

考研数学笔记

Weary Bird 2025 年 8 月 21 日

相见欢•林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年8月21日

目录

第一章	函数极限连续	1
1.1	函数的性态	1
1.2	极限的概念	3
1.3	函数极限的计算	4
1.4	已知极限反求参数	5
1.5	无穷小阶的比较	6
1.6	数列极限的计算	6
1.7	间断点的判定	9
第二章	一元函数微分学	11
2.1	导数与微分的概念	11
2.2	导数与微分的计算	12
2.3	导数应用-切线与法线	13
2.4	导数应用-渐近线	13
2.5	导数应用-曲率	14
2.6	导数应用-极值与最值	14
2.7	导数应用-凹凸性与拐点	15
2.8	导数应用-证明不等式	16
2.9	导数应用-求方程的根	17
2.10	微分中值定理证明题	17
第三章	一元函数积分学	21
3.1	定积分的概念	21
3.2	不定积分的计算	22

3.3	定积分的计算	25
3.4	反常积分的计算	27
3.5	反常积分敛散性的判定	28
3.6	变限积分函数	30
3.7	定积分应用求面积	33
3.8	定积分应用求体积	33
3.9	定积分应用求弧长	35
3.10	定积分应用求侧面积	35
3.11	证明含有积分的等式或不等式	36
第四章	常微分方程	40
4.1	一阶微分方程	40
4.2	二阶常系数线性微分方程	45
4.3	高阶常系数线性齐次微分方程	48
4.4	二阶可降阶微分方程	49
4.5	欧拉方程	50
4.6	变量代换求解二阶变系数线性微分方程	50
4.7	微分方程综合题	51
第五章	多元函数微分学	55
5.1	多元函数的概念	55
5.2	多元复合函数求偏导数与全微分	58
5.3	多元隐函数求偏导数与全微分	59
5.4	变量代换化简偏微分方程	61
5.5	求无条件极值	62
5.6	求条件极值 (边界最值)	64
5.7	闭区域最值	66
第六章	二重积分	68
6.1	二重积分的概念	68
6.2	交换积分次序	69
63	一重积分的计算	71

6.4	其他题型	75
第七章	无穷级数	77
7.1	数项级数敛散性的判定	77
7.2	交错级数	78
7.3	任意项级数	79
7.4	幂级数求收敛半径与收敛域	81
7.5	幂级数求和	83
7.6	幂级数展开	85
7.7	无穷级数证明题	86
7.8	傅里叶级数	89
第八章	多元函数积分学	92
8.1	三重积分的计算	97
8.2	第一类曲线积分的计算	100
8.3	第二类曲线积分的计算	101
8.4	第一类曲面积分的计算	105
8.5	第二类曲面积分的计算	106
第九章	行列式	110
9.1	数字行列式的计算	112
9.2	代数余子式求和	117
9.3	抽象行列式的计算	120
第十章	矩阵	123
10.1	求高次幂	124
10.2	逆的判定与计算	126
10.3	秩的计算与证明	128
10.4	关于伴随矩阵	130
10.5	初等变换与初等矩阵	132
第十一章	章 向量	134
11 1	知识体系	134

11.2	线性表示的判定与计算 1	135
11.3	线性相关与线性无关的判定1	138
11.4	极大线性无关组的判定与计算	140
11.5	向量空间(数一专题)	141
第十二章	 线性方程组 1	143
12.1	解的判定 1	144
12.2	求齐次线性方程组的基础解系与通解	145
12.3	求非齐次线性方程组的通解	148
12.4	解矩阵方程	152
12.5	公共解的判定与计算	154
12.6	方程组同解	156
第十三章	章 特征值与特征向量	158
13.1	特征值与特征向量的计算	159
	相似的判定与计算	
13.3	相似对角化的判定与计算	166
13.4	实对称矩阵的计算	167
第十四章	章 二次型 1	171
14.1	求二次型的标准形	172
14.2	合同的判定	175
14.3	二次型正定与正定矩阵的判定 1	176
第十五章	章 事件与概率论	178
15.1	事件的关系、运算与概率的性质	178
15.2	三大概型的计算 1	181
15.3	三大概率公式的计算	182
	事件独立的判定 1	
第十六章	定 一维随机变量 1	186
		IQQ

16.3 关于八大分布	190
16.4 求一维连续型随机变量函数的分布	190
第十七章 二维随机变量	199
17.1 联合分布函数的计算	199
17.2 二维离散型随机变量分布的计算	200
17.3 二维连续型随机变量分布的计算	20
17.4 关于二维正态分布	204
17.5 求二维离散型随机变量函数的分布	20
17.6 求二维连续型随机变量函数的分布	208
17.7 求一离散一连续随机变量函数的分布	21
第十八章 数字特征	213
18.1 期望与方差的计算	213
18.2 协方差的计算	219
18.3 相关系数的计算	22
18.4 相关与独立的判定	222
第十九章 大数定律与中心极限定理	225
第二十章 统计初步	228
20.1 求统计量的抽样分布	228
20.2 求统计量的数字特征	230
第二十一章 参数估计	232
21.1 求矩估计与最大似然估计	232
21.2 估计量的评价标准	234
21.3 区间估计与假设检验	230
第二十二章 补充知识-高等数学	238
22.1 平方数求和	238
22.2 莱布尼兹法则	238
22.3 柯西不等式	239

第一章 函数极限连续

1.1 函数的性态

Remark

(有界性的判定)

- (1) 连续函数在闭区间 [a,b] 上必然有界
- (2) 连续函数在开区间 (a,b) 上只需要判断端点处的左右极限, 若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$, 则连续函数在该区间内有界.
- (3) f'(x) 在有限区间 (a,b) 内有界.

<u>Proof:</u> $\forall x \in (a,b)$, 由拉格朗日中值定理, ∃ξ

$$f(x) - f(\frac{a+b}{2}) = f'(\xi)(x - \frac{a+b}{2})$$
$$|f(x)| \le |f'(\xi)| \left| x - \frac{a+b}{2} \right| + \left| f(\frac{a+b}{2}) \right|$$
$$|f(x)| \le \frac{b-a}{2} |f'(\xi)| + \left| f(\frac{a+b}{2}) \right| \le M$$

1. 下列函数无界的是

$$\begin{array}{ll} \mathbf{A} & f(x) = \frac{1}{x}\sin x, x \in (0,+\infty) & \quad \mathbf{B} & f(x) = x\sin\frac{1}{x}, x \in (0,+\infty) \\ \mathbf{C} & f(x) = \frac{1}{x}\sin\frac{1}{x}, x \in (0,+\infty) & \quad \mathbf{D} & f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0,2022) \end{array}$$

Solution

- (A) $\lim_{x\to 0^+}f(x)=1$, $\lim_{x\to +\infty}=0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界
- (B) $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界
- (C) $\lim_{x\to 0^+}f(x)=+\infty$, $\lim_{x\to +\infty}=0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0,+\infty)$ 无界

(D)
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1dt = 0$$
, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在区间 $(0,2022)$ 有界

无穷 VS 无界

无界 只有有一个子列趋于无穷即可

无穷 任意子列均趋于无穷.

例如 A 选项, 当
$$x_n = \frac{1}{2n\pi + \pi/2}$$
, $f(x_n) = 2n\pi + \pi/2$, $n \to \infty$, $f(x_n) \to \infty$; 当 $x_n = \frac{1}{2n\pi}$, $f(x_n) = 0$, $n \to \infty$, $f(x_n) \to 0$ 不为无穷大, 仅仅是无界.

Remark

(导函数与原函数的奇偶性与周期性)

- 1. 连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数
- 2. 连续偶函数仅有一个原函数 $\int_0^x f(t)dt$ 为奇函数
- 3. 连续周期函数的原函数为周期函数 $\iff \int_0^T f(x) dx = 0$
- 2. (2002, 数二) 设函数 f(x) 连续,则下列函数中,必为偶函数的是

A
$$\int_0^x f(t^2)dt$$
 B
$$\int_0^x f^2(t)dt$$
 C
$$\int_0^x t[f(t) - f(-t)]dt$$
 D
$$\int_0^x t[f(t) + f(-t)]dt$$

Solution

这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按照上述的函数奇偶性的性质判断

(A)
$$\Leftrightarrow F(x) = \int_0^x f(t^2)dt$$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则A选项是奇函数

(B)
$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出B的奇偶性

- (C) t[f(t) f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

函数极限的定义

设函数 f(x) 在点 x_0 的某去心邻域内有定义。若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty} a_n = a$, 且 $a\neq 0$, 则当 n 充分大时有

$$(A)|a_n| > \frac{|a|}{2}$$
 $(B)|a_n| < \frac{|a|}{2}$ $(C)a_n > a - \frac{1}{n}$ $(D)a_n < a + \frac{1}{n}$

Solution

令 $\epsilon = |a|/2$, 则 $|a_n - a| < |a|/2 \ge ||a_n| - |a||$ 即

$$|a|/2 < |a_n| < \frac{3|a|}{2}$$

对于 CD 考虑当

$$a_n = a - \frac{2}{n}$$
 和 $a_n = a + \frac{2}{n}$ 简单来说 $\forall \epsilon$ 这里面的 ϵ 与 n 是无关的.

函数极限的计算 1.3

Remark

这一个题型基本上是计算能力的考察,对于常见未定式其实也没必要区分,目标都是往最 简单 $\frac{0}{0}$ 或者 $\frac{\cdot}{\infty}$ 模型上面靠,辅助以 Taylor 公式,拉格朗日中值定理结合夹逼准则来做就 可以.

- 4. (2000, 数二) 若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为

- (A) 0 (B) 6 (C) 36 (D) ∞

Solution

这个题第一次见可能想不到,但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

- 5. (2002, 数二) 设 y = y(x) 是二阶常系数微分方程 $y'' + py' + qy = e^{3x}$ 满足初始条件 y(0) = y'(0) = 0 的特解, 则当 $x \to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限
 - (A)不等于
- (B)等于 1
- (C)等于 2
- (D)等于 3

Solution

由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x\to\infty}\frac{\int_1^x\left[t^2(e^{\frac{1}{t}}-1)-t\right]dt}{x^2\ln\left(1+\frac{1}{x}\right)}$$

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2} (e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2} (e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

Solution

8. 求极限 $\lim_{x \to \infty} \left(x^3 \ln \frac{x+1}{x-1} - 2x^2 \right)$

Solution

9. (2010, 数三) 求极限 $\lim_{x \to +\infty} (x^{1/x} - 1)^{1/\ln x}$

Solution

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x+a^{2x}+\cdots+a^{nx}}{n}\right)^{1/x} \ (a>0,n\in\mathbb{N})$

Solution

1.4 已知极限反求参数

11. (1998, 数二) 确定常数 a,b,c 的值, 使 $\lim_{x\to 0} \frac{ax-\sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c \ (c\neq 0)$

Solution

1.5 无穷小阶的比较

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

Solution

13. (2006, 数二) 试确定 A, B, C 的值, 使得 $e^x(1 + Bx + Cx^2) = 1 + Ax + o(x^3)$, 其中 $o(x^3)$ 是 当 $x \to 0$ 时比 x^3 高阶的无穷小量。

Solution

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

Solution

1.6 数列极限的计算

Remark

(方法)

- (1) 单调有界准则 (三步走, 先确定单调性, 在确定有界性, 最后解方程求极限) 确定单调性, 可以考虑作差/做商/求导
- (2) 压缩映射原理
- (3) 夹逼准则
- (4) 定积分的定义 (n 项和/n 项积)
- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

- (1) 是基本不等式的证明, 考虑拉格朗日中值即可
- (2) 考研大题, 特别是分成几个小问的题目, 都需要合理利用前面的结论 考虑 $a_{n+1} a_n$ 有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(1+n/1) < 0$$

即 $\{a_n\}$ 单调递减, 考虑其有界性

$$a_n = 1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)$$

 $< \ln(1+1) + \ln(1+1/2) + \dots + \ln(1+n/1) - \ln(n)$
 $= \ln(n+1) - \ln(n) > 0$

即 $\{a_n\}$ 有上界, 故由单调有界定理知数列 $\{a_n\}$ 收敛.

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。证明 $\{x_n\}$ 收敛, 并求 $\lim_{n \to \infty} x_n$ 。

Solution

这道题的难度在于如何处理条件. 考虑1 的妙用. 有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x} = \frac{e^{x_n} - e^0}{1}$$

= $e^{\xi}, \xi \in (0, x_n)$

而由于 e^x 是单调递增的函数则必然有 $\xi = x_{n+1}$ 即 $0 < x_{n+1} < x_n$ 从而单调递减有下界. 此时 $\{x_n\}$ 极限存在.

不妨设 $\lim_{n\to\infty} x_n = a$ 问题转换为求方程 $ae^a = e^a - 1$ 的解的问题. 显然 a=0 是其一个根. 考虑函数 $f(x) = e^x(1-x) - 1$ 其导数为 $-xe^x$ 在 $(0,\infty)$ 上单调递减故 x=a 是 f(x) 唯一零点, 即 a=0 是唯一解. 故

$$\lim_{n \to \infty} x_n = 0$$

常见的等价代换有

 $\underline{1}$: e^0 , $\sin(\pi/2)$, $\cos(0)$, $\ln(e)$ 具体情况还得看题目, 题目有啥用啥替换

 $\underline{0}$: $\sin(0)$, $\cos(pi/2)$, $\ln(1)$

17. (2019, 数一、数三) 设
$$a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$$
。

(i) 证明数列
$$\{a_n\}$$
 单调减少, 且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$

(ii)
$$\ \ \ \ \ \ \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$$

Solution

这道题第一问比较重要, 第二问比较简单

(1) 方法一:

可以直接求出 a_n 的值, 令 $x = \sin(t)$

$$a_n = \int_0^{\pi/2} \sin^n(t) \cos^2(t) dt$$

$$= \int_0^{\pi/2} \sin^n(t) - \int_0^{\pi/2} \sin^{n+2}(t) dt$$

$$\frac{-\frac{4^n + 2 + 2^n + 2^n}{n}}{n+2} \frac{1}{n} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi}{2}, \, \text{当 n 时偶数的时候}$$

$$a_{n-2} = \frac{1}{n-1} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi/2}{2}$$

$$a_n = \frac{n-1}{n+2} a_{n-2}$$

当 n 为奇数的时候同理可得

(1) 方法二:

也可以考虑分部积分法

$$a_n = \int_0^1 x^n (1 - x^2)^{1/2} dx$$

$$= -\frac{1}{3} \left[x^{n-1} (1 - x^2)^{3/2} \Big|_0^1 - \int_0^1 (1 - x^2)^{\frac{3}{2}} dx^{n-1} \right]$$

$$= \frac{n-1}{3} \int_0^1 \sqrt{1 - x^2} (1 - x^2) x^{n-2} dx$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_n$$

$$\implies a_n = \frac{n-1}{n+2} a_{n-2}$$

(2)

由(1)可知

$$\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} = \frac{n-1}{n-2} \frac{a_{n-2}}{a_{n-1}} < 1$$

当 $n \to \infty$ 由夹逼准则可知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$

18. (2017, 数一、数二、数三) 求
$$\lim_{n\to\infty}\sum_{k=1}^n\frac{k}{n^2}\ln\left(1+\frac{k}{n}\right)$$

Solution

这是最普通的定积分的定义的应用

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + \frac{k}{n})$$

$$\frac{\text{定积分定义}}{\text{ = } \frac{1}{2} \int_{0}^{1} \ln(1 + x) dx^{2}}$$

$$= \frac{1}{4}$$

1.7 间断点的判定

- 19. (2000, 数二) 设函数 $f(x)=\dfrac{x}{a+e^{bx}}$ 在 $(-\infty,+\infty)$ 内连续, 且 $\lim_{x\to-\infty}f(x)=0$, 则常数 a,b满足
- $\mathbf{A} \quad a<0,b<0 \qquad \quad \mathbf{B} \quad a>0,b>0 \qquad \quad \mathbf{C} \quad a\leq 0,b>0 \qquad \quad \mathbf{D} \quad a\geq 0,b<0$

第二章 一元函数微分学

导数与微分的概念 2.1

1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导, 则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$

C f(a) > 0 且 f'(a) > 0 D f(a) < 0 且 f'(a) < 0

Solution

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

 $\text{(A)} \lim_{h \to 0} \frac{1}{h^2} f(1 - \cos h) \; 存在 \qquad \text{(B)} \lim_{h \to 0} \frac{1}{h} f(1 - e^h) \; 存在 \\ \text{(C)} \lim_{h \to 0} \frac{1}{h^2} f(h - \sin h) \; 存在 \qquad \text{(D)} \lim_{h \to 0} \frac{1}{h} [f(2h) - f(h)] \; 存在$

Solution

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \le 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, \cdots \end{cases}$

(A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

(C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

Solution

2.2 导数与微分的计算

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x \to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x = 0 处的连续性。

Solution

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ & , y = f(f(x)), \, \bar{x} \, \frac{dy}{dx} \Big|_{x=e} \end{cases}$$

Solution

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0)=1,函数 y=y(x) 由方程 $y-xe^{y-1}=1$ 所确定。设 $z=f(\ln y-\sin x)$,求 $\frac{dz}{dx}\bigg|_{x=0}$ 和 $\frac{d^2z}{dx^2}\bigg|_{x=0}$

Solution

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数, 且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x=x(y) 所满足的微分方程 $\frac{d^2x}{dy^2}+(y+\sin x)\left(\frac{dx}{dy}\right)^3=0$ 变换为 y=y(x) 满足的微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Solution

8. (2008, 数二) 设函数 y=y(x) 由参数方程 $\begin{cases} x=x(t) \\ y=\int_0^{t^2} \ln(1+u)du \end{cases}$ 确定, 其中 x(t) 是初值问题 $\begin{cases} \frac{dx}{dt}-2te^{-x}=0 \\ x|_{t=0}=0 \end{cases}$ 的解, 求 $\frac{d^2y}{dx^2}$

9. (2015, 数二) 函数 $f(x) = x^2 \cdot 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) = ______$

Solution

导数应用-切线与法线 2.3

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数, 它在 x = 0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$, 其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小, 且 f(x) 在 x = 1 处可导, 求曲线 y = f(x) 在点 (6, f(6)) 处的切线方程。

Solution

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

Solution

导数应用-渐近线 2.4

13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是

$$(A) y = x + \sin x \qquad (B) y =$$

(A)
$$y = x + \sin x$$
 (B) $y = x^2 + \sin x$ (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

Solution

14. (2007, 数一、数二、数三) 曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 渐近线的条数为 (A) 0(B) 1 (D)3

(C) 2

Solution

2.5 导数应用-曲率

15. (2014, 数二) 曲线
$$\begin{cases} x=t^2+7 & \text{对应于 } t=1 \text{ 的点处的曲率半径是} \\ y=t^2+4t+1 & \\ (A) \frac{\sqrt{10}}{50} & (B) \frac{\sqrt{10}}{100} & (C) 10\sqrt{10} & (D) 5\sqrt{10} \end{cases}$$

Solution

导数应用-极值与最值 2.6

Remark

函数的极值的充分条件

(充分 1) f(x) 连续, 且 f'(x) 在 $x = x_0$ 的左右去心邻域内 异号

(充分 2) $f'(x_0) = 0, f''(x_0) \neq 0$ 则有

$$f''(x) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

(充分 3) 若 $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 2 的偶数则有

$$f^{(n)}(x_0) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值

- (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
- (D) f(0) 不是 f(x) 的极值, 点(0, f(0)) 也不是曲线 y = f(x) 的拐点

有题设知 f''(0) = 0, 对等式两边求导有 $f^{(3)}(0) = 1 \neq 0$ 由拐点充分条件可 知,(0, f(0)) 为函数的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_{1}^{x^2} (x^2 - t)e^{-t^2}dt$ 的单调区间与极值

Solution

求导有

$$f'(x) = 2x \int_{1}^{x^2} e^{-t^2} dt$$

令 f'(x) = 0 有 x = 0 或 $x = \pm 1$ 并且无其余根, 带入可知 $x = \pm 1, f(\pm 1) = 0$ 为极小值点, $x = 0, f(0) = -\frac{1}{2}(e^{-1} - 1)$ 为极大值点

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的 极大值与极小值

Solution

比较简单, 答案为极小值为 y(-1) = 0, 极大值为 y(1) = 1

导数应用-凹凸性与拐点 2.7

Remark

拐点也有三个充分条件

- (充分 1) f(x) 连续, 且 f''(x) 在 $x = x_0$ 的左右去心邻域内 异号
- (充分 2) $f''(x_0) = 0, f'''(x_0) \neq 0$ 则有 $(x_0, f(x_0))$ 为函数拐点
- (充分 3) 若 $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 3 的奇数则有 $(x_0, f(x_0))$ 为函数的拐点
 - 20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是

- (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

直接用高中的穿针引线法画图就可以

2.8 导数应用-证明不等式

Remark

通常优先考虑单调性,较难的题会结合微分中值定理(通常是拉格朗日/柯西/泰勒)

21. (2017, 数一、数三) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则 $(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \quad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$

Solution

这道题的辅助函数比较好想, 显然 $F(x) = \frac{1}{2}f^2(x)$, 由题设知 F'(x) > 0 恒成立, 故 F(x) 单调递增即 $F(1) > F(-1) \Longrightarrow f^{(2)}(1) > f^{(2)}(-1) \Longrightarrow |f(1)| > |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution

这道题的几何直观非常明显, 证明也不算很难.

由题可知切线方程为 y = f'(b)(x-b) + f(b) 令 y = 0 有 $x_0 = b - \frac{f(b)}{f'(b)}$

$$a < b - \frac{f(b)}{f'(b)} < b$$

$$\Leftrightarrow 0 < \frac{f(b)}{f'(b)} < b - a$$

$$\Leftrightarrow 0 < f(b) < f'(b)(b - a)$$

由 f(a) = 0 和拉格朗日中值定理有 $f(b) = f(b) - f(a) = f'(\xi)(b-a), a < \xi < b,$ 又 f''(x) > 0 故 $f'(\xi) < f'(b)$ 故 f(b) < f'(b)(b-a) 从而原不等式成立

2.9 导数应用-求方程的根

23. (2015, 数二) 已知函数 $f(x) = \int_x^1 \sqrt{1+t^2} dt + \int_1^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

Solution

这道题也比较简单, 感觉是高中题现在考研已经不太可能出了 $f'(x)=(2x-1)\sqrt{1+x^2},$ 显然只有唯一根 f'(1/2)=0 又 f(1)=0 故 f(1/2)<0 又 f(-1)>0 故 f(x) 在 f(-1,1/2) 上必然还有唯一根, 故 f(x) 在 R 上仅有两根

2.10 微分中值定理证明题

Remark

证明含有一个 ξ 的等式

如果不含导数,通常使用单调性+零点存在定理

如果包含导数,通常需要构建辅助函数并使用费马引理/罗尔定理

构建辅助函数中比较困难的题目,可以采用积分还原法做,其基本思路为

- (1) 将 ε 都改写成 x, 变形做不定积分去掉导数
- (2) 改写 C=0. 移项构建辅助函数
- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 且 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;
 - (ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution

- (1) 显然构建 F(x) = f(x) x, 有 F(1) = F(0) = 0 由 roller Th 可知 $\exists \xi \in (0,1), F'(\xi) = 0$ 即 $f'(\xi) = 1$
- (2) 由 f(x) 是可导的奇函数容易得知 f'(x) 偶函数

(方法一) 构建 G(x) = f'(x) + f(x) - x, 则 G(-1) = f'(1) = G(1) 由 roller Th 有...

(方法二) 构建 $G(x) = e^x(f'(x) - 1)$, 则由第一问有 $f'(-\xi) = f'(\xi) = 1$ 带入 G(x), 再由 roller Th 也可以得到答案

26. 设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, f(1) = 0, 证明:存在 $\xi \in (0,1)$, 使得 $(2\xi + 1)f(\xi) + \xi f'(\xi) = 0$ 。

Solution

这道题很难通过观察法得到辅助函数,考虑使用积分还原法

$$\frac{f'(x)}{f(x)} = -(2 + \frac{1}{x})$$

$$\int \frac{f'(x)}{f(x)} dx = \int -(2 + \frac{1}{x}) dx$$

即

$$\ln|f(x)| + \ln x + \ln e^{2x} - \ln|C| = 0$$

化简且令 C=0 后有

$$xe^{2x}f(x) = 0$$

故辅助函数 $G(x) = xe^{2x} f(x)$, 又 G(1) = G(0) 由 roller Th 可知原等式成立

Remark

类型二证明含有两个点的等式

若要求的是两个相异的点,则分区间讨论(具体看下题1)

若并不要求两个相异的点,则可能需要一次拉格朗日一次柯西(具体见下题2)

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0, 1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution

对于(1)这种题目不应该从正面突破,而应该先假设.

假设 $\exists \xi_1 \in (0, c), \xi_2(c, 1)$ 有

$$f'(\xi_1) = \frac{f(c) - f(0)}{f}$$

$$f'(\xi_2) = \frac{f(1) - f(c)}{1 - c}$$

带入题设条件 $f'(\xi_1) + f'(\xi_2) = 2 \implies c = \frac{1}{2}$

以上分析均不需要写在试卷上

由 lagrange Th $\exists \xi_1 \in (0,1/2), \xi_2(1/2,1)$ 有....

(2) 由 lagrange Th 可知 $\exists \xi \in (0,1), f'(\xi) = f(1) - f(0) = 1$ 题目要求的为

$$f'(\xi) = \frac{f(\eta)f'(\eta)}{\eta}$$

考虑柯西中值定理, 左侧分式实际是

$$\frac{f^2(1) - f^2(0)}{1^2 - 0^2} = \frac{f'(\eta)f(\eta)}{\eta} = 1 = f'(\xi)$$

Remark

类型三证明含有高阶导数的等式或不等式

基本就是 Taylor 的题, 当然有时也可以通过多次拉格朗日求出来.

这种问题的关键点在于如何寻找展开点,基本思路就是谁信息多展开谁,例如端点,极值点、最值点、零点等等

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数, 且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

Solution

这道题算是比较难的题目, 当然不是最难的最难的那道比较像数学分析的题

- (方法一) (1) 由积分中值定理可知 $\exists f(c) = 1$ 又 f(1) = f(c) = 1 由 roller Th 可知 $\exists \xi, f'(\xi) = 0$
 - (2) 要证明 $f''(\eta) < -2$ 只需证明对于 $F(x) = f(x) + x^2, \exists \eta, F''(x) < 0$ 分别 在区间 (0,c)(c,1) 上使用 lagrange Th 有

$$F(c) - F(0) = F'(\xi_1)c = 1 + c^2, \xi_1 \in (0, c)$$

$$F(1) - F(c) = F'(\xi_2)(1 - c) = 1 - c^2, \xi_2 \in (c, 1)$$

再在区间 (ξ_1, ξ_2) 使用 lagrange Th 有

$$F'(\xi_2) - F'(\xi_1) = F''(\eta)(\xi_2 - \xi_1), \eta \in (\xi_1, \xi_2)$$

将 $F'(\xi_1), F'(\xi_2)$ 带入上式, 有

$$F''(\eta) = \frac{c-1}{c(\xi_2 - \xi_1)} < 0$$

故原不等式成立

- (方法二) (1) 由题设知在区间 (0,1) 内必然存在最值, 且 $f(\xi) > 1$, 由费马引理可知 $f'(\xi) = 0$
 - (2) 在 $x = \xi$ 处进行 Taylor 展开有

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \frac{f''(\eta)}{2}(x - \xi)^2$$

带入x = 0点有

$$0 = f(\xi) + \frac{f''(\eta)}{2}\xi^2 \implies f''(\eta) = -\frac{2f(\xi)}{\xi^2} < -2$$

第三章 一元函数积分学

3.1 定积分的概念

2. (2009, 数三) 使不等式 $\int_1^x \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是 $(A) (0,1) \quad (B) \left(1, \frac{\pi}{2}\right) \quad (C) \left(\frac{\pi}{2}, \pi\right) \quad (D)(\pi, +\infty)$

Solution

(方法一)利用单调性

$$f(x) = \int_{1}^{x} \frac{\sin t}{t} dt - \ln x$$

$$f'(x) = \frac{\sin x - 1}{x} \begin{cases} x > 0 & , f'(x) < 0 \\ x < 0 & , f'(x) > 0 \end{cases}$$

又 f(1) = 0 故 f(x) 在 (0,1) 上大于 0, 在 $(1,\infty)$ 小于 0 (方法二) 利用几何意义

$$\int_{1}^{x} \frac{\sin t}{t} dt > \ln x = \int_{1}^{x} \frac{1}{t} dt$$

$$\int_{1}^{x} \frac{\sin t - 1}{t} dt > 0$$

由积分的几何意义容易知道, 当 $x \in (0,1)$ 时候上式成立

3. (2003, 数二) 设
$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx, I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx,$$
则
(A) $I_1 > I_2 > 1$ (B) $1 > I_1 > I_2$
(C) $I_2 > I_1 > 1$ (D) $1 > I_2 > I_1$

由基本不等式 $x \in (0, \frac{\pi}{2})$, $\sin x < x < \tan x$, 故有 $\tan x/x > 1 > x/\tan x$ 由比较定理 有 $I_1 > I_1$, 考虑 I_1 与 1 的关系.

(方法一) 求导用单调性

 $f(x) = \tan x/x$, \mathbb{N}

$$f'(x) = \frac{\sec^2 x \cdot x - \tan x}{x^2}$$
$$= \frac{x - \sin x \cos x}{\cos^2 x x^2} > 0$$

故 f(x) 在 $(0,\pi/4)$ 上单调递增,有 $f(x) < f(\pi/4) = \frac{4}{\pi}$,故 $I_1 < 1$ (方法二) 利用凹凸性

由于 $\tan x$ 在 $(0, \pi/2)$ 上是一个凹函数,则其割线的函数值大于函数的函数值大于切线的函数值 (割线在函数图像的上方,切线在函数图像的下方)则有

$$\frac{4}{\pi} > \tan x$$

从而 $I_1 < 1$

3.2 不定积分的计算

"万能公式如下

4. 计算下列积分 (1) $\int \frac{x^2+1}{x^4+1} dx$;(2) $\int \frac{x^2-1}{x^4+1} dx$

Solution

(1)

原式 =
$$\int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx$$
=
$$\int \frac{d(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2}$$

$$\frac{\int \frac{1}{x^2 + a^2} dx}{x^2 + a^2} \frac{1}{\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} + C$$

(2)

原式 =
$$\int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}$$
=
$$\int \frac{d(x + \frac{1}{x})}{(x + \frac{1}{x})^2 - 2}$$
=
$$\frac{\int \frac{1}{a^2 - x^2} dx}{-2\sqrt{2}} - \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + (x + \frac{1}{x})}{\sqrt{2} - (x + \frac{1}{x})} \right|$$

5. 计算不定积分 $\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx, x > 0$

原式
$$=\frac{t=\sqrt{\frac{(1+x)}{x}}}{\ln 1+t} \ln 1+t d(\frac{1}{t^2-1})$$

$$=\frac{\text{分部积分}}{\ln (1+t)\cdot \frac{1}{t^2-1}}-\int \frac{1}{t^2-1}\cdot \frac{1}{1+t} dt$$

$$\int \frac{1}{t^2-1}\cdot \frac{1}{1+t} dt = \frac{1}{2}\int \frac{dt}{t^2-1}-\frac{1}{2}\int \frac{dt}{(t+1)^2}$$

$$=-\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|+\frac{1}{2(1+t)}+C$$
原式 $=\ln (1+t)\cdot \frac{1}{t^2-1}+\frac{1}{4}\ln\left|\frac{1+t}{1-t}\right|+\frac{1}{2(1+t)}+C$

$$6. \ \ \, \cancel{R} \int \frac{1}{1+\sin x + \cos x} dx$$

Solution

(方法一万能代换)

原式
$$= \frac{t = \tan \frac{x}{2}}{1 + t}$$

$$= \ln|1 + t| + C$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

(方法二三角公式)

原式
$$\frac{\cos x = 2\cos^2\frac{x}{2} - 1}{2\cos^2\frac{x}{2} + 2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$= \int \frac{\mathrm{d}x}{2\cos^2\frac{x}{2}(1 + \tan x^2)}$$

$$= \int \frac{\mathrm{d}\tan\frac{x}{2}}{1 + \tan\frac{x}{2}}$$

$$= \ln\left|1 + \tan\frac{x}{2}\right| + C$$

3.3 定积分的计算

Remark

定积分除了不定积分的办法还有如下自己独有的办法

其中华里士公式如下

$$\int_0^{\frac{\pi}{2}} \sin^n x dx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1, & n = \frac{\pi}{2} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, & n = \text{ and } \end{cases}$$

cos x 也是一样的结果

7. (2013, 数一) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution

(方法一分部积分法)

原式 =
$$2\int_0^1 f(x) d\sqrt{x}$$

= $-2\int_0^1 \frac{\ln(1+x)}{\sqrt{x}} dx$
 $\frac{\sqrt{x}=t}{2} - 4\int_0^1 \ln(1+t^2) dt$
= $-4t \ln(1+t^2) \Big|_0^1 + 4\int_0^1 \frac{2t^2}{t^2+1} dt$
= $8 - 4 \ln 2 - 2\pi$

(方法二二重积分)

原式 =
$$\int_0^1 \frac{1}{\sqrt{x}} dx \int_1^x \frac{\ln(1+t)}{t} dt$$

$$\frac{\text{交换积分次序}}{\text{ = } -\int_0^1 \frac{\ln(1+t)}{t} dt \int_0^t \frac{1}{\sqrt{x}} dx}$$

$$= -2 \int_0^1 \frac{\ln(1+t)}{\sqrt{t}} dt$$

$$= \dots$$

$$= 8 - 4 \ln 2 - 2\pi$$

8. 求下列积分: (1) $\int_0^{\frac{\pi}{2}} \frac{e^{sinx}}{e^{sinx} + e^{cosx}} dx$ (2) $\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$

Solution

这两题都是典型的区间再现的题目

(1)

原式
$$=$$
 $\frac{x=\frac{\pi}{2}-t}{\int_0^{\frac{\pi}{2}} \frac{e^{\cos t}}{e^{\sin t} + e^{\cos t}} dt$

由于积分与变量无关,将上式与原式相加有

原式 =
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{4}$$

(2)

原式 =
$$\int_0^{\frac{\pi}{2}} \frac{(\cos x)^{\sqrt{2}}}{(\sin x)^{\sqrt{2}} + \cos x)^{\sqrt{2}}}$$
$$\frac{\pi - \hat{\pi} + \hat{\pi} + \hat{\pi}}{1} \dots$$
$$= \frac{\pi}{4}$$

这道题是比较困难的积分计算题,由于其他方法都不好用不妨考虑区间再现

原式
$$=\frac{x=\frac{\pi}{4}-t}{=}$$
 $=\int_0^{\frac{\pi}{4}}\ln\left[1+\tan\left(\frac{\pi}{4}-t\right)\right]\mathrm{d}t$ $=\frac{\tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan a\tan b}}{=}\int_0^{\frac{\pi}{4}}\left[\ln 2-\ln\left(1+\tan t\right)\right]\mathrm{d}t$ 原式 $=\frac{\pi}{8}\ln 2$

区间再现总结

考试中可能直接考察的区间再现的公式为

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$

其余的就只能见机行事 若其他积分方法都无法做出则可以考虑区间再现

3.4 反常积分的计算

Remark

瑕积分的计算需要注意,若瑕点在内部则需要积分拆开分别计算

10. (1998, 数二) 计算积分
$$\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dx}{\sqrt{|x-x^2|}}$$

Solution

显然 x=1 是积分的瑕点, 故原积分需要拆成两部分即

原式 =
$$\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{\sqrt{x - x^2}} + \frac{1}{\frac{3}{2}} \frac{\mathrm{d}x}{\sqrt{x^2 - x}}$$

$$\stackrel{\text{配方}}{=} \arcsin 2(x - \frac{1}{2}) \Big|_{\frac{1}{2}}^{1} + \ln \left| x - \frac{1}{2} + \sqrt{(x - \frac{1}{2})^2 - \frac{1}{4}} \right| \Big|_{1}^{\frac{3}{2}}$$

$$= \frac{\pi}{2} + \ln \left(2 + \sqrt{3} \right)$$

积分表的拓展

(1)

$$\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}} = \arcsin\frac{x}{a} + C$$

$$\int \sqrt{a^2-x^2} \mathrm{d}x = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C$$

(2)

$$\begin{split} &\int \frac{\mathrm{d}x}{\sqrt{x^2+a^2}} = \ln\left|x+\sqrt{x^2+a^2}\right| \\ &\int \sqrt{x^2+a^2} \mathrm{d}x = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2} \ln\left|x+\sqrt{x^2+a^2}\right| + C \end{split}$$

(3)

$$\begin{split} &\int \frac{\mathrm{d}x}{\sqrt{x^2-a^2}} = \ln\left|x+\sqrt{x^2-a^2}\right| \\ &\int \sqrt{x^2-a^2} \mathrm{d}x = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \ln\left|x+\sqrt{x^2-a^2}\right| + C \end{split}$$

第二个如果是定积分也可以按照几何意义(圆的面积)做

3.5 反常积分敛散性的判定

Remark

反常积分的敛散性感觉不如无穷级数敛散性难

(方法一)使用反常积分的定义,算出其极限值

(方法二) 比较判别法-寻找 x^p

$$(瑕积分) \int_0^1 \frac{1}{x^p} \begin{cases} 0
$$(无穷积分) \int_1^{+\infty} \frac{1}{x^p} \begin{cases} p > 1, & \text{收敛} \\ p \le 1, & \text{发散} \end{cases}$$$$

11. (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则

(A) a<1 且 b>1

(B) a>1 且 b>1

(C) a<1 且 a+b>1

(D) a>1 且 a+b>1

Solution

显然 x=0 是该积分的瑕点, 需要分成两部分考虑 $\int_{0}^{+\infty} = \int_{0}^{1} + \int_{1}^{+\infty}$

$$\lim_{x \to 0^+} \frac{x^p}{x^a (1+x)^b} = 1$$
等价代换
$$\lim_{x \to 0^+} \frac{x^p}{x^a} \implies p = a$$

由 p 积分的性质可知当 p < 1 的时候其收敛故 a < 1 的时候原积分中的 \int_{a}^{1} 收敛同 理对于 ∫^{+∞} 有

$$\lim_{x \to +\infty} \frac{x^p}{x^{a+b}} = 1 \implies p = a+b$$

由 p 积分的性质可知当 p>1 即 a+b>1 的时候原积分 $\int_{1}^{+\infty}$ 收敛, 故由反常积分 的定义可知只有 a < 1, a + b > 1 的时候原积分收敛

- 12. (2010, 数一、数二) 设 m, n 均为正整数,则反常积分 $\int_{0}^{1} \frac{\sqrt[m]{\ln^{2}(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性
 - (A) 仅与 m 的取值有关 (B) 仅与 n 的取值有关
- - (C) 与 m,n 的取值都有关 (D) 与 m,n 的取值都无关

Solution

显然 x = 0 和 x = 1 是积分的瑕点, 需要分成两部分考虑, 有 $\int_{0}^{1} = \int_{0}^{\frac{1}{2}} + \int_{1}^{1}$, 想考 虑前一个积分

$$\lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} = \lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} \implies p = \frac{1}{n} - \frac{2}{m}$$

由 p 积分的性质, 只有 p < 1 上述积分就收敛, 而由于 $(n, m) \in \mathbb{Z}^+, \frac{1}{n} - \frac{2}{m} < \frac{1}{n} < 1$ 故上式恒收敛.

$$\lim_{x\to 1^-} (x-1)^p \frac{\sqrt[m]{\ln{(1-x)^2}}}{\sqrt[n]{x}} = \lim_{x\to 1^-} (x-1)^p \sqrt[m]{\ln{(1-x)^2}} \implies \text{ } \boxdot \text{ } 0$$

故上式也恒收敛, 故原式的敛散性与 (n,m) 均无关

3.6 变限积分函数

原函数,可积,变限积分

(一)原函数存在定理

$$\int f(x) \mathrm{d}x$$
存在 \begin{cases} 连续函数原函数必然存在 $\\$ 含有第一类间断点和无穷间断点其原函数必然不存在 $\end{aligned}$ 含有震荡间断点其原函数可能存在

(二)可积性定理

$$\int_a^b f(x) \mathrm{d}x$$
存在 $\left\{egin{array}{l} \hline \mathrm{可积必有界} \ \\ 连续必可积 \ \\ \end{array}
ight.$ 含有有限个间断点的有界函数可积

(三)变限积分

13. (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ 2, & \pi \le x \le 2\pi \end{cases}$$
 , $F(x) = \int_0^x f(t)dt$, 则

- $(A) x=\pi$ 是函数 F(x) 的跳跃间断点
- (B) $x=\pi$ 是函数 F(x) 的可去间断点
- (C) F(x) 在 $x=\pi$ 处连续但不可导 (D) F(x) 在 $x=\pi$ 处可导

Solution

显然由总结可知, 选 C

- 14. (2016, 数二) 已知函数 f(x) 在 $[0, \frac{3\pi}{2}]$ 上连续, 在 $(0, \frac{3\pi}{2})$ 内是函数 $\frac{\cos x}{2x 3\pi}$ 的一个原函数, 且 f(0) = 0.
 - (1) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
 - (2) 证明 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 内存在唯一零点.

