(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-171971 (P2002-171971A)

(43)公開日 平成14年6月18日(2002.6.18)

(51) Int.Cl. ⁷	·	酸別配号		FΙ			Ť	7]}*(参考)
C 1 2 N	15/02			C07K	16/28		•	4B024
C 0 7 K	16/28		•	C12P	21/08			4B064
C 1 2 N	5/10			C 0 1 N	33/53	•	K	4 B 0 6 5
C 1 2 P	21/08	•			33/577		В	4H045
G 0-1 N	33/53	•		(C12P	21/08			•
		a	蒼 苗求 末	、簡 水能	求項の数17	OL	(全 17 頁)	最終頁に続く

(21) 出顧番号 特顯2000-372713(P2000-372713)

(22) 山瀬日 平成12年12月7日(2000.12.7)

特許法第30条第1項適用申請有り 平成12年11月15日 日本免疫学会開催の「第30回日本免疫学会学術集会」に おいて文書をもって発表 (71)出顧人 000000941

鐘澗化学工業株式会社

大阪府大阪市北区中之島3丁目2番4号

(72)発明者 大原 高秋

兵庫県神戸市垂水区青山台7-1-1-

1013

(72)発明者 山下 憲司

香川県高松市神在川窪町332 - 3

(72)発明者 角谷 徹

兵庫県加古川市別舟町新野辺90-43

(74)代理人 100086586

弁理士 安富 凍男 (外2名)

最終頁に続く

(54) 【発明の名称】 抗原およびこの抗原を識別するモノクローナル抗体

(57)【要約】

【課題】 CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していない抗原、並びに、この抗原を識別するモノクローナル抗体により、1)抗体の標識によりイムノアッセイ、フローサイトメトリーへの利用、2)ヒト血液からのT細胞及びNK細胞の分離精製、3)ヒトT細胞及びNK細胞の活性化、4)CD4+T細胞及びCD8+T細胞からの、メモリーT細胞の測定又は分離する。

【解決手段】 CD34+ 造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していないHSCA-2抗原(CD43アイソフォーム抗原)、並びに、この抗原を識別するモノクローナル抗体又はその免疫反応性フラグメント。

【特許請求の範囲】

【請求項1】 CD34+造血幹細胞、末梢血T細胞及びNK細胞を認識し、B細胞、単球及び顆粒球を認識しないことを特徴とするモノクローナル抗体。

【請求項2】 マウスモノクローナル抗体である請求項 1記載の抗体。

【請求項3】 受託番号がFERM P-17788であるハイブリドーマの産生するモノクローナル抗体の場合と同じ抗原に結合する請求項1又は2記載の抗体。

【請求項4】 受託番号がFERM P-17788であるハイブリドーマによって産生されるモノクローナル 抗体.

【請求項5】 蛍光標識、放射性同位元素標識又は酵素 標識されている請求項1、2、3又は4記載の抗体。

【請求項6】 請求項1、2、3、4又は5記載の抗体 が結合してなることを特徴とする固体支持体。

【請求項7】 請求項1、2、3又は4記載の抗体の免疫反応性フラグメント。

【請求項8】 蛍光標識、放射性同位元素標識又は酵素 標識されている請求項7記載の免疫反応性フラグメント

【請求項9】 請求項7又は8記載の免疫反応性フラグメントが結合してなることを特徴とする固体支持体。

【請求項10】 CD34+造血幹細胞、末梢血T細胞及びNK細胞を認識し、B細胞、単球及び顆粒球を認識しないモノクローナル抗体を産生することを特徴とするハイブリドーマ。

【請求項11】 受託番号がFERM P-17788 であるハイブリドーマ。

【請求項12】 急性骨髄性白血病患者由来ヒト骨髄芽球様細胞であるKG-1細胞で免役した哺乳動物の抗体産生細胞とミエローマ細胞とを融合させて得られることを特徴とするハイブリドーマ。

【請求項13】 シアリダーゼ感受性であり、分子量が約110×10³ の糖タンパク質であり、CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していないことを特徴とするHSCA-2抗原。

【請求項14】 蛍光標識、放射性同位元素標識又は酵素標識によるイムノアッセイ又はフローサイトメトリーにおいて、請求項5記載の抗体又は請求項8記載の免疫反応性フラグメントを用いることを特徴とする、請求項13記載の抗原を測定する方法。

【請求項15】 請求項1、2、3若しくは4記載の抗体又は請求項7記載の免疫反応性フラグメントを用いることを特徴とする、ヒト血液からT細胞及びNK細胞を分離精製する方法。

【請求項16】 請求項1、2、3若しくは4記載の抗体又は請求項7記載の免疫反応性フラグメントを用いることを特徴とする、ヒトT細胞及びNK細胞を活性化す

る方法。

【請求項17】 請求項1、2、3若しくは4記載の抗 体又は請求項7記載の免疫反応性フラグメントを用いる ことを特徴とする、CD4+ T細胞及びCD8+ T細胞 からメモリーT細胞を測定又は分離する方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在しておらず、シアリダーゼ感受性であり、分子量が約110×10³の糖タンパク質である新規なHSCA-2抗原、並びに、この抗原を識別するモノクローナル抗体HSCA-2(以下、HSCA-2抗体と称する)に関する。本発明のHSCA-2抗体は、1)抗体の標識によりイムノアッセイ、フローサイトメトリーへの利用、2)ヒト血液からのT細胞及びNK細胞の分離精製、3)ヒトT細胞及びNK細胞の活性化、4)CD4+T細胞及びCD8+T細胞からの、メモリーT細胞の測定又は分離に活用できる。また、本発明の抗原に対する新たな抗体を作製することによって、T細胞の活性化を阻害する、自己免疫疾患の治療薬としての抗体を見い出すこともできる。

[0002]

【従来の技術】CD43分子(ロイコシアリン、シアロホリン、ロイコサイトシアログリコプロテイン)は、顆粒球、単球/マクロファージ、T細胞、NK細胞などに発現し、循環(休止期)B細胞や赤血球には発現していないことが知られている膜抗原で、T細胞及びNK細胞特異的には発現していない。その分子構造は、385のアミノ酸からなる「型膜貫通性糖タンパク質で、細胞外領域には多量のシアル化されたムチン様のO型糖鎖が付着する(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)。

【0003】成熟T細胞の同定に用いられるCD抗原としては、CD2、CD3などが挙げられる。全NK細胞の同定に用いられるCD抗原としては、CD56、CD94などがある(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)。T細胞の活性化に関連するCD抗原としては、CD2、CD28、CD43、CD44、CD73などがある(笹月健彦監訳、免疫生物学、南江堂(1995)。

【0004】既存のCD43抗本でT細胞の活性化は報告されているが(メンツァーら、J.Exp.Med.、165:1383(1987))、既存の抗体は単球とも反応するので、CD43抗体の活性が、抗原提示細胞である単球を活性化した結果であるか否かは説明できていない。NK細胞の活性化に関連するCD抗原としては、CD16、CD43、CD57などがある(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)。

【0005】メモリーT細胞のマーカー抗原としては、CD45RATCD45RO+、ナイーブT細胞の場合は、CD45RA+CD45ROTであることが知られている(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)。これまでに、メモリーT細胞を認識するCD45RO抗体の代わりになる抗体は知られていないし、ましてや、このCD45RO抗体以上に精密に、メモリーT細胞を認識する抗体は知られていない。CD34+造血幹細胞に高陽性率で発現している抗原としては、CD43、CD44などがある(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)。

[0006]

【発明が解決しようとする課題】本発明の目的は、CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していない新規なHSCA-2抗原、並びに、この抗原を識別するモノクローナル抗体を、1)抗体の標識によりイムノアッセイ、フローサイトメトリーへの利用、2)ヒト血液からのT細胞及びNK細胞の分離精製、3)ヒトT細胞及びNK細胞の活性化、4)CD4+T細胞及びCD8+T細胞からの、メモリーT細胞の、従来法よりも精密な測定又は分離に活用することにある。

[0007]

【課題を解決するための手段】本発明者らは、KG-1 細胞をBALB/cマウスに免疫することにより調製したモノクローナル抗体が、新規なHSCA-2抗原を識別することを見い出し、上記目的を達成すべく鋭意検討を重ねた結果、本抗体が、上記目的を満たし得るものであることを確認し、本発明を完成するに至った。すなわち、本発明は、CD34+造血幹細胞、末梢血T細胞及びNK細胞を認識し、B細胞、単球及び顆粒球を認識しないモノクローナル抗体又は免疫反応性フラグメントである。また、これらモノクローナル抗体又は免疫反応性フラグメントが結合してなる固体支持体でもある。

