

计算机组成原理

Principles of Computer Organization

控制单元的设计 I

控制单元的操作命令、控制信号

主讲教师:石 侃

shikan@ict.ac.cn

2025年6月9日

复习 (第九章)

- 1. 一条指令在四个工作周期(机器周期)内输出的操作命令
- 2. 处理器控制单元对外的输入及输出接口信号
- 3. 控制信号在完成一条指令的过程中所起的作用
 - 不采用 CPU 内部总线的方式
 - 采用 CPU 内部总线方式
- 4. 控制单元的多级时序系统
- 5. 指令周期、机器周期、时钟周期(节拍、状态)
- 6. 机器速度不仅与主频有关,还与机器周期中所含时钟周期(主频的倒数)数以及指令周期中所含的机器周期数有关
- 7. 产生不同微操作命令序列所用的时序控制方式
 - 同步控制:同步定长的机器周期、同步非定长的机器周期、中央和局部相结合
 - 异步控制
 - 同步与异步联合
 - 手工控制

第10章 控制单元的设计

10.1 组合逻辑设计

10.2 微程序设计

10.1 组合逻辑设计

- 一、组合逻辑控制单元框图
 - 1. CU 外特性

10.1

采用同步控制方式

一个机器周期内有3个节拍(时钟周期)

CPU 内部结构采用非总线方式

1. 安排微操作时序的原则

10.1

原则一 微操作的 先后顺序不得 随意 更改

原则二 被控对象不同的微操作 尽量安排在 一个节拍 内完成

原则三 占用时间较短的微操作 尽量 安排在一个节拍 内完成并允许有先后顺序

2. 取指周期 微操作的 节拍安排

10.1

$$T_0$$
 PC \longrightarrow MAR $1 \longrightarrow R$

原则二

 T_1 M (MAR) \longrightarrow MDR (PC) + 1 \longrightarrow PC

原则二

 $\begin{array}{c|c} T_2 & \overline{MDR} \longrightarrow IR \\ & OP(IR) \longrightarrow ID \end{array}$

原则三

3. 间址周期 微操作的 节拍安排

 T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow R$

 T_1 M (MAR) \longrightarrow MDR

 T_2 MDR \longrightarrow Ad (IR)

4. 执行周期 微操作的 节拍安排

10.1

① CLA
$$T_0$$

$$T_1$$

$$T_2 \quad 0 \longrightarrow AC$$
② COM T_0

$$T_1$$

$$T_2 \quad \overline{AC} \longrightarrow AC$$
③ SHR T_0

$$T_1$$

$$T_1$$

$$T_2 \quad L(AC) \longrightarrow R(AC)$$

$$AC_0 \longrightarrow AC_0$$

10.1 4 CSL T_0 T_1 T_2 $R(AC) \longrightarrow L(AC)$ $AC_0 \longrightarrow AC_n$ 5 STP T_0 $T_2 \quad 0 \longrightarrow G$ $\bigcirc ADD \times T_0 \quad Ad(IR) \longrightarrow MAR$ $M(MAR) \longrightarrow MDR$ T_2 (AC) + (MDR) \longrightarrow AC $\bigcirc \text{7} \text{ STA } \text{X} \quad T_0 \quad \text{Ad (IR)} \longrightarrow \text{MAR} \quad 1 \longrightarrow \text{W}$ $AC \longrightarrow MDR$

 $MDR \longrightarrow M (MAR)$

 T_2

 T_1 M (MAR) \longrightarrow MDR

 T_2 MDR \longrightarrow AC

 T_1

 T_2 Ad (IR) \longrightarrow PC

10 BAN X T_0

 T_1

 T_2 $A_0 \cdot Ad (IR) + \overline{A_0} \cdot PC \longrightarrow PC$

5. 中断周期 微操作的 节拍安排

 T_0 0 \longrightarrow MAR 1 \longrightarrow W 0 \longrightarrow EINT 硬件关中断

T₂ MDR → M(MAR) 向量地址 → PC

上述微操作由中断隐指令完成(8.4.4节)

10.1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	ADD	STA	LDA	JMP
	T_0		PC → MAR						
			1→ R						
	T_1		$M(MAR) \rightarrow MDR$						
FE			$(PC)+1 \rightarrow PC$						
取指	T		MDR→ IR						
			OP(IR)→ID						
	T_2	ĮΙ	1→ IND						
		// ī	1 → EX						

10.1

1. 列出操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	ADD	STA	LDA	JMP
	T_0	T	Ad (IR)→MAR						
			1→ R						
IND 间址	T_1		$ M(MAR) \rightarrow MDR $						
	T_2		MDR→Ad (IR)						
		IND	1 → EX						

