Uniprocessor Scheduling Algorithms

- Relevent Data: scheduler keeps tracks of the following values regarding processes.
 - Waiting Time: mean/median time process waits for a resource, or in scheduler.
 - **Running Time**: time a process was permitted to run by scheduler.
 - not *neccesarily* the CPU usage time.
 - Turnaround Time: wall-clock duration of process execution.
- Uniprocessor Scheudling Algorithms:
 - Highest-priority:
 - Just a priority queue.
 - Very-low priority process may starve
 - Happens if every new process has a higer priority than the very-low priority tasks

• First-code, First-serve:

- FIFO Queue
- Everyone gets chance to run no starvation
- *Average Turnaround Time* wildly varies
 - Messes with *scheduler statistics*, and *users*.
- No interrupting on *CPU-bound* processes
- *I/O-bound* processes halt system excessively

• Round-robin:

- FIFO Queue with Time-slicing
 - Time-slicing: an interrupt generated after t clock cycles as a prompt to scheduler
 - \blacksquare Track average time r after which process requests a resource
 - Assing time-slice length t slightly longer than r.
- *I/O-bound* process spent *multiple* time-slices just waiting.
- **Virtual Round Robin:** Prevents I/O bound process' disadvantage. Maintains *mainqueue*, *auxiliary-queue*
 - Processes from *main-queue* are executed.
 - A process requesting resource is sent to corresponding queue
 - Process continues with *higher* priority after resource arrival
 - \blacksquare Runs for *t-r* time.

• Shortest Process Next:

- Predict *turn-around* times, priority-queue by shortest *turn-around* times.
- Reduces total turn-around times, improves responsiveness

• Shortest Job Next:

- Predict *CPU-burst* lengths, priority-queue by smallest *CPU-burst* length.
- Prediction Methods:
 - Average:
 - calculate expected burst-length as:.
 - **Exponential Average:**
 - calculate the expected *burst-length* as.
 - α is a *constant* b/w 0 and 1.
- New processes get an inital *prediction* score of 0, making them run immediately after current-burst.
- Long-process might starve.

• Smallest Remaining Time:

- Modification of *Shortest-Job Next*
- New, or unblocked processes can interrupt current-burst, or be priortized appropriately.