

ข้อสอบวิชาเคมี เพื่อคัดเลือกนักเรียนเข้ารับการอบรมค่าย 1 สอวน.

ชื่อ-นามสกุล	ข้อสอบวิชาเคมี
ลขประจำตัวสอบ	รหัสชุดวิชา 0000005
สถานที่สอบ	สอบวันอาทิตย์ที่ 25 สิงหาคม 2567
ห้องสอบ	เวลา 13.00-16.00 น.

คำชี้แจง

- ข้อสอบมี 17 หน้า (รวมคำชี้แจงและค่าที่กำหนดให้) จำนวน 75 ข้อ
 ส่วนที่ I ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ (หน้า 3-14) ข้อละ 1 คะแนน รวม 60 คะแนน ส่วนที่ II ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ (หน้า 14-17) ข้อละ 2 คะแนน รวม 30 คะแนน
- 2. ใช้ปากกา เขียนชื่อ นามสกุล เลขประจำตัวสอบ สถานที่สอบ ห้องสอบ บนข้อสอบและกระดาษคำตอบ และ ใช้ดินสอดำ 2B ระบายลงในวงกลมให้ตรงกับเลขประจำตัวและรหัสชุดวิชาที่กรอกในกระดาษคำตอบ
- 3. <u>วิธีตอบข้อสอบปรนัยแบบเลือกตอบ 4 ตัวเลือก</u>
 - ให้นักเรียนเลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียว แล้วใช้ดินสอดำ 2B ระบายวงกลม คำตอบที่เลือกให้ดำเต็มวงในกระดาษคำตอบ กรณีที่ตัวเลือกในข้อสอบและกระดาษคำตอบไม่ตรงกัน ให้ถือ ตามข้อกำหนดข้างล่างนี้

- ถ้าต้องการแก้ไข ให้ใช้ยางลบลบให้สะอาดก่อน แล้วจึงระบายวงกลมใหม่
- ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ

<u>วิธีตอบข้อสอบอัตนัยแบบเขียนตอบ</u> ให้ใช้ปากกาเขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ (รวม 2 หน้า)

- 4. ห้ามใช้เครื่องคำนวณและเครื่องมือสื่อสารใด ๆ
- 5. นักเรียนต้องนั่งอยู่ในห้องสอบอย่างน้อย 2 ชั่วโมง ก่อนได้รับอนุญาตให้ออกจากห้องสอบ
- 6. ห้ามนำข้อสอบและกระดาษคำตอบออกจากห้องสอบ
- 7. ห้ามเผยแพร่ข้อสอบก่อนที่มูลนิธิ สอวน. จะเผยแพร่ทางเว็บไซต์

ค่าที่กำหนดให้

ค่าต่าง ๆ ที่เกี่ยวข้องกับข้อสอบ ให้ใช้ค่าที่กำหนดให้ต่อไปนี้

เลขอะตอมและมวลอะตอมของธาตุบางชนิด (เรียงลำดับตามอักษรของสัญลักษณ์ธาตุ)

ธาตุ	เลขอะตอม	มวลอะตอม	ธาตุ	เลขอะตอม	มวลอะตอม	ธาตุ	เลขอะตอม	มวลอะตอม
Ag	47	108	F	9	19	N	7	14
Al	13	27	Fe	26	56	Na	11	23
Ar	18	40	Н	1	1	Ne	10	20
Ва	56	137	Не	2	4	0	8	16
Br	35	80	I	53	127	Р	15	31
С	6	12	K	19	39	Rb	37	85.5
Ca	20	40	Kr	36	84	S	16	32
Cl	17	35.5	Li	3	7	Si	14	28
Cr	24	52	Mg	12	24	U	92	238
Cu	29	63.5	Mn	25	55	Xe	54	131

ค่าคงตัวอาโวกาโดร ($N_{\rm A}$) = $6.02 \times 10^{23} \, {\rm mol}^{-1}$

ปริมาตรต่อโมลของสารในสถานะแก๊ส = 22.4 L ที่ STP

ค่าคงที่ของแก๊ส (R) = 0.082 L·atm/mol·K = 8.314 J/mol·K

ความดัน 1 atm = $1.01 \times 10^5 \, \text{Pa}$ = 760 mmHg = 760 torr = 1 bar = 14.7 psi

แรง (F) = ma เมื่อ m = มวล a = ความเร่ง (m/s²)

มวล 1 g = 10^9 ng = 10^6 μ g

ปริมาตร 1 L = $10^3 \,\mathrm{m}^3$ อุณหภูมิ $T(\mathrm{K}) = T(^\circ\mathrm{C}) + 273$

ความหนาแน่นของน้ำ = 1.00 g/mL

โครงตารางธาตุบางส่วนแสดงเลขหมู่

ส่วนที่ I. ข้อสอบปรนัยแบบเลือกตอบ จำนวน 60 ข้อ ข้อละ 1 คะแนน รวม 60 คะแนน เลือกคำตอบที่ถูกต้องและเหมาะสมที่สุดเพียงคำตอบเดียวในแต่ละข้อ แล้วใช้ดินสอดำระบายวงกลมคำตอบที่เลือก ให้ดำเต็มวงในกระดาษคำตอบ (ถ้าข้อใดตอบมากกว่า 1 ตัวเลือก ข้อนั้นถือเป็นโมฆะ)

1. สารเคมีชนิดหนึ่งหากโดนมือจะทำให้ระคายเคือง หากได้รับสารชนิดนี้อย่างต่อเนื่องเป็นเวลาหลายปีจะทำให้ เป็นมะเร็ง และสารนี้มีจุดวาบไฟ 20 °C ฉลากบนขวดสารเคมีชนิดนี้ควรปรากฏสัญลักษณ์เตือนความเป็น อันตรายตามระบบ GHS (Globally Harmonized System of Classification and Labelling of Chemicals) อย่างไรบ้าง

- 2. ข้อใดถูกต้อง
 - ก. เมื่อสัมผัสบีกเกอร์หรือภาชนะที่ร้อน ควรใช้ยาสีฟันทาบริเวณที่สัมผัสของร้อน
 - ข. เมื่อได้กลิ่นแปลกปลอมในห้องปฏิบัติการ ควรเดินหาสาเหตุและที่มาของกลิ่นนั้น
 - ค. หากจำเป็นต้องทดสอบกลิ่น สามารถสูดดมสารเคมีโดยตรงเพื่อจะได้พิสูจน์ทราบกลิ่นชัด ๆ
 - ง. กรดเจือจางหรือเบสเจือจางปริมาตร 100 mL ที่เหลือจากการทดลอง สามารถเททิ้งลงอ่างน้ำได้
- 3. ข้อใดเป็นการตอบโต้สถานการณ์ได้ถูกต้อง เมื่อเกิดอุบัติเหตุบีกเกอร์ที่บรรจุกรดไฮโดรคลอริกเจือจางหกรด แขนเสื้อคลุมปฏิบัติการของนักเรียนจนเปียกโชก
 - ก. เรียกรถพยาบาลเพื่อไปพบแพทย์และรับการรักษาอย่างถูกวิธี
 - ข. ถอดชุดคลุมปฏิบัติการออก ซับสารละลายกรดออกจากแขน แล้วเรียกรถพยาบาลเพื่อไปพบแพทย์และ รับการรักษาอย่างถูกวิธี
 - ค. ถอดชุดคลุมปฏิบัติการออก ซับสารละลายกรดออกจากแขนและล้างบริเวณที่สัมผัสกับกรดด้วยการเปิด
 น้ำไหลผ่านปริมาณมาก และปฏิบัติตามข้อกำหนดในเอกสารความปลอดภัยของสารเคมี
 - ถอดชุดคลุมปฏิบัติการออก ซับสารละลายกรดออกจากแขนและสะเทินกรดให้เป็นกลางด้วยสารละลาย โซเดียมไฮดรอกไซด์ และปฏิบัติตามข้อกำหนดในเอกสารความปลอดภัยของสารเคมี
- 4. แก๊สอุดมคติชนิดหนึ่งมีความดันในหน่วยเอสไอเท่ากับ 1.00×10^5 ปาสคาล หากกำหนดให้ ความดัน คือ แรง ที่กระทำต่อหนึ่งหน่วยพื้นที่ ดังสมการ P = F/A หน่วยปาสคาลซึ่งเป็นหน่วยเอสไออนุพัทธ์สอดคล้องกับ หน่วยเอสไอพื้นฐานใดต่อไปนี้มากที่สุด
 - ก. กิโลกรัม เมตร $^{-1}$ วินาที $^{-2}$

