TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA TOÁN - TIN HỌC

*

Tiểu luận giữa kì

Hình học giải tích

Giảng viên hướng dẫn: TS.Cao Trần Tứ Hải

Thành phố Hồ Chí Minh, ngày 6 tháng 1 năm 2024

Mục lục

1	Danh sách thành viên nhóm 6			
2	Nội dung phân công công việc	4		
3	Lời mở đầu	ở đầu 5		
4	Khái niệm cơ bản về phương pháp toạ độ4.1 Phương pháp toạ độ trong mặt phẳng4.2 Phương pháp tọa độ trong không gian4.3 Cách chọn mục tiêu	6		
5	Các dạng bài tập	7		
6	Các dạng bài tập Bài tập làm thêm			
7	Tài liệu tham khảo	7		

1 Danh sách thành viên nhóm 6

Số thứ tự	Họ và tên	Mã số sinh viên	Chức vụ
1	Lê Trọng Chí	50.01.101.007	Nhóm trưởng
2	Nguyễn Lê Minh Ngọc	48.01.103.056	Thành viên
3	Phạm Gia Hân	50.01.101.018	Thành viên

2 Nội dung phân công công việc

Số thứ tự	Họ và tên	Nội dung phân công
1	Lê Trọng Chí	Bài tập 5
2	Nguyễn Lê Minh Ngọc	Bài tập 7, biên soạn LATEX
3	Phạm Gia Hân	Bài tập 6

3 Lời mở đầu

phạm gia hân tự viết

4 Khái niệm cơ bản về phương pháp toạ độ

Phương pháp toạ độ trong mặt phẳng

· Mục tiêu anffine

Trong không gian cho điểm O và 2 vector $\vec{OI} = \vec{i}, \vec{OJ} = \vec{j}$ không cùng phương. Tập hợp gồm điểm O và hai vector \vec{i}, \vec{j} được gọi là hệ toạ độ **affine** trong mặt phẳng. Khi đó:

- [1]. Đường thẳng Ox đi qua điểm O và điểm I gọi là trục hoành, đường thẳng Oy đi qua điểm O và điểm J gọi là trục tung.
- [2]. Điểm O gọi là gốc toạ độ. Hệ toạ độ **affine** như vậy được ký hiệu là: $O\vec{i}\vec{j}$ hoặc Oxy. nhớ vẽ hình.
- [3]. Với mỗi vector \vec{u} bất kỳ trong không gian, tồn tại duy nhất một bộ số (x,y) sao cho:

$$\vec{u} = x\vec{i} + y\vec{j}$$

Khi đó, (x,y) được gọi là toạ độ của vector \vec{u} , ký hiệu: $\vec{u}(x,y)$ hoặc $\vec{u}=(x,y)$.

[4]. Với mỗi điểm M bất kỳ trong không gian, gọi (x, y) là toạ độ của vector \overrightarrow{OM} , nghĩa là:

$$\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{i}$$

Khi đó, (x,y) cũng được gọi là toạ độ của điểm M, kí hiệu: M(x,y) hoặc M=(x,y).

[5]. Cho điểm M(x,y) và M'(x',y') thì ta có:

$$\overrightarrow{MM'} = (x' - x, y' - y)$$

Trong hệ toạ độ **anffine** $O\vec{i}\vec{j}$, cho 2 vector $\vec{u}(x_1, y_1)$ và $\vec{v}(x_2, y_2)$. Khi đó, ta có các tính chất cơ bản sau:

[1].
$$\vec{u} + \vec{v} = (x_1 + x_2)\vec{i} + (y_1 + y_2)\vec{j} = (x_1 + x_2, y_1 + y_2)$$

[2].
$$\vec{u} = \vec{v} \Leftrightarrow x_1 \vec{i} + y_1 \vec{j} = x_2 \vec{i} + y_2 \vec{j} \Leftrightarrow \begin{cases} x_1 = x_2 \\ y_1 = y_2 \end{cases}$$

[3].
$$\vec{u}$$
 cùng phương $\vec{v} \Leftrightarrow \vec{u} = t\vec{v}$
 $\Leftrightarrow x_1\vec{i} + y_1\vec{j} = tx_2\vec{i} + ty_2\vec{j}$
 $\Leftrightarrow \begin{cases} x_1 = tx_2 \\ y_1 = ty_2 \end{cases}$

Nếu t > 0 thì \vec{u} , \vec{v} cùng hướng. Nếu t < 0 thì \vec{u} , \vec{v} ngược hướng.

Phép đổi mục tiêu

Trong không gian, cho 2 hệ toạ độ **anffine** $O\vec{i}\vec{j}$ và $O'\vec{i}'\vec{j}'$. Giả sử đối với hệ toạ độ $O\vec{i}\vec{j}$, điểm O' có toạ độ (a_0,b_0) , $\vec{i}=(a_1,b_1)$, $\vec{j}=(a_2,b_2)$. đối với một điểm M bất kì, gọi (,y) là toạ độ của M đối với hệ $O\vec{i}\vec{j}$ là M(x',y') đối với hệ $O'\vec{i}'\vec{j}'$. Ta tìm sự liên hệ giữa các số ,y và x',y'. Theo định nghĩa của toạ độ vector và toạ độ điểm ta có:

$$\begin{cases} x = a_1 x' + a_2 y' + a_0 \\ y = b_1 x' + b_2 y' + b_0 \end{cases}$$

Viết dưới dang ma trân:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$

Trường hợp đặc biệt: Phép tịnh tiến mục tiêu: Với $(a_1, b_1) = (1, 0)$ và $(a_2, b_2) = (0, 1)$, đẳng thức trên trở thành:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} x = x' + a_0 \\ y = y' + b_0 \end{cases}$$

Đây là công thức chuyển trục phép tịnh tiến từ $O\vec{i}\vec{j}$ sang $O'\vec{i}\vec{j}$

• Mục tiêu trực chuẩn Hệ toạ độ trực chuẩn là hệ toạ độ anffine $O\vec{i}\vec{j}$

Phương pháp tọa độ trong không gian

- Muc tiêu anffine
- Mục tiêu trực chuẩn

Cách chọn mục tiêu

- 5 Các dạng bài tập
- 6 Bài tập làm thêm
- 7 Tài liệu tham khảo