Vorlesung Analysis I im Wintersemester 2012/13

Wilhelm Singhof

1. Die reellen Zahlen

Mathematische Objekte (z.B. Zahlen, Funktionen, Punkte oder Geraden in der Ebene, ...) können zu Mengen zusammengefasst werden. Ist M eine Menge und a ein mathematisches Objekt, so schreibt man $a \in M$, wenn a zu M gehört und nennt a ein Element von M; andernfalls schreibt man $a \notin M$.

Beispiel: Sei M die Menge, die aus den beiden natürlichen Zahlen 1 und 2 besteht. Man schreibt $M = \{1, 2\}$. Es ist $1 \in M$, $3 \notin M$.

Sind M und N zwei Mengen und ist jedes Element von N auch Element von M, so nennt man N eine Teilmenge von M und schreibt $N \subseteq M$. Zwei Mengen M und N heißen gleich (in Zeichen M = N), wenn sie dieselben Elemente enthalten, also genau dann, wenn $M \subseteq N$ und $N \subseteq M$ ist.

Die Menge, die keine Elemente enthält, nennt man die leere Menge; sie wird mit \emptyset bezeichnet. Für jede Menge M ist $\emptyset \subseteq M$.

Die reellen Zahlen sind eine Menge \mathbb{R} zusammen mit zwei Rechenvorschriften, die je zwei Elementen $x,y\in\mathbb{R}$ ein Element $x+y\in\mathbb{R}$ und ein Element $x\cdot y\in\mathbb{R}$ zuordnen, wobei ferner eine Teilmenge $\mathbb{R}_{>0}$ von \mathbb{R} ausgezeichnet ist, deren Elemente die positiven Zahlen heißen (wir schreiben x>0 für $x\in\mathbb{R}_{>0}$), so dass die folgenden drei Gruppen I, II, III von Axiomen erfüllt sind:

I. Algebraische Axiome:

- I.a) Kommutativgesetze: x + y = y + x und $x \cdot y = y \cdot x$.
- I.b) Assoziativgesetze: (x + y) + z = x + (y + z) und (xy)z = x(yz).
- I.c) Null und Eins: Es gibt Elemente $0, 1 \in \mathbb{R}$ mit $0 \neq 1$ und x + 0 = x und $x \cdot 1 = x$ für alle $x \in \mathbb{R}$.
- I.d) Inverse Elemente: Zu jedem $x \in \mathbb{R}$ gibt es eine Zahl $-x \in \mathbb{R}$ mit x + (-x) = 0; zu jedem $x \in \mathbb{R}$ mit $x \neq 0$ gibt es eine Zahl $x^{-1} \in \mathbb{R}$ mit $x \cdot x^{-1} = 1$.
- I.e) **Distributivgesetz:** x(y+z) = xy + xz.

Statt ,, \mathbb{R} erfüllt die Axiome I.a) - I.e)" sagt man kurz: ,, \mathbb{R} ist ein Körper".

II. Anordnungsaxiome:

II.a) Ist $x \in \mathbb{R}$, so gilt genau eine der folgenden 3 Möglichkeiten:

$$x > 0$$
, $x = 0$, $-x > 0$.

II.b) Ist x > 0 und y > 0, so ist x + y > 0 und xy > 0.

Bevor wir III formulieren können, müssen wir einige Bemerkungen zu den Axiomengruppen I und II machen:

(1) 1 > 0.

Bew.: Nach I.c) ist $1 \neq 0$. Nach II.a) ist daher entweder 1 > 0 oder -1 > 0. Angenommen, es wäre -1 > 0, so wäre $(-1) \cdot (-1) > 0$ nach II.b), also, da $(-1) \cdot (-1) = 1$ nach I., auch 1 > 0. Damit wäre gleichzeitig 1 > 0 und -1 > 0, im Widerspruch zu II.a). Deswegen ist die Annahme -1 > 0 falsch, und es gilt 1 > 0.

(2) Die Elemente $x \in \mathbb{R}$ mit -x > 0 heißen negativ. Sind $x, y \in \mathbb{R}$, so schreiben wir x < y oder y > x, falls y - x > 0. Insbesondere bedeutet x < 0, dass -x > 0, also dass x negativ ist. Sind $x, y \in \mathbb{R}$, so gilt nach II.a) genau eine der folgenden Möglichkeiten:

$$x > y$$
, $x = y$, $x < y$.