ข. กรัม เซนติเมตร $^{-1}$ วินาที $^{-2}$

ค. กิโลกรัม เมตร วินาที²

ง. นิวตัน เมตร⁻²

5. น้ำปริมาตร 10.00 cm³ เมื่อได้รับความร้อนทุก ๆ 418.4 J จะทำให้อุณหภูมิของน้ำเพิ่มขึ้น 10.00 °C จากการทดลอง ให้ความร้อนที่ได้จากปฏิกิริยาการเผาไหม้ของแก๊สธรรมชาติ ปริมาณ 8.080 kcal แก่น้ำจำนวนหนึ่งพบว่า อุณหภูมิของ น้ำก่อนและหลังการให้ความร้อนที่วัดโดยใช้เทอร์มอมิเตอร์ เป็นดังรูป การทดลองดังกล่าวใช้น้ำกี่ลูกบาศก์เดซิเมตร กำหนดให้ 1 cal = 4.184 J

ก. 0.400

ข. 0.4000

ค. 400

١. 400.0

6. นักเรียน 4 คนทดลองวัดปริมาตรสารละลาย NaOH ที่ใช้ทำปฏิกิริยาพอดีกับสารละลายกรดตัวอย่างชนิด เดียวกันโดยใช้เครื่องมือวัดปริมาตรคนละชิ้นกัน ผลการทดลองจำนวน 5 ครั้งได้ค่าเฉลี่ยเทียบกับค่าจริงดัง แสดงในกราฟ ผลการทดลองของนักเรียนคนใดมีความเที่ยง (precision) และความแม่น (accuracy) สูงที่สุด

ก. นักเรียนคนที่ 1

ค. นักเรียนคนที่ 3

- 7. จากแบบจำลองอะตอมของโบร์ ถ้าอิเล็กตรอนในอะตอมไฮโดรเจนคายพลังงานออกมาเป็นแสงที่มองเห็นได้ ข้อใดเป็นปรากฏการณ์ที่น่าจะเกิดขึ้นมากที่สุด
 - ก. อิเล็กตรอนวงนอกหลุดออกนอกอะตอม
 - ข. อิเล็กตรอนวงในเปลี่ยนระดับพลังงานจากต่ำไปหาสูง
 - ค. อิเล็กตรอนจากระดับพลังงานที่ 2 ลงมาอยู่ที่สถานะพื้น
 - ง. อิเล็กตรอนจากระดับพลังงานที่ 4 ลงมาอยู่ระดับพลังงานที่ 2

- แบบจำลองอะตอมของโบร์สามารถใช้ในการตอบข้อสงสัยว่า "ทำไมอิเล็กตรอนซึ่งมีประจุลบไม่ถูกดุดเข้าหา นิวเคลียสซึ่งมีประจุบวก" ข้อใดเป็นคำอธิบายที่ตอบข้อสงสัยนี้
 - ก. นิวเคลียสมีอนุภาคที่มีประจุบวกคอยผลักอิเล็กตรอนไม่ให้เข้าไปรวมกับนิวเคลียส
 - ข. อิเล็กตรอนมีวงโคจรที่แน่นอน ตราบเท่าที่ไม่มีพลังงานภายนอกมากระทำ
 - ค. อิเล็กตรอนเคลื่อนที่ด้วยความเร็วสูง หนีแรงดึงดูดของนิวเคลียสได้
 - ง. นิวเคลียสมีนิวตรอนที่ช่วยบดบังไม่ให้โปรตอนดึงดูดอิเล็กตรอน
- ธาตุ X มี 3 ไอโซโทป คือ $^{(2a+4)}_{a}$ X , $^{(2a+6)}_{a}$ X และ $^{(2a+8)}_{a}$ X โดยมีอัตราส่วนโดยมวลเป็น 5:2:1ข้อใดเป็นมวลอะตอมเฉลี่ยของธาตุนี้
 - ก. 2a + 5
- ข. 2a + 5.5
- ค. 2a + 6
- a. 2a + 6.5
- 10. ไอออนของธาตุหนึ่งมีประจุ +3 มีเลขมวล 85 และมี 34 อิเล็กตรอน ข้อใดถูกต้องเกี่ยวกับธาตุนี้
 - ก. อะตอมของธาตุนี้มี 31 อิเล็กตรอน
- ข. อะตอมของธาตุนี้มีขนาดเล็กกว่า ₃₆Kr
- ก. อะตอมของธาตุนี้มี 31 อิเล็กตรอน
 ข. อะตอมของธาตุนี้มีขนาดเล็กกว่า ₃₆Kr
 ค. ไอโซโทปหนึ่งของธาตุนี้มี 48 นิวตรอน
 ง. ไอออนที่เสถียรของธาตุนี้มีทั้งประจุ +3 และ +1
- 11. อะตอมประกอบด้วยอนุภาคมูลฐาน 3 ชนิด คือ โปรตอน นิวตรอน และอิเล็กตรอน อะตอมหรือไอออนใน ข้อใดมีมวลใกล้เคียงกันมากที่สุด
 - ก. ไอออนที่มีประจุเท่ากัน

- ข. อะตอมที่เป็นไอโซโทปกัน
- ค. ไอออนที่มีจำนวนอนุภาคมูลฐานเท่ากัน
- ง. อะตอมที่มีจำนวนอนุภาคในนิวเคลียสเท่ากัน
- 12. ข้อใด<u>ผิด</u>เกี่ยวกับแนวโน้มของสมบัติธาตุตามตารางธาตุ
 - ก. ในหมู่เดียวกัน ธาตุที่มีขนาดอะตอมใหญ่กว่ามีจำนวนอิเล็กตรอนมากกว่า
 - ข. ในคาบเดียวกัน ธาตุที่มีจำนวนอิเล็กตรอนมากกว่ามีแรงดึงดูดอิเล็กตรอนจากนิวเคลียสมากกว่า
 - ค. ในคาบเดียวกัน ธาตุที่มีจำนวนโปรตอนมากกว่ามีความสามารถในการดึงดูดอิเล็กตรอนในพันธะมากกว่า
 - ง. ในหมู่เดียวกัน ธาตุที่มีจำนวนอิเล็กตรอนมากกว่ามีความสามารถในการดึงดูดอิเล็กตรอนในพันธะน้อยกว่า
- 13. ข้อใดเปรียบเทียบค่าพลังงานไอออไนเซชันลำดับที่ 2 ของธาตุ $^{69}_{31}{
 m Ga}$, $^{40}_{20}{
 m Ca}$ และ $^{39}_{19}{
 m K}$ ได้ถูกต้อง

