

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: November 23 ~ November 13, 2015

Test Report S/N: LR500111511F Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID

APPLICANT

2AGMY-MSM320

MCT CO., LTD.

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : LoRa FR module

Manufacturer : MCT CO., LTD.

Model name : MSM320

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2009

Frequency Range : 917.3 ~ 923.3 MHz

RF power : Max 1.51 dBm – Conducted

Data of issue : November 25, 2015

This test report is issued under the authority of:

The test was supervised by:

Yong-Chul Wang, Manager

Joon-Young Jeon, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	8
3.2.2 PEAK OUTPUT POWER	8
3.2.3 POWER SPECTRAL DENSITY	10
3.2.4 BAND EDGE	12
3.2.5 CONDUCTED SPURIOUS EMISSIONS	19
3.2.6 RADIATED SPURIOUS EMISSIONS	24
3.2.7 AC CONDUCTED EMISSIONS	28
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	42

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile : +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2016-09-30	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	610755	2017-04-21	FCC filing
FCC	U.S.A	649054	2017-04-13	FCC CAB
VCCI	JAPAN	R2133(10 m), C2307	2017-06-21	VCCI registration
VCCI	JAPAN	T-2009	2016-12-23	VCCI registration
VCCI	JAPAN	G-563	UPDATING	VCCI registration
IC	CANADA	5799A-1	UPDATING	IC filing
KOLAS	KOREA	NO.551	2017-01-08	KOLAS accredited Lab.

2. Information about test item

2-1 Client & Manufacture

Company name : MCT CO., LTD.

Address : B-215, Garden5 Works, 52 Dhungmin-ro, Songpa-gu, Seoul,

Korea(05839)

Telephone / Facsimile : +82-2-2047-1622 / +82-2-2047-1625

2-2 Equipment Under Test (EUT)

Trade name : MSM320 Model name : MSM320

Serial number : Identical prototype
Date of receipt : November 23, 2015

EUT condition : Pre-production, not damaged
Antenna type : Dipole with Max Gain: 2.11 dBi

Frequency Range : 917.3 ~ 923.3 MHz

RF output power : Max 1.51 dBm – Conducted

Number of Channels : 20

Power Source : DC 3.6 V Firmware Version : V 1.0.0

2-3 Tested frequency

Bluetooth	LOW	MID	HIGH
Frequency (MHz) 917.3		920.3	923.3

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
-	-	-	-

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500 KHz		С
15.247(b)	Transmitter Peak Output Power	< 1 Watt	Conducted	С
15.247(d)	Transmitter Power Spectral Density	< 8 dBm @ 3 KHz	Conducted	С
15.247(d)	Band Edge & Spurious	> 20 dBc		С
15.209	Field Strength of Harmonics	Emissions	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement	-	_	С
Note 1: C=Complie	es NC=Not Complies NT=Not Teste	d NA=Not Applicable		

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

Note 1: Antenna Requirement

→ The MCT CO., LTD. FCC ID: 2AGMY-MSM320 unit complies with the requirement of §15.203.

The antenna type is Dipole antenna.

Note 2: The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2009

FCC KDB Publication No. 558074 D01 x25't25

FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 V03 R03 and TCB Workshop 2012, April.

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1 MHz Span = 10 MHz

 $VBW = 1 MHz (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data: MIMO

Mode Frequency (MHz)	Frequency	Channel No	Test Res	sults
	Channel No.	Measured Bandwidth (MHz)	Result	
	917.3	1	1.52	Complies
Normal	920.3	17	1.52	Complies
	923.3	32	1.52	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500 kHz

Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

<u>Ch1</u>

Ch17

Ch32

3.2.2 Peak Output Power Measurement

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 V03 R03 and TCB Workshop 2012, April.

