Str8Chr 2025.01

债券估值

Annuity Permanent
$$PV = \frac{c}{r}$$
, Annuity $PV = \frac{c}{r} \left(1 - \frac{1}{(1+r)^t}\right)$, FV of Pension = $\frac{c}{r} \left(1 - \frac{1}{(1+r)^t}\right) \times (1+r)^t$, Pension per $Year = C' \Longrightarrow FV = \frac{c'}{r} \left(1 - \frac{1}{(1+r)^n}\right)$.

Growing Annuity
$$Permanent\ PV = \frac{c}{r-g}$$
, $Annuity\ PV = \frac{c}{r-g} \Big(1 - \Big(\frac{1+g}{1+r}\Big)^N\Big)$. EAR 有效年利率, APR 年度百分比利率, $EAR = \Big(1 + \frac{APR}{m}\Big)^m - 1$.

Yield-to-Maturity 到期收益率. Zero Coupon Bond
$$P = \frac{F}{(1+YTM_n)^n} \Longrightarrow YTM_n = \left(\frac{FV}{P}\right)^{\frac{1}{n}} - 1$$
, Coupon Bond $P = \frac{CPN}{YTM}\left(1 - \frac{1}{(1+YTM)^N}\right) + \frac{FV}{(1+YTM)^N}(CPN: 票面利息)$.

Duration
$$D = \sum_t \frac{\text{PV}(C_t)}{P} \times t$$
, CPN↓ D↑, t↑ D↑. $D_{zero} = 期限$, $D_{permanent} = \frac{1+r}{r}$.

Fisher Theorem $1+i=\frac{1+r}{1+p'}$, $i\approx r-p$. 期限结构 利率风险、通货膨胀、流动风险溢价. 远期利率 $f_{n-1,n}=\frac{(1+YTM_n)^n}{(1+YTM_{n-1})^{n-1}}-1$. 期望未来即期利率 = 远期利率 - 风险溢价.

股票估值

一年期投资
$$P_0 = \frac{Div_1 + P_1}{1 + r_E}, r_E = \frac{Div_1}{P_0} + \frac{P_1 - P_0}{P_0} = 股利利得率 + 资本利得率 多年期$$
 投资 股利贴现模型 (Gordon Growth Model): $P_0 = \sum_t \frac{Div_t(1+g)^{t-1}}{(1+r_E)^t} = \frac{Div_1}{r_E - g}, r_E = \frac{Div_1}{P_0} + g, g = \frac{E_{t+1} - E_t}{E_t} = (1 - h)r^*$

$$\begin{split} \mathbf{P/E}\,P_0 &= \frac{E_0h(1+g)}{r_E-g} \Longrightarrow \frac{P_0}{E_0} = \frac{h(1+g)}{r_E-g}, \frac{P_0}{E_1} = \frac{h}{r_E-g}. \ \text{静态市盈率} \frac{P_0}{E_0}, \ \text{动态市盈率} \frac{P_0}{E_1^g}, \ \text{滚动} \\ \text{市盈率} &\frac{P_0}{E_{\frac{R/2}{4} \neq \frac{R/2}{2}}}. \ P &= \frac{Div}{r_E} \Longrightarrow P = \frac{Eh}{r_E} \Longrightarrow \frac{P}{E} = \frac{h}{r_E}, \ \text{与融资成本的关系}. \end{split}$$

贴现自由现金流模型
$$FCF_t = EBIT(1-T) + Dep - CapEx - \Delta NWC$$
. 公司价值 $EV = PV(FCF) = \sum_{t=1}^{\infty} \frac{FCF_t}{(1+r_{WACC})^t}$.

股权估值 股权价值 = 企业价值 — 债券 + 现金 = 股票价格 × 发行股票数. $WACC = \frac{E}{V}r_E + (1 - T_c)\frac{D}{V}r_D, r_E = r_f + \beta \times (r_m - r_f)$. P/E, P/B, EV/Sales, EV/Cash Flow.

投资项目分析

NPV 净现值, IRR 内部收益率, PI 盈利指数, 投资回收期指标, ACC 等价年金成本、年金化成本, PV(Cost) = $\sum_{t=1}^{N} \frac{ACC}{(1+r)^t}$ (Cost: 税后、折旧税盾).

