Devoir maison n°3 : Théorème de la corde universelle

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier TE1

Partie A - Exemples.

Dans les parties A et B, n désigne un entier supérieur ou égal à 2.

1) Soient $f: x \mapsto 1 - |2x - 1|$ définie sur [0, 1], et $n \in \mathbb{N} \setminus \{0, 1\}$.

On a
$$f(x+\frac{1}{n})=1-|2x+\frac{2}{n}-1|$$
.

De plus, $n \geqslant 2 \Longrightarrow 1 \geqslant \frac{2}{n} \Longrightarrow \frac{1}{2} \geqslant \frac{1}{n} \Longrightarrow \frac{1}{2} > \frac{1}{2} - \frac{1}{n} \geqslant 0$.

$x = \frac{0}{2}$	$\frac{1}{2}$ -	$-\frac{1}{n}$	$\frac{1}{2}$ 1
2x-1	-2x + 1	-2x+1	2x-1
f(x)	2x	2x	-2x + 2
$\left 2x-1+\frac{2}{n}\right $	$-2x + 1 - \frac{2}{n}$	$2x - 1 + \frac{2}{n}$	$2x - 1 + \frac{2}{n}$
$f(x+\frac{1}{n})$	$2x + \frac{2}{n}$	$-2x + 2 - \frac{2}{n}$	$-2x + 2 - \frac{2}{n}$
$f(x) - f\left(x + \frac{1}{n}\right)$	$-\frac{2}{n}$	$4x - 2 + \frac{2}{n}$	$\frac{2}{n}$

L'équation $f(x)=f\left(x+\frac{1}{n}\right)$ équivaut à $f(x)-f\left(x+\frac{1}{n}\right)=0$ qui n'a pas de solutions sur $\left[0,\frac{1}{2}-\frac{1}{n}[\cup]\frac{1}{2},1\right]$ d'après les tableau d'expressions.

Pour tout $x \in \left[\frac{1}{2} - \frac{1}{n}, \frac{1}{2}\right]$,

$$f(x) - f\left(x + \frac{1}{n}\right) = 0 \iff 4x - 2 + \frac{2}{n} = 0$$
$$\iff x = \frac{1}{2} - \frac{1}{2n}$$

Et:

$$n \geqslant 2 \Longrightarrow n > 0 \Longrightarrow \begin{cases} 2n > n \\ \frac{1}{2n} > 0 \end{cases} \Longrightarrow \begin{cases} \frac{1}{2n} < \frac{1}{n} \\ -\frac{1}{2n} < 0 \end{cases} \Longrightarrow \begin{cases} \frac{1}{2} - \frac{1}{2n} > \frac{1}{2} - \frac{1}{n} \\ \frac{1}{2} - \frac{1}{2n} < \frac{1}{2} \end{cases}$$

Notre solution est donc acceptable.

$$S = \left\{ \frac{1}{2} - \frac{1}{2n} \right\}.$$

2) Soit $f: x \mapsto 16x^2(1-x)^2$ définie sur [0,1]. Pour tout $x \in \left[0,\frac{1}{n}\right]$,

$$f\left(x + \frac{1}{n}\right) = f(x)$$

$$\Leftrightarrow f\left(x + \frac{1}{n}\right) - f(x) = 0$$

$$\Leftrightarrow 16\left(x + \frac{1}{n}\right)^2 \left(1 - x - \frac{1}{n}\right)^2 - 16x^2(1 - x)^2 = 0$$

$$\Leftrightarrow \left(\left(x + \frac{1}{n}\right)\left(1 - x - \frac{1}{n}\right)\right)^2 - (x(1 - x))^2 = 0$$

$$\Leftrightarrow \left(x - x^2 - \frac{x}{n} + \frac{1}{n} - \frac{x}{n} - \frac{1}{n^2}\right)^2 - (x - x^2)^2 = 0$$

$$\Leftrightarrow \left(-x^2 + \left(1 - \frac{2}{n}\right)x + \frac{n - 1}{n^2}\right)^2 - (x - x^2)^2 = 0$$

$$\Leftrightarrow \left(-x^2 + \left(1 - \frac{2}{n}\right)x + \frac{n - 1}{n^2} + x - x^2\right)\left(-x^2 + \left(1 - \frac{2}{n}\right)x + \frac{n - 1}{n^2} - x + x^2\right) = 0$$

$$\Leftrightarrow \left(-2x^2 + \left(2 - \frac{2}{n}\right)x + \frac{n - 1}{n^2}\right)\left(-\frac{2}{n}x + \frac{n - 1}{n^2}\right) = 0$$

$$\Leftrightarrow -2x^2 + \left(2 - \frac{2}{n}\right)x + \frac{n - 1}{n^2} = 0 \lor -\frac{2}{n}x + \frac{n - 1}{n^2} = 0$$

$$\Leftrightarrow -2x^2 + \frac{2n - 2}{n}x + \frac{n - 1}{n^2} = 0 \lor x = \frac{n - 1}{2n}$$

