DLMF LATEX Guide

Bruce R. Miller

Email: bruce.miller@nist.gov

June 21, 2013

1 Introduction

We have chosen LaTeX (specifically LaTeX2e) as the primary format for accepting material because of its familiarity and its expressiveness, particularly for mathematics.

However, given the effort and expense involved in collecting information for the DLMF, it behooves us to assure a long life for this material and that it be usable in a wide variety of ways. This material will not simply be typeset for printing. It will be targeted at other media (e.g. the Web, CD-ROM); rendered in various representations (e.g. HTML, XML, PDF, MATHML) and in different formats (e.g. single and double column, differing page sizes), and even reassembled into virtual documents. Consequently, we focus on *logical* markup rather than detailed *presentation* markup; presentation issues will be dealt with inside the document class itself.

In general, we have attempted to keep as close to standard LATEX practices as possible, and to base the DLMF document class on the article class. Wherever possible, we have redefined the existing markup to fulfill the needs of this project. New macros have been defined to minimize ambiguities in the logical intent of the markup.

General issues of content, style and organization are discussed in the Authors Guide. This guide focuses on the LATEX markup we employ. Also consult the sample chapter on Airy functions (Chapter AI) to see these ideas in practice. The complete package of DLMF style files, along with examples and other supplementary materials, is available for download (See Appendix A).

2 Document Structure

Each chapter can be processed as a stand-alone LATEX document, using the DLMF document class. The first line of your document should contain

\documentclass[option,...]{DLMF}

(the brackets can be omitted if no class options are used; see Table 1).

Table 1: DLMF Document class options.

twocolumn For two column printing (the default).

onecolumn For single column printing.

annotated For editorial/proofreading purposes; displays the main material in the left column and all meta information in the right column, roughly aligned with the material it corresponds to.

print Prepare the document in its print form, excluding material that is marked for electronic formats only (see § 2.5).

electronic Prepare the document in its electronic form, excluding material that is marked for print formats only (see § 2.5). Note that this does not mean you cannot print the document.

The default is to include both sets of material, print and electronic, with marginal markings along each block indicating the type.

noindex Disables printing of the keyword index at the end of the chapter (see § 5). nometa Disables printing a listing of metadata at the end of the chapter (see § 5).

This document class is an extension of the article class, and includes various other standard \LaTeX packages (See Appendix A).

2.1 Frontmatter

The Frontmatter commands for establishing author, title, etc. are listed in Table 2 (motivated by the RevTeX4 package). Multiple authors are specified by separate \author mark-up rather than combining them with \and. The additional mark-up for affiliation, etc., apply to the preceding author. Additionally, the macros \email and \URL (see § 5), may be useful to provide additional contact information; these should be placed inside the affiliation or acknowledgements text, as appropriate.

The title page for each chapter is produced by \maketitle. It will include an automatically generated table of contents for the chapter. Additionally, a 'gallery' of eye-catching but relevant images related to the subject at hand may be supplied. [Each can have a brief separately supplied text describing the relevance of the image to the subject.] See Chapter AI for an example.

2.2 Sectioning Commands

Sections are marked up in usual IATEX fashion, but note that we are also using the \part command for the major subdivisions of each chapter. See the Authors Guide and Chapter AI for guidance. For example, the AI chapter specifies Mathematical Properties, Applications, Computation, and References as parts.

Table 2: Frontmatter commands.

 $\verb|\thischapter| \{\textit{chapcode}\}| \ \text{Identifies the chapter. (see the Authors Guide, Appendix)}|$

 $\forall title{title}$ Gives the chapter title.

\author{author} Gives a single author.

 $\{text\}$ Gives author's affiliation.

\acknowledgements{text} Gives additional information.

\galleryitem{name}{file} Specifies a gallery item. The name provides a mechanism to link to a secondary web page describing the image and its relation to the subject. The file is the filename of an image (passed to \includegraphics).

Table 3: The structure of internal identifiers.								
Entity	Identifier	Notes						
Chapter	ch: CH	CH is the chapter code; See the Appendix of the Authors guide.						
Part	$\mathtt{pt} : \mathit{CH}.\mathit{PT}$	PT is the code for the part.						
Section	$\verb"sec": CH.SC"$	SC is the code for the section.						
Subsection	$\verb"sec: CH.SC.SS"$	SS is the code for the subsection.						
Equation	$\mathtt{eq:}\mathit{CH.SC.EQ}$	EQ is the code for the equation.						
Figure	$\mathtt{fig} \colon CH.SC.FG$	FG is the code for the figure.						
Table	$\mathtt{tab} \colon CH.SC.TB$	TB is the code for the table.						

2.3 Labels

Every entity that might be referenced, such as sections, equations, figures or tables, should have a symbolic identifier assigned using \label{id}. For example,

\section{Notation}\label{sec:AI.RX}

This symbolic identifier (eg. sec:AI.RX) will be the permanent internal ID to locate various entities in the database. (The \ref{id} command is used within documents to refer to an entity.)

The structure of identifiers to be used in the DLMF is given in Table 3. It reflects the numbering of equations, figures and tables within each section. A table of metadata, normally printed at the end of the chapter, is helpful for checking what ID is associated with which equation number.

Most codes in the table may be chosen freely, but should be short and be unique within the containing unit.

2.4 Column Layout

The material may be formatted in either one or two column formats. We have adapted the multicol package to fulfill this need. Certain parts, such as front-matter, title pages and so on, are arranged to work consistently in either form, and most material will also work in either form. However, occasional blocks of material may require special treatment when in two column mode, such as a particularly wide table, or a formula that can not be broken to fit into a narrow column (see comments in § 3.2 below). In those cases, we provide an environment to process the contained material in one column mode, set off from adjacent material by horizontal rules:

```
\begin{onecolumn}
    ...
\end{onecolumn}
```

This environment has no effect if processing is already in one column mode. It should be used only at 'top-level', that is not contained within any other environment (other than document). It can contain a whole sectional unit if needed.

2.5 Electronic versus Print formats

Some material is intended only for electronic versions of the document (such as the Software section), or only for printed versions. This material is indicated by including it within one of the following environments:

```
\begin{printonly}
  This material will only appear in print versions.
\end{printonly}
\begin{electroniconly}
  This material will only appear in electronic versions.
\end{electroniconly}
```

Note that the \begin and \end commands for these environments must appear on a line by themselves, with no leading space. Avoid using these environments in situations where their inclusion or omission will alter the numbering of neighboring elements outside the environment.

The printonly and electroniconly environments wrap paragraph material. For short phrases, the macros \onlyprint{text} and \onlyelectronic{text} may be used.

The print and electronic document options (Table 1) are used to select the format used. When references and citations appear in an excluded block, changing these options may require re-running BibTEX and LATEX to get the cross references correct.

3 Mathematics Mark-up

The DLMF styles include certain AMS packages such as amsmath and amsfonts, and so the mathematical markup from these packages is available for use. However, please do not use the exotic formatting environments defined by the AMS packages; we have incorporated Michael Downes' breqn package which provides automatic line breaking for mathematical formulas. See § 3.2 for discussion of the math environments.

In order to provide consistent presentation of mathematical formulas, and to reduce ambiguities in the mathematical meaning, several higher level macros are defined. These are listed in \S 3.3 and \S 3.4. Please use these macros when they convey the mathematical intent.

3.1 Bracketing

Unless conventions dictate use of braces or brackets, properly sized parentheses are to be used. (The commands \left(, \right), \left\{, ... are used to get proper sizing.)

3.2 Displayed Equations

The breqn package for displaying mathematics automatically breaks and aligns formulas into multiple lines according to the column width. This eliminates confusing presentation mark-up for manually breaking the formula and allows the input to be more concise, semantic and readable. Line breaking and alignment hints can still be given, however, and in some cases may be needed.

In most cases, the standard LATEX equation environment is all that is required. The following formula demonstrates the environment as well as the use of the \constraint command and other metadata (See § 5) in formulas.

```
\label{eq:AI.AS.AI} $$ \left(z\right) \simeq \frac{e^{-\zeta_{2\varepsilon_{3}}}{2\sqrt{\pi^{1/4}}} \sup_{s=0}^{\inf y}\operatorname{s}^{1/4}} \sum_{s=0}^{\inf y}\operatorname{s}^{1/4}} \sum_{s=0}^{\inf y}\operatorname{s}^{1/4}} \subset \{s=0\}^{i}. $$ \operatorname{See } eqref{eq:AI.AS.Z} for $\zeta_{i} \ \end{equation} $$ \left(s=0\right)^{i}. $$ \left(s=0\right)^{i
```

produces

AI.7.2
$$\operatorname{Ai}(z) \sim \frac{e^{-\zeta}}{2\sqrt{\pi}z^{1/4}} \sum_{s=0}^{\infty} (-1)^s \frac{u_s}{\zeta^s}, \qquad |\operatorname{ph} z| < \pi.$$

Groups of related equations can be grouped more tightly and aligned by wrapping an equationgroup environment around the set of equations. (Note that alignment is not yet implemented).

\begin{equationgroup}

```
\begin{equation}\label{eq:AI.DE.A0}
\AiryAi(0)=\frac{1}{3^{2/3}\Gamma(\tfrac{2}{3}))}=0.35502\;80539
\origref[with more digits]{10.4.4},
\end{equation}
\begin{equation}\label{eq:AI.DE.AP0}
\AiryAi'(0)=-\frac{1}{3^{1/3}\Gamma(\tfrac{1}{3})}=-0.25881\;94038
\origref[with more digits]{10.4.5},
\end{equation}
\end{equation}
\end{equationgroup}
```

produces

AI.2.3
$$\operatorname{Ai}(0) = \frac{1}{3^{2/3}\Gamma(\frac{2}{3})} = 0.35502\ 80539$$

$$\operatorname{AI.2.4} \qquad \operatorname{Ai}'(0) = -\frac{1}{3^{1/3}\Gamma(\frac{1}{2})} = -0.25881\ 94038$$

The equationmix environment is useful for a collection of short formulas (possibly interspersed with text) that only warrant a single label ¹. Not only does this environment indicate that there are several formulas included, it changes the line breaking method so that breaks occur between formulas, rather than at relations or operators.

produces

AI.7.1
$$\zeta = \frac{2}{3}z^{3/2}, \quad u_0 = 1, \quad v_0 = 1,$$
$$u_s = \frac{(2s+1)(2s+3)(2s+5)\cdots(6s-1)}{(216)^s s!},$$
$$v_s = -\frac{6s+1}{6s-1}u_s.$$

Unnumbered equations are obtained using the 'starred' versions of the above environments, eg. \begin{equation*} ...\end{equation*}. Unnumbered equations should be used very sparingly, however.

¹In the previous version, \$ was used to delimit the formulas. We now recommend using the math environment as it allows the software to get better control on formula placement.

Formatting Strategies The breqn package generally does a good job breaking formulas at relations or binary operators. One problematic case occurs in long implied products which breqn does not know where to break. Inserting a * at reasonable places in the formula suggests a break point; if the formula ends up broken at that point the broken line will end with a × symbol to clearly indicate the multiplication.

Other strategies will be documented here when discovered.

3.3 Mathematical Constructs

The mathematical macros in this section are defined in AMS or DLMF style packages. The appearance produced by each of these macros may be changed, subject to consensus among the editors, but the macros should be used for their semantic intent.

Table 4:	Types and	Constants	Markup.
----------	-----------	-----------	---------

Macro	Example	Result
\Real	\Real	\mathbb{R}
\Complex	\Complex	\mathbb{C}
\NatNumber	\NatNumber	\mathbb{N}
\Integer	\Integer	\mathbb{Z}
\PosInteger	\PosInteger	\mathbb{Z}^+
\NonNegInteger	\NonNegInteger	\mathbb{Z}^*
\Rational	\Rational	\mathbb{Q}
\Polynomial	\Polynomial	\mathbb{P}
\iunit	\iunit	i
\expe	\expe	e
\cpi	\cpi	π
\EulerConstant	\EulerConstant	γ
$\verb \BoltzmannConstant $	$\verb \BoltzmannConstant $	k

A variant of the scientific notation macro \Sci shown in Table 5 assists in aligning numbers in tables. The numbers are aligned on the decimal point. For this to work, you need to allocate two columns for the number, using the pattern $r@{}$ 1. For example,

\begin{tabular}{lr@{}1}

a & \TSci{1.234}{5}\\ b & \TSci{0.123}{-4}\\ \Rightarrow a 12.34×10^5 b $0.123 \times 10^-$

\end{tabular}

For more complicated derivatives than those presented in Table 7, consider a form such as \frac{\pdiff[3]{f}}{\pdiff{x}\pdiff{y}^2}.

	Table 5: Other Basic Mathematics Markup.	
Macro	Example	Result
\realpart	\realpart{z}	$\Re z$
\imagpart	\imagpart{z}	$\Im z$
\sign	\sign(x)	sign(x)
\abs	\abs(x)	x
\floor	\floor{\ifrac{A}{B}}	$\lfloor A/B \rfloor$
\ceiling	\ceiling{\ifrac{A}{B}}	$\lceil A/B \rceil$
\divides	a \divides b	$a \mid b$
\opminus	\opminus^{p}	$(-1)^{p}$
\frac	\frac{a}{b}	$\frac{a}{b}$
\tfrac	\tfrac{a}{b}	$\frac{a}{b}$
\ifrac	\ifrac{a}{b}	a/b
\cfrac	$b_0+\cfrac\{a_1\}\{b_1+\cfrac\{a_2\}\{b_2+\cdots\}\}$	
	b_0 +	$-\frac{a_1}{b_1+}\frac{a_2}{b_2+}\cdots$
	$\label{lem:cfrac} $$ \cfracstyle{d} b_0+\cfrac{a_1}{b_1+\cfrac{a_2}{a_1}} $$$	}{b_2+\cdots}}
	b_0	$a_1 + \frac{a_1}{a_1}$
		$b_1 + \frac{a_2}{b_2 + \cdots}$
\midvert	$\label{left(frac{A}{B}\midvert \frac{Q}{R}\right)} % \label{left(frac{A}{B}\midvert \frac{Q}{R}\midvert \frac{Q}{R}\right)} % \label{left(frac{A}{B}\midvert \frac{Q}{R}\midvert \frac{Q}{R}\right)} % \label{left(frac{A}{B}\midvert \frac{Q}{R}\midvert \frac{Q}{$	$\frac{b_1 + \frac{a_2}{b_2 + \cdots}}{\left(\frac{A}{B} \middle \frac{Q}{R}\right)}$
\midVert	$\label{left(frac{A}{B}\subset \frac{Q}{R}\to \frac{Q}{R}\to 0.$	$\left(\frac{A}{B} \left\ \frac{Q}{R} \right) \right.$
\Sci	\Sci{1.234}{5}	1.234×10^{5}

Macro	Example	Result
\binom	\binom{a}{b}	$\begin{pmatrix} a \\ b \end{pmatrix}$
\tbinom	\tbinom{a}{b}	$\binom{a}{b}$
\multinomial	$\label{local_n_1, n_2, ldots, n_m} $$ \mbox{multinomial}_n, n_1, n_2, n_m$$$	$\binom{n}{n_1, n_2 \dots, n_m}$
\pochhammer	\pochhammer{n}{m}	$(n)_m$
\psfactorial	\psfactorial{a}{\kappa}	$[a]_{\kappa}$
\wigner	$\displaystyle \sum_{j_1}_{j_2}_{m_1}_{m_2}_{j}_{m}$	$(j_1 \ j_2 \ m_1 \ m_2 j_1 \ m_1 \ j \ m$
\qFactorial	$\qFactorial{a}{q}{n}$	$(a;q)_n$
\qBinomial	$\qbel{limit} $$ \qbelow{$n}^{q} = {n}^{q}$$	$\begin{bmatrix} n \\ m \end{bmatrix}_q$
\pgcd	\pgcd{a_1,\ldots,a_n}	(a_1,\ldots,a_n)

Macro	Example	Result
\deriv	\deriv{f}{x}	$\frac{df}{dx}$
	$\displaystyle \operatorname{deriv}\{x\}$	$\frac{\overline{dx}}{dx}$
	$\deriv[n]{f}{x}$	$\frac{\overline{dx}}{d^n f} f$ $\frac{d^n f}{dx^n}$ $\frac{d^n f}{dx^n}$
\tderiv	$\text{tderiv[n]{f}{x}}$	$\frac{d^n f}{dx^n}$
\ideriv	$\left[n\right]_{f}\left[x\right]$	$d^n f/dx^n$
\pderiv	$\pderiv[n]{f}{x}$	$\frac{\partial^n f}{\partial x^n}_{\frac{\partial^n f}{\partial x^n}}$
\tpderiv	$\t [n]{f}{x}$	$\frac{\partial^n f}{\partial x^n}$
\ipderiv	$\displaystyle \prod_{f}_{x}$	$\partial^n f/\partial x^n$
\Deriv	\Deriv{z}	D_z
	\Deriv[n]{z}	D_z^n
\qDeriv	\q Deriv[n]{q}{z}	$D_{q,z}^n$

Macro	Example	Result
\diff	\diff{x}	dx
	\diff[2]{x}	d^2x
	\int f \diff{x}	$\int f dx$
\pdiff{x}	\pdiff[2]{x}	$\partial^2 x$
\qdiff	$\qquad \qquad $	$d_q^n x$
\fDiff	\fDiff[z]	Δ_z
\bDiff	\bDiff[z]	$ abla_z$
\cDiff	\cDiff[z]	δ_z
\int	\int f\diff{x}	$\int_{a} f dx$
\iint	<pre>\iint f\diff{x}\diff{y}</pre>	$\iint fdxdy$
\iiint	$\label{limit} $$ \iff{x}\left(f(y)\right) = f(z) .$	$\iiint fdxdydz$
\iiiint	$\label{limint formula} $$ \iff f(u) \left(\frac{x} \right) f(z) $$$	$\iiint \int f du dx dy dz$ $\int \cdots \int f dx_1 \cdots dx_r$
\idotsint	$\label{limited} $$ \idotsint f\left(x_1\right) \cdot \left(x_n\right) $$$	$\int \cdots \int f dx_1 \cdots dx_r$
\pvint	\pvint_0^\infty f\diff{x}	$\int_0^\infty f dx$
\oint	\oint f\diff{x}	$\oint f dx$
\Residue	\Residue_{z=a}\{f\}	$\operatorname{res}_{z=a}\{f\}$

Macro	Example	Result
\Vector	\Vector{V}	V
\Matrix	\Matrix{M}	\mathbf{M}
\transpose	\transpose{\Matrix{X}}	\mathbf{X}^{T}
\trace	<pre>\trace \Matrix{X}</pre>	$\operatorname{tr} \mathbf{X}$
\diag	<pre>\diag \Matrix{X}</pre>	$\operatorname{diag} X$
\divergence	\divergence \Vector{f}	$\operatorname{div} \mathbf{f}$
\gradient	\gradient f	$\operatorname{grad} f$
\curl	\curl \Vector{f}	$\operatorname{curl} \mathbf{f}$
\card	\card{\mathcal{S}}	$ \mathcal{S} $

3.4 Special Functions

The presentation used for special functions is often rather quirky, both hard to type, and hard to read (at least mechanically; by a parser attempting to recognize the semantics). To simplify typing manuscripts while achieving consistent formatting, and (hopefully) still having a chance of automatic conversion to XML, we have defined LATEX macros for each of the special functions.

