Table des matières

1	Expérience aléatoires, probabilités et probabilités conditionnelles.			
	1.1	Vocabulaire, définitions et exemples :	2	
	1.2	Probabilités	3	
	1.3	Exemples ? ? ?	4	

Chapitre 1

Expérience aléatoires, probabilités et probabilités conditionnelles.

Mots clés: Expérience aléatoire, probabilités,....

1.1 Vocabulaire, définitions et exemples :

Définition 1.1 (Expérience aléatoire)

On appelle **expérience aléatoire** une expérience dont on ne peut prévoir le résultat avec certitude. On appelle **issue** d'une expérience aléatoire un résultat possible de celle-ci. On appelle **univers** l'ensemble de toutes les issues. Un **evénement élémentaire** est une partie de l'univers composé d'une seule issue tandis qu'un **événement** est une partie de l'univers composée de plusieurs issues.

Exemple 1: Lancé d'un dé à 6 faces

Dans cette expérience on jette un dé à 6 faces numérotées de 1 à 6 et l'on observe le numéro obtenu. Cette exprérience sera modélisée par l'univers $\Omega = \{1, 2, 3, 4, 6\}$. Ainsi :

- \bullet "1", "2", "3", "4", "5" et "6" sont l'ensemble des issues possibles.
- A : "Obtenir un nombre pair" est un **événement** que l'on peut aussi modéliser par l'ensemble $\{2,4,6\}$
- B : "Obtenir le nombre 5" est un **événement élémentaire** que l'on peut aussi modéliser par l'ensemble {5}

Exemple 2: Lancé d'une pièce de monnaie

Dans cette expérience on lance une pièce de monnaie à 2 faces "Pile" et "Face" et on note la face exposée. Ici l'univers $\Omega = \{P, F\}$ n'est composé que de deux issues : "Pile" et "Face".

• A : "Le résultat est pile" et B : "Le résultat est face" sont les deux événements éléméntaires de l'expérience. On peut aussi les noter en langage ensembliste de la manières suivante : A={P} et B={F}.

Exemple 3: Tirage d'une carte dans un jeu de 52.

Ici on tire une carte dans un jeu de 52 (sans joker). Dans ce jeu il y a deux couleurs, rouge et noire, quatre familles : Pique, Coeur, Carreau et Trêfle et chaque famille est composée de 13 cartes numérotées de 1 à 10 et comprenant 3 figures : Valet, Dame, Roi.

- Il y a 52 issues possibles.
- L'univers Ω est composé des 52 cartes.
- $\bullet\,$ A : "La carte tirée est un As" est un **événement** composé de 4 **issues** (les 4 as du jeu).
- B : "La carte tirée est une figure" est un événement composé de 12 issues
- C : "La carte tirée est un 3 de coeur" est un **événement élémentaire** composé de une **issue**

Analogie du vocabulaire probabiliste avec le langage ensembliste

Langage probabiliste	Langage des ensembles	Notation	Exemple : lancé d'un dé
A et un événement	A est une partie de Ω	$A\subset\Omega$	A : "Obtenir un nombre pair" : $A = \{2, 4, 6\}$
$A = \{\omega\}$ est un événement élementaire	ω appartient à $Ω$	$\omega \in \Omega$	A : "Obtenir le chiffre 6" : $A=\{6\}$
A est un événement certain	A est l'ensemble Ω	$A = \Omega$	A : " Obtenir un chiffre entre 1 et 6" : $A = \Omega$
A est un évenement impossible	A est l'ensemble vide	$A = \emptyset$	A : "Obtenir le chiffre 7"
B est l'événement contraire de A	B et A sont complémentaires	$B = \overline{A} = \Omega \setminus A$	A : "Obtenir un nombre pair", B : "Obtenir un nombre impair"
A implique B	A est inclus dans B	$A \subset B$	A :"Obtenir le chiffre 2", B : "Obtenir un chiffre pair"
E est l'évenement A ou B	E est l'union de A et B	$E=A\cup B$	A: "Obtenir un nombre pair" B: "Obtenir 1" E: "Obtenir un nombre pair ou le chiffre 1"
E est l'événement A et B	E est l'intersection de A et B	$E = A \cap B$	A: "Obtenir un nombre pair", B: "Obtenir un multiple de 3" E: "Obtenir un nombre pair et un un multiple de 3" = "Obtenir 6"
A et B sont incompatibles	l'intersection de A et B est vide	$A \cap B = \emptyset$	A : "Obtenir un chiffre pair", B : "Obtenir un chiffre impair"

1.2 Probabilités

Version lycée

Définition 1.2

Pour certaines expériences aléatoires on peut, sous certaines conditions, déterminé la "chance" qu'un événement A à pour se réaliser. C'est ce que l'on appelle la **probabilité** ou **probabilité** théorique de l'événement A.

De manière plus générale, si on note $\Omega = \{e_1, \dots, e_n\}$ l'univers d'une expérience aléatoire alors chaque issue possible e_i est affectée d'une **probabilité**, c'est à dire un nombre p_i tel que :

$$0 < p_i < 1$$
 et $p_1 + p_2 + \dots + p_n = 1$

Exemple 4:

Reprenons l'exemple du lancé d'un dé parfaitement équilibré, c'est à dire que chaque face à la même chance d'apparaître. On dit dans ce cas que le dé est non pipé ou encore non truqué. L'univers de l'expérience est Ω : $\{1,2,3,4,5,6\}$. Chaque face à donc la même **probabilité théorique** d'apparaître, à savoir 1 chance sur 6.

Si on note $E_1 :=$ "Obtenir la face 1", on a $E_1 = \{1\}$ et si on note \mathbb{P} l'application de Ω dans $\mathbb{R}+$ qui associe à chaque événement de Omega sa **probabilité théorique** on a : $\mathbb{P}(E_1) = \frac{1}{6}$

Remarque

La probabilité d'un événement A est un nombre réel compris entre 0 et 1 que l'on note généralement :

- Sous la forme fractionnaire.
- Sous la forme d'un pourcentage.
- Sous la forme d'un nombre décimal (généralement arrondi)

Définition 1.3

On est dans une situation d'équiprobabilité si toutes les issues de l'expérience aléatoire ont la même probabilité.

Proposition 1.1

Dans une situation d'équiprobabilité avec un univers à n éléments, la probabilité de chaque événément élémentaire est $p_i = \frac{1}{n}, \ i \in \{1, \dots, n\}$

Définition 1.4

Soit Ω un univers La probabilité d'un événement A inclus dans Ω , noté $\mathbb{P}(A)$ est la somme des probabilités des événemets élémentaires qui le constitue. Ainsi si $\Omega = \{e_1, \ldots, e_n\}$ et $A = \{e_1, e_3, e_{n-1}\}$ alors

$$\mathbb{P}(A) = p_1 + p_3 + p_{n-1}$$

où p_i est la probabilité de l'événement éléméntaire $\{e_i\}$

1.3 Exemples???