Replacement Paragraphs of Specification Showing Markups

The marked up version of the replacement sections for the section titled "FIELD OF THE INVENTION" on page 1, lines 4-12, is as follows:

--FIELD OF THE INVENTION CROSS-REFERENCE TO RELATED APPLICATION

This application is based in part on, and claims priority to, U.S. Provisional <u>Application Nos.</u> 60/223,358 filed August 7, 2000 and 60/236,827 filed September 29, 2000, each of which is entirely incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to antibodies, including specified portions or variants, specific for at least one Interleukin-12 (IL-12) protein or fragment thereof, as well as nucleic acids encoding such anti-IL-12 antibodies, complementary nucleic acids, vectors, host cells, and methods of making and using thereof, including therapeutic formulations, administration and devices.--.

The marked up version of the replacement paragraph for the first paragraph on page 4, from lines 1-7, is as follows:

--The present invention provides, in one aspect, isolated nucleic acid molecules comprising, complementary, or hybridizing to, a polynucleotide encoding at least one IL-12 anti-idiotype antibody, comprising at least one specified sequence, domain, portion or variant thereof. The present invention further provides recombinant vectors comprising said IL-12 anti-idiotype antibody encoding nucleic acid molecules, host cells containing such nucleic acids and/or recombinant vectors, as well as methods of making and/or using such anti-idiotype anti-body nucleic acids, vectors and/or host cells.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 6 and 7, from page 6, line 30, to page 7, line 22, is as follows:

--As used herein, an "anti-Interleukin-12 antibody," "anti-IL-12 antibody," "anti-IL-12 antibody portion," or "anti-IL-12 antibody fragment" and/or "anti-IL-12 antibody variant" and the like include any protein or peptide containing molecule that comprises at least a portion of an immunoglobulin molecule, such as but not limited to at least one complementarity determining region (CDR) of a heavy or light chain or a ligand binding portion thereof, a heavy chain or light

chain variable region, a heavy chain or light chain constant region, a framework region, or any portion thereof, or at least one portion of an IL-12 receptor or binding protein, which can be incorporated into an antibody of the present invention. Such antibody optionally further affects a specific ligand, such as but not limited to where such antibody modulates, decreases, increases, antagonizes, angonizes, mitigates, alleviates, blocks, inhibits, abrogates and/or interferes with at least one IL-12 activity or binding, or with IL-12 receptor activity or binding, in vitro, in situ and/or in vivo. As a non-limiting example, a suitable anti-IL-12 antibody, specified portion or variant of the present invention can bind at least one IL-12, or specified portions, variants or domains thereof. A suitable anti-IL-12 antibody, specified portion, or variant can also optionally affect at least one of IL-12 activity or function, such as but not limited to, RNA, DNA or protein synthesis, IL-12 release, IL-12 receptor signaling, membrane IL-12 cleavage, IL-12 activity, IL-12 production and/or synthesis. The term "antibody" ["]is further intended to encompass antibodies, digestion fragments, specified portions and variants thereof, including antibody mimetics or comprising portions of antibodies that mimic the structure and/or function of an anitibody or specified fragment or portion thereof, including single chain antibodies and fragments thereof. Functional fragments include antigen-binding fragments that bind to a mammalian IL-12. For example, antibody fragments capable of binding to IL-12 or portions thereof, including, but not limited to Fab (e.g., by papain digestion), Fab' (e.g., by pepsin digestion and partial reduction) and F(ab')₂ (e.g., by pepsin digestion), facb (e.g., by plasmin digestion), pFc' (e.g., by pepsin or plasmin digestion), Fd (e.g., by pepsin digestion, partial reduction and reaggregation), Fv or scFv (e.g., by molecular biology techniques) fragments, are encompassed by the invention (see, e.g., Colligan, Immunology, supra).--.

The marked up version of the replacement paragraph for the first full paragraph on page 7, from lines 23-30, is as follows:

--Such fragments can be produced by enzymatic cleavage, synthetic or recombinant techniques, as known in the art and/or as described herein. aAntibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a combination gene encoding a $F(ab')_2$ heavy chain portion can be designed to include DNA sequences encoding the CH₁ domain and/or hinge region of the heavy chain. The various portions of antibodies can be joined

together chemically by conventional techniques, or can be prepared as a contiguous protein using genetic engineering techniques.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 7 and 8, from page 7, line 31, to page 8, line 11, is as follows:

-- As used herein, the term "human antibody" refers to an antibody in which substantially every part of the protein (e.g., CDR, framework, C_L, C_H domains (e.g., C_H1, C_H2, C_H3), hinge, (V_L, V_H)) is substantially non-immunogenic in humans, with only minor sequence changes or variations. Similarly, antibodies designated primate (monkey, babboon, chimpanzee, etc.), rodent (mouse, rat, rabbit, guinea pidg, hamster, and the like) and other mammals designate such species, sub-genus, genus, sub-family, family specific antibodies. Further, chimeric antibodies include any combination of the above. Such changes or variations optionally and preferably retain or reduce the immunogenicity in humans or other species relative to non-modified antibodies. Thus, a human antibody is distinct from a chimeric or humanized antibody. It is pointed out that a human antibody can be produced by a non-human animal or prokaryotic or eukaryotic cell that is capable of expressing functionally rearranged human immunoglobulin (e.g., heavy chain and/or light chain) genes. Further, when a human antibody is a single chain antibody, it can comprise a linker peptide that is not found in native human antibodies. For example, an Fv can comprise a linker peptide, such as two to about eight glycine or other amino acid residues, which connects the variable region of the heavy chain and the variable region of the light chain. Such linker peptides are considered to be of human origin.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 11-13, from page 11, line 34, to page 13, line 19, is as follows:

--Methods for engineering or humanizing non-human or human antibodies can also be used and are well known in the art. Generally, a humanized or engineered antibody has one or more amino acid residues from a source which is non-human, e.g., but not limited to mouse, rat, rabbit, non-human primate or other mammal. These human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable, constant or other domain of a known human sequence. Known human Ig sequences are disclosed, e.g., www.ncbi.nlm.nih.gov/entrez/query.fcgi; www.atcc.org/phage/hdb.html;

www.sciquest.com/; www.abcam.com/; www.antibodyresource.com/onlinecomp.html; www.public.iastate.edu/~pedro/research_tools.html; www.mgen.uniheidelberg.de/SD/IT/IT.html; www.whfreeman.com/immunology/CH05/kuby05.htm; www.library.thinkquest.org/12429/Immune/Antibody.html; www.hhmi.org/grants/lectures/1996/vlab/; www.path.cam.ac.uk/~mrc7/mikeimages.html; www.antibodyresource.com/; mcb.harvard.edu/BioLinks/Immunology.html.www.immunologylink.com/; pathbox.wustl.edu/~hcenter/index.html; www.biotech.ufl.edu/~hcl/; www.pebio.com/pa/340913/340913.html; www.nal.usda.gov/awic/pubs/antibody/; www.m.ehime-u.ac.jp/~yasuhito/Elisa.html; www.biodesign.com/table.asp; www.icnet.uk/axp/facs/davies/links.html; www.biotech.ufl.edu/~fccl/protocol.html; www.isac-net.org/sites_geo.html; aximt1.imt.uni-marburg.de/~rek/AEPStart.html; baserv.uci.kun.nl/~jraats/links1.html; www.recab.uni-hd.de/immuno.bme.nwu.edu/; www.mrc-cpe.cam.ac.uk/imt-doc/public/INTRO.html; www.ibt.unam.mx/vir/V_mice.html; imgt.cnusc.fr:8104/; www.biochem.ucl.ac.uk/~martin/abs/index.html; antibody.bath.ac.uk/; abgen.cvm.tamu.edu/lab/wwwabgen.html; www.unizh.ch/~honegger/AHOseminar/Slide01.html; www.cryst.bbk.ac.uk/~ubcg07s/; www.nimr.mrc.ac.uk/CC/ccaewg/ccaewg.htm; www.path.cam.ac.uk/~mrc7/humanisation/TAHHP.html; www.ibt.unam.mx/vir/structure/stat_aim.html; www.biosci.missouri.edu/smithgp/index.html; www.cryst.bioc.cam.ac.uk/~fmolina/Web-pages/Pept/spottech.html; www.jerini.de/fr_products.htm; www.patents.ibm.com/ibm.html.Kabat et al., Sequences of Proteins of Immunological Interest, U.S. Dept. Health (1983), each entirely incorporated herein by reference. Such imported sequences can be used to reduce immunogenicity or reduce, enhance or modify binding, affinity, on-rate, off-rate, avidity, specificity, half-life, or any other suitable characteristic, as known in the art. Generally part or all of the non-human or human CDR sequences are maintained while the non-human sequences of the variable and constant regions are replaced with human or other amino acids. Antibodies can also optionally be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, humanized antibodies can be optionally prepared by a process

of analysis of the parental sequences and various conceptual humanized products using three-

dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, i.e., the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the consensus and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding. Humanization or engineering of antibodies of the present invention can be performed using any known method, such as but not limited to those described in, Winter (Jones et al., Nature 321:522 (1986); Riechmann et al., Nature 332:323 (1988); Verhoeyen et al., Science 239:1534 (1988)), Sims et al., J. Immunol. 151: 2296 (1993); Chothia and Lesk, J. Mol. Biol. 196:901 (1987), Carter et al., Proc. Natl. Acad. Sci. U.S.A. 89:4285 (1992); Presta et al., J. Immunol. 151:2623 (1993), US patent Nos: 5723323, 5976862, 5824514, 5817483, 5814476, 5763192, 5723323, 5,766886, 5714352, 6204023, 6180370, 5693762, 5530101, 5585089, 5225539; 4816567, PCT/: US98/16280, US96/18978, US91/09630, US91/05939, US94/01234, GB89/01334, GB91/01134, GB92/01755; WO90/14443, WO90/14424, WO90/14430, EP 229246, each entirely incorporated herein by reference, included references cited therein.--.

The marked up version of the replacement paragraph for the first full paragraph on page 14, from lines 7-28, is as follows:

--Screening antibodies for specific binding to similar proteins or fragments can be conveniently achieved using peptide display libraries. This method involves the screening of large collections of peptides for individual members having the desired function or structure.

aAntibody screening of peptide display libraries is well known in the art. The displayed peptide sequences can be from 3 to 5000 or more amino acids in length, frequently from 5-100 amino acids long, and often from about 8 to 25 amino acids long. In addition to direct chemical synthetic methods for generating peptide libraries, several recombinant DNA methods have been described. One type involves the display of a peptide sequence on the surface of a

bacteriophage or cell. Each bacteriophage or cell contains the nucleotide sequence encoding the particular displayed peptide sequence. Such methods are described in PCT Patent Publication Nos. 91/17271, 91/18980, 91/19818, and 93/08278. Other systems for generating libraries of peptides have aspects of both in vitro chemical synthesis and recombinant methods. See, PCT Patent Publication Nos. 92/05258, 92/14843, and 96/19256. See also, U.S. Patent Nos. 5,658,754; and 5,643,768. Peptide display libraries, vector, and screening kits are commercially available from such suppliers as Invitrogen (Carlsbad, CA), and Cambridge Antibody Technologies (Cambridgeshire, UK). See, e.g., U.S. Pat. Nos. 4704692, 4939666, 4946778, 5260203, 5455030, 5518889, 5534621, 5656730, 5763733, 5767260, 5856456, assigned to Enzon; 5223409, 5403484, 5571698, 5837500, assigned to Dyax, 5427908, 5580717, assigned to Affymax; 5885793, assigned to Cambridge antibody Technologies; 5750373, assigned to Genentech, 5618920, 5595898, 5576195, 5698435, 5693493, 5698417, assigned to Xoma, Colligan, supra; Ausubel, *supra*; or Sambrook, *supra*, each of the above patents and publications entirely incorporated herein by reference.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 14 and 15, from page 14, line 35, to page 15, line 18, with the following paragraph:

--Antibodies of the present invention can additionally be prepared using at least one anti-IL-12 antibody encoding nucleic acid to provide transgenic plants and cultured plant cells (e.g., but not limited to tobacco and maize) that produce such antibodies, specified portions or variants in the plant parts or in cells cultured therefrom. As a non-limiting example, transgenic tobacco leaves expressing recombinant proteins have been successfully used to provide large amounts of recombinant proteins, e.g., using an inducible promoter. See, e.g., Cramer et al., Curr. Top. Microbol. Immunol. 240:95-118 (1999) and references cited therein. Also, transgenic maize have been used to express mammalian proteins at commercial production levels, with biological activities equivalent to those produced in other recombinant systems or purified from natural sources. See, e.g., Hood et al., Adv. Exp. Med. Biol. 464:127-147 (1999) and references cited therein. Antibodies have also been produced in large amounts from transgenic plant seeds including antibody fragments, such as single chain antibodies (scFv's), including tobacco seeds and potato tubers. See, e.g., Conrad et al., Plant Mol. Biol. 38:101-109 (1998) and reference cited therein. Thus, antibodies of the present invention can also be produced using transgenic

plants, according to know methods. See also, e.g., Fischer et al., Biotechnol. Appl. Biochem. 30:99-108 (Oct., 1999), Ma et al., Trends Biotechnol. 13:522-7 (1995); Ma et al., Plant Physiol. 109:341-6 (1995); Whitelam et al., Biochem. Soc. Trans. 22:940-944 (1994); and references cited therein.—See, also generally for plant expression of antibodies, but not limited to, Eeach of the above references is entirely incorporated herein by reference.—.

The marked up version of the replacement paragraph for the second full paragraph on page 16, from lines 11-26, is as follows:

--Isolated nucleic acid molecules of the present invention can include nucleic acid molecules comprising an open reading frame (ORF), optionally with one or more introns, e.g., but not limited to, at least one specified portion of at least one CDR, as CDR1, CDR2 and/or CDR3 of at least one heavy chain (e.g., SEQ ID NOS:1-3) or light chain (e.g., SEQ ID NOS: 4-6); nucleic acid molecules comprising the coding sequence for an anti-IL-12 antibody or variable region (e.g., SEQ ID NOS:7,8); and nucleic acid molecules which comprise a nucleotide sequence substantially different from those described above but which, due to the degeneracy of the genetic code, still encode at least one anti-IL-12 antibody as described herein and/or as known in the art. Of course, the genetic code is well known in the art. Thus, it would be routine for one skilled in the art to generate such degenerate nucleic acid variants that code for specific anti-IL-12 antibodies of the present invention. See, e.g., Ausubel, et al., supra, and such nucleic acid variants are included in the present invention. Non-limiting examples of isolated nucleic acid molecules of the present invenition include SEQ ID NOS:10-15, corresponding to non-limiting examples of a nucleic acid encoding, respectively, HC CDR1, HC CDR2, HC CDR3, LC CDR1, LC CDR2, LC CDR3, HC variable region and LC variable region.--.

The marked up version of the replacement paragraph for the first paragraph on page 23, from lines 2-22, is as follows:

--The isolated antibodies of the present invention comprise an antibody encoded by any one of the polynucleotides of the present invention as discussed more fully herein, or any isolated or prepared antibody. Preferably, the human antibody or antigen-binding fragment binds human IL-12 and, thereby partially or -substantially neutralizes at least one biological

activity of the protein. An antibody, or specified portion or variant thereof, that partially or preferably substantially neutralizes at least one biological activity of at least one IL-12 protein or fragment can bind the protein or fragment and thereby inhibit activityies mediated through the binding of IL-12 to the IL-12 receptor or through other IL-12-dependent or mediated mechanisms. As used herein, the term "neutralizing antibody" refers to an antibody that can inhibit an IL-12-dependent activity by about 20-120%, preferably by at least about 10, 20, 30, 40, 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% or more depending on the assay. The capacity of an anti-IL-12 antibody to inhibit an IL-12-dependent activity is preferably assessed by at least one suitable IL-12 protein or receptor assay, as described herein and/or as known in the art. A human antibody of the invention can be of any class (IgG, IgA, IgM, IgE, IgD, etc.) or isotype and can comprise a kappa or lambda light chain. In one embodiment, the human antibody comprises an IgG heavy chain or defined fragment, for example, at least one of isotypes, IgG1, IgG2, IgG3 or IgG4. Antibodies of this type can be prepared by employing a transgenic mouse or other transgenic non-human mammal comprising at least one human light chain (e.g., IgG, IgA and IgM (e.g., $\gamma 1$, $\gamma 2$, $\gamma 3$, $\gamma 4$) transgenes as described herein and/or as known in the art. In another embodiment, the anti-human IL-12 human antibody comprises an IgG1 heavy chain and an IgG1 light chain.--.

The marked up version of the replacement paragraph for the first full paragraph on page 24, from lines 16-31, is as follows:

--The anti-IL-12 antibody can comprise at least one of a heavy or light chain variable region having a defined amino acid sequence. For example, in a preferred embodiment, the anti-IL-12 antibody comprises at least one of at least one heavy chain variable region, optionally having the amino acid sequence of SEQ ID NO:7 and/or at least one light chain variable region, optionally having the amino acid sequence of SEQ ID NO:8. Aentibodies that bind to human IL-12 and that comprise a defined heavy or light chain variable region can be prepared using suitable methods, such as phage display (Katsube, Y., et al., Int J Mol. Med, 1(5):863-868 (1998)) or methods that employ transgenic animals, as known in the art and/or as described herein. For example, a transgenic mouse, comprising a functionally rearranged human immunoglobulin heavy chain transgene and a transgene comprising DNA from a human immunoglobulin light chain locus that can undergo functional rearrangement, can be immunized

with human IL-12 or a fragment thereof to elicit the production of antibodies. If desired, the antibody producing cells can be isolated and hybridomas or other immortalized antibody-producing cells can be prepared as described herein and/or as known in the art. Alternatively, the antibody, specified portion or variant can be expressed using the encoding nucleic acid or portion thereof in a suitable host cell.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 30 and 31, from page 30, line 28, to page 31, line 19, is as follows:

--Anti-IL-12 antibody compositions of the present invention can further comprise at least one of any suitable and effective amount of a composition or pharmaceutical composition comprising at least one anti-IL-12 antibody to a cell, tissue, organ, animal or patient in need of such modulation, treatment or therapy, optionally further comprising at least one selected from at least one TNF antagonist (e.g., but not limited to a TNF antibody or fragment, a soluble TNF receptor or fragment, fusion proteins thereof, or a small molecule TNF antagonist), -an antirheumatic (e.g., methotrexate, auranofin, aurothioglucose, azathioprine, etanercept, gold sodium thiomalate, hydroxychloroquine sulfate, leflunomide, sulfasalzine), a muscle relaxant, a narcotic, a non-steroid anti-inflammatory drug (NSAID), an analgesic, an anesthetic, a sedative, a local anesthetic, a neuromuscular blocker, an antimicrobial (e.g., an aminoglycoside, an antifungal, an antiparasitic, an antiviral, a carbapenem, cephalosporin, a fluororquinolone, a macrolide, a penicillin, a sulfonamide, a tetracycline, another antimicrobial), an antipsoriatic, a corticosteriod, an anabolic steroid, a diabetes related agent, a mineral, a nutritional, a thyroid agent, a vitamin, a calcium related hormone, an antidiarrheal, an antitussive, an antiemetic, an antiulcer, a laxative, an anticoagulant, an erythropoieitin (e.g., epoetin alpha), a filgrastim (e.g., G-CSF, Neupogen), a sargramostim (GM-CSF, Leukine), an immunization, an immunoglobulin, an immunosuppressive (e.g., basiliximab, cyclosporine, daclizumab), a growth hormone, a hormone replacement drug, an estrogen receptor modulator, a mydriatic, a cycloplegic, an alkylating agent, an antimetabolite, a mitotic inhibitor, a radiopharmaceutical, an antidepressant, antimanic agent, an antipsychotic, an anxiolytic, a hypnotic, a sympathomimetic, a stimulant, donepezil, tacrine, an asthma medication, a beta agonist, an inhaled steroid, a leukotriene inhibitor, a methylxanthine, a cromolyn, an epinephrine or analog, dornase alpha (Pulmozyme), a cytokine or a cytokine antagonist. Non-limiting examples of such cytokines include, but are

not limited to, any of IL-1 to IL-23. Suitable dosages are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, CT (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, CA (2000), each of which references are entirely incorporated herein by reference.--.

The marked up version of the replacement paragraph for the first full paragraph on page 34, from lines 5-11, is as follows:

--These and additional known pharmaceutical excipients and/or additives suitable for use in the anti-IL-12 antibody, portion or variant compositions according to the invention are known in the art, e.g., as listed in "Remington: The Science & Practice of Pharmacy", 19th ed., Williams & Williams, (1995), and in the "Physician's Desk Reference", 52nd ed., Medical Economics, Montvale, NJ (1998), the disclosures of which are entirely incorporated herein by reference. Preferred carrier or excipient materials are carbohydrates (e.g., saccharides and alditols) and buffers (e.g., citrate) or polymeric agents.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 38 and 39, from page 38, line 27, to page 39, line 34, is as follows:

--The present invention also provides a method for modulating or treating at least one immune related disease, in a cell, tissue, organ, animal, or patient including, but not limited to, at least one of rheumatoid arthritis, juvenile rheumatoid arthritis, systemic onset juvenile rheumatoid arthritis, psoriatic arthritis, ankylosing spondilitis, gastric ulcer, seronegative arthropathies, osteoarthritis, inflammatory bowel disease, ulcerative colitis, systemic lupus erythematosius, antiphospholipid syndrome, iridocyclitis/uveitis/optic neuritis, idiopathic pulmonary fibrosis, systemic vasculitis/wegener's granulomatosis, sarcoidosis, orchitis/vasectomy reversal procedures, allergic/atopic diseases, asthma, allergic rhinitis, eczema, allergic contact dermatitis, allergic conjunctivitis, hypersensitivity pneumonitis, transplants, organ transplant rejection, graft-versus-host disease, systemic inflammatory response syndrome, sepsis syndrome, gram positive sepsis, gram negative sepsis, culture negative sepsis, fungal sepsis, neutropenic fever, urosepsis, meningococcemia, trauma/hemorrhage, burns, ionizing radiation exposure, acute pancreatitis, adult respiratory

distress syndrome, rheumatoid arthritis, alcohol-induced hepatitis, chronic inflammatory pathologies, sarcoidosis, Crohn's pathology, sickle cell anemia, diabetes, nephrosis, atopic diseases, hypersensitivity reactions, allergic rhinitis, hay fever, perennial rhinitis, conjunctivitis, endometriosis, asthma, urticaria, systemic anaphalaxis, dermatitis, pernicious anemia, hemolytic disesease, thrombocytopenia, graft rejection of any organ or tissue, kidney translplant rejection, heart transplant rejection, liver transplant rejection, pancreas transplant rejection, lung transplant rejection, bone marrow transplant (BMT) rejection, skin allograft rejection, cartilage transplant rejection, bone graft rejection, small bowel transplant rejection, fetal thymus implant rejection, parathyroid transplant rejection, xenograft rejection of any organ or tissue, allograft rejection, anti-receptor hypersensitivity reactions, Graves disease, Raynoud's disease, type B insulinresistant diabetes, asthma, myasthenia gravis, antibody-meditated cytotoxicity, type III hypersensitivity reactions, systemic lupus erythematosus, POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes syndrome), polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes syndrome, antiphospholipid syndrome, pemphigus, scleroderma, mixed connective tissue disease, idiopathic Addison's disease, diabetes mellitus, chronic active hepatitis, primary billiary cirrhosis, vitiligo, vasculitis, post-MI cardiotomy syndrome, type IV hypersensitivity-, contact dermatitis, hypersensitivity pneumonitis, allograft rejection, granulomas due to intracellular organisms, drug sensitivity, metabolic/idiopathic, Wilson's disease, hemachromatosis, alpha-1antitrypsin deficiency, diabetic retinopathy, hashimoto's thyroiditis, osteoporosis, hypothalamicpituitary-adrenal axis evaluation, primary biliary cirrhosis, thyroiditis, encephalomyelitis, cachexia, cystic fibrosis, neonatal chronic lung disease, chronic obstructive pulmonary disease (COPD), familial hematophagocytic lymphohistiocytosis, dermatologic conditions, psoriasis, alopecia, nephrotic syndrome, nephritis, glomerular nephritis, acute renal failure, hemodialysis, uremia, toxicity, preeclampsia, okt3 therapy, anti-cd3 therapy, cytokine therapy, chemotherapy, radiation therapy (e.g., including but not limited to asthenia, anemia, cachexia, and the like), chronic salicylate intoxication, and the like. See, e.g., the Merck Manual, 12th-17th Editions, Merck & Company, Rahway, NJ (1972, 1977, 1982, 1987, 1992, 1999), Pharmacotherapy Handbook, Wells et al., eds., Second Edition, Appleton and Lange, Stamford, Conn. (1998, 2000), each entirely incorporated by reference.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 39 and 40, from page 39, line 35, to page 40, line 21, is as follows:

