Kurzfassung

Das Hauptziel dieser Arbeit ist, eine prägnante Einführung in das ursprüngliche McEliece-Verfahren von 1978 sowie in die Variante nach Niederreiter zu präsentieren. Das McEliece-Kryptosystem bietet nach heutigen Annahmen eine starke Sicherheit gegenüber bekannten Angriffen, insbesondere gegenüber Angriffen mit Quantencomputern. Zunächst werden die von Quantencomputern ausgehenden Risiken skizziert und das McEliece-Kryptosystem und seine Varianten innerhalb der Post-Quanten-Kryptografie eingeordnet. Zur Erklärung der Verfahren wird anschließend eine detaillierte Einführung in die verwendete Code-Klasse der Goppa Codes präsentiert. Im Anschluss daran werden Optimierungen und Schwächen sowohl des McEliece- als auch des Niederreiter-Systems aufgezeigt und jeweils ein Beispiel gegeben. Abschließend wird die aktuelle Classic McEliece-Variante des Systems vorgestellt.

Ergänzend zu diesem Buch steht im Github Repository 'GoppaCodes-and-McElieceKryptosystem' die Programmierung der Kryptosysteme als Jupyter Notebook zur Verfügung. Diese kann in cocalc ohne die Installation von Software ausprobiert werden.

Schlüsselwörter: Goppa Code, McEliece-Kryptosystem, asymmetrische Verschlüsselung, Fehlerkorrekturcodes, Post-Quanten-Kryptografie.

Abstract

The primary objective of this paper is to provide a concise introduction to the original McEliece scheme from 1978, as well as to the Niederreiter variant. The McEliece cryptosystem, under current assumptions, offers a high level of security against known attacks, particularly those involving quantum computers. Initially, the risks posed by quantum computers are outlined, and the McEliece cryptosystem and its variants are classified in the field of post-quantum cryptography. To explain the procedures, a detailed introduction to the class of codes used, known as Goppa codes, is presented.

Following that, optimizations and weaknesses of both the McEliece and Niederreiter systems are highlighted, with an example provided for each. Finally, the current Classic McEliece variant of the system is introduced.

In addition to this book, the Github repository 'GoppaCodes-and-McElieceKryptosystem' contains the programming of the crypto systems as a Jupyter notebook. This can be used in cocalc without the installation of software.

Keywords: Goppa code, McEliece cryptosystem, asymmetric encryption, error correction codes, post quantum cryptography.

Inhaltsverzeichnis

1.	Einle	eitung	1
	1.1.	Motivation des McEliece-Kryptosystems	1
	1.2.	Struktur der Arbeit	2
	1.3.	Voraussetzungen	3
	1.4.	Notationen	3
2.	Qua	ntencomputer und moderne Kryptografie	7
	2.1.	Quantencomputer – Grundlagen und Algorithmen	7
	2.2.	Post-Quanten-Kryptografie	12
3.	Gop	pa Codes	17
	3.1.	Einleitung	17
	3.2.	Definition und Parameter von Goppa Codes	18
		3.2.1. Kontrollmatrix (und Generatormatrix)	19
		3.2.2. Dimension und Minimalabstand	22
		3.2.3. Minimalabstand quadratfreier binärer Goppa Codes .	24
	3.3.	Decodierung	28
		3.3.1. Decodierung allgemeiner Goppa Codes	28
		3.3.2. Decodierung irreduzibler binärer Goppa Codes $\ \ldots \ \ldots$	35
4.	Das	McEliece-Kryptosystem und seine Varianten	40
	4.1.	Das McEliece-Kryptosystem	41
	4.2.	Das Niederreiter-Kryptosystem	46
	4.3.	Vergleich des McEliece- und Niederreiter-Kryptosystems	48
	4.4.	Beispiel	52
		4.4.1. Beispiel zum McEliece-Kryptosystem	55
		4.4.2. Beispiel zum Niederreiter-Kryptosystem	58

