

블록암호(3)

2022년 9월 28일 수요일

정보보호

충남대학교 정보보호연구실 허강준

과제?

type is not subscriptable

```
server ×

C:\Users\ \AppData\Local\Programs\Python\Python38\python.exe C:\Users\ \PycharmProjects\pythonProject1\Inf
Traceback (most recent call last):

File "C:\Users\ \PycharmProjects\pythonProject1\Information_Security\Week4\server.py\", line 11, in <module>

CLIENT_LIST: dict[AddressInfo, socket] = {}

TypeError: 'type' object is not subscriptable

Process finished with exit code 1
```

• Python 3.10 이상으로 업그레이드 or 타입 힌트 제거

과제?

- 종단간 (End-To-End Encryption; E2EE) 암호 통신기
 - 서버는 절대 메세지를 볼 수 없지 (사실 아님)

2주전…

an in the control of the control of

- · 24 7 1/2

 - * DE的人AES無型이 公관 없이 整算 암호화 가능 그렇에 왜 알고리즘에서는 屋록 크기 안큼안 암호화 하세?
 - / 岩等四기包科·李沙山· 急翔이氏는 外恩外。坐左射台外?
 - * 财务产外差利型 for respect 的 独思
 - · 丛类或备量料色引料好. 是每座生, 叫包

- 블록암호는 블록단위로 암호화
 - 블록 크기보다 큰 데이터를 암호화 하는 방법?

- 그냥 블록별로 *같은 키로* 암호화 한다음 합치기?
 - Electronic Code Book (ECB)

- 그냥 블록별로 *같은 키로* 암호화 한다음 합치기?
 - Electronic Code Book (ECB)

• 이러면 어떻게 하지?

• 이러면 어떻게 하지?

- One Time Pad: Revisited
 - OTP를 그대로 이용하긴 힘들지만 장점을 활용할 수는 없을까?

· One Fine Part 多爱学的基础外到是0分程名总定 * 科! 架 纂 左仁! 20140014 211220000 0000111X 11101A10 XXX1X1X1 1,000001 11111111111111110000 11001100 000011111 20000001 11121111 11120000 12001200 00001211 18440011 12148006 86004221 24162110 12212112 평문:

Cipher Block Chaining(CBC)

Cipher Block Chaining(CBC)

CounTeR (CTR)

암호화도 병렬화!!! 훨씬 더 빠르게!!!

CounTeR (CTR)

복호화도 병렬화!!! 훨씬 더더 빠르게!!!

패딩 (Padding)

- 평문이 항상 블록크기의 배수만큼일까?
- DES –64bit, AES –128bit;
 - 항상 블록 크기의 배수만큼 평문이 주어지지 않음
- PKCS#5, PKCS#7: 비어있는 갯수만큼 숫자로 채우기 (표준)
 - 없으면 블록 하나 더 만들어 채움

과제!

• S-DES-ECB / S-DES-CBC 구현하기

```
def sdes_encrypt_ecb(text: bitarray, key: bitarray):
    pass

def sdes_decrypt_ecb(ciphertext: bitarray, key: bitarray):
    pass

def sdes_encrypt_cbc(text: bitarray, key: bitarray, iv:bitarray):
    pass

def sdes_decrypt_cbc(ciphertext: bitarray, key: bitarray, iv:bitarray):
    pass
```

운용모드별로 암호화/복호화 구현 ECB, CBC

```
plaintext = input("[*] Input Plaintext in Binary: ")
key = input("[*] Input Key in Binary (10bits): ")

# Plaintext must be multiple of 8 and Key must be 10 bits.
if len(plaintext) % 8 != 0 or len(key) != 10:
    raise ArgumentError("Input Length Error!!!")
```

평문 입력 제한 변경 → 8비트 (블록 크기)의 배수

과제!

• S-DES-ECB / S-DES-CBC 구현하기

```
result_encrypt = sdes_encrypt_ecb(bits_plaintext, bits_key)
print(f"Encrypted (ECB): {result_encrypt}")
result_decrypt = sdes_decrypt_ecb(result_encrypt, bits_key)
print(f"Decrypted (ECB): {result_decrypt}, Expected: {bits_plaintext}")
if result_decrypt != bits_plaintext:
    print(f"S-DES-ECB FAILED...")
    print(f"S-DES-ECB SUCCESS!!!")
random_iv = bitarray(Random().randrange(0, 255))
print(f"IV will be random...{random_iv}")
result_encrypt = sdes_encrypt_cbc(bits_plaintext, bits_key, random_iv)
print(f"Encrypted (CBC): {result_encrypt}")
result_decrypt = sdes_decrypt_cbc(result_encrypt, bits_key, random_iv)
print(f"Decrypted (CBC): {result_decrypt}, Expected: {bits_plaintext}")
if result_decrypt != bits_plaintext:
    print(f"S-DES-CBC FAILED...")
    print(f"S-DES-CBC SUCCESS!!!")
```

Ⅳ 자동 생성 → CBC 모드에서 사용

이후 일정

주차	실습 주제	과제	날짜
1	오리엔테이션 & 썰풀기	과제를 위한 GitHub 설정	9/7
2	카이사르&비즈네르 암호	ENIGMA	9/14
3	XOR과 블록암호	Simplified DES 구현하기	9/21
4	여러가지 블록암호	블록암호를 이용하여 암호통신기 완성하기	9/28
5	블록암호 운용모드	S-DES-CBC, S-DES-ECB 구현하기	10/5
6	RSA	RSA 구현하기, 저강도 RSA 크랙하기	10/12
7	해시	암호통신기에 무결성 검증 기능 추가하기	10/19
8	중 간 고 사 (10/24)		공강
9	메세지 인증코드(MAC)	HMAC 구현하기	11/2
10	디지털 서명	사설인증서 생성 및 프로그램 코드 서명	11/9
11	하이브리드 암호	하이브리드 기반 암호 통신기	11/16
12	난수	시드값 추측을 이용한 암호문 크랙	11/23
13	블록체인과 머클 트리	머클트리 구현하기	11/30
14	TLS와 PGP(GPG)	GPG를 이용하여 암호 메일 보내기	12/7
15	기 말 고 사 (12/12)		종강

충남대학교 정보보호연구실

질문?

- 없으면 자리에서 일어나셔도 좋습니다:)
- 대학원 입학 문의는 언제나 환영
 - 블록체인, Web 3, 해킹 관심있거나 유경험자 우대

입학문의

- 류재철 교수님 (jcryou [at] cnu.ac.kr)
- 허강준 조교 (knowledge [at] o.cnu.ac.kr)