间址周期标志

10.1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		Ad (IR)→MAR						
			$1 \rightarrow R$						
			$1 \longrightarrow W$						
EX	T_1		$M(MAR) \rightarrow MDR$						
执行			AC → MDR						
	T		(AC)+(MDR)→AC						
			$MDR \rightarrow M(MAR)$						
	T_2		MDR→AC						
			0→AC						

10.1

三、组合逻辑设计步骤

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		PC → MAR	1	1	1	1	1	1
			1→ R	1	1	1	1	1	1
	T_1		$M(MAR) \rightarrow MDR$	1	1	1	1	1	1
FE			$(PC)+1 \longrightarrow PC$	1	1	1	1	1	1
取指	T_2		MDR→ IR	1	1	1	1	1	1
			OP(IR)→ ID	1	1	1	1	1	1
		I	1→ IND			1	1	1	1
		Ī	1 → EX	1	1	1	1	1	1

10.1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	ADD	STA	LDA	JMP
	T_0		Ad (IR)→MAR			1	1	1	1
T. T.			1→ R			1	1	1	1
IND 间址	T_1		$M(MAR) \rightarrow MDR$			1	1	1	1
川址	T		MDR→Ad (IR)			1	1	1	1
	T_2	IND	1 → EX			1	1	1	1

10.1

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	COM	ADD	STA	LDA	JMP
			Ad (IR)→MAR			1	1	1	
	T_0		1→ R			1		1	
			$1 \rightarrow W$				1		
EX	T_1		$M(MAR) \rightarrow MDR$			1		1	
执行			AC→MDR				1		
	T_2		(AC)+(MDR)→AC			1			
			MDR→M(MAR)				1		
			MDR→AC					1	
			0→AC	1					

2. 写出微操作命令的最简表达式

10.1

```
M (MAR) \longrightarrow MDR
= FE \cdot T_1 + IND \cdot T_1 (ADD + STA + LDA + JMP + BAN) + EX \cdot T_1 (ADD + LDA)
= T_1 \{ FE + IND (ADD + STA + LDA + JMP + BAN) + EX (ADD + LDA) \}
```

3. 画出逻辑图

10.1

特点

- > 思路清晰, 简单明了
- > 庞杂,调试困难,修改困难
- ➤ 速度快 (RISC)

10.2 微程序设计

微程序设计思想的产生

1951 英国剑桥大学教授 Sir Maurice Wilkes

完成 一条机器指令 微操作命令1

微操作命令 2

微操作命令n

微指令1 10100000

微指令 m丿

00010010

存入 ROM

一条机器指令对应一个微程序

存储逻辑

微程序

二、微程序控制单元框图及工作原理

10.2

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

10.2

二、微程序控制单元框图及工作原理

10.2

3. 工作原理

主存

LDA
ADD
STA

STP

用户程序

X

Y

Z

M+1 M M+2M+1XXX M+2P+1 P P+2 P+1 P+2 M Q+1 Q Q+2 Q+1 Q+2 M K+1 K K+2 K+1 M K+2

控存

10.2

取指周期 微程序

对应 LDA 操 作的微程序

对应 ADD 操作的微程序

对应 STA 操作的微程序

25

3. 工作原理

10.2

 $1 \rightarrow R$

0 0 1 M+1

1 0 M+2

(1) 取指阶段 执行取指微程序 $M \longrightarrow CMAR$ $CM (CMAR) \longrightarrow CMDR$ $PC \rightarrow MAR$ 由 CMDR 发命令 100 形成下条微指令地址 M+1 $Ad (CMDR) \longrightarrow CMAR$ (PC)+ \overline{M} (MAR) \rightarrow MDR $\overline{\text{CM}(\text{CMAR})} \longrightarrow \overline{\text{CMDR}}$ M+1由 CMDR 发命令 0100 形成下条微指令地址 M+2

Ad (CMDR) → CMAR
CM (CMAR) → CMDR
由 CMDR 发命令

 $\begin{array}{c}
MDR \rightarrow IR \\
\uparrow \\
M + 2 \\
\hline
0 0 1 0 0 \\
\hline
0 0 \\
\hline
0 \times \times \times
\end{array}$

(2) 执行阶段 执行 LDA 微程序

10.2

由 CMDR 发命令

形成で条微指令地址MAR
CM (CMAR) → CMDR
由 CMDR 发命令

形成下除微指令地址CMAR
CM (CMAR) → CMDR
由 CMDR 发命令

形成下条微指令地址CMAR

$$(M \longrightarrow CMAR)$$

(3) 取指阶段 执行取指微程序

10.2

M → CMAR

CM (CMAR) → CMDR

由 CMDR 发命令

:

全部微指令存在 CM 中,程序执行过程中 只需读出

- 关键 冷微指令的操作控制字段如何形成微操作命令
 - > 微指令的 后续地址如何形成

10.2

三、微指令的编码方式(控制方式)

1. 直接编码(直接控制、不译码)方式

在微指令的操作控制字段中,

每一位代表一个微操作命令

速度最快

某位为"1"表示该控制信号有效

2. 字段直接编码方式

10.2

将微指令的控制字段分成若干 "段", 每段经译码后发出控制信号

每个字段中的命令是 互斥 的缩短 了微指令字长,增加了译码时间

3. 字段间接编码方式

10.2

4. 混合编码

直接编码和字段编码(直接和间接)混合使用

5. 其他

微指令中设常数字段等

四、微指令序列地址的形成

10.2

- 1. 微指令的 下地址字段 指出
- 2. 根据机器指令的 操作码 形成
- 3. 增量计数器

 $(CMAR) + 1 \longrightarrow CMAR$

4. 分支转移

操作控制字段 转移方式 转移地址

转移方式 指明判别条件

转移地址 指明转移成功后的去向

5. 通过测试网络

6. 由硬件产生微程序入口地址 第一条微指令地址 由专门 硬件 产生 中断周期 由 硬件 产生 中断周期微程序首地址

7. 后续微指令地址形成方式原理图

10.2

10.2

五、微指令格式

- 1. 水平型微指令
 - 一次能定义并执行多个并行操作
- 如 直接编码、字段直接编码、字段间接编码、 直接和字段混合编码
- 2. 垂直型微指令

类似机器指令操作码 的方式

由微操作码字段规定微指令的功能

10.2

3. 两种微指令格式的比较

- (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强
- (2) 水平型微指令执行一条机器指令所要的 微指令 数目少,速度快
- (3) 水平型微指令 用较短的微程序结构换取较长的 微指令结构
- (4) 水平型微指令与机器指令 差别大

两种微指令格式的比较

水平型微指令

基本思想:相容微命令尽量多地安排在一条微指令中。

优点: 微程序短,并行性高,适合于较高速度的场合。

缺点: 微指令长,编码空间利用率较低,并且编制困难。

· 垂直型微指令

基本思想:一条微指令只控制一、二个微操作命令。

优点:微指令短,编码效率高,格式与机器指令类似,故编制容易。

缺点:微程序长,一条微指令只能控制一、二个微操作命令,无并行,速

度慢。

- > 水平型微指令面向控制逻辑描述
- 垂直型微指令面向控制算法描述

六、静态微程序设计和动态微程序设计

静态 微程序无须改变,采用 ROM

动态 通过 改变微指令 和 微程序 改变机器指令, 有利于仿真,采用 EPROM

七、毫微程序设计

1. 毫微程序设计的基本概念

微程序设计 用 微程序解释机器指令

毫微程序设计 用 毫微程序解释微指令

毫微指令与微指令 的关系好比 微指令与机器指令 的关系

2. 毫微程序控制存储器的基本组成

10.2

八、串行微程序控制和并行微程序控制

10.2

串行 微程序控制

取第 : 条微指令

执行第;条微指令

取第 i+1 条微指令 执行第 i+1 条微指令

并行 微程序控制

取第 / 条微指令

执行第 ; 条微指令

取第 i+1 条微指令 执行第 i+1 条微指令

取第 i+2 条微指令 执行第 i+2 条微指令

九、微程序设计举例

微程序设计控制单元的主要任务

- 编写对应各条机器指令的微程序
- 具体步骤是,首先写出对应机器指令的全部 微操作及节拍安排,然后确定微指令格式, 最后编写出每条微指令的二进制代码(称为 微指令码点)

九、微程序设计举例

- 1. 写出对应机器指令的微操作及节拍安排 假设 CPU 结构与组合逻辑相同
- (1) 取指阶段微操作分析 3条微指令
 - $T_0 \quad PC \longrightarrow MAR \qquad 1 \longrightarrow R$
 - $T_1 \quad M (MAR) \longrightarrow MDR \quad (PC) + 1 \longrightarrow PC$
 - T_2 MDR → IR OP(IR) → 微地址形成部件

则取指操作需。3.条微指令

OP(IR)→微地址形成部件 → CMAR

(2) 取指阶段的微操作及节拍安排

考虑到需要形成后续微指令的地址

- T_0 PC \longrightarrow MAR $1 \longrightarrow R$
- T_1 Ad (CMDR) \longrightarrow CMAR
- T_2 M (MAR) \longrightarrow MDR (PC)+1 \longrightarrow PC
- T_3 Ad (CMDR) \longrightarrow CMAR
- T_4 MDR \longrightarrow IR OP(IR) \longrightarrow 微地址形成部件
- T_5 OP(IR) \longrightarrow 微地址形成部件 \longrightarrow CMAR

