

# Chapter 2: Relational Model

- Structure of Relational Databases
- Relational Algebra
- \*Tuple Relational Calculus
- \*Domain Relational Calculus
- \*Extended Relational-Algebra-Operations
- Modification of the Database
- \*Views







#### 2.1 What is relational model

- The relational model is very simple and elegant.
- A relational database is a collection of one or more relations, which are based on relational model.
- A relation is a table with rows and columns.
- The major advantages of the relational model are its simple data representation and the ease with which even complex queries can be expressed.
- Owing to the great language SQL, the most widely used language for creating, manipulating, and querying relational database.





base System Concepts

# **Example of a Relation**

| ID    | пате       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

#### A relation for *instructor*

*Cf.* A relationship (联系): an association among several entities . A relation(关系): is the mathematical concept, referred to a table

Entity set and relationship set  $\leftarrow \rightarrow$  real world

Relation - table, tuple - row  $\leftarrow \rightarrow$  machine world





#### 2.2 Basic Structure

- Formally, given sets  $D_1$ ,  $D_2$ , ...,  $D_n$ ,  $(D_i = a_{ij}|_{j=1...k})$  relation r is a subset of  $D_1 \times D_2 \times ... \times D_n$ 
  - a Cartesian product (笛卡儿积) of a list of domain  $D_{i}$ .
- Thus a relation is a set of n-tuples  $(a_{1j}, a_{2j}, ..., a_{nj})$  where each  $a_{ij} \in D_i$ .
- 例如:

张清玫教授, 计算机, 李勇 张青玫教授, 计算机, 刘晨 刘逸教授, 信息, 王名

A relation for sup-spec-stud





# **Example of Cartesian product**

D<sub>1</sub>= 导师集合 = { 张清玫,刘逸 },

 $D_2$  = 专业集合 = { 计算机,信息 },

 $D_3$  = 研究生集合 ={ 李勇,刘晨,王名}

则  $D_1 \times D_2 \times D_3 = \{( 张清政, 计算机, 李勇 ),$ 

(张清玫,计算机,刘晨 ),

(张清政,计算机,王名),

(张清玫,信 息,李勇),

(张清玫,信息,刘晨),

(张清玫,信 息,王名),

(刘 逸, 计算机, 李勇 ),

(刘 逸, 计算机, 刘晨 ),

(刘 逸,计算机,王名 ),

(刘 逸,信 息,李勇 ),

(刘 逸,信 息,刘晨),

(刘 逸,信 息,王名)},

共 12 个元组。

| D1                          | D2               | D3              |
|-----------------------------|------------------|-----------------|
| →><br>张张张张张刘刘刘刘刘刘<br>对玫玫玫玫玫 | 计计计信信信计计计信信信制的分词 | 李刘王李刘王李刘王李刘王李刘王 |

#### 笛卡儿积可用一张二维表表示

#### sup-spec-stud

 张清政
 计算机
 李

 勇
 张清政
 计算机
 刘

 就海
 信息





#### Example: if

```
dept_name = {Biology,Finance,History,Music}
building = {Watson,Painter,Packard}
budget = {50000,80000,90000,120000}
Then r = \{(Biology, Watson, 90000),
         (Finance, Painter, 120000),
         (History, Painter, 50000),
         (Music, Packard, 80000)}
is a relation over dept_name x building x
budget . (total 48 tuples)
```







base System Concepts

# (1) Attribute Types

- Each attribute of a relation has a name.
- The set of allowed values for each attribute is called the domain (域) of the attribute.
- Attribute values are (normally) required to be atomic, that is, indivisible. (1st NF, 第一范式)
  - E.g. multivalued attribute values are not atomic
  - E.g. composite attribute values are not atomic
- The special value *null* is a member of every domain.
- The null value causes complications in the definition of many operations.
  - we shall ignore the effect of null values for the moment and consider their effect later.



## (2) Concepts about relation

- A Relation is concerned with two concepts: relation schema and relation instance.
- The relation schema describe the structure of the relation.
  - E.g. *Instructor-schema = (ID*: string, *name*: string, *dept\_name*: string, *salary*: int)
  - or Instructor-schema = (ID, name, dept\_name, salary)
- The relation instance corresponds to the snapshot of the data in the relation at a given instant in time.
- C.f.: Database schema and database instance.





- Variable ←→ relation
- Variable type ←→ relation schema







### (2-a) Relation Schema

- $\blacksquare$   $A_1, A_2, ..., A_n$  are attributes
- Formally expressed :

$$R = (A_1, A_2, ..., A_n)$$
 is a relation schema

- E.g. Instructor-schema = (ID, name, dept\_name, salary)
- $\blacksquare$  r(R) is a *relation* on the *relation schema* R
- E.g. instructor(Instrutcor-schema)=
  instructor(ID, name, dept\_name, salary)





## (2-b) Relation Instance

The current values (relation instance) of a relation are specified by a table.

