Defensive Honeypots for IP IoT Devices: Quantitive Comparison between Vanilla and Sandboxed

Franek Kruczynski

Honeypots

September 2025

Contents

Introduction

1.1 Background

Abstract of the project goes here

The Internet of Things (IoT) is vastly expanding, driving a brand new and complex wave of device inter-connectivity worldwide, with an approximate 27-billion devices by the end of 2025 (Jinesh, 2025)

1.2 Aims & Objectives

1.2.1 Aim

To evaluate how effective isolation and containment mechanisms (sandboxing and segmentation) are at preventing malware propagation within IP IoT honeypot environments, compared to a non-contained (vanilla) honeypot – whilst utilising the same data set.

1.2.2 Objectives

The objectives are as follows:

- To design and deploy a controlled Honeypot framework for IoT IP devices, seated within Virtual Machines
- To deploy a minimum of two separate honeypots:
 - 1. Low-interaction Vanilla Honeypot,
 - 2. High-interaction Honeypot within a secure container.

- To create a virtual network, where each IoT device and VM have logical addressing and are protected through subnets,
- To collect and store the following malware properties for quantitive comparison and analysis:
 - 1. Network traffic,
 - 2. Payloads,
 - 3. Malware type
 - 4. Activity data
 - **5.** Propagation attempts outside the container.

1.3 Product Review

1.3.1 Scope

The project will design and build a **contained IoT Honeypot environment** for IP devices, comparing two separate deployments (segmented vs vanilla). It is designed to help understand the theoretical importance of deploying honeypots within a secure container, and evaluate its success against low-interaction vanilla honeypots (Kocaogullar, 2023); considered low security.

What is its purpose? How will it work?

1.3.2 Audience

Who is this project for?

Background Review

2.1 Existing Approaches

Add on to 1.1, provide overview of similar products and why they aren't sufficient

2.2 Related Literature

Self explanatory

- Look through thesis provided by supervisor

Methodology & Techniques

3.1 Approach

- Link back to objectives?
 - Two separate VMs
 - Lab VM = honeypots

Analysis VM = protected

3.2 Technologies

3.3 Version Control & Management

Introduce GitHub & Supervisor Google Drive

Project Management

4.1 Activities

4.2 Schedule and Time Management

- Calendar - Allocating times during week

4.3 Data Management

- How is this data going to be stored? (Analysis VM using pcaps) - CSV files for extracting

4.4 Deliverables

References

Bibliography

Jinesh (2025). How Many IoT Devices Are There in 2025? URL: https://autobitslabs.com/how-many-iot-devices-are-there/.

Kocaogullar, Y et al. (2023). Hunting High or Low: Evaluating the Effectiveness of High-Interaction and Low-Interaction Honeypot. URL: https://kar.kent.ac.uk/102122/1/STAST2022.pdf.