2015 Taiwan TST Quiz

KIM YONG JOON

26 August 2025

Problem (Taiwan TST 2015). In scalene triangle ABC with incenter I, the incircle is tangent to sides CA and AB at points E and F. The tangents to the circumcircle of $\triangle AEF$ at E and F meet at S. Lines EF and BC intersect at T. Prove that the circle with diameter \overline{ST} is orthogonal to the nine-point circle of triangle BIC.

- ¶ Main Idea Use well known lemmas(Iran Lemma, Incircle concurrency) to get a grasp of the general picture, and use harmonics and projective geometry to simplify the condition and prove a simplified statement.
- ¶ Solution(harmonic) Note, by the Self-Polar Orthogonality lemma, that it suffices to prove that S and T lie on each other's polar wrt the Nine Point circle of $\triangle BIC$. It is well known that AM, EF, and DI concur at a point, say X. For the naming of other points, assume the one found in the diagram.

Claim —
$$T, L, F, N, E, G$$
 are collinear

Proof. Note that DI, EF, and AM concur, and (LFBDI), (GEIDC) are cyclic. By angle chasing,

$$\angle EGI = \angle ECI = \angle ICD = \angle LCB = \angle LGB$$

hence L, E, G are collinear. Similarly, L, F, G are collinear. This achieves the desired result.

Claim —
$$(T, X, L, G) = -1$$

Proof. By Menelaus-Ceva on GLBC, (T, D, B, C) = -1. Projecting from A,

$$-1 = (T, D, B, C) \stackrel{A}{=} (T, X, L, G)$$

Claim —
$$(T, Q = SX \cap BC, D, M) = -1$$

Proof.
$$-1 = (A, I, N, S) \stackrel{X}{=} (M, D, T, Q)$$

By our second and third claim, S lies on the polar of T, as desired.