An element t of r is a tuple, represented by a row in a table.
attributes

|       | 4          | +          | -      |              |
|-------|------------|------------|--------|--------------|
| ID    | name       | dept_name  | salary | (or columns) |
| 10101 | Srinivasan | Comp. Sci. | 65000  |              |
| 12121 | Wu         | Finance    | 90000  |              |
| 15151 | Mozart     | Music      | 40000  | ( )          |
| 22222 | Einstein   | Physics    | 95000  | ✓ (or rows)  |
| 32343 | El Said    | History    | 60000  |              |
| 33456 | Gold       | Physics    | 87000  |              |
| 45565 | Katz       | Comp. Sci. | 75000  |              |
| 58583 | Califieri  | History    | 62000  |              |
| 76543 | Singh      | Finance    | 80000  |              |
| 76766 | Crick      | Biology    | 72000  |              |
| 83821 | Brandt     | Comp. Sci. | 92000  |              |
| 98345 | Kim        | Elec. Eng. | 80000  |              |

Let a tuple variable t stands for a tuple. Then

*t* [name] denotes the value of *t* on the name attribute.

base System Concepts





## (3) Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order), and tuples in a relation are no duplicate.
- E.g. *department*(*dep\_name*, *building*, *budget*) relation with unordered tuples.

| dept_name  | building | budget |
|------------|----------|--------|
| Biology    | Watson   | 90000  |
| Comp. Sci. | Taylor   | 100000 |
| Elec. Eng. | Taylor   | 85000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Music      | Packard  | 80000  |
| Physics    | Watson   | 70000  |







# (4) Keys(码、键)

Let K ⊂ R

base System Concepts

- *K* is a *superkey* (超码) of *R* if values for *K* are sufficient to identify a unique tuple of each possible relation *r(R)* 
  - Example: {instructor-ID, instructor-name} and {instructor-ID} are both superkeys of instructor.
- K is a candidate key (候选码) if K is minimal superkey. Example: {instructor-ID} is a candidate key for instructor, since it is a superkey, and no subset of it is a superkey.
- K is a primary key (主码), if k is a candidate key and been defined by user explicitly. Primary key is usually marked by underline.



# (5) Foreign key(外键,外码)

Assume there exists relation r and s:  $r(\underline{A}, B, C)$ ,  $s(\underline{B}, D)$ , we can say that attribute B in relation r is foreign key referencing s, and r is a referencing relation (参照关系), and s is a referenced relation (被参照关系).

**e.g.** ◆ 学生(学号,姓名,性别,专业号,年龄)- 参照关系 专业(专业号,专业名称)- 被参照关系 (目标关系) 其中属性专业号称为关系学生的外码。

> 选修(学号,课程号,成绩) 课程(课程号,课程名,学分,先修课号)

instructor(<u>ID</u>,name,dept\_name,salary) --- referencing relation

department(<u>dept name</u>,building,budget) --- referenced
relation

参照关系中外码的值必须在被参照关系中实际存在或为 null



Database System Concepts

# (6) Schema of the University Database

- classroom(<u>building,room number</u>,capacity)
- department(<u>dept name</u>,building,budget)
- course(course id,title,dept\_name,credits)
- instructor(ID,name,dept\_name,salary)
- section(<u>course\_id,sec\_id,semester,year</u>,building,room\_nu mber,time\_slot\_id)
- teaches(ID,course id,sec id,semester,year)
- student(<u>ID</u>,name,dept\_name,tot\_cred)
- takes(ID,course id,sec id,semester,year,grade)
- advisor(<u>s ID,i ID</u>)

Database System Concepts

- time\_slot(time\_slot\_id,day,start\_time,end\_time)
- prereq(course id,prereq id)



# (6) Schema Diagram (模式图) for the University Database





## (7) Query Languages

- Language in which user requests information from the database.
- "Pure" languages:
  - Relational Algebra the basis of SQL
  - Tuple Relational Calculus (元组关系演算)
  - Domain Relational Calculus (域关系演算) QBE
- Pure languages form underlying basis of query languages that people use, e.g. SQL.







