This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1) Publication number: 0 515 156 A1

12)

EUROPEAN PATENT APPLICATION

(21) Application number : 92304551.2

22 Date of filing: 20.05.92

(f) Int. Cl.⁵: **C07H 19/04**, C07H 19/06, C07H 19/16, C07B 57/00,

C07D 307/16, C07D 307/32

30 Priority: 21.05.91 US 703379

43 Date of publication of application: 25.11.92 Bulletin 92/48

(A) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU MC NL
PT SE

(1) Applicant: BIOCHEM PHARMA INC. 2550 Daniel Johnson Boulevard, Suite 600 Laval, Quebec H7T 2LI (CA) (72) Inventor: Mansour, Tareit
531 Des Prairies Boulevard, Building 10
Laval, Quebec H7V 1B7 (CA)
Inventor: Hin, Haolun
531 Des Prairies Boulevard, Building 10
Laval, Quebec H7V 1B7 (CA)
Inventor: Tae, Allan H.L.
531 Des Prairies Boulevard, Building 10
Laval, Quebec H7V 1B7 (CA)
Inventor: Siddiqui, Arahad M.
531 Des Prairies Boulevard, Building 10
Laval, Quebec H7V 1B7 (CA)

(A) Representative: Ritter, Stephen David et al Mathys & Squire 10 Fleet Street London EC4Y 1AY (GB)

(34) Processes for the diastered-selective synthesis of nucleosides.

The present invention relates to highly disastereoselective processes for production of cis-nucleotides and nucleoside analogues and derivatives in high optical purity and intermediates useful in those processes.

FIELD OF THE INVENTION

10

15

20

25

The present invention relates to disservoselective processes for preparing optically active cis-nucleosides and nucleosides analogues and derivatives. The novel processes of this invention allow the stereo-controlled synthesis of a given enantionner of a desired cis-nucleoside or nucleoside analogue or derivative in high optical purity. This invention also relates to novel intermediates useful in the processes of this invention.

BACKGROUND OF THE INVENTION

Nucleosides and their analogues and derivatives are an important class of therapeutic agents. For example, a number of nucleosides have shown antiviral activity against retroviruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and human T-lymphotropic virus (HTLV) (PCT publication WO 89/04862,and European Patent publication 0349242 A2). Among the nucleosides shown to have antiviral activity are 3'-azido-3'-deoxythymidine (AZT) and 2'3'-dideoxycytidine (DDC).

Most nucleosides and nucleoside analogues and derivatives contain at least two chiral centers (shown as a in formula (A)), and exist in the form of two pairs of optical isomers (i.e., two in the *cis*-configuration and two in the *trans-* configuration). However, generally only the *cis*-isomers exhibit useful biological activity.

Different enantiomeric forms of the same cis-nucleoside may, however, have very different antiviral activities. M.M. Mansuri et al., "Preparation of The Geometric Isomers Of DDC, DDA, D4C and D4T As Potential Anti-HIV Agents", <u>Bioorg.Med.Chem. Lett.</u>, 1 (1), pp. 65-68 (1991). Therefore, a general and economically attractive stereoselective synthesis of the enantiomers of the biologically active cis-nucleosides is an important goal.

Many of the known processes for producing optically active nucleosides and their analogues and derivatives modify naturally occurring (i.e., optically active) nucleosides by altering the base or by altering the sugar via reductive procedures such as deoxygenation or radical initiated reductions. C.K. Chu et al., "General Synthesis Of 2',3'-Dideoxynucleosides And 2',3'-Dideoxynucleosides," J.Org.Chem., 54. pp. 2217-2225 (1989). These transformations involve multiple steps, including protection and deprotection and usually result in low yields. Moreover, they begin with and maintain the optical activity of the starting nucleoside. Thus, the nucleosides produced by these processes are ilmited to specific analogues of the enanthemeric form of the naturally occurring nucleoside. In addition, these procedures require the availability of the naturally occurring nucleoside, often an expensive starting material.

either known processes for producing optically active nucleosides rely on conventional glycosylation procedures to add the sugar to the base. These procedures invariably give anomeric mixtures of cis-and transisomers which require tedious separation and result in lower yields of the desired biologically active cis-nucleoside. Improved glycosylation methods designed to yield only the cis-nucleoside require addition of a 2'- or 3'-substituent to the sugar. Because the 2'- or 3'-substituent is only useful in controlling cis-nucleoside synthesis in one configuration (when the 2' or 3' substituent is trans-to the 4' substituent), multiple steps are required to introduce this substituent in the proper configuration. The 2'- or 3'-substituent must then be removed after glycosylation, requiring additional steps. L. Wilson and D. Liotta, "A General Method For Controlling Stereochemistry in The Synthesis Of 2'-Deoxyribose Nucleosides", Tetrahedron Lett., 31, pp. 1815-1818 (1990). Furthermore, to obtain an optically pure nucleoside product, the starting sugar must be optically pure. This also requires a series of time-consuming syntheses and purification steps.

SUMMARY OF THE INVENTION

The present invention overcomes the difficulties and shortcomings of the prior art and provides processes for producing optically active *cis*-nucleotides and nucleosid—analogues and derivatives of formula (I)

wherein W is O, S, S=O, SO₂, NZ, or CH₂;

5

10

15

20

25

30

35

40

45

55

X is O, S, S=O, SO₂, NZ, CH₂ CHF, CH, CHN₃, or CHOH;

Y is O, S, CH2, CH, CHF, or CHOH;

Z is hydrogen, hydroxyl, alkyl or acyl.

R, is hydrogen or acyl; and

R₂ is a purine or pyrimidine base or an analogue or derivative thereof; provided that when Y is CH₂ and X is O, S, S=O or SO₂, W is not O, S, S=O or SO₂.

The processes of this invention comprise the step of glycosylating a desired purine or pyrimidine base or analogue or derivative thereof with a single enantiomer of the compound of formula (II)

wherein R_3 is a substituted carbonyl or carbonyl derivative and L is a leaving group. Glycosylation is accomplished using a Lewis acid of the formula (III)

$$R_{5} - Si - R_{8}$$

$$R_{7}$$
(III)

wherein R₆, R₇, and R₈ are defined below and the resulting intermediate is reduced to give a nucleoside or nucleoside analogue or derivative of formula (I).

The processes of this invention have the advantages of allowing preparation of a nucleoside of formula (I) (or analogues or derivatives thereof) without using expensive starting materials, cumbersome protection and deprotection steps or addition and removal of 2'- or 3'-substituents. The processes of this invention produce nucleosides in high yields, with high purity and high optical specificity. The processes of this invention have the full her advantage of generating nucleosides whose stereoisomeric configuration can be easily controlled simply by the selection of the appropriate starting materials.

DETAILED DESCRIPTION OF THE INVENTION

In the processes for preparing optically active compounds of this invention in a configurational- and disstereo-selective manner, the following definitions are used:

R₂ is a purine or pyrimidine base or an analogue or derivative thereof.

