Bevezetés a számítógépi grafikába Felületmodellezés

Troll Ede Mátyás

Matematikai és Informatikai Intézet Eszterházy Károly Egyetem

Eger, 2019

Áttekintés

- Paraméteres felületek
- Poligonhálók
 - B-Rep adatstruktúra
 - Winged-Edge adatstruktúra
- Standard fájltípusok
 - A Wavefront fájltípus (*.obj)
 - A Plygon fájltípus (*.ply)

Áttekintés

- Paraméteres felületek
- 2 Poligonhálók
 - B-Rep adatstruktúra
 - Winged-Edge adatstruktúra
- Standard fájltípusok
 - A Wavefront fájltípus (*.obj)
 - A Plygon fájltípus (*.ply)

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

• Explicit: z = f(x, y)

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

- Explicit: z = f(x, y)
- **Implicit:** F(x, y, z) = 0

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

- Explicit: z = f(x, y)
- **Implicit:** F(x, y, z) = 0
- Paraméteres: $s(u, v), (u, v) \in \mathbb{R}^2$

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

- Explicit: z = f(x, y)
- **Implicit:** F(x, y, z) = 0
- Paraméteres: $s(u, v), (u, v) \in \mathbb{R}^2$

Az implicit alak elsősorban speciális feladatok esetén fontos (metszetek előállítása), míg az explicit alak komputergrafikai szempontból lényegében elhanyagolható.

A 3 dimenziós térben a felületek leírására 3 különböző lehetőség adott:

- Explicit: z = f(x, y)
- **Implicit:** F(x, y, z) = 0
- Paraméteres: $s(u, v), (u, v) \in \mathbb{R}^2$

Az implicit alak elsősorban speciális feladatok esetén fontos (metszetek előállítása), míg az explicit alak komputergrafikai szempontból lényegében elhanyagolható. A továbbiakban a paraméteres felületek megjelenítésére fókuszálunk.

Paraméteres felület

A paraméteres felület egy olyan kétváltozós függvény, mely a sík egy tartományát a térve képezi, tehát $\mathbf{s}:\mathbb{R}^2\to\mathbb{R}^3$.

Paraméteres felület

A paraméteres felület egy olyan kétváltozós függvény, mely a sík egy tartományát a térve képezi, tehát $\mathbf{s}:\mathbb{R}^2\to\mathbb{R}^3$. A paraméteres femületeket a görbékhez hasonlóan koordinátafüggvényeikkel adhatjuk meg

$$\mathbf{s}\left(u,v\right)=\left(x\left(u,v\right),y\left(u,v\right),z\left(u,v\right)\right)$$

ahol $(u,v) \in G \subset \mathbb{R}^2$, és $u \in G_1 \subset \mathbb{R}$ valamint $v \in G_2 \subset \mathbb{R}$.

Paraméteres felület

A paraméteres felület egy olyan kétváltozós függvény, mely a sík egy tartományát a térve képezi, tehát $\mathbf{s}:\mathbb{R}^2\to\mathbb{R}^3$. A paraméteres femületeket a görbékhez hasonlóan koordinátafüggvényeikkel adhatjuk meg

$$\mathbf{s}\left(u,v\right)=\left(x\left(u,v\right),y\left(u,v\right),z\left(u,v\right)\right)$$

ahol $(u,v) \in G \subset \mathbb{R}^2$, és $u \in G_1 \subset \mathbb{R}$ valamint $v \in G_2 \subset \mathbb{R}$.

Felület megjelenítése ponthálóval

A felületek megjelenítésének legegyszerűbb megoldása az, ha a paramétersíkon bizonyos mennyiségű ponthoz kiszámítjuk a felület pontjait és azokat megjelenítjük. Ezt a felület ponthálós megjelenítésének nevezzük.

Felületi görbék

Tekintsük az $\mathbf{s}(u, v)$ felületet, és annak paramétertartományában az $\mathbf{u}(t) = (u(t), v(t))$ görbét.

Felületi görbék

Tekintsük az $\mathbf{s}(u,v)$ felületet, és annak paramétertartományában az $\mathbf{u}(t) = (u(t),v(t))$ görbét. Az \mathbf{u} görbe képét a felületen az $\mathbf{x}(t) = \mathbf{s}(u(t),v(t))$ egyparaméteres függvény írja le. Az ilyen görbét felületi görbének nevezzük.

