

VOL. 49 . NO. 5

AMERICAN WATER WORKS ASSOCIATION

DISPOSAL OF RADIOACTIVE WASTES

Wolman

UNIFORMITY OF FLUORIDE ION LEVELS

Taylor

NETWORK ANALYSIS BY DIGITAL COMPUTER

Hoag. Weinberg

SAN DIEGO COUNTY DEMANDS

Beermann, Holmgren

CONVERSION OF IRRIGATION SYSTEMS

Burzell

GROWTH OF IRRIGATION IN ILLINOIS

Black

EXPERIENCE WITH MICROSTRAINER UNITS

Evans. Taylor

1955 WATER WORKS OPERATING DATA

Staff Report

Lots of intake but little take-in at San Diego's droughtbound El Capitan Reservoir

WOOD GATE VALVES

First Choice for Extreme Reliability

Because of their inaccessibility underground, repairs to gate valves are always time-consuming, expensive, and a source of annoyance. And interruptions in service while repairs go on are hazardous for the community.

For these reasons, R. D. Wood Gate Valves are designed to function for generations no matter what the conditions. They are rugged in construction, fully bronze mounted and tested to 300 lb. hydrostatic pressure. Designed for working pressures conforming to AWWA specifications.

NEA

SIMPLE IN DESIGN

Only three moving parts a spreader and two discs which are free to revolve their complete circumference while being raised or lowered. Gates are lifted entirely clear of valve openinas—flow is unobstructed.

R. D. Wood Gate Valves also now available with O-Ring Stuffing Box seal when specified.

Available with mechanical joint or flange-type pipe connection

Made by R. D. WOOD COMPANY

Public Ledger Building, Independence Square, Philadelphia 5, Pa.

Manufacturers of Mathews Hydrants and "Sand-Spun" Pipe (centrifugally cast in sand molds)

Journal

AMERICAN WATER WORKS ASSOCIATION

2 PARK AVE., NEW YORK 16, N.Y.

Phone: MUrray Hill 4-6686

May 1957 Vol. 49 • No. 5

Contents

HARRY E. JORDAN, Secretary

ERIC F. JOHNSON, Asst. Secy.—Publications

LAWRENCE FARBER, Managing Editor

COLLIN GONZE, Assistant Editor

PHILIP RESSNER, Assistant Editor

Journal AWWA is published monthly at Prince & Lemon Sts., Lancaster, Pa., by the Am. Water Works Assn., Iac., 2 Park Ave., New York 16, N.Y., and entered as second class matter Jan. 23, 1943, at the Post Office at Lancaster, Pa., under the act of Aug. 24, 1912. Accepted for mailing at a special rate of postage provided for in paragraph (d-2), Section 34.40, P. L. & R. of 1948. Authorized Aug. 6, 1918. \$7.00 of members' dues are applied as a subscription to the Journal; additional single copies to members—60 cents; single copies to non-members—85 cents. Indexed annually in December; and regularly by Industrial Arts Index and Engineering Index. Microfilm edition (for Journal subscribers only) by University Microfilms, Ann Arbor, Mich.

AWWA Officers and Directors

President PAUL WEIR Past-President F. C. AMSBARY JR. Vice-President FRED MERRYFIELD Treasurer WILLIAM W. BRUSH Ch. W.W. Practice Com. Louis R. Howson Secretary HARRY E. JORDAN Ch. W.W. Admin. Com. WENDELL R. LADUE Exec. Asst. Secretary RAYMOND J. FAUST Ch. Publication Com. E. SHAW COLE Asst. Secretary-Pub. ERIC F. JOHNSON

Officers of the Sections

	On	icers of the Seci	nons	
Section	Director	Chairman	Vice-Chairman	Secretary-Treasurer
Alabama-Miss.	E. M. Stickney	H. L. Burns	W. E. Hooper	C. M. Mathews
Arizona	Dario Travaini	Q. M. Mees	A. L. Frick Jr.	S. I. Roth
California	B. S. Grant	M. J. Shelton	D. A. Blackburn	H. J. Ongerth
Canadian	C. G. R. Armstrong	V. A. McKillop	H. P. Stockwell	A. E. Berry
Chesapeake	David Auld	J. C. Smith	A. B. Kaltenbach	C. J. Lauter
Cuban	G. A. Bequer H.	M. F. DeVera	Luis Radelat	C. M. Labarrere
Florida	W. W. Gillespie	Stanley Sweeney	H. D. Overhiser	J. D. Roth
Illinois	E. E. Alt	C. L. Baylor	T. E. Larson	D. W. Johnson
Indiana	C. E. Williams	R. G. Rinehart	Leo Louis	C. H. Canham
Iowa	C. W. Hamblin	P. F. Morgan	G. C. Ahrens	J. J. Hail
Kansas	H. W. Badley	R. F. Bluejacket	H. F. Bruner	H. W. Badley
Kentucky-Tenn.	Elmer Smith	R. A. Fischer	J. W. Lovell	J. W. Finney, Jr.
Michigan	E. D. Barrett	W. E. Smith	R. E. Hansen	T. L. Vander Velde
Missouri	H. O. Hartung	F. J. McAndrew	C. R. Hayob	W. A. Kramer
Montana	C. W. Eyer	R. G. Cronin	C. H. King	A. W. Clarkson
Nebraska	Bert Gurney	C. L. Fisher	George Beard	J. E. Olsson
New England	E. S. Chase	P. C. Karalekas	H. Burgi Jr.	J. E. Revelle
New Jersey	C. J. Alfke	H. M. Ohland	M. E. Flentje	A. F. Pleibel
New York	J. G. Copley	L. J. Griswold	J. M. Diven	Kimball Blanchard
North Carolina	W. M. Franklin	C. W. Mengel	W. F. Stokes	W. E. Long Jr.
North Central	L. N. Thompson	H. H. Behlmer	M. D. Lubratovich	L. N. Thompson
Ohio	C. E. Beatty	M. W. Tatlock	H. C. Growdon	M. E. Druley
Pacific Northwest	E. J. Allen	C. R. Harlock	H. J. Donnelly	F. D. Jones
Pennsylvania	L. D. Matter	B. F. Johnson	G. E. Arnold	L. S. Morgan
Rocky Mountain	G. J. Turre	Harry Barnes	W. F. Turney	J. W. Davis
Southeastern	Sherman Russell	R. C. Kauffman	J. R. Bettis	N. M. deJarnette
Southwest	J. R. Pierce	H. R. Street	Q. B. Graves	L. A. Jackson
Virginia	E. C. Meredith	W. W. Anders	E. C. Coalson	J. P. Kavanagh
West Virginia	W. S. Staub	C. C. Coffield	Wallace Grant	H. W. Hetzer
Wisconsin	J. C. Zufelt	J. E. Kerslake	H. E. Wirth	Harry Breimeister

Directors Representing the Water and Sewage Works Manufacturers Assn.

CARL N. Brown ROBERT F. ORTH R. S. RANKIN

Officers of the Divisions

Division	Chairman	Vice-Chairman	Secretary
Water Distribution	H. W. Niemeyer	E. J. Allen	J. B. Ramsey
Water Purification	H. H. Gerstein	P. D. Haney	Sherman Russell
Water Resources	H. C. Barksdale	C. H. Bechert	J. W. Cramer
Water Works Management	L. W. Gravson	W. W. DeBerard	I. D. Kline

The time-honored ring trick always keeps the audience guessing, and if you like guessing games, perhaps you would like to guess how many tons of steel joint rings went into the construction of the City of Tulsa's 275,000-foot 72" and 66" Lock Joint Concrete Pressure Pipe water supply line. You'll find the answer concealed in the picture above.

But there's no guessing where the fabrication of these joint rings is concerned. Every ring used in the making of Lock Joint's flexible, self-centering and completely watertight Rubber and Steel Joint is carefully cut, rolled and welded. Then, to assure absolute roundness and exact diameter, every ring is sized on an hydraulic press to such close tolerances that any spigot ring will fit perfectly within any bell ring of like nominal diameter. This is only one of the many quality control measures which go into every phase of the

manufacture of LOCK JOINT CONCRETE PRESSURE PIPE, to assure to the customer the highest type pressure pipe obtainable.

LOCK JOINT PIPE CO.

East Orange, New Jersey

Sales Offices: Chicago, III. • Columbia, S. C. • Denver, Col. • Detroit, Mich. • Hartford, Conn. • Kansas City, Mo.

Pressure • Water • Sewer • REINFORCED CONCRETE PIPE • Culvert • Subaqueous

LIST OF ADVERTISERS

PAGE	PAG
	Industrial Chemical Sales Div., West
Ace Pipe Cleaning, Inc	Virginia Pulp & Paper Co 31
Alabama Pipe Co	Inertol Co., Inc
Alco Products, Inc	Infilco Inc
Allis-Chalmers	International Salt Co., Inc
American Agricultural Chemical Co114	Iowa Valve Co
American Brass Co., The	Johns-Manville Corp
American Cast Iron Pipe Co	Jones, John Wiley, Co. 55 Keasbey & Mattison Co. 27 Kennedy Valve Mfg. Co., The 26 Klett Mfg. Co. 112
American Concrete Pressure Pipe Assn. 101	Kennedy Valve Mfg Co. The
American Cyanamid Co., Heavy Chemi-	Klett Mfg. Co. 112
cals Dept	Koppers Co., Inc., 113
American Pipe & Construction Co 23	LaMotte Chemical Products Co
American Sanitary Mfg. Co	Layne & Bowler, Inc
Anthracite Equipment Corp104	Koppers Co., Inc. 113 LaMotte Chemical Products Co. — Layne & Bowler, Inc. 86 Leadite Co., The. Cover 4 Leo R. Leary 74 Leopld, F. B., Co. 66 Lock Loint Pine Co.
Armon Drainage & Metal Products Inc. 40	Leonold F B Co. 60
Armco Drainage & Metal Products, Inc. 49 Badger Meter Mfg. Co	Lock Joint Pipe Co
Barrett Div	Leopold, F. B., Co
Bethlehem Steel Co	M & H Valve & Fittings Co
B-I-F Industries, Inc	Militon Pou Co
Buffalo Meter Co	Minneapolis-Honeywell Regulator Co
Industries)	Monolith Portland Midwest Co
Byron Jackson Div., Borg-Warner Corp	Mueller Co
Calgon, Inc. — Carborundum Co., The	National Water Main Cleaning Co 39
Carson, H. Y., Co	Northern Gravel Co
Carus Chemical Co	Omega Machine Co. (Div., B-I-F Indus-
Carus Chemical Co	tries)
Catskill Craftsmen, Inc —	tries)
Centriline Corp	Permutit Co
Chain Belt Co	Phelps Dodge Refining Corp. Philadelphia Quartz Co. Pittsburgh-Des Moines Steel Co. 43
Chicago Bridge & Iron Co	Pittsburgh-Des Moines Steel Co 43
Chicago Bridge & Iron Co	
Cochrane Corp. 73 Cole, R. D., Mfg. Co. 118 Crane Co. 28 Darley, W. S., & Co. 100 Darling Valve & Mfg. Co. 65 De Laval Steam Turbine Co. 65	well Mfg. Co.). 126 Pollard, Jos. G., Co., Inc. 26 Portland Cement Assn. 12 Pratt, Henry, Co. 109 Proportioneers, Inc. (Div., B-I-F Industrial)
Cole, R. D., Mfg. Co	Postland Coment Agen
Darley, W. S., & Co. 100	Pratt. Henry, Co. 109
Darling Valve & Mfg. Co	Proportioneers, Inc. (Div., B-I-F Indus-
De Laval Steam Turbine Co	tries)
Dezum Corp	Reed Mfg. Co.,
Dicalite Div	Rensselaer Valve Co
Dresser Mfg. Div	Roberts Filter Mfg. Co
Dresser Mfg. Div	Rockwell Mfg. Co
Eddy Valve Co	Rockwell, W. S., Co
Electro Rust-Proofing Corp	Schleicher Carl & Schuell
Electrovert Ltd. — Ellis & Ford Mfg. Co. —	Rensselaer Valve Co.
	Simplex Valve & Meter Co
Everson Mfg. Corp. — Filtration Equipment 80 Fischer & Porter Co. —	Smith, A. P., Mfg. Co., The
Filtration Equipment	Smith Blair Inc
Flexible Inc.	Sparling Meter Co
Flexible Inc. Ford Meter Box Co., The	Sparton Control Systems
Foster Engineering Co	Spring Load Mfg. Corp
Foxboro Co. — Frontier Chemical Co. — General Chemical Div., Allied Chemical	Stearns-Roger Mtg. Co
General Chemical Div Allied Chemical	Stuart Corp.
& Dye Corp	Tennessee Corp
General Filter Co	Trinity Valley Iron & Steel Co
& Dye Corp	Stuart Corp. — Tennessee Corp. 97 Trinity Valley Iron & Steel Co. — U.S. Pipe & Foundry Co. —
Graver Tank & Mfg. Co	Wachs, E. H., Co. ———————————————————————————————————
Graver Water Conditioning Co	Wallace & Tiernan Inc
Greenberg's, M., Sons	Wallace & Tiernan Inc
Hammond Iron Works	Western Materials Co
Harco Corp	Wood R D Co. Cover 2
Hays Mfg. Co. 117 Hersey Mfg. Co. 19 Hungerford & Terry, Inc. 108 Hydraulic Development Corp. —	Woodward Iron Co
Hungerford & Terry, Inc	Worthington Corp94, 95
Hydraulic Development Corp	Western Materials Co. Wheeler, C. H., Mfg. Co. Wood, R. D., Co. Woodward Iron Co. Worthington Corp. 94, 95 Worthington-Gamon Meter Div. 15

Cast iron flange and body thickness equal to or greater than called for by AWWA Specifications Standard laving

VALVE STAT

Molded natural rubber or

TWO-WAY PHRUST BEARING

Keeps valve disc cen absorbs any unbal-anced axial thrust developed by static

STUFFING BOX

this, plus only 90 retation of shaft, virtual

REDUCE MAINTENANCE COSTS

with Builders Butterfly Valves

Strict adherence to sound engineering and advanced hydraulic principles accounts for the high durability of Builders Butterfly Valves. These design features, plus extra-sturdy construction result in valves which last the life of the plant and require minimum maintenance.

Remember, too, that these Butterfly Valves are backed by Builders specialized knowledge of water and sewage works metering and control problems. Builders Butterfly Valves are built to AWWA specifications . . . for water and sewage works service.

For Bulletin 650-L1B, write BUILDERS-PROVIDENCE, INC. 365 Harris Ave., Providence 1, R. I.

Available with all types of man and power operators, including Builders own "la-head" cylinder **■**BUILDERS-PROVIDENCE B-I-F INDUSTRIES

Coming Meetings

AWWA SECTIONS

Spring Meetings

Jun. 6—New Jersey Section Spring Outing & Luncheon, at Canoe Brook Country Club. Secretary, Albert F. Pleibel, Dist. Sales Manager, R. D. Wood Co., 683 Prospect St., Maplewood.

Jun. 12-14—Pennsylvania Section, at Bedford Springs Hotel, Bedford Springs. Secretary, L. S. Morgan, Div. Engr., State Dept. of Health, Greensburg.

Jun. 17-19—Canadian Section, at Royal Alexandra Hotel, Winnipeg, Man. Secretary, A. E. Berry, Director, San. Eng. Div., Ontario Dept. of Health, 72 Grenville St., Toronto, Ont.

Fall Meetings

Sep. 4-6—Wisconsin Section, at Hotel Schroeder, Milwaukee. Secretary, Harry Breimeister, Chief Utility Engr., City Engineer's Office, City Hall, Milwaukee 2.

Sep. 11-13—New York Section, at Saranac Inn, Upper Saranac Lake. Secretary, Kimball Blanchard, New York Branch Mgr., Rensselaer Valve Co., c/o Ludlow Valve Co., 11 W. 42nd St., New York.

Sep. 18-20—Ohio Section, at Netherland Plaza Hotel, Cincinnati. Secretary, M. E. Druley, Dist. Mgr., Dayton Power & Light Co., Wilmington.

Sep. 23-25—Kentucky-Tennessee Section, at Brown Hotel, Louisville, Ky. Secretary, J. Wiley Finney Jr., Howard K. Bell, Cons. Engrs., 553 S. Limestone St., Lexington, Ky.

Sep. 24–25—Rocky Mountain Section, at La Fonda Hotel, Santa Fe, N.M. Secretary, J. W. Davis, 301 Continental Oil Bldg., Denver 2, Colo.

Sep. 25–27—Michigan Section, at Leland Hotel, Detroit. Secretary, T. L. Vander Velde, Chief, Sec. of Water Supply, State Dept. of Health, Lansing 4.

Sep. 25-27—North Central Section, at Gardner Hotel, Fargo, N.D. Secretary, L. N. Thompson, 216 Court House Bldg., St. Paul 2, Minn.

Sep. 29-Oct. 1—Missouri Section, at Sheraton-Jefferson Hotel, St. Louis. Secretary, W. A. Kramer, State Office Bldg., Jefferson City.

Oct. 13-16—Southwest Section, at Skirvin Hotel, Oklahoma City, Okla. Secretary, Leslie A. Jackson, Mgr.-Engr., Water Works, Robinson Memorial Auditorium, Little Rock, Ark.

An asbestos-cement product

It's Transite **Ring-Tite Pressure Pipe**

• Transite® Ring-Tite® Pressure Pipe is a community investment that pays off year after year!

Its remarkably high flow characteristics protect that investment by keeping maintenance and pumping costs at a minimum during its long service life.

Corrosion resistant

Transite Pipe is strong, durable, and highly resistant to corrosion. And it is immune to tuberculation, the form of interior corrosion that chokes the flow and increases pumping costs. Transite cannot tuberculate, thus its original high flow capacity is maintained, and pumping costs are kept at a minimum, year after year.

The Ring-Tite Coupling, with rubber rings compressed and locked in place, forms a joint that is tight yet flexible. Rings cannot blow out, and the automatic separation of the pipes within the coupling helps to relieve line stresses.

For further information about Transite Pressure Pipe and the Ring-Tite Coupling, write for Booklet TR-160A. Address Johns-Manville, Box 14, New York 16, N. Y. In Canada, Port Credit, Ontario.

Johns-Manville TRANSITE PRESSURE PIPE

WITH THE RING-TITE COUPLING

Coming Meetings

(Continued from page 6)

Oct. 16–18—Iowa Section, at Fort Des Moines Hotel, Des Moines. Secretary, J. J. Hail, Supt., Water Dept., City Hall, Dubuque.

Oct. 20–23—Alabama-Mississippi Section, at Buena Vista Hotel, Biloxi, Miss. Secretary, C. M. Mathews, Public Service Com., 119 W. Commercial St., Yazoo City, Miss.

Oct. 23–24—West Virginia Section, at McClure Hotel, Wheeling. Secretary, H. W. Hetzer, Engr., West Virginia Water Service Co., Box 1906, Charleston 27.

Oct. 24–26—New Jersey Section, at Hotel Madison, Atlantic City. Secretary, A. F. Pleibel, Dist. Sales Manager, R. D. Wood Co., 683 Prospect St., Maplewood.

Oct. 30-Nov. 1—Chesapeake Section, at Sheraton-Park Hotel, Washington, D.C. Secretary, C. J. Lauter, 6955—33rd St., N.W., Washington, D.C.

Oct. 30-Nov. 1—California Section, at Hotel St. Claire, San Jose. Secretary, Henry J. Ongerth, Sr. San. Engr., Bureau of San. Eng., 2151 Berkeley Way, Berkeley.

Nov. 6-8—Virginia Section, at Hotel Roanoke, Roanoke. Secretary, J. P. Kavanagh, Dist. Mgr., Wallace & Tiernan Inc., 213 Carlton Terrace Bldg., Roanoke.

Nov. 10–13—Florida Section, at Roosevelt Hotel, Jacksonville. Secretary, J. D. Roth, P.O. Bin "O," Miami Beach 39.

Nov. 11-13—North Carolina Section, at Hotel Sir Walter, Raleigh. Secretary, W. E. Long Jr., State Stream Sanitation Com., Raleigh.

OTHER ORGANIZATIONS

May 13-15—Industrial Waste Conference, Purdue Memorial Union Bldg., Purdue Univ., Lafayette, Ind.

May 20-22—Northeast Region Spring Conference (NACE) on Corrosion Control by Choice of Materials, Syracuse, N.Y. Write: O. R. Broberg, Lamson Corp., Syracuse, N.Y.

Jun. 2-6—Municipal Finance Officers Assn., at Hotel Lowry, St. Paul, Minn.

Jun. 16-21—American Society for Testing Materials, Atlantic City, N.J.

Aug. 5-9—Gordon Research Conference on Ion Exchange, at Kimball Union Academy, Meriden, N.H. Write: W. G. Parks, Director, Dept. of Chemistry, Univ. of Rhode Island, Kingston, R.I.

Aug. 19-23—North Carolina Water Works Operators School, at Duke Univ., Durham, N.C.

Oct. 6-9—Annual Conference & Products Exhibit, National Institute of Governmental Purchasing, at Netherland Hilton Hotel, Cincinnati, Ohio. Write: Albert H. Hall, Exec. Vice-Pres., 1001 Connecticut Ave., N.W., Washington 6, D.C.

Oct. 7-10—Federation of Sewage & Industrial Wastes Assns., at Statler Hotel, Boston, Mass.

Nov. 2-8—World Metallurgical Congress, sponsored by American Society for Metals, at Chicago, Ill.

CLOW

KINDS OF WEATHER . YOU COULD EVEN DO IT UNDER WATER!

SLIP-ON PIPE JOINT*

forms bottle-tight joint instantly!

Saves you so much time you'll think the clock is paralyzed. Yet assembly is simple and easy, and you get a seal that's tight as a drum. Best of all, you get Clow Cast Iron Pipe . . . for the watermain installation that is economical and permanent.

Want more details? You should have them. There's a Clow man not too far from you right now . . . ready to give you all the facts. Phone us-or drop us a note.

*Patent applied for

EASY AS "A-B-C"

INSERT GASKET IN BELL.

WIPE ON LUBRICANT

SLIP PLAIN END INTO BELL.

201-299 North Talman Avenue, Chicago 80, Illinois

Subsidiaries:

Eddy Valve Company, Waterford, New York lowa Valve Company, Oskaloosa, lowa

Courtesy Chief Engineer

Here are Six 7½ ft. dia. x 5 ft. Glenfield MICROSTRAINERS ahead of new rapid sand filters and softening plant, flow 14 mgd, at the Hilfield Park Reservoir of The Colne Valley Water Company, Middlesex, England.

MICROSTRAINING®

- Lengthens filter runs
- Increases filter capacity
- Reduces operating costs
- · Safeguards against overloading

For details of this new process-Write or telephone

GLENFIELD & KENNEDY, INC.

706 North Avenue, New Rochelle, N.Y.-Tel. NE 3-7414

DI-LECO COUPLING LP. to I.P., double bushing your profits will grow with

DI-LECO

DI-LECO REDUCING COUPLING
LP. to LP., single bushing

DI-LECO UNION LP. to copper, flore type

DI-LECO COUPLING

LP. to I.P., single bushing

DI-LECO UNION LP. to copper, solder type

Now DI-LECO is the newest problemsolver to join the American Sanitary line. These couplings and unions safely join iron pipe with copper or brass or other dissimilar metals...electrolytic action is prevented by insulating bushings of tough nylon. DI-LECO couplings are available in sizes from %" to 2"... DI-LECO unions, with %" F.I.P. nylon bushings, are available for %", ½" or %" copper (flare or solder type).

Order now for immediate delivery... write, wire or phone Abingdon 162 or 172.

WE DISTRIBUTE THROUGH WHOLESALERS ONLY

AMERICAN SANITARY

MFG. CO., ABINGDON, ILLINOIS
OVER FORTY YEARS LEADERSHIP IN THE PLUMBING INDUSTRY

YOU'RE AHEAD WITH AMERICAN SANITARY

Hartford boosts its water supply with 6 miles of *CONCRETE PIPE*

During the summer months when water demands were greatest, the higher sections of the Hartford County Metropolitan District experienced low pressure troubles. The problem was solved by the construction of a 54-in. reinforced concrete pipe water line—the largest yet used in the district. This 6-mile project runs from the clear water basins at the West Hartford Filter Plant to a point near the Cedar Mountain Reservoir in Hartford.

Concrete pipe water lines offer many advantages

- moderate first cost, little or no maintenance
cost, long life and true low-annual-cost service.

PORTLAND CEMENT ASSOCIATION

33 West Grand Avenue, Chicago 10, Illinois

A national organization to improve and extend the uses of portland cement and concrete . . . through scientific research and engineering field work

SERVICE is the basis of GROWTH

"Service" always has been a watchword in the M & H organization — service to the customer.

M & H service begins in the versatile M & H engineering department, with research and design of M & H valves, hydrants and other products. Then follows service by trained manufacturing personnel—craftsmen using highest quality materials. Add a modern, well equipped manufacturing plant, an efficient cost control system and wide-awake sales and shipping departments and you have a composite factor of service which means fulfillment of delivery schedules with superior quality M & H products.

Because service means growth, M & H has become one of the leading valve and hydrant manufacturers of the United States.

M&H VALVE
AND FITTINGS COMPANY
ANNISTON, ALABAMA

A Salute to the

WATERWORKS SUPERINTENDENTS

of American Communities

No office in a municipal government is more important to public welfare and safety than that of the Waterworks Superintendent. He is responsible for the lives and property of the entire citizenry. On his shoulders rests the responsibility of seeing that an adequate water supply and service is maintained to protect the public health, furnish fire protection, and meet the rapidly growing water demands of industrial and individual consumers. He is an active factor in helping his community grow from a town to a prosperous and healthy city. His salary should be commensurate with the vital service he performs.

An overwhelming majority of experienced and capable Waterworks Superintendents and Consulting Engineers recommend—

Permanent CAST IRON PIPE

when their communities are planning new or enlarged waterworks or sewage system. They know that Cast Iron Pipe has an unmatched record of long life with minimum maintenance cost and maximum saving to taxpayers.

Our Company does not manufacture pipe, but has long supplied the nation's leading pipe manufacturers with quality iron from which quality cast iron pipe is made,

WORTHINGTON - GAMON

WATCH DOG

The meter used by thousands of municipalities in the U. S.

WATER METERS

"Watch Dog" models
... made in standard
capacities from 20 g.p.m.
up: frost-proof and split
case in household sizes.
Disc, turbine, or compound type.

SURE TO MEET YOUR SPECIFICA-TIONS FOR ACCU-RACY, LOW MAIN-TENANCE, LONG LIFE.

Before you invest in water meters, get acquainted with the design and performance advantages which make Worthington-Gamon Watch Dog Water Meters first choice of so many municipalities and private water companies in the United States.

WORTHINGTON-GAMON-METER DIVISION

Worthington Corporation

296 SOUTH STREET, NEWARK 5, NEW JERSEY

OFFICES IN ALL PRINCIPAL CITIES __

MUELLER directory

of water works distribution and service products

Mueller offers the most complete line of water distribution and service products – a line backed by a century of manufacturing experience and produced under a rigid standard of quality in workmanship and materials. You are assured of years of dependable service.

Standardize on the Mueller line!

MUELLER PRODUCTS

...Dependable since 1857—for a century, Mueller Co. has been serving the progress of the water industry. Many new products, introduced during this first 100 years, have become the standard of the industry.

Clip These Pages as a handy reference.

Sections referred to will be found in Mueller Water Works Catalog W-96. If you have mislaid your copy, or have need for another, contact your Mueller Representative or write direct.

Drilling Machines

For cuts %" through 12" under low or high pressure ... Simple operation of machine keeps drilling operation under control at all times. (See Section 1)

Power Units

Air motor or gasoline engine drive unit may be used with the Mueller "C-1" or "DH-2" Drilling Machine for fast drilling operations. (See Section 1)

Tapping Machines

Drill and tap holes 1/2" through 4"... Insert corporation stops 1/4" through 2" or pipe plugs 1/4" through 4" under pressure. (See section 1).

Corporation Stops

Mueller, Iron Pipe, Hall or Wood Maminlets... For thin-wall or small diameter pipe... For Copper service pipe... With lead flange or wiped joint... (See section 2).

Lead Goosenecks

Single in wiped joint, lead flange and solder joint types...Two, three, four, six and eight branch in wiped joint or lead flange types. (See Section 3).

Service fittings

Copper Service Pipe... Service pipe fittings and tees... Branch connections. Corporation stop couplings... Lead flange fittings... Solder nipples and plugs... (See section 4).

Service Clamps

Single or double strap types with neoprene or lead gaskets...Mueller or I.P. Thread. (See Section 5).

Curb Stops

Inverted key—copper service pipe or I. P. threads. Solid tee head—copper service pipe or I. P. threads. "H"pattern—copper service pipe or I. P. threads. Newport Pattern—I. P. threads. Lead flange or wiped joint. (See section 6).

Curb Boxes

Mueller extension type, arch pattern with optional footpiece or Minneapolis pattern... screw type with 28" or 3" shaft, enlarged or bell bottom base for curb stops or wheel handle valves...Extensions and repair lids. (See Section 7).

Meter Setting Equipment

Copper meter yokes... Iron meter yokes... Meter relocaters... Water meter couplings... Meter box covers... (See section 8).

Rough Plumbing

Ground key stops with or without drain... Compression stops with or without drain... Sediment and lawn faucets... Bronze gate valves...Ground key stops, angle pattern, with or without drain. (See Section 9).

Regulators and Strainers

For water, air, oil, gas or steam installations ... Pressure relief and check valves... Temperature relief valves and relief elbows ... Large diaphragm relief valves. (See Section 10).

Tools

Pipe jointers, calking sets, yarning irons, hammers, chisels, flanging tools, copper service pipe tools, lead pipe flanging tools. (See Section 11).

eads ds.

Fire Hydrants

AWWA Improved, in 4¼", 4¼", 5¼" and 6¼" sizes...Standard and flush types in 4¼" and 5½" sizes...Standard and flush types in 2½" size...Underwriter approved type in 5½" and 6½" sizes...Variety of ends for different kinds of pipe. (See Section 12).

Gate Valves

AWWA Non-Rising Stem

Hub, flanged, hub and flanged...
Spigot, hub and spigot, flanged and
spigot...
Mechanical joint...
Flanged and Mechanical Joint...
Universal, flanged and Universal,
screwed...
Hub for asbestos cement...

Hub for steel pipe... AWWA Sliding and Rising Stem Flanged...

AWWA Outside Screw and Yoke Hub, flanged, screwed... (See section 13).

Cut-in or Tapping Valves

Tapping valves for use with tapping sleeve or cross...Calked and mechanical joint types ... Conventional or "0" ring stem packing... With or without indicator post flange...Cut-lin Sleeve and Valve with conventional or "0" ring stem packing. (See Section 14).

Sleeves

Split repair and tapping...Calked or mechanical joint types...Tapping cross with calked or mechanical joint also available. (See Section 14).

Inserting Valves

For inserting into mains while under pressure... Non-rising stem with Conventional packing...Gate valve mechanism is identical to Mueller AWWA Gate Valves. (See Section 15).

Valve Boxes

Two or three-piece type, extension pieces, adapters and bases ... Roadway screw type with arch or flange base and extension. (See Section 16).

Miscellaneous Valves

Check, flap, mud or plug drain valves, shear gates, floor and bench stands, and indicator posts. (See Section 17).

Visit our new miniature water works distribution display at the main entrance of the convention hall in Atlantic City, May 12-17, 1957.

MUELLER CO.

DECATUR, ILL.

Factories at: Becatur, Chattanooga, Los Angeles; In Canada: Mueller, Limited, Sarnia, Ontario

Since 1857

Interior, filter plant pipe gallery: RAMUC Utility Enamel safeguards piping, walls and ceilings.

118'-high automatically operated water intake and pumping station. Interior walls, ceilings, valves, etc., protected and beautified with RAMUC® Utility Enamel. Attractive GLAMORTEX® Enamel guards exterior steelwork.

INERTOL® PAINTS GUARD REMOTE CONTROL PUMPING STATION

AT CLEVELAND, TENNESSEE'S unique new Water Treatment Plant, a push-button in the filtration plant starts and stops operations in the pumping station five miles away. All other functions are automatic. A minimum of maintenance is required.

INERTOL coatings contribute to this cost saving because they work for years without maintenance. Consulting Engineers Wiedeman and Singleton, Atlanta, Ga., specified INERTOL 100% for both filter plant building and pumping station. They've specified INERTOL since 1939.

Buy INERTOL paints direct from the manufacturer. Shipment within three days. Write today for free booklet J-754, "Principal Types of Protective Coatings."

SPECIFICATIONS FOR RAMUC UTILITY ENAMEL A glossy chlorinated natural rubber-base coating in color for nonsubmerged concrete, steel and indoor wood surfaces. (Needed on steel only where surfaces are subjected to heavy condensation and are almost constantly wet or subjected to chemical fumes. In all other cases use GLAMORTEX Enamel, excellent alkydresin coating in color.)

Steel Surfaces. Colors: Color chart 560. No. of coats: 3 over primer. Coverage: 300 square ft. per gal. per coat. Approx. mil thickness per coat: 1.2. Drying time: 24 hours. Primer: Shop Primer — INERTOL Rust-inhibitive Primer No. 621; Field Primer — INERTOL Quick-Drying Primer No. 626. Thinners: INERTOL Thinner No. 2000-A, for brushing; No. 2000, for spraying. Application: Brushing: RAMUC Utility Enamel — brush type: as furnished. Spraying: RAMUC Utility Enamel—spray type: add sufficient Thinner 2000 to secure proper atomization.

(Write for RAMUC specifications for concrete surfaces, and for GLAMORTEX specifications for steel and indoor wood.)

A complete line of quality coatings for sewage, industrial wastes and water plants.

INERTOL CO., INC.

484 Frelinghuysen Avenue, Newerk 12, N. J. . 27-6 South Park, San Francisco 7, Calif.

HERSEY

A name that has been preëminent in the Water Works field for 72 years

HERSEY MANUFACTURING COMPANY

SOUTH BOSTON, MASS.

BRANCH OFFICES: NEW YORK — PORTLAND, ORE. — PHILADELPHIA — ATLANTA — DALLAS — CHICAGO SAN FRANCISCO — LOS ANGELES

THE M-SCOPE MASTER Electronic Witch Combination

You're looking at the much-talked-about NEW M-Scope... the only dual-purpose that detects leaks and locates pipe. Its rugged, highly efficient electronic circuit, plus ease

of use and portability, make this instrument one of the most welcome contributions to the water works industry.

For greatest convenience and reliability, the M-Scope MASTER is equipped with a

built-in battery tester for instant checking of battery condition in the field or elsewhere.

WRITE TODAY FOR SPECIFICATIONS AND PRICE!

USE NORTHERN GRAVEL for RAPID SAND FILTER

FILTER SAND SPECIFICATIONS are

carefully laid out. The Effective Sizes and Uniformity Coefficients used by Consulting Engineers and also recommended by the American Water Works Association are the result of long years of research and experience.

The Northern Gravel Company is equipped to give you prompt shipment whether it be one bag or many carloads, exact to specification. Filter sand can be furnished with any effective size between .35 MM and 1.20 MM.

CHEMICAL QUALITY of the filter sand is also important. It must be hard, not smooth and free of soluble particles. This requires perfect washing, and grading facilities. We have every modern device for washing, drying, screening and testing.

FILTER GRAVEL supporting the Filter Sand Bed must be, in turn, properly graded to sizes calculated to support the Filter Sand, and be relatively hard, round and resistant to solution.

The new Northeast Station in the City of Detroit, which is scheduled for completion in 1956, is one of the major projects included in the water department's expansion program. The Northern Gravel Company furnished 120 carloads of filtering materials for the 48 rapid sand filters incorporated in this plant.

Northern Gravel has no equal in facilities and our reserves of both sand and gravel are inexhaustible. Northern Gravel Company has been in business over 40 years. We guarantee uniformity of products and our records enable us to duplicate your requirements on short notice. Our location is central and we have commodity rates in every direction.

NORTHERN GRAVEL COMPANY

Muscatine, Iowa

P.O. Box 307

Phone: Amherst 3-2711

1879-ROSS-1879

Automatic Values

ALTITUDE VALVE

Controls elevation of water tanks, basins and reservoirs

- 1. Single Acting
- 2. Double Acting

Maintains safe operating pressures for conduits. distribution and pump discharge

SURGE-RELIEF VALVE

REDUCING VALVE

Maintains desired discharge pressure regardless of change in rate of flow

A self contained unit with three or more automatic controls

COMBINATION VALVE

Combination automatic control both directions through the valve.

Regulates pressure in gravity and pump systems; between reservoirs and zones of different pressures, etc. Maintains levels in tank,

reservoir or basin

- 1. As direct acting
- 2. Pilot operated and with float traveling between two stops, for upper and lower limit of water elevation.

REMOTE CONTROL VALVE

Adapted for use as primary or secondary control on any of the hydraulically controlled or operated valves.

Packing Replacements for all Ross Valves Through Top of Valve

ROSS VALVE MFG. CO., INC., P. O. BOX 593, TROY, N.Y.

TO MEET UNPRECEDENTED DEMANDS FROM INDUSTRY ...

MAIN WATER SUPPLY LINES BY AMERICAN PIPE AND CONSTRUCTION CO.

The challenge of furnishing water to Rancho San Pedro Industrial Center, one of the nation's fastest growing planned industrial areas, located between Los Angeles and Long Beach, forced privately-owned Dominguez Water Corporation to plan extensive additional facilities for its water system. Since 1951 ideal conditions have attracted more than 50 important industries and 10,000 new homes to the area the company serves. Alert Dominguez Water Company officials anticipated increased industrial and domestic needs and launched an expansion program keeping pace with unprecedented demands.

For example, during the past 24 months, Dominguez has ordered American Concrete Cylinder Pipe for 11 separate installations, predominantly main water transmission lines. The company also tapped the Los Angeles Metropolitan Water District's supply lines for a supplemental source, using 42" American Concrete Cylinder Pipe. This augmented a system formerly supplied by wells and reservoirs alone.

T. V. Tallon, Chief Engineer and General Manager of Dominguez Water Corporation, has expressed his pleasure with the cooperation and service of American Pipe

and Construction Co., "During our present expansion program, American Pipe has consistently met our delivery deadlines - some of them urgent - yet held to the same high manufacturing standards as first attracted American to our attention."

American Pipe makes available 50 years of experience and extensive production facilities to help solve any water supply problem. There is a type of American Pipe to meet any requirement. Write or phone for information.

Mail address: Box 3428 Terminal Annex, Los Angeles 54

Main offices and plant: 4/35 Firestone Blvd., South Gate, Calif. Phone LOrain 4-2511 District sales offices and plants: Hayward and San Diego, Calif., Portland, Ore., Phoenix, Arix.

District sales representatives: Seattle and Spokane, Wash.

CONCRETE PIPE FOR MAIN WATER SUPPLY LINES, STORM AND SANITARY SEWERS, SUBAQUEOUS LINES

Everything ...Including Your Budget Standard Sluice

No matter what your requirements are, installations, in every case, are easy with Chapman Standard Sluice Gates. The reasons are soon obvious.

Gates

All component parts . . . discs, guides, hooks and wedges . . . in more than 300 available types and sizes are standardized. That means they're interchangeable. Regardless of your specifications, you always get a quick perfect fit. There's nothing hit or miss about it. No expensive, time consuming match-marking. No extensive field alterations. You get a quick, perfect fit at lowest possible cost.

Even after installation, your savings never stop. These standardized, interchangeable parts are easily replaced. Your maintenance cost for keeping your sluice gates in excellent working order is low, the lowest possible.

This applies to all Chapman Standard Sluice Gates... for high or low head, seating or unseating pressures, large or small water areas... with manual, hydraulic or electric motor operation. All available in the fastest possible time.

If you don't have a copy of our Catalog 25-A readily on hand, write for a new fresh copy.

The CHAPMAN Valve Manufacturing Co.

CASE #7841

- PATIENT: 8 Miles of 16" and 12" Cast Iron Water Supply Lines in
 - Abington-Rockland (Mass.) Water District.
- SYMPTOMS: Lack of water and pressure during periods of high demand requiring restrictions in the summertime.
- DIAGNOSIS: Poor circulation due to regrowth of tuberculation after
 - cleaning. Available water could not be delivered
 - to consumers.
- TREATMENT: The lines were cleaned and cement lined in place without
 - interrupting service to consumers. In less than 8 weeks
 - the entire job was completed.
 - RESULTS: Patient now sound and healthy; pipe capacity
 - permanently doubled, no further summer restrictions,
 - future maintenance costs were eliminated.

If your lines also show signs of suffering from corrosion, leakage or tuberculation, investigate the Centriline Process. Cleaning and cement lining in place has been a successful remedy for over 1,000 miles of water supply pipelines. Centriline hasn't lost a patient yet.

CENTRILINE CORPORATION

A subsidiary of the Raymond Concrete Pile Company

140 CEDAR STREET, NEW YORK 6, N.Y.

WOrth 2-1429

Here's How KENNEDY'S Safetop Hydrant Saves Maintenance and Repair Costs...

KENNEDY SAFETOP fire hydrants are designed and constructed with these outstanding features: Protection against flooding upon accidental breakage; maximum supply of water at nozzles available from supply main; minimum friction loss from inlet elbow to nozzle outlets; positive, complete drainage after operation to prevent freezing; leakproof valves and gaskets; easy fast inspection and renewal of operating parts.

Both KENNEDY SAFETOP and KENNEDY STANDARD fire hydrants are non-flooding compression type and are available in 4'', $4\frac{1}{2}''$, 5'' and 6'' sizes. See how KENNEDY fire hydrants can save you time and money. Write today for complete details.

. WRITE TODAY FOR COMPLETE DETAILS

KENNEDY VALVE MFG. CO.

1603 E. WATER ST.—ELMIRA, NEW YORK VALVES • PIPE FITTINGS • FIRE HYDRANTS

. OFFICE AND WAREHOUSES IN NEW YORK, CHICAGO, SAN FRANCISCO, ATLANTA . SALES REPRESENTATIVES IN PRINCIPAL CITIES .

It's the modern pipe! Easy installation under any weather and ground conditions is just one of the advantages of K&M Asbestos-Cement Pipe. Other advantages: Permanently smooth non-tuberculating bore; non-corroding inner and outer surfaces; high resistance to electrolytic action; permanence of joint obtained quickly with exclusive K&M "Fluid-Tite" © Coupling.

K&M Pressure Pipe meets A.W.W.A., A.S.T.M. and U.S. Federal Specifications, and has Underwriters' Laboratories approval for all sizes (pipe and couplings) in Class 150.

FOR GRAVITY SEWER SYSTEMS, K&M Sewer Pipe is the low-cost answer. "Fluid-Tite" Coupling makes permanent tight joint, prevents infiltration and root entrance.

FOR HOUSE-TO-SEWER CONNECTION, K&M Building Sewer Pipe and 2-Step couplings round out the K&M family of asbestos-cement pipe.

