Specificarea paralelismului operatiilor elementare

Codificarea minimă a unui set de microinstrucțiuni

Punerea problemei

- În proiectarea unităților de comandă microprogramate, după ce s-a determinat setul de microinstrucțiuni complete ce realizează execuția unui microsubbloc în minimum de paşi prin controlul tuturor operațiilor paralele ce se pot executa în sistem, se pune problema codificării minime a acestui set de microinstrucțiuni.
- Problema optimizării numărului de biți constă în a stabili lungimea cuvântului memoriei de control ce specifică microinstrucțiunile, astfel încât aceasta să fie minimă, având în vedere asigurarea controlului tuturor microoperațiilor paralele specificate de secvența de microinstrucțiuni ce descrie unitatea de comandă.
- Problema generală a optimizării numărului de biți este o problemă din clasa "NP complete". Apartenență la clasa "NP complete" a fost demonstrată de Robertson

μο compatibile μο incompatibile

- Fie
 - ightharpoonup μB(μο)={μο₁, μο₂, ..., μο_[μΒ]} setul de microoperații distincte din cadrul microsubblocului.
 - μPT={μIC₁, μIC₂, ..., μIC_[μPT]} partiția unui microsubbloc în microinstrucțiuni complete şi
- Def. 1
- Două microoperații μo_i şi μo_j sunt compatibile dacă pentru orice k, 1 <= k <= [μPΤ], dacă μο_i∈μIC_k atunci μο_i ∉ μIC_k.
- **■** Def. 2
- Două microoperații $\mu o_i \in \mu B(\mu o)$, $\mu o_j \in \mu B(\mu o)$ sunt **incompatibile** dacă există cel puțin o microinstrucțiune completă μC astfel încât $\mu o_i \in \mu C_k$ și $\mu o_i \in \mu C_k$.

clasă de compatibilitate

- **■** Def. 3
- O clasă de compatibilitate CC(μο) este un set (subset) al mulțimii MB(μο) în care oricare două microoperații sunt compatibile între ele.
- CC(μ0)={μ0 | pt orice μ0_i, μ0_i ∈ CC(μ0) avem μ0_i compatibilă cu μ0_i}
- Def. 4
- O clasă de compatibilitate maximă MCC(µo) este acea clasa de compatibilitate la care nu mai poate fi adăugată nici o microinstrucțiune fără a se pierde compatibilitatea.
- MCC(μ o)={ μ o_j | pt orice μ o_i ∉ MCC(μ o), există μ o_j ∈ MCC(μ o) astfel încât μ o_i ∈ μ IC_k şi μ o_i ∈ μ IC_k}.

În mod analog se definește clasa de incompatibilitate maximă MIC(µo).

Costul de implementare a unei clase de compatibilitate

- Def. 5
- Costul de implementare a unei clase de compatibilitate (măsurat în numărul de biți necesari pentru codificare) este dat de implementarea codificării verticale a microoperațiilor ce compun clasa.
- Cost $CC_i = [log_2(|CC_i|+1)]$ iar costul total de implementare al cuvântului de control

$$Cost CC = \sum_{i=1}^{k} [log_2(|CC_i|+1)]$$

unde k este numărul de clase de compatibilitate.

- Obs
- O clasă de compatibilitate corespunde unui câmp din cadrul microinstrucțiunii.

Estimarea costului minim

- Problema codificării minime presupune două faze distincte:
 - enumerarea tuturor claselor de compatibilitate maximă MCC;
 - determinarea unui subset de MCC care să implementeze costul minim pentru codificare.

Coștul implementării depinde de

- numărul de MCC necesar pentru acoperirea întregului set de microoperații şi
- numărul de microoperații din fiecare clasă de compatibilitate maximă.
- De notat faptul că un cuvânt din memoria de control, adică o microinstrucțiune completă, este un set de clase incompatibile între microoperațiile componente.
- O clasă de compatibilitate specifică cel mult o microoperație din cadrul unui cuvânt al memoriei de control.

