```
Aufgabe:
Berechnen Sie die inverse Matrix A-1 für
    A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{3 \times 3}
Lsg.
                                                            1
                                                                     0
                                                                               0 0 1
                                                                                            (2 \rightarrow (2) + (-2) \cdot (1)
(3 \rightarrow (3) + (-1) \cdot (1)
                                                           0
                                                                     1
                                           3
-2
-3
                                                                              0 \ 0 \ 1 \ 1
                                                           1
                                                                     0
                                                                                            ② → (-1)· ②
③ → (-1)· ③
                                                          -2
-1
                                                                     1
                                                                             0 0 -1
                                                            1
                                            3
2
3
                                                                     0
                                   1
                                                                    -1
                                                                                            3→3+(-1)·2
                                                                             0 \
0 -1 ,
                                                                                            3
2
                                                                     0
                                   1
                                                                    -1
                                                                            3 \
2
-1
                                                                   -3
-3
1
                                                                                            (1)→(1)+(-2).(2)
                                   1
                                                                  3 -1
-3 2
1 -1
Probe: A \cdot A^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -4 & 3 & -1 \\ 4 & -3 & 2 \\ -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}
```

A	ufga	abe	2:																										
В	ere	ch	neu	Sie	die	e iv	vei	-se	N	latr	i×	A ⁻¹	fü	ir															
			/	1		0		0		2	\neg																		
	A	=		2		1		0		0		IR'	4×4																
				3		2		1		0																			
			_\	4		3		2		1	_/																		
L	sg.:																												
				/	1		0		0		2		1	0		0		0		\	٦٠	(-2)	٦	- (-3) –	- (-4)			
(A	١Ęږ)	=		2		1		0		כ		0	1		0		0			لے	+							
				+	3		2		1		0 1		0	0		1		0					لے	+] +			
					4		3		۷		(U		- 1	_/	7						7 "			
					1		0		0		2		1	0		0		0	1	\								1	
			~>		0		1		0		4		-2	1		0		0]	(-Z)	7	(-3)				
					0		2		1		7		-3 -4	0		1		0			<i>_</i> _	Т	ے						
																		•											
					1		0		0		2		1	0		0		0	1	\setminus									
			~>		0		1		0		4 2		-2 1	1 -2		0		0			٦.	(-2)						_	
					0		0		2		5		2	-3	_	0		1			لے								
					0		0		0		2		-2	0		0		0	1	\setminus			_			+			
			~>		0		1		0		4 2		1	-2		0		0			راء ·	+		+					
					0		0		0		1		0	1		-2		1			J.	(-2)	_	.4	⅃.	(-2)			
							_							-		ſ.		1											
			~>		0		0		0		0		-2	-2 5		٠ 8		-2 4											
			-		0		0		1		0		1	-4		5		-2											
					0		0		0		1		0	1		-2		1											
							=	E4			_			=	A	1													
			ı a	4-1				1		0		0	2	_\	_/	7	1		-2		4		-2						
Tr	obe	:	A	· A -1	=			2		7		0	0		$\cdot \mid$		-2 1		5 -4		- 8 S		4 -2					+	
								4		3		7	1		\perp		0		1		> -2		1						
																					-								
					=			1		0		0 0	0		-	E4		/											
					_			0		0		1	0		-	- 4		V											
								0		0		0	1																

Gegeben seien $t \in \mathbb{R}$ und

$$A := \begin{pmatrix} 1 & 1 & 0 & 1 \\ t & 0 & 1 & 1 \\ t & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

- (a) Man berechne die Determinante von *A* und bestimme die reellen Zahlen *t*, für die *A* invertierbar ist.
- (b) Man berechne für t = 0 die inverse Matrix von A.

Lösung:

Ad (a):

Mit elementaren Zeilen-/Spaltenumformungen, die den Wert der Determinante unverändert lassen, berechnet man

$$\det A = \det \begin{pmatrix} 1 & 1 & 0 & 1 \\ t & 0 & 1 & 1 \\ t & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} H_{s-III_{s}} \det \begin{pmatrix} 1 & 1 & 0 & 1 \\ t & -1 & 1 & 1 \\ t & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\stackrel{\text{Entwickl.}}{\underset{\text{nach 4.Zeile}}{=}} (-1)^{4+3} \cdot 1 \cdot \det \begin{pmatrix} 1 & 1 & 1 \\ t & -1 & 1 \\ t & 1 & 0 \end{pmatrix}$$

$$\stackrel{I_{s-t\cdot II_{s}}}{\underset{\text{nach 3.Zeile}}{=}} -\det \begin{pmatrix} 1 - t & 1 & 1 \\ 2t & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\stackrel{\text{Entwickl.}}{\underset{\text{nach 3.Zeile}}{=}} -(-1)^{3+2} \cdot 1 \cdot \det \begin{pmatrix} 1 - t & 1 \\ 2t & 1 \end{pmatrix}$$

$$= 1 - t - 2t$$

$$= 1 - 3t$$

Nach Vorlesung (5.6) (c) ist A invertierbar genau dann, wenn det $A \neq 0$. Hier also

