C: a cycle of vational curves.

(reduced singular opx come
with only nodes,

st. Idual graph = a cycle glaph.)

Vivored comp = P' (i: c -> c:
normalisatin).

T= (D)

CC Sholly non-sing surf.

s.t. Nys: top. tviv

Ne/s := [c] |c. ; normal bl (.

 $\frac{\text{Fact}}{\text{Fact}} Pic^{\circ}(C) \cong C^{+}.$ $L \longmapsto U$

30 C >0

s.c. dise (n.0,2) 2 c. nx for the Zx

; as above.

Assure + (NGs) = + (NC/s) = e 2 T. F. Q

tor = O = R · Q : Diophantine irrat (number.

Then IV: nbhd of cins

= V': -tt c'ins' s.t.

V = V C = c' (

Thun (Arnol'd 76)

C: non-sing, ellipt come C S non-sing sonf.

with Nys E Pic (c) = C: "Dioph."

=> 3 t: nbhd of Cins,

I V'; uphd of the zero-section of Nys

C = zero rectin

"C admits a holomophic tub. nbhd"

history;

Thin 2 3 X: K3 surf,

 $\frac{1}{2}$ f: $C^* \to X$: injective hol. inversion.

f(C*) Euc =: H C X : veal codin=1.

sm. hyp.surt,

cpt. Levi-flat.

Gpt. Levi-flat.

 $f(C^*)$ zar = X.

H≈ (S'xs'-bdl/s' with holomy)

dn:S'xs' → s'xs'

(F.2) → (P.2", 2)

H(2(H,2) = { 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0

1	,	11	
C.	hea	hel	0
20	1	,00	_

\$1. Historical comments, outline of the put, Everyles. 52. "Hice defing functions system of C. in S. 83. pot of Thal. (§ 4. prf of Thm 2). motivated by?

Siegel's linealization thm.

'42. ("linearization of find g (") COS F 183. Veda... a generalization of Arribds than. · Define observation classes. Un. · Tun = 0 for try + Digith. cond. for NES "Nice" (ocal defing functions

Wi Wa system of C in S

cpe ka",

linearize Wa = Wa (w. 2")

191 Veder -- while of a variable with a note, C_ S.T. +Wys) & U(1) :=1t(1t1=1)

15. (Indiana U. Math. 17) ... K-, K a cycle of a varl curs, なるときの、[Vedu 83]のアナロシ"ー. (3" Vice" 1 and doting functions sys. of C.)

if t(Neys)! Dioph. (Armal'd '76] Signor Thun 1 1 improve [k-17] for ecycle of volit curs Singular [K-17]: "gluty consenerion" of k3 surfaces. Some improvements. by using Armold them. (c-, Vehara) ... to appear. The 2: "Simplem and you".

Cof ArXIV/1703.03663 ~ 5'x5'x5')

Cof ArXIV/1703.03663 ~ 5'x5'x5') @ CCS, C'CS' ... as in E.g. 3 below. @ $M' := S \cdot ("nice" abbd \cdot f c)$ $M' := S' \cdot (- + c')$ @ X:= M UM' glue abolds of all and all' hol'ly. 11

52. Exuples E.g.3. Co CP2: cum of day = 3, at most modal sing. (Cor Jor Dor A) Z:=1P1, ..., Pg 1: ninepts. (Pi = notal point for b) S:= Blz P2 = P2; b-up. $C := (T^{-1})_*C_0 : str. transf.$ ~ | Nys: top. triv. (€ dy Nys = 3x3 - 9 = 0) Ness ∈ Pic (c) ≥ Pic (co) attaches by t. e Pic (co) when Cis E.g. 4 (the "standard watel") & a vatil come with a note, 71: Op. (-2) - 1P1 (non-honog. coord S = T-1, tiber coord: & around 15=06 300 around 15=001= 17=01. (50.52= 500 on 15 # 0,004) F: V. 5 55 Zero section (5,50) - (t.50, 5) (t=V(0) Vot := { 151<ε, 1301<ε4 \ Vot := {171<ε, 1301<ε4 $V := V/\sim (\sim : induced by F)$

Obs In eg4, Vo := i (Vot) = i (v-) Vi := (Creg = C \ Inodulp. Ti) on bhd. Wo := 5.30 P > - / y | W: (p) | i globally defined, Elvic: plumi harmonic. "C admits a psolflat ublids system"

Thm ([K-'n, Thal.4)) CCS! as in That.

