Analízis II. +/- kidolgozás

A jegyzet UMANN Kristóf kidolgozásaiból készült, Dr. SZILI László előadása alapján. (2016. október 13.) Gyakorlathoz pdf: http://numanal.inf.elte.hu/~szili/0ktatas/An2_BSc_2016/An2_gyak_2016_osz.pdf

1. Mi a belső pont definíciója?

Válasz: $0 \neq A \subset \mathbb{R}$ halmaz belső pontja $a \in A$, ha

$$\exists K(a): K(a) \subset A.$$

Jele: int $A := \{a \in A \mid a \text{ belső pontja } A\text{-nak } \}$

2. Mikor mondja azt, hogy egy $f: \mathbb{R} \to \mathbb{R}$ függvény differenciálható valamely pontban? Válasz: $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$. f differenciálható, vagy deriválható az a pontban, ha

$$\exists$$
 és véges $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} =: f'(a)$ határérték.

f'(a): f deriváltja, vagy differenciálhányadosa a pontban. Jelöljük így is: $f \in D\{a\}$.

 $3.\ {\rm Mi}$ a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

Válasz: Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$.

$$a) \ f \in D\{a\} \quad \Rightarrow \quad f \in C\{a\}.$$

b)
$$f \in C\{a\} \implies f \in D\{a\}.$$

4. Mi a jobb oldali derivált definíciója?

Válasz: $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$, és tegyük fel, hogy $\exists \delta > 0$: $[a, a + \delta) \subset \mathcal{D}_f$. Ha létezik és véges a $\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a}$ hátérérték, akkor az f függvény **jobbról deriválható** az a-ban.

$$\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a} =: f'_{+}(a) \quad \text{az } f \text{ jobb oldali deriváltja az } a\text{-ban.}$$

5. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra a lineáris közelítéssel?

Válasz: Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_f$

$$f \in D\{a\} \quad \Leftrightarrow \quad \begin{cases} \exists A \in \mathbb{R} & \text{és} \quad \exists \varepsilon : \quad \mathcal{D}_f \to \mathbb{R}, \quad \lim_a \varepsilon = 0 \\ f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \quad (x \in \mathcal{D}_f) \end{cases}$$

$$A = f'(a)$$
.

6. Mi az érintő definíciója?

Válasz: $f: \mathbb{R} \to \mathbb{R}$ függvény grafikonjának van érintője, az (a, f(a)) pontban, ha $f \in D\{a\}$.

A grafikon (a, f(a))-béli **érintője** az

$$y = f'(a)(x - a) + f(a)$$

egyenletű egyenes.

7. Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz: Tegyük fel, hogy $f, g : \mathbb{R} \to \mathbb{R}$, $f, g \in D\{a\}$, $a \in \operatorname{int}(\mathcal{D}_f \cap \mathcal{D}_a)$.

$$f \cdot g \in D\{a\}$$
 és $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

8. Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz: Tegyük fel, hogy $f, g : \mathbb{R} \to \mathbb{R}$, $f, g \in D\{a\}$, $a \in \operatorname{int}(\mathcal{D}_f \cap \mathcal{D}_g)$, $g(a) \neq 0 \Rightarrow$

$$\frac{f}{g} \in D\{a\} \quad \text{\'es} \quad \left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}.$$

9. Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz: Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$, $a \in \text{int } \mathcal{D}_g$ és

$$\left. \begin{array}{l}
\mathcal{R}_g \subset \mathcal{D}_f \\
g \in D\{a\} \\
f \in D\{g(a)\}
\end{array} \right\} \Rightarrow \left. \begin{array}{l}
f \circ g \in D\{a\}, \\
(f \circ g)'(a) = f'(g(a)) \cdot g'(a)
\end{array}$$

10. Írja fel az $\exp_a \quad (a \in \mathbb{R}, a > 0)$ függvény deriváltját valamely helyen.

Válasz: Az \exp_a függvény: $(a^x = e^{x \cdot \ln a}) \quad \forall x \in \mathbb{R}, \quad \exp_a \in D\{x\}$

$$\boxed{(a^x)' = a^x \ln a \quad (x \in \mathbb{R})}$$

11. Írja fel az $\log (a \in \mathbb{R}, 0 < a \neq 1)$ függvény deriváltját valamely helyen.

Válasz: \log_a függvény, 0 < a és $a \neq 1$, $\forall x \in (0, +\infty)$, $\log_a \in D\{x\}$

$$\log_a' x = \frac{1}{x \cdot \ln a} \quad (x \in (0, +\infty))$$