Clase de compatibilitate maximă asociate (AMCC)

- Def. 6
- Pentru orice clasă de incompatibilitate IC, clasele de compatibilitate maximă ce conțin un element din IC se numesc clase de compatibilitate maximă asociate (AMCC) asociate clasei de incompatibilitate.
- Prop. 1
- Pentru orice clasă de incompatibilitate maximă MIC reuniunea claselor de compatibilitate maximă asociate acoperă întreg setul de microoperații.
- Justificare
- Fie MIC(μο)={μο₁, ..., μο_{|MIC|}} formată din |MIC| microoperații, unde |MIC| <= |μΒ|. Presupunem contrariul şi anume că reuniunea claselor de compatibilitate maximă asociate nu acoperă întreg setul de microoperații. Fie μο_j una din aceste microoperații presupuse neacoperite cu proprietatea că:

 $\mu o_j \in \mu B(\mu o) \text{ dar } \mu o_j \notin MIC(\mu o) \text{ i $\mu o_j \notin U$ AMCC.}$

O clasa de incompatibilitate maximă MIC nu poate acoperi MB(µo).

- Prop. 2
- Pentru o clasă de incompatibilitate maximă MIC, reuniunea oricăror k clase de compatibilitate, k < |MIC|, nu poate acoperi setul de microoperații μB(μο).

Justificare

- Considerăm MIC(μο)={μο₁, μο₂, ..., μο_{|MIC|}}. | MIC | este limita inferioară pentru numărul de clase de compatibilitate ce satisface acoperirea, deoarece o clasă de compatibilitate poate acoperi un singur element din MIC.
- Rezultă că orice reuniune de k clase de compatibilitate k < | MIC | nu poate acoperi setul de microoperații.</p>

Clasele MCI si MCC

- Clasele de incompatibilitate maximale MCI sunt determinate pe baza grafului de dependență şi a conflictului de resurse şi reprezintă microoperațiile specificate de microinstrucțiunile complete ce descriu microblocul.
- Clasele MCC sunt determinate din matricea de microoperații ce indică incompatibilitatea. Aplicarea operatorului SAU între liniile matricii va specifica microoperațiile ce fac parte din clasa de compatibilitate maximă.
- Calcularea MCC este o binecunoscută problemă în teoria automatelor finite, existând numeroase metode pentru aceasta soluție. AHO arată că problema calculării MCC este o problema "NP complete".

Prop. 3 partiționare în q câmpuri

Dacă un set de microoperații µB(µo) este partiționat în q câmpuri ale unei microinstrucțiuni, costul minim se va realiza atunci când (q-1) câmpuri specifică câte o microoperație (au un singur bit), iar cel de al q-lea câmp codifică restul de |µB(µo)|-q+1 microoperații.

Justificare

- Considerăm o partiție arbitrară a LMI biți în q câmpuri. Fie câmpul cu b_{max} biți, câmpul cu lungimea cea mai mare şi fie un oricare alt câmp care are b_i biți.
- Numărul de microoperații ce poate fi codificat de cele două câmpuri este:
- \sim NMO = (2 bmax 1) + (2 bi 1)
- Facem o modificare în organizarea logică a microinstrucțiunii şi mutăm un bit din câmpul cu b_i biți în câmpul cu b_{max} biți. în acest caz numărul de microoperații ce se pot codifica este:
- $NMO' = (2^{(bmax+1)} 1) + (2^{(bi-1)} 1)$
- NMO'-NMO= $2^{\text{bmax}} 2^{\text{bi}} > = 0$ decarece $b_{\text{max}} > b_i$.
- Deci se pot codifica mai multe operații (microoperații) după modificarea structurii microinstrucțiunii.
- Pepetând procesul de mutare a unui bit dintr-un câmp oarecare în câmpul de lungime maximă, numărul de microoperații ce poate fi codificat crește. Numărul maxim de microoperații ce poate fi codificat rezultă a fi egal cu (q+2^(LMI-q+1)-2). Transformând totul în cost se obtine costul minim:
- Cost = $q-1+[log_2(|\mu B(\mu o)|-q+2)]$ când (q-1) câmpuri specifică fiecare câte o microoperație, iar ultimul câmp $(|\mu B(\mu o)|-q+1)$ microoperații.

Partiționare a setului MB(µo) microoperații în (q+h) câmpuri

Prop. 4

Nu este posibilă o soluție de partiționare a setului MB(µo) microoperații în (q+h) câmpuri astfel încât costul să fie mai mic decât partiția în q câmpuri.

