

Eksamen

28.05.2020

REA3005 Fysikk 2

Nynorsk

FI . C .		
Eksamensinfo	prmasjon	
Eksamenstid	5 timar Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast inn seinast etter 5 timar. Du kan begynne å løyse oppgåvene i Del 2 når som helst, men du kan ikkje bruke hjelpemiddel før etter 2 timar – etter at du har levert svara for Del 1.	
Hjelpemiddel	Del 1: Skrivesaker, passar, linjal og vinkelmålar. Del 2: Alle hjelpemiddel er tillatne, bortsett frå opent Internett og andre verktøy som kan brukast til kommunikasjon. Ved bruk av nettbaserte hjelpemiddel under eksamen har du ikkje lov til å kommunisere med andre.	
Bruk av kjelder	Dersom du bruker kjelder i svaret ditt, skal dei alltid førast opp på ein slik måte at lesaren kan finne fram til dei.	
Vedlegg	1 Faktavedlegg – kan brukast på både Del 1 og Del 2 av eksamen 2 Formelvedlegg – kan brukast på både Del 1 og Del 2 av eksamen 3 Eige svarark for oppgåve 1	
Vedlegg som skal leverast inn	Vedlegg 3: Eige svarark for oppgåve 1 finn du lengst bak i oppgåvesettet.	
Informasjon om fleirvalsoppgåva	Oppgåve 1 har 24 fleirvalsoppgåver med fire svaralternativ: A, B, C og D. Det er berre <i>eitt</i> riktig svaralternativ for kvar fleirvalsoppgåve. Blankt svar er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du meiner er mest korrekt. Du kan berre svare med <i>eitt</i> svaralternativ: A, B, C eller D. Skriv svara for oppgåve 1 på eige svarark i vedlegg 3, som ligg heilt til sist	
	i oppgåvesettet. Svararket skal rivast laus frå oppgåvesettet og leverast inn. Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.	
Kjelder	Sjå kjeldeliste side 36. Andre grafar, bilete og figurar: Utdanningsdirektoratet	
Informasjon om vurderinga	Karakteren blir fastsett etter ei heilskapleg vurdering av eksamenssvaret. Dei to delane av svaret, Del 1 og Del 2, blir vurderte under eitt. Det betyr at sensor vurderer i kva grad du - er grundig i forklaringane og løysingane - viser fysikkforståing og kan løyse problem - behandlar verdiar, nemningar og eksperimentelle data Sjå eksamensrettleiinga med kjenneteikn på måloppnåing til sentralt gitt skriftleg eksamen. Eksamensrettleiinga finn du på Utdanningsdirektoratets nettsider.	

Eksamen REA3005 Side 2 av 44

Del 1

Oppgåve 1 Fleirvalsoppgåver

Skriv svara for oppgåve 1 på eige svarark i vedlegg 3.

(Du skal altså ikkje levere inn sjølve eksamensoppgåva med oppgåveteksten.)

- a) Kva for nokon av dei samansette einingane er einingar for gravitasjonsfeltstyrke?
 - A. m/s^2 og N/kg
 - B. m/s^2 og N/m
 - C. J/m og N/kg
 - D. J/m og N/m
- b) I ein transformator har primærspolen 4000 vindingar og sekundærspolen 1000 vindingar. Vi koplar ei vekselspenning på 0,220 kV over primærspolen. Kva er den mest korrekte verdien vi kan oppgi for spenninga over sekundærspolen?
 - A. 55 V
 - B. 55.0 V
 - C. 0,880 kV
 - D. 0,88 kV
- c) Ei flaggermus sender ut lydsignal med 38 000–55 000 svingingar i sekundet. Vi ønskjer å reprodusere dette signalet. Kor stor må samplingsfrekvensen minst vere?
 - A. 38,0 kHz
 - B. 55,0 kHz
 - C. 76,0 kHz
 - D. 110 kHz

Eksamen REA3005 Side 3 av 44

d) Ein bil køyrer med konstant banefart i ein dossert sving slik at det ikkje verkar sidevegs friksjon. Kreftene som verkar på bilen, er tyngda G og ei kraft N normalt frå underlaget slik figuren viser.

Bilen aukar farten, men han held same bane som før. Kva for påstand er **riktig**?

- A. Det verkar sidevegs friksjon nedover mot høgre, og krafta *N* aukar.
- B. Det verkar sidevegs friksjon nedover mot høgre, og krafta *N* er uendra.
- C. Det verkar sidevegs friksjon oppover mot venstre, og krafta N aukar.
- D. Det verkar sidevegs friksjon oppover mot venstre, og krafta *N* er uendra.
- e) Ein gjenstand glir på ein bane utan friksjon eller luftmotstand. Kraftteikningane viser kreftene som verkar.

Éi av kraftteikningane, A, B, C eller D, er **feil** – kva for ei?

f) Ei kule med masse m er festa til ei snor. Kula blir dreidd rundt i ein vertikal sirkel. I det øvste punktet i banen er akselerasjonen til kula 4g.

Kva er krafta frå snora på kula i det øvste punktet i banen?

- A. mg
- B. 3mg
- C. 4mg
- D. 5mg

Eksamen REA3005 Side 4 av 44

g) To identiske fjører kan koplast saman på ulike måtar. Dersom det heng eit lodd i ei av fjørene, blir forlenginga l_0 (figur 1). Fjørene blir kopla saman på to ulike måtar, slik som i figur 2 og figur 3.

Loddet blir hengt i koplingane.

Kor langt ned heng loddet når det har komme til ro? Vi reknar fjørene som masselause.

	Forlenging i figur 2	Forlenging i figur 3
A.	$\frac{1}{2}l_0$	l_0
В.	$\frac{1}{2}l_0$	$2l_0$
C.	l_0	l_0
D.	l_0	$2l_0$

Eksamen REA3005 Side 5 av 44

h) To kuler med same masse støyter rett mot kvarandre i ein støyt. Grafen for bevegelsesmengda til kule 1 før og etter støyten er gitt. For grafen til kule 2 er det berre bevegelsesmengda før støyten som er teikna inn.

Kva er bevegelsesmengda til kule 2 etter støyten?