We make a distinction between 'naming' a function, and 'evaluating' it, as in

$$J_{\nu}$$
 vs. $J_{\nu}(x)$.

We make a corresponding (if slightly artificial) distinction between a special function's parameters (the various sub- and super-scripts and other decorations that help 'name' the function) and it's arguments (the list of quantities, generally comma separated, that follow the function name). The macro's arguments are the special function's parameters (if any). When simply naming the function, one would write the macro name and the parameters, as in:

\BesselJ{\nu}
$$o J_{
u}$$

When the arguments are also desired, they are introduced by following the name with @ and then each of the arguments within braces {}, as in:

\BesselJ{\nu}@{x}
$$o J_{
u}(x)$$

For a mnemonic, think of the function 'at' a value.

A few other special cases are covered as well. We might consider the Legendre function to have an optional parameter, as such:

```
\label{legendreP} $$ LegendreP[\nu]@{z} \to P_{\nu}(z) $$ LegendreP[\nu]{\nu}@{z} \to P_{\nu}^{\mu}(z) $$
```

Often it is prefered to place primes or powers on the function before the argument list. The special function macros accommodate most sensible forms:

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Primes and powers are also allowed on functions that have optional superscripts, like \LegendreP, but only in the case where the optional superscript is omitted:

\LegendreP{\nu}'0{z}
$$\rightarrow P'_{\nu}(z)$$

Although a power would clearly be inappropriate here, since it is confusing. Where both parameters are used *and* a prime is desired, T_EX will complain of double superscripts, and so an alternative presentation should be sought.

Additionally, there are sometimes alternative ways of presenting the argument lists which are selected by using multiple **@**:

```
\begin{array}{lll} & \to & \sin(x) \\ & \to & \sin(x) \\ & \to & \sin x \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots b_q; z) \\ & \to & \mu F_q(a_1, \ldots a_p; b_1, \ldots
```

See Appendix B for a list of the predefined special function macros along with the formats of thier argument lists, and alternate forms. For any additional functions needed for a chapter, it would be helpful to define a macro for it, and to preserve this distinction between parameters and arguments. The following macro defines a special function:

$\label{lem:continuous} $$ \ensuremath{\mathtt{Gnumargs}} {\operatorname{Inumargs}} $$$

Or for a macro with a single optional parameter

 $\def SpecFun[numparams][default]{format}{numargs}$

For example, the Legendre function, \LegendreP, is defined as

$$\defSpecFun\{LegendreP\}[2][]{P^{#1}_{#2}}{1}$$

(See the file DLMFfcns.sty for further examples). The number of arguments that the function takes is indicated by *numargs*, which must be a number. If the arguments should be presented other than the default of a parenthesized list, you should place the argument format in square brackets after {numargs}.

Of course, if an important function is missing from the predefined list, please submit it to us so that it may be included.

Table 10: 3j, 6j and 9j markup. This special case markup mimics the style of the special functions; the special forms for derivatives and powers do not apply here, however.

4 Bibliographic Information

4.1 General

Bibliographies should be provided in BibTEX format, containing complete information and avoiding abbreviations, other than the journal abbreviations defined in the mrabbrev.bib (see App. A). It is convenient to use the American Mathematical Society's free mrlookup service to generate BibTEX files; see http://www.ams.org/mrlookup. See [?, App. B] and ? for more information on BibTEX.

Citation tags, like label ID's, are internal L^AT_EX identifiers. We adopt the scheme used by the BibNet project² in which the tag is of the form

FirstAuthorLastName:year:key-phrase

For example, the bibliographic tag Abramowitz:1964:HMF is used for the original NBS Handbook. The key-phrase is up to 3 upper case initial letters from the first words in the title, ignoring articles and prepositions. Spaces within an author's last name should be omitted (eg. deBoor), but hyphens should be retained; an acronym (eg. for an institutional 'author') should be given in upper case. In the rare case where more than one citation has the same key, clashes are resolved by appending a lower case letter, in sequence, to the conflicting tags.

Each chapter will have a References part. Unnumbered sections (using \section*) can be placed here. The Airy chapter, for example, contains a brief introductory paragraph along the lines of "The main references are ..." in a section "General References". It also has a section "Original References" containing an itemization (using the description environment) of the references used in each section of the body of the chapter (This information duplicates the \note metadata given in the individual sections, but will be useful for the print version).

Finally, the references themselves are included by using the \bibliography command.

4.2 Citation Macros

The DLMF class incorporates a style (natbib) that cites references by giving the author and year. See Table 11 for examples. As a general rule, all natbib citation macros take two optional arguments: a single optional argument provides 'post' text, whereas two provide both 'pre' and 'post' text. Additionally, the starred form of the macros inhibits abbreviation of multiple authors. The simpler forms (\cite, \citet or \cite) are generally to be preferred.

```
Table 11: Citation markup.
Basic citations
  \cite{Goossens:1994:LC}
  \cite[ch. 13]{Goossens:1994:LC}
                                      [?, ch. 13]
  \cite[See][ch. 13]{Goossens:1994:LC}
                                       [See ?, ch. 13]
  \cite*{Goossens:1994:LC}
  \cite{Lamport:1985:LDP,Goossens:1994:LC}
                                       ??
Textual and parenthetic citations
                                       ?
  \citet{Goossens:1994:LC}
  \citep{Goossens:1994:LC}
                                      [?]
Partial citation forms
                                       ?
  \citeauthor{Goossens:1994:LC}
  \citeauthor*{Goossens:1994:LC}
                                       ?
  \citeyear{Goossens:1994:LC}
                                       ?
  \citeyearpar{Goossens:1994:LC}
                                       [?]
```

5 Metadata

The macros in Table 12 are used to provide metadata about sections and formulas. Most produce no directly visible output, but are vital for indexing, searching and 'about pages', and should be used generously. See § 10 of the Authors Guide for further information, and the metadata index of the sample chapter for suggestions.

The previous guide defined a macro \reference for recording original sources. We currently suggest that you simply include such information in a \note.

The metadata markup should, like \label, be placed inside the body of the section, within the equation environment, or within the caption of tables or figures. Since the metadata is associated with the entity's ID, the \label command should always precede the metadata.

Another useful macro is \URL{url}, which prints a URL that, in electronic media, acts as a hyperlink to the URL. This macro also takes an optional argument which provides text to use as the printed representation of the URL (instead of printing the URL itself). Similarly, the macro \email{user@host.net} can be used to provide an email address.

By default, an index and metadata table are appended to the end of the document, but these can be disabled with the noindex and nometa document class options.

 $^{^2 {\}tt ftp://ftp.math.utah.edu/pub/bibnet/faq.html}$

Table 12: Metadata markup.

\index{keyword!...} attaches a (possibly multi-level) indexing keyword at this point; multiple levels are separated by exclamation marks. See [?, App. A] for more details.

\index*{keyword!...} defines indexing keywords for use online only; these will not be included in the printed index.

 \note{text} adds general annotation (can include citations).

\origref[comment]{label} Records the NBS Handbook reference number, with optional comment.

```
\constraint{text}
```

\constraint*{text} Notes a constraint, condition or other restriction on the validity of a formula. Normally, this constraint is printed at the end of the formula, flush right (See § 3.2). The * inhibits the display, but it is still added to the database. This should be used inside equation and equationmix environments, after the last formula, but before the last punctuation (if any) and the \end{equation}.

6 Graphics

The graphicx package is included in the DLMF class, so you may use the following macro to include an image:

```
\begin{figure}
  \centering\includegraphics[width=3.0in]{picture}
  \caption{A picture.\label{fig:AI.GR.PIC}}
\end{figure}
```

Providing the image file is of a common type (eps, pdf,...), you will not need to explicitly give the filename extension; this allows the driver to choose the most appropriate image file for processing. See the ? for more information on its capabilities.

7 Author Developed Macros

Less is better. Please use standard LATEX2e definition macros (\newcommand), rather than TEX definitions (\def).

8 Processing the LATEX files

The usual conventions for processing the document apply. Assuming your chapter were called zz.tex, you normally would run the sequence of commands:

```
latex zz
makeindex -s DLMF zz
```

```
bibtex zz.meta
bibtex zz.meta
latex zz
latex zz
```

If no citations have been added or removed since the last time you processed the file, you can omit running bibtex. Likewise, if the index entries have not changed, you can omit running makeindex. Also, you only have to run latex until it no longer warns that "references may have changed".

A Manifest

The files defining the DLMF document class are available from the DLMF internal subsite, in either zip or gzip form:

- http://dlmf.nist.gov/internal/resources/DLMFtex.tar.gz,
- http://dlmf.nist.gov/internal/resources/DLMFtex.zip.

These files include the main DLMF class, along with style files for BibTEX and makeindex. A modified version of the breqn package, from AMS, is also included. The files need to be placed in a directory where LATEX can find them. On a unix system, one would typically set environment variables:

```
setenv TEXINPUTS .:/somewhere/DLMFtex:
setenv BIBINPUTS .:/somewhere/DLMFtex:
setenv BSTINPUTS .:/somewhere/DLMFtex:
```

(depending on the shell); A similar set of commands should work for windows. For other systems, you should consult the documentation for your LATEX distribution.

The DLMF document class also uses a variety of packages that are generally included in recent LATEX distributions. If you seem to be having difficulties with missing or obsolete versions of these files, the best solution would be to upgrade your LATEX. However, if that is not convenient, you can install the required files from

- http://dlmf.nist.gov/internal/resources/DLMFreqd.tar.gz,
- http://dlmf.nist.gov/internal/resources/DLMFreqd.zip.

in a similar fashion to the DLMFtex files (with appropriate changes to TEXINPUTS, etc). Another alternative is to fetch individual files or packages from CTAN (http://ctan.tug.org/).

B Special Function Macros

The following table lists macros for special functions, shown in typical uses both with and without arguments. The reference is the equation number in the original NBS Handbook from which the list was derived. Additions will be made as needed.

w/o arguments		w/arguments		Note
\sign	sign	\sign@{x} \sign@@{x}	sign(x) $sign x$	AL: sign
hd/	hq	\ph@{z} \ph@@{z}	z hq(z)	\mathbf{AL} : phase
\Continuous \Continuous[n]	C_n	<pre>\Continuous@{(a,b)} \Continuous[n]@{(a,b)}</pre>	$C(a,b)$ $C^{n}(a,b)$	$C\left(a,b\right)$ AL : Set of Continuous functions $C^{n}\left(a,b\right)$
riationalOp riationalOp[a,b]	$\zeta_{a,b}$	$\begin{array}{c c} \text{(VariationalOp} & \mathcal{V} \\ \text{(VariationalOp[a,b]} & \mathcal{V}_{a,b} \\ \text{(VariationalOp[a,b]} & \mathcal{V}_{a,b} \\ \end{array}$	$V(f)$ $V_{a,b}(f)$	AL: Variational
\Wronskian	*	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\mathscr{W}\left\{f,g\right\}$	$\mathscr{W}\left\{f,g\right\}$ AL : Wronskian
\LaplaceTrans	R	\LaplaceTrans@{f}{g}	$\mathscr{L}\left(f;g\right)$	$\mathscr{L}(f;g)$ AL : Laplace Transformation
\MellinTrans	W	\MellinTrans@{f}{g}	$\mathcal{M}\left(f;g\right)$	$\mathscr{M}\left(f;g\right)$ AL : Mellin Transformation
\HilbertTrans	\mathcal{H}	\HilbertTrans@{f}{g}	$\mathcal{H}\left(f;g\right)$	$\mathcal{H}(f;g)$ AL : Hilbert Transformation
\StieltjesTrans	S	\StieltjesTrans@{f}{g}	S(f;g)	$\mathcal{S}(f;g)$ AL : Stieltjes Transformation
\HeavisideH	Н	\HeavisideH@{x}	H(x)	AL: Heaviside (step) Function H
\Diracdelta \Diracdelta[n]	δ_n	\Diracdelta@{x} \Diracdelta[n]@{x}	$\delta(x) \\ \delta_n(x)$	${f AL}$: Dirac's delta function
AS				
\Big0	0	\Big0@{x}	O(x)	AS: Order not exceeding
\littleo	0	$\langle \text{littleo}(x) \rangle$	o(x)	AS : Order less than
\env	env	\env@{f}	env f	AS: envelope of a function
NM				

Note	\Pade{p}{q}{f} \[[p/q]_f \] \Pade{p}{q}{f}{g}{f}{g}{z} \] \[[p/q]_f(z) \] \[NM: the pade approximant \]		EF, 4.1.4: the multivalued log function	EF, 4.1.1: the natural log function	EF, 4.1.18: the log to a given base function	EF , 4.1.18 : the log to base e (often ambiguous)	EF, 4.2.1: the exponential function	EF: Lambert's W function	EF : Principal branch of Lambert's W function (for negative z)	EF : Non-Principal branch of Lambert's W function (for negative z)	EF, 4.3.1: the trigonometric sine function	EF, 4.3.2: the trigonometric cosine function	EF, 4.3.3: the trigonometric tangent function
S	$(z)^f[b/d]$		$\operatorname{Ln}(z)$ $\operatorname{Ln} z$	$\ln(z)$ $\ln z$	$\log_a(z)$ $\log_a z$	$\log(z)$ $\log z$	$\exp(z)$ exp z	W(z)	$\mathrm{Wp}(z)$	$\operatorname{Wm}(z)$	$\sin(z)$ $\sin z$	$\cos(z)$	$\tan(z)$ $\tan z$
w/arguments	$\Pade{p}{q}{z}$		\Ln@{z} \Ln@@{z}	\ln@{z} \ln@@{z}	\logb{a}@{z} \logb{a}@@{z}	\log@{z} \log@@{z}	\exp@{z} \exp@@{z}	extstyle ext	\LambertWp@{z}	\mathbb{Z}_{z}	\sin@{z} \sin@@{z}	\cos@{z} \cos@@{z}	\tan@@{z} \tan@@{z}
nts	f[b/d]		Ln	ln	\log_a	log	dxə	M	$_{ m Wp}$	Wm	sin	SOO	tan
w/o arguments	$\mathbb{P}_{q}\{q\}\{f\}$	EF	\Ln	\ln	\logb{a}	\log	/exp	\setminus LambertW	\LambertWp	\LambertWm	\sin	\cos	\tan

w/o an	w/o arguments	w/arguments	ments	Note
\csc	csc	\csc@{z} \csc@@{z}	csc(z)	EF, 4.3.4: the trigonometric cosecant function
\sec	sec	\sec@{z} \sec@@{z}	$\sec(z)$	EF, 4.3.5: the trigonometric secant function
\cot	cot	\cot@{z} \cot@@{z}	$\cot(z)$ $\cot z$	EF, 4.3.6: the trigonometric cotantent function
\Asin	Asin Arcsin	\Asin@{z} \Asin@@{z}	$\underset{\text{Arcsin } z}{\operatorname{Arcsin}}(z)$	EF, 4.4.10: the multivalued inverse trigonometric sine function, arcsine
Acos	Acos Arccos	\Acos@{z} \Acos@@{z}	$\frac{\operatorname{Arccos}(z)}{\operatorname{Arccos} z}$	EF, 4.4.11: the multivalued inverse trigonometric cosine function,
\Atan	\Atam Arctan	\Atan@{z} \Atan@@{z}	Arctan(z) Arctan z	arccosine EF, 4.4.12: the multivalued inverse trigonometric tangent function,
\Acsc	Acsc Arccsc	\Acsc@{z} \Acsc@@{z}	Arccsc(z) $Arccsc z$	arctangent EF, 4.4.10: the multivalued inverse trigonometric cosecant function,
\Asec	Asec Arcsec	\Asec@{z} \Asec@@{z}	Arcsec(z) $Arcsec z$	arccosecant EF, 4.4.11: the multivalued inverse trigonometric secant function,
\Acot	\Acot Arccot	\Acot@{z} \Acot@@{z}	Arccot(z) $Arccot z$	arcsecant EF, 4.4.12: the multivalued inverse trigonometric tangent function,
\asin	arcsin	\asin@{z} \asin@@{z}	$\arcsin(z)$ arcsin z	arccotangent EF, 4.4.1: the inverse trigonometric sine function, arcsine
\acos	arccos	\acos@{z} \acos@@{z}	$\arccos(z)$ arccos z	EF, 4.4.2: the inverse trigonometric cosine function, arccosine
\atan	\atan arctan	\atan@{z} \atan@@{z}	$\arctan(z)$ arctan z	EF, 4.4.3: the inverse trigonometric tangent function, arctangent

