PRIPREMA

- proučiti poglavlje Poluvodičke diode iz skripte Elektronika 1, I dio.
- Strujno-naponska karakteristika diode dobro je opisana jednadžbom

$$I_D = I_S \left[\exp \left(\frac{U_D}{mU_T} \right) - 1 \right]$$

Uz pretpostavku da je m = 1, $U_T = 25,84$ mV i $I_S = 1$ nA, odredite napon na diodi pri kojem je struja kroz diodu jednaka $10 \cdot I_s$ i $100 \cdot I_s$ Kolika se greška unosi u proračun struje pri naponu $U_D = 0.5 \text{ V}$ u slučaju da se zanemari jedinica u uglatoj zagradi? Grešku izrazite u postocima u odnosu na vrijednost struje koja se dobiva bez zanemarenja.

Prostor za rješavanje:

| Selvicij | 10.25 =
$$\frac{1}{25} \left(exp \left(\frac{U_D}{U_T} \right) - 1 \right)$$
 | 100 = $exp \left(\frac{U_D}{U_T} \right) - 1$ | 100 = exp

regularno (sa -1)

$$1D = 10^9 \left[\exp\left(\frac{0.5}{25.84 \times 10^{-3}}\right) - 1 \right]$$
 $1D = 0.2532392361 A$
 $12aboronnimo - 1'$
 $1'p = 10^9 \cdot \exp\left(\frac{0.5}{25.84 \times 10^{-3}}\right)$
 $1'b = 0.2532392371 A$
 $\Rightarrow qreska : 100 - \frac{1}{16} \cdot 100 = \frac{3.949 \times 10^{-7}}{16} = 0,0000003949\%$

3. Za diodu iz 1. zadatka odredite napon U_D pri kojem je struja I_D jednaka 0,1 mA, 1 mA, 10 mA, 20 mA, 30 mA, 40 mA i 50 mA. Rezultate upišite u tablicu.

I_D [mA]	$U_D[V]$				
0,1	0.297				
1	0.354				
10	0.416				
20	0.434 0.445 0.452 0.458				
30					
40					
50					

Prostor za rješavanje:

 Rezultate za strujno-naponsku karakteristiku iz 2. zadatka ucrtajte u dijagram (upute za dijagram: na apscisi je napon U_D u rasponu od 0 do 0,7 V, a na ordinati struja I_D u linearnom mjerilu u rasponu od 0 do 50 mA).

RAD U LABORATORIJU

1. Spojite sklop prema slici 2. Smanjiti napon na izvoru napajanja na 0 V!!!

Slika 2. Sklop za mjerenje

Na slici 3. je prikazan simbol diode u odnosu na njezin stvarni izgled. Obratite pažnju da dioda mora biti propusno polarizirana.

Slika 3. Simbol diode i njezin stvarni izgled

Pomoću izvora napajanja podešava se struja diode prema vrijednostima upisanim u tablici 1. Budući da je ulazni otpor osciloskopa velik (približno 1 $M\Omega$), struja koja ulazi u osciloskop može se zanemariti.

$$I = I_D + I_{osc} \approx I_D \tag{2.1}$$

Zbog toga je vrijednost struje diode približno jednaka struji koja prolazi kroz ampermetar (A). Otpornik R od 220 Ω koristi se kao zaštita od prevelike struje kroz diodu. Izmjerene vrijednosti ucrtajte u dijagrame na slikama 4 i 5. (u dijagram 1 linearnu raspodjelu struje, a u dijagram 2 logaritamsku raspodjelu struje).

Tablica 1. Izmjerene vrijednosti napona za zadane struje kroz diodu

		Tablica 1.	izmjerene	Vrijednosti	паропа да да	ane surje	MOZ GIOGG	distance of the same of the sa
I_D [mA]	0,01	0,025	0,05	0,1	0,25	0,5	1	2,5 5
$U_D[V]$	0,46	0,50	0,52	0,56	0,60	0,63	0,65	0.68/0,72
		7 .	P	1				
I_D [mA]	10	25	50	$\rceil \setminus$	1			
$U_D[V]$	0,76	0.82	0.88]\				

NAPOMENA: Kada ste izmjerili napon diode uz struju 50 mA isključite izvor jer će u protivnom pregorib otpornik!!!!

