Sudan National Micronutrient Survey Indicators Definition

Mark Myatt and Ernest Guevarra

13 May 2020

Contents

1	Bac	kground	2
2	Bio	markers variables	2
	2.1	Haemoglobin	2
	2.2	Serum ferritin and c-reactive protein	5
	2.3	Calcium	6
	2.4	Iodine	7
3	Mic	eronutrient indicators	7
	3.1	Anaemia prevalence indicators	8
	3.2	Serum iron stores indicaotrs	18
	3.3	Acute inflammation indicators	19
	3.4	Calcium stores indicators	19
	3.5	Iodine concentration indicators	20
4	Sun	nmary	22
	4.1	Results presentation	24

1 Background

To aid the analysis of the Sudan National Micronutrient Survey 2017-2018 data, appropriate indicators needed to be defined. The only documentation of indicators to be assessed from the survey was the last version of the S3M-II indicators list dated 16 November 2018. However, this document does not clearly define the indicators with no cut-off values provided. As such, indicator definitions were made based on a rapid literature review including micronutrient survey reports done elsewhere and reflected upon based actual available data from the survey itself to update the indicator definitions. This document presents these definitions.

2 Biomarkers variables

2.1 Haemoglobin

In the main S3M-II survey, we defined multiple indicators based on Hb data. These indicators represented the different severities of anaemia by different respondent groupings. Classification into these severity categories was based on Hb level cut-offs defined by WHO [World Health Organization and Centers for Disease Control and Prevention, 2007, World Health Organization, 2011b] as follows:

Table 1: Hb levels			

Population	Mild	Moderate	Severe
Children 6-59 months of age	100 - 109	70 - 99	< 70
Children 5-11 years of age	110 - 114	80 - 109	< 80
Children 12-14 years of age	110 - 119	80 - 109	< 80
Non-pregnant women (15 years and above)	110 - 119	80 - 109	< 80
Pregnant women	100 - 109	70 - 99	< 70
Men (15 years and above)	110 - 129	80 - 109	< 80

For the Sudan S3M-II main survey, no data was collected for children 5-17 years of age and for adult men 15 years of age and above so the indicator for this age group was not calculated and reported. When categorising respondents based on the above cut-offs in the main S3M-II survey, no adjustments to Hb were done based on altitude and for smoking history as recommended by WHO [World Health Organization and Centers for Disease Control and Prevention, 2007, World Health Organization, 2011b].

We propose to analyse the Sudan National Micronutrient Survey data using the same indicator definitions used in the Sudan S3M-II main survey. We also propose to adjust Hb based on altitude of the PSU from where the data was collected. Altitude data will be gathered from publicly available elevation model data (such as the Shuttle Radar Topography Mission or

SRTM data that is available freely through various outlets for Sudan) if no altitude data can be provided by UNICEF. Map below shows elevation for Sudan based on publicly available SRTM data [for Spatial Information].

Figure 1: Shuttle Radar Topography Mission (SRTM) 90m Digital Elevation Model (DEM) for Sudan overlaid with the Sudan National Micronutrient survey primary sampling unit locations

With this data, we are able to extract elevation data for each of the PSUs in the Sudan Micronutrient Survey dataset.

Table 2: Sudan National Micronutrient Survey dataset with altitude extracted from SRTM $90\mathrm{m}$ DEM

psu	state	locality	sex	hb	altitude
45	16	164	2	11.6	978
45	16	164	2	13.9	978
45	16	164	2	12.4	978
45	16	164	2	13.1	978
45	16	164	2	13.2	978
45	16	164	2	10.3	978
45	16	164	2	12.4	978
45	16	164	1	8.80000000000000007	978
45	16	164	2	11.8	978
45	16	164	1	8.1	978
45	16	164	2	12.4	978
45	16	164	2	9.1	978
45	16	164	2	13.3	978
45	16	164	1	9.80000000000000007	978
45	16	164	2	10.4	978
45	16	164	2	13	978
45	16	164	2	11.8	978
45	16	164	2	13	978
45	16	164	2	8.5	978
45	16	164	2	8.6	978
45	16	164	2	11.4	978
45	16	164	2	12.6	978
45	16	164	2	8.9	978
45	16	164	2	14.2	978
45	16	164	1	10.5	978
45	16	164	2	11.9	978
45	16	164	2	11.6	978
45	16	164	2	10.7	978
45	16	164	2	10.8	978
53	16	164	1	10.6	874
53	16	164	2	10	874
53	16	164	NA	NA	874
53	16	164	1	11.8	874
53	16	164	2	NA	874
53	16	164	2	12.4	874
53	16	164	1	7.9	874
53	16	164	1	8.4	874
53	16	164	2	11.7	874
53	16	164	2	10.6	874
53	16	164	2	12.5	874

