

Quarta giornata

Il modello lineare misto

Marcello Gallucci Università Milano-Bicocca

GLM

Modello Lineare Generale

vantaggi

- Consente di stimare le relazioni fra due o più variabili
- Si applica ad una ampio spettro di tipi di dati
- Consente di stimare vari tipi di effetti

svantaggi

- Assume una struttura dei dati molto semplice
- Non consente di modellare una ampia serie di relazioni e dipendenza tra unità di misurazione

Assunzioni GLM

Modello Lineare Generale

Assunzioni GLM

Modello Lineare Generale

Assunzioni GLM

Modello Lineare Generale

$$y_i = a + e_i$$

$$corr(e_i, e_j) = 0$$

Le variazioni casuali sono indipendenti l'una dall'altra

Violazioni delle assunzioni

Le assunzioni di unicità degli effetti (effetti fissi) e indipendenza delle misurazioni (errori indipendenti) non sono rispettate in tutti i seguenti casi:

- Misurazioni correlate
- Disegni a misure ripeture
- Disegni longitudinali
- Dati con strutture gerarchiche
- Dati con misurazioni multi-livello

I modelli misti

Non esiste un solo valore fisso che intendiamo stimare

Le variazioni casuali **non** sono indipendenti l'una dall'altra

I modelli misti consentono di estendere il modello lineare generale in tutte quelle situazioni in cui le due assunzioni fondamentali del GLM non sono rispettate

I modelli misti

GLM

LMM

Regressione

T-test

ANOVA

ANCOVA

Moderazione

Mediazione

Path Analysis

Regressione Logistica **Random coefficients models**

Random intercept regression models

One-way ANOVA with random effects

One-way ANCOVA with random effects

Intercepts-and-slopes-as-outcomes models

Generalized mixed model

Estensione del GLM al modello misto

Esempio "birre" 2

Consideriamo il caso in cui abbiamo ampliato il nostro campione di "bevitori di birra", avendo raccolto ulteriori dati in diversi bar della città

bar

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	a	3	1.3	1.3	1.3
	b	14	6.0	6.0	7.3
	С	22	9.4	9.4	16.7
	d	21	9.0	9.0	25.6
	e	14	6.0	6.0	31.6
	f	20	8.5	8.5	40.2
	g	24	10.3	10.3	50.4
	h	12	5.1	5.1	55.6
	İ	16	6.8	6.8	62.4
	1	22	9.4	9.4	71.8
	m	21	9.0	9.0	80.8
	n	15	6.4	6.4	87.2
	0	16	6.8	6.8	94.0
	р	11	4.7	4.7	98.7
	q	3	1.3	1.3	100.0
	Total	234	100.0	100.0	

Totale di 234 soggetti

Esempio "birre" 2

Lo scatterplot mostra una distribuzione differente dall'esempio precedente

Esempio "birre" 2

La regressione semplice conferma il risultato assai differente

Possibili spiegazioni

I risultati potrebbero essere distorti (e ciò spiegherebbe il risultato inatteso) dal non aver considerato la struttura dei dati

I dati infatti:

- I soggetti sono stati campionati in diversi bar
- Ogni bar potrebbe avere caretteristiche particolari (ambiente, qualità della birra, etc) che condizionano la relazione tra le variabili
- I soggetti in ogni singolo bar potrebbero essere più simili tra loro di quando lo siano soggetti in bar diversi

Modello

- Sembrerebbe che considerando tutti i soggetti come equivalenti ed indipendenti (assunzione della regressione) otteniamo un risultato distorto
- Se stimassimo un modello in cui la retta di regressione (intercetta e coefficiente B) sia diversa in ogni gruppo, avremmo dei risultati più soddisfacenti

Modello

Definiamo dunque una regressione per ogni gruppo

$$y_{ij}$$

Numero di sorrisi del soggetto i nel gruppo j

$$\hat{y}_{ia} = a_a + b_a \cdot x_{ia}$$

$$\hat{y}_{ib} = a_b + b_b \cdot x_{ib}$$

$$\hat{y}_{ic} = a_c + b_c \cdot x_{ic}$$

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

In queste regressioni, sia l'intercetta che i coefficienti sono diversi (non fissi) nei vari gruppi

Coefficienti variabili

• Se i coefficienti cambiano nei vari gruppi, ovviamente non sono fissi (!!!)

