CSOR W4246 - Summer 2021 Homework #3

Joseph High - jph2185 June 8, 2021

Problem 1

(i.) From the conditions provided in the problem, each node $v \in V$ must satisfy the following demand constraint:

$$f^{\rm in}(v) - f^{\rm out}(v) = d(v)$$

By the flow conservation condition for feasible flows: $f^{in}(v) = f^{out}(v)$

$$\implies \sum_{v \in V} f^{\mathrm{in}}(v) = \sum_{v \in V} f^{\mathrm{out}}(v) \quad \Longleftrightarrow \quad \sum_{v \in V} f^{\mathrm{in}}(v) - \sum_{v \in V} f^{\mathrm{out}}(v) = 0$$

We then have that

$$\begin{split} \sum_{v \in V} d(v) &= \sum_{v \in V} f^{\mathrm{in}}(v) - f^{\mathrm{out}}(v) = \sum_{v \in V} f^{\mathrm{in}}(v) - \sum_{v \in V} f^{\mathrm{out}}(v) = 0 \\ \implies \sum_{v \in V} d(v) &= 0 \\ \implies \sum_{v \in V} d(v) &= \sum_{\underline{d(v)} > 0} d(v) + \sum_{\underline{d(v)} < 0} d(v) + \sum_{\underline{d(v)} = 0} d(v) = 0 \\ \implies \sum_{v \in T} d(v) + \sum_{v \in S} d(v) + \sum_{\underline{v} \in V \setminus S \cup T} d(v) &= 0 \\ \implies \sum_{v \in T} d(v) + \sum_{v \in S} d(v) = 0 \\ \implies \sum_{v \in T} d(v) &= -\sum_{v \in S} d(v) \end{split}$$

Hence, a necessary condition for a feasible circulation with demands to exist is

$$\sum_{v \in T} d(v) = -\sum_{v \in S} d(v) \quad \text{and/or} \quad \sum_{v \in V} d(v) = 0$$

Furthermore, the demand at nodes in S or T must not exceed the capacity of the edges leaving or entering the nodes in S or T, respectively. However, this condition is captured by the combination of the capacity constraints and the demand constraints.

- (ii.) Let G = (V, E) be the flow network given in the problem. The reduction is as follows: Input: (G, c, d)
 - Input an instance (G, c, d) as an adjacency list encoded as a binary string x.
 - G is the flow network/circulation.
 - c is the function of capacity constraints for each edge in the graph.
 - d is the function of demand constraints for each node in G.

Transform an instance x = (G, c, d) to an instance y = (G', c', d', s, t).

Reduction Transformation: From G, construct a new network G' = (V', E') where $V' = V \cup \{s, t\}$ and $E' = E \cup E_N$. The node s is a new, additional source node in G' and t is a new, additional sink in G'. The new set of edges E_N is a set of directed edges from s to all nodes in the set S and directed edges from all nodes in T to t. That is, $E_N = \{(s, v), (u, t) : v \in S \text{ and } u \in T\}$. For each $(u, t) \in E_N$, with $u \in T$, assign a capacity $c_{(u,t)} = d(u)$. For each $(s, v) \in E_N$, with $v \in S$, assign a capacity $c_{(s,v)} = -d(v)$, since d(v) < 0 for all $v \in S$ and capacities must be positive.

Equivalence: For any feasible circulation in G, the maximum flow can be achieved in G' by assigning a flow value $f(u,t)=c_{(u,t)}=d(u)$ for all $(u,t)\in E_N$ and $u\in T$, and a flow value $f(s,v)=c_{(s,v)}=-d(v)$ for all $(s,v)\in E_N$ and $v\in S$. That is, assign flow values equal to the capacity of the corresponding edge. Then clearly, the max flow value will be $\sum_{v\in T}d(v)$. On the other hand, if the max flow is $\sum_{v\in T}d(v)$ in G', then this

implies that every $e \in E_N$ is fully saturated at capacity (i.e., $f(e) = c_e$), which gives a feasible solution to the max flow problem on the original network G, and thus a feasible circulation in G.

Efficiency/Complexity: The input size $|x| = O(m \log n)$. The reduction transformation can be done in polynomial-time. The max-flow problem can be solved in polynomial-time if we use the Ford-Fulkerson algorithm (using BFS), and we only make one call the black box for Max Flow. Therefore, the original problem can be solved in polynomial-time. Hence, the reduction requires polynomial-time.

Note: My solution to this problem is inspired by experience with similar problems from previous optimization/financial engineering courses.