Note	EF, 4.4.6: the inverse trigonometric cosecant function, arccosecant	EF, 4.4.7: the inverse trigonometric secant function, arcsecant	EF, 4.4.8: the inverse trigonometric cotangent function, arccotangent	EF: The Gudermannian function	EF : The inverse Gudermannian function	EF, 4.5.1: the hyperbolic sine function	EF, 4.5.2: the hyperbolic cosine function	EF, 4.5.3: the hyperbolic tangent function	EF, 4.5.4: the hyperbolic cosecant function	EF, 4.5.5: the hyperbolic secant function	EF, 4.5.6: the hyperbolic cotangent function	Arcsinh(z) $ \mathbf{EF}, 4.6.8 $ the multivalued inverse hyperbolic sine function
	$\operatorname{arccsc}(z)$ arccsc z	$\operatorname{arcsec}(z)$ $\operatorname{arcsec} z$	$\operatorname{arccot}(z)$ $\operatorname{arccot} z$	gd(z)	$\gcd^{-1}(z)$ $\gcd^{-1}z$	$\sinh(z)$ sinh z	$\cosh(z)$ $\cosh z$	$ anh(z) \ anh z$	$\operatorname{csch}(z)$ $\operatorname{csch} z$	$\operatorname{sech}(z)$ $\operatorname{sech} z$	$\coth(z)$ $\coth z$	$\operatorname{Arcsinh}(z)$
w/arguments	\acsc@{z} \acsc@@{z}	\asec@{z} \asec@@{z}	\acot@{z} \acot@@{z}	\Gudermannian@{z} \Gudermannian@@{z}	\arcGudermannian@{z} \arcGudermannian@@{z}	\sinb@{z} \sinb@@{z}	\cosh@{z} \cosh@@{z}	\tanh@{z} \tanh@@{z}	\csch@{z} \csch@@{z}	\sech@{z} \sech@@{z}	<pre>\coth@{z} \coth@@{z}</pre>	Arcsinh \asinh@{z}
nts	arccsc	arcsec	arccot	pg	gd^{-1}	sinh	cosh	tanh	csch	sech	coth	Arcsinh
w/o arguments	\acsc	\asec	\acot	\Gudermannian	\arcGudermannian	\sinh	\cosh	\tanh	\csch	\sech	\coth	\Asinh

\Asinh@@{z} \Acosh Arccosh \Acosh@{z} \Atanh Arctanh \Atanh@@{z} \Acsch Arcsch \Acoch@{z} \Asech Arcsch \Acoch@{z} \Asech Arcsch \Asech@{z} \Asech Arcsch \Asech@{z} \Asech Arccoth \Asech@{z} \Asech Arccoth \Asech@{z} \Acoth Arccoth \Acoth@{z} \Acoth@{z} \Acoth Arccoth \Acoth@{z}		
\Acosh Arccosh \Acosh@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	\Asinh@@{z} $Arcsinhz$	
\Atanh Arctanh \Atanh@G\\Acsch Arccsch \Acsch@G\\Asech Arcsch \Asech@G\\Asech Arcsch \Asech@G\\Acoth Arccoth \Acoth@G\\Acoth Arccoth \Acoth@G\\Asinh arcsinh \asinh@G\\acosh arccosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh \acosh@G\\acosh	$\frac{\operatorname{Arccosh}(z)}{\operatorname{Arccosh} z}$	EF, 4.6.9: the multivalued inverse hyperbolic cosine function
\Acsch Arccsch \Acsch@@\Assch Arcsech@@\Assch Arcsech \Assch@@\Acoth Arccoth \Acoth@f\assinh arcsinh \assinh@f\assinh@f\acosh \acosh@f\acosh\a	_	Arctanh(z) EF , 4.6.10 : the multivalued inverse Arctanh z hyperbolic tangent function
\Asech Arcsech \Asech@@\Acoth Arccoth \Acoth@\asinh arcsinh \asinh@{\acosh arccosh \acosh@\acosh\	Arccsch (z)	EF, 4.6.8: the multivalued inverse hyperbolic cosecant function
\Acoth Arccoth \Acoth@C \asinh arcsinh \asinh@C \acosh arccosh \acosh@C \acosh@C	Arcsech (z) Arcsech z	EF, 4.6.9: the multivalued inverse hyperbolic secant function
	Arccoth(z) Arccoth z	EF, 4.6.10: the multivalued inverse hyperbolic cotangent function
	$\operatorname{arcsinh}(z)$ arcsinh z	EF, 4.6.1: the inverse hyperbolic sine function
	$\operatorname{arccosh}(z)$ arccosh z	EF, 4.6.2: the inverse hyperbolic cosine function
\atanh arctanh \atanh@{z} \atanh@{z}	$\operatorname{arctanh}(z)$ \exists	EF, 4.6.3: the inverse hyperbolic tangent function
\acsch arccsch \acsch@{z} \acsch@{z}	$\operatorname{arccsch}(z)$ } arccsch z	EF, 4.6.1: the inverse hyperbolic cosecant function
\asech arcsech \asech@{z} \asech@{z}	$\operatorname{arcsech}(z)$ arcsech z	EF, 4.6.2: the inverse hyperbolic secant function
\acoth arccoth \acoth@{z} \acoth@{z}	$\operatorname{arccoth}(z)$	EF, 4.6.3: the inverse hyperbolic cotangent function

w/o arguments	nts	w/arguments		Note
\log	log	\log@{z}	$\log(z)$	EF, 4.1.18: the log to base e (often
		\log@@{z}	$z \operatorname{sol}$	ambiguous)
GA				
\EulerGamma	Ĺ	\mathbb{Z}_{z}	$\Gamma(z)$	GA, 6.1.1: Euler's Gamma function
\digamma	ψ	\digamma@{z}	$\psi(z)$	$\mathbf{G}\mathbf{A},6.3.1:$ the Digamma (or psi) function
\EulerBeta	В	\EulerBeta@{z}{w}	B(z,w)	\EulerBeta@{z}{w} B(z, w) GA, 6.2.1: Euler's Beta function
\polygamma{n}	$\psi^{(n)}$	$\polygamma{n}0{z}$	$\psi^{(n)}(z)$	\polygamma{n} $\psi^{(n)}$ \polygamma{n}\@{z} $\psi^{(n)}(z)$ \mathbf{GA} : the polygamma function
\BarnesGamma	\mathcal{C}	\BarnesGamma@{z}	G(z)	GA : the Barnes Gamma function, G
\qGamma{q}	Γ_q	$\qopname{q}{q}$	$\Gamma_q(z)$	GA: the q Gamma function
\qBeta{q}	\mathbf{B}_q	\qBeta{q}@{a}{b}	$\mathbf{B}_q(a,b)$	$\left. \mathrm{B}_q(a,b) \right \mathbf{G}\mathbf{A}$: the q Beta function
EX				
\ExpInt	E_1	\ExpInt@{z}	$E_1(z)$	EX, 5.1.1 : the exponential integral, E_1
\ExpIntEin	Ein	Ein \ExpIntEin@{z}	$\operatorname{Ein}(z)$	$\mathbf{E}\mathbf{X}$: the complementary exponential integral, Ein
\ExpInti	Ë	$\texttt{\ \ } \backslash \texttt{ExpInti@\{z\}}$	$\mathrm{Ei}(z)$	$\mathbf{EX,5.1.2}\colon$ the exponential integral, Ei
$\setminus \texttt{LogInt}$	li	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\operatorname{li}(z)$	$\mathbf{EX,\ 5.1.3}.$ the exponential integral, li
\SinInt	Si	\SinInt@{z}	$\operatorname{Si}(z)$	EX, 5.2.1: the Sine integral, Si
\sinInt	si:	\sinInt@{z}	$\operatorname{si}(z)$	$\begin{tabular}{ll} \bf EX, & \bf 5.2.5: & the sine integral, si \\ (shifted) \end{tabular}$
\CosInt	Ü	\CosInt@{z}	Ci(z)	EX, 5.2.2: the Cosine integral, Ci

w/o arguments	snts	w/arguments	ts.	Note
\CosIntCin	Cin	\CosIntCin@{z}	$\operatorname{Cin}(z)$	$\operatorname{Cin}(z)$ EX : the cosine integral, Cin
\SinhInt	Shi	Shi \SinhInt@{z}	Shi(z)	EX, 5.2.3: the hyperbolic Sine integral, Shi
\CoshInt	Chi	Chi \CoshInt@{z}	Chi(z)	Chi(z) $ \mathbf{EX}, 5.2.4 $: the hyperbolic Cosine integral, Chi
\SinCosIntf	Ţ	\SinCosIntf@{z} $f(z)$	f(z)	\mathbf{EX} : the sine cosine integral, f
\SinCosIntg	90	\SinCosIntg@{z}	g(z)	$\mathbf{E}\mathbf{X}$: the sine cosine integral, g
ER				
\erf	erf	\erf@{z} \erf@@{z}	$\operatorname{erf}(z)$ erf z	ER, 7.1.1: the error function, erf
\erfc	erfc	erfc \erfc@{z}	$\operatorname{erfc}(z)$ erfc z	ER, 7.1.2: the complementary error function, erfc
\erfw	a	\erfw@{z} \erfw@@{z}	w(z) w z	ER, 7.1.3: the error function, w
\DawsonsInt	F	\DawsonsInt@{z}	F(z)	ER, 7.x.x: Dawson's Integral
\FresnelF	K	$\FresnelF@{z}$	$\mathcal{F}(z)$	ER, 7.x.x: Fresnel's Integral
\FresnelCos	Ċ	\FresnelCos@{z}	C(z)	$\mathbf{ER,\ 7.3.1}:$ the Fresnel cosine integral
\FresnelSin	∞	\FresnelSin@{z}	S(z)	ER, 7.3.2: the Fresnel sine integral
\Fresnelf	Ŧ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(z)J	$\mathbf{ER,~7.3.5}:$ the Fresnel auxilliary function f
\Fresnelg	5.0	\Fresnelg@{z}	g(z)	$\mathbf{ER,~7.3.6};~\text{the Fresnel auxilliary function g}$

w/o arguments	ents	w/arguments		Note
\GoodStat	\mathcal{C}	\GoodStat@{z}	G(z)	\mathbf{ER} , 7.x.x: the Goodwin-Staton integral
\Mills	Σ	\Mills@{z}	M(z)	ER, 7.x.x: Mills' ratio
\inverf	inverf	\inverf@{z} \inverf@@{z}	${\rm inverf}(z) \\ {\rm inverf} z$	$\mathbf{ER,\ 7.x.x:}$ the inverse error function, inverf
\inverfc	inverfc	<pre>inverfc \langle inverf c@{z} \inverf c@@{z}</pre>	$\mathrm{inverfc}(z)$ $\mathrm{inverfc}z$	inverfc(z) ER, 7.x.x : the inverse inverfc z complementary error function, inverfc
\RepInterfc{n} i^nerfc		\RepInterfc{n}@{z}	$\mathrm{i}^n\mathrm{erfc}(z)$	i ⁿ erfc(z) ER, 7.x.x : the repeated integral of erfc
\VoigtU	n	\VoigtU@{x}{t}	U(x,t)	ER, 7.x.x: Voigt's U Function
\VoigtV	>	\VoigtV@{x}{t}	V(x,t)	ER, 7.x.x: Voigt's V Function
\LinBrF	H	\LinBrF@{a}{u}	H(a,u)	ER: Line-broadening Function H
\FishersHh{n}	Hh_n	\FishersHh{n}@{z}	$Hh_n(z)$	ER: Fisher's Hh function
5I				
\incgamma	~	\incgamma@{a}{x}	$\gamma(a,x)$	IG, 6.5.2: the incomplete gamma function, gamma
\IncGamma	Ĺ	$\ln \operatorname{CGamma0{a}{x}}$	$\Gamma(a,x)$	IG, 6.5.3: the incomplete gamma function, Gamma
\GammaP	Ь	$\GammaP@{a}{x}$	P(a,x)	IG, 6.5.1: the incomplete gamma function, P?
\GammaQ	Ô	\GammaQ@{a}{z}	Q(a,z)	IG: the incomplete gamma function, Q
\incgammastar	*~	$ \ \ \ \ \ \ \ \ \ \ $	$\gamma^*(a,x)$	IG, 6.5.4: the non-singular incomplete gamma function, gamma *

w/o arguments	S	w/arguments		Note
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	\mathbf{B}_x	\IncBeta{x}@{a}{b}	$\mathbf{B}_x(a,b)$	$\mathbf{B}_x(a,b) \begin{vmatrix} \mathbf{IG, 6.6.1} : \text{the incomplete Beta function, B} \end{vmatrix}$
\IncI{x}	I_x	\IncI{x}@{a}{b}	$I_x(a,b)$	IG, 6.6.2: the incomplete Beta function, I
\ExpIntn{n}	E_n	\ExpIntn{n}@{z}	$E_n(z)$	IG, 5.1.4: the exponential integral, E_n
\sinintg	Si.	$\sinintg0{a}{z}$	$\operatorname{si}(a,z)$	IG: the generalized sine integral, si
\cosintg	. <u>:</u>	$\cosintg@{a}{z}$	ci(a, z)	$\mathbf{IG}\colon$ the generalized cosine integral, ci
\SinIntg	Si	\SinIntg@{a}{z}	Si(a, z)	IG: the generalized Sine integral, Si
\CosIntg	Ö	\CosIntg@{a}{z}	Ci(a, z)	IG: the generalized Cosine integral, Ci
AI				
\AiryAi	Ai	\AiryAi@{z}	$\operatorname{Ai}(z)$	AI, 10.4.1: the Airy function, Ai
\AiryBi	Bi	\AiryBi@{z}	$\operatorname{Bi}(z)$	AI, 10.4.1: the Airy function, Bi
\AiryModulusM	M	\AiryModulusM@{z}	M(z)	$\mathbf{AI}:$ the modulus of the Airy functions $\mathbf{M}(\mathbf{z})$
\AiryPhaseTheta $ heta$	θ.	\AiryPhaseTheta@{z} $\theta(z)$	$\theta(z)$	\mathbf{AI} : the phase of the Airy functions $\mathbf{M}(\mathbf{z})$
\AiryModulusN	Z	\AiryModulusN@{z}	N(z)	\mathbf{AI} : the modulus of the derivitives of the Airy functions $N(z)$
\AiryPhasePhi	\$	\AiryPhasePhi@{z}	$\phi(z)$	$\mathbf{AI}:$ the phase of the derivitives of the Airy functions $N(z)$
\ZeroAiryAi{m}	a_m			\mathbf{AI} : the zeros of the Airy function $\mathrm{Ai}(\mathrm{z})$

w/o arguments		w/arguments		Note
\ZeroAiryBi{m}	p_m			AI : the zeros of the Airy function Bi(z)
\ZeroAiryAiPrime{m}	a_m'			$\mathbf{AI}.$ the zeros of the derivative of the Airy function $\mathrm{Ai}(z)$
\ZeroAiryBiPrime{m}	b_m'			$\mathbf{AI}.$ the zeros of the derivative of the Airy function $\mathrm{Bi}(z)$
\ComplexZeroAiryBi{m}	β_m			$\mathbf{AI}:$ the complex zeros of the Airy function $\mathrm{Bi}(z)$
\ComplexZeroAiryBiPrime{m} eta_m'	β'_m			$\mathbf{AI}:$ the complex zeros of the derivative of the Airy function $\mathrm{Bi}(z)$
\ScorerGi	ij	\ScorerGi@{z}	Gi(z)	AI, 10.4.42: the Scorer function, Gi
\ScorerHi	Ħ	\ScorerHi@{z}	$\operatorname{Hi}(z)$	AI, 10.4.44: the Scorer function, Hi
\ODEgenAiryA{n}	A_n	\ODEgenAiryA{n}@{z}	$A_n(z)$	$\mathbf{AI}:$ generalized (ODE) Airy function, A
$\onumber \onumber \$	B_n	\ODEgenAiryB{n}@{z}	$B_n(z)$	$\mathbf{AI} :$ generalized (ODE) Airy function, A
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	A_k	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$A_k(z,p)$	\IntgenAiryA{k}@{z}{p} A_k(z,p) AI: generalized (integral) Airy function, A
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	B_k	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$B_k(z,p)$	$\label{eq:linear} $$\prod_{t \in \mathcal{B}} B_k(z,p) \mid \mathbf{AI}: \text{ generalized (integral) Airy function, B}$$
\envAiryAi	envAi	envAi \envAiryAi@{z}	envAi(z)	$\operatorname{envAi}(z)$ AI : the envelope Airy function, envAi
\envAiryBi	envBi	envBi \envAiryBi@{z}	envBi(z)	$\operatorname{envBi}(z)$ AI : the envelope Airy function, envBi
BS				

