DATE: 12/21/2001

TIME: 10:27:14

OIPE

#2. Input Set : A:\ES.txt Output Set: N:\CRF3\12212001\J010227.raw 3 <110> APPLICANT: Hamer, Lisbeth Adachi, Kiichi DeZwaan, Todd M 5 Lo, Sze Chung C 6 ENTERED 7 Montenegro-Chamorro, Maria V Frank, Sheryl A 8 Darveaux, Blaise A g 10 Mahanty, Sanjoy K 11 Heiniger, Ryan W 12 Skalchunes, Amy R 13 Pan, Huaqin 14 Tarpey, Rex 15 Shuster, Jeffrey R Tanzer, Matthew M 18 <120> TITLE OF INVENTION: METHODS FOR THE IDENTIFICATION OF INHIBITORS OF 3-ISOPROPYLMALATE DEHYDRATASE AS ANTIBIOTICS 19 21 <130> FILE REFERENCE: 2131US C--> 23 <140> CURRENT APPLICATION NUMBER: US/10/010,227 C--> 23 <141> CURRENT FILING DATE: 2001-12-06 23 <160> NUMBER OF SEO ID NOS: 3 .25 <170> SOFTWARE: PatentIn version 3.1 27 <210> SEQ ID NO: 1 28 <211> LENGTH: 2337 29 <212> TYPE: DNA 30 <213> ORGANISM: Magnaporthe grisea 32 <400> SEQUENCE: 1 60 33 atgectggag cagaaagcae teegeagaee ttgtaegaea aggttetgea ageacaegtg 35 gtcgatgaga agctcgacgg cacagtcctc ttgtacatcg accgccacct tgtacatgag 120 180 37 gtcacatcac ctcaagcatt cgagggcctc aggaatgcag gccgtaaagt gcggagaccc 240 39 gactgcacct tggccaccac agaccataac gtccccacga cttcacggaa agctctcaag 300 41 gacattgcca gcttcatcaa agaggacgac tcaaggaccc aatgtgtgac tctggaggaa 360 43 aatqtcaaqq aqtttqqcqt cacatatttt ggcctcagcg acaagcgcca gggtattgtg 420 45 cacgtcattg gccctgagca aggcttcacg ctccccggaa caacggttgt gtgtggagac 480 47 agtcacacgt ctacccatgg cgcctttgga gcccttgcct ttggtatcgg taccagcgag 540 49 gttgagcacg tgctggccac tcagtgcttg atcaccaaga ggagcaagaa catgaggata 51 caagtegaeg gegagetgge teetggtgte ageteeaagg atgtegtget teatgeaate 600 53 ggtatcattg gtaccgctgg aggcaccggg gctgtcatcg agttctgtgg ttccgtcatc 660 55 cgcagcctca gcatggaggc ccgcatgtca atctgcaaca tgtccatcga gggaggtgcc 720 57 agggctggca tggtagcccc tgacgagatc accttcgaat acctcaaggg ccgcccgctc 780 59 gctccgaagt acgactcgcc cgagtggcac aaggctaccc aatactggaa gaaccttcag 840 900 61 tecqueecaq gtgeeaaata egatattgat gtetttattg aegeeaaaga cattgtaeca 960 63 accttgacat ggggcacaag tcccgaggat gttgttccga tcaccggcgt tgttcctgat 65 cctgagacgt ttgctaccga agcgaagaag gcggacgggc gacgcatgct gcagtacatg 1020 1080 67 ggactgaagg cgggtactcc catggaggac attccggtcg acaaagtctt catcggctcc 1140 69 tgcaccaatt ccaggattga ggatctccgt gctgctgccg cggtcgtaaa gggccggaaa 1200 71 aaagcaccca atgttaagag cgccatggtg gtgccgggat cgggcttggt caagactcaa

