RICOH

RP171x SERIES

150mA 10V INPUT LDO REGULATOR

NO.EA-245-111020

OUTLINE

The RP171x Series are CMOS-based LDO regulators featuring 150mA output current. Because of the 10V maximum input voltage, RP171x can be used in 2 cell lithium-ion battery powered portable appliances and besides a portable equipment. The supply current is Typ. 23µA though an excellent response characteristics.

The output voltage range from 1.2V is possible. The output voltage accuracy and temperature-drift coefficient of output voltage of the RP171x Series are excellent.

RP171x has a fold-back protection circuit and a thermal shutdown circuit. Moreover, a standby mode with ultra low supply current can be realized with the chip enable function.

SC-88A and SOT-23-5 with high power dissipation packages are available.

FEATURES

Supply Current	Typ. 23μA
Standby Mode	Typ. 0.1μA
Dropout Voltage	Typ. 0.20V (lout=100mA, Vout=3.0V)
	Typ. 0.40V (Iоит=150mA, Vоит=2.8V)
Ripple Rejection	Typ. 70dB (f=1kHz)
Temperature-Drift Coefficient of Output Voltage	Typ. ±80ppm/°C
Line Regulation	Typ. 0.02%/V
Output Voltage Accuracy	±1.0%
Packages	SC-88A, SOT-23-5
Input Voltage Range	2.6V to 10.0V
Output Voltage Range	1.2V to 6.0V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Built-in Fold Back Protection Circuit	Typ. 40mA (Current at short mode)
Built-in Thermal Shutdown Circuit	Shutdown Temperature at 165°C
Ceramic capacitors are recommended to be used w	ith this IC 1.0μF or more

APPLICATIONS

- Power source for portable communication equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.
- Power source for home appliances.

BLOCK DIAGRAMS

SELECTION GUIDE

The output voltage, auto discharge function, and package, etc. for the ICs can be selected at the user's request.

Product Name	Product Name Package		Pb Free	Halogen Free	
RP171Qxx2*-TR-FE SC-88A		3,000 pcs	Yes	Yes	
RP171Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes	

xx: The output voltage can be designated in the range from 1.2V(12) to 6.0V(60) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

- * : The auto discharge function at off state are options as follows.
 - (B) without auto discharge function at off state
 - (D) with auto discharge function at off state

PIN CONFIGURATIONS

PIN DESCRIPTIONS

• SC-88A

Pin No	Symbol	Pin Description				
1	CE	Chip Enable Pin ("H" Active)				
2	NC	No Connection				
3	GND	Ground Pin				
4	Vоит	Output Pin				
5	V _{DD}	Input Pin				

• SOT-23-5

Pin No	Symbol	Pin Description				
1	V _{DD}	Input Pin				
2	GND	Ground Pin				
3	CE	Chip Enable Pin ("H" Active)				
4	NC	No Connection				
5	Vouт	Output Pin				

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
Vin	Input Voltage	12	V	
VCE	Input Voltage (CE Pin)	12	V	
Vоит	Output Voltage	-0.3 to V _{IN} +0.3	V	
Іоит	Output Current	165	mA	
Po	Power Dissipation* (SC-88A)	380	mW	
	Power Dissipation* (SOT-23-5)	420	111VV	
Topt	Operating Temperature Range	-40 to 85	°C	
Tstg	Storage Temperature Range	-55 to 125	°C	

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• RP171xxxxB/D

VIN=Set Vout+1V, Iout=1mA, unless otherwise noted.

values indicate –40°C ≤ Topt ≤ 85°C, unless otherwise noted.

