第三章 集合,函数,复球面

3.1 复平面的集合

任给两个复数 $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$, 定义距离

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

显然, 此距离即为 \mathbb{R}^2 两点 (x_1,y_1) 与 (x_2,y_2) 的欧氏距离。以 $a \in \mathbb{C}$ 为中心, r > 0 为半径的圆盘记为

$$D(a,r) = \{ z \in \mathbb{C}; |z - a| < r \}.$$

记 $D^*(a,r) = D(a,r) \setminus \{a\}$ 为去心圆盘。

称 $U \subset \mathbb{C}$ 为开集, 如果对任意 $z \in U$, 存在 r > 0, 使 $D(z,r) \subset U$ 。称 $U \subset \mathbb{C}$ 为闭集, 如果 $\mathbb{C} \setminus U$ 是开集。

复数列 $\{z_n\}_{n\geq 1}\subset\mathbb{C}$ 称为 Cauchy 列, 如果对任意 $\varepsilon>0$, 存在正整数 N, 使当 $m,n\geq N$ 时, 有 $|z_n-z_m|<\varepsilon$.

记
$$z_n = x_n + iy_n$$
, 由不等式

$$\max\{|x_n - x_m|, |y_n - y_m|\} \le |z_n - z_m| \le |x_n - x_m| + |y_n - y_m|$$

可知 $\{z_n\}_{n\geq 1}$ 是 Cauchy 列当且仅当实部与虚部对应的实数列 $\{x_n\}_{n\geq 1}, \{y_n\}_{n\geq 1}$ 都是 Cauchy 列。由 $\mathbb R$ 的完备性 (即: Cauchy 列总有极限) 可知复平面 $\mathbb C$ 也是完备的。

利用 Cauchy 列可以给出闭集的等价定义: $E \subset \mathbb{C}$ 是闭集当且仅当 E 中任意 Cauchy 列的极限在 E 中。

点 $a \in E$ 称为集合 E 的极限点或者聚点,如果对任意 r > 0,交集 $D^*(a,r) \cap E \neq \emptyset$ 。集合 E 的所有极限点构成的集合称为 E 的导集,记为 E'。E 中不属于 E' 的点称为 E 的孤立点。E 和它的导集 E' 之并称为 E 的闭包,记为 \overline{E} ,即 $\overline{E} = E \cup E'$ 。

给定集合 $E \subset \mathbb{C}$, 定义其直径

$$\operatorname{diam}(E) = \sup_{z, w \in E} |z - w|.$$

命题 3.1. 假设 $\Omega_1 \supset \Omega_2 \supset \cdots$ 是复平面 \mathbb{C} 上一列递减的有界 闭集, 满足 $\lim_{k\to\infty} \operatorname{diam}(\Omega_k) \to 0$, 则 $\bigcap_{k>1} \Omega_k = \{w\}$. ^a

a本命题将用于证明 Heine-Borem 定理 (定理3.1), Goursat 定理 (定理??).

证明: 对任意 $n \ge 1$, 取 $z_n \in \Omega_n$, 如此得一点列 $\{z_n\}_{n \ge 1}$ 。 对任意 $l \ge 1$, 有 $z_{n+l} \in \Omega_{n+l} \subset \Omega_n$, 且

$$|z_{n+l} - z_n| \le \operatorname{diam}(\Omega_n) \to 0 \ (n \to \infty).$$

这说明 $\{z_n\}_{n\geq 1}$ 是 \mathbb{C} 中 Cauchy 列, 记极限为 w (由 \mathbb{C} 的完备性)。

对任意 $n \ge 1$, 由 $\{z_{n+l}\}_{l \ge 1} \subset \Omega_n$ 以及 Ω_n 为有界闭集, 可得 $w \in \Omega_n$ 。 因此 $w \in \bigcap_{k > 1} \Omega_k$ 。

最后说明 w 的唯一性。如果 $w' \in \bigcap_{k \geq 1} \Omega_k$ 且 $w' \neq w$, 则对任意 $k \geq 1$, 有 $w, w' \in \Omega_k$ 。于是 $0 < |w - w'| \leq \operatorname{diam}(\Omega_k), \forall k \geq 1$ 。这矛盾于 $\lim_{k \to \infty} \operatorname{diam}(\Omega_k) \to 0$ 。

