Лабораторная работа №1

Дисциплина: основы информационной безопасности

Пронякова Ольга Максимовна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	18
Сп	писок литературы	19

Список иллюстраций

4.1	Создание новой виртувльной машины	8
4.2	Настраиваем виртувльную машину	9
4.3	Установка английского языка интерфейса ОС	10
4.4	Окно настройки установки: выбор программ	11
4.5	Окно настройки установки: сеть и имя узла	11
4.6	Установка пароля для root	12
4.7	Запуск образа диска дополнений гостевой ОС	12
4.8	Проверка имя хоста	13
4.9	Результат выполнения команды dmesg	13
4.10	Версия ядра Linux (Linux version). Частота процессора (Detected Mhz	
	processor). Модель процессора (CPU0)	14
4.11	Объем доступной оперативной памяти (Memory available)	15
4.12	Тип обнаруженного гипервизора (Hypervisor detected)	15
	Тип файловой системы корневого раздела	16
4.14	Тип файловой системы корневого раздела	16
4.15	Последовательность монтирования файловых систем	17

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Установить дистрибутив Rocky
- 2. Проанализировать последовательность загрузки системы
- 3. Получите следующую информацию:
 - 1) Версия ядра Linux (Linux version).
 - 2) Частота процессора (Detected Mhz processor).
 - 3) Модель процессора (СРИ0).
 - 4) Объем доступной оперативной памяти (Memory available).
 - 5) Тип обнаруженного гипервизора (Hypervisor detected).
 - 6) Тип файловой системы корневого раздела.
 - 7) Последовательность монтирования файловых систем.

3 Теоретическое введение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/)). Выполнение работы возможно как в дисплейном классе факультета физико-математических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими ха- рактеристиками: – Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 20 GB свободного места на жёстком диске; – ОС Linux Gentoo (http://www.gentoo.ru/); – VirtualBox верс. 6.1 или старше; – каталог с образами ОС для работающих в дисплейном классе: /afs/dk.sci.pfu.edu.ru/common/files/iso/.

4 Выполнение лабораторной работы

Создаем новую виртуальную машину. Для этого в VirtualBox выбераем Машина - > Создать. Указываем имя виртуальной машины (мой логин в дисплейном классе), тип операционной системы — Linux, RedHat (64-bit)(рис.4.1).

Рис. 4.1: Создание новой виртувльной машины

Указываем размер основной памяти виртуальной машины — 2048МБ. Задаем конфигурацию жёсткого диска — загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск. Задаем размер диска — 40 ГБ. Выбераем в VirtualBox для нашей виртуальной машины Настройки -> Носители Добавьте новый привод оптических дисков и выберите образ операционной системы(рис.4.2).

Рис. 4.2: Настраиваем виртувльную машину

Запускаем виртуальную машину и выбераем English в качестве языка интерфейса. Переходим к настройкам установки операционной системы(рис.4.3).

Рис. 4.3: Установка английского языка интерфейса ОС

В разделе выбора программ указываем в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools. Отключаем KDUMP. Место установки ОС оставляем без изменения(рис.4.4).

Рис. 4.4: Окно настройки установки: выбор программ

Включаем сетевое соединение и в качестве имени узла указываем user.localdomain, где вместо user указываем имя своего пользователя в соответствии с соглашением об именовании(рис.4.5).

Рис. 4.5: Окно настройки установки: сеть и имя узла

Установливаем пароль для root и пользователя с правами администрато-

ра(рис.4.6).

Root Password:	•••••	•
(Weak
Confirm:	•••••	•
Lock root acc	ount	
Allow root SS	iH login with password	

Рис. 4.6: Установка пароля для root

После завершения установки операционной системы корректно перезапускаем виртуальную машину и при запросе принимаем условия лицензии.

Входим в ОС под заданной мною при установке учётной записью. В меню Устройства виртуальной машины подключаем образ диска дополнений гостевой ОС, при необходимости вводим пароль пользователя root нашей виртуальной ОС. После загрузки дополнений нажимаем Return или Enter и корректно перезагружаем виртуальную машину(рис.4.7).