投资组合

投资组合
$$\mathbb{E}R_p = \sum_{i=1}^n x_i \, \mathbb{E}R_i, \, \operatorname{Corr}(R_i, R_j) = \rho_{ij} = \frac{\operatorname{Cov}(R_i, R_j)}{\operatorname{SD}(R_i)\operatorname{SD}(R_j)} = \frac{\sigma_{ij}}{\sigma_{i\sigma_j}}, \, \operatorname{Var}(R_p) = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 \operatorname{Cov}(R_i, R_j) = x_1^2 \sigma_1^2 + x_2^2 \sigma_2^2 + 2x_1 x_2 \rho_{ij} \sigma_i \sigma_j.$$

有效投资组合,有效边界,有效前缘 (Efficient Frontier).

无风险资产 $\mathbb{E}R_{xP}=(1-x)r_f+x\mathbb{E}R_p=r_f+x\left(\mathbb{E}R_p-r_f\right)$, $\mathrm{SD}(R_{xP})=x\mathrm{SD}\left(R_p\right)$, 保证金购买证券 Margin Trade, **Sharpe Ratio** $=\frac{\mathbb{E}R_p-r_f}{\mathrm{SD}(R_p)}$.

CAPM 1. 无交易成本, 相同无风险利率借钱存钱; 2. 只持有有效资产组合; 3. 收益、波动率、相关性期望相同.

CML 资本市场线
$$\mathbb{E}R_{xCML} = (1-x)r_f + x\mathbb{E}R_{Mkt} = r_f + x(\mathbb{E}R_{Mkt} - r_f)$$
, $SD(R_{xCML}) = xSD(R_{Mkt})$.

SML 证券市场线
$$\mathbb{E}R_i = r_f + \beta_i \times \left(\mathbb{E}R_{Mkt} - r_f\right) = \text{risk-free rate} + 风险溢价,}$$

$$\beta_i = \frac{\frac{\text{SD}(R_i)\text{Corr}(R_i,R_{Mkt})}{\text{SD}(R_{Mkt})}}{\frac{\text{SD}(R_{Mkt})}{\text{Var}(R_{Mkt})}} = \frac{\frac{\text{En}_i - r_f}{\mathbb{E}R_{Mkt} - r_f}}{\frac{\text{E}R_{Mkt} - r_f}{\mathbb{E}R_{Mkt} - r_f}}, \beta_P = \frac{\frac{\text{Cov}(\sum_i x_i R_i R_{Mkt})}{\text{Var}(R_{Mkt})}}{\frac{\text{En}_i x_i}{\mathbb{E}R_{Mkt} - r_f}} = \sum_i x_i \beta_i.$$

波动率页献
$$Var(R_P) = Cov(R_P, R_P) = \sum x_i Cov(R_i, R_P) = \sum x_i SD(R_i) SD(R_P) Corr(R_i, R_P) \Rightarrow SD(R_P) = \frac{Var(R_P)}{SD(R_P)} = \sum x_i SD(R_i) Corr(R_i, R_P),$$

$$Sharpe \ Ratio = \frac{\mathbb{E}R_P - r_f}{SD(R_P)} = \frac{\sum x_i \left(\mathbb{E}R_i - r_f\right)}{\sum x_i SD(R_i) Corr(R_i, R_P)}.$$

杠杆公司估值

WACC
$$R_E = R_A + \frac{D}{E}(R_A - R_D)$$
, $\beta_E = \beta_A + \frac{D}{E}(\beta_A - \beta_D)$ (无税) (元税) ($\frac{D}{E}$: 杠杆率).

借债能力 Debt Capacity $D_i = d \times V_t^L$, d 为目标 "债务对企业价值比率", $V_t^L = \frac{FCF_{t+1} + V_{t+1}^L}{1 + t_{mage}}$.

APV 调整现值法 $V^L = APV = V^U + PV($ 利息税盾), 税前 $WACC = \frac{E}{V} r_E + \frac{D}{V} r_D$. 固定债务水平 (假定永续) $PV(Tax\ Shield) = \frac{T_C(R_DD)}{R_D} = T_cD$. 目标杠杆比率 $PV(Tax\ Shield) = \sum_{t=1}^{N} \frac{Tax\ Shield_t}{(1+r_U)^t}$. 项目净现值 $= V^L -$ 投入金额. 不变的利息保 **障比率** $V^L = (1+T_ck)V^U$.

