Екзаменаційний білет № 4

I. Теоретична частина

- 1. Розв'язок СЛАР методом Монте-Карло.
- 3. Розв'язання СЛАР методом Монте-Карло.

Припустимо, що є лінійна система

$$\sum_{i=1}^{n} a_{ij} x_{ij} = b_{i}$$
 (i = 1, 2,...,n) (2)

Приведемо систему (1) до спеціального виду

$$x_{i} = \sum_{i=1}^{n} \alpha_{ij} x_{j} + \beta_{i} \quad (i = 1, 2, ..., n)$$
 (3)

Уводячи матрицю $\alpha = [\alpha_{ij}]$ і вектори $X = [x_i]$ і $\beta = [\beta_i]$ запишемо систему (3) у вигляді

$$X=\alpha X+\beta$$
 (3)

Якщо для будь-якої канонічної норми матриці X виконується нерівності $\|\alpha\| < 1$, те система (3) має єдине рішення, що може бути знайдено методом ітерації.

Підберемо систему множників v_{ij} таким чином, щоб числа p_{ij} , визначені рівняннями

$$\alpha_{ij} = p_{ij} \cdot v_{ij}$$
 (i,j = 1, 2, ..., n) (4)

задовольняли наступним умовам:

1)
$$p_{ij} \ge 0$$
 , причому $p_{ij} > 0$ при $\alpha_{ij} \ne 0$;

2)
$$\sum_{j=1}^{n} p_{ij} < 1$$
 (i = 1, 2,...,n);

3)
$$p_{i,n+1} = 1 - \sum_{i=1}^{n} p_{ij}$$
 (i = 1, 2,...,n)...

Крім того, покладемо

$$p_{i,n+1} = 0$$
 при $j < n+1$

i

$$p_{n+1, n+1} = 1.$$

Розглянемо тепер деяку блукаючу частку, що володіє кінцевим числом можливих і несумісних станів S_1 , S_2 , ..., S_n , S_{n+1} ...

Ця частка така, що з імовірністю p_{ij} (i,j=1,2,...,n+1) переходить зі стану S_i у стан S_j , незалежно від попередніх станів. Стан $S_{n+1} = \Gamma$ ("межа" або "поглинаючий екран") є особливим і відповідає повній зупинці частки, тому що $p_{n+1,j} = 0$ (j=1,2,...,n) і перехід зі стану S_{n+1} у стан S_j при j < n+1 неможливий. Таким чином, процес блукання припиняється як тільки частка перший раз потрапляє на границю Γ . Це так званий дискретний ланцюг Маркова з кінцевим числом станів. Числа p_{ij} називаються перехідними ймовірностями, а матриця

$$\Pi = \begin{vmatrix}
p_{11} & \dots & p_{1n} & p_{1,n+1} \\
& \dots & & \\
p_{n1} & \dots & p_{nn} & p_{n,n+1} \\
0 & \dots & 0 & 1
\end{vmatrix}$$

називається матрицею переходу станів $\{S_i\}$ (або закон ланцюга).

Нехай S_i — деякий фіксований стан, відмінний від Γ (i < n+1). Розглянемо блукання частки, яке починається в стані $S_i = S_{i_0}$ і після ряду проміжних станів S_{i_1} , S_{i_2} ,..., S_{i_m} закінчуються на межі $S_{i_{m+1}} = \Gamma$. Сукупність станів

$$T_{i} = \{S_{i_{0}}, S_{i_{i}}, ..., S_{i_{m}}, S_{i_{m+1}}\}$$
 (5)

назвемо траєкторією. Нехай x_i є ВВ, що залежить від випадкової траєкторії T_i , що починається у стані S_i і приймає для траєкторії (5) наступні значення

$$\xi(T_i) = \beta_{i_0} + v_{i_0 i_1} \beta_{i_1} + v_{i_0 i_1} v_{i_1 i_2} \beta_{i_2} + \dots + v_{i_0 i_1} \dots v_{i_{m-1} i_m} \beta_{i_m}$$
(6),

де β_i ($j = i_0, i_1, ..., i_m$) — відповідні вільні члени приведеної системи (3).