73 gctgaggagg aaggcctgga caagattttt gaggaggccg gctttgaatg gcgcgaggct

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/010,227

1260

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/010,227

DATE: 12/21/2001
TIME: 10:27:14

Input Set : A:\ES.txt

75 ggctgcagta tgtgccttgg catgaaccca gatattctcg ctccccagga gcgttgtgcc	1320
75 ggctgcagta tgtgccttgg catgaaccca gutattees geggccgcac tcatctcatg 77 agtaccagca accgcaactt cgagggtcgc cagggtgcag gcggccgcac tcatctcatg	1380
79 tececagea tggetgetge tgetggtate gteggtaag ttgcagatgt gagaaagttg	1440
81 accgattaca aggccagccc tcacattgca gcttaccaga aatcgacagt gacaaagccc	1500
81 accgattaca aggetagete tededeteged gestatoring at atcattge tgatattect 83 catgtggatg ageggateaa ccaagatgeg catgagaaag atateattge tgatatteet	1560
85 gaggacaca acggccctca caccaacacc tctgccagtg ttggcacttc agcagggctt	1620
87 cccaagttca ccattctcaa gggtatagcg gctccgctgg agaaggctaa tgttgacacc	1680
89 gacgccatca ttcccaaaca atttctcaag acaatcaaga ggacaggcct tggaaatgct	1740
91 ctgttctatg agatgaggtt caatgaggac ggcactgaga agagcgactt tgttctcaac	1800
93 aaggageegt accggaaage cagtattetg gtttgcaegg gtgccaactt tggatgtggg	1860
95 agetetegtg ageatgegee atgggetete aacgattttg geateaggag egteattgee	1920
07 contracting cagatatatt cttcaacaac teetteaaga acggeatget geogateeet	1980
00 stassagaga aggeteagat egaggeeate geegeegaag eeagggeggg eaaggaaate	2040
101 gaagttgagg tgggaaacga ggtgatcaag aacgcaaccg gcgagacgat ctgcacctte	2100
103 gaggtggagg agtttaggaa gcactgcttg gtcaatggtc tcgatgatat cggcttgacc	2160
105 atgragator angacangat cocconnecte gaggecanga tgaceaggga gaeteeergg	2220
107 ctogacoggaa ctogctacct caagegaaag qqtcaaqqtq gtaagetege ayeeaayyet	2280
109 gtgcccgtgc ctaccaccaa caggggcgag gagaagaagg agccgcttga gtggtga	2337
112 <210> SEQ ID NO: 2	
113 <211> LENGTH: 3235	
114 <212> TYPE: DNA	
115 <213> ORGANISM: Magnaporthe grisea	
117 /400	
110 ogttagagga aaccogcgotc gaggtotact agaatcoggo actoogatat ogcoattydd	60
100 totaggagg gaggaggttc aagaaagagac attcaagaca aadaagagct accytette	120
100 topothtogo of octaacet afettegeee gttegtetga atteadeat titteatige	180
124 tasttacttt atatastact accadtttcc tacacqaaca aaacceggeg accadacega	240
126 gotagogget tetteteeaa etacatetgt ettgaceeta titlgilige giggigieda	300 360
129 toattogtga taccgacttt cagtcctttc cagattccaa aaadadugee tyyayeayaa	420
120 aggretagge aggretteta coacaaggett ctgcaagcac acgtgglega lyayaagele	480
132 granger and toctottata categottes tageetgace ateggggeta gyeecayee	540
134 tagagtagea ceaageagea gettitgtea actgaecagg teletitget titgtagaec	600
126 gangattat acatagaata acataaccta taaqaaaccc aqcccacgga ccacaagcaa	660
130 gaggagaaac caaggcacta tattaacgca acgaaacggg cgctaacalg tilyaalgac	720
140 tactaccaac cattergagg ceteaggaat geaggeegta aagugeggag accegacege	780
142 accttggcca ccacagacca tgtaagtgaa gaagacctgt ataaaatctc cactccgata	840
144 teggetgeaa aagetaacee ttettttgt categeecat getagaacgt ceceacgaet	900
144 teggetgear augetatess testerotage treatcaaag aggacgacte aaggacccaa	960
148 tgtgtgactc tggaggaaaa tgtcaaggag tttggcgtca catattttgg cctcagcgac	1020
150 aagegecagg gtattgtgca egteattgge cetgageaag getteaeget eeeeggaaca	1080
150 adagegedagg gedengeren between de	1140
152 deggetegete gesyagategetegetegetegetegetegetegetegeteget	1200
156 agcaagaaca tgaggataca agtcgacggc gagctggctc ctggtgtcag ctccaaggat	1260
158 gtcgtgcttc atgcaatcgg tatcattggt accgctggag gcaccggggc tgtcatcgag	1320
160 ttctgtggtt ccgtcatccg cagcctcagc atggaggccc gcatgtcaat ctgcaacatg	1380
162 tocategagg gaggtgccag ggctggcatg gtagcccctg acgagatcac cttcgaatac	1440
164 ctcaagggcc gcccgctcgc tccgaagtac gactcgcccg agtggcacaa ggctacccaa	1500
166 tactggaaga accttcagtc cgacccaggt gccaaatacg atattgatgt ctttattgac 168 gccaaagaca ttgtaccaac cttgacatgg ggcacaagtc ccgaggatgt tgttccgatc	1560
168 gccaaagaca ttgtaccaac cttyacatyy gycacaagec cogaggacys cyclon	

