50.012 Networks

Lecture 6: Reliable Data Transfer – Part II

2021 Term 6

Assoc. Prof. CHEN Binbin

Reminders

- Quiz 1: 1 Oct (this Friday) 9am
 - Cover the topics from week 1 and 2
 - True/false and MCQ
 - 25 minutes
 - Open book, but no peer-to-peer discussion
- Project team formation
 - Please register at https://tinyurl.com/2021-sutd-50-012
 - Email / message me if you need help
 - Several 4-member teams are looking for members to join!
- HW 1: due 2 Oct (this Saturday) 23:59
- Lab 2: due 5 Oct (coming Tue) 23:59
 - Extended to 7 Oct (Thur.) 23:59

Pipelined protocols

pipelining: sender allows multiple, "in-flight", yetto-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

 two generic forms of pipelined protocols: go-Back-N, selective repeat

Pipelining: increased utilization

Pipelined protocols: overview

Go-back-N:

- sender can have up to N unacked packets in pipeline
- receiver only sends cumulative ack
 - doesn't ack packet if there's a gap
- sender has timer for oldest unacked packet
 - when timer expires,
 retransmit all unacked
 packets

Selective Repeat:

- sender can have up to N unack' ed packets in pipeline
- rcvr sends *individual ack* for each packet

- sender maintains timer for each unacked packet
 - when timer expires,
 retransmit only that
 unacked packet

Go-Back-N: sender

- k-bit seq # in pkt header
- "window" of up to N, consecutive unack ed pkts allowed

- ACK(n):ACKs all pkts up to, including seq # n "cumulative ACK"
 - may receive duplicate ACKs (see receiver)
- timer for oldest in-flight pkt
- timeout(n): retransmit packet n and all higher seq # pkts in window

GBN: sender extended FSM

```
rdt send(data)
                       if (nextseqnum < base+N) {
                          sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
                          udt send(sndpkt[nextseqnum])
                          if (base == nextseqnum)
                           start timer
                          nextseqnum++
                       else
                        refuse data(data)
  base=1
  nextseqnum=1
                                           timeout
                                           start timer
                             Wait
                                           udt send(sndpkt[base])
                                          udt send(sndpkt[base+1])
rdt rcv(rcvpkt)
 && corrupt(rcvpkt)
                                          udt send(sndpkt[nextsegnum-1])
                         rdt rcv(rcvpkt) &&
                           notcorrupt(rcvpkt)
                         base = getacknum(rcvpkt)+1
                         If (base == nextsegnum)
                           stop timer
                          else
                           start_timer
```

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with highest *in-order* seq

- may generate duplicate ACKs
- need only remember expectedseqnum
- out-of-order pkt:
 - discard (don't buffer): no receiver buffering!
 - re-ACK pkt with highest in-order seq #

GBN in action

Selective repeat

- receiver individually acknowledges all correctly received pkts
 - buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
 - sender timer for each unACKed pkt
- sender window
 - N consecutive seq #'s
 - limits seq #s of sent, unACKed pkts

Selective repeat: sender, receiver windows

(b) receiver view of sequence numbers

Selective repeat

sender

data from above:

if next available seq # in window, send pkt

timeout(n):

resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

- mark pkt n as received
- if n smallest unACKed pkt, advance window base to next unACKed seq #

receiver

pkt n in [rcvbase, rcvbase+N-1]

- send ACK(n)
- out-of-order: buffer
- in-order: deliver (also deliver buffered, in-order pkts), advance window to next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-I]

ACK(n)

otherwise:

ignore

Selective repeat in action

Selective repeat: dilemma

example:

- seq #'s: 0, 1, 2, 3
- window size=3
- receiver sees no difference in two scenarios!
- duplicate data accepted as new in (b)
- Q: what relationship between seq # size and window size to avoid problem in (b)?

receiver window

sender window

receiver can't see sender side.
receiver behavior identical in both cases!
something's (very) wrong!

