预习报告		实验记录		分析讨论		总成绩	
专业:		物理学		年级:		2022 级	
姓名:		丁侯凯、周新鹏		学号:		22344009、2	22344191
实验时间:		2024.9.27		教师签名:			

实验一 蓝牙音箱的焊接和调试

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - (a) 预习报告:(提前一周)认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用(强烈建议到实验室预习),完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(第一循环实验已由教师提供模板,可以打印)。预习成绩低于 10 分(共 20 分)者不能做实验。
 - (b) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。
 - (c) 分析讨论: 处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。

- 2. 每次完成实验后的一周内交实验报告(特殊情况不能超过两周)。
- 3. 除实验记录外,实验报告其他部分建议双面打印。

目录

1	\mathbf{ETI}	II 一蓝牙音箱的焊接和调试 预习报告	3
	1.1	实验目的	3
	1.2	仪器用具	3
	1.3	原理概述	3
	1.4	反相比例放大电路	3
		1.4.1 同相比例放大电路	5
		1.4.2 蓝牙音箱主要电路原理	5
		1.4.3 参考文献	5
	1.5	实验安全注意事项	5
2	ETI	II 一蓝牙音箱的焊接和调试 实验记录	8
	2.1	实验内容和步骤	8
		2.1.1 电路分析	8
		2.1.2 对 LM4863 芯片电路分析	8
3	ETI	II 一蓝牙音箱的焊接和调试 分析与讨论	11
	3.1	实验数据分析	11
		3.1.1 使用 KICAD 进行画图	11
		3.1.2 探究放大倍数与输入交流电压的关系(在 1kHz 条件下)	11
		3.1.3 探究放大倍数与频率的关系曲线(交流信号有效值: 100mV,偏移量:50mV)	11
	3 2	实验结论与实验心得	1/1

ETII 一蓝牙音箱的焊接和调试 预习报告

1.1 实验目的

- 1. 完成蓝牙音箱的焊接和调试。
- 2. 基于 LM4863 放大电路探究放大倍数与输入电压的关系。
- 3. 基于 LM4863 放大电路探究放大倍数与频率的变化关系曲线。
- 4. 如何实现功放调音(提升部分,选做)。

1.2 仪器用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	电烙铁等焊接仪器	1	实验室提供
2	蓝牙音箱等待焊接设 备	1	实验室提供
3	模拟电子相关仪器 (如信号发生器、示波 器、电脑等)	1	实验室提供

1.3 原理概述

运算放大器的主要功能是对输入信号进行放大、滤波、积分、微分等信号处理。最常见的运算放大电路包括反相放大电路和同相放大电路。

1.4 反相比例放大电路

1) 电路原理:

在反相放大电路中,输入信号施加在运算放大器的反相输入端(-),同相输入端(+)通常接地。输出信号与输入信号的相位相反,故称为反相放大。

电路结构:

输入电阻 $R_{\rm in}$ 连接输入信号 $V_{\rm in}$ 和运算放大器的反相端。

反馈电阻 R_f 连接运算放大器的输出端和反相输入端。

同相端接地。电路图:

图 1: 反向放大电路原理图

2) 工作原理:

根据虚短和虚断原理:

- 1. 虚短:由于理想运算放大器的开环增益 $A_{\rm open}$ 无限大,输入端电压差 $V_- V_+ \approx 0$,即 $V_- = V_+$ 。
- 2. 虚断: 理想运算放大器的输入端电流为零,即 $I_{-}=0$ 。
- 3. 由于同相端接地,故 $V_+=0$,则 $V_-\approx 0$ 。根据基尔霍夫电流定律(KCL),通过 $R_{\rm in}$ 的电流等于通过 反馈电阻 R_f 的电流:

$$\frac{V_{\rm in} - V_{-}}{R_{\rm in}} = \frac{V_{-} - V_{\rm out}}{R_f} \tag{1}$$

3) 放大倍数推导:

因为 $V_{-} \approx 0$, 所以方程变为:

$$\frac{V_{\rm in}}{R_{\rm in}} = \frac{-V_{\rm out}}{R_f} \tag{2}$$

解得输出电压 V_{out} :

$$V_{\rm out} = -\frac{R_f}{R_{\rm in}} V_{\rm in} \tag{3}$$

反相放大器的电压增益为:

$$A_v = \frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_f}{R_{\text{in}}} \tag{4}$$