A purine or pyrimidine base is a purine or pyrimidine base found in naturally occurring nucleosides. An analogue thereof is a base which mimics such naturally occurring bases in that their structures (the kinds of atoms and their arrangement) are similar to the naturally occurring bases but may either possess additional or lack certain of the functional properties of the naturally occurring bases. Such analogues include those derived by replacement of a CH moiety by a nitrogen atom, e.g., 5-azapyrimidines such as 5-azacytosine) or vice versa (e.g., 7-deazapurines, such as 7-deazaadenine or 7-deazaguanine) or both (e.g., 7-deaza, 8-azapurines). By derivatives of such bases or analogues are meant those bases wherein ring substituents are either incorporated, removed, or modified by conventional substituents known in the art, .g., halogen, hydroxyl, amino, C₁₋₄ alkyl. Such purine or pyrimidine bases, analogues and derivatives are well known to those skilled in the

A "nucleoside analogue or derivative" is a nucleoside which has been modified in any of the following or combinations of the following ways: bas impossible modifications, such as addition of a substituent (e.g., 5-fluorocytosine)

or replacement of one group by an isosteric group (.g., 7-deazaadenine); sugar modifications, such as substitution of the C-2 and C-3 hydroxyl groups by any substituent, including hydrogen (e.g., 2',3'-dideoxynucleosides), replacement of any ring CH group or the ring oxygen with a heteroatom; alteration of the site of attachment of the sugar to the base (.g., pyrimidine bases usually attached to the sugar at the N-1 site may be, for example, attached at the N-3 or C-8 site and purines usually attached at the N-9 site may be, for example, attached at N-7); alteration of the site of attachment of the base to the sugar (e.g., the base may be attached to the sugar at C-2, such as iso-DDA); or alteration of configuration of the sugar-base linkage (e.g., cis or trans configurations).

 R_3 is a carbonyl substituted with hydrogen, hydroxyl, trialkylsikyl, trialkylsikoxy, C_{1-30} alkyl, C_{7-30} aralkyl, C_{1-30} alkoxy, C_{1-30} amine (primary, secondary or tertiary), C_{1-30} thiol; C_{6-20} aryl; C_{1-20} alkenyl; C_{1-20} alkynyl; 1.2-dicarbonyl, such as

substituted with C1-8 alkyl or C8-20 aryl; anyhdrides such as

substituted with C_{1-6} alkyl or C_{6-20} aryl; azomethine substituted at nitrogen with hydrogen, C_{1-20} alkyl or C_{1-10} alkoxy or C_{1-10} dialkylamino or at carbon with hydrogen, C_{1-20} alkyl, or C_{1-20} alkoxy; thiocarbonyl (C=S) substituted with hydroxyl, C_{1-20} alkoxy, or C_{1-20} thiol; a homologue of carbonyl, e.g.,

a homologue of thiocarbonyl, e.g.,

15

20

45

50

55

or a homologue of azomethine, such as

The preferred substituted carbonyl/carbonyl derivatives are alkoxycarbonyls, such as methyl, ethyl, isopropyl, t-butyl and menthyl; carboxyls; diethyl-carboxamide; pyrrolidine amide; methyl ketone and phenyl ketone. The more preferred substituted carbonyl/carbonyl derivatives are esters and carboxyls and the most preferred are esters.

R₄ is a chiral auxiliary. The term "chiral auxiliary" describes asymmetric molecules that are used to effect the chemical resolution of a racemic mixture. Such chiral auxiliaries may possess one chiral center such as methylbenzylamin or several chiral centers such as menthol. The purpose of the chiral auxiliary, once built into the starting material, is to allow simple separation of the resulting diastereomeric mixture. See, for example, J. Jacques et al., Enantiomers, Racemates And Resolutions, pp. 251-369, John Wiley & Sons, New Y rk (1981).

 R_6 , R_6 and R_7 are independ introduced from the group consisting of hydrogen, C_{1-20} alkyl (e.g., m. thyl, ethyl, t-butyl), ptionally substituted by halogens (F, Cl, Br, I), C_{1-6} alkoxy (i.g., methoxy) or C_{6-20} aryloxy (e.g., phenoxy); C_{7-20} aralkyl (e.g., benzyl), optionally substituted by halogens, C_{1-20} alkyl or C_{1-20} alkoxy; trialkylsilyl; halogens (F, Cl, Br, I).

 R_8 is selected from the group consisting of halogen (F, Cl, Br, I); C_{1-20} sulphonate esters, optionally substituted by halogens (e.g., trifluoromethane sulphonate); C_{1-20} alkyl esters, optionally substituted by halogen (e.g., trifluoroacetate); polyvalent halides (e.g., triiodide); trisubstituted silyl groups of the general formula $(R_6)(R_7)SI$ (wherein R_6 , R_6 , and R_7 are as defined above); saturated or unsaturated selenenyl C_{6-20} aryl; substituted or unsubstituted C_{1-20} alkoxyalkyl; and trialkylsitoxy.

Lis a "leaving group", i.e., an atom or a group which is displaceable upon reaction with an appropriate purine or pyrimidine base, with or without the presence of a Lewis acid. Suitable leaving groups include acyloxy groups, alkoxy groups, e.g., alkoxy carbonyl groups such as ethoxy carbonyl; halogens such as lodine, bromine, chlorine, or fluorine; amido; azido; isocyanato; substituted or unsubstituted, saturated or unsaturated thiolates, such as thiomethyl or thiophenyl; substituted or unsubstituted, saturated or unsaturated seleno, seleninyl, or selenonyl compounds, such as phenyl selenide or alkyl selenide.

A suitable leaving group may also be -OR, where R is a substituted or unsubstituted, saturated or unsaturated alkyl group, e.g., C₁₋₆ alkyl or alkenyl group; a substituted or unsubstituted elliphatic or aromatic scyl group, e.g., a C₁₋₆ aliphatic acyl group such as acetyl and a substituted or unsubstituted aromatic scyl group such as benzoyl; a substituted or unsubstituted, saturated or unsaturated alkoxy or aryloxy carbonyl group, such as methyl carbonate and phenyl carbonate; substituted or unsubstituted sulphonyl imidazolide; substituted or unsubstituted aliphatic or aromatic amino carbonyl group, such as phenyl carbamate; substituted or unsubstituted alkyl imidiate group such as trichloroacetamidate; substituted or unsubstituted, saturated or unsaturated phosphonate, such as diethylphosphonate; substituted or unsubstituted aliphatic or aromatic sulphinyl or sulphonyl group, such as tosylate; or hydrogen.

25

40

45

50

As used in this application, the term "alkyl" represents a substituted (by a halogen, hydroxyl or C_{6-20} aryl) or unsubstituted straight chain, branched chain, or cyclic hydrocarbon moiety having 1 to 30 carbon atoms and preferably, from 1 to 6 carbon atoms.

The terms "alkenyl" and "alkynyl" represent substituted (by a halogen, hydroxyl or C₀₋₂₀ aryl) or unsubstituted straight, branched or cyclic hydrocarbon chains having 1 to 20 carbon atoms and preferably from 1 to 5 carbon atoms and containing at least one unsaturated group (e.g., allyl).

The term "alkoxy" represents a substituted or unsubstituted alkyl group containing from 1 to 30 carbon atoms and preferably from 1 to 8 carbon atoms, wherein the alkyl group is covalently bonded to an adjacent element through an oxygen atom (e.g., methoxy and ethoxy).

The term "amine" represents alkyl, aryl, alkenyl, alkynyl, or aralkyl groups containing from 1 to 30 carbon atoms and preferably 1 to 12 carbon atoms, covalently bonded to an adjacent element through a nitrogen atom (e.g., pyrrolidine). They include primary, secondary and tertiary amines and quaternary ammonium saits.

The term "thio!" represents alkyl, aryl, aralkyl, alkenyl or alkynyl groups containing from 1 to 30 carbon atoms and preferably from 1 to 6 carbon atoms, covalently bonded to an adjacent element through a sulfur atom (e.g., thiomethyl).

