

CS286 AI for Science and Engineering

Lecture 9: Natural Language Processing and Knowledge Representation

Kewei Tu (屠可伟)

PhD, Associate Professor

School of Information Science and Technology (SIST), ShanghaiTech University Fall Semester, 2020

- Natural language processing (NLP)
 - Sequence labeling

- Knowledge representation (KR)
 - Propositional logic
 - First-order predicate logic

NLP – Sequence labeling

Sequence Labeling

Problem Definition

- Known
 - A set of labels $C = \{c_1, c_2, ..., c_I\}$
- Input
 - Sentence $s = \{x^1, x^2, ..., x^m\}$
- Output
 - For each word x^i , predict a label $c^i \in C$

- Part-of-speech tagging
 - Input

```
Pierre Vinken , 61 years old , will join ...
```

Output

```
NNP NNP , CD NNS JJ , MD VB
```

```
NNP = Proper noun, singularCD = Cardinal numberNNS = Noun, pluralJJ = Adjective
```


- Chinese word segmentation
 - Input

```
瓦 里 西 斯 的 船 只 中 ...
```

Output

```
B I I E S B E S (瓦 里 西 斯) (的) (船 只) (中) ...
```

B = beginning of a word

I = inside of a word

E = end of a word

S = single character word

- Named entity recognition
 - Input

```
Michael Jeffrey Jordan was born in Brooklyn ...
```

Output

```
B-PER I-PER E-PER O O O S-LOC

Michael Jeffrey Jordan

Person

Brooklyn

Location
```

```
B = beginning of an entity -PER = person
```

I = inside of an entity -LOC = location

E = end of an entity -ORG = organization

S = single word entity ...

O = outside of any entity

- Semantic role labeling
 - Input

The cat loves hats ...

Output

B = beginning of an entity -PRED = predicate

I = inside of an entity -ARG0 = agent

E = end of an entity -ARG1 = patient

S = single word entity

O = outside of any entity

The simplest method

- For each word, predict its most frequent label
 - 90% accuracy on POS tagging!
 - Disadvantages:
 - 1. It does not consider the contextual info
 - "book a flight" vs. "read a book"
 - 我骑车差点摔倒,好在我一把把把把住了
 - 2. It does not consider relations between adjacent labels
 - In BIOES: "B-I" and "B-E" are OK, but "B-O" and "B-S" are not

- Hidden Markov Models
- Conditional Random Fields
- Recurrent Neural Networks

Hidden Markov Model (HMM)

- Variables
 - X: word
 - Y: label (hidden state)
- Parameters
 - Transition model $P(y_t|y_{t-1})$
 - Emission model $P(x_t|y_t)$
 - Initial distribution $P(y_1)$
 - Can be seen as transition from Y₀=START to Y₁
 - Final distribution $P(y_n)$
 - Can be seen as transition from Y_n to Y_{n+1} =STOP

HMM Example

Transition

X _{t-1}	$P(X_t X_{t-1})$				
	N	٧	Р		
START	0.5	0.1	0.1	•••	
N	0.4	0.3	0.1	•••	
V	0.5	0	0.3		
Р	0.3	0.1	0		
•••	•••	•••	•••		

Emission

X _t	P(E _t X _t)					
	"fox"	"dog"	"run"	•••		
N	0.02	0.03	0.01	•••		
V	0	0	0.05	•••		
Р	0	0	0	•••		
		•••		•••		

- Joint distribution for hidden Markov model:
 - $P(Y_1, X_1, ..., YT, X_T) = \prod_{t=1:T} P(Y_t | Y_{t-1}) P(X_t | Y_t)$
- Independence in HMM
 - Future states are independent of the past given the present
 - Current evidence is independent of everything else given the current state

HMM Inference

- Find the most likely label sequence of a sentence
- Inference objective

$$\hat{\mathbf{y}} = \arg\max_{y} P(\mathbf{y}|\mathbf{x}, A, B) = \arg\max_{\mathbf{y}} a_{START, y^{1}} \left(\prod_{t=1}^{|x|-1} b_{y^{t}, x^{t}} a_{y^{t}, y^{t+1}} \right) b_{y^{|x|}, x^{|x|}} a_{y^{|x|}, STOP}$$

