PROBABILIDADE E PROCESSOS ESTOCÁSTICOS (CKP7366)

Prof. João Paulo Pordeus Gomes

VARIÁVEIS ALEATÓRIAS DISCRETAS (AULA 1)

Variáveis aleatórias discretas

- Variável aleatória
 - Conceito
- Distribuição de probabilidade
- Exemplos
 - Bernoulli
 - Uniforme
 - Binomial
 - Geométrica
- Valor esperado
 - Regra do valor esperado
 - Linearidade

- Definição informal
 - Variável numérica que assume valores a depender do resultado de um evento probabilístico.

- Definição informal
 - Variável numérica que assume valores a depender do resultado de um evento probabilístico.

- Definição informal
 - Variável numérica que assume valores a depender do resultado de um evento probabilístico.

- Definição informal
 - Variável numérica que assume valores a depender do resultado de um evento probabilístico.

- Definição informal
 - Variável numérica que assume valores a depender do resultado de um evento probabilístico.

- Definição formal
 - Uma variável aleatória associa um valor numérico a cada possível evento
 - Funções que mapeiam do espaço amostral para os reais
 - Pode assumir valores discretos ou contínuos

- Definição formal
 - Uma variável aleatória associa um valor numérico a cada possível evento
 - Funções que mapeiam do espaço amostral para os reais
 - Pode assumir valores discretos ou contínuos

Variável aleatória: X valor numérico: x

- Descrição da variável aleatória
- Distribuição de probabilidade ou função massa de probabilidade
- Eventos tem probabilidade diferentes valores numéricos tem probabilidades diferentes

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

- x = 5
- $\{\omega: X(\omega) = 5\} = \{a, b\}$
- $p_X(5) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

•
$$x = 5$$

•
$$\{\omega: X(\omega) = 5\} = \{a, b\}$$

•
$$p_X(5) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \ s.t \ X(\omega) = x\})$$

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

•
$$x = 5$$

•
$$\{\omega: X(\omega) = 5\} = \{a, b\}$$

•
$$p_X(5) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \ s.t \ X(\omega) = x\})$$

$$P(a) = P(b) = P(c) = P(d) = \frac{1}{4}$$

•
$$x = 5$$

•
$$\{\omega: X(\omega) = 5\} = \{a, b\}$$

•
$$p_X(5) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \ s.t \ X(\omega) = x\})$$

X

Encontrar $p_Z(z)$

Variável aleatória Bernoulli

Variável aleatória que assume valores 0 ou 1

•
$$p_X(1) = p$$
 e $p_X(0) = 1 - p$

Variável aleatória Bernoulli

Variável aleatória que assume valores 0 ou 1

•
$$p_X(1) = p$$
 e $p_X(0) = 1 - p$

Variável aleatória Bernoulli

· Variável aleatória que assume valores 0 ou 1

•
$$p_X(1) = p$$
 e $p_X(0) = 1 - p$

$$p_X(1) = P(A) = p$$

Variável aleatória uniforme

Parâmetros a e b

Variável aleatória uniforme

· Parâmetros a e b

Variável aleatória uniforme

- Parâmetros a e b
- *a* ≤ *b*
- Valores equiprováveis
- b-a+1 possíveis valores b-a+1

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

Utilizada para modelar o número de sucessos em jogadas independentes

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

$$p_X(2) = P(HHT) + P(HTH) + P(THH)$$

$$+P(THH)$$

$$p_X(2) = 3p^2(1-p) = {3 \choose 2}p^2(1-p)$$

- Experimento: n lançamentos de uma moeda P(H) = p
- Parâmetros: p e n
- Espaço amostral: sequências de H e T de tamanho n
- Variável aleatória: número de H

$$p_X(2) = P(HHT) + P(HTH) + P(THH)$$

$$+P(THH)$$

$$p_X(2) = 3p^2(1-p) = {3 \choose 2}p^2(1-p)$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Variável aleatória geométrica

- Experimento: lançamento (independentes) de uma moeda infinitas vezes P(H) = p
- Espaço amostral: Sequencias de H e T de tamanho infinito
- Variável aleatória: numero de jogadas até a primeira H
- Utilizado para modelar: tempo de espera, numero de tentativas até o sucesso ...

Variável aleatória geométrica

- Experimento: lançamento (independentes) de uma moeda infinitas vezes P(H) = p
- Espaço amostral: Sequencias de H e T de tamanho infinito
- Variável aleatória: numero de jogadas até a primeira H
- Utilizado para modelar: tempo de espera, numero de tentativas até o sucesso ...
- $p_X(k) = P(X = k) = P(TT ... TH) = (1 p)^{k-1}p$

Variável aleatória geométrica

- Experimento: lançamento (independentes) de uma moeda infinitas vezes P(H) = p
- Espaço amostral: Sequencias de H e T de tamanho infinito
- Variável aleatória: numero de jogadas até a primeira H
- Utilizado para modelar: tempo de espera, numero de tentativas até o sucesso ...

•
$$p_X(k) = P(X = k) = P(TT ... TH) = (1 - p)^{k-1}p$$

Valor Esperado

- Descrição de uma variável aleatória
- Exemplo
 - Cada rodada de um jogo
 - X = 1 P(X=1) = 0.2
 - X = 2 P(X=2) = 0.5
 - X = 4 P(X=4) = 0.3
- Quantos pontos você espera ter ao final do jogo?