假设 E 是一个集合, $\mathcal{F} = \{U_{\lambda}; \lambda \in I\}$ 是一个开集族 (I 是标记开集的指标集), 即 \mathcal{F} 中每一个元素是一个开集。如果 E 中每一点至少属于 \mathcal{F} 中的一个开集,则称 \mathcal{F} 是 E 的一个开覆盖。

例如: 取 r>0, 则 $\mathcal{F}=\{D(z,r);z\in E\}$ 是 E 的一个开覆 盖。

称点集 E 具有有限覆盖性质, 如果 E 的任何开覆盖 \mathcal{F} 中必能选出有限个开集 U_1, \dots, U_n , 使得 $E \subset \bigcup_{j=1}^n U_n$ 。称 $\mathcal{F}' = \{U_1, \dots, U_n\} \subset \mathcal{F}$ 是 E 的一个有限子覆盖。

集合 E 称为是紧集, 如果 E 具有有限覆盖性质, 即 E 的任何 开覆盖都有有限子覆盖。

定理 3.1.(Heine-Borel) 复平面子集 E 是紧集的充要条件是 E 是有界闭集。

证明: (必要性) 假设 E 是紧集。任取 $\varepsilon > 0$, 则 $\mathcal{F} = \{D(z,\varepsilon); z \in E\}$ 是 E 的一个开覆盖,由 E 的紧性可知, \mathcal{F} 有限子覆盖 $\mathcal{F}' = \{D(z_k,\varepsilon); 1 \leq k \leq n\}$,即 $E \subset \bigcup_{k=1}^n D(z_k,\varepsilon)$,这说明 E 有界。

下证 E 是闭集,等价于证明 $\mathbb{C}\setminus E$ 是开集。任取 $w\in \mathbb{C}\setminus E$, 对任意 $z\in E$, 定义 $d_z=|z-w|$ 。于是 $\{D(z,d_z/3);z\in E\}$ 是 E 的一个开覆盖。由 E 的紧性,它存在有限子覆盖 $\{D(z_j,d_j/3);1\leq j\leq m\}$ (这里 d_{z_j} 简记为 d_j)。取 $d=\min\{d_1,\cdots,d_m\}$,则对任意 j,有 $D(z_j,d_j/3)\cap D(w,d/3)=\emptyset$ 。因此 $\left(\bigcup_{j=1}^m D(z_j,d_j/3)\right)\cap D(w,d/3)=\emptyset$ 。由 $E\subset\bigcup_{j=1}^m D(z_j,d_j/3)$ 可知, $D(w,d/3)\subset\mathbb{C}\setminus E$ 。由 w 的任意性知, $\mathbb{C}\setminus E$ 是开集。

(充分性) 现假设 E 是有界闭集, 我们将证明 E 是紧集。

如不然, 存在 E 的开覆盖 F, 它没有有限子覆盖。因 E 有界, 故有 R > 0 使得 $E \subset Q_0 = \{z = x + iy; |x| \le R, |y| \le R\}$ 。将 Q_0 分为四个相等的闭正方形。必存在其中之一 Q_1 ,使 F 作为 $K_1 = Q_1 \cap E$ 的开覆盖但没有有限子覆盖,再将 Q_1 分为四个相等的闭正方形,必存在其中之一 Q_2 ,使 F 作为 $K_2 = Q_2 \cap E$ 的开覆盖但没有有限子覆盖。这个过程可无限进行下去,得一列闭正方形 $Q_1 \supset Q_2 \supset \cdots$,满足 $\operatorname{diam}(Q_n) = 2^{-n}\operatorname{diam}(Q_0) \to 0 (n \to \infty)$ 。

记 $K_n = Q_n \cap E$,则 $\{K_n\}_{n\geq 1}$ 是一列递减的有界闭集,直径趋于零。由命题3.1可知,存在 $z_0 \in \mathbb{C}$ 使 $\bigcap K_n = \{z_0\}_o$ 由 $z_0 \in K_n \subset E$ 可知,存在 \mathcal{F} 中开集 U_0 ,使 $z_0 \subset U_0$ 。由 $\operatorname{diam}(K_n) \leq \operatorname{diam}(Q_n) \to 0$ 知,当 n 充分大时, $K_n \subset U_0$ 。这说明 U_0 覆盖了 K_n ,与 K_n 的定义相矛盾。因此 E 是紧集。

