Esercitazione 1

Vettori

- 1. Una particella si muove da un punto di coordinate cartesiane (1, 2, 3) ad un punto di coordinate cartesiane (1, 3, 1).
 - Scrivere le espressioni vettoriali per i vettori posizione iniziale \vec{r}_1 e finale \vec{r}_2 ;
 - determinare il vettore spostamento $\Delta \vec{r}$ e il suo modulo $\Delta r = |\Delta \vec{r}|$.

$$\vec{r}_1 = \hat{u}_x + 2\hat{u}_y + 3\hat{u}_z, \ \vec{r}_2 = \hat{u}_x + 3\hat{u}_y + \hat{u}_z, \ \Delta \vec{r} = \hat{u}_y - 2\hat{u}_z, \ \Delta r = \sqrt{5}$$

2. Dati due vettori $\vec{a} = 3\hat{u}_x + 4\hat{u}_y - 5\hat{u}_z$ e $\vec{b} = -\hat{u}_x + 2\hat{u}_y + 6\hat{u}_z$, determinare l'angolo θ compreso tra essi.

$$\theta \approx 123.5^{\circ}$$

3. Due vettori \vec{a} e \vec{b} , rispettivamente di modulo a e b, formano un angolo θ compreso tra di essi. Calcolare il modulo del vettore $\vec{c} = \vec{a} - \vec{b}$ in funzione di a, b e θ . Successivamente, calcolare il modulo di $\vec{d} = \vec{a} + \vec{b}$.

$$|\vec{c}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos\theta}; \quad |\vec{d}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta}$$

4. Calcolare $\vec{a} \times \vec{b}$ dati due vettori $\vec{a} = 3\hat{u}_x + 4\hat{u}_y - 5\hat{u}_z$ e $\vec{b} = -\hat{u}_x + 2\hat{u}_y + 6\hat{u}_z$.

$$\vec{a} \times \vec{b} = 34\hat{u}_x - 13\hat{u}_y + 10\hat{u}_z$$

5. Siano dati i vettori $\vec{a}=2\hat{u}_x+\hat{u}_y-3\hat{u}_z$ e $\vec{b}=\hat{u}_x-2\hat{u}_y+\hat{u}_z$. Determinare \vec{c} tale che $\vec{c}\perp\vec{a}$, $\vec{c}\perp\vec{b}$ e $|\vec{c}|=5$.

$$\vec{c} = \pm \frac{5}{\sqrt{3}} (\hat{u}_x + \hat{u}_y + \hat{u}_z)$$

6. Dato un vettore $\vec{a} = (-1, 3, 2) = -1\hat{u}_x + 3\hat{u}_y + 2\hat{u}_z$, calcolare il modulo $a = |\vec{a}|$ del vettore e l'angolo θ formato dal vettore con l'asse z (asse parallelo al versore \hat{u}_z).

$$a \approx 3.74, \ \theta \approx 1.01 \ rad$$

Esercizi aggiuntivi:

7. Consigliato. Calcolare il modulo $p = |\vec{p}|$ della proiezione \vec{p} del vettore $\vec{a} = (-1, 3, 2) = -1\hat{u}_x + 3\hat{u}_y + 2\hat{u}_z$ nel piano xy definito dai due versori \hat{u}_x e \hat{u}_y . Calcolare poi l'angolo φ formato da \vec{p} con l'asse y (asse parallelo al versore \hat{u}_y).

$$p \approx 3.16$$
, $\varphi \approx 0.59 \, rad$

8. Dati due vettori $\vec{a}=(-1,0,3)$ e $\vec{b}=(2,1,-1)$, calcolare il prodotto scalare $c=\vec{a}\cdot\vec{b}$ ed il prodotto vettoriale $\vec{a} \times \vec{b}$ e $\vec{b} \times \vec{a}$.

$$c = -5, \ \vec{a} \times \vec{b} = -3\hat{u}_x + 5\hat{u}_y - \hat{u}_x, \ \vec{b} \times \vec{a} = -\vec{a} \times \vec{b}$$

9. Consigliato. Sono dati 3 vettori \vec{a} , \vec{b} e \vec{c} tali per cui $\vec{c} = \vec{a} + \vec{b}$. Cosa possiamo inferire nel caso sia soddisfatta anchela proprietà $|\vec{c}| = |\vec{a}| + |\vec{b}|$? Cosa cambierebbe se invece fosse soddisfatta la proprietà $|\vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2$?

$$\vec{a} \parallel \vec{b}, \vec{a} \perp \vec{b}$$

- 10. Le dimensioni della forza F sono quelle di una massa per un'accelerazione. Quelle del lavoro Ldi una forza per un spostamento, quelle della pressione p di una forza divisa per una superficie e quelle dell'energia cinetica K di una massa per una velocità al quadrato.
 - Scrivere le equazioni dimensionali per tali grandezze;
 - si dica quali delle seguenti equazioni sono dimensionalmente corrette:

$$F = mg + pS; (1)$$

$$pV = \frac{1}{2}mv^2 + L; (2)$$

$$pV = \frac{1}{2}mv^2 + L;$$

$$\frac{L}{V} = \frac{Vp}{g}.$$
(2)

$$[F] = [M]^2 [L]^2 [T]^{-2}, \dots, (3)$$
 non è corretta.

11. La forza centripeta F_c di un corpo che sta ruotando può dipendere dalla massa m del corpo, dalla sua velocità v e dal raggio di curvatura R della traiettoria: possiamo capire come sia la dipendenza della forza da tali grandezze?

$$F_c \propto \frac{v^2 m}{R}$$

12. Similmente, determinare la dipendenza del raggio di Schwarzschild r_s (valore critico per cui la velocità di fuga da un corpo di massa m è uguale alla velocità della luce) dalla costante di gravitazione universale γ con $[\gamma] = L^3 M^{-1} T^{-2}$, dalla massa m e dalla velocità della luce.

$$r_s \propto \frac{\gamma m}{c^2}$$

13. Effettuare l'analisi dimensionale della grandezza fisica espressa dalla relazione: $x = f \frac{L}{D} \frac{w^2 \rho}{2}$, sapendo che f è un coefficiente numerico adimensionale, L è la lunghezza di una tubazione, Dè il suo diametro, w è la velocità del fluido che scorre in essa e ρ è la sua densità.

$$[x] = [M]/([T]^2[L]^2) = [F]/[V]$$

14. Certe stelle hanno una luminosità variabile periodicamente nel tempo. Il periodo T della pulsazione dipende dal raggio r della stella, dalla sua massa m e dalla costante di gravitazione universale γ , con $[\gamma] = L^3 M^{-1} T^{-2}$. Trovare l'espressione del periodo di pulsazione della stella.

$$T \propto \sqrt{\frac{r^3}{m\gamma}}$$

15. Applicare il calcolo dimensionale per determinare il periodo di oscillazione T di un pendolo semplice, sapendo che può dipendere solamente da tutte o alcune delle seguenti quantità: massa m del pendolo, lunghezza l del pendolo, accelerazione di gravità g.

$$T \propto \sqrt{l/g}$$