TINAL TINAL

Credit Loan Prediction

Latar Belakang Masalah

Membangun model yang dapat memprediksi credit risk menggunakan dataset yang disediakan oleh company yang terdiri dari data pinjaman yang diterima dan yang ditolak. Diperlukan untuk mempersiapkan media visual dalam mempresentasikan solusi ke klien.

Data	columns (total 75 columns):		
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	466285 non-null	 int64
1	id	466285 non-null	int64
2	member_id	466285 non-null	
3	loan_amnt	466285 non-null	int64
4	funded_amnt	466285 non-null	int64
5	funded_amnt_inv	466285 non-null	float64
6	term	466285 non-null	object
7	int_rate	466285 non-null	float64
8	installment	466285 non-null	
9	grade	466285 non-null	object
10	sub_grade	466285 non-null	object
11	emp_title	438697 non-null	object
12	emp_length	445277 non-null	object
13	home_ownership	466285 non-null	object
14	annual_inc	466281 non-null	float64
15	verification_status	466285 non-null	object
16	issue_d	466285 non-null	object
17	loan_status	466285 non-null	object
18	pymnt_plan	466285 non-null	object
19	url	466285 non-null	object
20	desc	125983 non-null	object
21	purpose	466285 non-null	object
22	title	466265 non-null	object
23	zip_code	466285 non-null	object
24	addr_state	466285 non-null	object
25	dti	466285 non-null	float64
26	delinq_2yrs	466256 non-null	float64
27	earliest_cr_line	466256 non-null	object
28	inq_last_6mths	466256 non-null	float64
29	<pre>mths_since_last_delinq</pre>	215934 non-null	float64
30	mths_since_last_record	62638 non-null	float64
31	open_acc	466256 non-null	float64
32	pub_rec	466256 non-null	float64
33	revol_bal	466285 non-null	int64

- Terdapat 466285 rows dan 75 features
- Terdapat type data yang keliru
- Terdapat nilai data yang hilang
- Tidak ada outliers

	Unnamed: 0	id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	int_rate	installment	annual_inc	dti	
count	466285.000000	4.662850e+05	4.662850e+05	466285.000000	466285.000000	466285.000000	466285.000000	466285.000000	4.662810e+05	466285.000000	
mean	233142.000000	1.307973e+07	1.459766e+07	14317.277577	14291.801044	14222.329888	13.829236	432.061201	7.327738e+04	17.218758	
std	134605.029472	1.089371e+07	1.168237e+07	8286.509164	8274.371300	8297.637788	4.357587	243.485550	5.496357e+04	7.851121	
min	0.000000	5.473400e+04	7.047300e+04	500.000000	500.000000	0.000000	5.420000	15.670000	1.896000e+03	0.000000	
25%	116571.000000	3.639987e+06	4.379705e+06	8000.000000	8000.000000	8000.000000	10.990000	256.690000	4.500000e+04	11.360000	
50%	233142.000000	1.010790e+07	1.194108e+07	12000.000000	12000.000000	12000.000000	13.660000	379.890000	6.300000e+04	16.870000	
75%	349713.000000	2.073121e+07	2.300154e+07	20000.000000	20000.000000	19950.000000	16.490000	566.580000	8.896000e+04	22.780000	
max	466284.000000	3.809811e+07	4.086083e+07	35000.000000	35000.000000	35000.000000	26.060000	1409.990000	7.500000e+06	39.990000	

Pada data target yang digunakan yaitu 'loan_status' yang akan dibagi menjadi 2 kategori yaitu 'good' dan 'bad' berdasarkan value unique yang sebelumnya sebagai berikut.

- good loans = ['Current', 'Fully Paid', 'In Grace Period', 'Does not meet the credit policy. Status:Fully Paid']
- bad loans = ['Charged Off', 'Late (31-120 days)', 'Late (16-30 days)', 'Default', 'Does not meet the credit policy. Status:Charged Off']

Namun perbandingan antara 'good' dan 'bad' terdapat imbalance data sehingga data yang akan dilakukan prediksi menjadi kurang realistis. Maka dari itu pada kasus ini diatasi dengan cara oversampling.

- term: have low risk at term 36 and high risk at term 60
- inq_last_6mths: there is an increased risk associated with this.
- initial_list_status: have high risk in f and low risk in w
- grade: there is an increased risk associated with this.

