

Digital Logic Design

Multiplexer & De-Multiplexer

Multiplexer or Mux or Data Selector

- In the old days, several machines could share an I/O device with a Switch.
- The Switch allows one computer's output to go to the printer's input.

Here is the circuit similar to that printer switch.

Select (n numbers) $\left\{\begin{array}{c} S \\ Data \end{array}\right\}$

- This is a 2-to-1 multiplexer or mux.
- The multiplexer routes one of its data inputs (D0 or D1) to the output Q, based on the value of S:
 - If S=0, then D0 is the output (Q=D0).
 - If S=1, then D1 is the output (Q=D1).

Truth table abbreviations, Block diagram and Circuit

Truth table:

5	D1	DO	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$Q = S' DO + S D1$$

When S=0

Q = 0' D0 + 0 D1Q = 1 D0 + 0

Q = 1 D0 + 0

Q = D0

When S=1

Q = 1' D0 + 1 D1

Q = 0 D0 + 1 D1

Q = D1

Block Diagram:

• Circuit Diagram:

$$Q = S' DO + S D1$$

4-input multiplexer

- Here is a block diagram and abbreviated truth table for a 4-to-1 mux, which directs one of four different inputs to the single output line.
 - There are four data inputs, so we need two bits, \$1 and \$0, for the mux selection input.

Timing Diagram

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$

DATA-SELI	CT INPUTS	
5 ₁	So	INPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Enable inputs

- Many devices have an additional enable input, which "activates" or "deactivates" the device.
- We could design a 2-to-1 multiplexer with an enable input that's used as follows.
 - EN=0 disables the multiplexer, which forces the output to be 0. (It does not turn off the multiplexer.)
 - EN=1 enables the multiplexer, and it works as specified earlier.
- Enable inputs are especially useful in combining smaller muxes together to make larger ones, as we'll see later today.

EN	S	D1	D0	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0		0 1	0
0	1	1 0 0	0	0
0	1	0	0 1 0 1	0
0	1	1	0	0
0 0 0 0 0 0	1	1	1	0 0 0 0 0 0
1	0	0	0	0
1	0	0	1	1
1	0 0 0 0	1	0	0
1	0	1	1	1
1	1	0	0 1 0 1 0	0
1 1 1 1 1 1	1	0	1	0 1 0 1 0 0
1	1	1	0	1
1	1	1	1	1

Truth table abbreviations

EN	S	D1	D0	Q
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0 0 0 0 0 0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0 1	0
0	1	1	1	Q 0 0 0 0 0 0 0 0 1 0 1 0 1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

- Notice that when EN=0, then Q is always 0, regardless of what S, D1 and D0 are set to.
- We can shorten the truth table by including Xs in the input variable columns, as shown on the bottom right.

EN	S	D1	D0	Q
0	Х	X	X	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Another abbr. 4 U

- Also, when EN=1 notice that if S=0 then Q=D0, but if S=1 then Q=D1.
- Another way to abbreviate a truth table is to list input variables in the output columns, as shown on the right.

EN	S	D1	D0	Q			
0	X	X	X	0			
1	0	0	0	0	EN	S	
1	0	0	1	1			
1	0	1	0	0	0	Х	C
1	0	1	1	1	1	0	D
1	1	0	0	0	1	1	D
1	1	0	1	0			
1	1	1	0	1			
1	1	1	1	1			

 This final version of the 2-to-1 multiplexer truth table is much clearer, and matches the equation Q = S'D0 + S D1 very closely.

8-to- 1 Mux using ONLY 4-to-1 Mux

Implementing functions with multiplexers

- Muxes can be used to implement arbitrary functions.
- One way to implement a function of n variables is to use an 2^n -to-1 mux:
- For example, let's look at $f(x,y,z) = \Sigma(1,2,6,7)$.

X	У	Z	f	
0	0	0	0 -	→ D0
0	0	1	1 -	→ D1
0	1	0	1 -	→ D2
0	1	1	0-	D 3
1	0	0	0-	→ D4
1	0	1	0-	→ D5
1	1	0	1	D 6
1	1	1	1 -	→ D7

MULTIPLEXER

Boolean Function Implementation (advanced)

Question: Implement the following function with only one 4-to-1 multiplexer:

$$F(A,B,C)=\Sigma(1,3,5,6)$$

For **3 variables**, it takes:

- a) One 8-to-1 Mux, or
- **b)** Three 4-to-1 Mux

Only ONE 4-to-1 ..???

Procedure:

- 1) Implement the truth table,
- 2) Write the SOP expression in the decimal format, F(A,B,C)= Σ (1, 3, 5, 6)
- 3) If the Boolean function has *n+1* Variables, then connect *n* of these variables to the select lines of a MUX maintain the order.
- 4) Based on the select lines, find the total number of input lines for the MUX. The remaining variable will be used for the inputs of the MUX.

