Chapter 1

Spontaneous symmetry breaking

Spontaneous symmetry breaking 1.1

Example 1: Ising with magnetic field

When we talk about a broken symmetry, we often refer to a situation as

 $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ (1.1)

where \mathcal{H}_0 is invariant under the group \mathcal{G} and \mathcal{H}_1 is invariant under a subgroup $\mathcal{G}' \subset \mathcal{G}$.

 $\mathcal{H} = J \sum_{\langle ij \rangle} S_i S_j + \sum_i H_i S_i$ (1.2)

The second term, \mathcal{H}_1 , breaks the \mathbb{Z}^2 symmetry satisfied by the 1^{st} alone.

Example 2

In quantum mechanics: hydrogen atom in presence of an electric field $\vec{\mathbf{E}}$ (Stark effect) or a magnetic one, $\vec{\mathbf{B}}$, (Zeeman effect). If \mathcal{H}_1 is small, the original symmetry is weakly violated and perturbative approaches are often used.

In all the above examples, one says that the symmetry is broken explicitly.

Definition 1 (Spontaneous symmetry breaking). The Hamiltonian maintains the original symmetry but the variables used to describe the system become asymmetric.

At this point it is convenient to distinguish between

- Discrete symmetries: examples are \mathbb{Z}^2 , \mathbb{Z}_a .
- Continuous symmetries: examples are xy, O(n).

Let us consider first the discrete ones by focusing on \mathbb{Z}^2 (Ising).

If $H=0, \mathcal{H}_{Ising}$ is invariant with respect to the change $S_i \to -S_i$, hence the discrete group is

$$\mathcal{G} = \mathbb{Z}^2 \tag{1.3}$$

A Ginzburg-Landau theory of the Ising is given by

$$-\beta \mathcal{H}(\Phi) = \int d^D \vec{\mathbf{x}} \left[\frac{1}{2} (\nabla \Phi)^2 + \frac{r_0}{2} \Phi^2 + \frac{u_0}{4} \Phi^4 - h\Phi \right]$$
(1.4)

and

$$Z(r_0, u_0, h) = \int \mathcal{D}\Phi e^{-\beta \mathcal{H}(\Phi)}$$
(1.5)

Lecture n. Tuesday 0th January, 2020. Compiled:

Thursday 9^{th} January, 2020. The symmetry is $\Phi \to -\Phi$ if h=0. Consider the saddle point equation of state

$$-\nabla^2\Phi + r_0\Phi + u_0\Phi^3 = h \tag{1.6}$$

If h does not depend on $\vec{\mathbf{x}}$, uniform solution ($\nabla \Phi = 0$).

The saddle point is equivalent to find the uniform value Φ_0 that is the extrema of the potential

$$V(\Phi) = \frac{1}{2}r_0\Phi^2 + \frac{u_0}{4}\Phi^4 - h\Phi \tag{1.7}$$

For h = 0, $V' = (r_0 + u_0 \Phi^2) \Phi = 0$. Remembering that $r_0 \propto (T - T_c)$, we have two cases

1. Case $T > T_c \ (r_0 > 0)$: there is only one solution $\Phi_0 = 0$.

Figure 1.1: Description.

2. Case $T < T_c \ (r_0 < 0)$: there are two solutions $\Phi_0 = \pm \sqrt{-\frac{r_0}{u_0}}$.

Figure 1.2: Description.

Remark. The two solution $\pm \Phi_0$ are related by the transformation $\in \mathbb{Z}^2$: $\Phi \to -\Phi$.

Remark. For $T < T_c$ the two states (phases) $\pm \Phi_0$ have a lower symmetry than the state $\Phi_0 = 0$.

Remark. If the thermal fluctuations $\delta\Phi$ are sufficiently strong to allow passages between the two states $\pm\Phi_0$ at $T < T_c$, we have $\langle \Phi \rangle = 0$ (preserves states).

However, for $T < T_c$ and $N \to +\infty$, transition between the two states will be less and less probable and the system will be trapped into one of the two states $(\pm \Phi_0)$.

3

The system choose spontaneously one of the two less symmetric state. Therefore, its physics is not any more described by Φ but the fluctuations $\delta\Phi$ around the chosen minimum Φ_0 . There is spontaneous symmetry breaking.

