Cours N°4:

Décroiassance Radioactive

Introduction : la radioactivité est un phénomène naturel aléatoire qui affecte certains noyaux, et qui permet de dater certaines roche o d'estimer la date de la mort de certains être vivants, telles que les momies pharaonique, par exemple. Quel est le principe de cette datation ? Comment la réaliser ?

I- Le noyau atomique

1-Les constituants du novau

Le noyau atomique est composé de et de, ces constituants du noyau s'appellent les Le..... a une charge positive appelée charge élémentaire:

 $q_p = +e = +1.6.10^{-19}$ C, sa masse: $m_p = 1.6726.10^{-27}$ kg.

Le est électriquement neutre (il n'a pas de charge électrique). $(q_n = 0)$. ,sa masse : $m_n = 1,6750.10^{-27}$ kg.

2-Représentation symbolique du noyau atomique

Le nombre de nucléons que contient le noyau atomique est noté...., il s'appelle: (c'est le nombre de protons + nombre de neutrons)

Le nombre de protons que contient le noyau atomique est symbolisé par, il s'appelle : (ou le nombre de charges)

Le noyau atomique d'un élément chimique est représenté par le symbole:

X: symbole de l'élément chimique.

A: nombre de masse. (=nombre de nucléons)

Z: numéro atomique (=nombre de protons)

N=A-Z : nombre de neutrons

Application 1 :: Donner la composition du noyau ${}^{12}\!\mathcal{L}$:

Symbole de noyau AX	Nombres de nucléons	Nombre de protons	Nombre de neutrons
•••••			

3- Le nucléide

On appelle **nucléide** en physique nucléaire, l'ensemble des **noyaux identiques** ayant même A et même Z.

Exemples: 35Cl est nucléide de l'élément chimique de chlore

¹⁴C et ¹³C: sont deux nucléides différents malgré qu'ils ont même nombre de proton.

Un nucléide X est donc un noyau caractérisé par son nombre et son numéro atomique, il est noté:

4-Les isotopes

Des noyaux qui ont même numéro mais des nombres différent, s'appelle des isotopes. (Ils ont donc même nombre de protons mais un nombre de neutrons différent).

Exemple:

Remarque:

Les isotopes diffèrent aussi par leur abondance dans la nature.

Pisotope	160	17 O	180
% abondance	99,759	0,037	0,204

5-La densité du noyau atomique :

Le noyau atomique a une forme sphérique dont le rayon r varie avec la variation du nombre de masse A selon la relation suivante:

$$r = r_o A^{\frac{1}{3}}$$
 $r_o = 1,2 \times 10^{-15} m$

La masse approchée d'un nucléon est : $m_n \approx 1.7 \times 10^{-27} \, Kg$

La valeur approchée de la masse volumique du noyau atomique:

$$\rho = \frac{M}{V} = \frac{m_n \times A}{\frac{4}{3}\pi x^3} = \frac{3.m_n \cdot A}{4\pi x_o^3 \cdot A} = \frac{3.m_n}{4\pi x_o^3} = \frac{3 \times 1,7.10^{-27}}{4\pi . (1,2.10^{-15})^3} \approx 2.10^{17} \, \text{Kg/m}^3 \qquad \text{soit:} \qquad \rho = 2.10^8 \, \text{tonnes/cm}^3$$

La masse de 1cm3 de la matière nucléaire est 200 millions tonnes, par conséquence la matière nucléaire est extrêmement dense.

II-Stabilité et Instabilité des noyaux atomiques

1-Noyau radioactif

Un noyau radioactif est un noyau instable dont la désintégration (:destruction) provoque l'apparition d'un nouveau noyau, avec émission d'une particule notée α , β - ou β +, et fréquemment l'émission d'un rayonnement électromagnétique noté γ .

La désintégration radioactive est un phénomène naturel, aléatoire et spontané.

2- Le diagramme (N,Z) ou diagramme de Segré

Le diagramme de **Segré** contient tous les **noyaux stables** et **les noyaux radioactifs** (instables) existants répartis de la façon suivante: le nombre de neutrons N en abscisse et le nombre de protons Z en ordonnée: c'est le diagramme (N, Z)

- ➤ La zone centrale rouge s'appelle la vallée de stabilité et comprend les noyaux stables
- Pour les nucléides de $Z \le 20$: la vallée de stabilité se situe au voisinage du premier médiateur (Z = N), c.-à-d. on a : (Z = N) pour les noyaux stables légers.
- ▶ Pour les nucléides de Z > 20 : la vallée de stabilité se déplace au-dessus du premier médiateur quand la valeur de Z augmente, c.-à-d. on a : N > Z pour les noyaux stables.
- Pour les nucléides de Z > 83: sont instables

Les différents isotopes de même élément chimique se trouvent sur la même droite parallèle à l'axe des ordonnées

3--Lois de conservation (lois de Soddy)

« Lors d'une **transformation nucléaire**, le nombre de nucléons: **A** et la charge électrique: **Z**, **se conservent** » Appliquons la loi de Soddy à l'équation générale de désintégration suivante:

 ${}_{z}^{A}X \longrightarrow {}_{z_{1}}^{A_{1}}Y + {}_{z_{2}}^{A_{2}}Z$

Conservation des nucléons :.....