(一) 有题有
$$f(x) = \int_0^x \frac{\cos t}{2t - 3\pi} dt$$
, 所求的平均值为

平均值 =
$$\frac{\int_0^{\frac{3\pi}{2}} f(x) dx}{\frac{3\pi}{2}}$$
=
$$\frac{\int_0^{\frac{3\pi}{2}} \int_0^x \frac{\cos t}{2t - 3\pi} dt}{\frac{3\pi}{2}}$$
=
$$\frac{\frac{5\pi}{2}}{\frac{5\pi}{2}} \frac{2}{3\pi} \int_0^{\frac{3\pi}{2}} \frac{\cos t}{2t - 3\pi} dt \int_t^{\frac{3\pi}{2}} dx$$
=
$$\frac{1}{3\pi}$$

(二) 有题可知 $f'(x) = \frac{\cos x}{2x - 3\pi}$,在 $(0, \frac{3\pi}{2})$ 只有唯一零点 $x = \frac{\pi}{2}$,从而有 $0 < x < \frac{\pi}{2}$,f(x) 单调递减,而 $\frac{\pi}{2} < x < \frac{3\pi}{2}$,f(x) 单调递增,且 f(0) = 0,考虑上述平均值,由积分中值定理有 $f(c) = \frac{\pi}{3} > 0$ 故 f(x) 在 $\frac{\pi}{2} \sim \frac{3\pi}{2}$ 上有一个零点. 综上 f(x) 在区间 $(0, \frac{3\pi}{2})$ 仅有一个零点

定积分的应用

(一) 定积分求面积 (也可以用二重积分)

$$A = \begin{cases} \int_{a}^{b} |f(x)| \, \mathrm{d}x, & \text{直角坐标系} \\ \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) \, \mathrm{d}\theta, & \text{极坐标} \\ \int_{\alpha}^{\beta} |y(t)x'(t)| \, \mathrm{d}t, & \text{参数方程} \\ \frac{1}{2} \int_{l} -y \, \mathrm{d}x + x \, \mathrm{d}y, & \text{L 对 D 来说取正向} \end{cases}$$

(二) 定积分求旋转体体积 (可以用微元法推, 也可以用二重积分)

$$V = \begin{cases} \iint_D 2\pi r(x,y) \mathrm{d}\sigma, & \text{二重积分法, 其中}r(x,y)$$
为区域 D 内一点到转轴的距离
$$\int_a^b \pi f^2(x) \mathrm{d}x, & \text{微元法, 绕 x 轴旋转} \\ \int_a^b 2\pi \left| x f(x) \right| \mathrm{d}x, & \text{微元法, 绕 y 轴旋转} \end{cases}$$

(三) 定积分求弧长 (第一类曲线积分)

$$s_{弧长} = \int_C f(x,y) \mathrm{d}s = \begin{cases} \int_a^b \mathrm{d}s = \int_a^b \sqrt{1 + (y')^2} \mathrm{d}x, & \text{直角坐标} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta \mathrm{d}s = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(四) 定积分求侧面积 (第一类曲面积分)

$$S_{\text{侧面积}} = \iint_S \mathrm{d}S = \begin{cases} \int_a^b 2\pi y(x) \sqrt{1 + (y'(x))^2} \mathrm{d}x, & \text{直角坐标} \\ \int_a^\beta 2\pi y(t) \sqrt{(x'(t))^2 + (y'(t))^2} \mathrm{d}t, & \text{参数方程} \\ \int_\alpha^\beta 2\pi r(\theta) \sin \theta \sqrt{r^2(\theta) + r'^2(\theta)} \mathrm{d}\theta, & \text{极坐标} \end{cases}$$

(五) 物理应用(微元法,不过数一不太可能考)

3.7 定积分应用求面积

15. (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution
$$A = \int_{0}^{+\infty} |e^{x} \sin x| \, dx$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, dx$$

$$\frac{\left| (e^{\alpha x})' \left(\sin \beta x \right)' \right|}{e^{\alpha x} \left(\sin \beta x \right)} + C$$
其中
$$\int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, dx = \frac{-e^{-x} (\sin x + \cos x)}{2} \Big|_{n\pi}^{(n+1)\pi}$$
故原式 =
$$\frac{1}{2} \sum_{n=0}^{\infty} e^{-n\pi} (1 + e^{-\pi})$$

$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{1 + e^{\pi}}{2(e^{\pi} - 1)}$$

3.8 定积分应用求体积

- 16. (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图形 D.
 - (1) 求D的面积A;
 - (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution

(1) 有题设可求出其切点为 (e,1) 切线方程为 $y=\frac{x}{e}$

方法一:

$$A = \frac{e}{2} - \int_{1}^{e} \ln x dx$$
$$= \frac{e}{2} - (x \ln x) \Big|_{1}^{e}$$
$$= \frac{e}{2} - 1$$

方法二: 用反函数做 $x = e^y$

$$A = \int_0^1 e^y dy - \frac{e}{2}$$
$$= e - 1 - \frac{e}{2}$$
$$= \frac{e}{2} - 1$$

(2) 方法一:

$$V = \frac{\pi}{3}e^2 - 2\pi \int_1^e (e - x) \ln x dx = \frac{\pi}{6} (5e^2 - 12e + 3)$$

方法二: 用反函数

$$V = \frac{\pi}{3}e^2 - \pi \int_0^1 (e^y - e)^2 dy = \frac{\pi}{6} (5e^2 - 12e + 3)$$

17. (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求 曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution

先利用偏积分求出 $f(x,y)=(y+1)^2-(2-x)\ln x$, 故曲线 $f(x,y)=0 \implies (y+1)^2=(2-x)\ln x$ (1 $\leq x \leq 2$) 要根据题目条件求出 x 的范围! 显然曲线关于 y=-1 对称利用微元法有

$$V = \pi \int_{1}^{2} (y+1)^{2} dx$$
$$= \pi \int_{1}^{2} (2-x) \ln x dx$$
$$= 2\pi \ln 2 - \frac{5\pi}{4}$$

3.9 定积分应用求弧长

18. 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution

这种极坐标的图像,都可以通过描点法去画(其实画不画也不影响求)

$$S = \int_0^{2\pi} \sqrt{a^2 (1 + \cos \theta)^2 + a^2 \sin \theta^2} d\theta$$
$$= \sqrt{2}a \int_0^{2\pi} \sqrt{1 + \cos \theta} d\theta$$
$$\frac{\cos \theta = 2\cos^2 \frac{\theta}{2} - 1}{2\pi} 2a \int_0^{2\pi} \left| \cos \frac{\theta}{2} \right| d\theta$$
$$= 8a$$

3.10 定积分应用求侧面积

19. (2016, 数二) 设 D 是由曲线 $y = \sqrt{1-x^2} (0 \le x \le 1)$ 与 $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ 的平面区域, 求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution

这个参数方程的图像是需要记住即星形线

$$\begin{split} V &= \frac{1}{4} \cdot \frac{4}{3} \pi \cdot 1^3 - \int_0^1 \pi y^2(x) \mathrm{d}x \\ &= \frac{18}{35} \pi \\ S &= \frac{1}{2} \cdot 4 \pi + \int_0^1 2 \pi y(x) \mathrm{d}s \\ &= 2 \pi + \int_0^{\frac{\pi}{2}} 2 \pi \cdot \sin^3 t \sqrt{(3 \cos^2 t (-\sin t))^2 + (3 \sin^2 t \cos t)^2} \mathrm{d}t \\ &= \frac{16 \pi}{5} \end{split}$$

3.11 证明含有积分的等式或不等式

Remark

积分中值定理(三个)

(-) 第一积分中值定理, 若 f(x) 在 [a,b] 上连续, 则

$$\exists c \in [a, b], \int_a^b f(x) dx = f(c)(b - a)$$

(二) 第一积分中值定理的推广, 若 f(x) 在 (a,b) 上连续

$$\exists c \in (a,b), \int_a^b f(x) dx = f(c)(b-a)$$

(三) 第二积分中值定理, 若 f(x), g(x) 在区间 (a,b) 上连续, 且 g(x) 在其上不变号则

$$\exists c \in (a,b), \int_a^b f(x)g(x)\mathrm{d}x = g(c)\int_a^b f(x)\mathrm{d}x$$

比较定理及其推论

设函数
$$f(x), g(x)$$
 在 $[a, b]$ 上可积, 且 $f(x) \le g(x)$, 则 $\int_a^b f(x) \le \int_a^b g(x)$

推论一: 若函数 f(x), g(x) 在 [a,b] 连续, 且 $f(x) \leq g(x)$, 则 $\int_a^b f(x) < \int_a^b g(x)$

推论二: 若 $f(x) \ge 0, x \in [a, b]$, 则 $\int_a^b f(x) dx \ge 0$

推论三: $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

- 21. (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (1) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (2) $\vec{x} \lim_{x \to +\infty} \frac{S(x)}{x}$

(1) 由比较定理有

$$\int_0^{n\pi} \left|\cos t\right| \mathrm{d}t \le S(x) < \int_0^{(n+1)\pi} \left|\cos t\right| \mathrm{d}t$$

显然 $|\cos t|$ 以 π 为周期故上式容易计算为

$$2n \le S(x) < 2(n+1)$$

(2) 考虑夹逼准则

$$\frac{2}{\pi} \stackrel{\lim_{n \to \infty}}{\longleftarrow} \frac{2n}{(n+1)\pi} \le \frac{S(x)}{x} < \frac{2(n+1)}{n\pi} \xrightarrow{\lim_{n \to \infty}} \frac{2}{\pi}$$

故
$$\lim_{x \to \infty} \frac{S(x)}{x} = \frac{2}{\pi}$$

- 22. (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (1) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$

(2)
$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx.$$

Solution

(一) 由比较定理有

$$0 \le \int_a^x g(x) \mathrm{d}x \le \int_a^x \mathrm{d}x = x - a$$

(二) 构建函数用单调性

亼

$$F(x) = \int_{a}^{ma + \int_{a}^{x} g(t)dt} f(t)dt - \int_{a}^{x} f(t)g(t)dt$$

则其导数为

$$F'(x) = g(x) \left[f(a + \int_a^x g(t)dt) - f(x) \right]$$

由一可知 $a+\int_a^x g(t)\mathrm{d}t \le x$ 从而可知 F'(x)<0 故而 F(x) 在区间 (a,b) 上单调递减,而 F(a)=0 故 F(b)< F(a)=0 即

$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx$$

第四章 常微分方程

4.1 一阶微分方程

Remark

一阶微分方程

(一) 可分离变量类型: 形如 $\frac{\mathrm{d}y}{\mathrm{d}x}=f(x)g(y)$ 可以转换为 $\frac{\mathrm{d}y}{g(y)}=f(x)\mathrm{d}x$

(二) 一阶线性非齐次: 形如 y' + p(x)y = q(x) 其通解公式为

$$y = e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} q(x)dx + C \right]$$

特殊的, 一阶线性齐次 y' + p(x)y = 0 其通解公式为

$$y = Ce^{-\int p(x)\mathrm{d}x}$$

(三) 一阶齐次方程: 形如 $y' = f(\frac{y}{x})$ 则可以通过 $u = \frac{y}{x}$ 为可分离变量类型

(四) 全微分方程: 形如 P(x,y)dx+Q(x,y)dy=0, 且 $\frac{dQ}{dx}=\frac{dP}{dy}$ 则其解法本质都是求原函数

(I) 特殊路径积分法
$$u(x,y) = \int_{x_0}^x P(x,y_0) dx + \int_{y_0}^y Q(x,y) dy$$

- (II) 偏积分, 一般考虑直接偏积分
- (III) 凑微分

(五) 伯努利方程: 形如 $y'(x) + p(x)y = q(x)y^{\alpha}, \alpha \neq (0,1)$ 其解法如下

- (I) 同除 y^{α} , 转换为 $y^{-\alpha}y' + p(x)y^{1-\alpha} = q(x)$
- (II) 做 $z = y^{1-\alpha}$ 的换元,则原微分方程转换为

(III)
$$\frac{\mathrm{d}z}{\mathrm{d}x} + (1 - \alpha)p(x)z = (1 - \alpha)q(x)$$

(IV) 转换为一阶线性方程可以用公式法直接求

(六) 需要考虑变量互换: 形如

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{h(y)}{p(y)x + q(y)}, \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{h(y)}{p(y)x + q(y)x^{\alpha}}$$

交换后可以转换为一阶线性/一阶伯努利即

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{p(y)}{h(y)} + \frac{q(y)}{h(y)}, \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{p(y)}{h(y)} + \frac{q(y)}{h(y)}x^{\alpha}$$

1. (1998, 数一、数二) 已知函数 y = y(x) 在任意点 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0) = \pi$, 则 y(1) 等于

(A)
$$2\pi$$
 (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

Solution

两边同除 Δx 且当 $\Delta x \rightarrow 0$, 有 $y' = \frac{y}{1+x^2}$ 原问题转换为求初值问题的解

$$\begin{cases} y' - \frac{y}{1+x^2} = 0\\ y(0) = \pi \end{cases}$$

由公式有 $y = \pi e^{\frac{\pi}{4}}$

2. (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x)>0, $\lim_{x\to +\infty}f(x)=1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

Solution

由题设有

原式 =
$$e^{\lim_{h\to 0}} \frac{f(x+hx) - f(x)}{hf(x)}$$

= $e^{\frac{f'(x)\cdot x}{x}} = e^{\frac{1}{x}} \implies \frac{f'(x)\cdot x}{f(x)} = \frac{1}{x}$

即原问题转换为如下初值问题的解

$$\begin{cases} f'(x) - \frac{1}{x^2} \cdot f(x) = 0\\ \lim_{x \to \infty} f(x) = 1 \end{cases}$$

带入公式有 $f(x) = e^{-\frac{1}{x}}$

3. (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 & \end{cases}$$

Solution

等式两边同时除以 x, 原式化为

$$\left[\frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2}\right] \mathrm{d}x = \mathrm{d}y$$

令
$$u = \frac{y}{x}$$
, 则 $\frac{dy}{dx} = u + x \frac{du}{dx}$ 原式化为

$$\frac{\mathrm{d}u}{\sqrt{1+u^2}} = \frac{\mathrm{d}x}{x}$$

两边同时积分

$$\begin{cases} \frac{y}{x} + \sqrt{1 + (\frac{y}{x})^2} = Cx \\ y(1) = 0 \end{cases} \implies y + \sqrt{x^2 + y^2} = x^2$$

对于带有根式的结果特别需要注意化简, 两边同时乘以 $y-\sqrt{x^2+y^2}$, 可以解出 $y=\frac{1}{2}(x^2+1)$

4. (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。 若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

$$(A) \ \lambda = \frac{1}{2}, \ \mu = \frac{1}{2} \qquad (B) \ \lambda = -\frac{1}{2}, \mu = -\frac{1}{2} \\ (C) \ \lambda = \frac{2}{3}, \ \mu = \frac{1}{3} \qquad (D) \ \lambda = \frac{2}{3}, \mu = \frac{2}{3}$$

由总结可知,选A

一阶, 二阶线性微分方程 (组) 解的性质

若 y_1, y_2 分别为非齐次特解,则

$$C_1 y_1 + C_2 y_2$$

$$\begin{cases} C_1 + C_1 = 0, & \hat{\mathbf{x}}$$
 次解
$$C_1 + C_2 = 1, & \text{非齐次解} \end{cases}$$

- 5. (2018, 数一) 已知微分方程 y'+y=f(x), 其中 f(x) 是 $\mathbb R$ 上的连续函数。
 - (1) 若 f(x) = x, 求方程的通解;
 - (2) 若 f(x) 是周期为 T 的函数,证明:方程存在唯一的以 T 为周期的解。

Solution

(一) 由一阶线性的求解公式有

$$y = e^{-x} \left[\int e^x \cdot x dx + C \right]$$
$$= e^{-x} \left[(x - 1)e^{-x} + C \right]$$
$$= Ce^{-x} + x - 1$$

(二)由一阶线性的求解公式有

$$y = e^{-x} \left[\int f(x)e^x dx + C \right] = e^{-x} \int_0^x e^t f(t)dt + C$$

则

$$\begin{split} y(x+T) - y(x) &= e^{-x} \left[\frac{1}{e^T} \int_0^{x+T} e^t f(t) \mathrm{d}t - \int_0^x e^t f(t) \mathrm{d}t + (\frac{1}{e^T - 1}) C \right] \\ \int_0^{x+T} e^t f(t) \mathrm{d}t &= \int_0^T + \int_T^{x+T} \\ &= \frac{1}{e^t} \int_0^T e^t f(t) \mathrm{d}t + \frac{1}{e^T} \int_T^{x+T} e^T f(t) \mathrm{d}t \\ &= \dots + \frac{1}{e^T} \int_0^T e^{t+T} f(t+T) \mathrm{d}t \\ y(x+T) - y(x) &= e^{-x} \left[\frac{1}{e^T} \int_0^T e^t f(t) \mathrm{d}t + (\frac{1}{e^T - 1}) C \right] \end{split}$$

由周期函数的定义, 只需要令 y(x+T) - y(x) = 0 即

$$C = -\frac{1}{1 - e^T} \int_0^T e^t f(t) \mathrm{d}t$$

的时候该方程的解是周期还是,且唯一.

6. 求解微分方程 $y' - \frac{4}{x}y = x^2\sqrt{y}$.

Solution

令
$$z = \sqrt{y}$$
, 则 $z' - \frac{2}{x}z = \frac{1}{2}x^2$, 则到

$$z = e^{\int \frac{2}{x} dx} \left(\int \frac{1}{2} x^2 e^{-\int \frac{2}{x} dx} dx + C \right) = x^2 \left(\frac{1}{2} \cdot x + C \right)$$

则该方程的通解为 $\sqrt{y} = \frac{1}{2}x^3 + Cx^2$

7. 求解下列微分方程:

$$(1) (2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

(2)
$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0.$$

Solution

(1) 偏积分法

$$u(x,y) = \int (2xe^y + 3x^2 - 1)dx = x^2e^y + x^3 - x + \phi(y)$$

由于 $\frac{\partial u}{\partial y} = x^2 e^y + \phi'(y)$ 对比题目可知 $\phi'(y) = -2y \implies \phi(y) = -y^2$, 故原方程的解

$$x^2 e^y + x^3 - x - y^2 = C$$

(2) 凑微分法

原式 =
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy$$

= $(2xe^ydx + x^2e^ydy) + (3x^2 - 1)dx + (-2y)dy$
= $d(x^2e^y) + d(x^3 - x) + d(-y^2)$
= $d(x^2e^y + x^3 - x - y^2) = 0$

$$\mathbb{P} x^2 e^y + x^3 - x - y^2 = C$$

4.2 二阶常系数线性微分方程

Remark

二阶齐次方程的通解, 形如 y'' + py' + qy = 0

求解特征方程 $(r^2 + pr + q = 0)$

$$\begin{cases} r_1 \neq r_2, & \text{通解为} C_1 e^{r_1 x} + C_2 e^{r_2 x} \\ r_1 = r_2 = r, & \text{通解为} (C_1 + C_2 x) e^{r x} \\ r_{1,2} = \alpha \pm \beta, & \text{通解为} e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) \end{cases}$$

二阶非齐次方程的通解, 形如 y'' + py' + qy = f(x), 其解的结构为齐次特解 + 非齐次通解

特解格式
$$\begin{cases} f(x) = P_n e^{\lambda x}, y^* = x^k Q_n(x) e^{\lambda x} \\ f(x) = e^{\alpha x} [P_m(x) \cos \beta x + P_n(x) \sin \beta x] \\ \\ y^* = x^k e^{\alpha} [Q_l(x) \cos \beta x + R_l(x) \sin \beta x], l = \min \{m, n\} \end{cases}$$

- 8. (2017, 数二) 微分方程 $y'' 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$
 - (A) $Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (B) $Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (C) $Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$
 - $(D) Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$

Solution

原方程可以转换为如下两式的和

$$y'' - 4y' + 8y = e^2x (4.1)$$

$$y'' - 4y' + 8y = e^2 x \cdot \cos 2x \tag{4.2}$$

解特征方程有

$$r^2 - 4r + 8 = 0 \implies r_{1,2} = \frac{4 + \sqrt{-16}}{2} = 2 \pm 2i$$

则上述两个方程的特解分别为

$$y_1^* = Ae^{2x}$$

$$y_2^* = xe^{2x}(B\sin 2x + C\cos 2x)$$

由叠加原理 可知, 原方程的特解为

$$y^* = Ae^{2x} + xe^{2x}(B\sin 2x + C\cos 2x)$$

- 9. (2015, 数一) 设 $y = \frac{1}{2}e^{2x} + (x \frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^x$ 的一个特解 则
 - (A) a = -3, b = 2, c = -1 (B) a = 3, b = 2, c = -1

(B)
$$a = 3, b = 2, c = -1$$

(C) a = -3, b = 2, c = 1 (D) a = 3, b = 2, c = 1

(D)
$$a = 3, b = 2, c = 1$$

Solution

(方法一) 带入原方程求解 a,b,c 即

$$\begin{cases} y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^x \\ y' = e^{2x} + (x + \frac{2}{3})e^x \\ y'' = 2e^{2x} + (x + \frac{5}{3})e^x \\ y'' + ay' + by = ce^x \end{cases} \implies \begin{cases} 2 + a + \frac{b}{2} = 0 \\ 1 + a + b = 0 \\ \frac{5}{3} + \frac{2a}{3} - \frac{b}{3} = c \end{cases} \implies \begin{cases} a = -3 \\ b = 2 \\ c = -1 \end{cases}$$

(方法二)利用解的特性反推微分方程

$$y = \frac{1}{2}e^{2x} - \frac{1}{3}e^x + xe^x$$

显然其齐次方程的解为 $\frac{1}{9}e^{2x}-\frac{1}{3}e^x$, 非齐次特解为 xe^x , 故可以推导出该微分方程的 齐次通解为 $C_1e^{2x} + C_2e^x$,则其特征方程为 (r-2)(r-1) = 0,从而可知 a = -3, b = 2, 将非齐次特解带入可以求出 c = -1

10. (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y =0 的两个解。若 u(-1) = e, u(0) = -1, 求 u(x), 并写出该微分方程的通解。

将 y2(x) 以及如下带入原方程有

$$\begin{cases} y_2'(x) = e^x \left[u'(x) + u(x) \right] \\ y_2''(x) = e^x \left[u''(x) + 2u'(x) + u(x) \right] \end{cases}$$

有

$$(2x-1)u''(x) + (2x-3)u'(x) = 0$$

(方法一) 典型的可降阶方程, 令 u'(x) = p 有

$$(2x-1)p' + (2x-3)p = 0 \implies p = Ce^{-\int \frac{2x-3}{2x-1} dx} = u'(x)$$

(方法二) 分离变量

$$\int \frac{u''(x)}{u'(x)} \mathrm{d}x = \int -\frac{2x-3}{2x-1} \mathrm{d}x$$

即 $\ln |u'(x)| = \ln |2x - 1| - x + \ln |C_1|$

$$u(x) = \int u'(x)dx = -C_1(1+2x)e^{-x} + C_2$$

带入初值条件有

$$u(x) = -(2x+1)e^{-x}$$

- 11. (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (1) 证明反常积分 $\int_0^{+\infty} y(x)dx$ 收敛;

Solution

(1) 解特征方程 $r^2 + 2r + k = 0$ 又 0 < k < 1 故特征方程的解为

$$r_{1.2} = -1 \pm \sqrt{1 - k}$$

从而该方程的齐次通解为

$$y = C_1 e^{r_1 x} + C_2^{r_2 x}$$

方法一: 直接计算方常积分

$$\int_0^\infty \left(C_1 e^{r_1 x} + C_2 e^{r_2 x} \right) \mathrm{d}x = \left(\frac{C_1}{r_1} e^{r_1 x} + \frac{C_2}{r_2} e^{r_2 x} \right) \Big|_0^{+\infty}$$

$$\frac{r_{1,2} < 0}{-\infty} - \left(\frac{C_1}{r_1} + \frac{C_2}{r_2} \right)$$

故原反常积分收敛

方法二: 用比较判别法

$$\lim_{x \to \infty} x^p (C_1 e^{r_1 x} + C_2 e^{r_2 x})$$

又 $r_{1,2} < 0$ 上式恒为 0, 又 p=2 的时候 $\int_1^{+\infty} \frac{1}{x^2} dx$ 收敛由比较判别法可知原反常积分收敛

(2) 方法一: 尝试求根并计算由 y(0) = y'(0) = 1 有

$$\begin{cases} C_1 + C_2 = 1 \\ r_1 C_1 + r_2 C_2 = 1 \end{cases} \implies \begin{cases} C_1 = \frac{r_2 - 1}{r_2 - r_1} \\ C_2 = \frac{1 - r_1}{r_2 - r_1} \end{cases}$$

此时 $C_1r_1 + C_2r_2 = r_1 + r_2 - 1$ 带入积分有

$$\int_0^{+\infty} y(x) dx = -\frac{C_1 r_2 + C_2 r_1}{r_1 r_2} = -\frac{r_1 + r_2 - 1}{r_1 r_2}$$

则由韦达定理有 $\begin{cases} r_1+r_2=-2 \\ \\ r_1r_2=k \end{cases}$ 则原反常积分为 $\frac{3}{k}$

方法二: 利用微分方程替换, 带入 $y = \frac{-1}{k}(y'' + 2y')$ 此时反常积分转换为

$$\int_{0}^{+\infty} -\frac{1}{k} (y'' + 2y') dx = -\frac{1}{k} (y' + 2y) \Big|_{0}^{+\infty}$$
$$= \frac{3}{k}$$

4.3 高阶常系数线性齐次微分方程

12. 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

高阶齐次的解法和二阶齐次的解法完全一致,解特征方程判断解的结构 该微分方程的特征方程为

$$r^4 - 3r^2 - 4 = 0 \implies (r - 2)(r + 2)(r^2 + 1) = 0 \implies \begin{cases} r_1 = 2\\ r_2 = -2\\ r_{3,4} = \pm i \end{cases}$$

故原方程的通解为

$$y = C_1 e^{2x} + C_2 e^{-2x} + C_3 \cos x + C_4 \sin x$$

4.4 二阶可降阶微分方程

Remark

有两种类型

(一) 缺
$$y$$
型 $y'' = f(x, y')$ 令 $y' = p$,则 $p' = f(x, p)$

(二) 缺
$$x$$
 型 $y'' = f(y', y)$ 令 $y' = p$ 则 $y'' = p \frac{dp}{dy}$

13. 求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1 的特解。

Solution

本题不含 y, 令 y'=p,y''=p' 则原方程化简为 $p'(x+p^2)=p$ 转换为反函数即

$$\frac{\mathrm{d}x}{\mathrm{d}p} - \frac{1}{p} \cdot x = p \implies x = p(p+C)$$

又
$$p(1) = p'(1) = 1$$
 可知 $C = 0$,从而 $x = p^2 \implies y' = \sqrt{x}$,从而 $y = \frac{2}{3}x^{\frac{3}{2}} + C_1$ 又 $y(1) = 1$ 可知 $y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}$ 则

4.5 欧拉方程

Remark

对于形如

$$\begin{cases} xy' = Dy \\ x^2y'' = D(D-1)y \\ \dots \\ x^ny^{(n)} = D(D-1)(D-2)\dots(D-n+1)y \end{cases}$$

一般只需要将 $D \rightarrow r$ 求解特征方程即可, 注意换元.

14. 求解微分方程 $x^2y'' + xy' + y = 2 \sin \ln x$ 。

Solution

 $\diamond x = e^t$, 则原方程转换为 $D(D-1)y + Dy + y = 2 \sin t$ 特征方程为

$$r(r-1) + r + 1 = 0 \implies r_{1,2} = \pm i$$

齐次方程的通解为 $y=C_1\cos t+C_2\sin t$, 令 $y^*=t(A\cos t+B\sin t)$, 带入方程有 A=-1,B=0 故原方程的通解为 $y=C_1\cos\ln x+C_2\sin\ln x-\ln x\cdot\cos\ln x$

4.6 变量代换求解二阶变系数线性微分方程

17. (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1 - x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

Solution

有题设可知

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{1}{\sin t} \frac{\mathrm{d}y}{\mathrm{d}t} \\ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{1}{\sin t} \left(\frac{\cos t}{\sin^2 t} \frac{\mathrm{d}y}{\mathrm{d}t} - \frac{1}{\sin t} \frac{\mathrm{d}^2y}{\mathrm{d}t^2} \right) \end{cases}$$

代入方程有

$$y''(t) + y(t) = 0 \implies y = C_1 \cos t + C_2 \sin t = C_1 x + C_2 \sqrt{1 - x^2}$$

带入题设初值条件, 可知 $y = 2x + \sqrt{1-x^2}$

4.7 微分方程综合题

18. (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

Solution

由题可设切线方程为

$$Y - y = y'(X - x)$$

令 x = 0, 则 Y = -xy' + y 由题设原问题转换为如下初值问题的解

$$\begin{cases} y - xy' = \sqrt{x^2 + y^2} \\ y(\frac{1}{2}) = 0 \end{cases}$$

可以解出 $y = -x^2 + \frac{1}{4}$

19. (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

Solution

有题设可以得到

$$\pi \int_1^t f^2(x) \mathrm{d}x = \pi t \int_1^t f(x) \mathrm{d}x$$

两边同时求导有

$$f^2(t) = \int_1^t f(x) \mathrm{d}x + t f(t)$$

变限积分要注意其可能隐藏初值条件 由 f(x) > 0 可知 f(1) = 1 再求导, 此时原问

题转换为如下初值问题的解

$$\begin{cases} 2f(t)f'(t) = tf'(t) + 2f(t) \\ f(1) = 1 \end{cases}$$

可以解出 $x = \frac{2}{3}y + \frac{1}{3\sqrt{y}}$

20. (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

Solution

$$\int_0^x f(x-t) dt \xrightarrow{u=x-t} \int_0^x f(u) du$$

故原式等于

$$\int_{0}^{x} f(t)dt = x \int_{0}^{x} f(t)dt - \int_{0}^{x} t f(t)dt + e^{-x} - 1$$

两边同时求导有

$$f(x) = \int_0^x f(t)dt - e^{-x} \implies f(0) = -1$$

再求导则原题转换为如下初值问题的解

$$\begin{cases} f'(x) = f(x) + e^{-x} \\ f(0) = -1 \end{cases}$$

可以解出 $y = -\frac{1}{2}e^{-x} - \frac{1}{2}e^{x}$

21. (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

有题设可知

$$\begin{cases} \frac{\partial z}{\partial x} = f'(u)e^x \cos y \\ \frac{\partial^2 z}{\partial x^2} = f''(u)e^{2x} \cos^2 y + f'(u)e^x \cos y \\ \frac{\partial z}{\partial y} = f'(u)(-\sin ye^x) \\ \frac{\partial^2 z}{\partial y^2} = f''(u)e^{2x} \sin^2 y + f'(u)(-\cos ye^x) \end{cases}$$

代入题设有

$$f''(u) - 4f(u) = u$$

带入题设初值条件,可以解出

$$f(u) = \frac{1}{16}e^{2u} - \frac{1}{16}e^{-2u} - \frac{1}{4}u$$

22. (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数, f(0) = 1, 且满足

$$\iint_{D_t} f'(x+y) \mathrm{d}x \mathrm{d}y = \iint_{D_t} f(t) \mathrm{d}x \mathrm{d}y$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

Solution

积分区域如下所示

$$\iint_{D_t} f(t) dx dy = \frac{1}{2} t^2 f(t)$$

$$\iint_{D_t} f'(x+y) dx dy = \int_0^t dx \int_0^{t-x} f'(x+y) dy$$

$$= \int_0^t f(x+y) \Big|_{y=0}^{y=t-x} dx$$

$$= \int_0^t [f(t) - f(x)] dx$$

$$= tf(t) - \int_0^t f(x) dx$$

由题即转换为求解如下初值问题

$$\begin{cases} tf(t) - \int_0^t f(x) dx = \frac{1}{2}t^2 f(t) \\ f(0) = 1 \end{cases}$$

可以解出
$$f(x) = \frac{4}{(x-2)^2}$$

第五章 多元函数微分学

5.1 多元函数的概念

Remark

多元函数微分学的概念

可微的概念 设二元函数 f(x,y) 在点 (x_0,y_0) 的某领域内有定义, 且其全增量可以写成

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = A\Delta x + B\Delta y + o(\rho)$$

其中 $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ 其中 A, B 为不依赖于 $\Delta x, \Delta y$, 而仅与 x_0, y_0 有关, 则其在 (x_0, y_0) 可微

全微分 若 f(x,y) 在 (x_0,y_0) 可微,则其全微分为

$$\mathrm{d}z = A\Delta x + B\Delta y$$
 = 可微的必要条件 $f_x'(x_0,y_0)\mathrm{d}x + f_y'(x_0,y_0)\mathrm{d}y$

可微的必要条件 若 f(x,y) 在点 (x_0,y_0) 可微,则 f(x,y) 在该点连续,且两个偏导数都存在可微的充分条件 若 f(x,y) 在点 (x_0,y_0) 处偏导数存在,且作为二元函数在该点连续,则 f(x,y) 在点 (x_0,y_0) 可微

1. 例 1 求下列重极限:

$$(1)\lim_{\substack{x\to 0\\y\to 0}}\frac{x^{\alpha}y^{\beta}}{x^2+y^2}\quad (\alpha\geq 0,\beta\geq 0);$$

(2)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(x^2 - y^2)}{x^2 + y^2};$$

$$(3) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}$$

- (1) 即总结
- (2) 重极限也满足极限的四则运算故

原式 =
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 y}{x^2 + y^2} - \lim_{\substack{x \to 0 \ y \to 0}} \frac{xy^3}{x^2 + y^2}$$

由结论可知 原式 = 0

(3)

原式 =
$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(\frac{x^{\frac{4}{3}}y^{\frac{4}{3}}}{x^2 + y^2} \right)^{\frac{3}{2}} = 0$$

求重极限的技巧

若需要计算重极限,考虑极坐标换元通常比较简单.对于形如

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2}$$

只需要做极坐标换元即可

原式 =
$$\lim_{r \to 0^+} \frac{r^{\alpha+\beta}\cos^{\alpha}\theta\sin^{\beta}\theta}{r^2}$$
, $(\theta \in [0, 2\pi])$ =
$$\begin{cases} 0, & \alpha+\beta-2 > 0 \\ \text{不存在,} & \alpha+\beta-2 \leq 0 \end{cases}$$

- 2. (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是
 - (A) 若极限 $\lim_{\substack{x\to 0\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在, 则f(x,y)在点(0,0)处可微
 - (B) 若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则f(x,y)在点(0,0)处可微
 - (C) 若f(x,y)在点(0,0)处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在
 - (D) 若f(x,y)在点(0,0)处可微,则极限 $\lim_{\substack{x\to 0\\x\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在

(方法一)证明 B 选项正确

$$\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2} \exists, 且 f(x,y)$$
连续 $\Longrightarrow f(0,0)=0$

脱极限号有

$$f(x,y) = o(\rho)$$

由可微的定义有

$$f(x,y) - f(0,0) = 0 \cdot \Delta x + 0 \cdot \Delta y + o(\rho)$$

从而 f(x,y) 在 (0,0) 可微

(方法二) 特殊值证明 ACD 不正确

对于 A 选项, 当 f(x) = |x| + |y| 不可微

对于 CD 选项, 当 $f(x,y) = C \neq 0$ 的时候, 极限不存在

3. (2012, 数三) 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则 $dz|_{(0,1)} =$

Solution

(方法一) 和上面的题目比较相似, 由题设可知 f(0,1) = 1, 脱极限号有

$$f(x,y) - 2x + y - 2 = o(\rho)$$

由可微的定义有

$$f(x,y) - 1 = 2x - (y-1) + o(\rho) = 2\Delta x - \Delta + o(\rho)$$

即

$$d\big|_{(0,1)} = 2\mathrm{d}x - \mathrm{d}y$$

(方法二) 特殊值令 f(x,y)=2x-y+2, 可以直接求出 $d\big|_{(0,1)}=2\mathbf{d}x-\mathbf{d}y$

5.2 多元复合函数求偏导数与全微分

Remark

本质是计算题, 仔细计算即可. 注意点

- (一)链式法则
- (二)一阶全微分形式不变性
- (三)二阶混合偏导数若连续则相等
- 4. (2021, 数一、数二、数三) 设函数 f(x,y) 可微, 且 $f(x+1,e^x)=x(x+1)^2, f(x,x^2)=2x^2\ln x$ 则 df(1,1)=
 - (A) dx + dy (B) dx dy (C) dy (D) dy

Solution

第一个等式两边同时对 x 求导有

$$f_1'(x+1,e^x) + f_2'(x+1,e^x)e^x = (x+1)^2 + 2x(x+1)$$

令x = 0则

$$f_1'(1,1) + f_2'(1,1) = 1$$

同理, 第二个等式两边同时对 x 求导有

$$f_1'(x, x^2) + f_2'(x, x^2) \cdot 2x = 4x \ln x + 2x$$

令x=1则

$$f_1'(1,1) + 2f_2'(1,1) = 2$$

联立可以解出

$$\begin{cases} f_1'(1,1) = 0 \\ f_2'(1,1) = 1 \end{cases}$$

故 df(1,1) = dy

5. (2011, 数一、数二) 设 z=f(xy,yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x=1 处取得极值 g(1)=1, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{x=1,y=1}$ 。

由题设可知 g'(1) = 0, g(1) = 0 且

$$\frac{\partial z}{\partial x} = f_1' \cdot y + f_1' \cdot yg'(x)$$

这种求值的题目先带入可以化简

$$\frac{\partial z}{\partial x}\big|_{(x=1)} = f_1' \cdot y$$

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1)} = f_{11}^{\prime\prime} \cdot y + f_1^{\prime} + f_{12}^{\prime\prime} \cdot g(x)$$

带入y=1有

$$\frac{\partial^2 z}{\partial x \partial y}\big|_{(x=1,y=1)} = f_{11}''(1,1) + f_1'(1,1) + f_{12}''(1,1)$$

5.3 多元隐函数求偏导数与全微分

Remark

三个方法

(方法一) 代入求偏导 z = z(x, y)

(方法二) 公式法
$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}; \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$$

(方法三) 全微分

- 6. (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的 一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

由题设有 $F(x,y,z) = xy - 2 \ln y + e^{xz} - 1$ 分别对 x,y,z 求导有

$$\begin{cases} F'_x(0,1,1) = 2 \neq 0 \\ F'_y(0,1,1) = -2 \neq 0 \\ F'_z(0,1,1) = 0 \end{cases}$$

由隐函数存在定理可知仅x,y可以作为因变量

隐函数存在定理

(隐函数存在定理) 如果二元函数 F(x,y) = 0, 满足如下三个条件

- (1) 函数 F(x,y) 在点 (x_0,y_0) 某邻域内有连续偏导数
- (2) $F(x_0, y_0) = 0$
- (3) F; $(x_0, y_0) \neq 0$

则方程 F(x,y) = 0 在点 (x_0,y_0) 某邻域内恒能<mark>唯一</mark>确定一个连续函数 y = y(x), 且

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'}$$

简单来说对谁的偏导数不为零,谁能表示为其余变量的函数(作为因变量)

7. (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确定的函数, 其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数, 求 $\frac{dz}{dx}$ 。

Solution

记

$$z = xf(x+y) \tag{1}$$

$$F(x, y, z) = 0 (2)$$

分别对 (1) 和 (2) 的两端对 x/y 求导有

$$\frac{\mathrm{d}z}{\mathrm{d}x} = f(x+y) + xf'(1 + \frac{\mathrm{d}y}{\mathrm{d}x}) \tag{3}$$

$$F_1' + F_2' \frac{dy}{dx} + F_3' \frac{dz}{dx} = 0 (4)$$

联立(3)和(4)可以解出

$$\frac{dz}{dx} = \frac{(f + xf')F_2' - xf'F_1'}{F_2' + xf' \cdot F_3'}$$

多元函数组确认函数的情况

本质是方程组思想

- 一个三元方程可以确定一个二元函数
- 二个三元方程可以确定两个二元函数

参考线性代数的方程组的解, 就很容易明白

5.4 变量代换化简偏微分方程

8. (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

Solution

有题设有

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} + \frac{\partial u}{\partial \eta} \\ \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial \xi^2} + 2\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial y^2} = a^2 \frac{\partial^2 u}{\partial \xi^2} + 2ab\frac{\partial^2 u}{\partial \xi \partial \eta} + b^2 \frac{\partial^2 u}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial x \partial y} = a\frac{\partial^2 u}{\partial \xi^2} + (a+b)\frac{\partial^2 u}{\partial \xi \partial \eta} + b\frac{\partial^2 u}{\partial \eta^2} \end{cases}$$

带入题设等式有

5.5 求无条件极值

Remark

两个方法

(一) 多元函数微分学的定义

是极值, 一般使用保号性证明 不是极值, 一般取不同路径

(二) $AC - B^2$ 判别法, 若 $f'_x = f'_y = 0$ 且其二阶偏导数存在, 记

$$\begin{cases} A = f''_{xx} \\ B = f''_{xy} \end{cases} \implies AC - B^2 \begin{cases} > 0, & \begin{cases} A > 0, & \text{极小值} \\ A < 0, & \text{极大值} \end{cases} \\ < 0, & \text{不是} \\ = 0, & \text{判别法失效, 无法判断} \end{cases}$$

9. (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C) 点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

Solution

有题设可知 f(0,0)=0

方法一: 选特殊路径证明, 脱极限号有 $f(x,y) = xy + o(x^2 + y^2)$

$$\Rightarrow y = x, f(x, x) = x^2 + o(x^2) > 0$$

$$\Rightarrow y = -x, f(x, -x) = -x^2 + O(x^2) < 0$$

故点 (0,0) 不是 f(x,y) 的极值点

方法二: 特殊值用判别法证明, 不妨假设 $f(xy)=xy+(x^2+y^2)^2$ 且 $\frac{\partial f}{\partial x}\Big|_{(0,0)}=$

$$\frac{\partial f}{\partial y}|_{(0,0)}=0$$
 而 $A=0, B=1, C=0$ \implies $AC-B^2=-1<0$ 故 $(0,0)$ 不是极值

10. (2004, 数一) 设 z = z(x,y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数, 求 z = z(x,y) 的极值点和极值。

Solution

对于这种题分两步, 第一步求驻点, 第二步求二阶偏导数并用判别法判断所有驻点. 题目等式两边分别对 x,y 求导有

对
$$x$$
求导 $2x - 6y - 2y\frac{\partial z}{\partial x} - 2z\frac{\partial z}{\partial x} = 0$ (1)

对求导
$$-6x + 20y - 2z - 2y\frac{\partial z}{\partial y} - 2z\frac{\partial z}{\partial y} = 0$$
 (2)

令
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$$
 有
$$\begin{cases} x = 3y \\ y = z \end{cases}$$
 带入题设等式有可以解出

$$\begin{cases} x = 9 \\ y = z = 3 \end{cases} \quad \overrightarrow{\mathbb{R}} \begin{cases} x = -9 \\ y = z = -3 \end{cases}$$

对(1)两侧对 x,y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$2 - 2y\frac{\partial^2 z}{\partial x^2} - 2z\frac{\partial^2 z}{\partial x^2} = 0$$
 (3)

$$-6 - 2y \frac{\partial^2 z}{\partial x \partial y} - 2z \frac{\partial^2 z}{\partial x \partial y} = 0 \tag{4}$$

对(2)两测对 y 求导有, 且带入 $\frac{\partial z}{\partial y} = \frac{\partial z}{\partial x} = 0$

$$20 - 2y\frac{\partial^2 z}{\partial y^2} - 2z\frac{\partial^2 z}{\partial x \partial y} = 0 ag{5}$$

综上可以解出

$$\begin{cases} \frac{\partial^2 z}{\partial x^2} = \frac{1}{y+z} \\ \frac{\partial^2 z}{\partial x \partial y} = \frac{-3}{y+z} \\ \frac{\partial^2 z}{\partial y^2} = \frac{10}{y+z} \end{cases}$$

带入题设条件可知

5.6 求条件极值(边界最值)

Remark

(方法一)lagrange 乘数法

构造辅助函数 $L(x, y, \lambda) = f(x, y) + \lambda \cdot \varphi(x, y)$ 然后求解

$$\begin{cases} L'_x = \frac{\partial f}{\partial x} + \lambda \cdot \frac{\partial \varphi}{\partial x} = 0 \\ L'_x = \frac{\partial f}{\partial y} + \lambda \cdot \frac{\partial \varphi}{\partial y} = 0 \\ L'_\lambda = \varphi(x, y) = 0 \end{cases}$$

拉格朗日乘数法的关键在于**乘非零因子消去** λ 所有满足上述方程的解 (x, y, λ) 中的 (x, y) 都有可能是条件极值,对于不封闭曲线要和端点比较.

