

## **Supplementary Information for**

Comparative analysis of new approach to discrete Ricci curvature on undirected graphs

Fergus O'Hanlon

Fergus O'Hanlon

E-mail: fergus.ohanlon@st-annes.ox.ac.uk

## This PDF file includes:

Figs. S1 to S2 Tables S1 to S8

Fergus O'Hanlon 1 of 11



Fig. S1. Various Ricci curvatures for the Barabási-Albert (BA) model with  $n=1000,\,m=100$  with weighting scheme as described in the main manuscript.



Fig. S2. Various Ricci curvatures for the Watts-Strogatz model with  $n=1000,\,k=100,\,p=0.5$  with weighting scheme as described in the main manuscript.

Fergus O'Hanlon 3 of 11

Table S1. Spearman correlations between discrete link Ricci curvatures with other discrete link Ricci curvatures

| Network                        | OR versus FR | OR versus AFR | OR versus RES | FR versus RES | AFR versus RES |
|--------------------------------|--------------|---------------|---------------|---------------|----------------|
| Model networks                 |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.89         | 0.9           | 0.81          | 0.91          | 0.91           |
| ER $n = 1000, p = 0.007$       | 0.39         | 0.44          | 0.42          | 0.92          | 0.91           |
| ER $n = 1000, p = 0.01$        | -0.04        | 0.03          | 0.05          | 0.94          | 0.92           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.92         | 0.92          | 0.89          | 0.96          | 0.96           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.18         | 0.7           | 0.22          | 0.95          | 0.65           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.1          | 0.69          | 0.14          | 0.95          | 0.61           |
| BA $n = 1000, m = 2$           | 0.74         | 0.74          | 0.78          | 0.99          | 0.99           |
| BA $n = 1000, m = 4$           | 0.33         | 0.35          | 0.38          | 0.98          | 0.98           |
| BA $n = 1000, m = 5$           | 0.13         | 0.16          | 0.17          | 0.98          | 0.98           |
| Weighted model networks        |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.79         | 0.8           | 0.79          | 0.84          | 0.84           |
| ER $n = 1000, p = 0.007$       | 0.08         | 0.12          | 0.34          | 0.86          | 0.85           |
| ER $n = 1000, p = 0.01$        | -0.26        | -0.2          | 0.02          | 0.89          | 0.87           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.9          | 0.9           | 0.82          | 0.91          | 0.91           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.1          | 0.62          | 0.22          | 0.87          | 0.63           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.04         | 0.63          | 0.15          | 0.89          | 0.6            |
| BA $n = 1000, m = 2$           | -0.01        | 0             | 0.24          | 0.93          | 0.93           |
| BA $n = 1000, m = 4$           | -0.19        | -0.18         | 0.11          | 0.93          | 0.93           |
| BA $n = 1000, m = 5$           | -0.23        | -0.21         | 0.06          | 0.93          | 0.93           |
| Real networks                  |              |               |               |               |                |
| Sister cities                  | 0.67         | 0.76          | 0.71          | 0.89          | 0.86           |
| US Power Grid                  | 0.59         | 0.76          | 0.66          | 0.9           | 0.84           |
| Euro Road                      | 0.8          | 0.87          | 0.8           | 0.9           | 0.87           |
| Dolphin                        | 0.07         | 0.71          | 0.15          | 0.86          | 0.27           |
| Contiguous USA States          | 0.69         | 0.91          | 0.7           | 0.85          | 0.63           |
| Zachary karate club            | 0.69         | 0.91          | 0.7           | 0.85          | 0.63           |
| Jazz Musicians                 | 0.11         | 0.9           | 0.2           | 0.87          | 0.3            |
| Zebra                          | -0.02        | 0.62          | 0.67          | 0.51          | 0.26           |
| Weighted real networks         |              |               |               |               |                |
| Les Misérables                 | -0.29        | 0.77          | 0.06          | 0.73          | 0.05           |
| Windsurfers                    | -0.82        | 0.92          | -0.41         | 0.64          | -0.49          |

