

Recap on Bisection

- Bisection method for root finding
- "Almost" linear convergence: $|c_n r| \le \frac{b-a}{2^{n+1}}$

$$|x_{n+1} - x^*| \le C|x_n - x^*|$$

$$\Rightarrow |x_{n+1} - x^*| \le AC^n$$

- Today's agenda
 - Bisection variants
 - Matlab tutorial
 - Newton's method

Bisection variants

False position method

Rather than selecting the midpoint, this method uses the point where the secant lines intersect the x-axis.

Remarks

• False position method uses the values of f(a), f(b), which is more adaptive to a particular function.

It may repeatedly select the same endpoint.

 Modified false position method changes the slope of the straight line to get closer to the root.

MFP method

In some cases, superlinear convergence rate can be obtained.

Convergence rate

• Linear convergence: $C \in [0,1)$ $|x_{n+1} - x^*| \le C|x_n - x^*|$

• Superlinear convergence: $\alpha \in (1,2)$ $|x_{n+1} - x^*| \le C|x_n - x^*|^{\alpha}$

Quadratic convergence

$$|x_{n+1} - x^*| \le C|x_n - x^*|^2$$

Matlab tutorial

Some facts

- Everything in Matlab is a matrix or tensor!
- Matlab does not need any variable declarations, no dimension statements, no storage allocation, no pointers; but better to aware of these for efficiency.
- Programs can be run step by step, with full access to all variables, functions, etc.

Getting help

- To get help on a function type "help function_name", e.g., "help plot".
- To find a topic, type "lookfor topic", e.g., "lookfor

matrix"

```
>> lookfor matrix
                                - Convert tall matrix to table
array2table
array2timetable
                                - Convert tall matrix to timetable
cell2mat
                                - Convert the contents of a cell array into a sin
                                - Covariance matrix.
COV
                               - Flip tall matrix along specified dimension.
flipdim
ismatrix
                                - True if input is a matrix.
                                - \ Backslash or left matrix divide.
mldivide
mrdivide
                                - / Slash or right matrix divide.
                                - * Matrix multiply.
mtimes
                                - Number of nonzero matrix elements.
nnz
                                - tall vector and matrix norms.
norm
pTimesTranspose
                                - matrix multiply with transposed inputs
str2num
                                - Convert string matrix to numeric array.
topkrows
                                - Top k sorted rows of a matrix, table, or timeta
validateMatrix
                                - validateType Possibly deferred check for matrix
                                - Extracts data variables for table and matrix in
extractDataVarsTall
                                - Parses grouping variables for table and matrix
parseGroupVarsTall
                                - Covariance matrix.
                                - Check if matrix rows are sorted
issortedrows
                                - Sort rows of a matrix.
sortrows
                                - Top K sorted rows of matrix.
topkrows
mtimes
                                - Matrix multiplication for calendar durations.
                                - Transpose a categorical matrix.
ctranspose
                                - True if categorical array is a matrix.
<u>ismatrix</u>
```


Matlab's Workspace

- who, whos current workspace vars.
- save save workspace vars to *.mat file.
- load load variables from *.mat file.
- clear all clear workspace vars.
- close all close all figures
- clc clear screen
- clf clear figure

Variables

- Variable names:
 - Must start with a letter
 - May contain only letters, digits, and '_'
 - Case sensitive, one & ONE are different
 - Built-in variables/functions are all lower-case.
- Assignment:
 - Variable = number
 - Variable = expression

Basic Commands

- % used to denote a comment
- ; suppresses display of value (when placed at end of a statement)
- ... continues the statement on next line
- eps machine epsilon
- inf infinity
- **NaN** not-a number, e.g., 0/0.

UT DALLAS

Numbers

- To change format of numbers: format long, format short, etc.
 See "help format".
- Mathematical functions: sqrt(x), exp(x), cos(x), sin(x), sum(x), etc.
- Operations: +, -, *, /,^
- Constants: pi, exp(1), etc.
- Elementwise operator for vectors, .

Arrays and Matrices

```
• v = [-2 3 0 4.5 -1.5]; % length 5 row
     vector.
• v = v';
              % transposes v.
v(1);
              % first element of v.
v(2:4);
                 % entries 2-4 of v.
v([3,5]);
                 % returns entries 3 & 5.
• v=[4:-1:2]; % same as v=[4 3 2];
• a=1:3; b=2:3; c=[a b]; \rightarrow c = [1 2 3 2 3];
```

Arrays and Matrices (2)

- x = linspace(-pi,pi,10); % creates 10 linearly-spaced elements from -pi to pi.
- logspace is similar.
- A = [1 2 3; 4 5 6]; % creates 2x3 matrix
- **A(1,2)** % the element in row 1, column 2.
- A(:,2) % the second column.
- **A(2,:)** % the second row.

Newton's method

Overview

- Newton's method is also called Newton-Raphson iteration.
- It has a wider spectrum of applications.
- It requires the function to be differentiable.
- Its basic idea is that the graph at a certain point can be well approximated by its tangent.

Interpretation

• Starting from a point $(x_0, f(x_0))$

Compute the tangent line

Advance to the next point

Another interpretation

• What correction h should be added to x_0 to obtain the root precisely?

Taylor series

Find an approximated value for h

Summary of Newton

• Newton's method returns a sequence of points: x_0, x_1, \cdots

Recursive or inductive definition

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

• Convergence: $\lim_{n\to\infty} x_n = r$