CIFAR-10 Challenge

학습 전략은 이 논문을 참고하여 설정하였습니다.

1. Learning rate scheduling

아래 논문에서는 Learning rate warmup이라 하여 초기 몇 epoch에서는 Learning rate를 linear하게 키우고, 그 이후는 감소시키는 방법을 추천한다고 합니다.그래서 아래의 논문에서는cosine annealing with warm up이라는 Ir스케쥴링을 사용하지만, 저는 이와 유사하게 pytorch에서 기본으로 제공하는 도구인 cyclicLR을 사용하였습니다.

2. Data augmentation

Data augmentation 기법으로는 Randomcrop, horizontal flip을 사용하였고 아래 논문에서 나왔던 MixUp이라는 augmentation 기법을 사용하였습니다.

3. FC-layer

FC-layer는 분류 하는 layer로써 CNN의 tra 위하여 4096 -> 100 -> 10 으로 설정하였고, 더 빠른 학습을 위하여 softmax 활성화 함수를 마지막에 추가하였습니다.

He, Tong, et al. "Bag of tricks for image classification with convolutional neural networks." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

```
1 import torch
2 import torch.nn as nn
3 import torch.optim as optim
4 import torch.nn.init as init
 5 import torchvision.datasets as dset
6 import torchvision.transforms as transforms
7 from torch.utils.data import DataLoader
8 from torch.autograd import Variable
10 from torch.optim import Ir_scheduler
11
12 from google.colab import files
13
14 import matplotlib.pyplot as plt
15 %matplotlib inline
16 import numpy as np
17 import random
 1 batch_size = 32
2 learning_rate = 2e-3
3 \text{ num\_epoch} = 200
4 weight_decay=1e-3
5 \text{ MixUp\_choice} = 1
 6 \text{ MixUp\_alpha} = 0.4
8 random_seed=42
10 torch.manual_seed(random_seed)
11 torch.cuda.manual_seed(random_seed)
12 torch.cuda.manual_seed_all(random_seed) # if use multi-GPU
13 torch hackends cudno deterministic = True
```

```
TO LOT OIT, DAONOHUS, CUUHIT, UC LOT HITTITS LTC TI UC
14 torch.backends.cudnn.benchmark = False
15 np.random.seed(random seed)
16 random.seed(random_seed)
1 cifar_train = dset.CIFAR10("CIFAR10/", train=True, transform=transforms.ToTensor(),
                                 target_transform=None, download=True)
3 cifar_test = dset.CIFAR10("CIFAR10/", train=False, transform=transforms.ToTensor(),
                                 target_transform=None, download=True)
     Downloading <a href="https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz">https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz</a> to CIFAR10/cifar-10-python.tar.gz
                                                     170499072/? [00:01<00:00, 89680892.09it/s]
     Extracting CIFAR10/cifar-10-python.tar.gz to CIFAR10/
     Files already downloaded and verified
1 # v2
2 def ComputeAccr(dloader, imodel):
    correct = 0
    total = 0
5
6
    with torch.no_grad():
7
       for j, [imgs, labels] in enumerate(dloader):
8
         img = Variable(imgs).cuda()
         label = Variable(labels).cuda()
9
10
11
         output = imodel.forward(img)
12
         _, output_index = torch.max(output, 1)
13
14
         total += label.size(0)
15
         correct += (output_index == label).sum().float()
    print("Accuracy of Test Data: {}".format(100*correct/total))
     return 100*correct/total
17
```

cifar-10 augmentation

normalize에 사용한 mean, std 수치는 이곳을 참고하여 사용하였습니다. reference

```
1 cifar_train = dset.CIFAR10("CIFAR10/", train=True,
                              transform=transforms.Compose([
3
                               transforms.RandomCrop(32, padding=4),
4
                               transforms.RandomHorizontalFlip(),
5
                               transforms.ToTensor(),
6
                               transforms.Normalize((0.4914, 0.4822, 0.4465),
7
                                 (0.2023, 0.1994, 0.2010)),
                              ]))
9 cifar_test = dset.CIFAR10("CIFAR10/",train=False,
                             transform=transforms.Compose([
10
                               transforms.ToTensor(),
11
                               transforms.Normalize((0.4914, 0.4822, 0.4465).
12
                                (0.2023, 0.1994, 0.2010))
13
14
                             1).
```

