Short-Term Earthquake Prediction with Deep Neural Networks

Finding the optimal time prior to earthquake strikes to use in predictions

Glenn van den Belt, g.vandenbelt@student.tudelft.nl Supervisor: Mohammad Sabbaqi, Responsible professor: Elvin Isufi Research Project CSE3000

Research method step by step

Data example

Seismic waveform recording with an earthquake prediction at time step 100, the earthquake strike at time step 300, and an H-value of 200 seconds

The LSTM Model

- Binary Cross-Entropy loss function
- 100 epochs
- Batch sizes of 50
- Learning Rate equals 0.001

Results

Accuracy of 10 averaged iterations Precision and recall earthquake predictions

Discussion

- Unexpected patterns within dataset
- Different forms of data within dataset
- Cause of high performance at H = 70 due to reduce of false positives

Conclusion

- H negatively influences performance when close to 0
- Performance peak at H = 70
- Performance stabilises for H values of 100 and above

Future work

- Improve performance of the model
- Investigate why the model performs differently on various subsets of dataset

Reference list

- 1. Xiangyu Du. "Short-term Earthquake Prediction via Recurrent Neural Network Models". MA thesis. x.du-1@student.tudelft.nl: Delft University of Technology, Jan. 2022
- 2. GeoNet. FDSN webservice. url: https://www.geonet.org.nz/data/tools/FDSN (visited on 04/19/2022)
- 3. G. Mazzola. "Graph-Time Convolutional Neural Network". PhD thesis. TU Delft, July 2020, pp. 38, 61–77.