(a) list all possible function: $f: \{a, b, c\} \rightarrow \{0, 1\}$

```
1. f_1(x) = 0 for all x \in \{a, b, c\}

2. f_2(x) = 1 for all x \in \{a, b, c\}

3. f_3: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 1, f(b) = 0, f(c) = 0

4. f_4: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 0, f(b) = 1, f(c) = 0

5. f_5: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 0, f(b) = 0, f(c) = 1

6. f_6: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 1, f(b) = 1, f(c) = 0

7. f_7: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 0, f(b) = 1, f(c) = 1

8. f_8: \{a, b, c\} \rightarrow \{0, 1\} where f(a) = 1, f(b) = 0, f(c) = 1
```

(b) Describe a connection between your answer for (a) and Pow({a, b, c}).

- 1. The number of all listed functions equals to $|Pow(\{a, b, c\})|$
- 2. Assume 0 represent True, being included in the set. And 1 represent False, not included in the set. Then the functions listed in (a) and elements of $Pow(\{a, b, c\})$ are of one-to-one correspondence. And the set related to the functions, which are listed below, are all subsets of $Pow(\{a, b, c\})$.

$$f_{1} \rightarrow \{\} \qquad f_{5} \rightarrow \{c\}$$

$$f_{2} \rightarrow \{a, b, c\} \qquad f_{6} \rightarrow \{a, b\}$$

$$f_{3} \rightarrow \{a\} \qquad f_{7} \rightarrow \{b, c\}$$

$$f_{4} \rightarrow \{b\} \qquad f_{8} \rightarrow \{a, c\}$$

(c) In general, if card(A) = m and card(B) = n, how many:

(i) functions are there from A to B?

Since a function $f: S \to T$ require for each element s in S, we can find exactly one element t from T that make (s, t) in the relationship

Then in this case, each of n elements in B maybe mapped by m elements from A So the number of possibilities are:

$$\mathbf{m} \cdot \mathbf{n} = \mathbf{m} \mathbf{n}$$

There are mn functions from A to B

(ii) relations are there between A and B?

From (i), there are mn posible pairs of element from A to B and each of them may be included in a relation or not

So the possible number of relations: $2^{m \cdot n}$

(iii) symmetric relations are there on A?

For $A = \{a, b, c\}$, if i need to achieve a symmetric relation on $A_1 \times A_2$, everytime when I include a element a_1 from A_1 mapping any element b_2 of A_2 . Then i need to exclude b_1 from A_1 because it should map a_2 of A_2 .

And for each pair of them, a_1 may map |A| elements from A_2 or not. So the posibilty is 2^3 . Then i need to consider the left elements in A_1 and A_2 and ignore the situations referring a_1 or a_2 because they have been included in the first mapping mentioned above. similarly, the posibilities are 2^2 and 2^1 respectively for the second and third maping.

At last, the total posibility is : $2^3 \times 2^2 \times 2^1 = 2^6 = 64$

For A which contain m elements, the number of symmetric relations are:

$$2^m + 2^{m\text{-}1} + 2^{m\text{-}2} \dots + 2 = 2^{1+2+3+\dots+m} = 2^{(1+m)m/2}$$

For $x, y \in Z$ we define the set:

$$S_{x,y} = \{mx+ny: m, n \in Z\}$$

(a) Give five elements of S_{2,-3}

$$S_{2,-3} = \{2m - 3n:m, n \in Z\}$$

- 1)When m=n=0, $S_{2,-3} = \{0\}$
- 2)When m=n=1, $S_{2,-3} = \{-1\}$
- 3)When m=n=2, $S_{2,-3} = \{-2\}$
- 4)When m=n=3, $S_{2,-3} = \{-3\}$
- 5)When m=n=4, $S_{2,-3} = \{-4\}$

(b) Give five elements of $S_{12,16}$

 $S_{12,16} = \{12m + 16n : m, n \in Z\}$

- 1)When m=n=0, $S_{12,16}=\{0\}$
- 2)When m=n=1, $S_{12,16} = \{28\}$
- 3)When m=0, n=1, $S_{12,16} = \{16\}$
- 4) When m=1, n=0, $S_{12,16} = \{12\}$
- 5)When m=2, n=0, $S_{12,16} = \{24\}$

(c) Show that $S_{x,y} \subseteq \{n : n \in Z \text{ and } d|n\}$. Let $d = \gcd(x, y)$.

