Precisión, Exactitud y Error Experimental en la Medición del Peso del Agua.

Precision, Accuracy, and Experimental Error in Measuring the Weight of Water.

Juan Cardenas, Camilo Correa, Jonathan Gil, Joseph Diaz Facultad de Ingeniería de Sistemas, Universidad Santo Tomás Tunja, Colombia
juan.cardenast@usantoto.edu.co
camilo.correab@usantoto.edu.co
jonathan.gil@usantoto.edu.co
joseph.diaz@usantoto.edu.co

Resumen

Durante esta sesión, llevamos a cabo la técnica de pipeteo con agua, pero además, identificamos los diferentes instrumentos utilizados en el laboratorio y sus usos, realizamos nuestras propias observaciones y realizamos una pequeña práctica en la que llevamos a cabo el pipeteo y anotamos los valores obtenidos. También generamos un reporte con los datos obtenidos durante la práctica.

Abstract

During this session, we carried out the technique of pipetting water, but also identified the different instruments used in the laboratory and their uses, made our own observations, and completed a small practical exercise in which we carried out pipetting and recorded the values obtained. We also generated a report with the data obtained during the practice.

1. Reconocimiento del laboratorio.

1.1. Señalización presente en el laboratorio. [6]

A. Fácilmente inflamables:

- Las sustancias y preparados que puedan calentarse e inflamarse en el aire a temperatura ambiente sin aporte de energía.
- Los sólidos que puedan inflamarse fácilmente tras un breve contacto con una fuente de inflamación y que sigan quemándose o consumiéndose una vez retirada dicha fuente.

- Los líquidos cuyo punto de ignición sea muy bajo.
- Las sustancias y preparados que, en contacto con agua o con aire húmedo, desprendan gases extremadamente inflamables en cantidades peligrosas.

Figura 1: Simbolo de sustancia fácilmente inflamable.

B. Tóxicos: Las sustancias y preparados que, por inhalación; ingestión o penetración cutánea en pequeñas cantidades puedan provocar efectos agudos o crónicos e incluso la muerte.

Figura 2: Simbolo de sustancia tóxica.

C. Nocivos: Las sustancias y preparados que, por inhalación, ingestión o penetración cutánea puedan provocar efectos agudos o crónicos e incluso la muerte.

Figura 3: Simbolo de sustancia nociva.

D. Corrosivos: Las sustancias y preparados que, en contacto con tejidos vivos puedan ejercer una acción destructiva de los mismos.

Figura 4: Simbolo de sustancia corrosiva.

E. Irritantes: Las sustancias y preparados no corrosivos que, en contacto breve, prolongado o repetido con la piel o las mucosas puedan provocar una reacción inflamatoria.

Figura 5: Simbolo de sustancia irritante.

F. Peligrosos para el medio ambiente: Las sustancias o preparados que presenten o puedan presentar un peligro inmediato o futuro para uno o más componentes del medio ambiente.

Figura 6: Simbolo de sustancia peligrosa para el ambiente.

Figura 7: Elementos de seguridad.

1.2. Accidentes comunes en el laboratorio y cómo prevenirlos.

Podemos prevenir estos accidentes siguiendo al pie de la letra recomendaciones expuestas en [6]:

- Realizar una lectura de la guía, para así estar enterados de cómo se va a realizar la práctica (para conocer el procedimiento).
- Asegurarnos de que disponemos de todo el material requerido.
- No manipular los químicos en exceso, siempre usar lo menos posible para evitar accidentes.
- Llevar todos los elementos de bioseguridad necesarios, como bata, guantes, gafas, etc.
- En caso de que algo llegase a suceder, es bueno contar siempre con un plan de actuación.

1.3. Materiales del laboratorio examinados

Véase cuadro 3.

1.4. Clasificacion del material de laboratorio

Véase cuadro 4.

2. Procedimiento experimental.

En este experimento se midió el volumen de agua en un beaker utilizando una balanza analítica de presición, la cual es un método de medida gravimétrico según Skoog [2]. El procedimiento constó de los siguientes pasos:

- Se midió la masa del beaker vacío utilizando una balanza analítica de precisión y se registró el valor en una tabla de datos.
- Se agregaron 10 ml de agua al beaker y se midió la masa del beaker lleno de agua utilizando la misma balanza analítica de precisión. Se registró el valor en la tabla de datos.

- 3. Se calculó la diferencia entre la masa del beaker lleno de agua y la masa del beaker vacío para determinar la masa del agua contenida en el beaker. Este valor se registró en la tabla de datos.
- 4. Se utilizó la densidad del agua a temperatura ambiente para calcular el volumen del agua en el beaker. Este valor se obtuvo dividiendo la masa del agua por la densidad del agua y se registró en la tabla de datos.
- 5. Se repitió el procedimiento una vez por cada integrante del grupo para obtener un promedio del volumen de agua en el beaker.

Después de realizado el procedimiento se obtubieron los siguientes datos:

	Peso	Peso del	Peso de
	del	beaker	agua
	beaker	con agua	
	(g)	(g)	(g)
Joseph	44.985	55.103	10.118
Camilo	44.986	55.037	10.051
Juan Pablo	44.960	55.046	10.086
Jonathan	44.970	55.070	10.100

Cuadro 1: Medición de peso del agua con balanza de precisión.