1.
$$^{39}_{19}K > ^{69}_{31}Ga > ^{40}_{20}Ca$$

$$v. \frac{69}{31} Ga > \frac{40}{20} Ca > \frac{39}{19} K$$

P.
$$^{39}_{19}K > ^{40}_{20}Ca > ^{69}_{31}Ga$$

$$\sqrt[40]{ca} > \frac{39}{19} K > \frac{69}{31} Ga$$

- 14. ธาตุ M, Q, R, T มีสมบัติดังนี้
 - I. IE₁ ของ Q > T > R
 - II. M และ R เมื่อได้รับพลังงาน อิเล็กตรอนในระดับพลังงานย่อย 4s จะหลุดก่อน
 - III. Q และ T เมื่อรับอิเล็กตรอนจะเข้ามาอยู่ในระดับพลังงานย่อย 4p
 - IV. เลขอะตอมของธาตุทั้งสี่ คือ 19, 30, 31, 34 (ไม่เรียงตามลำดับธาตุ)

ข้อใดเป็นเลขอะตอมของธาตุ M, Q, R, T ตามลำดับ

- ก. 19, 30, 31, 34 ข. 19, 34, 31, 30 ค. 30, 19, 34, 31 ง. 30, 34, 19, 31

15. พิจารณาเลขหมู่และคาบของธาตุที่มีสัญลักษณ์สมมติต่อไปนี้

ธาตุ	เลขหมู่	เลขคาบ
А	14	3
D	12	4
Е	2	5
G	17	3

นักเรียนคนหนึ่งวิเคราะห์ข้อมูลในตาราง ได้ข้อสรุปดังนี้

- I. สารประกอบระหว่าง A และ E มีสูตรเคมีเป็น ${\sf E}_2{\sf A}$
- II. ธาตุ D มีเลขออกซิเดชันหลายค่า
- III. สารประกอบระหว่าง A และ G มีแรงยึดเหนี่ยวระหว่างโมเลกุลเป็นแรงระหว่างขั้ว
- IV. ธาตุ G มีขนาดอะตอมเล็กที่สุดเมื่อเทียบกับธาตุอื่น

ข้อสรุปของนักเรียนคนนี้ ข้อใด**ผิด**

- ก. | และ ||
- ข. I และ IV
- ค. || และ |||
- ง. III และ IV

16. เมื่อแมงกานีส–55 $\binom{55}{25}$ Mn) ถูกยิงด้วยโปรตอน จะได้นิวตรอนกับธาตุใด

- ก. 54Cr
- ข. ⁵⁴₂₅Mn
- ค. $_{26}^{55}$ Fe
- 58 Co

17. ข้อใดเป็นสมการการสลายตัวของสารกัมมันตรังสีที่ถูกต้อง

$$\text{n. } \overset{129}{_{52}}\text{Te} \longrightarrow \overset{129}{_{52}}\text{Te} \, + \, \beta$$

$$\text{V. } ^{226}_{88}\text{Ra} \rightarrow ^{222}_{86}\text{Rn} + \alpha$$

$$Parallel{eq:poisson} Parallel{eq:poisson} Parallelee$$

$$3. \quad {}^{238}_{92}\text{U} \longrightarrow {}^{238}_{93}\text{Np} + 2\beta$$

18. โครงสร้างลิวอิสข้อใด<u>ไม่ถู</u>กต้อง

- 19. เมื่อนำสารละลายเลดในเทรต ($Pb(NO_3)_2$) เข้มข้น 0.50 mol/L ปริมาตร 1.00 mL ผสมกับสารละลาย โพแทสเซียมไอโอไดด์ (KI) เข้มข้น 0.80 mol/L ปริมาตร 1.00 mL ข้อใดเปรียบเทียบปริมาณไอออนใน สารละลายผสมได้ถูกต้อง
 - ก. โพแทสเซียมไอออน > ไอโอไดด์ใอออน > ในเทรตไอออน > เลดไอออน
 - ข. ในเทรตไอออน > โพแทสเซียมไอออน = ไอโอไดด์ไอออน > เลดไอออน
 - ค. โพแทสเซียมไอออน > ในเทรตไอออน > ไอโอไดด์ไอออน > เลดไอออน
 - ง. ในเทรตไอออน > โพแทสเซียมไอออน > เลดไอออน > ไอโอไดด์ไอออน

20. เมื่อเขียนโครงสร้างลิวอิสที่เสถียรของ เบนซาไมด์ (benzamide, $C_6H_5CONH_2$) ข้อใดระบุอัตราส่วนจำนวนคู่ ของอิเล็กตรอนคู่โดดเดี่ยว : พันธะเดี่ยว : พันธะคู่ : พันธะสาม ได้ถูกต้อง

กำหนดให้ C_6H_5- มีโครงสร้างที่คาร์บอนจับกันเป็นวงหกเหลี่ยม

ก. 3:12:1:2

ข. 3:12:4:0

21. การละลายของสารประกอบไอออนิกมีพลังงานที่เกี่ยวข้องคือ พลังงานแลตทิช และพลังงานไฮเดรชันซึ่งเป็น ผลรวมจากพลังงานไฮเดรชันของไอออนที่เป็นองค์ประกอบ

พิจารณาข้อมูลพลังงาน (kJ/mol) สำหรับสารประกอบแฮไลด์ของธาตุ A, D, E และ G ต่อไปนี้

dos	พลังงานแลตทิซ		พลังงานไฮเดรชัน	
สาร	พลงง เมแลดเกล	ไอออนบวก	ไอออนลบ	รวม
BaBr ₂	1950	1305	288.7	1882.4 (ตัวอย่าง)
AF	1023	515	463.7	
DCl	710	312	319.5	
EF ₂	2957	1921	463.7	
Gl ₂	2327	1921	246.8	

ข้อใดถูก

ก. เมื่อ EF₂ ละลายในน้ำ สารละลายจะร้อนขึ้น

- ข. พลังงานไฮเดรชันของ Gl_2 มากกว่า AF อยู่ 1,189.1 kJ/mol
- ค. สารประกอบที่ไอออนบวกมีประจุสูงมีแนวโน้มจะคายพลังงานเมื่อละลายน้ำ
- ง. ผลต่างระหว่างพลังงานแลตทิชกับพลังงานไฮเดรชันของ EF_2 มีค่ามากที่สุด
- **22.** เมื่อนำสารต่อไปนี้ K_2SO_4 , $BaCl_2$, Na_2CO_3 และ $Cu(NO_3)_2$ อย่างละ 0.5 g ละลายในน้ำ 10 mL แล้ว เทรวมกัน พบตะกอนเกิดขึ้น ตะกอนนี้เป็นสารชนิดใดบ้าง

ก. BaSO₄, BaCO₃ และ CuCO₃

ข. BaSO₄, BaCO₃ และ CuSO₄

ค. BaCO₃, CuSO₄ และ K₂CO₃

ง. BaSO₄, CuCO₃ และ K₂CO₃

23. เปรียบเทียบเลขออกซิเดชันของอะตอมและไอออนในสารประกอบต่อไปนี้

N₂O₅ NH₃ Na₂S SF₆ CrCl₃

ข้อใดมีอะตอมหรือไอออนที่มีเลขออกซิเดชัน<u>สูงที่สุด</u>ในสารประกอบหนึ่ง และ<u>ต่ำที่สุด</u>ในอีกสารประกอบหนึ่ง

