Python Quick Reference

November 28, 2023

Matplotlib PyPlot

- matplotlib.pyplot.legend()
- matplotlib.pyplot.plot(x, y, *args)
 - o Common Linestyles: '-', '--', '-.', ':'
 - Common Marker Styles: 'o', '', 'x', '*', 'D'
 - o Other common arguments: label='label text', fontsize=value
- matplotlib.pyplot.xlabel('label')
- matplotlib.pyplot.xlim(left, right)
- matplotlib.pyplot.ylabel('label')
- matplotlib.pyplot.ylim(bottom, top)

Numpy

- Calculate the exponential
 - numpy.exp(variable)
- Calculate the square root
 - numpy.sqrt(variable)
- Returns num evenly spaced samples, calculated over the interval [start, stop].
 - numpy.linspace(start, stop, num=50)
- Return evenly spaced values within a given interval.
 - numpy.arange(start, stop, step)

Pandas

- Read an Excel file into a pandas DataFrame.
 - pandas.read_excel('filename')
- Remove missing values.
 - DataFrame.dropna()
- Purely integer-location based indexing for selection by position.
 - DataFrame.iloc[rows, columns]
 - Use: to select the entire axis

SciPy

- Integrate along the given axis using the composite trapezoidal rule.
 - scipy.integrate.trapezoid(y, x)
 - y: Input array to integrate.
 - x: The sample points corresponding to the y values.

SymPy

Creating symbols: x, y, z = symbols('x y z')

- Creating equality objects: Eq(lhs, rhs)
 - o any expression not in an Eq is automatically assumed to equal 0 by the solving functions
 - o differentiation and integration should only be done on an expression (i.e. rhs of equation) and not on an equality object
- Solving equalities: solve(equality, variable)
- Solve system of equations: solve([eq1, eq2], x, y, dict=True)
- Derivative: diff(expression, variable, order=1)
- Integral:
 - Definite: integrate(expression, variable)
 - Indefinite: integrate(expression, (variable, lower_limit, upper_limit))
- Substitution: variable.subs({x: x_value, y: y_value, ...})
- Simplify Result: simplify(expression)