Grupo 39 – Versão B Novembro 2020

TRABALHO PRATICO – VERSAO B

GRUPO 39

Ana Luísa L. Tomé Carneiro A89533

Ana Rita Abreu Peixoto A89612

Pedro Almeida Fernandes A89574

Luís Miguel Lopes Pinto A89506

DESCRIÇÃO DO PROBLEMA

A realização deste trabalho visa aproximar os pontos de uma amostra por modelos polinomiais e não polinomiais — **aproximação por mínimos quadrados**. O tema escolhido como amostra deste trabalho mostra a mudança da temperatura global desde 1880 até à atualidade. Através da informação desta amostra conseguimos ver quais os anos em que a temperatura mais aumentou e consequentemente o ano mais quente de sempre (2016). Na figura 1, estão representados os anos (x) e o correspondente variação da temperatura (f(x)) que foram retirados do site Nasa (https://climate.nasa.gov/vital-signs/global-temperature/).

X	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893
f(x)	-0.16	-0.07	-0.10	-0.16	-0.27	-0.33	-0.31	-0.35	-0.17	-0.10	-0.35	-0.22	-0.27	-0.31
X	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907
f(x)	-0.30	-0.23	-0.11	-0.11	-0.27	-0.18	-0.08	-0.15	-0.27	-0.36	-0.46	-0.26	-0.22	-0.38
X	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921
f(x)	-0.42	-0.48	-0.43	-0.44	-0.36	-0.34	-0.15	-0.14	-0.35	-0.46	-0.29	-0.27	-0.27	-0.19
X	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935
f(x)	-0.28	-0.26	-0.27	-0.22	-0.10	-0.22	-0.20	-0.36	-0.16	-0.10	-0.16	-0.29	-0.13	-0.20
X	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949
f(x)	-0.15	-0.03	0.00	-0.02	0.13	0.19	0.07	0.09	0.20	0.09	-0.07	-0.03	-0.11	-0.11
X	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963
f(x)	-0.17	-0.07	0.01	0.08	-0.13	-0.14	-0.19	0.05	0.06	0.03	-0.02	0.06	0.03	0.05
X	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
f(x)	-0.20	-0.11	-0.06	-0.02	-0.08	0.05	0.03	-0.08	0.01	0.16	-0.07	-0.01	-0.10	0.18
X	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
f(x)	0.07	0.16	0.26	0.32	0.14	0.31	0.16	0.12	0.18	0.32	0.39	0.27	0.45	0.41
X	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
f(x)	0.22	0.23	0.32	0.45	0.33	0.46	0.61	0.38	0.39	0.54	0.63	0.62	0.54	0.68
X	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
f(x)	0.64	0.67	0.54	0.66	0.72	0.61	0.64	0.68	0.75	0.90	1.01	0.92	0.85	0.98

Figura 1: Os 140 valores da amostra

IMPLEMENTAÇÃO DO PROBLEMA

De modo a utilizar o método dos mínimos quadrados no MatLab, foram utilizadas as rotinas polyfit e lsqcurvefit para tratar os modelos polinomial e não polinomial, respetivamente.

No que toca à rotina *polyfit*, foram realizados modelos de grau 1 até 3, verificados os seus resíduos, a representações gráficas correspondentes e a projeção para 2060. Nas seguintes imagens encontra-se a implementação no Matlab dos modelos polinomiais.

```
%% modelo polinomial
                                                 %representacao dos pontos da amostra, do polinómio e da projeção para 2060
%detrminar os coeficientes de cada polinomio
[p1,s1] = polyfit(A,B,1) %grau 1
                                                 plot(A,B,'ok') %representação dos valores da amostra
[p2,s2] = polyfit(A,B,2) %grau 2
                                                 hold on
[p3,s3] = polyfit(A,B,3) %grau 3
                                                 A data=1880:0.1:2080;
%resíduos oos polinomios
                                                 p1_data=polyval(p1,A_data); %valores dos polinomios em cada ponto
SOR1=s1.normr^2
                                                 p2_data=polyval(p2,A_data);
SQR2=s2.normr^2
                                                 p3 data=polyval(p3,A data);
                                                 %representação do polinomio
                                                 plot(A data,p1 data,'b',A data,p2 data,'g',A data,p3 data,'r')
%valores da projeção para 2060 em cada polinomio
p1 2060 = polyval(p1,2060)
                                                 %representação da projeção
p2_2060 = polyval(p2,2060)
                                                 plot(2060,p1 2060,'db',2060,p2 2060,'dg',2060,p3 2060,'dr')
p3_2060 = polyval(p3,2060)
```