# 2.3 Relational Algebra

- Procedural language (in some extent).
- Six basic operators
  - Select 选择
  - Project 投影
  - Union 并
  - set difference 差(集合差)
  - Cartesian product 笛卡儿积
  - ♠ Rename 改名(重命名)
- The operators take one or two relations as inputs and give a new relation as a result.
- Additional operations
  - Set intersection 交
  - Natural join 然连接
  - Division 除
  - Assignment 赋值





# (1) Select Operation – Example

• Relation r =

| Α        | В | С  | D  |
|----------|---|----|----|
| α        | α | 1  | 7  |
| $\alpha$ | β | 5  | 7  |
| β        | β | 12 | 3  |
| β        | β | 23 | 10 |

注: 执行选择时, 选择条件 必须是针对同一元组中的相 应属性值代入进行比较。

$$\forall \sigma_{A=\beta^{\land D>5}}(r)$$

| Α | В | С  | D  |
|---|---|----|----|
| β | β | 23 | 10 |







## (1) Select Operation (cont.)

- Notation:  $\sigma_{p}(r)$ ,  $\sigma$  is pronounced as sigma
- p is called the selection predicate
- Defined as:  $\sigma_p(r) = \{ t \mid t \in r \text{ and } p(t) \}$

Where p is a formula in propositional calculus consisting of terms connected by:  $\land$  (and),  $\lor$  (or),  $\neg$  (not)

Each term is one of:

<attribute>*op* <attribute> or <constant> where *op* is one of: =, ≠, >, ≥, <, ≤

Example of selection:

σ<sub>dept\_name ='Finance'</sub> (department)





| dept_name  | building | budget |
|------------|----------|--------|
| Biology    | Watson   | 90000  |
| Comp. Sci. | Taylor   | 100000 |
| Elec. Eng. | Taylor   | 85000  |
| Finance    | Painter  | 120000 |
| History    | Painter  | 50000  |
| Music      | Packard  | 80000  |
| Physics    | Watson   | 70000  |

 $\sigma_{dept\_name = 'Finance'}(department)$ 







# (2) Project Operation – Example

#### Relation r:



 $\prod_{A,C} (r)$ 

| Α       | С |    | Α | С |
|---------|---|----|---|---|
| α       | 1 |    | α | 1 |
| α       | 1 | => | β | 1 |
| $\beta$ | 1 |    | β | 2 |
| β       | 2 |    |   |   |







# (2) Project Operation (cont.)

Notation:

 $\prod_{A1, A2, ..., Ak} (r)$ ,  $\prod$  is pronounced as pi where  $A_1, ..., A_k$  are attribute names and r is a relation name

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets.
- E.g. To eliminate the building attribute of department

$$\prod_{building}$$
 (department)







# (3) Union Operation – Example

#### Relations r, s:

| Α        | В |  |
|----------|---|--|
| α        | 1 |  |
| α        | 2 |  |
| β        | 1 |  |
| <b>r</b> |   |  |

| Α | В |  |
|---|---|--|
| α | 2 |  |
| β | 3 |  |
| S |   |  |

r∪s:

Database System Concepts

| A        | В |
|----------|---|
| $\alpha$ | 1 |
| $\alpha$ | 2 |
| β        | 1 |
| β        | 3 |





## (3) Union Operation (cont.)

- **Notation:**  $r \cup s$
- Defined as:  $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$
- For r ∪ s to be valid :
  - 1. *r, s* must have the *same arity* (等目,同元,same number of attributes)
  - 2. The attribute domains must be *compatible* (e.g., 2nd column of r deals with the same type of values as does the 2nd column of s)
- E.g. to find all instructors and students

$$\prod_{\textit{name}}$$
 (instructor)  $\cup \prod_{\textit{name}}$  (student)







# (4) Set Difference Operation – Example

#### Relations r, s:

| Α        | В |  |
|----------|---|--|
| α        | 1 |  |
| α        | 2 |  |
| β        | 1 |  |
| <b>r</b> |   |  |

| Α | В |  |
|---|---|--|
| α | 2 |  |
| β | 3 |  |
| S |   |  |

r







# (4) Set Difference Operation (cont.)

- Notation r-s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
  - r and s must have the same arity
  - attribute domains of r and s must be compatible





#### (5) Cartesian-Product Operation-Example (广义笛卡儿积)

Relations *r*, *s*:



| С                                                                 | D                    | Ε                |
|-------------------------------------------------------------------|----------------------|------------------|
| $\begin{array}{c} \alpha \\ \beta \\ \beta \\ \gamma \end{array}$ | 10<br>10<br>20<br>10 | a<br>a<br>b<br>b |

*r* x s:

| Α        | В | С        | D  | E |
|----------|---|----------|----|---|
| α        | 1 | α        | 10 | а |
| α        | 1 | β        | 10 | а |
| α        | 1 | β        | 20 | b |
| $\alpha$ | 1 | γ_       | 10 | b |
| $\beta$  | 2 | $\alpha$ | 10 | а |
| β        | 2 | β        | 10 | а |
| β        | 2 | β        | 20 | b |
| β        | 2 | γ        | 10 | b |

S



# (5) Cartesian-Product Operation (cont.)

- Notation r x s
- Defined as:

$$r \times s = \{ \{t q\} \mid t \in r \text{ and } q \in s \}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is,  $R \cap S = \emptyset$ ).
- If attributes of r(R) and s(S) are not disjoint, then renaming for attributes must be used.