The term "aryl" represents a carbocyclic moiety which may be substituted by at least one heteroatom (e.g., N, O, or S) and containing at least one benzenoid-type ring and preferably containing from 6 to 15 carbon atoms (e.g., phenyl and naphthyl).

The term "araikyl" represents an aryl group attached to the adjacent atom by an alkyl (e.g., benzyl).

The term "alkoxyalkyi" represents an alkoxy group attached to the adjacent group by an alkyl group (e.g., methoxymethyl).

The term "aryloxy" represents a substituted (by a halogen, trifluoromethyl or C₁₋₅ alkoxy) or unsubstituted aryl molety covalently bonded through an oxygen atom (e.g., phenoxy).

The term "acyl" refers to a radical derived from a carboxylic acid, substituted (by a halogen (F, Cl, Br, I), C_{6-20} aryl or C_{1-6} alkyl) or unsubstituted, by replacement of the -OH group. Like the acid to which it is related, an acyl radical may be aliphatic or aromatic, substituted (by a halogen, C_{1-6} alkoxyalkyl, nitro or O_2) or unsubstituted, and whatever the structure of the rest of the molecule may be, the properties of the functional group remain essentially the same (.g., acetyl, propionyl, isobutanoyl, pivaloyl, hexanoyl, trifluoroacetyl, chloroacetyl, and cyclohexanoyl).

A key feature of the processes of this invention is the use of a substituted carbonyl or carbonyl derivative as R_3 instead of a protected hydroxymethyl group as previously described in the art. Surprisingly, the substituted

carbonyl or carbonyl derivative is not cleaved by exposure to a Lewis acid, as would have be in expected by one of skill in the art when a Lewis acid of formula (III) is added to a mixture of silylated purine or pyrimidine base and the sugar compound of formula (II). Instead, the substituted carbonyl/carbonyl derivative in the intermediate of formula (VI) forces the purin or pyrimidine base (R₂) to add in the cis-configuration relative to the substituted carbonyl/carbonyl derivative group. Without a substituted carbonyl or carbonyl derivative attached to C4' (for exampli, when a hydroxymethyl group is instead used), the coupling procedures described in Step 4 below will result in a mixture of cis- and trans-isomers.

Another key feature of the processes of this invention is the choice of Lewis acid. The Lewis acids used in the preparation of compounds of formula (I) have the general formula (III)

R₅ - Si - R₈

10

15

25

30

45

50

55

wherein R_6 , R_6 and R_6 are as defined previously. These Lewis acids may be generated in situ or prepared using any method known in the ert (e.g., A.H. Schmidt, "Bromotrimethylailane and lodotrimethylailane-Versatile Reagents for Organic Synthesia", Aldrichimica Acta, 14, pp. 31-38 (1981). The preferred Lewis acids of this invention are iodotrimethylailane and trimethylaily triflate. The preferred R_6 , R_6 and R_7 groups are methyl or iodine. The most preferred R_6 , R_6 and R_7 group is methyl. The preferred R_6 groups are iodine, chlorine, bromine or sulphonate esters. The most preferred R_6 groups are iodine and trifluoromethane sulphonate.

in the preferred process of this invention, cis- and trans-isomers of a sugar of formula (II)

are separated by fractional crystallization and the desired configurational isomer selected. The selected cisor the trans-isomer may then be chemically resolved using a chiral auxiliary. The pure chiral auxiliary-sugar diastereomer is then coupled to a silylated purine or pyrimidine base in the presence of a Lewis acid to afford an optically active nucleoside of cis- configuration which is subsequently reduced to give a nucleoside of formula (I)

Schemes 1A and 1B depict this preferred process as applied to any nucleoside of formula (I).

SCHEME 1A

$$R_{3} \xrightarrow{W} O \xrightarrow{STEP 1} R_{3} \xrightarrow{W} OH + R_{2} \xrightarrow{W} OH$$

$$(V)$$

$$STEP 2$$

STEP 3

5 SCHEME 1B 10 15 (II) 20 (+) CHIRAL AUXILIARY (-) CHIRAL AUXILIARY 25 STEP 3 (VI) 35 (VII) 45 50 **(T)**

The various steps as illustrated in Schemes 1A and 1B may be briefly described as follows:

EP 0 515 156 A1

Step 1: The starting carbonyl-sugar of formula (IV) can be prepared by any method known in the art. E.g., Farina and Benigni, "A New Synthesis Of 2.3'-Dideoxy-nucleosides For Aids Chemotherapy", <u>Tetrahedron Letters</u>, 29, pp. 1239-1242 (1988) and M. Okabe et al. "Synthesis Of The Dideoxynucleosides ddC and CNT From Glutamic Acid, Ribonolacton and Pyrimidine Bases", <u>J. Org. Chem.</u>, 53, pp. 4780-4786 (1988). The carbonyl group of this starting compound is reduced chemoselectively with a suitable reducing agent, such as disiamylborane to give the *cis*- and *trans*- isomers of formula (V). Ordinarily, less *cis*-isomer is produced than *trans*.

Step 2: The hydroxyl group in the intermediate of formula (V) is readily converted to a leaving group by any method known in the art (e.g., T.W. Greene <u>Protective Groups In Organic Synthesis</u>, pp. 50-72, John Wiley & Sons, New York (1981)) to give the novel intermediates of formula (II).

This anomeric mixture is then separated by fractional crystallization into the two configurational isomers. The solvent may be adjusted to select for either the *cis*- or *trans*-isomer. D.J. Pasto and C.R. Johnson, <u>Organic</u> Structure Determination, pp. 7-10, Prentice-Hall, inc., New Jersey (1969).

Step 3: Either the *cis*- (Scheme 1A) or *trans*-isomer (Scheme 1B) of formula (II) is chemically resolved using a chiral auxiliary (R₄). A suitable chiral auxiliary is one of high optical purity and where the mirror image is readily available, such as d-and I-menthol. The resulting diastereomers of formula (VI) are easily separated by fractional crystallization. Alternatively, either the *cis*- or the trans-isomer may be resolved enzymatically or by other methods known in the art. J. Jacques et al., <u>Enanttomers, Racemates And Resolutions</u>, pp. 251-369, John Wiley & Sons, New York (1981).

The optical purity of the disstereomer (vi, Vii or i) can be determined by chiral MPLC methods, specific rotation measurements and NMR techniques. If the opposite enantiomer is desired, it may be obtained by using the mirror image of the chiral auxiliary initially employed. For example, if the chiral auxiliary d-menthol produces a (+)-enantiomer nucleoside, its mirror image, i-menthol, will produce the (-)-enantiomer.

Step 4: A previously silylated (or silylated in situ) purine or pyrimidine base or analogue or derivative thereof is then glycosylated with the resulting pure diastereomer in the presence of a Lewis acid of formula (III), such as iodotrimethylsilane (TMSI) or trimethylsilyl triflate (TMSOTf), to give a nucleoside of *cis*-configuration of formula (VII). This nucleoside is optically active and is substantially free of the corresponding *trans*-isomer (i.e., it contains no more than 25%, preferably no more than 10% and more preferably no more than 5% of the *trans*-isomer). Coupling of the intermediate of formula (VI) to the purine or pyrimidine base in this step proceeds in higher yields with the *cis*-isomer.

The preferred silylating agent for pyrimidine bases is t-butyldimethylsilyl triflats. It is believed that the bulky t-butyl group increases yields by weakening the interaction between the Lewis acid and silylated pyrimidine

The preferred method of mixing reagents in Step 4 is to first add the chiral auxiliary-sugar of formula (VI) to the silvlated purine or pyrimidine base. The Lewis acid of formula (III) is then added to the mixture.

