leq is an extension of \leq that is total. Let $\mathcal E(\leq)$ be set of all linear extensions of \leq . We write $P \sqsubseteq L$ iff L extends P and L is a linear order.

For a poset P and $x, y \in \mathcal{P}$, let it be that $x \prec_P y \triangleq x \leq_P y \land \not\exists z \in \mathcal{P}, x \leq_P z \land z \leq_P y; x \parallel_P y \triangleq x \not\leq_P y \land y \not\leq_P x$, and, for linear extension $L, L' \in \mathcal{E}(P)$, that $L \leftrightarrow_{x,y} L' \triangleq x \prec_L y \land y \prec_{L'} x$.

Let the swap graph $\mathcal{G}(P)$ of poset P be the undirected graph (V, E) such that $V \triangleq \mathcal{E}(\leq)$ and $E \triangleq \{(L, L') | \exists x, y \in P, L \leftrightarrow_{x,y} L'\}.$

The Hasse diagram of a poset P is a directed acyclic graph constructed with transitivity removed. If L is a linear order, we shall consider it in string form of linearizations. For a poset P with \leq let $\mathcal{L}(P)$ be $\mathcal{E}(\leq)$ in string form; then, it is a subset of the permutations of elements of P; that is, $\mathcal{L}(P) \subseteq \mathfrak{S}(\mathcal{P})$. Note that in the case of discreet order, $\mathcal{L}(P) = \mathfrak{S}(\mathcal{P})$, and that for any poset, $\mathcal{L}(P)$ is the set of topological sort, in string form, of the Hasse diagram.

The poset cover problem finds, given a set of linearizations Υ , a set of posets \mathcal{C} , called a cover, such that $\Upsilon = \bigcup_{P \in \mathcal{C}} \mathcal{L}(P)$ and that $|\mathcal{C}|$ is minimal. This problem is proved to be NP-complete.(cite)

3 Related Theorems

Theorem 1. Permutations and Nerode

Theorem 2. (Corollary of Szpilrajn extension theorem) For a partial order \leq , $\leq = \bigcap_{<\in \mathcal{E}(\leq)} <$.

Theorem 3. (Heath and Nema) If $x \parallel y$ for \leq and there is $\leq \in \mathcal{E}(\leq)$ such that $x \prec y$ for \leq , then there is $\leq \in \mathcal{E}(\leq)$ such that $y \prec x$ for $\leq \in \mathcal{E}(\leq)$

Theorem 4. (Pruesse? and Ruskey) Swap graphs are connected

Theorem 5. Swap graphs are connected by Kendall tau paths

Definition 1. (Poset cover problem) A poset cover C of a set posets on S for a set of linearizations Υ satisfies the following: (1) $\forall L \in \Upsilon \exists P \in C, P \sqsubseteq L$; (2) $\forall L \in \mathfrak{S}(S) - \Upsilon \forall P \in C, P \not\sqsubseteq L$.

- 4 SAT Encoding Part
- 5 Exp Part
- 6 Conclusions
- 7 References