BINARY LOGISTIC REGRESSION

Dr. Aric LaBarr
Institute for Advanced Analytics

BINARY LOGISTIC REGRESSION

Supervised Classification Modeling

Unsupervised Classification Scoring

Applications

- Binary classification is one of, if not the, most common type of business problems that need solving.
- Models developed by alumni in current jobs:
 - Targeted Marketing
 - Churn Prediction
 - Probability of Default
 - Fraud Detection

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- 189 observations in the data set

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- Predictors:
 - age: mother's age (years)
 - lwt: mother's weight at last menstrual period (lbs)
 - smoke: mother's smoking status during pregnancy
 - race: mother's race (1=White, 2 = Black, 3 = Other)
 - ptl: number of premature labors
 - ht: history of hypertension
 - ui: uterine irritability
 - ftv: number of physician visits during first trimester

What is Regression Actually Doing?

- Regression is modeling the **expected** (mean/average) response conditional on the predictors $\rightarrow E(y_i|x_1,x_2,...)$
- For a binary (0/1) response y_i , the expected value is just the probability of the event:

$$E(y_i) = P(y_i = 1) = p_i$$

So why not model the following:

$$p_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

Linear Probability Model

$$p_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

Problems:

- Probabilities are bounded, but linear functions can take on any value. (How do you interpret a predicted value of -0.4 or 1.1?)
- The relationship between probabilities and X is usually nonlinear. Example, one unit change in X will have different effects when the probability is near 1 or 0.5.

Logistic Regression Model

$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} x_{1,i} + \cdots + \beta_{k} x_{k,i})}}$$

- Has desired properties:
 - The predicted probability will always be between 0 and
 1.
 - The parameter estimates do not enter the model equation linearly.
 - The rate of change of the probability varies as the X's vary.

Logistic Regression Curve

The Logit Link Transformation

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$$

- To create a linear model, a link function (logit) is applied to the probabilities.
- The relationship between the parameters and the logits are linear.
- Logits unbounded.

The Logit Link Transformation

Assumption

Box-Tidwell Transformation

- Commonly used as a "test" for linearity of the X's relative to the logit in logistic regression models.
- Consider the following model:

logit(
$$p_i$$
) = ln $\left(\frac{p_i}{1-p_i}\right)$ = $\beta_0 + \beta_1 X_{1i}^{\gamma_1} + ... + \beta_k X_{1i}^{\gamma_k}$

- The Box-Tidwell transformation is a power transformation on the X's.
- Let's examine the case where $\gamma_i = 1$ for all i.

Box-Tidwell Transformation

$$\begin{aligned} \operatorname{logit}(p_i) &= \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \ldots + \hat{\beta}_k X_{1i} \\ \operatorname{logit}(p_i) &= \tilde{\beta}_0 + \tilde{\beta}_1 X_{1i} + \ldots + \tilde{\beta}_k X_{1i} \\ &+ \hat{\delta}_1 X_{1i} \ln(X_{1i}) + \ldots + \hat{\delta}_k X_{ki} \ln(X_{ki}) \\ \hat{\gamma}_i &= 1 + \frac{\hat{\delta}_i}{\hat{\beta}_i} \end{aligned}$$

```
data lowbwt;
       set logistic.lowbwt;
       aloga = age*log(age);
       lloql = lwt*loq(lwt);
run;
proc logistic data=lowbwt plots(only)=(oddsratio);
       class race(ref='white') / param=ref;
       model low(event='1') = age race lwt smoke aloga llogl /
                               clodds=pl clparm=pl;
       title 'Modeling Low Birth Weight';
run;
quit;
```

```
data lowbwt;
       set logistic.lowbwt;
       aloga = age*log(age);
       llogl = lwt*log(lwt);
run;
proc logistic data=lowbwt plots(only)=(oddsratio);
       class race(ref='white') / param=ref;
       model low(event='1') = age race lwt smoke aloga llogl /
                               clodds=pl clparm=pl;
       title 'Modeling Low Birth Weight';
run;
quit;
```

Type 3 Analysis of Effects							
Effect	DF	Wald Chi-Square	Pr > ChiSq				
age	1	1.0684	0.3013				
race	2	7.7573	0.0207				
lwt	1	0.0358	0.8499				
smoke	1	7.3098	0.0069				
aloga	1	1.1036	0.2935				
llogl	1	0.0176	0.8945				

```
boxTidwell(low ~ age + lwt, data = bwt)
```

```
## MLE of lambda Score Statistic (z) Pr(>|z|)
## age 3.9362 -0.7730 0.4395
## lwt -4.3556 1.0178 0.3088
##
## iterations = 10
```

General Additive Model (GAM)

Traditional logistic regression model:

$$\log(odds) = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_k x_{k,i}$$

GAM logistic regression model:

$$\log(odds) = \beta_0 + f_1(x_{1,i}) + \dots + f_k(x_{k,i})$$

- Use **spline functions** to estimate $f_j(x_j)$.
- If splines say straight line is good, then assumption met!

Smoothing Model Analysis Analysis of Deviance						
Source	DF	Sum of Squares	Chi-Square	Pr > ChiSq		
Spline(age)	3.00000	6.162954	6.1630	0.1039		
Spline(lwt)	3.00000	4.187660	4.1877	0.2419		

COEFFICIENT INTERPRETATIONS

Unit Change in Predictor does...?