Table S2. Spearman correlations between discrete node Ricci curvatures with other discrete node Ricci curvatures

| Network                        | OR versus FR | OR versus AFR | OR versus RES | FR versus RES | AFR versus RES |
|--------------------------------|--------------|---------------|---------------|---------------|----------------|
| Model networks                 |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.97         | 0.97          | 0.8           | 0.82          | 0.82           |
| ER $n = 1000, p = 0.007$       | 0.97         | 0.97          | 0.92          | 0.88          | 0.88           |
| ER $n = 1000, p = 0.01$        | 0.96         | 0.96          | 0.96          | 0.91          | 0.91           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.89         | 0.89          | 0.63          | 0.69          | 0.69           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.79         | 0.93          | 0.8           | 0.89          | 0.86           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.77         | 0.92          | 0.79          | 0.91          | 0.87           |
| BA $n = 1000, m = 2$           | 0.6          | 0.6           | 0.76          | 0.32          | 0.32           |
| BA $n = 1000, m = 4$           | 0.6          | 0.6           | 0.93          | 0.56          | 0.56           |
| BA $n = 1000, m = 5$           | 0.63         | 0.64          | 0.95          | 0.61          | 0.61           |
| Weighted model networks        |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.95         | 0.95          | 0.84          | 0.8           | 0.8            |
| ER $n = 1000, p = 0.007$       | 0.9          | 0.9           | 0.96          | 0.88          | 0.88           |
| ER $n = 1000, p = 0.01$        | 0.85         | 0.85          | 0.96          | 0.91          | 0.91           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.93         | 0.94          | 0.7           | 0.67          | 0.67           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.74         | 0.87          | 0.83          | 0.89          | 0.86           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.71         | 0.85          | 0.81          | 0.91          | 0.87           |
| BA $n = 1000, m = 2$           | 0            | 0             | 0.68          | 0.45          | 0.45           |
| BA $n = 1000, m = 4$           | 0.03         | 0.04          | 0.62          | 0.65          | 0.65           |
| BA $n = 1000, m = 5$           | 0.09         | 0.09          | 0.63          | 0.7           | 0.71           |
| Real networks                  |              |               |               |               |                |
| Sister cities                  | 0.91         | 0.95          | 0.54          | 0.57          | 0.52           |
| US Power Grid                  | 0.67         | 0.82          | 0.66          | 0.63          | 0.61           |
| Euro Road                      | 0.89         | 0.91          | 0.62          | 0.55          | 0.55           |
| Dolphin                        | 0.04         | 0.49          | 0.14          | 0.86          | 0.66           |
| Contiguous USA States          | 0.61         | 0.89          | 0.5           | 0.81          | 0.63           |
| Zachary karate club            | 0.24         | 0.7           | -0.18         | 0.66          | 0.31           |
| Jazz Musicians                 | -0.79        | 0.02          | -0.58         | 0.84          | 0.44           |
| Zebra                          | -0.72        | 0.99          | -0.37         | 0.67          | -0.36          |
| Weighted real networks         |              |               |               |               |                |
| Les Misérables                 | -0.72        | 0.82          | -0.69         | 0.86          | -0.8           |
| Windsurfers                    | -0.93        | 0.95          | -0.94         | 0.92          | -0.87          |

Fergus O'Hanlon 5 of 11

Table S3. Spearman correlations between node resistance curvature with other node-based measures

