仿真试题1

1. 选择题(15分)

A. 1NF

B. 2NF

C. 3NF

D. BCNF

(2) 关系 R 和 S 如表 1 和表 2 所示, R 中的属性 A 是主码、属性 B 是外码, S 中属性 B 是主码。如果要在 S 中删除一个元组,在不考虑级联删除和空值删除的情况下,() 这个元组可以删除。

	表1 R			表為	2 S
A	В	С		В	D
a1	b1	1		b1	1
a2	b2	2	_	b2	3
a3	b1	3		b3	4
a4	b3	4		b4	6

A. (b1,1) B. (b2, 3) C. (b3, 4) D. (b4, 6)

(3) 关系数据库设计理论中,起其核心作用的是()。

A. 范式

B. 数据依赖 C. 模式设计 D. 数据完整性

(4) 已知关系 R(A, B, C, D) 的函数依赖集是 $\{B\rightarrow C, C\rightarrow D\}$,则 R 的候选键为()。

B. B C. C D. AB A. A

(5) 己知数据库 RS 的关系 R 和 S, 且 R 的属性 X 非 R 的主码, 却是 S 的主码, 则($^{\circ}$)。

A. X 是 R 的外码

B. X 是 R 的候选码

C. X 是 S 的外码

D. X 非 S 的候选码

(6) 用户程序通常按照其所对应的() 使用数据库中的数据。

A. 概念模式 B. 用户模式 C. 逻辑模式 D. 存储模式

(7) 关系数据库规范化解决的问题是插入异常、修改异常、删除异常和()。 A. 丢失修改 B. 数据安全性 C. 不可重读 D. 数据冗余

(8) 数据流图是数据库设计过程中() 阶段的成果。

- A. 需求分析 B. 概念结构设计 C. 逻辑结构设计 D. 物理结构设计 (9)数据安全性是指保护数据以防止()的蓄意或者无意使用。
 A. 普通用户 B. 超级用户 C. 授权用户 D. 未授权用户 (10)实体完整性规则是指关系中不允许()。
 A. 有空行 B. 主属性取空值 C. 有空列 D. 外键取空值 (11)已知关系 R 和 S 的属性相同,且均有 66 个元组,则 R ∩ S 的元组个数为 ()。
 A. 等于 66 B. 小于 66 C. 小于等于 66 D. 大于等于 66 (12)在数据库技术中,独立于计算机系统的模型是()。
 A. E-R 模型 B. 层次模型 C. 网状模型 D. 关系模型 (13)不破坏数据库内容的故障是()。
 A. 系统病毒发作 B. 供电系统故障 C. 瞬时强大磁场 D. 存储介质损坏 (14)在删除表的元组时,删除参照该表的外键表中外键与主键同值元组,应采用 ()。
 A. RESTRICT 方式 B. CHECK 方式
 - C. SET NULL 方式
- D. CASCADE 方式
- (15) 日志文件通常用于保存()。
 - A. 程序运行过程 B. 程序执行结果 C. 数据查询操作 D. 数据更新操作

2. 填空题(10分)

- (1) 若属性 A 是关系 R 的主属性,则 A 的取值 ()。
- (2) BCNF 相对于 3NF 来说,消除了()。
- (3)数据库系统的核心是(),它是用户与数据库的接口。
- (4) 在并发控制机制中,确保并发调度可串行化的常用协议是()。
- (5) 在 Transact-SOL 中, SELECT 子句实现关系代数的()运算。
- (6) 多个用户同时对同一数据进行的操作称为()操作。
- (7) 如果属性 X 的每个值,属性 Y 都有唯一的值与之对应,称 Y () X。
- (8) 在事务并发时,若干事物相互等待对方释放封锁,从而导致系统进入()状态。
- (9) 关系中能够唯一标识元组的属性或者属性组称为()。
- (10) 对于函数依赖 $X \rightarrow Y$, 如果 Y 是 X 的子集,则 $X \rightarrow Y$ 称为 () 函数依赖。

3. 判断题(15分)

- (1) 在数据库系统的三级模式结构中,外模式、模式、内模式均只能有一个。
- (2)满足 5NF 的关系模式,完全解决了插入、修改、删除异常和数据冗余。
- (3) 概念模型是按照计算机系统的需求对数据建立的模型。
- (4) 在 E-R 图中,如果有 6 个实体,6 个联系,其中 1:1、1:N 和 M:N 联系均为 2 个,则 把 E-R 图转换为关系模型后,关系模式的个数是 8 个。
- (5) 在事务1以S锁方式读数据A时,事务2可以通过加S锁读写A。
- (6) 已知 F 是关系模式 R (U, F) 的最小函数依赖集,且属性 T 只在 F 的函数依赖的左端出现,则 T 一定不是主属性。
- (7) CODASYL 组织提出的 DBTG 报告中的数据模型是网状模型的主要代表。
- (8) DBA 是控制数据整体结构的人员,负责三级结构定义和修改。
- (9) 数据一致性是指数据库中数据类型的一致。
- (10) 把 Transact-SQL 嵌入 C 语言,并对元组进行处理时,通常需要引入游标机制。
- (11) 在数据库系统中,对索引的描述通常存放在数据字典中。
- (12) 己知关系 R(A, B, C, D) 的函数依赖集 $F=\{C\rightarrow B, B\rightarrow D\}$,则 B的闭包为 BD。
- (13) 已知 R 的分解为 $R_1(U_1)$ 和 $R_2(U_2)$,则该分解保连接的充要条件是 $U_1 \cap U_2 \to U_1 U_2$ 或者 $U_1 \cap U_2 \to U_2 U_1$ 。
- (14) 如果关系模式 R(U)满足 $X \rightarrow U$,则 X 是 R 的超键。
- (15) 在数据库设计过程中,设计外模式属于逻辑结构设计。

4. 简答题(15分)

- (1) 简述数据库系统设计的基本步骤。
- (2) 简述两种常用的封锁和三种常用的封锁协议。
- (3) 解释事务。简述事务的四个特性。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

(1) 已知数据库 BInfo 的关系分别为读者 R(读者号 RNo,读者名 RName,城市 City); 图书 B(图书号 BNo,图书名 BName,出版社 Pub,单格 Price,出版日期 PDate); 订单 RB(RNo,BNo,数量 Qty)。

请按题后说明,用关系代数 ISBL 或 Transact-SQL 完成下列操作:

(a) 查询读者李四订购图书的书名和单价。(ISBL)

- (b) 查询订了所有图书的读者号。(ISBL)
- (c) 查询浙江工商大学出版社出版的书名和出版日期,并按出版日期排序。(SQL)
- (d) 查询订购"图像技术"的读者姓名。(SQL)
- (e) 查询没有订购书号为"B369"的读者姓名(SQL)。

6. 数据库设计(25分)

(1) 蓝天大学教务处需要设计教务管理系统,用于学生、教师、课程和系的信息管理,要求满足学生选修课程、教师讲授课程、教师和学生与系的隶属关系的管理功能,其中学生信息主要包括学号、姓名、性别、班级和班长等。

请完成下列问题:

- (a) 给出教务管理系统的 E-R 图。
- (b) 把 E-R 图转换成为关系模式。
- (2) 己知关系模型 R (A, B, C, D, E, X) 的函数依赖集 $F=\{AD\rightarrow E, AC\rightarrow E, CB\rightarrow X, BCD\rightarrow AX, BD\rightarrow A, AB\rightarrow X, A\rightarrow C\}$ 。

请完成下列问题:

- (a) 给出 R 的最小函数依赖集和候选码。
- (b) 判断 R 是否满足 3NF, 并给出原因; 如果否, 则把 R 分解到 3NF。

仿真试题 2

(1) 如果采用关系数据库实现应用,在数据库的逻辑设计阶段需将()转换为关系数

1. 选择题(15分)

据模型。	
A. E-R 模型 B. 关系模型 C. 层次模型 D. 网状模型	
(2) 设有关系 SC (SNo, CNo, Grade), 主码是 (SNo, CNo)。遵守实体完整性规则	则,
() 。	
A. 只有 SNo 不能取空置 B. 只有 CNo 不能取空置	
C. 只有 Grade 不能取空置 D. 只有 SNo 和 CNo 均不能取空置	
(3) 设关系 A 的度为 10,设关系 B 的度为 20。如果关系 R 是 A 和 B 的广义笛卡尔科	昗,
即 R=A×B,则关系 R 的度是()。	
A. 10 B. 20 C. 30 D. 200	
(4)如果事务 T 获得数据对象 D 的排它锁,则 T 对 D ()。	
A. 既能读又能写 B. 不能读不能写 C. 只能写不能读 D. 只能读不能写	ട
(5) 在关系数据库中,表与表之间的联系是通过()实现的。	
A. 实体完整性规则 B. 参照完整性规则 C. 用户定义完整性规则 D. 主领	建
(6) 已知关系模式 R (A, B, C), F={B→C}, 则分解 R ₁ = (A, B) 和 R ₂ (B, C) 是 () 。
A. 保连接保依赖 B. 保连接不保依赖	
C. 不保连接保依赖 D. 不保连接不保依赖	
(7) 在 DBMS 中实现事务持久性的子系统是() 子系统。	
A. 安全性管理 B. 完整性管理 C. 并发控制 D. 恢复管理	
(8) 在 Transact-SQL 的授权语句中使用 ALL PRIVILEGES,表示()。	
A. 所有操作权限 B. 授权所有用户 C. 所有数据集合 D. 允许继续授权	
(9) ()在理论和技术上非常成熟,已经成为当前商用数据库的主流。	
A. 关系数据库 B. 网状数据库 C. 层次数据库 D. 空间数据库	
(10) 为了确保数据库的逻辑独立性,需要修改的是()。	
A. 外模式 B. 内模式 C. 模式/外模式映像 D. 模式/内模式映像	

