Лекция 8 Развитие ЭВМ

Шина (Bus)

Шина

- Стандартизованный интерфейс подсоединения устройств
- Стандартизация по электричеству: напряжение, сопротивление, потребляемые токи, уровни 0 и
 1
- Стандартизация по временным отрезкам (timings): тактовая частота, переходные режимы и т. д.
- Примеры: PCI, USB, SATA

Шина

- Необходимость синхронизации (тактовые импульсы)
- Необходимость адресации устройств на шине
- Необходимость арбитража шины

Timing diagrams

PCI Read timing

Шина: недостатки

- Быстрые и медленные устройства на одной шине: работа со скоростью медленного устройства
- При большом количестве устройств накладные расходы на арбитраж растут
- Электрические проблемы (помехи, и т. п.) при увеличении длины проводов

•

•

Иерархия шин

Современная архитектура РС

- FSB частота процессора
- PCle (2.0) 2.5 ГГц
- Шина памяти 800 МГц
- PCI 33 МГц

Исторический обзор

- 1-е поколение (ламповые)
- 2-е поколение (транзисторные)
- 3-е поколение (интегральные схемы)
- 4-е поколение (СБИС)

Электронные устройства: ENIAC

- 14.02.1946,
 стоимость ~
 \$500000,
- 17468 ламп
- 5000 оп/сек
- 1 лампа выходила из строя раз в два дня, для замены требовалось 15 мин.

• Mayo 116 Hacon

ЭВМ «Стрела»

- 1953 г
- 2000 oп/c,
- 6200 ламп
- Память 2048 43-битных слова
- Ввод с перфокарт, вывод на перфокарты и принтер

Транзисторные ЭВМ: БЭСМ-6

- 1966 г.
- Тактовая частота 10 МГц
- Быстродействие 1 млн. оп/сек (6 млн. оп/сек на Байконуре)
- До 32768 48-битных ячеек ОЗУ
- Выпускалась 1968-1987

IBM/360

- Элементная база: интегральные схемы
- Анонсирована: 7 апреля 1964 года
- Семейство ЭВМ, совместимых по набору инструкций и периферии
- Производительность:
 0.034 1700 MIPS
- Память: 8 КіВ 8 МіВ

Особенности ІВМ/360

- 8-битный байт
- Память, адресуемая по байтам, а не по словам
- 32-битные слова
- Двоичная арифметика с дополнением до 2
- Стандарт операций с плавающей точкой (предшественник IEEE-754)

PDP-11

- Семейство Мини-ЭВМ
- Выпускалось 1970-1997
- Разрядность 16 бит, в серии VAX 32 бита
- Ортогональный набор инструкций
- Общая шина
- 16-битные слова хранятся в порядке младший байт, старший байт (little endian)

Микропроцессоры на СБИС: Intel 4004

- 1971 год
- 10 мкм (0.01 мм) pMOS
- 2300 транзисторов
- Такт. Част. 740 Кгц
- Произв. 92 000 инстр./сек

Intel 8080

- 1974 год
- Такт. Част. 2 МГц
- До 500 000 оп/сек
- Разрядность 8 бит
- ~6 000 транзисторов
- 6 MKM nMOS

Персональные компьютеры: Apple

- 1976
- Процессор
 6502@1МГц
- 4 Кб ОЗУ
- Экран 40х24 символа

Микропроцессоры сегодня

- Intel Xeon Haswell
- Тактовая частота: 3.5 ГГц
- 5 560 000 000 транз.

Пример корпуса ИС

• В корпусе — кристалл полупроводника с элементами, к которому подведены контакты

Ivy Bridge processor

		voltage	power	clock khz	техп. Nm	trans. Cnt	die
1971	i4004	15V	1W	740	10000	2300	12
1974	i8080	+5V,	1,3W	2000	6000	6000	
1978	i8086	+5V	2,5W	5000	3000	29000	33
1982	i80286	+5V	3,3W	8000	1500	134000	
1985	i386	+5V	1,5W	16000	1000	275000	
1989	i486	+5V	3,5W	20000	1000	1000000	
1993	Pentium	+5V	14,6W	60000	800	3100000	294
1995	Pentium Pro	+3,3V	35W	166000	500	5500000	307
1997	Pentium II	+2,8V	33W	233000	350	7500000	195
1999	Pentium III	+2,0V		450000	250	9500000	128
2001	Pentium 4	+1,605- 1,75V	48,9W	1300000	180	42000000	217
2004	P 4 Prescott	+1,287- 1,400V	89W	2800000	90	125000000	112
2006	P Core Duo			1860000	65	291000000	143
2008	Core i7				45	731000000	263
2011	Sandy Bridge		130W	3300000	32	2270000000	434
2014	Ivy Bridge		150W	3300000	22	4310000000	541

Обозначения на таблице

- Voltage напряжение питания
- Power потребляемая мощность (пиковая)
- Clock Тактовая частота (кГц)
- Техп. «техпроцесс», то есть линейный размер одного транзистора на кристалле (нм)
- Trans. Cnt число транзисторов на кристалле
- Die площадь кристалла (мм²)

Закон Мура

Характеристики процессоров

- Скорость переключения:
 - Tf ~ k1*C/V
- Рассеиваемая мощность:
 - $W \sim k2*C*V^2*f$

Российские микропроцессоры

- Baikal-T1 (лицензированный MIPS, 28 нм)
- МЦСТ-R1000 (Sparc, 90 нм)
- Эльбрус-8С (оригинальный VLIW, 28нм)

•

- Производственные мощности:
 - Микрон, Ангстрем (Зеленоград 90 нм)
 - Производство на Тайване

RISC

- RISC (Reduced Instruction Set Computing) противопоставление CISC (Complex Instruction Set Computing)
- Предпосылки (начало 80-х):
 - Традиционные архитектуры предлагали большое количество режимов адресации
 - Ориентировались на удобство написания программ на ассемблере человеком
 - Квинтессенция CISC: VAX
 - 21 режим адресации
 - «Сложные инструкции», вплоть до работы со списками

RISC

- Предпосылки (2) в то же время:
 - Все больше ПО разрабатывается на языках высокого уровня
 - UNIX ядро ОС написано на ЯВУ
 - Качество кода, генерируемого компиляторами, улучшается и становится ближе к качеству кода, написанного вручную
 - Компиляторы используют небольшое подмножество CISC-инструкций

Мотивация RISC

- Оставить только «основные» инструкции
- Оставить только «основные» режимы адресации
- За счет этого упростить и ускорить работу процессора

• Исследовательский процессор Berkeley RISC показал отличные результаты

Коммерциализация

- Середина 80-х: производители оборудования разрабатывают свои RISC-архитектуры
 - Berkeley RISC → Sun SPARC
 - DEC → Alpha
 - HP → PA-RISC
 - IBM → Power (PPC)
 - Stanford Univ → MIPS
 - Cambridge → ARM

Рабочие станции UNIX

- В итоге к 90-м годам каждый крупный производитель оборудования выпускал «workstation» на своей архитектуре со своей версией Unix
 - Sun: SPARC и Ultra SPARC, Solaris
 - HP: PA-RISC, HP-UX
 - IBM: ROMP, затем PPC, AIX
 - SGI: MIPS, IRIX

Workstations vs PCs

- В начале 90-х годов мощность «персональных компьютеров» на процессорах x86 (486, Pentium, ...) нагнала мощность «рабочих станций»
- WinNT приближалась по возможностям к возможностям Unix
- Активно развивались {Free, Net, Open}BSD и Linux

Market Share

«Гонка мегагерц» в 90-х

- В 90-х тактовая частота процессоров примерно удваивается каждые полтора года
- Примерное удвоение производительности каждые полтора года у х86 (т. н. закон Мура)
- В итоге большинство RISC-архитектур рабочих станций теряют рынок
- Традиционная концепция: Unix обречен, Wintel завоюет все

EPIC fail: Itanium

- Уже в начале 90-х было понятно, что для High-end workstations недостаточно 32- битной архитектуры
 - DEC Alpha 1992
 - Ultra SPARC 1993
- Консорциум из Intel, HP начал разработку новой архитектуры
 - Intel рассматривал ее как замену x86

EPIC

- EPIC explicitly parallel instruction computing
- Развитие VLIW very long instruction word
- Идея упаковывать в инструкцию сразу несколько операций процессора (very long)
- Переложить организацию паралеллизма выполнения на компилятор (explicitly parallel)

Прогнозы продаж

Проблемы Itanium

- Недостаточная производительность на момент появления по сравнению с конкурентами (Sparc, PPC)
- Несовместимость с х86, низкая производительность при эмуляции
- Недостаточное качество кода, генерируемого компиляторами
- Появление AMD x86

Intel vs AMD

AMD vs Intel Market Share

Updated13th of February 2014

Смартфоны

- 2007 год iPhone использует iOS (производная от Darwin (BSD)), процессор ARM
- 2007 год Android ядро Linux, процессор ARM
- Далее бурный рост числа мобильных устройств

Процессорные архитектуры

Современный RISC

- ARM мобильные устройства
- MIPS Sony PlayStation, PS2, Nintendo 64, домашние маршрутизаторы
- Atmel AVR микроконтроллеры
- SPARC суперкомпьютеры

Микроконтроллер

- Процессор
- O3Y
- ПЗУ (EEPROM, Flash)
- GPIO
- Коммуникационные интерфейсы (UART, I2C, SPI)
- Таймеры
- АЦП

System-On-Chip

- Микроконтроллер по характеристикам приближающийся к компьютерам:
 - 512 и более MiB RAM
 - Несколько ядер
 - Интегрированный GPU