QUERY 1-

3.1 Import the file 'gold.csv' (you will find this in the intro section to download or in '/Data/gold.csv' if you are using the jupyter notebook), which contains the data of the last 2 years price action of Indian (MCX) gold standard. Explore the dataframe. You'd see 2 unique columns - 'Pred' and 'new'. One of the 2 columns is a linear combination of the OHLC prices with varying coefficients while the other is a polynomial function of the same inputs. Also, one of the 2 columns is partially filled. Using linear regression, find the coefficients of the inputs and using the same trained model, complete the entire column. Also, try to fit the other column as well using a new linear regression model. Check if the predictions are accurate. Mention which column is a linear function and which is polynomial. (Hint: Plotting a histogram & distplot helps in recognizing the discrepencies in prediction, if any.) CAPM CAPM Analysis and Beta Calculation using regression - CAPM(Capital Asset Pricing Model) attempts to price securities by examining the relationship that exists between expected returns and risk. Read more about CAPM. (Investopedia CAPM reference) The Beta of an asset is a measure of the sensitivity of its returns relative to a market benchmark (usually a market index). How sensitive/insensitive is the returns of an asset to the overall market returns (usually a market index like S&P 500 index). What happens when the market jumps, does the returns of the asset jump accordingly or jump somehow? Read more about Beta (Investopedia Beta reference)

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   import warnings
   warnings.filterwarnings('ignore')

In [2]: data = pd.read_csv('GOLD.csv')

In [3]: data.shape

Out[3]: (512, 9)

In [4]: data.head()
```

Out[4]:

	Date	Price	Open	High	Low	Vol.	Change %	Pred	new
0	May 04, 2017	28060	28400	28482	28025	0.08K	-1.79%	738.0	117.570740
1	May 05, 2017	28184	28136	28382	28135	0.06K	0.44%	-146.0	295.430176
2	May 08, 2017	28119	28145	28255	28097	7.85K	-0.23%	30.0	132.123714
3	May 09, 2017	27981	28125	28192	27947	10.10K	-0.49%	357.0	101.298064
4	May 10, 2017	28007	28060	28146	27981	9.28K	0.09%	124.0	112.153318

```
In [5]:
         data.isnull().sum()
 Out[5]: Date
                        0
         Price
                        0
         0pen
                        0
         High
         Low
         Vol.
         Change %
         Pred
                      101
         new
         dtype: int64
         data_lr = data.dropna()
 In [6]:
 In [7]:
         data_lr.shape
 Out[7]: (411, 9)
         x = data_lr[['Price', 'Open', 'High', 'Low']]
         y = data_lr['Pred']
         from sklearn.model_selection import train_test_split
 In [9]:
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state = 42)
In [10]: x_train.head()
Out[10]:
               Price
                     Open
                            High
                                  Low
          382 31631
                     31650 31780 31590
              29761 29876 29884
                                 29705
              29541 29600 29622 29524
               30614
                     30399
                           30660
                                 30376
          209 30306 30518 30597 30270
In [11]: from sklearn import linear_model
In [12]: lm = linear_model.LinearRegression()
```

```
In [13]: lm.fit(x_train,y_train)
Out[13]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
                   normalize=False)
In [14]: lm.coef_
Out[14]: array([ 2., 3., -1., -4.])
In [15]: coeffs = pd.DataFrame(lm.coef_, x.columns, columns=['Coefficient'])
         coeffs
Out[15]:
                Coefficient
                      2.0
          Price
          Open
                      3.0
           High
                      -1.0
                     -4.0
           Low
In [16]:
         predictions = lm.predict(x_test)
         data['Pred']=lm.predict(data[['Price', 'Open', 'High', 'Low']])
In [17]:
In [18]: data.shape
Out[18]: (512, 9)
In [19]: data.isnull().sum()
Out[19]: Date
                      0
         Price
         0pen
         High
         Low
         Vol.
         Change %
         Pred
         new
         dtype: int64
```

In [20]: sns.distplot(y_test-predictions,bins=30)

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x2667b813940>