Get the whole story on the modern pipe from the K&M distributor. And visit us at our booth at the A.W.W.A. Convention, Convention Hall, Atlantic City, N.J., May 12-17, 1957.

KEASBEY & MATTISON Company • Ambier, Pennsylvania
In Canada, it's ATLAS ASSESTOS CO., Ltd., 5600 Heckelaga St., Montreal, P. Q.
for "CENTURY" Pipe and "FLUID-TITE" Couplings

After many years, K&M Pipe hasn't tuberculated, bore remains unchanged, and full flow continues.

Old-fashioned pipe tuberculates over the years, requires higher pumping pressure, frequent cleaning.

CRANE expands A. W. W. A. line for special needs

Water corrosive? Use CRANE

This Crane valve is for use where unusual water conditions require the use of all-bronze internal parts. Body rings, discs, upper and lower spreaders, and gland are of solid bronze. Stem is "Ni-Vee"* Type A bronze, a copper-nickel alloy of low zinc content. These valves are available from stock in hub, flanged and mechanical joint ends—in all sizes from 2" to 12".

UPPER "O" RING

LOWER "O" RING

SEALS INTERNAL

PRESSURE

Double "O" ring stuffing box now available

Another feature now available in Crane A.W.W.A. nonrising stem valves is an "O" ring stuffing box. Two Buna-N"O" ring seals hug the stem tightly. Lower ring acts to seal the internal pressure; upper ring is an external dirt seal and reserve pressure seal. Valves with "O" ring stuffing boxes are available with hub, flanged, mechanical joint ends—in all sizes from 2" to 12".

Features of CRANE A.W.W.A. Valves justify their choice

480-1/2-BD hub-end A.W.W.A. valve

Simple, 4-part double-disc assembly—2 discs, 2 spreaders. Discs are free to rotate—minimizing concentrated seat wear. Discs can-

wear. Discs cannot fall out or jam. Easy opening and tight closing assured. Valves have much longer service life.

For complete details of Crane A.W.W.A. valves, write for circular 2108

"'Ni-Vee" is the registered trade-mark of International Nickel Co.

CRANE VALVES & FITTINGS

PIPE . KITCHENS . PLUMBING . HEATING . AIR CONDITIONING

Since 1855 — Crane Co., General Offices: Chicago 5, Ill. Branches and Wholesalers Serving All Areas

Variable stroke Controlled Volume Pump in a simple pH control system.

Milton Roy Controlled Volume Pump with pneumatic stroke length adjustment.

Use Controlled Volume Pumps for accurate, automatic pH control

Controlled Volume Pumps both meter and pump measured volumes of water-treating chemicals within an accuracy of $\pm 1\%$. This accuracy makes possible extremely close regulation of pH when Controlled Volume Pumps are used as final control elements to regulate pH automatically.

In the typical pH control system illustrated, where main line flow rate is constant, a pH controller signals deviations from the pH control point. This signal automatically adjusts pump length to proportion

the addition of control agent to process demand. Pump capacity can be adjusted pneumatically or electrically.

Control of pH is but one of many water-treating applications served profitably by Milton Roy Controlled Volume Pumps. For additional information, write for Bulletin 953, "Controlled Volume Pumps in Water Treating Systems."

MILTON ROY COMPANY, Manufacturing Engineers, 1300 East Mermaid Lane, Philadelphia 18, Pa.

Engineering Representatives in the United States, Canada, Mexico, Asia, Europe, South America, Africa, Australia.

NOW...Dosage Automation

with the

W&T Quality-Quantity Chlorinator

Select the residual you want and the new W&T Quality-Quantity Chlorinator will automatically maintain that residual. Immediate sensing of any change in a water's chlorine demand—as well as flow—automatically controls chlorine feed rate to maintain a desired residual. That is Dosage Automation with the new W&T Quality-Quantity V-notch Chlorinator.

DOSAGE AUTOMATION OFFERS THESE FEATURES:

Maintains

a selected residual, free or total, with automatic dosage control.

Anticipates

changes in chlorine demand.

Controls

Chlorine feed up to a full 100 to 1 range at rates to 2000 pounds of chlorine per 24 hours.

Provides

a record of chlorine dosages in p.p.m. and chlorine feed rates in pounds per 24 hours.

Utilizes

the proven W&T V-notch Variable-Orifice for accurate, wide range chlorinefeed.

For more information about this new type of chlorination system write for Bulletin S-118.

WALLACE & TIERNAN INCORPORATED

25 MAIN STREET, BELLEVILLE 9, NEW JERSEY

Fred Merryfield, President 1957-1958

Journal

AMERICAN WATER WORKS ASSOCIATION

VOL. 49 . MAY 1957 . NO. 5

Disposal of Radioactive Wastes

Abel Wolman

A paper presented on Mar. 11, 1957, under the sponsorship of AWWA, at the Engineer's Joint Council Nuclear Eng. and Science Congress, Philadelphia, Pa., by Abel Wolman, Prof. of San. Eng., Johns Hopkins Univ., Baltimore, Md.

A LOGICAL preamble to this paper may be found in the admirable summary statement of the report released by the National Academy of Sciences on the Biological Effects of Atomic Radiation. The statement, appearing in a report to the public (1), issued in the early summer of 1956, is as follows:

Now we must look into the very tangled problem of how the radiation gets to the people. It is a long way from Eniwetok to Chicago or Bombay. A power station in Oslo or Moscow is a far remove from Johannesburg. Yet all these places are in the same ocean of air: all are surrounded by the interconnecting oceans of water. English grass has been sprinkled with strontium 90 from Nevada. And English cows have eaten it. Plankton in the North Sea has very likely taken up some of the radioactivity being dumped there from a British atomic reactor. Where did the ocean currents then carry this plankton? What fish fed on it? Who ate the fish?

Between the potential sources of manmade radiation and the people of the world is a vast, complex connecting network. It includes the air, the rivers and oceans, and the plant and animal life which form the links in the chain of our food supply. How radiation is distributed or how its distribution can be controlled is a problem that calls for the combined efforts of meteorologists, oceanographers, agricultural scientists and experts in the disposal of radioactive wastes.

Within this setting, in an age of maximum advance in the development of sources of radiation, what is the problem of radioactive wastes? Much has already been written and published on this complex subject. For the purposes of this review it is unnecessary to repeat in detail the origins of these wastes at various stages of the program for the peaceful development of the uses of atomic energy. Such sources have been spelled out with elaboration in the technical press. Varying composition, radioactivity, and toxicity of

wastes stem from every step in the production of atomic energy—from the mining of uranium and other raw materials to the ultimate reprocessing of fuel and byproducts. They may be of solid, liquid or gaseous nature.

In the handling of raw materials, exposure to the radioactive gas, radon, has to be controlled; in the processing of uranium concentrates, the dust of uranium compounds is a possible hazard. Problems also arise from concentrations of fissionable uranium or plutonium which could, if improperly handled, initiate a chain reaction and throw off very powerful radiations. Plutonium and various other substances of importance in the atomic energy program are poisonous if allowed to enter the body. Problems arise also from the processing of materials which have been passed through reactors; from radioactive industrial wastes; and from the testing of atomic weapons. Many of these same problems arise with development of nuclear power by private, city, state, and cooperative organizations, or with industry's efforts to advance other peaceful uses of atomic energy.

Public hazards could arise from excessive releases of process gases; from plant or reactor ventilation which might contain radioactive gases and airborne radioactive material; from reactor coolants where these are released to the environment; from radioactive fallout after weapons tests; from radioactive industrial wastes that are not stored; and from miscellaneous contaminated materials-tools, machinery, clothing, etc., from atomic energy installations (2).

At each of the steps noted above situations arise which require detailed understanding, sharp control, and continuity of monitoring to provide safety from exposure for the industrial worker and the surrounding population. The safeguards taken by the Atomic Energy Commission (AEC) to protect

worker and public have been remarkably effective in the commission's manifold operations.

National and international standards have been established for the amounts of radiation to which humans may be exposed with a reasonable degree of assurance of health and safety. These standards have been the result of a large amount of experiment, inquiry, judgment, and evaluation. Data on the behavior of humans after varying degrees of exposure to radiation are still insufficient, however, to assure rigid and inflexible limitations. Such studies are being pursued with vigor, but perhaps at a rate still too slow to develop firm answers as rapidly as required. It should be remembered that zero radiation is the optimum environment and that additional exposures above background amounts, must be viewed with care.

The geneticist tells us that there is no safe dose. Each dose, however small, causes a risk of genetic harm proportional to the dose. Because of these facts and many unknowns, the so-called "permissible dose," first set at 0.5 roentgen per 5-day week by a national committee in 1935, was lowered in 1946 to 0.3 roentgen per 5-day week and in 1956 to 5 roentgens per year or approximately 0.1 roentgen per 5-day week.

These considerations establish the reasons why the handling of radioactive wastes becomes of major significance to modern society.

W. Kenneth Davis of the AEC has recently summarized succinctly the present situation in the following terms (3):

A large nuclear power reactor will produce large volumes of waste fission products and other radioactive debris. e

e

a

e

11

it

it

1-

S

is

T

)-

e

d

5

al

in

ly

1e

re

90

15

1e

18

110

is.

Storage in tanks is not a permanent nor adequate solution. New methods are under development but the ideal solution in terms of cost and positive control of the radioactivities still appears to require intensive work. This also is a problem in which chemists and chemical engineers must work in close collaboration with sanitary engineers.

Present practice, particularly insofar as high-level radioactive wastes from chemical fuel processing are concerned, may be summarized in the observation that wastes are not being disposed of in the sense in which we use this term with more familiar domestic and industrial wastes. Wastes of major significance are being reduced to smaller volume and manageable state so that they may be either stored or released to the natural environment under rigid controls. Even with wastes hitherto defined as of low-level radioactivity, release to nature via the atmosphere, the soil, or receiving bodies of surface waters poses increasing issues for the future as the development of nuclear power and of industrial sources of heat increases.

These comments are not only pertinent, but need to be emphasized and reemphasized, because many industrialists and other workers in this field have the impression that the disposal of radioactive wastes has been accomplished, that costs for so taking care of waste products are of no real significance, and that practicable procedures to accompany the development of the industry are now at hand. None of these assumptions is valid. As a matter of fact, tens of millions of dollars annually are now being spent by the AEC for detailed exploration in universities, research institutes, private industry, and in the commission's own laboratories, for improving fuel processing operations. The efforts are directed toward developing greater economy in these processes and in reducing volume and strength of the resultant wastes.

One cannot view the problem as solved, on the assumption that removal from a plant operation site of high-level radioactive wastes by the AEC is the equivalent of a disposal method in the sense that that term is commonly used. The commission has made quite clear in its public pronouncements that it must look increasingly to industry, to universities, research institutes, and others for working promptly and actively towards solutions of these critical problems.

Control Practices

Some general comments upon the eight current and prospective practices in the control of radioactive wastes are here appropriate:

1. Transportation

The present practice is to transport wastes of significant radioactivity to selected central points either in the form of fuel materials or in wastes of different origins. The transportation of such materials is expensive. Their packaging, their protection against normal or accidental exposure of persons in transit, their handling and storage at terminals are also costly. They pose a number of significant questions in relation to transportation routes, control monitoring systems, and storage facilities in reasonably isolated areas.

No one may look forward with equanimity to the expansion of significant holding areas of wastes, without being confronted with problems and economics of transport. Alternatives to transport, with safe local processing, or modification in fuel technology must be

found as the industry progresses. This point need not be labored, but it is so frequently forgotten because of the present responsibility of the AEC for the removal of spent fuel and wastes. Such a paternal practice is unlikely to be perpetuated indefinitely.

As the United States assumes a leadership throughout the world in the field of atomic energy production, it also assumes the responsibility for fuel supply and for spent fuel processing. The control of transportation hence becomes of international as well as national import.

2. Recovery for Use

In the discussion of recovery for use, the realities should be kept separate from the optimistic press releases, including some of scientific origin. If one reviews the latter with care, it is soon evident that the amounts of money to be anticipated from the recovery of useful materials from high-level radioactive wastes are still in the realm of hopes for the future rather than of immediate promise. Undoubtedly the future may disclose increasing portions of wastes recovery for useful purposes. That time is not at hand. In so complex a field prophecy is hazardous.

Recovery of materials may pay for some of the waste processing necessities. If the precedents in other industrial wastes are any guide, the atomic energy industry is a very long way from this goal. Perhaps, the very hazard of these wastes may push this industry more rapidly toward economic recovery of wastes materials than has been the case in most other industrial processes. This result, however, must be listed as a hopeful prospect, rather than as present accomplishment.

3. Disposal at Sea

Materials of some radioactivity have been and are being disposed of at sea. Their levels of radioactivity are low. The total quantities now disposed of in this manner in this country and in the western world are small. Even with these materials the costs are high, because packaging and transportation from inland sources to appropriate places at sea add up to absolute costs of some magnitude. Relative costs, for such low-level wastes, in the industry from which they stem, may be low.

As far as the author is aware, no high-level radioactive wastes are being disposed of at sea by any country. Much more must be known about the behavior of the sea before it can or should be used as a safe disposal ground for the atomic power industries. Those who lock to the sea hopefully for this disposal ground must await a great deal of investigative diagnosis of the various oceans before national or international permission should be granted.

For example, little is known about the currents at depths of 600 to 30,000 ft. Much will have to be known about their behavior, the velocities at which they move, the directions in which they proceed, and the time of retention from the deeps to the appearance at the surface. One of the many enterprises which will be under way in the International Geophysical Year (Jul. 1, 1957–Dec. 31, 1958) will be concerned with attempting to gather this essential information. Such data should shed some light on the age, the movement, and the fate of waters in those depths.

Such investigations, of course, are already under way both on the Atlantic and the Pacific oceans, with the major support of the AEC. They are so supported because the commission recognized in its most recent annual report (2) to the Congress that "the safe handling and final disposal of wastes is important to the successful application of nuclear energy to the peaceful uses."

The commission itself poses a number of basic questions with respect to the sea which will have to be answered. They are briefly:

The amount of radioactivity that would be picked up in ocean spray and held in the atmosphere.

How radioactivity would affect sea life and human foods.

The extent of deep water flow from cold latitudes to the Equator and the rate at which the deep water mixed with surface water.

The eventual dilution of deeply deposited radioactivity if it became available to sea life, and the effect of eventual surface concentrations of radioactive materials by various forms of sea life.

4. Storage Tanks

S

d

The practice of holding wastes in tanks at a number of installations was not a fortuitous choice. It was undertaken after a great deal of consideration of alternative methods of holding. Their location and operation had been determined with care and the monitoring of their behavior is diligently pursued.

Because of the failure to develop any better method, some have regarded the practice as "standard." The cost in absolute figures remains high. In terms relative to the cost of production of nuclear energy the figure is low. Problems of structural behavior, of corrosion, of life expectancy, and of detailed control of storage tanks remain. Some better and more economic way of handling these materials is still to be found.

The stipulation that such wastes should be held for long periods of time in order to provide for consequent decay had advantages when the number of such units required for storage was low. As time goes on, their number and their location will pose added problems.

The advantages resident in storage are clear. Storage provides a managed, controlled system. The storage units contain the wastes materials for possible future use for reprocessing. They restrain the materials from moving at large into the natural environment, where their control would be consistently and regularly reduced.

Storage of liquids, semi-liquids, and solids, present a premium, however, upon space. In some production areas, space for such holding for all wastes of this nature is becoming a problem. Within 10 years new storage and burial grounds have become necessary in some of the areas.

If nuclear energy development occurs on a wide geographical base, particularly in increasingly dense population centers, storage of many types will confront the industry with space and site selection problems.

5. Disposal in Deep Wells

Much consideration has been given over the last 4 or 5 years to disposing of wastes in wells of 5,000- to even 20,000-ft depths. Such proposals have rested upon the assumption that the wastes might be injected into such depths in carefully, geologically selected spots, where the materials might be retained with safety and where assurance may be relatively high that the passage of nuclides would not affect or destroy other natural resources. These specifications have not yet been met. Selection of areas reasonably guaranteed to be safe for the long future has moved forward only slowly. Procedures for injecting waste materials into such depths at any reasonable rate of disposal have not vet been evolved. Costs have not been determined.

In this method, again, there are some industrial waste precedents, particulargely with oil brines. These precedents

dents, however, offer no immediate hope by analogy, because of the everpresent necessity of guaranteeing longtime holding and decay of toxic materials. Work on this procedure continues. It is not unfair to say that the answer is not yet at hand.

It must be demonstrated, almost site by site, what the vertical and horizontal displacements of radioactive elements are likely to be. Normal gross geologic predictions for either deep wells or other soil dispersing areas, are no longer safe for specific decisions. The gross characteristics have proved to be too broad in nature to be specifically useful for any particular formation or location.

The struggle to obtain a greater perfection of predictability as to the behavior of soils, surface or deep, under the impact of these wastes is proceeding and may ultimately result in extremely helpful principles, criteria, and tests.

6. Dumping

Historically, every industry at one time or another resorted to dumping wastes into sumps, lagoons, streams, and atmosphere. Orderly use of many of these techniques, with carefully controlled monitoring, has proved only moderately successful with wastes far less hazardous than those under discussion.

It may be predicted that government regulation and control in the future with respect to atomic energy wastes will be increasingly restrictive rather than increasingly lax. This is not meant to imply that orderly use of such procedures would be prohibited. It does mean that continued use of such procedures is unlikely to offer permanent answers.

7. Solid Fixation Processes

For more than 5 years, a number of laboratories in this country have been actively studying solid fixation processes as a method of handling wastes. Their objective has been primarily to reduce volume, to restrain release of radioactivity and to make transport and storage manageable. None of these efforts has so far produced a material which can be disposed of. Some give promise of producing a mass which might be stored for long periods of time, again with monitoring and supervision. All of the processes at the moment are costly. It is too early to say which, if any, of the current efforts will result in a satisfactory economical product for long-term storage or for earth disposal. For the most part, the products now resulting, on a laboratory or pilot plant scale, still have to be shipped to remote and carefully administered areas for final disposal.

8. Salt Mines

Salt mines are great in acreage and very deep. They occur in strategically located spots. It is not surprising, therefore, that they are under detailed consideration for the purposes here discussed. Their use confronts the atomic energy industry with the problems, inherent in these wastes, of injection, high heat production, and potential of explosion. No actual use has so far been made of these areas, or other types of mines, because criteria for success have not yet been reasonably demonstrated. Work on these possibilities continues.

Conclusions

Many of the procedures so far suggested in this difficult and complex field make clear that a high degree of admin-

1,

istrative supervision must be contemplated for the future. Radiation inventory and storage will increase. The public will demand an increasing continuity and efficiency of administrative control.

The geography of that control will be international as well as national. The complexity of the control is such that decentralization of supervision among the states and local subdivisions is equally apparent for the future. Such supervision will rest upon agreed national and international standards and criteria.

Regardless of present methods of disposal or of holding, whether in the atmosphere, the sea or the earth, no method now exists which is both cheap and permanently satisfactory. No method, incidentally, can be left to indiscriminate application, much as one might prefer to avoid the kind of detailed administrative control which appears on the horizon.

It has become a cliche to point out that, in the development of any of these practices, technologically or administratively, the combined forces of the best of our scientific talents will be required. It is truer today than ever before in our industrial development that solutions to the problems here posed must come from the combined efforts, among others, of geologists, chemical technologists, sanitary engineers, health physicists, medical officers, biologists, and petroleum engineers. In these interdiscipline research and development projects, the AEC has pursued strikingly broad policies.

References

- Biological Effects of Atomic Radiation. Natl. Acad. Sci. Natl. Research Council, Washington, D.C. (1956), p. 22.
- Report to Congress. Atomic Energy Com. Semi-Annual Rept., Washington 25, D.C. (Dec. 1956).
- 3. Davis, Kenneth W. Energy . . . the Engineer . . . the Future. American Engr. 27:2:27 (1957).

Uniformity of Fluoride Ion Concentration in Newburgh, N.Y., Distribution System

Floyd B. Taylor-

A contribution to the Journal by Floyd B. Taylor, Sr. San. Engr., National Institutes of Health, USPHS, Bethesda, Md.

THE question, still current, of whether uniform fluoride ion concentrations can be maintained in public water supplies can be answered in the affirmative.

Recently, a statistical analysis of fluoride ion test data from several communities was made for Newburgh, N.Y. The analysis showed a rather normal frequency distribution with a narrow spread around the figure of 1.1 ppm the goal of the Newburgh program (1). The data described below covered a 2-year period.

Newburgh Water Supply

Newburgh obtains its public water supply from upland surface streams impounded in a large raw water reservoir. Water is treated in a modern plant by coagulation, aeration, sedimentation, rapid sand filtration, chlorination, and, since May 2, 1945, fluoridation. A dry-feed, volumetric, manually controlled fluoridator applied sodium fluoride to a large pipe carrying water from the filters to the clear well. When fluoridation was first begun, the point of application was the clear well itself, but as varying results were obtained, the point of feed was changed to that first described and then, with the addition of baffles in the clear well, uniformity was achieved.

Tests for fluoride ion were made daily by a competent chemist in the

filter plant laboratory using Standard Methods (2) procedures, and check tests were made frequently in the New York State Health Department laboratories. The samples tested were collected at points on the distribution system.

Definitions

The following definitions are of statistical terms as used in the article.

Range is the difference in fluoride ion concentration between an upper and a lower value in a series.

Mean is the arithmetic average fluoride ion value of a series.

Standard deviation is a measure of variation. When considered together with the mean, a central range containing about $\frac{2}{3}$ of the test results in the series—that is, the mean fluoride ion concentration plus and minus the standard deviation is the range within which fall about $\frac{2}{3}$ of the test results of the series.

Frequency distribution is a series of measurements which describes the progress of a process—in this case, fluoridation.

Cumulative distribution is the successive total of samples with a fluoride ion concentration up to and including a given value in the series. It is expressed as a numerical and percentage figure. For example, in Table 3, from the low value of 0.7 ppm to and includ-

a

f

e

h

e

of

1e

e,

C-

le

K-

ge

d-

ing 0.85 ppm, there were a total of 22 test results, or 1.21 per cent of the total of 1,820 test results in the series.

Percentile is that percentage of test results falling in any given or selected fluoride ion concentration range.

Median is that fluoride ion value above and below which 50 per cent of the sample test results fall.

Interpretation of Data

In Table 1 * are shown frequency and cumulative distributions of the results of 1,388 fluoride ion tests performed by the Newburgh city chemist. The frequency distribution is shown graphically in Fig. 1, and Fig. 2 illustrates the shape of the cumulative distribution. Table 2 and Fig. 3 and 4 give corresponding facts on 432 samples analyzed in the laboratories of the New York State Health Department. Table 3 and Fig. 5 and 6 show the combined data for the total of 1,820 fluoride ion test results.

The mass of data, which statistically represents a large sample, demonstrates several facts:

1. Precise control over fluoridation was achieved by the operators of the Newburgh public water supply.

2. The mean values of 1.07, 1.10 and 1.08 ppm vary little from the value of 1.1 ppm—the goal of the operators. The compactness of the test results about the mean value is demonstrated by the small standard deviations of 0.084, 0.087, and 0.085 ppm, and by the shape of the graphic representations of the frequency distributions.

3. The samples were collected at a frequency of about 2.5 per day for a

2-year period. The cumulative frequency curves, although constructed from discreet items, may be used to estimate how the fluoride ion concentration varied through time. That is, the percentiles may be considered as portions of time during which the fluoride ion concentrations were at their shown value. In only 1 per cent of the samples were fluoride ion test results below 0.9 ppm, a desirable minimum. At the other end of the scale, in only 2 per cent of the samples, were the concentrations above 1.3 ppm, and in none of the samples did they exceed 1.5 ppm.

Conclusion

It is concluded that fluoridation of a public water supply may be precisely controlled where adequate equipment is available, where properly trained personnel operate the equipment, and where reasonable care is exercised in the operation.

Acknowledgment

The writer wishes to express his appreciation to the Superintendent of the Newburgh Water Department and to personnel of the Water Supply Division of the New York State Health Department through whose courtesy the data were made available.

References

- Dean, H. Trendley. The Advancement of Fluoridation. Discussion by Charles R. Cox. Jour. AWWA, 43:17 (Jan. 1951).
- Standard Methods for the Examination of Water, Sewage, and Industrial Wastes. APHA, AWWA, & FSIWA, New York (9th ed., 1946; 10th ed., 1955).

^{*} All tables and figures on pp. 514-516.

Fig. 1.

Fig. 2.

Fig. 1. Graphic Representation of Frequency Distribution of 1,388 Fluoride Ion
Test Results at Newburgh, N.Y.

Samples from the Newburgh water distribution system were analyzed at the water works laboratory and covered the period June 1950-June 1952.

Fig. 2. Curve of the Cumulative Distribution for the Same Test Results Used in Fig. 1.

TABLE 1

Distribution of Fluoride Ion Test Results
at Newburgh, N.Y.*

Fluoride Ion Content—ppm	No. of Samples	Cumulative No. of Samples	Cumulative Samples%	
0.70	2	2 2		
0.75	1	3	0.22 0.65 1.59 4.25 10.01 25.36 47.91 74.86 91.79 96.76 99.35 99.86	
0.80	6	9		
0.85	13	22		
0.90	37	59		
0.95	80	139		
1.00	220	359		
1.05	306	665		
1.10	374	1,039		
1.15	235	1,274		
1.20	69	1,343		
1.25	36	1,379		
1.30	7	1,386		
1.35	1	1,387	99.93	
1.40	0	1,387	99.93	
1.45	0	1,387	99.93	
1.50	1	1,388	100.00	

Total Samples: 1,388

Median: 1.105 ppm

Mean: 1.07 ppm

Standard Deviation: 0.084 ppm

^{*} Analyses by Newburgh water treatment plant laboratory, Period covered: Jun. 1950-jun. 1952.

Fig. 3. Graphic Representation of Frequency Distribution of 432 Fluoride Ion Test
Results at Newburgh, N.Y.

Samples from the Newburgh water distribution system were analyzed at the state health department laboratory and covered the period June 1950-June 1952.

Fig. 4. Curve of the Cumulative Distribution for the Same Test Results Used in Fig. 3.

TABLE 2

Distribution of Fluoride Ion Test Results
at Newburgh, N.Y.*

Fluoride Ion Content—ppm	No. of Samples	Cumulative No. of Samples	Cumulative Samples—% 6.25 7.18 15.28 33.56 65.51 77.55	
0.90	27	27		
0.95	4	31		
1.00	35	66		
1.05	79 138	145		
1.10		283		
1.15	52	335		
1.20	79	414	95.83	
1.25	9	423	97.92	
1.30	8	431	99.77	
1.35	1	432	100.00	

Total Samples: 432 Median: 1.125 ppm

Mean: 1.10 ppm Standard Deviation: 0.087 ppm

 $^{^{\}circ}$ Analyses by state health department laboratories. Period covered: Jun. 1950–Jun. 1952.

Fig. 5. Graphic Representation of Frequency Distribution of 1,820 Fluoride Ion Test Results at Newburgh, N.Y.

Samples from the Newburgh water distribution system were analyzed at the water works laboratory and the laboratory of the state health department and covered the period June 1950-June 1952.

Fig. 6. Curve of the Cumulative Distribution for the Same Test Results Used in Fig. 5.

TABLE 3

Distribution of Fluoride Ion Test Results at Newburgh, N.Y.*

Fluoride Ion Content—ppm	No. of Samples	Cumulative No. of Samples	Cumulative Samples—%	
0.70	2	2		
0.75	1	3	0.17	
0.80	6	9	0.49 1.21 4.73 9.35 23.35 44.50 72.75 88.4	
0.85	13	22		
0.90	64	86		
0.95	84	170		
1.00	255	425		
1.05	385	810		
1.10	512	1,322		
1.15	287	1,609		
1.20	148	1,757	96.6	
1.25	45	1.802	99.1	
1.30	15	1,817	99.6	
1.35	2	1,819	99.9 99.9	
1.40	0	1,819		
1.45	0	1,819	99.9	
1.50	1	1,820	100.0	

Total Samples: 1,820 Median: 1.115 ppm

Mean: 1.08 ppm Standard Deviation: 0.085 ppm

^{*} Analyses by Newburgh plant laboratory and state health department laboratory. Period covered: Jun. 1950-Jun. 1952.

Pipeline Network Analysis by Electronic Digital Computer

-Lyle N. Hoag and Gerald Weinberg

A contribution to the Journal by Lyle N. Hoag, Engr., Brown and Caldwell, San Francisco, Calif., and Gerald Weinberg, Applied Science Repr., Service Bureau Corp., Los Angeles, Calif.

THE analysis of flow in pressure conduit networks, such as municipal water distribution systems, has occupied the attention of several investigators beginning with the well-known study by Hardy Cross (1) in 1936. Prior to development by Cross of a rational relaxation technique, pipeline network problems could be solved only by a perplexing and time-consuming trial and error process, which necessitated the satisfaction of the two basic hydraulic principles applicable to network flow:

$$\Sigma Q = 0 \dots (1)$$

$$\Sigma h = 0 \dots (2)$$

The first condition states that the flow in a network system must be balanced at every junction point, and the second that the algebraic sum of the head losses around any closed circuit must be zero.

Because the head loss in any component of a hydraulic system varies nonlinearly with the rate of flow, it is evident that the network system cannot be described by a set of simultaneous linear equations. Accordingly, the numerous numeric techniques which have been developed to deal with simultaneous linear equations are of no value.

Several methods of varying accuracy and complexity are now available to the analyst for solving network problems. This paper discusses a method of utilizing the extreme speed and accuracy of commercially available electronic digital computers as applied to a modification of the classical numeric relaxation technique. The value of this new method is best appraised by a comparison with present analytical techniques, which include: [1] the method of sections; [2] the Hardy Cross relaxation technique; [3] the linear approximation method; and [4] the electrical analogy network analyzer.

Method of Sections

In the sense used here, the method of sections is not a true analytical technique but is a very valuable tool in that it makes possible a very rapid approximate evaluation of network systems. Following the determination of demands on a system, the network is divided by arbitrarily drawn sections, and the assumption is made that the hydraulic gradient is the same for all pipes crossing the section. With the properties of the pipes and the total flow across the section known, it is easy to calculate the actual hydraulic gradient at the section chosen. Overall deficiencies can be spotted and the effect of design changes quickly evaluated. This method is valuable also in evaluating the effect of a required fire flow on local pressure conditions. It is not, however, satisfactory for evaluating hydraulic conditions in a system with multiple constant-head inputs such as is found in reservoirs.

Hardy Cross Technique

The Hardy Cross relaxation technique is an iterative procedure which involves the successive application of "optimum" corrections to the flow in

the general expression for head loss in hydraulic flow which may be indicated by a simplified derivation:

$$h_i = K_i Q_i^n \dots (3)$$

where h is head loss; K is a function of the flow and pipeline properties, here considered to be a constant; Q is rate of flow; and n is a function of Q

Fig. 1. Sample Network Problem

The problem involves two reservoirs—A and B—at known elevations, and two constant rate imputs. The tabulation of the solution is given in Table 1.

each line of closed pipeline loops as exemplified by the simple problem shown in Fig. 1. In this technique, the initial values of the flows are assumed by the analyst and must satisfy Eq 1. Because any correction is applied to all lines in a particular loop, Eq 1 remains satisfied throughout the calculations. The magnitude and sign of the correction to be applied to any loop are governed by the magnitude of the deviation of that loop from Eq 2. The "differential correction" follows from

which varies from 1.0 to 2.0, here considered to be a constant. If

$$dh_i = nK_iQ_i^{n-1}dQ_i....(4)$$

then

$$dQ_i = \frac{dh_i}{nK_i O_i^{n-1}}.\dots(5)$$

SO

$$\Delta Q \approx \frac{\sum K_i Q_i^n}{\sum n K_i Q_i^{n-1}}.....(6)$$

It is common in water works engineering to use the well-known Hazen-

Williams pipe flow formula—an empirical attempt to achieve accuracy over a fairly wide range of flows while using constant values for K and n. This equation takes the form

$$h = KQ^{1.85}....(7)$$

The Hardy Cross method can be used to achieve any desired accuracy within the limit of accuracy of the values for K, a function of the pipe properties. While it represents a vast improvement compared to the uncontrolled trial and error method, this method is quite time-consuming for larger networks. For example, a network including 100 lines may require several weeks of continuous hand calculation to achieve an acceptable order of accuracy.

Linear Approximation

A method of determining successive approximations by the solution of a set of simultaneous linear equations, which describe the hydraulic system approximately for small changes in Q, was developed by McIlroy (2). This method, while achieving significant savings in time compared to the Hardy Cross method, is less straightforward and becomes extremely cumbersome when used with a large number of unknowns.

Network Analyzer

The possibility of using the analogy between electrical networks and hydraulic networks was first discussed by Camp and Hazen (3) who used, in effect, a successive approximation method with a linear electrical circuit. This required changing the resistance of each branch of the circuit several times until the potential drop and current therein corresponded to the known relationship between head loss and flow in each analogous pipe. With the per-

fection by McIlroy (4) of nonlinear resistance elements which have characteristics described by the electrical equivalent of Eq 3, the electrical analog computer became capable of solving hydraulic network problems directly.

Direct-reading network analyzers are now manufactured commercially and several installations are available to engineers in the United States on a fee basis. These analyzers have two disadvantages:

1. The solution of a problem requires the physical assembling of the analogous electrical circuit. For a large network, this operation not only takes considerable time but dictates that a series of solutions for different flow conditions be run rapidly in order to avoid tying up the machine for an extended period. Although changes and additions to the electrical method can be made quite rapidly, the designer often is unable to study each solution thoroughly before trying the next.

2. Currently produced electrical analyzers are often not capable of satisfactory accuracy for problems which permit a close determination of the physical properties of conduits. though the electrical circuit follows Kirchoff's laws precisely (the electrical equivalents of Eq 1 and 2), data given in the literature (4) indicate that the errors in some individual lines often approach 20 per cent. Nonlinear resistance elements, moreover, are produced in finite increments of K values, thus also producing some inherent error. In most water system problems, however, these errors are of secondary significance.

The Digital Computer

In an attempt both to overcome the already noted disadvantages and to avoid the need for travel to an available electrical network analyzer, a program was developed for the solution of network problems by an electronic digital computer or "data processing machine," using the numeric relaxation technique. The particular machine used for this purpose was of the magnetic drum, stored program type which receives its instructions and data from

manipulations, a lengthy step by step "program" of instructions is required to solve a complex problem. This, however, poses no problem as computations can be made at a rate of more than 200,000 per hour. Hence, long and tedious network problems can be solved rapidly with any desired degree of precision.

Fig. 2. Programing Flow Chart for Electronic Digital Computer

In the simplified chart for the solution of hydraulic network problems each calculation step represents many arithmetic manipulations.

punched cards through an automatic card "reading" unit.

In the digital computer, individual instructions and data are stored as magnetized spots located on a revolving drum and actual arithmetic computation takes place in "accumulator" components. Because the machine is basically capable of only the simplest arithmetic

The basic Hardy Cross iterative technique provides the most desirable approach to the network problem for computer solution. This is because it is the easiest of the numeric techniques to program and because it can be modified readily to accelerate convergence. The first application of this digital computer technique was to the water distri-

bution system of the city of Palo Alto, Calif. This system was being studied at the time and was selected because field measurements had been made to determine values of the friction coefficient *C* in the Hazen-Williams pipeflow formula.

The Hazen-Williams formula was chosen as it is the one most commonly employed by water works engineers. In the program developed the flow equation was used in the form:

$$h = K'Q^{1.85}...........(8)$$

with

$$K' = \frac{10.43L}{C^{1.85}D^{4.87}}...(9)$$

TABLE 1

Tabulation of Results for Problem in Fig. 1*

Line	Rate of Flow gpm	K, Function of Pipeline Char- acteristic	Head Loss	
1	600.6	0.000056185	7.76	
2	335.9	0.000120397	5.67	
3	118.2 -	0.001213461	8.28 -	
4	341.2 -	0.000100315	4.86 -	
5	164.6	0.001092115	13.77	
6	325.3 -	0.000446000	19.81 -	
7	605.7	0.000084400	11.84	
8	911.0 -	0.000045600	13.62 -	
9	708.9	0.000039700	7.46	
10	901.0 -	0.000049700	14.55 -	
11	627.0	0.000165000	24.69	

^{*} Computer time required for solution: 1.4 min.

where h is head loss, in feet; Q, rate of flow, in gallons per minute; L, length of pipe, in feet; C, the Hazen-Williams friction coefficient; and D, the diameter of pipe, in inches.

The choice of units is not important but those chosen were felt to be of maximum convenience in the problem at hand. In practice, the values of *C*, *D* and *L* are tabulated for each pipeline

and are fed into the machine on punched cards through the card read-write unit. The machine then calculates and stores the values of K' while the next card is being read.

Calculations of h involve the evaluation of a fractional exponent of Q by numeric techniques. Of the several ways of performing this operation, the one selected requires the evaluation of approximation expressions for the logarithm and exponential. The logarithm of Q is multiplied by 0.85 and the product is evaluated as an exponential to yield the value of $Q^{0.85}$. Although this method may seem cumbersome, the machine can evaluate the power of a typical value of Q in about 0.5 sec.

The network calculations follow the steps in the simplified programming flow chart shown in Fig. 2. Because these calculations involve the performance of an identical set of arithmetic manipulations for each of several lines of a network loop and for each of many loops, their programming can be greatly simplified by using a technique known as "looping." Looping enables the machine to apply a series of calculations to a large set of data by sensing the completion of the series of arithmetic steps and instructing the machine to return to the first step of the series automatically for processing of the new data. Following the completion of a repetitive series of calculations on a particular pipeline, the computer automatically proceeds to the next appropriate line, and the set of calculations is repeated with the new data for that line. Criteria must be established and tests must be made to tell the machine when it has completed the calculations on all of the applicable lines or loops and thus should proceed to the next step shown in the flow chart. These simple tests consume only milliseconds.

In similar fashion, a criterion must be established for stopping the iterative procedure when the desired accuracy has been achieved. This is accomplished by examining the absolute magnitude of the unbalanced head loss, Σh , around each loop at the end of every iteration. When all such "residuals" are less in magnitude than a value the designer has set, the calculations stop and the answers are punched out

Q, in an exterior line affected by the corrections of one loop only, will be the area under the curve beyond the point at which the calculations are stopped. For example, a limit of 10 gpm placed on ΔQ might result in errors as high as 100 gpm in some lines. It should be noted again, however, that any desired accuracy can be achieved by the appropriate setting of the magnitude of the limiting criterion.

Fig. 3. Curves Showing Typical Fluctuation of Flow Rate Corrections for Solutions With Modified and Unmodified Programs

through the read-write unit, ready for automatic listing as shown in Table 1.

Using a limit on Σh as the criterion for completion is more rational than placing a limit on the magnitude of the correction, ΔQ , as it has been found that the relationship between the value of ΔQ and the number of iterations or cycles has a form somewhat like that shown by the solid line in Fig. 3. It can be seen that the error in flow rate,

Minor modifications have been devised for dampening the fluctuations shown in Fig. 3 and speeding convergence to the final answer. When the value of the correction is oscillating violently as revealed by the alternation of the sign of ΔQ , a factor of 0.5 is applied to the magnitude of the correction to be applied. A second shortcut involves ignoring the loops which are close to convergence on alternative

iterations, thus concentrating on those portions of the system furthest out of balance. These modifications tend to produce a ΔQ function change as shown by the dashed line in Fig. 3.

Palo Alto Experience

For the analysis of the Palo Alto water distribution system, a network map was prepared which neglected all 4-in. lines and some 6-in. lines. Some 6- and 8-in. lines were combined with adjacent larger lines by rapid equivalent pipe calculations, resulting in a network containing 38 loops with 103 lines.

The Palo Alto system analyzed includes nine wells with rates of input assumed to be constant, and four aqueduct connections operating at a constant head and a variable rate of input. The latter added three "equivalent loops" to the problem, each with a constant, known residual or unbalanced head. In the program, these residuals were added to the Σh calculations for the appropriate loops in each iteration, causing Σh to converge to zero in the standard manner.

In a large network it is almost impossible to choose initial values of flow (satisfying Eq 1) which are of the correct sign and order of magnitude. With quite poor assumed initial values, the Palo Alto system required 50 min. of machine time, and 37 iterations to reach the limit of 1.0 ft maximum head imbalance. Subsequent solutions of the same system for various hydraulic conditions took an average of about 17 min. of machine time. This was because the starting values of Q were much closer to the final values.

For problems with relatively minor hydraulic changes, the answers from the preceding solution may be used directly as initial values of flow rate. This shortcut is facilitated by having the punchout cards of the same form as the input cards. If pipeline changes or additions are indicated by the answers to a problem, it is usually necessary only to change a few digits on the appropriate output cards and rerun the problem using the modified output deck of cards as the new input deck. In this case, convergence is very rapid and may be obtained in as little as 5 per cent of the time required when starting from scratch.

A total of eight different solutions was performed for the Palo Alto system, requiring about 2\(^3\) hr of machine time and involving a cost of perhaps \$500 including keypunching, machine rental, and engineer's tabulation and checking time.

The procedure developed has thus far been used only on water distribution systems and only with the Hazen-Williams formula for friction losses. This procedure, however, is quite general and, with minor modifications, should be adaptable to any fluid flow network, gas, or liquid. In some cases it is feasible, and certainly more desirable, to use the rational and more accurate Darcy-Weissbach flow equation

$$h = f \frac{L}{D} \frac{V^2}{2g} \dots (12)$$

where f, the friction coefficient, varies with Q. If values of f are known, it is usually sufficiently accurate to set up an empirical relationship between f and Q, applicable over the range of interest. In water works problems a simple relationship of the form $f = kQ^m$ can be evaluated to give very good accuracy. Using this equation, the value of f would be calculated from the value of Q in the previous iteration. This procedure would take little longer than

that employing the Hazen-Williams formula because only one fractional exponent need be evaluated in either case for each head loss calculation.

An important problem in many hydraulic networks with pumped inputs is that of varying the input rate with head as indicated by the pump characteristic curve. This added complication could be handled by the digital computer method, although several program modifications would be required. As the input rate changed, the satisfaction of Eq 1 would have to be restored by making corresponding changes in Q in appropriate lines of the network. A computer of the type used for the Palo Alto study is capable of making linear interpolations automatically between values of the argument of a function which is stored on its magnetic drum in the form of a table of values of that function. It would thus be necessary to store in the computer only a few values of h and Q from each of the known pump characteristic curves.

It should be noted that the modifications and program additions discussed above would consume space on the 2,000 "word" or cell magnetic drum and would thus reduce the capacity of this machine below its present level of a 100-loop network. It may sometimes be desirable to employ larger capacity, though more expensive, computers.