Step 5: The cis-nucleoside obtained in Step 4 may then be reduced with an appropriate reducing agent to remove the chiral auxiliary and give a specific stereoisomer of formula (I). The absolute configuration of this stereoisomer corresponds to that of the nucleoside intermediate of formula (VII). As shown in Scheme 1, either the cis- (Scheme 1A) or the trans-isomers (Scheme 1B) obtained in Step 2 will yield a cis end product.

A second process for the diastereoselective synthesis of compounds of formula (I) is illustrated by Scheme 2. The process of Scheme 2 is useful when optically pure starting material may be readily obtained commercially or easily prepared by known methods.

The optically active starting material is chemoselectively reduced and the resulting hydroxyl group converted to a leaving group. The diastereomeric mixture may be carried on further to compounds of formula (I) in a manner analogous to that described in Scheme 1. Optionally, the diastereomeric mixture may be separated by fractional crystallization and each isolated optically active diastereomer may be carried on further to compounds of formula (I).

Scheme 2 depicts the second process of this invention as applied to any nucleoside.

50

35

10

15

SCHEME 2

The various steps involved in the synthesis of the nucl osides of formula (I) as depicted in Scheme 2 may be briefly described as follows:

Step 1: The starting material of formula (IV) may be obtained commercially in optically pure form or prepared according to the procedures of Farina and Benigni, "A New Synthesis Of 2,3'-Dideoxy-nucleosides For

EP 0 515 156 A1

Aids Chemotherapy", <u>Tetrahedron Letters</u>, 29, pp. 1239–1242 (1988) and M. Okabe et al. "Synthesis Of Th Dideoxynucleosides ddC and CNT From Glutamic Acid, Ribonolacton and Pyrimidine Bases", <u>J. Org. Chem.</u>, 53, pp. 4780-4788 (1988). The single isomer of formula (IV) is chemoselectively reduced by a suitable reducing agent, such as dislamytborane to give a mixture of two dissergements of formula (V).

Step 2: The hydroxyl groups of the two disastereomers of formula (V) are converted to leaving groups by any method known in the art to give a mixture of two disastereomers of formula (II).

5

10

15

20

35

45

50

55

- Step 3: The diastereomeric mixture of formula (II) is reacted with previously silylated (or silylated in situ) purine or pyrimidine base or analogue or derivative. Then, addition of a Lewis acid of formula (III), such as iodotrimethylsilane (TMSI) or trimethylsilyl triflate (TMSOTf) yields a nucleoside of cis-configuration of formula (VIII). This nucleoside is substantially free of the corresponding trans-isomer.
- Step 4: The optically active cis-nucleoside of formula (VIII) is reduced stereospecifically with a reducing agent preferably lithium triethylborohydride or lithium aluminum hydride and more preferably sodium borohydride in an appropriate solvent such as tetrahydrofuran or diethyl ether to give the compound of formula (I).

Alternatively, at the end of Step 2, either the *cis*-or the *trans*-isomer may be separated out of the diaster-eomeric mixture of formula (II) by fractional crystallization or chromatography. The solvent may be adjusted to select for either the *cis*- or the *trans*-isomer. The single diaster-eomer of formula (II) would then be carried forward as described in Steps 3 and 4 to a compound of formula (I).

Schemes 3, 4 and 5 illustrate the application of the process of Scheme 2 to the synthesis of the enantiomers of *cis*-dideoxynucleoside analogues.

Although the process is illustrated using specific reagents and starting materials, it will be appreciated by one of skill in the art that suitable analogous reactants and starting materials may be used to prepare analogous compounds.

SCHEME 3

The various steps illustrated in Scheme 3 may be briefly described as follows:

Step 1: The starting material (2R)-5-oxo-2-tetrahydrofuran carboxylic acid (IX) is available from commercial sources or by synthesis from D-glutamic acid M. Okabe et al. "Synthesis Of The Dideoxynucleosides ddC and CNT From Glutamic Acid, Ribono-lactone and Pyrimidine Bases*, J. Org. Chem., 53, pp. 4780-4788

EP 0 515 156 A1

(1988). The starting material is esterified with an alcohol such as ethanol in the presence of an acylating agent such as oxally chlorid and an esterification catalyst such as 4-dimethylamino-pyrimidine and a base such as pyridin in a compatible solvent such as dichloromethane. The esterified compound is reduced with an appropriate reducing agent such as disiamylborane in a compatible organic solvent, such as tetrahydrofuran (A. Pelter et al., "Borane Reagents", Academic Press, p. 426 (1988)), to give the compounds of formula (X).

Step 2: The compounds of formula (X) is reacted with an acid chloride or acid anhydride, such as acetic anhydride, in the presence of pyridine and an acylation catalyst, such as 4-dimethylaminopyrimidine, to give the compounds of formula (XI).

Step 3: The mixture of cis- and trans-acetoxy compound of formula (XI) is reacted with 5-fluorocytosine or other pyrimidine base or analogue thereof. The purine or pyrimidine base or analogue is preferably silated with hexamethyldisilazane or more preferably silylated in situ with t-butyldimethylsilyl triflate in a compatible organic solvent, such as dichloromethane containing a hindered base, preferably 2,4,6-collidine.

A Lewis acid, preferably one derived from the compounds of formula (III), more preferably lodotrimethylsilane or trimethyl-ailyl triflate, is then added to give the <u>cis</u> compound of formula (XII) in a highly disastereoselective manner.

Step 5: The optically active <u>cis-nucleoside</u> (with some *trans-* isomer) of formula (XII) is reduced stereospecifically with a reducing agent, preferably sodium borohydride in an appropriate solvent, such as ethanol to give, after purification, the compound of formula (XIII).

It will be appreciated by one of skill in the art that if the enantiomer of formula (XIII) is desired, the starting material of formula (IX) would be (2S)-5-oxo-2-tetrahydrofuran carboxylic acid (Scheme 4) and the process would proceed just as described for Scheme 3.

13

15

25

35

40

45

SCHEME 4

5 10 STEP 1 15 EtO' STEP 2 20 (XI) STEP 3 36 (XII) 45 50 (XIII)

SCHEME 5

The various steps illustrated in Schem 5 may be briefly described as follows:

55

Step 1: The starting material (2R)-5-oxo-2-tetrahydrofuran carboxylic acid (IX) is esterified with an alcohol such as thanol in the presence of an acylating agent such as oxalyl chloride and an esterification catalyst

such as 4-dimethylamino-pyridimine and a base such as pyridin in a compatible solvent such as dichloromethans. The esterified compound is reduced with an appropriate reducing agent such as disiamylborane in a compatible organic solvent, such as tetrahydrofuran to give the compounds of formula (X).

Step 2: The compounds of formula (X) is reacted with an acid chlorid or acid anhydride, such as acetic anhydride, in the presence of pyridine and an acylation catalyst, such as 4-dimethylaminopyrimidine, to give the compounds of formula (XI).

Step 3: The mixture of cis- and trans-acetoxy compound of formula (XI) is reacted with N-acetyl cytosine or other pyrimidine base or analogue thereof. The purine or pyrimidine base or analogue is preferably silated with hexamethyldisilazane or more preferably silylated in situ with trimethylsilyl triflate in a compatible organic solvent, such as dichloromethane containing a hindered base, preferably 2,4,6-collidine.

A Lewis acid, preferably one derived from the compounds of formula (III), more preferably iodotrimethylsilane, is then added to give <u>cis</u> nucleoside in a highly disstereoselective manner. The pure *cis*- nucleoside is obtained by trituration with an appropriate sulvent such as ethyl acetate and hexanes.

