FTN SIIT / IIS

Statistika - test

Novi Sad, 31. VIII 2020.

Prezime:

Ime: _____

br.ind.: _____

1. U kutiji su sve figure za šah. Izvlači se na slučajan način 6 figura bez vraćanja. Kolika je verovatnoća da je izvučeno tačno 4 piona? (Zapisati pomoću binomnih koeficijenata)

P =

2. Za obeležje sa normalnom raspodelom $X: \mathcal{N}(m, \sigma)$, statistika $\frac{n \bar{S}_n^2}{\sigma^2}$ ima ______ raspodelu.

3. Posmatra se masa u kg osobe koja se pridržava dijete. Pretpostavlja se da masa ima normalnu raspodelu. Za sve osobe i = 1, 2, ..., n zna se masa pre dijete X_i i posle dijete Y_i .

Za testiranje uspešnosti dijete koristi se _____ i alternativnom hipotezom _____ .

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $\hat{y}_i = a + bx_i$, $i = 1, 2, \dots, n$.

Koji znak stoji između $\sum\limits_{i=1}^n (\bar{y}_n-y_i)^2$, i $\sum\limits_{i=1}^n (\bar{y}_n-\hat{y}_i)^2$, gde je $\bar{y}=\sum_{i=1}^n y_i/n$?

 \leq

 \geq

=

Zavisi od y_i

 Za uzorak iz boxplota levo očitati:

min =

max =

IQR =

 $Q_2 =$

 $Q_3 =$

Testiranje statističkih hipoteza, parametarski testovi za dva uzorka

Prezime: _____ lme: ____ br.ind.: ____

1. Za događaje A i B u prostoru verovatnoće (Ω, \mathscr{F}, P) staviti znak =, \leq , \geq u polje gde važi, ostaviti prazno ako ništa od toga ne važi.

 $P(A) \square P(AB), \qquad P(A \cup B) \square P(A) + P(B), \qquad P(A) \square P(A|B).$

- 2. Ako su $X: \mathcal{N}(0,1)$ i $Y: \chi_n^2$ nezavisne slučajne promenljive, onda T= ______ ima Studentovu t_n raspodelu. (Upisati formulu)
- 3. Testira se hipoteza o jednakosti srednjih vrednosti dva obeležja sa Normalnom rapodelom sa pragom značajnosti $\alpha=0.05$ (t-test). Realizovana vrednost statistike iznosi t=1.3796, sa 11 stepeni slobode. U R-u dobijamo:

> qt(.975,11) [1] 2.200985

Koji znak stoji između α^* i $\alpha = 0.05$:

≤ ≥ Zavisi od uzorka

4. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije za uzorak u kome X uzima 4 moguće vrednosti i Y uzima 2 moguće vrednosti sa $\alpha = 0.05$.

Sa kvantilima koje raspodele se poredi statistika $\theta = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$, gde se suma uzima po svih $4\cdot 2=8$ ćelija?

Kako glasi komanda u R-u za dobijanje traženog kvantila?

Rekonstruisati uzorak $(x_1,...,x_5)$ čija je empirijska funkcija raspodele F_5 data levo:

Naći Modus uzorka Mo =

Izračunati $F_5(\sqrt{2}) =$

Tačkaste ocene parametara, osnovne osobine, Uzoračka aritmetička sredina i Uzoračka varijansa

FTN SIIT / IIS

Statistika - test

Novi Sad, 31. VIII 2020.

 Prezime:

 br.ind.:

- 1. Bacaju se dve kockice. Događaj A = zbir palih brojeva je veći od 9? Događaj B = jedan od palih brojeva je 6. Događaj C = jedan od palih brojeva je 5. Poređati po veličini P(A), P(A|B), P(A|C).
- 2. Ako $S_n: \mathcal{B}(n,p)$ i $\lim_{n\to\infty} n\,p=\lambda=const$, za konačno k, aproksimacija Poasonovom raspodelom je $\lim_{n\to\infty} \binom{n}{k}\,p^k\,(1-p)^{n-k}=$
- 3. Vrši se testiranje nezavisnosti diskretnih obeležja X i Y tabelom kontigencije sa $\alpha=0.05$.