- term: have low risk at term 36 and high risk at term 60
- inq_last_6mths: there is an increased risk associated with this.
- initial_list_status: have high risk in f and low risk in w
- grade: there is an increased risk associated with this.

 tloan_amnt, funded_amnt, funded_amnt_inv memiliki korelasi yang mirip dengan kolom lainnya sehingga kolom-kolom tersebut cenderung memiliki kemiripan data

```
desc
                               0.729815
mths_since_last_deling
                               0.536906
mths_since_last_record
                               0.865666
mths_since_last_major_derog
                               0.787739
annual_inc_joint
                               1.000000
dti_joint
                               1.000000
verification_status_joint
                               1.000000
                               1.000000
open acc 6m
                               1.000000
open il 6m
                               1.000000
open_il_12m
open il 24m
                               1.000000
                               1.000000
mths_since_rcnt_il
                               1.000000
total bal il
il_util
                               1.000000
                               1.000000
open_rv_12m
                               1.000000
open rv 24m
max_bal_bc
                               1.000000
all util
                               1.000000
ing fi
                               1.000000
                               1.000000
total cu tl
inq_last_12m
                               1.000000
dtype: float64
```

Data Cleaning and Check Duplicate

Pada data ini memiliki beberapa missing values sehingga pada kasus ini dilakukan pengecekan missing values berdasarkan:

- Drop column 'Unnamed: 0' which is a copy of an index.
- Drop the columns having > 50% missing values.
 (columns with 0 unique value are also columns that have 100% missing value)
- Drop column 'application_type' and 'policy_code' (it only have 1 unique value).
- Drop identifier columns: id, member_id, title, emp_title, url, zip_code, desc, policy_code (it can not be used in building model).
- Drop sub_grade, it contains the same information as the grade columns.

#	Column	Non-Null Count	Dtype
0	loan_amnt	396009 non-null	int64
1	term	396009 non-null	
2	int_rate	396009 non-null	float64
3	installment	396009 non-null	float64
4	grade	396009 non-null	object
5	emp_length	396009 non-null	int64
6 7	home_ownership	396009 non-null	object
7	annual_inc	396009 non-null	float64
8	verification_status	396009 non-null	object
9	purpose	396009 non-null	object
10	addr_state	396009 non-null	object
11	dti	396009 non-null	float64
12	delinq_2yrs	396009 non-null	float64
13	inq_last_6mths	396009 non-null	float64
14	open_acc	396009 non-null	float64
15	pub_rec	396009 non-null	float64
16	revol_bal	396009 non-null	int64
17	total_acc	396009 non-null	float64
18	initial_list_status	396009 non-null	object
19	collections_12_mths_ex_med	396009 non-null	float64
20	acc_now_delinq	396009 non-null	
21	tot_coll_amt	396009 non-null	
22	tot_cur_bal	396009 non-null	float64
23	total_rev_hi_lim	396009 non-null	
24	good_bad_loan	396009 non-null	
25	<pre>mths_since_earliest_cr_line_date</pre>		
26	mths_since_last_credit_pull_d	396009 non-null	float64

Feature Selection

Pada kasus ini hanya memilih kolom-kolom tertentu saja yang akan dijadikan fitur independen pada pemodelan nantinya

```
# Convert categorical columns with One Hot Encoding
from sklearn.preprocessing import OneHotEncoder
cat_cols = [col for col in loan_data.select_dtypes(include='object').columns.tolist()]
onehot_cols = pd.get_dummies(loan_data[cat_cols], drop_first=True)
```

Encoding Categorical to Numerical

Pada kolom yang bersifat kategorikal diubah menjadi numerik dahulu sebelum melanjutkan ke tahap pemodelan. Pada proses encoding ini dilakukan dengan cara One-Hot Encoding.

```
from sklearn.preprocessing import StandardScaler

num_cols = [col for col in loan_data.columns.tolist() if col not in cat_cols + ['good_bad_loan']]
ss = StandardScaler()
std_cols = pd.DataFrame(ss.fit_transform(loan_data[num_cols]), columns=num_cols)
```