The N-acetyl group is hydrolyzed preferably under acidic conditions and more preferably with trifluoroacetic acid in a compatible organic solvent such as isopropanol, preferably under reflux, to give the deacylated compounds of formula (XIV).

Step 4: The optically active <u>cis-nucleoside</u> of formula (XIV) is reduced stereospecifically with a reducing agent, preferably sodium borohydride in an appropriate solvent, such as ethanol to give the compound of formula (XV).

In the diastereoselective processes of this invention, the following intermediates are of particular importance:

wherein R₃, R₄ and L are as defined above;

20

50

55

cis and trans-2R-carboethoxy-5-hydroxytetrahydrofuran;

cis and trans-2S-carboethoxy-5-hydroxytetrahydrofuran;

cis and trans-2R-carboe thoxy-5-acetoxytetrahydrofuran;

cis and trans-2S-carboethoxy-5-acetoxytetrahydrofuran;

1'S-(N-4-acetylcytosin-1-yl)-4'R-carboethoxytetrahydrofuran;

1'S-(cytosin-1-yl)-4'R-carboethoxytetrahydrofuran;

1'R-(5-fluorocytosin-1-yl)-4'S-carboethoxytetrahydrofuran and 1'S-(5-fluorocytosin-1-yl)-4'S-carboe-thoxytetrahydrofuran; and

1'S-(5-fluorocytosin-1-yl)-4'R-carboethoxytetrahydrofuran and 1'R-(5-fluorocytosin-1-yl)-4'R-carboethoxytetrahydrofuran.

The following examples illustrate thi present invention in a manner of which it can be practiced but, as such, should not be construed as limitations upon the overall scope of thi processes of this invention. Except where specifically noted, all $[\alpha]_D$ measurements were recorded at ambient temperature.

5 Example 1

10

15

20

30

35

R-CARBOETHOXY-5-OXO-TETRAHYDROFURAN

To a cold (0°C) stirred solution of 5-oxo-2R-tetrahydrofurancarboxylic acid (3 g, 23 mmol), 4-dimethylaminopyridine (141 mg, 0.05 equivalents), and pyridine (3.92 mL, 2.1 equivalents) in dichloromethane (15 mL) under an argon atmosphere was added oxally chloride (2.11 mL, 1.05 equivalents) over a period of 30 minutes. The cooling bath was removed and the reaction mixture was stirred at room temperature for 10 minutes. Ethanol (2.0 mL, 1.5 equivalents) was introduced and stirring was continued for another 1 hour 40 minutes. The reaction mixture was diluted with water and dichloromethane, followed by stirring for 10 minutes. The resultant mixture was transferred to a separatory funnel. The aqueous phase was removed and the organic layer was washed with 1 M HCl, saturated NaHCO₃, brine, and then was dried (Ns₂SO₄). The solvent was evaporated under reduced pressure and the crude product thus obtained was subjected to column chromatography (1:1 EtOAc-Hexane) to afford 3.23 g of the desired product as a syrup. ¹H NMR (CDCl₃):8 1.28 (t, 3H, J=7.1 Hz), 2.20-2.40 (m, 1H), 4.23 (d of q 2H, J=0.9, 7.1 Hz), 4.88-4.96 (m 1H).

Example 2

CIS AND TRANS-2R-CARBOETHOXY-5-HYDROXYTETRAHYDROFURAN

EtO₂C_{A2}, O OH

A solution of dislamy/borane was prepared by mixing 35 mL of BH₃ THF (1 M in THF) and 35 mL of 2-methyl-2-butene (2 M in THF) at 0°C followed by stirring at 0°C for 75 minutes. To this solution was introduced 2R-carbbethoxy-5-oxotetrahydrofuran dissolved in THF (8 mL). The resultant mixture was allowed to warm slowly to rodin temperature over a period of 2.5 hours and then was stirred for another 15 hours. Saturated ammonium chloride solution was added, followed by dilution with EtOAc. The above mixture was stirred for 10 minutes and then was transferred to a separatory funnel. The organic phase was washed successively with saturated NH₄Cl, brine, and then was dried (Na₂SO₄). The solvent was removed on a rotary evaporator and the crude product obtained was purified by column chromatography (40% EtOAc-Hexanes). The desired products were isolated in 70% yield (2.05 g) as a 2:3 mixture of isomer epimeric at C5. Trace amount of the open form isomer was also detected (¹H NMR). The title compounds displayed the following spectral characteristics: ¹H NMR (CDCl₃): δ 1.28 (t, 2H, J=7.1 Hz), 1.30 (t, 1H, J=7.1 Hz), 1.85-2.70 (m, 4H), 2.59 (d, 0.33H, J=5.5 Hz), 2.88 (d, 0.67H, J=3.1 Hz), 4.15-4.65 (m, 2H), 4.57 (d of d, 0.33H, J=6.4, 8.3 Hz), 4.70 (d of d, 0.67H, J=4.1, 8.7 Hz), 5.59 (m, 0.33H), 5.74 (m, 0.67H).

Example 3

55

CIS AND TRANS-2R-CARBOETHOXY-5-ACETOXYTETRAHYDROFURAN

To a cold (-78°C) stirred solution of a 2:3 mixture of cia and trans-2R-carboethoxy-5-hydroxytetrahydrofuran (2.04 g, 12.75 mmol), pyridine (1.24 mL, 1.2 equival nts), and 4-dimethylaminopyridine (16 mg, 0.01 equivalent) in dichloromethane (20 mL) was added acetyl chloride (1.09 mL, 1.2 equivalents) over a period of 5 minutes. The resultant mixture was stirred for 10 minutes. The -78°C cooling bath was then replaced with an ice-water bath. Stirring was continued for 4.5 hours while the bath temperature was allowed to warm slowly to room temperature. The reaction mixture was diluted with dichloromethane and then was transferred to a separatory funnel. The organic layer was washed successively with water, 1 M HCl, saturated NaH-CO₃, brine and then was dried (Na₂SO₄). The solvent was removed on a rotary evaporator and the crude product obtained was purified by column chromatography (40% EtOAc-Hexane) to provide 1.757 g of the title compounds (a 5:4 mixture) as a thick oil. ¹H NMR (CDCl₃); δ 1.28 (t, 1.68H, J=7.1 Hz), 1.29 (t, 1.32H, J=7.1 Hz), 1.90-2.30 (m, 3H), 2.30-2.50 (m, 1H), 4.10-4.30 (m, 2H), 4.59 (t, 0.44H, J=8.0 Hz), 4.70 (d of d, 0.56H, J=3.2, 8.9 Hz), 6.33 (d of d, 0.44H, J=1.1, 3.9 Hz), 6.48 (d, 0.56H, J=4.5 Hz).

