Lecture 03: Structured Query Language SQL - DDL

CS 1555: Database Management Systems

Constantinos Costa

http://db.cs.pitt.edu/courses/cs1555/current.term/

Jan 15, 2019, 16:00-17:15 University of Pittsburgh, Pittsburgh, PA

Lectures based: P. Chrysanthis & N. Farnan Lectures

SQL

- SQL is the query language for the System R developed at IBM San Jose [Astraham, Gray, Linsday, Selinger,...]
- SQL is the de-facto standard on most RDBMS
- · Most successful standardization effort
 - SQL (ANSI 1986)
 - SQL1 (ANSI 1989)
 - SQL2 or SQL92 (ANSI 1992)
 - SQL3 (ANSI 1999/2000/2003) -- Core and Packages
 - SQL 2008
 - SQL 2013

CS 1555: Database Management Systems - Constantinos Costa

3 of 47

A word about Standards

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

500N:

http://xkcd.com/927/

CS 1555: Database Management Systems - Constantinos Costa

Database Languages

- Data Definition Language (DDL):
 - Define schemas
 - Define Integrity Constraints
 - Example: unique SIDs
 - More...
- Data Manipulation Language (DML):
 - To ask questions = Query
 - Example: Which students have GPA > 3.75?
 - To insert, delete and update data

CS 1555: Database Management Systems - Constantinos Costa

5 of 47

Basic SQL-DDL COMMANDS

• For database schemas:

CREATE SCHEMA, DROP SCHEMA

· For tables:

CREATE TABLE, DROP TABLE, ALTER TABLE

For domains:

CREATE DOMAIN, DROP DOMAIN [SQL99]

For views:

CREATE VIEW, DROP VIEW

· For integrity constraints

CREATE IC, DROP IC

For Indexes [defunct in SQL2]

CS 1555: Database Management Systems - Constantinos Costa

Database Schema

- CREATE SCHEMA < database-name>
 AUTHORIZATION < user-identifier>;
- E.g. CREATE SCHEMA micro_db
 AUTHORIZATION panos;
- DROP SCHEMA <db-name> [RESTRICT | CASCADE];
 - Restrict: removes the schema if the db has no data
 - Cascade: removes everything, data and definitions
- E.g., DROP SCHEMA micro_db RESTRICT;

CS 1555: Database Management Systems - Constantinos Costa

7 of 47

Schema and Catalog

- Schema describes the data stored in the database
- Catalog contains the definitions of schemas
- INFORMATION_SCHEMA
 - Schemas and Base relations (tables)(tbl_name, creator, #of_tuples, tuple_length, #of_attributes...)
 - Attributes of Relations (columns) (tbl_name, atrb_name, type, format, order, key_no, ...)
 - Indexes
 - (tbl_name, index_name, key_attribute,...)
 - Authorizations
 - Integrity Constains
- · Naming of tables: Schema_name.Table_name

Query: \d+ table name; or using SELECT

CS 1555: Database Management Systems - Constantinos Costa

Create Table

CREATE Table < Table-name> (
 <Attribute-name> < Attribute-Type>, ...
 Constraint < Constraint-name> < Constraint-spec>, ...);

CREATE TABLE Students (

• E.g., sid CHAR(20), name CHAR(20), psid INTEGER, age INTEGER, gpa REAL,

Constraint Student_PK

PRIMARY KEY (sid));

CS 1555: Database Management Systems - Constantinos Costa

9 of 47

Constraints on Attributes

- Constraints:
 - NOT NULL
 - DEFAULT value
 - without the DEFAULT-clause, the default value is NULL
 - PRIMARY KEY (attribute-list)
 - UNIQUE (attribute list)
 - allows the specification of alternative key
 - FOREIGN KEY (key) REFERENCES table (key)

CS 1555: Database Management Systems - Constantinos Costa

Creating and deleting schemas

- CREATE SCHEMA name AUTHORIZATION user;
- DROP SCHEMA name [RESTRICT|CASCADE];
 - RESTRICT: removes schema if it doesn't contain any elements
 - O CASCADE: remove schema and everything it contains
- O A schema (PostgresSQL) is a named collection

