SPH simulations for space defense

Maximilian Rutz

July 19, 2020

Roadmap

Dart and Hera missions

2 SPH setup

SPH results

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in July 2021 on a SpaceX Falcon 9
- Impact in fall 2022
- Impact at 0.04 au to Earth, 15x Earth-Moon, 1/10x Earth-Mars
- Observations with LICIACube and earth based telescopes

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

- Launch in 2024
- Arrival in 2026
- Why a second mission?
 - Dust cloud after impact
 - Reduce uncertainty of orbital shift
 - Politics

49 M 93 M (MEAN)

139 M

546 M

SPH setup

Simulation goals

Compare numerical results with observations to:

- test numerical codes
- identify target properties through parameter studies

Simulation goals

Compare numerical results with observations to:

- test numerical codes
- identify target properties through parameter studies

Smoothed Particle Hydrodynamics

- gridfree method
- particles move through space with a velocity
- particles carry physical quantities like density, pressure or energy
- hydrodynamic/continuum mechanics equations can be solved for every particle
- spatial resolution

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

Target:

- 160 meter diameter
- important parameters such as porosity and strength unknown

- 500 kg mass
- 6 km/s impact velocity
- main body 1.3 x 1.2 x 1.2 meter

- fragmentation for brittle materials
- p- α porosity model
- shear strength
- no self gravity

- fragmentation for brittle materials
- \bullet p- α porosity model
- shear strength
- no self gravity

- fragmentation for brittle materials
- \bullet p- α porosity model
- shear strength
- no self gravity

- fragmentation for brittle materials
- ullet p-lpha porosity model
- shear strength
- no self gravity

- fragmentation for brittle materials
- ullet p-lpha porosity model
- shear strength
- no self gravity

IMAGE 1st frame

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

Target:

- basalt
- 20 meter diameter halfsphere
- constant smoothing length in center

- aluminum
- 0.75 meter diameter sphere
- 6 km/s impact velocity
- 500 kg mass
- same smoothing length as center of target

SPH results

Momentum change because of ejecta:
$$oldsymbol{eta}=1+rac{p_{ejecta}}{p_{impactor}}$$

- 1 impactor diameter above surface
- absolute velocity above gravitational escape velocity
- positive velocity in z direction

Momentum change because of ejecta:
$$oldsymbol{eta}=1+rac{p_{ejecta}}{p_{impactor}}$$

- 1 impactor diameter above surface
- absolute velocity above gravitational escape velocity
- positive velocity in z direction

Momentum change because of ejecta: $oldsymbol{eta} = 1 + rac{p_{ejecta}}{p_{impactor}}$

- 1 impactor diameter above surface
- absolute velocity above gravitational escape velocity
- positive velocity in z direction

Momentum change because of ejecta: $oldsymbol{eta} = 1 + rac{p_{ejecta}}{p_{impactor}}$

- 1 impactor diameter above surface
- absolute velocity above gravitational escape velocity
- positive velocity in z direction

Beta factor results

Table 1. Results from Spheral calculations for material with various compositions

Material	Porosity	Strength	Density g/cm ³	Δv (cm/s)	β	
Granite	0.2	1 MPa	2.16	0.099	1.353	
Basalt	0.2	1 MPa	2.16	0.102	1.391	
Pumice	0.2	1 MPa	2.16	0.093	1.277	
Granite	0.4	1 MPa	1.62	0.126	1.288	

Beta factor other literature Stickle

Table 1. Results from Spheral calculations for material with various compositions

Material	Porosity	Strength	Density g/cm ³	Δv (cm/s)	β
Granite	0.2	1 MPa	2.16	0.099	1.353
Basalt	0.2	1 MPa	2.16	0.102	1.391
Pumice	0.2	1 MPa	2.16	0.093	1.277
Granite	0.4	1 MPa	1.62	0.126	1.288

Beta factor other literature Raducan

The DART impact into different targets can produce the same β , but different craters.

Measurements of **both** β and crater size/morphology **together** can be diagnostic of target properties.

The DART impact into different targets can produce the same β , but different craters.

Measurements of **both** β and crater size/morphology **together** can be diagnostic of target properties.

The DART impact into different targets can produce the same β , but different craters.

Measurements of **both** β and crater size/morphology **together** can be diagnostic of target properties.

Personal observations about SPH

- A lot of individual physics implementable
- interaction between physical models within a code can get complex
- Many different codes available
- Difficult to reproduce and compare results between different codes
- Dart setup could be useful as benchmark for solid models

Sources and additional information

Illustrations taken from Dart and Hera websites:

- https://dart.jhuapl.edu/
- https://www.nasa.gov/planetarydefense/dart
- https://www.esa.int/Safety_Security/Hera

Papers:

- "Modeling impact outcomes for the Double Asteroid Redirection Test (DART) mission", Stickle et al., Procedia Engineering 2017
- "The role of asteroid strength, porosity and internal friction in impact momentum transfer", Raducan et al., Icarus 2019