| A | В |  |
|---|---|--|
| α | 1 |  |
| α | 2 |  |
| β | 1 |  |
| r |   |  |

|      | A       | r.B | s.B |  |
|------|---------|-----|-----|--|
|      | α       | 1   | k   |  |
|      | α       | 2   | k   |  |
|      | β       | 1   | k   |  |
| rxs= | α       | 1   | d   |  |
|      | α       | 2   | d   |  |
|      | $\beta$ | 1   | d   |  |







- Can build expressions using multiple operations
- **Example:**  $\sigma_{A=C}(r \times s)$

| Α | В |  |
|---|---|--|
| α | 1 |  |
| β | 2 |  |
| r |   |  |

**Database System Concepts** 

| С                                                                  | D                    | E                |
|--------------------------------------------------------------------|----------------------|------------------|
| $\begin{bmatrix} \alpha \\ \beta \\ \beta \\ \gamma \end{bmatrix}$ | 10<br>10<br>20<br>10 | a<br>a<br>b<br>b |
| S                                                                  |                      |                  |

$$rxs = \begin{bmatrix} \alpha & 1 & \alpha & 10 & a \\ \alpha & 1 & \beta & 10 & a \\ \alpha & 1 & \beta & 20 & b \\ \alpha & 1 & \gamma & 10 & b \\ \beta & 2 & \alpha & 10 & a \\ \beta & 2 & \beta & 10 & a \\ \beta & 2 & \beta & 20 & b \\ \beta & 2 & \gamma & 10 & b \end{bmatrix}$$

$$\sigma_{A=C}(r \times s) = \begin{vmatrix} A & B & C & D & E \\ \alpha & 1 & \alpha & 10 & a \\ \beta & 2 & \beta & 20 & a \\ \beta & 2 & \beta & 20 & b \end{vmatrix}$$





# (7) Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions. (procedural)
- Allows us to refer to a relation by more than one name.

Example:  $\rho_{\mathbf{x}}(\mathbf{E}), \rho$  is pronounced as rho

returns the expression  $\boldsymbol{E}$  under the name  $\boldsymbol{X}$ 

If a relational-algebra expression *E* has arity *n*, then

$$\rho_{\mathbf{X}}$$
 (A1, A2, ..., An) (E)

(对 relation **E**及其 attributes 都重命名)

returns the result of expression E under the name X, and with the attributes renamed to A1, A2, ..., An.







## **Banking Example**

- branch (branch-name, branch-city, assets)
- customer (customer-name, customer-street, customer-city)
- account (<u>account-number</u>, branch-name, balance)
- loan (<u>loan-number</u>, branch-name, amount)
- depositor (<u>customer-name</u>, <u>account-number</u>)
- **borrower** (customer-name, loan-number)







# **Example Queries**

Example 1: Find all loans of over \$1200

$$\sigma_{amount > 1200}$$
 (loan)

Example 2: Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan-number} (\sigma_{amount > 1200} (loan))$$

loan (loan-number, branch-name, amount)







se System Concepts

## **Example Queries**

Example 3: Find the names of all customers who have a loan, or an account, or both, from the bank

$$\prod_{customer-name}$$
 (borrower)  $\cup \prod_{customer-name}$  (depositor)

**Example 4: Find the names of all customers who at least have a loan and an account at bank.** 

$$\prod_{customer-name}$$
 (borrower)  $\cap \prod_{customer-name}$  (depositor)

depositor (customer-name, account-number) borrower (customer-name, loan-number)





# **Example Queries**

Example 5: Find the names of all customers who have a loan at the Perryridge branch.

Query1:  $\Pi_{customer-name}$  ( $\sigma_{branch-name="Perryridge"}(\sigma_{borrower.loan-number=loan.loan-number})$ 

Query2:  $\Pi_{customer-name}$  ( $\sigma_{borrower.loan-number = loan.loan-number}$  (borrower x ( $\sigma_{branch-name="Perryridge"}$ (loan))))

Query2 is better.

base System Concepts

loan (loan-number, branch-name, amount) borrower (customer-name, loan-number)





#### **Example Queries**

■ Example 6: Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

Query1:  $\Pi_{customer-name}$  ( $\sigma_{branch-name} = "Perryridge"$ 

 $(\sigma_{borrower.loan-number} = loan.loan-number)$  (borrower x loan))) -

 $\Pi_{customer-name}$ (depositor)

Query2:  $\Pi_{customer-name}$  ( $\sigma_{borrower.loan-number} = loan.loan-number$ 

(borrower x ( $\sigma_{branch-name="Perryridge"}(loan)))) –$ 

 $\Pi_{customer-name}$  (depositor)

Ioan (Ioan-number, branch-name, amount)
borrower (customer-name, Ioan-number)
depositor (customer-name, account-number)





### **Example Queries**

Example 7: Find the largest account balance.