- (3) Ist x < 0 und y < 0, so ist xy > 0.
- (4) Ist $x \in \mathbb{R}$ und $x \neq 0$, so ist $x^2 > 0$.
- (5) Sind $x, y, z \in \mathbb{R}$ mit x < y und y < z, so ist x < z.
- (6) Ist x < y und z > 0, so xz < yz. Ist x < y und z < 0, so xz > yz.
- (7) Ist x < 0 und z > 0, so ist xz < 0.
- (8) Ist x > 0, so ist $x^{-1} > 0$.
- (9) Ist x < y und $z \in \mathbb{R}$ beliebig, so ist x + z < y + z.
- (10) Ist 0 < x < y, so ist $y^{-1} < x^{-1}$.
- (11) Sind $x, y \in \mathbb{R}$, so schreiben wir $x \leq y$, falls x < y oder x = y. Für $x \leq y$ schreiben wir auch $y \geq x$.
- (12) Ist 0 < x < y, so ist $x^2 < y^2$. Sind x, y > 0 und ist $x^2 < y^2$, so ist x < y.

Def. Ist $x \in \mathbb{R}$, so sei

$$\mid x \mid := \left\{ \begin{array}{cc} x & , & \text{falls } x \ge 0, \\ -x & , & \text{falls } x < 0. \end{array} \right.$$

- |x| heißt der Absolutbetrag von x.
- (13) Ist $x \in \mathbb{R}$, so ist $|-x|=|x| \ge 0$; ist $x \ne 0$, so ist |x| > 0. |x-y| ist, anschaulich gesprochen, der Abstand zwischen x und y.
- $(14) \ x \le |x|.$
- (15) Sind $x, y \in \mathbb{R}$, so ist $|xy| = |x| \cdot |y|$.
- (16) Dreiecksungleichung: $|x+y| \le |x| + |y|$.
- $(17) \mid |x| |y| \mid \le |x y|.$
- (18) Es ist $0 < 1 < 2 = 1 + 1 < 3 = 2 + 1 < \dots$ Diese Zahlen sind also alle voneinander verschieden. Die Menge $\{1, 2, 3, \dots\}$ wird mit \mathbb{N} bezeichnet; ihre Elemente heißen natürliche Zahlen. $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Die Menge $\mathbb{Z} := \mathbb{N} \cup \{0\} \cup \{x \in \mathbb{R} \mid -x \in \mathbb{N}\}$ heißt die Menge der ganzen Zahlen, und $\mathbb{Q} := \{\frac{x}{y} \mid x \in \mathbb{Z}, y \in \mathbb{N}\}$ heißt die Menge der rationalen Zahlen. \mathbb{Q} erfüllt die Axiome I und II.

Kommentar hierzu: Sind M und N zwei Mengen, so sei $M \cup N$ die Menge, die aus allen Elementen besteht, die in M oder in N (oder in beiden) liegen. $M \cup N$ heißt die Vereinigung von M und N.

 $M \cap N$ sei die Menge, die aus allen Elementen besteht, die in M und in N liegen. $M \cap N$ heißt der Durchschnitt von M und N.

 $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\}\$ ist die Menge aller $x \in \mathbb{R}$, für die gilt: $-x \in \mathbb{N}$. Also $\{x \in \mathbb{R} \mid -x \in \mathbb{N}\} = \{-1, -2, -3, \ldots\} = \{-n \mid n \in \mathbb{N}\}.$

Def. Sei $M \subseteq \mathbb{R}$. Dann heißt M nach oben beschränkt, wenn es ein $c \in \mathbb{R}$ gibt mit $x \leq c$ für alle $x \in M$. Ein solches c heißt eine obere Schranke von M.

M heißt nach unten beschränkt, wenn es ein $d \in \mathbb{R}$ gibt mit $x \geq d$ für alle $x \in M$. Ein solches d heißt eine untere Schranke von M.

M heißt beschränkt, wenn es nach oben und unten beschränkt ist.

Wenn es eine kleinste obere Schranke c von M gibt (d.h. c ist obere Schranke und jedes $c' \in \mathbb{R}$ mit c' < c ist keine obere Schranke von M), so heißt c das Supremum von M; schreibe $c =: \sup M$. Wenn es eine größte untere Schranke d von M gibt, so heißt d das Infimum von M; schreibe $d =: \inf M$.

III. Vollständigkeitsaxiom: Ist M eine nicht-leere nach oben beschränkte Menge, so besitzt M ein Supremum.

Satz 1: Ist $a \in \mathbb{R}$, so existiert ein $n \in \mathbb{N}$ mit $n \geq a$.

Satz 2: Ist $b \in \mathbb{R}$ und b > 0, so existiert ein $n \in \mathbb{N}$ mit $\frac{1}{n} \leq b$.

Def. Sei $M \subseteq \mathbb{R}$. Wenn es ein $x_o \in M$ gibt mit $x \leq x_o$ für alle $x \in M$, so heißt x_o das Maximum von M; schreibe $x_o =: \max M$. Entsprechend definiert man das Minimum min M.

