RQuantLib: Interfacing QuantLib from R R / Finance 2010 Presentation

Dirk Eddelbuettel¹ Khanh Nguyen²

¹Debian Project

²UMASS at Boston

R / Finance 2010 April 16 and 17, 2010 Chicago, IL, USA

Eddelbuettel and Nguyen

RQuantLik

QuantLib RQuantLib Fixed Income Summary

Nerview Architecture Evamo

QuantLib releases

Showing the growth of QuantLib over time

- The initial QuantLib release was 0.1.1 in Nov 2000
- The first Debian
 QuantLib package was prepared in May 2001
- Boost has been a QuantLib requirement since July 2004
- The long awaited QuantLib 1.0.0 release appeared in Feb 2010

Eddelbuettel and Nguyen

RQuantLil

A few key points about QuantLib

Number of SVN commits

QuantLib ...

- is a C++ library for financial quantitative analysts and developers.
- was started in 2000 and is hosted on Sourceforge.Net
- is a free software project under a very liberal license allowing for inclusion in commercial projects.
- is primarily the work of Ferdinando Ametrano and Luigi Ballabio.
- is sponsored by the Italian consultancy StatPro which derives consulting income from it.

Eddelbuettel and Nguyen

QuantLib RQuantLib Fixed Income Summary

QuantLib Architecture

How is it put togetherm and how do I use it?

- QuantLib is written in C++ and fairly rigourously designed.
- Luigi Ballabio has draft chapters on the QuantLib design and implementation at http://sites.google.com/ site/luigiballabio/qlbook.
- QuantLib use the Boost testing framework and employs hundreds of detailed unit tests.
- QuantLib makes extensive use of Swig and bindings for Java, Perl, Python, Ruby, C#, Guile ... exist.
- QuantLibAddin exports a procedural interface to a number of platforms including Excel and Oo Calc.
- Several manual (non-SWIG) extension such as RQuantLib exist as well.

QuantLib RQuantLib Fixed Income Summary Overview Architecture Example

Key Modules

A rough guide, slight re-arranged from the QuantLib documentation

- Pricing engines (Asian, Barrier, Basket, Cap/Floor, Cliquet, Forward, Quanto, Swaption, Vanilla)
- Finite-differences framework
- Fixed-Income (Short-rate modelling, Term structures)
- Currencies and FX rates
- Financial instruments
- Math tools (Lattice method, Monte Carlo Framework, Stochastic Process)
- Date and time calculations (Calendars, Day Counters)
- Utilities (Numeric types, Design patterns, Output manipulators)
- QuantLib macros (Numeric limits, Debugging)

Eddelbuettel and Nguyen

RQuantLib

....

QuantLib RQuantLib Fixed Income Summary

ry

ew Architecture

Options: Fifteen solutions and three different exercises

```
$ EquityOption
```

```
Option type = Put
Maturity = May 17th, 1999
Underlying price = 36
Strike = 40
Risk-free interest rate = 6.000000 %
Dividend yield = 0.000000 %
Volatility = 20.000000 %
```

Method Black-Scholes Barone-Adesi/Whaley Bjerksund/Stensland Integral Finite differences Binomial Jarrow-Rudd Binomial Cox-Ross-Rubinstein Additive equiprobabilities Binomial Trigeorgis Binomial Tian	European	Bermudan	American
	3.844308	N/A	N/A
	N/A	N/A	4.459628
	N/A	N/A	4.453064
	3.844309	N/A	N/A
	3.844342	4.360807	4.486118
	3.844132	4.361174	4.486552
	3.843504	4.360861	4.486415
	3.836911	4.354455	4.480097
	3.843557	4.360909	4.486461
	3.844171	4.361176	4.486413
Binomial Tian Binomial Leisen-Reimer Binomial Joshi MC (crude) QMC (Sobol)	3.844171	4.361176	4.486413
	3.844308	4.360713	4.486076
	3.844308	4.360713	4.486076
	3.834522	N/A	N/A
	3.844613	N/A	N/A
MC (Longstaff Schwartz)	N/A	N/A	4.481675

Run completed in 5 s

Errors from discrete hedging (Derman and Kamal)

\$ DiscreteHedging

Option value: 2.51207

	1	P&L	P&L	Derman&Kamal	P&L P&L
samples	trades	mean	std.dev.	formula	skewness kurtosis
50000	21	-0.001	0.43	0.44	-0.33 1.56
50000	84	0.000	0.22	0.22	-0.20 1.68

Run completed in 16 s

Other examples include SwapValuation, Repo, Replication, FRA, FittedBondCurve, Bonds, BermudanSwaption, CDS, ConvertibleBonds, CallableBonds and MarketModels. Also available are quantlib-benchmark (running 85 tests) and quantlib-test-suite (running 446 tests cases).

