Name : .....

### Second Year - March 2018

Time: 2½ Hours Cool-off time: 15 Minutes

Part - III

### MATHEMATICS (SCIENCE)

Maximum: 80 Scores

#### General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- · Read the instructions carefully.
- Calculations, figures and graph's should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

# വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' പോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശുമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ പെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

Questions 1 to 7 carry 3 scores each. Answer any Six questions.

(Scores:  $6 \times 3 = 18$ )

1. If  $f(x) = \frac{x}{x-1}$ ,  $x \ne 1$ 

- (a) Find fof (x)
- (b) Find the inverse of f.

(Scores : 2)

(Score: 1)

- 2. Using elementary row operations, find the inverse of the matrix  $\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ . (Scores: 3)
- 3. (a) f(x) is a strictly increasing function, if f'(x) is
  - (i) positive
    - (ii) negative
    - (iii) 0

9018

(iv) None of these

(Score: 1)

(b) Show that the function f given by  $f(x) = x^3 - 3x^2 + 4x$ ,  $x \in \mathbb{R}$  is strictly increasing.

(Scores: 2)

(a) 
$$\int_{0}^{a} f(a-x)dx = \underline{\qquad}.$$

(Score: 1)

$$\left[ (i) \int_{0}^{2a} f(x) dx, \quad (ii) \int_{-a}^{a} f(x) dx, \quad (iii) \int_{0}^{a} f(x) dx, \quad (iv) \int_{0}^{0} f(x) dx \right]$$

(b) Find the value of 
$$\int_{0}^{\pi/2} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx.$$

(Scores: 2)

- Find the area of the region bounded by the Curve y² = x, x-axis and the lines x = 1 and x = 4.

  (Scores: 3)
- 6. Find the general solution of the differential equation  $x \frac{dy}{dx} + 2y = x^2 \log x$ . (Scores: 3
- 7. A manufacturer produces nuts and bolts. It takes 1 hour of work on Machine A and 3 hours on Machine B to produce a package of nuts. It take 3 hours on Machine A and 1 hour on Machine B to produce a package of bolts. He earns a profit of ₹ 17.50 per package on nuts and ₹ 7.00 per package on bolts. Formulate the above L.P.P., if the machines operates for at most 12 hours a day.
  (Scores: 3)



# Questions 8 to 17 carry 4 Scores each. Answer any eight. (Scores: $8 \times 4 = 32$ )

- Let  $A = N \times N$  and '\*' be a binary operation on A defined by (a, b) \* (c, d) = (a + c, b + d)
  - Find (1, 2) \* (2, 3)(a)

(Score: 1)

Prove that '\*' is commutative (b)

(Score: 1)

Prove that '\*' is associative. (c)

(Scores: 2)

9.



- Identify the function from the above graph.
  - tan-1x (i)
  - (ii)  $\sin^{-1}x$
  - (iii) cos-1x
  - (iv) cosec-1x

(Score: 1)

- Find the domain and range of the function represented in above graph.
- (Score: 1)

- Prove that  $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{2}{11} = \tan^{-1} \frac{3}{4}$ .

(Scores: 2)

10. (a) 
$$\frac{d(a^x)}{dx} = \underline{\hspace{1cm}}$$

- $a^{x}$
- (ii) log(ax)
- (iii) axlog a
  - (iv) xax-1

(Score: 1)

(b) Find  $\frac{dy}{dx}$  if  $x^y = y^x$ .

(Scores: 3)

8 മുതൽ 17 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 4 സ്കോർ വീതമാണ്. ഏതെങ്കിലും 8 എണ്ണത്തിന് ഉത്തരമെഴുതുക. (സ്കോർസ് : 8 × 4 = 32)

8.  $A = N \times N$  ൽ '\*' എന്ന ബൈനറി ഓപ്പറേഷൻ താഴെ നൽകിയിരിക്കുന്ന രീതിയിലാണ് നിർവ്വചിച്ചിട്ടുള്ളത്.

$$(a, b) * (c, d) = (a + c, b + d)$$

- (a) (1, 2) \* (2, 3) കാണുക. (മ്പോർ : 1)
- (b) 'ം' കമ്മ്യൂട്ടേറ്റീവ് ആണെന്ന് തെളിയിക്കുക (സ്കോർ : 1)
- (c) '\*' അസോസിയേറ്റീവ് ആണെന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2)

9.