Bem. a) Wenn max M existiert, so ist M nach oben beschränkt, und max $M = \sup M$.

b) Wenn M nach oben beschränkt ist und sup $M \in M$ gilt, so ist sup M das Maximum von M.

Bez. Seien $a, b \in \mathbb{R}$ mit a < b.

$$\begin{split} [a,b] &:= \{x \in \mathbb{R} \mid a \leq x \leq b\} \\ &] a,b[:= \{x \in \mathbb{R} \mid a < x < b\} \\ &[a,b[:= \{x \in \mathbb{R} \mid a \leq x < b\} \} \\ &] a,b[:= \{x \in \mathbb{R} \mid a \leq x \leq b\} \\ &] (halboffenes\ Intervall) \end{split}$$

Bem. Wir werden in §5 sehen: Ist $a \in \mathbb{R}$, $a \ge 0$ und $n \in \mathbb{N}$, so gibt es genau ein $b \ge 0$ mit $b^n = a$. Wir schreiben

$$b=:\sqrt[n]{a}:=a^{\frac{1}{n}}\ .$$

Nach (4) gilt: Ist a < 0 und ist n gerade, so gibt es kein $b \in \mathbb{R}$ mit $b^n = a$. Ist a > 0 und ist n ungerade, so ist

$$(-\sqrt[n]{a})^n = -a.$$

2. Folgen und ihre Grenzwerte

Def. Sind X und Y Mengen, so ist eine Abbildung von X in Y eine Vorschrift f, die jedem Element $x \in X$ ein Element $f(x) \in Y$ zuordnet. Man schreibt dafür

$$f: X \to Y$$
.

Def. Ist Y eine Menge, so ist eine Folge in Y eine Abbildung $a: \mathbb{N} \to Y$; man schreibt oft a_n statt a(n) und spricht von der "Folge (a_n) " statt von der Folge a.

Statt ,, Folge in \mathbb{R} " sagen wir kurz ,, Folge".

Gelegentlich lassen wir auch zu, dass eine Folge a auf einer Teilmenge

 $\{n_0, n_0 + 1, n_0 + 2, \ldots\}$ von \mathbb{Z} statt auf \mathbb{N} definiert ist und reden dann von der Folge $(a_n)_{n \geq n_0}$.

Def. Sei (a_n) eine Folge reeller Zahlen und sei $b \in \mathbb{R}$. Die Folge heißt konvergent gegen b, falls gilt:

Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{N}$, so dass $|a_n - b| < \epsilon$ für alle $n \geq N$.

Man nennt dann b den *Grenzwert* oder den *Limes* der Folge (a_n) und schreibt $\lim_{n\to\infty} a_n = b$ oder $, a_n \to b$ für $n\to\infty$ ".

Eine Folge, die nicht konvergent ist, heißt divergent.

Satz 1. Eine Folge besitzt höchstens einen Grenzwert.

Beispiel (1): Sei $a \in \mathbb{R}$ und $a_n := a \ \forall \ n \in \mathbb{N}$. Dann heißt (a_n) eine konstante Folge. Es ist $\lim_{n \to \infty} a_n = a$.

Beispiel (2): $\lim_{n\to\infty} \frac{1}{n} = 0.$

Beispiel (3): Sei $a_n := (-1)^n$. Dann konvergiert (a_n) nicht.

Beispiel (4): $\lim_{n\to\infty} \frac{n}{2^n} = 0.$

Def. Eine Folge (a_n) heißt beschränkt, wenn die Menge $\{a_n \mid n \in \mathbb{N}\}$ beschränkt ist.

Bem. Genau dann ist (a_n) beschränkt, wenn es ein $M \in \mathbb{R}$ gibt mit $|a_n| \leq M \ \forall \ n \in \mathbb{N}$.

Satz 2. Jede konvergente Folge ist beschränkt.

Def. Eine Folge (a_n) mit $\lim_{n\to\infty} a_n = 0$ heißt eine Nullfolge.

Bem. Sei (a_n) eine Folge. Genau dann ist $a_n \to a$, wenn $(a_n - a)$ eine Nullfolge ist.

Satz 3. Ist (a_n) Nullfolge und (b_n) beschränkte Folge, so ist (a_nb_n) Nullfolge.

Satz 4. (Rechenregeln für Grenzwerte) (a_n) und (b_n) seien Folgen mit $a_n \to a, b_n \to b$.

- 1) $a_n + b_n \to a + b$, $a_n b_n \to a b$.
- 2) $a_n b_n \to ab$.
- 3) Ist $b \neq 0$, so ist $b_n \neq 0$ für fast alle n, und $\frac{a_n}{b_n} \to \frac{a}{b}$.