Summary

The method which has been developed for the solution of pipeline net-

work problems with the aid of electronic digital computers uses the basic iterative procedure originally developed by Hardy Cross. This method appears to be more accurate and less costly than the other currently available analytic methods for a large class of network problems. Minor program modifications and additions would enable the digital computer to solve virtually any problem encountered in fluid network flows. One of the principal advantages is the ready availability of such computers in nearly every metropolitan area and university in the United States.

Acknowledgments

The authors are indebted to K. W. Brown, partner, Brown and Caldwell Engineers, and to M. A. Shader, Applied Science Division, International Business Machines Corporation, for valuable assistance and support.

References

- Cross, Hardy. Analysis of Flow in Networks of Conduits or Conductors. Bul. No. 286, Univ. of Illinois Eng. Expt. Sta., Urbana, Ill. (1936).
- McIlroy, Malcolm S. Pipeline Network Flow Analysis Using Ordinary Algebra. Jour. AWWA, 41:422 (May 1949).
- CAMP, THOMAS R., & HAZEN, HAROLD L. Hydraulic Analysis of Water Distribution Systems by Means of an Electric Network Analyzer. J. NEWWA, 48:383 (Dec. 1934).
- McIlroy, Malcolm S. Direct-Reading Electric Analyzer for Pipeline Networks. Jour. AWWA, 42:347 (Apr. 1950)

Meeting Increasing Demands in San Diego County, Calif.

-Paul Beermann and Richard S. Holmgren-

A paper presented on Oct. 24, 1956, at the California Section Meeting, San Diego, Calif., by Paul Beermann, Director, Water Dept., city of San Diego, Calif., and Richard S. Holmgren, Gen. Mgr. & Chief Engr., San Diego County Water Authority, Calif.

CAN Diego County is the southernmost county in California, lying adjacent to the Mexican border and extending from the Pacific Ocean to the desert areas in Imperial County. has a semiarid climate with rainfall ranging from approximately 10 in. along the coast, to as much as 40 in. in the higher altitudes of the Laguna Mountains which parallel the coast approximately 40 miles inland. In the average year, 74 per cent of all rainfall occurs in the December-March period. Of the remaining 26 per cent practically none falls in the June-September The flow in most county period. streams is intermittent and virtually nonexistent during the summer months. Floods have generally occurred every 10 or 11 years, and storage has had to be constructed to span the long drought periods. In spite of the obstacles resulting from an insufficient local water supply, the population in the county has steadily increased to the present total of approximately 800,000 persons. Agriculture in the county has expanded continually so that, in 1955, farmers received for their products an all-time high of \$92,849,830. Among the products were field and truck crops, dairy products, livestock, fruits and nuts, and miscellaneous crops. In dollar value of June 1955 agricultural production, San Diego ranked approximately eighteenth among the 3.068 counties of the United States.

Local Developments

Most of the available local sources of water within San Diego County have been developed. As no extensive underground basins exist in the county. the major local developments are large storage reservoirs constructed on the major streams in the foothills area to impound the runoff from the mountain areas. The stored water is then made available uniformly throughout the year to meet demands. The total of all developed water supplies within the county-including those few supplies obtained from underground basins-is estimated to produce a safe yield of approximately 95,000 acre-ft per year.

The largest developments of local water, in size and number of reservoirs. have been made by the city of San Diego. The city's basic water supply (a safe yield estimated at approximately 46,000 acre-ft per year), is obtained from eight impounding reservoirs which have a combined capacity of 420,900 acre-ft and which are located in the Tijuana, San Diego, and San Dieguito river basins. The only other major systems are two reservoirs of the California Water and Telephone company on the Sweetwater River, and Henshaw Reservoir of the Vista Irrigation District on the San Luis Rev River. These yield approximately acre-ft per year. Limited underground sources are used in the Oceanside-

Carlsbad area, the Fallbrook and the Rainbow districts from the San Luis Rey River valley, and the Rio district in the San Diego River valley.

As far back as 1916, there was a recognition that water would have to be imported from the Colorado River or elsewhere to accommodate future growth. In April 1926 the San Diego city council filed for 112,000 acre-ft per year (155 cfs) for its use from the Colorado River. Had the water right issue been foreseen, a much larger appropriation would undoubtedly have been requested.

During the war years the population grew by leaps and bounds. San Diego city increased from 202,000 in 1940, to more than 362,000 in 1946.

Because of the rapidly falling water levels in San Diego, the US Navy, which has large facilities in the county, began the construction of an aqueduct to be linked to the Metropolitan Water District Colorado River Aqueduct system. The San Diego Aqueduct was still under construction at the end of the war when the Navy decided to halt work. The city of San Diego agreed to pay for the aqueduct if it were completed.

The San Diego County Water Authority was organized under the sponsorship of the city of San Diego by a group of nine agencies engaged in the distribution of water, for the purpose of importing Colorado River water. The number of authority member agencies now total sixteen: four cities, five irrigation districts, one public utility district, and six municipal water districts. The area under the authority's jurisdiction, totaling about 374,000 acres, is shown in Fig. 1.

When the city of San Diego filed for water from the Colorado River, transportation to San Diego County could be arranged either by building facilities over the Laguna Mountains to bring water from Imperial Valley, or through the Metropolitan Water District system. When the US Navy was constructing the San Diego Aqueduct, a decision was made to join the Metropolitan Water District, so that the San Diego rights to Colorado River water were merged with those of the Metropolitan Water District. The authority thus became a constituent area of the Metropolitan Water District on Dec. 17, 1946, and, as such, now receives Colorado River water from the district's San Diego feeder, at a point near the San Luis Rev River, 6 miles south of the San Diego County northern line.

The first Colorado River water reached the San Diego area in 1947. It was hoped that this would meet the demand for some time. With continuing growth, however, it became evident that a second barrel to the aqueduct was necessary. The second barrel of the first aqueduct was completed in October 1954.

The Metropolitan Water District delivers water to the San Diego County Water Authority at the San Luis Rey River. The San Diego County Water Authority then delivers water to the agencies along the line and to the San Vicente Reservoir owned by the city of San Diego. Two branchlines-one extending from the aqueduct at Rainbow to the city of Oceanside, and the other extending from the aqueduct (just before it empties into San Vicente Reservoir) to the Sweetwater Reservoir-are also a part of the system. All member agencies take delivery of water from metered service outlets along the aqueduct and branchlines. The Metropolitan Water District delivers approximately 197 cfs, or 140,000 acre-ft per year, to the authority through its The authority does not treat the water, but does chlorinate the flow in the aqueduct during the summer months to prevent bacterial growth in the pipes. Experience has indicated a decrease in carrying capacity unless the aqueduct is chlorinated during the summer months. Good results have been obtained in maintaining aqueduct capacity by superchlorination for a period of 6 hr, twice a week. Other than the chlorine treatment, the authority delivers raw Colorado River water to its agencies as received from the metropolitan district. The city of San Diego filters all water before delivery to consumers.

Short Supplies

The combined annual water production of the authority agencies for the past 20 years has increased from approximately 30,000 acre-ft of water to approximately 155,000 acre-ft—a 500-per cent increase. In the same period, supply available to agencies within the area increased from approximately 42,000 acre-ft per year (entirely local) to 230,000 acre-ft per year (developed local supply and Colorado River supply imported by the authority). The amount of imported water is estimated to be 140,000 acre-ft per year—the capacity of the metropolitan feeder.

Substantially less than normal rainfall in 9 of the past 11 years has resulted in drought conditions in the San Diego area. The average 1955–56 rainfall was only 4.5 in. or 45 per cent of the 10.8 in. yearly average rainfall of the past 100 years of record. Because of this condition, it has been impossible to replenish the local supplies which were seriously depleted by the military activities in the area during World War II.

When the San Diego Aqueduct was brought to its full capacity in October 1954 by the construction of the so-called second barrel, the deficiency in local supply, resulting from the 10 years of drought conditions, placed a greater demand on the authority system than had been anticipated.

At this period, the Metropolitan Water District, which had offered annexation generally to cities only, changed its policy to permit entry into the district of practically all who desired to annex, with no requirements of having a basic water supply. As a result of this policy, larger annexation of dry lands was made to the San Diego County Water Authority as well as the Metropolitan Water District.

The inadequacy of the aqueduct under this revised policy, simultaneously with the dry years, became apparent early in 1954, and the water authority proceeded, with the aid of an engineering study, to determine the probable ultimate authority area and a general plan of a system needed to supply water efficiently to an enlarged service area.

The results of the study were contained in a 1955 report (1) which stated that the probable ultimate area of the authority might be approximately 820,000 acres, and the water requirements to meet the supplemental needs of this area were estimated at approximately 700,000 acre-ft, or about five times the capacity of Metropolitan Water District's present San Diego feeder.

The study also showed the requirements in the near future, which were even more startling. Ample rainfall and a replenishment of developed local supplies being assumed, it was apparent that the present feeder capacity would be insufficient to meet the supplemental needs of the area by 1959, if the present rate of growth were to continue. Since the report was written, the General Dynamics Corporation has begun the construction of a plant to produce guided missiles and an atomic research laboratory in the city of San Diego. These

additions will create a substantial and rapid increase in population within the has announced a plant to provide for the expansion of Scripps Institution of Oceanography in San Diego. Under the plan engineers and scientists will be trained for placement in the atomic and aeronautical activities of the area. A large number of smaller plants, principally in the electronics field, are also springing up in the area. The developments mentioned indicate that the present rapid growth in population will continue and other substantial water supplies will be needed as soon as they can be constructed.

The only source of water which can be tapped soon enough to meet the needs of the continued rapid growth of the area, is "interim surplus" Colorado River water from Metropolitan Water District's system to which the authority has a right as a constituent member. This right will exist until such time as other areas within the Metropolitan Water District exercise their right to purchase their preferential right, or unless other conditions place limitations on the available main Colorado River water supply. An aqueduct, designed for 500 cfs and terminating at the Lower Otay Reservoir of the city of San Diego, would cost, it is estimated, approximately \$50,000,000. The proposed and the present aqueducts, if water were available, could supply the area with approximately 500,000 acre-ft annually-sufficient to meet the estimated supplemental needs to 1980.

A board of consulting engineers, consisting of Raymond Hill, Carl Rankin, and John S. Longwell, generally concurred in the authority report but questioned the long-term availability of water from the Colorado River to supply this second aqueduct, especially if the remaining Metropolitan Water District area also continues to grow.

State Studies

The state engineer, in a report on the Feather River Project (2), included as part of that project an aqueduct located at el 3,500, extending from San Bernardino south through San Diego County, terminating at Barrett Reservoir—an impounding reservoir of the city of San Diego on Cottonwood Creek (a branch of the Tijuana River).

When the immediate need for construction of a second San Diego aqueduct arose, it was suggested that, inasmuch as water would not be available for 10–15 years at the higher level proposed in the Feather River Project report, the proposed second San Diego aqueduct might be substituted in the project for the higher-level line, and water be temporarily taken by gravity from the available surplus in Metropolitan Water District's Colorado River Aqueduct.

The state legislature meeting in 1956 acted on this proposal and directed the State Division of Water Resources (now the Department of Water Resources) to study means by which Feather River water could best be delivered into San Diego County. The legislature appropriated \$200,000 for the study.

Studies by the department began in July 1956, when money became available, and have been carried forward actively ever since. The authority has made available to the department all the basic computations and profiles produced in its study and has assisted in obtaining additional data. The department is concentrating primarily on the economic features of the plan and is reviewing the location proposed by the authority. No report has yet been released, but it is expected that recommendations as to size and location of a second aqueduct will be available before the end of the year.

Immediate Problems

As of Oct. 31, 1956, the amount of water in surface storage reservoirs of authority member agencies totaled approximately 70,000 acre-ft, or approximately enough water for 3 months, allowing for evaporation losses in the reservoirs. Subsurface supplies have been practically depleted for some time.

If drought conditions continue, the requirements for the water year (Nov. 1, 1956-Oct. 31, 1957), based on estimates of need submitted by each of the member agencies, will not be met by water from available local supplies and supplementary water from the authority system. The needs, which include the storage of a minimum of 50,000 acre-ft for emergency while using all other stored water, will give rise to an estimated deficiency of 24,000 acre-ft outside the city areas. In the following year (1957-1958), the deficiency will increase to 50,000 acre-ft. The city of San Diego's entitlement is adequate to provide for its needs at present.

Studies have been made of temporary emergency works which might be installed to bring in additional water from the Metropolitan Water District's Colorado River Aqueduct in time to meet the expected summer 1957 deficiency. Temporary works have included the installation of pumping units on the existing aqueduct and the placing of an independent emergency pipeline, as inexpensive as possible, with a pumping unit. The first proposals failed to secure approval of the US Reclamation Service which engineered the aqueduct.

The Metropolitan Water District stated it could not provide the emergency line and would not make additional water available if the line were constructed by others. The district has since authorized the preparation of plans and specifications for the upper end of this aqueduct.

Summary

An adequate water supply for San Diego County has been one of the major problems ever since the padres constructed works to divert water from the San Diego River to irrigate the farmlands in the river bottom south of the San Diego de Alcala Mission.

In the 1891–1903 period, drought conditions conflicted with developments, and all reservoirs became dry. Wells were sunk in the exposed reservoir bottoms to meet the needs of the area.

In the present period of drought, supplies have been sufficient to meet needs, but if the drought continues, some county areas will suffer seriously.

The construction of a line from the Metropolitan Water District system, using "interim surplus" Colorado River water, can be completed by the summer of 1959. Water in the interim will be available depending on the growth and water demands of the other Metropolitan Water District agencies and supplemented, it is hoped, by rainfall.

Salt water reclamation, cloud seeding, and other schemes of that type offer no promise of long-term solution. The only practical long-term answer is contained in the monumental California Water Plan discussed in a previous Journal (3).

References

- Report on Water Supply for Probable Future Development in San Diego County Water Authority. San Diego County Water Authority, San Diego, Calif. (1955).
- Program for Financing and Constructing the Feather River Project. . . Dept. of Water Resources, Sacramento, Calif. (1955).
- MORRIS, SAMUEL B., et al. The California Water Plan and Its Administration. Jour. AWWA, 49:89 (Feb. 1957).

Growth and Conversion of Water Systems in San Diego County, Calif.

Linden R. Burzell

A paper presented on Oct. 26, 1956, at the California Section Meeting, San Diego, Calif., by Linden R. Burzell, Mgr., Vista Irrigation Dist., Vista, Calif.

THE growth of Southern California since World War II has been given wide publicity. The chambers of commerce and statisticians are predicting that this growth will continue.

Every community has had to take part in providing homes and jobs in one of the world's greatest migrations of people. The largest percentage increase in population has, reputedly, been in San Diego County. No community has been immune to this growth—from the seashore to the mountains and even into the deserts—the population has increased. Where there has been adequate planning, the growth has been too little planning, the growth has caused confusion.

In San Diego County, the impact on water companies has caused many hardships because essentially all local water sources had been developed before World War II. San Diego County had very little ground water so that no resort could be made to overdrawing of ground water supplies as in some other parts of the state.

Growth of the Shortage

This influx of population had to settle in those communities and districts where there was available water. Much of San Diego County's rolling hills thus became view lots too valuable for agriculture. These areas have

been sold and subdivided so that there are homes where before there were specialty crops such as citrus and avocado.

When the community has changed its character from agricultural to residential and industrial, it has been the least adversely affected because the whole community has changed. All want municipal improvements, and these includes the highest quality water. In many areas the change is slower. People settle on small ranches, chicken farms, and subdivisions. Thus the gradual division of large agricultural holdings brings farmers, irrigators, and plain residents together. There is little or no industry with its higher assessed values; only small tracts mixed into a basically agricultural community. How has this affected water companies?

Most of the northern half of San Diego County was originally developed for agricultural purposes. The early twentieth century farmers built their water systems to supply irrigation water. The water supply came from shallow wells or large surface reservoirs. A typical development provided water at limited pressure for sprinker service and primarily gravity water for furrow irrigation and storage was adequate to regulate irrigation flows only. Distribution system pipeline design was based on 24-hr irrigation, ordered water on schedules, and no pressure at

high points. Mains and transmission facilities were either lightly reinforced concrete pipe or concrete-lined canals. Pumps and pipelines were not duplicated and were not in parallel, so that major repairs to the system meant that all or part of the system would be out of water. The systems were operated manually by an operator called a zanjero.

This system of adequate irrigation at reasonable costs was entirely satisfactory for the farmers. During the 1900–1945 period, communities like Escondido, Fallbrook, Vista, and Rancho Santa Fe expanded and developed into thriving agricultural communities. The avocado and citrus industry grew and the entire water supply was put to use—in fact, utilized beyond same limits, until each of these major water using areas had to turn to the Metropolitan Water District and the San Diego County Water Authority for Colorado River water as a supplementary supply.

Today in San Diego County, the farmer and his irrigator still exist. The organizations that operate the water systems are, for the most part, irrigation districts or mutual water companies, controlled, for the time being, by the irrigators. This is only fair for irrigation water makes up 80–90 per cent of water sales. In Vista, for example, the Vista Irrigation District today sells more water than cities as large as Santa Monica or Beverly Hills, although it has a far smaller population.

Approach to the Problem

Management must operate these systems in the fairest possible way and provide the best service possible to each class of consumer. The economy is such that the basic components of the original systems must be utilized. This philosophy has been practiced throughout Southern California where

engineers and operators have worked out simple, inexpensive, practical schemes to convert important parts of their system from irrigation works to dual purpose systems that can serve domestic consumers quite adequately and safely, but not always up to the best standards of the industry.

One of the greatest savings in capital outlay has probably been the conversion of gravity pipelines to satisfactory domestic water mains. Traditionally, the gravity pipelines in Southern California are made of unreinforced or lightly reinforced concrete pipelines designed to flow partially full. When an irrigator wanted water he would order it from the company. The water turned into the line was diverted over the customer's weir. If the water was not being tapped in such a manner, it would run to the end of the line and be wasted. Gradually, for operational and conservation purposes, regulating reservoirs were added at the end of the pipelines so that domestic flows could be kept flowing at all times for the occasional farmer that wanted domestic water. Where grades permit, today. enterprising operators have closed the end of some gravity lines and raised the standpipes along the pipeline, so that, by using a float valve at the inlet, the pipe can be kept full at all times and consumers can then have service at will with a head on the line up to 8 or 10 ft. Under this type of operation, weirs can be removed and conventional meters installed. In the Escondido Mutual Water Company's system this technique has been further perfected on a 24-in, pipeline by installing float controlled butterfly valves in the pipeline every 2,000 ft or so. In this 8,000-ft section of pipe, all customers are now on demand service at a saving of approximately \$100,000 capital investment. Probably 80 per cent of the

water that flows through the main is for irrigation. The farms along that pipeline could not have afforded to pay \$1,000 each for pressure water.

In the Vista system several miles of this same type of pipe are considered as part of the ultimate system. Well constructed concrete pipe with its inherent low maintenance cost still has a part in the facilities.

The most serious deficiencies in irrigation water systems tending to make impractical or too costly the conversion into suitable domestic water facilities are those dealing with water quality and contamination. As soon as domestic water is provided, the entire system must come up to the standards of the state health department. There are many ways to accomplish the results without building a whole new system.

Conversion of Open Canals

Open canals and flumes present particularly difficult problems. Vista had 12 miles of open, rectangular, gunited box flume that traversed an area that was gradually being covered with small farms and home sites. Caddis flies infested the flume in the summer months and restricted water flows. treatment with chlorine had very little value because of the rapid dissipation in sunlight. A reinforced concrete gunite arch cover was built over the flume at very low cost, thus solving these and other problems. Today, children no longer bathe in the canal, carrying capacity remains at design capacity, and the district can carry a chlorine residual throughout the entire system. The health department has been satisfied, the district is happy and, most important, the taxpayers were saved a major expense.

Another hazard of the irrigation system lies in the large number of open standpipes which need to be covered. Several types of low-cost covers are available which will allow venting, at the same time reducing possibility of contamination.

Additional Sanitary Problems

Open canals and low pressure or gravity pipelines require strict regulations and control where they are constructed near sewers or subsurface septic tank drains. In the Vista area, close cooperation with the county health officials guards against construction by private or public agencies of sewage systems near the facilities. Backflow prevention devices must be installed where consumers' pumps boost water pressures to elevations higher than company hydraulic gradient.

In protecting water quality, lakes must also be taken into account. In San Diego County, the few lakes are important recreational areas. Water companies have become dependent on recreational revenues and people need the recreational facilities. The problem is to make use of the lakes for recreation and yet maintain water quality. Strictly enforced rules are posted at all boat docks and licensed fishermen agree to safeguard the water.

A laboratory control on the water in the lakes is maintained by weekly checks of plankton count and bacteriological samples. The water is treated three times with chlorine to insure adequate control of bacteria. The cost of this control and treatment of all the water is made necessary even in Vista where only 20 per cent of the water is being domestically used.

Consumer Education

In the agricultural communities many farmers and orchardists still feel that the use of chlorine in the quantities necessary to oxidize the organic matter and bacteria in water is actually harmful to their crops. Water often requires 5–7 ppm chlorine to produce a 1-ppm free residual a half a mile below the point of application.

The water consumer has had to be taught that extreme chlorine treatment is required in surface lake waters where contamination exists, and that, as long as filtration is not available, chlorine treatment is the only accepted safeguard.

The consumer may grumble about chlorine tastes and odors but there is a satisfaction in knowing that supply is safe after controlled chlorine treatment.

Education of Operators

Another basic problem with which management was confronted in converting irrigation systems lay in the personnel field. In most systems the operators were trained on the job. They had learned the hard way how many "miners inches" of water they could run without overflowing their reservoirs. They used copper sulfate in the reservoirs two or three times a year when the water looked green, and developed a fine touch in driving a redwood plug into a leaky main. These practical operators became very proficient and, by working long hours, often developed enviable records of efficiency and service along with very low operational costs.

The change to domestic service and improvements in operating techniques has caused almost every water company to seek more engineering and technical assistance. Problems of bacterial control, pipeline design, pressure tanks, cathodic protection, pump design, and similar every day problems now require a greater percentage of engineers and technically trained personnel.

In San Diego County, as in all California, water works personnel are continually improving their education and training. The work of the California Section has been of great help. Oldtime employees, for example, who have completed their Water Works Operators' Courses, have become more proficient in their work. Personnel attitude has a lot to do with the quality of domestic service. Employees must understand that the company policy is changing and that water is now being sold to a new type of consumer demanding more attention and better service.

Known Deficiencies

In San Diego County minimum specifications for water distribution systems have been adopted by the common agreement that these were desirable and necessary. The author believes that all of the major water agencies in San Diego County are meeting or exceeding these specifications on all new work. It must be admitted, however, that in the older portions of irrigation systems, there are places where there is less than 20-psi pressure at the meter. There are still 4-in, water mains more than 1,200 ft in length, and miles of 14-gage steel pipe with only asphaltic coating. Some so-called fire hydrants can discharge but 100 gpm.

No operator is proud of conditions like these. Where the system fulfills its original function and does not serve homes, however, no changes can currently be contemplated. In an area where only one, two or three houses have been built, a new system cannot be afforded. When the whole area is subdivided, however, it has been possible to build a new system with ade-

quate mains for full domestic use and a reserve for fire protection. In the interim period the irrigator still outweighs the domestic user.

New Regulations

New regulations have brought pleasing and varied changes. Service in many systems has been improved by adopting and enforcing fair and equitable new rules for the use of water. Irrigators now understand that domestic use is a higher right than irrigation use. Rates of use and size of services have been adjusted so that the irrigator cannot appropriate water intended for domestic use. Irrigators are strictly scheduled so that each water main is in use throughout the week. In locations having no domestic water pressure, the homeowner is required to install a district-approved booster system with appropriate backflow prevention devices. The domestic user must maintain and operate his own booster plant.

Solving problems like these may appear simple on paper, but to the irrigator and farmer whose economic situation has not been improving with the rest of the economy in recent years, they are real, important, and complex.

Many agricultural communities are still encouraging the development of more agriculture in San Diego County. This is a healthy situation provided that people are kept informed of trends in the cost of water and system improvements necessary with population growth.

To the newcomer any less than the service they had in Los Angeles or San Francisco is not to be tolerated. The newcomers even find it difficult to adjust to the annual assessments that are purely for water company purposes.

They had nothing like that in Los Angeles!

Newcomers expect fire hydrants on every corner. They want water to be served at higher pressures, they do not want to be scheduled for their irrigation, and in most cases, their wants exceed their present ability to pay. The wise water works operator, however, recognizes that growth will continue, and that population 5 or 10 years hence will give them the improved service when they are ready to pay for it.

San Diego County has several agencies charging more than \$100 per acrefoot of water-far too high for practically all agricultural interests. Most San Diego County agencies are now charging more than \$50 per acre-foot. Avocado growers, nurserymen, and most flower growers can bear these costs, but many other agriculturists are forced out. Water prices are set by boards of directors which, in many cases, are still farmer controlled. Water in San Diego County is very valuable and very scarce, and, as many other commodities, is priced to some extent on the supply and demand factor. The demand is high and the supply low, so the price of water is high and apparently going higher.

Public Relations

When and how much to spend on improvements depends on community decisions. The community must naturally be informed of the situation for "silent service is not enough." San Diego County newspapers feature water as a favorite subject. Water boards have the same regular coverage as city councils have in larger cities. In every community faced with water problems, however, more public meetings on

water will have to be held, and consumers will have to be further familiarized with current problems.

Recommendations

Recent patterns of community growth in Southern California have shown that water works planning and engineering should be concerned with the ultimate development of the community.

Present agricultural developments should not be relied on in planning water facilities of future cities.

Many communities must necessarily be permitted to use substandard irrigation systems until the economy can afford improvements. Irrigators and agricultural water users should be allowed lower water rates for their costs should not reflect costs of water treatment made necessary by domestic users.

Although many water companies cannot immediately convert their entire systems to meet state health department and county health department standards, they should proceed on many interim improvements which will improve water quality without greatly increasing their costs.

Personnel performance and training programs must be brought up to date to meet the modern problems of the industry.

When all these steps have been taken, irrigators and domestic users will live side by side while both enjoying reasonable service under good operating techniques and adequate rules and regulations.

Growing Use of Water for Irrigation in Illinois

R. D. Black -

A contribution to the Journal by R. D. Black, Instructor, Dept. of Agricultural Eng., University of Illinois, Urbana, Ill. It is being published here for the facts that it presents and because it emphasizes the point concerning the competition of supplemental irrigation that was made in the article "Water for Our Cities," which appeared in the December 1956 issue of Willing Water.

THE use of water for irrigation in Illinois is increasing sharply, as is evidenced by the rapid rise in the number of acres being irrigated (Fig. 1). Although data gathered by the US Department of Commerce (1) and by state agencies (2) concerning the number of acres irrigated differ markedly, both sets of data show about the same rate of rise in the 1950-57 period, and both curves appear to have a common starting point in 1945. In order to understand how these data can differ so much, one should know something both of the history of irrigation in Illinois and of the methods used in gathering data.

Methods of Recording Growth

Irrigation in Illinois began in the late 1920's and early 1930's with the irrigation of vegetables, flowers, and nursery stock. The early irrigators discovered that additional water could increase the yield, improve the quality of the products produced, expand operation of business within the same physical boundaries, help secure better stands, supply earlier markets and, in general, remove much of the risk of farming. These early systems, however, were also very expensive and, although the results of irrigation looked very promising, the overhead cost more than offset the advantages except for high-value crops. Unlike modern lightweight portable irrigation systems, the original systems were fixed in one The mains and laterals were either buried or carried overhead and could not be moved with ease. entire cost of a system thus had to be charged to the small acreage on which the system was installed. In general, these systems were concentrated around the larger population centers. When the Census of Agriculture (1) first included irrigation as a minor practice in Illinois, a sampling technique was adopted to gather information for what really was a highly concentrated and specialized activity, so that a small sample in a county was assumed to be representative of the entire county. Since the end of the war lightweight alumi num irrigation pipe has become available in quantity and at a price which has made possible the development of the portable irrigation system. It thus became possible to irrigate greater areas, much to the benefit of low-profit crops. Naturally, the use of irrigation systems expanded greatly in Illinois. The Department of Commerce census, however, although indicating that irrigation was on the increase, failed to take complete account of the fact that the character of the practice had changed. In many counties a single operator might irrigate more acreage than all the others combined. If he were missed in the sampling, therefore, the county total was quite wrong. When the total acreage in the state is small, the larger operators each represented a high percentage of the total.

The data which were gathered by state investigators (2) were derived from mail surveys and personal contacts

Fig. 1. Illinois Irrigation Trend

Curve A represents data gathered by the Illinois State Water Survey Division. Curve B represents data gathered by the US Department of Commerce

with the irrigators and county farm advisers.

Inadequacy of Current Methods

In spite of all information gathered, the true extent of irrigation in Illinois is not known exactly. Determination of the existing or potential water use has not been adequate for three reasons:

1. Many systems do not have pump capacities sufficient to maintain desired moisture levels in the root zones of the crops and, consequently, less water than that really needed is used. A farmer, for example, recently reported in a mail survey (3) that he was irrigating 160 acres. His pump capacity, however, could adequately irrigate only 40 acres during extended dry periods. The 160 acres was thus only a potential figure of possible irrigation.

2. In some areas, where surface streams are used as a water supply, the installed irrigation pump capacity of systems along the stream exceeds the flow rate. Roberts (2) points out that Deere Creek near Chicago Heights (a suburb of Chicago) had, during a large part of the growing season, a flow of 4 cfs and an installed pump capacity nearly four times this amount.

3. Many irrigators do not operate their systems properly. They do not maintain proper moisture conditions within the soil profile and, therefore, do not use as much water as might be predicted from estimates based on potential consumptive use. The opposite of this—overirrigation—is not considered to be a significant factor in Illinois. Every irrigator knows that excess water within the soil profile may not only cause damage to the crop, but also will add unnecessary pumping costs to his bill.

Illinois Rainfall

Illinois receives approximately 35 in. of rainfall annually—sufficient to sustain a thriving agriculture throughout most areas but, like all natural occurrences, it is quite variable. The north to south rainfall distribution ranges from 30 in. to 48 in. annually, with

e

d

ie

d

S.

al

e

ne of

1e

at

a

re

of

y

te

ot

lo

e-

1-

of

d

S.

SS

ot

to

n.

s-

rh

es

seasonal variations of 65-149 per cent of the average. Sixty per cent of the annual precipitation usually falls during the growing season (from April through September). A study of weather records in Illinois (4) noted that dry periods of 14 days with not more than 0.25 in, of rainfall in 24 hr. can be expected to occur three times during the growing season. Another source (5) states that a 10day moisture shortage during the critical stage of growth of the corn plant (when the tassel and silk are beginning to shoot) can cause considerable reduction in yield even though the soil moisture level may be adequate during all other stages of growth. Irrigation thus has a definite need to fill.

Pattern of Development

When, after 1945, irrigation in Illinois began to grow by leaps and bounds, many claims were made both for and against it. Most claims were based, at best, on observations and conjectures—not facts. For a period, unreliable dealers offered substandard services to eager and poorly advised farmers, many of whom soon abandoned irrigation. Irrigation in Illinois was thus considered to be a passing fancy that would eventually die out.

Dealers in irrigation equipment are now quite well established, and the farmers and dealers who pioneered irrigation in Illinois have, with the cooperation of many interested agricultural agencies, helped to establish a pattern of procedure upon which irrigation may safely grow.

How great may be the present or future demand for irrigation water can only be estimated. Present irrigation practice for portable irrigation systems demands that a pumping rate of 10 gpm per acre irrigated be provided in order

to cover the entire area before the soil moisture level in any part of the field can drop below 40 per cent of field capacity. The period may be as short as 3 days for very permeable sands, or, during periods of high consumptive use, as long as 10 days for rather heavy clay loam soils. The period of highest use, unfortunately, usually occurs during July or August when surface streams are low. Original demands for irrigations created no great problems as the systems were fortunately situated in areas of moderate to good water resources and did not require large pumping rates or very great quantities of water. Today, irrigation is spreading all over the state. Increased pumpage rates are required and irrigated areas need large quantities of water. It reguires 30,000 gal of water to supply 1 acre-in. If 2 acre-in. will be applied per irrigation, as is usually practiced, a 160-acre irrigated farm may require 9.6 mil gal of water per week during the period of peak use. This represents a pumpage rate of about 960 gpm, 24 hr per day. Irrigators cannot operate 24 hr a day because of the time required to move pipes, between applications. The demand during time of application would therefore, be more nearly 1,200-1,600 gpm.

At the end of the 1951 growing season there were an estimated 9,000 acres irrigated with a total pumping capacity of 25,000 gpm. At the present time, an estimated 16,000 acres are being irrigated and, based partly on 1951 data, there is now an estimated total installed pumpage of 75,000 gpm.

To date the overuse of irrigation water in small areas has only hurt the irrigators themselves. As the use of irrigation spreads, however, all sources of water will be tapped and, eventually, the state legislature will have to recog-

nize the problem and provide adequate laws to govern water distribution. Currently being applied is the ancient law of riparian right which gives owners of lands adjacent to streams or ponds the rights to reasonable use of the water as long as his use does not impair the rights of the other riparian owners. The owner of the land on which water falls may do as he wishes to store or retard its flow onto adjacent lands, and Illinois courts have held that percolating waters are the property of the landowner who may do as he likes with it regardless of his neighbors. This means that the farmer with the biggest pump or the most favorable hydrologic position may render his neighbors' wells useless.

How far the water use for irrigation in Illinois may spread cannot be foretold. It is certain, however, that irrigation has become an established practice, the growth of which may occasionally be retarded by a decline in prices paid to farmers, but the limits of which will eventually be set by the available water supplies. Dealers have for several years advised their customers to maintain and register with the county clerk a record of the acreage, crops, and amounts of water used during each irrigation season in hopes of establishing prior appropriation rights when the legislature acts.

References

- Census of Agriculture, 1954, v. 1. US Bureau of the Census. Washington, D.C. (1956).
- ROBERT, W. J. Irrigation in Illinois. III. State Water Survey, Report of Investigation No. 11, Urbana, III. (1951).
- Jones, B. A. & Davis, Velmar. Mail Surveys. University of Ill. (1956). Unpublished.
- Jones, B. A. Drought Frequencies in Central Illinois. Agricultural Eng. Dept., University of Illinois (1949; unpublished).
- Water, the Yearbook of Agriculture. US Dept. of Agriculture, Washington, D.C. (1955).

Review of Experiences With Microstrainer Installations

George R. Evans-

A paper presented on Nov. 28, 1956, at the Rocky Mountain Section Meeting, Colorado Springs, Colo., by George R. Evans, Vice-Pres., Glenfield & Kennedy Inc., New Rochelle, N.Y.

MICROSTRAINING is an economical method of removing suspended matter from water and other liquids. In applying the process, microstraining may be used as primary filtration ahead of both rapid and slow sand filtration. The final clarification of sewage effluent is another important municipal use, and similar applications are found in industrial water supply and effluent treatment.

Advantages enjoyed by users of microstraining plants are: low initial outlay, small space requirement, low overall hydraulic head loss of a few inches which renders pumping unnecessary in most instances, and automatic operation at a nominal cost with very low maintenance. In Britain and elsewhere the adoption of microstraining has achieved important economies in the expenditure of public funds where conventional filtration plant would otherwise have been employed.

Unit Components

v A nits the

usith

ge, ur-

of hts

US

on,

III.

ail

6).

in ng.

un-

US

.C.

The microstrainer is a revolving drum filter operating under open gravity conditions in a rectangular tank usually constructed of concrete (Fig. 1). The essential components and their relationship are:

 A circular cast-iron endplate with segmental openings built into the concrete or other division wall constructed between the inlet or raw water chamber and the filtered water chamber in the drum

2. At the opposite end of the unit, connected by four tie bars, a solid castiron endplate

3. A hollow drawn steel axle spanning the two endplates and carrying the revolving drum on ball and roller bearings

4. A drum consisting of cast-bronze spiders connected by lifter bars of a similar material, over which the fabric is stretched and fastened down by Monel metal straps

5. The fabric of woven stainless steel wire with apertures as fine as 23 μ (or approximately 0.001 in.)

6. A galvanized steel hopper mounted on and opening into the hollow axle

7. A copper header pipe serving spring loaded jets spanning the width of the drum

8. Adjustable felt-lined sealing bands to close the joints between the rotating drum and the stationary end frames

9. A small electric motor and hydraulic, variable speed drive actuating the drum through a bronze spur pinion.

Processing Water

The raw water enters the inlet chamber under open gravity head; it flows into the revolving drum through the

Fig. 1. Microstraining Unit on Display

The fabric was removed from this large 7½-ft by 5-ft unit.

The upstream endplate is on the right.

TABLE 1

Number of Microstrainers in Use or Under Construction and Their Applications—1946–1956

	Ahead of		Sole Filtration of Supplies		Sewage and		
Period	Slow Sand Filter	Rapid Sand Filter	Public	Industrial	Industrial Wastes	Miscel- laneous	Total
1946-53	10	1		3	3		17
1954-56	10	8	16	9*	7	4	54
Total	20	9	16	12	10	4	71

^{*} One in Canada, one in the United States.

upstream frame at the open end and leaves through the fabric. Suspended solids and plankton remain on the inner surface of the fabric. The drum is submerged to about three-fifths of its depth and, at the top of its travel, is cleansed by wash water jets from the header pipe which strike downward through the fabric, thus washing away the solids from the inside of the drum into the waste hopper and away through the hollow axle.

The quality of the raw water and the necessary speed of rotation of the drum dictate the volume of wash water required under operating conditions. Normally a 5–10-psi pressure is adequate, but occasionally 25–30 psi may

be needed.

Wash water consumption is kept at a minimum by the adjustable stainless steel self-cleaning nozzles. From records of plants which have been in operation on water supplies for some years, net losses due to backwashing have been found to average $1-1\frac{1}{2}$ per cent of total flow.

Overflow facilities are provided between inlet and effluent chamber in order to avoid excess differential pressures if the drum stops.

The action is thus simple and continuous, and machines have been known to work without stoppage of any kind for 2 or 3 years.

The machines are constructed of high-quality corrosion-resisting materials in conformity with the best water works practice. Consequently, operating and maintenance costs are extremely low: \$1.00-\$1.50 per million gallon including power and a charge for wash water.

The differential head between inside and outside of the drum may rise to as much as 9 in. This permissible variation together with the drum speed. which can be adjusted to 100 fpm, provides for proper treatment if the quality of the water deteriorates.

The machines are constructed in four standard sizes: The first is $2\frac{1}{2}$ ft in diameter by 2 ft wide; the second, 5 ft in diameter by 3 ft wide; the third, $7\frac{1}{2}$ ft by 5 ft; and the fourth, 10 ft by 10 ft.

Units cover flow capacities up to 10 mgd depending on the quality of the raw water and the extent of removal of

the suspended solids required.

Multiple-unit installations are used for large flows and to provide flexibility. Any flow capacity can be obtained from the 7½ ft or 10 ft units operating in parallel. Machines are located in individual tanks with inlet and outlet control valves or sluices, and in the largest plants, construction costs are kept down by installing pairs of machines in single tanks.

The efficiency of filtration by microstraining depends upon the formation of a thin mat of intercepted solids on the inner surface of the filtering fabric. The fabric intercepts solids larger than the apertures so that a mat, collecting material smaller than the apertures, is formed, resulting in high filtration efficiencies. The mat is very thin compared with its equivalent formed on a sand bed (schmutzdecke) and is washed off at each rotation of the drum, to be rapidly reformed as the cleaned fabric re-enters the water. The head loss rarely exceeds 6 in., even at the highest flow ratings, and the intercepted solids never, therefore, become so consolidated that they cannot be removed by the low-pressure water jets.

Although microscopic suspended matter of all kinds is filtered out, no appreciable reduction of true colloidal matter or of color in solution can be expected by microstraining.

Filtering Media

Microstraining fabrics are of woven stainless steel wire, and are very tough and flexible. Three sizes are provided: Mark II, Mark I and Mark 0, with apertures of 60, 35, and 23 µ respectively, corresponding roughly to 240, 280, and 380 apertures to the inch. It is because of the high porosity of the microstraining fabrics that high flow ratings, compared with sand filtration, can be used under externely low differential pressures; and therein lie the economies to be achieved by the process.

involves the concept of the filtrability of fluids.

Basis of Design

To obtain the total area of a rapid sand filtration plant, it is usually sufficient to divide the total flow by a filtration rate known to be suitable. From this area can be worked out a convenient size and number of beds. Backwashing of such filters is carried out at intervals, varying from a few hours to a few days. Such intervals are not necessarily related to the condition of the water, and a fixed routine of back-

Fig. 2. Colne Valley Water Company Installation

Three of the six 7½-ft microstrainers which handle a 14-mgd flow.

The fabric is fitted to the drums and pinned to a coarse mesh stainless steel fabric which provides mechanical support and breaks down surface tension which would otherwise make it impossible for low-pressure backwashing arrangements to be used.

Allowable flow ratings through the fabrics vary up to approximately 30 gpm per square foot, depending upon the concentration of solids in raw water. Arbitrary flow ratings cannot, however, be adopted in designing microstraining installations, as the method employed

washing is often established for operational convenience.

There is no such simple rule for calculating the size of microstraining plant. The mat of intercepted solids retained on the fabric is built up and washed off continuously and rapidly, and a machine treating water heavily charged with suspended solids might have the whole of the fabric matted and backwashed three times every minute. Consequently the size of an installation for a given flow depends upon the maximum rate at which the fabric is matted, which again depends upon the

of

id

fi-

a-

111

11-

k-

ut

TS

ot of

k-

a-

11-

ng

ds nd

ly, ilv

ht nd te. on he is

Fig. 3. Pilot Plant at Danvers, Mass.

maximum concentration of solids in the raw water.

The general problem, with representative samples of the water to be filtered is to determine the size and number of machines required and their maximum speed of operation, so that the required flow of water will be passed under a head differential which will avoid a "break-through" of the mat.

An experienced designer might dispense with prolonged sampling, but, where time permits, sampling should cover all seasonal variations of the raw water, especially where very large plants are involved. To obtain the filtrability index, loss-of-head readings are taken on samples of water using the filtrability apparatus (1, 2).

The logarithms of these loss-of-head readings are plotted against volume and

normally show a straight line. A falloff in the line indicates a break-through of the mat. The index is obtained from the slope of the line with a correction for the apparatus.

Charts are then employed to determine the most economical size and number of machines, based on a formula connecting the following factors:
[1] filtrability index; [2] volume of flow; [3] speed of drum and area of fabric; and [4] loss of head across the fabric.