- Inference Algorithm
 - Brute-force?
 - Viterbi

a_{ij}	STOP	N	М	٧	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

7						
b_{ik}	tin	John	can	carried	a	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

i t	John_1	$carried_2$	a_3	$ an_4$	can_5
N					
М					
V					
D					

final

a_{ij}	STOP	N	М	V	D
START	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	a	
N	0.05	0.01	0.01	0	0	
M	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

i t	John_1	$carried_2$	a_3	$ an_4$	can_5
Ν					
М					
V					
D					

final

a_{ij}	STOP	N	М	V	D
START	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

i	John_1	$carried_2$	a_3	$ an_4$	can_5
N	0.005				
М					
V					
D					

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
M	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

i t	John_1	$carried_2$	a_3	$ an_4$	can_5
N	0.005				
М	0				
V	0				
D	0				

final

a_{ij}	STOP	N	М	٧	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1,\dots,N;$ Init:

Recursion: $v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$

i	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005				
М	0				
V	0				
D	0				

final

a_{ij}	STOP	N	М	V	D
START	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i t	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0			
М	0	0			
V	0	$3*10^{-5}$			
D	0	0			

final

a_{ij}	STOP	N	М	V	D
START	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i t	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0	0		
М	0	0	0		
V	0	$3*10^{-5}$	0		
D	0	0	4.5 * 10	5	

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i t	$John_1$	$carried_2$	a ₃	$ an_4$	can_5
N	0.005	0	0 2	.25 * 10	7
М	0	0	0	0	
V	0	$3*10^{-5}$	0	0	
D	0	0	4.5 * 10	50	

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	a	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

Init:
$$v_i^1 = a_{START,i}b_{i,x^1}, i = 1,...,N;$$

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i t	$John_1$	$carried_2$	a ₃	$ an_4$	can_5
N	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
М	0	0	0	0	
V	0	$3*10^{-5}$	0	0	
D	0	0	4.5 * 10	50	

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	a	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i t	John_1	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
М	0	0	0	0	$1.35 * 10^{-8}$
V	0	$3*10^{-5}$	0	0	
D	0	0	4.5 * 10	50	

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion:
$$v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$$

i	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
М	0	0	0	0	$1.35 * 10^{-8}$
V	0	$3*10^{-5}$	0	0	0
D	0	0	4.5 * 10	50	0

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	a	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion: $v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$

Final: $v_{STOP}^{|\mathbf{x}|+1} = \max_{i} v_i^{|\mathbf{x}|} a_{i,STOP}$

i	t	John_1	$carried_2$	a_3	$ an_4$	can_5
1	V	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
N	4	0	0	0	0	$1.35 * 10^{-8}$
\	/	0	$3*10^{-5}$	0	0	0
)	0	0	4.5 * 10	50	0

At the final step, select the path with the highest probability

final

a_{ij}	STOP	N	М	V	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

Init: $v_i^1 = a_{START,i}b_{i,x^1}, \quad i = 1, \dots, N;$

Recursion: $v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$

Final: $v_{STOP}^{|\mathbf{x}|+1} = \max_{i} v_i^{|\mathbf{x}|} a_{i,STOP}$

i t	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
М	0	0	0	0	$1.35 * 10^{-8}$
V	0	$3*10^{-5}$	0	0	0
D	0	0	4.5 * 10	50	0

At the final step, select the path with the highest probability

final

a_{ij}	STOP	N	М	٧	D
STÁRT	0	0.5	0	0.1	0.4
N	0.2	0.2	0.3	0.3	0
M	0	0	0	1	0
V	0.1	0.3	0.3	0	0.3
D	0	1	0	0	0

b_{ik}	tin	John	can	carried	а	
N	0.05	0.01	0.01	0	0	
М	0	0	0.2	0	0	
V	0	0	0	0.02	0	
D	0	0	0	0	0.5	

 $v_i^1 = a_{START,i} b_{i,x^1}, \quad i = 1, \dots, N;$ Init:

Recursion: $v_j^t = \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j = 1, \dots, N, \ t = 2, \dots, |x| - 1$

Final: $v_{STOP}^{|\mathbf{x}|+1} = \max_{i} v_i^{|\mathbf{x}|} a_{i,STOP}$

i	$John_1$	$carried_2$	a_3	$ an_4$	can_5
N	0.005	0	0	$2.25 * 10^{-7}$	$4.5 * 10^{-10}$
M	0	0	0	0	$1.35 * 10^{-8}$
V	0	$3*10^{-5}$	0	0	0
D	0	0	4.5 * 10	50	0

At the final step, select the path with the highest probability

final $9*10^{-11}$

0

D

0

 $4.5 * 10^{-5}$

0

ending with a tagi 志成才报图裕氏

The probability of the most probable

sequence up to t

- The simplest method: for each word, predict its most frequent label
 - Problems:
 - 1. It does not consider the contextual info
 - 2. It does not consider relations between adjacent labels
- HMM handles problem 2, but not 1

Max-Entropy Markov Models (MEMM)

$$P(y_{1:n}|x_{1:n},W) = P(y_1|x_1,W) \prod_{t=1}^{n} P(y_t|y_{t-1},x_t,W)$$

$$P(y_t|y_{t-1}, x_t, W) = \frac{\exp(W^T f(y_{t-1}, y_t, x_t))}{Z(y_{t-1}, x_t)}$$

Max-Entropy Markov Models (MEMM)

$$P(y_{1:n}|x_{1:n},W) = P(y_1|x_{1:n},W) \prod_{t=1}^{n} P(y_t|y_{t-1},x_{1:n},W)$$

$$P(y_t|y_{t-1},x_{1:n},W) = \frac{\exp(W^T f(y_{t-1},y_t,x_{1:n}))}{Z(y_{t-1},x_{1:n})}$$

- MEMM considers both contextual info and relations between adjacent labels!
- But... MEMM suffers from label bias problem

Conditional Random Field (CRF)

$$P(y_{1:n}|x_{1:n},W) = \frac{1}{Z(x_{1:n},W)} \prod_{t=1}^{n} \exp(W^{T} f(y_{t-1},y_{t},x_{1:n}))$$

- CRF is an undirected graphical model
 - Global normalization instead of local normalization

CRF Inference

- Find the most likely label sequence of a sentence
- Inference objective

$$y_{1:n}^* = \arg\max_{y_{1:n}} \exp\left(\sum_{t=1}^n W^T f(y_{t-1}, y_t, x_{1:n})\right)$$

- Inference Algorithm
 - Viterbi

Neural Methods

Simplest NN: predict a label from the embedding of each

2. It does not consider relations between adjacent labels

Neural Methods

Recurrent neural network (RNN)

2. It does not consider relations between adjacent labels (:)

Neural Methods

Bidirectional RNN

Concatenated hidden vectors

It does not consider relations between adjacent labels (**)

Neural Methods

Multilayer
 Bidirectional RNN

- 1. It does not consider the contextual info
- 2. It does not consider relations between adjacent labels (**)

Neural Methods

 Multilayer **Bidirectional RNN** +CRF decoder

- It does not consider the contextual info
- It does not consider relations between adjacent labels (><)

- Sequence labeling
 - Predict a label for each word of a sentence
 - Many NLP tasks can be seen as sequence labeling
- Methods
 - HMM
 - MEMM
 - CRF
 - RNN

Knowledge Representation

Knowledge Representation (KR)

- Representation
 - How to represent information in a form that a computer can utilize to solve tasks
- Reasoning
 - How to utilize represented knowledge to derive new knowledge
- Majority of KR research is based on symbolic logic

- Logic
 - Formal language in which knowledge can be expressed
 - A means of carrying out reasoning in the language
- Logic Al
 - Knowledge base: set of sentences in a formal language to represent knowledge about the "world"
 - <u>Inference engine</u>: answers any answerable question following the knowledge base

Formal Language

- Components of a formal language in a logic
 - Syntax: What sentences are allowed?
 - Semantics:
 - Which sentences are true/false in each model (possible world)?