ก. N₂O₅ และ SF₆

ข. SF₆ และ NH₃

ค. CrCl₃ และ NH₃ ง. CrCl₃ และ Na₂S

24. การอ่านชื่อสารในข้อใดถูกต้อง

ก. FeCO₃ เหล็ก(II)คาร์บอเนต

ข. Mg₃(PO₄)₂ ไตรแมกนีเซียมฟอสเฟต

ค. Mn_2O_7 ไดแมงกานีส(VII)เฮปตอกไซด์

ง. Ca(HCO₃)₂ แคลเซียมไฮโดรเจนคาร์บอเนต

25. สารในข้อใดมีรูปร่างโมเลกุลเหมือนกัน และอะตอมกลางต่างก็มีอิเล็กตรอนคู่โดดเดียว

ก. I₃⁻ และ XeF₂ ข. CS₂ และ H₂S

ค. PCl₃ และ ClF₃ ง. HCN และ ICl₂-

- 26. โมเลกุลต่อไปนี้ XeF4, H2O, HI และ CHCl3 โมเลกุลใดมีสภาพขั้วสูงที่สุด
 - ก. HI
- ข. H₂O
- ค. XeF₄
- CHCl₃
- 27. เพชรและแกรไฟต์เป็นอัญรูปกัน คาร์บอนแต่ละอะตอมในเพชรสร้างพันธะกับอีก 4 อะตอม ต่อกันเป็น โครงร่างตาข่าย 3 มิติ ส่วนคาร์บอนในแกรไฟต์สร้างพันธะกับคาร์บอนอีก 3 อะตอม และจับกันเป็นวง หกเหลี่ยมด้านเท่า ต่อกันเป็นแผ่น ข้อความต่อไปนี้ ข้อใดผิด
 - ก. แกรไฟต์มีโครงสร้างเรโซแนนซ์
 - ข. มุมพันธะในเพชรมากกว่าในแกรไฟต์
 - ค. พันธะระหว่างคาร์บอนอะตอมในแกรไฟต์สั้นกว่าในเพชร แต่ยาวกว่าใน C_2H_4
 - ง. โครงสร้างลิวอิสของแกรไฟต์แสดงว่า คาร์บอนแต่ละอะตอมสร้างพันธะเดี่ยว 2 พันธะ และพันธะคู่ 1 พันธะ
- **28.** พิจารณาสมบัติของธาตุ A, D, E, G, L, M และสารประกอบ CaF_2 ต่อไปนี้

สาร	จุดหลอมเหลว	จุดเดือด	การนำไฟฟ้า	
	(°C)	(°C)	เมื่อเป็นของแข็ง	เมื่อเป็นของเหลว
₄ A	1280	2469	นำ	นำ
₁₄ D	1414	3265	นำเล็กน้อย	นำเล็กน้อย
₁₆ E	113	445	ไม่นำ	ไม่นำ
₁₉ G	63.5	759	นำ	นำ
₂₄ L	1857	2672	นำ	นำ
₈₂ M	328	1749	นำ	นำ
CaF ₂	1418	2533	ไม่นำ	นำ

ข้อใดถูกต้อง

- ก. พันธะโลหะของธาตุที่อะตอมมีขนาดเล็กจะแข็งแรงกว่ากรณีที่อะตอมมีขนาดใหญ่
- ข. E มีจุดหลอมเหลวและจุดเดือดต่ำแสดงว่า พันธะโคเวเลนต์ในธาตุนี้ไม่แข็งแรง
- ค. G และ M มีพันธะโคเวเลนต์ ซึ่งเปลี่ยนเป็นพันธะโลหะเมื่อหลอมเหลว
- ง. พันธะโลหะมีความแข็งแรงกว่าพันธะโคเวเลนต์และพันธะไอออนิก

29. ข้อใด**ผิด**

- ก. ${
 m CH_3COOH~3.01\times10^{22}}$ โมเลกุล มีมวล 30.0 g $\,$ ข. ${
 m SO_2~0.500~mol}$ มีปริมาตร 11.2 ${
 m L}{
 m M}{
 m STP}$
- ค. ${
 m MgCl_2~0.95~g}$ มี Cl จำนวน 1.2×10^{22} อะตอม $^{\circ}$ ง. ${
 m CH_3CH_2OH~2.0~mol}$ มีมวล 92 g
- 30. "กะรัต" เป็นหน่วยของมวลที่ใช้กับอัญมณี โดย 1 กะรัต เท่ากับ 200 mg เพชรที่มีคาร์บอนจำนวน 8.03 × 10²² อะตอม คิดเป็นกี่กะรัต
 - ก. 2

ข. 4

ค. 8

- ١. 16
- **31.** เกลืออะลูมิเนียมซัลเฟต 13.68 g มีจำนวนไอออนทั้งหมดเท่าใด
 - ก. 4.82 x 10²²
- ข. 9.64 × 10²²
- ค. 1.20×10^{23}
- 3.01×10^{24}

32.	เกิดแก๊สคาร์บอนไดออกไร	•	ที่เกิดขึ้นลงในสารละลาย C	ปเผาไหม้อย่างสมบูรณ์ พบว่า Ca(OH) ₂ ได้ตะกอนสีขาวของ ตรเอมพิริคัลของแก๊สชนิดนี้
	ก. C ₂ H ₆	ข. C ₃ H ₆	ค. C ₃ H ₈	 C₄H₁₀
33.		อยละ 53.8 โดยมวล ถ้าม -		บว่า มีกำมะถันร้อยละ 26.9 เท่าของมวลสูตรเอมพิริคัล ง. 59.5
34.				g ในน้ำ แล้วเติมสารละลาย ร้อยละโดยมวลของ Ba ใน ง. 40
35.	0	ล 3.08 g และ HF 0.80 g		
36.	a Cr ₂ O ₇ ²⁻ + b F ตัวเลขสัมประสิทธิ์ในข้อใด	าริมาณ Fe ²⁺ ในสารละลายต้ =e ²⁺ + c H ⁺ → d Cr ³⁺ + ถูกต้อง ข. b = 3, d = 2	e Fe ³⁺ + f H ₂ O (สมก	าารยังไม่ดุล)
37.		ไปทำปฏิกิริยากับสารละลาย		ก้สารละลาย 0.10 L จากนั้น เกิดแก๊สคาร์บอนไดออกไซด์ ง. Rb
38.	ปฏิกิริยาต่อไปนี้	aOCl) หรือน้ำยาซักผ้าขาวท์ 2NaOH(aq) + Cl ₂ (g) → 1 20.0 g ทำปฏิกิริยากับแก๊สค ข. 18.6	NaOCl(aq) + NaCl(aq) +	
39.	ให้เป็นแก๊สคาร์บอนไดออ	·	้) หากปลวกสามารถทำให้	จากนั้นกลูโคสจะถูกเปลี่ยน íเกิดกลูโคสได้วันละ 27 mg 1 ตัวเกิดขึ้นกี่โมล ง. 1.5 × 10 ⁻⁴