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/010,227

DATE: 12/21/2001 TIME: 10:27:14

Input Set : A:\ES.txt

```
1620
170 accggcgttg ttcctgatcc tgagacgttt gctaccgaag cgaagaaggc ggacgggcga
172 cgcatgctgc agtacatggg actgaaggcg ggtactccca tggaggacat tccggtcgac
                                                                       1680
174 aaagtettea teggeteetg caccaattee aggattgagg ateteegtge tgetgeegeg
                                                                       1740
176 gtcgtaaagg gccggaaaaa agcacccaat gttaagagcg ccatggtggt gccgggatcg
                                                                       1800
178 ggcttggtca agactcaagc tgaggaggaa ggcctggaca agatttttga ggaggccggc
                                                                       1860
180 tttgaatggc gcgaggctgg ctgcagtatg tgccttggca tgaacccaga tattctcgct
                                                                       1920
182 ccccaggagc gttgtgccag taccagcaac cgcaacttcg agggtcgcca gggtgcaggc
                                                                       1980
184 ggccgcactc atctcatgtc cccagtcatg gctgctgctg ctggtatcgt cggtaagctt
                                                                       2040
186 gcagatgtga gaaagttgac cgattacaag gccagccctc acattgcagc ttaccagaaa
                                                                        2100
188 tcgacagtga caaagcccca tgtggatgag cggatcaacc aagatgcgca tgagaaagat
                                                                       2160
190 atcattgctg atattcctga ggacaacaac ggccctcaca ccaacacctc tgccagtgtt
                                                                       2220
192 ggcacttcag cagggcttcc caagttcacc attctcaagg gtatagcggc tccgctggag
                                                                       2280
194 aaggctaatg ttgacaccga cgccatcatt cccaaacaat ttctcaagac aatcaagagg
                                                                       2340
196 acaggeettg gaaatgetet gttetatgag atgaggttea atgaggaegg caetgagaag
                                                                        2400
198 agcgactttg ttctcaacaa ggagccgtac cggaaagcca gtattctggt ttgcacgggt
                                                                       2460
200 gccaactttg gatgtgggag ctctcgtgag catgcgccat gggctctcaa cgattttggc
                                                                       2520
202 atcaggageg teattgeece gtegttegea gatatattet teaacaacte etteaagaac
                                                                        2580
204 ggcatgctgc cgatccctat caaggaccag gctcagatcg aggccatcgc cgccgaagcc
                                                                        2640
206 agggcgggca aggaaatcga agttgacctc ccaaaccagc tgatcaagaa cgcaaccggc
                                                                        2700
208 gagacgatct gcactttcga ggtggaggag tttaggaagc actgcttggt caatggtctc
                                                                        2760
210 gatgatatcg gcttgaccat gcagatggaa gacaagatcg ccgagttcga ggccaagatg
                                                                        2820
212 accagggaga ctccctggct cgacggaact ggctacctca agcgaaaggg tcaaqgtggt
                                                                        2880
214 aagctcgcag ccaaggctgt gcccgtgcct accaccaaca ggggcgagga gaagaaggag
                                                                        2940
216 ccgcttgagt ggtgacggct tcctaacgaa gtgttgtcga aaacgaaagg cgttaatcgg
                                                                        3000
218 ttcaactggt gaaaactatt attcggttgg gatttatgaa ataaccctgc gaaagggact
                                                                        3060
220 ctcgttgagc ttgcgattat tgtactgcga tatcagtgtg ggaaattttc tgcgtcagac
                                                                        3120
222 tttactgtaa tgctcttctt cttcaagaaa gatcttagtg ttttgatttt ctacaatgag
                                                                        3180
3235
227 <210> SEQ ID NO: 3
228 <211> LENGTH: 778
229 <212> TYPE: PRT
230 <213> ORGANISM: Magnaporthe grisea
232 <400> SEQUENCE: 3
234 Met Pro Gly Ala Glu Ser Thr Pro Gln Thr Leu Tyr Asp Lys Val Leu
235 1
                                        10
238 Gln Ala His Val Val Asp Glu Lys Leu Asp Gly Thr Val Leu Leu Tyr
                20
                                    25
242 Ile Asp Arg His Leu Val His Glu Val Thr Ser Pro Gln Ala Phe Glu
                                40
                                                    45
246 Gly Leu Arg Asn Ala Gly Arg Lys Val Arg Arg Pro Asp Cys Thr Leu
247
250 Ala Thr Thr Asp His Asn Val Pro Thr Thr Ser Arg Lys Ala Leu Lys
                        70
251 65
254 Asp Ile Ala Ser Phe Ile Lys Glu Asp Asp Ser Arg Thr Gln Cys Val
                                        90
258 Thr Leu Glu Glu Asn Val Lys Glu Phe Gly Val Thr Tyr Phe Gly Leu
                                    105
                100
262 Ser Asp Lys Arg Gln Gly Ile Val His Val Ile Gly Pro Glu Gln Gly
                                120
                                                    125
            115
263
```

