Chp. 05 – Network Layer

- 5.1 Aspectos de Projeto da Camada de Rede
- 5.2 Algoritmos de Roteamento
- 5.3 Algoritmos de Controle de Congestionamento
- 5.4 Qualidade de Serviço
- 5.5 Interconexão de Redes ... (GBC066)
- 5.6 Camada de Rede na Arquitetura TCP/IP ... (GBC066)

Luís F. Faina - 2016 Pg. 1/80

Referências Bibliográficas

- Andrew S. Tanenbaum "Computer Networks" Prentice Hall;
 Englewook Cliffs; New Jersey; 1989; 2nd Edition.
- Andrew S. Tanenbaum "Computer Networks" Prentice Hall;
 Englewook Cliffs; New Jersey; 1989; 5th Editon.

- Eleri Cardozo; Maurício Magalhães "Redes de Computadores: Modelo OSI/X.25", Dep.^{to} de Engenharia de Computação e Automação Industrial, FEEC, UNICAMP, 1996.
- Eleri Cardozo; Maurício Magalhães "Redes de Computadores: Arquitetura TCP/IP" - Dep.^{to} de Engenharia de Computação e Automação Industrial, FEEC, UNICAMP, 1994.

Luís F. Faina - 2016 Pg. 2/80

Ch05 - Network Layer

- "camada de rede" ... responsável pela transferência de pacotes (packets) ou datagramas da origem para o destino.
 - ... vários "hops" (saltos) no núcleo da rede (roteadores intermediários) ao longo do caminho entre fonte e destino.
 - "contraste" ... já a camada de enlace tem o objetivo mais modesto de apenas mover quadros de uma extremidade de um fio até a outra.

- ... deve conhecer a topologia da sub-rede de comunicação (comjunto de todos os roteadores) e escolher os caminhos mais apropriados através da sub-rede segundo algum critério;
- ... deve escolher rotas que evitem sobrecarregar linhas de comunicação e roteadores enquanto deixam rotas ociosas.

Luís F. Faina - 2016 Pg. 3/80

... Ch05 - Network Layer

- "objetivos da camada de rede" ...
 - serviços oferecidos à camada de transporte;
 - roteamento de pacotes na sub-rede;
 - controle de congestionamento;
 - conexão de múltiplas sub-redes.
- ...' 3ª e última camada onde o fluxo de informação leva em conta as peculiaridades da sub-rede de comunicação (IMPs no OSI).
- ... maioria das redes a camada de rede roda sobre IMPs e a camada de transporte sobre "hosts" → interface entre estas camadas é a interface entre a sub-rede e os "host".

Luís F. Faina - 2016 Pg. 4/80

5.1.1 - Chaveamento Store-and-Forwarding

- "contexto" ... operam os protocolos a camada de rede.
 - ... contempla como principais elementos do sistema os roteadores e as linhas de transmissão que os conectam (região em cinza).

Luís F. Faina - 2016 Pg. 5/80

5.1 – Aspectos de Projeto (Network Layer) 5.1.1 – Chaveamento Store-and-Forwarding

- … "host" transmite o datagrama para o roteador mais próximo, seja na própria rede local ou sobre um enlace ponto a ponto para a concessionária de comunicações.
- ... pacote é armazenado ali até chegar totalmente, de forma que o total de verificação possa ser conferido;
- ... na sequência, pacote é encaminhado para o próximo roteador ao longo do caminho, até alcançar o "host" de destino;
- ... "host" destino demultiplexa o pacote, extrai o "payload" e entrega à entidade da camada de transporte.

• "mecanismo de comutação" - ... "store-and-forward".

Luís F. Faina - 2016 Pg. 6/80

5.1.2 – Serviços Providos p/ Camada de Transporte

 "serviços à camada de transporte" - ... interface entre a camada de rede e a camada de transporte.

- "objetivos dos serviços da camada de rede" ...
- 1) ... devem ser independentes da tecnologia de roteadores.
- 2) ... camada de transporte deve ser isolada do número, do tipo e da topologia dos roteadores presentes.
- endereços de rede que se tornaram disponíveis para a camada de transporte devem usar um plano de numeração uniforme, mesmo nas LANs e WANs.

Luís F. Faina - 2016 Pg. 7/80

5.1 – Aspectos de Projeto (Network Layer) 5.1.2 – Serviços Providos p/ Camada de Transporte

- ... projetistas da camada de rede têm muita liberdade para escrever especificações detalhadas dos serviços a serem oferecidos à camada de transporte.
- "problema" ... tal liberdade costuma se transformar em uma violenta batalha entre duas facções.

- "discussão" ... camada de rede deve fornecer serviço orientado a conexões ou serviço sem conexões ?
 - "Comunidade da Rede Internet" vs "Companhias Telefônicas"

Luís F. Faina - 2016 Pg. 8/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.2 – Serviços Providos p/ Camada de Transporte

• "Rede da Internet" - ... defende que a tarefa dos roteadores é tãosomente movimentar pacotes, pois a sub-rede é inerentemente pouco confiável, independente de como tenha sido projetada.

 ... hosts devem aceitar o fato de que a rede é pouco confiável e fazerem eles próprios o controle de erros (ou seja, detecção e correção de erros) bem como o controle de fluxo.

Luís F. Faina - 2016 Pg. 9/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.2 – Serviços Providos p/ Camada de Transporte

• "companhias telefônicas" - ... alegam que a sub-rede deve fornecer um serviço orientado a conexões confiável.