Et:

$$0 \leqslant \frac{n-1}{2n} \leqslant 1 - \frac{1}{n} \iff \begin{cases} 0 \leqslant n-1 \\ n-1 \leqslant 2n-2 \end{cases}$$
$$\iff \begin{cases} 1 \leqslant n \\ 0 \leqslant n-1 \end{cases}$$
$$\iff n \geqslant 1$$

Vrai car $n \geqslant 2$, donc par équivalence, $\frac{n-1}{2n} \in \left[0, 1 - \frac{1}{n}\right]$.

Cette solution est donc acceptable, et ainsi l'équation $f(x + \frac{1}{n}) = f(x)$ admet au moins cette solution sur $\left[0, 1 - \frac{1}{n}\right]$.

3) Soit $f: x \mapsto x(e-e^x)$ définie et dérivable 2 fois sur [0,1].

a)

$$\forall x \in [0, 1], f'(x) = e - e^x + x(-e^x) = e - e^x - xe^x$$
$$f''(x) = -e^x - e^x - xe^x = -e^x(2 + x)$$

Or d'une part, $e^x > 0$, et d'autre part, $x \ge 0$ donc x + 2 > 0. Ainsi f''(x) < 0 pour tout $x \in [0, 1]$, et f' est donc strictement décroissante sur ce même intervalle.

f'(0)=e-1>0 et f'(1)=e-e-e=-e<0 donc d'après le théorème de la bijection, il existe un unique $\alpha\in[0,1]$ tel que $f'(\alpha)=0$.

x	0 α 1
f''(x)	_
f'	$e-1$ $\rightarrow 0$ $\rightarrow -e$
f'(x)	+ 0 –
f	$\int_{0}^{f(\alpha)}$

b) On recherche les solutions de l'équation $f\left(x+\frac{1}{n}\right)=f(x)$ pour tout $x\in\left[0,1-\frac{1}{n}\right].$ On pose

$$g(x) = f\left(x + \frac{1}{n}\right) - f(x)$$

$$= \frac{1}{n}\left(e - e^{x + \frac{1}{n}}\right) + x\left(e - e^{x + \frac{1}{n}}\right) - x(e - e^x)$$

$$= \frac{1}{n}\left(e - e^{x + \frac{1}{n}}\right) + x\left(e^x - e^{x + \frac{1}{n}}\right)$$

Déterminons le signe de g en 0 et $1 - \frac{1}{n}$.

•
$$g(0) = \frac{1}{n} \left(e - e^{\frac{1}{n}} \right)$$

Or $2\leqslant n\Leftrightarrow \frac{1}{2}\geqslant \frac{1}{n}\Leftrightarrow e^{\frac{1}{2}}\leqslant -e^{\frac{1}{n}}$ par stricte croissance de l'exponentielle sur $\mathbb R$. Donc

$$0 < e - e^{\frac{1}{2}} \le e - e^{\frac{1}{n}}$$

et comme $\frac{1}{n} > 0$, on a g(0) > 0.

•
$$g\left(1-\frac{1}{n}\right) = -\left(1-\frac{1}{n}\right)\left(e-e^{1-\frac{1}{n}}\right)$$

Or d'une part $2\leqslant n\Leftrightarrow -\frac{1}{2}\leqslant -\frac{1}{n}\Leftrightarrow 0<\frac{1}{2}\leqslant 1-\frac{1}{n}.$

De plus, $0 < \frac{1}{n} \Leftrightarrow 1 > 1 - \frac{1}{n} \Leftrightarrow -e < -e^{1-\frac{1}{n}} \Leftrightarrow 0 < e - e^{1-\frac{1}{n}}$ par stricte croissance de l'exponentielle sur \mathbb{R} .

On a donc $g(1-\frac{1}{n}) < 0$.

Comme g est continue par opérations et compositions de fonctions continues, d'après le théorème des valeures intermédaires, il existe $c \in [0, 1 - \frac{1}{n}]$ tel que g(c) = 0 ie il existe au moins une solution à l'équation $f(x+\frac{1}{n})=f(x)$ dans $\left[0,1-\frac{1}{n}\right]$.

Partie B - Généralisation.