Adjustments to measured Hb based on altitude will be done based on the following [World

Health Organization, 2011b]:

Table 3: Altitude adjustments to measured haemoglobin concentrations

Altitude (metres above sea level)	$\begin{array}{c} {\rm Measured} \\ {\rm haemoglobin} \\ {\rm adjustment} \\ {\rm (g/L)} \end{array}$
< 1000	0
1000	-2
1500	-5
2000	-8
2500	-13
3000	-19
3500	-27
4000	-35
4500	-45

2.2 Serum ferritin and c-reactive protein

Normal serum ferritin levels range from $12 \mu g/L$ to $150 \mu g/L$. Following are the cut-offs for serum ferritin concentration that indicate either iron depletion or iron overload [World Health Organization and Centers for Disease Control and Prevention, 2007, Gorstein et al., 2007, Wegmüller et al., 2020, World Health Organization, 2011a].

Table 4: Relative extent of iron stores on the basis of serum ferritin concentration (µg/L)

	Serum ferritin $(\mu g/L)$		/L)	
	Less than 5 years 5 years or older		s or older	
	Male	Female	Male	Female
Depleted iron stores	< 12	< 12	< 15	< 15
Depleted iron stores in the presence of infection	< 30	< 30	-	-
Severe risk of iron overload (adults)	-	-	> 200	> 150

Serum ferritin will be used to assess iron deficiency for children less than 5 and for any other individual above 5 years old. For children less than 5 years old, a cut-off for serum ferritin value of $< 12 \ \mu/L$ indicates iron deficiency while for those older than 5 years old, a cut-off of $< 15 \ \mu/L$ is used.

However, it has been recommended that serum ferritin values be adjusted based on inflammation status ideally using both of the acute phase proteins - C-reactive protein (CRP) and α_1 -acid glycoprotein (AGP) to yield the most unbiased estimates of iron deficiency. However, the Sudan Micronutrient Survey only assessed CRP in the samples. The recommended adjustments when

only one of the active phase proteins is available is to use an appropriate multiplier to the serum ferritin value depending on inflammation status of the respondent as described below:

Table 5: Cut-offs to determine inflammation

Active Phase Protein	Cut-off
CRP	> 5 mg/L
AGP	$> 1 \mathrm{~g/L}$

If a respondent is classified as being in an active inflammation process, then serum ferritin is adjusted accordingly. If inflammation is assessed using CRP only, the serum ferritin is adjusted by 0.65 [Thurnham et al., 2010].

2.3 Calcium

The range of normal values for serum calcium is age-dependent as shown below [Lietman et al., 2010]:

Table 6: Representative normal values for age for concentration of serum total calcium

Age	$\begin{array}{c} \text{Serum} \\ \text{total calcium} \\ \text{(mg/dL)} \end{array}$
0-3 months	8.8 - 11.3
1-5 years	9.4 - 10.8
6-12 years	9.4 - 10.3
20 years	9.1 - 10.2
50 years	8.9 - 10.0
70 years	8.8 - 9.9
20 years	8.8 - 10.0
50 years	8.8 - 10.0
70 years	8.8 - 10.0
	0-3 months 1-5 years 6-12 years 20 years 50 years 70 years 20 years 50 years

We propose to use these normal ranges by age to determine whether a specific respondent group is hypocalcemic or below the normal range for their age or hypercalcemic or above the normal range for their age.

2.4 Iodine

Currently, cut-offs for urinary iodine are available for school-age children and older (6 years and older), pregnant women, and for lactating women and children aged less than 2 years.