I coefficienti avranno una distribuzione rispetto ai bar per i quali sono calcolati

Coefficienti random

I coefficienti che cambiano sono definiti coefficienti random

I coefficienti avranno una distribuzione random (cioè avranno una loro 1.00variabilità) .80-8 coeficient .60-40-Cioè, nella popolazione esiste una variazione .20random dei coefficienti

Media dei Coefficiente

• Se i coefficienti sono delle variabili, avranno una loro **media** ed una loro **varianza**

$$\bar{b} = \frac{\sum_{j} b_{j}}{k}$$

Coefficienti fissi

• La media dei coefficienti per bar indica la relazione (media) tra birre e sorrisi in tutto il campione

La media (come visto prima) è un parametro fisso del modello che descrive la distribuzione dei coefficienti nei cluster (bar)

Modello

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Una regressione per cluster

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

Ogni coefficiente è espresso come deviazione dalla media dei coefficienti

$$b'_{j} = b_{j} - \overline{b}$$

Modello generale

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \overline{b} \cdot x_{ij}$$

Modello

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Modello generale

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Coefficienti random

Coefficiente fisso

 Definiamo ora un modello con le varie regressioni per cluster e la loro media

Modello generale

$$\hat{y}_{ij} = a_j + b'_j \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Coefficienti random

Coefficiente fisso

I modelli che contengono coefficienti sia random che fissi sono definiti **modelli misti** (**mixed models**)

Analogamente

Una regressione per cluster

Ogni intercetta espressa come deviazione dalla media delle intercette

$$\hat{y}_{ij} = a_j + b_j \cdot x_{ij}$$

$$a'_{j} = a_{j} - \overline{a}$$

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

Il punteggio della VD (i sorrisi) di ogni soggetto in un dato cluster (bar) è influenzato da:

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{q} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

La media dei valori attesi di Y per x=0

Per x=0, in media quanto è grande y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

I valori attesi di y per x=0 in ogni cluster (bar)

Per x=0, quanto devo aggiungere o sottrarre al valore atteso medio per un cluster specifico

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto specifico di x su y per il cluster j

In un dato cluster, quanto aumenta (o diminuisce) l'effetto di x su y

Interpretazione

Modello generale

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

L'effetto medio di x su y

In media, quanto aumenta y per ogni unità in più di x

GLM come sottocaso

La corrispondenza logica tra le varie tecniche inerenti al Modello Lineare Generale con le tecniche inerenti ai Modelli Misti è data dal fatto che il GLM può essere pensato come sottocaso dei MM

MM

$$\hat{y}_{ij} = \bar{a} + a'_{j} + b'_{j} \cdot x_{ij} + \bar{b} \cdot x_{ij}$$

GLM

$$\hat{y}_{ij} = \hat{a} + \overline{b} \cdot x_{ij}$$

Notazione

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$
 y_{ij}, x_{ij}
Variabili osservate per caso i nel cluster j
 $\overline{a}, \overline{b}$

Effetti fissi

 a_j, b_j
Effetti random calcolati nel cluster j
espressi come deviazione dalla loro media

 e_{ij}
Errore associato al singolo caso i

Varianze

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

Varianza dei coefficienti a

O_h Varianza dei coefficienti b

Varianza di errore

Covarianza tra i coefficienti a e b

Modelli Misti

- In sostanza, i modelli misti consentono di stimare gli effetti di VI su una VD, consentendo a tali effetti di variare in diverse unità di misurazione (cluster).
- Gli effetti che variano sono detti effetti random
- Gli effetti che non variano (cioè gli effetti medi uguali per tutto il campione) sono detti **effetti fissi**

Modelli Misti

- Per stimare correttamente un modello misto, si deve semplicemente capire quale siano gli effetti random, e per quali unità variano (quali sono i cluster)
- Una volta stimato il modello, gli **effetti fissi** si interpretano esattamente come nel GLM (regressione/anova etc)
- Gli **effetti random** generalmente non si interpretano, ma se ne può studiare la variabilità
- La definizione corretta del modello, consente di ottenere stime e errori standard (e dunque test inferenziali) corretti

Definiamo il modello, iniziando dal più semplice

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi?
- Quali sono gli effetti random?
- Quali sono i cluster su cui variano gli effetti random?

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di birre
- Quali sono gli effetti random? Intercetta
- Quali sono i cluster su cui variano gli effetti random? bar

Vari autori e libri definiscono questomodello:

Random-intercepts regression altri

Intercepts-as-outcomes model

R syntax

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$


```
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
## to degrees of freedom [lmerMod]
## Formula: smile ~ (1 | bar) + beer
```

```
## Random effects:

## Groups Name Variance Std.Dev.

## bar (Intercept) 6.532 2.556

## Residual 1.285 1.133

## Number of obs: 234, groups: bar, 15

##
```

La varianza delle intercette è diversa da zero, dunque le intercette variano, dunque ok che siano random

Se tutto è ok, guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

```
## Fixed effects:

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 5.55107 0.72419 18.29000 7.665 4.03e-07 ***

## beer 0.63870 0.07769 227.90000 8.221 1.53e-14 ***

## ---
```