- A. -2 kgm/s
- B. 0 kgm/s
- C. 1 kgm/s
- D. 2 kgm/s
- i) Ein ball blir send horisontalt utfor ein bordkant med farten 3,0 m/s. Bordet er 0,45 meter høgt. Kva for vinkel dannar fartsvektoren med horisontalen like før han treffer golvet? Set $g = 10 \text{ m/s}^2$.
 - A. 15°
 - B. 30°
 - C. 45°
 - D. 60°

Eksamen REA3005 Side 6 av 44

j) Ein satellitt går i ein ellipsebane rundt ein planet. X er posisjonen til satellitten når han er nærmast planeten, og Y er posisjonen når han er lengst unna planeten.

Kvar er den potensielle og den kinetiske energien til satellitten størst?

	Størst potensiell energi	Størst kinetisk energi
A.	Х	Х
B.	Х	Y
C.	Y	X
D.	Y	Y

k) Ein partikkel med ladning q og masse m kjem inn i eit homogent magnetisk felt med magnetisk flukstettleik (feltstyrke) B. Han vil da følgje ein del av ein sirkelbane med radius r. Kva er forteiknet til ladninga, og kva er farten til partikkelen i sirkelbanen?

	Ladning	Fart
A.	Positiv	2qB m
В.	Positiv	qBr m
C.	Negativ	2qB m
D.	Negativ	qBr m

Eksamen REA3005 Side 7 av 44

I) To parallelle rette leiarar L_1 og L_2 fører like stor straum. Dei er vinkelrett på papirplanet. Eit punkt P ligg like langt frå begge leiarane. Pila i punktet P viser retninga til det samla magnetiske feltet frå leiarane.

Kva er straumretningane i leiarane?

	L_1	L ₂
A.	Inn i papirplanet	Inn i papirplanet
B.	Inn i papirplanet	Ut av papirplanet
C.	Ut av papirplanet	Inn i papirplanet
D.	Ut av papirplanet	Ut av papirplanet

m) Fire identiske stavmagnetar er plasserte vinkelrett mot kvarandre slik figuren viser.

Kva retning har det samla magnetiske feltet frå magnetane i punktet midt mellom dei?

Eksamen REA3005 Side 8 av 44

n) Tre ulike partiklar blir sende vinkelrett inn mot eit område der det er eit homogent magnetfelt. Partiklane går i kvar sin bane 1, 2 og 3 i magnetfeltet.

Kva for partikkel følgjer kva for bane?

	Bane 1	Bane 2	Bane 3
A.	elektron- nøytrino	elektron	proton
В.	proton	elektron- nøytrino	elektron
C.	elektron- nøytrino	proton	elektron
D.	elektron	elektron- nøytrino	proton

o) I eit homogent magnetisk felt finn vi ei kvadratisk leiarsløyfe. Ho kan dreiast om ein akse som står vinkelrett på feltet. Lengda av sidekantane til sløyfa er s. Den magnetiske flukstettleiken er *B*. Leiarsløyfa er i utgangspunktet i papirplanet, slik figuren viser. Leiarsløyfa blir dreidd 180° om aksen i løpet av tida *t*.

Kva blir den gjennomsnittlege induserte emsen i sløyfa?

- A. 0
- B. $\frac{Bs^2}{2t}$
- C. $\frac{Bs^2}{t}$
- D. $\frac{2Bs^2}{t}$

p) Fire identiske, rektangelforma leiarar kjem med konstant, rettlinja fart inn i eit område med eit homogent magnetfelt. Magnetfeltet står normalt på rektangelplana. På eit tidspunkt er posisjonane og fartsretningane til leiarane som vist på figuren. Alle rektangla har same fart.

Kva for ein av leiarane har den største induserte straumen?

q) Ein koparring ligg inni ei leiarsløyfe. I starten er brytaren lukka, og leiarsløyfa fører ein konstant straum. Etter ei stund blir brytaren opna.

Kva skjer i koparringen før og like etter at brytaren blir opna?

	Før brytaren blir opna	Like etter at brytaren er opna
Α.	Det går ingen straum.	Det blir indusert ein straum mot
		klokka.
B.	Det går ingen straum.	Det blir indusert ein straum med
		klokka.
C.	Det blir indusert ein straum	Det blir indusert ein straum med
	mot klokka.	klokka.
D.	Det blir indusert ein straum	Det blir indusert ein straum mot
	mot klokka.	klokka.

Eksamen REA3005 Side 10 av 44

r) Reaksjonslikninga

$$p \rightarrow n + e^+ + X$$

viser ei omdanning av eit proton i ei radioaktivt kjerne.

Kva for partikkel representerer X?

- A. μ^-
- B. \overline{v}_{a}
- C. ν_e
- D. e⁻
- s) Kva må den minste frekvensen til eit foton vere for å danne eit elektron-positron-par?

 - A. $\frac{m_e c^2}{h}$ B. $\frac{2m_e c^2}{h}$
 - C. $\frac{m_{\rm e}c^2}{2h}$
 - D. $\gamma \frac{m_e c^2}{h}$
- t) Eit røntgenapparat gir eit røntgenspekter med ein maksimal frekvens, f_{maks} . Det er fordi
 - A. fotona som treffer metallet, har ei nedre bølgjelengd
 - B. elektrona som treffer metallet, har ein bestemt kinetisk energi
 - C. metallet har eit lausrivingsarbeid bestemt av f_{maks}
 - D. røntgenstråling har ein øvre frekvens i det elektromagnetiske spekteret
- u) I eit forsøk med fotoelektrisk effekt blir lys med ei bestemt bølgjelengd sendt mot ei metallplate utan at det blir frigjort elektron frå metallet.

Korleis kan vi få frigjort elektron i eit slikt forsøk?

- A. Ved å bruke eit metall med høgare lausrivingsarbeid.
- B. Ved å auke intensiteten til lyset.
- C. Ved å endre vinkelen lyset blir sendt inn mot metallet med.
- D. Ved å bruke lys med kortare bølgjelengd.

Eksamen REA3005 Side 11 av 44 v) Aron og Nora diskuterer om lys er bølgjer eller partiklar.

Aron seier: Forsøk med interferens tyder på at lys har bølgjeeigenskapar.

Nora seier: Einsteins forklaring av fotoelektrisk effekt og Comptons forsøk tyder på at lys har partikkeleigenskapar.

Kven har rett?

- A. Aron
- B. Nora
- C. begge
- D. ingen
- w) To samanfiltra foton, A og B, beveger seg i motsette retningar og går gjennom kvart sitt polarisasjonsfilter. Kva for påstand er korrekt?