40.	บอร์ไนต์ (Cu ₃ Fo	eS ₃) เป็นแร่ทองแดงที่ใช้ในก	ารผลิตโลหะทองแดง เมื่อนำ	ไปเผาจะเกิดปฏิกิริยาดังนี้
	Cu ₃	$_3$ FeS $_3$ (s) + O $_2$ (g) \longrightarrow C	Su(s) + FeO(s) + SO2(g)	(สมการยังไม่ดุล)
	ถ้าใช้บอร์ไนต์ 3	4.25 kg ทำปฏิกิริยากับ ${\sf O}_2$	มากเกินพอ หลังปฏิกิริยาสิ้น	สุดจะสูญเสียแก๊สซัลเฟอร์ไดออกไซด์
	ร้อยละ 10 ปริ	มาตรแก๊สซัลเฟอร์ไดออกไซ	ก์ที่สูญเสียนี้เป็นกี่ลิตรที่ STP	
	ก. 6.72 × 10	0^3 v. 2.24×10^3) ³ ค. 672	1. 224
41.		ซิลิกอนคาร์ไบด์ (SiC) เป็นส มเคราะห์โมซาไนต์ โดย SiC ก	9,	นธรรมชาติ นำมาใช้เป็นเครื่องประดับ
	C(s)	$+$ SiO ₂ (s) \longrightarrow SiC(s)	+ CO(g) (สมการย์	บังไม่ดุล)
	ถ้าให้คาร์บอน 2	$2 \bmod $ ทำปฏิกิริยากับ SiO_2	6 mol จะเกิดเพชรสังเคราะ	ห์กี่กรัม
	ก. 27	ข. 40	ค. 80	ા . 240
42.	KMnO ₄ เข้มข้น	0.00400 M ปริมาตร 8.00		ที่ได้ทำปฏิกิริยาพอดีกับสารละลาย :
		ว้น รางแก้ง SO_2 ก็ไมโครกรัม		1
	ก. 41.0		•	• E120
	n. 41.0	ข. 102	ค. 256	۹. 5120
43.	หากใช้แก๊สแอม่ ก. เกิดแก๊สไนโ ข. เหลือแอมโม ค. แอมโมเนียเ	โมเนีย 51 g ทำปฏิกิริยากับ ตรเจน 56 g และโลหะทองเ มเนีย 28 g และเกิดแก๊สไนโต ป็นสารกำหนดปริมาณ และ	คอปเปอร์(II)ออกไซด์ 159 g เดง 286 g ารเจน 42 g	
44.	สาร G เตรียมได้	ก์จากสาร A ด้วยปฏิกิริยา 3	ขั้นตอนดังนี้	
		$A + 2B \longrightarrow C$	ัผลได้ร้อยละ = 50)	
		$2C + D \longrightarrow 4E$	ัผลได้ร้อยละ = 50)	
		2E + 3F → G	(ผลได้ร้อยละ = 80)	
	ถ้าต้องการเตรีย	มสาร G 1.5 kg จะต้องใช้สา	าร A กี่กิโลกรัม เมื่อใช้สาร B,	D และ F มากเกินพอ
	กำหนดให้ มวล	าต่อโมลของ A = 100 และ	G = 150 g/mol	
	ก. 0.20	ข. 1.0	ค. 1.5	۹. 5.0
45.				ากับสาร B 20 g จะเกิดสาร C 135 g โมเลกุลของสาร C เป็นเท่าใด
	•	ข. 67.5	ค. 90	·
	ก. 45	u. 01.5	ri. 90	ૌ. 270

46. ยูเรีย ((NH₂)₂CO) เตรียมได้จากปฏิกิริยาดังนี้

$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

$$CO_2(g) + 2NH_3(g) \longrightarrow (NH_2)_2CO(aq) + H_2O(l)$$

ถ้าเตรียมยูเรียโดยใช้ N_2 2 mol, H_2 3 mol และ CO_2 4 mol พบว่า เกิดยูเรีย 45 g ผลได้ร้อยละของยูเรีย เป็นเท่าใด

- ก. 37.5
- ข. 50
- ค. 75
- 87.5
- **47.** ข้อใด<u>ผ**ิด**เกี่ยวกับสารละลายกรด CH₃COOH เข้มข้น 15 mol/L ปริมาตร 1.0 L ซึ่งมีความหนาแน่น 1.05 g/mL</u>
 - ก. สารละลาย CH₃COOH เข้มข้นร้อยละ 86 โดยมวล ข. สารละลาย CH₃COOH เข้มข้น 14 โมแลล
 - ค. ร้อยละโดยโมลของ CH3COOH เท่ากับ 64
- ง. เศษส่วนโมลของ H₂O เท่ากับ 0.36
- 48. โพรพราโนลอล (Propranolol, $C_{16}H_{21}NO_2$, 259 g/mol) เป็นยาที่ใช้รักษาความดันโลหิตสูง โดยความเข้มข้น ของยาในพลาสมาที่ทำให้ยาออกฤทธิ์ได้เท่ากับ 50 ng/L ความเข้มข้นนี้ที่คำนวณในหน่วยอื่น ข้อใด<u>ผิด</u> กำหนดให้ ความหนาแน่นของพลาสมาเท่ากับ 1.025 g/mL
 - ก. 49 ppm
- v. 4.9×10^{-2} ppb P. 1.9×10^{-10} M v. 1.9×10^{-10} m
- 49. ถ้าต้องการเตรียมสารละลายของคาร์บอเนตไอออน (A และ B) ให้มีความเข้มข้นที่แม่น ดังนี้

สารละลาย	ความเข้มข้นของ CO_3^{2-} (M)	ปริมาตร (mL)	สารที่ใช้เตรียม
А	0.4000	250.0	Na ₂ CO ₃
В	0.1000	100.0	สารละลาย A

มวล $\mathrm{Na_2CO_3}$ ที่ต้องใช้ในการเตรียมสารละลาย A และวัสดุ อุปกรณ์ที่ต้องใช้ในการเตรียมสารละลาย B จาก สารละลาย A ในข้อใดถูกต้อง

	มวล Na ₂ CO ₃ (g)	วัสดุ อุปกรณ์ที่ต้องใช้เตรียมสารละลาย B
ก.	6.00	กระบอกตวงขนาด 25 mL บีกเกอร์ขนาด 250 mL น้ำกลั่น แท่งแก้วคน
ข.	6.00	ปิเปตต์ขนาด 25 mL ขวดกำหนดปริมาตรขนาด 100 mL น้ำกลั่น
ค.	10.60	กระบอกตวงขนาด 25 mL บีกเกอร์ขนาด 250 mL น้ำกลั่น แท่งแก้วคน
٩.	10.60	ปิเปตต์ขนาด 25 mL ขวดกำหนดปริมาตรขนาด 100 mL น้ำกลั่น

- 50. เมื่อนำสารละลายโซเดียมซัลเฟตเข้มข้น 0.100 mol/L ปริมาตร 200 mL ผสมกับสารละลายโซเดียมคลอไรด์ เข้มข้น 0.150 mol/L ปริมาตร 200 mL ความเข้มข้นของ Na⁺ ในสารละลายผสมเป็นเท่าใดในหน่วยโมลาร์
 - 0.125 ก.
- 위. 0.175
- 0.250 ค.
- 0.350

51. เมื่อนำสารอินทรีย์ตัวอย่างที่ระเหยยาก 3.85 g ละลายในเบนซีน 100 g พบว่า สารละลายที่ได้มีจุดเดือด เท่ากับ 80.75 °C สารอินทรีย์ตัวอย่างนี้มีมวลต่อโมลเท่าใดในหน่วย g/mol กำหนดให้

ตัวทำละลาย	จุดเดือด (°C)	K _b (°C/m)	จุดเยือกแข็ง (°C)	K_f (°C/m)
เบนซีน	80.09	2.64	5.49	5.07

58 ก.

