1:
$$\forall x_{i}y \in X$$
: $\rho(x_{i}y) = \rho(y_{i}x)$
2: $\forall x \in X$: $\rho(x_{i}x) = 0$
3: $\forall x_{i}y_{i}z \in X$: $\rho(x_{i}y) + \rho(y_{i}z) = \rho(x_{i}z)$

$$X = (\{0,1,2\}, P)$$

 $S: \{91,2\} \times \{91,2\} \rightarrow \mathbb{R}_{0}^{+}$

6:	0	1	2	_
0	O,	1	2	
1	1	0	2	
2	2	2	0	

$$R^{1} = (R_{1} P)$$

$$R^{2} = (R \times R_{1} P)$$

$$\rho(x_{i3}) = |x - y|$$

 $\rho(x_{i3}) = \rho((x_{1i31})_{1}(x_{2i32})) = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}$

```
Pokaste, sic |\mathbb{R}^{1}=(|\mathbb{R}_{1}\mathbb{P})| |\mathbb{P}(|\mathbb{R}_{1}\mathbb{P})| |\mathbb{P}(|\mathbb{P})| |\mathbb{P}(|\mathbb{P
```

$$|x=y| = |x-y| = |x-x| = |0| = 0 = > \rho(x_{i3}) = 0$$
2) $\forall x_{i3} \in \mathbb{R}$: $\rho(x_{i3}) = \rho(x_{i3}) = 0$

$$P(x_0) = |x-y| = |(-1)\cdot(y-x)| = |-1|\cdot|y-x| = |y-x| = p(y_1x)$$

3)
$$\forall x_{15i}z.$$
 $\rho(x_{15}) + \rho(y_{1}z) \ge \rho(x_{1}z)$

$$\rho(x_{1}z) = |x-z| = |x-y+y-z| = |(x-y)+(y-z)| \le |x-y|+|y-z| = |A+B| \le |A|+|B|$$

$$= \rho(x_{1}y) + \rho(y_{1}z)$$

UKARTE, RE
$$X = (R^2, P)$$
 $Q((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$

JE METRICKS PROSTOR

1)
$$\rho((x_{1},x_{2}),(y_{1},y_{2}))=0 \iff |x_{1}-y_{1}|+|x_{2}-y_{2}|=0 \iff |x_{1}-y_{1}|=0, |x_{2}-y_{2}|=0$$

$$\iff x_{1}=y_{1} \quad 1 \quad x_{2}=y_{2} \iff (x_{1},x_{2})=(y_{1},y_{2})$$

2)
$$P((x_{11}x_{2}),(y_{11}y_{2})) = |x_{1}-y_{1}|+|x_{2}-y_{2}| = |(-1)\cdot(y_{1}-x_{1})|+|(-1)\cdot(y_{2}-x_{2})| =$$

$$= |y_{1}-x_{1}|+|y_{2}-x_{2}| = P((x_{11}y_{2}),(x_{11}x_{2}))$$

3)
$$P((x_{11}x_{2}|(z_{11}z_{2})) = |x_{1}-z_{1}| + |x_{2}-z_{2}| = |x_{1}-y_{1}+y_{1}-z_{1}| + |x_{2}-y_{2}+y_{2}-z_{2}| \leq |x_{1}-y_{1}| + |y_{1}-z_{1}| + |x_{2}-y_{2}| \leq |x_{1}-y_{1}| + |y_{1}-z_{1}| + |x_{2}-y_{2}| + |y_{2}-z_{2}| = P((x_{11}x_{2})(y_{11}y_{2})) + P((y_{11}y_{2})(z_{11}z_{2}))$$

$$X_1 = (\{1,2,3,4\}, \{2,$$

$$P(3,4)=7 > P(3,-)+P(-,4)$$
 $7 \le P(3,1)+P(1,4)=9$
 $7 \le P(3,2)+P(2,4)=11$

NELZE, PROTIPRIMAD
$$P(14) = 5 > P(12) + P(24) = 1 + 2 = 3$$

$$X = (12 \setminus \{03, 9\})$$
 $9(X_0) = |\frac{1}{x} - \frac{1}{y}|$

ukate, te X je metnické prostor.

