Fraud Transaction Detection: Project Report

Nature Inspired Computing

Nikita Zagainov, Dmitry Tetkin, Alisher Kamolov, Nikita Tsukanov Innopolis University

April 2025

Understanding the Fraud Detection Domain

- Digital and contactless payments are on the rise, increasing the risk of fraudulent transactions.
- Fraud not only results in financial losses, but also reduces customer trust.
- Datasets in this domain tend to be large and anonymized, posing unique challenges in feature interpretation.
- Successful fraud detection requires managing imbalanced data and high-dimensional feature spaces.

Instruments and Methodologies

Machine Learning Models:

- Gradient boosting frameworks like CatBoost and LightGBM.
- Decision Trees for baseline performance and interpretability.

Optimization Techniques:

- Nature-inspired algorithms (e.g., Bat Algorithm, Cuckoo Search, Grey Wolf Optimizer) for optimal feature selection.
- Utilization of libraries (like NiaPy) to implement these algorithms.

Data Preprocessing:

- Handling missing data, encoding categorical variables, and addressing imbalances.
- Dimensionality reduction to mitigate the curse of dimensionality.

Evaluation Metrics:

• ROC AUC is adopted as the main performance measure.

Reference Work

Our project was inspired by the following project: https://github.com/pmacinec/transactions-fraud-detection Our project's contribution is the following:

- Comparison with gradient boosting algorithms
- Application of NIC algorithms to the gradient boosting algorithms

Project Pipeline Overview

Our work follows a systematic pipeline:

1. Data Preprocessing:

- Clean data by filling or removing missing values.
- Encode categorical variables and standardize numerical features.
- Reduce dimensionality while retaining key information.

2. Feature Selection:

- Apply nature-inspired algorithms (NIC) for selecting optimal feature subsets.
- Compare NIC-selected features against traditional methods.

3. Model Training and Evaluation:

- Train robust ML models (CatBoost, LightGBM, Decision Trees) on the refined dataset.
- Evaluate model performance using ROC AUC as the primary metric.

4. Optimization and Analysis:

- Fine-tune models and re-run experiments to analyze the impact of feature selection.
- Compare NIC algorithms to determine best performing configurations.

Results

Table: ROC AUC of ML models with NIC feature selection

Method	CatBoost	LightGBM	DecisionTree
Original Score	0.893	0.909	0.835
Artificial Bee Colony	0.887	0.906	0.836
Cuckoo Search	0.891	0.905	0.842
Bat Algorithm	0.889	0.909	0.842
Firefly Algorithm	0.892	0.907	0.844
Flower Pollination	0.891	0.906	0.846
Grey Wolf Optimizer	0.892	0.913	0.844
Particle Swarm	0.892	0.912	0.845
Algorithms better than baseline	0	2	7

Conclusion

- NIC algorithms for feature selection do not improve performance of gradient boosting models.
- We hypothesize that the reason for such difference in results between a single tree and ensemble methods is that single trees are more prone to overfitting.

Thank you for your attention!