

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

Στρώμα δικτύου στο Internet

Παράδοση πακέτων ΙΡ

- Για να παραδοθεί ένα πακέτο ΙΡ εμπλέκονται δύο διαφορετικές διεργασίες:
 - 1. **Προώθηση:** Πώς θα μεταφερθεί το πακέτο από τη διεπαφή εισόδου στη διεπαφή εξόδου;
 - 2. **Δρομολόγηση:** Πώς θα βρεθούν και εγκατασταθούν οι πίνακες δρομολόγησης;
- Η προώθηση πρέπει να γίνει όσο το δυνατό γρηγορότερα:
 - Στους δρομολογητές, η λειτουργία υποστηρίζεται από το υλικό
 - Στους υπολογιστές, αποτελεί μέρους του λειτουργικού συστήματος
- Η δρομολόγηση είναι χρονικά λιγότερο κρίσιμη

IP Internet

Αναλογία με μεταφορές

- προώθηση: μετακίνηση πακέτων από την είσοδο στην κατάλληλη έξοδο του δρομολογητή
- δρομολόγηση:
 προσδιορισμός της
 διαδρομής που θα
 ακολουθήσουν τα πακέτα
 από την πηγή στον
 προορισμό
 - Αλγόριθμοι δρομολόγησης

αναλογία:

- δρομολόγηση: η διαδικασία σχεδιασμού του ταξιδιού από την αρχή στον προορισμό
- προώθηση: η διαδικασία διέλευσης από μια διασταύρωση

Πρωτόκολλο ΙΡ

Εισαγωγή

- Το IP (Internet Protocol) είναι το πρωτόκολλο του στρώματος δικτύου στο διαδίκτυο
- Η τρέχουσα έκδοση είναι η 4 (IPv4)
 - Ορίζεται στο RFC 791 (1981)
- Η νεώτερη έκδοση είναι η 6 (IPv6)
 - Ορίζεται στο RFC2460 (1998)
 - Την 6/6/2012 έγινε η παγκόσμια έναρξη
 - World IPv6 Launch
- Τι έγινε η έκδοση 5;
 - Πειραματικό πρωτόκολλο Internet Stream Protocol (ST, ST-II, ST2+) της δεκαετίας '90 για εγγυημένη υπηρεσία από άκρο σε άκρο
 - Τα πακέτα του χρησιμοποιούσαν τον αριθμό 5 στην επικεφαλίδα ΙΡ

Στρώμα δικτύου

Γενικό πλαίσιο

Το IP είναι το ανώτερο στρώμα πρωτοκόλλου που υλοποιείται τόσο στους υπολογιστές όσο και στους δρομολογητές

ΙΡ: Η στενωπός της κλεψύδρας

- Το ΙΡ βρίσκεται στη μέση της αρχιτεκτονικής των πρωτοκόλλων του Διαδικτύου
 - Πολλά πρωτόκολλα ανωτέρων επιπέδων
 - Πολλά πρωτόκολλα κατωτέρων επιπέδων
 - Μόνο ένα πρωτόκολλο στο στρώμα δικτύου

Το στρώμα δικτύου στο Internet

Λειτουργίες των host και των δρομολογητών στο στρώμα δικτύου:

Internet

Πρωτόκολλα στρώματος δικτύου στο

- Το ΙΡ χρησιμοποιείται για τη μεταφορά δεδομένων
- Το Internet έχει αρκετά πρωτόκολλα ελέγχου στο στρώμα δικτύου
 - ICMP, IGMP, DHCP
- Η δρομολόγηση ακολουθεί πρωτόκολλα όπως:
 - RIP, OSPF, BGP (Για την επίλυση διευθύνσεων
 - ARP, RARP (λογικά τοποθετούνται στο στρώμα ζεύξης δεδομένων)

Αντιστοιχία στρωμάτων OSI και πρωτοκόλλων σουίτας TCP/IP

Υπηρεσίες που προσφέρει το ΙΡ

Υπηρεσία ΙΡ

- Η παρεχόμενη υπηρεσία είναι ελάχιστη
- Το πρωτόκολλο IP παρέχει αναξιόπιστη (unreliable) και χωρίς σύνδεση (connectionless) υπηρεσία "δεδομενογραμμάτων" (datagram)
- Το ΙΡ δεν εγγυάται ότι το προς μετάδοση πακέτο θα παραδοθεί, αλλά ότι θα προσπαθήσει για το καλύτερο (best effort)

