MOwNiT - lab 1 Arytmetyka komputerowa

Gabriel Cyganek

Dane techniczne

Do napisania programu wykonującego obliczenia wykorzystałem język Python. Wykonywanie programu odbywało się na systemie Windows 10 x64 na komputerze z procesorem Intel® Core™ i5-7300HQ CPU @ 2.50GHz.

Polecenie

Do wykonania otrzymałem zadanie o następującej treści:

Moduł liczby zespolonej z = x + iy może być obliczany przy pomocy wzorów:

$$\bullet \quad |z| = \sqrt{(x^2 + y^2)}$$

$$\bullet \quad |z| = v \left[1 + \left(\frac{w}{v} \right)^2 \right]^{1/2}$$

$$\bullet \quad |z| = 2v \left[\frac{1}{4} + \left(\frac{w}{2v} \right)^2 \right]^{1/2}$$

gdzie $v = \max\{|x|, |y|\}$, $w = \min\{|x|, |y|\}$. Porównać wyniki dla dużych i małych liczb x i y. Dobrać dane tak, aby widoczne były różnice pomiędzy wynikami uzyskanymi różnymi wzorami.

Program wykonujący obliczenia

```
import math
import sys

def formula_1(x, y):
    return math.sqrt(x ** 2 + y ** 2)

def formula_2(v, w):
    return v * math.sqrt(1 + (w / v) ** 2)

def formula_3(v, w):
    return 2 * v * math.sqrt(1 / 4 + (w / (2 * v)) ** 2)

x = float(sys.argv[1])
y = float(sys.argv[2])

v = max(abs(x), abs(y))
w = min(abs(x), abs(y))
print(formula_1(x, y))
print(formula_2(v, w))
print(formula_2(v, w))
print(formula_3(v, w))
```

Liczby zmiennoprzecinkowe w Pythonie

Liczby zmiennoprzecinkowe w Pythonie są reprezentowane przez typ danych *float* o zapisie 64-bitowym o podwójnej precyzji, według standardu IEEE 754. W tym wypadku maksymalna liczba zmiennoprzecinkowa w Pythonie wynosi $1.8*10^{308}$, gdzie jakiekolwiek większe wartości są traktowane jako nieskończoność (inf), a najmniejsza $5.0*10^{-324}$, gdzie jakiekolwiek mniejsze wartości są traktowane jako zero.

Przebieg eksperymentu

Po wykonaniu pierwszej serii obliczeń, gdzie podstawiałem różne wartości pod x oraz y, gdzie z=x+iy otrzymałem następujące wyniki:

x	у	$\sqrt{(x^2+y^2)}$	$v \left[1 + \left(\frac{w}{v}\right)^2\right]^{1/2}$	$2v \left[\frac{1}{4} + \left(\frac{w}{2v} \right)^2 \right]^{1/2}$	Wolfram Alpha
5	6	7.81024967590 6654	7.81024967590 6656	7.81024967590 6656	7.81024967590 665439
5	15	15.81138830084 1896	15.81138830084 1898	15.81138830084 1898	15.81138830084 189665
25	30	39.0512483795 3327	39.0512483795 3328	39.0512483795 3328	39.0512483795 3327197
55	101	115.0043477439 0054	115.0043477439 0052	115.0043477439 0052	115.0043477439 00534675
100	501	510.882569677 22043	510.882569677 2205	510.882569677 2205	510.882569677 220442161
501	403	642.96967269 07109	642.96967269 0711	642.96967269 0711	642.96967269 07109730
501	99	510.68777153 9519	510.68777153 951913	510.68777153 951913	510.68777153 9519046
5000001	99999999	100124921.0236 8923	100124921.0236 8921	100124921.0236 8921	100124921.0236 8921219
512341234	153453419	534828469.567 04944	534828469.567 0495	534828469.567 0495	534828469.567 0494287
0.00212123	0.0000053	0.002121236621148 1454	0.002121236621148 145	0.002121236621148 145	0.002121236621148 14527

Tabela 1. Wyniki obliczeń dla pierwszej serii danych

Na zielono zaznaczyłem wyniki, które są bliższe wynikom uzyskanym z Wolfram Alpha, który obliczał moduły korzystając ze wzoru $\sqrt{(x^2+y^2)}$. Należy brać pod uwagę, że Wolfram Alpha korzysta z o wiele większych zasobów, więc nie jest aż tak ograniczony dostępną pamięcią jak program napisany w Pythonie wykonany na systemie Windows 10 x64, dzięki czemu otrzymujemy zdecydowanie większą liczbę precyzyjnych cyfr w wynikach i nie ma granicy wartości z góry i z dołu jak zmienna typu *float* w Pythonie. Jak widać w *Tabeli 1.*, bardziej dokładny w zdecydowanej większości zbadanych przypadków był wzór $\sqrt{(x^2+y^2)}$.

