

Лекция 6

Группировка и однофакторная ANOVA.

Как было сказано в предыдущей лекции для сравнения средних в двух группах применяют t-критерии Стьюдента. Это процедуры:

- **t-test, independent, by variables** (t-критерий для независимых выборок) применяется, если надо сравнить средние случайных величин, полученных по двум разным (независимым) выборкам;
- **t-test, independent, by groups** (*t-критерий* для независимых выборок с группирующей переменной) используется, если надо сравнить средние случайных величин двух независимых групп, полученных из одной выборки при помощи группирующей переменной;
- **t-test, dependent samples** (*t-критерий* для зависимых выборок) применяется, если надо сравнить средние случайных величин двух зависимых групп;
- t-test, single samples (простые выборки).

Напомним что в перечисленных процедурах в качестве нулевой гипотезы предполагается, что средние в группах равны.

Модуль **Breakdown & one-way ANOVA** (группировка и однофакторный дисперсионный анализ *ANOVA*) определяет внутригрупповые описательные статистики и корреляции для зависимых переменных в каждой из нескольких групп, определенных группирующей переменной. Сравнивает средние и определяет, в каких именно группах отличие средних статистически значимо отличаются между собой. В качестве нулевой гипотезы предполагается, что средние в генеральной совокупности равны. В терминологии пакета группирующую переменную называют фактором, зависимыми называют количественные переменные, чьи средние следует сравнить.

Так как лекции составлялись по англоязычной версии пакета, а работать приходится в компьютерных классах на русскоязычной, то наряду со скринами на английском языке присутствуют скрины и на русском.

Работу данного модуля проследим на примере уже знакомых нам данных из файла **Auto1**, так как есть группирующая переменная Тип топлива, которая делит выборку более чем на 2 группы - 3 группы

	Пробег д	о кап.рем	і., после і	кап. рем.	
	1	2	3	4	5
	Произв.	Гип.топл	Пробег1	Пробег2	Пробег3
Opel Astra	Evropa	Р	65	240	230
Skoda Fabia 1,2	Evropa	Р	70	250	220
Mitsubishi Pinin	Japan	G+P	110	300	280
Skoda Ambiente 1,6	Evropa	Р	60	230	230
Nissan Almera 1,5	Japan	G+P	90	280	260
Nissan Maxima 2,0 QX	Japan	G+P	100	300	280
Audi A4 2.0 MultiTronic	Evropa	Р	80	250	230
Nissan Maxima 3,0 SE	Japan	Р	110	310	310
Mitsubishi Pajero III	Japan	G+P	95	320	280
ToyotaCorolla	Japan	G+P	100	300	300
Toyota Carina	Japan	D	110	310	300
VW Passat1,8 T	Evropa	D	70	275	250
VW Bora 1,6	Evropa	D	80	260	230
Subaru Legacy	Japan	D	105	315	350
VW Golf 1,6	Evropa	D	75	250	240

Модуль **Breakdown & one-way ANOVA** (Группировка и однофакторный ДА) расположен в разделе (Basic statistics) Основные статистики, там же где и критерии Стьюдента.

Выделим в модуле **Basic Statistic Tables** процедуру **Breakdown & one-way ANOVA**, откроется интерфейсное окно команды. Нажмите кнопку **Variables** и выберите **Grouping variables** (группирующие переменные) *Tun. топл.* и **Dependent variables** (зависимые переменные) *Пробег1* – *Пробег3*.

Если мы проигнорируем кнопку **Коды**

группирующих переменных, TO программа автоматически в анализе использует все группы, в нашем случае их 3 по типу топлива. Если нас какая либо из групп не интересует, то следует нажать на кнопку, появившемся окне воспользоваться кнопкой Инфо и выделить интересующие нас значения категориальной переменной. Если выбрать любые 2 группы, то результаты анализа совпадут с критерием Стьюдента **t-test**, independent, by groups. Если в правом верхнем углу диалога щелкнуть по кнопке ОК, то программа

В

перейдет

результатов

Щелкнем последовательно по кнопам **Итоговая таблица средних**, **График взаимодействий** и **Категорированная диаграмма размаха**. В данном случае кнопка **Подробные двухвходовые таблицы** строит таблицу идентичную таблице, построенной кнопкой **Итоговая таблица средних**

