4.1 \mathcal{T}_4 mirror maps from coassociative fibrations

Let us begin by analyzing the generalized \mathcal{T}_4 mirror symmetry map in the context of TCS G_2 manifolds. As the Kovalev CYs X_{\pm} admit mirrors by assumption, by the SYZ argument, these have two T^3 special lagrangian fibrations. Let us denote such fibrations by L_{\pm} . In the asymptotically cylindrical region of the manifold $X_{\pm} \sim \mathbb{R}^+ \times S^1 \times S_{\pm}$, the SYZ special lagrangians must asymptote to $L_{\pm} \sim S^1 \times \Lambda_{\pm}$, where Λ_{\pm} are the SYZ special lagrangian T^2 fibrations within the asymptotic K3s (with respect to the K3 complex structure induced by the ambient CY). In particular, they do not extend along the \mathbb{R}^+ direction. Let us fix the phase of the holomorphic top form on X_{\pm} such that the SYZ special lagrangians are calibrated as follows

$$vol_{L_{+}} = -Im\left(\Omega_{+}^{3,0}\right)|_{L_{+}}.$$
(4.4)

Notice that a special lagrangian L gives rise to a coassociative cycle $M_L \equiv S^1 \times L \subset S^1 \times X$ if and only if it satisfies (4.4). In particular,

$$Im(\Omega_{+}^{3,0}) = d\theta_{\pm} \wedge I_{S_{+}} - dt_{\pm} \wedge R_{S_{+}}$$
(4.5)

therefore, for our special lagrangians L_{\pm} we have

$$\operatorname{Im}(\Omega_{\pm}^{3,0})|_{L_{\pm}} = -d\theta_{\pm} \wedge I_{S_{\pm}}.$$
(4.6)

Now, Equation (3.3) entails that the four-cycles $M_{\pm} \equiv (S^1)_{\pm} \times L_{\pm} \subset J_{\pm}$ are such that

$$\star \varphi_{\pm}|_{M_{\pm}} = d\xi_{\pm} \wedge d\theta_{\pm} \wedge (I_{S_{\pm}})|_{\Lambda_{\pm}} = \text{vol}_{M_{\pm}}$$

$$\tag{4.7}$$

which entails these are coassociative submanifolds. Since

$$\Xi^{*}(\star \varphi_{-}|_{M_{-}}) = \Xi^{*}(d\xi_{-} \wedge d\theta_{-} \wedge I_{S_{-}})$$

$$= -d\theta_{+} \wedge d\xi_{+} \wedge -I_{S_{+}}$$

$$= d\xi_{+} \wedge d\theta_{+} \wedge I_{S_{+}}$$

$$= \star \varphi_{+}|_{M_{+}},$$

$$(4.8)$$

the TCS glueing diffeomorphism Ξ is such that M_{\pm} are glued into a coassociative submanifold $M \subset J$ which has the topology of a T^4 , which may become singular along loci in J.

Performing three T-dualities along the L_{\pm} SYZ fibres is mapping X_{\pm} to their mirrors X_{\pm}^{\vee} by construction. However, as the S^1 within the asymptotic CY cylinders are swapped with