- ... afirmam que os 100 anos de experiência bem-sucedida com o sistema telefônico mundial servem como um bom guia.
- ... nesta visão, a qualidade de serviço é o fator dominante e, sem conexões na sub-rede, é muito difícil alcançar qualidade de serviço, e em especial no caso de tráfego de tempo real.

Luís F. Faina - 2016 Pg. 10/80

5.1 – Aspectos de Projeto (Network Layer) 5.1.3 – Serviços Não Orientado a Conexão

- "serviço sem conexão" ... pacotes são injetados individualmente na núcleo da rede de modo independente uns dos outros - não se faz necessária nenhuma configuração antecipada.
 - ... pacotes frequentemente são chamadas datagramas (em uma analogia com os telegramas) e a sub-rede será denominada sub-rede de datagramas.
- "serviço orientado a conexão" ... necessidade de se estabelecer um caminho desde o roteador de origem até o roteador de destino, antes de ser possível enviar quaisquer pacotes de dados.
 - "circuito virtual" ... em analogia com os circuitos físicos do sistema telefônico, e a sub-rede é denominada sub-rede de circuitos vituais.

Luís F. Faina - 2016 Pg. 11/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.3 – Serviços Não Orientado a Conexão

• "rede de datagramas" - ... suponha que o P1 em H1 encaminhe uma longa mensagem para P2 em H2.

Luís F. Faina - 2016 Pg. 12/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.3 – Serviços Não Orientado a Conexão

- P1 entrega a msg. à camada de transporte, com instruções para que ela seja entregue a P2 do "host" H2;
- ... código da camada de transporte em H1, em geral dentro do sistema operacional, acrescenta um cabeçalho à msg. e entrega o resultado à camada de rede.

- "premissa" ... msg. seja 04 vezes mais longa que o tamanho máximo do pacote, então divide-se a msg. em 04 pacotes.
- ... todo roteador consulta uma tabela de roteamento para decidir por onde devem ser enviados os pacotes.

Luís F. Faina - 2016 Pg. 13/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.3 – Serviços Não Orientado a Conexão

 ... com alterações na tabela de rotas, pacotes da mesma msg. podem ser encaminhados por rotas diferentes.

Luís F. Faina - 2016 Pg. 14/80

5.1.4 – Serviços Orientado a Conexão

• "rede de circuitos virtuais" - ... ao estabelecer um circuito, evita-se a necessidade de escolher uma nova rota para cada pacote.

Luís F. Faina - 2016 Pg. 15/80

5.1.4 – Serviços Orientado a Conexão

- ... ao estabelecer uma conexão, escolhe-se uma rota desde o "host" origem até o "host" destino como parte da conexão;
- ... cada pacote transporta um identificador, informando a que circuito virtual ele pertence, o que permite que o roteador ao consultar a tabela de roteamento saiba como encaminhá-lo;
- ... rota é usada por todo o tráfego que flui pela conexão, exatamente como ocorre no sistema telefônico.
- ... quando a conexão é liberada, o circuito virtual é encerrado.

Luís F. Faina - 2016 Pg. 16/80

5.1.4 – Serviços Orientado a Conexão

 H1 estabelece a conexão C1 com o H2, assim o identificador aparece na 1ª entrada de cada uma das tabelas de roteamento.

Luís F. Faina - 2016 Pg. 17/80

5.1.4 – Serviços Orientado a Conexão

 1ª linha de A informa que, se um pacote contendo o identificador de conexão 1 chegar de H1, ele será enviado ao roteador C e receberá o identificador de conexão 1.

Luís F. Faina - 2016

5.1.4 – Serviços Orientado a Conexão

 De modo semelhante, a primeira entrada em C faz o roteamento do pacote para E, também com o identificador de conexão 1.

Luís F. Faina - 2016 Pg. 19/80

5.1.5 – Redes de Circuitos Virtuais vs Datagrama

- "espaço de memória do roteador" ...
- "circuito virtual" permite que os pacotes contenham números de circuitos em vez de endereços de destino completos.
 - ... pacotes tenderem a ser muito pequenos, um endereço de destino completo em cada pacote poderá representar um volume significativo de overhead e, portanto, haverá desperdício de largura de banda.
 - ... preço pago pelo uso de circuitos virtuais internamente é o espaço de tabela dentro dos roteadores.
 - ... custo relativo de circuitos de comunicação em comparação com a memória do roteador, um ou outro pode ser mais econômico.
- "datagrama" pacotes necessitam de endereço fonte e endereço destino, "overhead" maior comparado com circuitos virtuais.

Luís F. Faina - 2016 Pg. 20/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.5 – Redes de Circuitos Virtuais vs Datagrama

Issue	Datagram network	Virtual-circuit network
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Routers do not hold state information about connections	Each VC requires router table space per connection
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC

Luís F. Faina - 2016 Pg. 21/80

5.1 – Aspectos de Projeto (Network Layer) ... 5.1.5 – Redes de Circuitos Virtuais vs Datagrama

- "tempo de configuração" e "tempo de análise de endereço" ...
- "circuitos virtuais" ... requer uma fase de configuração, o que leva tempo e consome recursos.
 - ... mas é fácil descobrir o que fazer com um pacote de dados em uma subrede de circuitos virtuais - roteador só utiliza o número do circuito para criar um índice em uma tabela e descobrir para onde vai o pacote.
- "rede de datagramas" ... não requer tempo de configuração do circuito virtual, ou seja, serviço sem conexão;
 - ... necessário procedimento de pesquisa mais complexo para localizar a entrada correspondente ao destino.

