Advanced Machine Learning

Imbalanced Learning: Cost-Sensitive Learning Part 3

Cost matrix

True class $y = 1 \quad y = -1$ Pred. $\hat{y} = 1$ C(-1, 1) C(-1, -1) class $\hat{y} = -1$

Learning goals

- Instance specific costs
- Cost-Sensitive OVO

BINARY INSTANCE-SPECIFIC COST LEARNING

- Assumes instance-specific costs for every observation: $\mathcal{D}^{(n)} = \{(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})\}_{i=1}^n$, where $(\mathbf{x}^{(i)}, \mathbf{c}^{(i)}) \in \mathbb{R}^p \times \mathbb{R}^2$.
- Define "true class" as cost minimal class
- ullet Define observation weights: $|\mathbf{c}^{(i)}[1] \mathbf{c}^{(i)}[0]|$

	$\mathbf{c}^{(i)}[0]$	$c^{(i)}[1]$	$y^{(i)}$	$w^{(i)}$
$x^{(1)}$	1	1	0	0
$\mathbf{x}^{(2)}$	1	2	0	1
$\mathbf{x}^{(3)}$	7	3	1	4

Now solve weighted ERM:

$$\mathcal{R}_{emp}(oldsymbol{ heta}) = \sum_{i=1}^{n} w^{(i)} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight)$$

• NB: Instances with equal costs are effectively ignored.

MULTICLASS COSTS

• Consider g > 2. Vanilla CSL is special case of instance specific, use $\mathbf{c}^{(i)}$ same for all $\mathbf{x}^{(i)}$ of the same class

		True class			
		<i>y</i> = 1	<i>y</i> = 2	y = 3	
Duad	$\hat{y} = 1$	0	1	3	
Prea.	$\hat{y} = 1$ $\hat{y} = 2$ $\hat{v} = 3$	1	0	1	
ciass	$\hat{y} = 3$	7	1	0	

• For two $\mathbf{x}^{(i)}$ with y = 2 and y = 3:

	$c^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	$y^{(i)}$
${\bf x}^{(1)}$	1	0	1	2
${\bf x}^{(2)}$	3	1	0	3
$\mathbf{x}^{(3)}$	1	0	1	2

• Set $\mathbf{c}^{(i)}[y^{(i)}] = 0$, i.e. zero-cost for correct prediction.

CSOVO LIN ET AL. 2014

 $\bullet \ \text{Let} \ \mathcal{D}^{(n)} = \{(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})\}_{i=1}^n, \, (\mathbf{x}^{(i)}, \mathbf{c}^{(i)}) \in \mathbb{R}^p \times \mathbb{R}^g.$

• Example:

	$\mathbf{c}^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$
${\bf x}^{(1)}$	0	2	3
${\bf x}^{(2)}$	1	0	1
$x^{(3)}$	2	0	3

- Idea: Reduction principle to binary case (weighted fit) by one-versus-one (OVO).
- For class *j* vs. *k*:
 - How to deal with the label $y^{(i)}$? $y^{(i)}$ can be neither j nor k.
 - How to deal with the costs $\mathbf{c}^{(i)}[j]$ and $\mathbf{c}^{(i)}[k]$?

CSOVO

- When training a binary classifier $f^{(j,k)}$ for class j vs. k,
 - Choose cost min class from pair $\arg\min_{I \in \{j,k\}} \mathbf{c}^{(I)}[I]$ as ground truth
 - Sample weight is simply diff between the 2 costs $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|$
- Example continued:

	c ⁽ⁱ⁾ [1]	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [1 vs 2]	$\tilde{y}^{(i)}[1 \text{ vs } 2]$	$w^{(i)}[1 \text{ vs } 2]$
${\bf x}^{(1)}$	0	2	3	0/2	1	2
${\bf x}^{(2)}$	1	0	1	1/0	2	1
${\bf x}^{(3)}$	2	0	3	2/0	2	2
	c ⁽ⁱ⁾ [1]	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [2 vs 3]	$\tilde{y}^{(i)}[2 \text{ vs } 3]$	$w^{(i)}[2 \text{ vs } 3]$
x ⁽¹⁾	c ⁽ⁱ⁾ [1]	c ⁽ⁱ⁾ [2]	c ⁽ⁱ⁾ [3]	c ⁽ⁱ⁾ [2 vs 3]	$\tilde{y}^{(i)}$ [2 vs 3]	w ⁽ⁱ⁾ [2 vs 3] 1
$\mathbf{x}^{(1)}$ $\mathbf{x}^{(2)}$ $\mathbf{x}^{(3)}$						w ⁽ⁱ⁾ [2 vs 3] 1 1

CSOVO

Example continued

	$c^{(i)}[1]$	$\mathbf{c}^{(i)}[2]$	$\mathbf{c}^{(i)}[3]$	c ⁽ⁱ⁾ [1 vs 3]	$\tilde{y}^{(i)}[1 \text{ vs } 3]$	$w^{(i)}[1 \text{ vs } 3]$
${\bf x}^{(1)}$	0	2	3	0/3	1	3
${\bf x}^{(2)}$	1	0	1	-/-	-	0
${\bf x}^{(3)}$	2	0	3	2/3	1	1

- Wrap everything up:
 - For class j vs. k, transform all $(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})$ to $(\mathbf{x}^{(i)}, \arg\min_{l \in \{j,k\}} \mathbf{c}^{(i)}[l])$ with sample-wise weight $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|$.
 - 2 Train a weighted binary classifier $f^{(j,k)}$ using the above
 - **3** Repeat step 1 and 2 for different (j, k).
 - **1** Predict using the votes from all $f^{(j,k)}$.
- Theoretical guarantee: test costs of final classifier $\leq 2 \sum_{i < k}$ test cost of $f^{(i,k)}$.

