Explainable Reinforcement Learning through Genetic Programming

Alessandro Leite

TAU, INRIA Saclay, LISN Île-de-France

July 29th, 2022

74ª Reunião Anual da SBPC 24 a 30 de julho de 2022

Credits

Mathurin Videau^{1,2}

Olivier Teytaud²

Marc Schoenauer^{1,2}

Videau, Mathurin, Alessandro Leite, Olivier Teytaud, and Marc Schoenauer. "Multi-Objective Genetic Programming for Explainable Reinforcement Learning." In Genetic Programming, edited by Eric Medvet, Gisele Pappa, and Bing Xue, 278–93. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2022.

¹TAU, INRIA Saclay, LISN ² Meta Al Research

Al techniques have been used across different domains

Play (and win) games

Debate

IBM

Watson

Project Debater

IBM

Recognise speech

Recognise faces

Translate across languages

Detect & Diagnose Diseases

Predict protein structures

Drive vehicles

74ª Reunião Anual da SBPC 24 a 30 de julho de 2022

Al models may rely on proxies to produce an output

Why do we need explanations?

Explanations

- reflect an attempt to communicate an understanding¹
- create trajectories, expanding individuals' understanding in real-time
- may highlight incompleteness
- relate the event being explained to principles, invoking causal relations²
- answer a "why question" justifying an event

²Tania Lombrozo. "Explanation and abductive inference". In: The Oxford Handbook of Thinking and Reasoning. Ed. by Keith J. Holyoak and Robert G. Morrison. Oxford University Press, 2012

¹Frank C Keil. "Explanation and understanding". In: Annu. Rev. Psychol. 57 (2006), pp. 227–254.

eXplainable AI (XAI) provides tools to explain ML models

Interpretability (intrinsic property of a model)

- It describes the internals of a system in a way that is understandable to humans¹
- It must employ a vocabulary that is meaningful for a human observer

Explanation (post-hoc analysis)

- Provide the reasons for the behavior of a given machine learning model²
- Any action taken with the intent of providing an explanation of a model to a human observer

¹Finale Doshi-Velez and Been Kim. "Towards a rigorous science of interpretable machine learning". In: arXiv:1702.08608 (2017).

²Alejandro Barredo Arrieta et al. "Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI". In: Information Fusion 58 (2020), pp. 82–115

Deep reinforcement learning is behind various breakthroughs in reinforcement learning (RL)

Traditional reinforcement learning approach

Goal: find policy $\Pi: s \rightarrow a$ that maximizes a cumulative reward

Classifical deep reinforcement learning (DRL)

Genetic programming (GP) for program synthesis

E

BUSING genetic programming (GP) for direct policy search

Fitness =

Mean cumulative rewards Program's complexity

Evaluation strategy:

- Gradual augmentation of the simulation budget
- 2. Distribution of the simulation budget toward the most promising individuals

TRUSTAI

Using Tree and Linear GP to represent the programs

Expression
$$\frac{7}{x} * (z + 2y + \sin(y))$$

Tree GP

- Crossover: sub-trees' exchanging
- Mutation: randomly change a node value

Linear GP

```
\\initialisation du registre
float registre[] = [
    0.0, 0.0, 0.0, \registre de calcule
    x, y, z, \\registre pour les entrées
    2.0, 7.0 ] \\registre pour les constantes
void programme(r){
    r[0] = r[6] * r[4] \setminus 2 * y
    r[0] = r[5] + r[0] \setminus z + (2y) (1)
    r[1] = \sin(r[4]) \setminus \sin(y) (2)
    r[0] = r[0] + r[1] \setminus (1) + (2) (3)
    r[2] = r[7] / r[3] \setminus 7 / x (4)
    r[0] = r[0] + r[2] \setminus (3) + (4)
```

- Crossover: exchange blocks of instructions
- Mutation: add/remove instructions

74ª Reunião Anual da SBPC 24 a 30 de julho de 2022

Going towards explainable RL policies

Multi-objective optimization

- **NSGA-II** multi-objective optimization algorithm
 - **Cumulated Reward**
 - Complexity (#operations)
- Return a knee point of the Pareto frontier, favoring performance
- Used with the tree-GP representation

Variation Operators

- Higher probability to remove than to add instructions
- used with linear-GP representation

Classical control tasks

Continuous action space

(# features/inputs, # outputs)

TRUSTAL

Complex locomotion tasks

Ant-v2
Make a 3D four-legged robot (28, 8)

Mujoco¹

LunarLanderContinuous-v2 Navigate a lander to its landing pad. (8, 2)

BipedalWalker-v2 Train a bipedal robot to walk.

(24, 4)

BipedalWalkerHardcore-v2
Train a bipedal robot to walk
over rough terrain. (24, 4)

 $Box2D^2$

¹"Bullet physics engine." [Online]. Available: https://github.com/benelot/pybullet-gym

²Brockman G. et al. (2016). OpenAl gym. arxiv:1606.01540.: https://gym.openai.com/envs/#box2d

TRUSTAI

Comparing the performance of the GP-based policy with the one of neural networks and direct policy search (DPS)

Deep Reinforcement Learning

- Policy: a deep neural network. Complexity = #weights
 - Use the reward at every time step to update the weights
- **DNN**: Best of PPO¹, SAC² and A2C³, state-of-the-art algorithms

 Proximal Policy Optimization, Soft Actor Critic, and Advantage Actor Critic

Direct Policy Search

- **Policy**: a neural network. **Complexity** = #weights tuned by some HPO algorithm
 - Global optimization of the weights so as to maximize the cumulative reward
- **DPS**: Best of (almost) all global optimization algorithms in *Nevergrad*⁴

