# Lab 6: Ridge/LASSO Regression

### **Problem statement:**

- Develop Ridge Regression model and try to tune it with varying alpha values. Plot SSE against each value of alpha. [Download suitable dataset with enough features, refer to access R-preloaded dataset]
- Develop LASSO Regression model and try to tune it with varying alpha values. Plot SSE against each value of alpha.
- Demonstrate the program SPARSITY property of LASSO Regression.

## **Source Code and Output:**

11111

Author: Ashish Upadhyay

Branch: Computer Science and Engineering

Semester: 6th

Dr. SP Mukherjee International Institute of Information Technology, Naya Raipur

Subject: Machine Learning Lab 7

Task: Ridge/LASSO Regression Implementation

.....

#Importing libraries.
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 12, 10

#Define input array with angles from 60deg to 300deg converted to radians x = np.array([i\*np.pi/180 for i in range(60,300,4)]) np.random.seed(10) #Setting seed for reproducability y = np.sin(x) + np.random.normal(0,0.15,len(x)) data = pd.DataFrame(np.column\_stack([x,y]),columns=['x','y']) plt.plot(data['x'],data['y'],'.')



x 13

1.821260

4.214494

9.268760

19.486248

39.353420

```
for i in range(2,16): #power of 1 is already there
 colname = 'x_%d'%i #new var will be x_power
 data[colname] = data['x']**i
print data.head()
                                                 x 3
              X
                          y
                                     x 2
                                                                           x 5
                              1.096623
 0
     1.047198
                  1.065763
                                           1.148381
                                                        1.202581
                                                                    1.259340
                                                                                 1.318778
 1
     1.117011
                  1.006086
                              1.247713
                                           1.393709
                                                        1.556788
                                                                    1.738948
                                                                                 1.942424
 2
     1.186824
                  0.695374
                              1.408551
                                           1.671702
                                                        1.984016
                                                                    2.354677
                                                                                 2.794587
 3
     1.256637
                  0.949799
                                           1.984402
                                                        2.493673
                              1.579137
                                                                    3.133642
                                                                                 3.937850
     1.326450
                  1.063496
                              1.759470
                                           2.333850
                                                        3.095735
                                                                    4.106339
                                                                                 5.446854
           x 7
                        x 8
                                      x 9
                                                   x 10
                                                                 x 11
                                                                               x 12
 0
     1.381021
                  1.446202
                                1.514459
                                              1.585938
                                                            1.660790
                                                                          1.739176
 1
     2.169709
                  2.423588
                                2.707173
                                              3.023942
                                                            3.377775
                                                                         3.773011
 2
                  3.936319
                                4.671717
                                                            6.580351
                                                                         7.809718
     3.316683
                                              5.544505
 3
     4.948448
                  6.218404
                                7.814277
                                              9.819710
                                                          12.339811
                                                                        15.506664
     7.224981
                  9.583578
                              12.712139
                                            16.862020
                                                          22.366630
                                                                        29.668222
           x 14
                         x 15
      1.907219
 0
                    1.997235
 1
      4.707635
                    5.258479
 2
     11.000386 13.055521
 3
     24.487142
                   30.771450
     52.200353
                   69.241170
#Ridge Regression
from sklearn.linear_model import Ridge
def ridge_regression(data, predictors, alpha, models_to_plot={}):
 #Fit the model
 ridgereg = Ridge(alpha=alpha,normalize=True)
 ridgereg.fit(data[predictors],data['y'])
 y_pred = ridgereg.predict(data[predictors])
 #Check if a plot is to be made for the entered alpha
 if alpha in models_to_plot:
   plt.subplot(models_to_plot[alpha])
   plt.tight_layout()
   plt.plot(data['x'],y_pred)
   plt.plot(data['x'],data['y'],'.')
   plt.title('Plot for alpha: %.3g'%alpha)
 #Return the result in pre-defined format
 rss = sum((y_pred-data['y'])**2)
 ret = [rss]
 ret.extend([ridgereg.intercept_])
 ret.extend(ridgereg.coef_)
 return ret
```

GUIDE: DR. VIVEK TIWARI

```
#Initialize predictors to be set of 15 powers of x predictors=['x'] predictors.extend(['x_%d'%i for i in range(2,16)])
```

#Set the different values of alpha to be tested alpha\_ridge = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]

#Initialize the dataframe for storing coefficients.

col = ['rss','intercept'] + ['coef\_x\_%d'%i for i in range(1,16)]

ind = ['alpha\_%.2g'%alpha\_ridge[i] for i in range(0,10)]

coef\_matrix\_ridge = pd.DataFrame(index=ind, columns=col)

models\_to\_plot = {1e-15:231, 1e-10:232, 1e-4:233, 1e-3:234, 1e-2:235, 5:236} for i in range(10):

coef\_matrix\_ridge.iloc[i,] = ridge\_regression(data, predictors, alpha\_ridge[i], models\_to\_plot)