BS, 9.1.1: the Bessel function of the first kind	BS, 9.1.1: the Bessel function of the second kind (Weber's function)	BS, 9.1.1: the first Hankel function (Bessel of the third kind)	BS, 9.1.1: the second Hankel function (Bessel of the third kind)	BS, 9.x.x: a Cylinder function (linear combination of Bessel functions)	BS, 9.2.17: the modulus of Bessel function	BS, 9.2.18: the modulus of derivatives of Bessel functions	BS, 9.2.17: the phase of Bessel function	BS, 9.2.18: the phase of derivatives of Bessel functions	BS : zeros of Bessel function of the first kind	BS : zeros of Bessel function of the second kind	BS : zeros of the derivatives of Bessel function of the first kind
$J_{ u}(z)$	$Y_{\nu}(z)$	$H_{ u}^{(1)}(z)$	$H_{ u}^{(2)}(z)$	$\mathscr{C}_{\nu}(z)$	$M_{\nu}(z)$	$N_{\nu}(z)$	$\theta_{\nu}(z)$	$\phi_{\nu}(z)$			
\BesselJ{\nu}@{z}	\BesselY{\nu}@{z}	\HankelHi{\nu}@{z}	\HankelHii{\nu}@{z}	$\verb \Cylinder{\nu} @{z} $	$$$ \essel{log} $$ \$	\BesselModulusN{\nu}@{z}	\BesselPhaseTheta{\nu}@{z}	\BesselPhasePhi{\nu}@{z}			
$J_{ u}$	Y_{ν}	$H_{ u}^{(1)}$	$H_{\nu}^{(2)}$	\mathscr{P}_{σ}	M_{ν}	N_{ν}	$\theta_{ u}$	$\phi_{ u}$	$j_{ u,m}$	$y_{ u,m}$	$j_{ u,m}'$
\BesselJ{\nu}	\BesselY{\nu}	\HankelHi{\nu}	\HankelHii{\nu}	\Cylinder{\nu}	\BesselModulusM{\nu}	\BesselModulusN{\nu}	\BesselPhaseTheta{\nu}	\BesselPhasePhi{\nu}	\ZeroBesselJ{\nu}{m}	\ZeroBesselY{\nu}{m}	\ZeroBesselJPrime{\nu}{m} $j_{\nu,m}'$
	$J_{ u}$ \BesselJ{\nu}@{z} \ $J_{ u}(z)$	J_{ν} \BesselJ{\nu}@{z} \ $J_{\nu}(z)$	J_{ν} \BesselJ{\nu}@{z} \ $J_{\nu}(z)$ \BesselY{\nu}@{z} \ $Y_{\nu}(z)$ \HenkelHi $\{$ \nu}@{z} \ $Y_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf\nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselYf\nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif\nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $u\} \qquad H_{\nu}^{(2)} \langle \text{HankelHiif\nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$	$J_{\nu} \langle \text{BesselJf} \langle \text{nu} \rangle \mathbb{G}\{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselYf} \langle \text{nu} \rangle \mathbb{G}\{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \langle \text{nu} \rangle \mathbb{G}\{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHiif} \langle \text{nu} \rangle \mathbb{G}\{z\} \qquad H_{\nu}^{(2)}(z)$ $S_{\nu} \langle \text{Cylinderf} \langle \text{nu} \rangle \mathbb{G}\{z\} \qquad \mathscr{C}_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselY} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad S_{\nu}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad S_{\nu}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad S_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselYf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHiif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $SMf \backslash \text{nu} \qquad \langle \mathcal{C}_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \langle \mathcal{C}_{\nu}(z) \rangle$ $SMf \backslash \text{nu} \qquad \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $SMf \backslash \text{nu} \qquad \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad N_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselY} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $SM \backslash \text{nu} \qquad M_{\nu} \langle \text{Cylinder} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $SM \backslash \text{nu} \qquad \langle \text{Nu} \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad N_{\nu}(z)$ $\text{hetaf} \backslash \text{nu} \qquad \langle \text{Nu} \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad N_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselYf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad S_{\nu}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $S_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad N_{\nu}(z)$ $S_{\nu} \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad N_{\nu}(z)$ $S_{\nu} \langle \text{BesselPhaseThetaf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \delta_{\nu}(z)$ $S_{\nu} \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \delta_{\nu}(z)$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselYf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $SM \{\backslash \text{nu} \} \qquad \mathcal{G}_{\nu} \langle \text{Cylinderf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \mathcal{G}_{\nu}(z)$ $SM \{\backslash \text{nu} \} \qquad M_{\nu} \langle \text{BesselModulusMf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $\text{hetaf} \backslash \text{nu} \} \qquad \langle \text{BesselPhaseThetaf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \psi_{\nu}(z)$ $\text{hif} \backslash \text{nu} \} \qquad \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \psi_{\nu}(z)$ $\text{Nu} \} \{\text{mu} \} \qquad \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \langle \psi_{\nu}(z) \rangle$	$J_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad J_{\nu}(z)$ $Y_{\nu} \langle \text{BesselJf} \backslash \text{nu} \rangle \emptyset \{z\} \qquad Y_{\nu}(z)$ $H_{\nu}^{(1)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(1)}(z)$ $H_{\nu}^{(2)} \langle \text{HankelHif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad H_{\nu}^{(2)}(z)$ $SM \{ \backslash \text{nu} \} \qquad M_{\nu} \langle \text{BesselModulusM} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $\text{heta} \{ \backslash \text{nu} \} \qquad M_{\nu} \langle \text{BesselPhaseTheta} \backslash \text{nu} \rangle \emptyset \{z\} \qquad M_{\nu}(z)$ $\text{hif} \backslash \text{nu} \} \qquad \phi_{\nu} \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \phi_{\nu}(z)$ $\langle \text{Nuu} \} \{m\} \qquad j_{\nu,m} \qquad \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \phi_{\nu}(z)$ $\langle \text{Nuu} \} \{m\} \qquad j_{\nu,m} \qquad \langle \text{BesselPhasePhif} \backslash \text{nu} \rangle \emptyset \{z\} \qquad \phi_{\nu}(z)$

w/o arguments		w/arguments		Note
\ZeroBesselYPrime{\nu}{m} $y_{\nu,m}'$	$y_{\nu,m}'$			BS : zeros of the derivatives of Bessel function of the second kind
\BesselJtilde{\nu}	\widetilde{J}_{ν}	\BesselJtilde{\nu}@{z} $\widetilde{J}_{\nu}(z)$	$\widetilde{J}_{ u}(z)$	BS : Bessel function of the first kind of imaginary order
\BesselYtilde{\nu}	$ ilde{Y}_ u$	\BesselYtilde{\nu}@{z} $\widetilde{Y}_{\nu}(z)$	$\widetilde{Y}_{ u}(z)$	BS : Bessel function of the second kind of imaginary order
\BesselI{\nu}	$I_{ u}$	\Bessell{\nu}@{z}	$I_{ u}(z)$	BS, 9.6.1: the modified Bessel function of the first kind
\BesselK{\nu}	$K_{ u}$	\BesselK{\nu}@{z}	$K_{ u}(z)$	BS, 9.6.1 : the modified Bessel function of the second kind
\ModCylinder{\nu}	$\mathcal{Z}_{\nu}^{\lambda}$	\ModCylinder{\nu}@{z}	$\mathscr{Z}_{ u}(z)$	BS, 9.x.x : a modified Cylinder function (linear combination of modified Bessel functions)
\BickleyKi{\alpha}	Ki_α	\BickleyKi{\alpha}@{z} \ Ki\alpha(z) \ \BS: the Bickley function	$\mathrm{Ki}_{\alpha}(z)$	BS: the Bickley function
\BesselItilde{\nu}	$\widetilde{I}_{ u}$	\Besselltilde{\nu}@{z} $\tilde{I}_{\nu}(z)$	$\widetilde{I}_{ u}(z)$	BS : modified Bessel function of the first kind of imaginary order
\BesselKtilde{\nu}	$\widetilde{K}_{ u}$	\BesselKtilde{\nu}@{z} $\widetilde{K}_{ u}(z)$	$\widetilde{K}_{ u}(z)$	BS : modified Bessel function of the second kind of imaginary order
\SphBesselJ{n}	· 2	\SphBesselJ{n}@{z}	$j_n(z)$	BS, 10.1.1: the spherical Bessel function of the first kind
$\SphBesselY\{n\}$	$\overset{A}{A}$	$\SphBesselY\{n\}@\{z\}$	$y_n(z)$	BS, 10.1.1: the spherical Bessel function of the second kind
\SphHankelHi{n}	$h_n^{(1)}$	\SphHankelHi{n}@{z}	$h_n^{(1)}(z)$	$h_n^{(1)}(z) \left \mathbf{BS, 10.1.1}$: the first spherical Hankel function (Bessel of the third kind)

w/o arguments		w/arguments		Note
\SphHankelHii{n}	$h_n^{(2)}$	\SphHankelHii{n}@{z}	$h_n^{(2)}(z)$	BS, 10.1.1 : the second spherical Hankel function (Bessel of the third kind)
\SphBesselli{n}	$\mathbf{i}_n^{(1)}$	\SphBesselli{n}@{z}	$\mathbf{i}_{n}^{(1)}(z)$	BS, 10.2.2,10.2.3: the first modified spherical Bessel function of first kind
\SphBessellii{n}	$\vec{\overline{n}}$	\SphBessellii{n}@{z}	$\mathbf{i}_n^{(2)}(z)$	BS, 10.2.2,10.2.3: the second modified spherical Bessel function of first kind
\SphBesselK{n}	Å s	\SphBesselK{n}@{z}	$k_n(z)$	BS, 10.2.4: the modified spherical Bessel function of third kind(?)
\Kelvinber{\nu}	ber_{ν}	ber,	$ ber_{\nu}(z) $ $ ber_{\nu} z $	BS, 9.9.1: the Kelvin function, ber
\Kelvinbei{\nu}	bei_{ν}	bei, \Kelvinbei{\nu}@{z} \\ \Kelvinbeif\nu}@@{z}	$bei_{\nu}(z)$ $bei_{\nu} z$	BS, 9.9.1: the Kelvin function, bei
\Kelvinker{\nu}	\ker_{ν}	ker, \Kelvinker{\nu}@{z} \Kelvinkerf\nu}@{z}	$\ker_{\nu}(z)$ $\ker_{\nu} z$	BS, 9.9.2: the Kelvin function, ker
\Kelvinkei{\nu}	kei_{ν}	kei, \Kelvinkei{\nu}@{z} \\ \Kelvinkeif\nu}@@{z}	$\ker_{\nu}(z)$ $\ker_{\nu} z$	BS, 9.9.2: the Kelvin function, kei
\MittagLeffler{a}{b}	$E_{a,b}$	\MittagLeffler{a}{b} $E_{a,b}$ \MittagLeffler{a}{b}@{z}	$E_{a,b}(z)$	BS: the Mittag-Leffler function, E
$\verb \GammaIncGammaProd{\{p\}} G_p$		\GammaIncGammaProd{p}@{z}	$G_p(z)$	BS : the product of Gamma and Incomplete-Gamma functions, G
lem:lem:nonnonnonnonnonnonnonnonnonnonnonnonnon	O_k	\NeumannPoly{k}@{t}	$O_k(t)$	BS: Neumann polynomial, O
\RayleighFun{n}	σ_n	$\RayleighFun\{n\}0{\normalfont N}$	$\sigma_n(\nu)$	BS: Rayleigh function, sigma
\GenBesselFun	φ	\GenBesselFun@{\rho}{\beta}{z}	$\phi(\rho,\beta;z)$	\GenBesselFun@{\rho}{\beta}{z} \ $\phi(\rho, \beta; z)$ BS : Generalized Bessel function. phi

w/o arguments	8	w/arguments		Note
\envBesselJ{\nu}	$\operatorname{env} J_{\nu}$	\envBesselJ{\nu}@{z}	$\operatorname{env} J_{ u}(z)$	BS: the envelope Bessel function of the first kind
\envBesselY{\nu}	$\mathrm{env} Y_{\nu}$	$\operatorname{env} Y_{\nu}$ \envBesselY{\nu}@{z}	$\operatorname{env} Y_{ u}(z)$	BS : the envelope Bessel function of the second kind (Weber's function)
ST				
\StruveH{\nu}	$\mathbf{H}_{ u}$	\StruveH{\nu}@{z}	$\mathbf{H}_{ u}(z)$	ST, 12.1.1: the Struve function, H
\StruveL{\nu}	$\Gamma_{ u}$	\StruveL{\nu}@{z}	$\mathbf{L}_{ u}(z)$	$\mathbf{ST,12.2.1}:$ the modified Struve function, L
\StruveK{\nu}	\mathbf{K}_{ν}	\StruveK{\nu}@{z}	$\mathbf{K}_{ u}(z)$	ST: the associated Struve function, K
\StruveM{\nu}	$\mathbf{M}_{ u}$	$\t \sum_{z \in \mathbb{Z}} \{ nu \} \emptyset \{ z \}$	$\mathbf{M}_{ u}(z)$	ST: the associated Struve function, M
\Lommels{\mu}{\nu} $s_{\mu,\nu}$	$s_{\mu,\nu}$	\Lommels{\mu}{\nu}@{z} $s_{\mu,\nu}(z)$	$s_{\mu,\nu}(z)$	\mathbf{ST} : the Lommel function, s
\LommelS{\mu}{\nu} $S_{\mu,\nu}$	$S_{\mu,\nu}$	$\verb \Lommels{\mu}{{\mathbb Z}_{\mu,\nu}(z)} $	$S_{\mu,\nu}(z)$	ST: the Lommel function, S
\AngerJ{\nu}	\mathbf{J}_{ν}	\AngerJ{\nu}@{z}	$\mathbf{J}_{\nu}(z)$	ST, 12.3.1: Anger's function, J
\WeberE{\nu}	Ξ	\WeberE{\nu}@{z}	$\mathbf{E}_{ u}(z)$	ST, 12.3.3: Weber's function, E
\AngerA{\nu}	\mathbf{A}_{ν}	\AngerA{\nu}@{z}	$\mathbf{A}_{\nu}(z)$	\mathbf{ST} : the associated Anger-Weber function, A
CH				
\KummerM	M	\KummerM@{a}{b}{z}	M(a,b,z)	M(a,b,z) CH, 13.1.2: Kummer's confluent hypergeometric function, M
\KummerboldM	M	\KummerboldM@{a}{b}{z}	$\mathbf{M}(a,b,z)$	$ \begin{array}{ll} & \langle \mathtt{KummerboldM@\{a\}\{b\}\{z\}} \ \mathbf{M}(a,b,z) \end{array} \middle \begin{array}{ll} \mathbf{CH:} \ \mathtt{Kummer's} \ \mathtt{confluent} \ \mathtt{hypergeo-metric function}, \mathbf{M} \end{array} $
\KummerU	U	$\KummerU@\{a\}\{b\}\{z\}$	U(a,b,z)	U(a,b,z) CH, 13.1.3: Kummer's confluent hypergrapheric Function II

w/o arguments		w/arguments		Note
\WhitM{\kappa}{\mu}	$M_{\kappa,\mu}$	$\label{eq:muh} $$\mathbb{M}_{\kappa,\mu} \mid \mathbb{M}_{\kappa,\mu} \mid \mathbb{M}_{\kappa,\mu} \mid \mathbb{M}_{\kappa,\mu} \mid \mathbb{M}_{\kappa,\mu}(z) \mid \mathbb{M}_{\kappa,\mu}(z) \mid \mathbb{G}_{\mathbf{H}}, \ 13.1.32: \mathbb{G}_{\mathbf{H}}, \ 13.1.32: \mathbb{G}_{\mathbf{H}}, \ \mathbb$	$M_{\kappa,\mu}(z)$	CH, 13.1.32: Whittaker's confluent hypergeometric function, M
\WhitW{\kappa}{\mu}	$W_{\kappa,\mu}$	\WhitW{\kappa}{\mu}@{z}	$W_{\kappa,\mu}(z)$	$\label{eq:limited_mu} $$ \W_{\kappa,\mu} \in W_{\kappa,\mu} \cap W_{\kappa,\mu} \in W_{\kappa,\mu}(\lambda) $$ $$ \CH, 13.1.33-34: Whittaker's confluent the management of the ma$
PC	_			
\WhitD{i}	D_i	$\label{eq:main_to_fi} $$ \with tD\{i\}@\{x\}$$	$D_i(x)$	PC, Ch. 19 : the Whittaker function, D
\ParabolicU	U	\ParabolicU@{a}{x}	U(a,x)	PC, 19.3.1: the Parabolic function, U
\ParabolicV	Λ	\ParabolicV@{a}{x}	V(a,x)	PC, 19.3.2: the Parabolic function, V
\ParabolicUbar	\overline{U}	$\ParabolicUbar@{a}{x}$	$\overline{U}(a,x)$	PC : the Whittaker function, \overline{U}
\ParabolicW	K	\ParabolicW@{a}{x}	W(a,x)	$W(a,x) \mid \mathbf{PC}, 19.17.1$: the parabolic function, W
\envWhitU		\envWhitU@{a}{x}	@ax	$\mathbf{PC}:$ the envelope Whittaker function, U
\envWhitUbar		\envWhitUbar@{a}{x}	@ax	$\overline{\boldsymbol{P}}\mathbf{C}:$ the envelope Whittaker function, $\overline{\boldsymbol{U}}$
LE				
\FerrersP{\nu}	٦	\FerrersP{\nu}@{x}	$P_{ u}(x)$	LE, 8.x.x: Ferrers' Legendre function
\FerrersP[\mu]{\nu\} P^μ_ν		\FerrersP[\mu]{\nu}@{x} $P^{\mu}_{\nu}(x)$	$P^\mu_\nu(x)$	
\FerrersQ{\nu}	ĝ	\FerrersQ{\nu}@{x}	$Q_{\nu}(x)$	LE, 8.x.x: Ferrers' Legendre function of the second bind defined on 11x1
\FerrersQ[\mu]{\nu} Q^μ_ν		$\verb FerrersQ[\mathbb{M}]{\mathbb{M}} @ \{x\} \ Q^{\mu}_{\nu}(x) \\$	$Q^\mu_\nu(x)$	
	_			