```
In [21]: import statsmodels.api as sm
X = data_lr[['Price','Open','High','Low']]
y1 = data_lr['Pred']
X1 = sm.add_constant(X)
model = sm.OLS(y1,X1)
results1=model.fit()
print(results1.summary())
```

OLS Regression Results

OLS Regression Results							
Dep. Vari	ablo:	Pred		P cau	R-squared:		1.000
Model:	aute.		OLS	•	R-squared:		1.000
		Loact Cau			tistic:		
Method:	т.	Least Squ				١.	2.178e+28
Date:	I	ue, 02 Jun			(F-statistic):	0.00
Time:		15:4	1:08	_	ikelihood:		9574.4
No. Obser			411	AIC:			-1.914e+04
Df Residu			406	BIC:			-1.912e+04
Df Model:			4				
Covarianc	e Type:	nonro	bust				
=======	========	=======	=====	=====	========		========
	coef	std err		t	P> t	[0.025	0.975]
const	1.886e-10	2.76e-11	(5.831	0.000	1.34e-10	2.43e-10
Price	2.0000	1.5e-14	1.33	3e+14	0.000	2.000	2.000
0pen	3.0000	1.28e-14	2.35	5e+14	0.000	3.000	3.000
High	-1.0000	1.5e-14	-6.68	3e+13	0.000	-1.000	-1.000
Low	-4.0000	1.52e-14	-2.63	3e+14	0.000	-4.000	-4.000
=======	========		=====		=========		
Omnibus:			.254		n-Watson:		1.094
Prob(Omni	bus):		.000	•	e-Bera (JB):		29.246
Skew:		0	.525	Prob(•		4.46e-07
Kurtosis:		3	.779	Cond.	No.		1.80e+06
=======	=========		=====		=========		========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.8e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [22]: import statsmodels.api as sm
X = data[['Price','Open','High','Low']]
y = data['new']
X1 = sm.add_constant(X)
model = sm.OLS(y,X1)
results = model.fit()
print(results.summary())
```

OLS Regression Results

=======================================	.=====================================		=======================================
Dep. Variable:	new	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	1.118e+07
Date:	Tue, 02 Jun 2020	<pre>Prob (F-statistic):</pre>	0.00
Time:	15:41:08	Log-Likelihood:	-538.12
No. Observations:	512	AIC:	1086.
Df Residuals:	507	BIC:	1107.
Df Model:	4		
Covariance Type:	nonrobust		
=======================================	.==========		=======================================
		1.1	

=========	========	========	=======	=========		========
	coef	std err		t P> t	[0.025	0.975]
const Price Open High Low	0.3282 1.0129 -1.0004 1.0050 -1.0177	0.738 0.000 0.000 0.000 0.000	0.44 2210.03 -2593.06 2286.40 -2233.14	3 0.000 8 0.000 1 0.000	-1.122 1.012 -1.001 1.004 -1.019	1.778 1.014 -1.000 1.006 -1.017
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	0	.000 Ja .382 Pr	======================================	====== B):	1.932 76044.049 0.00 1.46e+06

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.46e+06. This might indicate that there are strong multicollinearity or other numerical problems.

QUERY 2-

3.2 Import the stock of your choosing AND the Nifty index. Using linear regression (OLS), calculate - The daily Beta value for the past 3 months. (Daily= Daily returns) The monthly Beta value. (Monthly= Monthly returns) Refrain from using the (covariance(x,y)/variance(x)) formula. Attempt the question using regression.(Regression Reference) Were the Beta values more or less than 1? What if it was negative? Discuss. Include a brief writeup in the bottom of your jupyter notebook with your inferences from the Beta values and regression results

```
In [23]:
         maruti = pd.read_csv('MARUTI.csv')
         maruti= maruti[maruti.Series=='EQ']
         maruti.index=maruti.Date
          nifty=pd.read_csv('Nifty50.csv')
          nifty.index=nifty.Date
          prices = pd.concat([maruti['Close Price'], nifty['Close']], axis=1)
          prices.columns=['maruti','nifty']
          print(prices.head())
          returns=prices.pct_change()
          returns=returns.dropna(axis=0)
          returns.head()
                        maruti
                                  nifty
         Date
         15-May-2017 6823.90 9445.40
         16-May-2017 6953.95 9512.25
         17-May-2017 6958.20 9525.75
         18-May-2017 6831.05 9429.45
         19-May-2017 6790.55 9427.90
Out[23]:
                        maruti
                                   nifty
                Date
          16-May-2017
                      0.019058 0.007078
          17-May-2017
                      0.000611 0.001419
          18-May-2017 -0.018273 -0.010109
          19-May-2017 -0.005929 -0.000164
          22-May-2017 -0.013084 0.001098
```