| Network                        | DEG   | ВС    | CC    |
|--------------------------------|-------|-------|-------|
| Model networks                 |       |       |       |
| ER $n = 1000, p = 0.003$       | -0.94 | -0.89 | -0.08 |
| ER $n = 1000, p = 0.007$       | -0.94 | -0.93 | -0.19 |
| ER $n = 1000, p = 0.01$        | -0.95 | -0.95 | -0.20 |
| WS $n = 1000, k = 2, p = 0.5$  | -0.93 | -0.76 | 0     |
| WS $n = 1000, k = 8, p = 0.5$  | -0.96 | -0.88 | 0.12  |
| WS $n = 1000, k = 10, p = 0.5$ | -0.96 | -0.89 | 0.15  |
| BA $n = 1000, m = 2,$          | -0.92 | -0.70 | -0.21 |
| BA $n = 1000, m = 4,$          | -0.94 | -0.83 | -0.12 |
| BA $n = 1000, m = 5,$          | -0.94 | -0.86 | 0.02  |
| Weighted model networks        |       |       |       |
| ER $n = 1000, p = 0.003$       | -0.88 | -0.93 | -0.08 |
| ER $n = 1000, p = 0.007$       | -0.91 | -0.92 | -0.2  |
| ER $n = 1000, p = 0.01$        | -0.94 | -0.78 | -0.21 |
| Real networks                  |       |       |       |
| Sister cities                  | -0.89 | -0.87 | -0.37 |
| US Power Grid                  | -0.93 | -0.83 | -0.23 |
| Euro Road                      | -0.88 | -0.67 | -0.24 |
| Dolphin                        | -0.93 | -0.85 | -0.33 |
| Contiguous USA States          | -0.9  | -0.86 | 0.72  |
| Zachary karate club            | -0.95 | -0.89 | 0.56  |
| Jazz Musicians                 | -0.87 | -0.92 | 0.54  |
| Zebra                          | -0.79 | -0.96 | 0.96  |
| Weighted real networks         |       |       |       |
| Les Misérables                 | -0.91 | -0.64 | -0.40 |
| Windsurfers                    | -0.91 | -0.46 | 0.01  |

Table S4. Spearman correlations between of link resistance curvature with other link-based measures

| Network                        | EBC   | DIS   |
|--------------------------------|-------|-------|
| Model networks                 |       |       |
| ER $n = 1000, p = 0.003$       | -0.75 | 0     |
| ER $n = 1000, p = 0.007$       | -0.83 | -0.02 |
| ER $n = 1000, p = 0.01$        | -0.81 | -0.05 |
| WS $n = 1000, k = 2, p = 0.5$  | -0.49 | 0     |
| WS $n = 1000, k = 8, p = 0.5$  | -0.54 | -0.05 |
| WS $n = 1000, k = 10, p = 0.5$ | -0.47 | -0.05 |
| BA $n = 1000, m = 2$           | -0.77 | -0.17 |
| BA $n = 1000, m = 4$           | -0.83 | -0.35 |
| BA $n = 1000, m = 5$           | -0.84 | -0.41 |
| Weighted model networks        |       |       |
| ER $n = 1000, p = 0.003$       | -0.68 | nan   |
| ER $n = 1000, p = 0.007$       | -0.28 | -0.03 |
| ER $n = 1000, p = 0.01$        | -0.1  | -0.05 |
| WS $n = 1000, k = 2, p = 0.5$  | -0.5  | nan   |
| WS $n = 1000, k = 8, p = 0.5$  | -0.24 | -0.05 |
| WS $n = 1000, k = 10, p = 0.5$ | -0.16 | -0.05 |
| BA $n = 1000, m = 2$           | -0.32 | -0.16 |
| BA $n = 1000, m = 4$           | -0.45 | -0.35 |
| BA $n = 1000, m = 5$           | -0.46 | -0.41 |
| Real networks                  |       |       |
| Sister cities                  | -0.56 | -0.28 |
| US Power Grid                  | -0.37 | -0.16 |
| Euro Road                      | -0.44 | -0.07 |
| Dolphin                        | -0.05 | -0.11 |
| Contiguous USA States          | -0.58 | -0.60 |
| Zachary karate club            | -0.63 | -0.40 |
| Jazz Musicians                 | -0.39 | -0.23 |
| Zebra                          | -0.70 | -0.19 |
| Weighted real networks         |       |       |
| Les Misérables                 | -0.04 | -0.38 |
| Windsurfers                    | 0.41  | -0.27 |

