

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

A 56.9
R 31
ARS 41-125

8202

EFFECTIVENESS OF ROCK PHOSPHATE AS A SOURCE OF PHOSPHORUS FOR PLANTS

January 1967 ARS 41-125
Agricultural Research Service

UNITED STATES DEPARTMENT OF AGRICULTURE

CONTENTS

	Page
Field experiments	3
Procedure.....	3
Results.....	4
Greenhouse and laboratory experiments.....	9
Uniform greenhouse experiment	9
Residual phosphorus greenhouse experiment	12
Evaluation of sources of rock phosphate.....	16
Availability of rock phosphate as measured by P ³²	19
Availability of rock phosphate as affected by time of contact with soil	22
Availability of rock phosphate as affected by source and time of application of lime..	22
Conclusions.....	27
Field experiments	27
Greenhouse and laboratory experiments.....	27
Literature cited.....	28
Appendix tables	29

EFFECTIVENESS OF ROCK PHOSPHATE AS A SOURCE OF PHOSPHORUS FOR PLANTS¹

L. E. Ensminger, R. W. Pearson, and W. H. Armiger²

The relative effectiveness of rock phosphate as a fertilizer material in relation to the soil, crop, and climatic conditions of the Southeastern United States has been a controversial subject for many years. A review of published results by Rogers and others (20),³ as well as more recent reports (4, 8, 10, 14, 15, 16, 17, 18), showed that per pound of phosphorus, raw phosphate was commonly less than one-half as effective as superphosphate. However, other results showed raw phosphate to be equally effective. Satisfactory explanations of these deviations were not possible from the results at hand. Particularly, no clear relationship had been established between soil characteristics and crop response to rock phosphate.

In an attempt to clarify this relationship, a series of uniform field experiments was initiated in several Southeastern States in 1953, together with supporting laboratory and greenhouse studies at Auburn, Ala.

The objectives of this study were: (1) To measure the relative effectiveness of rock phosphate as a source of phosphorus for forage crops on different soils, and (2) to relate rock phosphate availability to measureable soil characteristics.

FIELD EXPERIMENTS

Procedure

The field experiments, which were designed as complete randomized blocks with four replications, varied somewhat from one location to another but were planned to include the following treatments:

Source	P ₂ O ₅ applied	When applied
Concentrated superphosphate	<u>Lb./acre</u> $\left\{ \begin{array}{l} 15 \\ 30 \\ 60 \\ 120 \\ 300 \end{array} \right\}$	Annually.
Rock phosphate	$\left\{ \begin{array}{l} 300 \\ 600 \end{array} \right\}$	First year only.

¹ Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Agricultural Experiment Stations of Alabama, Arkansas, Florida, Georgia, Mississippi, South Carolina, Tennessee, and Virginia.

² Professor of Soils, Agronomy and Soils Department, Auburn University Agricultural Experiment Station; and soil scientists, Soil and Water Conservation Research Division.

³ Underscored numbers in parentheses refer to Literature Cited at the end of this report.

In some experiments additional treatments were included, such as a lime variable and combinations of rock phosphate and superphosphate. For all experiments, however, a phosphorus response curve was determined by use of a standard soluble source against which comparisons of response to rock phosphate could be made at equivalent yield levels (fig. 1).

The rock phosphate, concentrated superphosphate, and precipitated calcium sulfate used in all field experiments were provided from common lots of material that were stockpiled at the beginning of the study. Florida rock phosphate having the following characteristics was used:

Total P ₂ O ₅	percent--	33.5
Fluorine content.....do.....	3.8
Citrate-soluble P ₂ O ₅do.....	3.0
Passing 100 mesh.....do.....	73.2
Specific surface	m. ² /g.	22.4

The test crop in most experiments was white clover or ladino clover grown alone or in combination with a summer grass. In one experiment additional forage crops were included, and in one, alfalfa was substituted for the clover-grass mixture.

Fertilization with elements other than phosphorus was intended to maintain a sufficiently high level of these nutrients to eliminate the possibility of deficiency. The initial application of fertilizer was incorporated in the surface 3 to 4 inches of soil. Subsequent applications of maintenance fertilizer were applied broadcast on the surface.

Initial or treatment phase of the field study was 5 years, during which time annual applications of superphosphate were made at the various rates. During the sixth and seventh years, the residual effects of the previously applied phosphates on crop yields were measured.

Results

The yield results of the field experiments are recorded in appendix tables 20 to 31, and summarized in tables 1 to 5 and 7. In a number of experiments unfavorable climatic conditions or other factors resulted in such poor stands of the test crop that the results were not considered valid and are not reported. Also, since the early harvests coincided with the period of maximum clover growth and later clippings were predominantly grass or grass and weeds, the first clipping data are used in evaluating the availability of phosphorus to ladino clover. Results from two of the experiments were published earlier (10, 19), but the first clipping yields were not recorded. These data, therefore, are included here for comparison of the predominantly clover forage yield with the data from the other experiments of the regional study. Further, in several of the experiments that were originally a part of this study no response to phosphorus was found. Therefore, it was not possible to evaluate the effectiveness of rock phosphate in these experiments, and the results are not included in this report.

The results summarized in table 1 and plotted in figure 1 show that, as an average of all experiments, 23 and 30 pounds of P₂O₅ from superphosphate applied annually produced the same yield in the 5-year period as the 300- and 600-pound rate, respectively, from rock phosphate. The ratio of total phosphorus of rock phosphate to superphosphate required for equivalent yield was about 3:1 and 4:1 at the two rates.

The yields from rock phosphate relative to those from superphosphate are summarized in table 2. In all soils, rock phosphate was poorer or no better than superphosphate applied at equal or one-half the rate. This would approximate evaluation of rock phosphate on a comparable cost basis and at a commonly recommended rate of application for ladino clover. However, rock phosphate at 600 pounds of P₂O₅ was as effective as superphosphate at one-fourth the rate; it gave a higher clover yield on the Henry soil, and a lower yield on the Coxville, and was no different than superphosphate on the other five soils. Even at the 15-pound annual rate of superphosphate (75 pounds of P₂O₅ in 5 years), rock phosphate at 600 pounds, or eight times the superphosphate rate, produced a higher yield on only two soils and was no different on the others.

Figure 1.—Composite response curve of seven experiments and average yield from rock phosphate at two rates, illustrating method of evaluating rock phosphate in terms of superphosphate at same yield level.

Table 1.--First clipping yields of ladino clover produced by different annual rates of superphosphate and initial single applications of rock phosphate¹

Soil	Dry matter yield of clover from source and rate of P ₂ O ₅ indicated						
	Superphosphate					Rock phosphate	
	0	15	30	60	120	300	600
	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre
Wickham.....	999	(1,380) ²	1,519	1,722	1,714	1,287	1,436
Henry.....	1,519	1,698	1,606	1,864	2,254	1,829	1,944
Rains.....	(¹)	450	1,262	2,102	2,319	1,372	1,587
Wellston.....	1,086	1,569	1,553	1,557	1,739	1,388	1,290
Coxville.....	512	871	1,012	1,086	1,227	626	695
Leon.....	(1,100)	1,417	1,792	2,167	(2,400)	1,678	1,920
Boswell.....	1,728	(1,775)	1,873	1,876	2,171	1,816	1,775
Average.....	992	1,309	1,517	1,790	1,975	1,449	1,521

¹ Results from experiments on Newtonia and Chewacla soils not included because of lack of response to phosphorus during treatment period.

² Values in parentheses are interpolated from individual response curves to fill in missing treatments.

Table 2.--Relative yields of ladino clover following a single application of rock phosphate compared with those from different rates of superphosphate applied over a 5-year period

Soil	Yield from rock phosphate relative to that from superphosphate applied at--			
	Equal ¹ P ₂ O ₅ rate	One-half ² P ₂ O ₅ rate	One-fourth ³ P ₂ O ₅ rate	One-eighth ⁴ P ₂ O ₅ rate
		Pct.	Pct.	Pct.
Henry.....	86	104	5 121	114
Leon.....	80	89	107	5 135
Wickham.....	5 84	5 83	95	6 104
Boswell.....	82	95	95	6 100
Wellston.....	5 74	83	83	5 82
Rains.....	5 68	76	126	5 353
Coxville.....	5 57	5 64	5 69	80
Average.....	76	85	99	138

¹ Yield from 600 lb. of P₂O₅ as superphosphate applied over the 5-year period = 100.

² Yield from 300 lb. of P₂O₅ as superphosphate applied over the 5-year period = 100.

³ Yield from 150 lb. of P₂O₅ as superphosphate applied over the 5-year period = 100.

⁴ Yield from 75 lb. of P₂O₅ as superphosphate applied over the 5-year period = 100.

⁵ Significantly different from yield from superphosphate.

⁶ Interpolated values.

The base yields from superphosphate at the lower rates are far below maximum (table 2). Thus, the indicated equivalence of rock phosphate to superphosphate at one-fourth and one-eighth the rate is commonly at a low-yield level and should not be taken as indicating maximum yield from rock phosphate. In fact, maximum yield on most of these soils is improbable with any rate of rock phosphate. As shown in figure 1, the 300-pound application gave an average yield increase of 460 pounds, which was far below the average yield increase from an adequate level of phosphorus. Yet the addition of a second 300-pound increment of rock phosphate increased yield only another 80 pounds.

When a single initial application of superphosphate is compared with that of rock phosphate applied at the same and at twice the rate, the difference between sources is narrowed (table 3). Two of the experiments did not provide this comparison, but of the six that did, rock phosphate was still either inferior or no better than superphosphate. A single initial application of superphosphate was as effective in four of five soils as annual applications (table 4). One of the soils, Coxville, apparently had an unusually high ability to convert soluble phosphorus into a more difficultly available form, and the single application gave relatively poor yields on this soil.

Table 3.--Relative yields of ladino clover from single applications of rock phosphate compared with those from a single application of superphosphate

Soil	Number of years yields obtained	Relative yield from rock phosphate when applied at: ¹	
		300 lb. of P ₂ O ₅	600 lb. of P ₂ O ₅
		Pct.	Pct.
Rains.....	5	104	120
Wellston.....	5	95	88
Wickham	4	88	98
Boswell.....	3	84	82
Coxville	4	² 48	² 54
Average		84	95

¹ Yield from 300 lb. of P₂O₅ as superphosphate = 100.

² Significantly different from yield from superphosphate.

Table 4.--Relative yields of ladino clover following a single application of superphosphate compared with those from an equal amount of phosphorus from the same source applied in five annual increments

Soil	Number of years yields obtained	Relative yield from a single application ¹	
		Pct.	
Boswell	3	114	
Rains	5	103	
Wellston.....	5	95	
Wickham	4	88	
Coxville	4	² 48	
Average		91	

¹ At rate of 300 lb. of P₂O₅ per acre. Yield from equal amount of P₂O₅ applied in annual increments = 100.

² Significantly different from yield from annual application.

Some scientists consider the residual effect of rock phosphate to be an important point in favor of raw phosphate application. Since rock phosphate is commonly applied infrequently and superphosphate annually, residual effects of rock phosphate in the present study were evaluated during the first and second years following discontinuance of superphosphate application (table 5). The residual effect of rock phosphate was less or no different from that of superphosphate in all comparisons. The results in table 3 also provide insight into relative residual effectiveness of the two sources. During the 5-year period following single initial applications of both rock phosphate and superphosphate, rock phosphate was inferior to or no better than superphosphate even when the rock phosphate was applied at twice the rate of superphosphate. The soils fall into essentially the same order when ranked according to both residual effectiveness of rock phosphate and effectiveness during the treatment period. Thus, among soils representative of the Southeastern United States, the residual effect of rock phosphate is apparently not as great as that of superphosphate within the range of economically comparable rates.

The field results presented lead to the general conclusion that, although the effectiveness of rock phosphate varies widely among soils of the region, it is seldom more than one-fourth that of superphosphate applied at the same rate. Also, the residual effect of rock phosphate is generally poorer or no better than that of superphosphate applied at the same rate. These conclusions are in reasonable agreement with other published results. Harris (8), for example, found that superphosphate produced yields of whiteclover equal to or better than those produced with twice the rate of rock phosphate on a Bowie very fine sandy loam soil. Long (14) reported that yields in a four-crop rotation on three different southeastern soils were considerably lower from rock phosphate than from treated phosphate, even though the rock phosphate was applied at two or more times the rate of soluble phosphate. Similarly, Jones (12) concluded that rock phosphate applied at double the rate of P_2O_5 produced only 61 percent of the yield from superphosphate in pasture experiments in Mississippi.

The results presented here also show that there were clear and consistent differences among soils of the region in the effectiveness of rock phosphate as a source of phosphorus for plants. In one soil (Henry) rock phosphate was about as effective as superphosphate; in another soil (Coxville) it was no better than the zero phosphorus treatment; and in the others it ranged between

Table 5.—Relative yields of ladino clover during residual period from a single application of rock phosphate compared with those from equal amounts of phosphorus from superphosphate applied in five annual increments

Soil	Number of years yields obtained	Residual value of rock phosphate when applied at:	
		300 lb. P_2O_5 per acre ¹	600 lb. P_2O_5 per acre ²
Henry.....	2	114	93
Boswell.....	1	113	--
Newtonia.....	2	85	³ 83
Wickham	2	82	101
Chewacla.....	2	80	84
Wellston.....	2	³ 61	80
Rains.....	2	58	85
Average.....		85	88

¹ Yield from 60 lb. of P_2O_5 as superphosphate applied per acre annually = 100.

² Yield from 120 lb. of P_2O_5 as superphosphate applied per acre annually = 100.

³ Significantly lower than yields from superphosphate.

these extremes. An explanation for these differences, however, is not possible from the information available. The final soil pH (table 6) may have been a factor inasmuch as the Henry was the most acid and the Coxville was the least acid of the group. The detailed results in the appendix tables do not support this suggestion, however. Yields on Coxville at three levels of lime show no effect for this variable. Other soil properties (table 6) apparently bear no relationship whatever to the order in which the soils are ranked in effectiveness of rock phosphate.