A felületi görbe egy $\mathbf{p}_0(t_0)$ pontjában az érintővektor

$$\dot{\mathbf{x}}(t_0) = \frac{\partial \mathbf{s}}{\partial u}\dot{u}(t_0) + \frac{\partial \mathbf{s}}{\partial v}\dot{v}(t_0)$$

A felületi görbe egy $\mathbf{p}_0(t_0)$ pontjában az érintővektor

$$\dot{\mathbf{x}}(t_0) = \frac{\partial \mathbf{s}}{\partial u}\dot{u}(t_0) + \frac{\partial \mathbf{s}}{\partial v}\dot{v}(t_0)$$

Ha a felületen egy másik, szintén a $\mathbf{p}_{0}\left(t_{0}\right)$ ponton áthaladó $\mathbf{x}^{*}\left(t\right)=\mathbf{s}\left(u^{*}\left(t\right),v^{*}\left(t\right)\right)$ görbét tekintünk,

A felületi görbe egy $\mathbf{p}_0(t_0)$ pontjában az érintővektor

$$\dot{\mathbf{x}}(t_0) = \frac{\partial \mathbf{s}}{\partial u} \dot{u}(t_0) + \frac{\partial \mathbf{s}}{\partial v} \dot{v}(t_0)$$

Ha a felületen egy másik, szintén a $\mathbf{p}_0(t_0)$ ponton áthaladó $\mathbf{x}^*(t) = \mathbf{s}(u^*(t), v^*(t))$ görbét tekintünk, annak érintővektora

$$\dot{\mathbf{x}}^*(t_0) = \frac{\partial \mathbf{s}}{\partial u}\dot{u}^*(t_0) + \frac{\partial \mathbf{s}}{\partial v}\dot{v}^*(t_0)$$

A felületi görbe egy $\mathbf{p}_0(t_0)$ pontjában az érintővektor

$$\dot{\mathbf{x}}(t_0) = \frac{\partial \mathbf{s}}{\partial u} \dot{u}(t_0) + \frac{\partial \mathbf{s}}{\partial v} \dot{v}(t_0)$$

Ha a felületen egy másik, szintén a $\mathbf{p}_{0}\left(t_{0}\right)$ ponton áthaladó $\mathbf{x}^{*}\left(t\right)=\mathbf{s}\left(u^{*}\left(t\right),v^{*}\left(t\right)\right)$ görbét tekintünk, annak érintővektora

$$\dot{\mathbf{x}}^*(t_0) = \frac{\partial \mathbf{s}}{\partial u}\dot{u}^*(t_0) + \frac{\partial \mathbf{s}}{\partial v}\dot{v}^*(t_0)$$

Tehát mindkettő érintővektor $\frac{\partial \mathbf{s}}{\partial u}$ és $\frac{\partial \mathbf{s}}{\partial v}$ lineáris kombinációja.

Érintősík

A felület egy adott \mathbf{p}_0 (t_0) pontján áthaladó tetszőleges görbe érintője tehát a $\frac{\partial \mathbf{s}}{\partial u}$ és $\frac{\partial \mathbf{s}}{\partial v}$ vektorok által felfestített síkban van, mely síkot a felület \mathbf{p}_0 (t_0)-beli **érintősíkjának** nevezünk.

Megjelenítés normálisokkal

A felület váltoásának érzékeltetése céljából a pontháló mellett megjeleníthetjük a pontbeli normálisokat.

Megjelenítés normálisokkal

A felület váltoásának érzékeltetése céljából a pontháló mellett megjeleníthetjük a pontbeli normálisokat. A normálisok az adott pontban a $\frac{\partial \mathbf{s}}{\partial u}$ és $\frac{\partial \mathbf{s}}{\partial v}$ vektorok vektoriális szorzataként állnak elő.

Paramétervonalak

A paraméteres felületek megjelenítésekor általában olyan felületi görbéket tekintünk, melyek esetében u=t, v=konstans, illetve u=konstans, v=t.

Paramétervonalak

A paraméteres felületek megjelenítésekor általában olyan felületi görbéket tekintünk, melyek esetében u=t, v=konstans, illetve u=konstans, v=t. Ezen görbék a paramétersík koordinátatengelyeivel párhuzamos egyenesek képei a felületen, melyeket **paramétervonal**aknak nevezünk.

Paramétervonalak

A paraméteres felületek megjelenítésekor általában olyan felületi görbéket tekintünk, melyek esetében u=t, v=konstans, illetve u=konstans, v=t. Ezen görbék a paramétersík koordinátatengelyeivel párhuzamos egyenesek képei a felületen, melyeket **paramétervonal**aknak nevezünk.

