Communications and Power System

- 전기 회로는 electrical signal 또는 electrical power를 전송하는 데 사용한다.

- 통신 시스템 (예: Morse code, radio)에서는 전압 신호 등과 같은 입력 신호가 전원이 된다.
- 변환기는 전파 매체에 적당하도록 신호를 변환한다.
- 변환기의 출력은 수신기에 도착할 때까지 매체를 진행한다.
- 수신기는 사용자가 쓰기에 적절한 형태로 변환시킨다.
- 전력 시스템 에서는 발전기가 30 70 MW의 전력을 발생시킨다.
- 전선을 통해서 전력을 효율적으로 수용가에 수송한다.
- 통신시스템: undistorted transmission, 전력시스템: efficient power transmission.

Natural Response of Second-Order Circuits

$$\begin{aligned} & \text{KVL} \quad L\frac{di}{dt} + Ri + v_c - v_s = 0 \\ & i = C\frac{dv_c}{dt} \\ & LC\frac{d^2v_c}{dt^2} + RC\frac{dv_c}{dt} + v_c = v_s \\ & \frac{d^2v_c}{dt^2} + \frac{R}{L}\frac{dv_c}{dt} + \frac{v_c}{LC} = \frac{v_s}{LC} \\ & \frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{i_L}{LC} = \frac{i_n}{LC} \\ & \frac{d^2x}{dt^2} + 2\alpha\frac{dx}{dt} + \omega_0^2 x = f(t) \\ & \alpha = \frac{R}{2L} \ \omega_0^2 = \frac{1}{LC} \ f = \frac{v_s}{LC} \end{aligned} \qquad \begin{aligned} & \alpha = \frac{1}{2RC} \ \omega_0^2 = \frac{1}{LC} \ f = \frac{i_n}{LC} \end{aligned}$$

Second-Order Differential Equation

damping ratio $\zeta = \alpha / \omega_0$

1. Over damped
$$(\zeta > 1, \alpha > \omega_0)$$
 s_p, s_2 : negative real

2. Critically damped
$$(\zeta = 1, \alpha = \omega_0)$$
 s_I : negative real $x_h = K_1 e^{s_1 t} + K_2 t e^{s_1 t}$

3. Under damped $(\zeta < 1, \alpha < \omega_0)$ s_{1}, s_{2} : complex with negative real

$$x_h = K_1 e^{(-\alpha + j\omega_d)t} + K_2 e^{(-\alpha - j\omega_d)t} \qquad (\omega_d = \sqrt{\omega_0^2 - \alpha^2}) \quad \text{damped resonant} \\ = K_3 e^{-\alpha t} \cos \omega_d t + K_4 e^{-\alpha t} \sin \omega_d t$$

Normalized Step Response of Second-Order Systems

- RLC 회로에 step function의 전압을 가했다.

- $-\zeta=\alpha I\omega_0$ 의 값에 따라 출력 값에 변화가 있음.
- 특히 ζ = 1 을 경계로 overshoot 보인다.
- 응용의 특성에 따라 damping ratio을 변화시킨다.

Underdamped, critically damped, and overdamped response curves for parallel RCL circuit of example 9.7.

Raymond A. DeCarlo and Pen-Min Lin, Linear Circuit Analysis, 7th edition, Oxford University Press, New York, 2001, p. 351, Figure 9.9

Parallel RLC Circuit (I)

t=0 인 순간 switch가 열리고 전류 24 mA가 회로에 가해진다. 저항 값은 400Ω 이다.

$$a) \ i_L(0^+) = ? \quad i_L(0^-) = 0 \quad \text{old} \ i_L(0^+) = i_L(0^-) = 0.$$

$$b) \frac{di_L}{dt} \bigg|_{t=0^+} = ? \quad v(0^-) = 0 \quad \text{olds} \quad v(0^+) = 0 \quad \frac{di_L}{dt} \bigg|_{t=0^+} = 0.$$

$$a) i_L(0^+) = ?$$
 $i_L(0^-) = 0$ 이므로 $i_L(0^+) = i_L(0^-) = 0$.

