Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 1, zadanie nr 1

Imię i Nazwisko, Imię i Nazwisko

Spis treści

1.	Wste	P	2
	1.1.	Cel projektu	2
	1.2.	Opis algorytmów	2
		1.2.1. PID	2
		1.2.2. DMC	2
2.	zad1		4
3.	zad2		5
4.	zad3		6
5.	zad4		7
6.	zad5		8
7.	zad6		9

1. Wstęp

1.1. Cel projektu

Celem projektu było zbadanie właściwości danego obiektu oraz próba regulacji z wykorzystaniem dyskretnych algorytmów PID oraz DMC w wersji analitycznej. Częścią zadania było również uwzględnienie ograniczeń sterowania narzuconych w treści projektu.

1.2. Opis algorytmów

1.2.1. PID

W zadaniu projektowym wykorzystany został regulator PID. Algorytm ten, na podstawie obliczonej wartości uchybu oraz dobranych nastaw, wyznacza wartość sterowania dla chwili k. Elementami struktury algorytmu są następujące stałe:

- K stała proporcjonalna
- T_i stała całkowania
- T_d stała różniczkowania
- T czas próbkowania

Dobranie nastaw algorytmu oznacza znalezienie możliwie optymalnych nastaw zapewniających najlepszą jakość regulacji.

Po wyznaczeniu parametrów, należy obliczyć wpółczynniki prawa regulacji używając następujących wzorów:

$$r_2 = \frac{KTd}{T} \tag{1.1}$$

$$r_1 = K(\frac{T}{2T_i} - \frac{2T_d}{T} - 1) \tag{1.2}$$

$$r_0 = K(\frac{T}{2T_i} + \frac{T_d}{T} + 1) \tag{1.3}$$

Prawo regulacji rgulatora opisane jest równaniem:

$$u(k) = r_2 e(k-2) + r_1 e(k-2) + r_0 e(k) + u(k-1)$$
(1.4)

1.2.2. DMC

Regulator DMC jest algorytmem predykcyjnym wyznaczjącym trajektorię sygnału wyjściowego oraz przyszłe przyrosty sterowań. DMC potrzebuje wcześniejszej informacji o obiekcie w postaci odpowiedzi skokowej. Parametrami algorytmu są:

- D horyzont dynamiki
- N horyzont predykcji
- N_u horyzont sterownia
- λ kara za zmianę sterownia

1. Wstęp

Strojenie algorytmu polega na odpowiednim dobraniu parametrów tak, by zapewnić możliwie najlepszą jakość regulacji.

Aby otrzymać prawo regulacji, należy wyznaczyć szereg współczynników: Macierz dynamiczną oraz macierz K:

$$M = \begin{bmatrix} s_1 & 0 & \cdots & 0 \\ s_2 & s_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ s_N & s_{N-1} & \cdots & s_{N-N_u+1} \end{bmatrix}$$
 (1.5)

$$K = (M^T \Psi M + \Lambda)^{-1} M^T \Psi \tag{1.6}$$

Macierz M^P oraz wektor zmian sterowania ΔU^P :

$$M^{P} = \begin{bmatrix} s_{2} - s_{1} & s_{3} - s_{2} & \cdots & s_{D} - s_{D-1} \\ s_{3} - s_{1} & s_{4} - s_{2} & \cdots & s_{D+1} - s_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ s_{N+1} - s_{1} & s_{N+2} - s_{2} & \cdots & s_{N+D-1} - s_{D-1} \end{bmatrix}$$
(1.7)

$$\Delta U^{P}(k) = \begin{bmatrix} \Delta u(k-1) \\ \Delta u(k-2) \\ \vdots \\ \Delta u(k-(D-1)) \end{bmatrix}$$

$$(1.8)$$

Na podstawie powyższych macierzy oraz wektorów, można obliczyć parametry reguatora:

$$k_e = \sum_{i=1}^{N} K_{1,i} \tag{1.9}$$

$$k_u = \overline{K}_1 M^P \tag{1.10}$$

a następnie wyznaczyć sterowanie z następującego prawa regulacji:

$$e(k) = y_{zad}(k) - y(k) \tag{1.11}$$

$$u(k|k) = u(k-1) + k_e e(k) - k_u \Delta U^P(k)$$
(1.12)

Ograniczenie wartości sygnału sterującego przez wartości maksymalną i minimalną wykonane jest w następujący sposób:

- 1. jeżeli $u(k|k) < u_{min}$ wtedy $u(k|k) = u_{min}$
- 2. jeżeli jeżeli $u(k|k) > u_{max}$ wtedy $u(k|k) = u_{max}$ max
- 3. u(k) = u(k|k)