Justificare

Fie

- C =q-1+[$\log_2(|\mu B(\mu o)|-q+2)$] costul minim obținut prin partiția în q câmpuri și
- C = $q+h-1+[log_2(|\mu B(\mu o)|-q-h+2)]$ costul minim obținut prin partiția în q+h câmpuri.
- Deosebim 2 cazuri şi anume:
 - 1) h=1 şi |μB(μο)|-q-1=2^k
 - 2) h #1 sau | μB(μo) | -q+1 # 2^k
- în primul caz:
- $C_q = q-1+k+1=q+k$
- $C_{(q+h)}=q+k$
- ightharpoonup deci $C_q = C_{(q+h)}$
- n al doilea caz, deoarece:
- $\log_2(|\mu B(\mu o)|-q+2)]-[\log_2(|\mu B(\mu o)|-q-h+2)] < h$
- rezultă $C_q < C_{(q+h)}$

Obsservatie

Costul minim pentru codificarea setului de microoperații MB(mO) poate să fie mai mare decât cel dat de propoziția 3 adică:

 $C \ge q-1+[\log_2(|\mu B(mO)|-q+2)]$ când $|MCC|_{max} \le |\mu B(mO)|-q$.

într-adevăr costul minim corespunde când:

(q-1) câmpuri specifică fiecare câte o microoperație;

cel de-al q-lea câmp codifică | µB(mO) | -q+1 microoperații.

Dacă | MCC | max ≤ | µB(mO) | -q, rezultă că | MCC | max < | µB(mO) | -q+1, ceea ce ar face ca în ultimul câmp să nu fie toate microoperațiile compatibile.

În acest caz trebuie renunțat la organizarea microinstrucțiunii în (q-1) câmpuri de 1 bit, dar prin aceasta se mărește și costul de implementare.

Metodă de minimizare a numărului de biți necesari pentru codificarea microinstrucțiunilor complete

1. Se alege clasa de incompatibilitate maximă care are cardinalitatea maximă MIC.

Fie $MIC_m \in MIC$ astfel încât $|MIC_m| >= |MIC_j| < pentru j \# m$, 1 <= j <= |MIC|Se generează clasele de compatibilitate maximă asociate AMCC clasei MIC.

AMCC_m={MCC>= pt orice $\mu o \in MIC_m \exists MCC$ astfel încât $\mu o \in MCC$ }

2. Se formează tabela de acoperire modificată prin considerarea numai a claselor de compatibilitate maximă ce aparțin AMCC.

TAM: AMCC_m x μ B(μ o) --> B

Se caută multimea de clase de compatibilitate maximă esențiale {MCC_e} inclus în AMCC_m astfel încât există MCC_e unic pentru care : $\mu o_i \in MCC_e$ avem TAM (MCC_e, μo_i)=1.

Se elimină coloanele corespunzătoare microoperațiilor ce sunt acoperite de clasele esențiale şi cele corespunzătoare microoperațiilor componente ale clasei MIC_m , obținându-se o **tabelă de acoperire redusă** :

TAR: $AMCC_m \times (\mu B(\mu o) \setminus MIC_m) \setminus \{MCC_e\} --> B$

Cont

3. Se generează setul soluțiilor de acoperire a microoperațiilor {MCC_{ap}} : {µB(µo) \ MIC_m) \ {MCC_e}

Fie SOL={SOL₁, SOL₂, ..SOL_p} soluțiile de acoperire în care

 $SOL_j = \wedge / (\{MCC_e\} \cup \{MCC_{ap}\})$

Se consideră soluția parțială cu cardinalitatea minimă SOLi.

Se generează soluția de acoperire a microoperațiilor ce aparțin clasei MIC_m , încă neacoperite: $\{MCC_{am}\}$.

4. Se generează setul soluțiilor de acoperire completă:

 $SOLC_j = SOL_j \land \{MCC_{am}\}.$

Se calculează costul soluției de acoperire completă cu cardinalitatea minimă.

Exemplu

Considerăm setul de microinstrucțiuni din cadrul microsubblocului :

$$\mu B = \{ \mu o_1, \mu o_2, \mu o_3, \mu o_4, \mu o_5, \mu o_6, \mu o_7, \mu o_8, \mu o_9, \mu o_{10} \}$$

