UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Ime Avtorja

NASLOV DELA

Magistrsko delo

Mentor: prof. dr. Ime Mentorja

Univerza v Ljubljani Fakulteta za matematiko in fiziko

Izjava o avtorstvu, istovetnosti tiskane in elektronske verzije magistrskega dela in objavi osebnih podatkov študenta

Spodaj podpisani študent Ime Avtorja avtor magistrskega dela (v nadaljevanju: pisnega zaključnega dela študija) z naslovom:

Naslov dela

IZJAVLJAM

- 1. Obkrožite eno od variant a) ali b)
 - a) da sem pisno zaključno delo študija izdelal samostojno;
 - b) da je pisno zaključno delo študija rezultat lastnega dela več kandidatov in izpolnjuje pogoje, ki jih Statut UL določa za skupna zaključna dela študija ter je v zahtevanem deležu rezultat mojega samostojnega dela;

pod mentorstvom IZPOLNI.

- da je tiskana oblika pisnega zaključnega dela študija istovetna elektronski obliki pisnega zaključnega dela študija;
- da sem pridobil vsa potrebna dovoljenja za uporabo podatkov in avtorskih del v pisnem zaključnem delu študija in jih v pisnem zaključnem delu študija jasno označil;
- 4. da sem pri pripravi pisnega zaključnega dela študija ravnal v skladu z etičnimi načeli in, kjer je to potrebno, za raziskavo pridobil soglasje etične komisije;
- 5. da soglašam, da se elektronska oblika pisnega zaključnega dela študija uporabi za preverjanje podobnosti vsebine z drugimi deli s programsko opremo za preverjanje podobnosti vsebine, ki je povezana s študijskim informacijskim sistemom fakultete;
- 6. da na UL neodplačno, neizključno, prostorsko in časovno neomejeno prenašam pravico shranitve avtorskega dela v elektronski obliki, pravico reproduciranja ter pravico dajanja pisnega zaključnega dela študija na voljo javnosti na svetovnem spletu preko Repozitorija UL;
- 7. da dovoljujem objavo svojih osebnih podatkov, ki so navedeni v pisnem zaključnem delu študija in tej izjavi, skupaj z objavo pisnega zaključnega dela študija.

Kraj:	Podpis študenta:
Datum:	

Zahvala

Neobvezno. Zahvaljujem se ...

Contents

1	Uvo	od	1
2	Inte	ergrali po ω -kompleksih	1
	2.1	Definicija	1
	2.2	Sklicevanje in citiranje	1
	2.3	Okrajšave	1
	2.4	Kako narediti stvarno kazalo	1
	2.5	Navajanje literature	2
Li	terat	ura	3

Program dela

Mentor naj napiše program dela skupaj z osnovno literaturo. Osnovna literatura: [6], [3], [14].

Podpis mentorja:

Podpis somentorja:

Naslov dela

Povzetek

Tukaj napišemo povzetek vsebine. Sem sodi razlaga vsebine in ne opis tega, kako je delo organizirano.

English translation of the title

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2010): oznake kot 74B05, 65N99, na voljo so na naslovu

http://www.ams.org/msc/msc2010.html?t=65Mxx

Ključne besede: nekaj ključnih pojmov

Keywords: some key concepts

1 Uvod

Napišite kratek zgodovinski in matematični uvod. Pojasnite motivacijo za problem, kje nastopa, kje vse je bil obravnavan. Na koncu opišite tudi organizacijo dela – kaj je v kakšnem razdelku.

2 Intergrali po ω -kompleksih

2.1 Definicija

Definicija 2.1. Neskončno zaporedje kompleksnih števil, označeno z $\omega = (\omega_1, \omega_2, \ldots)$, se imenuje ω -kompleks.¹

Črni blok zgoraj je tam namenoma. Označuje, da LATEX ni znal vrstice prelomiti pravilno in vas na to opozarja. Preoblikujte stavek ali mu pomagajte deliti problematično besedo z ukazom \hyphenation{an-ti-ko-mu-ta-ti-ven} v preambuli. Trditev 2.2 (Znano ime ali avtor). Obstaja vsaj en ω -kompleks.