As stated in the problem, an arbitrage opportunity exists within currency exchange rates if

$$R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] = \prod_{t=1}^{k-1} R[i_t, i_{t+1}] \cdot R[i_k, i_1] > 1$$

or equivalently,

$$\sum_{t=1}^{k-1} \ln R[i_t, i_{t+1}] + \ln R[i_k, i_1] > \ln(1) = 0 \iff -\sum_{t=1}^{k-1} \ln R[i_t, i_{t+1}] - \ln R[i_k, i_1] < 0$$

Then we can apply a modified version of either the Bellman-Ford algorithm or the identical dynamic programming algorithm presented in class to a graph with vertices that represent the currencies and edge weights equal to $-\ln R[i,j]$ for any two currencies c_i and c_j , where $i \neq j$ to detect whether or not the graph has negative cycles. In particular, we create a directed graph G with two anti-parallel edges between every pair of currencies, c_i and c_j , to represent the fact that an exchange can be done in either direction. More specifically, letting $v_i \in V$ represent currency c_i , the edge set is such that both $(v_i, v_j) \in E$ and $(v_j, v_i) \in E$, for all $i, j \in \{1, \ldots, n\}$ and $i \neq j$. That is, the graph is a complete directed graph in the sense that every pair of nodes is an in-neighbor and out-neighbor of one another. Finally, for every $(v_i, v_j) \in E$ let the associated edge weight be $w_{i,j} = -\ln R[i,j]$. The algorithm will solely be used to detect whether any negative cycles exist in the graph, and not to find a shortest path, and so a modified version of the Bellman-Ford algorithm will be used to accomplish this. If the algorithm detects a negative cycle, it will return True and False otherwise, which is the opposite of what the original Bellman-Ford algorithm returns for negative-cycle detection.

Pseudocode is provided on the next page (not enough room on this page).

Running Time: Developing the graph takes $O(n^2)$ time. The Bellman-Ford algorithm requires $\overline{O(nm)}$ time, but $m = O(n^2)$ since the graph is complete; thus, Bellman-Ford requires $O(n^3)$ time. Therefore, the total running time of the algorithm is $O(n^3)$.

<u>Correctness</u>: If the graph contains negatives cycles, one run of the Bellman-Ford algorithm will correctly detect it since the graph is complete (all nodes are reachable from one another). More, correctness of negative cycle detection follows from correctness of the Bellman-Ford algorithm (as correctness has already been proven in class).

```
ArbitrageDetect(c = [c_1, c_2, \dots, c_n], R):
       G = ExchangeRateGraph(c, R)
                                                                        // Construct graph G.
2:
       Fix any s \in V
3:
       Run Bellman-Ford-Modified(G, w, s)
 4:
 5: end
 6:
    Bellman-Ford-Modified(G, w, s):
       Note: Only the modified portion shown
 8:
9:
       //Add the following to the end of the Bellman-Ford algorithm
10:
       for any v \in V do
11:
          if M[n, v] < M[n - 1, v] then
12:
              return True
                                                         // Indicative of negative cycles if true
13:
                                                          // Returns false if no negative cycles
14:
          else return False
          end if
15:
       end for
16:
17: end
18:
    ExchangeRateGraph(c = [c_1, c_2, \dots, c_n], R):
                                                                          // Constructs graph.
19:
20:
       Declare G = (V, E, w)
       G.V = c
21:
       for i = 1 to n do
22:
          for j = 1 to n do
23:
              G.E[i, j] = (G.V[i], G.V[j])
24:
              G.w[i,j] = -\ln R[i,j]
25:
          end for
26:
27:
       end for
       return G = (V, E, w)
28:
29: end
```

Let $A = \sum_{i=1}^n a_i$ and let $OPT(i, S_I, S_J)$ be a boolean indicator which indicates whether or not there exists a partitioning of the first i integers a_1, \ldots, a_i into I, J, and K such that $\sum_{i \in I} a_i = S_I$ and $\sum_{j \in J} a_j = S_J$ and $\sum_{k \in K} a_k = A - S_I - S_J$. Let M be a DP table that represents the values of $OPT(i, S_I, S_J)$. Then $M[i, S_I, S_J] = 1$ if there exists a partitioning of the first i integers a_1, \ldots, a_i into I, J, and K such that $\sum_{i \in I} a_i = S_I$ and $\sum_{j \in J} a_j = S_J$ and $\sum_{k \in K} a_k = A - S_I - S_J$, and $M[t, S_I, S_J] = 0$ otherwise.

Boundary conditions:

- OPT(0,0,0) = 1, since it is vacuously true that zero integers can be partitioned into three subsets such that the sum of each is equal to 0.
- $OPT(0, S_I, S_J) = 0$ for $S_I, S_J > 0$. Indeed, it is impossible to partition zero integers such that the sum of at least one partition is a positive integer.