In [24]: returns=returns.iloc[-60:,:]

```
In [25]: returns
```

Out[25]:

	maruti	nifty
Date		
11-Feb-2019	0.006118	-0.005007
12-Feb-2019	-0.002145	-0.005271
13-Feb-2019	-0.018743	-0.003485
14-Feb-2019	-0.001530	-0.004410
15-Feb-2019	-0.012462	-0.002015
18-Feb-2019	-0.012605	-0.007781
19-Feb-2019	-0.005575	-0.003440
20-Feb-2019	0.006665	0.012363
21-Feb-2019	-0.007058	0.005067
22-Feb-2019	0.016298	0.000167
25-Feb-2019	0.001808	0.008196
26-Feb-2019	-0.002975	-0.004118
27-Feb-2019	0.009299	-0.002644
28-Feb-2019	-0.019918	-0.001309
01-Mar-2019	0.015440	0.006579
05-Mar-2019	0.026330	0.011410
06-Mar-2019	-0.008549	0.005966
07-Mar-2019	-0.003946	0.000470
08-Mar-2019	-0.008728	-0.002062
11-Mar-2019	0.016390	0.012020
12-Mar-2019	0.010633	0.011922
13-Mar-2019	-0.009242	0.003584
14-Mar-2019	-0.000670	0.000137
15-Mar-2019	-0.000325	0.007370
18-Mar-2019	-0.024689	0.003094
19-Mar-2019	-0.012143	0.006124
20-Mar-2019	-0.022219	-0.000984

	maruti	nifty
Date		
22-Mar-2019	-0.018109	-0.005568
25-Mar-2019	-0.004594	-0.008960
26-Mar-2019	0.009674	0.011361
27-Mar-2019	-0.010280	-0.003327
28-Mar-2019	0.012005	0.010917
29-Mar-2019	0.011567	0.004659
01-Apr-2019	0.025200	0.003893
02-Apr-2019	0.007163	0.003775
03-Apr-2019	0.026590	-0.005912
04-Apr-2019	0.005684	-0.003946
05-Apr-2019	-0.000759	0.005859
08-Apr-2019	0.003060	-0.005267
09-Apr-2019	0.012217	0.005812
10-Apr-2019	-0.004185	-0.007509
11-Apr-2019	0.000209	0.001070
12-Apr-2019	0.021564	0.004031
15-Apr-2019	0.001314	0.004028
16-Apr-2019	0.014424	0.008280
18-Apr-2019	-0.001488	-0.002914
22-Apr-2019	-0.016945	-0.013473
23-Apr-2019	-0.037200	-0.001596
24-Apr-2019	-0.004568	0.012975
25-Apr-2019	-0.015884	-0.007193
26-Apr-2019	-0.009037	0.009694
30-Apr-2019	-0.025786	-0.000553
02-May-2019	0.002528	-0.001992
03-May-2019	0.004003	-0.001066
06-May-2019	-0.000052	-0.009733
07-May-2019	-0.001140	-0.008652

```
09-May-2019 -0.003789 -0.005075
        10-May-2019 0.001004 -0.002026
        13-May-2019 -0.013247 -0.011588
In [26]:
       X = returns['nifty']
       y = returns['maruti']
       X1 = sm.add constant(X)
       model = sm.OLS(y, X1)
        results = model.fit()
        print(results.summary())
                               OLS Regression Results
       Dep. Variable:
                                 maruti
                                        R-squared:
                                                                    0.151
       Model:
                                    0LS
                                        Adj. R-squared:
                                                                    0.136
       Method:
                           Least Squares F-statistic:
                                                                    10.28
                                                                  0.00219
       Date:
                         Tue, 02 Jun 2020
                                        Prob (F-statistic):
       Time:
                               15:41:09
                                        Log-Likelihood:
                                                                   179.65
       No. Observations:
                                    60
                                        AIC:
                                                                   -355.3
       Df Residuals:
                                    58
                                        BIC:
                                                                   -351.1
       Df Model:
                                     1
       Covariance Type:
                              nonrobust
       ______
                      coef
                                                P>|t|
                                                         [0.025
                                                                   0.975]
       const
                   -0.0016
                              0.002
                                      -1.006
                                                0.319
                                                         -0.005
                                                                    0.002
       niftv
                              0.235
                                       3,206
                                                0.002
                                                          0.283
                    0.7523
                                                                    1,222
       ______
       Omnibus:
                                        Durbin-Watson:
                                  1.985
                                                                    1.401
       Prob(Omnibus):
                                  0.371
                                        Jarque-Bera (JB):
                                                                    1.208
       Skew:
                                 -0.196
                                        Prob(JB):
                                                                    0.547
       Kurtosis:
                                  3.574
                                        Cond. No.
                                                                     147.
        ______
       Warnings:
       [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
```

nifty

maruti

08-May-2019 -0.007736 -0.012041

In [27]: prices['month']=prices.index.str.slice(3)