Μοντέλο υπηρεσίας ΙΡ

Αναξιόπιστη:

- δεν προσπαθεί να επανακτήσει τα χαμένα πακέτα

Χωρίς σύνδεση:

- κάθε δεδομενόγραμμα έχει την τύχη του
- δρομολογείται ανεξάρτητα (περιέχει διεύθυνση παράδοσης)
- το ΙΡ δεν αντιλαμβάνεται τη λογική σειρά αποστολής

Προσπάθεια για το καλύτερο:

- το IP δεν εγγυάται τίποτα για την υπηρεσία (καμία εγγύηση για διέλευση, καθυστέρηση, ...)

Μοντέλο υπηρεσίας ΙΡ

- Συνέπειες:
 - Απώλειες πακέτων
 - Παράδοση εκτός σειράς
 - Αντίγραφα πακέτων
 - Καθυστερημένη παράδοση
- Τα πρωτόκολλα ανωτέρων στρωμάτων θα ασχοληθούν με αυτά

Internet Protocol (IP)

• Χαρακτηριστικά

• connectionless: παράδοση εκτός σειράς

• unreliable: μπορεί να χάσει πακέτα ...

• best effort: ... μόνο εάν είναι ανάγκη

• datagram: τα καθένα δρομολογείται ξεχωριστά

Υπηρεσία ΙΡ

- Το ΙΡ υποστηρίζει υπηρεσίες:
 - ένας-προς-ένα (unicast)
 - ένας-προς-όλους (εκπομπή, broadcast)
 - ένας-προς-πολλούς (πολλαπλή διανομή, multicast)
- Η πολλαπλή διανομή ΙΡ υποστηρίζει και υπηρεσία πολλοίπρος-πολλούς
- Η πολλαπλή διανομή ΙΡ απαιτεί και άλλα πρωτόκολλα (IGMP, δρομολόγηση πολλαπλής διανομής)

Η επικεφαλίδα ΙΡ

Η επικεφαλίδα του IP version 4

0	4	8	16	19	24	3		
Version	IHL	DS/ECN	Total Length					
Identification			Flags Fragment Offset					
Time	to Live	Protocol	Header Checksum					
Source IP Address								
Destination IP Address								
Options Padding								

Μορφή πακέτου ΙΡν4

Για θρυμματισμό και Μήκος επικεφαλίδας συναρμολόγηση Μήκος πακέτου 4 για ΙΡν4 (λέξεις 4 byte) max. 65535 1 byte Έκδοση IHL" Τύπος υπηρεσίας Συνολικό μήκος (σε byte) FLAG Ταυτότητα Θέση θραύσματος Χρόνος ζωής Πρωτόκολλο Αθροισμα ελέγχου επικεφαλ. Διεύθυνση πηγής Βήματα που απομένουν Διεύθυνση προορισμού Προαιρετικές επιλογές (+ παραγέμισμα) Προτεραιότητα (3 bit), ανωτέρου στρώματος **Δεδομένα** D, T, R, 2 bit αχρησιμοποίητα $\pi.x. 6=TCP, 17=UDP$ (μεταβλητού μήκους, συνήθως ένα τεμάχιο TCP ή UDP)

Πεδία πακέτου ΙΡ (1)

- Έκδοση
 - Η τρέχουσα 4, ήταν 5 για το ST II, για το IP ν6 είναι 6
- Internet header length (IHL)
 - Μήκος της επικεφαλίδας σε λέξεις των 32 bit
 - Περιλαμβανομένων των προαιρετικών επιλογών (το πολύ 60 bytes)
 - Συνήθως 5 (20 bytes) όταν δεν υπάρχουν επιλογές
- DS/ECN (Differentiated Services/Explicit Congestion Notification)
 - Καθορίζει τον τρόπο χειρισμού των πακέτων κατά τη διάβασή τους μέσω του δικτύου. Παλαιότερα αποκαλούνταν ΤΟS (Type of Service). Ο ρόλος του άλλαξε, αλλά υπάρχει συμβατότητα προς τα πίσω
- Συνολικό μήκος (Total length)
 - του πακέτου σε byte (συμπεριλαμβανομένης και της επικεφαλίδας) (min 20, max 65.535)

Τύπος υπηρεσίας (ΤΟS)

