

Ré-identification sans coordination dans les types de données répliquées sans conflits (CRDTs)

THÈSE

présentée et soutenue publiquement le TODO : Définir une date

pour l'obtention du

Doctorat de l'Université de Lorraine

(mention informatique)

par

Matthieu Nicolas

Composition du jury

Président : À déterminer

Rapporteurs:Hanifa Boucheneb Professeure, Polytechnique Montréal

> Davide Frev Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Hala Skaf-Molli Maîtresse de conférences, HdR, Nantes Université Examinateurs:

> Directeur de Recherche, Inria Nancy - Grand Est Stephan Merz

Encadrants: Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

> Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Remerciements

WIP

WIP

Sommaire

Chapitre 1					
Introd	Introduction 1				
1.1	Conte	xte	1		
	1.1.1	Réplication de données mutables	2		
	1.1.2	Réplication de données pessimiste	3		
	1.1.3	Réplication de données optimiste	3		
1.2	Questi	ions de recherche et contributions	4		
	1.2.1	Ré-identification sans coordination synchrone pour Conflict-free Re-			
		plicated Data Types (CRDTs) pour le type Séquence	4		
	1.2.2	Éditeur de texte collaboratif Pair-à-Pair (P2P) temps réel chiffré de			
		bout en bout	5		
1.3	Plan d	lu manuscrit	6		
1.4	Public	ations	7		
Chapit	re 2				
État d	État de l'art				
2.1	Modèl	e du système	11		
2.2	Types	de données répliquées sans conflits	13		
	2.2.1	Sémantiques en cas de concurrence	16		
	2.2.2	Modèles de synchronisation	20		
2.3	Séque	nces répliquées sans conflits	29		
	2.3.1	Approche à pierres tombales	33		
	2.3.2	Approche à identifiants densément ordonnés	40		
	2.3.3	Synthèse	48		
2.4	Logoo	${ m tSplit}$	51		
	2.4.1	Identifiants	52		
	2.4.2	Aggrégation dynamique d'élements en blocs	53		

$\overline{Sommaire}$

	2.4.3	Modèle de données	54
	2.4.4	Modèle de livraison	56
	2.4.5	Limites	59
2.5	Mitiga	ation du surcoût des séquences répliquées sans conflits	61
	2.5.1	Mécanisme de Garbage Collection (GC) des pierres tombales	61
	2.5.2	Ré-équilibrage de l'arbre des identifiants de position	62
	2.5.3	Réduction de la croissance des identifiants de position	63
	2.5.4	Synthèse	63
2.6	Synth	èse	64
2.7	Propo	sition	64
Chapit			
Renon	nmage	dans une séquence répliquée 67	
3.1	Préser	ntation de l'approche	68
	3.1.1	Définition de l'opération de renommage	68
3.2	Introd	luction de l'opération $rename$	69
	3.2.1	Opération de renommage proposée	69
	3.2.2	Gestion des opérations concurrentes au renommage	71
	3.2.3	Évolution du modèle de livraison des opérations	73
3.3	Gestic	on des opérations <i>rename</i> concurrentes	75
	3.3.1	Conflits en cas de renommages concurrents	75
	3.3.2	Relation de priorité entre renommages	76
	3.3.3	Algorithme d'annulation de l'opération de renommage	78
	3.3.4	Processus d'intégration d'une opération	82
	3.3.5	Mécanisme de GC des anciens états obsolètes	87
3.4	Valida	ation	89
	3.4.1	Complexité en temps des opérations	89
	3.4.2	Expérimentations	94
	3.4.3	Résultats	95
3.5	Discus	ssion	102
	3.5.1	Stratégie de génération des opérations rename	102
	3.5.2	Stockage des états précédents sur disque	103
	3.5.3	Compression et limitation de la taille de l'opération $rename$	103
	3.5.4	Définition de relations de priorité pour minimiser les traitements	104
	3.5.5	Report de la transition vers la nouvelle époque cible	105

	3.5.6	Utilisation de l'opération de renommage comme mécanisme de com-	
		pression du log d'opérations	106
	3.5.7	Implémentation alternative de l'intégration de l'opération rename	
		basée sur le journal d'opérations	108
3.6	Comp	paraison avec les approches existantes	110
	3.6.1	Core-Nebula	110
	3.6.2	LSEQ	111
3.7	Concl	usion	111
Chapit	tre 4		
Conclu	ısions	et perspectives 113	;
4.1	Résun	nés des contributions	113
	4.1.1	Ré-identification sans coordination pour les CRDTs pour Séquence	113
	4.1.2	Éditeur de texte collaboratif P2P chiffré de bout en bout	115
4.2	Perspe	ectives	117
	4.2.1	Définition de relations de priorité pour minimiser les traitements	117
	4.2.2	Détection et fusion manuelle de versions distantes	118
	4.2.3	Étude comparative des différents modèles de synchronisation pour	
		CRDTs	121
	4.2.4	Approfondissement du patron de conception de Pure Operation-	
		Based CRDTs	123
Annex	æ A		
Entrel	aceme	nt d'insertions concurrentes dans Treedoc	
Annex	e B		
		RENAMEID	
1118011			
Annex	e C		
Algori	thmes	REVERTRENAMEID	
т ,			100
Index			133
Bibliog	graphic	e	

 $\overline{Sommaire}$

Table des figures

2.1	Spécification algébrique du type abstrait usuel Ensemble	14
2.2	Modifications concurrentes d'un Ensemble répliqué provoquant un conflit	
	suite à l'ajout et la suppression d'un même élément	15
2.3	Résolution du conflit en utilisant la sémantique Last-Writer-Wins (LWW)	17
2.4	Résolution du conflit en utilisant la sémantique Multi-Value (MV)	18
2.5	Résolution du conflit en utilisant soit la sémantique Add-Wins (AW), soit	
	la sémantique Remove-Wins (RW)	19
2.6	Résolution du conflit en utilisant la sémantique $Causal-Length$ (CL)	19
2.7	Modifications en concurrence d'un Ensemble répliqué par les noeuds A et B	20
2.8	Synchronisation des noeuds A et B en adoptant le modèle de synchronisa-	
	tion par états	22
2.9	Synchronisation des noeuds A et B en adoptant le modèle de synchronisa-	
	tion par opérations	25
2.10	Synchronisation des noeuds A et B en adoptant le modèle de synchronisa-	
	tion par différences d'états	27
2.11	Représentation de la séquence "HELLO"	29
2.12	Spécification algébrique du type abstrait usuel Séquence	30
2.13	Modifications concurrentes d'une séquence	31
2.14	Modifications concurrentes d'une séquence répliquée WOOT	34
2.15	Modifications concurrentes d'une séquence répliquée Replicated Growable	
	Array (RGA)	38
	Entrelacement d'éléments insérés de manière concurrente	40
2.17	Identifiants de positions	41
2.18	Identifiants de position avec désambiguateurs	42
2.19	Modifications concurrentes d'une séquence répliquée Treedoc	43
2.20	Modifications concurrentes d'une séquence répliquée Logoot	46
2.21	Représentation d'une séquence LogootSplit contenant les éléments "HLO"	54
2.22	Spécification algébrique du type abstrait LogootSplit	55
2.23	Modifications concurrentes d'une séquence répliquée LogootSplit	56
2.24	Résurgence d'un élément supprimé suite à la relivraison de son opération ins	57
2.25	Non-effet de l'opération rmv car reçue avant l'opération ins correspondante	58
2.26	Insertion menant à une augmentation de la taille des identifiants	59
2.27	Insertion menant à une augmentation de la taille des identifiants	60
2.28	Taille du contenu comparé à la taille de la séquence LogootSplit	61

Table des figures

3.1	Renommage de la séquence sur le noeud A	70
3.2	Modifications concurrentes menant à une anomalie	71
3.3	Renommage de la modification concurrente avant son intégration en utili-	
		73
3.4	Livraison d'une opération <i>insert</i> sans avoir reçu l'opération <i>rename</i> précé-	
		73
3.5	Livraison désordonnée d'une opération rename et de l'opération insert qui	
	<u> </u>	75
3.6	1	75
3.7	1	76
3.8		77
3.9	Annulation d'une opération <i>rename</i> intégrée précèdemment en présence	
		78
3.10	Annulation d'une opération rename intégrée précèdemment en présence	
		81
3.11		84
		85
	Suppression des époques obsolètes et récupération de la mémoire des an-	
		88
3.14	Évolution de la taille du document en fonction du CRDT utilisé et du	
		96
3.15		97
	1	00
		05
A.1	Modifications concurrentes d'une séquence Treedoc résultant en un entre-	
	lacement	27

Chapitre 1

Introduction

Sommaire

1.1	Con	texte	1
	1.1.1	Réplication de données mutables	2
	1.1.2	Réplication de données pessimiste	3
	1.1.3	Réplication de données optimiste	3
1.2	Que	stions de recherche et contributions	4
	1.2.1	Ré-identification sans coordination synchrone pour CRDTs pour	
		le type Séquence	4
	1.2.2	Éditeur de texte collaboratif P2P temps réel chiffré de bout en	
		bout	5
1.3	Plan	du manuscrit	6
1.4	Pub	lications	7

1.1 Contexte

- Systèmes collaboratifs (wikis, plateformes de contenu, réseaux sociaux) et leurs bienfaits (qualité de l'info, vitesse de l'info (exemple de crise?), diffusion de la parole). Démocratisation (sic) de ces systèmes au cours de la dernière décennie.
- En raison du volume de données et de requêtes, adoptent architecture décentralisée. Permet ainsi de garantir disponibilité, tolérance aux pannes et capacité de passage à l'échelle.
- Mais échoue à adresser problèmes non-techniques : confidentialité, souveraineté, protection contre censure, dépendance et nécessité de confiance envers autorité centrale.
- À l'heure où les entreprises derrière ces systèmes font preuve d'ingérence et d'intérêts contraires à ceux de leurs utilisateur-rices (Cambridge Analytica, Prism, non-modération/mise en avant de contenus racistes ^{1 2 3}, invisibilisation de contenus fé-

^{1.} Algorithms of Oppression, Safiya Umoja Noble

 $^{2. \ \}texttt{https://www.researchgate.net/publication/342113147_The_YouTube_Algorithm_and_the_Alt-Right_Filter_Bubble}$

^{3.} https://www.wsj.com/articles/the-facebook-files-11631713039

ministes, dissolution du comité d'éthique de Google ⁴, inégalité d'accès à la métamachine affectante ^{5 6 7}), parait fondamental de proposer les moyens technologiques accessibles pour concevoir et déployer des alternatives.

- Matthieu: TODO: Voir si angle écologique/réduction consommation d'énergie peut être pertinent.
- Systèmes pair-à-pair sont une direction intéressante pour répondre à ces problématiques, de part leur absence d'autorités centrales, la distribution des tâches et leur conception mettant le pair au centre et les permettant de fonctionner aussi bien en mode connecté ou déconnecté. Mais posent de nouvelles problématiques de recherche.
- Ces systèmes ne disposent d'aucun contrôle sur les noeuds qui les composent. Le nombre de noeuds peut donc croître de manière non-bornée et atteindre des centaines de milliers de noeuds. La complexité des algorithmes de ces systèmes ne doit donc pas dépendre de ce paramètre, ou alors de manière logarithmique.
- De plus, ces noeuds n'offrent aucune garantie sur leur stabilité. Ils peuvent donc rejoindre et participer au système de manière éphèmère. S'agit du phénomène connu sous le nom de churn. Les algorithmes de ces systèmes ne peuvent donc pas reposer sur des mécanismes nécessitant une coordination synchrone d'une proportion des noeuds.
- Finalement, ces noeuds n'offrent aucune garanties sur leur fiabilité et intentions. Les noeuds peuvent se comporter de manière byzantine. Pour assurer la confidentialité, l'absence de confiance requise et le bon fonctionnement du système, ce dernier doit être conçu pour résister aux comportements byzantins de ses acteurs.
- Ainsi, il est nécessaire de faire progresser les technologies existantes pour les rendre compatible avec ce nouveau modèle de système. Dans le cadre de cette thèse, nous nous intéressons aux mécanismes de réplication de données mutables dans les systèmes collaboratifs P2P sans autorités centrales.

1.1.1 Réplication de données mutables

Les techniques de réplication de données mutables introduisent de la redondance de données dans les systèmes. Cette redondance a pour but et effet d'améliorer plusieurs propriétés des systèmes :

Définition 1 (Disponibilité).

Définition 2 (Tolérance aux pannes).

Définition 3 (Capacité de passage à l'échelle).

Définition 4 (Latence).

^{4.} https://www.bbc.com/news/technology-56135817

^{5.} Je suis une fille sans histoire, Alice Zeniter, p. 75

^{6.} Qui cite Les affects de la politique, Frédéric Lordon

^{7.} https://www.bbc.com/news/technology-59011271

Les techniques de réplication de données peuvent être classées en deux approches : les techniques de réplication de données pessimistes et les techniques de réplication de données optimistes. Ces deux catégories offrent des compromis différents vis-à-vis des propriétés décrites par les théorèmes CAP [1] et PACELC [2]. Notamment, la différence entre ces catégories concerne le cas de la propriété de cohérence.

Définition 5 (Cohérence).

1.1.2 Réplication de données pessimiste

Les techniques de réplication de données dites *pessimistes* privilègie la cohérence des données. Notamment, ces techniques empêchent les modifications en concurrence d'une même donnée. Pour cela, plusieurs approches sont possibles.

- Première approche consiste à utiliser un verrou.
- Seconde approche consiste à utiliser un système de vote pour décider de la prochaine modification. Consensus, élection de leader, SMR.
- Le choix de privilégier la cohérence des données se fait au détriment de la disponibilité, tolérance aux pannes, capacité de passage à l'échelle et latence. Par exemple, un système basé sur un leader deviendra temporairement indisponible lors d'une panne de son leader, le temps que la panne soit détectée et qu'un nouveau leader soit élu.

1.1.3 Réplication de données optimiste

À l'inverse, les techniques de réplication de données dites *optimistes* jugent acceptable de relâcher les contraintes existantes sur la cohérence des données. Dans ce paradigme, chaque noeud qui possède une copie de la donnée répliquée peut la consulter et la modifier à tout moment, sans coordination préalable avec les autres noeuds. Les copies des noeuds sont donc autorisées à diverger de manière temporaire.

Les modifications effectuées par chacun sont ensuite diffusées pour être intégrées par l'ensemble des noeuds et converger de nouveau, c.-à-d. atteindre des états équivalents. Cependant, certaines modifications effectuées en concurrence par les noeuds peuvent provoquer des conflits. *Matthieu: NOTE : Pourrait insérer exemple de conflits de l'édition collaborative ici.* Des mécanismes de résolution de conflits, potentiellement automatiques, sont alors requis pour assurer la convergence à terme.

Cette approche permet donc de privilégier la disponibilité, tolérance aux pannes, capacité de passage à l'échelle et latence en échange de la cohérence forte.

Dans le cadre de cette thèse, nous nous intéressons aux techniques de réplication de données optimistes.

1.2 Questions de recherche et contributions

1.2.1 Ré-identification sans coordination synchrone pour CRDTs pour le type Séquence

- Les systèmes collaboratifs permettent à des utilisateur-rices de manipuler et d'éditer un contenu partagé. Ces systèmes peuvent adopter le paradigme de la réplication optimiste [3] pour favoriser leur disponibilité, latence et tolérance aux pannes. Ce paradigme autorise les noeuds possédant une copie de la donnée partagée de la consulter et de la modifier sans se coordonner préalablement avec les autres noeuds. Leur copies peuvent alors diverger momentanément. Un mécanisme de synchronisation permet ensuite à chaque noeud de récupérer l'ensemble des modifications et de les intégrer de façon à converger, c.-à-d. obtenir de nouveau des états équivalents. Cependant, le paradigme de la réplication optimiste permet la génération en concurrence de modifications provoquant un conflit, e.g. l'ajout et la suppression d'un même élément dans un Ensemble. Un mécanisme de résolution de conflits est alors nécessaire pour assurer la convergence à terme des noeuds [4].
- Les CRDTs [5, 6] sont des types de données répliqués. Ils sont conçus pour être répliqués par les noeuds d'un système et pour permettre à ces derniers de modifier les données partagées sans aucune coordination. Dans ce but, ils incluent des mécanismes de résolution de conflits automatiques directement au sein leur spécification. Ces mécanismes leur permettent de résoudre le problème évoqué précédemment. Cependant, ces mécanimes induisent un surcoût, aussi bien en termes de métadonnées, calculs et bande-passante. Notamment, certains CRDTs comme ceux pour le type Séquence souffrent d'une croissance monotone de leur surcoût. Ce surcoût s'avère handicapant dans le contexte des collaborations à large échelle.
- Dans le contexte des CRDTs pour le type Séquence, le surcoût du type de données répliquées provient de la croissance des métadonnées. Notamment, ces métadonnées correspondent à des identifiants associés aux éléments de la Séquence par les CRDTs. Ces identifiants sont ensuite utilisées par leur mécanisme de résolution de conflits automatique, e.g. pour référencer les élements ou pour ordonner les éléments les uns relativement aux autres.
- Plusieurs approches ont été proposées pour réduire le coût induit par ces identifiants. Notamment, [7, 8] proposent un mécanisme de ré-assignation des identifiants pour réduire leur taille. Ce mécanisme provoque cependant des conflits avec les modifications concurrentes de la Séquence, c.-à-d. l'insertion ou la suppression. Pour résoudre ces nouveaux conflits, les auteurs proposent un mécanisme de transformation des modifications concurrentes par rapport au mécanisme de ré-assignation.
- Cependant, des exécutions concurrentes du mécanisme de ré-assignation des identifiants provoquent elles aussi des conflits. Pour éviter ces dernier, les auteurs choisissent de subordonner l'exécution du mécanisme de ré-assignation à un protocole de consensus. Ainsi, le mécanisme de ré-assignation ne peut être déclenché en concurrence par les noeuds du systèmes.

- Cependant, reposer sur un protocole de consensus est une contrainte forte dans un système distribué. Nous la jugeons même prohibitive pour les systèmes P2P à large échelle sujets au churn. Notre problématique de recherche est donc la suivante : pouvons-nous proposer un mécanisme sans coordination synchrone de réduction du surcoût des CRDTs pour Séquence, c.-à-d. compatible avec les systèmes P2P à large échelle sujets au churn?
- Nous répondons à cette problématique en proposant RenamableLogootSplit, un nouveau CRDT pour le type Séquence. Ce CRDT intègre un mécanisme de renommage directement au sein de sa spécification, ainsi qu'un mécanisme de résolution de conflits automatique pour résoudre le conflit provoqué par des déclenchements concurrents de ce dernier. Ainsi, nous proposons un mécanisme de renommage permettant de réduire le surcoût du CRDT pour Séquence et qui est utilisable par les noeuds sans aucune coordination synchrone entre eux.

1.2.2 Éditeur de texte collaboratif P2P temps réel chiffré de bout en bout

- Les systèmes collaboratifs permettent à plusieurs utilisateur-rices de collaborer pour la réalisation d'une tâche. Les systèmes collaboratifs actuels adoptent principalement une architecture décentralisée, c.-à-d. un ensemble de serveurs avec lesquels les utilisateur-rices interagissent pour réaliser leur tâche, e.g. Google Docs [9]. Par rapport à une architecture centralisée, cette architecture leur permet d'améliorer leur disponibilité et tolérance aux pannes, notamment grâce aux méthodes de réplication de données. Cette architecture à base de serveurs facilite aussi la collaboration, les serveurs permettant d'intégrer les modifications effectuées par les utilisateur-rices, de stocker les données, d'assurer la communication entre les utilisateur-rices ou encore de les authentifier.
- De part le rôle qui leur incombe, ces serveurs jouent donc un rôle central dans ces systèmes. Il en découle plusieurs problématiques :
 - (i) Ces serveurs manipulent et hébergent les données faisant l'objet de collaborations. Ces systèmes ont donc connaissance des données manipulées et de l'identité des auteur-rices de ces modifications. Les systèmes collaboratifs décentralisés demandent donc à leurs utilisateur-rices d'abandonner la souveraineté et la confidentialité de leur travail.
 - (ii) Ces serveurs sont gérés par des autorités centrales, e.g. Google. Les systèmes collaboratifs devenant non-fonctionnels en cas d'arrêt des serveurs, les utilisateurrices de ces systèmes dépendent alors de ces autorités centrales et de leurs intérêts. Par exemple, les autorités centrales ayant le pouvoir de vie et de mort sur leurs systèmes collaboratifs, elles menacent la pérénnité de ces systèmes.
- Pour répondre à ces problématiques, c.-à-d. confidentialité et souveraineté des données, dépendance envers des tiers, pérénnité des systèmes, un nouveau paradigme d'applications proposent de concevoir des Local-First Softwares (LFS), c.-à-d. des applications mettant l'utilisateur-rice et son appareil au coeur du système. Dans ce

cadre d'applications, les serveurs sont relégués à un rôle de support à la collaboration.

- Dans le cadre de cette mouvance, notre équipe de recherche étudie notamment la conception de systèmes P2P sans autorités centrales. Ce changement de modèle, d'une architecture décentralisée appartenant à des autorités centrales à une architecture P2P sans autorités centrales, introduit un ensemble de problématiques de domaines variés, e.g.
 - (i) Comment permettre aux utilisateur-rices de collaborer en l'absence d'autorités centrales pour résoudre les conflits de modifications?
 - (ii) Comment authentifier les utilisateur-rices en l'absence d'autorités centrales?
 - (iii) Comment structurer le réseau de manière efficace, c.-à-d. en limitant le nombre de connexion par pair?
- Cet ensemble de questions peut être résumé en la problématique suivante : pouvonsnous concevoir une application collaborative P2P à large échelle, sûre et sans autorités centrales?
- Pour étudier cette problématique, l'équipe Coast développe Multi User Text Editor (MUTE) [10]. Il s'agit d'un éditeur de texte web collaboratif P2P temps réel chiffré de bout en bout. Ce projet permet de présenter les travaux de recherche de l'équipe, c.-à-d. mécanismes de résolutions de conflits automatiques pour le type Séquence [11, 12, 13] et mécanisme d'authentification des pairs sans autorités centrales [14, 15]. Il permet aussi d'offrir un tour d'horizon des nombreux travaux de recherche nécessaires à la conception de tels systèmes, c.-à-d. mécanismes de conscience de groupe Matthieu: TODO: Trouver et ajouter références, protocoles d'appartenance aux groupes [16, 17], topologies réseaux P2P [18] et protocoles d'établissement de clés de chiffrement de groupe [19]. À notre connaissance, il s'agit du Proof of Concept (PoC) le plus complet d'applications LFS P2P sans autorités centrales. Matthieu: TODO: Vérifier du côté des applis de IPFS

1.3 Plan du manuscrit

- Ce manuscrit de thèse est organisé de la manière suivante :
- Dans le chapitre 2, nous introduisons le modèle du système que nous considérons, c.-à-d. les systèmes P2P à large échelle sujet au churn. Puis nous présentons dans ce chapitre l'état de l'art des mécanismes de résolution de conflits automatiques utilisés dans les systèmes adoptant le paradigme de la réplication optimiste. À partir de cet état de l'art, nous identifions et motivons notre problématique de recherche, c.-à-d. l'absence de mécanisme adapté aux systèmes P2P à large échelle sujet au churn permettant de réduire le surcoût induit par les mécanismes de résolution de conflits automatiques pour le type Séquence.
- Dans le chapitre 3, nous présentons notre approche pour présenter un tel mécanisme, c.-à-d. un mécanisme de résolution de conflits automatiques pour le type Séquence auquel nous associons un mécanisme de GC de son surcoût ne nécessitant pas de

coordination synchrone entre les noeuds du système. Nous détaillons le fonctionnement de notre approche, sa validation par le biais d'une évaluation empirique puis comparons notre approche par rapport aux approches existantes Finalement, nous concluons la présentation de notre approche en identifiant et en détaillant plusieurs de ses limites.

- Dans le ??, nous présentons MUTE, l'éditeur de texte collaboratif temps réel P2P chiffré de bout en bout que notre équipe de recherche développe dans le cadre de ses travaux de recherche. Nous présentons les différentes couches logicielles formant un pair et les services tiers avec lesquels les pairs interagissent, et détaillons nos travaux dans le cadre de ce projet, c.-à-d. l'intégration de notre mécanisme de résolution de conflits automatiques pour le type Séquence et le développement de la couche de livraison des messages associée. Pour chaque couche logicielle, nous identifions ses limites et présentons de potentielles pistes d'améliorations.
- Finalement, nous récapitulons dans le chapitre 4 les contributions réalisées dans le cadre de cette thèse. Puis nous clotûrons ce manuscrit en introduisant plusieurs des pistes de recherches que nous souhaiterons explorer dans le cadre de nos travaux futurs.

1.4 Publications

Notre travail sur la problématique identifiée dans la sous-section 1.2.1, c.-à-d. la proposition d'un mécanisme ne nécessitant aucune coordination synchrone pour réduire le surcoût des CRDTs pour le type Séquence, a donné lieu à des publications à différents stades de son avancement :

- (i) Dans [20], nous motivons le problème identifié et présentons l'idée de notre approche pour y répondre.
- (ii) Dans [21], nous détaillons une première partie de notre approche et présentons notre protocole d'évaluation expérimentale ainsi que ses premiers résultats.
- (iii) Dans [13], nous détaillons notre proposition dans son entièreté. Nous accompagnons cette proposition d'une évaluation expérimentale poussée. Finalement, nous complétons notre travail d'une discussion analysant ses limites connues et présentant des pistes de travail possibles pour y répondre.

Nous précisons ci-dessous les informations relatives à chacun de ces articles.

Efficient renaming in CRDTs [20]

Auteur Matthieu Nicolas

Article de position à Middleware 2018 - 19th ACM/IFIP International Middleware Conference (Doctoral Symposium), Dec 2018, Rennes, France.

Abstract Sequence Conflict-free Replicated Data Types (CRDTs) allow to replicate and edit, without any kind of coordination, sequences in distributed systems. To ensure convergence, existing works from the literature add metadata to each element but they do not bound its footprint, which impedes their adoption. Several approaches were proposed to address this issue but they do not fit a fully distributed setting. In this paper, we present our ongoing work on the design and validation of a fully distributed renaming mechanism, setting a bound to the metadata's footprint. Addressing this issue opens new perspectives of adoption of these CRDTs in distributed applications.

Efficient Renaming in Sequence CRDTs [21]

Auteurs Matthieu Nicolas, Gérald Oster, Olivier Perrin

Article de workshop à PaPoC 2020 - 7th Workshop on Principles and Practice of Consistency for Distributed Data, Apr 2020, Heraklion / Virtual, Greece.

Abstract To achieve high availability, large-scale distributed systems have to replicate data and to minimise coordination between nodes. Literature and industry increasingly adopt Conflict-free Replicated Data Types (CRDTs) to design such systems. CRDTs are data types which behave as traditional ones, e.g. the Set or the Sequence. However, unlike traditional data types, they are designed to natively support concurrent modifications. To this end, they embed in their specification a conflict-resolution mechanism.

To resolve conflicts in a deterministic manner, CRDTs usually attach identifiers to elements stored in the data structure. Identifiers have to comply with several constraints, such as uniqueness or belonging to a dense order. These constraints may hinder the identifiers' size from being bounded. As the system progresses, identifiers tend to grow. This inflation deepens the overhead of the CRDT over time, leading to performance issues.

To address this issue, we propose a new CRDT for Sequence which embeds a renaming mechanism. It enables nodes to reassign shorter identifiers to elements in an uncoordinated manner. Experimental results demonstrate that this mechanism decreases the overhead of the replicated data structure and eventually limits it.

Efficient Renaming in Sequence CRDTs [13]

Auteurs Matthieu Nicolas, Gérald Oster, Olivier Perrin

Article de journal dans IEEE Transactions on Parallel and Distributed Systems, Institute of Electrical and Electronics Engineers, 2022, 33 (12), pp.3870-3885.

Abstract To achieve high availability, large-scale distributed systems have to replicate data and to minimise coordination between nodes. For these purposes, literature and industry increasingly adopt Conflict-free Replicated Data Types (CRDTs) to design such systems. CRDTs are new specifications of existing data types, e.g. Set or Sequence. While CRDTs have the same behaviour as previous specifications in sequential executions,

1.4. Publications

they actually shine in distributed settings as they natively support concurrent updates. To this end, CRDTs embed in their specification conflict resolution mechanisms. These mechanisms usually rely on identifiers attached to elements of the data structure to resolve conflicts in a deterministic and coordination-free manner. Identifiers have to comply with several constraints, such as being unique or belonging to a dense total order. These constraints may hinder the identifier size from being bounded. Identifiers hence tend to grow as the system progresses, which increases the overhead of CRDTs over time and leads to performance issues. To address this issue, we propose a novel Sequence CRDT which embeds a renaming mechanism. It enables nodes to reassign shorter identifiers to elements in an uncoordinated manner. Experimental results demonstrate that this mechanism decreases the overhead of the replicated data structure and eventually minimises it.

Chapitre 1. Introduction

Chapitre 2

État de l'art

Sommaire				
2.1	Mod	lèle du système	11	
2.2	.2 Types de données répliquées sans conflits		13	
	2.2.1	Sémantiques en cas de concurrence	16	
	2.2.2	Modèles de synchronisation	20	
2.3	Séqu	nences répliquées sans conflits	29	
	2.3.1	Approche à pierres tombales	33	
	2.3.2	Approche à identifiants densément ordonnés	40	
	2.3.3	Synthèse	48	
2.4	Logo	potSplit	51	
	2.4.1	Identifiants	52	
	2.4.2	Aggrégation dynamique d'élements en blocs	53	
	2.4.3	Modèle de données	54	
	2.4.4	Modèle de livraison	56	
	2.4.5	Limites	59	
2.5	Miti	gation du surcoût des séquences répliquées sans conflits	61	
	2.5.1	Mécanisme de GC des pierres tombales	61	
	2.5.2	Ré-équilibrage de l'arbre des identifiants de position $\ \ldots \ \ldots$	62	
	2.5.3	Réduction de la croissance des identifiants de position	63	
	2.5.4	Synthèse	63	
2.6	Synt	zhèse	64	
2.7	Prop	position	64	

2.1 Modèle du système

Le système que nous considérons est un système Pair-à-Pair (P2P) à large échelle. Il est composé d'un ensemble de noeuds dynamique. En d'autres termes, un noeud peut rejoindre ou quitter le système à tout moment.

À un instant donné, un noeud est soit connecté, soit déconnecté. Nous considérons possible qu'un noeud se déconnecte de manière définitive, sans indication au préalable. Ainsi, du point de vue des autres noeuds du système, il est impossible de déterminer le statut d'un noeud déconnecté. Ce dernier peut être déconnecté de manière temporaire ou définitive. Toutefois, nous assimilons les noeuds déconnectés de manière définitive à des noeuds ayant quittés le système, ceux-ci ne participant plus au système.

Dans ce système, nous considérons comme confondus les noeuds et clients. Un noeud correspond alors à un appareil d'un-e utilisateur-rice du système. Un-e même utilisateur-rice peut prendre part au système au travers de différents appareils, nous considérons alors chaque appareil comme un noeud distinct.

Le système consiste en une application permettant de répliquer une donnée. Chaque noeud du système possède en local une copie de la donnée. Les noeuds peuvent consulter et éditer leur copie locale à tout moment, sans se coordonner entre eux. Les modifications sont appliquées à la copie locale immédiatement et de manière atomique. Les modifications sont ensuite transmises aux autres noeuds de manière asynchrone par le biais de messages, afin qu'ils puissent à leur tour intégrer les modifications à leur copie. L'application garantit la convergence à terme des copies.

Définition 6 (Convergence à terme). La convergence à terme est une propriété de sûreté indiquant que l'ensemble des noeuds du système ayant intégrés le même ensemble de modifications obtiendront des états équivalents ⁸.

Les noeuds communiquent entre eux par l'intermédiaire d'un réseau non-fiable. Les messages envoyés peuvent être perdus, ré-ordonnés et/ou dupliqués. Le réseau est aussi sujet à des partitions, qui séparent les noeuds en des sous-groupes disjoints. Aussi, nous considérons que les noeuds peuvent initier de leur propre chef des partitions réseau : des groupes de noeuds peuvent décider de travailler de manière isolée pendant une certaine durée, avant de se reconnecter au réseau.

Pour compenser les limitations du réseau, les noeuds reposent sur une couche de livraison de messages. Cette couche permet de garantir un modèle de livraison donné des messages à l'application. En fonction des garanties du modèle de livraison sélectionné, cette couche peut ré-ordonner les messages reçus avant de les livrer à l'application, dédupliquer les messages, et détecter et ré-échanger les messages perdus. Nous considérons a minima que la couche de livraison garantit la livraison à terme des messages.

Définition 7 (Livraison à terme). La livraison à terme est un modèle de livraison garantissant que l'ensemble des messages du système seront livrés à l'ensemble des noeuds du système à terme.

Finalement, nous supposons que les noeuds du système sont honnêtes. Les noeuds ne peuvent dévier du protocole de la couche de livraison des messages ou de l'application. Les noeuds peuvent cependant rencontrer des défaillances. Nous considérons que les noeuds disposent d'une mémoire durable et fiable. Ainsi, nous considérons que les noeuds peuvent

^{8.} Nous considérons comme équivalents deux états pour lesquels chaque observateur du type de données renvoie un même résultat, c.-à-d. les deux états sont indifférenciables du point de vue des utilisateurrices du système.

restaurer le dernier état valide, c.-à-d. pas en cours de modification, qu'il possédait juste avant la défaillance.

2.2 Types de données répliquées sans conflits

Afin d'offrir une haute disponibilité à leurs clients et afin d'accroître leur tolérance aux pannes [22], les systèmes distribués peuvent adopter le paradigme de la réplication optimiste [3]. Ce paradigme consiste à ce que chaque noeud composant le système possède une copie de la donnée répliquée. Chaque noeud possède le droit de la consulter et de la modifier, sans coordination préalable avec les autres noeuds. Les noeuds peuvent alors temporairement diverger, c.-à-d. posséder des états différents. Un mécanisme de synchronisation leur permet ensuite de partager leurs modifications respectives et d'obtenir de nouveau des états équivalent, c.-à-d. de converger à terme [4].

Pour permettre aux noeuds de converger, les protocoles de réplication optimiste ordonnent généralement les évènements se produisant dans le système distribué. Pour les ordonner, la littérature repose généralement sur la relation de causalité entre les évènements, qui est définie par la relation happens-before [23]. Nous l'adaptons ci-dessous à notre contexte, en ne considérant que les modifications 9 effectuées et celles intégrées :

Définition 8 (Relation happens-before). La relation happens-before indique qu'une modification m_1 a eu lieu avant une modification m_2 , notée $m_1 \to m_2$, si et seulement si une des conditions suivantes est satisfaite :

- (i) m_1 a été effectuée avant m_2 sur le même noeud.
- (ii) m_1 a été intégrée par le noeud auteur de m_2 avant qu'il n'effectue m_2 .
- (iii) Il existe une modification m telle que $m_1 \to m \land m \to m_2$.

Dans le cadre d'un système distribué, nous notons que la relation happens-before ne permet pas d'établir un ordre total entre les modifications. En effet, deux modifications m_1 et m_2 peuvent être effectuées en parallèle par deux noeuds différents, sans avoir connaissance de la modification de leur pair respectif. De telles modifications sont alors dites concurrentes :

Définition 9 (Concurrence). Deux modifications m_1 et m_2 sont concurrentes, noté $m_1 \parallel m_2$, si et seulement si $m_1 \nrightarrow m_2 \land m_1 \nrightarrow m_2$.

Lorsque les modifications possibles sur un type de données sont commutatives, l'intégration des modifications effectuées par les autres noeuds, même concurrentes, ne nécessite aucun mécanisme particulier. Cependant, les modifications permises par un type de données ne sont généralement pas commutatives car de sémantiques contraires, e.g. l'ajout et la suppression d'un élément dans une Collection. Ainsi, une exécution distribuée peut mener à la génération de modifications concurrentes non commutatives. Nous parlons alors de conflits.

Avant d'illustrer notre propos avec un exemple, nous introduisons la spécification algébrique du type Ensemble dans la Figure 2.1 sur laquelle nous nous basons.

^{9.} Nous utilisons le terme *modifications* pour désigner les *opérations de modifications* des types abstraits de données afin d'éviter une confusion avec le terme *opération* introduit ultérieurement.

 $\mathbf{payload}$ $S \in Set\langle E \rangle$

constructor

emp: $\longrightarrow S$

mutators

 $\begin{array}{cccc} add & : & S \times E & \longrightarrow S \\ rmv & : & S \times E & \longrightarrow S \end{array}$

queries

 $\begin{array}{cccc} len & : & S & \longrightarrow \mathbb{N} \\ rd & : & S & \longrightarrow S \end{array}$

FIGURE 2.1 – Spécification algébrique du type abstrait usuel Ensemble

Un Ensemble est une collection dynamique non-ordonnée d'éléments de type E. Cette spécification définit que ce type dispose d'un constructeur, emp, permettant de générer un ensemble vide.

La spécification définit deux modifications sur l'ensemble :

(i) add(s,e), qui permet d'ajouter un élément donné e à un ensemble s. Cette modification renvoie un nouvel ensemble construit de la manière suivante :

$$add(s,e) = s \cup \{e\}$$

(ii) rmv(s,e), qui permet de retirer un élément donné e d'un ensemble s. Cette modification renvoie un nouvel ensemble construit de la manière suivante :

$$rmv(s,e) = s \setminus \{e\}$$

Elle définit aussi deux observateurs :

- (i) len(s), qui permet de récupérer le nombre d'éléments présents dans un ensemble s.
- (ii) rd(s), qui permet de consulter l'état d'ensemble s. Dans le cadre de nos exemples, nous considérons qu'une consultation de l'état est effectuée de manière implicite à l'aide de rd après chaque modification.

Dans le cadre de ce manuscrit, nous travaillons sur des ensembles de caractères. Cette restriction du domaine se fait sans perte en généralité. En se basant sur cette spécification, nous présentons dans la Figure 2.2 un scénario où des noeuds effectuent en concurrence des modifications provoquant un conflit.

Dans cet exemple, deux noeuds A et B répliquent et partagent une même structure de données de type Ensemble. Les deux noeuds possèdent le même état initial : $\{a\}$. Le noeud A retire l'élément a de l'ensemble, en procédant à la modification rmv(a). Puis, le noeud A ré-ajoute l'élément a dans l'ensemble via la modification add(a). En concurrence, le noeud B retire lui aussi l'élément a de l'ensemble. Les deux noeuds se synchronisent ensuite.

FIGURE 2.2 – Modifications concurrentes d'un Ensemble répliqué provoquant un conflit suite à l'ajout et la suppression d'un même élément

À l'issue de ce scénario, l'état à produire n'est pas trivial : le noeud A a exprimé son intention d'ajouter l'élément a à l'ensemble, tandis que le noeud B a exprimé son intention contraire de retirer l'élément a de ce même ensemble. Ainsi, les états $\{a\}$ et $\{\}$ semblent tous les deux corrects et légitimes dans cette situation. Il est néanmoins primordial que les noeuds choisissent et convergent vers un même état pour leur permettre de poursuivre leur collaboration. Pour ce faire, il est nécessaire de mettre en place un mécanisme de résolution de conflits, potentiellement automatique.

Les Conflict-free Replicated Data Types (CRDTs) [6, 24, 25] répondent à ce besoin.

Définition 10 (Conflict-free Replicated Data Type). Les CRDTs sont de nouvelles spécifications des types de données existants, e.g. l'Ensemble ou la Séquence. Ces nouvelles spécifications sont conçues pour être utilisées dans des systèmes distribués adoptant la réplication optimiste. Ainsi, elles offrent les deux propriétés suivantes :

- (i) Les CRDTs peuvent être modifiés sans coordination avec les autres noeuds.
- (ii) Les CRDTs garantissent la convergence forte [6].

Définition 11 (Convergence forte). La convergence forte est une propriété de sûreté indiquant que l'ensemble des noeuds d'un système ayant intégrés le même ensemble de modifications obtiendront des états équivalents, sans échange de message supplémentaire.

Pour offrir la propriété de convergence forte, la spécification des CRDTs reposent sur la théorie des treillis [26] :

Définition 12 (Spécification des CRDTs). Les CRDTs sont spécifiés de la manière suivante :

- (i) Les différents états possibles d'un CRDT forment un sup-demi-treillis, possédant une relation d'ordre partiel ≤.
- (ii) Les modifications génèrent par inflation un nouvel état supérieur ou égal à l'état original d'après ≤.
- (iii) Il existe une fonction de fusion qui, pour toute paire d'états, génère l'état minimal supérieur d'après ≤ aux deux états fusionnés. Nous parlons alors de borne supérieure ou de Least Upper Bound (LUB) pour catégoriser l'état résultant de cette fusion.

Malgré leur spécification différente, les CRDTs partagent la même sémantique, c.-à-d. le même comportement, et la même interface que les types séquentiels ¹⁰ correspondants

du point de vue des utilisateur-rices. Ainsi, les CRDTs partagent le comportement des types séquentiels dans le cadre d'exécutions séquentielles. Cependant, ils définissent aussi une sémantique additionnelle pour chaque type de conflit ne pouvant se produire que dans le cadre d'une exécution distribuée.

Plusieurs sémantiques valides peuvent être proposées pour résoudre un type de conflit. Un CRDT se doit donc de préciser quelle sémantique il choisit.

L'autre aspect définissant un CRDT donné est le modèle qu'il adopte pour propager les modifications. Au fil des années, la littérature a établi et défini plusieurs modèles dit de synchronisation, chacun ayant ses propres besoins et avantages. De fait, plusieurs CRDTs peuvent être proposés pour un même type donné en fonction du modèle de synchronisation choisi.

Ainsi, ce qui définit un CRDT est sa ou ses sémantiques en cas de conflits et son modèle de synchronisation. Dans les prochaines sections, nous présentons les différentes sémantiques possibles pour un type donné, l'Ensemble, en guise d'exemple. Nous présentons ensuite les différents modèles de synchronisation proposés dans la littérature, et détaillons leurs contraintes et impact sur les CRDT les adoptant, toujours en utilisant le même exemple.

Matthieu: TODO: Faire le lien avec les travaux de Burckhardt [27] et les MRDTs [28]

2.2.1 Sémantiques en cas de concurrence

Plusieurs sémantiques peuvent être proposées pour résoudre les conflits. Certaines de ces sémantiques ont comme avantage d'être générique, c.-à-d. applicable à l'ensemble des types de données. En contrepartie, elles souffrent de cette même généricité, en ne permettant que des comportements simples en cas de conflits.

À l'inverse, la majorité des sémantiques proposées dans la littérature sont spécifiques à un type de données. Elles visent ainsi à prendre plus finement en compte l'intention des modifications pour proposer des comportements plus précis.

Dans la suite de cette section, nous présentons ces sémantiques génériques ainsi que celles spécifiques à l'Ensemble et, à titre d'exemple, les illustrons à l'aide du scénario présenté dans la Figure 2.2.

Sémantique Last-Writer-Wins

Une manière simple pour résoudre un conflit consiste à trancher de manière arbitraire et de sélectionner une modification parmi l'ensemble des modifications en conflit. Pour faire cela de manière déterministe, une approche est de reproduire et d'utiliser l'ordre total sur les modifications qui serait instauré par une horloge globale pour choisir la modification à prioritiser.

Cette approche, présentée dans [29], correspond à la sémantique nommée *Last-Writer-Wins* (LWW). De par son fonctionnement, cette sémantique est générique et est donc utilisée par une variété de CRDTs pour des types différents. La Figure 2.3 illustre son application à l'Ensemble pour résoudre le conflit de la Figure 2.2.

^{10.} Nous dénotons comme types séquentiels les spécifications usuelles des types de données supposant une exécution séquentielle de leurs modifications.

FIGURE 2.3 – Résolution du conflit en utilisant la sémantique LWW

Comme indiqué précédemment, le scénario illustré dans la Figure 2.3 présente un conflit entre les modifications concurrentes add(a) et rmv(a) générées de manière concurrente respectivement par les noeuds A et B. Pour le résoudre, la sémantique LWW associe à chaque modification une estampille. L'ordre créé entre les modifications par ces dernières permet de déterminer quelle modification désigner comme prioritaire. Ici, nous considérons que add(a) a eu lieu plus tôt que rmv(a). La sémantique LWW désigne donc rmv(a) comme prioritaire et ignore add(a). L'état obtenu à l'issue de cet exemple par chaque noeud est donc $\{\}$.

Il est à noter que si la modification rmv(a) du noeud B avait eu lieu plus tôt dans notre exemple, l'état final obtenu aurait été $\{a\}$. Ainsi, des exécutions reproduisant le même ensemble de modifications produiront des résultats différents en fonction de l'ordre créé par les estampilles associées à chaque modification. Ces estampilles étant des métadonnées du mécanisme de résolution de conflits, elles sont dissimulées aux utilisateur-rices. Le comportement de cette sémantique peut donc être perçu comme aléatoire et s'avérer perturbant pour les utilisateur-rices.

La sémantique LWW repose sur l'horloge de chaque noeud pour attribuer une estampille à chacune de leurs modifications. Les horloges physiques étant sujettes à des imprécisions et notamment des décalages, utiliser les estampilles qu'elles fournissent peut provoquer des anomalies vis-à-vis de la relation happens-before. Les systèmes distribués préfèrent donc généralement utiliser des horloges logiques [23]. Matthieu: TODO: Ajouter refs des horloges logiques plus intelligentes (Interval Tree Clock, Hybrid Clock...)

Sémantique Multi-Value

Une seconde sémantique générique ¹¹ est la sémantique *Multi-Value* (MV). Cette approche propose de gérer les conflits de la manière suivante : plutôt que de prioritiser une modification par rapport aux autres modifications concurrentes, la sémantique MV maintient l'ensemble des états résultant possibles. Nous présentons son application à l'Ensemble dans la Figure 2.4.

La Figure 2.4 présente la gestion du conflit entre les modifications concurrentes add(a) et rmv(a) par la sémantique MV. Devant ces modifications contraires, chaque noeud calcule chaque état possible, c.-à-d. un état sans l'élément a, $\{\}$, et un état avec ce dernier, $\{a\}$. Le CRDT maintient alors l'ensemble de ces états en parallèle. L'état obtenu est donc $\{\{\},\{a\}\}$.

