INF 141
IR METRICS
LATENT SEMANTIC ANALYSIS
AND INDEXING

Crista Lopes

Outline

- Precision and Recall
- □ The problem with indexing so far
- Intuition for solving it
- Overview of the solution
- The Math

How to measure

□ Given the enormous variety of possible retrieval schemes, how do we measure how good they are?

Standard IR Metrics

- Recall: portion of the relevant documents that the system retrieved (blue arrow points in the direction of higher recall)
- Precision: portion of retrieved documents that are relevant (yellow arrow points in the direction of higher precision)

Definitions

$$precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{retrieved\ documents\}|}$$

$$\operatorname{recall} = \frac{|\{\operatorname{relevant\ documents}\} \cap \{\operatorname{retrieved\ documents}\}|}{|\{\operatorname{relevant\ documents}\}|}$$

Definitions

True positives

False negatives

True negatives

False positives

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

(same thing, different terminology)

Doc1 = A comparison of the newest models of cars (keyword: car)

Doc2 = Guidelines for automobile manufacturing (keyword: automobile)

Doc3 = The car function in Lisp (keyword: car)

Doc4 = Flora in North America

Query: "automobile"

Retrieval scheme A

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

Precision =
$$1/1 = 1$$

Recall =
$$1/2 = 0.5$$

Doc1 = A comparison of the newest models of cars (keyword: car)

Doc2 = Guidelines for automobile manufacturing (keyword: automobile)

Doc3 = The car function in Lisp (keyword: car)

Doc4 = Flora in North America

Query: "automobile"

Retrieval scheme B

$$Precision = \frac{tp}{tp + fp} \qquad Precision = 2/2 = 1$$

$$Recall = \frac{tp}{tp + fn} \qquad Recall = 2/2 = 1$$

Precision =
$$2/2 = 7$$

Recall =
$$2/2 = 1$$

Doc1 = A comparison of the newest models of cars (keyword: car)

Doc2 = Guidelines for automobile manufacturing (keyword: automobile)

Doc3 = The car function in Lisp (keyword: car)

Doc4 = Flora in North America

Query: "automobile"

Retrieval scheme C

Precision =
$$\frac{tp}{tp + fp}$$
 Precision = 2/3 = 0.67

$$Recall = \frac{tp}{tp + fn} \qquad Recall = 2/2 = 1$$

- Clearly scheme B is the best of the 3.
- □ A vs. C: which one is better?
 - Depends on what you are trying to achieve
- Intuitively for people:
 - Low precision leads to low trust in the system too much noise!

```
(e.g. consider precision = 0.1)
```

Low recall leads to unawareness (e.g. consider recall = 0.1)

F-measure

Combines precision and recall into a single number

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

More generally,

$$F_{\beta} = (1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

Typical values:

 $\beta = 2$ \rightarrow gives more weight to recall

 $\beta = 0.5$ \rightarrow gives more weight to precision

F-measure

F (scheme A) =
$$2 * (1 * 0.5)/(1+0.5) = 0.67$$

F (scheme B) =
$$2 * (1 * 1)/(1+1) = 1$$

F (scheme C) =
$$2 * (0.67 * 1)/(0.67+1) = 0.8$$

Test Data

- In order to get these numbers, we need data sets for which we know the relevant and non-relevant documents for test queries
 - Requires human judgment

Outline

- The problem with indexing so far
- Intuition for solving it
- Overview of the solution
- The Math

Part of these notes were adapted from:

[1] An Introduction to Latent Semantic Analysis, Melanie Martin

http://www.slidefinder.net/l/Introduction_Latent_Semantic_Analysis_Melanie/26158812

Indexing so far

- Given a collection of documents:
 - retrieve documents that are relevant to a given query
- Match terms in documents to terms in query
- Vector space method
 - term (rows) by document (columns) matrix, based on occurrence
 - translate into vectors in a vector space
 - one vector for each document + query
 - cosine to measure distance between vectors (documents)
 - small angle → large cosine → similar
 - large angle → small cosine → dissimilar

