Replication: The Structure of Inequality and the Politics of Redistribution

Filippo Teoldi, Zara Riaz and Julian Gerez
October 23rd, 2018

Design declaration

First we start by loading in the DeclareDesign package and defining the elements of the design.

- declare_population refers to the sample size of the study. The study concerns country-year units. In this case, there are 858 observations.
- delcare_potential_oucomes refers to

```
library('DeclareDesign')

## Loading required package: randomizr

## Loading required package: fabricatr

## Loading required package: estimatr

design <-
    declare_population(N = 858) +
    declare_potential_outcomes() +
    declare_estimand() +
    declare_assignment() +
    declare_estimator()</pre>
```

Replication

First we open the dataset with the haven package, which allows us to open .dta files.

```
library('haven')
directory <- "/Users/juliangerez/Google Drive/Semester_Fall 2018/Political Economy of Development/Lupu-
data <- read_dta(paste0(directory, "LupPon_APSR.dta"))</pre>
```

Next, the authors define invert disproportionality measures, disp_gall as such:

```
data$disp_gall <- data$disp_gall*-1
```

Then the variables female participation, fempar, and annual net union density, union so that they are rescaled:

```
data$fempar <- data$fempar*100
data$union <- data$union*100</pre>
```

Then the variables pjoint and disp_gall, which are partial and disproportionality, respectively are standardized from [0,1]. To do so, we are defining a function, range01, which standardizes the range of a variable such that it takes on values from 0 to 1.

```
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
```

```
data$stdpjoint <- range01(data$pjoint)</pre>
data$stdpdisp_gall <- range01(data$disp_gall)</pre>
Next, we interpolate missing values:
library('zoo')
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
data$pratio9050 <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
for (i in 1:length(data_countries)){
data_countries[[i]][,24] <- na.approx(data_countries[[i]][,5], x = index(data_countries[[i]][,3], data_
}
data <- do.call("rbind", data_countries)</pre>
data$pratio5010 <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
for (i in 1:length(data_countries)){
data_countries[[i]][,25] <- na.approx(data_countries[[i]][,6], x = index(data_countries[[i]][,3], data_
data <- do.call("rbind", data_countries)</pre>
data$pratio9050s <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
for (i in 1:length(data_countries)){
data_countries[[i]][,26] <- na.approx(data_countries[[i]][,7], x = index(data_countries[[i]][,3], data_
data <- do.call("rbind", data_countries)</pre>
data$pratio5010s <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
)
```

```
for (i in 1:length(data_countries)){
data_countries[[i]][,27] <- na.approx(data_countries[[i]][,8], x = index(data_countries[[i]][,3], data_
data <- do.call("rbind", data_countries)</pre>
data$pforeign <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
for (i in 1:length(data_countries)){
data_countries[[i]][,28] <- na.approx(data_countries[[i]][,16], x = index(data_countries[[i]][,3], data
data <- do.call("rbind", data_countries)</pre>
data$pvoc <- NA
data_countries <- lapply(unique(data$country), function(x)</pre>
  subset(data, data$country==x)
)
for (i in 1:length(data_countries)){
data_countries[[i]][,29] <- na.approx(data_countries[[i]][,19], x = index(data_countries[[i]][,3], data
}
data <- do.call("rbind", data_countries)</pre>
We generate an immigration measure, pforeign which reflects the percentage of the population that is
foreign-born:
data$pforeign <- data$pforeign*1000</pre>
data$fpop <- data$pforeign/data$pop</pre>
Generate inequality measures
data$ratio9010 <- data$pratio9050*data$pratio5010
data$ratio9010s <- data$pratio9050s*data$pratio5010s</pre>
data$skew <- data$pratio9050/data$pratio5010</pre>
```

data\$skews <- data\$pratio9050s/data\$pratio5010s</pre>

Data cleaning

Redistribution models

Social spending models

Immigration

Partisanship

Redistribution and social spending with partisanship

Robustness checks via design modification

Extension