【0008】また、本発明は、CD34+造血幹細胞、末梢血T細胞及びNK細胞を認識し、B細胞、単球及び顆粒球を認識しないモノクローナル抗体を産生することを特徴とするハイブリドーマ、又は、急性骨髄性白血病患者由来ヒト骨髄芽球様細胞であるKG-1細胞で免役した哺乳動物の抗体産生細胞とミエローマ細胞とを融合させて得られることを特徴とするハイブリドーマでもある。さらに、本発明は、シアリダーゼ感受性であり、分子量が約110×10³の糖タンパク質であり、CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していないHSCA-2抗原でもある。

【0009】さらにまた、本発明は、蛍光標識、放射性 同位元素標識又は酵素標識によるイムノアッセイ又はフローサイトメトリーにおいて、上記抗体又は上記免疫反 応性フラグメントを用いて、上記抗原を測定する方法でもある。さらにまた、本発明は、上記抗体又は上記免疫 反応性フラグメントを用いて、ヒト血液からT細胞及び NK細胞を分離精製する方法でもある。

【0010】さらに、本発明は、上記抗体又は上記免疫 反応性フラグメントを用いて、ヒトT細胞及びNK細胞 を活性化する方法でもある。また、本発明は、上記抗体 又は上記免疫反応性フラグメントを用いて、CD4+T 細胞及びCD8+T細胞からメモリーT細胞を測定又は 分離する方法でもある。以下に本発明を詳述する。

【0011】本発明においては、特に記載のない限り、当該分野で公知であるモノクローナル抗体の作製及び分析方法が採用される。以下に、本発明を説明する上で用いられる用語を説明する。「HSCA-2抗原」とは、CD34+造血幹細胞、末梢血T細胞及びNK細胞に存在し、B細胞、単球及び顆粒球には存在していない、シアリダーゼ感受性であり、分子量が約110×10³の糖タンパク質である新規な抗原である。

【0012】また、「HSCA-2抗体」とは、上記HSCA-2抗原を識別するモノクローナル抗体である。HSCA-2抗体は、急性骨髄性白血病患者由来ヒト骨髄芽球様細胞であるKG-1細胞で免疫された哺乳動物の脾臓細胞とミエローマ細胞とを融合して得られるハイブリドーマにより産生されるモノクローナル抗体である。HSCA-2抗体は、CD43分子の一部のエピトープを認識し、それを既存のCD43抗体で阻害することができる。したがって、HSCA-2抗原は、CD43アイソフォーム抗原ということもできる。

【0013】「造血幹細胞」とは、赤血球、白血球、巨核球などの骨髄細胞のみならず、T細胞、B細胞などのリンパ系を含めた全ての血液系への分化能を有する多能性の細胞であって、自己増殖可能な細胞をいう。造血幹細胞は、CD34抗原が陽性でかつCD38抗原が陰性である(CD34+CD38-;以下CD抗原の陽性、陰性の記載は同様にして表記する)ことにより特徴付けられる。

【0014】「メモリーT細胞」とは、一度ある特定の抗原に感作された生体は、同一抗原による刺激に対して強力な免疫応答を引き起こすが、この際に必要な免疫記憶を司るT細胞のことである。

【0015】以下、さらに本発明の詳細について説明する。本発明のモノクローナル抗体を産生するハイブリドーマは、KG-1細胞を感作抗原として使用して、基本的には、これを通常の免疫法を応用して免疫し、通常の細胞融合法を応用して細胞融合させ、通常のクローン化法を応用して、クローン化することによって作製することができる。

【0016】より具体的には、KG-1細胞を感作抗原として使用して、非免疫哺乳動物として、ヒト以外のマウス、ラット、ウサギ、モルモット、ヒツジ、ヤギ、ニ

ワトリなどの腹腔内、皮下、フットパッドなどに投与する。細胞融合相手となるミエローマ細胞が、通常はマウス由来のものであるため、特にマウスを免疫することが好ましい。免疫は、一般的な方法により、例えば、前記 KG-1 細胞をPBS(-)(phosphate-buffered saline, <math>pH7.2)や生理食塩水などで適当量に希釈、懸濁したものを、動物に毎週、 $1\sim2$ ヶ月投与することが好ましい。

【0017】非免疫動物から、脾臓細胞、リンパ球、末 梢血などの抗体産生細胞を採取し、これらと腫瘍細胞株 であるミエローマ細胞とを細胞融合させてハイブリドー マを作製する。抗体産生細胞としては、上記KG-1細 胞を最終投与後に摘出した脾臓細胞を使用するのが好ま しい。ミエローマ細胞としては、公知の細胞株、例え ば、P3-NSI/1-Ag4-1細胞 (略称NS-1 細胞)(ケーラーら、Eur. J. Immunol.、 6:511(1976))、SP2/0-Ag14細胞 (略称SP2細胞) (シュルマンら、Nature、2 76:269(1978))、FO細胞(デサントグロ スら、J. Immunol. Meth. 、35:1 (1 980))などがよく用いられる。ハイブリドーマの培 養上清から目的の抗体の取得を容易にするために、ミエ ローマ細胞としての固有の免疫グロブリンを分泌しない 株を使用することが望ましい。この点で、NS-1細胞 が望ましい。

【0018】抗体産生細胞とミエローマ細胞との細胞融合は、基本的には、通常の方法、例えば世界で最初に実施したケーラーとミルシュタインの方法(ケーラーら、Nature、256:495(1975))に準じて行うことができる。

【0019】より具体的には、細胞融合促進剤の存在下に、通常の栄養培地中で実施される。細胞融合促進剤としては、ポリエチレングリコール(PEG)、センダイウイルスなどが用いられる。細胞融合は、抗体産生細胞とミエローマ細胞との所定量を、例えばミエローマ細胞に対して抗体産生細胞を約1~10倍程度、用いて行われる。細胞融合時の培地としては、ミエローマ細胞の増殖に適した培地、例えばRPMI 1640培地、が例示できる。このような培地中で両細胞を混合し、37℃に保ったポリエチレングリコール(例えば、平均分子量1,000~6,000のもの)溶液を培地に30~60%(W/V)の濃度で添加し、混合することで細胞融合を開始する。さらに、適当な培地を添加し、遠心分離による上清の除去を繰り返すことにより、目的とするハイブリドーマが得られる。

【0020】このハイブリドーマは、通常の選択培地、例えば、ヒポキサンチン(H)、アミノプテリン(A)及びチミジン(T)を含有するHAT培地で培養することにより選択される。HAT培地では、目的のハイブリーマ以外の細胞が死滅するまで数日間~数週間培養す

る。ハイブリドーマのコロニーが確認できるようになったら、その培養上清中の抗体をスクリーニングする。培養上清中の抗体のスクリーニングは、例えば、固定した細胞を抗原とするエライザ(ELISA)法により培養上清中の抗体活性を測定することにより実施できる(安東民衛ら、単クローン抗体実験操作入門、講談社サイエンティフィック(1993)pp. 126)。これによりスクリーニングした目的の抗体を産生するハイブリドーマは、常法により限界希釈法を繰り返すことにより、最終的に単一のハイブリドーマクローンからなるコロニーとして得ることができる。

【0021】こうして得られる本発明のモノクローナル 抗体を産生するハイブリドーマは、通常のハイブリドー マと同様に、公知の培地、例えば、RPMI 1640 や、ダルベッコ改変培地で、培養、継代できる。また、 液体窒素中で長期間保存することもできる。

【0022】本発明のハイブリドーマを大量に15%牛胎児血清(FCS)-RPMI 1640培地で培養することにより、本発明のモノクローナル抗体を培養上清から調製することもできる。また、マウスの腹腔にハイブリドーマを注射して生じた腹水から、本発明のモノクローナル抗体を調製することもできる。

【0023】こうして調製したモノクローナル抗体は、通常の抗体の精製方法によって精製してもよい。抗体の精製方法としては、硫酸アンモニウムなどによる塩析、ジエチルアミノエステル(DEAE)誘導体及びカルボキシメチル(CM)誘導体などを用いたイオン交換クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、ゲルろ過クロマトグラフィー、プロテインA又はプロテインGを用いたアフィニティークロマトグラフィーなどの方法があり、これらの方法を組み合わせて精製することができる。