A invertierbar
$$\iff$$
 det $A \neq 0 \iff$ $1 - 3t \neq 0 \iff$ $t \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$

Ad (b):

Wir berechnen für t=0 die wegen Teil (a) existente Inverse der Matrix A nach dem in der Vorlesung vorgestellten Verfahren über die erweiterte Matrix.

$$(A \mid E_4) = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{I-III} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{I-II} \xrightarrow{\text{Zeilen vertauschen}} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1 & -2 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & -1 \end{pmatrix} = (E_4 \mid A^{-1})$$

Also ist die inverse Matrix zu A gegeben durch

$$A^{-1} = \begin{pmatrix} 1 & -1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

Verifikation(!):

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} \stackrel{!}{=} E_4$$

Gegeben seien $t \in \mathbb{R}$ und

$$A := \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & t & 1 \\ 1 & t & 0 & 3 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$$

- (a) Man berechne die Determinante von A und bestimme die reellen Zahlen t, für die A invertierbar ist.
- (b) Man berechne für t = 1 die inverse Matrix von A.

Lösung:

Ad (a):

$$\det\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ 0 & 0 & t & 1 \\ 1 & t & 0 & 3 \end{pmatrix} \xrightarrow{\text{Laplace}} (-1)^{3+3} \cdot t \cdot \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & t & 3 \end{pmatrix}$$

$$= t \cdot \det\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & t & 3 \end{pmatrix}$$

$$= t \cdot (-1)^{2+3} \cdot 1 \cdot \det\begin{pmatrix} 1 & 2 \\ 1 & t \end{pmatrix}$$

$$= -t \cdot (1 \cdot t - 2 \cdot 1)$$

$$= -t \cdot (t - 2)$$

Damit gilt:

A invertierbar
$$\iff$$
 det $(A) \neq 0 \iff -t \cdot (t-2) \neq 0 \iff t \in \mathbb{R} \setminus \{0,2\}$

Ad (b):

Gemäß Vorlesung führen wir die Matrix $(A \mid E_4)$ durch elementare Zeilenumformungen in $(E_4 \mid A^{-1})$ über:

$$\begin{pmatrix}
1 & 2 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 2 & 0 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 3 & 0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{II-I}$$

$$\begin{pmatrix}
0 & 1 & 0 & -2 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 3 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{III-II}$$

$$\begin{pmatrix}
0 & 1 & 0 & -2 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & 5 & -1 & 0 & 0 & 2
\end{pmatrix}$$

Es empfiehlt sich eine Verifikation: $A \cdot A^{-1} = E_4$!

Gegeben seien $t \in \mathbb{R}$ und

$$A := \begin{pmatrix} 1 & 0 & 0 & t \\ 1 & 0 & 1 & t \\ 1 & 0 & t & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}.$$

- (a) Man berechne die Determinante von A und bestimme die reellen Zahlen t, für die A invertierbar ist.
- (b) Man berechne für t = 0 die inverse Matrix von A.

Lösungen:

Ad (a):

Wir benutzen den Determinanten-Entwicklungssatz. Dazu suchen wir eine Zeile oder Spalte mit möglichst vielen Nulleinträgen - hier ist das die 2. Spalte. Damit:

$$\det(A) \stackrel{\text{Entw. nach}}{=} (-1)^{(2+4)} \cdot 1 \cdot \det\begin{pmatrix} 1 & 0 & t \\ 1 & 1 & t \\ 1 & t & 1 \end{pmatrix}$$

$$\stackrel{\text{wieder nach}}{=} (-1)^{(2+2)} \cdot 1 \cdot \det\begin{pmatrix} 1 & t \\ 1 & 1 \end{pmatrix} + (-1)^{(3+2)} \cdot t \cdot \det\begin{pmatrix} 1 & t \\ 1 & t \end{pmatrix}$$

$$= (1 \cdot 1 - t \cdot 1) - t \cdot (1 \cdot t - t \cdot 1)$$

$$= 1 - t$$

A invertierbar
$$\iff$$
 det $(A) = 1 - t \neq 0 \iff t \in \mathbb{R} \setminus \{1\}$

Ad (b):

Wegen Teil (a) ist die Matrix A für t = 0 invertierbar und wir erhalten für die erweiterte Matrix:

Damit ist die gesuchte Inverse zu A gegeben durch

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

Verfikation:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Gegeben seien $s, t \in \mathbb{R}$ und

$$A := \begin{pmatrix} 1 & 0 & s \\ 0 & t & 0 \\ s & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Man bestimme die reellen Zahlen s und t, für die A invertierbar ist, und berechne für diese die inverse Matrix von A.

