Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 1 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование методов прямого поиска экстремума унимодальной функции одного переменного»

Вариант 1

Выполнил: Александров А.А., студент группы ИУ8-31

Проверил: Коннова Н.С., доцент каф. ИУ8

1. Цель работы

Исследовать функционирование и провести сравнительный анализ различных алгоритмов прямого поиска экстремума (пассивный поиск, метод дихотомии, золотого сечения, Фибоначчи) на примере унимодальной функции одного переменного.

2. Условие задачи

На интервале [-5; 2] задана унимодальная функция одного переменного

$$f(x) = -0.5\cos(0.5x) - 0.5$$

Используя метод дихотомии, найти интервал нахождения минимума f(x) с заданным количеством итераций. Провести сравнение с методом оптимального пассивного поиска. Результат, в зависимости от числа точек разбиения N, представить в виде таблицы.

3. Ход работы

Рисунок 1 - График функции $f(x) = -0.5\cos(0.5x) - 0.5$ на интервале [-5, 2]

Как видно из графика, функция достигает своего минимума в точке x = 0. Теперь проведём программный расчет при помощи методов оптимального пассивного поиска и дихотомии.

Результат работы программы представлен в таблицах 1 и 2:

Таблица 1 – результат работы метода пассивного поиска

PASSIVE SEARCHER

Amount of points	I	Minimal value		Uncertainty interval
1		-0.865844		7
2	I	-0.993072		4.66667
] 3	I	-0.996099		3.5
4	I	-0.977668		2.8
5	I	-0.993072		2.33333
[6	I	-1		2
7	I	-0.996099		1.75
8	I	-0.993072		1.55556
] 9	I	-0.999375		1.4
10	I	-0.999484		1.27273
11	I	-0.996099		1.16667
12	I	-0.998521		1.07692
13	I	-1		1
14	I	-0.998889		0.933333
15	I	-0.997804	I	0.875
16	I	-0.999784	I	0.823529
17	I	-0.999807		0.777778
18	I	-0.998443		0.736842
19	I	-0.999375	1	0.7
20	I	-1		0.666667
21	I	-0.999484	I	0.636364
22	I	-0.998937	I	0.608696
23	I	-0.999892	I	0.583333
24	ı	-0.9999		0.56
25	I	-0.999168		0.538462
26		-0.999657	I	0.518519

	27	I	-1	I	0.5	
	28		-0.999703	1	0.482759	
I	29	I	-0.999375	I	0.466667	
I	30	I	-0.999935	I	0.451613	
I	31	I	-0.999939	I	0.4375	
I	32	I	-0.999484	I	0.424242	
	33	I	-0.999784	I	0.411765	
I	34	I	-1	I	0.4	
I	35	I	-0.999807	I	0.388889	
	36	1	-0.999589	I	0.378378	
I	37	1	-0.999957	I	0.368421	
I	38	I	-0.999959	I	0.358974	
	39	1	-0.999648	I	0.35	
I	40	I	-0.999851	I	0.341463	
I	41	I	-1	I	0.333333	
I	42	I	-0.999865	I	0.325581	
I	43	I	-0.999709	I	0.318182	
I	44	I	-0.999969	I	0.311111	
I	45	I	-0.99997	I	0.304348	
I	46	I	-0.999745	I	0.297872	
I	47	I	-0.999892	I	0.291667	
I	48	I	-1	I	0.285714	
I	49	I	-0.9999	I	0.28	
I	50	I	-0.999784	I	0.27451	
	51	1	-0.999977	I	0.269231	
	52		-0.999978	I	0.264151	
	53		-0.999807	I	0.259259	
١	54	I	-0.999917	I	0.254545	