Applications

New applications of the process are continually arising; the principal uses to date are:

1. To act as a sole filtration process for public and industrial supplies

2. To increase filter runs in both slow and rapid sand filter installations under normal conditions, maintaining their output when the supply is heavily loaded by algae or other matter in suspension, and at the same time, increasing the interval between the cleanings of slow sand beds

3. To provide primary filtration prior to infiltration through natural sand formations with benefits similar to those indicated for slow sand filters

4. To provide postfiltration after flocculation and sedimentation tanks in place of rapid sand filters

5. To anticipate work extensions by increasing output of existing plants

TABLE 2
Overall Results, Danvers, Mass., Pilot Plant Experiment

Type of Water	Organ	isms—per mi	liliter	Suspended Matter—ppm			
Type of Water	Max.	Min.	Avg.	Max.	Min.	Avg	
Raw	1,584	72	407	7	3	4	
Microstrained	344	0	85	4	2	2.6	
Reduction percentage	99	51	79	58	0	36	

6. To prevent deposition in the water system; pipes retain their capacity, spray nozzles and showers stay clear

7. To prevent stream pollution by reducing suspended matter content in secondary sewage effluents and industrial wastes

8. To remove materials from process waters rendering both the waste water and the strainer effluent available for reuse

9. To prevent waterborne parasitic diseases. The spread of bilharziasis.

a simple analysis of the uses to which microstrainers have been put since 1946.

In November 1956, 71 plants were in operation or under construction. This number included:

As Sole Method of Filtration:

1. Borough of Preston, England—eight machines, 7½ ft by 5 ft, filtering 18 mgd impounded surface water

2. Auckland City Council, New Zealand—one machine, 7½ ft by 5 ft, filter ing 1.5 mgd (this auxiliary city supply

Fig. 4. Belleville, Ont. 21-ft Pilot Unit

for example, is retarded by screening out the cercarian form of the parasite from irrigation waters.

There is an erroneous impression that the principal use for microstraining is ahead of slow sand filters. While it is true that a greater proportion of the early installations were of that nature, the last few years have seen microstrainers used extensively as a sole filtration process in both public and industrial supplies. Table 1 gives

had suffered an invasion of Ceratium which had rendered it unusable until installation of microstrainers*)

3. Rio de Janeiro, Brazil—two machines, 7½ ft by 5 ft, filtering 5 mgd used for public water supply

4. West Hampshire Water Company, Christchurch, England—three

*In February 1955, 2,480 Ceratium per milliter reduced by 98 per cent to 42 per milliter; unpleasant smell removed and improvement in color evident; wash water consumption 1 per cent of total flow.

machines, 7½ ft by 5 ft, filtering 7 mgd industrial supply for refinery

5. Bonner, Mont.—one machine, 7½ ft by 5 ft, filtering industrial supply from Blackfoot River prior to use in log-barking plant

6. Port Alice, B.C.—two machines, 10 ft by 10 ft, filtering 20 mgd to remove Copepoda.

Ahead of Slow Sand Filters:

1. London—four installations filtering 200 mgd

2. Edinburgh, Scotland—two installations filtering 21 mgd

3. Bristol, England—three installations filtering 20 mgd

TABLE 3
Algal Count, Kempton Park Works

Unit	Algae	Raw Water Count per mil	Strained Water Count per mil
71-ft	Melosira filaments	1,200	175
	Cyclotella	70	15
Mark I	Asterionella	15	
	Fragilaria	15	-
21-ft	Melosira filaments	1,100	80
	Cyclotella	60	_
Mark O	Asterionella	15	-
	Fragilaria	15	

4. Liverpool, England—two installations filtering 20 mgd.

Ahead of Rapid Sand Filters

1. Colne Valley Water Company, Middlesex, England—six machines, $7\frac{1}{2}$ ft by 5 ft, treating 30 mgd to protect chemical and sand filter plant against plankton found in impounding reservoir (Fig. 2)

2. Bridegwater Corporation, Dorset, England—one machine, $7\frac{1}{2}$ ft by 5 ft, filtering 2 mgd impounded river water before pressure filters

Industrial and Sewage Wastes

1. Colthrop Paper Mills, Berkshire, England—three successive installations, each one 7½ ft by 5 ft machine screening felt washings 3 mgd, thus rendering effluent fit for discharge and waste water fit for reuse

2. Luton, England—3 machines, $7\frac{1}{2}$ ft by 5 ft, straining 4 mgd of secondary effluent (partly activated sludge, partly trickling filters).

Recent Operating Data

Microstrainers as sole method of filtration were recently tested in Danvers, Mass., by the State Department of Public Health during July, August, and September 1956.

Danvers, a town of 16,000, situated 20 miles northeast of Boston, obtains its water supply from Middleton Pond. The reservoir, 135 acres in extent and 40 ft deep, is served by a catchment area of 1.33 square miles with an emergency supply from the Emerson Brook and has a capacity of 390 mil gal. Because of the swampy nature of the surrounding area, the water carries 60–80 ppm of color. Algal loads up to 2,000 areal units have been experienced, and the suspended solids, normally 2–4 ppm, may, at times, rise to 10 ppm and more. Bacterial pollution is negligible.

A self-contained pilot plant microstrainer, shown in Fig. 3, was installed for continuous operation. The overall results of 40 observations made during the 3-month period is given in Table 2. At this point, it is safe to comment that, in common with most small-scale hydraulic process studies, a larger machine than the one used would have given better results. This is particularly true of wash water consumption which is usually between 1 and 2 per cent in full scale plants, rather than 1–5 per cent incident to this experiment.

Analyses of the waste water at Danvers showed that it contained 600–20,000 organisms per milliliter, and up to 38 ppm of suspended solids—a corroboration of removals indicated by analysis of raw and microstrained water.

Use of microstraining equipment has received the approval of the Massachusetts State Sanitary Engineer. The plans provide for a future consumption of $4\frac{1}{2}$ mgd to be filtered by three $7\frac{1}{2}$ -ft units using Mark O fabric (23 μ apertures).

In Canada, a similar experiment to the one at Danvers was carried out at Belleville, Ont. The results obtained were so satisfactory that the installation of four $7\frac{1}{2}$ -ft units in front of existing sand filters to handle an 8-mgd demand is under consideration. The $2\frac{1}{2}$ -ft pilot unit is shown in Fig. 4.

The Public Utilities Commission of Brockville, Ont., has approved the purchase and installation of three 7½-ft units as sole method of filtration.

The city of Montreal is considering the purchase of one 10-ft machine to use as a pilot installation on their water supply.

Further examples of the effective removal of algae by the microstraining process are provided by tests carried out by the Metropolitan Water Board, London. In 1948, the board installed a battery of four 73-ft units with Mark I fabric with apertures of 35μ at their Kempton Park works. The plant is normally supplied with water from the Queen Mary Reservoir and has 24 primary rapid sand filters with an average filtration rate of 3.48 gpm per square foot, and twelve slow sand filters with an average filtration rate of 0.098 gpm per square foot. The purpose of the tests was to compare the operating efficiency of slow sand filters using strained water with similar filters supplied by water passing through 24 rapid sand filters. As a result of these tests carried out over 4 years (1948–52), the board decided to install microstrainers in their plants at Lee Bridge and Ashford Common.

In 1956, further tests were carried out to determine the effect of microstraining on the raw water fed to one Kempton Park rapid sand filter. A 21-ft pilot unit with Mark O fabric (apertures 23 µ) was placed in front of the filter. Results of the algal count per milliliter obtained on this unit are given in Table 3, together with those obtained on the already installed 71-ft unit ahead of the slow sand filters. A comparison was also made between the operation of the rapid filters served by the pilot microstraining unit and the remaining beds which were receiving unstrained water. The top half of the sand in the filters receiving strained water was removed and replaced with slow filter sand. It was found that during a heavy algal invasion, a run of 72 hr was obtained on the bed receiving strained water, while the filters receiving unstrained water recorded only a 4-hr run. At the same time, the increase in backwashing necessitated the addition of three men to handle the unstrained water filters.

Conclusions

Among the many clear advantages of using microstrainers are:

1. Low initial costs and small compact layouts: The largest unit, 10 ft by 10 ft, handling 4-12 mgd, requires a chamber about 22 ft by 14 ft overall size.

2. Low-powered driving units (cheap running costs): The 10 ft by 10 ft unit is driven by a 4-hp motor

3. Small head losses (open gravity conditions): The head loss through the fabric is rarely more than 6 in. and the

total loss through an installation, including piping and valves, would be 12–18 in.; the high cost of lifting a supply through the 15 to 18 ft necessary for conventional treatment is thus avoided

4. High flow ratings: 5-30 gpm per square foot can be handled

5. Automatic and continuous cleansing (low wash water consumption): Plants in operation for some years at Bristol, England, have recorded consumption of as low as 1.2 per cent

6. Easy operation and intermittent supervision

7. High quality corrosion-resisting materials; minimum replacements.

Acknowledgments

Grateful acknowledgments are made to the engineers and authorities operating microstraining plants, for permission to include in this paper the information presented.

Similar acknowledgments are made to Glenfield & Kennedy Limited, the manufacturers of the units.

References

- BOUCHER, P. L. A New Measure of the Filtrability of Fluids With Application to Water Engineering. J. Inst. Civ. Engrs. (Br.) 27:415 (1947).
- MATHESON, DELOSS H. Improved Water Filtrability Test. Wtr. & Sew. Wks., 101:517 (Dec. 1954).

Discussion-

E. Windle Taylor

Director of Water Examination, Metropolitan Water Board, London, England.

The London Metropolitan Water Board operates several microstraining installations. A plant at Lee Bridge, installed in July 1955, is capable of dealing with 72 mgd. The filtering efficiency of this plant is shown graphically in Fig. 5, and a summary of some of the results obtained for the first 12-month period is given in Table 4. It will be noted that microstrainers perform most efficiently when the water has a large algal content.

The only difficulties in operations have been in getting rid of wash water and in having local growths block the mesh. The first is overcome by supplying adequate drainage arrangements, and the second by taking individual strainers out in turn and treating the mesh with hypochlorite solution.

Use of microstrainers has brought no improvements either in bacterial or chemical quality of the water, but this is of little importance as reliance is placed on slow sand filters and terminal chlorination.

In a report (1) to the Metropolitan Water Board, it was recently said:

The board's primary filters, operated at rates somewhat over 2 gpm per square foot, serve to remove the greater part of the suspended matter from the stored water and so relieve the load on the secondary filters which are worked at about 0.08 gpm per square foot as compared with less than 0.04 before the installation of these filters. No significant bacteriological improvement is looked for in the primary stage nor is there any great reduction in color. The desired improvement in these characteristics is achieved in the secondary filters, where also the fine particles of suspended matter, almost colloidal in character, and which do not settle out in the storage reservoir, are largely removed. The primary filters are, however, very efficient in removing the small concentrations of ammonia present in river waters such as those of the Thames and Lee. The sand of the filters becomes colonized by nitrogen-oxidizing bacteria which can cope with up to 3 or 4 ppm of ammonia in the short time that the water takes to pass through the bed. These or-

TABLE 4

Monthly Averages and Other Observations of Microstrainers Performance, Lee Bridge, England

		Before Strainers		After Strainers					
Date	Avg Filtra- bility Per- centage	Organisms*	Avg Silt	Avg Filtra- bility Per- centage	Organisms*	Avg Silt			
1955 Jul.	46	moderate mixture: A, B, C, D, E; fair amount: P	moder- ate	60	light mixture: B, D, E	little			
Aug.	53	moderate mixture: C, D, B, G, A, E; few: E, H; little: P		72	light mixture: D, A, E,	little			
Sep.	Sep. 56 moderate mixture: H, G, E, F; few: I, K		little	77	light mixture: E, F; few: I	little			
Oct.	70	fairly light mixture: H, G, B, D, E, F	little	86	few: E, F; occasional: B	very little			
Nov.	79	light mixture: E, F; occasional: I	very little	85	few: F; occasional: I	very little			
Dec.	72	occasional: L; little: P	very little	81	practically no algae	very			
1956 Jan.	75	practically no algae; little:	little	79	practically no algae	very little			
Feb.	74	few: L, I, F	very little	78	occasional: F, L	very little			
Mar.	37	heavy mixture: L, I, F; few: E, M; little: P	moder- ate	59	fairly light mixture: L, I, E, F; few: M	little			
Apr.	59	moderate mixture: L, H, B, I, E, F	little	71	light mixture: L, B; occasional: F	little			
May	70	light mixture: H, B, E, F; few: I; few: N	little	79	occasional: B, F	very little			
Jun.	69	moderate mixture: E, F; few: H, B; little: P	little	77	very light mixture: B, F	very little			

^{*} The following is a key to the letters used in the table:

A-Tribonema; B-Stephanodiscus hantzchii; C-Aphanizomenon; D-Cyclotella; E-colonial Chlorophyceae; F-unicellular Chlorophyceae; G-Melosira; H-Fragilaria; I-Synedra: K-Pediasirum; L-Asterionella; M-Stephanodiscus astraea; N-rotifers; P-organic debris.

Fig. 5. Filtrability Percentage Before and After Microstraining Curve A representing filtrability before the use of microstrainers at Lee Bridge, England, is contrasted with Curve B

which represents filtrability after strainers were installed.

ganisms are inactive at temperatures below about 4°C.

During and after the 1939–45 war, the board had to arrange a program of reconstruction; material for building and engineering was scarce and expensive and it was abundantly necessary to practice economy wherever possible. Experiments that had been performed with a small prototype manufactured many years ago had encouraged a belief that the main work of the primary filters could possibly be done by some similar form of mechanical strainer and an approach was accordingly made to a firm who manufactured such equipment. The problem was ex-

TABLE 5

Summary of 4-year Microstrainer Operations,
Surbiton Works, Surrey, England

Bed Number	No. of Times Cleaned	Amount Filtered per Acre Cleaned mil gal	Avg Rate of Filtration gpm per sq f		
6*	42	100.66	0.071		
7+	55	53.11	0.040		
8†	56	52.53	0.044		

* Strained water. † Unstrained water. plained to them; an indication being given of the order of size of particle which the strainer should retain.

The resulting equipment took the form of a rotating cylindrical strainer 5 ft long and 74 ft in diameter on a horizontal axis, and the cylindrical surface covered with a very finely woven fabric of Monel metal. The strainer was suspended in a specially constructed tank, the level of water in it being arranged that most of the cylinder was submerged. One end of the cylinder was open and served to introduce the subject water to the inside of the strainer. This open end fitted snugly against a plate and, the other end of the cylinder being closed, water had perforce to pass outwards through the meshes of the strainer. Suspended matter in the water adhered to the inside surface of the wire fabric and was removed by external jets of water impinging down on the top of the rotating strainer, the washings being caught in a stationary trough above water level inside the equipment and rejected from a pipe passing through the axis. The strainer was rotated by a variable speed electric motor, the speed of rotation being of the order of 1 to 2 rpm.

The Surbiton Experiment

It was not at first possible to install the microstrainer at a works where a direct comparison with primary filtration could be staged. It was accordingly placed at the Surbiton Works in order to compare the performance on the one hand of a slow sand filter together with the strainer, and on the other, a slow sand bed working on its own. This work was continued over several years and showed that a slow sand filter could generally be operated at a rate conforming with that used in dual filtration if the water were first passed through a microstrainer of the type in question.

At first a wire mesh of 160 by 160 meshes to the inch was used. This was later replaced by one having in one direction 56.5 wires to the inch of 0.0022-in. diameter wire, and in the other, 75 pairs of wires of 0.0024-in, diameter. As the maximum output of the strainer under the worst conditions of algae would be about 1.8 mgd, and as this output would be insufficient to permit the chosen filter bed to be operated at the desired rate, the filtering area of the bed was reduced from nearly an acre to 0.3 acre by laying paving slabs over part of the sand. There were two control beds. Of these, it would have been desirable to work one at the same rate as the one used for the experiment, but for various reasons, this was not practicable. Accordingly, the two control beds were operated similarly to each other at a rate of approximately 0.04 gpm per square foot. The filters were cleaned when the loss of head was 2 ft 6 in, more than that which had obtained at the beginning of the run. The strainer was rotated at such a rate that the loss of head through it was not more than 3 in.

An important incident occurred in June 1949, when the microstrainer was receiving water from Island Barn reservoir. Comparisons were being made between the duration of the filter run of slow sand filter beds receiving the effluent from this plant and others receiving unstrained water. The reservoir phytoplankton at this time consisted almost entirely of *Fragilaria* and *Tribonema*, both of which

had a high proportion of long filaments but the growth could only be regarded as light to moderate and not abnormal in quantity for this highly productive reservoir. Because of increased head losses occurring on the microstrainer, the inside of the drum was inspected and large masses of these filamentous algae were found to be trapped between the straining gauze and the inner supporting wire The micromesh gauze had meshwork. removed a large proportion of the algae but the backflushing jets had been unable to force the material through the supporting wires so that the accumulated masses of algae were impacted between these two layers of gauze. A fair proportion of the material was detached by hosing the inside of the drum, but further removal was not effected until strong hypochlorite solution was poured over the outside of the strainer whilst it was slowly revolved by hand. It was also necessary to leave the strainer rotating slowly in a strongly chlorinated water for several hours followed by normal backflushing before complete removal of the algae was obtained.

Most of the board's reservoirs often have very dense growths of filamentous Xanthophyceae diatoms and Myxophyceae and this kind of trouble would be of immense importance to a works relying solely on microstrainers for primary treatment as it might possibly lead to some interruption in the supply of treated water. The manufacturers have since modified the strainer by removing the inner supporting wire mesh and attaching the micromesh gauze to the outer mesh; so far, no further trouble has been experienced when dealing with waters containing filamentous algae.

The results of 4 years work showed that the strainer assisted filtration in no small degree. Table 5, which is a summary of operations over this period, demonstrates this quite clearly.

Reference

MACKENZIE, E. F. W. Thirty-Fifth Report on the Results of the Bacteriological, Chemical, and Biological Examination of the London Waters for the Years 1947–1952. Metropolitan Water Board, London (1954).

A Survey of Operating Data for Water Works in 1955

Staff Report

AMERICAN WATER WORKS ASSOCIATION

Incorporated
2 Park Avenue, New York 16, N.Y.

Table of Contents

Introduction	555-563
Table 1—Physical Data	564-589
Table 2—Production and Distribution Data	590-615
Table 3—Services, Billing, and Rates	616-641
Table 4—Financial Analysis	642-693
Votes	694-696

© Copyright 1957 by the American Water Works Association, Inc. as a part of the May 1957 Journal AWWA, Vol. 49, No. 5

A Survey of Operating Data for Water Works in 1955

Staff Report

THE results of the Association's sur-I vey of operating data for water works in 1955 are tabulated on the following pages. (An analysis of these data will be published in a forthcoming issue.) The questionnaire form illustrated on pages 556-58 was sent to approximately 1,100 water utilities serving populations of 10,000 or more. A total of 497 utilities returned executed forms in time for inclusion in this tabulation. This is the third such survey conducted by the Association, and the response, both in number of returns and in their scope and completeness, considerably exceeded that attained by the 1945 and 1950 surveys (1, 2).

An attempt was made to word the questions in the survey in such a way that they would apply to the large majority of water utilities. Because of individual differences in methods of record keeping, billing, and accounting, however, the replies were not always in a form best suited for comparison. Accordingly, requests for further information were sent to a large number of utilities. Also, an effort was made in some cases to convert the data furnished into a more usable form. It is hoped that the errors resulting are minor.

The items covered in the tabulation are listed and explained below.

Table 1—Physical Data

Column 1—Community. Communities are listed in alphabetical order for easy reference. The number preceding the name is repeated in the first column on the right-hand page. A given city

will retain the same number in each of the four tables. Data tabulated are for the calendar year 1955, except as noted by superscript numerals following the name of the community; for example, ^{7/85} indicates that the data are for the year beginning July [first] 1955. Full names and other relevant information for some of the utilities and communities served are presented in notes on pages 694–96.

Columns 2 and 3—Population Served. These columns show the best available estimate of retail and wholesale population served, both to the nearest thousand. Where the two were not segregated, the total is tabulated in Col. 2, with an appropriate note in Col. 3.

Column 4—Public Control Agency. For publicly operated utilities, a numerical code indicates whether the water utility executive is responsible to the mayor; council; board of public works; water board or commission; water authority or district; city manager; city commission or commissioner; director of public works; or some combination of these. Privately owned utilities are identified by "pvt."

Columns 5-7—Source of Supply. These figures indicate the percentage of the utility's water supply derived from surface and ground sources, or purchased wholesale. Where percentage figures were lacking, checkmarks (V) indicate the source of supply.

Column 8—Type of Treatment. A numerical code is again used to indicate filtration; softening; chlorination; corrosion control; iron or manganese re-

	NAME OF EACH INCORPORATED COMMUNITY POPULATION SERVED IN 1955 RETAIL (B) or WINDLESALE IN
	Unincorporated Suburban
	Total Population Served
	Ownership
	Private—by (NAME AND ADDRESS OF HOLDING COMPANY, IF ANY)
	□ Public—Water Utility Executive Responsible to: □ Mayor □ Council □ Board of Public Works □ Water Board or Commission
	□ Water Authority or District □ Other
	PHYSICAL DATA
	Type of Supply: Surface water Ground water Both: Surface and Sur
	Neither — supply purchased from:
	Treatment (if only one type of supply used, merely check; if both types used please indicate by S, G, or whether treatment applies to surface water, ground water, or both; if purchased, do not answer)
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer)
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Other, as follows:
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other Storage of Finished Water on Distribution System
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity g
i	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Storage of Finished Water on Distribution System Electric Diesel Other Storage of Finished Water on Distribution System Ground Storage Repumped: Total capacity g
	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity g Ground Storage Repumped: Total capacity g Reservoirs (gravity): Total capacity g
i	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity Ground Storage Repumped: Total capacity Reservoirs (gravity): Total capacity gressure on Distribution System
5.	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity g Ground Storage Repumped: Total capacity g Reservoirs (gravity): Total capacity g Pressure on Distribution System Business District: Maximum Ib/sq in. Minimum Ib/sq in.
5.	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity ground Storage Repumped: Maximum lb/sq in. Minimum lb/sq in. Residential Area: Maximum lb/sq in. Minimum lb/sq in.
5.	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Booster Pumping for High Service: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity g Ground Storage Repumped: Total capacity g Reservoirs (gravity): Total capacity g Pressure on Distribution System Business District: Maximum Ib/sq in. Minimum Ib/sq in. Average Temperature of Distributed Water: January 'F July 'F
5.	whether treatment applies to surface water, ground water, or both; if purchased, do not answer) Filtration Softening Chlorination Corrosion control Iron and/or manganese removal Taste and odor control Fluoridation Other, as follows: Supply to Distribution System: By gravity Pumped Power for Pumping Raw Water to Treatment Plant: Steam Electric Diesel Other Finished Water to Distribution System: Steam Electric Diesel Other Storage of Finished Water on Distribution System Elevated Tanks: Number Total capacity Steam Ground Storage Repumped: Total capacity Steam Reservoirs (gravity): Total capacity Steam Business District: Maximum Bost in Minimum Bost in Min

De Co

11.	Length and Size of Distril	bution Mains (ma	ins within service area which pro	ovide water to customers):						
	miles of 4	-in. main	miles of 12-in. main	miles of 20-in. main						
	miles of 6	-in. main	miles of 14-in. main	miles of 24-in. main						
	miles of 8	-in. main	miles of 16-in. main	miles of 30-in. main						
	miles of 1	0-in. main	miles of 18-in. main	miles of 36-60-in. main						
12.	Total Number of Distribut	ion System Valve	s (NOT including hydrant brane	ches)						
13.	Total Number of Distribut	ion System Hydra	unts (Public fire hydrants on city	r streets)						
			and (I done me nyarama on en)							
	Total Water Produced in		***************************************	gal						
15.	Total Water Distributed in	Year Reported:	Sold:gal; "Fr	ree Service":gal						
16	Customer Record									
10.	Customer Record									
	CLASS OF SERVICE		BER OF ACTIVE SERVICES	FOR METERED SERVICE						
		METERED	NOT METERED	(like abbreviations noted below to indicate period)						
Don	nestic									
	mercial			***************************************						
	strial		**************************************							
	lic (municipal uses,etc.)			**************************************						
1 40				Annual (A); Semiannual (SA);						
	Total			Quarterly (Q); Bimonthly (B); Monthly (M)						
	☐ Less prompt-pay disc ☐ Net ☐ Quantity of water allowed		gal							
18.	Type of Rate Schedule	Type of Rate Schedule								
			rged at: Uniform rate							
	Minimum charge, with	: Water at t	uniform rate	niform rate						
19.	quarterly, calculate charge ratio 7,500 gal = 1,000 c	e for 3,000, 30,0 u ft; include servic	00, etc., cu ft and divide result l	nt if paid promptly; if billing is by 3; if schedule is in gallons, use ning %- or %-in. meter for 1,000 :						
	For 1,000 cu ft-\$	***************************************	For 100,000 cu ft-	5						
	For 10,000 cu ft-\$	***************************************	For 1,000,000 cu ft-	\$						
20.	Percentage of Year's Billi	ing Written off a	Uncollectable: %							
		FIN	ANCIAL DATA							
21.	Income									
	Residential service									
	Commercial service		\$	149						
	Industrial service	emolymbury stronger access								
	Private fire protection se	rvice								
			SUBTOTA	L S						

Fig. 1b. Water Works Data Questionnaire, 1955

* International Company of the Compa
\$
5
3
\$
\$
\$
•
4
3

to the control of the

Fig. 1c. Water Works Data Questionnaire, 1955

moval; taste and odor control; fluoridation; or various combinations of these. Where column 8 is blank, no information was furnished; this was generally the case with purchased supplies, for which treatment information was not requested.

Columns 9-11—Pumping Power. Here the numerical code indicates whether steam, electric, diesel or other types of power are used for pumping—from source to treatment plant, Col. 9; to distribution system, Col. 10; booster on distribution system, Col. 11—or whether a gravity system, requiring no pumping, is in use. Some misunderstanding of the questionnaire is indicated by the fact that a great number of utilities reported both electric pumping and gravity supply to the distribution system. Standby power was not considered in the tabulation.

Columns 12-16-Distribution Storage. The intention here was to assemble data on the storage of finished water on the distribution system, in elevated tanks (Col. 12), ground storage reservoirs from which pumping is required (Col. 13), or "gravity" reservoirs (Col. 14) which are also on the ground but located above the distribution system and thus functioning as elevated storage. Total distribution storage is tabulated in Col. 15, and Col. 16 shows a calculated value for the number of days' average water use which this storage volume represents (based on the annual production data reported in Table 2, Col. 11). Data in Col. 12-16 were tabulated to one decimal place only; values less than 0.05 are recorded as 0.0. Some difficulty was occasioned by the reporting of impounded storage not actually available on the distribution system.

Columns 17-20—Distribution Pressures. Tabulated here are maximum and minimum distribution system pres-

sures reported for business and residential districts.

Columns 21 and 22—Distribution Temperatures. Average January and July temperatures in the distribution system are given in degrees Fahrenheit.

Table 2—Production and Distribution

Column 1—Community. See explanatory comment on Table 1, Col. 1.

Column 2—Transmission Mains. This column shows the total length of pipelines devoted to carrying water from the supply source to the treatment plant or distribution system.

Columns 3-6—Distribution Mains. Tabulated here to the nearest mile are the length of distribution mains 4 in. to 8 in., inclusive (Col. 3), the length of 10-in. and larger mains (Col. 4), and the total mileage in these two categories. (Col. 5). From this total and the retail population data of Table 1, Col. 2, the miles of main per 1,000 retail population were calculated (Col. 6).

Columns 7-10—Valves and Hydrants. The total number of distribution system valves, not including those on hydrant branches, is shown in Col. 7. The total number of public fire hydrants on city streets is tabulated in Col. 9. Columns 8 and 10 show the calculated number of valves and hydrants, respectively, per mile of distribution main reported in Table 2, Col. 5.

Column 11—Production. This column records total annual water production or purchase.

Columns 12-14—Distribution. In a departure from the two previous surveys, a request was made for data on both total annual water sales (Col. 12) and free water service (Col. 13). Approximately 90 utilities reported the entire difference between production and sales as free service, thus implying

that 100 per cent of production was accounted for. When free service was not reported, Col. 13 was left blank, and the amount sold was accepted as total distribution. When free service was reported as "none," or as a numerical value, this was recorded in Col. 13, and the sum of Col. 12 and 13 was entered as total distribution in Col. 14. When it was stated that the amount of free service was not known, this was noted in Col. 13, and Col. 14 was left blank.

Column 15—Per Cent Production Unaccounted for. Where both production and total distribution figures were available, their difference (Col. 11 minus Col. 14) divided by the production figure (and multiplied by 100) yielded a calculated value for the percentage of production unaccounted for. As pointed out above, a number of returns showed all water accounted for, a utopian situation to which all might aspire. It should also be noted that, where use is not fully metered, the percentage unaccounted for is not necessarily all "lost" water.

Columns 16 and 17—Production and Distribution (gallons per capita per day). These calculated values were obtained by dividing production (Col. 11) and total distribution (Col. 14) figures, respectively, by 365 times the total population served (Table 1, Col. 2 plus Col. 3).

Column 18—Loss per Main-Mile. The difference between production and total distribution (Col. 11 minus Col. 14) was divided by 365 times the distribution main mileage (Table 2, Col. 5) to give the calculated line loss per mile in 1,000-gpd units. See comments on Col. 13 and 15.

Table 3—Services, Billing, and Rates

Column 1—Community. See explanatory comment on Table 1, Col. 1.

Column 2—Number of Employees. This column gives the average number of regular employees.

Columns 3-7—Customers. Tabulated here are the number of customer or service accounts classed as residential (Col. 3), commercial (Col. 4), industrial (Col. 5) and public (Col. 6). Where the data reported did not fit this breakdown, appropriate notes appear in the tabulation. The total number of customers is given in Col. 7.

Columns 8 and 9—Services Metered. The figures in Column 8 indicate the percentage of residential services metered. For cities providing no breakdown by type of service, this figure may indicate the percentage of all services metered, as pointed out by a footnote. Unless otherwise noted, commercial and industrial services were reported to be fully metered. Column 9 shows the percentage of public service connections metered.

Column 10—Residential Billing Period. This column indicates whether residential customers are billed on a monthly, bimonthly, quarterly, semi-annual, or annual basis (or some combination of these). No attempt was made to tabulate the wide variety of billing periods for commercial or industrial accounts.

Column 11—Minimum Charge per Month. The minimum residential charge is shown. When the minimum charge is, or includes, a service charge, a §- or ¾-in. meter is assumed. Although minimum charges were reported for various billing periods (sometimes unspecified), careful effort was made to convert these correctly to a monthly basis for comparison.

Column 12—Penalty or Discount. Penalty or discount provisions, or lack of them, in the billing terms are tabulated in this column. For example, "P-15" indicates a penalty of 15 per

4

S

n

of

i.

le

(-

e

t-

·e

9

0-

37

a

15

of

5-

19

al

11

e.

d

t.

1-

e.

er

cent of the bill for late payment, while "D-\$0.50" indicates a discount of 50 cents from the amount billed for prompt payment. "N" indicates that the amount shown is due without such provisions.

Column 13—Allowance on Minimum. This column shows the monthly quantity of water allowed for the minimum charge in Col. 11. If the quantity allowed is shown as 0 in the table, the charge in Col. 11 is a service charge. Where all or most domestic users are on a flat rate, a footnote indicates that the quantity allowed is unlimited. Blank spaces in this column indicate that no information was furnished.

Columns 14–17—Monthly Rates. These columns present a tabulation of monthly metered rates for the four quantities shown. Where rates for a billing period other than monthly were submitted, they were converted to a monthly basis if a rate schedule was furnished. For quarterly billing, for example, charges were calculated for 3,000, 30,000, etc., cu ft per quarter, then divided by 3. Rates in terms of gallons were converted to cubic feet on the basis of the commonly used equation, 7,500 gal = 1,000 cu ft.

When service or meter charges were reported, the following meter sizes were assumed:

Monthly Quantity cu ft	Meter Size in.
1,000	8. 9
10,000	1
100,000	3
1.000,000	8

The service charge was then added to the quantity rate to arrive at the total amount billed. Where it was reported that no customers were served in the highest bracket, the space was left blank. In all cases, the rates tabulated were intended to be the charges for prompt payment, taking advantage of discounts offered and avoiding penalties for late payment.

Columns 18 and 19—Public Fire Service Charge. Annual charges by the water utility to the local governmental unit for public fire protection are shown, per hydrant (Col. 18) and per inch-mile of main (Col. 19). Special situations are described by appropriate footnotes. Where it was reported that no such charge was made, "none" appears in the tabulation. Blank spaces indicate that no information was furnished.

Column 20—Billing Written Off. The percentage of the year's billing written off as uncollectible is given. When it was stated simply that the amount was less than 1 per cent, the symbol "< 1" so indicates. If the amount reported was less than 0.005 per cent, the figure 0.00 was tabulated. If the return stated that no such loss was written off, "none" was entered in this column. Some of the data represent actual experience, while others may be considered a reserve against this type of loss.

Table 4—Financial Analysis

Because of the many items included in this table, it was necessary to extend it across four pages, instead of two as in Tables 1–3. The first two pages are labeled "Part I"; the last two, which follow immediately, are labeled "Part II." The columns are numbered continuously throughout the four pages.

Column 1—Community. See explanatory comment on Table 1, Col. 1.

Columns 2-11—Revenue. These figures indicate the amount of income received from residential (Col. 2), commercial (Col. 3), and industrial (Col. 4) accounts, and from private fire protection service (Col. 5); income from these four sources is totaled in Col. 6. Also tabulated is the revenue received

from public or municipal services, if actually collected (Col. 7); from public fire protection (such as a hydrant charge), if actually collected (Col. 8); and from all miscellaneous services or activities (Col. 9). Where a complete breakdown of income was not furnished, the tabulation provides as much information as was available. revenue from all sources is shown in Col. 10, and this figure was divided by the retail population served (Table 1. Col. 2) to yield calculated figures for total revenue per capita (Col. 11). As appreciable income is derived by a number of utilities from wholesale accounts and from sources other than water sales, the per capita figures are subject to a good deal of interpretation.

Column 12—Free Service Value. The amounts estimated for the dollar value of services not billed, such as public buildings and public fire protection, are shown here. If reported as none, this was indicated in the column; where no information was furnished,

the space was left blank. Columns 13-18-Expenses. Utility operating expenses were tabulated in Col. 13, and maintenance expenses in Col. 14. Where the two were not separated, the combined cost was shown as operating expense, with an appropriate note in Col. 14. Column 15, listing taxes, presented genuine problems in that many publicly owned utilities transfer money to city funds in lieu of taxes. Some of these transactions are lump-sum payments acknowledged to be simply transfers, while others are determined according to regulatory practices and are considered to be local taxes. Wherever it seemed warranted. such local payments by publicly owned utilities were omitted from Col. 15 and tabulated in Col. 37 as a disposition of earnings. Where social security or

similar retirement costs were reported as taxes, they were included instead with operating costs. Miscellaneous expenses (Col. 16) were usually considered to be nonoperating; general and administrative costs were considered to be operating expenses. (The survey questionnaire form indicated that capital additions and depreciation were not to be considered as expenses but were to be shown under disposition of earnings.) The figure in Col. 17 shows the total of expenses in the four preceding columns, and this figure was divided by the retail population (Table 1. Col. 2) to arrive at the calculated total expense per capita (Col. 18).

Column 19—Tax Paid. The amount of tax paid (Col. 15), expressed as a percentage of total revenue (Col. 10), is given here. Calculated values less than 0.05 are shown as 0.0 in the tabulation.

Columns 20–24—Source of Funds for Capital Additions. These columns indicate the various sources of financing for major capital additions, such as prior earnings and reserves (Col. 20), general-obligation bonds (Col. 21), revenue bonds (Col. 22), and bank or similar loans (Col. 23). Column 24 shows the total funds from these sources. For utilities indicating no financing, "none" is shown in Col. 24; blank spaces in this column indicate that no information was furnished.

Columns 25 and 26—Depreciated Book Value. These figures show total depreciated book value to the nearest thousand dollars (Col. 25) and corresponding per capita values to the nearest dollar (Col. 26), calculated from the retail population data in Table 1, Col. 2. Book values which are undepreciated are identified by a footnote.

Columns 27-29—Depreciation Reserve Funds, Surplus in Reserve, and Funded Debt. These columns indicate, to the nearest thousand dollars, the size of reserve funds (Col. 27 and 28) and the amount of funded debt (Col. 29). When depreciation reserves were reported to be an accounting record only, this was noted. Where either of these funds, or the funded debt, was reported to be nothing, "none" appears in the tabulation. Blank spaces indicate a lack of information in the survey return.

Column 30—Operating Ratio. Tabulated here are calculated values of the operating ratio, the proportion of total expense (Col. 17) to total revenue (Col. 10), expressed in the form 1:x, where expense = 1 and revenue = x = Col. 10 \div Col. 17.

Column 31—Earnings. The difference between total revenue (Col. 10) and total expense (Col. 17) is shown as "earnings" in this column.

Columns 32-39-Disposition of Earnings. The wide variety in accounting and reporting methods made the interpretation of data for these columns difficult. Interest paid on bonds and funded debt is shown in Col. 32: amounts set aside for debt retirement (into sinking funds, for example) appear in Col. 33; the amount of bonds retired appears in Col. 35. The chance of duplication in these three columns is apparent, as well as the possibility that some of the money expended came from surplus or sinking funds rather than current earnings. Similarly, direct expenditures for capital additions from current earnings (tabulated in Col. 34) were sometimes lumped with capital expenditures from prior earnings (Col. 20). Dividends to stockholders of privately owned utilities are shown in Col. 36. Amounts transferred to city general funds are shown in Col. 37; also included in this column, with appropriate annotations, are "local taxes" paid by publicly owned utilities, payments to regional water districts, sewer system allocations, and outlays for purposes not otherwise itemized. Column 38 indicates depreciation charged, with footnotes to distinguish between amounts actually set aside and those representing accounting records only. Column 39 shows the amount added to surplus or reserve after other commitments have been met. Negative figures here indicate that sometimes it was necessary to dip into the surplus remaining from previous years.

The financial section of the questionnaire was set up so that, if the data were reported as requested, the total disposition of earnings (Col. 32–39) would equal the difference between total revenue (Col. 10) and total expenses (Col. 17), this being the figure shown as "earnings" in Col. 31. In spite of the problems and pitfalls mentioned above, these figures balance for approximately three-fourths of the utilities reporting.

Acknowledgment

The tabulation of the survey data was carried out under the direction of Harris F. Seidel, superintendent of water and sewage treatment, Ames, Iowa, with the collaboration of E. Robert Baumann, associate professor of civil engineering, and Paul E. Morgan, assistant professor of civil engineering, Iowa State College, Ames, Iowa.

References

- A Survey of Operating Data for Water Works in 1945. Jour. AWWA, 40:167 (Feb. 1948).
- A Survey of Operating Data for Water Works in 1950. Jour. AWWA, 45:583 (Jun. 1953).