Рис. 4.7: Запуск образа диска дополнений гостевой ОС

проверяем, что мы задали имя пользователя или имя хоста, удовлетворяющее соглашению об именовании(рис.4.8).

```
ⅎ
                          ompronyakova@ompronyakova:~
[ompronyakova@ompronyakova ~]$ hostnamectl
Static hostname: ompronyakova.localdomain
       Icon name: computer-vm
         Chassis: vm 81F
     Machine ID: 6f2f1c15257c446abd9eaaa856cdbc78
         Boot ID: d51e378fb1ae448fa656ae4b8fb92812
 Virtualization: oracle
Operating System: Rocky Linux 9.3 (Blue Onyx)
    CPE OS Name: cpe:/o:rocky:rocky:9::baseos
         Kernel: Linux 5.14.0-362.18.1.el9_3.x86_64
    Architecture: x86-64
Hardware Vendor: innotek GmbH
 Hardware Model: VirtualBox
Firmware Version: VirtualBox
[ompronyakova@ompronyakova ~1$
```

Рис. 4.8: Проверка имя хоста

В окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg(puc.4.9).

```
ompronyakova@ompronyakova:~
 ք
                                                                   Q.
ut/input7
    18.355393] vboxguest: Successfully loaded version 7.0.4 r154605
    18.355473] vboxguest: misc device minor 123, IRQ 20, I/O port d040, MMIO at
00000000f0400000 (size 0x400000)
    18.355475] vboxguest: Successfully loaded version 7.0.4 r154605 (interface 0
x00010004)
    18.486470] RAPL PMU: API unit is 2^-32 Joules, 0 fixed counters, 10737418240
ms ovfl timer
    19.324386] snd_intel8x0 0000:00:05.0: allow list rate for 1028:0177 is 48000
    19.487782] XFS (sda1): Mounting V5 Filesystem
    19.586502] XFS (sda1): Ending clean mount
    23.679089] systemd-rc-local-generator[797]: /etc/rc.d/rc.local is not marked
 executable, skipping.
    25.959318] NET: Registered PF_QIPCRTR protocol family
    30.231595] e1000: enp0s3 NIC Link is Up 1000 Mbps Full Duplex, Flow Control:
 RX
    30.312093] IPv6: ADDRCONF(NETDEV_CHANGE): enp0s3: link becomes ready
    68.609777] block dm-0: the capability attribute has been deprecated.
   166.225063] rfkill: input handler disabled
   202.532046] rfkill: input handler enabled
   224.010970] rfkill: input handler disabled
   224.346390] ISO 9660 Extensions: Microsoft Joliet Level 3
   224.605002] ISO 9660 Extensions: RRIP_1991A
[ompronyakova@ompronyakova ~]$
```

Рис. 4.9: Результат выполнения команды dmesg

Получаем информацию о Версии ядра Linux (Linux version). Частота процессора (Detected Mhz processor). Модель процессора (CPU0)(рис.4.10).

```
∄
                             ompronyakova@ompronyakova:~
                                                                          Q
                                                                                Ħ
                                                                                       ×
ompronyakova@ompronyakova ~]$ dmesg |grep -i "Linux version"
                                5.14.0-362.18.1.el9_3.x86_64 (mockbuild@iad1-prod-b
uild001.bld.equ.rockylinux.org) (gcc (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2), G
NU ld version 2.35.2-42.el9) #1 SMP PREEMPT_DYNAMIC Wed Jan 24 23:11:18 UTC 2024
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "Detected Mhz processor"
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "Hz"
     0.000013] tsc: Detected 2592.006 MHz processor
     0.380055] smpboot: CPU0: Intel(R) Core(TM) i3-10110U CPU @ 2.10GHz (family:
0x6, model: 0x8e, stepping: 0xc)
     5.860784] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:73:30:10
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "CPU0"
     0.380055] smpboot: CPU0: Intel(R) Core(TM) i3-10110U CPU @ 2.10GHz (family:
      model: 0x8e. stepping: 0xc)
```

Рис. 4.10: Версия ядра Linux (Linux version). Частота процессора (Detected Mhz processor). Модель процессора (CPU0)

Получаем информацию об Объеме доступной оперативной памяти (Memory available)(рис.4.11).

```
ⅎ
                            ompronyakova@ompronyakova:~
                                                                        Q
                                                                              =
                                                                                    ×
2047MB)
     0.005056] Early memory node ranges
     0.036967] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000
0fff1
     0.036970] PM: hibernation: Registered nosave memory: [mem 0x0009f000-0x0009
     0.036971] PM: hibernation: Registered nosave memory: [mem 0x000a0000-0x000e
fffff]
     0.036973] PM: hibernation: Registered nosave memory: [mem 0x000f0000-0x000f
ffff]
     0.098066] Memory: 260860K/2096696K available (16384K kernel code, 5596K rwd
ata, 11460K rodata, 3824K init, 18412K bss, 352524K reserved, 0K cma-reserved)
     0.290953] Freeing SMP alternatives memory: 36K
     0.407558] x86/mm: Memory block size: 128MB
0.805642] Non-volatile memory driver v1.3
     0.805642] Non-volatile memory driver v1.3
2.218088] Freeing initrd memory: 55140K
     2.718057] Freeing unused decrypted memory: 2036K
     2.719303] Freeing unused kernel image (initmem) memory: 3824K
     2.737579] Freeing unused kernel image (rodata/data gap) me
                                                                       v: 828K
     4.630232] vmwgfx 0000:00:02.0: [drm] Legacy memory limits: VRAM = 131072 kB
  FIFO = 2048 kB, surface = 393216 kB
     4.630257] vmwgfx 0000:00:02.0: [drm] Maximum display memory size is 131072
```