The variable Φ is not any more symmetric and one has to look at $\Phi \to \Phi_0 + \delta \Phi$, where $\delta \Phi$ is a new variable!

1.2 Spontaneous breaking of continuous symmetries and the anset of Goldstone particles

Let us start with a simple model in which the order parameter is a scalar complex variable

 $\Phi = \frac{\Phi_1 + i\Phi_2}{\sqrt{2}} \tag{1.8}$

and with an \mathcal{H} that is invariant with respect to a global continuous transformation.

The simplest model in statistical mechanics is the XY model with O(2) symmetry or a GL model for a superfluid or superconductor (no magnetic field)

$$\mathcal{H}_{eff} = \int d^D \vec{\mathbf{x}} \left[\nabla \Phi \cdot \nabla \Phi^* + \frac{r_0}{2} \Phi^* \Phi + \frac{u_0}{4} (\Phi^* \Phi)^2 \right]$$
 (1.9)

where

$$\Phi(\vec{\mathbf{x}}) = \frac{1}{\sqrt{2}} [\Phi_1(\vec{\mathbf{x}}) + i\Phi_2(\vec{\mathbf{x}})] \tag{1.10}$$

or

$$\Phi(\vec{\mathbf{x}}) = \psi(\vec{\mathbf{x}})e^{i\alpha(\vec{\mathbf{x}})} \tag{1.11}$$

- Superfluid: Φ macroscopic wave function of the Bose condensate (density of superfluid $n = |\Phi^2|$).
- Superconductor: Φ single particle wave function describing the position of the centre of mass of the Cooper pair.

1.2.1 Quantum relativistic case (field theory)

The analog of \mathcal{H} is the action

$$S(\Phi) = \int d^D \vec{\mathbf{x}} \,\mathcal{L}(\Phi) \tag{1.12}$$

where

$$\mathcal{L}(\Phi) = -\frac{1}{2}\partial_{\mu}\Phi\partial^{\mu}\Phi^{*} - \frac{r_{0}}{2}\Phi\Phi^{*} - \frac{u_{0}}{4}(\Phi\Phi^{*})^{2}$$
(1.13)

It describes a scalar complex (i.e. charged) muonic field with mass m. Note that in this case $r_0 > 0$ and $m \equiv \sqrt{r_0}$. The term $(\Phi \Phi^*)^2$ means self-interaction with strength $\lambda \equiv u_0$.

In all cases, the original symmetry is U(1), i.e. both \mathcal{H} and \mathcal{L} are invariant with respect to the transformation

$$\Phi \to e^{i\theta} \Phi, \quad \Phi^* \to e^{-i\theta} \Phi^*$$
 (1.14)

Remark. The phase θ does not depend on $\vec{\mathbf{x}}$ (global symmetry).

In components (1.14) become

$$\begin{cases} \Phi_1 \to \Phi_1 \cos \theta - \Phi_2 \sin \theta \\ \Phi_2 \to \Phi_2 \cos \theta + \Phi_1 \sin \theta \end{cases}$$
 (1.15)

$$(\Phi_1', \Phi_2') = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix}$$
 (1.16)

Let us focus first on the statistical mechanics model and to the most interesting case of $r_0 < 0$.

In components \mathcal{H} becomes

$$\mathcal{H} = \int d^D \vec{\mathbf{x}} \left[(\boldsymbol{\nabla} \Phi_1)^2 + (\boldsymbol{\nabla} \Phi_2)^2 \right] + \int d^D \vec{\mathbf{x}} V(\Phi_1, \Phi_2)$$
 (1.17)

where

$$V(\Phi_1, \Phi_2) = \frac{r_0}{2} (\Phi_1^2 + \Phi_2^2) + \frac{u_0}{4} (\Phi_1^2 + \Phi_2^2)^2$$
(1.18)

It is the mexican hat potential, shown in Figure 1.3

Figure 1.3: Case $r_0 < 0$.