ı	55	-1	0.25	
1	56	-0.999923	0.245614	
I	57	-0.999833	0.241379	
I	58	-0.999982	0.237288	
1	59	-0.999983	0.233333	
1	60	-0.999849	0.229508	
I	61	-0.999935	0.225806	
I	62	-1	0.222222	
1	63	-0.999939	0.21875	
1	64	-0.999867	0.215385	
I	65	-0.999986	0.212121	
I	66	-0.999986	0.208955	
1	67	-0.999878	0.205882	
I	68	-0.999947	0.202899	
	69	-1	0.2	
	69 70		•	
			0.197183	
	70	-0.99995 -0.999892	0.197183	
 	70 71	-0.99995 -0.999892 -0.999988	0.197183 0.194444 0.191781	
	70 71 72	-0.99995 -0.999892 -0.999988 -0.999989	0.197183 0.194444 0.191781 0.189189	
	70 71 72 73	-0.99995 -0.999892 -0.999988 -0.999989 -0.9999	0.197183 0.194444 0.191781 0.189189 0.186667	
	70 71 72 73 74	-0.99995 -0.999892 -0.999988 -0.999989 -0.9999 -0.999957	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211	
	70 71 72 73 74 75	-0.99995 -0.999892 -0.999988 -0.999989 -0.999957 -1	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211 0.181818	
	70 71 72 73 74 75 76	-0.99995 -0.999892 -0.999988 -0.999989 -0.999957 -1 -0.999959	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211 0.181818 0.179487	
	70 71 72 73 74 75 76	-0.99995 -0.999892 -0.999988 -0.999989 -0.999957 -1 -0.999959 -0.99991	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211 0.181818 0.179487 0.177215	
	70 71 72 73 74 75 76 77	-0.99995 -0.999892 -0.999988 -0.999989 -0.999957 -1 -0.999959 -0.99991 -0.99999	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211 0.181818 0.179487 0.177215 0.175	
	70 71 72 73 74 75 76 77 78 79	-0.99995 -0.999892 -0.999988 -0.999989 -0.999957 -1 -0.999959 -0.999991 -0.99999	0.197183 0.194444 0.191781 0.189189 0.186667 0.184211 0.181818 0.179487 0.177215 0.17284	

I	83	I	-1		0.166667
I	84	1	-0.999965		0.164706
I	85	I	-0.999924		0.162791
I	86	1	-0.999992		0.16092
I	87	l	-0.999992	1	0.159091
I	88		-0.999929	1	0.157303
I	89	l	-0.999969	1	0.155556
I	90		-1	1	0.153846
I	91		-0.99997	1	0.152174
I	92		-0.999935	1	0.150538
I	93		-0.999993	1	0.148936
I	94		-0.999993	1	0.147368
I	95		-0.999939	I	0.145833
I	96		-0.999973	1	0.14433
I	97		-1	1	0.142857
I	98	I	-0.999974	1	0.141414
I	99		-0.999944	I	0.14
I	100	I	-0.999994	1	0.138614
I	101	I	-0.999994	I	0.137255
I	102	I	-0.999947	I	0.135922
I	103	1	-0.999977	I	0.134615
I	104	I	-1		0.133333
I	105	1	-0.999978	I	0.132075
	106	I	-0.999951	1	0.130841
I				-	
	107	I	-0.999995	1	0.12963
	107 108	•	-0.999995 -0.999995		0.12963 0.12844
		I		1	·

I	111	-1	1	0.125
I	112	-0.99998	1	0.123894
I	113	-0.999957	1	0.122807
I	114	-0.999995	1	0.121739
I	115	-0.999995	1	0.12069
I	116	-0.999959	1	0.119658
I	117	-0.999982	1	0.118644
I	118	-1	1	0.117647
I	119	-0.999983	1	0.116667
I	120	-0.999962	1	0.115702
I	121	-0.999996	1	0.114754
1	122	-0.999996	1	0.113821
I	123	-0.999963	1	0.112903
I	124	-0.999984	1	0.112
I	125	-1	1	0.111111
I	126	-0.999985	1	0.110236
I	127	-0.999966	1	0.109375
I	128	-0.999996	1	0.108527
I	129	-0.999996	1	0.107692
I	130	-0.999967	1	0.10687
I	131	-0.999986	1	0.106061
I	132	-1	1	0.105263
I	133	-0.999986	1	0.104478
I	134	-0.999969	1	0.103704
I	135	-0.999997	1	0.102941
I	136	-0.999997	1	0.10219
1	137	-0.99997	1	0.101449
1	138	-0.999987	1	0.100719
		7		

| 139 | -1 | 0.1 |

Таблица 2 – результат работы метода дихотомии

DICHOTOMY SEARCHER

					.=======		
Left bound R							
-5	2	-1.533	-1.467	-0.86011	-0.87147	7	1
-1.53333	2	0.2	0.2667	-0.9975	-0.99556	3.5333	2
	0.266667	-0.6667	-0.6	-0.97248	-0.97767	1.8	3
	0.266667	-0.2333	-0.1667	-0.9966	-0.99826	0.93333	4
	0.266667	-0.01667	0.05	-0.99998	-0.99984	0.5	5
	0.05	-0.125	-0.05833	-0.99902	-0.99979	0.28333	6
	0.05	-0.07083	-0.004167	-0.99969	-1	0.175	7
	0.05	-0.04375	0.02292	-0.99988	-0.99997	0.12083	8

Построим графики зависимостей интервала неопределённости от числа точек N (для оптимального пассивного поиска и для метода дихотомии).