^{11.} Bien qu'uniquement associée au type Registre dans le domaine des CRDTs généralement.

FIGURE 2.4 – Résolution du conflit en utilisant la sémantique MV

Ainsi, la sémantique MV expose les conflits aux utilisateur-rices lors de leur prochaine consultation de l'état du CRDT. Les utilisateur-rices peuvent alors prendre connaissance des intentions de chacun-e et résoudre le conflit manuellement. Dans la Figure 2.4, résoudre le conflit revient à re-effectuer une modification add(a) ou rmv(a) selon l'état choisi. Ainsi, si plusieurs personnes résolvent en concurrence le conflit de manière contraire, la sémantique MV exposera de nouveau les différents états proposés sous la forme d'un conflit.

Il est intéressant de noter que cette sémantique mène à un changement du domaine du CRDT considéré : en cas de conflit, la valeur retournée par le CRDT correspond à un Ensemble de valeurs du type initialement considéré. E.g. si nous considérons que le type correspondant au CRDT dans la Figure 2.4 est le type $Set\langle V\rangle$, nous observons que la valeur finale obtenue a pour type $Set\langle Set\langle V\rangle\rangle$. Il s'agit à notre connaissance de la seule sémantique opérant ce changement.

Sémantiques Add-Wins et Remove-Wins

Comme évoqué précédemment, d'autres sémantiques sont spécifiques au type de données concerné. Ainsi, nous abordons à présent des sémantiques spécifiques au type de l'Ensemble.

Dans le cadre de l'Ensemble, un conflit est provoqué lorsque des modifications add et rmv d'un même élément sont effectuées en concurrence. Ainsi, deux approches peuvent être proposées pour résoudre le conflit :

- (i) Une sémantique où la modification add d'une élément prend la précédence sur les modifications concurrentes rmv du même élément, nommée Add-Wins (AW). L'élément est alors présent dans l'état obtenu à l'issue de la résolution du conflit.
- (ii) Une sémantique où la modification rmv d'une élément prend la précédence sur les opérations concurrentes add du même élément, nommée Remove-Wins (RW). L'élément est alors absent de l'état obtenu à l'issue de la résolution du conflit.

La Figure 2.5 illustre l'application de chacune de ces sémantiques sur notre exemple.

Sémantique Causal-Length

Une nouvelle sémantique pour l'Ensemble fut proposée [30] récemment. Cette sémantique se base sur les observations suivantes :

FIGURE 2.5 – Résolution du conflit en utilisant soit la sémantique AW, soit la sémantique RW

- (i) add et rmv d'un élément prennent place à tour de rôle, chaque modification invalidant la précédente.
- (ii) add (resp. rmv) concurrents d'un même élément représentent la même intention. Prendre en compte une de ces modifications concurrentes revient à prendre en compte leur ensemble.

À partir de ces observations, Yu et al. [30] proposent de déterminer pour chaque élément la chaîne d'ajouts et retraits la plus longue. C'est cette chaîne, et précisément son dernier maillon, qui indique si l'élement est présent ou non dans l'ensemble final. La Figure 2.6 illustre son fonctionnement.

FIGURE 2.6 – Résolution du conflit en utilisant la sémantique CL

Dans notre exemple, la modification rmv(a) effectuée par B est en concurrence avec une modification identique effectuée par A. La sémantique CL définit que ces deux modifications partagent la même intention. Ainsi, A ayant déjà appliqué sa propre modification préalablement, il ne prend pas en compte de nouveau cette modification lorsqu'il la reçoit de B. Son état reste donc inchangé.

À l'inverse, la modification add(a) effectuée par A fait suite à sa modification rmv(a). La sémantique CL définit alors qu'elle fait suite à toute autre modification rmv(a) concurrente. Ainsi, B intègre cette modification lorsqu'il la reçoit de A. Son état évolue donc pour devenir $\{a\}$.

Synthèse

Dans cette section, nous avons mis en lumière l'existence de solutions différentes pour résoudre un même conflit. Chacune de ces solutions correspond à une sémantique spécifique de résolution de conflits. Ainsi, pour un même type de données, différents CRDTs peuvent être spécifiés. Chacun de ces CRDTs est spécifié par la combinaison de sémantiques qu'il adopte, chaque sémantique servant à résoudre un des types de conflits du type de données.

Il est à noter qu'aucune sémantique n'est intrinsèquement meilleure et préférable aux autres. Il revient aux concepteur-rices d'applications de choisir les CRDTs adaptés en fonction des besoins et des comportements attendus en cas de conflits.

Par exemple, pour une application collaborative de listes de courses, l'utilisation d'un MV-Registre pour représenter le contenu de la liste se justifie : cette sémantique permet d'exposer les modifications concurrentes aux utilisateur-rices. Ainsi, les personnes peuvent détecter et résoudre les conflits provoquées par ces éditions concurrentes, e.g. l'ajout de l'élément *lait* à la liste, pour cuisiner des crêpes, tandis que les *oeufs* nécessaires à ces mêmes crêpes sont retirés. En parallèle, cette même application peut utiliser un LWW-Registre pour représenter et indiquer aux utilisateur-rices la date de la dernière modification effectuée.

2.2.2 Modèles de synchronisation

Dans le modèle de réplication optimiste, les noeuds divergent momentanément lorsqu'ils effectuent des modifications locales. Pour ensuite converger vers des états équivalents, les noeuds doivent propager et intégrer l'ensemble des modifications. La Figure 2.7 illustre ce point.

FIGURE 2.7 – Modifications en concurrence d'un Ensemble répliqué par les noeuds A et B

Dans cet exemple, deux noeuds A et B partagent et éditent un même Ensemble à l'aide d'un CRDT. Les deux noeuds possèdent le même état initial : $\{a, e\}$.

Le noeud A effectue les modifications add(b) puis add(c). Il obtient ainsi l'état $\{a, b, c, e\}$. De son côté, le noeud B effectue la modification suivante : add(d). Son état devient donc $\{a, d, e\}$. Ainsi, les noeuds doivent encore s'échanger leur modifications pour converger vers l'état souhaité 12 , c.-à-d. $\{a, b, c, d, e\}$.

Dans le cadre des CRDTs, le choix de la méthode pour synchroniser les noeuds n'est pas anodin. En effet, ce choix impacte la spécification même du CRDT et ses prérequis.

Initialement, deux approches ont été proposées : une méthode de synchronisation par états [6, 31] et une méthode de synchronisation par opérations [6, 31, 32, 33]. Une troisième approche, nommée synchronisation par différence d'états [34, 35], fut spécifiée par la suite. Le but de cette dernière est d'allier le meilleur des deux approches précédentes.

Dans la suite de cette section, nous présentons ces approches ainsi que leurs caractéristiques respectives. Pour les illustrer, nous complétons l'exemple décrit ici. Cependant, nous nous focalisons uniquement sur les messages envoyés par les noeuds et n'évoquons seulement les métadonnées introduites par chaque modèle de synchronisation, par soucis de clarté et de simplicité.

Synchronisation par états

L'approche de la synchronisation par états propose que les noeuds diffusent leurs modifications en transmettant leur état. Les CRDTs adoptant cette approche doivent définir une fonction merge. Cette fonction correspond à la fonction de fusion mentionnée précédemment (cf. Définition 12, page 15) : elle prend en paramètres une paire d'états et génère en retour leur LUB, c.-à-d. l'état correspondant à la borne supérieure des deux états en paramètres. Cette fonction doit être associative, commutative et idempotente.

Ainsi, lorsqu'un noeud reçoit l'état d'un autre noeud, il fusionne ce dernier avec son état courant à l'aide de la fonction merge. Il obtient alors un nouvel état intégrant l'ensemble des modifications ayant été effectuées sur les deux états.

La nature croissante des états des CRDTs couplée aux propriétés d'associativité, de commutativité et d'idempotence de la fonction merge permettent de reposer sur la couche de livraison sans lui imposer de contraintes fortes : les messages peuvent être perdus, réordonnés ou même dupliqués. Les noeuds convergeront tant que la couche de livraison garantit que les noeuds seront capables de transmettre leur état aux autres à terme. Il s'agit là de la principale force des CRDTs synchronisés par états.

Néanmoins, la définition de la fonction merge offrant ces propriétés peut s'avérer complexe et a des répercussions sur la spécification même du CRDT. Notamment, les états doivent conserver une trace de l'existence des éléments et de leur suppression afin d'éviter qu'une fusion d'états ne les fassent ressurgirent. Ainsi, les CRDTs synchronisés par états utilisent régulièrement des pierres tombales.

Définition 13 (Pierre tombale). Une pierre tombale est un marqueur de la présence passée d'un élément.

Dans le contexte des CRDTs, un identifiant est généralement associé à chaque élément. Dans ce contexte, l'utilisation de pierres tombales correspond au comportement suivant :

^{12.} Le scénario ne comportant uniquement des modifications add, aucun conflit n'est produit malgré la concurrence des modifications.

la suppression d'un élément peut supprimer de manière effective ce dernier, mais doit cependant conserver son identifiant dans la structure de données.

En plus de l'utilisation de pierres tombales, la taille de l'état peut croître de manière non-bornée dans le cas de certains types de donnés, e.g. l'Ensemble ou la Séquence. Ainsi, ces structures peuvent atteindre à terme des tailles conséquentes. Dans de tels cas, diffuser l'état complet à chaque modification induirait alors un coût rédhibitoire. L'approche de la synchronisation par états s'avère donc inadaptée aux systèmes nécessitant une diffusion et intégration instantanée des modifications, c.-à-d. les systèmes temps réel. Ainsi, les systèmes utilisant des CRDTs synchronisés par états reposent généralement sur une synchronisation périodique des noeuds, c.-à-d. chaque noeud diffuse périodiquement son état.

Nous illustrons le fonctionnement de cette approche avec la Figure 2.8. Dans cet exemple, après que les noeuds aient effectués leurs modifications respectives, le mécanisme de synchronisation périodique de chaque noeud se déclenche. Le noeud A (resp. B) diffuse alors son état $\{a, b, c, e\}$ (resp. $\{a, d, e\}$) à B (resp. A).

FIGURE 2.8 – Synchronisation des noeuds A et B en adoptant le modèle de synchronisation par états

À la réception de l'état, chaque noeud utilise la fonction merge pour intégrer les modifications de l'état reçu dans son propre état. Dans le cadre de l'Ensemble répliqué, cette fonction consiste généralement à faire l'union des états, en prenant en compte l'estampille et le statut (présent ou non) associé à chaque élément. Ainsi la fusion de leur état respectif, $\{a,b,c,e\} \cup \{a,d,e\}$, permet aux noeuds de converger à l'état souhaité : $\{a,b,c,d,e\}$.

Avant de conclure, il est intéressant de noter que les CRDTs adoptant ce modèle de synchronisation respectent de manière intrinsèque le modèle de cohérence causale [36].

Définition 14 (Modèle de cohérence causale). Le modèle de cohérence causale définit que, pour toute paire de modifications m_1 et m_2 d'une exécution, si $m_1 \to m_2$, alors l'ensemble des noeuds doit intégrer la modification m_1 avant d'intégrer la modification m_2 .

En effet, ce modèle de synchronisation assure l'intégration soit de toutes les modifications connues d'un noeud, soit d'aucune. Par exemple, dans la Figure 2.8, le noeud B ne peut pas recevoir et intégrer l'élément c sans l'élement b. Ainsi, ce modèle permet naturellement d'éviter ce qui pourrait être interprétées comme des anomalies par les utilisateur-rices.

Synchronisation par opérations

L'approche de la synchronisation par opérations propose quant à elle que les noeuds diffusent leurs modifications sous la forme d'opérations. Pour chaque modification possible, les CRDTs synchronisés par opérations doivent définir deux fonctions : prepare et effect [33].

La fonction prepare a pour but de générer une opération correspondant à la modification effectuée, et commutative avec les potentielles opérations concurrentes. Elle prend en paramètres la modification ainsi que ses paramètres, et l'état courant du noeud. Cette fonction n'a pas d'effet de bord, c.-à-d. ne modifie pas l'état courant, et génère en retour l'opération à diffuser à l'ensemble des noeuds.

Une opération est un message. Son rôle est d'encoder la modification sous la forme d'un ou plusieurs éléments irréductibles du sup-demi-treillis.

Définition 15 (Élément irréductible). Un élément irréductible d'un sup-demi-treillis est un élément atomique de ce dernier. Il ne peut être obtenu par la fusion d'autres états.

Il est à noter que dans le cas des CRDTs purs synchronisés par opérations [33], les modifications estampillées avec leur information de causalité correspondent à des éléments irréductibles, c.-à-d. à des opérations. La fonction prepare peut donc être omise pour cette sous-catégorie de CRDTs synchronisés par opérations.

La fonction effect permet quant à elle d'intégrer les effets d'une opération générée ou reçue. Elle prend en paramètre l'état courant et l'opération, et retourne un nouvel état. Ce nouvel état correspond à la LUB entre l'état courant et le ou les éléments irréductibles encodés par l'opération.

La diffusion des modifications par le biais d'opérations présentent plusieurs avantages. Tout d'abord, la taille des opérations est généralement fixe et inférieure à la taille de l'état complet du CRDT, puisque les opérations servent à encoder un de ses éléments irréductibles. Ensuite, l'expressivité des opérations permet de proposer plus simplement des algorithmes efficaces pour leur intégration par rapport aux modifications équivalentes dans les CRDTs synchronisés par états. Par exemple, la suppression d'un élément dans un Ensemble se traduit en une opération de manière presque littérale, tandis que pour les CRDTs synchronisés par états, c'est l'absence de l'élément dans l'état qui va rendre compte de la suppression effectuée. Ces avantages rendent possible la diffusion et l'intégration une à une des modifications et rendent ainsi plus adaptés les CRDTs synchronisés par opérations pour construire des systèmes temps réels.

Il est à noter que la seule contrainte imposée aux CRDTs synchronisés par opérations est que leurs opérations concurrentes soient commutatives [6]. Ainsi, il n'existe aucune contrainte sur la commutativité des opérations liées causalement. De la même manière, aucune contrainte n'est définie sur l'idempotence des opérations. Ces libertés impliquent qu'il peut être nécessaire que les opérations soient livrées au CRDT en respectant un ordre donné et en garantissant leur livraison en exactement une fois pour garantir la convergence. Ainsi, un intergiciel chargé de la diffusion et de la livraison des opérations est usuellement associé aux CRDTs synchronisés par opérations pour respecter ces contraintes. Il s'agit de la couche de livraison de messages que nous avons introduit dans le cadre de notre modèle du système (cf. section 2.1, page 11).

Généralement, les CRDTs synchronisés par opérations sont présentés dans la littérature comme nécessitant une livraison causale des opérations.

Définition 16 (Modèle de livraison causale). Le modèle de livraison causale définit que, pour toute paire de messages m_1 et m_2 d'une exécution, si $m_1 \to m_2$, alors la couche de livraison de l'ensemble des noeuds doit livrer le message m_1 à l'application avant de livrer le message m_2 .

Ce modèle de livraison permet de respecter le modèle de cohérence causale et ainsi de simplifier le raisonnement sur les exécutions.

Ce modèle de livraison introduit néanmoins plusieurs effets négatifs. Tout d'abord, ce modèle peut provoquer un délai dans l'intégration des modifications. En effet, la perte d'une opération par le réseau provoque la mise en attente de la livraison des opérations suivantes. Les opérations mises en attente ne pourront en effet être livrées qu'une fois l'opération perdue re-diffusée et livrée.

De plus, il nécessite que des informations de causalité précises soient attachées à chaque opération. Pour cela, les systèmes reposent généralement sur l'utilisation de vecteurs de version [37, 38]. Or, la taille de cette structure de données croît de manière linéaire avec le nombre de noeuds du système. Les métadonnées de causalité peuvent ainsi représenter la majorité des données diffusées sur le réseau ¹³. Cependant, nous observons que la livraison dans l'ordre causal de toutes les opérations n'est pas toujours nécessaire. Par exemple, l'ordre d'intégration de deux opérations d'ajout d'éléments différents dans un Ensemble n'a pas d'importance. Nous pouvons alors nous affranchir du modèle de livraison causale pour accélérer la vitesse d'intégration des modifications et pour réduire les métadonnées envoyées.

Pour compenser la perte d'opérations par le réseau et ainsi garantir la livraison à terme des opérations, la couche de livraison des opérations doit mettre en place un mécanisme d'anti-entropie, c.-à-d. un mécanisme permettant de détecter et ré-échanger les messages perdus. Plusieurs mécanismes de ce type ont été proposés dans la littérature [40, 41, 42, 43] Matthieu: TODO: Ajouter refs Scuttlebutt si applicable à Op-based et proposent des compromis variés entre complexité en temps, complexité spatiale et consommation réseau.

Nous illustrons le modèle de synchronisation par opérations à l'aide de la Figure 2.9. Dans ce nouvel exemple, les noeuds diffusent les modifications qu'ils effectuent sous la forme d'opérations. Nous considèrons que le CRDT utilisé est un CRDT pur synchronisé par opérations, c.-à-d. que les modifications et opérations sont confondues, et qu'il autorise une livraison dans le désordre des opérations add.

Le noeud A diffuse donc les opérations add(b) et add(c). Il reçoit ensuite l'opération add(d) de B, qu'il intègre à sa copie. Il obtient alors l'état $\{a, b, c, d, e\}$.

De son côté, le noeud B ne reçoit initialement pas l'opération add(b) suite à une défaillance réseau. Il génère et diffuse add(d) puis reçoit l'opération add(c). Comme indiqué précédemment, nous considérons que la livraison causale des opérations add n'est pas

^{13.} La relation de causalité étant transitive, les opérations et leurs relations de causalité forment un DAG. [39] propose d'ajouter en dépendances causales d'une opération seulement les opérations correspondant aux extremités du DAG au moment de sa génération. Ce mécanisme plus complexe permet de réduire la consommation réseau, mais induit un surcoût en calculs et en mémoire utilisée.

FIGURE 2.9 – Synchronisation des noeuds A et B en adoptant le modèle de synchronisation par opérations

obligatoire dans cet exemple, cette opération est alors intégrée sans attendre. Le noeud B obtient alors l'état $\{a, c, d, e\}$.

Ensuite, le mécanisme d'anti-entropie du noeud B se déclenche. Le noeud B envoie alors à A une demande de synchronisation contenant un résumé de son état, e.g. son vecteur de version. À partir de cette donnée, le noeud A détermine que B n'a pas reçu l'opération add(a). Il génère alors une réponse contenant cette opération et lui envoie. À la réception de l'opération, le noeud B l'intègre. Il obtient l'état $\{a,b,c,d,e\}$ et converge ainsi avec A.

Avant de conclure, nous noterons qu'il est nécessaire pour les noeuds de maintenir leur journal d'opérations. En effet, les noeuds l'utilisent pour renvoyer les opérations manquées lors de l'exécution du mécanisme d'anti-entropie évoqué ci-dessus. Ceci se traduit par une augmentation perpétuelle des métadonnées des CRDTs synchronisés par opérations. Pour y pallier, des travaux [33, 44] proposent de tronquer le journal des opérations pour en supprimer les opérations connues de tous. Les noeuds reposent alors sur la notion de stabilité causale [45] pour déterminer les opérations supprimables de manière sûre.

Définition 17 (Stabilité causale). Une opération est stable causalement lorsqu'elle a été intégrée par l'ensemble des noeuds du système. Ainsi, toute opération future dépend causalement des opérations causalement stables, c.-à-d. les noeuds ne peuvent plus générer d'opérations concurrentes aux opérations causalement stables.

Un mécanisme d'instantané *Matthieu: TODO : Ajouter refs* doit néanmoins être associé au mécanisme de troncature du journal pour générer un état équivalent à la partie tronquée. Ce mécanisme est en effet nécessaire pour permettre un nouveau noeud de rejoindre le système et d'obtenir l'état courant à partir de l'instantané et du journal tronqué.

Pour résumer, cette approche permet de mettre en place un système en composant un CRDT synchronisé par opérations avec une couche de livraison des messages. Mais comme illustré ci-dessus, chaque CRDT synchronisé par opérations établit les propriétés de ses différentes opérations et délègue potentiellement des responsabilités à la couche de livraison. Une partie de la complexité de cette approche réside ainsi dans l'ajustement du couple $\langle CRDT, couche\ livraison\rangle$ pour régler finement et optimiser leur fonctionnement en tandem. Des travaux [33, 44] ont proposé un patron de conception pour modéliser ces deux composants et leurs interactions. Cependant, ce patron repose sur l'hypothèse d'une livraison causale des opérations et n'est donc pas optimal. Matthieu: TODO: Vérifier que c'est bien le cas dans [44]

Synchronisation par différences d'états

Almeida et al. [34] introduisent un nouveau modèle de synchronisation pour CRDTs. La proposition de ce modèle est nourrie par les observations suivantes :

- (i) Les CRDTs synchronisés par opérations sont sujets aux défaillances du réseau et nécessitent généralement pour pallier à cette une livraison des opérations respectant le modèle de livraison causal.
- (ii) Les CRDTs synchronisés par états pâtissent du surcoût induit par la diffusion de leurs états complets, généralement croissant de manière monotone.

Pour pallier aux faiblesses de chaque approche et allier le meilleur des deux mondes, les auteurs proposent les CRDTs synchronisés par différences d'états [34, 35, 46]. Il s'agit en fait d'une sous-famille des CRDTs synchronisés par états. Ainsi, comme ces derniers, ils disposent d'une fonction merge associative, commutative et idempotente qui permet de produire la LUB de deux états, c.-à-d. l'état correspond à la borne supérieure de ces deux états.

La spécificité des CRDTs synchronisés par différences d'états est qu'une modification locale produit en retour un delta. Un delta encode la modification effectuée sous la forme d'un état du lattice. Les deltas étant des états, ils peuvent être diffusés puis intégrés par les autres noeuds à l'aide de la fonction merge. Ceci permet de bénéficier des propriétés d'associativité, de commutativité et d'idempotence offertes par cette fonction. Les CRDTs synchronisés par différences d'états offrent ainsi :

- (i) Une diffusion des modifications avec un surcoût pour le réseau proche de celui des CRDTs synchronisés par opérations.
- (ii) Une résistance aux défaillances réseaux similaire celle des CRDTs synchronisés par états.

Cette définition des CRDTs synchronisés par différences d'états, introduite dans [34, 35], fut ensuite précisée dans [46]. Dans cet article, les auteurs précisent qu'utiliser des éléments irréductibles (cf. Définition 15, page 23) comme deltas est optimal du point de vue de la taille des deltas produits.

Concernant la diffusion des modifications, les CRDTs synchronisés par différences d'états autorisent un large éventail de possibilités. Par exemple, les deltas peuvent être diffusés et intégrés de manière indépendante. Une autre approche possible consiste à tirer avantage du fait que les deltas sont des états : il est possible d'agréger plusieurs deltas à l'aide de la fonction merge, éliminant leurs éventuelles redondances. Ainsi, la fusion de deltas permet ensuite de diffuser un ensemble de modifications par le biais d'un seul et unique delta, minimal. Et en dernier recours, les CRDTs synchronisés par différences d'états peuvent adopter le même schéma de diffusion que les CRDTs synchronisés par états, c.-à-d. diffuser leur état complet de manière périodique. Chacune de ces approches proposent un compromis entre délai d'intégration des modifications, surcoût en métadonnées, calculs et bande-passante [46]. Ainsi, il est possible pour un système utilisant des CRDTs synchronisés par différences d'états de sélectionner la technique de diffusion des modifications la plus adaptée à ses besoins, ou même d'alterner entre plusieurs en fonction de son état courant.

Nous illustrons cette approche avec la Figure 2.10. Dans cet exemple, nous considérons que les noeuds adoptent la seconde approche évoquée, c.-à-d. que périodiquement les noeuds aggrégent les deltas issus de leurs modifications et diffusent le delta résultant.

FIGURE 2.10 – Synchronisation des noeuds A et B en adoptant le modèle de synchronisation par différences d'états

Le noeud A effectue les modifications add(b) et add(c), qui retournent respectivement les deltas $\{b\}$ et $\{c\}$. Le noeud A aggrége ces deltas et diffuse donc le delta suivant $\{b,c\}$. Quant au noeud B, il effectue la modification add(d) qui produit le delta $\{d\}$. S'agissant de son unique modification, il diffuse ce delta inchangé.

Quand A (resp. B) reçoit le delta $\{d\}$ (resp. $\{b,c\}$), il l'intègre à sa copie en utilisant la fonction merge. Les deux noeuds convergent alors à l'état $\{a,b,c,d,e\}$.

La synchronisation par différences d'états permet donc de réduire la taille des messages diffusés sur le réseau par rapport à la synchronisation par états. Cependant, il est important de noter que la décomposition en deltas entraîne la perte d'une des propriétés intrinsèques des CRDTs synchronisés par états : le respect du modèle de cohérence causale. En effet, sans mécanisme supplémentaire, la perte ou le ré-ordonnement de deltas par le réseau peut mener à une livraison dans le désordre des modifications à l'un des noeuds. S'ils souhaitent assurer une intégration causale des modifications, les CRDTs synchronisés par différences d'états doivent donc définir et ajouter à leur spécification un mécanisme similaire à la couche de livraison des CRDTs synchronisés par opérations.

Ainsi, les CRDTs synchronisés par différences d'états sont une évolution prometteuse des CRDTs synchronisés par états. Ce modèle de synchronisation rend ces CRDTs utilisables dans les systèmes temps réels sans introduire de contraintes sur la fiabilité du réseau. Mais pour cela, il ajoute une couche supplémentaire de complexité à la spécification des CRDTs synchronisés par états, c.-à-d. le mécanisme dédié à la livraison des deltas.

Synthèse

Ainsi, plusieurs modèles de synchronisation ont été proposées pour permettre aux noeuds utilisant un CRDT pour répliquer une donnée de diffuser leurs modifications et d'intégrer celles des autres. Nous récapitulons dans cette section les principales propriétés et différences entre ces modèles.

Tout d'abord, rappelons que chaque approche repose sur l'utilisation d'un sup-demitreillis pour assurer la convergence forte. Dans le cadre des CRDTs synchronisés par états et des CRDTs synchronisés par différences d'états, ce sont les états du CRDTs même qui forment un sup-demi-treillis.

Ce n'est pas exactement le cas dans le cadre des CRDTs synchronisés par opérations. Comme indiqué précédemment, les CRDTs synchronisés par opérations demandent à la couche de livraison des messages qui leur est associée qu'elle satisfasse un ensemble de contraintes. Si la couche de livraison ne garantit pas ces contraintes, e.g. les opérations sont livrées dans le désordre, l'état des noeuds peut diverger définitivement. Ainsi, pour être précis, c'est le couple (etats du CRDT, couche livraison) qui forme un sup-demi-treillis dans le cadre de ce modèle de synchronisation.

La principale différence entre les modèles de synchronisation proposés réside dans l'unité utilisée lors d'une synchronisation. Le modèle de synchronisation par états, de manière équivoque, utilise les états complets. L'intégration des modifications effectuées par un noeud dans la copie locale d'un second se fait alors en diffusant l'état du premier au second et en fusionnant cet état avec l'état du second.

Le modèle de synchronisation par opérations repose sur des opérations pour diffuser les modifications. Les opérations encodent les modifications sous la forme d'un ou plusieurs états spécifiques du sup-demi-trellis : les éléments irréductibles (cf. Définition 15, page 23). L'intégration des modifications d'un noeud par un second se fait alors en diffusant les opérations correspondant aux modifications et en intégrant chacune d'entre elle à la copie locale du second.

Le modèle de synchronisation par différences d'états permet quant à lui d'intégrer les modifications soit par le biais d'éléments irréductibles, soit par le biais d'états complets. Dans les deux cas, les CRDTs synchronisés par différences d'états reposent sur la fonction de fusion du sup-demi-treillis pour intégrer les modifications.

De cette différence d'unité de synchronisation découle l'ensemble des différences entre ces modèles. La capacité d'intégrer les modifications par le biais d'une fusion d'états permet aux CRDTs synchronisé par états et différences d'états de résister aux défaillances du réseau. En effet, la perte, le ré-ordonnement ou la duplication de messages, c.-à-d. d'états ou de différences d'états, n'empêche pas la convergence des noeuds. Tant que deux noeuds peuvent à terme échanger leur états respectifs et les fusionner, la fonction de fusion garantit qu'ils obtiendront à terme des états équivalents.

À l'inverse, la perte, le ré-ordonnement ou la duplication de messages, c.-à-d. d'opérations, peut entraîner une divergence des noeuds dans le cadre du modèle de synchronisation par opérations. Pour éviter ce problème, la couche de livraison de messages associée au CRDT doit satisfaire le modèle de livraison requis par ce dernier.

Un autre aspect impacté par l'unité de synchronisation est la fréquence de synchronisation. La synchronisation par états nécessite de diffuser son état complet pour diffuser ses modifications. En fonction du type de données, le coût réseau pour diffuser chaque modification dès qu'elle est effectuée peut s'avérer prohibitif. Ce modèle de synchronisation repose donc généralement sur une synchronisation périodique, c.-à-d. chaque noeud diffuse son état périodiquement.

À l'inverse, la synchronisation par éléments irréductibles, que ça soit sous la forme d'opérations ou leur forme primaire, induit un coût réseau raisonnable : les éléments sont généralement petits et de taille fixe. Les modèles de synchronisation par opérations et par différences d'états permettent donc de diffuser des modifications dès leur génération.

Ceci permet aux noeuds du système d'intégrer les modifications effectuées par les autres noeuds de manière plus fréquente, voire en temps réel.

Finalement, la dernière différence entre ces modèles concerne le modèle de cohérence causale (cf. Définition 14, page 22). Par nature, le modèle de synchronisation par états garantit le respect du modèle de cohérence causale. En effet, un état correspond à l'intégration d'un ensemble de modifications. De manière similaire, le résultat de la fusion de deux états correspond à l'intégration de l'union de leur ensemble respectif de modifications. Ce modèle de synchronisation empêche donc l'intégration d'une modification sans avoir intégré aussi les modifications l'ayant précédé d'après la relation happens-before.

À l'inverse, par défaut, les modèles de synchronisation par opérations ou différences d'états permettent l'intégration d'un élément irréductible sans avoir intégré au préalable les éléments irréductibles l'ayant précédé d'après la relation *happens-before*. Pour satisfaire le modèle de cohérence causale, les CRDTs adoptant ces modèles de synchronisation doivent être associés à une couche de livraison de messages garantissant leur livraison causale (cf. Définition 16, page 24).

Nous récapitulons le contenu de cette discussion sous la forme du Tableau 2.1.

Table 2.1 – Récapitulatif comparatif des différents modèles de synchronisation pour CRDTs

	Sync. par états	Sync. par opérations	Sync. par diff. d'états
Forme un sup-demi-treillis	√	√	√
Intègre modifications par fusion d'états	✓	X	✓
Intègre modifications par élts irréductibles	×	✓	✓
Résiste nativ. aux défaillances réseau	✓	X	✓
Adapté pour systèmes temps réel	×	✓	✓
Offre nativ. modèle de cohérence causale	✓	X	X

2.3 Séquences répliquées sans conflits

Dans le cadre des travaux de cette thèse, nous nous sommes focalisés sur les CRDTs pour un type de donnée précis : la *Séquence*.

La Séquence, aussi appelée *Liste*, est un type abstrait de données représentant une collection ordonnée et de taille dynamique d'éléments. Dans une séquence, un même élément peut apparaître à de multiples reprises. Chacune des occurrences de cet élément est alors considérée comme distincte.

Dans le cadre de ce manuscrit, nous travaillons sur des séquences de caractères. Cette restriction du domaine se fait sans perte en généralité. Nous illustrons par la Figure 2.11 notre représentation des séquences.

FIGURE 2.11 – Représentation de la séquence "HELLO"

Dans la Figure 2.12, nous présentons la spécification algébrique du type Séquence que nous utilisons.

$$\mathbf{payload}$$
$$S \in Seq\langle E \rangle$$

constructor

emp: $\longrightarrow S$

mutators

 $\begin{array}{cccc} ins & : & S \times \mathbb{N} \times E & \longrightarrow S \\ rmv & : & S \times \mathbb{N} & \longrightarrow S \end{array}$

queries

 $\begin{array}{cccc} & & & & & & \\ len & & : & S & & \longrightarrow \mathbb{N} \\ rd & & : & S & & \longrightarrow Arr\langle E \rangle \end{array}$

FIGURE 2.12 – Spécification algébrique du type abstrait usuel Séquence

Celle-ci définit deux modifications :

(i) ins(s, i, e), qui permet d'insérer un élément donné e à un index donné i dans une séquence s de taille m. Cette modification renvoie une nouvelle séquence construite de la manière suivante :

$$\forall s \in S, e \in E, i \in [0, m] \mid m = len(s), s = \langle e_0, ..., e_{i-1}, e_i, ..., e_{m-1} \rangle \cdot ins(s, i, e) = \langle e_0, ..., e_{i-1}, e, e_i, ..., e_{m-1} \rangle$$

(ii) rmv(s,i), qui permet de retirer l'élément situé à l'index i dans une séquence s de taille m. Cette modification renvoie une nouvelle séquence construite de la manière suivante :

$$\forall s \in S, e \in E, i \in [0, m[\mid m = len(s), s = \langle e_0, ..., e_{i-1}, e_i, e_i + 1, ..., e_{m-1} \rangle \cdot rmv(s, i) = \langle e_0, ..., e_{i-1}, e_{i+1}, ..., e_{m-1} \rangle$$

Les modifications définies dans Figure 2.12, ins et rmv, ne permettent respectivement que l'insertion ou la suppression d'un élément à la fois. Cette simplification du type se fait cependant sans perte de généralité, la spécification pouvant être étendue pour insérer successivement plusieurs éléments à partir d'un index donné ou retirer plusieurs éléments consécutifs.

La spécification définit aussi deux observateurs :

- (i) len(s), qui permet de récupérer le nombre d'éléments présents dans une séquence s.
- (ii) rd(s), qui permet de consulter l'état d'une séquence s. L'état de la séquence est retournée sous la forme d'un Tableau, c.-à-d. une collection ordonnée de taille fixe d'éléments. Comme pour le type Ensemble, nous considérons que rd est utilisé de manière implicite après chaque modification dans nos exemples.

Cette spécification du type Séquence est une spécification séquentielle. Les modifications sont définies pour être effectuées l'une après l'autre. Si plusieurs noeuds répliquent une même séquence et la modifient en concurrence, l'intégration de leurs opérations respectives dans des ordres différents résulte en des états différents. Nous illustrons ce point avec la Figure 2.13.

FIGURE 2.13 – Modifications concurrentes d'une séquence

Dans cet exemple, deux noeuds A et B partagent et éditent collaborativement une même séquence. Celle-ci correspond initialement à la chaîne de caractères "WRD". Le noeud A insère le caractère "O" à l'index 1, obtenant ainsi la séquence "WORD". En concurrence, le noeud B insère lui le caractère "L" à l'index 2 pour obtenir "WRLD".

Les deux noeuds diffusent ensuite leur opération respective puis intègre celle de leur pair. Nous constatons alors une divergence. En effet, l'intégration de la modification ins(2,L) par le noeud A ne produit pas l'effet escompté, c.-à-d. produire la chaîne "WORLD", mais la chaîne "WORLD".

Cette divergence est dûe à la non-commutativité de la modification ins avec ellemême. En effet, celle-ci se base sur un index pour déterminer où placer le nouvel élément. Cependant, les index sont eux-mêmes modifiés par ins. Ainsi, l'intégration dans des ordres différents de modifications ins sur un même état initial résulte en des états différents. Plus généralement, nous observons que chaque paire possible de modifications du type Séquence, c.-à-d. $\langle ins, ins \rangle$, $\langle ins, del \rangle$ et $\langle del, del \rangle$, n'est pas commutative.

La non-commutativité des modifications du type Séquence fut l'objet de nombreux travaux de recherche dans le domaine de l'édition collaborative. Pour résoudre ce problème, l'approche Operational Transformation (OT) [47, 48] fut initialement proposée. Cette approche propose de transformer une modification par rapport aux modifications concurrentes intégrées pour tenir compte de leur effet. Elle se décompose en deux parties :

- (i) Un algorithme de contrôle [49, 50, 51], qui définit par rapport à quelles modifications une nouvelle modification distante doit être transformée avant d'être intégrée à la copie.
- (ii) Des fonctions de transformations [47, 49, 52, 53], qui définissent comment une modification doit être transformée par rapport à une autre modification pour tenir compte de son effet.

Cependant, bien que de nombreuses fonctions de transformations pour le type Séquence ont été proposées, seule la correction des Tombstone Transformation Functions (TTF) [53] a été éprouvée pour les systèmes P2P à notre connaissance. De plus, les algorithmes de contrôle compatibles reposent sur une livraison causale des modifications, et

donc l'utilisation de vecteurs d'horloges. Cette approche est donc inadaptée aux systèmes P2P dynamiques.

Néanmoins, une contribution importante de l'approche OT fut la définition d'un modèle de cohérence que doivent respecter les systèmes d'édition collaboratif : le modèle Convergence, Causality preservation, Intention preservation (CCI) [54].

Définition 18 (Modèle CCI). Le modèle de cohérence CCI définit qu'un système d'édition collaboratif doit respecter les critères suivants :

Définition 18.1 (Convergence). Le critère de *Convergence* indique que des noeuds ayant intégrés le même ensemble de modifications convergent à un état équivalent.

Définition 18.2 (Préservation de la causalité). Le critère de *Préservation de la causalité* indique que si une modification m_1 précède une autre modification m_2 d'après la relation happens-before, c.-à-d. $m_1 \to m_2$, m_1 doit être intégrée avant m_2 par les noeuds du système.

Définition 18.3 (Préservation de l'intention). Le critère de *Préservation de l'intention* indique que l'intégration d'une modification par un noeud distant doit reproduire l'effet de la modification sur la copie du noeud d'origine, indépendamment des modifications concurrentes intégrées.

De manière similaire à [55], nous ajoutons le critère de Passage à l'échelle à ces critères :

Définition 19 (Passage à l'échelle). Le critère de *Passage à l'échelle* indique que le nombre de noeuds du système ne doit avoir qu'un impact sous-linéaire sur les complexités en temps, en espace et sur le nombre et la taille des messages.

Nous constatons cependant que les critères 18.2 et 19 peuvent être contraires. En effet, pour respecter le modèle de cohérence causale, un système peut nécessiter une livraison causale des modifications, e.g. un CRDT synchronisé par opérations dont seules les opérations concurrentes sont commutatives. La livraison causale implique un surcoût computationnel, en métadonnées et en taille des messages qui est fonction du nombre de participants du système [56]. Ainsi, dans le cadre de nos travaux, nous cherchons à nous affranchir du modèle de livraison causale des modifications, ce qui peut nécessiter de relaxer le modèle de cohérence causale.

C'est dans une optique similaire que fut proposé WOOT [57], un modèle de séquence répliquée qui pose les fondations des CRDTs. Depuis, plusieurs CRDTs pour Séquence furent définies [58, 59, 55]. Ces CRDTs peuvent être répartis en deux approches : l'approche à pierres tombales [57, 58] et l'approche à identifiants densément ordonnés [59, 55]. L'état d'une séquence pouvant croître de manière infinie, ces CRDTs sont synchronisés par opérations pour limiter la taille des messages diffusés. À notre connaissance, seul [12] propose un CRDT pour Séquence synchronisé par différence d'états.

Dans la suite de cette section, nous présentons les différents CRDTs pour Séquence de la littérature.

2.3.1 Approche à pierres tombales

WOOT

WOOT [57] fait suite aux travaux présentés dans [53]. Il est considéré a posteriori comme le premier CRDT synchronisé par opérations pour Séquence ¹⁴. Conçu pour l'édition collaborative P2P, son but est de surpasser les limites de l'approche OT évoquées précédemment, c.-à-d. le coût du mécanisme de livraison causale.

L'intuition de WOOT est la suivante : WOOT modifie la sémantique de la modification ins pour qu'elle corresponde à l'insertion d'un nouvel élément entre deux autres, et non plus à l'insertion d'un nouvel élément à une position donnée. Par exemple, l'insertion de l'élément "B" dans la séquence "AC" pour obtenir l'état "ABC", c.-à-d. ins(1,B), devient ins(A < B < C).

Ce changement, qui est compatible avec l'intention des utilisateur-rices, n'est cependant pas anodin. En effet, il permet à WOOT de rendre *ins* commutative avec les modifications concurrentes, en exprimant la position du nouvel élément de manière relative à d'autres éléments et non plus via un index qui est spécifique à un état donné.

Afin de préciser quels éléments correspondent aux prédécesseur et successeur de l'élément inséré, WOOT repose sur un système d'identifiants. WOOT associe ainsi un identifiant unique à chaque élément de la séquence.

Définition 20 (Identifiant WOOT). Un identifiant WOOT est un couple $\langle nodeId, nodeSeq \rangle$ avec

- (i) nodeId, l'identifiant du noeud qui génère cet identifiant WOOT. Est supposé unique.
- (ii) seq, un entier propre au noeud, servant d'horloge logique. Est incrémenté à chaque génération d'identifiant WOOT.

Dans le cadre de ce manuscrit, nous utiliserons pour former les identifiants WOOT le nom de du noeud (e.g. A) comme nodeId et un entier naturel, en démarrant à 1, comme nodeSeq. Nous les représenterons de la manière suivante nodeId nodeSeq, e.g. A1.

Avant de continuer, notons qu'un identifiant WOOT est bel et bien unique, deux noeuds ne pouvant utiliser le même nodeId et un noeud n'utilisant jamais deux fois le même nodeSeq. Finalement, précisons que cette structure d'identifiant et son usage possible pour le suivi de la causalité furent ensuite mis en évidence par [60] sous le nom de Dot.

Les modifications ins et rmv sont dès lors redéfinies pour devenir des opérations en tirant profit des identifiants. Par exemple, considérons une séquence WOOT représentant "AC" et qui associe respectivement les identifiants A1 et A2 aux éléments "A" et "C". L'insertion de l'élement de l'élement "B" dans cette séquence pour obtenir l'état "ABC", c.-à-d. ins(A < B < C), devient par exemple $ins(A1 < \langle B1, B \rangle < A2)$. De manière similaire, la suppression de l'élément "B" dans cette séquence pour obtenir l'état "AC", c.-à-d. rmv(1), devient rmv(B1).

WOOT utilise des pierres tombales pour rendre commutative ins, qui nécessite la présence des deux éléments entre lesquels nous insérons un nouvel élément, avec rmv.

^{14. [5]} n'ayant formalisé les CRDTs qu'en 2007.

Ainsi, lorsqu'un élément est retiré, une pierre tombale est conservée dans la séquence pour indiquer sa présence passée. Les données de l'élément sont elles supprimées. Dans le cadre d'une Séquence WOOT, rmv a donc pour effet de masquer l'élément.

Finalement, WOOT définit $<_{id}$, un ordre strict total sur les identifiants associés aux éléments. En effet, la relation < n'est pas suffisante pour rendre les opérations ins commutatives, puisqu'elle ne spécifie qu'un ordre partiel entre les éléments. Plus précisément, < ne permet pas d'ordonner les éléments insérés en concurrence et possédant les mêmes prédecesseur et successeur, e.g. ins(a < 1 < b) et ins(a < 2 < b). Pour que tous les noeuds convergent, ils doivent choisir comment ordonner ces éléments de manière déterministe et indépendante de l'ordre de réception des modifications. Ils utilisent pour cela $<_{id}$.

Définition 21 (Relation $<_{id}$). La relation $<_{id}$ définit que, étant donné deux identifiants $id_1 = \langle nodeId_1, nodeSeq_1 \rangle$ et $id_2 = \langle nodeId_2, nodeSeq_2 \rangle$, nous avons :

$$id_1 <_{id} id_2$$
 iff $(nodeId_1 < nodeId_2)$ \lor
$$(nodeId_1 = nodeId_2 \land nodeSeq_1 < nodeSeq_2)$$

Notons que l'ordre définit par $<_{id}$ correspond à l'ordre lexicographique sur les composants des identifiants.

De cette manière, WOOT offre une spécification de la Séquence dont les opérations sont commutatives, c.-à-d. ne génèrent pas de conflits. Nous récapitulons son fonctionnement à l'aide de la Figure 2.14.

FIGURE 2.14 – Modifications concurrentes d'une séquence répliquée WOOT

Dans cet exemple, deux noeuds A et B partagent et éditent collaborativement une séquence répliquée WOOT. Initialement, ils possèdent le même état : la séquence contient les éléments "HEMLO", et à chaque élément est associé un identifiant, e.g. A1, B1, A2...

Le noeud A insère l'élément "L" entre les éléments "E" et "M", c.-à-d. ins(E < L < M). WOOT convertit cette modification en opération $ins(A2 < \langle A5, L \rangle < B1)$. L'opération est intégrée à la copie locale, ce qui produit l'état "HELMLO", puis diffusée sur le réseau.

En concurrence, le noeud B supprime l'élément "M" de la séquence, c.-à-d. rmv(M). De la même manière, WOOT génère l'opération correspondante rmv(B1). Comme expliqué précédemment, l'intégration de cette opération ne supprime pas l'élément "M" de l'état mais se contente de le masquer. L'état produit est donc "HEMLO". L'opération est ensuite diffusée.

A (resp. B) reçoit ensuite l'opération de B, rmv(B1) (resp. A, $ins(A2 < \langle A5, L \rangle < B1)$), et l'intègre à sa copie. Les opérations de WOOT étant commutatives, les noeuds obtiennent le même état final : "HELMLO".

Grâce à la commutativité de ses opérations, WOOT s'affranchit du modèle de livraison causale nécessitant l'utilisation coûteuse de vecteurs d'horloges. WOOT met en place un modèle de livraison sur-mesure basé sur les pré-conditions des opérations :

Définition 22 (Modèle de livraison WOOT). Le modèle de livraison WOOT définit que :

- (i) Une opération doit être livrée exactement une fois à chaque noeud ¹⁵.
- (ii) Une opération ins(predId < (id, elt) < succId) ne peut être livrée à un noeud qu'après la livraison des opérations d'insertion des éléments associés à predId et succId.
- (iii) L'opération rmv(id) ne peut être livrée à un noeud qu'après la livraison de l'opération d'insertion de l'élément associé à id.