 $b) \frac{di_L}{dt}\Big|_{t=0^+} = ?$ $v(0^-) = 0$ 이므로 $v(0^+) = 0^+$: $\frac{di_L}{dt}\Big|_{t=0^+} = 0$.

 $c) C \frac{dv_c}{dt} + i_L + \frac{v_c}{R} = I$, $L \frac{di_L}{dt} = v_c$, $LC \frac{d^2i_L}{dt^2} + i_L + \frac{L}{R} \frac{di_L}{dt} = I$.

 $\frac{d^2i_L}{dt^2} + \frac{1}{RC} \frac{di_L}{dt} + \frac{1}{LC} i_L = \frac{I}{LC}$

Parallel RLC Circuit (II)

특성방정식

$$s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0, \quad s^{2} + 100000s + 16 \times 10^{8} = 0$$

$$\alpha = \frac{1}{2RC} = 5 \times 10^{4}, \quad \omega_{0} = \frac{1}{\sqrt{LC}} = 4 \times 10^{4}$$

$$s = -5 \times 10^{4} \pm 3 \times 10^{4}, \quad s_{1} = -20000, \quad s_{2} = -80000$$

$$i_{L} = 24 \times 10^{-3} + A_{1} e^{-20000t} + A_{2} e^{-80000t} \qquad i_{L} \text{ (mA)}$$

$$i_{L} = 0, \quad \frac{di_{L}}{dt} = 0, \quad \frac{di_{L}}{dt} = 0$$

$$\Rightarrow A_{1} = 8 \times 10^{-3}, \quad A_{2} = -32 \times 10^{-3}$$

$$If \quad R = 625 \Omega, \quad 12$$

 $\alpha = 3.2 \times 10^4 < \omega_0$

 $\alpha = 4 \times 10^4 = \omega_0$

Underdamped ($R = 625 \Omega$) 26 24 20 Overdamped ($R = 400 \Omega$) Critically damped ($R = 500 \Omega$) 12 10 20 40 60 80 100 120 140 160 180 200

If $R = 500 \Omega$,

Complete Response of RLC Circuits (I)

전압 v를 구하라.

(a) 초기조건을 구하라.

$$-t=\mathbf{0}^-$$
의 회로
$$4\Omega$$

$$0+$$

$$6\Omega$$

$$v$$

$$v_C(0^-)=6\text{ V},\ i_L(0^-)=1\text{ A}$$

Complete Response of RLC Circuits (II)

$$\frac{v_C - v_s}{4} + i_L + 0.25 \frac{dv_C}{dt} = 0$$

$$v_C = 1 \frac{di_L}{dt} + 6i_L$$

$$(\frac{di_L}{dt} + 6i_L) - v_s + 4i_L + \frac{d}{dt} (\frac{di_L}{dt} + 6i_L) = 0$$

$$\frac{d^2i_L}{dt^2} + 7\frac{di_L}{dt} + 10i_L = v_s = 6e^{-3t}u(t)$$

$$i_L = i_{Lh} + i_{Lp}$$

$$\text{set } i_{Lp} = Ae^{-3t}$$

$$9A + (-21A) + 10A = 6$$

$$A = -3$$

set
$$i_{Lh} = Ke^{st}$$

 $s^2 + 7s + 10 = 0$
 $s = -2, -5$
 $i_{Lh} = K_1e^{-2t} + K_2e^{-5t}$
 $i_L = K_1e^{-2t} + K_2e^{-5t} - 3e^{-3t}$
 $i_L(0^+) = 1 = K_1 + K_2 - 3$
 $i_L'(0^+) = 0 = -2K_1 - 5K_2 + 9$

