Exercices classiques

Ce document recense des exercices à savoir refaire, qui peuvent tomber aux écrits de concours. Les exercices plus délicats sont marqués d'une étoile (*).

Exercice 1 Intégrales de Wallis

Pour tout $n \in \mathbb{N}$, on note

$$W_n = \int_0^{\frac{\pi}{2}} (\sin t)^n \, \mathrm{d}t.$$

- **1.** Établir, pour $n \in \mathbb{N}$, une relation simple entre W_n et W_{n+2} .
- 2. En déduire, pour tout $n \in \mathbb{N}$, la valeur de $W_n W_{n+1}$.
- 3. Montrer que la suite $(W_n)_n$ est décroissante. Déterminer sa limite et donner un équivalent de cette suite.

Exercice 2 Une caractérisation des matrices symétriques

Soit $n \in \mathbb{N}^*$. On note $S_n(\mathbf{R})$ le sous-espace vectoriel de $\mathcal{M}_n(\mathbf{R})$ formé des matrices symétriques. Une matrice $S \in S_n(\mathbf{R})$ est dite *définie positive* si et seulement si pour tout $X \in \mathbf{R}^n$ non nul, on a ${}^t XSX > 0$. On note $S_n^{++}(\mathbf{R})$ l'ensemble des matrices symétriques définies positives.

1. Montrer que, si $S \in S_n(\mathbf{R})$, alors

$$S \in S_n^{++}(\mathbf{R}) \iff \operatorname{Sp}(S) \subset \mathbf{R}_+^*.$$

2. En déduire que, pour tout $S \in S_n^{++}(\mathbf{R})$, il existe $R \in \mathrm{GL}_n(\mathbf{R})$ telle que $S = {}^tRR$. Réciproquement, montrer que, pour tout $R \in \mathrm{GL}_n(\mathbf{R})$, ${}^tRR \in S_n^{++}(\mathbf{R})$.

Exercice 3 Une caractérisation des projecteurs orthogonaux

Soit E un espace euclidien et $p \in \mathcal{L}(E)$. Établir l'équivalence des énoncés suivants

- 1. *p* est un projecteur orthogonal;
- 2. $p \circ p = p$ et, pour tout $x \in E$, $||p(x)|| \le ||x||$;
- 3. $p \circ p = p$ et, pour tous $x, y \in E$, (p(x)|y) = (x|p(y)).

Exercice 4

Compacité du groupe orthogonal

Montrer que $O_n(\mathbf{R})$ est un sous-groupe compact de $GL_n(\mathbf{R})$.

Exercice 5

Caractérisation de Borel-Lebesgue d'un compact *

Soit E un espace vectoriel et K un compact de E. On considère une famille $(\Omega_i)_{i \in I}$ d'ouverts de E telle que $K \subset \bigcup_{i \in I} \Omega_i$.

- 1. Montrer qu'il existe $\alpha > 0$ tel que, pour tout $x \in K$, il existe $i \in I$ tel que $B(x, \alpha) \subset \Omega_i$.

 Indication: Raisonner par l'absurde et construire une suite $(x_n)_n$ d'éléments de K n'ayant aucune suite extraite convergente.
- 2. Montrer qu'il existe p > 0 et $x_1, \dots x_p \in K$ tels que $K \subset \bigcup_{k=1}^p B(x_k, \alpha)$.

Indication : Raisonner par l'absurde et construire une suite $(x_n)_n$ d'éléments de K n'ayant aucune suite extraite convergente.

3. En déduire qu'il existe $i_1, \dots, i_p \in I$ tels que $K \subset \bigcup_{k=1}^p \Omega_{i_k}$.

Exercice 6

Conservation de la norme dans $O_n(\mathbf{R})$

Soient $A \in \mathcal{M}_n(\mathbf{R})$ et $P, Q \in O_n(\mathbf{R})$. Montrer que ||PAQ|| = ||A||, où l'on définit $||M|| = \operatorname{tr}({}^t MM)$, pour tout $M \in \mathcal{M}_n(\mathbf{R})$.