Proof. Naštejmo nekaj primerov:

$$\omega = (0, 0, 0, \dots), \tag{2.1}$$

$$\omega = (1, i, -1, -i, 1, \ldots), \tag{2.2}$$

$$\omega = (0, 1, 2, 3, \ldots).$$

2.2 Sklicevanje in citiranje

Za sklice uporabljamo \ref, za sklice na enačbe \eqref, za citate \cite. Pri sklice-vanju in citiranju sklicano številko povežemo s prejšnjo besedo z nedeljivim presledkom ~, kot npr. iz trditve~\ref{trd:obstoj-omega} vidimo.

Primer 2.3. Zaporedje (2.1) iz dokaza trditve 2.2 na strani 1 lahko najdemo tudi v Spletni enciklopediji zaporedij [11]. Citirano lahko tudi bolj natačno [6, trditev 2.1, str. 23].

2.3 Okrajšave

Pri uporabi okrajšav I⁴TEX za piko vstavi predolg presledek, kot npr. tukaj. Zato se za vsako piko, ki ni konec stavka doda presledek običajne širine z ukazom \u, kot npr. tukaj. Primerjaj z okrajšavo zgoraj za razliko.

2.4 Kako narediti stvarno kazalo

Dodate ukaze \index{polje} na besede, kjer je pojavijo, kot tukaj. Več o stvarnih kazalih je na voljo na https://en.wikibooks.org/wiki/LaTeX/Indexing.

¹To ime je izmišljeno.

2.5 Navajanje literature

Članke citiramo z uporabo \cite{label}, \cite[text]{label} ali pa več naenkrat z \cite\{label1, label2}. Tudi tukaj predhodno besedo in citat povežemo z nedeljivim presledkom ~. Na primer [1, 7], ali pa [5], ali pa [12, str. 12], [9, enačba (2.3)]. Vnosi iz .bib datoteke, ki niso citirani, se ne prikažejo v seznamu literature, zato jih tukaj citiram. [13], [2], [10], [8], [4].

References

- [1] Y. Chen, J. Lee and A. Eskandarian, Meshless Methods in Solid Mechanics, Springer, New York, 2006.
- [2] R. Gregorič, Stopničeni E-∞ kolobarji in Proj v algebraični spektralni geometriji, Master's thesis, Fakulteta za matematiko in fiziko, Univerza v Ljubljani, 2017.
- [3] M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering 158, Academic Press, New York, 1982.
- [4] E. A. Kearsley and J. Fong, Linearly independent sets of isotropic Cartesian tensors of ranks up to eight, J. Res. Natl Bureau of Standards Part B: Math. Sci. B **79** (1975) 49–58, doi:10.6028/jres.079b.005.
- [5] A. M. Kibriya and E. Frank, An empirical comparison of exact nearest neighbour algorithms, in: Knowledge Discovery in Databases: PKDD 2007: 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, September 17-21, 2007. Proceedings (eds. J. N. Kok et al.), Springer, Berlin, Heidelberg, pp. 140–151, doi:10.1007/978-3-540-74976-9 16.
- [6] L. P. Lebedev and M. J. Cloud, *Introduction to Mathematical Elasticity*, World Scientific, Singapur, 2009.
- [7] G.-R. Liu and Y. Gu, A point interpolation method for two-dimensional solids, Int. J. Numer. Methods Eng. **50**(4) (2001) 937–951.
- [8] n-sphere, [ogled 21. 8. 2017], dostopno na https://en.wikipedia.org/wiki/N-sphere.
- [9] K. Pereira et al., On the convergence of stresses in fretting fatigue, Materials **9**(8) (2016), doi:10.3390/ma9080639.
- [10] J. Slak, *Induktivni in koinduktivni tipi*, Bachelor's thesis, Fakulteta za matematiko in fiziko, Univerza v Ljubljani, 2015.
- [11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Sequence A005043, [ogled 9. 7. 2016], dostopno na http://oeis.org/A005043.
- [12] R. Trobec and G. Kosec, Parallel scientific computing: theory, algorithms, and applications of mesh based and meshless methods, SpringerBriefs in Computer Science, Springer, New York, 2015.
- [13] V. Vene, Categorical programming with inductive and coinductive types, Ph.D. thesis, Univerza v Tartuju, 2000.
- [14] O. C. Zienkiewicz and R. L. Taylor, *The Finite Element Method: Solid mechanics*, The Finite Element Method **2**, Butterworth-Heinemann, Oxford, 2000.

\mathbf{Index}

tukaj, 1