11 of 47

Create Table Schema

```
• CREATE TABLE STUDENT
```

```
( SID INTEGER,
Name CHAR (20),
PSID INTEGER NOT NULL, -- REQUIRED for AK
AGE INTEGER,
GPA REAL,
Major CHAR (10),
CONSTRAINT STUDENT_PK
PRIMARY KEY (SID),
CONSTRAINT STUDENT_UN
UNIQUE (PSID),
CONSTRAINT STUDENT_FK
FOREIGN KEY (Major) REFERENCES Department (DNO)
ON UPDATE CASCADE ON DELETE NO ACTION
```

CS 1555: Database Management Systems - Constantinos Costa

SQL Datatypes

- Numeric
 - Fixed numbers, approximate numbers, formatted numbers
- Character Strings
 - fixed & varying length, CLOBS [SQL99], foreign language
- Bit Strings
 - fixed & varying length, BLOBS [SQL99]
- Temporal Data
 - date, time and timestamp, intervals
- NULL value valid for all types

CS 1555: Database Management Systems - Constantinos Costa

13 of 47

SQL Numeric Data

- <u>Exact Numbers</u>: Two integer types with different ranges:
 - INTEGER (or INT) and SMALLINT
 - The range of numeric types is implementation dependent
- Approximate Numbers: Three floating point types:
 - FLOAT[precision], REAL, and DOUBLE PRECISION
 - Users can define the precision for FLOAT
 - The precision of REAL and DOUBLE PRECISION is fixed
 - Floating point numbers can in decimal or scientific notation
- Formatted Numbers: These are decimal numbers
 - DECIMAL(i,j), DEC(i,j) or NUMERIC(i,j)
 - i = precision (the total # of digits excluding decimal point)
 - \mathbf{j} = scale (the # of fractional digits. The default is zero)

CS 1555: Database Management Systems - Constantinos Costa

Observations on Numeric types

- They are like the datatype in C
 - BIGINT for long integer or integer
- Truncation is towards 0
- Rounding is business instead of Scientific

 $- [0..4] \downarrow 0$ $[0..4] \downarrow 0$ $- [6..9] \uparrow 1$ $[5..9] \uparrow 1$

- Half times of 5 is 0 and half 1
- Some systems use Number() for floating
- Money or Currency data are numeric data with a currency sign: \$, £, €, ¥

CS 1555: Database Management Systems - Constantinos Costa

15 of 47

SQL Character Strings

- A character string is a sequence of *printable* chars
- In SQL, a character string is denoted by enclosing it in *single quotes*: 'Hello SQL'
- Character strings types
 - Fixed length n: CHAR(n) or CHARACTER(n)
 - Varying length of maximum n:
 VARCHAR(n) or CHAR VARYING (n)
 - The default value of n is 1, representing a single character.
 Also, CHAR or CHARACTER
 - CLOBS(Size): Character Large Objects [SQL99]
 - size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS 1555: Database Management Systems - Constantinos Costa

SQL Character Strings

- Concatenation operator: ||
 - 'abc' || 'XYZ' results in 'abcXYZ'
- Foreign-language characters (ISO-defined chars):
 - NATIONAL CHAR(n)
 - NATIONAL VARCHAR(n)

CS 1555: Database Management Systems - Constantinos Costa

17 of 47

SQL Bit Strings

- Bit strings are sequences of binary digits, or bits
- In SQL, a bit string is denoted by enclosing it in *single quotes*: B'0101100110'
- Bit String types
 - Fixed length n: BIT(n)
 - Varying length of maximum n:
 VARBIT(n) or BIT VARYING (n)
- The default value for n is 1
 - BLOBS (size): Binary Large Objects [SQL99]
 - □ size specified in kilobytes (K), megabytes (M), or gigabytes (G)

CS 1555: Database Management Systems - Constantinos Costa

Boolean values

- Valued TRUE or FALSE
- · Three-valued logic
 - TRUE, FALSE, or UNKNOWN
- Storing a NULL value for a BOOLEAN attribute
 - How should this be treated in a logical expression?
- Examlpes:
 - Students.Name = 'SUSAN' AND Students.GPA > 2.0
 - If a row in the students table has a value of 3.0 for the GPA attribute and a NULL value for the Name attribute, should this condition be TRUE or FALSE?
 - What about NULL name, but a 1.0 for GPA?