) 。

(11) 在数据库的并发控	制和数据恢复机制中	,DBMS 使用的	り基本逻辑工作!	単位是()。
A. 指令	B. 程序	C. 事务	D. 进程	
(12) () 不是数据库	巨技术的主要特点。			
A. 程序标准化	B. 数据结构化	C. 数据冗余	度小 D. 数据	独立性高
(13) 在开发数据库应用]系统时,为了实现主	语言和嵌入语	言的高效调用,	则()是关
键。				
A. 并发机制	B. 恢复机制 C	C. 嵌套机制	D. 游标机6	制
(14) 已知关系 R (A,	B,C,D),则 $\sigma_{2>3}$	·(R)等价于() 。	
A. SELECT * FROM	M R WHERE 2>'3'	B. SELECT	B, CFROM R	WHERE 2>'3'
C. SELECT * FROM	A R WHERE B>'3'	D. SELECT	B, C FROM R	WHERE B>'3'
(15) 在概念模型中, 客	K观存在并且能够相互	区别的事物称	为()。	
A. 候选键 B.	属性 C. 联系	D. 实领	本	
2. 填空题(10 分)				
(1) 如果两个事务同时	左取同一粉捉佬 左-	一个重久经由う	· 前	ス 再
库,从而破坏了事		一事分知本人	. III , ソ1	了文初 了 剱 %
(2) 在创建视图后,数:		刻的 () 而	不 旦粉 捉	
(3) E-R 方法的三要素			1.万字数1/6。	
(4)物理结构设计是设			()和左取主	沙华
(5) 已知关系 R (A, B				
(6) 在 Transact-SQL 中				
_	该在 CREATE VIEW i			EECT 14.51
(7) 非主属性是不包含			, ()0	
(8) 数据独立性主要包			而	
(9) 数据库恢复机制涉				新 据 医 恢 复
(10) 实体-联系方法所统				390100000000000000000000000000000000000
(10) 大件-恢尔刀伍別》	主立即 正式 图形细胞	、 / 四九五女工	· <i>></i>	
3. 判断题(15 分)				
(1)新奥尔良法把数据	库设计分为需求分析、	、概念结构设计	·、逻辑结构设计	十和物理结构

设计四个阶段。

- (2) 已知关系 U (A, B) 的元组分别为 (x, 1) 、 (y, 1) 、 (y, 2) 、 (z, 1) 、 (z, 2) 和 (z, 3) , 关系 V (B, C) 的元组分别为 (1, t) 、 (2, t) , 则 U÷V 是元组分别为 (y) 和 (z) 的关系 W (A) 。
- (3) 如果 $X\rightarrow Z$, $Y\rightarrow Z$,则 $XY\rightarrow Z$ 。
- (4) 视图不但可以简化用户操作,并保护数据,同时还可以加快查询速度。
- (5) 在 Transact-SOL 中, ROLLBACK 语句的功能是回滚事务。
- (6) 如果事务 T 获得数据对象 A 的 S 锁,则 T 对 A 只能读不能写,而其它事务对 A 不能读不能写。
- (7) 已知二元关系模式 R(U, F), X 和 Y 均是单一属性, 如果 $X \rightarrow Y$, 则 R 满足 4NF。
- (8) 已知职工(工号(主键),工名,部号、职务、工资)和部门(部号(主键)、部名、人数、工资总额),则外键是职工的部号。
- (9) 己知关系 R(A, B, C, D) 的函数依赖集 F={C→B,B→D}, 则 R 的满足 2NF。
- (10) 为了使索引键的值在表中唯一,则在 CREATE INDEX 中应该使用保留字 CLUSTERED。
- (11) 对任意视图都可以进行的操作是选择操作。
- (12) $\sigma_A(\sigma_B(E))$ 等价于 $\sigma_{A\wedge B}(E)$ 和 $\sigma_B(\sigma_A(E))$ 。
- (13) 已知关系 R 和 S 的属性个数分别为 m 和 n,则 $R \times S$ 的属性个数为 m+n。
- (14) 数据冗余是文件系统的一个主要缺点。
- (15) 1968 年 IBM 公司推出的 IMS 数据库管理系统是层次模型的主要代表。

4. 简答题(15分)

- (1) 简述物理结构设计的方法步骤。
- (2) 简述视图的作用。
- (3) 简述数据字典的内容。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

- (1) (a) SELECT 姓名 FROM 学生 WHERE 学号 IN (
 SELECT 学号 FROM 选课 WHERE 课程号 IN (
 SELECT 课程号 FROM 课程 WHERE 课程名='数据结构'))
- (b) SELECT AVG(成绩) AS 平均成绩 FROM 选课 WHERE 课程号='2009010606'

- (c) SELECT 学号,课程号 FROM 课程 WHERE 成绩<60 ORDER BY 课程号 DESC
- (d) π_{课程号 课程名}(σ_{数师='变国庆'}(课程))
- (e) $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$ $\pi_{\mathbb{R}^{2}}$

6. 数据库设计(25分)

- (1) (a) R的 3NF 分解:
- $: F = \{AB \to C, C \to E, A \to CD\} .$
- $\therefore F_{min} = \{A \rightarrow C, A \rightarrow D, C \rightarrow E\}.$
- (b) 因为(AB)的闭包是 ABCDE, 所以候选码是 AB。又因为存在部分递依赖, 所以 R的最高范式级别 1NF。
- (2)(a) 1NF 判断: 因为 SInfo 的每个属性均为不可分,因此满足 1NF。
- 因为 F={SNo→SName,SNo→SSex,SNo→SAge,SNo→DNo,SNo→DName,SNo→DHead,DNo→DName,DNo→DHead,(SNo,CNo)→Grade,CNo→CName,CNo→CCredit} 所以 SInfo 的主键为(SNo,CNo),SNo 和 CNo 为主属性;其它属性为非主属性。由于存在 SNo→(SName,SSex,SAge,DNo,DName,DHead),所以存在部分依赖(SNo,CNo) → (SName,SSex,SAge,DNo,DName,DHead)

因为 CNo \rightarrow (CName,CCredit),则存在部分依赖(SNo,CNo) $\stackrel{P}{\longrightarrow}$ (CName,CCredit) 所以 SInfo 不满足 2NF。SInfo 的 2NF 分解为 StudentInfo= $\mathbf{R}_1 \cup \mathbf{R}_2 \cup \mathbf{R}_3$:

- ◆ R₁(U₁,F₁): U₁={SNo,SName,SSex,SAge,DNo,DName,DHead}。
 F₁={SNo→(SName,SSex,SAge,DNo,DName,DHead),DNo→(DName,DHead)}。
- \bullet R₂(U₂,F₂): U₂={CNo,CName,CCredit}; F₂={CNo \rightarrow (CName,CCredit)}.
- \bullet R₃(U₃,F₃): U₃={SNo,CNo,Grade}; F₃={(SNo,CNo) \rightarrow Grade}
- (b) 因为 F₁ 存在 SNo→DNo 和 DNo→(DName,DHead), 所以 DName 和 DHead 传递依赖于(SNo, CNo), 即(SNo,CNo) DName 和(SNo,CNo) DHead。所以 R₁不满足 3NF。

SInfo 的 3NF 分解为 StudentInfo= $R_1 \cup R_2 \cup R_3 = R_{11} \cup R_{12} \cup R_2 \cup R_3$:

- igspace R₁₁(U₁₁,F₁₁): U₁₁={SNo,SName,SSex,SAge,DNo}; F₁₁={SNo \rightarrow (SName,SSex,SAge,DNo)} \circ
- \bullet R₁₂(U₁₂,F₁₂): U₁₂={DNo,DName,DHead}; F₁₂={DNo \rightarrow (DName,DHead)}.

