Handout 2

Sebaran Normal Ganda

(Multivariate Normal Distribution)

Variabel $\mathbf{X}_i, \mathbf{X}_2, ..., \mathbf{X}_p$ dikatakan berdistribusi normal ganda dengan parameter μ dan Σ jika mempunyai probability density function :

$$f(\mathbf{X}_{i}, \mathbf{X}_{2}, ..., \mathbf{X}_{p}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{p/2}} e^{-\frac{1}{2}(\mathbf{X} - \mu)'\Sigma^{-1}(\mathbf{X} - \mu)}$$

jika X_1, X_2, \ldots, X_p berdistribusi normal multivariat maka $n(X - \mu)' \sum^{-1} (X - \mu)$ berditribusi χ_p^2 . Berdasarkan sifat ini maka pemeriksaan distribusi normal multivariat dapat dilakukan pada setiap populasi dengan cara membuat q-q plot atau scatter-plot dari nilai $d_i^2 = (x_i - \overline{x})' S^{-1}(x_i - \overline{x})$, $i = 1, 2, \ldots, n$.

Tahapan dari pembuatan q-q plot ini adalah sebagai berikut :

- 1. Mulai
- 2. Tentukan nilai vektor rata-rata: \overline{X}
- 3. Tentukan nilai matriks varians-kovarians: S
- 4. Tentukan nilai jarak *mahalanobis* atau kuadrat *general* setiap titik pengamatan dengan vektor rataratanya $d_i^2=(x_i-\overline{x})'S^{-1}(x_i-\overline{x})$, i=1,2,...,n.
- 5. Urutkan nilai d_i^2 dari kecil ke besar: $d_{(1)}^2 \leq d_{(2)}^2 \leq d_{(3)}^2 \leq \cdots \leq d_{(n)}^2$.
- 6. Tentukan nilai $p_i = \frac{i-1/2}{n}$, i = 1, 2, ..., n.
- 7. Tentukan nilai q_i sedemikian hingga $\int_{-\infty}^{q_i} f(\chi^2) d\chi^2 = p_i$ atau $q_{i,p}(p_i) = \chi_p^2 ((n-i+1/2)/n)$.
- 8. Buat $scatter ext{-plot }d_{(i)}^2$ dengan q_i
- 9. Jika scatter-plot ini cenderung membentuk garis lurus dan lebih dari 50% nilai $d_i^2 \leq \chi_p^2(0,50)$, artinya data berdistribusi normal multivariat.
- 10.Selesai

LATIHAN

Berikut data diambil dari Garperz (1992) dalam simatupang (2002).

 X_1 = Kontribusi industri manufaktur dalam produk dosmestik regional bruto(%)

X₂ = Banyaknya tenaga kerja dalam sektor industri manufaktur (%)

No.	X_1	X ₂	
1	8.8	2589	
2	8.5	1186	
3	7.7	291	
4	4.9	1276	
5	9.6	6633	
6	10	12125	
7	11.5	36717	
8	11.6	43319	
9	11.2	10530	
10	10.7	3931	
11	10	1536	
12	6.8	61400	

Akan di uji kenormalan dari data dengan menggunakaan excel. Macro SAS. dan R.

1. Menggunakan Excel

a. Tentukan nilai vektor rata-rata: $\overline{m{X}}$

No.	X ₁	X_2	
1	8.8	2589	
2	8.5	1186	
3	7.7	291	
4	4.9	1276	
5	9.6	6633	
6	10	12125	
7	11.5	36717	
8	11.6	43319	
9	11.2	10530	
10 10.7		3931	
11	10	1536	
12	6.8 61400		
\overline{X}	9.275	15127.75	

b. Tentukan nilai matriks varians-kovarians: ${\it S}^{-1}$

0.244275	-0.000003
-0.000003	0

c. Jarak *mahalanobis* yang sudah dari kecil ke besar, $p_i=\frac{i-1/2}{n}$, i=1,2,...,n dan nilai q_i sedemikian hingga $\int_{-\infty}^{q_i} f(\chi^2) d\chi^2 = p_i$ atau $q_{i,p}(p_i) = \chi_p^2 \left((n-i+1/2)/n \right)$.

d _i ²	i	(i-0.5)/n	χ^2
0.018188	12	0.958333	6.35610766
0.079728	10	0.791667	3.13723184
0.461074	7	0.541667	1.56031716
4.299847	1	0.041667	0.08511923
0.042918	11	0.875	4.15888308
0.141894	9	0.708333	2.46428736
0.91149	5	0.375	0.94000726
0.914082	4	0.291667	0.68968098
0.960066	3	0.208333	0.4672297
0.594954	6	0.458333	1.22620895
0.189492	8	0.625	1.96165855
2.206385	2	0.125	0.26706279

d. Buat $\mathit{scatter-plot}\ d_{(i)}^2$ dengan q_i

Dari plot diatas terlihat bahwa ada 1 pengamatan berada jauh dari garis normal. sehingga untuk meyakinkan hasil dari plot tersebut maka akan dikorelasikan nilai d_i^2 dengan χ^2 dengan pengujian hipotesis berikut :

Ho: Data berdistribusi normal

H₁: Data tidak berdistribusi normal

Hasil korelasi person dari d_i^2 dengan χ^2 adalah sebesar -0.612. artinya ada hubungan negatif yang kuat antara d_i^2 dengan χ^2 . Dapat diambil keputusan bahwa dari nilai P-Value sebesar 0.035< α = 0.05 yang berarti menolak H_{o.} Kesimpulan yang dapat diambil bahwa data tidak berdistribusi normal.