Sannsynet for at foton B går gjennom filteret

- A. er avhengig av om foton A går gjennom sitt filter
- B. er uavhengig av om foton A går gjennom sitt filter
- C. er omvendt proporsjonalt med sannsynet for at foton A går gjennom sitt filter
- D. er avhengig av bølgjelengda til foton A
- x) Aron og Nora køyrer kvar sin bil på ein horisontal veg. I bilen til Aron er det ein pendel som heng i taket. Vinkelen mellom pendelsnora og loddlinja er konstant.

I bilen til Nora er det også ein pendel. Han heng rett ned.

Medan dei køyrer, diskuterer Aron og Nora relativitetsteori over telefonen.

Aron seier: Eg er i eit tregleikssystem fordi kula er i ro.

Nora seier: Eg er i eit tregleikssystem fordi kula heng rett ned.

Kven har rett?

- A. Aron
- B. Nora
- C. begge
- D. ingen

Eksamen REA3005 Side 12 av 44

Oppgåve 2

a) (4 poeng)

Ein kloss blir send oppover eit skråplan. Klossen glir eit stykke oppover, før han glir ned igjen. Skråplanvinkelen er 30°. Sett $g = 10 \text{m/s}^2$ i utrekningane.

Friksjonen mellom klossen og skråplanet er 3,0 N. Massen til klossen er 1,0 kg.

- 1. Teikn kreftene som verkar på klossen når han er på veg opp.
- 2. Finn akselerasjonen til klossen både på veg opp og på veg ned.

b) (4 poeng)

To kuler med same masse m og positiv ladning q heng i ro i to like lange snorer. Snorene dannar vinkelen θ med vertikalen.

- 1. Kva er retningane til det elektriske feltet i punkta A og B?
- 2. Finn eit uttrykk for avstanden mellom kulene uttrykt ved m, q, θ og andre konstantar.

Eksamen REA3005 Side 13 av 44

c) (2 poeng)

Skriv ned Heisenbergs uskarpleiksrelasjonar, og gje eit eksempel der minst éin av desse gjer seg gjeldande.

d) (3 poeng)

Vi skal skyte eit prosjektil med masse m inn i ei kule med masse M som heng i ei snor. Prosjektilet blir sitjande fast i kula og får henne til å svinge opp ei maksimal høgd h. Farten til prosjektilet er v før det treff kula.

1. Vis at dersom kula er svært tung samanlikna med prosjektilet, kan høgda uttrykkjast ved

$$h = \frac{v^2 m^2}{2gM^2}$$

Vi måler storleikane $M = 200 \text{ g} \pm 2\%$, $m = 2.0 \text{ g} \pm 5\% \text{ og } v = 100 \text{ m/s} \pm 2\% \text{ og setter}$ $g = 10 \text{ m/s}^2 \pm 2\%$.

2. Finn høgda h med usikkerheit.

Eksamen REA3005 Side 14 av 44

Del 2

Oppgåve 3 (9 poeng)

Partiklar blir sende inn mellom to parallelle plater med motsett ladning som vist på figuren. I området mellom platene er det også eit homogent magnetisk felt.

Eit elektron med farten 3,0·10⁵ m/s går rettlinja gjennom området.

a) Teikn ein figur som viser retninga til begge felta og dei elektriske og magnetiske kreftene som verkar på elektronet når det er inne i området.

Den elektriske krafta som verkar på elektronet, er $F_a = 9.6 \cdot 10^{-15} \,\mathrm{N}$.

b) Rekn ut den magnetiske flukstettleiken i området.

Ein α -partikkel kjem inn i området med same fart og retning som elektronet i oppgåve a).

- c) Kor store er dei elektriske og magnetiske kreftene som verkar på α -partikkelen?
- d) Vil α-partikkelen også gå rettlinja gjennom området?

Eit elektron kjem inn i området med ein annan fart enn elektronet i a). Da blir det avbøygd slik figuren viser.

e) Korleis endrar den magnetiske og elektriske krafta seg frå A til B? Du skal ikkje gjere utrekningar.

Eksamen REA3005 Side 15 av 44

Oppgåve 4 (7 poeng)

Eit lodd er festa til ei vogn med ei masselaus snor. Snora går over ei trinse. Vogna kan bevege seg utan friksjon på eit horisontalt underlag. På ein del av strekninga er det eit homogent magnetfelt vinkelrett på papirplanet.

På vogna er det ein rektangelforma leiar. Massen til vogna med leiar er 60 g, og massen til loddet er 20 g.

Vogna blir sleppt frå ro 16 cm frå magnetfeltet.

a) Vis at farten til leiaren når han kjem inn i feltet, er 0,89 m/s.

Leiaren har lengda l = 8,0 cm og høgda h = 4,0 cm. Resistansen til leiaren er 7,0 m Ω . Den magnetiske flukstettleiken B = 0.98 T.

- b) Vis at farten til vogna er konstant på veg inn i magnetfeltet.
- c) Forklar at bevegelsen til vogna blir den same uavhengig av om magnetfeltet peiker inn i arket eller ut av arket.
- d) Kor lenge held vogna konstant fart?

Eksamen REA3005 Side 16 av 44

Oppgåve 5 (8 poeng)

Biletet viser eit av dei største svarte hòla som er funne. Hòlet har massen $M = 1,3 \cdot 10^{40} \, \text{kg}$ (6,5 milliardar solmassar). Massen aukar heile tida fordi dette er eit aktivt svart hòl. Hòlet finn vi i galaksen M87, som ligg 53 millionar lysår unna oss. Biletet viser ein lysande ring av plasma som roterer rundt det svarte hòlet. Biletet blei publisert 10. april 2019 og er det første biletet som er teke av eit svart hòl.

Vi tenkjer oss to ulike situasjonar.

Situasjon 1: Ei stjerne går med konstant banefart i ein sirkelbane rundt hòlet.

- a) Bestem eit uttrykk for rundetida til stjerna som funksjon av baneradiusen.
- b) Kva er den minste radiusen vi kan ha før vi må rekne relativistisk?

Situasjon 2: Ei stjerne med same masse som sola er i ein avstand 2,0·10²⁰ m (cirka 20 000 lysår) frå det svarte hòlet. Ho er i utgangspunktet i ro i forhold til det svarte hòlet før ho fell inn mot det.

c) Kva er farten til stjerna når avstanden til det svarte holet er halvert?

Den lysande plasmaskiva oppstår når materie fell inn mot det svarte hòlet. Når lyset frå skiva kjem til jorda, blir det registrert av teleskop.

d) Gjer greie for kva som skjer med bølgjelengda til dette lyset på vegen frå det svarte hòlet til det blir registrert av teleskopa på jorda.

