MTH 525: Topology

Evan Fox (efox20@uri.edu)

September 12, 2022

Question 1.

Which of the 9 topologies in the example given in the chapter are comparable. Numbering from top left to right,

Number	Finer than	Corser than	Not comparable with
1	none	1-9	none
2	8,9	1,7	3,4,5,6
3	1,4,7	6,9	2,5,8
4	1	3,8,9	2,5,6,7
5	1	9	2,3,4,6,7,8
6	1,3,4,7	9	2,5 ,8
7	1	2,3,6,8,9	4,5
8	1,2,4,7	9	3,5,6
9	1-9	none	none

Question 2.

Show that \mathbb{R}_K and \mathbb{R}_l are not comparable.

Proof. Let x=0, and condisder $X=(-1,1)-K\in\mathbb{R}_K$. For any $[a,b)\subset\mathbb{R}_l$, with $0\in[a,b)$, then 0< b and we may use the archimedian property of \mathbb{R} to fix $N\in\mathbb{N}$ such that $n\geq N$ implies $\frac{1}{n}< b$, so $\frac{1}{n}\in[a,b)$ since $\frac{1}{n}\notin X$, there is no basis element of \mathbb{R}_l containg zero that is a subset of X. Now consider the basis element of \mathbb{R}_l , [0,b). We must show there is no basis element of \mathbb{R}_K containg 0 that is a subset of [0,b). In order for 0 to be in a basis element of \mathbb{R}_K , we must have a<0, but then $a\notin[0,b)$.

Question 3.

Show that $\mathfrak{B} = \{(a,b)|a,b\in\mathbb{Q}\}$ generates the standard topology on \mathbb{R} . Show that the this statement if false with the lower limit topology.

Proof. We have by earlier result that $\mathfrak B$ is a basis if for every open set U and for all $x \in U$ there exists an element of $\mathfrak B$ containg x that is a subset of U. So let $U \subset R$ be open, for $x \in U$, x must appear in some basis element, say $x \in (a,b)$ for $a,b \in \mathbb R$. Now by the density of the rationals in $\mathbb R$, there exists $s,t \in \mathbb Q$ such that

and

Thus $x \in (s,t) \subset (a,b) \subset U$; it follows that \mathfrak{B} generates the topology on \mathbb{R} .

Now consider \mathbb{R}_l . We have that [e,3) is an open subset of \mathbb{R}_l , but there is no element of $\{[a,b)|a,b\in\mathbb{Q}\}$ containg e which is a subset of [e,3) since we must choose a as a rational if e< a then we have a contradiction and if e>a then [a,b) is not a subset of [e,3). Hence, $\{[a,b)|a,b\in\mathbb{Q}\}$ does not form a basis for the lower limit topology on \mathbb{R} .

Question 4.

If A is a basis for the topology on X then the topology generated by A equals the intersection of all topolgies containg A

Proof. Let A be a basis for the topology on X, \mathfrak{T} . Let $\{\mathfrak{D}_{\alpha}\}$ be the collection of all topologies containg A. We want to show that $\mathfrak{T} = \bigcap \mathfrak{D}_{\alpha}$. If $U \in \mathfrak{T}$ then U is equal to a union of elements of A, since A is contained in each \mathfrak{D}_{α} so is U, since each \mathfrak{D}_{α} is a topology. Now if $U \in \bigcap \mathfrak{D}_{\alpha}$, then it is in every topology containing A, since \mathfrak{T} is one such topology we have $U \in \mathfrak{T}$. In the case that A is a subbasis generating the topology \mathfrak{T}_{A} . If $U \in \mathfrak{T}_{A}$, then U is a union of finite intersections of elements of A, then since $A \in \mathfrak{D}_{\alpha}$ it follows from the definition of a topology that U will be in each \mathfrak{D}_{α} hence it is in the intersection. The second part of the argument is a repeat of the above.

Question 5.

is the finite complement topology true if we replace finite with infinite?

Ans: No, under \mathbb{Z} we have a collection of open sets

$$\mathfrak{U} = \{..., [-4, -3], [-2, -1], [1, 2], [3, 4], ...\}$$

whose union equals $(-\infty, -1] \cup [1, \infty)$. Then it is clear the complement is not infinite.

Question 6.

Let $\{\mathfrak{T}_{\alpha}\}$ be a collection of topologies on X prove that the union and intersection of this set are topologies on X.

Proof. It is clear that $X, \varnothing \in \bigcap \{\mathfrak{T}_{\alpha}\}$. Now suppose that $\{U_{\beta}\}_{\beta \in J} \subset \bigcap \{\mathfrak{T}_{\alpha}\}$. Since each U_{β} is in the intersection, $\{U_{\beta}\} \subset \mathfrak{T}_{\alpha}$ for all α . Then since \mathfrak{T}_{α} is a topology, the union is in each \mathfrak{T}_{α} and thus is contained in the intersection. Now let $U_1, ..., U_n$ be a finite collection of elements in $\bigcap \{\mathfrak{T}_{\alpha}\}$. Then each U_i is in all \mathfrak{T}_{α} and again by the definition of topology the finite intersection over U_i is in each \mathfrak{T}_{α} and thus contained in the intersection.

Now in general the union of two topologies need not be a topology. How ever, the union of topologies on X will form a subbasis for a topology on X.

and this topology is the smallest one containg each of the topologies in the union. To see that the union is not always a topology just consider a case where the topologys are not comparable. The fact the the union forms a subasis is clear since the elements of any one topology for a subbais $(X \in \mathfrak{T})$ makes T a subbasis). It is also clear that the topology generated by the subbasis contains all topologys in the union. Now suppose there exists a topology \mathfrak{T} such that $\mathfrak{T}_{\alpha} \subset \mathfrak{T}$ for all α . Then if U is open is the topology generated by the subbasis $\cup \{\mathfrak{T}_{\alpha}\}$, U is a union of finite intersections of elements of $\cup \{\mathfrak{T}_{\alpha}\}$, hence by definition of topology U is open in \mathfrak{T} .