UC- Modelagem e Simulação do Mundo Físico-químico

Teórica (quintas-feiras)

PROFESSORA: PRISCILA KARACHINSKI DOS REIS

MODELAGEM E SIMULAÇÃO DO MUNDO FÍSICO-QUÍMICO

Ementa:

Tipos de Reações. Estequiometria química. Cinética Química. Estado fluido da matéria. Líquidos: características gerais, pressão de vapor, viscosidade, coeficiente de expansão térmica e compressibilidade. Gases: gás ideal, equação de estado (efeito da temperatura e da pressão sobre as propriedades dos gases), gases reais, gás de Van der Waals, fator de compressibilidade. Princípios da termodinâmica: Lei Zero, primeira lei da termodinâmica, calor e trabalho. Energia interna. Entalpia. Efeito Joule-Thomson. Segunda lei da termodinâmica: processos reversíveis e irreversíveis. Entropia.

MODELAGEM E SIMULAÇÃO DO MUNDO FÍSICO-QUÍMICO

Apresentação

Profa. Priscila Karachinski dos Reis

- Química (UTFPR)
- Engenheira Química (UniCurtiba)
- Especialização em Educação (BrasCubas)
- Mestre em Química Analítica (UTFPR)
- Doutoranda em Química (UFPR)
- Docente à 8 anos

MODELAGEM E SIMULAÇÃO DO MUNDO FÍSICO-QUÍMICO

- Avaliação
- ► A1 = 30 pontos → prova discursiva no portal Ulife
- ► A2 = 30 pontos → prova objetiva no portal Ulife
- ► A3 = 40 pontos → prova realizada pelos professores das aulas de sextafeira. (Práticas)
- Para a aprovação o aluno deverá alcançar o mínimo de 70 pontos e ter 75% de presença nas aulas.

CRONOGRAMA (SUJEITO A ALTERAÇÕES ACOMPANHAR E-MAIL CADASTRADO NO ULIFE)

Semana	data	Virtual
1	11/08/2022	Aula inicial. Apresentação da disciplina, plano de ensino e datas das avaliações. Dinâmica. Início do conteúdo. Discussão sobre matéria e energia e fenômenos físicos e químicos. Reações químicas
2	18/08/2022	Mol, constante de Avogadro, massa atômica, massa molar, etc
3	25/08/2022	Conceito de reações Químicas. Representação e Classificação das reações químicas Introdução à estequiometria (noções de balanceamento)
4	01/09/2022	Estequiometria (previsões quantitativas, reagente limitante, rendimento percentual)
5		Cinética Química. Velocidade média de uma reação e Leis de Velocidade (cálculo da velocidade média e determinação da ordem de reação com dados experimentais)
6	15/09/2022	Fatores que afetam a velocidade das reações
7	22/09/2022	Propriedades coligativas da matéria

8	29/09/2022	Diferenciar os diferentes estados de agregação dos fluidos correlacionando suas propriedades energéticas				
9	06/10/2022	Exercícios e revisão				
10	13/10/2022	PERÍODO DE AVALIAÇÃO A1 (10/10 A 14/10)				
11	20/10/2022	Aplicar as Leis de Lavoisier, Proust, Boyle, Charles e Gay-Lussac e Avogadro no estudo dos gases ideais (Equação dos gás ideal CNTP, estequiometria dos gases, coeficiente de compressibilidade, equação de WW.				
12	27/10/2022	Teoria Cinética dos Gases: equação dos gases ideais, transformações isotérmicas, isobáricas, isocóricas e adiabáticas (Simulação) . Equação de Van der Waals. Resolução de exemplos e exercícios.				
13	03/11/2022	Calor e Trabalho Lei zero Primeira Lei da Termodinâmica Resolução de exemplos e exercícios.				
14	10/11/2022	Calor e Trabalho Primeira Lei da Termodinâmica Resolução de exemplos e exercícios.				
15	17/11/2022	Segunda Lei da Termodinâmica Máquinas térmicas e refrigeradores. Resolução de exemplos e exercícios.				
16	24/11/2022	Revisão para a prova A2				
17	01/12/2022	PERÍDODO DE AVALIAÇÃO A2 (29/11 a 01/12 A2)				
18	08/12/2022	Sala Virtual PROVA DE 2ª OPORTUNIDADE A1				
19	15/12/2022	encerramento do semestre				

