Artificial Intelligence

Adversarial Search Probability

Tic-Tac-Toe Game Tree

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
 - Time: $O(b^m)$
 - Space: O(bm)
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:
- e.g. $f_1(s)$ = (num white queens num black queens), etc.

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

Game Tree Pruning

Minimax Example

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children
 - n's estimate of the childrens' min is dropping
 - Who cares about n's value? MAX
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, MAX will avoid it, so we can stop considering n's other children (it's already bad enough that it won't be played)

MAX version is symmetric

Alpha-Beta Implementation

MIN

α: MAX's best option on path to root
β: MIN's best option on path to root
ΜΑΧ

MIN

```
initialize v = -\infty

for each successor of state:

v = \max(v, value(successor, \alpha, \beta))

if v \ge \beta return v

\alpha = \max(\alpha, v)

return v
```

```
initialize v = +\infty

for each successor of state:

v = min(v, value(successor, \alpha, \beta))

if v \le \alpha return v

\beta = min(\beta, v)

return v
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to $O(b^{m/2})$

Best Case Complexity

$$S_{m} = S_{m-1} + (b-1)R_{m-1}$$

$$= (S_{m-2} + (b-1)R_{m-2}) + (b-1)S_{m-2}$$

$$= bS_{m-2} + (b-1)R_{m-2}$$

$$= bS_{m-2} + (b-1)S_{m-3} < (2b-1)S_{m-2}$$

$$(S_{m-3} < S_{m-2}) (R_{m-2} = S_{m-3})$$

$$< 2bS_{m-2}$$

$$S_m = S_{m-1} + (b-1)R_{m-1}$$
$$R_m = S_{m-1}$$

$$(S_{m-3} < S_{m-2}) (R_{m-2} = S_{m-3})$$

For even $m, S_m \leq \left(\sqrt{2b}\right)^m$

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection

 This is a simple example of metareasoning (computing about what to compute)

Types of Games

Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

Course Topics

Search problems

Markov decision processes

Constraint satisfaction problems

Adversarial games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning

Today

Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbuster

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Associate a probability with each value

Temperature:

P(T)T P

hot	0.5
cold	0.5

Weather:

P(W)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(T)	
Т	Р
hot	0.5
cold	0.5

I(VV)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

D(W)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

 $\forall x \ P(X=x) \ge 0$ and $\sum P(X=x) = 1$ Must have:

Shorthand notation:

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

OK if all domain entries are unique

$$\sum_{x} P(X = x) = 1$$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

 $P(x_1, x_2, ..., x_n)$

– Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Size of distribution if n variables with domain sizes d?

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called *outcomes*
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

More Examples

Random Variables: function defined over sample space:

"sum of the values showing on top of dice"

$$X\left(\begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}\right) = 5$$

$$X\left(\begin{array}{c} \blacksquare \blacksquare \end{array}\right) = 10$$

- Domain of Random Variable: {1, 2, ..., 12}
- Events: Subset of sample space

$$P(X = 5) = 4/36$$

Quiz: Events

• P(-y OR +x) ?

P(X,Y)

Χ	Υ	Р
+X	+y	0.2
+X	-y	0.3
-X	+y	0.4
-X	-у	0.1

Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed

rows by adding

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

	$\mathbf{\nabla}$	
P(w) =	P(t,w)	
- (**)	<u></u>	
		

P(T)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions

X	Υ	Р
+x	+y	0.2
+X	-y	0.3
-X	+y	0.4
-X	-y	0.1

X	Р
+X	
-X	

Υ	Р
+y	
-y	

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P	(T	7	\overline{W})
	`	- /		

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

• P(+x | +y)?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+χ	-y	0.3
-X	+y	0.4
-X	-у	0.1

• P(-x | +y)?

• P(-y | +x)?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Joint Distribution

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities P(c, W)

matching the _____ evidence

Т	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE

the selection (make it sum to one)

P(W|T=c)

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

evidence

0.4

0.1

0.2

0.3

sun

rain

sun

rain

hot

hot

cold

cold

T W P cold sun 0.2 cold rain 0.3

the selection (make it sum to one)

NORMALIZE

W P sun 0.4 rain 0.6

P(W|T=c)

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

• P(X | Y=-y)?

X	Υ	Р
+X	+ y	0.2
+χ	-y	0.3
-X	+y	0.4
-X	-y	0.1

joint probabilities matching the evidence

NORMALIZE

the selection (make it sum to one)

To Normalize

• (Dictionary) To bring or restore to a normal condition

Procedure:

– Step 1: Compute Z = sum over all entries

Step 2: Divide every entry by Z

All entries sum to ONE

Example 1

Example 2

Т	W	Р		Т	W	Р
hot	sun	20	Normalize	hot	sun	0.4
hot	rain	5		hot	rain	0.1
cold	sun	10	Z = 50	cold	sun	0.2
cold	rain	15		cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
 - Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: Q Hidden variables: $H_1 \dots H_r$ All variables $P(Q|e_1 \dots e_k)$

* Works fine with multiple query variables, too

Step 1: Select the entries consistent with the evidence

1	×	P(x)	
. A	-3	0.05	
TA	-1	0.25	3
	0	0.0	7
	1	0.2	
	5	0.01	1

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, \underbrace{h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1\cdots e_k) = \frac{1}{Z}P(Q,e_1\cdots e_k)$$

Inference by Enumeration

P(W)?

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y) \Longrightarrow P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(D,W)

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Bayes Rule

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

Posterior
$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - Cause: meningitis (M)
 - Effect: stiff neck (S)

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

M (Cause)	S (Effect)	Р
+m	+s	0.8*0.0001
+m	-S	0.2*0.0001
-m	+s	0.01*0.9999
-m	-S	0.99*0.9999

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

48

=0.0000792

Quiz: Bayes' Rule

• Given:

P(D|W)

P(W)			
R	Р		
sun	0.8		
rain	0.2		

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

What is P(W | dry)?

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

[Demo: Ghostbuster – no probability (L12D1)₅

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(C | G)
 - Given: we know what our sensor!
 - C = color measured at (1,1)
 - E.g. P(C = yellow | G=(1,1)) = 0.1