(须进行自比较)

- •Rename account relation as d
- Step 1: find the relation that contains all balances except the largest one

$$\prod_{account.balance}$$

 $(\sigma_{account.balance} < d.balance (account x \rho_d (account)))$ 

**Step 2:** find the largest account balance.

 $\Pi_{balance}(account) - \Pi_{account.balance}$ 

 $(\sigma_{account.balance} < d.balance (account x \rho_d (account)))$ 







### **Additional Operations**

- We define additional operations that do not add any power to the relational algebra, but that simplify common queries.
- Set intersection
- Natural join
- Division
- Assignment





## (8) Set-Intersection Operation - Example

#### Relation r, s:

| Α | В |  |
|---|---|--|
| α | 1 |  |
| α | 2 |  |
| β | 1 |  |
| r |   |  |

| A  | В          |  |
|----|------------|--|
| αβ | <b>2</b> 3 |  |
| S  |            |  |



| A | В |
|---|---|
| α | 2 |







### (8) Set-Intersection Operation

- **Notation:**  $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:
  - r, s have the same arity
  - attributes of r and s are compatible
- Note:  $r \cap s = r \cdot (r \cdot s)$





#### (9) Natural-Join Operation

- Notation: r ⋈ s
- Example:

$$R = (A, B, C, D);$$
  $S = (E, B, D)$ 

• Result schema of natural-join of r and s = (A, B, C, D, E);

$$\bullet r \bowtie s = \prod_{r,A, r,B, r,C, r,D, s,E} (\sigma_{r,B=s,B} \wedge_{r,D=s,D} (r \times s))$$

Let r and s be relations on schemas R and S respectively.

Then,  $r \bowtie s$  is a relation on schema  $R \cup S$  obtained as follows:

- Consider each pair of tuples  $t_r$  from r and  $t_s$  from s.
- If  $t_r$  and  $t_s$  have the same value on each of the attributes in  $R \cap S$ , add a tuple t to the result, where
  - $\cdot t$  has the same value as  $t_r$  on r
  - \* t has the same value as  $t_s$  on s



### **Natural Join Operation – Example**

#### Relations r, s:



#### 注:

**Database System Concepts** 

- (1)r,s 必须含有共同属性 (名,域对应相同),
- (2) 连接二个关系中同名属性值相等的元组
- (3) 结果属性是二者属性集的并集,但消去重名属性。





- Theta join:  $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$ 
  - $\theta$  is the predicate on attributes in the schema.
- Theta Join is the extension to the Nature Join.







#### (10) Division Operation

 $r \div s$ 

Suited to queries that include the phrase "for all".

例:查询选修了所有课程的学生的学号。

enrolled

| Sno   | Cno | Grade |
|-------|-----|-------|
| 95001 | 1   | 92    |
| 95001 | 2   | 85    |
| 95001 | 3   | 88    |
| 95002 | 2   | 90    |
| 95002 | 3   | 80    |

 $\Pi_{\mathsf{Sno,\ Cno}}$  (enrolled) ÷  $\Pi_{\mathsf{Cno}}$  (course)







#### (10) Division Operation

$$r \div s$$

Let *r* and *s* be relations on schemas R and S respectively where

$$\bullet S = (B_1, ..., B_n)$$

The result of  $r \div s$  is a relation on schema

$$R - S = (A_1, ..., A_m)$$

$$r \div s = \{ t \mid t \in \prod_{R-s}(r) \land \forall u \in s (tu \in r) \}$$

注:商来自于 $\Pi_{R-s}(r)$ ,并且其元组t与s所有元组的拼接被r覆盖。







### **Division Operation – Example**

#### Relations r, s:

| Α        | В |
|----------|---|
| α        | 1 |
| $\alpha$ | 2 |
| $\alpha$ | 3 |
| $\beta$  | 1 |
| γ        | 1 |
| $\delta$ | 1 |
| $\delta$ | 3 |
| $\delta$ | 4 |
| $\in$    | 6 |
| $\in$    | 1 |
| β        | 2 |