- Προτεραιότητα (Precedence)
 - 8 επίπεδα (3 bit)
- Καθυστέρηση (Delay)
 - Κανονική ή χαμηλή (1 bit)
- Διέλευση (Throughput)
 - Κανονική ή υψηλή (1 bit)
- Αξιοπιστία (Reliability)
 - Κανονική ή υψηλή (1 bit)
- Αχρησιμοποίητο (2 bit)
- Οι δρομολογητές συνήθως τα αγνοούσαν

Διαφοροποιημένες υπηρεσίες (Differentiated Services - DS)

- Κωδικό σημείο (Codepoint ή DSCP)
 - 64 κωδικοί (6 bit): τα bit από μόνα τους δεν σημαίνουν τίποτα
 - προσδιορίζει το επίπεδο υπηρεσίας
 - 'xxx000' συμβατότητα με τα παλιά (προτεραιότητα 5 ή 6 για μηνύματα δρομολόγησης)
 - 'xxxxx0' τυποποιημένες χρήσεις από ΙΕΤΓ
 - 'xxxx11' προς πειραματισμό
 - 'xxxx01' προσωρινά προς πειραματισμό
- Ένδειξη συμφόρησης (Explicit Congestion Notification - ECN)
 - 2 bit (codepoints) στην επικεφαλίδα IP (ECT, CE) + 2 bit στην επικεφαλίδα TCP:
 - νέος μηχανισμός ανάδρασης για το ΤΟΡ
 - '00' not-ECT (ECN Capable Transport)
 - '11' CE (Congestion Experienced)
 - '01' ECT (1)
 - '10' ECT (0)

Πεδία πακέτου ΙΡ (2)

- Tautótnta (Identification)
 - Μοναδική ταυτότητα πακέτου ανά host
 - Αυξάνει κάθε φορά που μεταδίδεται ένα πακέτο
 - Τίθεται από τον αποστολέα
 - Αντιγράφεται σε κάθε θραύσμα (όταν γίνεται θρυμματισμός)
 - Απαιτείται για τη συναρμολόγηση και αναφορά λαθών
- Σημαίες (Flags)
 - Το πρώτο bit είναι πάντα Ο
 - Don't fragment bit (εάν τεθεί, τα δεδομένα δεν μπορούν να Θρυμματισθούν)
 - More fragments bit (εάν τεθεί, ακολουθούν και άλλα, αλλιώς είναι το τελευταίο)
- Θέση θραύσματος (Fragment offset)
 - Θέση του θραύσματος εντός του αρχικού πακέτου (Ο εάν δεν έχει θρυμματισθεί) σε οκτάδες byte

Θα επανέλθουμε -> Θρυμματισμός, συναρμολόγηση

Πεδία πακέτου ΙΡ (3)

- Χρόνος ζωής (Time to live)
 - Μέγιστος αριθμός βημάτων μέχρι τον προορισμό
 - Η αρχική τίθεται από τον αποστολέα
 - Μειώνεται κατά ένα σε κάθε δρομολογητή
 - Εάν φτάσει το μηδέν το πακέτο απορρίπτεται
 - Μειώνεται κατά ένα, εάν το πακέτο καθυστερήσει στο δρομολογητή περισσότερο από 1 sec

Χρόνος ζωής πακέτων ΙΡ

- Τα πακέτα μπορεί να περιφέρονται αενάως
 - Καταναλώνονται πόροι
 - Το πρωτόκολλο μεταφοράς δεν μπορεί να περιμένει αιωνίως
- Τα πακέτα ΙΡ έχουν πεπερασμένο χρόνο ζωής
 - Πεδίο TTL προλαμβάνει τα "αθάνατα" πακέτα, που τριγυρνούν αενάως
 - Μόλις λήξει το πακέτο απορρίπτεται (δεν προωθείται)

Πεδία πακέτου ΙΡ (4)

- Πρωτόκολλο (Protocol)
 - Υποδεικνύει τον τύπο πρωτοκόλλου που περιλαμβάνεται στο πακέτο

Πεδία πακέτου ΙΡ (5)

- Άθροισμα ελέγχου επικεφαλίδας (Header checksum)
 - Προστατεύει την επικεφαλίδα, δεν καλύπτει τα δεδομένα
 - Αλλάζει καθώς το πακέτο προχωρά, επειδή το TTL μειώνεται
 - Επανελέγχεται και επανυπολογίζεται σε κάθε δρομολογητή
 - Άθροισμα συμπληρώματος ως προς ένα (16 bit) όλων των λέξεων 16 bit της επικεφαλίδας
 - Ο υπολογισμός ξεκινά με την τιμή Ο