Luís F. Faina - 2016 Pg. 22/80

5.2 – Algoritmos de Roteamento

 "Algoritmo de Roteamento" - ... parte do software da camada de rede responsável por decidir o canal de saída para um pacote.

- "premissa" ... rotas são escolhidas de forma independente para cada pacote ou quando novas conexões são estabelecidas.
 - "propriedades desejáveis para os algoritmos" ... corretude, simplicidade, robustez, estabilidade, justeza e otimalidade.

 ... muitas redes minimizam o nro. de saltos de um pacote, posto que com menor nro. de saltos reduz-se o atraso bem como a quantidade de banda consumida → melhora a vazão da rede.

Luís F. Faina - 2016 Pg. 23/80

... 5.2 – Algoritmos de Roteamento

- e.g., Fig. 5.5 Suponha que o tráfego entre A e A', entre B e B' e entre C e C' seja suficiente para saturar o enlace horizontal.
 - ... para maximizar o fluxo total, o tráfego de X para X' deve ser desativado, mas X e X' podem não ver esta situação dessa maneira;
 - ... evidente que se faz necessário um meio-termo entre eficiência global e equidade para as conexões individuais – AA' BB' CC' e XX'

Figure 5-5. Network with a conflict between fairness and efficiency.

Luís F. Faina - 2016 Pg. 24/80

... 5.2 – Algoritmos de Roteamento

Algoritmos de Roteamento: Adaptativos e Não Adaptativos.

- "algoritmos não adaptativos" ... decisões de roteamento não se baseiam em medidas ou estimativas do tráfego e nem mesmo na topologia corrente (topologia pode mudar).
- ... escolha da rota a ser utilizada para ir de l até J (para todo l e todo J) é previamente calculada off-line, sendo transferida para os roteadores quando a rede é inicializada → "roteamento estático".

Luís F. Faina - 2016 Pg. 25/80

... 5.2 – Algoritmos de Roteamento

Algoritmos de Roteamento: Adaptativos e Não Adaptativos.

- "algoritmos adaptativos" ... mudam suas decisões de roteamento para refletir mudanças na topologia ou até mesmo no tráfego.
- "lugar em que obtêm suas informações" e.g., informações de roteadores adjacentes ou de todos os roteadores;
- ... "momento em que alteram as rotas" e.g., a cada T segundos quando a carga se altera ou quando a topologia muda;
- …"unidade métrica utilizada para a otimização" e.g., distância, número de hops ou tempo de trânsito estimado.

Luís F. Faina - 2016 Pg. 26/80

5.2 – Algoritmos de Roteamento5.2.1 – Princípio da Otimização

- "princípio de otimização" ... estabelece que, se o roteador J estiver no caminho ótimo entre o roteador I e o roteador K, o caminho ótimo de J até K também estará na mesma rota.
- "demonstração" ... para confirmar a asserção, seja a rota entre
 "I" e "J" de r1 e entre "J" e "K" de rota r2;
 - ... se existisse uma rota melhor que r2 entre J e K, ela poderia ser concatenada com r1 para melhorar a rota entre I e K, contradizendo nossa afirmação de que a rota r1 r2 é ótima.

"consequência do princípio de otimização" - ... podemos observar que o conjunto de rotas ótimas de todas as origens para um determinado destino forma uma árvore com raiz no destino.

Luís F. Faina - 2016 Pg. 27/80

5.2 – Algoritmos de Roteamento ... 5.2.1 – Princípio da Otimização

- "árvore de escoamento" ... árvore na qual a unidade métrica de distância é o número de hops (saltos).
 - ... observe que uma árvore de escoamento não é exclusiva; podem existir outras árvores com caminhos de mesmo tamanho.

Luís F. Faina - 2016 Pg. 28/80

5.2 – Algoritmos de Roteamento ... 5.2.1 – Princípio da Otimização

- "árvore de escoamento" ... na prática, enlaces e roteadores podem sair do ar e voltar à atividade durante a operação;
 - ... desse modo, diferentes roteadores podem ter idéias ou visões diferentes sobre a topologia atual.

Luís F. Faina - 2016

5.2 – Algoritmos de Roteamento 5.2.2 – Algoritmos de Caminho mais Curto

- "idéia" ... criar um grafo da sub-rede, com cada nó do grafo representando um roteador e cada arco indicando um enlace.
 - ... forma de medir o comprimento do caminho é usar o número de "hops", e não necessariamente o comprimento do enlace.

 Obs.: ... normalmente, o caminho mais curto é o caminho mais rápido, e não o caminho com menor nro. de arcos ou quilômetros.

Luís F. Faina - 2016 Pg. 30/80

5.2 – Algoritmos de Roteamento

... 5.2.2 – Algoritmos de Caminho mais Curto

 Empregando-se essa unidade de medida de tráfego, os caminhos ABC e ABE da Fig. 5.7 são igualmente longos.

Figure 5-7. The first six steps used in computing the shortest path from *A* to *D*. The arrows indicate the working node.

Luís F. Faina - 2016 Pg. 31/80

5.2 – Algoritmos de Roteamento ... 5.2.2 – Algoritmos de Caminho mais Curto

 ... outra unidade métrica é a distância geográfica em quilômetro, e nesse caso ABC é claramente muito mais longo que ABE.

Figure 5-7. The first six steps used in computing the shortest path from *A* to *D*. The arrows indicate the working node.

Luís F. Faina - 2016 Pg. 32/80

5.2 – Algoritmos de Roteamento 5.2.2 – Algoritmos de Caminho mais Curto

 Entretanto, muitas outras unidades métricas são possíveis, e.g., número de "hops" e ou distância física entre nós.

