Chương 4

GPIO VÀ AFIO

GENERAL-PURPOSE AND ALTERNATE-FUNCTION I/O

4.1 GIỚI THIỆU GPIO

GPIO (General-purpose input/output) : ngõ vào -ngõ ra sử dụng chung.

- Đối với các dòng STM32 thì mỗi PORT có 16 chân I/O.
- Ngoài chức năng là I/O nếu muốn sử dụng các chân này làm ngô vào hoặc ngô ra của ngoại vi ta phải thiết lập chân này là chức năng thay thế (Alternate Function) hoặc Analog.
- Để tiện cho thiết kế phần cứng nhà sản xuất xây dựng chức năng remap cho phép người dùng có thể thay đổi vị trí I/O của ngoại vi trong một phạm vi nhất định.
- Mỗi chân I/O bên trong chip đều được gắn điện trở nội kéo lên và kéo xuống.

4.2 CÁU TRÚC CƠ BẢN CỦA 1 CHÂN I/O

Hình 4.1 Cấu trúc cơ bản của 1 chân I/O

4.3 CÁC THANH GHI VÀ LỆNH LIÊN QUAN ĐẾN GPIO

Mỗi GPIO có các thanh ghi sau:

4.3.1 Hai thanh ghi 32 bit GPIOx_CRL và GPIOx_CRH

a. GPIOx_CRL (General Purpose I/O Configuration Register Low)

(Địa chỉ **0x00h**, giá trị mặc định sau khi reset **0x4444 4444h**)

CNF'	CNF7[1:0]		MODE7[1:0]		CNF6[1:0]		MODE6[1:0]		5[1:0]	MODI	E5[1:0]	CNF4[1:0]		MODE4[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	3[1:0]	MODE3[1:0]		CNF2[1:0]		MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		CNF0[1:0]		MODE	E0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Hình 4.2 Thanh ghi GPIOx_CRL

Thanh ghi GPIOx_CRL dùng để cấu hình các chân từ 0 đến 7 của PORTx (4 bit cấu hình cho 1 chân). Chân thứ "n" có thể được cấu hình bằng cách thay đổi giá trị 2 bit CNFn[1:0] (chỉnh chế độ) và 2 bit MODEn[1:0] (chỉnh tốc độ) thành các dạng theo **bảng 4.1**

Bảng 4.1 Các chế độ hoạt động của GPIO và cách cấu hình tương ứng

CONFIGUR	ATION MODE	CNF1	CNF0	MODE1	MODE0	PxODR Register
General purpose	Push-pull	0	0	01 - 10) MHz	0 or 1
output	Open-drain	U	1		2 MHz	0 or 1
Alternate	Push-pull	1	0		2 MHz	X
Function output	Open-drain	1	1	11.50) WITIZ	X
	Analog input	0	0			X
Input	Input floating	U	1	0		X
Input	Input pull-down	1	0		J	0
	Input pull-up	1	U			1

b. GPIOx_**CRH** (General Purpose I/O Configuration Register High)

(Địa chỉ **0x04h**, giá trị mặc định sau khi reset **0x4444 4444h**)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	CNF15[1:0]		MODE15[1:0]		CNF14[1:0]		MODE14[1:0]		3[1:0]	MODE	13[1:0]	CNF12[1:0]		MODE12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	CNF11[1:0]		MODE11[1:0]		CNF10[1:0]		MODE10[1:0]		CNF9[1:0]		MODE9[1:0]		8[1:0]	MODI	E8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Hình 4.3 Thanh ghi GPIOx_CRH

Thanh ghi GPIOx_CRH dùng để cấu hình các chân từ **8** đến **15** của PORTx và cách cấu hình tương tự như GPIOx_CRL được trình bày ở **bảng 4.1.**

c. Các lệnh thông dụng liên quan đến GPIOx_CRL và GPIOx_CRH

Bảng 4.2 Các lệnh thông dụng để cấu hình GPIO

SỬ DỤNG THƯ VIỆN "stm32f10x_gpio"										
Lé	ệnh									
Thông số hay dùng	Giải thích									
GPIO_InitTypeDef A; (Khai báo biết A thuộc kiểu GPIO_InitTypeDef)										
	_ Pin = B; ân cần cấu hình)									
B: GPIO_Pin_0 GPIO_Pin_1 GPIO_Pin_15 PIO_Pin_All	B: Chọn chân cần cấu hình Chọn chân 0 Chọn chân 1 Chọn chân 15 Chọn tất cả các chân 0-15 Chú ý: Nếu muốn chọn nhiều chân thì ta sử dụng lệnh OR " " giữa các lựa chọn									
	Ví dụ: A.GPIO_Pin = GPIO_Pin_0 GPIO_Pin_3;									

A.GPIO_Mode =C; (Lệnh cấu hình chế độ hoạt động)											
C:	C: Cấu hình chế độ hoạt động										
GPIO_Mode_AIN	Ngõ vào tương tự										
GPIO_Mode_IN_FLOATING	Ngõ vào thả nổi										
GPIO_Mode_IPD	Ngõ vào kéo xuống										
GPIO Mode IPU	Ngõ vào kéo lên										
GPIO_Mode_Out_OD	Ngõ ra cực thu hở										
GPIO_Mode_Out_PP	Ngõ ra đẩy kéo										
GPIO_Mode_AF_OD	Chức năng thay thế cực thu hở										
GPIO_Mode_AF_PP	Chức năng thay thế đẩy kéo										
A.GPIO	Speed =D;										
	hình tốc độ)										
D:	D: Tốc độ ngõ ra										
GPIO_Speed_10MHz	Chọn tốc độ 10 Mhz										
GPIO_Speed_2MHz	Chọn tốc độ 2 Mhz										
GPIO_Speed_50MHz	Chọn tốc độ 50 Mhz										
GPIO_Init(GPIOX,&A); (Lệnh cấu hình cho GPIOX theo các thông số được lưu trong biến A)											

d. Ví dụ về cách cấu hình GPIO bằng cách sử dụng thư viện "stm32f10x_gpio"