Πεδία πακέτου ΙΡ (6)

- Διεύθυνση πηγής (Source address)
 - Δεν αλλάζει κατά τη δρομολόγηση
 - Δεν γίνεται έλεγχος αυθεντικότητας
- Διεύθυνση προορισμού (Destination address)
 - Συνήθως δεν αλλάζει κατά τη δρομολόγηση
 - Αλλάζει σε περίπτωση δρομολόγησης πηγής

Πεδία πακέτου ΙΡ (7)

- Προαιρετικές επιλογές (Option data)
 - $\pi.\chi$. route specifications
 - Χρησιμοποιούνται σπανίως
 - Αντιγράφονται εν γένει κατά τον θρυμματισμό
- Παραγέμισμα (Padding)
 - των επιλογών για να συμπληρωθούν πολλαπλάσια του 4 bytes (so that the IP header ends on a 32 bit boundary)
- Δεδομένα (User data)
 - για το πρωτόκολλο ανωτέρου στρώματος
 - ακέραιος αριθμός byte
 - Μαχ μήκος πακέτου (περιλαμβανομένης της επικεφαλίδας) 65.535 byte

Μορφή πακέτου ΙΡν4

Για θρυμματισμό και Μήκος επικεφαλίδας συναρμολόγηση Μήκος πακέτου 4 για ΙΡν4 (λέξεις 4 byte) max. 65535 1 byte Έκδοση IHL" Τύπος υπηρεσίας Συνολικό μήκος (σε byte) FLAG Ταυτότητα Θέση θραύσματος Χρόνος ζωής Πρωτόκολλο Αθροισμα ελέγχου επικεφαλ. Διεύθυνση πηγής Βήματα που απομένουν Διεύθυνση προορισμού Προαιρετικές επιλογές (+ παραγέμισμα) Προτεραιότητα (3 bit), ανωτέρου στρώματος **Δεδομένα** D, T, R, 2 bit αχρησιμοποίητα $\pi.x. 6=TCP, 17=UDP$ (μεταβλητού μήκους, συνήθως ένα τεμάχιο TCP ή UDP)

Ενθυλάκωση

Παράδειγμα ενθυλάκωσης (1)

Επικεφαλίδα Ethernet για πακέτο IP

Παράδειγμα ενθυλάκωσης (2)

22	bits-
JZ	มแจ—

version (4 bits)	header length	DS	ECN	Total Length (in bytes) (16 bits)				
Identification (16 bits)				flags (3 bits)	Fragment Offset (13 bits)			
TTL Time-to-Live Protocol (8 bits) (8 bits)			Header Checksum (16 bits)					
Source IP address (32 bits)								
Destination IP address (32 bits)								

Ethernet Header IP Header TCP Header Application data Ethernet Trailer

-Ethernet frame-

Επικεφαλίδα ΙΡ

Ethernet Header | IP Header | TCP Header | Application data | Ethernet Trailer

-Ethernet frame-

Προαιρετικά πεδία επικεφαλίδας ΙΡ

Προαιρετικές επιλογές

- IHL: min 5 (20 byte), max 15 (60 byte), επομένως το πολύ 40 byte για προαιρετικές επιλογές
- Μήκος επιλογής (ανάλογα με τον κωδικό επιλογής)
 - Σταθερό ('O' End of List, '1' No operation για ευθυγράμμιση)
 - Μεταβλητό
- Το πεδίο κωδικού επιλογής περιέχει 3 υπο-πεδία
 - κωδικός επιλογής (1 byte)
 - Copy (1 bit): εάν τεθεί η επιλογή αντιγράφεται σε κάθε θραύσμα
 - Option class (2 bit): '00' έλεγχος, '10' μέτρηση, '01', '11' αχρησιμοποίητο
 - Option number (5 bit) αριθμός

