Model Building with Variable Selection – Part IV

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 10 – Lecture 10B

Stepwise Regression Models: Forward Selection

Start with no regression.

Enter one regressor with largest simple correlation with y or the largest value of F statistic for testing significance of regression, (say F-to-enter, labeled $F_{\rm IN}$).

Enter the next regressor with the largest

$$F = \frac{SS_R(x_2 \mid x_1)}{MS_{Res}(x_1, x_2)} > F_{IN}$$

Continue this process

The Hald Cement Data: Forward Selection

		ession: y ve		
F	orward select	tion. Alpha-	to-enter:	0.25
. R	esponse is y	on 4 predic	tors, with	N = 13
s	tep	1	2	, 3 ,
C	onstant	117.57	103.10	71.65
30	4	-0.738	-0.614	-0.237
T	- Value	-4.77<-	.21 -12.62	-1.37
P	- Value	0.001	0.000	0.205
×	1		1.44	1.45
T	- value		10.40 >1	.22 12.41
P	- Value		0.000	0.000
×	2	•	•	0.42
T	- Value			2.24 > 1.23
R	- Value			0.052
s		8.96	2.73	2.31
R-Sq		67.45	97.25	98.23
R-Sq(adj)		64.50	96.70	97.64
Mallows C-p		138.7	5.5	3.0

 $t_{.25,11}$ =1.21 $t_{.25,10}$ =1.22

Stepwise Regression Models: Backward Elimination

Start with full regression.

Remove the regressor with smallest value of F statistic less than $F_{\rm OUT}$.

Continue this process until the smallest F value is not less than $F_{\rm OUT}$.

The Hald Cement Data: Backward Selection

```
Stepwise Regression: y versus x1, x2, x3, x4
Backward elimination. Alpha-to-Remove: 0.1
Response is y on 4 predictors, with N=13
Step
                          71.65
                                    52.58
Constant
                                     1.47
                 1.55
                           1.45
x1
                 2.08
                          12.41
                                    12.10
T- Value
P- Value
                0.071
                           0.000
                                    0.000
                0.510
                          0.416
                                    0.662
x2
T- Value
                0.70
                           2.24
                                    14.44
                                     0.000
P- Value
                0.501
                           0.052
                 0.10
x3
                 0.14 < 1.86
T-Value
P-Value
                 0.896
                 -0.14
                           -0.24
X4
                           -1.37 > -1.83
T- Value
                -0.20
                           0.205
P- Value
                0.844
                           2.31
                  2.45
                98.24
                           98.23
                                     97.87
R- 8a
                           97.64
R-Sq(adj)
                 97.36
Mallows C-p
                             3.0
                                       2.7
                   5.0
```

Figure 10.9 Backward selection results from Minitab for the Hald cement data.

$$t_{.10.8} = 1.86$$
 $t_{.10.9} = 1.83$ $t_{.10.10} = 1.81$

Stepwise Regression

Stepwise regression is a modification of forward selection in which at each step all regressors entered into the model previously are reassessed via their F (or t) statistics.

A regressor added at an earlier step may now be redundant because of the relationships between it and regressors now in the equation. If the F (or t) statistic for a variable is less than $F_{\rm OUT}$ (or $t_{\rm OUT}$), the variable is dropped from the model.

Stepwise Regression

Stepwise regression requires two cutoff values: $F_{\rm IN}$ and $F_{\rm OUT}$; often $F_{\rm IN} > F_{\rm OUT}$

Strategy for variable selection and model building (Figure 10.11 – Flowchart, p.351)

Case 10.4 (p.354-366)