Ví du 4.1: Cấu hình chân A8 và chân A1 là ngõ ra đẩy kéo tốc đô 50 Mhz

Chương trình

```
GPIO_InitTypeDef GPIO_Structure;
GPIO_Structure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_1;

// Chọn chân số 8 và chân số 1

GPIO_Structure.GPIO_Mode = GPIO_Mode_Out_PP;

// Chọn chế độ ngõ ra đẩy kéo

GPIO_Structure.GPIO_Speed = GPIO_Speed_50MHz;

// Chọn tốc độ 50 Mhz

GPIO_Init(GPIOA,&GPIO_Structure );

// Cài đặt các cấu hình trên cho PORTA
```

e. Các ví dụ về cách cấu hình GPIO khi không sử dụng thư viện "stm32f10x gpio"

Ví dụ 4.2: Cấu hình chân A8 và chân A1 là ngõ ra đẩy kéo tốc độ 50 Mhz

Chương trình

```
/* Chân A8 được cấu hình bởi GPIOA_CRH

Tốc độ 50 Mhz => MODE8[1:0]=11

Ngõ ra đẩy kéo => CNF8[1:0]=00

CNF8[1:0]MODE8[1:0] = 0011= 3

Chân A1 được cấu hình bởi GPIOA_CRL

Tốc độ 50 Mhz => MODE1[1:0]=11

Ngõ ra đẩy kéo => CNF1[1:0]=00

CNF1[1:0]MODE1[1:0] = 0011= 3 */

GPIOA->CRL = 0x00000003; // Cấu hình cho chân A1

GPIOA->CRH = 0x00000003; // Cấu hình cho chân A8
```

Ví dụ 4.3: Cấu hình tất cả các chân của PORTB là ngõ ra đẩy kéo tốc độ 50 Mhz

Chương trình

```
GPIOB->CRL = 0x333333333;
GPIOB->CRH = 0x333333333;
```

Ví dụ 4.4: Cấu hình tất cả các chân PORTB là ngõ vào thả nổi.

Chương trình

```
GPIOB->CRL = 0x44444444;
GPIOB->CRH = 0x44444444;
```

Chú ý: Ví dụ 4.3 và 4.4 được sử dụng rất nhiều trong lập trình để chuyển nhanh một PORT từ ngõ ra thành ngõ vào và ngược lại để tránh viết lệnh dài như thư viện "stm32f10x_gpio"

4.3.2 Hai thanh ghi 32 bit GPIOx_IDR và GPIOx_ODR

a. GPIOx_IDR (General Purpose I/O Input Data Register)

(Địa chỉ **0x08h**, giá trị mặc định sau khi reset **0x0000 XXXXh**)

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							R	Reserv	ed							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Hình 4.4 Thanh ghi GPIOx_IDR

Thanh ghi GPIOx_IDR chứa trạng thái logic đọc về từ các chân của PORTx.

b. GPIOx_ODR (General Purpose I/O Output Data Register)

(Địa chỉ **0x0Ch**, giá trị mặc định sau khi reset **0x0000 0000h**)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						F	Reserv	ed							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0DR15	0DR14	0DR13	0DR12	0DR11	0DR10	0DR9	0DR8	0DR7	0DR6	0DR5	0DR4	0DR3	0DR2	0DR1	0DR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Hình 4.5 Thanh ghi GPIOx_IDR

Thanh ghi GPIOx_ODR chứa trạng thái logic xuất ra các chân của PORTx.

c. Các lệnh thường dùng liên quan đến GPIOx_IDR và GPIOx_ODR

Bảng 4.3 Các lênh trong thư viên "stm32f10x gpio" dùng để truy xuất PORT

SỬ DỤNG THƯ VIỆN "stm32f10x_gpio"											
Lệnh											
Thông số hay dùng Giải thích											
	short A;										
A=GPIO_ReadInputData(B);											
A=GPIO_ReadInputData(B); (Lệnh đọc trạng thái logic 16 chân của 1 PORT rổi lưu vào biến A)											

B:	B: PORT cần đọc dữ liệu									
GPIOA	Đọc PORTA									
GPIOB	Đọc PORTB									
GPIOG	Đọc PORTG									
	A: Biến 16 bit để lưu trạng thái logic 16									
	chân của PORT được đọc.									
GPIO_Write(A, B);										
(Lệnh xuất dữ liệu	ra 16 chân của PORT)									
A:	A: PORT cần xuất dữ liệu									
GPIOA	Xuất ra PORTA									
GPIOB	Xuất ra PORTB									
GPIOG	Xuất ra PORTG									
	B: Số nguyên 16 bit ứng với trạng thái 16									
	chân của PORT cần xuất.									

