Principal Component Analysis (PCA)

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay

Portland State University

Outline

- 1 Dimensionality Reduction
- 2 PCA
- 3 Preliminaries
- 4 Steps of PCA
- 5 JL Lemma

2024 GDP Prediction of U.S.

- U.S. GDP for the first quarter of 2024
- U.S. GDP for the entirety of 2023, 2022, and so on.
- Unemployment rate
- Inflation rate
- Number of people work in each industry
- Number of members of the House and Senate belong to each political party
- Stock price data
- Number of CEOs seem to be mounting a bid for public office

2024 GDP Prediction of U.S.

- U.S. GDP for the first quarter of 2024
- U.S. GDP for the entirety of 2023, 2022, and so on.
- Unemployment rate
- Inflation rate
- Number of people work in each industry
- Number of members of the House and Senate belong to each political party
- Stock price data
- Number of CEOs seem to be mounting a bid for public office

That is a lot of parameters/features!

Curse of Dimensionality

Time complexity typically depends exponentially on the dimension

Curse of Dimensionality

Time complexity typically depends exponentially on the dimension

• *k*-means/median: $(1 + \epsilon)$ -approximation in n^d time

Curse of Dimensionality

Time complexity typically depends exponentially on the dimension

- *k*-means/median: $(1 + \epsilon)$ -approximation in n^d time
- For large d, distance computation is expensive: for d = logn, takes O(log n) time

Dimensionality Reduction

Dependent vs Independent features/variables

Dimensionality Reduction

Dependent vs Independent features/variables

- Feature elimination
 - Remove a subset of dependent features/variables
 - Information is lost

Dimensionality Reduction

Dependent vs Independent features/variables

- Feature elimination
 - Remove a subset of dependent features/variables
 - Information is lost
- Feature extraction
 - New features are created that are independent
 - Old features are combined to create new features
 - Number of new features is small
 - New features are not interpretable
 - Information loss is controlled

Outline

- 1 Dimensionality Reduction
- 2 PCA
- 3 Preliminaries
- 4 Steps of PCA
- 5 JL Lemma

Feature Extraction using PCA

Finds main directions of the data (that have higher variance)

Feature Extraction using PCA

Finds main directions of the data (that have higher variance)

What line can be fit into this data?

Output of PCA

Transformed data by independent directions/vectors

We can drop the *y* direction without losing a lot of information (dimensionality reduction)

Outline

- 1 Dimensionality Reduction
- 2 PCA
- 3 Preliminaries
- 4 Steps of PCA
- 5 JL Lemma

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \vec{\mathbf{v}} = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \vec{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$A\vec{v} = \begin{pmatrix} 3v_1 + v_2 \\ 2v_2 \end{pmatrix}$$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$A\vec{v} = \begin{pmatrix} 3v_1 + v_2 \\ 2v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix}$$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \vec{V} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$A\vec{v} = \begin{pmatrix} 3v_1 + v_2 \\ 2v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix}$$

$$V_1 = -1, V_2 = 1$$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \text{ and } \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$A\vec{v} = \begin{pmatrix} 3v_1 + v_2 \\ 2v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix}$$

$$V_1 = -1, V_2 = 1$$

$$A\vec{v} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \lambda \vec{v}$$

- Consider a square matrix $A(d \times d)$
- \vec{v} ($\vec{d} \times 1$) is an eigenvector if for some λ , $A\vec{v} = \lambda \vec{v}$
- lacksquare λ is the eigenvalue corresponding to \vec{V}

•
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$A\vec{v} = \begin{pmatrix} 3v_1 + v_2 \\ 2v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \end{pmatrix}$$

$$V_1 = -1, V_2 = 1$$

$$A\vec{v} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \lambda \vec{v}$$

Link to youtube video

Before transformation

After transformation

Span of
$$\begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 before

The span remains the same afterwards

Outline

- 1 Dimensionality Reduction
- 2 PCA
- 3 Preliminaries
- 4 Steps of PCA
- 5 JL Lemma

PCA - Step 1 - Centering

Given the dataset $\{x_1, \ldots, x_n\}$ in \mathbb{R}^d

■ Create an $n \times d$ matrix X using the dataset: rows :: points, columns :: features

PCA - Step 1 - Centering

Given the dataset $\{X_1, \ldots, X_n\}$ in \mathbb{R}^d

■ Create an $n \times d$ matrix X using the dataset: rows :: points, columns :: features