#### MACHINE LEARNING LAB 7

#Set the display format to be scientific for ease of analysis
pd.options.display.float\_format = '{:,.2g}'.format
coef\_matrix\_ridge

|              | rss  | intercept | coef_x_1 | C  | oef_x_ | 2 | coef_x_3 | coef_x_4 | coef_x_5 | coef_x_6 | coef_x_7 | coef_x_8   | coef_x_9 | coef_x_10 | coef_x_11 | COE  |
|--------------|------|-----------|----------|----|--------|---|----------|----------|----------|----------|----------|------------|----------|-----------|-----------|------|
| alpha_1e-15  | 0.87 | 95        | -3e+02   | 3. | 8e+02  |   | -2.4e+02 | 66       | 0.96     | -4.8     | 0.64     | 0.15       | -0.026   | -0.0054   | 0.00086   | 0.0  |
| alpha_1e-10  | 0.92 | 11        | -29      | 3  |        |   | -15      | 2.9      | 0.17     | -0.091   | -0.011   | 0.002      | 0.00064  | 2.4e-05   | -2e-05    | -4.2 |
| alpha_1e-08  | 0.95 | 1.3       | -1.5     | 4. | 7      |   | -0.68    | 0.039    | 0.016    | 0.00016  | -0.00036 | -5.4e-05 4 | -2.9e-07 | 1.1e-06   | 1.9e-07   | 2e-  |
| alpha_0.0001 | 0.96 | 0.56      | 0.55     | -0 | .13    |   | -0.026   | -0.0028  | -0.00011 | 4.1e-05  | 1.5e-05  | 3.7e-06    | 7.4e-07  | 1.3e-07   | 1.9e-08   | 1.9  |
| alpha_0.001  | 1    | 0.82      | 0.31     | -0 | .087   |   | -0.02    | -0.0028  | -0.00022 | 1.8e-05  | 1.2e-05  | 3.4e-06    | 7.3e-07  | 1.3e-07   | 1.9e-08   | 1.7  |
| alpha_0.01   | 1.4  | 1.3       | -0.088   | -0 | .052   |   | -0.01    | -0.0014  | -0.00013 | 7.2e-07  | 4.1e-06  | 1.3e-06    | 3e-07    | 5.6e-08   | 9e-09     | 1.1  |
| alpha_1      | 5.6  | 0.97      | -0.14    | -0 | .019   |   | -0.003   | -0.00047 | -7e-05   | -9.9e-06 | -1.3e-06 | -1.4e-07   | -9.3e-09 | 1.3e-09   | 7.8e-10   | 2.4  |
| alpha_5      | 14   | 0.55      | -0.059   | -0 | .0085  |   | -0.0014  | -0.00024 | -4.1e-05 | -6.9e-06 | -1.1e-06 | -1.9e-07   | -3.1e-08 | -5.1e-09  | -8.2e-10  | -1.0 |
| alpha_10     | 18   | 0.4       | -0.037   | -0 | .0055  |   | -0.00095 | -0.00017 | -3e-05   | -5.2e-06 | -9.2e-07 | -1.6e-07   | -2.9e-08 | -5.1e-09  | -9.1e-10  | -1.6 |
| alpha_20     | 23   | 0.28      | -0.022   | -0 | .0034  |   | -0.0006  | -0.00011 | -2e-05   | -3.6e-06 | -6.6e-07 | -1.2e-07   | -2.2e-08 | -4e-09    | -7.5e-10  | -1.4 |

coef\_matrix\_ridge.apply(lambda x: sum(x.values==0),axis=1)

| alpha_1e-15  | 0 |
|--------------|---|
| alpha_1e-10  | 0 |
| alpha_1e-08  | 0 |
| alpha_0.0001 | 0 |
| alpha_0.001  | 0 |
| alpha_0.01   | 0 |
| alpha_1      | 0 |
| alpha_5      | 0 |
| alpha_10     | 0 |
| alpha_20     | 0 |
| dtype: int64 |   |

GUIDE: DR. VIVEK TIWARI

```
#LASSO Rigression
from sklearn.linear_model import Lasso
def lasso_regression(data, predictors, alpha, models_to_plot={}):
  #Fit the model
 lassoreg = Lasso(alpha=alpha,normalize=True, max_iter=1e5)
 lassoreg.fit(data[predictors],data['y'])
 y_pred = lassoreg.predict(data[predictors])
  #Check if a plot is to be made for the entered alpha
  if alpha in models_to_plot:
    plt.subplot(models_to_plot[alpha])
    plt.tight_layout()
    plt.plot(data['x'],y_pred)
    plt.plot(data['x'],data['y'],'.')
    plt.title('Plot for alpha: %.3g'%alpha)
  #Return the result in pre-defined format
  rss = sum((y_pred-data['y'])**2)
  ret = [rss]
 ret.extend([lassoreg.intercept_])
 ret.extend(lassoreg.coef_)
  return ret
#Initialize predictors to all 15 powers of x
predictors=['x']
predictors.extend(['x_%d'%i for i in range(2,16)])
#Define the alpha values to test
alpha_lasso = [1e-15, 1e-10, 1e-8, 1e-5,1e-4, 1e-3,1e-2, 1, 5, 10]
#Initialize the dataframe to store coefficients
col = ['rss', 'intercept'] + ['coef_x_%d'%i for i in range(1,16)]
ind = ['alpha_%.2g'%alpha_lasso[i] for i in range(0,10)]
coef_matrix_lasso = pd.DataFrame(index=ind, columns=col)
#Define the models to plot
models_to_plot = {1e-10:231, 1e-5:232,1e-4:233, 1e-3:234, 1e-2:235, 1:236}
#Iterate over the 10 alpha values:
for i in range(10):
  coef_matrix_lasso.iloc[i,] = lasso_regression(data, predictors, alpha_lasso[i], models_to_plot)
```



8<sup>TH</sup> FEBRUARY, 2018

# MACHINE LEARNING LAB 7

Guide: Dr. Vivek Tiwari

coef\_matrix\_lasso.apply(lambda x: sum(x.values==0),axis=1)

| alpha 1e-15  | 0  |
|--------------|----|
| alpha 1e-10  | 0  |
| alpha_1e-08  | 0  |
| alpha 1e-05  | 8  |
| alpha 0.0001 | 10 |
| alpha 0.001  | 12 |
| alpha 0.01   | 13 |
| alpha 1      | 15 |
| alpha 5      | 15 |
| alpha 10     | 15 |
| dtype: int64 |    |