For $r_0 < 0$, there is a uniform solution $(\nabla \Phi_1 = \nabla \Phi_2 = 0)$. Let $S = \sqrt{\Phi_1^2 + \Phi_2^2}$,

$$V(S) = \frac{r_0}{2}S^2 + \frac{u_0}{4}S^4 \tag{1.19}$$

$$\frac{\mathrm{d}V(S)}{\mathrm{d}S} = r_0 S + u_0 S^3 = 0 \tag{1.20}$$

There is 1 maximum at S=0 and minima for $S^2=-\frac{r_0}{r_0}$

For $r_0 < 0$, \mathcal{H} displays minima when

$$\Phi_1^2 + \Phi_2^2 \equiv v^2 = -\frac{r_0}{u_0} \tag{1.21}$$

On the 2D plane (Φ_1, Φ_2) the minima lie on the circle of radius

$$v = \sqrt{-\frac{r_0}{u_0}} \tag{1.22}$$

The spontaneous symmetry breaking occurs when the system "chooses" one of the infinite available minima.

In our example, suppose that the chosen minimum is

$$\Phi_1 = v = \sqrt{-\frac{r_0}{u_0}}, \quad \Phi_2 = 0 \tag{1.23}$$

Figure 1.4: Description.

1.3 Interpretation in relativistic quantum mechanics

- 1. $r_0 < 0$ corresponds to an imaginary mass. This is because to move away from $\Phi = 0$, the system experiences a negative resistence in both directions, being $\Phi = 0$ a relative local minimum.
- 2. The minimum has the lowest energy and therefore it must correspond to the empty state. In this case, however, there is an infinite number of empty states!

Summarizing: the starting Hamiltonian (or Lagrangian) is invariant with respect to U(1) but the one that describes the fluctuation dynamics around one of the chosen minimum state is not invariant with respect to U(1).

Let us now write the Lagrangian with respect to the fluctuations of Φ_1 and Φ_2 around the chosen state

$$\begin{cases} \Phi_1 = v + \delta \Phi_1 \\ \Phi_2 = 0 + \delta \Phi_2 \end{cases} \tag{1.24}$$

or

$$\Phi = v + (\delta \Phi_1 + i\delta \Phi_2) \tag{1.25}$$

Note that, since

$$\begin{cases} \delta \Phi_1 = \Phi_1 - v \\ \delta \Phi_2 = \Phi_2 \end{cases} \tag{1.26}$$

we have

$$\langle \delta \Phi_1 \rangle_{\Phi_0} = \langle \delta \Phi_2 \rangle_{\Phi_0} = 0 \tag{1.27}$$

As expected the expectation of the empty state is back to be zero.

For the quantum relativistic Lagrangian, let us write

$$r_0 \to m^2, \quad u_0 \to \lambda, \quad v^2 = -\frac{m^2}{\lambda}$$
 (1.28)

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}(\delta\Phi_{1} + i\delta\Phi_{2})\partial_{\mu}(\delta\Phi_{1} - i\delta\Phi_{2})
-\frac{m^{2}}{2}(v + \delta\Phi_{1} + i\delta\Phi_{2})(v + \delta\Phi_{1} - i\delta\Phi_{2})
-\frac{\lambda}{4}[(v + \delta\Phi_{1} + i\delta\Phi_{2})(v + \delta\Phi_{1} - i\delta\Phi_{2})]^{2}
= -\frac{1}{2}(\partial_{\mu}\delta\Phi_{1}\partial^{\mu}\delta\Phi_{1}) - \frac{1}{2}(\partial_{\mu}\delta\Phi_{2}\partial^{\mu}\delta\Phi_{2})
-\frac{m^{2}}{2}(v^{2} + 2v\delta\Phi_{1} + \delta\Phi_{1}^{2} + \delta\Phi_{2}^{2})
-\frac{\lambda}{4}(v^{2} + 2v\delta\Phi_{1} + \delta\Phi_{1}^{2} + \delta\Phi_{2}^{2})^{2}$$
(1.29)

Since $m^2 = -v^2 \lambda$,

$$\mathcal{L} = -\frac{1}{2} (\partial_{\mu} \delta \Phi_{1} \partial^{\mu} \delta \Phi_{1}) - \frac{1}{2} (\partial_{\mu} \delta \Phi_{2} \partial^{\mu} \delta \Phi_{2})
+ \frac{\lambda v^{2}}{2} (v^{2} + 2v \delta \Phi_{1} + \delta \Phi_{1}^{2} + \delta \Phi_{2}^{2})
- \frac{\lambda}{4} (v^{4} + 4v^{2} \delta \Phi_{1}^{2} + (\delta \Phi_{1}^{2} + \delta \Phi_{2}^{2})^{2} 4v^{3} \delta \Phi_{1} + 2v^{2} (\delta \Phi_{1}^{2} + \delta \Phi_{2}^{2}) + 4v \delta \Phi_{1} (\delta \Phi_{1}^{2} + \delta \Phi_{2}^{2}))$$
(1.30)