⁴Rapin, J., Teytaud, O. Nevergrad - A gradient-free optimization platform. https://github.com/FacebookResearch/Nevergrad (2018)

¹Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O. Proximal Policy Optimization algorithms. arXiv:1707.06347 (2017)

²Haarnoja, T., Zhou, A., Abbeel, P., Levine, S. Soft Actor-Critic: Off-policy maximum entropy DeepRL with a stochastic actor. Proc. ICML, pp. 1861–1870 (2018) ³Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for DeepRL. Proc. ICML pp. 1928–1937 (2016)

GP-based policy can outperform neural networks in different tasks

Cumulated reward (higher is better)

Environment	# in #	out	Tree GP	Linear GP	DPS	DNN
Control tasks						
Cartpole	4	2	500.0	500.0	500.0	500.0^\dagger
Acrobot	6	3	-83.17	-80.99	-72.74	-82.98^{\dagger}
MountainCarC0	2	1	99.31	88.16	99.4	94.56^{\ddagger}
Pendulum	3	1	-154.36	-164.66	-141.9	-154.69^{\ddagger}
Mujoco						
InvDoublePend	9	1	9092.17	9089.50	9360	9304.32^{\ddagger}
InvPendSwingUp	5	1	893.35	887.08	893.3	891.45^{\ddagger}
Hopper	15	3	999.19	949.27	2094	2604.91^{\ddagger}
Box2D						
LunarLanderC0	8	2	287.58	262.42	282.†PI	PO [‡] SAC * A
BipedalWalker	24	4	268.85	257.22	310.1	299.44*
BipedalWalkerHardcore	24	4	9.25	10.63	8.16	246.79^{*}

DPS: direct policy search (Nevergrad)

GP-based strategy leads to a simple Lunar Lander policy

Out0: Central engine Out1: Side engines

angle

One can understand the Lunar Lander policy

One can understand the Lunar Lander policy

Out1

We can also observe cases in which the policy fails

Upside-down

Does not use angular velocity

One can have an interpretable Bipedal walker policy

$$hip1: a_0 = knee1.\theta$$

$$knee1: a_1 = \frac{knee1.\dot{\theta}}{lidar_5}$$

$$hip2: a_2 = \frac{lidar_7}{knee1.\dot{\theta}} - hip2.\theta + hull.\theta$$

knee2 : $a_3 = \text{hull.}\theta - \text{knee2.}\theta$

For complex tasks, it can be blocked on a local optimum

- On the **interpretable** side:
 - Less intuitive/understandable policies
- On the **performance** side:
 - ☐ Local optimum issue
 - Bad exploration

Now, we can focus on escaping the local optimum

Escaping the local optimum through quality diversity

Maintaining population's diversity

- Each individual is associated with behavioral descriptor (e.g., mean amplitude of the joints)
- ☐ Starting with Map-Elites algorithm¹ then fine tuning with base algorithm to reduce policy complexity.
- Results on two locomotion environments:
 - **+** Better exploration
 - + Improved performance

Environment	QD-Tree GP	QD-Linear GP	Tree GP	Linear GP	NN
BipedalWalker 311.34		299.64	268.85	257.22	299.44*
Hopper	2152.19	1450.11	999.19	949.27	2604.91

¹Mouret, J., & Clune, J. (2015). Illuminating search spaces by mapping elites. arxiv:1504.04909.

 ‡ SAC

¹Flageat, M., & Cully, A. (2020). Fast and stable MAP-Elites in noisy domains using deep grids. In Artificial Life Conference, 273-282)

Escaping the local optimum through quality diversity

- Maintain diversity of the population:
 - Each individual is associated with behavioral descriptor (here mean amplitude of the joints)
 - Starting with Map-Elites algorithm¹ then fine tuning with base algorithm to reduce policy complexity.
- Results on two locomotion environments:
 - Better exploration
 - + Improved performance
 - + No significant increase in complexity
 - Very dependent on the grid (descriptor and size)

Avalaible Features
TreeGP
LinearGP
QD-TreeGP
QD-LinearGP

OD-LinearGP

BipedalWalker

Environment

Avalaible Features
TreeGP
LinearGP

Hooper

¹Mouret, J., & Clune, J. (2015). Illuminating search spaces by mapping elites. arxiv:1504.04909.

¹Flageat, M., & Cully, A. (2020). Fast and stable MAP-Elites in noisy domains using deep grids. In *Artificial Life*

informatics | mathematics

universite

TRUSTAI

74ª Reunião Anual da SBPC 24 a 30 de julho de 2022

Quality diversity leads to a better exploration strategy

Linear GP classic (baseline)

QD - 1 descriptor (foot joint)

QD - 2 descriptors (leg + foot joint)

Evolutionary approaches can provide interpretable RL policies with performance comparable to deep reinforcement learning

GP-based reinforcement learning (RL) policies:

- + are competitive against neural networks on various tasks
- + are portable
- + can be framed as a multi-objective optimization problem
- + have **low resources** footprint
- + use only episode cumulative reward
- can stuck in **local optimum**
- + are **interpretable** (i.e., concise)
- can be non-intuitive in some locomotion tasks

Realização

@FAPERJ

RNP
REDE NACIONAL DE
ENSINO E PESQUISA

Ministério de Saúde

FIOCRUZ

Instituições parceiras

Apoio