(方法二) 解 $\varphi(x,y) = 0 \implies y = y(x)$ 带入 f(x,y) 转换为一元函数

(方法三) 极坐标变化

(方法四)均值不等式,柯西不等式

对于两个整数 a 和 b, 均值不等式为

$$\sqrt{\frac{a^2 + b^2}{2}} \ge \frac{a + b}{2} \ge \sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

柯西不等式的实数形式,对于任意实数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n 有

$$\left(\sum_{i=0}^{n} a_i b_i\right)^2 \ge \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

- 11. (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数, 且 $\varphi'_y(x,y) \neq 0$ 。已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y) = 0$ 下的一个极值点, 下列选项正确的是

- $(D) \stackrel{\text{def}}{=} f'_x(x_0, y_0) \neq 0, \quad \inf_{y} f'_y(x_0, y_0) \neq 0$

使用拉格朗日乘数法, 令 $L(x,y,\lambda) = f(x,y) + \lambda \varphi(x,y)$ 则

$$L_x' = f_x' + \lambda \varphi_x' = 0 \tag{1}$$

$$L_y' = f_y' + \lambda \varphi_y' = 0 \tag{2}$$

$$L_{\lambda}' = \varphi = 0 \tag{3}$$

拉格朗日乘数法的关键在于**乘非零因子消去** λ , 由题设可知 $\varphi'_y \neq 0$ 通过 (2) 式可以 求出 $\lambda = -\frac{f'_y}{\varphi'_y}$, 代入 (1) 式有

$$f_x' - \frac{f_y'}{\varphi_y'} \cdot \varphi_x' = 0$$

考虑选项, 只有当 $f_x' \neq 0$ 的时候可以确定 $f_y' \neq 0, \varphi_x \neq 0$

12. (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

Solution

这题的关键在于转换目标函数若考虑题设其目标函数为 $\sqrt{x^2+y^2}$ 显然根号不好做, 此时需要将目标函数做等价变化即求 x^2+y^2 的条件极值,则设拉格朗日函数为

$$L(x, y, \lambda) = x^{2} + y^{2} + \lambda(x^{3} - xy + y^{3} - 1)$$

分别对 x, y, λ 求导有

$$L_x' = 2x + \lambda(3x^2 - y) = 0 \tag{1}$$

$$L_y' = 2y + \lambda(3y^2 - x) = 0 (2)$$

$$L_{\lambda}' = x^3 - xy + y^3 - 1 = 0 \tag{3}$$

 $x \ge 0, y \ge 0$ 可知 $3x^2 - y \ne 0, 3y^2 - x \ne 0$, 将 $(1) \times (3y^2 - x) - (2) \times (3x^2 - y)$ 有

$$-x^{2} + 3xy^{2} - 3x^{2}y + y^{2} = 0 \implies (y + x + 3xy)(y - x) = 0$$

即 y + x + 3xy = 0或y = x 由于 $x \ge 0, y \ge 0$ 故 y + x + 3xy = 0 不合理舍去,将 y = x 带入(3)式有 $2x^3 - x^2 - 1 = 0 \Longrightarrow (1.1)$ 由于曲线不封闭,需要考虑曲线端点

即(0,1)(1,0)比较可知曲线上距离原点的最大/最小距离为

5.7 闭区域最值

Remark

闭区域最值分两步做

- (一) 求内部驻点
- (二) 求边界的条件极值
- 12. (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则
 - (A) u(x,y)的最大值和最小值都在D的边界上取得
 - (B) u(x,y)的最大值和最小值都在D的内部取得
 - (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
 - (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

Solution

若 $A=\frac{\partial^2 u}{\partial^2 x}\geq 0 \implies C=\frac{\partial^2 u}{\partial^2 y}\leq 0$ 且仅当 A=0 时 C=0,有 $\frac{\partial^2 u}{\partial x \partial y}=B\neq 0$ 由此可知 $AC-B^2<0$,同理当 $A=\frac{\partial^2 u}{\partial^2 x}<0$,亦有 $AC-B^2<0$ 故 u(x,y) 在区域内部无极值点,有由于连续函数在有界闭区间必然有最大/最小值,此时 u(x,y) 的最值均在边界取得.

13. (2005, 数二) 已知函数 z=f(x,y) 的全微分 dz=2xdx-2ydy, 且 f(1,1)=2, 求 f(x,y) 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值。

Solution

由题设全微分可以求出 $z=x^2-y^2+2$, 这种题第一步先求区域内最值, 在求条件极值, 区域图像如下所示

$$\diamondsuit \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = 0$$
 即 $\begin{cases} 2x = 0 \\ 2y = 0 \end{cases} \implies x = y = 0$ 故在内部仅有唯一驻点 $(0,0)$, 且

$$z\big|_{(0,0)} = 2$$

求条件极值

(方法一) 设拉格朗日函数为 $L(x,y,\lambda)=x^2-y^2+2+\lambda(x^2+\frac{y^2}{4}-1)$ 分别对 x,y,λ 求导有

$$L_x' = 2x + 2x\lambda = 0 \tag{1}$$

$$L_y' = 2y + 2y\lambda = 0 \tag{2}$$

$$L_{\lambda}' = x^2 + \frac{y^2}{4} - 1 = 0 \tag{5.1}$$

此时有

$$\begin{cases} x = 0, & y = \pm 2, f(0, \pm 2) = -2 \\ y = 0, & x = \pm 1 f(\pm 1, 0) = 3 \end{cases}$$

而当 $x \neq 0$ 或 $y \neq 0$ 时候与题设矛盾, 综上可知闭区间最值为

(方法二) 有题设可知 $y^2=4(1-x^2)$ 带入 $f(x,y) \implies f(x)=x^2-4(1-x^2)+2=5x^2-2, x\in[-1,1]$ 显然当 $x=0, f_{min}(x)=-2; x=\pm 1, f(x)=3$

(方法三) 令
$$\begin{cases} x = \cos \theta \\ y = 2\sin \theta \end{cases}$$
 其中 $\theta \in [0, 2\pi]$, 此时 $f(\theta) = \cos^2 \theta - 4\sin^2 \theta + 2 = \cos^2 \theta$

 $3-5\cos^2\theta$ 容易得出 $f_{max}=3; f_{min}=-2$

第六章 二重积分

6.1 二重积分的概念

Remark

二重积分的定义

$$\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} f(\frac{i}{n}, \frac{j}{n}) \cdot \frac{1}{n} \frac{1}{n} = \int_{0}^{1} \int_{0}^{1} f(x, y) dx dy$$

和一元函数的积分定义题目一样, 关键是提出 $\frac{1}{n}$

1. (2010, 数一、数二)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy \quad (D) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy$$

Solution

原式 =
$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{\left(1 + \frac{i}{n}\right) \left[1 + \left(\frac{j}{n}\right)^2\right]}$$

= $\int_0^1 dx \int_0^1 \frac{dy}{(1+x)(1+y^2)}$
= $\frac{\pi}{4} \ln 2$

2. (2016, 数三) 设
$$J_i = \iint_{D_i} \sqrt[3]{x - y} dx dy (i = 1, 2, 3)$$
, 其中
$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x}\},$$

$$D_3 = \{(x, y) | 0 \le x \le 1, x^2 \le y \le 1\},$$
 则

- (A) $J_1 < J_2 < J_3$ (B) $J_3 < J_1 < J_2$
- (C) $J_2 < J_3 < J_1$ (D) $J_2 < J_1 < J_3$

显然区域 D_1 满足轮换对称性, 因此有

$$J_1 = \frac{1}{2} \iint_{D_1} \left(\sqrt[3]{x - y} + \sqrt[3]{y - x} \right) = 0$$

对于区域 D_2 , 可以将 D_1 划分为如下两部分

显然蓝色区域 D_2 等于 $D_1 - D_{2'}$ 其中 $D_{2'}$ 为红色区域即

$$J_2 = \iint_{D_1} - \iint_{D_{2'}} \sqrt{x - y} \mathrm{d}x \mathrm{d}y$$

不难发现在红色区域 y>x 是显然的, 故 $J_2>0$, 同理可以得出 $J_3<0$

$$\boxed{J_3 < J_1 < J_2}$$

交换积分次序 6.2

3. (2001, 数一) 交换二次积分的积分次序: $\int_{0}^{1} dy \int_{0}^{1-y} f(x,y) dx = _$

Solution

交换积分次序的题目,注意原函数的积分上下限即可,画图即可.

原式 =
$$-\int_{-1}^{0} dy \int_{1-y}^{2} f(x,y) dx$$

= $-\int_{1}^{2} dx \int_{1-x}^{0} f(x,y) dy$

4. 二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = _____$$

原式 =
$$\int_0^1 dy \int_y^1 \frac{e^{x^2}}{x} dx - \int_0^1 dy \int_y^1 e^{y^2} dy$$

= $\int_0^1 e^{x^2} dx - \int_0^1 (1-y)e^{y^2} dy$
= $\int_0^1 xe^{x^2} dx$
= $\frac{1}{2}(e-1)$

5. 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

Solution

极坐标的积分换序,不要按照极坐标做就当成x-y做

原式 =
$$\int_0^{\frac{\sqrt{2}}{2}a} \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta + \int_{\frac{\sqrt{2}}{2}a}^a \mathrm{d}r \int_{-\arccos\frac{r}{a}}^{\arccos\frac{r}{a}} f(r,\theta) \mathrm{d}\theta$$

什么时候要变化积分次序

第一种 - 出现典型的可积不可求的函数如

$$\begin{cases} e^{\pm x^2}, e^{\frac{1}{x}}, \frac{1}{\ln x} \\ \sin x^2, \sin \frac{1}{x}, \boxed{\frac{\sin x}{x}} \\ \cos x^2, \cos \frac{1}{x}, \boxed{\frac{\cos x}{x}} \end{cases}$$

第二种 - 题目明确要求了要进行积分变换

第三种 - 积分区域和积分顺序显然不符合

第四种 - 题目给的积分正常做会非常难算

6.3 二重积分的计算

Remark $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$

6. (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数, 且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a,$ 其中 $D=\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\},$ 计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) \mathrm{d}x \mathrm{d}y.$$

Solution

有题设可知 $f'_x(x,1) = f'_y(1,y) = 0$

原式 =
$$\int_0^1 dx \int_0^1 xy f''_{xy}(x,y) dy$$
=
$$\int_0^1 x dx \int_0^1 y df'_x(x,y)$$
=
$$-\int_0^1 x dx \int_0^1 f'_x(x,y) dy$$
=
$$-\int_0^1 dy \int_0^1 x f'(x,y) dx$$
=
$$\iint_D f(x,y) dx dy = a$$

7. 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)| -1 \le x \le 1, 0 \le y \le 2\}$ 。

积分区域如下所示

显然图像关于x对称,且原函数关于y是偶数故由对称性可知

原式 =
$$2\iint_{D_1} \sqrt{x^2 - y} \mathrm{d}x \mathrm{d}y + 2\iint_{D_2} \sqrt{y - x^2} \mathrm{d}x \mathrm{d}y$$

$$= 2\int_0^1 \mathrm{d}x \int_0^{x^2} \sqrt{x^2 - y} \mathrm{d}y + 2\int_0^1 \mathrm{d}x \int_{x^2}^2 \sqrt{y - x^2} \mathrm{d}y$$

$$2\int_0^1 \mathrm{d}x \int_0^{x^2} \sqrt{x^2 - y} \mathrm{d}y = \frac{4}{3}\int_0^1 x^3 \mathrm{d}x = \frac{1}{3}$$

$$2\int_0^1 \mathrm{d}x \int_{x^2}^2 \sqrt{y - x^2} \mathrm{d}y = \frac{4}{3}\int_0^1 (2 - x^2)^{\frac{3}{2}} \mathrm{d}x$$

$$= \frac{x = \sqrt{2} \sin t}{3} \frac{16}{3} \int_0^{\frac{\pi}{4}} \cos^4 t \mathrm{d}t$$

$$= \frac{16}{3} \int_0^{\frac{\pi}{4}} (1 + \cos 2t)^2 \mathrm{d}t$$

$$= \frac{2}{3} \int_0^{\frac{\pi}{2}} (1 + \cos t)^2 \mathrm{d}t$$

$$= \frac{\pi}{2} + \frac{4}{3}$$
原式 = $\boxed{\frac{5}{3} + \frac{\pi}{2}}$

8. (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计算二重 积分 $\iint_D (x+2y) dx dy$ 。

Solution

题设参数方程即摆线 图像如图所示, 关键性质为其关于 $x=\pi$ 对称

由于摆线关于 $x = \pi$ 对称由形心公式有

$$\iint_D x \mathrm{d}x \mathrm{d}y = \pi \iint_D \mathrm{d}x \mathrm{d}y$$

故有

原式 =
$$\iint_D (\pi + 2y) dx dy$$
=
$$\int_0^{2\pi} dx \int_0^{y(x)} (\pi + 2y) dy$$
=
$$\int_0^{2\pi} \left[\pi y(x) + y^2(x) \right] dx$$

$$\xrightarrow{\underline{x=t-\sin t}} \int_0^{2\pi} \left[\pi (1-\cos t) + (1-\cos t)^2 \right] (1-\cos t) dt$$
=
$$3\pi^2 + 5\pi$$

9. (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

Solution

积分区域如图所示

由奇偶性可知

原式 =
$$4(\iint_{D_1} x^2 dx dy + \iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} dx dy)$$

其中

$$\iint_{D_1} x^2 dx dy = \int_0^1 dx \int_0^{1-x} x^2 dx dy = \frac{1}{12}$$

$$\iint_{D_2} \frac{1}{\sqrt{x^2 + y^2}} dx dy = \int_0^{\frac{\pi}{2}} d\theta \int_{\frac{1}{\sin \theta + \cos \theta}}^{\frac{2}{\sin \theta + \cos \theta}} \frac{1}{r} r \cdot dr$$
$$= \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta + \cos \theta}$$

方法一 万能代换 =
$$\sqrt{2} \ln (\sqrt{2} + 1)$$

方法二 三角公式 =
$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right)}$$
$$= \frac{1}{\sqrt{2}} \ln\left|\csc\left(\theta + \frac{\pi}{4}\right) - \cot\left(\theta + \frac{\pi}{4}\right)\right|_0^{\frac{\pi}{2}}$$
$$= \sqrt{2} \ln\left(\sqrt{2} + 1\right)$$

综上

原式 =
$$4(\frac{1}{12} + \sqrt{2} \ln (\sqrt{2} + 1))$$

10. (2014, 数二、数三) 设平面区域
$$D=\{(x,y)|1\leq x^2+y^2\leq 4, x\geq 0, y\geq 0\}$$
, 计算

$$\iint_{D} \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \mathrm{d}x \mathrm{d}y.$$

积分区域如下所示

(方法一)转换为极坐标,此时积分为

原式 =
$$\int_0^{\frac{\pi}{2}} \mathrm{d}\theta \int_1^2 \frac{r \cos \theta \sin (\pi r)}{r (\sin \theta + \cos \theta)} r \cdot \mathrm{d}r$$

$$= \int_0^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta + \cos \theta} \mathrm{d}\theta \int_1^2 r \sin(\pi r) \mathrm{d}r$$

$$= \frac{\pi}{4} \cdot \frac{-3}{\pi} = -\frac{3}{4}$$

(方法二)考虑轮换对称性,此时积分为

$$\begin{split} I &= \frac{1}{2} \iint_{D} \sin{(\pi \sqrt{x^2 + y^2})} \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \int_{1}^{2} \sin{(\pi r)} r \cdot \mathrm{d}r \\ &= \frac{\pi}{4} \cdot (-\frac{3}{\pi}) = -\frac{3}{4} \end{split}$$

11. (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \le y, (x^2 + y^2)^3 \le y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x \mathrm{d}y.$$

Solution

6.4 其他题型

12. (2010, 数二) 计算二重积分 $I = \iint_D r^2 \sin \theta \sqrt{1 - r^2 \cos 2\theta} dr d\theta$ 其中 $D = \left\{ (r, \theta) \mid 0 \le r \le \sec \theta, 0 \le \theta \le \frac{\pi}{4} \right\}$

13. (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$ 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$

Solution

第七章 无穷级数

数项级数敛散性的判定 7.1

Remark

正项级数敛散性的判断

比较判别法(放缩/等价/Taylor展开)

比值判别法 (当出现 n!)

根值判别法 (当出现 n^n)

积分判别法 (P级数/对数 P级数)

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \text{收敛}, & p > 1 \\ \text{发散}, & p \le 1 \end{cases}$$

推广

$$\sum_{n=1}^{\infty} \frac{\ln^{\alpha} n}{n^p} \sim \sum_{n=1}^{\infty} \frac{1}{n^p}$$

对数P级数

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^p n} \begin{cases} \psi \otimes, & p > 1 \\ \xi \otimes, & p \le 1 \end{cases} \leftarrow \int \frac{\mathrm{d}x}{x \ln^p n} = \int \frac{d \ln x}{\ln^p x}$$

故其与P级数的敛散性与P的关系一致,推广

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha} \ln^{p} n} \sim \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \alpha > 1, & \text{收敛} \\ \aleph \le 1, & \text{发散} \end{cases}$$

1. (2015, 数三) 下列级数中发散的是
$$(A)\sum_{n=1}^{\infty}\frac{n}{3^n}$$
 $(B)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\ln\left(1+\frac{1}{n}\right)$

交错级数 7.2

第七章 无穷级数

$$(C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \qquad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Solution

- (A) 由根值判别法 $\lim_{n\to\infty} \sqrt[n]{\frac{n}{3^n}} = \frac{1}{3} < 1$ 收敛 (B) 由于 $\frac{1}{\sqrt{n}} \ln (1 + \frac{1}{n}) \sim \frac{1}{n^{\frac{3}{2}}}$, 而 $\frac{3}{2} > 1$ 故原级数收敛
- (C) 原级数等于 $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} + \sum_{n=2}^{\infty} \frac{1}{\ln n}$ 前一个级数由莱布尼兹判别法知收敛, 第二个
- 级数由 P 级数的推广容易得知其发散, 故原级数发散 (D) 由比值判别法有 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^2 = e^{-1} < 1$ 故原级数收敛
- 2. (2017, 数三) 若级数 $\sum_{n=2}^{\infty} \left[\sin \frac{1}{n} k \ln \left(1 \frac{1}{n} \right) \right]$ 收敛, 则 k = 1(A) 1

Solution

原式
$$=\frac{Taylor}{n} \frac{1}{n} - \frac{1}{6n^3} + o(\frac{1}{n^3}) - k\left[\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^2})\right]$$

$$= \frac{1+k}{n} + \frac{k}{2} \cdot \frac{1}{n^2} + o(\frac{1}{n^2})$$

由 P 级数判别法可知, $1+k=0 \implies k=-1$

交错级数 7.2

Remark

交错级数敛散性的判断

莱布尼兹判别,通项单调递减趋于0可以判断原级数收敛.

取绝对值, 若其绝对收敛则原级数也收敛

3. 判定下列级数的敛散性:

$$(1)\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$

$$(2)\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

7.3 任意项级数 第七章 无穷级数

Solution

(1) 记 $f(x) = \frac{1}{x - \ln x}$, $f'(x) = -\frac{1 - \frac{1}{x}}{(x - \ln x)^2} < 0$ 从而 u_n 单调递减, 又 $\lim_{n \to \infty} u_n = 0$ 故 由莱布尼兹判别法可知 $\sum_{i=1}^n \frac{(-1)^{n-1}}{n - \ln n}$ 收敛

(2) 在一起不好判断的时候, 把它们拆开了分别做

原式 =
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1} - \sum_{n=1}^{\infty} \frac{1}{n-1}$$

由莱布尼兹判别法易知第一个级数收敛,第二个级数由 P 级数可知其发散. 故原级数发散

7.3 任意项级数

Remark

任意项级数

收敛级数的定义(部分和极限存在)

$$S_n = u_1 + u_2 + \dots u_n = \sum_{i=1}^n u_i, 若级数收敛 \iff \lim_{n \to \infty} S_n \exists$$

级数的性质 - 线性组合 $\begin{cases} \psi + \psi = \psi \\ \psi + \xi = \xi \\ \xi + \xi = \end{cases}$

级数的性质 改变有限项级数的敛散性不变

级数的性质 结合律, 若级数 $\sum_{n=1}^{\infty} u_n$ 收敛, 则<u>不改变其项的次序间任意添加符号</u>, 并把每个括号内的数作为一项, 这样得到的新奇数仍然收敛, 且其和不变. 反之不然.

结合律的推论1若加括号后的级数发散,则原级数必然发散

结合律的推论 2 若 $\lim_{n\to\infty}=0$ 又其相继两项加括号后的级数收敛, 则原级数也收敛, 且和相等

收敛级数的必要条件 若 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\lim_{n\to\infty} u_n = 0$

4. (2002, 数一) 设
$$u_n \neq 0 (n = 1, 2, 3, \cdots)$$
, 且 $\lim_{n \to \infty} \frac{n}{u_n} = 1$

任意项级数 7.3

第七章 无穷级数

则级数 $\sum_{i=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$

(A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 敛散性根据所给条件不能判定

Solution

这种题首先判断是否绝对收敛, 由 $\lim_{n\to\infty}\frac{n}{u_n}=1$ 可知其一定不可能绝对收敛 让后判断级数本身是否收敛,这种形式的题目大概率就是要使用定义,求其部分和

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{u_1} + \frac{1}{u_2} - \frac{1}{u_2} - \frac{1}{u_3} + \dots + (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right) \right)$$

故

$$\lim_{n \to \infty} S_n = \frac{1}{n_1}$$

因此原级数条件收敛

- 5. (2019, 数三) 若级数 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则
 - (A) $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛
 - (C) $\sum_{n=0}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=0}^{\infty} (u_n + v_n)$ 发散

Solution

这种题目比较好的解法是用特殊值筛选掉错误答案. 如令 $u_n=0$ 则 A 错误, $v_n=0$ $(-1)^n$ 则 B 错误, $v_n = \frac{(-1)^n}{\ln n}$ 则 D 错误

证明 B 选项正确, 关键点考虑 极限的有界性 由 $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 收敛可知

$$\lim_{n \to \infty} \frac{v_n}{n} = 0$$

由极限的有界性, 可知

$$\exists M, \forall n, \left| \frac{v_n}{n} \right| \leq M$$

从而

$$|u_n v_n| = \left| n u_n \cdot \frac{v_n}{n} \right| \le M |nn|$$

故B选项正确

7.4 幂级数求收敛半径与收敛域

Remark

方法一: 阿贝尔定理. 收敛的幂级数在收敛区间内绝对收敛, 在收敛域外发散, 在边界点

上可能收敛也可能发散,可能绝对收敛也可能条件收敛

方法二: 比值定理/根值定理

方法三:柯西判别法 最常用

逐项求导/逐项积分,收敛区间不变,需要注意边界点,其敛散性可能发生改变.

6. (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数

$$\sum_{n=1}^{\infty} na_n(x-1)^n$$
 的

- (A) 收敛点, 收敛点
- (B) 收敛点, 发散点
- (C) 发散点, 收敛点
- (D) 发散点, 发散点

Solution

由题设条件可知级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛区间为 (-1,1)

$$\sum_{n=1}^{\infty} n a_n (x-1)^n = (x-1) \sum_{n=1}^{\infty} n a_n (x-1)^{n-1}$$
$$= (x-1) \left[\sum_{n=1}^{\infty} n a_n (x-1)^n \right]'$$

故其收敛区间为 $-1 < x - 1 < 1 \implies x \in (0,2)$ 由阿贝尔定理可知 $x = \sqrt{3}$ 为绝对收敛点,x = 3 为发散点

7. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^n(2n+1)}$ 的收敛域.

Solution

这种题目优先考虑柯西定理,即

$$\lim_{n \to \infty} \sqrt[n]{|u_n(x)|} = \frac{x^2}{3} < 1$$

即 $x \in (-\sqrt{3}, \sqrt{3})$ (收敛区间). 接着判断边界点的敛散性. 当 $x = \pm \sqrt{3}$ 有

$$\sum_{n=1}^{\infty} (-1)^n \frac{\pm \sqrt{3}}{2n+1}$$

由莱布尼兹判别法可知其条件收敛, 故原级数的收敛域为 $\left[-\sqrt{3},\sqrt{3}\right]$

7.5 幂级数求和 第七章 无穷级数

7.5 幂级数求和

Remark

关键就是六组公式

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in (-\infty, +\infty)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}, x \in (-\infty, +\infty)$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}, x \in (-\infty, +\infty)$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}, x \in (-\infty, +\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, x \in (-1, 1)$$

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} x^{n}, x \in (-1, 1)$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n}, x \in (-1, 1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n}, x \in [-1, 1)$$

8. (2005, 数一) 求幂级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$$
 的收敛区间与和函数 $f(x)$.

Solution

这种题都可以说是套路题,第一步先求收敛域.由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\left| (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n} \right|} = x^2 < 1$$

故收敛区间为 (-1,1)

$$S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$$

其中

$$S_1(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^{2n} = \frac{x^2}{1+x^2}, x \in (-1,1)$$

7.5 幂级数求和 第七章 无穷级数

$$\begin{split} S_2(x) &= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n} \\ &= 2x \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \cdot x^{2n-1} - \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{2n} \\ &= 2x \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \cdot x^{2n+1} - \ln(1+x^2) \\ &= 2x \arctan x - \ln(1+x^2) \end{split}$$

综上, 和函数为 $f(x) = \frac{x^2}{1+x^2} + 2x \arctan x - \ln(1+x^2)$

9. (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

Solution

由柯西定理有

$$\lim_{n \to \infty} \sqrt[n]{\frac{4n^2 + 4n + 3}{2n + 1} \cdot x^{2n}} = x^2 < 1$$

从而收敛区间为 $x \in (-1,1)$ 当 $x = \pm 1$ 时级数为

$$\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1}$$

显然发散. 故收敛域为 (-1,1), 接下来求和函数.

$$S(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} + \frac{2}{x} \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, x \neq 0$$

其中

$$S_1(x) = \sum_{n=0}^{\infty} (2n+1)x^{2n} = \left(x\sum_{n=0}^{\infty} x^{2n}\right)' = \left(\frac{x}{1-x^2}\right)' = \frac{1+x^2}{(1-x^2)^2}$$
$$S_2'(x) = \sum_{n=0}^{\infty} x^{2n} = \frac{1}{1-x^2}$$

故

$$S_2(x) = \frac{S_2(0)}{1 - x} + \int_0^x S'(t) dt = \frac{1}{2} \ln \frac{1 + x}{1 - x}$$

需要单独计算 S(0) = 3

综上和函数为
$$S(x)$$

$$\begin{cases} \frac{1+x^2}{(1-x^2)^2} + \frac{1}{x} \ln \frac{1+x}{1-x}, & x \in (-1,0) \cup (0,1) \\ 3, & x = 0 \end{cases}$$

7.6 幂级数展开

第七章 无穷级数

10. (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (1) S(x) 所满足的一阶微分方程;
- (2) S(x) 的表达式.

Solution

(1) 求上述级数求导

$$S'(x) = \frac{x^3}{2} + \frac{x^5}{2 \cdot 4} + \dots$$
$$= x \left(\frac{x^2}{2} + \frac{x^4}{2 \cdot 4} + \dots \right)$$
$$= x \left[\frac{x^2}{2} + S(x) \right]$$

且有初值 S(0) = 0. (2) 上述问题转换为如下初值问题

$$\begin{cases} y' - xy = \frac{x^3}{2} \\ y(0) = 0 \end{cases}$$

可以解出 $S(x) = e^{\frac{x^2}{2}} - \frac{x^2}{2} - 1$

7.6 幂级数展开

11. (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间.

Solution

$$f(x) = \frac{1}{(x-4)(x+1)} = \frac{1}{5} \left(\frac{1}{x-4} - \frac{1}{x+1} \right)$$

其中

$$\frac{1}{x-4} = \frac{1}{-3+x-1}$$

$$= -\frac{1}{3} \frac{1}{1-\frac{x-1}{3}}$$

$$= -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x-1}{3}\right)^n, x \in (-2,4)$$

$$= \sum_{n=0}^{\infty} -\frac{1}{3^{n+1}} (x-1)^n$$

同理另一部分为

$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-1)^n, x \in (-1,3)$$

故

$$f(x) = -\frac{1}{5} \sum_{n=0}^{\infty} \left[\frac{1}{3^{n+1}} + \frac{(-1)^n}{2^{n+1}} \right] (x-1)^n, x \in (-1,3)$$

7.7 无穷级数证明题

12. 设
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$

(I) 求
$$\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值

(II) 证明任意常数
$$\lambda > 0$$
, 级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛

Solution

(1)

$$a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^{n+2} x \mathrm{d}x$$

$$a_n + a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n x (1 + \tan^2 x) dx$$
$$= \frac{\tan^{n+1} x}{n+1} \Big|_0^{\frac{\pi}{4}}$$
$$= \frac{1}{n+1}$$

故原级数等于

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \dots + \frac{1}{n} - \frac{1}{n+1} \right) = 1$$

(2) 由一可知

$$a_n = \frac{1}{n+1} - a_{n+2} \implies a_n < \frac{1}{n+1}$$

故要证级数的通项满足

$$\frac{a_n}{n^{\lambda}} < \frac{1}{n^{\lambda}(n+1)} < \frac{1}{n^{(\lambda+1)}}$$

当 $\lambda > 0$ 级数 $\sum_{n=1}^{\infty} \frac{1}{n^{(\lambda+1)}}$ 收敛, 由比较判别法可知原级数收敛

- 13. (2016, 数一) 已知函数 f(x) 可导, 且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。 设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n=1,2,\cdots)$ 。 证明:
 - (I) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (II) $\lim_{n\to\infty} x_n$ 存在, 且 $0 < \lim_{n\to\infty} x_n < 2$.

(1) 本质考察的为压缩映射的证明

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})|$$

$$= |f'(\xi)| \cdot |x_n - x_{n-1}|$$

$$< \frac{1}{2} |x_n - x_{n-1}|$$

$$\cdots$$

$$< \frac{1}{2^{n-1}} |x_2 - x_1|$$

由级数 $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ 收敛, 故原级数收敛

(2) 由 (1) 级数的收敛有

$$\lim_{n \to \infty} S_n \exists \implies \lim_{n \to \infty} x_{n+1} = A + x_1 = a$$

故极限存在, 有题设有 f(a)=a 记 g(x)=x-f(x) 有 g'(x)=1-f'(x)>0 故 g(x) 单调递增, 又 g(0)=-1<0

$$g(2) = 2 - f(2) = 1 - [f(2) - f(0)] = 1 - 2f'(\xi) > 0, \xi \in (0, 2)$$

由零点存在定理可知有且仅有唯一零点且 0 < a < 2

- 14. (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}$, $0 < b_n < \frac{\pi}{2}$, $\cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (1) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (2) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

(1) 由题设条件有

$$\cos b_n > \cos a_n \implies 0 < a_n < b_n$$

由于级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故 $\lim_{n\to\infty} b_n = 0$ 再由夹逼定理有

$$\lim_{n\to\infty} a_n = 0$$

(2) 方法一: 拉格朗日中值定理

$$\begin{split} \frac{a_n}{b_n} &= \frac{\cos a_n - \cos b_n}{b_n} \\ &= \frac{-\sin \xi (a_n - b_n)}{b_n}, \xi \in (a_n, b_n) \\ &= \frac{(b_n - a_n) \cdot \sin \xi}{a_n} < b_n - a_n < b_n \end{split}$$

方法二: 等价代换

$$\frac{a_n}{b_n} = \frac{\cos a_n - \cos b_n}{b_n} < \frac{1 - \cos b_n}{b_n} \sim \frac{1}{2}b_n$$

级数 $\sum_{n=1}^{\infty} b_n$ 收敛, 故原级数收敛

7.8 傅里叶级数

Remark

傅里叶级数就两个考点

(一) 求傅里叶级数的展开式(以 2l 为周期)

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$$

其中系数为

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, n = 0, 1, 2, \dots \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, n = 1, 2, 3, \dots \end{cases}$$

- (二) 狄利克雷收敛定理 (充分条件) 若函数在区间 [-1,1] 上满足
 - (1) 连续,或只有有限个间断点,且都是第一类间断点

7.8 傅里叶级数 第七章 无穷级数

(2) 只有有限个极值点

则 f(x) 在区间 (-l, l) 上的傅里叶级数收敛, 且满足

$$f(x)$$
对应傅里叶级数 =
$$\begin{cases} f(x), & x$$
为连续点
$$\frac{1}{2} \left[f(x+0) + f(x-0) \right], & x$$
为第一类间断点
$$\frac{1}{2} \left[f(-l+0) + f(l-0) \right], & x$$
为区间端点

15. 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0\\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution

由狄利克雷收敛定理知, f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution

对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^{2} = \frac{a_{0}}{2} + \sum_{n=1}^{\infty} a_{n} \cos nx = 1 - \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^{2}} \cos nx$$

令
$$x=0$$
, 代入上式, 得

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

第八章 多元函数积分学

三维向量

$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$

数量积
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$

性质 1 判断空间向量垂直 $\vec{a} \cdot \vec{b} = 0 \iff a \perp b$

性质 2 求空间两直线的夹角 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

向量积
$$a \times b = |a||b|\sin\theta = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

性质 1 判断空间直线平行 $\vec{a} \times \vec{b} = 0 \iff a \parallel b$

性质 2 求平面四边形的面积 $S = \left| \vec{a} \times \vec{b} \right|$

混合积
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \cdot |\vec{c}| = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

性质 1 判断三个向量是否共面 共面 \iff $(\vec{abc}) = 0$

性质 2 平行六面体的体积 $V = \left| (\vec{a}\vec{b}\vec{c}) \right|$

直线与平面

(一)平面

平面的点法式 假设平面过点 (x_0,y_0,z_0) 且该平面的法向量为 $\vec{n}=\{A,B,C\}$ 则平面方程为

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

平面的一般式 将点法式展开

$$Ax + By + Cz + D = 0$$

平面的截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

其中a,b,c分别是该平面与x,y,z轴的截距

点到平面的距离公式 假设平面外一点 (x_0, y_0, z_0) 到平面的距离

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

(直线)

直线的点向式 假设直线过点 (x_0, y_0, z_0) 且该直线的方向向量为 $\vec{s} = \{l, m, n\}$ 则该直线的直线方程为

$$\frac{x_0 - x}{l} = \frac{y_0 - y}{m} = \frac{z - z_0}{n}$$

直线的参数式

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$

直线的一般式(两平面的交线)

$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$

平面束方程 过某一直线的所有平面的方程 $\lambda(A_1x+B_1y+C_1z+D)+\mu(A_2x+B_2y+C_2z+D_2)=0$ 其中 λ,μ 不同时为 0,(...) 即该直线一般式的两平面方程

曲面与曲线

假设直线外一点 (x_0, y_0, z_0) 其到直线的距离为

$$d = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (l, m, n)|}{\sqrt{l^2 + m^2 + n^2}}$$

平面与直线的关系基本只需要考察 市和 彭的关系即可

旋转曲面

假设曲线
$$L = \begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases} \implies \begin{cases} x = x(z) \\ y = y(z) \end{cases}$$
 则曲线 L 绕 z 轴旋转而来的旋转曲

面方程为

$$x^2 + y^2 = x^2(z) + y^2(z)$$

求旋转曲面的问题, 捉住旋转过程中的不变量进行处理, 例如绕 z 轴旋转, 则旋转曲面上的点到 z 轴的距离和 z 坐标都与原来曲线的点一致即

$$P_0 = \begin{cases} x_0 = x(z_0) \\ y_0 = y(z_0) \end{cases} ; P = \begin{cases} x^2 + y^2 = x_0^2 + y_0^2 \\ z = z_0 \end{cases}$$

消去 20 即可得到答案

常见曲面的类型

| 球面
$$x^2 + y^2 + c^2 = R^2$$
 | 圆柱面 $x^2 + y^2 = R^2$ | 椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ | 抛物面 $\frac{x^2}{2p} + \frac{y^2}{2p} = z(p > 0)$ | 圆锥面 $z = a\sqrt{x^2 + y^2} \pm$ 圆锥面 | 单叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ | 双叶双曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$

曲面与曲线

与线代考点的综合题 二次型的特征值的正负对应图像的情况

投影曲线, 往 xoy 面的投影曲线只需要消去 z 即可

$$\begin{cases} F(x,y,z) = 0 & \xrightarrow{\text{ji.s. z}} \begin{cases} H(x,y) = 0 \\ z = 0 \end{cases}$$

曲面的法向量与切平面

若曲面是显示给出的即 F(x,y,z) = 0 则其法向量为

$$\vec{n} = \{F_x', F_y', F_z'\}$$

若曲面的是隐式给出的即 z = z(x, y) 则其法向量为

$$\vec{n} = \{-z_x', -z_y', 1\}$$

切平面方程为

$$F_x'(x - x_0) + F_y'(y - y_0) + F'z(z - z_0) = 0$$

曲线的切向量

若曲线是以参数式给出即 $\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad 则其切向量为$ z = z(t)

$$\tau = (x'(t), y'(t), z'(t))$$

若以两曲面的交线形式给出,即 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 此时切向量为

 $\tau = \vec{n_1} \times \vec{n_2}$,其中 n_1, n_2 分别为两曲面的法向量

方向导数与三度

方向导数

$$\frac{\partial f}{\partial \vec{l}}\big|_{x_0,y_0} = \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta) - f(x_0,y_0)}{t}$$

其中 α 为与 x 轴正方向的夹角, β 为与 y 轴正方向的夹角 t 是趋于 0^+ 若 f(x,y) 可微分,则

$$\frac{\partial f}{\partial \vec{l}} = f'_x \cos \alpha + f'y \cos \beta = gr\vec{ad} \ f \cdot \vec{l_0}$$

梯度, 散度, 旋度

$$gr\vec{a}d f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \cdot (\vec{i}, \vec{j}, \vec{k})$$
$$div\vec{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
$$ro\vec{t} A = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

方向导数沿梯度方向取得最大值,沿梯度反方向取得最小值,值为

$$\pm \left| \vec{grad} f \right| = \pm \left| (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \right|$$

三度之间的关系,要求二阶偏导连续

$$\begin{array}{l} \operatorname{div}\operatorname{grad}f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \\ \\ \operatorname{rot}\operatorname{grad}f = \vec{0} \\ \\ \operatorname{divrot} = 0 \end{array}$$

8.1 三重积分的计算

Remark

三重积分

(三重积分的定义) 三维物体的质量

$$\iiint_{\Omega} f(x, y, z) dV = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta V_i$$

三重积分的性质 (8条)

线性, 区域可加性, 比较定理, 中值定理, 估值定理, 轮换对称性, 奇偶性, 形心公式若函数图像关于 xoy 平面对称

$$\iiint_{\Omega} = \begin{cases} 2 \iiint_{\Omega'} f(x, y, z) dV, & f(x, y, -z) = f(x, y, z) \\ 0, & f(x, y, -z) = -f(x, y, z) \end{cases}$$

直接坐标计算(两种)

$$\begin{cases} \int_{a}^{b} \mathrm{d}z \iint_{D_{z}} f(x,y,z) \mathrm{d}x \mathrm{d}y, & \text{先二后一, 截面法} \\ \iint_{D_{xy}} \mathrm{d}x \mathrm{d}y \int_{z_{1}(x)}^{z_{2}(x)} f(x,y,z) \mathrm{d}z, & \text{先一后二, 投影法} \end{cases}$$

柱坐标 (x, y 转换为极坐标)

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \\ \mathrm{d}V = r\mathrm{d}r\mathrm{d}x\mathrm{d}y \end{cases}$$

球坐标

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \\ dV = r^2 \sin \varphi dr d\varphi d\theta \end{cases}$$

其中 θ 是与x轴正方向的夹角, φ 是与z轴正反向的夹角

- 1. (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面 Σ,Σ 与 平面 z=0,z=2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

$$x^2 + y^2 = 2z^2 - 2z + 1$$

(2) 对于三重积分以及后面的积分, 最大的误区可能就是上来二话不说先画图, 然 后发现图画不出来就不会做. 其实完全没必要画图观察曲面方程, 容易发现其关于 xoz, yoz 平面对称, 故 $\bar{x} = \bar{y} = 0$ 由形心公式有

$$\bar{z} = \frac{\iiint_{\Omega} z dV}{\iiint_{\Omega} dV}$$

由题设条件 $z \in [0,2]$ 已经提示了该用截面法喽, 从而有

$$\iiint_{\Omega} dV = \int_{0}^{2} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{2} - 2z + 1) dz$$

$$= \frac{10}{3} \pi$$

$$\iiint_{\Omega} z dV = \int_{0}^{2} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{2} \pi \cdot (2z^{3} - 2z^{2} + z) dz$$

$$= \frac{14}{3} \pi$$

综上形心坐标为

$$(0,0,\frac{7}{5})$$

2. (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体, 求 Ω 的形心坐标.

