Thermal Tutorial

2022/12/1

Introduction

- **X** We will be taking thermal through 6 sets of runs and analysis scripts:
- **RHSC-ET 1st run scripts:**
 - Thermal_flow.tcl: this script does the following:
 - ✓ Imports data
 - ✓ Performs 3DIC thermal assembly
 - ✓ Performs 3 static thermal analysis (4m16s, 5m21s, 10m2s)
 - ✓ Performs 1 transient thermal analysis (8m12s)
 - Bring up RHSC-ET GUI to view results
- **RHSC 2nd run scripts:**
 - Electro_Thermal_flow.tcl: this script does the following:
 - ✓ Imports data
 - ✓ Performs 3DIC thermal assembly
 - ✓ Performs 3 static electro thermal analysis
 - Performs 1 transient electro thermal analysis (30m2s)
 - Bring up RHSC-ET GUI to view results

Introduction

RHSC-ET 3rd run scripts:

- TI_ComplexConnection.tcl: this script does the following:
 - ✓ Imports data
 - ✓ Performs 3DIC thermal assembly
 - ✓ Performs 1 static thermal analysis (Please note, it will take 6h17m23s)
- Bring up RHSC-ET GUI to view results

RHSC 4th and 5th run scripts:

- TI_Hiera1.tcl, TI_Ubump1.tcl, TI_Ubump2.tcl: these scripts do the following:
 - ✓ Imports data
 - ✓ Performs 3DIC thermal assembly
 - **✓** Performs 1 static thermal analysis
- Bring up RHSC-ET GUI to view results

RHSC-ET Thermal Flow Directory Structure

RHSC-ET Thermal Flow Training directory

```
→ README.txt README for quick start

→ install.txt install for quick install RHSC-ET

→ scripts/ directory with all scripts

CTM

TSV

Package

→ check_license_env_cmd.exe check rhsc-et licence environment setting
```


Step I: RHSC-ET Install and Set License

X Set Redhawk-SC Electrothermal path and license:

- setenv CPSROOT <choose the version installed on your server>
- set path = (\$CPSROOT/bin \$path)
- setenv ANSYSLMD_LICENSE_FILE <To your redhawk_sc_electrothermal license>

X To execute Redhawk-SC Electrothermal:

- 2D: redhawk_sc_et&
- 3D: redhawk_sc_et -3dic

Step II: Running the script: Thermal_flow.tcl

- **X** First cd into the scripts directory
- **X** To run the first script:

```
% cd scripts/
% redhawk_sc_et -3dic –ng Thermal_flow.tcl
```

- What does Thermal_flow.tcl do?
 - **✓** Create the new project
 - ✓ Import package, TSV and CTM, bump connection file.
 - ✓ Perform 3DIC thermal assembly
 - **✓** Perform 3DIC thermal analysis

Step III: Result Exploration using GUI

X View the results in RHSC-ET GUI

% redhawk_sc_et -3dic

Step III: Result Exploration using GUI – Opening Case

@ 2021/11010, 17U. / COMMCHINA

Layout Molding: End building

Step III: Result Exploration using GUI – Viewing 3D Postprocess Results

Step III: Result Exploration using GUI – Viewing 2D Results

Step III: Result Exploration using GUI – Generate HTML Report

Step III: Result Exploration using GUI – Viewing Transient Results

Step IV: Running the script: Electro_Thermal_flow.tcl

X To run the script:

```
% cd scripts/
% redhawk_sc_et -3dic –ng Electro_Thermal_flow.tcl
```

- What does Electro_Thermal_flow.tcl do?
 - **✓** Create the new project
 - ✓ Import package, TSV, CTM, bump connection file, etc.
 - ✓ Perform 3DIC thermal assembly
 - **✓** Perform 3DIC Electro-Thermal analysis

Step V: Viewing Static Electrothermal Results

```
% redhawk_sc_et -3dic
% open project
```


Step V: Viewing Transient Electrothermal Results

View Transient Result

- Click Transient Simulation Result
- Define Probes
- View Transient Curves
- View Animation

Step VI: Running the script: TI_Hiera1.tcl.tcl

X To run the script:

```
% cd scripts/
% redhawk_sc_et -3dic –ng TI_Hiera1.tcl
```

- What does Electro_Thermal_flow.tcl do?
 - **✓** Create the new project
 - ✓ Create Hierarchy CTM model.
 - ✓ Perform 3DIC thermal assembly
 - **✓** Perform 3DIC Electro-Thermal analysis

Step VI: Viewing Transient Results – Activity Based

- Open Transient Analysis Result dialog
- Define probes

- View dynamic result
- Show transient curves

Step3:

View ramp up time/speed

Step VI: Viewing Transient Results – State Transfer Based

Step VII: TI_Ubump1.tcl

X To run the script:

```
% cd scripts/
% redhawk_sc_et -3dic -ng TI_Ubump1.tcl
```

- What does Electro_Thermal_flow.tcl do?
 - ✓ Create the new project
 - ✓ Import package and CPM file
 - ✓ Perform 3DIC thermal assembly
 - ✓ Perform 3DIC Electro-Thermal analysis to ubump

Step VIII: TI_Ubump2.tcl

X To run the script:

```
% cd scripts/
% redhawk_sc_et –ng TI_Ubump2.tcl
```

- What does Electro_Thermal_flow.tcl do?
 - **✓** Create the new project
 - ✓ Import Interposer Ubump file and CPM file
 - **✓** Perform 3DIC Electro-Thermal analysis
- **In this case, it's used to run Electro Thermal analysis on Ubump.**

KNEU File

Step IX: TI_ComplexConnection.tcl

X To run the script:

```
% cd scripts/
% redhawk_sc_et -3dic -ng TI_ComplexConnection.tcl
```

- What does TI_ComplexConnection.tcl do?
 - ✓ Create the new project
 - ✓ Import package and CTM file
 - ✓ Perform 3DIC static thermal analysis
- This case, it connects to two package file, one is fccsp, the other is prototype package. There are 5 dies on prototype package, 1 die on fccsp package.

Ansys