2)
$$P(x_0) = \left|\frac{1}{x} - \frac{1}{5}\right| = \left|(-1) \cdot \left(\frac{1}{y} - \frac{1}{x}\right)\right| = \left|-1\right| \cdot \left|\frac{1}{y} - \frac{1}{x}\right| = \left|\frac{1}{y} - \frac{1}{x}\right| = P(y_1 \times y_2)$$

3)
$$P(x_1 + P(x_1 = | x - \frac{1}{3} | + | \frac{1}{3} - \frac{1}{2} | = | \frac{1}{3} - \frac{1}{2} | + | \frac{1}{3} - \frac{1}{2} | > | \frac{1}{3} - \frac{1}{2} | > | \frac{1}{3} - \frac{1}{3} | + | \frac{1}{3} - \frac{1}{2} | > | \frac{1}{3} - \frac{1}{3} | + | \frac{1}{3} - \frac{1}{3} | > | \frac{1}{3} - \frac{1}{3} | + | \frac{1}{3} - \frac{1}{3} | > | \frac{1}{3} - \frac{1$$

$$\left|\frac{1}{x} - \frac{1}{z}\right| - \left|\frac{1}{z} - \frac{1}{y}\right| + \left|\frac{1}{y} - \frac{1}{z}\right| = \left|\frac{1}{x} - \frac{1}{z}\right| = \left|\frac{$$

$$X = (X, P)$$

$$\lim_{h\to\infty} \wp(x_{n_1}x) = 0$$

$$* \left\{ \times_{n} \right\} \qquad \times_{i} = \frac{1}{i}$$

$$x_i = \frac{1}{i}$$

$$\frac{1}{1} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \dots$$

$$\lim_{i \to \infty} \frac{1}{i} = 0$$

$$x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, \forall i \ge 5: x_i = x_{i-1}$$

Konvergný k bodu
$$x=4$$
 $N(\xi)=5$

CANCHSOVSKA POSLOUPNOST

9

Def: {xu} j CAUCHJOUSKA (=> HE>O:

 $\exists N(\varepsilon): \forall m, m \geq N(\varepsilon): \rho(x_n, x_m) \leq \varepsilon$

Posloupoust $\{x_n\}$ $x_i = \frac{1}{i}$

je tato posloupnost CAUCHYOUSKA 2

ukoži, že existy N: Rt -> IN

N(E)=i +. 2. 1<E

Pro joi: $P\left(\frac{1}{i},\frac{1}{j}\right) < \frac{1}{i} < E = > N ji Sunkce 2 def. C.P.$

Jestli-èt kaèda candyouska poslouprost konvergne v prostom X = (X, P), potom mazivaime prostor riplay.

 $\exists x. \in X : \lim_{i \to \infty} \rho(x_{i,i} x) = 0$

POSCOUPNOST

X=(INo,P), kde P je definovalna misledovné:

* $P(X_1 \times) = 0$ * $P(Q_1) = 1$ * $P(X_1 \times +1) = \frac{P(X_1 - 1_1 \times)}{2}$

Puo x < y: $P(x_i \Rightarrow) = P(x_i x + \Lambda) + P(x + \Lambda_i \Rightarrow)$

Pro x>g: P(xy) = P(yy+1)+P(y+1,x)

$$\begin{array}{c|c}
P(x_{k_1}x_{k_1}) & F(x_2) \\
F(x_1) & F(x_2) \\
F(x_1) & F(x_2) \\
F(x_1) & F(x_2) \\
F(x_2) &$$

KONTIZAKCE

12

```
MANE NETERCES PROSTOR X=(Y,P)

20BRAZENI Z: X \to X j kontrakce \stackrel{\text{def}}{=}

\exists 2 < 1 + . i. \forall x_1 \in X : \rho(\mathbf{Z}(x), 2G) \leq 2\rho(x_1 g)
```

Ekvivalentné Impsano: $\forall x, y \in X : x \neq y \rightarrow P(Z(x), Z(y)) < P(X, y)$

PRIKLAD KONTRAKLE:

$$(R_{1}P) \quad P(x_{1}y) = |x-y|$$

•
$$2(x) = \frac{x}{2}$$

$$\frac{2 \cdot |x-y|}{2} = \frac{x}{2} - \frac{y}{2} = \frac{1}{2} \cdot |x-y|$$

$$(2-\frac{1}{2}) \cdot |x-y| \ge 0$$

$$plate' pro = \frac{1}{2} \le 2 < 1$$

$$7(x) = \begin{cases} 1 = 3 & x > 0 \\ 0 = 3 & x = 0 \end{cases}$$

NENT (CONTRAKCE)