Solution

这个图像张啥样, 其实也一定都不重要. 只要能把握其在某一二维平面的投影即可, 观察曲面表达式, 显然其关于 yoz 平面堆成故 $\bar{x}=0$, 而由形心公式可知要求 3 个三重积分, 分别做吧

$$\iint_{\Omega} dV = \int_{0}^{1} dz \iint_{D_{z}} dxdy$$

$$= \int_{0}^{1} \pi (1-z)^{2} dz$$

$$= \frac{1}{3}\pi$$

$$\iint_{\Omega} z dV = \int_{0}^{1} dz \iint_{D_{z}} z dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

$$\iint_{\Omega} y dV = \int_{0}^{1} dz \iint_{D_{z}} y dxdy$$

$$= \int_{0}^{1} \pi z (1-z)^{2} dz$$

$$= \frac{1}{12}\pi$$

$$= \frac{1}{12}\pi$$

综上,该区域的形心为

$$\left| (0, \frac{1}{4}, \frac{1}{4}) \right|$$

8.2 第一类曲线积分的计算

Remark

一类线

定义

$$\int_{L} f(x,y) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta s_{i}$$

其中 ds 是弧微分

一类线的性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式计算公式,曲线方程带入

$$\int_{L} f(x,y) \mathrm{d}s \begin{cases} \int_{\alpha}^{\beta} f(x(t),y(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2}} \mathrm{d}t, & \text{ 参数方程} \\ \int_{a}^{b} f(x,y(x)) \sqrt{1 + (y'(x))^{2}} \mathrm{d}x, & \text{ 直接坐标} \\ \int_{\alpha}^{\beta} f(r(\theta)\cos\theta, r(\theta)\sin\theta) \sqrt{r^{2}(\theta) + (r'(\theta))^{2}} \mathrm{d}\theta, & \text{ 极坐标} \end{cases}$$

3. (2018, 数一) 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds = \int_{L} xyds = \int_{L} xyds$

Solution

这道题是比较显然的轮换对称性的题目

原式 =
$$\frac{1}{3} \oint_L (xy + yz + xz) ds$$

= $\frac{1}{6} \oint_L \left[(x + y + z)^2 - (x^2 + y^2 + z^2) \right]$
= $\frac{\text{曲线方程带入}}{\text{=}} -\frac{1}{6} \oint_L ds$
= $-\frac{1}{3}\pi$

4. 设连续函数 f(x,y) 满足 $f(x,y) = (x+3y)^2 + \int_L f(x,y) ds$,其中 L 为曲线 $y = \sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y) ds$.

不妨设 $A = \int_{L} f(x,y) ds$ 同时对等式两边同时求一类线有

$$A = \int_{L} \left[(x+3y)^2 + A \right] ds$$

$$= A\pi + \int_{L} (x+3y)^2 ds$$

$$= A\pi + \int_{L} (x^2 + 6xy + 9y^2) ds$$

$$= (1+A)\pi + 8 \int_{L} y^2 ds$$

$$= (1+A)\pi + 8 \int_{0}^{2\pi} \sin^2 \theta d\theta$$

$$= (5+A)\pi \implies A = \frac{5\pi}{1-\pi}$$

计算过程中优先考虑使用性质化简, 而非直接套公式

对于曲线/曲面/定积分/二重积分/三重积分, 它在某区域内积分后就是一个数, 变限积分和不定积分仍然是一个函数.

8.3 第二类曲线积分的计算

Remark

- 二类线
- 二类线的定义: 沿曲线做功

$$\int_{L} P(x,y) dx + Q(x,y) dy = \lim_{\lambda \to 0} \sum_{i=1}^{n} \left[P(\xi_i, \eta_i) \Delta x_i + Q(\xi_i, \eta_i) \Delta y_i \right]$$

其中 $dx = ds \cdot \cos \alpha$, $dy = ds \cdot \cos \beta$, 其中 $(\cos \alpha, \cos \beta)$ 为切向量的单位向量性质 (3 条)

线性,区域可加性,方向性

$$\int_{L} = -\int_{L}', L 和 L' 方 向相反$$

计算方式(两种)

$$\int_{L} P(x,y) dx + Q(x,y) dy = \begin{cases} \int_{\alpha}^{\beta} \left[P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right] dt, & \text{参数方程} \\ \int_{\alpha}^{b} \left[P(x, f(x)) + Q(x, f(x)) f'(x) \right] dx, & \text{直角坐标} \end{cases}$$

注意此时 $\alpha \to \beta, a \to b$ 均为起点指向终点, 和大小无关

格林公式 设闭区域 D 由分段光滑的曲线 L 围成,L 取正向,P(x,y),Q(x,y) 在 D 上有一阶 连续偏导数,则

$$\oint_{L} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

积分与路径无关 (四个充分条件) 设 P(x,y), Q(x,y) 在单连通闭区域 D 上有一阶连续偏导数, 则

$$\begin{split} \frac{\partial Q}{\partial x} &= \frac{\partial P}{\partial y} \\ \iff D$$
内任意曲线 $L, \oint_L P \mathrm{d} x + Q \mathrm{d} y = 0 \\ \iff D$ 任意两点 $A, B, \int_A^B P \mathrm{d} x + Q \mathrm{d} y$ 与路径无关
$$\iff \exists u(x,y), \mathrm{d} u = P(x,y) \mathrm{d} x + Q(x,y) \mathrm{d} y, \ \exists u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P \mathrm{d} x + Q \mathrm{d} y \end{split}$$

曲线方程带入

曲线积分基本定理

设 P(x,y),Q(x,y) 在区域 D 内连续,u(x,y) 满足 $\mathrm{d}u=P(x,y)\mathrm{d}x+Q(x,y)\mathrm{d}y$,则区域 D 内任意两点 A,B 曲线积分 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y$ 与路径无关,且 $\int_A^B P\mathrm{d}x+Q\mathrm{d}y=u(B)-u(A)$

- 5. (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;

(II) 计算
$$\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$$
, 其中 ∂D_1 是 D_1 的正向边界.

(1) 由二重积分的几何意义, 使得 $4-x^2-y^2 \ge 0$ 始终成立的区域即为积分最大的区域, 即

$$D_1 = \{(x, y) \mid x^2 + y^2 \le 4\}$$

此时积分为

$$I = \int_0^{2\pi} d\theta \int_0^2 (4 - r^2) r dr = 8\pi$$

(2) 显然 (0,0,0) 点是被积函数的奇点, 此时考虑挖去该点, 即设

$$L': x^2 + 4y^2 = 1$$
, 取顺时针

此时有

$$I = \oint_{\partial D_1 + L'} - \oint_{L'}$$

对于前一个积分,用 Green 公式有

$$\oint_{\partial D_1 + L'} = \iint_{D_1/D_{L'}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}x \mathrm{d}y = 0$$

对于后一个积分, 先将曲线方程带入表达式后有

$$\oint_{L'} = \oint_{L'} (ex + y) \, \mathrm{d}x + (4ey - x) \, \mathrm{d}y$$

$$\xrightarrow{\text{\tiny \frac{R + M \triangle \vec{\pi}}{2}}} - \iint_{D_{L'}} (-1 - 1) = 2S_{D_{L'}} = \pi$$

故

$$I = 0 - \pi = -\pi$$

6. (2011, 数一) 设 L 是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向 看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$

Solution

这种问题仅有三种解法,推荐解法3,但三种解法都需要掌握.

(解法一 公式法) 设曲线的参数方程为 $\begin{cases} x=\cos t\\ y=\sin t & \text{由于从 } z\text{ 轴正向往 } z\text{ 轴}\\ z=\sin t+\cos t \end{cases}$

负向看去为逆时针方向,故 $t:0\to 2\pi$,此时原积分等于

$$\begin{split} I &= \int_0^{2\pi} \left\{ \left[\cos t (\sin t + \cos t) (-\sin t)\right] + \cos^2 t + \frac{\sin^2 t}{2} (\cos t - \sin t) \right\} \mathrm{d}t \\ &= \int_0^{2\pi} \cos^2 \theta = \pi \end{split}$$

(解法二 斯托克斯公式) 注意斯托克斯公式一般转换为一类面来做 (公式法)

曲面法向量为 $\vec{n}=(-Z_x',-Z_y',1)=(-1,-1,1)$ 其单位向量为 $\vec{n_0}=(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$ 此时由斯托克斯公式有

$$\oint_{L} = \iint_{\Sigma} \begin{vmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & x & \frac{y^{2}}{2} \end{vmatrix} dS$$

$$= -\frac{1}{\sqrt{3}} \iint_{\Sigma} (y - x - 1) dS$$

$$\stackrel{\triangle \vec{x} \not\equiv}{=} -\frac{1}{\sqrt{3}} \iint_{D_{xy}} (y + x - 1) \sqrt{1 + 1 + 1} dx dy$$

$$= \pi$$

(解法三 转换为平面二类型) 由 z=x+y 消去原曲线积分中的所有 z, 注意 dz=dx+dy 此时积分转换为其中 $L':x^2+y^2=1$ 取逆时针方向

$$I = \oint_{L'} (x^2 + xy + \frac{y^2}{2}) dx + (x + \frac{y^2}{2}) dy$$
格林公式
$$\iint_D (1 - x - y) dx dy = \pi$$

8.4 第一类曲面积分的计算

Remark

一类面

一类面的定义

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

性质 (8条)

线性,区域可加性,比较定理,中值定理,估值定理,轮换对称性,奇偶性,形心公式计算公式(一投,二代)

$$\iint_{\sum} f(x,y,z)\mathrm{d}S = \iint_{D_{xy}} f(x,y,z(x,y)) \sqrt{1+(Z_x')^2+(Z_y')^2} \mathrm{d}x\mathrm{d}y$$

曲面方程带入

7. (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

Solution

一类面的难点肯定在于如何求出该平面, 计算都是小意思用公式就可以.

S 在点 P 处的切平面, 其法向量为 $\vec{n_1} = (F_x', F_y', F_z' = 2x, 2y - z, 2z - y)$ 而 xoy 面的 法向量为 $\vec{n_2} = (0,0,1)$ 由题设知 $\vec{n_1} \cdot \vec{n_2} = 0$ 即 2z - y = 0 带入 S 的方程化简有, 曲线 C 的方程为

$$\begin{cases} x^2 + \frac{3}{4}y^2 = 1\\ y = 2z \end{cases}$$

即一个椭球柱与平面的交线, 将曲线往 xoy 面投影, 其区域为 $D_{xy}: \{(x,y) \mid x^2 + \frac{3}{4}y^2 \le 1\}$

$$dS = \sqrt{1 + (Z'_x)^2 + (Z'_y)^2} dx dy = \frac{\sqrt{4 + y^2 + z^2 - 4yz}}{|y - 2z|} dx dy$$

原积分由公式法等于

$$I = \iint_{D_{xy}} (x + \sqrt{3}) \mathrm{d}x \mathrm{d}y = 2\pi$$

8.5 第二类曲面积分的计算

Remark

- 二类面
- 二类面的定义: 流量

$$\iint_{\Sigma} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} [P(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{yz} + Q(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{zx} + R(\xi_i, \eta_i, \zeta_i)(\Delta S_i)_{xy}]$$

其中 $\mathrm{d}y\mathrm{d}z=\mathrm{d}S\cdot\cos\alpha$ 其余类似, 而 $(\cos\alpha,\cos\beta,\cos\gamma)$ 为平面 \sum 的法向量的单位向量性质 $(3\ \$)$

线性,区域可加性,方向性

计算公式(三合一投影法)

$$\begin{split} &\iint_{\Sigma} P(x,y,z) \mathrm{d}y \mathrm{d}z + Q(x,y,z) \mathrm{d}z \mathrm{d}x + R(x,y,z) \mathrm{d}x \mathrm{d}y \\ &= \pm (P(x,y),Q(x,y),R(x,y)) \cdot (-Z'_x,-Z'_y,1) \\ &= \pm \iint_{D_{xy}} \left[P(x,y,z(x,y))(-Z'_x) + Q(x,y,z(x,y))(-Z'_y) + R(x,y,z(x,y)) \right] \mathrm{d}x \mathrm{d}y \end{split}$$

上侧为正,下侧为负

高斯公式 设闭区域 Ω 由分片光滑的曲面 \sum 围成, \sum 取外侧,P,Q,R 在其上有一阶连续偏导数,则

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right)$$

曲面方程带入

斯托克斯公式 设 P,Q,R 在曲面 \sum 围成的区域 Ω 内有一阶连续偏导数, \sum 的边界曲线

L的方向与 \sum 所取的法向量满足右手法则,则

$$\oint_{L} P dx + Q dy + R dz = \iint_{\sum} \begin{vmatrix} dy dz & dz dx & dx dy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS$$

即将三维的二类线转换为一类面或者二类面来做

8. (2009, 数一) 计算曲面积分

$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

Solution

显然点 (0,0,0) 是被积函数的奇点, 需要挖去这一个点, 不妨设

$$\sum_{1} : x^2 + y^2 + z^2 = 1$$
, 取外侧

记

$$\Omega: \{(x, y, z) \mid x^2 + y^2 + z^2 \ge 1, 2x^2 + 2y^2 + z^2 \le 4\}$$

$$\Omega_1: \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

此时原积分等于

$$I = \iint_{\sum + \sum_{1}} - \iint_{\sum_{1}}$$

其中

$$\iint_{\Sigma + \Sigma_1} \frac{\exists \mathbb{M} \mathbb{E}_{\mathbb{E}}}{\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) = 0$$

对于第二个积分, 先带入 \sum_{i} 的曲面方程此时有

$$\iint_{\Sigma_1} = \iint_{\Sigma_1} x dy dz + y dz dx + z dx dy$$
$$= - \iiint_{\Omega_1} 3 dV$$
$$= -4\pi$$

综上有

$$I = 0 + 4\pi = 4\pi$$

9. 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

Solution

发现这个曲面不是封闭的, 立刻补上, 即设

$$\sum_{1}: \begin{cases} x^2 + y^2 \le a^2 \\ z = 0 \end{cases}, 取下侧$$

注意,虽然被积函数在 (0,0,0) 处貌似是奇点,但注意到可以通过带入曲线方程消去分母,就不需要挖点了

$$\begin{split} I &= \frac{1}{a} \iint_{\Sigma} ax \mathrm{d}y \mathrm{d}z + (z+a)^2 \mathrm{d}x \mathrm{d}y \\ &= \frac{1}{a} (\iint_{\Sigma + \sum_{1}} - \iint_{\sum_{1}}) \end{split}$$

记 \sum_{1} , \sum 围成的区域为 Ω , 则有

$$\iint_{\Sigma + \Sigma_1} = - \iiint_{\Omega} = - \iiint_{\Omega} \left[a + 2(z + a) \right] dV = -\frac{3}{2} \pi a^4$$

记 $D_{xy}: \{(x,y) \mid x^2 + y^2 \le a^2\}$ 则有

$$\iint_{\sum_{1}} \frac{\sin x}{x} - \iint_{D_{xy}} a^{2} dx dy = -\pi a^{4}$$

综上有

$$I = -\frac{\pi a^3}{2}$$

10. (2020, 数一) 设 Σ 为曲面 $z = \sqrt{x^2 + y^2} (1 \le x^2 + y^2 \le 4)$ 的下侧, f(x) 为连续函数, 计算 $I = \iint_{\Sigma} [xf(xy) + 2x - y] \mathrm{d}y \mathrm{d}z + [yf(xy) + 2y + x] \mathrm{d}z \mathrm{d}x + [zf(xy) + z] \mathrm{d}x \mathrm{d}y.$

Solution

因为 f(xy) 仅连续, 高斯的条件为封闭外侧, 偏导连续, 只能使用三合一投影法

记区域
$$D_{xy}: \{(x,y) \mid 1 \le x^2 + y^2 \le 4\}$$

$$I = -\iint_{D_{xy}} \left([xf(xy) + 2x - y] \left(-\frac{x}{\sqrt{x^2 + y^2}} \right) + [yf(xy) + 2y + x] \left(-\frac{y}{\sqrt{x^2 + y^2}} \right) + \left[\sqrt{x^2 + y^2} f(xy) + \sqrt{x^2 + y^2} \right] \right) dx dy$$

$$= \iint_{D_{xy}} \sqrt{x^2 + y^2} dx dy$$

$$= \int_0^{2\pi} d\theta \int_1^2 r^2 dr = \frac{14}{3}\pi$$

第九章 行列式

	行列式的概念	
	重要行列式	上(下)三角,主对角行列式 副对角行列式 ab型行列式 拉普拉斯展开式 范德蒙行列式
行列式	展开定理	副对角行列式 $ab型行列式$ 拉普拉斯展开式 范德蒙行列式 $a_{i1}A_{j1} + \ldots + a_{in}A_{jn} = \begin{cases} A & i = j\\ 0 & i \neq j \end{cases}$ $a_{1i}A_{1j} + \ldots + a_{ni}A_{nj} = \begin{cases} A & i = j\\ 0 & i \neq j \end{cases}$
	行列式公式	$\begin{cases} kA = k^n A & AB = A B \\ A^T = A & A^{-1} = A ^{-1} \\ A^* = A ^{n-1} & \\ \forall A \text{ 的特征值为} \lambda_1 \dots \lambda_n, \mathbb{M} A = \prod_{i=1}^n \lambda_i \\ \forall A \text{ 与 B 相似, } \mathbb{M} A = B \end{cases}$
	Grammer 法则	$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}, \dots, x_n = \frac{D_n}{D}$

拉普拉斯展开式(上,下三角分块行列式的结论)

$$D = \begin{vmatrix} A & C \\ \mathbf{0} & D \end{vmatrix} = \begin{vmatrix} A & \mathbf{0} \\ C & D \end{vmatrix} = \det(A)\det(D)$$

对于一般分块矩阵

$$A = \begin{pmatrix} B & C \\ D & E \end{pmatrix}$$

若 B 可逆,则有如下结论

$$\det(A) = \det(B) \cdot \det(E - DB^{-1}C)$$

9.1 数字行列式的计算

Remark

基本方法

- (1) 利用行列式的性质 (5条) 来化简
- (2) 要么出现重要行列式 (5组)
- (3) 要么展开定理 (0 比较多的时候)
- 1. 设

$$f(x) = \begin{vmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 4x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{vmatrix}$$

则方程 f(x) = 0 根的个数为 ____

Solution

第一列乘 -1 加到其他列

则 x = 0 或 x = 1

$$f(x) = \frac{\widehat{x} - \widehat{y} + \widehat{y} + \widehat{y}}{x - 2 + 1}$$

$$\frac{\widehat{x} - 2 + 1}{3x - 3 + 1} = \frac{x - 2 + 1}{3x - 3 + 1} = \frac{x - 2 + 1}{3x - 3 + 1}$$

$$\frac{\widehat{x} - 2 + 1}{3x - 3 + 1} = \frac{x - 2 + 1}{4x + 3 + 1} = \frac{x - 2 + 1}{3x - 3 + 1}$$

$$\frac{\widehat{y} - \widehat{y} + \widehat{y}$$

2. 利用范德蒙行列式计算

范德蒙行列式
$$V(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ac \\ c & c^2 & ab \end{vmatrix} = \underline{\qquad}$$

Solution

原式
$$\frac{\widehat{\pi}-\widehat{\eta}_{\mathbb{R}} \bigcup (a+b+c) \, \widehat{m} \widehat{\eta}\widehat{\pi} \widehat{=} \widehat{\eta}}{\left|\begin{array}{cccc} a & a^2 & a^2+ac+ab+bc \\ b & b^2 & a^2+ac+ab+bc \\ c & c^2 & a^2+ac+ab+bc \\ \end{array}\right|}$$
 $\frac{\widehat{\pi}-\widehat{\eta}_{\mathbb{R}-1} \, \widehat{m} \widehat{\eta}_{\mathbb{R}} \widehat{\pi} \widehat{\eta}_{\mathbb{R}-1} \, \widehat{\eta}_{\mathbb{R}} \widehat{\eta}_{\mathbb$

3. 设
$$x_1x_2x_3x_4 \neq 0$$
,则
$$\begin{vmatrix} x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix} = \underline{\qquad}.$$

考虑加边法,为该行列式增加一行一列,变成如下行列式

原行列式 =
$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_1 & x_1 + a_1^2 & a_1a_2 & a_1a_3 & a_1a_4 \\ a_2 & a_2a_1 & x_2 + a_2^2 & a_2a_3 & a_2a_4 \\ a_3 & a_3a_1 & a_3a_2 & x_3 + a_3^2 & a_3a_4 \\ a_4 & a_4a_1 & a_4a_2 & a_4a_3 & x_4 + a_4^2 \end{vmatrix}$$

将第一行分别乘以-a₁,-a₂...,分别加到第2,3,...列

从下往上消,分别乘以
$$\frac{a_i}{x_i}$$
,加到第一行

$$\begin{vmatrix} 1 + \sum_{i=1} \frac{a_i}{x_i} & 0 & 0 & 0 & 0 \\ a_1 & x_1 & 0 & 0 & 0 \\ a_2 & 0 & x_2 & 0 & 0 \\ a_3 & 0 & 0 & x_3 & 0 \\ a_4 & 0 & 0 & 0 & x_4 \end{vmatrix}$$

$$= (x_1 x_2 x_3 x_4) (1 + \sum_{i=1}^4 \frac{a_i^2}{x_i})$$

爪型行列式

关键点在于化简掉一条爪子

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

4. 计算三对角线行列式

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$$

 $D_1 = \alpha + \beta$

Solution

(法一) 递推法

$$D_{2} = \alpha^{2} + \alpha\beta + \beta^{2}$$

$$\dots$$

$$D_{n} = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}$$

$$D_{n} - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2})$$

$$= \beta^{2}(D_{n-2} - \alpha D_{n-3})$$

$$\dots$$

$$= \beta^{n-1}(D_{2} - D_{1}) = \beta^{n}$$

$$D_{n} = \beta^{n} + \alpha D_{n-1} = \beta^{n} + \alpha(\beta^{n-1} + \alpha D_{n-2})$$

$$\dots$$

$$= \beta^{n} + \alpha\beta^{n-1} + \dots + \alpha^{n}$$

(法二) 数学归纳法

if
$$\alpha = \beta$$
, $D_1 = 2\alpha$, $D_2 = 3\alpha^2$, assume, $D_{n-1} = n\alpha^{n-1}$
then $D_n = D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2} = (n+1)\alpha^n$
when $\alpha \neq \beta$, $D_1 = \frac{\alpha^2 - \beta^2}{\alpha - \beta}$, $D_2 = \frac{\alpha^3 - \beta^3}{\alpha - \beta}$,
Assume, $D_{n-1} = \frac{\alpha^n - \beta^n}{\alpha - \beta}$, then,
 $D_n = \dots = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$

(法三) 二阶差分方程

$$D_n - (\alpha + \beta)D_{n-1} + \alpha\beta D_{n-2} = 0$$
$$D_{n+2} - (\alpha + \beta)D_{n+1} + \alpha\beta D_n = 0$$

类似于二阶微分方程解特征方程

$$r^{2} - (\alpha + \beta)r + \alpha\beta = 0$$
$$r_{1} = \alpha \qquad r_{2} = \beta$$

差分方程的关键 r^n 代换 e^{rx}

如果 $\alpha = \beta$

$$D_n = (C_1 + C_2 n)\alpha^n, D_1 = 2\alpha, D_2 = 3\alpha^2$$

得到 $C_1 = C_2 = 1, \Box D_n = (n+1)\alpha^n$

如果 $\alpha \neq \beta$

$$D_n = C_1 \alpha^n + C_2 \beta^n, \, \text{th} \, D_1 = 2\alpha, D_2 = 3\alpha^2$$

$$C_1 = \frac{\alpha}{\alpha - \beta}, C_2 = \frac{-\beta}{\alpha - \beta}$$

$$D_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

9.2 代数余子式求和

第九章 行列式

Corollary

如下行列式有和例题 4 完全相等的性质

$$D_{n} = \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$D_n = \begin{cases} (n+1) \alpha^n, & \alpha = \beta \\ \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}, & \alpha \neq \beta \end{cases}.$$

9.2 代数余子式求和

Remark

代数余子式求和的基本办法

- (1) 代数余子式的定义(求一个的时候使用)
- (2) 展开定理(求一行或者一列的时候使用)
- (3) 利用伴随矩阵的定义(求全部代数余子式的时候使用)
- 1. 已知

$$|A| = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 2 & 2 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix} = 27$$

(法一) 利用展开定理构建新的矩阵来计算

$$A_{41} + A_{42} + A_{43} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 1 & 1 & 1 & 0 & 0 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

$$A_{44} + A_{45} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 2 & 1 & 1 \\ 3 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 1 \\ 4 & 3 & 1 & 5 & 0 \end{vmatrix}$$

但这样 |A| = 27 的条件就没用到

(法二) 直接对第四行使用展开定理,则

$$|A| = A_{41} + A_{42} + A_{43} + 2A_{44} + 2A_{45} = 27$$

直接对第二行使用展开定理,则

$$|A| = 2A_{41} + 2A_{42} + 2A_{43} + A_{44} + A_{45} = 0$$

相当于解 A+2B=27, 2A+B=0, 容易计算 $A_{41}+A_{42}+A_{43}=-9, A_{44}+A_{45}=18$

2. 设

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

则 |A| 的所有代数余子式的和为____

对于求所有代数余子, 基本都是考察 A* 的定义, 即

$$A^* = \begin{pmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix},$$

又由于 $A^* = |A| A^{-1}$, 对于这道题

$$|A| = (-1)^{(n+1)}n!$$

 A^{-1} 可以通过分块矩阵来求

$$|A|A^{-1} = |A| \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 \\ \hline n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$= |A| \begin{pmatrix} 0 & & \left| \frac{1}{n} \right| \\ \overline{diag(1, \frac{1}{2}, \dots, \frac{1}{n-1})} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & & \left| \frac{1}{n} |A| \\ \overline{diag(|A|, \frac{|A|}{2}, \dots, \frac{|A|}{n-1})} & 0 \end{pmatrix}$$

则所有代数余子式之和为

$$(-1)^{(n+1)}n!\sum_{i=1}^{n}\frac{1}{i}$$

9.3 抽象行列式的计算

Remark

抽象行列式的计算方法

- (1) 通过行列式的性质
- (2) 行列式的公式 (7个)
- 7. (2005, 数一、二) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量, $A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$. 若 |A| = 1, 则 |B| =______

Solution

(法一) 利用性质

$$B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$$

$$= (\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_2 + 5\alpha_3)$$

$$= 2(\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, \alpha_3)$$

$$= 2(\alpha_1, \alpha_2, \alpha_3)$$

$$|B| = 2|A| = 2$$

(法二) 分块矩阵

$$B = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{pmatrix}$$
$$|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 9 \end{vmatrix} = |A|(2-1)(3-1)(3-2) = 2$$

8. 设 A 为 n 阶矩阵, α, β 为 n 维列向量. 若 |A| = a, $\begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} = 0$, 则 $\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} =$

这道题的关键在于巧妙构建行列式的和

$$\begin{vmatrix} A & \alpha \\ \beta^T & c \end{vmatrix} = \begin{vmatrix} A & \alpha + 0 \\ \beta^T & b + c - b \end{vmatrix}$$
$$= \begin{vmatrix} A & \alpha \\ \beta^T & b \end{vmatrix} + \begin{vmatrix} A & 0 \\ \beta^T & c - b \end{vmatrix}$$
$$= |A|(c - b) = a(c - b)$$

9. 设 A 为 2 阶矩阵, $B = 2\begin{pmatrix} (2A)^{-1} - (2A)^* & 0 \\ 0 & A \end{pmatrix}$ 若 |A| = -1, 则 |B| =______

Solution

这道题比较纯粹就是行列式公式的应用

$$|B| = 2^{4} |A| \cdot |(2A)^{-1} - (2A)^{*}|$$

$$= 2^{4} |A| \cdot \left| \frac{1}{2} A^{-1} - 2A^{*} \right|$$

$$= 2^{4} \left| \frac{1}{2} E - 2|A| \right| = 100$$

10. 设 n 阶矩阵 A 满足 $A^2 = A, A \neq E$, 证明 |A| = 0

易错点

由 $|A|^2 = |A| \implies |A| = 1$ 或 = 0, 又 $A \neq E \implies |A| \neq 1$, 故 |A| = 0 注意矩阵不等关系是无法推出行列式的不等关系的, 矩阵式数表只要顺序不同就不一样, 但不一样的矩阵其行列式完全有可能相等.

等于1的矩阵并非只能是E

Solution

(法一) 反证法

若 $|A| \neq 0$, 则 A 可逆, 对于等式 $A^2 = A$ 两边同乘 A^{-1} , 则 A = E 与题设矛盾, 故 $|A| \neq 0$

(法二) 秩

由于 $A(A-E)=0 \implies r(A)+r(A-E) \le n,$ 又 $A\ne E, r(A-E)\ge 1,$ 故 $r(A)\le n,$ 故 |A|=0

(法三) 方程组

由于 A(A-E)=0, 且 $A\neq E$ 可知方程 AX=0 有非零解即 (A-E) 中的非零列, 故 r(A)< n, |A|=0

(法四) 特征值与特征向量

由于 $A(A-E)=0, A\neq E$, 取 A-E 的非零列向量 $\beta\neq 0, A\beta=0$ 故由特征值与特征值向量的定义,A 由特征值 0, 而 $|A|=\prod_{i=1}^n \lambda_i=0$

总结

若 AB = 0有如下结论

- $(1) r(A) + r(B) \le n$
- (2)B 的列向量均为方程 AX = 0 的解
- (3) 若 $A_{n\times n}$, 则 B 的非零列向量均为 A 的特征值为 0 的特征向量

第十章 矩阵

10.1 求高次幂 第十章 矩阵

10.1 求高次幂

Remark

基本方法

- (1) 若 r(A)=1, 则 $A^n=tr(A)^{n-1}A$, 关键点在于 $r(A)=1 \implies A=\alpha\beta^T$
- (2) 若 A 可以分解为 E + B, 且 B 是类似于如下形式 (非零元素仅在对角线的上方或下方) 的矩阵则有如下结论.

$$A^{n} = C_{n}^{n}E + C_{n}^{1}B + C_{n}^{2}B^{2}$$

(3) 分块矩阵

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{pmatrix}, A^n = \begin{pmatrix} \mathbf{B}^n & \mathbf{0} \\ \mathbf{0} & \mathbf{C}^n \end{pmatrix}$$

(4) 相似对角化

10.1 求高次幂 第十章 矩阵

$$P^{-1}AP = \Lambda \otimes A = P\Lambda P^{-1}$$
,

$$A^{n} = P\Lambda^{n}P^{-1} = Pdiag(\lambda_{1}^{n}, \dots, \lambda_{n}^{n})P^{-1}$$

1. 设
$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix}$$
, $B 为 3 阶矩阵, 满足 $BA = O$, 且 $r(B) > 1$, 则 $A^n = \underline{\hspace{1cm}}$.$

Solution

曲 BA=0 知 $r(A)+r(B)\leq n$, 又 r(B)>1, $r(A)\geq 1$ 所以 $1\leq r(A)\leq 1$, \Longrightarrow r(A)=1,

$$A = \begin{pmatrix} 2 & -1 & 3 \\ a & 1 & b \\ 4 & c & 6 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \begin{pmatrix} 1, & -1, & 2 \end{pmatrix}$$

$$A^{n} = tr(A)^{n-1}\alpha\beta^{T} = 9^{n-1} \begin{pmatrix} 2 & -1 & 3 \\ -2 & 1 & -3 \\ 4 & -2 & 6 \end{pmatrix}$$

2.
$$\ \mathcal{U} A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 4 & 1 & 2 \end{pmatrix} \ \mathcal{U} A^n = \underline{\qquad}.$$

Solution

$$A = 2E + B, B = \begin{pmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -3 & 0 & 0 \end{pmatrix}, B^3 = \mathbf{0}, \mathbb{N}$$

$$A^{n} = 2^{n}E + 2^{n-1}nB + 2^{n-3}n(n-1)B^{2}$$

3. 设
$$A = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -3 & 6 & -3 \end{pmatrix}$$
 P 为 3 阶可逆矩阵, $B = P^{-1}AP$, 则 $(B + E)^{100} =$ _____

$$r(A) = 1, A^2 = tr(A) \cdot A = -2A$$
 即 $A^2 + 2A = \mathbf{0}, (A+E)^2 = E$, 由题
$$(B+E)^{100} = (P^{-1}AP + E)^{100} = (P^{-1}AP + P^{-1}EP)^{100} = (P^{-1}(A+E)P)^{100} = E$$

10.2 逆的判定与计算

- 1. 设 n 阶矩阵 A 满足 $A^2 = 2A$, 则下列结论不正确的是:
 - (A) A 可逆
- (B) *A* − *E* 可逆
- (C)A + E 可逆
- (D)A 3E 可逆

Solution

利用特征值, 由题设可知对于 A 的任意特征值有

$$\lambda^2 - 2\lambda = 0 \implies \lambda = 0$$
 $\vec{\otimes}\lambda = 2$

故 B,C,D 的特征值分别是

$$\lambda_B : \begin{cases} -1 & \\ & , \lambda_C \begin{cases} 1 & \\ & , \lambda_D \end{cases} \begin{cases} -3 & \\ -1 & \end{cases}$$

由可逆的充分条件可知 BCD 均可逆

- 2. 设 A, B 为 n 阶矩阵,a, b 为非零常数. 证明:
 - (1) 若 AB = aA + bB, 则 AB = BA;
 - (2) 若 $A^2 + aAB = E$, 则 AB = BA.

Solution

(1)

$$AB = aA + bB$$

$$A(B - aE) - bB = 0$$

$$(A - bE)(B - aE) = abE \implies (A - bE), (B - aE)$$
可逆
$$(B - aE)(A - bE) = abE$$

$$BA = aA + bB = AB$$

$$A^{2} + aAB = E$$

 $A(A + aE) = E \implies (A + aE)A = E \implies AB = BA$

总结

$$(1)A_{n\times n}B_{n\times n} = E \implies \begin{cases} \overline{\text{可逆}} \\ \bar{\text{求逆}}, B = A^{-1}, A = B^{-1} \\ \bar{\text{满足交换律}}, AB = BA \end{cases}$$

$$(2)AB \overline{\text{可交换的充分条件}} \begin{cases} B = f(A), A^{-1}, A^* \\ AB = aA + bB(a, b \neq 0) \\ A^2 + aAB = E, (a \neq 0) \end{cases}$$

3. 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
 满足 $A^3 = O$.

- (1) 求 a 的值;
- (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = E$, 求 X.

Solution

(2)

原式 =
$$X(E - A^2) - AX(E - A^2)$$

= $(E - A)X(E - A^2) = E$

有 $E-A, E-A^2$ 均可逆 (用特征值) 故

$$X = (E - A)^{-1}(E - A^2)^{-1}$$

通过初等行变换化为行最简型有

$$\begin{aligned}
(E - A - A^2 \mid E) &\stackrel{\overline{\text{MSfoph}}}{=} (E \mid (E - A - A^2)^{-1}) \\
&= \begin{pmatrix} 1 & 0 & 0 & 3 & 1 & -2 \\ 0 & 1 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 2 & 1 & -1 \end{pmatrix}
\end{aligned}$$

10.3 秩的计算与证明

秩

秩的定义:∃r 阶子式非零且 $\forall r+1$ 阶子式均为零

秩的性质

- (1) 设A为 $m \times n$ 阶矩阵,则 $r(A) < \min\{m,n\}$
- (2) $r(A+B) \le r(A) + r(B)$
- (3) $r(AB) \le \min\{r(A), r(B)\}$
- $(4) \ \max\{r(A),r(B)\} \leq r(A\mid B) \leq r(A) + r(B)$
- (5) $r(A) = r(kA)(k \neq 0)$
- (6) 设 A 为 $m \times n$ 阶矩阵,P 为 m 阶可逆矩阵,Q 为 n 阶可逆矩阵, 则 r(A) = r(PA) = r(AQ) = r(PAQ)
- (7) 设 A 为 $m \times n$ 阶矩阵, 若 r(A) = n 则 r(AB) = r(B), 若 r(A) = m 则 r(CA) = r(C) 左乘列满秩, 右乘行满秩, 秩不变
- (8) $r(A) = r(A^T) = r(A^T A) = r(AA^T)$
- (9) 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times s$ 阶矩阵, AB = 0, 则 $r(A) + r(B) \le n$
- 1. (2018, 数一、二、三) 设 A, B 为 n 阶矩阵,(XY) 表示分块矩阵,则:

$$A r(A AB) = r(A)$$

$$\mathbf{B} \ r(A \ BA) = r(A)$$

$$C r(A B) = \max\{r(A), r(B)\}$$

$$D r(A B) = r(A^T B^T)$$

(方法一) 由性质 4, 联立的秩大于等于每一个有

$$r[A(E,B)] \ge r(A)$$

由性质 3, 乘积的秩小于等于每一个有

$$r[A(E,B)] \le r(A)$$

故A选项正确

易错点,B 选项为啥不能写成

$$r[(E+B)A]$$

其中 $(E+B)_{n\times 2n}$, $A_{n\times 2}$ 列 \neq 行无法乘 (方法二)

$$r(A, AB) = r[A(E, B)]$$

其中(E,B)显然行满秩,由性质7右乘行满列则秩不变,即

$$r(A,AB) = r(A)$$

(方法三)

$$AB = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \dots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix} = (b_{11}\alpha_1 + \dots + b_{n1}\alpha_n, \dots, b_{1n}\alpha_1 + \dots + b_{nn}\alpha_n)$$

即 AB 的列向量可以由 A 的列向量线性表示, 故由极大无关组的定义有

$$r(A, AB) = r(A)$$

(方法四)广义初等变化(分块矩阵)

$$(A, AB) = (A, O) \begin{pmatrix} E & B \\ O & E \end{pmatrix} \implies r(A, AB) = r(A, O) = r(A)$$

10.4 关于伴随矩阵 第十章 矩阵

2. 设 A 为 n 阶矩阵, 证明:

Solution

证明第二个,第一个和第二个基本一致. 由 $A^2 = E$ 有 (A+E)(A-E) = 0 故

$$r(A+E) + r(A-E) \le n$$

又

$$r(A+E) + r(A-E) = r(A+E) + r(E-A) \ge r(2E) = n$$

因此
$$r(A+E) + r(A-E) = n$$

若A的二次方程有两个互异根,则因式分解后,秩的和为n

10.4 关于伴随矩阵

Remark

伴随矩阵的性质

(1)
$$AA^* = A^*A = |A| \xrightarrow{|A| \neq 0} A^{-1} = \frac{1}{|A|}A^*, A^* = |A|A^{-1}$$

(2)
$$(kA)^* = k^{n-1}A^*$$

$$(3) \ (AB)^* = B^*A^*$$

(4)
$$|A^*| = |A|^{n-1}$$

(5)
$$(A^T)^* = (A^*)^T$$

(6)
$$(A^{-1})^* = (A^*)^{-1} = \frac{A}{|A|}$$

$$(7) (A^*)^* = |A|^{n-2} A$$

(8)
$$r(A) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n - 1 \\ 0, & r(A) < n - 1 \end{cases}$$

1. 设 n 阶矩阵 A 的各列元素之和均为 2, 且 |A| = 6, 则 A^* 的各列元素之和均为:

(A) 2 (B)
$$\frac{1}{3}$$
 (C) 3 (D)6

Solution

由题设有

$$(1,\ldots,1) A = 2(1,\ldots,1)$$

两边同时右乘 A* 即

$$(1,\ldots,1)A^* = 3(1,\ldots,1)$$

故 A* 的各列元素之和均为 3

各行/列元素之和

(各行元素之和为 λ) 通过右乘列向量即

$$A\begin{pmatrix}1\\\vdots\\1\end{pmatrix}=\lambda\begin{pmatrix}1\\\vdots\\1\end{pmatrix}\iff\begin{pmatrix}1\\\vdots\\1\end{pmatrix} 为 A 的特征值为 \lambda 的特征向量$$

(各列元素之和为 λ) 通过做成行向量即

$$(1,\ldots,1) A = \lambda (1,\ldots,1)$$

2. 设 $A=(a_{ij})$ 为 $n(n \geq 3)$ 阶非零矩阵, A_{ij} 为 a_{ij} 的代数余子式,证明:

(1)
$$a_{ij} = A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = A^T \Leftrightarrow AA^T = E \perp |A| = 1;$$

(2)
$$a_{ij} = -A_{ij}(i, j = 1, 2, \dots, n) \Leftrightarrow A^* = -A^T \Leftrightarrow AA^T = E \perp |A| = -1.$$

Solution

这道题的结论比较重要 第一个充要条件通过定义即可证明即

$$A^* = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \dots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \dots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} = A^T$$

下面证明第二个充要条件.