 $100*(e^{\widehat{\beta}}-1)\%$ change in **Odds**

 $\hat{\beta}$ change in **Logit**

Odds Ratio from a Logistic Regression

Estimated logistic regression model:

$$logit(p_i) = 0.332 + 1.054 * smoke + \cdots$$

Estimated odds ratio (Smokers vs. Non-smokers):

$$OR = \frac{e^{0.332+1.054(1)+\cdots}}{e^{0.332+1.054(0)+\cdots}} = \frac{e^{0.332}e^{1.054}}{e^{0.332}} = e^{1.054} = 2.87$$

• Smokers have $100 * (e^{1.054} - 1)\% = 187\%$ higher expected odds than non-smokers to have low birth weight babies.

Odds Ratio from a Logistic Regression

Estimated logistic regression model:

$$logit(p_i) = 0.332 - 0.022 * age + \cdots$$

Estimated odds ratio (Additional Year of Age):

$$OR = \frac{e^{0.332 - 0.022(age + 1) + \cdots}}{e^{0.332 - 0.022(age) + \cdots}} = e^{-0.022} = 0.98$$

 Every additional year of age decreases the expected odds by 2% to have low birth weight babies.

Properties of the Odds Ratio

Odds Ratios – SAS

Odds Ratio Estimates and Profile-Likelihood Confidence Intervals							
Effect	Unit	Estimate	95% Confidence Limits				
age	1.0000	0.978	0.913	1.045			
race black vs white	1.0000	3.427	1.247	9.629			
race other vs white	1.0000	2.568	1.150	5.935			
lwt	1.0000	0.988	0.974	0.999			
smoke	1.0000	2.870	1.382	6.186			

Odds Ratios – R

```
exp(
  cbind(coef(logit.model), confint(logit.model))
  )
```

```
## (Intercept) 4.7784821 0.5088761 50.9670681 ## age 0.9777725 0.9131073 1.0445960 ## lwt 0.9875525 0.9744679 0.9993613 ## factor(smoke)1 2.8703634 1.3823204 6.1857015 ## factor(race)other 0.7494552 0.2652201 2.1245479 ## factor(race)white 0.2918045 0.1038416 0.8020311
```


ESTIMATION METHOD

Assumptions for OLS Regression

- The random error term has a Normal distribution with a mean of zero.
- The random error term has constant variance.
- The error terms are independent.
- Linearity of the mean.
- No perfect collinearity.
- In logistic regression, the first two assumptions are violated. Therefore, OLS is not the best method for parameter estimation.

Maximum Likelihood Estimation

- In logistic regression, estimates are obtained via maximum likelihood estimation (MLE)
- Very popular technique for developed statistical models!
- In fact, OLS is mathematically the same as the maximum likelihood by (INSERT MATH HERE!)
- The likelihood function measures how probable a specific grid of β values is to have produced your data → so we want to MAXIMIZE that!

Maximum Likelihood Estimation

Likelihood Ratio Tests

- Likelihood estimation provides a basis for hypothesis testing.
- If extra predictors don't add much information, then a model that includes them shouldn't be substantially more likely than the model that doesn't include them.
- Likelihood Ratio Test (LRT) compares these FULL and REDUCED models.

Model Inference – Likelihood Ratio Test

LRT= -2 ($LogL_0 - LogL_1$), follows chi-square distribution

Likelihood Ratio Test – SAS

Testing Global Null Hypothesis: BETA=0								
Test	Pr > ChiSq							
Likelihood Ratio	20.0948	5	0.0012					
Score	18.6377	5	0.0022					
Wald	16.4973	5	0.0056					

Likelihood Ratio Test – R

```
## Analysis of Deviance Table
##
## Model 1: low ~ age + lwt + factor(smoke) + factor(race)
## Model 2: low ~ 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 183 214.58
## 2 188 234.67 -5 -20.095 0.0012 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '
' 1
```


PREDICTED VALUES

Predicted Probabilities

 Once model fitting is over, we want to convert back to probabilities for our predictions.

Obs	Race	Low	Age	Lwt	Smoke	F_low	I_low	P_0	P_1
1	white	1	21	110	0	1	0	0.8202	0.1798
2	black	0	40	120	0	0	0	0.6981	0.3109
3	other	1	31	130	1	1	1	0.4988	0.5012
4	white	0	28	140	1	0	0	0.7303	0.2697
5	black	1	35	100	0	1	0	0.6166	0.3834

Obs	Race	Low	Age	Lwt	Smoke	F_low	I_low	P_0	P_1
1	white	1	21	110	0	1	0	0.8202	0.1798
2	black	0	40	120	0	0	0	0.6981	0.3109
3	other	1	31	130	1	1	1	0.4988	0.5012
4	white	0	28	140	1	0	0	0.7303	0.2697
5	black	1	35	100	0	1	0	0.6166	0.3834

Obs	Race	Low	Age	Lwt	Smoke	F_low	I_low	P_0	P_1
1	white	1	21	110	0	1	0	0.8202	0.1798
2	black	0	40	120	0	0	0	0.6981	0.3109
3	other	1	31	130	1	1	1	0.4988	0.5012
4	white	0	28	140	1	0	0	0.7303	0.2697
5	black	1	35	100	0	1	0	0.6166	0.3834

Predicted Probability Plot – SAS


```
predict(logit.model, newdata = newbw, type = "response")
```

```
## 1 2 3 4 5
## 0.1798424 0.3019376 0.5012475 0.2697100 0.3833902
```

Predicted Probability Plot – R

Predicted Probability Plot – R