- e.g., ... cada arco poderia ser identificado com o retardo médio de enfileiramento e de transmissão referente a um pacote, de acordo com as especificações de testes executados a cada hora.
 - ... nesse grafo, o caminho mais curto é o caminho mais rápido, e não o caminho com menor número de arcos ou quilômetros.
- Algoritmo de Dijkstra (GBC066 Arq. de Redes TCP/IP) ... discussão em curso é apenas para apresentar de forma geral o princípio do Algoritmo de Dijkstra.

Luís F. Faina - 2016 Pg. 33/80

5.2 – Algoritmos de Roteamento5.2.3 – Técnica de Inundação

- "algoritmo de inundação ou flooding" ... algoritmo estático no qual cada pacote de entrada é enviado para toda linha de saída, exceto para aquela linha pela qual o pacote chegou.
- ... gera uma vasta quantidade de pacotes duplicados, na verdade um número infinito, a menos que algumas medidas sejam tomadas para tornar mais lento o processo.

- "técnica alternativa" ... conter o processo de inundação controlando quais pacotes foram transmitidos por inundação, a fim de evitar transmití-los uma segunda vez.
 - ... roteador de origem inseri um número de seqüência em cada pacote recebido de seus "hosts" antes de repassar.

Luís F. Faina - 2016 Pg. 34/80

5.2 – Algoritmos de Roteamento ... 5.2.3 – Técnica de Inundação

- Obs.: ... algoritmo de inundação não é prático na maioria das aplicações, mas tem sua utilidade.
- e.g., ... aplicações militares, em que muitos roteadores podem ser destruídos a qualquer momento, tiram vantagem da robustez do algoritmo de inundação – algoritmo é altamente desejável.

- "alg. de inundação" ... sempre escolhe o caminho mais curto, por isso pode ser usado como métrica de comparação para com outros algoritmos, uma vez que sempre escolhe o caminho mais curto.
 - ... todos os caminhos possíveis são selecionados em paralelo.
 - ... nenhum outro algoritmo é capaz de produzir um retardo de menor duração (se ignorarmos o "overhead" gerado pelo próprio processo).

Luís F. Faina - 2016 Pg. 35/80

5.2 – Algoritmos de Roteamento5.2.4 – Algoritmo Vetor de Distância

- Redes de Computadores atuais utilizam algoritmos de roteamento dinâmicos em lugar dos algoritmos estáticos, porque os algoritmos estáticos não levam em conta a carga atual da rede.
 - ... neste grupo destacam-se 02 algoritmos dinâmicos: roteamento com vetor de distância e o roteamento por estado de enlace.
- "Algoritmo Estado de Enlace" ou "Link-State" utiliza o Algoritmo de Dijkstra (GBC066 – Arq. de Redes TCP/IP)

 "Algoritmo Vetor de Distância" ou "Distance Vector" - utiliza a Equação de Bellman Ford (GBC066 – Arq. de Redes TCP/IP)

Luís F. Faina - 2016 Pg. 36/80

5.2 – Algoritmos de Roteamento ... 5.2.4 – Algoritmo Vetor de Distância

- "algoritmo de roteamento com vetor de distância" ... cada roteador mantém uma tabela (isto é, um vetor de distância).
- ... fornece a menor distância conhecida até cada destino e determina qual linha deve ser utilizada para se chegar lá;
- ... cada entrada contém a linha de saída preferencial para cada destino e uma estimativa do tempo ou distância até este destino;
- ... unidade métrica utilizada pode ser o nro. de hops, o retardo de tempo em milissegundos, o número total de pacotes enfileirados no caminho ou algo semelhante;
- ... tais tabelas são atualizadas através da troca de informações com os vizinhos diretamente conectados.

Luís F. Faina - 2016 Pg. 37/80

5.2 – Algoritmos de Roteamento ... 5.2.4 – Algoritmo Vetor de Distância

 ... suponha que o retardo seja usado como unidade métrica e que o roteador saiba qual é o retardo até cada um de seus vizinhos.

Figure 5-9. (a) A network.(b) Input from A, I, H, K, and the new routing table for J.

5.2 – Algoritmos de Roteamento ... 5.2.4 – Algoritmo Vetor de Distância

- "algoritmo de roteamento com vetor de distância" comumente chamado de "algoritmo de roteamento distribuído de Bellman-Ford" pois utiliza Algoritmo de Ford-Fulkerson.
 - ... algoritmos receberam os nomes dos pesquisadores que os desenvolveram (Bellman, 1957; e Ford e Fulkerson, 1962).

 "Algoritmo Vetor de Distância" ou "Distance Vector" - utiliza a equação de Bellman Ford (GBC066 – Arq. de Redes TCP/IP)

Luís F. Faina - 2016 Pg. 39/80

5.2 – Algoritmos de Roteamento 5.2.5 – Roteamento Estado de Enlace

 Roteamento com Vetor de Distância foi utilizado na ARPANET até 1979, quando foi substituído pelo Estado de Enlace.

- "problemas" ... substituição face a 02 problemas:
- ... unidade métrica de retardo era o comprimento da fila e não se levava em conta a largura de banda ao se escolher as rotas.
 - ... com o aumento da capacidade de largura de banda dos enlaces de 56 Kbps, para 230 Kbps e depois para 1,544 Mbps, não considerar a largura de banda se tornou um problema importante.
- algoritmo geralmente levava muito tempo para convergir → (problema da contagem até infinito).

