Mushrooms

Eric Wang

Why Mushrooms?

Nutritional Value

- Vitamin D
- Potassium
- B Vitamins
- Weight Management
- Rich in Niacin

Why Mushrooms?

"One of the most sustainably produced foods in the United States"

Why Mushrooms?

Flavor Profile: Umami

- The fifth basic taste after sweet, salty, bitter, and sour
- Savory, brothy, rich, or meaty taste sensation
- Flavor enhancement
- Counterbalances saltiness
- Highlights sweetness while lessening bitterness

Exploring Edible vs. Poisonous Mushrooms

Data

- 173 species from 23 families
- Physical characteristics (i.e. cap diameter, stem height, odor, etc.)
- Growth characteristics (i.e. habitat, season, etc.)

Exploratory Data Analysis

- Frequency of different mushroom characteristics in the dataset (statistics and visualizations)
- Relationships between features via correlation metrics

Model Approach and Results

Goal

- Build a model to accurately classify a mushroom as either edible or poisonous
 - Considerations: Outliers, concentrations of data on extreme ends of distributions, etc.

Evaluation

Accuracy and Sensitivity

Results

100% across both metrics!

Findings and Recommendations

If the mushroom smells, it's likely harmful!

 No other significant predictors. A mushroom's edibility status is a function of most / if not all of the characteristics

Besides a mushroom's odor (which is still a bit ambiguous), it's hard to determine if a mushroom is safe to consume!

Model and Data Limitations, Next Steps

- Many of a mushroom's physical characters are interrelated as they age (i.e. cap shape and surface)
 - Can be addressed by extending the data to create entries for different stages of a mushroom species' lifespan

- Inadequate representation of a mushroom's characteristics (i.e. 12 colors)
 - Employing image classifiers to extract a more robust depiction of a mushroom
- Many classification algorithms require lots of computational power
 - Cloud processing

Exploring Edible Mushrooms in U.S. Consumer Markets

Datasets

 Area, production, volume of sales, price per pound, value, number of growers, etc. from the USDA National Agricultural Statistics Service

Analysis

 Compared annual trends across different metrics and retail segments (i.e. total U.S. dollar sales)

Findings: Retail

Considerable and consistent growth across the years 2014-2018

Volume and Dollar Sales of All Varieties are Soaring*

Mushroom Sales
Dollars and Pounds
2018 vs 2017

DOLLAR % CHANGE	VOLUME % CHANGE
3.5%	3.2%
6.7%	7.9%
16.8%	16.4%
22.1%	26.2%
5.4%	5.1%
	3.5% 6.7% 16.8% 22.1%

Findings: Food Service

 General decrease in the number of mushroom related menu item releases over the past decade

Next Steps

- Build models for inferential purposes to predict any relevant key metric (i.e. price per pound, volume of sales, etc.)
- Explore other components of the mushroom consumer market, such as production and shipping trends
- Dive deeper and research key drivers behind growth in the retail segment

Conclusions

- Mushrooms are diverse. If you're looking to pick out ones that are safe to consume, it's quite a challenging task
 - Thankfully, we have experts and strong machine learning models!
- Growth trends in volume and dollar sales of mushrooms in the retail industry over the past eight years, with grocery channels possessing the majority channel share
- Decrease in the number of mushroom related items introduced in food service