Soit f une fonction continue sur [0,1] telle que f(0)=f(1). Pour tout $x\in [0,1-\frac{1}{n}]$, on pose $g(x) = f(x) - f\left(x + \frac{1}{n}\right)$.

1) La fonction continue $x\mapsto x+\frac{1}{n}$ a son ensemble image inclus dans [0,1] d'après le théorème des valeurs intermédiaires. Or f est continue sur [0,1] donc g est continue sur [0,1]par opérations et composition de fonctions continues sur [0, 1].

2)

$$\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) = \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) - f\left(\frac{k+1}{n}\right)$$
$$= f(0) - f(1) \quad \text{par t\'elescopage}$$
$$= 0 \text{ car } f(0) = f(1)$$

- 3) On recherche s'il existe $\alpha \in \left[0, 1 \frac{1}{n}\right]$ tel que $g(\alpha) = 0$. Comme $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) = 0$, soit $g\left(\frac{k}{n}\right)$ est égal à 0 pour tous $k \in [0, n-1]$ et l'on peut prendre n'importe quel k pour
- avoir $\alpha = \frac{k}{n}$ puisque $k \in [0, n-1]$ donc $\frac{k}{n} \in [0, 1-\frac{1}{n}]$.

 soit il existe k' tel que $g\left(\frac{k'}{n}\right) \neq 0$. Dans ce cas puisque la somme vaut 0, il existe nécessairement au moins un k'' tel que $g\left(\frac{k''}{n}\right)$ soit de signe opposé à $g\left(\frac{k'}{n}\right)$. Comme g est continue sur [0,1], il existe d'après le théorème des valeurs intermédiaires $\alpha \in \left[\frac{k'}{n} \leftrightarrow \frac{k''}{n}\right]$ tel que $g(\alpha) = 0$. Comme $\left[\frac{k'}{n} \leftrightarrow \frac{k''}{n}\right] \subseteq \left[0,1-\frac{1}{n}\right]$, on a bien $\alpha \in \left[0,1-\frac{1}{n}\right]$.

Soit $a, b \in \mathbb{R}$, $[a \leftrightarrow b] = \begin{cases} [a,b] & \text{si } a \leqslant b \\ [b,a] & \text{si } b < a \end{cases}$

Partie C - Généraliser encore ?

Soit $T\in]0,1[$ tel que $\frac{1}{T}\notin \mathbb{Z}$, et f une fonction continue sur [0,1] telle que f(0)=f(1). On considére $f:x\mapsto \sin^2(\frac{\pi x}{T})-x\sin^2(\frac{\pi}{T})$ d'inconnue $x\in [0,1-T]$.

1) Comme la fonction sinus est continue sur \mathbb{R} et que $T \neq 0$, f est continue sur [0,1] par opérations et composition de fonctions continues.

$$\begin{split} f(0) &= \sin^2(0) - 0 = 0 \\ f(1) &= \sin^2\left(\frac{\pi}{T}\right) - \sin^2\left(\frac{\pi}{T}\right) = 0 \end{split}$$

Donc on a bien f(0) = f(1).

2)

$$\begin{split} f(x) - f(x+T) &= \sin^2\left(\frac{\pi x}{T}\right) - x\sin^2\left(\frac{\pi}{x}\right) - \sin^2\left(\frac{\pi(x+T)}{T}\right) + (\underline{x}+T)\sin^2\left(\frac{\pi}{T}\right) \\ &= \sin^2\left(\frac{\pi x}{T}\right) - \sin^2\left(\frac{\pi x}{T} + \pi\right) + T\sin^2\left(\frac{\pi}{T}\right) \\ &= \sin^2\left(\frac{\pi x}{T}\right) - \left(\sin\left(\frac{\pi x}{T}\right)\underbrace{\cos(\pi)}_{=-1} + \cos\left(\frac{\pi x}{T}\right)\underbrace{\sin(\pi)}_{=0}\right)^2 + T\sin^2\left(\frac{\pi}{T}\right) \\ &= T\sin^2\left(\frac{\pi}{T}\right) \end{split}$$

Or $T \neq 0$ et comme $\sin^2(\frac{\pi}{T}) = 0 \Leftrightarrow \sin(\frac{\pi}{T}) = 0 \Leftrightarrow \frac{\pi}{T} = 0$ ou $\frac{\pi}{T} = \pi$ et $T \neq 1$, on a que pour tout x dans [0, 1-T], f(x) - f(x+T) > 0

3) On a que f(x) - f(x+T) > 0 ie f(x) > f(x+T) donc $f(x) \neq f(x+T)$ pour tout x dans [0, 1-T].

f(x+T)=f(x) est impossible pour tout x dans [0,1-T].