CS 1555: Database Management Systems - Constantinos Costa

19 of 47

SQL Temporal Data

- DATE data type
- TIME and TIMESTAMP data types
- INTERVAL data type.
 - INTERVAL data type represents periods of time

CS 1555: Database Management Systems - Constantinos Costa

Date and Time

- DATE (10 positions) stores calendar values representing YEAR, MONTH, and DAY: YYYY-MM-DD
- TIME defines HOURS, MINUTES, and SECONDS in a twenty-four-hour notation: HH:MM:SS
- TIME(i) defines i additional decimal fractions of seconds: HH:MM:SS:ddd...d
- TIME WITH TIME ZONE includes the displacement [-13:00 to +12:59] from standard universal time zone: HH:MM:SS{+/-}hh:mm
 - hh are the two digits for the TIMEZONE_HOUR and mm the two digits for TIMEZONE_MINUTE
- TIMESTAMP represents a complete date and time with 6 fractions of seconds and optional time zone.

CS 1555: Database Management Systems - Constantinos Costa

21 of 47

DATETIME & Implementations

- PostgreSQL sticks pretty close to SQL standard
- MySQL implements both TIMESTAMP and

DATETIME

- O DATETIME is not a valid ANSI type
- O DATETIME range:
 - '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
- O TIMESTAMP range in MySQL:
 - '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC
- Oracle DATE is not equivalent to ANSI DATE, it instead

CS 1555: Database Management Systems - Constantinos Costa

Operations on Dates

- Represent periods of time and are used in operations on date and time data types
 - Datetime (+ or -) Interval = Datetime
 - Datetime Datetime = Interval
 - Interval (* or /) Number = Interval
 - Interval (+ or -) Interval = Interval
- Examples (ANSI SQL):
 - (CURRENT_DATE + INTERVAL '1' MONTH)
 - (CURRENT_DATE INTERVAL '18' DAY)
 - (CURRENT_DATE BirthDate)

CS 1555: Database Management Systems - Constantinos Costa

23 of 47

Functions on Dates

Function	Return Type	Description	Example	Result
age(timestamp, timestamp)	interval	Subtract arguments, producing a "symbolic" result that uses years and months	age(timestamp '2001-04-10', timestamp '1957-06-13')	43 years 9 mons 27 days
age(timestamp)	interval	Subtract from current_date (at midnight)	age(timestamp '1957-06-13')	43 years 8 mons 3 days
clock_timestamp()	timestamp with time zone	Current date and time (changes during statement execution); see Section 9.9.4		
current_date	date	Current date; see Section 9.9.4		
current_time	time with time zone	Current time of day; see Section 9.9.4		
current_timestamp	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		
date_part(text, timestamp)	double precision	Get subfield (equivalent to extract); see Section 9.9.1	date_part('hour', timestamp '2001-02-16 20:38:40')	20
date_part(text, interval)	double precision	Get subfield (equivalent to extract); see Section 9.9.1	date_part('month', interval '2 years 3 months')	3
date_trunc(text, timestamp)	timestamp	Truncate to specified precision; see also Section 9.9.2	date_trunc('hour', timestamp '2001-02-16 20:38:40')	2001-02-16 20:00:00
extract(field from timestamp)	double precision	Get subfield; see Section 9.9.1	extract(hour from timestamp '2001-02-16 20:38:40')	28
extract(field from interval)	double precision	Get subfield; see Section 9.9.1	extract(month from interval '2 years 3 months')	3
isfinite(date)	boolean	Test for finite date (not +/-infinity)	isfinite(date '2001-02-16')	true
isfinite(timestamp)	boolean	Test for finite time stamp (not +/-infinity)	isfinite(timestamp '2001-02-16 21:28:30')	true
isfinite(interval)	boolean	Test for finite interval	isfinite(interval '4 hours')	true
justify_days(interval)	interval	Adjust interval so 30-day time periods are represented as months	justify_days(interval '35 days')	1 mon 5 days
justify_hours(interval)	interval	Adjust interval so 24-hour time periods are represented as days	justify_hours(interval '27 hours')	1 day 03:00:00
justify_interval(interval)	interval	Adjust interval using justify_days and justify_hours, with additional sign adjustments	justify_interval(interval '1 mon -1 hour')	29 days 23:00:00
localtime	time	Current time of day; see Section 9.9.4		
localtimestamp	timestamp	Current date and time (start of current transaction); see Section 9.9.4		
now()	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		
statement_timestamp()	timestamp with time zone	Current date and time (start of current statement); see Section 9.9.4		
timeofday()	text	Current date and time (like clock_timestamp, but as a text string); see Section 9.9.4		
transaction timestamp()	timestamp with time zone	Current date and time (start of current transaction); see Section 9.9.4		