-- The present invention also provides a method for modulating or treating at least one cardiovascular disease in a cell, tissue, organ, animal, or patient, including, but not limited to, at least one of cardiac stun syndrome, myocardial infarction, congestive heart failure, stroke, ischemic stroke, hemorrhage, arteriosclerosis, atherosclerosis, restenosis, diabetic atheriosclerotic disease, hypertension, arterial hypertension, renovascular hypertension, syncope, shock, syphilis of the cardiovascular system, heart failure, cor pulmonale, primary pulmonary hypertension, cardiac arrhythmias, atrial ectopic beats, atrial flutter, atrial fibrillation (sustained or paroxysmal), post perfusion syndrome, cardiopulmonary bypass inflammation response, chaotic or multifocal atrial tachycardia, regular narrow QRS tachycardia, specific arrythmias, ventricular fibrillation, His bundle arrythmias, atrioventricular block, bundle branch block, myocardial ischemic disorders, coronary artery disease, angina pectoris, myocardial infarction, cardiomyopathy, dilated congestive cardiomyopathy, restrictive cardiomyopathy, valvular heart diseases, endocarditis, pericardial disease, cardiac tumors, aorteic and peripheral aneuryisms, aortic dissection, inflammation of the aorta, occulusion of the abdominal aorta and its branches, peripheral vascular disorders, occulusive arterial disorders, peripheral ather-losc lerotic disease, thromboangitis obliterans, functional peripheral arterial disorders, Raynaud's phenomenon and disease, acrocyanosis, erythromelalgia, venous diseases, venous thrombosis, varicose veins, arteriovenous fistula, lymphederma, lipedema, unstable angina, reperfusion injury, post pump syndrome, ischemiareperfusion injury, and the like. Such a method can optionally comprise administering an effective amount of a composition or pharmaceutical composition comprising at least one anti-IL-12 antibody to a cell, tissue, organ, animal or patient in need of such modulation, treatment or therapy.--.

The marked up version of the replacement paragraphs for the 2 paragraphs bridging pages 45 and 46, from page 45, line 31, to page 46, line 34, is as follows:

-- Therapeutic Treatments.

Any method of the present invention can comprise a method for treating an IL-12 mediated disorder, comprising administering an effective amount of a composition or

pharmaceutical composition comprising at least one anti-IL-12 antibody to a cell, tissue, organ, animal or patient in need of such modulation, treatment or therapy. Such a method can optionally further comprise co-administration or combination therapy for treating such immune diseases, wherein the administering of said at least one anti-IL-12 antibody, specified portion or variant thereof, further comprises administering, before concurrently, and/or after, at least one selected from at least one of at least one selected from at least one TNF antagonist (e.g., but not limited to a TNF antibody or fragment, a soluble TNF receptor or fragment, fusion proteins thereof, or a small molecule TNF antagonist), -an antirheumatic (e.g., methotrexate, auranofin, aurothioglucose, azathioprine, etanercept, gold sodium thiomalate, hydroxychloroquine sulfate, leflunomide, sulfasalzine), a muscle relaxant, a narcotic, a non-steroid anti-inflammatory drug (NSAID), an analgesic, an anesthetic, a sedative, a local anesthetic, a neuromuscular blocker, an antimicrobial (e.g., aminoglycoside, an antifungal, an antiparasitic, an antiviral, a carbapenem, cephalosporin, a fluroroquinolone, a macrolide, a penicillin, a sulfonamide, a tetracycline, another antimicrobial), an antipsoriatic, a corticosteriod, an anabolic steroid, a diabetes related agent, a mineral, a nutritional, a thyroid agent, a vitamin, a calcium related hormone, an antidiarrheal, an antitussive, an antiemetic, an antiulcer, a laxative, an anticoagulant, an erythropoieitin (e.g., epoetin alpha), a filgrastim (e.g., G-CSF, Neupogen), a sargramostim (GM-CSF, Leukine), an immunization, an immunoglobulin, an immunosuppressive (e.g., basiliximab, cyclosporine, daclizumab), a growth hormone, a hormone replacement drug, an estrogen receptor modulator, a mydriatic, a cycloplegic, an alkylating agent, an antimetabolite, a mitotic inhibitor, a radiopharmaceutical, an antidepressant, antimanic agent, an antipsychotic, an anxiolytic, a hypnotic, a sympathomimetic, a stimulant, donepezil, tacrine, an asthma medication, a beta agonist, an inhaled steroid, a leukotriene inhibitor, a methylxanthine, a cromolyn, an epinephrine or analog, dornase alpha (Pulmozyme), a cytokine or a cytokine antagonist.

Typically, treatment of pathologic conditions is effected by administering an effective amount or dosage of at least one anti-IL-12 antibody composition that total, on average, a range from at least about 0.01 to 500 milligrams of at least one anti-IL-12_antibody -per kilogram of patient per dose, and preferably from at least about 0.1 to 100 milligrams antibody /kilogram of patient per single or multiple administration, depending upon the specific activity of contained in

the composition. Alternatively, the effective serum concentration can comprise 0.1-5000 μ g/ml serum concentration per single or multiple administration. Suitable dosages are known to medical practitioners and will, of course, depend upon the particular disease state, specific activity of the composition being administered, and the particular patient undergoing treatment. In some instances, to achieve the desired therapeutic amount, it can be necessary to provide for repeated administration, *i.e.*, repeated individual administrations of a particular monitored or metered dose, where the individual administrations are repeated until the desired daily dose or effect is achieved.--.