Neglecting the constant terms in v

$$\mathcal{L}(\delta\Phi_1, \delta\Phi_2) = -\frac{1}{2}(\partial_\mu \delta\Phi_1)^2 - \frac{1}{2}(\partial_\mu \delta\Phi_2)^2$$
$$-\lambda v^2 \delta\Phi_1^2 - v\lambda \delta\Phi_1 \left((\delta\Phi_1)^2 + (\delta\Phi_2)^2 \right)$$
$$-\frac{\lambda}{4} \left((\delta\Phi_1)^2 + (\delta\Phi_2)^2 \right)^2$$
(1.31)

Remark. The term $-\lambda v^2 \delta \Phi_1^2$ indicates that the field $\delta \Phi_1$ (related to the transversal fluctuations) has a null empty state ($\langle \delta \Phi_1 \rangle = 0$) and a mass M such that:

$$M^2 = 2\lambda v^2 = -2r_0 \tag{1.32}$$

Therefore, it represents a real, massive, mesonic scalar field that is physically accettable.

However, \mathcal{L} is not any more invariant under the transformation $\delta\Phi_1 \to -\delta\Phi_1$.

Remark. The field $\delta\Phi_2$ has no mass! It describes the fluctuations along the circle where the potential V is in its minimum which implies no dynamical inertia, that implies no mass!

So, starting with one complex scalar field $\Phi(\vec{\mathbf{x}})$ having mass m, when $m^2 < 0$ one gets a real scalar field $\delta\Phi_1$ with mass $M = \sqrt{-2m^2}$ and a second scalar field $\delta\Phi_2$ that is massless. This is called the *Goldstone boson*.

Theorem 1.3.1. If a continuous symmetry is spontaneously broken and there are no long range interactions, exists an elementary excitation with zero momentum or particle of zero mass called Goldstone boson.

More generally, let \mathcal{P} be a subgroup of \mathcal{G} . If \mathcal{G} has N indipendent generators and \mathcal{P} has M indipendent generators, if \mathcal{P} is the new (lower) symmetry, therefore N-M Goldstone bosons exist.

In the previous case $\mathcal{G}=U(1)\Rightarrow N=1$ whereas M=0 (we have chosen a specific minimum).

Example 3

XY model in statistical mechanics:

- $\delta\Phi_1$: fluctuation of the modulus of m.
- $\delta\Phi_2$: fluctuations of the spin directions \Rightarrow spin waves.

Remark. In particle physics the presence of Goldstone bosons brings a serious problem in field theory since the corresponding particles are not observed!

Higgs-Englert-Brout (1964)

Higgs mechanism gives back the mass to the Goldstone particles. The basic idea is that the Goldstone theorem that works for a continuous global symmetry it can fail for loacl gauge theories!

1.4 Spontaneous symmetry breaking in Gauge symmetries

Statistical mechanics, Gl model for superconductors in presence of a magnetic field (Meissner effect, i.e. the magnetic induction $\vec{\mathbf{B}} = 0$ inside the superconductor).

$$\mathcal{H}(\Phi) = \int d^{D}\vec{\mathbf{x}} \left[\frac{1}{2}B^{2} + \left| \left(\vec{\nabla} - 2i\vec{\mathbf{A}} \right) \Phi \right|^{2} \right] + \frac{r_{0}}{2}\Phi^{*}\Phi + \frac{u_{0}}{4}(\Phi^{*}\Phi)^{2} - \vec{\mathbf{B}} \cdot \vec{\mathbf{H}}$$
 (1.33)

where $\frac{B^2}{2}$ is the energy of the magnetic field $\vec{\mathbf{B}}$ and $\vec{\nabla} \rightarrow \left[\vec{\nabla} + iq\vec{\mathbf{A}}\right]$ is the minimal coupling. Consider $\vec{\mathbf{H}}$ the external magnetic field

$$\vec{\mathbf{B}} = \vec{\mathbf{H}} + \vec{\mathbf{M}} \tag{1.34}$$

is the induction field.