Semanticsland

Formal Language

- Example: the language of arithmetic
 - Syntax
 - $x+2 \ge y$ is a sentence
 - x2+y > {} is not a sentence
 - Semantics
 - $x+2 \ge y$ is true in a world where x = 7, y = 1
 - $x+2 \ge y$ is false in a world where x = 0, y = 6

KR – Propositional logic

Propositional logic: Syntax

- Propositional logic is the "simplest" logic
 - The proposition symbols P1, P2, etc. are sentences
 - If S is a sentence, \neg S is a sentence (negation)
 - If S1 and S2 are sentences, S1 \(\times S2 \) is a sentence (conjunction)
 - If S1 and S2 are sentences, S1 \(\times S2 is a sentence \(\text{disjunction} \)
 - If S1 and S2 are sentences, S1 \Rightarrow S2 is a sentence (implication)
 - If S1 and S2 are sentences, S1 \Leftrightarrow \$2 is a sentence (biconditional)

 \neg , \land , \lor , \Rightarrow , \Leftrightarrow are called logic connectives or operators

Sometimes \rightarrow and \leftrightarrow are used

Examples of PL sentences

- P means "It is hot."
- Q means "It is humid."
- R means "It is raining."
- $(P \land Q) \Rightarrow R$
 - "If it is hot and humid, then it is raining"
- $Q \Rightarrow P$
 - "If it is humid, then it is hot"

Propositional logic: Semantics

- Each model specifies true/false for each proposition symbol
 - P1 P2 P3 • E.g. false true false
- Rules for evaluating truth with respect to a model m:
 - ¬S is true iff S is false
 - S1 ∧ S2 is true iff S1 is true and S2 is true
 - S1 \lor S2 is true iff S1 is true or S2 is true
 - S1 \Rightarrow S2 is true iff S1 is false or S2 is true
 - S1 \Leftrightarrow S2 is true iff S1 \Rightarrow S2 is true and S2 \Rightarrow S1 is true

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Inference: entailment

- Entailment: $\alpha \models \beta$ (" α entails β " or " β follows from α ") means in every world where α is true, β is also true
 - i.e., the α -worlds are a subset of the β -worlds [models(α) \subset models(β)]
- In the example, $\alpha 2 = \alpha 1$

Inference: proof

- A proof (α |- β) is a demonstration of entailment from α to
- Method: application of inference rules
 - Search for a finite sequence of sentences each of which is an axiom or follows from the preceding sentences by a rule of inference
 - Axiom: a sentence known to be true
 - Rule of inference: a function that takes one or more sentences (premises) and returns a sentence (conclusion)

Inference: soundness & completeness

- Sound inference
 - everything that can be proved is in fact entailed
- Complete inference
 - everything that is entailed can be proved
- Almost every logic that we use is sound
- Not every logic is complete
 - Example: arithmetic is found to be not complete! (Gödel's theorem, 1931)

Resolution: an inference rule in PL

- Conjunctive Normal Form (CNF)
 - conjunction of disjunctions of literals (clauses)
 - Ex

$$(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$$

 $(\neg B1,1 \lor P1,2 \lor P2,1) \land (\neg P1,2 \lor B1,1) \land (\neg P2,1 \lor B1,1)$

Resolution: an inference rule in PL

• Resolution inference rule (for CNF):

Suppose I_i is ¬m_j

$$\frac{I_1 \vee ... \vee I_k, \qquad m_1 \vee ... \vee m_n}{I_1 \vee ... \vee I_{i-1} \vee I_{i+1} \vee ... \vee I_k \vee m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n}$$

Examples:

$$\frac{P_{1,3} \vee P_{2,2}, \quad P_{2,3} \vee \neg P_{2,2}}{P_{1,3} \vee P_{2,3}} \qquad \frac{P_{1}, \neg P_{1}}{\{\}}$$

Resolution is sound and complete for propositional logic

Resolution algorithm

- The best way to prove $KB = \alpha$?
 - Proof by contradiction, i.e., show $KB \land \neg \alpha$ is unsatisfiable
 - 1.Convert $KB \land \neg \alpha$ to CNF
 - 2. Repeatedly apply the resolution rule to add new clauses, until one of the two things happens
 - a) Two clauses resolve to yield the empty clause, in which case KB entails α
 - b) There is no new clause that can be added, in which case KB does not entail α

