

Lukion matematiikkakilpailun loppukilpailun ratkaisut

2009

1. Erään tason pisteiden lämpötila riippuu pisteestä niin, että pisteen (x, y) lämpötila on $x^2 + y^2 - 6x + 4y$. Määritä tason kylmin piste ja sen lämpötila.

Ratkaisu: Koska

$$x^{2} + y^{2} - 6x + 4y = (x^{2} - 6x + 9) + (y^{2} + 4y + 4) - 13 = (x - 3)^{2} + (y + 2)^{2} - 13,$$

kaikkien pisteiden lämpötila on vähintään -13 ja lämpötila pisteessä (3, -2) ja vain siinä on tasan -13.

2. Polynomin P kertoimet ovat kokonaislukuja ja pätee P(3) = 4 ja P(4) = 3. Kuinka monelle kokonaisluvulle x voi olla P(x) = x?

Ratkaisu: Olkoon Q(x) = P(x) - x. Silloin Q(3) = 4 - 3 = 1 ja Q(4) = 3 - 4 = -1. Oletetaan, että $Q(x_0) = 0$. Silloin $Q(x) = (x - x_0)Q_1(x)$ ja $Q_1(x)$ on kokonaislukukertoiminen polynomi. [Kertoimien ominaisuus on helppo nähdä, kun kirjoittaa jakoyhtälön auki.] Silloin $(3 - x_0)Q_1(3) = 1$ ja $(4 - x_1)Q_1(4) = -1$. Lukujen $|3 - x_0|$, ja $|4 - x_0|$ tulisi molempien olla ykkösiä, mikä on selvästi mahdotonta. (Jos $|3 - x_0| = 1$, niin $x_0 = 2$ tai $x_0 = 4$; tällöin $|4 - x_0|$ on joko 2 tai 0. Kokonaislukuja x, joille P(x) = x, ei siis ole olemassa.

3. Ympyrät \mathcal{Y}_0 ja \mathcal{Y}_1 sijaitsevat toistensa ulkopuolella. Ympyrän \mathcal{Y}_0 keskipisteestä O_0 piirretään ympyrää \mathcal{Y}_1 sivuavat puolisuorat, ja ympyrän \mathcal{Y}_1 keskipisteestä O_1 vastaavasti ympyrää \mathcal{Y}_0 sivuavat puolisuorat. Puolisuorat leikkaavat ympyrän \mathcal{Y}_i pisteissä A_i ja B_i . Osoita, että janat A_0B_0 ja A_1B_1 ovat yhtä pitkät.

Ratkaisu: Seuraavassa i=0 tai i=1. Olkoon O_i \mathcal{Y}_i :n keskipiste ja sivutkoot O_i :stä piirretyt \mathcal{Y}_{1-i} :n tangentit \mathcal{Y}_{1-i} :tä pisteissä C_{1-i} ja D_{i-1} (niin että O_i , A_i ja C_{1-i} ovat samalla suoralla). Olkoon E_i A_iB_i :n ja O_0O_1 :n leikkauspiste. Koska O_0O_1 puolittaa kulman $C_{1-i}O_iD_{1-i}$ ja $O_iA_i=O_iB_i$, niin A_iB_i on kohtisuorassa O_0O_1 :tä vastaan. Tangetti on kohtisuorassa sivuamispisteeseen piirrettyä ympyrä sädettä vastaan. Tämä merkitsee, että $O_iO_{1-i}C_{i-1}$ ja $O_iA_iE_i$ ovat yhdenmuotoisia suorakulmaisia kolmioita. Siis

$$\frac{A_i E_i}{O_i A_i} = \frac{O_{1-i} C_{1-i}}{O_i O_{1-i}}.$$

Mutta koska $O_i A_i = O_i C_i$, saadaan

$$A_{i}E_{i} = \frac{O_{i}C_{i} \cdot O_{1-i}C_{1-i}}{O_{i}O_{1-i}}.$$

Siis $A_0E_0 = A_1E_1$ joten myös $A_0B_0 = A_1B_1$. \square

4. Oheisessa kuviossa vasemmanpuoleinen suorakaide on jaettu sivujen suuntaisilla janoilla neljään osaan, joiden alat ovat A, B, C ja D, sekä oikeanpuoleinen suorakaide vastaavalla tavalla osiin, joiden alat ovat A', B', C' ja D'. Tiedetään, että $A \leq A'$, $B \leq B'$, $C \leq C'$ mutta $D \leq B'$. Todista, että vasemmanpuoleisen suorakaiteen ala on pienempi tai yhtä suuri kuin oikeanpuoleisen eli $A + B + C + D \leq A' + B' + C' + D'$.

