Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

M	1		T	D' DI /
Modu				Fin Plate
MainMo			Shear Connection	
Connectivity			C	Column flange-Beam web
Shear(k	(N)*			50.0
	Su	pporting Sect	ion	
	Supportin	ng Section		PBP 360X152
,	Mate	erial *		E 250 (Fe 410 W)A
т— Ү	Ultimate strer	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		230
$(B-t)$ α	Mass	152.02	Iz(cm4)	439716000.0
ZZ D	Area(cm2) -	19370.0	Iy(cm4)	158755000.0
	D(mm)	356.4	rz(cm)	150.7
R ₁	B(mm)	376.0	ry(cm)	90.5
-R ₂	t(mm)	17.8	Zz(cm3)	2467540.0
В	T(mm)	17.9	Zy(cm3)	844440.0
Υ	FlangeSlope	90	Zpz(cm3)	2766750.0
	R1(mm)	1.52	Zpy(cm3)	844440.0
	R2(mm)	0.0		
	` ′	ıpported Secti	ion	
	Supporte	ed Section	MB 200	
	Material *		E 250 (Fe 410 W)A	
т— Ү	Ultimate strength, fu (MPa)		410	
	Yield Streng	th , fy (MPa)	230	
$(B-t)$ α	Mass	24.1	Iz(cm4)	21100000.0
4 t -1-	Area(cm2) -	3070.0	Iy(cm4)	1310000.0
ZZ D	A			
i i	D(mm)	200.0	rz(cm)	82.8
R_1	B(mm)	100.0	ry(cm)	20.7
B	t(mm)	5.7	Zz(cm3)	211000.0
Y	T(mm)	10.0	Zy(cm3)	26000.0
•	FlangeSlope	98	Zpz(cm3)	239800.0
	R1(mm)	11.0	Zpy(cm3)	26000.0
	R2(mm)	5.5		
		Bolt Details		
Diameter((mm)*			[12.0, 16.0, 20.0]
Grade *			[3.6, 4.6, 4.6]	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Type *			Bearing Bolt	
Bolt hole type			Standard	
Slip factor				0.3
Type of			a -	Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0	
Are the members exposed to br>corrosive influences	False	
Weld Details		
Weld Type	Fillet	
Type of weld fabrication	Shop Weld	
Material grade overwrite (MPa) Fu	410.0	

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 36.26$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 5.7 * 410}{1.25}$ $= 36.26$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (36.26, 36.26)$ = 36.26	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{36.26}$ $= 2$	4	
No of Columns		2	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	40	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 5.7, \ 300 \ mm)$ $= 300$	40	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 16.0 = 40.0$	80	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 5.7, \ 300 \ mm)$ = 300	80	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 18.0 = 30.6$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	35	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. Edge Distance (mm)	$e/e^{\circ}_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e^{\circ}_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	35	Pass
Capacity (KN)	35382.95	36257.6	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 200.0 = 120.0$	150	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 200.0 - 2 * (10.0 + 11.0 + 10)$ $= 158.0$	150	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n c - 1) * p_{min})$ $= 2 * 30.6 + (2 - 1) * 40.0$ $= 111.2$	120.0	Pass
Min.Plate Thickness (mm)	$t_w = 5.7$	6.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{150 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 65.19$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (150 - (2 * 18.0)) * 6.0 * 410$ $= 210.33$)
Block Shear Capacity in Shear (V_db) (kN)		175.56	
Shear Capacity (V_d) (kN)	50.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(65.19, 210.33, 175.56)$ $= 65.19$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{120.0 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 150.55$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (120.0 - 2 * 18.0) * 6.0 * 4}{1.25}$ $= 148.78$	10
Block Shear Capacity in Tension (T_db) (kN)		175.56	
Tension Capacity (kN)	50.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(150.55, 148.78, 175.56)$ $= 148.78$	Pass
Moment Capacity (kNm)	3.25	5.65	Pass
Interaction Ratio	≤ 1	$\frac{3.25}{5.65} + \frac{50.0}{148.78} = 0.91$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part$ $= Max(17.9, 17.9) = 17.9$ $IS800: 2007 cl.10.5.2.3 Table21,$ $t_{w_{min}} = 5$	6	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(17.9, 17.9) = 6.0$ $t_{w_{max}} = 6.0$	6	Fail
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{3250000.0 * 69.0}{438012.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{3250000.0 * 0.0}{438012.0}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{276}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{276}$ $R_w = \sqrt{(511.97 + 181.16)^2 + (0.0 + 181.16)^2}$ $= 716.41$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.2 * 410}{\sqrt{3}} * 1.25$ $= 795.36$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View