```
In [ ]: # Name :- Sarthak Pagar
        # Roll No. :- 40
        # Class :- TE(IT)
        # Practical 6A :- Visualize the data using Python libraries matplotlib, seak
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [2]: df=pd.read csv('heart.csv')
In [3]: df.columns
Out[3]: Index(['age', 'sex', 'cp', 'trtbps', 'chol', 'fbs', 'restecg', 'thalachh',
                'exng', 'oldpeak', 'slp', 'caa', 'thall', 'output'],
               dtype='object')
In [4]: df
              age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp c
Out[4]:
           0
               63
                     1
                         3
                               145
                                    233
                                           1
                                                            150
                                                                     0
                                                                             2.3
                                                                                   0
                         2
                               130
                                    250
                                                             187
               37
                     1
                                           0
                                                    1
                                                                     0
                                                                             3.5
                                                                                   0
                                    204
           2
               41
                     0
                         1
                               130
                                           0
                                                    0
                                                            172
                                                                     0
                                                                             1.4
                                                                                   2
                                                                                   2
           3
               56
                               120
                                    236
                                                     1
                                                            178
                                                                     0
                                                                             8.0
                     1
                         1
                                           0
           4
               57
                     0
                         0
                               120
                                    354
                                           0
                                                     1
                                                            163
                                                                     1
                                                                             0.6
                                                                                   2
                                      ...
         298
               57
                     0
                         0
                               140
                                    241
                                           0
                                                     1
                                                            123
                                                                     1
                                                                             0.2
                                                                                   1
         299
               45
                         3
                               110
                                    264
                                           0
                                                     1
                                                            132
                                                                     0
                                                                             1.2
                                                                                   1
                     1
         300
                                    193
                         0
                               144
                                                     1
                                                            141
                                                                     0
                                                                             3.4
                                                                                   1
               68
                     1
                                           1
         301
                         0
                               130
                                   131
                                           0
                                                     1
                                                            115
                                                                     1
                                                                             1.2
                                                                                   1
               57
                     1
        302
               57
                         1
                               130
                                    236
                                           0
                                                    0
                                                            174
                                                                     0
                                                                             0.0
                                                                                   1
                     0
        303 rows × 14 columns
```

Out[5]: <Axes: xlabel='sex', ylabel='chol'>

sns.barplot(x='sex',y='chol',data=df)

In [5]: # Bar Plot

In [6]: sns.barplot(x='sex',y='chol',data=df,estimator=np.std)

Out[6]: <Axes: xlabel='sex', ylabel='chol'>


```
In [7]: # Count Plot
sns.countplot(x='sex',data=df)
```

Out[7]: <Axes: xlabel='sex', ylabel='count'>


```
In [8]: # Box Plot
sns.boxplot(x='sex',y='chol',data=df)
```

Out[8]: <Axes: xlabel='sex', ylabel='chol'>


```
In [9]: # Violin Plot
sns.violinplot(x='sex',y='chol',data=df)
```

Out[9]: <Axes: xlabel='sex', ylabel='chol'>

In [10]: sns.violinplot(x='sex',y='chol',data=df,hue='cp')

Out[10]: <Axes: xlabel='sex', ylabel='chol'>


```
In [11]: sns.distplot(x=df['thalachh'],bins=10)
```

C:\Users\sspag\AppData\Local\Temp\ipykernel_6084\1174550978.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(x=df['thalachh'],bins=10)

Out[11]: <Axes: ylabel='Density'>

In [12]: sns.distplot(df['thalachh'],bins=10,kde=False)

C:\Users\sspag\AppData\Local\Temp\ipykernel_6084\2465971988.py:1: UserWarnin
g:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['thalachh'],bins=10,kde=False)

Out[12]: <Axes: xlabel='thalachh'>

In [13]: # Joint Plot
sns.jointplot(x=df['thalachh'],y=df['sex'],kind='scatter')

Out[13]: <seaborn.axisgrid.JointGrid at 0x29047864e90>

In [14]: sns.jointplot(x=df['thalachh'],y=df['sex'],kind='hex')

Out[14]: <seaborn.axisgrid.JointGrid at 0x29048abad10>


```
In [15]: # The Rug Plot
sns.rugplot(df['thalachh'])
```

Out[15]: <Axes: xlabel='thalachh'>


```
In [16]: # Strip Plot
sns.stripplot(y='thalachh',x='sex',data=df,jitter= False)
```

Out[16]: <Axes: xlabel='sex', ylabel='thalachh'>

In [17]: sns.stripplot(y='thalachh',x='sex',data=df,jitter= True)

Out[17]: <Axes: xlabel='sex', ylabel='thalachh'>


```
In [18]: sns.stripplot(x='sex',y='thalachh',data=df,jitter=True,hue='cp')
```

Out[18]: <Axes: xlabel='sex', ylabel='thalachh'>


```
In [19]: # Swarm Plot
sns.swarmplot(x='sex',y='thalachh',data=df)
```

Out[19]: <Axes: xlabel='sex', ylabel='thalachh'>

In [20]: sns.swarmplot(x='sex',y='thalachh',data=df,hue='cp')

Out[20]: <Axes: xlabel='sex', ylabel='thalachh'>

In [21]:	df.corr()							
Out[21]:		age	sex	ср	trtbps	chol	fbs	res
	age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.11(
	sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058
	ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044
	trtbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114
	chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.15
	fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084
	restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000
	thalachh	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044
	exng	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070
	oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058
	slp	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093
	caa	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072
	thall	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.01
	output	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.13

In [22]: corr = df.corr()
 sns.heatmap(corr)
 plt.title('Correlation Heatmap')

Out[22]: Text(0.5, 1.0, 'Correlation Heatmap')


```
In [24]: corr = df.corr()
    sns.heatmap(corr, annot=True)
    plt.title('Correlation Heatmap')
```

Out[24]: Text(0.5, 1.0, 'Correlation Heatmap')

In []:

This notebook was converted with convert.ploomber.io