Files already downloaded and verified

```
1 train_loader = torch.utils.data.DataLoader(list(cifar_train)[:],
2 batch_size=batch_size,
3 shuffle=True, num_workers=2,# num_workers는 cpu 코어 개수
4 drop_last=True)
5 test_loader = torch.utils.data.DataLoader(cifar_test,
6 batch_size=batch_size,
7 shuffle=False, num_workers=2,
8 drop_last=True)
```

Model

CNN model은 기존 구성과 동일하며 Dropout을 다 제거하였습니다. FC-layer는 4096 -> 100 -> 10 으로 마지막에 softmax activation을 추가하였습니다.

또한 RELU activation의 변형인 ELU를 사용하였기 때문에 초기 weight을 HE초기화를 진행하였습니다.

```
1 class CNN(nn.Module):
    def __init__(self):
       super(CNN, self).__init__()
 3
 4
       self.layer = nn.Sequential(
 5
           nn.Conv2d(3, 16, 3, padding=1),
 6
           nn.ELU(alpha=1.0),
 7
           nn.BatchNorm2d(16).
 8
 9
           nn.Conv2d(16,32,3,padding=1),
           nn.ELU(alpha=1.0).
10
11
           nn.BatchNorm2d(32),
12
           nn.MaxPool2d(2,2),
13
           nn.Conv2d(32,64,3,padding=1),
14
15
           nn.ELU(alpha=1.0),
16
           nn.BatchNorm2d(64),
17
18
           nn.MaxPool2d(2,2)
19
20
       self.fc_layer = nn.Sequential(
21
           nn.Linear (64*8*8, 100),
22
           nn.ELU(alpha=1.0),
23
           nn.Dropout(0.5).
24
           nn.BatchNorm1d(100),
25
           nn.Linear (100,10)
26
       )
       # Weight initialization
27
28
       for m in self.modules():
29
         if isinstance(m, nn.Conv2d):
           init.kaiming_normal_(m.weight.data)
30
31
           m.bias.data.fill_(0)
32
         if isinstance(m, nn.Linear):
33
           init.kaiming_normal_(m.weight.data)
           m.bias.data.fill_(0)
34
```

```
35
    def forward(self, x):
36
       out = self.layer(x)
37
38
       out = out.view(batch_size,-1)
       out = self.fc_layer(out)
39
40
       out = nn.functional.log_softmax(out, dim=1)
41
       return out
42
43 \mod 1 = CNN().cuda()
44 print(model)
```

