数学 A2 試験問題 (2010.6.8) 担当: 井関裕靖

注意事項

- 問題は4問あります. 印刷が不鮮明な場合は申し出て下さい.
- 答案用紙は各自一枚ずつです. 追加はありません. 表裏の両面を使って構いませんが, 一枚に収まるように解答のレイアウトを工夫して下さい.
- 答案用紙は OCR 処理します. 学籍番号は答案用紙の上にある記入例にしたがって, 丁寧に記入して下さい.
- 持ち込みは不可です. 教科書, ノートは(もちろん他の人の答案も)見てはいけません.
- $\mathbf{1}$ (10 点) $\mathbf{u}_1, \dots, \mathbf{u}_r$ を V^n の一次独立なベクトルの組とする. $\mathbf{x} \in \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ を $\mathbf{u}_1, \dots, \mathbf{u}_r$ の一次結合として表す仕方はただ一通りであることを示せ.
- 2 (10 点) A を $m \times n$ 行列, B を $n \times p$ 行列とする. このとき $^t(AB) = {}^tB$ が成り立つことを示せ.
- $\mathbf{3}$ (15 点) 線形写像 $L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ が

$$L\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}3\\1\end{bmatrix}, \quad L\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\3\end{bmatrix},$$

を満たしているとする. このとき, $L_A=L$ となる 2×2 行列 A を求めよ. (注意.) L_A は $L_A(\mathbf{x})=A\mathbf{x}$ で定義される写像である.

 $\boxed{4}$ (15点) \mathbb{R}^3 の部分ベクトル空間

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

を考える. \mathbb{R}^3 の二つのベクトルの組

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$

がWの基底になっていることを示せ.