Training data set

Measurement sites' description (coordinates, typology)

For each station (107), every hour 2012 2016:

- Measurements (when available)
- CHIMERE + WRF data

Pollutants and sources

Pollutants and interactions in the atmosphere

Pollutants and interactions in the atmosphere

Example during summer

Pollutants and interactions in the atmosphere

Example during winter

Measurements Data file (Challenge_Data_NO2_2012,RData

- 24 files > hourly concentrations for :
- 4 polluants : NO2, O3, PM10, PM2.5
- 6 years for each pollutants
- + 2 files > Description of the stations
- (1 Excel & 1 RData)

- Challenge_Data_NO2_2013.RData
- Challenge_Data_NO2_2014.RData
- Challenge_Data_NO2_2015.RData
- Challenge_Data_NO2_2016.RData
- Challenge_Data_NO2_2017.RData
- Challenge_Data_O3_2012.RData
- Challenge_Data_O3_2013.RData
- Q Challenge_Data_O3_2014.RData
- Q Challenge_Data_O3_2015.RData
- Q Challenge_Data_O3_2016.RData
- Q Challenge_Data_O3_2017.RData
- Challenge_Data_PM10_2012.RData
- Challenge_Data_PM10_2013.RData
- Challenge_Data_PM10_2014.RData
- Challenge_Data_PM10_2015.RData
- Challenge_Data_PM10_2016.RData
- Challenge_Data_PM10_2017.RData
- Challenge_Data_PM25_2012.RData
- Challenge_Data_PM25_2013.RData
- Challenge_Data_PM25_2014.RData
- Challenge_Data_PM25_2015.RData
- Challenge_Data_PM25_2016.RData
- Challenge_Data_PM25_2017.RData
- Description_Stations.RData
- Description_Stations.xlsx

Measurements sites description

Description_Stations.xlsx

A	В	С	D	E	F	G		Н	1		J			K	L	М	N	0	Р
1 idPolair	nom_station	coord_x_l9	coord_y_l9	X_lamb2 🔻	Y_lamb2	LON 🔻	ı U	AT 🔽	Département 🔻		Zone_EF	PCI 🖪	▼ typ	oologie 💌	NO2_influenc▼	NO2_2012 ▼	NO2_2013	NO2_2014 ▼	NO2_2015 ▼
15013	Champ_sur_Drac	914668.44	6445968.5	867090.82	2014539.48	728659351827	2 45.07959	945160278	Isère		CC Sud Gren	oblois	Peri	-Urbaine	Fond	1	1	1	1
3 15017	Fontaine_les_Balmes	910970.88	6458165.5	863285.49	2026715.96	686969654719	9 45.19049	939464065	Isère		CA Greno	ble	U	rbaine	Fond	1	1	1	1
4 15018	Voiron_Urbain	902699	6476726	854847	2045221	589443331312	9 45.36001	37204882	Isère	-	CA Pays Voir	onnais	U	rbaine	Fond	1	1	1	1
5 15031	Ecrins	973315.81	6439213	925852.02	2008282.66	469500628780	0 44.99809	956246051	Isère		CC du Brianç	onnais	R	urale	NA				
6 15038	Saint_Martin_Heres	916202	6457516	868526.98	2026110.36	753252646880	8 45.18302	269553378	Isère		CA Greno	ble	U	rbaine	Fond	1	1	1	1
7 15039	Grenoble_Rocade_Sud	912411.38	6454650.5	864757.05	2023210.11	703769567010	0 45.15842	201584421	Isère		CA Greno	ble	Peri	-Urbaine	Trafic	1	1	1	1
8 15043	Grenoble_les_Frenes	914916	6455102	867260	2023683	735824383288	1 45.16170	64773352	Isère		CA Greno	ble	U	rbaine	Fond	1	1	1	1
9 15045	Vif	910678.63	6443436.5	863119.88	2011969.78	676893285666	3 45.05803	393471876	Isère		CA Greno	ble	Peri	-Urbaine	Fond	1	1	1	1
0 15046	Grenoble_Boulevards	913650	6457175	865975	2025746	720630177169	1 45.18075	46902755	Isère		CA Greno	ble	U	rbaine	Trafic	1	1	1	1
11 15048	Gresivaudan	925945.81	6468636.5	878184.26	2037325.38	882395987474	7 45.27996	48220649	Isère	CC c	du Pays du Gi	résivaudan	Peri	-Urbaine	Fond	1	1	1	1
7																			
	P	Q	R S	T	U	V W	X	Υ	Z	AA	AB	AC	AD	AE	AF AC	3 AH	AI A	J AK	AL AM
	1 NO2_2015 ▼ N	IO2_2016 ▼ No	02_2017 O3_influe	n ▼ 03_20: ▼	03_20: 03	_20: ▼ 03_20: ▼	03_20: ▼	03_20: ▼	PM10_influen Pf	M10_2(🔻	PM10_2(▼ P	M10_2(PM	/110_2(▼ F	PM10_2(▼ P	M10_2(▼ PM25_in	fluen 🔻 M25_2	M25_2 ▼ M25	_2 ~ M25_2 ~ M2	25_2 ▼ M25_2 ▼
	2 1	1	1 Fond	1	1	1 1	1	1	NA						N	Δ			
	3 1	1	1 Fond	1	1	1 1	1	1	Fond	1	1	1	1	1	1 N	Δ			
	4 1	1	1	- 1	1	1 1	1	1	F =l	1	- 1	1	1	1	N.I.				