(3) 执行阶段的微操作及节拍安排

10.2

考虑到需形成后续微指令的地址

• 非访存指令

取指微程序的入口地址 M 由微指令下地址字段指出

① CLA指令

$$T_0 \longrightarrow AC$$

 T_1 Ad (CMDR) \longrightarrow CMAR

② COM 指令

$$T_0 \longrightarrow AC$$

 T_1 Ad (CMDR) \longrightarrow CMAR

③ SHR 指令

$$T_0$$
 L(AC) \longrightarrow R(AC) AC₀ \longrightarrow AC₀
 T_1 Ad(CMDR) \longrightarrow CMAR

④ CSL 指令

$$T_0$$
 R(AC) \longrightarrow L(AC) AC₀ \longrightarrow AC_n
 T_1 Ad(CMDR) \longrightarrow CMAR

⑤ STP指令

$$T_0 \longrightarrow G$$

 T_1 Ad (CMDR) \longrightarrow CMAR

• 访存指令

10.2

⑥ ADD 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R
T_1 Ad (CMDR) \longrightarrow CMAR
T_2 M (MAR) \longrightarrow MDR
```

 T_3 Ad (CMDR) \longrightarrow CMAR

 T_4 (AC) + (MDR) \longrightarrow AC

 T_5 Ad (CMDR) \longrightarrow CMAR

⑦ STA 指令

```
T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow W
```

 T_1 Ad (CMDR) \longrightarrow CMAR

 T_2 AC \longrightarrow MDR

 T_3 Ad (CMDR) \longrightarrow CMAR

 T_4 MDR \longrightarrow M (MAR)

 T_5 Ad (CMDR) \longrightarrow CMAR

⑧ LDA 指令

- T_0 Ad (IR) \longrightarrow MAR $1 \longrightarrow$ R
- T_1 Ad (CMDR) \longrightarrow CMAR
- T_2 M (MAR) \longrightarrow MDR
- T_3 Ad (CMDR) \longrightarrow CMAR
- T_4 MDR \longrightarrow AC
- T_5 Ad (CMDR) \longrightarrow CMAR

• 转移类指令

⑨ JMP 指令

$$T_0$$
 Ad (IR) \longrightarrow PC

 T_1 Ad (CMDR) \longrightarrow CMAR

⑩ BAN 指令

$$T_0 \qquad A_0 \cdot Ad (IR) + \overline{A_0} \cdot (PC) \longrightarrow PC$$

 T_1 Ad (CMDR) \longrightarrow CMAR

全部微操作 20个 微指令 38条

2. 确定微指令格式

10.2

- (1) 微指令的编码方式 采用直接控制
- (2) 后续微指令的地址形成方式 由机器指令的操作码通过微地址形成部件形成 由微指令的下地址字段直接给出
- (3) 微指令字长
 由 20 个微操作
 确定操作控制字段 最少 20 位
 由 38 条微指令
 确定微指令的下地址字段 为 6 位
 微指令字长 可取 20 + 6 = 26 位

(4) 微指令字长的确定

10.2

38条微指令中有19条 是关于后续微指令地址 — CMAR

若用 Ad (CMDR) 直接送控存地址线

则 省去了输至 CMAR 的时间,省去了 CMAR

同理 OP(IR) → 微地址形成部件 → 控存地址线

可省去19条微指令,2个微操作

$$38 - 19 = 19$$

$$20 - 2 = 18$$

下地址字段最少取 5 位 操作控制字段最少取 18 位

(5) 省去了 CMAR 的控制存储器

10.2

考虑留有一定的余量

取操作控制字段 下地址字段

(6) 定义微指令操作控制字段每一位的微操作

0 1 2 ... 23 24 ... 29

3. 编写微指令码点

微程序	微指令	微指令 (二进制代码)															
名称	地址 (八进制)		操作控制字段									下地址字段					
取指		0	1	2	3	4	•••	10	•••	23	24	25	26	27	28	29	
	00	1	1								0	0	0	0	0	1	
	01			1	1						0	0	0	0	1	0	
	02					1					×	×	×	X	X	×	
CLA	03										0	0	0	0	0	0	
COM	04										0	0	0	0	0	0	
ADD	10		1					1			0	0	1	0	0	1	
	11			1							0	0	1	0	1	0	
	12										0	0	0	0	0	0	
LDA	16		1					1			0	0	1	1	1	1	
	17			1							0	1	0	0	0	0	
	20										0	0	0	0	0	52	

作业

- 习题: 10.2, 10.7, 10.8, 10.15, 10.21
- ●预习第四章