Зокрема, якщо $v_{ij} = 1$, то

$$\xi(T_i) = \beta_{i_0} + \beta_{i_1} + ... + \beta_{i_m}$$

Теорема математичного сподівання.

$$MX_i = x_i (i = 1, 2, ..., n)$$

є коренями системи (3).

3 теореми випливає, що корені системи (3) можна розглядати як математичне сподівання випадкових величин $X_1, X_2, ..., X_N...$ У такий спосіб організують N випадкових блукань з випадковими траєкторіями $T_i^{(k)}$ (k = 1, 2, ..., N) з початковим станом S_i і щораз реєструють $\xi(T_i^{(k)})$ випадкові величини X_i . У силу теореми Чебышева

$$x_i \approx \frac{1}{N} \sum_{k=1}^{N} \xi(T^{(k)}) \qquad (7)$$

Розглянемо як організувати блукання частки. Нехай початковий стан частки S_i , а $\{t\}$ -випадкові числа, рівномірно розподілені на [0,1]. Зробимо розиграш випадкові числа I. Нехай p_{ij} — десяткові дроби із загальним знаменником 10^S (S - натуральне число).

$$p_{i1} = \frac{m_{i1}}{10^s}, p_{i2} = \frac{m_{i2}}{10^s}, ..., p_{i,n+1} = \frac{m_{i,n+1}}{10^s},$$

де $m_{i1},\ m_{i2},\ ...,\ m_{i,n+1}$ - цілі ненегативні числа, причому $m_{i1}+m_{i2}+...+m_{i,n+1}=10^s$ ($i=1,\ 2,\ ...,\ n$)...

Якщо виявиться, що виконано нерівність

$$0 \le t < p_{i1}$$

то будемо вважати, що частка переходить із стану S_i у стан S_1 . Якщо виконані нерівності

$$\frac{m_{i1}}{10^s} \le t < \frac{m_{i1} + m_{i2}}{10^s}, \qquad p_{i1} \le t < p_{i1} + p_{i2},$$

то вважають, що частка переходить із S_i у S_2 і т.д. Нарешті, частка потрапляє на границю $S_{n+1} = \Gamma$, якщо ВВ t така, що

$$p_{i1} + ... + p_{in} \le t < p_{i1} + p_{i2} ... + p_{in} + p_{i,n+1} = 1...$$

Послідовно вибираючи початкові стани S_1 , S_2 , ..., S_n і виконуючи по N блукань у кожному випадку, обчислюємо згідно (7) корені системи (3).

2. Порівняльний аналіз методів розв'язок рівнянь з одним невідомим.

Метод	Суть методу	Знаходження наближеного	Оцінка точності
		значення	
Метод	Відрізок [a, b], що містить корінь, ділиться	Для знаходження наближеного	Тоді, очевидно, $ x_n - \zeta \le .$ ζ

бісекції	навпіл і надалі розглядається та його половина, що містить корінь, тобто інтервал, де функція $f(x)$ має різні знаки на його кінцях.	значення x_n з точністю \mathcal{E} , процес ділення навпіл триває доти, поки не виконається нерівність: $b_n - \frac{1}{2}$ де $[a_n, b_n]$ — відрізок після n -го ділення, що містить корінь Після цього покладемо	Часом вигідніше користуватися іншою оцінкою отриманої точності $\left x_n - \overline{x}\right \leq \frac{\left f(x_n)\right }{m_1} ,$ (2) де $0 \prec m_1 \leq \left f'(x)\right $ для $x \in [a,b]$.
		$x_n = \frac{(a_n + b_n)}{2} .$	
Метод хорд). Припустимо для визначеності, що $f(a) < 0$ і $f(b) > 0$. Замість того, щоб ділити відрізок навпіл, більш природно розділити його у відношенні $f(a)/f(b)$.	Цедастьнаближеннязначення кореня $= a + h_1$, (3) x_1 де $h_1 =$, (4).	Нехай ξ -точний, а \overline{x} - наближений корінь рівняння $f(x) = 0$, розташовані на тому самому відрізку [a, b], причому $ f(x) \ge m_1 \ge 0$ при $a \le x \le b$ (зокрема за m_1 можна взяти мінімум модулю $f(x)$ на інтервалі [a, b]). У такому випадку справедлива оцінка $ \overline{x} - \xi \le \frac{ f(\overline{x}) }{m_1}$
Метод дотичних	Нехай, корінь рівняння $f(x) = 0$ відокремлений на [a, b], причому $f(x)$ і $f'(x)$ неперервні і зберігають постійні знаки при $a \le x \le b$. Знайшовши яке-небудь початкове наближення кореня $x_n \approx \xi (a \le x_n \le b)$, ми можемо уточнити його за методом Ньютона в такий спосіб. Припустимо, $\xi = x_n + h_n$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$	$\left \xi - x_{n}\right \le \frac{\left f(x_{n})\right }{m_{1}}$ $\left \xi - x_{n}\right \le \frac{m_{2}}{2m_{1}}(x_{n} - x_{n-1})^{2},$