Итоговая табі	Итоговая таблица средних (Avto1)								
N=15 (Нет пр	N=15 (Нет пропусков в завис. перем.)								
Тип.топл.	Пробег1	Пробег1	Пробег1	Пробег2	Пробег2	Пробег2	Пробег3	Пробег3	Пробег3
	Среднее	N	Ст.откл.	Среднее	N	Ст.откл.	Среднее	N	Ст.откл.
P .	77,00000	5	19,87461	256,0000	5	31,30495	244,0000	5	37,14835
D	88,00000	5	18,23458	282,0000	5	29,28310	274,0000	5	50,29911
G+P	99,00000	5	7,41620	300,0000	5	14,14214	280,0000	5	14,14214
Всего	88,00000	15	17,60682	279,3333	15	30,52322	266,0000	15	37,94733

В таблице отображены средние значения, объемы групп, стандартные отклонения для все выбранных зависимых переменных *Пробег1-Пробег2* в 3-х группах. На рисунках то же самое в графическом представлении

Можно на вкладке **Описательные** в правой части окна добавить дополнительные описательные статистики и щелкнуть по кнопке **Итоговая таблица средних.** Появится таблица с вычисленными описательными статистиками для всех

переменных

Тип.топл.	Пробег1 Среднее	Доверит. -95,000%	Доверит. +95,000%	Пробег1 N	Пробег1 Сумма	Пробег1 Ст.откл.	Пробег1 Дисперсия	Пробег1 Стд.ош.	Пробег1 Минимум	Пробег1 Максим.	Пробег1 25%	Пробег1 Медиана
P	77,00000	52,32242	101,6776	5	385,000	19,87461	395,0000	8,888194	60,00000	110,0000	65,00000	70,0000
D	88,00000	65,35878	110,6412	5	440,000	18,23458	332,5000	8,154753	70,00000	110,0000	75,00000	80,0000
G+P	99,00000	89,79157	108,2084	5	495,000	7,41620	55,0000	3,316625	90,00000	110,0000	95,00000	100,0000
Bcero	88,00000	78,24967	97,7503	15	1320,000	17,60682	310,0000	4,546061	60,00000	110,0000	70,00000	90,0000

На вкладке **Дисперсионный анализ** можно посмотреть результаты дисперсионного анализа, проверяется гипотеза о равенстве средних во всех (у нас 3) группах. Нулевая гипотеза: средние во всех группах равны. Если р критерия Фишера Дисперсионного анализа <0,05, то это означает, что могут быть группы объектов, для которых не верна гипотеза о равенстве средних! Критерии Левена и Брауна-Форсайта проверяют гипотезу о равенстве (однородности) дисперсий в 3 группах. Нулевая гипотеза: дисперсии в группах равны. Нажмем последовательно на 3 кнопки, соответствующие

3 критериям.

	Дисперсионный анализ (Avto1)								
	Отмечены эффекты,значимые на уров. р < ,05000								
	Сум.квад	Сум.квад Ст.св. Ср.квад. Сум.квад Ст.св. Ср.квад. F р							
Переменная	эффект	эффект эффект ошибки ошибки ошибки							
Пробег1	1210,000	2	605,000	3130,00	12	260,833	2,319489	0,140711	
Пробег2	4893,333	2	2446,667	8150,00	12	679,167	3,602454	0,059513	
Пробег3	3720,000	2							

	Критерий Левена однородности дисперсий (Avto1) Отмечены эффекты,значимые на уров. p < ,05000							
	Сум.квад Ст.св. Ср.квад. Сум.квад Ст.св. Ср.квад. F р							
Переменная	эффект							
Пробег1	323,733	2	161,867	741,200	12	61,7667	2,620615	0,113678
Пробег2	769,600	769,600 2 384,800 2520,400 12 210,0333 1,832090 0,202135						
Пробег3	2702,933	2702,933 2 1351,467 4312,000 12 359,3333 3,761039 0,053943						

	Брауна-Форсайта критерий однород. дисперсий (Avto1) Отмечены эффекты,значимые на уров. p < ,05000							
	Сум.квад	Сум.квад Ст.св. Ср.квад. Сум.квад Ст.св. Ср.квад. F р						
Переменная	эффект	эффект эффект ошибки ошибки ошибки						
Пробег1	243,333	2	121,667	1750,00	12	145,8333	0,834286	0,457877
Пробег2	583,333	583,333 2 291,667 3990,00 12 332,5000 0,877193 0,441002						
Пробег3	2013,333	2	1006,667	11880,00	12	990,0000	1,016835	0,390895

Из первой таблицы следует, что по критерию Фишера верна гипотеза о равенстве средних генеральных совокупностей во всех 3 группах, но для *Пробег 2* уровень р критерия Фишера принимает близкое к 0,05 значений, поэтому могут быть группы для которых гипотеза не верна. Из 2-й и 3-й таблиц следует, что верны гипотезы об однородности дисперсий.