Intercetta: In media, per zero birre ci attendiamo 5.5 sorrisi

Se tutto è ok, guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

```
## Fixed effects:

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 5.55107 0.72419 18.29000 7.665 4.03e-07 ***

## beer 0.63870 0.07769 227.90000 8.221 1.53e-14 ***
```

Coefficiente **b**: In media, per ogni birra in più i sorrisi aumentano di .638

R Output

E' possibile testare la significatività delle varianze degli effetti random

```
dat<-read.spss('data/regression_beers_bars.sav',to.data.frame = T)
head(dat)
mm1<= lmer(smile~1+beer+(1|bar),data=dat)
rand(mm1)</pre>
```

```
> rand(mm1)
Analysis of Random effects Table:
    Chi.sq Chi.DF p.value
bar 201 1 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

R Plot

Possiamo plottare gli effetti fissi

```
summary(mm1)
plot(dat$smile~dat$beer,col=dat$bar)
abline(fixef(mm1))

fixef tira fuori dal modello gli effetti fissi
```


R Plot

Possiamo anche plottare gli effetti random

```
plot(dat$smile~dat$beer,col=dat$bar)
apply(coef(mm1)[[1]],1,abline)

coef tira fuori dal modello gli effetti
random
```


Definiamo un modello dove le intercette e i coefficienti di regressione possono variare nei diversi bar,

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + b \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di birre
- Quali sono gli effetti random? Intercetta ed effetto di birre
- Quali sono i cluster su cui variano gli effetti random? bar

Vari autori e libri definiscono questo modello:

Random-coefficients regression
Altri come

Intercepts- and Slopes-as-outcomes model

R syntax

Definiamo un modello dove le intercette possono variare nei diversi bar, mentre il coefficiente b è fisso ed uguale per tutti i bar

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + b \cdot x_{ij} + e_{ij}$$

Poi guarderemo la variabilità degli effetti random, per capire se è abbiamo fatto bene a settarli come tali

```
## Random effects:

## Groups Name Variance Std.Dev. Corr

## bar (Intercept) 9.33420 3.0552

## beer 0.03452 0.1858 -0.79

## Residual 1.25881 1.1220

## Number of obs: 234, groups: bar, 15

##
```

La varianza dei b è piccola dunque i b variano molto poco, dunque potremmo tenere il modello precedente

Guarderemo gli effetti fissi per valutare ed interpretare la relazione tra VD e VI

```
## Fixed effects:

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 5.3733 0.8509 11.5970 6.315 4.51e-05 ***

## beer 0.6417 0.0924 9.3360 6.945 5.61e-05 ***

## ---
```

Effetti non diversi da prima

Varianze

La varianza degli effetti random ci indica quanta variabilità c'è tra i cluster nell'effetto

- L'effetto random lo lasciamo anche se la varianza è molto piccola
- Se è zero (esattamente), l'effetto random deve essere tolto dal modello

```
## Random effects:

## Groups Name Variance Std.Dev. Corr

## bar (Intercept) 9.33420 3.0552

## beer 0.03452 0.1858 -0.79

## Residual 1.25881 1.1220

## Number of obs: 234, groups: bar, 15

##
```

Plots

Plottando glli effetti random vediamo che non sono più tutti paralleli

•In jamovi "mixed model" è nel modulo GAMLj

Definiamo la componente random

• Una volta definita la componente random, otteniamo i risultati

Mixed Model

Model Info	
Info	
Estimate	Linear mixed model fit by REML
Call	smile ~ 1 + (1 bar) + beer
AIC	811.1613
R-squared Marginal	0.0894
R-squared Conditional	0.8172

R-squared Marginal: Quanta varianza è spiegata dai **fixed effects da soli**

R-squared Conditional: quanta varianza è spiegata dai **fixed e dai random** effects tutti insieme

F-test per l'effetto fisso di beer

Fixed Effect ANOVA

	F	Num df	Den df	р
beer	46.0	1	229	< .001

Note. Satterthwaite method for degrees of freedom

Coefficienti per l'effetto fisso di beer

Fixed Effects Parameter Estimates

				95% Confide	nce Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	7.778	0.6276	6.548	9.008	13.2	12.39	< .001
beer	beer	0.548	0.0808	0.390	0.706	229.4	6.79	< .001

Componente Random

Random Components

Groups	Name	SD	Variance
bar	(Intercept)	2.40	5.77
Residual		1.20	1.45

Note. Numer of Obs: 234, groups: bar, 15

Plots

Plot dell'effetto fisso

Fixed Effects Plots

Morale

- Il modello misto consente di estendere il modello lineare generale a cui problemi di analisi dei dati in cui la struttura dei dati non si adatta naturalmente
- I semplici concetti visti oggi, combinati alle conoscenze relative al GLM, ci consentiranno di stimare modelli misti per (quasi) tutte i problemi di ricerca (plausibili)

Il disegno a misure ripetute

Disegno a misure ripetute

 Consideriamo un disegno a misure ripetute classico (withinsubjects) in cui i livelli del fattore WS (5 differenti trials) sono misurati sulle stesse persone

trial

Soggetti

	Т		3	4	5
1	Y11	Y21	Y31	Y41	Y51
2	Y12	Y22	Y32	Y42	Y52
3	Y13	Y23	Y33	Y43	Y53
N	Y1n	Y2n	Y3n	Y4n	Y5n

Formato file Standard

 Spesso (in SPSS) il file è organizzato nel formato "wide", una riga un soggetto

	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform A	nalyze Direc	ct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilit	ties Add – <u>o</u> ns	<u>W</u> indow <u>H</u> elp
Una riga, un						*5		14 (
_	1: group							
soggetto		group	err_t0	err_t1	err_t2	err_t3	err_t4	Х
	1	1	.14	.22	.439	.27	.01	04
	2	1	.43	.52	.492	.48	.43	36
	3	1	.61	.43	.446	.51	.57	-1.77
	4	0	.29	.70	1.000	.89	.75	1.63
	5	1	.16	.49	.500	.56	.29	32
	6	0	.70	.36	.573	.57	.69	-1.16
	7	0	.35	.51	.572	.46	.77	87
	8	1	.45	.49	.545	.41	.43	-1.79
	9	1	.05	.55	.333	.54	.53	1.01
	10	1	.10	.35	.358	.57	.67	.58
	11	0	.14	.45	.373	.25	.29	88
	12	0	.04	.74	.541	.53	.35	27
	13	1	.62	.73	.529	.31	.48	1.36
	14	1	.15	.22	.101	.17	.17	32
	15	0	.72	.55	.568	.53	.57	98

Formato file "Long"

 Per l'utilizzo dei modelli misti è necessario un formato "una misura, una riga"

Ogni riga rappresenta una misurazione

$\nabla \nabla$	C-C-LOTT Bruce								
	id	÷	group [‡]	x	trial ‡	error [‡]			
1		1	Cognitive Load	-0.03721233	1	0.139644148			
2		1	Cognitive Load	-0.03721233	2	0.219611404			
3		1	Cognitive Load	-0.03721233	3	0.439030338			
4		1	Cognitive Load	-0.03721233	4	0.270522729			
5		1	Cognitive Load	-0.03721233	5	0.009309587			
6		2	Cognitive Load	-0.36044158	1	0.431302228			
7		2	Cognitive Load	-0.36044158	2	0.518326274			
8		2	Cognitive Load	-0.36044158	3	0.492408109			
9		2	Cognitive Load	-0.36044158	4	0.483458141			
10		2	Cognitive Load	-0.36044158	5	0.432801733			
11		3	Cognitive Load	-1.76705741	1	0.612178698			
12		3	Cognitive Load	-1.76705741	2	0.431445717			
13		3	Cognitive Load	-1.76705741	3	0.446141329			
14		3	Cognitive Load	-1.76705741	4	0.509173965			
15		3	Cognitive Load	-1.76705741	5	0.572991706			
16		4	Emotional Stressor	1.63388771	1	0.290753013			
17		4	Emotional Stressor	1.63388771	2	0.702075839			

GLM

 Potremmo analizzare questi dati mediante un modell GLM, ma incontremo dei (gravi) problemi

Problemi

 Il primo problema è ogni soggetto, avendo tutte le misurazioni, esprime il suo proprio effetto di trial

Esempio per 6 soggetti

Soluzione (1)

Dunque per analizzare correttamente il disegno, dobbiamo considerare nel modello un termine che rappresenti la specificità di ogni soggetto. Questo termine sarà lo stesso in ogni soggetto

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

 $Y_{12} = a + b \cdot T_2 + u_1 + e_{12}$
 $Y_{13} = a + b \cdot T_3 + u_1 + e_{13}$

Stesso soggetto, stesso errore

• • • • •

$$Y_{i1} = a + b \cdot T_1 + u_i + e_{i1}$$

 $Y_{i2} = a + b \cdot T_2 + u_i + e_{i2}$
 $Y_{i3} = a + b \cdot T_2 + u_i + e_{i3}$

Stesso soggetto, stesso errore

Componente individuale

Esempio per un soggetto

Componente individuale

Componente individuale

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

Soluzione (1)

Dato che **u** è la stesso dentro ogni soggetto, le componenti delle misure ripetute che non sono legate agli effetti fissi saranno correlate

$$Y_{11} = a + b \cdot T_1 + u_1 + e_{11}$$

 $Y_{12} = a + b \cdot T_2 + u_1 + e_{12}$
 $Y_{13} = a + b \cdot T_3 + u_1 + e_{13}$

Stesso soggetto, stesso errore

• • • • •

$$Y_{i1} = a + b \cdot T_1 + u_i + e_{i1}$$

 $Y_{i2} = a + b \cdot T_2 + u_i + e_{i2}$
 $Y_{i3} = a + b \cdot T_2 + u_i + e_{i3}$

Stesso soggetto, stesso errore

Soluzione (1)

Dato che **u** è la stesso dentro ogni soggetto, le componenti delle misure ripetute che non sono legate agli effetti fissi saranno correlate

Modello misto

- Si può specificare il modello in maniera alternativa, più in linea con la teoria dei modelli misti vista fin ora
- Possiamo modellare la componente individuale come un parametro random

$$Y_{ij} = \overline{a} + a_i + b \cdot T_j + e_{ij}$$

Intercetta media (Effetto fisso)

Intercetta random, diversa per ogni soggetto

Riportiamo il modello con la terminologia del MM

$$Y_{ij} = a + b \cdot T_i + u_j + e_{ij}$$

$$y_{ij} = \bar{a} + a_j + \bar{b} \cdot x_{ij} + e_{ij}$$

Modello completo

i=soggetti, j=trials

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta e effetto di trial
- Quali sono gli effetti random? Intercetta
- Quali sono i cluster su cui variano gli effetti random? Soggetto (id)

R syntax

$$y_{ij} = \overline{a} + a_j + \overline{b} \cdot x_{ij} + e_{ij}$$

Check delle dummies

```
stress$trial<-factor(stress$trial)

## 2 3 4 5
## 1 0 0 0 0
## 2 1 0 0 0
## 3 0 1 0 0
## 4 0 0 1 0
## 5 0 0 0 1</pre>
Trial 1 è il reference
category
```

Output: effetti random

```
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 0.007804 0.08834
## Residual 0.030204 0.17379
## Number of obs: 1000, groups: id, 200
##
```

C'è variabilità delle intercette dunque OK

Output: effetti fissi

summary(mod)

```
## Fixed effects:
              Estimate Std. Error df t value Pr(>|t|)
##
                                           33.815
## (Intercept)
               0.46616
                         0.01379 851.40000
                                                  < 2e-16 ***
## trial2
               0.01066
                         0.01738 796.00000 0.613 0.5398
## trial3
               0.02778
                         0.01738 796.00000 1.598 0.1103
## trial4
               0.06951
                         0.01738 796.00000 4.000 6.94e-05 ***
## trial5
               0.03491
                        0.01738 796.00000 2.009
                                                   0.0449 *
##
```

Comparazione media di ogni trial con il trial 1

Output: effetti fissi

```
anova(mod)
```

```
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom
## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
## trial 0.57079 0.1427 4 796 4.7244 9e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Test F per l'effetto principale della variabile categorica

Interpretazione

 L'interpretazione sarà la medesima che per una ANOVA qualunque, cioè guarderemo le medie

```
library(ggplot2)
ggplot(mm, aes(x=trial, y=error,group=1))+
  geom_line()+
  geom_point()
```


Dipendenza tra i punteggi

Quanta variabilità dei punteggi è spiegata dalla componente individuale?

Quantifichiamo cioè quanto è stato necessario considerare i soggetti come cluster

```
## Random effects:

## Groups Name Variance Std.Dev.

## id (Intercept) 0.007804 0.08834

## Residual 0.030204 0.17379

## Number of obs: 1000, groups: id, 200

##
```

Varianze

Per chiarezza, useremo questa notazione

$$y_{ij} = \overline{a} + a_j + b_j \cdot x_{ij} + \overline{b} \cdot x_{ij} + e_{ij}$$

 σ_a

Varianza dei coefficienti a

 σ_b

Varianza dei coefficienti b

O

Varianza di errore

 σ_{ab}

Covarianza tra i coefficienti a e b

Coefficiente di dipendenza

Possiamo quantificare la dipendenza tra punteggi mediante il **coefficiente di correlazione intraclasse**

$$ICR = \frac{\sigma_a}{\sigma_a + \sigma}$$

```
## Random effects:

## Groups Name Variance Std.Dev.

## id (Intercept) 0.007804 0.08834

## Residual 0.030204 0.17379

## Number of obs: 1000, groups: id, 200

##
```

Coefficiente di dipendenza

Possiamo quantificare la dipendenza tra punteggi mediante il **coefficiente di correlazione intraclasse**

$$ICR = \frac{.0078}{.0078 + .0302} = .205$$

Il 20% della variabilità della dipendente è attribuibile alla differenza tra soggetti

```
## Random effects:

## Groups Name Variance Std.Dev.

## id (Intercept) 0.007804 0.08834

## Residual 0.030204 0.17379

## Number of obs: 1000, groups: id, 200

##
```

 σ_{c}

MM nelle misure ripetute

- Il modello misto permette di analizzare le misure ripetute con una vasta gamma di opzioni
- Applicazione delle varie tecniche come in regressione/Anova
- Gestione efficente dei valori mancanti
- Possibilità di modellare variabili continue come variabili ripetute nel tempo
- Possibilità di combinare il disegno a misure ripetute con disegni gerachici o clusterizzati

Interazione → Moderazione

- Come per il modello lineare generale la moderazione si stima mediante l'interazione
- L'interazione nel modello misto funziona esattamente come nel modello lineare generale

Definizione variabile indipendente

Iniziamo a considerare il tempo come variabile categorica

```
genderage$age<-factor(genderage$age)
contrasts(genderage$age)</pre>
```

```
## 2 3 4
## 1 0 0 0
## 2 1 0 0
## 3 0 1 0
## 4 0 0 1
```

Definisco una categorica e centro le dummies

```
contrasts(genderage$age)<-contr.sum(4)/2
contrasts(genderage$age)</pre>
```

```
## [,1] [,2] [,3]
## 1 0.5 0.0 0.0
## 2 0.0 0.5 0.0
## 3 0.0 0.0 0.5
## 4 -0.5 -0.5 -0.5
```

Definizione variabile indipendente

Gender è categorica

Boys 0.5

Girls -0.5

```
genderage$gender<-factor(genderage$gender)</pre>
contrasts(genderage$gender)
         Girls
##
## Boys
## Girls
contrasts(genderage$gender)<-contr.sum(2)/2</pre>
contrasts(genderage$gender)
          [,1]
##
```

Definisco una categorica e centro le dummies

Il modello

 Il modello ora comprende due fattori, la loro interazione, ed una intercetta random per catturare le differenze individuali

$$Y_{ik} = \overline{a} + a_i + b_a Age_k + b_g Gender + b_x Age *Gender + e_{ij}$$

- Quali sono gli effetti fissi? Intercetta, Age, Gender, Age*Gender
- Quali sono gli effetti random? Intercetta
- Quali sono i cluster su cui variano gli effetti random? Soggetto (id)

Risultati

Varianza delle intercette

```
## Random effects:
## Groups Name Variance Std.Dev.
## id (Intercept) 78.02 8.833
## Residual 127.38 11.286
## Number of obs: 400, groups: id, 50
##
```

$$ICR = \frac{78.02}{78.02 + 127.38} = .379$$

Risultati ANOVA

 I risultati ci daranno la F e la significatività per gli effetti richiesti

```
anova(mod)
```

```
## Analysis of Variance Table of type III with Satterthwaite
## approximation for degrees of freedom

## Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)

## age 1542.23 514.08 3 343 4.0357 0.007678 **

## gender 596.32 596.32 1 343 4.6820 0.031180 *

## age:gender 1070.43 356.81 3 343 2.8011 0.039949 *

## ---
```

Risultati ANOVA

I risultati dei coefficienti possiamo ignorarli

```
## Fixed effects:
                                   df t value Pr(>|t|)
              Estimate Std. Error
##
                          1.371 49.000 4.884 1.15e-05 ***
                6.695
## (Intercept)
## age1
              -5.456 1.955 343.000 -2.791 0.00554 **
## age2
              -1.406
                          1.955 343.000 -0.719 0.47248
              1.644
## age3
                          1.955 343.000 0.841
                                              0.40108
                          1.129 343.000 -2.164
## gender1
            -2.442
                                              0.03118 *
## age1:gender1 8.472
                          3.910 343.000 2.167
                                              0.03094 *
## age2:gender1 3.702
                          3.910 343.000 0.947
                                              0.34435
## age3:gender1
               -3.669
                          3.910 343.000 -0.938
                                              0.34869
## ---
```

Effetti medi

 Le medie della combinazione dei livelli dei fattori per l'interpretazione

interaction.plot(genderage\$age,genderage\$gender,genderage\$y,type="b",pch=19)

Disegno a misure ripetute

- Abbiamo 2 gruppi Control vs Treatment, measurati in 4 tempi diversi. I tempi sono: 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).
- La variabile dipendente è uno score di depressione (e.g. Beck Depression Inventory) e il trattamento è l'utilizzo di un farmaco versus nessun farmaco. Ci aspettiamo un miglioramento in tutte e due gruppi, ma vogliamo testare che il gruppo in treatment migliori più rapidamente

Disegno a misure ripetute

 Abbiamo 2 gruppi - Control vs Treatment, measurati in 4 tempi diversi. I tempi sono: 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).

