

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 3

Дисциплина: Моделирование			
Тема:	Марковские процессы. Уравнения Колмогорова		
Студен	т: Барсуков Н.М.		
Группа ИУ7-76Б			
Оценк	а (баллы)		
Препол	цаватель : Рудаков И.В.		

Москва.

Рис. 1.

Содержание

1	Аналитический раздел	3
	1.1 Цель работы	3
	1.2 Уравнение Колмогорова в общем виде	3
2	Экспериментальный раздел	5
Ст	писок использованных источников	6

1 Аналитический раздел

В данном разделе указана цель работы. Представлено уравнение Колмогорова в общем виде

1.1 Цель работы

Формализовать систему, количество состояний которой вводится пользова-телем. Нужно найти среднее, относительное время нахождения системы в каж-дом из её состояний. Система формализуется матрицей, в заголовках строк и столбцов которой находятся номера состояний: $S_1, S_2, ..., S_n$. На пересечениях стоят интенсивности перехода из состояния в состояние. Необходимо найти среднее относительное время нахождения системы в каждом из её состояний.

1.2 Уравнение Колмогорова в общем виде

$$\frac{dp_i}{dt} = \sum_{j=1}^{n} p_j(t)\lambda_{ji} - p_i(t)\sum_{j=1}^{n} \lambda_o \quad i = 1, ..., n$$
 (1)

Выше, учитывается, что для состояний не имеющих непосредственных перехо-дов, можно считать $\lambda_0 - \lambda_{ji} = 0$

Имея в распоряжении размеченный граф состояний, можно найти все вероятности состояний $p_i(t)$ как функции времени. Для этого составляются и решаются так называемые уравнения Колмогорова особого вида дифференциальные уравнения, в которых неизвестными функциями являются вероятности состояний.

Общее правило составления уравнений Колмогорова: в левой части каждого из них стоит производная вероятности какого-то (i-го) состояния. В правой части сумма произведений вероятностей всех состояний, из которых идут стрелки в данное состояние, на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го) состояния.

При t-> infвероятности состояний будут стремиться к пределам, т.к. в теории случайных процессов доказывается, что если число состояний систе-

мы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое, то финальные вероятности существуют, которые, если существуют и не зависят от начального состояния системы, называются финальными вероятностями состояний.

При t-> inf в системе S устанавливается предельный стационарный режим, в ходе которого система случайным образом меняет свои состояния, но их вероятности уже не зависят от времени. Финальную вероятность состояния S_i можно истолковать как среднее относительное время пребывания системы в этом состоянии.

2 Экспериментальный раздел

В данном разделе представлены результаты работы программы:

Рис. 2.

Рис. 3.

Список использованных источников

- 1. Курс лекций "Моделирование" (Дата обращения: 6.12.19)
- 2. Марковские процессы // URL: http : //e $biblio.ru/book/bib/06_management/teor_mass_obslug/158.9.13.html$ (дата обращения 06.12.19)