### 1 IMPORTING THE NECESSARY LIBRARIES

```
[31]: import numpy as np import matplotlib.pyplot as plt import pandas as pd
```

## 

| [32]: | data=pd.read_csv('CO2_Emissions.csv') |        |             |       |        |      |                                    |
|-------|---------------------------------------|--------|-------------|-------|--------|------|------------------------------------|
| [33]: | data                                  |        |             |       |        |      |                                    |
| [33]: |                                       | Engine | e Size(L)   | Cylin | ders   | Fuel | Consumption City (L/100 km) \      |
|       | 0                                     |        | 2.0         |       | 4      |      | 9.9                                |
|       | 1                                     |        | 2.4         |       | 4      |      | 11.2                               |
|       | 2                                     |        | 1.5         |       | 4      |      | 6.0                                |
|       | 3                                     |        | 3.5         |       | 6      |      | 12.7                               |
|       | 4                                     |        | 3.5         |       | 6      |      | 12.1                               |
|       |                                       |        | •••         | •••   |        |      |                                    |
|       | 7380                                  |        | 2.0         |       | 4      |      | 10.7                               |
|       | 7381                                  |        | 2.0         |       | 4      |      | 11.2                               |
|       | 7382                                  |        | 2.0         |       | 4      |      | 11.7                               |
|       | 7383                                  |        | 2.0         |       | 4      |      | 11.2                               |
|       | 7384                                  |        | 2.0         |       | 4      |      | 12.2                               |
|       |                                       | Fuel   | Consumption | Hwy   | (L/100 | km)  | Fuel Consumption Comb (L/100 km) \ |
|       | 0                                     |        |             |       |        | 6.7  | 8.5                                |
|       | 1                                     |        |             |       |        | 7.7  | 9.6                                |
|       | 2                                     |        |             |       |        | 5.8  | 5.9                                |
|       | 3                                     |        |             |       |        | 9.1  | 11.1                               |
|       | 4                                     |        |             |       |        | 8.7  | 10.6                               |
|       | •••                                   |        |             |       |        |      |                                    |
|       | 7380                                  |        |             |       |        | 7.7  |                                    |
|       | 7381                                  |        |             |       |        | 8.3  |                                    |
|       | 7382                                  |        |             |       |        | 8.6  | 10.3                               |

| 7383  |                           | 8.3     |                 | 9.9  |
|-------|---------------------------|---------|-----------------|------|
| 7384  |                           | 8.7     |                 | 10.7 |
|       | Fuel Consumption Comb (mp | og) CO2 | Emissions(g/km) |      |
| 0     |                           | 33      | 196             |      |
| 1     |                           | 29      | 221             |      |
| 2     |                           | 48      | 136             |      |
| 3     |                           | 25      | 255             |      |
| 4     |                           | 27      | 244             |      |
| •••   | <b></b>                   |         | •••             |      |
| 7380  |                           | 30      | 219             |      |
| 7381  |                           | 29      | 232             |      |
| 7382  |                           | 27      | 240             |      |
| 7383  |                           | 29      | 232             |      |
| 7384  |                           | 26      | 248             |      |
|       |                           |         |                 |      |
| [720F | 71                        |         |                 |      |

[7385 rows x 7 columns]

### 3 EXPLORATORY DATA ANALYSIS

```
[35]:
         engine_size cylinders fuel_cons_city fuel_cons_hwy fuel_cons_comb \
      0
                 2.0
                               4
                                             9.9
                                                             6.7
                                                                              8.5
      1
                 2.4
                               4
                                            11.2
                                                             7.7
                                                                             9.6
      2
                 1.5
                               4
                                             6.0
                                                             5.8
                                                                             5.9
      3
                 3.5
                               6
                                            12.7
                                                             9.1
                                                                             11.1
      4
                 3.5
                               6
                                                             8.7
                                            12.1
                                                                             10.6
```

fuel\_cons\_comb\_mpg co2
0 33 196
1 29 221
2 48 136
3 25 255
4 27 244

### [36]: print(data.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7385 entries, 0 to 7384
Data columns (total 7 columns):

| # | Column                        | Non-Null Count | Dtype   |
|---|-------------------------------|----------------|---------|
|   |                               |                |         |
| 0 | engine_size                   | 7385 non-null  | float64 |
| 1 | cylinders                     | 7385 non-null  | int64   |
| 2 | fuel_cons_city                | 7385 non-null  | float64 |
| 3 | fuel_cons_hwy                 | 7385 non-null  | float64 |
| 4 | fuel_cons_comb                | 7385 non-null  | float64 |
| 5 | <pre>fuel_cons_comb_mpg</pre> | 7385 non-null  | int64   |
| 6 | co2                           | 7385 non-null  | int64   |
|   |                               |                |         |

dtypes: float64(4), int64(3)

