Measure Twice, Cut Once: Quantifying Bias and Fairness in Deep Networks

AFCR 2021

Presented by: Cody Blakeney and Gentry Atkinson

Impact of bias and past work.

- Machine Learning is becoming larger and less interpretable.
- Biased models can perform well in testing but fail in the real world.
- Unfair models degrade public trust of ML.

Many metrics exist to measure fairness in ML, but the focus has been

overwhelmingly on binary classification.

What are Bias and Fairness?

 Bias when used in this presentation -> performance by a classifier that varies greatly in one or several classes.

Fairness:

- Many possible definitions. No one system, metric, or platform is going to address every possible fairness.
- One common taxonomy: individual fairness, group fairness(possible intersectional), and sub-group fairness.

CEV and **SDE**

Combined Error Variance measures how much class-wise error rates change relative to the mean when comparing to model.

$$\delta X_{ie} = \frac{X_{ie} - \hat{X}_{ie}}{\hat{X}_{ie}}$$

$$(1) \qquad \qquad \delta X_{\mu e} = \frac{1}{n} \sum_{i=0}^{n} (\delta X_{ie})$$

$$cev = \frac{1}{n} \sum_{i=1}^{n} (dist((\delta X_{\mu pos}, \delta X_{\mu neg}), (\delta X_{ipos}, \delta X_{ineg})))^{2}$$

Symmetric Distance Error measures how much error rates shift towards false positives or negatives when comparing two models.

$$sde = \frac{1}{n} \sum_{i=0}^{n} |\delta FNR_i - \delta FPR_i|$$

Compression

- We combined knowledge distillation and pruning on a biased CIFAR100 set while applying compression
- Accuracy alone is a poor selection criteria when considering compression methods

Method	# of CIEs	CEV	SDE	Accuracy
AT + KD	742	0.00187	0.13173	77.100
PKT + KD	748	0.00199	0.13098	77.335
SP + KD	768	0.00331	0.16162	76.927
FSP + KD	742	0.00333	0.16002	75.285
KD (Hinton et al., 2015)	770	0.00338	0.16065	78.142
AT (Zagoruyko & Komodakis, 2017)	909	0.00430	0.19306	78.097
PKT (Passalis & Tefas, 2018)	881	0.00481	0.19891	78.963
SP (Tung & Mori, 2019)	838	0.00583	0.21591	78.520
FSP (Yim et al., 2017)	877	0.00638	0.22525	78.413
Struct Pruning	887	0.00931	0.26687	77.242

Compression

Binary Fairness: Titanic Dataset

- A binary classification dataset was chosen to compare our metrics to existing metrics of bias.
- 3 ML models were trained to predict passengers as having "Survived" or "Not Survived": a shallow NN, an SVM, and a Gradient Tree Boosting classifier.
- Fairness was measured using the protected feature Passenger Sex, reported as a binary value recorded in historical records, which was excluded from training.

Model	Our Metrics				Existing Metrics			
-	CEV		SDE		ERED		DEV	
=	All→Men	All→Women	$All {\rightarrow} Men$	All→Women	FPED	FNED	DIMS	DIAMR
NN	0.013557	0.012737	0.115002	0.093218	0.548443	0.458016	-0.269742	0.288790
SVM	0.012089	0.000736	0.109744	0.027081	0.412500	0.593508	-0.067460	0.491071
GTB	0.000107	0.000941	0.010341	0.030619	0.458462	0.513932	-0.193700	0.364831

Multi-Class Fairness: CelebA Groups

- Finding bias doesn't mean finding bias against
- A Deep NN was trained to identify the hair color (Brown, Blond, Gray, or Black) of Celebrity Headshots.
- CEV and SDE indicate a substantial bias for instances from the dataset that have the Male feature.

Protected Attribute	Top-1	CEV	SDE	Change in FPR	Change in FNR
Full Test Set	0.9212				
Attractive	0.9222	0.0015	0.0331	-31.0809	80.4380
Male	0.9225	0.1413	0.2205	12.8440	77.8003
Pale Skin	0.9224	0.0035	0.0465	-43.8572	-33.9335
Young	0.9215	0.0002	0.0082	-27.6765	150.5065
Not Attractive	0.9208	0.0034	0.0493	45.6423	6.8297
Not Male	0.9207	0.0053	0.0562	1.2762	47.2981
Not Pale_Skin	0.9207	0.0000	0.0021	1.9565	1.4648
Not Young	0.9213	0.0035	0.0313	146.3057	0.2381

Multi-Class Fairness: CelebA Groups

Discussion + Conclusion

- These metrics were developed to measure bias specifically, but we have demonstrated their usability as metrics of fairness.
- Our metrics only indicate the *presence* of bias, not whether a particular group or class is advantaged or disadvantaged.
- Our metrics only indicate the presence of bias relatively between two models, not absolutely.
- All issues of fairness still require a healthy presence of human judgement.
- Future Work:
 - Can a hard threshold be determined?
 - Improve meaning and interpretability of metrics.
 - Does mitigating bias necessarily improve fairness?

Code available at:

Check https://arxiv.org/abs/2110.04397 for an updated paper.