Áttekintés

- Paraméteres felületek
- Poligonhálók
 - B-Rep adatstruktúra
 - Winged-Edge adatstruktúra
- Standard fájltípusok
 - A Wavefront fájltípus (*.obj)
 - A Plygon fájltípus (*.ply)

Poligonhálók

Ahhoz, hogy színes, árnyalt megjelenítést tudjunk készíteni, egy másfajta szemléletre lesz szükségünk. A felületeket poligonhálóval fogjuk közelíteni.

Poligonhálók

Ahhoz, hogy színes, árnyalt megjelenítést tudjunk készíteni, egy másfajta szemléletre lesz szükségünk. A felületeket poligonhálóval fogjuk közelíteni. Általában háromszögekből álló hálót alkalmazunk, mivel 4 pont esetén nem biztosított, hogy azok mindegyike egy síkba essen.

Poligonhálók

Ahhoz, hogy színes, árnyalt megjelenítést tudjunk készíteni, egy másfajta szemléletre lesz szükségünk. A felületeket poligonhálóval fogjuk közelíteni. Általában háromszögekből álló hálót alkalmazunk, mivel 4 pont esetén nem biztosított, hogy azok mindegyike egy síkba essen. (Még ha a pontok egy síkba esnek is, a számítási pontatlanság miatt ez változhat.)

Wire Frame modell

A Wire Frame, vagy drótvázmodell olyan adatstruktúra, mely egy adott modellnek pusztán a csúcsait és azok összekötő éleit tárolja.

Wire Frame modell

A Wire Frame, vagy drótvázmodell olyan adatstruktúra, mely egy adott modellnek pusztán a csúcsait és azok összekötő éleit tárolja.

Az így előállított kép sokszor értelmezhetetlen, és a valójában nem látható részek eltávolítása sem lehetséges.

A B-Rep (Boundary Representation) adatstruktúra lényegében a Wire Frame továbbfejlesztésének tekinthető.

A B-Rep (Boundary Representation) adatstruktúra lényegében a Wire Frame továbbfejlesztésének tekinthető. A struktúra egyszerre tárol

geometriai

A B-Rep (Boundary Representation) adatstruktúra lényegében a Wire Frame továbbfejlesztésének tekinthető. A struktúra egyszerre tárol

- geometriai
- topológiai

információkat.

A B-Rep (Boundary Representation) adatstruktúra lényegében a Wire Frame továbbfejlesztésének tekinthető. A struktúra egyszerre tárol

- geometriai (csúcspontok koordinátái, élek és lapok egyenlete)
- topológiai (lapok, élek és csúcspontok kapcsolata)

információkat.

Az éleket és háromszögeket legegyszerűbben csúcsokra való mutatókkal adhatjuk meg.

```
STRUKTÚRA ÉL
VÁLTOZÓK:
PONT: A, B;
STRUKTÚRA_VÉGE;

STRUKTÚRA HÁROMSZÖG
VÁLTOZÓK:
PONT: A, B, C;
STRUKTÚRA_VÉGE;
```

B-Rep adatstruktúra

Egy egyszerű B-Rep adatszerkezet pedig a következő lehet.

```
STRUKTÚRA B_REP

VÁLTOZÓK:

PONT[]: CSÚCSOK;

ÉL[]: ÉLEK;

HÁROMSZÖG[]: HÁROMSZÖGEK;

STRUKTÚRA_VÉGE;
```

B-Rep adatstruktúra

Egy egyszerű B-Rep adatszerkezet pedig a következő lehet.

```
STRUKTÚRA B_REP

VÁLTOZÓK:

PONT[]: CSÚCSOK;

ÉL[]: ÉLEK;

HÁROMSZÖG[]: HÁROMSZÖGEK;

STRUKTÚRA_VÉGE;
```

Ez persze még nem definiálja a felület topológiáját, de a lehetőséget már biztosítja arra.

A Winged-Edge adatstruktúra a poligonháló olyan reprezentációja, melynek alapját a poligon éle képezi, és a lapok és csúcsok kapcsolatát is azokhoz viszonyítva írja le.

A Winged-Edge adatstruktúra a poligonháló olyan reprezentációja, melynek alapját a poligon éle képezi, és a lapok és csúcsok kapcsolatát is azokhoz viszonyítva írja le.

Ha a struktúrát, mint tábladefiníciót tekintjük, akkor egy él és a hozzá tartozó adatok felépítése az alábbi kontrukció szerint néz ki.