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1 MHz Span = auto

 $VBW = 1 MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

Measurement Data: Port 1

Mada	Frequency	requency Channel No.	Test Results	
Mode	Mode (MHz) Channel No	Channel No.	Measured Data (dBm)	Result
	917.3	1	1.51	Complies
Normal	920.3	17	1.49	Complies
	923.3	32	1.51	Complies

Minimum Standard:

Peak output power	< 1 W
-------------------	-------

Measurement Setup

Figure 2: Measurement setup for the carrier frequency separation

CH1

CH17

CH32

3.2.3 Power Spectral Density

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 V03 R03 and TCB Workshop 2012, April.

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHz Span = 300 kHz VBW = 3 kHz Sweep = 100 sec Detector function = peak Trace = max hold

Measurement Data: Port 1

Mode Frequency (MHz)	Frequency	Channel No	Test Results	
	Channel No.	dBm/3kHz	Result	
Normal	917.3	1	-1.57	Complies
	920.3	17	-1.57	Complies
	923.3	32	-1.58	Complies

Minimum Standard:

Power Spectral Density

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>CH1</u>

CH17

CH32

3.2.4 Band Edge

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 V03 R03 and TCB Workshop 2012, April.

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = $2 \text{ MHz} \sim 5 \text{ MHz}$ Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
	20 020

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Normal Band Edge: Conducted Measurements

Ref. No.: LR500111511F

3.3.5 Conducted Spurious Emissions

Procedure:

The test follows FCC KDB Publication No. 558074 D01 V03 R03 The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

VBW = 100 kHz Detector function = peak

Trace = max hold

Measurement Data: Complies

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

 $\frac{\text{CH1}}{\text{Frequency Range} = 30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic}}$

 $\frac{\text{CH17}}{\text{Frequency Range} = 30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic}}$

$\frac{\text{CH32}}{\text{Frequency Range} = 30 \text{ MHz} \sim 10^{\text{th}} \text{ harmonic}}$

3.3.8 Radiated Spurious Emissions

Procedure:

Radiated emissions from the EUT were measured according to the dictates of DA00-705. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

- (a) In the frequency range of 9kHz to 30 MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

 $VBW \ge RBW$

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $9 \text{ kHz} \sim 10^{\text{th}} \text{ harmonic.}$

RBW = $120 \text{ kHz} (30 \text{MHz} \sim 1 \text{ GHz})$

= 1 MHz $(1 \text{ GHz} \sim 10^{\text{th}} \text{ harmonic})$

Span = 100 MHz Detector function = peak

Trace = \max hold Sweep = auto

below 30MHz

below 1GHz (30MHz to 1GHz)

above 1GHz

Measurement Data: Complies

- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20dB below limit include from 9KHz to 30MHz.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz) (@ 300m)
0.490 ~ 1.705	24000/F(kHz) (@ 30m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Fraguency	Reading			1	Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]		
Frequency	[dBuV/m]		Pol.	Factor							
[MHz]	AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
2431	27.4	41.4	V	24.8	24.8 25.4 54		74.0	26.8	40.8	27.2	33.2
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-			-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Evenuency	Reading				Correction	Limits		Result		Margin	
Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	[MHz] AV / Peak			Antenna Amp.Gain+Cable		AV/Peak		AV/Peak		AV / Peak	
2431	30.2	41.1	V	24.8	25.4		74.0	29.6	40.5	24.4	33.5
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-			-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Evenuency	Reading				Limits		Result		Margin		
Frequency	[dBuV/m] Pol		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna	Antenna Amp.Gain+Cable		Peak	AV/Peak		AV / Peak	
2436	30.1	42.2	V	24.8	25.4	54.0	74.0	29.5	41.6	24.5	32.4
-	-	-	-			-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

⁻ No other emissions were detected at a level greater than 20dB below limit.

Radiated Emissions

4, Songjuro236Beon-gil, Yangji-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do, 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: MSM320 TEST MODE: RFID mode
Temp Humi : 15 / 33 Tested by: Y00 B C

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.3.9 AC Conducted Emissions

Procedure:

AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003.