Scaling data dengan StandardScaler

885.46

Scaling data dengan StandardScaler

10.99

27050

9750	36	13.98	333	3.14	1 26	0.000	25.12	0.0		0.0	12.0	0.0	7967	28.0	
12000	36	6.62	36	8.45	10 105	0.000	14.05	0.0		1.0	12.0	0.0	13168	22.0	
12000	36	13.53	40	7.40	10 40	0.000	16.94	0.0		0.0	7.0	2.0	5572	32.0	Befo
15000	36	8.90	470	6.30	2 63	0.000	16.51	0.0		0.0	8.0	0.0	11431	29.0	2010
18400	60	14.47	432	2.64	4 110	0.000	19.85	0.0		2.0	18.0	0.0	23208	36.0	
22000	€_1	oan_amnt	term	int_rate	installment	emp_	_length	annual_inc	dti	delinq_2	rs in	q_last_6mths	open_acc	pub_rec	revol_bal
20700	€	1.482170	-0.628523	-0.699230	1.805874	1	1.103741	-0.348864	0.652631	-0.369	124	-0.747992	0.508914	-0.332097	0.958438
2000	3	-0.600856	-0.628523	-0.016330	-0.459863	-1	1.286462	-0.879727	0.938245	-0.369	124	-0.747992	0.111068	-0.332097	-0.410679
10000	3	-0.329942	-0.628523	-1.697314	-0.315014	1	1.103741	0.566416	-0.466979	-0.369	124	0.217036	0.111068	-0.332097	-0.162317
	1	-0.329942	-0.628523	-0.119108	-0.155232	! 1	1.103741	-0.623449	-0.100122	-0.369	124	-0.747992	-0.883548	3.345057	-0.525047
		0.031276	-0.628523	-1.176575	0.127411	-1	1.020884	-0.202420	-0.154707	-0.369	124	-0.747992	-0.684625	-0.332097	-0.245264
		0.440657	1.591031	0.095583	-0.051692	: -(0.489728	0.657944	0.269273	-0.369	124	1.182065	1.304607	-0.332097	0.317120
		0.874119	1.591031	1.351753	0.563066	5 1	1.103741	0.072165	0.091557	-0.369	124	4.077152	1.304607	1.506480	0.079789
		0.717591	1.591031	0.671137	0.283459) (0.307007	-0.513615	1.005524	-0.369	124	1.182065	1.304607	-0.332097	-0.471755
		-1.534004	-0.628523	-1.404969	-1.569718	-(0.755306	0.163693	-1.566277	3.226	411	0.217036	1.901376	-0.332097	-0.246553
		-0.570755	-0.628523	1.175889	-0.318583	1	1.103741	-0.513615	0.641206	0.829	187	-0.747992	-1.082471	-0.332097	-0.250326

0.0

0.0

36638

27.0

loan_amnt term int_rate installment emp_length annual_inc dti delinq_2yrs inq_last_6mths open_acc pub_rec revol_bal total_acc

55000.0 22.87

ore

After

Handling imbalance class

```
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler()
X_train_ros, y_train_ros = ros.fit_resample(X_train, y_train)
#check value counts before and after oversampling
print('Before OverSampling:\n{}'.format(y_train.value_counts()))
print('\nAfter OverSampling:\n{}'.format(y_train_ros.value_counts()))
Before OverSampling:
     283815
      32992
Name: good_bad_loan, dtype: int64
After OverSampling:
     283815
     283815
Name: good_bad_loan, dtype: int64
```

Imbalance pada data target dilakukan oversampling dengan menggunakan RandomOverSampler

Train Test Split

Pada pemodelan yang dipersiapkan dilakukan train test split data dengan porsi train 80 dan test 20

Modelling

Pada pemodelan dilakukan menggunakan 10 model diantaranya yaitu:

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- Ada Boost Classifier
- K Neighbors Classifier
- XGB Classifier
- LGBM Classifier
- GaussianNB
- QuadraticDiscriminantAnalysis
- MLPClassifier

Modelling Result

[LightGBM] [I	_	:BoostFro	mScore]: pa	vg=0.500000							
Classification_Report:											
	precision	recall	f1-score	support							
bad loan	0.2229	0.6182	0.3277	8248							
good loan	0.9441	0.7495	0.8356	70954							
accuracy			0.7358	79202							
macro avg	0.5835	0.6839	0.5817	79202							
weighted avg	0.8690	0.7358	0.7827	79202							

Pada pemodelan yang telah dilakukan didapat bahwa model LGBM memiliki akurasi terbaik dimana Nilai akurasi rata-rata adalah 73,58% (recall pinjaman buruk = 61,82% dan recall pinjaman baik = 74,95%). Meskipun nilai akurasi ini masih belum tinggi, nilai ini sudah cukup tinggi karena dataset yang tidak seimbang. Recall adalah jumlah prediksi "positif" yang benar dibagi dengan total jumlah "positif". Ini berarti model ini berhasil mengidentifikasi 61,82% dari total pinjaman buruk dan berhasil mengidentifikasi 74,95% dari total pinjaman baik.

Terimakasih