Topt=25°C

Symbol	Item	Conditions			Min.	Тур.	Max.	Unit	
Vоит Output Voltag		Topt=25°C $V_{\text{OUT}} > 1.5V$ Vout $\leq 1.5V$		V _{OUT} > 1.5V	×0.99		×1.01	V	
	Output Voltage			-15		+15	mV		
		-40°C ≤ Topt ≤ 85°C		V _{OUT} > 1.5V	×0.974		×1.023	V	
				V _{OUT} ≤ 1.5V	-40		+35	mV	
Іоит	Output Current				150			mA	
ΔV оυτ/ ΔI ουτ	Load Regulation	0.1mA ≤ lout ≤	≤ 150mA	<u>l</u>		5	40	mV	
			1.2V ≤	V _{OUT} < 1.3V		ı	1.400)0	
			1.3V ≤	V _{OUT} < 1.5V		ı	1.300		
			1.5V ≤	Vout < 1.8V		-	1.100		
V_{DIF}	Dropout Voltage	І оит= 150mA	1.8V ≤	V _{OUT} < 2.3V		-	0.800	V	
			2.3V ≤	V _{OUT} < 3.0V		0.400	0.580		
			3.0V ≤	V _{OUT} < 4.0V		0.300	0.480		
			4.0V ≤	V _{OUT} ≤ 6.0V		0.250	0.400		
Iss	Supply Current	Іоит=0mA				23	40	μА	
İstandby	Standby Current	Vin=10.0V, Vc	e=GND			0.1	1.0	μА	
ΔV out $/\Delta V$ in	Line Regulation	Set $V_{OUT}+0.5V \le V_{IN} \le 10.0V$ (In case that $V_{OUT} \le 2.1V$, $2.6V \le V_{IN} \le 10.0V$)			±0.02	±0.2	%/V		
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p, Iout=30mA (In case that Vout < 2.0V, Vin=3.0V)			70		dB		
V _{IN}	Input Voltage			2.6		10	V		
ΔVουτ/ΔTopt	Output Voltage Temperature Coefficient	-40°C ≤ Topt ≤ 85°C			±80		ppm/°C		
Isc	Short Current Limit	Vout=0V			40		mA		
I PD	CE Pull-down Current					0.30		μА	
Vсен	CE Input Voltage "H"				1.7			V	
Vcel	CE Input Voltage "L"					8.0	V		
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			165		°C		
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			110		°C		
en	Output Noise	BW=10Hz to 100kHz				100		μVrms	
RLOW	Low Output Nch Tr. ON Resistance (of D version)	V _{IN} =7.0V V _{CE} =0V			250		Ω		

All of unit are tested and specified under load conditions such that Tj≈Topt=25°C except for Output Noise, Ripple Rejection, Output Voltage Temperature Coefficient and Thermal Shutdown.

TYPICAL APPLICATION

(External Components)
C2 1.0μF MURATA: GRM155B31A105KE15

TECHNICAL NOTES

When using these ICs, consider the following points:

Phase Compensation

In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor C2 with $1.0\mu F$ or more and good ESR (Equivalent Series Resistance).

(Note: If additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. Because of this, test these ICs with as same external components as ones to be used on the PCB.)

PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as $1.0\mu F$ or more between V_{DD} and GND pin, and as close as possible to the pins.

Set external components, especially the output capacitor C2, as close as possible to the ICs, and make wiring as short as possible.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection

Test Circuit for Load Transient Response

RICOH

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current (Topt=25°C)

2) Output Voltage vs. Input Voltage (Topt=25°C)

3) Supply Current vs. Input Voltage (Topt=25°C)

4) Supply Current vs. Output Current (Topt=25°C)

5) Output Voltage vs. Temperature

6) Supply Current vs. Temperature

7) Dropout Voltage vs. Output Current

RP171x

8) Dropout Voltage vs. Set Output Voltage (Topt=25°C)

9) Minimum Operating Voltage

Hatched area is avaiable for 1.2V output

10) Ripple Rejection vs. Input Bias Voltage (C1=none, C2=Ceramic 1.0μF, Ripple=0.2Vp-p, Topt=25°C)

11) Ripple Rejection vs. Frequency (C1=none, C2=Ceramic 1.0μF, Topt=25°C)

RP171x

12) Input Transient Response (C1=none, Ioυτ=30mA, tr=tf=5μs, Topt=25°C)

13) Load Transient Response (C1=Ceramic 1.0μF, tr=tf=500ns, Topt=25°C)

RP171x

14) Turn On Speed with CE pin (C1=Ceramic 1.0μF, Topt=25°C)

15) Turn Off Speed with CE pin (D Version) (C1=Ceramic 1.0μF, Topt=25°C)

ESR vs. Output Current

When using these ICs, consider the following points:

The relations between Iout (Output Current) and ESR of an output capacitor are shown below.

The conditions when the white noise level is under $40\mu V$ (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10Hz to 2MHz Temperature: -40°C to 85°C

C1, C2 : Ceramic 1.0µF (Murata GRM155B31A105KE)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY., LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.
Electronic Devices Company

● Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan
Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre
 Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands
 P.O.Box 114, 1180 AC Amstelveen
 Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd. 11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,
People's Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD. Electronic Devices Company

● **Taipei office**Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.