Beispiel (5):
$$a_n = \frac{n^2 - 2n + 3}{3n^2 + 1} = \frac{1 - \frac{2}{n} + \frac{3}{n^2}}{3 + \frac{1}{n^2}} \to \frac{1}{3}$$

Satz 5. Seien $(a_n), (b_n)$ konvergente Folgen, $a_n \to a$, $b_n \to b$. Falls $a_n \ge b_n$ für fast alle n, so ist $a \geq b$.

Satz 6. (Bernoullische Ungleichung) Sei $x \ge -1$. Dann gilt:

$$(1+x)^n \ge 1 + nx$$
 für alle $n \in \mathbb{N}$.

Satz 7. Für |a| < 1 ist $\lim_{n \to \infty} a^n = 0$, und für |a| > 1 divergiert die Folge (a^n) .

Def. Eine Folge (a_n) heißt monoton wachsend, wenn $a_n \leq a_{n+1} \, \forall n$. Sie heißt streng monoton wachsend, wenn $a_n < a_{n+1} \ \forall \ n$. Entsprechend: (streng) monoton fallend

Satz 8. Ist (a_n) monoton wachsend und beschränkt, so ist (a_n) konvergent und $\lim_{n \to \infty} a_n = \sup\{ a_n \mid n \in \mathbb{N} \}.$

Beispiel: Neuer Beweis für $\lim_{n\to\infty}x^n=0$, falls $0\le x<1$: Sei $a_n:=x^n$. Dann ist (a_n) eine monoton fallende beschränkte Folge, die nach Satz 8 gegen ein a konvergiert. Für jedes n ist $a_{n+1} = x \cdot a_n$. Übergang zum Limes liefert $a = x \cdot a$, also a = 0.

Def. Sei $(n_k)_{k\geq 1}$ eine streng monoton wachsende Folge natürlicher Zahlen. Ist $(a_n)_{n\geq 1}$ eine Folge in einer Menge X, so erhält man durch $k\mapsto a_{n_k}$ eine neue Folge $(a_{n_k})_{k\geq 1}$ in X, die eine Teilfolge von (a_n) heißt.

Bem. a) Eine Teilfolge einer beschränkten Folge ist beschränkt.

b) Wenn (a_n) gegen a konvergiert, so auch jede Teilfolge von (a_n) .

Satz 9. Jede Folge (a_n) reeller Zahlen enthält eine monotone Teilfolge.

Beweisidee: Wir nennen eine natürliche Zahl m eine Gipfelstelle, wenn $a_n <$ a_m für alle n > m. Wenn es unendlich viele Gipfelstellen gibt, so bilden diese eine monoton fallende Teilfolge. Wenn es nur endlich viele Gipfelstellen gibt, so gibt es eine monoton wachsende Teilfolge.

Satz 10. (Bolzano-Weierstraß) Jede beschränkte Folge besitzt eine konvergente Teilfolge.

(Satz 10 folgt sofort aus Satz 8 und Satz 9.)

Satz 11. (Konvergenzkriterium von Cauchy)

Sei (a_n) eine Folge. Dann sind äquivalent:

- (1) (a_n) ist konvergent.
- (2) Zu jedem $\epsilon > 0$ existiert $N \in \mathbb{N}$, so dass $|a_m a_n| < \epsilon$ für alle $m, n \in \mathbb{N}$ mit $m \ge N$ und $n \ge N$.

(Die Implikation $(1)\Rightarrow(2)$ ist ganz leicht. Ist umgekehrt (2) erfüllt, so zeigt man zuerst, dass die Folge beschränkt ist und wendet dann den Satz von Bolzano-Weierstraß an, um die Konvergenz zu folgern.)

3. Reihen

Das Summenzeichen: Ist $n \in \mathbb{N}$ und sind $a_1, \ldots, a_n \in \mathbb{R}$, so schreibt man

$$\sum_{k=1}^{n} a_k := a_1 + \ldots + a_n \ .$$

Statt k darf man auch jeden anderen Buchstaben (außer a und n) nehmen.

Allgemeiner: Sind $m, n \in \mathbb{Z}$ mit $m \leq n$ und sind $a_m, a_{m+1}, \ldots, a_n \in \mathbb{R}$, so schreibt man

$$\sum_{k=m}^{n} a_k := a_m + a_{m+1} + \ldots + a_n .$$

Noch allgemeiner: Ist M eine endliche Menge und ist für jedes $k \in M$ eine reelle Zahl a_k gegeben, so ist $\sum_{k=1}^{\infty} a_k$ die Summe aller Zahlen a_k mit $k \in M$.

