Addressing Mode

1. Immediate Addressing Mode-

In this addressing mode,

- The operand is specified in the instruction explicitly.
- Instead of address field, an operand field is present that contains the operand.

2. Direct Addressing Mode-

In this addressing mode,

- The address field of the instruction contains the effective address of the operand.
- Only one reference to memory is required to fetch the operand.
- It is also called as absolute addressing mode.

• Example: ADD X will increment the value stored in the accumulator by the value stored at memory location X.

$$AC \leftarrow AC + [X]$$

3. Indirect Addressing Mode-

In this addressing mode,

- The address field of the instruction specifies the address of memory location that contains the effective address of the operand.
- Two references to memory are required to fetch the operand.

Example-

• ADD X will increment the value stored in the accumulator by the value stored at memory location specified by X.

$$AC \leftarrow AC + [[X]]$$

4. Relative Addressing Mode-

In this addressing mode,

• Effective address of the operand is obtained by adding the content of program counter with the address part of the instruction.

Effective Address

= Content of Program Counter + Address part of the instruction

5. Indexed Addressing Mode

In this addressing mode,

Effective address of the operand is obtained by adding the content of index register with the address part of the instruction.

Effective Address

= Content of Index Register + Address part of the instruction

6. Base Register Addressing Mode-

n this addressing mode,

• Effective address of the operand is obtained by adding the content of base register with the address part of the instruction.

Effective Address

= Content of Base Register + Address part of the instruction

7. Register Direct Addressing Mode-

In this addressing mode,

- The operand is contained in a register set.
- The address field of the instruction refers to a CPU register that contains the operand.
- No reference to memory is required to fetch the operand.

Example-

• ADD R will increment the value stored in the accumulator by the content of register R.

$$AC \leftarrow AC + [R]$$

It is interesting to note-

- This addressing mode is similar to direct addressing mode.
- The only difference is address field of the instruction refers to a CPU register instead of main memory.

8. Register Indirect Addressing Mode-

In this addressing mode,

- The address field of the instruction refers to a CPU register that contains the effective address of the operand.
- Only one reference to memory is required to fetch the operand.

Example-

• ADD R will increment the value stored in the accumulator by the content of memory location specified in register R.

$$\mathsf{AC} \leftarrow \mathsf{AC} + [[\mathsf{R}]]$$

NOTE-

It is interesting to note-

- This addressing mode is similar to indirect addressing mode.
- The only difference is address field of the instruction refers to a CPU register.