【0024】上記のようにして得られる本発明のモノクローナル抗体の免疫グロブリンクラスは、特に限定されるものではないが、IgG1、カッパ鎖が例示される。【0025】また、本発明のモノクローナル抗体を、抗原結合部位(Fab)を分解しないタンパク質分解酵素、例えば、パパイン、ペプシンなどで消化し、さらに、タンパク質の単離精製を常法により行い得られた、Fab、F(ab′)2などの、抗体の免疫反応性フラグメントであっても、本発明のモノクローナル抗体と同様の性質を保持する限り、本発明のモノクローナル抗体と同様に使用することができる。

【0026】本発明のモノクローナル抗体を抗原と反応させた後、さらに2次抗体として、フルオレッセインイソチオシアネート(FITC)などの蛍光標識物質、125 Iなどの放射性同位元素、又は、アルカリフォスファターゼ、ペルオキシダーゼなどの酵素によって標識した免疫グロブリンを反応させることにより、抗原を検出することができる。また、本発明のモノクローナル抗

体そのものを、フルオレッセインイソチオシアネート (FITC)などの蛍光標識物質、125 Iなどの放射 性同位元素、又は、アルカリフォスファターゼ、ペルオ キシダーゼなどの酵素によって標識することにより、抗 原を検出することもできる。

【0027】また、本発明のモノクローナル抗体を固体支持体(例えば、プロテインA若しくはプロテインGを固定化したセファロースやアガロースなどの樹脂、又は、臭化シアン活性化セファロースやアガロースなどの樹脂)に固定化することにより、細胞分離用カラムを作製することができる。このカラムへ、ヒト血液を流してやると、T細胞及びNK細胞はカラムに吸着したままになるので、血中の他の細胞と分離することができる。

【0028】さらに、本発明のモノクローナル抗体は、ヒトT細胞及びNK細胞を活性化することができる。従って、ツベルクリンタンパク質(PPD)を加えたヒト末梢血単球細胞を、ヒト血清(56℃で30分間処理したもの)を10%含んだRPMI 1640存在下で培養し、そこにHSCA-2抗体を添加することにより、HSCA-2抗体はPPD抗原に対するトリチウムチミジンの取り込み反応を促進できる。

【0029】また、本発明のモノクローナル抗体を用いて、驚くべきことに、CD4+T細胞及びCD8+T細胞から、従来法よりも効率的に、メモリーT細胞を測定又は分離することができる。すなわち、臍帯血又は成人末梢血単核球細胞にCD4及びCD8抗体処理を行い、FACStarなどでCD4+細胞及びCD8+細胞を分取する。このようにして調製した臍帯血又は成人末梢血T細胞を、FITC標識したHSCA-2抗体及びPE標識したCD45RO抗体で処理した後、FACScanなどで解析、又は、FACStarなどで分離することにより、HSCA-2Hish 画分のみにメモリー活性が検出できることを確認できる。メモリー活性の検出は、前述のT細胞活性化測定(ヒト末梢血単球細胞にツベルクリンタンパク質を加えた系)で行うことができる。

【0030】従来のCD45RO抗体を用いたメモリー T細胞の検出方法では、CD45RO+ HSCA-2 L。 Mの画分及びCD45RO+ HSCA-2 の画分 も一緒に検出することになるので、本発明のHSCA-2抗体を用いた方法のほうが、より精密に、認識できる という点で優れている。本発明のHSCA-2抗体を用 いたメモリーT細胞の検出方法は、種々の診断、検査に 利用できる。

【0031】また、本発明のHSCA-2抗体を用いたメモリーT細胞の分離により、種々の免疫関連疾患の治療効果が期待できる。例えば、アレルギーを引き起こす原因となっているメモリーT細胞を除去することにより、アレルギーを根治することも期待できる。逆に、本発明のHSCA-2抗体を用いたメモリーT細胞の分離

により、自己の造血幹細胞移植時に、HSCA-2抗体を用い分離したメモリーT細胞を一緒に戻してやることにより、以前の自己の免疫系に近い免疫系を構築してやることも期待できる。

【0032】本発明のHSCA-2抗原に対する新たな 抗体を、常法通り作製し、T細胞の活性化を阻害する抗 体を見い出すこともできる。このような抗体は、自己抗 体又は自己抗原感作リンパ球によって引き起こされる自 己免疫疾患の治療薬になり得る。

[0033]

【実施例】以下、本発明におけるHSCA-2抗原(CD43アイソフォーム抗原)及びこの抗原を識別するモノクローナル抗体についてさらに具体的に説明する。本発明は以下の実施例によって限定されるものではない。【0034】(実施例1:HSCA-2抗体産生ハイブリドーマの調製、及び、HSCA-2抗体の産生)(a)感作抗原

感作抗原として、急性骨髄性白血病患者由来ヒト骨髄芽球様細胞であるKG-1細胞(JCRB細胞バンク)を用いた。KG-1細胞培養を、細胞 1.0×10^5 /m 1の濃度になるように、15%牛胎児血清(FCS)-RPMI 1640培地(株式会社日研生物医学研究所製)15m1に懸濁し、カルチャーディッシュ(グライナー社製)(直径10cm)に入れ、 $5\%CO_2$ インキュベーター中、37%で培養を行った。培養4%5日目に、細胞を4%、240Gで10分間遠心分離して回収し、PBS(一)($phosphate-bufferedsaline、pH7.2;株式会社日研生物医学研究所製)で2回洗浄した後、<math>1.0\times10^7$ 個の細胞を $200\mu1$ のPBS(一)に懸濁した。これを感作抗原として用いた。

【0035】(b)免疫

免疫するマウスは、BALB/cのメス(8週齢)を用いた。上述のKG-1細胞を感作抗原としてマウスに皮下注射した。以後、同様の細胞(1.0×10^7 個)を10日目、16日目、23日目、そして30日目に皮下注射し、最終免疫として、37日目に同様の細胞(1.0×10^7 個)を腹腔内に注射した。

【0036】(c)ハイブリドーマの調製

最終免疫から4日後すなわち最初の免疫から41日目に、マウスから脾臓を摘出し、PBS(-)を入れたディッシュに入れ、スライドグラス2枚のすりガラス部分を用いて、脾臓をつぶし、脾臓細胞を回収した。細胞をチューブに入れ、4℃、240Gで10分間遠心分離し、上清を捨てた。

【 0 0 3 7 】 これに対し、融合相手のX 6 3 細胞由来の骨髄腫細胞であるP 3 - N S I / 1 - A g 4 - 1 細胞 (略称N S - 1 細胞)を以下のように調製した。N S - 1 細胞培養を、細胞1.0×10⁵ / m l の濃度になるように、15% + 胎児血清 (FCS) - R P M I 16

40培地 (株式会社日研生物医学研究所製) 15m1に 懸濁し、カルチャーディッシュ (直径10cm) に入れ、 $5\%CO_2$ インキュベーター中、37%で培養を行った。培養4%5日目に細胞を、4%、240Gで10分間遠心分離して回収した。

【0038】次に、脾臓細胞及びNS-1細胞をそれぞ **れRPMI** 1640培地30mlで3回洗浄した後、 脾臓細胞(合計2.89×108個)及びNS-1細胞 (合計8.07×107個)を混合した。RPMI 1 640 培地を加え、10 m 1 にし、ガラスチューブに入 れ、4℃、1,500回転/分で10分間遠心分離し、 上清を除去した。PEG溶液 [ポリエチレングリコール 4,000をPBS(-)に溶解して50%にしたもの (ベーリンガーマンハイム社製) 1 m 1 + ジメチルスル フォキシド0.1ml+RPMI 1640培地0.1 ml]1mlをガラスチューブに1分間かけて加え、1 分間撹拌し、次にRPMI 1640培地1mlを1分 間かけて加え、さらに、RPMI 1640培地1ml を1分間かけて加え、最後に、RPMI 1640培地 7m1を3分間かけて加え、1,000回転/分、10 分間室温で遠心分離し、上清を完全に除去した。

