Introduction

Simulation based Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

Diagnostic tools for approximate Bayes

Jason Clarkson, Bryan Liu and Mélodie Monod

Oxford University and Imperial College London

October 24, 2019

Outline

Introduction

Simulation based Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

- Introduction
- 2 Simulation-based Calibration
- 3 Pareto Smoothed Importance Sampling
- 4 Posterior Inference via Credible Intervals

Introduction

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals Consider the usual objects in Bayesian inference:

- prior distribution $\phi \sim \pi(\cdot)$
- likelihood distribution observed data y generated from $p(\cdot|\phi)$
- posterior distribution $\pi(\cdot|y)$

We present three diagnostics to evaluate the quality of the Bayes posterior approximation from either an MCMC or a VI.

- Simulation-based Calibration
- Pareto Smoothed Importance Sampling
- Osterior Inference via Credible Intervals

Introduction

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals We use as toy example a Bayesian linear regression, where the data are generated as:

$$\beta \sim \mathcal{N}(0, 10^2),\tag{1}$$

$$\alpha \sim \mathcal{N}(0, 10^2),\tag{2}$$

$$y \sim \mathcal{N}(\alpha + \beta x, 1.2^2),$$
 (3)

where x is some specified covariate.

Simulation-based Calibration

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals Say we have the following:

- Exact prior: $\phi \sim \pi(\cdot)$
- Simulated data conditioned on prior: $y \sim p(\cdot|\phi)$
- ullet Estimated posterior conditioned on data: $heta \sim ilde{\pi}(\cdot|y)$

Cook et al. (2006) said if the posterior is exact, integrating it over all possible prior and likelihood will return the prior. (i.e. data-averaged posterior \equiv prior)

Talts et al. (2018) said if the above is true, the rank of one prior sample amongst many posterior samples will be uniformally distributed.

Result is reproducible when everything is right

ntroduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

For 1:N —

- **1** Sample a ground truth from prior: $\phi \sim \pi(\cdot)$
- ② Simulate data using ϕ : $y_{1:s} \sim p(\cdot|\phi)$
- **3** Obtain many posterior samples after fitting model with data: $\theta_1, \dots, \theta_L \sim \tilde{\pi}(\cdot|y_{1:s})$
- **4** Compute rank of ϕ relative to $\{\theta_1, \dots, \theta_L\}$

Check if the distribution of ranks is uniform.

Maybe not for a overdispersed prior...

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals Using a Bayesian linear regression example:

- Generate: $\beta, \alpha \sim \mathcal{N}(0, 10^2)$, $y_{1:s} \sim \mathcal{N}(X\beta + \alpha, 1.2^2)$
- ullet Fit: $eta\sim$ <whoops>, $lpha\sim\mathcal{N}(0,10^2)$ as prior, find posterior

Expected (top) & actual (bottom) rank distributions:

Can SBC spot which parameter is wrong?

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals Using a Bayesian linear regression example:

- Generate: $\beta, \alpha \sim \mathcal{N}(0, 10^2)$, $y_{1:s} \sim \mathcal{N}(X\beta + \alpha, 1.2^2)$
- ullet Fit: $eta\sim$ <whoops>, $lpha\sim\mathcal{N}(0,10^2)$ as prior, find posterior

Expected (top) & actual (bottom) rank distributions:

Could a misspecified prior be masked by an abundance of data?

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Using a Bayesian linear regression example:

- Generate: $\beta, \alpha \sim \mathcal{N}(0, 10^2)$, $y_{1:s} \sim \mathcal{N}(X\beta + \alpha, 1.2^2)$
- ullet Fit: $eta \sim$ <whoops>, $lpha \sim \mathcal{N}(0, 10^2)$ as prior, find posterior

Expected (top) & actual (bottom) rank distributions:

Variational Inference

Introductior

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

Definition

Variational inference (VI) consider a family of simple densities and find the member closest to the posterior.

Consider density $q(\theta|\psi)$, parametrized by ψ .

The Kullback-Leibler (KL) divergence with the posterior is,

$$\mathsf{KL}\big(q(\theta|\psi)||\pi(\theta|y)\big) = E_q\Big[\log\frac{q(\theta|\psi)}{\pi(\theta|y)}\Big]. \tag{4}$$

The evidence lower bound (ELBO) is,

$$\mathsf{ELBO}(\psi) = E_q \Big[\log p(y|\theta) \Big] - \mathsf{KL} \big(q(\theta|\psi) ||\pi(\theta) \big). \tag{5}$$

By maximizing the ELBO, we encourage the optimization process to choose a candidate distribution which

- explains the observed data well
- is similar to the prior distribution

Importance weights

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

$$w_s = \frac{p(\theta_s, y)}{q(\theta_s | \psi^*)} \tag{6}$$

for $\theta_s \in \{\theta_1, ..., \theta_S\}$ evaluation of the proposal.

- They capture 'how close' the proposal is from the target.
- The success of plain importance sampling depends entirely on how many moments the importance ratios r_s possess.
- The existence of the moments is by no means guaranteed.

Generalized Pareto distribution fit

ntroduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals We fit $w_s|w_s>u$ with a Generalized Pareto of density. The Generalized Pareto distribution possesses $\lfloor 1/k \rfloor$ finite moments when k>0.

Diagnostics for divergence

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals Then, \hat{k} approximates

$$k = \inf \left\{ k' > 0 : E_q \left[\left(\frac{p(\theta|y)}{q(\theta|\psi^*)} \right)^{1/k'} \right] < \infty \right\}, \tag{7}$$

a measure of divergence between $p(\theta|y)$ and $q(\theta|\psi^*)$. Vehtari et al. (2017) and Yao et al. (2018) have defined the following thresholds:

- $\hat{k} <$ 0.5: The VI posterior approximation is close enough to the true posterior.
- 0.5 $< \hat{k} <$ 0.7: The VI posterior approximation is not perfect but can be helpful.
- $0.7 > \hat{k}$: The VI posterior approximation is not good.

Diagnostics for VI approximation under a Bayesian linear regression framework

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

Four prior specifications for β : (1) $\beta \sim \mathcal{N}(0, 10)$, (2) $\beta \sim \mathcal{N}(0, 2)$, (3) $\beta \sim \mathcal{N}(0, 100)$, (4) $\beta \sim \mathcal{N}(100, 10)$.

Diagnostics for VI approximation under a Bayesian linear regression framework

Introduction

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

Four prior specifications for β : (1) $\beta \sim \mathcal{N}(0, 10)$, (2) $\beta \sim \mathcal{N}(0, 2)$, (3) $\beta \sim \mathcal{N}(0, 100)$, (4) $\beta \sim \mathcal{N}(100, 10)$.

Posterior Inference via Credible Intervals

Introductior

Simulationbased Calibration

Pareto Smoothed Importance Sampling

Posterior Inference via Credible Intervals

Goal: Estimate CI using our posterior approximation $ilde{\pi}(\cdot|y)$