memory usage: 404.0 KB

None

#### [37]: data.describe()

| [37]: |       | engine_size | cylinders   | fuel_cons_city | fuel_cons_hwy |
|-------|-------|-------------|-------------|----------------|---------------|
|       | count | 7385.000000 | 7385.000000 | 7385.000000    | 7385.000000   |
|       | mean  | 3.160068    | 5.615030    | 12.556534      | 9.041706      |
|       | std   | 1.354170    | 1.828307    | 3.500274       | 2.224456      |
|       | min   | 0.900000    | 3.000000    | 4.200000       | 4.000000      |
|       | 25%   | 2.000000    | 4.000000    | 10.100000      | 7.500000      |
|       | 50%   | 3.000000    | 6.000000    | 12.100000      | 8.700000      |
|       | 75%   | 3.700000    | 6.000000    | 14.600000      | 10.200000     |
|       | max   | 8.400000    | 16.000000   | 30.600000      | 20.600000     |

\

|       | fuel_cons_comb | <pre>fuel_cons_comb_mpg</pre> | co2         |
|-------|----------------|-------------------------------|-------------|
| count | 7385.000000    | 7385.000000                   | 7385.000000 |
| mean  | 10.975071      | 27.481652                     | 250.584699  |
| std   | 2.892506       | 7.231879                      | 58.512679   |
| min   | 4.100000       | 11.000000                     | 96.000000   |
| 25%   | 8.900000       | 22.000000                     | 208.000000  |
| 50%   | 10.600000      | 27.000000                     | 246.000000  |
| 75%   | 12.600000      | 32.000000                     | 288.000000  |
| max   | 26.100000      | 69.000000                     | 522.000000  |

[38]: data.shape

[38]: (7385, 7)

[39]: data.isnull().sum()

```
[39]: engine_size 0
cylinders 0
fuel_cons_city 0
fuel_cons_hwy 0
fuel_cons_comb 0
fuel_cons_comb_mpg 0
co2 0
dtype: int64
```

```
[40]: import seaborn as sns
    corr_matrix = data.corr()
    plt.figure(figsize=(10, 8))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
    plt.title('Correlation Heatmap')
    plt.show()
```



```
[41]: # Dropping the redundant features (which are highly correlated with each other)
     data.drop(columns=['fuel_cons_city', 'fuel_cons_hwy', 'fuel_cons_comb_mpg'],
       →inplace=True)
[42]: data
[42]:
           engine_size cylinders fuel_cons_comb co2
     0
                   2.0
                                4
                                              8.5
                                                   196
     1
                   2.4
                                              9.6 221
                                4
     2
                   1.5
                                4
                                              5.9 136
                   3.5
     3
                                6
                                             11.1 255
     4
                   3.5
                                6
                                             10.6 244
     7380
                   2.0
                                4
                                              9.4 219
     7381
                   2.0
                                4
                                              9.9 232
     7382
                   2.0
                                4
                                             10.3 240
     7383
                   2.0
                                4
                                              9.9 232
     7384
                   2.0
                                4
                                             10.7 248
     [7385 rows x 4 columns]
[43]: x=data.iloc[:,:-1].values
     y=data.iloc[:,-1].values
         SCALING THE NECESSARY FEATURES
[44]: from sklearn.preprocessing import StandardScaler
     sc=StandardScaler()
     x=sc.fit transform(x)
[45]: x.shape
[45]: (7385, 3)
[46]: x
```

[46]: array([[-0.85672099, -0.88340757, -0.85574185],

[-0.5613172 , -0.88340757, -0.47542306], [-1.22597573, -0.88340757, -1.75467716],

[-0.85672099, -0.88340757, -0.23340202], [-0.85672099, -0.88340757, -0.37169976], [-0.85672099, -0.88340757, -0.09510428]])

# 5 SPLITTING THE DATASET INTO TRAINING SET AND TEST SET

# 6 Training the Multiple Linear Regression model on the Training set

```
[48]: from sklearn.linear_model import LinearRegression regressor=LinearRegression() regressor.fit(x_train,y_train)
```

[48]: LinearRegression()

### 7 Predicting the Test set results

```
[49]: y_pred=regressor.predict(x_test)

[50]: y_pred

[50]: array([243.31052887, 200.93236303, 256.83307024, ..., 228.66076015, 170.66557481, 220.75232578])
```

#### 8 EVALUATING THE MODEL NOW

```
[51]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score, useroot_mean_squared_error
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = root_mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

# Print the evaluation metrics
print(f"Mean Absolute Error: {mae:.2f}")
print(f"Mean Squared Error: {mse:.2f}")
print(f"Root Mean Squared Error: {rmse:.2f}")
print(f"R-squared: {r2:.2f}")
```

Mean Absolute Error: 13.56 Mean Squared Error: 421.59 Root Mean Squared Error: 20.53

R-squared: 0.88

### 9 VISUALISING THE RESULT

```
[52]: import matplotlib.pyplot as plt
plt.scatter(y_test, y_pred)
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.title('Actual vs Predicted')
plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], color='red')
plt.show()
```

