1주차 - Bayesian Network

출처: GSDS 문일철 교수님 - "Application of AI and DM Technology"

용어 정리

• \$\sigma\$ algebra : 모든 크기를 잴 수 있는 집합(가측 집합)들의 집합

Definition 1 - σ -algebra

Let S be a set, and let \mathcal{F} be a family of subsets of S. \mathcal{F} is called a σ -algebra if

- 1. $\emptyset \in \mathcal{F}$
- 2. $A \in \mathcal{F}$ implies $A^c \in \mathcal{F}$
- 3. $A_1,A_2,\dots\in\mathcal{F}$ implies $igcup_{i=1}^\infty A_i\in\mathcal{F}$
- Measurable Space : 측정 가능한 공간

Definition 2 - Measurable Space

Let S be a set, and let \mathcal{F} be a σ -algebra of subsets of S. Then (S, \mathcal{F}) is called a **measurable space**. The elements of \mathcal{F} are called measurable sets.

가장 작은 \$\sigma-algebra\$는 F = {\$\phi, S\$} 이며, 가장 큰 것은 F = P(S) 이다.

P(S): 모든 부분집합의 집합(멱집합 - power set)

• Lebesgue measure : 직육면체의 부피를 측정하는 **르벡 측도**

Definition 9 - Lebesgue measure

The **Lebesgue measure** λ on \mathbb{R}^d is a measure on the Borel σ -algebra of \mathbb{R}^d such that the λ measure of each rectangle equals to its volume.

• Borel \$\sigma - algebra\$

Definition 4 - Borel σ -algebra

The Borel σ -algebra $\mathcal B$ of a topological space $(S,\mathcal T)$ is the σ -algebra generated by $\mathcal T$.

확률 기본 개념

Law of Total Probability: $P(a) = \sum_b P(a,b) = \sum_b P(a|b) P(b)$

Factorization : P(a,b,c,...,z) = P(a|b,c,...,z) P(b|c,...,z) P(c|...,z)...P(z)

• 위 개념들은 정의(Definition)으로 언제든 적용 가능하다.

Bayesian Network

• 의의 : 설계도로서 사용되며, <u>Factorization을 간단하게 사용</u>하게 해준다.

• Conditional Probability table

Int.	Effort	GPA	P(I,E,G)
false	false	false	0.1
false	false	true	0.2
false	true	false	0.05
false	true	true	0.05
true	false	false	0.3
true	false	true	0.1
true	true	false	0.05
true	true	true	0.15

위 통계적 모델에서의 문제점

- 1. 각각의 경우에 대해 Point estimation을 정확히 하기 위해선 Sample 수가 많아야 한다.
- 2. 특성의 수가 늘어날 경우 Curse of dim 이 발생하여 설명력을 갖추기 위해 필요로 하는 Sample 수가 지수적으로 증가한다.
 - => Scalability 하지 않다.

따라서, Parameter 수를 줄이는 등 Scalability 한 조치들을 진행해야 한다.

○ 그 중에 하나가 <u>Parameter을 Indepence하게 선택</u>하는 것이다.

• Independence

- 의의: Parameter가 Indepence 하다면, 고려해야할 경우의 수를 확 줄일 수 있다.
 - 만약, 단 2개의 상태 값을 가지는 Parameter n개가 not indep 하다면 \$2^n-1\$ 경우를 고려해야 한다.
 - 하지만 indep 하다면 n개의 경우의 값을 곱해서 구할 수 있다.
- ㅇ 정의

Naive Bayes classifier

 $f_{NB}(x) = argmax_{Y=y} P(Y=y) \prod_{1 < i < d} P(X_i = x_i|Y=y)$

• 아래의 사항들이 주어졌다는 전제

P(Y): Prior prob class

independent feature \$X \in R^d\$ s.t. given the class Y

For each X_i , we have likelihood $P(X_i|Y)$

- 의의: '좋은(Optimal)' Factorization을 하게 해준다.
 - 앞서 Factorization 정의상, 어떤 확률 분포도 Factorization을 할 수 있다.
 - 이때 '좋은'의 기준은 1) 계산의 양을 줄여주며, 2) Random variable 간의 Condi Indepence 유무를 잘 보여주는 것이다.