2. Menggunakan Macro SAS

✓ Sintaks untuk memanggil Macro SAS sebagai berikut :

```
Data NORMALGANDA;
Input x1 x2;
Cards;
8.8
      2589
8.5
      1186
      291
7.7
4.9
      1276
9.6
      6633
      12125
11.5 36717
11.6 43319
11.2 10530
10.7 3931
      1536
10
6.8
      61400
%inc "D:\Data\Bahan kuliah S2\MAKRO UJI NORMAL GANDA MARDIA.sas";
      %multnorm(data= NORMALGANDA. var=x1 x2. plot=mult. hires=no)
```

✓ Output SAS :

MULTNORM macro: Univariate and Multivariate Normality Tests
The MODEL Procedure

Normality Test					
Equation	Test Statistic	Value	Prob		
x1	Shapiro-Wilk W	0.93	0.3598		
x2	Shapiro-Wilk W	0.74	0.0016		
System	Mardia Skewness	11.12	0.0252		
	Mardia Kurtosis	0.59	0.5552		
	Henze-Zirkler T	2.64	0.0083		

Dari hasil output SAS diatas akan dilakukan pengujian hipotesis terhadap mardia skewness test sebagai berikut:

Ho: Peubah ganda mengikuti distribusi normal

 H_1 : Peubah ganda tidak mengikuti distribusi normal

Sehingga dikesimpulan p-value = $0.0252 < \alpha = 0.05$ yaitu menolak H_o. Artinya bahwa peubah ganda tidak mengikuti distribusi normal. Dari Q-Q plot yang dihasilkan dari output SAS juga menunjukan bahwa sebaran dari data tidak mengikuti distribusi normal.

MULTNORM macro: Chi-square Q-Q plot

3. Menggunakan R

```
x<-c(8.8, 8.5, 7.7, 4.9, 9.6, 10, 11.5, 11.6, 11.2, 10.7, 10, 6.8, 2589, 1186, 291,1276, 6633, 12125,
     36717, 43319, 10530, 3931, 1536, 61400)
data<-matrix(x, nrow=12, ncol=2)
data
   [,1] [,2]
[1,] 8.8 2589
[2,] 8.5 1186
[3,] 7.7 291
[4,] 4.9 1276
[5,] 9.6 6633
[6,] 10.0 12125
[7,] 11.5 36717
[8,] 11.6 43319
[9,] 11.2 10530
[10,] 10.7 3931
[11,] 10.0 1536
[12,] 6.8 61400
```

#Uji normalitas ganda menggunakan Mardia's Skewness and kurtosis mardia<-mardiaTest(data,cov=TRUE,qqplot=TRUE) mardia

Mardia's Multivariate Normality Test

.____

data : data

g1p : 3.764213 chi.skew : 7.528426 p.value.skew : 0.1104623

g2p : 9.362561 z.kurtosis : 0.5900063 p.value.kurt : 0.5551865

chi.small.skew : 11.12154 p.value.small : 0.02523152

Dari hasil R diatas akan dilakukan pengujian hipotesis terhadap mardia skewness test sebagai berikut :

Ho: Peubah ganda mengikuti distribusi normal

H₁: Peubah ganda tidak mengikuti distribusi normal

Sehingga dikesimpulan p-value = $0.02523 < \alpha = 0.05$ yaitu menolak H_0 . Artinya bahwa peubah ganda tidak mengikuti distribusi normal. Dari Q-Q plot yang dihasilkan dari output R dibawah ini juga menunjukan bahwa sebaran dari data tidak mengikuti distribusi normal.

#Uji normalitas ganda menggunakan Henze-Zikler Test henze<-hzTest(data, cov=TRUE,qqplot=FALSE) henze

Henze-Zirkler's Multivariate Normality Test

data : data

HZ : 0.9995781 p-value : 0.004125476

Dari Henze-Zirkler's Multivariate Normality Test menghasilkan nilai p-value = $0.004125 < \alpha = 0.05$. Hal ini berarti data mendukung untuk menolak H_o , dengan demikian dapat dikatakan bahwa peubah-peubah tersebut tidak mengikuti distribusi normal ganda.

#Uji Normalitas ganda menggunakan royston<-roystonTest(data,qqplot=FALSE) royston Royston's Multivariate Normality Test

data : data

H: 10.10069

p-value: 0.006407917

Dari Royston Test menghasilkan nilai p-value = $0.0064 < \alpha = 0.05$. Hasil uji ini juga menunjukkan data mendukung untuk menolak H_o, dengan demikian dapat dikatakan bahwa peubah-peubah tersebut tidak mengikuti distribusi normal ganda. Berikut ini akan ditampilkan bentuk dari countur data peubah ganda:

#Membuat kurva normal ganda dua kurva=roystonTest(data) mvnPlot(kurva,type="persp", default=TRUE) mvnPlot(kurva,type="contour", default=TRUE)

Berdasarkan beberapa uji normalitas ganda di atas, dapat disimpulkan bahwa data tidak menyebar multivariat normal. Sehingga dapat dilakukan penangan lanjutan terhadap data tersebut, dapat menggunakan transformasi normal atau metode lainnya.

DAFTAR PUSTAKA

Johnson RA, Wichern DW. 2007. *Applied Multivariate Statistical Analysis*. Ed ke-6. New Jersey: Prentice Hall, Inc