Application 2: 1. Trouver les nombres a et b dans l'équation suivante : ${}^{210}_{84}\text{Po} \longrightarrow {}^{a}_{82}\text{Pb} + {}^{4}_{b}\text{He}$
2. Trouver les nombres x et y dans l'équation suivante :
4-Les radioactivités α , Q , $et \gamma$
a- La radioactivité α : accompagnée de l'émission d'un noyau d'Hélium
Lors de cette radioactivité Q- unse transforme en un selon l'équation suivante : c-La radioactivité β+ La radioactivité Q+: est une désintégration nucléaire naturelle spontanée, dans laquelle un noyau père se transforme en un noyau fils Accompagnée de l'émission d'un positron appelé particule Q-, selon l'équation suivante : Exemple:
Remarque: Lors de cette radioactivité Q+ un se transforme en un selon l'équation suivante : c- Le rayonnement γ Le rayonnement γ est des ondes électromagnétiques de très grande énergie, lors des désintégrations α et Q et Q+,
le noyau fils est généralement produit dans un état excité (il possède un excédent d'énergie par rapport à son état fondamental). Ce noyau libère un rayonnement γ selon l'équation suivante::

Remarque:

- Les rayons α : peuvent être arrêtés par une feuille de papier.
- Les rayons Q : peuvent être arrêtés par une plaque d'aluminium.
- Les rayons γ : peuvent être arrêtés par un mur de béton ou de plomb.

Feuille de papier Plaque d'aluminiu Mur de béton

5-Familles radioactives:

Une famille radioactive est une suite de nucléides descendant d'un même noyau, le noyau père, par une suite de désintégrations successives jusqu'à l'obtention d'un <u>noyau stable</u>. Il n'y a que quatre familles :

$$^{235}_{92}$$
U , $^{232}_{90}$ Th , $^{237}_{93}$ Np , $^{238}_{92}$ U

Application 3 L'iode $^{131}_{53}$ est radioactif de type β⁻. Ecrire l'équation de désintégration du noyau de l'iode en précisant la nature de la particule β⁻ en identifiant le noyau fils parmi les éléments suivants : $_{51}$ Sb ; $_{52}$ Te ; $_{54}$ Xe ; $_{55}$ Cs .

Les propriétés de la fonction logarithme décimale (dans chimie)

$$log 10 = 1$$

$$log 1 = 0$$

$$log xy = log x + log y$$

$$log \frac{x}{y} = log x - log y$$

$$log 10^{a} = a$$

$$log y = x \neq y = 10^{x}$$

Les propriétés de la fonction exponentielle (e^x) et népérienne (ln)