市场有效性

超额收益 $R_{anomaly}-r_f=\alpha+\beta(\mathbb{E}R_{Mkt}-r_f)$. 市场异象 Market Anomalies Post-Earnings Announcement Drift (PEAD). Accrual Effect. Size Effect. B/M Effect. Momentum Effect. **Fama and French 三因子模型** $R_t-R_t^f=\alpha+b(R_t^m-R_t^f)+s\cdot SMB_t+h\cdot HML_t+\epsilon_t, b$ 市场 β , SMB_t 规模溢酬, HML_t 净值市价比溢酬.

资本结构

MM 第一定理 在完美资本市场中,公司的总价值等于其资产所产生的全部现金流的市场价值,它不受公司的资本结构选择的影响 $R_U = R_A$. **MM 第二定理** $r_{wacc} = r_U$.

Hamada Equation $\beta_D=0\Longrightarrow\beta_U=\frac{1}{1+\frac{D}{E}}\times\beta_E$. Enterpriese Value $EV=E+D-Cash=E+Net\ Debt$.

股权现金流法 Flow-to-Equity FCFE(FCF to Equity) = $FCF - (1 - \tau_c)$ 利息支付 + $\Delta Net\ Debt\ (\Gamma\ \ \ \ \)$ Dividend), $E = \sum_{t=1}^{\infty} \frac{FCFE_t^t}{1+r_c}$.

项目资本成本 1. 可比公司 (相似经验风险, 单纯经验新业务) 税前 r_U , 2. 已知 $\frac{D}{E'}$ r_D , 估计业务 $r_E = r_U + \frac{D}{E} (r_U - r_D)$, 3. $r_{WACC} = \frac{E}{D+E} r_E + \frac{D}{D+E} r_D (1 - \tau_C)$ 或 $r_{WACC} = r_U - \frac{D}{D+E} \tau_C r_D$.

财务困境成本1. 发生财务困境的概率 2. 公司遭遇财务困境成本的大小 3. 适当的财务困境成本折现率. **代理成本**1. 过度投资和过度风险承担 (资产替代问题) 2. 投资不足和债务挤压 3. 抽逃现金. ex-post: 债权人承担, ex-ante: 股东承担. 现值条款本省也有成本.

股权代理问题 1. 管理者壁垒效应 (堑壕效应) 2. 在职消费 3. 过度投资 (公司帝国, 过度自信, 自由现金流假说).

杠杆代理收益 1. 所有权集中 2. 减少浪费性投资 3. 履行承诺义务.

不对称信息 置信原理.

分红

股息 股息宣告日,除息日,股权登记日,附息日.特别股息 (额外股息). 资本返还 (非收益来源支付股息). 清算股息. 股票股息, 股票分割. **发放股息** 含息价格 $P_{cum} = Current \ Div + PV(Future \ Divs)$, 除息价格 $P_{ex} = PV(Future \ Divs)$, 完 美资本市场中 $P_{cum} = Current \ Div + P_{ex}$.

回购 场内公开回购 (Open Market Repurchase, 主要形式), 要约收购 (Tender Offer, 一般并购时使用, 荷兰式拍卖), 场外协议收购 (Target Repurchase). 股利支付率 $\frac{Div}{Net\ Income}$. 股息率 $\frac{Div}{P}$. 回购前 $P = \frac{Rep_0}{N} + PV(Div_{\geq 1})$, $MV = P \cdot N = Rep_0 + N \cdot PV(Div_{\geq 1})$, 回购后 $N_{rep} = N - \frac{Rep_0}{P} = N - N + \frac{N \cdot PV(Div_{\geq 1})}{P} = \frac{N \cdot PV(Div_{\geq 1})}{P}$, $MV_{rep} = MV - Rep_0 = N \cdot PV(Div_{\geq 1})$, $P_{rep} = \frac{MV_{rep}}{N_{rep}} = P$, 完美资本市场中 $P_{ren} = P$.

当下高股息 募集资金 F, 新发行 $\Delta N = \frac{F}{P_{cum}}$, 发行后 $P_{cum}' = \frac{N \cdot P_{cum} + F}{N + \Delta N} = P_{cum}$, 当下高股息不会使股东受益. MM 股息无关定理, 买卖股票 zero-NPV.