Bảng 4.4 Các lệnh dùng để truy xuất PORT khi không dùng thư viện "stm32f10x gpio"

Dang 4.4 C	KHÔNG SỬ DỤNG THƯ VIỆN "stm32f10x_gpio"												
	Lģ	nh											
	Thông số hay dùng	Giải thích											
	<u>e</u>	short A;											
(Lệnh đọc trạng thái logic 16 chân của 1 PORT rồi lưu vào biến A)													
P: GPIOA GPIOB GPIOG		P: PORT cần đọc dữ liệu Đọc PORTA Đọc PORTB Đọc PORTG A: Biến 16 bit để lưu trạng thái logic 16 chân của PORT được đọc.											
	P->Ol	DR =A											
	(Lệnh xuất dữ liệu r	a 16 chân của PORT)											
P: GPIOA GPIOB		P: PORT cần xuất dữ liệu Xuất ra PORTA Xuất ra PORTB											
 GPIOG		 Xuất ra PORTG A: Số nguyên 16 bit ứng với trạng thái 16 chân của PORT cần xuất.											

d. Các ví dụ về truy xuất dữ liệu qua PORT khi không dùng thư viện" stm32f10x_gpio"

Ví dụ 4.4: Viết chương trình đọc dữ liệu về từ **PORTD** theo 2 cách là sử dụng thư viện" stm32f10x_gpio" và không sử dụng thư viện.

Chương trình

unsigned short A;

// Khai báo biến A kiểu số nguyên 16 bit để lưu giá trị đọc về

```
//Dùng thư viện của ST :
A=GPIO_ReadInputData(GPIOD);
//Không dùng thư viện của ST:
A= GPIOD->IDR
```

Ví dụ 4.5: Viết chương trình điều khiển 8 chân từ 0-7 của **PORTC** ở mức '1' và 8 chân còn lại mức '0' theo 2 cách là sử dụng thư viện" stm32f10x_gpio" và không sử dụng thư viện.

Chương trình

```
unsigned short A;
// Khai báo biến A kiểu số nguyên 16 bit để lưu giá trị đọc về
//Dùng thư viện của ST :
GPIO_Write(GPIOC, 0x00FF);
// 0x00FFH = 0000 0000 1111 1111B
//Không dùng thư viện của ST:
GPIOC->ODR =0x00FF;
```

4.3.3 Hai thanh ghi GPIOx_BSRR và GPIOx_BRR

a. GPIOx_BSRR (General Purpose I/O Bit Set Reset Register)

(Địa chỉ **0x10h**, giá trị mặc định sau khi reset **0x0000 0000h**)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Hình 4.6 Thanh ghi GPIOx_BSRR

Thanh ghi GPIOx_BSRR được dùng để xuất mức '1'(điều khiển các bit từ 0 đến 15) hoặc xuất mức "0-reset" (điều khiển các bit từ 16 đến 31) ra các chân của PORTx.

Ví dụ điều khiển chân số 2 và chân số 5 của PORTx xuất mức '1', chân số 0 và chân số 12 của PORTx xuất mức '0'. Ta phân tích yêu cầu như sau:

Do yêu cầu chân số 2 và chân số 5 xuất mức '1'nên tại vị trí bit số 2 (ứng với BS2 – set chân 2) và bit số 5 (ứng với BS5 – set chân 5) của thanh ghi GPIOx_BSRR ta điền số 1, mặt khác chân số 0 và chân 12 xuất mức '0'nên tại vị trí bit số 16 (ứng với BR0 – reset chân 0) và bit thứ 28 (ứng với BR12 – reset chân 12) ta cũng điền số 1(số 1 là cho phép chứ không phải là mức '1'). Các vị trí còn lại ta điền số 0.

b. GPIOx_BRR (General Purpose I/O Bit Reset Register)

(Địa chỉ 0x14h, giá trị mặc định sau khi reset 0x0000 0000h)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						R	eserv	ed							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
W	W	W	W	W	W	W	W	W	W	W	W	W	W	W	W

Hình 4.7 Thanh ghi GPIOx_BRR

Thanh ghi GPIOx_BRR được dùng để xuất mức '0' ra các chân của PORTx . Trong lập trình để xuất mức '0' người ta thường hay dùng thanh ghi này ít dùng thanh ghi GPIOx_BSRR. Cách sử dụng thanh ghi GPIOx_BRR cũng tương tự như GPIOx_BSRR.

c. Các lệnh thường dùng liên quan đến GPIOx_BRR và GPIOx_BSRR Bảng 4.5 Các lệnh trong thư viện" stm32f10x_gpio"dùng để truy xuất từng chân của PORT