Eksamen REA3005 Side 17 av 44

Oppgåve 6 (11 poeng)

Vi skyt ein rakett på skrå opp frå bakken frå eit stort, flatt jorde. Ved utskytinga er vinkelen mellom raketten og horisontalen 75°. Skyvekrafta på raketten er 19 N.

Ved utskytinga har raketten totalmassen 290 g.

- a) Lag ein figur som viser kreftene som verkar på raketten ved utskytinga.
- b) Rekn ut akselerasjonen ved utskytinga. Oppgi både storleik og retning.

c) Kva er farten til raketten i toppen av banen?

Den øvste delen av raketten blir kalla rakettnasen. Rakettnasen har massen 60 g og er montert på ei fjør som er pressa saman 10 cm. Fjøra har fjørkonstanten 288 N/m. Sjå bort frå massen til fjøra. Resten av raketten (rakettkroppen) har massen 180 g.

På toppen av banen blir fjøra utløyst slik at nasen blir frigjord frå kroppen. Raketten er da 282 m over bakken.

- d) Finn farten til nasen og kroppen like etter at fjøra er utløyst.
- e) Finn avstanden mellom landingsstadene for nasen og kroppen. Sjå bort frå luftmotstand.

Eksamen REA3005 Side 18 av 44

Bokmål

Eksamensinf	Eksamensinformasjon		
Eksamenstid	5 timer Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Du kan begynne å løse oppgavene i Del 2 når som helst, men du kan ikke bruke hjelpemidler før etter 2 timer – etter at du har levert svarene for Del 1.		
Hjelpemidler	Del 1: Skrivesaker, passer, linjal og vinkelmåler Del 2: Alle hjelpemidler er tillatt, bortsett fra åpent Internett og andre verktøy som kan brukes til kommunikasjon. Ved bruk av nettbaserte hjelpemidler under eksamen har du ikke lov til å kommunisere med andre.		
Bruk av kilder	Dersom du bruker kilder i svaret ditt, skal de alltid føres opp på en slik måte at leseren kan finne fram til dem.		
Vedlegg	 1 Faktavedlegg – kan brukes på både Del 1 og Del 2 av eksamen 2 Formelvedlegg – kan brukes på både Del 1 og Del 2 av eksamen 3 Eget svarark for oppgave 1 		
Vedlegg som skal leveres inn	Vedlegg 3: Eget svarark for oppgave 1 finner du bakerst i oppgavesettet.		
Informasjon om flervalgsoppgaven	Oppgave 1 har 24 flervalgsoppgaver med fire svaralternativ: A, B, C og D. Det er bare ett riktig svaralternativ for hver flervalgsoppgave. Blankt svar er likeverdig med feil svar. Dersom du er i tvil, bør du derfor skrive det svaret du mener er mest korrekt. Du kan bare svare med ett svaralternativ: A, B, C eller D. Skriv svarene for oppgave 1 på eget svarark i vedlegg 3, som ligger helt til sist i oppgavesettet. Svararket skal rives løs fra oppgavesettet og leveres inn. Du skal altså ikke levere inn selve eksamensoppgaven med		
Kilder	oppgaveteksten. Se kildeliste side 36.		
Midei	Andre grafer, bilder og figurer: Utdanningsdirektoratet		
Informasjon om vurderingen	Karakteren blir fastsatt etter en helhetlig vurdering av besvarelsen. De to delene av svaret, Del 1 og Del 2, blir vurdert under ett. Det betyr at sensor vurderer i hvilken grad du - er grundig i forklaringene og løsningene - viser fysikkforståelse og kan løse problemer - behandler verdier, enheter og eksperimentelle data Se eksamensveiledningen med kjennetegn på måloppnåelse til sentralt gitt skriftlig eksamen. Eksamensveiledningen finner du på Utdanningsdirektoratets nettsider.		

Eksamen REA3005 Side 19 av 44

Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarark i vedlegg 3.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

- a) Hvilke av de sammensatte enhetene er enheter for gravitasjonsfeltstyrke?
 - A. m/s^2 og N/kg
 - B. m/s^2 og N/m
 - C. J/m og N/kg
 - D. J/m og N/m
- b) I en transformator har primærspolen 4000 vindinger og sekundærspolen 1000 vindinger. Vi kobler en vekselspenning på 0,220 kV over primærspolen. Hva er den mest korrekte verdien vi kan oppgi for spenningen over sekundærspolen?
 - A. 55 V
 - B. 55.0 V
 - C. 0,880 kV
 - D. 0,88 kV
- c) En flaggermus sender ut lydsignaler med 38 000–55 000 svingninger i sekundet. Vi ønsker å reprodusere dette signalet. Hvor stor må samplingsfrekvensen minst være?
 - A. 38,0 kHz
 - B. 55,0 kHz
 - C. 76,0 kHz
 - D. 110 kHz

Eksamen REA3005 Side 20 av 44

d) En bil kjører med konstant banefart i en dossert sving slik at det ikke virker sideveis friksjon. Kreftene som virker på bilen, er tyngden G og en kraft N normalt fra underlaget slik figuren viser.

Bilen øker farten, men den holder samme bane som før. Hvilken påstand er **riktig**?

- A. Det virker sideveis friksjon nedover mot høyre, og kraften *N* øker.
- B. Det virker sideveis friksjon nedover mot høyre, og kraften *N* er uendret.
- C. Det virker sideveis friksjon oppover mot venstre, og kraften N øker.
- D. Det virker sideveis friksjon oppover mot venstre, og kraften *N* er uendret.
- e) En gjenstand glir på en bane uten friksjon eller luftmotstand. Krafttegningene viser kreftene som virker.

Én av krafttegningene, A, B, C eller D, er **feil** – hvilken?

f) Ei kule med masse m er festet til ei snor. Kula dreies rundt i en vertikal sirkel. I det øverste punktet i banen er akselerasjonen til kula 4g.

Hva er kraften fra snora på kula i det øverste punktet i banen?

- A. mg
- B. 3mg
- C. 4mg
- D. 5mg

Eksamen REA3005 Side 21 av 44

g) To identiske fjærer kan kobles sammen på ulike måter. Dersom det henger et lodd i en av fjærene, blir forlengelsen l_0 (figur 1). Fjærene kobles sammen på to forskjellige måter, slik som i figur 2 og figur 3.

Loddet henges i koblingene.

Hvor langt ned henger loddet når det har kommet til ro? Vi regner fjærene som masseløse.

