Homework 6 (Due March 5, 2025)

Jack Hyatt MATH 547 - Algebraic Structures II - Spring 2025

June 8, 2025

Justify all of your answers completely.

1. Prove that $\frac{\mathbb{Z}[x]}{(x^2-2)}$ is isomorphic to $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$

Proof. Let $\phi : \mathbb{Z}[x] \to \mathbb{R}$ be the evaluation map $\phi(f(x)) = f(\sqrt{2})$. It is quite easy to see that $(x^2 - 2) \subseteq \ker \phi$. To show $(x^2 - 2) \supseteq \ker \phi$, we can see that any $f(x) \in \mathbb{Z}[x]$ with $f(\sqrt{2}) = 0$ will have $x^2 - 2$ as a factor, meaning it is a multiple, meaning it is in $(x^2 - 2)$. So then $(x^2 - 2) = \ker \phi$.

Since evaluation maps are homomorphisms, the F.H.T. gives us $\frac{\mathbb{Z}[x]}{(x^2-2)} \cong \text{Im } \phi$. Now to find what Im ϕ is.

When a term in a polynomial has degree 0 mod 2, we get the term evaluated at $\sqrt{2}$ is an integer.

When a term in a polynomial has degree 1 mod 2, we get the term evaluated at $\sqrt{2}$ is a multiple of $\sqrt{2}$.

Putting this together, we can easily see that

$$\operatorname{Im} \phi = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}\$$

2. Prove that I = (2, x) is a maximal ideal in $\mathbb{Z}[x]$.

Proof. Let $\phi : \mathbb{Z}[x] \to \mathbb{Z}_2$ be the map $\phi(f(x)) = [f(0)]_2$. It is quite easy to see that $(2,x) \subseteq \ker \phi$, since the functions evaluated at 0 leave only the constant term, and that term is always even. To show $(2,x) \supseteq \ker \phi$, we can see that any $f(x) \in \mathbb{Z}[x]$ with $f(0) \equiv 0 \mod 2$ will have the constant be even, meaning it is in (2,x). So then $(2,x) = \ker \phi$.

Since evaluation maps are homomorphisms, and modulus is also a homomorphism, ϕ is a homomorphism. So the F.H.T. gives us $\frac{\mathbb{Z}[x]}{(2,x)} \cong \operatorname{Im} \phi$. It is trivial to check that $\operatorname{Im} \phi = \mathbb{Z}_2$ since there are only 2 elements.

We know that any \mathbb{Z}_q is a field as long as q is a prime power. So then \mathbb{Z}_2 is a field. That implies that $\frac{\mathbb{Z}[x]}{(2,x)}$ is also a field, meaning (2,x) is a maximal ideal.

3. Find a subring of \mathbb{R} that is isomorphic to $\frac{\mathbb{Z}[x]}{(x^3-2)}$. Prove the isomorphism.

Proof. Let $\phi : \mathbb{Z}[x] \to \mathbb{R}$ be the evaluation map $\phi(f(x)) = f(\sqrt[3]{2})$. It is quite easy to see that $(x^3 - 2) \subseteq \ker \phi$. To show $(x^3 - 2) \supseteq \ker \phi$, we can see that any $f(x) \in \mathbb{Z}[x]$ with $f(\sqrt[3]{2}) = 0$ will have $x^3 - 2$ as a factor, meaning it is a multiple, meaning it is in $(x^3 - 2)$. So then $(x^3 - 2) = \ker \phi$.

Since evaluation maps are homomorphisms, the F.H.T. gives us $\frac{\mathbb{Z}[x]}{(x^3-2)} \cong \text{Im } \phi$. Now to find what Im ϕ is.

When a term in a polynomial has degree 0 mod 3, we get the term evaluated at $\sqrt[3]{2}$ is an integer.

When a term in a polynomial has degree 1 mod 3, we get the term evaluated at $\sqrt[3]{2}$ is a multiple of $\sqrt[3]{2}$.

When a term in a polynomial has degree 2 mod 3, we get the term evaluated at $\sqrt[3]{2}$ is a multiple of $\sqrt[3]{4}$.

Putting this together, we can easily see that

Im
$$\phi = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Z}\}$$

4. Let R, S be commutative rings and let $F: R \to S$ be a ring isomorphism. Let I be an ideal of R. Consider

$$F(I) = \{F(x) : x \in I\}.$$

a. Prove that F(I) is an ideal of S and that R/I is isomorphic to S/F(I).

Proof. Let $F(x) \in F(I)$ and $s \in S$. Since F is a bijection, there is an $s' \in R$ s.t. F(s') = s. Since I is an ideal, then $s'x \in I$. So then $sF(x) = F(s')F(x) = F(s'x) \in F(I)$, making F(I) an ideal of S.

Define $\phi: R/I \to S/F(I)$ with $\phi(x+I) = F(x) + F(I)$. We need to check if ϕ is well defined.

Let r + I = r' + I be two representations of the same coset. Then $r - r' \in I$, which means $F(r - r') \in F(I)$. Since F is a isomorphism, we can get to F(r) + F(I) = F(r') + F(I). So ϕ is well defined.

It is also easy to see that ϕ is an isomorphism since addition and multiplication of cosets are preserved, and that F is an isomorphism.

S0 then R/I is isomorphic to S/F(I).

b. Use the result from part a. to prove that

$$\frac{\mathbb{Q}[x]}{(x^2-2)} \cong \frac{\mathbb{Q}[x]}{(x^2+4x+2)}$$

Proof. Let $F : \mathbb{Q}[x] \to \mathbb{Q}[x]$ with F(f(x)) = f(x+2). We can observe that $F(x^2-2) = (x+2)^2 - 2 = x^2 + 4x + 2$.

F has an inverse $F^{-1}(f(x)) = f(x-2)$. This is shown by $F(F^{-1}(f(x))) = F(f(x-2)) = f(x)$ and $F^{-1}(F(f(x))) = F^{-1}(f(x+2)) = f(x)$.

So then F is a bijection. We also know that function composition preserves structure through addition and multiplication, so that means F is an isomorphism. So all together with part a., we have that

$$\frac{\mathbb{Q}[x]}{(x^2-2)} \cong \frac{\mathbb{Q}[x]}{(x^2+4x+2)}$$

5. Prove that the rings $R_1 = \frac{\mathbb{Z}[x]}{(x^2-2)}$ and $R_2 = \frac{\mathbb{Z}[x]}{(x^2-5)}$ are not isomorphic to each other.

Proof. BWOC, assume that $F: R_1 \to R_2$ is an isomorphism. Let $\bar{x} \in R_1$, meaning $\bar{x} = x + (x^2 - 2)$, making $\bar{x}^2 = 2$. Let $u := F(\bar{x}) \in R_2$. We then have

$$u^{2} = F(\bar{x})^{2}$$
$$= F(\bar{x}^{2})$$
$$= F(2)$$
$$= 2$$

In R_2 , any element is of the form $a + b\bar{y}$, where $\bar{y} = x + (x^2 - 5)$ satisfies $\bar{y}^2 = 5$.

Then we have that $u^2 = (a + b\bar{y})^2 = a^2 + 5b^2 + 2ab\bar{y}$. Since $u^2 = 2$, we have that ab = 0, giving either a or b is 0.

If b = 0, then $a^2 = 2$. This has no integer solutions however, a contradiction. If a = 0, then $5b^2 = 2$. This has no integer solutions however, a contradiction.