Lệnh	SỬ DỤNG THƯ VIỆN "stm32f10x_gpio" SỬ DỤNG THƯ VIỆN "stm32f10x_gpio"			
GPIO_SetBits(A, B); (Lệnh xuất mức '1' ra 1 chân vi điều khiển) A:				
A: GPIOA	Thông số hay dùng Giải thích			
A: A: PORT cần xuất GPIOA Xuất ra PORTA GPIOG Xuất ra PORTG B: B: Chân cần xuất GPIO_Pin_0 Chân số 15 PIO_Pin_15 Chân số 15 PIO_Pin_All Tát cả các chân của PORT GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất Xuất ra PORTA GPIOA Xuất ra PORTG B: B: Chân cần xuất GPIO_Pin_0 GPIO_Pin_15 Chân số 15 GPIO_Pin_All Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất				
GPIOA Xuất ra PORTA GPIOG B: B: Chân cần xuất GPIO_Pin_0 Chân số 0 Chân số 15 PIO_Pin_15 Tất cả các chân của PORT GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất GPIOA Xuất ra PORTA GPIO_BIO B: B: Chân cần xuất GPIO_Pin_0 Chân số 0 Chân số 15 GPIO_Pin_15 Chân số 15 GPIO_Pin_All Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất	(Lệnh xuất mức '1			
GPIOG B: GPIO_Pin_0 GPIO_Pin_15 PIO_Pin_All GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: GPIO_B: GPIO_B: GPIO_CE CHân số 15 A: GPIOA GPIOG B: GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
GPIOG B: GPIO_Pin_0 GPIO_Pin_15 PIO_Pin_All GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: GPIOG B: GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: GPIOG B: GPIOG B: GPIOG B: GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất	GPIOA	Xuât ra PORTA		
B: GPIO_Pin_0 Chân số 0 GPIO_Pin_15 Chân số 15 PIO_Pin_All Tất cả các chân của PORT GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất GPIOA Xuất ra PORTA GPIOG Xuất ra PORTG B: B: Chân cần xuất GPIO_Pin_0 Chân số 0 GPIO_Pin_15 Chân số 15 GPIO_Pin_All Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất		 Vuết an DODTC		
GPIO_Pin_0 Chân số 0 GPIO_Pin_15 Chân số 15 PIO_Pin_All Tất cả các chân của PORT GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: PORT cần xuất Xuất ra PORTA GPIOG Xuất ra PORTG B: Chân cần xuất GPIO_Pin_0 Chân số 0 GPIO_Pin_15 Chân số 15 GPIO_Pin_All Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất				
GPIO_Pin_15 Chân số 15 PIO_Pin_All Tất cả các chân của PORT GPIO_ResetBits(A, B);		!		
PIO_Pin_All GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất GPIOA GPIOG B: Xuất ra PORTG B: Chân cần xuất GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All Chân số 15 GPIO_Pin_All Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất A: PORT cần xuất		Chan so o		
PIO_Pin_All GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất Xuất ra PORTA GPIOG B: Xuất ra PORTG B: Chân cần xuất Chân số 0 GPIO_Pin_0 GPIO_Pin_15 Chân số 15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất A: PORT cần xuất	GPIO Pin 15	 Chân số 15		
GPIO_ResetBits(A, B); (Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất Xuất ra PORTA GPIOG B: B: Chân cần xuất GPIO_Pin_0 GPIO_Pin_15 Chân số 15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
(Lệnh xuất mức '0' ra 1 chân vi điều khiển) A: A: PORT cần xuất Xuất ra PORTA GPIOG B: Xuất ra PORTG B: Chân cần xuất CPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
GPIOA GPIOG B: GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: Xuất ra PORTA Xuất ra PORTG Bit Action Số 15 Chân số 0 Chân số 15 Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
GPIOG B: GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All Chân số 15 Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất	A:	A: PORT cần xuất		
GPIOG B: GPIO_Pin_0 GPIO_Pin_15 GPIO_Pin_All Chân số 15 Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất	GPIOA	Xuất ra PORTA		
B: Chân cần xuất Chân số 0 GPIO_Pin_15 GPIO_Pin_All Chân số 15 Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất		 Xuất ra PORTG		
GPIO_Pin_15 GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
GPIO_Pin_15 GPIO_Pin_All Chân số 15 Tất cả các chân của PORT BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất	GPIO_Pin_0	Chân số 0		
GPIO_Pin_All BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất				
BitAction C; GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: A: PORT cần xuất	— —	· -		
GPIO_WriteBit(A, B, C); (Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất				
(Lệnh xuất mức logic của biến C ra 1 chân vi điều khiển) A: PORT cần xuất				
A: PORT cần xuất	•			
ļ ,	——————————————————————————————————————			
Audit to t OKTA				
l				
GPIOG Xuất ra PORTG	GPIOG	Xuất ra PORTG		
B: Chân cần xuất		!		
GPIO_Pin_0 Chân số 0	GPIO_Pin_0	Chân số 0		
	 GPIO Pin 15	 Chân số 15		
GPIO_Pin_All Tất cả các chân của PORT				
C: C: Mức logic cần xuất	— —			
Bit_RESET Mức '0'				
Bit_SET Mức '1'	-	Mức '1'		

Bảng 4.6 Các lênh dùng để truy xuất từng chân của PORT mà không dùng thư viên GPIO

	wo cae igini dang de tray kaat tang chan caa i oiti ina knong dang tha vigi ci i
	KHÔNG SỬ DỤNG THƯ VIỆN "stm32f10x_gpio"
	Lệnh

Thông số hay dùng	Giải thích	
	RR =A ; '0' ra chân vi điều khiển)	
P: GPIOA	P: PORT cần xuất Xuất ra PORTA	
Yuất ra PORTG A: Chân cần xuất Ví dụ: chân số 5 và 10 của PORTC là mức '1' A = 0000 0100 0010 0000B A = 0x00000420 ⇒ GPIOC->BSRR =0x00000420;		
P->BRR =A; (Lệnh xuất mức '0' ra chân vi điều khiển)		
P: GPIOA GPIOG A: [0-65535]	P: PORT cần xuất Xuất ra PORTA Xuất ra PORTG A: Chân cần xuất Ví dụ: chân số 5 và 10 của PORTC là mức '0' A = 0000 0100 0010 0000B = 0x0420 GPIOC->BRR =0x0420;	

d. Các ví dụ liên quan đến GPIOx_BRR và GPIOx_BSRR

Ví dụ 4.6: Viết chương trình xuất mức '1' ra chân số 5 và chân số 10 PORTD theo 2 cách là sử dụng thư viện" stm32f10x_gpio" và không sử dụng thư viện.