1 2 **s** 

$$(r \div s = \{ t \mid t \in \prod_{R-s}(r) \land [ \forall u \in s (tu \in r)] \})$$

$$r \div s = \begin{bmatrix} A \\ \alpha \\ B \end{bmatrix}$$







#### **Another Division Example**

#### Relations *r*, *s*:

| Α                                                                   | В           | С                                                                      | D      | E                               |
|---------------------------------------------------------------------|-------------|------------------------------------------------------------------------|--------|---------------------------------|
| α                                                                   | а           | $\alpha$                                                               | а      | 1                               |
| $\alpha$                                                            | b           | $\gamma$                                                               | а      | 1                               |
| $\begin{bmatrix} \alpha \\ \alpha \\ \alpha \end{bmatrix}$          | b           | γ                                                                      | b      | 1                               |
| β                                                                   | а           | $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\beta$ | a<br>c | 1<br>1<br>1<br>2<br>3<br>1<br>1 |
| γ                                                                   | а           | γ                                                                      | С      | 2                               |
| $egin{array}{c} eta \ \gamma \ eta \ \gamma \ \gamma \ \end{array}$ | a a a a a c | γ                                                                      | b      | 3                               |
| γ                                                                   | а           | γ                                                                      | а      | 1                               |
| γ                                                                   | а           | γ                                                                      | b      | 1                               |
| γ                                                                   | С           | β                                                                      | b      | 1                               |

|        |   | \ \ |
|--------|---|-----|
| D      | E |     |
| а      | 1 | ר ( |
| a<br>b | 1 |     |
|        | • |     |

|                             |                     |   | ·        |           |      | l , |
|-----------------------------|---------------------|---|----------|-----------|------|-----|
| 1_                          | _α                  | a | $\alpha$ | _a        | _ 1_ |     |
|                             | $\alpha$            | b | γ        | a         | 1/   |     |
| 2_/                         | $\alpha$            | b | _γ       | <u> </u>  | 1    |     |
| 7                           | $\beta$             | а | $\gamma$ | -∫a       | 1    |     |
| 3                           | β                   | a | _γ       | b         | 3    | _ / |
| /_                          | $\gamma$            | а | $\gamma$ | C         | 2    |     |
| <mark>′</mark> 4            | γ                   | а | γ        | а         | 1    | $$  |
| <u>.</u>                    | <u> </u>            | a | _γ_      | <u></u> b | 1    |     |
| <b>5</b>                    | $-\frac{1}{\gamma}$ | С | $\beta$  | b         | 1    | _   |
| /                           |                     |   |          |           |      |     |
| To group all tuples in 'r ' |                     |   |          |           |      |     |

r

*r* ÷ s:

| A | В | С        |   |
|---|---|----------|---|
| α | b | γ        | Ś |
| γ | а | $\gamma$ |   |

To group all tuples in 'r' on the values of (A,B,C). For each group, if the set under D, E covers 's', then the group value should be added to the answer.



例: 求 Q=R÷S

| B<br>01    | C                          |
|------------|----------------------------|
| 1          | -1                         |
|            | с1                         |
| 1          | с1                         |
| 2          | с1                         |
| 2          | <b>c2</b>                  |
| <b>)</b> 1 | <b>c2</b>                  |
| 2          | c3                         |
| 2          | с4                         |
| <b>)</b> 1 | с5                         |
|            | 02<br>02<br>01<br>02<br>02 |

| Q         |           |
|-----------|-----------|
| A         | В         |
| <b>a1</b> | b1        |
| <b>a2</b> | <b>b1</b> |
| a1        | <b>b2</b> |
|           | a1<br>a2  |

| S         | Q  |           |
|-----------|----|-----------|
| С         | A  | В         |
| <b>c1</b> | a1 | <b>b2</b> |
| <b>c4</b> |    |           |
| <b>c2</b> |    |           |
| <b>c3</b> |    |           |

| S         |    |           |    |
|-----------|----|-----------|----|
| В         | С  | D         | A  |
| <b>b1</b> | c1 | d1        | a1 |
| <b>b2</b> | c1 | <b>d2</b> |    |
|           |    |           |    |

| <u>S</u>  |  |
|-----------|--|
| С         |  |
| с1        |  |
| <b>c2</b> |  |

| Q  |           |  |
|----|-----------|--|
| A  | В         |  |
| a1 | <b>b2</b> |  |
| a2 | b1        |  |

例:从SC表中查询至少选修1号课程和3号课程的学生号

码。SC

| Sno   | Cno | Gra <mark>de</mark> |
|-------|-----|---------------------|
| 95001 | 1   | 92                  |
| 95001 | 2   | 85                  |
| 95001 | 3   | 88                  |
| 95002 | 2   | <b>5</b> 0          |
| 95002 | 3   | 80                  |



 $\prod_{\mathsf{Sno},\,\mathsf{Cno}} (\mathsf{sc}) \div \mathsf{K}$ 





#### **Division Operation (Cont.)**

- Property
  - **●** Let *q = r ÷ s*
  - Then q is the largest relation satisfying  $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let  $S \subseteq R$

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$$

#### To see why,

- $\prod_{R-S,S}(r)$  simply reorders attributes of r
- $\bullet \prod_{R-S}(\prod_{R-S}(r) \times s) \prod_{R-S,S}(r)$ ) gives those tuples t in

 $\prod_{R-S} (r)$  such that for some tuple  $u \in s$ ,  $tu \notin r$ .