【0039】こうして得られたペレットをほぐして、15%FCS-RPMI 1640培地を適量入れて、細胞濃度を 1×10^7 個/m1にした。この細胞を96ウェル平底プレート(コーニング社製)に、 $100\mu1/$ ウェルまいた。その翌日に、50倍濃縮ヒポキサンチン+アミノプテリン+チミジン(HAT)溶液(大日本製薬社製)を15%FCS-RPMI 1640培地で希釈して2%にしたもの(HAT2%溶液)を $100\mu1/$ ウェル加え、さらにその翌日、そのうち $100\mu1$ を上記のHAT2%溶液 $100\mu1$ を上記のHAT2%溶液 $100\mu1$ を上記のHAT2%溶液 $100\mu1$ を上記のHAT2%溶液 $100\mu1$ に交換した。次に、下記のエライザ(ELISA)法により培養上清中の抗体活性を測定した。

【0040】(d) エライザ法を用いた抗体アッセイ以下に示すポリーレーリジン処理エライザ用96ウェルプレートを準備した。エライザ用96ウェルプレートとしてEIA/RIA高結合型平底プレート(コースター社製)を用い、ポリーレーリジン溶液(50μg/m1)50μ1をプレートの各ウェルに入れた。プレートミキサーで攪拌後、室温で5~30分間放置し、ポリーレーリジン溶液を吸引除去した。さらに、洗浄のために、滅菌超純水100μ1をプレートの各ウェルに入れ、吸引除去した。この洗浄操作はさらに2回繰り返し、クリーンベンチ内にプレートを放置して乾燥させた。こうしてポリーレーリジン処理エライザ用96ウェルプレートを準備した。

【0041】次に、免疫原に用いたKG-1細胞(4. 8×106個/96ウェルプレート)をアールの緩衝塩

類溶液(EBSS)(株式会社日研生物医学研究所製) で3回洗浄し、PBS (-)で1×106個/mlの細 胞濃度として、上記のプレートの各ウェルに50μ1ず つ分注した。室温で15分間放置して、細胞が底面に接 着するのを待ち、800回転/分で遠心分離した。上清 を吸引除去後、0.05%のグルタルアルデヒドーPB S(-)を50µ1ずつ静かに各ウェルに入れ、室温で 3分間放置した後、PBS (-) 100 μ 1 を各ウェル に入れ、吸引除去した。さらに、PBS(-)で3回洗 浄後、ブロッキング溶液(0.2%ゼラチン、0.1% BSA、100mMグリシン、0.1%アジ化ナトリウ ム添加PBS(-))100μ1を各ウェルに入れ、吸 引除去した。もう一度、ブロッキング溶液100μ 1 を 各ウェルに入れ、室温で1時間静置した後、吸引除去 し、ハイブリドーマの培養上清100μ1を各ウェルに 入れ、室温で2時間以上反応させた。ウェルを0. 1% ゼラチン添加PBS (-) -0. 05%Tween20 溶液150μ1で3回洗浄した。

【0042】次に、1,500倍希釈したヤギIgG抗 体(マウスIgG、IgA、IgMに対する抗体;カッ ペル社製) 100μ1を各ウェルに入れ、室温で1時間 以上反応させた。ここでウェルを0.1%ゼラチン添加 PBS-0.05%Tween20溶液150μ1で3 回洗浄した。オルトフェニレンジアミン(OPD)一過 酸化水素溶液(0.3%OPD、0.02%過酸化水素 を0.05Mクエン酸緩衝液(pH4.0)に溶解した もの)100μ1を各ウェルに入れ、室温で10分間放 置し、発色を確認後、1 N硫酸-2 mMアジ化ナトリウ **ム溶液100μlをさらにウェルに加え、攪拌した。最** 後に、492nmの波長の吸光度(OD492)をプレ ートリーダー(大日本製薬社製)で読み、発色色素量を 測定し、抗体の活性を判定した。本実験の陽性対照とし て、KG-1細胞を免疫したマウスの脾臓細胞採取前の 血清をPBS(一)で500倍希釈した溶液を用い、陰 性対照として、通常のマウスの血清をPBS (-)で5 00倍希釈した溶液を用いた。HSCA-2抗体の培養 上清のOD492は、0.137、陰性対照のOD49 2は0.026、陽性対照のOD492は0.544で あった。

【0043】(e)シングルセルクローニング 上記実施例1(d)で得られたKG-1細胞結合活性を 有するモノクローナル抗体HSCA-2を、限界希釈法 によりシングルセルクローニングした。すなわち、ハイ ブリドーマが1個/ウェルとなるように、クローニング 培地 [15%FCS-RPMI 1640培地に5% (w/w)の濃度になるようにブライクローン(大日本 製薬社製)を添加したもの]に懸濁し、その懸濁液を1 00 μ 1ずつ、胸腺細胞をフィーダー細胞としてまいた 96ウェル平底プレート(コーニング社製)に分注し て、37 $\mathbb C$ 、5% $\mathbb C$ 0₂存在下で培養した。

【0044】フィーダー細胞の調製の仕方は、以下のよ うにした。BALB/cマウスから、胸腺を摘出し、ピ ペッティングで細胞をばらばらにして、ヒポキサンチン **/チミジン (HT) を含む15%FCS-RPMI 1** 640培地に懸濁した。その細胞濃度を5×106個/ mlに合わせ、100μlずつ各ウェルに分注した。 【0045】約2週間後に、ウェル当たり1個のハイブ リドーマが生育している培養上清を100μ1回収し て、抗体活性の有無を上記(d)エライザ法を用いた抗 体アッセイにて調べた。こうして陽性クローンに対し て、上記と同様のシングルセルクローニングを合計5回 行い、抗体産生が安定でかつ完全にHSCA-2抗体を 産生しているハイブリドーマクローンを得た。このHS CA-2抗体産生ハイブリドーマは、Mouse-Mo use hybridoma HSCA-2として、エ 業技術院生命工学工業技術研究所に寄託した。受託番号 は、FERM P-17788である。

【0046】(f) HSCA-2抗体の大量調製と精製 HSCA-2抗体を大量調製するために、ハイブリドー マをマウス腹腔に注射して、HSCA-2抗体を大量に 含む腹水を調製した。すなわち、BALB/cマウスに 1×10^7 個/PBS (-) 1 ml のHSCA-2ハイ ブリドーマを腹腔内に注射し、1~2週間でマウスの腹 部が肥大し、腹水が最大に達した頃に、腹水8.0m1 を採取した。これに等量のPBS (一) 8. 0m1を加 えた後、さらに等量のSAS溶液 (75gの硫酸アンモ ニウムを100mlの純水に50℃に温めて溶かし、4 ℃に1 晩放置して、過剰の硫酸アンモニウムを沈殿除去 して、上清を使用した)16.0m1を添加し、氷中3 0~60分放置した。10,000回転/分、10分 間、4℃で遠心分離後、沈殿にPBS(-)4.2m1. を加え懸濁し、SAS溶液1.05m1も加え、氷中3 0~60分放置した。10,000回転/分、10分 間、4℃で遠心分離した後、上清にSAS溶液2.35 m1加え(33%飽和)、氷中30~60分放置した。 10,000回転/分、10分間、4℃で遠心分離した 後、沈殿を回収し、4mlPBS(一)に溶解した。さ らに、4℃にて、3LのPBS (-) に対して透析し た。

【0047】この硫安分画法で精製した52.4mg (/4ml)中、約10mgを使用して、プロテインGセファロース(アマシャムファルマシアバイオテク社製)2mlでさらに精製した。プロテインGセファロースカラムをバインディングバッファー(MAPSIIキット;日本バイオラッドラボラトリーズ社製)10mlで平衡化した後、抗体サンプルをカラムにアプライし、30mlバインディングバッファーで洗浄した。カラムからの溶出は、0.2Mグリシン/HCl(pH2.2)10mlで行った。クーマシーブリリアントブルー法のキット(日本バイオラッドラボラトリーズ社製)で

回収した抗体溶液のタンパク質濃度を測定すると、1. 20mg/m1で、合計10.8mgであった。

【0048】(実施例2: 抗体のサブクラスの決定)エライザ法により、HSCA-2抗体の免疫グロブリンクラス及びサブクラスを決定した。そのために、マウスハイブリドーマサブタイピングキット(ベーリンガーマンハイム社製)を用いた。抗マウス免疫グロブリン(ヒツジ由来)をコーティング緩衝液(50mM炭酸ナトリウム緩衝液/0.01%アジ化ナトリウム(pH9.4-9.7))で500倍に希釈し、96平底プレートウェル当たり50μ1を入れ、37℃で30分間放置し、洗浄溶液(0.9%塩化ナトリウム/0.1%ツイーン20)200μ1/ウェルで2回洗浄した。後コーティング緩衝液(ゼラチンの分解により得られたペプチドをトリス塩酸緩衝液と塩化ナトリウムで溶解したもの)200μ1/ウェルで、37℃で15分間放置した後、洗浄溶液200μ1/ウェルで2回洗浄した。