Conv	Option	Option
Сору	Class	Number

Προαιρετικές επιλογές

- Ασφάλεια (Security)
 - Καθορίζει το πόσο απόρρητο είναι το πακέτο (στρατιωτικές εφαρμογές)
- Δρομολόγηση πηγής (Source routing)
 - Δείχνει τη διαδρομή που θα ακολουθηθεί
- Καταγραφή διαδρομής (Record Route)
 - κάθε δρομολογητής επισυνάπτει την ΙΡ διεύθυνσή του
- Χρονική σφραγίδα (Time stamp)
 - κάθε δρομολογητής επισυνάπτει μαζί με την διεύθυνσή του και μια χρονική σφραγίδα

Δρομολόγηση πηγής (Source routing)

A PANE TO THE PROPERTY OF THE

- Αυστηρή: δείχνει την ακριβή διαδρομή
- Χαλαρή: δείχνει ενδιάμεσους κόμβους
- Η επικεφαλίδα περιέχει ένα δείκτη και μια λίστα διευθύνσεων ΙΡ που δείχνουν τους ενδιάμεσους δρομολογητές
- Η ΙΡ διεύθυνση προορισμού αντικαθίσταται από τη διεύθυνση ΙΡ της λίστας
- Ο δείκτης ενημερώνεται για την επόμενη διεύθυνση
- Το μέγεθος της επικεφαλίδας δεν αλλάζει

Code=131/137	Length	Pointer	IP addr of 1st hop		
	IP addr of 2 nd hop				
IP address of 2 nd hop					
	EOL				

Καταγραφή διαδρομής (Record route)

- Manufactor of the Control of the Con
- Ο αποστολέας καθορίζει το μήκος της επικεφαλίδας ΙΡ και βάζει τον δείκτη να δείχνει την πρώτη άδεια θέση 4 byte
- Κάθε ενδιάμεσος θέτει την ΙΡ διεύθυνσή του στην άδεια θέση και αυξάνει τον δείκτη
- Εάν ο χώρος της επιλογής στην επικεφαλίδα γεμίσει, τα πακέτα απλώς προωθούνται
- Μόνο 40 byte διαθέσιμα, άρα καταγράφονται το πολύ 9 βήματα

Code=7	Length	Pointer	1st IP address
	2 nd IP address		
	EOL		

Θρυμματισμός και συναρμολόγηση

- Το μέγιστο μήκος πακέτου IP είναι 65.535 byte, αλλά συνήθως το πρωτόκολλο στρώματος ζεύξης δεδομένων επιβάλει ένα κατά πολύ μικρότερο όριο
- Για παράδειγμα:
 - τα πλαίσια Ethernet έχουν μέγιστο μήκος δεδομένων 1500 byte → πακέτα IP που ενθυλακώνονται σε πλαίσια Ethernet δε μπορεί να είναι μεγαλύτερα των 1500 byte
- Το όριο μέγιστου μεγέθους πακέτου ΙΡ, που επιβάλει το πρωτόκολλο ζεύξης δεδομένων αποκαλείται μέγιστη μονάδα μεταφοράς (MTU maximum transmission unit) (link layer headers and trailers are not counted)
- διαφορετικοί τύποι ζεύξης δεδομένων, διαφορετικές MTU

- Ethernet: 1500 802.3: 1492 802.5: 4464

- FDDI: 4352 ATM AAL5: 9180 PPP: 296

- WiFi: 2304

- Τι συμβαίνει εάν το μέγεθος του πακέτου ΙΡ υπερβαίνει την MTU;
 - το πακέτο IP θρυμματίζεται σε μικρότερα κομμάτια
 - από ένα πακέτο προκύπτουν αρκετά κομμάτια
 - τα src, dest, id προσδιορίζουν το πακέτο
 - offset, length, more bit προσδιορίσουν τη σειρά των κομματιών
- Τι συμβαίνει εάν η διαδρομή περιλαμβάνει δίκτυα με διαφορετικές MTU;
 - ο θρυμματισμός μπορεί να γίνει στον είτε αποστολέα είτε στους ενδιάμεσους δρομολογητές
 - ένα πακέτο μπορεί να θρυμματισθεί πολλές φορές
 - η "συναρμολόγηση" του αρχικού πακέτου γίνεται μόνο στον τελικό προορισμό!!