Condi indepdence with X1 & X2 : X1 \$\bot\$ X2/{Y}

단, 지금 상태에선 X1, X2가 condi indep 인지 모른다.

Y에 의해 indep 유무가 정해진다.

• Optimal Factorization의 정의

- 우리는 모집단의 값을 추측할 뿐 알 수 없다.
 - 따라서 모집단의 값들과 표본을 통한 측정값의 오차를 최대한 줄여나가는 것을 목표로 한다.
- 둘의 오차를 줄이는 하나의 방법으로 Upper bound를 부여한다.

<Hoeffding's inequality>

let $Z_1, ..., Z_n$ be independent bounded random variables with $Z_i \in [a,b]$ for all i, where $-\inf < a <= b < \inf$. then

 $P(\frac{1}{n} \sum_{i=1}(Z_i - E[Z_i]) >= t) <= \exp(-\frac{2nt^2}{(b-a)^2})$

- t가 커질수록 upper bound가 매우 작아진다.
- b-a 의 크기가 작아질수록 upper bound가 작아진다.
- n이 커질수록 Upper bound가 작아진다.

=> t, 'b-a', n 중에서 우리가 조정할 수 있는 것은 n이다. **즉, 우리가 원하는 정확도를 충족 하기 위해서 n을 늘려야 한다.**

- 또는 <u>Parameter의 개수를 줄임으로써, 정확도를 충족하기 위해 필요로 하는 n의 크기를 줄이는 것</u>이다.
 - 이때, 필요로 하는 n보다 큰 데이터의 개수들은 Hoeffding's inequality에 의해서 모델 성능 향상에 일조할 것이다.
 - 쉽게 말해 fitting 해야하는 Parameter 개수가 적으니 작은 n에서도 모델 성능을 확보할 수 있다.
 - 실제로 Neural Network에 적용할 때에도 성능 향상에 도움이 된다.
- 즉, Optimal Factorization 이라 할 수 있는 이유는 "파라미터의 개수를 줄이는 것은 모델 성능 향상에 긍정적 영향을 주며", Bayesian Network는 Factorization 간 파라미터 개수를 가장 줄이는 방법이다.
- 모델의 문법

- A acyclic and directed graph (DAG)
- A set of nodes
 - A random variable
 - A conditional distribution given its parents (\$P(X_i|Parents(X_i))\$
- o A set of links
 - Direct influence from the parent to the child
- => To obtain a compact representation of the full joint distribution
- o Square Plate Notation

Design model of Typocal Local Structures

Common Parent

■ Alarm을 관측(Fixing) 시, John 과 Mary는 indep 하다

J \$\bot\$ M|A

Cascading

■ Alarm을 관측(Fixing) 시, Buglary와 MaryCall은 indep 하다.

B \$\bot\$ M|A

V-Structure

- Alarm을 관측(Fixing) 시, Buglary와 Earthquake는 not indep 하다.
- 특히 V-structure은 모델 안에 숨겨져 있기에 잘 찾아야 한다.

ex)- Hidden layer들은 input과 V-Structure 구조를 가진다.

Ex)- Finding V-Structure

- 정답은 V-Structure 이며, W가 관측되었기 때문에 not indep 하다.
- 만약 W가 관측되지 않았다면 Z와 \$\beta\$ 는 Indep 한 관계이다.
- => 관측 유무를 잘 확인해야 한다!

Bayes Ball Algorithm

• 목적 : Checking \$X_A \bot X_B |X_C\$

• 방법: 관측된 노드를 벽처럼 여기고, 나머지 공간 간에 공을 굴려보는 것

빨간 선은 Indep을 의미, 파란 선은 dep 을 의미

통하지 않으면 independence 한 것.

• D-Seperation

 X is d-separated(directly-separated) from Z given Y if we cannot send a ball from any node in X to any node in Z using the Bayes Ball algorithm

Markov Blanket : P(A|blanket, B) = P(A|Blanket)

Blanket = {parents, children, children's other parents}

○ 의의 : 절대적 Independece의 정의가 D-Seperation 에서 온다!