Lösung:

Um doppelte Rechnung zu vermeiden führen wir die folgenden elementaren Umformungen an A gleich an der erweiterten Matrix $(A|E_3)$ aus, unabhängig davon, ob A invertierbar ist oder nicht (dabei bezeichne z.B. $II + a \cdot III$, daß zur 2. Zeile das a-fache der 3. addiert wird, und $II_s + a \cdot III_s$ das Analoge für Spalten).

$$(A|E_3) = \begin{pmatrix} 1 & 0 & s & 1 & 0 & 0 \\ 0 & t & 0 & 0 & 1 & 0 \\ s & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{III-s \cdot I} \begin{pmatrix} 1 & 0 & s & 1 & 0 & 0 \\ 0 & t & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 - s^2 & -s & 0 & 1 \end{pmatrix} =: C \qquad (\star)$$

Nun ist eine obere Dreiecksmatrix genau dann invertierbar, wenn alle Einträge auf der Hauptdiagonalen ungleich 0 sind Für unsere Matrix bedeutet dies:

A invertierbar
$$\iff t \neq 0 \land 1 - s^2 \neq 0 \iff \underline{t \neq 0} \land s \notin \{-1, 1\}$$

Seien also im Folgenden $t \neq 0 \land s \notin \{-1, 1\}$. Dann fahren wir in (\star) fort:

$$C \xrightarrow{\frac{1}{t} \cdot II} \begin{pmatrix} 1 & 0 & s & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{t} & 0 \\ 0 & 0 & 1 & -\frac{s}{1-s^2} & 0 & \frac{1}{1-s^2} \end{pmatrix}$$

$$\frac{I-s \cdot III}{0 \quad 1 \quad 0} = \frac{1}{1-s^2}$$

$$\begin{pmatrix}
1 \quad 0 \quad 0 \\
0 \quad 1 \quad 0 \\
0 \quad 0 \quad 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 + \frac{s^2}{1-s^2} & 0 & -\frac{s}{1-s^2} \\
0 \quad 1 \quad 0 & \frac{1}{t} & 0 \\
-\frac{s}{1-s^2} & 0 & \frac{1}{1-s^2}
\end{pmatrix}$$

$$\implies A^{-1} = \begin{pmatrix} \frac{1}{1 - s^2} & 0 & -\frac{s}{1 - s^2} \\ 0 & \frac{1}{t} & 0 \\ -\frac{s}{1 - s^2} & 0 & \frac{1}{1 - s^2} \end{pmatrix} = \frac{1}{t \cdot (1 - s^2)} \cdot \begin{pmatrix} t & 0 & -ts \\ 0 & 1 - s^2 & 0 \\ -ts & 0 & t \end{pmatrix}$$

Verifikation:

$$A^{-1} \cdot A = \frac{1}{t \cdot (1 - s^2)} \cdot \begin{pmatrix} t & 0 & -ts \\ 0 & 1 - s^2 & 0 \\ -ts & 0 & t \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & s \\ 0 & t & 0 \\ s & 0 & 1 \end{pmatrix} = \frac{1}{t \cdot (1 - s^2)} \cdot \begin{pmatrix} (t(1 - s^2) & 0 & ts - ts \\ o & t(1 - s^2) & 0 \\ -ts + ts & 0 & -st + t \end{pmatrix} = E_3$$

Gegeben sei $s \in \mathbb{R}$ und

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & s & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

- (a) Bestimmen Sie, für welche $s \in \mathbb{R}$ A invertierbar ist.
- (b) Berechnen Sie für s = 1 die inverse Matrix von A.