右推左, 由于 $AA^T = E$ 且 |A| = 1 则

$$A^* = |A|A^{-1} = A^{-1} = A^T$$

左推右, 由 $A^* = A^T$ 则 $|A^*| = |A|^{n-1} = |A^T| = |A|$ 从而 |A| = 0, 1, -1 由于 $A \neq O$, 不妨设 $a_1 1 \neq 0$, 按第一行展开有

$$|A| = a_{11}A_{11} + \dots + a_{1n}A_{1n} = \sum_{i=1}^{n} a_{ii}^2 > 0 \implies |A| = 1$$

又

$$AA^T = AA^* = |A|E = E$$

10.5 初等变换与初等矩阵

初等变换与初等矩阵的性质

- (1) |E(i,j)| = -1, |E(i(k))| = k, |E(ij(k))| = 1
- (2) $E(i,j)^T = E(i,j), E(i(k))^T = E(i(k)), E(ij(k))^T = E(ji(k))$
- (3) $E(i,j)^{-1} = E(i,j), E(i(k))^{-1} = E(i(\frac{1}{k})), E(ij(k)^{-1}) = E(ij(-k))$
- (4) 初等行(列)变换相当于左(乘)对应的初等矩阵
- (5) 可逆矩阵可以写成有限个初等矩阵的乘积
- 11. (2005, 数一、二) 设 A 为 $n(n \ge 2)$ 阶可逆矩阵, 交换 A 的第 1 行与第 2 行得到矩阵 B, 则:
 - (A) 交换 A^* 的第 1 列与第 2 列, 得 B^*
 - (B) 交换 A^* 的第 1 行与第 2 行, 的 B^*
 - (C) 交换 A^* 的第 1 列与第 2 列, 得 $-B^*$
 - (D) 交换 A 的第 1 行与第 2 行, 得 $-B^*$

Solution

有题设有

$$E(1,2)A = B$$

即

$$B^* = A^* [E(1,2)]^*$$

$$= A^* |E(1,2)| E^{-1}(1,2)$$

$$= -A^* E(1,2)$$

即交换 A^* 的第 1 列与第 2 列, 得 $-B^*$

第十一章 向量

11.1 知识体系

11.2 线性表示的判定与计算

线性表示的判定与计算

(题型一判断)

(I) 线性表示的定义 $\beta = k_1\alpha_1 + k_2\alpha_2 + \ldots + k_s\alpha_s$

(II)
$$\Re r(\alpha_1, \dots, \alpha_s) = r(\alpha_1, \dots, \alpha_s \mid \beta)$$

(题型二 计算)

$$(\alpha_1,\ldots,\alpha_s,|\beta) \xrightarrow{\text{初等行变换}}$$
 行最简型

(题型三向量组等价)

- (I) 向量组等价的定义 向量组 I,II 可以相互线性表示
- (II) <u>三</u>秩相等 r(I) = r(I, II) = r(II)
- 1. 设向量组 α, β, γ 与数 k, l, m 满足 $k\alpha + l\beta + m\gamma = 0$ $(km \neq 0)$, 则
 - (A) $\alpha, \beta 与 \alpha, \gamma$ 等价
 - (B) $\alpha, \beta 与 \beta, \gamma$ 等价
 - (C) $\alpha, \gamma 与 \beta, \gamma$ 等价
 - (D) α与γ等价

由于
$$km \neq 0$$
 则有
$$\begin{cases} \alpha = -\frac{1}{k} (l\beta + m\gamma) \\ \gamma = -\frac{1}{k} (l\beta + k\alpha) \end{cases} \implies \begin{cases} \beta, \gamma \to \alpha \\ \beta, \alpha \to \gamma \end{cases}$$
 又因为 $(\beta, \gamma) \to \beta$ 是显然的, 故 $(\alpha, \beta) \to (\beta, \gamma)$

- 2. (2004, 数三) 设 $\alpha_1 = (1,2,0)^T$, $\alpha_2 = (1,a+2,-3a)^T$, $\alpha_3 = (-1,-b-2,a+2b)^T$, $\beta = (1,3,-3)^T$ 。当 a,b 为何值时,
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示
 - (II) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 唯一地线性表示, 并求出表示式;
 - (III) β 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示, 但表示式不唯一, 并求出表示式。

Solution

数字矩阵多半带参数, 关键就是讨论这个参数的范围. 记 $A = (\alpha_1, \alpha_2, \alpha_3)$ 联立有

$$(A \mid \beta) \rightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & a & -b & 1 \\ 0 & 0 & a - b & 0 \end{pmatrix}$$

(1) 当 $a \neq 0$ 的时候

$$(A \mid \beta) = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 $r(A) < r(A \mid \beta)$ 即 β 不可以有 α_i 表示

(2) 当 $a \neq 0$ 且 $a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 - \frac{1}{a} \\ E & \frac{1}{a} \\ 0 \end{pmatrix}$$

此时 $r(A) = r(A \mid \beta)$ 故 β 可由 α_i 唯一表示即

$$\beta = (1 - \frac{1}{a})\alpha_1 + \frac{1}{a}\alpha_2$$

(3) 当 $a \neq 0, a \neq b$ 时有

$$(A \mid \beta) = \begin{pmatrix} 1 & 0 & 0 & 1 - \frac{1}{a} \\ 0 & 1 & -1 & \frac{1}{a} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

此时 β 可由 α_i 无穷多表示,即

$$\beta = (1 - \frac{1}{a})\alpha_1 + (k + \frac{1}{a})\alpha_2 + k\alpha_3, k \in \mathbb{R}$$

3. (2019, 数二、三) 设向量组 (I) $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; 向量组 (II) $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$ 。若向量组 (I) 与 (II) 等价, 求 a 的值,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

Solution

数字矩阵直接用三秩相等即可 r(I)=r(I,II)=r(II) 要分两部分令 $A=(\alpha_1,\alpha_2,\alpha_3),B=(\beta_1,\beta_2,\beta_3)$

$$(A \mid B) \to \begin{pmatrix} 1 & 0 & -2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix} B \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & a^2 - 1 \end{pmatrix}$$

当 a=1 的时候 r(I)=r(I,II)=r(II)=2 此时线性组等价

$$(A \mid \beta_3) \rightarrow \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathbb{P} \beta_3 = (3 - 2k)\alpha_1 + (k - 2)\alpha_2 + k\alpha_3$

当 $a^2 \neq 1$ 的时候 r(I) = r(I, II) = r(II) = 3 此时线性组等价

$$(A \mid \beta_3) \to \begin{pmatrix} & 1 \\ E & -1 \\ & 1 \end{pmatrix}$$

此时 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$

线性相关与线性无关的判定 11.3

相关/无关的判定

(方法一用定义)

(方法二 用秩)

- 1. (2014, 数一、二、三) 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,则对任意常数 $k, l, \alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3$ 线性无关是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关的
 - (A) 必要非充分条件
 - (B) 充分非必要条件
 - (C) 充分必要条件
 - (D) 既非充分又非必要条件

Solution

证明充分性, 取 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = O$ 显然证明不了 α_i 无关 证明必要性

(方法一 用定义证明) 由线性无关的定义, 只需证明 $\forall k, l, \exists k_1, k_2$

$$k_1(\alpha_1 + k\alpha_3) + k_2(\alpha_2 + l\alpha_3) = 0$$

即

$$k_1 \alpha_1 + k_2 \alpha_2 + (k_1 k + l) \alpha_3 = 0$$

由
$$\alpha_i$$
 线性无关有
$$\begin{cases} k_1=0\\ k_2=0\\ k_1k+l=0 \end{cases}$$

(方法二 用秩)

$$(\alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$$

(方法二 用秩)
$$(\alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$$
 记 $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ k & l \end{pmatrix}$ 又 $(\alpha_1, \alpha_2, \alpha_3)$ 线性无关,故 $r(\alpha_1 + k\alpha_3, \alpha_2 + l\alpha_3) = r(C) = 2$

2. 设 A 为 n 阶矩阵, $\alpha_1, \alpha_2, \alpha_3$ 均为 n 维列向量,满足 $A^2\alpha_1 = A\alpha_1 \neq 0$, $A^2\alpha_2 = \alpha_1 + A\alpha_2$, $A^2\alpha_3 = \alpha_2 + A\alpha_3$,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。

Solution

有题设有

$$\begin{cases} (A^2 - A)\alpha_1 = O\\ (A^2 - A)\alpha_2 = \alpha_1\\ (A^2 - A)\alpha_3 = \alpha_2 \end{cases}$$

(用定义证明) 假设存在 k_1, k_2, k_3 使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = O \tag{*}$$

 (\star) 式两端同时左乘以 $(A^2 - A)$ 有

$$k_2\alpha_1 + k_3\alpha_3 = O \tag{**}$$

同理将上式两端同乘 $A^2 - A$ 有

$$k_3\alpha_1=0$$

由于 $A\alpha_1 \neq O \implies \alpha_1 \neq O$ 可知 $k_3 = 0$ 代回 (**) 可知 $k_2 = 0$; 将 $k_3 = k_2 = 0$ 代回 ** 可知 $k_1 = k_2 = k_3 = 0$ 故由线性无关的定义可知 α_i 线性无关.

3. 设 4 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,与 4 维列向量 β_1, β_2 两两正交,证明 β_1, β_2 线性相关。

Solution

由题设可知 $\forall \alpha_i^T \beta_j = 0$ 即 $\begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{pmatrix} \beta_i = O \implies (\beta_1, \beta_2)$ 为方程 AX = 0 的解, 因而有

 $r(\beta_1,\beta_2) \le 4 - r(A)$ 又因为 (α_i) 线性无关可知 r(A) = 3 故而 $r(\beta_1,\beta_2) \le 4 - 3 = 1$ 从而 β_1,β_2 线性相关.

11.4 极大线性无关组的判定与计算

抽象与数字矩阵

对于抽象矩阵: 使用定义

对于具体数字矩阵: 初等行变换转换为行阶梯形

- - (I) 当 a 为何值时, 该向量组线性相关, 并求其一个极大线性无关组;
 - (II) 当 a 为何值时,该向量组线性无关,并将 $\alpha = (4,1,6,10)^T$ 由其线性表示。

Solution

(1) 联立 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, |, \alpha)$ 化简为行阶梯形有

$$\begin{pmatrix}
1 & -1 & 3 & -2 & 4 \\
0 & 2 & 1 & 4 & 3 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & a-2 & 1-a
\end{pmatrix}$$

- (1) 当 a = 2 的时候 r(A) = 3 4 此时极大无关组为 $(\alpha_1, \alpha_2, \alpha_3)$
- (2) 当 $a \neq 2$ 的时候 r(A) = 4 该向量组线性无关
- (2) 当 $a \neq 2$ 将 $(A \mid \alpha)$ 转换为行最简型有

$$\begin{pmatrix}
2 \\
3a-4 \\
a-2 \\
1 \\
\frac{1-a}{a-2}
\end{pmatrix}$$

$$\alpha = 2\alpha_1 + \frac{3a - 4}{a - 2}\alpha_2 + \alpha_3 + \frac{1 - a}{a - 2}\alpha_4$$

- 2. 证明:
 - (I) 设 A, B 为 $m \times n$ 矩阵, 则 $r(A+B) \le r(A) + r(B)$;
 - (II) 设 A 为 $m \times n$ 矩阵,B 为 $n \times s$ 矩阵,则 $r(AB) \le \min\{r(A), r(B)\}$ 。

11.5 向量空间(数一专题)

向量空间

过度矩阵

由基 (极大线性无关组) $\alpha_1, \alpha_2, \dots, \alpha_n$ 到基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵为 $(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)C$ 即 $C = (\alpha_1, \alpha_2, \dots, \alpha_n)^{-1}(\beta_1, \beta_2, \dots, \beta_n)$

坐标转换公式

设向量 γ 在基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 中的坐标为 $x=(x_1,x_2,\ldots,x_n)^T$, 在基 $\beta_1,\beta_2,\ldots,\beta_n$ 中的坐标为 $y=(y_1,y_2,\ldots,y_n)^T$ 则坐标转换公式为 x=Cy

$$\gamma = (\alpha_1, \dots, \alpha_n) X$$

$$= (\beta_1, \dots, \beta_n) Y$$

$$= (\alpha_1, \dots, \alpha_n) CY \implies x = Cy$$

- 1. (2015, 数一) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$ 。
 - (I) 证明向量组 $\beta_1, \beta_2, \beta_3$ 为 R^3 的一个基:
 - (II) 当 k 为何值时,存在非零向量 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 与基 $\beta_1, \beta_2, \beta_3$ 下的坐标相同,并求 所有的 ξ 。

Solution

(1) 有题设有

$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{pmatrix}$$

又因为
$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{vmatrix} = 4 \neq 0$$
 从而 β_i 线性无关, 因此 β_i 为 \mathbb{R}^3 的一个基.

(2) 设 ξ 在基 (α_i) 和 (β_i) 下的坐标为 x, 则

$$\xi = (\alpha_i)x = (\beta_i)x = (\alpha_i)Cx$$

得齐次方程 (C-E)x = O 有非零解, 对其做初等初等行变换, 有

$$(C - E) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{pmatrix}$$

当 k=0 的时候, 方程组有非零解, 所有非零解为 $x=k(-1,0,1)^T$, k 为任意常数, 此时在两个基下坐标相同的所有非零向量为

$$\xi = k(\alpha_i)(-1, 0, 1)^T = k(\alpha_3 - \alpha_1)$$

第十二章 线性方程组

12.1 解的判定

- 1. (2001, 数三) 设 A 为 n 阶矩阵, α 为 n 维列向量, 且 $\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$,则线性方程组
 - (A) $Ax = \alpha$ 有无穷多解
 - (B) $Ax = \alpha$ 有唯一解

(C)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 只有零解

(D)
$$\begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 有非零解

Solution

对于 A,B 选项有

$$r(A) \le r(A, \alpha) \le r \begin{pmatrix} A & \alpha \\ \alpha^T & 0 \end{pmatrix} = r(A)$$

只能得到 $r(A) = r(A, \alpha)$ 但与 n 的关系无法得出, 故 $Ax = \alpha$ 有解, 但无法确定是无穷解还是唯一解. (C,D) 选项比较较大, 有题设可以直接知道 D 正确.

- 2. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m < n, 则下列结论不正确的是
 - (A) 线性方程组 $A^T x = 0$ 只有零解
 - (B) 线性方程组 $A^T A x = 0$ 有非零解
 - (C) $\forall b$, 线性方程组 $A^T x = b$ 有唯一解

(D) $\forall b$, 线性方程组 Ax = b 有无穷多解

Solution

- $(A) r(A^T) = r(A) = m \implies 只有零解$
- (B) $r(A^T A) = r(A) = m < n \implies$ 有非零解
- (D) $m = r(A) \le r(A, b) \le \min\{m, m+1\} = m \implies r(A) = r(A, b) = m < n$ 有无穷多解

行/列满秩总结

行满秩 $A_{m \times n}, r(A) = m$

- (1) 右乘行满秩满足消去律
- (2) 右乘行满秩秩不变 r(BA) = r(B)
- (3) A 的行向量组线性无关
- (4) 非齐次方程组 $Ax = b \implies r(A) = r(A, b) \implies$ 有解

列满秩 $A_{m \times n}, r(A) = n$

- (1) 左乘列满秩满足消去律
- (2) 左乘列满秩秩不变 r(AB) = r(B)
- (3) A 的列向量组线性无关
- (4) Ax = O 只有零解
- (5) ABx = O 与 Bx = O 同解

12.2 求齐次线性方程组的基础解系与通解

- 1. (2011, 数一, 二) 设 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ 为 4 阶矩阵, $(1, 0, 1, 0)^T$ 为线性方程组 Ax = 0 的基础解系,则 $A^*x = 0$ 的基础解系可为
 - (A) α_1, α_2
 - (B) α_1, α_3

- (C) $\alpha_1, \alpha_2, \alpha_3$
- (D) $\alpha_2, \alpha_3, \alpha_4$

由题设可知 n-r(A)=1 \Longrightarrow r(A)=3 且 $\alpha_1+\alpha_3=O$ \Longrightarrow α_1,α_3 线性相关,而 r(A)=3 其列向量的极大无关组个数为 3,从而其一个极大无关组可以是 $(\alpha_1,\alpha_2,\alpha_4)$

由 $r(A)=3=n-1 \implies r(A^*)=1$ 从而 $A^*x=O$ 的基础解系中线性无关解的个数为 $n-r(A^*)=3$ 个,由 $A^*A=|A|E=O$ 从而有

$$A^*(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = O$$

从而 $A^*x = O$ 的基础解系可以是 $(\alpha_1(\alpha_3), \alpha_2, \alpha_4)$

2. (2005, 数一、二) 设 3 阶矩阵 A 的第 1 行为 (a,b,c), a,b,c 不全为零, $B=\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{pmatrix}$ 满 足 AB=O,求线性方程组 Ax=0 的通解。

Solution

由于 AB = O 且 $r(A) + r(B) \le 3$

当 $k \neq 9$, r(B) = 2, r(A) = 1, 从而 Ax = 0 的基础解系中线性无关解的个数为 3 - r(A) = 2 个, 此时通解为 $k_1(1,2,3)^T + k_2(3,6,k)^T$ 其中 k_1,k_2 为任意常数 当 k = 9 时候 r(B) = 1 此时 r(A) = 1或者r(A) = 2.

- (1) 当 r(A) = 2 < 3 时,3 r(A) = 1, 此时基础解析中只有一个线性无关的解 $\beta = (1, 2, 3)^T$ 通解为 $k\beta$,k 为任意常数
- (2) 当 r(A) = 1 < 3 时候, $A = \alpha^T \beta \rightarrow \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 不妨设 $a \neq 0$ 此时基础解系可以是 $\xi_1 = (-\frac{b}{a}, 1, 0), \xi_2 = (-\frac{c}{a}, 0, 1)$ 从而通解为 $k_1 \xi_1 + k_2 \xi_2$ 其中 k_1, k_2 为任意常数

3. (2002, 数三) 设线性方程组

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_n &= 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_n &= 0 \\ \vdots && \\ bx_1 + bx_2 + bx_3 + \dots + ax_n &= 0 \end{cases}$$

其中 $a \neq 0, b \neq 0, n \geq 2$ 。当 a, b 为何值时,方程组只有零解、有非零解,当方程组有非零解时,求其通解。

記系数矩阵为 $A = \begin{pmatrix} a & b & \dots & b \\ b & a & \dots & b \\ \vdots & \vdots & \dots & \vdots \\ b & b & \dots & a \end{pmatrix}$ 其行列式为 $|A| = \begin{vmatrix} a & b & \dots & b \\ b & a & \dots & b \\ \vdots & \vdots & \dots & \vdots \\ b & b & \dots & a \end{vmatrix} = [a + (n - 1)b](a - b)^{n-1}$ 有 $\begin{cases} a \neq b \perp a + (n - 1)b \neq 0 \implies |A| \neq 0 \text{此时齐次方程只有零解} \\ a = b \neq 0, A \rightarrow \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \end{pmatrix} \\ \text{此时基础解系为$\xi_1 = (-1,0,\dots,0)^T,\dots,\xi_{n-1} = (-1,0,\dots,1)^T$}$ $a + (n - 1)b = 0, A \rightarrow \begin{pmatrix} 1 & 0 & \dots & -1 \\ 0 & 1 & \dots & -1 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$ 此时基础解系为\$\xi = (1,1,\dots,1)^T\$

12.3 求非齐次线性方程组的通解

求特解的方法

- 1. 对于抽象矩阵, 用定义和性质凑一个特解 $\sum k_i \mu_i (\sum k_i = 1)$
- 2. 对于数字矩阵, $\bar{A} \rightarrow$ 行最简型 让自由变量取 0
- 1. 设 A 为 4 阶矩阵, k 为任意常数, η_1, η_2, η_3 为非齐次线性方程组 Ax = b 的三个解, 满足

$$\eta_1 + \eta_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \eta_2 + 2\eta_3 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}.$$

若 r(A) = 3 则 Ax = b 的通解为 ()

$$(A)\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2 \end{pmatrix} (B)\begin{pmatrix} 2\\3\\4\\5 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} (C)\begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} + k\begin{pmatrix} -1\\0\\1\\2\\3 \end{pmatrix} (D)\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + k\begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}$$

Solution

由题设可知 r(A)=3,可知 Ax=0 基础解系里面有 n-r(A)=4-3=1 个线性无关的向量. 根据解的形式可知要凑一个 $\sum k_i=0$

$$3(\mu_1 + \mu_2) - 2(\mu_2 + 2\mu_3) = \begin{pmatrix} -1\\0\\1\\2 \end{pmatrix}$$

为基础解系, 凑一个 $\sum k_i = 1$ 为特解, 考虑选项可知

$$2(\mu_1 + \mu_2) - (\mu_2 + 2\mu_3) = \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix}$$

为特解, 故其通解为

$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + k \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

- 2. (2017, 数一、三、三) 设 3 阶矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$ 有三个不同的特征值, 其中 $\alpha_3=\alpha_1+2\alpha_2$ 。
 - (I) 证明 r(A) = 2;
 - (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,求线性方程组 $Ax = \beta$ 的通解。

Solution

- (2) 由于 r(A) = 2, Ax = 0 的基础解系里有 n r(A) = 3 2 = 1 个线性无关的向量, 又因为

$$\alpha_1 + 2\alpha_2 - \alpha_3 = A \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = 0$$

故基础解系为
$$\xi$$
 $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ 又因为 $\beta = A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = A\mu$ 故通解为 $\mu + k\xi$, 其中 k 为任意常

数

3. 设
$$A = \begin{pmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{pmatrix}, b = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}$$
, 线性方程组 $Ax = b$ 有两个不同的解.

- (I) 求 λ , a的值;
- (II) 求方程组 Ax = b 的通解。

(1) 有题设可知 Ax = b 有无穷多解, 即 $r(A) = r(\bar{A}) < 3$ 对增广矩阵做初等行变换有

$$\bar{A} \to \begin{pmatrix} 1 & 1 & \lambda & 1 \\ 0 & \lambda - 1 & 0 & 1 \\ 0 & 0 & 1 - \lambda^2 & a + 1 - \lambda \end{pmatrix} \implies \begin{cases} \lambda = -1 \\ a = -2 \end{cases}$$

(2) 将 Ā 经过初等行变换转换为行最简型有

$$\bar{A} \rightarrow \begin{pmatrix} 1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

可知其基础解系和特解分别为

$$\xi = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \eta = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix}$$

故该方程组的通解为 $\eta + k\xi$,其中k为任意常数

- 4. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = r, 若 $\xi_1 \xi_2 \dots \xi_{n-r}$ 为齐次方程组 Ax = 0 的基础解系, η 为非其次线性方程组 Ax = b 的特解, 证明:
 - (I) η, ξ₁, ξ₂, . . . , ξ_{n-r} 线性无关
 - (II) $\eta, \eta + \xi_1, \eta + \xi_2, \cdots, \eta + \xi_{n-r}$ 线性无关;
 - (III) $\eta, \eta + \xi_1, \eta + \xi_2, \dots, \eta + \xi_{n-r}$ 为 Ax = b 所有解的极大线性无关组。

Solution

(1) 用定义证明, 设 $\exists k_1, ..., k_{n-r}$ 使得

$$k_0 \eta + k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$
 (*)

*式左乘 A, 可知 $k_0b=0$ 又 $b\neq 0$ 故 $k_0=0$ 将其值带回 * 式可知

$$k_1 \xi_1 + \ldots + k_{n-r} \xi_{n-r} = 0$$

又因为 ξ_i 之间线性无关, 可知 $k_1 = \ldots = k_{n-r} = 0$ 故由线性无关的定义可知

 $\eta, \xi_1, \ldots, \xi_{n-r}$ 线性无关.

(2) 方法一: 用定义

设 $\exists l_0, \ldots, l_{n-r}$ 使得

$$l_0 \eta + l_1 (\eta + \xi_1) + \ldots + l_{n-r} (\eta + \xi_{n-t}) = 0$$

即

$$(l_0 + \ldots + l_{n-r})\eta + l_1\xi_1 + \ldots + l_{n-r}\xi_{n-r} = 0$$

由以可知上面的系数都为0,即 $l_i=0$ 从而原命题成立

方法二: 用秩证明

$$(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) \begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$= (\eta, \xi_1, \dots, \xi_{n-r}) A_{(n-r+1)\times(n-r+1)}$$

有 (1) 可知 $(\eta, \xi_1, \dots, \xi_{n-r})$ 线性无关, 即列满秩, 故有

$$r(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r}) = r(A) = n - r + 1$$

由线性无关的充要条件可知,该向量组线性无关.

(3) 由 (2) 可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 为方程 Ax = b 线性无关的解, 且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可由其线性表示, 并且 $\eta, \xi_1, \dots, \xi_{n-r}$ 可表示所有解. 从而可知 $(\eta, \eta + \xi_1, \dots, \eta + \xi_{n-r})$ 亦可以表示所有解, 故而其为所有解的极大线性无关组.

(非) 齐次方程解的个数

齐次方程组 Ax = 0 的基础解系 (解的极大无关组) 中解的个数为 n - r 有上题的 (3) 可知, 方程 Ax = b 解的极大无关组中解的个数为 n - r + 1

5. 设 3 阶非零矩阵 A 满足 $A^2=O$, 非齐次线性方程 Ax=b 有解, 则 Ax=b 的线性无关解 向量的个数为

由 $A^2 = A \cdot A = O \implies r(A) + r(A) \le 3 \implies r(A) \le 1$ 又因为 $A \ne O$ 可知 r(A) = 1, 由上述结论可知 Ax = b 的线性无关解的个数为 n - r(A) + 1 = 3 - 1 + 1 = 3 个.

6. 设 n 阶矩阵 A 的伴随矩阵 $A^* \neq O, \xi_1, \xi_2, \xi_3, \xi_4$ 为非齐次线性方程组 Ax = b 的互不相等的解, 则 Ax = b 的线性无关解向量的个数为

Solution

由 $A^* \neq O \implies r(A^*) \geq 1 \implies r(A) = n - 1$ 或n, 有题设可知 Ax = b 有无穷多解, 故 $r(A) = r(\bar{A}) < n$ 从而 r(A) = n - 1, 由结论可知 Ax = b 的线性无关解的个数为 n - r(A) + 1 = n - n + 1 + 1 = 2 个

12.4 解矩阵方程

解 Ax = B 三种方法

(方法一) 若 A 可逆, 此时 $X = A^{-1}B$

- (i) 先求 A^{-1} , 再做 $A^{-1}B$ 一般不用
- (ii) 联立做初等行变换 $(A \mid B) \xrightarrow{\text{初等行变换}} (E \mid A^{-1}B)$

(方法二) 若 A 不可逆, 且是二阶的时候直接待定系数

$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$

(方法三) 若 A 不可逆且, 大于二阶. 用分块 (按列) 矩阵乘法

$$A(x_1, x_2, \dots, x_n) = (\beta_1, \beta_2, \dots, \beta_n) \implies \begin{cases} Ax_1 = \beta_1 \\ Ax_2 = \beta_2 \\ \vdots \\ Ax_n = \beta_n \end{cases}$$

转换为求解非齐次方程组, 此时联立

$$(A \mid \beta_1, \beta_2, \dots, \beta_n) \xrightarrow{\eta \in f \circ \psi}$$
 行最简型

变种 若矩阵方程为 XA = B 则转换为 $A^TX^T = B^T$

1. 设
$$A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \\ -2 & 0 & 2 \end{pmatrix}$$
 矩阵 X 满足 $AX + E = A^{2022} + 2X$,求矩阵 X 。

Solution

有题 r(A) = 1 可知 $A^{2022} = [tr(A)]^{2021}A = A$ 此时原矩阵方程可以转换为

$$(A - 2E)X = A - E$$

此时联立, 做初等行变换

$$\begin{pmatrix}
-3 & 0 & 1 & -2 & 0 & 1 \\
1 & -2 & -1 & 1 & -1 & -1 \\
-2 & 0 & 0 & -2 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
E & \begin{pmatrix}
1 & 0 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & -\frac{1}{2}
\end{pmatrix}$$

2. (2014, 数一、二、三) 设
$$A = \begin{pmatrix} 1 & -2 & 3 & -4 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & -3 \end{pmatrix}$$

- (I) 求线性方程组 Ax = 0 的一个基础解系;
- (II) 求满足 AB = E 的所有矩阵 B。

Solution

直接联立 A, E 做初等行变换, 可以一次把两道题一起做了.

$$(A \mid E) \to \begin{pmatrix} 1 & 0 & 0 & 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & -2 & -1 & -3 & 1 \\ 0 & 0 & 1 & -3 & -1 & -4 & 1 \end{pmatrix}$$

通过左边的矩阵可以解出基础解系为 $\xi = \begin{pmatrix} -1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$ 通过右边的矩阵, 可以解出 \mathbf{B} , 此

时结果为

$$B = \begin{pmatrix} 2 - k_1 & 6 - k_2 & -2 - k_3 \\ 2k_1 - 1 & 2k_2 - 3 & 2k_3 + 1 \\ 3k_1 - 1 & 3k_2 - 4 & 3k_3 + 1 \\ k_1 & k_2 & k_3 \end{pmatrix}$$

其中 k1, k2, k3 为任意常数

分块矩阵解矩阵方程的注意点

解非齐次方程时候,自由变量取 k,解其余变量.

12.5 公共解的判定与计算

公共解的三种情况

(情况一)已知两个方程组(直接联立)

(情况二)已知一个方程组与另一个方程组的通解,将该通解带入方程组

(情况三)已知两个方程组的通解(令通解相等)

12. (2007, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 2x_2 + ax_3 = 0 \\ x_1 + 4x_2 + a^2x_3 = 0 \end{cases}$$

与方程

$$(II)x_1 + 2x_2 + x_3 = a - 1$$

有公共解, 求 a 的值及所有公共解。

直接联立 I, II 有

$$\bar{A} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & a & 0 \\ 1 & 4 & a^2 & 0 \\ 1 & 2 & 1 & a - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & a - 1 & 0 \\ 0 & 0 & (a - 1)(a - 2) & 0 \\ 0 & 0 & 1 - a & a - 1 \end{pmatrix}$$

此时讨论参数 a 的值

(当 $a \neq 1$ 且 $a \neq 2$) 此时 $r(A) < r(\bar{A})$ 无公共解

(当 a = 1 时) 公共解为 $k(-1, 0, 1)^T$ 其中 k 为任意常数

(当 a = 2) 只有唯一解 $(0, 1, -1)^T$

13. 设齐次线性方程组

(I)
$$\begin{cases} 2x_1 + 3x_2 - x_3 = 0 \\ x_1 + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

齐次线性方程组 (II) 的一个基础解系为 $\alpha_1 = (2, -1, a+2, 1)^T$, $\alpha_2 = (-1, 2, 4, a+8)^T$

- (1) 求方程组(I)的一个基础解系;
- (2) 当 a 为何值时, 方程组 (I) 与 (II) 有非零公共解, 并求所有非零公共解。

Solution

(I) 比较简单答案是 $k_1(5, -3, 1, 0)^T + k_2(-3, 2, 0, 1)^T$ 其中 k_1, k_2 为任意常数

(II, 方法一) 令 $k_1\xi_1 + k_2\xi_2 = k_3\alpha_1 + k_4\alpha_4$ 则有

$$k_1\xi_1 + k_2\xi_2 - k_3\alpha_1 - k_4\alpha_4 = 0$$

可以转换为求解齐次方程组 $(\xi_1, \xi_2, -\alpha_1, -\alpha_2)k = 0$ 的解

(II, 方法二) 将

$$m_1\alpha_1 + m_2\alpha_2 = \begin{pmatrix} 2m_1 - m_2 \\ 2m_2 - m_1 \\ (a+2)m_1 + 4m_2 \\ m_1 + (a+8)m_2 \end{pmatrix} \begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{cases}$$

代入方程组 (I) 有
$$\begin{cases} (a+1)m_1=0\\ (a+1)m_2=0 \end{cases}$$
 当 $a\neq -1$ 时候, $m_1=m_2=0$ 此时只有零解不

当 a=-1 时候, 非零公共解为 $m_1\alpha_1+m_2\alpha_2$ 其中 m_1,m_2 为任意常数

12.6 方程组同解

同解问题的求法

(1) 方程组同解的定义

(2) 秩 (三秩相等)
$$r(A) = r\begin{pmatrix} A \\ B \end{pmatrix} = r(B)$$
 即行向量组等价

1. (2005, 数三) 设线性方程组

(I)
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0 \\ 2x_1 + 3x_2 + 5x_3 = 0 \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$

与 (II)

$$\begin{cases} x_1 + bx_2 + cx_3 = 0 \\ 2x_1 + b^2x_2 + (c+1)x_3 = 0 \end{cases}$$

同解, 求 a, b, c 的值, 并求出同解.

Solution

联立 A,B 有

$$\begin{pmatrix} A \\ B \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & a-2 \\ \hline 0 & 0 & c-b-1 \\ 0 & 0 & c-b^2-1 \end{pmatrix}$$

不要忘记单独讨论 B 的秩, 由方程组同解可知 $r(A)=r\begin{pmatrix}A\\B\end{pmatrix}=r(B)$ 且显然由 $r(A)\geq 2, r(B)\leq 2$ 秩应该为 2, 此时可以解出

$$\begin{cases} a=2 \\ b=0 \end{cases} \quad \vec{\boxtimes} \begin{cases} a=2 \\ b=1 \\ c=2 \end{cases}$$

注意当 $\begin{cases} a=2\\ b=0 \end{cases} \quad \mbox{时 } r(B)=1 \mbox{ 不满足条件, 应该舍去. 由于它们都同解, 随便解一个 } \\ c=1 \end{cases}$

方程即可. 不妨解 Ax = 0, 即

$$A \to \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

可知基础解系为 $\xi = (1,1,-1)^T$ 故两个方程的同解为 $k\xi,k$ 为任意常数.

第十三章 特征值与特征向量

13.1 特征值与特征向量的计算

特征值与特征值向量的性质

- (1) 不同特征值的特征向量线性无关
- (2) 不同特征值的特征向量之和不是特征向量
- (3) k重特征值有k个线性无关的特征向量
- (4) 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 则 $\sum_{i=1}^n \lambda_i = tr(A), \prod_{i=1}^n \lambda_i = |A|$

推论 1 上, 下, 主对角矩阵特征值为主对角线元素

推论 2 $aA + bE(a \neq 0)$ 不可逆时, $\lambda = -\frac{b}{a}$ 必然为 A 的一个特征值

(5) 若 r(A) = 1 则 $A = \alpha \beta^T$, 其中 α, β 是 n 维非零列向量, 则 A 的特征值为

$$\lambda_1 = tr(A) = \alpha^T \beta = \beta^T \alpha, \lambda_2 = \dots = \lambda_n = 0$$

当 $tr(A) \neq 0$ 时, $\lambda_1 = tr(A)$, $\alpha_1 = \alpha, \lambda_2 \dots, \lambda_n = 0$, 其特征向量解 $\beta^T x = 0$ 其线性无关的解即为特征向量 $\alpha_2 \dots \alpha_n$

当 tr(A) = 0 时 $\lambda_1 = \ldots = \lambda_n = 0$ 此时只有 n-1 个线性无关的特征向量.

综上秩为 1 矩阵能相似对角化 \iff $tr(A) \neq 0$

(6) 设 α 为矩阵 A 属于特征值 λ 的特征值向量则, 有

A	f(A)	A^{-1}	A^*	A^T	$P^{-1}AP$
λ	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	λ
α	α	α	α	???	$P^{-1}\alpha$

f(A) 可以推广为 $+/-, kA, A^n, A^{-1}, A^*$

求特征值与特征值向量

- (1) 利用特征的定义 $(A\alpha = \lambda \alpha (\alpha \neq 0))$ 或性质 (上述六条)
- (2) 特征方程组法 (两大步)
 - (1) $|A \lambda E| = 0$ 可以求出 A 的 n 个特征值
 - (2) $(A \lambda_i E)x = 0$, 可以解出特征值 λ_i 对应的线性无关的特征向量 $(n r(A \lambda_i E) \uparrow)$

1. 设

求 A 的特征值与特征向量。

特征方程法

当
$$\lambda_1 = -2$$
 时候, 解 $(A + 2E)x = 0 \implies \alpha_1 = (-1, 1, 1, 1)^T$

当 $\lambda_1 = -2, \lambda_2 = \lambda_3 = \lambda_4 = 2$ 时, 解 (A - 2E)x = 0 解出其线性无关的特征向量为

$$\alpha_2 = (1, 1, 0, 0)^T, \alpha_3 = (1, 0, 1, 0)^T, \alpha_4 = (1, 0, 0, 1)^T$$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} -1\\1\\1\\1\\1 \end{pmatrix} (1, -1, -1, -1) + 2E$$

由性质 5 和 6 可以立即确认 A 的特征值为 $\lambda_1 = tr(B) + 2, \lambda_2 = \ldots = \lambda_4 = 0 + 2$ 且 $\alpha_1 = \alpha$ 其余特征向量解 $\beta x = 0$ 结果和上面一样.

2. (2003, 数一) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
 , $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$ 求 $B + 2E$ 的特征值与特征向量。

特征方程法

$$egin{aligned} \Re |A-\lambda E| = \begin{vmatrix} 3-\lambda & 2 & 2 \\ 2 & 3-\lambda & 2 \\ 2 & 2 & 3-\lambda \end{vmatrix} = (7-\lambda)(1-\lambda^2) = 0$$
 可知 $\lambda_1 = 7, \lambda_2 = \lambda_3 = 1$

当 $\lambda_1 = 7$ 解 (A - 7E)x = 0 可以解出 $\alpha_1 = (1, 1, 1)^T$

当 $\lambda_2 = \lambda_3 = 2$ 时, 解 (A-2E)x = 0 可以解出线性无关的特征向量为 $\alpha_2 = (-1,1,0)^T, \alpha_3 = (-1,0,1)^T$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} (1, 1, 1) + E$$

根据性质 5,6 容易得出和上述一样的答案.

$$A^* \dots, 1, \dots, \alpha_1$$

$$A^* \dots, 7, \dots, \alpha_2, \alpha_3$$

$$B \dots, 1, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

$$B..., 7, ..., P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$$

此时求解上述三个特征向量也有三种不同的解法

- (1) 直接求 p^{-1}
- (2) 联立 $(P \mid \alpha_1, \alpha_2, \alpha_3)$
- (3) 观察题设可知 P 是初等矩阵之积, 且很容易写出即

$$P = E(23(1))E(1,2) \implies P^{-1} = E(1,2)E(23(-1))$$

这个方法需要观察题目,不是很通用;虽然所有可逆矩阵都可以分解为初等矩阵,但并非所有都好写出来.

$$B + 2E, \dots, 3, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

 $B + 2E, \dots, 9, \dots, P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$

3. 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$
 的特征方程有一个二重根,求 A 的特征值与特征向量。

转圈化简

解特征方程
$$|A-\lambda E|=$$
 $\begin{vmatrix} 1-\lambda & 2 & 2 \\ -1 & 4-\lambda & -2 \\ 1 & -2 & a-\lambda \end{vmatrix}=0$ 这种三阶的行列,当然可以直接 $B=0$ 展开那样比较难算,由于考研不会故意恶心人,大部分都可以提公因数,依据此,对

展开那样比较难算. 由于考研不会故意恶心人, 大部分都可以提公因数. 依据此, 对行列式按顺(逆)时间, 选择不含 λ 的数, 化简其余不含 λ 的数, 产生 λ 式子的公因数因此上式可以化简为

$$\begin{vmatrix} 1 - \lambda & 4 - 2\lambda & 2 \\ -1 & 2 - \lambda & -2 \\ 1 & 0 & a - \lambda \end{vmatrix} = (2 - \lambda) \left[\lambda^2 - (a+3)\lambda + 3a - 6 \right]$$

此时讨论二重根的值, 若 $\lambda=2$ 不是其二重根, 对于后面那个二次式必然有 $\Delta=0 \Longrightarrow (a+3)^2+24>0$ 矛盾

故 $\lambda = 2$ 只能是二重根, 此时可解出 a = 8 特征值为 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 9$ 分别解 $\begin{cases} (A - 2E)x = 0 \\ (A - 9E)x = 0 \end{cases} \implies \begin{cases} \alpha_1 = (2, 1, 0)^T \\ \alpha_2 = (1, 3, -7)^T \end{cases}$

4. 设 3 阶非零矩阵 A 满足 $A^2 = O$,则 A 的线性无关的特征向量的个数是

A.0 B.1 C.2 D.3

Solution

由 $A^2=O$ 且 $A\neq O$ 可知 r(A)=1, 设 A 的任意特征值为 λ 满足 $\lambda^2=0$ 故 A 的特征值只能是 0 求解 (A-0E)x=0 的基础解系中包含解的个数为 3-r(A)=3-1=2 故 A 的线性无关的特征向量的个数是 2

- 5. 设 $A = \alpha \beta^T + \beta \alpha^T$, 其中 α, β 为 3 维单位列向量,且 $\alpha^T \beta = \frac{1}{3}$, 证明:
 - (I) 0 为 A 的特征值;
 - (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;

(III) A 可相似对角化。

Solution

(1) 由于 $r(A) = r(\alpha \beta^T + \beta \alpha^T) \le 2 \le 3 \implies |A| = 0$ 从而可知必然有一个特征值为

(2) 由于
$$\alpha, \beta$$
 为三阶单位矩阵,从而有
$$\begin{cases} \alpha^T \alpha = \beta^T \beta = 1 \\ \alpha^T \beta = \beta^T \alpha = \frac{1}{3} \end{cases} \implies \begin{cases} \alpha \neq \beta \\ \alpha \neq -\beta \end{cases}$$
 矩阵

A 右乘 α , β 有

$$A\alpha = \alpha \beta^T \alpha + \beta \alpha^T \alpha = \frac{1}{3} \alpha + \beta \tag{1}$$

$$A\beta = \frac{1}{3}\beta + \alpha \tag{2}$$

(1)+(2) 有
$$A(\alpha + \beta) = \frac{4}{3}(\alpha + \beta)$$

(1)-(2) 有 $A(\alpha - \beta) = -\frac{2}{3}(\alpha - \beta)$

(1)-(2) 有
$$A(\alpha - \beta) = -\frac{2}{3}(\alpha - \beta)$$

从而由特征值的定义可知 $(\alpha + \beta)(\alpha - \beta)$ 为 A 的特征值 $\frac{4}{3}, -\frac{2}{3}$ 的特征值向量.

(3) 由于三阶矩阵至多有 3 个特征值, 从而 A 有三个不同的特征值向量 $(0, \frac{4}{3}, -\frac{2}{3})$, 从 而A可相似对角化

也可以通过 $A^T = (\alpha \beta^T + \beta \alpha^T)^T = A$ 可知 A 为实对称矩阵, 从而 A 可相似对角化.

相似的判定与计算 13.2

相似的性质

- (1) 若 $A \sim B$, 则 A, B 具有相同的行列式, 秩, 特征方程, 特征值与迹
- (2) 若 $A \sim B$, 则 $f(A) \sim f(B)$, $A^{-1} \sim B^{-1}$, $AB \sim BA(|A \neq 0|)$, $A^T \sim B^T$, $A^* \sim B^*$
- (3) 若 $A \sim B$, $B \sim C$ 则 $A \sim C$

1. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
 矩阵 B, A 相似, 则 $r(B - A) + r(B - 3E) =$ _____

由 $A \sim B$ 可知 $B-E \sim A-E, B-3E \sim A-3E$ 从而可知 r(B-E)+r(B-3E)=r(A-E)+r(A-3E)=3+2=5

2. 设 n 阶矩阵 A, B 相似, 满足 $A^2 = 2E$, 则 $|AB + A - B - E| = ____$

化简正常做

原式 =
$$|A(B+E) - (B+E)|$$

= $|(A-E)| |(B+E)|$
 $\stackrel{A\sim B}{==} |(A-E)(A+E)|$
= $|E| = 1$

特殊值

不妨令 B = A, 则原式为 $|A^2 - E| = 1$

3. (2019, 数一、二、三) 设
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$$
相似.