Lime did not significantly alter the relative effectiveness of rock phosphate in this study (table 7). Since it has been clearly shown (3, 5, 13) that rock phosphate availability increases with decreasing pH, the observed yields obviously reflect a balance between improved phosphorus availability and the appearance of other unfavorable conditions for plant growth at lower pH levels.

Table 6.--Some properties of the 0- to 6-inch layer of soils included in field studies of rock phosphate effectiveness

Soil type	Location	Initial pH	Limed pH	Predominant clay mineral ¹	Exchange capacity	Extractable P ₂ O ₅	
						Meg./100 g.	Dilute, acid P.p.m.
							Neutral NH ₄ F P.p.m.
Boswell very fine sandy loam...	Tuskegee, Ala.	5.0	5.7	K	2.1	32	52
Chewacla silt loam.....	Clemson, S.C.	5.5	6.1	K, v	7.1	14	37
Coxville fine sandy loam	Summerville, S.C.	4.7	6.2	K, v	8.7	7	41
Henry silt loam	Oakley, Miss.	4.9	4.9	K, i	7.1	20	25
Leon fine sand.....	Gainesville, Fla.	4.8	5.5	l, m	5.7	24	20
Newtonia silt loam	Fayetteville, Ark.	5.3	5.7	I, K	5.8	24	23
Rains sandy loam.....	Tifton, Ga.	5.1	5.6	K, v	2.7	17	26
Wellston very fine sandy loam..	Blacksburg, Va.	5.0	5.9	V, l, K	4.5	10	24
Wickham fine sandy loam	Camden, Ala.	5.3	5.6	K, m	13.5	32	51

¹ K = kaolinite, M = montmorillonite, l = illite, V = vermiculite. Lower case letters indicate very small percentages.

Table 7.--Effect of lime application on ladino clover yields when rock phosphate was the source of phosphorus

Soil	Number of years yields obtained	Relative clover yield without lime ¹	
		Pct.	Pct.
Wellston.....	5	115	
Wickham	4	109	
Chewacla.....	2	100	
Coxville.....	4	97	
Rains.....	5	89	
Boswell.....	3	85	
L.S.D. at 0.05	--	NS	

¹ Yield with lime for each soil = 100.

GREENHOUSE AND LABORATORY EXPERIMENTS

Uniform Greenhouse Experiment

When the uniform field experiment was outlined, it was recognized that responses to treatments would be considerably influenced by climatic and other location factors. Location effects were evaluated by duplicating the key treatments of the field experiment in a greenhouse experiment at Auburn, Ala., in which ladino clover and sudangrass were grown as test crops on soils from all field locations. Any response differences among soils obtained in the greenhouse should be the result of inherent soil differences. Included in the experiment were soils from 16

field test locations as well as two soil types from Missouri and one from Illinois, which were included as reference soils from areas where rock phosphate has been used extensively by farmers.

All pots were limed to 75 percent of lime requirement with the exception of the treatment receiving 160 pounds of P_2O_5 from rock phosphate, which was tested with and without lime. Calcium carbonate was used as the source of lime, and it was mixed throughout the entire soil mass 3 months before planting. The soil was kept moist during the 3-month period to allow the lime to react with the soil.

The pots were planted to ladino clover and three harvests were obtained. The clover was followed by one crop of Tift sudangrass. All harvests were analyzed for total phosphorus so that uptake of phosphorus could be used along with yields as a measure of availability.

Yields and Phosphorus Uptake

Ladino clover.--The yield and phosphorus uptake data obtained from different rates of superphosphate show that most of the field test locations for ladino clover were deficient in phosphorus (table 8). From 1 to 18 pounds of P_2O_5 from rock phosphate were required to produce yields equal to those obtained from 1 pound of P_2O_5 from superphosphate. The average response to each source of phosphorus is shown in figure 2 for the 13 soils from the Southeast showing a response to superphosphate. Even at the most efficient rate of rock phosphate studied, about 6 pounds of P_2O_5 from rock phosphate was required to produce the same average yield as 1 pound from superphosphate. It is evident from the curves in figure 2 that maximum yields cannot be obtained with rock phosphate alone. There was little or no response to rock phosphate beyond the first increment of 80 pounds of P_2O_5 .

Phosphorus uptake was calculated for all the soils in the uniform greenhouse experiment (table 8). All soils showed a response to superphosphate as measured by phosphorus uptake. Average phosphorus uptake for the 16 soils from the Southeast is shown in figure 3. Uptake from superphosphate increased with increasing rates of application, whereas uptake from rock phosphate did not change nearly as fast with increasing rate of application.

Evidently lime was critical for the production of clover since 160 pounds of P_2O_5 from rock phosphate produced as much or more clover with lime than without lime in 12 of the 19 soils. For the Dewey, Breton, and Coxville soils, rock phosphate without lime produced considerably more clover than it did with lime. The total phosphorus uptake data showed a similar effect of lime on response to rock phosphate.

Sudangrass.--Yields and phosphorus uptake for one crop of sudangrass are given in table 9. Results for sudangrass show a higher relative availability for rock phosphate than do the results for ladino clover. By the time the sudangrass was planted, acidity of the soils had increased appreciably (see pH values at bottom of table 9). This increase in acidity may have favored rock phosphate over superphosphate for sudangrass. Since the phosphates were applied to ladino clover, the sudangrass was more a measure of residual effects. Because of differences in reaction of the two phosphates with soils, the availability of superphosphate very probably decreased with time, while that of rock phosphate remained about the same. This would result in an apparent increase in availability for rock phosphate relative to superphosphate.

Fertility Status of Soils

The pH, lime requirement, and extractable phosphorus content of the soils used in the uniform greenhouse experiment are presented in table 10. Most of the soils were moderately to strongly acid. Extractable phosphorus data indicate that most of the soils were medium to low in available phosphorus.

Table 8.--Availability of rock phosphate applied to soils from uniform rock phosphate field tests as measured by yields and phosphorus uptake of three cuttings of ladino clover grown in the greenhouse

P ₂ O ₅ applied		Cecil sandy loam Watkinsville, Ga.		Dewey clay loam Greenville, Tenn.		Wickham fine sandy loam Camden, Ala.		Boswell very fine sandy loam Tuskegee, Ala.		Chewacla silt loam South Carolina	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
		<u>lb./acre</u>	<u>lb./acre</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>
0	0	18.3	.74.6	3.9	9.9	8.6	24.5	10.5	37.0	17.8	74.3
40	0	18.0	80.7	10.5	28.3	11.2	40.5	13.7	53.7	21.7	93.1
80	0	20.0	97.9	15.9	52.1	13.3	55.2	12.2	53.3	22.1	113.1
160	0	20.5	114.9	18.0	76.3	12.5	65.0	14.3	69.7	23.2	133.1
0	80	19.3	81.1	4.0	11.8	10.2	38.2	10.6	37.5	18.6	80.2
0	160	19.3	83.2	4.9	11.7	11.7	44.2	10.4	42.1	19.3	88.9
0	320	18.8	81.9	7.3	25.4	10.3	46.9	11.8	50.9	19.4	93.4
0	¹ 160	17.1	77.7	15.3	56.2	10.4	41.8	9.3	35.1	18.5	93.3
pH of unlimed soil.....		5.2	--	5.4	--	5.3	--	5.0	--	5.6	--
L.S.D. at 0.05.....		2.12	10.20	1.56	13.66	1.43	5.90	2.99	13.86	1.70	11.36
L.S.D. at 0.01.....		2.88	13.89	2.12	18.59	1.94	8.03	4.06	18.87	2.31	15.46
C.V.....		7.7	8.0	10.5	28.2	9.3	9.0	18.9	19.3	5.8	8.1
P ₂ O ₅ applied		Leon fine sand Florida		Plummer sandy loam Tifton, Ga.		Alcoa silt loam Knoxville, Tenn.		Brenton silt loam Urbana, Ill.		Newtonia silt loam Arkansas	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
		<u>lb./acre</u>	<u>lb./acre</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>
0	0	12.1	42.3	1.9	4.8	7.3	21.2	9.3	27.9	10.9	33.6
40	0	13.2	67.4	7.3	23.3	11.7	42.7	13.8	51.4	16.1	59.6
80	0	12.8	81.2	8.4	32.0	14.2	56.9	15.3	68.8	19.4	83.4
160	0	13.4	126.4	10.2	43.3	16.0	85.3	15.4	79.0	19.3	92.5
0	80	12.3	47.3	3.3	8.8	9.9	29.7	9.3	32.1	15.1	46.1
0	160	14.1	60.0	4.8	13.2	8.5	28.7	8.9	31.5	15.9	48.6
0	320	14.2	71.9	5.7	17.8	10.0	35.6	11.5	42.1	16.5	59.3
0	¹ 160	9.4	100.5	2.7	10.5	9.1	31.9	15.3	71.6	15.5	110.9
pH of unlimed soil.....		4.8	--	5.1	--	5.4	--	5.4	--	5.4	--
L.S.D. at 0.05.....		1.67	20.38	1.82	7.00	1.74	7.16	2.15	11.04	1.49	9.06
L.S.D. at 0.01.....		2.27	27.74	2.48	9.53	2.38	9.75	2.92	15.02	2.03	12.33
C.V.....		8.9	18.8	22.4	24.3	11.0	13.8	11.8	14.7	6.9	8.6
P ₂ O ₅ applied		Wellston very fine sandy loam Virginia		Mayhew silty clay loam Pontotoc, Miss.		Lloyd clay loam Gold Hill, Ala.		Coxville fine sandy loam South Carolina			
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake		
		<u>lb./acre</u>	<u>lb./acre</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>
0	0	8.4	23.9	20.5	78.2	25.8	116.0	3.3	9.5		
40	0	13.4	44.5	26.8	115.2	25.6	115.3	8.6	27.7		
80	0	14.8	53.4	26.0	121.0	29.2	131.7	11.9	42.1		
160	0	13.9	56.2	29.3	144.5	25.4	152.9	14.1	55.4		
0	80	9.2	27.9	24.9	97.9	24.9	109.3	6.1	10.0		
0	160	10.1	32.6	25.0	104.8	24.0	97.7	4.6	13.0		
0	320	11.6	38.6	27.4	125.6	25.2	109.9	5.6	16.8		
0	¹ 160	9.4	40.4	23.8	113.5	26.0	117.5	9.2	31.0		
pH of unlimed soil.....		5.0	--	4.8	--	6.1	--	5.0	--		
L.S.D. at 0.05.....		2.66	10.95	3.26	12.18	2.46	21.12	1.23	5.29		
L.S.D. at 0.01.....		3.63	14.91	4.44	16.58	3.35	28.75	1.68	7.19		
C.V.....		15.7	18.5	8.8	7.4	6.3	12.2	11.0	13.8		
P ₂ O ₅ applied		Henry silt loam Oakley, Miss.		Menfrow silt loam Weldon, Mo.		Putnam silt loam Missouri		Crockett clay Brooksville, Miss.		Bladen clay loam Fleming, Ga.	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
		<u>lb./acre</u>	<u>lb./acre</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>	<u>G.</u>	<u>Mg.</u>
0	0	14.1	51.5	18.2	81.7	17.3	71.8	18.9	83.9	3.8	8.8
40	0	17.6	77.3	23.8	120.6	21.5	109.5	20.7	98.3	12.2	36.8
80	0	19.8	90.5	19.5	99.8	22.1	128.7	22.4	114.6	15.4	57.1
160	0	21.7	113.6	24.0	134.6	23.1	144.0	23.0	131.4	16.5	74.1
0	80	18.0	73.8	21.1	101.6	20.1	92.4	20.0	87.6	6.9	18.2
0	160	17.8	78.5	21.9	105.8	20.6	100.2	19.8	88.7	9.3	25.5
0	320	18.8	85.2	21.2	105.4	20.5	101.7	19.7	93.3	12.6	39.8
0	¹ 160	16.6	75.4	21.1	110.2	21.5	108.9	20.0	102.1	8.1	42.9
pH of unlimed soil		5.4	--	5.7	--	5.9	--	5.8	--	4.8	--
L.S.D. at 0.05.....		2.48	18.89	3.43	18.14	2.23	12.85	1.90	11.55	3.33	6.81
L.S.D. at 0.01.....		3.38	25.71	4.66	24.69	3.04	17.49	2.59	15.72	4.53	9.26
C.V.....		9.3	16.2	10.8	11.4	7.2	8.2	6.3	7.9	20.7	12.0

¹ Unlimed. All other treatments limed to 75 percent of lime requirement.

Figure 2.--Average response of ladino clover in the greenhouse to rock phosphate and superphosphate for 13 soils from the Southeast.

Residual Phosphorus Greenhouse Experiment

The residual phase of the field experiment was begun on soils obtained from key treatments at 11 locations. Sufficient soil was collected from the check plots at each location for a phosphorus response curve for which concentrated superphosphate was used as the standard. The soil was brought to Auburn, Ala., where residual effects could be studied in the greenhouse under a uniform environment. The pots were arranged in the greenhouse in a randomized block design and each treatment was replicated four times. Ladino clover was used as the test crop. If the pH of the soil from the limed treatments was below 5.0, sufficient dolomitic lime was applied to meet the requirements of ladino clover for a short time. The rate of lime applied was low to make conditions as near optimum as possible for rock phosphate availability.

Yields and Phosphorus Uptake

Yields and phosphorus uptake of ladino clover grown on the 11 soils are presented in table 11. Nine of the soils showed a yield response to freshly applied superphosphate, and seven soils showed a response to residual superphosphate. Based on phosphorus uptake, all soils responded to freshly applied superphosphate as well as to residually applied superphosphate.

The 300-pound rate of P_2O_5 from superphosphate applied the first year only was included in the field experiment to compare residual effects (1) with an equivalent amount of superphosphate applied annually during the 5-year period and (2) with rock phosphate applied the first year only.

Figure 3.--Average phosphorus uptake by ladino clover in the greenhouse for 16 Southeast soils treated with rock phosphate and superphosphate.