- Presupunem că pe baza dependenței de date şi a conflictului de resurse între microoperații a rezultat următoarea partiție a microsubblocului :
- \blacksquare $\mu | C_1 = \{ \mu o_1, \mu o_2, \mu o_4 \}$
- \blacksquare $\mu | C_2 = \{ \mu o_1, \mu o_3, \mu o_5 \}$
- μIC₃={μο₂, μο₆, μο₈, μο₉}
- \blacksquare $\mu IC_4 = \{\mu o_4, \mu o_5, \mu o_7, \mu o_8\}$
- \blacksquare $\mu C_5 = \{\mu O_3, \mu O_4, \mu O_5, \mu O_6, \mu O_7\}$
- μIC₆={μο₆, μο₉, μο₁₀}
- \blacksquare $\mu IC_7 = {\mu o_7, \mu o_{10}}$

$$\begin{split} &\mu | C_1 = \{\mu o_1, \mu o_2, \mu o_4\} \\ &\mu | C_2 = \{\mu o_1, \mu o_3, \mu o_5\} \\ &\mu | C_3 = \{\mu o_2, \mu o_6, \mu o_8, \mu o_9\} \\ &\mu | C_4 = \{\mu o_4, \mu o_5, \mu o_7, \mu o_8\} \\ &\mu | C_5 = \{\mu o_3, \mu o_4, \mu o_5, \mu o_6, \mu o_7\} \\ &\mu | C_6 = \{\mu o_6, \mu o_9, \mu o_{10}\} \\ &\mu | C_7 = \{\mu o_7, \mu o_{10}\} \end{split}$$

μο\ μο	μo_1	μo_2	μo_3	μo_4	μo_5	μo_6	μo ₇	μο ₈	μo ₉	μο ₁₀
μo_1	X	y	X	X	X					
μo_2		X		X		X		X	X	
μo_3										
μo_4										
μo_5										
μo_6										
μo_7										
μo_8										
μo ₉										
μο ₁₀										

Tabela de incompatibilitate

- \blacksquare $\mu | C_1 = \{ \mu o_1, \mu o_2, \mu o_4 \}$
- \blacksquare $\mu | C_2 = {\mu o_1, \mu o_3, \mu o_5}$
- \blacksquare $\mu | C_3 = {\mu o_2, \mu o_6, \mu o_8, \mu o_9}$
- \blacksquare $\mu | C_4 = \{ \mu o_4, \mu o_5, \mu o_7, \mu o_8 \}$
- \blacksquare $\mu | C_5 = \{ \mu \rho_3, \mu \rho_4, \mu \rho_5, \mu \rho_6, \mu \rho_7 \}$
- μIC₆={μο₆, μο₉, μο₁₀}
- $\mu | Q_7 = \{\mu o_7, \mu o_{10}\}$

μο\ μο	μo_1	μo_2	μo ₃	μo_4	μο ₅	μo ₆	μο ₇	μo ₈	μο ₉	μο ₁₀
μo_1	X	X	X	X	X					
μo_2	X	X		X		X		X	X	
μo_3	X		X	X	X	X	X			
μo_4	X	X	X	X	X	X	X	X		
μo_5	X		X	X	X	X	X	X		
μo_6		X	X	X	X	X	X	X	X	X
μο ₇			X	X	X	X	X	X		X
μo_8		X		X	X	X	X	X	X	
μο ₉		X				X		X	X	X
μo_{10}						X	X		X	X

Clasele maximale de incompatibilitate

- \blacksquare MIC₁={ μo_1 , μo_2 , μo_4 }
- \blacksquare MIC₂={ μo_1 , μo_3 , μo_4 , μo_5 }
- $MIC_3 = \{\mu o_2, \mu o_4, \mu o_6, \mu o_8\}$
- $MIC_4 = \{\mu o_2, \mu o_6, \mu o_8, \mu o_9\}$
 - $MIC_5 = \{\mu o_3, \mu o_4, \mu o_5, \mu o_6, \mu o_7\}$
 - $MIC_6 = \{\mu o_4, \mu o_5, \mu o_6, \mu o_7, \mu o_8\}$
- $MIC_7 = \{\mu o_6, \mu o_7, \mu o_{10}\}$
- $-MIC_8 \neq \{\mu o_6, \mu o_9, \mu o_{10}\}$
- MC_{max} = MIC₅ sau MIC₆

μο\ μο	μo_1	μo_2	μo ₃	μo_4	μο ₅	μo ₆	μο ₇	μo ₈	μο ₉	μο ₁₀
μo_1	X	X	X	X	X					
μo_2	X	X		X		X		X	X	
μo_3	X		X	X	X	X	X			
μo_4	X	X	X	X	X	X	X	X		
μo_5	X		X	X	X	X	X	X		
μo_6		X	X	X	X	X	X	X	X	X
μo_7			X	X	X	X	X	X		X
μo_8		X		X	X	X	X	X	X	
μo ₉		X				X		X	X	X
μo_{10}						X	X		X	X