【0049】次に、HSCA-2抗体の培養上清を50 µ1/ウェルアプライし、37℃で30分間放置した 後、洗浄溶液200μ1/ウェルで2回洗浄した。さら に、サブクラス特異的抗マウス免疫グロブリンーペルオ キシダーゼ (POD) コンジュゲート (抗マウスIg G、IgG1、IgG2a、IgG2b、IgG3、I gM、IgA、ラムダ鎖及びカッパ鎖)を10倍希釈し て、50μ1/ウェルアプライし、37℃で30分間放 置した後、洗浄溶液200μ1/ウェルで2回洗浄し た。基質溶液[2,2'-アジノビス(3-エチルベン ゾチアゾリン-6-スルホン酸)(ABTS)タブレッ ト1個を5m1の基質緩衝液(過ほう酸塩をクエン酸/ リン酸ナトリウム緩衝液に溶解)に溶解した] 100μ 1/ウェルアプライし、室温で30分以内反応させた。 陽性対照サンプル(抗マウスIgG1)が濃い緑色を呈 したら、4mMアジ化ナトリウム溶液100μ1/ウェ ル加えて、反応を停止させた。プレート各ウェルの40 5nmの吸光度を分光光度計(U2000;日立製作所 製)で測定した。

【0050】結果は、陽性対照サンプルの抗マウスIgGでの405nmの吸光度は1.422、抗マウスIgG1では2.525、抗マウスIgG2aでは0.087、抗マウスIgG2bでは0.049、抗マウスIgG3では0.063、抗マウスIgMでは0.064、抗マウスIgAでは0.057、ラムダ鎖では0.077、カッパ鎖では0.572であった。それに対して、陰性対照サンプルの抗マウスIgG1では0.126、抗マウスIgG2aでは0.093、抗マウスIgG2bでは0.052、抗マウスIgG3では0.060、抗マウスIgMでは0.052、抗マウスIgAでは0.061、ラムダ鎖では0.058、カッパ鎖では0.061、ラムダ鎖では0.058、カッパ鎖では0.122であった。HSCA-2抗体の抗マウスIg

Gでの405nmの吸光度は1.653、抗マウスIgG1では2.564、抗マウスIgG2aでは0.091、抗マウスIgG2bでは0.048、抗マウスIgG3では0.056、抗マウスIgMでは0.061、抗マウスIgAでは0.055、ラムダ鎖では0.064、カッパ鎖では0.261であった。すなわち、HSCA-2抗体の免疫グロブリンクラス及びサブクラスは、IgG1であり、軽鎖(L鎖)のタイプは、カッパ鎖であった。

【0051】(実施例3:HSCA-2抗体反応抗原の 免疫沈降による解析) 15% FCS-RPM I 164 ○培地で培養した、対数増殖期にあるKG-1細胞を 5. 0×107個集めて、PBS (-) で3回洗浄し た。ヒト末梢血単核球細胞もКG-1細胞と同様にして 実施した。ヒト末梢血単核球細胞は、以下のように調製 した。すなわち、15mlポリプロピレン製チューブ (コーニング社製)にヘパリンナトリウム注射液(1 0,000U/m1)0.05m1を入れ、そこに採血 したばかりの末梢血4mlを加え、さらにPBS(-) ✓H[PBS(-)に1%へパリンナトリウム注射液 (1,000U/m1)を加えた]を5m1加え、よく 混ぜた。そこに、リンフォサイトセパレーションメディ ウム (オルガノンテクニカ社製) 3.5mlをチューブ 底に入れて、400Gで30分間、遠心分離した。ここ で、単核球細胞層を集め、PBS(-)/HF[PBS (一)に1%ヘパリンナトリウム注射液(1,000U /m l) 及び2.5%FCSを加えた]を15mlポリ プロピレン製チューブに加えて15mlにして、510 Gで10分間、遠心分離した。沈殿にPBS(-)/H F15mlを加えて懸濁し、240Gで10分間、遠心 分離した。今度は沈殿に10%FCS/RPMI 16 40に懸濁し、細胞数を約1×107個/m1にした。 次に、15m1ポリプロピレンチューブ (ファルコン社 製)に細胞のペレットを集め、そこに150μ1PBS (一)を入れて懸濁し、氷上に放置した。これは使用前 に30℃のインキュベーターで30℃にした。

【0052】これをラクトペルオキシダーゼ(シグマ社製; PBS(-)に溶解して、2mg/m1にした)50 μ 1と、0.5Mリン酸緩衝液 [0.5Mリン酸二水素ナトリウム溶液1.95m1に対して、0.5Mリン酸水素二ナトリウム約3~4m1を加え、pH7.0にした]10 μ 1を入れ、さらに、ヨウ化ナトリウムー125(NEN社製: 低pH、全2mCi)約1mCi分を入れ、速やかに、過酸化水素水(30%過酸化水素水をPBS(-)で1,000倍希釈した)20 μ 1を加えて混合し、30°Cで、4分間インキュベーションした。そこに再度、過酸化水素水(30%過酸化水素水をPBS(-)で1,000倍希釈した) 0μ 1を加え、混合し、室温で、10分間放置し、次に、4°Cに冷やした洗浄緩衝液(0.02%アジ化ナトリウム/2

mMヨウ化カリウム/PBS(-))5mlを加え、 1,500回転/分で、7分間、室温で遠心分離した。 この洗浄操作を3回繰り返した。遠心分離用のチューブ に、牛胎児血清2mlを入れて、その上に、洗浄緩衝液 1mlに懸濁した細胞懸濁液を静かに上層し、1,50 0回転/分で10分間遠心分離した。これを洗浄緩衝液 で2回洗浄した。

【0053】このヨウ化ナトリウム-125ラベルした 細胞の遠心分離ペレットに、O.5ml/ニデットP (NP)-40緩衝液 (NP-40 1g、トリス塩酸 0.12g、食塩0.87g、アジ化ナトリウム0.0 2gに蒸留水80mlを入れて、塩酸でpHを7.2に 調製し、100mlに合わせた)を入れて、ボルテック スミキサーで混合した(氷上で15分間放置)。13, 500回転/分で20分間遠心分離し、上清を回収し た。このヨウ化ナトリウム-125ラベルしたKG-1 細胞の抽出液を80µ1 (/全量500µ1) 取り、モ ノクローナル抗体HSCA-2を1.5μg、対照のM OPC21及びCD43抗体(DFT1)も1.5μg 用い、上記抽出液に加え、氷上で30分間放置した。一 方、プロテインGーセファロース(アマシャムファルマ シアバイオテク社製)をNP-40緩衝液で3回洗浄し た後、プロテインG-セファロース10mlに対してN P-40緩衝液10mlを加え、このうち20μlを、 上記抗体を添加したКG-1細胞の抽出液に添加して、 氷上で2時間インキュベーションした。NP-40緩衝 液1mlを加えて、10,000回転/分で3分間遠心 分離して、上清を除去し、さらにこれを4回繰り返し洗 浄した。

【0054】これにSDS-ポリアクリルアミドゲル電 気泳動サンプル溶解緩衝液(150mMトリスー塩酸 (pH6.8)、4%SDS、14%グリセロール)3 $0\mu1$ を加え、このうち $15\mu1$ をSDSーポリアクリ ルアミドゲル電気泳動に供した。SDS-ポリアクリル アミドゲル (10%ポリアクリルアミドゲル)を作製 し、上述のサンプル 15μ 1をアプライした。レーン1には、HSCA-2抗体を添加したものをアプライし、 レーン2には、CD43 (DFT1) 抗体を添加したも のをアプライした。レーン3には、ネガティブ対照のM OPC21を添加したものをアプライした。100ボル トー定電圧下、1時間電気泳動後、ゲルを50%トリク ロロ酢酸で30分間固定化した後、蒸留水で30分間ず つ、合計3回洗浄した。スタンダードタンパク質の電気 泳動位置を確認し、ゲルをゲル乾燥機で乾燥し、オート ラジオグラフィーに供した。結果は、図1に示した。 【0055】左のオートラジオグラフィー図は、KGー 1細胞を用いて細胞表面抗原の1 2 5 Ⅰ 標識を行ったも の、右のオートラジオグラフィー図は、ヒト末梢血単核 球細胞(PBMC)を用いて細胞表面抗原の125 I標 識を行ったものである。それぞれ、左のレーンは、HS