	1	2	3	4	5	6	7	8
		Population	Population Served			ce of S		
	Community*	Retail	Wholesale	Public Control Agency:	S	G	P	Type of Treatment
1.	Aberdeen, S.D.	23,000		7	100			1-3, 6, 7
	Adrian, Mich. 7/88	20,000		4	100			1-4, 6
	Akron, Ohio	297,000	1,000	8	100			1, 3-6
4.	Albany, N.Y.	135,000		1	V	V		1, 3, 5, 6
5.	Albemarle, N.C.7/56	15,000		1, 2	100			1, 3, 4, 7
6.	Albert Lea, Minn.	16,000		6		100		3, 4, 7
	Albion, Mich.	13,000		1, 2		100		none
	Albuquerque, N.M.7/08	170,000		6		100		3
	Alexandria, La. 5/88	54,000		7		100		3
10.	Albambra, Calif.7/88	55,000		4		100		none
11.	Allen Park, Mich.	35,000		4			100	none
12.	Alliance, Ohio	31,000		1	100			1-4, 6
13.	Amarillo, Tex. 10/55	130,000		6		100		3
14.	Americus, Ga.	12,000		1, 2		100		4
15.	Ames, Iowa	23,000		6		100		1-5
16.	Anaheim, Calif.	45,000		2		100		
17.	Annapolis, Md.7/55	27,000		4		100		1-7
18.	Anniston, Ala.4/88	49,000	13,000	4		100		3
19,	Ansonia, Conn.	18,000		pvt.	100			3
20.	Antioch, Calif. 7/88	14,000		1-3	V		V	1, 3, 6, 7
	Appleton, Wis.	40,000	1,000	4	100			1-4, 6, 7
	Arcadia, Calif. 7/86	35,000		6		100		none
23.	Arlington, Va.7/88	163,000	37,000	9			100	
24.	Asheville, N.C.7/88	100,000	+	2	100			3, 4
25.	Ashland, Ohio	16,000		1	50	50		2-4, 6
26.	Athol, Mass.	12,000		4	100			1-3, 6, 7
27.	Atlanta, Ga.	512,000	28,000	4	100			1, 3, 4, 6
28.	Atlantic City, N.J.	*90,000		8	58	42		3
	Auburn, Me.	19,000		5	100			3
30.	Auburn, N.Y.7/88	48,000		6	100			1, 3
31.	Augusta, Ga.	150,000		1, 2, 4	100			1, 3, 7
	Augusta, Me.	22,000		5	100			3, 4
	Austin, Minn.3/88	24,000		4		100		3, 4
	Austin, Tex. 10/55	193,000	7,000	6	100			1-4
35.	Baltimore, Md.	1,300,000		8	100			1, 3-5, 7
36.	Bangor, Me.	32,000		4	100			1, 3
	Barberton, Ohio	35,000			94	6		1, 3-6
38.	Batavia, N.Y.	18,000		4	100			1-4, 6
	Baton Rouge, La.	171,000		pvt.		100		3
40.	Bay City, Mich. 7/68	60,000	4,000	2	100			1-3, 6, 7

^{*}See notes beginning on p. 694,
† Included in preceding column.
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt,—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping F	ower#		Distri	ibution Sto	rage¶		Distr. Pressure—psi				Di	str.
	То	To Sys-	Posstar	El	G-P	G-G	Tota	al	Bus. Dist.		Res.	Dist.	Jan.	
	Plant	tem	Booster		991	il gal		days	Max.	Min.	Max.	Min.	Jan.	Jul.
1	2	2	2	0.5	3.0		3.5	1.4	60	58	60	58	48	68
2	5	2		1.5	1.5	1	3.0	0.8	80	70	80	40	40	69
3	2, 5	1, 2	2	13.8	22.6	1	36.4	0.9	100	75	150	30	43	78
4		5				210.0	210.0	8.6	95	90	75	35	40	60
5	2	2		0.6	1.5		2.1	1.0	95	65	100	40	48	82
6	2	2, 5	2	1.0	1.5	1.5	4.0	2.7	47	42	47	35	52	54
7		2		0.1			0.1	0.0	65	50	65	45		
8	2	1, 2	2			31.0	31.0	1.3	95	80	100	50	72	72
9		2			3.2		3.2	0.7	65	60	65	55	72	72
10		2	2	0.1	27.0	5.0	32.1	3.9	90	40	125	40	68	68
11	2	2	2						60	40	50	30		
12	2	2	2	3.3			3.3	0.6	85	50	120	30	40	70
13	2	2, 3	2, 3	3.5	25.0	1	28.5	1.4	72	65	72	10	62	62
14	2	2		0.3	0.4		0.7		75	40	50	35	52	52
15	2	2	2	0.5	3.2		3.7	2.2	75	55	75	40	48	57
16		2, 4			3.0		3.0	0.5	65	50	65	50	65	67
17	2	2		0.5	1.8	1	2.3	1.4	54	48	54	48		
18		2	2			8.6	8.6	1.1	100	90	120	35		
19		2, 5	2						103		103		52	76
20	2	5	2	0.3		2.0	2.3	1.0	45		45		40	60
21	2	2		1.0	2.0		3.0	0.6	60	50	50	40	33	78
22		2	2			18.5	18.5	1.7	105	40	150	40		
23		2, 3	2	1.5	15.0		16.5	1.0	110	35	110	35		
24	3	3, 5	2			16.1			200	60	200	60		
25	2	2		2.0					90	75	100	10	40	70
26	5	2, 5		0.3	1.5	1.5	3.3	3.3	140	100	140	30	40	50
27	1	1	2	4.5	10.0	9.0	23.5	0.4	75	30	125	50	38	85
28	5	2		1.1			1.1	0.1	50	40	50	40	58	74
29		2		0.3		7.5	7.8	3.9	140	25	150	10	45	60
30	2	2		13.5			13.5	1.5	75		130	40	34	75
31	4	2, 5	2	1.1		8.0	9.1		75	57	75	57		
32	2, 5	2	2	0.9		16.0	16.9	5.3	140	100	100	20	35	60
33		1, 2	2	1.5	3.0	0.1	4.6	1.4	75	60	75	50	45	52
34	2	2	2	21.5	8.0		29.5	0.9	110	70	110	35	58	78
35	5	5	2	11.8		532.4	544.2	2.8	85	50	250	25	39	71
36	2	2		3.8			3.8	1.0	120	70	70	20	37	77
37	5	2		4.0			4.0	0.8	95	65	95	30	39	74
38	2	2		1.5	0.6		2.1	1.1	70	65	70	65	40	76
39		2		2.4	3.8		6.2	0.4	65	50	65	50	60	70
40	2	2		0.1			0.1	0.0	55	40	55	40	35	73

[§] Key: S—surface water; G—ground water; P—purchased water; v percentage unreported.

|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated: G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Populati	on Served		Source of Supply —per cent§			
Community*	Retail	Wholesale	Public Control Agency;	s	G	P	Type of Treatment!
41. Beaver Falls, Pa.	65,000		5	100	-		1, 3, 5, 6
42. Beckley, W.Va.	50,000		pvt.	100			1, 3, 4, 6
43. Bellaire, Ohio	13,000		2	33	67		1, 3, 4, 6
44. Bellaire, Tex. 10/85	22,000		2		100		3.
45. Bellingham, Wash.	39,000		1, 4	100			3
46. Belmont, Mass.	30,000		4			100	
47. Bemidji, Minn.	10,000		2		100		
48. Benton Harbor, Mich.	22,000		6	100			1, 3, 7
49. Berlin, N.H.	18,000		4	V	V		1
50. Beverly Hills, Calif. 7/66	43,000		2	V	V	V	1-6
51. Bexley, Ohio11/55	14,000		1, 2			100	
52. Billings, Mont.	60,000		4	100		-	1, 3, 4, 6
53. Binghamton, N.Y.	95,000		7	100			1, 3, 6
54. Birmingham, Ala.	510,000		4	100			1, 3-5
55. Birmingham, Mich. 7/88	23,000		6		50	50	
56. Bismarck, N.D. 7/86	23,000		7	100			1-7
57. Bloomfield, N.J.	52,000		2, 3			100	
58. Bloomington, Ill. 6/88	38,000		6	100			1-3, 6
59. Boone, Iowa	13,000		1, 2		100		3
60. Boston, Mass.	710,000		7			100	4
61. Boulder, Colo.	32,000		2	100			3
62. Braddock, Pa.	17,000		2				1
63. Bradenton, Fla.	14,000		2	100			1, 3, 4, 6
64. Bradford, Pa.	20,000		5	85	15		3
65. Brawley, Calif. 7/88	14,000		2			100	1
66. Bremerton, Wash.	45,000	+	7	70	30		4
67. Bridgeport, Conn.	268,000		pvt.	85	15		3, 4
68. Bristol, Tenn. 6/55	20,000		7	100			1, 3-7
69. Bristol, Va.	18,000	3,000	3	100			1, 3, 4, 6, 7
70. Brockton, Mass.	65,000	15,000	4	100			3
71. Brookline, Mass.	58,000		4			100	
72. Brownsville, Tex.	50,000		6	90	10		1, 3, 6
73. Buffalo, N.Y.	585,000		1, 3	100			1, 3, 6, 7
74. Burbank, Calif. 7/88	92,000		6	10	90		
75. Burlington, Iowa	31,000	1,000	2	100			1, 3, 6
76. Burlington, N.J.	14,000		4		100		1, 3, 6
77. Burlington, N.C. 7/85	30,000	1,000	6	100			1, 3–6
78. Butte, Mont.	56,000	-1	pvt.	100			3, 4, 6
79. Cambridge, Ohio	18,000		1, 2	100			1-3, 6
80. Canton, Ohio	136,000		1		100		3, 5, 7

^{*} See notes beginning on p. 694,
† Included in preceding column.
† Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distr	ibution Sto	orage¶		Dis	tr. Pre	ssure-	-psi	Di Temp	str.
	То	То	 	EI	G-P	G-G	Tota	al	Bus.	Dist.	Res.	Dist.	Jan.	
	Plant	Sys- tem	Booster		20	nil gal		days	Max.	Min.	Max.	Min.	Jan.	Jul
41	2, 4	2, 3	2	6.7		5.0	11.7	1.7	120	50	120	30		
42	2	2	2	2.5			2.5	1.1	80	70	100	40	35	70
43	2	2	2	0.3		1.5	1.8	0.8	68		45		41	77
14	2	2	2	0.8	1.5		2.3	0.9	65	60	65	40	60	60
45	5	5							100	90	100	40	47	66
46											160	30		
47		2, 5		0.1			0.1		65	50	65	50	42	48
18	2	2		0.6			0.6	0.2	75	70	70	50	32	75
19	5	5	2	0.2		45.0	45.2		120	75	165	50	33	63
50	2	2	2			27.0	27.0	3.1	140	45	140	45	68	72
51		2		2.0		0.4	12.0			100	120	20		
52	2	2	2	3.8		9.1	12.9	1.4	75	60	120	30	1 22	
53	2	2	2	0.3		10.7	11.0	1.1	87	75 75	95 175	20 30	33	81
54 55	1, 2	2 2	2	0.6		13.6	14.2 1.3	0.3	85	13	60	42	45 50	52
									1					
56	2	2	2	0.5		7.5	8.0	3.7	62	48	58	40	34	70
57		5	1 2	00	150		150	2.3	110	90	80	65	2.4	me
58	2	2	2	0.8	15.0		15.8	3.2	60	50	80 70	40	34 45	78
59 60	5	2 5	2	1.0	3.0		4.0	2.5	90	30	90	30	35	75
		-				33.7	33.7		140	100	200	55	35	
61 62	2	5 2	2			15.4	15.4	8.1	120	100	110	33	33	53
63	2	2	2	0.7	1.0	12.4	1.7	1.1	55	40	55	40	60	70
64	2	5	3	3.5	1.0		1.7	1.4	90	80	95	20	40	60
65	5	2	3	0.3			0.3	0.1	60	45	60	45	60	75
66		2	2	0.5	2.8	15.0	18.3	2.6	80	50	80	30		
67	2	2	2, 3	0.0	2.0	10.0	10.0	2.0	100	70	100	25	37	6
68	2	2	2,0			3.0	3.0	1.4	85	80	85	20	43	45
69	2	2	2			3.0	3.0	1.3	80	55	100	15	44	70
70	2, 3	2, 3	2	0.1		8.0	8.1		85	85				
71		5	2, 3	1.7		11.5	13.2	2.4	90	60	115	40	35	70
72	2	2	2	1.0	3.3		4.3	0.7	80	50	80	50	68	8
73	2	1, 2		6.0			6.0	0.0					33	71
74		2	2						165	40	165	40	61	6.
75	2	2	2	0.6		2.4	3.0	0.7	110	90	110	20	36	7
76	2	2		0.7	0.3		1.0	0.5	52	48	52	48	55	5
77	2	2		1.7	6.0		7.7	1.7	70	50	95	45	45	7
78	1, 2	2	2						110	105	130	30	32	6
79	2	1, 2	2			2.5	2.5	0.9	112	65	108	35	48	70
80	2	2	2			15.0	15.0	0.7	75	72	90	30	55	5

[§] Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Populatio	n Served		Source	e of Super cent	pply	
Community*			Public Control Agency‡		G	P	Type of Treatment
	Retail	Wholesale		S	G	P	
81. Cape Girardeau, Mo.	24,000		pvt.	100			1, 3, 7
82. Carthage, Mo.7/55	12,000		3		100		1-3, 7
83. Cedar Falls, Iowa	17,000		1, 2		100		3
84. Cedar Rapids, Iowa	80,000		2	100			1-4, 6, 7
85. Chambersburg, Pa.	20,000		5	100			3, 4
86. Champaign, Ill.*	77,000		pvt.	100	100		1, 3, 5
87. Charleroi, Pa.	46,000		5	100			1, 3, 5, 6
88. Charleston, S.C.	145,000		4	100			1, 3, 4
89. Charleston, W.Va.	185,000		pvt.	100			1, 3, 4, 6,
90. Charlotte, N.C. ^{7/55}	180,000		2	100			1, 3, 4. 6,
91. Chicago, Ill.	4,428,000	*†	1, 2	100			*1, 3, 6
92. Clarksburg, W.Va.	43,000		4	100			1, 3, 4, 6,
93. Clarksdale, Miss. 10/85	21,000		4		100		5
94. Cleburne, Tex. 10/56	20,000		6		100		3
95. Cleveland, Ohio	1,280,000	180,000	1	100			1, 3, 7
96. Clinton, Iowa	28,000		pvt.		100		3
97. Cobb County, Ga.		75,000	5	100			1, 3, 6, 7
98. Coffeyville, Kan.	22,000		1, 2	100			1-4, 6, 7
99. Collinsville, Ill.	17,000		1	000	100		4.2
100. Colorado Spgs., Colo.	75,000	15,000	6	88	12		1, 3
101. Columbia, Mo. 10/85	40,000		6		100		3
102. Columbia, S.C. 7/88	106,000		2	100			1, 3, 4
103. Columbia, Tenn. 7/88	19,000		3	100			1, 3, 6
104. Columbus, Miss.	19,000		3	100			1, 3, 4, 6,
105. Concord, N.H.	28,000		6	100			3, 7
106. Corpus Christi, Tex.8/88	180,000		1, 2	100			1-3, 7
107. Coshocton, Ohio	16,000		1, 2		100		2, 3
108. Council Bluffs, Iowa	50,000		4	100			1-3, 6
109. Covington, Ky.	200,000	1	6	100			1, 3-6
110. Crawfordsville, Ind.	14,000		pvt.		100		1, 3, 5
111. Cudahy, Wis.	16,000		4	100			1, 3, 6
112. Cuyahoga Falls, Ohio	41,000	6,000			100		1-5
113. Dallas, Tex. 10/55	585,000	37,000		95	5		1-4, 6
114. Danville, Va.	50,000		6	100	100		1, 3, 4, 6,
115. Dayton, Ohio	320,000		6		100		1-3
116. Dearborn, Mich. 7/86	130,000		1, 2			100	1
117. Decatur, Ala. 5/85	26,000	2,000		100			1, 3
118. De Kalb, Ill. 5/85	17,000		4		100		none
119. De Kalb County, Ga.	160,000		9	100			1, 3, 6,
120. Denison, Tex. 3/55	21,000	4,000	2	100			1-3, 6

^{*}See notes beginning on p. 694.
† Included in preceding column.
† Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distri	bution Stor	rage¶		Dist	tr. Pres	sure-	psi	Dis Temp	str.
	То	То		El	G-P	G-G	Tota	1	Bus.	Dist.	Res.	Dist.	Jan.	Ju
	Plant	Sys- tem	Booster		792	il gal		days	Max.	Min.	Max.	Min.	J 44.11.	34
81	2	2	2		I	3.8	3.8	2.3	65	50	65	50	50	7
82	2	2, 5	-	1.5			1.5	1.6	80	50	80	50	56	7
83		2		0.8			0.8	0.5					52	5
84	2	2	2	0.3		8.0	8.3	0.8	80	65	80	15	33	8
85	1, 2	5		0.1		2.2	2.3	0.6	85	40	85	40		
86	2	2, 3	2	1.0	1.0	1	2.0	0.3	65	50	65	35	56	5
87	2	2, 5	2	3.5		10.0	13.5	2.3	140	110	90	60	69	7
88	1-3	1-3	2	3.5	3.0		6.5	0.4	45	32	100	32	40	8
89	2	2	2	12.6		2.1	14.7	0.7					38	8
90	2	2		3.2	11.8		15.0	0.8	120	40	120	40	48	8
04	1	1 2							50	25	50	25	32	1
91	2	1, 2				3.0	3.0	0.6	140	100	140	40	40	1 7
92 93	2, 4	2, 4		0.5		0.0	0.5	0.3	70	60	70	60	65	1
93	2	2	2	1.1	1.0		2.1	1.0	60	30	60	30	80	8
95	1, 2	1, 2	2	8.7	245.0		253.7	0.8	60	40	162	35	35	
96	1, 3	1, 2	2	0.7	1.3		2.0		100	85	80			
97	2	2, 5	2	0.,	1.0	4.0	4.0	0.7					43	1
98	2	2	-			6.0	6.0		70	60	75	55		
99	-	2	2	0.2		0.1	0.3	0.2	67	65	55	50	50	1
00	2	5	2	0.0		33.6	33.6	1.4	90	60	200	40	36	1
101	2	2		1.0			1.0	0.4	90	60			57	1
02		-	2, 4	3.0	1 1		3.0	0.3					49	1
103		2	-, -	2.0			2.0	0.7	100	80	90	65	50	
04		2		1.1	0.6		1.7	0.8		55	100	55	60	
05	1	2, 5	2	0.6	2.0		2.6	0.7	88	48	100	30	39	
106	2	2	2	2.8	36.0		38.8	1.0	65	40	50	30	52	
107		2				3.3	. 3.3	1.4		85	115	80	55	
108		2	2	0.2		4.0	4.2	0.8		60	130	60	34	
109	2	5	2	0.6		4.0	4.6			80	110	50	41	
110	2	2		0.3	0.7		1.0	0.8	55	50	60	45	51	
111	1, 2	2		0.5	0.5		1.0			1				
112	2	2, 5	2	2.6			2.6							
113	5	2	2	9,0			67.2							
114		2	2	1.0	1	8.0	9.0							
115	2	2	2	9.0	46.0	10.4	65.4	1.4	73	50	75	40	60	
116				2.5	1		2.5				-		40	
117		2, 5	5	3.3			3.3							- 1
118		2		0.8			1.3							
119	2	2	2	6.3			6.3							
120) 2	2	2	0.5		1.0	1.5	0.6	68	55	125	40	49	

§ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

	2	3	4	5	6	7	8
	Populati	on Served		Sour	ce of S	Supply	
Community*	Retail	Wholesale	Public Control Agency;	s	G	P	Type of Treatment
121. Denton, Tex. 6/55	28,000		1		100	-	3
122. Denver, Colo.	550,000	64,000	4	81	19		1, 3, 7
123. Derby, Conn.	10,000	1	pvt.	V	V		3
124. Des Moines, Iowa	215,000	4,000	4	50	50	1	1-4, 6
125. Des Plaines, Ill.	25,000		2		100		2, 3
126. Detroit, Mich. 7/85	1,910,000	1,147,000	4	100			1, 3, 6
127. Dodge City, Kan.	12,000		4		100		3
128. Dover, N.J.	13,000		4	10	90		3
129. Dubuque, Iowa	54,000		2		100		3, 5, 7
130. Duluth, Minn.	105,000	2,000	1	100			3, 6
131. Durant, Okla. 7/55	13,000		5	100			1, 3
132. Durham, N.C. 7/88	85,000		2	100			1, 3, 5, 6
133. Dyersburg, Tenn. 7/66	13,000		2	100	100		3-5
134. E. Bay M.U.D., Calif. 7/554	1,000,000		5	100			1, 3, 4, 6
135. East Detroit, Mich. 7/88	40,000		6			100	1, 0, 1, 0
136. East Jefferson, La.	85,000		4	100			1-4, 6
137. East Lansing, Mich. 7/66	13,000				100		2-7
138. East Orange, N.J.	83,000		4		100		3
139. Eau Claire, Wis.	36,000		6		100		1, 3, 5, 7
140. Ecorse, Mich. 7/55	21,000		1, 2			100	
141. El Centro, Calif.	16,000		2	100			1, 3
142. El Dorado, Kan.	16,000		6	V	V		1-7
143. Elizabeth, N.J.	130,000		4			100	
144. Elizabeth City, N.C. ^{7/55}	15,000		3		100		1-3, 5
145. Elmira, N.Y.	70,000		4				1, 3, 4, 6,
146. Elwood, Ind.	13,000				100		3
147. Emporia, Kan.	18,000		2	100			1-3, 6
148. Endicott, N.Y.	61,000		pvt.		100		3
149. Erie, Pa.	151,000		1, 2	100			1
150. Escanaba, Mich. 7/88	15,000		2	100			1, 3, 4, 6, 7
151. Eugene, Ore.	44,000	25,000	4	100			1, 3
152. Evanston, Ill.	76,000	45,000	6	100			1, 3, 6, 7
153. Fargo, N.D. ^{7/88}	45,000		7	100			1-4, 6, 7
154. Faribault, Minn.	16,000		1, 2		100		3
155. Fayetteville, N.C. ^{7/86}	60,000		3	100			1, 3, 4, 6, 7
156. Fergus Falls, Minn.4/55	14,000		4	100			1-4, 6, 7
157. Flint, Mich. 7/66	190,000		6	100			1-4, 6
158. Florence, Ala. 10/66	29,000		4	100			1, 3
159. Fort Collins, Colo.	23,000		3	100			1, 3, 6
160. Fort Dodge, Iowa	30,000		1, 2		100		1, 3, 5

^{*} See notes beginning on p. 694.
† Included in preceding column.

‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

itd.)

of nt||

	1	-	9	10		11	12	13	1	4	1	15	1	6	17	1	8	19	20		24	1
			Pun	ping	Powe	r#		D	istributio	on Si	torage	.9	1	-			_			-	21	22
				To	1		EI	G-1							D	istr. I	ress	sure-	psi	T	Dis	str.
		Pla	oant	Sys- tem	Boo	ester	121	0-1				Tot	al		Bus.	Dist	-	Res.	Dist.			
1	21	-	-	2	-	2	2.6		mil gal				day	V5	Max.	Mi	n. N	Max.	Min	Ja	n.	Jul
	22 23	5 2		5 2, 5	2	2	2.0	1.0		5.0		3.6	1.		75 83	35 54		75	35	1	-	73
	24	2		1, 2			8.0					0.0			120	100	-	25 90	30 80			63 55
1	25	2		2	2		1.2	1.2				8.0 2.4	0	3	120 55	90 45	1 -	05 55	35	47	1	68
	26	2	1	1, 2	2		8.0	145.0			153	3.0	0.3		42		1		45	50	1	55
12	28	5		2	2 2		1.0			0	1	0.1	0.3	1	10	30 80	1	75	17	34		70
13		2		, 5	2		1.8	8.6	6.		12	5.9	3.7	1	75 70	70		25	60		1	56
					2		1.1	4.5	65.		71		4.5	-	10	88 80	11		40 30	60 36		52
13	2 :	2, 3 2, 4		2	2		0.4	4.0				.4	0.2	1	62	45	6	2	28		1	.0
13.	3	2 2	1	2		1	1.5	4.0 0.6	3		9.	0.6	1.1		90	70	10	0	65	43	1 7	3
13.		2		5 2	2				502.4		502. 0.	4	4.0	13		71 40	130	- 1	30 40	65 51		5
136		2	2,		2, 3	2	.5	5.5							5	40	7.5	5	10			0
137		2 2	2				.5	0.5			0.3	_	1.0		0 0	50	60		50			
139		2	2			3.	.0		10.0		10.0	0	1.4	9		40 70	50 97		0	52 50	55	
140											3,6) (0.3	12.	5	90	135	. 1		50	52	
141 142		3	2,			0.			5.0		5.4		.1	35		1	2.5					
143						0,	4	0.5	0.6		1.5		.4	70	1	10	35 70					
144	2		2, 5		2	0.					0.5	0	.4	45 58	1	6	75	3,	5	36	63	
		1			2		1	3.5	8.5		12.0	1	.5	80		5	58 80	53		0	85 78	
46 47	2 2		2		2	0.5					0.5	0.	7		1				-		10	
48		1	2, 3	1 :	2	6.0					3.0	1.	7	60	4		70	30	3	8	78	
49 50	2		2	1	2	1.6	1		43.0	4	6.0	0.		65	9	0	60	55	5		55	
						0.5	1	.0			1.5	1.	- 1	65	55		95	40 50	3.	8	71	
51	2 2	-	2	2		22.6 2.5	0	0			2.6	2.1	1 1	00	70	1	15	25				
3	2	1	2	2		2.0	9.				1.5	0.0	5	60	45	1	60	30	42	1 5	7	
54	2	12	, 5		1	3.0	1.		3.0		4.0	2.8	1	60	55 100		0	55 70	37 50		7	
6	5	1	2								3.0	0.8	1	75	55	12		85	30	5	6	
7	2	1	2	2		2.0	10.0)	2.2		2.2	1.4		75	65	6	5	45	33	79	0	
8	2	1	2		1	2.0	10.0				2.0	0.3		3	46	6	9	23	38	8		
0	2	1 3	2			1.5	2.0		10.0	10	0.0	1.8	1	0	50 60	100		40		1		
				e wate		1.0	2.0	1		3	.5	0.9	6		50	100		60 35	50 58	60		

[§] Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

[] Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;

[] Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

[] El—elevated; G—P—ground storage, pumped; G—G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Population	on Served		Sour	ce of S	upply	
Community*	Retail	Wholesale	Public Control Agency:	s	G	P	Type of Treatment
161. Fort Madison, Iowa	15,000		4	100		_	1, 3
162. Fort Scott, Kan.	10,000		7	100			1-3, 6, 7
163. Fort Wayne, Ind.	140,000		1, 3	100			1-3, 5-7
164. Fostoria, Ohio	16,000		1, 2	100			1-4, 6
165. Frankfort, Ky.7/88	20,000		3	100			1, 3, 4
166. Franklin, Ind.	10,000		pvt.		100		1, 3, 5
167. Franklin, Pa.	14,000		1	67	33		1, 3
168. Fredericksburg, Va. 7/88	15,000		2	100			1, 3, 4, 6, 7
169. Freeport, Ill. 10/85	32,000		4		100		1, 3, 5
170. Fremont, Neb.	18,000		3		100		
171. Fresno, Calif. 7/55	130,000		2		100		none
172. Fullerton, Calif. 7/55	41,000		2		55	45	
173. Fulton, Mo. ^{7/88}	12,000		1, 2		100		
174. Gainesville, Ga.	20,000		6	160			1, 3, 4, 6, 7
175. Garden City, N.Y.3/55	21,000		4		100		4
176. Gary, Ind.	183,000		pvt.	100			1, 3, 4, 6
177. Gastonia, N.C. ^{7/88}	51,000	6,000	2	100			1, 3, 6
178. Glen Cove, N.Y.	20,000		pvt.		100		3
179. Glendale, Calif. 7/55	112,000		2		94	6	3, 4
180. Gloversville, N.Y.	24,000		4	100			1, 3-7
181. Goldsboro, N.C.	30,000		6	100			1, 3, 4, 6
182. Goshen, Ind.	13,000		3		100		none
183. Grand Island, Neb. 8/55	25,000		1, 2		100		none
184. Grand Junction, Colo.	25,000		2	100			1, 3, 7
185. Grand Rapids, Mich. 7/88	196,000		6	100			1-3, 6, 7
186. Great Bend, Kan.	21,000		pvt.		100		3
187. Green Bay, Wis.	60,000		4		100		3
188. Greensboro, N.C. ^{7/88}	92,000		2	100			1, 3, 4
189. Greenville, Miss. 10/88	40,000		1, 2		100		3
190. Greenville, N.C. 7/55	18,000		4	75	25		1, 3, 6
191. Greenville, S.C. 8/55	165,000	†	3	100			3, 4, 6
192. Greenwood, Miss. 10/14	19,000		4	-	100		3
193. Greenwood, S.C.	23,000		3	99	1		1, 3, 4, 6
194. Griffin, Ga. 12/54	25,000		6	100			1, 3, 4, 6, 7
195. Haddonfield, N.J.	12,000		7		100		1, 5
196. Hagerstown, Md.	49,000	4,000	4	66	34		1, 3, 4, 6, 7
197. Hamilton, Ohio	70,000		8		100		1-5, 7
198. Hammond, Ind.	100,000	26,000	4	100			1, 3, 4, 6, 7
199. Hannibal, Mo. 6/55	21,000		3	100			1, 3, 6, 7
200. Hanover, Pa.	23,000		4	100			1, 3, 6

^{*} See notes beginning on p. 694.
† Included in preceding column.
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distr	ibution Sto	orage¶		Dis	tr. Pre	ssure	psi	Di Temp	str.
	To	To		El	G-P	G-G	Tota	al	Bus.	Dist.	Res.	Dist.		
	Plant	Sys- tem	Booster		90	eil gal		days	Max.	Min.	Max.	Min.	Jan.	Jul.
161	2	2	2			1.0	1.0	0.9	70		70		36	84
162	2	2, 5	2											
163	2	2		2.0	24.8		26.8	1.3	75	60	75	25	36	79
164	2	2, 3		1.9		0.5	2.4	1.5	85	65	65	20		
165	2	2, 5	2	0.2		7.0	7.2	3.3	125	120	125	40	40	75
166	2	2		0.1	0.6		0.7	0.7	60	50	65	45	52	54
167	2	2	2	0.1		2.6	2.7	1.3	85	80	150	20		
168	2	2	2	0.1		3.3	3.4	0.8	45	40	50	20	40	80
169	2	2		0.1	0.8	1.0	1.9	0.8	86	72	88	30	52	57
170		2							75		75		58	58
171		2		1.9			1.9	0.0	50		50		68	72
172		2, 5	2	0.1	14.0	İ	14.1	1.7	67	55	110	70	65	67
173		2, 5		0.2	0.2		0.4	0.6	62	50	62	50		
174	2	2	2	0.5	0.1		0.6	0.2	85	70	125	60	43	79
175		2	2	1.0	2.0		3.0	0.8	75	65	75	65		
176	2	2	2	3.3			3.3	0.1	75	60	65	35	35	65
177	2	2	2	1.0	2.8	1	3.8	0.8	80	60	70	50		
178	2	2		0.5			0.5	0.3	100	90	50	40		
179	2	2	2			173.1	173.1	8.1	210	35	210	35	67	69
180	4	5		5.3	1		5.3	1.8	90	40	90	40	34	72
181	2	2		2.0	0.6		2.6	1.2	55	50	50	45	42	77
182		2, 3		0.8			0.8		60		60	50	54	58
183		2	2			4.0	4.0	0.3	75	50	75	50	56	62
184		5							100	80	100	40		
185	2	1, 5	2	3.8		43.2	47.0	1.4	120	40	90	35	33	60
186		2		0.4			0.4	0.2	80	60	80	50	62	69
187		2	2	1.0	3.5	1	4.5	0.6	60	50	60	50	53	53
188		3	3	2.2	21.0		23.2	2.3	81	62	101	43	50	85
189	2	2	2	0.5	0.3	1	0.8	0.2	60	50	60	50	62	62
190	2	2, 5		1.2	0.5		1.7	1.5	70	65	70	65	42	78
191	2, 5	5		1.7		139.0	140.7	8.7	95	70	135	50	46	75
192	2	2		0.1	1.0		1.1	0.3	65	40	65	40	70	72
193	2	2		0.8	2.0		2.8	1.5	90	70	90	50	45	82
194	2	2		1.3	4.5		5.8	1.9	60	40	60	40	47	77
195	2	2		0.4	-		0.4	0.4	58	40	58	28	25	75
196	2	2, 5	2		0.2	11.5	11.7	1.7	66	56	110	17	40	75
197	2	2	2	0.2		11.5	11.7	1.8	95	80	110	50	57	58
198	2	1	2	6.5			6.5	0.3	50	40	70	35	33	70
199	2	5		0.1		7.5	7.6	4.4	100	60	100	40	40	78
200	5	2, 5	2	0.1		13.0	13.1	7.0	75	50	75	50	35	72

[§] Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.
|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.
* Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).
¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Populatio	on Served		Sour	ce of Si	upply	
Community*	Retail	Wholesale	Public Control Agency‡	s	G	P	Type of Treatment
201. Harlingen, Tex.	33,000		4	88	12		1, 3, 4, 6
202. Hartford, Conn.*	340,000	4,000	5	100			1, 3
203. Hastings, Neb.	25,000		3		100		3
204. Haverstraw, N.Y.	11,000		pvt.	64	36		1, 3, 4
205. Helena, Ark.	11,000		4		100		3, 4, 6, 7
206. Hibbing, Minn.	21,000		4		100		3
207. Highland Park, Mich. 7/55	46,000		1, 2	100			1, 3, 6, 7
208. Hilo, T.H.*	33,000		4	V	V	V	
209. Holland, Mich.	19,000				100		3, 4
210. Hollywood, Fla. 10/55	*50,000		6		100		2-5
211. Honolulu, T.H.	260,000		4		100		*3
212. Hopkinsville, Ky. 6/88	20,000		4	100			1, 3, 4, 6,
213. Hoquiam, Wash.	13,000		1, 2	100			3
214. Hot Springs, Ark.	33,000		4	100			1, 3, 4, 6
215. Houston, Tex.	725,000		1, 2	20	80		1, 3, 4, 6
216. Huntington Pk., Calif. 7/88	30,000		1, 2		100		none
217. Hutchinson, Kan. ^{2/88}	38,000		pvt.		100		3
218. Independence, Kan.	15,000		7	100			1, 3, 6, 7
219. Independence, Mo.	69,000	1,000	pvt.	70	30		1, 3, 5
220. Indianapolis, Ind.	517,000		pvt.	99	1		1, 3, 6, 7
221. Ironton, Ohio ^{2/66}	16,000	2,000	6	100			1, 3, 4, 6,
222. Ithaca, N.Y.	34,000		3	100			1, 3
223. Jackson, Mich. ^{7/68}	55,000		6		100		3, 7
224. Jacksonville, Fla.	300,000		4		100		3, 6
225. Jacksonville, Ill.	25,000		4	100			1-3, 6, 7
226. Jamaica, N.Y.	548,000		pvt.		100		4, 5
227. Jamestown, N.Y.	50,000		3		100		3, 4
228. Janesville, Wis.	30,000		2		100		3, 7
229. Jefferson City, Mo. 230. Jeffersonville, Ind.	28,000 26,000		pvt.	100	100		1-3
	20,000		pvt.		100		,,
231. Johnson City, N.Y. 6/88	26,000		4		100		3
232. Johnstown, N.Y.	11,000		2		100		3
233. Jonesboro, Ark.	18,000	2,000	3		100		3, 7
234. Junction City, Kan.	16,000		6		100		1-3, 5, 7
235. Kalamazoo, Mich.	83,000		6		100		3, 7
236. Kankakee, Ill.	49,000		pvt.	100			1-4, 6
237. Kansas City, Mo. 6/88	712,000		2	100			1-6
238. Kearney, Neb.	13,000		6		100		none
239. Kennewick, Wash.	20,000		6	99	1		3
240. Kenosha, Wis.	60,000		6	100			1, 3, 6

^{*}See notes beginning on p. 694.
† Included in preceding column.
† Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission; 5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt,—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pun	nping F	ower#		Distr	ibution Sto	rage¶		Di	str. Pre	esure	-psi	Di	str.
	То	To	P	El	G-P	G-G	Tota	al	Bus.	Dist.	Res.	Dist.		
	Plant	Sys- tem	Booster		10	iil gal		days	Max.	Min.	Max.	Min.	Jan.	Jul.
201	2	2		0.7	1.0	-	1.7	0.3	70	60	65	42	80	85
202		5	1	1.3		14.5	15.8	0.4	115	85	95	15	39	63
203	2	2			1.5		1.5	0.3	70	50	70	50	54	55
204	2	2, 5	2	0.6		1.3	1.9	1.7	85	80	90	40		
205	2	2, 5	2	0.1	0.5	1.0	1.6	1.5	55	55	55	35	70	70
206		2		0.4	4.0		4.4	1.5	78	77	78	77	46	48
207	2	2	2	0.3		3.0	3.3	0.3	45	40	45	40	34	70
208		*		0.1	0.5	24.4	25.0		90	70	120		74	76
209		2		0.8	0.8		1.6	0.6	60	40	60	40	55	60
210	2	2	2	0.3	2.0		2.3	0.6	64	60	64	60	62	62
211		1, 2	2			27.2	27.2	0.7	80	70	150	35	72	72
212	2	2		0.8			0.8	0.5	90	85	80	50	42	76
213	2	2				į			100		100	40		
214	2, 5	2, 5			0.6	1.8	2.4	0.8	110	90	165	50	46	83
215	2-4	1-4	1-4	2.1	60.4		62.5	0.8	90	60	50	40	86	85
216		2	2	0.2	9.4		9.6	2.2	52	48	52	48	68	68
217		2				1			70	55	60	45	58	62
218	2	2, 3	2, 3		1.0	1	1.0	0.7					45	90
219	2	2, 3	2, 3	1.3	2.0		3.3	0.7	55	40	140	35	34	70
220	2, 4	1, 2	2	3.0			3.0	0.1	60	50	130	30	38	78
221	2	5		6.0			6.0	4.4					40	78
222	5	2, 5	2	4.3		1.5	5.8	1.8	90	80	165	20	34	71
223		5	2	3.0	3.0		6.0	0.5	75	70	75	35	52	56
224	2	2		3.5		19.0	22.5	0.7	60	60	60	40	78	80
225	2, 5	2	2	2.0			2.0	0.9	85	80	60	40	34	70
226		2	2	12.3	15.7		28.0	0.6	65	50	60	30		
227		1	2			6.5	6.5	1.3	140	30	140	30	50	50
228		2, 5				9.0	9.0	1.6					52	52
229	2	2	2		1.2		1.2	0.8	100		120	50		
230	2	2		0.2	0.5		0.7	0.3	50	42	65	42	52	55
231		2			-	4.0	4.0	0.6	100	70	100	25	52	54
232		5							120	65	130	65		
233	2	2	2	1.5	1.3		2.8	1.6	80	65	70	50	65	71
234	2	2	2		0.5	2.0	2.5	1.4	80	65	80	70	55	65
235			2	2.2	İ	7.0	9.2	0.9	60	50	100	40	55	65
236	2	2	2	0.9	1.3		2.2	0.2	85	60	85	50	40	70
237	2	2	2	2.5	45.0		47.5	0.5	165	45	165	45	40	85
238		2	2			1.0	1.0	0.5	55	45	55	45	54	56
239	2	2, 5	2	0.4	0.5	2.0	2.9	0.6	90	70	120	30	35	65
240	2	2	2			2.8	2.8	0.3	70	40	70	20	36	61

§ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Population	on Served		Sour	ce of S	Supply nt§	
Community*	Retail	Wholesale	Public Control Agency;	s	G	P	Type of Treatment
241. Kent, Ohio	12,000		1		100	-	1-6
242. Keokuk, Iowa	16,000		4	100			1-3, 6, 7
243. Key West, Fla. 9/85*	40,000		5		100		1-3
244. Kirksville, Mo.	12,000		1, 2	100			1, 2, 4, 6
245. Klamath Falls, Ore.	23,000		pvt.		100		3
246. Knoxville, Tenn.	170,000		4	100			1, 3, 4
247. Laconia, N.H.	14,000		pvt.	100			3
248. La Crosse, Wis.	48,000		3	100	100		3
249. Lafayette, La. 10/88	38,000		3		100		1-6
250. Lake Worth, Fla. 11/83	*23,000				100		3
251. Lakeland, Fla.9/88	48,000		2		100		3, 6
252. Lakewood, Ohio	70,000		1, 2		100	100	none
253. La Mesa, Calif.*	68,000		4	35		65	3
254. Lancaster, Ohio	29,000		1		100	00	1-5
255. Laredo, Tex.	64,000		4	100			1, 3, 5
256. Las Cruces, N.M. 7/88	20,000		6		100		3
257. Las Vegas, Nev. 7/88	47,000		5	19	81		3
258. Latrobe, Pa.4/85	20,000		5	100	O I		1-3, 6
259. Lawrence, Kan.	25,000		6	75	25		1-7
260. Leavenworth, Kan.	24,000		4	100			1-3, 6
261. Lebanon, Pa.	55,000		1, 2	100			1, 3-6
262. Lewiston, Idaho ^{7/68}	13,000		1, 2	75	25		1, 3, 7
263. Lewistown, Pa.	25,000		5	100			3, 6
264. Lima, Ohio	72,000		1	V	√		1-4, 6
265. Lincoln, Neb. 9/54	126,000		1, 2		100		1, 3, 5
266. Lincoln Park, Mich. 7/88	48,000		1, 2			100	none
267. Little Rock, Ark.	136,000	65,000	4	100			1, 3, 4, 6, 7
268. Logansport, Ind.	25,000		3	100			1, 3, 7
269. Long Beach, Calif. 7/88	288,000		4		64	36	1-3, 6
270. Long Island, N.Y.*	208,000		pvt.		100		1, 3, 4
271. Longview, Wash.	30,000		1	100			1, 3
272. Lorain, Ohio	63,000	4,000	8	100			1, 3, 4, 6, 7
273. Los Angeles, Calif. 7/55	2,235,000		4	76	24		3
274. Louisville, Ky.	500,000	50,000	4	100			1-4, 6, 7
275. Lynchburg, Va.7/88	57,000		2	100			1, 3, 4, 7
276. Madison, Wis.	117,000	6,000	4		100		3, 7
277. Manchester, Conn.	24,000	,	4	81	19		1-3
278. Manchester, N.H.	87,000		4	100			3
279. Manhattan, Kan.	21,000		2		100		1-7
280. Manhattan Beach, Calif. 7/58	32,000	1,000	6		30	70	3

^{*} See notes beginning on p. 694.
† Included in preceding column.
† Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission; 5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

7

7

1;

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distr	ibution Sto	rage¶		Die	tr. Pre	asure	-psi	Di Temp	str.
	То	То		El	G-P	G-G	Tota	ıl	Bus.	Dist.	Res.	Dist.		
	Plant	Sys- tem	Booster		200	nil gal		days	Max.	Min.	Max.	Min.	Jan.	Jui.
241	2	2		0.4		1	0.4	0.3		-			52	60
242	2	2		1.0		İ	1.0	0.4	90	75	80	43	40	90
243	2, 3	2, 3	2	0.2	2.0	1	2.2		55	30	55	30	80	80
244	2	2, 5	2	0.5	0.6	8.0	9.1							-
245		2	2			3.7	3.7	0.8	95	80	115	25	67	67
246	2	2	2	0.5		15.0	15.5	0.8	100	80	120	20	41	70
247		2		0.5		2.9	3.4	3.5	87	80	93	30	45	65
248		2, 5			1.0	5.0	6.0	0.7	100		100		56	56
249	2	2		1.0	1.8		2.8	0.7	70	60	70	60	73	78
250	2	2, 5	2	0.6		ĺ	0.6	0.2	70		55		70	75
251	2	2		0.8	1.2	1	2.0	0.3	65	45	60	35	80	85
252		2, 5					0.0	0.0	50	35	85	40		
253		2, 5	2		1	126.0	126.0	9.2	100	40	210	25		
254	2	2	2			2.3	2.3	0.9	115	80	115	80		
255	2	2	2	4.2	1.4	1	5.6	0.8	76	50	76	49	57	83
256		2, 5				3.0	3.0	0.7	67	40	67	8		
257		2	2	0.3	3.7	30.0	34.0	2.0	70	40	100	40		
258	2, 3	2		1.0	10.0		11.0	2.5	130	90	125	55	41	59
259	2	2	2	0.5		2.4	2.9	0.9	95	75	125	40	38	75
260	2	2				5.0	5.0	2.3	140	120	140	120	38	86
261	1-3	1-3	2			371.1	371.1		90	50	90	40	40	72
262	2	2	2			9.9	9.9	3.6	105	40	100	15	37	68
263		5	2			13.0	13.0		72	68	80	40	38	68
264	2	1, 2							80	60			36	76
265	2	2	2	0.3		33.0	33.3	1.6	70	60	105	60	58	58
266		5											33	68
267		2, 5	2	0.6			0.6	0.0	80	60	220	35	52	65
268	2	2	2	3.5			3.5	1.2	82	65	75	58	38	82
269	2	2, 5	2			100.0	100.0	2.7	75	70	90	50	70	78
270	2, 3	3		0.5	11.7		12.2	0.8	70	50	70	50	54	54
271	2	2	2			7.0	7.0	2.8	100		100		46	58
272	- 2	2				4.0	4.0	0.5	60	55	60	40	45	72
273		5	2			18.2	18.2	0.0	85	65	100	40		
274	1, 2	1, 2	2	32.5			32.5	0.4	90	70	90	50	42	84
275		5	2	3.2		7.3	10.5	1.7	130	40	100	20	40	68
276	2	1, 2	2	9.2	4.2		13.4	0.9	90	65	85	50	56	56
277		2, 5	2	0.2			0.2	0.1	80	25	130	25	50	55
278		2, 3				34.0	34.0	3.0	95	40	146	10	40	70
279	2	2 5	2	1.6	0.4	0.6	2.6	0.9	110	75	90	35	56	58
280		-	2	0.4		2.4	2.8	0.8	85	60	80	40	62	65

§ Key: S—surface water; G—ground water; P—purchased water; v percentage unreported.

|| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal; 6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Population	on Served			ce of Si		
Community*	Retail	Wholesale	Public Control Agency:	s	G	P	Type of Treatment
281. Manitowoc, Wis.	30,000		4		100		3
282. Marinette, Wis.	14,000		4	100			1, 3, 7
283. Marshalltown, Iowa	21,000		4		100		1-3, 5
284. Mason City, Iowa	32,000		1, 2		100		3, 6
285. Massillon, Ohio	38,000		pvt.	33	67		1-4, 6
286. McKinney, Tex. ^{2/55}	15,000	1,000	2		100		3, 5
287. Meadville, Pa.	20,000	1,000	1, 2		100		3
288. Medford, Ore. 7/55	22,000	8,000	4		100		3
289. Memphis, Tenn.	500,000	8,000	4		100		1, 5
290. Menasha, Wis.	15,000		4	100	100		1, 3, 6, 7
291. Meriden, Conn.	42,000		1, 3	90	10		1, 3
292. Merrick, N.Y.*	155,000		pvt.	,,,	100		3, 4
293. Mesa, Ariz. ^{7/88}	29,000		1, 2		100		3
294. M.W.D. So. Calif. 7/85*	29,000		5	100	100		1-3, 6
295. Miami, Fla. 7/88	318,000	182,000	4	100	100		1-4, 7
296. Michigan City, Ind.	31,000	4,000	4	100			1, 3, 6, 7
297. Middletown, Conn.	25,000	1,000	4	100			3
298. Midland, Mich. 7/88	22,000	2,000	6	100			1-4, 7
299. Milford, Mass.	15,000	1,000	pvt.	95	5		1, 3, 4
300. Milwaukee, Wis.	699,000	98,000	7	100			1, 3, 6, 7
301. Minneapolis, Minn.	540,000	24,000	2	100			1-3, 6
302. Mishawaka, Ind.	33,000		3		100		3
303. Missoula, Mont.	30,000		pvt.	90	10		3
304. Mobile, Ala.	160,000		4	100			1, 3
305. Modesto, Calif. 7/88	30,000		2		100		none
306. Monroe, Mich. 7/88	25,000		2	100			1, 3, 4, 6,
307. Monroe, N.C.7/68	12,000	3,000	6	100			1-6
308. Monterey Park, Calif. 7/56	30,000		2		100		3
309. Moorhead, Minn.	20,000		4		100		1, 2, 5
310. Mount Vernon, N.Y.	75,000		1	100			3
311. Murfreesboro, Tenn.	17,000		6	70	30		1-7
312. Nacogdoches, Tex.4/66	15,000		7		100		3, 4
313. Nashua, N.H.	35,000		pvt.	10	90		3
314. Nashville, Tenn.	234,000	70,000	1, 2	100			1, 3, 4, 6,
315. Natick, Mass.	27,000		3		100		5
316. Naugatuck, Conn.	19,000		pvt.	95	5		3, 4
317. Neenah, Wis.	15,000		4	100			1-3, 6, 7
318. New Albany, Ind.	40,000		pvt.	100			1, 3, 6
319. New Bedford, Mass.	124,000		4	100			3
320. New Haven, Conn.	302,000		pvt.	100			1, 3, 4

*See notes beginning on p. 694,
† Included in preceding column.

*Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;

*S-water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distr	ibution Sto	rage¶		Dis	str. Pre	ssure-	-psi	Di Temp	str.
	То	То		El	G-P	G-G	Tota	ıl	Bus.	Dist.	Res.	Dist.		
	Plant	Sys- tem	Booster		m	il gal		days	Max.	Min.	Max.	Min.	Jan.	Jul.
281		2		1.5	2.8	1	4.3	0.9	80	75	80	60	45	65
282	2	3	2, 3	0.4	0.5	1	0.9	0.4	60	50	60	50	34	63
283	2	2	-	1.1			1.1	0.5	75	50	75	25	63	65
284	2	1, 2		1.0	5.0	1	6.0	1.6	75	65	40	35	52	58
285	2	2	2	0.7		1.5	2.2	0.8	100	75	100	30	45	60
286	2	2	2	0.7	0.6	1	1.3	0.9	65	47	62	47	51	90
287		2	2	0.2		4.5	4.7	2.0	110	90	140	20		60
288		5	2			12.4	12.4	1.5	100	55	105	20	43	55
289	2, 4	1, 2			63.0		63.0	1.1	80	70	70	60	69	72
290		2		0.5	0.9	and the same of th	1.4	0.4	65	60	65	55		
291	5	2, 5	2	5.0			5.0	0.9	100	60	130	30		
292	2	2, 3		0.3	2.0		2.3	0.3	50	35	80	35		
293	2	2	2	0.3	10.0		10.3	2.5	62	50	62	50		
294	2	5											52	73
295	2, 3	2, 3	1, 2	2.0	22.5		24.5	0.3	70	60	90	35	74	75
296	2	2		1.8	1.5		3.3	0.4	68	50	54	30	33	78
297	2	2, 5		1.0			1.0	0.5	140	80	140	70		
298	2	2, 3		0.5			0.5	0.1	55	50	55	50	45	66
299	5	3	2	1.2		1	1.2	1.3	100	90	125	10		
300	2	1, 2	2	4.0	18.0	25.0	47.0	0.3	65	40	100	20	35	55
301	2	2, 5	2	3.0	77.0	40.0	120.0	2.0	75	20	75	20	35	75
302	2	1, 2		3.0	1.5		4:5	0.9	75	65	75	65	54	60
303						4.0	4.0	0.3	75	70	80	50	33	54
304	2	2, 5		0.1		20.0	20.1	1.4	84	50	84	50	50	84
305		2, 4		0.8			0.8	0.1	55	55	55	55	66	66
306	2	2	2	0.5	3.0		3.5	1.4	45	43	45	38	35	76
307	2	2		0.8	1.0		1.8	1.5	76	70	76	70	50	75
308		2	2			6.3	6.3	1.6	80	70	90	40	60	75
309	2	2	2	0.7	1.0		1.7	0.9	55	40	55	40	34	40
310		5							105	75	75	40	40	60
311	2	2		1.0			1.0	0.8	62	60	62	60	57	69
312	2	2		0.9	0.5		1.4	1.0	90	75	90	40	65	85
313		2-4		2.8			2.8	0.7	65	55	90	20		
314 315	2	2 2	2		2.8	56.7	59.5 4.3	1.9	100	55 45	100	25	57	82
				0.7									40	-
316	2	5	2	0.7			0.7	0.1	100	70	100	20	40	70
317	2	2	2	0.9	1.5	24.2	2.4	1.3	60	-	60	1	36	70
318	2	5	2	1.0		24.2	25.2	2.4	78	62	78	46	38	74
319		2, 3	2	0.3		63.0	63.3	3.1	90	40	85	25	37	70
320		2, 3	2	6.3		6.4	12.7	0.3	62	45	100	20	39	71

Key: S—surface water; G—ground water; P—purchased water; v percentage unreported.
 Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
 taste and odor control; 7—fluoridation.
 Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).
 El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Populatio	on Served		Source	e of Si	ipply	
Community*	Retail	Wholesale	Public Control Agency‡	S	G	P	Type of Treatment
224 - 37 - 11 - 1 - 4	60,000						
321. New Iberia, La.*	60,000		pvt.	100			116
322. New Orleans, La.	629,000		4	20		80	1-4, 6
323. New Rochelle, N.Y. 324. New York, N.Y.	139,000 7,650,000		pvt.	100		00	1, 3, 4, 6
325. Newport Beach, Calif. 7/88	20,000		2	100	V	V	3
226 Nament Name Va *	200,000		4	100			1, 7
326. Newport News, Va.*			4	100	100		3
327. Newton, Iowa 328. Newton, Kan.	14,000 13,000	1,000	7		100		3
329. Niagara Falls, N.Y.	120,000	1,000	6	100	100		1, 3, 6
330. Niles, Ohio	21,000		2	100		100	none
331. Norfolk, Neb.	13,000		1, 2		100		1, 5
332. Norfolk, Va.	355,000	5,000	9	100			1, 3-7
333. North Miami, Fla.	43,000		1, 2		100		1-3
334. North Platte, Neb.	16,000		3		100		3
335. Norwich, Conn.	37,000		4	100			3
336. Oak Park, Ill.	64,000		1			100	3, 7
337. Oak Ridge, Tenn.	32,000		9	100			1, 3, 7
338. Ocala, Fla. 10/66	14,000		2		100		1-4
339. Oceanside, Calif. 7/84	23,000		6		50	50	
340. Oklahoma City, Okla. 7/88	299,000		6	98	2		1-4, 6, 7
341. Olean, N.Y.6/86	23,000		1, 2	100			1, 3, 4, 6,
342. Omaha, Neb.	290,000		5	100			1, 3, 4, 6
343. Oneonta, N.Y.	20,000		4	100			1, 3, 4
344. Ontario, Calif.	40,000		6	14	86		3
345. Orange, Calif. 7/86	20,000		2		95	5	none
346. Orlando, Fla.	105,000		3	40	60		1, 3
347. Oskaloosa, Iowa	12,000		3	60	40		1-4, 6
348. Ossining, N.Y.	16,000		4	100			1-4, 6
349. Ottawa, Kan.	11,000		7	100			1-3, 6, 7
350. Ottumwa, Iowa	35,000		4	100			1-3
351. Owatonna, Minn. 8/88	12,000		3		100		3
352. Oxnard, Calif. 8/88	29,000	24.000	2	100	100		3
353. Painesville, Ohio	16,000	24,000	6	100	20	50	1, 3, 4, 6
354. Palo Alto, Calif. ^{7/88} 355. Paris, Tex. ^{7/88}	49,000 24,000		6	100	50	50	3, 7
356. Pasadena, Calif. 7/88	133,000		6	5	33	62	3
357. Pasco, Wash.	14,000		1, 2	100	00	O.M	1, 3
358. Passaic Valley Com., N.J.*	285,000	115,000	4	100			1, 3, 4, 6
359. Peekskill, N.Y.	22,000	110,000	4	100			1, 3, 6
360. Pendleton, Ore. 7/88	14,000		2	38	62		3, 7
500. I chuleton, Orc.	14,000		-	00	02		0,1

^{*}See notes beginning on p. 694.
† Included in preceding column.
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	1	10	11	12	13		14	15		16	17	18	8	19	20	21	1	22
	P	umpi	ing Po	wer#		Dist	ribu	ition Sto	rage¶			D	iștr. l	Pressi	ure—	psi	Ter	Distr.	°F
	_	1			El	G-P		G-G	1	otal		Bus	. Dis	t.	Res.	Dist.	Jan		ful.
	Pla		To Sys- tem	Booster			mil	gal		1	days	Max	. M	in.	Max.	Min.	1	1.]	
321	_					25.0			35	6.0	0.3	62		60	61	47	4	-	83
322		2	2	2	10	35.0	1	4.5		5.3	0.4	100		70	130	20			65
323	2,	3	2, 3	2	1.8		3	,500.0	3,500			80)	35	80	35			64
324 325		2	5	2, 4			-	4.5		1.5	1.3	54	1	50	85	75	6	0	70
			2		2.2	3.5				5.7	0.4	6.	5	50	65	56		0	81
326		0	2		0.6	3.0				3.6	1.9	5		54	56	50		4	56
327		2 2	2 2	2	0.6	3.0				4.2	2.0	1 -		45	70	40		1 5	59 70
328 329		2	2	-	2.0					2.0	0.0			60	55 90	3		2	10
330		2	2					1.5		1.5	0.3	11	0	90	90	3			
				1 2	0.7	0.	2			1.5	0.8	8	5	80	85		- 1	54	54
331		2	2	2 2	2.0	1	9			2.0	0.1	6	5	55	65			18	79
332		2	2 2	2	0.1		0			3.1	0.7		0	60	60		-	30	80
333		2	2	-	2.1								5	50	75		0		
334		2	2, 5	2								12	20	110	80	'	0		
330	6	2	2	2		5.	0			5.0	0.	8 4	18	42	120		35	39	69
33		2	2, 5	1	0		1	10.2	2	10.5	0		76	72	8			68	72
33	8	2	2	2	0.	0	.6			1.3	0.	0	10	12	1				
33		2, 5	2	1	10.	5 25	0,			35.5	1.	3	80	72	11	0	35		
								10.		10.4	3.	0	90	70	10	0	40		
34		2	2			49	0	10.		49.0			25	25	15	-	50	33	81
34		1, 2	1,	2 1,		-	.0			2.0			68	65			33	42	64
34		2	2, 2,	5 2 2	2.	0		18.	0	18.0	2	3 1	20	90			40	-	60
34		2	2,	2	0.	3 1	.8			2.1	0	.8	64	60	9	0	25	60	00
					1 0	- 1	5.5			8.0	0	.6	70	55	5 7	0	20	75	90
	16	2	2		2.	0	22			1.0		.9	50	43		6	42	48	68
	17	2	2,			5		12.	0	12.5		.1	85	68			20	40	65
	18	2 2	2				0.9			1.7	1	.4	70	4(70	40	40	78
	49 50	2	1			.4		11	.2	11.0	5 3	.1	75	63	5 10	00	25	48	10
				2 2	0	.6				0.0	6 ().3	60	50		60	35	55	
	51	2		2 2		.0		0	.3	1	3 ().3	60	4		60	40	68	
	52	2,		3				1	.0	1.0	-).3	65	5	~	55	50	38	1
	53	2,		2	2		1.0	4	.0	5.	-	0.6	70	4	-	70 50	40 10	60	8
	55	2,				8.0	2.0			2.	8	1.1	75	3	0	30			
		1 0			2		4.8	101	.0	105.		4.1	100	1	-	80	25	56	
	56	2		2		0.6	0.3		0.6	5.		1.5	60		5	70	35	36	
	57	5		2		0.3		250	0.0			-	110		0	80	35 35	36	
	358 359	2				0.8			3.0	3.		0.8	185	1		85	40	42	
	360				2			1 4	1.3	4.	.3	1.2	100	1 8	30	80	40	4	1

[§] Key; S—surface water; G—ground water; P—purchased water; \$\forall \text{ percentage unreported.} \\ \text{il Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal; 6—taste and odor control; 7—fluoridation. \\ \# Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping). \\ \# El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity. \\ \end{array}

1	2	3	4	5	6	7	8
-	Population	on Served		Sour	ce of S	upply	
Community*	Retail	Wholesale	Public Control Agency‡	s	G	P	Type of Treatment
361. Phenix City, Ala.	24,000		4	100		-	1, 3
362. Philadelphia, Pa.	2,200,000		9	100			1, 3, 4, 6, 7
363. Phila. Sub. Wtr. Co., Pa.*	555,000		pvt.	100			1, 3, 4, 6
364. Phoenix, Ariz.7/86	216,000		8	38	62		1, 3, 6
365. Pittsburg, Calif. 7/85	17,000		2			100	1, 4
366. Pittsburg, Kan.	21,000		6		100		1-3, 5
367. Pittsburgh, Pa.	550,000	100,000	1, 2	100			1, 3, 6, 7
368. Pomona, Calif. ^{7/86}	51,000		2		V	V	
369. Pontiac, Mich.	80,000		6		100		3, 4
370. Poplar Bluff, Mo.	17,000		3	100			1, 3
371. Portland, Me.	132,000		5	V	V		3
372. Portland, Ore. ^{7/88}	400,000	150,000	1, 2	100			3
373. Portsmouth, Va. ^{7/88}	150,000		2	80	20		1, 3, 4, 6, 7
374. Prichard, Ala.	46,000	7.000	4	75	25		1, 3
375. Providence, R.I. 10/64	339,000	54,000	4	100			1, 3-7
376. Puerto Rico A.S.A. 7/88*	1,300,000		5	90	10		1, 3, 4, 6, 7
377. Queens County, N.Y.*	130,000		pvt.		100		
378. Racine, Wis.	80,000		4	100			1, 3, 6, 7
379. Rahway, N.J.	23,000		1	88	12		1, 3-7
380. Reno, Nev.	55,000		pvt.	100			3
381. Richmond, Va. 7/88	240,000	24,000	2	100			1, 3, 4, 6, 7
382. Ridgewood, N.J.	52,000		7	-	100		3
383. Roanoke, Va.	102,000	4,000	6	70	30		1, 3-7
384. Robbinsdale, Minn.	14,000		1, 2	100	100		3
385. Rochester, N.H.	15,000		2	100			3
386. Rochester, N.Y.*	108,000	55,000	pvt.	88	4	8	1, 3, 4, 6
387. Rome, N.Y.	44,000		6	100			3
388. Sacramento, Calif.	163,000		2	90	10		1, 3
389. St. Charles, Mo.4/88	21,000		3	100			1-3
390. St. Cloud, Minn.	30,000		1, 2	100			1, 3, 6
391. St. Louis, Mo.4/64	888,000		8	100			1-3, 6, 7
392. St. Louis County, Mo.	502,000	51,000	pvt.	100	100		1-4, 6
393. St. Louis Park, Minn.	38,000		1, 2	100	100		1 2 6 7
394. St. Paul, Minn. 395. Salem, Ohio	339,000 14,000		4	100			1-3, 6, 7 1-3, 6
396. Salem, Ore. 7/88	42,000	4,000	6	100	50		3 1-6
397. Salina, Kan.	34,000		2 3	50	50 100		3, 4
398. Salisbury, Md. 399. Salt Lake City, Utah	17,000 247,000		4	87	13		2, 3, 6
400. San Angelo, Tex. 10/84	65,000		1, 2	100	13		1, 3
Too. Sail Aligelo, Tex.	05,000		1, 2	100			2,0

^{*} See notes beginning on p. 694.
† Included in preceding column.
† Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

113

7

1	9		10	11	12	13	14	15	1	6	17	18	1	T		58
				1	-		1		1 '	-	.,	18	19	20		
	P	um	ping l	Power#		Di	stribution	Storage¶			Dist	tr. Pi	ressure-	-psi	Te	Distr. mp.—°F
	To		To Sys-	Booste	EI	G-P	G-G	T	otal	В	us. I	Dist.	Res	. Dist.		1
	Plan	nt	tem	Dooste			mil gal		das	ys M	ax.	Min.	Max	Mir	- Jan	ı. Jul.
36 36			2, 5	2	0.4		2.0	2.	1 1.	6 12	20	100	-	40	-	-
36.			2 2	2	1	5.0	500.0	505.0		- 1	0	20	100	30		70
364			2, 5	2 2		0.1		69.0					1	1	00	10
365			5	2		0.1		1		0 1 3	5	65	110	35	45	87
				-		2.0	6.0	8.8	4.	1 7	0	62	70	62	61	
366			2	2	1.5	3.3		4.8	2.	6 6	0	60	60	60	1	
367		2	1, 2	1, 2	13.1		446.4	459.5			- 1	40	200	35	-	62
368		1	2, 5	2	15.0			15.0				45	125	25		80
370		1	2 2	2	1.0	2.0		3.0	0.			40	70	30	1	70 55
010	1 4		2	2	0.6		0.2	0.8	0.	6 6	0	40	100	60	00	72
371			2, 5		5.9		28.0	220			- 1				1	
372		1	5	2	1.5		175.0	33.9 176.5				59	90	34		64
373			2		1.5	10.0	110.0	11.5	0.8			45	90	45	-	53
374	2	1	2	2	1.7	0.5	2.3	4.5	1.0			45 50	65 58	30 50	1	82
375		1 4	2, 5	2			50.5	50.5	1.2	-		82	90	25	52 38	76 64
376	2	12	2, 5	2	0.4	0.2	50.5						-	20	36	04
377		"	2	2	0.2	4.0	52.5	53.1	0.7	1		25	120	25	78	80
378	2		2	2	2.9	7.0		4.2	0.4			35	50	35		
379	2		2		0.5	0.4		0.9	0.2	-		60	85	30	34	57
380		2	, 5	2			60.0	60.0	2.8		. 1	43 45	90	40 35	40	60
381	2		2	2	2.0	50.2						-	70	00	40	60
382	2		. 5	-	0.2	59.2		61.2	2.3	1	1	35	60	35	36	81
383	5		5	2	3.7	0.7	5.5	5.7	1.6			70	80	60	52	58
384	1		2		0.2	0.1	0.0	0.2	0.2	1		90	150	20		
385			5					0.2	0.2	60	1	58	60	36	2.4	70
86	1, 2	1	2	2	0.0										34	50
87	1, 2		5	4	9.9			9.9	0.5	100	1	30	180	30	40	70
88	2		2		9.0	14.5	66.0	66.0	5.8	80	1	60	80	60	35	70
89	2		2	2	0.5	14.3	2.7	23.5	0.6	50		35	50	25	43	68
90	2	2,	5	2	2.1	-	2.7	2.1	2.3	90 70		70	70	55	30	76 70
91	1	1	1	1	0.4	79.0	1050	200						10	33	10
92	2	2,		2-4	1.0	20.5	185.0	264.4	1.5	65			110	25	44	86
93			2		2.6	1.5	2.4	23.9	0.5	140			140	25	45	83
94	2	1,			5.0		64.0	69.0	1.7	62 90		0	62	20	65	68
95	2	2	2		0.7		3.0	3.7	2.4	100		0	60 100	25 35	36	73
96		5		2	0.5	0.2	110								-	
7	2	2		2	1.8	3.0	110.4	111.1	0.0	78			110	40	46	63
8	2	2		-	1.1	3.0		4.8	0.9	70	2		70	26	54	70
9		2,		2				1.1	0.4	48 100	4		48	37	60	65
00	2	2		2	4.0			4.0	0.5	70	6.	1 7	80	20 30	48 54	58 85

§ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.
| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
| Employed = Control | Fermion | Fe

1	2	3	4	5	6	7	8
	Populati	on Served		Sour	ce of S	Supply nt§	
Community*	-		Public Control		1	1	Type of
	Retail	Wholesale	Agency‡	S	G	P	Treatment
401. San Antonio, Tex.	465,000		4	-	100	-	3
402. San Bernardino, Calif. 7/55	86,000		4	5	95		3
403. San Francisco, Calif. 7/88	790,000	500,000	4	99	1		3, 4
404. Sandusky, Ohio 405. Sanford, Fla. ^{10/88}	33,000 20,000		6	100	100		1, 3
406. Sanford, N.C. ^{7/88}	15,000		2	100			1, 3, 4, 6
407. Santa Barbara, Calif. 7/8	65,000		9	100	V	2	1, 3, 4, 6
408. Santa Cruz, Calif. 7/85	28,000		6	96	4		1, 3, 6
409. Santa Fe, N.M.	33,000		pvt.	48	52		3, 4, 6
410. Santa Paula, Calif.	14,000		pvt.	32	68		3
411. Santa Rosa, Calif. 7/88	37,000		3	35	65		3
412. Schenectady, N.Y.	112,000		2		100		3
413. Scottsbluff, Neb.	14,000		6	100	100		
414. Scranton, Pa.* 415. Seattle, Wash.	520,000 600,000	48,000	pvt.	100 100			1, 3
416. Shamokin, Pa.*	51,000	21,000	pvt.	100			3, 4
417. Sharon, Pa.*	55,000		pvt.	100			1, 3, 4, 6
418. Shawnee, Okla.7/88	30,000		6	100			1, 3
419. Sheboygan, Wis.	45,000	4,000	4	100			1, 3, 6, 7
420. Sheffield, Ala. 6/88	15,000		3	100			1, 3, 7
421. Shelbyville, Ind.	13,000		pvt.	100	100		1, 3, 5
422. Sheridan, Wyo.	15,000		2	100		100	3
423. Shorewood, Wis.	17,000		2 7	100		100	1 2
424. Shreveport, La. 425. Sioux City, Iowa	95,000		'	100	100		1, 3
126. Sioux Falls, S.D.	60,000		7		100		1-4
127. Snyder, Tex. 10/55	17,000		6	95	5		1, 3, 4, 6
128. South Gate, Calif. 7/55	40,000		2		100		
129. South Milwaukee, Wis.	15,000		2	100			1, 3, 6, 7
130. South Orange, N.J.	17,000		3		100		2, 3
31. South St. Paul, Minn. 4/88	19,000		2		100	14	4
132. So. Calif. Water Co.*	283,000 185,000		pvt.		89 100	11	1, 3, 6
133. Spokane, Wash. 134. Springfield, Ill. ^{8/88}	110,000		2	100	100		1-3, 6
35. Springfield, Mass.	174,000	34,000	4	100			1-3, 0
36. Springfield, Mo.	88,000		pvt.	95	5		1, 3, 5, 6
37. Stamford, Conn.	70,000	14,000	pvt.	100			3
38. Sterling, Ill.	26,000		pvt.		100		3, 4
39. Stevens Point, Wis.	16,000		4		100		3
40. Struthers, Ohio	26,000		pvt.	100			1, 3, 6

^{*} See notes beginning on p. 694,
† Included in preceding column,
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

-	1	9	10	11	13	2 13	14	1.5		16	1	7 1	18	19	20	1 2	1 22
	-	Pu	mping	Power#		D	stribution ;	Storage¶				Distr.	Pressi	ure-	-psi	Te	Distr.
	3	To Plant	To Sys-		El	G-F	G-G	1	otal		Bu	ıs. Dis	t.	Res.	Dist.	-	1
-			tem				mil gal		d	ays	Ma	x. Mi	n. M	fax.	Min	- Ja	n. Jul.
	01 02	2	1-3 2, 5		5.4	2.3	20.00	18.		0.3	90) 4	0	90	40	7:	75
	03	2	4, 0	1 2	0.2		43.6	43.		2.3					10	6	
	04	2	2		2.0		318.0	318.		2.3						52	
40	05	2	2, 3		0.4			2.	- 1	0.3	75		- 1	75	35	34	
	2			1	1	1.0		1.	4	1.0	70	50) (50	40	60	75
40	06		2, 3		0.8			0.8	8 (0.7	80	70) 6	30	35		
40		2	2, 5	1			60.0	60.0	0 10).1	150	104	1	-	30	57	100
40		2	2, 5	2		0.5	45.3	45.8	8 8	.3	115	60		00	30	47	68
41			2, 5	2						1	75	65			20	36	55
		- 1		2	1.6		5.0	6.6	3	.7	90	80		-	30	00	00
41			2	2			2.3	2.3	10		=0	1		-1			
41			2				20.0	20.0		.6	50	40	1	_	40	60	70
41			2		0.4		20.0	0.4			100	70 35	1		90	67	54
41		2	1-5	2				0.1	0.		65	50	4.	3	30		1
41.	3	-	5	2	5.0		354.9	359.9	4.	2 1	35	50	12	5	30	36	62
410	5		2, 5	2	8.7			0 7								00	02
413	7 2		1, 2	2	7.0		2.0	8.7	2.		15	110	115		20	38	55
418	3 3	1.	3, 5		1.0	1	2.0	9.0	1.		38	138	100		50	33	75
419			2		4.0	1		4.0	0		65	58	60	. 1	58		
420	2		2	2	0.9			0.9	0.		80 50	58 40	65		40 30	36 40	54
421	2		2	- 1	0.3	0.4							00		30	40	84
422			5	2	0.3	0.4	6.0	0.7	0.4		65	60	65	1 3	54	51	54
423			2	-	0.0	1	6.0	6.3	2.5		00	40	70	1 2	20	40	60
424			2		2.0	4.0	8.0	110	0.8	. 1	80	60					
125	2		2	2	0.3	1.0	24.0	14.0 24.3	0.7		00	60	60 80	4	10	52	85
126	2	2	, 3	2	2.2	5.2		7.1	0.5	1 -	_						
127	2		2	2	0.3	2.0		7.4	0.7	1	5	65	65			50	55
128			5		3.0			3.0	1.3	10		80	90			58	68
129	2		2	2	0.5	1.2	1.7	3.4	0.3	5		50	57		- 1	58	68
130	2	1	2	2	0.2		3.5	3.7	1.3	12	- 1	50	70 130	3		35	61
31		1	2	2	0.2					1.0	-	. 1.3	130	4	0	54	60
32	2		2		0.3	156	2.0	2.3	1.4	9.	- 1	50	58	20	0 5	55	65
33			2	-	5.8	15.6	18.3	35.2	0.7	120		35	120	3.		8	68
34	2	1,		-	1.0	6.0	77.5	83.3	2.9	8.		83	120	38		8	51
35	5	5				0.0	29.0	7.0	0.5	53		45	55	30			
26	2 -	1					27.0	27.0	0.9	145	1	20	80	60	3	6	54
36	2-5	1 2			3.0	2.0		5.0	0.7	90)	53	95	30) 4	7	79
38	2	2		2						90			100	7			75
9	2	2			0.2			0.2	0.1	65		55	60	50		_ /	65
10	2, 5	2			.3			1.3	0.7	72		60	72	60			60
-	-, 0	-	-	1	.2			1.2	1.0	160		50	120	35		-	66

§ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

| Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;

6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

1	2	3	4	5	6	7	8
	Populatio	on Served		Source	ce of Si	upply	
Community*	Retail	Wholesale	Public Control Agency:	s	G	P	Type of Treatment
441. Superior, Wis.	35,000		pvt.	100			1, 3, 5
442. Swampscott, Mass.	12,000		3			100	
443. Syracuse, N.Y.	250,000		1		100		3
444. Tacoma, Wash.	165,000		3	95	5		3, 6
445. Tampa, Fla. 10/88	235,000		1	100			1-4, 6
446. Taunton, Mass.	40,000	3,000	4	100			3
447. Terrell, Tex.4/88	13,000		2	100			1, 3, 6
448. Texarkana, Tex.	51,000		4	70	30		1, 3-6
449. Texas City, Tex. 7/55	30,000		2		100		3
450. Toledo, Ohio	453,000	15,000	6, 8	100			1-4, 6, 7
451. Tonawanda, N.Y.	17,000		2	100			1, 3, 6, 7
452. Topeka, Kan.	122,000		4	90	10		1-6
453. Torrance, Calif. 7/66	45,000		2		25	75	3
454. Torrington, Conn.	25,000		pvt.	100			3
455. Tucson, Ariz. ^{3/55}	94,000		6		100		3
456. Tulare, Calif. 7/88	13,000		4		100		none
457. Tulsa, Okla. 7/65	240,000	27,000	4	100			1, 3, 7
458. Two Rivers, Wis.	11,000		2	100			1, 3, 6, 7
459. Uniontown, Pa.	25,000		pvt.	100			1, 3, 4
460. Vancouver, Wash.	55,000		6		100		3
461. Ventura, Calif. 7/88	31,000		6	70	30		2, 3, 6
462. Vernon, Tex. 4/85	14,000		1, 2		100		3
463. Vincennes, Ind.	24,000		4		100		3
464. Virginia, Minn.4/55	15,000		4	10	90		1, 3
465. Walla Walla, Wash.	27,000		7	88	12		3
466. Wallingford, Conn.	23,000		4	100			1, 3, 4
467. Washington, D.C. ^{7/66}	850,000	194,000	9	100			1, 3, 4, 6,
468. Washington, Ind.	13,000			V	V		1, 3, 5, 6
469. Washington C. H., Ohio*	13,000		pvt.	55	45		1-3, 5, 6
470. Waterloo, Iowa	70,000	1,000	4		100		3
471. Watertown, N.Y. ^{7/85}	38,000		6	100			1, 3, 4, 6
472. Watertown, S.D.	14,000		1	88	12		1, 6, 7
473. Waterville, Me.	30,000		5	100			3
474. Waukegan, Ill. 6/88 475. Wauwatosa, Wis.	49,000 37,000		1, 2	100	100		1, 3, 6, 7
476. Waycross, Ga.	21,000		6		100		3, 7
477. Webster, Mass.	14,000		4		100	100	none
478. West Allis, Wis.	62,000		3		100	100	2
479. W. University Place, Tex.	18,000		5		100		3
480. West View, Pa.	95,000		3		100		2, 3

^{*}See notes beginning on p. 694.
† Included in preceding column.
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	Pum	ping P	ower#		Distril	oution Stor	age¶		Dist	tr. Pres	sure—/	psi	Dis Temp	tr. .—°F
	To	То		El	G-P	G-G	Total		Bus.	Dist.	Res. 1	Dist.	Jan.	Jul.
	Plant	Sys- tem	Booster		mi	l gal		days	Max.	Min.	Max.	Min.	J	
141	2	2			1.3		1.3	0.4	59	50	59	35	40	60
142	-	5		0.9			0.9		92	60	92	38		
143		5	2	13.8		235.0	248.8	5.3			105	25	43	67
144		2, 5	2		1				104	45	130	30	39	59
145	1, 2	1, 2	2	4.7	7.5		12.2	0.5	70	50	70	40	55	80
146		1-3		0.3	1	22.5	22.8	4.6	72	62	80	50	40	72
147	2	2	2	0.7	0.3		1.0		60	55	45	40	40	80
148	1, 2	1, 2	2	1.5	3.0		4.5	1.3	85	75	90	50	68	80
149	2	2	2	0.4	1.4		1.8	0.7	55	50	55	50	2.	71
150	2	2		1.0	40.0	1	41.0	0.6	65	40	65	40	34	75
		2		0.5		1	0.5	0.1	55	50	45	35	34	75
151	2	2	2	1.5	11.0		12.5	1.0	80	50	85	30	45	8
152	2	1, 2	2 2	0.2	3.0	10.0	13.2	1.2	80	60	95	60	62	6.
153		2, 5	2	1.3	0.0	20.0	1.3	0.3	95	80	95	25	40	7
454 455		5 2, 5	2	2.0	10.0	20.0	32.0	2.2	70	65	70	35	65	8
186		2		0.2			0.2	0.0	55	45	55	45		7
456			2	2.5	1	27.5	30.0	0.7	80	70	100	20	42	8
$\frac{457}{458}$	5 2	1, 2	2	1.0	1.5	2110	2.5	1.8	65	55	60	55	37	5
$\frac{450}{459}$		2	2	1.0	4.00	3.5	3.5	1.7			150	40	48	6
460	1	2, 5		1.3	2.0	13.1	16.4	2.0	82	62	110	42		
461	2	2, 5	2				38.2	6.8	90	50	125	35	65	7
462		2, 5		1.0	1.8	0.2	3.0	2.0	65	55	80	55	50	6
463		2		1.0	-		1.0	0.5		70	90	45	57	6
464		2	2	0.1	1.3		1.4	0.7		50	60	30		5
465		2, 5				15.0	15.0	1.6	130	60	150	50	35	5
466	2	2	2						110		100			13
467		2, 5		2.7	45.0	100.4	148.1		90		90			8
468		2	2	0.5			0.5	0.4						6
469		2		0.3	0.2		0.5	0.5			55			
470		2, 5	5	3.0	7.0		10.0	1.2	80	80	80	80	47	,
471	2, 4	2,	1	8.0	0.8		8.8	1.9						1
47	2 2	2		1.2			1.2	0.9						
47.		2				40.0	40.0		100					
47		2	2	0.7	4.5		5.2	0.8						
47		2	2	1.5	4.5		6.0	1.0	95	80	85	35	54	1
47	5 2, 3	2		0.9	0.8		1.7							
47	7	1,	2	2.7			2.7							1
47		2		1.0			1.0							
47		2		0.5	0.4		0.9							
48		2		2.8	12.5		15.3	1.5	9 125	65	200	0 6.	5 55	1

\$ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

il Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;

il Key: 1—steam; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;

il Key: 1—steam; 2—softening; 3—chlorination; 4—other; 5—gravity (no pumping).

Key: 1—steam; 2—softening; 3—diesel; 4—other; 5—gravity (no pumping).

El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

	1	2	3	4	5	6	7	8
		Population	on Served			ce of S		
	Community*	Retail	Wholesale	Public Control Agency‡	S	G	P	Type of Treatment
481.	Westchester County, N.Y.*	42,000	-	5	75	_	25	1, 3, 4, 6
482.	Westerly, R.I.	18,000		4		100		
	Westmoreland County, Pa.4/55	146,000		5	100			1, 3-6
	Weymouth, Mass.	42,000		4	94	6		1, 3, 4
485.	Whittier, Calif. 7/65	32,000		6		100		none
486.	Wichita, Kan.*	237,000		pvt.*		100		1-5
487.	Wilkinsburg-Penn, Pa.	210,000	†	5	100			1, 3-7
488.	Williamsport, Pa.7/86	60,000		5	95	5		3
489.	Wilmington, N.C.7/55	55,000		2	100			1
490.	Wilson, N.C. ^{7/83}	28,000		1, 2	100			1, 3, 4, 6, 7
491.	Winnetka, Ill.4/55	14,000	3,000	6	100			1, 7
492.	Wisconsin Rapids, Wis.	14,000		4		100		
493.	Worcester, Mass.	208,000		6	100			5 3
494.	Wyandotte, Mich. 10/58	42,000		4	100			1, 3, 4, 6, 7
495.	Yonkers, N.Y.	160,000		2, 3		46	54	1, 3
496.	York, Pa.	100,000		pvt.	100			1, 3
497.	Youngstown, Ohio	196,000	4,000	1			100	

^{*} See notes beginning on p. 694,
† Included in preceding column.
‡ Key: 1—mayor; 2—council; 3—board of public works, utilities, or services; 4—water board or commission;
5—water authority or district; 6—city manager; 7—city commission or commissioner; 8—director of public works, utilities, or services; 9—other; pvt.—private.

1	9	10	11	12	13	14	15	16	1.7	18	19	20	21	22
	Pun	nping F	ower#		Distr	ibution Sto	rage¶		Dis	tr. Pre	ssure-	psi	Di Temp	str.
	То	To Sys-	Booster	El	G-P	G-G	Tota	al	Bus.	Dist.	Res.	Dist.	Jan.	Jul
	Plant	tem	Booster		22.	il gal		days	Max.	Min.	Max.	Min.	Jan.	Jui
481	2	2		1.0	1	0.4	1.4	0.3	110	100	125	20	35	83
482		1, 2		2.3			2.3	1.2	100	90	100	45	52	52
483	2	2, 5	2	12.0		113.0	125.0	5.9	150	50	175	35		
484	2	2, 5	2	4.1			4.1	1.5	120	30	120	30	34	78
485		2, 4	2	0.3		23.4	23.7	4.2	90	47	108	40	62	64
486	2	2, 4	2	2.3	7.8		10.1	0.3	108	85	100	35	62	72
487	2	5	2 2	2.4		42.3	44.7	2.7	175	35	175	15	39	78
488	2	2, 5	2	0.5		4.0	4.5	0.7	60	50	175	20	40	69
489	2	2		2.0	5.0		7.0	1.3	65	55	65	50	51	86
490	2	2		1.0	2.0		3.0	1.2	65	60	55	50	45	84
491	2	1, 2			2.2	2.2	4.4	1.6	55	35	55	30	45	65
492	2	2		0.8	0.4		1.2	0.8	75	65	75	55	48	50
493		2 5	2		1	4.0	4.0	0.2	165	100	165	20	40	75
494	2	2		0.5	4.3		4.8	0.8	55	40	55	40	40	70
495	2	2, 5	2	1.0		60.0	61.0	2.8	150	30	150	30		
496	1, 2	5	2	3.6		32.0	35.6	2.2	90	75	80	50		
497			2	7.5		32.6	40.1		101	98	100	37	33	72

§ Key: S—surface water; G—ground water; P—purchased water; √ percentage unreported.

Il Key: 1—filtration; 2—softening; 3—chlorination; 4—corrosion control; 5—iron or manganese removal;
6—taste and odor control; 7—fluoridation.

Key: 1—steam; 2—electric; 3—diesel; 4—other; 5—gravity (no pumping).

¶ El—elevated; G-P—ground storage, pumped; G-G—ground storage, gravity.