Lit	Literaturverzeichnis				
C.	Anh	ang: K	onvertierung des McEliece-Kryptosystems	89	
	B.4.	Demoi	nstration zur CCA-2 Sicherheit	88	
	В.3.	Imple	nentierung der Decodierung nach Patterson	85	
		trollm	atrix	84	
	B.2.	Konve	rtierung der Kontrollmatrix hin zu einer binären Kon-		
	В.1.	Impler	nentierung des McEliece- und Niederreiter-Kryptosystems	77	
В.	Anh	ang: In	nplementierung in SageMath	77	
Α.	Anh	ang: Ü	bersicht über die Herleitungen	74	
5.	Zusa	ammen	fassung und Ausblick	73	
		4.6.3.	Vor- und Nachteile des Verfahrens	70	
		4.6.2.	Wahl der Parameter	69	
		4.6.1.	Besonderheiten des Systems	68	
	4.6.	Das C	lassic McEliece-Kryptosystem	67	
			McEliece-Kryptosystem	63	
		4.5.2.			
			Grundlegende versionsunabhängige Angriffe	61	
	4.5. Sicherheitsanalyse				

Abbildungsverzeichnis

1.1.	Zusammennang der Kapitei	О
2.1.	Mengendiagramm der Komplexitätsklassen	10
2.2.	Moscas Theorem	11
2.3.	Übersicht über quantensichere Verfahren	13
4.1.	Zusammenhang der Kryptosysteme	42
4.2.	Optimierung der McEliece-Schulbuchversion	45
4.3.	Optimierung der Niederreiter-Schulbuchversion	48
A.1.	Übersicht über die Beweisstruktur zur Kontrollmatrix und	
	Dimension von Goppa Codes	75
A.2.	Übersicht über die Beweisstruktur zum Minimalabstand und	
	der Decodierung von Goppa Codes	76

Tabellenverzeichnis

2.1.	Quantencomputer und deren Gefahr für die Kryptografie	8
2.2.	Vergleich von Post-Quanten-Kryptografie (PQC) gegenüber	
	Quantum Key Distribution (QKD)	16
3.1.	Parameter von Goppa Codes	28
4.1.	Vergleich McEliece- vs. Niederreiter-Kryptosystem	51
4.2.	Elemente des Körpers \mathbb{F}_{2^4}	53
4.3.	Mögliche Angriffe auf die Kryptosysteme ohne Konvertierung	67
4.4.	Parameters pezifikation im Classic McEliece-Kryptosystem	69
4.5.	Größen der In- und Outputs des Classic McEliece-Systems in	
	Bytes	70
4.6.	Annahme der asymptotischen Sicherheit des McEliece-Verfahrens	
	und gitterbasierten Verfahren im Vergleich zu 2020 $ \dots \dots $	72
C.1.	Bezeichnungen in den Konvertierungsalgorithmen	89

Liste der Algorithmen

3.1.	Decodieralgorithmus für allgemeine Goppa Codes nach Sugiyama	34
3.2.	Decodieralgorithmus für irreduzible binäre Goppa Codes nach	
	Patterson	36
4.1.	Schlüsselerzeugung im McEliece-Kryptosystem	42
4.2.	Verschlüsselung im McEliece-Kryptosystem	43
4.3.	Entschlüsselung im McEliece-Kryptosystem	43
4.4.	Schlüsselerzeugung im Niederreiter-Kryptosystem	46
4.5.	Verschlüsselung im Niederreiter-Kryptosystem	46
4.6.	Entschlüsselung im Niederreiter-Kryptosystem	47
C.1.	Fujisaki-Okamotos Konvertierung - Verschlüsselung	90
C_{2}	Fujisaki-Okamotos Konvertierung - Entschlüsselung	90

Abbildung 1.1.: Zusammenhang der Abschnitte und Kapitel

Aufeinanderfolgende Kapitel stehen immer in direktem Zusammenhang. Besondere Beziehungen sind durch die Pfeile hervorgehoben. Insbesondere der Zusammenhang der Kryptosysteme und die Einordnung, welcher Teil der Sicherheitsanalyse welches Kryptosystem betrifft, ist nochmal hervorgehoben.