CA-2抗体を用いたときの、125 I 標識細胞表面抗原及びプロテインG-セファロースと結合して沈降した抗原の分子量、真ん中のレーンはHSCA-2抗体の代わりにCD43(DFT1) 抗体、右のレーンはネガティブ対照のMOPC21を用いた結果を示した。

【0056】KG-1細胞もヒト末梢血単核球細胞もともに、HSCA-2抗体は、分子量が約110 \times 10 3 のタンパク質分子を沈降させたが、既存のCD43抗体は、分子量が約110 \times 10 3 +115 \times 10 3 の分子を沈降させた。このことより、本発明のHSCA-2抗体は、CD43分子群(アイソフォーム)の内、分子量が約110 \times 10 3 のアイソフォームを認識することがわかった。HSCA-2抗原は、シアリダーゼ処理

(0.01ユニット以上で、37℃、30分間) に感受性であることも示されているので、分子量が約110x 103の分子に特異的なシアロ糖鎖を認識している。

【0057】 (実施例4: HSCA-2抗体のフルオレ セインイソチオシアネート (FITC) 標識) FITC 全量(100μg、シグマ社製)を炭酸塩緩衝液(0. 5M炭酸水素ナトリウムに0.5M炭酸ナトリウムを加 えてр Н 9. 5にしたもの) 0. 09 m 1 に溶解した。 それにHSCA-2抗体を0.83ml(1.0mg) 加え、室温で1.5時間撹拌を続けた。この溶液をPD 10カラム (アマシャムファルマシアバイオテク社製) にアプライして、抗体タンパク質に結合していない遊離 したFITCを除去した。抗体-FITC画分をPBS (-)/0.02%アジ化ナトリウム1 Lに対して3回 透析した後、分光光度計(日立製作所製; U2000) で280nm (OD280=x)と495nm (OD4 95=y)を測定し、抗体タンパク質濃度 (P)とFI TC結合量(F)から、F/P比率=2.7y/x-0 3 yを算出した。測定結果は、OD 280 = x = 0. 5565, OD495=y=0. 4607°, F/ P比率=2.97となった。こうして、HSCA-2抗 体のFITC標識標品(HSCA-2-FITC抗体) は398μg/m1得られた。

【0058】(実施例5:HSCA-2抗体の各種株化 細胞表面抗原認識)種々の株化細胞2×106個をPBS(-)(FCS 1%、アジ化ナトリウム0.01%を含む)で2回洗浄した後、HSCA-2-FITC抗体0.5μgを加えて撹拌した後、氷上で30分間放置した。陰性対照として、マウスイムノグロブリンG1-FITC抗体を同様にして処理した。PBS(-)(FCS1%、アジ化ナトリウム0.01%を含む)で2回洗浄した後、ヨウ化プロピジウム(シグマアルドリッチジャパン株式会社製)を最終濃度10μg/mlになるように加えて細胞を染色した。染色された細胞をフローサイトメーターFACScan(ベクトンディッキンソン社製)で解析(フローサイトメトリー)した。

【0059】実験に供した株化細胞は、(1)KG-

1、(2) KU812、(3) KU812(CD3 4+)、(4) HEL、(5) Jurkat (CD2+ CD34-)、(6) Jurkat (CD2-CD34 +)、(7) MOLT14、(8) MOLT4、(9) RAJI、(10) NALM6、(11) DAUDI、 (12) K562、(13) THP-1、(14) HL 60、(15) U937、(16) NS-1であった。 【0060】励起波長488nm、最大蛍光波長530 nmでの測定(FL1) 結果は、マウスイムノグロブリンG1-FITC抗体の平均値(A)とHSCA-2-FITC抗体の平均値(B)を併記する(A:B)と、

- (1) KG-1=12.73:1076.04
- (2) KU812=17. 91:298. 08.
- (3) KU812 (CD34+) = 20.45:427.48.
- (4) HEL=16. 96:260. 48.
- (5) Jurkat (CD2+CD34-) = 11.7 0:238.82
- (6) Jurkat (CD2-CD34+) = 10.70:54.02
- (7) MOLT14=7.00:48.99
- (8) MOLT4=10.05:70.51
- (9) RAJI = 25. 21:531. 84
- (10) NALM6=5. 23:104.54,
- (11) DAUDI = 7.98:11.28
- (12) K562=20.91:571.54
- (13) THP 1 = 30.28:456.89
- (14) HL60=12.16:118.60
- (15) U937=11.80:201.58,
- (16) NS-1=23.82:29.32であった。 すなわち、DAUDIとマウスの株化細胞であるNS-1以外とよく反応した。

【0061】(実施例6:ヒトリンパ球サブセットにおけるHSCA-2抗原の発現)末梢血単核球細胞は、実施例3に示したように調製した。調製した末梢血単核球細胞を約 1×10^5 個ずつ、PBS(-)(FCS1%、アジ化ナトリウム0.01%を含む)に懸濁した。これにHSCA-2-FITC抗体を0.1 μ gずつ添加し、さらに、PE標識したモノクローナル抗体である、CD4-PE抗体、CD8-PE抗体、CD19-PE抗体、CD56-PE抗体をそれぞれ0.1 μ gずつ添加し、氷上で30分間放置した。PBS(-)(FCS1%、アジ化ナトリウム0.01%を含む)で2回細胞を洗浄した後、ヨウ化プロピジウム(シグマアルドリッチジャパン株式会社製)を最終濃度10 μ g/m1になるように加え、FACScan(ベクトンディッキンソン社製)で解析した。結果は、図2に示した。

【0062】ヒト末梢血単核球細胞をそれぞれの抗体で 処理した結果を示している。4つのフローサイトメトリ 一図において、縦軸はそれぞれ、CD4-PE抗体、C D19-PE抗体、CD8-PE抗体及びCD56-PE抗体の蛍光強度、横軸はHSCA-2-FITC抗体の蛍光強度を示した。ドットは細胞を示している。十字の線は、ヒト末梢血単核球細胞をマウス免疫グロブリンG1-PE抗体及びマウス免疫グロブリンG1-PE抗体で処理して得られたフローサイトメトリー図に引いた縦軸と横軸の、それぞれの陽性陰性を区分する線を示している。

【0063】左上のフローサイトメトリー図で図の見方を説明すると、右下の象限は、HSCA-2+CD4-を示し、全体の細胞の45.7%の細胞が存在することを示し、右上の象限は、HSCA-2+CD4+を示し、全体の細胞の31.9%の細胞が存在することを示し、左上の象限は、HSCA-2-CD4+を示し、全体の細胞の2.1%の細胞が存在することを示し、そして左下の象限は、HSCA-2-CD4-を示す。HSCA-2抗体はほとんどのCD4+T細胞、CD8+T細胞、NK細胞とは反応したが、B細胞とは反応しなかった。

【0064】末梢血単核球細胞の代わりに、エプシュタインバー(EV)ウイルスでトランスフォームしたB細胞を使って、上記の方法でHSCA-2-FITC抗体、CD19-PE抗体処理したところ、今度はB細胞と反応した。これらヒトリンパ球との反応性は既存のCD43抗体を用いたときと同一の反応結果であった。

【0065】(実施例7:各CD43抗体による抗原結合性の競争的阻害(フローサイトメトリーによる解析)) KG-1細胞 2×10^5 個(10^7 個/m1、20 μ 1)に様々な濃度の阻害用CD43抗体 10μ 1を加え、氷上で1時間反応させた後、細胞を洗浄せずに、HSCA-2-FITC抗体又はCD43抗体(1G10)-FITC抗体をそれぞれ0.5 μ g(100μ g/m1、5 μ 1)を加えた。氷上で1時間反応させ、洗浄した後、FACScanで解析した。結果は、図3に示した。

【0066】横軸は、KG-1細胞に加えた種々の阻害用CD43抗体の濃度(μ g/m1)を示し、縦軸は、上の図では、後からさらに加えたHSCA-2-FIT C抗体の結合率(%コントロール)を示し、下の図では、CD43抗体(1G10)-FITC抗体の結合率(%コントロール)を示した。