Ce modèle de livraison ne requiert qu'une quantité fixe de métadonnées associées à chaque opération pour être respecté. WOOT est donc adapté aux systèmes P2P dynamiques.

WOOT souffre néanmoins de plusieurs limites. La première d'entre elles correspond à l'utilisation de pierres tombales dans la séquence répliquée. En effet, comme indiqué précédemment, la modification rmv ne supprime que les données de l'élément concerné. L'identifiant qui lui a été associé reste lui présent dans la séquence à son emplacement. Une séquence WOOT ne peut donc que croître, ce qui impacte négativement sa complexité en espace ainsi que ses complexités en temps.

OSTER et al. [57] font cependant le choix de ne pas proposer de mécanisme pour purger les pierres tombales. En effet, leur motivation est d'utiliser ces pierres tombales pour proposer un mécanisme d'undo, une fonctionnalité importante dans le domaine de l'édition collaborative. Matthieu: TODO: Ajouter refs, celles utilisées dans [57]. Cette piste de recherche est développée dans [61].

Une seconde limite de WOOT concerne la complexité en temps de l'algorithme d'intégration des opérations d'insertion. En effet, celle-ci est en $\mathcal{O}(H^3)$ avec H le nombre de modifications ayant été effectuées sur le document [62]. Plusieurs évolutions de WOOT sont proposées pour mitiger cette limite : WOOTO [63] et WOOTH [62].

WEISS et al. [63] remanient la structure des identifiants associés aux éléments. Cette modification permet un algorithme d'intégration des opérations ins avec une meilleure complexité en temps, $\mathcal{O}(H^2)$. AHMED-NACER et al. [62] se basent sur WOOTO et proposent l'utilisation de structures de données améliorant la complexité des algorithmes d'intégration des opérations, au détriment des métadonnées stockées localement par chaque noeud. Cependant, cette évolution ne permet ici pas de réduire l'ordre de grandeur des opérations ins.

Néanmoins, l'évaluation expérimentale des différentes approches pour l'édition collaborative P2P en temps réel menée dans [62] a montré que les CRDTs de la famille WOOT n'étaient pas assez efficaces. Dans le cadre de cette expérience, des utilisateur-rices effectuaient des tâches d'édition collaborative données. Les traces de ces sessions d'édition collaboratives furent ensuite rejouées en utilisant divers mécanismes de résolution de conflits,

^{15.} Néanmoins, les algorithmes d'intégration des opérations, notamment celui pour l'opération *ins*, pourraient être aisément modifiés pour être idempotents. Ainsi, la livraison répétée d'une même opération deviendrait possible, ce qui permettrait de relaxer cette contrainte en *une livraison au moins une fois*.

dont WOOT, WOOTO et WOOTH. Le but était de mesurer les performances de ces mécanismes, notamment leurs temps d'intégration des modifications et opérations. Dans le cas de la famille WOOT, AHMED-NACER et al. ont constaté que ces temps dépassaient parfois 50ms. Il s'agit là de la limite des délais acceptables par les utilisateur-rices d'après [64, 65]. Ces performances disqualifient donc les CRDTs de la famille WOOT comme approches viables pour l'édition collaborative P2P temps réel.

Replicated Growable Array

Replicated Growable Array (RGA) [58] est le second CRDT pour Séquence appartenant à l'approche à pierres tombales. Il a été spécifié dans le cadre d'un effort pour établir les principes nécessaires à la conception de Replicated Abstract Data Types (RADTs).

Dans cet article, les auteurs définissent et se basent sur 2 principes pour concevoir RADTs. Le premier d'entre eux est l'Commutativité des Opérations (OC).

Définition 23 (Commutativité des Opérations). La Commutativité des Opérations (OC) définit que toute paire possible d'opérations concurrentes du RADT doit être commutative.

Ce principe permet de garantir que l'intégration par différents noeuds d'une même séquence d'opérations concurrentes, mais dans des ordres différents, résultera en un état équivalent.

Le second principe sur lequel reposent les RADTs est la Transitivité de la Précédence (PT).

Définition 24 (Transitivité de la Précédence). La Transitivité de la Précédence (PT) se base sur une relation de précédence, notée -->.

Définition 24.1 (Relation de précédence). La relation de précédence définit qu'étant donné deux opérations, o_1 et o_2 , l'intention de o_2 doit être préservée par rapport à celle de o_1 , noté $o_1 \rightarrow o_2$, si et seulement si :

- (i) $o_1 \rightarrow o_2$ ou
- (ii) $o_1 \parallel o_2$ et o_2 a une priorité supérieure à o_1 .

PT définit qu'étant donné trois opérations, o_1 , o_2 et o_3 , si $o_1 \rightarrow o_2$ et $o_2 \rightarrow o_3$, alors nous avons $o_1 \rightarrow o_3$.

Ce second principe offre une méthode pour concevoir un ensemble d'opérations commutatives. Il permet aussi d'exprimer la priorité des opérations par rapport aux opérations dont elles dépendent causalement.

A partir de ces principes, les auteurs proposent plusieurs RADTs : Replicated Fixed-Size Array (RFA), Replicated Hash Table (RFT) et Replicated Growable Array (RGA), qui nous intéresse ici.

Dans RGA, l'intention de l'insertion est définit comme l'insertion d'un nouvel élément directement après un élément existant. Ainsi, RGA se base sur le prédecesseur d'un élément pour déterminer où l'insérer. De fait, tout comme WOOT, RGA repose sur un système d'identifiants qu'il associe aux éléments pour pouvoir s'y référer par la suite.

Les auteurs proposent le modèle de données suivant comme identifiants :

Définition 25 (Identifiants S4Vector). Les identifiants S4Vector sont de la forme $\langle ssid, sum, ssn, seq \rangle$ avec :

- (i) ssid, l'identifiant de la session de collaboration.
- (ii) sum, la somme du vecteur d'horloges courant du noeud auteur de l'élément.
- (iii) ssn, l'identifiant du noeud auteur de l'élément.
- (iv) seq, le numéro de séquence de l'auteur de l'élément à son insertion.

Cependant, dans les présentations suivantes de RGA [6, 66], les auteurs utilisent des horloges de Lamport [23] en lieu et place des identifiants S4Vector. Nous procédons donc ici à la même simplification, et abstrayons la structure des identifiants utilisée avec le symbole t.

À l'aide des identifiants, RGA redéfinit les modifications de la séquence de la manière suivante :

- (i) ins devient $ins(predId < \langle id, elt \rangle)$.
- (ii) rmv devient rmv(id).

Puisque plusieurs éléments peuvent être insérés en concurrence à la même position, c.-à-d. avec le même prédecesseur, il est nécessaire de définir une relation d'ordre strict total pour ordonner les éléments de manière déterministe et indépendante de l'ordre de réception des modifications. Pour cela, RGA définit $<_{id}$:

Définition 26 (Relation $<_{id}$). La relation $<_{id}$ définit un ordre strict total sur les identifiants en se basant sur l'ordre lexicographique leurs composants. Par exemple, étant donné deux identifiants $t_1 = \langle ssid_1, sum_1, ssn_1, seq_1 \rangle$ et $t_2 = \langle ssid_2, sum_2, ssn_2, seq_2 \rangle$, nous avons :

```
t_1 <_{id} t_2 iff (ssid_1 < ssid_2) \lor

(ssid_1 = ssid_2 \land sum_1 < sum_2) \lor

(ssid_1 = ssid_2 \land sum_1 = sum_2 \land ssn_1 < ssn_2) \lor

(ssid_1 = ssid_2 \land sum_1 = sum_2 \land ssn_1 = ssn_2 \land seq_1 = seq_2)
```

L'utilisation de $<_{id}$ comme stratégie de résolution de conflits permet de rendre commutative les modifications ins concurrentes.

Concernant les suppressions, RGA se comporte de manière similaire à WOOT : la séquence conserve une pierre tombale pour chaque élément supprimé, de façon à pouvoir insérer à la bonne position un élément dont le prédecesseur a été supprimé en concurrence. Cette stratégie rend commutative les modifications ins et rmv.

Nous récapitulons le fonctionnement de RGA à l'aide de la Figure 2.15.

Dans cet exemple, deux noeuds A et B partagent et éditent collaborativement une séquence répliquée RGA. Initialement, ils possèdent le même état : la séquence contient les éléments "HEMLO", et à chaque élément est associé un identifiant, e.g. t_1 , t_2 , t_3 ...

Le noeud A insère l'élément "L" après l'élément et "M", c.-à-d. ins(M < L). RGA convertit cette modification en opération $ins(t_3 < \langle t_6, L \rangle)$. L'opération est intégrée à la copie locale, ce qui produit l'état "HEMLLO", puis diffusée sur le réseau.

FIGURE 2.15 – Modifications concurrentes d'une séquence répliquée RGA

En concurrence, le noeud B supprime l'élément "M" de la séquence, c.-à-d. rmv(M). De la même manière, RGA génère l'opération correspondante $rmv(t_3)$. Comme expliqué précédemment, l'intégration de cette opération ne supprime pas l'élément "M" de l'état mais se contente de le masquer. L'état produit est donc "HEMLO". L'opération est ensuite diffusée.

A (resp. B) reçoit ensuite l'opération de B, $rmv(t_3)$ (resp. A, $ins(t_3 < \langle t_6, L \rangle)$), et l'intègre à sa copie. Les opérations de RGA étant commutatives, les noeuds obtiennent le même état final : "HEMLLO".

À la différence des auteurs de WOOT, ROH et al. [58] jugent le coût des pierres tombales trop élévé. Ils proposent alors un mécanisme de GC des pierres tombales. Ce mécanisme repose sur deux conditions :

- (i) La stabilité causale de l'opération rmv, c.-à-d. l'ensemble des noeuds a intégré la suppression de l'élément et ne peut émettre d'opérations utilisant l'élément supprimé comme prédecesseur.
- (ii) L'impossibilité pour l'ensemble des noeuds de générer un identifiant inférieur à celui de l'élément suivant la pierre tombale d'après $<_{id}$.

L'intuition de la condition (i) est de s'assurer qu'aucune opération *ins* concurrente à l'exécution du mécanisme ne peut utiliser la pierre tombale comme prédecesseur, les opérations *ins* ne pouvant reposer que sur les éléments. L'intuition de la condition (ii) est de s'assurer que l'intégration d'une opération *ins*, concurrente à l'exécution du mécanisme et devant résulter en l'insertion de l'élément avant la pierre tombale, ne sera altérée par la suppression de cette dernière.

Concernant le modèle de livraison adopté, RGA repose sur une livraison causale des opérations. Cependant, [58] indique que ce modèle de livraison pourrait être relaxé, de façon à ne plus dépendre de vecteurs d'horloges. Ce point est néanmoins laissé comme piste de recherche future. À notre connaissance, cette dernière n'a pas été explorée dans la littérature. Néanmoins ELVINGER [12] indique que RGA pourrait adopter un modèle de livraison similaire à celui de WOOT. Ce modèle consisterait :

Définition 27 (Modèle livraison RGA). Le modèle de livraison RGA définit que :

- (i) Une opération doit être livrée exactement une fois à chaque noeud.
- (ii) Une opération $ins(predId < \langle id, elt \rangle)$ ne peut être livrée à un noeud qu'après la livraison de l'opération d'insertion de l'élément associé à predId.
- (iii) Une opération rmv(id) ne peut être livrée à un noeud qu'après la livraison de l'opération d'insertion de l'élément associé à id.

Nous secondons cette observation.

Un des avantages de RGA est son efficacité. En effet, son algorithme d'intégration des insertions offre une meilleure complexité en temps que celui de WOOT : $\mathcal{O}(H)$, avec H le nombre de modifications ayant été effectuées sur le document [62]. De plus, [66, 67] montrent que le modèle de données de RGA est optimal d'un point de vue complexité en espace comme CRDT pour Séquence par élément sans mécanisme de GC. RGA est ainsi utilisé dans plusieurs implémentations [68].

Plusieurs extensions de RGA ont par la suite été proposées. BRIOT et al. [69] indiquent que les pauvres performances des modifications locales ¹⁶ des CRDTs pour Séquence constituent une de leurs limites. Il s'agit en effet des performances impactant le plus l'expérience utilisateur, celleux-ci s'attendant à un retour immédiat de la part de l'application. Les auteurs souhaitent donc réduire la complexité en temps des modifications locales à une complexité logarithmique.

Pour cela, ils proposent l'identifier structure, une structure de données auxiliaire utilisable par les CRDTs pour Séquence. Cette structure permet de retrouver plus efficacement l'identifiant d'un élément à partir de son index, au pris d'un surcoût en métadonnées. Les auteurs combinent cette structure de données à un mécanisme d'aggrégation des élements en blocs ¹⁷ tels que proposés par [70, 11], qui permet de réduire la quantité de métadonnées stockées par la séquence répliquée. Cette combinaison aboutit à la définition d'un nouveau CRDT pour Séquence, RGATreeSplit, qui offre une meilleure complexité en temps et en espace.

Dans [71], les auteurs mettent en lumière un problème récurrent des CRDTs pour Séquence : lorsque des séquences de modifications sont effectuées en concurrence par des noeuds, les CRDTs assurent la convergence des répliques mais pas la correction du résultat. Notamment, il est possible que les éléments insérés en concurrence se retrouvent entrelacés. La Figure 2.16 présente un tel cas de figure :

Dans la Figure 2.16a, deux noeuds A et B partagent et éditent collaborativement une séquence répliquée RGA. Initialement, ils possèdent le même état : la séquence contient les éléments "ABC!", et à chaque élément est associé un identifiant, e.g. t_1 , t_2 , t_3 et t_4 .

Le noeud A insère après l'élément "C" les éléments "E" et F. RGA génère les opérations $ins(t_3 < \langle t_5, E \rangle)$ et $ins(t_5 < \langle t_6, F \rangle)$. En concurrence, le noeud B insère les éléments "G" et "H" de manière similaire, produisant les opérations $ins(t_3 < \langle t_7, G \rangle)$ et $ins(t_7 < \langle t_8, H \rangle)$. Finalement, toujours en concurrence, le noeud A insère un nouvel élément après l'élément "C", l'élément "D", ce qui résulte en l'opération $ins(t_9 < \langle t_3, D \rangle)$. Pour la suite de notre exemple, nous supposons que $t_5 <_{id} t_6 <_{id} t_7 <_{id} t_8 <_{id} t_9$.

Nous poursuivons notre exemple dans la Figure 2.16b. Dans cette figure, les noeuds A et B se synchronisent et échangent leurs opérations respectives. À la réception de l'opération de B $ins(t_3 < \langle t_7, G \rangle)$, le noeud A compare t_7 avec les identifiants des éléments se trouvant après t_3 . Il place l'élément "G" qu'après les éléments ayant des identifiants supérieurs à t_7 . Ainsi, il insère "G" après "D" (t_9) , mais avant "E" (t_5) . L'élément "H" (t_7) est inséré de manière similaire avant "E" (t_5) .

Le noeud B procède de manière similaire. Les noeuds A et B convergent alors à un

^{16.} Relativement par rapport aux algorithmes de l'approche OT.

^{17.} Nous détaillerons ce mécanisme par la suite.

FIGURE 2.16 – Entrelacement d'éléments insérés de manière concurrente

état équivalent : "ABCDGHEF!". Nous remarquons ainsi que les modifications de B, la chaîne "GH", s'est intercalée dans la chaîne insérée par A en concurrence, "DHEF".

Pour remédier à ce problème, les auteurs définissent une nouvelle spécification que doivent respecter les approches pour la mise en place de séquences répliquées : la spécification forte sans entrelacement des séquences répliquées. Basée sur la spécification forte des séquences répliquées spécifiée dans [66, 67], cette nouvelle spécification précise que les éléments insérés en concurrence ne doivent pas s'entrelacer dans l'état final. KLEPPMANN et al. [71] proposent ensuite une évolution de RGA respectant cette spécification.

Pour cela, les auteurs ajoutent à l'opération *ins* un paramètre, *samePredIds*, un ensemble correspondant à l'ensemble des identifiants connus utilisant le même *predId* que l'élément inséré. En maintenant en plus un exemplaire de cet ensemble pour chaque élément de la séquence, il est possible de déterminer si deux opérations *ins* sont concurrentes ou causalement liées et ainsi déterminer comment ordonner leurs éléments. Cependant, les auteurs ne prouvent pas dans [71] que cette extension empêche tout entrelacement ¹⁸.

2.3.2 Approche à identifiants densément ordonnés

Treedoc

[5, 59] proposent une nouvelle approche pour CRDTs pour Séquence. La particuliarité de cette approche est de se baser sur des identifiants de position, respectant un ensemble de propriétés :

Définition 28 (Propriétés des identifiants de position). Les propriétés que les identifiants de position doivent respecter sont les suivantes :

^{18.} Un travail en cours [72] indique en effet qu'une séquence répliquée empêchant tout entrelacement est impossible.

- (i) Chaque identifiant est attribué à un élément de la séquence.
- (ii) Aucune paire d'éléments ne partage le même identifiant.
- (iii) L'identifiant d'un élément est immuable.
- (iv) Il existe un ordre total strict sur les identifiants, $<_{id}$, cohérent avec l'ordre des éléments dans la séquence.
- (v) Les identifiants sont tirés d'un ensemble dense, que nous notons I.

Intéressons-nous un instant à la propriété (v). Cette propriété signifie que :

$$\forall predId, succId \in \mathbb{I}, \exists id \in \mathbb{I} \mid predId <_{id} id <_{id} succId$$

Cette propriété garantit donc qu'il sera toujours possible de générer un nouvel identifiant de position entre deux autres, c.-à-d. qu'il sera toujours possible d'insérer un nouvel élément entre deux autres (d'après la propriété (iv)).

L'utilisation d'identifiants de position permet de redéfinir les modifications de la séquence :

- (i) ins(pred < elt < succ) devient alors ins(id, elt), avec $predId <_{id} id <_{id} succId$.
- (ii) rmv(elt) devient rmv(id).

Ces redéfinitions permettent de proposer une spécification de la séquence avec des modifications commutatives.

À partir de cette spécification, PREGUICA et al. propose un CRDT pour Séquence : Treedoc Ce dernier tire son nom de l'approche utilisée pour émuler un ensemble dense pour générer les identifiants de position : Treedoc utilise pour cela les chemins d'un arbre binaire.

La Figure 2.17 illustre le fonctionnement de cette approche. La racine de l'arbre binaire,

FIGURE 2.17 – Identifiants de positions

notée ϵ , correspond à l'identifiant de position du premier élément inséré dans la séquence répliquée. Pour générer les identifiants des éléments suivants, Treedoc utilise l'identifiant de leur prédecesseur ou successeur : Treedoc concatène (noté \oplus) à ce dernier le chiffre 0 (resp. 1) en fonction de si l'élément doit être placé à gauche (resp. à droite) de l'identifiant utilisé comme base. Par exemple, pour insérer un nouvel élément à la fin de la séquence dont les identifiants de position sont représentés par la Figure 2.17, Treedoc lui associerait l'identifiant $id = \epsilon \oplus 1 \oplus 1 \oplus 1$. Ainsi, Treedoc suit l'ordre du parcours infixe de l'arbre binaire pour ordonner les identifiants de position.

Ce mécanisme souffre néanmoins d'un écueil : en l'état, plusieurs noeuds du système peuvent associer un même identifiant à des éléments insérés en concurrence, contravenant alors à la propriété (ii). Pour corriger cela, Treedoc ajoute à chaque noeud de l'arbre un désambiguateur par élément : un Dot (cf. Définition 20). Nous représentons ces derniers avec la notation d_i .

Ainsi, un noeud de l'arbre des identifiants peut correspondre à plusieurs éléments, ayant tous le même identifiant à l'exception de leur désambiguateur. Ces éléments sont alors ordonnés les uns par rapport aux autres en respectant l'ordre défini sur leur désambiguateur.

Afin de réduire le surcoût des désambiguateurs, ces derniers ne sont ajoutés au chemin formant un identifiant qu'uniquement lorsqu'ils sont nécessaires, c.-à-d. :

- (i) Le noeud courant est le noeud final de l'identifiant.
- (ii) Le noeud courant nécessite désambiguation, c.-à-d. plusieurs éléments utilisent l'identifiant correspondant à ce noeud.

La Figure 2.18 présente un exemple de cette situation. Dans cet exemple, deux identifiants

FIGURE 2.18 – Identifiants de position avec désambiguateurs

furent insérés en concurrence en fin de séquence : $id_4 = \epsilon \oplus \langle 1, d_4 \rangle$ et $id_5 = \epsilon \oplus \langle 1, d_5 \rangle$. Pour développer cet exemple, Treedoc générerait les identifiants :

- (i) $id_6 = \epsilon \oplus 1 \oplus \langle 1, d_6 \rangle$ à l'insertion d'un nouvel élément en fin de liste.
- (ii) $id_7 = \epsilon \oplus \langle 1, d_4 \rangle \oplus \langle 1, d_7 \rangle$ à l'insertion d'un nouvel élément entre les éléments ayant pour identifiants id_4 et id_5 .

Nous récapitulons le fonctionnement complet de Treedoc dans la Figure 2.19. Par souci de cohésion, nous utilisons ici à la fois l'arbre binaire pour représenter les identifiants de position des éléments et les éléments eux-mêmes. Nous omettons aussi le chemin vide ϵ dans la représentation des identifiants lorsque non-nécessaire.

Dans cet exemple, deux noeuds A et B partagent et éditent collaborativement une séquence répliquée Treedoc. Initialement, ils possèdent le même état : la séquence contient les éléments "HEM".

Le noeud A insère l'élément "L" en fin de séquence, c.-à-d. ins(M < L). Treedoc génère l'opération correspondante, $ins(\langle 1, d_4 \rangle, L)$, et l'intègre à sa copie locale. Puis A insère l'élément "O", toujours en fin de séquence. La modification ins(L < O) est convertie en opération $ins(1 \oplus \langle 1, d_6 \rangle, O)$ et intégrée.

FIGURE 2.19 – Modifications concurrentes d'une séquence répliquée Treedoc

En concurrence, le noeud B insère aussi un élément "L" en fin de séquence. Cette modification résulte en l'opération $ins(\langle 1, d_5 \rangle, L)$, qui est intégrée. Le noeud B supprime ensuite l'élément "M" de la séquence, ce qui produit l'opération $rmv(\langle \epsilon, d_1 \rangle)$. Cette dernière est intégrée à sa copie locale. Notons ici que le noeud de l'arbre des identifiants n'est pas supprimé suite à cette opération : l'élément associé est supprimé mais le noeud est conservé et devient une pierre tombale. Nous détaillons ci-après le fonctionnement des pierres tombales dans Treedoc.

Les deux noeuds procèdent ensuite à une synchronisation, échangeant leurs opérations respectives. Lorsque A (resp. B) intègre $ins(\langle 1, d_5 \rangle, L)$ (resp. $ins(\langle 1, d_4 \rangle, L)$), il ajoute cet élément avec son désambiguateur dans noeud de chemin 1, après (resp. avant) l'élément existant (on considère que $d_4 < d_5$).

B intègre ensuite $ins(1 \oplus \langle 1, d_6 \rangle, O)$. Il existe cependant une ambiguité sur la position de "O" : cet élément doit-il être placé après l'élément "L" ayant pour identifiant $\langle 1, d_4 \rangle$, ou l'élément "L" ayant pour identifiant $\langle 1, d_5 \rangle$? Treedoc résout de manière déterministe cette ambiguité en insérant l'élément en tant qu'enfant droit du noeud 1 et de ses éléments. Ainsi, les noeuds A et B convergent à l'état "HELLO".

Intéressons-nous dorénavant au modèle de livraison requis par Treedoc. Dans [59], les auteurs indiquent reposer sur le modèle de livraison causal. En pratique, nous pouvons néanmoins relaxer le modèle de livraison comme expliqué dans [12]:

Définition 29 (Modèle livraison Treedoc). Le modèle de livraison Treedoc définit que :

(i) Une opération doit être livrée exactement une fois à chaque noeud.

- (ii) Les opérations *ins* peuvent être livrées dans un ordre quelconque.
- (iii) L'opération rmv(id) ne peut être livrée qu'après la livraison de l'opération d'insertion de l'élément associé à id.

Treedoc souffre néanmoins de plusieurs limites. Tout d'abord, le mécanisme d'identifiants de positions proposé est couplé à la structure d'arbre binaire. Cependant, les utilisateur-rices ont tendance à écrire de manière séquentielle, c.-à-d. dans le sens d'écriture de la langue utilisée. Les nouveaux identifiants forment donc généralement une liste chaînée, qui déséquilibre l'arbre.

Ensuite, comme illustré dans la Figure 2.19, Treedoc doit conserver un noeud de l'arbre des identifiants malgré sa suppression lorsque ce dernier possède des enfants. Ce noeud de l'arbre devient alors une pierre tombale. Comparé à l'approche à pierres tombales, Treedoc a pour avantage que son mécanisme de GC ne repose pas sur la stabilité causale d'opérations. En effet, Treedoc peut supprimer définitivement un noeud de l'arbre binaire des identifiants dès lors que celui-ci est une pierre tombale et une feuille de l'arbre. Ainsi, Treedoc ne nécessite pas de coordination asynchrone avec l'ensemble des noeuds du système pour purger les pierres tombales. Néanmoins, l'évaluation de [59] a montré que les pierres tombales pouvait représenter jusqu'à 95% des noeuds de l'arbre.

Finalement, Treedoc souffre du problème de l'entrelacement d'éléments insérés de manière concurrente, contrairement à ce qui est conjecturé dans [71]. En effet, nous présentons un contre-exemple correspondant dans l'Annexe A.

Logoot

En parallèle à Treedoc [59], WEISS et al. [55] proposent Logoot. Ce nouvel CRDT pour Séquence repose sur idée similaire à celle de Treedoc : il associe un identifiant de position, provenant d'un espace dense, à chaque élément de la séquence. Ainsi, ces identifiants ont les mêmes propriétés que celles décrites dans Définition 28.

Les identifiants de position utilisés par Logoot sont spécifiés de manière différente dans [55] et [73]. Dans ce manuscrit, nous nous basons sur la spécification de [73] :

Définition 30 (Identifiant Logoot). Un identifiant Logoot est une liste de tuples Logoot. Les tuples Logoot sont définis de la manière suivante :

Définition 30.1 (Tuple Logoot). Un tuple Logoot est un triplet (pos, nodeId, seq) avec

- (i) pos, un entier représentant la position relative du tuple dans l'espace dense,
- (ii) nodeId, l'identifiant du noeud auteur de l'élément,
- (iii) seq, le numéro de séquence courant du noeud auteur de l'élément.

Dans le cadre de cette section, nous nous basons sur cette dernière spécification. Nous utiliserons la notation suivante pos^{nodeId} seq pour représenter un tuple Logoot. Sans perdre en généralité, nous utiliserons des lettres minuscules comme valeurs pour pos, des lettres majuscules pour nodeId et des entiers naturels pour seq. Par exemple, l'identifiant $\langle \langle i, A, 1 \rangle \langle f, B, 1 \rangle \rangle$ est représenté par $i^{A1}f^{B1}$.

Logoot définit un ordre strict total $<_{id}$ sur les identifiants de position. Cet ordre lui permet de les ordonner relativement les uns aux autres, et ainsi ordonner les éléments associés. Pour définir $<_{id}$, Logoot se base sur l'ordre lexicographique.

Définition 31 (Relation $<_{id}$). Étant donné deux identifiants $id = t_1 \oplus t_2 \oplus ... \oplus t_n$ et $id' = t'_1 \oplus t'_2 \oplus ... \oplus t'_m$, nous avons :

$$id <_{id} id'$$
 iff $(n < m \land \forall i \in [1, n] \cdot t_i = t'_i) \lor$
 $(\exists j \le m \cdot \forall i < j \cdot t_i = t'_i \land t_j <_t t'_j)$

avec $<_t$ défini de la manière suivante :

Définition 31.1 (Relation $<_t$). Étant donné deux tuples $t = \langle pos, nodeId, seq \rangle$ et $t' = \langle pos', nodeId', seq' \rangle$, nous avons :

```
t <_t t' iff (pos < pos') \lor

(pos = pos' \land nodeId < nodeId') \lor

(pos = pos' \land nodeId = nodeId' \land seq < seq')
```

Logoot spécifie une fonction generateId. Cette fonction permet de générer un nouvel identifiant de position, id, entre deux identifiants donnés, predId et succId, tel que predId < id < succId. Plusieurs algorithmes peuvent être utilisés pour cela. Notamment, [55] présente un algorithme permettant de générer N identifiants de manière aléatoire entre des identifiants predId et succId, mais reposant sur une représentation efficace des tuples en mémoire. Par souci de simplicité, nous présentons dans Algorithme 1 un algorithme naïf pour generateId.

Algorithme 1 Algorithme de génération d'un nouvel identifiant

```
1: function GENERATEID(predId \in \mathbb{I}, succId \in \mathbb{I}, nodeId \in \mathbb{N}, seq \in \mathbb{N}^*)
                                                                                                              \triangleright precondition: predId <_{id} succId
 2:
           if succId = predId \oplus (pos<sub>i</sub>, nodeId<sub>i</sub>, seq<sub>i</sub>) \oplus ... then
                                                                                                                         ▶ predId is a prefix of succId
 3:
                 pos \leftarrow random \in ] \perp_{\mathbb{N}}, pos_i[
                 id \leftarrow predId \oplus (pos, nodeId, seq)
 4:
 5:
           else if predId = common \oplus \langle pos_i, nodeId_i, seq_i \rangle \oplus ... \wedge
                       \operatorname{succId} = \operatorname{common} \oplus \langle \operatorname{pos}_i, \operatorname{nodeId}_i, \operatorname{seq}_i \rangle \oplus ... \wedge
                       pos_i - pos_i \le 1
                                                                                                  then
                                                                                           ▶ Not enough space between predId and succId
                                                                                                              > to insert new id with same length
                                                                                                                               6:
                 pos \leftarrow random \in ]pos_{i+1}, T_{\mathbb{N}}]
                id \leftarrow common \oplus \langle pos_i, nodeId_i, seq_i \rangle \oplus \langle pos, nodeId, seq \rangle
 7:
 8:
                                                                                            \triangleright predId = common \oplus (pos<sub>i</sub>, nodeId<sub>i</sub>, seq<sub>i</sub>) \oplus ...\land
                                                                                           \triangleright succId = common \oplus (pos<sub>i</sub>, nodeId<sub>i</sub>, seq<sub>i</sub>) \oplus ...\land
                                                                                                                                              \triangleright pos_i - pos_i > 1
                                                                                                                               ⊳ common may be empty
9:
                 pos \leftarrow random \in ]pos_i, pos_i[
10:
                 id \leftarrow common \oplus \langle pos, nodeId, seq \rangle
11:
            end if
12:
           return id
                                                                                                  \triangleright postcondition: predId <_{id} id <_{id} succId
13: end function
```

Pour illustrer cet algorithme, considérons son exécution avec :

- (i) predId = e^{A1}, nextId = m^{B1}, nodeId = C et seq = 1. generateId commence par déterminer où fini le préfixe commun entre les deux identifiants. Dans cet exemple, predId et succId n'ont aucun préfixe commun, c.-à-d. common = Ø. generateId compare donc les valeurs de pos de leur premier tuple respectifs, c.-à-d. e et m, pour déterminer si un nouvel identifiant de taille 1 peut être inséré dans cet intervalle. S'agissant du cas ici, generateId choisit une valeur aléatoire dans]e, m[, e.g. l, et renvoie un identifiant composé de cette valeur pour pos et avec les valeurs de nodeId et seq, c.-à-d. id = l^{C1} (lignes 8-10).
- (ii) $predId = i^{AI}f^{A2}$, $succId = i^{AI}g^{BI}$, nodeId = C et seq = 1. De manière similaire à précédemment, generateId détermine le préfixe commun entre predId et succId. Ici, $common = i^{AI}$. generateId compare ensuite les valeurs de pos de leur second tuple respectifs, c.-à-d. f et g, pour déterminer si un nouvel identifiant de taille 2 peut être inséré dans cet intervalle. Ce n'est point le cas ici, generateId doit donc recopier le second tuple de predId pour former id et y concaténer un nouveau tuple. Pour générer ce nouveau tuple, generateId choisit une valeur aléatoire entre la valeur de pos du troisième tuple de predId et la valeur maximale notée $T_{\mathbb{N}}$. predId n'ayant pas de troisième tuple, generateId utilise la valeur minimale pour pos, $text{$\mathbb{L}_{\mathbb{N}}$}$, $text{$\mathbb{L}_{\mathbb{N}}$}$ generateId choisit donc une valeur aléatoire dans $text{$\mathbb{L}_{\mathbb{N}}$}$, $text{$\mathbb{L}_{\mathbb{N}}$}$, tex

Comme pour Treedoc, l'utilisation d'identifiants de position permet de redéfinir les modifications :

- (i) ins(pred < elt < succ) devient alors ins(id, elt), avec $predId <_{id} id <_{id} succId$.
- (ii) rmv(elt) devient rmv(id).

Les auteurs proposent ainsi une séquence répliquée avec des opérations commutatives. Nous illustrons cela à l'aide de la Figure 2.20.

FIGURE 2.20 – Modifications concurrentes d'une séquence répliquée Logoot

Dans cet exemple, deux noeuds A et B partagent et éditent collaborativement une séquence répliquée Logoot. Les deux noeuds possèdent le même état initial : une séquence contenant les éléments "HEMLO", avec leur identifiants respectifs.

^{19.} Il est important d'exclure $\perp_{\mathbb{N}}$ des valeurs possibles pour pos du dernier tuple d'un identifiant id afin de garantir que l'espace reste dense, notamment pour garantir qu'un noeud sera toujours en mesure de générer un nouvel identifiant id' tel que $id' <_{id} id$.

Le noeud A insère l'élément "L" entre les éléments "E" et "M", c.-à-d. ins(E < L < M). Logoot doit alors associer à cet élément un identifiant id tel que $m^{B1} < id < n^{B2}$. Dans cet exemple, Logoot choisit l'identifiant $m^{B1} o^{A3}$. L'opération correspondante à l'insertion, $ins(m^{B1} o^{A3}, L)$, est générée, intégrée à la copie locale et diffusée.

En concurrence, le noeud B supprime l'élément "M" de la séquence. Logoot retrouve l'identifiant de cet élément, n^{B2} et produit l'opération $rmv(n^{B2})$. Cette dernière est intégrée à sa copie locale et diffusée.

À la réception de l'opération $rmv(n^{B2})$, le noeud A parcourt sa copie locale. Il identifie l'élément possèdant cet identifiant, "M", et le supprime de sa séquence. De son côté, le noeud B reçoit l'opération $ins(m^{B1} o^{A3}, L)$. Il parcourt sa copie locale jusqu'à trouver un identifiant supérieur à celui de l'opération : s^{B2} . Il insère alors l'élément reçu avant ce dernier. Les noeuds convergent alors à l'état "HELLO".

Concernant le modèle de livraison de Logoot, [55] indique se reposer sur le modèle de livraison causal. Nous constatons cependant que nous pouvons proposer un modèle de livraison moins contraint :

Définition 32 (Modèle livraison Logoot). Le modèle de livraison Logoot définit que :

- (i) Une opération doit être livrée exactement une fois à chaque noeud.
- (ii) Les opérations ins peuvent être livrées dans un ordre quelconque.
- (iii) L'opération rmv(id) ne peut être livrée qu'après la livraison de l'opération d'insertion de l'élément associé à id.

Ainsi, Logoot peut adopter le même modèle de livraison que Treedoc, comme indiqué dans [12].

En contrepartie, Logoot souffre d'un problème de croissance de la taille des identifiants. Comme mis en lumière dans la Figure 2.20, Logoot génère des identifiants composés de plus en plus de tuples au fur et à mesure que l'espace des identifiants pour une taille donnée se sature. La croissance des identifiants a cependant plusieurs impacts négatifs :

- (i) Les identifiants sont stockés au sein de la séquence répliquée. Leur croissance augmente donc le surcoût en métadonnées du CRDT.
- (ii) Les identifiants sont diffusés sur le réseau par le biais des opérations. Leur croissance augmente donc le surcoût en bande-passante du CRDT.
- (iii) Les identifiants sont comparés entre eux lors de l'intégration des opérations. Leur croissance augmente donc le surcoût en calculs du CRDT.

Un objectif de l'algorithme generateId est donc de limiter le plus possible la vitesse de croissance des identifiants.

Plusieurs extensions furent proposées pour Logoot. WEISS et al. [73] proposent une nouvelle stratégie d'allocation des identifiants pour generateId. Cette stratégie consiste à limiter la distance entre deux identifiants insérés au cours de la même modification ins, au lieu des les répartir de manière aléatoire entre predId et succId. Ceci permet de regrouper les identifiants des éléments insérés par une même modification et de laisser plus d'espace pour les insertions suivantes. Les expérimentations présentées montrent que cette stratégie permet de ralentir la croissance des identifiants en fonction du nombre d'insertions. Ce résultat est confirmé par la suite dans [62]. Ainsi, en réduisant la vitesse de croissance des

identifiants, ce nouvel algorithme permet de réduire le surcoût en métadonnées, calculs et bande-passante du CRDT.

Toujours dans [73], les auteurs introduisent *Logoot-Undo*, une version de Logoot dotée d'un mécanisme d'undo. Ce mécanisme prend la forme d'une nouvelle modification, *undo*, qui permet d'annuler l'effet d'une ou plusieurs modifications passées. Cette modification, et l'opération en résultant, est spécifiée de manière à être commutative avec toutes autres opérations concurrentes, c.-à-d. *ins*, *rmv* et *undo* elle-même.

Pour définir undo, une notion de degrée de visibilité d'un élément est introduite. Elle permet à Logoot-Undo de déterminer si l'élément doit être affiché ou non. Pour cela, Logoot-Undo maintient une structure auxiliaire, le Cimetière, qui référence les identifiants des éléments dont le degrée est inférieur à 0 ²⁰. Ainsi, Logoot-Undo ne référence qu'un nombre réduit de pierres tombales. Qui plus est, ces pierres tombales sont stockées en dehors de la structure représentant la séquence et n'impactent donc pas les performances des modifications ultérieures.

De plus, il convient de noter que l'ajout du degrée de visibilité des éléments permet de rendre commutatives l'opération *ins* avec l'opération *rmv* d'un même élément. Ainsi, Logoot-Undo ne nécessite pour son modèle de livraison qu'une *livraison en exactement un exemplaire à chaque noeud*.

Finalement, André et al. [11] introduisent *LogootSplit*. Reprenant les idées introduites par [70], ce travail présente un mécanisme d'aggrégation dynamiques des élements en blocs. Ceci permet de réduire la granularité des éléments stockés dans la séquence, et ainsi de réduire le surcoût en métadonnées, calculs et bande-passante du CRDT. Nous utilisons ce CRDT pour séquence comme base pour les travaux présentés dans ce manuscrit. Nous dédions donc la section 2.4 à sa présentation en détails.

 $Matthieu:\ TODO:\ Autres\ Sequence\ CRDTs\ `a\ considérer:\ String-wise\ CRDT\ [70],\ Chronofold\ [74]$

2.3.3 Synthèse

Depuis l'introduction des CRDTs, deux approches différentes pour la résolution de conflits ont été proposées pour le type Séquence : l'approche basée sur des pierres tombales et l'approche basée à identifiants densément ordonnés. Chacune de ces approches visent à permettre l'édition concurrente tout en minimisant le surcoût du type répliqué, que ce soit d'un point de vue métadonnées, calculs et bande-passante. Au fil des années, chacune de ces approches a été raffinée avec de nouveaux CRDTs de plus en plus en efficaces.

Cependant, une faiblesse de la littérature est à notre sens le couplage entre mécanismes de résolution de conflits et choix d'implémentations : plusieurs travaux [59, 55, 11, 69] ne séparent pas l'approche proposée pour rendre les modifications concurrentes commutatives des structures de données et algorithmes choisis pour représenter et manipuler la séquence et les identifiants, e.g. tableau dynamique, liste chaînée, liste chaînée + table de hachage + arbre binaire de recherche... Matthieu: TODO : Revoir refs utilisées ici II en découle que les évaluations proposées par la communautée comparent au final des efforts

^{20.} Nous pouvons dès lors inférer le degrée des identifiants restants en fonction de s'ils se trouvent dans la séquence (1) ou s'ils sont absents à la fois de la séquence et du cimetière (0).

d'implémentations plutôt que les approches elles-mêmes. En conséquence, la littérature ne permet pas d'établir la supériorité d'une approche sur l'autre.

Nous conjecturons que le surcoût des pierres tombales et le surcoût des identifiants densément ordonnés ne sont que les facettes d'une même pièce, c.-à-d. le surcoût inhérent à un mécanisme de résolution de conflits pour séquence répliquée. Ce surcoût s'exprime sous la forme de compromis différents selon l'approche choisie. Nous proposons donc une comparaison de ces approches se focalisant sur leurs différences pour indiquer plus clairement le compromis que chacune d'entre elle propose.

La principale différence entre les deux approches porte sur les identifiants. Chaque approche repose sur des identifiants attachés aux éléments, mais leurs rôles et utilisations diffèrent :

- (i) Dans l'approche à pierres tombales, les identifiants servent à référencer de manière unique et immuable les éléments, c.-à-d. de manière indépendante de leur index courant. Ils sont aussi utilisés pour ordonner les éléments insérés de manière concurrente à une même position.
- (ii) Dans l'approche à identifiants densément ordonnés, les identifiants incarnent les positions uniques et immuables des éléments dans un espace dense, avec l'ordre entre les positions des éléments dans cet espace qui correspond avec l'intention des insertions effectuées.

Ainsi, les contraintes qui pèsent sur les identifiants sont différentes. Nous les présentons ci-dessous.

Définition 33 (Propriétés des identifiants dans approche à pierres tombales). Les propriétés que doivent respecter les identifiants dans l'approche à pierres tombales sont les suivantes :

- (i) Chaque identifiant est attribué à un élément de la séquence.
- (ii) Aucune paire d'éléments ne partage le même identifiant.
- (iii) L'identifiant d'un élément est immuable.
- (iv) Il existe un ordre total strict sur les identifiants, $<_{id}$, qui permet d'ordonner les éléments insérés en concurrence à une même position.

Définition 34 (Propriétés des identifiants dans approche à identifiants densément ordonnés). Les propriétés que doivent respecter les identifiants dans l'approche à identifiants densément ordonnés sont les suivantes :

- (i) Chaque identifiant est attribué à un élément de la séquence.
- (ii) Aucune paire d'éléments ne partage le même identifiant.
- (iii) L'identifiant d'un élément est immuable.
- (iv) Il existe un ordre total strict sur les identifiants, $<_{id}$, qui permet d'ordonner les éléments insérés dans la séquence de manière cohérente avec l'ordre souhaité.
- (v) Les identifiants sont tirés d'un ensemble dense.

Les identifiants des deux approches partagent donc les propriétés (i), (ii) et (iii).

Pour respecter les propriétés (i) et (ii), les CRDTs reposent généralement sur des dots (cf. Définition 20, page 33). Ainsi, un couple de taille fixe, $\langle nodeId, seq \rangle$, permet de respecter la contrainte d'unicité des identifiants.

Le rôle des identifiants diffère entre les approches au niveau des propriétés (iv) et (v) : les identifiants dans l'approche à pierres tombales doivent permettre d'ordonner un élément par rapport aux éléments insérés en concurrence uniquement, tandis que ceux de la seconde approche doivent permettre d'ordonner un élément par rapport à l'ensemble des éléments insérés. Cette nuance se traduit dans la structure des identifiants, notamment leur taille.

Pour ordonner un identifiant par rapport à ceux générés en concurrence, l'approche à pierres tombales peut définir une relation d'ordre total strict sur leur dot respectif, e.g. en se basant sur l'ordre lexicographique. Un élément tiers peut y être ajouté si nécessaire, e.g. RGA et son horloge de Lamport [23]. Ainsi, les identifiants de cette approche peuvent être définis tout en ayant une taille fixe, c.-à-d. un nombre de composants fixe.

D'après (iv), l'approche à identifiants densément ordonnés doit elle définir une relation d'ordre total strict sur l'ensemble de ses identifiants. Il en découle qu'elle doit aussi permettre de générer un nouvel identifiant de position entre deux autres, c.-à-d. la propriété (v). Ainsi, cette propriété requiert de l'ensemble des identifiants d'émuler l'ensemble des réels. La précision étant finie en informatique, la seule approche proposée à notre connaissance pour répondre à ce besoin consiste à permettre à la taille des identifiants de varier et de baser la relation d'ordre $<_{id}$ sur l'ordre lexicographique.

L'augmentation non-bornée de la taille des identifiants se répercute sur plusieurs aspects du surcoût de l'approche à identifiants densément ordonnés :

- (i) Les métadonnées attachées par élément, c.-à-d. le surcoût mémoire.
- (ii) Les métadonnées transmises par message, les identifiants étant intégrés dans les opérations, c.-à-d. le surcoût en bande-passante.
- (iii) Le nombre de comparaisons effectuées lors d'une recherche ou manipulation de la séquence, les identifiants étant comparés pour déterminer où trouver ou placer un élément, c.-à-d. le surcoût en calculs.

En contrepartie, les identifiants densément ordonnés permettent l'intégration chaque élément de manière indépendante des autres. Les identifiants de l'approche à pierres tombales, eux, n'offrent pas cette possibilité puisque la relation d'ordre associée, $\langle id \rangle$, ne correspond pas à l'ordre souhaité des éléments. Pour respecter cet ordre souhaité, l'approche à pierres tombales repose sur l'utilisation du prédecesseur et/ou successeur du nouvel élément inséré. Ce mécanisme implique la nécessité de conserver des pierres tombales dans la séquence, tant qu'elles peuvent être utilisées par une opération encore inconnue, c.-à-d. tant que l'opération de suppression correspondante n'est pas causalement stable.

La présence de pierres tombales dans la séquence impacte aussi plusieurs aspects du surcoût de l'approche à pierres tombales :

(i) Les métadonnées de la séquence ne dépendent pas de son nombre courant d'éléments, mais du nombre d'insertions effectuées, c.-à-d. le surcoût mémoire.

(ii) Le nombre de comparaisons effectuées lors d'une recherche ou manipulation de la séquence, les identifiants des pierres tombales étant aussi comparés lors de la recherche ou insertion d'un élément, c.-à-d. le surcoût en calculs.