Chương trình

```
//Dùng thư viện của ST :
GPIO_SetBits(GPIOD, GPIO_Pin_5| GPIO_Pin_10);
//Không dùng thư viện ST :
GPIOD-> BSRR = 0x0420 ;
```

Ví dụ 4.7: Viết chương trình xuất mức '0' ra chân số 5 và chân số 10 PORTD theo 2 cách là sử dụng thư viện" stm32f10x_gpio" và không sử dụng thư viện.

Chương trình

```
//Dùng thư viện của ST :
GPIO_ResetBits(GPIOD, GPIO_Pin_5| GPIO_Pin_10);
//Không dùng thư viện ST :
GPIOD-> BRR = 0x0420 ;
//Sử dụng kết hợp cả thư viện cả trực tiếp:
GPIOC->BRR = GPIO_Pin_5|GPIO_Pin_10;
```

4.3.4 Thanh ghi GPIOx_LCKR(General Purpose I/O LoCK Register)

(Địa chỉ **0x18h**, giá trị mặc định sau khi reset **0x0000 0000h**)

Thanh ghi GPIOx_LCKR dùng để khóa cấu hình các chân của PORTx (đóng băng 4 bit cấu hình tương ứng của thanh ghi GPIOx_CRL và GPIOx_CRH) cho đến khi MCU bị reset. Bit

số 16 của thanh ghi GPIOx_LCKR điều khiển việc cho phép hoặc không cho phép khóa cấu hình. Các bit từ 0 đến 15 điều khiển việc cho phép hoặc không cho phép khóa cấu hình tương ứng với các chân từ 0 đến 16 của PORTX.

4.4 CHỨC NĂNG THAY THẾ VÀ THAY ĐỔI VỊ TRÍ CÁC ƯƠ

(Alternate function and remap I/O)

Do mỗi chân vi điều khiển có nhiều chức năng nên khi muốn sử dụng chức năng khác với mặc định thì ta phải cấu hình cho chân đó là chức năng thay thế(Alternate Function) hoặc Analog.

Khi được thiết lập là là chức năng thay thế, các chân này được gọi là AFIO(Alternate Function I/O). Để các AFIO có thể hoạt động được ta cần phải cấp xung clock bằng lệnh sau:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);

Để tiện cho thiết kế phần cứng nhà thiết kế cho phép ta có thể thay đổi vị trí các ngõ vào ra của ngoại vi trong một phạm vi nhất định, thao tác này gọi là "**Remap**".

4.4.1 Sử dụng các chân đặc biệt làm GPIO.

a. Sử dụng hai chân OSC32_IN(PC14)/OSC32_OUT(PC15)

(Hai chân này được dùng để nối thạch anh ngoài 32.768 Khz cho LSE)

Hai chân OSC32_IN và OSC32_OUT có thể được dùng như là các chân GPIO thông thường nếu ta tắt LSE. Khi bật LSE thì hai chân này trở thành chân để kết nối thạch anh 32.768 Khz.

b.Sử dụng hai chân OSC_IN(PD0)/OSC_OUT(PD1)

(Hai chân này được dùng để kết nối thạch anh ngoài – thường chọn 8 Mhz- cho HSE)

Việc tận dụng hai chân OSC_IN(PD0)/OSC_OUT(PD1) làm GPIO chỉ có thể thực hiện được trên các dòng ARM ít chân (36, 48, 64 chân) còn các dòng nhiều chân hơn thì hai chân PD0 và PD1 nằm tách biệt so với OSC_IN và OSC_OUT nên không cần remap.

Chú ý: Khi remap hai chân OSC_IN và OSC_OUT thành GPIO thì chúng không có khả năng tạo ngắt ngoài như các GPIO khác.

Đối với các dòng ARM ít chân hai chân PD0 và PD1 mặc định là ngõ kết nối thạch anh để remap chúng thành GPIO ta dùng lệnh sau:

GPIO PinRemapConfig(GPIO Remap PD01, ENABLE);

c. Sử dụng các chân JTDI(PA15), JTDO(PB3) và JNTRST(PB4)

(Các chân này kết nối với mạch nạp JTAG để nạp và debug chương trình)

Mặc định các chân này được dùng làm chân để nạp chương trình và debug qua cổng JTAG nhưng nếu như ta nạp và debug theo chuẩn SWD(Serial Wire Debug) thì ta có thể tận dụng các chân này làm GPIO bằng lệnh sau:

GPIO PinRemapConfig(GPIO Remap SWJ JTAGDisable, ENABLE);

Chú ý: Sau khi remap các chân này thành GPIO thì khi nạp chương trình ta cần phải chuyển chế độ nạp sang SWD vì lúc này chuẩn JTAG không còn nạp được nữa.

4.4.2 Remap các ngoại vi thông dụng

a. CAN1

TÊN	VỊ TRÍ MẶC	REMAP: GPIO_PinRemapConfig(A, ENABLE);	
CHÂN	ÐĮNH	A=GPIO_Remap1_CAN1	$A = GPIO_Remap2_CAN1$
CAN_RX	PA11	PB8	PD0
CAN_TX	PA12	PB9	PD1

Chú ý: Dòng ARM 36 chân không **Remap1_CAN1** được. Chỉ có dòng ARM 100 chân và 144 chân mới có **Remap2_CAN1** khi mà các chân PD0 và PD1 không dùng để kết nối thạch anh.

b. Timer 5

TÊN	VỊ TRÍ MẶC	REMAP: GPIO_PinRemapConfig(A, ENABLE);
CHÂN	ÐĮNH	A= GPIO_Remap_TIM5CH4_LSI
TIM5_CH4	A3	TIM5_CH4 nối với LSI 40 Khz