En base a estos datos y teniendo en cuenta que en [5] la densidad del agua es definida como 1 g/ml, obtenemos:

	Peso	de	Volumen
	agua		de agua
	(g)		(ml)
Joseph	10.118		10.118
Camilo	10.051		10.051
Juan Pablo	10.086		10.086
Jonathan	10.100		10.100

Cuadro 2: Calculo del volumen del agua.

3. Analisis del error experimental

La presición se refiere a la capacidad de repetir una medición y obtener resultados similares. Si las mediciones de todos son consistentes entre sí, es decir, si no hay mucha variación en los resultados, entonces se puede decir que la presición es alta.

La exactitud, por otro lado, se refiere a la proximidad de los resultados, entonces podemos decir que la exactitud es alta.

El error experimental es la diferencia entre el valor medido y el valor verdadero. Es normal que exista algún grado de error experimental en cualquier medición debido a diversas causas, como la presición del instrumento de medición, la habilidad del operador, las condiciones ambientales, etc. El objetivo es minimizar el error experimental para obtener mediciones precisas y exactas.

Algunos factores que pueden influir en el error experimental tratado son:

- La presición del instrumento de medición: si la balanza no es lo suficientemente precisa, las mediciones pueden variar significativamente entre los integrantes del grupo.
- La habilidad del operador: si no se está familiarizado con la técnica de medición o no se realiza de manera consistente, las mediciones pueden variar.
- Las condiciones ambientales: si hay cambios en la temperatura, la humedad o la presión atmosférica durante las mediciones, pueden afectar los resultados.
- El volumen real de agua: si el volumen real de agua en el beaker no es exactamente de 10 ml, entonces todas las mediciones estarán desviadas del valor verdadero.

En conclusión, para obtener mediciones precisas y exactas del peso de 10 ml de agua usando un beaker y repitiendo entre los cuatro integrantes del grupo, se deben minimizar los errores experimentales y controlar los factores quepueden influir en ellos.

Referencias

- John R Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements.
 a ed. University Science Books, 1997.
- [2] D.A. Skoog, D.M. West y F.J. Holler. *Manual de Química Analítica*. 8.ª ed. McGraw-Hill, 2004.
- [3] D. Brynn Hibbert y John H. Hinds. "Precision and accuracy in measurement". En: Analytical Chemistry (2010).
- [4] R. Mark Rogers y Kyle H. Wolcott. «Measurement of Liquid Volume and Mass Using a Beaker». En: *Journal of Chemical Education* (2012).
- [5] Lorena Atarés Huerta. Determinación de la densidad de un líquido con el método del picnómetro. URL: https://riunet.upv.es/bitstream/handle/10251/12655/11.%20Art%C3%ADculo%20docente.%20Determinaci%C3%B3n%20de%20la%20densidad%20de%20un%201%C3%ADquido%20con%20el%20m%C3%A9todo%20del%20picn%C3%B3metro.pdf.Consultado en: 22 02 2023.
- [6] Seguridad en el laboratorio químico. URL: https: //departamento.us.es/depquiorg/docencia/ Normas_seguridad_laboratorio.pdf. Consultado en: 22 02 2023.

	Instrumento	Uso	Especificaciones	Observaciones
1	Soporte	Sostenimiento	specificaciones	C 2201 MOIOILES
	universal			
2	Pinzas para	Sujetar instrumentos mientras se		
	tubo de	calientan y/o se manipulan.		
	ensayo	<i>y</i> /		
3	Decantador	Separación de líquidos inmiscibles.	250 ml	
4	Pipeta	Medir la alícuota de un líquido con	5 ml A . S	
	1	mucha presión.		
5	Embudo	Se utiliza para el trasvasijado	60 mm	
		de productos químicos desde un		
		recipiente a otro.		
6	Earlen-	Mide cantidades de líquidos.	250 ml	
	Meyer			
7	Tubos	Mantienen controlada la presión con	Micrometro 0-16.5	
	capilares	la que el flujo del refrigerante pasa	C tm.	
		entre el condensador y el evaporador		
		y presentan resistencia al paso del		
		refrigerante en estado líquido.		
8	Termometro	Mide la temperatura con un alto	-10° hasta 200°	
		nivel de exactitud.		
9	Mezclador	Alcanzar procesos de mezcla,		
		suspensión, dispersión,		
		homogenización, transferencia		
10	Picnómetro	de calor, etc.	25 ml	
10	Pichometro	Mide con precisión la densidad de líquidos.	20 IIII	
11	Espatula	Romper, raspas, recoger y transferir		
11	Espatula	productos químicos sólidos.		
12	Mechero a	Calentar, esterilizar o proceder a la		
	gas	combustión de muestras o reactivos		
	Ban	químicos.		
13	Tubo de	Contener y calentar un baño de		
	thiele	aceite mineral o glicerina y se utiliza		
		comúnmente en la determinación del		
		punto de fusión de una sustancia.		
14	Crisol	Calentar, fundir, quemar y calcinar		
		sustancias.		
15	Capsula de	Evaporar el exceso de solvente en		
	porcelana	una muestra.		
16	Malla de	Repartir la temperatura de manera		
	asbesto	uniforme cuando se calienta con un		
		mechero.		
17	Pinzas para	Sostener y manipular capsulas		
	crisol	de evaporación, crisoles		
		y otros objetos.		

Cuadro 3: Matriz de los materiales suministrados.

Material Volumétrico	Material de Calentamiento	Material de Sostenimiento
(Graduado o aforado)		

Cuadro 4: Clasificación de los materiales observados.