GUÍA N° 2 510240

- 1. Programar el método de bipartición o bisección.
- 2. Las siguientes ecuaciones tienen una raíz en el intervalo (0, 2). Determinarlas con un error menor que 0.02 por el método de bipartición.
 - a) $x \cos(x) = -\ln(x)$ b) $2x e^{-x} = 0$ c) $e^{-2x} = 1 x$
- 3. Sea $F(x) = x^2/4 sen(x)$. Se desea encontrar la primer raíz positiva de F(x).
 - (a) Hallar un intervalo de partida para utilizar el método de bisección.
 - (b) Estimar el número de aproximaciones necesarias para hallar la raíz con una tolerancia para el error absoluto de 0.02. Calcular la raíz.
 - (c) Si la tolerancia de 0.02 es sobre el error relativo, cuántas aproximaciones se requieren?
 - (d) Sabiendo que la raíz buscada a 5 decimales correctos es $\alpha=1.93375$ obtener conclusiones sobre la performance del método.
- 4. Programar el método de Newton-Raphson
- 5. Determinar la raíz no nula de la ecuación $x=1-e^{-2x}$, con el método de Newton-Raphson con 4 decimales significativos.
- 6. Determinar una raíz de la ecuación $x \ln(x) 1 = 0$, con el método de Newton-Raphson con 5 decimales significativos.
- 7. Aplicar el método de Newton-Raphson para determinar una raíz compleja de la ecuación $x^2 + 1 = 0$; comenzar las iteraciones con $x_0 = 1 + i$.
- 8. Obtener una fórmula iterativa de Newton-Raphson para hallar la raíz cúbica de un número positivo c.
- 9. Obtener una fórmula iterativa de Newton-Raphson para hallar el arcsen(a), siendo dato el valor de a. Determinar arcsen(0.5) con 3 dígitos significativos.
- 10. Dada la profundidad h y el período T de una ola, su longitud de onda l surge de la relación de dispersión $w^2=g\,k\,tanh(k\,h)$, donde $w=(2\pi)/T$ es la frecuencia angular, g es la aceleración de la gravedad y $k=(2\pi)/l$ es el número de onda. Conociendo $g=9.8m/s^2$ y h=4m, se desea calcular cuál es la longitud de onda correspondiente a una ola con $T=5\,s$
 - (a) Utilizar un método de biparticón para calcular la solución con 1 dígito de precisión, partiendo de k = 1.
 - (b) Utilizar el método de Newton Raphson para calcular la solución con 4 dígitos de precisión. Partir del resultado obtenido en a).