θρυμματισμός:

in: ένα μεγάλο πακέτο

out: 3 θραύσματα

Η επικεφαλίδα του IP version 4 και Θρυμματισμός 🎏

0 4		8		_16	19		24		_ 31
Version	IHL	DS	/ECN		Total Length				
	Flags	Flags Fragment Offset							
Time to	Live	Pro	otocol			Head	der Ch	ecksum	
Source IP Address									
Destination IP Address									
	Options Padding								
IP UDP Application Header Header Data								_	
								_	
IP Header		Data			P Head	er		Data	

Ποια πεδία εμπλέκονται στον θρυμματισμό;

Identification

 όταν το πακέτο θρυμματίζεται η τιμή της παραμένει η ίδια για όλα τα κομμάτια

Flags

- DF = 1: το πακέτο δεν μπορεί να θρυμματισθεί και πρέπει να απορριφθεί εάν η MTU δεν επαρκεί
- MF = 1: αυτό το πακέτο είναι κομμάτι (θραύσμα) και ακολουθεί άλλο ένα κομμάτι (MF=0 τελευταίο κομματι)

Fragment offset (13 bits)

 Θέση του πεδίου δεδομένων του τρέχοντος Θραύσματος στο αρχικό πακέτο (measured in 8-octet units)

Total length

• Συνολικό μήκος του τρέχοντος Θραύσματος

Fragmentation requires that the data portion of the generated fragments (i.e. everything excluding IP header) be a multiple of 8-bytes for all fragments other than the final one

Παράδειγμα θρυμματισμού

 Πακέτο μήκους συνολικού 2400 byte πρέπει να θρυμματισθεί για να διέλθει από δίκτυο με MTU των 1000 byte

Header length: Header length: 20 Header length: 20 20 Header length: Total length: 2400 Total length: Total length: 448 996 Total length: **996** Identification: Identification: 0xa428 0xa428 Identification: DF flag: DF flag: DF flag: 0 DF flag: MF flag: MF flag: MF flag: MF flag: Fragment offset: 244 fragment offset: 0 Fragment offset: 0 Fragment offset: 122 offset = 976 byte 428 byte 976/8 δεδομένων δεδομένων Πακέτο ΙΡ Θραύσμα 3 Θραύσμα 2 Θραύσμα 1 MTU: 4000 MTU: 1000

Δρομολογητής

Προσδιορισμός μήκους θραύσματος

- Θυμηθείτε ότι για το offset διατίθενται 13 bit και η θέση του θραύσματος μετριέται σε οκτάδες byte
- Επειδή στο παράδειγμα η επικεφαλίδα είναι 20 byte, απομένουν 980 byte για δεδομένα
- Ο μεγαλύτερος διαιρέσιμος με 8 αριθμός που είναι μικρότερος του 980 είναι ο 976. Άρα
 - το offset του πρώτου θραύσματος είναι Ο και το μήκος του πακέτου 976+20=996
 - το offset του δεύτερου θραύσματος είναι 976/8=122 και το μήκος του πακέτου 996, τέλος
 - το offset του τρίτου θραύσματος είναι 122+122=244 και το μήκος του πακέτου είναι 428+20=448
 - 2400-20-976-976=428 τα δεδομένα που απομένουν από το αρχικό πακέτο μήκους 2400

- Θρυμματισμός μόνο εάν είναι αναγκαίο (MTU < πακέτο)
- Τα θραύσματα είναι αυθύπαρκτα πακέτα ΙΡ
- Τα θραύσματα μπορεί να (ξανα)θρυμματισθούν
- Η συναρμολόγηση γίνεται στον προορισμό, όχι στους ενδιάμεσους δρομολογητές
 - Ανεξάρτητη δρομολόγηση
 - Μειωμένες ανάγκες μνήμης

- Χαμένα θραύσματα δεν αναζητούνται
 - Εάν χαθεί ένα, χάνεται και το πακέτο ΙΡ
 - Εκπνοή χρόνου αναμένοντας θραύσμα
- Ο χρόνος για συναρμολόγηση
 - καθορίζεται όταν ληφθεί το πρώτο κομμάτι
 - εάν λήξει προτού ληφθούν όλα, το πακέτο απορρίπτεται και στέλνεται μήνυμα ICMP στον αποστολέα
- Θρυμματισμός μπορεί να συμβεί οπουδήποτε το πακέτο είναι μεγαλύτερο από την MTU (ακόμα και για τοπική παράδοση)

Αποφυγή θρυμματισμού

- Για να αποφευχθεί ο θρυμματισμός, οι host ανακαλύπτουν την μικρότερη MTU (path MTU discovery)
- Path MTU είναι η ελάχιστη των MTU κατά μήκος της διαδρομής
- Εάν μήκος πακέτου < Path MTU, δεν έχουμε Θρυμματισμό!
- Πώς γίνεται?
 - Στέλνοντας πακέτα διαφορετικών μεγεθών ώσπου να μην χρειάζεται θρυμματισμός κατά τη διαδρομή (DF=1 στην επικεφαλίδα IP)
 - Εάν είναι δυνατό, το λέει το δίκτυο (ICMP)!

