- **Опр. 1.** Топологическим пространством называется множество X, в котором выделено семейство подмножеств, называемых открытыми, удовлетворяющее следующим условиям:
 - 1. само пространство X и пустое подмножество \varnothing являются открытыми множествами;
 - 2. объединение любого семейства открытых множеств открыто;
 - 3. пересечение двух открытых множеств открыто.

Пример 1. Пусть X — произвольное множество.

- 1. (**тривиальная топология**) Открытыми множествами являются только само пространство X и пустое подмножество \varnothing .
- 2. (дискретная топология) Пусть X произвольное множество. Открытыми множествами являются все его подмножества.
- **Пример 2.** (стандартная топология на \mathbb{R}) Назовем подмножество $U \subset \mathbb{R}$ открытым, если для каждой точки $x \in U$ существует такое действительное число $\varepsilon > 0$, что все y, удовлетворяющие условию $|y x| < \varepsilon$, также лежат в U.
- Опр. 2. Пусть X топологическое пространство и $Y \subset X$ подмножество. Введем на Y топологию, объявив его открытыми подмножествами все множества вида $U \cap Y$, где U открытое подмножество пространства X. Получающаяся топология называется топологией на Y, индуцированной топологией на X.
 - 1. Докажите, что индуцированная топология действительно является топологией.
- Опр. 3. Базой ${\mathbb B}$ открытых множеств на множестве X называется семейство его подмножеств, обладающее следующим свойством: если $V_1 \subset X$ и $V_2 \subset X$ принадлежат базе, то для любого $x \in V_1 \cap V_2$ найдется такое множество $U \in {\mathbb B}$, что $x \in U \subset V_1 \cap V_2$. Другими словами, если пересечение множеств V_1 и V_2 из базы не пусто, то $V_1 \cap V_2$ являются объединением некоторого (может быть, бесконечного) семейства множеств из базы.
 - 2. Пусть \mathcal{B} база открытых множеств на множестве X. Докажите, что совокупность подмножеств $U\subset X$, представимых в виде объединения некоторого (возможно, бесконечного) семейства множеств из база, а также \varnothing и все X являются топологией на X.
 - 3. (топология декартового произведения) Пусть X и Y топологические пространства. Докажите, что базу топологии в $X \times Y \stackrel{\text{def}}{=} \{(x,y) \colon x \in X, y \in Y\}$ можно задать, как совокупность всех декартовых произведений открытых подмножеств в X и Y.
- **Опр. 4.** Пусть X топологическое пространство и $M \subset X$ произвольное подмножество. Тогда замыкание множества M называется пересечение всех замкнутых множеств (см. определение в лекции 1), содержащих M. Замыкание множества M обычно обозначается как \overline{M} .
 - 4. Пусть X топологическое пространство и $M \subset X$. Докажите, что \bar{M} состоит из всех точек $x \in X$, обладающих следующим свойством: для всякого открытого подмножества $U \ni x$ имеем $U \cap M \neq \varnothing$.
 - 5. Пусть X метрическое пространство и $M \subset X$ подмножество. Тогда его замыкание $\bar{M} \subset X$ состоит из всех пределов последовательностей, все элементы которых лежат в M.
- **Опр. 5.** Пусть X топологическое пространство. Точка $x \in X$ называется изолированной, если множество $\{x\}$ открыто.

Упражнения

- 1. Докажите, что стандартную топологию на $\mathbb R$ можно задать с помощью базы открытых множеств вида (p;q), где p и q — рациональные числа.
- 2. Пусть $X = \mathbb{R} \setminus \{0\}$ топологическое пространство с индуцированной топологией. Приведите пример собственного подмножества X, которое одновременно открыто и замкнуто.
- 3. Пусть X топологическое пространство и $A\subset X$. Докажите, что $\bar{A}=A$ тогда и только тогда, когда A — замкнутое множество.
- 4. Докажите, что открытый шар $B_{\varepsilon}(x) \subset \mathbb{R}^2$ открыт в топологии произведения $\mathbb{R} \times \mathbb{R}$ (на каждом экземпляре \mathbb{R} задана стандартная топология).
- 5. Рассмотрим произвольное множество Х. Докажите, что семейство подмножеств U, таких, что либо $U=\varnothing$, либо $X\setminus U$ счётно, образуют топологию на X.
- 6. Докажите, что семейство подмножеств U вещественной прямой $\mathbb R$, таких, что либо $\mathbb{R} \setminus U = \emptyset$, либо $\mathbb{R} \setminus U$ бесконечно, не образуют топологию на \mathbb{R} .
- 7. Отождествим $M_n(\mathbb{C})$ (множество квадратных матриц порядка n с комплексными коэффициентами) с пространством \mathbb{C}^{n^2} , на котором задана стандартная топология. Докажите, что множество обратимых матриц $GL_n(\mathbb{C})$ открыто в $M_n(\mathbb{C})$.
- 8. Докажите, что семейство арифметических последовательностей натуральных чисел образуют базу открытых множеств на множестве N. (Топология на N, определяемая указанной базой, называется топологией арифметических прогрессий).
- 9. Рассмотрим № с топологией арифметических прогрессий. Докажите, что
 - (a) для простого числа p множество $\{np: n \in \mathbb{N}\}$ замкнуто;
 - (b) множество простых чисел бесконечно.
- 10. Пусть X топологическое пространство и $A \subset Y \subset X$. Докажите, что
 - (a) подмножество A замкнуто в индуцированной топологии на Y тогда и только тогда, когда для некоторого замкнутого множества $B\subset X$ справедливо равенство $A = B \cap Y$;
 - (b) замыкание A в индуцированной топологии на Y совпадает с $\bar{A} \cap Y$;
 - (c) если A замкнуто в Y, \bar{a} Y замкнуто в X, то A замкнуто в X.
- 11. Пусть X и Y топологические пространства, $A \subset X$ и $B \subset Y$. Докажите, что
 - (a) если A замкнуто в X, а B замкнуто в Y, то $A \times B$ замкнуто в $X \times Y$;
 - (b) $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 12. Докажите, что каждое открытое множество на прямой представимо как объединение не более чем счётного набора непересекающихся интервалов (допускаются интервалы с одним или обоими бесконечными концами).
- 13. Докажите, что каждое бесконечное замкнутое множество на прямой является замыканием некоторого своего счётного подмножества.
- 14. Каждую точку x непустого множества $A \subset \mathbb{R}^n$ покроем замкнутым шаром $\bar{B}_{\varepsilon}(x)$. Докажите, что объединение этих шаров:
 - (a) открыто, если A открыто;
 - (b) замкнуто, если A замкнуто.
- 15. Выпуклой оболочкой множества $A \subset \mathbb{R}^n$ называется пересечение всех выпуклых множеств, содержащих A. Докажите, что для каждого открытого множества его выпуклая оболочка открыта.
- 16. Докажите, что непустое множество $A \subset \mathbb{R}^n$ замкнуто в том и только том случае, когда для каждой точки $x \in \mathbb{R}^n$ найдётся такая точка $y \in A$, что $\rho(x,y) =$ $= \rho(x, A) \stackrel{\text{def}}{=} \inf_{z \in A} \rho(x, z).$