Luís F. Faina - 2016 Pg. 40/80

5.2 – Algoritmos de Roteamento ... 5.2.5 – Roteamento Estado de Enlace

- Ciclo de Vida do Algoritmo de Roteamento Estado de Enlace contempla resumidamente 05 passos:
- 1)... descobrir seus vizinhos e aprender seus endereços de rede;
- 2)... medir o retardo ou o custo até cada um de seus vizinhos;
- 3)... criar um pacote que informe tudo o que ele aprendeu;
- 4)... enviar esse pacote a todos os outros roteadores (nós);
- 5)... calcular o caminho mais curto até cada um dos outros nós.

 "Algoritmo Estado de Enlace ou "Link State" - utiliza o Algoritmo de Dijkstra (GBC066 – Arq. de Redes TCP/IP)

Luís F. Faina - 2016 Pg. 41/80

5.2 – Algoritmos de Roteamento 5.2.6 – Roteamento Hierárquico

- "problema" ... medida que as redes aumentam de tamanho, as tabelas de roteamento crescem proporcionalmente.
 - … não apenas a memória do roteador, mas também é necessário dedicar maior tempo da CPU para percorrê-las e mais largura de banda para enviar relatórios de status sobre elas.

- "solução" ... roteadores são organizados em regiões, com cada roteador conhecendo todos os detalhes sobre como rotear pacotes para destinos dentro de sua própria região.
 - ... mas sem conhecer nada sobre a estrutura interna de outras regiões.

Luís F. Faina - 2016 Pg. 42/80

5.2 – Algoritmos de Roteamento ... 5.2.6 – Roteamento Hierárquico

- e.g., ... para redes muito grandes, uma hierarquia de dois níveis talvez seja insuficiente e, provavelmente, é necessário reunir as regiões em agrupamentos (clusters);
 - ... estes agrupamentos em zonas, as zonas em grupos etc., até faltarem nomes ou identificadores para os agregados.

Luís F. Faina - 2016 Pg. 43/80

5.2 – Algoritmos de Roteamento ... 5.2.6 – Roteamento Hierárquico

 e.g., ... considere 05 regiões e roteamento de 02 níveis como descrito na Fig. 5.5 (a) → Tab. 1A contém 17 entradas.

(a) Figure 5-14. Hierarchical routing.

	Full table for 1A			
Dest.	Line	Hops		
1A	_	_		
1B	1B 1C 1B	1		
1C	1C	1		
2A	1B	2		
2B	1B	3		
2C 2D 3A 3B	1B	3		
2D	1B	4		
ЗА	1C	3		
3B	1C	2		
4A	1C	3		
4B	1C	4		
4B 4C 5A 5B	1C	4		
5A	1C	4		
5B	1C	5		
БC	1B 1C 1C 1C 1C 1C 1C 1C 1C 1C	1 2 3 4 3 2 3 4 4 4 5 5 6		
5D	1C	6		
5C 5D 5E	1C	5		

Full table for 1 A

Hierarchical table for 1A			
Dest.	Line	Hops	
1A	_	_	
1B	1B	1	
1C	1C	1	
2	1B	2	
2 3 4 5	1C	2	
4	1C	3	
5	1C	4	
(c)			

(b)

5.2 – Algoritmos de Roteamento ... 5.2.6 – Roteamento Hierárquico

• ... com roteamento hierárquico, haverá entradas para todos os roteadores locais como antes, mas todas as outras regiões terão sido condensadas em um único roteador → 17 p/ 7 entradas.

Figure 5-14. Hierarchical routing.

Full table for 1A			
Line	Hops		
_	_		
1B	1		
1C	1		
1B	2		
1B	3		
1B	3		
1B	4		
1C	3		
1C	2		
1C	3		
1C	4		
1C	4		
1C	4		
1C	5		
1B	5		
1C	1 2 3 4 3 2 3 4 4 4 5 5		
1C	5		
	Line - 1B 1C 1B 1B		

(b)

Full table for 1 A

Hierarchical table for 1A			
Dest.	Line	Hops	
1A	_	_	
1B	1B	1	
1C	1C	1	
2	1B	2	
2 3 4 5	1C	2	
4	1C	3	
5	1C	4	
(c)			

Luís F. Faina - 2016

5.2 – Algoritmos de Roteamento ... 5.2.6 – Roteamento Hierárquico

 ... à medida que a relação entre o nro. de regiões e o nro. de roteadores por região cresce, a economia de espaço aumenta.

(a) **Figure 5-14.** Hierarchical routing.

Full table for 1A			
Line	Hops		
-	_		
1B	1		
1C	1		
1B	2		
1B	3		
1B	3		
1B	4		
1C	3		
1C	2		
1C	3		
1C	4		
1C	4		
1C	4		
1C	5		
1B	5		
1C	1 2 3 4 3 2 3 4 4 4 5 5		
1C	5		
	- 1B 1C 1B 1B		

Full table for 1 A

Hierarchical table for 1A			
Dest.	Line	Hops	
1A	_	_	
1B	1B	1	
1C	1C	1	
2	1B	2	
2 3 4 5	1C	2	
4	1C	3	
5	1C	4	
(c)			

(b)

 "broadcast" - ... enviar pacote a todos os destinos simultaneamente é chamado difusão (broadcasting).

Maneiras de se implementar o "broadcast" :

- "unicast" ... origem envia o pacote para cada um dos destinos, ou seja, não exige recursos especiais da sub-rede;
 - ... no entanto, desperdiça largura de banda como também exige que a origem tenha uma lista completa de todos os destinos.
- "problema" consome a maior largura de banda dentre todos os outros algorimos de difusão.