Description of the country of the Strategy: (C, S): 45 in That. show that I V: and he of C

st. V: as in

(with st. V: as in E.g.4 " (with t = t(Nys)) (To, Vil: open cov. of C. Ti := Creg . UtU := UonU, V_j ; V_i -nohd s.t. $V_j = V_i \wedge C$. V_0 : V_0 : VVi : a copy of Vi. COV natural mon. © i*C = C + Do + Doo. In \widetilde{V} , $J_{2}(i*N_{5})|_{\widetilde{v}}=0$ $\int_{0}^{\infty} P_{\infty}$ (c.c) + (c.p.) + (c.p.) ~ (22) = -5


```
Thm (k-'17, Thn 1.4)

[ Ne/s: Dioph. (C: gale of rate couns)

[ => C admits a polifier ubhds 575. 11
   <sup>2</sup> W; : V; → C : Let. fue'n of. D; = ( ¬V;.
     (\tilde{t}=0,1)
S, t. \quad W_1 = \begin{cases} t_1 \cdot W_0 & \text{on } V^+ \\ t_- \cdot \cdot W_0 & \text{on } V^- \end{cases} \quad (t_1 \in \mathcal{V}(1)).
                                             W:= of to wo on Vot

to on Vo

to wo on Vo

i def. two of CtPotPoo
O Define w: F→ c by
q t:=t(Nys) = tr
t- "
O Define F: \widetilde{V_0}^{\dagger} \longrightarrow \widetilde{V_0}^{\dagger} by i^{-1}(i \cdot p) = IP. F(p) \}_{\widetilde{V_0}^{\bullet}}
      F(S,3_{\sigma}) = \left(\frac{t}{9}, \frac{4}{9}, \frac{4}{9}\right)
```

O By chaping
$$\widetilde{W} \rightarrow \frac{\widetilde{W}}{\widetilde{G}(0,0)}$$
, we may assue $\widetilde{G}(0,0)=1$.

A Thm 1 = "G=1 holds for a suitable choice of (5,7)".

Obs H: V - C*: nowhere van. hol.

$$F^*\widehat{T}(:=\widehat{T}\circ F) = (F^*T) \cdot (F^*H)$$

$$= \frac{t \cdot 5}{G} \cdot (F^*H)$$

$$= \frac{t \cdot 5}{G \cdot H} \cdot (F^*H)$$

$$F^*\hat{\xi}_{\infty} = (F^*\hat{\xi}_{\infty}) \cdot (F^*H)^{-1} = \frac{G \cdot S}{F^*H} = \frac{Ha}{F^*H} \cdot \hat{S}$$

$$\sim \hat{G}'' := G \cdot \frac{H}{F^*H} \cdot \hat{S}$$

Outline of the put of Props.

 $F_{\pm}: V^{\pm} \longrightarrow \mathbb{C}: \text{ hol.} \text{ with } F_{\pm}|_{\mathcal{I}^{\pm}} \equiv 0.$

Want to find

Fi: Vi - C: hol. with Filt = 0

Fo-Fi = { F+ on V+ F- on V-

StepO: Take rel. sub Vj* € Vj. S.t. Vo" Vi"; nbhd of C "nice" choice of Vi*;

Fix 0<8<< E<< 1. $\widetilde{V}_{i}^{\sharp} = \{ |\widetilde{\omega}| < S, \in < |S| < \frac{1}{\varepsilon} \}$ Vo: = /100/55, max 912146 < 286, where X:= Past F*T) Coord on Vi ; (Z, W,) Coord Vi := i (Vi)

X=T

J= (FT)+5

Simple obs. Suff. to consenze For on Vot

Vi; conn. comp. of Von Vi.

Seep! form! construct of F_0 's.

We'll construct F_i 's in the form of $F_0 = \sum_{\nu=1}^{\infty} \alpha_{0,\nu}(x,y) \cdot W_0(x,y)^{\nu}$ $F_i(z,v_i) = \sum_{\nu=1}^{\infty} \alpha_{1,\nu}(z) \cdot W_i^{\nu}$ $F_i(z,v_i) = \sum_{\nu=1}^{\infty} \alpha_{1,\nu}(z) \cdot W_i^{\nu}$ $p_{i}|_{-beck} \text{ of } \alpha_{i,\nu} \text{ defield on } U_i^{*} = V_i^{*} \cap C.$ $\text{by } (z,w_i) \mapsto z.$ $\alpha_{0,\nu}(\text{nodalpr.})$ $Q_{0,\nu} \text{ on } U_0^{*} = V_0^{*} \cap C;$ $Q_{0,\nu}(z,w_i) \mapsto z.$ $\alpha_{0,\nu}(z,w_i) \mapsto$

 $\frac{a_{j,1}(y=1)}{t_{\pm}^{-1}.a_{0,1}-a_{1,1}}; \quad solve \\ t_{\pm}^{-1}.a_{0,1}-a_{1,1} = l_{1\pm},1(z) \quad \text{on } U_{0,1}^{*}; \\ where \\ F_{\pm}(z,w_{1}) = \sum_{\nu=1}^{\infty} l_{1\pm},\nu(z)\cdot w_{1}^{\nu}.$

O = such. { a,1 { ((Nog') = 0 })

ajin after decity fajix (=1.