- (I) 求 x, y 的值;
- (II) 求可逆矩阵 P,使得 $P^{-1}AP = B$ 。

Solution

- (1) 由 $A \sim B$ 可知 |A| = |B| 从而由 -2(-2x+4) = -2y 又 tr(A) = tr(B) 联立可以解出 x = 3, y = 2
- (2)A, B 的特征值为 (2, -1, -2) 从而可知 A, B 必然能相似对角化, 从而由

$$P_1^{-1}AP_1 = \Lambda = P_2^{-1}BP_2$$

从而可知 $(P_1P_2^{-1})^{-1}A(P_1P_2^{-1})=B$ 从而可知题设的 $P=P_1P_2^{-1}$

用特征值求特征值向量

当
$$\lambda_1 = 2$$
 时 $(A - 2E)X = 0$ 可知 $\alpha_1 = (1, -2, 0)^T$

当
$$\lambda_1 = -1$$
 时 $(A + E)X = 0$ 可知 $\alpha_1 = (-2, 1, 0)^T$

当
$$\lambda_1 = -2$$
 时 $(A+2E)X = 0$ 可知 $\alpha_1 = (1,-2,-4)^T$

同理可以求出 B 的特征向量为
$$\begin{cases} \beta_1=(1,0,0)^T\\ \beta_2=(1,-2,0)^T & \text{从而 } P_1=(\alpha_1,\alpha_2,\alpha_3), P_2=\\ \beta_3=(0,0,1)^T \end{cases}$$

$$(\beta_1, \beta_2, \beta_3)$$

$$(P_1 \mid P_2) \to (E \mid P)$$

从而
$$P = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -1 & -2 \\ 0 & 0 & -4 \end{pmatrix}$$

分块矩阵法

由
$$P^{-1}AP = B$$
 可知 $AP = PB$ 令 $P = (\alpha_1, \alpha_2, \alpha_3)$ 从而有

$$A(\alpha_1, \alpha_2, \alpha_3) = (A\alpha_1, A\alpha_2, A\alpha_3)$$

$$= (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$= (2\alpha_1, \alpha_1 - \alpha_2, -2\alpha_3)$$

从而问题转换为

$$\begin{cases} A\alpha_1 = 2\alpha_1 \\ A\alpha_2 = \alpha_1 - \alpha_2 \\ A\alpha_3 = -2\alpha_3 \end{cases} \Longrightarrow \begin{cases} (A - 2E)\alpha_1 = 0 \\ (A + E)\alpha_2 = \alpha_1 \\ (A + 2E)\alpha_3 = 0 \end{cases} \Longrightarrow \begin{cases} \alpha_1 = (1, -2, 0)^T \\ \alpha_2 = (1, -1, 0)^T \\ \alpha_3 = (1, -2, 4)^T \end{cases}$$

13.3 相似对角化的判定与计算

方法

- (1) 定义: $P^{-1}AP = \Lambda$
- (2) 充分条件: 1o 具有 n 个不同的特征值 2o A 是实对称矩阵
- (3) 充要条件: 1o 具有 n 个线性无关的特征向量 2o k 重特征值有 k 个线性无关的特征向量
- 1. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1, 3, -2, 对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$ 。 若 $P = (\alpha_1, 2\alpha_3, -\alpha_2)$ 则 $P^{-1}AP =$ _______。

Solution

 $k\alpha$ 仍然是同一特征值的特征向量, 从而 $2\alpha_3$ 仍然是特征值 -2 的特征值向量, 从而

$$P^{-1}AP = (\alpha_1, \alpha_3, \alpha_2)^T A(\alpha_1, \alpha_3, \alpha_2) = \Lambda(1, -2, 3)$$

注意特征值间的对应关系

2. 设 n 阶方阵 A 满足 $A^2 - 3A + 2E = O$, 证明 A 可相似对角化。

Solution

设 A 的任意特征值 λ , 由题设可知 $\lambda^2 - 3\lambda + 2 = 0$ 从而有 $(\lambda - 1)(\lambda - 2) = 0$; 且由题设有 $(A - 2E)(A - E) = 0 \implies r(A - 2E) + r(A - E) \le n$ 又 $r(A - E) + r(2E - A) \ge r(E) = n$ 从而可知 r(A - E) + r(A - 2E) = n, 从而对于 $\lambda_i = 1$ 解 (A - E)X = O;

对于 $\lambda_j=2$ 解 (A-2E)X=0 其基础解系中含有线性无关的特征向量分别为 n-r(A-E) 与 n-r(A-2E) 从而 2n-r(A-E)-r(A-2E)=n 个线性无关的特征向量从而 A 可相似对角化.

- 3. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 为非零向量且不是 A 的特征向量。
 - (I) 证明 P 为可逆矩阵;
 - (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

(1) 若 P 不可逆, 则 $\exists k$ 使得 $A\alpha = k\alpha, \alpha \neq 0$ 故 α 是 A 的特征向量, 这与题设矛盾, 从而 P 可逆.

(2)

$$P^{-1}A(\alpha, A\alpha) = P^{-1}(A\alpha, A^{2}\alpha)$$
$$= P^{-1}(A\alpha, 6\alpha - A\alpha)$$
$$= \begin{pmatrix} 0 & 6 \\ 1 & -1 \end{pmatrix}$$

从而可知 $A\sim\begin{pmatrix}0&6\\1&-1\end{pmatrix}$ 只需要求解特征方程 $|B-\lambda E|=\begin{pmatrix}-\lambda&6\\1&-1-\lambda\end{pmatrix}=\lambda(1+\lambda)-6=(\lambda-2)(\lambda+3)$ 从而 B 具有两个不同的特征向量, 从而 B 可相似对角化. 故而 A 可相似对角化.

13.4 实对称矩阵的计算

方法

- (1) 实对称的性质
- (2) 正交相似对角化 $Q^{-1}AQ = Q^TAQ = \Lambda$
- (3) 求正交矩阵 Q
 - o1 求 A 的 n 个特征值 $\lambda_1, \ldots, \lambda_n$
 - $\circ 2$ 求 A 的 n 个线性无关的特征向量 $\alpha_1, \ldots, \alpha_n$
 - o3 将不同特征值的特征向量分别 (斯密特正交化) 三阶矩阵通常使用知二求一/知一求二转换为 $Q=(\gamma_1,\ldots,\gamma_n)$

斯密特正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2$$

$$\vdots$$

$$\beta_i = \alpha_{i-1} - \sum_{i=1}^{i-1} \frac{(\alpha_i, \beta_j)}{\beta_j, \beta_j} \beta_j$$

上述求的 β_i 仅是正交化的结果, 还需要单位化即 $\gamma_i = \frac{\beta_i}{||\beta_i||}$

- (4) 求实对称矩阵 A
 - o1 可逆矩阵 $P, P^{-1}AP = \Lambda \implies A = P\Lambda P^{-1}$
 - $\circ 2$ 正交矩阵 Q $Q^T A Q = \Lambda, |Q| = \pm 1, A = Q \Lambda Q^T$
 - ○3 分解定理

$$A = Q\Lambda Q^{T} = (\gamma_{1}, \dots, \gamma_{n})\Lambda \begin{pmatrix} \gamma_{1}^{T} \\ \vdots \\ \gamma_{n}^{T} \end{pmatrix}$$
$$= (\lambda_{1}\gamma_{1}, \dots, \lambda_{n}\gamma_{n}) \begin{pmatrix} \gamma_{1}^{T} \\ \vdots \\ \gamma_{n}^{T} \end{pmatrix}$$
$$= \lambda_{1}\gamma_{1}\gamma_{1}^{T} + \dots + \lambda_{n}\gamma_{n}\gamma_{n}^{T}$$

特别的当 r(A) = 1 时候 $A = tr(A)\gamma_1\gamma_1^T$

1. 设 n 阶实对称矩阵 A 满足 $A^2 + A = O, n$ 阶矩阵 B 满足 $B^2 + B = E$ 且 r(AB) = 2 则 $|A + 2E| = __$

由 $B^2+B-E=0$ 可知 B 可逆, 从而有 r(AB)=r(A)=2, 设 A 的任意特征值为 λ , 从而由题设可知 $\lambda^2+\lambda=0$ 即 $\lambda=0$ 或者 $\lambda=-1$ 从而可知 $\lambda_1=\lambda_2=-1$, $\lambda_3=\ldots=\lambda_n=0$ 从而可知 A+E 的特征值为 $\lambda_1=\lambda_2=1$, $\lambda_3=\ldots=\lambda_n=2$ 从而 $|A+2E|=2^{n-2}$

2. (2010, 数二、三) 设 $A = \begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$ 正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的 第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1)^T$,求 a,Q。

Solution

设 $\gamma_1 = \frac{1}{\sqrt{6}}(1,2,1)^T$ 为 A 的特征值 λ_1 的特征向量, 从而有 $A\gamma_1 = \lambda_1\gamma_1$, 可以解出

$$\begin{cases} \lambda_1 = 2 & \\ a = -1 & \end{cases}$$
 因此矩阵 A 为
$$\begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & -1 \\ 4 & -1 & 0 \end{pmatrix}$$

解特征方程 $|A-\lambda E|=0 \implies -(\lambda+4)(\lambda-2)(\lambda-5)=0$ 从而可知 A 的特征值为 (2,-4,5) 分别求解三个齐次方程

$$\begin{cases} (A+4E)X = 0 \\ (A-5E)X = 0 \\ (A-2E)X = 0 \end{cases} \implies \begin{cases} \alpha_1 = (1,-1,1)^T \\ \alpha_2 = (-1,0,1)^T \end{cases} \xrightarrow{\text{if the } A} \begin{cases} \gamma_1 = \frac{1}{\sqrt{3}}(1,-1,1)^T \\ \gamma_2 = \frac{1}{\sqrt{2}}(-1,0,1)^T \\ \gamma_3 = \frac{1}{\sqrt{3}}(1,-1,1)^T \end{cases}$$

从而可知 $Q = (\gamma_1, \gamma_2, \gamma_3)$

其实也可以不求解三个齐次方程, 求出两个后可以通过向量积求另一个, 比如说已知 γ_1, γ_2 , 有

$$\gamma_3 = \gamma_1 \times \gamma_2$$

- 3. 设 3 阶实对称矩阵 A 满足 $A^2=E,A+E$ 的各行元素之和均为零,且 r(A+E)=2。
 - (I) 求 A 的特征值与特征向量;
 - (II) 求矩阵 A。

(1) 设 λ 为任意特征值, 从而有 $\lambda^2=1 \implies \lambda=\pm 1$, 当 $\lambda=-1$ 时候齐次方程 (A+E)X=0 的基础解系中包含解的个数为 n-r(A+E)=1 从而可知 $\lambda_1=-1,\lambda_2=\lambda_3=1$

又有题设的行元素之和均为零可知,

$$(A+E)(1,1,1)^T = 0(1,1,1)^T$$

可知 $\alpha_1 = (1,1,1)$ 设 $\lambda_2 = \lambda_3 = 1$ 的特征向量为 (x_1,x_2,x_3) 则

$$x_1 + x_2 + x_3 = 0$$

线性无关的特征值向量为 $\alpha_2 = (-1, 1, 0)^T$, $\alpha_3 = (-1, 0, 1)^T$

可逆矩阵

由 (1) 可知 $P = (\alpha_1, \alpha_2, \alpha_3), P^{-1}AP = \Lambda$ 从而可以求出

$$A = P\Lambda P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

正交矩阵

可以采用知一求二,不妨设 $\alpha_2 = (a, b, 0)^T$, $\alpha_3 = (-b, a, c)^T$ 保证正交性. 又因为 $\alpha_1 \cdots \alpha_2 = \alpha_1 \cdot \alpha_3 = 0$ 可以解出 a = -1, b = 1, c = 2 然后单位化有

$$\begin{cases} \gamma_1 = \frac{1}{\sqrt{3}} (1, 1, 1)^T \\ \gamma_2 = \frac{1}{\sqrt{2}} (-1, 1, 0)^T \\ \gamma_3 = \frac{1}{\sqrt{6}} (-1, -1, 2) \end{cases}$$

从而可知 $Q=(\gamma_1,\gamma_2,\gamma_3)$ 又 $Q^TAQ=\Lambda(-1,1,1)$ 则 $A=Q\Lambda Q^T$ 一样可求出

$$A = P\Lambda P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$

第十四章 二次型

14.1 求二次型的标准形

常规方法

(方法一拉格朗日配方法)

○1 令
$$f(x_1, x_2, x_3) = d_1(x_1 + x_2 + x_3)^2 + d_2(x_2 + cx_3)^2 + d_3x_3^2 = d_1y_1^2 + d_2y_2^2 + d_3y_3^2$$

○2 換元, 令

$$\begin{cases} y_1 = x_1 + ax_2 + bx_3 \\ y_2 = x_2 + cx_3 \\ y_3 = x_3 \end{cases} \implies \begin{cases} x_3 = y_3 \\ x_2 = y_2 - cy_3 \\ x_3 = y_1 - ay_2 + (ac - b)y_3 \end{cases}$$

从而可以通过可逆线性变换 x=Cy 其中 $C=\begin{pmatrix}1&-a&ac-b\\0&1&-c\\0&0&1\end{pmatrix}$

(方法二 正交变换法) x=Qy 二次型转换为标准型 $\lambda_1y_1^2+\lambda_2y_2^2+\lambda_3y_3^2$, 系数为特征值

合同变化法

$$\begin{pmatrix} A \\ E \end{pmatrix} \xrightarrow{\text{finity of the proof of } I} \begin{pmatrix} \Lambda \\ C \end{pmatrix}$$

此时 $C^TAC = \Lambda$, 举例说法计算过程

$$\begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

即经过可逆线性变换
$$x = Cy$$
 其中 $C = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$ 等价于做如下变量代换

$$\begin{cases} x_1 = y_1 - 2y_2 + y_3 \\ x_2 = y_2 - 2y_3 \end{cases}$$
此时标准型为 $f(y_1, y_2, y_3) = y_1^2 - y_2^2$ $x_3 = y_3$

- 1. (2016, 数二、三) 设二次型 $f(x_1, x_2, x_3) = a(x_1^1 + x_2^2 + x_3^2) + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ 的正、负惯性指数分别为 1,2 则
 - A. a > 1 B. a < -2 C. -2 < a < 1 D. a = 1 $\stackrel{\triangleleft}{>}$ a = -2

直接求特征值

由题设可知
$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$$
 求解特征值方程 $|A - \lambda E| = 0 \implies (a - \lambda + 2)(a - \lambda)^2 + \mathbb{E}[A - \lambda]$

 $(\lambda - 1)^2$ 由题设可知

$$\begin{cases} a+2>0 \\ a-1<0 \end{cases} \implies -2 < a < 1$$

分解为秩1矩阵

$$A = (1,1,1)\begin{pmatrix}1\\1\\1\end{pmatrix} + (a-1)E$$
 从而可知其特征值为
$$\begin{cases}\lambda_1 = a+2\\\lambda_2 = \lambda_3 = a-1\end{cases}$$

- 2. (2022, 数一) 设二次型 $f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} ijx_ix_j$ 。
 - (1) 求 $f(x_1, x_2, x_3)$ 对应的矩阵;
 - (2) 求正交变换 x = Qy, 将 $f(x_1, x_2, x_3)$ 化为标准形;
 - (3) 求 $f(x_1, x_2, x_3) = 0$ 的解。

Solution

由题设可知 $f = x_1^2 + 4x_2^2 + 9x_3^2 + 4x_1x_2 + 6x_1x_3 + 12x_1x_3$

(1) 矩阵 A 为
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} = (1, 2, 3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, 即 $r(A) = 1$

(2) 由秩一矩阵特性可知 $\lambda_1 = tr(A) = 14, \alpha_1 = (1,2,3)^T$ 通过知一求二, 设 $\alpha_2 = (a,b,0)^T, \alpha_3 = (-b,a,c)^T$ 可知当 $\lambda_2 = \lambda_3 = 0, \alpha_2 = (-2,1,0)^T, \alpha_3 = (-3,-6,5)$ 单位化后有

$$\gamma_1 = \frac{1}{\sqrt{14}}(1,2,3)^T, \gamma_2 = \frac{1}{\sqrt{5}}(-2,1,0)^T, \gamma_3 = \frac{1}{\sqrt{70}}(-3,-6,5)^T$$

记 $Q=(\gamma_1,\gamma_2,\gamma_3)$, 此时经过 x=Qy 二次型化为标准型 $f=14y_1^2$

(3) 方法一, 解
$$f = 14y_1^2 = 0 \implies y_1 = 0, y_2 = k_1, y_3 = k_2 又 x = Qy = k_1$$

$$(\gamma_1, \gamma_2, \gamma_3) \begin{pmatrix} 0 \\ k_1 \\ k_2 \end{pmatrix} = k_1 \gamma_2 + k_2 \gamma_3$$
其中 k_1, k_2 为任意常数

方法二, 配方直接接.

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3)^2 = 0$$

从而可知 $x_1 + 2x_2 + 3x_3 = 0$ 其基础解系为 $\xi_1 = (-2, 1, 0)^T$, $\xi_2 = (-3, 0, 1)^T$, 从而可知 f = 0 的通解为 $k_1\xi_1 + k_2\xi_2$ 其中 k_1, k_2 为任意常数

- 3. (2020, 数一、三) 设二次型 $f(x_1, x_2) = 4x_1^2 + 4x_2^2 + 4x_1x_2$ 经正交变换 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 化为二次型 $g(y_1, y_2) = ay_1^2 + 4y_1y_2 + by_2^2$, 其中 $b \ge 0$ 。
 - (1) 求 a, b 的值;
 - (2) 求正交矩阵Q。

Solution

$$(1)A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix}$$
 由题设可知 $Q_1^T A Q_1 = \Lambda = Q_2^T B Q_2$ 从而可知 $A \sim B$, 又因为 $r(A) = 1$ 可知 A 的特征值与特征向量分别为

14.2 合同的判定

第十四章 二次型

当
$$\lambda_1 = tr(A) = 5, \alpha_1 = (1, -2)^T$$

当 $\lambda_2 = 0, \alpha_2 = (2, 1)^T$
单位化后有 $\gamma_1 = \frac{1}{\sqrt{5}}(1, -2)^T, \gamma_2 = \frac{1}{\sqrt{5}}(2, 1)^T$ 从而 $Q_1 = (\gamma_1, \gamma_2)$
有题设可知 $B = \begin{pmatrix} a & 2 \\ 2 & b \end{pmatrix}$ 通过 $B \sim A$ 可知
$$\begin{cases} ab - 4 = 0 \\ a + b = 5 \\ a > b \end{cases}$$
 当 $\lambda_1 = tr(B) = 5, \beta_1 = (2, 1)^T; \lambda_2 = 0, \beta_2 = (-1, 2)^T$
单位化后 $\gamma_1' = \frac{1}{\sqrt{5}}(2, 1)^T; \gamma_2' = \frac{1}{\sqrt{5}}(-1, 2)^T$ 从而有 $Q_2 = (\gamma_1', \gamma_2')$
因此 $B = Q_2 Q_1^T A Q_1 Q_2^T$ 进而可知 $Q = Q_1 Q_2^T = \frac{1}{5}\begin{pmatrix} 4 & -3 \\ -3 & -4 \end{pmatrix}$

14.2 合同的判定

4. (2008, 数二、三) 设
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
, 与 A 合同的矩阵是
$$A. \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \qquad B. \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad C. \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad D. \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

Solution

D

- 5. 设 A, B 为 n 阶实对称可逆矩阵,则存在 n 阶可逆矩阵 P,使得
 - $(I)PA=B \qquad (II)P^{-1}ABP=BA \qquad (III)P^{-1}AP=B \qquad (IV)P^TA^2P=B^2$ 成立的个数是
 - A.1 B.2 C.3 D.4

Solution

- (I) 有 $BA^{-1}A = B$
- $(II) A^{-1}ABA = BA$
- (III) $\diamondsuit A = E, B = -E \bowtie P^{-1}AP = E \neq B$

(IV) 设 A 的任意特征值为 λ 则 A^2 的任意特征值为 λ^2 又 A 可逆可知 $\lambda^2 > 0$, 同理可知 B^2 的任意特征值为 $\lambda^2 > 0$ 从而 A^2 , B^2 均只有 B^2 的任意特征值从而 A, B 合同.

14.3 二次型正定与正定矩阵的判定

方法

- (1) 正定的定义
 - o1 A 为实对称矩阵
 - $\circ 2 \ \forall \alpha \neq 0 \ \text{fi} \ \alpha^T A \alpha > 0$

注意着两个条件缺一不可!

- (2) 充要条件
 - o1 对于 n 阶矩阵, 其正惯性指数为 n
 - ○2 与单位矩阵 E 合同
 - \circ 3 对于任意特征值 $\lambda_i > 0$
 - o4 对于任意顺序主子式均大于 0
- 6. 设 A 为 $m \times n$ 阶矩阵, 且 r(A) = m, 则下列结论
 - (1) $A^T A$ 与单位矩阵等价;
 - (2) $A^T A$ 与对角矩阵相似;
 - (3) $A^T A$ 与单位矩阵合同;
 - (4) $A^T A$ 正定。

正确的个数是

A. 1 B. 2 C.3 D.4

r(A) = m 时有关 AA^T 的结论

对于矩阵 $A_{m \times n}, r(A) = m$ 此时 $AA_{m \times m}^T$ 有如下结论

1. $\iff |AA^T| \neq 0$

2. $\iff AA^T$ 可逆

3. $\iff r(AA^T) = r(A) = m$

4. $\iff AA^T \ni E_{m \times m}$ 等价

5. $\iff AA^T$ 行 (列) 向量组线性无关 6. $\iff AA^TX = 0$ 只有零解

7. $\iff AA^TX = b$ 有唯一解

8. $\iff \lambda_i \neq 0$

9. $\implies AA^T$ 可相似对角化

10. $\implies AA^T$ 为实对称矩阵

11. $\iff AA^T \ni E$ 合同

12. $\iff AA^T$ 正定

7. 证明:

- (1) 设 A 为 n 阶正定矩阵,B 为 n 阶反对称矩阵,则 $A-B^2$ 为正定矩阵:
- (2) 设 A, B 为 n 阶矩阵, 且 r(A+B) = n, 则 $A^TA + B^TB$ 为正定矩阵。

Solution

(1) 由 $A^T = A, B^T = -B$ 因此 $(A - B^2)^T = A^T - (B^T)^2 = A - B^2$ 故而 $A - B^2$ 为 实对称矩阵.

 $\forall \alpha \neq 0$

$$\alpha^{T}(A - B^{2})\alpha = \alpha^{T}A\alpha - \alpha^{T}B^{2}\alpha$$
$$= \alpha^{T}A\alpha + \alpha^{T}B^{T}B\alpha$$

又 $\alpha^T A \alpha > 0$, $\alpha^T B^T B \alpha > 0$ 从而 $\alpha^T (A - B^2) \alpha > 0$ 故而 $A - B^2$ 为正定矩阵.

 $(2)(A^TA + B^TB)^T = A^TA + B^B$ 从而其为实对称矩阵

 $\forall \alpha \neq 0 \ \text{f}$

$$\alpha^{T}(A^{T}A + B^{T}B)\alpha = \alpha^{T}A^{T}A\alpha + \alpha^{T}B^{T}B\alpha$$
$$= (A\alpha)^{T}A\alpha + (B\alpha)^{T}B\alpha \ge 0$$

当且仅当 $A\alpha = B\alpha = 0$ 时候上式才能取 0, 此时有 $(A+B)\alpha = 0$ 由 $\alpha \neq 0$ 故 (A+B)X=0 由非零解而 r(A+B)=n 矛盾, 从而不可能 $A\alpha=B\alpha=0$ 故而上式 只能大于 0. 从而题设得证.

第十五章 事件与概率论

15.1 事件的关系、运算与概率的性质

1. 事件: 样本点的集合

2. 事件的关系 (3+1): 包含, 互斥, 对立+独立

3. 事件的运算 (3 个): 交, 并, 补

事件的运算律

(1) 交換律 $A \cup B = B \cup A, AB = BA$

(2) 结合律 $A \cup (B \cup C) = (A \cup B) \cup A, A(BC) = (AB)C$

(3) 分配律 $A \cup (BC) = (A \cup B)(A \cup C), A(B \cup C) = (AB) \cup (AC)$

(4) 摩根律 $\overline{A \cup B} = \overline{A}\overline{B}, \overline{(AB)} = \overline{A} \cup \overline{B}$

(5) 吸收律 $A \cup (AB) = A, A(A \cup B) = A$

1. 设 A, B 为随机事件, 且 $P(A) = P(B) = \frac{1}{2}, P(A \cup B) = 1$, 则

$$(A) \ A \cup B = \Omega \quad (B) \ AB = \varnothing \quad (C) \ P(\bar{A} \cup \bar{B}) = 1 \quad (D) \ P(A - B) = 0$$

Solution

由加法公式 $P(A \cup B) = P(A) + P(B) - P(AB) \implies P(AB) = 0$

注意由概率并不能推断事件, 所以 (A)(B) 均不正确

对于 (C) 选项 $P(\bar{A} \cup \bar{B}) = 1 - P(\overline{AB}) = 1$ 正确

对于 (D) 选项, 由减法公式 $P(A - B) = P(A) - P(AB) = \frac{1}{2}$

总结

- (1) 必然事件发生的概率为 1, 但概率为一的事件不一定是必然事件
- (2) 不可能事件发生的概率为 0, 但概率为零的事件不一定是不可能事件 这两个结论考虑连续型随机变量即可
- 2. (2020, 数一、三) 设 A, B, C 为随机事件, 且 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0, $P(AC) = P(BC) = \frac{1}{12}$, 则 A, B, C 只有一个事件发生的概率为

$$(A) \frac{3}{4} \quad (B) \frac{2}{3} \quad (C) \frac{1}{2} \quad (D) \frac{5}{12}$$

Solution

这种题一般考虑 Venn 图, 比用公式展开简单很多

则只有一个事件发生的概率为 $(\frac{1}{4}-\frac{1}{12})\times 2+\frac{1}{4}-2\times \frac{1}{12}=\frac{5}{12}$

3. 设随机事件 A, B 满足 $AB = \bar{A}\bar{B}$, 且 0 < P(A) < 1, 0 < P(B) < 1, 则 $P(A|\bar{B}) + P(B|\bar{A}) = 1$

Solution

根据结论, 有 A, B 互斥, 则 $P(A|\bar{B}) = P(B|\bar{A}) = 1$

Corollary

若 $AB = \bar{A}\bar{B}$, 则 A, B 必然对立

证明.

$$AB = \bar{A}\bar{B}$$

$$\iff AB \cup \bar{A}B = \bar{A}\bar{B} \cup \bar{A}B$$

$$\iff (A \cup \bar{A})B = \bar{A}(\bar{B} \cup B)$$

$$\iff B = \bar{A}$$

4. 设随机事件 A, B, C 两两独立, 满足 $ABC = \emptyset$, 且 P(A) = P(B) = P(C), A, B, C 至少有一个发生的概率为 $\frac{9}{16}$, 则 P(A) =

Solution

由题意有 $P(A \cup B \cup C) = \frac{9}{16}$, 由加法公式与独立性有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A)P(B)$$
$$- P(A)P(C) - P(B)P(C) - P(A)P(B)P(C)$$

由
$$P(A) = P(B) = P(C)$$
, 上式化为 $3P(A) - 3P(A)^2 = \frac{9}{16} \implies P(A) = \frac{1}{4}$ 或 $P(A) = \frac{3}{4}$, 显然 $P(A) \neq \frac{3}{4} > P(A \cup B \cup C)$, 故 $P(A) = \frac{1}{4}$

5. 设 A, B 为随机事件, 且 $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, 则 P(A|B) + P(B|A) 的最大值为 _____, 最小值为 _____.

Solution

关于概率的不等式基于如下事实,对于任意一个概率其值均位于 [0,1] 之间,事件 AB 的和事件不可能小于单独 A,B 发生概率之和,事件 AB 的积事件不可能大于任意一个事件单独发生的概率.

$$P(A)+P(B)-1 <= P(AB) \leq \min\left(P(A),P(B)\right) \leq P(A)+P(B) \leq P(A \cup B)$$

15.2 三大概型的计算

三大概率模型

- 1. 经典概型 有限个等可能的样本点, 排列组合问题
- 2. 几何概型 使用几何参数度量概率, 比如说长度, 面积, 体积等
- 3. 伯努利概型 独立重复试验每次成功的概率为 p, 不成功的概率为 (1-p)
- 6. (2016, 数三) 设袋中有红、白、黑球各1个, 从中有放回地取球, 每次取1个, 直到三种颜色的球都取到为止, 则取球次数恰好为4的概率为

Solution

(古典概型)

$$\frac{\binom{3}{1}\binom{2}{1}\binom{2}{3}}{3^4} = \frac{2}{9}$$

首先从3个颜色中选择一个为第四次抽的颜色,再从剩下两个颜色中选择一个为出现两次的颜色,在选择该颜色抽出的次序.

7. 在区间 (0,a) 中随机地取两个数,则两数之积小于 $\frac{a^2}{4}$ 的概率为

Solution

(几何概型)

$$\frac{\frac{a}{4} \cdot a + \int_{\frac{a}{4}}^{a} \frac{a^{2}}{4x} dx}{a^{2}} = \frac{1}{4} + \frac{1}{2} \ln 2$$

8. 设独立重复的试验每次成功的概率为p,则第5次成功之前至82次失败的概率为

Solution

失败零次 $-p^5$,失败一次 $-\binom{1}{5}p^4(1-p)p$,失败两次 $-\binom{2}{6}p^4(1-p)^2p$ 故第 5 次成功之前至多 2 次失败的概率为

$$p^5 + \binom{1}{5}p^4(1-p)p + \binom{2}{6}p^4(1-p)^2p$$

15.3 三大概率公式的计算

Remark

三大概率公式

1. 条件概率公式 $P(A \mid B) = \frac{P(AB)}{P(B)}$ 推论 $P(AB) = P(B)P(A \mid B), P(A_1A_2...A_n) = P(A_1)P(A_2 \mid P(A_1))P(A_3|P(A_1A_2))...$

2. 全概率公式
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A \mid B_i)$$

3. 贝叶斯公式
$$P(B_j \mid A) = \frac{P(B_j)P(A \mid B_j)}{\sum_{i=1}^{n} P(B_i)P(A \mid B_i)}$$

若称 $P(B_j)$ 为 B_j 的先验概率, 称 $P(B_j \mid A)$ 为 B_j 的后验概率. 则贝叶斯公式专门用于计算后验概率的公式.

9. 设 A, B 为随机事件, 且 $P(A \cup B) = 0.6, P(B|\bar{A}) = 0.2, 则 P(A) =$

Solution

$$P(A \cup B) = P(A) + P(B) - P(AB) = 0.6, P(B \mid \bar{A}) = \frac{P(B) - P(AB)}{1 - P(A)} = 0.2$$

联立有

$$\frac{0.6 - P(A)}{1 - P(A)} = 0.2$$

,则
$$P(A) = 0.5$$

10. (2018, 数一) 设随机事件 A 与 B 相互独立, A 与 C 相互独立, 满足 $BC = \emptyset$, 且

$$P(A) = P(B) = \frac{1}{2}, \quad P(AC|AB \cup C) = \frac{1}{4},$$

则 $P(C) = ____.$

Solution

$$P(AC|AB \cup C) = \frac{P(AC)}{P(AB \cup C)}$$
$$= \frac{P(A)P(C)}{P(AB) + P(C)}$$
$$= \frac{\frac{1}{2}P(C)}{\frac{1}{4} + P(C)} = \frac{1}{4}$$

则 $P(C) = \frac{1}{4}$

- 11. (2003, 数一) 设甲、乙两箱装有同种产品, 其中甲箱装有 3 件合格品和 3 件次品, 乙箱装有 3 件合格品。从甲箱中任取 3 件产品放入乙箱,
 - (1) 求乙箱中次品件数 X 的数学期望;
 - (2) 求从乙箱中任取一件产品是次品的概率.

Solution

(作为小题来考还可以)

方法一: 用概率

12. (1) 对于数字特征的题目, 先求概率分布再说, 由于 $P(X = k) = \frac{C_3^k C_3^{3-k}}{C_6^3}$

则所求数学期望 $EX = \frac{9}{20} + 2 \times \frac{9}{20} + \frac{3}{20} = \frac{3}{2}$

(2)

$$\begin{split} P(A) &= \sum_{k=0}^{3} P(X=k) P(A \mid x=k) \\ &= \frac{1}{20} \times 0 + \frac{9}{20} \times \frac{1}{6} + \frac{9}{20} \times \frac{2}{6} + \frac{1}{20} \times \frac{3}{6} \\ &= \frac{1}{4} \end{split}$$

法二: 超几何分布

(1)
$$X \sim H(N, M, n), N = 6, M = 3, n = 3, \text{ } M = \frac{nM}{N} = \frac{3}{2}$$

(2)

$$P(A) = \sum_{k=0}^{3} P(X = k)P(A \mid x = k)$$

$$= \sum_{k=0}^{3} P(X = k)\frac{k}{6}$$

$$= \frac{1}{6}\sum_{k=0}^{3} P(X = k)k$$

$$= \frac{1}{6}EX$$

$$= \frac{1}{4}$$

15.4 事件独立的判定

Remark

(事件独立的充要条件)

$$P(AB) = P(A)P(B)$$

 $\iff P(A \mid B) = P(A)$
 $\iff P(A \mid \bar{B}) = P(A) \iff P(A \mid B) = P(A \mid \bar{B}) \quad (0 < P(B) < 1)$
 $\iff A = \bar{B}, \ \vec{a}, \ \vec{b}, \ \vec{$

- 12. 设 A, B 为随机事件, 且 0 < P(A) < 1, 则
 - (A) 若 $A \supset B$, 则 A, B 一定不相互独立
 - (B) 若 $B \supset A$, 则 A, B 一定不相互独立
 - (C) 若 $AB = \emptyset$, 则 A, B 一定不相互独立
 - (D) 若 $A = \overline{B}$, 则 A, B 一定不相互独立

Solution

- (A)(B)(C) 考虑 Ø 则都不对
- (D) 由于 A 不是必然事件, 则 B 不是不可能事件, 则 0 < P(A) < 1, 0 < P(B) < 1,根据下面的总结 A, B 一定不独立

总结

- (1) 概率为 0 或 1 的事件与任意事件独立 特别的,不可能事件与必然事件与任意事件独立
- (2) 设 0 < P(A) < 1, 0 < P(B) < 1,
- A, B 互不相容, 则 A, B 一定不独立
- A, B 独立,则 A, B 一定不互不相容
- 13. 设 A, B, C 为随机事件, $A \to B$ 相互独立, 且 P(C) = 0, 则 $\bar{A}, \bar{B}, \bar{C}$
 - (A)相互独立
- (B)两两独立, 但不一定相互独立
- (C)不一定两两独立 (D)一定不两两独立

Solution

由 P(C) = 0 知 A, B, C 相互独立, 则 $\bar{A}\bar{B}\bar{C}$ 也相互独立.

两两独立与相互独立

相互独立
$$\begin{cases} P(AB) = P(A)P(B) \\ P(AC) = P(A)P(C) \\ P(BC) = P(B)P(C) \\ P(ABC) = P(A)P(B)P(C) \end{cases}$$
 两两独立

第十六章 一维随机变量

16.1 分布函数的判定与计算

分布函数的性质

- (1) $0 \le F(x) \le 1, -\infty < x < +\infty, F(-\infty) = 0, F(+\infty) = 1$
- (2) (单调不减) 当 $x_1 < x_2$ 时, $F(x_1) < F(x_2)$
- (3) (右连续) F(x+0) = F(x) 上面三个性质为分布函数的定义, 只要满足上述性质的函数一定是某一个概率分布的分布函数
- (4) $P{a < X \le b} = F(b) F(a)$
- (5) $P{X < x} = F(x 0), P{X = x} = F(x) F(x 0)$

$$P\{a \le x \le b\} = P\{x \le b\} - P\{x < a\} = F(b) - F(a - 0)$$

$$P\{a < x < b\} = P\{x < b\} - P\{x \le a\} = F(b - 0) - F(a)$$

1. 设随机变量 X 的分布函数为 F(x),a,b 为任意常数,则下列一定不是分布函数的是

(A)
$$F(ax + b)$$
 (B) $F(ax^2 + b)$ (C) $F(ax^3 + b)$ (D) $1 - F(-x)$

总结

对于 F(ax+b), $F(ax^3+b)$, ... 只要 a>0 则这些函数都是分布函数

对于 $F(a^2x+b)$, $F(a^4+b)$, ... 都一定不是分布函数

对于
$$G(x) = 1 - F(-x)$$

若 X 是连续性随机变量则是, 否则不是 (F(x) 不满足左连续, 则 G(x) 不满足右连续)

2. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则 X 的分布函数 $F(x) = _____, P\{-2 < X < \frac{1}{4}\} = ____.$

Solution

(方法一变限积分)

$$f(x) = \begin{cases} 1+x, & -1 < x < 0 \\ 1-x, & 0 \le x < 1 \\ 0, & \text{其他情况} \end{cases}$$

根据
$$F(x) = \int_{-\infty}^{x} f(t) dt$$
,有

$$F(x) = \begin{cases} 0, & x \le -1\\ \int_{-1}^{x} (1+t) \, \mathrm{d}t, & -1 < x < 0\\ \int_{-1}^{0} (1+t) \, \mathrm{d}t + \int_{0}^{x} (1-t) \, \mathrm{d}t, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

$$= \begin{cases} 0, & x \le -1\\ x + \frac{x^{2}}{2} + \frac{1}{2}, & -1 < x < 0\\ x - \frac{x^{2}}{2} + \frac{1}{2}, & 0 \le x < 1\\ 1, & x \ge 1 \end{cases}$$

$$P\{-2 < X < \frac{1}{4}\} = F(\frac{1}{4}) - F(-2)$$
$$= \int_{-2}^{\frac{1}{4}} f(x) dx$$
$$= \frac{23}{32}$$

(方法二定积分)

$$\int f(x)dx = \begin{cases} C_1, & x < -1\\ x + \frac{x^2}{2} + C_2, & -1 \le x < 0\\ x - \frac{x^2}{2} + C_3, & 0 \le x < 1\\ C_4, & x \ge 1 \end{cases}$$

16.2 概率密度的判定与计算

概率密度的性质

- $(1) f(x) \ge 0, -\infty < x + \infty$
- $(2) \int_{-\infty}^{+\infty} f(x) \mathrm{d}x = 1$

上面两条性质为概率密度的定义,任何满足上面的函数都是某个概率的概率密度函数

(3)
$$P\{a < X \le b\} = \int_a^b f(x) dx$$
 推广 $P\{a < X \le b\} = P\{a \le X \le b\} = P\{a \le X < b\} = P\{a < X < b\} = \int_a^b f(x) dx$

- (4) 在 f(x) 连续点处有 F'(x) = f(x)
- 3. 设随机变量 X 的概率密度为 f(x),则下列必为概率密度的是

(A)
$$f(-x+1)$$
 (B) $f(2x-1)$ (C) $f(-2x+1)$ (D) $f(\frac{1}{2}x-1)$

Solution

由于 f(x) 已经满足非负性, 故选项的非负性都不需要考虑, 只需要考虑正则性就可以.

(A)
$$\int_{-\infty}^{+\infty} f(-x+1)dx = \int_{-\infty}^{+\infty} f(u)du = 1$$

(B)
$$\int_{-\infty}^{+\infty} f(2x-1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$$

(C)
$$\int_{-\infty}^{+\infty} f(-2x+1)dx = \frac{1}{2} \int_{-\infty}^{+\infty} f(u)du = \frac{1}{2}$$

(D)
$$\int_{-\infty}^{+\infty} f(\frac{1}{2} - 1) dx = 2 \int_{-\infty}^{+\infty} f(u) du = 2$$

总结

f(ax+b) 为概率密度 $\iff |a|=1$

- 4. (2011, 数一、三) 设 $F_1(x)$, $F_2(x)$ 为分布函数, 对应的概率密度 $f_1(x)$, $f_2(x)$ 为连续函数,则下列必为概率密度的是
 - (A) $f_1(x)f_2(x)$ (B) $2f_2(x)F_1(x)$ (C) $f_1(x)F_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$

总结

(1) 线性组合

$$af_1(x) + bf_2(x), a > 0, b > 0$$
 为概率密度 $\iff a + b = 1$

$$aF_1(x) + bF_2(x), a > 0, b > 0$$
 为分布函数 $\iff a + b = 1$

(2) 乘积

 F_1F_2 一定是分布函数

 $f_1 f_2$ 不一定是概率论密度

(3) 混搭

 $f_1F_2 + f_2F_1, 2f_1F_1, 2f_2F_2$ 是概率密度, 其余都不是.

5. (2000, 三) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}, & x \in [0, 1] \\ \frac{2}{9}, & x \in [3, 6] \\ 0, & \text{其他} \end{cases}$$

若 $P\{X \ge k\} = \frac{2}{3}$, 则 k 的取值范围是 _____.

Solution

如图所示, 当且仅当 $1 \le k \le 3$ 时候 $P(X \ge k) = \frac{2}{3}$

16.3 关于八大分布

八大分布的概率分布与数字特征

(1) 0-1 分布,
$$X \sim B(1,p) \frac{X \mid 0 \quad 1}{P \mid 1-p \quad p}$$
, $EX = p, DX = p(1-p)$

(2) 二项分布,
$$X \sim B(n,p)$$

$$P\{X = k\} = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n, EX = np, DX = np(1-p)$$

(3) 泊松分布,
$$X \sim P(\lambda)$$

$$P\{X = k\} = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, ..., EX = \lambda, DX = \lambda$$

(4) 几何分布, $X \sim G(p)$

$$P = \{X = k\} = p(1-p)^{k-1}, k = 1, 2, ..., EX = \frac{1}{p}, DX = \frac{1-p}{p^2}$$

(5) 超几何分布, $X \sim H(N, M, n)$ $P = \{X = k\} = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, k = 0, 1, \dots, \min(n, M), EX = \frac{nM}{N}$

(6) 均匀分布 $X \sim U(a,b)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{他} \end{cases}, F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b, EX = \frac{a+b}{2}, DX = \\ 1, & x \ge b \end{cases}$$

(7) 指数分布 $X \sim E(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \lambda > 0 \ F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, EX = \frac{1}{\lambda}, DX = \frac{1}{\lambda^2}$$

(8) 一般正态分布 $X \sim N(\mu, \sigma^2)$, $EX = \mu, DX = \sigma^2$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, F(\mu) = \frac{1}{2}, F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ 标准正态分布 $X \sim N(0,1)$ $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \Phi(0) = \frac{1}{2}, \Phi(-x) = 1 - \Phi(x)$ 正态分布的标准化若 $X \sim N(\mu, \sigma^2)$, 则 $\frac{X-\mu}{\sigma} \sim N(0,1)$.