Pour compléter notre étude de ces approches, intéressons nous au modèle de livraison requis par ces dernières. Contrairement à ce qui peut être conjecturé après une lecture de la littérature, nous notons qu'aucune de ces approches ne requiert de manière intrinsèque une livraison causale de ses opérations. Ces deux approches sont donc adaptées aux systèmes distribués P2P.

Finalement, nous notons que l'ensemble des CRDTs pour Séquence proposés souffrent du problème de l'entrelacement présenté dans [71]. Nous conjecturons cependant que les CRDTs pour Séquence à pierres tombales sont moins sujets à ce problème. En effet, dans cette approche, l'algorithme d'intégration des nouveaux éléments repose généralement sur l'élément précédent. Ainsi, une séquence d'insertions séquentielles produit une sous-chaîne d'éléments. L'algorithme d'intégration permet ensuite d'intégrer sans entre-lacement de telles sous-chaînes générées en concurrence, e.g. dans le cadre de sessions de travail asynchrones. Cependant, il s'agit d'une garantie offerte par l'approche à pierres tombales dont nous ne retrouvons pas d'équivalent dans l'approche à identifiants densément ordonnés. Pour confirmer notre conjecture et évaluer son impact sur l'expérience utilisateur, il conviendrait de mener un ensemble d'expériences utilisateurs dans la lignée de [62, 75, 76].

Nous récapitulons cette discussion dans le Tableau 2.2.

Table 2.2 – Récapitulatif comparatif des différents approches pour CRDTs pour Séquence

	Pierres tombales	Identifiants densément ordonnés
Performances en fct. de la taille de la séq.	×	×
Identifiants de taille fixe	✓	X
Taille des messages fixe	✓	X
Eléments réellement supprimés de la séq.	X	✓
Livraison causale non-nécessaire	✓	✓
Sujet à l'entrelacement	✓	✓

Pour la suite de ce manuscrit, nous prenons LogootSplit comme base de travail. Nous détaillons donc son fonctionnement dans la section suivante.

2.4 LogootSplit

LogootSplit [11] est l'état de l'art des séquences répliquées à identifiants densément ordonnés. Son intuition est de proposer un mécanisme permettant d'aggréger de manière dynamique des éléments en blocs d'élements. Ce mécanisme permet de factoriser les métadonnées des éléments aggrégés et de réduire la granularité de la séquence, réduisant ainsi le surcoût en métadonnées, calculs et bande-passante.

2.4.1 Identifiants

Pour ce faire, LogootSplit associe aux éléments des identifiants définis de la manière suivante :

Définition 35 (Identifiant LogootSplit). Un identifiant LogootSplit est une liste de tuples LogootSplit. Les tuples LogootSplit sont définis de la manière suivante :

Définition 35.1 (Tuple LogootSplit). Un tuple LogootSplit est un quadruplet $\langle pos, nodeId, seq, offset \rangle$ avec :

- (i) pos, un entier représentant la position relative du tuple dans l'espace dense,
- (ii) nodeId, l'identifiant du noeud auteur de l'élément,
- (iii) seq, le numéro de séquence courant du noeud auteur de l'élément.
- (iv) offset, la position de l'élément au sein d'un bloc. Nous reviendrons plus en détails sur ce composant dans la sous-section 2.4.2.

Dans ce manuscrit, nous représentons les tuples LogootSplit par le biais de la notation suivante : $position_{offset}^{nodeId}$. Sans perdre en généralité, nous utiliserons des lettres minuscules comme valeurs pour pos, des lettres majuscules pour nodeId et des entiers naturels pour seq et offset. Par exemple, nous représentons l'identifiant $\langle \langle i, A, 1, 1 \rangle \langle f, B, 1, 1 \rangle \rangle$ par $i_1^{A1} f_1^{B1}$.

LogootSplit utilise les identifiants de position pour ordonner relativement les éléments les uns par rapport aux autres. LogootSplit définit une relation d'ordre strict total sur les identifiants : $<_{id}$. Cette relation repose sur l'ordre lexicographique.

Définition 36 (Relation $<_{id}$). Étant donné deux identifiants $id = t_1 \oplus t_2 \oplus ... \oplus t_n$ et $id' = t'_1 \oplus t'_2 \oplus ... \oplus t'_m$, nous avons :

$$id <_{id} id'$$
 iff $(n < m \land \forall i \in [1, n] \cdot t_i = t'_i) \lor$
 $(\exists j \le m \cdot \forall i < j \cdot t_i = t'_i \land t_j <_t t'_i)$

avec $<_t$ défini de la manière suivante :

Définition 36.1 (Relation $<_t$). Étant donné deux tuples $t = \langle pos, nodeId, seq, offset \rangle$ et $t' = \langle pos', nodeId', seq', offset' \rangle$, nous avons :

$$t <_t t'$$
 iff $(pos < pos') \lor$
 $(pos = pos' \land nodeId < nodeId') \lor$
 $(pos = pos' \land nodeId = nodeId' \land seq < seq')$
 $(pos = pos' \land nodeId = nodeId' \land seq = seq' \land offset = offset')$

Par exemple, nous avons:

- (i) $i_1^{A1} <_{id} i_1^{B1}$ car le tuple composant le premier est inférieur au tuple composant le second, c.-à-d. $i_0^{A1} <_t i_0^{B0}$.
- (ii) $i_0^{B0} <_{id} i_0^{B0} f_0^{A0}$ car le premier est un préfixe du second.

Il est intéressant de noter que le triplet $\langle nodeId, seq, offset \rangle$ du dernier tuple d'un identifiant permet de l'identifier de manière unique.

2.4.2 Aggrégation dynamique d'élements en blocs

Afin de réduire le surcoût de la séquence, LogootSplit propose d'aggréger de façon dynamique les éléments et leur identifiants dans des blocs. Pour cela, LogootSplit introduit la notion d'intervalle d'identifiants :

Définition 37 (Intervalle d'identifiants). Un intervalle d'identifiants est un couple $\langle idBegin, offsetEnd \rangle$ avec :

- (i) idBegin, l'identifiant du premier élément de l'interval.
- (ii) offsetEnd, l'offset du dernier identifiant de l'interval.

Les intervalles d'identifiants permettent à LogootSplit d'assigner logiquement un identifiant à un ensemble d'éléments, tout en ne stockant de manière effective que l'identifiant de son premier élément et le dernier offset de son dernier élément.

LogootSplit regroupe les éléments avec des identifiants contigus dans un intervalle.

Définition 38 (Identifiants contigus). Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

De manière plus formelle, étant donné deux identifiants $id = t_1 \oplus t_2 \oplus ... \oplus t_{n-1} \oplus \langle pos, nodeId, seq, offset \rangle$ et $id' = t'_1 \oplus t'_2 \oplus ... \oplus t'_{n-1} \oplus \langle pos', nodeId', seq', offset' \rangle$, nous avons :

$$contigus(id, id')$$
 iff $(\forall i \in [1, n[\cdot t_i = t'_i) \land (pos = pos' \land nodeId = nodeId' \land seq = seq') \land (offset + 1 = offset' \lor offset - 1 = offset')$

Nous représentons un intervalle d'identifiants à l'aide du formalisme suivant : $position_{begin..end}^{nodeSeq}$ où begin est l'offset du premier identifiant de l'intervalle et end du dernier.

Matthieu: TODO: Ajouter MàJ de generateId ici. "Pour profiter de cette fonctionnalité, LogootSplit propose une nouvelle fonction generateId. Le principal ajout est un cas supplémentaire favorisant la génération d'un id contigu dans le cas où predId est le dernier élément d'un intervalle d'identifiants de l'auteur. Le booléen isAppendable est nécessaire pour éviter de re-générer un identifiant avec un triplet nodeId, seq, offset déjà utilisé".

LogootSplit utilise une structure de données pour associer un intervalle d'identifiants aux éléments correspondants : les blocs.

Définition 39 (Bloc). Un bloc est un triplet (idInterval, elts, isAppendable) avec :

- (i) idInterval, l'intervalle d'identifiants associés au bloc.
- (ii) elts, les éléments contenus dans le bloc.
- (iii) isAppendable, un booléen indiquant si l'auteur du bloc peut ajouter de nouveaux éléments en fin de bloc 21 .

^{21.} De manière similaire, il est possible de permettre à l'auteur du bloc d'ajouter de nouveaux éléments en début de bloc à l'aide d'un booléen *isPrependable*. Cette fonctionnalité est cependant incompatible avec le mécanisme que nous proposons dans le chapitre 3. Nous faisons donc le choix de la retirer.

Nous représentons un exemple de séquence LogootSplit dans la Figure 2.21. Dans la Figure 2.21a, les identifiants i_1^{B1} , i_2^{B1} et i_3^{B1} forment une chaîne d'identifiants contigus. LogootSplit est donc capable de regrouper ces éléments en un bloc représentant l'intervalle d'identifiants $i_{1...3}^{B1}$ pour minimiser les métadonnées stockées, comme illustré dans la Figure 2.21b.

- (a) Éléments avec leur identifiant correspondant
- (b) Éléments regroupés en un bloc

FIGURE 2.21 – Représentation d'une séquence LogootSplit contenant les éléments "HLO"

Cette fonctionnalité permet d'améliorer les performances de la structure de données sur plusieurs aspects :

- (i) Elle réduit le nombre d'identifiants stockés au sein de la structure de données. En effet, les identifiants sont désormais conservés à l'échelle des blocs plutôt qu'à l'échelle de chaque élément. Ceci permet de réduire le surcoût en métadonnées du CRDT.
- (ii) L'utilisation de blocs comme niveau de granularité, en lieu et place des éléments, permet de réduire la complexité en temps des manipulations de la structure de données.
- (iii) L'utilisation de blocs permet aussi d'effectuer des modifications à l'échelle de plusieurs éléments, et non plus un par un seulement. Ceci permet de réduire la taille des messages diffusés sur le réseau.

Il est intéressant de noter que la paire $\langle nodeId, seq \rangle$ du dernier tuple d'un identifiant permet d'identifier de manière unique la partie commune des identifiants de l'intervalle d'identifiants auquel il appartient. Ainsi, nous pouvons identifier de manière unique un intervalle d'identifiants avec le quadruplet $\langle nodeId, seq, offsetBegin, offsetEnd \rangle$. Par exemple, l'intervalle d'identifiants $i_2^{B1}f_{2...4}^{A1}$ peut être référencé à l'aide du quadruplet $\langle A, 1, 2, 4 \rangle$.

2.4.3 Modèle de données

En nous basant sur André et al. [11], nous proposons une définition du modèle de données de LogootSplit dans la Figure 2.22 :

Une séquence LogootSplit est une séquence de blocs. Concernant les modifications définies sur le type, nous nous inspirons de [33] et les séparons en deux étapes :

- (i) **prepare**, l'étape qui consiste à générer l'opération correspondant à la modification à partir de l'état courant et de ses éventuels paramètres. Cette étape ne modifie pas l'état.
- (ii) **effect**, l'étape qui consiste à intégrer l'effet d'une opération générée précédemment, par le noeud lui-même ou un autre. Cette étape met à jour l'état à partir des données fournies par l'opération.

payload

 $S \in Seq\langle IdInterval, Arr\langle E \rangle, Bool \rangle$

constructor

emp: $\longrightarrow S$

prepare

 $\begin{array}{ccc} ins & : & S \times \mathbb{N} \times Arr\langle E \rangle \times \mathbb{I} \times \mathbb{N}^* & \longrightarrow Id \times Arr\langle E \rangle \\ rmv & : & S \times \mathbb{N} \times \mathbb{N} & \longrightarrow Arr\langle IdInterval \rangle \end{array}$

effect

 $\begin{array}{ccc} ins & : & S \times Id \times Arr\langle E \rangle & \longrightarrow S \\ rmv & : & S \times Arr\langle IdInterval \rangle & \longrightarrow S \end{array}$

queries

 $\begin{array}{ccc} len & & : & S & & \longrightarrow \mathbb{N} \\ rd & & : & S & & \longrightarrow Arr\langle E \rangle \end{array}$

FIGURE 2.22 – Spécification algébrique du type abstrait LogootSplit

La séquence LogootSplit autorise deux types de modifications :

- (i) ins(s, i, elts, nodeId, seq), qui génère l'opération permettant d'insérer les éléments elts dans la séquence s à l'index i. Cette fonction génère et associe un intervalle d'identifiants aux éléments à insérer en utilisant les valeurs pour nodeId et seq fournies. Elle retourne les données nécessaires pour l'opération ins, c.-à-d. le premier identifiant de l'intervalle d'identifiants alloué et les éléments. Par soucis de simplicité, nous noterons cette modification ins(pred < elts < succ) et utiliserons l'état courant de la séquence comme valeur pour s, l'identifiant du noeud auteur de la modification comme valeur pour s dans nos exemples.
- (ii) rmv(s, i, nbElts), qui génère l'opération permettant de supprimer nbElts dans la séquence s à partir de l'index i. Elle retourne les données nécessaires pour l'opération rmv, c.-à-d. les intervalles d'identifiants supprimés. Par soucis de simplicité, nous noterons cette modifications rmv(elts) dans nos exemples.

Nous présentons dans la Figure 2.23 un exemple d'utilisation de cette séquence répliquée.

Dans cet exemple, deux noeuds A et B répliquent et éditent collaborativement un document texte en utilisant LogootSplit. Ils partagent initialement le même état : une séquence composée d'un seul bloc associant les identifiants $i_{1...4}^{B1}$ aux éléments "HRLO". Les noeuds se mettent ensuite à éditer le document.

Le noeud A commence par supprimer l'élément "R" de la séquence. LogootSplit génère l'opération rmv correspondante en utilisant l'identifiant de l'élément supprimé : i_2^{B1} . Cette opération est intégrée à sa copie locale et envoyée au noeud B pour qu'il intègre cette modification à son tour.

FIGURE 2.23 – Modifications concurrentes d'une séquence répliquée LogootSplit

Le noeud A insère ensuite l'élément "E" dans la séquence entre les éléments "H" et "L". Le noeud A doit alors générer un identifiant id à associer à ce nouvel élément respectant la contrainte suivante :

$$i_1^{B1} <_{id} id <_{id} i_3^{B1}$$

L'espace des identifiants de taille 1 étant saturé entre ces deux identifiants, A génère id en reprenant le premier tuple de l'identifiant du prédecesseur et en y concaténant un nouveau tuple : $id = i_I^{B1} \oplus f_I^{A1}$. LogootSplit génère l'opération ins correspondante, indiquant l'élément à insérer et sa position grâce à son identifiant. Il intègre cette opération et la diffuse sur le réseau.

En parallèle, le noeud B insère l'élément "!" en fin de la séquence. Comme le noeud B est l'auteur du bloc $i_{1..4}^{B1}$, il peut y ajouter de nouveaux éléments. B associe donc l'identifiant i_5^{B1} à l'élément "!" pour l'ajouter au bloc existant. Il génère l'opération ins correspondante, l'intègre puis la diffuse.

Les noeuds se synchronisent ensuite. Le noeud A reçoit l'opération $ins(i_5^{B1}, L)$. Le noeud A détermine que cet élément doit être inséré à la fin de la séquence, puisque $i_4^{B1} <_{id} i_5^{B1}$. Ces deux identifiants étant contigus, il ajoute cet élément au bloc existant.

De son côté, le noeud B reçoit tout d'abord l'opération $rmv(i_2^{B1})$. Le noeud B supprime donc l'élément correspondant de son état, "R".

Il reçoit ensuite l'opération $ins(i_1^{B1}f_1^{A1}, E)$. Le noeud B insère cet élément entre les éléments "H" et "L", puisqu'on a :

$$i_1^{B1} <_{id} i_1^{B1} f_1^{A1} <_{id} i_3^{B1}$$

L'intention de chaque noeud est donc préservée et les copies convergent.

2.4.4 Modèle de livraison

Afin de garantir son bon fonctionnement, LogootSplit doit être associé à une couche de livraison de messages. Cette couche de livraison doit respecter un modèle de livraison adapté, c.-à-d. offrir des garanties sur l'ordre de livraison des opérations. Dans cette section, nous présentons des exemples d'exécutions en l'absence de modèle de livraison pour illustrer la nécessité de ces différentes garanties.

Livraison des opérations en exactement un exemplaire

Ce premier exemple, représenté par la Figure 2.24, a pour but d'illustrer la nécessité de la propriété de livraison en *exactement un exemplaire* des opérations.

FIGURE 2.24 – Résurgence d'un élément supprimé suite à la relivraison de son opération ins

Dans cet exemple, deux noeuds A et B répliquent et éditent collaborativement une séquence. La séquence répliquée contient initialement les éléments "ABCD", qui sont associés à l'intervalle d'identifiants $p_{1...4}^{A1}$.

Le noeud A commence par insérer l'élément "X" dans la séquence entre les éléments "B" et "C". A intègre l'opération résultante, $ins(p_2^{AI}m_I^{A2}, X)$ puis la diffuse au noeud B.

À la réception de l'opération *ins*, le noeud B l'intègre à son état. Puis il supprime dans la foulée l'élément "X" nouvellement inséré. B intègre l'opération $rmv(p_2^{AI}m_1^{A2})$ puis l'envoie au noeud A.

Le noeud A intègre l'opération rmv, ce qui a pour effet de supprimer l'élément "X" associé à l'identifiant $p_2^{AI} m_I^{A2}$. Il obtient alors un état équivalent à celui du noeud B.

Cependant, l'opération ins insérant l'élément "X" à la position $p_2^{A1}m_1^{A2}$ est de nouveau envoyée au noeud B. De multiples raisons peuvent être à l'origine de ce nouvel envoi : perte du message d'acknowledgment, utilisation d'un protocole de diffusion épidémique des messages, déclenchement du mécanisme d'anti-entropie en concurrence... Le noeud B ré-intègre alors l'opération ins, ce qui fait revenir l'élément "X" et l'identifiant associé. L'état du noeud B diverge désormais de celui-ci du noeud A.

Pour se prémunir de ce type de scénarios, LogootSplit requiert que la couche de livraison des messages assure une livraison en exactement un exemplaire des opérations. Cette contrainte permet d'éviter que d'anciens éléments et identifiants ressurgissent après leur suppression chez certains noeuds uniquement à cause d'une livraison multiple de l'opération *ins* correspondante.

Livraison de l'opération rmv après les opérations ins correspondantes

La Figure 2.25 présente un second exemple illustrant la nécessité de la contrainte de livraison d'une opération rmv qu'après la livraison des opérations ins correspondantes.

Dans cet exemple, trois noeuds A, B et C répliquent et éditent collaborativement une séquence. La séquence répliquée contient initialement les éléments "ABCD", qui sont

FIGURE 2.25 – Non-effet de l'opération rmv car reçue avant l'opération ins correspondante

associés à l'intervalle d'identifiants $p_{1...4}^{A1}$.

Le noeud A commence par insérer l'élément "X" dans la séquence entre les éléments "B" et "C". A intègre l'opération résultante, $ins(p_2^{A1}m_1^{A2}, X)$ puis la diffuse.

À la réception de l'opération ins, le noeud B l'intègre à son état. Puis il supprime dans la foulée l'élément "X" nouvellement inséré. B intègre l'opération $rmv(p_2^{A_1}m_1^{A_2})$ puis la diffuse.

Toutefois, suite à un aléa du réseau, l'opération rmv supprimant l'élément "X" est reçue par le noeud C en première. Ainsi, le noeud C intègre cette opération : il parcourt son état à la recherche de l'élément "X" pour le supprimer. Celui-ci n'est pas présent dans son état courant, l'intégration de l'opération s'achève sans effectuer de modification.

Le noeud C reçoit ensuite l'opération *ins*. Le noeud C intègre ce nouvel élément dans la séquence en utilisant son identifiant.

Nous constatons alors que l'état à terme du noeud C diverge de celui des noeuds A et B, et cela malgré que les noeuds A, B et C aient intégré le même ensemble d'opérations. Ce résultat transgresse la propriété Cohérence forte à terme (SEC) que doivent assurer les CRDTs. Afin d'empêcher ce scénario de se produire, LogootSplit impose donc la livraison causale des opérations rmv par rapport aux opérations ins correspondantes.

Définition du modèle de livraison

Pour résumer, la couche de livraison des opérations associée à LogootSplit doit respecter le modèle de livraison suivant :

Définition 40 (Modèle de livraison LogootSplit). Le modèle de livraison LogootSplit définit que :

- (i) Une opération doit être livrée exactement une fois à chaque noeud.
- (ii) Les opérations *ins* peuvent être livrées dans un ordre quelconque.
- (iii) L'opération rmv(idIntervals) ne peut être livrée qu'après la livraison des opération d'insertions des éléments formant les idIntervals.

Il est à noter que ELVINGER [12] a récemment proposé dans ses travaux de thèse Dotted LogootSplit, un nouveau CRDT pour Séquence dont la synchronisation est basée sur les différences d'états. Inspiré de Logoot et LogootSplit, ce nouveau CRDT associe une séquence à identifiants densément ordonnés à un contexte causal. Le contexte causal est une structure de données permettant à Dotted LogootSplit de représenter et de maintenir efficacement les informations des modifications déjà intégrées à l'état courant. Cette association permet à Dotted LogootSplit de fonctionner de manière autonome, sans imposer de contraintes particulières à la couche livraison autres que la livraison à terme.

2.4.5 Limites

Intéressons-nous désormais aux limites de LogootSplit. Nous en identifions deux que nous détaillons ci-dessous : la croissance non-bornée de la taille des identifiants, et la fragmentation de la séquence en blocs courts.

Croissance non-bornée de la taille des identifiants

La première limite de ce CRDT, héritée de l'approche auquel il appartient, est la taille non-bornée de ses identifiants de position. Comme indiqué précédemment, LogootSplit génère des identifiants composés de plus en plus de tuples au fur et à mesure que l'espace dense des identifiants se sature.

Cependant, LogootSplit introduit un mécanisme favorisant la croissance des identifiants : les intervalles d'identifiants. Considérons l'exemple présenté dans la Figure 2.26.

FIGURE 2.26 – Insertion menant à une augmentation de la taille des identifiants

Dans cet exemple, le noeud A insère un nouvel élément dans un intervalle d'identifiants existant, c.-à-d. entre deux identifiants contigus : i_1^{B1} et i_2^{B1} . Ces deux identifiants étant contigus, il n'est pas possible de générer id, un identifiant de même taille tel que $i_1^{B1} <_{id}$ $id <_{id} i_2^{B1}$. Pour respecter l'ordre souhaité, LogootSplit génère donc un identifiant à partir de l'identifiant du prédecesseur et en y ajoutant un nouveau tuple, e.g. $i_1^{B1} f_1^{A1}$.

Par conséquent, la taille des identifiants croît à chaque fois qu'un intervalle d'identifiants est scindé. Comme présenté précédemment (cf. sous-section 2.3.3, page 48), cette croissance augmente le surcoût en métadonnées, en calculs et en bande-passante du CRDT.

Fragmentation de la séquence en blocs courts

La seconde limite de LogootSplit est la fragmentation de l'état en une multitude de blocs courts. En effet, plusieurs contraintes sur la génération d'identifiants empêchent les noeuds d'ajouter des nouveaux éléments aux blocs existants :

Définition 41 (Contraintes sur l'ajout d'éléments à un bloc existant). L'ajout d'éléments à un bloc existant doit respecter les règles suivantes :

- (i) Seul le noeud qui a généré l'intervalle d'identifiants du bloc, c.-à-d. qui est l'auteur du bloc, peut ajouter des éléments à ce dernier.
- (ii) L'ajout d'éléments à un bloc ne peut se faire qu'à la fin de ce dernier.
- (iii) La suppression du dernier élément d'un bloc interdit tout ajout futur à ce bloc.

La figure Figure 2.27 illustre ces règles.

FIGURE 2.27 – Insertion menant à une augmentation de la taille des identifiants

Ainsi, ces limitations conduisent à la génération de nouveau blocs au fur et à mesure de la manipulation de la séquence. Nous conjecturons que, dans un cadre d'utilisation standard, la séquence est à terme fragmentée en de nombreux blocs de seulement quelques caractères chacun. Les blocs étant le niveau de granularité de la séquence, chaque nouveau bloc entraîne un surcoût en métadonnées et en calculs. Cependant, aucun mécanisme pour fusionner les blocs a posteriori n'est proposé. L'efficacité de la structure décroît donc au fur et à mesure que l'état se fragmente.

Synthèse

Les performances d'une séquence LogootSplit diminuent au fur et à mesure que celle-ci est manipulée et que des modifications sont effectuées dessus. Cette perte d'efficacité est dûe à la taille des identifiants de position qui croît de manière non-bornée, ainsi qu'au nombre généralement croissant de blocs.

Initialement, nous nous sommes focalisés sur un aspect du problème : la croissance du surcoût en métadonnées de la structure. Afin de quantifier ce problème, nous avons évalué par le biais de simulations ²² l'évolution de la taille de la séquence. La Figure 2.28 présente le résultat obtenu.

Sur cette figure, nous représentons l'évolution au fur et à mesure que des modifications sont effectuées sur une séquence LogootSplit de la taille de son contenu, sous la forme d'une ligne pointillée bleu, et de la taille de la séquence LogootSplit complète, sous la

^{22.} Nous détaillons le protocole expérimental que nous avons défini pour ces simulations dans le chapitre 3.

FIGURE 2.28 – Taille du contenu comparé à la taille de la séquence LogootSplit

forme d'une ligne continue rouge. Nous constatons que le contenu représente à terme moins de 1% de taille de la structure de données. Les 99% restants correspondent aux métadonnées utilisées par la séquence répliquée, c.-à-d. la taille des identifiants, les blocs composant la séquence LogootSplit, mais aussi la structure de données utilisée en interne pour représenter la séquence de manière efficace.

Nous jugeons donc nécessaire de proposer des mécanismes et techniques afin de mitiger le surcoût des CRDTs pour Séquence et sa croissance.

Matthieu: TODO: Serait plus intéressant de proposer des stats sur la taille des ids, le nombre de blocs composant la séquence, le nombre d'éléments par blocs et la proportion de la taille du contenu sur la taille de la structure de données en fonction du nombre d'opérations jouées. Pose la question de quand introduire le protocole suivi pour générer les traces.

2.5 Mitigation du surcoût des séquences répliquées sans conflits

L'augmentation du surcoût des CRDTs pour Séquence, qu'il soit dû à des pierres tombales ou à des identifiants de taille non-bornée, est un problème bien identifié dans la littérature [58, 59, 7, 8, 77, 78]. Plusieurs approches ont donc été proposées pour réduire sa croissance.

2.5.1 Mécanisme de GC des pierres tombales

Pour réduire l'impact des pierres tombales sur les performances de RGA, ROH et al. [58] proposent un mécanisme de GC des pierres tombales. Pour rappel, ce mécanisme

nécessite qu'une pierre tombale ne puisse plus être utilisée comme prédecesseur par une opération *ins* reçue dans le futur pour pouvoir être supprimée définitivement. En d'autres termes, ce mécanisme repose sur la stabilité causale de l'opération de suppression pour supprimer la pierre tombale correspondante.

La stabilité causale est une contrainte forte, peu adaptée aux systèmes P2P dynamiques à large échelle. Notamment, la stabilité causale nécessite que chaque noeud du système fournisse régulièrement des informations sur son avancée, c.-à-d. quelles opérations il a intégré, pour progresser. Ainsi, il suffit qu'un noeud du système se déconnecte pour bloquer la stabilité causale, ce qui apparaît extrêmement fréquent dans le cadre d'un système P2P dynamique dans lequel nous n'avons pas de contrôle sur les noeuds.

À notre connaissance, il s'agit du seul mécanisme proposé pour l'approche à pierres tombales.

2.5.2 Ré-équilibrage de l'arbre des identifiants de position

Concernant l'approche à identifiants densément ordonnés, LETIA et al. [7] puis ZA-WIRSKI et al. [8] proposent un mécanisme de ré-équilibrage de l'arbre des identifiants de position pour Treedoc [59]. Pour rappel, Treedoc souffre des problèmes suivants :

- (i) Le déséquilibrage de son arbre des identifiants de position si les insertions sont effectuées de manière séquentielle à une position.
- (ii) La présence de pierres tombales dans son arbre des identifiants de position lorsque des identifiants correspondants à des noeuds intermédiaires de l'arbre sont supprimés.

Pour répondre à ces problèmes, les auteurs présentent un mécanisme de ré-équilibrage de l'arbre supprimant par la même occasion les pierres tombales existantes, c.-à-d. un mécanisme réattribuant de nouveaux identifiants de position aux éléments encore présents. Ce mécanisme prend la forme d'une nouvelle opération, que nous notons bal.

Notons que l'opération bal contrevient à une des propriétés des identifiants de position densément ordonnés : leur immutabilité (cf. Définition 34, page 49). L'opération bal est donc intrinséquement non-commutative avec les opérations ins et rmv concurrentes. Pour assurer la convergence à terme des copies, les auteurs mettent en place un mécanisme de catch-up. Ce mécanisme consiste à transformer les opérations concurrentes aux opérations bal avant de les intégrer, de façon à prendre en compte les effets des ré-équilibrages.

Toutefois, l'opération bal n'est pas non plus commutative avec elle-même. Cette approche nécessite d'empêcher la génération d'opérations bal concurrentes. Pour cela, les auteurs proposent de reposer sur un protocole de consensus entre les noeuds pour la génération d'opérations bal.

De nouveau, l'utilisation d'un protocole de consensus est une contrainte forte, peu adaptée aux systèmes P2P dynamique à large échelle. Pour pallier à ce point, les auteurs proposent de répartir les noeuds dans deux groupes : le *core* et la *nebula*.

Le *core* est un ensemble, de taille réduite, de noeuds stables et hautement connectés tandis que la *nebula* est un ensemble, de taille non-bornée, de noeuds. Seuls les noeuds du *core* participent à l'exécution du protocole de consensus. Les noeuds de la *nebula* contribuent toujours au document par le biais des opérations *ins* et *rmv*.

Ainsi, cette solution permet d'adapter l'utilisation d'un protocole de consensus à un système P2P dynamique. Cependant, elle requiert de disposer de noeuds stables et bien connectés dans le système pour former le *core*. Cette condition est un obstacle pour le déploiement et la pérennité de cette solution.

2.5.3 Réduction de la croissance des identifiants de position

L'approche LSEQ [77, 78] est une approche visant à réduire la croissance des identifiants dans les Séquences CRDTs à identifiants densément ordonnés. Au lieu de réduire périodiquement la taille des métadonnées liées aux identifiants à l'aide d'un mécanisme de renommage coûteux, les auteurs définissent de nouvelles stratégies d'allocation des identifiants pour réduire leur vitesse de croissance.

Dans ces travaux, les auteurs notent que les stratégies d'allocation des identifiants proposées pour Logoot dans [55] et [73] ne sont adaptées qu'à un seul comportement d'édition : l'édition séquentielle. Si les insertions sont effectuées en suivant d'autres comportements, les identifiants générés saturent rapidement l'espace des identifiants pour une taille donnée. Les insertions suivantes déclenchent alors une augmentation de la taille des identifiants. En conséquent, la taille des identifiants dans Logoot augmente de façon linéaire au nombre d'insertions, au lieu de suivre la progression logarithmique attendue.

LSEQ définit donc plusieurs stratégies d'allocation d'identifiants adaptées à différents comportements d'édition. Les noeuds choisissent de manière aléatoire mais déterministe une de ces stratégies pour chaque taille d'identifiants. De plus, LSEQ adopte une structure d'arbre exponentiel pour allouer les identifiants : l'espace des identifiants possibles double à chaque fois que la taille des identifiants augmente. Cela permet à LSEQ de choisir avec soin la taille des identifiants et la stratégie d'allocation en fonction des besoins. En combinant les différentes stratégies d'allocation avec la structure d'arbre exponentiel, LSEQ offre une croissance polylogarithmique de la taille des identifiants en fonction du nombre d'insertions.

Cette solution ne repose sur aucune coordination synchrone entre les noeuds. Sa complexité ne dépend pas non plus du nombre de noeuds du système. Elle nous apparaît donc adaptée aux systèmes P2P dynamique à large échelle.

Nous conjecturons cependant que cette approche perd ses bienfaits lorsqu'elle est couplée avec un CRDT pour Séquence à granularité variable. En effet, comme évoqué précédemment, toute insertion au sein d'un bloc provoque une augmentation de la taille de l'identifiant résultant (cf. section 2.4.5, page 59).

2.5.4 Synthèse

Ainsi, plusieurs approches ont été proposées dans la littérature pour réduire le surcoût des CRDTs pour Séquence. Cependant, aucune de ces approches ne nous apparaît adaptée pour les CRDTs pour Séquence à granularité variable dans le contexte de systèmes P2P dynamiques :

(i) Les approches présentées dans [58, 7, 8] reposent chacune sur des contraintes fortes dans les systèmes P2P dynamiques, c.-à-d. respectivement la stabilité causale des

opérations et l'utilisation d'un protocole de consensus. Dans un système dans lequel nous n'avons aucun contrôle sur les noeuds et notamment leur disponibilité, ces contraintes nous apparaissent rédhibitoires.

(ii) L'approche présentée dans [77, 78] est conçue pour les CRDTs pour Séquence à identifiants densément ordonnés à granularité fixe. L'introduction de mécanismes d'aggrégation dynamique des éléments en blocs comme ceux présentés dans [11, 69], avec les contraintes qu'ils introduisent, nous semble contrarier les efforts effectués pour réduire la croissance des identifiants de position.

Nous considérons donc la problématique du surcoût des CRDTs pour Séquence à granularité variable toujours ouverte.

2.6 Synthèse

Les systèmes distribués adoptent le modèle de la réplication optimiste [3] pour offrir de meilleures garanties à leurs utilisateur-rices, en termes de disponibilité, latence et capacité de tolérance aux pannes [2].

Dans ce modèle, chaque noeud du système possède une copie de la donnée et peut la modifier sans coordination avec les autres noeuds. Il en résulte des divergences temporaires entre les copies respectives des noeuds. Pour résoudre les potentiels conflits provoqués par des modifications concurrentes et assurer la convergence à terme des copies, les systèmes utilisent les CRDTs [6] en place et lieu des types de données séquentiels.

Plusieurs CRDTs pour Séquence ont été proposés, notamment pour permettre la conception d'éditeurs collaboratifs pair-à-pair. Ces CRDTs peuvent être regroupés en deux catégories en fonction de leur mécanisme de résolution de conflits : l'approche à pierres tombales [57, 63, 62, 58, 69, 71] et l'approche à identifiants densément ordonnées [59, 55, 73, 11, 12].

Chacune de ces approches introduit néanmoins un surcoût croissant, au moins en termes de métadonnées et de calculs, pénalisant leurs performances à terme. Pour résoudre ce problème, plusieurs travaux ont été proposés, notamment [7, 8]. Cette approche présente un mécanisme de ré-équilibrage de l'arbre des identifiants de position pour les CRDTs pour Séquence à sur identifiants densément ordonnés.

Cette approche requiert cependant un protocole de consensus, des renommages concurrents provoquant un nouveau conflit. Cette contrainte empêche son utilisation dans les systèmes P2P ne disposant pas de noeuds suffisamment stables et bien connectés pour participer au protocole de consensus.

2.7 Proposition

Dans le cadre de cette thèse, nous proposons et présentons un nouveau mécanisme de réduction du surcoût pour les CRDTs pour Séquence à identifiants densément ordonnés et à granularité variable.

Ce mécanisme se distingue des travaux existants, notamment de [7, 8], par les aspects suivants :

- (i) Il ne nécessite pas de coordination synchrone entre les noeuds.
- (ii) Il ré-aggrége les éléments de la séquence en de nouveaux blocs pour réduire leur nombre.

Nous concevons ce mécanisme pour le CRDT LogootSplit. Toutefois, le principe de notre approche est générique. Ainsi, ce mécanisme peut être adapté pour proposer un équivalent pour d'autres CRDTs pour Séquence, e.g. RGASplit.

Nous présentons et détaillons ce mécanisme dans le chapitre suivant.

main: version du jeudi 6 octobre 2022 à 9 h 00

Chapitre 2. État de l'art

Chapitre 3

Renommage dans une séquence répliquée

Sommaire

3.1	Prés	sentation de l'approche
	3.1.1	Définition de l'opération de renommage
3.2	Intr	oduction de l'opération rename
	3.2.1	Opération de renommage proposée
	3.2.2	Gestion des opérations concurrentes au renommage 71
	3.2.3	Évolution du modèle de livraison des opérations
3.3	Gest	tion des opérations rename concurrentes
	3.3.1	Conflits en cas de renommages concurrents
	3.3.2	Relation de priorité entre renommages
	3.3.3	Algorithme d'annulation de l'opération de renommage 78
	3.3.4	Processus d'intégration d'une opération 82
	3.3.5	Mécanisme de GC des anciens états obsolètes 87
3.4	Vali	dation
	3.4.1	Complexité en temps des opérations 89
	3.4.2	Expérimentations
	3.4.3	Résultats
3.5	Disc	eussion
	3.5.1	Stratégie de génération des opérations rename
	3.5.2	Stockage des états précédents sur disque
	3.5.3	Compression et limitation de la taille de l'opération $rename$ 103
	3.5.4	Définition de relations de priorité pour minimiser les traitements 104
	3.5.5	Report de la transition vers la nouvelle époque cible 105
	3.5.6	Utilisation de l'opération de renommage comme mécanisme de
	257	compression du log d'opérations
	3.5.7	Implémentation alternative de l'intégration de l'opération re- name basée sur le journal d'opérations
3.6	Corr	paraison avec les approches existantes
5.0	Con	iparaison avec les approches existantes 110

3.6.1	Core-Nebula
3.6.2	LSEQ
3.7 Con	clusion

3.1 Présentation de l'approche

Nous proposons un nouveau CRDT pour le type Sequence à identifiants densément ordonnés et à granularité : RenamableLogootSplit [21, 13]. Cette structure de données permet aux noeuds d'insérer et de supprimer des éléments au sein d'une séquence répliquée. Nous introduisons une opération rename qui permet de (i) réassigner des identifiants plus courts aux différents éléments de la séquence (ii) fusionner les blocs composant la séquence. Ces deux actions permettent à l'opération rename de produire un nouvel état minimisant son surcoût en termes de métadonnées et de calculs des modifications suivantes.

3.1.1 Définition de l'opération de renommage

L'objectif de l'opération rename est de réassigner de nouveaux identifiants aux éléments de la séquence répliquée sans modifier son contenu. Puisque les identifiants sont des métadonnées utilisées par la structure de données uniquement afin de résoudre les conflits, les utilisateurs ignorent leur existence. Les opérations rename sont donc des opérations systèmes : elles sont émises et appliquées par les noeuds en coulisses, sans aucune intervention des utilisateurs.

Afin de garantir le respect du modèle de cohérence SEC, nous définissons plusieurs propriétés de sécurité que l'opération *rename* doit respecter. Ces propriétés sont inspirées principalement par celles proposées dans [8].

Propriété 1. (Déterminisme) Les opérations *rename* sont intégrées par les noeuds sans aucune coordination. Pour assurer que l'ensemble des noeuds atteigne un état équivalent à terme, une opération *rename* donnée doit toujours générer le même nouvel identifiant à partir de l'identifiant courant.

Propriété 2. (Préservation de l'intention de l'utilisateur) Bien que l'opération rename n'incarne pas elle-même une intention de l'utilisateur, elle ne doit pas entrer en conflit avec les modifications des utilisateurs. Notamment, les opérations rename ne doivent pas annuler ou altérer le résultat d'opérations insert et remove du point de vue des utilisateurs.

Propriété 3. (Séquence bien formée) La séquence répliquée doit être bien formée. Appliquée une opération *rename* sur une séquence bien formée doit produire une nouvelle séquence bien formée. Une séquence bien formée doit respecter les propriétés suivantes :

Propriété 3.1. (Préservation de l'unicité) Chaque identifiant doit être unique. Donc, pour une opération *rename* donnée, chaque identifiant doit être associé à un nouvel identifiant unique.

Propriété 3.2. (Préservation de l'ordre) Les éléments de la séquence doivent être ordonnés en fonction de leur identifiants. L'ordre existant entre les identifiants initiaux doit donc être préservé par l'opération *rename*.

Propriété 4. (Commutativité avec les opérations concurrentes) Les opérations concurrentes peuvent être livrées dans des ordres différents à chaque noeud. Afin de garantir la convergence des réplicas, l'ordre d'application d'un ensemble d'opérations concurrentes ne doit pas avoir d'impact sur l'état obtenu. L'opération *rename* doit donc être commutative avec n'importe quelle opération concurrente.

La Propriété 4 est particulièrement difficile à assurer. Cette difficulté est dûe au fait que les opérations rename modifient les identifiants assignés aux éléments. Cependant, les autres opérations telles que les opérations insert et remove reposent sur ces identifiants pour spécifier où insérer les éléments ou lesquels supprimer. Les opérations rename sont donc intrinséquement incompatibles avec les opérations insert et remove concurrentes. De la même manière, des opérations rename concurrentes peuvent réassigner des identifiants différents à des mêmes éléments. Les opérations rename concurrentes ne sont donc pas commutatives. Par conséquent, il est nécessaire de concevoir et d'utiliser des méthodes de résolution de conflits pour assurer la Propriété 4.

Dans un souci de simplicité, la présentation de l'opération rename est divisée en deux parties. Dans le section 3.2, nous présentons l'opération rename proposée avec l'hypothèse qu'aucune opération rename concurrente ne peut être générée. Cette hypothèse nous permet de nous concentrer sur le fonctionnement de l'opération rename elle-même ainsi que sur la gestion des opérations insert et remove concurrentes. Ensuite, dans le section 3.3, nous supprimons cette hypothèse. Nous présentons alors notre approche pour gérer les scénarios avec des opérations rename concurrentes.

3.2 Introduction de l'opération rename

3.2.1 Opération de renommage proposée

Notre opération de renommage réassigne des identifiants arbitraires aux éléments de la séquence de réduire son surcoût en métadonnées.

Son comportement est illustré dans la Figure 3.1. Dans cet exemple, le noeud A initie une opération rename sur son état local. Tout d'abord, le noeud A génère un nouvel identifiant à partir du premier tuple de l'identifiant du premier élément de la séquence (i_0^{B0}) . Pour générer ce nouvel identifiant, le noeud A reprend la position de ce tuple (i) mais utilise son propre identifiant de noeud (\mathbf{A}) et numéro de séquence actuel (1). De plus, son offset est mis à 0. Le noeud A réassigne l'identifiant résultant (i_0^{AI}) au premier élément de la séquence, comme décrit dans la Figure 3.1a. Ensuite, le noeud A dérive des identifiants contigus pour tous les éléments restants en incrémentant de manière successive l'offset $(i_1^{AI}, i_2^{AI}, i_3^{AI})$, comme présenté dans la Figure 3.1b. Comme nous assignons des identifiants consécutifs à tous les éléments de la séquence, nous pouvons au final aggréger ces éléments en un seul bloc, comme illustré en Figure 3.1c. Ceci permet aux noeuds de

(a) Choix du nouvel identifiant pour le premier élément

(b) Choix des nouveaux identifiants pour les éléments restants

FIGURE 3.1 – Renommage de la séquence sur le noeud A

bénéficier au mieux de la fonctionnalité des blocs et de minimiser le surcoût en métadonnés de l'état résultat.

Pour converger, les autres noeuds doivent renommer leur état de manière identique. Cependant, ils ne peuvent pas simplement remplacer leur état courant par l'état généré par le renommage. En effet, ils peuvent avoir modifié en concurrence leur état. Afin de ne pas perdre ces modifications, les noeuds doivent traiter l'opération rename eux-mêmes. Pour ce faire, le noeud qui a généré l'opération rename diffuse les données sur lesquelles il a basé son renommage aux autres, c.-à-d. son ancien état.

Définition 42 (Ancien état). Un ancien état est la liste des intervalles d'identifiants qui composent l'état courant de la séquence répliquée au moment du renommage.

De ce fait, nous définissons l'opération rename de la manière suivante :

Définition 43 (rename). Une opération *rename* est un triplet (nodeId, nodeSeq, formerState) où

- nodeId est l'identifiant du noeud qui a généré l'opération rename.
- nodeSeq est le numéro de séquence du noeud au moment de la génération de l'opération rename.
- formerState est l'ancien état du noeud au moment du renommage.

En utilisant ces données, les autres noeuds calculent le nouvel identifiant de chaque identifiant renommé. Concernant les identifiants insérés de manière concurrente au renommage, nous expliquons dans la sous-section 3.2.2 comment les noeuds peuvent les renommer de manière déterministe.

3.2.2 Gestion des opérations concurrentes au renommage

Après avoir appliqué des opérations *rename* sur leur état local, les noeuds peuvent recevoir des opérations concurrentes. La Figure 3.2 illustre de tels cas.

FIGURE 3.2 – Modifications concurrentes menant à une anomalie

Dans cet exemple, le noeud B insère un nouvel élément "L", lui assigne l'identifiant $i_0^{B0} m_0^{B1}$ et diffuse cette modification, de manière concurrente à l'opération rename décrite dans la Figure 3.2. À la réception de l'opération insert, le noeud A ajoute l'élément inséré au sein de sa séquence, en utilisant l'identifiant de l'élément pour déterminer sa position. Cependant, puisque les identifiants ont été modifiés par l'opération rename concurrente, le noeud A insère le nouvel élément à la fin de sa séquence (puisque $i_3^{A1} <_{id} i_0^{B0} m_0^{B1}$) au lieu de l'insérer à la position souhaitée. Comme illustré par cet exemple, appliquer naivement les modifications concurrentes provoquerait des anomalies. Il est donc nécessaire de traiter les opérations concurrentes aux opérations rename de manière particulière.

Tout d'abord, les noeuds doivent détecter les opérations concurrentes aux opérations rename. Pour cela, nous utilisons un système basé sur des époques. Initialement, la séquence répliquée débute à l'époque origine notée ε_0 . Chaque opération rename introduit une nouvelle époque et permet aux noeuds d'y avancer depuis l'époque précédente. Par exemple, l'opération rename décrite dans Figure 3.2 permet aux noeuds de faire progresser leur état de ε_0 à ε_{A1} . Nous définissons les époques de la manière suivante :

Définition 44 (Époque). Une époque est un couple (nodeId, nodeSeq) où

- nodeId est l'identifiant du noeud qui a généré cette époque.
- nodeSeq est le numéro de séquence du noeud au moment de la génération de cette époque.