给定两个平面集合 A, B, 满足 $A \subset B$ 。称 $A \in B$ 的开子集,如果对任意 $a \in A$, 存在 r > 0 使 $D(a, r) \cap B \subset A$; 称 $A \in B$ 的闭子集,如果 $B \setminus A \in B$ 的开子集。

容易验证, 开集的开子集也是开集, 闭集的闭子集也是闭集。

平面点集 E 称为是连通的,如果 E 不可能分解为两个即开又闭的非空真子集,换言之,对任意两个不相交的非空集合 E_1 和 E_2 ,满足 $E=E_1\cup E_2$,那么 E_1 必然含有 E_2 的极限点,或者 E_2 必然含有 E_1 的极限点。

连通开集的一个直观刻画如下,证明略去 (参考史济怀,刘 太顺《复变函数》命题 1.6.3)。

命题 3.2.平面开集 E 是连通的充要条件是 E 中任何两点都可用 E 中的折线连接起来。

平面上的连通开集称为区域。一个常用事实是

假设 Ω 是平面区域。如果非空集合 E 是 Ω 的即开又闭的子集,则 $E=\Omega$ 。

事实上,如果结论不对,则 $\Omega \setminus E \neq \Omega$ 的非空子集,即开又闭。这样得到分解 $\Omega = E \sqcup (\Omega \setminus E)$,矛盾于 Ω 的连通性。

这个事实将用于证明最大模原理 (定理??), 唯一性定理 (定理??) 等。

3.2 连续函数

平面集合 Ω 上的复值函数, 指的是取值为复数的映射 f: $\Omega \to \mathbb{C}$ 。它可表示为

$$f(z) = u(z) + iv(z) = u(x, y) + iv(x, y),$$

其中,u,v分别为f的实部与虚部。由此可见,一个复数函数f可由两个二元实值函数确定。

给定复值函数 $f:\Omega\to\mathbb{C}$ 及 Ω 极限点集 (即闭包) 中一点 $z_0\in\overline{\Omega}$, 如果存在复数 $\zeta\in\mathbb{C}$, 对任意 $\varepsilon>0$, 存在 $\delta>0$, 只要 $z\in D^*(z_0,\delta)\cap\Omega$, 就有 $|f(z)-\zeta|<\varepsilon$, 称当 $z\to z_0$ 时, f(z) 以 ζ 为极限, 记为 $\lim_{z\to z_0}f(z)=\zeta$ 。

记
$$\zeta = \alpha + i\beta$$
, $z_0 = x_0 + iy_0$, 则

 $\max\{|u(z)-\alpha|,|v(z)-\beta|\} \le |f(z)-\zeta| \le |u(z)-\alpha|+|v(z)-\beta|.$ 由上式可见,

$$\lim_{z \to z_0} f(z) = \zeta \Longleftrightarrow \lim_{z \to z_0} u(z) = \alpha, \lim_{z \to z_0} v(z) = \beta.$$

称 f 在 $z_0 \in \Omega$ 连续, 如果 $\lim_{z\to z_0} f(z) = f(z_0)$ 。若 f 在 Ω 上每一点都连续, 则称 f 在 Ω 上连续。由上面不等式知, f 在 Ω 上连续当且 u,v 在 Ω 上连续。

称 f 在 Ω 上一致连续, 如果对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 对任 意 $z_1, z_2 \in \Omega$, 只要 $|z_1 - z_2| \le \delta$, 就有 $|f(z_1) - f(z_2)| \le \varepsilon$ 。

命题 3.3. 假设 $K \subset \mathbb{C}$ 是紧集, $f: K \to \mathbb{C}$ 是连续复值函数, 则

- 1. f 在 E 上有界;
- 2. 模长 |f| 的最大值与最小值都可以在 E 上取到;
- 3. f 一致连续。a

^a本命题中第 3 条结论将用于证明折线逼近引理 (引理??), 绕数的同伦不变性 (命题??) 等.