【0067】HSCA-2-FITC抗体の反応では、HSCA2抗体自身よりも、既存のCD43抗体であるDF10や1G10の方が、むしろよく阻害した。1G10-FITC抗体の反応では、HSCA-2による阻害効果は弱かった。このことから、HSCA-2抗体は、CD43分子の一部のエピトープを認識し、それを他のCD43抗体で阻害できることがわかった。

【0068】(実施例8:ヒト末梢血単球におけるHS CA-2抗原及びCD43抗原の発現)ヒト末梢血単球

細胞は、実施例3に示したヒト末梢血単核球細胞調製の・ 際に、単球細胞層のみを慎重に集めた。このヒト末梢血 単球細胞約1×10⁵ 個をPBS(-)(FCS1%、 アジ化ナトリウム0.01%を含む)に懸濁した。これ に(a) HSCA-2-FITC抗体及びマウスイムノ グロブリンG-FITC抗体、又は、(b)CD43 (1G10) - FITC抗体及びマウスイムノグロブリ ンG-FITC抗体をそれぞれ0.1μgずつ添加し、 氷上で30分間放置した。PBS(-)(FCS1%、 アジ化ナトリウム0.01%を含む)で2回細胞を洗浄 した後、ヨウ化プロピジウム(シグマアルドリッチジャ パン株式会社製)を最終濃度10μg/mlになるよう に加え、FACScan (ベクトンディッキンソン社 製)で解析した。前方散乱(FSC)、後方散乱(SS C)の単球の位置にゲートをかけて、FACScanで 解析した。結果は、図4に示した。

【0069】上の図は、HSCA-2-FITC抗体及びマウスイムノグロブリンG-FITC抗体処理したもの、下の図は、CD43(1G10)-FITC抗体及びマウスイムノグロブリンG-FITC抗体処理したものを示した。既存のCD43(1G10)抗体は、既報の通り単球と反応したが(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)、HSCA-2抗体は単球と反応しなかった。

【0070】単球と同様にして、顆粒球に関して全く同様の実験を行ったところ、既存のCD43(1G10)抗体は、既報の通り(新保敏和ら、CD分類ハンドブック(1995)、日本BRM学会)、顆粒球と反応したが、HSCA-2抗体は反応しなかった。HSCA2抗体は、CD43抗原の内、リンパ球にのみ発現する分子量が約110×103のアイソフォームを認識していることがわかった。

【0071】(実施例9:臍帯血又は成人末梢血T細胞 におけるHSCA-2抗原の発現) 臍帯血単核球細胞 は、以下のように調製した。すなわち、15m1ポリプ ロピレン製チューブ(コーニング社製)にヘパリンナト リウム注射液(10,000U/ml)0.05mlを 入れ、産婦人科からインフォームドコンセントにて供与 されたヒト臍帯血4m1を加え、さらにPBS(一)/ H(PBS(-)に1%へパリンナトリウム注射液 (1,000U/ml)を加えた)を5ml加え、よく 混ぜた。そこに、リンフォサイトセパレーションメディ ウム(オルガノンテクニカ社製)3.5mlをチューブ 底に入れて、400Gで30分間、遠心分離した。ここ で、単核球細胞層を集め、PBS(-)/HF(PBS (-)に1%~パリンナトリウム注射液(1,000U /ml)及び2.5%FCSを加えた)を15mlポリ プロピレン製チューブに加えて15mlにして、510 Gで10分間、遠心分離した。沈殿にPBS(-)/H F15mlを加えて、懸濁し、240Gで10分間、遠 心分離した。今度は沈殿を10%FCS/RPMI 1640 0.5mlに懸濁し、細胞数を約1×107個/mlにした。これに凍結保存用培地(20%ジメチルスルホキシド(DMSO)/10%FCS-RPMI1640)0.5mlを加え、懸濁し、液体窒素中に凍結保存した。

【0072】これを使用開始時に凍結融解した後、15%FCS-RPMI 1640にて洗浄して使用した。すなわち、細胞に、CD4(FITC)、CD8(PE)各抗体処理を行い、成人末梢血T細胞は、上記の末梢血単核球細胞を調製した後、細胞に、CD4(FITC)、CD8(PE)各抗体処理を行い、FACStar(ベクトンディッキンソン社製)にて、CD4+細胞、CD8+細胞を分取することにより調製した。

【0073】このようにして調製した臍帯血及び成人末梢血T細胞を約 1×10^5 個ずつPBS(-)(FCS 1%、アジ化ナトリウム0.01%を含む)に懸濁した。これにモノクローナル抗体HSCA-2-FITCを0.1 μ gずつ添加し、さらに、PE標識したモノクローナル抗体であるCD45RO-PEをそれぞれ0.1 μ gずつ添加し、氷上で30分間放置した。PBS(-)(FCS1%、アジ化ナトリウム0.01%を含む)で2回細胞を洗浄後、ヨウ化プロピジウム(シグマアルドリッチジャパン株式会社製)を最終濃度 10μ g/m1になるように加え、FACScan(ベクトンディッキンソン社製)で解析した。結果は、図5に示した。

【0074】縦軸はCD45RO-PE抗体の蛍光強度、横軸はHSCA-2-FITC抗体の蛍光強度を示した。4つの図は、それぞれ、分離調製した成人CD4+細胞、臍帯血CD4+細胞、成人CD8+細胞又は臍帯血CD8+細胞を、HSCA-2-FITC抗体及びCD45RO-PE抗体で処理したものを示した。

【0075】成人CD4陽性細胞においては、CD45 RO陰性の中に、HSCA-2hish (HSCA-2 高発現)、HSCA-2intermediate (H SCA-2中程度発現)及びHSCA-2

 $1 \circ w \sim n \cdot e \cdot g \cdot a \cdot t \cdot i \cdot v \cdot e \cdot (HSCA-2 低発現ないし HSCA-2 は発現していない) の3種類のサブセットが存在した。成人CD8+ 細胞にHSCA-2 <math>^{h \cdot i \cdot g \cdot h}$ が存在した。一般に成人CD8+ 細胞のCD45RO-画分には、成熟したCD8キラー細胞が存在するとされているので、このこととは矛盾しない。臍帯血には、HSCA-2 $^{h \cdot i \cdot g \cdot h}$ の細胞は存在しなかった。また既報のように(クルースら、J. Interferon Res., 13(3):221(1993))、CD45RO+細胞もほとんど存在しなかった。これらのことから、HSCA-2 抗体は、メモリーT細胞の新しいマーカーと考えられた。

【0076】(実施例10: HSCA-2抗体によるP

PD刺激増殖反応の促進)96穴1/2プレート(コーニング社製)に、 5×104 個のヒト末梢血単球細胞(実施例8に調製方法記載)に、終濃度 5μ g/mlのツベルクリンタンパク質(PPD)を加えて、ヒト血清(56℃で30分間処理したもの)を10%含んだRPMI 1640存在下、5% CO_2 インキュベーターで培養した。HSCA-2抗体は終濃度 5μ g/ml添加した。トリチウムチミジンを 1μ Ci/ウエル加えて、さらに培養を続けて、16時間後にハーベストし、シンチレーターを加えて、液体シンチレーションカウンターでカウントを測定した。結果は、図6に示した。

【0077】縦軸にトリチウムチミジンの取り込み(× 10⁻³cpm)を、横軸に培養日数を示した。それぞれ、PPD+HSCA-2抗体(PPD+HSCA-2 Ab)、PPDのみ(PPD)、PPDを加えずにHSCA-2抗体のみを加えたもの(HSCA-2 Ab)、何も加えていないもの(Control)の1日毎のトリチウムチミジンの取り込みを示した。

【0078】HSCA-2抗体はPPD抗原に対するトリチウムチミジンの取り込み反応を促進した。PPD単独とPPD+HSCA-2抗体のトリチウムチミジンの取り込み反応は、そのピークレスポンスは同じであったが、反応を1日分前に加速した。PPDでの増殖反応の代わりに、抗CD3抗体を用いて同様の実験を行ったところ、HSCA-2抗体は抗CD3抗体に対するトリチウムチミジンの取り込み反応を促進した。これらのことより、HSCA-2抗体はcostimulatory分子と考えられた。既存のCD43抗体でT細胞の活性化は報告されているが、既存の抗体は単球とも反応するので、CD43抗体の活性が、抗原提示細胞である単球を活性化した結果であるか否かは、説明できていなかった。本実施例により初めて、HSCA-2抗体が、直接的なT細胞活性化能を持っていることが示された。