Of the nine soils where this comparison was included, yields were lower for the treatment that received 300 pounds of P_2O_5 from superphosphate the first year only as compared with that for the treatment of 60 pounds of P_2O_5 annually. Based on phosphorus uptake, five of the nine soils showed less residual value for the 300-pound rate the first year only as compared with that for 60 pounds annually for 5 years.

Residual effects of rock phosphate were obtained on six of the nine soils that gave a yield response to freshly applied superphosphate. Based on phosphorus uptake, eight soils showed residual effects of rock phosphate. The effect of lime on residual value of rock phosphate was not pronounced. Lime decreased yields and phosphorus uptake from rock phosphate on Coxville fine sandy loam but increased yields from rock phosphate on Wickham fine sandy loam. On the remaining soils, lime had no effect on availability of rock phosphate.

In general the residual effects of rock phosphate were less than those from an equivalent amount of P_2O_5 from superphosphate applied annually in a 5-year period. However, on two soils, Henry silt loam and Leon fine sand, the residual effects of rock phosphate were equal to those of superphosphate applied on an equivalent P_2O_5 basis.

Table 9.--Availability of rock phosphate applied to soils from uniform rock phosphate field tests as measured by yields and phosphorus uptake of sudangrass grown in the greenhouse

P ₂ O ₅ applied		Cecil sandy loam Watkinsville, Ga.		Dewey clay loam Greenville, Tenn.		Wickham fine sandy loam Camden, Ala.		Boswell very fine sandy loam Tuskegee, Ala.		Chewacla silt loam South Carolina	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
lb./acre	lb./acre	g.	kg.	g.	kg.	g.	kg.	g.	kg.	g.	kg.
0	0	10.1	29.7	3.6	7.2	5.9	16.0	3.4	9.6	8.7	20.9
40	0	10.0	34.2	6.3	11.4	6.4	17.7	5.4	15.4	10.3	27.5
80	0	9.9	31.3	9.3	17.2	8.8	21.9	8.9	26.6	10.9	33.0
160	0	9.7	34.4	12.4	30.9	9.3	28.9	9.7	30.7	12.5	37.0
0	80	10.3	30.3	5.0	9.5	7.4	20.2	5.0	16.9	9.5	25.4
0	160	9.8	33.0	5.9	12.7	9.0	25.9	5.8	18.5	10.7	29.1
0	320	9.3	34.4	8.8	20.3	9.9	31.8	6.0	21.8	10.1	33.2
0	¹ 160	8.5	32.9	10.9	28.8	8.8	25.9	6.8	24.5	10.1	32.3
pH of limed soil after sudangrass harvest.....											
5.0	--	5.1	--	4.8	--	4.9	--	4.9	--	4.9	--
L.S.D. at 0.05.....	1.48	5.58	1.80	5.21	1.31	3.73	1.82	4.67	1.66	3.29	
L.S.D. at 0.01.....	2.02	7.60	2.45	7.09	1.79	5.08	2.48	6.36	2.26	4.48	
C.V.....	10.3	11.7	15.7	20.5	10.9	10.8	19.5	15.5	10.9	8.8	
P ₂ O ₅ applied		Leon fine sand Florida		Plummer sandy loam+ Tifton, Ga.		Alcoa silt loam Knoxville, Tenn.		Brenton silt loam Urbana, Ill.		Newtonia silt loam Arkansas	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
lb./acre	lb./acre	g.	kg.	g.	kg.	g.	kg.	g.	kg.	g.	kg.
0	0	4.5	6.3	1.3	2.5	3.4	9.3	5.7	12.5	6.0	15.7
40	0	9.1	16.4	4.7	9.4	5.1	11.0	7.6	15.3	8.0	19.5
80	0	10.5	30.2	7.6	19.3	6.8	13.3	8.2	18.6	7.6	21.2
160	0	10.1	60.0	8.6	23.5	9.3	19.0	9.4	26.7	11.3	33.0
0	80	9.7	19.1	2.0	4.4	5.0	11.5	4.8	13.2	8.1	21.5
0	160	10.4	30.7	4.2	9.9	5.0	11.5	5.2	15.6	7.4	22.1
0	320	9.8	39.3	5.7	14.2	5.5	13.9	5.5	21.0	8.9	28.0
0	¹ 160	7.6	55.8	1.9	6.5	4.5	11.6	10.1	26.0	7.7	29.0
pH of limed soil after sudangrass harvest.....											
4.6	--	4.6	--	4.8	--	5.2	--	5.2	--	5.2	--
L.S.D. at 0.05.....	1.69	9.51	1.48	4.24	1.37	2.92	2.53	3.49	1.74	1.26	
L.S.D. at 0.01.....	2.30	12.94	2.02	5.78	1.86	3.98	3.44	4.75	2.37	1.71	
C.V.....	12.8	19.5	22.3	25.7	16.7	16.0	22.0	12.6	14.5	3.6	
P ₂ O ₅ applied		Wellston very fine sandy loam Virginia		Mayhew silty clay loam Pontotoc, Miss.		Lloyd clay loam Gold Hill, Ala.		Coxville fine sandy loam South Carolina			
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake		
lb./acre	lb./acre	g.	kg.	g.	kg.	g.	kg.	g.	kg.		
0	0	3.1	6.7	10.0	29.2	6.0	20.9	1.7	5.0		
40	0	6.5	12.5	10.9	31.9	6.0	22.1	2.6	5.0		
80	0	7.3	17.0	10.6	36.1	7.1	26.2	3.9	7.1		
160	0	9.3	25.1	11.5	43.6	8.1	31.7	5.6	12.9		
0	80	3.8	9.8	10.4	28.7	7.2	27.8	2.1	5.2		
0	160	4.8	14.4	11.3	35.2	6.8	24.9	2.1	4.1		
0	320	6.0	17.0	10.8	37.4	6.8	25.6	2.5	5.1		
0	¹ 160	4.4	16.6	9.3	32.7	6.1	22.9	2.9	5.7		
pH of limed soil after sudangrass harvest.....											
4.5	--	4.8	--	5.7	--	4.9	--	4.9	--		
L.S.D. at 0.05.....	1.85	5.44	2.55	5.51	1.18	5.17	1.31	7.92			
L.S.D. at 0.01.....	2.52	7.40	3.47	7.51	1.61	7.04	1.78	10.79			
C.V.....	22.0	24.8	16.4	10.9	11.8	14.0	30.8				
P ₂ O ₅ applied		Henry silt loam Oakley, Miss.		Menfrow silt loam Weldon, Mo.		Putnam silt loam Missouri		Crockett clay Brooksville, Miss.		Bladen clay loam Fleming, Ga.	
Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
lb./acre	lb./acre	g.	kg.	g.	kg.	g.	kg.	g.	kg.	g.	kg.
0	0	4.6	11.9	9.2	28.6	8.3	19.4	6.5	16.4	0.7	1.4
40	0	6.3	15.2	11.0	31.3	10.9	25.9	7.8	21.2	2.2	3.8
80	0	8.6	20.1	10.9	35.8	11.3	29.3	8.2	22.2	4.8	8.5
160	0	8.6	23.4	13.6	41.3	12.6	37.9	10.5	29.1	8.0	22.4
0	80	7.7	18.9	11.4	34.0	10.0	27.9	6.6	18.1	1.4	2.8
0	160	8.0	21.2	10.9	31.9	10.3	27.4	6.0	18.8	3.0	6.0
0	320	9.7	24.8	12.8	33.5	11.6	30.4	7.4	21.3	5.1	11.1
0	¹ 160	7.9	17.3	11.3	35.9	11.1	27.7	9.1	25.9	0.1	--
pH of limed soil after sudangrass harvest.....											
4.6	--	5.2	--	5.2	--	5.2	--	4.6	--		
L.S.D. at 0.05.....	2.20	3.92	2.59	6.40	1.91	5.44	1.95	3.73	4.03	2.56	
L.S.D. at 0.01.....	3.00	5.83	3.52	8.72	2.61	7.40	2.66	5.08	5.49	3.49	
C.V.....	19.5	13.9	15.4	12.6	17.1	13.1	17.1	11.7	8.6	25.0	

¹ Unlimed. All other treatments limed to 75 percent of lime requirement.

⁺ Has been reclassified as "Rains sandy loam."

Table 10.--Fertility status of soils used in uniform greenhouse experiment

Soil type	Location	pH	Lime requirement	P ₂ O ₅ extracted by--			
				Dilute acid	Neutral NH ₄ F	HCl-NH ₄ F	Anion exchange resin
		lb./acre	P.p.m.	P.p.m.	P.p.m.	P.p.m.	P.p.m.
Wickham fine sandy loam.....	Camden, Ala.....	5.3	2,950	11	27	288	9.9
Boswell very fine sandy loam.....	Tuskegee, Ala.....	5.5	1,550	32	38	145	7.1
Lloyd clay loam.....	Gold Hill, Ala.....	6.1	2,050	34	65	291	24.1
Cecil sandy loam.....	Watkinsville, Ga.....	5.2	1,500	110	77	179	21.3
Bladen clay loam.....	Fleming, Ga.....	4.8	5,500	5	21	38	12.8
Plummer sandy loam+	Tifton, Ga.....	5.1	1,500	6	10	10	5.7
Coxville fine sandy loam.....	South Carolina.....	5.6	1,800	10	42	198	11.3
Chewacla silt loam.....	South Carolina.....	5.0	5,450	14	46	200	18.4
Leon fine sand.....	Gainesville, Fla.....	4.8	3,050	7	13	16	29.8
Alcoa silt loam.....	Knoxville, Tenn.....	5.4	3,750	18	46	170	12.8
Dewey clay loam.....	Greenville, Tenn.....	5.4	2,500	14	20	48	9.9
Newtonia silt loam.....	Fayetteville, Ark.....	5.4	1,600	22	27	112	11.3
Henry silt loam.....	Oakley, Miss.....	5.4	1,900	20	32	218	12.8
Mayhew silty clay loam.....	Pontotoc, Miss.....	4.8	3,750	73	142	330	39.7
Crockett clay.....	Brooksville, Miss.....	5.8	2,200	34	50	166	25.5
Wellston very fine sandy loam.....	Blacksburg, Va.....	5.0	2,050	14	26	96	8.5
Brenton silt loam.....	Urbana, Ill.....	5.4	4,550	34	45	198	12.8
Mentrow silt loam.....	Weldon, Mo.....	5.7	2,250	80	78	253	35.5
Putnam silt loam.....	Missouri.....	5.9	1,600	67	46	237	25.5

+ Has been reclassified as "Rains sandy loam."

Extractable Phosphorus and pH of Soils

The soils used in the residual phosphorus study in the greenhouse were classified with respect to extractable phosphorus and pH (table 12). The extractions show that considerable phosphorus had accumulated. Since the forms of accumulated phosphorus resulting from superphosphate and rock phosphate may be quite different, the extractants used were selected because they tend to be selective in dissolving certain forms of phosphorus. For example, dilute acid readily dissolves calcium phosphates, but is not very effective in dissolving iron and aluminum phosphates. Just the opposite is true for the dissolving action of neutral ammonium fluoride. The amount of phosphorus released to an anion exchange resin is related to the total water-soluble phosphorus present in the soil.⁴

In seven of the nine soils where a comparison could be made, soils that had received 60 pounds of P₂O₅ annually for 5 years contained more extractable phosphorus by each of the four methods used than did soils that had received 300 pounds of P₂O₅ from superphosphate the first year only. This is in line with yields that were higher where 60 pounds of P₂O₅ annually had been applied as compared with yields from 300 pounds applied the first year only. For most soils neutral ammonium fluoride extracted considerably less phosphorus from rock phosphate-treated soils than it did from soils that had received the same amount of P₂O₅ from superphosphate. This indicates that much of the rock phosphate had not reacted with the soils.

Most of the rock phosphate treatments that had been limed were lower in neutral ammonium fluoride-soluble phosphorus than the rock phosphate treatments that had not been limed. This indicates that liming had reduced the reaction between rock phosphate and soil. Liming also reduced the amount of anion resin-extractable phosphorus from soils treated with rock phosphate.

Evaluation of Sources of Rock Phosphate

Many field and greenhouse tests have been conducted to evaluate the effectiveness of rock phosphate for crop production. The results have varied considerably, depending upon the test conditions. In many of these tests different sources of rock phosphate were used whose chemical and physical properties varied widely. In the present study these properties were evaluated under uniform conditions for seven different sources so that their effectiveness in crop production might become more predictable.

Classification of Rock Phosphate Sources

Although the seven sources of rock phosphate were ground to pass a 100-mesh sieve, they varied a great deal in specific surface as well as in their solubility in sequestrene, lactic acid, and neutral ammonium citrate solutions (table 13). South Carolina and foreign sources were much more soluble than Idaho, Tennessee, and Florida sources.

Rock phosphate deposits vary considerably as to their physical and chemical properties (1, 2, 9, 11). Hendricks and others (9) examined a number of phosphates by microscopic and X-ray diffraction methods and reported that phosphate rock from the United States consisted mainly of submicrocrystalline fluorapatite, Ca₁₀F₂(PO₄)₆, whereas the phosphates of Christmas, Nauru, and Ocean Islands were essentially hydroxyfluorapatite, Ca₁₀OH F (PO₄)₆. They reported that rock phosphate from Curacao was mainly a hydrate of tricalcium phosphate, Ca₉(H₂O)₂(PO₄)₆. Based on this report (9), foreign sources are probably more soluble and more available than most domestic sources.

⁴ Amer, Fathi M. Characterization of soil phosphorus by exchange resin adsorption and P-32 equilibration. Unpublished Ph. D. thesis, Iowa State College, Ames, Iowa. 1954.