Following are the various criteria for assessing iodine status in school-age children and older [World Health Organization, 2013]:

Table 7: Epidemiologic criteria for assessing iodine nutrition based on median urinary iodine concentration in school-age children and older

Median urinary iodine (μg/L)	Iodine intake	Iodine status
< 20	Insufficient	Severe iodine deficiency
20 - 49	Insufficient	Moderate iodine deficiency
50 - 99	Insufficient	Mild iodine deficiency
100 - 199	Adequate	Adequate iodine nutrition
200 - 299	Above requirements	May pose a slight risk of more than adequate iodine intake in these populations
300	Excessive	Risk of adverse health consequences (iodine-induced hyperthyroidism, autoimmune thyroid disease)

Following are the various criteria for assessing iodine status in pregnant women, lactating women and children aged less than 2 years [World Health Organization, 2013]:

Table 8: Epidemiologic criteria for assessing iodine nutrition based on median urinary iodine concentration in pregnant women, lactating women, and children aged less than 2 years

Median urinary iodine (g/L)	Iodine intake
Pregnant women	
< 150	Insufficient
150 - 249	Adequate
250 - 499	Above requirements
500 or more	Excessive
Lactating women and children	n aged less than 2 years
< 100	Insufficient
100 or more	Adequate

3 Micronutrient indicators

Given the biomarkers variables described above, we propose the following indicator sets.

3.1 Anaemia prevalence indicators

The anaemia indicators are:

Table 9: Anaemia indicators

Indicator variable	Indicator name
AN1A	Mild anaemia in children 6-59 months
AN1B	Mild anaemia in non-pregnant carers
AN1C	Mild anaemia in pregnant carers
AN2A	Moderate anaemia in children 6-59 months
AN2B	Moderate anaemia in non-pregnant carers
AN2C	Moderate anaemia in pregnant carers
AN3A	Severe anaemia in children 6-59 months
AN3B	Severe anaemia in non-pregnant carers
AN3C	Severe anaemia in pregnant carers

The anaemia indicators are calculated using data on AGE, PREGNANCY status and HB measurement (in g/L) of the respondent and on the ALTITUDE (in metres) of the location where the respondent resides.

3.1.1 AN1: Mild anaemia

3.1.1.1 AN1A: Mild anaemia in children 6-59 months

Indicator AN1A is TRUE if either...

- AGE of respondent is between 6-59 months old and
 - ALTITUDE is < 1000 metres and HB is ≥ 100 g/L and HB is ≤ 109 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is \geq 102 g/L and HB is \leq 111 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is \geq 105 g/L and HB is \leq 114 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is \geq 108 g/L and HB is \leq 117 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is \geq 113 g/L and HB is \leq 122 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 119 g/L and HB is \leq 128 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is \geq 127 g/L and HB is \leq 136 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 135 g/L and HB is \leq 144 g/L; or,
 - ALTITUDE is = 4500 metres and HB is \geq 145 g/L and HB is \leq 154 g/L.

3.1.1.2 AN1B: Mild anaemia in non-pregnant carers

- AGE of respondent is between 15 and 49 years and SEX is FEMALE and NOT PREGNANT and
 - ALTITUDE is < 1000 metres and HB is ≥ 110 g/L and HB is ≤ 119 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is \geq 112 g/L and HB is \leq 121 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is \geq 115 g/L and HB is \leq 124 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is \geq 118 g/L and HB is \leq 127 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is \geq 123 g/L and HB is \leq 132 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 129 g/L and HB is \leq 138 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is \geq 137 g/L and HB is \leq 146 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 145 g/L and HB is \leq 154 g/L; or,
 - ALTITUDE is = 4500 metres and HB is \geq 155 g/L and HB is \leq 164 g/L.

3.1.1.3 AN1C: Mild anaemia in pregnant carers

Indicator AN1C is TRUE if either...