Factorization theorem

- Bayesian network을 고려할 때, 가장 일반적인 형태의 Probability distribution
 - \circ P(x) = $prod_i P(X_i : child node|X_{\pi_i} : Parent node)$

- 왜 가장 일반적이라고 할까?
 - Factorization의 방식은 매우 많다.
 - 하지만 위의 경우 Conti-indep을 고려하여, 1) Parameter의 개수를 줄여 계산 양을 확 줄였으며,
 2) 위의 확률 식을 시행착오를 줄이면서 찾을 수 있다.

Making Q-A machine!

• 목표는 질문(query)를 했을 때, '그럼직한' 답을 내놓는 기계를 만드는 것이다.

이때 '그럼직한 답'이란 가장 높은 확률 값을 가지는 경우를 찾는 것이다.

-> 조건 \$x_v\$ 가 주어졌을 때, 가장 바람직한 Y는 무엇인가? (\$argmaxP(Y|x_v)\$)

\$ex)- argmax_aP(A|B=True, C=True)\$

● Q-A machine인 \$argmaxP(Y|x_V))\$ 을 알기 위해 아래와 같이 계산할 수 있다.

우리가 알고 싶은 값을 계산하기 위해서, 알고 있는 값들을 활용할 수 있다.

확률 값을 Full joint 형식으로 바꾼 다음에 Condi independence 조건을 통해서 계산을 간편화할 수 있다.

1. Likelihood 계산 (\$p(x_v)\$)

 $P(X_V) = \sum_{X_H} P(X_H, X_V) = \sum_{x_1}... \sum_{x_k} P(x_1, ..., x_k, X_V)$

 $X = [X_1, ..., X_N]$: all random variables

 $X_V = [X_{K+1}, ..., X_N]$: evidence variables

 $X_H = X_V = [X_1, ..., X_k]$: hidden variables

○ Tip) 확률을 계산할 때에는 Full Joint probability 에서 시작해라!

ex)- $P(B=True, M = True) = \sum_{sum_E \sum_{sum_J \le m_J \le$

 $= \sum_{A \in A} P(B) P(E) P(A|B,E) P(J|A) P(M|A)$

2. Contidional Probability 계산

 $P(Y|x_V) = \sum_z P(Y,Z=z|x_V)$

 $= \sum_{x \in P(Y,Z,x_V)}{P(x_V)} = \sum_{x \in P(Y,Z,x_V)}{\sum_{x \in P(Y,Z,x_V)}{\sum_{x \in P(Y,Z,x_V)}}}$

 $X_H = [Y,Z]$

Y: interested hidden variables

Z: uninterested hidden variable

3. Contidionmal probability 중 argmax 값 찾기

Marginalization and Elimination

- 특정 확률 값을 구할 때 곱 연산이 너무 많아 Computation complexity가 높다!
- 1. Marginalization 필요없는 값들을 앞으로 빼자!

P(a=true,b=true,mc=true)=
$$\sum_{JC}\sum_{E}P(a,b,E,JC,mc)$$

= $\sum_{JC}\sum_{E}P(JC|a)P(mc|a)P(a|b,E)P(E)P(b)$

$$=P(b)P(mc|a)\sum_{JC}P(JC|a)\sum_{E}P(a|b,E)P(E)$$

계산 과정을 나눠서 따로 따로 진행할 수 있다.

2. Variable Elimination

전제 : $P(e|j,m) = \frac{P(e,j,m)}{p(j,m)} = \alpha P(e,j,m)$

\$\alpha = p(j,m)\$ 는 Normalizer 의 역할을 한다.

