Lab 5 - It's all about the Processors

Embedded Systems 1 Lab Report 5 Tim Petersen - trp87 5/3/2020

Purpose

In this lab, we are going to use almost everything we have learned and created thus far in order to make the most recognizable design in all of ECE; a processor. Our design is a general purpose processor with some application specific instructions for video and communications. In this way, it is similar to a simplified Application-Specific Instruction-Set Processor (ASIP)

Notes:

All vhd, xcd, coe, tb and all other files needed to complete the lab including the bit file is on github.

Part 1

Coe files are attached on Github

Modified txt file is attached on Github

Part 2

Code is on Github

Regs

RTL Schematic

Synthesis Schematic

Post Synthesis Utilization Table

ization	Post-Synthesis Post-Implementation			
	Graph Table			
Resource	Estimation	Available	Utilization %	
LUT	834	17600	4.74	
FF	512	35200	1.45	
10	79	100	79.00	
BUFG	1	32	3.13	

On Chip Power Graph

Framebuffer

Code is on Github

RTL Schematic

Synthesis Schematic

Post Synthesis Utilization Table

ization	Post-Synthesis Post-Implementation		
			Graph Table
Resource	Estimation	Available	Utilization %
LUT	10	17600	0.06
FF	17	35200	0.05
BRAM	2	60	3.33
Ю	77	100	77.00
BUFG	1	32	3.13

On Chip Power Graph

Part 3

Тор

Code is on Github

Block Diagram

Simulation Waveform of just Controls.vhd

Post Synthesis Utilization Table

lization	Post-Synthesis Post-Implementatio		
			Graph Table
Resource	Estimation	Available	Utilization %
LUT	4	17600	0.02
LOI		100	24.00

On Chip Power Graph

Part 4

HDL Wrapper code is on Github XDC file on Github

Close up of Controls on the block design

Top Level Simulation:

This lab was very cool. Never thought I would ever get to implement an actual processor. Took so many hours of troubleshooting, but it sent over the UART.