Resolution example

$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$

 $\alpha = \neg P_{1,2}$

KR – First-order predicate logic

Syntax of FOL: Basic elements

- Logical symbols
 - Connectives \neg , \land , \lor , \Rightarrow , \Leftrightarrow
 - Quantifiers ∀,∃
 - Variables x, y, a, b, ...
 - Equality
- Non-logical symbols (ontology)
 - KingArthur, 2, ShanghaiTech, ... Constants
 - Predicates Brother, >, ...
 - Sqrt, LeftLegOf, ... Functions

Atomic sentences


```
Atomic sentence = predicate (term_1,...,term_n)
           or term_1 = term_2
```

= constant or variable Term or function (term₁,...,term_n)

Example:

Brother(KingJohn, Richard The Lionheart) >(Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S_1 \quad S_1 \land S_2 \quad S_1 \lor S_2 \quad S_1 \Rightarrow S_2 \quad S_1 \Leftrightarrow S_2$$

Example:

 $Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn)$

$$>(1,2) \lor \le (1,2)$$

- Sentences are true with respect to a model, which contains
 - Objects and relations among them
 - Interpretation specifying referents for

```
constant symbols → objects
predicate symbols → relations
function symbols → functional relations
```

• An atomic sentence $predicate(term_1,...,term_n)$ is true iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate

Models for FOL: Example

Models for FOL: Example

Consider the interpretation:

Richard → Person R John → Person J *Brother* → the brotherhood relation

Under this interpretation, *Brother*(*Richard*, *John*) is true in the model.

Quantifiers

- Allows us to express properties of collections of objects instead of enumerating objects by name
- Universal: "for all" ∀
- Existential: "there exists" ∃

Universal quantification


```
∀<variables> <sentence>
Example: \forall x \ At(x,STU) \Rightarrow Smart(x)
       (Everyone at ShanghaiTech is smart)
```

 $\forall x P$ is true in a model m iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
At(John,STU) \Rightarrow Smart(John)
∧ At(Richard,STU) ⇒ Smart(Richard)
\wedge At(STU,STU) \Rightarrow Smart(STU)
^ ...
```


Existential quantification


```
∃<variables> <sentence>
Example: \exists x \ At(x,STU) \land Smart(x)
       (Someone at ShanghaiTech is smart)
```

 $\exists x P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

```
(At(John,STU) \land Smart(John))
∨ (At(Richard,STU) ∧ Smart(Richard))

∨ (At(STU,STU) ∧ Smart(STU))

V ...
```


FOL example: kinship

- Brothers are siblings $\forall x,y \; Brother(x,y) \Rightarrow Sibling(x,y).$
- "Sibling" is symmetric $\forall x,y \ Sibling(x,y) \Leftrightarrow Sibling(y,x).$
- One's mother is one's female parent $\forall x,y \; Mother(x,y) \Leftrightarrow (Female(x) \land Parent(x,y)).$
- A first cousin is a child of a parent's sibling $\forall x,y \ FirstCousin(x,y) \Leftrightarrow \exists p,ps \ Parent(p,x) \land Sibling(ps,p) \land$ Parent(ps,y)

Resolution for FOL

Full first-order version:

$$\frac{\ell_1 \vee \cdots \vee \ell_k, \quad m_1 \vee \cdots \vee m_n}{(\ell_1 \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n)\theta}$$

where Unify(ℓ_i , $\neg m_i$) = θ .

- The two clauses are assumed to be standardized apart so that they share no variables.
- Example:

with $\theta = \{x/Ken\}$

- Inference algorithm: applying resolution steps to CNF(KB $\wedge \neg \alpha$)
- Resolution is sound and complete for FOL

- Knowledge Representation
 - Represent knowledge that computers can utilize
 - Reasoning about new knowledge
- Propositional Logic
 - Proposition symbols + logic connectives
- First-Order Predicate Logic
 - Constants, variables, predicates, quantifiers
 - Objects, relations

