Exercise A.4

L Answer (a).

We are asked to show that, for all complex numbers z_1 and z_2 such that $z_2 \neq 0$, the following identity holds:

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}.$$

Let z_1 and z_2 be arbitrary complex numbers (where $z_2 \neq 0$) with the polar representations

$$z_1 = r_1 e^{j\theta_1} \quad \text{and} \quad z_2 = r_2 e^{j\theta_2},$$

where r_1 , r_2 , θ_1 , and θ_2 are real constants, and $r_1 \ge 0$ and $r_2 > 0$. Consider the left-hand side of the given equation, which we can manipulate as follows:

ows: replace
$$\mathbf{Z}_1$$
 and \mathbf{Z}_2 with their polar representations
$$\begin{vmatrix} \frac{z_1}{z_2} \end{vmatrix} = \begin{vmatrix} \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} \end{vmatrix}$$
 representations
$$= \begin{vmatrix} \left(\frac{r_1}{r_2}\right) \left(\frac{e^{j\theta_1}}{e^{j\theta_2}}\right) \end{vmatrix}$$
 exponent laws
$$= \begin{vmatrix} \left(\frac{r_1}{r_2}\right) e^{j(\theta_1 - \theta_2)} \end{vmatrix}$$
 definition of polar form
$$= \frac{|z_1|}{|z_2|}.$$
 definition of \mathbf{Z}_1 and \mathbf{Z}_2

(In the preceding steps, we used the fact that $r_1/r_2 \ge 0$, which must be true, since $r_1 \ge 0$ and $r_2 > 0$.) Thus, the given identity holds.