Def. Sei (a_n) eine Folge reeller Zahlen und $s_n := a_1 + \ldots + a_n$. Wenn die Folge (s_n) konvergiert, so sagt man, dass die Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert und schreibt

 $\sum\limits_{n=1}^{\infty}a_n$ für ihren Grenzwert. Wenn (s_n) divergiert, so sagt man, dass die Reihe $\sum\limits_{n=1}^{\infty}a_n$ divergiert. Die Zahlen s_n heißen die Partialsummen von $\sum\limits_{n=1}^{\infty}a_n$. Hat man allgemeiner eine Folge $(a_n)_{n\geq n_0}$ reeller Zahlen, so spricht man von der

Reihe $\sum_{n=n_0}^{\infty} a_n$

Satz 1. Wenn $\sum_{n=1}^{\infty} a_n$ konvergiert, so ist (a_n) eine Nullfolge.

Konvention: Wir setzen $x^0 := 1$ für alle $x \in \mathbb{R}$, insbesondere auch für x = 0.

Beispiel (1): Die geometrische Reihe $\sum_{n=0}^{\infty} x^n$ konvergiert für $\mid x \mid < 1$ und divergiert für $|x| \ge 1$. Denn für $x \in \mathbb{R}, \ x \ne 1$ ist

$$\sum_{n=0}^{k} x^n = \frac{1 - x^{k+1}}{1 - x}.$$

Deswegen gilt für $\mid x \mid < 1$:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Beispiel (2): Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, denn

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{> \frac{1}{2}} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{> \frac{1}{2}} + \frac{1}{9} + \cdots$$

Beispiel (3): $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1$. Denn $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

Satz 2. (Kriterium von Leibniz) Sei $(b_n)_{n\geq n_0}$ eine monoton fallende Nullfolge. Dann konvergiert $\sum_{n=0}^{\infty} (-1)^n b_n$.

Der Beweis geht folgendermaßen: Ist s_n die n-te Partialsumme, so überlegt man, dass

$$s_1 \le s_3 \le s_5 \le \ldots \le s_6 \le s_4 \le s_2 \le s_0$$
.

Daraus folgert man, dass die Folge der s_n konvergiert und dass sie den Grenzwert einschachteln.

Beispiel (4): $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ konvergiert nach Satz 2.

Def. Eine Reihe $\sum_{n=1}^{\infty} a_n$ heißt absolut konvergent, wenn $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

Satz 3. Eine absolut konvergente Reihe ist konvergent.

(Dies folgt aus dem Konvergenzkriterium von Cauchy.)

Bem.1. $\sum a_n$ konvergiert genau dann absolut, wenn die Folge der Partialsummen von $\sum \mid a_n \mid$ beschränkt ist.

Bem.2. Wenn $\sum a_n$ absolut konvergiert, so ist $|\sum a_n| \leq \sum |a_n|$.

Satz 4. (Majorantenkriterium) Seien (a_n) und (c_n) Folgen mit $|a_n| \le c_n \ \forall \ n$. Wenn $\sum_{n=1}^{\infty} c_n$ konvergiert, so konvergiert $\sum_{n=1}^{\infty} a_n$ absolut. (Man nennt dann $\sum_{n=1}^{\infty} c_n$ eine konvergente Majorante von $\sum_{n=1}^{\infty} a_n$.)

Beispiel (5): Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert, denn die Reihe aus Beispiel (3) ist eine konvergente Majorante.

Beispiel (6): Sei $k \in \mathbb{N}$ fest mit $k \geq 2$. Dann konvergiert $\sum_{n=1}^{\infty} \frac{1}{n^k}$.

Satz 5. (Quotientenkriterium) Es gebe ein $q \in \mathbb{R}$ mit 0 < q < 1, so dass $a_n \neq 0$ und $\frac{|a_{n+1}|}{|a_n|} \leq q$ für fast alle n. Dann ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

Beispiel (7): Für $n \in \mathbb{N}$ setzt man $n! := 1 \cdot 2 \cdot \ldots \cdot n$ (gelesen: n-Fakultät) und 0! := 1. Die Reihe $\sum_{n=0}^{\infty} \frac{1}{n!} x^n$ konvergiert nach Satz 5 absolut für jedes $x \in \mathbb{R}$.

$$\exp(x) := \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Bem.3. Sind $\sum a_n$ und $\sum b_n$ konvergent, so ist $\sum (a_n + b_n)$ konvergent und $\sum (a_n + b_n) = \sum a_n + \sum b_n$.

Ist $\sum a_n$ konvergent und $\lambda \in \mathbb{R}$, so ist $\sum (\lambda a_n)$ konvergent und $\sum (\lambda a_n) = \lambda \sum a_n$.