股息与税率 顾客效果 Clientele Effect. 股息捕获理论 Dividend-Capture Theory $(T_d^*$ 较小). 无套利情况 $(P_{cum}-P_{ex})(1-T_g)=Div(1-T_d)$, T_g Capital gain, T_d

Dividend, \Longrightarrow $P_{cum}-P_{ex}=Div\frac{1-T_d}{1-T_g}=Div\left(1-\frac{T_d-T_g}{1-T_g}\right)=Div(1-T_d^*)$, T_d^* 实际股息税率

派发与留存 *完美资本市场*中,支付无关理论. 考虑所得税,投资课税,负税盾. 考虑代理成本,低效使用资金,债权人收益率过高,工会、政府觊觎. 优点 避免财务困境,减少融资成本,避免债权约束. 股息平滑,可以透过回购与增发调节每股股息. 股息信号 盈利信息,正 NPV 投资机会. 回购信号 不做回购平滑,股价被低估.

上市

私人公司 天使投资者, 风险投资公司, 私募股权投资公司 (募-投-管-退), 机构投资者, 公司投资者. 融资后估值 = 融资前估值 + 投入资金.

上市流动性, 更多资本获取途径, 声望、估值、吸引员工. 所有权分散, 满足上市要求, 发行成本. 首次发行 Primary Offering, 二次发行 Secondary Offering, 尽力代销 (best-efforts IPO, 最优价格, all-or-none), 包销 (firm commitment IPO), 余额包销 (standby commitment IPO, 协议价认购余额), 拍卖式 IPO (auction IPO, 市场确定发行价). 注册制 Registered System, 核准制 Chartered System. 超额配售选择权(over-allotment allocation, 绿鞋条款 green-shoe provision, 卖空超额配额).

IPO Puzzles IPO 折价 (赢家的诅咒, 信号传递 (赚钱的人疏忽虚假陈述), 看涨分析师报道, 分享桌上剩下的钱, 市场反馈假说 (激励投资者提供积极信息)), 周期性, 发行成本 (缺乏规模敏感性), IPO 长期业绩差 (意见一致 (悲观投资的意见后被采纳), 流行的过去 (如技术泡沫), IPO 择时).

股票增发 Seasoned Equity Offering 现金发行 (Cash Offer), 配股发行 (Rights Offer)

公司治理

公司治理 最小化管理者和投资者之间代理成本和防止欺诈的控制、监管和激励系统. 内部董事, 灰色董事, 外部董事 (独立董事). 利益相关者模型 (stakeholder).

兼并收购

外部成长、资产重组、市值管理.

吸收合并、新设合并、控股合并.

协同效应 成本协同 (更容易), 收入协同.

换股收购
$$\frac{A+T+S}{N_A+\Delta N_A} > \frac{A}{N_A} \Longrightarrow \frac{\Delta N_A}{T+S} < \frac{N_A}{A}$$
, 换股比例 $\frac{\Delta N_A}{N_T} < \frac{P_T}{P_A} \left(1 + \frac{S}{T}\right)$.

杠杆收购 LBO 收购债务绑定到目标公司. 挤出合并 Freezeout Merger.

期权

期权 看涨期权 call option 收益 $\max\{0, S_T - K\}$, 看跌期权 put option 收益 $\max\{0, K - S_T\}$.

期权在行权时的收益

• K= 期权执行价格, S_T = 行权时资产价格

报价 平价/平权, 价内 (实值, in-the-money) 执行收益 > 0, 价外 (虚值, out-of-the-money), 深度价内, 深度价外.

买卖权平价 put-call parity 欧式期权 S + p(S, K) = c(S, K) + PV(K). $p(S, K) \le K$, $c(S, K) \le S$.

价値 内在价值 (若价外则为 0), 时间价值 (*价格* – *内在价值*). 美式期权 *内在价值* \leq *价格*, 时间价值 \geq 0. 欧式看涨期权 $S+p=c+PV(K) \Rightarrow c=S-PV(K)+p \Rightarrow c=(S-K)+(dis(K)+p). 美式看涨期权 <math>C(S,K)=c(S,K)$ (不分红,由于不会提前行权). 欧式看跌期权 p=(K-S)+(c-dis(K)). 美式看跌期权 K-S>P(S,K) 负时间价值尽早执行, 通常 P>p.

股权公司资产的看涨期权,执行价等于未偿债务.**债权** 1. 拥有公司资产,执行价格等于债务的看涨期权空头; 2. 无风险债务和和公司资产看跌期权空头头寸,执行价等于债务.