Luís F. Faina - 2016 Pg. 47/80

- "algoritmo de inundação" ... é um candidato óbvio, ainda que seja inadequado para o comunicação ponto a ponto.
- … ainda que o algoritmo de inundação seja inadequado para a comunicação comum ponto a ponto, ele pode ser considerado, se nenhum dos métodos descritos a seguir for aplicável.

 "problema" - ... tem como um algoritmo de roteamento ponto a ponto, ou seja, gera muitos pacotes e consome largura de banda em excesso.

Luís F. Faina - 2016 Pg. 48/80

- "roteamento de vários destinos" ... cada pacote contém uma lista de destinos ou um mapa de bits indicando os destinos desejados.
- ... quando um pacote chega a um roteador, este verifica todos os destinos para determinar o conjunto de linhas de saída que serão necessárias de modo a alcançar todos os destinos;
- ... após um nro. suficiente de "hops", cada pacote transportará somente um destino e poderá ser tratado como um pacote normal.
- ... semelhante a utilizar pacotes endereçados separadamente, exceto pelo fato de, quando vários pacotes tiverem de seguir a mesma rota, um deles pagará toda a passagem.

Luís F. Faina - 2016 Pg. 49/80

- "árvore de amplitude" ... árvore de escoamento para o roteador que inicia a difusão, ou seja, subconjunto da sub-rede que inclui todos os roteadores, mas não contém nenhum "loop".
 - ... se cada roteador sabe quais de suas linhas pertencem à árvore de amplitude, ele poderá copiar um pacote de difusão de entrada em todas as linhas da árvore de amplitude, exceto aquela em que o pacote chegou.
- "problema" ... cada roteador deve ter conhecimento de alguma árvore de amplitude para que o método seja aplicável.
 - ... se essas informações estão disponíveis (e.g., roteamento por estado de enlace), o roteador terá conhecimento da árvore de amplitude;
 - ... se essas informações não estão disponíveis (e.g., roteamento com vetor de distância), o roteador não terá conhecimento da árvore de amplitude.

Luís F. Faina - 2016 Pg. 50/80

- "algoritmo de difusão" ... quando um pacote de difusão chega a um roteador, o roteador verifica se o pacote chegou pela linha que normalmente é utilizada para o envio de pacotes à origem.
- ... quando pacote de difusão chega no roteador, o mesmo verifica se o pacote chegou pela linha que normalmente é utilizada para o envio de pacotes à origem da difusão.
- ... se sim, há uma excelente possibilidade de que o pacote de difusão tenha seguido a melhor rota a partir do roteador e, seja, a primeira copia a chegar no roteador.
- ... se for esse o caso, roteador encaminha cópias do pacote para todas as linhas, exceto aquela por onde o pacote chegou.

Luís F. Faina - 2016 Pg. 51/80

• (a) mostra uma sub-rede; (b) mostra uma árvore de escoamento para o roteador I dessa sub-rede; e (c) mostra como funciona o algoritmo de encaminhamento pelo caminho inverso.

Figure 5-15. Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

Luís F. Faina - 2016 Pg. 52/80

 ... quando pacote de difusão chega no roteador, o mesmo verifica se o pacote chegou pela linha que normalmente é utilizada para o envio de pacotes à origem da difusão.

Figure 5-15. Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

Luís F. Faina - 2016 Pg. 53/80

 ... se sim, há uma excelente possibilidade de que o pacote de difusão tenha seguido a melhor rota a partir do roteador e, seja, a primeira copia a chegar no roteador.

Figure 5-15. Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

Luís F. Faina - 2016 Pg. 54/80

• ... se for esse o caso, roteador encaminha cópias do pacote para todas as linhas, exceto aquela por onde o pacote chegou.

Figure 5-15. Reverse path forwarding. (a) A network. (b) A sink tree. (c) The tree built by reverse path forwarding.

Luís F. Faina - 2016 Pg. 55/80

- "vantagem do encaminhamento pelo caminho inverso" ... é ao mesmo tempo eficiente e fácil de implementar.
- … não exige que os roteadores saibam nada sobre árvores de amplitude;
- … não têm o "overhead" de uma lista de destino ou um mapa de bits em cada pacote de difusão, como ocorre na estratégia para vários destinos;
- … não requer nenhum mecanismo especial para interromper o processo, como é o caso do algoritmo de inundação (um contador de hops em cada pacote e um conhecimento prévio do diâmetro da sub-rede, ou então uma lista de pacotes já vistos por origem).

Luís F. Faina - 2016 Pg. 56/80

5.2 – Algoritmos de Roteamento 5.2.8 – Roteamento Multicast

- "multicast" ... envio de uma mensagem a um grupo de nós.
- ... como exige o gerenciamento de grupos, faz-se necessário método para criar, inserir, remover e destruir grupos.

• e.g., considere um grupo de roteadores, alguns pertencentes ao subgrupo 01 e alguns pertencentes ao subgrupo 02.

Como os roteadores de um grupo podem se comunicar!?

Luís F. Faina - 2016 Pg. 57/80

5.2 – Algoritmos de Roteamento 5.2.8 – Roteamento Multicast

- e.g., considere um grupo de roteadores, alguns pertencentes ao subgrupo 01 e alguns pertencentes ao subgrupo 02.
- ... cada roteador calcula uma árvore de amplitude que engloba todos os outros roteadores da sub-rede.

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router.