2	1	1	1	Fond	1	1	1	1	1	1	NA							NA						
3	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1	1	NA						
4	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1		NA						
5				Fond	1	1	1	1	1	1	NA							NA						
6	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1	1	NA						
7	1	1	1	NA							Trafic	1	1	1	1	1	1	Trafic	1	1	1	1	1	1
8	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1	1
9	1	1	1	Fond	1	1	1	1	1	1	Fond	1	1	1	1	1	1	NA						
10	1	1	1	NA							Trafic	1	1	1	1	1	1	NA						
																								1

Stations Explanations

Measurements sites description Description Stations.xlsx

Δ	Α	В
1	Column_Name	Explanation
2	idPolair	ID of the station (XXXYY > XX = Organisme ID; YYY = Station ID)
3	nom_station	Name of the station
4	coord_x_l93	Coord in Lambert 93
5	coord_y_l93	Coord in Lambert 93
6	X_lamb2	Coord in Lambert 2
7	Y_lamb2	Coord in Lambert 2
8	LON	Coord Longitude in Decimal Degree
9	LAT	Coord Latitude in Decimal Degree
10	Département	Zone Level Department
11	Zone_EPCI	Zone Level Cross-Town
12	typologie	Typology of the Station : Urban, Periurban, Rural
13	NO2_influence	Influence of the measure NO2 : background (fond), traffic (trafic), industrial (industriel)
14	NO2_2012	NO2 measurement representative this year ? (1=Yes ; ""=No)
15	NO2_2013	NO2 measurement representative this year ? (1=Yes ; ""=No)
16	NO2_2014	NO2 measurement representative this year ? (1=Yes ; ""=No)
17	NO2_2015	NO2 measurement representative this year ? (1=Yes ; ""=No)
18	NO2_2016	NO2 measurement representative this year ? (1=Yes ; ""=No)
19	NO2_2017	NO2 measurement representative this year ? (1=Yes ; ""=No)
20	O3_influence	Influence of the measure Ozone : background (fond) (No Ozone measurment in trafic or industrial influence)
21	O3_2012	Ozone measurement representative this year ? (1=Yes ; ""=No)
22	O3_2013	Ozone measurement representative this year ? (1=Yes ; ""=No)
23	O3_2014	Ozone measurement representative this year ? (1=Yes ; ""=No)
24	O3_2015	Ozone measurement representative this year ? (1=Yes ; ""=No)
25	O3_2016	Ozone measurement representative this year ? (1=Yes ; ""=No)
26	O3_2017	Ozone measurement representative this year ? (1=Yes ; ""=No)
27	PM10_influence	Influence of the measure PM10: background (fond), traffic (trafic), industrial (industriel)