二叉树定价模型 欧式看涨期权价值
$$c=\frac{1}{1+r_f}\left(\frac{1+r_f-d}{u-d}c_u+\frac{u-(1+r_f)}{u-d}c_d\right)$$
, $\pi^*=\frac{1+r_f-d}{u-d}$, $\pi^*u+(1-\pi^*)d=1+r_f$, 风险中性概率, 风险中性定价. 欧式看跌期权价值 $p=\frac{1}{1+r_f}(\pi^*p_u+(1-\pi^*)p_d)$. 复制组合 $\frac{o_u-o_d}{S(u-d)}\Delta+\frac{o_du-o_ud}{(1+r_f)(u-d)}B$, o is option. 股价上升, 无风险借款购买股票.

Black-Scholes-Merton Formula

$$S_t = S_0 e^{Z_t} = S_0 e^{\mu t + \sigma \sqrt{t}z},$$

where $Z_t \sim \mathcal{N}(\mu t, \sigma^2 t)$ represents risk-free probability, $z \sim \mathcal{N}(0,1)$.

Therefore,

$$\mathbb{E}S_t = S_0 e^{\mu t + \frac{\sigma^2}{2}t}.$$

According to risk-free condition,

$$S_0 = \frac{\mathbb{E}S_t}{e^{r_f t}} = S_0 e^{t\left(\mu + \frac{\sigma^2}{2} - r_f\right)} \Longrightarrow r_f = \mu + \frac{\sigma^2}{2}.$$

Call option,

$$h(S_T) = \max\{0, S_T - K\}.$$

Therefore,

$$\begin{split} h(S_T) > 0 &\Longrightarrow S_T > K \Longrightarrow S_0 e^{\left(r_f - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}z} > K \Longrightarrow \sigma\sqrt{T}z - \frac{\sigma^2}{2}T > \ln\frac{Ke^{-r_fT}}{S_0} \\ &\Longrightarrow z > \frac{1}{\sigma\sqrt{T}}\ln\frac{Ke^{-r_fT}}{S_0} + \frac{1}{2}\sigma\sqrt{T}. \end{split}$$

Let
$$C = \frac{1}{\sigma \sqrt{T}} \ln \frac{Ke^{-r_f T}}{S_0} + \frac{1}{2} \sigma \sqrt{T}$$
. Then,

$$c(S_0, K) = \frac{\mathbb{E}h(S_T)}{e^{r_f T}} = e^{-r_f T} \int_c^{+\infty} \left(S_0 e^{\left(r_f - \frac{\sigma^2}{2}\right)T + \sigma\sqrt{T}z} - K \right) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= \int_c^{+\infty} \left(S_0 e^{\sigma\sqrt{T}z - \frac{\sigma^2}{2}T} - K e^{-r_f T} \right) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

$$= S_0 \left(1 - \Phi(C - \sigma\sqrt{T}) \right) - K e^{-r_f T} \left(1 - \Phi(C) \right)$$

$$= S_0 \Phi(\sigma\sqrt{T} - C) - K e^{-r_f T} \Phi(-C)$$

$$= \Phi\left(\frac{1}{\sigma\sqrt{T}} \ln \frac{S_0}{PV(K)} + \frac{1}{2}\sigma\sqrt{T} \right) S_0$$

$$- \Phi\left(\frac{1}{\sigma\sqrt{T}} \ln \frac{S_0}{PV(K)} - \frac{1}{2}\sigma\sqrt{T} \right) PV(K)$$

$$= \Phi(d_1) S_0 + \Phi(d_2) PV(K).$$

Which can be rewritten as

$$c = e^{-r_f T} \left(\Phi(d_2) \left(S_0 e^{r_f T} \frac{\Phi(d_1)}{\Phi(d_2)} - K \right) + \left(1 - \Phi(d_2) \right) \cdot 0 \right).$$

where $e^{-r_f T}$ is the discount factor, corresponding to $\frac{1}{1+r_f}$, $\Phi(d_2)=\Pr(z>C)$ is the risk-free probability of exercising the call option, corresponding to π^* , and $S_0e^{r_f T}\frac{\Phi(d_1)}{\Phi(d_2)}-K$ corresponds to c_u .

Also, for put option,

$$p = PV(K) - S_0 + c = PV(K)(1 - \phi(d_2)) - S(1 - \phi(d_1))$$

= PV(K)\phi(-d_2) - S_0\phi(-d_1).