Two problems

- synonymy: many ways to refer to the same thing,
 e.g. car and automobile
 - Term matching leads to poor recall
- polysemy: many words have more than one meaning, e.g. model, python, chip
 - Term matching leads to poor precision

Two problems

Synonymy

Polysemy

Will have small cosine

Will have large cosine

but are related

but not truly related

Solutions

- Use dictionaries
 - Fixed set of word relations
 - Generated with years of human labour
 - Top-down solution
- Use latent semantics methods
 - Word relations emerge from the corpus
 - Automatically generated
 - Bottom-up solution

Dictionaries

- WordNet
 - http://wordnet.princeton.edu/
 - Library and Web API

Latent Semantic Indexing (LSI)

- First non-dictionary solution to these problems
- developed at Bellcore (now Telcordia) in the late 1980s (1988). It was patented in 1989.
- http://lsi.argreenhouse.com/lsi/LSI.html

LSI pubs

- Dumais, S. T., Furnas, G. W., Landauer, T. K. and Deerwester, S. (1988), "Using latent semantic analysis to improve information retrieval." In Proceedings of CHI'88: Conference on Human Factors in Computing, New York: ACM, 281-285.
- Deerwester, S., Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R.A. (1990) "Indexing by latent semantic analysis." Journal of the Society for Information Science, 41(6), 391-407.
- Foltz, P. W. (1990) "Using Latent Semantic Indexing for Information Filtering". In R. B. Allen (Ed.) Proceedings of the Conference on Office Information Systems, Cambridge, MA, 40-47.

LSI (Indexing) vs. LSA (Analysis)

- LSI: the use of latent semantic methods to build a more powerful index (for info retrieval)
- LSA: the use latent semantic methods for document/ corpus analysis

Basic Goal of LS methods

		D ₁	D ₂	D_3	•••	D _M
(e.g. car)	Term ₁	tdidf _{1,1}	tdidf _{1,2}	tdidf _{1,3}	•••	$tdidf_{1,M}$
	Term ₂	$tdidf_{2,1}$	tdidf _{2,2}	tdidf _{2,3}	•••	$tdidf_{2,M}$
	Term ₃	tdidf _{3,1}	tdidf _{3,2}	tdidf _{3,3}	•••	$tdidf_{3,M}$
(e.g. automobile)	Term ₄	$tdidf_{4,1}$	$tdidf_{4,2}$	tdidf _{4,3}	•••	$tdidf_{4,M}$
	Term ₅	$tdidf_{5,1}$	tdidf _{5,2}	tdidf _{5,3}	•••	$tdidf_{5,M}$
	Term ₆	tdidf _{6,1}	tdidf _{6,2}	tdidf _{6,3}	•••	tdidf _{6,M}
	Term ₇	tdidf _{7,1}	tdidf _{7,2}	tdidf _{7,3}	•••	tdidf _{7,M}
	Term ₈	tdidf _{8,1}	tdidf _{8,2}	tdidf _{8,3}	• • •	tdidf _{8,M}
	•••					
	$Term_N$	tdidf _{N,1}	tdidf _{N,2}	tdidf _{N,3}	•••	tdidf _{N,M}

Given N x M matrix

Basic Goal of LS methods

	\mathbf{D}_1	D_2	D_3	•••	D _M
Concept ₁	v _{1,1}	v _{1,2}	v _{1,3}	•••	v _{1,M}
Concept ₂	v _{2,1}	v _{2,2}	v _{2,3}	•••	v _{2,M}
Concept ₃	v _{3,1}	v _{3,2}	v _{3,3}	•••	v _{3,M}
Concept ₄	v _{4,1}	v _{4,2}	v _{4,3}	•••	v _{4,M}
Concept ₅	v _{5,1}	v _{5,2}	v _{5,3}	•••	v _{5,M}
Concept ₆	v _{6,1}	V _{6,2}	v _{6,3}	•••	v _{6,M}

K=6

Squeeze terms such that they reflect **concepts**Query matching is performed in the concept space too

Dimensionality Reduction: Projection

Latent Semantic Indexing always reduces the number of dimensions

Dimensionality Reduction: Projection

How can this be achieved?