PROTI PRIKLAD
$$X = 95, 3 = -95$$
 $(2(x,3) = 1)$
 $(2(x), 2(3)) = (1, -1) = 2$

helze mixt $2 < 1 < 1 < 2 < 1 < 1$

$$X = (\mathbb{R}^2, \mathbb{P}) \quad \mathbb{P}((x_1, x_2)_1(y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

•
$$2\left(x_{i3}\right) = \left(\frac{x}{2}, \frac{3}{2}\right)$$

•
$$2(x_{i\partial}) = (k_1, k_2)$$

j konturkce

•
$$Z(x,y) = \left(\frac{x}{2}, y\right)$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{2}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{2}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1}}{2} - \frac{y_{1}}{2})^{2} + (\frac{x_{1}}{2}, \frac{y_{2}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1} - y_{1}}{2})^{2} + (\frac{x_{1} - y_{1}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1} - y_{1}}{2})^{2} + (\frac{x_{1} - y_{1}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}} \geqslant \sqrt{(\frac{x_{1} - y_{1}}{2})^{2} + (\frac{x_{1} - y_{1}}{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2} \cdot \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2}}$$

$$\frac{1}{2}$$

- neur kontrole
Protiprible x=(0,1) a g=(0,2)

$$P(x_3)=2=P(2(x_0),2(x_0))$$

BANACHOUA VETA O PEUNÉM BODE

Pokud X = (X,P) je úplus metrics' prostou a A je kontrakce

poten pro lib $X \in X$ peslouprist X = (X,P) je úplus metrics' prostou a A je kontrakce X = (X,P) je úplus metrics' prostou a A je

(16)

PULENI INTERVALLA

VITUP: F(X) - Funkce

Interval (1,6)

interval (4,6) +. è. existip privé jiduo c: décéb 1 f(c)=0

Püleni intervalu v kontexta BVPB:

*P((x1,y1),(x2,y2))= (y1-x1)-(y2-x2)

* permy pod j (2/5) + (5)=0

1 ITERACE CYKIN JE KONTRAKIE

 $A(\langle x,y\rangle) = \langle x',y'\rangle + \hat{z}. \quad \frac{y-x}{2} = y'-x'$

-funce f(x)-resine rounici f(x)=0 ha intervalu (a_1b) - f(x) has pouse jedno resent a (a_1b) - Prevedence f(x)=0 has $x=\overline{f(x)}$ - Zuoline f(x)=0 has f(x)=0- Pocitane posloupost f(x)=0- Pocitane posloupost f(x)=0

Polend F j kontrakce v metriclein prostovn $M = (\langle d, b \rangle, \rho)$ $\rho(x_i y) = |x - y|$ tak pak {xi} konvergaji k veicui f(x)

Ft & kontraker pokud |F(x)| SL<1

,	1			<i>I</i>	1	B
a	vzdálenost	2. vozová třída	1. vozová třída	2. vozová třída	1. vozová třída	2. vozová třída
4	km	Kč	Kč	Kč	Kč	Kč
	001 - 010 011 - 015	4,- 6,-	6,- 9,-	2,- 3	3,- 4.50	1,- 1,50
	016 - 020 021 - 025	8,- 10,-	12,- 15,-	4,- 5,-	6,- 7,50	2,- 2,50
1	026 - 030	12,-	18	6	9	3

(Vydaný na základě § 22 odst. 1 zákona č. 226/94 Sb.)

KILOMETROVNÍK

pro přepravu cestujících, cestovních zavazadel a spěšnin

Γ	OBSAH:		
	ČÁST A: Všeobecné pokyny Návrhy na úpravu JŘ, termíny změn JŘ Kalendář General instructions Allgemeine Hinweise Instructions generales Klarigo de signoj Abecední seznam železničních stanic Stručný výňatek z tarifních ustanovení Mezistátní přeprava cestujících	A 2 A 3 A 6 A 7 A 11 A 15 A 19 A 22 A 40 A 53	
	Místenky, lůžkové a lehátkové lístky ČÁST B (zelená): Mezistátní vlakové spoje ČÁST C (červená):	A 56	
	Vnitrostátní dálkové spoje Přehled expresů, rychlíků a spěšných vlaků ČÁST D:	C 1 C 16	
	Železniční jízdní řád (tratě 010 - 345) Jízdní řád lanových drah v provozu Českých drah Změny za tisku	1 586 591	

Platí od 28. května 1995 do 1. června 1996

Doporučená cena 64,- Kč (včetně DPH)

Tiskárna MÍR, Praha © České dráhy s.o., Divize provozu, o.z.

