Lecture 5: Feature Extraction Linear Filters

Features

- Reduce the size of the data on which we want to build our inferences
- Reduction should retain most informative pieces
 - Edges and Corners
 - Texture
- Mathematically/computationally

Mathematical view

- Represent image in some way
 - Array of numbers in last class
- Operate on this representation to find values that are significant
- Filter out significant values
- Linear edge detectors: (discussed in last class)
- Today: discuss the idea of linear filters generally
- Consider: Apply a filtering function locally

Linear Filtering

- About modifying pixels based on neighborhood.
- Linear means linear combination of neighbors.
 - Linear methods simplest
 - Can combine linear methods in any order to achieve same result
 - Maybe easier to undo
 - "Filter Banks"
- Useful to:
 - Integrate information over constant regions.
 - Scale.
 - Detect changes (edge detection)
- Fourier analysis. (next class)
 - General linear filtering
 - General image representation
 - Image Coding

What is image filtering?

 Modify the pixels in an image based on some function of a local neighborhood of the pixels.

10 5	3	Some function	[
4 5	1	\rightarrow			7			
1 1	7		[
Local image data			Mod	ifie	ed ii	mag	ge data	10

(Freeman)

Linear functions

- Simplest: linear filtering.
 - Replace each pixel by a linear combination of its neighbors.
- The prescription for the linear combination is called the "convolution kernel".

0	5	3	0	0	0
4	5	1	0	0.5	0
1	1	7	0	1	0.5

Local image data

kernel

Modified image data 11

(Freeman)

Convolution

- Convolution kernel *g*, represented as matrix.
 - it's associative

• Result is:

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

Edge Filters

Sobel

 $\begin{array}{c|ccccc}
1 & 2 & 1 \\
\hline
0 & 0 & 0 \\
-1 & -2 & -1
\end{array}$

• Prewitt

1	-1	0	1
$\frac{1}{6}$	-1	0	1
	-1	0	1

 $\begin{array}{c|cccc}
 & 1 & 1 & 1 \\
\hline
 & 0 & 0 & 0 \\
 & -1 & -1 & -1
\end{array}$

Roberts

1	0
0	-1

• Laplacian

0	1	0
1	-4	1
0	1	0

	1	1	1
<u>1</u> 3	1	-8	1
	1	1	1

Linear filtering (warm-up slide)

original

?

Linear filtering (warm-up slide)

original

Filtered (no change)

Linear filtering

original

?

shift

original

shifted

Linear filtering

original

?

Blurring

original

Blurred (filter applied in both dimensions).

Blur examples

Blur examples

Linear filtering (warm-up slide)

Linear filtering (no change)

original

Filtered (no change)

Linear filtering

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

Sharpened original

Sharpening example

Sharpened (differences are accentuated; constant areas are left untouched).

Sharpening

before after

Filtering to reduce noise

- Noise is what we're not interested in.
 - We'll discuss simple, low-level noise today: Light fluctuations; Sensor noise; Quantization effects; Finite precision
 - Not complex: shadows; extraneous objects.
- A pixel's neighborhood contains information about its intensity.
- Averaging noise reduces its effect.

Additive noise

- I = S + N. Noise doesn't depend on signal.
- We'll consider:

$$I_i = s_i + n_i$$
 with $E(n_i) = 0$
 s_i deterministic.
 n_i, n_j independent for $n_i \neq n_j$
 n_i, n_j identically distributed

Average Filter

- Mask with positive entries, that sum 1.
- Replaces each pixel with an average of its neighborhood.
- If all weights are equal, it is called a BOX filter.

1 1 1 1 1 1 1 1 1 1 1

(Camps)

Does it reduce noise?

Intuitively, takes out small variations.

$$I(i, j) = \hat{I}(i, j) + N(i, j) \text{ with } N(i, j) \sim N(0, \sigma)$$

$$O(i, j) = \frac{1}{m^2} \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} \hat{I}(i-h, j-k) + N(i-h, j-k) =$$

$$= \frac{1}{m^2} \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} \hat{I}(i-h, j-k) + \underbrace{\frac{1}{m^2} \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} N(i-h, j-k)}_{\hat{N}(i,j)}$$

$$E(\hat{N}(i, j)) = 0$$

$$E(\hat{N}^2(i, j)) = \frac{1}{m^2} m \sigma^2 = \frac{\sigma^2}{m} \Rightarrow \hat{N}(i, j) \sim N(0, \frac{\sigma}{\sqrt{m}})$$
(Camps)

Matlab Demo of Averaging

Example: Smoothing by Averaging

Smoothing as Inference About the Signal

Gaussian Averaging

- Rotationally symmetric.
- Weights nearby pixels more than distant ones.
 - This makes sense as probabalistic inference.

 A Gaussian gives a good model of a fuzzy blob

An Isotropic Gaussian

 The picture shows a smoothing kernel proportional to

$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

(which is a reasonable model of a circularly symmetric fuzzy blob)

Smoothing with a Gaussian

Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - First convolve each row with a 1D filter
 - Then convolve each column with a 1D filter.

Smoothing as Inference About the Signal: Non-linear Filters.

Filtering to reduce noise: Lessons

- Noise reduction is probabilistic inference.
- Depends on knowledge of signal and noise.
- In practice, simplicity and efficiency important.