Notons que l'époque générée est caractérisée et identifiée de manière unique par son couple (nodeId, nodeSeq).

Au fur et à mesure que les noeuds reçoivent des opérations rename, ils construisent et maintiennent localement la chaîne des époques. Cette structure de données ordonne les époques en fonction de leur relation parent-enfant et associe à chaque époque l'ancien état correspondant (c.-à-d. l'ancien état inclus dans l'opération rename qui a généré cette époque). De plus, les noeuds marquent chaque opération avec leur époque courante au moment de génération de l'opération. À la réception d'une opération, les noeuds comparent l'époque de l'opération à l'époque courante de leur séquence.

Si les époques diffèrent, les noeuds doivent transformer l'opération avant de pouvoir l'intégrer. Les noeuds déterminent par rapport à quelles opérations *rename* doit être transformée l'opération reçue en calculant le chemin entre l'époque de l'opération et leur époque courante en utilisant la *chaîne des époques*.

Les noeuds utilisent la fonction RENAMEID, décrite dans l'Algorithme 2, pour transformer les opérations *insert* et *remove* par rapport aux opérations *rename*. Cet algorithme associe les identifiants d'une époque *parente* aux identifiants correspondant dans l'époque *enfant*. L'idée principale de cet algorithme est de renommer les identifiants inconnus au moment de la génération de l'opération *rename* en utilisant leur prédecesseur. Un exemple est présenté dans la Figure 3.3. Cette figure décrit le même scénario que la Figure 3.2, à l'exception que le noeud A utilise RENAMEID pour renommer l'identifiants généré de façon concurrente avant de l'insérer dans son état.

Algorithme 2 Fonctions principales pour renommer un identifiant

```
function RENAMEID(id, renamedIds, nId, nSeq)
   length \leftarrow renamedIds.length
   firstId \leftarrow renamedIds[0]
   lastId \leftarrow renamedIds[length - 1]
   pos \leftarrow position(firstId)
   if id < firstId then
       newFirstId \leftarrow new Id(pos, nId, nSeq, 0)
       return renIdLessThanFirstId(id, newFirstId)
   else if id \in renameIds then
       index \leftarrow findIndex(id, renamedIds)
       return new Id(pos, nId, nSeq, index)
   else if lastId < id then
       newLastId \leftarrow new Id(pos, nId, nSeq, length - 1)
       return renIdGreaterThanLastId(id, newLastId)
   else
       return renIdFromPredId(id, renamedIds, pos, nId, nSeq)
   end if
end function
function RENIDFROMPREDID(id, renamedIds, pos, nId, nSeq)
   index \leftarrow findIndexOfPred(id, renamedIds)
   newPredId \leftarrow new Id(pos, nId, nSeq, index)
   return concat(newPredId, id)
end function
```

L'algorithme procède de la manière suivante. Tout d'abord, le noeud récupère le prédecesseur de l'identifiant donné $i_0^{B0} m_0^{B1}$ dans l'ancien état : $i_0^{B0} f_0^{A0}$. Ensuite, il calcule l'équivalent de $i_0^{B0} f_0^{A0}$ dans l'état renommé : i_1^{A1} . Finalement, le noeud A concatène cet identifiant et l'identifiant donné pour générer l'identifiant correspondant dans l'époque $enfant : i_1^{A1} i_0^{B0} m_0^{B1}$. En réassignant cet identifiant à l'élément inséré de manière concurrente, le noeud A peut l'insérer à son état tout en préservant l'ordre souhaité.

RENAMEID permet aussi aux noeuds de gérer le cas contraire : intégrer des opérations rename distantes sur leur copie locale alors qu'ils ont précédemment intégré des modi-

FIGURE 3.3 – Renommage de la modification concurrente avant son intégration en utilisant RENAMEID afin de maintenir l'ordre souhaité

fications concurrentes. Ce cas correspond à celui du noeud B dans la Figure 3.3. À la réception de l'opération rename du noeud A, le noeud B utilise RENAMEID sur chacun des identifiants de son état pour le renommer et atteindre un état équivalent à celui du noeud A.

L'Algorithme 2 présente seulement le cas principal de RENAMEID, c.-à-d. le cas où l'identifiant à renommer appartient à l'intervalle des identifiants formant l'ancien état ($firstId \leq_{id} id \leq_{id} lastId$). Les fonctions pour gérer les autres cas, c.-à-d. les cas où l'identifiant à renommer n'appartient pas à cet intervalle ($id <_{id} firstId$ ou $lastId <_{id} id$), sont présentées dans l'Annexe B.

Nous notons que l'algorithme que nous présentons ici permet aux noeuds de renommer leur état identifiant par identifiant. Une extension possible est de concevoir RENAME-BLOCK, une version améliorée qui renomme l'état bloc par bloc. RENAMEBLOCK réduirait le temps d'intégration des opérations rename, puisque sa complexité en temps ne dépendrait plus du nombre d'identifiants (c.-à-d. du nombre d'éléments) mais du nombre de blocs. De plus, son exécution réduirait le temps d'intégration des prochaines opérations rename puisque le mécanisme de renommage regroupe les éléments en moins de blocs.

3.2.3 Évolution du modèle de livraison des opérations

L'introduction de l'opération rename nécessite de faire évoluer le modèle de livraison des opérations associé à RenamableLogootSplit. Afin d'illustrer cette nécessité, considérons l'exemple suivant :

FIGURE 3.4 – Livraison d'une opération *insert* sans avoir reçu l'opération *rename* précédente

Dans la Figure 3.4, les noeuds A et B répliquent tous deux une même séquence, contenant les éléments "ABCD". Tout d'abord, le noeud A procède au renommage de cet état. Puis il insère un nouvel élément, "X", entre "B" et "C". Les opérations correspondantes aux actions du noeud A sont diffusées sur le réseau.

Cependant, l'opération rename n'est pas livrée au noeud B, par exemple suite à un problème réseau. L'opération insert est quant à elle correctement livrée à ce dernier. Le noeud B doit alors intégrer dans son état un élément et l'identifiant qui lui est attaché. Mais cet identifiant est issu d'une époque (ε_{A1}) différente de son époque actuelle (ε_{0}) et dont le noeud n'avait pas encore connaissance. Il convient de s'interroger sur l'état à produire dans cette situation.

Comme nous l'avions déjà illustré par la Figure 3.2, les identifiants d'une époque ne peuvent être comparés qu'aux identifiants de la même époque. Tenter d'intégrer une opération *insert* ou *remove* provenant d'une époque encore inconnue ne résulterait qu'en un état incohérent et une transgression de l'intention utilisateur (cf. Propriété 2, page 68). Il est donc nécessaire d'empêcher ce scénario de se produire.

Pour cela, nous proposons de faire évoluer le modèle de livraison des opérations de RenamableLogootSplit. Celui-ci repose sur celui de LogootSplit (cf. ??, page ??), que nous avions défini dans la Définition 40. Pour rappel, ce modèle requiert que

- (i) Une opération doit être livrée exactement une fois à chaque noeud.
- (ii) Les opérations *ins* peuvent être livrées dans un ordre quelconque.
- (iii) L'opération rmv(idIntervals) ne peut être livrée qu'après la livraison des opération d'insertions des éléments formant les idIntervals.

Pour prévenir les scénarios tels que celui illustré par la Figure 3.4 nous y ajoutons la règle suivante : les opérations *rename* doivent être livrées à la structure de données avant les opérations qui ont une dépendance causale vers ces dernières. Nous obtenons donc le modèle de livraison suivant :

Définition 45 (Exactly-once + Causal remove + Epoch-based). Le modèle de livraison Exactly-once + Causal remove + Epoch-based définit les 4 règles suivantes sur la livraison des opérations :

- (i) Une opération doit être livrée à l'ensemble des noeuds à terme,
- (ii) Une opération doit être livrée qu'une seule et unique fois aux noeuds,
- (iii) Une opération *remove* doit être livrée à un noeud une fois que les opérations *insert* des éléments concernés par la suppression ont été livrées à ce dernier.
- (iv) Une opération peut être délivrée à un noeud qu'à partir du moment où l'opération rename qui a introduit son époque de génération a été délivrée à ce même noeud.

Il est cependant intéressant de noter que la livraison de l'opération rename ne requiert pas de contraintes supplémentaires. Notamment, une opération rename peut être livrée dans le désordre par rapport aux opérations insert et remove dont elle dépend causalement. La Figure 3.5 présente un exemple de ce cas figure.

Dans cet exemple, les noeuds A et B répliquent tous deux une même séquence, contenant les éléments "ABCD". Le noeud A commence par insérer un nouvel élément, "X",

FIGURE 3.5 – Livraison désordonnée d'une opération rename et de l'opération insert qui la précède

entre les éléments "B" et "C". Puis il procède au renommage de son état. Les opérations correspondantes aux actions du noeud A sont diffusées sur le réseau.

Cependant, suite à un aléa du réseau, le noeud B reçoit les deux opérations *insert* et *rename* dans le désordre. L'opération *rename* est donc livrée en première au noeud B. En utilisant les informations contenues dans l'opération, le noeud B renomme chaque identifiant composant son état.

Ensuite, le noeud B reçoit l'opération insert. Comme l'époque de génération de l'opération insert (ε_0) est différente de celle de son état courant (ε_{A2}), le noeud B utilise RENAMEID pour renommer l'identifiant avant de l'insérer. m_0^{A1} faisant partie de l'ancien état, le noeud B utilise l'index de cet identifiant dans l'ancien état (2) pour calculer son équivalent à l'époque ε_{A2} (i_2^{A2}). Le noeud B insère l'élément "X" avec ce nouvel identifiant et converge alors avec le noeud A, malgré la livraison dans le désordre des opérations.

3.3 Gestion des opérations *rename* concurrentes

3.3.1 Conflits en cas de renommages concurrents

Nous considérons à présent les scénarios avec des opérations *rename* concurrentes. Figure 3.6 développe le scénario décrit précédemment dans Figure 3.3.

FIGURE 3.6 – Opérations rename concurrentes menant à des états divergents

Après avoir diffusé son opération *insert*, le noeud B effectue une opération *rename* sur son état. Cette opération réassigne à chaque élément un nouvel identifiant à partir

de l'identifiant du premier élément de la séquence (i_0^{B0}) , de l'identifiant du noeud (\mathbf{B}) et de son numéro de séquence courant (2). Cette opération introduit aussi une nouvelle époque : ε_{B2} . Puisque l'opération rename de A n'a pas encore été livrée au noeud B à ce moment, les deux opérations rename sont concurrentes.

Puisque des époques concurrentes sont générées, les époques forment désormais un arbre des époques. Nous représentons dans la Figure 3.7 l'arbre des époques que les noeuds obtiennent une fois qu'ils se sont synchronisés à terme. Les époques sont representées sous la forme de noeuds de l'arbre et la relation parent-enfant entre elles est illustrée sous la forme de flèches noires.

FIGURE 3.7 – Arbre des époques correspondant au scénario décrit dans la Figure 3.6

À l'issue du scénario décrit dans la Figure 3.6, les noeuds A et B sont respectivement aux époques ε_{A1} et ε_{B2} . Pour converger, tous les noeuds devraient atteindre la même époque à terme. Cependant, la fonction RENAMEID décrite dans l'Algorithme 2 permet seulement aux noeuds de progresser d'une époque parente à une de ses époques enfants. Le noeud A (resp. B) est donc dans l'incapacité de progresser vers l'époque du noeud B (resp. A). Il est donc nécessaire de faire évoluer notre mécanisme de renommage pour sortir de cette impasse.

Tout d'abord, les noeuds doivent se mettre d'accord sur une époque commune de l'arbre des époques comme époque cible. Afin d'éviter des problèmes de performance dûs à une coordination synchrone, les noeuds doivent sélectionner cette époque de manière non-coordonnée, c.-à-d. en utilisant seulement les données présentes dans l'arbre des époques. Nous présentons un tel mécanisme dans la sous-section 3.3.2.

Ensuite, les noeuds doivent se déplacer à travers l'arbre des époques afin d'atteindre l'époque cible. La fonction RENAMEID permet déjà aux noeuds de descendre dans l'arbre. Les cas restants à gérer sont ceux où les noeuds se trouvent actuellement à une époque soeur ou cousine de l'époque cible. Dans ces cas, les noeuds doivent être capable de remonter dans l'arbre des époques pour retourner au Plus Petit Ancêtre Commun (PPAC) de l'époque courante et l'époque cible. Ce déplacement est en fait similaire à l'annulation de l'effet des opérations rename précédemment appliquées. Nous proposons un algorithme, REVERTRENAMEID, qui remplit cet objectif dans la sous-section 3.3.3.

3.3.2 Relation de priorité entre renommages

Pour que chaque noeud sélectionne la même époque cible de manière non-coordonnée, nous définissons la relation de priorité sur les époques $<_{\varepsilon}$.

Définition 46 (Relation *priority* $<_{\varepsilon}$). La relation *priority* $<_{\varepsilon}$ est un ordre strict total sur l'ensemble des époques. Elle permet aux noeuds de comparer n'importe quelle paire d'époques.

En utilisant la relation *priority*, nous définissons l'époque cible de la manière suivante :

Définition 47 (Époque cible). L'époque cible est l'époque de l'ensemble des époques vers laquelle les noeuds doivent progresser. Les noeuds sélectionnent comme époque cible l'époque maximale d'après l'ordre établi par *priority*.

Pour définir la relation *priority*, nous pouvons choisir entre plusieurs stratégies. Dans le cadre de ce travail, nous utilisons l'ordre lexicographique sur le chemin des époques dans l'arbre des époques. La Figure 3.8 fournit un exemple.

(a) Exécution d'opérations rename concurrentes

(b) Arbre des époques final correspondant avec la relation priority illustrée

FIGURE 3.8 – Sélectionner l'époque cible d'une exécution d'opérations rename concurrentes

La Figure 3.8a décrit une exécution dans laquelle trois noeuds A, B et C générent plusieurs opérations avant de se synchroniser à terme. Comme seules les opérations re-name sont pertinentes pour le problème qui nous occupe, nous représentons seulement ces opérations dans cette figure. Initialement, le noeud A génère une opération rename qui introduit l'époque ε_{A1} . Cette opération est livrée au noeud C, qui génère ensuite sa propre opération rename qui introduit l'époque ε_{C6} . De manière concurrente à ces opérations, le noeud B génère deux opérations rename, introduisant ε_{B2} et ε_{B7} .

Une fois que les noeuds se sont synchronisés, ils obtiennent l'arbre des époques représenté dans la Figure 3.8b. Dans cette figure, la flèche tireté rouge représente l'ordre entre les époques d'après la relation *priority* tandis que l'époque cible choisie est représentée sous la forme d'un noeud rouge.

Pour déterminer l'époque cible, les noeuds reposent sur la relation *priority*. D'après l'ordre lexicographique sur le chemin des époques dans l'arbre des époques, nous avons $\varepsilon_0 < \varepsilon_0 \varepsilon_{A1} < \varepsilon_0 \varepsilon_{A1} \varepsilon_{C6} < \varepsilon_0 \varepsilon_{B2} < \varepsilon_0 \varepsilon_{B2} \varepsilon_{B7}$. Chaque noeud sélectionne donc ε_{B7} comme époque cible de manière non-coordonnée.

D'autres stratégies pourraient être proposées pour définir la relation *priority*. Par exemple, l'ordre proposé *priority* pourrait se baser sur une représentation du travail effectué sur le document, à l'aide de métriques additionnelles intégrées au sein des opérations *rename*. Cela permettrait de favoriser la branche de l'arbre des époques avec le plus d'activité, que nous conjecturons corrélé avec le nombre de noeuds actifs, pour minimiser la quantité globale de calculs effectués par les noeuds du système. Nous approfondissons ce sujet dans la sous-section 3.5.4.

3.3.3 Algorithme d'annulation de l'opération de renommage

À présent, nous développons le scénario présenté dans la Figure 3.6. Dans la Figure 3.9, le noeud A reçoit l'opération rename du noeud B. Cette opération est concurrente à l'opération rename que le noeud A a appliqué précédemment. D'après la relation priority proposée, le noeud A sélectionne l'époque introduite ε_{B2} comme l'époque cible ($\varepsilon_{A1} <_{\varepsilon} \varepsilon_{B2}$). Mais pour pouvoir renommer son état vers l'époque ε_{B2} , il doit au préalable faire revenir son état courant de l'époque ε_{A1} à un état équivalent à l'époque ε_{0} . Nous devons définir un mécanisme permettant aux noeuds d'annuler les effets d'une opération rename appliquée précédemment.

FIGURE 3.9 – Annulation d'une opération *rename* intégrée précèdemment en présence d'un identifiant inséré en concurrence

C'est précisément le but de REVERTRENAMEID, qui associe les identifiants de l'époque enfant aux identifiants correspondant dans l'époque parente. Nous décrivons cette fonction dans l'Algorithme 3.

Les objectifs de REVERTRENAMEID sont les suivants :

- (i) Restaurer à leur ancienne valeur les identifiants générés causalement avant l'opération rename annulée
- (ii) Restaurer à leur ancienne valeur les identifiants générés de manière concurrente à l'opération rename annulée
- (iii) Assigner de nouveaux identifiants respectant l'ordre souhaité aux éléments qui ont été insérés causalement après l'opération rename annulée.

Le cas (i) est le plus trivial. Pour retrouver la valeur de id à partir de $newId^{23}$, REVERTRENAMEID utilise simplement la valeur de offset de newId. En effet, cette valeur correspond à l'index de id dans l'ancien état (c.-à-d. renamedIds[offset] = id). Par

^{23.} Nous appelons newX les identifiants dans l'époque résultant de l'application d'une opération re-name, tandis que X décrit leur équivalent à l'époque initiale.

Algorithme 3 Fonctions principales pour annuler le renommage appliqué précèdemment à un identifiant

```
function REVERTRENAMEID(id, renamedIds, nId, nSeq)
   length \leftarrow renamedIds.length
   firstId \leftarrow renamedIds[0]
   lastId \leftarrow renamedIds[length - 1]
   pos \leftarrow position(firstId)
   newFirstId \leftarrow new Id(pos, nId, nSeq, 0)
   newLastId \leftarrow new Id(pos, nId, nSeq, length - 1)
   if id < newFirstId then
       return revRenIdLessThanNewFirstId(id, firstId, newFirstId)
   else if isRenamedId(id, pos, nId, nSeq, length) then
       index \leftarrow getFirstOffset(id)
       return renamedIds[index]
   else if newLastId < id then
       return revRenIdGreaterThanNewLastId(id, lastId)
   else
       index \leftarrow getFirstOffset(id)
       return revRenIdfromPredId(id, renamedIds, index)
   end if
end function
function REVRENIDFROMPREDID(id, renamedIds, index)
   predId \leftarrow renamedIds[index]
   succId \leftarrow renamedIds[index + 1]
   tail \leftarrow getTail(id, 1)
   if tail < predId then
                                                     \triangleright id has been inserted causally after the rename op
       return concat(predId, MIN TUPLE, tail)
   else if succId < tail then
                                                     \triangleright id has been inserted causally after the rename op
       offset \leftarrow getLastOffset(succId) - 1
       predOfSuccId ← createIdFromBase(succId, offset)
       return concat(predOfSuccId, MAX TUPLE, tail)
   else
       return tail
   end if
end function
```

exemple, dans la Figure 3.9, l'identifiant i_{θ}^{A1} a pour offset 0, REVERTRENAMEID renvoie donc $renamedIds[\theta] = i_{\theta}^{B\theta}$.

Les cas (ii) et (iii) sont gérés en utilisant les stratégies suivantes. Le motif générique pour l'identifiant newId est de la forme newPredId tail. Deux invariants sont associés à ce motif. D'après la Propriété 3.2, nous avons :

 $newId \in]newPredId, newSuccId[$

et nous devons obtenir:

 $id \in]predId, succId[$

Le premier sous-cas se produit quand nous avons $tail \in]predId, succId[$. Dans ce cas, newId peut résulter d'une opération insert concurrent à l'opération rename (c.-à-d. le cas (ii)). Nous avons alors :

$newId \in]newPredId \ predId, newPredId \ succId[$

Dans cette situation, newId a été obtenu en utilisant RENIDFROMPREDID et nous avons id = tail. Nous observons qu'en renvoyant tail, REVERTRENAMEID valident les deux contraintes, c.-à-d. préserver l'ordre souhaité et restaurer à sa valeur initiale l'identifiant. Pour illustrer ce cas, considérons l'identifiant $i_1^{A1}i_0^{B0}m_0^{B1}$ dans Figure 3.9. Pour cet identifiant, nous avons :

- $newPredId = i_1^{A1}$, donc $predId = i_0^{B0} f_0^{A0}$ d'après le cas (i)
- $newSuccId = i_2^{A1}$, donc $succId = i_1^{B0}$ d'après le cas (i)

Nous avons donc bien:

$$i_1^{A1}i_0^{B0}m_0^{B1}\in]i_1^{A1}i_0^{B0}f_0^{A0},i_1^{A1}i_1^{B0}[$$

et $tail=i_0^{B0}\,m_0^{B1}$. Renvoyer cette valeur nous permet ainsi de conserver l'ordre entre les identifiants puisque :

$$i_0^{B0} f_0^{A0} <_{id} i_0^{B0} m_0^{B1} <_{id} i_1^{B0}$$

Le second sous-cas correspond au cas où nous avons tail < predId. newId ne peut avoir été inséré que causalement après l'opération rename (c.-à-d. le cas (iii)). Nous avons alors :

$$newId \in]newPredId, newPredId predId[$$

Puisque newId a été inséré causalement après l'opération rename, il n'existe pas de contrainte sur la valeur à retourner autre que la Propriété 3.2. Pour gérer ce cas, nous introduisons deux nouveaux tuples exclusifs au mécanisme de renommage : MIN_TUPLE et MAX_TUPLE , notés respectivement \bot et \top . Ils sont respectivement le tuple minimal et maximal utilisables pour générer des identifiants. En utilisant MIN_TUPLE , REVERTRENAMEID est capable de renvoyer une valeur pour id adaptée à l'ordre souhaité (avec $id = predId \bot tail$). Nous justifions ce comportement à l'aide de la Figure 3.10.

Dans la Figure 3.10, les noeuds C et D répliquent une même séquence contenant les éléments "WOD". Dans la Figure 3.10a, le noeud C commence par renommer son état. En concurrence, le noeud D insère l'élément "L" entre les éléments "O" et "D". L'opération insert correspondante est livrée au noeud C, qui l'intègre en suivant le comportement défini en sous-section 3.2.2. Le noeud C procède ensuite à l'insertion de l'élément "R" entre les éléments "O" et "L". Cette insertion dépend donc causalement de l'opération rename effectuée précédemment par C. En parallèle, le noeud D effectue un renommage de son état. Cette opération rename est donc concurrente à l'opération rename générée précédemment par C.

Dans la Figure 3.10b, l'opération rename de D est livrée au noeud C. L'époque introduite par cette opération étant prioritaire par rapport à l'époque actuelle de C (ε_{C1} $<_{\varepsilon} \varepsilon_{D3}$), le noeud C procède à l'annulation de son opération rename.

(a) Génération d'une opération insert dépendante causalement d'une opération rename

(b) Annulation de l'opération rename précédente au profit d'une opération rename concurrente

FIGURE 3.10 – Annulation d'une opération rename intégrée précèdemment en présence d'un identifiant inséré causalement après

L'identifiant qui nous intéresse ici est l'identifiant inséré causalement après l'opération rename annulée : $k_1^{C1}i_0^{C2}$. Cet identifiant est compris entre les identifiants suivants :

$$k_1^{C1} <_{id} k_1^{C1} i_0^{C2} <_{id} k_1^{C1} n_0^{C0} e_0^{D2}$$

D'après les règles présentées précédemment :

- k_t^{C1} est transformé en $n_\theta^{C\theta}$ (cas (i))
- $k_1^{C1} n_0^{C0} e_0^{D2}$ est transformé en $n_0^{C0} e_0^{D2}$ (cas (ii))

Nous devons générer un identifiant id à partir de $k_1^{C1}i_0^{C2}$ tel que :

$$n_0^{C0} <_{id} id <_{id} n_0^{C0} e_0^{D2}$$

Utiliser $predId\ (n_0^{C0})$ en tant que préfixe de id nous permet de garantir que $n_0^{C0} <_{id} id$. Cependant, appliquer la même stratégie que pour le cas (ii) pour générer id transgresserait la Propriété 3.2. En effet, nous obtiendrions $id = n_0^{C0} i_0^{C2}$, or $n_0^{C0} i_0^{C2} \not<_{id} n_0^{C0} e_0^{D2}$.

Ainsi, nous devons choisir un autre préfixe dans cette situation, notamment pour garantir que l'identifiant résultant sera plus petit que les identifiants suivants. C'est pour cela que nous introduisons MIN_TUPLE . En concaténant predId et le tuple minimal, nous obtenons un préfixe nous permettant à la fois de garantir que $n_0^{C0} <_{id} id$ et que $id <_{id} n_0^{C0} e_0^{D2}$. Nous obtenons donc $id = n_0^{C0} \bot i_0^{C2}$, ce qui respecte la Propriété 3.2.

Finalement, le dernier sous-cas est le pendant du sous-cas précédent et se produit lorsque nous avons succId < tail. Nous avons alors :

$newId \in]newPredId \ succId, newSuccId[$

La stratégie pour gérer ce cas est similaire et consiste à ajouter un préfixe pour créer l'ordre souhaité. Pour générer ce préfixe, REVERTRENAMEID utilise predOfSuccId et MAX_TUPLE . predOfSuccId est obtenu en décrémentant le dernier offset de succId. Ainsi, pour préserver l'ordre souhaité, REVERTRENAMEID renvoie id avec $id = predOfSuccId \top tail$.

Comme pour l'Algorithme 2, l'Algorithme 3 ne présente seulement que le cas principal de REVERTRENAMEID. Il s'agit du cas où l'identifiant à restaurer appartient à l'intervalle des identifiants renommés $newFirstId \leq_{id} id \leq_{id} newLastId$). Les fonctions pour gérer les cas restants sont présentées dans l'Annexe C.

Notons que RENAMEID et REVERTRENAMEID ne sont pas des fonctions réciproques. REVERTRENAMEID restaure à leur valeur initiale les identifiants insérés causalement avant ou de manière concurrente à l'opération rename. Par contre, RENAMEID ne fait pas de même pour les identifiants insérés causalement après l'opération rename. Rejouer une opération rename précédemment annulée altère donc ces identifiants. Cette modification peut entraîner une divergence entre les noeuds, puis qu'un même élément sera désigné par des identifiants différents.

Ce problème est toutefois évité dans notre système grâce à la relation *priority* utilisée. Puisque la relation *priority* est définie en utilisant l'ordre lexicographique sur le chemin des époques dans l'arbre des époques, les noeuds se déplacent seulement vers l'époque la plus à droite de l'arbre des époques lorsqu'ils changent d'époque. Les noeuds évitent donc d'aller et revenir entre deux mêmes époques, et donc d'annuler et rejouer les opérations rename correspondantes.

3.3.4 Processus d'intégration d'une opération

Le processus d'intégration d'une opération distante distingue deux cas différents :

- (i) le cas de figure où l'opération reçue est une opération insert ou remove
- (ii) le cas de figure où l'opération reçue est une opération rename.

Intégration d'une opération insert ou remove distante

Dans l'Algorithme 4, nous présentons l'algorithme d'intégration d'une opération *insert* distante dans RenamableLogootSplit.

Cet algorithme se décompose en de multiples étapes. Afin d'illustrer chacune d'entre elles, nous utilisons l'exemple représenté par la Figure 3.11.

Dans la Figure 3.11a, deux noeuds A et B éditent une séquence répliquée via RenamableLogootSplit. Initialement, les deux noeuds possèdent des répliques identiques. Le noeud A commence par effectuer une opération rename. Il génère alors l'état équivalent à son état précédent, à la nouvelle époque ε_{A2} . Puis il effectue une opération insert, insérant un nouvel élément "X" entre les éléments "B" et "C". L'identifiant $i_1^{A2}f_0^{A3}$ est attribué à ce nouvel élément. Chacune des opérations du noeud A est diffusée sur le réseau.

Algorithme 4 Algorithme d'intégration d'une opération insert distante

```
function InsRemote(seq, epochTree, currentEpoch, insOp)
       if currentEpoch = opEpoch then
           insert(seq, getIdBegin(insertOp), getContent(insertOp))
       else
 5:
           insertedIdInterval \leftarrow getInsertedIdInterval(insOp)
           ids \leftarrow expand(insertedIdInterval)
           opEpoch \leftarrow getEpoch(insOp)
            (epochsToRevert, epochsToApply) ← getPathBetweenEpochs(epochTree, opEpoch, currentE-
    poch)
10:
           for epoch in epochsToRevert do
               renamedIds \leftarrow getRenamedIds(epochTree, epoch)
               nId \leftarrow getNodeId(epochTree, epoch)
               nSeq \leftarrow getNodeSeq(epochTree, epoch)
15:
               revertRenameId_{partial} \leftarrow papply(revertRenameId, \, renamedIds, \, nId, \, nSeq)
               ids \leftarrow map(ids, revertRenameId_{partial})
           end for
           for epoch in epochsToApply do
20:
               renamedIds \leftarrow getRenamedIds(epochTree, epoch)
               nId \leftarrow getNodeId(epochTree, epoch)
               nSeq \leftarrow getNodeSeq(epochTree, epoch)
               renameId_{partial} \leftarrow papply(renameId, \, renamedIds, \, nId, \, nSeq)
               ids \leftarrow map(ids, renameId_{partial})
25:
           end for
           content \leftarrow getContent(insOp)
           newIdIntervals \leftarrow aggregate(ids)
           insertOps ← generateInsertOps(newIdIntervals, content)
30:
           for insertOp in insertOps do
               insert(seq, getIdBegin(insertOp), getContent(insertOp))
           end for
       end if
    end function
```

De son côté, le noeud B génère en concurrence sa propre opération rename sur l'état initial. Il obtient alors un état équivalent, à l'époque ε_{B2} . Il reçoit ensuite l'opération rename du noeud A, qu'il intègre. Puisque $\varepsilon_{A2} <_{\varepsilon} \varepsilon_{B2}$, le noeud B ne modifie pas son époque courante (ε_{B2}). Le noeud B obtient toutefois l'arbre des époques représenté dans la Figure 3.11b.

Puis le noeud B reçoit l'opération insert de l'élément "X" à la position $i_1^{A2} f_0^{A3}$. C'est le traitement de cette opération que nous allons détailler ici.

Tout d'abord, le noeud B compare l'époque de l'opération avec l'époque courante de la séquence. Si les deux époques correspondaient, le noeud B pourrait intégrer l'opération directement en utilisant l'algorithme de LogootSplit dénommé ici INSERT. Mais dans le cas présent, l'époque de l'opération (ε_{A2}) est différente de l'époque courante (ε_{B2}). Il lui est donc nécessaire de transformer l'opération avant de pouvoir l'appliquer.

Pour cela, le noeud doit identifier les transformations à appliquer à l'opération. Pour

(a) Exécution nécessitant l'intégration d'une opération insert provenant d'une époque concurrente

(b) Arbre des époques de B à la réception de l'opération insert

FIGURE 3.11 – Intégration d'une opération insert distante

ce faire, le noeud calcule le chemin entre l'époque de l'opération et l'époque courante à l'aide de la fonction GETPATHBETWEENEPOCHS (ligne 9).

La fonction GETPATHBETWEENEPOCHS applique l'algorithme suivant :

- (i) elle calcule le chemin entre l'époque de l'opération et la racine de l'arbre des époques $([\varepsilon_{A2}, \varepsilon_0])$
- (ii) elle calcule le chemin entre l'époque courante et la racine de l'arbre des époques $([\varepsilon_{B2}, \varepsilon_0])$
- (iii) elle détermine la première intersection entre ces deux chemins (ε_0). Cette époque correspond au Plus Petit Ancêtre Commun (PPAC) entre l'époque de l'opération et l'époque courante.
- (iv) elle tronque les deux chemins au niveau du PPAC ($[\varepsilon_{A2}]$ et $[\varepsilon_{B2}]$)
- (v) elle inverse l'ordre des époques du chemin entre l'époque courante et la racine ($[\varepsilon_{B2}]$)
- (vi) elle retourne les deux chemins obtenus ($\langle [\varepsilon_{A2}], [\varepsilon_{B2}] \rangle$).

Le chemin entre l'époque de l'opération et l'époque PPAC ($[\varepsilon_{A2}]$) correspond aux renommages dont les effets doivent être retirés de l'opération. Pour cela, le noeud récupère les informations de chaque renommage via l'arbre des époques (lignes 12-14). Puis il applique REVERTRENAMEID sur chaque identifiant de l'opération (ligne 16). Le noeud procède ensuite de manière similaire pour les époques appartenant au chemin entre l'époque PPAC et l'époque courante ($[\varepsilon_{B2}]$), qui correspondent aux renommages dont les effets doivent être intégrés à l'opération (lignes 19-25).

A ce stade, le noeud obtient la liste des identifiants à insérer à l'époque courante. Il peut alors réutiliser la fonction INSERT pour les intégrer à son état. Pour minimiser le nombre de parcours de la séquence, le noeud aggrège les identifiants en intervalles d'identifiants au préalable à l'aide de la fonction AGGREGATE (ligne 28). Cette fonction regroupe simplement les identifiants contigus en intervalles d'identifiants et retourne la liste des intervalles obtenus.

(a) Exécution nécessitant l'intégration d'opérations rename concurrentes

(b) Arbre des époques de A avant la réception de l'opé-(c) Arbre des époques de A après la réception de l'opération rename vers l'époque ε_{B2}

FIGURE 3.12 – Intégration d'une opération rename distante

À partir des intervalles d'identifiants obtenus et du contenu initial de l'opération *insert*, le noeud regénère une liste d'opérations *insert*. Ces opérations sont ensuite successivement intégrées à la séquence.

L'algorithme d'intégration d'une opération remove distante est très similaire à l'algorithme d'intégration d'une opération insert que nous venons de présenter. Seules les lignes permettant de récupérer les identifiants supprimés (5), de générer l'opération remove transformée (29) et de l'appliquer (3 et 31) diffèrent.

Intégration d'une opération rename distante

L'autre cas de figure à gérer est l'intégration d'une opération *rename* distante. Pour cela, RenamableLogootSplit repose sur l'algorithme présenté dans l'Algorithme 5.

Comme précédemment, nous utilisons l'exemple illustré dans la Figure 3.12 pour présenter le fonctionnement de cet algorithme.

La Figure 3.12 reprend le scénario décrit précédemment dans la Figure 3.11. Elle complète ce dernier en faisant apparaître la réception de l'opération rename vers l'époque ε_{B2} par le noeud A. C'est sur ce point que nous allons nous focaliser ici.

À la réception de l'opération rename vers l'époque ε_{B2} , le noeud A utilise RENRE-MOTE pour intégrer cette opération. Tout d'abord, le noeud A ajoute l'époque ε_{B2} et les métadonnées associées (ancien état, auteur de l'opération rename, numéro de séquence de l'auteur de l'opération rename) à son propre arbre des époques (ligne 6).

Le noeud compare ensuite l'époque introduite (ε_{B2}) à son époque courante (ε_{A2}) en

Algorithme 5 Algorithme d'intégration d'une opération rename distante

```
function RENREMOTE(seq, epochTree, currentEpoch, renOp)
       opEpoch \leftarrow getEpoch(renOp)
       renamedIds \leftarrow getRenamedIds(renOp)
       introducedEpoch \leftarrow getIntroducedpoch(renOp)
 5:
       newEpochTree ← addEpoch(epochTree, introducedEpoch, opEpoch, renamedIds)
       if introducedEpoch < currentEpoch then
           return (seq, newEpochTree, currentEpoch)
10:
        else
           idIntervals \leftarrow getIdIntervals(seq)
           ids ← flatMap(idIntervals, expand)
           \langle epochsToRevert, epochsToApply \rangle \leftarrow getPathBetweenEpochs(newEpochTree, currentEpoch,
    introducedEpoch)
15:
           for epoch in epochsToRevert do
               renamedIds \leftarrow getRenamedIds(newEpochTree, epoch)
               nId \leftarrow getNodeId(newEpochTree, epoch)
               nSeq \leftarrow getNodeSeq(newEpochTree, epoch)
20:
               revertRenameId<sub>partial</sub> ← papply(revertRenameId, renamedIds, nId, nSeq)
               ids \leftarrow map(ids, revertRenameId_{partial})
           end for
           for epoch in epochsToApply do
25:
               renamedIds \leftarrow getRenamedIds(newEpochTree, epoch)
               nId ← getNodeId(newEpochTree, epoch)
               nSeq \leftarrow getNodeSeq(newEpochTree, epoch)
               renameId<sub>partial</sub> ← papply(renameId, renamedIds, nId, nSeq)
               ids \leftarrow map(ids, renameId_{partial})
30:
           end for
           nId \leftarrow getNodeId(seq)
           nSeq \leftarrow getNodeSeq(seq)
           newIdIntervals \leftarrow aggregate(ids)
35:
           content \leftarrow getContent(seq)
           blocks \leftarrow generateBlocks(newIdIntervals, content)
           newSeq \leftarrow new LogootSplit(nId, nSeq, blocks)
           return (newSeq, newEpochTree, introducedEpoch)
40:
        end if
    end function
```

utilisant la relation $<_{\varepsilon}$. Si l'époque introduite était plus petite que l'époque courante, aucun traitement supplémentaire ne serait nécessaire. RENREMOTE se contenterait de renvoyer comme résultats la séquence et l'époque courante, inchangées, et le nouvel arbre des époques (ligne 9).

Dans le cas présent, nous avons $\varepsilon_{A2} <_{\varepsilon} \varepsilon_{B2}$. ε_{B2} devient donc la nouvelle époque courante. Le noeud A procède au renommage de son état vers cette nouvelle époque.

Pour cela, le noeud récupère l'ensemble des identifiants formant son état courant (lignes

11-12). Puis, comme dans INSREMOTE, le noeud récupère le chemin entre son époque courante et l'époque cible à l'aide de GETPATHBETWEENEPOCHS puis renomme chaque identifiant à travers les différents époques (lignes 16-30).

Le noeud obtient alors la liste des identifiants courant, à la nouvelle époque cible. Il ne lui reste plus qu'à construire une nouvelle séquence à partir de ces identifiants. Pour cela, le noeud regénère des blocs à partir des intervalles d'identifiants obtenus et du contenu de la séquence courante. Le noeud utilise ensuite ces données pour instancier une nouvelle séquence équivalente à l'époque cible (ligne 37). Finalement, RENREMOTE renvoie cette nouvelle séquence, la nouvelle époque courante ainsi que le nouvel arbre des époques.

3.3.5 Mécanisme de GC des anciens états obsolètes

Les noeuds stockent les époques et les anciens états correspondant pour transformer les identifiants d'une époque à l'autre. Au fur et à mesure que le système progresse, certaines époques et métadonnées associées deviennent obsolètes puisque plus aucune opération ne peut être émise depuis ces époques. Les noeuds peuvent alors supprimer ces époques. Dans cette section, nous présentons un mécanisme permettant aux noeuds de déterminer les époques obsolètes.

Pour proposer un tel mécanisme, nous nous reposons sur la notion de *stabilité causale* des opérations [45]. Une opération est causalement stable une fois qu'elle a été livrée à tous les noeuds. Dans le contexte de l'opération *rename*, cela implique que tous les noeuds ont progressé à l'époque introduite par cette opération ou à une époque plus grande d'après la relation *priority*. À partir de ce constat, nous définissons les *potentielles* époques courantes :

Définition 48 (Potentielles époques courantes). L'ensemble des époques auxquelles les noeuds peuvent se trouver actuellement et à partir desquelles ils peuvent émettre des opérations, du point de vue du noeud courant. Il s'agit d'un sous-ensemble de l'ensemble des époques, composé de l'époque maximale introduite par une opération *rename* causalement stable et de toutes les époques plus grande que cette dernière d'après la relation *priority*.

Pour traiter les prochaines opérations, les noeuds doivent maintenir les chemins entre toutes les époques de l'ensemble des *potentielles époques courantes*. Nous appelons *époques requises* l'ensemble des époques correspondant.

Définition 49 (Époques requises). L'ensemble des époques qu'un noeud doit conserver pour traiter les potentielles prochaines opérations. Il s'agit de l'ensemble des époques qui forment les chemins entre chaque époque appartenant à l'ensemble des *potentielles époques courantes* et leur Plus Petit Ancêtre Commun (PPAC).

Il s'ensuit que toute époque qui n'appartient pas à l'ensemble des *époques requises* peut être retirée par les noeuds. La Figure 3.13 illustre un cas d'utilisation du mécanisme de récupération de mémoire proposé.

Dans la Figure 3.13a, nous représentons une exécution au cours de laquelle deux noeuds A et B génère respectivement plusieurs opérations *rename*. Dans la Figure 3.13b, nous

(a) Exécution d'opérations rename

(b) Arbres des époques respectifs avec les ensembles potentielles époques courantes et époques requises illustrés

FIGURE 3.13 – Suppression des époques obsolètes et récupération de la mémoire des anciens états associés

représentons les arbre des époques respectifs de chaque noeud. Les époques introduites par des opérations rename causalement stables sont representées en utilisant des doubles cercles. L'ensemble des potentielles époques courantes est montré sous la forme d'un rectangle noir tireté, tandis que l'ensemble des époques requises est représenté par un rectangle vert pointillé.

Le noeud A génère tout d'abord une opération rename vers ε_{A1} et ensuite une opération rename vers ε_{A8} . Il reçoit ensuite une opération rename du noeud B qui introduit ε_{B2} . Puisque ε_{B2} est plus grand que son époque courante actuelle ($\varepsilon_{e0}\varepsilon_{A1}\varepsilon_{A8} < \varepsilon_{e0}\varepsilon_{B2}$), le noeud A la sélectionne comme sa nouvelle époque cible et procède au renommage de son état en conséquence. Finalement, le noeud A génère une troisième opération rename vers ε_{A9} .

De manière concurrente, le noeud B génère l'opération rename vers ε_{B2} . Il reçoit ensuite l'opération rename vers ε_{A1} du noeud A. Cependant, le noeud B conserve ε_{B2} comme époque courante (puisque $\varepsilon_{e0}\varepsilon_{A1} < \varepsilon_{e0}\varepsilon_{B2}$). Après, le noeud B génère une autre opération rename vers ε_{B7} .

À la livraison de l'opération rename introduisant l'époque ε_{B2} au noeud A, cette opération devient causalement stable. À partir de ce point, le noeud A sait que tous les noeuds ont progressé jusqu'à cette époque ou une plus grande d'après la relation priority. Les époques ε_{B2} et ε_{A9} forment donc l'ensemble des potentielles époques courantes et les noeuds peuvent seulement émettre des opérations depuis ces époques ou une de leur descendante encore inconnue. Le noeud A procède ensuite au calcul de l'ensemble des époques requises. Pour ce faire, il détermine le PPAC des potentielles époques courantes : ε_{B2} . Il génère ensuite l'ensemble des époques requises en ajoutant toutes les époques formant les chemins entre ε_{B2} et les potentielles époques courantes. Les époques ε_{B2} et ε_{A9} forment donc l'ensemble des époques requises. Le noeud A déduit que les époques ε_{0} , ε_{A1}

et ε_{A8} peuvent être supprimées de manière sûre.

À l'inverse, la livraison de l'opération rename vers ε_{A1} au noeud B ne lui permet pas de supprimer la moindre métadonnée. À partir de ses connaissances, le noeud B calcule que ε_{A1} , ε_{B2} et ε_{B7} forment l'ensemble des potentielles époques courantes. De cette information, le noeud B détermine que ces époques et leur PPAC forment l'ensemble des époques requises. Toute époque connue appartient donc à l'ensemble des époques requises, empêchant leur suppression.

À terme, une fois que le système devient inactif, les noeuds atteignent la même époque et l'opération *rename* correspondante devient causalement stable. Les noeuds peuvent alors supprimer toutes les autres époques et métadonnées associées, supprimant ainsi le surcoût mémoire introduit par le mécanisme de renommage.

Notons que le mécanisme de récupération de mémoire peut être simplifié dans les systèmes empêchant les opérations rename concurrentes. Puisque les époques forment une chaîne dans de tels systèmes, la dernière époque introduite par une opération rename causalement stable devient le PPAC des potentielles époques courantes. Il s'ensuit que cette époque et ses descendantes forment l'ensemble des époques requises. Les noeuds n'ont donc besoin que de suivre les opérations rename causalement stables pour déterminer quelles époques peuvent être supprimées dans les systèmes sans opérations rename concurrentes.

Pour déterminer qu'une opération *rename* donnée est causalement stable, les noeuds doivent être conscients des autres et de leur avancement. Un protocole de gestion de groupe tel que [16, 17] est donc requis.

La stabilité causale peut prendre un certain temps à être atteinte. En attendant, les noeuds peuvent néanmoins décharger les anciens états sur le disque dur puisqu'ils ne sont seulement nécessaires que pour traiter les opérations concurrentes aux opérations rename. Nous approfondissons ce sujet dans la sous-section 3.5.2.

3.4 Validation

3.4.1 Complexité en temps des opérations

Afin d'évaluer RenamableLogootSplit, nous analysons tout d'abord la complexité en temps de ses opérations. Ces complexités dépendent de plusieurs paramètres : nombre d'identifiants et de blocs stockés au sein de la structure, taille des identifiants, structures de données utilisées...

Hypothèses

Afin d'établir les valeurs de complexité des différentes opérations, nous prenons les hypothèses suivantes vis-à-vis des paramètres. Nous supposons que le nombre n d'identifiants présents dans la séquence a tendance à croître, c.-à-d. que plus d'insertions sont effectuées que de suppressions. Nous considérons que la taille des identifiants, qui elle croît avec le nombre d'insertions mais qui est réinitialisée à chaque renommage, devient négligeable par rapport au nombre d'identifiants. Nous ne prenons donc pas en considération ce paramètre dans nos complexités et considérons que les manipulations d'identifiants (comparaison, génération) s'effectuent en temps constant. Afin de simplifier les complexités,

nous considérons que les anciens états associés aux époques contiennent aussi n identifiants. Finalement, nous considérons que nous utilisons comme structures de données un arbre AVL pour représenter l'état interne de la séquence, des tableaux pour les anciens états et une table de hachage pour l'arbre des époques.