ข. 102 154

296

52. สารละลายชนิดหนึ่งมีคาร์บอนเตตระคลอไรด์ (CCl₄) เป็นตัวทำละลาย มีจุดเดือด 81.8 °C จุดเยือกแข็งของ สารละลายนี้เป็นกี่องศาเซลเซียส

กำหนดให้

ตัวทำละลาย	จุดเดือด (°C)	K _b (°C/m)	จุดเยือกแข็ง (°C)	K_f (°C/m)
คาร์บอนเตตระคลอไรด์	76.8	5.00	-22.9	29.8

-52.7

-29.8

6.9

106.6

53. บารอมิเตอร์อย่างง่ายดังภาพ สร้างจากขวดพลาสติก กับสายยางปลายเปิดขนาดเล็ก ในวันจันทร์ได้ปรับ ระดับน้ำในสายยางให้เท่ากับระดับน้ำในขวด อ่าน ค่าความดันบรรยากาศจากบารอมิเตอร์ปรอทที่ใช้ อ้างอิงได้ 730 mmHg และอ่านอุณหภูมิได้ 27.0 °C เมื่อตั้งทิ้งไว้แล้วกลับมาอ่านอีกครั้งในวันอังคาร พบว่า ระดับน้ำในสายยางถูกดันขึ้นมาจนสูงกว่า ระดับน้ำในขวดอยู่ 6.80 cm และอ่านอุณหภูมิได้ 27.0 °C ความดันบรรยากาศในวันอังคารมีค่า เท่าใดในหน่วย mmHg

กำหนดให้ ความดันของน้ำสูง 1.36 cm มีค่าเทียบเท่ากับความดัน 1 mmHg

ก. 725

ข. 735

755

765

54. ภาชนะ A, B และ C มีลักษณะเหมือนกันทุกประการ บรรจุแก๊สดังต่อไปนี้ที่อุณหภูมิและความดันมาตรฐาน

ภาชนะ B SO_2

ข้อใดเปรียบเทียบจำนวนอนุภาค (N) ของแก๊สในภาชนะทั้งสามได้ถูกต้อง

55. ความดันอากาศภายในลูกบาสเกตบอลที่แนะนำให้ใช้ในการแข่งขันทั่วไปคือ 22.05 psi ถ้ามีลูกบาสเกตบอล ขนาด 7.5 L ที่ผ่านการใช้งานจนความดันภายในกับภายนอกเท่ากัน จะต้องสูบอากาศเข้าไปกี่โมล ณ อุณหภูมิ 27 °C เพื่อให้สามารถใช้ในการแข่งขันได้

กำหนดให้ ปริมาตรของลูกบาสเกตบอลหลังสูบอากาศเข้าไปไม่เปลี่ยนแปลงจากปริมาตรเริ่มต้น ความดันบรรยากาศ = 1 atm

- ก. 0.0015
- ข. 0.15
- ค. 0.46
- 2.2
- 56. ดิวทีเรียม (Deuterium, D) เป็นไอโซโทปหนึ่งของไฮโดรเจนที่มีนิวตรอนมากกว่าไฮโดรเจนอยู่ 1 อนุภาค มีมวลอะตอมเท่ากับ 2 ข้อใดกล่าวถึงสมบัติของแก๊ส D₂ ได้ถูกต้อง
 - ก. พลังงานพันธะ D-D สูงกว่าพันธะ H-H ประมาณ 2 เท่า
 - ข. ที่ความดันและอุณหภูมิเท่ากัน ความหนาแน่นของ D_2 เป็น 2 เท่าของ H_2
 - ค. โมเลกุล D_2 สามารถสลายตัวให้อนุภาคบีตาได้ 2 ครั้ง กลายเป็น H_2 2 โมเลกุล
 - ง. ที่ความดันและอุณหภูมิเท่ากัน อัตราการแพร่ผ่านของ H_2 เป็น 2 เท่า เมื่อเทียบกับ D_2
- 57. จากแผนภาพของภาชนะใบหนึ่งที่บรรจุแก๊สเฉื่อย 3 ชนิด

หากความดันรวมในภาชนะเท่ากับ 900 mmHg ข้อใดถูก

- ก. เศษส่วนโมลของแก๊ส Ne = 0.2
- ข. ความดันย่อยของแก๊ส He = 270 mmHg
- ค. ความดันย่อยของแก๊ส Ar = 450 mmHg
- ง. เศษส่วนโมลของ Ar = $0.5\,N_{\rm A}$ เมื่อ $N_{\rm A}=6.02\times 10^{23}$ อนุภาค
- 58. ขวดแก้วสามใบที่มีปริมาตรเท่ากัน บรรจุแก๊สดังที่ระบุไว้ในตาราง

ขวด	แก๊สที่บรรจุ	ความดัน (mmHg)	อุณหภูมิ (°C)
А	H ₂	760	25.0
В	Cl ₂	380	25.0
С	NO ₂	190	25.0

ข้อความต่อไปนี้ ข้อใดถูก

- ก. พลังงานจลน์รวมของแก๊สในขวด A > B > C
- ข. อัตราเร็วเฉลี่ยของอนุภาคแก๊สในขวด A = B = C
- ค. พลังงานจลน์เฉลี่ยต่อโมลของแก๊สในขวด A > B > C
- ง. ความถี่ที่อนุภาคแก๊สชนกับผนังภาชนะในขวด A > C > B

- 59. ตัวอย่างอากาศในข้อใดควรมีอัตราการแพร่ผ่านสูงที่สุด
 - ก. อากาศแห้ง

- ข. อากาศจากท่อไอเสียรถยนต์
- ค. อากาศที่มีความชื้นสัมพัทธ์ 95%
- ง. อากาศที่มีฝุ่น PM 2.5 ในปริมาณสูง
- 60. แก๊สผสมของแก๊ส O และแก๊ส ซึ่งมีอัตราส่วนจำนวนอนุภาคเป็น 1 : 1 แพร่ผ่านรูเล็ก ๆ รูหนึ่ง ดังรูป

ก่อนการแพร่ผ่าน

หลังการแพร่ผ่าน

กำหนดให้ แก๊ส ● มีมวลต่อโมลเท่ากับ 32 g/mol มวลต่อโมลของแก๊ส O เป็นเท่าใดในหน่วย g/mol ก. 14 ข. 21 ค. 48 ง. 72

ส่วนที่ II. ข้อสอบอัตนัยแบบเขียนตอบ จำนวน 15 ข้อ ข้อละ 2 คะแนน รวม 30 คะแนน เขียนคำตอบลงในช่องว่างที่กำหนดให้ในกระดาษคำตอบ