Example 4

1'S-(N-4-ACETYLCYTOSIN-1-YL)-4'R-CARBOETHOXYTETRAHYDROFURAN

25

15

20

To a stirred suspension of N-4-acetylcytosine (50 mg, 0.298 mmol) in dichloromethane (0.75 mL) containing 2,6-lutidine (35 يلير, 0.298 mmol) under an argon atmosphere was added trimethylaityl trifluoromethanesulphonate (58 µL, 0.298 mmol). The resulting mixture was stirred for 15 minutes to give a light suspension. A solution of a 5:4 mixture of cia- and trans-2R-carboethoxy-5-acetoxytetrahydrofuran (50 mg, 0.248 mmol) in dichloromethane (1 mL) and iodotrimethylsilane (35 µL, 0.248 mmol) was sequentially introduced into the above suspension to generate a homogeneous solution. The reaction was allowed to proceed at room temperature for 1 hour and 40 minutes and then was quenched with a half-saturated solution of Na₂S₂O₃. The resulting mixture was stirred for 5 minutes and then was transferred to a separatory funnel with the aid of more dichloromethane. The aqueous phase was removed and the organic layer was washed with saturated Na₂S₂O₃, water, brine and then was dried (Na₂SO₄). The combined aqueous washings were reextracted with dichloromethane. The organic extracts were combined and concentrated under reduced pressure to provide 83 mg of the crude product. 1H NMR analysis of the crude product indicated that a cis and trans (4:1) mixture of the expected nucleosides was generated. The crude product was dissolved in a minimum amount of chloroform. Addition of a 3:7 mixture of EtOAc-hexanes into this solution produced a white precipitate which was collected by suction filtration. Drying of this solid under vacuum afforded 25 mg (32%) of the title compound. ¹H NMR (CDCl₃): δ 1.33 (t, 3H, J=7.1 Hz), 1.90-2.08 (m, 1H), 2.08-2.30 (m, 1H), 2.23 (a, 3H), 4.20-4.40 (m, 2H), 4.84 (t, 1H, J=7.2 Hz), 6.15 (d of d, 1H, J=4.0, 5.9 Hz), 7.46 (d, 1H, J=7.5 Hz), 8.34 (br s, 1H), 8.82 (d, 1H, J=7.5 Hz).

The washing was concentrated to give 58 mg of a cis and trans mixture (5:2) of the title compound and its 1' isomer.

Example 5

β-L-2',3'-DIDEOXYCYTIDINE

50

ca. 4% of the corresponding 1'R isomer) and trifluoroacetic acid (24 µL, 2 equivalents) in ethanol (1 mL) was refluxed under an argon atmosphere for 2 hours and 40 minutes. The resultant mixture consisting of 1'S-(cytosine-1-yi)-4'R-carboethoxytetrahydrofuran and its 1' epimer was cooled to room temperature and then was diluted with ethanol (0.5 mL). Sodium borohydride (18 mg, 3 equivalents) was introduced and the reaction mixture was stirred for 1.5 hours. More reducing agent (6 mg) was added and stirring was continued for another 1 hour 20 minutes. The reaction was quenched by the addition of 2 drops of concentrated ammonium hydroxide followed by rigorous stirring for 15 minutes. The solvent was evaporated under reduced pressure and the crude product obtained was subjected to column chromatography (30% MeOH-EtOAc) to provide 28 mg (84%) of the title compound. The 1H NMR spectrum of this material indicated the presence of ca. 3% of the corresponding 1'R isomer. This material was dissolved in a minimum amount of methanol. Addition of diethyl ether to this solution generated 20 mg (60%) of the title compound as a crystalline white precipitate free of the 1'R isomer (1H NMR). The title compound displayed the following spectral characteristics: 1H NMR (CD₃OD):8 1.60-2.00 (m, 3H), 2.25-2.43 (m, 1H), 3.59 (d of d, 1H, J=4.1, 12.2 Hz), 3.78 (d of d, 1H, J=7.5 Hz).

Example 6

15

20

25

1'R-(5-FLUOROCYTOSIN-1-YL)-4'S-CARBOETHOXYTETRAHYDROFURAN AND 1'S-(5-FLUOROCYTOSIN-1-YL)-4'S-CARBOETHOXYTETRAHYDROFURAN

EIO₂C O N NH₂

To a stirred suspension of 5-fluorocytosine (192 mg, 1.49 mmol) in dichloromethane (2 mL) containing 2,6-lutidine (348 μ L, 2.98 mmol) under an argon atmosphere was added t-butyldimethylsityl trifluoromethanesulphonate 678 μ L, 2.98 mmol). The resulting mixture was stirred for 15 minutes to give a homogeneous solution. A solution of a 2:1 mixture of 2S-carboethoxy-5R-acetoxytetrahydrofuran and 2S-carboethoxy-5S-acetoxytetrahydrofuran (250 mg, 1.24 mmol) in dichloromethane (2 mL) and lodotrimethylsillane (176 μ L, 1.24 mmol) was sequentially introduced into the above solution. The reaction was allowed to proceed at room temperature for 1 hour and 30 minutes and then was quenched with a half-saturated solution of Na₂S₂O₃. The resulting mixture was stirred for 5 minutes and then was transferred to a separatory funnel. The aqueous phase was removed and the organic layer was washed with saturated Na₂S₂O₃, water, brine and then was dried (Na₂SO₄). The solvent was removed under reduced pressure to provide the crude product which was subjected to column chromatography (15% MeOH-EtOAc) to afford 199 mg (59%) of the title compounds as a mixture [7:1 (1/R,4/S):(1/S,4/S)] by ¹H NMR). The product displayed the following spectral characteristics: ¹H NMR (CDCl₃): 8 1.15-1.40 (2 overlapping t, 3H), 1.90-2.15 (m, 2H), 2.25-2.55 (m, 2H), 4.15-4.35 (m, 2H), 4.54 (m, 0.87 Hz), 4.82 (d of d, 0.13H, J=4.4, 8.0 Hz), 5.70-8.80 (unresolved m, 1H), 6.09 (m, 1H), 7.40 (d, 0.13H, J=8.7 Hz), 7.90-8.80 (unresolved m, 1H), 8.48 (d, 0.87H, J=8.7 Hz).

Example 7

50

55

1'S-(5-FLUOROCYTOSIN-1-YL)-4'R-CARBOETHOXYTETRAHYDROFURAN AND 1'R-(5-FLUOROCYTOSIN-1-YL)-4'R-CARBOETHOXYTETRAHYDROFURAN

To a stirred suspension of 5-fluorocytosin (38 mg, 0.297 mmol) in dichloromethane (1 mL) containing 2,6-

lutidine (69 μL, 0.594 mmol) under an argon atmosphere was added t-butyldim thylailyl trifluoromethanesuphonate (137 μL, 0.594 mmol). The resulting mixture was stirred for 15 minutes to give a homogineous solution. A solution of a 5:4 mixture of 2R-carboethoxy-5S-acetoxytetrahydrofuran and 2R-carboethoxy-5R-acetoxytetrahydrofuran (50 mg, 0.248 mmol) in dichloromethan (1 mL) and iodotrimethylailane (35 μL, 0.248 mmol) was sequentially introduced into the above solution. The reaction was allowed to proceed at room temperature for 1 hour and 45 minutes and then was quenched with a half-saturated solution of Na₂S₂O₃. The resulting mixture was stirred for 5 minutes and then was transferred to a separatory funnel. The aqueous phase was removed and the organic layer was washed with saturated Na₂S₂O₃, water, brine and then was dried (Na₂SO₄). The solvent was removed under reduced pressure to provide the crude product which was subjected to column chromatography (15% MeOH-EtOAc) to afford 52 mg (77%) of the title compounds as a 11:2 [(1'R,4'R):(1'S,4'R)] mixture (1H NMR). The product displayed the following spectral characteristics: 1H NMR (CDCl₃):δ 1.15-1.40 (2 overlapping t, 3H), 1.90-2.10 (m, 2H), 2.25-2.60 (m, 2H), 4.15-4.35 (m, 2H), 4.57 (m, 0.85 Hz), 4.84 (d of d, 0.15H, J=4.2, 7.8 Hz), 5.50-8.30 (unresolved m, 1H), 8.09 (m, 1H), 7.43 (d, 0.15H, J=8.7 Hz), 7.50-9.00 (unresolved m, 1H), 8.56 (d, 0.85H, J=8.7 Hz).