Clasele maximale de compatibilitate

- \rightarrow MCC₁={ μ o₁, μ o₆}
- $MCC_2 = \{\mu o_1, \mu o_7, \mu o_9\}$
- $MCC_3 = \{\mu o_1, \mu o_8, \mu o_{10}\}$
- $MCC_4 = \{\mu o_2, \mu o_3, \mu o_{10}\}$
- \rightarrow MCC₅={ μo_2 , μo_5 , μo_{10} }
- $MCC_6 = \{\mu o_2, \mu o_7\}$
- $MCC_{f} = \{\mu o_3, \mu o_8, \mu o_{10}\}$
- $MC_8 = \{\mu o_3, \mu o_9\}$
- $MCC_9 = \{\mu O_4, \mu O_9\}$
- MCC₁₀={ μ O₄, μ O₁O}
- $MCC_{11} = \{\mu o_5, \mu o_9\}$

μο\ μο	μo_1	μo_2	μo_3	μo_4	μo_5	μo_6	μo_7	μo_8	μο ₉	μo_{10}
μo_1	X	X	X	X	X					
μo_2	X	X		X		X		X	X	
μo_3	X		X	X	X	X	X			
μo_4	X	X	X	X	X	X	X	X		
μo_5	X		X	X	X	X	X	X		
μo_6		X	X	X	X	X	X	X	X	X
μo_7			X	X	X	X	X	X		X
μo_8		X		X	X	X	X	X	X	
μο ₉		X				X		X	X	X
μο ₁₀						X	X		X	X

Tabela de acoperire a microoperațiilor de către clasele maximale de compatibilitate

- \blacksquare MCC₁={ μ 0₁, μ 0₆}
- $MCC_2 = \{\mu o_1, \mu o_7, \mu o_9\}$
- $MCC_3 = \{\mu o_1, \mu o_8, \mu o_{10}\}$
- $MCC_4 = \{\mu o_2, \mu o_3, \mu o_{10}\}$
- $MCC_5 = \{\mu o_2, \mu o_5, \mu o_{10}\}$
- $MCC_6 = \{\mu O_2, \mu O_7\}$
- $-MCC_7 = \{\mu o_3, \mu o_8, \mu o_{10}\}$
- $-MCC_8 = \{\mu o_3, \mu o_9\}$
- MCC₉={ μo_4 , μo_9 }
- \rightarrow MCC₁₀={ μo_4 , $\mu o_1 0$ }
- $-MCC_{11} = \{\mu o_5, \mu o_9\}$

								1		
MCC\μο	μo_1	μo_2	μo_3	μo_4	μο ₅	μo ₆	μο ₇	μo ₈	μο ₉	μo_{10}
MCC_1	X					X				
MCC_2	X						X		X	
MCC_3	X							X		X
MCC_4		X	X							X
MCC_5		X			X					X
MCC_6		X					X			
MCC ₇			X					X		X
MCC ₈			X						X	
MCC ₉				X					X	
MCC ₁₀				X						X
MCC ₁₁					X				X	

Obs

- Se observă că există două clase maximale de incompatibilitate cu cardinalitate 5 (MIC₅ şi MIC₆).
- Costul minim absolut, conform proprietății 4 este C = 7.
- Să considerăm AMCC₆ clasele maximale de compatibilitate asociate clasei maximale de incompatibilitate MIC₆:
 - $AMCC_6 = \{MCC_1, MCC_2, MCC_3, MCC_5, MCC_6, MCC_7, MCC_9, MCC_{10}, MCC_{11}\}$
- Conform propoziției 1 clasele maximale de compatibilitate din AMCC, acoperă toate microoperațiile microsubblocului.

Tabela de acoperire modificată

	μo_1	μo_2	μo ₃	μo_4	μο ₅	μo ₆	μο ₇	μo ₈	μo ₉	μο ₁₀
MCC ₁	X					X				
MCC ₂	X						X		X	
MCC_3	X							X		X
MCC ₅		X			X					X
MCC ₆		X					X			
MCC ₇			X					X		X
MCC ₉				X					X	
MCC ₁₀				X						X
MCC ₁₁					X				X	

Se observă că MCC₁ și MCC₇ sunt esențiale și vor face parte din soluția finală.