3.3 球极投影 23

证明: 1. 由定理3.1知平面紧集等价于有界闭集,因此只需证明 f(E) 是平面紧集。为此取 f(E) 的一个开覆盖 F。任取开集 $U \in \mathcal{F}$,由 f 的连续性知 $f^{-1}(U)$ 是平面开集,且 $\{f^{-1}(U); U \in \mathcal{F}\}$ 是 E 的开覆盖。由 E 是紧集可知,该开覆盖存在有限子覆盖 $\{f^{-1}(U_k); 1 \leq k \leq m\}$ 。这样得到 f(E) 的有限子覆盖 $\{U_k; 1 \leq k \leq m\}$ 。

- 2. 只需证 |f| 的最大值可取到。记 $M = \sup\{|f(z)|; z \in E\}$ 。由上确界的定义知,对任意自然数 n,存在 $z_n \in E$ 使得 $M \ge |f(z_n)| \ge M 1/n$ 。因 E 为紧集,故点列 $\{z_n\}_{n\ge 1}$ 必有极限点,即有收敛的子列 $\{z_{n_k}\}_{k\ge 1}$ 其极限为 $a \in E$ 。由连续性可知 $|f(a)| = \lim_{k\to\infty} |f(z_{n_k})| = M$ 。
- 3. 任取 $\varepsilon > 0$ 。对任意 $z \in K$,由 f 的连续性, $f^{-1}(D(f(z), \varepsilon/2))$ 为包含 z 的开集。因此存在 $\delta_z > 0$,使 $D(z, \delta_z) \subset f^{-1}(D(f(z), \varepsilon/2))$ 。 开集族 $\{D(z, \delta_z/2); z \in K\}$ 是 K 的一个开覆盖。由 K 的紧性知,存在有限子覆盖 $\{D(z_k, \delta_k/2); 1 \le k \le n\}$ 。取 $\delta = \min\{\delta_k; 1 \le k \le n\}/2$ 。

对任意 $p,q\in K$, 假设满足 $|p-q|<\delta$ 。不妨设 $p\in D(z_1,\delta_1/2)$ 。 由模长的三角不等式,

$$|z_1 - q| \le |z_1 - p| + |p - q| < \delta_1/2 + \delta \le \delta_1.$$

因此, $p,q \in D(z_1,\delta_1)$, 蕴含 $f(p),f(q) \in D(f(z_1),\varepsilon/2)$ 。由此得

$$|f(p) - f(q)| \le |f(p) - f(z_1)| + |f(z_1) - f(q)| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

这样就证明了一致连续性。

3.3 球极投影

在复分析中, 为今后讨论的需要,我们需要在 \mathbb{C} 中引进一个抽象的无穷远点, 记为 ∞ , 其模长为无穷大 (辐角无意义)。它与其他复数的运算规则定义为: 对所有复数 $a \in \mathbb{C}$, 成立

$$a \pm \infty = \infty, \ \frac{a}{\infty} = 0,$$

同时对所有非零复数 $b \in \mathbb{C}$,

$$b \cdot \infty = \infty, \ \frac{b}{0} = \infty.$$

需注意的是 $0 \cdot \infty$, $\frac{0}{0}$ 和 $\infty \pm \infty$, $\frac{\infty}{\infty}$ 是无法定义的。

显然, 平面 \mathbb{C} 中无处安放 ∞ 。因此我们需将 ∞ 视为外来点并入复平面, 从而得到扩充复平面 $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ 。接下来, 要给 $\widehat{\mathbb{C}}$ 赋予适当的拓扑使之成为有意义的拓扑空间。在点集拓扑学中, 这可以通过"一点紧化"的方式来实现, 从而使 $\widehat{\mathbb{C}}$ 和球面

$$S^{2} = \left\{ (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \right\}$$

同胚。此外,还有另一种处理方式, 更易理解。1857 年, Riemann(黎曼) 发现了将 $\hat{\mathbb{C}}$ 等同于 S^2 的更聪明的办法, 这种办法不仅有很强的几何直观, 而且诱导了 $\hat{\mathbb{C}}$ 上面的一个典型的度量。因此, 我们也将 $\hat{\mathbb{C}}$ 称为 Riemann 球面.