	Forlengelse i figur 2	Forlengelse i figur 3
A.	$\frac{1}{2}l_0$	l_0
В.	$\frac{1}{2}l_0$	$2l_0$
C.	l_0	l_0
D.	l_0	$2l_0$

Eksamen REA3005 Side 22 av 44

h) To kuler med samme masse støter rett mot hverandre i et støt. Grafen for bevegelsesmengden til kule 1 før og etter støtet er gitt. For grafen til kule 2 er det bare bevegelsesmengden før støtet som er tegnet inn.

Hva er bevegelsesmengden til kule 2 etter støtet?

- A. -2 kgm/s
- B. 0 kgm/s
- C. 1 kgm/s
- D. 2 kgm/s
- i) En ball sendes horisontalt utfor en bordkant med farten 3,0 m/s. Bordet er 0,45 meter høyt. Hvilken vinkel danner fartsvektoren med horisontalen like før den treffer gulvet? Sett $g = 10 \text{ m/s}^2$.
 - A. 15°
 - B. 30°
 - C. 45°
 - D. 60°

Eksamen REA3005 Side 23 av 44

j) En satellitt går i en ellipsebane rundt en planet. X er posisjonen til satellitten når den er nærmest planeten, og Y er posisjonen når den er lengst unna planeten.

Hvor er den potensielle og den kinetiske energien til satellitten størst?

	Størst potensiell energi	Størst kinetisk energi
Α.	Х	Х
B.	Х	Y
C.	Y	Х
D.	Y	Y

k) En partikkel med ladning q og masse m kommer inn i et homogent magnetisk felt med magnetisk flukstetthet (feltstyrke) B. Den vil da følge en del av en sirkelbane med radius r. Hva er fortegnet til ladningen, og hva er partikkelens fart i sirkelbanen?

	Ladning	Fart
Α.	Positiv	<u>2qB</u> m
B.	Positiv	qBr m
C.	Negativ	2qB m
D.	Negativ	qBr m

Eksamen REA3005 Side 24 av 44

I) To parallelle rette ledere L_1 og L_2 fører like stor strøm. De er vinkelrett på papirplanet. Et punkt P ligger like langt fra begge lederne. Pila i punktet P viser retningen til det samlede magnetiske feltet fra lederne.

Hva er strømretningene i lederne?

	L ₁	L ₂
A.	Inn i papirplanet	Inn i papirplanet
B.	Inn i papirplanet	Ut av papirplanet
C.	Ut av papirplanet	Inn i papirplanet
D.	Ut av papirplanet	Ut av papirplanet

m) Fire identiske stavmagneter er plassert vinkelrett mot hverandre slik figuren viser.

Hvilken retning har det samlede magnetiske feltet fra magnetene i punktet midt mellom dem?

Eksamen REA3005 Side 25 av 44

n) Tre ulike partikler sendes vinkelrett inn mot et område hvor det er et homogent magnetfelt. Partiklene går i hver sin bane 1, 2 og 3 i magnetfeltet.

Hvilken partikkel følger hvilken bane?

	Bane 1	Bane 2	Bane 3
A.	elektron- nøytrino	elektron	proton
В.	proton	elektron- nøytrino	elektron
C.	elektron- nøytrino	proton	elektron
D.	elektron	elektron- nøytrino	proton

o) En kvadratisk ledersløyfe befinner seg i et homogent magnetisk felt. Den kan dreies om en akse som står vinkelrett på feltet. Lengden av sidekantene til sløyfa er s. Den magnetiske flukstettheten er *B*. Ledersløyfa er i utgangspunktet i papirplanet, slik figuren viser. Ledersløyfa dreies 180° om aksen i løpet av tiden *t*.

Hva blir den gjennomsnittlige induserte emsen i sløyfa?

- A. 0
- B. $\frac{Bs^2}{2t}$
- C. $\frac{Bs^2}{t}$
- D. $\frac{2Bs^2}{t}$

p) Fire identiske, rektangelformede ledere kommer med konstant, rettlinjet fart inn i et område med et homogent magnetfelt. Magnetfeltet står normalt på rektangelplanene. På et tidspunkt er posisjonene og fartsretningene til lederne som vist på figuren. Alle rektanglene har samme fart.

Hvilken av lederne har den største induserte strømmen?

q) En kobberring ligger inni en ledersløyfe. I starten er bryteren lukket, og ledersløyfa fører en konstant strøm. Etter en stund åpnes bryteren.

Hva skjer i kobberringen før og like etter at bryteren åpnes?

	Før bryteren åpnes	Like etter at bryteren er åpnet
Α.	Det går ingen strøm.	Det induseres en strøm mot klokka.
B.	Det går ingen strøm.	Det induseres en strøm med
		klokka.
C.	Det induseres en strøm mot	Det induseres en strøm med
	klokka.	klokka.
D.	Det induseres en strøm mot	Det induseres en strøm mot klokka.
	klokka.	

Eksamen REA3005 Side 27 av 44

r) Reaksjonslikningen

$$p \rightarrow n + e^+ + X$$

viser en omdanning av et proton i en radioaktiv kjerne.

Hvilken partikkel representerer X?

- A. μ^-

- D. e⁻
- s) Hva må den minste frekvensen til et foton være for å danne et elektron-positron-par?
 - A. $\frac{m_{\rm e}c^2}{h}$
 - B. $\frac{2m_{\rm e}c^2}{h}$ C. $\frac{m_{\rm e}c^2}{2h}$

 - D. $\gamma \frac{m_e c^2}{h}$
- t) Et røntgenapparat gir et røntgenspekter med en maksimal frekvens, f_{maks} . Det er fordi
 - A. fotonene som treffer metallet, har en nedre bølgelengde
 - B. elektronene som treffer metallet, har en bestemt kinetisk energi
 - C. metallet har et løsrivingsarbeid bestemt av $f_{\rm maks}$
 - D. røntgenstråling har en øvre frekvens i det elektromagnetiske spekteret
- u) I et forsøk med fotoelektrisk effekt sendes lys med en bestemt bølgelengde mot en metallplate uten at det blir frigjort elektroner fra metallet. Hvordan kan vi få frigjort elektroner i et slikt forsøk?
 - A. Ved å bruke et metall med høyere løsrivingsarbeid.
 - B. Ved å øke intensiteten til lyset.
 - C. Ved å endre vinkelen lyset sendes inn mot metallet med.
 - D. Ved å bruke lys med kortere bølgelengde.

Eksamen REA3005 Side 28 av 44 v) Aron og Nora diskuterer om lys er bølger eller partikler.