仿真试题3

(1) 存储在计算机外部存储介质上的结构化的数据的集合,其英文名称是()。

A. Data Dictionary(简称 DD) B. DataBase(简称 DD)

1. 选择题 (15分)

C.	DataBase System	(简称 DBS)	D.	DataBase Management System(简称 DBMS)
(2) 数	女据库的概念模型.	独立于()。		
A.	E-R 图		В.	现实世界
C.	信息世界		D.	具体的机器与 DBMS
(3)在	数据库三级模式组	吉构中,描述数据	库口	中全体数据的全局逻辑结构和特征的是()。
A.	外模式		В.	内模式
C.	模式		D.	存储模式
(4) 货	と有两个关系 R 和	S, 分别包含 15	个利	□10 个元组,则在 R∩、R∪S、R−S 运算中,
7	下可能出现的元组	数目情况是() 。	
A.	0, 25, 15	B. 4, 21, 1	1	C. 7, 17, 8 D. 10, 15, 5
(5)	E数据库技术中,	最早出现的数据标	模型	是()。
A.	关系模型	B. 层次模型		C. 网状模型 D. 面向对象模型
(6) ∌	长系数据模型的基	本组成要素是()	•
A.	数据结构、数据	操作和规范化理	论	B. 数据结构、规范化理论和完整性约束
C.	规范化理论、数	据操作和完整性	约束	D. 数据结构、数据操作和完整性约束
(7) }	下列实体与联系中	,属于一对一联	系的	是()。
A.	教师与课程	B. 省与省会块	成市	C. 教研室与教师 D. 学生与课程
(8) 右	E关系代数运算中	, 对于关系 R 和	S的	」运算 R ※,则"×"通常表示()运算。
A.	算术	B. 逻辑		C. 乘积 D. 广义笛卡尔积
(9)在	多用户数据库系统	流中,为了确保用	户共	享使用数据库,则数据库系统必须进行()。
A.	同步控制	B. 并发控制		C. 异步控制 D. 安全性控制
(10)	实现关系代数投景	/运算的 Transact	-SQ	L 查询语句中,对应的关键字是()。
A.	SELECT	B. FROM		C. WHERE D. HAVING

- (11) "成绩在 0 至 100 分之间"的约束属于 DBS 的()功能。

- A. 并发控制 B. 完整性控制 C. 数据恢复 D. 安全性控制
- (12) 为了确保数据库的物理独立性,需要修改的是()。

- A. 外模式 B. 内模式 C. 模式/外模式映像 D. 模式/内模式映像
- (13) 规范化理论是通过分解())消除其属性之间的多余的数据依赖关系。
- A. 内模式 B. 外模式 C. 关系模式 D. 视图
- (14) 数据库模式的规范化处理是数据库设计的()阶段。

- A. 需求分析 B. 概念结构设计 C. 逻辑结构设计 D. 物理结构设计
- (15) 在数据库技术中,未提交的随后又被撤消的数据称为()。

 - A. 错误数据 B. 冗余数据 C. 过期数据 D. 脏数据

2. 填空题(10分)

- (1) 已知关系 R(A,B,C)和 S(B,C,D),写出与 $\pi_{RC}(\sigma_{A>D}(R \triangleright \lhd S))$ 等价 的 Transact-SOL 语句 ()。
- (2) 判断一个并发调度是否正确,可以使用() 概念来衡量。
- (3) 已知关系 R(A, B, C)和 $F=\{B\rightarrow A, B\rightarrow C\}$,则分解 $R_1(A, B)$ 和 $R_2(A, C)$ 丢 失的函数依赖是()。
- (4) 在对象关系模型中,属性的常用复合类型是多集类型、(数组)类型、() 类型和(集合)类型。
- (5) 分布式数据库系统的四个常用子系统是()、(完整性),调度和可靠性等子系统。
- (6) 数据字典的内容包括数据项、()、数据存储、数据流和处理过程等。
- (7) 在模式分解时,为了保持原模式的特性不变,要求分解满足() 和保依赖。
- (8) 平凡的函数依赖可以根据 Armstrong 推理规则中的() 律导出。
- (9)())映像是数据库的逻辑数据独立性的理论保证。
- (10) 己知学生 S(学号, 姓名, 班级)和选课 SC(学号, 课程号, 成绩), 为了确保数据的 完整性,S与SC之间应满足()完整性约束。

3. 判断题(15分)

- (1) 数据库恢复时,系统对已提交的事务要进行撤销处理。
- (2) DB、DBMS、DBS 三者之间的关系是 DBMS 包括 DB 和 DBS。

- (3) 关系是笛卡尔积的子集。
- (4) 分布式数据库可以从逻辑上看成一个整体。
- (5)数据操作语言 DML 的基本功能是插入数据、修改数据、删除数据、查询数据和描述数据库结构等。
- (6) 应用程序设计工作开始于数据库设计步骤的物理结构设计阶段。
- (7) 已知关系模式 R(U, F) 满足 $X \rightarrow Y$,且不存在 X 的真子集 X1,使 $X1 \rightarrow Y$,则 $X \rightarrow Y$ 是部分函数依赖。
- (8) 用于记录数据库系统运行过程中所有更新操作的文件称为后备文件。
- (9) 编写应用程序不属于 DBA 职责。
- (10) 已知关系 R(A, B, C)和 S(A, D),则R $\bowtie S = \pi_{RAB,C,D}(\sigma_{RA=S,A}(R \times S))$ 。
- (11) 如果关系 R 与关系 S 仅有一个公共属性,U 是 R 与 S 的等值连接,V 是 R 与 S 自然连接,则 U 的属性个数大于 V 的属性个数。
- (12) GRANT 和 REVOKE 是 Transact-SQL 的 DCL 语句。
- (13) 已知关系 R(A, B, C) 的函数依赖集 $F=\{B\to C\}$,则分解 $R_1(A, B)$ 和 $R_2(B, C)$ 是既保持连接又保持依赖的分解。
- (14) 在数据库系统中, 死锁属于事务故障。
- (15) 分布式数据库系统的位置透明性通常位于分片视图和分配视图之间。

4. 简答题(15分)

- (1) 简述数据库系统的三级模式结构。
- (2) 简述关系代数语言的基本运算。
- (3) 已知雇员关系和部门关系如表 1 和表 2 所示。

表1 雇员

雇员号 雇员名 部门号 工资 001 张三 02 2000 王宏 010 01 1200 马林 056 02 1000 张三 04 1500 101

表 2 部门

部门号	部门名	电话	地址
01	业务部	000	A 楼
02	销售部	001	B楼
03	服务部	002	C楼
04	财务部	003	D楼

(a) 给出雇员的主码。

- (b) 给出雇员的外码。
- (c) 雇员名是雇员关系的候选码,则该结论是否正确?
- (d) 如果部门关系中,财务部的部门号需要调整为06,则如何调整雇员关系?
- (e) 把雇员马林调往服务部,则如何调整雇员关系?

5. 关系代数 ISBL 与 Transact-SOL 查询(20分)

- (1) 已知数据库的关系分别为产品 P(产品号 PNo,产品名 PName,产品型号 PModel)、零件 G(零件号 GNo,零件名 GName,零件型号 GModel,零件价格 Cost)、选用用(PNo,GNo,数量 Qty)。请按题后说明,用关系代数 ISBL 或者 Transact-SQL 完成下列操作:
- (a) 查询选用零件号为 G369 的产品号 (ISBL)。
- (b) 查询至少选用一种单价为 0.6 元零件的产品名(ISBL)。
- (c) 查询数量为 66 的产品名称和零件名 (SQL)。
- (d) 查询零件型号为 GM369 的零件的平均价格 (SQL)。
- (e) 查询至少被两种产品选用的零件号(SQL)。

6. 数据库设计 (25分)

- (1) 蓝天大学图书馆需要设计图书流通管理系统,用于管理学生、管理员、图书和书库的流通业务,要求满足学生借阅图书、书库存放图书、管理员管理书库中的图书等.请设计该应用的概念模型(E-R图)和逻辑模型。
- (2) 设有关系模式 R(A,B,C,D,E), 函数依赖集为 $F = \{AB \to C,C \to E,AB \to D\}$ 。 判断 R 是否属于 3NF, 如果是说明原因; 否则把 R 分解为 3NF。

仿真试题 4

(1) 在 Transact-SQL 语句 SELECT 中,对查询结果进行排序的关键字是()。

1. 选择题(15分)

A. GROUP BY	B. HAVING	C. ORDER BY	D. WHERE
(2) 关系代数运算的基	基本运算是指()。		
A. 并、差、选择.	、投影、除	B. 并、差、交、遵	上择、投影
C. 并、差、选择、	投影、笛卡尔积	D. 并、差、交、隙	余、笛卡尔积
(3) 在两个实体的 E-I	R图中,如果实体间	存在多对多联系,则转	長换的关系模式有()
个。			
A. 1 B.	2 C. 3	D. 2或者3	
(4) Transact-SQL 语句	J SELECT 中,DIST	INCT 表示查询结果中	() 。
A. 属性名均不相	司 B. 属性值均不	下相同 C. 列均不	相同 D. 去掉重复行
(5) 把 SInfo (学号, 持	姓名,性别,课程号,	课程名,学分,成绩)分解为 S (学号, 姓名,
性别)、C(课程·	号,课程名,学分),	SC(学号,课程号,原	成绩),则该分解()。
A. 属于 1NF	B. 属于 2NF	C. 属于 3NF	D. 属于 BCNF
(6) 在关系代数运算中	中,对于关系R和S	的运算 $R \bowtie S$,则 \bowtie	通常表示()运算。
A. 条件连接	B. 等值连接	C. 自然连接 1	D. 链接
(7) 在 Transact-SQL ^p	中,"Xy BETWEEN 6	5 AND 9"表示 Xy 在 6	~9 之间,且()。
A. 包括 6 不包括	9 B. 包括 9 不包	L括 6 C. 不包括 6	和 9 D. 包括 6 和 9
(8) 在 Transact-SQL ^p	中,视图提高了数据	车系统的 ()。	
A. 完整性	B. 安全性	C. 恢复性 1	D. 并发性
(9) 在 Transact-SQL ^p	中,SELECT 语句的打	丸行结果是()。	
A. 数据项	B. 元组	C. 表	D. 数据库
(10) 45. 创建视图后	,在数据字典中存放	的是()。	
A. 视图定义	B. 查询语句	C. 表的内容	D. 表的定义
(11) () 是位于用	户与操作系统之间的	一层数据管理软件。	
A. 数据库	B. 数据库管理系统	充 C. 数据库系统	D. 数据库应用系统