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit
- It gave the worse case emissions

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

^{*} Note: The limits will decrease with the frequency logarithmically within 0.15MHz to 0.5MHz

Conducted Emissions -LINE

4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : MSM320 Phase : LINE

Test Mode : RFID mode Test Power : 120 / 60

Temp. / Humi. : 27 / 39 Test Engineer : YOO B C

Freq	RD	RD	C.F	Result	Result	Limit	Limit	Margin	Margin
	QP	AV		QP	AV	QP	AV	QP	AV
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dBuV	dB	dB
0.158	19.06	-0.92	19.55	38.61	18.63	65.56	55.56	26.95	36.93
0.173	16.88	-2.86	19.53	36.41	16.67	64.81	54.81	28.40	38.14
0.183	15.59	-2.37	19.52	35.11	17.15	64.37	54.37	29.26	37.22
0.356	6.41	0.24	19.44	25.85	19.68	58.83	48.83	32.98	29.15
0.373	17.98	17.47	19.43	37.41	36.90	58.44	48.44	21.03	11.54
0.375	19.36	16.79	19.43	38.79	36.22	58.39	48.39	19.60	12.17

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

Conducted Emission – NEUTRAL

4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9

Fax:+82-31-3236010

EUT / Model No. : MSM320 Phase : NEUTRAL

Test Mode : RFID mode Test Power : 120 / 60

Temp. / Humi. : 27 / 39 Test Engineer : YOO B C

Freq	RD	RD	C.F	Result	Result	Limit	Limit	Margin	Margin
	QP	AV		QP	AV	QP	AV	QP	AV
MHz	dBuV	dBuV	dB	dBuV	dBuV	dBuV	dBuV	dB	dB
0.154	19.66	1.80	19.57	39.23	21.37	65.79	55.79	26.56	34.42
0.162	18.66	1.30	19.56	38.22	20.86	65.38	55.38	27.16	34.52
0.165	18.09	1.26	19.56	37.65	20.82	65.20	55.20	27.55	34.38
0.173	16.81	-0.18	19.54	36.35	19.36	64.81	54.81	28.46	35.45
0.178	16.40	0.61	19.54	35.94	20.15	64.59	54.59	28.65	34.44
0.196	14.68	0.70	19.51	34.19	20.21	63.80	53.80	29.61	33.59

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

APPENDIX TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9kHz~30GHz)	FSV-30	100757	R&S	1 year	2015-03-24
2	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year	2015-03-23
3	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2015-03-23
4	Attenuator (3dB)	8491A	37822	HP	1 year	2015-09-14
5	Attenuator (10dB)	8491A	63196	НР	1 year	2015-09-14
6	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2015-03-23
7	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2015-09-15
8	RF Amplifier (~1.3GHz)	8447D OPT 010	2944A07684	HP	1 year	2015-09-14
9	RF Amplifier (1~26.5GHz)	8449B	3008A02126	HP	1 year	2015-03-23
10	Horn Antenna (1~18GHz)	3115	00114105	ETS	2 year	2015-04-21
11	DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2014-02-26
12	DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2014-02-26
13	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2015-04-21
14	Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2015-04-03
15	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
16	Power Divider	11636A	06243	HP	1 year	2015-09-14
17	DC Power Supply	6674A	3637A01657	Agilent	-	-
18	Frequency Counter	5342A	2826A12411	HP	1 year	2015-03-23
19	Power Meter	EPM-441A	GB32481702	НР	1 year	2015-03-23
20	Power Sensor	8481A	3318A99464	НР	1 year	2015-01-13
21	Audio Analyzer	8903B	3729A18901	HP	1 year	2015-09-14
22	Modulation Analyzer	8901B	3749A05878	НР	1 year	2015-09-15
23	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2015-09-14
24	Stop Watch	HS-3	812Q08R	CASIO	2 year	2014-04-03
25	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2015-09-14
26	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2015-03-23
27	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2015-03-23
28	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2015-03-30
29	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2015-03-30
30	Active Loop Antenna	FMZB1519	1519-031	SCHWARZBECK	1 year	2015-01-06
31	OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2015-03-23
32	Signal Generator(100kHz~40GHz)	SMB100A03	177621	R&S	1 year	2015-03-24
33	Signal Analyzer (10Hz~40GHz)	FSV40	101367	R&S	1 year	2015-03-24