Note	LE, 8.1.2,8.4.1: the Legendre function of the first kind		LE, 8.1.3,8.4.2: the Legendre func-	TION OF THE SECOND VIND	LE: associated Legendre function	LE: Ferrers' conical Legendre function	LE: Spherical Harmonic Y	LE: Spherical Harmonic Y		HY: Gauss's Hypergeometric Function, pFq	$F(a,b;c;z)$ HY, 15.1.1 : Gauss's hypergeometric $F\begin{pmatrix} a,b;c\\c\\c\end{pmatrix}$; $F(z)$	HY, 15.1.1: scaled hypergeometric function, F	$\mathbf{H}\mathbf{Y}$: Gauss's hypergeometric function, F	$\Phi_{\lambda}^{(\alpha,\beta)}(t)$ HY : Gauss's hypergeometric function,
	$P_{\nu}(z)$	$P^{\mu}_{\nu}(z)$	$Q_{\nu}(z)$	$Q^\mu_\nu(z)$	$oldsymbol{Q}_{ u}^{\mu}(z) \ oldsymbol{Q}_{ u}^{\mu}(z)$	$ \hat{\mathbf{Q}}_{\nu}(x) \\ \hat{\mathbf{Q}}_{\nu}^{\mu}(x) $	$Y_{l,m}(\theta,\phi)$	$Y_l^m(\theta,\phi)$		$p\mathbf{F}_{q}(a;b;z) \\ p\mathbf{F}_{q}(a;z) \\ p\mathbf{F}_{q}(z)$	$F(a,b;c;z) \\ F\binom{a,b}{c};z \\ F(z)$	$\mathbf{F}(a,b;c;z)$ $\mathbf{F}\begin{pmatrix} a,b;c\\c\end{pmatrix}$ $\mathbf{F}(z)$	$\phi_{\lambda}^{(lpha,eta)}(t)$	$\Phi_{\lambda}^{(lpha,eta)}(t)$
w/arguments	\LegendreP{\nu}@{z}	\LegendreP[\mu]{\nu}@{z}	\LegendreQ{\nu}@{z}	$\c \c \$	\LegendreBlackQ{\nu}@{z} \LegendreBlackQ[\mu]{\nu}@{z}	\FerrersHatQ{\nu}@{x} \FerrersHatQ[\mu]{\nu}@{x}	$\verb SphericalHarmonicY\{1\}\{m\}\emptyset\{\theta\}\{\thit \ Y_{l,m}(\theta,\phi)\ \ \mathbf{LE} \ Spherical\ Harmonic\ Y$	$\verb \SurfaceHarmonicY\{l\}{m}@{\theta}{\theta} $		\HyperboldpFq{p}{{q}@{a}{{b}}{z}} \HyperboldpFq{p}{q}@@{a}{b}{z} \HyperboldpFq{p}{q}@@@{a}{b}{z}	\HypergeoF@{a}{b}{c}{z} \HypergeoF@@{a}{b}{c}{z} \HypergeoF@@{a}{b}{c}{z}	\HypergeoboldF@{a}{b}{c}{z} \HypergeoboldF@@{a}{b}{c}{z} \HypergeoboldF@@@{a}{b}{c}{z}	\Jacobiphi{\alpha}{\beta}{\lambda} $\phi_{\lambda}^{(lpha,eta)}$ \Jacobiphi{\alpha}{\beta}{\beta}{\lambda}@{t}}	\JacobiPhi{\alpha}{\beta}{\lambda} $\Phi_{\lambda}^{(lpha,eta)}$ \JacobiPhi{\alpha}{\beta}{\beta}{\lambda}@{t}
	P_{ν}	P^{μ}_{ν}	Q_{ν}	Q^{μ}_{ν}	O _{yzy}	(Q)(Q)	$Y_{l,m}$	Y_l^m		$p\mathbf{F}_q$	F	Į.	$\phi_{\lambda}^{(\alpha,\beta)}$	$\Phi_{\lambda}^{(lpha,eta)}$
w/o arguments	\LegendreP{\nu}	\LegendreP[\mu]{\nu}	\LegendreQ{\nu}	\Legendreq[\mu]{\nu}	\LegendreBlackQ{\nu} \LegendreBlackQ[\mu]{\nu}	\FerrersHatQ{\nu} \FerrersHatQ[\mu]{\nu}	\SphericalHarmonicY{1}{m}	\SurfaceHarmonicY{1}{m}	HY	\HyperboldpFq{p}{q}	\HypergeoF	\HypergeoboldF	\Jacobiphi{\alpha}{\beta}{\lambda	\JacobiPhi{\alpha}{\beta}{\lambda

w/o arguments		w/arguments		Note
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	P	\RiemannP@{\mathbf{T}}}	PT	HY: Riemann P-symbol
GH				
\HyperpFq{p}{q}	pF_q	\HyperpFq{p}{q}@{a}{b}{z} \HyperpFq{p}{q}@{a}{b}{z} \HyperpFq{p}{q}@@{a}{z}	$_{p}^{p}F_{q}(a;b;z)$ $_{p}^{p}F_{q}(_{b}^{a};z)$ $_{p}^{p}F_{q}(z)$	GH, Ch. 15: Gauss's Hypergeometric Function, pFq
\HyperpHq{p}{q}	$^{b}H^{d}$	\HyperpHq{p}{q}@{a}{b}{z} \HyperpHq{p}{q}@@{a}{b}{z} \HyperpHq{p}{q}@@@{a}{b}{z}	$_{p}^{p}H_{q}(a;b;z) \ _{p}^{p}H_{q}(\stackrel{a}{b};z) \ _{p}^{p}H_{q}(z)$	GH, Ch. 15: Some other Hypergeometric Function, pHq
\AppellFi	F_1	$$$ \Lambda = \frac{x}{x}{y}$	$F_1(lpha;eta,eta';\gamma;x,y)$	GH : Appell Functions, F_1
\AppellFii	F_2	$ \texttt{AppellFii@{\alpha}}{\beta}{\beta}{\beta}{\beta}{\cline{Appell}} \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\beta';\gamma,\gamma';x,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma';x,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma,\gamma,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma,\gamma,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma,\gamma,\gamma,y) \texttt{GH}: Appell Functions}, F_2(\alpha;\beta,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma,\gamma$	$F_2(\alpha; \beta, \beta'; \gamma, \gamma'; x, y)$	GH : Appell Functions, F_2
\AppellFiii	F_3		$F_3(\alpha, \alpha'; \beta, \beta'; \gamma; x, y)$	GH : Appell Functions, F_3
\AppellFiv	F_4	\AppellFiv@{\alpha}{\beta}{\gamma}{\gamma'}{x}{y}	$F_4(\alpha;\beta;\gamma,\gamma';x,y)$	GH : Appell Functions, F_4
eijerG{m}{n}{q	$G_{p,q}^{m,n}$	$\label{eq:local_model} $$ \$ \end{matheres} $$ $$ \end{matheres} $$ $$ \end{matheres} $$$ \end{matheres} $$ \end{matheres} $$ \end{matheres} $$$ \end{matheres} $$ \end{matheres} $$ \end{matheres} $$$ \end{matheres} $$$ \end{matheres} $$$ m$	$G_{p,q}^{m,n}(z;a;b) \ G_{p,q}^{m,n}(z;b) \ G_{p,q}^{m,n}(z;b)$	GH: Meijer G-Function
H				
\qexp{q}	e_q	\qexp{q}\@{z}	$e_q(z)$	QH: q-Exponential Function
\qExp{q}	E_q		$E_q(z)$	QH: q-Exponential Function
\qsin{q}	\sin_q	\qsin{q}@{z}	$\sin_q(z)$	QH: q-sine Function
\qSin{q}	Sin_q	\qSin{q}@{z}	$\operatorname{Sin}_q(z)$	QH: q-Sine Function
\qcos{q}	cos_q	\{z}\delta\end{\frac{\partial}{2}}\delta\end{\frac{\partial}{2}}	$\cos_q(z)$	QH: q-cosine Function
\qCos{q}	\cos_q	Cos, \\qcos{q}@{z}	$Cos_{\alpha}(z)$	OH: q-cosine Function

\qBernoulli{n} \qEuler{m}{s}	β_n $A_{m,s}$	\qBernoulli{n}@{z}{q} \qEuler{m}{s}@{q}	$\beta_n(z,q)$ $A_{m,s}(q)$	QH: q-Bernoulli polynomial QH: q-Euler numbers
\q\$tirling{m}{s} \qHyperrphis{r}{s}	$a_{m,s}$ $r\phi_s$	\qstirling{m}{s}@{q} $a_{m,s}(q)$ \qHyperrphis{r}{s}@{a}{tb}{q}{z}	$a_{m,s}(q)$ $r\phi_{s}(a;b;q,z)$ $r\phi_{s}\binom{a}{b};q,z$ $r\phi_{s}(q,z)$	QH: q-Stirling numbers QH, Ch. 15: q-Hypergeometric Function, pphiq
\qHyperrpsis{r}{s}	$r\psi_s$	$$$ \qHyperrpsis\{r\}\{s\}@\{a\}\{b\}\{q\}\{z\} $$$ $r\psi_s(a;b; aHyperrpsis\{r\}\{s\}@@\{a\}\{b\}\{q\}\{z\} $$$$ $r\psi_s(\frac{a}{b};q]$$ AHyperrpsis\{r\}\{s\}@@\{a\}\{b\}\{q\}\{z\} $$$$$ $r\psi_s(q;z)$$$	$r\psi_s(a;b;q,z) r\psi_s(a;q,z) r\psi_s(q,z)$	QH, Ch. 15: q-Hypergeometric Function, ppsiq
\HyperPhi{j}	$\Phi^{(j)}$	\HyperPhi{j}@{a}{b}{c}{z}	$\Phi^{(j)}(a;b;c;z)$	$\Phi^{(j)}(a;b;c;z)$ QH : q-Appell functions
\idem	idem	\idem@{a}{b}	idem(a;b)	QH: idem function
	_			
biP{\alpha}{\beta}{n}	$P_n^{(lpha,eta)}$	$\label{eq:condition} $$\arrowvert = P_n^{(\alpha,\beta)} \leq P_n^{(\alpha,\beta)} $$$	$P_n^{(\alpha,\beta)}(x)$	OP, 22.2.1: the Jacobi polynomial, P
\Ultraspherical{\lambda}{n} C_n^{(\lambda)}		$$$ \Ultraspherical{\lambda}_{n}@{x}$$	$C_n^{(\lambda)}(x)$	$\mathbf{OP,22.2.3:}$ the ultraspherical (Gegenbauer) polynomial, C
\ChebyT{n}	T_n	\ChebyT{n}@{x}	$T_n(x)$	OP, 22.2.4: the Chebyshev polynomial of the first kind, T
\ChebyU{n}	U_n	\ChebyU{n}@{x}	$U_n(x)$	OP , 22.2.5 : the Chebyshev polynomial of the second kind, U
\ChebyV{n}	V_n	\ChebyV{n}@{x}	$V_n(x)$	$\mathbf{OP} \colon$ the Chebyshev polynomial of the third kind, V
\ChebyW{n}	W_n	\ChebyW{n}@{x}	$W_n(x)$	$\mathbf{OP}\colon$ the Chebyshev polynomial of the fourth kind, W

w/o arguments		w/arguments		Note
$\ChebyTs\{n\}$	T_n^*	$\label{eq:chebyTsug} $$\ \c) = \frac{1}{2} (x)^{(n+1)} ($	$T_n^*(x)$	OP, 22.2.8 : the shifted Chebyshev polynomial of the first kind, T^*
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	U_n^*	\ChebyUs{n}@{x}	$U_n^*(x)$	OP, 22.2.9 : the shifted Chebyshev polynomial of the second kind, U^*
\LegendrePoly{n}	P_n	$\verb lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:$	$P_n(x)$	$\mathbf{OP},$ 22.2.10 : the Legendre polynomial (spherical), P
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	P_n^*	\LegendrePolys{n}@{x}	$P_n^*(x)$	OP, 22.2.11 : the shifted Legendre polynomial (spherical), P^*
\LaguerreL{n}	L_n	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$L_{n}\left(x\right)$	OP , 22.2.12-13: the generalized Lagrenter polynomial. L
\LaguerreL[\alpha]{n}	$L_n^{(lpha)}$	$L_n^{(lpha)}$ \LaguerreL[\alpha]{n}\@{x}	$L_n^{(\alpha)}(x)$	0
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	H_n	\HermiteH{n}@{x}	$H_n(x)$	$\begin{array}{ll} \mathbf{OP,\ 22.2.14:\ the\ Hermite\ polynomial,} \\ \mathbf{H} \end{array}$
\HermiteHe{n}	He_n	He_n \\HermiteHe\{n}\@\{x}\	$He_n(x)$	$\mathbf{OP},\ 22.2.15$: the Hermite polynomial He
\HahnQ{n}	Q_n	$\label{labal} $$\HahnQ{n}^{n}_{x}^{n}=\harrow^{n}_{x}^{n}$$$	$Q_n(x;\alpha,\beta,N)$	$Q_n(x;\alpha,\beta,N)$ OP : the Hahn polynomial Q
\krawtchoukK{n}	K_n	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$K_n(x; p, N)$	OP: KrawtchoukK polynomial K
\MeixnerM{n}	M_n	\MeixnerM{n}@{x}{\beta}{c}	$M_{n}\left(x;\beta,c\right)$	OP : Meixner polynomial M
\CharlierC{n}	C_n	$\label{eq:charlierC} $$ \subset \mathbb{R}^{q} = \mathbb{R}^{q} .$	$C_n(x,a)$	OP : Charlier Polynomial C
\mathbb{L}_{n}	p_n	$\label{eq:label} $$ \abel{eq:label} $$ \abel{eq:label} $$ \abelee $$ \abele$	$p_{n}\left(x;a,b,\bar{a},\bar{b}\right)$	$p_{n}\left(x;a,b,\bar{a},\bar{b}\right)$ OP : the continuous Hahn polynomial p
\MeixnerPollaczekP{\lambda}{n}	$P_n^{(\lambda)}$	$\\ \verb WeixnerPollaczekP{\lambda}{n}$$ $P_n^{(\lambda)}$ $NeixnerPollaczekP{\lambda}{n}$$ and $P_n^{(\lambda)}(x;\phi)$ $	$P_n^{(\lambda)}(x;\phi)$	OP : Meixner-Pollaczek polynomial P
\WilsonW{n}	M_n	W_n WilsonWfn}@{x}{a}{b}{c}{d}	$W_n(x;a,b,c,d)$	$W_n(x;a,b,c,d)$ OP : Wilson polynomial W

w/o arguments		w/arguments		Note
\mathbb{R}_{n}	R_n	\RacahR{n}@{x}{\alpha}{\beta}{\gamma}{\delta}	$R_n(x;\alpha,\beta,\gamma,\delta)$	OP: Racah polynomial R
\HahnS{n}	S_n	\HahnS{n}@{x}{a}{c}}	$S_n(x; a, b, c)$	OP: Continuous Dual Hahn S
\HahnR{n}	R_n	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$R_n(x; \gamma, \delta, N)$	OP: Dual Hahn R
\qHahnQ{n}	Q_n	$\label{eq:continuous} $$ \left(\frac{x}{x}^{2} \right) = \frac{n}{x}^{2} .$	$Q_n(x;\alpha,\beta,N;q)$	OP: the q-Hahn polynomial Q
\qJacobiP{n}	P_n	\qJacobiP{n}@{x}{a}{b}{c}{q}	$P_{n}\left(x;a,b,c;q\right)$	OP : the Big q-Jacobi polynomial, P
\qJacobip{n}	p_n	\qJacobip{n}@{x}{a}{b}{q}	$p_n(x; a, b; q)$	OP : the Little q-Jacobi polynomial, p
\qLaguerreL{\alpha}{n} $L_n^{(lpha)}$	$L_n^{(\alpha)}$	\qLaguerreL{\alpha}{n}@{x}{q}	$L_n^{(\alpha)}(x;q)$	OP : the q-Laguerre polynomial, L
$\times The time of time of time of the time of the time of time of time of time of the time of time $	S_n	$\verb \StieltjesWigertS{n}@\{x\}{q} $	$S_n(x;q)$	OP : the Stieltjes-Wigert polynomial, S
\qHermitehI{n}	h_n	$\verb quad quad quad quad quad quad quad $	$h_n(x;q)$	$\mathbf{OP} \colon$ the Discrete q-Hermite I polynomial, h
$\neq \{q \in \{1, 1\}$	\tilde{h}_n	\qHermitehII{n}@{x}{q}	$ ilde{h}_n(x;q)$	$\mathbf{OP} \colon$ the Discrete q-Hermite II polynomial, \tilde{h}
\AskeyWilsonp{n}	p_n	\AskeyWilsonp{n}@{x}{a}{b}{c}{d}{q}	$p_n(x; a, b, c, d q)$	OP : the Askey-Wilson polynomial, p
\AlSalamChiharaQ{n}	Q_n	\AlSalamChiharaQ{n}@{x}{a}{d}	$Q_n(x;a,b q)$	$\mathbf{OP} :$ the Al Salam-Chihara polynomial, Q
$\langle qUltraspherical\{n\} \rangle$	C_n	$\label{localine} $$ \left(\frac{1}{2}\left(\frac{1}{2}\right)^{2} \right) = \left(\frac{1}{2}\left(\frac{1}{2}\right)^{2} \right)^{2} .$	$C_n(x;\beta \mid q)$	OP : the Continuous q-Ultraspherical polynomial, C
\qHermiteH{n}	H_n	\qHermiteH{n}@{x}{q}	$H_n(x \mid q)$	$ \begin{tabular}{ll} \bf OP: the Continuous q-Hermite polynomial, H \end{tabular} $
\qRacahR{n}	R_n	$ AgRacahR\{n\@\{x\}\{\{n\}pha\}\{\{npta\}\{\{npta\}\{q\} \mid R_n(x;\alpha,\beta,\gamma,\delta q) \mathbf{OP} : q-Racah polynomial Racah Po$	$R_n(x; \alpha, \beta, \gamma, \delta \mid q)$	OP: q-Racah polynomial R
\BesselPolyy{n}	y_n	\BesselPolyy{n}@{x}{a}	$y_n(x;a)$	OP : Bessel polynomial y

