

Name: Sumaiya Khan

CourseCSE 231.1 L

ID: 1921173042

Assessment: 02

Full Adder Circuit using Multiplexer

A Multiplexer here has 4 inputs and 1 output. The end result is to carry out a full adder with appropriate calculations. In order to do so, I have used a NOT Gate, IC 7404, for implementing the inputs of the full adder.

Truth Table for Full Adder

С	А	В	Carry	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

K-map for Full adder

Carry

<u>C\AB</u>	<u>00</u>	<u>01</u>	<u>11</u>	<u>10</u>
<u>0</u>			1	
<u>1</u>		1	1	1

<u>Sum</u>

<u>C\AB</u>	<u>00</u>	<u>01</u>	<u>11</u>	<u>10</u>
<u>0</u>		1		1
<u>1</u>	1		1	

Respective Canonical Form

C=∑(3,5,6,7)

S=∑(1,2,4,7)

<u>Inputs</u>

Sum: I0=C I1=C' 13=C I2=C'

Carry: I0=0 I1=C 13=1 I2= C

A Full Adder using Multiplexer (Logisim)