Base Line(without MixUp)

```
1 # loss_func = nn.CrossEntropyLoss()
2 # optimizer = torch.optim.Adam(model.parameters(), Ir=learning_rate)
3
4 # # scheduler = Ir_scheduler.CyclicLR(optimizer, base_Ir=1e-3, max_Ir=learning_rate, step_size_up=10,
                           step_size_down=None, mode='triangular2',cycle_momentum=False)
6 # # optimizer = torch.optim.SGD(model.parameters(), Ir=0.0001)
7 # # scheduler = Ir_scheduler.OneCycleLR(optimizer, max_Ir=0.1,
                                                      steps_per_epoch=10, epochs=100)
9
10 # losses=[]
11 # train_acc = []
12 # val_acc = []
14 # #model = CNN().cuda()
15 # Max=0
16 # for i in range(num_epoch):
      model.train()
17 #
      print(str(i) + " epochs")
      for j, [image, label] in enumerate(train_loader):
19 #
20 #
        x=Variable(image).cuda()
        y_=Variable(label).cuda()
21 #
22
23 #
        optimizer.zero_grad() # grad가 누적합으로 계산되기 때문에 0으로 초기화
        output=model.forward(x) # 순방향 전파
24 #
25 #
        loss=loss_func(output,y_) # loss 계산
26 #
        loss.backward() # 역전파
27 #
        optimizer.step()
28
29 #
      # model training 시각화를 위한 설정
30 #
      model.eval()
      tmp = ComputeAccr(test_loader,model)
31 #
32 #
      val_acc.append(tmp)
33 #
      train_acc.append(ComputeAccr(train_loader,model))
34 #
      print()
35 #
      losses.append(loss)
36 #
      if (Max < tmp) and ( i>9 ): # 최고 성능 모델 저장
37 #
        Max = tmp
        netname='/content/my_net_'+str(tmp)+'eps'+'.pkl'
38 #
        torch.save(model,netname,)
39 #
40 # #files.download(netname) # 에폭 다 돌렸을 시 최고 성능 모델 local로 저장
```

```
1 # x = list(range(len(val_acc)))
2 # plt.plot(x, val_acc)
3 # plt.plot(x, train_acc)
4 # plt.show()
```

▼ 사용할 learning rate 시각화

```
1 optimizer = optim.Adam(model.parameters(), Ir=learning_rate, #momentum=0.9,
2
                         weight_decay=weight_decay)
3 scheduler = lr_scheduler.CyclicLR(optimizer, base_lr=learning_rate/2, max_lr=learning_rate*2, step_size_up
                        step_size_down=None, mode='triangular2',cycle_momentum=False)
5
6 Irs=[]
7 for i in range(200):
      optimizer.step()
9
      Irs.append(optimizer.param_groups[0]["Ir"])
        print("Factor = ",i," , Learning Rate = ",optimizer.param_groups[0]["Ir"])
10 #
11
      scheduler.step()
12
13 plt.plot(Irs)
```

MixUp augmentation

```
사진 두장을 일정 비율로 혼합하여 사용
label 또한 비율로 설정
optimizer는 adam
l2 regulazation
lr_scheduler= CyclicLR
```

Augmentation = MixUp, Crop, randomHorizantal flip

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), Ir=learning_rate, #momentum=0.9,
                         weight_decay=weight_decay)
4 scheduler = lr_scheduler.CyclicLR(optimizer, base_lr=learning_rate/2, max_lr=learning_rate*2, step_size_up
5
                        step_size_down=None, mode='triangular2',cycle_momentum=False)
6
7 def mixup_data(x, y, alpha=1.0, use_cuda=True):
       '''Returns mixed inputs, pairs of targets, and lambda'''
9
      if alpha > 0:
10
           lam = np.random.beta(alpha, alpha)
11
      else:
12
          lam = 1
13
14
      batch_size = x.size()[0]
15
      if use_cuda:
16
          index = torch.randperm(batch_size).cuda()
17
      else:
18
           index = torch.randperm(batch_size)
19
```