RAW SEQUENCE LISTING DATE: 12/21/2001 PATENT APPLICATION: US/10/010,227 TIME: 10:27:14

Input Set : A:\ES.txt

266	Phe	Thr	Leu	Pro	Gly	Thr		Val	Val	Cys	Gly	Asp	Ser	His	Thr	Ser
267 270	Thr	130 His	Glv	Ala	Phe	Gly	135 Ala	Leu	Ala	Phe	Gly	140 Ile	Gly	Thr	Ser	Glu
	145	1110	011	2124		150					155		-			160
274	Val	Glu	His	Val	Leu	Ala	Thr	G1n	Cys	Leu	Ile	Thr	Lys	Arg	Ser	Lys
275				::	165					170					175	
278	Asn	Met	Arg	Ile	Gln	Val	Asp	Gly		Leu	Ala	Pro	Gly		Ser	Ser
279				180					185			_		190		
282	Lys	Asp	Val	Val	Leu	His	Ala		Gly	Ile	Ile	Gly		Ala	Gly	GTA
283			195			_		200		_		1	205	a	T	C
	Thr		Ala	Val	Ile	Glu		Cys	GLY	Ser	Val		Arg	ser	Leu	ser
287		210			\	G	215	O) an	Wot	Cor	220	C111	Clv	G1 v	Δla
		GIu	АТа	Arg	мет	Ser 230	TTE	Cys	ASII	мес	235	116	Giu	GIY	GLY	240
291	225	7 1 n	C1 17	Mot	17 a 1	Ala	Dro	Δen	Glu	Tle		Phe	Glu	Tvr	Leu	
294	AIG	АТа	GIY	Mec	245	ита	110	пор	Olu	250	1111			-1-	255	-1 -
293	Glv	Ara	Pro	Leu		Pro	Lvs	Tvr	Asp		Pro	Glu	Trp	His	Lys	Ala
299	Ory	1119	110	260			-1-	- 1	265				_	270		
302	Thr	Gln	Tyr	Trp	Lys	Asn	Leu	Gln	ser	Asp	Pro	Gly	Ala	Lys	Tyr	Asp
303			275					280					285			
306	Ile	Asp	Val	Phe	Ile	Asp	Ala	Lys	Asp	Ile	Val	Pro	Thr	Leu	Thr	${\tt Trp}$
307		290					295			_		300		1	_	
		Thr	Ser	Pro	Glu	Asp	Val	Val	Pro	Ile	Thr	GLY	Val	Val	Pro	Asp
311	305					310	a 1	31.	T	t	315	7 an	C111	λrα	λνα	320 Mot
	Pro	GLu	Thr	Phe	325	Thr	GIU	АТа	ьуѕ	330	Ата	ASP	GTÄ	AIG	335	Mec
315	T 011	Cln	Ттт	Mot		Leu	T.vs	Δla	Glv		Pro	Met.	Glu	Asp		Pro
319	пеп	GTII	тут	340	GIY	пси	цуз	11.14	345					350		
322	Val	Asp	Lvs		Phe	Ile	Gly	Ser	Cys	Thr	Asn	Ser	Arg	Ile	Glu	Asp
323			355					360					365			
326	Leu	Arg	Ala	Ala	Ala	Ala	Val	Val	Lys	Gly	Arg	Lys	Lys	Ala	Pro	Asn
327		370					375					380	_	•		
		Lys	Ser	Ala	Met	Val	Val	Pro	Gly	Ser	Gly	Leu	Val	Lys	Thr	GIN
331	385		_			390	_	_	-1	D1	395	a 1	710	C1	Dho	400
	Ala	Glu	GLu	GLu		Leu	Asp	ьуs	тте	410	Giu	GIU	Ата	GTÀ	415	GIU
335	Шжж	7 ma	C1	ר [ת	405	Cys	Sar	Met	Cvc		Glv	Met	Asn	Pro		Tle
339	тър	ALG	GIU	420	СТУ	Cys	DET	MCC	425	пси	011	1100		430		
342	Len	Δla	Pro		Glu	Arg	Cvs	Ala		Thr	Ser	Asn	Arg	Asn	Phe	Glu
343		1114	435	0	014	5	-1-	440					445			
		Arq	Gln	Gly	Ala	Gly	Gly	Arg	Thr	His	Leu	Met	Ser	Pro	Val	Met
347	_	450					455				•	460				
350	Ala	Ala	Ala	Ala	Gly	Ile	Val	Gly	Lys	Leu		Asp	Val	Arg	Lys	Leu
351	465					470			-		475	_	a 1.	T	0	480
		Asp	Tyr	Lys		Ser	Pro	His	Ile	Ala	Ala	тyr	GIN	ьys	Ser 495	THE
355		m¹	.	ъ	485		7	C1	7 ~~	490	700	Cln	λαν	λ 1 =		Glu
		Thr	гля	Pro 500	HIS	val	ASP	GIU	505	тте	noil	GTII	vsh	510	1113	Glu
359	Luc	λαρ	Tla		Δla	Aen	Tle	Pro		Asn	Asn	Asn	Glv		His	Thr
302	тìХ	ASP	TIE	116	ліа	чэр	-1C	110	JIU				1			