- Math magic to the rescue
- Specifically, linear algebra
- Specifically, matrix decompositions
- Specifically, Singular Value Decomposition (SVD)
- Followed by dimension reduction
 - Honey, I shrunk the vector space!

Singular Value Decomposition

□ Singular Value Decomposition

$$A=U\sum V^{T}$$
 (also $A=TSD^{T}$)

□ Dimension Reduction

$$\sim A = \sim U \sim \sum \sim V^T$$

SVD

- □ A=TSD^T such that
 - \Box $TT^{T}=I$
 - $\square DD^T = I$
 - S = all zeros except diagonal (singular values);
 singular values decrease along diagonal

SVD examples

- http://people.revoledu.com/kardi/tutorial/ LinearAlgebra/SVD.html
- □ http://users.telenet.be/paul.larmuseau/SVD.htm
- Many libraries available

Truncated SVD

- SVD is a means to the end goal.
- The end goal is dimension reduction, i.e. get another version of A computed from a reduced space in TSD^T
 - Simply zero S after a certain row/column k

What is \sum really?

Remember, diagonal values are in decreasing order

- Singular values represent the strength of latent concepts in the corpus. Each concept emerges from word cooccurrences. (hence the word "latent")
- By truncating, we are selecting the k strongest concepts
 Usually in low hundreds
- When forced to squeeze the terms/documents down to a k-dimensional space, the SVD should bring together terms with similar co-occurrences.

SVD in LSI

Properties of LSI

- The computational cost of SVD is significant. This has been the biggest obstacle to the widespread adoption to LSI.
- As we reduce k, recall tends to increase, as expected.
- Most surprisingly, a value of k in the low hundreds can actually increase precision on some query benchmarks.
 This appears to suggest that for a suitable value of k,
 LSI addresses some of the challenges of synonymy.
- □ LSI works best in applications where there is little overlap between queries and documents.

Retrieval with LSI

- Query is placed in factor space as a pseudodocument
- Cosine distance to other documents

Retrieval with LSI — Example

ЮH	c1: c2: c3: c4: c5:	Human machine interface for Lab ABC computer applications A survey of user opinion of computer system response time The EPS user interface management system System and human system engineering testing of EPS Relation of user-perceived response time to error measurement
Graph theory	m1: m2: m3: m4:	The generation of random, binary, unordered trees The intersection graph of paths in trees Graph minors IV: Widths of trees and well-quasi-ordering Graph minors: A survey

Example - Term-Document Matrix

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

SVD in LSI

Online calculator

http://www.bluebit.gr/matrix-calculator/

```
1 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0

0 1 1 2 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1
```

Note from here on:

The result of this calculator does not match exactly the numbers shown in the LSI paper...

Some -/+ are the opposite...

But bottom line is not affected.

SVD — The T (term) Matrix

```
-0.221 -0.113 0.289 -0.415 -0.106 -0.341 -0.523 0.060 0.407
human
         -0.198 -0.072 0.135 -0.552 0.282 0.496 0.070 0.010 0.109
interface
         -0.240 0.043 -0.164 -0.595 -0.107 -0.255 0.302 -0.062 -0.492
computer
         -0.404 0.057 -0.338 0.099 0.332 0.385 -0.003 0.000 -0.012
user
         -0.644 -0.167 0.361 0.333 -0.159 -0.207 0.166 -0.034 -0.271
system
         -0.265 0.107 -0.426 0.074 0.080 -0.170 -0.283 0.016 0.054
response
         -0.265 0.107 -0.426 0.074 0.080 -0.170 -0.283 0.016 0.054
time
         -0.301 -0.141 0.330 0.188 0.115 0.272 -0.033 0.019 0.165
EPS
         -0.206 0.274 -0.178 -0.032 -0.537 0.081 0.467 0.036 0.579
survey
         -0.013 0.490 0.231 0.025 0.594 -0.392 0.288 -0.255 0.225
trees
         -0.036 0.623 0.223 0.001 -0.068 0.115 -0.160 0.681 -0.232
graph
         -0.032 0.451 0.141 -0.009 -0.300 0.277 -0.339 -0.678 -0.183
minors
```