- AGE of respondent is between 15 and 49 years old and PREGNANT and
 - ALTITUDE is < 1000 metres and HB is ≥ 100 g/L and HB is ≤ 109 g/L; or,
 - ALTITUDE is ≥ 1000 metres and ALTITUDE is < 1500 metres and HB is ≥ 102 g/L and HB is ≤ 111 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is \geq 105 g/L and HB is \leq 114 g/L; or,
 - ALTITUDE is ≥ 2000 metres and ALTITUDE is < 2500 metres and HB is ≥ 108 g/L and HB is ≤ 117 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is \geq 113 g/L and HB is \leq 122 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 119 g/L and HB is \leq 128 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is \geq 127 g/L and HB is \leq 136 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 135 g/L and HB is \leq 144 g/L; or,
 - ALTITUDE is = 4500 metres and HB is ≥ 145 g/L and HB is ≤ 154 g/L.

3.1.2 AN2: Moderate anaemia

3.1.2.1 AN2A: Moderate anaemia in children 6-59 months

Indicator AN2A is TRUE if either...

- AGE of respondent is between 6-59 months old and
 - ALTITUDE is < 1000 metres and HB is ≥ 70 g/L and HB is ≤ 99 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is \geq 72 g/L and HB is \leq 101 g/L; or,
 - ALTITUDE is ≥ 1500 metres and ALTITUDE is < 2000 metres and HB is ≥ 75 g/L and HB is ≤ 104 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is \geq 78 g/L and HB is \leq 107 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is \geq 83 g/L and HB is \leq 112 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 89 g/L and HB is \leq 118 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is \geq 97 g/L and HB is \leq 126 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 105 g/L and HB is \leq 134 g/L; or,
 - ALTITUDE is = 4500 metres and HB is $\geq 115 \text{ g/L}$ and $\leq 144 \text{ g/L}$.

3.1.2.2 AN2B: Moderate anaemia in non-pregnant carers

- AGE of respondent is between 15 and 49 years and SEX is FEMALE and NOT PREGNANT and
 - ALTITUDE is < 1000 metres and HB is ≥ 80 g/L and HB is ≤ 109 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is \geq 82 g/L and HB is \leq 111 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is \geq 85 g/L and HB is \leq 114 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is \geq 88 g/L and HB is \leq 117 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is \geq 93 g/L and HB is \leq 122 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 99 g/L and HB is \leq 128 g/L; or,
 - ALTITUDE is ≥ 3500 metres and ALTITUDE is < 4000 metres and HB is ≥ 107 g/L and HB is ≤ 136 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 115 g/L and HB is \leq 144 g/L; or,
 - ALTITUDE is = 4500 metres and HB is \geq 125 g/L and HB is \leq 154 g/L.

3.1.2.3 AN2C: Moderate anaemia in pregnant carers

Indicator AN2C is TRUE if either...

- AGE of respondent is between 15 and 49 years old and PREGNANT)} and
 - ALTITUDE is < 1000 metres and HB is ≥ 70 g/L and HB is ≤ 99 g/L; or,
 - ALTITUDE is ≥ 1000 metres and ALTITUDE is < 1500 metres and HB is ≥ 72 g/L and HB is ≤ 101 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is \geq 75 g/L and HB is \leq 104 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is \geq 78 g/L and HB is \leq 107 g/L; or,
 - ALTITUDE is ≥ 2500 metres and ALTITUDE is < 3000 metres and HB is ≥ 83 g/L and HB is ≤ 112 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is \geq 89 g/L and HB is \leq 118 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is \geq 97 g/L and HB is \leq 126 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is \geq 105 g/L and HB is \leq 134 g/L; or,
 - ALTITUDE is = 4500 metres and HB is $\geq 115 \text{ g/L}$ and $\leq 144 \text{ g/L}$.

3.1.3 AN3: Severe anaemia

3.1.3.1 AN3A: Severe anaemia in children 6-59 months

Indicator AN3A is TRUE if either...

- {(AGE of respondent is between 6-59 months old) or (AGE of respondent is between 15 and 49 years old and SEX is FEMALE and PREGNANT)} and
 - ALTITUDE is < 1000 metres and HB is < 70 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is < 72 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is < 75 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is < 78 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is < 83 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is < 89 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is < 97 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is < 105 g/L; or,
 - ALTITUDE is = 4500 metres and HB is < 115 g/L.