因此,输出电压与输入电压成反比,且增益由反馈电阻和输入电阻的比值决定。

1.4.1 同相比例放大电路

1) 电路原理: 在同相放大电路中,输入信号施加在运算放大器的同相输入端(+),输出信号与输入信号同相。

反馈电阻 R_f 连接输出端和反相输入端。输入电阻 $R_{\rm in}$ 连接反相输入端和接地。输入信号施加在同相输入端。

电路图:

图 2: 同相放大电路原理图

2) 工作原理:

同样应用虚短和虚断原理: 虚短: 由于 $V_+ = V_-$,故运算放大器两端电压相等。虚断: 输入端电流为零。输出电压通过反馈调整,使得输入端的电压与输入信号相同。根据电压分压原理,反馈电阻和输入电阻的电流关系满足:

$$V_{\text{out}} = \left(1 + \frac{R_f}{R_{\text{in}}}\right) V_{\text{in}} \tag{5}$$

3) 放大倍数推导:

同相放大器的电压增益为:

$$A_v = 1 + \frac{R_f}{R_{\rm in}} \tag{6}$$

因此,输出电压与输入电压同相,且增益为 $1 + \frac{R_f}{R_{\text{in}}}$ 。

1.4.2 蓝牙音箱主要电路原理

- ▶ MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) 是一种场效应晶体管,通常用于开关和放大应用。它具有三个主要电极:栅极(Gate, G)、漏极(Drain, D)、源极(Source, S)。本电路中使用的是 P 沟道 MOSFET (型号为 2302),它的工作原理是当栅极电压比源极电压更低时,MOSFET 导通,从源极到漏极的电流被允许通过;而当栅极电压和源极电压相等或栅极电压比源极电压高时,MOSFET 关闭,从而阻止电流流动。
- ▶ 在电路中,电源通过 Micro USB 接口输入,并提供 VDD 电压。电容 C0(10 F)作为旁路电容,用于滤波,降低电源电压中的噪声,提供稳定的直流电压给后续电路。PMOS 管Q1(型号为2302)是整个电路的核心开关元件,它与机械开关 S1 一起用于控制电源是否为后续电路供电。当 S1 闭合时,栅极通过电阻 R0(20kΩ)接地,形成一个负栅源电压,使 Q1 导通,从而使 VDD 电压能够传递给其他部分的电路;而当 S1 断开时,栅极通过 R0 与源极电压趋于同电位(无负压),使 Q1 截止,切断电源。电阻 R0 的作用是在开关 S1 打开时,将 Q1 的栅极电压拉高至接近源极电压(即 VDD),使得 Q1 能够正确关闭。当 S1 闭合时,R0 限制了从栅极到地的电流,确保栅极电压足够低于源极,使Q1 导通。另外,PMOS 管 Q1 内部还自带有一个体二极管(图中箭头所示),它用于防止外部电压反向输入。如果电源方向接反,该二极管会阻断反向电流,防止损坏电路的其他元件。
- ▶ 这个电路的整体工作流程是: 当插入电源时,输入电压经过 C0 滤波以确保其平稳; 然后通过 S1 控制是否将电压 VDD 传递到下游电路。当 S1 闭合时,Q1 导通,电源得以供给后续电路;当 S1 断开时,Q1 截止,电源被切断,防止任何电流流动。这样设计的电路在实际应用中非常广泛,例如用于便携式电子设备中,用户可以方便地通过机械开关来控制电路是否供电,同时也具备反向电流保护的功能,防止因误操作造成电路的损坏。

图 3: 蓝牙音箱主要电路原理

1.4.3 参考文献

参考《电路基础(第五版)》,(美)亚历山大著。

1.5 实验安全注意事项

- 1. 注意电烙铁的使用规范, 防止烫伤。
- 2. 操作电路前需断电。

专业:	物理学	年级:	2019 级
姓名:	丁侯凯、周新鹏	学号:	22344009、22344191
室温:	24°C	实验地点:	A522
学生签名:	丁侯凯	评分:	
	周新鹏		
实验时间:	2024.9.27	教师签名:	