Normal conductor corresponding to $\Phi_0 = 0$, that implies $\vec{\mathbf{B}} = \vec{\mathbf{H}}$. For a superconfuctor we have $\Phi \neq 0$, a spontaneous symmetry breaking.

1.5 Fiedl theory analog

Scalar charged mesonic fields selfinteracting and in presence of an electromagnetic field with potential quadrivector $A_{\mu}(\vec{\mathbf{x}})$.

$$\partial_{\mu} \to D_{\mu} = [\partial_{\mu} + iqA_{\mu}] \tag{1.35}$$

$$\Phi = \frac{1}{\sqrt{2}}(\Phi_1 + i\Phi_2), \quad \Phi^* = \frac{1}{\sqrt{2}}(\Phi_1 - i\Phi_2)$$
 (1.36)

Remark. Because of the presence of $A_{\mu}(\vec{\mathbf{x}})$, we should consider a theory that satisfies symmetry U(1) locally! The transformations are

$$\begin{cases}
\Phi(\vec{\mathbf{x}}) \to e^{i\alpha(\vec{\mathbf{x}})}\Phi(\vec{\mathbf{x}}) \\
\Phi^*(\vec{\mathbf{x}}) \to e^{-i\alpha(\vec{\mathbf{x}})}\Phi(\vec{\mathbf{x}})
\end{cases}$$
(1.37)

hence, exists $A_{\mu}(\vec{\mathbf{x}})$ interacting with $\Phi(\vec{\mathbf{x}})$.

The Lagrangian is

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}(\vec{\mathbf{x}}) F^{\mu\nu}(\vec{\mathbf{x}}) + (D_{\mu}\Phi(\vec{\mathbf{x}}))^* (D_{\mu}\Phi(\vec{\mathbf{x}})) - V(\Phi, \Phi^*)$$
 (1.38)

where

$$D_{\mu}\Phi = (\partial_{\mu} + iqA_{\mu})\Phi$$
 Gauge-covariant derivative (1.39a)

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 field strength tensor (1.39b)

$$V(\Phi, \Phi^*) = \frac{m^2}{2} \Phi \Phi^* + \frac{\lambda}{4} (\Phi \Phi^*)^2$$
 (1.40)

- Case $m^2 > 0$: the minimum is in $\Phi = 0$.
- Case $m^2 < 0$: the minimum is in $\Phi = \sqrt{-\frac{m^2}{\lambda}} \equiv v$ (circle of radius $|\Phi| = v$).

Let us choose the state

$$\bar{\Phi}_1 = v, \quad \bar{\Phi}_2 = 0 \tag{1.41}$$

and consider

$$\Phi(x) = (v + \delta\Phi_1) + i\delta\Phi_2 \tag{1.42}$$

Inserting in the Lagrangian and keeping in mind $-m^2 = v^2 \lambda$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\delta\Phi_{1})^{2} + \frac{1}{2}(\partial_{\mu}\delta\Phi_{2})^{2} - \lambda v^{2}\delta\Phi_{1}^{2} + q^{2}v^{2}A_{\mu}A^{\mu} - qvA^{\mu}\partial_{\mu}\delta\Phi_{2} + \text{higher order terms}$$

$$(1.43)$$

- 1. Term $\lambda v^2 \delta \Phi_1^2$: the field $\delta \Phi_1$ is massive with mass $m = v\sqrt{2}$ (Higgs boson).
- 2. Term $q^2v^2A_{\mu}A^{\mu}$: this terms means that the Gause boson A_{μ} , the photon, has got a mass

$$M_A = 2qv (1.44)$$

Remark. Since now A_{μ} is massive, it has three indipendent polarization states.

3. Term $qvA^{\mu}\partial_{\mu}\delta\Phi_2$: the field $\delta\Phi_2$ is not massive (no term $\propto \delta\Phi_2^2$) and is mixed with A_{μ} . Dynamically this means that a propagating photon can transform itself into a field $\delta\Phi_2$ (photon r Goldstone boson).

Since $\delta\Phi_2$ does not seem to be a physical field it should be eliminated by a Gauge transformation.