### (11) Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
  - Write query as a sequential program consisting of
    - \* a series of assignments
    - followed by an expression whose value is displayed as a result of the query.
  - Assignment must always be made to a temporary relation variable.
- Example: Write  $r \div s$  as

$$temp1 \leftarrow \prod_{R-S} (r)$$
 $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$ 
 $temp2 \leftarrow temp1 - temp2$ 

- The result to the right of the  $\leftarrow$  is assigned to the relation variable on the left of the  $\leftarrow$ .
- May use variable in subsequent expressions.





### **Example Queries**

Example 1: Find all customers who have an account from at least the "Downtown" and the "Uptown" branches.

```
Query 1

Π<sub>CN</sub>(σ<sub>BN="Downtown"</sub>(depositor *count)) ∩

Π<sub>CN</sub>(σ<sub>BN="Uptown"</sub>(depositor *count))

where CN denotes customer-name and BN denotes branch-name.
```

Query 2

 $\Pi_{customer-name, \ branch-name}$  (depositor  $\bowtie$  account)  $\div \rho_{temp(branch-name)} (\{("Downtown"),$ 



("Uptown")})



base System Concepts

Example 2: Find all customers who have an account at all branches located in Brooklyn city.

 $\prod_{customer-name, branch-name} (depositor account)$ 

- $+ \prod_{branch-name} (\sigma_{branch-city} = \text{"Brooklyn"}(branch))$
- example 3: 查询选修了全部课程的学生学号和姓名。
  - ■涉及表:课程信息 course(cno, cname, pre-cno, score),选课信息 sc(sno, cno, grade),学生信息 student(sno, sname, sex, age)
  - ■当涉及到求"全部"之类的查询,常用"除法"
  - •找出全部课程号:  $\Pi_{cno}$  (Course)
  - •找出选修了全部课程的学生的学号:

$$\prod_{\mathsf{Sno,Cno}}$$
 (SC) ÷  $\prod_{\mathsf{cno}}$  (Course)

•与 student 表自然连接(连接条件 Sno)获得学号、姓名

$$(\prod_{\mathsf{Sno,Cno}} (\mathsf{SC}) \div \prod_{\mathsf{cno}} (\mathsf{Course})) \triangleright \triangleleft \prod_{\mathsf{Sno,Sname}} (\mathsf{student})$$



#### summary

- Union , set difference , Set intersection 为双目、等元 运算
- Cartesian product , Natural join , Division 双目运算
- Project, select 为单运算对象
- Priority(关系运算的优先级):
  - Project
  - Select

Database System Concepts

- Cartesian Product(times)
- Join, division
- Intersection
- Union, difference





### 2.4 Extended Relational-Algebra-Operations

- Generalized Projection (广义投影)
- Aggregate Functions(聚集函数)
- Outer Join (外连接)







#### (1) Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.  $\prod_{\mathbf{F1. \, F2. \, .... \, Fn}} (\mathbf{E})$
- E is any relational-algebra expression
- Each of  $F_1$ ,  $F_2$ , ...,  $F_n$  are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit-info(customer-name, limit, credit-balance), find how much more each person can spend:

∏ <del>\* customer-name, limit – credit-balance</del> (credit-info)





# (2) Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

g<sub>avg (balance)</sub> (account) (

求平均存款余额)

Aggregate operation in relational algebra

$$g_{1, G_{2, ..., G_{n}}} g_{F_{1(A_{1}), F_{2(A_{2}), ..., F_{n(A_{n})}}}(E)$$

- E is any relational-algebra expression
- ullet  $G_1$ ,  $G_2$  ...,  $G_n$  is a list of attributes on which to group (can be empty)
- $\bullet$  Each  $F_i$  is an aggregate function
- Each A<sub>i</sub> is an attribute name





### (2) Aggregate Operation – Example

#### Relation r:

| Α       | В        | С  |
|---------|----------|----|
| α       | α        | 7  |
| α       | β        | 7  |
| β       | β        | 8  |
| $\beta$ | $\alpha$ | 14 |

$$g_{\text{avg(c)}}(r)$$
 avg-C

$$_{\mathsf{A}}g_{\,\mathsf{sum(c)}}(\mathsf{r})$$

| A | sum-c |
|---|-------|
| α | 14    |
| β | 22    |

$$_{\mathsf{B}}\mathcal{G}_{\mathrm{avg}(\mathbf{c})}(\mathbf{r})$$

| В | avg-c |
|---|-------|
| α | 10.5  |
| β | 7.5   |







### **Aggregate Operation – Example**

#### Relation account grouped by branch-name:

| branch-name | account-number | balance |
|-------------|----------------|---------|
| Perryridge  | A-102          | 400     |
| Perryridge  | A-201          | 900     |
| Brighton    | A-217          | 750     |
| Brighton    | A-215          | 750     |
| Redwood     | A-222          | 700     |

branch-name **g** sum(balance) (account)

