Examen Session Rattrapage : Architecture des ordinateurs

Document non autorisé, Durée 2h

Exercice 1 (5points)

On veut réaliser un circuit combinatoire qui possède deux entrées de données (a_0, b_0) , deux entrées de commande(C,D) et une sortie S_0 .

Le fonctionnement de ce circuit est tel que:

- Si C=D=1 alors S_0 = a_0 + b_0 (OU logique)
- Si C=D=0 alors S_0 = $a_0.b_0$ (ET logique)
- Si C=0 et D=1 alors S_0 = b_0
- Si C=1 et D=0 alors S_0 = a_0
- 1. Faire la table de vérité de ce circuit. (*Ipoint*)
- 2. Donner l'équation logique simplifiée de S₀. (2points)
- 3. Donner le schéma logique simplifié qu'avec des portes NAND. (2points)

Exercice 2 (5points)

Représenter le circuit électronique détaillée et simplifié d'un transcodeur de 4 bits permettant le passage du code de Gray au code D'Aiken. On se limitera aux nombres allant de 5 à 9.

Exercice 3: Question de cours (10points)

- 1. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un multiplexeur à 2 entrées d'adresses (A₀, A₁). (2points)
- 2. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un démultiplexeur à 2 entrées d'adresses (A₀, A₁). (2points)
- 3. Etablir la table de vérité et le(s) équation(s) booléenne(s) de sortie(s) d'un comparateur d'inégalité de 2 bits. *(2points)*
- 4. Etablir la table de vérité et les équations booléennes de sorties (S₀, S₁, S₂, S₃) d'un décodeur à 4 sorties et n entrées (E₀,E_n). (2points)
- 5. Etablir la table de vérité et les équations booléennes des n sorties (S₀,....S_n) d'un codeur à 4 entrées (E₀, E₁, E₂, E₃). (2points)

Exercice 5

L'étude porte sur un décodeur Hexadécimal (0 à 9, A à F) --> 7 segments. L'entrée reçoit une valeur **hexadécimal** codée en binaire sur 4 bits D,C,B,A, la sortie fournit 7 états correspondant à chaque segment d'un afficheur nommés a, b, c, d, e, f et g, suivant le schéma ci contre. Une sortie à 1 représente l'allumage de la LED, une sortie à 0 représente son extinction.

- 1. Pour chacune des valeurs hexadécimales disponibles en entrées (codées en binaire), représenter l'afficheur tel qu'il doit apparaître pour qu'un utilisateur lise la valeur "en clair"
- 2. Etablir la table de vérité correspondant à ce circuit décodeur
- 3. Etablir le tableau de Karnaugh de chacune des sorties de la table de vérité. Déterminer les groupements optimaux pour la simplification et en déduire les équations des sorties du décodeur.
- 4. Tracer le schéma électronique à partir des circuits (Non, Ou, Et...) de votre choix, tout en optimisant le nombre final de composant, sachant que l'on trouve dans un circuit intégré:
- 4 portes logiques à 2 entrées
- 3 portes logiques à 3 entrées
- 2 portes logiques à 4 entrées