ETII 一蓝牙音箱的焊接和调试 实验记录

2.1 实验内容和步骤

2.1.1 电路分析

- 1. 按照蓝牙音箱说明书进行焊接,并通过连接音箱并播放音乐来测试是否能正常使用,实验记录如图6:
- 2. 测试蓝牙音箱的放大倍数。
- 3. 控制变量,探究放大倍数与频率的关系曲线。
- 4. 控制变量, 在频率 f 恒定在 1kHz 时改变电压大小, 观察放大倍数, 探究放大倍数与输入交流电压的关系。
- 5. 观察并记录实验数据。

2.1.2 对 LM4863 芯片电路分析

查找有关资料后,对 LM4863 芯片内部电路进行电路分析如图4: 其中,实验时 R1 等于 4.7KΩ。

根据反相比例放大电路可知,Amp1A 的放大倍数 $A=-R_f/R$,所以放大倍数 A-20/4.7-4.26,根据虚短虚断原理,如图标注的位置电压绝对值相同,但由于 Amp2A 是同相比例放大器,所以放大 4.26 倍, $U_0/U_{in}=4.26-(-4.26)=8.52$ 倍

图 4: LM4863 芯片电路图

图 5: 蓝牙音箱

图 6: 蓝牙音箱成品图

专业:	物理学	年级:	2022 级
姓名:	丁侯凯、周新鹏	学号:	22344009、22344191
日期:	2024.9.27	评分:	

ETII 一蓝牙音箱的焊接和调试 分析与讨论

3.1 实验数据分析

3.1.1 使用 KICAD 进行画图

利用 KICAD 对实验电路原理图进行仿真,如图7:

图 7: KICAD 画图仿真

3.1.2 探究放大倍数与输入交流电压的关系(在 1kHz 条件下)

其中,在电压为 $20V_{rms}/mV$,数据有较大误差,推测是该电压低于蓝牙音箱的规定工作电压,刨去该数据点对剩余数据进行分析,如图8。

发现图像为线性关系,但其斜率较低,在图像中不断趋于 0,因此可以认为在误差范围中,放大倍数趋于不变。计算得其算数平均值:

$$A = 8.065 \tag{7}$$

3.1.3 探究放大倍数与频率的关系曲线(交流信号有效值: 100mV, 偏移量:50mV)

由如表2、如图9可得,放大频率随频率由明显的变大而先上升再下降。

图 8: 放大倍数与输入交流电压关系的数据分析

图 9: 探究放大倍数与频率的关系曲线

	偏移电压 V_{DC}/mV	输出电压 U_0/V	放大倍数
20	10	0.159	7.95
30	15	0.241	8.03
40	20	0.322	8.05
50	25	0.403	8.06
60	30	0.485	8.08
70	35	0.565	8.07
80	40	0.647	8.09
90	45	0.729	8.10
100	50	0.811	8.11
110	55	0.892	8.11

表 1: 在 f=1kHz 条件下, 放大倍数与输入交流电压的关系

频率 Hz	放大倍数
10	2.29
15	3.30
20	4.15
25	5.43
30	5.88
35	6.24
40	6.54
45	6.79
50	7.39
70	7.70
90	7.80
100	8.04
150	8.14
200	8.18
250	8.20
300	8.21
350	8.21
400	8.21
450	8.21
500	8.21

频率 Hz	放大倍数
600	8.20
700	8.18
800	8.16
900	8.13
1000	8.11
1500	7.97
2000	7.80
2500	7.60
3000	7.39
4000	6.94
5000	6.47
7000	5.59
9000	4.82
10000	4.49
20000	2.51
30000	1.65
40000	1.18
50000	0.84
100000	0.06

表 2: 探究放大倍数与频率的关系曲线

3.2 实验结论与实验心得

通过焊接蓝牙音箱、分析 LM4863 功率放大电路的性能、测量电压增益来评估电路的运行情况。

- 1. 根据实验数据表明,LM4863 芯片电路的电压增益会随着频率发生变化。在工作的频率范围大致在 30Hz 时与产品使用说明介绍的正常工作频率吻合。
- 2. 但在测量的电压增益较小的高频处,电压增益略小于理论值 8.5,可能的原因是电路中的电路元件和耦合电容的影响,以及发大器增益带宽限制、实验室电压的稳定性、负反馈电路中元件的精确度等。