```
    0.11
    0.11
    0.11

    0.11
    0.11
    0.11
```

```
Here are the instructions about how to run it: Click the grid to guess and try to bust the ghost current dir:

Iraceback (most recent call last):
File "demo.py", line 114, in (module)
play(commands lint(inp) - 11)
File "demo.py", line 26, in play
call('pwd')
File "G:\Python27\lib\subprocess.py", line 493, in call
return Popen(*popenargs, **kwargs).wait()
File "G:\Python27\lib\subprocess.py", line 679, in __init__
erread, errerite)
File "G:\Python27\lib\subprocess.py", line 896, in _execute_child
startupinfo)
WindowsError: [Error 2] The system cannot find the file specified

C:\Python27\new_workspace)python demo.py
Which lecture do you want [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 2
1]712
Here are all the demos for lec 12:
1: Ghost buster with no probability
2: Ghost buster with probability
3: Ghost buster with probability
3: Ghost buster with UPI
Enter any index to play any demo and up to go to the upper menu
```

Probability Summary

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
- X, Y independent if and only if: $\forall x, y : P(x,y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \quad X \perp \perp Y|Z$$

Definition of Expectation

 DEF: Let X be a random variable on the finite sample space S. The expected value (or mean) of X is the weighted average:

$$E(X) = \sum_{s \in S} p(s) \cdot X(s)$$

- EG: Consider the lottery. Assume:
 - ticket costs \$0.50
 - jackpot is \$18,000,000
 - no taxes, no inflation, no shared winnings
 - consider only first prize
- Q: What is the expected net winnings?

Expectation of Lottery

- A: The sample domain is {win, lose}
 - -p (win) = 1 / 45,057,474 = 0.000000022193876203...
 - -p (lose) = 1 p (win) = 0.999999977806124797...
- The random variable for net winnings is
 - X (win) = 18,000,000 0.50 = 179999999.5
 - X (lose) = -0.50
- The expected winnings is negative 1 dime:
 - p (win) ·X (win) + p (lose) ·X (lose) = 0.000000022193876203·17999999.5 0.999999977806124797·.5 ≈ -10.1¢

Expectation of Lottery Detailed Analysis

Actual prizes for drawing were:

• First-prize Payout: \$18,000,000.00

– Probability: 0.0000000222

Second-prize Payout: \$184,854.00

– Probability: 0.0000001332

• Third-prize Payout: \$2,225.00

– Probability: 0.0000070577

Fourth-prize Payout: \$31.00

– Probability: 0.0004587474

• Fifth-prize Payout: \$1.00

– Probability: 0.0103982749

• None of the above. Probability: 0.9891357646

Expectation of Lottery Detailed Analysis

Expected net winnings. Negative 3.6 cents:

```
(18,000,000.00 - 0.50) · 0.0000000222

+ (184,854.00 - 0.50) · 0.0000001332

+ (2,225.00 - 0.50) · 0.0000070577

+ (31.00 - 0.50) · 0.0004587474

+ (1.00 - 0.50) · 0.0103982749

+ (-0.50) · 0.9891357646

= -0.0355
```

Game with Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

 Why wouldn't we know what the result of an action will be?

- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play

Video of Demo Min vs. Exp (Min)

Video of Demo Min vs. Exp (Exp)

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

initialize $v = -\infty$ for each successor of state:

v = max(v, value(successor)
return v

initialize v = 0
for each successor of state:
 p = probability(successor)
 v += p * value(successor)
return v

Expectimax Pseudocode

initialize v = 0
for each successor of state:
 p = probability(successor)
 v += p * value(successor)
return v

$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Course Topics

Search problems

Markov decision processes

Constraint satisfaction problems

Adversarial games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning