Mathematics for Computing, TUTORIAL 3 TASKS

Aim: to learn more on Booleans by practicing the truth table construction.

Pre-tutorial work (independent study):

1. Revise: Lecture 2 and work during Tutorial 2

2. Reading: pages 163 – 169 (Section 15.3) from Croft, T and Davison R (**2010**)

Foundation maths, 5th ed. Harlow: Prentice Hall.

3. Tasks: Exercise 15.3 from the above textbook

Tutorial Tasks 3:

1. For the following formal expressions establish if they have a good logical grammar or indicate a problem in their logical structure otherwise.

		If NO what is
		a problem?
p	YES/NO	
$\Rightarrow p$	YES/NO	
$\neg \Rightarrow p$	YES/NO	
pq	YES/NO	
$p \wedge q$	YES/NO	
$p \neg q$	YES/NO	
$p \land \neg q$	YES/NO	
$(\neg p \lor q)$	YES/NO	
$(\neg p \lor)q$	YES/NO	
$\neg(\neg p \land \neg q)$	YES/NO	
$(p\Rightarrow q) \land (q\Rightarrow p)$	YES/NO	
$(p \Rightarrow (q \land r)) \Rightarrow ((p \Rightarrow q) \land (p \Rightarrow r))$	YES/NO	

2. Build truth tables for the formulae below. You should follow the algorithm described in the lecture.

a.
$$\neg (p \Rightarrow p)$$

b.
$$\neg (p \lor \neg p)$$

c.
$$(p \land q) \Rightarrow p$$

d.
$$\neg (q \lor \neg q)$$

e.
$$p \Rightarrow (p \lor q)$$

f.
$$(s \wedge t) \Rightarrow s$$

g.
$$u \Rightarrow (u \lor w)$$

Look at the structure of the given formulae and their truth tables – can you see some patterns here? Can you identify those expressions that have similar logical structures, compare their truth tables.

- 3. Build truth tables for the formulae below following the algorithm described in the lecture.
 - a. $\neg p \lor \neg q$
 - b. $\neg (p \land q)$
 - c. $\neg p \land \neg q$
 - d. $\neg (p \lor q)$

Compare the resulting columns for these expressions and identify the cases where the same input values written on the left of the truth table give the same resulting value.

- 4. CHALLENGE.
 - a) Build a truth table for the following expression following the algorithm:

i.
$$\neg ((s \land t) \Rightarrow (s \lor r))$$

Can you find input values for which the resulting value is true?

- b.) Consider the following two expressions:
 - ii. $\neg\neg((s \land t) \Rightarrow (s \lor r))$

iii.
$$\neg\neg\neg((s \land t) \Rightarrow (s \lor r))$$

Can you obtain the truth tables for ii. and iii. only looking at the case