Chú ý: Remap_TIM5CH4_LSI chỉ hỗ trợ dòng high-density

c. Timer 4

TÊN	VỊ TRÍ MẶC	REMAP: GPIO_PinRemapConfig(A, ENABLE);	
CHÂN	ÐỊNH	A= GPIO_Remap_TIM4	
TIM4_CH1	PB6	PD12	
TIM4_CH2	PB7	PD13	
TIM4_CH3	PB8	PD13	
TIM4_CH4	PB9	PD13	

Chú ý: Chỉ những dòng ARM 100,144 chân mới hỗ trợ Remap_TIM4

d. Timer 3

TÊN	VI TRÍ REMAP: GPIO_PinRemapConfig(A, ENABLE);		Config(A, ENABLE);
CHÂN	MẶC ĐỊNH	A =GPIO_PartialRemap_TIM3	A = GPIO_FullRemap_TIM3
TIM3_CH1	PA6 PB4		PC6
TIM3_CH2	PA7 PB5		PC7
TIM3_CH3	PB0		PC8
TIM3_CH4	PB1		PC9

Chú ý: Chỉ những dòng ARM 64 chân trở lên mới hỗ trợ FullRemap_TIM3

e. Timer 2

· 1 1111101 2					
TÊN	VỊ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);			
CHÂN	MĂC ĐỊNH	A= GPIO_PartialRemap1_TIM2	A= GPIO_PartialRemap2_TIM2	A= GPIO_FullRemap _TIM2	
TIM2_CH1	PA0 PA15		PA0	PA15	
TIM2_CH2	PA1 PB3		PA1	PB3	
TIM2_CH3	PA2		PB1	0	
TIM2_CH4	PA3		PB1	1	

Chú ý: Dòng ARM 36 chân không Remap này.

TIM2_CH1 và TIM2_ETR dùng chung một chân nên không thể sài cả hai cùng lúc.

f. Timer 1

TÊN CHÂN	VỊ TRÍ REMAP: GPIO_PinRemap		Config(A, ENABLE);
IEN CHAN	MẶC ĐỊNH	A=GPIO_PartialRemap_TIM1	A =GPIO_FullRemap_TIM1
TIM1_ETR	PA12		PE7
TIM1_CH1	PA8		PE9
TIM1_CH2	PA9		PE11
TIM1_CH3	PA10		PE13
TIM1_CH4	PA11		PE14
TIM1_BKIN	PB12	PA6	PE15
TIM1_CH1N	PB13	PA7	PE8
TIM1_CH2N	PB14	PB0	PE10
TIM1_CH3N	PB15	PB1	PE12

Chú ý: Dòng ARM 36 chân không hỗ trợ remap này.

Chỉ dòng ARM 100, 144 chân mới hỗ trợ FullRemap_TIM1

g. USART3

	VỊ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);	
TÊN CHÂN	MĂC	A =	A =
	ÐỊNH	GPIO_PartialRemap_USART3	GPIO_FullRemap_USART3
USART3_TX	PB10 PC10		PD8
USART3_RX	PB11 PC11		PD9
USART3_CK	PB12 PC12		PD10
USART3_CTS	PB13		PD11
USART3_RTS	PB14		PD12

Chú ý: Remap này chỉ hỗ trợ ARM từ 64 chân trở lên.

FullRemap_USART3 chỉ hỗ trợ ARM 100, 144 chân.

h. USART2

TÊN CHÂN	VỊ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);
IEN CHAN	MĂC ĐỊNH	A= GPIO_Remap_USART2
USART2_CTS	PA0	PD3
USART2_RTS	PA1	PD4
USART2_TX	PA2	PD5
USART2_RX	PA3	PD6
USART2_CK	PA4	PD7

Chú ý: Chỉ những dòng ARM 100, 144 chân mới hỗ trợ Remap_USART2

i. USART1

TÊN CHÂN	VĮ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);	
IEN CHAN	MĂC ĐỊNH	A= GPIO_Remap_USART1	
USART1_TX	PA9	PB6	
USART1_RX	PA10	PB7	

i. I2C 1

J. 12 & 1				
Т	TÊN CHÂN	VỊ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);	
1		MĂC ĐỊNH	A= GPIO_Remap_I2C1	
	I2C1_SCL	PB6	PB8	
	I2C1_SDA	PB7	PB9	

Chú ý: ARM 36 chân không hỗ trợ Remap này

k. SPI 1

TÊN CHÂN	VỊ TRÍ	REMAP: GPIO_PinRemapConfig(A, ENABLE);
IEN CHAN	MĂC ĐỊNH	A= GPIO_Remap_SPI1
SPI1_NSS	PA4	PA15
SPI1_SCK	PA5	PB3
SPI1_MISO	PA6	PB4
SPI1_MOSI	PA7	PB5

4.5 Các ví dụ về GPIO và AFIO

4.5.1 Ví dụ xuất dữ liệu ra 1 chân GPIO

Ví dụ 4.8: Viết chương trình điều khiển LED đơn kết nối với chân D9 nhấp nháy.