w/o arguments		w/arguments		Note
\PollaczekP{\lambda}{n}	$P_n^{(\lambda)}$	\PollaczekP{\lambda}{n}@{x}{a}{b}	$P_n^{(\lambda)}(x;a,b)$	OP: Pollaczek polynomial P
$\label{eq:continuity} $$\DiskOP{\alpha}{n}{m}$	$R_{n,m}^{(lpha)}$	$\label{likelihoo} $$ \prod_{n} e_{2} .$	$R_{n,m}^{(lpha)}(z)$	OP: Disk polynomial R
$\label{lemma} $$ \prod_{n}{\left(\frac{1}{n}^{n}}\right) = \frac{1}{n}^{n} .$	$P_{n,m}^{\alpha,\beta,\gamma}$	$\left. P_{n,m}^{\alpha,\beta,\gamma} \middle \texttt{VriangleOP}\{\texttt{Nalpha}\}\{\texttt{Nbeta}\}\{\texttt{Ngamma}\}\{\texttt{n}\}\{\texttt{m}\}\texttt{0}\{\texttt{x}\}\{\texttt{y}\} \ P_{n,m}^{\alpha,\beta,\gamma}(x,y) \right.$	$P_{n,m}^{lpha,eta,\gamma}(x,y)$	OP : Triangle polynomial P
\qinvHermiteh{n}	h_n	$\verb \qinvHermiteh{\{n\}}@{x}{\{q\}} $	$h_n(x \mid q)$	OP : Continuous q-inverse Hermite polynomial h
\AssLegendrePoly{n}	P_n	$\verb \AssLegendrePoly{n}@\{x\}\{c\} $	$P_n(x;c)$	OP : Legendre spherical polynomial P
\AssJacobiP{\alpha}{\beta}{n}	$P_n^{(\alpha,\beta)}$	$\left. P_{n^{(\alpha,\beta)}}^{(\alpha,\beta)} \right _{\text{AssJacobiP}\{\lambda = 1 \text{pha}} \{\lambda \in \mathbb{R} \} \{c\}$	$P_n^{(\alpha,\beta)}(x;c)$	OP : Associated Jacobi polynomial P
\qJacobiPP{\alpha}{\beta}{n}	$P_n^{(\alpha,\beta)}$	$P_{n^{(lpha,eta)}}^{(lpha,eta)}$ \qJacobiPP{\alpha}{\langle}alpha}{\langle}alpha}{\langle}alpha	$P_n^{(\alpha,\beta)}(x;c,d;q)$	$P_{n^{(\alpha,\beta)}}^{(\alpha,\beta)}(x;c,d;q)$ OP : big q-Jacobi polynomial P type-2
\qinvAlSalamChiharaQ{n}	Q_n	\qinvAlSalamChiharaQ{n}@{x}{a}{b}{q}	$Q_n(x;a,b q)$	$\mathbf{OP}\colon$ q-inverse AlSalam-Chihara polynomial Q
\JacobiG{n}	G_n	\JacobiG{n}@{p}{q}{x}	$G_n(p,q,x)$	OP, 22.2.2 : the shifted Jacobi polynomial, G
$\ChebyS\{n\}$	S_n	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$S_n(x)$	OP, 22.2.6 : the dilated Chebyshev polynomial of the first kind, S
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	C_n	\ChebyC{n}@{x}	$C_n(x)$	OP, 22.2.7 : the dilated Chebyshev polynomial of the second kind, C
E				
\EllIntF	F	\E11IntF@{\phi}{k}	$F(\phi,k)$	EL, 17.2.6: the elliptic integral of the first kind, F
\EllIntE	E	\EllIntE@{\phi}{k}	$E(\phi,k)$	EL, 17.2.8: the elliptic integral of the second kind, \mathbf{E}
\EllIntD	D	\EllIntD@{\phi}{k}	$D(\phi,k)$	EL: the Janke, Emde, and Losch's integrals, D

w/o arquments	ŝ	w/arquments		Note
\EllIntPi	П	\text{\EllIntPi@{\phi}}{\alpha^2,k} \ \proonup(\phi,\alpha^2,k)	$\Pi(\phi, \alpha^2, k)$	EL, 17.2.14-16: the elliptic integral of the third kind, Pi
\CompEllIntK	K	\CompEllIntK@{k} \CompEllIntK@@{k}	K(k) K	EL, 17.3.1: the complete elliptic integral of the first kind, K
\CompEllIntE	E	\CompEllIntE@{k} \CompEllIntE@@{k}	E(k)	EL, 17.3.3: the complete elliptic integral of the second kind, E
\CompEllIntD	D	\CompEllIntD@{k} \CompEllIntD@@{k}	D(k) D	EL: the complete Janke, Emde, and Losch's integrals, D
\CompEllIntPi	п	\CompEllIntPi@{\alpha^2}{k}	$\Pi(lpha^2,k)$	EL: the complete elliptic integral of the third kind, Pi
\CompEllIntCK	K'	<pre>K' \CompEllIntCK@{k} \CompEllIntCK@@{k}</pre>	K'(k) K'	EL, 17.3.1: the complentary complete elliptic integral of the first
\CompEllIntCE	E'	\CompEllIntCE@{k} \CompEllIntCE@@{k}	E'(k)	kind, K', EL', 17.3.3: the complementary complete elliptic integral of the second
\EllIntcel	cel	cel \EllIntcel@{k_c}{p}{a}{b}	$\operatorname{cel}(k_c, p, a, b)$	$ kind, E' $ $ \mathbf{EL} $: Bulirsch's integral, cel
EllIntelone	el1	ell \EllIntelone@{x}{k_c}	$el1(x, k_c)$	EL : Bulirsch's integral, $el1$
\EllInteltwo	el2	el2 \EllInteltwo@{x}{k_c}{a}{b}	$el2(x, k_c, a, b)$	$el2(x, k_c, a, b) \mid \mathbf{EL}$: Bulirsch's integral, $el2$
EllIntelthree	el3	$\verb \langle EllIntelthree el3 \\ \langle EllIntelthree@\{x\}\{k_c\}\{p\} \\$	$el3(x, k_c, p)$	EL: Bulirsch's integral, el3
\EllIntRC	R_C	R_C \EllIntRC@{x}{y} \\ \text{LlIntRC@@{x}{y}}	$R_C(x,y)$ R_C	EL : Carlson's integral, R_C
\EllIntRF	R_F	$R_F \mid \texttt{VEllIntRF@\{x\}\{y\}\{z\}} \mid \texttt{VEllIntRF@\{x\}\{y\}\{z\}}$	$\left. egin{aligned} R_F(x,y,z) \ R_F \end{aligned} \right $	EL : Carlson's integral, R_F

w/o arguments		w/arguments		Note
\EllIntRJ	R_J	\EllIntRJ@{x}{y}{z}{p} \EllIntRJ@&{x}{y}{z}{p}	$\frac{R_J(x,y,z,p)}{R_J}$	$R_J(x,y,z,p)$ EL : Carlson's integral, R_J
\E11IntRG	R_G	\E11IntRG@{x}{y}{z} \E11IntRG@@{x}{y}{z}	$R_G(x, y, z)$ R_G	EL : Carlson's integral, R_G
\E11IntRD	R_D	$$$\left(\frac{1}{x}\left(x\right)^{2}\} = \left(\frac{1}{x}\right)^{2} \\ \left(\frac{1}{x}\left(x\right)^{2}\right)^{2} \\ \left($	$R_D(x,y,z) \\ R_D$	EL : Carlson's integral, R_D
\EllIntR{-a}	R_{-a}	$R_{-a} \left \texttt{VEllIntR}\{\texttt{-a}\} \texttt{@\{b\}} \{ \texttt{z} \} \right $	$R_{-a}\left(b;z\right)$	EL : Carlson's integral, R_{-a}
\LauricellaFD	F_D	\LauricellaFD@{a}{b}{c}{c}	$F_D(a;b;c;z)$	$F_D(a;b;c;z)$ EL : Lauricellas function
\AGM		\AGM@{a}{b}	M(a,b)	EL: arithmetic geometric mean
H	Ī			
\JacobiTheta{i}	θ_i	\JacobiTheta{i}@{z}{q}	$ heta_i(z,q)$	TH, 16.27.1-4 : Jacobi Theta functions, θ_i
\JacobiThetaTau{i}	θ_i	\JacobiThetaTau{i}@{z}{\tau}	$ heta_i(z au)$	TH, 16.27.1-4 : Jacobi Theta functions, θ_i
$ m _{LV}$				
\RiemannTheta	θ	\RiemannTheta@{z}{\Omega}	$\theta(z \Omega)$	MT: Riemann Theta function
\RiemannThetaHat	$\hat{\theta}$	\RiemannThetaHat@{z}{\Omega}	$\hat{\theta}(z \Omega)$	MT: scaled Riemann Theta function
RiemannThetaChar{\alpha}{\beta}	$\theta^{[lpha]}_{eta}$	\RiemannThetaChar{\alpha}{\beta} \\theta[_{eta}^{[\alpha]} \ \RiemannThetaCharf\alpha\f\\ beta\graphaf\\ betageta\graphaft\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	$\theta[^\alpha_\beta](z \Omega)$	MT: Riemann Theta function with characteristics
A				
Jacobisn	sn	\Jacobisn@{u}{k} \Jacobisn@@{u}{k}	$\operatorname{sn}\left(u,k\right)$ $\operatorname{sn}u$	${\bf JA,\ 16.1.5}$: Jacobi's elliptic function, sn
\Jacobins	su	\Jacobins@{u}{k}	$\operatorname{ns}\left(u,k\right)$	JA, 16.3.1: Jacobi's elliptic function,

Note		$\begin{array}{c c} \operatorname{cn}\left(u,k\right) & \mathbf{JA,\ 16.1.5} \end{array}$ Jacobi's elliptic function, $\operatorname{cn}u & \operatorname{cn} \end{array}$	$\begin{array}{c c} \operatorname{nc}\left(u,k\right) & \mathbf{JA,\ 16.3.2} \end{array}$ Jacobi's elliptic function, $\operatorname{nc}u & \operatorname{nc} \end{array}$	dn(u,k) JA, 16.1.5 : Jacobi's elliptic function, dnu	nd(u,k) JA, 16.3.3 : Jacobi's elliptic function, ndu and	$\operatorname{sd}(u,k)$ JA, 16.3.2 : Jacobi's elliptic function, $\operatorname{sd} u$	ds(u,k) JA, 16.3.2 : Jacobi's elliptic function, dsu	cd(u,k) JA, 16.3.1 : Jacobi's elliptic function, cdu	dc(u,k) JA, 16.3.1 : Jacobi's elliptic function, dcu	$\begin{array}{c c} \mathrm{sc}\left(u,k\right) & \mathbf{JA,\ 16.3.3:\ Jacobi's\ elliptic\ function,} \\ \mathrm{sc}u & \mathrm{sc} \end{array}$	$cs(u,k)$ JA, 16.3.3 : Jacobi's elliptic function, $cs\ u$	JA: Abstract Jacobi's elliptic function, pq
	$n \operatorname{su}$	$\operatorname{cn}\left(u,k\right)$ $\operatorname{cn}u$	$\operatorname{nc}\left(u,k\right)$ $\operatorname{nc}u$	dn(u, k) dn u	$\operatorname{nd}\left(u,k\right)$ $\operatorname{nd}u$	$\operatorname*{sd}\left(u,k\right) \\\operatorname*{sd}u$	$\frac{\mathrm{ds}(u,k)}{\mathrm{ds}u}$	$\operatorname*{cd}\left(u,k\right)$ $\operatorname*{cd}u$	$\operatorname{dc}\left(u,k\right)\\\operatorname{dc}u$	$\operatorname*{sc}\left(u,k\right)$ $\operatorname*{sc}u$	$\operatorname*{cs}\left(u,k\right)$ $\operatorname*{cs}u$	$pq\left(u,k\right) $ pqu
w/arguments	\Jacobins@@{u}{k}	<pre>cn \Jacobicn@{u}{k} \Jacobicn@@{u}{k}</pre>	nc \Jacobinc@{u}{k} \\Jacobinc@@{u}{k}	dn \Jacobidn@{u}{k} \Jacobidn@@{u}{k}	nd \Jacobind@{u}{k} \Jacobind@@{u}{k}	sd \Jacobisd@{u}{k} \Jacobisd@@{u}{k}	ds \Jacobids@{u}{k} \Jacobids@@{u}{k}	cd \Jacobicd@{u}{k} \Jacobicd@@{u}{k}	<pre>dc \Jacobidc@{u}{k} \Jacobidc@@{u}{k}</pre>	sc \Jacobisc@{u}{k} \\Jacobisc@@{u}{k}	cs \Jacobics@{u}{k} \Jacobics@@{u}{k}	$\label{localized-problem} $$ $$ \arrange pq $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$
w/o arguments		\Jacobicn cn	\Jacobinc nc	\Jacobidn dn	\Jacobind nd	\Jacobisd sd	\Jacobids ds	\Jacobicd cd	\Jacobidc dc	\Jacobisc sc	\Jacobics cs	\AbstractJacobiPQ{pq} pq

w/o arguments	w/arguments		Note
\arcJacobisn arcsn	\arcJacobisn@{\phi}{k} arcs	$\mathrm{sn}(\phi,k)$	$\operatorname{arcsn}(\phi,k)$ JA : Inverse of Jacobi's elliptic function, sn
\arcJacobicn arccn	\arcJacobicn@{\phi}{k} arcc	$\mathrm{cn}(\phi,k)$	$ \texttt{AarcJacobicn} \ \texttt{AarcJacobicn0} \{ \texttt{Aphi} \} \{ \texttt{k} \ \ \texttt{arccn}(\phi, k) \ \ \ \textbf{JA} : \texttt{Inverse of Jacobi's elliptic function}, \\ \\ \text{cn} $
\arcJacobidn arcdn	\arcJacobidn@{\phi}{k} arcd	$\mathrm{dn}(\phi,k)$	$ \textbf{ArcJacobidn} \ \ \textbf{ArcJacobidn}(\mathbf{phi}) \textbf{JA}: \textbf{Inverse of Jacobi's elliptic function}, \\ \mathbf{dn} dn$
\arcJacobisd arcsd	<pre>\arcJacobisd@{\phi}{k} arcs</pre>	$\mathrm{sd}(\phi,k)$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\arcJacobicd arccd	\arcJacobicd@{\phi}{k} arcc	$\operatorname{cd}(\phi,k)$	$\texttt{\ \ } \textbf{ArcJacobicd arccd \ \ } \textbf{ArcJacobicd \ \ } \textbf{JA} : \textbf{Inverse of } \textbf{Jacobi's elliptic function, } \\ \textbf{cd} \\$
\arcJacobisc arcsc	<pre>\arcJacobisc@{\phi}{k} arcs</pre>	$\mathrm{sc}(\phi,k)$	$\verb \arcJacobisc arcsc \verb \arcJacobisc@{\phi}{fk} \ \arcsc(\phi,k) \begin{tabular}{l} {\bf JA} : Inverse \ of \ Jacobi's \ elliptic \ function, sc \end{tabular}$
\arcJacobins arcns	\arcJacobins@{\phi}{k} arcn	$\operatorname{ns}(\phi,k)$	$\label{eq:large_pins} $$ \arcslash \arcslash$
\arcJacobinc arcnc	\arcJacobinc@{\phi}{k} arcn	$\mathrm{nc}(\phi,k)$	$\verb \arcJacobinc arcnc \verb \arcJacobinc@{\phi}_{k} \ arcnc(\phi,k) \begin{tabular}{l} {\bf JA} : Inverse of Jacobi's elliptic function, \\ & nc \end{tabular}$
\arcJacobind arcnd	\arcJacobind@{\phi}{k} arcn	$\operatorname{nd}(\phi,k)$	$\texttt{\ varcJacobind arcnd varcJacobind@{\phi}}{k} \ \ \ arcnd(\phi,k) \ \ \ \ \ \ \ \ \ \ \ \ \ $
\arcJacobids arcds	\arcJacobids@{\phi}{k} arcd	$\mathrm{ds}(\phi,k)$	$\verb \arcJacobids arcds \verb \arcJacobids@{\phi}_{k} \ arcds(\phi,k) \begin{tabular}{l} {\bf JA} : {\bf Inverse of Jacobi's elliptic function,} \\ \hline \\ {\bf ds} \end{tabular}$
\arcJacobidc arcdc	\arcJacobidc@{\phi}{k} arcd	$\mathrm{dc}(\phi,k)$	$ \textbf{ArcJacobidc} \textbf{ArcJacobidc@{\phi}}{k} \textbf{arcdc}(\phi,k) \textbf{JA} : \textbf{Inverse of Jacobi's elliptic function}, \\ \textbf{dc} \textbf{dc} $
\arcJacobics arccs	\arcJacobics@{\phi}{k} arcc	$\mathrm{cs}(\phi,k)$	$\label{eq:control} $$ \arccs $$ \arccs(\phi,k) $ $ \arccs(\phi,k) $