CS 1555: Database Management Systems - Constantinos Costa

Intervals...

Operator	Example	Result
+	date '2001-09-28' + integer '7'	date '2001-10-05'
+	date '2001-09-28' + interval '1 hour'	timestamp '2001-09-28 01:00:00'
+	date '2001-09-28' + time '03:00'	timestamp '2001-09-28 03:00:00'
+	interval '1 day' + interval '1 hour'	interval '1 day 01:00:00'
+	timestamp '2001-09-28 01:00' + interval '23 hours'	timestamp '2001-09-29 00:00:00'
+	time '01:00' + interval '3 hours'	time '04:00:00'
-	- interval '23 hours'	interval '-23:00:00'
	date '2001-10-01' - date '2001-09-28'	integer '3' (days)
-0	date '2001-10-01' - integer '7'	date '2001-09-24'
E)	date '2001-09-28' - interval '1 hour'	timestamp '2001-09-27 23:00:00'
5	time '05:00' - time '03:00'	interval '02:00:00'
5	time '05:00' - interval '2 hours'	time '03:00:00'
-	timestamp '2001-09-28 23:00' - interval '23 hours'	timestamp '2001-09-28 00:00:00'
4	interval '1 day' - interval '1 hour'	interval '1 day -01:00:00'
	timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00'	interval '1 day 15:00:00'
*	900 * interval '1 second'	interval '00:15:00'
*	21 * interval '1 day'	interval '21 days'
*	double precision '3.5' * interval '1 hour'	interval '03:30:00'
1	interval '1 hour' / double precision '1.5'	interval '00:40:00'

CS 1555: Database Management Systems - Constantinos Costa

25 of 47

Quick Example.. Student Table SID Name **PSID GPA** Age 546007 Jones 689065 3.4 18 546100 Smith 987452 18 3.2 546500 Smith 342875 19 3.8

CS 1555: Database Management Systems - Constantinos Costa

CREATE TABLE Student

```
( sid CHAR(20),
  name CHAR(20),
  psid INTEGER,
  age INTEGER,
  gpa REAL,
  Constraint Student_PK
  PRIMARY KEY(sid));
```

```
( sid CHAR(20)

Constraint Student_PK

PRIMARY KEY,

name CHAR(20),
```

CREATE TABLE Student

psid integer,
age integer,
gpa real);

Table Schema Storing Option

```
    CREATE SCHEMA CS1555;
```

```
• CREATE TABLE STUDENT
        SID
               INTEGER,
        Name CHAR (20),
        PSID INTEGER NOT NULL,
        AGE INTEGER,
     GPA REAL,
     CONSTRAINT STUDENT PK
       PRIMARY KEY (SID),
     CONSTRAINT STUDENT_AK
       UNIQUE (PSID));
      TABLESPACE
                                       --In postgres
      IS TABLESPACE {tablespace | users};
                                       -- In Oracle
      ON {filegroup | DEFAULT};
                                       -- In SQLServer
             CS 1555: Database Management Systems - Constantinos Costa
```