Since d = gcd(x, y)

Assume that there are g_{x_i} $g_y \in Z$ such that:

$$x = g_x d$$
 $y = g_y d$

So
$$S_{x, y} = \{mg_xd + ng_yd: m, n \in Z\}$$

= $\{(mg_x + ng_y)d: m, n \in Z\}$

For all m, $n \in Z$, we can have $d \mid (mg_x+ng_y)d$

So
$$S_{x,y} = \{n : n \in Z \text{ and } d|n\} \text{ when } k = mg_x + ng_y$$

and $S_{x,y} \subseteq \{n : n \in Z \text{ and } d|n\}$

(d) Show that $\{n : n \in Z \text{ and } z | n\} \subseteq S_{x,y}$. Let z be the smallest positive number in $S_{x,y}$.

Assume there are some $k \in Z$ such that n = zk

Then
$$\{n: n \in Z \text{ and } z \mid n\} = \{zk: k \in Z\}$$

Since
$$S_{x,y} = \{mx + ny : m, n \in Z\}$$

Let $x = x_1$, $y = y_1$ such that (mx + ny) is least:

$$mx_1 + ny_1 = z$$

$$k(mx_1+ny_1) = kz$$

$$kmx_1+kny_1 = kz$$

$$kx_1 \cdot m + ky_1 \cdot n = kz$$

For any $k,m,n \in \mathbb{Z}$, $\{kx_1 \cdot m + ky_1 \cdot n\} \in S_{x,y}$

So
$$\{zk: k \in Z\} = S_{x,y}$$
, when $x = kx_1, y = ky_1$

And $\{n: n \in Z \text{ and } z \mid n\} \subseteq S_{x,y}$

(e) Show that $d \le z$. (Hint: use (c))

From (c) we have $S_{x,y} = \{mx + ny : m, n \in Z\} \subseteq \{n : n \in Z \text{ and } d|n\}$

Thus for all x, y, m, n \in Z, d | (mx + ny) as $S_{x,y} = \{(mg_x + ng_y)d: m, n \in Z\}$

For x_1 , y_1 in (d) such that:

$$mx_1 + ny_1 = z$$

So
$$d \mid (mx_1 + ny_1)$$

Then $d \mid z$

Thus $d \le z$

(f) Show that $z \le d$. (Hint: use (d))

Let $q = \lfloor \frac{m}{z} \rfloor$

Then $r = m \mod z$

= m - q(mx + ny)

= m(1-qx) + n(-qy)

Thus r is also a linear combination of m, n

Since z is the smallest positive number in $S_{x,y}$, $0 \le r < z$

So r = 0

Thus $z \mid m$

And similarly we can prove:

 $z \mid n$

Thus $z \mid d$

So $z \le d$

We define the operation * on subsets of a universal set U as follows. For any two sets A and B:

$$A * B := A^c \cup B^c$$

Answer the following questions using the Laws of Set Operations (and any derived results given in lectures) to justify your answer:

First, we have:

- (I) $A * B = A^c \cup B^c = (A \cap B)^c$ (de Morgan's laws)
- (II) $A * A = A^c \cup A^c = A^c$ (Idempotence)
- (a) What is (A * B) * (A * B)?

$$(A * B) * (A * B)$$

- $= (A \cap B)^{c} * (A \cap B)^{c}$ (I)
- $= ((A \cap B)^c)^c$ (I)
- $= A \cap B$ (Double complementation)
- (b) Express A^c using only A, * and parentheses (if necessary).

$$A^{c} = A^{c} \cup A^{c} = A * A \tag{II}$$

(c) Express \emptyset using only A, * and parentheses (if necessary).

