Uncertainty-aware Remaining Useful Life predictors

Luca Biggio (ETH, Zürich, CSEM, Alpnach), Manuel Arias Chao (ETH, Zürich), Olga Fink (ETH, Zürich)

Predictive Maintenance

 The current most popular maintenance strategy is based on scheduling interventions at fixed time intervals

• Predictive Maintenance (PM), on the other hand, aims at setting maintenance operations based on the information extracted from data describing the health state of the machine

- PM relies on efficient Remaining Useful Life (RUL) estimation, i.e. the problem of inferring how long a certain industrial asset is going to operate until a system failure occurs
- In the context of PM, **Uncertainty Quantification (UQ)** is crucial given the potentially catastrophic consequences associated with wrong maintenance decisions

Dataset

- The new C-MAPSS dataset is a synthetic dataset providing the full degradation trajectories of 9 large turbofan engines under real flight conditions
 - For each unit we have:
 - $X = [x_1, ..., x_t, ..., x_T]$ where each $x_t \in \mathbb{R}^{41}$ and T is the time series duration
 - $Y = [y_1, ..., y_T]$ where each $y_t \in \mathbb{R}$ is the RUL at time step t
- 6 units are used for training (0.53M samples), 3 for testing (0.12M samples)

Techniques

- Standard Gaussian Processes (GPs) suffer from 2 main limitations:
 - 1. Do not scale well with the number of data (cubic cost in the number of data points)
 - 2. They are limited by the expressiveness of the kernel/covariance function
- We address these limitations by leveraging recent advances in the GP literature, namely
 - 1. Stochastic Variational Gaussian Processes (SVGP) [Hensman et al., 2015]
 - **2. Deep Gaussian Processes** [Salimbeni and Deisenroth, 2017]
 - 3. Deep Sigma Point Processes [Jankowiak et al., 2020]

Quantitative Results

• Our experiments show that the application of such techniques to the C-MAPSS dataset results in predictive performances close to or superior than those obtained by two DL baselines: a standard deep feed-forward neural network (FFNN) and a one-dimensional Convolutional Neural Network (1-d CNN).

Gaussian Processes		
Models	RMSE	NLL
SVGP [Hensman et al., 2015, Jankowiak et al., 2019]	4.90	2.72
DGP [Salimbeni and Deisenroth, 2017, Jankowiak et al., 2019]	4.74	2.57
DSPP [Jankowiak et al., 2020]	3.97	2.46
Deep Neural Networks		
Models	RMSE	NLL
FFNN	4.11	-
1d CNN [Arias Chao et al., 2020a]	4.18	-

Visualizations

• As opposed to standard NNs (left), DSPs (right) provide physically meaningful uncertainty estimates alongside their predictions.

Conclusions

- We provide the first evidence that modern GP models can be successfully applied to the domain of PM of industrial assets.
- The application of such techniques to the C-MAPSS dataset results in predictive performances close to or superior than those obtained by two strong DL baselines.
- The proposed GP-models are able to provide physically meaningful uncertainty estimates alongside their RUL estimates.

References

- J. Hensman, A. Matthews, and Z. Ghahramani. Scalable variational gaussian process classification.2015
- M. Jankowiak, G. Pleiss, and J. R. Gardner. Deep sigma point processes.arXiv, pages arXiv–2002,2020.
- H. Salimbeni and M. Deisenroth. Doubly stochastic variational inference for deep gaussian processes. In Advances in Neural Information Processing Systems, pages 4588–4599, 2017.