Table 11.--Availability of residual rock phosphate and superphosphate as measured by yields and phosphorus uptake of ladino clover grown in the greenhouse

P ₂ O ₅ applied in--			Lloyd clay loam Gold Hill, Ala.		Boswell very fine sandy loam Tuskegee, Ala.		Newtonia silt loam Fayetteville, Ark.		Wellston very fine sandy loam Blacksburg, Va.		Coxville fine sandy loam Summerville, S.C.		Chewacla silt loam Clemson, S.C.	
Field (1952-56)	Green- house	Concen- trated super- phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake		
<u>lb./acre</u>	<u>lb./acre</u>	<u>lb./acre</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>		
0	0	0	7.94	36.14	11.48	59.82	9.08	43.58	4.27	16.25	3.50	9.50	4.78	23.25
0	0	15	12.80	58.10	10.87	56.68	9.51	48.96	5.23	18.59	5.50	15.28	4.94	25.42
0	0	30	13.96	63.87	10.77	58.35	10.12	55.39	7.23	27.70	6.98	24.69	5.90	29.21
0	0	60	13.17	60.68	12.31	67.19	11.00	62.91	6.63	26.70	8.01	29.27	5.66	32.30
0	0	120	14.67	74.11	11.75	70.71	10.35	64.93	6.56	31.05	9.88	42.92	6.19	36.06
0	0	240	14.46	83.16	11.18	84.67	12.18	80.26	10.32	52.12	11.55	50.88	7.19	47.14
¹ 60	0	0	11.32	71.95	12.75	86.15	9.20	55.53	5.53	23.89	7.86	38.85	6.25	43.35
¹ 120	0	0	11.82	73.30	11.62	91.81	10.59	62.79	5.92	29.85	11.13	72.16	7.33	48.04
300	0	0	11.24	61.16	9.79	59.91	7.38	31.36	4.09	14.90	7.20	30.26	4.56	20.53
0	² 300	0	8.87	47.03	8.23	47.51	8.43	40.20	3.17	11.15	2.66	8.12	5.42	26.47
0	² 300	0	11.61	69.42	--	--	8.37	45.60	3.27	11.30	5.88	26.24	5.43	30.17
0	600	0	12.38	66.55	10.45	68.15	8.70	40.25	3.63	12.11	3.50	12.92	4.90	22.67
0	² 600	0	9.11	53.52	9.86	69.21	7.38	40.47	3.69	13.90	7.74	41.49	4.54	25.88
L.S.D. at 0.05.....			1.64	10.36	N.S.	14.48	1.95	9.87	1.37	7.14	1.96	10.07	1.00	5.22
L.S.D. at 0.01.....			2.23	14.10	N.S.	19.89	2.65	13.43	1.85	9.72	2.66	13.64	1.36	7.07
C.V.....			10.7	11.7	14.1	14.1	15.3	14.8	27.9	28.7	20.6	22.1	12.6	13.0
P ₂ O ₅ applied in--			Wickham fine sandy loam Camden, Ala.		Plummer sandy loam Tifton, Ga.		Cecil sandy loam Watkinsville, Ga.		Henry silt loam Oakley, Miss.		Leon fine sand Gainesville, Fla.			
Field (1952-56)	Green- house	Concen- trated super- phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake		
<u>lb./acre</u>	<u>lb./acre</u>	<u>lb./acre</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>	<u>g.</u>	<u>Mg.</u>		
0	0	0	6.75	30.05	1.85	4.90	28.59	151.72	12.58	44.72	10.67	25.48		
0	0	15	11.60	53.80	5.64	12.69	30.97	169.49	15.24	57.83	13.78	37.40		
0	0	30	12.95	61.64	8.56	22.22	31.85	165.51	17.03	66.80	16.58	50.65		
0	0	60	15.39	83.64	14.27	36.04	30.47	159.19	17.84	78.09	21.34	74.90		
0	0	120	14.66	88.20	18.03	56.60	33.34	214.86	21.27	108.92	24.98	121.32		
0	0	240	--	--	--	--	--	--	--	--	--	--		
¹ 60	0	0	18.50	90.08	15.86	60.40	29.26	182.86	15.76	79.58	15.41	49.58		
¹ 120	0	0	23.37	147.69	17.73	78.57	33.18	231.86	18.03	111.73	--	--		
300	0	0	17.88	85.57	6.18	19.31	31.50	186.38	--	--	--	--		
0	² 300	0	14.71	61.73	3.10	9.23	26.97	154.51	14.83	64.56	18.70	75.80		
0	² 300	0	--	--	--	--	--	--	--	--	--	--		
0	600	0	18.03	87.01	8.74	27.89	29.38	169.27	20.88	106.41	24.61	160.92		
0	² 600	0	14.73	94.18	--	--	--	--	--	--	--	--		
L.S.D. at 0.05.....			3.25	14.53	2.03	6.78	4.87	25.46	1.90	16.40	4.98	18.58		
L.S.D. at 0.01.....			4.49	20.09	2.81	9.35	6.83	37.50	2.72	22.55	7.17	28.14		
C.V.....			12.1	10.2	13.0	11.6	10.5	8.9	7.0	11.3	14.4	11.3		

¹ P₂O₅ applied annually, all other treatments of P₂O₅ applied in 1952 only. ² Unlimed, all other treatments limed

Table 12.--Extractable phosphorus and pH of soils from uniform field experiment used in residual phosphorus study in the greenhouse

Soil type and location	P ₂ O ₅ applied (1952-56)		P ₂ O ₅ extracted by--				pH
	Concentrated superphosphate	Rock phosphate	Dilute acid	Neutral NH ₄ F	HCl- NH ₄ F	Anion reain	
	Lb./acre	Lb./acre	P.p.m.	P.p.m.	P.p.m.	P.p.m.	
Wickham fine sandy loam, Camden, Ala.....	0	0	11	30	250	10	5.5
	¹ 60	0	25	64	467	17	5.4
	¹ 120	0	60	125	621	35	5.5
	300	0	20	51	294	10	5.6
	0	300	60	37	384	11	5.8
	0	600	134	45	589	14	5.6
	0	² 600	192	67	749	17	5.3
Boswell very fine sandy loam, Tuskegee, Ala.	0	0	32	38	141	14	5.8
	¹ 60	0	95	137	285	43	5.9
	¹ 120	0	142	184	358	49	6.0
	300	0	62	99	256	32	5.7
	0	300	153	47	320	23	5.7
	0	600	430	66	812	34	5.7
	0	² 600	326	92	620	28	5.0
Lloyd clay loam, Gold Hill, Ala.....	0	0	34	65	246	23	6.1
	¹ 60	0	82	164	416	60	6.3
	¹ 120	0	140	293	621	96	6.2
	300	0	49	101	317	32	6.2
	0	300	91	69	365	22	6.3
	0	600	181	81	640	28	6.3
	0	² 600	209	129	789	37	6.0
Cecil sandy loam, Watkinsville, Ga.....	0	0	110	75	200	20	6.3
	¹ 60	0	120	216	424	51	6.4
	¹ 120	0	185	371	624	101	6.3
	300	0	120	240	471	62	6.4
	0	300	305	119	640	43	6.4
	0	600	421	131	640	37	6.5
Wellston very fine sandy loam, Blacksburg, Va.	0	0	20	32	103	10	6.0
	¹ 60	0	52	65	202	12	5.8
	¹ 120	0	66	114	686	27	5.8
	300	0	30	65	200	13	5.8
	0	300	44	34	197	4	5.8
	0	600	106	39	376	9	5.9
	0	² 600	81	47	317	12	5.0
Coxville fine sandy loam, Summerville, S.C..	0	0	10	11	73	11	6.0
	¹ 60	0	56	149	279	46	6.0
	¹ 120	0	109	232	387	66	6.0
	300	0	38	106	176	32	6.1
	0	300	97	38	293	21	6.0
	0	600	255	41	622	28	6.3
	0	² 600	212	117	646	37	4.8
Plummer sandy loam, Tifton, Ga.....	0	0	4	6	10	4	5.3
	¹ 60	0	25	59	70	10	5.0
	¹ 120	0	49	98	106	16	5.0
	300	0	22	19	35	4	5.3
	0	300	78	19	92	6	5.5
	0	600	92	18	134	3	5.5
Newtonia silt loam, Fayetteville, Ark.....	0	0	27	30	127	18	5.8
	¹ 60	0	57	63	169	29	5.8
	¹ 120	0	78	134	265	47	5.7
	300	0	38	41	143	17	5.6
	0	300	66	42	181	16	5.7
	0	600	118	40	286	14	5.7
	0	² 600	75	49	207	17	5.3
Henry silt loam, Oakley, Miss.....	0	0	18	30	203	10	4.9
	¹ 60	0	25	58	271	16	4.8
	¹ 120	0	58	134	426	34	4.8
	300	0	31	38	235	11	4.9
	0	300	65	82	388	18	4.9
Leon fine sand, Gainesville, Fla.....	0	0	9	19	13	21	5.0
	¹ 60	0	24	29	34	25	5.5
	0	300	60	26	125	25	5.8
	0	600	178	30	290	50	5.5
Chewacla silt loam, Clemson, S.C.....	0	0	13	67	214	21	6.0
	¹ 60	0	81	228	488	122	5.9
	¹ 120	0	136	322	657	129	5.9
	300	0	19	61	235	28	6.2
	0	300	125	75	441	34	6.1
	0	600	261	81	620	33	6.3
	0	² 600	185	103	563	34	5.6

¹ P₂O₅ applied annually. All other phosphate treatments applied first year only.² Unlimed. All other treatments limed at beginning of field experiment.

Table 13.--Chemical and physical characterization data for sources of rock phosphate used in greenhouse studies

Source of rock phosphate	Total P ₂ O ₅	Fluorine content	Specific surface	Fineness		Fraction of total phosphorus dissolved by various solutions				
				100 mesh	200 mesh	Sequestrene solution ¹			1 percent lactic acid	Neutral ammonium citrate
						pH 4.3	pH 5.8	pH 6.7		
Pct.	Pct.	M. ² /g.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.
Tennessee.....	34.4	3.80	7.8	100	61	17.5	18.9	8.4	6.7	4.7
Idaho.....	32.4	3.27	5.7	100	60	17.1	22.2	13.9	7.2	6.8
Florida.....	33.5	3.82	11.0	100	68	21.5	32.8	23.6	7.4	9.0
South Carolina..	26.9	3.57	6.6	100	65	35.1	44.2	42.5	8.6	17.2
Curacao Island..	38.6	.74	6.4	100	69	34.4	49.0	46.7	15.2	14.0
Morocco.....	34.1	4.27	22.4	100	84	36.3	60.9	62.9	13.4	15.7
Tunis.....	29.0	3.60	37.2	100	64	40.1	53.6	58.0	11.2	17.0

¹ Extractions were made by shaking 0.5g. of material for 2 hr. with 100 ml. of sequestrene solution made by adding 25 g. of sequestrene, ethylenedinitrilo tetraacetic acid, in 1 liter of water. The different pH values were obtained by adding 6.85 g. of NaOH for pH 4.3, 8.56 g. of NaOH for pH 5.8, and 10.28 g. of NaOH for pH 6.7.

Yields and Phosphorus Uptake from Rock Phosphate Sources

Cecil clay loam.--Yields and phosphorus uptake of three harvests of ladino clover and one harvest of sudangrass grown on Cecil clay loam are given in table 14. Curacao Island, Tunis, and South Carolina rock phosphates produced as much sudangrass and clover as an equivalent amount of P₂O₅ from superphosphate, both with and without lime. With the exception of clover without lime, Morocco rock phosphate was also as good as superphosphate. All Idaho rock phosphate was inferior to superphosphate, with the exception of clover without lime. Florida rock phosphate was inferior to superphosphate for sudangrass without lime and for clover with lime, whereas Tennessee rock phosphate was inferior only for clover with lime.

Lime increased yields of sudangrass and clover from all sources of phosphorus, but it decreased the efficiency of Idaho, Florida, and Tennessee rock phosphate relative to superphosphate as measured by clover yields. The critical need for lime on this soil is shown by the fact that lime alone increased yields and uptake of phosphorus more than phosphorus alone. This explains why lime increased yields from all sources over phosphate without lime.

Eutaw clay.--Yields and phosphorus uptake for sudangrass and ladino clover grown on Eutaw clay are presented in table 14. Superphosphate was mistakenly omitted from the unlimed pots where sudangrass was grown. However, yields of sudangrass from Idaho and Tennessee rock phosphate without lime were less than from the other sources. All raw sources produced smaller yields of clover than an equivalent amount of P₂O₅ from superphosphate both with and without lime, except Tunis rock phosphate with lime.

Phosphorus uptake by sudangrass on unlimed Idaho and Tennessee and limed Idaho, Tennessee, and Florida rock phosphate was lower than for the other raw sources. Liming reduced the efficiency of all raw phosphate relative to superphosphate as measured by phosphorus uptake by ladino clover.

Availability of Rock Phosphate as Measured by P³²

It is difficult to properly tag such fertilizer materials as rock phosphate. However, the "A" value technique (7) can be used to evaluate rock phosphate in the same manner that it is used to evaluate residual phosphorus effects (6). This technique was used along with yields and total phosphorus uptake to measure the effect of soil (clay mineral type), source of lime, and time of contact of rock phosphate with soil on availability.