« Data_pollutant » description


```
Organisme; Station: Mesure; Date; Valeur
15,013;004;01/01/2012 00:00:46
15;013;004;01/01/2012 01:00;42
_15;013;004;01/01/2012 02:00;38
15;013;004;01/01/2012 03:00;37
15;013;004;01/01/2012 04:00;36
15;013;004;01/01/2012 05:00;31
15;013;004;01/01/2012 06:00;33
15;013;004;01/01/2012 07:00;33
15;013;004;01/01/2012 08:00;33
15;013;004;01/01/2012 09:00;28
15;013;004;01/01/2012 10:00;22
15;013;004;01/01/2012 11:00;17
15;013;004;01/01/2012 12:00;24
15;013;004;01/01/2012 13:00;23
15;013;004;01/01/2012 14:00;12
15;013;004;01/01/2012 15:00;6
15;013;004;01/01/2012 16:00;8
15;013;004;01/01/2012 17:00;32
15;013;004;01/01/2012 18:00;33
15;013;004;01/01/2012 19:00;41
15;013;004;01/01/2012 20:00;42
15;013;004;01/01/2012 21:00;39
15;013;004;01/01/2012 22:00;32
15;013;004;01/01/2012 23:00;31
15;013;004;02/01/2012 00:00;25
15;013;004;02/01/2012 01:00;14
15;013;004;02/01/2012 02:00;14
15;013;004;02/01/2012 03:00;28
15;013;004;02/01/2012 04:00;26
15;013;004;02/01/2012 05:00;23
15;013;004;02/01/2012 06:00;24
15;013;004;02/01/2012 07:00;26
15;013;004;02/01/2012 08:00;30
```

Description_Stations.xlsx

1	А	В	С
1	idPolair 💌	nom_station 💌	coord_x_l9💌
2	15013	Champ_sur_Drac	914668.44
3	15017	Fontaine_les_Balmes	910970.88
4	15018	Voiron_Urbain	902699
г	15001	F:	070015 01

« Meteo data »

At each measurement site, each hour 2012 to 2016:

- T2: 2mtemperature, °C
- Q2 : 2m specific humidity, kg/kg
- RH2: 2m relative humidity, %
- U10, V10: 10m wind components U & V, m/s
- VV10, DV10: 10m wind speed & direction, m/s, deg
- PSFC: surface pressure, Pa
- PRECIP: precipitation, mm,
- PBLH: PBL height: mixing height, m
- HFX: sensible heat flux, W.m⁻²
- LH: latent heat flux(surface evaporation), W.m⁻²
- ALBEDO
- SNOWC: flag indicating snow coverage (1 for snow cover)
- Geop500hPa et geop750hPa: geopotential altitudes at 500 et 850hPa, m

votre parten'air
AUVERGNE-RHÔNE-ALPES

Geopotential 500 / 700 hPa

- https://en.wikipedia.org/wiki/Geopotential_height:
- Geopotential height is a vertical coordinate referenced to Earth's mean sea level
- geopotential height of a certain pressure level
 the geopotential height at which that pressure occurs

At an elevation of h, the **geopotential** is defined as:

$$\Phi(h) = \int_0^h g(\phi,z)\,dz\,,$$

where $g(\phi, z)$ is the acceleration due to gravity, ϕ is latitude, and z is the geometric elevation. Thus geopotential is the gravitational potential energy per unit mass at that elevation $h_z^{[1]}$

The geopotential height is:

$$Z_g(h) = rac{\Phi(h)}{g_0}\,,$$

which normalizes the geopotential to g_0 , the standard gravity at mean sea level. [citation needed]

