BASIC MEASURES OF RISK

WHAT WILL YOU LEARN?

- ►Types of risk
- ▶ Basic measures of risk

TYPES OF RISK

- ▶Business cycle
- \blacktriangleright Volatility

▶Credit

▶Political

▶Default

- ▶Market
- ►Interest rate
- ▶Legal
- ► Exchange rate
- **▶**Operational
- **▶**Liquidity

HOW DO WE MEASURE RISK?

- ►The most common measure of risk is volatility of returns.
- ► Volatility is measured by the standard deviation σ of a return distribution.

VOLATILITY

▶Given a sample of N returns,

EXAMPLE: RUSSELL 3000 QUARTERLY RETURNS

	R3000 Quarterly return %	Deviation from the mean	±σ
March 2003	-24.66	-37.48	No
June 2003	0.77	-12.05	Yes
September 2003	25.92	13.11	Yes
December 2003	31.06	18.25	No
March 2004	38.19	25.38	No
June 2004	20.46	7.65	Yes
September 2004	14.26	1.45	Yes
December 2004	11.95	-0.87	Yes
March 2005	7.09	-5.73	Yes
June 2005	8.05	-4.77	Yes
September 2005	14.57	1.76	Yes
December 2005	6.12	-6.70	Yes
Mean	12.82%		
Population std. dev.	15.45%		
Sample std. dev.	18.13%		

ANNUALIZING VOLATILITY

SUMMARY

►A common measure of risk is the volatility of returns, measured as the standard deviation of the return distribution.

MEASURING BAD VARIATION

WHAT WILL YOU LEARN?

- ▶ Target semivariance
- ▶Downside risk

WHAT IS SEMIVARIANCE?

- ► Semivariance is computed by squaring only negative deviations from the mean.
- ►The square root of semivariance is called semideviation.

TARGET SEMIVARIANCE

- ► Suppose you have a return target, or a minimal acceptable return (MAR).
- ► Target semivariance is the expected squared deviations below the target.
 - ► Target semideviation is the square root of target semivariance.
- ▶ Target semideviation is a measure of downside risk.

LOWER PARTIAL MOMENTS (LPM)

- ► Target semideviation is a special case of lower partial moments (LPM) methodology for dealing with downside variation.
- ► Formula for a lower partial moment of degree *p*

EXAMPLE: RUSSELL TOP 50 INDEX QUARTERLY DOWNSIDE SEMIVARIANCE

Quarter	Return %	d(i)	Deviation	
200109	-13.39	1	-13,39	
200112	8.98	0	8.98	
200203	-1.69	1	-1.69	
200206	-16.40	1	-16.40	
200209	-15.93	1	-15.93	
200212	10.55	0	10.55	
200303	-2.52	1	-2.52	
200306	13.95	0	13.95	
200309	1.16	0	1.16	
200312	10.17	0	10.17	
200403	-0.57	1	-0.57	
200406	1.04	0	1.04	
Tau	0			
Mean Squared d	59.2957			
Target semidevia	ation			7.700

Source: Russell research database

UPSIDE SEMIDEVIATION

► Upside risk – upside semideviation – is the converse of downside deviation.

SUMMARY

- ► A common measure of risk is the volatility of returns, measured as the standard deviation of the return distribution.
- ▶ Downside semivariance is a special case of the LPM methodology with power p = 2 and target equal to the mean.
- ▶ Downside deviation is useful when comparing distributions that are not normal and have different means.

TRACKING ERROI	R AND	RESIDUAL	RISK

WHAT WILL YOU LEARN?

- ►Tracking error
- ▶Residual risk

IRACKING	ERROR

► Tracking error is the standard deviation of the arithmetic excess return.

RESIDUAL RISK

TRACKING ERROR VS. RESIDUAL RISK

- ► When beta is equal to 1, the tracking error and the residual risk are equal.
- ▶When beta is not equal to 1, the tracking error and the residual risk differ from each other.

SUMMARY

- ▶Tracking error and residual risk
- ► When alpha equals the arithmetic excess return, residual risk equals tracking error.