Beispiel (8): $\frac{1}{2} - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \cdots$ ist konvergent und hat die Summe 0. Die Umordnung

$$\frac{1}{2} + \frac{1}{3} + \underbrace{\frac{1}{4} - \frac{1}{2}}_{-\frac{1}{4}} + \frac{1}{5} + \underbrace{\frac{1}{6} - \frac{1}{3}}_{-\frac{1}{6}} + \frac{1}{7} + \underbrace{\frac{1}{8} - \frac{1}{4}}_{-\frac{1}{8}} + + - \cdots$$

ist nach dem Leibniz- Kriterium ebenfalls konvergent, hat aber eine Summe, die $> \frac{1}{2}$ ist. Und die Umordnung

$$\frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{\geq \frac{1}{2}} - \underbrace{\frac{1}{5} + \dots + \frac{1}{8}}_{\geq \frac{1}{2}} + \underbrace{\frac{1}{9} + \dots + \frac{1}{16}}_{\geq \frac{1}{2}} - \underbrace{\frac{1}{3} + \frac{1}{17}}_{\geq \frac{1}{2}} + \dots$$

ist divergent.

Def. Seien X und Y Mengen und sei $f: X \to Y$ eine Abbildung.

- a) f heißt surjektiv oder Abbildung von X auf Y, wenn es für jedes $y \in Y$ ein $x \in X$ gibt mit f(x) = y.
- b) f heißt *injektiv* oder *eineindeutig*, wenn gilt: Sind $x, x' \in X$ mit $x \neq x'$, so ist $f(x) \neq f(x')$.
- c) f heißt bijektiv, wenn f injektiv und surjektiv ist, wenn es also für jedes $y \in Y$ genau ein $x \in X$ gibt mit f(x) = y.

Satz 6. (Kommutativität absolut konvergenter Reihen) Sei $\sum_{n=1}^{\infty} a_n$ eine absolut konvergente Reihe und σ eine Bijektion von \mathbb{N} auf sich. Setze $b_n := a_{\sigma(n)}$. Dann ist $\sum_{n=1}^{\infty} b_n$ absolut konvergent und $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$.

Bem. Man kann beweisen: Ist $\sum a_n$ eine Reihe, die konvergiert, aber nicht absolut konvergiert, so gilt:

- a) Es gibt eine Bijektion $\sigma: \mathbb{N} \to \mathbb{N}$, so dass $\sum a_{\sigma(n)}$ divergiert.
- b) Ist $w \in \mathbb{R}$ beliebig, so gibt es eine Bijektion $\sigma : \mathbb{N} \to \mathbb{N}$, so dass $\sum a_{\sigma(n)} = w$

Bem. Man kann für absolut konvergente Reihen auch Assoziativität und Distributivität zeigen; siehe etwa W. Walter: Analysis I. Wir brauchen im Augenblick nur einen Spezialfall (Satz 8).

Binomialkoeffizienten: Man definiert für $n, k \in \mathbb{Z}$ mit $n \geq k$ und $0 \leq k \leq n$ den Binomialkoeffizienten $\binom{n}{k}$ durch

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Bem. a)
$$\binom{n}{0} = 1$$
, $\binom{n}{n} = 1$, $\binom{n}{k} = \binom{n}{n-k}$.

b) Für
$$k > 0$$
 ist $\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1)}{1 \cdot 2 \cdot 3 \cdot \ldots \cdot k}$.

c)
$$\binom{n}{1} = n$$
, $\binom{n}{2} = \frac{n(n-1)}{2}$.

- d) Für $n, k \in \mathbb{Z}$ und $0 < k \le n$ gilt $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$. Insbesondere ist $\binom{n}{k} \in \mathbb{Z}$. Pascalsches Dreieck!
- e) $\binom{n}{k}$ ist die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge.

Satz 7. (Binomischer Lehrsatz) Für $n \in \mathbb{N} \cup \{0\}$ und $x, y \in \mathbb{R}$ gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

(Auch richtig, wenn x, y in einem beliebigen Körper liegen.)

Satz 8. (Ausmultiplizieren absolut konvergenter Reihen) Seien $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent, und sei

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

Dann ist auch die Reihe $\sum_{n=0}^{\infty} c_n$ absolut konvergent und

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right).$$

Satz 9. (Additionstheorem für die Exponentialfkt.)

$$\exp(x+y) = \exp x \exp y \ \forall \ x, y \in \mathbb{R}.$$

Dies folgt aus Satz 7 und Satz 8.