- (a) മുകളിൽ കൊടുത്തിരിക്കുന്ന ഗ്രാഫിൽ നിന്നും ഫംഗ്ഷൻ തെരഞ്ഞെടുത്തെഴുതുക.
  - (i)  $tan^{-1}x$
  - (ii)  $\sin^{-1}x$
  - (iii) cos-1x
  - (iv) cosec<sup>-1</sup>x

(സ്കോർ : 1)

(b) ആ ഗ്രാഫിന്റെ മണ്ഡലവും രംഗവും എഴുതുക.

(സ്കോർ : 1)

(c)  $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{2}{11} = \tan^{-1}\frac{3}{4}$  എന്ന് തെളിയിക്കുക.

(സ്കോർസ് : 2)

10. (a)  $\frac{d(a^x)}{dx} = ____$ 

- (i) ax
- (ii) log(a<sup>x</sup>)
- (iii) arlog a
- (iv) xax-1

(ന്യോർ: 1)

(b)  $x^y = y^x$  ആയാൽ  $\frac{dy}{dx}$  കാണുക.

(സ്കോർസ് : 3)

- 11. (a) Find the slope of the tangent to the curve  $y = (x-2)^2$  at x = 1. (Score: 1)
  - (b) Find a point at which the tangent to the curve  $y = (x 2)^2$  is parallel to the chord joining the points A(2, 0) and B(4, 4). (Scores: 2)
  - (c) Find the equation of the tangent to the above curve and parallel to the line AB.

(Score: 1)

12. 
$$\int_{0}^{\infty} (x^2 + 1) dx$$
 as the limit of a sum.

(Scores: 4)

13. Consider the following figure:



17

(a) Find the point of intersection 'P' of the circle  $x^2 + y^2 = 50$  and the line y = x.

(b) Find the area of the shaded region.

(Score: 1)

(Scores: 3)

- 14. (a) The degree of the differential equation  $xy \left(\frac{d^2y}{dx^2}\right)^2 + x^4 \left(\frac{dy}{dx}\right)^3 y \frac{dy}{dx} = 0$  is \_\_\_\_\_
  - 3. W. 4.

- (i) 4
- (ii) 3
- (iii) 2
- (iv) 1

(Score : 1)

(b) Find the general solution of the differential equation  $\sec^2 x \tan y \, dx + \sec^2 y \tan x$ dy = 0 (Scores : 3)

(a) Prove that for any vectors  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$ ,  $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}]$ .

(Scores: 3)

(b) Show that if  $\vec{a} + \vec{b}$ ,  $\vec{b} + \vec{c}$ ,  $\vec{c} + \vec{a}$  are coplanar then  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  are also coplanar.

(Score: 1)

 $y=(x-2)^2$  എന്ന വക്രത്തിന്റെ x=1 ലെ തൊടുവരയുടെ സ്ലോപ് കണ്ടുപിടിക്കുക.

(സ്കോർ : 1)

- (b)  $y = (x-2)^2$  എന്ന വക്രത്തിന്റെ തൊടുവര A(2, 0), B(4, 4) എന്ന ബിന്ദുക്കൾ തമ്മിൽ വരയ്ക്കുന്ന രേഖാഖണ്ഡത്തിന് സമാന്തരമാകുമ്പോഴുള്ള വക്രത്തിൽ മുട്ടുന്ന ബിന്ദു കണ്ടുപിടിക്കുക. (സ്കോർസ്: 2)
- (c) മുകളിലെ വക്രത്തിന്റെ തൊടുവര AB യ്ക്ക് സമാന്തരമാകുന്ന രീതിയിലുള്ള സമവാകൃം കണ്ടെത്തുക. (സ്കോർ : 1)
- $\int_{-\infty}^{2} (x^2 + 1) \, \mathrm{d}x$  എന്നത് ഒരു തുകയുടെ ലിമിറ്റ് ആയി കണ്ടെത്തുക. (സ്കോർസ് : 4)
- താഴെ കൊടുത്തിരിക്കുന്ന ചിത്രം പരിഗണിക്കുക :



- (a)  $x^2 + y^2 = 50$  എന്ന വൃത്തവും y = x എന്ന വരയും സംഗമിക്കുന്ന P എന്ന ബിന്ദു കണ്ടുപിടിക്കുക. (സ്കോർ : 1)
- (b) ഗ്രാഫിൽ ഷേഡ് ചെയ്ത ഭാഗത്തിന്റെ പരപ്പളവ് കണ്ടുപിടിക്കുക. (സ്കോർസ് : 3)
- 14. (a)  $xy\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right)^2+x^4\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3-y\,\frac{\mathrm{d}y}{\mathrm{d}x}=0$  എന്ന ഡിഫറൻഷ്യൽ സമവാക്യത്തിന്റെ ഡിഗ്രി
  - \_\_\_\_\_ആണ.
    - (1) 4

- (iv) 1
- (iii) 2

- (സ്കോർ : 1)
- (b)  $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$  എന്ന ഡിഫറൻഷൃൽ സമവാകൃത്തിന്റെ ജനറൽ സൊല്യൂഷൻ കണ്ടുപിടിക്കുക. (സ്കോർസ് : 3)
- 15. (a)  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  മൂന്ന് വെക്ടറുകളായാൽ  $\left[\vec{a} + \vec{b}$ ,  $\vec{b} + \vec{c}$ ,  $\vec{c} + \vec{a}\right] = 2 \left[\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}\right]$  എന്ന് തെളിയിക്കുക. (സ്കോർസ് : 3)
  - (b)  $\vec{a} + \vec{b}$ ,  $\vec{b} + \vec{c}$ ,  $\vec{c} + \vec{a}$  എന്നീ വെക്ടറുകൾ ഒരേ തലത്തിലാണെങ്കിൽ,  $\vec{a}$ ,  $\vec{b}$ ,  $\vec{c}$  ഒരേ തലത്തിലാണെന്ന് തെളിയിക്കുക. (സ്കോർ : 1)

P.T.O.

16. (a) Find the equation of a plane which makes x, y, z intercepts respectively as 1, 2, 3.

(Scores: 2)

(b) Find the equation of a plane passing through the point (1, 2, 3) which is parallel to above plane. (Scores: 2)

the trans

17. Solve the L.P.P. given below graphically:

Minimise Z = -3x + 4y

Subject to  $x + 2y \le 8$ ,

$$3x + 2y \le 12,$$
  
$$x \ge 0, \ y \ge 0$$

(Scores: 4)

## Questions from 18 to 24 carry 6 scores each. Answer any five.

(Scores:  $5 \times 6 = 30$ )

18. (a) Find x and y if

 $x\begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ 

symmetric matrices.

(Scores: 2)

(b) Express the matrix  $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$  as the sum of a symmetric and a skew-

(Scores: 4)

19. (a) Prove that  $\begin{vmatrix} a & b & c \\ a + 2x & b + 2y & c + 2z \\ c & c & c \end{vmatrix} = 0.$ 

(Scores : 2

- (b) If  $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ ,  $B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$ .
  - (i) Prove that  $B = A^{-1}$ .
  - (ii) Using A-1 solve the system linear equations given below.

$$x - y + 2z = 1$$

$$2y - 3z = 1$$

$$3x - 2y + 4z = 2$$

(Scores: 4)

20. (a) Prove that the function defined by  $f(x) = \cos(x^2)$  is a continuous function. (Scores: 2)

(b) (i) If  $y = e^{a\cos^{-1}x}$ ,  $-1 \le x \le 1$ , show that  $\frac{dy}{dx} = \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}}$ .

(Score: 1)

(ii) Hence, prove that  $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$ .

(Scores: 3)

- (a) 1. 2. 3 എന്നിവ യഥാക്രമം x, y, z ഇന്റർസെപ്റ്റുകളാകുന്ന ഒരു തലത്തിന്റെ സമവാകൃം എഴുതുക. (സ്കോർസ്: 2)
  - (b) (1, 2, 3) കൂടി കടന്നു പോകുകയും മുകളിലെ തലത്തിന് സമാന്തരമാകുന്നതുമായ തലത്തിന്റെ സമവാകൃം എഴുതുക. (സ്കോർസ്: 2)
- ചുവടെ കൊടുത്തിരിക്കുന്ന L.P.P. യെ ഗ്രാഫ് ഉപയോഗിച്ച് നിർദ്ധാരണം ചെയ്യുക :

Minimise Z = -3x + 4ySubject to  $x + 2y \le 8$ ,

$$3x + 2y \le 12,$$

$$x \ge 0, y \ge 0$$

(സ്കോർസ് : 4)

18 മുതൽ 24 വരെയുള്ള ചോദ്യങ്ങൾക്ക് . 6 സ്കോർ വിതമാണ്. ഏതെങ്കിലും 5 എണ്ണത്തിന് ഉത്തരമെഴുതുക. ( സ്കോർസ് :  $5 \times 6 = 30)$ 

18. (a)  $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$ ആയാൽ (സ്കോർസ്: 2) x, y യുടെ വില കണ്ടുപിടിക്കുക.

(b)  $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$  എന്ന മാട്രിക്സിനെ ഒരു സിമട്രിക് മാട്രിക്സിന്റെയും ഒരു സൂപ്പാസിമട്രിക് മാട്രിക്സിന്റെയും തുകയായി എഴുതുക. (സ്കോർസ് : 4)

19. (a)  $\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix} = 0$  എന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2)

(b)  $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}, B = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$  (319) When  $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 0 & 1 & -2 \end{bmatrix}$ 

- (i)  $B = A^{-1}$  എന്ന് തെളിയിക്കുക.
- (ii) A<sup>-1</sup> ഉപയോഗിച്ച് താഴെ കൊടുത്തിരിക്കുന്ന രേഖിയ സമവാകൃങ്ങളുടെ പരിഹാരം കണ്ടുപിടിക്കുക.

x-y+2z=1 2y-3z=13x-2y+4z=2

(സ്കോർസ്: 4)

- (a)  $f(x) = \cos(x^2)$  എന്നത് ഒരു കണ്ടിന്യൂസ് ഫംഗ്ഷൻ എന്ന് തെളിയിക്കുക. (സ്കോർസ് : 2)
  - (b) (i)  $y = e^{a\cos^{-1}x}, -1 \le x \le 1$  ആയാൽ  $\frac{dy}{dx} = \frac{-ae^{a\cos^{-1}x}}{\sqrt{1-x^2}}$  എന്ന് തെളിയിക്കുക.(സ്കോർ : 1)

(ii)  $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$  എന്ന് തെളിയിക്കുക. (സ്കോർസ്: 3)

9018 P.T.O.

21. Evaluate the following:

(a) 
$$\int \sin mx \, dx$$
.

(Score: 1)

(b) 
$$\int \frac{1 \, \mathrm{d}x}{\sqrt{x^2 + 2x + 2}}$$

(Scores: 3)

(c) 
$$\int \frac{x \, dx}{(x+1)(x+2)}$$

(Scores: 2)

22. (a) If 
$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
,  $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ 

(i) Find 
$$\vec{a} + \vec{b}$$
 and  $\vec{a} - \vec{b}$ .

(Scores : 2)

(ii) Find a unit vector perpendicular to both 
$$\vec{a} + \vec{b}$$
 and  $\vec{a} - \vec{b}$ .

(Scores: 2)

(b) Consider the points A(1, 2, 7), B (2, 6, 3), C(3, 10, -1).

(Score: 1)

(Score: 1)

23. (a) Find the angle between the lines

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and  $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$ 

(Scores: 2)

(b) Find the shortest distance between the pair of lines

$$\vec{r} = (\hat{1} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{1} - 3\hat{j} + 2\hat{k})$$

$$\vec{r} = (4\hat{1} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{1} + 3\hat{j} + \hat{k})$$

(Scores: 4)

24. (a) The probability distribution of a random variable is given by P(x). What is  $\Sigma P(x)$ ?

(Score: 1)

(b) The following is a probability distribution function of a random variable.

| x    | -5 | -4 | - 3 | -2 | -1 | 0 . | 1  | 2  | 3   | 4   | 5   |
|------|----|----|-----|----|----|-----|----|----|-----|-----|-----|
| P(x) | k  | 2k | 3k  | 4k | 5k | 7k  | 8k | 9k | 10k | 11k | 12k |

10

(i) Find k

9018

(Scores: 2)

(ii) Find P(x > 3)

(Score: 1)

(iii) Find P(
$$-3 \le x \le 4$$
)

(Score: 1)

(iv) Find 
$$P(x < -3)$$

(Score: 1)

21. ചുവടെ കൊടുത്തിരിക്കുന്നവ കണ്ടുപിടിക്കുക :

(a) 
$$\int \sin mx \, dx$$
. (capod: 1)

(b) 
$$\int \frac{1 dx}{\sqrt{x^2 + 2x + 2}}$$
 (cm) dm: 3)

(c) 
$$\int \frac{x \, dx}{(x+1)(x+2)}$$
 (cmpodm': 2)

- 22. (a)  $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}, \vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$  mg/work
  - (i)  $\overrightarrow{a}+\overrightarrow{b}$  ;  $\overrightarrow{a}-\overrightarrow{b}$  ഇവയുടെ വില കാണുക. (സ്കോർസ്: 2)
  - (ii)  $\vec{a} + \vec{b}$  യ്ക്കും  $\vec{a} \vec{b}$  യ്ക്കും ലംബമായി വരുന്ന യൂണിറ്റ് വെക്ടർ കണ്ടുപിടിക്കുക. (സ്കോർസ്: 2)
  - (b) A(1, 2, 7), B (2, 6, 3), C(3, 10, −1) എന്നീ ബിന്ദുക്കൾ പരിഗണിക്കുക.
    - (i)  $\overrightarrow{AB}$ ,  $\overrightarrow{BC}$  ഇവ കാണുക. (സ്കോർ : 1)
    - (ii) A, B, C എന്നീ ബിന്ദുക്കൾ ഒരേ വരയിലുള്ളതാണെന്ന് തെളിയിക്കുക.

(സ്കോർ : 1)

- 23. (a)  $\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$ ,  $\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$  എന്നീ വരകൾ തമ്മിലുള്ള കോൺ അളവ് കാണുക. (സ്കോർസ്: 2)
  - (b)  $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (\hat{i} 3\hat{j} + 2\hat{k})$  $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu (2\hat{i} + 3\hat{j} + \hat{k})$

എന്നീ വരകൾ തമ്മിലുള്ള ഏറ്റവും കുറഞ്ഞ അകലം കണ്ടെത്തുക. (ന്യോർസ്: 4)

- 24. (a) P(x) എന്നത് ഒരു റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ ആണെങ്കിൽ  $\Sigma P(x)$  എന്താണ് ? (സ്കോർ : 1)
  - (b) താഴെ കൊടുത്തിരിക്കുന്ന പട്ടിക ഒരു റാൻഡം വേരിയബിളിന്റെ പ്രോബബിലിറ്റി ഡിസ്ട്രിബ്യൂഷൻ ആണെങ്കിൽ

| x    | -5 | -4 | - 3 | -2 | -1 | 0  | 1  | 2  | 3   | 4   | 5   |
|------|----|----|-----|----|----|----|----|----|-----|-----|-----|
| P(x) | k  | 2k | 3k  | 4k | 5k | 7k | 8k | 9k | 10k | 11k | 12k |

(i) k യുടെ വില എന്ത്?

(സ്കോർസ് : 2) (സ്കോർ : 1)

(ii) P(x > 3) വില കണ്ടുപിടിക്കുക.

(സോർ : 1)

(iii) P(- 3 < x < 4) വില കാണുക.</li>

(dapolo . I

(iv) P(x < -3) കാണുക.

(സ്കോർ : 1)