Un A-espai (o espai d'Alexandroff) és un espai topològic en el qual les interseccions arbitràries d'oberts són obertes.

- 1. Exemples d'A-espais.
 - (a) Proveu que els espais topològics finits són A-espais.
 - (b) Proveu que els espais topològics localment finits són A-espais.
 - (c) Sigui P un conjunt no buit $y \le un$ preordre en P. Demostreu els següents enunciats:
 - i. La familia $\{U_x\}_{x\in P}$ definida per:

$$U_x := \{ y \in P \mid y \le x \}$$

genera una topologia a P.

- ii. El conjunt P amb aquesta topologia és un espai d'Alexandroff.
- iii. A més, si \leq és un ordre parcial, llavors P és un espai topològic amb la propietat T_0 (és a dir, donats $p \neq q \in P$, existeix un obert $U \subset P$ tal que $p \in U$ i $q \in P \setminus U$).
- Descriviu la topologia associada als següents posets (conjunts parcialment ordenats on les línies verticals indiquen la relació ≤ de baix a dalt):

- 3. Sigui X un A-espai. Donat un subconjunt $A \subseteq X$, definim l'embolcall obert d'A, denotem per U(A), com l'intersecció de tots els oberts que contenen A. Proveu que:
 - (a) U(A) és obert, i si $A \subset V$ on V és obert aleshores $U(A) \subset V$. Per tant, U(A) és l'obert més petit que conté el subconjunt A.
 - (b) És certa la propietat anterior si X no és un A-espai? doneu un exemple.
 - (c) Els oberts $U_x := U(\{x\})$ per tot $x \in X$ defineixen una base per la topologia d'X.
- 4. Sigui X un A-espai. Definim la següent relació a X: $x \le y$ sii $x \in U_y$ (i.e. $U_x \subseteq U_y$). Diem que x < y si $x \le y$ i $x \ne y$. Proveu que és un preordre (és a dir, una relació transitiva i reflexiva). És antisimètrica en general?

- 5. Sigui $X = \{a, b, c, d\}$ i $\tau = \{\emptyset, X, \{a, b, c\}, \{b\}, \{c\}, \{d, c, b\}\}\}$. Demostre que τ és una topologia, amb la qual X és un A-espai i dibuixeu el poset associat segons la relació de l'anterior apartat.
- 6. Sigui (X, \leq) un conjunt amb un preordre. Dotem a X amb la topologia generada pels subconjunts $U_x = \{y \in X | y \leq x\}$ per tot $x \in X$. Proveu que X (amb aquesta topologia) és un A-espai i que U_x és l'embolcall obert d'x.
- 7. Sigui X un A-espai amb la propietat de Hausdorff. Què podem dir de la topologia d'X?