w/o arguments	w/arguments		Note
\arcAbstractJacobiPQ{pq} pq	\arcAbstractJacobiPQ{pq}@{u}{k} \arcAbstractJacobiPQ{pq}@@{u}{k}	$pq\left(u,k ight) \ pq\left(u ight) $	JA: inverse abstract Jacobi's elliptic function, pq
\Jacobiam am	am \Jacobiam@{u}{k} \Jacobiam@@{u}{k}	$\operatorname{am}(u,k)$ $\operatorname{am} u$	JA: Jacobi's amplitude function, am
λ \Jacobi Epsilon	\JacobiEpsilon@{k}{m}	$\mathcal{E}(k,m)$	JA: Jacobi Epsilon function, E
\JacobiZeta Z	\JacobiZeta@{u}{m}	$\mathrm{Z}(u m)$	JA , 17.3.27-28 : Jacobi's Zeta function
WE			
WeierPLat %	\WeierPLat@{z}{L} \WeierPLat@@{z}{L}	$\wp(z L)$ $\wp(z)$	WE, Ch. 18: Weierstrass' P function in terms of Lattice
\WeierzetaLat	\WeierzetaLat@{z}{L} \WeierzetaLat@@{z}{L}	$\zeta(z L)$ $\zeta(z)$	WE, Ch. 18: Weierstrass' zeta function in terms of Lattice
\WeiersigmaLat σ	\WeiersigmaLat@{z}{L} \WeiersigmaLat@@{z}{L}	$\sigma(z L)$ $\sigma(z)$	WE, Ch. 18: Weierstrass' sigma function in terms of Lattice
\WeierPInv &	\WeierPInv@{z}{g_2}{g_3} \WeierPInv@@{z}{g_2}{g_3}	$\wp(z;g_2,g_3)\\\wp(z)$	$\wp(z;g_2,g_3)$ WE, Ch. 18 : Weierstrass' P function $\wp(z)$
\WeierzetaInv ζ	$\label{eq:control} $$ \WeierzetaInv@{z}{g_2}{g_2}{g_3}$$ $$ \WeierzetaInv@{z}{g_2}{g_3}$$	$\zeta(z;g_2,g_3) \\ \zeta(z)$	$\zeta(z;g_2,g_3)$ WE, Ch. 18 : Weierstrass' zeta $\zeta(z)$ function in terms of lattice invariants
\WeiersigmaInv \	\WeiersigmaInv@{z}{g_2}{g_3} \WeiersigmaInv@@{z}{g_2}{g_3}	$\begin{matrix} \sigma(z;g_2,g_3) \\ \sigma(z) \end{matrix}$	$\sigma(z;g_2,g_3)$ WE, Ch. 18 : Weierstrass' sigma $\sigma(z)$ function in terms of lattice invariants
\ModularLambda	\ModularLambda@{\tau}	$\lambda(au)$	WE: Modular Lambda function
\ModularJ	J \ModularJ@{\tau}	J(au)	WE: Kleins invariant

w/o arguments		w/arguments		Note
\DedekindModularEta	μ	\DedekindModularEta@{\tau} $\eta(au)$	$\eta(au)$	\mathbf{WE} : Dedekind Modular Function: eta(tau)
BP				
\BernoulliB{n}	B_n	\BernoulliB{n}@{x}	$B_n(x)$	$\ensuremath{\mathbf{BP,\ 23.1.1}}$ the Bernoulli polynomial, B
\EulerE{n}	E_n	\EulerE{n}@{x}	$E_n(x)$	BP, 23.1.1: the Euler polynomial, E
\PeriodicBernoulliB{n} \widetilde{B}_n	\widetilde{B}_n	\PeriodicBernoulliB{n}\@{x}\ $\widetilde{B}_n(x)$		$\mathbf{BP} \colon$ the periodic Bernoulli polynomial, B
\PeriodicEulerE{n}	\widetilde{E}_n	\PeriodicEulerE{n}@{x}	$\widetilde{E}_n(x)$	\mathbf{BP} : the periodic Euler polynomial, E
\GenBernoulliB{k}{n}	$B_n^{(k)}$	$B_n^{(k)}$ \GenBernoulliB{k}{n}@{x}	$B_n^{(k)}(x)$	$B_n^{(k)}(x)$ BP : the higher-order generalized Bernoulli polynomial, B
$\ensuremath{\texttt{GenEulerE\{k\}\{n\}}}$	$E_n^{(k)}$	$E_n^{(k)}$ \GenEulerE{k}{n}@{x}	$E_n^{(k)}(x)$	$E_n^{(k)}(x)$ BP : the higher-order generalized Euler polynomial, E
ZE				
\RiemannZeta	ζ	\RiemannZeta@{s}	(s)	ZE, 23.2.1: the Riemann zeta function
\RiemannXi	\$	\RiemannXi@{s}	$\xi(s)$	ZE: the Riemann xi function
\HurwitzZeta	ζ	\HurwitzZeta@{s}{a}	$\zeta(s,a)$	ZE: the Hurwitz zeta function
\Dilogarithm	Li_2	\Dilogarithm@{x}	$Li_2(x)$	ZE, 27.7: the Dilogarithm
\Polylogarithm{s}	Li_s	$\P \$	$Li_s(x)$	ZE, 27.7: the Polylogarithm
\Jonqui erePhi	Φ	\JonquierePhi@{z}{s}	$\phi(z,s)$	ZE: the Jonquiere phi function
\PeriodicZeta	F	\PeriodicZeta@{x}{s}	F(x,s)	ZE: the periodic zeta function
\LerchPhi	Ф	\LerchPhi@{z}{s}{a}	$\Phi(z,s,a)$	$\Phi(z,s,a) \left \mathbf{ZE}$: Lerch's transcendent

w/o arguments		w/arguments		Note
\DirichletL	T	\DirichletL@{s}{\chi}	$L(s,\chi)$	$L(s,\chi) \mathbf{ZE}$: Dirichlet L: L(s,chi)
\ChebyshevPsi	ψ	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\psi(x)$	\mathbf{ZE} : Chebyshev Psi Function: $\operatorname{psi}(\mathbf{x})$
\EulerSumH	Н	\EulerSumH@{s}	H(s)	ZE : Euler Sum: H(s)
\GenEulerSumH	Н	\GenEulerSumH@{s}{z}	H(s,z)	H(s,z) ZE : Generalized Euler Sum: H(s,z)
LN				
\NumPrimeDivNu	7	\NumPrimeDivNu@{n}	$\nu(n)$	\mathbf{NT} : number of distinct primes dividing n
\NumPrimesLessPi	k	$\verb \NumPrimesLessPi0{x} $	$\pi(x)$	\mathbf{NT} : number of primes not exceeding x
\EulerTotientPhi	Ф	\EulerTotientPhi@{n}	$\phi(n)$	NT, 24.3.2: the Euler totient func-
\EulerTotientPhi[k]	ϕ_k	\EulerTotientPhi[k]@{n}	$\phi_k(n)$	61011, p.m.
\DivisorFunctionD \DivisorFunctionD[k]	d d_k	$\label{eq:loss_eq} $$ \begin{array}{ll} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$d(n) \\ d_k(n)$	${f NT}$: the divisor function
\DivisorSigma{k}	σ_k	\DivisorSigma{k}@{n}	$\sigma_k(n)$	NT, 24.3.3: the divisor function
$\label{lordanJ} \$	J_k	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$J_k(n)$	NT: Jordan's function
\MoebiusMu	π	\MoebiusMu@{n}	$\mu(n)$	NT, 24.3.1: the Möbius Function, mu
\LiouvilleLambda	<	\LiouvilleLambda@{n}	$\lambda(n)$	NT: Liouville's Function
\MangoldtLambda	V	\mathbb{N} angoldtLambda@ $\{n\}$	$\Lambda(n)$	NT: Mangoldt's Function
\LegendreSymbol{n}{p} $(n p)$	(d u)			NT: Legendre symbol
\JacobiSvmbol{n}fp}	(a u)			NT: Jacobi symbol

nts Note	$c_k(n) ig \mathbf{NT}$: Ramanujan's sum	$G(n,\chi)$ NT : Gauss' sum	g(k) NT : Waring's function	G(k) NT: Waring's function	$r_k(n)$ NT: number of squares	$\vartheta(x)$ NT : theta function	f(x) NT: Euler's reciprocal function	au) $\Delta(\tau)$ NT: Discriminant Function: Delta(tau)	au(n) NT: Ramanujan's tau function	3-{k} $\chi(n,k)$ NT: Dirichlet character chi \mathbf{n} -{k} $\chi(n)$	<u>~</u>		$p(n)$ CM: Partition function $p_k(n)$	C(n) CM : Catalan numbers	B(n) CM: Bell numbers	s(n,k) CM, 24.1.3: the Stirling numbers of First kind	
w/arguments	\mathbb{R}_{n}	\GaussSum@{n}{\chi}	\Waringg@{k}	G \WaringG@{k}	$\\operatorname{NumSquaresR}\{k\}@\{n\}$	<pre> \AThetaFunction@{x} </pre>	f \EulerPhi@{x}	∆ \DiscriminantDelta@{\tau}	\RamanujanTau@{n}	<pre>\DirichletCharacter@{n}{k} \DirichletCharacter@@{n}{k}</pre>			\PartitionsP@{n} \PartitionsP[k]@{n}	C \CatalanNumber@{n}	\BellNumber@{n}	\StirlingS@{n}{k}	
	c_k	Ö	9	\mathcal{G}	r_k	в	f	٥	7	X	χ_j		$\frac{p}{p_k}$	C	В	s	
w/o arguments	\RamanujanSum{k}	\GaussSum	\Waringg	\WaringG	\mathbb{N}_{n}	\AThetaFunction	\EulerPhi	\DiscriminantDelta	\RamanujanTau	\DirichletCharacter	\DirichletCharacter[j] χ_j	CM	\PartitionsP \PartitionsP[k]	\CatalanNumber	\BellNumber	\StirlingS	

other consequence of the	_	of management in		N.
w/o arguments	1	w/arguments		Note
<pre>\RestrictedPartitionsP \RestrictedPartitionsP[k]</pre>	p b b	\RestrictedPartitionsP@{c}{n}\\RestrictedPartitionsP[k]@{c}{n}\	$p(c,n) \\ p_k(c,n)$	CM: restricted partitions
\CompositionsC \CompositionsC[k]	c	\CompositionsC@{n} \CompositionsC[k]@{n}	$c(n) \ c_k(n)$	CM: number of compositions
$ \begin{array}{c} \text{(RestrictedCompositionsC} \\ \text{(RestrictedCompositionsC[k]} \\ \text{(} \\ \text{(} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{)} \\ \text{(} \\ \text{(} \\ \text{)} \\ \text$	_	\RestrictedCompositionsC@{c}{u} \ c(c,n) \RestrictedCompositionsC[k]@{c}{n} \ c_k(c,n) \]	c(c,n) $c_k(c,n)$	$\mathbf{C}\mathbf{M}$: restricted number of compositions
\PlanePartitionsPP	dd	$\verb \PlanePartitionsPP@{n} $	pp(n)	CM: number of plane partitions
\Permutations{n}	\mathfrak{S}_n			CM: set of permutations
$\verb \EulerianNumber{n}{\{k\}} $	$\binom{n}{k}$			CM: set of permutations
A				
\MathieuEigenvaluea{n}	a_n	\MathieuEigenvaluea{n}@{q} \MathieuEigenvaluea{n}@@{q}	$a_n(q)$ a_n	\mathbf{MA} : the eigenvalues of Mathieu equation, a_n
\MathieuEigenvalueb{n}	b_n	\MathieuEigenvalueb{n}@{q} \MathieuEigenvalueb{n}@@{q}	$b_n(q)$ b_n	\mathbf{MA} : the eigenvalues of Mathieu equation, b_n
$\verb Mathieuce{r} $	cer	\Mathieuce{r}@@{z}{q} \Mathieuce{r}@@{z}{q}	$\operatorname{ce}_r(z,q)$ $\operatorname{ce}_r(z)$	$\operatorname{ce}_r(z,q)$ MA, Ch. 20 : the even Mathieu $\operatorname{ce}_r(z)$ functions, ce
\Mathieuse{r}	se_r	se, \Mathieuse{r}@{z}{q} \Mathieuse{r}@@{z}{q}	$\sup_{\sec(z)}(z,q)$	$\operatorname{se}_r(z,q)$ MA, Ch. 20 : the odd Mathieu $\operatorname{se}_r(z)$ functions, se
\Mathieufe{ $r}$ }	e_r	fe. \Mathieufe{r}@{z}{q} \Mathieufe{r}@@{z}{q}	$\operatorname{fe}_r(z,q)$ $\operatorname{fe}_r(z)$	fe _r (z,q) MA, Ch. 20 : the Mathieu functions, fe _r (z)
\mathbb{N} athieuge $\{r\}$	ge_r	<pre>ge_ \Mathieuge{r}@{z}{q}</pre>	$\operatorname{ge}_r(z,q)$ $\operatorname{ge}_r(z)$	$\operatorname{ge}_r(z,q)$ MA, Ch. 20 : the Mathieu functions, $\operatorname{ge}_r(z)$ ge

w/o arguments \text{MathieuEigenvaluelambda}{\nu} \text{\lambda},	γ,	w/arguments \[\text{MathieuEigenvaluelambda{\nu}@{q}} \]	$\lambda_{\nu}(q)$	Note MA: the eigenvalues of Mathieu
	2	\MathieuEigenvaluelambda{\nu}@@{q} \\\	$\lambda_{\nu}^{(4)}$	equation, λ_n
	me_r	$\\ $$ \Mathieume\{r\} 0 = r \\ \Mathieume\{r\} 0$	$\max_r(z,q)$ $\max_r(z)$	$\mathbf{MA,~Ch.~20}$: the Mathieu functions, me
	Ce_r	\MathieuCe{r}@{z}{q} \MathieuCe{r}@@{z}{q}	$\operatorname{Ce}_r(z,q)$ $\operatorname{Ce}_r(z)$	MA, 20.6.1: the modified Mathieu functions, Ce
	Se_r	\MathieuSe{r}@{z}{q} \MathieuSe{r}@@{z}{q}	$Se_r(z,q) \\ Se_r(z)$	MA, 20.6.2: the modified Mathieu functions, Se
	Me_{r}	\MathieuMe{r}@{z}{q} \MathieuMe{r}@@{z}{q}	$\operatorname{Me}_r(z,q)$ $\operatorname{Me}_r(z)$	MA, 20.6.2: the modified Mathieu functions, Me
	Fe_r	\MathieuFe{r}@{z}{q} \MathieuFe{r}@@{z}{q}	$\operatorname{Fe}_r(z,q)$ $\operatorname{Fe}_r(z)$	MA, 20.6.1: the modified Mathieu functions, Fe
	Ge_r	\MathieuGe{r}@{z}{q} \MathieuGe{r}@@{z}{q}	$\operatorname{Ge}_r(z,q)$ $\operatorname{Ge}_r(z)$	MA, 20.6.2: the modified Mathieu functions, Ge
\MathieuM{j}{r}	$\mathbf{M}_r^{(j)}$	\MathieuM{j}{r}@@{z}{q} \MathieuM{j}{r}@@{z}{q}	$\mathrm{M}_{r}^{(j)}(z,q) \ \mathrm{M}_{r}^{(j)}(z)$	$M_r^{(j)}(z,q)$ MA, 20.6.7-8 : the modified Mathieu $M_r^{(j)}(z)$ functions, M
$\verb MathieuMc{{j}}{r} $	$\mathrm{Mc}_r^{(j)}$	$Mc_r^{(j)}$ \MathieuMc{j}{r}\@{z}{q} \MathieuMc{j}{r}@{z}{q}	$\mathrm{Mc}_{r}^{(j)}(z,q)$ $\mathrm{Mc}_{r}^{(j)}(z)$	$Mc_r^{(j)}(z,q)$ MA, 20.6.7-8 : the modified Mathieu $Mc_r^{(j)}(z)$ functions, Mc
\MathieuMs{j}{r}	$\mathrm{Ms}_r^{(j)}$	$Ms_r^{(j)}$ \MathieuMs{j}{r}\@{z}{q} \MathieuMs{j}{r}\@{z}{q}	$\mathrm{Ms}_r^{(j)}(z,q)$ $\mathrm{Ms}_r^{(j)}(z)$	$Ms_r^{(j)}(z,q)$ MA, 20.6.9-10 : the modified $Ms_r^{(j)}(z)$ Mathieu functions, Ms
	Ie_r	\MathieuIe{r}@{z}{q} \MathieuIe{r}@@{z}{q}	$\Pr_{\operatorname{Ie}_r(z)}(z,q)$	MA, 20.8.8: the modified Mathieu function, Ie
	Io_r	$$$ \AthieuIo\{r\}@\{z\}\{q\} $$ \AthieuIo\{r\}@\{z\}\{q\} $$$	$ lo_r(z,q) \\ lo_r(z) $	MA, 20.8.8: the modified Mathieu function, Io