The marked up version of the replacement paragraph for the fourth full paragraph on page 48, from lines 20-33, is as follows:

--Formulations for parenteral administration can contain as common excipients sterile water or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, hydrogenated naphthalenes and the like. Aqueous or oily suspensions for injection can be prepared by using an appropriate emulsifier or humidifier and a suspending agent, according to known methods. Agents for injection can be a non-toxic, non-orally administrable diluting agent, such as an aqueous solution or a sterile injectable solution or suspension in a solvent. As the usable vehicle or solvent, water, Ringer's solution, isotonic saline, etc. are allowed; as an ordinary solvent, or suspending solvent, sterile involatile oil can be used. For these purposes, any kind of involatile oil and fatty acid can be used, including natural or synthetic or semisynthetic fatty oils or fatty acids; natural or synthetic or semisynthetic mono- or di- or triglycerides. Parental administration is known in the art and includes, but is not limited to, conventional means of injections, a gas pressured needle-less injection device as described in U.S. Pat. No. 5,851,198, and a laser perforator device as described in U.S. Pat. No. 5,839,446 entirely incorporated herein by reference.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 48 and 49, from page 48, line 35, to page 49, line 21, is as follows:

--The invention further relates to the administration of at least one anti-IL-12 antibody by parenteral, subcutaneous, intramuscular, intravenous, intrarticular, intrabronchial, intraabdominal, intracapsular, intracartilaginous, intracavitary, intracelial, intracerlebellar,

intracerebroventricular, intracolic, intracervical, intragastric, intrahepatic, intramyocardial, intraosteal, intrapelvic, intrapericardiac, intraperitoneal, intrapleural, intraprostatic, intrapulmonary, intrarectal, intrarenal, intraretinal, intraspinal, intrasynovial, intrathoracic, intrauterine, intravesical, bolus, vaginal, rectal, buccal, sublingual, intranasal, or transdermal means. At least one anti-IL-12 antibody composition can be prepared for use for parenteral (subcutaneous, intramuscular or intravenous) or any other administration particularly in the form of liquid solutions or suspensions; for use in vaginal or rectal administration particularly in semisolid forms such as, but not limited to, creams and suppositories; for buccal, or sublingual administration such as, but not limited to, in the form of tablets or capsules; or intranasally such as, but not limited to, the form of powders, nasal drops or aerosols or certain agents; or transdermally such as not limited to a gel, ointment, lotion, suspension or patch delivery system with chemical enhancers such as dimethyl sulfoxide to either modify the skin structure or to increase the drug concentration in the transdermal patch (Junginger, et al. In "Drug Permeation Enhancement"; Hsieh, D. S., Eds., pp. 59-90 (Marcel Dekker, Inc. New York 1994, entirely incorporated herein by reference), or with oxidizing agents that enable the application of formulations containing proteins and peptides onto the skin (WO 98/53847), or applications of electric fields to create transient transport pathways such as electroporation, or to increase the mobility of charged drugs through the skin such as iontophoresis, or application of ultrasound such as sonophoresis (U.S. Pat. Nos. 4,309,989 and 4,767,402) (the above publications and patents being entirely incorporated herein by reference).--.

The marked up version of the replacement paragraph for the paragraph bridging pages 50 and 51, from page 50, line 25, to page 51, line 10, is as follows:

--Formulations of at least one anti-IL-12 antibody composition protein suitable for use with a sprayer typically include antibody composition protein in an aqueous solution at a concentration of about 0.1 mg to about 100 mg of at least one anti-IL-12 antibody composition protein per ml of solution or mg/gm, or any range or value therein, e.g., but not limited to, 0.1, 0.2-, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 45, 50, 60, 70, 80, 90 or 100 mg/ml or mg/gm. The formulation can include agents such as an excipient, a buffer, an isotonicity agent, a preservative, a surfactant, and, preferably, zinc. The formulation can also include an excipient

or agent for stabilization of the antibody composition protein, such as a buffer, a reducing agent, a bulk protein, or a carbohydrate. Bulk proteins useful in formulating antibody composition proteins include albumin, protamine, or the like. Typical carbohydrates useful in formulating antibody composition proteins include sucrose, mannitol, lactose, trehalose, glucose, or the like. The antibody composition protein formulation can also include a surfactant, which can reduce or prevent surface-induced aggregation of the antibody composition protein caused by atomization of the solution in forming an aerosol. Various conventional surfactants can be employed, such as polyoxyethylene fatty acid esters and alcohols, and polyoxyethylene sorbitol fatty acid esters. Amounts will generally range between 0.001 and 14% by weight of the formulation. Especially preferred surfactants for purposes of this invention are polyoxyethylene sorbitan monooleate, polysorbate 80, polysorbate 20, or the like. Additional agents known in the art for formulation of a protein such as IL-12 antibodies, or specified portions or variants, can also be included in the formulation.

The marked up version of the replacement paragraph for the first full paragraph on page 51, from lines 12-26, is as follows:

--<u>A</u>antibody composition protein can be administered by a nebulizer, such as jet nebulizer or an ultrasonic nebulizer. Typically, in a jet nebulizer, a compressed air source is used to create a high-velocity air jet through an orifice. As the gas expands beyond the nozzle, a low-pressure region is created, which draws a solution of antibody composition protein through a capillary tube connected to a liquid reservoir. The liquid stream from the capillary tube is sheared into unstable filaments and droplets as it exits the tube, creating the aerosol. A range of configurations, flow rates, and baffle types can be employed to achieve the desired performance characteristics from a given jet nebulizer. In an ultrasonic nebulizer, high-frequency electrical energy is used to create vibrational, mechanical energy, typically employing a piezoelectric transducer. This energy is transmitted to the formulation of antibody composition protein either directly or through a coupling fluid, creating an aerosol including the antibody composition protein. Advantageously, particles of antibody composition protein delivered by a nebulizer have a particle size less than about 10 μm, preferably in the range of about 1 μm to about 5 μm, and most preferably about 2 μm to about 3 μm.--.

