1. What is superconductivity

order phase transition with DT & 0.001 K and g < 10²⁵JZ·m no latent heat but change in heat capacity and

conductivity ...

2. History.

The Discovery of Superconductivity 1911

The Nobel Prize in Physics 1913

"for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium

Heike Kamerlingh Onnes the Netherlands Leiden University Leiden, the Netherlands

Leiden, the N b. 1853 d. 1926

•http://www.nobel.se/physics/laureates

Lead (Pb)	7.196 K	FCC
Lanthanum (La)	4.88 K	HEX
Tantalum (Ta)	4.47 K	BCC
Mercury (Hg)	4.15 K	RHL
Tin (Sn)	3.72 K	TET
Indium (In)	3.41 K	TET
Palladium (Pd)*	3.3 K	(see note 1)
Chromium (Cr)*	3 K	(see note 1)
Thallium (Tl)	2.38 K	HEX
Rhenium (Re)	1.697 K	HEX
Protactinium (Pa)	1.40 K	TET
Thorium (Th)	1.38 K	FCC
Aluminum (Al)	1.175 K	FCC
Gallium (Ga)	1.083 K	ORC
Molybdenum (Mo)	0.915 K	BCC
Zinc (Zn)	0.85 K	HEX
Osmium (Os)	0.66 K	HEX
Zirconium (Zr)	0.61 K	HEX
Americium (Am)	0.60 K	HEX
Cadmium (Cd)	0.517 K	HEX
Ruthenium (Ru)	0.49 K	HEX
Titanium (Ti)	0.40 K	HEX
Uranium (U)	0.20 K	ORC
Hafnium (Hf)	0.128 K	HEX
Iridium (Ir)	0.1125 K	FCC
Beryllium (Be)	0.023 K (SRM 768)	HEX
Tungsten (W)	0.0154 K	BCC
Platinum (Pt)*	0.0019 K	(see note 1)
Lithium (Li)	0.0004 K	BCC
Rhodium (Rh)	0.000325 K	FCC

BCS Theory of Superconductivity

The Nobel Prize in Physics 1972

 "for their jointly developed theory of superconductivity, usually called the BCS-theory"

John Bardeen 1/3 of the prize

Leon Neil John Robert Schrieffer 1/3 of the prize

1/3 of the prize

University of

Cooper

Pennsylvania Philadelphia, PA, USA b. 1930 b. 1931

http://www.nobel.se/physics/laureates

ELECTRON-PHONON INTERACTIONS AND SUPERCONDUCTIVITY

Nobel Lecture, December 11, 1972

By JOHN BARDEEN

Departments of Physics and of Electrical Engineering

University of Illinois Urbana, Illinois

INTRODUCTION

Our present understanding of superconductivity has arisen from a close interplay of theory and experiment. It would have been very difficult to have arrived at the theory by purely deductive reasoning from the basic equations of quantum mechanics. Even if someone had done so, no one would have believed that such remarkable properties would really occur in nature. But, as you well know, that is not the way it happened, a great deal had been learned about the experimental properties of superconductors and phenomenological equations had been given to describe many aspects before the microscopic theory was developed.

The Nobel Prize in Physics 1973

"for their experimental discoveries regarding tunneling phenomena superconductors, respectively"

"for his theoretical predictions of the properties of a supercurrent through a in semiconductors and tunnel barrier, in particular those phenomena which are generally known as the Josephson effects-

Leo Esaki

1/4 of the prize Japan IBM Thomas 1.

Ivar Giaever 1/4 of the prize USA

General Electric

Brian David Josephson 1/2 of the prize United Kingdom University of

1/4 of the prize

Japan

b. 1925

USA IBM Thomas J. Watson Research Center Yorktown Heights, NY, USA General Electric Company Schenectady, NY, USA

b. 1929 (in Bergen, Norway)

Josephson

b. 1940

1/4 of the prize 1/2 of the prize United Kingdom

University of Cambridge Cambridge, United Kingdom

•http://www.nobel.se/physics/laureates

Meissner effect

The Meissner Effect

FIGURE 18.23 Representation of the Meissner effect. (a) While in the superconducting state, a body of material (circle) excludes a magnetic field (arrows) from its interior. (b) The magnetic field penetrates the same body of material once it becomes normally conductive.

Perfect Conductor R=0

Perfect Diamagnet B=0

Meissener Effect

https://www.youtube.com/watch?v=r8388RRI2h4

https://www.youtube.com/watch?v=IC-3li6ScUE

https://www.youtube.com/watch?v=xPyIDFEmMIE

4. Effect of magnetic fields à currents

$$H_C(T) = H_C(0) \left(1 - \frac{T^2}{T_C^2} \right)$$

Figure 18.22 Critical temperature, current density, and magnetic field boundary separating superconducting and normal conducting states (schematic).