Luís F. Faina - 2016 Pg. 58/80

5.2 – Algoritmos de Roteamento 5.2.8 – Roteamento Multicast

- Por exemplo, na Fig. 5.17(a), temos uma sub-rede com dois grupos, 1 e 2. Alguns roteadores estão associados a hosts que pertencem a um ou a ambos os grupos, como indica a figura.
- … árvore de amplitude correspondente ao roteador situado mais à esquerda é mostrada na Fig. 5.17 (b).

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router.

Luís F. Faina - 2016 Pg. 59/80

 ... quando se envia um pacote multicast, o 1º roteador examina sua árvore de amplitude e a poda, removendo todas as linhas que não levam a hosts que são membros do grupo.

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router.

(c) A multicast tree for group 1. (d) A multicast tree for group 2.

Luís F. Faina - 2016 Pg. 60/80

- No nosso exemplo, a Fig.5.17 (c) mostra a árvore de amplitude do grupo 1 podada, da mesma forma, a Fig. 5.17 (d) mostra a árvore de amplitude do grupo 2 podada.
 - ... pacotes de multidifusão só são encaminhados ao longo da árvore de amplitude apropriada (árvore do grupo 01 ou subgrupo 02)

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router.

(c) A multicast tree for group 1. (d) A multicast tree for group 2.

Luís F. Faina - 2016 Pg. 61/80

5.2 – Algoritmos de Roteamento 5.2.9 – Roteamento Anycast

- Discutimos modelos nos quais o remetente envia para um único destino - "anycast", para todos os destinos - "broadcast" ou para um grupo de destinos - "multicast".
- "anycast" ... pacote é entregue para o membro do grupo mais próximo do remetente (Partridge et al., 1993).

- "emprego do anycast" ... algumas vezes, nós provêem serviços para os quais o que importa é obter a informação correta, e.g., "Hora Local de Brasília"
- e.g., "anycast" é usado na Internet como parte do DNS.

Luís F. Faina - 2016 Pg. 62/80

- Felizmente, não teremos que elaborar novos esquemas de roteamento para "anycast", uma vez que o roteamento vetor de distância ou estado de link podem produzir rotas "anycast".
- e.g., ... suponha que queremos anycast aos nós do subgrupo 01, assim todos do subgrupo 01 terão endereço "1".

Figure 5-16. (a) A network. (b) A spanning tree for the leftmost router.

Luís F. Faina - 2016 Pg. 63/80

- Roteamento Vetor de Distância ... distribui vetores como de costume, e nós escolhem o caminho mais curto para o destino 1.
 - ... resulta em nós de envio para a instância mais próxima de destino 1, cujas rotas são mostradas na Fig. 5.18 (a).

Figure 5-18. (a) Anycast routes to group 1. (b) Topology seen by the routing protocol.

Luís F. Faina - 2016 Pg. 64/80

- Este procedimento funciona porque o protocolo de roteamento não perceberque existem várias instâncias do destino 1.
 - ... protocolo de roteamento acredita que todas as instâncias do nó 1 são o mesmo nó, como na topologia mostrada na Fig. 5-18 (b).

Figure 5-18. (a) Anycast routes to group 1. (b) Topology seen by the routing protocol.

Luís F. Faina - 2016 Pg. 65/80

5.3 – Algoritmos de Controle de Congestionamento

 "cenário" - ... quando há pacotes demais presentes em uma subrede, o desempenho diminui → congestionamento.

Figure 5-21. With too much traffic, performance drops sharply.

Luís F. Faina - 2016 Pg. 66/80

... 5.3 – Algoritmos de Controle de Congestionamento

- "causas do congestionamento" ...
 - "fluxo de pacotes" ... se fluxos de pacotes começarem a chegar repentinamente em várias linhas de entrada e todas precisarem da mesma linha de saída, haverá uma fila.
 - "memória insuficiente" ... se a memória for insuficiente para conter todos os pacotes, os pacotes serão descartados ao chegarem.
- "congestionamento" ... carga é maior (temporaria- mente) do que os recursos (em uma parte da rede) pode manipular.
- "solução" ... aumentar os recursos ou diminuir a carga.

Luís F. Faina - 2016 Pg. 67/80

5.3 – Algoritmos de Controle de Congestionamento 5.3.1 – Princípios do Controle de Congestionamento

- "solução básica" ... construir uma rede que está bem preparada para o tráfego que ele transporta.
 - ... se houver um enlace de baixa largura de banda no caminho ao longo do qual a maioria do tráfego é direcionado, o congestionamento é provável.
 - ... nestes casos recursos podem ser adicionados dinamicamente quando há congestionamento graves, por exemplo, ligar roteadores ou aumentar a de largura de banda do enlace.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 68/80

5.3 – Algoritmos de Controle de Congestionamento ... 5.3.1 – Princípios do Controle de Congestionamento

- "provisionamento da rede" ... trata-se da provisão de recursos para atender a demanda de meses ou mesmo anos.
- ... normalmente impulsionado por tendências de tráfego de longa duração pois o investimento normalmente é alto.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 69/80

5.3 – Algoritmos de Controle de Congestionamento 5.3.2 – Roteamento Traffic-Aware

- "tráfego consciente" ... rotas podem ser adaptadas para padrões de tráfego que mudam durante o dia par aproveitar o máximo a capacidade dos recursos de rede existentes.
- e.g., ... estações de rádio locais têm helicópteros que voam em torno de suas cidades para informar sobre o congestionamento rodoviário e, assim, informar os ouvintes móveis possíveis rotas.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 70/80

