Graham Cooper

June 29th, 2015

Choice:

- 1. Shift symbol from input to stack
- 2. reduce top of stack by grammar rule

Theorem (Donald Knuth, 1965)

- create tex, became latex - currently writing the art of computer programming

Theorem:

```
The set \{wa \mid \exists x, S' \Longrightarrow *wax \} w is the stabck a is the next characer is a regular language.
```

If it is a regular language, then it can be described by a DFA.

- use the DFA to make shift/reduce decisions

LR Parsing

- left-to-right scan
- rightmost derivations

Example:
$$S' \rightarrow \vdash E \dashv E \rightarrow T$$

 $E \rightarrow T$
 $T \rightarrow id$

See pretty picture 1 in notes

LR(0) machine (simplest)

<u>Definition:</u> An item is a production with a dot (\cdot) somewhere on the right hand side. (indiates partially completed rule)

- begin with a state with the starting state production rule and the dot at the beginning of input
- Label an arc with the symbol that follows the dot; advance the dot in the next state
- If the dot precedes a non-terminal A, add all productions with A on the LHS to the state, dot in the leftmost position.
- Repeat until we get all of the transitions we can

Using the machine

- Start in the start state with empty stack
- Shifting
 - shift char from input to stack
 - follow transition for that char to next state
 - if no transition, error, or reduce
- Reducing
 - "Reduce states" have only one item and the dot is rightmost
 - called a complete item
 - reduce by the rule in the state
 - reduce: pop RHS off the stack, backgrack size(RHS) states in the DFA, push LHS, follow shift transition for the LHS
- Backtracking the DFA
 - must remember the DFA states
 - Push the DFA states onto the stack as well.

Stack	Read	unread	Action
1	ϵ	⊢id+id+id⊣	S2 (shift and go to 2)
$1 \vdash 2$		id+id+id⊣	S6 (Shift and go to 6)
$1 \vdash 2 \text{ id } 6$	⊢id	+id+id∃	$RT \rightarrow id$ (Pop 1 symbol and 1 state) Now in state 2, Push T
$1 \vdash 2 \top 5$	⊢id	+id+id∃	$R, E \rightarrow T$ pop 1 sym, pop 1 state, push E goto 3
$1 \vdash 2 \to 3$	⊢id	+id+id∃	S7
$1 \vdash 2 \to 3 + 7$	⊢ id +	$id+id\dashv$	S6
$1 \vdash 2 \to 3 + 7 + 6$	$\vdash id + id$	+id∃	$R, T \rightarrow id, goto 8$
$1 \vdash 2 \to 3 + 7 \to 8$	⊢ id+id	+id⊢	$R, E \rightarrow E + T \text{ (Pop 3 sym, 3 states, goto 2)}$
$1 \vdash 2 \to 3$	$\vdash id + id$	+id ∃	S7
$1 \vdash 2 \to 3 + 7$	\vdash id + id +	id ⊢	S6
$1 \vdash 2 \to 3 + 7 \text{ id } 6$	⊢id+id+id	\vdash	$R, T \rightarrow id, goto 8$
$1 \vdash 2 \to 3 + 7 \to 8$	⊢id+id+id	\vdash	$R, E \rightarrow E + T goto3$
$1 \vdash 2 \to 3$	⊢id+id+id	\vdash	S4
$1 \vdash 2 \to 3 \dashv 4$	⊢id+id+id⊣	ϵ	Accept

What can go wrong?

What if the state looks like this:

$$A \to \alpha \cdot c \beta$$

$$B \to \gamma$$
.

Shift c or reduce $B \to \gamma$

This is a shift-reduce conflict!

$$A \to \alpha$$
.

$$B \to \beta$$
.

reduce-reduce conflict

Whenever a complete item $A \to \alpha$ is not alone in a state there is a conflict and the grammar is not LR(0)

Example: Right-associative

$$\overline{S' \to \vdash E} \dashv$$

$$E \rightarrow T + E$$

$$E \to T$$

 $T \to id$

See pretty picture 2 in notes

Example:

 $\overline{\epsilon_1 \text{ shift } -} > \vdash 2 \text{ shift } - > \vdash \text{id } 6 \text{ reduce } - > \vdash T 5$

Should we reduce $E \rightarrow T$?

Depends: If input is \vdash id \dashv then YES, otherwise, no!

Add a lookahead to fix the conflict

For each $A \to \alpha$, attach Follow(A)

 $Follow(E) = \{\exists\}$

 $Follow(A) = \{+, \dashv\}$

Interpretation:

A reduce action

 $A \to \alpha \cdot X (X = follow(A))$

only applies if the next char is in X.

So $E \to T$ · applies when the next char is \dashv

 $E \to T \cdot + E$ applies when next char is +

Conflict resolved!

Result is called an SLR(1) parser. = Simple LR with 1 char lookahead

SLR(1) resolves many, but not all conflicts

LR(1) - more powerful than SLR(1)

- PRoduces many more states

Building a Parse Tree

Top-Down

$$\dashv S \qquad \qquad S \rightarrow A y B$$

 \dashv S \qquad S \rightarrow A y B \dashv B y A \qquad keep S make the new nodes its children

Bottom-up

$$\dashv ab \mid \qquad \qquad \text{Reduce A} \rightarrow a \ b$$

∃A Use A as parent, make a b as children