```
20
      mixed_x = lam * x + (1 - lam) * x[index, :]
21
      y_a, y_b = y, y[index]
22
      return mixed_x, y_a, y_b, lam
23
24
25 def mixup_criterion(criterion, pred, y_a, y_b, lam): # MixUp augmentation에서의 lossfunction으로 실제 lab
       return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
26
1 use_cuda = False
2 Max=0
3 losses=[]
4 train_acc = []
5 \text{ val\_acc} = []
6 \text{ best\_net} = []
7
8 for i in range(num_epoch):
    model.train()
    print(str(i) + " epochs")
10
11
    for j, [image, label] in enumerate(train_loader):
12
      choice = np.random.rand()
13
      x=Variable(image).cuda()
14
      y_=Variable(label).cuda()
15
      if choice <MixUp_choice: # if use mixup
16
        x, targets_a, targets_b, lam = mixup_data(x, y_,
17
                                                 MixUp_alpha, use_cuda)
18
        x, targets_a, targets_b = map(Variable, (x,
19
                                                 targets_a, targets_b))
20
        outputs = model(x)
21
         loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
22
        _, predicted = torch.max(outputs.data, 1)
23
24
        optimizer.zero_grad()
25
         loss.backward()
26
        optimizer.step()
27
      else: # else
28
        optimizer.zero_grad() # grad가 누적합으로 계산되기 때문에 0으로 초기화
29
        output=model.forward(x) # 순방향 전파
30
         loss=criterion(output,y_) # loss 계산
31
         loss.backward() # 역전파
32
        optimizer.step()
33
34
    model.eval()
35
    tmp = ComputeAccr(test_loader,model)
36
    val_acc.append(tmp)
    train_acc.append(ComputeAccr(train_loader,model))
37
38
    print()
39
    losses.append(loss)
40
    if (Max < tmp) and (i>9):
41
      Max = tmp
42
      netname='/content/my_bestNet'+'.pkl'
43
      torch.save(model,netname,)
 1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=learning_rate, #momentum=0.9,
                         weight_decay=weight_decay)
4 scheduler = lr_scheduler.CyclicLR(optimizer, base_lr=learning_rate/2, max_lr=learning_rate*2, step_size_up
```

```
5
                       step_size_down=None, mode='triangular2',cycle_momentum=False)
 6 for i in range(num_epoch):
 7
    model.train()
    print(str(i) + " epochs")
8
    for j, [image, label] in enumerate(train_loader):
9
      choice = np.random.rand()
10
11
      x=Variable(image).cuda()
      y_=Variable(label).cuda()
12
      if choice <MixUp_choice: # if use mixup
13
        x, targets_a, targets_b, lam = mixup_data(x, y_,
14
15
                                                MixUp_alpha, use_cuda)
16
        x, targets_a, targets_b = map(Variable, (x,
17
                                                 targets_a, targets_b))
18
        outputs = model(x)
19
        loss = mixup_criterion(criterion, outputs, targets_a, targets_b, lam)
20
        _, predicted = torch.max(outputs.data, 1)
21
22
        optimizer.zero_grad()
23
        loss.backward()
24
        optimizer.step()
25
      else: # else
26
        optimizer.zero_grad() # grad가 누적합으로 계산되기 때문에 0으로 초기화
27
        output=model.forward(x) # 순방향 전파
28
         loss=criterion(output,y_) # loss 계산
29
        loss.backward() # 역전파
30
        optimizer.step()
31
32
    model.eval()
33
    tmp = ComputeAccr(test_loader,model)
    val_acc.append(tmp)
34
35
    train_acc.append(ComputeAccr(train_loader,model))
    print()
36
37
    losses.append(loss)
    if (Max < tmp) and ( i>9 ):
38
39
      Max = tmp
40
      netname='/content/my_bestNet'+'.pkl'
      torch.save(model,netname,)
41
42 files.download(netname)
```

Visualization

모델의 training을 시각화 하여 학습이 어떻게 진행되는지 각 epoch당 train,test accuracy 그래프로 확인하였습니다.

```
1 x = list(range(len(val_acc)))
2
3 plt.plot(x,val_acc)
4 plt.plot(x, train_acc)
5 plt.show()

1 netname = '/content/main2.pkl'
2 eval_model=torch.load(netname)
3 ComputeAccr(test_loader,eval_model)
```

Accuracy of Test Data: 78.57572174072266 tensor(78.5757, device='cuda:0')

✓ 0초 오후 2:35에 완료됨

reCAPTCHA 서비스에 연결할 수 없습니다. 인터넷 연결을 확인한 후 페이지를 새로고침하여 reCAPTCHA 보안문자를 다시 로드하 세요.