Indeed a gauge transformation is also characterized by the transformation

$$A_{\mu}(\vec{\mathbf{x}}) \to A_{\mu}(\vec{\mathbf{x}}) + \frac{1}{qv} \partial_{\mu} \delta \Phi_2(x)$$
 (1.45)

Inserting (1.45) in the Lagrangian, we eliminate the mixed term $qvA^{\mu}\partial_{\mu}\delta\Phi_{2}$ and $\frac{1}{2}(\partial_{\mu}\delta\Phi_{2})^{2}$.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}(\partial_{\mu}\delta\Phi_{1})^{2} - \lambda v^{2}\delta\Phi_{1} + q^{2}v^{2}A_{\mu}A^{\mu} + \text{higher order terms} \quad (1.46)$$

Remark. Among the higher order terms there are

- $\propto \delta \Phi_1 A_\mu A^\mu$.
- $\propto \delta \Phi_1^2 A_\mu A^\mu$.

The new Lagrangian contains two fields: one is a massive photon with spin 1 and the second field $\delta\Phi_1$ is massive too, but has spin 0 (scalar).

The Goldstone boson has been "laten" by the Gauge boson that now is massive! The mechanics trough which the gauge boson becomes massive is the so called *Higgs mechanism*.

In summary: (according to the degrees of freedom)

Figure 1.5: Description.

Figure 1.6: Description.

- Global $U(1) \Rightarrow 2$ scalar fields with mass $1+1 \stackrel{\text{symmetry breaking}}{\Longrightarrow} 1$ scalar field massive and 1 scalar field not massive 1+1.
- Local gauge $U(1) \Rightarrow 2$ massive scalar fields + 1 photon (2+2) two polarizations symmetry breaking 1 massive scalar field, 1 massive photon 1 + 3 polarization.

Remark. The presence of the massive photon $m_A^2 = q^2 v^2$, q = 2l in superconductivity, gives rise to the experimental drop

$$B(x) = B(0) \exp\left(-\frac{x}{l}\right) \tag{1.47}$$

inside the system.

- We cannot introduce by hand a massive photon i.e. a term like $\frac{1}{2}m_A^2A_\mu A^\mu$ in the Lagrangian because we would violate explicitly the gauge symmetry!
- The Lagrangian is gauge invariant.
- Symmetry breaking occurs at the level of the vacuum state.
- A gauge symmetry that is explicitly broken is not renormalizable.

1.5.1 Non abelian gauge theories

Example 4

Electro-weak interactions theory (Glashow-Weinberg-Solam) (theory of leptons).

Lagrangian has $\underbrace{SU(2)}_{\text{weak}} \times \underbrace{U(1)}_{\text{electromagnetian}}$

Example 5: Quantum chromodynamic (quarks+gluons)

In this case, one has a term that is SU(3) invariant + the GWS lagrangian with symmetry $SU(2) \times U(1)$, implies

$$SU(3) \times SU(2) \times U(1) \tag{1.48}$$

Because of the groups SU(2) and SU(3) the symmetries above ar not abelian. (For example in SU(2) two matrices $U(\alpha)$ and $U(\beta)$ do not commute in general).

1.6 Extension of Higgs mechanism to non abelian theories

1.6.1 GWS model

Complex field SU(2)

$$\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \Phi_1 + i\Phi_2 \\ \Phi_3 + i\Phi_4 \end{pmatrix} = \begin{pmatrix} \Phi_a(\vec{\mathbf{x}}) \\ \Phi_b(\vec{\mathbf{x}}) \end{pmatrix}$$
(1.49)

where Φ_a, Φ_b are complex fields.

Gauge transformation $SU(2) \times U(1)$:

$$\begin{pmatrix} \Phi_{a}(\vec{\mathbf{x}}) \\ \Phi_{b}(\vec{\mathbf{x}}) \end{pmatrix} \to e^{\frac{i}{2}\alpha_{0}(\vec{\mathbf{x}})} e^{\frac{i}{2}\vec{\tau}\cdot\vec{\alpha}(\vec{\mathbf{x}})} \begin{pmatrix} \Phi_{a}(\vec{\mathbf{x}}) \\ \Phi_{b}(\vec{\mathbf{x}}) \end{pmatrix}$$
(1.50)

where $\vec{\tau}$ are Pauli matrices, $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ are four real functions (4 vectorial mesons).