Abbildung A.1.: Übersicht über die Beweisstruktur zur Kontrollmatrix und Dimension von Goppa Codes

Beweisstruktur zur Decodierung Beweisstruktur zum Minimalabstand Allgemeine Goppa Codes Decodierung allgemein •Definition 3.12, \bullet Anname Codewort von Gewicht w $s(x), \sigma(x), \omega(x)$ einsetzen • Gleichung 3.7 $\frac{\sum_{i \in I} c_i \prod_{j \in I \setminus \{i\}} (x - \alpha_j)}{\prod_{j \in I \setminus \{i\}} (x - \alpha_j)} \equiv 0 \bmod g(x)$ $\prod_{i \in I} (x - \alpha_i)$ •Lemma 3.13 s(x) ist berechenbar. Vergleich Polynomgrade •Lemma 3.14 Fundamentale Gleichung • Satz 3.5 $d \ge t + 1$ $s(x)\sigma(x) \equiv \omega(x) \bmod g(x)$ •Gleichung 3.9 $s(x)\sigma(x)+u(x)g(x)=\omega(x)$ •Gleichung 3.10 EEA Initialisierung •Lemma 3.15 Existenz Iterationsschritt •Satz 3.16 $k\sigma(x) = b_i(x), k\omega(x) = f_i(x)$ •Hilfslemma 1 $a_i(x)$ und $b_i(x)$ sind teilerfremd $f "" i = 0, \dots, l$ •Hilfslemma 2 $\deg(b_i(x)) = \deg(g(x)) - \deg(f_i(x))$ $f\ddot{\mathbf{u}}\mathbf{r} \ i=1,\ldots,l$ •Hilfslemma 3 $\sigma(x)f_j(x)=\omega(x)b_j(x)$ und $\sigma(x)a_j(x) = u(x)b_j(x)$ • Gleichung 3.11 Zwischenerkenntnis • Algorithmus 3.1 Decodierung nach Sugiyama •Gleichung 3.12 Fehlerwertberechnung Formel $e_i = \frac{\omega(\alpha_i)}{\sigma'(\alpha_i)}$ $\sigma'(x)$ einsetzen •Bemerkung 3.17 Fehlerwertberechnung Herleitung •Gleichung 3.13 Zwischenschritt bei der Herleitung •Gleichung 3.15 2.1. $\text{der Fehlerwertberechnung } e_i = \frac{\omega(\alpha_i)}{\prod_{j \in I \setminus \{i\}} (\alpha_i - \alpha_j)}$ •Bemerkung 3.18 Nach Fehlerkorrektur ist Decodierung notwendig. Quadratfreie binäre Goppa Codes Decodierung binär $\bullet \operatorname{Lemma}$ 3.7 f'(x) hat nur gerade •Algorithmus 3.2 Decodierung nach Patterson Exponenten. • Gleichung 3.14 $\sigma(x)s(x) = \sigma'(x)$ •Lemma 3.8 Freshman's dream •Gleichung 3.15 •Lemma 3.9 Alle Elemente haben eine $\sigma(\boldsymbol{x})$ aufteilen in Terme gerade und ungeraden Grades Quadratwurzel. (Nutze den Satz von Lagrange.) ullet Lemma 3.10 Jede Ableitung f'(x) ist •Gleichung 3.16 $\sigma'(x) = B^2(x)$ ein Quadrat. $\bullet \, \mathtt{Gleichung} \ \, \mathbf{3.17} \quad B(x)v(x) = A(x) \bmod g(x)$ •Gleichung 3.8 $R_c(x) = \frac{f'(x)}{f(x)}$ Vergleich der Polynomgrade •Satz 3.6 $d \ge 2t + 1$. •Bemerkung 3.11 Nur eine untere Schranke wurde hergeleitet.

Abbildung A.2.: Übersicht über die Beweisstruktur zum Minimalabstand und der Decodierung von Goppa Codes