На вкладке Корреляции можно посмотреть корреляции между переменными отдельно в группах объектов

Если нажать на кнопку Внутригрупповые корреляции, то откроется окно с предложением выбора группы. В рамке опции можно указать дополнительную информацию к коэффициентам корреляции. Выберем, например последовательно P, D, G+P

В первой таблице отображены коэффициенты корреляции Пирсона, во второй их уровни значимости

Переменные	Внутригрупг (Avto1) Группа:Тип.	корреляции			
	Отмеченные корреляции значимы на уровне р <,05000				
	Пробег1	Пробег2	Пробег3		
Пробег1	1,000000	0,980434	0,917638		
Пробег2	0,980434	1,000000	0,941589		
Пробег3	0,917638	0,941589	1,000000		

Переменные	р-уровни для внутригрупповых корр. (Avto1) Группа:Тип.топл.:Р						
	Отмеченные корреляции значимы на уровне р <,05000						
	Пробег1	Пробег2	Пробег3				
Пробег1		0,003276	0,028021				
Пробег2	0,003276		0,016797				
Пробег3	0,028021	0,016797					

	Внутригрупг	товые	корреляции			
Переменные	(Avto1)					
	Группа:Тип.топл.:D					
		Отмеченные корреляции значимы				
	на уровне р <,05000					
	Пробег1	Пробег2	Пробег3			
Пробег1	1,000000	0,887230	0,842253			
Пробег2	0,887230	1,000000	0,926734			
Пробег3	0,842253	0,926734	1,000000			

Переменные	р-уровни для внутригрупповых корр. (Avto1)						
	Группа:Тип.:	голл.:D					
	Отмеченные		и значимы				
		на уровне р <,05000					
	Пробег1	Пробег2	Пробег3				
Пробег1		0,044682	0,073405				
Пробег2	0,044682		0,023542				
Пробег3	0,073405	0,023542					

Переменные	Внутригрупг (Avto1)	товые	корреляции			
Перешенные	Группа:Тип.топл.:G+P					
	Отмеченные корреляции значимы					
	на уровне р	на уровне р <,05000				
	Пробег1	Пробег2	Пробег3			
Пробег1	1,000000	0,238366	0,476731			
Пробег2	0,238366	1,000000	0,500000			
Пробег3	0,476731	0,500000	1,000000			

Переменные	р-уровни для внутригрупповых корр. (Avto1)						
Переменные	Группа:Тип.топл.:G+Р						
	I	Отмеченные корреляции значимы					
	на уровне р <,05000						
	Пробег <u>1</u>	Пробег2	Пробег3				
Пробег1		0,699402	0,416855				
Пробег2	0,699402		0,391002				
Пробег3	0,416855	0,391002					

Для решения ключевой задачи дисперсионного анализа, следует проверить статистическую значимость отличия средних значений переменных в группах при помощи критериев на вкладке **Апостериорные.** Проверим для *Пробег 1*

Обратите внимание, что на слайде 13 показано, что по критерию Фишера для переменной *Пробег1* верна гипотеза о равенстве средних в генеральных совокупностях. Все 3 критерия в приведенных ниже таблицах показывают статистическую незначимость отличия средних в группах, что подтверждает справедливость вывода по дисперсионному анализу!

	Крит. НЗР; перем.: Пробег1 (Avto1) Отмечены разности, значимые на уров								
Тип.топл.	{1} {2 } {3} M=77,000 M=88,000 M=99,000								
P {1}	W-77,000	0,302693	0,052285						
D {2}	0,302693		0,302693						
G+P {3}	0,052285	0,052285 0,302693							

			и: Пробег1 (Av имые на уров
Тип.топл.	{1} M=77,000	{2} M=88,000	{3} M=99,000
P {1}			0,140711
D {2}	0,574914		0,574914
G+P {3}	0,140711	0,574914	

	Крит.Тьюки ДЗР; Перемен.: Пробег1								
	Отмечены разности, значимые на ур								
	{1} {2} {3}								
Тип.топл.	M=77,000	M=88,000	M=99,000						
P {1}		0,545556	0,120525						
D {2}	0,545556		0,545556						
G+P {3}	0,120525	0,545556							

Несколько иная картина для *Переменной* 2, есть подгруппы в которых отличие средних статистически значимо сразу по 2 критериям! При этом на слайде 13 в результатах дисперсионного анализа уровень значимости критерия Фишера чуть больше 0,05!