O we use $\{q_i, \nu\}_{\nu=n}^{\infty}$ as "unknown functions".

Pr $(\chi(z, w_i)) = \{P_{\nu}(\chi(z))\}_{\nu=n}^{\infty} \{P_{$

Ry(y(≥, ω,)) = { Σαν, (≥) ω, οη ν. ε. Ry(y(≥)) οη ν. ε. y S

$$F_{0} | V_{t}^{*} = \sum_{\nu=1}^{\infty} a_{0,\nu}(x_{i}y). w_{0}^{\nu}$$

$$= \sum_{\nu=1}^{\infty} t_{+}^{-\nu} \left(P_{\nu}(x_{i}z) + \sum_{\lambda=1}^{\infty} Q_{\nu,\lambda}(z). w_{i}^{\lambda} + r_{\nu} \right). w_{i}^{\nu}$$

$$= \sum_{\nu=1}^{\infty} \left(t_{+}^{-\nu} \left(P_{\nu}(x_{i}z) + v_{\nu} \right) + h_{\nu}^{\dagger}(z) \right). w_{i}^{\nu},$$
where $h_{m}^{\dagger}(z) := \sum_{\nu=1}^{\infty} t_{+}^{-\nu} \left(Q_{\nu,m-\nu}(z) \right).$

$$known functions$$

-tr Define {a_{j,n} \(\) by
$$t_{\pm}^{-n} \cdot a_{o,n} - a_{i,n} = a_{\pm,n}(2) - h_{n}^{\pm}(2) \text{ on } D_{\pm}^{*}$$

$$\exists ! \{a_{j,n} \} \left(\left(= H^{\circ}(c, N_{q_{5}^{-n}}) = 0 \right) + H^{\circ}(c, N_{q_{5}^{-n}}) = 0 \right)$$

Convergence of Fis;

 $A(x) \in \mathbb{R}_{20} \mathbb{E} \times \mathbb{J}$; defined by $x+A^{2}x^{2}-\infty$ $\sum_{\nu=2}^{\infty} |1-t^{\nu-1}| \cdot A_{\nu} \cdot X^{\nu} = kR \cdot M \cdot \frac{A_{\nu}(x)^{2}}{1-RA(x)},$ where $M := \max_{\nu=1}^{\infty} \int_{\mathbb{T}_{2}}^{\infty} |F_{\pm}| \int_{\mathbb{T}_{2}}^{\infty} (<\infty)$ $\mathbb{R}^{\frac{1}{2}} \cdot s \cdot t.$ $\int \left| (2, v_{1}) \right| \leq (|2| \times \frac{1}{\epsilon}, |w_{1}| = \frac{1}{R}) \leq V^{\frac{1}{2}},$ $|1(2, w_{1})| \frac{1}{2\epsilon} < |2| \times \frac{1}{\epsilon}, |w_{1}| = \frac{1}{R}) \leq V^{\frac{1}{2}},$

K ... s.t. 3K; s.t. Vn, 419; 4, 41 let s.t. t+ a0-9, = let on U! $\Rightarrow \max_{\vec{j}=0,1} \sup_{\vec{j}} |a_{\vec{j}}| \leq \frac{k}{|1-t^n|} \max_{\vec{j}} |\sup_{\vec{j}} |h_{\pm}|.$ Then by induction, we have max sup (a; v) = A v+1. (Chown (Siegel) A(x) has positive vadors of convert tever)

A(x) has positive vadors of convert tever)

A(x) has positive vadors of convert tever) Ruk [K-17, Thal.4] can also be shown by the smilar strategy. Wo, Wi : def. funcis of U; in Vi. t_t. Wo = W, + \(\subseteq \lambda_{\mu, \nu} \lambda_{\mu, \nu} \subseteq \lambda_{\mu, \nu} \subseteq \lambda_{\mu} \subset define new det fuctions uj by "Schröcher eq". $W_{j} = u_{j} + \sum_{\nu=2}^{\infty} \alpha_{j,\nu} \cdot u_{j}^{\nu}$ (50 that tolo=U1) inductively defined and estimated. $G_j: V_i \times \Delta_s \rightarrow C: hol for sel. patisfies <math>\frac{\partial G_i}{\partial u_j}|_{u_i = 0} \stackrel{\cong}{+} .$ $(p, u_i) \mapsto w_i(p) - u_i - \sum_{i=2}^{n} \alpha_{i,i} v(p) \cdot u_i \stackrel{\cong}{\nu}$ [uv. twether.] = W; V → As by shorter U's Huess, wice S.t. Gj(P, W; CP) = 0. W; define!