SVD – Singular Values Matrix

```
3.341 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.542 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
```

SVD - The D^T (document) Matrix

```
C1 C2 C3 C4 C5 M1 M2 M3 M4 -0.197 -0.606 -0.463 -0.542 -0.279 -0.004 -0.015 -0.024 -0.082 -0.056 0.166 -0.127 -0.232 0.107 0.193 0.438 0.615 0.530 0.110 -0.497 0.208 0.570 -0.505 0.098 0.193 0.253 0.079 -0.950 -0.029 0.042 0.268 0.150 0.015 0.016 0.010 -0.025 0.046 -0.206 0.378 -0.206 0.327 0.395 0.349 0.150 -0.602 -0.077 -0.256 0.724 -0.369 0.035 -0.300 -0.212 0.000 0.362 -0.177 0.433 0.237 -0.265 -0.672 0.341 0.152 -0.249 -0.038 0.014 -0.049 -0.009 0.019 0.058 -0.454 0.762 -0.450 0.070 0.064 -0.243 -0.024 0.084 0.262 0.620 -0.018 -0.520 0.454
```

SVD with k=2

 $TS_2 =$

Distribution of topics over terms

```
-0.738 -0.287 0.000 0.000 0.000 0.000 0.000 0.000 0.000
human
interface -0.662 -0.183 0.000 0.000 0.000 0.000 0.000 0.000
computer -0.802 0.109 0.000 0.000 0.000 0.000 0.000 0.000
        -1.350 0.145 0.000 0.000 0.000 0.000 0.000 0.000
user
        -2.152 -0.425 0.000 0.000 0.000 0.000 0.000 0.000 0.000
system
        -0.885 0.272 0.000 0.000 0.000 0.000 0.000 0.000
response
        -0.885 0.272 0.000 0.000 0.000 0.000 0.000 0.000 0.000
time
        -1.006 -0.358 0.000 0.000 0.000 0.000 0.000 0.000
EPS
        -0.688 0.697 0.000 0.000 0.000 0.000 0.000 0.000
survey
        -0.043 1.246 0.000 0.000 0.000 0.000 0.000 0.000
trees
        -0.120 1.584 0.000 0.000 0.000 0.000 0.000 0.000 0.000
graph
        -0.107 1.146 0.000 0.000 0.000 0.000 0.000 0.000
minors
```

SVD -- A2

$$S_2 D^T =$$

Distribution of topics over documents

```
C1 C2 C3 C4 C5 M1 M2 M3 M4 -0.658 -2.025 -1.547 -1.811 -0.932 -0.013 -0.050 -0.080 -0.274 -0.142 0.422 -0.323 -0.590 0.272 0.491 1.113 1.563 1.347 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
```

Query

"Human computer interaction"

Ś

Query is placed at the centroid of the query terms in the concept space

Plot in the first 2 dimensions

T _{1,2}		
human	-0.221	-0.113
interface	-0.198	-0.072
computer	-0.240	0.043
user	-0.404	0.057
system	-0.644	-0.167
response	-0.265	0.107
time	-0.265	0.107
EPS	-0.301	-0.141
survey	-0.206	0.274
trees	-0.013	0.490
graph	-0.036	0.623
minors	-0.032	0.451

```
D^{T}_{1,2}
```

C1 C2 C3 C4 C5 M1 M2 M3 M4 -0.197 -0.606 -0.463 -0.542 -0.279 -0.004 -0.015 -0.024 -0.082 -0.056 0.166 -0.127 -0.232 0.107 0.193 0.438 0.615 0.530

2d plot just for illustration purposes. In practice it's still a 9d space

2-D Plot of Terms and Docs from Example

FIG. 1. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown as open squares, and component terms are indicated parenthetically. The query ("human computer interaction") is represented as a pseudo-document at

Centroid (geometric center)

$$C = (x_1 + x_2 + ... + x_n) / N$$

$$C_{q} = [-0.23 \ 0.035]$$