Example 8

15

20

30

48

50

B-L-(5-FLUORO)-2',3'-DIDEOXYCYTIDINE

HOH₂C_{de}, O ..., N

To a cold (0°C) stirred suspension of 1′R-(5-fiuorocytosin-1-yl)-4′R-carboethoxytetrahydrofuran and 1′S-(5-fiuorocytosin-1-yl)-4′R-carboethoxytetrahydrofuran [307 mg, 1.133 mmol, a 4:1 (1′R,4′R):(1′S, 4′R) mixture of the isomers] in 4 mL of ethanol was added sodium borohydride (86 mg, 2 equivalents). The resultant mixture was stirred for 5 minutes and the cooling bath was removed. Stirring was continued for 75 minutes at room temperature. The resolton was quenched by the addition of 4 drops of concentrated ammonium hydroxide. After the mixture had been stirred for 15 minutes, the solvent was removed under reduced pressure and the crude product was subjected to column chromatography (25% MeOH-EtOAc) to provide 197 mg (76%) of the expected 4′-hydroxymethyl products as a 4:1 mixture. One of the fractions collected was found to contain the title compound in 97% purity (¹H NMR). This fraction was concentrated to give 14 mg of a light beige coloured foam. UV (λ_{max}): 282.7, 236.4, 206.7 nm (MeOH); [α]₀-81° (c, 0.7 MeOH): ¹H NMR (CD₃OD): 8 1.77-1.90 (m, 2H), 1.90-2.03 (m, 1H), 2.25-2.42 (m, 1H), 3.81 (d of d, 1H, J=3.3, 12.3 Hz), 3.82 (d of d, 1H, J=2.8, 12.3 Hz), 4.06 (m, 11), 5.87 (m, 1H), 8.32 (d, 1H, J=7.0 Hz).

Example 9

β-D-(5-FLUORO)-2',3'-DIDEOXYCYTIDINE

HOH₂C O N NH₂

To a cold (0°C) stirred suspension of 1'R-(5-fluorocytosin-1-yl)-4'S-carboethoxytetrahydrofuran and 1'S-(5-fluorocytosin-1-yl)-4'S-carboethoxyt trahydrofuran [199 mg, 0.734 mmol, a 7:1 (1'R,4'S):(1'S, 4'S) mixture of thi isomers] in 3 mL of ethanol was added sodium borohydrid. (56 mg, 2 equivalents). The resultant mixture was stirred for 5 minutes and the cooling bath was removed. Stirring was continued overnight (ca. 16 hours) at room temperature. This reaction was quenched by this addition of 4 drops of concentrated ammonium hydroxide. After this mixture has been stirred for 15 minutes, the solvent was removed under reduced pressure

and the crude product was subjected to column chromatography (20% MEOH-EtOAc) to provide 112 mg (67%) of the expected 4'-hydroxymethyl products as a 7:1 (1'R,4'S):(1'S,4'S) mixture (1H NMR). One of the fractions collected was found to contain the title compound only (H NMR). This fraction was concentrated *in vacuo* to give 27 mg of a white foam; UV (λ_{max}): 283.8, 238.2, 202.4 nm (MeOH); [α]₀+96° (c, 0.7 MeOH); 1H NMR (CD₃OD). 8 1.77-1.90 (m, 2H), 1.90-2.03 (m, 1H), 2.25-2.42 (m. 1H), 3.61 (d of d, 1H, J=3.3, 12.3 Hz), 3.82 (d of d, 1H, J=2.8, 12.3 Hz), 4.06 (m, 1H), 5.87 (m, 1H), 8.32 (d, 1H, J=7.0 Hz).

While we have presented a number of embodiments of our invention, many alternatives, modifications and variations of these embodiments will be apparent to those of ordinary skill in the art. Therefore, it will be appreciated that the scope of this invention is to be defined by the following claims, rather than the specific examples presented above.

Claims

20

38

40

50

55

15 1. A diastereoselective process for producing optically active cis-nucleosides and nucleoside analogues and derivatives of formula (I)

wherein

R₁ is hydrogen or acyl;

R₂ is a desired purine or pyrimidine base or an analogue or derivative thereof;

W is S, S=O, or SO2, O, NZ, or CH2;

X is O, S, S=O, or SO₂, O, NZ, CH₂, CHF, CH, CHN₃, or CHOH;

Y is O, S, CH2, CH, CHF, or CHOH; and

Z is hydrogen, hydroxyl, alkyl or acyl;

provided that W is not O, S, S=O or SO₂ when Y is CH₂ and X is O, S, S=O or SO₂:

the process comprising the step of glycosylating the desired purine or pyrimidine base or analogue or derivative thereof with a single enantiomer of the compound of formula (II)

wherein

R₅ is a substituted carbonyl or carbonyl derivative; and

L is a leaving group,

using a Lewis acid of the formula (III)

$$R_{5} - Si - R_{8}$$

$$R_{7}$$
(III)

wherein

 R_6 , R_6 and R_7 are independently selected from the group consisting of hydrogen; C_{1-20} alkyl optionally substituted by fluoro, bromo, chloro, iodo, C_{1-4} alkoxy or C_{6-20} aryloxy; C_{7-20} aralkyl optionally substituted by halogen, C_{1-20} alkyl or C_{1-20} alkoxy; C_{6-20} aryl optionally substituted by fluoro, bromo, chloro, iodo, C_{1-20} alkyl or C_{1-20} alkoxy; trialkylsilyl; fluoro; bromo; chloro and iodo; and

EP 0 515 156 A1

 R_{6} is selected from the group consisting of fluoro; bromo; chloro; iodo; C_{1-20} suiphonate esters, optionally substituted by fluoro, bromo, chloro or lodo; C_{1-20} alkyl esters optionally substituted by fluoro, bromo, chloro or iodo; polyvalent halides; trisubstituted silyl groupe of the general formula $(R_{6})(R_{4})(R_{7})SI$ (wherein R_{6} , R_{6} , and R_{7} are as 0-fined abov.); saturated or unsaturated selenenyl C_{6-20} arylsulfernyl; substituted or unsubstituted C_{6-20} alkoxyalkyl; and trialkylsiloxy.

- The process according to claim 1, further comprising the step of reducing R₃ of the glycosylated purine
 or pyrimidine base or analogue or derivitive therof to produce the optically active cis-nucleoside or nucleoside analogue or derivative of formula (I).
- 3. The process according to claim 1, further comprising the step of resolving the compound of formula (II) into a single enantiomer using a chiral auxiliary before glycosylating the desired purine or pyrimidine base.
- 4. The process according to any one of claims 1 to 3, wherein R₂ is a pyrimidine base.
- 5. The process according to claim 4, wherein the pyrimidine base is cytosine.
- 6. The process according to claim 4, wherein the pyrimidine base is 5-fluorocytosine.
- The process according to any one of claims 1 to 3, wherein the Lewis acid is selected from the group consisting of trimethylallyl triflats and lodotrimethylallane.
 - 8. The process according to claim 3, wherein the chiral auxiliary is selected from the group consisting of (d)-menthol and (l)-menthol.
- 25 9. The process according to any one of claims 1 to 3, wherein R₃ is selected from the group consisting of alkoxycarbonyls, carboxyls, diethylcarboxamide, pyrrolidine amide, methyl ketone and phenyl ketone.
 - The process according to claim 9, wherein the R₃ is selected from the group consisting of alkoxycarbonyls
 and carboxyls.
 - 11. An intermediate of formula (II)

wherein

5

10

15

35

40

45

50

W is O, S, S=O, SO₂, NZ, or CH₂;

X is O, S, S=O, SO₂, NZ, CH₂ CHF, CH, CHN₃, or CHOH;

Y is O, S, CH₂, CH, CHF, or CHOH;

Z is hydrogen, hydroxyl, alkyl or acyl; provided that when Y is CH_2 and X is O, S, S=O or SO_2 , W is not O, S, S=O or SO_2 ;

 R_{ϕ} is a substituted carbonyl or carbonyl derivative; and L is a leaving group.

