

Minimizing Age of Incorrect Information for Unreliable Channel with Power Constraint

Yutao Chen and Anthony Ephremides

Department of Electrical and Computer Engineering University of Maryland, College Park

GlobeCom2021, December 2021

Scheduling to Minimize Age of Incorrect Information with Imperfect Channel State Information

SECTION 1

SECTION 2

SECTION 3

Frame Subtitle

Equation

$$\arg\min_{\phi\in\Phi} \lim_{T\to\infty} \frac{1}{T} \mathbb{E}\left[\sum_{t=0}^{T-1} s^{\phi}(t) \mid \phi, (d(0), s(0))\right]$$
 (1)

ullet Φ is the collection of all feasible series of actions ullet $s^\phi(t)$ is the penalty paid at time t when the **transmitter acted** following the series of actions $\phi ullet$ (d(0), s(0)) are the initial values of the difference and the penalty respectively

Normal text

Some text [1]

SECTION 1

SECTION 2

SECTION 3

Columns

- The command creates the frame environment, see full example to the right.
 - Options are for setting frame labels or template specific frame types – see next slide and the examples section
- Examine the main.tex file and Beamer class for more LATEX code examples

Enumerate

- 1. item 1
 - 1.1 text
 - 1.1.1 Text2
- 2. item 2

- The command creates the frame environment, see full example to the right.
- Options are for setting frame labels or template specific frame types – see next slide and [2] the examples section
- Examine the main.tex file and Beamer class for more LATEX code examples

Figure

Figure: Random system settings

Figure: Random system settings with Whittle

Table

Table 1: Optimal thresholds for different p

	Mixing Coef.	n_1	n_2	n_3	n_4	n_5	n_6
p = 0.1	$\mu = 0.7176$	15	6/7	1	1	1	1
p = 0.2	$\mu = 0.0331$	37	16	8/9	1	1	1
p = 0.3	$\mu = 0.1178$	69	25/26	15	1	1	1

SECTION 1

SECTION 2

SECTION 3

Blocks

Theorem 1.1 (Optimal Policy)

Theorem

Lemma 1.1 (Monotone)

lemma

Blocks

Theorem 1.1 (Optimal Policy)

Theorem

Lemma 1.1 (Monotone)

lemma

Corollary 1.1 (Consequences)

corollary

Proposition 1.1 (Structural Property)

proposition

More Blocks

Definition 1.1 (Statistically Identical)

Definition

Assumption 1.1 (Perfect CSI)

assumption

More Blocks

Definition 1.1 (Statistically Identical)

Definition

Assumption 1.1 (Perfect CSI)

assumption

Remark 1

emark

Example - Machine Overheating

Example

Blocks references According to Theorem 1.1, Lemma 1, Corollary 1, and Proposition 1.

Summary

Combination is a combination of age-based metrics framework.

Sufficiency characterize the "Real-time Error" metric in some systems and for some choices of penalty functions.

Semantic communication goal is taken into account.

Thank You!

cheny@umd.edu

References

- [1] Sanjit Kaul, Roy Yates, and Marco Gruteser.
 Real-time status: How often should one update?
 In 2012 Proceedings IEEE INFOCOM, pages 2731–2735. IEEE, 2012.
- [2] Roy D. Yates, Yin Sun, D. Richard Brown, Sanjit K. Kaul, Eytan Modiano, and Sennur Ulukus. Age of information: An introduction and survey.

 IEEE Journal on Selected Areas in Communications, 39(5):1183–1210, 2021.