

Azure Machine Learning

Databricks Updates to DP-100

- Create an Azure Databricks workspace
- Create an Azure Databricks cluster
- Create and run notebooks in Azure Databricks
- Link and Azure Databricks workspace to an Azure Machine Learning workspace
- Configure Attached Compute resources including Azure Databricks
- Run a training script on Azure Databricks compute
- Use MLflow to track experiments
- Track experiments running in Azure Databricks
- Deploy a model trained in Azure Databricks to an Azure Machine Learning endpoint.

on Agen.

What is Azure Databricks?

@ litesh khull

What is Azure Databricks?

What is Big Data?

 Data Processing – Voluminous and complex datasets, that traditional database system can not <u>deal with</u>

 Analytics – Set of techniques and technologies to <u>reveal</u> <u>insights</u> from a diverse, complex and large dataset

oungeu.

Big Data Characteristics

@ litesh Khull

Volume – Quantity of data generated and stored

 Volume – Quantity of data generated and stored

Variety – Type and nature of data

 Volume – Quantity of data generated and stored

- Variety Type and nature of data
- Velocity Speed of data generation and processing

- Volume Quantity of data generated and stored
- Variety Type and nature of data
- Velocity Speed of data generation and processing
- Variability Inconsistency of dataset

"Read a book on the flight."

"Book me a flight."

"This book is good."

"We are fully booked."

"He was booked for a crime."

- Volume Quantity of data generated and stored
- Variety Type and nature of data
- Velocity Speed of data generation and processing
- Variability Inconsistency of dataset
- Veracity Quality/Uncertainty of data captured

ese on Uden.

Types of Big Data Applications

© litesh Ki

Batch Processing

Re-format and clean the data for further processing

Real-Time Data processing

Analyse and Process in real-time

Predictive Analytics

Machine Learning, Al

oungeu.

What is Hadoop?

© litesh Khull

Hadoop as a framework

- Open-source framework for distributed processing
- Designed to scale up from single to thousands of servers in parallel
- Uses Hadoop Distributed File System (HDFS)
- MapReduce as data processing function
- YARN Resource Management

Soungey.

Get a summary report for all the transactions done in the past one year.

@ litesh khun

Traditional Database System

Hadoop

on Agen.

Big Data Ecosystem

@ Jitesh Khull

Governance	Tools							Security	Operations
Data Lifecycle and Governance	Zeppelin		Ambari Views			DSX	Idemy	Administration Authentication	Provisioning
Atlas	Data Access							Authorization Audit Protection	Managing Monitoring
	Batch	Script	SQL	NoSQL	Stream	Search	In-Mem	Protection	
Data Workflow	Map Reduce	Pig	Hive Druid	HBase Accumulo Phoenix	Storm	Solr	Spark	Ranger Knox	Ambari Cloudbreak
Sqoop								HDFS	ZooKeeper
Kafka	YARN: Data Operating System							Encryption	
NFS WebHDFS	Hadoon Distributed File System								Scheduling Oozie

From Hadoop to Databricks

-

- Inefficient processing
- Batch Only
- Huge ecosystem
- No in-memory processing.

What is Apache Spark?

- A unified analytics engine for large-scale data processing.
- In-Memory Distributed cluster computing
- Provides APIs for development in Java, Python, Scala and R
- Supports batch and real-time processing
- Very high speed of execution.

Spark Architecture

Apache Spark Ecosystem

From Hadoop to Databricks

- Inefficient processing
- Batch Only
- Huge ecosystem
- No in-memory processing

- Not Easy to use
- Develop environment on your own
- Collaboration of work
- Not cloud-first

_ \

- Platform optimized for efficient working with Spark
- Provides workspace to manage Spark and its infrastructure
- Ease of collaboration and integration

Databricks Workspace

Collaborative Notebooks, libraries, experiments

Databricks Run Time

Cloud Services

Steps to run a Pipeline with DatabricksStep

Set-up Steps

- Create Azure Storage Account
- Create Blob Container
- Copy the access key for storage account
- Upload the data/csv to container
- Create AzureML Workspace
- Create AzureML Datastore
- Create AzureML Dataset
- Create Databricks Workspace
- Create Databricks Cluster
- Create and Copy Databricks workspace access key

Python Job Steps

- Create workspace object from the config file
- Create custom environment and cluster
- Create run_config for python script step
- Create data reference for input dataset
- Create PipelineData objects for Input/Output
- Create Databricks compute configuration parameters with key
- Attach the databricks cluster as attached compute
- Create DatabricksStep step
- Create PythonScriptStep as the second step
- Create Pipeline using DatabricksStep and PythonScriptStep

Databricks notebook steps

- Unmount the input and output data mounts
- Get the Inputs and Outputs parameters using dbutils.widgets.get
- Create conf_key and key_value for the storage account
- Mount input and output blob storage folders as dbfs directory
- Read data from the mounts
- Perform data processing or functions as desired
- Make output directories on blob storage using dummy blob
- Save output files using the dbfs mount to blob storage

Accept the datastore reference as input parameter

Authentication with AzureML workspace

Storage Account

Azure Machine Learning

Thank You..!!