Minterms	A	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$F(A,B,C)=\Sigma(1,3,5,6)$$

- Consider now the single variable **A**. It can either be **0 or 1**.
- From the truth table, find the minterms for which **A** is **0**. The minterms are 0, 1, 2 & 3.
- From the truth table, find the minterms for which **A** is **1**. The minterms are 4, 5, 6 & 7.

N	/linterms	A	В	С	F	
	0	0	0	0	0	
	1	0	0	1	1	
	2	0	1	0	0	
	3	0	1	1	1	
	4	1	0	0	0	
	5	1	0	1	1	
	6	1	1	0	1	
	7	1	1	1	0	

	I ₀	l ₁	l ₂	l ₃
A'	0	1	2	3
Α	4	5	6	7

- List the inputs of the MUX and under them list all the minterms in two rows.
- The first row lists all those minterms where **A** is **0**, and the second row all the minterms with **A** is **1**.

Circle all the minterms of the function and inspect each column separately.

$$F(A,B,C) = \Sigma (1, 3, 5, 6)$$

	I _o	l ₁	l ₂	l ₃
A'	0	1	2	3
Α	4	5	6	7
	0	1	Α	A'

- If the two minterms in a column are not circled, apply 0 to the corresponding MUX input.
- If the two minterms are circled, apply 1 to the corresponding MUX input.
- If the bottom minterm is circled and the top is not circled, apply A to the corresponding MUX input.
- If the top minterm is circled and the bottom is not circled, apply A' to the corresponding MUX input.

$F(A,B,C)=\Sigma(1,3,5,6)$

Minterms	A	В	С	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

	I _o	l ₁	l ₂	l ₃
A'	0	1	2	3
Α	4	5	6	7
	0	1	Α	A'

Implement the following function with only one 8-to-1 multiplexer:

$$F(A,B,C,D)=\Sigma (0, 1, 3, 4, 8, 9, 15)$$

	I ₀ 0 8	l ₁	l ₂	l ₃	I ₄	I ₅	I ₆	l ₇
Α'	0	1	2	3	4	5	6	7
_ A	8	9	10	11	12	13	14	(15)
	1	1	0	A'	A'	0	0	Α

Implement the following function using 4x1 MUX: $F(A,B,C) = \Sigma(2,3,4,6)$

Minterms	Α	В	С	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	l _o	l ₁	l ₂	l ₃
A'	0	1	2	3
Α	4	5	6	7
	Α	0	1	A'

$$F(A,B,C)=\Sigma(2,3,4,6)$$

Minterms	A	В	С	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	I ₀	l ₁	l ₂	l ₃	. В	0	
B'	0	1	4	5	. В	1	
В	2	(3)	<u>(6)</u>	7	. 1	₂ 4X1	Υ
	В	В	1	0	0	3	
						^ C	

$F(A,B,C,D) = \Sigma (0,2,3,6,7,9,12,13,15)$

	I _o	l ₁	l ₂	I ₃	I ₄	I ₅	I ₆	l ₇
A'	0	1	(2)	(3)	4	5	6	7
A	8	9	10	11	4 12	13	14	(15)
					Α			_

Example: AND gate

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

$$F(A,B)=AB$$

	I ₀	I ₁
A'	0	1
_ A	2	3
	0	Α

$$F(A,B,C) = AB+BC$$

		I _o	l ₁	l ₂	l ₃
•	A'	0	1	2	3
	Α	4	5	6	7
		0	0	Α	1

Minterm	А	В	С	F
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Summary

- A 2ⁿ-to-1 multiplexer routes one of 2ⁿ input lines to a single output line.
- Just like decoders,
 - Muxes are common enough to be supplied as stand-alone devices for use in modular designs.
 - Muxes can implement arbitrary functions.
- We saw some variations of the standard multiplexer:
 - Smaller muxes can be combined to produce larger ones.
 - We can add active-low or active-high enable inputs.
- As always, we use truth tables and Boolean algebra to analyze things.

Demultiplexers

2-line-to 4-line demux

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital information from one line and distributes it to a given number of output lines. For this reason, the demultiplexer is also known as a data distributor. As you will

DATA-3 S	$\frac{ELECTIN}{S_0}$	OUTPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

$D_0 = S_1' S_0' D_{in}$
$D_1 = S_1'S_0D_{in}$
$D_2 = S_1 S_0' D_{in}$

 $D_3 = S_1 S_0 D_{in}$

Timing Diagram

DATA-SELECT INPUTS		
51	So	OUTPUT SELECTED
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

Reference:

Mixed contents from books by Floyd; Mano; Vahid And Howard.

Acknowledgement:

Nafiz Ahmed Chisty

Thanks