5.3 – Algoritmos de Controle de Congestionamento 5.3.3 – Controle de Admissão

- "admission control" ... às vezes não é possível aumentar a capacidade, então o única maneira é diminuir a carga.
- e.g., ... em rede de circuitos virtuais, novas conexões podem ser recusados se farão com que a rede se torne congestionada.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 71/80

5.3 – Algoritmos de Controle de Congestionamento 5.3.4 – Traffic Throttling

- "traffic trottling" ... em outros casos em que congestionamento é iminente, a rede pode oferecer "feedback" para as fontes cujos fluxos de tráfego são responsáveis pelo problema.
- rede pode solicitar essas fontes para estrangular seu tráfego, ou pode abrandar o próprio tráfego.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 72/80

5.3 – Algoritmos de Controle de Congestionamento 5.3.5 – Load Shedding

- "load shedding" ... uando tudo o mais falhar, a rede é forçado a descartar pacotes que não pode entregar.
- ... uma boa política para a escolha de quais pacotes para descartar pode ajudar a evitar o congestionamento colapso.

Figure 5-22. Timescales of approaches to congestion control.

Luís F. Faina - 2016 Pg. 73/80

5.4 – Qualidade de Serviço

- "controle de congestionamento" ... técnicas que examinamos foram projetadas para reduzir o congestionamento e melhorar o desempenho das redes.
 - ... tais técnicas não são suficientes frente a demanda de aplicações multimídia em rede que aumenta constantemente.
 - ... necessidade de empreender tentativas sérias para garantir a qualidade de serviço por meio do projet o de redes e protocolos.

Luís F. Faina - 2016 Pg. 74/80

5.4 – Qualidade de Serviço 5.4.1 – Requisitos da Aplicação

- "fluxo" seqüência de pacotes desde uma origem até um destino.
 - … fluxo de pacotes percorre mesma rota em redes orientadas a conexões, mas podem seguir rotas diferentes em redes sem conexões.
 - ... cada fluxo podem ser caracterizadas por quatro parâmetros principais: confiabilidade, retardo, flutuação e largura de banda.

 "Quality of Service" ou qualidade de serviço - ... conjunto de parâmetros que caracteriza o fluxo de pacotes.

Luís F. Faina - 2016 Pg. 75/80

5.4 – Qualidade de Serviço ... 5.4.1 – Requisitos da Aplicação

… várias aplicações comuns e a severidade de seus requisitos.

Application	Bandwidth	Delay	Jitter	Loss
Email	Low	Low	Low	Medium
File sharing	High	Low	Low	Medium
Web access	Medium	Medium	Low	Medium
Remote login	Low	Medium	Medium	Medium
Audio on demand	Low	Low	High	Low
Video on demand	High	Low	High	Low
Telephony	Low	High	High	Low
Videoconferencing	High	High	High	Low

Figure 5-27. Stringency of applications' quality-of-service requirements.

Luís F. Faina - 2016 Pg. 76/80

5.4 – Qualidade de Serviço5.4.2 - Traffic Shapping

- "modelagem de tráfego" ... está relacionada à regulagem da taxa média (e do volume) da transmissão de dados.
 - ... por outro lado, os protocolos de janela deslizante estudados anteriormente limitam o volume de dados em trânsito de uma vez, e não a taxa em que eles são enviados.
- Quando uma conexão é configurada, o usuário e a sub-rede (isto é, o cliente e a concessionária de comunicações) concordam com um determinado padrão de tráfego para esse circuito.

Luís F. Faina - 2016 Pg. 77/80

5.4 – Qualidade de Serviço 5.4.3 – Admission Control

- "controle de admissão" ... tráfego de entrada de algum fluxo é bem modelado e pode potencialmente seguir uma única rota;
 - ... normalmente rota na qual a capacidade pode ser reservada com antecedência nos roteadores ao longo do caminho.
 - ... quando um fluxo é oferecido a um roteador, cabe a decisão, com base em sua capacidade e na quantidade de compromissos que já assumiu para outros fluxos, se deve admitir ou rejeitar o fluxo.

Luís F. Faina - 2016 Pg. 78/80

5.4 – Qualidade de Serviço5.4.4 – Integrated Services

- [1995 .. 1997] ... IETF dedicou um grande esforço à criação de uma arquitetura para multimídia de fluxo.
 - ... esse trabalho resultou em mais de duas dezenas de RFCs, começando com as RFCs 2205 a 2210.
 - ... nome genérico desse trabalho é algoritmos baseados no fluxo ou serviços integrados ou "Integrated Services".
- Algoritmos baseados no Fluxo ... têm potencial para oferecer boa qualidade de serviço a um ou mais fluxos, porque eles reservam quaisquer recursos necessários ao longo da rota.
 - ... porém, eles também têm a desvantagem de exigirem uma configuração antecipada para estabelecer cada fluxo, algo que não se ajusta bem quando existem milhares ou milhões de fluxos.

Luís F. Faina - 2016 Pg. 79/80

5.4 – Qualidade de Serviço 5.4.5 – Differentiated Services

- "abordagem mais simples" ... oferecer qualidade de serviço sem configuração antecipada e sem ter de envolver todo o caminho.
 - ... implementada em grande parte no local em cada roteador.
- "Differentiated Services" ...conhecida como qualidade de serviço baseada na classe (em vez de ser baseada no fluxo).
 - IETF padronizou uma arquitetura para ela, chamada arquitetura de serviços diferenciados, descrita nas RFCs 2474, 2475 e várias outras.

Luís F. Faina - 2016 Pg. 80/80