Flow control. Quality of services.

Ing. Yelena Trofimova

Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague ©Yelena Trofimova, 2021

Computer networks, BIE-PSI SS 2020/21, Lecture 8

https://courses.fit.cvut.cz/BIE-PSI/

Content

- QoS
- application requirements
- parameters of QoS
- technical solutions
 - ► SLA, SLS
 - queuing algorithms
 - RED, WRED
 - token bucket
 - leaky bucket

How to define QoS

- definition level:
 - network throughput, delay, etc.
 - application frames per second, transmission time, personal evaluation for voice services, availability, etc.
- type of definition:
 - quantitative
 - qualitative (relative)
- quality of service is the result of a joint activity of applications, middleware, OS and network.

QoS parameters I

- exact definitions:
 - ► IETF activities
 - IP Performance Metrics (IPPM) Working Group: defines metrics for performance measurements (delay, round-trip time, loss, etc.)
 - IP Flow Information eXport (IPFIX): defines protocol for export of flow data
 - ► ITU-T recommendations: I.350, I.381, Y.1541, Y.1545, Y.1561, etc.
 - QoS in specific networks (ISDN, ATM, MPLS, IP, Ethernet, etc.)
- parameters and metrics of network quality of service (QoS) could be used in agreements among network providers, and between end users and their network providers
- there is no uniform universal specification
 - several standardization organizations
 - individual projects
 - continuous attempts to better specify traffic classes

QoS parameters II

- quantitative parameters
 - delay
 - jitter
 - packet loss rate, bit error rate
 - throughput
 - availability
- qualitative parameters
 - classes

Quantitative parameters

description of the physical properties of the system

- immediately measured value
- relation to some time interval
- absolute limits ("never exceeds ...")
- quantile ("does not exceed 99% of the time ...")
- mean value and variance (σ) for normal distribution

Delay

- RTT Round-trip Time
 - both directions
 - easy to measure
- OWD One-way Delay
 - may be different in both directions
 - difficult to measure requires time synchronization

Delay: components

- transmission delay time from first to last bit on medium: $D_T = N/S$, where N is the number of bits, S transmission rate
- propagation delay physical speed:
 - speed of light for vacuum or air
 - $\sim 2 \times 10^8$ m/s for electrical cable
 - $ightharpoonup \sim 2 \times 10^8 \text{ m/s}$ for optical cable
- processing delay header analysis, searching in routing tables, etc.
- queuing delay
 - output queue of the network interface
 - input queue of device processor (e.g. router)

Jitter

- one-way delay variation
- could be expressed as
 - ightharpoonup absolute value: $D_{max} D_{min}$
 - relative value: %
- important for real-time network communication
- compensated by the input buffer in the application
- critical for NTP

Data loss

- measured by number of lost transfer units
 - packets packet loss rate (PLR)
 - bits bit error rate (BER)
- depends on the medium
 - high for a wireless network (e.g. Wi-Fi)
 - very low for optical networks
- congestion of the line
 - ▶ dropping of packets ⇒ data loss

Throughput

- network capacity (bandwidth) theoretical data transfer rate
 - limited by a link with the smallest capacity
- throughput actual data transfer rate
 - influence of repaired losses
- goodput the application layer throughput
- available bandwidth
 - free transmission capacity
 - is rapidly changing
 - difficult to evaluate

Availability

- probability that the network (service) will be available
 - expressed relatively (e.g. 0.99 of the year)
- includes
 - technical faults
 - administrative restrictions (planned maintenance, updates, etc.)

Qualitative parameters

Classes

- best-effort
 - network does not provide any guarantees
 - user obtains unspecified variable bit rate and delivery time, depending on the current traffic load
 - standard in the Internet
- other classes depending on the technology, different specifications, less implementations
 - sensitive traffic guaranteed bandwidth, low packet loss rate
 - LBE (Less Than Best Effort)
 - undesired –

SLA/SLS

- SLA Service Level Agreement
 - agreement on technical and non-technical service parameters between customer and provider
- SLS Service Level Specification, specification of SLA technical parameters
 - Scope (ingress, egress, ...)
 - Flow description (IP addresses, ports, etc.)
 - Traffic envelope (peak rate p, token bucket r,b)
 - Excess treatment (drop, shape, remark)
 - Performance (loss, throughput, delay, jitter, ...)
 - ► Time
 - Reliability

Queuing Algorithms

- based on arrival: FIFO (First In First Out)
- based on priority: PQ (Priority Queuing)
- sharing of the capacity:
 - WFQ (Weighted Fair Queuing)
 - WRR (Weighted Round Robin)
 - MDRR / DRR (Modified / Deficit Round Robin)
- prevention of congestion
 - WRED / RED ((Weighted) Random Early Detection)

Priority Queuing

Weighted fair queuing

Weighted round robin I

Weighted round robin II

Deficit weighted round robin

Network Congestion

- congestion
 - sharp increase in the loss rate
 - degradation of network parameters
- prevention (congestion avoidance)
 - bandwidth reservation for certain connections
 - reaction for signs of congestion increased delay, packet dropping (TCP)

RED - random early detection

WRED - weighted random early detection

Policing & shaping: deal with burstiness and excess traffic

- policier, input parameters:
 - bandwidth limit
 - burst size limit

- sharper, input parameters:
 - shaping rate
 - delay buffer length

Token bucket

Leaky bucket

Source: https://www.geeksforgeeks.org