Riemann 通过球极投影 (stereographic projection) 的办法构造了从 S^2 到 $\widehat{\mathbb{C}}$ 的同胚。记 S^2 的北极点为 N(坐标为 (0,0,1))。在 \mathbb{R}^3 中将 xOy-平面等同于复平面 \mathbb{C} 。任取 $P \in S^2 - \{N\}$,记 P 的坐标为 $(\zeta_1,\zeta_2,\zeta_3)$,将 N 和 P 的连线延长交复平面于 z=x+iy(它在 \mathbb{R}^3 中坐标为 (x,y,0))。此时,称 z 为 P 的球极投影;反过来,称 P 为 z 的球面表示。将 z 视为 P 的函数 $z=\Phi(P)$,称 Φ 为球极投影映射,其逆映射记为 Ψ 。

下面将 Φ , Ψ 的表达式求出来。利用 N,P,Z 三点共线知,向量 \overrightarrow{NP} , \overrightarrow{NZ} 方向相同,因此存在实数 $t \in \mathbb{R}$ 满足

$$(\zeta_1, \zeta_2, \zeta_3 - 1) = t(x, y, -1).$$

由此得 $t=1-\zeta_3$, 以及

$$z = \Phi(P) = \frac{\zeta_1 + i\zeta_2}{1 - \zeta_3}.$$

利用 $\zeta_1^2 + \zeta_2^2 + \zeta_3^2 = 1$ 解出 $t = 2/(|z|^2 + 1)$ 。 从而

$$(\zeta_1, \zeta_2, \zeta_3) = \Psi(z) = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right).$$

不难验证, 球极投影给出了 $S^2 - \{N\}$ 与 $\mathbb C$ 之间的同胚¹。同时可见, 当 $P \to N$ 时, $\Phi(P) \to \infty$ 。反之亦然。因此可将 $\widehat{\mathbb C}$ 中的 ∞ 等同于 S^2 上的北极点 N。这样 $\Phi: S^2 \to \widehat{\mathbb C}$ 是一个双射。自然地, S^2 的拓扑诱导了 $\widehat{\mathbb C}$ 上的拓扑 (即:可以将 S^2 上的开集在 Φ 下的像定义为 $\widehat{\mathbb C}$ 上的开集)。更为重要的是, S^2 的弦长度量诱

 $^{^{1}}$ 同胚指连续的双射且要求逆映射也连续. 此处, 逆映射连续的条件不可少. 例 如: $f(t)=e^{2\pi it}$ 给出了从 [0,1] 到 $\partial \mathbb{D}$ 的连续双射, 但逆映射在 $1\in \partial \mathbb{D}$ 处不连续, 因此不是同胚.

3.3 球极投影 25

导了 $\widehat{\mathbb{C}}$ 的度量 d, 即对任意两点 $z,w\in\widehat{\mathbb{C}}$, 可用它们的球面表示 $\Psi(z),\Psi(w)$ 的弦长距离来定义 d(z,w)。计算可知

$$\begin{split} d(z,w)^2 &= & \|\Psi(z) - \Psi(w)\|^2 = 2 - 2\Psi(z) \cdot \Psi(w) \\ &= & 2 - \frac{4xu + 4yv + (|z|^2 - 1)(|w|^2 - 1)}{(|z|^2 + 1)(|w|^2 + 1)} \\ &= & \frac{4|z - w|^2}{(|z|^2 + 1)(|w|^2 + 1)}. \end{split}$$

由此得

$$d(z,w) = \frac{2|z-w|}{\sqrt{(|z|^2+1)(|w|^2+1)}}.$$

 $若 w = \infty$, 则

$$d(z,\infty) = \frac{2}{\sqrt{|z|^2 + 1}}.$$

定理 3.2. (Ptolemy) 球极投影 Φ 将 S^2 上的圆周映为 $\mathbb C$ 中的圆周或直线。反之亦然。

证明: 易知, S^2 上的圆周为 S^2 与某平面

$$L: a\zeta_1 + b\zeta_2 + c\zeta_3 = d$$

的交点。若平面经过北极点 N(0,0,1), 则有 c=d。此时, 显然 L与复平面交集为直线。如果平面不过北极点, 则有 $c\neq d$ 。将复数的球面表示代入直线方程得

$$a\frac{2x}{|z|^2+1}+b\frac{2y}{|z|^2+1}+c\frac{|z|^2-1}{|z|^2+1}=d.$$

整理得

$$(c-d)|z|^2 + 2ax + 2by - (c+d) = 0.$$

由于 |z|2 系数不为零, 上式表示平面圆周的方程.

