$Part\ II-Graph\ Theory$

Based on lectures by Prof. P. Russell Notes taken by Bhavik Mehta

Michaelmas 2017

- 0 Introduction
- 0.1 Preliminary
- 0.2 Informal definitions
- 0.3 Where do such structures arise?

1 Ramsey Theory

Definition (Graph). A **graph** is an ordered pair (V, E) = G where V is a finite set and E is a set of unordered pairs of distinct elements of V. We call elements of V vertices of G and elements of E edges. We often write $v \in G$ to mean $v \in V$ and sometimes, where clear, $e \in G$ to mean $e \in E$. Often denote $\{u, v\} \in E$ by uv. Note uv = vu.

Definition (Isomorphism). Let G = (V, E) and G' = (V', E') be graphs. An **isomorphism** from G to G' is a bijection $\phi : V \to V'$ such that for all $u, v \in V$, we have $\phi(u)\phi(v) \in E'$ if and only if $uv \in E$. If such an isomorphism exists, we say G is **isomorphic** to G'.

Definition (Subgraph). Suppose also H = (W, F) is a graph. We say H is a **subgraph** of G and write $H \subset G$ if $W \subset V$ and $F \subset E$. Often, we say 'H is a subgraph of G' to mean 'H is isomorphic to a subgraph of G'.

Definition (Complete graph of order n). The **complete graph of order** n, K_n has n vertices with every pair forming an edge.

Definition (Ramsey number). Let $s, t \ge 2$. The Ramsey number R(s, t) is the least n such that whenever K_n has edges coloured red/green there must be a red K_s or a green K_t (if such an n exists). We also write R(s) = R(s, s).

Definition (Infinite graph). An **infinite graph** is an ordered pair G = (V, E) where V is an infinite set and E is a set of unordered pairs of elements of V. Note, in our terminology, an infinite graph is not a graph.

Definition ((Possibly infinite) graph). A **(possibly infinite) graph** is a graph or an infinite graph.

Definition (Infinite complete graph). K_{∞} , the **infinite complete graph**, is the infinite graph with a countably infinite vertex set and every pair of vertices forming an edge.

1.1 Basic Terminology

Definition (Neighbourhood). Let $v \in G$. Then **neighbourhood** of v is the set

$$\Gamma(v) = \{ w \in G \mid vw \in E(G) \}$$

If $w \in \Gamma(v)$, then w is a **neighbour** of v, or w is **adjacent** to v, we write $w \sim v$.

Definition (Degree). The **degree** of v is $d(v) = |\Gamma(v)|$, the number of vertices adjacent to v.

The **maximum degree** of G is $\Delta(G) = \max_{v \in G} d(v)$

The **minimum degree** of G is $\delta(G) = \min_{v \in G} d(v)$

The average degree of G is $\frac{1}{|G|} \sum_{v \in G} d(v)$

Definition (Regular). If every vertex in G has the same degree, we say G is **regular**. If this degree is r, say G is r-regular.

Definition (Path). Let G be a graph. A **path** in G is a finite sequence v_0, v_1, \ldots, v_l of distinct vertices of G with $v_{i-1} \sim v_i$ for $1 \le i \le l$.

We say this path has length l and goes from v_0 to v_l . If $v, w \in G$ we write $v \to w$ to mean there is a path from v to w.

Definition (Components). The equivalence classes of \rightarrow are called the **components** of G. If G has only one component, we say G is **connected**.

Definition (Cycle). A **cycle** is a sequence v_0, v_1, \ldots, v_l of vertices of G with v_0, \ldots, v_{l-1} distinct, $v_l = v_0, v_{l-1} \sim v_i$ for $1 \le i \le l$ and $l \le 3$. We say that the length of the cycle is l.

Definition (Forest). A graph with no cycles is called a **forest**. A **tree** is a connected forest. Each component of a forest is a tree.

Definition (Disjoint union). Suppose G, H are graphs with $V(G) \cap V(H) = \emptyset$. The **disjoint union** of G, H is the graph $G \cup H$ with $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$.

We often write $G \cup H$ even if $V(G) \cap V(H) \neq \emptyset$, this means take graphs G', H' with $G' \cong G, H' \cong H, V(G') \cap V(H') = \emptyset$ then take $G' \cup H'$.

Definition (Induced subgraph). Let G = (V, E) be a graph, and let $W \subset V$. The **induced subgraph** on W is the graph G[W] with V(G[W]) = W and, for $x, y \in W$, $xy \in E(G[W]) \iff xy \in G$.

Definition (Complement). Let G = (V, E) be a graph. The **complement** of G is the graph \overline{G} with $V(\overline{G}) = V$, and for distinct $x, y \in V$, $xy \in E(\overline{G}) \iff xy \notin E$.