FONTES PARA CONSULTA

- ATKINS, Peter. **Princípios de química**: questionando a vida moderna e o meio ambiente. Porto Alegre: Grupo A, 2018. 9788582604625. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788582604625. Acesso em: 22 abr. 2022.
- BASSANEZI, Rodney Carlos. Introdução ao cálculo e aplicações. São Paulo: Contexto, 2015. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/31203. Acesso em: 22 abr. 2022.
- BROWN, Lawrence Stephen; HOLME, Thomas. **Química geral aplicada à engenharia**. São Paulo: Cengage Learning Brasil, 2021. 9788522128679. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788522128679. Acesso em: 22 abr. 2022.
- BROWN, Theodore et al. **Química**: a ciência central. 13. ed. São Paulo: Pearson, 2016. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/182726. Acesso em: 22 abr. 2022.
- DIAS, Sarah Vitorino Estevam; COSTA, Gabriela da. **Físico-química e termodinâmica**. Curitiba: Intersaberes, 2020. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/184997/pdf/0. Acesso em: 22 abr. 2022.
- FERNANDES, Daniela Barude. **Cálculo diferencial**. São Paulo: Pearson, 2014. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/22092/pdf/0. Acesso em: 22 abr. 2022.
- MAIA, Daltamir Justino. **Química geral**. São Paulo: Pearson, 2007. Ebook. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/4. Acesso em: 22 abr. 2022.
- SGUAZZARDI, Monica Midori Marcon. **Física geral**. São Paulo: Pearson, 2014. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/22151. Acesso em: 22 abr. 2022.
- TELLES, Dirceu D'Alkmin. **Física com aplicação tecnológica oscilações, ondas, fluidos e termodinâmica**. São Paulo: Blucher, 2018. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/158845. Acesso em: 22 abr. 2022.
- THOMAS, George Brinton et al. **Cálculo**. São Paulo: Addisson Wesley, 2002. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/359. Acesso em: 22 abr. 2022.
- YAMASHIRO, Seizen et al. Matemática com aplicações técnológicas. São Paulo: Blucher, 2015. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/177911. Acesso em: 22 abr. 2022.

Materiais usados em aula

▶ Serão disponibilizados no Ulife em → MaterialComplementar

DINÂMICA

Fenômenos Físicos x Fenômenos Químicos

Fenômenos físicos: não alteram a identidade da substância e são mais fáceis de reverter. Ex: solidificação.

Fenômenos Químicos: alteram a identidade da substância e são difíceis ou impossíveis de reverter. Ex: combustão da madeira.

► Matéria: é qualquer coisa que tem massa e ocupa espaço. Assim, o ouro, a água e o ar são formas da matéria, mas a radiação eletromagnética (que inclui a luz) e a justiça não o são.

▶ Substância é uma forma simples e pura de matéria. Ouro puro é uma substância, já o ar que contêm gases como N2, O2 e H2 é uma mistura de substâncias ou um composto.

Substância

Composto

Estados físicos da matéria

As substâncias e a matéria podem adquirir diferentes formas, ou variações na organização das moléculas. Estas formas são chamadas de estados físicos da matéria.

► Estado sólido

Estado da matéria que retêm sua forma e não flui

► Estado líquido

Estado da matéria na forma de fluido que tem superfície bem definida e que toma a forma do recipiente que o contém.

Estado gás

Estado da matéria na forma de fluido eu ocupa todo o recipiente que o contém.

► Estados físicos da matéria

CONCEITOS FUNDAMENTAIS

► Estados físicos da matéria

	Forma	Volume	Agitação
Sólido	Fixa	Fixo	Baixa
Líquido	Variável	Fixo	Intermediária
Sólido	Variável	Variável	Alta

- Força
- Uma força, F, é uma influência que modifica o estado de movimento de um objeto.
- Para determinada força, um corpo mais pesado tem aceleração menor do que um corpo mais leve. Esta relação, denominada segunda lei de Newton, normalmente é expressa como:
- Força = massa x aceleração
- \rightarrow ou F = m.a

CONCETOS FUNDAMENTAIS

- Trabalho
- O trabalho é o processo de movimentação de um corpo contra uma força oposta. Sua magnitude é o produto da intensidade da força oposta pela distância percorrida pelo objeto:
- Trabalho realizado = força x distância

Energia é a capacidade de realizar trabalho.