Complete Response of RLC Circuits (III)

$$\begin{cases} K_1 + K_2 = 4 \\ 2K_1 + 5K_2 = 9 \\ K_1 = 11/3, \quad K_2 = 1/3 \end{cases}$$

$$i_L = \frac{11}{3}e^{-2t} + \frac{1}{3}e^{-5t} - 3e^{-3t}$$

$$\begin{split} v_C &= 1 \frac{di_L}{dt} + 6i_L \quad 0 | \Box \Xi \\ v_C &= \frac{d}{dt} (\frac{11}{3} e^{-2t} + \frac{1}{3} e^{-5t} - 3e^{-3t}) + 6(\frac{11}{3} e^{-2t} + \frac{1}{3} e^{-5t} - 3e^{-3t}) \\ &= -\frac{22}{3} e^{-2t} - \frac{5}{3} e^{-5t} + 9e^{-3t} + \frac{66}{3} e^{-2t} + \frac{6}{3} e^{-5t} - 18e^{-3t} \\ &= \frac{44}{3} e^{-2t} + \frac{1}{3} e^{-5t} - 9e^{-3t} \end{split}$$

State Variable Approach to Circuit Analysis

- State variable method : 회로의 전체 응답을 구하기 위해서 state variable의 1계 미분방정식을 이용한다.
- Inductor의 전류나 capacitor의 전압을 state variable로 이용한다.

KCL

$$node 1: C_{1} \frac{dv_{1}}{dt} + \frac{v_{1} - v_{a}}{R_{1}} + \frac{v_{1} - v_{2}}{R_{2}} = 0$$

$$node 2: C_{2} \frac{dv_{2}}{dt} + \frac{v_{2} - v_{1}}{R_{2}} + \frac{v_{2} - v_{b}}{R_{3}} = 0$$

 $\frac{d}{}$ 를 operator s로 써서 정리하면,

$$\begin{bmatrix} C_1 s + 1/R_1 + 1/R_2, & -1/R_2 \\ -1/R_2, & C_2 s + 1/R_2 + 1/R_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1/R_1, & 0 \\ 0, & 1/R_3 \end{bmatrix} \begin{bmatrix} v_a \\ v_b \end{bmatrix}$$

 v_1 과 v_2 는 아래의 꼴로 쓰여진다.

$$v_1, v_2 = \frac{(Cs+D)v_a + (Es+F)v_b}{s^2 + As + B}$$

이것의 해를 구하는 방법은 14장 Laplace transform에서 다루겠다.

Roots in the Complex Plane (I)

- 2계 미분 방정식 시스템 (parallel RLC 회로)

$$s^{2} + \frac{s}{RC} + \frac{1}{LC} = 0$$
$$s = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

if
$$\omega_0 \rangle \alpha$$
, $s = -\alpha \pm j \sqrt{\omega_0^2 - \alpha^2} = -\alpha \pm j \omega_d$

- 해를 복소 평면에 그릴 수 있다.
- 실수 축과 허수 축, σ and $j\omega$

Natural response of a parallel RLC circuit

Roots in the Complex Plane (II)

해의 각 경우를 복소 평면에 그려 보면

i) Over damped

$$s = -r_1, -r_2$$

(음의 실수 축 위의 두 점)

ii) Critically damped

$$s = -r_1, -r_1$$

(음의 실수 축 위의 한 점)

iii) Under damped

$$s = -\alpha \pm j \omega_d$$

(음의 실수 평면 위의 두 점)

iv) Undamped

$$s = \pm j \omega_d$$

(허수 축 위의 두 점)

The complete s-plate showing the location of the two roots, s_1 and $s_{2,j}$ of the characteristic equation in the left-hand portion of the s-plane. The roots are designated by the \times symbol.

Application – Flash Lamp Circuits (I)

- 일회용 플래시가 달린 카메라.
- 1.5 V 의 건전지로 수천 V 를 발생시켜 플래시를 동작.
- 캐패시터가 에너지(W=Pt=(VI) t)를 저장했다가 짧은 시간에 작은 전류를 흘려서 큰 전압을 얻는다.
- 주요 부품 :
- (1) 160 μF, 330 V 극성화된 전해 캐패시터 : 플래시 램프에 필요한 전하를 축적.
- (2) 플래시 램프
- (3) 1.5 V 건전지
- (4) chopper 회로 : 300 V 를 넘는 직류 전압을 발생 시킴.
- **(5) trigger** 회로 : 짧은 시간이지만 수천 **V** 를 발생시 킴.

