1 Groups

Definition 1.1. Let G = (G, e) be a monoid, G is a group $\iff \forall a \in G: \exists a^{-1} \in G: a^{-1}a = aa^{-1} = e$

Proposition 1.2. Let G be a group, $\forall c \in G : (cc = c \implies c = e)$

Proof.

Proof. $\forall c \in G$:

Frooj.
$$\forall c \in G$$
:

$$\begin{array}{c|c}
1 & cc = c \\
2 & c^{-1}(cc) = c^{-1}c \\
3 & (c^{-1}c)c = c^{-1}c \\
4 & ec = e \\
5 & c = e \\
6 & (cc = c \implies c = e)
\end{array}$$

Proposition 1.3. Let G be a group,