4. Stetige Funktionen

Allgemeines über Abbildungen:

- I. Bezeichnungen:
 - Ist X eine Menge, so bezeichnet man mit id_X oder id die Abbildung $x\mapsto x$ von X in sich (identische Abbildung von X).
 - Sind X,Y,Z Mengen und $f:X\to Y,\ g:Y\to Z$ Abbildungen, so erhält man eine Abbildung $g\circ f:X\to Z$ durch $g\circ f(x):=g(f(x)).$

• Sind X, Y Mengen und ist $f: X \to Y$ eine Bijektion, so bezeichnet man das Element von X, das von f auf y abgebildet wird, mit $f^{-1}(y)$. Damit erhält man eine Bijektion $f^{-1}: Y \to X$. Es gilt

$$f^{-1} \circ f = \mathrm{id}_X,$$

$$f \circ f^{-1} = \mathrm{id}_Y,$$

$$(f^{-1})^{-1} = f.$$

II. Seien X, Y Mengen und $f: X \to Y$ eine Abbildung.

Ist $A \subseteq X$, so sei $f(A) := \{f(x) | x \in A\} = \{y \in Y | \text{es gibt ein } x \in A \text{ mit } f(x) = y\}.$

Ist $U \subseteq Y$, so sei $f^{-1}(U) := \{x \in X | f(x) \in U\}.$

Ist $y \in Y$, so sei $f^{-1}(y) := f^{-1}(\{y\}) = \{x \in X | f(x) = y\}.$

Das schreibt man auch, wenn f nicht bijektiv ist!

• Sind $U, V \subseteq Y$, so ist

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V),$$

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V).$$

• Sind $A, B \subseteq X$, so ist

$$f(A \cap B) \subseteq f(A) \cap f(B),$$

 $f(A \cup B) = f(A) \cup f(B).$

- Ist $U \subseteq Y$, so ist $f(f^{-1}(U)) \subseteq U$. Ist f surjektiv, so gilt Gleichheit.
- Ist $A \subseteq X$, so ist $f^{-1}(f(A)) \supseteq A$. Ist f injektiv, so gilt Gleichheit.

III. Sind X, Y Mengen, so ist

$$X \times Y := \{(x, y) | x \in X, y \in Y\}.$$

Man schreibt $X^2:=X\times X$. Insbesondere ist $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ die Ebene.

Ist $D \subseteq X$ und $f: D \to Y$ eine Abbildung, so heißt

$$Graph(f) := \{(x, f(x)) | x \in D\} \subset X \times Y$$

der Graph von f.

Ist $D \subseteq \mathbb{R}$, so heißt eine Abbildung $f: D \to \mathbb{R}$ eine auf D definierte Funktion.

Def. Sei $f: D \to \mathbb{R}$ eine Funktion und $x_0 \in D$. Dann heißt f stetig in x_0 , wenn es zu jedem $\epsilon > 0$ ein $\delta > 0$ gibt, so dass gilt: Ist $x \in D$ und $|x - x_0| < \delta$, so ist $|f(x) - f(x_0)| < \epsilon$. Die Funktion f heißt stetig, wenn sie in jedem Punkt von D stetig ist.

Bem. f ist genau dann in x_0 stetig, wenn gilt: Zu jedem $\epsilon > 0$ gibt es ein $\delta > 0$ mit folgender Eigenschaft:

$$\mid f(x_0+h)-f(x_0)\mid <\epsilon$$

für alle $h \in \mathbb{R}$, für die $|h| < \delta$ und $x_0 + h \in D$.

Beispiel (1): Ist $c \in \mathbb{R}$ eine feste Zahl und $f : \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = c \ \forall x \in \mathbb{R}$, so ist f stetig.

Beispiel (2): Ist $f = id_{\mathbb{R}}$, also $f(x) = x \,\forall x \in \mathbb{R}$, so ist f stetig.

Bezeichnung: Sei $f: D \to \mathbb{R}$ eine Funktion, $x_0 \in D$ und $a \in \mathbb{R}$. Wir schreiben $\lim_{x \to x_0} f(x) = a$, wenn für jede Folge (x_n) in D mit $\lim_{n \to \infty} x_n = x_0$ gilt, dass $\lim_{n \to \infty} f(x_n) = a$.

Satz 1. Sei $f: D \to \mathbb{R}$ eine Funktion, $x_0 \in D$. Dann sind äquivalent:

- (a) f ist stetig in x_0 .
- (b) $\lim_{x \to x_0} f(x) = f(x_0)$.

Beispiel (3): Definiere $f: \mathbb{R} \to \mathbb{R}$ durch $f(x) := \left\{ \begin{array}{ll} 0 & \text{für } x \leq 0 \\ 1 & \text{für } x > 0 \end{array} \right.$. Dann ist f nicht stetig in 0.

