Claims

1	A system for utilizing a digital computer to evaluate microscopic
2	details of specimens, e.g. crystals, comprising:
3	a camera which generates an output signal representative of an image
4	positioned in a focal plane of the camera,
5	a tray which positions a specimen in said focal plane,
6	a computer processing unit having a persistent storage device, which
7	computer processing unit acquires said output signal from said camera,
8	said computer processing unit being programmed to evaluate said stored
9	image from said camera and for generating a result signal representative thereof,
10	said computer processing unit being programmed to store said result
11	signals in said persistent storage device.
1	2. The invention as defined in claim 1 wherein each said specimen
2	comprises at least one crystal.
	Dur
1	3. The invention as defined in claim 2 wherein said computer
2	processing unit is programmed to count said crystals.
	R -
l	4. The invention as defined in claim 2 wherein said computer
2	processing unit is programmed to generate three-dimensional surface plots of
3	crystals within a database.
l	5. The invention as defined in claim 1 and comprising a movable
2	stage for automatically positioning said specimens in said focal plane.
1	6. The invention as defined in claim 2 and comprising a T-squared
2	filter to identify said crystals in each said specimen.
1	
1	7. The invention as defined in claim 6 where said T-squared filter
2	comprises a software program executed by said computer processing unit.

	_h 16a
1	8. The invention as defined in claim 5 wherein said computer
2	processing unit generates ou put signals to control the movement of said movable
3	stage.
i	9. The invention as defined in claim 4 wherein data relating to said
2	crystal(s) is stored in the database.
. 1	10. The invention as defined in claim 1 and comprising a light source
2	directed to said specimen.
l	11. The invention as defined in claim 10 and comprising an optical
2	fiber extending between said light source and said specimen.
1	12. The invention as defined in claim 2 and comprising a computer
2	algorithm executed by said computer processing unit for rating said crystals with
3	respect to predetermined standards.
1	13. The invention as defined in claim 2 and comprising a computer
2	algorithm executed by said computer processing unit for simulating edges of
3	crystals missing in said image generated by said camera.
1	14. The invention as defined in claim 2 wherein said computer
2	processing unit is programmed to determine crystal size by determination of the
3	length of the perimeter of said drystals.

Claims

ı	1. A system for utilizing a digital computer to evaluate microscopic
2	details of at least one crystal, comprising:
3	a camera which generates an output signal representative of an image
4	positioned in a focal plane of the camera,
5	a tray which positions said at least one crystal in said focal plane,
6	a computer processing unit having a persistent storage device, which
7	computer processing unit acquires said output signal from said camera,
8	said computer processing unit being programmed to evaluate said stored
9	image from said camera and for generating a result signal representative thereof,
10	said computer processing unit being programmed to store said result
11	signals in said persistent storage device and performing at least one function
12	selected from the group consisting of: to count crystals, to generate three-
13	dimensional surface plots of crystals within a database, and to determine crystal
14	size by determination of the length of the perimeter of said crystals.
$\frac{1}{\omega^2}$	The invention as defined in claim 1 and comprising a movable
\mathcal{L}^2	stage for automatically positioning said at least one crystal in said focal plane.
	ラ: タ: A system for utilizing a digital computer to evaluate microscopic
1	a Traystant for annually a digital computer to evaluate interescopic
2	details of at least one crystal, comprising:
3	a camera which generates an output signal representative of an image
4	positioned in a focal plane of the camera,
5	a tray which positions said at least one crystal in said focal plane,
6	a computer processing unit having a persistent storage device, which
7	computer processing unit acquires said output signal from said camera,
8	said computer processing unit being programmed to evaluate said stored
9	image from said camera and for generating a result signal representative thereof,
10	said computer processing unit being programmed to store said result
11	signals in said persistent storage device, and
12	a T-squared filter to identify said at least one crystal.

1 2 9. M.

details of at least one crystal, comprising:

	<u>い</u> ,
1	The invention as defined in claim where said T-squared filter
2	comprises a software program executed by said computer processing unit.
	0.
1	The invention as defined in claim & wherein said computer
2	and the same as defined in claim a wherein said computer
3	processing unit generates output signals to control the movement of said movable
3	stage.
	The invention as defined in claim 1 wherein data relating to said
1	and to and to and
2	at least one crystal is stored in the database.
	A system for utilizing a digital computer to evaluate microscopic
1	A system for utilizing a digital computer to evaluate microscopic
2	details of at least one crystal, comprising:
3	a camera which generates an output signal representative of an image
4	positioned in a focal plane of the camera,
5	a tray which positions said at least one crystal in said focal plane,
6	a computer processing unit having a persistent storage device, which
7	computer processing unit acquires said output signal from said camera,
8	said computer processing unit being programmed to evaluate said stored
9	image from said camera and for generating a result signal representative thereof,
10	said computer processing unit being programmed to store said result
11	signals in said persistent storage device, and
12	an optical fiber extending between a light source directed onto said at least
13	one crystal and said at least one crystal.
	₩·
1	The invention as defined in claim 1 and comprising a computer
2	
3	algorithm executed by said computer processing unit for rating said at least one
3	crystal with respect to predetermined standards.

A system for utilizing a digital computer to evaluate microscopic

3	a camera which generates an output signal representative of an image
4	positioned in a focal plane of the camera,
5	a tray which positions said at least one crystal in said focal plane,
6	a computer processing unit having a persistent storage device, which
7	computer processing unit acquires said output signal from said camera,
8	said computer processing unit being programmed to evaluate said stored
9	image from said camera and for generating a result signal representative thereof,
10	said computer processing unit being programmed to store said result
11	signals in said persistent storage device, and
12	a computer algorithm executed by said computer processing unit for
13	simulating edges of crystals missing in said image generated by said camera.

Ancigiza