5. Type II superconductor

Type-II Superconductor

A current-carrying type II superconductor in the mixed state

When a current is applied to a type II superconductor (blue rectangular box) in the mixed state, the magnetic vortices (blue cylinders) feel a force (Lorentz force) that pushes the vortices at right angles to the current flow. This movement dissipates energy and produces resistance [from D. J. Bishop et al., Scientific American, 48 (Feb. 1993)].

http://phys.kent.edu/pages/cep.htm

Table 18.7	Critical Temperatures and Magnetic Fluxes for Selected
Supercondu	cting Materials

	Critical Temperature	Critical Magnetic		
- Material	$T_{C}(K)$	Flux Density B_c (tesla)		
Elements ^b				
Tungsten	0.02	0.0001		
Titanium	0.40	0.0056		
Aluminum	1.18	0.0105		
Tin	3.72	0.0305		
Mercury (α)	4.15	0.0411		
Lead	7.19	0.0803		
	Compounds and Alloys	ь		
Nb-Ti alloy	10.2	12		
Nb-Zr alloy	10.8	11		
PbMo ₆ S ₈	14.0	45		
V₃Ga	16.5	22		
Nb ₃ Sn	18.3	22		
Nb_3Al	18.9	32		
Nb₃Ge	23.0	30		
	Ceramic Compounds			
YBa ₂ Cu ₃ O ₇	92	_		
$Bi_2Sr_2Ca_2Cu_3O_{10}$	110	_		
$Tl_2Ba_2Ca_2Cu_3O_{10}$	125	_		
HgBa ₂ Ca ₂ Cu ₂ O ₈	153	<u> </u>		

Figure 9.13 Occupation of energy levels at absolute zero in (a) a normal metal and (b) a superconductor. E_F denotes the Fermi energy. Note that in the superconductor there is a gap between the highest filled states and the lowest vacant states.

$$E = 3.52k_BT_c\sqrt{1 - (T/T_c)}$$

High temperature superconductivity 1. BCS experimental evidence. surface current.

Penetration of magnetic field below the surface of superconductors

The surface current is distributed in the surface layer. the layer carrying the electric current has a finite thickness, and because of this, the external magnetic field partially penetrates into the interior of the superconductor,

$$B(x) = B_{\text{external}} \exp \left(-\frac{x}{\lambda}\right)$$

 λ = penetration distance at temperature T;

Temperature dependence of penetration distance

λ = penetration distance at temperature T; λ_0 = penetration distance at temperature T=0.

$$\lambda = \frac{\lambda_0}{\sqrt{1 - \left(\frac{T}{T_c}\right)^4}}$$

 λ_0 = 30 - 130 nm, depending on the superconductor material

Figure 1.3: Magnetic flux through the hole in a superconductor is quantized.

Energy gap.

Measuring the gap E_g

- 1. Infrared Absorption: The absorption coefficient is measured versus the energy of infrared or microwave photons, analogous to a gap measurement in a semiconductor. (Only the energy scale is meV insetad of eV). In the superconducting state, photons cannot be absorbed when their energy is less than E_g. (Lect. 30, Slide 4)
- **2. Tunneling**: Electrons tunnel from a metal through an insulator into a superconductor. Current-versus-voltage I(V) curves are measured. The current vanishes for $|V| < \Delta/e$. The derivative dI/dV is related to the density of states D(E). (Lect. 30, Slide 5)
- 3. Photoemission: The number of emitted photoelectrons versus their final state energy $E_{\rm fin}$ replicates the density of states D(E). A superconductor does not have any states in the energy region $E_{\rm F}-\Delta < E < E_{\rm F}$. Photoemission can measure the **k-dependence of** $E_{\rm g}$ and thereby determine the orbital angular momentum l of the pairs. That is particularly important for high temperature superconductors, which are d-wave (Lect. 30, Slide 6).

2. High Tc

Type 2 Superconductors

From < http://www.superconductors.org/Type2.htm>

Structure

 $Figure \ 9. \ Crystal \ lattice \ structure \ of \ the \ High-T_c \ superconductor, \ YBa_2Cu_3O_7.$

Superconductivity occurs in $Cu^{2+}O^{2-}$ planes embedded into an ionic lattice.

ψ of single electrons

Ψ of pairs (d-wave)

The superconducting carriers are holes introduced by doping.

The big open question is the nature of the boson that gives rise to pairing according to the diagram on p. 1 (magnon?, phonon?, complex mixture of those?).