Aron sier: Forsøk med interferens tyder på at lys har bølgeegenskaper.

Nora sier: Einsteins forklaring av fotoelektrisk effekt og Comptons forsøk tyder på at lys har partikkelegenskaper.

Hvem har rett?

- A. Aron
- B. Nora
- C. begge
- D. ingen
- w) To sammenfiltrede fotoner, A og B, beveger seg i motsatte retninger og går gjennom hvert sitt polarisasjonsfilter. Hvilken påstand er korrekt?

Sannsynligheten for at foton B går gjennom filteret

- A. er avhengig av om foton A går gjennom sitt filter
- B. er uavhengig av om foton A går gjennom sitt filter
- C. er omvendt proporsjonal med sannsynligheten for at foton A går gjennom sitt filter
- D. er avhengig av bølgelengden til foton A
- x) Aron og Nora kjører hver sin bil på en horisontal vei. I bilen til Aron er det en pendel som henger i taket. Vinkelen mellom pendelsnora og loddlinjen er konstant.

I bilen til Nora er det også en pendel. Den henger rett ned.

Mens de kjører, diskuterer Aron og Nora relativitetsteori over telefonen.

Aron sier: Jeg er i et treghetssystem fordi kula er i ro.

Nora sier: Jeg er i et treghetssystem fordi kula henger rett ned.

Hvem har rett?

- A. Aron
- B. Nora
- C. begge
- D. ingen

Eksamen REA3005 Side 29 av 44

Oppgave 2

a) (4 poeng)

En kloss sendes oppover et skråplan. Klossen glir et stykke oppover, før den glir ned igjen. Skråplanvinkelen er 30°. Sett $g = 10 \text{m/s}^2$ i utregningene.

Friksjonen mellom klossen og skråplanet er 3,0 N. Massen til klossen er 1,0 kg.

- 1. Tegn kreftene som virker på klossen når den er på vei opp.
- 2. Finn akselerasjonen til klossen både på vei opp og på vei ned.

b) (4 poeng)

To kuler med samme masse m og positiv ladning q henger i ro i to like lange snorer. Snorene danner vinkelen θ med vertikalen.

- 1. Hva er retningene til det elektriske feltet i punktene A og B?
- 2. Finn et uttrykk for avstanden mellom kulene uttrykt ved m, q, θ og andre konstanter.

Eksamen REA3005 Side 30 av 44

c) (2 poeng)

Skriv ned Heisenbergs uskarphetsrelasjoner, og gi et eksempel der minst én av disse gjør seg gjeldende.

d) (3 poeng)

Vi skal skyte et prosjektil med masse m inn i en kule med masse M som henger i ei snor. Prosjektilet blir sittende fast i kula og får den til å svinge opp en maksimal høyde h. Farten til prosjektilet er v før det treffer kula.

1. Vis at dersom kula er svært tung sammenlignet med prosjektilet, kan høyden uttrykkes

$$\text{ved } h = \frac{v^2 m^2}{2gM^2}.$$

Vi måler størrelsene $M = 200 g \pm 2\%$, $m = 2.0 g \pm 5\%$ og $v = 100 \text{ m/s} \pm 2\%$ og setter $g = 10 \text{ m/s}^2 \pm 2\%$.

2. Finn høyden *h* med usikkerhet.

Eksamen REA3005 Side 31 av 44

Del 2

Oppgave 3 (9 poeng)

Partikler sendes inn mellom to parallelle plater med motsatt ladning som vist på figuren. I området mellom platene er det også et homogent magnetisk felt.

Et elektron med farten 3,0·10⁵ m/s går rettlinjet gjennom området.

a) Tegn en figur som viser retningen til begge feltene og de elektriske og magnetiske kreftene som virker på elektronet når det er inne i området.

Den elektriske kraften som virker på elektronet, er $F_a = 9.6 \cdot 10^{-15} \,\mathrm{N}$.

b) Regn ut den magnetiske flukstettheten i området.

En α -partikkel kommer inn i området med samme fart og retning som elektronet i oppgave a).

- c) Hvor store er de elektriske og magnetiske kreftene som virker på α -partikkelen?
- d) Vil α-partikkelen også gå rettlinjet gjennom området?

Et elektron kommer inn i området med en annen fart enn elektronet i a). Da blir det avbøyd slik figuren viser.

e) Hvordan endrer den magnetiske og elektriske kraften seg fra A til B? Du skal ikke gjøre utregninger.

Eksamen REA3005 Side 32 av 44

Oppgave 4 (7 poeng)

Et lodd er festet til ei vogn med ei masseløs snor. Snora går over ei trinse. Vogna kan bevege seg uten friksjon på et horisontalt underlag. På en del av strekningen er det et homogent magnetfelt vinkelrett på papirplanet.

På vogna er det en rektangelformet leder. Massen til vogna med leder er 60 g, og massen til loddet er 20 g.

Vogna slippes fra ro 16 cm fra magnetfeltet.

a) Vis at farten til lederen når den kommer inn i feltet, er 0,89 m/s.

Lederen har lengde l = 8,0 cm og høyde h = 4,0 cm. Resistansen til lederen er 7,0 m Ω . Den magnetiske flukstettheten B = 0.98 T.

- b) Vis at farten til vogna er konstant på vei inn i magnetfeltet.
- c) Forklar at bevegelsen til vogna blir den samme uavhengig av om magnetfeltet peker inn i arket eller ut av arket.
- d) Hvor lenge holder vogna konstant fart?

Eksamen REA3005 Side 33 av 44

Oppgave 5 (8 poeng)

Bildet viser et av de største sorte hullene som er funnet. Hullet har massen $M=1,3\cdot 10^{40}\,\mathrm{kg}$ (6,5 milliarder solmasser). Massen øker hele tiden fordi dette er et aktivt sort hull. Hullet befinner seg i galaksen M87, som ligger 53 millioner lysår unna oss. Bildet viser en lysende ring av plasma som roterer rundt det sorte hullet. Bildet ble publisert 10. april 2019 og er det første bildet som er tatt av et sort hull.

Vi tenker oss to ulike situasjoner.

Situasjon 1: Ei stjerne går med konstant banefart i en sirkelbane rundt hullet.

- a) Bestem et uttrykk for rundetiden til stjerna som funksjon av baneradien.
- b) Hva er den minste radien vi kan ha før vi må regne relativistisk?