Edge	Vertices		Faces		Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
а	Χ	Υ	1	2	b	d	е	С

Tekintsük az alábbi tatraédert!

Tekintsük az alábbi tatraédert!

Nézzük meg, hogyan írhatjuk le a fenti poliédert Winged-Edge adatstruktúrával!

Edge	Vertices		Faces		Left Traverse		Right Traverse	
Name	Start	End	Left	Right	Pred	Succ	Pred	Succ
а	Α	D	3	1	е	f	b	С
b	Α	В	1	4	С	а	f	d
С	В	D	1	2	а	b	d	е
d	В	С	2	4	е	С	b	f
е	С	D	2	3	С	d	f	а
f	Α	С	4	3	d	b ← □ → →	∂a ⊦ ∢ ≘	▶ e (<u>=</u>) <u>=</u>

Áttekintés

- Paraméteres felületek
- Poligonhálók
 - B-Rep adatstruktúra
 - Winged-Edge adatstruktúra
- Standard fájltípusok
 - A Wavefront fájltípus (*.obj)
 - A Plygon fájltípus (*.ply)

Standard fájltípusok

A felületek leírására rengeteg fájltípust használnak. A teljesség igénye nélkül vizsgáljuk meg, milyen adatokat tartalmazhatnak az *.obj és*.ply fájlok!

Standard fájltípusok

A felületek leírására rengeteg fájltípust használnak. A teljesség igénye nélkül vizsgáljuk meg, milyen adatokat tartalmazhatnak az *.obj és*.ply fájlok!

A fájlok legtöbbször csak a geometriai adatokat és a kapcsolatokat tartalmazzák, de nem kötődnek egy konkrét adatstruktúrához.

A Wavefront fájltípus (*.obj)

A Wavefront fájltípus szöveges formában tartalmazza az adatokat. Minden sor egy adott típusú adatért felel, melyeket a sor első karaktere határoz meg.

A Wavefront fájltípus (*.obj)

A Wavefront fájltípus szöveges formában tartalmazza az adatokat. Minden sor egy adott típusú adatért felel, melyeket a sor első karaktere határoz meg. A teljesség igénye nélkül:

- # komment
- v csúcs
- f lap (csúcsok indexeire mutat)
- I szakasz
- g csoport (struktúrálásban segít)
- c_interp szín interpoláció

 ${\tt B\"ovebb~le\'ir\'as:~https://www.fileformat.info/format/wavefrontobj/egff.htm}$

A Wavefront fájltípus (*.obj)

Egy egyszerű, egy darab háromszöget tartalmazó fájl tartalma:

```
# Simple Wavefront file
v 0.0 0.0 0.0
v 0.0 1.0 0.0
v 1.0 0.0 0.0
f 1 2 3
```

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat.

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat. Ezek:

Fejléc (általános információkkal)

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat. Ezek:

- Fejléc (általános információkkal)
- Csúcsok adatai

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat. Ezek:

- Fejléc (általános információkkal)
- Csúcsok adatai
- Lapok adatai

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat. Ezek:

- Fejléc (általános információkkal)
- Csúcsok adatai
- Lapok adatai
- Egyéb adatok listája

A Polygon fájl szintén szöveges formátumban tartalmazza az adatokat, ugyanakkor az *obj fájlokkal szemben ez nem tartalmazza soronként az adatok típusának leírását. Az adatokat úgy tudjuk beazonosítani, hogy a fájlok alapvetően 4 nagyobb blokkban tartalmazzák az adatokat. Ezek:

- Fejléc (általános információkkal)
- Csúcsok adatai
- Lapok adatai
- Egyéb adatok listája

Bővebb leírás: https://wiki.fileformat.com/3d/ply/

```
ply
format ascii 1.0
                           { ascii/binary, format version number }
comment made by Greg Turk { comments keyword specified, like all lines
comment this file is a cube
element vertex 8
                           { define "vertex" element, 8 of them in file
                           { vertex contains float "x" coordinate }
property float x
property float y
                           { y coordinate is also a vertex property }
property float z
                           { z coordinate, too }
element face 6
                           { there are 6 "face" elements in the file }
property list uchar int vertex_index { "vertex_indices" is a list of in
end_header
                           { delimits the end of the header }
```

```
{ start of vertex list }
0 0 0
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0
4 0 1 2 3
                            { start of face list }
4 7 6 5 4
4 0 4 5 1
4 1 5 6 2
4 2 6 7 3
4 3 7 4 0
```

Köszönöm a figyelmet!