Grupo 39 – Versão B Novembro 2020

De forma a traduzir o comportamento da amostra, foram realizados modelos constituídos por combinações de funções exponenciais, logarítmicas, quadráticas, lineares e trigonométricas. Assim, recorrendo à rotina *lsqcurvefit*, foram selecionados 4 modelos não polinomiais distintos com diferentes parâmetros (3 e 4) e vetores iniciais ([1 1 1], [1 1 1 1]). Posteriormente, verificaram-se os resíduos de cada modelo, a representação gráfica correspondente e a projeção para 2060. Nas imagens seguintes encontra-se a implementação no Matlab dos modelos não polinomiais.

```
%% modelo não polinomial
                                                                                                                                                              function [ m ] = modelo4(c,x)
 determinar coeficientes de cada modelo
                                                                                                                                                                 %c coeficientes do modelo
 [coef1, resnorm1] = lsqcurvefit(@modelo1, [1,1,1],A,B)
                                                                                                                                                                  %x sao os dados
 [coef2,resnorm2] = lsqcurvefit(@modelo2,[1,1,1],A,B)
                                                                                                                                                                 m = c(1) \cdot (exp(2*x./96-30)-50)+c(2)*1*sin(x/9)+c(3)./(log(x)*10) + c(4).*x;
 [coef3,resnorm3] = lsqcurvefit(@modelo3,[1,1,1],A,B)
 [coef4,resnorm4] = lsqcurvefit(@modelo4,[1,1,1,1],A,B)
                                                                                                                                                                                                \exists function [ m ] = modelo3(c,x)
 %projeção de cada um dos modelos para 2060
                                                                                                                                                                                                    %c coeficientes do modelo
m1 2060 = modelo1(coef1,2060)
                                                                                                                                                                                                   %x sao os dados
m2\ 2060 = modelo2(coef2,2060)
                                                                                                                                                                                                   m = c(1) \cdot (exp(2*x./96-30)-50)+c(2)*1*sin(x/9)+c(3)./(log(x)*10);
m3 2060 = modelo3(coef3,2060)
m4_2060 = modelo4(coef4,2060)
                                                                                                                                                                                                                                          \Box function [ m ] = modelo2(c,x)
                                                                                                                                                                                                                                          %representação gráfica dos modelos, dos pontos da amostra e da projeção para 2060
                                                                                                                                                                                                                                                %x sao os dados
ml_data=modelo1(coef1,A_data); %valores dos modelos em cada ponto da amostra
m2 data=modelo2(coef2,A data);
                                                                                                                                                                                                                                                m = c(1) \cdot (x./96) + c(2) \cdot (3x + c(3) \cdot (
m3 data=modelo3(coef3,A data);
m4_data=modelo4(coef4,A_data);
                                                                                                                                                                                                                                                                           function [ m ] = modelo1(c,x)
 %representação dos modelos
                                                                                                                                                                                                                                                                           %c coeficientes do modelo
plot(A,B,'ok',A_data,m1_data,'g',A_data,m2_data,'b',A_data,m3_data,'m',A_data,m4_data,'r')
                                                                                                                                                                                                                                                                           %x sao os dados
hold on
                                                                                                                                                                                                                                                                          m = c(1) \cdot x + c(2) \cdot 3 \cdot \sin(x) + c(3) \cdot 2 \cdot x \cdot 2;
plot(2060,m1 2060,'dg',2060,m2 2060,'db',2060,m3 2060,'dm',2060,m4 2060,'dr')
```

Tanto para a implementação dos modelos polinomiais como para os não polinomiais os valores da amostra correspondem aos vetores A e B, sendo que A corresponde aos diversos anos da amostra e B aos valores da anomalia da temperatura.

TESTES COMPUTACIONAIS

Modelos Polinomiais

Figura 2: Representação gráfica dos modelos polinomiais

Grau	Polinómio	Resíduo	Estimação em 2060
1	$p1(x) = 7,4542 * 10^{-3} - 14,489x$	4,2450	p1(2060) = 0,8668
2	$p2(x) = 8,8523 * 10^{-5} - 0,3377x + 321,8x^{2}$	1,9042	p2(2060) = 1,8031
3	$p3(x) = 3,9831 * 10^{-7} - (2,241 * 10^{-3})x + 4,2026x^2 - 2627,1x^3$	1,8445	p3(2060) = 2,2112

Figura 3: Resultado da implementação dos modelos polinomiais

Modelos Não Polinomiais

Figura 4: Representação gráfica dos modelos não polinomiais

Modelos Não Polinomiais		Estimação em 2060
$M1(x) = -7,4738 * 10^{-3} * x - 3,3354 * 10^{-3} * 3 * sen(x) + 1,9217 * 10^{-6} * 2 * x^{2}$	4,0398	M1(2060) = 0,9216
$M2(x) = 1,1916*10^{-9}*e^{\frac{x}{96}} - 4,4075*10^{-3}*3*sen(x) - 1,0716*10^{-7}*2*x^{2}$	2,1626	M2(2060) = 1,5860
$M3(x) = 7{,}3103*10^{-6}*\left(e^{\frac{2x}{96}-30}-50\right) + 6{,}1183*10^{-2}*sen\left(\frac{x}{9}\right) - \frac{28{,}2354}{\log(x)}*10$	1,6107	M3(2060) = 2,6316
$M4(x) = 8,5920*10^{-8}*(e^{\frac{2x}{96}-30}-50) + 6,1474*10^{-4}*sen(\frac{x}{9}) + \frac{1,6464}{\log(x)}*10 - 1,3434*10^{-5}*x$	1,5482	M4(2060) = 2,9138

Figura 5: Resultados da implementação dos modelos não polinomiais

COMPARAÇÃO DE MODELOS

De modo a escolher o melhor modelo, é necessário avaliar o menor resíduo e a melhor projeção futura¹.

Nos modelos polinomiais podemos ver que com o aumento do grau o resíduo vai diminuindo e as projeções vão se aproximando das estimativas encontradas. No caso dos modelos não polinomiais verificamos que o aumento dos parâmetros e a introdução de parâmetros exponenciais conduziu à diminuição do resíduo. No entanto, nenhuma das projeções para 2060 pertenceu ao intervalo de valores previsto no artigo, quer tenha sido por defeito (M_1 e M_2) ou por excesso (M_3 e M_4).

Todos os fatores mencionados anteriormente levaram nos a concluir que o melhor modelo é o M₃. Embora não seja o modelo de menor resíduo, oferece uma perspetiva futura mais viável, uma vez que a projeção M₄(2060), a nosso ver, excede em demasia os valores expectáveis.

¹ As projeções encontradas para 2060 apontam para uma anomalia de [1.6,2.3] ^oC. https://mediamanager.sei.org/documents/Publications/sei-climatecost-european-and-global-climatechange-projections.pdf