Tabela de acoperire redusă

- Considerăm, conform algoritmului, acoperite microoperațiile:
 - incluse în clasele de compatibilitate maximă MCC₁ şi MCC₇ esentiale şi
 - cele componente ale clasei de incompatibilitate maximă MIC₆.
- Astfel, din tabela de acoperire se elimină microoperațiile
 - ightharpoonup μο₁, μο₆, μο₃, μο₈, μο₁₀, respectiv μο₄, μο₅, μο₇.

MCC \µo	μo_2	μο ₉
MCC ₂		X
MCC ₅	X	
MCC_6	X	
MCC ₉		X
MCC ₁₁		X

Acoperirea microoperațiilor µo2 și µo9

- Se observă că tabela de acoperire s-a redus substanțial.
 Acoperirea microoperațiilor μο₂ şi μο₉ se poate face cu ajutorul următoarelor clase maximale de compatibilitate :
- \longrightarrow MCC₂, MCC₅
- MCC₂, MCC₆
- MCC₅, MCC₉
- MCC₅, MCC₁₁
- MCC₆, MCC₉
- MCC₆, MCC₁₁

MCC \µo	μo_2	μο ₉
MCC ₂		X
MCC ₅	X	
MCC ₆	X	
MCC ₉		X
MCC ₁₁		X

Setul soluțiilor

```
SOL = {SOL₁, SOL₂, SOL₃, SOL₄, SOL₅, SOL₆} astfel:
SOL = {
MCC₁ MCCγ MCC₂ MCC₅;
MCC₁ MCCγ MCC₂ MCC₆;
MCC₁ MCCγ MCC₅ MCCҫ;
MCC₁ MCCγ MCC₅ MCC₁;
MCC₁ MCCγ MCC₆ MCC₁;
```

- Considerând soluția : $MCC_1 MCC_7 MCC_5 MCC_9 \in SOL$, se acoperă toate microoperațiile cu excepția $\mu o_7 \in MIC_6$.
- Pentru acoperirea lui μo_7 se poate lua una din clasele maximale de compatibilitate MCC_2 sau MCC_6 .
- \blacksquare SOLC₃₁={MCC₁, MCC₇, MCC₅, MCC₉, MCC₂}
- \blacksquare SOLC₃₂={MCC₁, MCC₇, MCC₅, MCC₆}

Setul soluțiilor complete

```
\blacksquare SOLC<sub>3</sub> = {SOLC<sub>31</sub>, SOC<sub>32</sub>}
```

unde

- \blacksquare SOLC₃₁={MCC₁, MCC₇, MCC₅, MCC₉, MCC₂}
- \blacksquare SOLC₃₂={MCC₁, MCC₇, MCC₅, MCC₉, MCC₆}

Ambele soluții complete au aceeași cardinalitate ce specifică numărul minim de câmpuri necesar pentru codificarea microinstrucțiunilor ce descriu microsubblocul.

Alegând SOLC31, rezultă următoarea grupare a microoperațiilor:

MC2

MC7

MC5

MC9

MC1

MC1

 $\{ \mu \phi_1 \mu \phi_7 \mu \phi_9 ; \mu \phi_3 \mu \phi_8 \mu \phi_{10} ; \mu \phi_2 \mu \phi_5 ; \mu \phi_4 ; \mu \phi_6 \}$

Microperatiile cuprinse intr-un camp nu mai apar in alte campuri

Sunt mai multe posibilittati

MC2

MC5

MC7

MC9

 $\{\muo_1\muo_7\muo_9; \muo_2\muo_5\muo_{10}; \muo_3\muo_8; \muo_4; \muo_6\}$

ce necesită 8 biți pentru codificare.

- MCC₁={μο₁, μο₆}
 - $MCC_2 = \{\mu o_1, \mu o_7, \mu o_9\}$
- \blacksquare MCC₃={ μ o₁, μ o₈, μ o₁₀}
- \blacksquare MCC₄={ μ O₂, μ O₃, μ O₁₀}
- \blacksquare MCC₅={μο₂, μο₅, μο₁₀}
- $MCC_6 = \{\mu o_2, \mu o_7\}$
- MCC₇={μο₃, μο₈, μο₁₀}
- $MCC_8 = \{\mu o_3, \mu o_9\}$
- MCC₉={μο₄, μο₉}
- \blacksquare MCC₁₀={ μ O₄, μ O₁O}
- $MCC_{11} = \{\mu o_5, \mu o_9\}$

