

# ETC5242 Week 7 Probability & MLE

授课老师: Joe



- Week 7
  - Assessing model fitness
  - Bayes theorem



- The cdf of X, denoted  $F_X(c)$ , returns a value  $p \in [0,1]$
- This is equal to the area under the pdf of X, denoted  $f_X(c)$ , between  $(-\infty, c]$





We have the following p.d.f.

$$F(x)$$
 = 1/15 for -3<=x <3  
 = 3/40x for 3<=x <5  
 = 0 otherwise

Find the c.d.f. of the above function



#### QQ plot

- A graphical tool (subjective visual check) to help assess if plausible that data came from specified distribution
  - e.g. a distribution from MLE fit
- Create scatterplot
  - ordered data (y-axis) against theoretical quantiles (x-axis), or
  - ordered sample data against ordered simulated data
- If both sets of quantiles from same distribution ⇒ points should lie on a straight line
  - if not straight, may get an idea of where data doesn't fit
- Often useful to add a line to QQplot
  - ► 45° line (perfect alignment)
  - ▶ line connecting specified quantiles (e.g. 25th- and 75th-%iles)



#### **Example 1:** N( $\mu$ , $\sigma^2$ ) against N(0,1) quantiles





#### **Example 2: stat\_qq() for different distributions**





- Can we test?
- $H_0$ : data comes from the specified model vs.  $H_1$  data does not come from the specified model
- In most cases, fit will not be perfect

#### Various approaches available for informal test:

- Use a 'thick-marker' judgment approach
- Use a bootstrap technique to obtain "confidence set"
- Embed QQplot from among many QQplots from data simulated from the model



#### **Bootstrap MLE QQ plot**

```
MLE.x <- fit$estimate # point estimate</pre>
boot.seq <- seq(1,n,1)/n-1/(2*n)
B <- 500
MLE.x_boot <- matrix(rep(NA,2*B), nrow=B, ncol=2)
for(i in 1:B){
  temp <- sample(df$mydata, size=n, replace=TRUE)</pre>
  df <- df %>% mutate(temp=temp)
  MLE.x_boot[i,] <- fitdistr(temp, "normal")$estimate</pre>
  params_boot <- MLE.x_boot[i,]</pre>
  p <- p + stat_qq(aes(sample=temp), distribution = qnorm,</pre>
                    dparams = params_boot, colour="grey",
                    alpha=0.2)
p <- p + stat_qq(aes(sample=mydata), distribution = qnorm,</pre>
                  dparams = params) +
  ggtitle("QQ plot with B=500 Bootstrap replicates")
p
```



#### Visual test

- Simulate K-1 samples of the same size from the fitted distribution
- Make additional QQ-plots for these simulated samples
- Randomly place QQ-plot of actual data among the K-1 comparator QQ-plots
- $\blacksquare$  Try to spot the "odd-one-out" where data least compatible with the 45  $^{\circ}$  line

#### Null and alternative hypotheses for visual test

- $\blacksquare$   $H_0$ : actual data is a random sample from the fitted distribution, vs.
- $\blacksquare$   $H_1$ : actual data is not a from the fitted distribution
- $\blacksquare \Rightarrow \text{Reject } H_0 \text{ if you can detect the QQplot constructed from the actual data}$
- Under  $H_0$ , the chance of incorrectly rejecting  $H_0$  is  $\alpha = 1/(K)$







#### **Bayesian inference**

- Probability describes degree of belief, and are inherently subjective. Prior belief can be updated, using data and a model for its behaviour.
- Probability statements can be made about parameters, even if parameters are conceived as being fixed, because our knowledge about them need not be fixed.
- We make inferences about a parameter,  $\theta$ , by producing a probability distribution for  $\theta$ . Inferences, such as point estimates and interval estimates, may then be extracted from this distribution.
- What make an approach "Bayesian"?
  - Using probabilities to characterise "belief"
  - Treat unknown parameters as "random", rather than being "fixed"
  - Condition on observed data



You are the manager of a retail clothing store

- A customer returns a shirt purchased from the store that is faulty
- There are **only 3 manufacturers** who supply this particular shirt

#### Suppose **it is known** that

- **10**% of the clothing from  $M_1$  (manufacturer 1) faulty
- **5%** from  $M_2$  faulty
- **15**% from  $M_3$  faulty

Which manufacturer produced the faulty shirt?

- Can statistics tell us anything about this?
- Note have only a single data point: X = 1



#### Suppose we had some additional ("prior") information:

- 60% of the stock comes from M<sub>1</sub>
- 30% from M<sub>2</sub>
- 10% from M<sub>3</sub>

Would knowing this prior information change your guess?

- After all, there are relatively few shirts from  $M_3$
- Bayesian statistics helps us to answer questions like these
  - And more...
- For this we need to use **Bayes' theorem**:

$$\Pr(p_i \mid X = 1) = \frac{\Pr(X = 1 \mid p_i) \Pr(p_i)}{\sum_{i=1}^{3} \Pr(X = 1 \mid p_i) \Pr(p_i)}, \text{ for } i = 1, 2, 3$$

■ Notice the general form of **Bayes' theorem**:

Posterior  $\propto$  Likelihood  $\times$  Prior

2

- Here we have **prior probabilities** for each  $p_i$ , i = 1, 2, 3
- Bayes theorem calculation:

| _ |        | Prior      | Likelihood             | Prior × Likelihood               | Posterior          |
|---|--------|------------|------------------------|----------------------------------|--------------------|
|   | $M_i$  | $\Pr(M_i)$ | $\Pr(X=1\mid M_i)=p_i$ | $\Pr(M_i) \Pr(X = 1 \mid M_i)$   | $\Pr(M_i\mid X=1)$ |
| _ | 1      | 0.60       | 0.10                   | 0.060                            | 0.67               |
|   | 2      | 0.30       | 0.05                   | 0.015                            | 0.17               |
|   | 3      | 0.10       | 0.15                   | 0.015                            | 0.17               |
| _ | Column |            |                        |                                  |                    |
|   | Total  | 1.0        | -                      | 0.09                             | 1.0                |
|   |        |            |                        | (denominator for Bayes' theorem) |                    |

- Now  $\Rightarrow M_1$  appears to be MOST PROBABLE, with
- $Pr(M_1 \mid X = 1) = 67\%$
- $ightharpoonup \Pr(M_2 \mid X = 1) = 17\%$
- $ightharpoonup \Pr(M_3 \mid X = 1) = 17\%$



You work at the treasury and know for a fact that only 1 coin in 1 million is biased. If it is biased, it is biased so that Heads comes up 2/3 instead of 1/2 the time. You pick a new coin at random from a bin, and toss it 10 times in a row. It comes up heads 10 times in a row. Which is more probable, and why?