A	В
D	C

A'	B'
D'	C'

Ratkaisu: Merkitään sivuja seuraavan kaavion mukaisesti:

	s	t
u	A	В
v	D	C

	s'	t'
u'	A'	B'
v'	D'	C'

Merkitään lisäksi S=A+B+C+D ja S'=A'+B'+C'+D'. Ensiksi havaitaan, että $B'D'=(t'u')(s'v')=(s'u')(t'v')=A'C'\geq AC=(su)(tv)=(tu)(sv)=BD$. Toisaalta oletuksista seuraa myös $B'-B\geq 0$ ja $B'-D\geq 0$, joten $(B'-B)(B'-D)\geq 0$ eli $(B')^2-B'D-BB'+BD\geq 0$. Yhdistämällä huomiot saadaan

$$B'(B' - B + D' - D) = (B')^{2} - B'D' - BB' + B'D'$$

> $(B')^{2} - B'D' - BB' + BD$,

joten koska B'>0,saadaan $B'-B+D'-D\geq 0.$ Siis

$$S' - S = (A' - A) + (B' - B + D' - D) + (C' - C) \ge 0$$

eli
$$A' + B' + C' + D' = S' \ge S = A + B + C + D$$
.

5. Kutsutaan askelpituuksien joukkoa $D \subset \mathbb{Z}_+ = \{1, 2, 3, \ldots\}$ loistavaksi, jos sillä on seuraava ominaisuus:

Aina kun kokonaislukujen joukko ositetaan kahteen osaan A ja $\mathbb{Z} \setminus A$, niin ainakin toinen osista sisältää alkiot a-d, a, a+d (eli $\{a-d, a, a+d\} \subset A$ tai $\{a-d, a, a+d\} \subset \mathbb{Z} \setminus A$) joillakin luvuilla $a \in \mathbb{Z}, d \in D$.

Esimerkiksi yhden alkion joukko {1} ei ole loistava, sillä kokonaislukujen joukon voi osittaa parillisiin ja parittomiin lukuihin, eikä kumpikaan näistä osista sisällä kolmea peräkkäistä lukua.

Osoita, että $\{1,2,3,4\}$ on loistava mutta mikään sen aito osajoukko ei ole.

Ratkaisu: Osoitetaan ensin, että $\{1, 2, 3, 4\}$ on loistava. Olkoon $A \subset \mathbb{Z}$. Jos kaikilla $a \in \mathbb{Z}$ alkiot a ja a + 2 ovat eri osissa A ja $\mathbb{Z} \setminus A$, niin alkiot -4, 0 ja 4 ovat samassa osassa. Oletetaan siis, että on olemassa sellainen $a \in \mathbb{Z}$, että a ja a + 2 ovat samassa osassa. Tilanteen symmetrisyyden vuoksi voidaan olettaa, että $a, a + 2 \in A$.

Jos $a+1 \in A$, niin $\{a,a+1,a+2\} \subset A$ on etsitynlainen kolmikko. Oletetaan siis, että $a+1 \not\in A$. Jos $a-2 \in A$ tai $a+4 \in A$, niin $\{a-2,a,a+2\} \subset A$ tai $\{a,a+2,a+4\} \subset A$ on askelpituutta 2 vastaava etsitynlainen kolmikko. Mutta muuten $a-2,a+4 \not\in A$ ja $\{a-2,a+1,a+4\} \subset \mathbb{Z} \setminus A$. Siis $\{1,2,3,4\}$ on loistava.

Osoitetaan sitten, ettei mikään joukon $\{1,2,3,4\}$ aito osajoukko ole loistava. Selvästi riittää osoittaa, että mikään kolmialkioinen osajoukko ei ole loistava. Merkitään $k\mathbb{Z}=\{n\in\mathbb{Z}\mid k\mid n\}$, kun $k\in\mathbb{Z}$, ja $A+B=\{a+b\mid a\in A,b\in B\}$, kun $A,B\subset\mathbb{Z}$. Valitaan joukot

$$A_1 = \{0, 1, 2, 3\} + 8\mathbb{Z},$$

$$A_2 = \{0, 2, 4\} + 7\mathbb{Z},$$

$$A_3 = 3\mathbb{Z},$$

$$A_4 = \{0, 1\} + 4\mathbb{Z}.$$

Tällöin jokaisella k=1,2,3,4 ositus $\{A_k,\mathbb{Z}\smallsetminus A_k\}$ osoittaa, että $\{1,2,3,4\}\smallsetminus \{k\}$ ei ole loistava. \square