Table 14---Effect of rock phosphate and rates of superphosphate with and without lime on yield and phosphorus uptake of sudangrass and ladino clover grown on Cecil clay loam or Eutaw clay in the greenhouse

CECIL CLAY LOAM

Source of phosphate	P ₂ O ₅ applied	Dry matter per pot							
		One harvest of sudangrass				Three harvests of ladino clover			
		Yield per pot		P ₂ O ₅ Uptake per pot		Yield per pot		P ₂ O ₅ Uptake per pot	
		Unlimed	Limed	Unlimed	Limed	Unlimed	Limed	Unlimed	Limed
	Lb./acre	G.	G.	Mg.	Mg.	G.	G.	Mg.	Mg.
None.....	0	1.00	2.67	2.10	9.61	6.56	9.85	21.36	31.92
Concen. superphosphate.....	60	1.55	3.21	6.36	14.12	7.31	12.11	27.37	40.59
Do.....	120	1.58	3.08	6.95	14.78	8.11	12.77	30.75	48.69
Do.....	240	2.23	3.85	11.82	18.87	7.86	14.89	34.70	59.71
Rock phosphate:									
Curaçao Island.....	120	1.61	3.08	6.44	12.01	8.90	13.35	34.65	46.00
Morocco.....	120	1.58	3.11	6.79	12.75	7.04	13.54	30.90	46.92
Tennessee.....	120	1.42	2.99	5.25	10.17	8.18	11.23	30.50	36.88
Florida.....	120	1.19	3.00	4.76	9.90	7.76	11.22	31.62	38.27
Idaho.....	120	1.20	2.64	4.92	9.77	7.47	9.15	30.96	31.76
Tunis.....	120	1.90	2.85	9.12	11.40	9.42	12.43	36.74	43.35
South Carolina.....	120	1.99	3.06	8.96	11.93	8.21	13.33	31.61	43.44
L.S.D. at 0.05.....		0.38		3.15		0.9		6.10	
L.S.D. at 0.01.....		.51		4.17		1.2		8.07	
EUTAW CLAY									
None.....	0	1.89	2.03	5.67	5.68	7.30	7.29	23.34	25.29
Concen. superphosphate.....	60	--	3.80	--	14.82	9.32	10.72	29.63	35.49
Do.....	120	--	4.79	--	20.60	12.34	12.81	43.24	51.27
Do.....	240	--	4.88	--	22.97	14.26	13.54	56.22	57.75
Rock phosphate:									
Curaçao Island.....	120	3.63	3.70	15.97	15.54	10.45	10.29	42.11	35.39
Morocco.....	120	3.42	3.46	15.39	14.19	9.43	10.86	40.42	39.69
Tennessee.....	120	2.62	2.86	11.53	10.01	9.55	10.32	38.60	36.10
Florida.....	120	3.64	2.98	16.74	12.52	9.99	10.67	37.51	37.48
Idaho.....	120	2.65	3.21	12.19	12.20	9.72	11.37	36.37	38.99
Tunis.....	120	3.16	3.78	14.85	17.01	9.92	12.12	40.92	46.44
South Carolina.....	120	3.15	4.05	14.49	15.80	9.84	10.79	39.84	42.57
L.S.D. at 0.05.....		0.50		1.67		0.9		5.59	
L.S.D. at 0.01.....		.67		2.21		1.2		7.48	

Cecil Clay Loam

The treatments and results for the experiment involving Cecil clay loam are given in table 15. The "A" values indicate that the 640-pound rate of P₂O₅ from rock phosphate had an availability equal to only 83 pounds of P₂O₅ from superphosphate. This value was obtained by subtracting the "A" value for unphosphated soil from the "A" value of soil that had received 640 pounds of P₂O₅ from rock phosphate. The 80 pounds of P₂O₅ from superphosphate was only about 60 percent efficient. This figure is based on the difference between the "A" value of unphosphated soil and the "A" value of soil that had received 80 pounds of P₂O₅ from superphosphate. If the availability of rock phosphate is compared with the actual availability obtained for superphosphate, then 640 pounds of P₂O₅ from rock phosphate would be equivalent to about 138 pounds of P₂O₅ from freshly applied superphosphate.

Yields and total phosphorus uptake indicated a higher availability for rock phosphate than was indicated from "A" value calculations, especially for the lower rates of rock phosphate.

In the Cecil clay loam, P₃₂ uptake by plants, plant yields, and total phosphorus uptake from the 160-pound rate of rock phosphate were not affected much by liming with either dolomite or calcium silicate slag but were increased by addition of silica gel.

Table 15.--Availability of rock phosphate applied to Cecil clay loam or Eutaw clay in greenhouse as measured by yields and phosphorus uptake

CECIL CLAY LOAM

Treatments ¹				First harvest, 1952			Four harvests, 1952	
Tagged superphosphate	Rock phosphate	Dolomite	Silicate slag	Yield	Phosphorus from fertilizer	Calculated "A" values	Yield	P ₂ O ₅ uptake
Lb./acre	Lb./acre	Lb./acre	Lb./acre	G.	Pct.	Lb./acre	G.	Mg.
0	0	0	0	2.3	--	--	17.9	53.3
20	0	0	0	3.8	--	--	26.6	87.3
40	0	0	0	5.5	--	--	31.7	113.9
60	0	0	0	4.8	--	--	34.0	125.4
80	0	0	0	4.9	95.5	14	32.7	125.8
80	40	0	0	5.3	89.3	10	42.4	167.5
80	80	0	0	6.4	85.5	14	41.8	191.1
80	160	0	0	6.3	70.8	22	46.0	213.4
80	320	0	0	6.2	58.6	57	49.6	243.5
80	640	0	0	7.7	45.3	97	59.2	305.2
² 80	0	0	0	7.2	56.8	61	47.8	215.9
80	0	2,000	0	6.8	99.0	1	46.4	177.4
80	160	2,000	0	7.6	87.5	11	51.6	216.7
80	0	0	3,000	7.8	86.4	13	49.1	215.0
³ 80	160	0	3,000	8.9	76.1	25	50.3	219.2
80	160	0	0	8.5	67.7	38	57.9	270.2
L.S.D. at 0.05.....				1.18	9.52	--	5.3	22.1
L.S.D. at 0.01.....				1.58	12.33	--	7.0	29.6
C.V.				12.7	8.6	--	8.6	8.4

EUTAW CLAY

0	0	0	0	3.6	--	--	10.7	41.2
20	0	0	0	4.7	--	--	13.6	57.7
40	0	0	0	5.0	--	--	14.5	69.0
60	0	0	0	5.9	--	--	14.8	76.4
80	0	0	0	5.8	98.0	2	20.3	104.5
80	40	0	0	6.2	82.9	16	18.6	103.7
80	80	0	0	7.3	69.5	35	22.5	118.4
80	160	0	0	7.6	58.0	58	28.5	145.9
80	320	0	0	7.3	47.7	88	23.5	146.9
80	640	0	0	7.1	39.1	125	32.0	198.0
² 80	0	0	0	8.2	52.7	72	27.0	143.9
80	0	2,000	0	5.7	102.0	--	40.5	171.6
80	160	2,000	0	6.8	77.6	23	48.2	223.1
80	0	0	3,000	6.9	92.7	6	48.1	200.0
80	160	0	3,000	8.1	87.1	12	48.9	221.0
³ 80	160	0	0	6.5	55.4	65	33.2	178.6
L.S.D. at 0.05.....				1.29	8.7	--	7.96	35.2
L.S.D. at 0.01.....				1.73	11.7	--	10.65	47.2
C.V.				14.1	8.4	--	20.0	17.9

¹ All plots received 100 lb. of K₂O per acre.

² In addition to tagged superphosphate, received 80 lb. of P₂O₅ from 20 percent superphosphate.

³ Received 2,000 lb. of silica gel per acre.

Eutaw Clay

The same treatments reported above for Cecil clay loam were applied to a Eutaw clay at the same time. The P³² uptake data (table 15) indicated an availability of 123 pounds of P₂O₅ for the 640-pound rate of rock phosphate. Again this was based on the difference in "A" values for phosphated and unphosphated soil. The 80 pounds of P₂O₅ from superphosphate showed an availability of 70 pounds or an efficiency of 87 percent (table 15). Based on the actual availability of freshly applied superphosphate, the 640-pound rate of rock phosphate would have an availability of about 140 pounds of P₂O₅. By this method of comparing rock phosphate with superphosphate, the

availability for the 640 pounds of P₂O₅ from rock phosphate was almost identical for the two soils.

Both dolomite and calcium silicate slag lowered the availability of rock phosphate as measured by "A" values. Based on yields and total phosphorus uptake, both liming materials increased the availability of rock phosphate. This suggests that the need for lime was more critical than the need for phosphorus.

The addition of silica gel had no effect on "A" values but did increase yields and total phosphorus uptake from rock phosphate.

Wickham Fine Sandy Loam

Based on P³² uptake, the 640-pound rate of P₂O₅ from rock phosphate without lime applied to Wickham fine sandy loam had an availability equal to 75 pounds of P₂O₅ from superphosphate (table 16). Lime reduced the availability of rock phosphate to zero. Yields of phosphorus by ladino clover also indicate that the 640-pound rate of rock phosphate without lime had an availability equivalent to more than 80 pounds of P₂O₅ from superphosphate. Lime reduced the availability of rock phosphate to almost zero as measured by yields of phosphorus from ladino clover.

Availability of Rock Phosphate as Affected by Time Of Contact with Soil

Claims have been made that rock phosphate becomes relatively more available with time after being mixed with the soil. Since no experiments could be found in the literature that provided a satisfactory evaluation of these claims, laboratory and greenhouse studies were initiated. Results from the greenhouse phase of the work are given in table 17. No change in availability with time of contact was indicated by the P³² uptake data. Yields from the second cutting of sudangrass were higher from rock phosphate applied at planting time than from rock phosphate applied 1 year before planting. Yields for the first cutting decreased in magnitude with increased time of contact. The availability of rock phosphate as compared with superphosphate was very low regardless of the time of contact.

Availability of Rock Phosphate as Affected by Source And Time of Application of Lime

A greenhouse experiment was conducted to determine the effect of two sources and time of application of lime on availability of rock phosphate. Ladino clover was used as the test crop. Dolomitic limestone and blast furnace slag were the two sources of lime used. Each source was applied 3 months before planting and at planting.

Vaiden clay

Yield data for the Vaiden clay are presented in table 18 and figure 4. There was a yield response to dolomite alone applied 3 months before planting and to silicate slag alone applied at planting time. Calcium silicate slag produced higher yields with both kinds of phosphate than did dolomite at the same rates, but this differential effect was far more pronounced with rock phosphate than with superphosphate. Yields from rock phosphate with calcium silicate slag applied 3 months before planting were as good as or better than those from superphosphate with dolomite applied 3 months before planting. Dolomite lowered yields from rock phosphate regardless of the time of application. In general the earlier application of both liming materials to rock

Table 16.--Availability of Florida rock phosphate applied to a Wickham fine sandy loam as measured by P^{32} uptake and yields of phosphorus by ladino clover grown in the greenhouse

P_2O_5 applied		Ladino clover			
		Total uptake of P_2O_5		"A" values	
Super- phosphate	Rock phosphate	Unlimed	Limed ²	Unlimed	Limed ²
Lb./acre	Lb./acre	Mg.	Mg.	Lb./acre	Lb./acre
0	0	29.2	34.6	--	--
40	0	30.7	37.4	--	--
¹ 80	0	36.2	40.4	194	182
¹ 120	0	37.0	44.3	--	--
240	0	38.4	48.4	233	172
0	80	32.6	33.6	--	--
0	160	32.7	31.5	--	--
0	320	36.8	34.7	--	--
0	640	39.0	36.7	--	--
¹ 80	80	37.4	39.3	197	177
¹ 80	160	38.6	41.4	202	177
¹ 80	320	43.7	39.9	264	172
¹ 80	640	40.3	40.2	269	171
L.S.D. at 0.05.....		4.4	4.4	--	--
L.S.D. at 0.01.....		5.8	5.8	--	--
C.V.		9.3	9.3	--	--

¹ Tagged superphosphate.

² Limed at rate of 2,000 lb. of dolomite per 2 million lb. of soil.

Table 17.--Effect of time of contact with moist soil¹ on availability of rock phosphate as measured by P^{32} uptake and yields of sudangrass

Treatment No.	Length of time phosphate in contact with soil	P_2O_5 applied		Yield per pot	P_2O_5 in plants		Second cutting		Sum of two cuttings per plot
		Tagged superphos- phate	Rock phosphate		From fertilizer	Total	Yield per pot	Total P_2O_5 in plants	
		Lb./acre	Lb./acre	G.	Pct.	Pct.	G.	Pct.	G.
1....	Applied at planting.....	0	0	3.91	--	0.30	4.21	0.29	8.12
2....do.....	50	0	7.68	89.4	.29	8.12	.35	15.80
3....do.....	100	0	8.64	--	.26	9.31	.37	17.95
4....do.....	200	0	10.54	--	.28	9.48	.38	19.99
5....	1 year before planting...	0	200	4.56	--	.26	4.92	.40	9.48
6....do.....	50	200	7.70	81.3	.28	8.33	.38	16.03
7....	6 months before planting.	0	200	4.91	--	.26	6.10	.36	11.01
8....do.....	50	200	7.31	80.0	.30	8.45	.40	15.76
9....	Applied at time of planting.....	0	200	5.33	--	.28	6.50	.38	11.83
10....do.....	50	200	7.33	78.4	.31	8.48	.38	15.81
L.S.D. at 0.05.....		--	--	0.9	--	--	1.4	--	--
L.S.D. at 0.01.....		--	--	1.2	--	--	1.8	--	--

¹ Wickham fine sandy loam with pH 5.2.

