1 Problem III

Let V be a finite-dimensional inner product space over \mathbb{F} . Suppose that $T \in \text{End}(V)$.

Lemma 1.1

If T is an orthogonal projection, then $||Tx|| \le ||x||$.

Proof.

Fix $x \in V$.

Since T is an orthogonal projection, then $V = \operatorname{im} T \oplus \ker T$ and $\operatorname{im}(T)^{\perp} = \ker T$. Let $v \in \operatorname{im} T$ and $w \in \ker T$ be such that x = v + w. Since T is a projection, Tv = v.

Since im T and ker T are orthogonal subspaces of V, then $\langle v, w \rangle = 0 = \langle w, v \rangle$, and therefore

$$\langle x, x \rangle = \langle v + w, v + w \rangle \tag{1}$$

$$= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle \tag{2}$$

$$= \langle v, v \rangle + \langle w, w \rangle. \tag{3}$$

Since $\langle Tx, Tx \rangle = \langle v, v \rangle$, then $\langle Tx, Tx \rangle \leq \langle x, x \rangle$, with equality only when $x \in \operatorname{im} T$. Therefore, $||Tx||^2 \leq ||x||^2$, and since $||y|| \geq 0$ for all $y \in V$, $||Tx|| \leq ||x||$.

Lemma 1.2

If T is a projection such that $||Tx|| \le ||x||$ for all $x \in V$, then T is an orthogonal projection.

Proof

Let $W_1 \subseteq V$ and $W_2 \subseteq V$ be such that $V = W_1 \oplus W_2$, and suppose T is a projection on W_1 along W_2 .

Let $D = \{ z \in V \, | \, Tz = z \}.$

If $y \in W_1$, then, by definition of T, Ty = y, and hence $y \in D$ and $W_1 \subseteq D$.

If $y \in D$, let $y_1 \in W_1$ and $y_2 \in W_2$ be such that $y = y_1 + y_2$. Since $y \in D$, $T(y_1 + y_2) = y_1 + y_2$, and by definition of $T(y_1 + y_2) = y_1$. Therefore, $y_2 = 0$ and hence $y_1 = y \in W_1$. Therefore, $D \subseteq W_1$ and thus $D = W_1$.

Suppose $x \in V$.

Let $w_1 \in W_1$ and $w_2 \in W_2$ be such that $x = w_1 + w_2$.

For any $v_1 \in W_1$, $Tv_1 = v_1$ and thus $v_1 \in \operatorname{im} T$ and $W_1 \subseteq \operatorname{im} T$. Similarly, if $v \in \operatorname{im} T$, let $v_1 \in W_1$ and $v_2 \in W_2$ be such that $v = v_1 + v_2$. Therefore, $v_2 = v - v_1 \in \operatorname{im} T$, and since $W_1 \cap W_2 = \{0\}$, then $v_2 = 0$, which means that $v_1 = v \in W_1$ and thus $\operatorname{im} T \subseteq W_1$. Hence, $\operatorname{im} T = W_1$.

Note that x = Tx + (x - Tx).

Therefore, $Tx = T^2x + T(x - Tx) = Tw_1 + T(x - Tx) = w_1 + T(x - Tx) = T(w_1 + w_2) = w_1$, and thus T(x - Tx) = 0 and hence $x - Tx \in \ker T$.

Noting that $W_1 = \operatorname{im} T = D$, suppose $z \in W_1 \cap \ker T$. Therefore, Tz = z = 0, and thus $V = \operatorname{im} T \oplus \ker T$.

Let $v \in \operatorname{im} T$ and $w \in \ker T$ be such that x = v + w.

Note that $V = \ker T \oplus \ker(T)^{\perp}$.

Let $v' \in \ker(T)^{\perp}$ and $w' \in \ker T$ be such that x = v' + w'.

Note that, by definition of T, Tx = T(v' + w') = Tv' + Tw' = Tv' = v = Tv. Thus, T(v' - v) = 0, and hence $v' - v \in \ker T$. But $\langle v', v' - v \rangle = 0$, because $v' \in \ker(T)^{\perp}$, and thence $\langle v', v' \rangle = \langle v', v \rangle$.

Moreover, $||Tv'|| \le ||v'||$, which means that $\langle Tv', Tv' \rangle = \langle v, v \rangle \le \langle v', v' \rangle = \langle v', v \rangle$.

Hence, $\langle v - v', v \rangle \leq 0$.

However, since $\langle v', v' - v \rangle = 0$, then $-\langle v', v - v' \rangle = -\overline{\langle v - v', v' \rangle} = 0$.

Thus, $\langle v - v', v' \rangle = 0$.

Therefore, $\langle v - v', v - v' \rangle \leq 0$, which is possible only when v = v' (by positive definiteness of $\langle \cdot, \cdot \rangle$). Therefore, $v \in \ker(T)^{\perp}$ and $v' \in \operatorname{im} T$, and thus $\operatorname{im} T = \ker(T)^{\perp}$.

Hence, T is an orthogonal projection.

Lemma 1.3

If T is a projection and T is normal, then T is an orthogonal projection.

Proof.

Since T is a projection, we have shown in the proof of Lemma 1.2 that $V = \operatorname{im} T \oplus \ker T$.

Note that $\ker T^* = \operatorname{im}(T)^{\perp}$ and $\operatorname{im} T^* = \ker(T)^{\perp}$ by the properties of T^* .

Suppose $x \in \ker T^*$. Therefore, since T is normal, then $T^*Tx = TT^*x = 0$, and thus $Tx \in \ker T^* = \operatorname{im} T^{\perp}$. Since $Tx \in \operatorname{im} T$, then $\langle Tx, Tx \rangle = 0$, which means that Tx = 0 and thence $x \in \ker T$. Therefore, $\ker T \subseteq \ker T^*$.

Suppose now that $x \in \ker T$. Again, since T is normal, then $T^*Tx = 0 = TT^*x$, and thus $T^*x \in \ker T$. Since $T^*x \in \ker T^* = \ker(T)^{\perp}$, then $\langle T^*x, T^*x \rangle = 0$, which means that $T^*x = 0$ and thence $x \in \ker T^*$. Therefore, $\ker T^* \subseteq \ker T$, and hence $\ker T^* = \ker T$. But $\ker T^* = \operatorname{im} T^{\perp}$, and thus $\ker T = \operatorname{im} T^{\perp}$ and T is an orthogonal projection. \square