Eddelbuettel and Nguyen

QuantLib RQuantLib Fixed Income Summary

Overview

- Initial implementation: Standard equity option pricing:
 - pricers and greeks for European and American options
 - first set of exotics using barrier and binaries
 - also implied volatility calculations where available
- First external contribution: Curves and Swaption pricing.
- Second external contribution (as Google Summer of Code): Fixed Income Functionality (more on this below)
- Other small extensions on date and holiday calculations.

QuantLib RQuantLib Fixed Income Summary Key components Examples

Option Valuation and Greeks

Analytical results where available

```
R> example (EuropeanOption)
ErpnOpR> # simple call with unnamed parameters
ErpnOpR> EuropeanOption("call", 100, 100, 0.01, 0.03, 0.5, 0.4)
Concise summary of valuation for EuropeanOption
  value delta gamma vega theta
                                             rho divRho
        ErpnOpR> # simple call with some explicit parameters, and slightly increased vol:
ErpnOpR> EuropeanOption(type="call", underlying=100, strike=100, dividendYield=0.01,
ErpnOp+ riskFreeRate=0.03, maturity=0.5, volatility=0.5)
Concise summary of valuation for EuropeanOption
         delta gamma vega theta
                                             rho
                                                  divRho
                 0.0110 27.4848 -14.4673 21.7206 -28.9169
         0.5783
R> example(BinaryOption)
BnryOpR> BinaryOption(binType="asset", type="call", excType="european",
                   underlying=100, strike=100, dividendYield=0.02,
BnryOp+
                    riskFreeRate=0.03, maturity=0.5, volatility=0.4, cashPayoff=10)
BnryOp+
Concise summary of valuation for BinaryOption
 value delta gamma vega theta rho divRho
55.760 1.937 0.006 12.065 -5.090 68.944 -96.824
R> example(BarrierOption)
BrrrOpR> BarrierOption(barrType="downin", type="call", underlying=100,
BrrrOp+ strike=100, dividendYield=0.02, riskFreeRate=0.03,
BrrrOp+ maturity=0.5, volatility=0.4, barrier=90)
Concise summary of valuation for BarrierOption
value delta gamma vega theta
                                  rho divRho
 3.738
        NaN
              NaN
                     NaN
                           NaN
                                  NaN
```

Eddelbuettel and Nguyen

QuantLib Fixed Income Summary

Key components Examples

Option Valuation and Greeks

The demo (OptionSurfaces) provides some animation

RQuantLib before GSOC 2009...

GSOC started. April 2009...

QuantLib RQuantLib Fixed Income Summary Overview and develop

Fixed Income Development

Eddelbuettel and Nguyen RQue

QuantLib RQuantLib Fixed Income Summary Overview and developm

Fixed Income Development

Fixed Income Development

Making curve fitting and bond pricing work together...

Eddelbuettel and Nguyen

Fixed Income Development

QuantLib RQuantLib Fixed Income Summary Overview and development Example

Fixed Income Development

Eddelbuettel and Nguyen

RQuantLi

QuantLib RQuantLib Fixed Income Summary Overview and development Examples

Fixed Income Development

And recently, we have started to add GUIs

QuantLib RQuantLib Fixed Income Summary Overview and development Example

Fixed Income Development

In summary

Eddelbuettel and Nguyen

RQuantl il

QuantLib RC

ROuantl ih

Fixed Income

Summary

Overview and development Example

Examples....

Fixed Income in RQuantLib Examples: Curve fitting with DiscountCurve function

plot (curves)

Overview and development Example

Fixed Income in RQuantLib

Examples: Curve fitting with FittedBondCurve function

```
library(zoo)
z <- zoo(curve$table$zeroRates, order.by=curve$table$date)
plot(z, xlab='Date', ylab='Zero Rates')</pre>
```


