Uvod v geometrijsko topologijo

Teoretična vprašanja

	Retrakt nepovezanega prostora je nepovezan prostor.
R	Za vsako vložitev $f \colon B^2 \to \mathbb{R}^3$ je komplement $\mathbb{R}^3 - f(B^2)$ povezan.
R	Če je A retrakt prostora X in je B retrakt prostora A , je B retrakt prostora X .
R	Preslikava $f: [-1,1] \times [-1,1] \rightarrow [-1,1] \times [-1,1]$, podana s predpisom $f(x,y) = (\frac{1}{2} \arctan(x+y-1), \cos x)$, ima negibno točko.
R	Zvezna injektivna preslikava $f: (-1,1) \times (-1,1) \to \mathbb{R}^2$ je odprta preslikava.
R	Za vsak $n \in \mathbb{N}$ je projektivni prostor $(\mathbb{R}^{n+1} - \{0\})/_{x \sim \lambda x}$ nekompakten.
R	Vsak zaprt podprostor absolutnega ekstenzorja je absolutni ekstenzor.
R	Poltrak $(0, \infty)$ je retrakt prostora \mathbb{R} .
R	Če je $X \times Y$ absolutni ekstenzor, sta tudi X in Y absolutna ekstenzorja.
R	Vsak neprazen povezan podprostor premice \mathbb{R} je absolutni ekstenzor za razred normalnih prostorov.

Problemski nalogi

1. PROBLEM

Za $n \in \mathbb{N}$ naj bo $K_n = \{1, ..., n\}$ in $K_\infty = \mathbb{N}$. Pokaži, da je za vsak $n \in \mathbb{N} \cup \{\infty\}$ prostor $X_n = (\mathbb{R} \times K_n) \cup (\{0\} \times \mathbb{R})$ retrakt ravnine \mathbb{R}^2 .

2. PROBLEM

Naj bo $X = S^1 \cup ([-1,1] \times \{0\}) \cup (\{0\} \times [-1,1]), G = S^0 \times S^0$ in $H = \mathbb{Z}$. Naj bo $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ rotacija ravnine. Grupa G deluje na X s predpisom (s,t)(x,y) = (sx,ty), grupa H pa deluje s predpisom $t(x,y) = R^t \begin{pmatrix} x \\ y \end{pmatrix}$. Poišči podprostora ravnine, ki sta homeomorfna prostoroma orbit X/G in X/H. Odgovora utemelji!