Chương trình

```
#include<stm32f10x.h>
void delay(unsigned long t) {while(t--);}
     // Chương trình con delay
void CauHinhChanLED()
     // Chương trình con cấu hình chân D9 điều khiển LED là
    ngõ ra đẩy kéo tốc độ 50Mhz
     GPIO InitTypeDef
                         GPIO Structure;
     RCC APB2PeriphClockCmd(RCC APB2Periph GPIOD, ENABLE);
     // Vì chân D9 thuộc PORTD nên cần phải cho phép cấp
     // xung PORTD ( lý thuyết bài RCC)
     GPIO Structure.GPIO Pin
                               = GPIO Pin 9;
                                 = GPIO Mode Out PP;
     GPIO Structure.GPIO Mode
     GPIO Structure.GPIO Speed = GPIO Speed 50MHz;
     GPIO Init(GPIOD,&GPIO_Structure );
}
int main(void)
{
    SystemInit();
   // Cấu hình xung Clock
    CauHinhChanLED();
    while (1)
         GPIO SetBits(GPIOD, GPIO Pin 9); // Chân D9 = 1
         delay(1000000);
         GPIO ResetBits(GPIOD,GPIO Pin 9); // Chân D9 = 0
         delay(1000000);
        }
```

Chú ý: Do trong chương trình có sử dụng các hàm của thư viện "stm32f10x_gpio.c" và "stm32f10x_rcc.c" nên ta cần thêm hai thư viện này vào Project.

4.5.2 Ví du xuất, nhập dữ liệu qua chân GPIO

Ví dụ 4.9: Viết chương trình điều khiển LED đơn kết nối với chân D9 sáng hoặc tắt nhờ hai nút nhấn ON và OFF. Biết nút ON được nối với chân C13 và nút OFF nối với chân A8.

Chương trình

```
#include<stm32f10x.h>
void delay(unsigned long t) {while(t--);}
void CauHinh Button LED()
     GPIO InitTypeDef
                          GPIO Structure;
{
     RCC APB2PeriphClockCmd(RCC APB2Periph GPIOD
                           |RCC APB2Periph GPIOA
                           |RCC APB2Periph GPIOC, ENABLE);
     // Các chân điều khiển nằm ở 3 PORT A,C,D nên cho phép
     //cấp xung cả 3 PORT này
     GPIO Structure.GPIO Pin
                               = GPIO Pin 9;
     GPIO Structure.GPIO Mode = GPIO Mode Out PP;
     GPIO Structure.GPIO Speed = GPIO Speed 50MHz;
     GPIO Init(GPIOD, &GPIO Structure );
     // Chân D9 là ngõ ra đẩy kéo tốc độ 50Mhz
     GPIO Structure.GPIO Pin = GPIO Pin 8;
     GPIO Structure.GPIO Mode = GPIO Mode IPU;
     GPIO Init(GPIOA, &GPIO Structure );
     // Chân A8 là ngõ vào kéo lên
     GPIO Structure.GPIO Pin = GPIO Pin 13;
     GPIO Init(GPIOC, &GPIO Structure );
     // Chân C13 là ngõ vào kéo lên
int main(void)
    SystemInit();
                             // Cấu hình xung clock
    CauHinh Button LED();
    while (1)
            if( (GPIO ReadInputData(GPIOA) &GPIO Pin 8) ==0)
                 GPIO ResetBits(GPIOD,GPIO Pin 9);
            if( (GPIO ReadInputData(GPIOC) &GPIO Pin 13) ==0)
                 GPIO SetBits(GPIOD,GPIO Pin 9);
          }
```

Chú ý:

Để cấu hình 3 chân A8, C13 và D9 ta không nên tách ra làm 3 chương trình con riêng biệt vì nếu vậy chương trình sẽ rất dài. Trong chương trình trên ta đã gom chúng lại thành 1 chương trình duy nhất tên là "CauHinh_Button_LED()" và nhờ thao tác này mà chương trình sẽ gọn đi rất nhiều do kế thừa được các khai báo trước đó. Ví dụ quan sát chương trình con "CauHinh_Button_LED()" ta thấy việc cấu hình cho chân C13 thiếu lệnh chọn chế độ do trước đó khi cấu hình chân A8 ta đã chọn rồi. Vậy khi cấu hình GPIO ta thấy cái gì thay đổi thì ta cấu hình lại còn không thay đổi thì bỏ qua.

Giải thích chương trình:

Để kiểm tra có nhấn nút hay không ta dùng lệnh:

```
if((GPIO_ReadInputData(GPIOA) &GPIO_Pin_8) ==0)
```

CHƯƠNG 4: GPIO VÀ AFIO

Lệnh trên có nghĩa là đọc PORTA về rồi "AND" với GPIO_Pin_8 để xóa hết trạng thái các chân khác chỉ để lại chân A8 nếu có nhấn nút thì chân A8 = '0' làm cho điều kiện lệnh if đúng (true) và lúc này ta mở LED bằng lệnh:

```
GPIO ResetBits(GPIOD,GPIO Pin 9);
```

Tương tự ta kiểm tra chân C13 nếu phát hiện có nhấn nút thì tắt LED bằng lệnh:

```
GPIO_SetBits(GPIOD,GPIO_Pin_9);
```

4.5.3 Ví dụ về remap

Ví dụ 4.10: Một board ARM STM32F103VET6 thi công sẵn sử dụng hết các chân để giao tiếp với các thiết bị bên ngoài chỉ còn dư lại các chân từ B0 đến B7 đưa ra một hàng Pin. Vậy làm cách nào để sử dụng board này giao tiếp với Module Sim900 qua chuẩn UART biết các chân từ B0 đến B7 mặc định không phải là chân của UART nào hết?

a. Giải pháp

Khi thiết kế cũng như khi sử dụng board sẵn có nếu gặp khó khăn về việc sử dụng đụng chân đã sài rồi thì ta nên nghĩ tới việc "remap".

Trong trường hợp này Module Sim đang cần được giao tiếp qua UART nên ta kiếm trong bảng remap UART xem có UART nào sau khi remap có chân nằm trong phạm vi từ B0 đến B7 không?

