Limites, continuité, compacité, connexité par arcs

- 1. On pose pour (x,y) dans \mathbb{R}^2 , $||(x,y)|| = \sqrt{x^2 + y^2}$. Montrer que lorsque $(x,y) \to (0,0)$ on a $x^2 = o(\|(x,y)\|), y^2 = o(\|(x,y)\|)$ et $xy = o(\|(x,y)\|)$.
- 2. Déterminer les limites suivantes lorsqu'elles existent :
- $\star xy \ln x$ quand $(x, y) \to (0, 1)$.
- $\star (x^2 + y^2) \sin \frac{1}{xy}$ quand $(x, y) \to (0, 0)$.
- $\star \frac{\sin(xy)}{x} \text{ quand } (x,y) \to (0,2).$ $\star \frac{y}{x} \text{ quand } (x,y) \to (0,0).$
- $\star \frac{x^2y}{x^2+y^2}$ quand $(x,y) \to (0,0)$.
- $\star y \ln x \text{ quand } (x,y) \to (0,0)$
- 3. Soit f définie sur \mathbb{R}^2 par $f(x,y) = \frac{x^3}{x^2 + u^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. f est-elle continue sur \mathbb{R}^2 ?
- **4.** Soit f définie sur \mathbb{R}^2 par $f(x,y)=\frac{xy}{x^2+y^2}$ si $(x,y)\neq (0,0)$ et f(0,0)=0. f est-elle continue sur \mathbb{R}^2 ?
- **5.** Soit f définie sur \mathbb{R}^2 par $f(x,y) = \frac{e^{xy} 1}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. f est-elle continue sur \mathbb{R}^2 ?
- **6.** Soit $h(x,y) = \frac{e^{xy} 1}{x}$.

Montrer que l'on peut prolonger h par continuité à \mathbb{R}^2 tout entier.

- 7. Soit $\alpha > 0$ et f définie sur \mathbb{R}^2 par $f(x,y) = \frac{x|y|^{\alpha}}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. f est-elle continue sur \mathbb{R}^2 ?
- 8. Soit $D = \{(x,y) \in \mathbb{R}^2 / xy > -1\}$. Dessiner D et montrer que c'est un ouvert de \mathbb{R}^2 . On définit la fonction g sur D par g(0,0) = 0 et $g(x,y) = \frac{\ln(1+xy)}{\sqrt{x^2+y^2}}$ pour (x,y) dans $D \setminus \{0\}$. Est-elle continue sur D?

9. Indiquez si les ensembles suivants sont ouverts ou s'ils sont fermés.

$$\{(x,y) \in \mathbb{R}^2 : x^2 + y^3 < 1\}$$
 $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \text{ et } x \ge 0\}$

$$\{(x,y) \in \mathbb{R}^2 : 2 < xy < 3\}$$
 $\{(x,y) \in \mathbb{R}^2 : 2 < xy \text{ ou } x^2 > y + 3\}$

- **10.** Soit $A = \{(x,y) \in (\mathbb{R}_+^*)^2, 2 \le xy \le 4, 1 \le x^2 y^2 \le 9\}$. Dessiner A et montrer que A est compact.
- **11.** Soit a > 0 et $D_a = \{(x, y) \in (\mathbb{R}_+^*)^2, x^3 + y^3 \le a^3\}$. Montrer que D_a est compact.
- 12. Les ensembles suivants sont-ils compacts?

$$\{(x,y)\in\mathbb{R}^2:x^2+y^4=1\}\quad \{(x,y)\in\mathbb{R}^2:x^2+y^5=2\}\quad \{(x,y)\in\mathbb{R}^2:x^2+y^2+xy\leq 1\}$$

$$\{(x,y)\in\mathbb{R}^2:x^2+y^2+8xy\leq 1\}\quad \{(x,y)\in\mathbb{R}^2:y^2=x(1-2x)\}$$

13. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction continue telle que $\lim_{||x|| \to +\infty} f(x) = +\infty$ Montrer que f admet un minimum absolu sur \mathbb{R}^2 .

Indication : On pourra considérer r > 0 tel que pour tout x vérifiant ||x|| > r on ait $f(x) \ge f(0,0)$.

- 14. Soit E un espace vectoriel normé muni d'une norme $\| \|$.
 - 1. Soit A un compact de E. Rappeler pourquoi pour tout x dans E il existe y_0 appartenant à A tel que $||x y_0|| = \inf_{y \in A} ||x y||$. On note alors $d(x, A) = ||x y_0||$.
 - 2. Soit A et B deux compacts de E. Montrer qu'il existe x_0 dans A et y_0 dans B tels que $\|x_0 y_0\| = \inf_{(x,y) \in A \times B} \|x y\|$. On note alors $\|x_0 y_0\| = d(A,B)$. En déduire que d(A,B) > 0 si et seulement si A et B sont disjoints.
- **15.** Montrer que $\mathbb{R}^2 \setminus \{(0,0)\}$ est connexe par arcs.
- **16.** L'ensemble $\{(x,y) \in \mathbb{R}^2/xy > 1\}$ est-il connexe par arcs ? Et $\{(x,y) \in \mathbb{R}^2/xy < 1\}$?