4

2 Extremal Graph Theory

2.1 Forbidden Subgraph Problem

Definition (Extremal number). Define

$$ex(n; H) = max \{ e(G) \mid |G| = n, H \not\subset G \}$$

2.1.1 Triangles

Definition (Bipartite graph). A graph G is **bipartite** (with bipartition (X,Y)) if V(G) can be partitioned as $X \cup Y$ in such a way that if $e \in E(G)$ then e = xy for some $x \in X$, $y \in Y$.

Definition (Complete bipartite graph). Let $s, t \geq 1$. The **complete bipartite graph** $K_{s,t}$ has bipartition (X, Y) with |X| = s, |Y| = t and $xy \in E(K_{s,t}) \ \forall x \in X, y \in Y$.

2.1.2 Complete graphs

Definition (r-partite graph). A graph G is r-partite if we can partition $V(G) = X_1 \cup \cdots \cup X_r$ in such a way that if $xy \in E(G)$ then $x \in X_i, y \in X_j$ for some $i \neq j$. We say G is **complete** r-partite if whenever $x \in X_i, y \in X_j$ with $i \neq j$ then $xy \in E(G)$.

Definition (Turán graph). The **Turán graph** $T_r(n)$ is the complete r-partite graph with n vertices and vertex-classes as equal as possible. Write $t_r(n) = e(T_r(n))$.

2.1.3 Bipartite graphs

Definition (Cyclic graph). The **cyclic graph of order** n, is the cycle of length n, called C_n .

Definition (Path graph). The **path graph** of order n is the path of length n, called P_n .

$$\bigcirc - \bigcirc - \bigcirc - \bigcirc$$

Definition (t-fan). A **t-fan** in a graph G is an ordered pair (v, W) where $v \in V(G)$, $W \subset V(G)$, |W| = t and $\forall w \in W$, $v \sim w$.

2.1.4 General graphs

Definition (Asymptotic extremal number). Write

$$\operatorname{ex}(H) = \lim_{n \to \infty} \frac{\operatorname{ex}(n; H)}{\binom{n}{2}}$$

5

which exists by ??.

Definition (Complete r-partite graph). Write $K_r(t)$ for the **complete** r-partite graph with t vertices in each class (so $K_r(t) = T_r(rt)$).

Definition (Chromatic number). If H is a graph, the **chromatic number** of H, denoted $\chi(H)$, is the least r such that H is r-partite.

Definition (Density). We can define the **density** of a graph G to be

$$D(G) = \frac{e(G)}{\binom{|G|}{2}} \in [0, 1].$$

Definition (Upper density). The upper density of an infinite graph G is

$$\mathrm{ud}(G) = \lim_{n \to \infty} \sup \left\{ \, D(H) \mid H \subset G, |H| = n \, \right\}.$$

2.1.5 Proof of Erdős-Stone (non-examinable)

2.2 Hamiltonian graphs

Definition (Hamiltonian). A **Hamiltonian cycle** in a graph G is a cycle of length G, i.e. going through all vertices of G. If G has a Hamiltonian cycle, we say G is **Hamiltonian**.

Definition (Euler circuit). A **circuit** of a graph G is a sequence $v_0v_1 ldots v_n$ of vertices of G, not necessarily distinct with $v_0 = v_n$, where if $1 \le i \le k$ then $v_{i-1} \sim v_i$ and if $1 \le i < j \le k$ then edges $v_{i-1}v_i$ and $v_{j-1}v_j$ are distinct. It is an **Euler circuit** if for every $e \in E(G)$, there is some i with $e = v_{i-1}v_i$. If G has an Euler circuit we say G is **Eulerian**.

3 Graph Colouring

Definition (Colouring). A k-colouring of a graph G is a function $c: V(G) \to [k]$. In proofs we often say 'red', 'green' for 1,2, etc.

3.1 Planar Graphs

Definition (Graph drawing). A **drawing** of G is an ordered pair (f, γ) where $f: V \to \mathbb{R}^2$ is an injection and $\gamma: E \to C([0, 1], \mathbb{R}^2)$ such that

- (i) If $uv \in E$ then $\{\gamma(uv)(0), \gamma(uv)(1)\} = \{f(u), f(v)\}.$
- (ii) If $e, e' \in E$ with $e \neq e'$ then $\gamma(e)((0,1)) \cap \gamma(e')((0,1)) = \emptyset$.
- (iii) If $e \in E$ then $\gamma(e)$ is injective.
- (iv) If $e \in E$ and $v \in V$ then $f(v) \notin \gamma(e)((0,1))$

That is,

vertices
$$\longleftrightarrow$$
 points edges \longleftrightarrow continuous curves between end vertices,

with no unnecessary intersections. If G has a drawing, we say G is planar.

Definition (Subdivision). Let G be a graph. A **subdivision** of G is a graph formed by repeatedly selecting $vw \in E(G)$, removing vw and adding vertex u and edges uv, uw.