Flash camera: general appearance

Robert L. Boylestad, Introductory Circuit Analysis, 10th edition, Prentice Hall, 2002, p. 415, Figure 10.72(a)

Application – Flash Lamp Circuits (11)

Application – Flash Lamp Circuits (III)

- 세 종류의 캐패시터가 사용됨
- (1) 160 μF, 330 V 극성화된 전해 캐패시터 : 플래시 램프에 필요한 전하를 축적.
- (2) 22 nF 캐패시터 : trigger 회로에 사용.
- (3) 470 pF 캐패시터 : chopper 회로에서 고주파 발진에 사용.

Application – Flash Lamp Circuits (IV)

Application – Flash Lamp Circuits (V)

(1) 플래시 버튼을 누르면 1.5 V가 전자회로에 가해진다. (2) 이 회로는 고주파 발진 파형을 만든다. (3) 고주파 변압기가 발생한 전 압의 크기를 크게 해서 반파(半 波) 정류기에 전압이 걸린다. (4) 이 전압은 160 μF 캐 패시터를 충전해서 300 V 까지 전압이 올라간다.

Robert L. Boylestad, Introductory Circuit Analysis, 10th edition, Prentice Hall, 2002, p. 415

Application – Flash Lamp Circuits (VI)

시터와 인덕터 사이를 오가게 되고,

이를 "flyback effect" 라고 한다.

(9) trigger 회로는 300 V 를 수천 V 로 높여서 플래시 램프를 점화 ("firing")시킨다. (10) flash switch 가 닫히면 저항 R_1 과 R_2 가 분압 회로를 구성하게 된다.

(11) R_2 에 걸리는 전압은 SCR(silicon-controlled rectifier)의 gate G 에 인 가하여 SCR을 동작시켜 SCR 의 A(anode) 단자와 K(cathode) 단자 사이를 short 으로 만든다.

(12) 22 nF 의 캐패시터는 300 V 로 충전되고, 300 V 에 다다르면 전류가 흐르지 않게 된다.

(13) SCR 에 흐르는 전류 가 영이 되므로 소자 특성에 의해서 SCR 은 다시 open 이 된다.

Robert L. Boylestad, Introductory Circuit Analysis, 10th edition, Prentice Hall, 2002, p. 415

(17) 이 전압은 변압기를 통해서 크기가 커져서 플래시

를 점화 ("firing") 할 수 있는 4,000 V에 이르게 된다.

Auto Airbag Igniter (I)

An automobile airbag ignition device

- Airbag은 운전자의 안전을 위해서 이용된다.
- Pendulum이 capacitor energy를 igniter로 보내도록 스위치한다.
- 저항 R에서 받은 에너지로 화약 등을 폭발시켜 airbag을 팽창시킨다.
- 저항 R에서 1 J의 에너지를 소모해야 하고, 0.1 초 이내에 트리거해야 한다.
- *L*, *C*의 값을 정하라.

Auto Airbag Igniter (II)

- Box의 위, 아래 벽에 전극을 설치하고, pendulum을 전극으로 이용한다.
- Box의 위, 아래 벽 전극과 pendulum 전극에 전압을 인가한다.
- pendulum의 위치 변화에 따라 위 아래 전극과의 정전용량이 변화한다.
- 이들 값의 차분을 구하면 위치변화분을 알 수 있다.

$$C_1 = \frac{\varepsilon_0 A}{d - \Delta x}, \ C_2 = \frac{\varepsilon_0 A}{d + \Delta x}$$

- Box 안에 pendulum 이 매달려 있다.
- 가속도가 가해지면 관성력에 의하여 pendulum 과 box벽의 거리가 변화한다.