Πακέτο ΙΡν6

Κύρια χαρακτηριστικά ΙΡν6

- Διευθύνσεις 128 bit
- Απλοποιημένη μορφή επικεφαλίδας
- Επικεφαλίδες επέκτασης
- Δεν υπάρχουν εκπομπές
- Διευθύνσεις Anycast
- Δεν υπάρχει ανάγκη για ΝΑΤ
- Ελάχιστη MTU = 1280 byte
- Υποστήριξη Jumbogram (μέχρι 2³²-1 byte)
- Κινητικότητα κόμβων
- Τύπος πλαισίων Ethernet με πακέτα IPv6 = 86DD

Μορφή πακέτου ΙΡν6

- Απλοποιημένη δομή επικεφαλίδων:
 - Η επικεφαλίδα έχει σταθερό μήκος
 - Δεν υπάρχουν τα πεδία για θρυμματισμό
 - Χωρίς πεδίο έλεγχου
 - Βελτιστοποιημένη για γρήγορη επεξεργασία

Μορφή πακέτου ΙΡν6

◆ 32 bit →								
version (4 bit)	Traffic Class (8 bit)	Flow Label (20 bit)						
	Payload Length Next Header Hop Limit (8 bit) (8 bit)							
Source IP address (128 bit)								
Destination IP address (128 bit)								

Μορφή πακέτου ΙΡν6

• Αρκετά πεδία έχουν παρόμοιο ρόλο:

IPv6				
Version				
Traffic class				
Payload length				
Next Header				
Hop Limit				

... παρόμοια με ...

IPv4
Version
DiffServ
Total length
Protocol
TTL

- Ορίζεται και ένα νέο
 - Flow label

<mark>Σύγκριση επι</mark>κεφαλίδων ΙΡν4 και ΙΡν6

Version	IHL	TOS	Length			
Identification			Flags Fragment offset			
T	TTL Protocol Checksum					
Source IP address						
Destination IP address						
Options						

version	Traffic Class	Flow Label						
	Payload Length		Next	Header	Hop Limit			
	Source IP address							
Destination IP address								
	Πεδία που Πεδία που αλλάζουν παραμένουν όνομα και θέση							
	Πεδία που αφαιρούνται			Νέο πεδίο	0			

Αλλαγές σε σχέση με το ΙΡν4

- ΙΗL: δεν χρειάζεται πλέον
- Checksum: αφαιρέθηκε ώστε να μειωθεί ο χρόνος επεξεργασίας σε κάθε βήμα
- Options: επιτρέπονται, αλλά βρίσκονται έξω από την επικεφαλίδα ΙΡν6, προσδιοριζόμενες από το πεδίο "Next Header"
 - Επικεφαλίδες επέκτασης (Extension headers)
- Identification, flags, fragmentation offset: αφαιρέθηκαν
 - Ο τεμαχισμός γίνεται με διαφορετικό τρόπο
 - Επικεφαλίδα επέκτασης IPv6 fragment

Αλλαγές σε σχέση με το ΙΡν4

- Payload Length: Νέο όνομα και αλλαγή θέσης για το μήκος του πακέτου
- Next Header: δείχνει το είδος των δεδομένων που έπονται της βασικής επικεφαλίδας
 - Π.χ. πρωτόκολλο στρώματος μεταφοράς (TCP, UDP) Ρόλος περίπου ανάλογος του πεδίου Protocol στο IPv4

ή επικεφαλίδα επέκτασης

Επικεφαλίδες επέκτασης

- Το ΙΡν6 αντί προαιρετικών πεδίων προβλέπει
 προαιρετικές επικεφαλίδες μετά την κύρια επικεφαλίδα
 - Ασφάλεια: Έλεγχος αυθεντικότητας
 - Θρυμματισμός
 - Δρομολόγηση
- Επιτρέπεται ο σχηματισμός αλυσίδας επικεφαλίδων επέκτασης
- Ο αριθμός τους δεν είναι σταθερός
 - Κάποιες από τις επόμενες επικεφαλίδες έχουν νόημα από άκρησε-άκρη, ενώ άλλες από βήμα-σε-βήμα

