Diseño del Proyecto

Última modificación: 27/01/25

1. Esquema de Arquitectura General

Este esquema conceptual describe cómo los componentes interactúan en el sistema:

- Sensores (Entradas):
 - **DS18B20** para medir la temperatura.
 - MQ-135 para medir la concentración de CO₂.
- Microcontrolador:
 - **ESP32** procesa los datos de los sensores.
 - Activa los actuadores según los umbrales definidos.
 - Almacena datos localmente (modo offline).
 - Envía datos en tiempo real a través de MQTT cuando hay conexión (modo online).
- Actuadores (Salidas):
 - Ventilador para circulación o extracción de aire.
 - Servo que abre/cierra la compuerta de ventilación.
- Plataforma IoT:
 - Un dashboard para visualizar los datos (temperatura, CO₂, estado de actuadores) y recibir alertas.

2. Diagrama Eléctrico Simplificado

Este diagrama muestra cómo se conectarán los sensores y actuadores al ESP32.

GPIO (Digital)	Ventilador Circulación Aire
l	(Transistor)
	++
Flash Memory	Almacenamiento Datos Temporales
Wi-Fi (MQTT)	Plataforma IoT Dashboard/Alertas
+	+

Notas técnicas del diagrama:

- **DS18B20**: Se conecta al ESP32 mediante un pin digital (usa el protocolo 1-Wire).
- MQ-135: Conecta la salida analógica al pin ADC del ESP32.
- **Servo**: Se controla mediante un pin PWM del ESP32.
- Ventilador: Usa un transistor o módulo relé para manejar su alimentación y encendido.

3. Flujo Lógico del Software

Este diagrama describe cómo funcionará el sistema, paso a paso:

1. Inicialización:

- Configurar pines del ESP32 para sensores y actuadores.
- Establecer conexión Wi-Fi (si aplica).
- Crear archivo de almacenamiento local en la memoria flash.

2. Ciclo Principal:

- Lectura de Sensores:
 - Obtener temperatura del DS18B20.
 - Obtener niveles de CO₂ del MQ-135.
- Procesamiento de Datos:
 - Comparar lecturas con los umbrales predefinidos:
 - Si temperatura > 8 °C, encender el ventilador.
 - Si CO₂ > 10,000 ppm, abrir la compuerta con el servo.
 - Registrar acciones (activación de actuadores).
- Almacenamiento de Datos:
 - Guardar las lecturas en un archivo en la memoria flash.
- Transmisión de Datos (si hay red):
 - Publicar los datos a la plataforma loT usando MQTT.

3. Alertas:

- Si las variables están fuera de rango por más de X tiempo, enviar notificaciones al usuario.

Visualización de Datos en el Dashboard

En la plataforma IoT, los datos se mostrarán de la siguiente manera:

1. Gráficos en tiempo real:

- Temperatura (°C).
- CO₂ (ppm).

2. Indicadores de estado:

- Estado del ventilador (Encendido/Apagado).
- Estado del servo (Compuerta Abierta/Cerrada).

3. Alertas:

- Mensajes de advertencia si los valores superan los umbrales.