Eddelbuettel and Nguyen

RQuantLib

Overview and development Example

Fixed Income in RQuantLib

Examples: Bond pricing

#set up bond discounting term structure

Overview and development Example

Fixed Income in RQuantLib

Examples: Bond pricing

```
#Set up a Fixed-Coupon Bond
```

```
fixed.bond.param <- list(</pre>
                  maturityDate=as.Date('2017-05-15'),
                  issueDate=as.Date('2007-05-15'),
                  redemption=100,
                  effectiveDate=as.Date('2007-05-15'))
fixed.bond.dateparam <- list(</pre>
                  settlementDays=settlementDays,
                  dayCounter='ActualActual',
                  period='Semiannual',
                  businessDayConvention='Unadjusted',
                  terminationDateConvention='Unadjusted',
                  dateGeneration='Backward',
                  endOfMonth=0)
fixed.bond.coupon <-c(0.045)
#Call the pricing function
FixedRateBond(fixed.bond.param, fixed.bond.coupon,
              bondDsctTsr, fixed.bond.dateparam)
```

QuantLib RQuantLib Fixed Income Summary Overview and development Exa

Fixed Income in RQuantLib

Examples: Convertible Bond from Matlab's Fixed Income Toolbox

Source: http://www.mathworks.com/access/helpdesk/help/toolbox/finfixed/cbprice.html

```
plot(stock, convprice);
        legend ({ '+0 bp'; '+50 bp'; '+100 bp'; '+150 bp
2
        '});
title ('Effect of Spread
3
                using Trinomial tree
                 - 200 steps')
        xlabel('Stock Price');
ylabel('Convertible Price')
4
5
        text(50, 150, ['Coupon 4%
6
               semiannual.',
sprintf('\n'), ...
'110 Call—on—clean
7
                       after two years
                       . ' sprintf('\n'
8
               'Maturing at par in
                      five years.'],
                      fontweight',
                      Bold')
```


verview and development Examples

Fixed Income in RQuantLib

Examples: Convertible Bond from Matlab's Fixed Income Toolbox

```
#arguments to construct a BlackScholes process and set up the binomial pricing process
#engine for this bond.
Sigma <- 0.3
process <- list(underlying=40, divYield=dividendYield,
                  rff=RiskFreeRate, volatility=Sigma)
#loop through underlying price and spread to produce similar analysis to Matlab
ret <- data.frame()</pre>
for (s in c(0, 0.005, 0.010, 0.015)){
   x < - c()
   y <- c()
   i <- 1
   for (p in seq(0, 100, by = 10)) {
      process$underlying <- 40+p
      \verb|bondparams$creditSpread| <- s
      t <- ConvertibleFixedCouponBond(bondparams,
                                           coupon,
                                           process,
                                           dateparams)
      x[i] < -p + 40
      y[i] <- t$cleanPrice
i <- i + 1
   }
   z < - rep(s, 11)
   ret <- rbind(ret, data.frame(Stock=x,ConvPrice=y,z))</pre>
```


RQuantLibGUI provides a graphical user interface via the 'traitr' package by John Verzani.

QuantLib RQuantLib Fixed Income Summary Overview and development Examples

Fixed Income in RQuantLib

Graphical User Interface: Bonds

0		ı	RQuantLib com	ımon bo	onds p	ricing	g GUI
Zero Coupon Bo	ond Fixed Ra	ate Bond Floating R	ate Bond		Result	NPV	
Fixed Rate Bon	d Parameters	<i>B</i>				INFV	87.0684451738347
Issue Date	2010-04-08		calendar		Clean	price	87.0808793008888
Maturity Date	2020-04-08		calendar		Dirty	price	87.128101523111
Rates	0.034					Yield	0.0505189990997315
Face Amount	100						
Redemption	100						
DateParameters						100	0
	lementDays	3				80 -	_
	calendar	o us o uk			unt	9 -	
	dayCounter	Thirty360	~		Amount	9 -	-
	period	items Annual	î			- 20	
		Semiannual From FourthMonth	- V			0 -	000000000000000000000000000000000000000
businessDay	/Convention	Following	~				2012 2014 2016 2018 2020
terminationDate	eConvention	Following	~				Date
date	eGeneration	Backward	~				
Discount Curve							
dcc							
OK Build cupy	e FittedBor	ndCurve					

Summary and Outlook

- QuantLib represents a decade of work leading to the recent 1.0 release.
- RQuantLib (still) exposes only a subset of the available functionality.
- We are thinking about
 - Conversion to the new Rcpp API
 - Expanding the GUIs to the option pricers
 - And of course adding more products and QuantLib features
- We welcome feedback as well as contributions just register at the R-Forge project site.
- Thank you!

Eddelbuettel and Nguyen