060515/1800V018 NAM 500 MB HGT, GEO ABS VORTICITY

♣ Global & synoptic patterns

« Meteo data » : WRF output

WRF_YEAR.RData

 $YEAR = 2012 \ge 2016$

dataframe « wrfdata » : 1 row = 1 hour : date column idPolair = id station ex 15017, 15203...

```
> load('meteoWRF 2013.RData')
> ls()
[1] "wrfData"
> head(wrfData)
                                                                   HFX ALBEDO
                date idPolair T2
                                      Q2 U10 V10 PSFC PBLH
                                                              LH
1 2013-01-01 00:00:00
                         7001 3.1 0.0044 0.7 5.0 96993
                                                          0.0
                                                                          0.1
2 2013-01-01 01:00:00
                         7001 3.3 0.0045 1.7 7.5 96947 530 17.9 -65.1
                                                                          0.1
3 2013-01-01 02:00:00
                       7001 3.6 0.0046 2.3 8.5 96965 563 18.4 -48.7
                                                                          0.1
4 2013-01-01 03:00:00
                        7001 3.9 0.0046 2.3 7.6 96973 557 24.4 -47.1
                                                                          0.1
5 2013-01-01 04:00:00
                                                                          0.1
                        7001 4.3 0.0047 1.8 7.2 96959 582 25.8 -56.8
6 2013-01-01 05:00:00
                         7001 4.8 0.0048 1.6 7.1 96945 552 23.9 -52.1
                                                                          0.1
  SNOWC HR2 VV10 DV10 PRECIP
         90 5.1 188
                       0.00
            7.7 193
                       0.01
                 195
                       0.17
            8.8
                       0.41
                 197
            8.0
                       0.36
                 194
                                                                               n'air
                                                                               GNE-RHÔNE-ALPES
            7.3 192
                       0.26
```

« Meteo data » : Geop500hPa et geop750hPa

Geop.idstation.YEAR.d02.RData

```
YEAR = 2012 ≥ 2016

Idstation: id station ex: 15017, 15203...

d02 = domain_geop = France

→ dataframe:

date id_polair geo_p_500hPa geo_p_850hPa
```

```
> load('Geop.15017.2012.d02.RData')
> ls()
[1] "out"
> str(out)
'data.frame':
               8785 obs. of 4 variables:
 $ date
                : int 2012010100 2012010101 2012010102
 $ id polair
                      15017 15017 15017 15017 15017 .
 $ geop p 500hPa: num
                     5550 5553 5556 5560 5564 ...
 $ geop p 850hPa: num 1436 1434 1434 1437 1437 ...
> head(out)
        date id polair geop p 500hPa geop p 850hPa
                15017
                            5550.076
                                          1436.409
1 2012010100
                15017
2 2012010101
                           5553.286
                                         1434.187
3 2012010102
                15017
                           5555.764
                                        1434.181
4 2012010103
                15017
                           5560.354
                                         1436.774
                15017
5 2012010104
                           5563.615
                                         1437.479
6 2012010105
                15017
                            5567.679
                                         1439.133
```


« Data pollution » : CHIMERE ouput

CHIMERE_YEAR.**RData**

```
YEAR = 2012 \ge 2016
                               > load('CHIMERE 2013.RData')
                               > head(polChimere)
→ dataframe polChimere
                                                date val idPolair param
                                 2013-01-01 00:00:00 42.8
                                                             15017
                                                                     03
                                                            15018 03
                               2 2013-01-01 00:00:00 42.9
                               3 2013-01-01 00:00:00 43.3
                                                            15038 03
                                                            15039
                                                                    03
                               4 2013-01-01 00:00:00 43.2
                               5 2013-01-01 00:00:00 43.3
                                                            15043
                                                                    03
val = concentration, μg.m<sup>-3</sup>
                               6 2013-01-01 00:00:00 42.4
                                                            15045
                                                                    03
Param = O3, NO2, PM10, PM2 > str(polChimere)
                                'data.frame':
                                               271787276 obs. of 4 variables:
                                $ date : chr "2013-01-01 00:00:00" "2013-01-01 00:00:
                                          : num 42.8 42.9 43.3 43.2 43.3 42.4 43.3 42.4
                                $ idPolair: num 15017 15018 15038 15039 15043 ...
                                         : Factor w/ 4 levels "03", "N02", "PM10", ...: 1 1
                                $ param
```