$$ma = k\Delta x \implies a = \frac{k}{m}\Delta x$$

$$\begin{split} \Delta C &= C_1 - C_2 \\ &= \frac{\varepsilon_0 A}{d - \Delta x} - \frac{\varepsilon_0 A}{d + \Delta x} \\ &= \frac{\varepsilon_0 A}{d} \left(\frac{1}{1 - \Delta x/d} - \frac{1}{1 + \Delta x/d} \right) \\ &\approx \frac{\varepsilon_0 A}{d} \left[(1 + \Delta x/d) - (1 - \Delta x/d) \right] \\ &= \frac{\varepsilon_0 A}{d} \frac{2}{d} \Delta x \end{split}$$

Auto Airbag Igniter (III)

http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/backbone/r6_1_3.html http://lennyramirez-crf2.blogspot.kr/2010/06/process-modeling-of-mems-ic-dlp-mirror.html

MEMS Accelerometer

General accelerometer structure and is mechanical lumped model.

ADXL 50 accelerometer

ADXL 50 accelerometer. The sensing element in the center is surrounded by active electronics. Chip size is 3 mm x 3 mm.

From Analog Davises Analog Davis Analo

From Analog Devices, Inc. http://www.nap.edu/openbook.php?record_id=5977&page=8

Non-Vacuum Sealed MEMS Gyroscope

Auto Airbag Igniter (IV)

- 0.1 초 이내에서 트리거되려면 under damped response를 보여야 한다.
- 0.1 초가 주기의 1/4 정도가 되어야 한다.

$$C\frac{dv}{dt} + i_L + \frac{v}{R} = 0, v = L\frac{di_L}{dt}$$

$$\therefore LC\frac{d^2i_L}{dt^2} + \frac{L}{R}\frac{di_L}{dt} + i_L = 0$$

$$\frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{i_L}{LC} = 0$$

$$\alpha = 1/2RC, \omega_0 = 1/\sqrt{LC}$$
 underdapmed condition : $\alpha < \omega_0$

$$i_{L} = K_{1} e^{-\alpha t} \cos \omega_{d} t + K_{2} e^{-\alpha t} \sin \omega_{d} t$$

$$(\omega_{d} = \sqrt{\omega_{0}^{2} - \alpha^{2}})$$

Auto Airbag Igniter (V)

$$i_L = K_1 e^{-\alpha t} \cos \omega_d t + K_2 e^{-\alpha t} \sin \omega_d t$$

- 빠른 응답을 위하여 $\alpha = 2$ 로 선택한다.

$$\alpha = 1/2RC$$
, $\omega_0 = 1/\sqrt{LC}$ 이므로 $C = 1/2R\alpha = 1/16$ F 이고

$$T = \frac{1}{f} = \frac{2\pi}{\omega_d} \approx \frac{2\pi}{\omega_0} = 0.4 \text{ 이므로}$$

$$L = (0.4/2\pi)^2/C = 16(0.4/2\pi)^2 = 65 \text{ mH}$$

$$i_L = K_1 e^{-2t} \cos 15.57t + K_2 e^{-2t} \sin 15.57t$$

$$(\omega_d = \sqrt{\omega_0^2 - \alpha^2} = 15.57)$$

Auto Airbag Igniter (VI)

$$i_L = 11.86e^{-2t} \sin 15.57t$$

$$v = L \frac{di_L}{dt}$$

$$= 0.065 \times 11.86(-2e^{-2t}\sin 15.57t + 15.57e^{-2t}\cos 15.57t)$$

$$\approx 12e^{-2t}\cos 15.57t$$

$$p = v^2 / R = 36e^{-4t} \cos^2 15.57t$$

- 저항의 전압과 전류를 보여준다.
- 0 초에서 0.1 초 까지 거의 직선적으로 변하기 때문에 전력을 삼각형으로 여기고 에너지를 구한다.

$$W = \int_0^{0.1} p dt = \int_0^{0.1} v i dt$$
$$= \frac{1}{2} 36 \times 0.095 = 1.71 \text{ J} > 1 \text{ J}$$

