SelfE CPU Scheduling

- 1. Which scheduler choose the process to be executed next by the CPU?
 - a. Short-term
 - b. Long-term
 - c. Medium-term
- 2. List the reasons that may cause the dispatcher to do a context switch by replacing the current process by another process
- 3. type of algorithms will not cause starvation of processes
- 4. Suggest a way to mitigate the effect of starvation in priority scheduling
- 5. Which algorithm suffer from Convoy effect and what is the remedy for overcoming that?
- 6. Justify that preemption affects the I/O operation performed for a process
- 7. Differentiate short-term scheduler and dispatcher
- 8. Suggest the best algorithm to improve the following metrics
 - a. Reducing Turnaround time
 - b. Reducing Response time
 - c. Increasing Throughput
 - d. Least overhead in implementing
 - e. Least number of context switches
 - f. Favoring short processes without requiring burst time value in advance
 - g. Causing less damage for I/O bound processes
- 9. Write the formulas for calculating the following
 - a. Turnaround time
 - b. Response time
 - c. Waiting time
- 10. Apply the multi-level feedback scheduling on the following processes and calculate the average turnaround time. Assume that there are 3 levels of queues from Q0 to Q2 and a process that is scheduled from Qi level is allowed to execute 2i+1 time units.

Process	Arrival Time	Burst Time
P1	0	12
P2	1	8
Р3	2	3
P4	3	4

11. Compute the average waiting time using SRT with the Gantt chart

Process	Arrival Time	Burst Time	
A	0	3	
В	2	6	
С	4	4	
D	6	5	
Е	8	2	

12. Compute average TT using preemptive-priority scheduling algorithm. Treat lowest value having highest priority

Process	Burst Time	Priority	
P_1	10	3	
P_2	1	1	
P_3	2	4	
P_4	1	5	
P_5	5	2	

13. Consider the following set of processes, with the length of the CPU burst and arrival time.

Process	Arrival Time	Service Time
P1	0	8
P2	1	4
P3	2	9
P4	3	5

Draw Gantt chart that illustrates the execution of these processes using the round-robin algorithm with time quantum of 2.

14. Calculate the waiting time of processes using FCFS

Process	A	В	C	D	E
AT	0	2	3	5	7
BT1	3	2	4	6	2
1/0	3	4	3	2	4
BT2	2	3	1	3	5