

UNIVERSITY OF SCIENCE Informatics Center

Project 1 Customer Segmentation

HO NGUYEN THIEN BAO

(04/2025)

NGUYEN ANH KHOA

Table of Contents.

- I. Dataset overview
- II. EDA
- III. Models
 - i. Manual segmentation
 - ii. K-Means with Scikit-learn
 - iii. GMM
 - iv. K-Means PySpark

IV. Conclusion

OVERVIEW

Dataset overview.

Member_number	Date	productId	items
1808	21-07-2015	1	3
2552	5/1/2015	2	1
2300	19-09-2015	3	3
1187	12/12/2015	4	3
3037	1/2/2015	2	1
4941	14-02-2015	5	1
4501	8/5/2015	4	3
3803	23-12-2015	6	2
2762	20-03-2015	2	3
4119	12/2/2015	1	3
1340	24-02-2015	7	3

productId	productName	price	Category
1	tropical fruit	7.8	Fresh Food
2	whole milk	1.8	Dairy
3	pip fruit	3	Fresh Food
4	other vegetables	0.8	Fresh Food
5	rolls/buns	1.2	Bakery & Sweets
6	pot plants	3.5	Household & Hygiene
7	citrus fruit	1.5	Fresh Food
8	beef	19.5	Fresh Food
9	frankfurter	5.5	Fresh Food
10	chicken	7.2	Fresh Food
11	butter	3.2	Dairy

Transaction.csv

4 cols 38.765 rows

Products_with_Categories.csv

4 cols 167 rows

Data preparation.

- Merging 2 files to 1 Dataframe '**df**'

```
df = transactions.merge(products, on='productId', how='left')
```

- Compute 'total_sales' column

```
df['total_sales'] = df['items'] * df['price']
```

- Checking **Null** values
- Checking **NaN** values df.isna().any()
- Check **negative** values
- df.where(df['price']<0).any()

 df.where(df['items']<=0).any()</pre>

df.isnull().sum()

- Change 'Date' to **datetime**
- string_to_date = lambda x : datetime.strptime(x, "%d-%m-%Y").date()
 transactions['Date'] = transactions['Date'].apply(string_to_date)
 transactions['Date'] = transactions['Date'].astype('datetime64[ns]')
- Create 'df_RFM' with 3 cols 'Recency', 'Frequency',
 'Monetary' group by 'Member_number'

	Recency	Frequency	Monetary
Member_number			
1000	35	13	53.80
1001	242	12	100.00
1002	122	8	70.30
1003	323	8	60.65
1004	28	21	204.96

Bussiness Overview

167

SỐ LƯỢNG SP ĐÃ BÁN

77380

TỔNG SỐ ĐƠN HÀNG

38765

DOANH THU

332150

→ Revenue and number of orders are proportional to each other

→ There are SIMILARITIES between categories when comparing the number of orders and revenue

Customer Analysis.

TổNG SỐ KH
38765

Scaling Data

All 3 columns Recency, Frequency and Monetary are **right skew** and not normal distribution --> Using **Log transformation** to reduce skewness

Scaling Data

All 3 columns Recency, Frequency and Monetary have many **upper outliers**--> Using **Robust Scaler** to reduce the impact of outliers

MODELS

Manual Segmentation.

Compute R, F and M score

```
r_labels = range(4, 0, -1)
f_labels = range(1, 5)
m_labels = range(1, 5)

r_groups = pd.qcut(df_RFM['Recency'].rank(method='first'), q=4, labels=r_labels)

f_groups = pd.qcut(df_RFM['Frequency'].rank(method='first'), q=4, labels=f_labels)

m_groups = pd.qcut(df_RFM['Monetary'].rank(method='first'), q=4, labels=m_labels)
```

- Assign into df_RFM and concat to create '**RFM_segment**'

	Recency	Frequency	Monetary	R	F	M	RFM_Segment
Member_number							
1000	35	13	53.80	4	3	2	432
1001	242	12	100.00	2	3	3	233
1002	122	8	70.30	3	2	2	322
1003	323	8	60.65	1	2	2	122
1004	28	21	204.96	4	4	4	444

Customer Segments - RFM Analysis Loyal Customers 177 days 12 orders VIP Customers 77 \$ 369 customers (9.47%) 60 days 15 orders 139 \$ 1071 customers (27.48%) **Churned Customers** 460 days 4 orders 23 \$ 453 customers (11.62%) New Customers **Regular Customers** 25 days 160 days 4 orders 9 orders 77 \$ At Risk Customers 1352 customers (34.68%) 90 customers (2.31%) 313 days 7 orders 67 \$ 563 customers (14.44%)

Customer Segments - RFM Analysis

Kmeans with Scikit-learn

 \rightarrow k = 5 is best for both methods

Kmeans with Scikit-learn

Cluster	Count	Percent
Cluster 0	563	14.44
Cluster 1	993	25.47
Cluster 2	1188	30.48
Cluster 3	397	10.18
Cluster 4	757	19.42

GMM

GMM

Group	Count	Percent
0	948	24.32
1	1325	33.99
2	237	6.08
3	888	22.78
4	500	12.83

Kmeans pySpark

Kmeans pySpark

CONCLUSION

Conclusion

	Manual	K-Means Scikit	K-Means Pyspark	GMM
k	6	5	4	5

→ Choosing k = 5 for the final customer segmentation

Conclusion

Group	Cluster	Number	% Revenue	Note
VIP	4	757	19.42%	Highest value customer group, frequent shoppers and big spenders. Need special offers and personalized care.
Engaged	2	1188	30.48%	Customers with stable interactions, frequent shopping. Can be retained with membership programs and promotions.
Potential	1	993	25.47%	Potential customer group, can be developed into loyal customers with appropriate incentive strategies.
At risk	3	397	10.18%	Customers are decreasing in interaction, at risk of leaving. Need reactivation strategies such as reminder emails, special offers.
Churned	0	563	14.44%	Customers who have almost left, difficult to attract back. Need to consider a strong discount campaign or remove from the marketing list.

Project Learnings.

- 1. Clear task delegation helps the team save time and optimize work.
- 2. Understanding customer insights → Building an appropriate model.
- 3. EDA determines the quality of clustering
 - → Selecting the right variables is crucial.
- 4. The RFM method is very useful for customer segmentation
 - → Developing strategies tailored to each group.

Division of work

	Thiên Bảo	Anh Khoa
Data preparation		×
Several information		X
Manual Segmentation		X
K-Means with Scikit-learn		×
GMM	X	
K-Means PySpark	X	
Conclusion	X	×
PowerPoint	X	
Steamlit	X	×
Presentation	×	×

About our team

Hồ Nguyễn Thiên Bảo

THE

Nguyễn Anh Khoa

TechnicianBiotechnology - Microbiology

Senior studentData Science

Learnings from DL07

- Handling unexpected situations during project execution, such as working with big data and unmet hardware requirements.
- Understanding necessary concepts like RFM for Customer Segmentation and Content-based and Collaborative Filtering for Recommendation Systems.
- Working with Streamlit enabling the rapid and simple creation of user interfaces.

Learnings from teamwork

- Effective communication is crucial for efficient teamwork.
- Knowing how to manage personal time and take responsibility for assigned tasks.
- Clearly defining the collaborative work of each individual within the team.

UNIVERSITY OF SCIENCE Informatics Center

THANKS FOR YOUR KIND ATTENTION!