反之,下面说明平面上圆周或直线的球面表示也是 S^2 上的圆周。事实上,平面上圆周或直线的方程可统一表示为

$$k|z|^2 + Ax + By + C = 0.$$

将 $z = (\zeta_1 + i\zeta_2)/(1 - \zeta_3)$ 代入上式, 得 z 的球面表示 $(\zeta_1, \zeta_2, \zeta_3)$ 满足的方程

$$A\zeta_1 + B\zeta_2 + (k - C)\zeta_3 + (k + C) = 0.$$

此为平面方程。这说明,圆周或直线的球面表示为 S^2 与平面的交集,即圆周。

定理 3.3. (Halley^a 1696) 球极投影 Φ 是共形的。

a 埃德蒙·哈雷 (Edmond Halley, 1656-1742), 英国天文学家.

证明略去。

复数 z 在球面表示 $\Psi(z)$ 处的面积元素记为 dA(z), 它可表示为径线方向长度增量 $d\ell_1$ 与纬线方向长度增量 $d\ell_2$ 之积。在距离公式

$$d(z, w) = \frac{2|z - w|}{\sqrt{(|z|^2 + 1)(|w|^2 + 1)}}$$

中, 记 $z=re^{i\theta}, w=\rho e^{i\phi}$ 。当 w 分别沿径向 (即 $\phi\equiv\theta,\rho\rightarrow r$) 和沿以原点为心的圆周切向 (即 $\rho\equiv r,\phi\rightarrow\theta$) 趋于 z, 可得

$$d\ell_1 = \frac{2dr}{1+r^2}, \ d\ell_2 = \frac{2rd\theta}{1+r^2}.$$

因此有

$$dA(z) = d\ell_1 \times d\ell_2 = \frac{4rdrd\theta}{(1+r^2)^2} = \frac{4dxdy}{(1+|z|^2)^2}.$$

由上式, 任意平面可测集 E 的球面表示 $\Psi(E)$ 的面积为

$$\operatorname{area}(\Psi(E)) = \int_E \frac{4dxdy}{(1+|z|^2)^2}.$$

最后,考虑一个有趣的等面积问题:

一个平面可测集 E, 其面积给定, 其球面表示的面积最大值是多少?

定理 3.4. 给定平面可测集 E, 其面积 (即:Lebesgue 测度) 为 A, 其球面表示的面积记为 A_s , 则成立不等式

$$A_s \le \frac{4\pi A}{A + \pi}.$$

等号成立当且仅当 A=0, 或 $A=+\infty$ 且 $E=\mathbb{C}$, 或 $0 < A < +\infty$ 且 $E=D(0,\sqrt{A/\pi})$.

3.4 习题 27

证明: 不妨 $0 < A < +\infty$, 记 $D = D(0, r_0), r_0 = \sqrt{A/\pi}$,

$$\begin{split} A_s &= \int_E \frac{4dxdy}{(1+|z|^2)^2} \\ &= \int_{E\cap D} \frac{4dxdy}{(1+|z|^2)^2} + \int_{E\setminus D} \frac{4dxdy}{(1+|z|^2)^2} \\ &\leq \int_{E\cap D} \frac{4dxdy}{(1+|z|^2)^2} + \int_{E\setminus D} \frac{4dxdy}{(1+|r_0|^2)^2} \\ &= \int_{E\cap D} \frac{4dxdy}{(1+|z|^2)^2} + \int_{D\setminus E} \frac{4dxdy}{(1+|r_0|^2)^2} \\ &\leq \int_{E\cap D} \frac{4dxdy}{(1+|z|^2)^2} + \int_{D\setminus E} \frac{4dxdy}{(1+|z|^2)^2} \\ &= \int_D \frac{4dxdy}{(1+|z|^2)^2} = \int_0^{r_0} \int_0^{2\pi} \frac{4rdrd\theta}{(1+r^2)^2} \\ &= \frac{4\pi r_0^2}{1+r_0^2} = \frac{4\pi A}{A+\pi}. \end{split}$$