	(7) де h_n вважаємо малою величиною. Звідси, застосовуючи формулу Тейлора, одержимо $0 = f \\ (x_{n+}h_n) \approx f (x_n) + h_n + f (x_n)$		
Метод	отже $h_n = -\frac{f(x_n)}{f'(x_n)}$ Сутність методу полягає		
ітерації	в наступному. Нехай є рівняння (1). Замінимо його еквівалентним $x = \varphi(x)$ (11)	x_{n} $= \varphi(x_{n-1}),$ $n = 1, 2, 3,$ (13)	Отже, нехай $ \varphi'(x) \le q < 1$ для $x \in [a,b]$. Якщо ітерації виконувати доти, поки $ x_k - x_{k-1} \le \frac{1-q}{q}$
	Виберемо будь-яким способом початкове наближення x_0 й підставимо його в праву частину (11). Тоді отримаємо число		, то гарантується виконання нерівності $\left \xi-x_{n}\right <\varepsilon\;.$
	$x_{I} = \varphi$ (12) Підставимо x_{1} в (12)		
	замість x_0 і отримаємо $x_2 = \varphi$ (x_1)		
	Повторюючи цей процес будемо мати послідовність чисел		
	$x_n = \varphi$ $(x_{n-1}), \qquad n = 1,$ $2, 3, \dots$ (13)		
Комбінова ний метод	Нехай $f(a) * f(b) < 0$, а $f'(x)$ і $f''(x)$ зберігають постійні знаки на [a,b]. Об'єднуючи методи хорд та дотичних,	$x_k = \left x_k^{oom} - x_k^{xopo} \right / 2$	$ x_k - \zeta \le \varepsilon$

	·
отримуємо	
комбінований метод. У	
цьому методі	
послідовно	
обчислюються $x_k^{xop\partial}$ та	
$x_k^{\partial om}$ за методами хорд і	
дотичних відповідно.	
Комбінований метод	
застосовується на	
кожному кроці до	
нового відрізка або	
$\begin{bmatrix} x_{xopo}^{xopo}, x_{xom}^{oom} \end{bmatrix}$, якщо	
нерухомий правий	
кінець, або до	
$\left[x_{k}^{\partial om}, x_{k}^{xop\partial}\right]$, якщо	
нерухомий лівий кінець.	
Середина відрізка ϵ	
наближенням до кореня з точністю	
3 ТОЧНІСТЮ	
$\varepsilon = \left x_k^{\partial om} - x_k^{xopo} \right .$	
Tobre	
Тобто процес	
обчислювань	
закінчується, коли	
виконано умову	
$\left x_k^{\partial om} - x_k^{xop\delta} \right \le 2$	*

II. Практична частина

За допомогою узагальненої формули трапецій обчислити визначений інтеграл

$$\int_{3}^{6} \exp(x) \cdot \sin(x) + \exp(x) \cdot \cos(x) dx$$

з точністю не гірше за 10^{-3} .