Complexité en temps des opérations insert et remove

À partir de ces hypothèses, nous établissons les complexités en temps des opérations. Pour chaque opération, nous distinguons deux complexités : une complexité pour l'intégration de l'opération locale, une pour l'intégration de l'opération distante.

La complexité de l'intégration de l'opération insert locale est inchangée par rapport à celle obtenue pour LogootSplit. Son intégration consiste toujours à déterminer entre quels identifiants se situe les nouveaux éléments insérés, à générer de nouveaux identifiants correspondants à l'ordre souhaité puis à insérer le bloc dans l'arbre AVL. D'après ANDRÉ et al. [11], nous obtenons donc une complexité de $\mathcal{O}(\log b)$ pour cette opération locale, où b représente le nombre de blocs dans la séquence.

La complexité de l'intégration de l'opération *insert* distante, elle, évolue par rapport à celle définie pour LogootSplit. Comme indiqué dans la section 3.3.4, plusieurs étapes se rajoutent au processus d'intégration de l'opération notamment dans le cas où celle-ci provient d'une autre époque que l'époque courante.

Tout d'abord, il est nécessaire d'identifier l'époque PPAC entre l'époque de l'opération et l'époque courante. L'algorithme correspondant consiste à déterminer la première intersection entre deux branches de l'arbre des époques. Cette étape peut être effectuée en $\mathcal{O}(h)$, où h représente la hauteur de l'arbre des époques.

L'obtention de l'époque PPAC entre l'époque de l'opération et l'époque courante permet de déterminer les k renommages dont les effets doivent être retirés de l'opération et les l renommages dont les effets doivent être intégrés à l'opération. Le noeud intégrant l'opération procède ainsi aux k inversions de renommages successives puis aux l application de renommages, et ce pour tous les s identifiants insérés par l'opération.

Pour retirer les effets des renommages à inverser, le noeud intégrant l'opération utilise REVERTRENAMEID. Cet algorithme retourne pour un identifiant donné un nouvel identifiant correspondant à l'époque précédente. Pour cela, REVERTRENAMEID utilise le prédécesseur et le successeur de l'identifiant donné dans l'ancien état renommé. Pour retrouver ces deux identifiants au sein de l'ancien état, REVERTRENAMEID utilise l'offset du premier tuple de l'identifiant donné. Par définition, cet élément correspond à l'index du prédecesseur de l'identifiant donné dans l'ancien état. Aucun parcours de l'ancien état n'est nécessaire. Le reste de REVERTRENAMEID consistant en des comparaisons et manipulations d'identifiants, nous obtenons que REVERTRENAMEID s'effectue en $\mathcal{O}(1)$.

Pour inclure les effets des renommages à appliquer, le noeud utilise ensuite RENAMEID. De manière similaire à REVERTRENAMEID, RENAMEID génère pour un identifiant donné un nouvel identifiant équivalent à l'époque suivante en se basant sur son prédecesseur. Cependant, il est nécessaire ici de faire une recherche pour déterminer le prédecesseur de l'identifiant donné dans l'ancien état. L'ancien état étant un tableau trié d'identifiants, il est possible de procéder à une recherche dichotomique. Cela permet de trouver le prédecesseur en $\mathcal{O}(\log n)$, où n correspond ici au nombre d'identifiants composant l'ancien état.

Comme pour REVERTRENAMEID, les instructions restantes consistent en des comparaisons et manipulations d'identifiants. La complexité de RENAMEID est donc de $\mathcal{O}(\log n)$.

Une fois les identifiants introduits par l'opération insert renommés pour l'époque courante, il ne reste plus qu'à les insérer dans la séquence. Cette étape se réalise en $\mathcal{O}(\log b)$ pour chaque identifiant, le temps nécessaire pour trouver son emplacement dans l'arbre AVL.

Ainsi, en reprenant l'ensemble des étapes composant l'intégration de l'opération insert distante, nous obtenons la complexité suivante : $\mathcal{O}(h + s(k + l \cdot \log n + \log b))$.

Le procédé de l'intégration de l'opération *remove* étant similaire à celui de l'opération *insert*, aussi bien en local qu'en distant, nous obtenons les mêmes complexités en temps.

Complexité en temps de l'opération rename

Étudions à présent la complexité en temps de l'opération rename.

L'opération rename locale se décompose en 2 étapes :

- (i) La génération de l'ancien état à intégrer au message de l'opération (cf. Définition 43)
- (ii) Le remplacement de la séquence courante par une séquence équivalente, renommée.

La première étape consiste à parcourir et à linéariser la séquence actuelle pour en extraire les intervalles d'identifiants. Elle s'effectue donc en $\mathcal{O}(b)$. La seconde consiste à instancier une nouvelle séquence vide, et à y insérer un bloc qui associe le contenu actuel de la séquence à l'intervalle d'identifiants $pos_{0..n-1}^{nodeId}$ avec pos la position du premier tuple du premier id de l'état, nodeId et nodeSeq l'identifiant et le numéro de séquence actuel du noeud et n la taille du contenu. Cette seconde étape s'effectue en $\mathcal{O}(1)$. L'opération rename locale a donc une complexité de $\mathcal{O}(b)$.

L'intégration de l'opération rename se décompose en les étapes suivantes :

- (i) L'insertion de la nouvelle époque et de l'ancien état associé dans l'arbre des époques
- (ii) La récupération des n identifiants formant l'état courant
- (iii) Le calcul de l'époque PPAC entre l'époque courante et l'époque cible
- (iv) L'identification des k opérations rename à inverser et des l opérations rename à jouer
- (v) Le renommage de chacun des identifiants à l'aide de REVERTRENAMEID et RENA-MEID
- (vi) L'insertion de chacun des identifiants renommés dans une nouvelle séquence

L'arbre des époques étant représenté à l'aide d'une table de hachage, la première étape s'effectue en $\mathcal{O}(1)$. La seconde étape nécessite elle de parcourir l'arbre AVL et de convertir chaque intervalle d'identifiants en liste d'identifiants, ce qui nécessite $\mathcal{O}(n)$ instructions.

Les étapes (iii) à (vi) peuvent être effectuées en réutilisant pour chaque identifiant l'algorithme pour l'intégration d'opérations *insert* distantes analysé précédemment. Ces étapes s'effectuent donc en $\mathcal{O}(n(k+l \cdot \log n + \log b))$.

Nous obtenons donc une complexité en temps de $\mathcal{O}(h + n(k + l \cdot \log n + \log b))$ pour l'intégration de l'opération rename distante.

Nous pouvons néanmoins améliorer ce premier résultat. Notamment, nous pouvons tirer parti des faits suivants :

- (i) Le fonctionnement de RENAMEID repose sur l'utilisation de l'identifant prédecesseur comme préfixe
- (ii) Les identifiants de l'état courant et de l'ancien état forment tous deux des listes triées.

Ainsi, plutôt que d'effectuer une recherche dichotomique sur l'ancien état pour trouver le prédecesseur de l'identifiant à renommer, nous pouvons parcourir les deux listes en parallèle. Ceci nous permet de renommer l'intégralité des identifiants en un seul parcours de l'état courant et de l'ancien état, c.-à-d. en $\mathcal{O}(n)$ instructions. Ensuite, plutôt que d'insérer les identifiants un à un dans la nouvelle séquence, nous pouvons recomposer au préalable les différents blocs en parcourant la liste des identifiants et en les aggrégeant au fur et à mesure. Il ne reste plus qu'à constituer la nouvelle séquence à partir des blocs obtenus. Ces actions s'effectuent respectivement en $\mathcal{O}(n)$ et $\mathcal{O}(b)$ instructions.

Ainsi, ces améliorations nous permettent d'obtenir une complexité en temps en $\mathcal{O}(h+$ n(k+l)+b) pour le traitement de l'opération rename distante.

Récapitulatif

Nous récapitulons les complexités en temps présentées précédemment dans le Tableau 3.1.

Type d'opération	Complexité en temps		
	Locale	Distante	
\overline{insert}	$\log b$	$h + s(k + l \cdot \log n + \log b)$	
remove	$\log b$	$h + s(k + l \cdot \log n + \log b)$	
naive rename	b	$h + n(k + l \cdot \log n + \log b)$	
rename	b	h + n(k+l) + b	

Table 3.1 – Complexité en temps des différentes opérations

b: nombre de blocs, n: nombre d'éléments de l'état courant et des anciens états, h: hauteur de l'arbre des époques, k : nombre de renommages à inverser, l : nombre de renommages à appliquer, s: nombre d'éléments insérés/supprimés par l'opération

Complexité en temps du mécanisme de récupération de mémoire des époques

Pour compléter notre analyse théorique des performances de RenamableLogootSplit, nous proposons une analyse en complexité en temps du mécanisme présenté en soussection 3.3.5 qui permet de supprimer les époques devenues obsolètes et de récupérer la mémoire occupée par leur ancien état respectif.

L'algorithme du mécanisme de récupération de la mémoire se compose des étapes suivantes. Tout d'abord, il établit le vecteur de version des opérations causalement stables. Pour cela, chaque noeud doit maintenir une matrice des vecteurs de version de tous les noeuds. L'algorithme génère le vecteur de version des opérations causalement stable en récupérant pour chaque noeud la valeur minimale qui y est associée dans la matrice des vecteurs de version. Cette étape correspond à fusionner n vecteurs de version contenant n entrées, elle s'exécute donc en $\mathcal{O}(n^2)$ instructions.

La seconde étape consiste à parcourir l'arbre des époques de manière inverse à l'ordre défini par la relation priority. Ce parcours s'effectue jusqu'à trouver l'époque maximale causalement stable, c.-à-d. la première époque pour laquelle l'opération rename associée est causalement stable. Pour chaque époque parcourue, le mécanisme de récupération de mémoire calcule et stocke son chemin jusqu'à la racine. Cette étape s'exécute donc en $\mathcal{O}(e \cdot h)$, avec e le nombre d'époques composant l'arbre des époques et h la hauteur de l'arbre.

À partir de ces chemins, le mécanisme calcule l'époque PPAC. Pour ce faire, l'algorithme calcule de manière successive la dernière intersection entre le chemin de la racine jusqu'à l'époque PPAC courante et les chemins précédemment calculés. L'époque PPAC est la dernière époque du chemin résultant. Cette étape s'exécute aussi en $\mathcal{O}(e \cdot h)$.

L'algorithme peut alors calculer l'ensemble des époques requises. Pour cela, il parcourt les chemins calculés au cours de la seconde étape. Pour chaque chemin, il ajoute les époques se trouvant après l'époque PPAC à l'ensemble des époques requises. De nouveau, cette étape s'exécute en $\mathcal{O}(e \cdot h)$.

Après avoir déterminé l'ensemble des époques requises, le mécanisme peut supprimer les époques obsolètes. Il parcourt l'arbre des époques et supprime toute époque qui n'appartient pas à cet ensemble. Cette étape finale s'exécute en $\mathcal{O}(e)$.

Ainsi, nous obtenons que la complexité en temps du mécanisme de récupération de mémoire des époques est en $\mathcal{O}(n^2 + e \cdot h)$. Nous récapitulons ce résultat dans Tableau 3.2.

TABLE 3.2 –	- Complexité en	ı temps du r	nécanisme o	de récupération	de mémoire des	s époques
---------------	-----------------	--------------	-------------	-----------------	----------------	-----------

Étape	Temps
calculer le vecteur de version des opérations causalement stables	n^2
calculer les chemins de la racine aux potentielles époques courantes	$e \cdot h$
$identifier\ le\ PPAC$	$e \cdot h$
calculer l'ensembe des époques requises	$e \cdot h$
supprimer les époques obsolètes	e
total	$n^2 + e \cdot h$

n : nombre de noeuds du système, e : nombre d'époques dans l'arbre des époques, h : hauteur de l'arbre des époques

Malgré sa complexité en temps, le mécanisme de récupération de mémoire des époques devrait avoir un impact limité sur les performances de l'application. En effet, ce mécanisme n'appartient pas au chemin critique de l'application, c.-à-d. l'intégration des modifications. Il peut être déclenché occasionnellement, en tâche de fond. Nous pouvons même viser des fenêtres spécifiques pour le déclencher, e.g. pendant les périodes d'inactivité. Ainsi, nous avons pas étudié plus en détails cette partie de RenamableLogootSplit dans le cadre de cette thèse. Des améliorations de ce mécanisme doivent donc être possibles.

3.4.2 Expérimentations

Afin de valider l'approche que nous proposons, nous avons procédé à une évaluation expérimentale. Les objectifs de cette évaluation étaient de mesurer

- (i) le surcoût mémoire de la séquence répliquée
- (ii) le surcoût en calculs ajouté aux opérations *insert* et *remove* par le mécanisme de renommage
- (iii) le coût d'intégration des opérations rename.

Par le biais de simulations, nous avons généré le jeu de données utilisé par nos benchmarks. Ces simulations suivent le scénario suivant.

Scénario d'expérimentation

Le scénario reproduit la rédaction d'un article par plusieurs pairs de manière collaborative, en temps réel. La collaboration ainsi décrite se décompose en 2 phases.

Dans un premier temps, les pairs spécifient principalement le contenu de l'article. Quelques opérations remove sont tout même générées pour simuler des fautes de frappes. Une fois que le document atteint une taille critique (définie de manière arbitraire), les pairs passent à la seconde phase de la collaboration. Lors de cette seconde phase, les pairs arrêtent d'ajouter du nouveau contenu mais se concentre à la place sur la reformulation et l'amélioration du contenu existant. Ceci est simulé en équilibrant le ratio entre les opérations insert et remove.

Chaque pair doit émettre un nombre donné d'opérations *insert* et *remove*. La simulation prend fin une fois que tous les pairs ont reçu toutes les opérations. Pour suivre l'évolution de l'état des pairs, nous prenons des instantanés de leur état à plusieurs points donnés de la simulation.

Implémentation des simulations

Nous avons effectué nos simulations avec les paramètres expérimentaux suivants : nous avons déployé 10 bots à l'aide de conteneurs Docker sur une même machine. Chaque conteneur correspond à un processus Node.js mono-threadé et permet de simuler un pair. Les bots sont connectés entre eux par le biais d'un réseau P2P maillé entièrement connecté. Enfin, ils partagent et éditent le document de manière collaborative en utilisant soit LogootSplit soit RenamableLogootSplit en fonction des paramètres de la session.

Toutes les 200 ± 50 ms, chaque bot génère localement une opération insert ou remove et la diffuse immédiatement aux autres noeuds. Au cours de la première phase, la probabilité d'émettre une opération insert (resp. remove) est de 80% (resp. 20%). Une fois que leur copie locale du document atteint 60k caractères (environ 15 pages), les bots basculent dans la seconde phase et redéfinissent chaque probabilité à 50%. De plus, tout au long de la collaboration, les bots ont une probabilité de 5% de déplacer leur curseur à une position aléatoire dans le document après chaque opération locale.

Chaque bot doit générer 15k opérations *insert* ou *remove*, et s'arrête donc une fois qu'il a intégré les 150k opérations. Pour chaque bot, nous enregistrons un instantané de

son état toutes les 10k opérations intégrées. Nous enregistrons aussi son log des opérations à l'issue de la simulation.

De plus, dans le cas de RenamableLogootSplit, 1 à 4 bots sont désignés de façon arbitraire comme des *renaming bots* en fonction de la session. Les *renaming bots* génèrent des opérations *rename* toutes les 7.5k ou toutes les 30k opérations qu'ils observent, en fonction des paramètres de la simulation. Ces opérations *rename* sont générées de manière à assurer qu'elles soient concurrentes.

Dans un but de reproductibilité, nous avons mis à disposition notre code, nos benchmarks et les résultats à l'adresse suivante : https://github.com/coast-team/mute-bot-random/.

3.4.3 Résultats

En utilisant les instantanés et les logs d'opérations générés, nous avons effectué plusieurs benchmarks. Ces benchmarks évaluent les performances de RenamableLogootSplit et les comparent à celles de LogootSplit. Sauf mention contraire, les benchmarks utilisent les données issues des simulations au cours desquelles les opérations rename étaient générées toutes les 30k opérations. Les résultats sont présentés et analysés ci-dessous.

Convergence

Nous avons tout d'abord vérifié la convergence de l'état des noeuds à l'issue des simulations. Pour chaque simulation, nous avons comparé l'état final de chaque noeud à l'aide de leur instantanés respectifs. Nous avons pu confirmer que les noeuds convergaient sans aucune autre forme de communication que les opérations, satisfaisant donc le modèle de la SEC.

Ce résultat établit un premier jalon dans la validation de la correction de Renamable-LogootSplit. Il n'est cependant qu'empirique. Des travaux supplémentaires pour prouver formellement sa correction doivent être entrepris.

Consommation mémoire

Nous avons ensuite procédé à l'évaluation de l'évolution de la consommation mémoire du document au cours des simulations, en fonction du CRDT utilisé et du nombre de renaming bots. Nous présentons les résultats obtenus dans la Figure 3.14.

Pour chaque graphique dans la Figure 3.14, nous représentons 4 données différentes. La ligne tiretée bleue correspond à la taille du contenu du document, c.-à-d. du texte, tandis que la ligne continue rouge représente la taille complète du document LogootSplit.

La ligne verte pointillée-tiretée représente la taille du document RenamableLogootSplit dans son meilleur cas. Dans ce scénario, les noeuds considèrent que les opérations rename sont causalement stables dès qu'ils les reçoivent. Les noeuds peuvent alors bénéficier des effets du mécanisme de renommage tout en supprimant les métadonnées qu'il introduit : les anciens états et époques. Ce faisant, les noeuds peuvent minimiser de manière périodique le surcoût en métadonnées de la structure de données, indépendamment du nombre de renaming bots et d'opérations rename concurrentes générées.

FIGURE 3.14 – Évolution de la taille du document en fonction du CRDT utilisé et du nombre de renaming bots dans la collaboration

La ligne pointillée orange représente la taille du document RenamableLogootSplit dans son pire cas. Dans ce scénario, les noeuds considèrent que les opérations rename ne deviennent jamais causalement stables. Les noeuds doivent alors conserver de façon permanente les métadonnées introduites par le mécanisme de renommage. Les performances de RenamableLogootSplit diminuent donc au fur et à mesure que le nombre de renaming bots et d'opérations rename générées augmente. Néanmoins, même dans ces conditions, nous observons que RenamableLogootSplit offre de meilleures performances que LogootSplit tant que le nombre de renaming bots reste faible (1 ou 2). Ce résultat s'explique par le fait que le mécanisme de renommage permet aux noeuds de supprimer les métadonnées de la structure de données utilisée en interne pour représenter la séquence (c.-à-d. l'arbre AVL).

Pour récapituler les résultats présentés, le mécanisme de renommage introduit un surcoût temporaire en métadonnées qui augmente avec chaque opération rename. Mais ce surcoût se résorbe à terme une fois que le système devient quiescent et que les opérations rename deviennent causalement stables. Dans la sous-section 3.5.2, nous détaillerons l'idée que les anciens états peuvent être déchargés sur le disque en attendant que la stabilité causale soit atteinte pour atténuer l'impact du surcoût temporaire en métadonnées.

Temps d'intégration des opérations standards

Nous avons ensuite comparé l'évolution du temps d'intégration des opérations standards, c.-à-d. les opérations insert et remove, sur des documents LogootSplit et RenamableLogootSplit. Puisque les deux types d'opérations partagent la même complexité en temps, nous avons seulement utilisé des opérations insert dans nos benchmarks. Nous faisons par contre la différence entre les mises à jours locales et distantes. Conceptuellement, les modifications locales peuvent être décomposées comme présenté dans [33] en les deux étapes suivantes :

- (i) la génération de l'opération correspondante
- (ii) l'application de l'opération correspondante sur l'état local.

Cependant, pour des raisons de performances, nous avons fusionné ces deux étapes dans notre implémentation. Nous distinguons donc les résultats des modifications *locales* et des modifications *distantes* dans nos benchmarks. La Figure 3.15 présente les résultats obtenus.

FIGURE 3.15 – Temps d'intégration des opérations standards

Dans ces figures, les boxplots oranges correspondent aux temps d'intégration sur des documents LogootSplit, les boxplots bleues sur des documents RenamableLogootSplit. Bien que les temps d'intégration soient initialement équivalents, les temps d'intégration sur des documents RenamableLogootSplit sont ensuite réduits par rapport à ceux de LogootSplit une fois que des opérations rename ont été intégrées. Cette amélioration s'explique par le fait que l'opération rename optimise la représentation interne de la séquence (c.-à-d. elle réduit le nombre de blocs stockés dans l'arbre AVL).

Dans le cadre des opérations distantes, nous avons mesuré des temps d'intégration spécifiques à RenamableLogootSplit : le temps d'intégration d'opérations distantes provenant d'époques *parentes* et d'époques *soeurs*, respectivement affiché sous la forme de boxplots blanches et rouges dans la Figure 3.15b.

Les opérations distantes provenant d'époques *parentes* sont des opérations générées de manière concurrente à l'opération *rename* mais appliquées après cette dernière. Puisque l'opération doit être transformée au préalable en utilisant RENAMEID, nous observons un

surcoût computationnel par rapport aux autres opérations. Mais ce surcoût est compensé par l'optimisation de la représentation interne de la séquence effectuée par l'opération rename.

Concernant les opérations provenant d'époques soeurs, nous observons de nouveau un surcoût puisque les noeuds doivent tout d'abord annuler les effets de l'opération rename concurrente en utilisant REVERTRENAMEID. À cause de cette étape supplémentaire, les performances de RenamableLogootSplit pour ces opérations sont comparables à celles de LogootSplit.

Pour récapituler, les fonctions de transformation ajoutent un surcoût aux temps d'intégration des opérations concurrentes aux opérations rename. Malgré ce surcoût, RenamableLogootSplit offre de meilleures performances que LogootSplit pour intégrer ces opérations grâce aux réductions de la taille de l'état effectuées par les opérations rename. Cependant, cette affirmation n'est vraie que tant que la distance entre l'époque de génération de l'opération et l'époque courante du noeud reste limitée, puisque les performances de RenamableLogootSplit dépendent linéairement de cette dernière (cf. Tableau 3.1). Néanmoins, ce surcoût ne concerne que les opérations concurrentes aux opérations rename. Il ne concerne pas la majorité des opérations, c.-à-d. les opérations générées entre deux séries d'opérations rename. Ces opérations, elles, ne souffrent d'aucun surcoût tout en bénéficiant des réductions de taille de l'état.

Temps d'intégration de l'opération de renommage

Finalement, nous avons mesuré l'évolution du temps d'intégration de l'opération rename en fonction du nombre d'opérations émises précédemment, c.-à-d. en fonction de la taille de l'état. Comme précédemment, nous distinguons les performances des modifications locales et distantes.

Nous rappellons que le traitement d'une opération rename dépend de l'ordre défini par la relation priority entre l'époque qu'elle introduit et l'époque courante du noeud qui intègre l'opération. Le cas des opérations rename distantes se décompose donc en trois catégories. Les opérations distantes directes désignent les opérations rename distantes qui introduisent une nouvelle époque enfant de l'époque courante du noeud. Les opérations concurrentes introduisant une plus grande (resp. petite) époque désignent les opérations rename qui introduisent une époque soeur de l'époque courante du noeud. D'après la relation priority, l'époque introduite est plus grande (resp. petite) que l'époque courante du noeud. Les résultats obtenus sont présentés dans le Tableau 3.3.

Le principal résultat de ces mesures est que les opérations rename sont particulièrement coûteuses quand comparées aux autres types d'opérations. Les opérations rename locales s'intègrent en centaines de millisecondes tandis que les opérations distantes directes et concurrentes introduisant une plus grande époque s'intègrent en secondes lorsque la taille du document dépasse 40k éléments. Ces résultats s'expliquent facilement par la complexité en temps de l'opération rename qui dépend supra-linéairement du nombre de blocs et d'éléments stockés dans l'état (cf. Tableau 3.1). Il est donc nécessaire de prendre en compte ce résultat et de

(i) concevoir des stratégies de génération des opérations *rename* pour éviter d'impacter négativement l'expérience utilisateur

Paramètres	Temps d'intégration (ms)							
Type	Nb Ops (k)	Moyenne	Médiane	IQR	1 ^{er} Percent.	99 ^{ème} Percent.		
Locale	30	41.8	38.7	5.66	37.3	71.7		
	60	78.3	78.2	1.58	76.2	81.4		
	90	119	119	2.17	116	124		
	120	144	144	3.24	139	149		
	150	158	158	3.71	153	164		
Distante directe	30	481	477	15.2	454	537		
	60	982	978	28.9	926	1073		
	90	1491	1482	58.8	1396	1658		
	120	1670	1664	41	1568	1814		
	150	1694	1676	60.6	1591	1853		
Cc. int. plus grande époque	30	644	644	16.6	620	683		
	60	1318	1316	26.5	1263	1400		
	90	1998	1994	46.6	1906	2112		
	120	2240	2233	54	2144	2368		
	150	2242	2234	63.5	2139	2351		
Cc. int. plus petite époque	30	1.36	1.3	0.038	1.22	3.53		
	60	2.82	2.69	0.476	2.43	4.85		
	90	4.45	4.23	1.1	3.69	5.81		
	120	5.33	5.1	1.34	4.42	8.78		
	150	5.53	5.26	1.05	4.84	8.7		

Table 3.3 – Temps d'intégration de l'opération rename

- (ii) proposer des versions améliorées des algorithmes RENAMEID et REVERTRENAMEID pour réduire ces temps d'intégration :
- Au lieu d'utiliser RENAMEID, qui renomme l'état identifiant par identifiant, nous pourrions définir et utiliser RENAMEBLOCK. Cette fonction permettrait de renommer l'état bloc par bloc, offrant ainsi une meilleur complexité en temps. De plus, puisque les opérations rename fusionnent les blocs existants en un unique bloc, RENAMEBLOCK permettrait de mettre en place un cercle vertueux où chaque opération rename réduirait le temps d'exécution de la suivante.
- Puisque chaque appel à REVERTRENAMEID et REVERTRENAMEID est indépendant des autres, ces fonctions sont adaptées à la programmation parallèle. Au lieu de renommer les identifiants (ou blocs) de manière séquentielle, nous pourrions diviser la séquence en plusieurs parties et les renommer en parallèle.

Un autre résultat intéressant de ces benchmarks est que les opérations concurrentes introduisant une plus petite époque sont rapides à intégrer. Puisque ces opérations introduisent une époque qui n'est pas sélectionnée comme nouvelle époque cible, les noeuds ne procèdent pas au renommage de leur état. L'intégration des opérations concurrentes introduisant une plus petite époque consiste simplement à ajouter l'époque introduite et l'ancien état correspondant à l'arbre des époques. Les noeuds peuvent donc réduire de manière significative le coût d'intégration d'un ensemble d'opérations rename concurrentes en les appliquant dans l'ordre le plus adapté en fonction du contexte. Nous développons ce sujet dans la sous-section 3.5.5.

Temps pour rejouer le log d'opérations

Afin de comparer les performances de RenamableLogootSplit et de LogootSplit de manière globale, nous avons mesuré le temps nécessaire pour un nouveau noeud pour rejouer l'entièreté du log d'opérations d'une session de collaboration, en fonction du nombre de renaming bots de la session. Nous présentons les résultats obtenus dans la Figure 3.16.

FIGURE 3.16 – Progression du nombre d'opérations du log rejouées en fonction du temps

Nous observons que le gain sur le temps d'intégration des opérations *insert* et *remove* permet initialement de contrebalancer le surcoût des opérations *rename*. Mais au fur et à mesure que la collaboration progresse, le temps nécessaire pour intégrer les opérations *rename* augmente car plus d'éléments sont impliqués. Cette tendance est accentuée dans les scénarios avec des opérations *rename* concurrentes.

Dans un cas réel d'utilisation, ce scénario (c.-à-d. rejouer l'entièreté du log) ne correspond pas au scénario principal et peut être mitigé, par exemple en utilisant un mécanisme de compression du log d'opérations. Dans la sous-section 3.5.6, nous présentons comment mettre en place un tel mécanisme en se basant justement sur les possibilités offertes par l'opération rename.

Impact de la fréquence de l'opération rename sur les performances

Pour évaluer l'impact de la fréquence de l'opération rename sur les performances, nous avons réalisé un benchmark supplémentaire. Ce benchmark consiste à rejouer les logs d'opérations des simulations en utilisant divers CRDTs et configurations : LogootSplit, RenamableLogootSplit effectuant des opérations rename toutes les 30k opérations, RenamableLogootSplit effectuant des opérations rename toutes les 7.5k opérations. Au

fur et à mesure que le benchmark rejoue le log des opérations, il mesure le temps d'intégration des opérations ainsi que leur taille. Les résultats de ce benchmark sont présentés dans le Tableau 3.4.

Par	amètres	Temps d'intégration (μs)			Taille (o)						
Type	CRDT	Moyenne	Médiane	IQR	1 ^{er} Percent.	99 ^{ème} Percent.	Moyenne	Médiane	IQR	1 ^{er} Percent.	99 ^{ème} Percent.
insert	LS	471	460	130	224	768	593	584	184	216	1136
	RLS - 30k	397	323	66.7	171	587	442	378	92	314	958
	RLS - 7.5k	393	265	54.5	133	381	389	378	0	314	590
remove	LS	280	270	71.4	140	435	632	618	184	250	1170
	RLS - 30k	247	181	39	97.9	308	434	412	0	320	900
	$\rm RLS$ - $7.5\rm k$	296	151	34.8	74.9	214	401	412	0	320	596
Par	Paramètres Temps d'intégration (ms)			Taille (Ko)							
Type	CRDT	Moyenne	Médiane	IQR	1 ^{er} Percent.	99 ^{ème} Percent.	Moyenne	Médiane	IQR	1 ^{er} Percent.	99 ^{ème} Percent.
rename	RLS - 30k	1022	1188	425	540	1276	1366	1258	514	635	3373
	RLS - 7.5k	861	974	669	123	1445	273	302	132	159	542

TABLE 3.4 – Temps d'intégration et taille des opérations par type et par fréquence d'opérations rename

Concernant les temps d'intégration, nous observons des opérations rename plus fréquentes permettent d'améliorer les temps d'intégration des opérations insert et remove. Cela confirme les résultats attendus puisque l'opération rename réduit la taille des identifiants de la structure ainsi que le nombre de blocs composant la séquence.

Nous remarquons aussi que la fréquence n'a aucun impact significatif sur le temps d'intégration des opérations *rename*. Il s'agit là aussi d'un résultat attendu puisque la complexité en temps de l'implémentation de l'opération *rename* dépend du nombre d'éléments dans la séquence, un facteur qui n'est pas impacté par les opérations *rename*.

Concernant la taille des opérations, nous observons que les opérations insert et remove de RenamableLogootSplit sont initialement plus lourdes que les opérations correspondantes de LogootSplit, notamment car elles intègrent leur époque de génération comme donnée additionnelle. Mais alors que la taille des opérations de LogootSplit augmentent indéfiniment, celle des opérations de RenamableLogootSplit est bornée. La valeur de cette borne est définie par la fréquence de l'opération rename. Cela permet à RenamableLogootSplit d'atteindre un coût moindre par opération.

D'un autre côté, le coût des opérations rename est bien plus important (1000x) que celui des autres types d'opérations. Ceci s'explique par le fait que l'opération rename intègre l'ancien état, c.-à-d. la liste de tous les blocs composant l'état de la séquence au moment de la génération de l'opération. Cependant, nous observons le même phénomène pour les opérations rename que pour les autres opérations : la fréquence des opérations rename permet d'établir une borne pour la taille des opérations rename. Nous pouvons donc choisir d'émettre fréquemment des opérations rename pour limiter leur taille respective. Ceci implique néanmoins un surcoût en calculs pour chaque opération rename dans l'implémentation actuelle. Nous présentons une autre approche possible pour limiter la taille des opérations rename dans la sous-section 3.5.3. Cette approche consiste à implémenter un mécanisme de compression pour les opérations rename pour ne transmettre que les composants nécessaires à l'identifiant de chaque bloc de l'ancien état.

3.5 Discussion

Matthieu: TODO: Ajouter une partie sur la discussion qu'on a pu avoir avec les reviewers sur la présence de pierres tombales dans RenamableLogootSplit, et comment ces pierres tombales diffèrent de celles présentent dans WOOT et RGA.

3.5.1 Stratégie de génération des opérations rename

Comme indiqué dans la sous-section 3.1.1, les opérations *rename* sont des opérations systèmes. C'est donc aux concepteurs de systèmes qu'incombe la responsabilité de déterminer quand les noeuds devraient générer des opérations *rename* et de définir une stratégie correspondante. Il n'existe cependant pas de solution universelle, chaque système ayant ses particuliarités et contraintes.

Plusieurs aspects doivent être pris en compte lors de la définition de la stratégie de génération des opérations rename. Le premier porte sur la taille de la structure de données. Comme illustré dans la Figure 3.14, les métadonnées augmentent de manière progressive jusqu'à représenter 99% de la structure de données. En utilisant les opérations rename, les noeuds peuvent supprimer les métadonnées et ainsi réduire la taille de la structure à un niveau acceptable. Pour déterminer quand générer des opérations rename, les noeuds peuvent donc monitorer le nombre d'opérations effectuées depuis la dernière opération rename, le nombre de blocs qui composent la séquence ou encore la taille des identifiants.

Un second aspect à prendre en compte est le temps d'intégration des opérations rename. Comme indiqué dans le Tableau 3.3, l'intégration des opérations rename distantes peut nécessiter des secondes si elles sont retardées trop longtemps. Bien que les opérations rename travaillent en coulisses, elles peuvent néanmoins impacter négativement l'expérience utilisateur. Notamment, les noeuds ne peuvent pas intégrer d'autres opérations distantes tant qu'ils sont en train de traiter des opérations rename. Du point de vue des utilisateurs, les opérations rename peuvent alors être perçues comme des pics de latence. Dans le domaine de l'édition collaborative temps réel, IGNAT et al. [75, 76] ont montré que le délai dégradait la qualité des collaborations. Il est donc important de générer fréquemment des opérations rename pour conserver leur temps d'intégration sous une limite perceptible.

Finalement, le dernier aspect à considérer est le nombre d'opérations rename concurrentes. La Figure 3.14 montre que les opérations rename concurrentes accroissent la taille de la structure de données tandis que la Figure 3.16 illustre qu'elles augmentent le temps nécessaire pour rejouer le log d'opérations. La stratégie proposée doit donc viser à minimiser le nombre d'opérations rename concurrentes générées. Cependant, elle doit éviter d'utiliser des coordinations synchrones entre les noeuds pour cela (e.g. algorithmes de consensus), pour des raisons de performances. Pour réduire la probabilité de générer des opérations rename concurrentes, plusieurs méthodes peuvent être proposées. Par exemple, les noeuds peuvent monitorer à quels autres noeuds ils sont connectés actuellement et déléguer au noeud ayant le plus grand identifiant de noeud la responsabilité de générer les opérations rename.

Pour récapituler, nous pouvons proposer plusieurs stratégies de génération des opérations *rename*, pour minimiser de manière individuelle chacun des paramètres présentés.

Mais bien que certaines de ces stratégies convergent (minimiser la taille de la structure de données et minimiser le temps d'intégration des opérations rename), d'autres entrent en conflit (générer une opération rename dès qu'un seuil est atteint vs. minimiser le nombre d'opérations rename concurrentes générées). Les concepteurs de systèmes doivent proposer un compromis entre les différents paramètres en fonction des contraintes du système concerné (application temps réel ou asynchrone, limitations matérielles des noeuds...). Il est donc nécessaire d'analyser le système pour évaluer ses performances sur chaque aspect, ses usages et trouver le bon compromis entre tous les paramètres de la stratégie de renommage. Par exemple, dans le contexte des systèmes d'édition collaborative temps réel, [75] a montré que le délai diminue la qualité de la collaboration. Dans de tels systèmes, nous viserions donc à conserver le temps d'intégration des opérations (en incluant les opérations rename) en dessous du temps limite correspondant à leur perception par les utilisateurs.

3.5.2 Stockage des états précédents sur disque

Les noeuds doivent conserver les *anciens états* associés aux opérations *rename* pour transformer les opérations issues d'époques précédentes ou concurrentes. Les noeuds peuvent recevoir de telles opérations dans deux cas précis :

- (i) des noeuds ont émis récemment des opérations rename
- (ii) des noeuds se sont récemment reconnectés.

Entre deux de ces évènements spécifiques, les *anciens états* ne sont pas nécessaires pour traiter les opérations.

Nous pouvons donc proposer l'optimisation suivante : décharger les anciens états sur le disque jusqu'à leur prochaine utilisation ou jusqu'à ce qu'ils puissent être supprimés de manière sûre. Décharger les anciens états sur le disque permet de mitiger le surcoût en mémoire introduit par le mécanisme de renommage. En échange, cela augmente le temps d'intégration des opérations nécessitant un ancien état qui a été déchargé précédemment.

Les noeuds peuvent adopter différentes stratégies, en fonction de leurs contraintes, pour déterminer les anciens états comme déchargeables et pour les récupérer de manière préemptive. La conception de ces stratégies peut reposer sur différentes heuristiques : les époques des noeuds actuellement connectés, le nombre de noeuds pouvant toujours émettre des opérations concurrentes, le temps écoulé depuis la dernière utilisation de l'ancien état...

3.5.3 Compression et limitation de la taille de l'opération rename

Pour limiter la consommation en bande passante des opérations rename, nous proposons la technique de compression suivante. Au lieu de diffuser les identifiants complets formant l'ancien état, les noeuds peuvent diffuser seulement les éléments nécessaires pour identifier de manière unique les intervalles d'identifiants. En effet, un identifiant peut être caractérisé de manière unique par le triplet composé de l'identifiant de noeud, du numéro de séquence et de l'offset de son dernier tuple. Par conséquent, un intervalle d'identifiants peut être identifié de manière unique à partir du triplet signature de son identifiant de

début et de sa longueur, c.-à-d. du quadruplet $\langle nodeId, nodeSeq, offsetBegin, offsetEnd \rangle$. Cette méthode nous permet de réduire les données à diffuser dans le cadre de l'opération rename à un montant fixe par intervalle.

Pour décompresser l'opération reçue, les noeuds doivent reformer les intervalles d'identifiants correspondant aux quadruplets reçus. Pour cela, ils parcourent leur état. Lorsqu'ils rencontrent un identifiant partageant le même couple $\langle nodeId, nodeSeq \rangle$ qu'un des intervalles de l'opération rename, les noeuds disposent de l'ensemble des informations requises pour le reconstruire. Cependant, certains couples $\langle nodeId, nodeSeq \rangle$ peuvent avoir été supprimés en concurrence et ne plus être présents dans la séquence. Dans ce cas, il est nécessaire de parcourir le log des opérations remove concurrentes pour retrouver les identifiants correspondants et reconstruire l'opération rename originale.

Grâce à cette méthode de compression, nous pouvons instaurer une taille maximale à l'opération *rename*. En effet, les noeuds peuvent émettre une opération *rename* dès que leur état courant atteint un nombre donné d'intervalles d'identifiants, bornant ainsi la taille du message à diffuser.

3.5.4 Définition de relations de priorité pour minimiser les traitements

Bien que la relation *priority* proposée dans la sous-section 3.3.2 soit simple et garantisse que tous les noeuds désignent la même époque comme époque cible, elle introduit un surcoût computationnel significatif dans certains cas. La Figure 3.17 présente un tel cas.

Dans cet exemple, les noeuds A et B éditent en collaboration un document. Au fur et à mesure de leur collaboration, ils effectuent plusieurs opérations rename. Cependant, après un nombre conséquent de modifications de leur part, un autre noeud C se reconnecte. Celui-ci leur transmet sa propre opération rename, concurrente à toutes leurs opérations. D'après la relation priority, nous avons $\varepsilon_0 <_{\varepsilon} \varepsilon_{A1} <_{\varepsilon} \dots <_{\varepsilon} \varepsilon_{A100} <_{\varepsilon} \varepsilon_{C1}$. La nouvelle époque cible étant ε_{C1} , les noeuds A et B doivent pour l'atteindre annuler successivement l'ensemble des opérations rename composant leur branche de l'arbre des époques. Ainsi, un noeud isolé peut forcer l'ensemble des noeuds à effectuer un lourd calcul. Il serait plus efficace que, dans cette situation, ce soit seulement le noeud isolé qui doive se mettre à jour.

La relation priority devrait donc être conçue pour garantir la convergence des noeuds, mais aussi pour minimiser les calculs effectués globalement par les noeuds du système. Pour concevoir une relation priority efficace, nous pourrions incorporer dans les opérations rename des métriques qui représentent l'état du système et le travail accumulé sur le document (nombre de noeuds actuellement à l'époque parente, nombre d'opérations générées depuis l'époque parente, taille du document...). De cette manière, nous pourrions favoriser la branche de l'arbre des époques regroupant les collaborateurs les plus actifs et empêcher les noeuds isolés d'imposer leurs opérations rename.

Afin d'offrir une plus grande flexibilité dans la conception de la relation *priority*, il est nécessaire de retirer la contrainte interdisant aux noeuds de rejouer une opération *rename*. Pour cela, un couple de fonctions réciproques doit être proposée pour RENAMEID et REVERTRENAMEID. Une solution alternative est de proposer une implémentation du

(b) Arbre des époques final correspondant avec la relation priority illustrée

FIGURE 3.17 – Livraison d'une opération rename d'un noeud

mécanisme de renommage qui repose sur les identifiants originaux plutôt que sur ceux transformés, par exemple en utilisant le log des opérations.

3.5.5 Report de la transition vers la nouvelle époque cible

Comme illustré par le Tableau 3.3, intégrer des opérations rename distantes est généralement coûteux. Ce traitement peut générer un surcoût computationnel significatif en cas de multiples opérations rename concurrentes. En particulier, un noeud peut recevoir et intégrer les opérations rename concurrentes dans l'ordre inverse défini par la relation priority sur leur époques. Dans ce scénario, le noeud considérerait chaque nouvelle époque introduite comme la nouvelle époque cible et renommerait son état en conséquence à chaque fois.

En cas d'un grand nombre d'opérations rename concurrentes, nous proposons que les noeuds retardent le renommage de leur état vers l'époque cible jusqu'à ce qu'ils aient obtenu un niveau de confiance donné en l'époque cible. Ce délai réduit la probabilité que les noeuds effectuent des traitements inutiles. Plusieurs stratégies peuvent être proposées pour calculer le niveau de confiance en l'époque cible. Ces stratégies peuvent reposer sur une variété de métriques pour produire le niveau de confiance, tel que le temps écoulé

depuis que le noeud a reçu une opération *rename* concurrente et le nombre de noeuds en ligne qui n'ont pas encore reçu l'opération *rename*.

Durant cette période d'incertitude introduite par le report, les noeuds peuvent recevoir des opérations provenant d'époques différentes, notamment de l'époque cible. Néanmoins, les noeuds peuvent toujours intégrer les opérations *insert* et remove en utilisant RENA-MEID et REVERTRENAMEID au prix d'un surcoût computationnel pour chaque identifiant. Cependant, ce coût est négligeable (plusieurs centaines de microsecondes par identifiant d'après la Figure 3.15b) comparé au coût de renommer, de manière inutile, complètement l'état (plusieurs centaines de milliseconds à des secondes complètes d'après le Tableau 3.3).

Notons que ce mécanisme nécessite que RENAMEID et REVERTRENAMEID soient des fonctions réciproques. En effet, au cours de la période d'incertitude, un noeud peut avoir à utiliser REVERTRENAMEID pour intégrer les identifiants d'opérations *insert* distantes provenant de l'époque cible. Ensuite, le noeud peut devoir renommer son état vers l'époque cible une fois que celle-ci a obtenu le niveau de confiance requis. Il s'ensuit que RENAMEID doit restaurer les identifiants précédemment transformés par REVERTRENAMEID à leur valeur initiale pour garantir la convergence.

3.5.6 Utilisation de l'opération de renommage comme mécanisme de compression du log d'opérations

Lorsqu'un nouveau pair rejoint la collaboration, il doit tout d'abord récupérer l'état courant du document avant de pouvoir participer. Le nouveau pair utilise un mécanisme d'anti-entropie [40] pour récupérer l'ensemble des opérations via un autre pair. Puis il reconstruit l'état courant en appliquant successivement chacune des opérations. Ce processus peut néanmoins s'avérer coûteux pour les documents comprenant des milliers d'opérations.

Pour pallier ce problème, des mécanismes de compression du log ont été proposés dans la littérature. Les approches présentées dans [79, 80] consistent à remplacer un sous-ensemble des opérations du log par une opération équivalente, par exemple en aggrégeant les opérations insert adjacentes. Une autre approche, présentée dans [32], définie une relation obsolète sur les opérations. La relation obsolète permet de spécifier qu'une nouvelle opération rend obsolètes des opérations précédentes et permet de les retirer du log. Pour donner un exemple, une opération d'ajout d'un élément donné dans un OR-Set CRDT rend obsolètes toutes les opérations précédentes d'ajout et de suppression de cet élément.

Dans notre contexte, il est intéressant de noter que l'opération rename peut endosser un rôle comparable à ces mécanismes de compression du log. En effet, l'opération rename prend un état donné, somme des opérations passées, et génère en retour un nouvel état équivalent et compacté. Une opération rename rend donc obsolète l'ensemble des opérations dont elle dépend causalement, et peut être utilisée pour les remplacer. En partant de cette observation, nous proposons le mécanisme de compression du log suivant.

Le mécanisme consiste à réduire le nombre d'opérations transmises à un nouveau pair rejoignant la collaboration grâce à l'opération rename de l'époque courante. L'opération rename ayant introduite l'époque courante fournit un état initial au nouveau pair. À partir de cet état initial, le nouveau pair peut obtenir l'état courant en intégrant les opérations

insert et remove qui ont été générées de manière concurrente ou causale par rapport à l'opération rename. En réponse à une demande de synchronisation d'un nouveau pair, un pair peut donc simplement lui envoyer un sous-ensemble de son log composé de :

- (i) l'opération rename ayant introduite son époque courante
- (ii) les opérations *insert* et *remove* dont l'opération *rename* courante ne dépend pas causalement.