Рисунок 2 – зависимость интервала неопределённости от кол-ва измерений, метод оптимально пассивного поиска

Рисунок 3 - зависимость интервала неопределённости от кол-ва измерений, метод дихотомии

Ссылка на git-репозиторий: https://github.com/Vumba798/tsisa_lab01 Исходный код программы приведён в приложениях 1 - 6.

4. Выводы

В конечном итоге расчёт разными способами показал, что метод дихотомии значительно эффективнее метода оптимально пассивного поиска при нахождении экстремума унимодальной функции одного переменного.

Приложение 1. Исходный код файла searcher.hpp

```
#ifndef INCLUDE_SEARCHER_HPP
#define INCLUDE_SEARCHER_HPP
#include <algorithm>
#include <cmath>
#include <utility>
#include <stdexcept>
class Searcher{
protected:
  float _epsilon = 0.1;
  std::pair<float,float>_interval;
  inline float _func(const float &x) const noexcept{
    return -0.5 * std::cos(0.5 * x) - 0.5;
  }
public:
  inline Searcher(const float &a, const float &b){
    if(a >= b){
      throw std::invalid_argument("a must be less than b");
    }
    _interval = std::make_pair(a,b);
  };
  virtual void print() const = 0;
};
#endif // INCLUDE_SEARCHER_HPP
```

Приложение 2. Исходный код файла passiveSearcher.hpp

```
#ifndef INCLUDE_PASSIVESEARCHER_HPP_
#define INCLUDE_PASSIVESEARHCER_HPP_
#include <searcher.hpp>
#include <vector>

class PassiveSearcher : public Searcher{
public:
    inline PassiveSearcher(float a, float b) : Searcher(a, b) {};
    std::vector<std::pair<float, float>> search() const;
    void print() const override final;
};

#endif // INCLUDE_PASSIVESEARHCER_HPP_
```

Приложение 3. Исходный код файла dichotomySearcher.hpp

```
#ifndef INCLUDE_DICHOTOMYSEARCHER_HPP_
#define INCLUDE_DICHOTOMYSEARCHER_HPP_
#include "searcher.hpp"
#include <vector>
struct Result{
  float intervalFirst;
  float intervalSecond;
  float X1;
  float X2;
  float functionX1;
  float functionX2;
  float length;
  size_t stepNum;
  inline Result(
      float interFirst, float interSecond,
      float x1, float x2,
      float funcX1, float funcX2,
      float len, size_t num):
    intervalFirst(interFirst), intervalSecond(interSecond),
    X1(x1), X2(x2),
    functionX1(funcX1), functionX2(funcX2),
    length(len), stepNum(num) {};
};
class DichotomySearcher : public Searcher{
private:
```

```
float _delta;
public:
    inline DichotomySearcher(const int &a, const int &b):
        Searcher(a, b),
        _delta(_epsilon / 3.0) {};
    std::vector<Result> search() const;
    void print() const override final;
};
#endif // INCLUDE_DICHOTOMYSEARCHER_HPP_
```

Приложение 4. Исходный код файла passiveSearcher.cpp

```
#include <passiveSearcher.hpp>
#include <algorithm>
#include <iomanip>
#include <iostream>
using std::endl;
using std::cout;
using std::setw;
using std::setfill;
std::vector<std::pair<float, float>> PassiveSearcher::search() const{
  float I; // I - interval of uncertainty
  size_t N = 1; // N - amount of points
 // first is a value, second is an interval of uncertainty
  std::vector<std::pair<float, float>> minElementVec;
  do{
    I = 2.0 / (N+1) * (_interval.second-_interval.first);
    std::vector<float> tmpVec;
    for (size_t k = 1; k \le N; ++k){
      float x = \text{static\_cast} < \text{float} > (k)/(N+1) * (_interval.second\_interval.first) + _interval.first;
      tmpVec.emplace_back(_func(x));
    }
    float min = *std::min_element(tmpVec.begin(), tmpVec.end());
    minElementVec.emplace_back(std::make_pair(min, I));
    ++N;
```

```
} while (I > _epsilon);
  return minElementVec;
}
void PassiveSearcher::print() const{
  auto vec = search();
  cout << "| Amount of points | " << "Minimal value" << " | " <<
     setw(6) << "Uncertainty interval |\n";</pre>
  cout << "|" << setfill('-') << setw(57) << "" << "|" << endl;
  for (size_t i = 0; i < vec.size(); ++i){
     cout << setfill(' ') << setw(0);</pre>
    cout << " | " << setw(16) << i + 1 << " | " <<
      setw(13) << vec[i].first << " | " <<
      setw(20) << vec[i].second << " |\n";
  }
  cout << "|" << setfill('-') << setw(57) << "" << "|" << endl;
}
```