拓展-负二项分布

在一系列独立重复的伯努利试验 (每次试验只有"成功"或"失败"两种结果, 成功概率为 p) 中, 达到 r 次成功所需的试验总次数 X 服从负二项分布。

$$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, \quad k = r, r+1, r+2, \dots, \quad EX = \frac{r}{p}, \quad DX = \frac{r(1-p)}{p^2}$$

6. 设随机变量 X 的概率分布为 $P\{X = k\} = C\frac{\lambda^k}{k!}, k = 1, 2, \dots, 则 <math>C = \underline{\hspace{1cm}}$.

Solution

(方法一: 级数) 由概率的规范性可知 $\sum_{k=1}^{\infty} C \frac{\lambda^k}{k!} = 1$, 由于 $e^x = \sum_{i=0}^{\infty} \frac{x^n}{n!}$, 故 $C(e^{\lambda} - 1) = 1$, 故 $C = \frac{1}{e^{\lambda} - 1}$

方法二: 泊松分布) 考虑泊松分布 $P\{X=k\}=rac{\lambda^k}{k!}e^{-\lambda}, k=0,1,\dots$

7. 设随机变量 X 的概率密度为 $f(x) = Ae^{-\frac{x^2}{2} + Bx}$, 且 EX = DX, 则 $A = ___, B = ___.$

Solution

$$f(x) = Ae^{\frac{B^2}{2}}e^{-\frac{(x-B)^2}{2}} \sim N(1,B^2)$$
,又 $D(x) = E(x)$ 故 $B^2 = 1$,对比正态分布的概率密度函数有 $Ae^{\frac{B^2}{2}} = \frac{1}{\sqrt{2\pi}}$ 故 $A = \frac{e^{-\frac{1}{2}}}{\sqrt{2\pi}}$

总结

形如 $f(x) = Ae^{ax^2+b+c}, a < 0$ 一定可以化成某一个正态分布的概率密度.

8. (2004, 数一、三) 设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha(0 < \alpha < 1)$, 数 u_{α} 满足 $P\{X > u_{\alpha}\} = \alpha$ 。若 $P\{|X| < x\} = \alpha$,则 x 等于

(A)
$$u_{\frac{\alpha}{2}}$$
 (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$ (D) $u_{1-\alpha}$

Solution

如图所示,x 右侧的面积为 $\frac{1-\alpha}{2}$ 故 x 是 $\frac{1-\alpha}{2}$ 上侧分位点

9. 设随机变量 $X \sim N(2, \sigma^2)$, 且 $P\{2 < X < 4\} = 0.3$, 则 $P\{X < 0\} = ____.$

Solution

正态分布的基本套路就是遇事不决标准化 $P\{2 < X < 4\} = P\{0 < \frac{X-2}{\sigma} < \frac{2}{\sigma}\} = 0.3$, 故 $P\{X < 0\} = P\{\frac{X-2}{\sigma} < \frac{-2}{\sigma}\} = \frac{1}{2} - 0.3 = 0.2$

10. 设随机变量 $X \sim N(\mu, \sigma^2)(\mu < 0), F(x)$ 为其分布函数, a 为任意常数,则

$$(A) F(a) + F(-a) > 1 \quad (B) F(a) + F(-a) = 1$$

$$(C) F(a) + F(-a) < 1 \quad (D) F(\mu + a) + F(\mu - a) = \frac{1}{2}$$

Solution

这道题是比较隐晦的考察了正态分布的对称性, 具体直接看总结. 但要注意先标准化再套结论!

$$\Phi(a) + \Phi(b) = \begin{cases} 1, & a+b=1 \\ < 1, & a+b < 1 \\ > 1, & a+b > 1 \end{cases}$$

11. 设随机变量 X 与 Y 相互独立, 均服从参数为 1 的指数分布, 则 $P\{1 < \max\{X,Y\} < 2\} = ____.$

Solution

$$\begin{split} P\{1 < \max\{X,Y\} < 2\} &= P\{\max\{X,Y\} < 2\} - P\{\max\{X,Y\} \le 1\} \\ &= P\{X < 2,Y < 2\} - P\{X \le 1,Y \le 1\} \\ &\stackrel{\text{曲独立性}}{=\!=\!=\!=} P\{X < 2\} P\{Y < 2\} - P\{X \le 1\} P\{Y \le 1\} \\ &= (1 - e^{-2\lambda})^2 - (1 - e^{-\lambda})^2 \end{split}$$

12. 设随机变量 X 与 Y 相互独立, 均服从区间 [0,3] 上的均匀分布, 则 $P\{1 < \min\{X,Y\} < 2\} = ____.$

Solution

$$\begin{split} P\{1 < \min\{X,Y\} < 2\} &= P\{\min\{X,Y\} > 1\} - P\{\min\{X,Y\} \geq 2\} \\ &= P\{X > 1\} P\{Y > 1\} - P\{X \geq 2\} P\{Y \geq 2\} \\ &= \frac{1}{3} \end{split}$$

总结

对于 min 和 max 问题基本按照如下思路:

$$P\{a < \min(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\min(X_1, X_2, \dots, X_n) > a\} - P\{\min(X_1, X_2, \dots, X_n) \ge b\}$$

$$P\{a < \max(X_1, X_2, \dots, X_n) < b\}$$

$$= P\{\max(X_1, X_2, \dots, X_n) < b\} - P\{\min(X_1, X_2, \dots, X_n) \le a\}$$

13. (2013, 数一) 设随机变量 $Y \sim E(1), a > 0$, 则 $P\{Y \le a + 1 | Y > a\} = ____.$

Solution

由指数分布的无记忆性, 有 $P\{Y \le a+1|Y>a\} = P\{0 < Y < 1\} = \int_0^1 e^{-x} dx = 1 - e^{-1}$

- 14. 设随机变量 $X \sim G(p), m, n$ 为正整数, 则 $P\{X > m + n | X > m\}$
 - (A)与 m 无关,与 n 有关,且随 n 的增大而减少
 - (B)与 m 无关,与 n 有关,且随 n 的增大而增大
 - (C) 与 n 无关, 与 m 有关, 且随 m 的增大而减少
 - (D) 与 n 无关, 与 m 有关, 且随 m 的增大而增大

Solution

由几何分布的无记忆性, 有 $P\{X>m+n|X>m\}=P\{X>n\}=\sum_{i=n+1}^{\infty}p(1-p)^{i-1}$, 故随着 n 增大概率反而减少

总结

指数分布与几何分布具有无记忆性

$$\begin{split} X &\sim E(\lambda) \\ P\{x > s + t \mid x > s\} = P\{x > t\} \\ P\{x < s + t \mid x > s\} = P\{0 < x < t\} \\ X &\sim G(p) \\ P\{x > n + m \mid x > m\} = P\{x > t\} \\ P\{x = n + m \mid x = m\} = P\{x = n\} = p(1 - p)^{n - 1} \end{split}$$

16.4 求一维连续型随机变量函数的分布

Remark

【方法】

设随机变量 X 的概率密度为 $f_X(x)$, 求 Y = g(X) 的分布.

分布函数法

- (1) 设 Y 的分布函数为 $F_Y(y)$, 则 $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$.
- (2) 求 Y = q(X) 在 X 的正概率密度区间的值域 (α, β) , 讨论 y.

当 $y < \alpha$ 时, $F_Y(y) = 0$;

当
$$\alpha \leq y < \beta$$
 时, $F_Y(y) = \int_{g(x) \leq y} f_X(x) dx$;

当 $y > \beta$ 时, $F_Y(y) = 1$.

(3) 若Y 为连续型随机变量, 则Y 的概率密度为 $f_Y(y) = F'_Y(y)$.

公式法

设 y = g(x) 在 X 的正概率密度区间单调, 值域为 (α, β) , 反函数为 x = h(y), 则 Y 的概 率密度为

$$f_Y(y) = \begin{cases} f_X(h(y)) |h'(y)|, \alpha < y < \beta \\ 0, \end{cases}$$

若 y = q(x) 在 X 的正概率密度区间 [a,b] 分段严格单调,则分段运用公式法,然后将概率 密度相加.

- 15. 设随机变量 $X \sim E(\lambda)$, 则 $Y = \min\{X, 2\}$ 的分布函数
 - (A) 为连续函数 (B) 为阶梯函数
 - (C) 至少有两个间断点
- (D) 恰好有一个间断点

Solution

这是一道比较简单的题目, 主要是用于演示所谓图像法讨论 y 的具体操作, 注意画的 是X - Y 图像

故 $F_Y(y) = \min\{X, 2\} < y$, 当 y < 0 时候 $F_Y(y) = 0, y \ge 2, F_Y(y) = 1$, 当 $0 \le y < 2$ 时候, 有 $\int_0^y f(x) dx = 1 - e^{-\lambda y}$, 综上

$$F_Y = \begin{cases} 0, & y < 0 \\ 1 - e^{-\lambda y}, & 0 \le y < 2 \\ 1, & y \ge 2 \end{cases}$$

容易发现 $F(2-0) \neq 1$ 故存在一个跳跃间断点

16. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x^2}{a}, & 0 < x < 3 \\ 0, & 其他 \end{cases}$ $Y = \begin{cases} 2, & X \le 1 \\ X, & 1 < X < 2 \\ 1, & X \ge 2 \end{cases}$

- (a) 求Y的分布函数;
- (b) \bar{x} *P*{*X* ≤ *Y*}.

Solution

带参数的概率密度第一步就应该根据正则性把这个参数求出来.

$$\int_0^3 f(x)dx = 1 \implies a = 9$$

然后和上一题一样画 X-Y 图像, 求 $F_Y(y)$, 注意分区域就是.

- 17. (2021, 数一、三) 在区间 (0,2) 上随机取一点, 将该区间分成两段, 较短一段的长度记为 X, 较长一段的长度记为 Y。
 - (a) 求X的概率密度;
 - (b) 求 $Z = \frac{Y}{X}$ 的概率密度;
 - (c) $Rightarrow E\left(\frac{Y}{X}\right)$.

Solution

有题设容易得到 $X \sim U(0,1), Y = 2 - X$

(1) 则
$$f(x) = \begin{cases} 1, & x \in (0,1) \\ 0, & 其他 \end{cases}$$

(2) $Z = \frac{Y}{X} = \frac{2}{X} - 1$, 显然 Z 关于 X 是单调的, 可以用公式法直接求出 $f_Z(z)$, 即

$$f_Z(z) = 1 \cdot \frac{2}{(y+1)^2} = \frac{2}{(y+1)^2}, z \in (1, +\infty)$$

(3)

$$E(Z) = \int_{1}^{\infty} z f_Z(z) dz = 2 \ln 2 - 1$$

或者也可以用

$$E(\frac{2}{x} - 1) = \int_0^1 (\frac{2}{x} - 1) dx = 2\ln(2) - 1$$

第十七章 二维随机变量

17.1 联合分布函数的计算

联合分布函数的性质

- (1) $0 \le F(x,y) \le 1, -\infty < x < +\infty, F(-\infty,y) = F(x,-\infty) = F(-\infty,-\infty) = 0, F(+\infty,+\infty) = 1$
- (2) F(x,y) 关于 x 和 y 均单调不减
- (2) F(x,y) 关于 x 和 y 均右连续
- (4) $P{a < X \le b, c < Y \le b} = F(b, d) F(b, c) F(a, d) + F(a, c)$
- (5) $F_X(x) = F(x, +\infty), F_Y(y) = F(+\infty, y)$
- 1. 设随机变量 X 与 Y 相互独立, $X \sim B(1,p)$, $Y \sim E(\lambda)$, 则 (X,Y) 的联合分布函数 $F(x,y) = _$

Solution

由 X 和 Y 相互独立, 则有 $F_{XY}(x,y) = F_X(x)F_Y(y), f(x,y) = f_X(x)F_Y(x), X$ 的概率 分布如下:

$$\begin{array}{c|cc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

则 X 的分布函数为

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

而
$$Y \sim E(\lambda)$$
, 故

$$F_{XY}(x,y) = F_X(x)F_Y(y) = \begin{cases} (1-p)(1-e^{-\lambda y}), & 0 \le x < 1, y > 0 \\ 1-e^{-\lambda y}, & x \ge 1, y > 0 \\ 0, & \sharp \text{ th} \end{cases}$$

17.2 二维离散型随机变量分布的计算

- 2. 设随机变量 X 与 Y 相互独立, 均服从参数为 p 的几何分布。
 - (a) 求在 $X + Y = n(n \ge 2)$ 的条件下,X 的条件概率分布;
 - (b) $\bar{x} P\{X + Y \ge n\} (n \ge 2)$.

Solution

3. (1)

$$P\{X+Y=n\} \xrightarrow{\frac{\square (p) + 2 + 2 + 2}{m}} \sum_{k=1}^{n-1} P\{X=k,Y=n-k\}$$

$$\frac{\frac{2k \pm k}{m}}{\sum_{k=1}^{n-1}} P\{X=k\} P\{Y=n-k\}$$

$$= \sum_{k=1}^{n-1} (1-p)^{k-1} p \cdot (1-p)^{n-k-1} p$$

$$= \sum_{k=1}^{n-1} (1-p)^{n-2} p^2$$

$$= (n-1)(1-p)^{n-2} p^2$$

在X + Y = n的条件下,X的条件概率为

$$P\{X = k \mid X + Y = n\} = \frac{P\{X = k, Y = n - k\}}{P\{X + Y = n\}}$$

$$= \frac{p^2(1-p)^{n-2}}{(n-1)p^2(1-p)^{n-2}}$$

$$= \frac{1}{n-2}$$

$$k = 1, 2 \dots n - 1$$
这个范围千万别忘喽!

(2)

$$P\{X+Y \ge n\} = P\{X+Y=n\} + P\{X+Y=n+1\} + \dots$$

$$= \sum_{k=n}^{+\infty} P\{X+Y=k\}$$

$$= \sum_{k=n}^{+\infty} (k-1)p^2(1-p)^{k-2}$$

不妨先计算级数 $\sum_{k=n}^{\infty} (k-1)x^{k-2}$

$$\sum_{k=n}^{\infty} (k-1)x^{k-2} = \sum_{k=n}^{\infty} (x^{k-1})'$$

$$= \left(\frac{\sum_{n=k}^{\infty}}{x}\right)'$$

$$= \frac{(n-1)x^{n-2}(1-x) + x^{n-1}}{(1-x)^2}$$

故当 x = 1 - p 的时有

$$P\{X+Y \ge n\} = p^2 \frac{(n-1)(1-p)^{n-2}p + (1-p)^{n-1}}{p^2}$$
$$= (1-p)^{n-2}(np-2p+1)$$

17.3 二维连续型随机变量分布的计算

联合概率密度的性质

(1)
$$f(x,y) \ge 0, -\infty < x < +\infty, -\infty < y < +\infty$$
;

(2)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1;$$

(3)
$$P\{(X,Y) \in D\} = \iint_D f(x,y) \, dx \, dy$$
;

(4) 在
$$f(x,y)$$
 的连续点处有 $\frac{\partial^{2}F(x,y)}{\partial x\partial y}=f(x,y)$.

边缘概率密度

- (1) (X,Y) 关于 X 的边缘概率密度 $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$
- (2) (X,Y) 关于 Y 的边缘概率密度 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

条件概率密度

- (1) 在 Y = y 的条件下, X 的条件概率密度 $f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)}$
- (2) 在 X = x 的条件下, Y 的条件概率密度 $f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$
- 3. (2010, 数一、三) 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = Ae^{-2x^2 + 2xy - y^2}, \quad -\infty < x < +\infty, -\infty < y < +\infty$$

求常数 A 及条件概率密度 $f_{Y|X}(y|x)$.

Solution

(方法一正常求) 首先通过规范性求出参数 A

$$\begin{split} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \mathrm{d}x \mathrm{d}y &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A e^{-2x^2 + 2xy - y^2} \mathrm{d}x \mathrm{d}y \\ &= A \int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x \int_{-\infty}^{+\infty} e^{-(y-x)^2} \mathrm{d}y \\ &\xrightarrow{\underline{\text{Possion } \Re \mathcal{D}}} A \pi = 1 \implies A = \frac{1}{\pi} \end{split}$$

X 的边缘分布函数为

$$\int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} \frac{1}{\pi} e^{-2x^2 + 2xy - y^2} dy$$
$$= \frac{1}{\pi} e^{-x^2} \int_{-\infty}^{+\infty} e^{-(y-x)^2}$$
$$= \frac{1}{\sqrt{\pi}} e^{-x^2}, x \in \mathbf{R}$$

则在 X = x 的条件下,Y 的条件概率为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)}$$
$$= \frac{1}{\sqrt{\pi}} e^{-(y-x)^2}$$

通过二维正态分布) 形如 $f(x,y) = Ae^{ax^2 + bxy + cy^2}$ 的函数如果是概率密度,则其一定是某个二维正态的概率密度函数,故

$$(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$$

通过下一节讲的确定系数的办法, 可以很快的确定

$$(X,Y) \sim N(0,0;\frac{1}{2},1;\frac{\sqrt{2}}{2})$$

故
$$A = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{\pi}, f_X(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$$

- 4. 设随机变量 $X \sim U(0,1)$, 在 X = x(0 < x < 1) 的条件下, 随机变量 $Y \sim U(x,1)$ 。
 - (a) 求 (X,Y) 的联合概率密度;
 - (b) 求 (X,Y) 关于 Y 的边缘概率密度 $f_Y(y)$;
 - (c) $\bar{x} P\{X + Y > 1\}$.

Solution

(1) 在 X = x 的条件下,Y 的条件概率密度为

$$f_Y(y) = \begin{cases} \frac{1}{1-x}, & x \le y \le 1\\ 0, & \text{其他} \end{cases}$$

故
$$f(x,y) = f_{Y|X}(y \mid x) f_X(x) = \begin{cases} \frac{1}{1-x}, & 0 < x < 1, x < y < 1 \\ 0, & 其他 \end{cases}$$

(2) 通过概率密度求边缘密度的时候, 需要画出 x-y 图, 并且确定要求的那个参数的范围, 比如说这里是 $y \in (0,1)$, 让后再从 [0,1] 上面去做偏积分, 具体如图所示

$$f_Y(y) = \int_{+\infty}^{-\infty} f(x, y) dx = \begin{cases} -\ln(1 - y), & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

(3) 根据性质 (3) 有 $P{X + Y > 1} = \iint_{x+y<1} f(x,y) dx dy$ 此时 x-y 的可行范围为

原式 =
$$\int_{1/2}^{1} dy \int_{1-y}^{y} \frac{1}{1-x} dx$$

= $\int_{1/2}^{1} [\ln y - \ln(1-y)] dy$
= $[y \ln y - (1-y) \ln(1-y)] \Big|_{1/2}^{1}$
= $\ln 2$

17.4 关于二维正态分布

Remark

二维正态分布的性质 设 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$, 则

- (1) $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 反之不成立(独立的时候反之成立);
- (2) X 与 Y 相互独立 $\Leftrightarrow X 与 Y$ 不相关 $(\rho = 0)$;
- (3) $aX + bY \sim N\left(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2 + 2ab\rho\sigma_1\sigma_2\right)$; 特别地, 若 X 与 Y 相互独立, $X \sim N\left(\mu_1, \sigma_1^2\right), Y \sim N\left(\mu_2, \sigma_2^2\right)$, 则 $aX + bY \sim N\left(a\mu_1 + b\mu_2, a^2\sigma_1^2 + b^2\sigma_2^2\right)$;

(4) 若
$$U = aX + bY, V = cX + dY$$
, 即 $\begin{pmatrix} U \\ V \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$, 则 (U,V) 服从二 维正态分布 $\Leftrightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$.

5. 设二维随机变量 $(X,Y) \sim N(1,2;1,4;-\frac{1}{2})$, 且 $P\{aX+bY\leq 1\}=\frac{1}{2}$, 则 (a,b) 可以为

$$(A) \ \left(\frac{1}{2}, -\frac{1}{4}\right) \quad (B) \ \left(\frac{1}{4}, -\frac{1}{2}\right) \ (C) \ \left(-\frac{1}{4}, \frac{1}{2}\right) \quad (D) \ \left(\frac{1}{2}, \frac{1}{4}\right)$$

Solution

由性质 (3) 可知 $aX + bY \sim N$, 而由正态分布的对称性可知, $\mu = 1 \implies a + 2b = 1$ 故选择 (D)

6. (2020, 数三) 设二维随机变量 $(X,Y) \sim N(0,0;1,4;-\frac{1}{2})$, 则下列随机变量服从标准正态分布且与 X 相互独立的是

$$(A) \frac{\sqrt{5}}{5} (X+Y) \quad (B) \frac{\sqrt{5}}{5} (X-Y) (C) \frac{\sqrt{3}}{3} (X+Y) \quad (D) \frac{\sqrt{3}}{3} (X-Y)$$

Solution

这道题选择出来并不困难, 但要证明其与 X 相互独立还是有点说法的.

第一步, 先求 X + Y 和 X - Y 的标准化

由性质三可知 $X+Y\sim N(0,3), X-Y\sim N(0,7),$ 故 $\frac{\sqrt{3}}{3}(X+Y)\sin N(0,1); \frac{\sqrt{7}}{7}\sim N(0,1);$ 这里其时就已经可以选出答案喽

第二步证明独立性

考虑
$$(X+Y,X) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$
,且 $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 \neq 0$

由性质 (4) 可知,(X+Y,X) 服从二维正态分布, 由性质 (2) 可知, 只需要证明二者的相关系数为 0 即可, 证明二者独立.

7. (2022, 数一) 设随机变量 $X \sim N(0,1)$, 在 X = x 的条件下, 随机变量 $Y \sim N(x,1)$, 则 X 与 Y 的相关系数为

$$(A) \frac{1}{4} \quad (B) \frac{1}{2} \quad (C) \frac{\sqrt{3}}{3} \quad (D) \frac{\sqrt{2}}{2}$$

Solution

(一传统方法计算)

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$$

问题转换为求 EXY, DY, 由题设可知, 在 X = x 的条件下, Y 的概率密度函数为

$$f_{Y|X}(y \mid x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-x)^2}{2}}$$

故 (X,Y) 的概率密度函数为

$$f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$$

故y的边缘分布函数为

$$\int_{+\infty}^{-\infty} f(x,y)dx = \frac{1}{2\sqrt{\pi}}e^{-\frac{y^2}{4}}$$

即 $Y \sim N(0,2)$, 故 EY = 0, DY = 2 而 EXY 根据方差的定义可以计算

TODO: 计算 EXY

$$EXY = \int_{+\infty}^{-\infty} \int_{+\infty}^{-\infty} xy f(x, y) dx dy = 1$$

故
$$\rho = \frac{\sqrt{2}}{2}$$

(2) 通过二维正态参数的结论直接求出 ρ , 由上述可知 $f(x,y) = \frac{1}{2\pi} e^{-x^2 + xy - \frac{y^2}{2}}$, 对比二维 正态概率密度的公式

$$f(x,y) = \frac{1}{2\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - \frac{2(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)}{\sigma_2^2}\right]\right\}$$

容易得出 $(X,Y)\sim N(0,0;1,2;\frac{\sqrt{2}}{2})$, 具体如总结所示.

总结

对于形如 $Ae^{-ax^2+bxy+cy^2}$ 的式子, 若其是概率密度, 则必然是某个二维正态的概率密度 (由规范性) 且满足

(1)
$$b^2 = 4\rho^2 a^2 c^2 \implies \rho^2 = \frac{b^2}{4a^2 c^2}$$

(2) rho 的符号与 xy 系数的符号一致

17.5 求二维离散型随机变量函数的分布

8. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1), Y \sim P(\lambda_2),$ 求 Z = X + Y 的概率分布.

Solution

这道题是参数可加性的直接考察, 可以先证明一下

$$\begin{split} P\{Z=n\} &= P\{X+Y=n\} \\ &= \sum_{k=0}^{n} P\{X=k,Y=n-k\} \\ &\stackrel{\underline{\text{独立性}}}{=} \sum_{k=0}^{n} P\{X=k\} P\{Y=n-k\} \\ &= \sum_{k=0}^{n} \frac{\lambda_{1}^{k}}{k!} e^{-\lambda_{1}} \frac{\lambda_{2}^{n-k}}{(n-k)!} e^{-\lambda_{2}} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{\lambda_{1}^{k} \lambda_{2}^{n-k}}{k!(n-k)!} \\ &\stackrel{\underline{\text{上下同乘}k!}}{=} e^{-(\lambda_{1}+\lambda_{2})} \sum_{k=0}^{n} \frac{n(n-1)\dots(n-k+1)}{k!} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &= e^{-(\lambda_{1}+\lambda_{2})} \frac{1}{n!} \sum_{k=0}^{n} C_{n}^{k} \lambda_{1}^{k} \lambda_{2}^{n-k} \\ &\stackrel{\underline{\text{-}}\overline{\text{-}$$

参数可加性

当 X,Y 独立的时候

(1)
$$X \sim B(m, p), Y \sim B(n, p) \implies X + Y \sim B(n + m, p)$$

(2)
$$X \sim P(\lambda_1), Y \sim P(\lambda_2) \implies X + Y \sim P(\lambda_1 + \lambda_2)$$

(3)
$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \implies X + Y \sim (\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

(4)
$$X \sim \chi^2(m), Y \sim \chi^2(n), \implies X + Y \sim \chi^2(n+m)$$

(5)
$$X \sim E(\lambda_1), Y \sim E(\lambda_2) \implies \min(X, Y) \sim E(\lambda_1 + \lambda_2)$$

求二维连续型随机变量函数的分布 17.6

Remark

问题描述

设二维随机变量 (X,Y) 的联合概率密度为 f(x,y), 求 Z=q(X,Y) 的概率密度 $f_Z(z)$.

分布函数法

- (1) 设 Z 的分布函数为 $F_Z(z)$, 则 $F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\}$.
- (2) 求 Z = g(X,Y) 在 (X,Y) 的正概率密度区域的值域 (α,β) , 讨论 z.

$$z < \alpha$$
 时, $F_Z(z) = 0$;

当
$$\alpha \leq z < \beta$$
 时, $F_Z(z) = \iint_{g(x,y) \leq z} f(x,y) dxdy$;
当 $z \geq \beta$ 时, $F_Z(z) = 1$.

(3) Z 的概率密度为 $f_{Z}(z) = F'_{Z}(z)$.

卷积公式

(1) 设
$$Z = aX + bY$$
, 则 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|b|} f\left(x, \frac{z - ax}{b}\right) dx = \int_{-\infty}^{+\infty} \frac{1}{|a|} f\left(\frac{z - by}{a}, y\right) dy;$

(3)
$$\ \ \mathcal{Z} = \frac{Y}{X}, \ \mathbb{M} f_{Z}(z) = \int_{-\infty}^{+\infty} |x| f(x, xz) dx;$$

(4) 设
$$Z = \frac{X}{Y}$$
, 则 $f_Z(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy$

9. 设二维随机变量
$$(X,Y)$$
 的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & 其他 \end{cases}$

- (a) (X,Y) 的联合分布函数 F(x,y);
- (b) (X,Y) 的边缘概率密度 $f_X(x), f_Y(y)$;
- (c) 条件概率密度 $f_{X|Y}(x|y), f_{Y|X}(y|x)$;

(d)
$$P\left\{Y \le \frac{1}{2} | X \le \frac{1}{2}\right\}, P\left\{Y \le \frac{1}{2} | X = \frac{1}{2}\right\};$$

(e)
$$Z = 2X - Y$$
 的概率密度 $f_Z(z)$.

(1) 由定义可知 $F(x,y)=\int_{-\infty}x\int_{-\infty}yf(u,v)\mathrm{d}u\mathrm{d}v$, 其中 x,y 的可行域如下图所示, 分为五个部分故

$$F(x,y) = \begin{cases} \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^x \mathrm{d}u, & 0 < x < 1, 0 < y < 2x \\ \int_0^x \mathrm{d}u \int_0^{2u} \mathrm{d}v, & 0 < x < 1, y \ge 2x \\ \int_0^y \mathrm{d}v \int_{\frac{v}{2}}^1 \mathrm{d}u, & x > 1, 0 < y < 2 \end{cases} = \begin{cases} \frac{y^2}{4} - xy, & 0 < x < 1, 0 < y < 2x \\ x^2, & 0 < x < 1, y \ge 2x \\ y - \frac{y^2}{4}, & x > 1, 0 < y < 2 \\ 1, & x \ge 1, y \ge 2x \\ 0, & \not \pm \& \end{cases}$$

(2) 由定义可知

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} 2x, & 0 < x < 1; \\ 0, & \text{ 其他} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} 1 - \frac{y}{2}, & 0 < y < 2\\ 0, & \text{ 其他} \end{cases}$$

(3) 当0 < x < 1在 X = x 的条件下,Y 的条件概率密度为

$$f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{2x}, & 0 < y < 2x \\ 0, & \sharp \text{ th} \end{cases}$$

当0 < y < 2在Y = y的条件下,X的条件概率密度为

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2}{2-y}, & \frac{y}{2} < x < 1\\ 0, & \text{#d} \end{cases}$$

(4) 对于 $P\left\{Y \leq \frac{1}{2} | X \leq \frac{1}{2}\right\}$ 可以采用条件概率公式,

$$P\left\{Y \le \frac{1}{2}|X \le \frac{1}{2}\right\} = \frac{\iint\limits_{y \le \frac{1}{2}, x \le \frac{1}{2}} f(x,y) \mathrm{d}x \mathrm{d}y}{\int_{0}^{\frac{1}{2}} f_X(x) \mathrm{d}x} = \frac{3}{4}$$

而对于 $P\left\{Y\leq \frac{1}{2}|X=\frac{1}{2}\right\}$ 则不能采用条件概率公式,因为 $P\{X=\frac{1}{2}\}=0$ 不能做分母,此时就体现出来条件概率的用处

$$P\left\{Y \le \frac{1}{2}|X = \frac{1}{2}\right\} = \int_0^{\frac{1}{2}} f_{Y|X}(y \mid x) dy$$

将 $X = \frac{1}{2}$ 带入, 求出该条件概率为 $\frac{1}{2}$

(5) 方法一: 分布函数法

 $F_Z(z) = P\{2X-Y \geq Z\} = \iint\limits_{2x-y \leq z} f(x,y) \mathbf{d}x \mathbf{d}y \text{ , 绘制 } y \geq 2x-z \text{, 讨论截距, 如图所 }$ 示, 其结果如下

$$F_Z(z) = \begin{cases} 0, & z < 0 \\ z - \frac{z^2}{4}, & 0 \le z < 2 \\ 1, & z \ge 2 \end{cases}$$

方法二: 卷积公式

由卷积公式有 $f_Z(z)=-\int_{-\infty}^{+\infty}f(x,2x-z)dx$,此时把 f(x,y) 中的 y 全部转换为 z 并确定 z 的取值范围即

$$f(x,2x-z) = \begin{cases} 1, & 0 < x < 1, 0 < 2x-z < 2x \implies , 0 < x < 1, 0 < z < 2x \\ 0, & \not\exists \text{ the } \end{cases}$$

此时再对x进行偏积分即可,绘制x-z图像,首先确认z的范围,再从z上对x进行积分

如图,最终

$$f_Z(z) = \begin{cases} 1 - \frac{z}{2}, & 0 \le z < 2; \\ 0, & \Box \Box \end{cases}$$

17.7 求一离散一连续随机变量函数的分布

- 10. (2020, 数一) 设随机变量 X_1, X_2, X_3 相互独立, X_1 与 X_2 均服从标准正态分布, X_3 的概率 分布为 $P\{X_3=0\}=P\{X_3=1\}=\frac{1}{2},Y=X_3X_1+(1-X_3)X_2$ 。
 - (1) 求 (X_1,Y) 的联合分布函数 (结果用标准正态分布函数 $\Phi(x)$ 表示);
 - (2) 证明 Y 服从标准正态分布.

Solution

一离散加一连续的基本方法就是"全概率公式+独立性"

(1)

$$\begin{split} F(X_1,Y) &= P\{X \leq x, Y \leq y\} \\ &= P\{X_1 \leq x, X_3 X_1 + (1-X_3) X_2 \leq y\} \\ &\stackrel{\underline{\hat{\pm}} \text{ 概率公式}}{=\!=\!=\!=\!=} P\{X_1 \leq x, X_2 \leq y, X_3 = 0\} + P\{X_1 \leq x, X_1 \leq y, X_3 = 1\} \\ &\stackrel{\underline{\underline{\hat{\pm}} \text{ *} P\{X_2 \leq y\} \frac{1}{2} + \frac{1}{2} P\{X_1 \leq \min{(x,y)}\} \\ &= \frac{1}{2} \Phi(x) \Phi(y) + \frac{1}{2} \Phi(\min{(x,y)}) \end{split}$$

(2) 方法一, 通过 Y 的分布函数确定

$$F_Y(y) = P\{Y \le y\} = P\{X_3X_1 + (1 - X_3)X_2 \le y\}$$

= (和 (1) 完全一致省去)...
= $\Phi(y)$

方法二,直接求边缘分布函数

$$F_X(x) = P\{X \le x\} = F(X, +\infty)$$

 $F_Y(y) = P\{Y \le y\} = F(+\infty, Y)$
 $F_Y(y) = F(\infty, y) = \frac{1}{2}\Phi(y) + \frac{1}{2}\Phi(y) = \Phi(y)$

故 $Y \sim N(0,1)$

第十八章 数字特征

18.1 期望与方差的计算

期望与方差

(1) <u>期望的定义</u>: 设随机变量 X 的概率分布为 $P\{X=x_i\}=p_i, i=1,2,\ldots,$ 则 $EX=\sum_i x_i p_i$

推广: 若
$$Y = g(X)$$
 则 $EY = \sum_{i} g(x_i)p_i$

- (2) 设随机变量 X 的概率密度为 f(x) 则 $EX = \int_{-\infty}^{+\infty} f(x) dx$ 推广: 若 Y = g(X) 则 $EY = \int_{-\infty}^{+\infty} g(x) f(x) dx$
- (3) 设二维随机变量 (X,Y) 的联合概率分布为 $P\{X=x_i,Y=y_j\}=p_{ij}, i,j=1,2,\dots$ 则 $EZ=\sum_i\sum_j g(x_i,y_j)p_{ij}$
- (4) 设二维随机变量 (X,Y) 的联合概率密度为 f(x,y),Z=g(X,Y) 则 $EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)\mathrm{d}x\mathrm{d}y$ 特别的 $EX=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)\mathrm{d}x\mathrm{d}y, EY=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)\mathrm{d}x\mathrm{d}y$ 期望的性质
- (1) E(aX + bY + c) = aE(X) + bE(Y) + c
- (2) $EXY = EX \cdot EY \iff X 与 Y 不相关$ 特别的若 X 与 Y 相互独立, 由 EXY = EXEY 方差的定义
- (1) $DX = E(X EX)^2 = EX^2 (EX)^2$ 方差的性质

$$(1) \ D(aX+c) = a^2 DX$$

- (2) $D(X \pm Y) = DX + DY \pm 2Cov(X, Y)$ 推论 $D(X \pm Y) = D(X) + D(Y) \iff X 与 Y 不相关$ 特别的, 若 X 与 Y 独立, 则有 $D(X \pm Y) = D(X) + D(Y)$
- (3) 若X与Y独立,则 $DXY = DXDY + (EX)^2DY + (EY)^2DX$
- 1. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty, 则 <math>E[\min\{|X|, 1\}] = \underline{\hspace{1cm}}$.

$$\begin{split} E\left[\min\left(|X|,1\right)\right] &= \int_{-\infty}^{+\infty} \min\left(|x|,1\right) f(x) \mathrm{d}x \\ &= 2 \int_{0}^{+\infty} \min\left(|x|,1\right) f(x) \mathrm{d}x \\ &= 2 (\int_{0}^{1} x f(x) \mathrm{d}x + \int_{1}^{+\infty} f(x) \mathrm{d}x) \\ &= \frac{1}{\pi} \ln\left(1 + x^{2}\right) \mid_{0}^{1} + \frac{2}{\pi} \arctan x \mid_{1}^{+\infty} \\ &= \frac{1}{\pi} \ln 2 + \frac{1}{2} \end{split}$$

- 2. (2016, 数三) 设随机变量 X 与 Y 相互独立, $X \sim N(1,2),Y \sim N(1,4)$, 则 D(XY) =
 - (A) 6
- (B) 8
- (C) 14
- (D) 15

Solution

) 通过计算方法做

$$DXY = E(XY)^{2} - (EXY)^{2}$$

$$= EX^{2} \cdot EY^{2} - (EXEY)^{2}$$

$$= [DX + (EX)^{2}][DY + (EY)^{2}] - (EXEY)^{2}$$

$$= 3 \times 5 - 1 = 14$$

(方法二) 用结论

$$DXY = DXDY + (EX)^{2}DY + (EY)^{2}DX$$

= 8 + 4 + 2 = 14

3. 设随机变量 X 与 Y 同分布,则 $E\left(\frac{X^2}{X^2+Y^2}\right)=$ ____

Solution

由轮换对称性有

$$E\left(\frac{X^2}{X^2 + Y^2}\right) = E\left(\frac{Y^2}{X^2 + Y^2}\right) = \frac{1}{2}E\left(\frac{X^2 + Y^2}{X^2 + Y^2}\right) = \frac{1}{2}$$

总结

若 X, Y 同分布,则 X, Y 具有相同的 F, f, E, D,上题的推广结论

若
$$X_1, X_2 \dots, X_n$$
同分布,则 $E\left(\frac{X_1^2}{X_1^2 + \dots + X_n^2}\right) = \frac{1}{n}$

4. 设随机变量 X 与 Y 相互独立, $X \sim P(\lambda_1),Y \sim P(\lambda_2)$, 且 $P\{X+Y>0\}=1-e^{-1}$,则 $E(X+Y)^2=$ ____.

Solution

利用参数可加性可知, $X+Y \sim P(\lambda_1+\lambda_2)$, 由 $P\{X+Y>0\} = 1-e^{-1} = 1-P\{X=0\}$ $\Longrightarrow \lambda_1+\lambda_2=1$, 则 $E(X+Y)^2=D(X+Y)+(E(X+Y))^2=1+1=2$

5. 设随机变量 X 与 Y 相互独立, $X \sim E(\frac{1}{3})$, $Y \sim E(\frac{1}{6})$, 若 $U = \max\{X,Y\}$, $V = \min\{X,Y\}$, 则 $EU = ___$.

Solution

EV 是比较好求的, 由参数可加性有 $V \sim E(\frac{1}{2})$

方法一利用二维概率密度计算:

由 X, Y 独立, 知 $f(x,y) = f_X(x)f_Y(y)$, 则

$$EU = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \max(x, y) f(x, y) dx dy = \dots = 7$$

方法二求 U 的概率密度:

由 $U = \max(X, Y)$ 知 $F_U(u) = F_1 F_2 \implies f_u = f_1 F_2 + F_1 f_2$

$$EU = \int_{-\infty}^{+\infty} u f_u du = \dots = 7$$

方法三利用性质

$$E(U+V) = E(X+Y) = EX + EY = 3 + 6 = 9$$

$$EV = 2 \implies EU = 7$$

总结

若 $U = \max\{X,Y\}, V = \min\{X,Y\},$ 则 E(U+V) = E(X+Y), E(UV) = E(XY) 独立同分布随机变量的最大值与最小值的分布函数, 由如下结果

$$F_Z z = F_{X_1} F_{X_2} \dots F_{X_n}$$

$$F_Z z = 1 - [(1 - F_{(X_2)})][(1 - F_{(X_2)})] \dots [(1 - F_{(X_n)})]$$

6. (2017, 数一) 设随机变量 X 的分布函数为 $F(x) = 0.5\Phi(x) + 0.5\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布函数, 则 EX =____

Solution

(方法一)
$$f(x) = \frac{1}{2}\phi(x) + \frac{1}{2}\phi(\frac{x-4}{2})$$
, 则 $EX = \int_{-\infty}^{+\infty} f(x) dx = 2$
(方法二) 考虑 $F(X_1) = 0.5\Phi(x)$, $F(X_2) = 0.5\Phi(\frac{x-4}{2})$, 则由第二章的结论 $aF_1 + bF_2$, $(a,b) = 0$, $a+b=1$) 的时候也是分布函数, 故 $EX = \frac{1}{2}EX_1 + \frac{1}{2}EX_2 = 0 + \frac{4}{2} = 2$

7. 设随机变量 $X \sim N(0,1)$, 则 $E|X| = ____, D|X| = ____.$

Solution

$$E|X| = \int_{-\infty}^{+\infty} |x|\phi(x)dx$$

$$= 2\int_{0}^{+\infty} x\phi(x)dx$$

$$= \frac{-2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{x^2}{2}} d(-\frac{x^2}{2})$$

$$= \sqrt{\frac{2}{\pi}}$$

$$D|X| = E(|X|)^{2} - (E|X|)^{2}$$

$$= EX^{2} - (E|X|)^{2}$$

$$= DX + (EX)^{2} - (E|X|)^{2}$$

$$= 1 - \frac{2}{\pi}$$

总结

(1)
$$X \sim N(0,1),$$
 $$$ $$$ $|X| = \sqrt{\frac{2}{\pi}},$ $D|X| = 1 - \frac{2}{\pi}$$$

(2) 若
$$X \sim N(0, \sigma^2)$$
, 则 $E|X| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

(3) 若
$$X \sim N(\mu, \sigma^2)$$
, 则 $E|X - \mu| = \sqrt{\frac{2}{\pi}} \cdot \sigma$, $D|X| = (1 - \frac{2}{\pi}) \cdot \sigma^2$

8. 设随机变量 X 与 Y 相互独立, 均服从 $N(\mu, \sigma^2)$, 求 $E[\max\{X,Y\}]$, $E[\min\{X,Y\}]$.