Notons que les données contenues dans l'opération rename telle que nous l'avons définie précédemment (cf. Définition 43) sont insuffisantes pour cette utilisation. En effet, les données incluses (ancien état au moment du renommage, identifiant du noeud auteur de l'opération rename et son numéro de séquence au moment de la génération) nous permettent seulement de recréer la structure de la séquence après le renommage. Mais le contenu de la séquence est omis, celui-ci n'étant jusqu'ici d'aucune utilité pour l'opération rename. Afin de pouvoir utiliser l'opération rename comme état initial, il est nécessaire d'y inclure cette information.

De plus, des informations de causalité doivent être intégrées à l'opération rename. Ces informations doivent permettre aux noeuds d'identifier les opérations supplémentaires nécessaires pour obtenir l'état courant, c.-à-d. toutes les opérations desquelles l'opération rename ne dépend pas causalement. L'ajout à l'opération rename d'un vecteur de version, structure représentant l'ensemble des opérations intégrées par l'auteur de l'opération rename au moment de sa génération, permettrait cela.

Nous définissons donc de la manière suivante l'opération *rename* enrichie compatible avec ce mécanisme de compression du log :

Définition 50 (rename enrichie). Une opération rename enrichie est un quintuplet (nodeId, nodeSeq, formerState, versionVector, content) où

- nodeld est l'identifiant du noeud qui a généré l'opération rename.
- nodeSeq est le numéro de séquence du noeud au moment de la génération de l'opération rename.
- formerState est l'ancien état du noeud au moment du renommage.
- versionVector est le vecteur de version représentant l'ancien état du noeud au moment du renommage.
- content est le contenu du document au moment du renommage.

Ce mécanisme de compression du log introduit néanmoins le problème suivant. Un nouveau pair synchronisé de cette manière ne possède qu'un sous-ensemble du log des opérations. Si ce pair reçoit ensuite une demande de synchronisation d'un second pair, il est possible qu'il ne puisse répondre à la requête. Par exemple, le pair ne peut pas fournir des opérations faisant partie des dépendances causales de l'opération *rename* qui lui a servi d'état initial.

Une solution possible dans ce cas de figure est de rediriger le second pair vers un troisième pour qu'il se synchronise avec lui. Cependant, cette solution pose des problèmes de latence/temps de réponse si le troisième pair s'avère indisponible à ce moment. Une autre approche possible est de généraliser le processus de synchronisation que nous avons

présenté ici (opération rename comme état initial puis application des autres opérations) à l'ensemble des pairs, et non plus seulement aux nouveaux pairs. Nous présentons les avantages et inconvénients de cette approche dans la sous-section suivante.

3.5.7 Implémentation alternative de l'intégration de l'opération rename basée sur le journal d'opérations

Nous avons décrit précédemment dans la section 3.3.4, et plus précisément dans l'Algorithme 5, le processus d'intégration de l'opération *rename* évaluée dans ce manuscrit. Pour rappel, le processus consiste à

- (i) identifier le chemin entre l'époque courante et l'époque cible
- (ii) appliquer les fonctions de transformations REVERTRENAMEID et RENAMEID à l'ensemble des identifiants composant l'état courant
- (iii) re-créer une séquence à partir des nouveaux identifiants calculés et du contenu courant.

Dans cette section, nous abordons une implémentation alternative de l'intégration de l'opération rename. Cette implémentation repose sur le log des opérations.

Cette implémentation se base sur les observations suivantes :

- (i) L'état courant est obtenu en intégrant successivement l'ensemble des opérations.
- (ii) L'opération rename est une opération subsumant les opérations passées : elle prend un état donné (l'ancien état), somme des opérations précédentes, et génère un nouvel état équivalent compacté.
- (iii) L'ordre d'intégration des opérations concurrentes n'a pas d'importance sur l'état final obtenu.

Ainsi, pour intégrer une opération rename distante, un noeud peut

- (i) générer l'état correspondant au renommage de l'ancien état
- (ii) identifier le chemin entre l'époque courante et l'époque cible
- (iii) identifier les opérations concurrentes à l'opération rename présentes dans son log
- (iv) transformer et intégrer successivement les opérations concurrentes à l'opération re-name à ce nouvel état

Cet algorithme est équivalent à ré-ordonner le log des opérations de façon à intégrer les opérations précédant l'opération *rename*, puis à intégrer l'opération *rename* elle-même, puis à intégrer les opérations concurrentes à cette dernière.

Cette approche présente plusieurs avantages par rapport à l'implémentation décrite dans la section 3.3.4. Tout d'abord, elle modifie le facteur du nombre de transformations à effectuer. La version décrite dans la section 3.3.4 transforme de l'époque courante vers l'époque cible chaque identifiant (ou chaque bloc si nous disposons de RENAMEBLOCK) de l'état courant. La version présentée ici effectue une transformation pour chaque opération du log concurrente à l'opération rename à intégrer. Le nombre de transformation peut donc être réduit de plusieurs ordres de grandeur avec cette approche, notamment si les opérations sont propagées aux pairs du réseau rapidement.

Un autre avantage de cette approche est qu'elle permet de récupérer et de réutiliser les identifiants originaux des opérations. Lorsqu'une suite de transformations est appliquée sur les identifiants d'une opération, elle est appliquée sur les identifiants originaux et non plus sur leur équivalents présents dans l'état courant. Ceci permet de réinitialiser les transformations appliquées à un identifiant et d'éviter le cas de figure mentionné dans la sous-section 3.3.3: le cas où REVERTRENAMEID est utilisé pour retirer l'effet d'une opération rename sur un identifiant, avant d'utiliser RENAMEID pour ré-intégrer l'effet de la même opération rename. Cette implémentation supprime donc la contrainte de définir un couple de fonctions réciproques RENAMEID et REVERTRENAMEID, ce qui nous offre une plus grande flexibilité dans le choix de la relation $<_{\varepsilon}$ et du couple de fonctions RENAMEID et REVERTRENAMEID.

Cette implémentation dispose néanmoins de plusieurs limites. Tout d'abord, elle nécessite que chaque noeud maintienne localement le log des opérations. Les métadonnées accumulées par la structure de données répliquées vont alors croître avec le nombre d'opérations effectuées. Cependant, ce défaut est à nuancer. En effet, les noeuds doivent déjà maintenir le log des opérations pour le mécanisme d'anti-entropie, afin de renvoyer une opération passée à un noeud l'ayant manquée. Plus globalement, les noeuds doivent aussi conserver le log des opérations pour permettre à un nouveau noeud de rejoindre la collaboration et de calculer l'état courant en rejouant l'ensemble des opérations. Il s'agit donc d'une contrainte déjà imposée aux noeuds pour d'autres fonctionnalités du système.

Un autre défaut de cette implémentation est qu'elle nécessite de détecter les opérations concurrentes à l'opération rename à intégrer. Cela implique d'ajouter des informations de causalité à l'opération rename, tel qu'un vecteur de version. Cependant, la taille des vecteurs de version croît de façon monotone avec le nombre de noeuds qui participent à la collaboration. Diffuser cette information à l'ensemble des noeuds peut donc représenter un coût significatif dans les collaborations à large échelle. Néanmoins, il faut rappeler que les noeuds échangent déjà régulièrement des vecteurs de version dans le cadre du fonctionnement du mécanisme d'anti-entropie. Les opérations rename étant rares en comparaison, ce surcoût nous paraît acceptable.

Finalement, cette approche implique aussi de parcourir le log des opérations à la recherche d'opérations concurrentes. Comme dit précédemment, la taille du log croît de façon monotone au fur et à mesure que les noeuds émettent des opérations. Cette étape du nouvel algorithme d'intégration de l'opération rename devient donc de plus en plus coûteuse. Des méthodes permettent néanmoins de réduire son coût computationnel. Notamment, chaque noeud traquent les informations de progression des autres noeuds afin de supprimer les métadonnées du mécanisme de renommage (cf. sous-section 3.3.5). Ces informations permettent de déterminer la stabilité causale des opérations et donc d'identifier les opérations qui ne peuvent plus être concurrentes à une nouvelle opération rename. Les noeuds peuvent ainsi maintenir, en plus du log complet des opérations, un log composé uniquement des opérations non stables causalement. Lors du traitement d'une nouvelle opération rename, les noeuds peuvent alors parcourir ce log réduit à la recherche des opérations concurrentes.

Matthieu: TODO: Ajouter conclusion à cette sous-section

3.6 Comparaison avec les approches existantes

3.6.1 Core-Nebula

L'approche core-nebula [7, 8] a été proposée pour réduire la taille des identifiants dans Treedoc [59]. Dans ces travaux, les auteurs définissent l'opération rebalance qui permet aux noeuds de réassigner des identifiants plus courts aux éléments du document. Cependant, cette opération rebalance n'est ni commutative avec les opérations insert et remove, ni avec elle-même. Pour assurer la convergence à terme [4], l'approche core-nebula empêche la génération d'opérations rebalance concurrentes. Pour ce faire, l'approche requiert un consensus entre les noeuds pour générer les opérations rebalance. Des opérations insert et remove sont elles toujours générées sans coordination entre les noeuds et peuvent donc être concurrentes aux opérations rebalance. Pour gérer les opérations concurrentes aux opérations rebalance, les auteurs proposent de transformer les opérations concernées par rapport aux effets des opérations rebalance, à l'aide un mécanisme de catch-up, avant de les appliquer.

Cependant, les protocoles de consensus ne passent pas à l'échelle et ne sont pas adaptés aux systèmes distribués à large échelle. Pour pallier ce problème, l'approche *core-nebula* propose de répartir les noeuds dans deux groupes : le *core* et la *nebula*. Le *core* est un ensemble, de taille réduite, de noeuds stables et hautement connectés tandis que la *nebula* est un ensemble, de taille non-bornée, de noeuds. Seuls les noeuds du *core* participent à l'exécution du protocole de consensus. Les noeuds de la *nebula* contribuent toujours au document par le biais des opérations *insert* et *remove*.

Notre travail peut être vu comme une extension de celui présenté dans core-nebula. Avec RenamableLogootSplit, nous adaptons l'opération rebalance et le mécanisme de catch-up à LogootSplit pour tirer partie de la fonctionnalité offerte par les blocs. De plus, nous proposons un mécanisme pour supporter les opérations rename concurrentes, ce qui supprime la nécessité de l'utilisation d'un protocole de consensus. Notre contribution est donc une approche plus générique puisque RenamableLogootSplit est utilisable dans des systèmes composés d'un core et d'une nebula, ainsi que dans les systèmes ne disposant pas de noeuds stables pour former un core.

Dans les systèmes disposant d'un core, nous pouvons donc combiner RenamableLogootSplit avec un protocole de consensus pour éviter la génération d'opérations rename concurrentes. Cette approche offre plusieurs avantages. Elle permet de se passer de tout ce qui à attrait au support d'opérations rename concurrentes, c.-à-d. la définition d'une relation priority et l'implémentation de REVERTRENAMEID. Elle permet aussi de simplifier l'implémentation du mécanisme de récupération de mémoire des époques et anciens états pour reposer seulement sur la stabilité causale des opérations. Concernant ses performances, cette approche se comporte de manière similaire à RenamableLogootSplit avec un seul renaming bot (cf. sous-section 3.4.3), mais avec un surcoût correspondant au coût du protocole de consensus sélectionné.

3.6.2 LSEQ

L'approche LSEQ [77, 78] est une approche visant à réduire la croissance des identifiants dans les Séquences CRDTs à identifiants densément ordonnés. Au lieu de réduire périodiquement la taille des métadonnées liées aux identifiants à l'aide d'un mécanisme de renommage coûteux, les auteurs définissent de nouvelles stratégies d'allocation des identifiants pour réduire leur vitesse de croissance. Dans ces travaux, les auteurs notent que la stratégie d'allocation des identifiants proposée dans Logoot [55] n'est adaptée qu'à un seul comportement d'édition : de gauche à droite, de haut en bas. Si les insertions sont effectuées en suivant d'autres comportements, les identifiants générés saturent rapidement l'espace des identifiants pour une taille donnée. Les insertions suivantes déclenchent alors une augmentation de la taille des identifiants. En conséquent, la taille des identifiants dans Logoot augmente de façon linéaire au nombre d'insertions, au lieu de suivre la progression logarithmique attendue.

LSEQ définit donc plusieurs stratégies d'allocation d'identifiants adaptées à différents comportements d'édition. Les noeuds choisissent aléatoirement une de ces stratégies pour chaque taille d'identifiants. De plus, LSEQ adopte une structure d'arbre exponentiel pour allouer les identifiants : l'intervalle des identifiants possibles double à chaque fois que la taille des identifiants augmente. Cela permet à LSEQ de choisir avec soin la taille des identifiants et la stratégie d'allocation en fonction des besoins. En combinant les différentes stratégies d'allocation avec la structure d'arbre exponentiel, LSEQ offre une croissance polylogarithmique de la taille des identifiants en fonction du nombre d'insertions.

Bien que l'approche LSEQ réduise la vitesse de croissance des identifiants dans les Séquences CRDTs à identifiants densément ordonnés, le surcoût de la séquence reste proportionnel à son nombre d'éléments. À l'inverse, le mécanisme de renommage de RenamableLogootSplit permet de réduire les métadonnées à une quantité fixe, indépendamment du nombre d'éléments.

Ces deux approches sont néanmoins orthogonales et peuvent, comme avec l'approche précédente, être combinées. Le système résultant réinitialiserait périodiquement les métadonnées de la séquence répliquée à l'aide de l'opération rename tandis que les stratégies d'allocation d'identifiants de LSEQ réduiraient leur croissance entretemps. Cela permettrait aussi de réduire la fréquence de l'opération rename, réduisant ainsi les calculs effectués par le système de manière globale.

3.7 Conclusion

Dans ce chapitre, nous avons présenté un nouvel Sequence CRDT : RenamableLo-gootSplit. Ce nouveau type de données répliquées associe à LogootSplit un mécanisme de renommage optimiste permettant de réduire périodiquemment les métadonnées stockées et d'optimiser l'état interne de la structure de données.

Ce mécanisme prend la forme d'une nouvelle opération, l'opération *rename*, qui peut être émise à tout moment par n'importe quel noeud. Cette opération génère une nouvelle séquence LogootSplit, équivalente à l'état précédent, avec une empreinte minimale en métadonnées. L'opération *rename* transporte aussi suffisamment d'informations pour que

les noeuds puissent intégrer les opérations concurrentes à l'opération *rename* dans le nouvel état.

En cas d'opérations rename concurrentes, la relation d'ordre strict total $<_{\varepsilon}$ permet aux noeuds de décider quelle opération rename utiliser, sans coordination. Les autres opérations rename sont quant à elles ignorées. Seules leurs informations sont stockées par RenamableLogootSplit, afin de gérer les opérations concurrentes potentielles.

Une fois qu'une opération rename a été propagée à l'ensemble des noeuds, elle devient causalement stable. À partir de ce point, il n'est plus possible qu'un noeud émette une opération concurrente à cette dernière. Les informations incluses dans l'opération rename pour intégrer les opérations concurrentes potentielles peuvent donc être supprimées par l'ensemble des noeuds.

Ainsi, le mécanisme de renommage permet à RenamableLogootSplit d'offrir de meilleures performances que LogootSplit. La génération du nouvel état minimal et la suppression à terme des métadonnées du mécanisme de renommage divisent par 100 la taille de la structure de données répliquée. L'optimisation de l'état interne représentant la séquence réduit aussi le coût d'intégration des opérations suivantes, amortissant ainsi le coût de transformation et d'intégration des opérations concurrentes à l'opération rename.

RenamableLogootSplit souffre néanmoins de plusieurs limitations. La première d'entre elles est le besoin d'observer la stabilité causale des opérations rename pour supprimer de manière définitive les métadonnées associées. Il s'agit d'une contrainte forte, notamment dans les systèmes dynamiques à grande échelle dans lesquels nous n'avons aucune garantie et aucun contrôle sur les noeuds. Il est donc possible qu'un noeud déconnecté ne se reconnecte jamais, bloquant ainsi la progression de la stabilité causale pour l'ensemble des opérations. Il s'agit toutefois d'une limite partagée avec les autres mécanismes de réduction des métadonnées pour Sequence CRDTs proposés dans la littérature [58, 8], à l'exception de l'approche LSEQ [78]. En pratique, il serait intéressant d'étudier la mise en place d'un mécanisme d'éviction des noeuds inactifs pour répondre à ce problème. TODO : Revoir ce point pour indiquer que stabilité causale n'est pas une condition raisonnable dans systèmes sujets au churn. Qu'à notre sens, rend cette solution inadéquate par rapport au modèle du système. Mais préciser que majorité des noeuds dans ce type de système se connectent de manière éphèmère, c.-à-d. ne reviennent jamais. Mais principe d'une collaboration est de collaborer. Si noeuds ne collaborent pas ou mal, e.g. font un truc dans leur coin pendant X mois (dépendant du cas d'application), nous paraît justifier de les retirer de la collaboration.

La seconde limitation de RenamableLogootSplit concerne la génération d'opérations rename concurrentes. Chaque opération rename est coûteuse, aussi bien en terme de métadonnées à stocker et diffuser qu'en terme de traitements à effectuer. Il est donc important de chercher à minimiser le nombre d'opérations rename concurrentes émises par les noeuds. Une approche possible est d'adopter une architecture du type core-nebula[8]. Mais pour les systèmes incompatibles avec ce type d'architecture système, il serait intéressant de proposer d'autres approches ne nécessitant aucune coordination entre les noeuds. Mais par définition, ces approches ne pourraient offrir de garanties fortes sur le nombre d'opérations concurrentes possibles.

Chapitre 4

Conclusions et perspectives

Sommaire

4.1 Rés	rumés des contributions
4.1.1	Ré-identification sans coordination pour les CRDTs pour Séquence 113
4.1.2	Éditeur de texte collaboratif P2P chiffré de bout en bout \dots 115
4.2 Per	spectives
4.2.1	Définition de relations de priorité pour minimiser les traitements 117
4.2.2	Détection et fusion manuelle de versions distantes
4.2.3	Étude comparative des différents modèles de synchronisation
	pour CRDTs
4.2.4	Approfondissement du patron de conception de Pure Operation-
	Based CRDTs

Dans ce chapitre, nous revenons sur les contributions présentés dans cette thèse. Nous rappelons le contexte dans lequel elles s'inscrivent, récapitulons leurs spécificités et apports, et finalement présentons leurs limites que nous identifions. Puis, nous concluons ce manuscrit en présentant plusieurs pistes de recherche qui nous restent à explorer à l'issue de cette thèse. Les premières s'inscrivent dans la continuité directe de nos travaux sur un mécanisme de ré-identification pour CRDTs pour Séquence dans un système P2P à large échelle sujet au churn. Les dernières traduisent quant à elles notre volonté de recentrer nos travaux sur le domaine plus général des CRDTs.

4.1 Résumés des contributions

4.1.1 Ré-identification sans coordination pour les CRDTs pour Séquence

Pour privilégier leur disponibilité, latence et tolérance aux pannes, les systèmes distribués peuvent adopter le paradigme de la réplication optimiste [3]. Ce paradigme consiste à relaxer la cohérence de données entre les noeuds du système pour leur permettre de consulter et modifier leur copie locale sans se coordonner. Leur copies peuvent alors temporairement diverger avant de converger de nouveau une fois les modifications de chacun

propagées. Cependant, cette approche nécessite l'emploi d'un mécanisme de résolution pour assurer la convergence même en cas de modifications concurrentes. Pour cela, l'approche des CRDTs [5, 6] propose d'utiliser des types de données dont les modifications sont nativement commutatives.

Depuis la spécification des CRDTs, la littérature a proposé plusieurs de ces mécanismes résolution de conflits automatiques pour le type de données Séquence [57, 58, 59, 55]. Cependant, ces approches souffrent toutes d'un surcoût croissant de manière monotone. Ce problème a été identifié par la communauté, et celle-ci a proposé pour y répondre des mécanismes permettant soit de réduire la croissance du surcoût [77, 78], soit d'effectuer une GC du surcoût [58, 7, 8]. Nous avons cependant déterminé que ces mécanismes ne sont pas adaptés aux systèmes P2P à large échelle souffrant de churn et utilisant des CRDTs pour Séquence à granularité variable.

Dans le cadre de cette thèse, nous avons donc souhaité proposer un nouveau mécanisme adapté à ce type de systèmes. Pour cela, nous avons suivi l'approche proposée par [7, 8]: l'utilisation d'un mécanisme pour ré-assigner de nouveaux identifiants aux élements stockées dans la séquence. Nous avons donc proposé un nouveau mécanisme appartenant à cette approche pour le CRDT LogootSplit [11].

Notre proposition prend la forme d'un nouvel CRDT pour Séquence à granularité variable : RenamableLogootSplit. Ce nouveau CRDT associe à LogootSplit un nouveau type de modification, ren, permettant de produire une nouvelle séquence équivalente à son état précédent. Cette nouvelle modification tire profit de la granularité variable de la séquence pour produire un état de taille minimale : elle assigne à tous les éléments des identifiants de position issus d'un même intervalle. Ceci nous permet de minimiser les métadonnées que la séquence doit stocker de manière effective. De plus, le passage à une représentation interne minimale de la séquence nous permet d'améliorer le coût des modifications suivantes en termes de calculs.

Afin de gérer les opérations concurrentes aux opérations ren, nous définissons pour ces dernières un algorithme de transformation. Pour cela, nous définissons un mécanisme d'époques nous permettant d'identifier la concurrence entre opérations. De plus, nous introduisons une relation d'ordre strict total, priority, pour résoudre de manière déterministe le conflit provoqué par deux opérations ren, c.-à-d. pour déterminer quelle opération ren privilégier. Finalement, nous définissons deux algorithmes, renameId et revertRenameId, qui permettent de transformer les opérations concurrentes à une opération ren pour prendre en compte l'effet de cette dernière. Ainsi, notre algorithme permet de détecter et de transformer les opérations concurrentes aux opérations ren, sans nécessiter une coordination synchrone entre les noeuds. Le surcoût induit par ce mécanisme, notamment en termes de calculs, est toutefois contrebalancé par l'amélioration précisée précédemment, c.-à-d. la réduction de la taille de la séquence.

Finalement, le mécanisme que nous proposons est partiellement générique : il peut être adapté à d'autres CRDTs pour Séquence à granularité variable, e.g. un CRDT pour Séquence appartenant à l'approche à pierres tombales. Dans le cadre d'une telle démarche, nous pourrions réutiliser le système d'époques, la relation *priority* et l'algorithme de contrôle qui identifie les transformations à effectuer. Pour compléter une telle adaptation, nous devrions cependant concevoir de nouveaux algorithmes renameId et revertRenameId spécifiques et adaptés au CRDT choisi.

Le mécanisme de renommage que nous présentons souffre néanmoins de plusieurs limites. La première d'entre elles concerne ses performances. En effet, notre évaluation expérimentale a mis en lumière le coût important en l'état de la modification ren par rapport aux autres modifications en termes de calculs (cf. section 3.4.3, page 98). De plus, chaque opération ren comporte une représentation de l'ancien état qui doit être maintenue par les noeuds jusqu'à leur stabilité causale. Le surcoût en métadonnées introduit par un ensemble d'opérations ren concurrentes peut donc s'avérer important, voire pénalisant (cf. section 3.4.3, page 95). Pour répondre à ces problèmes, nous identifions trois axes d'amélioration :

- (i) La définition de stratégies de déclenchement du renommage efficaces. Le but de ces stratégies serait de déclencher le mécanisme de renommage de manière fréquente, de façon à garder son temps d'exécution acceptable, mais tout visant à minimiser la probabilité que les noeuds produisent des opérations *ren* concurrentes, de façon à minimiser le surcoût en métadonnées.
- (ii) La définition de relations *priority* efficaces. Nous développons ce point dans la soussection 4.2.1.
- (iii) La proposition d'algorithmes de renommage efficaces. Cette amélioration peut prendre la forme de nouveaux algorithmes pour renameId et revertRenameId offrant une meilleure complexité en temps. Il peut aussi s'agir de la conception d'une nouvelle approche pour renommer l'état et gérer les modifications concurrentes, e.g. un mécanisme de renommage basé sur le journal des opérations (cf. sous-section 3.5.7, page 108).

Une seconde limite de RenamableLogootSplit que nous identifions concerne son mécanisme de GC des métadonnées introduites par le mécanisme de renommage. En effet, pour fonctionner, ce dernier repose sur la stabilité causale des opérations ren. Pour rappel, la stabilité causale représente le contexte causal commun à l'ensemble des noeuds du système. Pour le déterminer, chaque noeud doit récupérer le contexte causal de l'ensemble des noeuds du système. Ainsi, l'utilisation de la stabilité causale comme pré-requis pour la GC de métadonnées constitue une contrainte forte, voire prohibitive, dans les systèmes P2P à large échelle sujet au churn. En effet, un noeud du système déconnecté de manière définitive suffit pour empêcher la stabilité causale de progresser, son contexte causal étant alors indéterminé du point de vue des autres noeuds. Il s'agit toutefois d'une limite récurrente des mécanismes de GC distribués et asynchrones [58, 33, 81]. Nous présentons une piste de travail possible pour pallier ce problème dans la sous-section 4.2.2.

4.1.2 Éditeur de texte collaboratif P2P chiffré de bout en bout

Les applications collaboratives permettent à des utilisateur-rices de réaliser collaborativement une tâche. Elles permettent à plusieurs utilisateur-rices de consulter la version actuelle du document, de la modifier et de partager leurs modifications avec les autres. Ceci permet de mettre en place une réflexion de groupe, ce qui améliore la qualité du résultat produit [82, 83].

Cependant, les applications collaboratives sont historiquement des applications centralisées, e.g. Google Docs [9]. Ce type d'architecture induit des défauts d'un point de vue

technique, e.g. faible capacité de passage à l'échelle et faible tolérance aux pannes, mais aussi d'un point de vue utilisateur, e.g. perte de la souveraineté des données et absence de garantie de pérennité.

Les travaux de l'équipe Coast s'inscrivent dans une mouvance souhaitant résoudre ces problèmes et qui a conduit à la définition d'un nouveau paradigme d'applications : les LFS [84]. Le but de ce paradigme est la conception d'applications collaboratives, P2P, pérennes et rendant la souveraineté de leurs données aux utilisateur-rices.

Dans le cadre de cette démarche, l'équipe Coast développe depuis plusieurs années l'application Multi User Text Editor (MUTE), un éditeur de texte web collaboratif P2P temps réel chiffré de bout en bout. Cette application sert à la fois de plateforme de démonstration et de recherche pour les travaux de l'équipe, mais aussi de PoC pour les LFS.

Dans le cadre de cette thèse, nous avons implémenté dans MUTE nos travaux de recherche portant sur le nouvel CRDT pour le type Séquence : RenamableLogootSplit. MUTE a aussi servi à l'équipe pour présenter ses travaux concernant l'authentification des utilisateur-rices dans un système P2P [15]. Finalement, MUTE nous a permis de nous d'étudier et/ou de présenter les travaux de recherche existants concernant :

- (i) Les protocoles distribués d'appartenance au groupe [16].
- (ii) Les mécanismes d'anti-entropie [40].
- (iii) Les protocoles d'établissement de clés de chiffrement de groupe [19].
- (iv) Les protocoles d'établissement de topologies réseaux efficientes [18].
- (v) Les mécanismes de conscience de groupe.

MUTE offre donc, à notre connaissance, le tour d'horizon le plus complet des travaux de recherche permettant la conception d'applications LFS. Cependant, cela ne dispense pas MUTE de souffrir de plusieurs limites.

Tout d'abord, l'environnement web implique un certain nombre de contraintes, notamment au niveau des technologies et protocoles disponibles. Notamment, le protocole WebRTC repose sur l'utilisation de serveurs de signalisation, c.-à-d. de points de rendezvous des pairs, et de serveurs de relai, c.-à-d. d'intermédiaires pour communiquer entre pairs lorsque les configurations de leur réseaux respectifs interdisent l'établissement d'une connection directe. Ainsi, les applications P2P web doivent soit déployer et maintenir leur propre infrastructure de serveurs, soit reposer sur une infrastructure existante, e.g. celle proposée par OpenRelay [85]. Afin de minimiser l'effort requis aux applications P2P et la confiance exigée à leurs utilisateur-rices, nous devons supporter la mise en place d'une telle infrastructure transparente et pérenne.

Une autre limite de ce système que nous identifions concerne l'utilisabilité des systèmes P2P de manière générale. L'expérience vécue suivante constitue à notre avis un exemple éloquent des limites actuelles de l'application MUTE dans ce domaine. Après avoir rédigé une version initiale d'un document, nous avons envoyé le lien du document à notre collaborateur pour relecture et validation. Lorsque notre collaborateur a souhaité accéder au document, celui-ci s'est retrouvé devant une page blanche : comme nous nous étions déconnecté du système entretemps, c.-à-d. plus aucun pair n'était disponible pour effectuer une synchronisation. Notre collaborateur était donc dans l'incapacité de récupérer l'état et d'effectuer sa tâche. Afin de pallier ce problème, une solution possible est

de faire reposer MUTE sur un réseau P2P global, e.g. le réseau de InterPlanetary File System (IPFS) [86], et d'utiliser les pairs de ce dernier, potentiellement des pairs étrangers à l'application, comme pairs de stockage pour permettre une synchronisation future. Cette solution limite ainsi le risque qu'un pair ne puisse récupérer l'état du document faute de pairs disponibles. Cependant, elle nécessite de mettre en place un mécanisme de réplication de données additionnel. Ce mécanisme de réplication sur des pairs additionnels doit cependant garantir qu'il n'introduit pas de vulnérabilités, e.g. la possibilité pour les pairs de stockage selectionnés de reconstruire et consulter le document.

4.2 Perspectives

4.2.1 Définition de relations de priorité pour minimiser les traitements

Dans la sous-section 3.3.2, nous avons spécifié la relation *priority* (cf. Définition 46, page 76). Pour rappel, cette relation doit établir un ordre strict total sur les époques de notre mécanisme de renommage.

Cette relation nous permet ainsi de résoudre le conflit provoqué par la génération de modifications ren concurrentes en les ordonnant. Grâce à cette relation relation d'ordre, les noeuds peuvent déterminer vers quelle époque de l'ensemble des époques connues progresser. Cette relation permet ainsi aux noeuds de converger à une époque commune à terme.

La convergence à terme à une époque commune présente plusieurs avantages :

- (i) Réduire la distance entre les époques courantes des noeuds, et ainsi minimiser le surcoût en calculs par opération du mécanisme de renommage. En effet, il n'est pas nécessaire de transformer une opérations livrée avant de l'intégrer si celle-ci provient de la même époque que le noeud courant.
- (ii) Définir un nouveau PPAC entre les époques courantes des noeuds. Cela permet aux noeuds d'appliquer le mécanisme de GC pour supprimer les époques devenues obsolètes et leur anciens états associés, pour ainsi minimiser le surcoût en métadonnées du mécanisme de renommage.

Il existe plusieurs manières pour définir la relation *priority* tout en satisfaisant les propriétés indiquées. Dans le cadre de ce manuscrit, nous avons utilisé l'ordre lexicographique sur les chemins des époques dans l'arbre des époques pour définir *priority*. Cette approche se démarque par :

- (i) Sa simplicité.
- (ii) Son surcoût limité, c.-à-d. cette approche n'introduit pas de métadonnées supplémentaires à stocker et diffuser, et l'algorithme de comparaison utilisé est simple.
- (iii) Sa propriété arrangeante sur les déplacements des noeuds dans l'arbre des époques. De manière plus précise, cette définition de *priority* impose aux noeuds de se déplacer que vers l'enfant le plus à droite de l'arbre des époques. Ceci empêche les

noeuds de faire un aller-retour entre deux époques données. Cette propriété permet de passer outre une contrainte concernant le couple de fonctions renameId et revertRenameId : leur reciprocité.

Cette définition présente cependant plusieurs limites. La limite que nous identifions est sa décorrélation avec le coût et le bénéfice de progresser vers l'époque cible désignée. En effet, l'époque cible est désignée de manière arbitraire par rapport à sa position dans l'arbre des époques. Il est ainsi possible que progresser vers cette époque détériore l'état de la séquence, c.-à-d. augmente la taille des identifiants et augmente le nombre de blocs. De plus, la transition de l'ensemble des noeuds depuis leur époque courante respective vers cette nouvelle époque cible induit un coût en calculs, potentiellement important (cf. Figure 3.17, page 105).

Pour pallier ce problème, il est nécessaire de proposer une définition de *priority* prenant l'aspect efficacité en compte. L'approche considérée consisterait à inclure dans les opérations *ren* une ou plusieurs métriques qui représente le travail accumulé sur la branche courante de l'arbre des époques, e.g. le nombre d'opérations intégrées, les noeuds actuellement sur cette branche... L'ordre strict total entre les époques serait ainsi construit à partir de la comparaison entre les valeurs de ces métriques de leur opération *ren* respective.

Il conviendra d'adjoindre à cette nouvelle définition de *priority* un nouveau couple de fonctions renameId et revertRenameId respectant la contrainte de réciprocité de ces fonctions, ou de mettre en place une autre implémentation du mécanisme de renommage ne nécessitant pas cette contrainte, telle qu'une implémentation basée sur le journal des opérations (cf. sous-section 3.5.7, page 108).

Il conviendra aussi d'étudier la possibilité de combiner l'utilisation de plusieurs relations *priority* pour minimiser le surcoût global du mécanisme de renommage, e.g. en fonction de la distance entre deux époques.

Finalement, il sera nécessaire de valider l'approche proposée par une évaluation comparative par rapport à l'approche actuelle. Cette évaluation pourrait consister à monitorer le coût du système pour observer si l'approche proposée permet de réduire les calculs de manière globale. Plusieurs configurations de paramètres pourraient aussi être utilisées pour déterminer l'impact respectif de chaque paramètre sur les résultats.

4.2.2 Détection et fusion manuelle de versions distantes

À l'issue de cette thèse, nous constatons plusieurs limites des mécanismes de résolution de conflits automatiques dans les systèmes P2P à large échelle sujet au churn. La première d'entre elles est l'utilisation d'un contexte causal. Le contexte causal est utilisé par les mécanismes de résolution de conflits pour :

- (i) Satisfaire le modèle de cohérence causale, c.-à-d. assurer que si nous avons deux modifications m_1 et m_2 telles que $m_1 \rightarrow m_2$, alors l'effet de m_2 supplantera celui de m_1 . Ceci permet d'éviter des anomalies de comportement de la part de la structure de données du point de vue des utilisateur-rices, par exemple la résurgence d'un élément supprimé au préalable.
- (ii) Permettre de préserver l'intention d'une modification malgré l'intégration préalable de modifications concurrentes.

Le contexte causal est utilisé de manière différente en fonction du mécanisme de résolution de conflit. Dans l'approche OT, le contexte causal est utilisé par l'algorithme de contrôle pour déterminer les modifications concurrentes à une modification lors de son intégration, afin de prendre en compte leurs effets. Dans l'approche CRDT, le contexte causal est utilisé par la structure de données répliquée à la génération de la modification pour en faire une modification nativement commutative avec les modifications concurrentes, c.-à-d. pour en faire un élément du sup-demi-treillis représentant la structure de données répliquée.

Le contexte causal peut être représenté de différentes manières. Par exemple, le contexte causal peut prendre la forme d'un vecteur de version [37, 38] ou d'un Directed Acyclic Graph (DAG) des modifications [39]. Cependant, de manière intrinsèque, le contexte causal ne fait que de croître au fur et à mesure que des modifications sont effectuées ou que des noeuds rejoignent le système, incrémentant son surcoût en métadonnées, calculs et bande-passante.

La stabilité causale permet cependant de réduire le surcoût lié au contexte causal. En effet, la stabilité causale permet d'établir le contexte commun à l'ensemble des noeuds, c.-à-d. l'ensemble des modifications que l'ensemble des noeuds ont intégré. Ces modifications font alors partie de l'histoire commune et n'ont plus besoin d'être considérées par les mécanismes de résolution de conflits automatiques. La stabilité causale permet donc de déterminer et de tronquer la partie commune du contexte causal pour éviter que ce dernier ne pénalise les performances du système à terme.

La stabilité causale est cependant une contrainte forte dans les systèmes P2P dynamiques à large échelle sujet au churn. Il ne suffit en effet que d'un noeud déconnecté pour empêcher la stabilité causale de progresser. Pour répondre à ce problème, nous avons dès lors tout un spectre d'approches possibles, proposant chacune un compromis entre le surcoût du contexte causal et la probabilité de rejeter des modifications. Les extremités de ce spectre d'approches sont les suivantes :

- (i) Considérer tout noeud déconnecté comme déconnecté de manière définitive, et donc les ignorer dans le calcul de la stabilité causale. Cette première approche permet à la stabilité causale de progresser, et ainsi aux noeuds connectés de travailler dans des conditions optimales. Mais elle implique cependant que les modifications potentielles des noeuds déconnectés soient perdues, c.-à-d. de ne plus pouvoir les intégrer en l'absence d'un lien entre leur contexte causal de génération et le contexte causal actuel de chaque autre noeud. Il s'agit là de la stratégie la plus aggressive en terme de GC du contexte causal.
- (ii) Assurer en toutes circonstances la capacité d'intégration des modifications des noeuds, même ceux déconnectés. Cette seconde approche permet de garantir que les modifications potentielles des noeuds déconnectés pourront être intégrées automatiquement, dans l'éventualité où ces derniers se reconnectent à terme. Mais elle implique de bloquer potentiellement de manière définitive la stabilité causale et donc le mécanisme de GC du contexte causal. Il s'agit là de la stratégie la plus timide en terme de GC du contexte causal.

La seconde limite que nous constatons est la limite des mécanismes actuels de résolution de conflits automatiques pour préserver l'intention des utilisateur-rices. Par exemple, les mécanismes de résolution de conflits automatiques pour le type Séquence présentés dans ce manuscrit (cf. section 2.3, page 29) définissent l'intention de la manière suivante : l'intégration de la modification par les noeuds distants doit reproduire l'effet de la modification sur la copie d'origine. Cette définition assure que chaque modification est porteuse d'une intention, mais limite voire ignore toute la dimension sémantique de la dite intention. Nous conjecturons que l'absence de dimension sémantique réduit les cas d'utilisation de ces mécanismes.

Considérons par exemple une édition collaborative d'un même texte par un ensemble de noeuds. Lors de la présence d'une faute de frappe dans le texte, e.g. le mot "HLLO", plusieurs utilisateur-rices peuvent la corriger en concurrence, c.-à-d. insérer l'élément "E" entre "H" et "L". Les mécanismes de résolution de conflits automatiques permettent aux noeuds d'obtenir des résultats qui convergent mais à notre sens insatisfaisant, e.g. "HEEEEELLO". Nous considérons ce type de résultats comme des anomalies, au même titre que l'entrelacement [71]. Dans le cadre de collaborations temps réel à échelle limitée, nous conjecturons cependant qu'une granularité fine des modifications permet de pallier ce problème. En effet, les utilisateur-rices peuvent observer une anomalie produite par le mécanisme de résolution de conflits automatique, déduire l'intention initiale des modifications concernées et la restaurer par le biais d'actions supplémentaires de compensation.

Cependant, dans le cadre de collaborations asynchrones ou à large échelle, nous conjecturons que ces anomalies de résolution de conflits s'accumulent. Cette accumulation peut atteindre un seuil rendant laborieuse la déduction et le rétablissement de l'intention initiale des modifications. Le travail imposé aux utilisateur-rices pour résoudre ces anomalies par le biais d'actions de compensation peut alors entraver la collaboration. Pour reprendre l'exemple de l'édition collaborative de texte, nous pouvons constater de tels cas suite à de la duplication de contenu et/ou l'entrelacement de mots, phrases voire paragraphes nuisant à la clarté et correction du texte. Il convient alors de s'interroger sur le bien-fondé de l'utilisation de mécanismes de résolutions de conflits automatiques pour intégrer un ensemble de modifications dans l'ensemble des situations.

Ainsi, pour répondre aux limites des mécanismes de résolution conflits automatiques dans les systèmes P2P à large échelle, c.-à-d. l'augmentation de leur surcoût et la pertinence de leur résultat, nous souhaitons proposer une approche combinant un ou des mécanismes de résolution de conflits automatiques avec un ou des mécanismes de résolution de conflits manuels. L'idée derrière cette approche est de faire varier le mécanisme de résolution de conflits utilisé pour intégrer des modifications. Le choix du mécanisme de résolution de conflits utilisé peut se faire à partir de la valeur d'une distance calculée entre la version courante de la donnée répliquée et celle de la génération de la modification à intégrer, ou d'une évaluation de la qualité du résultat de l'intégration de la modification. Par exemple :

- (i) Si la distance calculée se trouve dans un intervalle de valeurs pour lequel nous disposons d'un mécanisme de résolution de conflits automatique satisfaisant, utiliser ce dernier. Ainsi, nous pouvons envisager de reposer sur plusieurs mécanismes de résolution de conflits automatiques, de plus en plus complexes et pertinents mais coûteux, sans dégrader les performances du système dans le cas de base.
- (ii) Si la distance calculée dépasse la distance seuil, c.-à-d. que nous ne disposons plus

à ce stade de mécanismes de résolution de conflits automatiques satisfaisants, faire intervenir les utilisateur-rices par le biais d'un mécanisme de résolution de conflits manuel. L'utilisation d'un mécanisme manuel n'exclut cependant pas tout pré-travail de notre part pour réduire la charge de travail des utilisateur-rices dans le processus de fusion.

Dans un premier temps, cette approche pourrait se focaliser sur un type d'application spécifique, e.g. l'édition collaborative de texte.

Cette approche nous permettrait de répondre aux limites soulevées précédemment. En effet, elle permettrait de limiter la génération d'anomalies par le mécanisme de résolution de conflits automatique en faisant intervenir les utilisateur-rices. Puis, puisque nous déléguons aux utilisateur-rices l'intégration des modifications à partir d'une distance seuil, nous pouvons dès lors reconsidérer les métadonnées conservées par les noeuds pour les mécanismes de résolution de conflits automatiques. Notamment, nous pouvons identifier les noeuds se trouvant au-delà de cette distance seuil d'après leur dernier contexte causal connu et ne plus les prendre en compte pour le calcul de la stabilité causale. Cette approche permettrait donc de réduire le surcoût lié au contexte causal et limiter la perte de modifications, tout en prenant en considération l'ajout de travail aux utilisateur-rices.

Pour mener à bien ce travail, il conviendra tout d'abord de définir la notion de distance entre versions de la donnée répliquée. Nous envisageons de baser cette dernière sur les deux aspects temporel et spatial, c.-à-d. en utilisant la distance entre contextes causaux et la distance entre contenus. Dans le cadre de l'édition collaborative, nous pourrons pour cela nous baser sur les travaux existants pour évaluer la distance entre deux textes. Matthieu: TODO: Insérer refs distance de Hamming, Levenstein, String-to-string correction problem (Tichy et al)

Il conviendra ensuite de déterminer comment établir la valeur seuil à partir de laquelle la distance entre versions est jugée trop importante. Les approches d'évaluation de la qualité du résultat [87] pourront être utilisées pour déterminer un couple (méthode de calcul de la distance, valeur de distance) spécifiant les cas pour lesquels les méthodes de résolution de conflits automatiques ne produisent plus un résultat satisfaisant. Matthieu: TODO: Insérer refs travaux Claudia et Vinh Le couple obtenu pourra ensuite être confirmé par le biais d'expériences utilisateurs inspirées de [75, 76].

Finalement, il conviendra de proposer un mécanisme de résolution de conflits adapté pour gérer les éventuelles fusions d'une même modification de façon concurrente par un mécanisme automatique et par un mécanisme manuel, ou à défaut un mécanisme de conscience de groupe invitant les utilisateur-rices à effectuer des actions de compensation.

4.2.3 Étude comparative des différents modèles de synchronisation pour CRDTs

Comme évoqué dans l'état de l'art (cf. section 2.2.2, page 26), un nouveau modèle de synchronisation pour CRDT fut proposé récemment [34]. Ce dernier propose une synchronisation des noeuds par le biais de différences d'états.

Pour rappel, ce nouveau modèle de synchronisation se base sur le modèle de synchronisation par états. Il partage les mêmes pré-requis, à savoir la nécessité d'une fonction

merge associative, commutative et idempotente. Cette dernière doit permettre de la fusion toute paire d'états possible en calculant leur borne supérieure, c.-à-d. leur LUB [24].

La spécificité de ce nouveau modèle de synchronisation est de calculer pour chaque modification la différence d'état correspondante. Cette différence correspond à un élément irréductible du sup-demi-treillis du CRDT [46], c.-à-d. un état particulier de ce dernier. Cet élément irréductible peut donc être diffusé et intégré par les autres noeuds, toujours à l'aide de la fonction merge.

Ce modèle de synchronisation permet alors d'adopter une variété de stratégies de synchronisation, e.g. diffusion des différences de manière atomique, fusion de plusieurs différences puis diffusion du résultat..., et donc de répondre à une grande variété de cas d'utilisation.

Dans notre comparaison des modèles de synchronisation (cf. section 2.2.2, page 27), nous avons justifié que les CRDTs synchronisés par différences d'états peuvent être utilisés dans les mêmes contextes que les CRDTs synchronisés par états et que les CRDTs synchronisés par opérations. Cette conclusion nous mène à reconsidérer l'intérêt des autres modèles de synchronisation de nos jours.

Par exemple, un CRDT synchronisé par différences d'états correspond à un CRDT synchronisé par états dont nous avons identifié les éléments irréductibles. La différence entre ces deux modèles de synchronisation semble reposer seulement sur la possibilité d'utiliser ces éléments irréductibles pour propager les modifications, en place et lieu des états complets. Nous conjecturons donc que le modèle de synchronisation par états est rendu obsolète par celui par différences d'états. Il serait intéressant de confirmer cette supposition.

En revanche, l'utilisation du modèle de synchronisation par opérations conduit généralement à une spécification différente du CRDT, les opérations permettant d'encoder plus librement les modifications. Notamment, l'utilisation d'opérations peut mener à des algorithmes d'intégration des modifications différents que ceux de la fonction merge. Il convient de comparer ces algorithmes pour déterminer si le modèle de synchronisation par opérations peut présenter un intérêt en termes de surcoût.