- j,m은 이미 관측된 값으로 Constant 값으로 부여할 수 있다.
- 단, 아직 관측이 안된 값일 경우 그럴 수 없다.
- 각 P들을 Topological 순서대로 나열한다.
 - Topological order 란 Parent -> child 순으로 나열한다는 의미다.
 - 이는 컴퓨터에서 계산할 때 leaf node(Child) 부터 시작하기 위함이다.
- <u>각 확률 분포를 함수(Function)으로서 고려한다.</u>

• =
$$\alpha f_{E}(e) \sum_{B} f_{B}(b) \sum_{A} f_{A}(a,b,e) f_{J}(a) f_{M}(a)$$

A $f_{JM}(A)$

T 0.63

F 0.0005

A $f_{J}(A)$

A $f_{M}(A)$

T 0.90

F 0.05

F 0.01

• = $\alpha f_{E}(e) \sum_{B} f_{B}(b) \sum_{A} f_{A}(a,b,e) f_{JM}(a)$

○ 함수로서 고려한다면, 동일한 입력값을 필요로 하는 \$f_J, f_M\$ 을 통합하여 \$f_{JM}\$ 로 표현할 수 있다. <u>즉, 총 필요로 하는 경우의 수를 줄일 수 있다.</u>

 $f_J(a)f_M(a) = f_{JM}(a)$ $f_A(a,b,e)f_{JM}(a) = f_{AZM}(a,b,e)$

○ \$\sum\$ 별로 하나의 함수로 통합한 다음 Marginalization을 통해 변수를 줄인다.

$$\bullet = \alpha f_E(e) \sum_B f_B(b) \sum_A f_{AJM}(a, b, e)$$

$$\bullet = \alpha f_E(e) \sum_B f_B(b) f_{\bar{A}JM}(b, e)$$

이 위의 두 과정을 반복하여 하나의 함수로 표현한다.

• =
$$\alpha f_{E\bar{B}\bar{A}IM}(e)$$

○ 마지막으로 e의 모든 경우에 대해서 확률을 합한다. 이때 1이 나오도록 \$\alpha\$ 값을 조정한다.

• 정의 : 확률모델은 아니나, Normalized를 하면 확률분포 모델로 될 수 있는 함수들

확률은 2가지 조건을 충족해야 한다.

- 1. 각 확률 분포값이 0 이상이여야 한다.
- 2. 총 합이 1이여야 한다.

즉, Potential Function은1번 조건, 모든 값이 0 이상을 충족해야 한다.

2번 조건은 Normalized 를 통해서 달성될 수 있다. (즉, Unnormalized Probability 이다.)

ex)- Lelu

● Joint Distribution을 Sequel Model 형태로 표현함으로써 Potential func의 연산으로 구해낼 수 있다.

P(A,B,C,D) = P(A|B) P(B|C) P(C|D) P(D)

P(A,B,C,D) = P(U) = \$\frac {\prod_N \psi(N)}{\prod_L \phi(L)}\$ = \$\frac {\psi(a,b) \psi(b,c) \psi(c,d)}
{\phi(b) \phi(c)}\$

\$\phi\$: ex)조건부 확률. 내가 원하는 대로 형태를 정할 수 있다.

\$\psi\$: ex)각 상황별 확률. 내가 원하는 대로 형태를 정할 수 있다

■ 이때 \$\phi, \psi\$ 은 다양한 형태를 띌 수 있다.

Potential function on Nodes: \$\psi(a,b), \psi(b,c), \psi(c,d)\$

Potential Function on Link: \$\phi(b), \phi(c)\$

Q. 흠.. 노드와 링크를 다른 형태로도 표현해줄 수 있을 텐데 이렇게 정의한 이유가 있나?

Potential functions on Node에서 방향성을 제거하며, Clique만 탐색하게 설정

Q. 흠.. 조건부 확률은 방향성이 있는데 어떻게 방향성을 제거해주는 거지?

Clique: Graph간 Fully Connectd 된 Component 들의 집합

Separator : 각 Clique 사이에서 Intersection을 의미. 공통 요소 외의 나머지에 대해 \$\psi\$를 Marginalization 하여 구할 수 있음.

(A,B) 에서 A를, (B,C) 에서 C를 Marginalization 한 것은 같아야 한다.

여기서 (B,C) Clique에서 B값이 갱신이 된다면, B / (A,B) 방향으로 값 갱신이 일어난다. (Message passing)

- Clique 상황에서의 Inference를 "Message passing" 이라고 한다.
- 그럼 어떻게 Potential 함수를 통해서 확률 분포값을 어떻게 알아 낼 수 있을까?
 - 유일한 방식을 Absortion rule 또는 Update Rule이라고 부른다.