Exercice 7

Adjoint d'un endomorphisme

Soit E un espace euclidien. On considère l'application

$$\Phi: y \in E \mapsto \phi_{v}$$

où l'on définit ϕ_y : $x \in E \mapsto (x|y)$, pour tout $y \in E$.

- 1. Montrer que Φ est bijective.
- 2. On fixe $y \in E$. Montrer qu'il existe un unique élément de E, noté $u^*(y)$, tel que, pour tout $x \in E$,

$$(u(x)|y) = (x|u^*(y)).$$

- 3. Montrer que l'application u^* ainsi définie est linéaire.
- 4. Montrer que $u^* \circ u$ et $u \circ u^*$ sont symétriques définis positifs.

Exercice 8

Preuve probabiliste du théorème de Weierstras.

Soient $n \in \mathbb{N}^*$, $x \in [0,1]$ et $f: [0,1] \to \mathbf{R}$ une fonction continue. On note X_1, \dots, X_n des variables aléatoires mutuellement indépendantes et distribuées selon la loi de Bernoulli de paramètre x. On note également $S_n = X_1 + \dots + X_n$, $Z_n = \frac{S_n}{n}$ et $B_n(f)(x) = E(f(Z_n))$

- 1. Rappeler la loi de S_n . En déduire les valeurs de l'espérance et de la variance de S_n en fonction de n et de x.
- 2. En utilisant l'inégalité de Bienaymé-Tchebychev, montrer que, pour tout $\alpha > 0$,

$$\sum_{\substack{0 \le k \le n \\ \left|\frac{k}{\alpha} - x\right| \ge \alpha}} \binom{n}{k} x^k (1 - x)^{n - k} \le \frac{1}{4n\alpha^2}$$

3. Montrer que

$$B_n(f)(x) - f(x) = \sum_{k=0}^{n} {n \choose k} x^k (1-x)^{n-k} \left(f\left(\frac{k}{n}\right) - f(x) \right)$$

et en déduire que la suite $(B_n(f))_{n \in \mathbb{N}}$ converge uniformément vers f sur [0,1]. On pourra utiliser le résultat de la question précédente ainsi que le théorème de Heine.

Exercice 9 Norme subordonnée

Soit $(E, \|\cdot\|)$ un espace normé de dimension $n \in \mathbb{N}^*$. On note S l'ensemble des éléments de E de norme 1, et on définit l'application

$$\|\cdot\|_{\text{sub}}: \mathcal{L}(E) \to \mathbf{R}$$

$$u \mapsto \|u\|_{\text{sub}} = \max_{x \in S} \{\|u(x)\|\}$$

- 1. Montrer que $\|\cdot\|_{\text{sub}}$ est bien définie.
- 2. Montrer que $\|\cdot\|_{\text{sub}}$ est une norme sur $\mathcal{L}(E)$.
- 3. Montrer que, pour tous $x, y \in E$ et $u \in \mathcal{L}(E)$,

$$||u(x) - u(y)|| \le ||u||_{\text{sub}} ||x - y||.$$

Exercice 10

Autour des endomorphismes nilpotents

Soit *E* un espace vectoriel de dimension $n, u \in \mathcal{L}(E)$ nilpotent.

- 1. Montrer que $u^n = 0$.
- 2. Montrer qu'il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ soit une base de E. En déduire la matrice de u dans cette base.

Exercice 11

Caractérisation des endomorphismes nilpotents

Soit E un **C**-espace vectoriel de dimension n, $u \in \mathcal{L}(E)$. Montrer que les énoncés suivants sont équivalents

- 1. *u* est nilpotent;
- 2. 0 est l'unique valeur propre de u;
- 3. Pour tout $1 \le k \le n$, $\operatorname{tr}(u^k) = 0$.

Exercice 12

Commutation et polynôme caractéristique

Pour tout $M \in \mathcal{M}_n(\mathbf{C})$, on note χ_M le polynôme caractéristique de M. Montrer que, pour tous $A, B \in \mathcal{M}_n(\mathbf{C})$,

$$\chi_{AB} = \chi_{BA}$$
.

