Hence $D_E(x)$ does not exist. Consider a set where $D_E(x)$ attains any $\alpha \in (0,1)$. Define $\theta = 2\pi\alpha$, consider E to be a slice of circle in \mathbb{R}^2 with θ radians.

• 6.1.9

Proof. The forward direction follows from Definition 6.1.1. For another direction, let $\{[a_j,b_j]\}$ be any countable collection of nonoverlapping subintervals of [a,b]. Assume $\sum_{j=1}^{\infty} |b_j - a_j| < \delta$. Then we know for all $N \in \mathbb{N}$,

$$\sum_{j=1}^{N} |b_j - a_j| < \delta; \qquad \sum_{j=1}^{N} |f(b_j) - f(a_j)| < \epsilon$$

Taking limits on the second equation above, we obtain

$$\sum_{j=1}^{\infty} |f(b_j) - f(a_j)| = \lim_{N \to \infty} \sum_{j=1}^{N} |f(b_j) - f(a_j)| < \lim_{n \to \infty} \epsilon = \epsilon$$

Therefore *f* is absolutely continuous.

• 6.1.10

Proof. (a). Let $\epsilon > 0$. Since f_n converges to f in bounded variation norm there exists some n_0 such that $||f_{n_0} - f||_{\text{BV}} < \frac{\epsilon}{3}$. Also, $\exists \delta > 0$ such that any nonoverlapping subintervals $\{[a_j,b_j]\}$ of [a,b] with $\sum_j (b_j - a_j) < \delta$ implies $\sum_j |f_{N_0}(b_j) - f_{N_0}(a_j)| < \frac{\epsilon}{3}$. Then

$$\sum_{j}^{\text{Then}} |f(b_j) - f(a_j)| \le \sum_{j} |(f - f_{N_0})(b_j) - (f - f_{N_0})(a_j)| + \sum_{j} |f_{N_0}(b_j) - f_{N_0}(a_j)|$$

$$\le V[f - f_{N_0}; a, b] + \frac{\epsilon}{3} \le ||f - f_{n_0}||_{\text{BV}} < \epsilon$$

Therefore f is also absolutely continuous.

(b). Consider $f_n=0$ for $0 \le x \le \frac{1}{n\pi}$ and $f_n=x\sin\frac{1}{x}$ for $\frac{1}{n\pi} \le x \le 1$. Then f_n is absolutely continuous for each n but f is not of bounded variation hence also not absolutely continuous.

MATH235 HOMEWORK 11 SOLUTION

• 6.3.6

Proof. (1) As f is Lipschitz, $\forall \{[a_i, b_i]\}$ nonoverlapping intervals of [a, b]:

$$\exists K > 0 : \forall x, y \in [c, d] : |f(x) - f(y)| \le K|x - y|$$

As $g \in [a, b]$,

$$\forall \epsilon > 0 : \exists \delta > 0 : \sum_{j} (b_j - a_j) < \delta \implies \sum_{j} |g(b_j) - g(a_j)| < \epsilon$$

We aim to show that $f \circ g \in [a,b]$, So choose δ such that $\sum_j |g(b_j) - g(a_j)| < \epsilon/K$; then by the Lipschitz property of f, $|f(g(b_j)) - f(g(a_j))| < \epsilon$.

(2) As $f \in [c, d], \forall \{[a_i, b_i]\}$ nonoverlapping intervals of [a, b]:

$$\forall \epsilon > 0 : \exists \delta_1 > 0 : \sum_j (d_j - c_j) < \delta \implies \sum_j |f(d_j) - f(c_j)| < \epsilon$$

As $g \in [a, b]$, $\forall \{[a_j, b_j]\}$ nonoverlapping intervals of [a, b]:

$$\forall \delta_1 > 0 : \exists \delta_2 > 0 : \sum_j (b_j - a_j) < \delta_2 \implies \sum_j |g(b_j) - g(a_j)| < \delta_1$$

