Concours d'accès à la formation doctorale

Filière : Mathématiques

Épreuve 1 : Analyse et topologie, <u>Durée</u> : 1h30

Exercice 1 (6 points)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définies sur [0,1] par

$$f_n(x) = \frac{2^n x}{1 + 2^n n x^2}.$$

- 1. Étudier la convergence simple de cette suite de fonctions.
- 2. Calculer $I_n = \int_0^1 f_n(t) dt$ et $\lim_{n \to +\infty} I_n$. En déduire que la suite $(f_n)_n$ n'est pas uniformément convergente sur [0,1].
- 3. Donner une démonstration directe du fait que la suite $(f_n)_n$ ne converge pas uniformément sur [0,1].

Exercice 2 (7 points)

Pour tout réel positif x on pose

$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2, \quad g(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$$

- 1. Montrer que f et g sont bien définies et calculer leurs dérivées. On ne cherchera pas à calculer les intégrales qui interviendront.
- 2. Montrer que, pour tout réel positif x, $f(x) + g(x) = \frac{\pi}{4}$.
- 3. Déterminer la limite de g en $+\infty$.
- 4. En déduire la valeur de $\int_{0}^{+\infty} e^{-t^2} dt$.

Exercice 3 (7 points)

On considère (E,d) tel que $E=C([0,\pi],\mathbb{R})$ et

$$d(f,g) = \sqrt{\int_0^{\pi} (f(t) - g(t))^2 dt}.$$

Soit $(f_n)_{n\geqslant 1}$ la suite de E définie par $f_n(x) = \sin(nx)$.

- 1. Montrer que (E, d) est un espace métrique.
- 2. Calculer $d(f_n, 0), n \ge 1$.
- 3. Montrer que la suite $(f_n)_{n\geqslant 1}$ n'admet aucune valeur d'adhérence.
- 4. En déduire que E n'est pas localement compact.

Université Blida 1

Faculté des Sciences, Département de Mathématiques Concours d'accés à la formation doctorale en mathématiques Epreuve de Spécialité (Probabilités et Statistique)

Durée: 02 heures

Exercice 1 (06.5 points) NB: Les deux parties sont indépendantes

Partie A: Soit (X,Y) de loi uniforme sur D(0;R) disque de centre O et de rayon R(R > 0).

- 1. Donner la dens ité de (X, Y).
- 2. Déterminer les clensités marginales de X et Y.
- 3. X et Y sont-elles; indépendantes?

Partie B: Soit f définie par:

$$f(x,y) = \begin{cases} \alpha e^{-(x+y)} & si \ 0 \le x \le y \\ 0 & sinon \end{cases}$$

- 1. Déterminer α pour que f soit la densité d'un vecteur aléatoire (X,Y).
- 2. Détermines les densités marginales
- 3. X et Y son t-elles indépendantes?

Exercice 2 (06.5 points) Soit (X, Y) un vecteur aléatoire de densité

$$f_{(X,Y)}(x,y) = \lambda^2 e^{-\lambda y} \text{ si } 0 \le x \le y \quad (\lambda > 0)$$

Calculer:

- 1. La densité conclitionnelle de Y sachant que (X = x), $(f_{Y|X}(y|x))$.
- 2. La fonction de répartition conditionnelle de Y sachant que X = x ($F_{Y|X}(y|x)$).
- 3. L'espérance conditionnelle de Y sachant que X = x E(Y|X = x).
- 4. La densité de Z = E(Y|X).
- 5. La densité de T = Y X.

Exercice 3 (07 points) Les éléments d'une population possèdent un caractère X qui suit une loi de probabilité dont la densité est

$$f_{a,\theta}(x) = \begin{cases} \theta e^{-\theta(x-a)}, & si \ x \ge a \\ 0, & sinon \end{cases},$$

οù θ et a sont strictement positifs.

- 1. Soit $(X_1, X_2, ..., X_n)$ un n-échantillon de v.a. i.i.d. de même densité $f_{a,\theta}$. On suppose que θ est connu.
 - (a) Déterminer l'estimateur du maximum de vraisemblance \hat{a}_n pour a.
 - (b) \hat{a}_n est-il sans biais, convergent, exhaustif?
- 2. Supposons que a est connu.
 - (a) Proposer un estimateur $\hat{\theta}_n$ de θ par la méthode du maximum de vraisemblance.
 - (b) Chercher la densité de probabilité de la variable $Y = \theta \sum_{i=1}^{n} (X_i a)$, où les X_i sont i.i.d. de même loi que X.
 - (c) $\hat{\theta}_n$ est-il non biaisé? Si non, construire un estimateur sans biais $\hat{\theta}_n^1$ de θ et vérifier s'il est convergent, efficace et exhaustif.