Exercice 13

Autour de l'exponentielle matricielle

Soit
$$A \in \mathcal{M}_n(\mathbf{C})$$
. On pose $\exp A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$.

- 1. Montrer que exp *A* est bien définie.
- 2. Montrer que, pour tout $P \in GL_n(\mathbb{C})$, $\exp(P^{-1}AP) = P^{-1}(\exp A)P$.
- 3. Calculer $\det(\exp A)$ en fonction $\det \operatorname{tr} A$. En déduire que exp est à valeurs dans $\operatorname{GL}_n(\mathbf{C})$.
- **4.** Montrer qu'il existe $P \in \mathbb{C}[X]$ tel que exp A = P(A).

Exercice 14

Théorème du point fixe (Picard)

Soit E un espace vectoriel normé de dimension $n \in \mathbb{N}^*$ et A une partie de E. Soit $f: A \to A$ une application contractante, c'est-à-dire qu'il existe $k \in [0,1[$ tel que

$$\forall x, y \in A, \|f(x) - f(y)\| \le \|x - y\|.$$

Montrer que *f* admet un unique point fixe.

Exercice 15

Diagonalisation simultanée

Soient E un espace euclidien de dimension n et $(u_i)_{i \in I}$ une famille d'endomorphismes symétriques de E, qui commutent deux à deux : $u_i \circ u_j = u_j \circ u_i$ pour tous $i, j \in I$.

Montrer, par récurrence sur n, qu'il existe une base orthonormée \mathcal{B} de E telle que, pour tout $i \in I$, $\mathrm{Mat}_{\mathcal{B}}(u_i)$ soit diagonale.

Indication: Montrer que, si u_i n'est pas une homothétie, alors ses sous-espaces propres sont de dimension < n. Dès lors, montrer que ces derniers sont stables par tous les u_i .

Exercice 16

Décomposition polaire

- 1. Soit $A \in \mathcal{M}_n(\mathbf{R})$. Montrer qu'il existe une unique matrice $H \in \mathcal{M}_n(\mathbf{R})$, symétrique positive, telle que ${}^tAA = H^2$.
- 2. En déduire que, pour tout $A \in \mathcal{M}_n(\mathbf{R})$, il existe $U \in O_n(\mathbf{R})$ et $H \in GL_n(\mathbf{R})$ telles que A = UH.
- 3. Montrer que, si A est inversible, alors le couple (U, H) est unique.

Exercice 17

Théorème de Carathéodory

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et H une partie de E. On appelle enveloppe convexe de H et on note $\operatorname{Conv}(H)$ le plus petit sous-ensemble convexe de E, au sens de l'inclusion, contenant H.

- 1. Montrer que, pour tout $x \in \text{Conv}(H)$, il existe $p \in \mathbb{N}^*$, $x_1, \dots, x_{p+1} \in H$ et $\lambda_1, \dots, \lambda_{p+1} \in \mathbb{R}^+$ tels que $\sum_{k=1}^{p+1} \lambda_k = 1$ et $x = \sum_{k=1}^{p+1} \lambda_k x_k$.
- 2. On se propose de montrer que l'on peut prendre p = n. Pour cela, on considère $x = \sum_{k=1}^{p+1} \lambda_k x_k \in \text{Conv}(H)$ avec $p \ge n+1$ (on dira que x est une combinaison convexe de x_1, \dots, x_{p+1}).
 - a. Montrer qu'il existe des réels μ_1, \dots, μ_p non tous nuls tels que

$$\sum_{k=1}^{p+1} \mu_k = 0 \text{ et } x = \sum_{k=1}^{p+1} \mu_k x_k = 0.$$

b. En déduire que x peut s'écrire comme combinaison convexe de p-1 éléments de H. Indication : Considérer des coefficients de la forme $\lambda_i - t\mu_i$, où t est bien choisi.