Simple Statistical Catch at Age model

Anders Nielsen & Olav Nikolai Breivik

Fish Stock Assessment

Problem: How many fish (relative or absolute) are left in the ocean?

Data:

 $C_{a,y}$: Yearly catches (divided into age-classes)

 $I_{a,y}$: Scientific surveys

	Year e.g. 1963–2007								
Age									
e.g. 1–7	$C_{a,y}$								
1-7									

	Year e.g. 1983–2007								
Age									
e.g. 1–5	$I_{a,y}$								
1-5									

Often we have catches $(C_{f,a,y})$ from more than one fleet and indices $(I_{s,a,y})$ from more than one survey, but here we keep it simple.

Important output: SSB, \overline{F} , "Reference points" ...

Assessment Models

- Based on a standard set of equations describing the structure of the system
- Can include different assumptions about selectivity
- Can include different assumptions about 'natural' mortality
- Can include different effort numbers
- Can include different
 assumptions about recruitment
- But after all that has been taken into account it is a simple function connecting catch to number of fish

Basic equations

Stock equation: The number of fish in a cohort is expected to follow:

$$\frac{dN_t}{dt} = -(F_t + M_t)N_t$$

If F and M are assumed constant within each year we get:

$$N_{a+1,y+1} = N_{a,y}e^{-(F_{a,y}+M_{a,y})}$$

Catch equation: The number of fish in a cohort after one year can be separated into:

$$N_{a,y} = \underbrace{N_{a+1,y+1}}_{\text{survived}} + \underbrace{C_{a,y} + D_{a,y}}_{\text{died}}$$

The part of the cohort that was caught during the year is:

$$C_{a,y} = \frac{F_{a,y}}{F_{a,y} + M_{a,y}} \left(1 - e^{-(F_{a,y} + M_{a,y})} \right) N_{a,y}$$

Stock-recruitment equation: Obviously connected — Different opinions about how

Deterministic models

- A deterministic model is a model where observation noise is ignored
- Typically catches are assumed known without error
- Most commonly applied fish stock assessment models are (semi-)deterministic
- These algorithms work (very simply put) by:
 - **0:** Guess the number of survivors $N_{A+1,y}$ and $N_{a,Y+1}$
 - 1: Back calculate (\nwarrow) all $N_{a,y}$ by subtracting catch and natural mortality
 - 2: Use surveys to adjust all $N_{a,y}$ and update survivors accordingly

3: Repeat 1-3 until survivors converge

• Doing 0-1 just ones is known as Virtual Population Analysis

711161	g	<u> </u>		Ye	ar e.g	g. 88–	-08	K K				
}		K					K					
Age	e		K					K				
e.g				K	C_{ϵ}	a,y			X			
1-7					K							
						K						

 $\cdots N_{A+1,y} \cdots$

Features of deterministic models

- + Super fast to compute
- + Fairly simple to explain the path from data to stock numbers (especially VPA)
- Difficult to explain why it works (converges), and what a solution mean
- These algorithms contain many ad-hoc settings (shrinkage, tapered time weights, ...) that makes them less objective
- No quantification of uncertainties within model
- ? What exactly is the model
 - The assumptions are difficult to identify and verify
 - With no clearly defined model more ad-hoc methods are needed to make predictions
- No framework for comparing models (different settings)

Example: F-shrinkage for Eastern Baltic Cod

- These differences are not small and theoretical
- There are no objective way to choose between these two deterministic approaches
- Things would be simpler if we had a statistical model

A full parametric statistical model

• The log catches are assumed to follow:

$$\log(C_{a,y}) \sim \mathcal{N}\left(\log\left(\frac{F_{a,y}}{Z_{a,y}}(1 - e^{-Z_{a,y}})N_{a,y}\right), \sigma_c^2\right)$$
, where $F_{a,y} = F_y F_a$, with $F_{a=5} = F_{a=6} = F_{a=7} = 1$, and $Z_{a,y} = F_{a,y} + M_{a,y}$

• The log catches from the survey are assumed to follow:

$$\log(I_{a,y}) \sim \mathcal{N}\left(\log\left(Q_a e^{-Z_{a,y}T} N_{a,y}\right), \sigma_s^2\right)$$
, where

T is the fraction into the year where the survey is taken, and Q_a is catchability parameter.

• The stock sizes are assumed to follow:

$$N_{a,y} = N_{a-1,y-1}e^{-Za-1,y-1}$$

Notice that it does not define N in the first year and for the youngest age.

• So the model parameters are the undefined N's, F_y , F_a , Q_a , σ_c , and σ_s

Implementation

- For this example this model has 107 model parameters (try to count them).
- Optimizing the likelihood for such a model is in principle the same as all the models we already have seen.
- With TMB http://www.tmb-project.org it is not much more difficult
- The data file for this example fsa.RData is in the shared folder
- The model implementation fsa.R and fsa.cpp is in the shared folder
- Now let's look into the code.

Result

Fully parametrized statistical assessment models

- A statistical^a model acknowledges observation noise
- The error structure is part of the model description
- To find the quantities of interest (e.g. $N_{a,y}$, $F_{a,y}$, and observation uncertainties) the likelihood of the actual observations is optimized w.r.t. the model parameters.
- Parametrized statistical assessment models have a number of benefits:
 - + All model assumptions are transparent
 - + Different model assumptions can be tested against each other (e.g. is $F_5 = F_6$?)
 - + Different data sources can be included and correctly and objectively weighted
 - + Estimation of uncertainties are an integrated part of the model
- But also a few difficulties:
 - Trade-off between the number model parameters and flexibility of the model (e.g. $F_{a,y}$ vs. $F_{a,y} = S_a f_y$)
 - More advanced software needed

^aa.k.a. stochastic

Exercise

- Get the data and the model file from the shared folder. Compile and run it on your own computer.
- The current simple implementation assumes that the catches from age group seven consists of only 7 year old fish. In reality catches from age group seven consists of fish of ages 7 and above. We say group 7 is a plus group. This means that for the last age A the stock equation should be updated to:

$$N_{A,y} = N_{A-1,y-1}e^{-Z_{A-1,y-1}} + N_{A,y-1}e^{-Z_{A,y-1}}$$

make the necessary changes.

- Catches of one year old fish are often to a large extent determined by discard estimates. Extend the model to use a separate variance for the log-catches of one year old fish.
- To test if the survey catchabilities have changed over time, try to extend the model to use one set of catchabilities before year 2000, and a different set after and including.