	1	2	3	4	5	6	7	8
		Trans-	Dis	tribution	Mains—m	iles	Val	ves
	Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile o Main
1.	Aberdeen, S.D.	7.5	48	20	68	3.0	483	7.1
2.	Adrian, Mich. 7/88		33	10	43	2.2		
	Akron, Ohio	25.3	577	181	758	2.6	9,967	13.1
4.	Albany, N.Y.	23.0	217	74	291	2.2	4,369	15.0
5.	Albemarle, N.C. ^{7/88}	6.0	49	12	61	4.1	642	10.5
6	Albert Lea, Minn.	0.3	44	2	46	2.9		
	Albion, Mich.						430	
8. 4	Albuquerque, N.M. ^{7/88}		532	81	613	3.6	4,615	7.5
9. /	Alexandria, La. 5/55	8.0	64	16	80	1.5	1,400	17.5
10.	Alhambra, Calif.7/88	4.0	116	14	130	2.4		
11. /	Allen Park, Mich.	6.0	90	5	95	2.7	500	5.3
	Alliance, Ohio	3.0	70	13	83	2.7	775	9.3
	Amarillo, Tex. 10/55	65.0	183	56	239	1.8	3,122	13.1
	Americus, Ga. Ames, Iowa	0.7	50	9	59	2.6	150 984	16.7
		2.0			112	2.5		
	Anaheim, Calif.	2.0			112	2.5	1,762	15.7
	Annapolis, Md. 7/66		50	50	102	2.1	4 305	126
	Anniston, Ala.4/88	2.9	34	52	102	2.1	1,285	12.6
	Ansonia, Conn. Antioch, Calif. ^{7/88}	2.5	43	8	42 55	2.3 3.9	500	9.1
21	Appleton, Wis.						1,781	
	Arcadia, Calif. 7/88	15.8	103	20	123	3.5	1,536	12.5
	Arlington, Va.7/88	2.6	300	55	355	2.2	9,000	25.4
24 /	Asheville, N.C. ^{7/88}	40.0	265	83	348	6.6	9,000	23.4
	Ashland, Ohio	1.0	70	15	85	5.3	600	7.1
26.	Athol, Mass.	8.0	40	7	47	3.9	510	10.8
	Atlanta, Ga.	9.0	1,021	224	1,245	2.4	14,800	11.8
	Atlantic City, N.J.	13.2	99	33	132	1.5	1,303	9.9
	Auburn, Me.	6.0	48	19	67	3.5	788	11.7
	Auburn, N.Y. 7/88	2.0	70	17	87	1.8	1,565	18.4
31. A	Augusta, Ga.	9.0						
	Augusta, Me.	2.0	56	14	70	3.2	939	13.4
	Austin, Minn.3/88							
	Austin, Tex. 10/55		376	107	483	2.5		
	Baltimore, Md.	26.5	1,402	735	2,137	1.6	28,867	13.5
36. E	Bangor, Me.	0.1	68	18	86	2.7	1,220	14.1
	Barberton, Ohio		81	19	100	2.9	2,100	21.0
	Batavia, N.Y.	0.0	40	5	45	2.5	335	7.5
	Baton Rouge, La.		162	56	218	1.3	2,185	10.0
	Bay City, Mich. 7/88	3.6	170	30	200	3.3	1,364	6.8

1	9	10	11	12	13	14	15	16	17	18
	Hydr	rants		Distri	bution—m	il gal	Per Cent			
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Prod. Un- accounted for	Prod.	Distr.	Loss per Main-Mile 1,000 gpd
1	388	5.7	886	511	375	886	0.0	105	105	0
2	260	6.0	1,317	1,216	none	1,216	7.7	180	167	6
3	6.104	8.1	14,184	11,910	35	11,945	15.8	130	110	8
4	2,419	8.3	8,925					181		
5	298	4.9	773		none			141		
6	360	7.8	545	409	136	545	0.0	93	93	0
7	275		1.212	1.198		1.198	1.2	255	252	
8	2,131	3.5	8,538	7,750		7,750	9.2	137	125	3
9	644	-8.1	1,615	1,165	220	1,385	14.2	82	69	9
10	848	6.5	2,990	2,600	4	2,604	12.9	149	129	8
11	860	9.1	940	940	none	940	0.0	74	74	0
12	623	7.5	2.098	1,522	134	1,656	21.1	185	146	14
13	1,155 200	4.8	7,356	6,441	none	6,441	12.4	155	136	11
15	502	8.5	629	502	46	548	12.9	75	65	4
16	1,312	11.7	2,427	1,549	none	1,549	36.2	148	94	22
17			610	550	8			62		
18	334	3.3	2,822	2,383	none	2,383	15.6	125	105	12
19	277	6.6	883	636	*115	751	15.0	135	114	9
20	490	8.9	877	-	17			172		
21	1,029		1,940	1,496	109	1,605	17.3	129	107	
22	826	6.7	3,890	3,480		3,480	10.5	304	272	9
23	2,160	6.1	6,045	4,745	1,300	6,045	0.0	84	84	0
24 25	1,734 358	5.0	3,451 550	2,231	100	2,331	32.4	95 94	64	9
	-			246		246	3.0	02	79	
26	302	6.4	360	346	2 572	346	3.9	82	99	1 2
27	10,232	8.2	20,544	16,852	2,573	19,425	5.4	104	102	7
28	1,432	10.9	3,676	3,260	100	3,360	8.6	112	102	,
29 30	314 844	4.7 9.9	740 3,278					187		
31				4,337		4.337			79	
32	258	3.7	1,163		none	-,		145		
33	539		1,185	895		895	24.5	135	102	
34	3,326	6.7	11.879	10,900		10.900	8.2	162	149	5
35	12,867	6.0	70,352					148		
36	524	6.1	1,365	1,365		1,365	0.0	117	117	0
37	912	9.1	1,766	1,716	50	1,766	0.0	138	138	0
38	403	9.0	715	560	25	585	18.2	109	89	8
39	2,228	10.2	5,026	4,615	none	4,615	8.2	81	74	5
40	1,189	6.0	3,427	2,921	none	2,921	14.7	147	125	7

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Dis	tribution	Mains-m	iles	Val	ves
Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile o Main
41. Beaver Falls, Pa.		100	33	133	2.0	2,770	20.8
42. Beckley, W.Va.	11.0	45	12	57	1.1		
43. Bellaire, Ohio	0.2	23	4	27	2.1		
44. Bellaire, Tex. 10/86	0.0	29	2	31	1.4	260	8.4
45. Bellingham, Wash.	2.8	123	37	160	4.1	2,786	17.3
46. Belmont, Mass.		68	15	83	2.8	2,200	26.6
47. Bemidji, Minn.	0.1	32	3	35	3.5	182	5.2
48. Benton Harbor, Mich.	0.8	46	10	56	2.5	642	11.5
49. Berlin, N.H.	10.0						
50. Beverly Hills, Calif. 7/88	6.5						
51. Bexley, Ohio ^{11/66}				40	2.9		
52. Billings, Mont.		56	26	82	1.4		
53. Binghamton, N.Y.	0.5	123	28	151	1.6	2,424	16.0
54. Birmingham, Ala.	9.0	462	165	627	1.2	-,	1010
55. Birmingham, Mich. 7/86		80	14	94	4.1		
56. Bismarck, N.D. 7/66	8.4	49	6	55	2.4	555	10.1
57. Bloomfield, N.J.		93	10	103	2.0		
58. Bloomington, Ill. 5/65	28.0	80	13	93	2.4	1,256	13.5
59. Boone, Iowa	7.0	48	14	62	4.8	562	9.1
60. Boston, Mass.	72.8	441	581	1,022	1.4	16,514	16.1
61. Boulder, Colo.	23.0						
62. Braddock, Pa.		12	1	13	0.8		
63. Bradenton, Fla.	7.0	47	6	53	3.8		
64. Bradford, Pa.	17.4	39	6	45	2.3	844	19.6
65. Brawley, Calif. 7/66	0.4	35	4	39	2.8	343	8.8
66. Bremerton, Wash.	11.0						
67. Bridgeport, Conn.	37.9	591	147	738	2.8		
68. Bristol, Tenn. 6/85		27	14	41	2.0	720	17.5
69. Bristol, Va.	19.2	42	7	49	2.7	801	16.3
70. Brockton, Mass.	28.0	118	17	135	2.1	2,100	15.6
71. Brookline, Mass.		84	41	125	2.2	1,616	12.9
72. Brownsville, Tex.				90	1.8		
73. Buffalo, N.Y.	1.3						
74. Burbank, Calif. 7/88	0.0	185	54	239	2.6	2,806	11.7
75. Burlington, Iowa	0.8	71	25	96	3.1	1,269	13.2
76. Burlington, N.J.		28	7	35	2.5		
77. Burlington, N.C. ^{7/55}	9.0	95	9	104	3.5		
78. Butte, Mont.	90.6	131	28	159	2.8	1,895	11.9
79. Cambridge, Ohio	1.2	32	5	37	2.1	409	11.0
80. Canton, Ohio	5.0	286	69	355	2.6		

1	9	10	11	12	13	14	15	16	17	18
	Hydr	ants		Distrib	ution-mil	gal	Per Cent			Loss per
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Prod. Un- accounted for	Prod.	Distr.	Loss per Main-Mile 1,000 gpd
41	895	6.7	2,533	1,510	none	1,510	40.4	107	64	21
42	172	3.0	846	705	none	705	16.7	46	39	6
43	310	11.5	787	630		630	19.9	166	133	16
44	225	7.3	941	802	139	941	0.0	117	117	0
45	914	5.7	*3,588	3,588	none	3,588	0.0	250	250	0
46	634	7.6	727	694	ş			67		
47	226	6.5						121		
48	457	8.2	1,052	875	8			131		
49 50	200 795		1,034 3,203	3,203	none	3,203	0.0	204	204	0
		100						73		
51	400	10.0	375 3,279	2,768	none	2,768	15.6	149	126	16
52	566	6.9		2,650	1,030	3,680	0.0	106	106	0
53	1,368	9.1	3,680			14,695	20.6	100	79	17
54	3,488 572	5.6	18,519 820	14,695 792	none	792	3.4	98	94	1
56	343	6.2	844	706	138	844	0.0	100	100	0
57	1,038	10.0	1.877	1.570	224	1.794	4.4	99	95	3
58	932	10.0	1.814	1.197		1,197	34.0	131	86	19
59	536	8.7	584	498	8			123		
60	12,143	11.9	41,500	27,823	11,825	39,648	4.5	160	153	5
61				2,060	none	2,060				
62	115	8.9	703					113		
63	492	9.3	543	379	9			106		
64	378	8.4	1,384	1,292	92	1,384	0.0	190	190	0
65	272	7.0	1,338					262		
66	510		2,553	2,163		2,163		156	132	0
67	4,211	5.6	15,739	14,547	1,192	15,739		161	161	0
68	258		767	764	none	764		105	105	17
69 70	325 1,300	1	866	560 1,857	2	560 1,859		113	73 64	17
								93	84	4
71	1,406		1,968	1,684	89	1,773		116	1	
72	410	4.6	2,116	1,820	none	1,820		230	1	
73			49,020	49,020	none	49,020		216		
74	1,357	1	7,234 1,594	7,044	none	7,044	2.0	136		-
75	1,013									0
76			688	688	none	688	0.0	134		0
77		1	1,614					143		
78	872							232		
79			977		15			148		
80	1,880	5.3	7,688	6,550	8			155		

5 3 6

9

7 2

9

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

	1	2	3	4	5	6	7	8
		Trans-	Dis	tribution !	Mains—m	iles	Val	ves
	* Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
81	Cape Girardeau, Mo.	11.4					254	
	Carthage, Mo.7/88		45	5	50	4.2	484	9.7
	Cedar Falls, Iowa	3.0	†69	1	†70		750	
	Cedar Rapids, Iowa	1.6	160	40	200	2.5	3,455	17.2
	Chambersburg, Pa.	20.2	40	8	48	2.4	480	10.0
86.	Champaign, Ill.*	8.5	112	20	132	1.7	2,463	18.7
	Charleroi, Pa.	0.0			94	2.0		
	Charleston, S.C.	25.4						
89.	Charleston, W.Va.	5.2	280	62	342	1.8	5,642	16.5
90.	Charlotte, N.C.7/55	27.0	289	85	374	2.1	4,000	10.7
91.	Chicago, Ill.	63.6	3,074	1,014	4,088		42,261	10.3
92.	Clarksburg, W.Va.	0.0	61	17	78	1.8		
93.	Clarksdale, Miss. 10/88		33	0	33	1.6	477	14.5
94.	Cleburne, Tex. 10/88	10.0	90	1	91	4.5	1,200	13.2
95.	Cleveland, Ohio	19.0	2,194	830	3,024	2.4	35,000	11.6
96.	Clinton, Iowa	0.0						
	Cobb County, Ga.	1.0	4	36	40	3.0	98	10.4
	Coffeyville, Kan.	1.0	54	13	67	3.0	700	10.4
	Collinsville, Ill. Colorado Spgs., Colo.	84.0	40 217	119	47 336	4.5	3,453	10.3
	•				400	0.5		80
101.	Columbia, Mo. ^{10/88}	0.1	84	16	100	2.5	575	5.8
102.	Columbia, S.C.7/88		173	56	229	2.2	2,201	9.6 8.4
	Columbia, Tenn. 7/85	1.5	41	3	44	2.3	370 435	0.4
	Columbus, Miss.	0.1		24	01	3.2	841	9.2
105.	Concord, N.H.	4.0	57	34	91	3.2	041	9.2
	Corpus Christi, Tex. 8/88	60.0	342	182	524	2.9	260	0.2
	Coshocton, Ohio	2.5	30	3	33	2.1	269	8.2
	Council Bluffs, Iowa	0.5	103	26	129	2.6	1,292	10.0
	Covington, Ky.	2.0	79	37	116	2.0	2,325	-
110.	Crawfordsville, Ind.		24	4	28	2.0	318	11.3
111.	Cudahy, Wis.	0.3	19	5	24	1.5	333	13.8
	Cuyahoga Falls, Ohio	1.0	97	17	114	2.8	1,800	15.8
113.	Dallas, Tex. 10/88		1,397	382	1,779	3.0	25,000	14.1
114.	Danville, Va.	1.0	82	33	115	2.3	1,176	10.2
115.	Dayton, Ohio	7.0	452	75	527	1.6	14,698	27.8
116.	Dearborn, Mich. 7/35		226	63	289	2.2	3,261	11.3
117.	Decatur, Ala. 8/88	0.1	45	17	62	2.4	985	15.9
118.	De Kalb, Ill. 5/88	0.0	46	9	55	3.2	719	13.1
119.	De Kalb County, Ga.	2.7	661	78	739	4.6	3,700	5.0
120	Denison, Tex.3/55	0.3	80	12	92	4.4		

^{*} See notes beginning on p. 694. † Includes mains less than 4 in, in diameter. ‡ Population served at retail.

(.)

1	9	10	11	12	13	14	15	16	17	18
	Ну	drants		Dia	tribution-	-mil gal		-		
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Per Cent Prod. Un accounted for	- Prod.	Distr.	Loss per Main-Mile 1,000 gpd
81	446		605	507	7	507		-	-	
82	369	7.4	333			507	16.2	69	58	
83	376		574	460	-	296	11.1	76	68	2
84			3,602			460	19.9	93	74	
85			1,285	2,816		2,886	19.9	123	99	10
		0.0	1,203	768	100	868	32.4	176	119	24
86	912	6.9	2,429	2.059	10	2.060				
87	362	3.8	2,185	1.897		2,069	14.8	87	74	8
88			5,588	1,091	none	1,897	13.2	130	113	9
89	959	2.8	7,355	E 422	1			105		
90	1,909	5.1	6,673	5,422 5,500		5,422	26.3	109	80	16
	-	0.1	0,073	3,300		5,500	17.6	102	84	9
91	44,548	10.9	378,532							
92	753	9.7	1,723	1.524	3	1 537		234		
93	373	11.3	754	703	38	1,527	11.4	110	97	7
94	400	4.4	732	612	120	741	1.7	99	97	1
95	40,000	13.3	114,709	91,510	3,721	732	0	100	100	0
			,	71,510	3,121	95,231	17.1	215	179	17
96	752			746	9	755			-	
97			2,139	2,100	none	2,100	4.0		74	
98	278	4.1		910	3	913	1.8	78	77	
99	230	4.9	530			913		0.0	114	
00	1,386	4.1	8,900	4,086	853	4,939	44.5	86 270	150	20
01	542	5.4	062					2,0	130	32
02	1,130	4.9	962				1	66		
03	205		4,033	3,479		3,479	13.7	104	90	6
04	242	4.7	1,057	992	36	1,028	2.7	152	148	2
05	733	0.4	817	552		552	32.4	118	80	2
03	133	8.1	1,437					141	00	
06	1,600	3.1	13,702	13,087		12.000				
07	219	6.6	850	695	none	13,087	4.5	208	199	3
08	1,052	8.2	1,922	1,592	155	850	0.0	146	146	0
9	916	7.9	3,362	2,683	182	1,774	7.7	105	97	3
10	231	8.2	433	362	645	3,328	1.0	46	46	0
			400	302	none	362	16.4	85	71	7
1	225	9.4	988	988		988	0.0	460		
2	1,147	10.0	1,128	1,070	25	1,095	0.0	169	169	0
3	8,295	4.7	34,186	28,146	295	28,441	2.9	67	65	1
4	830	7.2	1.478	1.199	275		16.8	150	125	9
5	3,476	6.6	16,493	14,993	1,500	1,199	18.9	81	66	7
6	2 4 2 2				,,,,,,,	10,170	0.0	141	141	0
6	2,132	7.4	8,461	8,461	none	8,461	0.0	178	178	0
8	390	6.3	1,758	1,618	none	1,618	8.0		158	0
	468	8.5	655		none			105	130	6
9	2,200	3.0	7,850	7,560		7,560			129	
100	368	4.0	963	730		730		106	129	1

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

F

1	2	3	4	5	6	7	8
	Trans-	Dis	tribution	Mains-m	iles	Val	ves
Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile o Main
121. Denton, Tex. 6/88	8.0	76	36	112	4.0		
122. Denver, Colo.	155.4	740	306	1,046	1.9	14,858	14.2
123. Derby, Conn.	0.4	19	8	27	2.7	300	11.1
124. Des Moines, Iowa	0.4	443	92	535	2.5	3,872	7.3
125. Des Plaines, Ill.		41	15	56	2.2	1,200	21.5
126. Detroit, Mich. 7/88 127. Dodge City, Kan.	18.4	4,846	1,296	6,142	3.2	30,909	5.0
128. Dover, N.J.	2.1	39	4	43	3.3	604	14.0
129. Dubuque, Iowa	146.2	114	33	147	2.7	1,696	11.5
130. Duluth, Minn.	0.3	222	87	309	2.9	3,360	10.9
131. Durant, Okla. 7/88	5.5						
132. Durham, N.C. ^{7/66}	24.0	145	60	205	2.4	5,070	24.7
133. Dyersburg, Tenn. 7/88	0.2						
134. E. Bay M.U.D., Calif. 7/88*	185.0	1,850	407	2,257	2.3	30,953	13.7
135. East Detroit, Mich. 7/56	4.0	79	12	91	2.3	743	8.2
136. East Jefferson, La.	0.5	241	49	290	3.4	3,230	11
137. East Lansing, Mich. 7/86	0.6	23	2	25	1.9	516	20.6
138. East Orange, N.J.	15.0	90	32	122	1.5	2,350	20.1
139. Eau Claire, Wis.	1.3	97	19	116	3.2		
140. Ecorse, Mich. 7/88	34.0						
141. El Centro, Calif.		47	10	57	3.6		
142. El Dorado, Kan.		9	9	18	1.1	560	31.1
143. Elizabeth, N.J.		126	50	176	1.4	2,147	12.2
144. Elizabeth City, N.C.7/88	3.0	17	4	21	1.4	450	21.4
145. Elmira, N.Y.	3.2	137	34	171	2.4		
146. Elwood, Ind.							
147. Emporia, Kan.	5.5	52	15	67	3.7	1,152	17.7
148. Endicott, N.Y.		84	11	95	1.6	1,624	17.1
149 Erie, Pa.	5.0	290	112	402	2.7	6,149	15.3
150. Escanaba, Mich. 7/88	0.3	44	8	52	3.5	400	7.7
151. Eugene, Ore.	12.0	117	21	138	3.1	1,100	8.0
152. Evanston, Ill.		108	25	133	1.8	1,389	10.4
153. Fargo, N.D. ^{7/66}	0.1	87	23	110	2.4	3,246	29.5
154. Faribault, Minn.		53	4	57	3.6	822	14.4
155. Fayetteville, N.C.7/56	6.0	114	29	143	2.4	1,823	12.8
156. Fergus Falls, Minn.4/55	0.1	33	7	40	2.9	261	6.5
157. Flint, Mich. 7/86	0.0	406	84	490	2.6	6,064	12.4
158. Florence, Ala. 10/55	0.0	42	14	56	1.9	278	5.0
159. Fort Collins, Colo.	56.3	42	12	54	2.4	420	7.8
160. Fort Dodge, Iowa	0.5	77	5	82	2.7	1,595	19.5

<sup>See notes beginning on p. 694.
† Includes mains less than 4 in. in diameter.
† Population served at retail.</sup>

d.)

of n

2 1 3

	1	9	1	10	11	1 13	2	1	T		1		1			5
		-				-		13		14	1	5	10	6	17	18
		H	ydranti		odue-	1	Dist	ribution	-mil ga	l	-		-			
		Tota	M11	ti	ion l gal	Solo	d	Free	To	otal	Per (Prod. accour	Un-	Pro		Distr. pcd	Loss per Main-Mile 1,000 gpd
	121				,092	7	87	-	-	707	-					
	122	5,94	_ /	.7 32	,993	32,3		none	22	787	28.		107		77	8
	123	17.	-	.5	630		29		1 32	,392	1.		147		45	1
	125	4,32			090	7,5	74	1,51	- 1	,090	0.0		173		73	0
	123	700	12.	.5		6.	50	50		700	0.0	0	113	1	13	0
	26	30,231		9 173,	747	151,03	75	1,530	152	605				1	"	
	27 28	418		1,	144	61		528		144	12.2		155	1 -	37	9
	29	311			591	34	18	2	1 .,	350	0.0		262		52	0
	30	1,094			578	1,23	33	445		678	49.3		146		74	22
	30	1,482	4.	5,7	793	3,84	6	- 10	1	846	0.0 33.6		85		35	0
13	31	234							1	20	33.0	1	148	9	19	17
13		1,430	7.0		20	60		120	1 7	720	0.0	1	152	1 .5	2	
13		240	1.0	1 -9-		2,60	0	none		00	15.8		100	15		0
13		0,323	4.6		67						.0.0		162	8	4	7
13		635	7.0		0.5	41,72.		none	41,7	23	9.8		127	11.	=	
			7.0			862	2		8	62	-10	1	141	5		5
13		2,690	9.3	2,80	56	2,486	5	1	24	n m						
13	-	166	6.6	43	31	325		*77	2,4		13.2		92	80)	4
138		1,046	8.6	2,52	29	2,225		12		02	6.7		91	85	5	3
139		1,129	9.7	3,57	8	3,305		273	2,23 3,57		11.5		83	74		6
140	,			1,26	1	1,117		144	1,26		0.0		72	272		0
141	1	328	* 0			-,,	1	111	1,26	1	0.0	10	65	165		0
142		265	5.8	1,77		1,287	1	488	1,77	5	0.0	20	24	20.	1	
143	. 1	.255	14.7	40			1		-,		0.0		04	304		0
144		298	7.1	3,79		3,254	1	none	3,25	4	14.2		30		1	
145		943	14.2	439		313		126	43		0.0		80	68		9
		740	5.5	2,845		2,268		45	2,31.		18.7	11		80 91		0
146	1			252	.	240								31		8
147		348	5.2	642		240			240		4.8	5	3	51	1	
148		579	6.1	3,166		564 3,024			564		12.1	9	_	86		3
149	2,	162	5.4	13,906		3,700		200	3,024		4.5	14:	2	136		4
150		430	8.3	538				200	13,900	1	0.1	25	2	252	1	0
				300		418		35	453		15.8	98	8	83		4
151		750	5.4	3,944	1 :	3,454			3,454	1	10.				1	
152		136	8.5	6,524		5,070		16	6,086		12.4	157		137		10
153		082	9.8	1,781		,671		10	1,671	1	6.7	148		138		9
154 155		51	4.4	530		353		177	530	1	6.2	109		102		3
133	0	70	4.7	1,416	1	,226		45	1,271	1 .	0.0	91	1	91		0
156	2	21	5.5	267					21221	1	0.2	64		58		3
157	3,2		6.6	567	4.0	409		20	429	2	4.4	111		84		0
158		26	7.6	16,335	14	,508			14,508	1	1.2	236	1	209		9
159			4.6	2,013	0	597	8			1		83	1 4	103	1	10
402				4,013	2.	.013	no	no l	2012		0 0					
160	5.	52	6.7	1,465	,	374	110	20	2,013		0.0	240	1 2	40		0

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

F =

1	2	3	4	5	6	7	8
	Trans-	Dis	tribution 1	dains-m	iles	Val	ves
Community*	Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
161. Fort Madison, Iowa 162. Fort Scott, Kan.	2.0			31	2.1	430 620	13.9
163. Fort Wayne, Ind.	4.6	266	65	331	2.4	3,099	9.4
164. Fostoria, Ohio	1.0	40	2	42	2.6	480	11.4
165. Frankfort, Ky.7/88	2.0						
166. Franklin, Ind.	0.0	20	2	22	2.2	163	7.4
167. Franklin, Pa.	4.0	21	6	27	1.9		
168. Fredericksburg, Va.7/66	0.1						
169. Freeport, Ill. 10/63	0.3					789	1
170. Fremont, Neb.	61.5	54	7	61	3.4	700	11.5
171. Fresno, Calif. 7/88		359	91	450	3.5	4,806	10.7
172. Fullerton, Calif. 7/88	1.5	31	9	40	1.0	2,300	
173. Fulton, Mo.7/65				26	2.2	200	7.7
174. Gainesville, Ga.	0.3					1	
175. Garden City, N.Y.3/85	0.7	70	19	89	4.2	1,074	12.1
176. Gary, Ind.	3.0	215	64	279	1.5		
177. Gastonia, N.C.7/88	2.5						
178. Glen Cove, N.Y.	0.0	59	3	62	3.1	621	10.0
179. Glendale, Calif. 7/88	19.0	294	54	348	3.1	4,084	11.7
180. Gloversville, N.Y.	5.0			61	2.5	1,019	16.7
181. Goldsboro, N.C.	0.2	37	8	45	1.5	350	7.8
182. Goshen, Ind.		47	2	49	3.8		1
183. Grand Island, Neb.8/85	6.0	67	17	84	3.4	626	7.5
184. Grand Junction, Colo.	38.0	67	16	83	3.3	325	3.9
185. Grand Rapids, Mich. 7/86	31.0	324	124	448	2.3	6,831	15.3
186. Great Bend, Kan.	0.2	31	1	32	1.5	475	14.9
187. Green Bay, Wis.		113	31	144	2.4		
188. Greensboro, N.C.7/88	13.8	189	28	217	2.4	2,288	10.6
189. Greenville, Miss. 10/88	1.0	109	37	146	3.5	435	3.0
190. Greenville, N.C.7/88		120	15	135	7.5	604	4.5
191. Greenville, S.C.8/65	58.9	151	41	192		2,604	13.6
192. Greenwood, Miss. 10/84	0.0	251	2	253	13.4	400	
193. Greenwood, S.C.	7.9	24	8	32	1.4	325	10.0
194. Griffin, Ga. 12/54	8.0				1		
195. Haddonfield, N.J.	0.8			38	3.2		
196. Hagerstown, Md.	20.0			143	2.9		
197. Hamilton, Ohio	5.0	95	30	125	1.8	1,451	11.6
198. Hammond, Ind.	2.0	225	123	348	3.5		1
199. Hannibal, Mo. 6/88	2.0	16	11	27	1.3	840	1
200. Hanover, Pa.	5.7	49	14	63	2.8	568	9.0

of n

1	9	10	11	12	13	14	15	16	17	18
	Hyd	lrants		Dist	ribution—	mil gal	Day Cont			
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Per Cent Prod. Un- accounted for	Prod.	Distr.	Loss per Main-Mile 1,000 gpd
161		9.3	390	307		307	21.2	71	56	7
162	266		440			00,	21.2	121	30	,
163	1,908	5.8	7,546	7,413	62	7.475	1.0	148	146	1
164	284	6.8	584	438	146	584	0.0	100	100	0
165	300		800	680		680	15.0	110	93	
166	175	8.0	369	354	none	354	4.0	101	97	2
167			786	764	3	767	2.4	154	150	2 2
168	312		1,507			,,,	20.78	275	130	- 4
169	518		886					76		
170	304	5.0	1,046	866	48	914	12.6	159	139	6
171	2,982	6.6	15,755	15,755	none	15,755	0.0	331	331	0
172	881		3,074	2,221	none	2,221	27.7	205	148	U
173	204	7.8	254	-,	1	-,1	21.1	58	140	
174			908					124		
175	905	10.2	1,293	1,020	22	1,042	19.4	169	136	8
176	1,517	5.4	8,514	6,292	1	6,293	26.1	127	94	22
177	698		1,695			0,270	20.1	82	24	22
178	555	8.9	724	599	none	599	17.2	99	82	5
179	1,733	5.0	7,768	5,928	none	5.928	23.7	190	145	15
180	521	8.6	1,103	1,075	28	1,103	0.0	126	126	0
181	373	8.3	789	773	3	776	1.7	72	71	1
182	258	5.3		672	8			142	*1	1
183	471	5.6	*2,695	2,430	265	2,695	0.0	295	295	0
184	225	2.7	1,845	1,462		1,462	20.6	202	160	13
185	3,774	8.4	12,703	10,828		10,828	14.7	178	152	11
186	217	6.8	785	766		766	2.4	102	100	1
187	999	7.0	2,789	2,475	none	2.475	11.3	127	113	6
188	2,149	9.9	3,655	2,653	175	2,828	22.6	109	84	10
189	492	3.4	1,831	1,819	12	1,831	0.0	126	126	0
190	421	3.1	410	390	8			62		
191	940	4.9	5,900	5,083	40	5,123	13.2	98	85	11
192	354	1.4	1,441	724	57	781	45.8	208	113	7
193	336	10.5	704	585	1	586	16.8	84	70	10
194	334		1,105	1,054	5	1,059	4.1	121	116	40
195	285	7.5	385	285	none	285	26.0	88	65	7
196	540	3.8	2,527					131		
197	1,182	9.5	2,353	1,988	84	2,072	11.9	92	81	6
198	1,433	4.1	6,911	5,944	none	5,944	14.0	150	129	8
99	360	13.3	635	595	40	635	0.0	83	83	0
200	220	3.5	678	556	20	576	15.1	81	69	4

 $[\]mbox{\$}$ Amount not known, Il Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Dis	tribution	Mains—m	iles	Val	ves
Community*	mission Mains miles	4"-8"	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
201. Harlingen, Tex.		54	17	71	2.2	498	7.0
202. Hartford, Conn.* 203. Hastings, Neb.	29.7	519	281	800	2.4	17,912	22.5
204. Haverstraw, N.Y.205. Helena, Ark.	0.0	37 17	5 4	42 21	3.8	394 400	9.4 19.0
206. Hibbing, Minn. 207. Highland Park, Mich. 7/60 208. Hilo, T.H.*	3.5 11.6	63	11	74	3.5	548	7.4
209. Holland, Mich.	1.8	48	12	60	3.2	907	15.1
210. Hollywood, Fla. 10/86		18	15	33	0.7	307	9.3
211. Honolulu, T.H.	31.6	287	155	442	1.7	9,300	21.0
212. Hopkinsville, Ky. 5/55	1.0			81	4.1	600	7.4
213. Hoquiam, Wash.	12.0	18	6	24	1.8	660	27.5
214. Hot Springs, Ark.	3.0	34	10	44	1.3	4,340	9.9
215. Houston, Tex.	5.8	745	253	998	1.4		
216. Huntington Pk., Calif. 7/88 217. Hutchinson, Kan. 2/85	1.0	42	11	53	1.8	773 587	14.6
218. Independence, Kan.	0.1		2.	404			420
219. Independence, Mo.220. Indianapolis, Ind.	4.5	150 751	31 308	181	2.6	2,515 8,505	13.9 8.0
221. Ironton, Ohio ^{2/65}	1.0	37	11	48	3.0	350	7.3
222. Ithaca, N.Y.	1.5	56	7	63	1.9	1,200	19.1
223 Jackson, Mich. 7/86	0.3	133	32	165	3.0	1,900	11.5
224. Jacksonville, Fla.		234	106	340	1.1	3,335	9.8
225. Jacksonville, Ill.							
226. Jamaica, N.Y. 227. Jamestown, N.Y.	0.0	664	114	778	1.4	12,328 1,867	15.9
228. Janesville, Wis.		84	11	95	3.2		
229. Jefferson City, Mo.	0.1	49	4	53	1.9	425	8.0
230. Jeffersonville, Ind.		48	6	54	2.1	737	13.6
231. Johnson City, N.Y. 6/65		38	6	44	1.7	1,063	26.5
232. Johnstown, N.Y.		34	12	46	4.2	500	10.9
233. Jonesboro, Ark.	0.9	50	3	53	2.9	903	17.0
234. Junction City, Kan.	0.1	21	5	26	1.6	485	18.6
235. Kalamazoo, Mich.		222	38	260	3.1	2,927	11.2
236. Kankakee, Ill.	0.1	57	22	79	1.6	800	10.1
237. Kansas City, Mo. 8/88	0.6	708	235	943	1.3	18,500	19.6
238. Kearney, Neb.		35	3	38	2.9	298	7.9
239. Kennewick, Wash.		64	14	78	3.9	487	6.3
240. Kenosha, Wis.	0.7	124	28	152	2.5	2,061	13.5

1	9	10	11	12	1	13	14	15	16	17	18
-	Hydr	ants		Distr	ibuti	on-mil g		Per Cent			Loss per
-			Produc-		1	1		Prod. Un- accounted	Prod.	Distr.	Main-Mile
	Total	Per Mile of Main	tion mil gal	Sold	F	ree	Total	for	87.011		7,000 87
			4 700	1,790	17	one	1,790	0.0	149	149	0
201	370	5.2	1,790	13,278	1 **		13,278	11.2	121	107	6
202	5,154	6.5	14,952	1,635			1,635	6.2	191	179	
203			1,743	302	17	ione	302	26.7	103	75	7
204	245	5.8	412	302		lone.			98		
205	185	8.8	395								1
	205	1.0	1,059	700		none	700	33.9	138	91	14
206	295	4.0		100	1.				269		
207			4,521	1,244			1,244			103	
208	622		076	896			896	8.2	141	129	4
209	553	9.2					1,262	14.1	81	69	17
210	462	14.0	1,470	1,202			-,			1	9
		0.5	13,516	12,113	2	none	12,112	10.4	143	128	
211	3,753			1	-	none	474	16.4	78	65	3
212	286			1		8			122	4	
213	198	-				25	864	18.9	89	72	13
214	313	7.1				2,070	23,503	20.5	112	89	16
215			29,565	21,43	3			0.0	143	143	0
216	492	9.3	1,56	1,25	1	313	1,564	0.0	171	110	
217	967	7	2,36				E 1 2	0.0	94	94	0
218	235		51.				513		73	1 50	1
219	1.04.		8 1,86			65	1,610		122		
220	9,50			7 20,22	1	none	20,221	12.2			
221	26	5 5.	5 50	0		none			76		0
221	54	-			50	318	1,168		94		
222					00	100	4,600	0.0	230	1	, 0
223									111		
224 225		3 0.	81		18		64	8 20.6	90	71	
		7 12	1 17.45	7 15,3	16	6			8		2
226			1.8			none	1,50		10		
227			.3 2,00			580	2,06	3 0.0			-
228		-			89	none	48				-
229					74	none	77	4 16.6	9	8 8	2
230									24	5	
231	_		3.0 2,3						24		
232	- 1			91	590	2	59	2 4.8			31
23.			,	2.20	131	232		53 0.0		3 11	
23					517	none	3,6				19
23.	5 1,5	23	5.9 3,7	3,	- 5 0					05 1	76
22	6 5	26	6.7 3,3	3,	148		3,1		3.0	0.00	02 2
23			2.3 33,8		241	202				0.0	
23	The second				694	none		94 9.	-		46 36 2
23					992	2		94 39.	_	-	
7.7	19 1		8.2 3,	100	979	125	3,1	04 9.	1 1	56 1	42

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Die	stribution	Mains-	niles	Val	ves
Community*	mission Mains miles	4"-8"	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
241. Kent, Ohio	0.5	28	3	31	2.6		
242. Keokuk, Iowa	0.5	40	4	44	2.7	500	11.3
243. Key West, Fla. 9/85*	129.0	33	2	35	0.9		
244. Kirksville, Mo.	2.5						
245. Klamath Falls, Ore.	0.0	69	10	79	3.4		
246. Knoxville, Tenn.	14.0	323	64	387	2.3	11,067	28.6
247. Laconia, N.H.	2.5	21	8	29	2.1	323	11.1
248. La Crosse, Wis.	3.2	98	18	116	2.4		
249. Lafayette, La.10/66	0.2	98	18	116	3.1	1,020	8.8
250. Lake Worth, Fla. 11/66						-1000	
251. Lakeland, Fla. 9/88		84	8	92	1.9	2,095	22.8
252. Lakewood, Ohio	6.0	92	18	110	1.6	1,113	10.1
253. La Mesa, Calif.*		249	74	323	4.8		
254. Lancaster, Ohio	0.0			68	2.3		
255. Laredo, Tex.	0.2	55	16	71	1.1		
256. Las Cruces, N.M.7/88		44	4	48	2.4	630	13.1
257. Las Vegas, Nev.7/55	20.0	135	32	167	3.6		
258. Latrobe, Pa.4/55	6.0	48	13	61	3.0	529	8.8
259. Lawrence, Kan.	0.3	58	13	71	2.8	650	9.2
260. Leavenworth, Kan.	0.4	33	11	44	1.8	415	9.4
261. Lebanon, Pa.	35.0	59	12	71	1.3	1,743	24.6
262. Lewiston, Idaho ^{7/88}	1.2	46	7	53	41		
263. Lewistown, Pa.	27.0	32	13	45	1.8	525	11.7
264. Lima, Ohio	5.0	120	29	149	2.1	3,048	20.4
265. Lincoln, Neb. 9/64	45.0	257	48	305	2.4	2,896	9.5
266. Lincoln Park, Mich. 7/58	4.0	121	7	128	2.7	540	4.2
267. Little Rock, Ark.	36.0	191	71	262	1.9	3,388	12.9
268. Logansport, Ind.	0.2					900	
269. Long Beach, Calif. 7/45	19.2	476	161	637	2.2	10,034	15.7
270. Long Island, N.Y.*		437	54	491	2.4	8,414	17.1
271. Longview, Wash.	3.0	73	11	84	2.8		
272. Lorain, Ohio	0.6	100	38	138	2.2	500	3.6
273. Los Angeles, Calif. 7/55	338.0	4,677	1,018	5,695	2.5	79,061	13.9
274. Louisville, Ky.	2.0	776	198	974	2.0	12,878	13.2
275. Lynchburg, Va.7/86	20.5	95	30	125	2.2	1,461	11.7
276. Madison, Wis.	1.2	242	46	288	2.5	4,494	15.6
277. Manchester, Conn.	4.5	73	12	85	3.5	814	9.6
278. Manchester, N.H.		182	66	248	2.9	3,450	13.9
279. Manhattan, Kan.	1.4	45	7	52	2.5	685	13.2
280. Manhattan Beach, Calif. 7/88	3.5	58	10	68	2.1	1,234	18.2

1	9	10		11	12	13	14	15	16	17	18
	Hydr	ants			Distribu	itionmil	gal	Per Cent	Prod.	Dietr.	Loss per Main-Mile
	Total	Per Mile of Main	P92	oduc- ion il gal	Sold	Free	Total	Prod. Un- accounted for	gpcdil	gpcdll	1,000 gpd
244				492	380	112	492	0.0	112	112	0
241	317	7.2		925	786	1	787	14.9	158	135	9
242	152	4.3		720	850	none	850			58	
243	134	4.0		292	292	none	292	0.0	67	67	0
244	396	5.0		1.783	1,526	none	1,526	14.4	212	181	8
243	390	3.0		1,100	-,						
246	2,915	7.5		7,208	7,026	none	7,026	2.5	116	113	1 3
247	198	6.8		351	320		320	8.8	69	63	
248	992	8.6		3.146	2,657		2,657	15.6	180	152	12
249	739	6.4		1,564	950		950	39.2	113	69	14
250	292	0.1		1,341	1,272	§			160	151	
				2 204	2,139	255	2,394	0.0	136	136	0
251	781	8.5		2,394	2,139	48	2,293	20.8	113	90	14
252	1,435	13.0		2,896	4,679	none	4,679	5.7	200	189	2
253				4,965	4,079	Hone	1,01		94		
254	551	8.1		987					104		
255				2,435							
256	276	5.8	3	1,529	824	705	1,529	0.0	210	210	0
257	800			6,211					362	246	
258	186			1,590	1,578		1,578		218	216	1
259	536			1.116	980	none	980		122	107	5
260	282			787	566	221	787	0.0	90	90	0
			0	2,614	2,364	250	2,614	0.0	130	130	0
261	640		_	999	962	37	999		210	210	0
262	252			999	816	none	810			90	
263	242			2 000	010	Hone			117		
264	886			3,088	6,135		6,13	5 17.3	161	133	12
265	2,35	7.	.1	7,416	0,155		0,20		-		8
266	1.25	9	.8	1,495	1,113		1,11		85		
267	1.69		.5	6,352	5,660	none	5,66		87		
268	32			1,080	630	none	63		118		
269		- 1	.3	13,404	12,242	459	12,70		128		1
270			.0	5,933	5,138		5,13	8 13.4	78	8 68	4
274	45	0 8	.4	930	731	1	73		8.5		
271	1	-	.9	3,200	2,256		2,90	0 9.4	131		1
272		~	.0	144,000	131,300		131,30	0 8.8			1 6
273				27,068	23,467				13.		
274 275			.3	2,293	1,694		1,69	26.1	110	0 8	1 13
210					4 700	*564	5,33	59 0.0	11	9 11	9 (
276		_	3.3	5,359	4,795			12 14.6	-	3 6	
277			5.3	635	542			-			_
278			5.8	4,075	3,644		3,80				
279			7.2	1,046			1,0				
280		57	5.3	1,299	1,168	31	1,19	99 7.7	10	10	0

Amount not known.

|| Based on total population served (retail plus wholesale).

	1	2	3	4	5	6	7	8
		Trans-	Dis	tribution	Mains—m	iles	Val	ves
	Community*	mission Mains miles	4"-8"	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
281.	Manitowoc, Wis.	0.0	74	17	91	3.0		
282.	Marinette, Wis.	1.0						
	Marshalltown, Iowa	0.5	74	7	81	3.9	928	11.4
	Mason City, Iowa	0.0	82	9	91	2.8	1,138	12.5
285.	Massillon, Ohio	0.8	90	13	103	2.7	1,241	12.0
286.	McKinney, Tex.2/88	1.2	15	3	18	1.2	76	4.2
287.	Meadville, Pa.	3.2	40	4	44	2.2		
288.	Medford, Ore.7/88	61.0	58	24	82	3.7	902	11.0
289.	Memphis, Tenn.	17.1	809	306	1,115	2.2	10,442	9.4
290.	Menasha, Wis.	0.6	35	5	40	2.7		
291.	Meriden, Conn.	20.0	117	10	127	3.0		
	Merrick, N.Y.*	0.0	232	24	256	1.7	3,545	13.9
293.	Mesa, Ariz.7/55	2.0	50	7	57	2.0	1	
294.	M.W.D. So. Calif. 7/86*	242.0		350	350			
295.	Miami, Fla.7/88	38.3	429	95	524	1.7	8,365	16.0
296.	Michigan City, Ind.	0.5	71	15	86	2.8	1,048	12.2
	Middletown, Conn.	5.0	44	13	57	2.3	-,	
	Midland, Mich. 7/88	65.0	-					
	Milford, Mass.	2.0	30	9	39	2.6	667	17.1
300.	Milwaukee, Wis.	1.5	968	329	1,297	1.9	17,253	13.3
301.	Minneapolis, Minn.	0.1	687	258	945	1.8	11,305	12.0
	Mishawaka, Ind.	1.2	63	19	82	2.5	909	11.1
303.	Missoula, Mont.	3.5	70	13	83	2.8	750	9.0
304.	Mobile, Ala.	9.0					3,251	
305.	Modesto, Calif. 7/85				110	3.7	1,200	10.9
306.	Monroe, Mich.7/55	8.0	56	15	71	2.8		
	Monroe, N.C.7/56	2.3	30	6	36	3.0	1	
308.	Monterey Park, Calif. 7/55	9.5	31	18	49	1.6	880	18.0
309.	Moorhead, Minn.	5.0	47	13	60	3.0	464	7.7
310.	Mount Vernon, N.Y.	2.6	66	36	102	1.4	2,560	25.0
311.	Murfreesboro, Tenn.	6.0						
	Nacogdoches, Tex.4/88	0.5	46	5	51	3.4		
	Nashua, N.H.		76	18	94	2.7	1,227	13.1
	Nashville, Tenn.	8.0	558	117	675	2.9	6,132	9.1
315.	Natick, Mass.	1.3	86	22	108	4.0	1,494	13.9
316.	Naugatuck, Conn.	5.0	51	12	63	3.3		
	Neenah, Wis.	0.0	44	7	51	3.4	616	12.1
	New Albany, Ind.		74	7	81	2.0	1.176	14.5
	New Bedford, Mass.	16.0	159	69	228	1.8	2,500	11.0
	New Haven, Conn.		537	198	735	2.4		

1	9	10	11	12	13	14	15	16	17	18
	Hydra	ints		Distrib	ution-mil	gal	Per Cent	n1	Distr.	Loss per
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Prod. Un- accounted for	Prod.	gpcd	Main-Mile 1,000 gpd
			1 725	1.532	none	1,532	11.2	158	140	6
281	575	6.3	1,725	833	60	893	0.0	175	175	0
282	348		893 819	618	31	649	20.8	107	85	6
283	487	6.0		898	6	904	34.5	118	77	15
284	476	5.2	1,379	732	64	796	18.7	71	58	5
285	818	7.9	979	132	0.4					
				500	17	517	0.0	89	89	0
286	204	11.3	517	500	17	617	26.5	115	85	13
287	323	7.4	839	617		017		270		
288	536	6.6	2,960		750	15,020	25.8	111	82	13
289	6,611	5.9	20,255	14,270	750		12.8	224	195	11
290	255	6.4	1,224	1,067	none	1,067	12.0	22.		
			0.454	2,043		2,043	5.0	140	133	2
291	706	5.6	2,151		none	2.621	9.1	51	46	3
292	1,658	6.5	2,885	2,621	none	1,310	1	144	124	10
293	410	7.2	1,528	1,310		1,010	1			
294				24.022		24,933	7.8	148	136	11
295	2,709	5.2	27,025	24,933	none	24,700	116			
		1	0.40%	0.410		2,419	10.0	210	189	8
296	618	7.2	2,687	2,419	119	775		85	85	0
297	398	7.0	775	656		1,415		183	161	
298			*1,608	1,415	none	1,410	12.0	59		
299	224	5.8		276	8	45,900	11.7	178	157	12
300	12,360	9.5	51,956	45,900	none	45,500				
			24 525	16,822	200	17,022	2 20.9	105	83	13
301	7,811					1,528		147	127	8
302	487			4,351	none	4,35		397		0
303	350					4,42		89	76	
304	2,472		5,207		Hone	1 .,		280		
305	732	6.	3,064							1
	-	9.	929	794	35	82		102		4
306	660					41		78		
307	32					1,34		129		
308	513		1					95		
309	41-						5 9.4	89	81	0
310	1,09	0 10.	2,40	2,100	1					
***	20		44	7 400	none	40		72		
311	28					4.5	7 13.3	96		
312					none			107		5 8
313			-			9,48		103		
314						1,02	20 0.0	10-	4 104	2
315	57	2 2	.3 1,02	1,00				000	3 21	3 1
200	24	0 5	.4 1,82	3 1.47	9 none				-	
316			.3 66			P .	29 20.0			- 1
317				0.0			06 13.0			
318						6,2	93 15.2			1
319					none			14	7	
320	3,78	39 5	.2 16,10	79	Hone				1	1

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

Pr.