⇒ Nhận thấy UART1 sau khi remap có chân TX là B6 và RX là B7 thỏa mãn yêu cầu. Vậy ta sẽ sử dụng UART1 remap để giao tiếp với Module Sim900. Sau đây là đoạn chương trình con hướng dẫn cách remap và cấu hình chân cho UART1.

b. Chương trình

```
void CauhinhchanUART1 Remap()
  {
   GPIO InitTypeDef
                         GPIO InitStructure;
   RCC APB2PeriphClockCmd(RCC APB2Periph GPIOB
                            |RCC APB2Periph AFIO
                            |RCC APB2Periph USART1, ENABLE);
   // Cho phép cấp xung clock cho PORTB, AFIO và UART1
   GPIO InitStructure.GPIO Pin = GPIO Pin 6;
   GPIO InitStructure.GPIO Speed = GPIO Speed 50MHz;
   GPIO InitStructure.GPIO Mode = GPIO Mode AF PP;
   GPIO Init(GPIOB, &GPIO InitStructure);
   //TX chức năng thay thế đẩy kéo, 50M
   GPIO InitStructure.GPIO Pin = GPIO Pin 7;
   GPIO InitStructure.GPIO Mode = GPIO Mode IN FLOATING;
   GPIO Init(GPIOB, &GPIO InitStructure);
   // RX ngõ vào thả nổi
   GPIO PinRemapConfig(GPIO Remap USART1, ENABLE);
   // Remap UART1
 }
```

4.5.4 Ví dụ xuất cách sử dụng kỹ thuật bitband

Ví dụ 4.11: Viết chương trình sử dụng kỹ thuật bitband điều khiển LED đơn kết nối với chân D8 sáng hoặc tắt nhờ nút nhấn ONOFF kết nối với chân A8. Khi LED đang tắt nhấn nút thì LED sáng và ngược lại.

Chương trình

```
#include<stm32f10x.h>
            Bitband(diachi,bitso) *(unsigned long*) \
((diachi&0xF0000000)+0x2000000+((diachi&0xFFFFF)*32)+ bitso*4)
                        Bitband((unsigned long)&GPIOD->ODR,8)
#define
                        Bitband((unsigned long) &GPIOA->IDR, 8)
#define
          BT
// Định nghĩa sử dụng Bitband- xem bài giới thiệu STM32F1
void delay(unsigned long t) {while(t--);}
void CauHinh Button LED()
{
     GPIO InitTypeDef
                          GPIO Structure;
     RCC APB2PeriphClockCmd(RCC APB2Periph GPIOD
                             |RCC APB2Periph GPIOA, ENABLE);
    // Cho phép cấp xung clock cho PortA, D (Xem bài RCC)
     GPIO Structure.GPIO Pin = GPIO Pin 8;
     GPIO Structure.GPIO Mode = GPIO Mode Out PP;
     GPIO Structure.GPIO Speed = GPIO Speed 50MHz;
     GPIO Init(GPIOD, &GPIO Structure );
    // Cấu hình cho chân D8 điều khiến LED
     GPIO Structure.GPIO Mode = GPIO Mode IPU;
     GPIO Init(GPIOA, &GPIO Structure );
    // Cấu hình cho chân A8 giao tiếp với nút nhấn
int main(void)
    SystemInit();
    CauHinh Button LED();
    while(1)
    {
             if(!BT) // Kiểm tra chống đội nút nhấn
                   delay(500000); // delay chống đội
                   if(!BT)
                     {
                      LED=!LED; // Đảo trạng thái led
                      while(!BT);// Chò nhả phím
                     }
             }
      }
```

4.6 CÁC CÂU HỎI GIÚP SINH VIÊN CŨNG CÓ NỘI DUNG CỦA BÀI HỌC

Câu hỏi 1: Một bạn SV khi thiết kế mạch đã sử dụng các chân từ B0 đến B7 của ARM STM32F103VET6 làm 8 đường dữ liệu cho LCD 20x4. Khi viết chương trình bạn SV đó đã cấu hình 8 chân trên như sau:

```
void CauhinhchanLCD()
{
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
    GPIOB->CRL = 0x333333333;
}
Hoi việc cấu hình như vậy có đúng chưa? Nếu sai thì bạn hãy cấu hình lại sao cho đúng.
```

Câu hỏi 2: Tại sao trong **ví dụ 4.10** khi cấu hình GPIO cho chân RX của USART tác giả lại cấu hình chân này là ngõ vào thả nổi mà không cấu hình là chức năng thay thế?

```
void CauhinhchanUART1_Remap()
{
    ...
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
    ...
}
```

Câu hỏi 3: Viết chương trình điều khiển 4 led đơn kết nối với các chân từ D8 đến D11 sáng dần, tắt dần, sáng dịch. Các kiểu sáng này được chọn bởi nút nhấn MODE kết nối với chân A8. Khi nhấn nút MODE sẽ chuyển sang trạng thái kế ngay lập tức. SV hãy thực hiện các yêu cầu trên với điều kiện không dùng thư viện "stm32f10x_gpio" và nút nhấn MODE sử dụng kỹ thuật bitband.

Câu hỏi 4: Trong **ví dụ 4.11** tác giả đã chống đội phím nhấn đơn bằng phương pháp delay và chờ nhả phím điều này giây trì hoãn hệ thống khi người dung nhấn phím lâu. SV hãy làm lại ví dụ trên mà không sử dụng delay cũng như chờ nhả phím.