Date

```
In [28]:
         month=np.zeros((25, 2), dtype=float)
          for i, j in enumerate (prices.month.unique()):
              temp=prices[prices.month==j]
              month[i]=temp.iloc[-1,0:2]
          month
Out[28]: array([[ 7211. , 9621.25],
                 [ 7217.6 , 9520.9 ],
                  7750.05, 10077.1 ],
                 [ 7700.3 , 9917.9 ],
                 [ 7978.2 , 9788.6 ],
                 [ 8211.25, 10335.3 ],
                 [ 8599.1 , 10226.55],
                 [ 9729.55, 10530.7 ],
                 [ 9509.7 , 11027.7 ],
                 [ 8850.95, 10492.85],
                 [ 8861.1 , 10113.7 ],
                 [ 8814.95, 10739.35],
                 [ 8537.2 , 10736.15],
                 [ 8825.6 , 10714.3 ],
                 [ 9520.55, 11356.5 ],
                 [ 9096.4 , 11680.5 ],
                 [ 7347.95, 10930.45],
                 [ 6616.4 , 10386.6 ],
                 [ 7661.6 , 10876.75],
                 [ 7465.5 , 10862.55],
                 [ 6641.15, 10830.95],
                 [ 6829.7 , 10792.5 ],
                 [ 6672.55, 11623.9 ],
                 [ 6666.4 , 11748.15],
                 [ 6543.75, 11148.2 ]])
         month=pd.DataFrame(month)
In [29]:
         month.coulmns=['maruti', 'nifty']
In [30]:
```

month.index=prices['month'].unique()

In [31]: month

Out[31]:

	0	1
May-2017	7211.00	9621.25
Jun-2017	7217.60	9520.90
Jul-2017	7750.05	10077.10
Aug-2017	7700.30	9917.90
Sep-2017	7978.20	9788.60
Oct-2017	8211.25	10335.30
Nov-2017	8599.10	10226.55
Dec-2017	9729.55	10530.70
Jan-2018	9509.70	11027.70
Feb-2018	8850.95	10492.85
Mar-2018	8861.10	10113.70
Apr-2018	8814.95	10739.35
May-2018	8537.20	10736.15
Jun-2018	8825.60	10714.30
Jul-2018	9520.55	11356.50
Aug-2018	9096.40	11680.50
Sep-2018	7347.95	10930.45
Oct-2018	6616.40	10386.60
Nov-2018	7661.60	10876.75
Dec-2018	7465.50	10862.55
Jan-2019	6641.15	10830.95
Feb-2019	6829.70	10792.50
Mar-2019	6672.55	11623.90
Apr-2019	6666.40	11748.15
May-2019	6543.75	11148.20

```
In [32]: returnsm = month.pct_change()
    returnsm = returnsm.dropna(axis=0)
    Xm = returns['nifty']
    ym = returns['maruti']
    X1m = sm.add_constant(Xm)
    model = sm.OLS(ym, X1m)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

Dep. Variable:	ma	aruti	R-sq	R-squared:					
Model:		OLS		Adj.	Adj. R-squared:		0.136		
Method:		Least Squares		F-st	F-statistic:		10.28		
Date:		Tue, 02 Jun 2020		Prob	Prob (F-statistic):		0.00219		
Time:		15:41:09		Log-	Log-Likelihood:		179.65		
No. Observatio	ns:	60		AIC:	AIC:		-355.3		
Df Residuals:			58	BIC:			-351.1		
Df Model:			1						
Covariance Type:		nonro	bust						
========	coef	std err	=====	====== t	P> t	[0.025	0. 975]		
const	-0.0016	0.002	; -:	1.006	0.319	-0.005	0.002		
nifty	0.7523	0.235		3.206	0.002	0.283	1.222		
Omnibus: 1.985 Durbin-Watson: 1.4						1.401			
Prob(Omnibus):		3.371		ue-Bera (JB):		1.208			