





# Projet tutoré - Oral A

Automatisation du positionnement d'une parabole de réception

Lise **Chauvin**Gilles **Devillers**Thomas **Grageon**Alexandre **Minot** 

2ème année DUT GEII

Groupe Robotic1

Coach: Vincent Grimaud

Référent professionnel : Christophe Tailliez

#### Sommaire

- Présentation du projet
- Structure envisagée
- Carte mentale
- Répartition des tâches
- Budget prévisionnel
- Travail réalisé

### Présentation du projet

La camionnette de la **Sécurité Civile** sur laquelle nous allons travailler est équipée d'une parabole **Tooway** qui permet d'accéder à **internet** par **satellite**.





Le positionnement de la parabole s'effectue manuellement en montant sur le toit de la camionnette et en écoutant les « bips » émis par celle-ci en fonction de la qualité de réception du signal satellite.

Notre travail est d'automatiser le positionnement de cette parabole afin d'obtenir facilement et rapidement le meilleur signal possible.



#### Carte mentale



## Répartition des tâches

| Tâches                                 | Lise<br><b>Chauvin</b> | Gilles<br><b>Devillers</b> | Thomas<br><b>Grageon</b> | Alexandre<br><b>Minot</b> |
|----------------------------------------|------------------------|----------------------------|--------------------------|---------------------------|
| Récupération de la qualité du signal   | X                      | X                          |                          |                           |
| Essais du GPS                          | X                      |                            |                          |                           |
| Mesures et dimensionnement du vérin    |                        |                            | X                        | X                         |
| Configuration du Raspberry Pi          |                        | X                          |                          |                           |
| Programmation du GPS                   | X                      |                            |                          |                           |
| Programmation de l'interface graphique |                        | X                          |                          |                           |
| Commande du rotor et du vérin          |                        |                            | X                        | X                         |
| Câblage                                |                        |                            | X                        | X                         |
| Programmation finale                   | X                      | X                          | X                        | X                         |

## Budget prévisionnel

| Désignation                                                 | Prix TTC   |  |
|-------------------------------------------------------------|------------|--|
| Raspberry Pi 3                                              | 35,00 €    |  |
| Alimentation Raspberry Pi                                   | 10,00 €    |  |
| Carte MicroSD Kingston 16 Go                                | 8,00 €     |  |
| ERC V4 USB                                                  | 110,00 €   |  |
| Écran tactile TFT 3,5"                                      | 37,00 €    |  |
| Rotor Yaesu G-1000DX & Contrôleur                           | 490,00 €   |  |
| Câble Ethernet RJ45                                         | 5,00 €     |  |
| Kit satellite Tooway (parabole, modem, support, activation) | 375,00 €   |  |
| Abonnement Tooway 25                                        | 120□€/mois |  |
| Vérin                                                       | 45,00 €    |  |
| L298N                                                       | 6,00□€     |  |
| Total                                                       | 1541 €     |  |

#### Travail réalisé

### 1. Récupération du signal

- Programme en Python 3
- Bibliothèque Requests pour les requêtes HTTP
- Puissance du signal reçu et bruit depuis une page web accessible depuis le routeur

```
import requests
from requests_toolbelt.utils import dump

data = []

def getData():
    global data

    r = requests.get("http://192.168.100.1/index.cgi?page=modemStatusData")
    data = r.text.split("##")

getData()
rxPower = data[14]
rxSNR = data[11]

print("Rx Power: " + rxPower + " dBm\tRx SNR: " + rxSNR + " dB")
```





#### Travail réalisé

2. GPS





#### 3. Choix du vérin

#### Vérin superjack III



Caractéristiques

oussée 12 Pouces

- Charge statique: 225 kg
- Charge dynamique: 135 kg
- 76 impulsions par pouces
- Alimenté en 36 volts

• Etre positionnable L298

Caractéristiques:

Tension de conduction: 5V à 35V

Fournis jusqu'à 2A