Valor Esperado

- Descrição de uma variável aleatória
- Exemplo
 - Cada rodada de um jogo

•
$$X = 1$$
 $P(X=1) = 0.2$

•
$$X = 2 P(X=2) = 0.5$$

•
$$X = 4$$
 $P(X=4) = 0.3$

- Quantos pontos você espera ter ao final do jogo?
- Pontuação média

$$\frac{1x200 + 2x500 + 4x300}{1000} = 1x0.2 + 2x0.5 + 4x0.3$$

Valor Esperado

- Descrição de uma variável aleatória
- Exemplo
 - Cada rodada de um jogo

•
$$X = 1$$
 $P(X=1) = 0.2$

•
$$X = 2 P(X=2) = 0.5$$

•
$$X = 4$$
 $P(X=4) = 0.3$

- Quantos pontos você espera ter ao final do jogo?
- Pontuação média

•
$$\frac{1x200+2x500+4x300}{1000} = 1x0.2 + 2x0.5 + 4x0.3$$

$$E[X] = \sum_{x} x \, p_X(x)$$

Valor Esperado de uma v.a. Bernoulli

•
$$P(X=1) = p e P(X=0) = 1-p$$

Valor Esperado de uma v.a. Bernoulli

- P(X=1) = p e P(X=0) = 1-p
- E[X] = 1 p + 0(1 p) = p

Valor Esperado de uma v.a. uniforme

• Uniforme em 0,1, ...,n

Valor Esperado de uma v.a. uniforme

Uniforme em 0,1, ...,n

•
$$E[X] = 0 \frac{1}{n+1} + 1 \frac{1}{n+1} + \dots + n \frac{1}{n+1} = \frac{1}{n+1} \frac{n(n+1)}{2} = \frac{n}{2}$$

Propriedades do valor esperado

• Se $X \ge 0$ então $E[X] \ge 0$

$$E[X] = \sum_{x} x \, p_X(x)$$

Propriedades do valor esperado

- Se $X \ge 0$ então $E[X] \ge 0$
- Se a $\leq X \leq b$ então a $\leq E[X] \leq b$

$$E[X] = \sum_{x} x \, p_X(x)$$

Propriedades do valor esperado

- Se $X \ge 0$ então $E[X] \ge 0$
- Se a $\leq X \leq b$ então a $\leq E[X] \leq b$
- E[c] = c

$$E[X] = \sum_{x} x \, p_X(x)$$

• Seja X uma v.a e seja Y = g(X)

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]
 - $E[Y] = \sum_{y} y p_Y(y)$

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]
 - $E[Y] = \sum_{y} y p_Y(y)$
 - E[Y] = 3x0.3 + 4x0.7

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]
 - $E[Y] = \sum_{y} y p_Y(y)$
 - E[Y] = 3x0.3 + 4x0.7
 - Calculando os valores em y

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]
 - $E[Y] = \sum_{y} y p_Y(y)$
 - E[Y] = 3x0.3 + 4x0.7
 - Calculando os valores em y
 - Calculando os valores em x
 - E[Y] = 3x0.1 + 3x0.2 + 4x0.3 + 4x0.4

- Seja X uma v.a e seja Y = g(X)
- Como calcular E[Y]

•
$$E[Y] = \sum_{y} y p_Y(y)$$

•
$$E[Y] = 3x0.3 + 4x0.7$$

- Calculando os valores em y
- Calculando os valores em x

•
$$E[Y] = 3x0.1 + 3x0.2 + 4x0.3 + 4x0.4$$

$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\sum_{y} \sum_{x:g(x)=y} g(x) p_X(x)$$

•
$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

- $\sum_{y} \sum_{x:g(x)=y} g(x) p_X(x)$
- $\sum_{y} \sum_{x:g(x)=y} y p_X(x)$

•
$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\sum_{\mathcal{Y}} \sum_{x:g(x)=y} g(x) p_X(x)$$

•
$$\sum_{y} \sum_{x:g(x)=y} y p_X(x)$$

•
$$\sum_{y} y \sum_{x:g(x)=y} p_X(x)$$

•
$$E[Y] = E[g(X)] = \sum_{x} g(x) p_X(x)$$

•
$$\sum_{\mathcal{Y}} \sum_{x:g(x)=y} g(x) p_X(x)$$

•
$$\sum_{y} \sum_{x:g(x)=y} y p_X(x)$$

•
$$\sum_{y} y \sum_{x:g(x)=y} p_X(x)$$

•
$$\sum_{y} y p_{Y}(y)$$

Linearidade de Esperanças

$$\cdot E[aX + b] = a E[X] + b$$

Linearidade de Esperanças

- $\bullet E[aX + b] = a E[X] + b$
- Prova
 - $E[g(X)] = \sum_{x} g(x) p_X(x)$
 - $E[g(X)] = \sum_{x} (ax + b)p_X(x)$
 - $E[g(X)] = a \sum_{x} x p_X(x) + b \sum_{x} p_X(x)$
 - $E[g(X)] = aE[X] + b \ 1$

DÚVIDAS?