## Weight at Birth Prediction

Mohammad Mirsafaei Elaheh Toulabi Nejad

### **Dataset**

Name: US\_births(2018)

• Columns: 55

• Rows: 3.8M

• Context: This data contains Information about all of the child birth in the United States in the year of 2018).

• Task: This data could be used for predicting the weight of a baby.

## **Progress**



# Challenges

## Large amount of missing values

• Analyzing data and replacing with mean or median whenever needed.

### Null values in BMI column

- Reconstructing part of the dataset based on available columns(Height, Weight)
- Replacing rest of the dataset with mean

### Statistical columns with no effect on weight

 Analyzing data and removing some columns based on their usage and meaning that had no effect on prediction

## High volume of data and hardware limitations

- Sampling over 600,000 records of data
- Running statistical tests to ensuring sample validity.

### Columns with little effect

Using OLS model and P-value to determine what columns should be removed

## High number of columns

• Using Dimension Reduction methods (PCA) for reducing number of column up to 75%

## No fixed number of groups for outcome variable

- Analyzing each potential group of data.
- Searching through articles and reliable sources such as WHO
- Using experts knowledge
- Running most of the models on each assumption and analyzing and comparing results

## Selecting between evaluation parameters

• Deciding to concentrate on Recall and FScore more than accuracy

### **Unbalanced Dataset**

• Balancing dataset based on idea of improving "Low" category

## **Brief Checklist Explanation**

• Columns: 55

• Rows: 3.8M

- Distribution of Weight
- Correlation of Columns with Weight
- Pair Plot
- Impact of Categorical Features On Weigh
  - Sex
  - Smoked
  - Prior Dead
  - First Birth
  - Previous Cesarian

- Dropping null columns
- Dropping columns based on meaning
- Constructing null values whenever was possible with other columns
- Adding new features
- Standardization
- Removing outliers
- Sampling

- Linear Models: OLS, Linear Regression, Ridge, Lasso, Decision Tree Regressor, Random Forest Regressor
- Logistic Models: Logistic Regression, Random Forest Classifier, Decision Tree Classifier, Neural Network, GaussianNB

## P5&P6

### • Linear Models:

| Model                         | R-squared | MAE      | MSE         | RMSE     |  |
|-------------------------------|-----------|----------|-------------|----------|--|
| OLS                           | 0.256     | 363.4576 | 222061.6544 | 471.2341 |  |
| LinearRegression              | 0.2528    | 363.4576 | 222061.6544 | 471.2341 |  |
| Ridge                         | 0.2528    | 363.4576 | 222061.6494 | 471.2341 |  |
| Lasso                         | 0.2527    | 363.4378 | 222056.3011 | 471.2285 |  |
| DecisionTreeRegressor -0.4930 |           | 517.7256 | 443736.9522 | 666.1358 |  |
| RandomForestRegressor         | 0.2833    | 356.4205 | 213002.4881 | 461.5219 |  |

## P5&P6

• Logistic Models:

| #class | Model              | Avg Precision | Avg Recall | Avg F1-score |  |
|--------|--------------------|---------------|------------|--------------|--|
|        | LogisticRegression | 0.36          | 0.22       | 0.25         |  |
|        | Random Forest      | -             | -          | -            |  |
| 11     | Decision Tree      | 0.17          | 0.23       | 0.20         |  |
|        | Naive Bayes        | 0.33          | 0.16       | 0.19         |  |
|        | Neural Network     | 0.36          | 0.27       | 0.27         |  |
| 2      | LogisticRegression | 0.79          | 0.71       | 0.73         |  |
|        | Random Forest      | 0.79          | 0.82       | 0.79         |  |
|        | Decision Tree      | 0.75          | 0.67       | 0.70         |  |
|        | Naive Bayes        | 0.77          | 0.70       | 0.72         |  |
|        | Neural Network     | 0.78          | 0.70       | 0.73         |  |

## P5&P6

• Logistic Models:

| #class | Model              | Low Precision | Low Recall | Low F1-score |  |
|--------|--------------------|---------------|------------|--------------|--|
|        | LogisticRegression | 0.38          | 0.67       | 0.48         |  |
|        | Random Forest      | 0.6           | 0.28       | 0.38         |  |
| 2      | Decision Tree      | 0.32          | 0.55       | 0.40         |  |
|        | Naive Bayes        | 0.35          | 0.59       | 0.44         |  |
|        | Neural Network     | 0.37          | 0.63       | 0.46         |  |
| 11     | LogisticRegression | -             | -          | 0.2506       |  |
|        | Random Forest      | -             | -          | -            |  |
|        | Decision Tree      | -             | -          | 0.0225       |  |
|        | Naive Bayes        | -             | -          | 0.1928       |  |
|        | Neural Network     | -             | -          | 0.1731       |  |

- Improving Recall and F1-score of "Low" category by balancing dataset.
- Using PCA and analyzing best number of columns

| #class | N/a dal            | Low Precision |       | Low Recall |       | Low F1-score |       |
|--------|--------------------|---------------|-------|------------|-------|--------------|-------|
|        | Model              | Before        | After | Before     | After | Before       | After |
| 2      | LogisticRegression | 0.66          | 0.38  | 0.23       | 0.67  | 0.35         | 0.48  |
|        | Random Forest      | 0.67          | 0.60  | 0.20       | 0.28  | 0.31         | 0.38  |
|        | Decision Tree      | 0.57          | 0.32  | 0.17       | 0.55  | 0.28         | 0.40  |
|        | Naive Bayes        | 0.44          | 0.35  | 0.30       | 0.59  | 0.36         | 0.44  |
|        | Neural Network     | 0.58          | 0.37  | 0.28       | 0.63  | 0.38         | 0.46  |

- Deciding to define new logistic problem due to flaw in data.
- Achieving 356.63 MAE by using "Random Forest Regressor" in linear part that is acceptable value.
- Using 11 categories due to ISCD standard and also 2 categories by consulting with experts in field.

| #Class | Model               | Precision | Recall | F1-score | Precision for low class | Recall<br>For low class | F1-score<br>For low class |
|--------|---------------------|-----------|--------|----------|-------------------------|-------------------------|---------------------------|
| 2      | Logistic Regression | 0.79      | 0.71   | 0.73     | 0.38                    | 0.67                    | 0.48                      |
| 11     | Logistic Regression | 0.36      | 0.22   | 0.25     | -                       | -                       | 0.2506                    |