Случайни велигини

 $V=(\Omega,\mathcal{A},P)$ - вероя іносіно пространство

 $I \subseteq IR$, $+a\bar{u} - 2ecio I = (a_1b)$ $X^{-1}(I) = \{w \in \Omega; X(w) \in I\}$ $X^{-1}((a_1b)) = \{w \in \Omega : a < X(w) < b\}$ $X^{-1}(\{a\}) = \{X = a\}$

Деф. (Слугайна велигина)

Heka Ve bep. np-bo. Toraba X: $\Omega \to \mathbb{R}$ e chyratina benuruna, Toraba koratio $\forall a < b$, $a : b \in \mathbb{R}$ e b cuna $X^{-1}((a : b)) \in \mathcal{H}_1$ k $a \in \mathbb{R}$ e b cuna $X^{-1}((a : b)) \in \mathcal{H}_1$ k $a \in \mathbb{R}$ $a \in \mathbb{R}$ $a \in \mathbb{R}$ $a \in \mathbb{R}$ kahem kakba e beporthoction $a \in \mathbb{R}$ and $a \in \mathbb{R}$ can kakba e beporthoction $a \in \mathbb{R}$ and $a \in \mathbb{R}$ in $a \in \mathbb{R}$ can kakba e beporthoction $a \in \mathbb{R}$ and $a \in \mathbb{R}$ in $a \in \mathbb{R}$ can be considered as $a \in \mathbb{R}$ and $a \in \mathbb{R}$ to $a \in \mathbb{R}$ to $a \in \mathbb{R}$ in $a \in \mathbb{R}$ to $a \in \mathbb{R}$ can be considered as $a \in \mathbb{R}$ to $a \in \mathbb{R}$ t

CDakil βαρμο e, le $X^{-1}(I)$ є ft ,ako $I=(a_1b_1,I=La_1b_1,I=Lx_3,x\in\mathbb{R})$. Βιεκή υμιερβαλ (a_1b) ο IR има προσρας $B\subseteq\Omega$ и се из πραιμά B μετο $CX^{-1}((a_1b))$. Η ακού υμιερβαλύ μοιμε ga CE αζηραιμά B πραβμοίο μποιμετίδο B.

Teopena) (Choùciba ha chyeanhnie benurnhn)

Hera V e bep. np-bo u X u Y ca cn. ben. (X, Y: -12 -> IR). Toraba e b cuna:

al a.X ± b.Y e cn. ben. + a b + IR

SI c.X e cn. ben. + C + IR

BIXY e cn. ben.

6) × 4 e cn. ben.

T) ako P(4.0)=0,70 X e a. ben.

Dokazajencibo) X1=a.X → a=0 Apu a=0 X1=0 {X1<b} € tt 8 € vt 8 € 0 → X1<6 € 0 } → € 0

Πρι α>0, εχις βξ=ξα. Χ<βξ= £Χ< ξξ εtt, gamoīo × e (n. ben. -> Χι ecn. ben. u yi=6. Υ ε ιν. ben Z= Xi+ Yι; It 9 {Z<βξ= £Xi+ Yi<βξ= -> cen > U £Xi<βξ ΠΕΥι<β-ςξ= L

(=) w∈L=> 3qo·X1(w)<qo } X1(w)+4,1w)<B => L= {X1+4,0}

(2) WE (XITYKBS

Yilmityilm) b

 $X_{1}(w) + Y_{1}(w) < b - 2r$ $Q^{-r} < X_{1}(w) < Q + r -> X_{1}(w) < Q + r, Q \in \emptyset$ $Y_{1}(w) < b - 2r - X_{1}(w) < b - 2r - Q + r = b - (Q + r)$ $w \in \{X_{1} < Q + r\} \cap \{Y_{1} \cap b - Q + r\}$ Q_{1}

W€ 2X1< q13 N & Y1< B-q18 € L => 2 = {X1+Y1< 6 } Дискретни слугайни велигини

Wedo.) Ungukajopha dounkuua

Heka Ω ε μη-βο οῖ ελεμεμίαρηνη εβουῖνα u H = Ω. Τογαβα 1_H ce

μαρινέα υημακαĵορηα dounkuua, ακο $1_H = \begin{cases} 1 \\ 0 \end{cases}$, ακο $u \in H$ $\frac{1}{1} u^2 = \frac{1}{1} - \frac{1}{1} u^2 + \frac{1}{1} = \frac{1}{1} \frac{1}{1} u^2 + \frac{1}{1} \frac{$

<u>Nemal</u> Hera V e bep. np-bo u H& A. Toraba 14: 12->R e cn. ben.

2) ο κα ζα τε Λείδο Ακο Χ(w):= 1_{H(w)}, το X⁻¹(203) = H^c, α X⁻¹(213) = H

if a < b e bapho, le $X^{-1}(a_1b)_s$ $\begin{cases} \emptyset$, and $a \ge 1 \text{ unu } b \le 0 \\ \Omega$, and $0 \in (a_1b)_u \text{ $1 \in (a_1b)$} \\ H$, and $1 \in (a_1b)_u \text{ $0 \notin (a_1b)$} \\ H^c$, are $1 \notin (a_1b)_u \text{ $0 \in (a_1b)$} \end{cases}$

Който и интервал (aıb) да изберем - изходите ще са един от 4-те възмонни \mathcal{O} , Ω , H_1H^e , който са G-алгебра. T.e. дефиницията е изпълнена \mathcal{O} веки слугат \mathcal{O} \mathcal{O} (aıb) \mathcal{E} \mathcal{A} \mathcal{O} \mathcal{O}

2edo (Дискреїна случайна величина)

Неко V е вер. пр-во, H е пвлна група от свойня выв V и X е вектор или редица от числа, своївестващи на елементарни свойтия в H. Тогава: $X(w) = \sum_{i=1}^{n} X_i L_{H_2(w)}$ се нарига дискреїна сл. вел.

Deф.) (Разпределение на дискретна случатьна величина) Нека X = Zi X: Iн; е дисер. сл. веж. Тогава таблицата

XI XI X2 XK XK KEGETO IP(X=Xi)=pi=IP(Hi) u Zipi=1 ce нарига разпределение на X. καзваме, ге две дисерейни слугайни велигини са еднакви по разпределение, ако Технийе Таплици сввпадат.

Смяна на променливите на дискр. сл. вел.

X-quetp.ch.ben., g:1R->1R; y=g(x) - uctame ga zhoem gann y e cn. Ben.

Aro X= \$1 x 1 4; 170 y= \$1,9 (x 1) 1 4; e on ben u aro nonothum y: 9(x 5), 70

5- 2 yi 1 ti

Ded Hera Xuy ca abe gucrpe înu a ber. b egno bep. np-bo u nera g:RxR->R.

Toraba Z=q(X,y) e cmana na npomennubule Xuy
!Z(w)=q(X(w),y(w))

Deb.) (Hezabucumoci Ha guckp. cn. ben.)

Hera Xuyca abe guckp. cn. ben. Beb V. Toraba

X 11 y 2=> P(X=xj, y=yk)= P(X=xj) P(y=yk), +j, k

 $\mathcal{D}eob$. (Независимост в (въкциност)

Нека X1,..., Xn са queкр. сл. вел. във V. Тогава те са независими в съвкупност, эко $P(X_1=x_1,X_2=x_2,...,X_n=x_n) = \prod_{i=1}^n P(X_i=x_i)$

Deф.) (Зоункумя на разпределение на сл. вел.)
Нека X е сл. вел. във V. Тогава Fx(x)=IP(X<x), +x+(-∞,∞), се нарига
функция на разпределение на X.