12. An intermediate of formula (VI)

55 wherein

W is O, S, S=O, SO₂, NZ, or CH₂; X is O, S, S=O, SO₂, NZ, CH₂, CHF, CH, CHN₃, or CHOH;

EP 0 515 156 A1

Y is O, S, CH2, CH, CHF, or CHOH;

Z is hydrogen, hydroxyl, alkyl or acyl; provided that when Y is CH2 and X is O, S, S=O or SO2, W is not O, S, S=O or SO2;

R₃ is a substituted carbonyl or carbonyl derivativ;

R₄ is a chiral auxiliary; and

L is a leaving group.

13. An intermediate of formula (VII)

10

5

$$R_4$$
 R_2 $X = Y$ (VII)

15

wherein

W is O, S, S=O, SO2, NZ, or CH2;

X is O. S. S=O, SO2, NZ, CH2 CHF, CH, CHN3, or CHOH;

Y is O, S, CH2, CH, CHF, or CHOH;

Z is hydrogen, hydroxyl, alkyl or acyl; provided that when Y is CH2 and X is O, S, S=O or SO2, W is not O, S, S=O or SO₂;

R₂ is a purine or pyrimidine base or an analogue or derivative thereof;

R₃ is a substituted carbonyl or carbonyl derivative; and

R4 is a chiral auxiliary.

14. An intermediate of formula (VIII)

25

30

35

40

45

wherein

W is O, S, S=O, SO2, NZ, or CH2;

X is O, S, S=O, SO₂, NZ, CH₂ CHF, CH, CHN₃, or CHOH;

Y is O, S, CH2, CH, CHF, or CHOH;

Z is hydrogen, hydroxyl, alkyl or acyl; provided that when Y is CH2 and X is O, S, S=O or SO2, W is not O, S, S=O or SO2;

R₂ is a purine or pyrimidine base or an analogue or derivative thereof, and R₂ is a substituted carbonyl or carbonyl derivative.

15. An intermediate selected from the group consisting of:

cis and trans-2R-carboethoxy-5-hydroxytetrahydrofuran;

cis and trans-2S-carboethoxy-5-hydroxytetrahydrofuran;

cis and trans-2R-carboethoxy-5-acetoxytetrahydrofuran;

cis and trans-2S-carboethoxy-5-acetoxytetrahydrofuran;

1'S-(N-4-acetylcytosin-1-yl)-4'R-carboethoxytetrahydrofuran;

1'S-(cytosin-1-yl)-4'R-carboethoxytetrahydrofuran;

1'R-(5-fluorocytosin-1-yl)-4'S-carboethoxytetrahydrofuran and 1'S-(5-fluorocytosin-1-yl)-4'S-car-

boethoxytetrahydrofuran; and

1'S-(5-fluorocytosin-1-yl)-4'R-carboethoxytetrahydrofuran and 1'R-(5-fluorocytosin-1-yl)-4'R-carboethoxytetrahydrofuran.

55

EUROPEAN SEARCH REPORT

Application Number

EP 92 30 4551

۸,			to c	ا حدد	APPLICATION (Im. CLS)
•	SYNTHESIS.		1	_	C07H19/04
P.X	no. 11, November 1991,	STUTTCART OF	•	i	C07H19/06
	pages 1946 - 1948:	5.5.1.55.1.52	İ		
		unahada ad Neu			C07H19/16
	JL. KRAUS ET AL.: 'Synthesis of New 2,5-Substituted 1,3-Okathiolanes, Intermediates				C07867/00
	•		1	- 1	CQ70307/16
	in Nucleoside Chemistry	/. '		- 1	CQ70307/32
•	* the whole document *	-	11	Ì	
.Α	WO-A-9 117 159 (IAF BIO	CHEM INTERNATIONAL INC)	1	i	
Ì	* page 1, line 1 - page			į	
A	EP-A-0 382 526 (IAF BIO	CHEM INTERNATIONAL INC)	1,11	. 14,	
	A sha shala danasa A				
	* the whole document *	-			
	EP-A-0 337 713 (IAF BIO	CHEM INTERNATIONAL INC)	1 *	.,14,	
	* the whole document *		15		
	-	-			
	EP-A-0 071 926 (FBJISAL LTO.)	A PHARMCEUTICAL CO.,	1	}	TECHNICAL FELDS
	" the whole document "		11,3	4	SEARCHED (but CLS)
A	 EP-A-0 266 042 (UNIVERS	-	1		C07H
	* abstract *	all or stroubletter)	*		=
					C070 C178
	* page 3, 11me 42 - 11r	WE 31 -	- 1	- 1	CU/6
	50 A 3 A45 033 480 HA		1	l	
	FR-A-1 445 013 (OR. NA	•	1 *	İ	
	* the whole document *	••			
1	JOURNAL OF ORGANIC CHE	ESTRY,	11,1	14	
1.	vol. 46, 1981, EASTON	us		l	
	pages 3353 - 3354;				•
	E. VEDEUS ET AL.: 'Method for Sulfide			l	
	S-Benzylation or S-Allylation Using			İ	
	Trimphylsilyl Triflat	•		ļ	
	Allyl Ethers'			- 1	
	*page 3354, table 1, co	ompounds 7,8,9°	-		
	_	-/-			
			\dashv		
	The present search report has				
	Plan of worth	Data of completion of the world	•	C/YY	T J. R.
	THE HAGUE	14 AUGUST 1992	j		
	CATEGORY OF CITED DOCUME	E : eartier para	M document,	rtying the , but publ	igvention ished on, or
₹: <u>=</u>	rticularly relevant if taken alone rticularly relevant if combined with an	after the fit orther D : decement o		معاصاته	1

THO FORM LINGS

EUROPEAN SEARCH REPORT

Amilianias Number

EP . 92 30 4551

1	DOCUMENTS CONSI	Page 2		
	Citation of document with it of relevant par	dicacion, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CLS.)
۸.	JOBRNAL OF ORGANIC CHEM vol. 54, no. 9, 1989, E pages 2217 - 2225; C.K.CHU ET AL.: 'Genera 2',3'-Dideoxynucleosida 2',3'-Dideoxynucleosida 2',3'-Dideoxynucleosida * the whole document *	ASTUM US 1 Synthesis of 25 and	1,11,14	
.*	TETRAHEDROM LETTERS. vol. 31, no. 13, 1990, pages 1815 - 1816; L.J.VILSON ET AL.: 'A (Controlling Glycosylati Synthesis of 21-Deckyrt	General Method for Ion Stereochemistry in the	1	
				TECHNICAL FEELDS SEARCHED (Inc. CLS)
\				
	The present search report has			
	Place of search THE HAGUE	Date of completies of the courts 14 ANGUST 1992	sa	OTT J.R.
Y: pa do A: to	CATEGORY OF CITED DOCUME receiving relevant of taken alone releasing relevant of continued with a capacit of the same category charlesses inchargement in-writen disclarate properties document	E : egrisé point after the fili pother D : document el L : document el	red in the application and for other resem	blished ee, er en

25