m/o aranments	ts.	w/arranments		Note
\MathieuKe{r}	Ke_r		$\operatorname{Ke}_r(z,q)$ $\operatorname{Ke}_r(z)$	MA, 20.8.9: the modified Mathieu function, Ke
\MathieuKo $\{r\}$	Ko_r	\MathieuKo{r}@{z}{q} \MathieuKo{r}@@{z}{q}	$\operatorname{Ko}_r(z,q)$ $\operatorname{Ko}_r(z)$	MA, 20.8.9: the modified Mathieu function, Ko
\MathieuFc{m}	Fc_m	$\verb \MathieuFc{m}@{z}{h} $	$Fc_m(z,h)$	MA: the Mathieu function, Fc
\MathieuGc{m}	G_{c_m}	$\verb \MathieuGc{m}@{z}{h} $	$Gc_m(z,h)$	MA: the Mathieu function, Gc
\MathieuFs{m}	Fs_m	$\verb \MathieuFs{m}@{z}{h} $	$\operatorname{Fs}_m(z,h)$	MA: the Mathieu function, Fs
\MathieuGs{m}	G_{sm}	$\\ \label{eq:mathieuGsm} $$\MathieuGs\{m\}@\{z\}\{h\}$$$	$Gs_m(z,h)$	MA: the Mathieu function, Gs
\MathieuD{j}	D_j	$\label{eq:mathieuD} $$\max\{j} C\{n\}\{m\}\{z\}$$$	$D_j(n,m,z)$	MA: the Mathieu function, D
\MathieuDs{j}	Ds_j	$\label{eq:mathieuDs{j}@{n}{z}} $$ \A athieuDs{j}@{n}{z} $$$	$\mathrm{Ds}_j(n,m,z)$	$\mathrm{Ds}_j(n,m,z) \mid \mathbf{M}\mathbf{A}$: the Mathieu function, Ds
\MathieuDc{j}	Dc_j	$\label{eq:mathieuDc} $$\max_{j}_{m}_{z}$	$\mathrm{Dc}_j(n,m,z)$	\MathieuDc{j}@{n}{m}{z} \Dc_j(n,m,z) MA: the Mathieu function, Dc
\MathieuDsc{j}	Dsc_j	$\\ \label{eq:mathieuDsc} $$\max\{j} @{n}{m}{z}$	$\mathrm{Dsc}_j(n,m,z)$	Dsc_j MathieuDsc{j}@{n}{m}{z} \operatorname{Dsc}_j(n,m,z) MA: the Mathieu function, Dsc
LA				
\Lamea{m}{\nu}	a_{ν}^{m}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$a_{ u}^{m}\left(k^{2} ight)$	LA: Lame Eigenvalue a
$\texttt{Lameb{m}{\{}nu} \} \ b_{\nu}^{m}$	p_{ν}^{m}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$b_{\nu}^{m}\left(k^{2}\right)$	LA: Lame Eigenvalue b
\LameEc{m}{\nu}	$Ec_{ u}^{m}$	$\texttt{\label{eq:loss_constraints}} \ \texttt{\loss_cm} \texttt{\loss_cm} \texttt{\loss_cmeEcfm}\} \{ \texttt{\loss_cm} \texttt{\loss_cmeEcfm}\} \{ \texttt{\loss_cm} \texttt{\loss_cmeEcfm}\} \} = \texttt{\loss_cmeEcfm} \} = \texttt$	$Ec_{\nu}^{m}\left(z,k^{2}\right)$	LA: Lame Function Ec
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Es^m_{ν}	\LameEs{m}{\lun} \lambda s_{\nu}^{m} \LameEs{m}{\lun} \lambda (z) \lambda s_{\nu}^{m} (z, k^2) \ \lambda s	$Es_{\nu}^{m}(z,k^{2})$	LA: Lame Function Es
$\mathbb{L}_{ameuE\{m\}\{n\}}$	uE_n^m	$\left.uE_{n}^{m}\right $ \LameuE{m}{n}{n}	$uE_n^m(z,k^2)$	LA: Lame Polynomial uE
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	sE_n^m	sE_n^m \LamesE{m}{n}{n}	$sE_n^m(z,k^2)$	LA: Lame Polynomial sE
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	cE_n^m	$cE_n^m \Big \texttt{\label{eq:center}_{ln}} $	$cE_n^m(z,k^2)$	LA: Lame Polynomial cE

w/o arguments		w/arguments		Note
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	dE_n^m	$\label{localization} $$ \tilde{n}^{n}(z)^{n}(z) = \frac{1}{n} \left(\frac{1}{n} \right) \left($	$dE_n^m(z,k^2)$	LA: Lame Pol
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	scE_n^m	$\label{localize} $$ \tilde{r}_{n}^{n}^{n}^{n} = \tilde{r}_{n}^{n}. $$$	$scE_{n}^{m}\left(z,k^{2}\right)$	LA: Lame Pol
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	sdE_n^m	$$\ \c = \c $	$sdE_n^m(z,k^2)$	LA: Lame Pol
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	cdE_n^m	$$\ \constraints $$ \constrai$	$cdE_n^m(z,k^2)$	LA: Lame Pol
$\verb \LamescdE{m}{n}{}$	$scdE_n^m$	$$\ \cline{$\mathbb{Z}_{n} \in \mathbb{Z}_{n} \in \mathbb{Z}_{n} \in \mathbb{Z}_{n}$} $$$	$scdE_{n}^{m}(z,k^{2})$	LA: Lame Pol
SW SpheroidalOnCutBs{m}{n}	P^{cm}	\SrharoidalOnCutDs4m}4n}04v}4\camma~9}	$P_{S}^m(_x\sim^2)$	SW. Spheroid
	е Э		(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	cut
\SpheroidalEigenvalueLambda{m}{{\bf n}} \ \lambda_n^m	$\downarrow \lambda_n^m$	\SpheroidalEigenvalueLambda{m}{n}@{\gamma^2}	$\lambda_n^m(\gamma^2)$	SW: Spheroid
$\verb \SpheroidalOnCutQs{m}{n}{n}$	Qs_n^m	$\verb SpheroidalOnCutQs{m}{\{n\}}{\{n\}}{\{\ell\}}{\{n\}} amma^2}$	$Qs_n^m(x,\gamma^2)$	SW: Spheroid
				car
$\SpheroidalPs\{m\}\{n\}$	Ps_n^m	$\verb SpheroidalPs{m}{n}{n}{n}{n}{n}{n}{n}{n}{n}{n}{n}{n}{n}$	$Ps_{n}^{m}\left(z,\gamma^{2} ight)$	SW: Spheroid
$\SpheroidalQs\{m\}\{n\}$	Qs_n^m	$\verb SpheroidalQs{m}{n}{n}{0{z}{1}}$	$Qs_{n}^{m}\left(z,\gamma^{2} ight)$	SW: Spheroid
$\SpheroidalRadialS\{m\}\{j\}\{n\}$	$S_n^{m(j)}$	\SpheroidalRadialS{m}{j}{n}@{z}{\gamma}	$S_n^{m(j)}(z,\gamma)$	SW: Spheroid
HE				
\HeunLocal	Нв	\HeunLocal@{a}{q}{\alpha}{\beta}{\gamma}{\delta}{z} \HeunLocal@@{a}{q}{\alpha}{\beta}{\gamma}{\delta}{z}	$H\ell(a,q;\alpha,eta,\gamma,\delta;z)$ $H\ell(z)$	HE: Heun fun
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$(s_1,s_2)Hf_m$	$(s_1,s_2)Hf_m \Big \text{NeunFunction}(\textbf{m}\{\textbf{s}_1\}\{\textbf{s}_2\}\emptyset\{\textbf{a}\{\textbf{q}\}\{\textbf{a}\}\textbf{n}\}\textbf{a}\} + (\textbf{beta}\{\textbf{v}\}\textbf{a}) + (\textbf{d})(\textbf{a})(\textbf{a}) + (\textbf{d})(\textbf{a})(\textbf{a})(\textbf{a}) + (\textbf{d})(\textbf{a})(\textbf{a})(\textbf{a}) + (\textbf{d})(\textbf{a})(\textbf{a})(\textbf{a})(\textbf{a})(\textbf{a}) + (\textbf{d})(\textbf{a})$	$(s_1,s_2)Hf_m(a,q;\alpha,\beta,\gamma,\delta;z)$	HE: Heun fun
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$(s_1,s_2)Hf_m^{\nu}$	$(s_1,s_2)Hf_m^V \ \ HeunFunction[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
\HeunPolynom{n}{m}	$H_{p_n,m}$	$$$\HeunPolynom{n}{a}_{n}^{n}^{-n}^{-n}^{-n}^{-n}^{-n}^{-n}^{-$	$Hp_{n,m}(a,q_{n,m};-n,eta,\gamma,\delta;z)\Big _{\mathbf{HE}}$: Heun fun-	HE: Heun fun

w/o arguments		w/arguments		Note
		\HeunPolynom{n}{m}@@{a}{q_{n,m}}{-n}{\beta}{\gamma}{\delta}{z} $Hp_{n,m}(z)$	$[p_{n,m}(z)]$	
FM				
\exptrace	etr	etr \exptrace@{\mathbf{T}}} et	$etr(\mathbf{T})$	FM: exponential of trace
\mEulerGamma{m}	Γ_m	Γ_m \mEulerGamma{m}\@{a}	$\Gamma_m(a)$	FM: multivariate Euler Gamma
\mEulerBeta{m}	\mathbf{B}_m	$B_m /_{\tt MEUlerBeta\{m} \& \{a\}\{b\} $	m(a,b)	$\mathbf{B}_m(a,b)$ FM : multivariate Euler Beta
\ZonalPoly{\kappa}		Z_{κ} \\ZonalPoly{\kappa}@{\mathbf{T}}	$Z_{\kappa}(\mathbf{T})$	FM: Zonal polynomial
\BesselA{\nu}	A_{ν}	\Bessel4{\nu}@{\mathbf{T}}}	$A_{ u}({f T})$	$\mathbf{FM}.$ Bessel functions of matrix argument A
\BesselB{\nu}	$B_{ u}$	$$$ \BesselB{\nu}_{\C}=B_1 \B_1 \B_2 \B_2 \B_2 \B_2 \B_2 \B_2 \B_2 \B_2$	$B_{ u}({f T})$	$\mathbf{FM}.$ Bessel functions of matrix argument B
\HyperPsi	A	$\label{limit} $$ \HyperPsi@{a}_{b}_{\infty}= \U(s)_{mathbf}_{T}$$$	$(a;b;\mathbf{T})$	$\Psi(a;b;\mathbf{T})$ FM : confluent hypergeometric function of matrix argument B
	ļ			
\CoulombF{L}	F_L	F_L \CoulombF{L}@{\eta}{\rho} \ F_I	$L(\eta, \rho)$	$F_L(\eta, \rho)$ CW, 14.1.2: the regular Coulomb wave function, F
\CoulombC{\ell}	C_{ℓ}	C_ℓ \CoulombC{\ell}@{\eta} C_ℓ	$C_{\ell}(\eta)$	CW: Coulomb function, C
\CoulombH{s}{L}	H_L^s	H_L^s \CoulombH{s}{L}@{\eta}{\rho} H_L	$L_L^s(\eta, ho)$	$H_L^s(\eta, \rho)$ CW, 14.1.2 : the irregular Coulomb wave function, H
\CoulombTheta{\ell} θ_ℓ	θ_{ℓ}	\CoulombTheta{\ell}@{\eta}{\rho} \tag{CoulombTheta{\ell}@{\eta}} \end{\text{culombTheta}}	$\theta_{\ell}(\eta, \rho)$	CW : asymptotic phase of Coulomb functions
\CoulombSigma $\{ \setminus \{ ell \} \mid \sigma_{\ell} \}$	σ_ℓ	\CoulombSigma{\ell}@{\eta} \ σ_ℓ	$\sigma_{\ell}(\eta)$	CW: Coulomb phase shift
$\c \c \$	G_L	$\left. G_L \right \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$L(\eta,\rho)$	$G_L(\eta, \rho)$ CW, 14.1.2 : the irregular Coulomb wave function, G

w/o arguments	tts	w/arguments		Note
\CoulombM{\ell} M_ℓ		\CoulombM{\ell}@{\eta}{\rho} $M_\ell(\eta,\rho)$	$M_{\ell}(\eta, ho)$	$\mathbf{C}\mathbf{W}:$ envelope of Coulomb wave function
\Coulombf	f	\Coulombf@{a}{b}{c}	f(a,b;c)	CW: the Coulomb wave function, f
\Coulombh	h	\Coulombh@{a}{b}{c}	h(a,b;c)	CW: the Coulomb wave function, h
\Coulombs	S	\Coulombs@{a}{b}{c}	s(a,b;c)	CW: the Coulomb wave function, s
\Coulombc	c	\Coulombc@{a}{b}{c}	c(a,b;c)	$\mathbf{C}\mathbf{W}$: the Coulomb wave function, c
\Coulombrtp	$r_{ m tp}$	\Coulombrtp@{\eta}{\e11}	$r_{ m tp}(\eta,\ell)$	$\mathbf{C}\mathbf{W}:$ the Coulomb outer turning point function, r
\Coulombrhotp	$ ho_{ m tp}$	\Coulombrhotp@{\eta}{\e11}	$ ho_{ m tp}(\eta,\ell)$	\mathbf{CW} : the Coulomb radial outer turning point function, rho
\CuspCat{K}	Φ_K	\CuspCat{K}@{t}{x}	$\Phi_K(t;x)$	IC: cuspoid catastrophe
\UmbilicCatE	$\Phi^{(E)}$	$\Phi^{(\mathrm{E})}$ \UmbilicCatE@{s}{t}{x}	$\Phi^{(\mathrm{E})}(s,t;x)$	$\Phi^{(\mathrm{E})}(s,t;x)$ IC: elliptic umbilic catastrophe
\UmbilicCatH	$\Phi^{\rm (H)}$	$\Phi^{ m (H)}$ \UmbilicCatH@{s}{t}{x}	$\Phi^{(\mathrm{H})}(s,t;x)$	$\Phi^{(\mathrm{H})}(s,t;x) \Big \mathbf{IC}$: hyperbolic umbilic catastrophe
\UmbilicCatU	$\Phi^{(U)}$	$\Phi^{(\mathrm{U})} \left VumbilicCatU@\{s\\{t\}\{x\}} \right $	$\Phi^{(\mathrm{U})}(s,t;x)$	$\Phi^{(\mathrm{U})}(s,t;x)$ IC: umbilic catastrophe
\CanonicInt{K}	Ψ_K	Ψ_K \CanonicInt{K}@{x}	$\Psi_K(x)$	IC: canonical integral
\CanonicIntU	$\Psi^{(\mathrm{U})}$	$\Psi^{(\mathrm{U})} \left \cdotslash(\mathrm{CanonicIntU@\{x\}} \right $	$\Psi^{(\mathrm{U})}(x)$	IC: canonical umbilic integral
\CanonicIntE	$\Psi^{(\mathrm{E})}$	$\Psi^{(\mathrm{E})}$ \CanonicIntE@{x}	$\Psi^{(\mathrm{E})}(x)$	IC: canonical elliptic umbilic integral
\CanonicIntH	$\Psi^{\rm (H)}$	$\Psi^{(\mathrm{H})}$ \CanonicIntH0{x}	$\Psi^{(\mathrm{H})}(x)$	IC: canonical hyperbolic umbilic integral
		-		

Note	IC: diffraction catastrophe	$\Psi^{(\mathrm{U})}(x;k)$ IC : diffraction umbilic catastrophe	$\Psi^{(\mathrm{E})}(x;k)$ IC: diffraction elliptic umbilic catastrophe	$\Psi^{(\mathrm{H})}(x;k)$ IC: diffraction hyperbolic umbilic catastrophe		SM, 26.2.1: the Gaussian probability function	SM, 26.3.1: the bivariate probability function	\FVariance@{F}-{\nu_1}-{\nu_2} $P(F \nu_1,\nu_2)$ SM, 26.6.1: the F-Variance distribution function	SM, 26.7.1: the students t distribution function
	$\Psi_K(x;k)$	$\Psi^{(\mathrm{U})}(x;k)$	$\Psi^{(\mathrm{E})}(x;k)$	$\Psi^{\rm (H)}(x;k)$		Z(x)	$g(x,y,\rho)$	$P(F \nu_1,\nu_2)$	A(t u)
w/arguments	Ψ_{K} \DiffCat{K}@{x}{k}	$\Psi^{(\mathrm{U})}$ \DiffCatU@{x}{k}	$\Psi^{(\mathrm{E})} \left \begin{tabular{l} VDiffCatE@\{x\}\{k\} \end{tabular}} ight.$	$\Psi^{ m (H)} \left { m f DiffCatH@\{x\}\{k\}} ight.$		\GaussianProb@{x}	$\verb \BivariateProb@\{x\}\{y\}\{\arrownerty, g(x,y,\rho) $	\FVariance@{F}{\nu_1}{\nu_2}	\tDistribution@{t}{\nu}
w/o arguments	Ψ_K	$\Psi^{(\mathrm{U})}$	$\Psi^{(\mathrm{E})}$	$\Psi^{(\mathrm{H})}$			9	P	A
	\DiffCat{K}	\DiffCatU	\DiffCatE	\DiffCatH	$_{ m SM}$	\GaussianProb Z	\setminus BivariateProb g	\FVariance	\tDistribution A