Definições Iniciais

Energia = "Capacidade de realizar trabalho"

Formas de Energia

- Cinética (movimento macroscópico, térmica, etc.)
- Potencial (elétrica, gravitacional, elástica, etc)
- Calor (energia em trânsito)
- Trabalho (realizado por uma máquina, eixo, etc)
- Entalpia (energia contida em um a substância que sofre reação)

Grupo do whatsapp da UC

chat.whatsapp.com/D6InNkRObgSKVJ1BScpNwU

https://chat.whatsapp.com/D6InNkRObgSKVJ1BScpNwU

Unidades de Medida

- Para o estudo de qualquer disciplina técnica, é importante entender alguns conceitos básicos e fundamentais.
- ▶ Entre os conceitos as unidades e a importância do Sistema Internacional de Unidades (SI).
- No nosso dia-a-dia expressamos quantidades ou grandezas em termos de outras unidades que nos servem de padrão.
- Na Física é de extrema importância a utilização correta das unidades de medida.
- Existe mais de uma unidade para a mesma grandeza, por exemplo, 1 metro é o mesmo que 100 centímetros ou 0,001 quilômetro.
- Em alguns países é mais comum a utilização de graus Fahrenheit (°F) ao invés de graus Celsius (°C) como no Brasil.
- lsso porque, como não existia um padrão p ara as unidades, cada pesquisador ou profissional utilizava o padrão que considerava melhor.

Sistema Internacional de Unidades

- ▶ Como diferentes pesquisadores utilizavam unidades de medida diferentes, existia um grande problema nas comunicações internacionais.
- Como poderia haver um acordo quando não se falava a mesma língua? Para resolver este problema, a Conferência Geral de Pesos e Medidas (CGPM) criou o Sistema Internacional de Unidades (SI).
- O Sistema Internacional de Unidades (SI) é um conjunto de definições, ou sistema de unidades, que tem como objetivo uniformizar as medições.
- No Sistema Internacional de Unidades (SI) existem sete unidades básicas que podem ser utilizadas para derivar todas as outras.

Grandeza	Nome	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	s
Intensidade de corrente elétrica	ampère	Α
Temperatura termodinâmica	kelvin	К
Quantidade de substância	mole	mol
Intensidade luminosa	candela	cd

Unidades derivadas das unidades do SI

Grandeza	Nome	Símbolo	Expressão em outras unidades SI	Expressão em unidades básicas SI
Freqüência	hertz	Hz		s ⁻¹
Força	newton	N		m kg s ⁻²
Pressão	pascal	Pa	N m ⁻²	m ⁻¹ kg s ⁻²
Energia, trabalho, Quantidade de calor	joule	J	N m	m² kg s⁻²
Potência	watt	W	J s ⁻¹	m² kg s-3
Quantidade de eletricidade carga elétrica	coulomb	С		s A
Potencial elétrico força eletromotriz	volt	V	W A-1	m ² kg s ⁻³ A ⁻¹
Resistência elétrica	ohm	Ω	V A-1	m² kg s-3 A -2
Capacitância elétrica	farad	F	C V-1	m ⁻² kg ⁻¹ s ⁴ A ²
Fluxo magnético	weber	Wb	V s	m ² kg s ⁻² A ⁻¹
Indução magnética	tesla	T	Wb m ²	kg s ⁻² A ¹
Indutância	henry	Н	Wb A ⁻¹	m ² kg s ⁻² A ⁻²

Prefixos no SI

Fator	Nome	Símbolo
10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
1018	Exa	Е
1015	Peta	Р
1012	Tera	T
10 ⁹	Giga	G
106	Mega	М
10 ³	Quilo	k
102	Hecto	h
10 ¹	Deka	da

Fator	Nome	Símbolo
10-1	Deci	d
10-2	Centi	С
10-3	Mili	m
10-6	Micro	μ
10-9	Nano	n
10-12	Pico	р
10 ⁻¹⁵	Fento	f
10 ⁻¹⁸	Atto	а
10-21	Zepto	Z
10 ⁻²⁴	Deka yocto	У

Prefixos no SI

Tabela de conversão de unidades de comprimento

Tabela de conversão de unidades de comprimento								
cm m km in ft m								
1 centímetro)cm)	1	0,01	0,00001	0,3937	0,0328	0,000006214		
1 metro (m)	100	1	0,001	39,3	3,281	0,0006214		
1 quilômetro	100000	1000	1	39370	3281	0,6214		
1 polegada (in)	2,54	0,0254	0,00000254	1	0,08333	0,00001578		
1 pé (ft)	30,48	0,3048	3,048	12	1	0,0001894		
1 milha terrestre (mi)	160900	1609	1,609	63360	5280	1		