 For each column, subtract the mean of that column from each entry

PCA - Step 1 - Centering

Given the dataset $\{x_1, \ldots, x_n\}$ in \mathbb{R}^d

■ Create an $n \times d$ matrix X using the dataset: rows :: points, columns :: features

- For each column, subtract the mean of that column from each entry
- Each column has a mean of zero

■ Transpose X and multiply by X to create a matrix $C = X^T X$

- Transpose X and multiply by X to create a matrix $C = X^T X$
- **X**^T is $d \times n$: columns :: points, rows :: features

- Transpose X and multiply by X to create a matrix $C = X^T X$
- **X**^T is $d \times n$: columns :: points, rows :: features

 $lue{}$ So, C is basically the covariance matrix of X

- Transpose X and multiply by X to create a matrix $C = X^T X$
- **X**^T is $d \times n$: columns :: points, rows :: features

- \blacksquare So, C is basically the covariance matrix of X
- Shows how every variable in X relates to every other variable in X

PCA - Step 3 - Eigendecomposition

 Calculate the eigenvectors and their corresponding eigenvalues of C

PCA - Step 3 - Eigendecomposition

- Calculate the eigenvectors and their corresponding eigenvalues of C
- C can be decomposed into PDP^{-1} , where P is the matrix of eigenvectors and D is the diagonal matrix with eigenvalues

PCA - Step 3 - Eigendecomposition

- Calculate the eigenvectors and their corresponding eigenvalues of C
- C can be decomposed into PDP^{-1} , where P is the matrix of eigenvectors and D is the diagonal matrix with eigenvalues

$$\begin{bmatrix}
\vdots & \vdots & \vdots \\
e_1 & e_2 & \dots & e_d \\
\vdots & \vdots & \ddots & \vdots \\
P & D
\end{bmatrix}
\begin{bmatrix}
\lambda_1 \\ \lambda_2 & 0 \\
0 & \ddots \\
& & \lambda_d
\end{bmatrix}$$

■ Eigenvectors represent directions - principal components

PCA - Step 3 - Eigendecomposition

- Calculate the eigenvectors and their corresponding eigenvalues of C
- C can be decomposed into PDP^{-1} , where P is the matrix of eigenvectors and D is the diagonal matrix with eigenvalues

- Eigenvectors represent directions principal components
- Eigenvalues represent magnitude, or importance
- Bigger eigenvalues correlate with more important directions

■ Take the eigenvalues $\lambda_1, \ldots, \lambda_d$ and sort them from largest to smallest

- Take the eigenvalues $\lambda_1, \ldots, \lambda_d$ and sort them from largest to smallest
- Sort the eigenvectors in $P_{d \times d}$ accordingly

- Take the eigenvalues $\lambda_1, \ldots, \lambda_d$ and sort them from largest to smallest
- Sort the eigenvectors in $P_{d \times d}$ accordingly
- Call this sorted matrix of eigenvectors $P_{d \times d}^*$

- Take the eigenvalues $\lambda_1, \ldots, \lambda_d$ and sort them from largest to smallest
- Sort the eigenvectors in $P_{d \times d}$ accordingly
- Call this sorted matrix of eigenvectors $P_{d \times d}^*$
- Eigenvectors are independent of one another

■ Calculate $X_{n \times d}^* = X_{n \times d} P_{d \times d}^*$

- Calculate $X_{n \times d}^* = X_{n \times d} P_{d \times d}^*$
- Each row of X^* is a transformed point

- Calculate $X_{n \times d}^* = X_{n \times d} P_{d \times d}^*$
- Each row of X^* is a transformed point
- Each point is a combination of the original variables, where the weights are determined by the eigenvectors

- Calculate $X_{n \times d}^* = X_{n \times d} P_{d \times d}^*$
- Each row of X^* is a transformed point
- Each point is a combination of the original variables, where the weights are determined by the eigenvectors
- Dimension is still *d*
- No information loss so far

Summary of PCA

- The Create the matrix X whose each column has a mean of zero
- 2 Compute the covariance matrix $C = X^T X$
- \blacksquare Calculate the eigenvectors and their corresponding eigenvalues of C
- 4 Compute the sorted matrix of eigenvectors P^* from P, where $C = PDP^{-1}$
- **5** Calculate $X^* = XP^*$

Dropping Dimensions

Arbitrarily select how many dimensions to keep - useful for visual representation

Dropping Dimensions

- Arbitrarily select how many dimensions to keep useful for visual representation
- 2 Add features based on their importance (eigenvalues) until a set threshold is achieved $\lambda_1/(\sum_i \lambda_i) + \lambda_2/(\sum_i \lambda_i) + \dots$