Fergus O'Hanlon 7 of 11

Table S5. Pearson correlations between discrete link Ricci curvatures with other discrete link Ricci curvatures

| Network                        | OR versus FR | OR versus AFR | OR versus RES | FR versus RES | AFR versus RES |
|--------------------------------|--------------|---------------|---------------|---------------|----------------|
| Model networks                 |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.79         | 0.79          | 0.62          | 0.9           | 0.9            |
| ER $n = 1000, p = 0.007$       | 0.42         | 0.47          | 0.36          | 0.9           | 0.89           |
| ER $n = 1000, p = 0.01$        | -0.02        | 0.06          | 0.04          | 0.92          | 0.9            |
| WS $n = 1000, k = 2, p = 0.5$  | 0.85         | 0.85          | 0.85          | 1             | 1              |
| WS $n = 1000, k = 8, p = 0.5$  | 0.18         | 0.76          | 0.21          | 0.94          | 0.63           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.11         | 0.74          | 0.14          | 0.95          | 0.59           |
| BA $n = 1000, m = 2$           | 0.51         | 0.51          | 0.35          | 0.69          | 0.67           |
| BA $n = 1000, m = 4$           | 0.17         | 0.2           | -0.04         | 0.75          | 0.71           |
| BA $n = 1000, m = 5$           | -0.02        | 0.02          | -0.2          | 0.77          | 0.72           |
| Weighted model networks        |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.7          | 0.7           | 0.6           | 0.84          | 0.84           |
| ER $n = 1000, p = 0.007$       | 0.12         | 0.16          | 0.3           | 0.84          | 0.83           |
| ER $n = 1000, p = 0.01$        | -0.25        | -0.19         | 0.01          | 0.87          | 0.85           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.85         | 0.85          | 0.76          | 0.94          | 0.94           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.11         | 0.68          | 0.22          | 0.87          | 0.62           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.05         | 0.67          | 0.15          | 0.88          | 0.59           |
| BA $n = 1000, m = 2$           | -0.01        | 0             | 0.25          | 0.61          | 0.6            |
| BA $n = 1000, m = 4$           | -0.16        | -0.15         | 0.07          | 0.67          | 0.63           |
| BA $n = 1000, m = 5$           | -0.2         | -0.19         | 0             | 0.71          | 0.67           |
| Real networks                  |              |               |               |               |                |
| Sister cities                  | 0.34         | 0.47          | 0.21          | 0.76          | 0.7            |
| US Power Grid                  | 0.52         | 0.69          | 0.54          | 0.9           | 0.81           |
| Euro Road                      | 0.72         | 0.77          | 0.67          | 0.92          | 0.88           |
| Dolphin                        | 0.1          | 0.73          | 0.08          | 0.79          | 0.09           |
| Contiguous USA States          | 0.69         | 0.89          | 0.69          | 0.86          | 0.69           |
| Zachary karate club            | 0.71         | 0.81          | 0.44          | 0.87          | 0.28           |
| Jazz Musicians                 | 0.13         | 0.86          | 0.2           | 0.83          | 0.32           |
| Zebra                          | -0.1         | 0.79          | 0.51          | 0.27          | 0.27           |
| Weighted real networks         |              |               |               |               |                |
| Les Misérables                 | -0.44        | 0.45          | -0.17         | 0.86          | -0.62          |
| Windsurfers                    | -0.81        | 0.36          | -0.45         | 0.79          | -0.83          |

Table S6. Pearson correlations between discrete node Ricci curvatures with other discrete node Ricci curvatures