Definition (Leaf). A **leaf** of a tree is a vertex of order 1.

Definition (Faces). If we have a drawing of a graph, it divides the plane into connected regions called **faces**. Precisely one of these regions, the **infinite face** is unbounded.

3.2 General Graphs

3.3 Graphs on surfaces

Definition (Chromatic number of surface). Given a surface S, the **chromatic number** of S is

$$\chi(S) = \max \{ \chi(G) \mid G \text{ can be drawn on } S \}$$

3.4 Edge Colouring

Definition (Edge colouring). A k-edge colouring of a graph G = (V, E) is a function $\varphi : E \to [k]$ such that if $e, e' \in E$ with precisely one common vertex then $\varphi(e) \neq \varphi(e')$.

Definition (Edge chromatic number). The **edge-chromatic number** of G is

$$\chi'(G) = \min \{ k \mid G \text{ has a } k\text{-edge colouring } \}.$$

7

4 Connectivity

4.1 The Marriage Problem

Definition (Matching). Let G be a bipartite graph with bipartition (X, Y). A **matching** from X to Y is a set $M \subset E(G)$ such that $\forall x \in X$, \exists unique $e \in M$ with $x \in e$ and for all $y \in Y$ there is at most one $e \in M$ with $y \in e$.

Definition (Independent set). Let G = (V, E) be a graph. A set $F \subset E$ is **independent** if no two edges of F share a vertex.

4.2 Connectivity

Definition (k-connectivity). Let $k \geq 1$. We say a graph G is k-connected if whenever $W \subset V(G)$ with |W| < k then G - W is connected.

Definition (Independent paths). Let G be a graph and $a, b \in V$ be distinct. A collection of paths from a to b is **independent** if the paths meet only at a and b.

Definition (AB-path). Let G be a graph and $A, B \subset V(G)$. An AB-path is a path that meets A in its first vertex and nowhere else, and meets B in its last vertex and nowhere else. A set $W \subset V(G)$ is an AB-separator if G - W contains no AB-path.

Definition (Connectivity). If G is an incomplete graph, the **connectivity** of G is

$$\kappa(G) := \max(\{ k \ge 1 \mid G \text{ is } k\text{-connected }\} \cup \{0\}).$$

4.3 Edge connectivity

Definition (*l*-edge connected). Let G be a graph with $|G| \ge 2$ and let $l \ge 1$. We say G is *l*-edge connected if whenever $D \subset E(G)$ with |D| < l we have G - D connected. The edge-connectivity of G is

$$\lambda(G) := \max(\{l \geq 1 \mid G \text{ is } l\text{-edge connected }\} \cup \{0\}).$$

- 5 Probabilistic Techniques
- 5.1 The Probabilistic Method
- 5.2 Modifying a Random Graph
- 5.3 The Structure of Random Graphs

6 Algebraic Methods

Definition (Distance). Let G be a connected graph, $u, v \in G$. The **distance** from u to v is d(u, v), the length of the shortest path from u to v.

Definition (Diameter). The **diameter** of a connected graph G is

$$\max_{u,v \in G} d(u,v).$$

Definition (Moore graph). A **Moore graph** is a graph G such that for some k, $|G| = k^2 + 1$, $\Delta(G) = k$, diameter of G is 2.

6.1 The Chromatic Polynomial

Definition (Contraction). Let G be a graph and $e = uv \in E(G)$. The **contraction of** G **over** e is the graph G/e formed from G by deleting vertices u, v, adding a new vertex e^* with $\Gamma(e^*) = \Gamma(x) \cup \Gamma(y)$.

6.2 Eigenvalues

Definition (Adjacency matrix). Let G be a graph with $V(G) = \{1, 2, ..., n\}$. The adjacency matrix of G is the $n \times n$ matrix A where

$$A_{ij} = \begin{cases} 1 & \text{if } i \sim j \\ 0 & \text{if } i \nsim j. \end{cases}$$

Definition (Walk). Define a walk of length l from u to v to be a sequence

$$u = u_0, u_1, \ldots, u_l = v$$

of (not necessarily distinct) vertices with $u_{i-1} \sim u_i$ for $1 \leq i \leq l$.

Definition (Eigenvalues). If G is a graph, the **eigenvalues** of G are the eigenvalues of its adjacency matrix.

6.3 Strongly Regular Graphs

Definition (Strongly regular graph). Let $k, b \ge 1$ and $a \ge 0$. A graph G is (k, a, b)-strongly regular if G is k-regular and, for all $x, y \in G$ with $x \ne y$

- $x \sim y \implies |\Gamma(x) \cap \Gamma(y)| = a$,
- $x \nsim y \implies |\Gamma(x) \cap \Gamma(y)| = b$,