Convolutional Neural Networks

Sources: Elements of Stat. Learning, Andrew Ng, A. Mueller

Computer Vision Problems:

Deep Learning on Larger Images:

Edge Detection:

3×1	+ 1x	(t	[* +	0 × 0	0+5	2-=1-x5+1-x8+1-x1+0x7+0.	
3	00	1	2	7	4	"consolution"	
-1°				3	1		-5
→2 ⁽¹⁾	7	2-1	5	1	3	* 1 0 -1 =	
0	1	3	1	7	8	* 0 - -	
4	2	1	6	2	8	3×3	
2	4	5	2	3	9	filter	4×4
		6×	6				

Androw Na

More on vertical edge detection

Vertical and Horizontal edge detection

Learning to detect edges:

Padding:

$$n-f+1 \times n-f+1$$

Padding:

Padding:

Valid versus same padding:

"Valid":
$$n \times n \quad + \quad f \times f \quad \longrightarrow \quad \frac{n - f + 1}{4} \times u - f + 1$$

$$6 \times 6 \quad + \quad 3 \times 3 \quad \longrightarrow \quad 4 \times 4$$

"Same": Pad so that output size is the <u>same</u> as the input size.

$$n + 2p - f + 1 \times n + 2p - f + 1$$
 $p + 2p - f + 1 = pr \implies p = \frac{f - 1}{2}$
 $3 \times 3 \quad p = \frac{3 - 1}{2} = 1$
 $5 \times 5 \quad p = 2$
 $5 \times 5 \quad p = 2$

	3	4	4
	1	0	2
1 -1	-1	0	3
	3+3		
st	ride	2 =	7

3	4	4
1	0	2
-1	0	3
	3+3	

	3	4	4
	1	0	2
	-1	0	3
- 63		3+3	

Stride = 2

		X	2				
(2	3	7	4	6	2	9
1	6	6	9	8	7	4	3
	3	4	8 ³	3 4	8 4	9	7
	7	8	3 ¹	6 º	6 ²	3	4
	4	2	1 -1	8 º	3 ³	4	6
	3	2	4	1	9	8	3
	0	1	3	9	2	1	4
			7	v 2			

3	4	4
1	0	2
-1	0	3
	3+3	

Stride = 2

_		9					
(2	3	7	4	6	2	9
1	6	6	9	8	7	4	3
	3	4	8	3	8 3	9 4	74
	7	8	3	6	6 ¹	3 º	4 ²
	4	2	1	8	3 -1	4 º	6 ³
	3	2	4	1	9	8	3
	0	1	3	9	2	1	4
			7	v2			

3	4	4
1	0	2
-1	0	3
	3+3	

Stride = 2

3	4	4
1	0	2
-1	0	3
	3+3	

		×	2				
(2	3	7	4	6	2	9
1	6	6	9	8	7	4	3
	3	4	8	3	8	9	7
	7	8	3	6	6	3	4
	4	2	1 ³	8 4	3 4	4	6
	3	2	4 1	1 º	9 ²	8	3
	0	1	3 -1	90	2 ³	1	4
			7	x7			

	3	4	4
¢	1	0	2
	-1	0	3
		3+3	

Stride = 2

		×					
(2	3	7	4	6	2	9
1	6	6	9	8	7	4	3
	3	4	8	3	8	9	7
	7	8	3	6	6	3	4
	4	2	1	8	3 3	4 4	6 4
	3	2	4	1	9 1	8 0	3 ²
	0	1	3	9	2-1	1 º	4 3
			7	7.			

	3	4	4
	1	0	2
	-1	0	3
		3+3	

Summary of convolutions:

```
n \times n image f \times f filter
padding p
               stride s
 \left|\frac{n+2p-f}{s}+1\right| \times
```

Convolutions on RGB images

Multiple filters

"WTG OTOJ " Example of a layer 3 x 3 x 3 OLIS] 3 x 3 x 3

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer <u>l</u> is a convolution layer:

```
f^{[l]} = filter size

p^{[l]} = padding

s^{[l]} = stride
```

Input:
$$n_{H} \times n_{W} \times n_{c}$$

Output: $n_{H} \times n_{W} \times n_{c}$
 $N_{W} \times$

Types of layer in a convolutional network:

```
- Convolution (CONV) ←
- Pooling (POOL) ←
- Fully connected (FC) ←
```

Pooling layer: Max pooling

Pooling layer: Max pooling

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Summary of pooling

Hyperparameters:

f: filter size

f=3, s=2

s:stride

Max or average pooling

> p: padding.

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{tol}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208 <
POOL1	(14,14,8)	1,568	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	416 ←
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

→ **Sparsity of connections:** In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J