		Obvěci		UEIVIN .		ını jızane	
Číslo			Obyčejné jízdné		A		
pásma	vzdálenost	2. vozová	1. vozová	2. vozová		2. vozová	
-	 	třída	třída	třída	třída	třída	
-	km	Kč	Kč	Kč	Kč	Kč	
01	001 - 010	4,-	6,-	2,-	3,-	1,-	
02	011 - 015	6,-	9,-	3,-	4,50	1,50	
03	016 - 020	8,-	12,-	4,-	6,-	2,-	
04	021 - 025	1 10	15,-	5,-	7,50	2,50	
05	026 - 030	12,-	18,-	6,-	9,-	3,-	
06	031 - 035	14,-	21,-	7,-	10,50	3,50	
07	036 - 040	16,-	24,-	8,-	12,-	4,-	
08	041 - 050	20,-	30,-	10,-	15,-	5,-	
09	051 - 060	24,-	36,-	12,-	18,-	6,-	
10	061 - 070	28,-	42,-	14,-	21,-	7,-	
11	071 - 080	32,-	48,-	16,-	24,-	8,-	
12	081 - 090	36,-	54,-	18,-	27,-	9,-	
13	091 - 100	40,-	60,-	20,-	30,-	10,-	
14	101 - 110	44,-	66,-	22,-	33,-	11,-	
15	111 - 120	48,-	72,-	24,-	36,	12,-	
16	121 - 140	56,-	84,-	28,-	42,-	14,-	
17	141 - 160	64,-	96,-	32,-	48,-	16,-	
18	161 - 180	72,-	108,-	36,-	54,-	18,-	
19	181 - 200	80,-	120,-	40,-	60,-	20,-	
20 21	201 - 225	90,-	135,-	45,-	67,50	22,50	
	226 - 250	100,-	150,-	50,-	75,-	25,-	
22 23	251 - 275	110,-	165,-	55,-	82,50	27,50	
24	276 - 300	120,-	180,-	60,-	90,-	30,-	
25	301 - 350	138,-	207,-	69,-	103,50	34,50	
26	351 - 400	156,-	234,-	78,-	117,-	39,-	
27	401 - 450	174,-	261,-	87,-	130,50	43,50	
28	451 - 500 501 - 550	192,-	288,-	96,-	144,-	48,-	
29		210,-	315,-	105,-	157,50	52,50	
30	551 - 600 601 - 650	226,-	339,-	113,-	169,50	56,50	
31	651 - 700	240,-	360,-	120,-	180,-	60,-	
32	701 a více	254,-	381,-	127,-	190,50	63,50	
		270,-	405,-	135,-	202,50	67,50	
Rychlíkový příplatek		16,-*		8,-**		8,-**	
Příplatek EC/IC		30,-	50,-	30,-	50	30 -	

Ceník 2A – jízdné v 1. a 2. třídě pro děti ve věku 6 až 15 let, – jízdné ve 2. třídě pro důchodce do 70 let, občany starší 70 let, žáky (ŽZ), rodiče při návštěvě dětí umístěných v ústavech při cestě oběma směry,

- dovozné za psy;

Ceník 2B – jízdné pro držitele průkazů ZTP, ZTP/P a rodiče při návštěvě dětí umístěných v ús-tavech při cestě jedním směrem.

** Platí držitelé průkazů ZTP, ZTP/P, ŽZ a rodiče při návštěvě dětí umístěných v ústavech (použití rychliku jedním směrem).

Ostatní ceníky uvedeny v části A.

Platí důchodci do 70 let, občané starší 70 let při použití 2. třídy rychlíku a rodiče při návštěvě dôtí umístěných v ústavech (použití rychlíku oběma směry)