3.1.3.2 AN3B: Severe anaemia in non-pregnant carers

- AGE of respondent is between 15 and 49 years and SEX is FEMALE and NOT PREGNANT and
 - ALTITUDE is < 1000 metres and HB is < 80 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is < 82 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is < 85 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is < 88 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is < 93 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is < 99 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is < 107 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is < 115 g/L; or,
 - ALTITUDE is = 4500 metres and HB is < 125 g/L.

3.1.3.3 AN3C: Severe anaemia in pregnant carers

Indicator AN3C is TRUE if either...

- AGE of respondent is between 15 and 49 years old and PREGNANT and
 - ALTITUDE is < 1000 metres and HB is < 70 g/L; or,
 - ALTITUDE is \geq 1000 metres and ALTITUDE is < 1500 metres and HB is < 72 g/L; or,
 - ALTITUDE is \geq 1500 metres and ALTITUDE is < 2000 metres and HB is < 75 g/L; or,
 - ALTITUDE is \geq 2000 metres and ALTITUDE is < 2500 metres and HB is < 78 g/L; or,
 - ALTITUDE is \geq 2500 metres and ALTITUDE is < 3000 metres and HB is < 83 g/L; or,
 - ALTITUDE is \geq 3000 metres and ALTITUDE is < 3500 metres and HB is < 89 g/L; or,
 - ALTITUDE is \geq 3500 metres and ALTITUDE is < 4000 metres and HB is < 97 g/L; or,
 - ALTITUDE is \geq 4000 metres and ALTITUDE is < 4500 metres and HB is < 105 g/L; or,
 - ALTITUDE is = 4500 metres and HB is < 115 g/L.

3.2 Serum iron stores indicaotrs

The serum iron stores indicators are:

Table 10: Body iron stores indicators

IR1A	Iron deficiency in children 6-59 months
IR1B	Iron deficiency in non-pregnant carers
IR1C	Iron deficiency in pregnant carers
IR2A	Iron overload in non-pregnant carers
IR2B	Iron overload in pregnant carers

Serum iron stores indicators require data on AGE, PREGNANCY status, CRP and serum FERRITIN concentration.

3.2.1 IR1: Iron deficiency indicators

3.2.1.1 IR1A: Iron deficiency in children 6-59 months

The indicator IR1A is TRUE if either...

- AGE of respondent is between 6-59 months old and
 - CRP \leq 5 mg/L and serum FERRITIN is < 12 µg/L; or,
 - CRP > 5 mg/L and serum FERRITIN is $< 19.8 \mu g/L$.

3.2.1.2 IR1B: Iron deficiency in non-pregnant carers

- AGE of respondent is between 15 and 49 years old and NOT PREGNANT and
 - CRP \leq 5 mg/L and serum FERRITIN is < 15 µg/L; or,
 - CRP > 5 mg/L and serum FERRITIN is $< 24.75 \mu g/L$.

3.2.1.3 IR1C: Iron deficiency in pregnant carers

- AGE of respondent is between 15 and 49 years old and PREGNANT and
 - CRP \leq 5 mg/L and serum FERRITIN is < 15 µg/L; or,
 - CRP > 5 mg/L and serum FERRITIN is $< 24.75 \mu g/L$.

3.2.2 IR2: Iron overload indicators

3.2.2.1 IR2A: Iron overload in non-pregnant carers

The indicator IR2A is TRUE if either...

- AGE of respondent is between 15 and 49 years old and NOT PREGNANT and
 - CRP $\leq 5 \text{ mg/L}$ and serum FERRITIN is > 150 µg/L; or,
 - CRP > 5 mg/L and serum FERRITIN is > 247.5 μ g/L.

3.2.2.2 IR2B: Iron overload in pregnant carers

The indicator IR2B is TRUE if either...

- AGE of respondent is between 15 and 49 years old and PREGNANT and
 - CRP $\leq 5 \text{ mg/L}$ and serum FERRITIN is > 150 µg/L; or,
 - CRP > 5 mg/L and serum FERRITIN is > 247.5 μ g/L.

3.3 Acute inflammation indicators

Acute inflammation (AI) indicators require serum CRP concentration.

The indicator AI is TRUE if CRP is > 5 mg/L for any respondent type.