Table 18.--The effect of rate, kind, and time of application of lime on availability of rock phosphate and superphosphate as measured by yields and phosphorus uptake of three harvests of ladino clover

Treatments				Vaiden clay				Lloyd clay loam			
Source of lime		P ₂ O ₅ applied		Lime applied 3 mo. before planting		Lime applied at planting time		Lime applied 3 mo. before planting		Lime applied at planting time	
Dolomite	Calcium silicate slag	Super-phosphate	Rock phosphate	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake	Yield	P ₂ O ₅ uptake
lb./acre	lb./acre	lb./acre	lb./acre	g.	mg.	g.	mg.	g.	mg.	g.	mg.
0	0	80	0	9.00	36.28	9.00	36.28	11.01	38.73	11.01	38.73
1,000	0	80	0	9.13	37.18	10.70	44.23	14.10	47.75	11.82	40.74
2,000	0	80	0	11.02	45.98	10.62	41.97	14.26	48.99	13.89	50.32
4,000	0	80	0	11.64	45.81	11.16	44.91	14.94	55.42	14.76	51.93
0	1,000	80	0	13.57	64.42	14.26	67.46	12.21	46.87	12.90	45.53
0	2,000	80	0	14.45	69.59	15.61	76.87	13.49	49.30	15.05	52.26
0	4,000	80	0	15.73	76.84	16.35	80.89	13.69	52.49	16.42	57.96
0	0	0	80	8.45	33.12	8.45	33.12	8.62	27.56	8.62	27.56
1,000	0	0	80	7.89	30.18	6.81	27.72	6.35	18.81	5.57	15.67
2,000	0	0	80	6.20	21.05	5.16	16.41	4.53	13.26	4.69	13.61
4,000	0	0	80	4.71	16.13	3.69	11.09	7.17	21.84	6.93	20.57
0	1,000	0	80	13.02	56.91	7.70	30.30	7.54	23.39	8.84	26.75
0	2,000	0	80	13.67	64.10	7.26	27.47	7.33	21.88	7.44	23.37
0	4,000	0	80	13.27	57.05	5.94	20.60	5.90	17.23	6.79	20.42
0	0	0	0	2.39	6.40	2.39	6.40	3.72	9.89	3.72	9.81
1,000	0	0	0	2.76	7.39	2.80	7.32	3.69	9.59	3.21	8.61
2,000	0	0	0	3.72	10.31	2.83	7.57	4.03	10.30	4.25	12.25
4,000	0	0	0	5.13	14.84	2.57	6.90	6.33	19.53	5.77	16.65
0	1,000	0	0	4.35	12.59	7.96	27.15	3.48	9.01	3.92	10.07
0	2,000	0	0	3.79	11.15	8.49	27.20	3.95	10.44	4.03	11.06
0	4,000	0	0	3.94	13.38	9.57	33.26	5.00	13.71	5.20	14.63
4,000	0	40	0	9.06	28.26	8.70	28.18	12.18	40.30	11.91	38.98
4,000	0	120	0	14.82	67.41	13.45	66.34	15.34	65.54	16.46	69.88

Figure 4.--Effect of dolomite and calcium silicate slag applied 3 months before planting on availability of superphosphate and rock phosphate as measured by yields of ladino clover grown in the greenhouse on Vaiden clay.

phosphate resulted in higher yields than did application at planting time. With superphosphate the time of lime application had no effect on yields.

In general the phosphorus uptake data confirmed the yield data (table 18). In fact, differences due to sources and time of lime application were even more striking for phosphorus uptake than for yields. There was a definite increase in phosphorus uptake with increasing rates of dolomite with or without superphosphate and a very sharp decrease with rock phosphate, regardless of time of application of lime. The 1,000-pound application of calcium silicate slag was about as effective as the 4,000-pound rate. Also, there was no lowering of phosphorus uptake from rock phosphate when slag was applied 3 months before planting.

Slag alone applied at planting time increased yields and phosphorus uptake much more than did dolomite alone. This suggests that the slag rendered the soil phosphorus more available. The fact that dolomite decreased yields and phosphorus uptake from rock phosphate and that the slag did not can be explained, at least in part, by the pH values obtained for the two liming materials (table 19). The slag evidently furnished enough calcium for the clover without raising the pH of this soil enough to interfere with the availability of rock phosphate.

Lloyd clay loam

The effects of source and time of application of lime on rock phosphate availability for the Lloyd clay loam (table 18 and fig. 5) were quite different from those obtained for the Vaiden clay reported above.

In contrast to the Vaiden soil, rock phosphate was an ineffective source of phosphorus for the Lloyd clay loam when used with either source of lime regardless of time of application. Without lime the relative efficiency of rock phosphate (increased yields from superphosphate = 100 percent) was 92 percent for the Vaiden and 67 for the Lloyd. The lower pH of the Vaiden undoubtedly favored the availability of rock phosphate.

Comparative responses of the two soils to superphosphate and rock phosphate suggest that it is not possible to lime a soil such as Lloyd clay loam sufficiently for production of ladino clover without raising the pH enough to lower the availability of rock phosphate.

Table 19.--The effect of kind, rate, and time of application of lime, and of added soluble aluminum, on the pH reaction of Vaiden clay and Lloyd clay loam

Kind and rate of lime applied			Reaction 3 months after applying lime		Reaction 7 months after applying lime		Reaction 10 months after applying lime	
Dolomite	Calcium silicate slag	Soluble aluminum	Vaiden	Lloyd	Vaiden	Lloyd	Vaiden	Lloyd
Lb/acre	Lb/acre	P.p.m.,	pH	pH	pH	pH	pH	pH
0	0	0	4.5	5.2	4.5	5.4	4.5	5.5
1,000	0	0	4.9	5.8	4.8	6.0	4.7	5.7
2,000	0	0	5.4	6.2	5.1	6.4	5.0	6.2
4,000	0	0	5.9	6.8	5.6	6.9	5.5	6.8
0	1,000	0	4.7	5.3	4.7	5.6	4.7	5.6
0	2,000	0	4.9	5.6	4.9	5.7	4.9	5.9
0	4,000	0	5.0	5.9	5.1	6.2	5.0	6.3
0	0	200	--	--	4.3	--	4.3	--
1,000	0	200	--	--	4.3	--	4.5	--
2,000	0	200	--	--	4.5	--	4.6	--
4,000	0	200	--	--	5.0	--	5.0	--
0	0	50	--	--	--	4.9	--	4.9
1,000	0	50	--	--	--	5.6	--	5.6
2,000	0	50	--	--	--	6.1	--	6.1
4,000	0	50	--	--	--	6.6	--	6.6

Figure 5.—Effect of dolomite and calcium silicate slag applied 3 months before planting on availability of superphosphate and rock phosphate as measured by yields of Ladino clover grown in greenhouse on Lloyd clay loam.

CONCLUSIONS

Field Experiments

1. The effectiveness of rock phosphate varied widely among soils of the region but was seldom more than one-fourth that of superphosphate applied at the same rate of phosphorus.
2. Differences in effectiveness of rock phosphate could not be explained on the basis of commonly measured soil characteristics.
3. The residual effect of rock phosphate was less or no better than that of superphosphate applied at one-half the rate of phosphorus.
4. The different soils fall in the same order when ranked on the basis of immediate or residual effectiveness of rock phosphate.
5. Extrapolation of yield curves indicated that maximum yield could not be reached at any rate of phosphorus with rock phosphate as the source.
6. There was no significant effect of lime on the relative effectiveness of rock phosphate.

Greenhouse and Laboratory Experiments

1. About 6 pounds of P_2O_5 from rock phosphate were required to produce the same yields as 1 pound from superphosphate.
2. Rock phosphate alone did not produce maximum yields even when applied at high rates.
3. The residual effect of 300 pounds of P_2O_5 from superphosphate initially was less than 60 pounds annually. In general, the residual effect of rock phosphate was less than equivalent amounts of P_2O_5 from superphosphate. For most soils, extractable phosphorus was higher where 60 pounds of P_2O_5 from superphosphate were applied annually as compared with 300 pounds applied initially.
4. The foreign sources of rock phosphate tested were superior to all the domestic sources tested except that from South Carolina. Solubility in sequestrene and citrate solutions was a better measure of availability of rock phosphates than fluorine content or specific surface.
5. The use of tagged superphosphate indicated that 640 pounds of P_2O_5 from rock phosphate applied to either unlimed Cecil clay loam or Eutaw clay had an availability equivalent to about 140 pounds of P_2O_5 from superphosphate. Liming Cecil clay loam with dolomite lowered P^{32} uptake slightly but increased yield. Silicate slag did not affect P^{32} uptake but increased yield. Liming Eutaw clay with either dolomite or silicate slag increased P^{32} uptake, yield, and total phosphorus uptake. Liming Wickham fine sandy loam reduced the availability of rock phosphate almost to zero as measured by P^{32} uptake, yields, and total phosphorus uptake by ladino clover.
6. Rock phosphate applied to a Wickham fine sandy loam did not change in availability with time of contract with soil as measured by P^{32} uptake and yields of first cutting of sudangrass. Yields for the second cutting showed that rock phosphate applied at planting time was more available than that applied 1 year before planting.
7. The time of application of dolomite or silicate slag with superphosphate had no effect on yields or phosphorus uptake of ladino clover grown on Vaiden clay or Lloyd clay loam. However, yields and phosphorus uptake were increased by both sources of lime. Dolomite applied with rock phosphate reduced yields and phosphorus uptake regardless of time of application. Yields and phosphorus uptake from rock phosphate with calcium silicate slag were as high as or higher than from superphosphate with dolomite for ladino clover grown on Vaiden clay. However, calcium silicate slag reduced yields and phosphorus uptake of ladino grown on Lloyd clay loam.
8. For Vaiden soil, the higher efficiency of rock phosphate and calcium silicate slag as compared with rock phosphate and dolomite can be explained, at least in part, by the lower pH values resulting from the slag treatments. The slag evidently furnished enough calcium for the clover without raising the pH of the Vaiden clay enough to interfere with the availability of rock phosphate. Rock phosphate was somewhat more efficient with silicate slag than with dolomite for the Lloyd clay loam. Both slag and dolomite increased the pH of Lloyd clay loam more than that of Vaiden clay.

LITERATURE CITED

- (1) Armiger, W. H., and Fried, M. 1957. The plant availability of various sources of phosphate rock. *Soil Sci. Soc. Amer. Proc.* 12: 183-188.
- (2) Caro, J. H., and Hill, W. L. 1956. Characteristics and fertilizer value of phosphate rock from different fields. *Jour. Agr. and Food Chem.* 4: 684-687.
- (3) Chu, C. R., Moschler, W. W., and Thomas, G. W. 1962. Rock phosphate transformations in acid soils. *Soil Sci. Soc. Amer. Proc.* 26: 476-478.
- (4) Coates, Robert E. 1960. Phosphorus for forage production. *Miss. Farm Res.* 23 (3): 8.
- (5) Ellis, Roscoe, Jr., Quader, M. A., and Truog, Emil. 1955. Rock phosphate availability as influenced by soil pH. *Soil Sci. Soc. Amer. Proc.* 19: 484-487.
- (6) Ensminger, L. E., and Pearson, R. W. 1957. Residual effects of various phosphates as measured by yields, P^{32} uptake and extractable phosphorus. *Soil Sci. Soc. Amer. Proc.* 21: 80-84.
- (7) Fried, M., and Dean, L. A. 1952. A concept concerning the measurement of available soil nutrients. *Soil Sci.* 73: 263-71.
- (8) Harris, Harold E. 1961. A comparison of three sources of phosphorus. *La. Agr. Expt. Sta. Bul.* 539, 35 pp.
- (9) Hendricks, S. B., Hill, W. L., Jacob, K. D., and Jefferson, M. E. 1931. Structural characteristics of apatite-like substances and composition of phosphate rock and bone as determined from microscopical and x-ray diffraction examinations. *Indus. and Engin. Chem. Jour.* 23: 1413-18.
- (10) Jackson, James E., and Burton, Glenn W. 1960. A five-year comparison of rock phosphate and superphosphate for several forage crops. *Agron. Jour.* 52: 692-694.
- (11) Jacob, K. D., Hill, W. L., Marshall, H. L., and Reynolls, D. S. 1933. The composition and distribution of phosphate rock with special reference to the United States. *U.S. Dept. Agr. Tech. Bul.* 364, 90 pp.
- (12) Jones, U.S. 1953. Phosphate fertilizers. *Miss. Agr. Expt. Sta. Bul.* 503, 34 pp.
- (13) Joos, L. L., and Black, C. A. 1951. Availability of phosphate rock as affected by particle size and contact with bentonite and soil of different pH values. *Soil Sci. Soc. Amer. Proc.* 15: 69-75.
- (14) Long, O. H. 1961. Phosphates in crop rotations in Lawrence County. *Tenn. Agr. Expt. Sta. Bul.* 328, 43 pp.
- (15) McLean, E. O., Brown, D. A., and Hawkins, C. A. 1952. Comparative evaluation studies on rock and superphosphate. *Ark. Agr. Expt. Sta. Bul.* 528, 29 pp.
- (16) Moschler, W. W., and Jones, G. D. 1965. Field experiments with rock phosphate fertilizer in Virginia. *Va. Agr. Expt. Sta. Bul.* [In press.]
- (17) _____, Krebs, R. D., and Obenshain, S. S. 1957. Availability of residual phosphorus from long-time rock phosphate and superphosphate applications to a Groseclose silt loam. *Soil Sci. Soc. Amer. Proc.* 21: 293-295.
- (18) Murdock, J. T., and Seay, W. A. 1955. The availability to greenhouse crops of rock phosphate phosphorus and calcium in rock phosphate-superphosphate mixtures. *Soil Sci. Soc. Amer. Proc.* 19: 199-203.
- (19) Neller, J. R. 1963. Comparisons of phosphorus fertilizers for pastures on flatwoods soils in Florida. *Fla. Agr. Expt. Sta. Tech. Bul.* 651, 12 pp.
- (20) Rogers, H. T., Pearson, R. W., and Ensminger, L. E. 1953. Comparative efficiency of various phosphate fertilizers, In Soil and Fertilizer Phosphorus in Crop Nutrition, Agronomy Part 4. W. H. Pierre and A. G. Norman, Ed. Academic Press, Inc., 492 pp.

APPENDIX TABLE 20.--Dry matter yield response of ladino clover to phosphorus applied as rock phosphate and concentrated superphosphate to Wickham fine sandy loam, Camden, Ala.