Sum-balance

| branch-name |      |
|-------------|------|
| Perryridge  | 1300 |
| Brighton    | 1500 |
| Redwood     | 700  |







#### **Aggregate Functions (cont.)**

- Result of aggregation does NOT have a name
  - Can use rename operation to give it a name
  - For convenience, we permit renaming as part of aggregate operation

branch-name **g** sum(balance) as sum-balance (account)







### (3) Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
  - null signifies that the value is unknown or does not exist
  - All comparisons involving null are (roughly speaking) false by definition.
    - \*Will study precise meaning of comparisons with nulls later







| customer_name | loan_number |
|---------------|-------------|
| Jones         | L_170       |
| Smith         | L_230       |
| Hayes         | L 155       |

borrower

## Inner Join loan ⋈ borrower

因造成帐目不符

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L_170       | Downtown    | 3000   | Jones         |
| L_230       | Redwood     | 4000   | Smith         |

#### 

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L_170       | Downtown    | 3000   | Jones         |
| L_230       | Redwood     | 4000   | Smith         |
| L_260       | Perryridge  | 1700   | null          |

## Right Out Join loan | borrower

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L_170       | Downtown    | 3000   | Jones         |
| L_230       | Redwood     | 4000   | Smith         |
| L 155       | null        | null   | Hayes         |

### The concept of Join types





# Full Outer Join *loan* <u>▶</u> <u>borrower</u>

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L_170       | Downtown    | 3000   | Jones         |
| L_230       | Redwood     | 4000   | Smith         |
| L_260       | Perryridge  | 1700   | null          |
| L_155       | null        | null   | Hayes         |







#### (4) Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does NOT exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values
  - Is an arbitrary decision. Could have returned null as result instead.
  - We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
  - Alternative: assume each null is different from each other
  - Both are arbitrary decisions, so we simply follow SQL





#### **Null Values**

- Comparisons with null values return the special truth value unknown
  - If false was used instead of unknown, then not (A < 5) would not be equivalent to A >= 5
- Three-valued logic using the truth value unknown:
  - OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown
  - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
  - NOT: (not unknown) = unknown
  - In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as *false* if it evaluates to *unknown*





#### (5) Modification of the Database

- The content of the database may be modified using the following operations:
  - Deletion
  - Insertion
  - Updating
- All these operations are expressed using the assignment operator.







#### **Deletion**

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.







se System Concepts

#### **Deletion Examples**

Delete all account records in the Perryridge branch.

■Delete all loan records with amount in the range of 0 to 50

$$loan \leftarrow loan - \sigma_{amount \ge 0 and amount \le 50}$$
 (loan)

Delete all accounts at branches located in Needham.

$$r_1 \leftarrow \sigma_{branch-city} = "Needham" (account branch)$$

$$\mathbf{r_2} \leftarrow \prod_{branch-name, account-number, balance} (\mathbf{r_1})$$

$$r_3 \leftarrow \prod_{customer-name, account-number} (r_2 depositor)$$

$$account \leftarrow account - r_2$$

$$depositor \leftarrow depositor - r_3$$



#### Insertion

- To insert data into a relation, we either:
  - specify a tuple to be inserted
  - write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

base System Concepts

where r is a relation and E is a relational algebra expression.

The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.





se System Concepts

#### **Insertion Examples**

Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup \{("Perryridge", A-973, 1200)\} depositor \leftarrow depositor \cup \{("Smith", A-973)\}
```

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

```
r_1 \leftarrow (\sigma_{branch-name = "Perryridge"}(borrower \ Man))
account \leftarrow account \cup \prod_{branch-name, \ loan-number, \ 200}(r_1)
depositor \leftarrow depositor \cup \prod_{customer-name, \ loan-number}(r_1)
```





#### **Updating**

- A mechanism to change a value in a tuple without changing all values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F1, F2, \dots, Fl} (r)$$

■ Each F<sub>i</sub> is either

base System Concepts

- the ith attribute of r, if the ith attribute is not updated, or,
- if the attribute is to be updated  $F_i$  is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

2.71





#### **Update Examples**

Make interest payments by increasing all balances by 5 percent.

$$account \leftarrow \prod_{AN, BN, BAL * 1.05} (account)$$

where AN, BN and BAL stand for account-number, branch-name and balance, respectively.

Pay all accounts with balances over \$10,000 6 percent interest

and pay all others 5 percent

$$account \leftarrow \prod_{AN, BN, BAL * 1.06} (\sigma_{BAL > 10000} (account))$$

$$\cup \prod_{AN,\ BN,\ BAL \ ^* \ 1.05} (\sigma_{BAL \ \leq \ 10000} \ (account))$$





### **End of Chapter 2**

7th Edition: 2.6; 2.7; 2.14; 2.15