Drugą serię obliczeń wykonałem dla bardzo małych liczb:

x	у	$\sqrt{(x^2+y^2)}$	$v\left[1+\left(\frac{w}{v}\right)^2\right]^{1/2}$	$2v \left[\frac{1}{4} + \left(\frac{w}{2v}\right)^2\right]^{1/2}$	Wolfram Alpha
2131e-145	2137e-150	2.13100000010 71507 e-142	2.13100000010 7151 e-142	2.13100000010 7151 e-142	2.13100000010 7150844671 e-142
25559e-133	88223e-133	9.18507496431 0309 e-129	9.18507496431 0307 e-129	9.18507496431 0307 e-129	9.18507496431 0307685361 e-142
1e-161	1e-161	1.405796067488 0928 e-161	1.414213562373 0951 e-161	1.414213562373 0951 e-161	1.414213562373 095048801 e-161
9e-161	9e-161	1.272 6143119844308 e-160	1.272 7922061357856 e-160	1.272 7922061357856 e-160	1.272 792206135785543921 e-160
1e-162	1e-162	0	1.414213562373095e-162	1.414213562373095e-162	1.414213562373095048801 e-162
1e-320	1e-320	0	1.414e-320	1.414e-320	1.414213562373095048872 e-162

Tabela 2. Wyniki obliczeń dla serii danych o małych wartościach

Możemy zauważyć, że tym razem w większości przypadków dokładniejsze wyniki otrzymujemy dla wzorów $v \left[1+\left(\frac{w}{v}\right)^2\right]^{1/2}$ oraz $2v \left[\frac{1}{4}+\left(\frac{w}{2v}\right)^2\right]^{1/2}$. Dla wzoru $\sqrt{(x^2+y^2)}$ po przekroczeniu pewnej wartości zarówno dla x jak i dla y nie otrzymamy już żadnego innego wyniku poza zerem, ma to związek z tym, że obie te zmienne podniesione do kwadratu pod pierwiastkiem otrzymują wartości mniejsze od wartości granicznej dla zmiennej typu float w Pythonie i są dalej traktowane jako zera. Dla dwóch pozostałych wzorów taka sytuacja nie zachodzi, gdyż operacje matematyczne są przeprowadzane w inny sposób, w innej kolejności i przeprowadzając je nie narusza się dolnej wartości granicznej float.

Trzecią serię obliczeń przeprowadziłem dla bardzo dużych liczb:

x	у	$\sqrt{(x^2+y^2)}$	$v \left[1 + \left(\frac{w}{v}\right)^2\right]^{1/2}$	$2v\left[\frac{1}{4} + \left(\frac{w}{2v}\right)^2\right]^{1/2}$	Wolfram Alpha
1.2391	1.23391	1.233972214023 071	1.233972214023 0708 e+149	1.233972214023 0708 e+149	1.233972214023 0711 e+149
e+147	e+149	e+149			
1e+153	1e+153	1.414213562373 095	1.414213562373 0952 e+153	1.414213562373 0952 e+153	1.414213562373 0950 4e+153
		e+153			
1e+154	1e+154	inf	1.414213562373 0953 e+154	1.414213562373 0953 e+154	1.4142135623730 9504 e+154
1e+307	1e+307	inf	1.41421356237 3095 e+307	1.41421356237 3095 e+307	1.41421356237 309504 e+307
1e+308	1e+308	inf	1.4142135623730951e+308	inf	1.41421356237309504e+308

Tabela 3. Wyniki obliczeń dla serii danych o dużychh wartościach

Dla bardzo dużych liczb zachodzi analogiczna sytuacja jak dla bardzo małych. Dla wzoru $\sqrt{(x^2+y^2)}$ w pewnym momencie dane wartości do obliczeń są zbyt duże i w wyniku przeprowadzanych operacji matematycznych osiągamy górną graniczną wartość dla zmiennej typu float, w wyniku czego dostajemy same nieskończoności. Dla dwóch pozostałych wzorów jesteśmy w stanie dalej uzyskiwać dosyć dokładne wyniki. Przy samej granicy górnej granicznej wartości zmiennej typu float zaczynamy dostawać wynik równy nieskończoności również dla wzoru $2v \left[\frac{1}{a} + \left(\frac{w}{2v}\right)^2\right]^{1/2}$.

Podsumowanie

Na podstawie uzyskanych obliczeń można wywnioskować, że w zależności od kolejności wykonywanych operacji matematycznych ich sposobu wykonywania możemy otrzymać różne wartości. Biorąc to pod uwagę, a także arytmetykę komputerową i ograniczenia reprezentacji liczb zmiennoprzecinkowych możemy napotkać na problemy w wykonywaniu tych samych obliczeń danym sposobem, podczas gdy innych dostępnych sposobów te problemy mogą nie dotyczyć, z czego można korzystać.