\$\psi(A,B)\$ 에서만 Update가 진행되어 \$\psi^*(A,B)\$ 가 되었다고 하자.

그럼 다른 값들을 다음과 같이 업데이트 한다.

 $\phi(B) = \sum_A \phi(A,B)$ [Update rule for separators]

 $\phi(B,C) = psi(B,C) \frac{(B)}{\phi(B)}$ [Update rule for cliques]

Why does this work? $\sum_{C} \psi^{*}(B,C) = \sum_{C} \psi(B,C) \frac{\phi^{*}(B)}{\phi(B)}$ $= \frac{\phi^{*}(B)}{\phi(B)} \sum_{C} \psi(B,C) = \frac{\phi^{*}(B)}{\phi(B)} \phi(B) = \sum_{A} \psi^{*}(A,B)$ Guarantees the local consistency \rightarrow Global consistency after iterations

- \$\sum_C \psi^(B,C) = \sum_A \psi^(A,B)\$ 를 통해서 유추해낸 식
- 위의 식은 local consistency 만을 보장하나, Message passing이 확장 및 반복을 통해서 Global consistency를 보장한다.
- Ex)- Potential Function의 Message Passing을 통해서 확률값 구하기

사전지식이 아래와 같이 주어진다고 가정하자

- \circ \$\psi(a,b) = P(a|b), \psi(b,c) = P(b|c) P(c)\$
- \$\phi(b) =1 \$

P(b)를 구해보자!

이때, Update rule을 통해서 값을 갱신하며, Separator의 확률 값은 좌우 상관없이 동일해야 한다.

\$\phi^*(b)\$ \$= \sum_a \psi(a,b) = \sum_a P(a|b) \$= \$ 1 \$ [(a,b) → b 방향]

 $\phi(b,c) = psi(b,c) \frac{hi^(b)}{\phi(b)} = P(b|c) P(c) = P(b,c)$

<mark>\$\phi^{**}(b)\$</mark> \$= \sum_c \psi^*(b,c) = \sum_c P(b,c) \$= <mark>\$P(b)\$</mark> [(b,c) → b 방향]

\$\phi^*(b) \neq \phi^{**}(b)\$. 이때 \$\psi(a,b)\$ 도 Message Passing으로 업데이트 할 것

 $\phi^{(a,b)} = \phi^*(a,b) \frac{(a,b) \frac{(a,b)}{\pi^*(b)}} = \frac{P(a,b)}{1} = P(a,b)$

$\phi^{*}(b)$ \$= \sum_a \psi^{\((a,b) \) \$= \\$P(b)\$

- \$\phi(b)\$ 의 값이 좌우 공통으로 통일됨. P(b)을 새로 알게 된 값(\$\phi^*(b)\$)과 Potential func의 연산으로 구할 수 있다.
- Ex2 P(b|a =1, c=1) 계산하기

 $\phi^*(b) = \sum_a \phi(a,b) \cdot delta(a=1) = P(a=1|b)$

\$\delta\$: 특정 값이면 1의 값을, 그 외의 값이면 0을 띄는 함수

 $\phi(b,c) = psi(b,c) \frac{hi^(b)}{\phi(b)} = P(b|c=1)P(c=1) \frac{1}{1}$

 $\phi^{**}(b) = \sum_{c=1}^{b} P(b|c=1) P(c=1) P(a=1|b)$

 $\phi(a,b) = \phi(a,b) \frac{**}{b}_{\phi(a,b)} = P(a=1|b) \frac{P(b|c=1)P(c=1|b)}{P(a=1|b)} = P(b|c=1)P(c=1)P(a=1|b)$

 $\phi^{**}(b) = \sum_a psi^(a,b) \delta(a=1) = \frac{p(b|c=1) p(c=1|b)}{p(c=1|b)}$

○ 특정 값에 대해서 알기 위해 \$\delta\$ 함수를 도입! 그 외에는 동일하게 점검!