(12)	在 Transact-SQL	中,关系代数的选	是择运算对应的关键	脖是()	0
A	A. SELECT	B. FROM	C. WHE	RE	D. HAVING
(13)	SQL 通常称为结	的化()语言。			
A	A. 定义	B. 操纵	C. 查询	D. 设	计
(14)	在 C/S 结构的 Di	BS 中,数据库功能	论分为前端和后端	两部分,()功能属于后端。
A	A. 用户界面	B. 存取结构	C. 数据输入	D. 报表	输出
(15)	能够消除多值依	赖引起的冗余的范	武是()		
A	. 2NF	B. 3NF	C. BCNF	D	4NF
2. 填	真空题(10分)				
(1)	数据库设计的概念	念模型充分表达了周	用户的要求,并且原	应该独立于硕	更件和。
(2)	若属性 F 是关系 R	R的外键,且F与	关系 S 的主键 K 相	对应,则 R ·	中每个元组在F上
	的取值必须为()或 K 的值。			
(3)	数据库安全性控制	训的存取控制方法证	通常有自主存取控制	削 DAC 和() 等。
(4)	数据库是通用化的	内综合性的数据集合	合,可以提供给并分	 发用户共享)	,具有较小的冗余
	度以及数据和程序	序的()。			
(5)	数据流图的设计属	属于()阶段的位	迁务。		
(6)	常用的两种封锁是	是排它锁 X 锁)和	()。		
(7)	已知关系 R(A,	B, C, D) 和 F=	$\{A \rightarrow CD, C \rightarrow B\}$,则R属于	第()范式。
(8)	并发控制的主要方	方法是采用 () 木	孔制 。		
(9)	数据模型的规范化	七,主要是解决插	\异常、修改异常、	删除异常和	和()等问题。
(10)	数据库并发操作	通常导致的三类问	题是丢失修改、不	可重读和()。
3.	 断题(15 分)				
(1)	在查询优化策略中	中,正确的策略是是	尽可能早地执行笛-	卡尔积操作。	()
(2)	己知关系模式 R ((A, B, C) 的函数	效依赖集 F={A→B	, C→B}, ∄	且R ₁ (A, B)和
	R ₂ (A, C) 是 R	的一个分解,则该	S分解丢失了 C→B	。 ()	
(3)	在关系数据库设计	十中,子模式设计是	是在程序设计阶段运	进行的。()
(4)	数据库在磁盘上的	的基本组织形式是二	二维表。()		

- (5) 如果 9 个不同的实体集之间存在 12 个不同的联系,其中 3 个 1:1 联系,3 个 1:N 联系,6 个 M:N 联系,则根据关系模型的转化规则,转换成的关系模式为 10 个。()
- (6) 数据库恢复时,系统对未完成的事务要进行撤销处理。
- (7) 脏数据是指未提交的随后又被撤消的数据,而解决并发事务导致的读脏数据的有效 方法是使用一级封锁协议。
- (8) 客户/服务器体系结构功能分布的结果是减轻了服务器的负担。
- (9) 己知 SC (SNo, CNo, Grade), F={ (SNo, CNo) → Grade},则 SC 满足 BCNF。
- (10) 如果 $XY \rightarrow Z$,则 $X \rightarrow Z$, $Y \rightarrow Z$ 。
- (11) 在选课(学号,课程号,成绩)中,则学号→→课程号。
- (12) 数据库镜像可以用于数据库恢复或者并发操作。
- (13) 如果关系 R 没有非主属性,则 R 满足 BCNF。
- (14) 分布式数据库系统 DDBS 的数据分片是指对数据库分片。
- (15) 两段锁协议是确保并发事务可串行化的必要条件。

4. 简答题(15分)

- (1) 解释数据库安全。给出数据库还原与恢复、分离和附加的命令。
- (2) SOLServer 的特点:
- (3) 简述数据独立性。数据独立性具体包括哪两种独立性?说明数据库系统的模式结构与数据独立性的关系。

5. 关系代数 ISBL 与 Transact-SQL 查询(20分)

(1) 已知数据库的关系分别为职工(工号,姓名,年龄,性别)、社团(团号,团名,团长,地点)、参加(工号,团号,日期)。

请使用 Transact-SOL 完成下列操作:

- (a) 查询参加全部社团的职工基本信息。
- (b) 查询参加工号为 666 的职工所参加的全部社团的职工工号。
- (c) 统计每个社团的参加人数。
- (d) 查询参加人数最多的社团的团名和参加人数。
- (e) 查询参加人数超过 99 人的社团的团名和团长。

6. 数据库设计(25分)

(1) 已知物资管理的关系分别为仓库(库号,库名,面积,电话)、零件(零件号,零件名,规格,单价)、职工(工号,姓名,年龄,职称);要求一个仓库可以存放多种零件,一种零件可以存入多个仓库;一个仓库需要多名职工,一个职工只能属于一个仓库;职工中有一个领导。

请画出物资管理的

- (a) 画出物资管理的 E-R 图。
- (b) 把 E-R 图转换为关系模式(标注主码)。
- (2) 已知关系模式 R(U, F), 属性集 R(A, B, C, D, E, G, H), 函数依赖集 $F = \left\{ B \rightarrow CDEGI A B \right\}.$
- (a) 求R的候选码。
- (b) R 是否属于 3NF? 如果是,给出理由;否则把 R 分解为 3NF。

仿真试题 5

1. 选择题 (15分)

(1) 如果两个关系没有公共属性,则其自然连接操作相当于()。
A. 等值连接操作 B. 笛卡尔积操作 C. 错误操作 D. 结果为空集
(2) 对于分布式数据库,其数据库的特征可以简单归纳为数据()。
A. 物理上分散,逻辑上分散 B. 物理上统一,逻辑上统一
C. 物理上分散,逻辑上统一 D. 物理上统一,逻辑上分散
(3)82. 关系中能够唯一标识元组的属性集称为关系模式的()。
A. 超键 B. 候选键 C. 主键 D. 外键
(4)83. 关系 R 与 S 自然连接时,能够把 R 中本该舍弃的元组保存到新关系中的操作称
为()。
A. 外连接 B. 内连接 C. 左外连接 D. 右外连接
(5) 授权和完整性管理器属于 DBMS 的 ()。
A. 查询处理器 B. 存储管理器 C. 事务管理器 D. 用户管理器
(6) 在 Transact-SQL 中,CREATE SCHEMA 用来创建()
(7) 实体与实体之间的联系可以是()。
A. 1:1 和 1:n B. 1: 1:1 和 m:n C. 1:n 和 m:n D. 1:1、1:n 和 m:n
(8)数据库概念结构设计的步骤是设计局部 E-R 图、集成局部 E-R 图和全局 E-R 图()。
A. 简化 B. 优化 C. 最小化 D. 结构化
(9) 在基本 Transact-SQL 中,不可以实现()。
A. 定义视图 B. 定义表 C. 查询视图和表 D. 并发控制
(10) 对关系 R 进行选择运算后得到关系 S ,则 R 的元组数 () S 的元组数。
A. 小于 B. 小于等于 C. 等于 D. 大于等于
(11) 关于视图的描述,不正确的是视图()。
A. 是外模式 B. 是虚表 C. 加快查询速度 D. 简化用户操作
(12) 已知关系模式 SInfo(学号, 姓名, 性别, 课程号, 课程名, 成绩),则 SInfo()。
A. 属于 1NF B. 属于 2NF C. 属于 3NF D. 属于 BCNF

1	A.R满足1NF	B.R满足2NF		C. R	丁能满足	BCNF	D. R ₹	、满足 B	CNF
(14)	在关系数据库中	中,如果数据库的存	储结	构改多	变了,而	应用程序可	可以不变,	这是() 。
1	A. 数据的物理%	虫立性	В.	数据的	的逻辑独	立性			
(C. 数据的位置%	 由立性	D.	数据的	的语义独	立性			
(15)	在关系代数中,	对关系做投影操后	的元	组个数	跟原来	关系的元约	且个数的差	关系是()。
1	A. 小于 B	. 小于或者等于		C. 等	于	D. 大于	<u>.</u>		
2. 填	(空题(10分)								
(1)	两个函数依赖集	F和G等价的充分		要条件	是	_ 0			
(2)	在数据库的三级	设模式结构中,数据	是技	安内模式	式在存储	皆介质中存	储数据,	按())模
	式为用户提供用	户共享数据。							
(3)	分布式数据库系	统的透明性包括(()	透明性	生、复制	透明性和	分片透明	性等。	
(4)	在关系代数中,	连接运算是由() 运	算与说	选择运算	等基本运	算导出。		
(5)	分布式数据库系	统的特点是数据的]物理	分布性	生和逻辑	: ()。			
(6)	在数据库设计过	程中,规划存储结	构和	存取力	方法属于	()	设计。		
(7)	当发生介质故障	时,必须使用() 和	1日志文	文件进行	数据库恢	复。		
(8)	数据库管理系统	语言通常包括()、	女据操 绿	纵语言 Γ	ML 和数	据控制语	言 DCL 🕯	等子
	语言系统。								
(9)	E-R 图是数据库	设计的()阶段	的主	要方法	£ .				
(10)	如果两个关系活	没有公共属性,则;	其自然	然联接	操作与	()操作	乍等价。		
3. 判	断题(15 分)								
(1)	在 Transact-SQL	. 中,"DELETE FR	OM	SC"表	示删除:	SC 的所有	元组。()	
(2)	在分布式数据库	系统中,透明性层	次越	遠高网络	8结构越	简单。()		
(3)	在数据库技术中	, 未提交的随后被	撤消	了的 数	数据称为	脏数据。	()		
(4)	在面向对象数据	居库中,包含其它 对	象的	」对象和	尔为超对	象。()		
(5)	SQL 中的"触发	器"属于 DBS 的安全	全性相	汎制 。	()				
(6)	对于关系模式,	范式级别越高,实	际应	Z用效身	具越好。				