Приложение 5. Исходный код файла dichotomySearcher.cpp

```
#include <dichotomySearcher.hpp>
#include <utility>
#include <iomanip>
#include <iostream>
using std::endl;
using std::cin;
using std::cout;
using std::setfill;
using std::setw;
using std::right;
using std::setprecision;
std::vector<Result> DichotomySearcher::search() const{
  float I;
  float intervalFirst = _interval.first;
  float intervalSecond = _interval.second;
  std::vector<Result> resultVec;
  size_t stepNum = 1;
  do{
    I = intervalSecond - intervalFirst;
    float x1 = intervalFirst + I/2 - _delta;
    float x2 = intervalFirst + I/2 + _delta;
    float fx1 = _func(x1);
    float fx2 = _func(x2);
    resultVec.emplace_back(Result(
           intervalFirst, intervalSecond,
```

```
x1, x2,
           fx1, fx2,
           l, stepNum));
    if (fx1 < fx2){
      intervalSecond = x2;
    }else{
      intervalFirst = x1;
    }
    ++stepNum;
  } while (I > _epsilon);
  return resultVec;
}
void DichotomySearcher::print() const{
  auto resultVec = search();
  cout << " | Left bound | Right bound | "
    <<" x1 | x2 | f(x1) |" <<
    " f(x2) | length | step Number |\n";
  cout << "|" << setfill('-') << setw(107) << right << "|\n";
  for (size_t i = 0; i < resultVec.size(); ++i){
    cout << setfill(' ');</pre>
    cout << "| " << setw(10) << setprecision(6) << resultVec[i].intervalFirst << " | " <<
      setw(11) << setprecision(6) << resultVec[i].intervalSecond << " | " <<
       setw(10) << setprecision(4) << resultVec[i].X1 << " | " <<
       setw(10) << resultVec[i].X2 << " | " <<
       setw(11) << setprecision(5) << resultVec[i].functionX1 << " | " <<
       setw(11) << resultVec[i].functionX2 << " | " <<
       setw(8) << setprecision(5) << resultVec[i].length << " | " <<
```

```
setw(11) << resultVec[i].stepNum << " |\n";
cout << "|" << setfill('-') << setw(107) << right << "|\n";
}</pre>
```

Приложение 6. Исходный код файла main.cpp

```
#include <iostream>
#include <string>
#include <passiveSearcher.hpp>
#include <dichotomySearcher.hpp>
using std::endl;
using std::cout;
using std::cin;
int main(int argc, char** argv){
 cout << "The function is: func(x) = -0.5*cos(0.5x) - 0.5" << endl << endl;
 cout << endl << "\t\tPASSIVE SEARCHER" << endl;</pre>
 PassiveSearcher ps(-5, 2);
 ps.print();
 cout << endl << endl << "\t\t\t\t\t\tDICHOTOMY SEARCHER" << endl;
 cout << "=========;;
 cout << "========" << endl;
 DichotomySearcher ds(-5, 2);
 ds.print();
 return 0;
}
```

Приложение 6. Исходный код файла CMakeLists.txt

```
cmake_minimum_required(VERSION 3.4)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
project(Searcher)
add_library(searcher STATIC
  ${CMAKE_CURRENT_SOURCE_DIR}/sources/passiveSearcher.cpp
 ${CMAKE_CURRENT_SOURCE_DIR}/sources/dichotomySearcher.cpp
)
add_executable(main
 ${CMAKE_CURRENT_SOURCE_DIR}/sources/main.cpp
)
target_include_directories(searcher
  PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include
)
target_include_directories(main
  PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include
)
target_link_libraries(main PUBLIC searcher)
```