Bez. Seien $f, g: D \to \mathbb{R}$ zwei Funktionen. Dann definiert man $f+g: D \to \mathbb{R}$ durch (f+g)(x) := f(x) + g(x); entsprechend f-g, fg, $\frac{f}{g}$ (letzteres, falls $g(x) \neq 0$ $\forall x \in D$).

Satz 2. Sei $D \subseteq \mathbb{R}$ und seien $f, g: D \to \mathbb{R}$ stetige Funktionen. Dann sind f+g, f-g, fg und, falls g keine Nullstellen in D hat, auch $\frac{f}{g}$ stetig.

Beispiel (4): Sind $a_0, \ldots, a_n \in \mathbb{R}$ feste Zahlen und definiert man $f : \mathbb{R} \to \mathbb{R}$ durch $f(x) := a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$, so ist f stetig. Eine solche Funktion heißt Polynom(funktion).

Beispiel (5): Sind a_0, \ldots, a_n und $b_0, \ldots, b_m \in \mathbb{R}$ fest und ist $D := \{x \in \mathbb{R} \mid b_0 + b_1 x + \ldots + b_m x^m \neq 0\}$, so erhält man durch

$$f(x) := \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

eine stetige Funktion $f: D \to \mathbb{R}$. Sie heißt gebrochen-rationale Funktion.

Beispiel (6): Die Funktion $\exp:\mathbb{R} \to \mathbb{R}$ mit $\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ ist stetig.

Dafür benutzen wir:

Satz 3. Ist $R_{N+1}(x) := \exp x - \sum_{n=0}^{N} \frac{x^n}{n!}$, so ist

$$\mid R_{N+1}(x) \mid \leq 2 \frac{\mid x \mid^{N+1}}{(N+1)!}$$
 für alle x mit $\mid x \mid \leq 1 + \frac{N}{2}$.

Def. $e := \exp(1)$.

Aus Satz 3. folgt: $|e-\sum_{n=0}^N\frac{1}{n!}|\leq \frac{2}{(N+1)!}$ für alle $N\in\mathbb{N}\cup\{0\}$. Damit kann man e mit gewünschter Genauigkeit berechnen:

$$e = 2,71828...$$

Satz 4. Seien $D, E \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}, \ g: E \to \mathbb{R}$ stetige Funktionen mit $f(x) \in E$ für alle $x \in D$. Definiert man $h: D \to \mathbb{R}$ durch h(x) := g(f(x)), so ist h stetig.

Satz 5. (Zwischenwertsatz) Seien $a, b \in \mathbb{R}$ mit a < b und sei $f : [a, b] \to \mathbb{R}$ stetig. Sei γ eine reelle Zahl, die zwischen f(a) und f(b) liegt. Dann gibt es ein $c \in [a, b]$ mit $f(c) = \gamma$.

Bezeichnungen: Außer den bisher betrachteten (offenen, abgeschlossenen oder halboffenen) Intervallen, die wir auch als *eigentliche Intervalle* bezeichnen, betrachtet man auch *uneigentliche Intervalle*, nämlich die Mengen der Form (mit $a \in \mathbb{R}$):

```
 \begin{array}{l} [\ a,\infty[\ :=\{x\in\mathbb{R}\ |\ a\leq x\} \ \ , \ \ \text{abg. uneigentliches Intervall} \\ ]-\infty,a]:=\{x\in\mathbb{R}\ |\ x\leq a\} \ \ , \ \ \text{abg. uneigentliches Intervall} \\ ]\ a,\infty[\ :=\{x\in\mathbb{R}\ |\ a< x\} \ \ , \ \ \text{offenes uneigentliches Intervall} \\ ]-\infty,a[\ :=\{x\in\mathbb{R}\ |\ x< a\} \ \ , \ \ \text{offenes uneigentliches Intervall} \\ ]-\infty,\infty[:=\mathbb{R} \ \ , \ \ \text{offenes u. abg. uneigentliches Intervall.} \\ \end{array}
```

Als *Intervall* bezeichnen wir ein eigentliches oder ein uneigentliches Intervall. Ein eigentliches abgeschlossenes Intervall heißt *kompaktes Intervall*.

Der folgende Satz ist eine Umformulierung des Zwischenwertsatzes:

Satz 6. Sei I ein Intervall und $f:I\to\mathbb{R}$ stetig. Dann ist f(I) ein Intervall oder eine einpunktige Menge.

Satz 7. Ist I ein kompaktes Intervall und $f: I \to \mathbb{R}$ eine stetige Funktion, so nimmt f auf I sein Maximum und sein Minimum an. (D.h.: Es gibt $x_0, x_1 \in I$ mit $f(x_0) \le f(x) \le f(x_1)$ für alle $x \in I$.