Dropping Dimensions

- Arbitrarily select how many dimensions to keep useful for visual representation
- 2 Add features based on their importance (eigenvalues) until a set threshold is achieved $\lambda_1/(\sum_i \lambda_i) + \lambda_2/(\sum_i \lambda_i) + \dots$
- 3 Add features until a significant drop in the eigenvalue Elbow method

An Example

Outline

- 1 Dimensionality Reduction
- 2 PCA
- 3 Preliminaries
- 4 Steps of PCA
- 5 JL Lemma

For any set of n data points in \mathbb{R}^d , there is a map/projection f to \mathbb{R}^k for $k = O(\log n)$ with small distortion of the distances.

■ f maps $x_i \in X$ to $f(x_i) \in \mathbb{R}^k$

- f maps $x_i \in X$ to $f(x_i) \in \mathbb{R}^k$
- $lue{d}$ is assumed to be much larger than $\log n$

- f maps $x_i \in X$ to $f(x_i) \in \mathbb{R}^k$
- $lue{d}$ is assumed to be much larger than $\log n$
- Let $\epsilon \in (0, 1)$
- For any two x_i , $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$

- f maps $x_i \in X$ to $f(x_i) \in \mathbb{R}^k$
- $lue{d}$ is assumed to be much larger than $\log n$
- Let $\epsilon \in (0, 1)$
- For any two x_i , $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$
- $\mathbf{k} = O(\log n/\epsilon^2)$

- f maps $x_i \in X$ to $f(x_i) \in \mathbb{R}^k$
- $lue{d}$ is assumed to be much larger than $\log n$
- Let $\epsilon \in (0, 1)$
- For any two x_i , $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$
- $\mathbf{k} = O(\log n/\epsilon^2)$
- *k* cannot be arbitrarily small

Proof is by construction of a map $f \Rightarrow$ An algorithm for computing f

■ There are many proofs – we discuss one

Proof is by construction of a map $f \Rightarrow$ An algorithm for computing f

- There are many proofs we discuss one
- We construct a $k \times d$ matrix M

Proof is by construction of a map $f \Rightarrow$ An algorithm for computing f

- There are many proofs we discuss one
- We construct a $k \times d$ matrix M
- Each entry is an independent sample from the standard normal N(0, 1) distribution

Proof is by construction of a map $f \Rightarrow$ An algorithm for computing f

- There are many proofs we discuss one
- We construct a $k \times d$ matrix M
- Each entry is an independent sample from the standard normal N(0, 1) distribution
- $f(x) := \frac{1}{\sqrt{k}} M_{k \times d} x_{d \times 1}$

Proof is by construction of a map $f \Rightarrow$ An algorithm for computing f

- There are many proofs we discuss one
- We construct a $k \times d$ matrix M
- Each entry is an independent sample from the standard normal N(0, 1) distribution
- $f(x) := \frac{1}{\sqrt{k}} M_{k \times d} x_{d \times 1}$
- The proof uses properties of N(0, 1) Random projections work

Proof: Chapter 2.7

JL Lemma only preserves distances between points in X

 This is good for applications such as Nearest Neighbor search

- This is good for applications such as Nearest Neighbor search
- But, not suitable for clustering we need distances between centers and points to be preserved

- This is good for applications such as Nearest Neighbor search
- But, not suitable for clustering we need distances between centers and points to be preserved
- This is possible Terminal embedding

- This is good for applications such as Nearest Neighbor search
- But, not suitable for clustering we need distances between centers and points to be preserved
- This is possible Terminal embedding
- For any two $x_i \in \mathbb{R}^d$, $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$

- This is good for applications such as Nearest Neighbor search
- But, not suitable for clustering we need distances between centers and points to be preserved
- This is possible Terminal embedding
- For any two $x_i \in \mathbb{R}^d$, $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$
- Proof is along the same line, but much more complicated

JL Lemma only preserves distances between points in X

- This is good for applications such as Nearest Neighbor search
- But, not suitable for clustering we need distances between centers and points to be preserved
- This is possible Terminal embedding
- For any two $x_i \in \mathbb{R}^d$, $x_j \in X$, distortion $\frac{||f(x_i) f(x_j)||}{||x_i x_j||} \in [1 \epsilon, 1 + \epsilon]$
- Proof is along the same line, but much more complicated

For k-means/median, the dimension can be improved from $O(\log n)$ to $O(\log k)$ to preserve the cost of all clustering