

Rayonnement d'un dipôle oscillant

Plan du chapitre

Ι	Intr	oduction: Expérience de Rudolph Hertz (1887)	3
II	Mod	dèle du dipôle oscillant	4
	II.1	Définition	4
	II.2	Caractère «assez» général du modèle : exemples classiques	4
		a - Premier exemple : moment dipolaire oscillant d'un nuage électronique	4
		b - Second exemple : moment dipolaire élémentaire oscillant d'une antenne	5
		c - Orientation et conventions	6
	II.3	Rayonnement du moment dipolaire	6
III	Les	trois échelles de longueur pertinentes (à retenir!!!)	6
	III.1	Approximation dipolaire	6
	III.2	Approximation non relativiste	7
	III.3	Hypothèse de la zone de rayonnement (définition «ad hoc» pour l'instant!)	7
	III.4	Bilan des échelles de longueur pour un dipôle (à retenir!)	8
IV	Le «	«temps de retard» ou temps de propagation	8
	IV.1	Signification et écriture pour un dipôle	8
	IV.2	Ecriture du temps de retard pour une distribution "plus étendue"	8
\mathbf{V}	Etu	de structurelle du champ rayonné par un dipôle	10
	V.1	Topographie du champ rayonné	10
		a - Orientation du champ	10
		b - Champ sur l'axe - anisotropie - vecteur de Poynting	11
	V.2	Expression complète et à grande distance des champs - retour sur la zone de rayon-	
		nement	11

		a - Expressions des champs (admises) - commentaires	11
		b - Expression du champ de rayonnement dipolaire à grande distance $\ \ldots \ \ldots$	12
		c - Structure locale d'OPP	14
\mathbf{VI}	Etuc	de énergétique	14
	VI.1	Vecteur de Poynting	14
	VI.2	Indicatrice de rayonnement	14
	VI.3	Puissance totale rayonnée : formule de Larmor	15
VI	I Etuc	de succincte de la diffusion (Complément théorique de l'étude documentaire)	16
	VII.1	Introduction	16
	VII.2	Modèle de l'électron élastiquement lié - moment dipolaire électronique	17
	VII.3	Domaines spectral de diffusion- le bleu du ciel	18
	VII.4	Polarisation par diffusion	19