$$e^{a}.e^{b} = e^{a+b} \quad , \quad \frac{e^{a}}{e^{b}} = e^{a-b}$$

$$e^{b} = a \Leftrightarrow b = \ln a \quad ; \quad a \succ 0$$

$$e^{0} = 1 \quad , \quad \ln 1 = 0 \quad , \quad e^{-\infty} = 0$$

$$(a,b) > 0 : \quad \ln(a.b) = \ln a + \ln b$$

$$(a,b) > 0 : \quad \ln \frac{a}{b} = \ln a - \ln b$$

$$\ln a^{n} = n.\ln a \quad , \quad \ln \frac{a}{b} = -\ln \frac{b}{a}$$

$$(a.e^{-\lambda x})' = -a.\lambda.e^{-\lambda.x} \quad \text{Dérivée}$$

à l'instant $t = \tau$ on trouve :	Le nombre de noyaux non désintégrés d'un échantillon radioactif suit la loi de décroissance radioactive suivante: $N(t)$: $N(t$	
suivante: $N(t)$:	suivante: $N(t)$:	
$N(t)$: N_0 : λ : 2-La constante de temps d'un échantillon radioactif : τ On définit la constante de temps τ par la relation suivante : son unité dans $(S.I)$ est : $seconde$ (s) On a : λ l'instant $t = \tau$ on trouve : λ l'instant	$N(t)$: N_0 : λ : 2-La constante de temps d'un échantillon radioactif : τ On définit la constante de temps τ par la relation suivante : son unité dans $(S.I)$ est : $seconde$ (s) On a : Δ l'instant $t = \tau$ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) Fig 1: loi de décrois radioactive	ssance
No: λ : 2-La constante de temps d'un échantillon radioactif : τ On définit la constante de temps τ par la relation suivante : son unité dans ($S.I$) est : $seconde$ (s) On a : λ l'instant $t = \tau$ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie t_{12} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) You in the first of the first one définie par le relation suivante : **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde ** **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde ** **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde ** **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde ** **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde ** **Activité d'un échantillon radioactif*, le nombre de désintégrations qu'il produit par seconde **	2-La constante de temps d'un échantillon radioactif : τ On définit la constante de temps τ par la relation suivante : son unité dans ($S.I$) est : $seconde$ (s) On a : à l'instant $t = \tau$ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
2-La constante de temps d'un échantillon radioactif :τ On définit la constante de temps τ par la relation suivante : son unité dans $(S.I)$ est : $seconde$ (s) On a : $\frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda}$ Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie t_{12} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde »	2-La constante de temps d'un échantillon radioactif :τ On définit la constante de temps τ par la relation suivante : son unité dans (S.I) est : seconde (s) On a : à l'instant t = τ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N ₀ de nucléides. Remarque : La tangente de la courbe N = f(t) à l'instant t = 0 coupe l'axe des abscisses au point de l'abscisse t = τ. (figure 1) 3-Demi-vie t _{1/2} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
2-La constante de temps d'un échantillon radioactif : τ On définit la constante de temps τ par la relation suivante : son unité dans $(S.I)$ est : $seconde$ (s) On a :	2-La constante de temps d'un échantillon radioactif :τ On définit la constante de temps τ par la relation suivante : son unité dans (S.I) est : seconde (s) On a : à l'instant t = τ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N ₀ de nucléides. Remarque : La tangente de la courbe N = f(t) à l'instant t = 0 coupe l'axe des abscisses au point de l'abscisse t = τ. (figure 1) 3-Demi-vie t _{1/2} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
On définit la constante de temps τ par la relation suivante : son unité dans ($S.I$) est : $seconde$ (s) On a :	On définit la constante de temps τ par la relation suivante :	ssance
son unité dans ($S.I$) est : $seconde$ (s) On a :	son unité dans $(S.I)$ est : $seconde$ (s) On a :	ssance
son unité dans ($S.I$) est : $seconde$ (s) On a :	son unité dans $(S.I)$ est : $seconde$ (s) On a :	ssance
à l'instant $t = \tau$ on trouve : Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Yeativité d'un échantillon radioactif a : "On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité ort définie par le ralation quivante a $a(t) = -\frac{dN}{2}$	à l'instant $t = \tau$ on trouve :	ssance
Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque: La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4- Activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définio par la relation suivante $a(t) = \frac{dN}{2}$	Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque: La tangente de la courbe $N=f(t)$ à l'instant $t=0$ coupe l'axe des abscisses au point de l'abscisse $t=\tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N=f(t)$ à l'instant $t=0$ coupe l'axe des abscisses au point de l'abscisse $t=\tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t=t_{1/2})=\frac{N0}{2}$) 4-Activité d'un échantillon radioactif a : Wo appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité ort définie per la ralation suivante. a(t) = - $\frac{dN}{dN}$	Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque: La tangente de la courbe $N=f(t)$ à l'instant $t=0$ coupe l'axe des abscisses au point de l'abscisse $t=\tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque : La tangente de la courbe $N=f(t)$ à l'instant $t=0$ coupe l'axe des abscisses au point de l'abscisse $t=\tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t=t_{1/2})=\frac{N0}{2}$) 4-Activité d'un échantillon radioactif a : Wo appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité ort définie per la ralation suivante. a(t) = - $\frac{dN}{dN}$	Alors τ est la durée nécessaire pour la désintégration de 63% du nombre initiale N_0 de nucléides. Remarque: La tangente de la courbe $N=f(t)$ à l'instant $t=0$ coupe l'axe des abscisses au point de l'abscisse $t=\tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
initiale N_0 de nucléides. Remarque: La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Ye de nucléides radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité cet définie par le relation quivante $a(t) = dN$	initiale N_0 de nucléides. Remarque: La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
Remarque: La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie t_{12} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation quirente $t = 0$ coupe l'axe Fig 1: loi de décroissance radioactive	Remarque: La tangente de la courbe $N = f(t)$ à l'instant $t = 0$ coupe l'axe des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N_0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : "On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité est définie per le relation guivante a $t_{1/2}$	des abscisses au point de l'abscisse $t = \tau$. (figure 1) 3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	ssance
3-Demi-vie $t_{1/2}$ d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité out définie par le ralation quivante $a(t) = -\frac{dN}{2}$	3-Demi-vie t _{1/2} d'un échantillon radioactif. La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la	
La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a: « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie par le ralation suivente. $a(t) = -\frac{dN}{2}$	La demi-vie d'un nucléide radioactif est la durée au bout de laquelle la No l'annucléide radioactif est la durée au bout de laquelle la	
moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente a(t) = $\frac{dN}{2}$	130	
moitié des nucléides radioactifs initialement présent dans l'échantillon se sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$) Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente a(t) = $\frac{dN}{2}$	moitié des pueléides radioactifs initialement présent deux l'échantilles es	
Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a: « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie par le relation suivente a $\mathbf{a}(\mathbf{t}) = -\frac{d\mathbf{N}}{2}$	mortie des nucleides radioactifs infidalement present dans i echantifion se	
Fig 2: Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a: « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente a(t) = $-\frac{dN}{2}$	sont désintégrés. (cà-d. $(t = t_{1/2}) = \frac{N0}{2}$)	
Fig 2 : Détermination de $t_{1/2}$ graphiquement 4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie par le relation suivente $a(t) = -\frac{dN}{2}$		
4- Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente $a(t) = -\frac{dN}{2}$		
4- Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente $a(t) = -\frac{dN}{2}$	$\frac{N_i}{N_i}$	
4- Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente $a(t) = -\frac{dN}{2}$		
4- Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente $a(t) = -\frac{dN}{2}$		\rightarrow
4-Activité d'un échantillon radioactif a : « On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité act définie per le relation suivente a(t) = - dN		le t _{1/2}
« On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par seconde » L'activité est définie per le relation suivente $a(t) = -\frac{dN}{2}$		
L'activité est définie par la relation suivante $a(t) = -\frac{dN}{dt}$	« On appelle activité d'un échantillon radioactif, le nombre de désintégrations qu'il produit par secon	nde »
L'activité est definie par la relation suivante dt	$a(t) = -\frac{dN}{dt}$	
	dt	
		•••••
		••••
L'activité se mesure en becquerels (Bq) :1Bq correspond à une désintégration par seconde.		
1 UDDUTON 40 PAGUITO 40 LOCINITO OU OBBOLO LOS ACCOSTA DA LACOM	L'appareil de mesure de l'activité est appelé : appareil de Geiger	