Επικεφαλίδα IPv6 Next Header =Security	Επικεφαλίδα Ασφαλείας Next Header = Fragementation	Επικεφαλίδα Θρυμματισμού Next Header =TCP	Επικεφαλίδα TCP	Δεδομένα
	A I		A	

Αλλαγές σε σχέση με το ΙΡν4

- Traffic class: Πεδίο 8 bit παρόμοιο με το Τος του IPv4
 - Νέο όνομα και αλλαγή θέσης, ίδια λειτουργικότητα
- Hop limit: το μέγιστο βημάτων
 - Οι δρομολογητές το μειώνουν κατά ένα σε κάθε βήμα
 - Παρόμοιο με το πεδίο TTL
- Flow Label: προσδιορίζει πακέτα που ανήκουν στην ίδια ροή
 - Διαχωρισμός ροών από την πηγή
 - Η έννοια της "ροής" δεν ορίζεται καλώς

Αλλαγές σε σχέση με το ΙΡν4

 Το ΙΡν6 υποστηρίζει μόνο την πολλαπλή διανομή (multicast), όχι την εκπομπή (broadcast)

Υποστηρίζει και Anycast

Μετάβαση από το ΙΡν4 στο ΙΡν6

- Το ΙΡν6 υπάρχει εδώ και πολλά χρόνια
 - Όλα τα μοντέρνα λειτουργικά συστήματα το υποστηρίζουν
- Όμως το ΙΡν6 δεν έχει ακόμη διαδοθεί ευρέως
 - Δεν είναι δυνατόν να αλλάξουν όλοι οι δρομολογητές συγχρόνως
- Επί μακρόν θα έχουμε δίκτυα με παράλληλη λειτουργία δρομολογητών IPv4 και IPv6
 - Η εξάπλωση του ΙΡν6 θα είναι βαθμιαία
 - Για το προσεχές μέλλον τα IPv4 και IPv6 θα συνυπάρχουν

Μετάβαση από το ΙΡν4 στο ΙΡν6

- Πρωτόκολλα που δεν επηρεάζονται
 - Εφαρμογής (http-εξυπηρετητές ιστού, smtp ηλεκτρονικού ταχυδρομείο, κλπ)
 - Μεταφοράς (TCP, UDP)
 - Στρώματος ζεύξης δεδομένων (Ethernet)
- Πρωτόκολλα που επηρεάζονται
 - Δρομολόγησης
 - RIPng, OSPFv3, MP-BGP
 - DNS
 - DHCPv6
 - ICMPv6
 - Εκτελεί και τη λειτουργία του ARP

Μηχανισμοί μετάβασης

- Οι μηχανισμοί μετάβασης προσβλέπουν στη διευκόλυνση της μετάβασης προς το IPv6 και την εξασφάλιση της συνύπαρξης IPv4 και IPv6 στο ίδιο δίκτυο
 - IP/ICMP Translation
 - Dual Stack
 - Tunneling
 - και πολλοί άλλοι

Μετάφραση ΙΡ/ΙζΜΡ

- translation: μετάφραση επικεφαλίδων των πακέτων ICMP και IP από την έκδοση ν4 στην ν6 και αντίστροφα
- Λειτουργεί παρόμοια με το NAT
- Χρησιμοποιεί διευθύνσεις ΙΡν6 που παράγονται από αντίστοιχες ΙΡν4 (IPν4-converted IPν6 addresses)

Σήραγγες

 Νησίδες ΙΡν6 συνδέονται πάνω από δίκτυα ΙΡν4 ενθυλακώνοντας πακέτα ΙΡν6 σε πακέτα ΙΡν4

Σήραγγες

 tunneling: Τα πακέτα ΙΡνό μεταφέρονται ως δεδομένα πακέτων ΙΡν4 μεταξύ δρομολογητών ΙΡν4

Σήραγγες

Διπλή στοίβα

- Dual Stack σημαίνει ότι υπολογιστές και δρομολογητές υποστηρίζουν ΙΡν4 και ΙΡν6 παράλληλα
- Επιτρέπει τη συνύπαρξη συσκευών ΙΡν4 και ΙΡν6 στο ίδιο δίκτυο