(13) 如果关系模式 R 满足 3NF,则不正确的描述是()。

(7) 任何二目关系均同时满足 2NF、3NF、BCNF 和 4NF。

- (8) 分布式数据库的数据具有逻辑上分散且物理上统一的特点。
- (9) 在数据库设计过程中,设计关系模式属于概念结构设计。
- (10) 己知关系 R(A, B, C, D) 的函数依赖集 $F=\{C\rightarrow B, B\rightarrow D\}$,则 R 的候选键为 AC。
- (11) 如果 F 仅与 X 有关,则 $\pi_X(\sigma_F(E)) = \sigma_F(\pi_X E)$)。
- (12) 如果使用 CREATE TABLE S(SNo CHAR(6) NOT NULL, SNAME CHAR(8) NOT NULL)创建表 S,则可以把元组('992345',NULL,'女',25)插入到表 S 中。
- (13) 在 DBS 中, 用户涉及的逻辑结构通常使用子模式描述。
- (14) 客户/服务器体系结构的关键在于功能的分布。
- (15) 网络环境中各个场地采用同类型的数据模型,不同型号的 DBMS 的分布式数据库系 统属于同构异质型。

4. 简答题(15分)

- (1)解释概念模型,简述概念模型的三要素。
- (2) 试述常用的 RDBMS。
- (3) 简述 DBA 的职责。

5. 关系代数 ISBL 与 Transact-SQL 查询 (20 分)

- (1) 已知数据库 PartInfo 的请按照题后括号内的说明,使用关系代数 ISBL 或者 Transact-SQL 完成下列操作: 配件 P (配件号 PNo, 配件名 PName, 颜色 Color, 重量 Wgt, 产地 PAddr, 库存 PQty)、供应商 S (供应商号 SNo, 供应商名 SName, 地址 SAddr) 和供应 SP (Pno, SNo, 价格 Price, 时间 SPTime, 数量 Qty)。请按照题后括号内的说明,使用关系代数 ISBL 或者 Transact-SQL 完成下列操作:
- (a) 查询显卡、CPU、主板的库存量(SOL)。
- (b) 查询没有供应配件的供应商名。(SOL)
- (c) 建立北京地区供应的配件价格的视图(SQL)。
- (d) 查询供应了张三所供应的全部品种的供应商名(ISBL)。
- (e) 查询或者供应了配件号 P006, 或者供应了配件号 P009 的供应商号(ISBL)。

6. 数据库设计(25分)

(1) 已知运输公司数据库中的三个实体集。车队,属性有车队号、车队名;车辆,属性有车号、厂家、出厂日期;司机,属性有司机号、姓名、电话。要求:车队与司机之间存在聘用联系,每个车队可聘用多个司机,但是每个司机只能应聘于一个车队,车队聘用司机有个聘期;车队与车辆之间存在拥有联系,每个车队拥有多辆汽车,但是每辆车只能属于一个车队;司机与车辆之间存在着驾驶联系,司机驾驶车辆有驾驶日期和里程,每个司机可以驾驶多辆汽车,每辆汽车可以被多个司机驾驶。

请完成如下问题:

- (a) 绘制该应用的 E-R 图。
- (b) 把 E-R 图转换成关系模型,并说明主码和外码,并判断其达到的最高范式。
- (2) 已知关系模式 R(队员编号,比赛场次,进球数,球队名,队长名),而且规定每个队员只能属于一个球队,每个球队只有一个队长。(10分)

请完成如下问题:

- (a) 写出 R 的函数依赖集和候选码。
- (b) 把 R 分解成满足 2NF 的关系模式,说明 R 不满足 2NF 的原因。
- (c) 把 R 分解成满足 3NF 的关系模式,并说明原因。

仿真试题 6

1. 选择题(15分)

(1) 在数据库系统的模式结构中,不正确的描述是()。
A. 视图属于外模式 B. 一个数据库可以有多个外模式
C. 一个数据库只有一个内模式 D. 一个数据库可以有多个模式
(2) 已知关系 R (A, B, C) 与 S (B, C, D),则运算 R÷S 的属性个数是 ()。
A. 1 B. 2 C. 3 D. 4
(3) 在数据库系统中,数据操作的最小单位是()。
A. 字节 B. 数据项 C. 元组 D. 字符
(4) 事务是数据恢复和并发机制的基本单位。如果一个事务运行成功,则提交并更新数
据;否则回滚事务,并恢复数据,这是事务的()特性。
A. 原子性 B. 隔离性 C. 持续性 D. 一致性
(5) 实体完整性和参照完整性是应用于() 数据库的完整性规则。
A. 层次 B. 网状 C. 关系 D. 空间
(6) 在 Transact-SQL 中,GRANT 和 REVOKE 语句用于实现数据库的()。
A. 并发机制 B. 恢复机制 C. 完整性机制 D. 安全性机制
(7) 在数据库设计时,把 E-R 图转换成关系模型的过程,属于数据库的()。
A. 需求分析 B. 概念设计 C. 逻辑设计 D. 物理设计
(8) 数据模型的三个组成部分是数据结构、数据操作和数据()。
A. 安全性控制 B. 完整性约束 C. 恢复机制 D. 并发机制
(9) 在数据库系统中,模式/内模式映象用于解决数据的()。
A. 数据独立性 B. 物理独立性 C. 逻辑独立性 D. 分布独立性
(10)数据库的特点是数据结构化、数据共享性、数据独立性,而且()。
A. 消除数据冗余 B. 降低数据冗余 C. 用户控制存储 D. 非统一管理和控制
(11) 如果关系模式的每个数据项均不可拆分,则关系模式属于()。
A. 1NF B. 2NF C. 3NF D. BCNF
(12) ()是目前数据库系统中最常用的一种数据模型。

I	A. 关系模型	B. 层次模型	C. 网状模型	D. 面向对象模型
(13)) 在实体-联系模型中	中,联系可以同()个实体有关。	
1	A. 0	B. 1	C. 多	D. 1或多
(14)) ()是数据库系	统中数据描述的集	合。	
1	A. 逻辑结构	B. 数据库	C. 数据字典	D. 数据库管理系统
(15))在 Transact-SQL 中	中,建立视图的语句]是()。	
1	A. CREATE SCHEN	MA B. CREATE	TABLE C. CREA	TE VIEW D. CREATE
	INDEX			
2. 填	[空题(10分)			
(1)	在关系数据库中,	关系模式至少满足_	范式。	
(2)	数据库管理系统是何	立于()之间的数	数据管理软件。	
(3)	非关系模型中数据组	吉构的单位是()	0	
(4)	主码是从()码。	中选择的一个,能够	多唯一的标识元组。	
(5)	设计概念结构的常用	用方法是(自顶向)	下)、自底向上、()	和混合策略等。
(6)	表与表之间的联系	是通过它们的()	来实现的。	
(7)	如果关系 R 满足 BG	CNF,且R中不存	在多值依赖,则R满	足()。
(8)	在计算机网络环境中	中,各场地采用相同	司类型的数据模型和	DBMS,称之为()型
	分布式数据库系统。			
(9)	分布式数据库系统的	的地址透明性位于	()模式和分布模:	式之间。
(10)) 分布式数据库系统	是()技术与计	算机网络技术结合的]产物。
3. 判	断题(15 分)			
(1)	在分布式数据库系统	充中,数据传输量 是	是衡量查询时间的一	个主要指标,导致数据传
	输量大的主要原因	是场地间距离过大。	()	
(2)	SQL Server 是一种语	高度非过程化语言。	()	
(3)	数据库系统就是 DI	BMS。 ()		
(4)	对于关系模式, 范围	式级别越低,实际区	应用效果越好。	

(6) 在数据库设计过程中,设计数据库的存储结构属于逻辑结构设计。

(5) 突然停电属于介质故障。()

- (7) 如果使数据库具有可恢复性,则最基本的原则是数据转储。
- (8) 在面向对象模型中,实体的属性通常使用一个变量和两个消息表示,且一个消息用于读取属性当前的值,另一个消息用于修改属性的值。
- (9) 设计数据库概念结构时,常用的数据抽象方法是聚集和概括等。
- (10) 在 DBS 中, DBMS 和 OS 之间的关系是 DBMS 调用 OS。
- (11) 在 Transact-SQL 的查询语句中,对应关系代数的投影运算的关键字是 WHERE。
- (12) 在客户/服务器体系结构的数据库系统中,通常应将用户应用程序安装在客户机。
- (13) 面向对象方法是概念模型最常用的表示方法。
- (14) 视图是从一个或者多个表导出的表,所以视图一旦定义就可以和表一样对其进行任 意查询、删除和更新。
- (15) 关系模式分解的保持连接和保持依赖两个特性之间没有必然的联系。

4. 简答题(15分)

Z01

(1) 数据库系统的特点:

- (2) 简述数据库管理系统的功能。
- (3) 已知关系供应商 S 和零件 P 如表 1 和表 2 所示,其主键分别是供应商号和零件号,P 的供应商号是 P 的外键,颜色只能取红、白或者蓝。假设 DBMS 无级联功能。

表 1 供应商 S

供应商号	供应商名	城市
B01	红星	北京
S10	宇宙	上海
T20	黎明	天津

立新

重庆

表 2 零件 P

零件号	颜色	供应商号
010	红	B01
011	蓝	B01
201	蓝	T20
312	白	S10

- (a) 如果向 P 插入新元组('201', '白', 'S10')、('301', '红', 'T11')和('301', '绿', 'B01'),则不能插入的元组是哪些?。
- (b) 如果删除 S 的元组('S10', '宇宙', '上海') 和('Z01', '立新', '重庆'),则可以删除的是哪些?
- (c) 如果把 S 中供应商号的值'Z01'改为'Z30',或者把 P 中供应商号的值'T20'改为'T10',则可以执行的操作是哪些?