3.4 Calcium stores indicators

The calcium stores indicators are:

Table 11: Serum calcium stores indicators

CA1	Hypocalcemia in children 6-59 months old
CA1	Hypocalcemia in non-pregnant carers
CA1	Hypocalcemia in pregnant carers
CA2	Hypercalcemia in children 6-59 months old
CA2	Hypercalcemia in non-pregnant carers
CA2	Hypercalcemia in pregnant carers

The serum calcium stores indicators require AGE, SEX, PREGNANCY status and serum CALCIUM concentration.

3.4.1 CA1: Hypocalcemia indicators

The indicator CA1 is TRUE if \dots

- AGE of respondent is between 12 and 59 months and serum CALCIUM is < 9.4 mg/dL; or,
- AGE of respondent is > 12 years and ≤ 70 years and SEX is FEMALE and {NOT PREGNANT) or (PREGNANT)} and serum CALCIUM is < 8.8 mg/dL.

3.4.2 CA2: Hypercalcemia indicators

The indicator CA2 is TRUE if ...

- AGE of respondent is between 12 and 59 months and serum CALCIUM is > 10.8 mg/dL; or,
- AGE of respondent is > 12 years and ≤ 70 years and SEX is FEMALE and {NOT PREGNANT) or (PREGNANT)} and serum CALCIUM is > 10.0 mg/dL.

3.5 Iodine concentration indicators

The iodine concentration indicators are:

Table 12: Iodine concentration indicators

ID1	Insufficient iodine in children less than 24 months old
ID1	Insufficient iodine in lactating carers
ID1	Insufficient iodine in pregnant carers
ID2	Mild iodine deficiency in non-pregnant non-lactating carers
ID3	Moderate iodine deficiency in non-pregnant non-lactating carers
ID4	Severe iodine deficiency in non-pregnant non-lactating carers
ID5	Excessive iodine in pregnant carers
ID5	Excessive iodine in non-pregnant non-lactating carers

The iodine concentration indicators require AGE, SEX, PREGNANCY status and LAC-TATION status and urinary IODINE concentration.

3.5.1 ID1: Iodine insufficiency indicator

The ID1 indicator is TRUE if \dots

- AGE is less than 24 months old and urinary IODINE is < 100 g/L; or,
- AGE is between 15 and 49 years old and LACTATING and* urinary IODINE is < 100 g/L; or,
- AGE is between 15 and 49 years old and PREGNANT and urinary IODINE is < 150 g/L; or,

3.5.2 ID2: Mild iodine deficiency

The ID2 indicator is TRUE if \dots

 AGE is between 15-49 years old and NOT PREGNANT and NOT LACTATING and urinary IODINE is ≥ 50 g/L and urinary IODINE is ≤ 99 g/L.

3.5.3 ID3: Moderate iodine deficiency

The ID3 indicator is TRUE if \dots

 AGE is between 15-49 years old and NOT PREGNANT and NOT LACTATING and urinary IODINE is ≥ 20 g/L and urinary IODINE is ≤ 49 g/L.

3.5.4 ID4: Severe iodine deficiency

The ID4 indicator is TRUE if ...

 AGE is between 15-49 years old and NOT PREGNANT and NOT LACTATING and urinary IODINE is < 20 g/L.

3.5.5 ID5: Excessive iodine

The ID5 indicator is TRUE if \dots

- AGE is between 15-49 years old and NOT PREGNANT and NOT LACTATING and urinary IODINE is ≥ 300; or,
- AGE is between 15-49 years old and PREGNANT and urinary IODINE is ≥ 500 .

4 Summary

Given these indicator definition, we propose the following list of indicators to be analysed and reported for the Sudan Micronutrient Survey.