- 61. ของเหลวชนิดหนึ่งมีความหนาแน่น 1.20 kg/L ถ้านำของเหลวนี้มา 190.0 cm³ ผสมกับของแข็ง 22.0 g พบว่า ของแข็งนี้ละลายได้อย่างสมบูรณ์ในของเหลวโดยไม่เกิดปฏิกิริยา และปริมาตรของสารละลายที่ได้เพิ่มขึ้นเป็น 200.0 cm³ ความหนาแน่นของสารละลายนี้เป็นเท่าใดในหน่วย kg/m³ (คำตอบต้องระบุเลขนัยสำคัญให้ ชัดเจน)
- **62.** R เป็นธาตุอโลหะในคาบที่ 3 ซึ่งเมื่อเกิดการเผาไหม้ในอากาศจะได้สารประกอบออกไซด์ที่มีสูตรเคมีเป็น R_2O_5
 - 62.1 เขียนการจัดเรียงอิเล็กตรอนของ R ในสถานะพื้น
 - 62.2 เขียนสูตรเคมีของสารประกอบไอออนิกระหว่าง $_{20}{\rm Ca}$ กับ R
- 63. Pb-204 เป็นธาตุกัมมันตรังสี สลายตัวได้ตามสมการ

$$^{204}_{82}$$
Pb $\rightarrow ^{200}_{80}$ Hg + $^{4}_{2}$ He

มีครึ่งชีวิต 10 วัน ถ้าเริ่มต้นจากวัตถุก้อนหนึ่งที่เป็น Pb-204 มวล 204 g เมื่อเวลาผ่านไปกี่วัน มวลของวัตถุ ก้อนนี้จะลดลงเป็น 201 g

กำหนดให้ มวลอะตอมของไอโซโทป 204 Pb = 204, 200 Hg = 200

- 64. ธาตุ A พบเป็นกากของเสียอันตรายจากการทำเหมืองและผลิตโลหะสังกะสี แต่มีการนำไปใช้ประโยชน์ใน อุตสาหกรรมจำนวนมาก เช่น การชุบเคลือบโลหะ การทำโลหะผสมกันสนิม การผลิตชิ้นส่วนอุปกรณ์ไฟฟ้า ธาตุ A-112 อยู่ในคาบที่ 5 และอยู่หมู่เดียวกับธาตุที่มีเลขอะตอมเท่ากับ 30
 - 64.1 ธาตุ A นี้มีเลขอะตอมเท่าใด
 - 64.2 เขียนสูตรเคมีของสารประกอบระหว่างธาตุ A กับ $_{16}{\rm S}$

65. การเกิดสารประกอบโพแทสเซียมซัลไฟด์จำนวน 1 โมล จากธาตุโพแทสเซียมและกำมะถัน (S₈) มีพลังงาน เกี่ยวข้องดังตาราง

พลังงานที่เกี่ยวข้อง	ค่าพลังงาน (kJ/mol)
พลังงานไอออไนเซชันลำดับที่ 1 ของ K	а
พลังงานไอออไนเซชันลำดับที่ 2 ของ K	b
สัมพรรคภาพอิเล็กตรอนของ S : S $^-$ → S + e $^-$	С
สัมพรรคภาพอิเล็กตรอนของ S⁻: S²- \rightarrow S⁻ + e⁻	d
พลังงานการระเหิดของ K	е
พลังงานการระเหิดของ $S:S_8(s) o S_8(g)$	f
พลังงานพันธะของ S-S	g
พลังงานการเกิดของโพแทสเซียมซัลไฟด์	h
พลังงานแลตทิชของโพแทสเซียมซัลไฟด์	i

กำหนดให้ โมเลกุลของกำมะถัน S₈ มีอะตอมสร้างพันธะต่อกันเป็นวง พลังงานแลตทิช (lattice energy) ของโพแทสเซียมซัลไฟด์ (i) มีค่าเท่าใดในหน่วย kJ/mol

66. กำหนดให้ ธาตุ A, D, E และ G มีเลขอะตอม 6, 15, 16 และ 54 ตามลำดับ สารประกอบโคเวเลนต์ที่มีธาตุเหล่านี้เป็นอะตอมกลางดังแสดง มีมุมพันธะเปรียบเทียบกันเป็นอย่างไร

$$H_2AO$$
 DCl₃ EF₆ GF₂

67. กำหนดพลังงานพันธะดังนี้

พันธะ	C-C	C=C	C≡C	C–H	Cl-Cl
พลังงาน (kJ/mol)	346	614	839	414	242

แก๊สอะเซทิลีนทำปฏิกิริยากับแก๊สคลอรีนดังนี้

$$C_2H_2(g) + Cl_2(g) \longrightarrow C_2H_2Cl_4(g)$$
 (สมการยังไม่ดุล)

ปฏิกิริยานี้คายพลังงาน 331 kJ/mol ของ C_2H_2 พลังงานพันธะ C–Cl มีค่าเท่าใดในหน่วย kJ/mol

- 68. ธาตุไฮโดรเจนมีไอโซโทปหลักคือ ไฮโดรเจน (¹H: 99.985%) และดิวทีเรียม (D, ²H: 0.015%) ในน้ำปริมาตร 360 mL มีจำนวนอะตอม D เป็นเท่าใด ถ้าน้ำอยู่ในรูป H₂O และ D₂O เท่านั้น
- **69.** เมื่อนำกรดอะมิโนจำเป็นชนิดหนึ่งซึ่งประกอบด้วยธาตุ C, H, N และ O เท่านั้น มา 1.46 g แล้วเผาไหม้อย่าง สมบูรณ์ ได้แก๊สคาร์บอนไดออกไซด์ 2.64 g ไอน้ำ 0.72 g และแก๊สแอมโมเนีย 0.34 g เขียนสูตรเอมพิริคัลของ กรดอะมิโนนี้

- 70. ในการวิเคราะห์สารตัวอย่างหนึ่งซึ่งมี Na₃PO₄ เป็นองค์ประกอบ โดยชั่งสารตัวอย่างนี้มา 0.656 g ละลายในน้ำ ปรับ pH ให้เป็นกลาง แล้วนำมาทดลองตามขั้นตอนต่อไปนี้
 - I. เติมสารละลาย AgNO $_3$ เข้มข้น 0.200 M ปริมาตร 50.0 mL เกิดตะกอน Ag $_3$ PO $_4$
 - II. เมื่อปฏิกิริยาในขั้นที่ I เกิดสมบูรณ์ กรองแยกตะกอนออก แล้วล้างตะกอนด้วยน้ำกลั่น นำสารละลายที่ได้ จากการกรองและน้ำที่ล้างตะกอนมารวมกัน
 - III. สารละลายที่ได้จากขั้นที่ II ทำปฏิกิริยาพอดีกับสารละลาย KSCN เข้มข้น 0.100 M ปริมาตร 40.0 mL ปฏิกิริยาที่เกิดขึ้นเป็นดังนี้

$$Ag^+ + SCN^- \longrightarrow AgSCN(s)$$

ร้อยละโดยมวลของ Na₃PO₄ ในสารตัวอย่างนี้เป็นเท่าใด

- 71. การหาปริมาณออกซิเจนที่ละลายในน้ำ (dissolved oxygen, DO) ทำได้ดังนี้
 - I. เก็บน้ำตัวอย่างให้เต็มขวดที่ปิดสนิทขนาด 250 mL เติมสารละลาย MnSO₄ ลงในน้ำตัวอย่าง ตามด้วย สารละลาย KI ในภาวะเบส ปิดฝาขวด เกิดปฏิกิริยาดังสมการ (1)
 - แขย่าขวดอย่างแรงเพื่อให้ออกซิเจนที่ละลายในน้ำทั้งหมดทำปฏิกิริยากับ Mn(OH)₂ ดังสมการ (2) ตั้งทิ้งไว้ให้
 ตะกอนนอนกัน ได้สารละลายใสด้านบนประมาณ 1/3 ของขวด
 - III. เติมกรดซัลฟิวริกเข้มข้น ปิดฝาขวด แล้วเขย่าให้สารละลายผสมกัน เกิดปฏิกิริยาดังสมการ (3)
 - IV. ปีเปตต์สารละลายจากข้อ III ปริมาตร 25.00 mL มาทำปฏิกิริยากับสารละลาย $Na_2S_2O_3$ เข้มข้น 0.0050 M ดังสมการ (4) พบว่า ต้องใช้สารละลาย $Na_2S_2O_3$ ปริมาตร 5.00 mL จึงจะทำปฏิกิริยาพอดี

$$Mn^{2+} + 2OH^{-} \longrightarrow Mn(OH)_{2}$$
 (1)

$$2Mn(OH)_2 + O_2 \longrightarrow 2MnO_2 + 2H_2O$$
 (2)

$$MnO_2 + 2l^- + 4H^+ \longrightarrow Mn^{2+} + l_2 + 2H_2O$$
 (3)

