Computer Vision

CVI620

Session 21 03/2025

What is Left?

9 sessions

- 1. Optimization and Loss Function
- 2. Code + Logistic Regression
- 3. ML and Images
- 4. Perceptron and Neural Networks
- 5. Deep Neural Networks
- 6. Convolution Neural Networks (CNN)
- 7. Advanced CNNs
- 8. Project
- 9. Segmentation
- 10. Introduction to object detection and image generation methods with AI
- 11. Project

Agenda

Frameworks for Neural Networks

Keras

- By Francois Chollet
- Easier code
- From tf v2

Fire detection with Neural Networks

Architecture

Type of Encoding

Cat 0
Dog 1
Bird 2
Horse 3

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
label = ["cat", "dog", "pandas", "fire"]
out = le.fit_transform(label)
print(out)
```


Type of Encoding

One Hot Encoding

```
from tensorflow.keras.utils import to_categorical
labels = [1, 2, 0, 1]
encode = to_categorical(labels)
print(encode)
```

```
[[0. 1. 0.]
[0. 0. 1.]
[1. 0. 0.]
[0. 1. 0.]]
```

Defining Neural Network

Sequential

Functional API Model Subclassing

Steps

Design and define NN

Compile

Fit

Softmax

- An activation function
- Turns a vector of raw scores (logits) into probabilities that sum to 1.

Softmax

Softmax in Neural Networks

Summary

Loss Function For Classification

Cross Entropy Loss

$$loss = -\sum_{i=1}^{n} y_i \log(y_i')$$

Cross Entropy Loss

Prediction

True Labels

0	0	0	0	0	1	0	0	0	0

Convolutional Neural Networks (CNNs)

Layers in CNNs

Convolution Layer

Multiple Convolutions

Convolution for Colored Images

Padding

0	0	0	0	0	0	0	0
0	3	3	4	4	7	0	0
0	9	7	6	5	8	2	0
0	6	5	5	6	9	2	0
0	7	1	3	2	7	8	0
0	0	3	7	1	8	3	0
0	4	0	4	3	2	2	0
0	0	0	0	0	0	0	0

$$6 \times 6 \rightarrow 8 \times 8$$

	1	0	-1
*	1	0	-1
	1	0	-1
'			

$$3 \times 3$$

=

-10	-13	1			
-9	3	0			
6 × 6					

 6×6

Stride

Post Convolution Dimensions

$$H_2 = \frac{(H_1 - F + 2P)}{S} + 1$$

$$D_2 = K$$

Layers in CNNs

MLP

Layers in CNNs

MaxPooling

ı

Average Pooling

2	2	7	3
9	4	6	1
8	5	2	4
3	1	2	6

CNNs

