and by adding up these inequalities, we obtain

$$V^{k+1} \le V^0 - \rho \sum_{j=0}^k \left(\left\| r^{j+1} \right\|_2^2 + \left\| B(z^{j+1} - z^j) \right\|_2^2 \right),$$

which implies that

$$\rho \sum_{j=0}^{k} \left(\left\| r^{j+1} \right\|_{2}^{2} + \left\| B(z^{j+1} - z^{j}) \right\|_{2}^{2} \right) \le V_{0} - V^{k+1} \le V^{0}, \tag{B}$$

since $V^{k+1} \leq V^0$.

Step 2. Prove that the sequence (r^k) converges to 0, and that the sequences (Ax^{k+1}) and (Bz^{k+1}) also converge.

Inequality (B) implies that the series $\sum_{k=1}^{\infty} r^k$ and $\sum_{k=0}^{\infty} B(z^{k+1} - z^k)$ converge absolutely. In particular, the sequence (r^k) converges to 0.

The *n*th partial sum of the series $\sum_{k=0}^{\infty} B(z^{k+1} - z^k)$ is

$$\sum_{k=0}^{n} B(z^{k+1} - z^k) = B(z^{n+1} - z^0),$$

and since the series $\sum_{k=0}^{\infty} B(z^{k+1} - z^k)$ converges, we deduce that the sequence (Bz^{k+1}) converges. Since $Ax^{k+1} + Bz^{k+1} - c = r^{k+1}$, the convergence of (r^{k+1}) and (Bz^{k+1}) implies that the sequence (Ax^{k+1}) also converges.

Step 3. Prove that the sequences (x^{k+1}) and (z^{k+1}) converge. By Assumption (2), the matrices $A^{\top}A$ and $B^{\top}B$ are invertible, so multiplying each vector Ax^{k+1} by $(A^{\top}A)^{-1}A^{\top}$, if the sequence (Ax^{k+1}) converges to u, then the sequence (x^{k+1}) converges to $(A^{\top}A)^{-1}A^{\top}u$. Similarly, if the sequence (Bz^{k+1}) converges to v, then the sequence (z^{k+1}) converges to $(B^{\top}B)^{-1}B^{\top}v$.

Step 4. Prove that the sequence (λ^k) converges.

Recall that

$$\lambda^{k+1} = \lambda^k + \rho r^{k+1}.$$

It follows by induction that

$$\lambda^{k+p} = \lambda^k + \rho(r^{k+1} + \dots + \rho^{k+p}), \quad p \ge 2.$$

As a consequence, we get

$$\|\lambda^{k+p} - \lambda^k\| \le \rho(\|r^{k+1}\| + \dots + \|r^{k+p}\|).$$