$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^- \tag{4}$$

ปริมาณออกซิเจนที่ละลายในน้ำตัวอย่างในหน่วย mg/L เป็นเท่าใด กำหนดให้ การเติมสารละลายต่าง ๆ ลงในน้ำตัวอย่างไม่ทำให้ปริมาตรน้ำตัวอย่างเปลี่ยนแปลง

72. เมื่อแก๊สโบรมีนกับแก๊สฟลูออรีนจำนวนโมลเท่ากัน ทำปฏิกิริยากันในภาชนะที่มีปริมาตรคงที่ ณ อุณหภูมิ 150°C พบว่า ได้ผลิตภัณฑ์ที่เป็นแก๊สเพียงชนิดเดียว และความดันภายในภาชนะหลังจากปฏิกิริยาสิ้นสุดลดลง เหลือเพียง 60% ของความดันเริ่มต้น เขียนสูตรเอมพิริคัลของสารผลิตภัณฑ์ 73. เอทิลีนไกลคอล (HOCH₂CH₂OH, 62 g/mol) เป็นของเหลวไม่มีสี มีจุดเดือด 197.3 °C และมีความหนาแน่น
 1.11 g/mL นิยมใช้เป็นสารหล่อเย็นในหม้อน้ำรถยนต์โดยผสมเอทิลีนไกลคอลกับน้ำในอัตราส่วน 1 : 1 โดย ปริมาตร
 กำหนดให้

สาร	จุดเดือด (°C)	K _b (°C/m)	จุดเยือกแข็ง (°C)	<i>K_f</i> (°C/m)
น้ำ	100.0	0.51	0.0	1.86
เอทิลีนไกลคอล	197.3	2.26	−12.7	3.11

- 73.1 สารละลายที่ได้จากการผสมเอทิลีนไกลคอลกับน้ำในอัตราส่วน 1 : 1 โดยปริมาตร ปริมาตร 100 mL สารใดเป็นตัวละลาย
- 73.2 สารละลายนี้มีจุดเดือดกี่องศาเซลเซียส
- 74. บอลลูนอากาศร้อน (hot-air balloon) จะสามารถบรรทุกน้ำหนักได้เท่ากับมวลของอากาศในบอลลูนที่ลดลง หลังจากถูกแทนที่ด้วยอากาศร้อน บอลลูนขนาดเส้นผ่านศูนย์กลาง 12.4 m (ปริมาตร 990 m³) ที่บรรจุอากาศ ร้อนอุณหภูมิ 57 °C ซึ่งจำเป็นต้องลอยอยู่ในระดับความสูงที่มีความดัน 0.82 atm และอุณหภูมิภายนอก 24 °C จะสามารถบรรทุกน้ำหนักได้สูงสุดกี่กิโลกรัม กำหนดให้ มวลต่อโมลเฉลี่ยของอากาศเท่ากับ 30 g/mol
- 75. ขวดแก้วที่แสดงในภาพเชื่อมต่อกับปั้มดูดอากาศ ทำให้ภายในขวดเป็น สุญญากาศ เมื่อนำเข็มฉีดยาดูดแก๊สออกซิเจนบริสุทธิ์ ความดัน 1 atm ปริมาตร 50.0 mL แล้วปักลงไปในขวดสุญญากาศดังกล่าวเป็นเวลา 1 นาที พบว่า แก๊สในกระบอกฉีดยามีปริมาตรเหลือเพียง 11.5 mL และเมื่อทำการ ทดลองอีกครั้งโดยใช้แก๊สผสมระหว่างออกซิเจนกับโอโซนที่ความดันและ ปริมาตรเดียวกัน พบว่า หลังจากผ่านไป 1 นาที แก๊สในกระบอกฉีดยามี ปริมาตรเหลือ 15.0 mL ความดันย่อยของโอโซนในแก๊สผสมเป็นกี่ บรรยากาศ

กระดาษคำตอบข้อสอบอัตนัยแบบเขียนตอบ วิชาเคมี

ชื่อ-นามสกุล	เลขประจำตัวสอบ
สถานที่สอบ	ห้องสอบ
สอบวันอาทิตย์ที่ 25 สิงหาคม 2567	เวลา 13.00 – 16.00 น.

a o o o o do ov			คะแนน	
เขียนคำตอบลงในช่องว่างที่กำหนดให้		เต็ม	ที่ได้	
61.	ความหนาแน่นของสารละลาย =kg/m³	2		
	(ตอบโดยระบุเลขนัยสำคัญให้ชัดเจน)			
62.	62.1 การจัดเรียงอิเล็กตรอนของธาตุ R คือ	1		
	62.2 สูตรเคมีของสารประกอบระหว่าง Ca กับ R คือ	1		
63.	มวลของวัตถุจะลดลงเป็น 201 g เมื่อเวลาผ่านไป	2		
64.	64.1 ธาตุ A นี้มีเลขอะตอม =	1		
	64.2 สูตรเคมีของสารประกอบระหว่างธาตุ A กับ S คือ	1		
65.	พลังงานแลตทิช (i) =kJ/mol	2		
66.	มุมพันธะของโมเลกุล>>>	2		
67.	พลังงานพันธะ C-Cl = kJ/mol	2		
68.	จำนวนอะตอม D ในน้ำ =	2		

ชื่อ-นามสกุล	เลขประจำตัวสอบ	
--------------	----------------	--

		คะแนน	
		เต็ม	ที่ได้
69.	สูตรเอมพิริคัลของกรดอะมิโนนี้ คือ	2	
70.	ร้อยละโดยมวลของ Na ₃ PO ₄ =(ตอบเป็นจำนวนเต็ม)	2	
71.	ปริมาณออกซิเจนที่ละลายในน้ำตัวอย่าง =mg/L (ตอบเลขนัยสำคัญ 2 ตัว)	2	
72.	สูตรเอมพิริคัลของสารผลิตภัณฑ์ คือ	2	
73.	73.1 ตัวละลายคือ 🗖 เอทิลีนไกลคอล 🗖 น้ำ (ทำเครื่องหมาย 🗸 ใน 🗖 หน้าสารที่เลือก)	0.5	
	73.2 จุดเดือดของสารละลาย =°C (ตอบทศนิยม 1 ตำแหน่ง)	1.5	
74.	น้ำหนักสูงสุดที่บอลลูนจะบรรทุกได้ =kg	2	
75.	ความดันย่อยของโอโซน =atm (ตอบทศนิยม 2 ตำแหน่ง)	2	
	รวม	30	
