

Gated Multiple Feedback Network for Image Super-Resolution

Qilei Li, Zhen Li, Lu Lu, Gwanggil Jeon, Kai Liu, Xiaomin Yang

Motivation and Main idea

- 1. Deep layers have larger receptive fields than shallow layers, thus they can capture more contextual high-level information.
- 2. Existing super-resolution (SR) networks fail to make full use of such highlevel information in deep layers.
- 3. We first employ multiple feedback connections to reroute multiple hierarchical high-level features to shallow layers.
- 4. We design a simple yet efficient gated feedback module (GFM) to adaptively select meaningful Information from the rerouted high-level features.

Visual results GMFN(Ours)/22.79 VDSR/26.81 DRRN/26.89 'img 078' from Urban100 D-DBPN/27.01 Study of multiple feedback connections

Framework RB GFM-b Time step RB GFM-b RB $F_{L,b}^{t-1},...,F_{L,B}^{t-1}$ Upscale Gate unit $F_{L,b-1}^t$ $F_{L,b}^t$ efinement

Residual dense block (RDB)

1. Initial low-level features $F_{L,0}^t$:

Gated feedback module (GFM)

- $F_{L,0}^t = H_{LFEB}(I_{LR}),$
- 2. Hierarchical low-level feature $F_{L,b}^t$ at b-th RDB:
- $F_{L,b}^{t} = \begin{cases} H_{RDB,b} \left(H_{RU,b} \left(\left[F_{H,b}^{t}, F_{L,b-1}^{t} \right] \right) \right), & \text{if } b \in \mathbf{S}_{M} \text{ and } t > 1, \\ H_{RDB,b} \left(F_{L,b-1}^{t} \right), & \text{otherwise,} \end{cases}$

Reconstruction block (RB)

- 3. Enhance $F_{L,b}^t$ with the rerouted high-level feature:
- $F_{H,b}^{t} = \begin{cases} H_{GU,b} \left\{ \begin{bmatrix} F_{L,N}^{t-1}, ..., F_{L,B}^{t-1} \\ F_{L,b}^{t-1}, ..., F_{L,B}^{t-1} \end{bmatrix} \right\}, & \text{if } b < N, \\ F_{L,b}^{t-1}, ..., F_{L,B}^{t-1} \end{bmatrix}, & \text{otherwise,} \end{cases}$
- 4. The final high-level feature $F_{L,B}^t$:
- $F_{L,B}^{t} = H_{GFM-RDB}\left(F_{L,0}^{t}\right),\,$
- 5. Reconstruction the SR image I_{SR}^t at the *t*-th time step:
- $I_{SR}^{t} = H_{RB}\left(F_{L,B}^{t}, I_{LR}\right) = H_{UF}\left(F_{L,B}^{t}\right) + H_{\uparrow}\left(I_{LR}\right),$

6. Loss function:

 $\mathcal{L}(\Theta) = \frac{1}{T} \sum_{t=1}^{T} \left\| I_{HR}^{t} - I_{SR}^{t} \right\|_{1}$

Study of gated feedback module (GFM)

Feedback high-level features

GFM adaptively selects the high frequency components of high-level features to enhance the input low-level feature. The refined lowlevel feature becomes more representative compared with the raw counterpart.

Selected and enhanced high-level feature Input low-level feature

(a). Feedback networks (FB) vs. feedforward networks (FF)

(b). Study of various *multiple-to-single* feedback connections.

(c). Study of various *multiple-to-multiple* feedback connections.

(d). Study of various *single-to-multiple* anti-feedback connections.

			Quantitative comparison with SOTA								
Dataset	Scale	Bicubic	SRCNN	VDSR	DRRN	NLRN	EDSR	D-DBPN	RDN	SRFBN	GMFN (Ours)
Set5	×2	33.66/0.9299	36.66/0.9542	37.53/0.9590	37.74/0.9591	38.08/0.9610	38.11/0.9602	38.09/0.9600	38.24/0.9614	38.11/0.9609	38.21/0.9612
	$\times 3$	30.39/0.8682	32.75/0.9090	33.67/0.9210	34.03/0.9244	34.30/0.9271	34.65/0.9280	-/-	34.71/ 0.9296	34.70/0.9292	34.73 / <u>0.9295</u>
	$\times 4$	28.42/0.8104	30.48/0.8628	31.35/0.8830	31.68/0.8888	31.94/0.8920	32.46/0.8968	<u>32.47</u> /0.8980	<u>32.47/0.8990</u>	<u>32.47</u> /0.8983	32.55/0.8991
Set14	×2	30.24/0.8688	32.45/0.9067	33.05/0.9130	33.23/0.9136	33.57/0.9167	33.92/0.9195	33.85/0.9190	34.01/ 0.9212	33.82/0.9196	34.05 / <u>0.9211</u>
	$\times 3$	27.55/0.7742	29.30/0.8215	29.78/0.8320	29.96/0.8349	30.25/0.8386	30.52/0.8462	-/-	<u>30.57/0.8468</u>	30.51/0.8461	30.58/0.8473
	$\times 4$	26.00/0.7027	27.50/0.7513	28.02/0.7680	28.21/0.7721	28.44/0.7759	28.80/ <u>0.7876</u>	<u>28.82</u> /0.7860	28.81/0.7871	28.81/0.7868	28.84/0.7888
B100	×2	29.56/0.8431	31.36/0.8879	31.90/0.8960	32.05/0.8973	32.18/0.8991	32.32/0.9013	32.27/0.9000	32.34/0.9017	32.29/0.9010	32.34/0.9017
	$\times 3$	27.21/0.7385	28.41/0.7863	28.83/0.7990	28.95/0.8004	29.05/0.8024	29.25/ 0.8093	-/-	<u>29.26</u> / 0.8093	29.24/ <u>0.8084</u>	29.27/0.8093
	$\times 4$	25.96/0.6675	26.90/0.7101	27.29/0.7260	27.38/0.7284	27.48/0.7304	27.71/ <u>0.7420</u>	<u>27.72</u> /0.7400	<u>27.72</u> /0.7419	<u>27.72</u> /0.7409	27.74/0.7421
Urban100	×2	26.88/0.8403	29.50/0.8946	30.77/0.9140	31.23/0.9188	31.77/0.9243	32.93/0.9351	32.55/0.9324	32.89/0.9353	32.62/0.9328	32.96/0.9361
	$\times 3$	24.46/0.7349	26.24/0.7989	27.14/0.8290	27.53/0.8378	27.90/0.8443	28.80/0.8653	-/-	28.80/0.8653	28.73/0.8641	28.87/0.8667
	$\times 4$	23.14/0.6577	24.52/0.7221	25.18/0.7540	25.44/0.7638	25.78/0.7713	<u>26.64/0.8033</u>	26.38/0.7946	26.61/0.8028	26.60/0.8015	26.69/0.8048
Manga109	×2	30.30/0.9339	35.60/0.9663	37.22/0.9750	37.60/0.9736	38.55/0.9768	39.10/0.9773	38.89/0.9775	39.18/0.9780	39.08/0.9779	39.13/0.9778
	×3	26.95/0.8556	30.48/0.9117	32.01/0.9340	32.42/0.9359	33.24/0.9414	34.17/0.9476	-/-	34.13/ <u>0.9484</u>	<u>34.18</u> /0.9481	34.24/0.9487
	$\times 4$	24.89/0.7866	27.58/0.8555	28.83/0.8870	29.18/0.8914	29.82/0.8982	31.02/0.9148	30.91/0.9137	31.00/0.9151	<u>31.15/0.9160</u>	31.24/0.9174

Accuracy and numbers of parameters trade-off

