Действие группы на множестве

Тамарин Вячеслав

4 апреля 2020 г.

1 Действие группы на множестве

Definition 1

Пусть X — множество, G — группа. Группа действует на множество означает, что задан гомоморфизм из G в группу биекций с операцией композиции $Bij(X) = S_X$

Example 1.1. $X = \{1, 2, 3\}, G = \mathbb{Z}$. Группа биекций — S_3 , гомоморфизм $f(x) = (123)^x$.

$$f(n) = \begin{cases} (123), & n = 1 \pmod{3} \\ (321), & n = 2 \pmod{3} \\ 1, & n = 0 \pmod{3} \end{cases}$$

 $(12) \notin \text{Im } (f), \text{Im } (f) = C_3 \subsetneq S_3, \text{ker}(f) = 3\mathbb{Z}.$

Example 1.2. $\{1,\tau\}=C_2 \curvearrowright X=\{1,2,3\}$ — симметрии треугольника.

Practice. Доказать, что это отношение эквивалентности: $x \sim y \iff \exists g \in G \colon gx = y.$ То есть для гомоморфизма $f \colon G \to Bij(X), \ (f(g))(x) = y.$

Definition 2

Орбита действия группы $G \curvearrowright X$ — класс эквивалентности отношения из упражнения ??. Множество орбит — $X/G \coloneqq X/\sim$.

Practice. Рассмотрим кубик. Рассмотрим группу поворотов G. X — множество кубов, покрашенных в 2 цвета. $|X| = 2 \cdot 6 = 64$. $G \curvearrowright X$.

Definition 3

Стабилизатор — такие элементы из G, которые оставляют элемент на месте.

$$\mathrm{Stab}(x) = \{ g \in G \mid gx = x \}.$$

Statement. $\forall x \in X \ \exists y \in G \colon \mathrm{Stab}(x) = \{g^{-1}hg \mid h \in \mathrm{Stab}(y)\}\$

Theorem 1.1.

$$|O_x| \cdot |\operatorname{Stab}(x)| = |G|.$$

1

Definition 4

Пусть $g \in G$. Множество неподвижных элементов относительно $g - X^g = \{x \in X \mid gx = x\}$.

Theorem 1.2.

$$\sum_{g \in G} |X^g| = \sum_{x \in X} |\mathrm{Stab}(x)|.$$

Theorem 1.3.

$$|X/G| = \frac{1}{|G|} \cdot \sum_{g \in G} |X^g|.$$

2 Матричная интерпретация

Theorem 2.1. $A \in M_3(\mathbb{R})$ задает поворот вокруг некоторой оси, проходящей через 0 тогда и только тогда, когда

- А сохраняет скалярное произведение
- \bullet det A=1

Theorem 2.2. $\Pi ycmb \ A \in M_m(\mathbb{R})$.

$$\forall u, v \ \langle u, v \rangle = \langle Au, Av \rangle \iff A \cdot A^T.$$

2.1 $SO_3(\mathbb{R})$

Definition 5

$$\mathrm{SO}_3(\mathbb{R}) = \{A \in \mathrm{M}_3(\mathbb{R}) \mid A \cdot A^T = 1, \ \det A = 1\}$$

Пусть $G\leqslant \mathrm{SO}_3(\mathbb{R}),\ 1<|G|<\infty.$ Пусть $g\in G.$ Обозначим этот поворот $l_g.$ Также рассмотрим единичную сферу $S^2.$

$$\left|S^2 \cap l_g\right| = 2.$$

Эти две точки называются полюсами g.

Рассмотрим множество всех полюсов по всем элементам $g \in G$. $X = \bigcup_{g \in G} (S^2 \cap l_g)$ — это конечное множество.

Пусть
$$N = |X/G| = \frac{1}{|G|} \cdot \sum_{x \in X} |X^g|$$
.

- $g = 1 \Longrightarrow |X^g| = |X|$
- $g \neq 1 \Longrightarrow |X^g| = |2|$

Тогда прошлое равенство можно переписать

$$|X/G| = \frac{|X| + (|G| - 1) \cdot 2}{|G|}.$$

Предположим, что $X/G = \bigsqcup_{i=1}^N Gx_i$. Тогда

$$|X| = \sum_{i=1}^{N} |Gx_i|.$$

2 МАТРИЧНАЯ ИНТЕРПРЕТАЦИЯ

 $2.1 \quad SO_3(\mathbb{R})$ 3

Theorem 2.3.

$$2\left(1 - \frac{1}{|G|}\right) = \sum_{i=1}^{N} \left(1 - \frac{1}{|\operatorname{Stab}(x_i)|}\right).$$

Statement.

$$1 \leqslant 2\left(1 - \frac{1}{|G|}\right) < 2.$$
$$\frac{1}{2} \leqslant 1 - \frac{1}{|\operatorname{Stab}(x)|} < 1.$$

Statement. $N \in \{2, 3\}$