Contingency Tables

Contingency Tables

96 osservazioni 24 soggetti

	gro		
time	1	2	Total
0	12	12	24
1	12	12	24
3	12	12	24
6	12	12	24
Total	48	48	96

 $^{*) \} https://www.uvm.edu/\sim dhowell/StatPages/More_Stuff/Mixed-Models-Repeated/Mixed-Models-for-Repeated-Measures 1. html \\$

Disegno a misure ripetute: dati

Data sono in "long format"

Ogni soggetto ha 4 righe

=	Data	Analyses			
Explorati	ion T-Tests	T _ T		quencies Factor	Linear Models
	subj	d time	group		
1	1	0	y group	296	
2	1	1	1	175	
3	1	3	1	187	
4	1	6	1	192	
5	2	0	1	376	
6	2	1	1	329	
7	2	3	1	236	
8	2	6	1	76	
9	3	0	1	309	
10	3	1	1	238	
11	3	3	1	150	
12	3	6	1	123	
13	4	0	1	222	
14	4	1	1	60	
15	4	3	1	82	
16	4	6	1	85	
17	5	0	1	150	
18	5	1	1	271	

Mixed model

Traduciamo il disegno in un modello misto

- Effetti Fissi? Intercetta group,time, la loro interazione
- Effetti Random? Intercetta
- Clusters? Soggetto (subj)

Variables

Definisco le variabili

Modello

Risultati

 Interpretazione dei risultati Mixed Model

Effetti random

Random Components

Groups	Name	SD	Variance
subj	(Intercept)	50.4	2539
Residual		52.5	2761

Note. Numer of Obs: 96, groups: subj, 24

Risultati

Interpretazione dei risultati

F-tests per gli effetti fissi

Fixed Effect ANOVA

	F	Num df	Den df	р
time	45.14	3	66.0	< .001
group	13.71	1	22.0	0.001
time:group	9.01	3	66.0	< .001

Note. Satterthwaite method for degrees of freedom

Per il momento ignoriamo la stima dei coefficienti

Results: plot

Analisi sulla interazione

- Per analizzare ulteriormente l'interazione possiamo fare (come nel GLM):
- Simple effects: Testare se l'effetto di tempo è presente in ognuno dei gruppi
- Trend analysis: Testare dei trend specifici nelle nostre medie
- Post-hoc test: confronto delle medie tutto contro tutto

Simple effects

Chiediamo di stimare gli effetti ti tempo in ogni gruppo

Simple effects

Chiediamo di stimare gli effetti ti tempo in ogni gruppo

Simple Effects ANOVA

Simple effects of time

Effect	Moderator Levels	df Num	df Den	F	р
time	group at 1	3.00	66.0	18.9	< .001
time	group at 2	3.00	66.0	35.3	< .001

In entrambi i gruppi le medie cambiano nel tempo

Results: plot

Fixed Effects Plots

Ricapitolando

- Dunque, i disegni a misure ripetute possono essere analizzati come qualunque altro disegno "Anova", ma deve essere modellata la componente individuale che cambia da soggetto a soggetto
- Ciò consente di applicare tutte le conoscenze dell'ANOVA/Regressione al caso delle misure ripetute
- I modelli misti consentono dunque di stimare modelli a misure ripetute combinandoli con altre strutture complesse dei dati

La mediazione nel modello misto

La mediazione

Logicamente, la mediazione nel modello misto è identica al modello lineare generale

Condizioni statistiche

Nel modello misto i coefficienti della mediazione si ottengono stimando due modelli

• X sul mediatore

- L'effetto si ottiene con un regressione semplice con X come IV e Y come DV
- E si prende **l'effetto fisso**

Condizioni statistiche

- Nel modello misto i coefficienti della mediazione si ottengono stimando due modelli
 - Mediatore sulla dipendente al netto della X
 - L'effetto si ottiene con un regressione multiple con X e M come IV e Y come DV
 - E si prende **l'effetto fisso**

Il problema è che l'effetto mediato non corrisponde al prodotto dei coefficienti fissi

$$EM \neq a \cdot b$$

Media dei Coefficiente

• Ricordiamo che il coefficiente fisso in un modello misto è la media dei coefficienti random

MEDIA

$$\bar{b} = \frac{\sum_{j} b_{j}}{k}$$

• Dunque per ogni coefficiente della mediazione (a e b) avremo una distribuzione di coefficienti.

• Dunque per ogni coefficiente della mediazione (a e b) avremo una distribuzione di coefficienti.