The marked up version of the replacement paragraph for the first paragraph on page 57, from lines 1-6, is as follows:

--The DNA sequence encoding the complete IL-12 antibody is used, e.g., as presented in SEQ ID NOS: INSERT MAB AA SEQ ID 1,1 and INSERT MAB AA SEQ ID NO22, corresponding to HC and LC variable regions of an IL-12 antibody of the present invention, according to known method steps. Isolated nucleic acid encoding a suitable human constant region (i.e., HC and LC regions) is also used in this construct (e.g., as provided in vector p1351: INSERT ATCC ACCESSION NUMBER AND ADDITIONAL HC/LC plasmids).--.

The marked up version of the replacement paragraph for **the third paragraph on page 57, from lines 11-25**, is as follows:

--Chinese hamster ovary (CHO) cells lacking an active DHFR gene are used for transfection. 5 μg of the expression plasmid pC4 is cotransfected with 0.5 μg of the plasmid pSV2-neo using lipofectin. The plasmid pSV2neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics, including G418. The cells are seeded in alpha minus MEM supplemented with 1 μg /ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 μg /ml G418. After about 10-14 days, single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 mM, 2 mM, 5 mM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained that grow at a concentration of 100 - 200 mM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reverse phase HPLC analysis.--.

The marked up version of the replacement paragraph for the paragraph bridging pages 57 and 58, from page 57, line 30, to page 58, line 6, is as follows:

--Summary

Transgenic mice have been used that contain human heavy and light chain immunoglobulin genes to generate high affinity, completely human, monoclonal antibodies that

can be used therapeutically to inhibit the action of IL-12 for the treatment of one or more IL-12-mediated disease. (CBA/J x C57/BL6/J) F_2 hybrid mice containing human variable and constant region antibody transgenes for both heavy and light chains are immunized with human recombinant IL-12 (Taylor et al., Intl. Immunol. 6:579-591 (1993); Lonberg, et al., Nature 368:856-859 (1994); Neuberger, M., Nature Biotech. 14:826 (1996); Fishwild, et al., Nature Biotechnology 14:845-851 (1996)). Several fusions yielded one or more panels of completely human IL-12 reactive IgG monoclonal antibodies. The completely human anti-IL-12 antibodies are further characterized. All are $IgG1_{\underline{K}}$. Such antibodies are found to have affinity constants somewhere between $1x10^9$ and $9x10^{12}$. The unexpectedly high affinities of these fully human monoclonal antibodies make them suitable candidates for therapeutic applications in IL-12 related diseases, pathologies or disorders.--.

The marked up version of the replacement paragraph for the first full paragraph on page 58, from lines 30-42, is as follows:

-- Materials and Methods

Animals

Transgenic mice that can express human antibodies are known in the art (and are commercially available (e.g., from GenPharm International, San Jose, CA; Abgenix, Freemont, CA, and others) that express human immunoglobulins but not mouse IgM or Igk. For example, such transgenic mice contain human sequence transgenes that undergo V(D)J joining, heavychain class switching, and somatic mutation to generate a repertoire of human sequence immunoglobulins (Lonberg, et al., Nature 368:856-859 (1994)). The light chain transgene can be derived, e.g., in part from a yeast artificial chromosome clone that includes nearly half of the germline human V_K region. In addition, the heavy-chain transgene can encode both human $\underline{\sim}\mu$ and human $\underline{\gamma}1$ (Fishwild, et al., Nature Biotechnology 14:845-851 (1996)) and/or $\underline{\gamma}3$ constant regions. Mice derived from appropriate genotopic lineages can be used in the immunization and fusion processes to generate fully human monoclonal antibodies to IL-12.--.

The marked up version of the replacement paragraph for the second paragraph on page 59, from lines 21-34, is as follows:

-- Cell Fusion

Fusion can be carried out at a 1:1 to 1:10 ratio of murine myeloma cells to viable spleen cells according to known methods, e.g., as known in the art. As a non-limiting example, spleen cells and myeloma cells can be pelleted together. The pellet can then be slowly resuspended, over 30 seconds, in 1 mL of 50% (w/v) PEG/PBS solution (PEG molecular weight 1,450, Sigma) at 37° C. The fusion can then be stopped by slowly adding 10.5 mL of RPMI 1640 medium containing 25 mM Hepes (37° C) over 1 minute. The fused cells are centrifuged for 5 minutes at 500-1500 rpm. The cells are then resuspended in HAT medium (RPMI 1640 medium containing 25 mM Hepes, 10% Fetal Clone I serum (Hyclone), 1 mM sodium pyruvate, 4 mM L-glutamine, 10 μ g/mL gentamicin, 2.5% Origen culturing supplement (Fisher), 10% 653-conditioned RPMI 1640/Hepes media, 50 μ M 2-mercaptoethanol, 100 μ M hypoxanthine, 0.4 μ M aminopterin, and 16 μ M thymidine) and then plated at 200 μ L/well in fifteen 96-well flat bottom tissue culture plates. The plates are then placed in a humidified 37° C incubator containing 5% CO₂ and 95% air for 7-10 days.--.

The marked up version of the replacement paragraphs for the first two paragraphs on page 60, from lines 1-20, is as follows:

--Solid phase EIA's can be used to screen mouse sera for human IgG antibodies specific for human IL-12. Briefly, plates can be coated with IL-12 at 2 μ g/mL in PBS overnight. After washing in 0.15M saline containing 0.02% (v/v) Tween 20, the wells can be blocked with 1% (w/v) BSA in PBS, 200 μ L/well for 1 hour at RT. Plates are used immediately or frozen at -20 $^{\circ}$ C for future use. Mouse serum dilutions are incubated on the IL-12 coated plates at 50 μ L/well at RT for 1 hour. The plates are washed and then probed with 50 μ L/well HRP-labeled goat anti-human IgG, Fc specific diluted 1:30,000 in 1% BSA-PBS for 1 hour at RT. The plates can again be washed and 100 μ L/well of the citrate-phosphate substrate solution (0.1M citric acid and 0.2M sodium phosphate, 0.01% H_2O_2 and 1 mg/mL OPD) is added for 15 minutes at RT. Stop solution (4N sulfuric acid) is then added at 25 μ L/well and the OD's are read at 490 nm via an automated plate spectrophotometer.