Тип	1ива	Крит. НЗР; перем.: Пробег2 (Avto1) Отмечены разности, значимые на уровне р < ,05000					
	3 M=300,00						
		M=256,00	M=282,00	101-300,00			
Р	1		0,140676	0,020429			
D	2	0,140676 0,296					
G+P	3	0,020429 0,296239					

Тип топлива	Отмечены	Крит Шеффе; Переменная: Пробег2 Отмечены разности, значимые на уровне р < ,05000					
1 2 3							
	M=256,00	M=282,00	M=300,00				
P 1		0,322831	0,060995				
D 2	0,322831	0,322831					
G+P 3							

Тип топлива	Крит. Тьюки ДЗР; Перемен.: Пробег2 Отмечены разности, значимые на уровне р < ,05000					
	1	2	3			
	M=256,00	M=282,00	M=300,00			
P 1		0,292363	0,049971			
D 2	0,292363		0,536745			
G+P 3 0,049971 0,53						

Но однофакторный дисперсионный анализ может быть использован когда объекты разбиваем на группы по нескольким группирующим переменным. Выберем в поле **Группирующие переменные** *Производитель* и *Тип топлива*

Выберите зависимые и группи	рующие переменные	? X
1-Произв. 2-Тип.топл. 3-Пробег1 4-Пробег2 5-Пробег3	1-Произв. 2-Тип.топл. 3-Пробег1 4-Пробег2 5-Пробег3	Отмена
Все Больше Инфо Зависимые переменные: 3-4	Все Больше Инфо Группирующие переменные: 1-2	

Если нажать на **OK** в диалоговом окне **Statistics by Groups** (**Breakdown**), то откроется диалоговое окно **Statistics by Groups-Results** (внутригрупповые описательные статистики — результаты), которое предоставляет различные процедуры и настройки для анализа данных внутри групп. Цель такого анализа — лучшее понимание различий между группами. Информационная часть окна сообщает, что зависимых — две переменные: *Пробег1*, *Пробег2*; группирующих — две переменные: *Произв*. с двумя кодами (*Europe*, *Japan*) и *Tun. monл*. с тремя кодами (P, G + P, D). На рисунке активизирована вкладка **Quick**.

Если нажать на **Summary: Table of statistics**, появится таблица результатов. В приведенной таблице имеются описательные статистики для выбранных переменных, разбитых на 6 групп. Так в столбцах 1 и 2 отображены подгруппы, в столбцах 3 и 5 показаны средние (*means*) переменных *Пробег1*, *Пробег2*, в столбцах 4 и 7 – количество автомобилей, в столбцах 5, 8 – среднеквадратические отклонения (*Std.Dev*).

Итоговая таблица средних (Avto1) N=15 (Нет пропусков в завис. перем.)											
Тип.топл.	Произв.	Пробег1	Пробег1	Пробег1	Пробег2	Пробег2	Пробег2				
		Среднее	N	Ст.откл.	Среднее	N	Ст.откл.				
Р	Japan	110,0000	1		310,0000	1					
Р	Evropa	68,7500	4	8,53913	242,5000	4	9,57427				
D	Japan	107,5000	2	3,53553	312,5000	2	3,53553				
D	Evropa	75,0000	3	5,00000	261,6667	3	12,58306				
G+P	Japan	99,0000	5	7,41620	300,0000	5	14,14214				
G+P	Evropa		0			0					
Все груп.		88,0000	15	17,60682	279,3333	15	30,52322				

Если нажать на кнопку Подробные двухвходовые таблицы, то появится другая форма таблицы:

	Подробные двухвходовые таблицы (Avto1)										
	N=15 (Нет пропусков в завис. перем.)										
Тип.топл.	Пробег1	Пробег1	Пробег1	Пробег2	Пробег2	Пробег2					
Произв.	Среднее	N	Ст.откл.	Среднее	N	Ст.откл.					
P	77,0000	5	19,87461	256,0000	5	31,30495					
Japan	110,0000	1	0,00000	310,0000	1	0,00000					
Evropa	68,7500	4	8,53913	242,5000	4	9,57427					
D	88,0000	5	18,23458	282,0000	5	29,28310					
Japan	107,5000	2	3,53553	312,5000	2	3,53553					
Evropa	75,0000	3	5,00000	261,6667	3	12,58306					
G+P	99,0000	5	7,41620	300,0000	5	14,14214					
Japan	99,0000	5	7,41620	300,0000	5	14,14214					
Evropa		0			0						
Все груп.	88,0000	15	17,60682	279,3333	15	30,52322					