- (d) S×P的元组的个数。
- (e) S与P自然连接后的元组的个数。

5. 关系代数 ISBL 与 Transact-SQL 查询 (20 分)

(1) 已知数据库的关系分别为职工(工号,姓名,年龄,性别)、社团(团号,团名,团长,地点)、参加(工号,团号,日期)。

请用 Transact-SQL 完成下列操作:

- (a) 查询参加篮球队的职工的工号和姓名(SOL)。
- (b) 查询各个社团编号及相应的参加人数(SQL)。
- (c) 建立视图 SInfo (工号,姓名,性别,年龄,团号,团名,团长,日期) (SQL)。
- (d) 查询参加歌唱队或者篮球队的职工的工号和姓名(SOL)。
- (e) 查询没有参加任何社团的职工基本信息(SQL)。

6. 数据库设计(25分)

(1) 已知商店销售数据库 PInfo 的关系分别为商品、商店和职工,相应的信息分别为商品号、商品名、厂商、厂址、单价;店号、店名、店址、电话;工号、姓名、性别、年龄、Email;一个商店可以销售多个商品,一个商品可以在多个商店销售,同时需要给出销售量和日期;一个职工只能在一个商店工作,一个商店可以有多个职工,同时需要给出工资和合同期。

请完成如下问题:

- (a)设计商店销售的 E-R 图。
- (b) 把 E-R 图转换成关系模型(标识主码)。
- (2) 有关系模式 R(A, B, C, D, E), $F \neq R$ 上的函数依赖集。求与 R 等价的最小函数依赖集。

请完成如下问题:

- (a) $F = \{B \rightarrow CD, C \rightarrow E, B \rightarrow E, D \rightarrow E, D \rightarrow BC\}$.
- (b) $F = \{BC \rightarrow AD, D \rightarrow E, A \rightarrow DE, A \rightarrow BC, AC \rightarrow BD\}$.

参考答案

仿真试卷1

1. 选择题(15分)

- (1) C; (2) D; (3) B; (4) D; (5) A; (6) B; (7) D; (8) A;
- (9) D; (10) B; (11) C; (12) A; (13) B; (14) D; (15) D_o

2. 填空题(10分)

- (1) 不能为空值; (2) 主属性对候选键的部分依赖和传递依赖;
- (3) 数据库管理系统 DBMS: (4) 两段锁协议: (5) 投影:
- (6) 并发; (7) 函数依赖于; (8) 死锁; (9) 超键; (10) 平凡。

3. 判断题(15分)

- (1) \times : (2) \times : (3) \times : (4) \vee : (5) \times : (6) \times : (7) \vee : (8) \vee :
- $(9) \times_{:} (10) \vee_{:} (11) \vee_{:} (12) \vee_{:} (13) \vee_{:} (14) \vee_{:} (15) \vee_{\circ}$

4. 简答题(15分)

- (1) 需求分析;概念结构设计;逻辑结构设计;物理结构设计;系统保护设计;系统实施与测试;系统运行与维护。
- (2) (a) 排它锁(X锁): 若事务T对数据对象A加上X锁,则只允许T读取和修改A,其他任何事务都不能再对A加任何类型的锁,直到T释放A上的锁。
- (b) 共享锁(S锁): 若事务 T 对数据对象 A 加上 S 锁,则事务 T 可以读 A 但不能 修改 A ,其他事务只能再对 A 加 S 锁,而不能加 X 锁,直到 T 释放 A 上的 S 锁。
- (c) 一级封锁协议: 事务 T 在更新数据对象 A 时, 必须先对 A 加 X 锁, 直到事务结束释放 X 锁。可以解决丢失修改: 不能解决不可重读和读脏数据。
- (d) 二级封锁协议:在一级封锁协议的基础上,事务 T 在读取数据对象 A 时,必须 先对 A 加 S 锁,读取结束立即释放 S 锁。可以解决丢失修改和读脏数据;不能解决不可重读。
- (e) 三级封锁协议: 在一级封锁协议的基础上,事务 T 在读取数据对象 A 时,必须 先对 A 加 S 锁,直到事务结束释放 S 锁。可以解决丢失修改、读脏数据和不可重读。

- (3) (a) 事务: DBMS 或者用户定义的数据库操作序列,事务作为不可拆分的基本工作单位,要么做完要么不做。
 - (b) 特性: 原子性; 一致性; 隔离性; 持久性。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

- (a) $\pi_{BName,Price}(\sigma_{RName=' \not\cong \square'}(R) \otimes B)$
- (b) $\pi_{RNo,BNo}(RB) \div \pi_{BNo}(B)$
- (c) SELECT BName,PDate FROM B

WHERE Pub='浙江工商工业大学出版社' ORDER BY PDate

(d) SELECT RName FROM R WHERE RNo IN

SELECT RNo FROM RB WHERE BNo IN

SELECT BNo FROM B WHERE BName='图像技术' 或者

SELECT R.RName FROM R,RB,B

WHERE R.RNo=RB.RNo AND RB.BNo=B.BNo AND B.BName='图像技术'

(e) SELECT RName FROM R WHERE NOT EXISTS

SELECT * FROM RB WHERE RB.RNo=R.RNo AND RB.BNo='B369'

6. 数据库设计(25分)

(a) 教务管理系统的 E-R 图如图 1 所示。

(b) 教务管理系统的关系模式:

Dept (DName, DHead, DPhone)

Teacher (TNo, TName, TSex, TAge, TTitle, DName)

Student (SNo, SName, SSex, SClass, SMonitor, DName)

Course (CNo, CName, CHour, CRoom)

Teach (TNo, CNo, Eval); Study (SNo, CNo, Grade)

Study (SNo, CNo, Grade)

- (2)(a) ◆ 函数依赖右部分解: F={AD→E, AC→E, BC→X, BCD→A, BCD→X, BD→A, AB→X, A→C};
- ◆ 消去左边冗余属性: F={A→E, A→E, BC→G, BD→A, BC→X, BD→A, AB→X, A→C};
 - ◆ 消去冗余函数依赖: {A→E, BC→G, BD→A, A→C}。
- ◆ 最小函数依赖集: Fm={A→E, BC→G, BD→A, A→C}或{A→E, AB→X, BD→A, A→C}。
 - ◆ 候选码: BD。
- (b) ◆ 因为 R 的每个非主属性完全依赖 BD; C 和 X 传递依赖 BD, 所以 R 最高满足 2NF。
 - ◆ 3NF 分解:

R1 (A, B, D), $F1=\{BD\rightarrow A\}$

R2 (B, C, X), $F2=\{BC\rightarrow G\}$

R3 (A, C, E), F3= $\{A\rightarrow C, A\rightarrow E\}$.

仿真试卷 2

- 1. 选择题(15分)
- (1) A; (2) D; (3) C; (4) A; (5) B; (6) A; (7) D; (8) A;
- (9) A; (10) C; (11) C; (12) A; (13) D; (14) C; (15) D_o

2. 填空题(10分)

- (1)隔离; (2)定义; (3)实体; (4)存储结构; (5)1NF;
- (6) WITH CHECK OPTION: (7) 候选码: (8) 逻辑:
- (9) 建立冗余数据; (10) 概念模式。

3. 判断题(15 分)

- (1) $\sqrt{:}$ (2) $\sqrt{:}$ (3) $\sqrt{:}$ (4) \times : (5) $\sqrt{:}$ (6) \times : (7) $\sqrt{:}$ (8) $\sqrt{:}$
- (9) \times : (10) \times : (11) \vee : (12) \vee : (13) \vee : (14) \vee : (15) \vee .