Ø

- $= A \cap A^{c}$ (Idempotence)
- $= ((A \cap (A * A))^{c})^{c}$ (II)
- $= (A * (A * A))^{c}$ (I)
- = (A * (A * A)) * (A * (A * A)) (I)
- (d) Express A \ B using only A, B, * and parentheses (if necessary).

$$A \setminus B$$

- $= A \cap B^c$
- $= (A \cap B^c) * (A \cap B^c)$ (I)
- = [A * (B * B)] * [A * (B * B)] (I)

Let $\Sigma = \{a, b\}$. Define $R \subseteq \Sigma^* \times \Sigma^*$ as follows:

 $(w, v) \in R$ if there exists $z \in \Sigma^*$ such that v = wz.

(a) Give two words $w, v \in \Sigma^*$ such that $(w, v) \notin R$ and $(v, w) \notin R$.

If
$$w = bab$$
, $v = aba$, $w \neq v$ is constantly true

If
$$w = aba$$
, $v = bab$, $w \neq v$ is constantly true

(b) What is $R^{\leftarrow}(\{aba\})$?

Suppose v = aba,

Since $(w, v) \in R^{\leftarrow}$, So: $wz = aba, z \in \Sigma^*$

List all possible answer:

- 1.w = λ , z = aba
- 2.w = a, z = ba
- 3. w = ab, z = a
- 4. $w = aba, z = \lambda$

(c) Show that R is partial order.

If R satisfies Reflexity, Antisymmertry, Transitivity then it is a partial order

1) for any $x \in \Sigma^*$ such that:

$$x = xz$$

When $z = \lambda$, it is true. For all $x \in \Sigma^*$, $(x, x) \in R$, R satisfies reflexity

2) for any $x, y \in \Sigma^*$ such that: $(x, y) \in R$ and $(y, x) \in R$

Then
$$\begin{cases} y = xz & z \in Z \\ x = yz & z \in Z \end{cases}$$

Since
$$\begin{cases} |y|=|x|+|z| & z\in Z\\ |x|=|y|+|z| & z\in Z \end{cases}$$

So
$$|z| = 0, z = \lambda$$

And
$$\begin{cases} y=x & z\in Z\\ x=y & z\in Z \end{cases}$$

R satisfies Antisymmetry such that if $(x, y) \in R$ and $(y, x) \in R$, then x = y

3) assume $(x, y) \in R$ and $(y, h) \in R$, then we have:

$$\begin{cases} y=xz_1 & z\in Z\\ h=yz_2 & z\in Z \end{cases}$$
 Let
$$z_3=z_1z_2$$
 Then
$$xz_3=(xz_1)z_2=yz_2=h$$

$$h=xz_3$$
 So
$$(x,h)\in R$$

R satisfies Transitivity such that for $(x, y) \in R$ and $(y, h) \in R$, then $(x, h) \in R$

Thus R satisfies Reflexity(R), Antisymmertry(AS) and Transitivity(T) and it is a partial order

Problem 5

Show that for all $x, y, z \in Z$:

If
$$x \mid yz$$
 and $gcd(x, y) = 1$

then x | z. (Hint: Use the connection between gcd(x, y) and $S_{x,y}$ shown in Problem 2.)

From Problem 2, we have proved that $z \le d$ and $d \le z$, so z = d

For any $x, y \in Z$, there are some $m, n \in Z$ such that:

$$mx + ny = 1$$
 (a)

Since $x \mid yz$, it can be represented as:

$$yz = kx, k \in Z$$

When z = 0, $x \mid z$ is constantly true, then when $z \neq 0$:

$$y = \frac{kx}{z}, k \in Z$$
 and $z \neq 0$ (b)

Then Assign (b) to (a):

$$mx + \frac{nkx}{z} = 1$$
$$zmx + nkx = z$$
$$(zm + nk)x = z$$

Since z, m, n, $k \in \mathbb{Z}$, then $zm + nk \in \mathbb{Z}$ and $x \mid z$

Thus For both z = 0 and $z \neq 0$, $x \mid z$ is true.