3.4 习题

"一个年轻人要想学到真正的知识, 最好是向那些愿意共同 进取的人去学, 而不是向那些已负盛名的人去学。我再次感到, 志同道合将会结出累累硕果。"

—斯蒂芬·茨威格《昨日的世界》

回顾: $\Phi: S^2 \to \widehat{\mathbb{C}}$ 为球极投影, 逆映射 $\Psi: \widehat{\mathbb{C}} \to S^2$ 将 $z \in \widehat{\mathbb{C}}$ 映为其球面表示 $\Psi(z)$ 。 N = (0,0,1) 为 S^2 上北极点。

- 1. (无穷远点) 如何理解 ∞ 满足的运算规则? (对所有复数 $a \in \mathbb{C}$, 成立 $a \pm \infty = \infty$, $\frac{a}{\infty} = 0$, 同时对所有非零复数 $b \in \mathbb{C}$, $b \cdot \infty = \infty$, $\frac{b}{0} = \infty$.)
- 2. (对径点) 证明 $\Psi(z)$, $\Psi(w)$ 是球面的对径点的充要条件是 $z\overline{w}=-1$.
 - 3. (对称点) 证明球面表示 $\Psi(z), \Psi(1/\overline{z})$ 关于 xOy-平面对称.
- 4. (函数奇偶分解的推广) 熟知: 平面上的复值函数 f(z) 总可以唯一表示为一个奇函数 $f_1(z)=(f(z)-f(-z))/2$ 和一个偶函数 $f_2(z)=(f(z)+f(-z))/2$ 之和。本题将此结论稍作推广,证明平面上任何复值函数 ϕ 总可以唯一分解为具有 3-重旋转对称性的函数之和:

$$\phi(z) = f(z) + q(z) + h(z),$$

其中 f,g,h 满足如下的旋转对称性:

$$f(\omega z) = f(z), g(\omega z) = \omega g(z), h(\omega z) = \omega^2 h(z), \ \omega = e^{2\pi i/3}.$$

(思考:推广到 n-重旋转对称性的情况,不做要求。)

5. (相似三角形) 证明线段 Nz 与 $N\Psi(z)$ 的长度乘积为定值。由此证明,给定平面上的不同两点 z,w,三角形 ΔNzw 与 $\Delta N\Psi(w)\Psi(z)$ 相似。

***(以下为附加题,不做要求)

6. (圆弧距离) 假设 $z, w \in \widehat{\mathbb{C}}$, 采用球面 S^2 上连接 $\Psi(z), \Psi(w)$ 的 (较短的) 大圆弧长来定义 z, w 的球面距离 $\sigma(z, w)$, 证明

$$\sigma(z, w) = 2 \arctan \left| \frac{z - w}{1 + z\overline{w}} \right|.$$

7. (球面面积元) 球面 S^2 可以用方程 $\zeta_3 = \pm \sqrt{1 - \zeta_1^2 - \zeta_2^2}$ 表示,验证面积元

$$dS := \sqrt{1 + \left(\frac{\partial \zeta_3}{\partial \zeta_1}\right)^2 + \left(\frac{\partial \zeta_3}{\partial \zeta_1}\right)^2} d\zeta_1 d\zeta_2 = \frac{1}{|\zeta_3|} d\zeta_1 d\zeta_2.$$

另一方面,复数 $z = re^{i\theta}$ 的球面表示为

$$(\zeta_1, \zeta_2, \zeta_3) = \left(\frac{2r\cos\theta}{1+r^2}, \frac{2r\sin\theta}{1+r^2}, \frac{r^2-1}{r^2+1}\right).$$

通过计算 Jacobi 矩阵与行列式,证明

$$d\zeta_1 d\zeta_2 = \frac{4r(1-r^2)}{(1+r^2)^3} dr d\theta.$$

由上面两式可得

$$dS = \frac{4r}{(1+r^2)^2} dr d\theta = \frac{4dxdy}{(1+|z|^2)^2}.$$