Situasjon 2: Ei stjerne med samme masse som sola er i en avstand 2,0·10²⁰ m (cirka 20 000 lysår) fra det sorte hullet. Den er i utgangspunktet i ro i forhold til det sorte hullet før den faller inn mot det.

c) Hva er farten til stjerna når avstanden til det sorte hullet er halvert?

Den lysende plasmaskiven oppstår når materie faller inn mot det sorte hullet. Når lyset fra skiven kommer til jorda, blir det registrert av teleskop.

d) Gjør rede for hva som skjer med bølgelengden til dette lyset på veien fra det sorte hullet til det blir registrert av teleskopene på jorda.

Eksamen REA3005 Side 34 av 44

Oppgave 6 (11 poeng)

Vi skyter en rakett på skrå opp fra bakken fra et stort, flatt jorde. Ved utskytingen er vinkelen mellom raketten og horisontalen 75°. Skyvekraften på raketten er 19 N.

Ved utskytingen har raketten totalmassen 290 g.

- a) Lag en figur som viser kreftene som virker på raketten ved utskytingen.
- b) Regn ut akselerasjonen ved utskytingen. Oppgi både størrelse og retning.

c) Hva er farten til raketten i toppen av banen?

Den øverste delen av raketten kalles rakettnesa. Den har massen 60 g og er montert på ei fjær som er presset sammen 10 cm. Fjæra har fjærkonstanten 288 N/m. Se bort fra massen til fjæra. Resten av raketten (rakettkroppen) har massen 180 g.

På toppen av banen utløses fjæra slik at nesa blir frigjort fra kroppen. Raketten er da 282 m over bakken.

- d) Finn farten til nesa og kroppen like etter at fjæra er utløst.
- e) Finn avstanden mellom landingsstedene for nesa og kroppen. Se bort fra luftmotstand.

Eksamen REA3005 Side 35 av 44

Kjeldeliste/Kildeliste

Oppgåve/Oppgave 5: Kjelde/Kilde: https://www.jpl.nasa.gov/images/universe/20190410/blackhole20190410.jpg

Side 36 av 44 Eksamen REA3005

Faktavedlegg som er tillate brukt ved eksamen i Fysikk 2 Kan brukast under både Del 1 og Del 2 av eksamen.

Jorda

Ekvatorradius	6378 km
Polradius	6357 km
Middelradius	6371 km
Masse	5,974·10 ²⁴ kg
Standardverdien til tyngdeakselerasjonen	9,80665 m/s ²
Rotasjonstid	23 h 56 min 4,1 s
Omløpstid om sola	$1 a = 3,156 \cdot 10^7 s$
Middelavstand frå sola	1,496·10 ¹¹ m

Sola

Radius	6,95·10 ⁸ m
Masse	1,99·10 ³⁰ kg

Månen

Radius	1738 km
Masse	7,35·10 ²² kg
Tyngdeakselerasjon ved overflata	1,62 m/s ²
Middelavstand frå jorda	3,84·10 ⁸ m

Eksamen REA3005 Side 37 av 44

Planetane og Pluto

Planet	Masse, 10 ²⁴ kg	Ekvator-radius, 10 ⁶ m	Midlare solavstand, 109 m	Rotasjonstid, d	Siderisk omløpstid +, a	Massetettleik, 10³ kg/m³	Tyngde- akselerasjon på overflata, m/s²
Merkur Venus	0,33 4,9	2,44 6,05	57,9 108	58,6 243*	0,24	5,4 5,2	3,7 8,9
venus	4,9	6,05	100	243^	0,62	5,2	0,9
Jorda	6,0	6,38	150	0,99	1,00	5,5	9,8
Mars	0,64	3,40	228	1,03	1,88	3,9	3,7
Jupiter	1900	71,5	778	0,41	11,9	1,3	25
Saturn	568	60,3	1429	0,45	29,5	0,7	10
Uranus	87	25,6	2871	0,72*	84,0	1,3	8,9
Neptun	103	24,8	4504	0,67	165	1,6	11
Pluto	0,013	1,2	5914	6,39*	248	2,1	0,6

^{*} Retrograd rotasjonsretning, dvs. motsett rotasjonsretning av den som er vanleg i solsystemet.

IAU bestemte i 2006 at Pluto ikkje lenger skulle reknast som ein planet.

Nokre konstantar

Fysikkonstantar	Symbol	Verdi
Atommasseeininga	u	1,66·10 ⁻²⁷ kg
Biot-Savart-konstanten	k _m	$2 \cdot 10^{-7} \text{ N/A}^2 \text{ (eksakt)}$
Coulombkonstanten	k _e	8,99·10 ⁹ N·m ² / C ²
Elementærladninga	е	1,60·10 ⁻¹⁹ C
Gravitasjonskonstanten	γ	$6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$
Lysfarten i vakuum	С	3,00·10 ⁸ m/s
Planckkonstanten	h	6,63·10 ⁻³⁴ Js

Massar	Symbol	Verdi
Elektronmassen	m _e	$9,1094 \cdot 10^{-31} \text{ kg} = 5,4858 \cdot 10^{-4} \text{ u}$
Nøytronmassen	<i>m</i> _n	$1,6749 \cdot 10^{-27} \text{ kg} = 1,0087 \text{ u}$
Protonmassen	m_{p}	$1,6726 \cdot 10^{-27} \text{ kg} = 1,0073 \text{ u}$
Hydrogenatomet	m _H	$1,6817 \cdot 10^{-27} \text{ kg} = 1,0078 \text{ u}$
Heliumatomet	m_{He}	$6,6465 \cdot 10^{-27} \text{ kg} = 4,0026 \text{ u}$
Alfapartikkel (Heliumkjerne)	m_{α}	$6,6447 \cdot 10^{-27} \text{ kg} = 4,0015 \text{ u}$

Eksamen REA3005 Side 38 av 44

[†] Omløpstid målt i forhold til stjernehimmelen.