Au-delà de ce premier aspect, il convient d'explorer d'autres pistes pouvant induire des avantages et inconvénients pour chacun de ces modèles de synchronisation. À l'issue de cette thèse, nous identifions les pistes suivantes :

- (i) La composition de CRDTs, c.-à-d. la capacité de combiner et de mettre en relation plusieurs CRDTs au sein d'un même système, afin d'offrir des fonctionnalités plus complexes. Par exemple, une composition de CRDTs peut se traduire par l'ajout de dépendances entre les modifications des différents CRDTs composés. Le modèle de synchronisation par opérations nous apparaît plus adapté pour cette utilisation, de par le découplage qu'il induit entre les CRDTs et la couche de livraison de messages.
- (ii) L'utilisation de CRDTs au sein de systèmes non-sûrs, c.-à-d. pouvant compter un ou plusieurs adversaires byzantins [88]. Dans de tels systèmes, les adversaires byzantins peuvent générer des modifications différentes mais qui sont perçues comme identiques par les mécanismes de résolution de conflits. Cette attaque, nommée équivoque, peut provoquer la divergence définitive des copies. [81] propose une solution adaptée aux systèmes P2P à large échelle. Celle-ci se base notamment sur l'utili-

sation de journaux infalsifiables. *Matthieu: TODO : Ajouter refs* Il convient alors d'étudier si l'utilisation de ces structures ne limite pas le potentiel du modèle de synchronisation par différences d'états, e.g. en interdisant la diffusion des modifications par états complets.

Un premier objectif de notre travail serait de proposer des directives sur le modèle de synchronisation à privilégier en fonction du contexte d'utilisation du CRDT.

Ce travail permettrait aussi d'étudier la combinaison des modèles de synchronisation par opérations et par différences d'états au sein d'un même CRDT. Le but serait notamment d'identifier les paramètres conduisant à privilégier un modèle de synchronisation par rapport à l'autre, de façon à permettre aux noeuds de basculer dynamiquement entre les deux.

4.2.4 Approfondissement du patron de conception de Pure Operation-Based CRDTs

BAQUERO et al. [33] proposent un framework pour concevoir des CRDTs synchronisés par opérations : Pure Operation-Based CRDTs. Ce framework a plusieurs objectifs :

- (i) Proposer une approche partiellement générique pour définir un CRDT synchronisé par opérations.
- (ii) Factoriser les métadonnées utilisées par le CRDT pour le mécanisme de résolution de conflits, notamment pour identifier les éléments, et celles utilisées par la couche livraison, notamment pour identifier les opérations.
- (iii) Inclure des mécanismes de GC de ces métadonnées pour réduire la taille de l'état.

Pour cela, les auteurs se limitent aux CRDTs purs synchronisés par opérations, c.-à-d. les CRDTs dont les modifications enrichies de leurs arguments et d'une estampille fournie par la couche de livraison des messages sont commutatives. Pour ces CRDTs, les auteurs proposent un framework générique permettant leur spécification sous la forme d'un journal partiellement ordonné des opérations, nommé PO-Log. Les auteurs associent le PO-Log à une couche de livraison Reliable Causal Broadcast (RCB) des opérations.

Les auteurs définissent ensuite le concept de stabilité causale. Ce concept leur permet de retirer les métadonnées de causalité des opérations du PO-Log lorsque celles-ci sont déterminées comme étant causalement stables.

Finalement, les auteurs définissent un ensemble de relations, spécifiques à chaque CRDT, qui permettent d'exprimer la *redondance causale*. La redondance causale permet de spécifier quand retirer une opération du PO-Log, car rendue obsolète par une autre opération.

Cette approche souffre toutefois de plusieurs limites. Tout d'abord, elle repose sur l'utilisation d'une couche de livraison RCB. Cette couche satisfait le modèle de livraison causale. Mais pour rappel, ce modèle induit l'ajout de données de causalité précises à chaque opération, sous la forme d'un vecteur de version ou d'une barrière causale. Nous jugeons ce modèle trop coûteux pour un système P2P dynamique à large échelle sujet au churn.

En plus du coût induit en termes de métadonnées et de bande-passante, le modèle de livraison causale peut aussi introduire un délai superflu dans la livraison des opérations.

En effet, ce modèle impose que tous les messages précédant un nouveau message d'après la relation happens-before soient eux-mêmes livrés avant de livrer ce dernier. Il en résulte que des opérations peuvent être mises en attente par la couche livraison, e.g. suite à la perte d'une de leurs dépendances d'après la relation happens-before, alors que leurs dépendances réelles ont déjà été livrées et que les opérations sont de fait intégrables en l'état. Plusieurs travaux [89, 44] ont noté ce problème. Pour y répondre et ainsi améliorer la réactivité du framework Pure Operation-Based, ils proposent d'exposer les opérations mises en attente par la couche livraison au CRDT. Bien que fonctionnelle, cette approche induit toujours le coût d'une couche de livraison respectant le modèle de livraison causale et nous fait considérer la raison de ce coût, le modèle de livraison n'étant dès lors plus respecté.

Ensuite, ce framework impose que la modification **prepare** ne puisse pas inspecter l'état courant du noeud. Cette contrainte est compatible avec les CRDTs pour les types de données simples qui sont considérés dans [33], e.g. le Compteur ou l'Ensemble. Elle empêche cependant l'expression de CRDTs pour des types de données plus complexes, e.g. la Séquence ou le Graphe. *Matthieu: TODO : À confirmer pour le graphe* Nous jugeons dommageable qu'un framework pour la conception de CRDTs limite de la sorte son champ d'application.

Finalement, les auteurs ne considèrent que des types de données avec des modifications à granularité fixe. Ainsi, ils définissent la notion de redondance causale en se limitant à ce type de modifications. Par exemple, ils définissent que la suppression d'un élément d'un ensemble rend obsolète les ajouts précédents de cet élément. Cependant, dans le cadre d'autres types de données, e.g. la Séquence, une modification peut concerner un ensemble d'éléments de taille variable. Une opération peut donc être rendue obsolète non pas par une opération, mais par un ensemble d'opérations. Par exemple, les suppressions d'éléments formant une sous-chaîne rendent obsolète l'insertion de cette sous-chaîne. Ainsi, la notion de redondance causale est incomplète et souffre de l'absence d'une notion d'obsolescence partielle d'une opération.

Pour répondre aux différents problèmes soulevés, nous souhaitons proposer une extension du framework Pure Operation-Based CRDTs. Nos objectifs sont les suivants :

- (i) Proposer un framework mettant en lumière la présence et le rôle de deux modèles de livraison :
 - (i) Le modèle de livraison minimal requis par le CRDT pour assurer la convergence forte à terme [6].
 - (ii) Le modèle de livraison utilisé par le système, qui doit être égal ou plus contraint que modèle de livraison minimal du CRDT. Ce second modèle de livraison est une stratégie permettant au système de respecter un modèle de cohérence donné et régissant les règles de compaction de l'état. Il peut être amené à évoluer en fonction de l'état du système et de ses besoins. Par exemple, un système peut par défaut utiliser le modèle de livraison causale pour assurer le modèle de cohérence causal. Puis, lorsque le nombre de noeuds atteint un seuil donné, le système peut passer au modèle de livraison FIFO pour assurer le modèle de cohérence PRAM afin de réduire les coûts en bande-passante.
- (ii) Étendre la notion de redondance causale pour prendre en compte la redondance partielle des opérations. De plus, nous souhaitons rendre cette notion accessible à

- la couche de livraison, pour détecter au plus tôt les opérations désormais obsolètes et prévenir leur diffusion.
- (iii) Identifier et classifier les mécanismes de résolution de conflits, pour déterminer lesquels sont indépendants de l'état courant pour la génération des opérations et lesquels nécessitent d'inspecter l'état courant dans **prepare**.

main: version du jeudi 6 octobre 2022 à 9 h 00

Chapitre 4. Conclusions et perspectives

Annexe A

Entrelacement d'insertions concurrentes dans Treedoc

 $\label{eq:figure} \mbox{Figure A.1-Modifications concurrentes d'une séquence Treedoc résultant en un entre-lacement}$

Matthieu: TODO: Réaliser au propre contre-exemple. Nécessite que $d_E < d_O$, inverser A et B histoire d'éviter toute confusion. En soi, C pas nécessaire, à voir si le conserve.

main: version du jeudi 6 octobre 2022 à 9 h 00

Annexe A. Entrelacement d'insertions concurrentes dans Treedoc

Annexe B

Algorithmes RENAMEID

Algorithme 6 Remaining functions to rename an identifier

```
function RENIDLESSTHANFIRSTID(id, newFirstId)
    \textbf{if} \ \mathrm{id} < \mathrm{newFirstId} \ \textbf{then}
        {\bf return} \,\, {\rm id}
    else
        pos \leftarrow position(newFirstId)
        nId \leftarrow nodeId(newFirstId)
        nSeq \leftarrow nodeSeq(newFirstId)
        predNewFirstId \leftarrow new Id(pos, nId, nSeq, -1)
        \mathbf{return}\ \mathrm{concat}(\mathrm{predNewFirstId},\ \mathrm{id})
end function
function RENIDGREATERTHANLASTID(id, newLastId)
    {f if} \ {
m id} < {
m newLastId} \ {f then}
        return concat(newLastId, id)
    else
        {f return} id
    end if
end function
```

main: version du jeudi 6 octobre 2022 à 9 h 00

Annexe B. Algorithmes RENAMEID

Annexe C Algorithmes REVERTRENAMEID

Algorithme 7 Remaining functions to revert an identifier renaming

```
function REVRENIDLESSTHANNEWFIRSTID(id, firstId, newFirstId)
    predNewFirstId \leftarrow createIdFromBase(newFirstId, -1)
    if isPrefix(predNewFirstId, id) then
       tail \leftarrow getTail(id, 1)
       if \ {\rm tail} < {\rm firstId} \ then
           return tail
       else
                                                        \triangleright id has been inserted causally after the rename op
           offset \leftarrow getLastOffset(firstId)
           predFirstId ← createIdFromBase(firstId, offset)
           return concat(predFirstId, MAX TUPLE, tail)
       end if
    else
       \mathbf{return} id
    end if
end function
function REVRENIDGREATERTHANNEWLASTID(id, lastId)
   \textbf{if} \ \mathrm{id} < \mathrm{lastId} \ \textbf{then}
                                                        \triangleright id has been inserted causally after the rename op
       return concat(lastId, MIN TUPLE, id)
    else if isPrefix(newLastId, id) then
       tail \leftarrow getTail(id, 1)
       if tail < lastId then
                                                        \triangleright id has been inserted causally after the rename op
           return concat(lastId, MIN_TUPLE, tail)
       else if tail < newLastId then
           return tail
       else
                                                        \triangleright id has been inserted causally after the rename op
           return id
       end if
    else
       return id
    end if
end function
```

Index

Voici un index

FiXme:

Notes:

- 10 : Matthieu : TODO : Ajouter refs, celles utilisées dans [57]., 35
- 11 : Matthieu : TODO : Autres Sequence CRDTs à considérer : Stringwise CRDT [70], Chronofold [74], 48
- 12 : Matthieu : TODO : Revoir refs utilisées ici, 48
- 13 : Matthieu : TODO : Ajouter MàJ de generateId ici. Pour profiter de cette fonctionnalité, LogootSplit propose une nouvelle fonction generateId. Le principal ajout est un cas supplémentaire favorisant la génération d'un id contigu dans le cas où predId est le dernier élément d'un intervalle d'identifiants de l'auteur. Le booléen isAppendable est nécessaire pour éviter de re-générer un identifiant avec un triplet nodeId,seq,offset déjà utilisé. , 53
- 14 : Matthieu : TODO : Serait plus intéressant de proposer des stats sur la taille des ids, le nombre de blocs composant la séquence, le nombre d'éléments par blocs et la proportion de la taille du contenu sur la taille de la structure de données en fonction du nombre d'opérations jouées. Pose la question de quand introduire le protocole suivi pour générer les traces., 61
- 15 : Matthieu : TODO : Ajouter une partie sur la discussion qu'on a pu

- avoir avec les reviewers sur la présence de pierres tombales dans RenamableLogootSplit, et comment ces pierres tombales diffèrent de celles présentent dans WOOT et RGA., 102
- 16: Matthieu: TODO: Ajouter conclusion à cette sous-section, 109
- 17 : Matthieu : TODO : Revoir ce point pour indiquer que stabilité causale n'est pas une condition raisonnable dans systèmes sujets au churn. Qu'à notre sens, rend cette solution inadéquate par rapport au modèle du système. Mais préciser que majorité des noeuds dans ce type de système se connectent de manière éphèmère, c.-à-d. ne reviennent jamais. Mais principe d'une collaboration est de collaborer. Si noeuds ne collaborent pas ou mal, e.g. font un truc dans leur coin pendant X mois (dépendant du cas d'application), nous paraît justifier de les retirer de la collaboration., 112
- 18 : Matthieu : TODO : Insérer refs distance de Hamming, Levenstein, String-to-string correction problem (Tichy et al), 121
- 19 : Matthieu : TODO : Insérer refs travaux Claudia et Vinh, 121
- 1 : Matthieu : TODO : Voir si angle écologique/réduction consommation d'énergie peut être pertinent., 2
- 20: Matthieu: TODO: Ajouter refs,

123

- 21 : Matthieu : TODO : À confirmer pour le graphe, 124
- 22 : Matthieu : TODO : Réaliser au propre contre-exemple. Nécessite que $d_E < d_O$, inverser A et B histoire d'éviter toute confusion. En soi, C pas nécessaire, à voir si le conserve. , 127
- 2 : Matthieu : NOTE : Pourrait insérer exemple de conflits de l'édition collaborative ici., 3
- 3 : Matthieu : TODO : Trouver et ajouter références, 6
- 4 : Matthieu : TODO : Vérifier du côté des applis de IPFS, 6
- 5 : Matthieu : TODO : Faire le lien avec les travaux de Burckhardt [27] et les MRDTs [28], 16
- 6 : Matthieu : TODO : Ajouter refs des horloges logiques plus intelligentes (Interval Tree Clock, Hybrid Clock...), 17
- 7 : Matthieu : TODO : Ajouter refs Scuttlebutt si applicable à Op-based, 24
- 8: Matthieu : TODO : Ajouter refs, 25
- 9 : Matthieu : TODO : Vérifier que c'est bien le cas dans [44], 25

FiXme (Matthieu):

Notes:

- 10 : TODO : Ajouter refs, celles utilisées dans [57]., 35
- 11 : TODO : Autres Sequence CRDTs à considérer : String-wise CRDT [70], Chronofold [74], 48
- 12 : TODO : Revoir refs utilisées ici, 48
- 13 : TODO : Ajouter MàJ de generateId ici. Pour profiter de cette fonctionnalité, LogootSplit propose une nouvelle fonction generateId. Le principal ajout est un cas supplémentaire favorisant la génération d'un id

- contigu dans le cas où predId est le dernier élément d'un intervalle d'identifiants de l'auteur. Le booléen isAppendable est nécessaire pour éviter de re-générer un identifiant avec un triplet nodeId,seq,offset déjà utilisé. . 53
- 14 : TODO : Serait plus intéressant de proposer des stats sur la taille des ids, le nombre de blocs composant la séquence, le nombre d'éléments par blocs et la proportion de la taille du contenu sur la taille de la structure de données en fonction du nombre d'opérations jouées. Pose la question de quand introduire le protocole suivi pour générer les traces., 61
- 15 : TODO : Ajouter une partie sur la discussion qu'on a pu avoir avec les reviewers sur la présence de pierres tombales dans RenamableLogootSplit, et comment ces pierres tombales diffèrent de celles présentent dans WOOT et RGA., 102
- 16 : TODO : Ajouter conclusion à cette sous-section, 109
- 17: TODO: Revoir ce point pour indiquer que stabilité causale n'est pas une condition raisonnable dans systèmes sujets au churn. Qu'à notre sens, rend cette solution inadéquate par rapport au modèle du système. Mais préciser que majorité des noeuds dans ce type de système se connectent de manière éphèmère, c.-à-d. ne reviennent jamais. Mais principe d'une collaboration est de collaborer. Si noeuds ne collaborent pas ou mal, e.g. font un truc dans leur coin pendant X mois (dépendant du cas d'application), nous paraît justifier de les retirer de la collaboration., 112
- 18 : TODO : Insérer refs distance de Hamming, Levenstein, String-to-string

- correction problem (Tichy et al), 121
- 19 : TODO : Insérer refs travaux Claudia et Vinh, 121
- 1 : TODO : Voir si angle écologique/réduction consommation d'énergie peut être pertinent., 2
- 20: TODO: Ajouter refs, 123
- 21 : TODO : À confirmer pour le graphe, 124
- 22 : TODO : Réaliser au propre contreexemple. Nécessite que $d_E < d_O$, inverser A et B histoire d'éviter toute confusion. En soi, C pas nécessaire, à voir si le conserve. , 127
- 2 : NOTE : Pourrait insérer exemple de conflits de l'édition collaborative ici., 3
- $3: \ensuremath{\mathsf{TODO}}$: Trouver et ajouter références, 6
- 4 : TODO : Vérifier du côté des applis de IPFS, 6
- 5 : TODO : Faire le lien avec les travaux de Burckhardt [27] et les MRDTs [28], 16
- 6 : TODO : Ajouter refs des horloges logiques plus intelligentes (Interval Tree Clock, Hybrid Clock...), 17
- 7 : TODO : Ajouter refs Scuttlebutt si applicable à Op-based, 24
- 8: TODO: Ajouter refs, 25
- 9 : TODO : Vérifier que c'est bien le cas dans [44], 25

main: version du jeudi 6 octobre 2022 à 9 h 00

 \overline{Index}

Bibliographie

- [1] Eric A. Brewer. « Towards Robust Distributed Systems ». In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing. PODC '00. Portland, Oregon, USA: ACM, 2000, p. 7–. ISBN: 1-58113-183-6. DOI: 10.1145/343477.343502. URL: http://doi.acm.org/10.1145/343477.343502.
- [2] Daniel Abadi. « Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the Story». In: Computer 45.2 (2012), p. 37–42. DOI: 10.1109/MC.2012.33.
- [3] Yasushi SAITO et Marc SHAPIRO. « Optimistic Replication ». In: *ACM Comput. Surv.* 37.1 (mar. 2005), p. 42–81. ISSN: 0360-0300. DOI: 10.1145/1057977. 1057980. URL: https://doi.org/10.1145/1057977.1057980.
- [4] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spreitzer et Carl H Hauser. « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ». In: SIGOPS Oper. Syst. Rev. 29.5 (déc. 1995), p. 172–182. ISSN: 0163-5980. DOI: 10.1145/224057.224070. URL: https://doi.org/10.1145/224057.224070.
- [5] Marc Shapiro et Nuno Preguiça. Designing a commutative replicated data type. Research Report RR-6320. INRIA, 2007. URL: https://hal.inria.fr/inria-00177693.
- [6] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero et Marek Zawirski. « Conflict-Free Replicated Data Types ». In: *Proceedings of the 13th International Symposium on Stabilization, Safety, and Security of Distributed Systems.* SSS 2011. 2011, p. 386–400. Doi: 10.1007/978-3-642-24550-3_29.
- [7] Mihai LETIA, Nuno PREGUIÇA et Marc SHAPIRO. « Consistency without concurrency control in large, dynamic systems ». In: LADIS 2009 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and Middleware. T. 44. Operating Systems Review 2. Big Sky, MT, United States: Assoc. for Computing Machinery, oct. 2009, p. 29–34. DOI: 10.1145/1773912.1773921. URL: https://hal.inria.fr/hal-01248270.
- [8] Marek Zawirski, Marc Shapiro et Nuno Preguiça. « Asynchronous rebalancing of a replicated tree ». In: Conférence Française en Systèmes d'Exploitation (CFSE). Saint-Malo, France, mai 2011, p. 12. URL: https://hal.inria.fr/hal-01248197.
- [9] GOOGLE. Google Docs. URL: https://docs.google.com/.

- [10] Matthieu NICOLAS, VIctorien ELVINGER, Gérald OSTER, Claudia-Lavinia IGNAT et François CHAROY. « MUTE: A Peer-to-Peer Web-based Real-time Collaborative Editor ». In: ECSCW 2017 15th European Conference on Computer-Supported Cooperative Work. T. 1. Proceedings of 15th European Conference on Computer-Supported Cooperative Work Panels, Posters and Demos 3. Sheffield, United Kingdom: EUSSET, août 2017, p. 1–4. DOI: 10.18420/ecscw2017_p5. URL: https://hal.inria.fr/hal-01655438.
- [11] Luc André, Stéphane Martin, Gérald Oster et Claudia-Lavinia Ignat. « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ». In: International Conference on Collaborative Computing: Networking, Applications and Worksharing CollaborateCom 2013. Austin, TX, USA: IEEE Computer Society, oct. 2013, p. 50–59. DOI: 10.4108/icst.collaboratecom. 2013.254123.
- [12] Victorien ELVINGER. « Réplication sécurisée dans les infrastructures pair-à-pair de collaboration ». Theses. Université de Lorraine, juin 2021. URL: https://hal.univ-lorraine.fr/tel-03284806.
- [13] Matthieu NICOLAS, Gerald OSTER et Olivier PERRIN. « Efficient Renaming in Sequence CRDTs ». In: *IEEE Transactions on Parallel and Distributed Systems* 33.12 (déc. 2022), p. 3870–3885. DOI: 10.1109/TPDS.2022.3172570. URL: https://hal.inria.fr/hal-03772633.
- [14] Hoang-Long NGUYEN, Claudia-Lavinia IGNAT et Olivier PERRIN. « Trusternity : Auditing Transparent Log Server with Blockchain ». In : Companion of the The Web Conference 2018. Lyon, France, avr. 2018. DOI: 10.1145/3184558.3186938. URL: https://hal.inria.fr/hal-01883589.
- [15] Hoang-Long NGUYEN, Jean-Philippe EISENBARTH, Claudia-Lavinia IGNAT et Olivier PERRIN. « Blockchain-Based Auditing of Transparent Log Servers ». In: 32th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec). Sous la dir. de Florian KERSCHBAUM et Stefano PARABOSCHI. T. LNCS-10980. Data and Applications Security and Privacy XXXII. Part 1: Administration. Bergamo, Italy: Springer International Publishing, juil. 2018, p. 21–37. DOI: 10.1007/978-3-319-95729-6_2. URL: https://hal.archives-ouvertes.fr/hal-01917636.
- [16] Abhinandan DAS, Indranil GUPTA et Ashish MOTIVALA. « SWIM : scalable weakly-consistent infection-style process group membership protocol ». In : *Proceedings International Conference on Dependable Systems and Networks*. 2002, p. 303–312. DOI: 10.1109/DSN.2002.1028914.
- [17] Armon Dadgar, James Phillips et Jon Currey. « Lifeguard : Local health awareness for more accurate failure detection ». In : 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE. 2018, p. 22–25.

- [18] Brice Nédelec, Julian Tanke, Davide Frey, Pascal Molli et Achour Mosté-Faoui. « An adaptive peer-sampling protocol for building networks of browsers ». In: World Wide Web 21.3 (2018), p. 629–661.
- [19] Mike Burmester et Yvo Desmedt. « A secure and efficient conference key distribution system ». In: Advances in Cryptology EUROCRYPT'94. Sous la dir. d'Alfredo De Santis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, p. 275—286. ISBN: 978-3-540-44717-7.
- [20] Matthieu NICOLAS. « Efficient renaming in CRDTs ». In: Middleware 2018 19th ACM/IFIP International Middleware Conference (Doctoral Symposium). Rennes, France, déc. 2018. URL: https://hal.inria.fr/hal-01932552.
- [21] Matthieu NICOLAS, Gérald OSTER et Olivier PERRIN. « Efficient Renaming in Sequence CRDTs ». In: 7th Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC'20). Heraklion, Greece, avr. 2020. URL: https://hal.inria.fr/hal-02526724.
- [22] Rachid Guerraoui, Matej Pavlovic et Dragos-Adrian Seredinschi. « Trade-offs in replicated systems ». In: *IEEE Data Engineering Bulletin* 39.ARTICLE (2016), p. 14–26.
- [23] Leslie LAMPORT. « Time, Clocks, and the Ordering of Events in a Distributed System ». In: Commun. ACM 21.7 (juil. 1978), p. 558–565. ISSN: 0001-0782. DOI: 10.1145/359545.359563. URL: https://doi.org/10.1145/359545.359563.
- [24] Nuno M. Preguiça, Carlos Baquero et Marc Shapiro. « Conflict-free Replicated Data Types (CRDTs) ». In: CoRR abs/1805.06358 (2018). arXiv: 1805.06358. URL: http://arxiv.org/abs/1805.06358.
- [25] Nuno M. Preguiça. « Conflict-free Replicated Data Types: An Overview ». In: CoRR abs/1806.10254 (2018). arXiv: 1806.10254. URL: http://arxiv.org/abs/1806.10254.
- [26] B. A. DAVEY et H. A. PRIESTLEY. *Introduction to Lattices and Order*. 2^e éd. Cambridge University Press, 2002. DOI: 10.1017/CB09780511809088.
- [27] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang et Marek Zawirski. «Replicated Data Types: Specification, Verification, Optimality». In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '14. San Diego, California, USA: Association for Computing Machinery, 2014, p. 271–284. ISBN: 9781450325448. DOI: 10.1145/2535838. 2535848. URL: https://doi.org/10.1145/2535838.2535848.
- [28] Gowtham KAKI, Swarn PRIYA, KC SIVARAMAKRISHNAN et Suresh JAGANNATHAN. « Mergeable Replicated Data Types ». In: *Proc. ACM Program. Lang.* 3.OOPSLA (oct. 2019). DOI: 10.1145/3360580. URL: https://doi.org/10.1145/3360580.
- [29] Paul R JOHNSON et Robert THOMAS. RFC0677: Maintenance of duplicate databases. RFC Editor, 1975.

- [30] Weihai Yu et Sigbjørn ROSTAD. « A Low-Cost Set CRDT Based on Causal Lengths ». In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data. New York, NY, USA: Association for Computing Machinery, 2020. ISBN: 9781450375245. URL: https://doi.org/10.1145/3380787.3393678.
- [31] Marc Shapiro, Nuno Preguiça, Carlos Baquero et Marek Zawirski. *A comprehensive study of Convergent and Commutative Replicated Data Types*. Research Report RR-7506. Inria Centre Paris-Rocquencourt; INRIA, jan. 2011, p. 50. URL: https://hal.inria.fr/inria-00555588.
- [32] Carlos Baquero, Paulo Sérgio Almeida et Ali Shoker. « Making Operation-Based CRDTs Operation-Based ». In: Proceedings of the First Workshop on Principles and Practice of Eventual Consistency. PaPEC '14. Amsterdam, The Netherlands: Association for Computing Machinery, 2014. ISBN: 9781450327169. DOI: 10.1145/2596631.2596632. URL: https://doi.org/10.1145/2596631.2596632.
- [33] Carlos Baquero, Paulo Sergio Almeida et Ali Shoker. *Pure Operation-Based Replicated Data Types.* 2017. arXiv: 1710.04469 [cs.DC].
- [34] Paulo Sérgio Almeida, Ali Shoker et Carlos Baquero. « Efficient State-Based CRDTs by Delta-Mutation ». In: *Networked Systems*. Sous la dir. d'Ahmed Boua-Jani et Hugues Fauconnier. Cham: Springer International Publishing, 2015, p. 62–76. ISBN: 978-3-319-26850-7.
- [35] Paulo Sérgio Almeida, Ali Shoker et Carlos Baquero. « Delta state replicated data types ». In: Journal of Parallel and Distributed Computing 111 (jan. 2018), p. 162–173. ISSN: 0743-7315. DOI: 10.1016/j.jpdc.2017.08.003. URL: http://dx.doi.org/10.1016/j.jpdc.2017.08.003.
- [36] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin et al. « Consistency, availability, and convergence ». In: *University of Texas at Austin Tech Report* 11 (2011), p. 158.
- [37] Friedemann MATTERN et al. Virtual time and global states of distributed systems. Univ., Department of Computer Science, 1988.
- [38] Colin FIDGE. « Logical Time in Distributed Computing Systems ». In: Computer 24.8 (août 1991), p. 28-33. ISSN: 0018-9162. DOI: 10.1109/2.84874. URL: https://doi.org/10.1109/2.84874.
- [39] Ravi Prakash, Michel Raynal et Mukesh Singhal. « An Adaptive Causal Ordering Algorithm Suited to Mobile Computing Environments ». In: Journal of Parallel and Distributed Computing 41.2 (1997), p. 190–204. ISSN: 0743-7315. DOI: https://doi.org/10.1006/jpdc.1996.1300. URL: https://www.sciencedirect.com/science/article/pii/S0743731596913003.
- [40] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser et C. Kline. « Detection of Mutual Inconsistency in Distributed Systems ». In: *IEEE Trans. Softw. Eng.* 9.3 (mai 1983), p. 240–247. ISSN: 0098-5589. Doi: 10.1109/TSE.1983.236733. URL: https://doi.org/10.1109/TSE.1983.236733.

- [41] Giuseppe DECANDIA, Deniz HASTORUN, Madan JAMPANI, Gunavardhan KAKU-LAPATI, Avinash LAKSHMAN, Alex PILCHIN, Swaminathan SIVASUBRAMANIAN, Peter VOSSHALL et Werner VOGELS. « Dynamo : Amazon's highly available key-value store ». In : ACM SIGOPS operating systems review 41.6 (2007), p. 205–220.
- [42] Nico Kruber, Maik Lange et Florian Schintke. « Approximate Hash-Based Set Reconciliation for Distributed Replica Repair ». In: 2015 IEEE 34th Symposium on Reliable Distributed Systems (SRDS). 2015, p. 166–175. DOI: 10.1109/SRDS. 2015.30.
- [43] Ricardo Jorge Tomé GONÇALVES, Paulo Sérgio ALMEIDA, Carlos BAQUERO et Vitor FONTE. « DottedDB: Anti-Entropy without Merkle Trees, Deletes without Tombstones ». In: 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS). 2017, p. 194–203. DOI: 10.1109/SRDS.2017.28.
- [44] Jim Bauwens et Elisa Gonzalez Boix. « Improving the Reactivity of Pure Operation-Based CRDTs ». In: Proceedings of the 8th Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC '21. Online, United Kingdom: Association for Computing Machinery, 2021. ISBN: 9781450383387. DOI: 10.1145/3447865. 3457968. URL: https://doi.org/10.1145/3447865.3457968.
- [45] Carlos Baquero, Paulo Sérgio Almeida et Ali Shoker. « Making Operation-Based CRDTs Operation-Based ». In: Distributed Applications and Interoperable Systems. Sous la dir. de Kostas Magoutis et Peter Pietzuch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, p. 126–140.
- [46] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero et João Leitão. « Efficient Synchronization of State-Based CRDTs ». In: 2019 IEEE 35th International Conference on Data Engineering (ICDE). 2019, p. 148–159. DOI: 10.1109/ICDE.2019. 00022.
- [47] Clarence A. Ellis et Simon J. Gibbs. « Concurrency Control in Groupware Systems ». In: Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data. SIGMOD '89. Portland, Oregon, USA: Association for Computing Machinery, 1989, p. 399–407. ISBN: 0897913175. DOI: 10.1145/67544. 66963. URL: https://doi.org/10.1145/67544.66963.
- [48] Chengzheng Sun et Clarence Ellis. « Operational transformation in real-time group editors: issues, algorithms, and achievements ». In: *Proceedings of the 1998 ACM conference on Computer supported cooperative work.* 1998, p. 59–68.
- [49] Matthias Ressel, Doris Nitsche-Ruhland et Rul Gunzenhäuser. « An integrating, transformation-oriented approach to concurrency control and undo in group editors ». In: Proceedings of the 1996 ACM conference on Computer supported cooperative work. 1996, p. 288–297.
- [50] Chengzheng Sun, Yun Yang, Yanchun Zhang et David Chen. « A consistency model and supporting schemes for real-time cooperative editing systems ». In: Australian Computer Science Communications 18 (1996), p. 582–591.

- [51] David Sun et Chengzheng Sun. « Context-Based Operational Transformation in Distributed Collaborative Editing Systems ». In: *Parallel and Distributed Systems*, *IEEE Transactions on* 20 (nov. 2009), p. 1454–1470. DOI: 10.1109/TPDS.2008.240.
- [52] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang et David Chen. « Achieving convergence, causality preservation, and intention preservation in real-time cooperative editing systems ». In: ACM Transactions on Computer-Human Interaction (TOCHI) 5.1 (1998), p. 63–108.
- [53] Gérald Oster, Pascal Molli, Pascal Urso et Abdessamad Imine. « Tombstone Transformation Functions for Ensuring Consistency in Collaborative Editing Systems ». In: 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing. 2006, p. 1–10. DOI: 10.1109/COLCOM.2006. 361867.
- [54] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang et David Chen. « Achieving Convergence, Causality Preservation, and Intention Preservation in Real-Time Cooperative Editing Systems ». In: ACM Trans. Comput.-Hum. Interact. 5.1 (mar. 1998), p. 63–108. ISSN: 1073-0516. DOI: 10.1145/274444.274447. URL: https://doi.org/10.1145/274444.274447.
- [55] Stéphane WEISS, Pascal URSO et Pascal MOLLI. « Logoot : A Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks ». In: Proceedings of the 29th International Conference on Distributed Computing Systems - ICDCS 2009. Montreal, QC, Canada: IEEE Computer Society, juin 2009, p. 404-412. DOI: 10.1109/ICDCS.2009.75. URL: http://doi.ieeecomputersociety.org/ 10.1109/ICDCS.2009.75.
- [56] Bernadette Charron-Bost. « Concerning the size of logical clocks in distributed systems ». In: *Information Processing Letters* 39.1 (1991), p. 11–16.
- [57] Gérald OSTER, Pascal URSO, Pascal MOLLI et Abdessamad IMINE. « Data Consistency for P2P Collaborative Editing ». In: ACM Conference on Computer-Supported Cooperative Work CSCW 2006. Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work. Banff, Alberta, Canada: ACM Press, nov. 2006, p. 259–268. URL: https://hal.inria.fr/inria-00108523.
- [58] Hyun-Gul ROH, Myeongjae JEON, Jin-Soo KIM et Joonwon LEE. « Replicated abstract data types: Building blocks for collaborative applications ». In: Journal of Parallel and Distributed Computing 71.3 (2011), p. 354-368. ISSN: 0743-7315. DOI: https://doi.org/10.1016/j.jpdc.2010.12.006. URL: http://www.sciencedirect.com/science/article/pii/S0743731510002716.
- [59] Nuno Preguica, Joan Manuel Marques, Marc Shapiro et Mihai Letia. « A Commutative Replicated Data Type for Cooperative Editing ». In: 2009 29th IEEE International Conference on Distributed Computing Systems. Juin 2009, p. 395–403. DOI: 10.1109/ICDCS.2009.20.

- [60] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno Preguiça et Victor Fonte. « Scalable and Accurate Causality Tracking for Eventually Consistent Stores ». In: Distributed Applications and Interoperable Systems. Sous la dir. de Kostas Magoutis et Peter Pietzuch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, p. 67–81. ISBN: 978-3-662-43352-2.
- [61] Charbel RAHHAL, Stéphane WEISS, Hala SKAF-MOLLI, Pascal URSO et Pascal MOLLI. *Undo in Peer-to-peer Semantic Wikis*. Research Report RR-6870. INRIA, 2009, p. 18. URL: https://hal.inria.fr/inria-00366317.
- [62] Mehdi Ahmed-Nacer, Claudia-Lavinia Ignat, Gérald Oster, Hyun-Gul Roh et Pascal Urso. « Evaluating Crdts for Real-time Document Editing ». In: 11th ACM Symposium on Document Engineering. Sous la dir. d'ACM. Mountain View, California, United States, sept. 2011, p. 103–112. DOI: 10.1145/2034691.2034717. Url: https://hal.inria.fr/inria-00629503.
- [63] Stéphane Weiss, Pascal Urso et Pascal Molli. « Wooki : a P2P Wiki-based Collaborative Writing Tool ». In : t. 4831. Déc. 2007. ISBN : 978-3-540-76992-7. DOI : 10.1007/978-3-540-76993-4_42.
- [64] Ben Shneiderman. « Response Time and Display Rate in Human Performance with Computers ». In: ACM Comput. Surv. 16.3 (sept. 1984), p. 265–285. ISSN: 0360-0300. DOI: 10.1145/2514.2517. URL: https://doi.org/10.1145/2514. 2517.
- [65] Caroline JAY, Mashhuda GLENCROSS et Roger HUBBOLD. « Modeling the Effects of Delayed Haptic and Visual Feedback in a Collaborative Virtual Environment ». In: ACM Trans. Comput.-Hum. Interact. 14.2 (août 2007), 8—es. ISSN: 1073-0516. DOI: 10.1145/1275511.1275514. URL: https://doi.org/10.1145/1275511.1275514.
- [66] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang et Marek Zawirski. «Specification and Complexity of Collaborative Text Editing». In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing. PODC '16. Chicago, Illinois, USA: Association for Computing Machinery, 2016, p. 259–268. ISBN: 9781450339643. DOI: 10.1145/2933057. 2933090. URL: https://doi.org/10.1145/2933057.2933090.
- [67] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang et Marek Zawirski. «Specification and space complexity of collaborative text editing ». In: Theoretical Computer Science 855 (2021), p. 141–160. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2020.11.046. URL: http://www.sciencedirect.com/science/article/pii/S0304397520306952.
- [68] AUTOMERGE. Automerge: data structures for building collaborative applications in Javascript. URL: https://github.com/automerge/automerge.
- [69] Loïck Briot, Pascal Urso et Marc Shapiro. « High Responsiveness for Group Editing CRDTs ». In: ACM International Conference on Supporting Group Work. Sanibel Island, FL, United States, nov. 2016. DOI: 10.1145/2957276.2957300. URL: https://hal.inria.fr/hal-01343941.

- [70] Weihai Yu. « A String-Wise CRDT for Group Editing ». In: Proceedings of the 17th ACM International Conference on Supporting Group Work. GROUP '12. Sanibel Island, Florida, USA: Association for Computing Machinery, 2012, p. 141–144. ISBN: 9781450314862. DOI: 10.1145/2389176.2389198. URL: https://doi.org/10.1145/2389176.2389198.
- [71] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan et Alastair R. Beresford. « Interleaving Anomalies in Collaborative Text Editors ». In: *Proceedings of the 6th Workshop on Principles and Practice of Consistency for Distributed Data.* PaPoC '19. Dresden, Germany: Association for Computing Machinery, 2019. ISBN: 9781450362764. DOI: 10.1145/3301419.3323972. URL: https://doi.org/10.1145/3301419.3323972.
- [72] Matthew WEIDNER. There Are No Doubly Non-Interleaving List CRDTs. URL: https://mattweidner.com/assets/pdf/List_CRDT_Non_Interleaving.pdf.
- [73] Stéphane WEISS, Pascal URSO et Pascal MOLLI. « Logoot-Undo : Distributed Collaborative Editing System on P2P Networks ». In : *IEEE Transactions on Parallel and Distributed Systems* 21.8 (août 2010), p. 1162–1174. DOI : 10.1109/TPDS.2009.173. URL : https://hal.archives-ouvertes.fr/hal-00450416.
- [74] Victor GRISHCHENKO et Mikhail PATRAKEEV. « Chronofold: A Data Structure for Versioned Text». In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC '20. Heraklion, Greece: Association for Computing Machinery, 2020. ISBN: 9781450375245. DOI: 10.1145/3380787. 3393680. URL: https://doi.org/10.1145/3380787.3393680.
- [75] Claudia-Lavinia IGNAT, Gérald OSTER, Meagan NEWMAN, Valerie SHALIN et François CHAROY. « Studying the Effect of Delay on Group Performance in Collaborative Editing ». In: Proceedings of 11th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2014, Springer 2014 Lecture Notes in Computer Science. Proceedings of 11th International Conference on Cooperative Design, Visualization, and Engineering, CDVE 2014. Seattle, WA, United States, sept. 2014, p. 191–198. DOI: 10.1007/978-3-319-10831-5_29. URL: https://hal.archives-ouvertes.fr/hal-01088815.
- [76] Claudia-Lavinia IGNAT, Gérald OSTER, Olivia FOX, François CHAROY et Valerie SHALIN. « How Do User Groups Cope with Delay in Real-Time Collaborative Note Taking ». In: European Conference on Computer Supported Cooperative Work 2015. Sous la dir. de Nina BOULUS-RODJE, Gunnar Ellingsen, Tone Bratteteig, Margunn Aanestad et Pernille Bjorn. Proceedings of the 14th European Conference on Computer Supported Cooperative Work. Oslo, Norway: Springer International Publishing, sept. 2015, p. 223–242. Doi: 10.1007/978-3-319-20499-4_12. URL: https://hal.inria.fr/hal-01238831.
- [77] Brice Nédelec, Pascal Molli, Achour Mostéfaoui et Emmanuel Desmontils. « LSEQ : an adaptive structure for sequences in distributed collaborative editing ». In : Proceedings of the 2013 ACM Symposium on Document Engineering. DocEng 2013. Sept. 2013, p. 37–46. Doi: 10.1145/2494266.2494278.

- [78] Brice Nédelec, Pascal Molli et Achour Mostéfaoui. « A scalable sequence encoding for collaborative editing ». In: Concurrency and Computation: Practice and Experience (), e4108. DOI: 10.1002/cpe.4108. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4108. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4108.
- [79] Haifeng Shen et Chengzheng Sun. « A log compression algorithm for operation-based version control systems ». In: *Proceedings 26th Annual International Computer Software and Applications*. 2002, p. 867–872. DOI: 10.1109/CMPSAC.2002. 1045115.
- [80] Claudia-Lavinia IGNAT. « Maintaining consistency in collaboration over hierarchical documents ». Thèse de doct. ETH Zurich, 2006.
- [81] Victorien Elvinger, Gérald Oster et Francois Charoy. « Prunable Authenticated Log and Authenticable Snapshot in Distributed Collaborative Systems ». In: 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). 2018, p. 156–165. DOI: 10.1109/CIC.2018.00031.
- [82] Sylvie Noël et Jean-Marc Robert. « Empirical study on collaborative writing: What do co-authors do, use, and like? » In: Computer Supported Cooperative Work (CSCW) 13.1 (2004), p. 63–89.
- [83] Jim GILES. « Special Report Internet encyclopaedias go head to head ». In : nature 438.15 (2005), p. 900–901.
- [84] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg et Mark McGranaghan. « Local-First Software: You Own Your Data, in Spite of the Cloud ». In: Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. Onward! 2019. Athens, Greece: Association for Computing Machinery, 2019, p. 154–178. ISBN: 9781450369954. DOI: 10.1145/3359591.3359737. URL: https://doi.org/10.1145/3359591.3359737.
- [85] OPENRELAY. OpenRelay. URL: https://openrelay.xyz/.
- [86] Protocol LABS. IPFS. URL: https://ipfs.io/.
- [87] Quang Vinh DANG et Claudia-Lavinia IGNAT. « Quality Assessment of Wikipedia Articles: A Deep Learning Approach by Quang Vinh Dang and Claudia-Lavinia Ignat with Martin Vesely as Coordinator ». In: SIGWEB Newsl. Autumn (nov. 2016). ISSN: 1931-1745. DOI: 10.1145/2996442.2996447. URL: https://doi.org/10.1145/2996442.2996447.
- [88] Leslie Lamport, Robert Shostak et Marshall Pease. « The Byzantine Generals Problem ». In: Concurrency: The Works of Leslie Lamport. New York, NY, USA: Association for Computing Machinery, 2019, p. 203–226. ISBN: 9781450372701. URL: https://doi.org/10.1145/3335772.3335936.

[89] Jim Bauwens et Elisa Gonzalez Boix. « Flec: A Versatile Programming Framework for Eventually Consistent Systems ». In: Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC '20. Heraklion, Greece: Association for Computing Machinery, 2020. ISBN: 9781450375245. DOI: 10.1145/3380787.3393685. URL: https://doi.org/10.1145/3380787.3393685.

Résumé

Afin d'assurer leur haute disponibilité, les systèmes distribués à large échelle se doivent de répliquer leurs données tout en minimisant les coordinations nécessaires entre noeuds. Pour concevoir de tels systèmes, la littérature et l'industrie adoptent de plus en plus l'utilisation de types de données répliquées sans conflits (CRDTs). Les CRDTs sont des types de données qui offrent des comportements similaires aux types existants, tel l'Ensemble ou la Séquence. Ils se distinguent cependant des types traditionnels par leur spécification, qui supporte nativement les modifications concurrentes. À cette fin, les CRDTs incorporent un mécanisme de résolution de conflits au sein de leur spécification.

Afin de résoudre les conflits de manière déterministe, les CRDTs associent généralement des identifiants aux éléments stockés au sein de la structure de données. Les identifiants doivent respecter un ensemble de contraintes en fonction du CRDT, telles que l'unicité ou l'appartenance à un ordre dense. Ces contraintes empêchent de borner la taille des identifiants. La taille des identifiants utilisés croît alors continuellement avec le nombre de modifications effectuées, aggravant le surcoût lié à l'utilisation des CRDTs par rapport aux structures de données traditionnelles. Le but de cette thèse est de proposer des solutions pour pallier ce problème.

Nous présentons dans cette thèse deux contributions visant à répondre à ce problème : (i) Un nouveau CRDT pour Séquence, RenamableLogootSplit, qui intègre un mécanisme de renommage à sa spécification. Ce mécanisme de renommage permet aux noeuds du système de réattribuer des identifiants de taille minimale aux éléments de la séquence. Cependant, cette première version requiert une coordination entre les noeuds pour effectuer un renommage. L'évaluation expérimentale montre que le mécanisme de renommage permet de réinitialiser à chaque renommage le surcoût lié à l'utilisation du CRDT. (ii) Une seconde version de RenamableLogootSplit conçue pour une utilisation dans un système distribué. Cette nouvelle version permet aux noeuds de déclencher un renommage sans coordination préalable. L'évaluation expérimentale montre que cette nouvelle version présente un surcoût temporaire en cas de renommages concurrents, mais que ce surcoût est à terme.

Mots-clés: CRDTs, édition collaborative en temps réel, cohérence à terme, optimisation mémoire, performance

Abstract

Keywords: CRDTs, real-time collaborative editing, eventual consistency, memory-wise optimisation, performance

main: version du jeudi 6 octobre 2022 à 9 h 00

main: version du jeudi 6 octobre 2022 à 9 h 00