Realizovana vrednost statistike $\chi^2 = \sum_{sve\ \acute{c}elije} \frac{(ostvareno-o\check{c}ekivano)^2}{o\check{c}ekivano}$ sa 6 stepeni slobode iznosi $\chi^2 = 9.3$.

Dat je deo tabele kvantila Pirsonove χ^2 raspodele

$n \setminus F$.9000	.9500	.9750	.9900	.9950
6	10.6	12.6	14.4	16.8	18.5

Da li su obeležja X i Y nezavisna?

DA NE Zavisi od uzorka

4. U analizi varijanse, koji znak stoji između $E\left(\frac{SSTR}{G-1}\right)$ i $E\left(\frac{SSE}{n-G}\right)$?

≤ ≥ = Kako kad

5. Za normalnu raspodelu $\mathcal{N}(0,1)$, kurtosis $\mu_4/\mu_2^2=$, skewness $\mu_3/\mu_2^{(3/2)}=$

Analiza varijanse Fišerovom statistikom.

Prezime:

Ime: _____

br.ind.: _____

1. Ako je P(A) = 0.5, P(B) = 0.6 i P(AB) = 0.3, izračunati

$$P(\bar{A}B) =$$

a =

$$, P(A \cup B) =$$

$$, P(A|B) =$$

2. Izračunati disperziju slučajne promenljive $X: \mathcal{U}(2,5)$.

$$D(X) =$$

- 3. Za obeležje sa normalnom raspodelom $X: \mathcal{N}(m, \sigma)$, statistika $\frac{\bar{X}_n m}{\bar{S}_n} \sqrt{n-1}$ ima _____ raspodelu.
- 4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i \bar{y}_n)^2$, $s_{xy} = \sum_{i=1}^n (x_i \bar{x}_n)(y_i \bar{y}_n)$, $\bar{x}_n = \frac{1}{n}\sum_{i=1}^n x_i$, $\bar{y}_n = \frac{1}{n}\sum_{i=1}^n y_i$. Formule za r, b, a, preko ss_x , ss_y , s_{xy} , \bar{x}_n , \bar{y}_n : r = b = 0

5. ECDF

Rekonstruisati uzorak $(x_1,...,x_{10})$ čija je empirijska funkcija raspodele $F_n(x)$ data levo:

Izračunati korigovanu uzoračku varijansu uzorka $\bar{s}_n^{2\prime}=$

Prezime:

Ime: _____

br.ind.: ____

1. Iz špila 52 karte, izvučeno je 5 karata (sa vraćanjem). Kolika je verovatnoća P(A), da je u izvučenih 5 karata 3 slike (J, Q, K)? (Koristiti binomne koeficijente.)

$$P(A) =$$

2. Slučajne promenljiva X ima $\mathcal{N}(m, \sigma)$.

Koju raspodelu ima slučajna promenljiva Y = 3X + 1?

3. Za uzorak obeležja sa normalnom raspodelom testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ odbačena je nulta hipoteza sa pragom značajnosti 5%. Da li se odbacuje nulta hipoteza testiranjem $H_0(m=m_0)$ protiv $H_1(m \neq m_0)$ sa pragom značajnosti 1%?

DA	NE	Nekad DA, nekad NE

4. Za realizovanu vrednost dvodimenzionalnog uzorka $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ prava linearne regresije y po x (najmanjih kvadrata) je y = a + bx i neka su $ss_x = \sum_{i=1}^n (x_i - \bar{x}_n)^2$, $ss_y = \sum_{i=1}^n (y_i - \bar{y}_n)^2$,

$$s_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}_n) (y_i - \bar{y}_n), \ \bar{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i, \ \bar{y}_n = \frac{1}{n} \sum_{i=1}^{n} y_i.$$
 Formule za r, b, a , preko $ss_x, ss_y, s_{xy}, \bar{x}_n, \bar{y}_n$:

r =

b =

a =

5. Nacrtati Boxplot i Empirijsku funkciju raspodele (ECDF) uzorka (1,2,4,4,7).