| Network                        | OR versus FR | OR versus AFR | OR versus RES | FR versus RES | AFR versus RES |
|--------------------------------|--------------|---------------|---------------|---------------|----------------|
| Model networks                 |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.94         | 0.94          | 0.78          | 0.78          | 0.78           |
| ER $n = 1000, p = 0.007$       | 0.96         | 0.96          | 0.92          | 0.87          | 0.87           |
| ER $n = 1000, p = 0.01$        | 0.95         | 0.95          | 0.96          | 0.9           | 0.91           |
| WS $n = 1000, k = 2, p = 0.5$  | 0.86         | 0.86          | 0.76          | 0.82          | 0.82           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.82         | 0.93          | 0.82          | 0.91          | 0.87           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.8          | 0.92          | 0.81          | 0.93          | 0.88           |
| BA $n = 1000, m = 2$           | 0.89         | 0.89          | 0.98          | 0.86          | 0.86           |
| BA $n = 1000, m = 4$           | 0.89         | 0.89          | 0.99          | 0.88          | 0.89           |
| BA $n = 1000, m = 5$           | 0.9          | 0.9           | 0.99          | 0.9           | 0.9            |
| Weighted model networks        |              |               |               |               |                |
| ER $n = 1000, p = 0.003$       | 0.91         | 0.92          | 0.81          | 0.73          | 0.73           |
| ER $n = 1000, p = 0.007$       | 0.88         | 0.88          | 0.95          | 0.85          | 0.85           |
| ER $n = 1000, p = 0.01$        | 0.84         | 0.84          | 0.96          | 0.9           | 0.9            |
| WS $n = 1000, k = 2, p = 0.5$  | 0.89         | 0.9           | 0.78          | 0.76          | 0.76           |
| WS $n = 1000, k = 8, p = 0.5$  | 0.76         | 0.88          | 0.85          | 0.9           | 0.87           |
| WS $n = 1000, k = 10, p = 0.5$ | 0.73         | 0.86          | 0.83          | 0.92          | 0.89           |
| BA $n = 1000, m = 2$           | 0.75         | 0.76          | 0.94          | 0.87          | 0.87           |
| BA $n = 1000, m = 4$           | 0.73         | 0.74          | 0.91          | 0.9           | 0.9            |
| BA $n = 1000, m = 5$           | 0.73         | 0.73          | 0.89          | 0.91          | 0.91           |
| Real networks                  |              |               |               |               |                |
| Sister cities                  | 0.59         | 0.72          | 0.66          | 0.43          | 0.45           |
| US Power Grid                  | 0.66         | 0.81          | 0.74          | 0.7           | 0.77           |
| Euro Road                      | 0.86         | 0.88          | 0.76          | 0.71          | 0.72           |
| Dolphin                        | 0.02         | 0.51          | 0.13          | 0.81          | 0.67           |
| Contiguous USA States          | 0.74         | 0.92          | 0.58          | 0.78          | 0.65           |
| Zachary karate club            | 0.53         | 0.7           | 0.44          | 0.97          | 0.92           |
| Jazz Musicians                 | -0.57        | 0.03          | -0.39         | 0.83          | 0.69           |
| Zebra                          | -0.89        | 0.99          | -0.14         | 0.49          | -0.18          |
| Weighted real networks         |              |               |               |               |                |
| Les Misérables                 | -0.58        | 0.67          | -0.37         | 0.86          | -0.69          |
| Windsurfers                    | -0.95        | 0.84          | -0.95         | 0.94          | -0.89          |

Fergus O'Hanlon 9 of 11

Table S7. Pearson correlations between node resistance curvature with other node-based measures