Рис. 4.11: Объем доступной оперативной памяти (Memory available)

Получаем информацию о типе обнаруженного гипервизора (Hypervisor detected)(рис.4.12).

```
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "Hypervision detected"
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 0.276527] SRBDS: Unknown: Dependent on hypervisor status
[ 4.629547] vmwgfx 0000:00:02.0: [drm] *ERROR* vmwgfx seems to be running on an unsupported hypervisor.
[ompronyakova@ompronyakova ~]$
```

Рис. 4.12: Тип обнаруженного гипервизора (Hypervisor detected)

Получаем информацию о типе файловой системы корневого раздела(рис.4.13), (рис.4.14).

```
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "fs"
    0.000005] kvm-clock: using sched offset of 7678250153928 cycles
    0.407530] devtmpfs: initialized
    0.612772] usbcore: registered new interface driver usbfs
    0.628236] VFS: Disk quotas dquot_6.6.0
    0.628251] VFS: Dquot-cache hash table entries: 512 (order 0, 4096 bytes)
    0.663137] Trying to unpack rootfs image as initramfs...
     7.984924] SGI XFS with ACLs, security attributes, scrub, quota, no debug en
abled
    7.994172] XFS (dm-0): Mounting V5 Filesystem
    8.946343] XFS (dm-0): Starting recovery (logdev: internal)
11.075970] XFS (dm-0): Ending recovery (logdev: internal)
   11.075970] XF
   12.453873] SELinux: policy capability genfs_seclabel_symlinks=1
   12.705615] systemd[1]: Relabelled /dev, /dev/shm, /run, /sys/fs/cgroup in 91
    14.830680] Adding 2134012k swap on /dev/mapper/rl_ompronyakova-swap. Priori
ty:-2 extents:1 across:2134012k
   14.890246] systemd[1]: Starting Load Kernel Module configfs...
   14.958360] systemd[1]: systemd-fsck-root.service: Deactivated successfully.
   19.487782] XFS (sdal): Mounting V5 Filesystem
                   (sdal): Ending clean mount
    19.586502] XF
```

Рис. 4.13: Тип файловой системы корневого раздела

```
[ompronyakova@ompronyakova ~]$ lsblk
NAME
                MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda
                  8:0 0 40G 0 disk
 -sda1
                  8:1
                        0
                            1G 0 part /boot
                            39G 0 part
 sda2
                  8:2
                        Θ
   -rl_ompronyakova-root
                253:0
                         Θ
                           37G 0 lvm /
   -rl_ompronyakova-swap
                             2G 0 lvm [SWAP]
                253:1
                         Θ
                 11:0
                         1 50.5M 0 rom /run/media/ompronyakova/VBox_GAs_7.0.4
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "filesystem"
    7.994172] XFS (dm-0): Mounting V5
   19.487782] XFS (sda1): Mounting V5 F
```

Рис. 4.14: Тип файловой системы корневого раздела

Получаем информацию о последовательности монтирования файловых систем(рис.4.15).

```
[ompronyakova@ompronyakova ~]$ fdisk -l
fdisk: cannot open /dev/sda: Permission denied
fdisk: cannot open /dev/mapper/rl_ompronyakova-root: Permission denied
fdisk: cannot open /dev/mapper/rl_ompronyakova-swap: Permission denied
[ompronyakova@ompronyakova ~]$ dmesg |grep -i "xfs"
[ 7.984924] SGI XFS with ACLs, security attributes, scrub, quota, no debug en
abled
[ 7.994172] XFS (dm-0): Mounting V5 Filesystem
[ 8.946343] XFS (dm-0): Starting recovery (logdev: internal)
[ 11.075970] XFS (dm-0): Ending recovery (logdev: internal)
[ 19.487782] XFS (sda1): Mounting V5 Filesystem
[ 19.586502] XFS (sda1): Ending clean mount
[ompronyakova@ompronyakova ~]$
```

Рис. 4.15: Последовательность монтирования файловых систем

5 Выводы

Я приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы

1. Установка и конфигурация операционной системы на виртуальную машину