4. 简答题(15分)

- (1)(a)选取存取方法。
- (b) 设计存储结构: (c) 确定存放位置: (d) 选择存储介质: (e) 评价物理结构。
- (2)(a) 简化用户操作。
- (b) 清晰表达查询。
- (c) 同一数据以不同形式提供给不同用户。
- (d) 一定程度上提高 DB 的保密和保护性。
- (e) 提供一定程度的 DB 模式结构的逻辑独立性。
- (3)(a)数据项:即属性,数据的最小组成单位,多个数据项可以构成数据结构。
- (b)数据结构:相互之间存在一种或者多种特定关系的数据元素的集合,是数据元素的组织形式。
 - (c) 数据流:数据在系统内部传输的路径。
 - (d) 数据存储: 数据临时或者永久保存的地方。同时是数据的输入流或者输出流。
 - (e) 处理过程: 过程的具体处理策略。通常使用判定表或者判定树来描述。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

(a) SELECT 姓名 FROM 学生 WHERE 学号 IN (
SELECT 学号 FROM 选课 WHERE 课程号 IN (
SELECT 课程号 FROM 课程 WHERE 课程名='数据结构'))

(b) SELECT AVG (成绩) AS 平均成绩 FROM 选课

WHERE 课程号='2009010606'

(c) SELECT 学号,课程号 FROM 课程

WHERE 成绩<60 ORDER BY 课程号 DESC

- (d) $\pi_{\text{课程号},\text{课程名}}(\sigma_{\text{教师='李国庆'}}(课程))$
- (e) π_{课程名教师}(σ_{学号='2009030609}(选课 课程)
- 6. 数据库设计(25分)
- (1) (a) R的 3NF 分解:

$$: F = \{AB \rightarrow C, C \rightarrow E, A \rightarrow CD\}$$

- $\therefore F_{min} = \{A \rightarrow C, A \rightarrow D, C \rightarrow E\}.$
- (b) 因为(AB)的闭包是 ABCDE,所以候选码是 AB。又因为存在部分递依赖,所以 R 的最高范式级别 1NF。
 - (2)(a) 1NF 判断: 因为 SInfo 的每个属性均为不可分,因此满足 1NF。因为

 $F=\{SNo \rightarrow SName, SNo \rightarrow SSex, SNo \rightarrow SAge, SNo \rightarrow DNo, SNo \rightarrow DName, SNo \rightarrow DHead, SNo \rightarrow SName, SNo$

- ♦ $R_1(U_1,F_1)$: U_1 ={SNo,SName,SSex,SAge,DNo,DName,DHead} \circ F_1 ={SNo→(SName,SSex,SAge,DNo,DName,DHead),DNo→(DName,DHead)} \circ
- $lacktriangled R_2(U_2,F_2): U_2=\{CNo,CName,CCredit\}; F_2=\{CNo \rightarrow (CName,CCredit)\}$
- \bullet R₃(U₃,F₃): U₃={SNo,CNo,Grade}; F₃={(SNo,CNo) \rightarrow Grade}
- (b) 因为 F₁ 存在 SNo→DNo 和 DNo→(DName, DHead),所以 DName 和 DHead 传递依赖于(SNo, CNo),即(SNo, CNo) → DName 和(SNo, CNo) → DHead。所以 R₁不满足 3NF。

SInfo 的 3NF 分解为 StudentInfo= $R_1 \cup R_2 \cup R_3 = R_{11} \cup R_{12} \cup R_2 \cup R_3$:

- - \bullet R₁₂(U₁₂,F₁₂): U₁₂={DNo,DName,DHead}; F₁₂={DNo \rightarrow (DName,DHead)}.

仿真试卷3

1. 选择题(15分)

- (1) B; (2) D; (3) C; (4) C; (5) B; (6) D; (7) B; (8) D;
- (9) B; (10) A; (11) B; (12) D; (13) C; (14) C; (15) D_o

2. 填空题(10分)

- (1) SELECT R.B, R.C FROM R, S WHERE R.B=S.B AND R.C=S.C AND A>D;
- (2) 并行调度可串行化; (3) B→C; (4) 结构; (5) 查询;
- (6) 数据结构: (7) 保连接: (8) 自反: (9) 模式/外模式: (10) 参照。

3. 判断题(15分)

- (1) \times ; (2) \times ; (3) $\sqrt{}$; (4) $\sqrt{}$; (5) \times ; (6) $\sqrt{}$; (7) \times ; (8) \times ;

4. 简答题(15分)

- (1) 外模式、模式、内模式: 外模式/模式映像,模式/内模式映像。
- (2) 笛卡儿积、并集、差集、选择、投影是。
- (3)(a) 雇员号;(b) 部门号;(c) 错误;(d) 把部门号是 04 的改为 06;(e) 把马林的部门号是 02 的改为 03。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

- (a) $\pi_{PNo}(\sigma_{GNo='G369'}(PG))$
- (b) $\pi_{PName}(\sigma_{Cast=0.6}(G) \triangleright \triangleleft PG \triangleright \triangleleft P)$
- (c) SELECT P.PName,G.GName FROM P,G,PG

WHERE P.PNo=PG.PNo AND G.GNo=PG.GNo AND PG.Qty=66

- (d) SELECT AVG(COST) AS 平均价格 FROM G WHERE GModel='GM369'
- (e) SELECT GNo FROM PG GROUP BY GNo HAVING COUNT(*)>1

6. 数据库设计(25分)

(1)(a)图书流通管理的概念模型(E-R图)如图1所示。

图 1 图书流通管理 E-R 图

(b) 图书流通管理的逻辑模型:

图书(书号,书名,价格,出版社,数量,库号)

读者(读者编号,读者姓名,系名,班级)

书库(库号,库位,库名,面积,电话)

管理员(职工号,职工名,职称、学历,库号)

借阅(读者号, 书号, 借书日期, 还书日期)

(2) (a) :
$$F = \{AB \rightarrow C, C \rightarrow E, AB \rightarrow D\}$$

- $\therefore (AB)^+ = ABCDE = U$.
- ∴AB 是候选码。A 和 B 是主属性; C、D 和 E 是非主属性。

又:F不存在部分依赖。

∴ R满足 2NF。

$$\mathbb{Z} : AB \to C, C \to E$$
.

- ∴R 存在传递依赖。
- ∴R 不满足 3NF。
- (b) 3NF 分解:

$$R_1(A, B, C, D)$$
, $F = \{AB \to C, AB \to D\}$
 $R_2(C, E)$, $F = \{C \to E\}$

仿真试卷 4

1. 选择题(15分)

- (1) C; (2) C; (3) C; (4) D; (5) D; (6) C; (7) D; (8) B;
- (9) B; (10) A; (11) B; (12) C; (13) C; (14) B; (15) D_o

2. 填空题(10分)

- (1) DBMS; (2) 空值; (3) 强制存取控制 MAC; (4) 独立性; (5) 需求分析;
- (6) 共享锁(S锁);(7) 2NF;(8) 封锁;(9) 数据冗余;(10) 读赃数据。

3. 判断题(15分)

- (1) \times : (2) \vee : (3) \times : (4) \times : (5) \times : (6) \vee : (7) \times : (8) \vee :

4. 简答题(15分)

- (1) (a) DBS 安全:保护数据库防止非法使用所造成的数据更改、破坏或者泄露。
- (b) 还原与恢复: BACKUP DATABASE: RESTORE DATABASE。
- (c) 分离和附加: SP_DETACH_DB; EXEC SP_ATTACH_DB。
- (2)(a)综合统一;(b)语法简单、易学易用;(c)面向集合操作;(d)高度非过程化;(e)一语两用等、支持 DBS 的三级模式结构。
- (3)(a)数据独立性:在数据库技术中,应用程序和数据之间相互独立,互相不受影响。
 - (b) 类型: 数据的物理独立性和数据的逻辑独立性。
 - (c) 数据库系统的模式结构与数据独立性的关系:
- ◆ 物理独立性:如果 DB 的内模式需要修改,即 DB 的存储结构和存取方法有所变化,那么通过模式/内模式映象定义逻辑结构和存储结构的对应关系,使模式尽可能保持不变。亦即对内模式的修改尽量不影响模式、外模式和应用程序。
- ◆ 逻辑独立性:如果 DB 的模式需要修改,即增加记录类型或者增加属性,则通过外模式/模式映象定义的视图和逻辑结构的对应关系,使外模式尽可能保持不变。亦即对模式的修改尽量不影响外模式和应用程序。
 - ◆ 物理独立性和逻辑独立性合称为数据独立性。

5. 关系代数 ISBL 与 Transact-SOL 查询(20 分)

(a) SELECT*FROM 职工 WHERE NOT EXISTS (
SELECT*FROM 参加 WHERE NOT EXISTS (

SELECT* FROM 社团

WHERE 参加.工号=职工.工号 AND 参加.团号=社团.团号))

- (b) SELECT 工号 FROM 职工 WHERE NOT EXISTS (
 SELECT * FROM 参加 X WHERE X.工号='999' AND NOT EXISTS (
 SELECT * FROM 参加 Y WHERE Y.闭号=X. 闭号 AND Y.工号=职工.工号))
- (c) SELECT 团号, COUNT(工号) AS 人数 FROM 参加 GROUP BY 团号
- (d) SELECT 团名,人数 FROM 社团 X,(SELECT 团号,MAX(人数) FROM (SELECT 团号,COUNT(工号)AS 人数 FROM 参加 GROUPBY 团号))AS Y WHERE X.闭号=Y.闭号
- (e) SELECT 团名, 团长 FROM 社团 X, (SELECT 团号, COUNT(工号) AS 人数 FROM 参加 GROUP BY 团号 HAVING COUNT(工号)>99) AS Y WHERE X.闭号=Y.闭号

6. 数据库设计(25分)

(1)(a)物资管理的 E-R 图如图 1 所示。

图 1 物资管理 E-R 图

(b) 物资管理的关系模型:

零件(零件号,零件名,规格,单价)

仓库(库号,库名,面积,电话)

职工(<u>工号</u>,姓名,年龄,职称,库号,领导)(说明:领导是工号的重命名) 库存(<u>库号</u>,<u>零</u>件号,库存量)

