Exam - Computer Architecture Unit I [08/02/2023] (A)

Surname:	Name:	
Student ID Number (Matricola): _		

DSA Students should solve only the first 4 exercises (grade will be scaled accordingly)

Exercise 1 (8 points)

Design a sequential circuit with two inputs x1,x0 that encode the characters A, L, F as follows:

x1, x0	character
00	Α
01	L
1-	F

The circuit has 2 outputs z1 and z0. The state machine outputs z1=1 when it receives on the input the sequence ALA, and outputs z0=1 when it receives on the input the sequence ALFA. Overlaps are allowed. Draw the circuit.

State encoding:

R	00
Α	01
AL	10
ALF	11

Next state and output table:

CS	S ₁	S ₀	X ₁	X 0	NS	S ₁ '	S ₀ '	z1	z0
R	0	0	0	0	Α	0	1	0	0
R	0	0	0	1	R	0	0	0	0
R	0	0	1	-	R	0	0	0	0
Α	0	1	0	0	Α	0	1	0	0
Α	0	1	0	1	AL	1	0	0	0

Α	0	1	1	=	R	0	0	0	0
AL	1	0	0	0	Α	0	1	1	0
AL	1	0	0	1	R	0	0	0	0
AL	1	0	1	-	ALF	1	1	0	0
ALF	1	1	0	0	Α	0	1	0	1
ALF	1	1	0	1	R	0	0	0	0
ALF	1	1	1	-	R	0	0	0	0

Derive next state and output equations, and then draw the circuit (with gates, ROM, PLA, or whatever you prefer)

Exercise 2 (6 points) A combinational circuit has a 4 bit input $A=a_3a_2a_1a_0$ representing a two's complement number, and outputs $Z=z_1z_0$ as an unsigned binary number, such that:

Z=0 if 3≤A≤7

Z=1 if -3≤A<3

Z=2 if -7≤A<-3

Z=3 if A=-8

Write down:

- The corresponding truth table
- The minimal POS form for z₁
- The all-NAND and all-NOR form for z_1 (NOT gates are allowed, i.e., you don't need to translate NOT with NAND/NOR)
- z₁ using only three 2:1 multiplexers

Solution:

Truth Table:

a ₃	a ₂	a ₁	a ₀	z1	z0
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	0
1	0	1	1	1	0
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	1

Minimal POS form for z₁:

z1=(~a2+~a0)*(~a2+~a1)*(a3)

all-NAND form for z₁:

 $z1 = {}^{\sim}({}^{\sim}(a2*a0)*{}^{\sim}(a2*a1)*(a3)))$

all-NOR form for z₁:

z1 = ((a2+a0)+(a2+a1)+(a3))

z1 using MUX:

Exercise 3 (5 points)

Analyze the state machine shown in the figure. Write down next state and output tables and draw the state transition diagram.

Solution:

It is a Moore FSM (output does not depend on the input).

Outputs table + state encoding

y0	у1	Z	Stato
0	0	0	S0
0	1	1	S1
1	0	0	S2
1	1	0	S3

Next state table

y0	y1	CS	x	y0'	y1'	NS
0	0	S0	0	0	0	S0
0	0	S0	1	1	1	S3
0	1	S1	0	1	0	S2
0	1	S1	1	1	1	S3
1	0	S2	0	0	1	S1
1	0	S2	1	1	0	S2
1	1	S3	0	1	1	S3
1	1	S3	1	1	0	S2

Exercise 4 (3 points)

Draw the state transition diagram described by the following SystemVerilog code:

```
module fsm2(input logic clk, reset,
            input logic a, b,
            output logic y);
  logic [1:0] state, nextstate;
  parameter S0 = 2'b00;
  parameter S1 = 2'b01;
  parameter S2 = 2'b10;
  parameter S3 = 2'b11;
  always ff @(posedge clk, posedge reset)
    if (reset) state <= S0;
    else state <= nextstate;</pre>
  always_comb
    case (state)
       S0: if (a ^ b) nextstate = S1;
           else nextstate = SO;
       S1: if (a & b) nextstate = S2;
           else nextstate = SO;
       S2: if (a \mid b) nextstate = S3;
           else nextstate = SO;
       S3: if (a \mid b) nextstate = S3;
           else nextstate = SO;
  assign y = (state== S1) | (state== S2);
endmodule
```

Solution:

Exercise 5 (4 points)

Given X = -1614 and Y = 675 represented in base 10:

- Convert them to two's complement numbers using the minimum number of bits necessary to represent both values
- Compute X+Y and X-Y
- Convert the results to base 10 number and check their correctness
- Convert X and Y to IEEE 754 half-precision representation

Solution:

```
Base 2 conversion:
```

```
1614 = 011001001110 => -1614 = 100110110010
675 = 001010100011
```

Sum, subtraction, and base 10 conversion:

011100001111 =**Overflow!** -1614 - 675 = -2289 (11 bit are not enough, they can only represent up to -2048)

Half-precision conversion

```
1614 = 011001001110.0 = 1.1001001110 * 2^{10} \\ X = -1614: \\ Sign = 1 \\ Exponent = 10_{10} \\ Exponent + bias = 10_{10} + 15_{10} = 25_{10} = 11001_2 \\ Fraction = 1001001110_2 \\ IEEE: 1 11001 1001001110 \\ Y = 675 = 001010100011 = 1.010100011 * 2^9 \\ Sign = 0 \\ Exponent = 9 \\ Exponent + bias = 9 + 15 = 24 = 11000 \\ Fraction = 010100011 \\ IEEE = 0 11000 0101000110
```

Exercise 6 (4 points)

Given the expression $f = (\overline{a(a + \overline{bcd})} + \overline{e}) \oplus (e + cd)$ simplify it and bring to minimal POS form.

$$f = \left(\overline{a(a + \overline{bcd})} + \overline{e}\right) \oplus (e + cd)$$

$$= (\overline{a + a\overline{bcd}}) + \overline{e}) \oplus (e + cd)$$

$$= (\overline{a} + \overline{e}) \oplus (e + cd)$$

$$= (\overline{a} + \overline{e}) \oplus (e + cd)$$

$$= \overline{(\overline{a} + \overline{e})}(e + cd) + (\overline{a} + \overline{e})\overline{(e + cd)} =$$

$$= ae(e + cd) + (\overline{a} + \overline{e})\overline{e} \cdot \overline{cd} = ae + \overline{e} \cdot (\overline{c} + \overline{d}) = ae + \overline{c}\overline{e} + \overline{d}\overline{e} =$$

$$(a + \overline{c} + \overline{d})(a + \overline{c} + \overline{e})(a + \overline{d} + \overline{e})(a + \overline{e})(e + \overline{c} + \overline{d}) = (a + \overline{e})(a + \overline{c} + \overline{d})(\overline{c} + \overline{d} + e) =$$

$$(a + \overline{e})(\overline{c} + \overline{d} + e)$$