Table Schema (MySQL)

```
CREATE TABLE
                        STUDENT
     ( SID
               INTEGER,
        Name CHAR (20),
       PSID INTEGER NOT NULL,
       AGE INTEGER,
       GPA REAL,
       CONSTRAINT STUDENT PK
          PRIMARY KEY (SID),
        CONSTRAINT STUDENT AK
          UNIQUE (PSID));
Engine = INNODB;
                    -- Required in MySQL to support FK
Options: ARCHIVE, CSV, HEAP, Memory, myisam, ndbcluster
                                                     28 of 47
          CS 1555: Database Management Systems - Constantinos Costa
```

Table Schema (DB2)

```
• CREATE TABLE STUDENT

( SID INTEGER NOT NULL, --
REQUIRED for PK,

Name CHAR (20),

PSID INTEGER NOT NULL, -- REQUIRED for AK,

AGE INTEGER,

GPA REAL,

CONSTRAINT STUDENT_PK

PRIMARY KEY (SID),

CONSTRAINT STUDENT_AK

UNIQUE (PSID)

) IN userspace1;
```

Discarding a Table

CS 1555: Database Management Systems - Constantinos Costa

- o DROP TABLE <db-name> [RESTRICT |
 CASCADE];
 - Restrict: removes the table it is not referenced
 - Cascade: removes the table and all references to it
- o Oracle Example:
 - DROP TABLE Student CASCADE CONSTRAINTS;
 - DROP TABLE Student PURGE;
 - PURGE RECYCLEBIN;

CS 1555: Database Management Systems - Constantinos Costa

30 of 47

Creating Domains

- Domain is a schema component for defining datatype macros
 - Basic datatype
 - DEFAULT value
 - CHECK (validity conditions)
- Examples:

CREATE DOMAIN sectno_dom AS SMALLINT;

CREATE DOMAIN gpa_dom DECIMAL (3,2) DEFAULT 0.00;

CREATE DOMAIN ssn dom CHAR(11)

CONSTRAINT ssn_dom_value

CHECK (VALUE BETWEEN '000-00-0000' AND '999-99-9999');

CS 1555: Database Management Systems - Constantinos Costa

31 of 47

Removing a Domain

- · DROP DOMAIN < dname > [RESTRICT | CASCADE];
 - Restrict: removes the domain it is not used
 - Cascade: removes the domain and replaces all its uses to its underlying datatype
- Example:
 - CREATE DOMAIN gender_dom AS CHAR (1) CONSTRAINT gender_dom_value CHECK ((VALUE IN ('F', 'f', 'M', 'm')) OR (VALUE IS NULL));

DROP DOMAIN gender_dom CASCADE;
CS 1555: Database Management Systems - Constantinos Costa

Example Schema

```
CREATE TABLE Student (
```

Sid INTEGER, Name CHAR (20),
Age INTEGER,
GPA REAL,
Major CHAR (10),

CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS 1555: Database Management Systems - Constantinos Costa

33 of 47

CHECK Constraint and DOMAIN

CREATE DOMAIN M_Code AS CHAR(10)
CHECK (Value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (

Sid INTEGER, Name CHAR(20),
Age INTEGER,

GPA REAL,

Major M Code,

CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS 1555: Database Management Systems - Constantinos Costa

```
Example... Minor & Constraints
CREATE DOMAIN M Code AS CHAR (10)
  CHECK (Value IN ('CS', 'Film', 'History'));
CREATE TABLE Student (
  Sid INTEGER, Name CHAR (20),
  Age INTEGER,
                       IC1: Minor IN ...
  GPA REAL,
                       IC2: Minor ≠ Major
  Major M Code,
  Minor .... what constraints are needed for
  Minor?
  CONSTRAINT STUDENT PK
     PRIMARY KEY (Sid));
          CS 1555: Database Management Systems - Constantinos Costa
                                               35 of 47
```

```
Example: attribute-based

CREATE DOMAIN M_Code AS CHAR (10)

CHECK (Value IN ('CS', 'Film', 'History'));

CREATE TABLE Student (

Sid INTEGER, Name CHAR (20),

Age INTEGER,
GPA REAL,
Major M_Code,
Minor M_Code,
CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS 1555: Database Management Systems - Constantinos Costa

36 of 47
```

```
Example: attribute- and tuple-based
CREATE DOMAIN M Code AS CHAR (10)
  CHECK (Value IN ('CS', 'Film', 'History'));
CREATE TABLE Student (
  Sid INTEGER, Name CHAR (20),
  Age INTEGER,
                      IC1:
  GPA REAL,
                    attribute-
                                    IC2:
                     based
                                   tuple-
  Major M Code,
                                   based
  Minor M Code,
   CHECK (Major != Minor),
  CONSTRAINT STUDENT PK
    PRIMARY KEY (Sid));
                                                37 of 47
          CS 1555: Database Management Systems - Constantinos Costa
```


CS 1555: Database Management Systems - Constantinos Costa

39 of 47

CHECK Constraint Major in-line

```
CREATE TABLE Student (
```

Sid INTEGER, Name CHAR (20),

Age INTEGER,

GPA REAL,

Major CHAR (10)

CHECK (Major IN ('CS', 'Film', 'History')),

CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS 1555: Database Management Systems - Constantinos Costa

```
CHECK Constraint Minor in-line

CREATE TABLE Student (

Sid INTEGER, Name CHAR (20),

Age INTEGER,

GPA REAL,

Major CHAR (10)

CHECK (Major IN ('CS', 'Film', 'History')),

Minor CHAR (10)

CHECK ((Minor IN ('CS', 'Film', 'History'))

AND (Major != Minor)),

CONSTRAINT STUDENT_PK

PRIMARY KEY (Sid));

CS 1555: Database Management Systems - Constantinos Costa 41 of 47
```

CREATE TABLE Student (Sid INTEGER, Name CHAR (20), Age INTEGER, GPA REAL, Major CHAR (10), Minor CHAR (10), CONSTRAINT STUDENT_PK PRIMARY KEY (Sid), CONSTRAINT STUDENT_Major CHECK (Major IN ('CS', 'Film', 'History')), CONSTRAINT STUDENT_Minor CHECK (Minor IN ('CS', 'Film', 'History')), CONSTRAINT STUDENT_Minor CHECK (Minor IN ('CS', 'Film', 'History')), CONSTRAINT STUDENT_Major_Minor CHECK (Major != Minor)); CS 1555: Database Management Systems - Constantinos Costa 42 of 47

Constraint Management

ALTER TABLE Student DROP
CONSTRAINT STUDENT_Major_Minor;

ALTER TABLE Student ADD

CONSTRAINT STUDENT_Major_Minor

CHECK (Major!= Minor);

- To modify a constraint:
 - drop it first then add a new one

CS 1555: Database Management Systems - Constantinos Costa

43 of 47

Table Schema Evolution

- The ALTER command allows to alter the domain of an attribute, add and drop an attribute or constraint
- ALTER TABLE <table-name> ALTER [COLUMN]
 - Domain change of an attribute
 - E.g., ALTER TABLE Student

ALTER QPA DECIMAL(4,2);

- Warning: Type Narrowing is possible as in C/C++
- Set or drop the default value of an attribute
 - E.g.1, ALTER TABLE SECTION

ALTER COLUMN Head DROP DEFAULT;

E.g.2, ALTER TABLE SECTION

ALTER Head SET DEFAULT NULL:

CS 1555: Database Management Systems - Constantinos Costa

Modifying a Table Schema...

ALTER TABLE <table-name> ADD [COLUMN]

ALTER TABLE LIBRARIAN
ADD Gender gender_dom;

- ALTER TABLE <tbl-name> DROP [COLUMN]...
 [Option]
 - CASCADE option

ALTER TABLE SECTION

DROP COLUMN Head CASCADE;

- RESTRICT option (default)

ALTER TABLE SECTION

CS 1555: Database Management Systems - Constantinos Costa