Table 13: List of proposed indicators for Sudan National Micronutrient Survey

Category	Indicators	Type
	Mild anaemia in children 6-59 months old	Proportion
	Moderate anaemia in children 6-59 months old	Proportion
Anaemia	Severe anaemia in children 6-59 months old	Proportion
1110011110	Mild anaemia in non-pregnant carers	Proportion
	Moderate anaemia in non-pregnant carers	Proportion
	Severe anaemia in non-pregnant carers	Proportion
	Mild anaemia in pregnant carers	Proportion
	Moderate anaemia in pregnant carers	Proportion
	Severe anaemia in pregnant carers	Proportion
1.0.1	Iron deficiency in children 6-59 months old	Proportion
Iron deficiency	Iron deficiency in non-pregnant carers	Proportion
	Iron deficiency in pregnant carers	Proportion
	Iron overload in children 6-59 months old	Proportion
Iron overload	Iron overload in non-pregnant carers	Proportion
	Iron overload in pregnant carers	Proportion
T. 0	Active inflammation in children 6-59 months old	Proportion
Inflammation	Active inflammation in non-pregnant carers	Proportion
	Active inflammation in pregnant carers	Proportion
	Hypocalcemia in children 12-59 months old	Proportion
Calcium deficiency	Hypocalcemia in non-pregnant women carers	Proportion
	Hypocalcemia in pregnant carers	Proportion
~	Hypercalcemia in children 12-59 months old	Proportion
Calcium overload	Hypercalcemia in non-pregnant women carers	Proportion
	Hypercalcemia in pregnant carers	Proportion
	Mild iodine deficiency in non-pregnant carers	Proportion
Iodine deficiency	Moderate iodine deficiency in non-pregnant carers	Proportion
v	Severe iodine deficiency in non-pregnant carers	Proportion
	Iodine deficiency in pregnant carers	Proportion
	Iodine deficiency in lactating carers	Proportion
Iodine excess	Excessive iodine in non-pregnant carers	Proportion
TOUTHE CACCOS	Excessive iodine in pregnant carers	Proportion

4.1 Results presentation

Estimates with corresponding confidence intervals for these indicators will be presented in tables. Estimates for these indicators will also be presented as choropleth maps at the state level for which estimates will be representative of.

In addition, we will summarise the biomarker values using the usual 6 figure summary (minimum value, first quantile, median, mean, third quartile and maximum value) and then present the distribution of the biomarker values as a violin plot with the range of normal values shown. An example violin plot for Hb is shown below.

Figure 2: Example violin plot for Hb in children 6-59 months sample by state

For absurdly high or low outliers such as that in State 17, we propose to winsorize with the aim of discarding as little data as possible by brining down high values or bringing up low values enough that no bias is introduced into the estimate of mean values.

References

- CGIAR-Consortium for Spatial Information. SRTM 90m DEM Digital Elevation Database. URL http://srtm.csi.cigiar.org.
- J Gorstein, K M Sullivan, I Parvanta, and F Begin. Indicators and Methods for Cross-Sectional Surveys of Vitamin and Mineral Status of Populations. Technical report, Ottawa, Canada and Atlanta, Georgia, USA, May 2007.
- Steven A Lietman, Emily L Germain-Lee, and Michael A Levine. Hypercalcemia in children and adolescents. *Current Opinion in Pediatrics*, 22(4):508–515, August 2010.
- David I Thurnham, Linda D McCabe, Sumanto Haldar, Frank T Wieringa, Christine A Northrop-Clewes, and George P McCabe. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. *The American journal of clinical nutrition*, 92(3):546–555, July 2010.
- Rita Wegmüller, Helena Bentil, James P Wirth, Nicolai Petry, Sherry A Tanumihardjo, Lindsay Allen, Thomas N Williams, Lilian Selenje, Abraham Mahama, Esi Amoaful, Matilda Steiner-Asiedu, Seth Adu-Afarwuah, and Fabian Rohner. Anemia, micronutrient deficiencies, malaria, hemoglobinopathies and malnutrition in young children and non-pregnant women in Ghana: Findings from a national survey. *PloS one*, 15(1):e0228258–19, January 2020.
- World Health Organization. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Technical report, Geneva, 2011a.
- World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Technical report, World Health Organization, Geneva, 2011b.
- World Health Organization. Urinary iodine concentrations for determining iodine status deficiency in populations. *Vitamin and Mineral Nutrition Information System*, pages 1–5, 2013.
- World Health Organization and Centers for Disease Control and Prevention. Assessing iron status of populations: including literature reviews. In *Joint World Health Organization* and Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level Geneval, Switzerland, pages 1–112. World Health Organization, 2007.