Queste coefficienti possono essere correlati

●E l'effetto mediato è dato dal prodotto **a** e **b** più la covarianza tra le distribuzioni di coefficienti

Stimare questa covarianza è un incubo!!

$$EM = a \cdot b + cov(a, b)$$

Intervalli di confidenza

- Inoltre, il metodo bootstrap non è chiaro se funzioni bene con il modello misto
- Si preferisce un altro metodo detto "Monte Carlo Method"
- Stimare questi intervalli è un incubo!!

$$EM = a \cdot b + cov(a, b)$$

bert17

- Noi useremo bert17 (su queste funzioni è ancora un po' instabile)
- Dunque opereremo come la mediazione normale

$$EM = a \cdot b + cov(a, b)$$

Esempio

- Una ricerca sperimentale è volta a studiare l'effetto della densità di stimoli in un lasso di tempo sulla percezione del passare del tempo
- I soggetti eseguivano un compito con un numero variabile di stimoli da osservare
- Il numero di stimoli è stato manipolato sperimentalmente (0,30,60) in tre condizioni a **misure ripetute**
- Per ogni intervallo è stato misurato l'engagement (engagment) del soggetto nel compito sperimentale e quanto rapidamente avessero percepito il tempo passato durante il compito (fast)

```
##
## 0 30 60
## 924 732 924
```

Esempio

L'ipotesi è la seguente

Essendo il disegno a misure ripetute, dobbiamo usare il modello misto

Effetto totale

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
mod1<-lmer(fast~(1+cstimuli|id)+cstimuli,data=timedata)
summary(mod1)</pre>
```

Effetti random

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
mod1<-lmer(fast~(1+cstimuli|id)+cstimuli,data=timedata)
summary(mod1)</pre>
```

```
πт
  Random effects:
                        Variance Std.Dev. Corr
##
   Groups
            Name
             (Intercept) 0.496
    id
                                 0.7043
##
            cstimuli
                        0.254
                                 0.5040
                                           1.00
##
##
   Residual
                        4.863
                                 2.2053
                                 id, 308
## Number of obs: 2580, groups:
##
```

Notiamo semplicemente che abbiamo della variabilità nei coefficienti

Effetti fissi

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
## Fixed effects:

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 4.610e+00 5.929e-02 3.100e+02 77.746 <2e-16 ***

## cstimuli 1.129e+00 1.734e-01 1.549e+03 6.512 1e-10 ***

## ---
```

Effetto totale fisso

1.129

Effetto sul mediatore

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
mod2<-lmer(engagment~(1+cstimuli|id)+cstimuli,data=timedata)
summary(mod1)</pre>
```

Effetti random

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
## Random effects:
                        Variance Std.Dev. Corr
##
   Groups
            Name
            (Intercept) 2.038552 1.4278
    id
##
            cstimuli 0.001253 0.0354
##
                                          1.00
##
   Residual
                        2.547846 1.5962
## Number of obs: 2580, groups: id, 308
##
```

Notiamo semplicemente che abbiamo della variabilità nei coefficienti

Effetti fissi

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
## Fixed effects:

## Estimate Std. Error df t value Pr(>|t|)

## (Intercept) 5.353e+00 8.734e-02 3.078e+02 61.289 < 2e-16 ***

## cstimuli 7.233e-01 1.238e-01 2.263e+03 5.843 5.86e-09 ***

## ---
```

Effetto sul mediatore

.723

Effetto del mediatore

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
mod3<-lmer(fast~+(1+cstimuli|id)+(1+engagment|id)+engagment+cstimuli,data=timedata)
summary(mod3)</pre>
```

Effetti random

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

```
## Random effects:
   Groups
            Name
                        Variance Std.Dev. Corr
##
           (Intercept) 0.257273 0.50722
##
   id
            cstimuli 0.007445 0.08628 -1.00
##
##
   id.1
            (Intercept) 1.544368 1.24273
            engagment 0.079323 0.28164 -1.00
##
   Residual
                        3.367156 1.83498
##
## Number of obs: 2580, groups: id, 308
##
```

Notiamo semplicemente che abbiamo della variabilità nei coefficienti

Effetti fissi

• Operiamo le solite tre stime, ma usando il modello misto, stimando gli effetti random e fissi tra soggetti (variabile cluster sono i soggetti)

Effetto del mediatore

.597

Effetto mediato

- Dato che abbiamo osservato che gli effetti a e b sono random (cioè variano da soggetto a soggetto) potrebbero covariare (correlare)
- Per stimare la covarianza usiamo bert17, che usa il medoto boostrap

$$EM = a \cdot b + cov(a, b)$$

bert17

 Bert17 (per ora) funziona sul modello misto solo per un mediatore, una indipendente ed una indipendente.

med.mixed("fast", "engagment", "cstimuli", "id", timedata)

dipendente

mediatore

indipendente

Cluster

med.mixed(y="fast",mediator = "engagment",x="cstimuli","id",timedata,test = T,BR=500)

Queste opzioni chiedono il test bootstrap (può essere molto lento)

Effetto mediato e CI

```
Mediated effect
                                                     Effetto del mediatore
0.431244
Mediated fixed effect
0.4325846
covariance
-0.00134056
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates
C' ' :
   .:boot.ci(boot.out = br, type = "perc")
Intervals:
         Percentile
Level
                                                 Intervalli di confidenza
95% (0.3561, 0.6961)
Calculations and Intervals on Original Scale
```