Для проверки гипотезы о равенстве средних в 6 группах генеральной совокупности надо использовать процедуру Analysis of Variance (анализ дисперсий). Щелкнем кнопкой Analysis of Variance на вкладке ANOVA & tests. Откроется таблица результатов Analysis of Variance (рис. 5). Из таблицы видно, что можно отвергнуть гипотезу о равенстве средних переменных Пробег1, Пробег2 в группах. Так как число групп более двух, то из таблицы не видно, какие группы вызвали статистически значимое отличие средних. Процедура Post-hoc (апостериорные сравнения средних) позволяет устранить этот

		1	I	1				J - I		
недостаток.		Analysis	Analysis of Variance (Auto)							
		Marked e	larked effects are significant at p < ,05000							
		SS	df	MS	SS	df	MS	F	р	
	Variable	Effect	Effect	Effect	Error	Error	Error			
	Пробег1	3838,7!	4	959,688	501,250	10	50,1250	19,1458	0,00011	
	Пробег2	11639,1	4	2909,79	1404,16	10	140,416	20,7225	0,00007	

На вкладке реализовано 6 критериев:

- LSD test or planned comparison (критерий наименьшей значимости (НЗР));
- Scheffe test (критерий Шеффе);
- Newman Keuls test & critical ranges (критерий Ньюмана Кеулса и критические размахи);
- Duncan's multiple range test & critical ranges (критерий Дункана и критические размахи);
- Tukey honest significant difference (HSD) (критерий Тьюки ДЗР);
- Tukey HSD for unequal N (Spjotvoll/Stoline) (критерий Тьюки ДЗР для неравных N).

В нижней части окна пользователь может назначить **p-level for highlighting** (p-yровень значимости для выделения).

Если воспользоваться кнопкой **Критерий наименьшей значимой разности р**, то программа построит таблицу с уровнями значимости критерия, из которой видно между какими подгруппами выполняется условие статистической значимости отличия средних (p<0,05) и статистической не значимости ($p\ge0,05$), то есть верности нулевой гипотезы

		LSD Test;	_SD Test; Variable: Пробег1 (Auto)							
		Marked dif	Marked differences are significant at p < ,05000							
		{1}	<i>{</i> 1 <i>} {</i> 2 <i>} {</i> 3 <i>} {</i> 4 <i>} {</i> 5 <i>} {</i> 6 <i>}</i>							
Произв.	Тип.топл	M=110,00	M = 107,50	M = 99,000	M = 68,750	M = 75,000	M = 0,0			
JapanP	{1}		0,77899	0,18650	0,00039	0,00160				
JapanD	{2}	0,77899		0,18182	0,00008	0,00051				
JapanG+P {3}		0,18650	0,18182		0,00008	0,00091				
EuropeP	{4}	0,00039	0,00008	0,00008		0,27461				
EuropeD	{5}	0,00160	0,00051	0,00091	0,27461					
EuropeG	+P {6}									

Из таблицы видно, что верна гипотеза о равенстве средних в группах: $\{1, 2\}$; $\{1, 3\}$; $\{2, 3\}$; $\{4, 5\}$. Не верна гипотеза о равенстве средних в группах: $\{4, 1\}$; $\{4, 2\}$; $\{4, 3\}$; $\{5, 1\}$; $\{5, 2\}$; $\{5, 3\}$.

Различия средних можно увидеть на графиках, доступных в диалоговом окне Statistics by Groups-Results. Например, щелкните по кнопке Categorized box & whisker plot, которая находится на вкладках Descriptives или Quick. Откроется диалоговое окно Box-Whisker Type. В этом окне выделите одну из опций, например Mean/SE/SD. Программа построит диаграммы размаха (рис. 8), визуализирующие степень сходства и различия средних в анализируемых группах. Из приведенных результатов можно сделать вывод применительно к генеральной совокупнсти, что средний пробег японских автомобилей до обращения на СТО примерно одинаков для различных типов топлива. Аналогичный вывод справедлив для автомобилей европейского производства. Но средний пробег японских автомобилей в среднем больше пробега европейских автомобилей для любых типов топлива. Другими словами, пробег автомобилей до обращения на СТО не зависит от типа топлива, но зависит от страны производителя.