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/010,227

DATE: 12/21/2001
TIME: 10:27:14

Input Set : A:\ES.txt

363			515					520					525			
366 367	Asn	Thr 530	Ser	Ala	Ser	Val	Gly 535	Thr	Ser	Ala	Gly	Leu 540	Pro	Lys	Phe	Thr
370 371		Leu	Lys	Gly	Ile	Ala 550	Ala	Pro	Leu	Glu	Lys 555	Ala	Asn	Val	Asp	Thr 560
374 375	Asp	Ala	Ile	Ile	Pro 565	Lys	Gln	Phe	Leu	Lys 570	Thr	Ile	Lys	Arg	Thr 575	Gly
378 379	Leu	Gly	Asn	Ala 580	Leu	Phe	Tyr	Glu	Met 585	Arg	Phe	Asn	Glu	Asp 590	Gly	Thr
382 383	Glu	Lys	Ser 595	Asp	Phe	Val	Leu	Asn 600	Lys	Glu	Pro	Tyr	Arg 605	Lys	Ala	Ser
386 387	Ile	Leu 610	Val	Cys	Thr	Gly	Ala 615	Asn	Phe	Gly	Cys	Gly 620	Ser	Ser	Arg	Glu
390 391		Ala	Pro	Trp	Ala	Leu 630	Asn	Asp	Phe	Gly	Ile 635	Arg	Ser	Val	Ile	Ala 640
394 395	Pro	Ser	Phe	Ala	Asp 645	Ile	Phe	Phe	Asn	Asn 650	Ser	Phe	Lys	Asn	Gly 655	Met
398 399	Leu	Pro	Ile	Pro 660	Ile	Lys	Asp	Gln	Ala 665	Gln	Ile	Glu	Ala	Ile 670	Ala	Ala
402 403	Glu	Ala	Arg 675	Ala	Gly	Lys	Glu	Ile 680	Glu	Val	Asp	Leu	Pro 685	Asn	Gln	Leu
406 407	Ile	Lys 690	Asn	Ala	Thr	Gly	Glu 695	Thr	Ile	Cys	Thr	Phe 700	Glu	Val	Glu	Glu
410 411		Arg	Lys	His	Cys	Leu 710	Val	Asn	Gly	Leu	Asp 715	Asp	Ile	Gly	Leu	Thr 720
414 415	Met	Gln	Met	Glu	Asp 725	Lys	Ile	Ala	Glu	Phe 730	Glu	Ala	Lys	Met	Thr 735	Arg
418 419	Glu	Thr	Pro	Trp 740	Leu	Asp	Gly	Thr	Gly 745	Tyr	Leu	Lys	Arg	Lys 750	Gly	Gln
422 423	Gly	Gly	Lys 755	Leu		Ala	Lys	Ala 760	Val	Pro	Val	Pro	Thr 765	Thr	Asn	Arg
426 427	Gly	Glu 770	Glu	Lys	Lys	Glu	Pro 775	Leu	Glu	Trp						

DATE: 12/21/2001

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/010,227 TIME: 10:27:15

Input Set : A:\ES.txt

Output Set: N:\CRF3\12212001\J010227.raw

L:23 M:270 C: Current Application Number differs, Replaced Current Application No L:23 M:271 C: Current Filing Date differs, Replaced Current Filing Date