Lösung:

Ad (a)

Da elementare Zeilenumformungen den Rang einer Matrix nicht ändern und die Invertierbarkeit einer $n \times n$ -Matrix A mit rang (A) = n äquivalent ist, bringen wir die Matrix A durch elementare Zeilenumformungen auf Zeilenstufenform (römische Ziffern bezeichnen Zeilen):

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & s & 1 \end{pmatrix} \xrightarrow{II-I} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & s-1 & -1 \end{pmatrix} \xrightarrow{III+(s-1)\cdot II} \begin{pmatrix} 1 & 1 & 2 \\ 0 & -1 & -1 \\ 0 & 0 & -s \end{pmatrix}$$

Es gilt:

 $rang(A) = 3 \iff in der Hauptdiagonalen stehen nur Werte ungleich <math>0 \iff s \neq 0$

Damit folgt:

A invertierbar
$$\iff s \neq 0$$

Alternativ können wir auch so argumentieren:

A invertierbar
$$\iff$$
 det $(A) \neq 0$

Dazu benutzen wir die obige Zeilenstufenform, da wir dort keine Zeilenvertauschungen oder Multiplikation einer Zeile mit einem Skalar verwendet haben, und erhalten:

$$det(A) = 1 \cdot (-1) \cdot (-s) = s \neq 0 \iff s \neq 0$$

Oder wir berechnen die Determinante über den Laplaceschen Entwicklungssatz, zum Beispiel Entwicklung nach der zweiten Zeile:

$$\det(A) = 1 \cdot (-1)^3 \det\begin{pmatrix} 1 & 2 \\ s & 1 \end{pmatrix} + 1 \cdot (-1)^5 \det\begin{pmatrix} 1 & 1 \\ 1 & s \end{pmatrix} = -(1 - 2s) - (s - 1) = s$$

und argumentieren wie oben.

Ad(b)

Für s = 1 ergibt sich für die erweiterte Matrix:

Damit ist die inverse Matrix

$$A^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$$

Verifikation:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

```
Aufgabe:
```

Berechnen Sie die inverse Matrix A-1 für

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3\times3}$$

Lsg.

$$(AIE) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{1}} \bigcirc \bigcirc$$

(1) → (1) + (-1) · (3)

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{pmatrix}$$

Probe:
$$A \cdot A^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

```
Aufgabe:
```

Berechnen Sie die inverse Matrix A-1 für

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3\times3}$$

Lsg.

$$(AIE) = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{pmatrix}$$

$$E \qquad A^{-1}$$

Probe:
$$A \cdot A^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 0 & \frac{1}{2} & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(1⇔(3)

1→1+1.3

```
Aufgabe:
 Berechnen Sie die inverse Matrix A-1 für
    A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 4 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}
Lsg.

\begin{array}{c}
O \\
O \\
1
\end{array}

\begin{array}{c}
2 \to 2 + (-1) \cdot (1) \\
3 \to 3 + (-1) \cdot (1)
\end{array}

                                                0
                                                                1
                                                                           0
                                                 1
                                                                           1
                                                                0
                                                                                     0 0 1
                                                                          0
                                                                           1
                                      7
                                                 1
                                                                                                    3→3+(-2).2
                                                                                     0
1
2
2
                                                                                    0 )
                                      1
                                                                                                    2 \rightarrow 2 + (-\frac{1}{2}) \cdot 3
                                                              Probe: A \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
```

```
Aufgabe:
Berechnen Sie die inverse Matrix A-1 für
Lsg.
                                      1
                                            0
                                                  0
(AIE) =
                                                           ②→② + (-1)·①
③→③ + (-1)·①
                                      0
                                             1
                                            0
                                                           ② → (-1)· ②
③ → (-1)· ③
                            -1
                                     -1
                                            1
                                                  0 0 -1
                                      1
                                            0
                                           -1
                                      1
                      1
                            1
                                                           3→3+(-1)·2
                                                  0
0
-1
                                      1
                                            0
                                            -1
                      1
                            1
                                      1
                                                           3→(-1)·3
                                                           -1
-1
                      1
                            1
                                      1
                                                           1→1+(-1).2
                                      1
                                            1
                                                 -1
-1
1
                            0
                      1
                                      1
                                            0
                                           1
0
-1
                                      1
                                              \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} 
                                   1
                                         1 0
Probe: A.A-1 =
```

```
Aufgabe:
Berechnen Sie die inverse Matrix A-1 für
Lsg.
                                      1
                                            0
                                                  0
(AIE) =
                                                           ②→② + (-1)·①
③→③ + (-1)·①
                                      0
                                             1
                                            0
                                                           ② → (-1)· ②
③ → (-1)· ③
                            -1
                                     -1
                                            1
                                                  0 0 -1
                                      1
                                            0
                                           -1
                                      1
                      1
                            1
                                                           3→3+(-1)·2
                                                  0
0
-1
                                      1
                                            0
                                            -1
                      1
                            1
                                      1
                                                           3→(-1)·3
                                                           -1
-1
                      1
                            1
                                      1
                                                           1→1+(-1).2
                                      1
                                            1
                                                 -1
-1
1
                            0
                      1
                                      1
                                            0
                                           1
0
-1
                                      1
                                              \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} 
                                   1
                                         1 0
Probe: A.A-1 =
```