As g is monotonically increasing, $\{[g(a_j),g(b_j)\}$ is an n.o.i. in [c,d]. So choose δ_1 according to $\epsilon>0$ and δ_2 according to δ_1 . Then $\forall\{[a_j,b_j]\}$ nonoverlapping intervals of [a,b]:

$$\forall \epsilon > 0 : \exists \delta_2 > 0 : \sum_j (b_j - a_j) < \delta_2 \implies \sum_j |f(g(b_j)) - g(a_j)| < \epsilon$$

(3) If $f \circ g \in [a,b]$, it is trivial from the complex version of Theorem 6.3.1 that $f \circ g \in BV[a,b]$. Now suppose $f \circ g \in BV[a,b]$, $f \in [c,d]$, and $g \in [a,b]$. So by Theorem 6.3.1, both f and g map sets of measure zero to measure zero; this property is clearly preserved under composition. Furthermore, as the composition of continuous functions is continuous, $f \circ g$ is continuous. So condition (b) of Theorem 6.3.1 is satisfied, and therefore $f \circ inAC[a,b]$.

• 6.3.10

Proof. (1) If $f \in [a, b]$, it is trivial from Theorem 6.3.1 that $f \in BV[a, b]$. Now suppose that $f \in BV[a, b]$. By Growth Lemma I (Lemma 6.2.1), f maps sets of measure zero in [a, b] to sets of measure zero, as f has bounded variation on [a, b] and is therefore bounded on [a, b]. As f is differentiable on [a, b], it is continuous on [a, b]. So condition (b) of Theorem 6.3.1 is satisfied, and therefore $f \in AC[a, b]$.

Date: December 21, 2022.

(2) Suppose f is constant on [a, b]. Then for $x \in [a, b]$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 0$$

Recalling results from chapter 4, this implies that f is constant on [a,b]. Now suppose f'=0 a.e. on [a,b]. By Corollary 6.2.2, |f([a,b])|=0, so by monotonicity, f maps sets of measure zero in [a,b] to sets of measure zero. As f'=0 a.e., $f'\in L^1[a,b]$. As f is differentiable everywhere on [a,b], it is continuous on [a,b]. So condition (c) of Theorem 6.3.1 is satisfied, and therefore $f\in AC[a,b]$. So by Theorem 6.4.2, for $[c,d]\subseteq [a,b]$,

$$f(d) - f(c) = \int_{c}^{d} f' = 0$$

and therefore f is constant on [a, b].

• 6.4.10

Proof. (\Leftarrow). Suppose $f \in [a,b]$ and $f' \in L^{\infty}[a,b]$. So for arbitrary $[c,d] \subseteq [a,b]$, $f \in [c,d]$. By Theorem 6.4.2(c),

$$f(d) - f(c) = \int_{c}^{d} f'(t)dt$$

But as $f' \in L^{\infty}$, $f'(x) \leq K$ for some K > 0 for all $x \in [c, d]$ except possibly on a subset of measure zero. So by monotonicity of the integral,

$$f(d) - f(c) \le K(d - c)$$

As [c,d] is arbitrary, f is Lipschitz on [a,b], as desired. \square

(⇒). Suppose f is Lipschitz on [a,b]. Then $f \in AC[a,b]$ by Lemma 6.1.3(a). Furthermore, for $x \in [a,b]$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \le \lim_{h \to 0} \frac{Kh}{h} = K$$

for some constant K>0 by monotonicity of the limit and the definition of a Lipschitz function. Thus, $\sup_{x\in[a,b]}f'(x)\leq K$, so $f'\in L^\infty[a,b]$ by definition. \square

• 6.4.13

Proof. Suppose, to the contrary that

$$\limsup_{|x|\to\infty}|f(x)|=\alpha>0,$$

then there exists a sequence $\{x_n\}$, s.t. $|x_n| \to \infty$ and

$$|f(x_n)| \ge \frac{\alpha}{2}. \tag{*}$$

We may assume that $|x_n - x_{n+1}| > 1$. Since f is AC, there is a $\delta \in (0, 1/2)$, s.t.

$$|f(y) - f(x_n)| \le \frac{\alpha}{4}$$
 (**)

whenever $|y - x_n| < \delta$. Observe that (*) and (**) imply that

$$|f(y)| \ge \frac{\alpha}{4}, \quad \forall y \in (x_n - \delta, x_n + \delta).$$