【0079】(実施例11:HSCA-2抗体によるPPD刺激増殖反応の促進におけるCD2(T11)抗体との相乗作用)実施例10の実験系にCD2(T11.1)抗体とCD2(T11.2)抗体をそれぞれ5μg/m1ずつ加えた。結果は、図7に示した。横軸の白抜きに、PPDに加えた抗体を示し、一方、黒抜きには、PPDを加えずに加えた抗体を示した。縦軸にそのトリチウムチミジンの取り込み(×10-4cpm)を示した。培養日数は一律4日で実施した。縦のバーでそれぞれの標準偏差を示した。

【0080】既報のように(オリーブら、Eur. J. Immunol.、16(9):1063(1986))、T11.1抗体とT11.2抗体を共存させると、costimulatory活性が確認できた。HSCA-2抗体は、T11.1抗体+T11.2抗体の反応を相乗的に促進した。このことより、HSCA-2のシグナルパスウェイはCD2からのシグナルパスウェ

イとオーバーラップしていることがわかった。免疫沈降 実験の結果では、細胞膜上では、HSCA-2とCD2 の結合はないものと思われた。

【0081】(実施例12: HSCA2抗体によるPPD刺激増殖反応の促進におけるCD28抗体の影響)実施例11に示した実験系にCD28抗体も加えて実施した。結果は、図8に示した。横軸に、PPDの添加の有無及び添加した抗体を示した。縦軸にそのトリチウムチミジンの取り込み(×10-4cpm)を示した。培養日数は一律4日で実施した。縦のバーで、それぞれの標準偏差を示した。

【0082】CD28抗体は、PPD刺激増殖反応を促進したが、CD28抗体+HSCA-2抗体では、ほとんどその反応を促進できなかった。一方、HSCA-2抗体は、実施例11と同様に、T11.1抗体+T11.2抗体の反応を相乗的に促進した。HSCA-2のシグナルは、CD28のシグナルとは異なるパスウェイを通っていることが示唆された。

【0083】(実施例13: HSCA-2抗原の発現レ ベルとCD4メモリーT細胞サブセット) MACS磁気 細胞分離システム(ダイナビーズ社製)を用いて、実施 例3で示した成人末梢血単核球細胞から、ネガティブセ レクションでCD4+ T細胞を約2×107 個分離し、 そのうち約1×10⁵個をPBS(-)(FCS1%、 アジ化ナトリウム 0.01%を含む) に懸濁した。これ にHSCA2-FITC抗体を0.1µg添加し、さら に、PE標識したモノクローナル抗体であるCD45R 〇-PE抗体を0.1μg添加し、氷上で30分間放置 した。PBS(-)(FCS1%、アジ化ナトリウム 0.01%を含む)で2回細胞を洗浄した後、ヨウ化プ ロピジウム(シグマアルドリッチジャパン株式会社製) を最終濃度10μg/mlになるように加え、FACS can(ベクトンディッキンソン社製)で解析した。結 果は、図9に示した。

【0084】縦軸はCD45RO-PE抗体の蛍光強度、そして横軸はHSCA-2-FITC抗体の蛍光強度を示した。成人末梢血単核球細胞から調製したCD4+T細胞を、HSCA-2-FITC抗体及びCD45RO-PE抗体で処理したものを示した。

【0085】CD45RO+ CD4メモリーT細胞の約55%は、ナイーブと同レベルのHSCA-2抗原を発現していた(M2)。CD45RO+ CD4メモリーT細胞の約55%は、ナイーブと同レベルのHSCA-2抗原を発現していた(M2)。CD45RO+ CD4メモリーT細胞の約35%が、HSCA-2抗原を高発現していた(M1)。CD45RO+ CD4メモリーT細胞の約10%は、HSCA-2抗原がダウンレギュレイトされていた(M3)。

【0086】(実施例14: HSCA2抗原発現の異なるCD4+ T細胞サブセットの抗原反応性) 実施例13

で示したMACSを用いて採取したCD4+ T細胞(約 2×107個) を、HSCA2-FITC抗体 (100 μg/m1、200μ1)及VCD45RO-PE抗体 (200µg/m1、50µ1)と1時間、氷上で反応 させ、FACStarにて、それぞれ細胞分画M1、M 2、M3及びナイーブを分離した。96穴1/2プレー トに1×104個のヒト末梢血単球細胞(Origin al CD4) (分離方法は上述の実施例8に記載)を 播き、それに各細胞分画M1、M2、M3又はナイーブ 5×104 個を加え、PPD (最終濃度5μg/ml) 又は破傷風トキソイド (Tetanus toxoi d) (最終濃度5µg/m1)を添加し、ヒト血清(5 6℃で30分間処理したもの)を10%含んだRPMI 1640 200 μ 1 存在下で、5% CO2 インキュ ベーターで、4日間又は7日間培養した。トリチウムチ ミジンを1µCi/ウエル加えて、さらに培養を続け て、16時間後にハーベストし、シンチレーターを加え て、液体シンチレーションカウンターでカウントを測定 した。結果は、図10に示した。

【0087】横軸に、それぞれのトリチウムチミジンの取り込み $(×10^{-4} \text{ cpm})$ を示した。黒抜きで、PPD又はTetanus toxoid及び抗体を加えたものを示し、一方、白抜きでは、PPD及びTetanus toxoidを加えずに、抗体だけを加えたものを示した。横のバーで、それぞれの標準偏差を示した。

【0088】M1にほとんどのメモリー活性が存在し た。M3にはほとんどメモリー活性が存在しなかった。 M2にはわずかにメモリー活性が認められた。PPDを 添加した実験で、培養4日目ではなく、培養7日目にメ モリー活性を評価すると、培養4日目時点のM1のcp mの半分ぐらいまでのメモリー活性が認められた。同様 にして、M3を培養7日目に評価したが、培養4日目と 同じく、ほとんどメモリー活性が存在しなかった。これ らのことより、メモリーCD4+ T細胞は、HSCA-2抗原を高発現していた。蛍光標識テロメアプローブを 用いて、FACScanによりテロメア長を比較する と、ナイーブが最も長く、以下、M2、M1=M3の順 になっていたので、M2は、未熟なメモリーT細胞では ないかと考えられた。M3は培養後、アポトーシスで死 んだので、ターミナルなメモリーT細胞ではないかと考 えられた。以上のことより、HSCA-2抗体を用い て、T細胞中のM1画分に注目することにより、CD4 + T細胞及びCD8+ T細胞から、メモリーT細胞を測 定又は分離することができ、種々の診断、検査などに利 用できる。

[0089]

【発明の効果】本発明は、上述の構成よりなるので、C D34+造血幹細胞、末梢血T細胞及びNK細胞に存在 し、B細胞、単球及び顆粒球には存在していない新規な 抗原、並びに、この抗原を識別するモノクローナル抗体を、1)抗体の標識によりイムノアッセイ、フローサイトメトリーへの利用、2)ヒト血液からのT細胞及びNK細胞の分離精製、3)ヒトT細胞及びNK細胞の活性化、4)CD4+T細胞及びCD8+T細胞からの、メモリーT細胞の、従来法よりも精密な測定又は分離に活用することを可能にする。

【図面の簡単な説明】

【図1】 HSCA-2抗体反応抗原の免疫沈降による 解析を示したオートラジオグラフィー図

【図2】 ヒトリンパ球サブセットにおけるHSCA-2抗原の発現を示したフローサイトメトリー図

【図3】 各CD43抗体による抗原結合性の競争的阻害を示したグラフ

【図4】 ヒト末梢血単球におけるHSCA-2抗原及

【図1】

びCD43抗原の発現を示したフローサイトメトリー図 【図5】 臍帯血又は成人末梢血T細胞におけるHSCA-2抗原の発現を示したフローサイトメトリー図

【図6】 HSCA-2抗体によるPPD刺激増殖反応 の促進を示したグラフ

【図7】 HSCA-2抗体によるPPD刺激増殖反応 の促進におけるCD2(T11)抗体との相乗作用を示 したグラフ

【図8】 HSCA2抗体によるPPD刺激増殖反応の 促進におけるCD28抗体の影響を示したグラフ

【図9】 CD4メモリーT細胞サブセットにおけるH SCA-2抗原の発現レベルを示したフローサイトメト リー図

【図10】 HSCA 2抗原発現の異なるCD4+ T細胞サブセットの抗原反応性を示したグラフ

【図3】

阻害抗体震度(µg/ml)

培養日数