Lb./acre	Lb./acre	Lb./acre	Lb./acre	Treatment period and clipping yield												Average Yields 1953-57	
				1953				1954				1955				1957	
				First	Second	First	Second	First	Second	Third	First	Second	Third	First	First	Total	
1 180	0	2,000	2,822a	1,685ab	2,279a	2,130a	1,583ab	974a	1,665a	1,025ab	1,083a	1,789a	1,789a	3,811a			
1 120	0	2,000	2,788a	1,712ab	2,146a	2,001a	1,685a	854abc	1,597ab	1,063ab	1,070a	1,714ab	1,714ab	3,729ab			
1 60	0	2,000	2,736a	1,626abc	2,164a	1,902a	1,551ab	932ab	1,557ab	1,132a	1,055a	1,722ab	1,722ab	3,664ab			
1 30	0	2,000	2,610a	1,477bcd	2,062a	2,041a	1,247 c	665 bcd	1,254 bc	.858abc	742a	1,519 bc	3,239 cd				
2 300	0	2,000	2,680a	1,909a	1,829abc	2,024a	1,558ab	662 bcd	1,364abc	1,000ab	670a	1,460 bc	3,392 bc				
2 150	2 300	2,000	2,812a	1,588 bc	1,886ab	1,899a	1,461abc	547 d	1,309abc	805 bcd	734a	1,495 bc	3,291 cd				
2 75	2 300	2,000	2,644a	1,463 bcd	1,805abc	2,001a	1,438abc	598 cd	1,329abc	974ab	839a	1,471 bc	3,272 cd				
1 60	0	0	2,155 bc	1,257 d	1,278 bcd	2,071a	1,298 bc	402 d	1,333abc	683 cd	1,234a	1,267 c	2,927 d				
0	2 600	2,000	2,576a	1,599 bc	1,752abc	2,056a	1,339 bc	466 d	1,322abc	824 bcd	952a	1,436 c	3,221 cd				
0	2 600	0	2,567a	1,531 bcd	1,176 cd	2,114a	1,479abc	468 d	826 d	679 cd	1,037a	1,312 c	3,291 cd				
0	2 300	2,000	2,447ab	1,343 cd	1,339 bcd	1,978a	1,352 bc	389 d	1,367abc	773 bcd	975a	1,287 c	2,991 d				
0	0	2,000	2,017 c	1,230 d	887 d	1,979a	945 d	404 d	1,053 cd	564 d	691a	999 d	2,442 c				

¹ Applied annually.

² Applied first year only.

³ Duncan's Multiple Range Test, $p = 0.05$. Values followed by the same letter do not differ significantly.

APPENDIX TABLE 21.--Residual effect of phosphorus application on dry matter yield of ladino clover grown on Wickham fine sandy loam, Camden, Ala.

Super-phosphate Lb./acre	Rock phosphate Lb./acre	Lime Lb./acre	Residual phase and clipping yield						Average yields 1958-59	
			1958		1959		First	Second	Lb./acre	Lb./acre
			First	Second	First	Second			First	Total
1 180	0	2,000	3,467a	1,767a	2,144ab	1,592ab	2,805a	4,485a		
1 120	0	2,000	2,861abc	1,927a	1,746 b	1,629ab	2,303ab	4,081ab		
1 60	0	2,000	3,358a	1,365abc	1,619 bc	1,301 bcd	2,488ab	3,822ab		
1 30	0	2,000	2,765abc	1,463ab	2,256a	1,649ab	2,510ab	4,066ab		
2 300	0	2,000	2,721abc	1,607ab	1,837 b	1,337abcd	2,279ab	3,751ab		
2 150	2 300	2,000	2,642abc	1,576ab	1,646 b	1,676a	2,144 bc	3,770ab		
2 75	2 300	2,000	2,966ab	1,086 bc	1,731 b	1,472abc	2,348ab	3,627ab		
1 60	0	0	1,946 bc	789 c	1,542 bc	1,163 cd	1,724 bc	2,720 b		
0 2 600	2,000	2,834abc	1,466ab	1,832 b	1,877abcd	2,33ab	4,004ab			
0 2 600	0	2,713abc	1,065 bc	1,322 c	1,381abcd	2,017 cd	3,240 c			
0 2 300	2,000	2,405abc	1,390abc	1,662 b	1,286 bcd	2,033 bc	3,371 b			
0 0	2,000	1,698 c	1,145 bc	1,020 d	1,066 d	1,359 d	2,464 c			

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 22.—Residual effect of phosphorus application on dry matter on yield of ladino clover grown on Boswell very fine sandy loam, Tuskegee, Ala.

Treatment	Treatment period and clipping yield										Average yields 1953-57	Residual phase 1958	
	1953			1954			1957						
	First	Second	First	First	Second	First	Second	First	Total	First	clipping		
lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	lb./acre	
1 180	0	2,000	1,972a	746ab	1,491a	3,535a	958a	2,333a	1,937 bc	2,901a			
1 120	0	2,000	1,709ab	708ab	926 b	3,358a	927a	1,998ab	2,970ab	2,543abc			
1 60	0	2,000	1,605ab	631ab	1,422ab	2,943a	714a	1,990ab	2,188abc	2,444 cd			
1 30	0	2,000	1,239 b	688ab	1,207ab	3,165a	939a	1,870ab	2,131abc	2,413abcd			
2 300	0	2,000	2,000a	582 b	1,447a	2,913a	799a	2,120ab	2,775ab	2,580abcd			
2 150	2 300	2,000	1,605ab	701ab	1,226ab	3,670a	1,131a	2,167ab	2,035abc	2,777ab			
2 75	2 300	2,000	1,580ab	706ab	1,289ab	2,915a	1,014a	1,928ab	2,215abc	2,501abcd			
1 60	0	0	1,324 b	669ab	1,387ab	3,895a	715a	2,202ab	1,140 c	2,663abc			
0 2 600	2,000	1,327 b	703ab	1,081ab	3,073a	974a	1,827ab	2,661ab	2,386 cd				
0 2 600	0	2,130a	801a	1,306ab	3,258a	743a	2,231a	2,510ab	2,746abc				
0 2 300	2,000	1,280 b	693ab	1,216ab	2,747a	944a	1,747ab	3,325a	2,293 bcd				
0 0 0	2,000	1,118 b	616 b	1,102ab	2,964a	851a	1,728 b	2,120abc	2,217 d				

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 23.--Dry matter yield response of ladino clover to phosphorus applied as rock phosphate and concentrated superphosphate to Newtonia silt loam, Fayetteville, Ark.

Super-phosphate Lb./acre	Treatment			Treatment period and clipping yield ¹								Average yields 1956-57 Lb./acre		
	1956		Lime Lb./acre	1957				First		Second		Third		
	First	Second		Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	
1 120	0	2,000	2,155ab	1,112abc	2,506a	1,467ab	641ab	1,087ab	2,380ab	4,484abc				
1 60	2 300	2,000	2,143ab	1,174abc	2,314abc	1,405abcd	559 b	1,022ab	2,228abc	4,308abcd				
1 60	2 300	1,000	2,528ab	1,013abc	2,064abc	1,065 bcd	532 b	693 b	2,296abc	3,947abcd				
1 60	0	2,000	2,530ab	1,388ab	2,270abc	1,668a	1,033a	1,136a	2,400a	5,012ab				
1 30	2 600	2,000	2,550ab	1,448a	2,097abc	1,460abc	879ab	1,083ab	2,323ab	4,758ab				
1 30	2 300	2,000	2,393ab	1,057abc	1,634 c	1,668a	853ab	1,024ab	2,013abc	4,314abcd				
1 30	0	2,000	2,740a	990abc	1,966abc	1,338abcd	588ab	878ab	2,353ab	4,250abcd				
1 15	0	2,000	1,912ab	923 bc	1,999abc	1,171 bcd	654ab	875ab	1,955abc	3,767 bcd				
2 300	0	2,000	2,470ab	1,173abc	2,384ab	1,409abcd	688ab	935ab	2,427a	4,529abc				
0	2 600	2,000	2,245ab	1,078abc	1,998abc	1,350abcd	717ab	980ab	2,121abc	4,184abcd				
0	2 600	1,000	2,345ab	1,223abc	2,213abc	1,348abcd	768ab	1,020ab	2,279abc	4,458abcd				
0	2 600	0	2,130ab	1,290abc	1,805 bc	1,331abcd	757ab	1,105a	1,967abc	4,209abcd				
0	2 300	2,000	2,268ab	1,125abc	1,933abc	1,371abcd	760ab	957ab	2,100abc	4,207abcd				
0	2 300	1,000	2,113ab	1,100abc	1,789 bc	1,358abcd	595ab	913ab	1,951abc	3,934abcd				
0	2 300	0	1,847ab	1,083abc	1,618 c	989 d	523 b	1,125a	1,732 bc	3,592 bcd				
0	0	2,000	2,003ab	1,113abc	2,308abc	1,360abcd	862ab	978ab	2,155abc	4,312abcd				
0	0	1,000	1,583 b	838 c	2,151abc	1,022 bcd	479 b	761ab	1,867abc	3,417 cd				
0	0	0	1,728 b	860 c	1,636 c	1,004 cd	572ab	768ab	1,682 c	3,284 d				

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 24.—Residual effect of phosphorus application on dry matter yield of Ladino clover grown on Newtonia silt loam, Fayetteville, Ark.

Super-phosphate	Treatment			Residual phase and clipping yield						Average yields 1959-60						
	Lb./acre	Rock phosphate	Lime	1959			1960			First	Second	Third	First	Second	Total	
				First	Second	Third	First	Second	Third							
1 120	0	2,000	2,748abc	1,615abcd	1,430a	3,559ab	1,898a	1,710a	3,153ab						6,480ab	
1 60	2 300	2,000	2,752abc	1,474abcde	1,191abc	3,401abc	1,582abc	1,492abcd	3,077ab						5,946abc	
1 60	2 300	1,000	2,201 def	1,198 defg	1,098abcde	2,730 defg	1,521abc	1,396abcde	2,466 de						5,072 defg	
1 60	0	2,000	2,656abcd	1,701abc	1,274abc	3,399abc	1,927a	1,592abcd	3,028abc						6,275abc	
1 30	2 600	2,000	2,893ab	1,871a	1,281ab	3,510ab	1,854a	1,693ab	3,202ab						6,552ab	
1 30	2 300	2,000	2,381 bcde	1,783ab	1,178abcd	3,428abc	1,866a	1,378 bcde	2,905 bcd						6,007abcd	
1 30	0	2,000	3,017a	1,764ab	1,256abc	3,871a	1,868a	1,706a	3,444a						6,741a	
33	1 15	0	2,000	1,955 efg	1,113 efg	938 bcdef	2,140 ghi	1,329 bcd	1,338 cde	2,047 fgh	4,406 fgh					
33	2 300	0	2,000	2,267 cdef	1,507abcde	1,066 bcde	2,873 cde	1,618abc	1,546abcd	2,570 cde						5,438 cde
0	2 600	2,000	2,187 def	1,356 bcdef	1,091abcde	3,039 bcd	1,688ab	1,584abcd	2,613 cde						5,472 cde	
0	2 600	1,000	2,554abcd	1,485abcde	1,245abc	3,026 bcd	1,621abc	1,441abcd	2,790 bcd						5,685 bcd	
0	2 600	0	2,134 def	1,158 defgh	1,067 bcde	2,823 cdef	1,741ab	1,706a	2,478 def						5,314 cdef	
0	2 300	2,000	2,214 def	1,349 bcdef	1,084abcde	2,946 bcd	1,688ab	1,574abcd	2,580 cde						5,427 cde	
0	2 300	1,000	1,830 fg	1,089 efg	916 cdef	2,597 defg	1,462abc	1,318 de	2,213 efg	4,607 efg						efgh
0	2 300	0	1,853 efg	818	828 def	2,281 efg	1,356 bcd	1,492abcd	2,067 fgh	4,314 gh						gh
0	0	2,000	1,617 g	1,263 cdef	1,016 bcdef	2,238 fgh	1,588abc	1,648abc	1,928 gh	4,685 efgn						efgh
0	0	1,000	1,487 g	935 fgh	752 ef	1,912 h	1,169 cd	1,307 de	1,699 hi	3,780 hi						
0	0	0	1,118 h	732 h	677 f	1,721 h	1,023 d	1,124 e	1,419 i	3,197 i						

¹ Applied annually.² Applied first year only.

APPENDIX TABLE 25.--Yield response of ladino clover to phosphorus applied as rock phosphate and concentrated superphosphate to Leon fine sand, Gainesville, Fla.

Lb./acre	Rock phosphate	Lime	Treatment period and clipping yield												Residual phase		
			1953			1954			1955			1956			1957		
			First	Third	First	First	Third	Fourth	First	Fourth	First	Fourth	First	Fourth	First	Total	Lb./acre
60	0	2,000	1,632a	1,479a	3,084a	2,820ab	2,341a	1,797a	679abc	2,614a	3,098ab	492ab	543 c	7,161 c			
1 30	2 300	2,000	1,468ab	1,648a	2,940a	2,875a	2,285ab	1,791a	750ab	2,589ab	3,142a	545a	977 b	8,766ab			
3 30	0	2,000	1,189 b	1,740a	2,925a	2,472 cd	1,908abc	1,632a	355 de	2,348 bc	2,583 bc	449 bc	923 b	8,391 b			
1 15	2 300	2,000	1,192 b	1,533a	3,154a	2,581 bc	2,154abc	1,717a	599 bcd	2,415abc	2,916ab	475ab	1,056 b	8,620ab			
3 15	0	2,000	495 c	1,467a	2,519 b	2,591 bc	1,732 c	1,613a	215 e	2,018 c	2,126 c	429 bc	135	5,396 d			
0	2 600	2,000	476 c	1,614a	3,080a	2,314 d	1,901abc	1,721a	897a	2,946a	3,230a	447 bc	1,498a	9,569a			
0	2 300	2,000	436 c	1,574a	2,861a	2,438 cd	1,862 bc	1,642a	459 cde	2,329 c	2,771ab	391 c	986 b	8,245 b			

¹ Applied annually.

² Applied first year only.

³ Applied annually; double rate first year.

APPENDIX TABLE 26.--Yield response of ladino clover to phosphorus applied as rock phosphate and concentrated superphosphate to Coxville fine sandy loam, Clemson, S.C.

