Análisis Multivariado I

EJERCICIOS INFERENCIA

Ejercicio 1

 x_{ig} se distribuye $N_p(\mu_g, \Sigma_g)$ con $i=1,2,...n, j=1,2,...\Sigma p, g=1,2...K$

Derive el estadístico de razón de verosimilitud para las pruebas de hipótesis de:

- 1. Prueba de hipótesis de igualdad de medias. H_0) $\mu_1 = \mu_2 = \mu_3 = ... = \mu_k$
- 2. Prueba de hipótesis de igualdad de matrices de varianzas y covarianzas. H_0) $\Sigma_1 = \Sigma_2 = \Sigma_3 = \dots = \Sigma_k$

Ejercicio 2

Sea x definido en R^p . Se obtiene una muestra aleatoria simple de tamaño n, x_i se distribuye $N_p(\mu, \Sigma)$ con i=1,2,...,n

- 1. Deduzca la esperanza condicional de $x_{1|}x_{2}$ donde x_{1} definido en R^{p1} y x_{2} definido en R^{p2} , donde $p_{1}+p_{2}=p$.
- 2. Demuestre que a'x se distribuye Normal con media a' μ y varianza a' Σ a.
- 3. Derive la distribución de la variable x_{p-1} .

Ejercicio 3 (Tomado de ejercicios de año 2015)

Sea $x_1 \sim N(0, 1)$ y $u \in \{-1, 1\} \sim Ber(0,5)$ independiente de x_1 . Se define $x_2 = ux_1$. Demuestre que $x_2 \sim N(0, 1)$ pero que $x = (x_1, x_2)$ no es conjuntamente gaussiana