III- Décroissance radioactive

Exemple

source	1 L d'eau	1kg grain	homme (70kg)	1kg d'uranium
Activité (Bq)	10	1000	7000	25.10 ⁶

Remarque

- a(t) et N(t) ont la même courbe. (Figure 3)
- -On peut aussi exprimer la loi de décroissance radioactive par :

La masse $\mathbf{m}(\mathbf{t})$:

$$m(t) = m_0 \times e^{-\lambda . t}$$

ou La quantité de matière **n(t)**

$$\mathbf{n(t)} = \mathbf{n_0} \times \mathbf{e}^{-\lambda.\mathbf{t}}$$

Application 4: Trouver l'expression de l'activité $a(t)$ à l'instant $t_{1/2}$
4-Comment dater un événement grâce à la radioactivité ?
La radioactivité de certains éléments chimiques qui se trouvent dans les fossiles sédimentaires ou dans les roches permet de déterminer leur âge de la manière suivante :
- En mesurant l'activité $\mathbf{a}(t)$ de l'échantillon que l'on souhaite dater et l'activité \mathbf{a}_0 d'un échantillon vivant de même nature. - En utilisant la relation : $\mathbf{a}(t) = \mathbf{a}_0 e^{-\lambda t}$. Déterminer l'expression de la date t
La datation au carbone 14 est aussi une méthode de datation radioactive basée sur la mesure de l'activité du carbone 14 contenu dans de la matière organique dont on souhaite connaître l'âge depuis sa mort.
<u>Application 5:</u> Des archéologues ont trouvé une statue en bois dont l'activité est 135 Bq .Sachant que l'activité d'un morceau de bois contemporain de même masse et de même type de bois dont est faite la statue est 165 Bq . Déterminer en ans l'âge approximatif de la statue de bois.
Données : Demi-vie du carbone 14: $t_{1/2} = 5570$ ans.