Super-phosphate Lb./acre	Treatment	Treatment period ¹			Residual phase			Average yields 1955-60	
		1956	1958	1959	1960	First clipping	Second clipping	First clipping	Total
2 120	0	2,030	1,909abcd	2,621ab	2,582a	942ab	898ab	1,740ab	2,210ab
2 60	0	2,030	1,665 bcde	1,382 d	2,388a	809 bc	662 bcdef	1,525ab	1,930ab
2 30	0	2,030	1,563 cdef	1,785 bcd	1,857abc	725 bcde	559 bedfg	1,208 bcde	1,571 bcde
2 15	0	2,030	1,813 bcd	2,096abcd	1,114 cd	535 cdef	323 efg	719 e	986 ef
3 600	0	2,030	2,207ab	2,563abc	2,538a	1,182a	1,182a	1,860a	2,450a
3 300	0	2,030	2,430a	2,707a	2,025ab	647 bcdef	732 bcde	1,379abcd	1,702 bcde
0	3 600	2,030	2,053abc	2,259abc	2,334a	745 bcd	599 bcdefg	1,466abc	1,839abc
0	3 600	1,128	1,489 cdef	2,087abcd	2,326a	810 bc	772 bcd	1,549ab	1,954ab
0	3 600	0	1,159 ef	2,022abcd	2,042ab	799 bc	819abc	1,420abcd	1,830abc
0	3 300	2,030	1,619 bcdef	1,872abcd	1,938ab	671 bcde	512 bedfg	1,225 bcde	1,560 bcde
0	3 300	1,128	1,441 cdef	2,122abcd	1,471 bcd	427 ef	378 defg	924 def	1,138 def
0	3 300	0	1,149 ef	2,156abc	1,449 bcd	497 cdef	441 cdefg	945 cdef	1,193 cdef
0	0	2,030	1,782 bcd	1,958abcd	1,013 d	483 def	244 fg	628 f	870 f
0	0	1,128	1,287 def	1,709 cd	865 d	268 f	150 g	507 f	641 f
0	0	0	1,042 f	2,019abcd	1,058 cd	284 f	252 fg	655 f	798 f

¹ Alfalfa in 1956, ladino clover in all subsequent years.

² Annually.

³ Applied first year only.

APPENDIX TABLE 27.--Residual effect of phosphorus application on yield of ladino clover grown on Coxs River fine sandy loam, Summerville, S.C.

Super-phosphate Lb./acre	Treatment			Treatment period and clipping yield					
	Rock phosphate Lb./acre	Lime Lb./acre	1955 First	1956			1957		
				1,413 b	1,067ab	919a	1,737ab	691abc	1,227ab
1 120	0	7,400	1,413 b	1,067ab	919a	1,737ab	691abc	1,227ab	585a
1 60	0	7,400	928 c	999ab	838ab	1,798a	621abcd	1,086 bc	578a
1 30	0	7,400	818 c	759 bc	907a	1,792a	678abc	1,012 c	519a
1 15	0	7,400	753 c	696 bc	781ab	1,543ab	493 bcde	871 cd	104 b
2 300	0	7,400	1,908a	1,104ab	605abcd	1,332 b	829ab	1,293ab	252 b
2 600	0	7,400	1,733ab	1,402a	658abc	1,679ab	912a	1,431a	--
0 2 600	7,400	809 c	685 bc	715abc	927 c	358 cdef	695 de	763a	
0 2 600	3,350	949 c	753 bc	744ab	1,463ab	454 cdef	905 cd	200 b	
0 2 600	0	919 c	858 bc	646abc	822 cd	278 def	719 de	193 b	
0 2 300	7,400	871 c	696 bc	642abc	597 cde	342 cdef	626 ef	--	
0 2 300	3,350	801 c	873 b	793ab	843 cd	352 cdef	717 de	--	
0 2 300	0	844 c	324 cd	417 cd	453 de	125 f	436 fg	--	
0 0	7,400	766 c	581 bcd	535 bcd	461 de	240 ef	512 efg	--	
0 0	3,350	770 c	664 bc	757ab	480 de	256 ef	543 ef	--	
0 0	0	740 c	152 d	327 d	206 e	103 f	300 g	--	

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 28.--Yield response of ladino clover to phosphorus applied as rock phosphate and concentrated superphosphate to Wellston very fine sandy loam, Blacksburg, Va.

Super-phosphate Lb./acre	Rock phosphate Lb./acre	Lime Lb./acre	Treatment period and clipping yield												Average yields 1953-58			
			1953			1954			1955			1956			1957		1958	
			First	Second	First	First	Second	First	First	Second	First	Second	First	Second	First	Second	Total	
1 120	0	4,000	1,485a	1,605a	954a	1,583a	2,802ab	1,056ab	1,032abcd	1,907abc	1,354ab	1,739a	1,394ab	1,266a	1,190ab	1,394ab	2,296	
1 60	0	4,000	909ab	1,097bc	997a	1,392ab	2,919a	858abcd	1,212ab	1,212ab	1,266a	1,266a	1,266a	1,266a	1,266a	1,266a	1,557ab	2,158
1 30	0	4,000	973b	1,241ab	815bc	1,376abc	2,524abc	1,092a	1,190ab	2,113ab	1,446a	1,553ab	1,553ab	1,553ab	1,553ab	1,553ab	2,128	
1 15	0	4,000	907ab	1,289ab	768cd	1,248abcd	2,816a	1,098a	1,297a	2,057ab	1,197abcd	1,569ab	1,569ab	1,569ab	1,569ab	1,569ab	2,113	
2 300	0	4,000	742b	1,219ab	812bc	1,018bcd	2,820a	996abc	1,160abc	1,964abc	1,277abc	1,400abc	1,400abc	1,400abc	1,400abc	1,400abc	2,001	
0 2 600	4,000	798b	995bc	790bc	984bcd	2,402abc	965abcd	952abcd	1,597abcd	1,775bcd	1,290bcd	1,290bcd	1,290bcd	1,290bcd	1,290bcd	1,290bcd	1,776	
0 2 600	2,000	684b	950bc	724cde	1,038abcd	2,596abc	693cdef	759defg	1,316cde	992cde	1,213bcd	992cde	992cde	992cde	992cde	992cde	1,625	
0 2 600	0	811b	936bc	764cd	973bcd	2,122abcd	728bcdef	670efg	1,191de	1,032cde	1,127cdef	1,127cdef	1,127cdef	1,127cdef	1,127cdef	1,127cdef	1,538	
0 2 300	4,000	603b	975bc	711cde	1,265abcd	2,554abc	984abc	930bcde	1,947abc	1,360ab	1,388abcd	1,388abcd	1,388abcd	1,388abcd	1,388abcd	1,388abcd	1,881	
0 2 300	2,000	742b	869bc	678cde	941bcd	2,013bcd	686cdef	992abcd	1,552bcde	1,154bcd	1,129cdef	1,129cdef	1,129cdef	1,129cdef	1,129cdef	1,129cdef	1,599	
0 2 300	0	644b	904bc	726cde	717d	1,914cd	576ef	551fg	977e	877	e	955ef	955ef	955ef	955ef	955ef	1,314	
0 0	4,000	359b	599c	602de	819cd	2,240abcd	682cdef	942abcd	1,820abcd	1,199abcd	1,086def	1,086def	1,086def	1,086def	1,086def	1,086def	1,543	
0 0	2,000	664b	858bc	690cde	1,342abc	2,427abc	619def	823cdef	1,554abcd	1,299ab	1,244bcd	1,244bcd	1,244bcd	1,244bcd	1,244bcd	1,244bcd	1,712	
0 0	0	582b	684c	563e	849bcd	1,513d	388f	451g	894e	828e	818f	818f	818f	818f	818f	818f	1,125	

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 29. --Residual effect of phosphorus application on dry matter yield of ladino clover grown on Wellston very fine sandy loam, Blacksburg, Va.

Super-phosphate	Rock phosphate	Lime	Residual phase and clipping						Average yields 1959-1960				
			1959		1960		First		Second		Total		
			Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre		
1 15	0	4,000	1,485	bcd	1,427	cd	1,755	cde	468	cdef	1,620	cde	2,567
1 30	0	4,000	2,518a		3,012a		2,576a		697ab		2,547a		4,402
1 60	0	4,000	2,172ab		2,136 bc		2,485a		767a		2,329a		3,530
1 120	0	4,000	2,147ab		2,772ab		2,237abc		775a		2,192abc		3,966
2 300	0	4,000	2,104abc		2,332ab		2,360ab		689ab		2,231ab		3,742
0 2 600	4,000	1,572 bcd	1,272	d	1,941 bcd		595 bc		1,756 bcd		2,690		
0 2 600	2,000	1,225	de	1,215	de	1,958 bcd		558 bcd		1,591 de		2,479	
0 2 600	0	1,077	de	699	de	1,613	de	497 cde		1,345 de		1,943	
0 2 300	4,000	1,231	de	1,150	de	1,621	de	381 ef		1,426 de		2,192	
0 2 300	2,000	1,380	cde	1,048	de	1,670	de	402 def		1,525 de		2,249	
0 2 300	0	693	de	833	de	1,354	e	365 ef		1,023 e		1,622	
0 0	4,000	854	de	653	de	1,220	ef	334 efg		1,037 e		1,530	
0 0	2,000	928	de	800	de	1,274	e	309 fg		1,101 e		1,655	
0 0	0	0	f	367	e	774	f	175	g	387 f		658	

¹ Applied annually.

² Applied first year only.

APPENDIX TABLE 30.--Yield response of four legumes to phosphorus applied as rock phosphate and concentrated superphosphate to Plummer sandy loam, Tifton, Ga.

SWEET CLOVER											
Treatment			Treatment period and dry matter yield ¹					Annual average yield	Residual phase		
Super-phosphate ¹	Rock ²	Lime ²	1953	1954	1955	1956	1957		1959	1960	
Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre	Lb./acre
15	0	950	869	1,380	348	830	478	781	--	--	--
30	0	950	1,747	1,836	296	1,174	981	1,207	³ 327	³ 717	
60	0	950	2,054	2,650	886	934	776	1,460	93	310	
120	0	950	2,940	2,347	535	907	780	1,502	145	218	
300	0	950	3,425	1,835	330	1,022	737	1,470	168	214	
0	300	950	2,522	2,283	552	1,237	1,977	1,714	267	985	
0	600	0	413	1,027	428	272	130	454	--	--	
0	600	950	2,417	2,660	841	1,437	2,238	1,919	460	580	
0	1,200	950	3,544	3,245	952	2,516	3,109	2,673	--	--	
L.S.D. at 0.05.....			800	978	428	316	552	--	243	349	
- BIG TREFOIL											
15	0	950	--	368	151	201	1,447	542	--	--	--
30	0	950	--	681	420	341	2,974	1,104	³ 2,780	³ 2,010	
60	0	950	--	1,247	552	511	3,663	1,493	1,370	453	
120	0	950	--	1,332	504	623	4,066	1,631	1,826	1,757	
300	0	950	--	988	314	411	2,242	989	1,130	425	
0	300	950	--	651	263	347	2,569	957	1,337	791	
0	600	0	--	932	279	272	3,268	1,188	--	--	
0	600	950	--	1,182	695	364	2,962	1,301	1,428	766	
0	1,200	950	--	1,072	404	403	3,391	1,317	--	--	
L.S.D. at 0.05.....			--	483	428	316	552	445	243	349	
- CRIMSON CLOVER											
15	0	950	1,242	1,730	937	705	1,572	1,237	--	--	--
30	0	950	1,777	2,171	1,261	1,165	1,771	1,629	³ 1,261	³ 2,341	
60	0	950	3,141	3,192	2,146	950	2,389	2,363	614	1,058	
120	0	950	3,794	2,818	1,760	1,137	3,003	2,502	917	2,591	
300	0	950	4,385	2,105	1,033	1,005	1,339	1,973	265	604	
0	300	950	1,196	2,686	1,551	1,295	2,460	1,838	466	1,141	
0	600	0	2,330	1,456	1,209	833	807	1,327	--	--	
0	600	950	1,284	2,393	1,644	1,398	3,178	1,979	780	1,567	
0	1,200	950	2,463	3,015	1,682	1,274	3,306	2,348	--	--	
L.S.D. at 0.05.....			786	773	428	316	552	571	243	349	
LADINO CLOVER											
15	0	950	133	652	185	399	826	439	--	--	--
30	0	950	417	1,676	416	872	1,665	1,009	³ 1,045	³ 1,113	
60	0	950	1,227	2,954	883	916	2,428	1,682	269	320	
120	0	950	2,206	3,006	678	1,013	2,372	1,855	1,022	1,365	
300	0	950	1,991	1,507	300	764	729	1,058	111	43	
0	300	950	362	2,517	400	710	1,499	1,098	206	135	
0	600	0	717	1,809	689	690	1,623	1,106	--	--	
0	600	950	341	2,211	640	1,062	2,094	1,270	712	1,316	
0	1,200	950	885	2,297	766	1,071	2,415	1,487	--	--	
L.S.D. at 0.05.....			505	761	428	316	552	640	243	349	

¹ Applied annually except for 300-lb. rate, which was applied at beginning of experiment only.

² Single application at beginning of experiment.

³ Received 120 lb. of P₂O₅ from concentrated superphosphate in fall of 1958 and 1959.

APPENDIX TABLE 31.--Yield response of ladino clover to phosphate applied as rock phosphate and concentrated superphosphate to limed Henry silt loam, Oakley, Miss.¹

Super-phosphate ¹ Lb./acre	Treatment	Treatment period					Residual phase			
		Rock phosphate ² Lb./acre	1953 Lb./acre	1954 Lb./acre	1955 Lb./acre	1956 Lb./acre	1957 Lb./acre	Average 1953-57 Lb./acre	1958 Lb./acre	Average 1958-59 Lb./acre
0	0	3,149 cd	2,239 c	3,016 d	1,775 c	3,055 b	2,647 b	4,356a	3,030 b	3,693
15	0	3,126 cd	2,253 c	3,303 cd	2,007 bc	3,955ab	2,929 b	4,295a	3,452ab	3,874
30	0	2,990 d	2,647 bc	3,577 bcd	2,324 bc	3,318ab	2,971 b	3 4,408a	3,199ab	3,804
60	0	3,745ab	3,277 b	3,626 bc	2,433 bc	3,959ab	3,408 b	4,079a	2,909 b	3,494
120	0	4,156a	4,036a	4,315a	3,697a	4,024ab	4,046 a	4,694a	4,075a	4,385
300	0	3,581 bc	2,735 bc	3,626 bc	2,138 bc	4,105a	3,237 b	4,202 b	3,779ab	3,991
600	0	3,876ab	3,399ab	4,134ab	2,545 b	4,116a	3,614 b	4,763 b	3,437ab	4,100

¹ Applied annually.

² Applied first year only.

³ Single application of 120 lb. of P₂O₅ from triple superphosphate, December 1957.

