

FIG. 1

102

I_1:	a, b, c, d, e, f, g
I_2:	d, f, g
I_3:	a, b, d, g
I_4:	a, d, g
I_5:	f, g
I_6:	e, f, g
I_7:	e, g

108

EXAMPLE FOR DEPENDENCY (50% AS THRESHOLD)	
{ag}	$P(a g) = \text{COUNT}(ag)/\text{COUNT}(g) = 3/7$
	$P(g a) = \text{COUNT}(ag)/\text{COUNT}(a) = 3/3$
	$a \rightarrow g$, BUT NOT $g \rightarrow a$,
{ab}	$P(a b) = 2/2$
	$P(b a) = 2/3$
	$a \rightarrow b$, AND $b \rightarrow a$, (ab) IS NOT FREQUENT

104

PATTERNS	COUNT
a	3
b	2
c	1
d	3
e	3
f	4
g	7

106

PATTERNS	COUNT
ab	2
ad	3
ae	1
af	1
ag	3
:	:

FIG. 2

PATTERNS	COUNT
ab	3
ac	2
dc	2
:	:

PATTERNS	COUNT
a	10
b	3
c	2
d	3

minsup = 3; minp = 0.6
 {ab} IS FREQUENT, BUT NOT M-PATTERN
 $P(a \mid b) = \text{COUNT}(ab)/\text{COUNT}(b) = 1;$
 $P(b \mid a) = 3/10$
 {dc} IS M-PATTERN, BUT NOT FREQUENT
 $P(d \mid c) = 2/3; P(c \mid d) = 1$

204 } 206 }

FIG. 3

FIG. 4

FIG. 5

FIG. 6

EVENT ID	EVENT TYPE ID	HOST ID	TIME STAMP
1	1	1	1
2	2	2	2
3	1	1	4
4	1	1	7
5	2	2	9
6	1	1	15
7	2	2	16
8	1	1	18
9	1	3	19
10	2	1	21
11	2	2	23
12	2	2	25
13	1	1	30

610 ↗

TABLE: ORIGINAL EVENTS

{EVENT TYPE ID, HOST ID}	EVENT CLASS
{1,1}	1
{1,3}	2
{2,1}	1
{2,2}	4

TABLE: MAPPING FOR EVENT CLASS

EVENT ID	EVENT CLASS	TIME STAMP
1	1	1
2	4	2
3	1	4
4	1	7
5	4	9
6	1	15
7	4	16
8	1	18
9	2	19
10	1	21
11	4	23
12	4	25
13	1	30

620 ↗

630 ↗

6/8
YOR920000679US1

FIG. 7

FIG. 8A

- INPUT: A SET OF CANDIDATES C_k , COUNT INFORMATION AT ALL PREVIOUS LEVELS, AND A THRESHOLD minp
- OUTPUT: A SET OF PRUNED CANDIDATES C'_k
- ALGORITHM
 - For each pattern pat in C_k
 - For each item a in pat
 - Compute: $prob = \text{Count}(pat-a)/\text{Count}(a)$;
 - if $prob < \text{minp}$
 - $C_k = C_k - pat$
 - break the for-loop
 - Return C_k

FIG. 8B

- INPUT: PATTERN pat , ALL COUNT INFORMATION, AND A THRESHOLD minp
- OUTPUT: TRUE IF pat IS A QUALIFIED M-PATTERN; OTHERWISE FALSE.
- ALGORITHM
 - For each a in pat
 - $prob = \text{Count}(pat)/\text{Count}(a)$
 - if $prob < \text{minp}$
 - return false
 - Return true
- This algorithm is $O(k)$

FIG. 9

