<u>Alfabeto</u>

- Conjunto finito y no vacío de símbolos
- Se denotan con letras griegas mayúsculas
- Los elementos pueden ser letras o caracteres

Propiedades

- Igualdad: 2 alfabetos son iguales si poseen exactamente los mismos elementos
- Cardinalidad: Cantidad de elementos que posee $|\Sigma|$
- Inclusión: Un alfabeto Ω está incluido en otro Σ si todos los elementos de Ω forman parte de Σ

Operaciones con alfabetos

Nombre	Operación	Descripción	
Unión	$\Sigma_3 = \Sigma_1 \cup \Sigma_2$	Σ_3 contiene los elementos de Σ_1 y Σ_2	
Intersección	$\Sigma_3 = \Sigma_1 \cap \Sigma_2$	\varSigma_3 contiene los elementos que pertenecen a Σ_1 y \varSigma_2 simultáneamente	
Resta	$\Sigma_3 = \Sigma_2 \cdot \Sigma_1 - \Sigma_2$	Σ_3 contiene todos los elementos de Σ_1 que no están en Σ_2	
Complemento	$\overline{\Sigma_1}$	Todos los elementos del universo que no están en Σ_1	
Concatenación	$\Sigma_3 = \Sigma_1 \cdot \Sigma_2$	Σ_3 contiene todos los elementos de Σ_1 concatenados con los de Σ_2 . Se	
		respeta el orden	
Potencia	Σ^n , $n \in N$	Concatenación de los elementos de Σ n veces. Se respeta el orden	
Estrella de Kleene,	$W(\Sigma)$	Unión de las potencias del alfabeto desde 0 hasta ∞. Son todas las	
Universo del	∞ I I .	potencias posibles	
discurso o Lenguaje	$\Sigma^* = \bigcup \Sigma^i$		
universal	i=0		
Cierre o clausura	. . .	Son todas las potencias posibles desde 1 hasta ∞. Se descarta la potencia	
(reflexiva y	$\Sigma^+ = \left(\int \Sigma^i \right)$	que contiene la palabra vacía	
transitiva)	i=1		
	$\sum_{i} = \sum_{i} - \{\lambda\}$		

<u>Palabra, cadena, tira o sentencia):</u> Una palabra definida sobre un alfabeto Σ es cualquier secuencia finita de símbolos de Σ escritos uno a continuación del otro

- Se nombran con letras griegas minúsculas

Operaciones con cadenas

Nombre	Operación	Descripción
Longitud/Largo	$ \alpha $	Cantidad de símbolos de la palabra
Potencia n	α^n	Concatenación de un símbolo con si mismo n veces, $n \in N$
Cadena vacía	λ	No tiene símbolos. Es el elemento neutro de la concatenación.
(Lambda)	$ \lambda = 0$	
Refleja o inversa	α^{-1}	Símbolos de $lpha$ escritos en orden inverso
Palíndromo	$\alpha = \alpha^{-1}$	Cadena que es igual que su refleja

Partes de una palabra

$$\delta = lphaeta\gamma$$

Prefijo Subcadena Sufijo

Prefijos de δ	Sufijos de δ
λ	λ
1 p	a
2 pr	ba
3 Þ pru	eba
4 prue	ueba
5 prueb	rueba
LONG prueba	prueba

<u>Lenguaje</u>

- Un lenguaje definido sobre un Σ es un conjunto de palabras construidas con los símbolos de Σ
- Se simboliza con letras mayúsculas
- $-L\subseteq \Sigma^*$
- $-L_1 \subseteq L_2 \longleftrightarrow \forall \alpha \in \Sigma^* : \alpha \in L_1 \to \alpha \in L_2$. Toda palabra de L_1 es también de L_2
- $-L_1 \subset L_2 \leftrightarrow (\forall \alpha \in \Sigma^* : \alpha \in L_1 \to \alpha \in L_2) \land (\exists \beta \in \Sigma^*/\beta \in L_2 \land \beta \notin L_1)$. Toda palabra de L_1 es también de L_2 y existe al menos una palabra de L_2 que no está en L_1
- $\text{-}\ L_1 = L_2 \longleftrightarrow [\forall \alpha \in \Sigma^* : \alpha \in L_1 \longleftrightarrow \alpha \in L_2] \text{ o } L_1 = L_2 \longleftrightarrow [L_1 \subseteq L_2 \land L_2 \subseteq L_1]$
- Conjunto vacío Ø: Es un lenguaje que no tiene palabras
- $\{\lambda\}$: Conjunto cuyo único elemento es la cadena vacía

Operaciones con lenguajes

	operationes con inflatages					
Nombre	Operación	Descripción				
Unión	$L_1 \cup L_2 = \{\alpha/\alpha \in L_1 \lor \alpha \in L_2\}$	Nuevo lenguaje que contiene las palabras de L_1 y L_2				
Intersección	$L_1 \cap L_2 = \{\alpha/\alpha \in L_1 \land \alpha \in L_2\}$	Nuevo lenguaje que contiene las palabras que son				
		comunes a L_1 y L_2				
Concatenación	$L_1 \cdot L_2 = \{ \mu / \mu = \alpha \beta \land (\alpha \in L_1 \land \beta \in L_2) \}$	Nuevo lenguaje que contiene las palabras obtenidas				
		al concatenar cada una de las de L_1 con las de L_2				
Resta	$L_2 \cdot L_1 - L_2 = \{ \alpha / \alpha \in L_1 \lor \alpha \notin L_2 \}$	Nuevo lenguaje que contiene las palabras de L_1 que				
		no están en L_2				
Complemento	$L_1 \cdot \overline{L_1} = \{ \alpha / \alpha \in \Sigma^* \land \alpha \notin L_1 \}$	Nuevo lenguaje que contiene todas las palabras del				
		universo de discurso que no están en $L_{f 1}$				
Universo de	$W(\Sigma)$	Unión de las potencias del lenguaje desde 0 hasta ∞.				
discurso o	∞ I I .	Son todas las potencias posibles				
Estrella de	$L^* = \bigcup L^t$					
Kleene	$L^* = \bigcup_{i=0}^{\infty} L^i$ $L^* = L^+ \cup \{\lambda\}$					
Cierre o		Son todas las potencias posibles desde 1 hasta ∞. Se				
Clausula	$L^+ = \bigcup L^i$	descarta la potencia que contiene la palabra vacía				
(reflexiva y	i=1					
transitiva)						

Descripción de lenguajes

- Por extensión: Se indican todas las palabras

 $L = \{0,1,2,3,4,5,6,7,8,9\}$

- Por comprensión: Se explican propiedades de las cadenas
 - Coloquialmente: $L = \{S \text{ímbolos básicos del sistema decimal}\}$
 - Conjunto con una propiedad: $L = \{\alpha/\alpha => 0 \land \alpha < 10\}$
 - Algebráicamente: $L = \{\alpha = a^n b^m / n \ge 1 \land 0 \le m \ge 3\}$