$$\vec{\alpha}(\vec{\mathbf{x}}) \to W_{\mu}^{a}(\vec{\mathbf{x}}) = \left(W_{\mu}^{(1)}(\vec{\mathbf{x}}), W_{\mu}^{(2)}(\vec{\mathbf{x}}), W_{\mu}^{(3)}(\vec{\mathbf{x}})\right)$$
 (1.51)

The scalar gauge field is

$$\alpha_0(\vec{\mathbf{x}}) \to B_{\mu}(\vec{\mathbf{x}})$$
 (1.52)

with B_{μ} is a linear combination of A_{μ} and $W_{\mu}^{(3)}$.

Lagrangian:

$$\mathcal{L} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - \mu^{2}\Phi^{*}\Phi - \lambda(\Phi^{*}\Phi)^{2} - \frac{1}{4}b^{\mu\nu}b_{\mu\nu} - \frac{1}{4}f_{a}^{\mu\nu}f_{\mu\nu}^{a}$$
 (1.53)

$$D_{\mu} \to \partial_{\mu} \frac{1}{2} i g \tau^{a} W_{\mu}^{a} - \frac{i}{2} g' B_{\mu} \tag{1.54}$$

$$f^a_{\mu\nu} = \partial_\mu W^a_\nu - \partial_\nu W^a_\mu - g\varepsilon^{abc} W^b_\mu W^a_\nu \tag{1.55}$$

$$b_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \tag{1.56}$$

$$W_{\mu}^{a} \to W_{\mu}^{a} - \varepsilon^{abc} \alpha_{b}(\vec{\mathbf{x}}) W_{\mu}^{c}(\vec{\mathbf{x}}) + \frac{1}{q} \partial_{\mu} \alpha^{a}(\vec{\mathbf{x}})$$
 (1.57a)

$$B_{\mu} \to B_{\mu} + \frac{1}{g'} \frac{\partial \alpha_0}{\partial x_{\mu}}$$
 (1.57b)

$$\nu \sim \Phi_1^2 + \Phi_2^2 + \Phi_3^2 + \Phi_4^2 = v^2 \tag{1.58}$$

Choosing the direction on the sphere in \mathbb{R}^4 , 3 symmetries are broken a 3 Goldstone bosons.

1.6.2 Higgs mechanism

Higgs scalar field

$$\delta\Phi = \begin{pmatrix} \Phi^+ \\ \Phi_0 \end{pmatrix} \tag{1.59}$$

such that

$$\langle 0|\Phi|0\rangle = \begin{pmatrix} 0\\v \end{pmatrix} \tag{1.60}$$

$$\Rightarrow \mathcal{L}_{Higgs} = \frac{1}{2} (g\nu)^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} v^2 \left(gW_{\mu}^{(3)} - g'B_{\mu} \right)^2 \tag{1.61}$$

where

$$W_{\mu}^{(1)} = \frac{1}{\sqrt{2}} (W_{\mu}^{+} + W_{\mu}^{-})$$
 (1.62a)

$$W_{\mu}^{(2)} = \frac{1}{\sqrt{2}} (W_{\mu}^{+} - W_{\mu}^{-})$$
 (1.62b)

Mass of the W^+ particle and its antiparticle

$$M_W^2 = \frac{1}{2}(gv)^2 \tag{1.63}$$

The 2^{nd} term is a linear combination of W^3_{μ} and B_{μ} which corresponds to Z^0 , the field for a third weak gauge boson.

To make Z^0_μ and A_μ orthogonal we should consider

$$A_{\mu} = (\cos \theta_W) B_{\mu} + (\sin \theta_W) W_{\mu}^3 \tag{1.64a}$$

$$Z_{\mu}^{0} = (-\sin\theta_{W})B_{\mu} + (\cos\theta_{W})W_{\mu}^{3}$$
 (1.64b)

where θ_W is the Weiberg angle:

$$\tan \theta_W = \frac{g'}{q} \tag{1.65}$$

$$M_{Z^0}^2 = \frac{1}{2} \left(\frac{vg}{\cos \theta_W} \right)^2 = \frac{Mw^2}{\cos^2 \theta_W}$$
 (1.66)