- 1. Give decision trees to represent the following Boolean expressions
 - a. $A \wedge \neg B$
 - b. $A \vee [\neg B \wedge C]$
 - c. $A \otimes B$
 - d. $[A \lor B] \land [\neg C \land D]$
- 2. Consider the following set of training examples

Instance	Classification	A1	A2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

- a) What is the entropy of this collection of training examples with respect to the target function classification?
- b) What is the information gain of A2 relative to these training examples?
- 3. Suppose we generate a training set from a decision tree and then apply decision-tree learning to that training set. Is it the case that the learning algorithm will eventually return the correct tree as the training-set size goes to infinity? Why or why not?
- 4. Suppose that an attribute splits the set of examples E into subsets E_k and that each subset has p_k positive examples and n_k negative examples. Show that the attribute has strictly positive information gain unless the ratio $p_k/(p_k + n_k)$ is the same for all k.
- 5. A decision graph is a generalization of a decision tree that allows nodes (i.e., attributes used for splits) to have multiple parents, rather than just a single parent. The resulting graph must still be acyclic. Now, consider the XOR function of three binary input attributes, which produces the value 1 if and only if an odd number of the three input attributes has value 1.
 - a. Draw a minimal-sized *decision tree* for the three-input XOR function.
 - b. Draw a minimal-sized *decision graph* for the three-input XOR function.