Data for nokre elementærpartiklar

Partikkel	Symbol	Kvark- samansetning	Elektrisk ladning /e	Anti- partikkel
Lepton	l		, .	,
Elektron	e ⁻		-1	e ⁺
Myon	μ^-		-1	μ^{+}
Tau	$ au^-$		-1	$ au^+$
Elektronnøytrino	ν_{e}		0	$\overline{ u}_{e}$
Myonnøytrino	ν_{μ}		0	$\overline{ u}_{\mu}$
Taunøytrino	ν_{τ}		0	$\overline{ u}_{ au}$
Kvark				•
Орр	u	u	+2/3	ū
Ned	d	d	-1/3	d
Sjarm	С	С	+2/3	C
Sær	s	s	-1/3	Ī
Торр	t	t	+2/3	t
Botn	b	b	-1/3	b
Meson				_
Ladd pi-meson	π^-	ūd	-1	$\pi^{\scriptscriptstyle +}$
Nøytralt pi-meson	π ^o	u u ,d d	0	$\overline{\pi^{0}}$
Ladd K-meson	K ⁺	us	+1	K^-
Nøytralt K-meson	K ^o	ds	0	$\overline{K^{o}}$
Baryon				T.
Proton	р	uud	+1	p
Nøytron	n	udd	0	n
Lambda	Λ^{0}	uds	0	$\overline{\Lambda^0}$
Sigma	Σ^+	uus	+1	$\overline{\Sigma^+}$
Sigma	Σ^{O}	uds	0	$\overline{\Sigma^0}$
Sigma	Σ^-	dds	-1	$\overline{\Sigma^-}$
Ksi	Ξ ^o	uss	0	ΞO
Ksi	Ξ-	dss	-1	$ \begin{array}{c} \overline{\Sigma}^{0} \\ \overline{\Sigma}^{-} \\ \overline{\Xi}^{0} \\ \overline{\Xi}^{-} \end{array} $
Omega	Ω^{-}	SSS	-1	Ω^-

Eksamen REA3005 Side 39 av 44

Formelvedlegg tillatt brukt ved eksamen i Fysikk 2

Kan brukes på både Del 1 og Del 2 av eksamen.

Formler og definisjoner fra Fysikk 1 som kan være til hjelp

$v = \lambda f$	$f = \frac{1}{T}$	$\rho = \frac{m}{V}$	P = Fv		
$I = \frac{Q}{t}$	$R = \frac{U}{I}$	P = UI	$E_0 = mc^2$		
^A _z X, der X er	A X, der X er grunnstoffets kjemiske symbol, $S = \frac{1}{2}(v_0 + v)t$				
Z er antall protoner i kjernen og A er antall $2^{(v_0 + v)t}$					
nukleoner i kjernen og A er antall $v^2 - v_0^2 = 2as$					

Formler og sammenhenger fra Fysikk 2 som kan være til hjelp

$\lambda = \frac{h}{p}$	$p = \frac{E}{c} = \frac{h}{\lambda}$	$hf_{\text{maks}} = eU$
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$t = \gamma t_0$	$p = \gamma mv$
$E = \gamma mc^2$	$E_{k} = E - E_{0} = (\gamma - 1)mc^{2}$	$E = \frac{U}{d}$
$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$	$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$	$\varepsilon = vBl$
$\omega = 2\pi f$	$U = U_m \sin \omega t$, der $U_m = nBA\omega$	$U_{s}I_{s}=U_{p}I_{p}$
$\frac{U_{\rm s}}{U_{\rm p}} = \frac{N_{\rm s}}{N_{\rm p}}$	$hf = W + E_k$	$F_{\rm m} = k_{\rm m} \frac{l_1 l_2}{r} l$

Eksamen REA3005 Side 40 av 44

Formler fra matematikk som kan være til hjelp

Likninger

Formel for løsning av andregradslikninger	$ax^{2} + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
---	--

Derivasjon

30:11a0j0:1	
Kjerneregel	$(g(u))' = g'(u) \cdot u'$
Sum	(u+v)'=u'+v'
Produkt	$(u \cdot v)' = u' \cdot v + u \cdot v'$
Kvotient	$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$
Potens	$(x^r)' = r \cdot x^{r-1}$
Sinusfunksjonen	$(\sin x)' = \cos x$
Cosinusfunksjonen	$(\cos x)' = -\sin x$
Eksponentialfunksjonen e ^x	$(e^x)' = e^x$

Integrasjon

Integrasjon	
Konstant utenfor	$\int k \cdot u(x) dx = k \cdot \int u(x) dx$
Sum	$\int (u+v) \mathrm{d}x = \int u \mathrm{d}x + \int v \mathrm{d}x$
Potens	$\int x^r dx = \frac{x^{r+1}}{r+1} + C , r \neq -1$
Sinusfunksjonen	$\int \sin kx dx = -\frac{1}{k} \cos kx + C$
Cosinusfunksjonen	$\int \cos kx dx = \frac{1}{k} \sin kx + C$
Eksponentialfunksjonen e ^x	$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$

Vektorer

A C V (O I C I	
Skalarprodukt	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$
	$[X_1, Y_1, Z_1] \cdot [X_2, Y_2, Z_2] = X_1 \cdot X_2 + Y_1 \cdot Y_2 + Z_1 \cdot Z_2$
Vektorprodukt	$ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} \cdot \sin u$ $\vec{a} \times \vec{b}$ står vinkelrett på \vec{a} og vinkelrett på \vec{b} .
	$\vec{a} \times \vec{b}$ star virikeriett på \vec{a} og virikeriett på \vec{b} . \vec{a} , \vec{b} og $\vec{a} \times \vec{b}$ danner et høyrehåndssystem.

Eksamen REA3005 Side 41 av 44

Geometri

Goomoan	
Areal og omkrets av sirkel: $A = \pi r^2$ $O = 2\pi r$	Overflate og volum av kule: $V = \frac{4}{3}\pi r^3$
sinv = motstående katet	
hypotenus	$a^2 = b^2 + c^2 - 2bc \cos A$
$cosv = \frac{hosliggende katet}{}$	
hypotenus	sinA _ sinB _ sinC
tanv = motstående katet	${a} = {b} = {c}$
hosliggende katet	

Noen eksakte verdier til de trigonometriske funksjonene

	0°	30°	45°	60°	90°
sinv	0	<u>1</u> 2	<u>√2</u> 2	<u>√3</u> 2	1
cosv	1	<u>√3</u> 2	<u>√2</u> 2	<u>1</u> 2	0
tanv	0	<u>1</u> √3	1	√3	

Eksamen REA3005 Side 42 av 44

Oppgåve 1 / Oppgave 1	Svaralternativ A, B, C eller D?
a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	
k)	
l)	
m)	
n)	
0)	
p)	
q)	
r)	
s)	
t)	
u)	
v)	
w)	
x)	

Vedlegg 3 skal leverast kl. 11.00 saman med svaret for oppgåve 2. Vedlegg 3 skal leveres kl. 11.00 sammen med besvarelsen for oppgave 2.

Eksamen REA3005 Side 43 av 44

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGÅVA:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGAVEN:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!