Detection of Completely Human Immunoglobulins in Hybridoma Supernates

Growth positive hybridomas secreting fully human immunoglobulins can be detected using a suitable EIA. Briefly, 96 well pop-out plates (VWR, 610744) can be coated with 10 μ g/mL goat anti-human IgG Fc in sodium carbonate buffer overnight at 4°C. The plates are

washed and blocked with 1% BSA-PBS for one hour at 37°C and used immediately or frozen at -20°C. Undiluted hybridoma supernatants are incubated on the plates for one hour at 37°C. The plates are washed and probed with HRP labeled goat anti-human kappa diluted 1:10,000 in 1% BSA-PBS for one hour at 37°C. The plates are then incubated with substrate solution as described above.--.

The marked up version of the replacement paragraph for the fourth paragraph on page 60, from lines 27-29, is as follows:

--Human IgG1 $\underline{\kappa}$ anti-IL-12 secreting hybridomas can be expanded in cell culture and serially subcloned by limiting dilution. The resulting clonal populations can be expanded and cryopreserved in freezing medium (95% FBS, 5% DMSO) and stored in liquid nitrogen.--.

The marked up version of the replacement paragraph for the third full paragraph on page 61, from lines 22-28, is as follows:

--Antibodies are dissolved in the running buffer at 33.33, 16.67, 8.33, and 4.17 nM. The flow rate is adjusted to 30 μ L/min and the instrument temperature to 25°C. Two flow cells are used for the kinetic runs, one on which IL-12 had been immobilized (sample) and a second, underivatized flow cell (blank). 120 μ L of each antibody concentration is injected over the flow cells at 30 μ L/min (association phase) followed by an uninterrupted 360 seconds of buffer flow (dissociation phase). The surface of the chip is regenerated (interleukin-12 /antibody complex dissociated) by two sequential injections of 30 μ L each of 2 M guanidine thiocyanate.--.

The marked up version of the replacement paragraph for the first paragraph on page 62, from lines 1-5, is as follows:

--Several fusions are performed and each fusion is seeded in 15 plates (1440 wells/fusion) that yield several dozen antibodies specific for human IL-12. Of these, some are found to consist of a combination of human and mouse Ig chains. The remaining hybridomas secrete anti-IL-12 antibodies consisting solely of human heavy and light chains. Of the human hybridomas, all are expected to be IgG1<u>k</u>.--.

The marked up version of the replacement paragraph for the fourth paragraph on page 62, from lines 17-24, is as follows:

--Several fusions are performed utilizing splenocytes from hybrid mice containing human variable and constant region antibody transgenes that are immunized with human IL-12. A set of several completely human IL-12 reactive IgG monoclonal antibodies of the IgG1 $\underline{\kappa}$ isotype are generated. The completely human anti-IL-12 antibodies are further characterized. Several of generated antibodies have affinity constants between $1x10^9$ and $9x10^{12}$. The unexpectedly high affinities of these fully human monoclonal antibodies make them suitable for therapeutic applications in IL-12-dependent diseases, pathologies or related conditions.--.

The marked up version of the replacement paragraph for the third full paragraph on page 63, from lines 17-22, is as follows:

--Figure 5 clearly shows that two different lots of C340 inhibited the secretion of IFN GAMMA by peripheral blood lymphocytes in a dose-dependent fashion. Four hundred picograms of IL-12 were premixed with varying amounts of C340 and then added to IL-2 stimulated cultures of PBL's. When IFN GAMMA was measured by EIA after an 18-24 hour incubation, markedly diminished amounts of IFN GAMMA were detected with as little as $1.2 \mu g/mL$ of C340 antibody.--.

The marked up version of the replacement paragraph for the first full paragraph on page 64, from lines 7-34, is as follows:

-- Genomic DNA fragments containing either the C340 heavy chain gene or the C340 light chain were cloned and purified. Genomic DNA purified from C340 hybridoma cells was partially digested with Sau3A restriction enzyme and size-selected by centrifugal fractionation through a 10-40% sucrose gradient. DNA fragments in the size range of 15-23 kb were cloned into the bacteriophage vector, EMBL3, [commercially available?] and packaged into phage particles. Several packaging reactions resulted in a library of 1 million bacteriophage clones. Approximately 600,000 clones from the library were screened by plaque hybridization using 32P-labeled genomic DNA fragments that contained either human IgG1 heavy chain constant region sequences or human kappa light chain constant region sequences as probe. Thirteen heavy chain and nine light chain clones were detected. Of these, three heavy chain clones and

four light chain clones were purified by two more rounds of screening. One of the heavy chain clones and two of the light chain clones were shown to contain the 5' and 3' ends of the coding sequences by PCR analysis of bacteriophage DNA. The DNA insert in heavy chain (HC) clone H4 was 16 kb in size and includes 3.6 kb of 5' flanking and at least 2 kb of 3' flanking sequence. The DNA insert in light chain (LC) clone LC1 was 15 kb in size and included 4.4 kb of 5' flanking and 6.0 kb of 3' flanking sequence. The complete inserts were removed from the bacteriophage vector as Sall fragments and cloned between the XhoI and Sall sites of plasmid expression vector p1351, which provided a gpt selectable marker gene. Because there was an internal Sall site in the heavy chain variable region coding sequence, two Sall fragments had to be transferred from bacteriophage H4 to the p1351 expression vector. The resulting heavy and light chain expression plasmids were termed p1560 and p1558, respectively. The orientations of the heavy and light chain genes in these two plasmids relative to the p1351 vector sequences were determined using restriction enzyme analysis and PCR, respectively. In both cases, the orientations were such that the 5' end of the Ab gene fragment was proximal to the 3' end of the gpt gene. Both strands of the coding regions of the cloned genes were sequenced. The sequences of plasmids p1560 and p1558 are presented in Figures 11A-11K and Figures 13A-13J, respectively.--.

The marked up version of the replacement **Abstract** section is as follows:

--ANTI-IL-12 ANTIBODIES, COMPOSITIONS, METHODS AND USES

The present invention relates to at least one novel anti-IL-12 antibodyies, including isolated nucleic acids that encode at least one anti-IL-12 antibody, IL-12, vectors, host cells, transgenic animals or plants, and methods of making and using thereof, including therapeutic compositions, methods and devices.--.