| Network                        | DEG   | ВС    | СС    |
|--------------------------------|-------|-------|-------|
| Model networks                 |       |       |       |
| ER $n = 1000$ , $p = 0.003$    | -0.94 | -0.77 | -0.01 |
| ER $n = 1000$ , $p = 0.007$    | -0.93 | -0.9  | 0.02  |
| ER $n = 1000$ , $p = 0.01$     | -0.95 | -0.94 | 0.02  |
| WS $n = 1000, k = 2, p = 0.5$  | -1    | -0.37 | nan   |
| WS $n = 1000, k = 8, p = 0.5$  | -0.96 | -0.88 | 0.21  |
| WS $n = 1000, k = 10, p = 0.5$ | -0.97 | -0.89 | 0.21  |
| BA $n = 1000, m = 2$           | -0.99 | -0.92 | 0.05  |
| BA $n = 1000, m = 4$           | -0.99 | -0.92 | 0.1   |
| BA $n = 1000, m = 5$           | -0.99 | -0.92 | 0.12  |
| Weighted model networks        |       |       |       |
| ER $n = 1000, p = 0.003$       | -0.88 | -0.87 | -0.01 |
| ER $n = 1000$ , $p = 0.007$    | -0.91 | -0.9  | 0.02  |
| ER $n = 1000$ , $p = 0.01$     | -0.94 | -0.76 | 0.01  |
| WS $n = 1000, k = 2, p = 0.5$  | -0.95 | -0.37 | nan   |
| WS $n = 1000, k = 8, p = 0.5$  | -0.94 | -0.76 | 0.2   |
| WS $n = 1000, k = 10, p = 0.5$ | -0.95 | -0.62 | 0.21  |
| BA $n = 1000, m = 2$           | -0.94 | -0.95 | 0.05  |
| BA $n = 1000, m = 4$           | -0.97 | -0.92 | 0.07  |
| BA $n = 1000, m = 5$           | -0.98 | -0.91 | 0.08  |
| Real networks                  |       |       |       |
| Sister cities                  | -0.73 | -0.64 | -0.01 |
| US Power Grid                  | -0.91 | -0.23 | 0.06  |
| Euro Road                      | -0.91 | -0.4  | -0.04 |
| Dolphin                        | -0.88 | -0.63 | -0.24 |
| Contiguous USA States          | -0.9  | -0.75 | 0.65  |
| Zachary karate club            | -0.98 | -0.94 | 0.5   |
| Jazz Musicians                 | -0.86 | -0.81 | 0.42  |
| Zebra                          | -0.57 | -0.86 | 0.89  |
| Weighted real networks         |       |       |       |
| Les Misérables                 | -0.77 | -0.88 | 0.05  |
| Windsurfers                    | -0.96 | -0.16 | -0.1  |

Table S8. Pearson correlations between node resistance curvature with other link-based measures

| Network                        | EBC   | DIS   |
|--------------------------------|-------|-------|
| Model networks                 |       |       |
| ER $n = 1000, p = 0.003$       | -0.76 | nan   |
| ER $n = 1000, p = 0.007$       | -0.83 | -0.02 |
| ER $n = 1000, p = 0.01$        | -0.8  | -0.05 |
| WS $n = 1000, k = 2, p = 0.5$  | -0.26 | nan   |
| WS $n = 1000, k = 8, p = 0.5$  | -0.57 | -0.06 |
| WS $n = 1000, k = 10, p = 0.5$ | -0.5  | -0.06 |
| BA $n = 1000, m = 2$           | -0.91 | -0.65 |
| BA $n = 1000, m = 4$           | -0.83 | -0.79 |
| BA $n = 1000, m = 5$           | -0.78 | -0.81 |
| Weighted model networks        |       |       |
| ER $n = 1000, p = 0.003$       | -0.67 | nan   |
| ER $n = 1000, p = 0.007$       | -0.3  | -0.03 |
| ER $n = 1000, p = 0.01$        | -0.11 | -0.06 |
| WS $n = 1000, k = 2, p = 0.5$  | -0.26 | nan   |
| WS $n = 1000, k = 8, p = 0.5$  | -0.24 | -0.06 |
| WS $n = 1000, k = 10, p = 0.5$ | -0.15 | -0.05 |
| BA $n = 1000, m = 2$           | -0.62 | -0.68 |
| BA $n = 1000, m = 4$           | -0.54 | -0.81 |
| BA $n = 1000, m = 5$           | -0.48 | -0.81 |
| Real networks                  |       |       |
| Sister cities                  | -0.26 | -0.5  |
| US Power Grid                  | -0.12 | -0.28 |
| Euro Road                      | -0.26 | -0.11 |
| Dolphin                        | -0.01 | -0.22 |
| Contiguous USA States          | -0.56 | -0.56 |
| Zachary karate club            | -0.38 | -0.76 |
| Jazz Musicians                 | -0.26 | -0.26 |
| Zebra                          | -0.42 | -0.13 |
| Weighted real networks         |       |       |
| Les Misérables                 | -0.11 | -0.57 |
| Windsurfers                    | 0.25  | -0.26 |

Fergus O'Hanlon 11 of 11