Exame de Biomecânica: Época Normal 11/02/2022 Licenciatura em Engenharia Biomédica (2021/2022) Duração: 2h30

NOME	 Nº	

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- Cada resposta correcta é cotada com 2,00 valores.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a $9.8~\text{m}\,\text{s}^{-2}$.

FOLHA DE RESPOSTAS

P 4	437]	Respost	a		* 7~
Pergunta	Alínea	A	В	С	D	E	Versão
	a)	X					
1)	b)				X		1
	c)		X				
	a)				X		
2)	b)			X			1
	c)		X				
	a)	X					
3)	b)				X		1
	c)				X		
	a)		X				
4)	b)					X	1
	c)	X					

1. Os sistemas de forças e binários da figura são equivalentes. As distâncias a, b, e c são iguais a 1,5 m, 2 m e 3 m, respectivamente. Os sentidos das forças \vec{F}_1 e \vec{F}_4 foram arbitrados, e os sentidos das forças \vec{F}_2 , \vec{F}_3 , \vec{F}_5 e \vec{F}_6 são os representados. O sentido do vector momento \vec{M}_1 é o representado, e o sentido do vector \vec{M}_2 foi arbitrado.

a) Se as intensidades das forças \vec{F}_2 , \vec{F}_3 , \vec{F}_5 e \vec{F}_6 forem iguais a 40 N, 60 N, 80 N e 20 N, quais os vectores força \vec{F}_1 e \vec{F}_4 ?

A)	$\vec{F}_1 = -60 \hat{i} (N)$ $\vec{F}_4 = +20 \hat{j} (N)$	В)	$\vec{F}_1 = +60 \hat{i} (N)$ $\vec{F}_4 = -20 \hat{j} (N)$
C)	$\vec{F}_1 = +60 \hat{i} (N)$ $\vec{F}_4 = +20 \hat{j} (N)$	D)	$\vec{F}_1 = -60 \hat{i} (N)$ $\vec{F}_4 = -20 \hat{j} (N)$
E)	Nenhuma das anteriores		

b) Se as intensidades das forças \vec{F}_2 , \vec{F}_3 , \vec{F}_5 e \vec{F}_6 forem as fornecidas na alínea a), e a intensidade do vector \vec{M}_1 for igual a 100 Nm, qual o vector momento resultante dos sistemas em relação ao ponto A?

A)	$\vec{M}_{r,A} = +240 \hat{k} (\mathrm{Nm})$	В)	$\vec{M}_{r,A} = +360 \hat{k} (\mathrm{Nm})$
C)	$\vec{M}_{r,A} = +200 \hat{k} (\mathrm{Nm})$	D)	$\vec{M}_{r,A} = +320 \hat{k} (\mathrm{Nm})$
E)	Nenhuma das anteriores		

c) Se as intensidades das forças \vec{F}_2 , \vec{F}_3 , \vec{F}_5 e \vec{F}_6 forem as fornecidas na alínea a), e a intensidade do vector \vec{M}_1 for a fornecida na alínea b), qual o vector momento \vec{M}_2 ?

A)	$\vec{M}_2 = +320 \hat{k} (\mathrm{Nm})$	B)	$\vec{M}_2 = +800 \hat{k} (\mathrm{Nm})$
C)	$\vec{M}_2 = +720 \hat{k} (\mathrm{Nm})$	D)	$\vec{M}_2 = +480 \hat{k} (\mathrm{Nm})$
E)	Nenhuma das anteriores		

11/02/2022

Duração: 2h30

2. A estrutura da figura, constituída por três elementos de massa desprezável, encontra-se apoiada em *A* por um pino e em *B* por um rolete. Na barra EDC, entre o ponto D e o ponto C, encontra-se suspenso um corpo de peso *P*. Os comprimentos *a*, *d* e *e* são iguais a 30 cm, o comprimento *b* é igual a 40 cm, e o comprimento *c* é igual a 20 cm.

a) Se P for igual a 49,92 N, qual a intensidade da reacção no apoio A?

A)	80 N	B)	90 N
C)	70 N	D)	60 N
E)	Nenhuma das anteriores		

b) Se *P* for igual a 90 N, qual o esforço a que fica sujeito o elemento BD?

A)	165 N	B)	150 N
C)	180 N	D)	135 N
E)	Nenhuma das anteriores		

c) Se P for igual a 349,46 N, qual o esforço a que fica sujeito o ponto C?

A)	360 N	B)	420 N
C)	300 N	D)	480 N
E)	Nenhuma das anteriores		

3. Um elemento infinitesimal de um material linearmente elástico e isotrópico, com módulo de elasticidade igual a 200 GPa e módulo de rigidez igual a 80 GPa, está submetido ao estado de tensão bidimensional representado pelos pontos *X* e *Y* no círculo de Mohr da figura, para os quais os módulos das tensões σ_x, σ_y e τ_{xy} são iguais a 25 MPa, 75 MPa e 50 MPa, respectivamente.

11/02/2022

Duração: 2h30

a) Qual o diagrama que corresponde ao estado de tensão representado?

b) Quais as tensões axiais máximas de compressão e de tracção a que o material fica sujeito?

	A)	Compressão \rightarrow 42,3 MPa	B)	Compressão $ ightarrow$ 92,3 MPa
•	A)	Tracção → 92,3 MPa	D)	Tracção → 42,3 MPa
	C)	Compressão \rightarrow 95,7 MPa	D)	Compressão → 45,7 MPa
	C)	Tracção → 45,7 MPa	D)	Tracção → 95,7 MPa
	E)	Nenhuma das anteriores		

c) De quanto tem de ser rodado o plano de análise em torno do eixo dos ZZ para se obter a orientação dos planos principais?

A)	-21,0°	В)	-22,5°
C)	21,0°	D)	22,5°
E)	Nenhuma das anteriores		

4. Considere o sistema em equilíbrio representado na figura, que consiste numa barra homogénea com secção recta quadrada com 2 cm de lado, comprimento L igual 1,2 m e densidade linear de massa $m_1(x)$ igual a 5 kg/m (correspondente a uma distribuição linear de peso igual a 49 N/m), que se encontra apoiada na horizontal por um pino em C e por uma corda ligada ao ponto D, e que faz um ângulo θ igual a 45° com a horizontal. Um corpo com massa igual a 50 kg, encontra-se suspenso na barra no ponto B. As intensidades das forças \vec{T} , \vec{C}_x e \vec{C}_y são iguais a 734,54 N, 519,4 N e 1068,2 N, respectivamente.

a) Qual a tensão de corte no plano médio da barra a uma distância de 44,9 cm do ponto A?

A)	1950 kPa	B)	1920 kPa	C)	1930 kPa	D)	1940 kPa	
E)	E) Nenhuma das anteriores							

b) Qual a tensão axial na face superior da barra a uma distância de 56 cm do ponto A?

A)	370 MPa	B)	350 MPa	C)	330 MPa	D)	390 MPa	
E) Nenhuma das anteriores								

c) Qual a tensão axial no plano médio da barra a uma distância de 1 m do ponto A?

<u>A</u>)	1298,5 kPa	B)	749,4 kPa	C)	327,8 kPa	D)	0
E) Nenhuma das anteriores							