Struja zasićenja I_S i parametar m određuju se iz jednadžbi

$$l_1 \approx l_S \exp\left(\frac{U_1}{mU_T}\right)$$
 (2.2)

$$I_2 \approx I_S \exp\left(\frac{U_2}{mU_T}\right) \tag{2.3}$$

gdje je naponski ekvivalent temperature U_T jednak

$$U_T = \frac{kT}{q} = \frac{T}{11600}$$
 , [V] $U_1 = 0.6$ (2.4)

Pretpostaviti da je temperatura T = 300 K, a za struje uzeti $I_1 = 0.25$ mA i $I_2 = 2.5$ mA.

NAPUTAK: Najjednostavnije je prvo odrediti parametar m tako da se jednadžba (2.2) podijeli s jednadžbom (2.3). Rezultate upišite u tablicu 2.

Prostor za rješavanje:

$$\frac{1}{e \times p\left(\frac{U1}{mU\tau}\right)} = \frac{12}{e \times p\left(\frac{U2}{mU\tau}\right)}$$

$$\frac{0.25 \times 10^{-3}}{e_{\times p}\left(\frac{0.6}{m \cdot \frac{300}{11600}}\right)} = \frac{2.5 \times 10^{-3}}{e \times p\left(\frac{0.68}{m \cdot \frac{300}{11600}}\right)}$$

$$\longrightarrow m = 1.343$$

$$Is = \frac{11}{\text{Cyp}\left(\frac{u1}{\text{m} \cdot U_{\text{T}}}\right)}$$

$$Is = 7.863 \times 10^{-12} \text{ A}$$

Tablica 2. Parametri diode

$I_{s}[A]$	m		
7.863pA	1.34		

 Za grafičko određivanje parametra I_S poslužit će rezultati mjerenja za struje u rasponu od 0,1 mA do 10 mA. Pri tim strujama može se pretpostaviti da je

$$I_D \approx I_S \exp\left(\frac{U_D}{mU_T}\right)$$
 (2.5)

Ako se ova jednadžba logaritmira, dobiva se

$$log I_D = log I_S + \frac{U_D}{mU_T} log e$$
 (2.6)

Ovdje valja primijetiti da lijeva strana gornje jednadžbe <u>predstavlja logaritamsku raspodjelu struje, tj.</u> upravo ono što je prikazano na slici 5. Ako se kroz ucrtane rezultate mjerenja povuče pravac i taj pravac produži do ordinate, mjesto presjecišta pravca i ordinate predstavlja I_S , jer za $U_D = 0$ vrijedi da je $\log I_D = \log I_S$, tj. $I_D = I_S$. Vrijednost I_S upišite u tablicu 3.

Tablica 3. Struja zasićenja određena grafičkim putem

4. Pomoću parametra I_s , izračunatog u drugom zadatku, odredite za struju $I_3 = 50$ mA teoretsku vrijed n_{0} napona na pn spoju

$$U_{3izr} = mU_T \ln \frac{l_3}{l_s} = 0.784$$
 (2.7)

i na osnovu te vrijednosti odredite unutrašnji serijski otpor diode Ru preko izraza

$$R_{u} = \left| \frac{U_{3mj}^{0.3\%} - U_{3izr}}{I_{3}} \right| = 1.32$$
 (2.8)

Vrijednost Ru upišite u tablicu 4.

Tablica 4. Unutrašnji serijski otpor diode

Slika 4. Dijagram 1 - Ovisnost struje o naponu na diodi (linearna raspodjela struje)

Slika 5. Dijagram 2 - Ovisnost struje o naponu na diodi (logaritamska raspodjela struje)

NAPOMENA: Na ordinati je prikazano logaritamsko mjerilo. Tako npr. između glavnih oznaka za struju od 1 mA i 10 mA postoje samo 2 dodatne crtice, za struje od 2,5 mA i 5 mA. Slično vrijedi za raspon struja od 10 do 100 nA, gdje dodatne crtice označavaju struje od 25 i 50 nA. Ako se udaljenost između glavnih oznaka, npr. između 1 i 10 mA, uzme kao 100%, tada je struja od 2,5 mA na 40 %, a 5 mA je na 70 % te udaljenosti.