## Московский физико-технический институт (госудраственный университет)

Лабораторная работа по электричеству

Измерение магнитного поля Земли [3.1.3]

Талашкевич Даниил Александрович Группа Б01-009

## Содержание

| 1 | Теоретическое введение      | ] |
|---|-----------------------------|---|
| 2 | Экспериментальная установка | 5 |

**Цель работы:** измерение зависимости сопротивления полупроводниковых образцов различной формы от индукции магнитного поля.

**Используемое оборудование:** электромагнит, милливеберметр или миллитесламетр (на основе датчика Холла), вольтметр, амперметр, миллиамперметр, реостат, образцы монокристаллического антимонида индия (InSb) *n*-типа.

## 1 Теоретическое введение

В работе исследуется эффект зависимости электрического сопротивления от магнитного поля на примере диска Корбино (см. рис.).



Рис. 1: Диск Корбино

При отстутствии магнитного поля, направленного перпендикулярно плоскости диска, по диску течёт ток, определяемый по закону

$$I = \frac{U}{R_0}, \ R_0 = \frac{\ln \frac{r_2}{r_1}}{\sigma_0 2\pi r h}$$
 (1)

Однако при включении магнитного поля индукции B на частицыпереносчики тока начинает действовать сила Лоренца, из-за чего траектория частиц увеличивается в расстоянии, проходимом между двумя точками с фиксированной разницей потенциалов U.

В этом случае проводимость равна

$$\sigma_r = \frac{\sigma_0}{1 + (\mu B)^2} \tag{2}$$

Закон Ома преобразовывается в следующий вид:

$$I = \frac{U}{R}, \ R = R_0(1 + (\mu B)^2) \tag{3}$$

Таким образом, зависимость I(U) поменялась из-за геометрических особенностей диска Корбино. Такой эффект называют геометрическим магнетосопротивлением. В этой работе будут исследоваться зависимость сопротивления диска от магнитного поля, проверяться выше записанные формулы и исследоваться как влияет характер зависимости геометрических форм на зависимость R(B).

## 2 Экспериментальная установка

Для исследование зависимости R(B) используется следующая методика:

- 1. Используется калибровка электромагнита (источника магнитного поля): находится зависимость индукции создаваемого магнитного поля от тока в контуре электродвигателя  $B(I_m)$  (или  $I_m(B)$ ), который регистрируется амперметром  $A_1$ , чтобы в дальнейшем считать величину магнитного поля с помощью тока в контуре  $I_m$ .
- 2. При постоянной силе тока  $I_0$ , которая настривается с помощью сопротивления реостата в контуре с источником питания, меняется величина индукции магнитного поля, тем самым меняется напряжение U, подаваемое на диск Корбино. Исследуется зависимость R(B) через калибровочную кривую и зависимость  $U(I_m)$ .
- 3. Проводится тот же самый опыт с прямоугольной пластинкой с исследованием зависимости её сопротивления R(B).
- 3 Ход работы
- 4 Обработка результатов
- 5 Вывод
- 6 Литература
  - 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д.,



Рис. 2: Схемы экспериментальных установок

Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна - М.: МФТИ, 2007. - 280 с.