Solution

由 X,Y 独立, 有 $X-Y\sim N(0,2\sigma^2)$, $E|X-Y|=\frac{2\sigma}{\sqrt{\pi}}$ 由下述总结, 可知所求期望为

$$E[\max\{X,Y\}] = \frac{1}{2}[E(X) + E(Y) + E|X - Y|] = \mu + \frac{\sigma}{\sqrt{\pi}}$$

$$E[min\{X,Y\}] = \frac{1}{2}[E(X) + E(Y) - E|X - Y|] = \mu - \frac{\sigma}{\sqrt{\pi}}$$

总结

关于最大值最小值函数的拆法

$$\max\{X,Y\} = \frac{X+Y+|X-Y|}{2}$$

$$\min\{X,Y\} = \frac{X+Y-|X-Y|}{2}$$

9. 设独立重复的射击每次命中的概率为 p,X 表示第 n 次命中时的射击次数, 求 EX,DX.

Pascal 分布 (负二项分布), 关键在于分解随机变量, 设 X_i 表示第 i-1 次命中到 i 命中所需要的射击次数, 则有 X_1, X_2, \ldots 之间相互独立, 且 $X_i \sim G(p)$, 对于 $X = X_1 + X_2 \ldots X_n$, 故

$$EX = EX_1 + EX_2 + \dots + EX_n = \frac{n}{p}$$

 $DX = DX_1 + DX_2 + \dots + DX_n = \frac{n(1-p)}{p^2}$

- 10. (2015, 数一、三) 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, & x > 0 \\ & , \text{对 } X \text{ 进行独立} \end{cases}$ 的观测, 直到第 2 个大于 3 的观测值出现时停止, 记 Y 为观测次数。
 - (a) 求Y的概率分布;
 - (b) 求 EY.

Solution

不妨令 $p = P\{X > 3\} = \int_3^{+\infty} 2^{-x} \ln 2 dx = \frac{1}{8}$

(1)

$$P{Y = k} = C_{k-1}^{1} p^{2} (1 - p)^{k-2}$$
$$= (k - 1) (\frac{1}{8})^{2} (\frac{7}{8})^{k-2}, k = 2, 3, \dots$$

(2)

$$EY = \sum_{k=2}^{\infty} kP\{Y = k\}$$

$$= p^2 \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2}$$

$$\frac{\text{$\frac{895}{2}$}}{\text{$\frac{8}{2}$}} \dots$$

= 16

也可以用 Pascal 分布的结论直接得出 $EX = \frac{2}{\frac{1}{8}} = 16$

协方差的计算 18.2

Remark

协方差

协方差的定义 $Cov(X,Y) = E[(X - EX)(Y - EY)] = E(XY) - EX \cdot EY$ 协方差的性质

- (1) Cov(X,Y) = Cov(Y,X), Cov(X,X) = DX
- (2) Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)
- 11. 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。若 DX = 4, 正整数 $S \le n, t \le n$, 则

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s}X_{i}, \frac{1}{t}\sum_{j=1}^{t}X_{j}\right) =$$

- $(A) 4 \max\{s, t\}$
- $(B) 4 \min\{s, t\}$
- $(C) \frac{4}{\max\{s,t\}} \qquad (D) \frac{4}{\min\{s,t\}}$

Solution

$$\operatorname{Cov}\left(\frac{1}{s}\sum_{i=1}^{s}X_{i}, \frac{1}{t}\sum_{j=1}^{t}X_{j}\right) = \frac{1}{st}\left[\operatorname{Cov}(X_{1}, X_{1}) + \operatorname{Cov}(X_{1}, X_{2}) + \dots + \operatorname{Cov}(X_{s}, X_{t})\right] + \dots + \operatorname{Cov}(X_{s}, X_{t}) = \frac{\operatorname{Cov}(X_{i}, X_{i}) = \operatorname{DX}_{i}, \operatorname{Cov}(X_{i}, X_{j}) = 0}{st} = \frac{\min(s, t)}{st} \cdot \operatorname{DX}$$

$$= \frac{4}{\max(s, t)}$$

来自总体 X 的简单随机样本必然是独立同分布的.

- 12. (2005, 数三) 设 $X_1, X_2, \dots, X_n (n > 2)$ 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值 为 \bar{X} 。 记 $Y_i = X_i - \bar{X}, i = 1, 2, \dots, n$ 。
 - (1) 求 Y_i 的方差 $DY_i, i = 1, 2, \dots, n$;
 - (2) 求 Y_1 与 Y_n 的协方差 $Cov(Y_1, Y_n)$;
 - (3) 若 $c(Y_1 + Y_n)^2$ 为 σ^2 的无偏估计量, 求常数 c.

(1) 方法一:

$$DY_i = D(X_i - \bar{X})$$

$$= DX_i + D\bar{X} - 2Cov(X_i, \bar{X})$$

$$= \frac{E\bar{X} = \mu, D\bar{X} = \sigma^2/n}{n} \sigma^2 + \frac{\sigma^2}{n} - 2Cov(X_i, \frac{1}{n} \sum_{i=1}^n X_i)$$

$$= \frac{n-1}{n} \sigma^2$$

方法二:

$$DY_i = D(\frac{n-1}{n}X_i - \frac{1}{n}\sum_{i=j}^n X_j(j \neq i))$$
$$= (\frac{n-1}{n})^2\sigma^2 - \frac{n-1}{n^2}\sigma^2$$
$$= \frac{n-1}{n}\sigma^2$$

(2)

$$Cov(Y_1, Y_n) = Cov(X_1, \bar{X}, X_n - \bar{X})$$

$$= Cov(X_1, X_n) - Cov(X_1, \bar{X}) - Cov(X_n - \bar{X}) + D\bar{X}$$

$$= \frac{-\sigma^2}{n}$$

(3) 由无偏性有 $cE(Y_1 + Y_n)^2 = \sigma^2 \implies c = \frac{\sigma^2}{E(Y_1 + Y_n)^2}$

$$E(Y_1 + Y_n)^2 = D(Y_1 + Y_n) + (EY_1EY_n)^2$$

$$= DY_1 + DY_n + 2Cov(Y_1, Y_n) + 0$$

$$= \frac{2(n-2)}{n}\sigma^2$$

故
$$c = \frac{n}{2(n-2)}$$

相关系数的计算 18.3

Remark

相关系数

相关系数的定义 $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{EXY - EXEY}{\sqrt{DX}\sqrt{DY}}$

相关系数的性质

- (1) $|\rho_{XY}| \leq 1$
- (2) $\rho_{XY} = 0 \iff Cov(X, Y) = 0 \iff EXY = EXEY \iff D(X + Y) = DX + DY$
- (3) $\rho_{XY} = 1 \iff P\{Y = aX + b\} = 1(a > 0); \rho_{XY} = -1 \iff P\{Y = aX + b\} = 0$ 1(a < 0)
- 13. (2016, 数一) 设试验有三个两两互不相容的结果 A_1, A_2, A_3 , 且三个结果发生的概率均为 $rac{1}{3}$ 。将试验独立重复地做两次,X 表示两次试验中 A_1 发生的次数,Y 表示两次试验中 A_2 发生的次数,则X与Y的相关系数为

$$(A) - \frac{1}{2}$$
 $(B) - \frac{1}{3}$ $(C) \frac{1}{3}$ $(D) \frac{1}{2}$

$$(B) - \frac{1}{3}$$

$$(C) \frac{1}{3}$$

$$(D) \frac{1}{2}$$

Solution

(方法一) 由题意有 X,Y 均服从 $B(2,\frac{1}{3})$, 而 $P\{XY=1\}=PX=1,Y=1=C_2^1(\frac{1}{3})^2$, 且 $P\{XY=0\}=\frac{7}{9}$,故 XY 的概率分布如下所示

$$\begin{array}{c|cc} XY & 0 & 1 \\ \hline P & \frac{7}{9} & \frac{2}{9} \end{array}$$

故
$$EXY = \frac{2}{9}$$
, 进而可以求出 $\rho_{XY} = \frac{-\frac{2}{9}}{\frac{4}{9}} = -\frac{1}{2}$

(方法二) 设 Z 为"A3 在两次试验中发生的次数"

由题意有
$$Z \sim B(2, \frac{1}{3}), X + Y + Z = 2$$
 而 $D(X + Y) = DX + DY + 2Cov(X, Y) = \frac{8}{9} + 2Cov(X, Y),$ 其中 $D(X + Y) = D(2 - Z) = DZ = \frac{4}{9}$, 故 $Cov(X, Y) = \frac{-2}{9}$

(方法三)

- 14. 设随机变量 $X \sim B\left(1, \frac{3}{4}\right), Y \sim B\left(1, \frac{1}{2}\right),$ 且 $\rho_{XY} = \frac{\sqrt{3}}{3}$ 。
 - (a) 求 (X,Y) 的联合概率分布;
 - (b) $R P{Y = 1|X = 1}.$

Solution

这道题比较简单,直接给答案

$$P\{Y = 1 | X = 1\} = \frac{2}{3}$$

18.4 相关与独立的判定

相关与独立性

- (1) 一般来说独立是强于不相关的条件,即独立 ⇒ 不相关
- (2) 对于二维正态分布有 独立 ← 不相关
- (3) 对于 0-1 分布有 独立 ← 不相关

判断是否独立的基本方法

- (1) P(AB) = P(A)P(B), 对于离散型选点, 对于连续型选区间
- (2) 三个充要条件 $\forall (x,y)$ 或 $(i,j)F(x,y)=F_XF_Y, f(x,y)=f_Xf_Y, P(ij)=P_iP_j.$

- (3) $\rho_{XY} \neq 0 \implies X, Y$ 不独立
- 15. 设二维随机变量 (X,Y) 服从区域 $D = \{(x,y)|x^2 + y^2 \le a^2\}$ 上的均匀分布,则
 - (A) X 与 Y 不相关, 也不相互独立 (B) X 与 Y 相互独立

- (C) X 与 Y 相关
- (D) X 与 Y 均服从 U(-a,a)

这道题可以记结论,对于均匀分布若其区域不为 $(a,b) \times (c,d)$ 的矩形,则必然不独立, 其中 $X \in (a,b), Y \in (c,d)$

正常来做的话, 步骤如下

$$f(x,y) = \begin{cases} \frac{1}{\pi a^2}, & (x,y) \in D\\ 0, & (x,y) \notin D \end{cases}$$

$$EX = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy \xrightarrow{\text{phit}} 0$$

同理根据对称性可知 EXY = EX = EY = 0, 故 X, Y 一定不相关, 现在求 X, Y 的 边缘分布概率密度,有

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - x^2}, & x \in (-a, a) \\ 0, & x \notin (-a, a) \end{cases}$$

同理可以求出

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \frac{2}{\pi a^2} \sqrt{a^2 - y^2}, & y \in (-a, a) \\ 0, & y \notin (-a, a) \end{cases}$$

显然 $f_Y f_X \neq f(x,y)$ 故 X,Y 不独立.

- 16. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < +\infty$ 。
 - (a) 求X的期望与方差;
 - (b) 求 X 与 |X| 的协方差, 问 X 与 |X| 是否不相关?
 - (c) 问X与|X|是否相互独立?并说明理由.

(1)

$$EX = \int_{-\infty}^{+\infty} x f(x) dx = 0$$

$$EX^2 = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{0}^{+\infty} x^2 e^{-x} dx = 2$$

$$DX = EX^2 - (EX)^2 = 2$$

(2)

$$E(X|X|) = \int_{-\infty}^{+\infty} |X|Xf(x)\mathrm{d}x = 0 = EXE|X| \implies \rho_{X|X|} = 0, Cov(X, |X|) = 0$$

(3) 设
$$A = \{0 < X < 1\}, B = \{|X| < 1\},$$
 故

$$P(AB) = P\{0 < X < 1, |X| < 1\} = P\{0 < X < 1\} = P(A)$$

而 P(B) < 1 是显然的, 故 $P(AB) \neq P(A)P(B)$, 即 X|X| 不独立

第十九章 大数定律与中心极限定理

Remark

相关知识

依概率收敛 设 Y_1,Y_2,\dots 是一个随机变量的序列,a 是一个常数,对于任意的给定正数若有 $\lim_{n\to\infty}P\{|Y_n-a|<\epsilon\}=1$,则称该随机变量的序列依概率收敛与 a,记作 $Y_n\stackrel{P}{\to}a$

<u>切比雪夫大数定律</u> 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立, 数学期望 EX_i 和方差 DX_i 都存在, 并且方差有公共上界, 即 $DX_i \leq c, i = 1, 2, \cdots$, 则对任意给定的 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \mathbf{E} X_i \right| < \varepsilon \right\} = 1.$

<u>伯努利大数定律</u> 设随机变量 X_n 服从参数为 n 和 p 的二项分布, 即 $X_n \sim B(n,p)$, μ_n 是 n 次试验中事件 A 发生的次数 $(n=1,2,\cdots)$, 则对任意 $\varepsilon>0$, 都有 $\lim_{n\to\infty}\mathbf{P}\left\{\left|\frac{\mu_n}{n}-p\right|<\varepsilon\right\}=1$.

 $\underline{\div$ 钦大数定律} 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立同分布, 期望存在, 记 μ 为它们共同的期望, 则对任意 $\varepsilon > 0$, 都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1.$

主要考法

(1) 切比雪夫不等式

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$
,或者 $P\{|X - EX| < \epsilon\} > 1 - \frac{DX}{\epsilon^2}$

(2) 大数定理

$$\frac{1}{n} \sum_{i=1}^{n} [X_i] \xrightarrow{P} E[X_i]$$

(3) 中心极限定理

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

(4) 不同定理的成立条件的差别

切比雪夫大数定理要求 X_i 相互独立、均值方差存在、且方差具有公共上界

伯努利大数定理要求 $X_i \sim B(n, p)$

辛钦大数定律要求 X_i 独立同分布,期望存在

列维-林德伯格定理要求 X_i 独立同分布, 且期望方差均存在

棣莫弗-拉普拉斯定理要求 $X_i \sim B(n, p)$

- 1. 设随机变量 $X_1, X_2 ... X_n$ 相互独立, 令 $S_n = X_1 + X_2 + ... + X_n$, 则根据列维-林德伯格 定理, 当 n 充分大的时候 S_n 近似服从正态分布, 则要求 X_1, X_2, \ldots, X_n 满足 ()

 - (A) 有相同的期望与方差 (B) 服从同一离散型分布
 - (C) 服从同一均匀分布
- (D) 服从同一连续型分布

Solution

答案选 C

2. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。由 切比雪夫不等式, 对任意 $\varepsilon > 0$, 有 $P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu_{2} \right| \geq \varepsilon \right\} \leq$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution

首先需要确定 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})$ 是否等于 μ_{2} 显然, 所以这个式子满足切比雪夫不等式, 故根据切比雪夫不等式有

原式
$$\geq \frac{D(\frac{1}{n}\sum_{i=1}^{n}X_i^2)}{\epsilon^2} = \frac{\mu_4 - \mu_2^2}{n\epsilon^2}$$

3. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{ 其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

由大数定理有 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \xrightarrow{P}EX_{i}^{2}$, 又期望的定义有

$$EX_i^2 = 2\int_0^1 x^2(1-x)dx = \frac{1}{6}$$

4. (2020, 数一) 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本, $P\{X=0\} = P\{X=1\} = \frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为

$$(A) 1 - \Phi(1)$$
 $(B) \Phi(1)$ $(C) 1 - \Phi(0.2)$ $(D) \Phi(0.2)$

Solution

由中心极限定理有 $\sum_{i=1}^{100} X_i \sim N(50, 25)$ 标准化后所求概率为

$$P\{\frac{X-50}{5} \le 1\} \implies \Phi(1)$$

第二十章 统计初步

20.1 求统计量的抽样分布

Remark

样本均值与方差

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} nX_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

 $E\bar{X} = \mu, D\bar{X} = \frac{\sigma^2}{n}, ES^2 = \sigma^2$ 来自同一总体的样本均值与方差是独立的

有偏估计量
$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
 其 $ES_n^2 = \frac{n-1}{n} \sigma^2$

统计的三大分布

 χ^2 分布的定义

设随机变量 X_1, X_2, \ldots, X_n 相互独立, 均服从 N(0,1) 称 $\chi^2 = X_1^2 + X_2^2 + \ldots + X_n^2$ 服从自由度为 n 的 χ^2 分布, 记 $\chi^2 \sim \chi^2(n)$, 特别的若 $X \sim N(0,1)$, 则 $\chi^2 \sim \chi^2(1)$ χ^2 分布的性质

- (1) 参数可加性 设 χ_1^2 与 χ_2^2 相互独立,且 $\chi_1^2 \sim \chi^2(n), \chi_2^2 \sim \chi^2(m)$ 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n+m)$
- (2) 设 $\chi^2 \sim \chi^2(n)$ 则 $E\chi^2 = n, D\chi^2 = 2n$

F 分布的定义

设随机变量 X 和 Y 相互独立, 且 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2),$ 称 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 n_1, n_2 的 F 分布, 记作 $F \sim F(n_1, n_2)$

F 分布的性质

(1) 设
$$F \sim F(n_1, n_2)$$
, 则 $\frac{1}{F} \sim F(n_2, n_1)$

(2)
$$F_{1-\alpha}(n_2, n_1) = \frac{1}{F_{\alpha}(n_1, n_2)}$$

t 分布的定义 设随机变量 X 和 Y 相互独立, $X \sim N(0,1), Y \sim \chi^2(n)$, 则称 $T = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布, 记作 $T \sim t(n)$

t 分布的性质

(1) 设
$$T \sim t(n)$$
,则 $T^2 \sim F(1,n)$, $\frac{1}{T^2} \sim F(n,1)$

(2)
$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

Remark

单正态总体与双正态总体

单正态总体

设 X_1, X_2, \ldots, X_n 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, \bar{X} 与 S^2 分别为样本均值与样本方差,则

(1)
$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
, $\mathbb{P} \bar{X} \sim N(\mu, \sigma^2/n)$

(2)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$
 即 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$, 且 \bar{X} 与 S^2 相互独立

(3)
$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

双正态总体

设总体 $X \sim N\left(\mu_1, \sigma_1^2\right)$,总体 $Y \sim N\left(\mu_2, \sigma_2^2\right), X_1, X_2, \cdots, X_{n_1}$ 与 $Y_1, Y_2, \cdots, Y_{n_2}$ 分别为来自总体 X 与 Y 的简单随机样本且相互独立,样本均值分别为 \bar{X}, \bar{Y} ,样本方差分别为 S_1^2, S_2^2 ,则

(4)
$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1);$$

(5)
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
;

(6)
$$\stackrel{}{=}$$
 $\sigma_1^2 = \sigma_2^2$ $\stackrel{}{=}$ $\stackrel{}{=}$ $\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$, $\stackrel{}{=}$ $\stackrel{}{=}$ $\frac{1}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}}$.

1. (2013, 数一) 设随机变量 $X \sim t(n), Y \sim F(1,n)$ 。 给定 $\alpha(0 < \alpha < 0.5)$,常数 c 满足

$$P\{X > c\} = \alpha, \text{ } \mathbb{M} P\{Y > c^2\} =$$

(A)
$$\alpha$$
 (B) $1 - \alpha$ (C) 2α (D) $1 - 2\alpha$

这道题考察的是 t 分布的对称性, 由题有

$$Y = \frac{\chi^2(1)}{\chi^2(n)}$$
 $X = \frac{N(0,1)}{\sqrt{\chi^2(n)/n}}$

则有 $X^2=Y$, 所求概率就变成 $P\{X^2>c^2\}$ 由 t 分布的对称性有 $P\{X^2>c^2\}=2\alpha$

总结

正态分布与t分布具有相似的概率密度图像,F分布与 χ^2 分布也有类似的图像.

2. 设 X_1, X_2, \dots, X_9 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, $Y_1 = \frac{1}{6}(X_1 + X_2 + \dots + X_6), Y_2 = \frac{1}{3}(X_7 + X_8 + X_9), S^2 = \frac{1}{2}\sum_{i=7}^{9}(X_i - Y_2)^2$, 求 $\frac{\sqrt{2}(Y_1 - Y_2)}{S}$ 的分布.

Solution

这种题就是一步一步反推, 注意凑题目要求的结果即可

$$Y_1 = \frac{1}{6} \sum_{i=1}^{6} X_i \sim N(\mu, \frac{\sigma^2}{6})$$
 同理 $Y_2 \sim N(\mu, \frac{\sigma^2}{3})$

由
$$Y_1, Y_2$$
 独立, 知道 $Y_1 - Y_2 \sim N(0, \frac{\sigma^2}{2}) \implies \frac{Y_1 - Y_2}{\sigma/\sqrt{2}} \sim N(0, 1)$

又有
$$\frac{2s^2}{\sigma^2} \sim \chi^2(2)$$
, 故

$$\frac{Y_1 - Y_2}{\sqrt{\sigma^2/2}\sqrt{\frac{2s^2}{\sigma^2}/2}} = \frac{\sqrt{2}(Y_1 - Y_2)}{s} \sim t(2)$$

20.2 求统计量的数字特征

3. 设 X_1, X_2, \cdots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的简单随机样本, 则

$$E\left[\sum_{i=1}^{n} X_i \cdot \sum_{j=1}^{n} \left(nX_j - \sum_{k=1}^{n} X_k\right)^2\right] =$$

Solution

这道题就是个凑系数化简, 过程省去 原式 = $n^3(n-1)\mu\sigma^2$

- 4. 设 X_1, X_2, \cdots, X_9 为来自总体 $N(0, \sigma^2)$ 的简单随机样本, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 $\frac{9\bar{X}^2}{S^2}$ 的分布
 - (2) $\vec{X} E[(\bar{X}^2 S^2)^2];$

- (1) 和例题 3 一致, 过程省去 $\frac{9\bar{X}^2}{S^2} \sim F(1,8)$
- (2) 对于这种高幂次的一般都需要考虑用 χ^2 的结论

$$\begin{split} E\left[(\bar{X}^2S^2)^2\right] &= E\bar{X}^4 \cdot ES^4 \\ &= \left[D\bar{X}^2 + (E\bar{X}^2)^2\right] \left[DS^2 + (ES^2)^2\right] \\ &= \frac{5}{107}\sigma^8 \end{split}$$

又
$$\frac{9\bar{X}^2}{\sigma^2} \sim \chi^2(1) \implies D\bar{X}^2 = \frac{2\sigma^4}{81}$$
 同理有 $DS^2 = \frac{\sigma^4}{4}$

第二十一章 参数估计

21.1 求矩估计与最大似然估计

Remark

矩估计与最大似然估计

矩估计

令
$$EX^k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 或者 $E(X - EX)^k = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k, k = 1, 2, \dots$ 得到 $\theta_1, \theta_2 \dots$ 的矩估计量

$$\begin{cases} EX = \bar{X}, & - \uparrow \Rightarrow \\ EX^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 & 两 \uparrow \Rightarrow \\ \end{cases}$$

最大似然估计

(1) 对样本点
$$x_1, x_2 \dots, x_n$$
, 似然函数为 $L(\theta)$
$$\begin{cases} \prod_{i=1}^n p(x_i; \theta) \\ \prod_{i=1}^n f(x_i; \theta) \end{cases}$$

(2) 似然函数两端取对数求导

(3) 令
$$\frac{d \ln L(\theta)}{d \theta} = 0$$
 就可以得到 θ 的最大似然估计值

一个关于规范的小提示,如果问估计值用小写字母(样本值),问估计量用大写字母(随机变量)

1. (2002, 数一) 设总体 X 的概率分布为

$$\begin{array}{c|ccccc} X & 0 & 1 & 2 & 3 \\ \hline P & \theta^2 & 2\theta(1-\theta) & \theta^2 & 1-2\theta \end{array}$$

其中 $0 < \theta < \frac{1}{2}$ 为未知参数, 利用总体 X 的如下样本值 3,1,3,0,3,1,2,3, 求 θ 的矩估计值与最大似然估计值。

Solution

(矩估计) 这道题只有一个参数, 只需要用一阶矩估计 $EX = 2\theta(1-\theta) + 2\theta^2 + 3 - 6\theta = \bar{X}$, 其 中 $\bar{X} = \frac{16}{8} = 2$, 故 θ 的矩估计值 $\hat{\theta} = \frac{1}{4}$

(最大似然估计) 对于样本 3,1,3,0,3,1,2,3,似然估计函数为

$$L(\theta) = 4\theta^{6}(1-\theta)^{2}(1-2\theta)^{4}$$

- 2. (2011, 数一) 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本, 其中 μ 已 $\mu, \sigma^2 > 0$ 未知, 样本均值为 \bar{X} , 样本方差为 S^2 。
 - (1) 求 σ^2 的最大似然估计量 $\hat{\sigma}^2$;
 - (2) 求 $E(\hat{\sigma}^2)$ 与 $D(\hat{\sigma}^2)$ 。

Solution

(1) 对于样本 X_1, \ldots, X_n 其最大似然函数为

$$L(\sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$

注意参数为
$$\sigma^2$$
, 令 $\frac{\mathrm{d} \ln \sigma^2}{\mathrm{d} \sigma^2} = 0$, 有 $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n n(X_i - \mu)^2$

(2) 这种题优先考虑 χ^2 分布的期望与方差结论, 有题 (1) 有

$$\frac{X_i - \mu}{\sigma} \sim N(0, 1) \implies \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n)$$

故
$$E(\hat{\sigma}^2) = \sigma^2, D(\hat{\sigma}^2) = \frac{2\sigma^4}{n}$$

- 3. (2022, 数一、三) 设 X_1, X_2, \cdots, X_n 为来自期望为 θ 的指数分布总体的简单随机样本, Y_1, Y_2, \cdots, Y_m 为来自期望为 2θ 的指数分布总体的简单随机样本,两个样本相互独立。利用 X_1, X_2, \cdots, X_n 与 Y_1, Y_2, \cdots, Y_m ,
 - (1) 求 θ 的最大似然估计量 $\hat{\theta}$;

(2) 求 $D(\hat{\theta})$ 。

Solution

这是双总体, 但基本上和单总体一致, 不要被唬住了哦!

(1) 由题有 $X \sim E(\frac{1}{\theta}), Y \sim E(\frac{1}{2\theta}),$ 故其概率密度分别为

$$f_X(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0 \\ 0, & x \le 0 \end{cases} \qquad f_Y(y) = \begin{cases} \frac{1}{2\theta} e^{-\frac{y}{2\theta}}, & y > 0 \\ 0, & x \le 0 \end{cases}$$

则对于样本 X_1, X_2, \ldots, X_n 与 Y_1, Y_2, \ldots, Y_n , 最大似然估计函数为

$$L(\theta) = (\frac{1}{2})^m \theta^{-(m+n)} e^{-\frac{1}{\theta}(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)}$$

则令
$$\frac{\mathrm{d}\ln\theta}{\mathrm{d}\theta} = 0$$
, 有 $\hat{\theta} = \frac{1}{n+m} (\sum_{i=1}^{n} X_i + \frac{1}{2} \sum_{j=1}^{m} Y_j)$

(2)

$$D(\hat{\theta}) = (\frac{1}{m+n})^2 D(\sum_{i=1}^n X_i + \frac{1}{2} \sum_{j=1}^m Y_j)$$
$$= \frac{\theta^2}{m+n}$$

21.2 估计量的评价标准

Remark

估计量的评价标准

- (1) (无偏性) 设 $\hat{\theta}$ 为 θ 的估计量, 若 $E\hat{\theta} = \theta$ 则称其为 θ 无偏估计量
- (2) (有效性) 设 $\hat{\theta_1}$, $\hat{\theta_2}$ 为 θ 的无偏估计, 若 $D(\hat{\theta_1}) < D(\hat{\theta_2})$ 则称 $\hat{\theta_1}$ 比 $\hat{\theta_2}$ 更有效
- (3) 设 $\hat{\theta}$ 为 θ 的估计量,若 $\hat{\theta}$ 依概率收敛于 θ ,则称 $\hat{\theta}$ 为 θ
- 一致(相合)估计量
- 一致性的考点在于— $\frac{1}{n}\sum_{\square} \stackrel{P}{\rightarrow} E_{\square}$

4. 设总体 X 的概率密度为

$$f(x) = \begin{cases} 2e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

其中 $\theta > 0$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本。

- (1) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (2) 问 $\hat{\theta}$ 是否为 θ 的无偏估计量?并说明理由。

Solution

(1) 对于样本 X_1, X_2, \ldots, X_n 的最大似然估计函数为

$$L(\theta) = \prod_{i=1}^{n} 2e^{-2(x_i - \theta)} = 2^n e^{-\sum_{i=1}^{n} (x_i - \theta)}$$

显然 $L(\theta)$ 关于 θ 是单调递增的,则根据最大似然的定义,应该取使得 $L(\theta)$ 最大的值, 而由题目有 $X_1>\theta, X_2>\theta,\ldots$,故 $\hat{\theta}=\min\left\{X_1,X_2\ldots,X_n\right\}$

(2) 由概率密度函数有 $F_X(x) = \int_{-\infty}^x f(t)dt$, 故

$$F_X(x) = \int_{-\infty}^x f(t)dt = \begin{cases} 1 - e^{-2(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

故 $F_{min} = 1 - [1 - F_X(x)]^n$ 即

$$F_{min} = \begin{cases} 1 - e^{-2n(x-\theta)}, & x > \theta \\ 0, x \le \theta \end{cases}$$

故

$$f_{min} = \begin{cases} 2ne^{-2n(x-\theta)}, & x > \theta \\ 0, & x \le \theta \end{cases}$$

由期望的定义有

$$E\hat{\theta} = \int_{\theta}^{+\infty} 2nxe^{-2n(x-\theta)} = \theta + \frac{1}{2n}$$

5. (2010, 数一) 设总体 X 的概率分布为

$$\begin{array}{|c|c|c|c|c|} \hline X & 1 & 2 & 3 \\ \hline P & 1-\theta & \theta-\theta^2 & \theta^2 \\ \hline \end{array}$$

其中参数 $\theta \in (0,1)$ 未知, N_i 表示来自总体 X 的简单随机样本 (样本容量为 n) 中等于 i 的个数 (i=1,2,3) 求常数 a_1,a_2,a_3 使得 $T=\sum_{i=1}^3 a_i N_i$ 为 θ 的无偏估计量,并求 T 的方差.

Solution

由题可知 $N_i \sim B(n,p)$, 具体来说有

$$\begin{cases} N_1 \sim B(n, 1 - \theta) \\ N_2 \sim B(n, \theta - \theta^2) \\ N_3 \sim B(n, \theta^2) \end{cases}$$

且有
$$N_1 + N_2 + N_3 = n$$

故 $ET = \sum_{i=1}^{3} a_i EN_i = n \left[a_1 + (a_2 - a_1)\theta + (a_3 - a_2)\theta^2 \right] = \theta$, 只需要令

$$\begin{cases} a_1 = 0 \\ a_2 = \frac{1}{n} \\ a_3 = \frac{1}{n} \end{cases}$$

21.3 区间估计与假设检验

区间估计与假设检验

这一节内容很少, 只需要掌握置信度的概念, 假设检验的基本过程与第一类错误/第二类错误的概念即可

1. 置信度与置信区间

设总体 X 的分布函数 $F(x,\theta)$ 含有一个未知参数 $\theta,\theta\in\Theta$ 其中 Θ 是其所有可能取值的集合,对于给定值 $0<\alpha<1$,若由来自总体 X 的样本 X_1,X_2,\ldots,X_n 确定了两个

统计量 $\theta_1, \theta_2, \theta_1 \leq \theta_2$ 对于 $\forall \theta \in \Theta$ 都有

$$P\{\hat{\theta_1} < \theta < \hat{\theta_2}\} \ge 1 - \alpha$$

则称区间 (θ_1, θ_2) 为 θ 置信水平为 $1-\alpha$ 的置信区间, $\hat{\theta_1}$, $\hat{\theta_2}$ 分别称置信水平为 $1-\alpha$ 的双侧置信区间的置信下限和置信上限, $1-\alpha$ 称为置信水平或置信度

2. 原假设 H_0 与备择假设 H_1

类型	H_0	H_1
双边检验	$\theta = \theta_0$	$\theta \neq \theta_0$
单边检验-左边	$\theta \ge \theta_0$	$\theta < \theta_0$
单边检验-右边	$\theta \le \theta_0$	$\theta > \theta_0$

3. 假设检验的过程

- (1) 根据题意写出原假设 H_0 和备择假设 H_1
- (2) 选择检验方式,写出检验统计量及其分布
- (3) 根据给定的显著性水平确定拒绝域
- (4) 统计检验统计量的值, 做出推断
- 4. 第一类错误/第二类错误

类型	含义	犯错的概率
第一类错误	原假设 H_0 为真, 但却拒绝 H_0 , 即	$\alpha = P\{拒绝H_0 \mid H_0$ 为真}
第二类错误	原假设 H_0 为假, 但却接受 H_0 , 即	$\beta = p\{接受H_0 \mid H_0不真\}$
	取伪概率	

- (1) 仅控制犯第一类错误的检验称为显著检验, α 为显著性水平
- (2) 当样本容量固定时, α 和 β 中任意一个减少,另一个必然增大;如果要使 α 和 β 同时减少,只能增大样本容量

第二十二章 补充知识-高等数学

22.1 平方数求和

平方数和的求和公式

$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(n-2)}{6}$$

22.2 莱布尼兹法则

莱布尼兹法则

若有如下变限积分

$$F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$$

那么 F(x) 的导数为

$$F'(x) = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$$

特别的, 若上下限为常数有

$$F'(x) = \int_a^b \frac{\partial}{\partial x} f(x, t) dt$$

例如对于 $F(x) = \int_1^0 e^{-x^2t^2} dt$, 则

$$F'(x) = 2x \int_0^1 t^2 e^{-x^2 t^2} dt$$

22.3 柯西不等式

柯西不等式

(1) 柯西不等式的<u>实数形式</u>,对于任意实数 a_1, a_2, \ldots, a_n 和 b_1, b_2, \ldots, b_n 有

$$\left(\sum_{i=0}^{n} a_i b_i\right)^2 \ge \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

(2) 柯西不等式的向量形式, 对于向量 $\mathbf{a} = (a_1, a_2, \dots, a_n), \mathbf{b} = (b_1, b_2, \dots, b_n)$ 有

$$|a \cdot b| \le ||a|| \cdot ||b||$$

其中
$$||a|| = \sqrt{\sum_{i=1}^{n} a_i^2}$$

(3) 柯西不等式的积分形式, 对于可积函数 f,g 有

$$\left(\int f(x)g(x)\mathrm{d}x\right)^2 \leq \left(\int f^2(x)\mathrm{d}x\right)\left(\int g^2(x)\mathrm{d}x\right)$$

第二十三章 补充知识-线性代数

补充知识来自于

- (1) 线性代数入门
- (2) 做题总结

第二十四章 补充知识-概率论

补充知识来自于

- (1) 概率论与数理统计 茆诗松
- (2) 做题总结

24.1 配对问题

问题描述: 在一个有 n 个人参加的晚会, 每个人带来一件礼物, 且规定每个人带的礼物都不相同. 晚会期间各人从放在一起的 n 件礼物中随机抽取一件, 问至少有一个人自己抽到自己的礼物的概率是多少?

Solution

(配对问题)

设 A_i 为事件: 第 i 个人自己抽到自己的礼物, $i=1,2,\ldots,n$ 所求概率为

$$P(A_1) = P(A_2) = \dots = P(A_n) = \frac{1}{n}$$

$$P(A_1 A_2) = P(A_1 A_3) = \dots = P(A_{n-1} A_n) = \frac{1}{n(n-1)}$$

$$P(A_1 A_2 A_3) = P(A_1 A_2 A_4) = \dots = P(A_{n-2} A_{n-1} A_n) = \frac{1}{n(n-1)(n-2)}$$

. . .

$$P(A_1 A_2 A_3 \dots A_n) = \frac{1}{n!}$$

再由概率的加法公式(容斥原理)得

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i=1}^{n-1} P(A_i A_{i+1}) + \sum_{i=1}^{n-2} P(A_i A_{i+1} A_{i+2})$$

$$+ \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n)$$

$$= C_n^1 \frac{1}{n} - C_n^2 \frac{1}{n(n-1)} + \ldots + (-1)^{n-1} C_n^n \frac{1}{n!}$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} + \ldots + (-1)^{n-1} \frac{1}{n!}$$

当 $n \to \infty$, 上述概率由 $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, 则

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = 1 - e^{-1} \approx 0.6321$$

24.2 几个概率的不等式

- 1. $P(AB) \ge P(A) + P(B) 1$
- 2. $P(A_1A_2...A_n) \ge P(A_1) + P(A_2) + ... + P(A_n) (n-1)$ (Boole 不等式)
- 3. $|P(AB) P(A)P(B)| \le \frac{1}{4}$

证明. 相关证明如下:

- (2) 采用数学归纳法证明, 对于 n = 2, 即不等式 (1) 已经证明, 不妨假设对于 n = k 个事件, 不等式成立, 即

$$P(A_1 A_2 \dots A_k) \ge P(A_1) + P(A_2) + \dots + P(A_k) - (k-1)$$

考虑 n = k+1 个事件 $A_1A_2 \dots A_{k+1}$, 不妨令 $B = A_1A_2 \dots A_k$, 则

$$P(A_1 A_2 ... A_k A_{k+1}) = P(B A_{k+1}) \ge P(B) + P(A_{k+1}) - 1 \ge P(A_1) + P(A_2) + ... + P(A_{k+1}) - (k)$$

由数学归纳法可知,原不等式成立

(3) $\pm P(A) > P(AB), P(B) > P(AB), \mathbb{Q} P(A)P(B) > P(AB)^2, \mathbb{Q}$

$$P(AB) - P(A)P(B) \le P(AB) - P(AB)^2 = P(AB)(1 - P(AB))$$

令
$$x = P(AB)$$
, 则 $f(x) = x(1-x)$, 当 $x = \frac{1}{2}$ 时, 取得 $f(x)_{max} = \frac{1}{4}$ 即
$$P(AB) - P(A)P(B) \le \frac{1}{4}$$

由于 $P(AB) + P(A\overline{B}) = P(A)$, 即 $P(AB) = P(A) - P(A\overline{B})$ 则

$$P(A)P(B) - P(AB) = P(A)P(B) - P(A) + P(A\bar{B}) = P(A\bar{B}) - P(A)P(\bar{B}) \le \frac{1}{4}$$

即

$$P(AB) - P(A)P(B) \ge \frac{1}{4}$$

综上原不等式成立

24.3 轮流射击模型

问题描述: 有两名选手比赛设计, 轮流对同一个目标进行射击, 甲命中目标的概率为 α , 乙命中的概率为 β . 甲先射, 谁先设中谁获胜. 问甲乙两人获胜的概率各是多少?

Solution

(方法一) 记事件 A_i 为第 i 次射中目标, $i=1,2,\ldots$,因为甲先射,所以甲获胜可以表示为

$$A_1 \cup \bar{A_1}\bar{A_2}A_3 \cup \dots$$

由于事件独立,则甲获胜的概率为

$$P(甲 获胜) = \alpha + (1 - \alpha)(1 - \beta)\alpha + (1 - \alpha)^2(1 - \beta)^2\alpha^2 \dots$$
$$= \alpha \sum_{i=0}^{\infty} (1 - \alpha)^i (1 - \beta)^i$$
$$= \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

同理, 乙获胜的概率为

$$P(\mathbf{Z} 获胜) = (1 - \alpha)\beta + (1 - \alpha)(1 - \beta)(1 - \alpha)\beta + \dots$$
$$= \beta(1 - \alpha)\sum_{i=0}^{\infty} (1 - \alpha)^{i}(1 - \beta)^{i}$$
$$= \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

(方法二) 由于射击是独立, 所有有如下条件

$$P(\Psi 获胜) = \alpha + (1 - \alpha)(1 - \beta)P(\Psi 获胜)$$

前面失败的情况并不影响后续获胜(无记忆性),则可以直接解出甲获胜的概念

$$P(甲 获胜) = \frac{\alpha}{1 - (1 - \alpha)(1 - \beta)}$$

$$P(乙 获胜) = 1 - P(甲 获胜) = \frac{\beta(\alpha - 1)}{1 - (1 - \alpha)(1 - \beta)}$$

24.4 补充: 随机变量的矩

设 (X,Y) 是二维随机变量, 如果 $E(X^kY^l)$ 存在, 则称 $E(X^k)$, (k=1,2...) 为 X 的 k 阶原 点矩; 称 $E(X-EX)^k$, k=(2,3,...) 为 X 的 k 阶中心矩; 称 $E(X^kY^l)$, (k,l=1,2,...) 为 X 与 Y 的 k+l 阶混合原点矩; 称 $E[(X-EX)^k(Y_EY)^l$, (k,l=1,2,...)] 为 X,Y 的 k+l 阶混合中心矩

24.5 Poisson 分布的一个性质,与 Poisson 定理

参考错题-概率论-李正元全书-2(原数例题 1.23)

若 $X \sim P(\lambda)$, 其中的某些部分 (或者优秀, 或者糟糕, 或者其他) 独立的产生, 其产生的概率为 α , 则 Y 表示产生这些特殊事件的次数, 将会服从 $P(\lambda\alpha)$

Poisson 定理, 对于 $X \sim B(n,p)$ 当 n 很大,p 很小的时候, 可以近似的认为 $X \sim P(np)$

24.6 二维随机变量的换元法

设 (X,Y) 的联合概率密度为 $f_{X,Y}(x,y)$ 变化 T 为:

$$\begin{cases} U = g_1(X, Y) \\ V = g_2(X, Y) \end{cases}$$

如果 T 可逆 (即存在逆变化 T^{-1}), 则 (U,V) 的联合概率密度为

$$f_{U,V}(u,v) = f_{X,Y}(x(u,v),y(u,v)) \cdot |J|$$

其中 J 是 Jacobian 行列式即

$$J = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial u} \end{bmatrix}$$

例如:

若
$$U = X + Y, V = X - Y, f(x, y) = e^{-(x+y)}, (x, y > 0)$$

$$X = \frac{U+V}{2}, Y = \frac{U-V}{2}, |\mathbf{J}| = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix} = \frac{1}{2}$$

则 $f(u,v)=e^{-(\frac{u+v}{2}+\frac{u-v}{2})}\cdot\frac{1}{2}=\frac{1}{2}e^{-u}$ 其中 u,v 的范围由变换确定, 例如 u>0 但 v 取决于 x,y 的关系