SLOŽEN KAMATNI RAČUN

Ako se pri ulaganju neke sume u banku dobijeni interes ne podiže, već se doda početnom kapitalu, tako da se interes u prvom sledećem roku računa ne samo na prvobitno uloženu sumu, već i na interes za koji je ta suma povećena i ako se tako radi u svakom sledećem roku, onda se interes u tom slučaju naziva **složen** interes.

Uložimo recimo K dinara na n godina sa takozvanim godišnjim kapitalisanjem.

Ovo *godišnje kapitalisanje* znači da se na kraju prve godine sabiraju glavnica i kamata i da to daje novu glavnicu za sledeću godinu itd.

Ako recimo uložimo *K* dinara na *n* godina sa takozvanim *polugodišnjim kapitalisanjem* to znači da će posle pola godine na glavnicu biti dodat interes i da će to biti nova glavnica, i tako svake pola godine.

Kapitalisanje može biti i tromesečno (kvartalno), mesečno itd.

Jasno je da što je češće kapitalisanje, to je situacija bolja za ulagača.

Evo gotovih formula koje koristimo u složenom kamatnom računu:

1) Ako je kapitalisanje godišnje

Kapital K ulažemo na n godina sa kamatnom stopom p%, vrednost na koju kapital naraste je:

$$K_n = K \cdot q^n$$
 gde je $q = 1 + \frac{p}{100}$ i zove se interesni činilac

2) Ako se kapitalisanje vrši svakog m - tog dela godine

$$K_n = K \cdot q^{n \cdot m}$$
 gde je $q = 1 + \frac{p}{100 \cdot m}$

Neki profesori formulu $K_n = K \cdot q^{n \cdot m}$ pišu i kao $K_{tm} = K \cdot q^{tm}$ gde je tm broj obračunskih perioda.

Za rešavanje zadataka iz složenog kamatnog računa morate nabaviti malo bolji kalkulator (digitron) jer ima malo težih računica. Ne bi bilo loše da se podsetite i zaokrugljivanja brojeva, jer će nam to ovde svakako trebati.

Primer 1.

Na koju vrednost naraste suma od 42000 dinara uz 6% složenog interesa za 12 godina?

Rešenje:

K = 42000 din

$$p = 6\%$$

$$n = 12$$

$$K_{12} = ?$$

Kako je ovde kapitalisanje godišnje (jer ne kaže drugačije u zadatku) radimo prema formulama:

 $K_n = K \cdot q^n$ gde je $q = 1 + \frac{p}{100}$ i najpre ćemo da izračunamo q

$$q = 1 + \frac{p}{100} = 1 + \frac{6}{100} = 1 + 0,06 \rightarrow \boxed{q = 1,06}$$

$$K_{12} = K \cdot q^n$$

$$K_{12} = 42000 \cdot (1,06)^{12}$$

Sad na digitronu nadjemo da je $(1,06)^{12} \approx 2,01$

$$K_{12} = 42000 \cdot 2,01$$

$$K_{12} \approx 84420 din$$

Napomena: U II razredu srednje se uče logaritmi, pa se uz njihovu pomoć i logaritamskih tablica može izbeći upotreba digitrona sa ozbiljnijim računskim operacijama. Za sada sve računajte " digitronski".

Primer 2.

Izračunati koliku kamatu donosi kapital od 281 300 dinara koji je uložen na štednju 3 godine i 9 meseci sa tromesečnim (kvartalnim) kapitalisanjem po godišnjoj interesnoj stopi 11,6 %.

Rešenje:

Ovde ćemo koristiti formulice: $K_n = K \cdot q^{n \cdot m}$ gde je $q = 1 + \frac{p}{100 \cdot m}$ jer je kapitalisanje kvartalno.

Najpre da razmislimo koliko ima obračunskih perioda.

U jednoj godini ima 4 obračunaska perioda. Zašto?

Kako se obračun vrši na svaka 3 meseca, to je 12 : 3 = 4 (To jest m=4)

Mi imamo 3 godine to je znači 3*4 =12 obračunskih perioda i za onih 9 meseci još 3 pa zaključujemo da ih je 15.

Da bi izračunali kolika je kamata I, najpre ćemo naći koliko para imamo posle ukamaćivanja K_n pa od toga oduzeti

ulog *K*.

$$K = 281300$$

$$m = 4$$

$$p = 11,6\%$$

$$q = 1 + \frac{p}{100 \cdot m} = 1 + \frac{0,116}{4} = \frac{4 + 0,116}{4} \rightarrow \boxed{q = \frac{4,116}{4}} \rightarrow \boxed{q \approx 1,029}$$

$$K_n = K \cdot q^{n \cdot m}$$

$$K_n = 281300 \cdot 1,029^{15}$$

$$K_n = 281300 \cdot 1,54$$

$$K_n \approx 431917,06$$

Sad je:

$$I = 431917,06 - 281300$$

$$I = 150617,06din$$

Primer 3.

Jedna šuma ima 60 000 m^3 drveta. Koliko će m^3 imati ta šuma posle 20 godina, ako je prosečni godišnji priraštaj 3,4%?

Rešenje:

Evo jednog primera gde možemo primeniti složen kamatni račun.....

$$K = 60000$$

$$n = 20$$

$$p = 3,4\%$$

$$K_{20} = ?$$

$$q = 1 + \frac{p}{100} = 1 + \frac{3.4}{100} \rightarrow \boxed{q = 1,034}$$

$$K_n = K \cdot q^n$$

$$K_{20} = 60000 \cdot 1,034^{20}$$

$$K_{20} = 60000 \cdot 1,96$$

$$K_{20} \approx 117600m^3$$

Primer 4.

U nekoj zemlji ima 7240000 stanovnika. Koliko će stanovnika ta zemlja imati posle 13 godina ako je godišnji priraštaj 1,3% ?

Rešenje:

$$K = 7240000$$

$$n = 13$$

$$p = 1,3\%$$

$$K_{13} = ?$$

$$q = 1 + \frac{p}{100} = 1 + \frac{1.3}{100} \rightarrow \boxed{q = 1.013}$$

$$K_n = K \cdot q^n$$

$$K_{13} = 7240000 \cdot 1,013^{13}$$

$$K_{13} = 7240000 \cdot 1,18$$

$$K_{13} \approx 8 563 698 \text{ stanovnika}$$