

planetmath.org

Math for the people, by the people.

power-associative algebra

Canonical name PowerassociativeAlgebra

Date of creation 2013-03-22 14:43:27 Last modified on 2013-03-22 14:43:27

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 15

Author CWoo (3771)
Entry type Definition
Classification msc 17A05
Synonym di-associative
Synonym diassociative
Related topic Associator

Let A be a non-associative algebra. A subalgebra B of A is said to be cyclic if it is generated by one element.

A non-associative algebra is *power-associative* if, [B, B, B] = 0 for any cyclic subalgebra B of A, where [-, -, -] is the associator.

If we inductively define the powers of an element $a \in A$ by

- 1. (when A is unital with $1 \neq 0$) $a^0 := 1$,
- 2. $a^1 := a$, and
- 3. $a^n := a(a^{n-1})$ for n > 1,

then power-associativity of A means that $[a^i, a^j, a^k] = 0$ for any non-negative integers i, j and k, since the associator is trilinear (linear in each of the three coordinates). This implies that $a^m a^n = a^{m+n}$. In addition, $(a^m)^n = a^{mn}$.

A theorem, due to A. Albert, states that any finite power-associative division algebra over the integers of characteristic not equal to 2, 3, or 5 is a field. This is a generalization of the Wedderburn's Theorem on finite division rings.

References

[1] R. D. Schafer, An Introduction on Nonassociative Algebras, Dover, New York (1995).