(2) (a) : $F = \{B \rightarrow CDEGI, AB \rightarrow H\}$

 $\therefore AB \rightarrow H, B \rightarrow CDEGI$

- $\therefore (AB)^+ = ABCDEGHI = U$
- $\therefore R(U,F)$ 的候选码为: AB。
- (b) : AB 是候选码。
- ∴ A 和 B 是主属性; C, D, E, G, H 和 I 为非主属性。
- $\mathbb{Z} : B \to CDEGI : \overline{\square} \mathbb{R} AB \to B$
- :. CDEGI 部分依赖于候选码 AB。
- ∴ R 不属于 2NF

因此: R不属于3NF。

R 不属于 3NF: R(A, B, H); R(B, C, D, E, G, I)。

仿真试卷5

1. 选择题(15分)

- (1) B; (2) C; (3) A; (4) C; (5) B; (6) D; (7) D; (8) B;
- (9) D; (10) D; (11) C; (12) A; (13) D; (14) A; (15) B_o

2. 填空题(10分)

- (1) $F^{\dagger}=G^{\dagger}$; (2) 外; (3) 位置; (4) 广义笛卡尔积; (5) 统一性; (6) 物理结构;
- (7) 备份数据库; (8) 数据定义语言 DDL; (9) 概念结构设计; (10) 广义笛卡尔积。

3. 判断题(15分)

- (1) $\sqrt{}$; (2) \times ; (3) $\sqrt{}$; (4) $\sqrt{}$; (5) \times ; (6) \times ; (7) $\sqrt{}$; (8) \times ;
- (9) \times ; (10) $\sqrt{}$; (11) $\sqrt{}$; (12) \times ; (13) $\sqrt{}$; (14) $\sqrt{}$; (15) $\sqrt{}$.

4. 简答题 (15分)

- (1)(a)概念模型:利用具有较强语义表达能力,且能够方便、直接地表达应用中的各种语义知识的专用描述工具,按照统一的语法格式和描述方法,对实际问题进行抽象后,而建立的简单、整洁、清晰、易于理解的独立于 DBMS 的模型结构。
 - (b) 概念模型的三要素: 属性、实体和联系。
 - (2) (a) Oracle; (b) SQL Server; (c) DB2; (d) My SQL; (e) Informix 等。
 - (3)(a)决定数据库的信息内容和结构。
 - (b) 决定数据库的存储结构和存取策略。
 - (c) 定义数据的安全性和完整性

- (d) 监控数据库的使用和运行。
- (e) 数据库的改进和重组重构。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

- (a) SELECT PNo,PQty FROM P WHERE PName IN ('显卡','CPU','主板')
- (b) SELECT SName FROM S WHERE NOT EXSIST (SELECT * FROM SP WHERE SNo=S.SNo)
 - (c) CREATE VIEW BeijingPrice(配件号,供应商号,价格) AS SELECT T1.PNo, T1.SNo, Price FROM SP T1, SP T2 WHERE 地址='北京' AND T1.SNo=T2.SNo
 - (d) $\pi_{SName\ PNo}(\mathbb{S} \longrightarrow SP) \div \pi_{PNo}(\sigma_{SName\ \mathbb{S}} \mathbb{S})$
 - (e) $\pi_{SNo}(\sigma_{PNo=P006\vee PNo=P009}(SP))$

6. 数据库设计 (25分)

(1) (a) 运输管理的 E-R 图如图 1 所示。

图 1 E-R 图

(b) 运输管理的关系模式:

车队(车队号,车队名): 主码: 车队号。

车辆(车号,厂家,生产日期,车队号);主码:车号;外码:车队号。

司机(司机号,姓名,电话,车队号,聘期);主码:司机号;外码:车队号。

驾驶(司机号,车号,日期,里程);主码:(司机号,车号);外码:车队号,车号。

- (c) 因为不存在非主属性对候选码的部分依赖和传递依赖,所以满足 3NF。又因为不存在主属性对候选码的部分依赖和传递依赖,所以满足 BCNF。
- (2) (a) FD={队员编号→球队名,球队名→队长名,(队员编号,比赛场次)→进球数}; R 的候选码为(队员编号,比赛场次)。
- (b) 因为存在部分依赖: (队员编号,比赛场次)→(球队名,队长名),队员编号 → (球队名,队长名)。所以 R 不满足 2NF。

分解 R 如下: R1(队员编号,球队名,队长名); R2(队员编号,比赛场次,进球数)。

(c) 因为对于 R2, FD={(队员编号,比赛场次)→进球数},候选键为(队员编号,比赛场次),所以 R2 满足 3NF。

因为对于 R1,存在传递依赖: 队员编号→球队名; 球队名→队长名; 所以 R1 不满足 3NF。分解如下: R11(队员编号,球队名)和 R12(球队名,队长名)。

因此, R的 3NF 关系模式集: {R11, R12, R2}。

仿真试卷6

1. 选择题(15分)

- (1) D; (2) A; (3) B; (4) A; (5) C; (6) D; (7) C; (8) B;
- (9) B; (10) B; (11) A; (12) A; (13) D; (14) C; (15) C_o

2. 填空题(10分)

- (1) 1NF; (2) 用户与操作系统; (3) 基本层次联系; (4) 候选; (5) 逐步扩张;
- (6) 参照完整性约束; (7) 4NF; (8) 同构同质; (9) 分片; (10) 数据库。

3. 判断题(15分)

- (1) \times ; (2) \vee ; (3) \times ; (4) \times ; (5) \times ; (6) \times ; (7) \vee ; (8) \vee ;

4. 简答题(15分)

- (1) 数据库系统的特点:
- (2) 简述数据库管理系统的功能。
- (3) (a) 均不可以; (b) 'Z01', '立新', '重庆'); (c) 把S中供应商号的值'Z01'改为'Z30'; (d) 16; (e) 4。

5. 关系代数 ISBL 与 Transact-SQL 查询(20 分)

- (a) SELECT 工号,姓名 FROM 职工,参加,社团 WHERE 职工.工号=参加.工号 AND 参加.编号=社团.编号 AND 名称='篮球队'
- (b) SELECT 团号, COUNT(工号) FROM 参加 GROUP BY 团号
- (c) CREAT VIEW SInfo AS

SELECT 工号,姓名,性别,年龄,团号,团名,团长,日期 FROM 职工,参加,社团

WHERE 参加.工号=职工.工号 AND 参加.闭号=社闭.闭号

- (d) SELECT工号,姓名 FROM 职工,参加,社团 WHERE 职工.工号=参加.工号 AND 参加.编号=社团.编号 AND 社团.名称 IN ('歌唱队', '篮球队')
- (e) SELECT*FROM 职工 WHERE NOT EXISTS(
 SELECT*FROM参加 WHERE参加.工号=职工.工号)

6. 数据库设计(25分)

(1) (a) 商店销售的 E-R 图如图 1 所示。

图 1 商店销售 E-R 图

(b) 商店销售的关系模型:

商品(商品号,商品名,厂商,厂址,单价)

商店(店号,店名,店址,电话)

职工(工号,姓名,性别,年龄,Email,店号,工资,合同期)

销售(店号,商品号,销售量,日期)

(2) (a) :
$$F = \{B \rightarrow CD, C \rightarrow E, B \rightarrow E, D \rightarrow E, D \rightarrow BC\}$$

步骤 1:

$$\therefore F = \{B \to C, B \to D, B \to E, C \to E, D \to B, D \to C, D \to E\}$$
 步骤 2:

$$\therefore F = \{B \to C, B \to D, C \to E, D \to B, D \to C, D \to E\}$$

$$\therefore F = \{B \to C, B \to D, C \to E, D \to B, D \to E\}$$

$$\therefore F = \{B \to C, B \to D, C \to E, D \to B\}$$

步骤 3:

:: 左侧属性均为单个属性; :: 没有冗余属性。

因此:
$$F_{min} = \{B \rightarrow C, B \rightarrow D, C \rightarrow E, D \rightarrow B\}$$

$$(b) :: F = \{BC \to AD, D \to E, A \to DE, A \to BC, AC \to BD\}$$

步骤 1:

$$\therefore F = \begin{cases} A \to B, A \to C, A \to D, A \to E, AC \to B, AC \to D \\ BC \to A, BC \to D, D \to E \end{cases}$$

步骤 2:

$$\therefore F = \begin{cases} A \to B, A \to C, A \to D, AC \to B, AC \to D \\ BC \to A, BC \to D, D \to E \end{cases}$$

$$\therefore F = \{A \to B, A \to C, A \to D, AC \to B, AC \to D, BC \to A, D \to E\}$$
 步骤 3:

 $: A \to B, AC \to B$; : 属性 C 冗余。

$$\therefore F = \{A \to B, A \to C, A \to D, A \to B, AC \to D, BC \to A, D \to E\}$$

利用步骤 2 可知: $F = \{A \to B, A \to C, A \to D, AC \to D, BC \to A, D \to E\}$ 又: $A \to D, AC \to D$; ∴属性 C 冗余。

$$\therefore F = \{A \to B, A \to C, A \to D, A \to D, BC \to A, D \to E\}$$

利用步骤 2 可知:
$$F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, BC \rightarrow A, D \rightarrow E\}$$

因此:
$$F_{min} = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, BC \rightarrow A, D \rightarrow E\}$$