Recursion:

$$OPT(i, S_I, S_J) = OPT(i - 1, S_I - a_i, S_J)$$
 OR $OPT(i - 1, S_I, S_J - a_i)$ **OR** $OPT(i - 1, S_I, S_J)$

The algorithm recursively builds to the desired output of $M\left[n, \frac{A}{3}, \frac{A}{3}\right]$, where M is filled in from the top down (row-by-row).

```
Partition-Sum(a = \overline{[a_1, \ldots, a_n])}:
        Set A = \sum_{i=1}^{n} a_i
 2:
        Declare DP table M
 3:
        Initialize M[0, 0, 0] = 1
                                                                                    // Boundary condition
 4:
        for (i \ge 1) and (j \ge 1) do
                                                                                    // Boundary conditions
 5:
            Initialize M[0, i, j] = 0
 6:
        end for
 7:
        if A/3 \notin \mathbb{Z} then
 8:
            return False
 9:
        end if
10:
        for i = 1 to n do
11:
            for j = 1 to A/3 do
12:
                for k = 1 to A/3 do
13:
                    M[i, j, k] = M[i-1, j-a_i, k] \text{ OR } M[i-1, j, k-a_i] \text{ OR } M[i-1, j, k]
14:
                end for
15:
            end for
16:
        end for
17:
        if M\left[n, \frac{A}{3}, \frac{A}{3}\right] == 1 then
18:
            return True
19:
20:
        else return False
        end if
21:
22: end
```

Space: The algorithm has an additional space requirement of $\Theta(nA^2)$ for the DP matrix M.

Running Time: The sum at line 2 requires O(n) time. Initializing M requires $O(nA^2)$ time. The recursion iterates $O(nA^2)$ times, each of which takes constant time since each of the values were computed in earlier steps. Therefore, the total running time of the algorithm is then $O(nA^2)$.

This decision/feasibility problem can be transformed to a Max-Flow problem by modeling the given parameters on a flow network and subsequently solving the Max-Flow problem on the constructed flow network. In particular, construct a directed graph G = (V, E) where V consists of a vertex for each injured person, which we denote by v_i , i = 1, ..., n; a vertex for each hospital, which we denote by h_j , j = 1, ..., k; and a source node, and a sink node. For each person node v_i add a directed edge from v_i to all h_j that the person v_i is able to arrive at within the half-hour driving time from their current location to the edge set E. For all j = 1, ..., k, add a directed edge from hospital node h_j to the sink node t. For each t = 1, ..., n, add a directed edge from the sink node to injured patient node v_i . Letting t be the capacity constraint function, the following edge capacities will be set:

- For each edge from the source to injured person nodes, set the capacity to be $c(s, v_i) = 1$ (Since each patient adds at most one to the count.)
- For each edge (v_i, h_j) (from person i to hospital j), set the capacity to be $c(v_i, h_j) = 1$ (To constrain the source node to sending at most one unit of flow from $s \to v_i \to h_j \to t$ for a given pair i, j.)
- For each edge from hospital j to the sink node, set the capacity to be $c(h_j, t) = \lceil \frac{n}{k} \rceil$ (To capture hospital load constraint.)

Solve Max Flow(D) on input (G = (V, E), s, t); answer yes if max |f| = n and no if max |f| < n.

On the flow network constructed above, run the Ford-Fulkerson algorithm to solve the Max Flow problem. If the maximum flow value is equal to n, then this indicates that all n injured people were brought to a hospital. Otherwise, if the max flow less than n, then it is not feasible for all n people to be sent to the k hospitals. Accordingly, if $\max |f| = n$ the algorithm returns True; otherwise, the algorithm returns False.

```
Hospital-Flow(P = \{p_1, \dots, p_n\}, H = \{h_i, \dots, h_k\}, L = \{l_1, \dots, l_n\}):
       //L denotes the set of n locations for the n people.
 2:
       Construct flow network on input (P, H, L)
                                                          // Using construction described above
 3:
       Let G be the constructed flow network
 4:
       Run Ford-Fulkerson(G)
 5:
       if \max |f| == n then
 6:
           return True
 7:
 8:
       else if \max |f| < n then
           return False
9:
       end if
10:
11: end
```

Correctness/Equivalence: If the max |f| = n, this implies that all n injured people are able to be sent to a hospital. Indeed, $|f| = f^{in}(t)$, and since there is exactly one edge going from each hospital to t, this implies that when the max flow is achieved, the hospitals received all n patients. On the other hand, if there exists a flow f' in the network in which all n people can

be sent to a hospital, the maximum flow can be achieved by saturating all edges leaving the source, and subsequently send flow down f' to the sink node. Hence, the Max-Flow problem is a yes instance if and only if the feasibility problem of sending patients to hospitals is a yes instance.

Running Time: The flow network has |V| = n + k nodes and contains at most nk + n + k edges; indeed, there are exactly n edges from the source node and injured people, at most nk edges from people to hospitals, and k nodes from hospitals to the sink node. Therefore, constructing the flow network requires O(nk) time. Running Ford-Fulkerson (using BFS) requires $O(|V| \cdot |E|) = O((n+k) \cdot nk) = O(n^2k + nk^2)$ time. Therefore, the total running time of the algorithm is $O(n^2k + nk^2)$. Hence, the algorithm/reduction requires polynomial time.

Unfortunately, I did not have time to complete Problem 5.