Exercício 1

- 1) Converta os seguintes valores de comprimento:
- a) 100 mm para m
- b) 25 km para cm
- c) 3 in para m
- d) 5 ft para m

```
a)
1m ---- 1000mm
x m ---100 mm
```

0,1 m

```
c)
1 in ---- 0,0254 m
3 in ---- x m
```

0,0762 m

Respostas:

- a) 0,1m
- 2,510°cm
- c) 0,0762 m
- d) 1,524 m

Tabela de conversão de unidades de massa

Tabela de conversão de unidades de comprimento									
	g	Kg	slug	u.m.a.	onça	lb	ton		
1 grama(g)	1	0,001	0,00006852	6,024.10 ²³	0,03527	0,002205	0,000001102		
1 quilograma (Kg)	1000	1	0,06852	6,024.10 ²⁶	35,27	2,205	0,001102		
1 slug	14590	14,59	1	8,789.10 ²⁷	514,8	32,17	0,01609		
1 u.m.a.	1,66.10 ⁻²⁴	1,66.10 ⁻²⁷	1,37.10 ⁻²⁹	1	5,855.10- ²⁶	3,66.10 ⁻²⁷	1,829.10 ⁻²⁰		
1 onça	28,35	0,02835	0,001943	1,708.10 ²⁵	1	0,0625	0,00003125		
1 libra(lb)	453,6	0,4536	0,3108	2,732.10 ²⁵	16	1	0,0005		
1 ton	100000	1000	62,16	5,465.10 ²⁹	32000	2000	1		

Exercício 2

- 2) Converta os seguintes valores de massa
- a) 260 kg para lb
- b) 3 t para g
- c) 80 slug para kg
- d) 110 t para onça

```
a)
1 kg ---- 2,205 lb
260 kg --- X lb
```

573,30 lb

1167,2 kg

Respostas:

- a) 573,39 lb
- b) 300000 g
- c) 1167,2 kgd) 3,52.106 onças

Tabela de conversão de unidades de área

Tabela de conversão de unidades							
	in ²						
1 metro quadrado (m²)	1	10000	10,76	1550			
1 centímetro quadrado (cm²)	0,0001	1	0,001076	0,1550			
1 pé quadrado (ff²)	0,0929	929	1	144			
1 polegada quadrada (in²)	0,0006452	6,452	0,006944	1			

Exercício 3

- 3) Converta os seguintes valores de área
- a) 33m² para in²
- b) 65 cm² para in²
- c) 8 ft² para m²
- d) 90 m² para cm²

```
a)
1 m<sup>2</sup>---- 1550 in<sup>2</sup>
33 m<sup>2</sup>--- x in<sup>2</sup>
```

$$X = 51150 \text{ in}^2$$

 $X = 0.7432 \text{ m}^2$

```
d) 1 m ---- 100 cm
(1m)<sup>2</sup> --- (100 cm)<sup>2</sup>
1m<sup>2</sup> ---- 10000 cm<sup>2</sup>
90 m<sup>2</sup> ---- x cm<sup>2</sup>
```

 $X = 900000 \text{ cm}^2$

Respostas:

- a) 51150 in²
- b) 10,075 in²
- c) 0,7432 m²
 d) 900000 cm²

Tabela de conversão de unidades de volume

Tabela de	conversão	de un	idades	de vol	ume

	m^3	cm ³	I	ft ³	in ³
1 metro cúbico (m³)	1	1000000	1000	35,31	61020
1 centímetro cúbico (cm³)	0,000001	1	0,001	0,00003531	0,06102
1 litro (I)	0,001	1000	1	0,03531	61,02
1 pé cúbico (ft³)	0,02832	28320	28,32	1	1728
1 polegada cúbica (in³)	0,00001639	16,39	0,01639	0,0005787	1

Exercício 4

- 4) Converta os seguintes valores de volume
- a) 72 m³ para L
- b) 14 cm³ para m³
- c) 32 cm³ para mL
- d) 18 m³ para ft³

```
a)
1 m³--- 1000 L
72 m³---- X L
```

```
X =72000 L
```

```
c)
1 cm<sup>3</sup> ---- 1 mL
32 cm<sup>3</sup>---- x mL
```

 $X = 32 \, mL$

Respostas:

- a) 72000 L
- o) 1,4 10⁻⁵m3
- c) 32 mL d) 635,58 ft³

Tabela de conversão de unidades várias

TABELA DE CONVERSÃO DE UNIDADES: VÁRIOS	
Comprimento	1m=3,281pés=39,37pol
Área	1m ² =10,78pés ² =1.550pol ²
Volume	1m³=35,3pés³=1.000litros
Volume	1galāo(USA)=3,8litros 1galāo(GB)=4,5 litros
Massa	1kg=2,2 lb 1lb=0,45kg 1 onça=28,35g
Pressão	1atm=1,033kgf/cm2=14,7lbf/pol2(PSI)
Pressão	1bar=100kPa=1,02atm=29,5polHg
Energia	1kWh=960kcal 1kcal=3,97Btu
Energia	1kgm=9,8J 1Btu=0,252kcal
Potência	1kW=102kgm/s=1,36HP=1,34BHP=3.413Btu/h
Potência	1TR=3.024kcal/h=200Btu/min=12.000Btu/h
Temperatura	°F=32+1,8.°C K=273+°C R=460+°F

Exercício 5

5) Um fazendeiro necessita de 4 cm de chuva por sema na em sua fazenda, que tem 10 hectares de área plantada. Se há uma seca, quantos galões por minuto (L/ min) deverão ser bombeados para irrigar a colheita?

Dados:

4 cm por semana 10 hectares Quantos L/min

> Informações: 1 hectare = 10000 m²

Exercício 5 solução

5) Um fazendeiro necessita de 4 cm de chuva por semana em sua fazenda, que tem 10 hectares de área plantada. Em uma seca, quantos galões por minuto (**L/ min**) deverão ser bombeados para irrigar a colheita?

Informações:

1 hectare = 10000 m² = Área 10 hectares = 100000 m²

Volume: $0.04 \text{m} \cdot 100000 \text{ m}^2 = 4000 \text{ m}^3$

4000 m³ ---- 1 semana ----- 7 dias ---- 168 horas ---- 10080 minutos

Para um minuto o volume será:

4000m³/10080 minutos = 0,397 m³/minuto

O volume em L por minuto:

Logo a vazão a ser alimentada por minuto será de 397 L/min

►OBRIGADA PELA ATENÇÃO!!

Referencias

- ATKINS, Peter. **Princípios de química**: questionando a vida moderna e o meio ambiente. Porto Alegre: Grupo A, 2018. 9788582604625. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788582604625. Acesso em: 22 abr. 2022.
- BASSANEZI, Rodney Carlos. Introdução ao cálculo e aplicações. São Paulo: Contexto, 2015. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/31203. Acesso em: 22 abr. 2022.
- BROWN, Lawrence Stephen; HOLME, Thomas. **Química geral aplicada à engenharia**. São Paulo: Cengage Learning Brasil, 2021. 9788522128679. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788522128679. Acesso em: 22 abr. 2022.
- BROWN, Theodore et al. **Química**: a ciência central. 13. ed. São Paulo: Pearson, 2016. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/182726. Acesso em: 22 abr. 2022.
- DIAS, Sarah Vitorino Estevam; COSTA, Gabriela da. **Físico-química e termodinâmica**. Curitiba: Intersaberes, 2020. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/184997/pdf/0. Acesso em: 22 abr. 2022.
- FERNANDES, Daniela Barude. **Cálculo diferencial**. São Paulo: Pearson, 2014. E-book. Disponível em: https://plataforma.bvirtual.com.br/Leitor/Publicacao/22092/pdf/0. Acesso em: 22 abr. 2022.
- MAIA, Daltamir Justino. **Química geral**. São Paulo: Pearson, 2007. Ebook. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/4. Acesso em: 22 abr. 2022.
- SGUAZZARDI, Monica Midori Marcon. **Física geral**. São Paulo: Pearson, 2014. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/22151. Acesso em: 22 abr. 2022.
- TELLES, Dirceu D'Alkmin. **Física com aplicação tecnológica oscilações, ondas, fluidos e termodinâmica**. São Paulo: Blucher, 2018. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/158845. Acesso em: 22 abr. 2022.
- THOMAS, George Brinton et al. **Cálculo**. São Paulo: Addisson Wesley, 2002. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/359. Acesso em: 22 abr. 2022.
- YAMASHIRO, Seizen et al. Matemática com aplicações técnológicas. São Paulo: Blucher, 2015. E-book. Disponível em: https://plataforma.bvirtual.com.br/Acervo/Publicacao/177911. Acesso em: 22 abr. 2022.