33 33

	1	2	3	4	5	6	7	8
		Trans-	Dis	tribution	Mains—m	iles	Val	ves
	Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
321. New II	peria, La.*		45	11	56	0.9		
322. New O		1.8	848	227	1,075	1.7	9,300	8.7
	ochelle, N.Y.	20.2	286	69	355	2.5		
324. New Y		375.0	3,098	2,281	5,379	0.7	80,870	15.0
325. Newpo	rt Beach, Calif.7/88	3.5	55	18	73	3.7	1,431	19.6
326. Newpo	rt News, Va.*	31.0	204	119	323	1.6	7,709	23.9
327. Newto		10.0	54	3	57	4.1		
328. Newto		14.0	49	7	56	4.3	655	11.7
	a Falls, N.Y.	1.0	169	75	244	2.0	4,462	18.3
330. Niles,		5.0					1	
331. Norfoll	k. Neb.	0.1	28	4	32	2.5	500	15.6
332. Norfoll		113.0	432	188	620	1.7	6,462	10.4
333. North		1.0	43	5	48	1.1	238	5.0
	Platte, Neb.		46	6	52	3.3	500	9.6
335. Norwic		15.0	58	23	81	2.2		
336. Oak Pa	ark. III.		92	17	109	1.7	1,007	9.2
337. Oak R		4.9	100	43	143	4.5		
338. Ocala,			48	7	55	3.9	400	7.3
	ide, Calif.7/64							
340. Oklaho	ma City, Okla.7/88	16.0	660	150	810	2.7	6,620	8.2
341. Olean,	N.Y.6/55	0.0	60	8	68	3.0	1,080	15.9
342. Omaha	, Neb.		632	165	797	2.7	7,638	9.6
343. Oneont	a, N.Y.	2.0	40	9	49	2.5	849	17.3
344. Ontario							2,194	
345. Orange	, Calif. 7/55	0.9			†66		750	
346. Orland	o, Fla.	0.0	177	48	225	2.1		
347. Oskalo	osa, Iowa	7.4	38	4	42	3.5	440	10.5
348. Ossinin	g, N.Y.	2.0	33	8	41	2.6	600	14.6
349. Ottawa	, Kan.	0.6					357	
350. Ottum	wa, Iowa		77	23	100	2.9	856	8.6
	nna, Minn.8/88	0.0	39	3	42	3.5	752	17.9
352. Oxnard	l, Calif. 5/55	0.0	57	10	67	2.3		
353. Paines		0.0	45	17	62	3.9	510	8.2
	lto, Calif.7/66		135	14	148	3.0	3,500	23.6
355. Paris, '	rex.7/65	3.0	50	10	60	2.5		
356. Pasade	na, Calif.7/88	11.8	173	87	260	2.0	4,926	19.0
357. Pasco,		1.0	36	15	51	3.6	463	9.1
	Valley Com., N.J.*	30.0	308	60	368	1.3		
359. Peeksk	ill, N.Y.	1.5	39	14	53	2.4	1,060	20.0
360. Pendle	ton, Ore.7/86	23.0	27	11	38	2.7	780	20.6

^{*} See notes beginning on p. 694. † Includes mains less than 41in. in diameter. ‡ Population served at retail.

(d.)

er e of ain

.7

0.6 9

7 3

1	9	10	11	12	1	1	1	T	1	60
-	-			12	13	14	15		16 17	18
	Hy	/drants	- Produ		Distribution-	-mil gal	P C	_		
	Total	Per Mile o Main	tion mil ge		Free	Total	Per Ce Prod. U account for	Jn- Pr	rod. Dist	
321		W W 1 10	1,69	06 1,68	34 1.	2 1,69	6 0.0	-	77 77	0
322		1	40,59	21,98				17		0 9
323	1 -1	1	6,08	37 4,84	15	4,84		12		10
324	1 - 1 - 0	1		327,00	00 78,000			1	145	10
325	626	8.6	1,28	1,00	6 8			17		
326		4.4	4,96	9 4,81	1 50	4,861	2.2	6	8 67	
327		1	70	0 59	0 7			13		1
328		6.4	75	3 54	7 206			14		5
329		7.9	16,62	9 13,30		13,303	1	38		0
330	501		2,19.	1,86	9 8			286		38
331	390	12.2	684	1						
332	2,665	4.3	14,521		1	11,381	21.6	144		1
333	219	4.6	1,533			11,001	21.0	111		14
334	336	6.5	1,228			1,108	9.8	98		
335	626	7.7		1,162		1,206	9.0	210	190	6
336	1,126	10.3	2,400	1,980		1,980	17.5	100		
337	1,551	10.9		1,094		1,094	17.5	103	1	11
338	371	6.7	736			623	15.4	1 444	94	
339			1,335		HOHE	023	13.4	144	1	6
340	3,805	4.7	10,274	9,658	280	9,938	3.3	94	1	1
341	587	8.6	1,183	800	82	882	25.4			
342	6,197	7.8	22,557	18.799	400	19,199	25.4	141	105	12
343	280	5.7	860	774	86	860	14.9	213	181	12
344	1,593		2,891	111	424	800	0.0	118	118	0
345	467		1,019		10.1			198 140		
346	904	4.0	4,793	3,975		2.075				
347	220	5.2	385	306	8	3,975	17.1	125	104	10
348	439	10.7	452	363	5	368	18.5	88	72	5
349	278		435	381	3		18.6	77	62	6
350	866	8.7	1,384	1,244		381	12.4	108	95	4
351	278	6.6	653					100	1	4
352	602	9.0	653	505	-	505	22.6	149	115	10
353	482	7.8	1,619	1.1/2				153		
354	1,105	7.5	1,166 2,810	1,162	1	1,163	0.2	80	80	0
355	400	6.7	904	2,655	none	2,655	5.5	157	148	3
		0.7	204	682		682	24.6	103	78	10
356	2,334	9.0	9,374	8,820	§			193		
357	203	4.0	1,401	1,336	65	1,401	0.0	275	275	0
	3,299	9.0	26,095	24,136	none	24,136	7.5	179	165	15
60	500	9.4	1,776	1,250	8			221		10
00	218	5.7	1,351	1,346	5	1,351	0.0	265	265	0

[§] Amount not known.

H Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Dis	tribution	Mains—m	iles	Val	ves
Community*	mission Mains miles	4"-8"	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
361. Phenix City, Ala.							
362. Philadelphia, Pa.	3.5	2,092	758	2,850	1.3	58,000	20.4
363. Phila. Sub. Wtr. Co., Pa.*		1,457				17,163	
364. Phoenix, Ariz. 7/88	24.0	484	88	572	2.6	7,653	13.4
365. Pittsburg, Calif. 7/88		18	28	46	2.7	24	
366. Pittsburg, Kan.	0.0	88	17	105	5.0	1,264	12.0
367. Pittsburgh, Pa.	18.0	661	235	896	1.6	20,000	22.3
368. Pomona, Calif 7/88	28.5			211	4.1	2,500	11.9
369. Pontiac, Mich.	0.5	172	33	205	2.6		
370. Poplar Bluff, Mo.						500	
371. Portland, Me.	41.4	260	104	364	2.8	4.979	13.7
372. Portland, Ore.7/88	75.0	748	260	1.008	2.5		
373. Portsmouth, Va.7/88	6.0	207	47	254	1.7	4.189	16.5
374. Prichard, Ala.	3.5	9	5	14		82	5.9
375. Providence, R.I. ^{10/84}	1.1	574	151	725	2.1	10,204	14.1
376. Puerto Rico A.S.A. 7/55*	18.0	848	167	1,015	0.8	5,365	5.3
377. Queens County, N.Y.*	0.0	102	15	117	0.9	1,720	14.7
378. Racine, Wis.	1.4	162	41	203	2.5	3,613	17.9
379. Rahway, N.J.	4.0	45	13	58	2.5	1,100	19.0
380. Reno, Nev.	14.0	157	31	188	3.4	2,977	15.8
381. Richmond, Va. 7/55	0.0	426	131	557	2.3		
382. Ridgewood, N.J.	2.0	170	14	184	3.5	1.984	10.8
383. Roanoke, Va.	13.0	205	75	280	2.7	3,008	10.7
384. Robbinsdale, Minn. 385. Rochester, N.H.						400	
386. Rochester, N.Y.*	0.0	137	43	180	1.7	1,574	8.8
387. Rome, N.Y.	6.9	93	28	121	2.7	1,417	11.7
388. Sacramento, Calif.	0.4	363	68	431	2.6	4,742	11.0
389. St. Charles, Mo. 4/55	5.0						
390. St. Cloud, Minn.		58	6	64	2.1	1,500	23.4
391. St. Louis, Mo.4/84	33.3	827	464	1,291	1.5	15,004	11.6
392. St. Louis County, Mo.	1.8	1,270	246	1,516	3.0	18,200	12.0
393. St. Louis Park, Minn.		81	24	105	2.8	1,150	10.9
394. St. Paul, Minn.	25.0	525	198	723	2.1	7,553	10.5
395. Salem, Ohio	46.0	32	7	39	2.8	129	3.3
396. Salem, Ore. ^{7/88}	17.0	87	34	121	2.9		
397. Salina, Kan.	3.0	81	18	99	2.9	984	9.9
398. Salisbury, Md.	1.4	54	11	65	3.8	693	10.7
399. Salt Lake City, Utah	79.6	454	58	512	2.1	6,090	11.9
400. San Angelo, Tex. 10/54	0.0	92	27	119	1.8	,	

atd.)

er le of ain

).4 .4

.0

7

5 9

1	9	10	11	12	13	14	15	16	17	10
	Hy	drants						- 10	- 17	18
	Ity	drants	D 1		tribution-	mil gal	D 0			
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Per Cent Prod. Un accounted for	- Prod.	Distr.	Loss per Main-Mile 1,000 gpd
36	1		546					-	-	
362	2 23,399	8.2	142,000		5,000	140,000		62		
363			15,800			12,700	1.4	177	175	2
364		4.8	15,772			15,772	0.0	78 200	63	
365	276	6.0	781			781	0.0	126	200 126	0
366	385	3.7	675	E 2 E					1	
367	000	8.6	34,735	000	2000000	535	20.8	88	70	4
368		7.4	3,622	23,790 3,622		25,285	27.2	146	107	29
369		8.7	4,483	3,353		3,622	0.0	195	195	0
370		0.1	515	437		3,353	25.2	154	115	15
	2.0		313	437	29	466	9.5	83	75	3
371	2,082	5.7	6,876					143		
372 373	4 40*		28,000	23,000		23,000	17.9	140	115	14
374	1 -61	6.7	4,978	3,975	none	3,975	20.2	91	73	11
375	170 4,206	12.1	1,010	945	none	945	6.4	60	56	
313	4,200	5.8	14,933	13,619	none	13,619	8.8	104	95	5
376	4,454	4.0	27,570	17,245	none	17,245	37.5	58	20	20
377	1,541	13.2	3,607	3,067	none	3,067	15.0	76	36	28
378	1,610	7.9	5,070	4,485	none	4,485	11.5	174	65	12
379	507	8.7	1,772	1,663	83	1,746	1.5	211	154 208	8
380	647	3.4	7,864	7,864	none	7,864	0.0	392	392	0
381	3,250	5.8	9,672	9,096	8	0.104				
382	1,057	5.7	1,343	1,135	none	9,104 1,135	5.9	100	94	3
383	1,700	6.1	3,530	3,179	none	3,179	15.5	71	60	3
884	216		450	440	10	450	0.0	91	82	3
85			404	363	10	363		88	88	0
				000		303	10.0	74	67	
86	1,036	5.8	6,707	5,559	none	5,559	17.1	113	93	18
88	2,681	6.2	4,176	14 247				260		
89	2,001	0.2	14,247	14,247	none	14,247	0.0	239	239	0
90	631	9.9	863	550	200	750	13.1	67 79	69	
91	15.248	*** 0					10.1		09	5
92	7,329	11.8	65,644	65,469	175	65,644	0.0	203	203	0
93	935	4.8	16,506	14,648	none	14,648	11.2	82	73	3
94	5.871		1,287	1,117	170	1,287	0.0	93	93	0
95	379	8.1 9.7	14,268	11,880	none	11,880	16.8	115	96	9
3	319	9.1	572	473	99	572	0.0	112	112	0
96	576	4.8	3,664	2,621	34	2,655	27.6	218	158	23
7	714	7.2	1,915	1,398	517	1,915	0.0		154	0
18	472	7.3	1,054			-,-	0.0	170	134	U
15	4,019		35,386	20,547	211	20,758	41.4		230	77
00	464	3.9	3,163	2,488		2,488			105	16

[§] Amount not known.

| Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Dist	ribution !	Mains-mi	les	Valv	res
Community*	mission Mains miles	4"-8"	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
401. San Antonio, Tex.		699	152	851	1.8	6,449	7.6
402. San Bernardino, Calif. 7/88		217	81	298	3.5	4,044	13.5
403. San Francisco, Calif. 7/88	388.0	†850	243	†1,093		11,229	
404. Sandusky, Ohio	1.5	76	17	93	2.8	1,230	13.2
405. Sanford, Fla. 10/65	0.8						
406. Sanford, N.C. ^{7/88}	0.0	31	3	34	2.3		
407. Santa Barbara, Calif. 7/55	8.0	145	173	318	4.9	3,900	12.3
408. Santa Cruz, Calif. 7/88	21.5	109	23	132	4.7		
409. Santa Fe, N.M.	1.0	70	16	86	2.6		
410. Santa Paula, Calif.	3.0	30	10	40	2.9	773	19.3
411. Santa Rosa, Calif. 7/88	2.8	91	14	105	2.8	1,264	12.0
412. Schenectady, N.Y.		148	42	190	1.7	3,129	16.5
413. Scottsbluff, Neb.		32	2	34	2.4	662	19.5
414. Scranton, Pa.*	*			*1,292			
415. Seattle, Wash.	95.7	897	282	1,179	2.0	11,855	10.1
416. Shamokin, Pa.*	28.0	79	29	108	2.1	1,327	12.3
417. Sharon, Pa.*		97	16	113	2.1		
418. Shawnee, Okla. 7/86	9.0	72	11	83	2.8		
419. Sheboygan, Wis.	1.0	94	29	123	2.7	1,405	11.4
420. Sheffield, Ala. 5/55	0.3	23	3	26	1.7	585	22.5
421. Shelbyville, Ind.		23	2	25	1.9	251	10.0
422. Sheridan, Wyo.	43.0	44	10	54	3.6	450	8.3
423. Shorewood, Wis.		29	3	32	1.9		
424. Shreveport, La.		200	76		1.5	1 (12	47 5
425. Sioux City, Iowa	2.0	212	52	264	2.8	4,613	17.5
426. Sioux Falls, S.D.		129	34		2.7	2,000	12.3
427. Snyder, Tex. 13/85	20.0	30	3		1.9	145	4.4
428. South Gate, Calif. 7/88		85	20		2.6		1
429. South Milwaukee, Wis.	5.4	42	1		2.9		100
430. South Orange, N.J.	1.0	39	11	50	2.9	775	15.5
431. South St. Paul, Minn. 4/55	2.4	41	4	45	2.4	270	
432. So. Calif. Water Co.*		793	71		3.1	9,000	
433. Spokane, Wash.	86.0	427	79		2.7	7,500	14.8
434. Springfield, Ill. 8/55		197	56		2.3	42.000	22.0
435. Springfield, Mass.	29.9	319	110	429	2.4	13,208	32.2
436. Springfield, Mo.	13.3	171	30		2.3	2,978	
437. Stamford, Conn.	5.0	149	48		2.8	2,186	
438. Sterling, Ill.	0.9	45	7		2.0	808	
439. Stevens Point, Wis.	2.0	39	9		3.0	582	
440. Struthers, Ohio	1.3	55	8	63	2.4	550	8.

1	9	10	11	12	13	14	15	16	17	18
	Ну	drants	P. J	Dist	ribution-	mil gal	P C			
	Total	Per Mile of Main	Produc- tion mil gal	Sold	Free	Total	Per Cent Prod. Un- accounted for		Distr.	Loss per Main-Mile 1,000 gpd
401	4,672	5.5	25,627	20,813	308	21,121	17.6	151	124	
402	2,308	7.8	6,780	6,232		6,382	5.9		124	15
403	7,237		50,909	44,042	1	44,042	13.5	216 108	203	4
404	597	6.4	2,432	1,985	62	2,047	15.8	1	94	
405	284		553	1,00	02	2,047	13.0	202 76	170	11
406			400					-		
407	1,303	4.1	2,158	1.597	561	2.450	0.0	73		
408	1,000	3.4	2,098	1,805	561 293	2,158	0.0	91	91	0
409	209	2.4	1,163		1	2,098	0.0	205	205	0
410	230	5.8	647	1,098	none	1,098	5.6	97	91	2
411	474	4.5	1,419	1 274				121		
412	2,370	12.5	7,361	1,274	145	1,419	0.0	105	105	0
413	304	9.0	1,343	607				180		
414	4,243	2.0		607		607	54.8	264	119	60
415	12,521	10.7	32,520	20,503		20,503	37.0	171	108	
11.5	12,321	10.7	31,151	28,523	10	28,533	8.4	132	121	6
416	393	3.6	1,459	1,130	329	1,459	0.0	56	56	0
417	647	5.7	2,280	1,982	none	1,982	13.1	114	99	7
418	550	6.6	736	595		595	19.2	67	54	5
419	1,054	8.6	2,838	2,541	none	2,541	10.5	159	142	7
420	480	18.5	491	404	8	412	16.1	90	75	9
421	180	7.2	623	574	none	574	7.9	131	121	
422	257	4.8	935	708	142	850	9.1	170	155	6
123	303	9.5		602	none	602	2.1	170	97	4
124	2,179	7.9	7.075			002	1	108	91	
125	2,027	7.7	3,698		7		1	107		
26	809	4.9	3,612							
27	178	5.4	641	511	130	641	0.0	165		
28			3,336	2,502	125	641	0.0	103	103	0
29	445	10.3	971	962	9	2,627	21.2	229	180	19
30	512	10.2	583	902	9	971	0.0	177	177	0
31	450	10.0	588	100	100					
32	4,060	4.7	17,400	488	100	588	0.0	85	85	0
33	3,987	7.9	14,326	15,231	8			168		
34	0,201	1.9	5,232	12,458	none	12,458	13.0	212	184	10
35	4,406	10.8	11,467	4,957	70	5,027	3.9	130	125	2
	2,700	10.0	11,407	9,533	287	9,820	14.4	151	129	11
36	1,325	6.6	2,706	2,123	260	2,383	11.9	84	74	4
37	1,078	5.5	3,456	3,117		3,117	9.8	113	102	5
38	350	6.7	556	514	1	515	7.4	59	55	3
39	324	6.7	614	529		529	13.9	105	91	5
10	363	5.8	441	345	2	347	21.3	47	37	4

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

i	2	3	4	5	6	7	8
	Trans-	Dis	tribution	Mains—m	iles	Val	ves
Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile of Main
441. Superior, Wis.	1.0	65	25	90	2.6	799	8.9
442. Swampscott, Mass.	0.8	32	9	41	3.4	432	10.5
443. Syracuse, N.Y.	54.3			367	1.5	7.156	19.5
444. Tacoma, Wash.		297	117	414	2.5	4.351	10.5
445. Tampa, Fla. 10/55		†710	161	†871		5,000	5.7
446. Taunton, Mass.	6.8	93	30	123	3.1	1,192	9.7
447. Terrell, Tex.4/55	1.0	33	3	36	2.8		
448. Texarkana, Tex.	14.0	113	27	140	2.8	1,210	8.7
449. Texas City, Tex. 7/55	2.0	26	0	26	0.9	663	2.6
450. Toledo, Ohio	12.0	555	121	676	1.5	5,100	7.6
451. Tonawanda, N.Y.							
452. Topeka, Kan.	0.2						
453. Torrance, Calif. 7/88	4.0			110	2.4		
454. Torrington, Conn.	7.0	43	11	54	2.2	824	15.2
455. Tucson, Ariz.3/55	24.0	293	22	315	3.4	2,170	6.9
456. Tulare, Calif. 7/55	47.6	†45	3	†48		961	
457. Tulsa, Okla. 7/88	106.6	386	130	516	2.2		
458. Two Rivers, Wis.	1.2	12	2	14	1.3	550	
459. Uniontown, Pa.	0.0	51	25	76	3.0		
460. Vancouver, Wash.	4.8						
461. Ventura, Calif. 7/88	3.4	59	27	86	2.8	2,000	23.2
462. Vernon, Tex. 4/85	14.0	37	21	58	4.1	286	4.9
463. Vincennes, Ind.	1.5	30	7	37	1.5	628	17.0
464. Virginia, Minn.4/55	3.0	44	6	50	3.3	560	11.2
465. Walla Walla, Wash.	14.0			104	3.8	983	9.4
466. Wallingford, Conn.	9.0	45	20	65	2.8	500	7.7
467. Washington, D.C. ^{7/65}	24.0	895	343	1,238	1.5	16,723	13.5
468. Washington, Ind.	1.0	27	12	39	3.0	298	7.7
469. Washington C. H., Ohio*	2.1	29	1	30	2.3	237	7.9
470. Waterloo, Iowa	3.0	131	39	170	2.4	3,223	19.0
471. Watertown, N.Y. 7/88	0.5	58	25	83	2.2	1,181	14.2
472. Watertown, S.D.	3.0	22	3	25	1.8	220	8.8
473. Waterville, Me.	8.0	45	30	75	2.5	869	11.6
474. Waukegan, Ill. 5/55	1.0	99	35	134	2.7	1,948	14.5
475. Wauwatosa, Wis.		78	9	87	2.4	1,500	17.1
476. Waycross, Ga.		41	1	42	2.0		
477. Webster, Mass.				37	2.6	338	9.1
478. West Allis, Wis.		95	21	116	1.9	1,960	16.9
479. W. University Place, Tex.		16	3	19	1.0		
480. West View, Pa.		190	42	232	2.4	2,702	11.6

^{*} See notes beginning on p. 694. † Includes mains less than 4 in. in diameter. ‡ Population served at retail.

1	9	10	11	12		13	14	15	16	17	18
	Hydr	ants		Dis	tribut	ion-mil g	al	Per Cent	Prod.	Distr.	Loss per
	Total	Per Mile of Main	Produc- tion mil gal	Sold	1	Free	Total	Prod. Un- accounted for	gpcd	gpcd	Main-Mil 1,000 gpd
	4.019	11.1	1,296	89	5	*28	923	28.8	101	72	11
141	1,018	8.7	403		1	none			92		
442	356	14.6	17.317	9,62	0	8			189		
443	5,369 2,694	6.5	19,917	18.19	0	8			331	94	0
444	2,800	3.2	8.051	8,05	1	none	8,051	0.0	94	94	0
445	2,000	3.2	0,001	1					115		
446	1,210	9.8	1,816	1,24	7	9			113		
447	200	5.6					1 152	7.9	68	62	2
448	543	3.9		1,15	53	none	1,153	1.2	82		
449	233	9.0	0 . 000		25	1,300	23,085	3.9	141	135	4
450	4,387	6.5	24,020	21,00	33	1,500	20,000				
			2,073	2.0	00	32	2,032	2.0	333	326	
451			4,460			8			100	010	9
452	728	6.6	0.001			21	3,577	8.9	240	218	A
453	330	1	- 804						164		
454	1.658	-			50	§			155		
433	1,000								322		
456	320)	1,52			046	13,716	12.0	160	141	10
457	2,403	4.				946	462		129	115	11
458	225		52	-	62	none	102		82		
459	31		74 2,91						145		
460	620)	2,91	0					470	154	9
461	850	0 9.	9 2.02	8 1,	727	18	1,745		179	105	
462	28			7	127	110	537		105	80	
463	35				696	none	690	5 13.4	144	00	
464	26	-	3 78	8	538	8	0.00	27.2	356	223	3.5
465	43			3 2,	200	none	2,200	0 37.2	330	220	
			- 0		948	16	96	4 0.0	115	115	
466			.3 90	, .	297	3.153	52.45	0 8.8	151		
467	1		.7 57,5	38	352	0,100	35		92		
468	1			17	265	1	26	6 23.4	7.3		
469	1	-	.4 2,9		448	180	2,62	8 12.3	116	101	1
470	1,03	2	.,					27.4	120	2 8	9 1
471	61	15 7	.4 1,6	98 1	,148	90	1,23			-	-
472	1			80	363	6	36			-	_
473	1		1.8 1,7	-	,703	none	1,70				-
474		1	0.7 2,4		,324		2,32	- 00			
475	1		1.5 1,3	35 1	,203	none	1,20	3.3			
		00 4	. 0	41	450	50	50	00 22.0		-	5 1
470	1 -	-		03	389	1		0.0		-	9
47	-		010		2,006		2,0				39
47		-	0.2	741	584		5	84 21.			39
47	9 2	88 1	5.1 2.9		2,221	none	2,2	21 23.	4 8	4 6	54

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8
	Trans-	Dist	ribution I	Mains—m	iles	Valv	ves
Community*	mission Mains miles	4''-8''	10" & Over	Total	Per 1,000 Pop.‡	Total	Per Mile o Main
481. Westchester County, N.Y.*	0.0	100	28	128	3.0	1,000	7.8
482. Westerly, R.I.				84	4.7	569	6.8
483. Westmoreland County, Pa.4/66	52.8			547	3.8		
484. Weymouth, Mass.	0.0	82	28	110	2.6	1,586	14.4
485. Whittier, Calif. 7/88	24.2	82	7	89	2.8	1,579	17.8
486. Wichita, Kan.*	63.5	362	118	480	2.0	7,500	15.6
487. Wilkinsburg-Penn, Pa.	2.0	257	66	323		5,591	17.3
488. Williamsport, Pa. 7/55	1.5	113	31	144	2.4	1,871	13.0
489. Wilmington, N.C. 7/88	28.0	84	29	113	2.1	784	6.9
490 Wilson, N.C. 7/55	9.0	57	9	66	2.4	655	9.9
491. Winnetka, Ill. 4/86	1.0	47	9	56	4.0	550	9.8
492. Wisconsin Rapids, Wis.	2.0						
493. Worcester, Mass.	5.0	253	189	442	2.1	6,876	15.6
494. Wyandotte, Mich. 10/55	0.3	80	15	95	2.3	1,044	11.0
495. Yonkers, N.Y.	1.5	224	96	320	2.0	4,620	14.5
496. York, Pa.	6.0	176	47	223	2.2	2,800	
497, Youngstown, Ohio	4.0	439	85	524	2.7	6,063	11.6

^{*} See notes beginning on p. 694. † Includes mains less than 4 in. in diameter. ‡ Population served at retail.

1	9	10	11	12	13	14	15	16	17	18
	Hydi	rants	Produc-	Distri	bution—m	il gal	Per Cent			Loss per
	Total	Per Mile of Main	tion mil gal	Sold	Free	Total	Prod. Un- accounted for	Prod.	Distr.	Main-Mile 1,000 gpd
481	1,000	7.8	1,660	1,310		1,310	21.1	108	85	8
482	406	4.9	663					101		
483	1,123	2.1	7,781		none			146		
484	815	7.4	983	830	153	983	0.0	64	64	0
485	702	7.9	2,082	1,908	174	2,082	0.0	178	178	0
486	2,950	6.2	10,494	10,188	35	10,223	2.6	121	118	1
487	1,765	5.5	5,965	5,408	none	5,408	9.3	78	71	4
488	641	4.5	2,417	1,704	97	1,801	25.5	110	82	12
489	892	7.9	2,026	1,986	40	2,026	0.0	101	101	0
490	563	8.5	924	788	none	788	14.7	.90	77	5
491	512	9.2	1,023	926	none	926	9.5	165	149	5
492			569	462		462	18.8	111	90	
493	4,296	9.7	8,634					114		
494	785	8.3	2,180	1,672	153	1,825	16.3	142	119	10
495	3,942	12.3	8,026	4,866	5			137		
496	822	3.7	5,962	5,353	none	5,353	10.2	163	146	8
497	4,642	8.9	8,718	6,588	2,130	8,718	0.0	119	119	0

[§] Amount not known.

|| Based on total population served (retail plus wholesale).

1	2	3	4	5	6	7	8	9
Community*	No. of Em-			Customer	rs		Resid. Svces. Me-	Public Svces Me-
	ployees	Resid.	Com1.	Ind.	Public	Total	tered %‡	tered %
1. Aberdeen, S.D.		5,529	162	0	17	5,708	97	0
2. Adrian, Mich. 7/88	20	4,990	200	81	20	5,291	100	100
3. Akron, Ohio	257	68,300	4,500	450		73,250	100	
4. Albany, N.Y.						28,959	874	
5. Albemarle, N.C. ^{7/88}		3,800		5		3,805	100	
6. Albert Lea, Minn.						3,916	100	
 Albion, Mich. Albuquerque, N.M.^{7/55} 						44 120	100	0
9. Alexandria, La. 5/88		9,957				41,129 9,957	100	0
10. Alhambra, Calif. 7/86	25	+	15,517	135		15,652	100	
11. Allen Park, Mich.	20	9,340	250		12	9,602	100	100
12. Alliance, Ohio	22	20.020	7,936	67	0.00	8,003	100	
13. Amarillo, Tex. 10/45	78	28,830	100	3,156	95	32,081	100	100
14. Americus, Ga.	24	2,900	100	- 2	4	3,004	100	0
15. Ames, Iowa	21	†	4,450	3	9	4,462	100	100
16. Anaheim, Calif.		14,738	521		29	15,288	100	100
17. Annapolis, Md. ^{7/55}	23							
18. Anniston, Ala.4/55	32	10,593	286	198	31	11,108	100	100
19. Ansonia, Conn.	15	†	3,142	30	21	3,193	100	100
20. Antioch, Calif. 7/88		4,000	40	8		4,048	100	
21. Appleton, Wis.	30	10,994	612	176	62	11,844	100	100
22. Arcadia, Calif. 7/55		10,755			39	10,794	100	100
23. Arlington, Va. 7/85	70	26,296	*3,451			29,747	100	
24. Asheville, N.C. ^{7/88}							100	
25. Ashland, Ohio	15	5,215		12		5,227	100	
26. Athol, Mass.		2,450	34	44	17	2,545	98	100
27. Atlanta, Ga.	470	75,000	20,000	8,000	5,000	108,000	100	100
28. Atlantic City, N.J.	56					11,571	§98	
29. Auburn, Me.	12	6,391	566	11	2	6,970	*2	100
30. Auburn, N.Y. ^{7/86}								
31. Augusta, Ga.								
32. Augusta, Me.		6,120	612	34	74	6,840	*28	100
33. Austin, Minn. 8/88						7,088	100	
34. Austin, Tex. 10/66					-	45,790	100	
35. Baltimore, Md.						299,658	§60	
36. Bangor, Me.	43	9,205	860	36	9	10,110	*90	0
37. Barberton, Ohio	30	8,500	350	108	21	8,979	100	29
38. Batavia, N.Y.		4,400				4,400	100	
39. Baton Rouge, La.		42,000	4,025	25	50	46,100	100	100
40. Bay City, Mich. 7/88		17,108	306	39	52	17,505	100	100

^{*} See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.

§ Includes commercial and industrial.

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly	Rates@-\$	/cu ft	Publ Svc.	lic Fire Charge	Billing Writter Off
	Periodl	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/in,-mi.	%
1	0	1.33	P-5	333	2.73	19.68	168.40	1,518.40	none	none	0.75
2	M	1.00	N	400	2.40	17.60	136.10	1,036.10	25.00		
3	0	1.33	D-10	667	1.97	18.73	148.73	1,275.40	none	none	0.00
4	~		-		1.80	18.00	180.00	1,800.00			none
5	M	1.00	N	200	3.40	21.60	138.60	1,338.60	none	none	1.00
6	0	0.75	P, D	333	2.50	25.00	127.00	757.00			
7	õ	1.50	D-10	1,110	1.50	10.75	55.25	325.25	none	none	
8	M	1.50	P-\$1.00	667	2.15	17.55	135.29	1,271.77	none	none	
9	M	1.50	1 91.00	480	3.15	31.50	142.00	440.00	none	none	
10	B	1.00	P-\$1.00	600	1.60	16.00	118.00	1,018.00	none	none	1.00
				222						Đ	
11	Q	1.09	P-5	333	3.28	20.69	193.45				none
12	Q	1.25	P-10	333	3.75	21.81	145.33	1,006.09			
13	M	0.75	P-10	133	2.00	20.25	166.50	1,089.00	none	none	0.22
14	M	3.25	N	602	4.45	25.45	205.45	2,005.45	none	none	2.00
15	M	1.25	P-5	250	5.00	39.40	327.40	3,207.40	none	none	0.01
16	В	1.75		750	2.05	12.85	110.85	1,010.85			
17	Q	2.70	P-5	890	2.41	21.99	217.74	2,175.24			none
18	Õ	1.60	N		3.00	21.50	101.40	821.40			0.80
19	Õ	2.40	N	0	5.50	33.00	264.10	1,874.10	10.00	48.58	0.08
20	M	1.75	N	700	2.35	20.70	152.85	1,502.85			0.75
21	0	0.84	P-10	333	2.13	18.43	123.10	886.10			none
22	B	2.50	P-10	1.600	1.41	9.11	82.36	807.36			
23	0	0.50	D-5	0	1.91	16.53	162.73	1,624.78	none	none	0.01
24	M	1.54	N	300	4.80	39.00	225.75	1,050.75	none	none	0.00
25	Q	0.92	P-10	267	3.45	30.79	212.83	1,922.83	none	none	0.00
26	0	1.50	*D	333	3.30	17.00	136.50	1,330.00	none	none	none
27	M. B	1.25	P-\$0.32	800	1.91	30.25	187.97	1,298.00	none	none	none
28	A	1.08	P-10	985	1.10	11.00	110.00	1,100.00	none	none	none
29	Q	1.08	N	1,388	1.25	6.33	42.33	402.33	none	none	0.06
30	Q	1.50	P-10	500	3.00	24.60	164.40	1,054.40	*35.00	none	0.00
31					2.78	25.06	225.30	1,636.80	none	none	
32	Q, SA	1.42	N	833	1.67	11.30	68.50	208.00	*	Hone	none
33	M	0.75	P-5	200	1.96	12.05	111.05	1,101.05	10.00		<1
34	M	0.73	N	200	2.58	17.45	118.95	1,063.95	none	none	0.00
35	Q	0.83	N	333	2.50	16.67	110.00	1,030.00	*10.00	none	none
36	Q	0.50	N	500	1.00	4.33	35.66	277.66	30.00		
37									1	nonc	none
	Q	1.10	D-10	533	2.06	17.88	122.25	965.50	none	none	
38	Q	1.00	P-10	445	2.25	17.30	165.80	1,650.80			none
39		1.25	D-10		3.00	30.00	148.00	973.00	1 22		0.18
40	Q	0.67	P-10	0	2.07	15.33	112.00	1,038.66	33.65		none

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit: flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		С	ustomer	s		Resid. Svces. Me-	Publi Svces Me-
Community	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
P. P.II. D.		13,622	761	110	77	14,570	*90	79
41. Beaver Falls, Pa.	35	10,168	809	7	83	11,067	100	100
42. Beckley, W.Va. 43. Bellaire, Ohio	00	10,100	001				0	0
44. Bellaire, Tex. 10/88		6,400	113		18	6,531	100	100
45. Bellingham, Wash.	45	9,976	1,231	101		11,308	0	
43. Dennigham, Washi		,						
46. Belmont, Mass.	21					6,428	100	
47. Bemidji, Minn.		1,275	145	6	12	1,438	100	33
48. Benton Harbor, Mich.		4,668	528	75		5,271	100	
49. Berlin, N.H.		3,256	80	77	20	3,433	*10	65
50. Beverly Hills, Calif. 7/45	55	10,010				10,010	100	
00. 20.000						. 070	100	
51. Bexley, Ohio ^{11/55}	3	4,000	50			4,050	100	100
52. Billings, Mont.	71	11,410	1,104	28	93	12,635	100	100
53. Binghamton, N.Y.	64	13,121	1,578	236	37	14,972	100	100
54. Birmingham, Ala.	205	84,940	12,329	316	866	98,451	100	51
55. Birmingham, Mich. 7/85	7					7,150	100	
D. J. D. 7/55	13	4,505	420		44	4,969	99	100
56. Bismarck, N.D. 7/56	18	4,500	****			10,588	100	
57. Bloomfield, N.J.	40					10,264	100	
58. Bloomington, Ill. 5/55	15	3,929	49	1		3,979	100	
59. Boone, Iowa	400	0,747				96,436	100	
60. Boston, Mass.	100							
61. Boulder, Colo.		5,825	890	†	10	6,725	7	100
62. Braddock, Pa.	18	1,578	329	10	1	1,918	90	1
63. Bradenton, Fla.						5,487	100	
64. Bradford, Pa.	19	5,960	162	35		6,157	9	
65. Brawley, Calif. 7/88	40	1,975	465	35	25	2,500	*9	1
w. h		10,854		4		10,858	91	
66. Bremerton, Wash.	202	56,972		496	272	57,740	43	100
67. Bridgeport, Conn.	292	30,912		470		01,120		-
68. Bristol, Tenn. 6/55	22	3,690	739	+		4,429	100	
69. Bristol, Va.	65	3,090	107	1		-,		
70. Brockton, Mass.	0.5							
71. Brookline, Mass.		8,818	565		200	9,583	100	100
72. Brownsville, Tex.	33					8,795	100	1
73. Buffalo, N.Y.	360	88,967	11,202	1,160	420	101,749	8	10
74. Burbank, Calif. 7/55		22,243	2,201	280	82	24,806	100	10
75. Burlington, Iowa	30	9,107	991	†	8	10,106	0	1
no no transition Not	12	3 444	526	11	25	4,006	0	
76. Burlington, N.J.	13	3,444	690	121	16	8,243	99	8
77. Burlington, N.C.7/66	58	7,406	12,829	250	85	12,964	68	6
78. Butte, Mont.	4.0	1,660	155	48	11	4,874		
79. Cambridge, Ohio	18	4,660	492	1	11	36,484		
80. Canton, Ohio		35,992	492	1		00,101	100	

^{*}See notes beginning on p. 694,
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.

§ Includes commercial and industrial.

1.)

lic es.

rial

1	10	11	12	13	14	15	16	17	18	19	20
_	Resid.	Min. Charge per	Penalty or	Allow- ance on		Monthly I	Rates@-\$	/cu ft		ic Fire Charge	Billing Written Off
	Period	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/in,-mi.	%
41	0	1.20	P-10	133	4.17	25.63	183.66		7.00	400.00	
42	M	1.25	D-5	267	4.15	27.90	200.90	1,562.90	50.00	none	0.50
43	0	1.42	P-10								
44	M	1.75	P-10	667	2.50	22.75	225.25	2,250.25	none	none	0.04
45	В	1.50	P-\$0.25	1	1.75	8.95	56.95	326.95	18.00	none	none
46	0	0.83	N	267	.95	6.20	58.70	583.70			none
47	ő	0.80	D-10	267	3.00	17.30	82.50	825.00			
48	M	2.00	N	500	2.90	17.30	121.00	871.50			none
49	O	2.08	N	•	3.33	21.53	120.53	1,020.53			none
50	B	1.80	N	1,000	1.80	18.00	129.00	1,209.00			0.02
51	SA	0.00	P-10	0	1.87	18.70	187.00	1,870.00			1.00
		1.30	N	400	2.97	14.04	105.84	672.84	30.00		0.08
52	M	0.90	P-5	500	1.70	14.50	97.30	907.30			0.20
53	A	1.09	N	444	2.45	24.50	161.65	880.15	30.00	none	0.42
54 55	Q	0.67	P-5	0	2.17	16.00	133.00	1,312.00	18.50	none	none
F/	14	2.45	N	280	4.95	33.66	245.73	2,135.73	none	none	0.00
56	M	2.45	18	200	2.60	24.40	189.31	1.818.31			
57		0.68	N	250	6.00	43.60	223.60	1,343.60			1.50
58	0	1.50	P-10	207	2.90	16.40	91.40	811.40	none	none	0.25
59 60	Q	0.67	N N	167	*2.00	*19.67	*173.34	*766.67	none	none	2.00
		0.67		445	1.87	18.75	113.75	1,137.50	22.50		none
61	Q	0.67	P-10	167	*2.25	*21.69	*148.14	*1,201.14			
62	Q		N N	400	4.00	23.25	306.95	3,006.95			1.00
63	M	2.00	P-\$0.50	533	3.30	15.75	97.50	669.75			0.03
64 65	Q M	1.67	P-\$0.50	333	0.98	9.75	84.00	759.05			<1
	M. D	2.10	P-\$0.25	800	2.40	15.10	150.60	1,500.60			0.01
66	M, B	2.40	N	0	2.95	23.88	141.88	1.076.87	10.00	73.92	0.02
67	Q	0.00	1	267	2.38	15.50	84.25	624.25			1
68	1	1.00	D-10 P-10	267	3.73	27.35	173.60	1.192.35	60.00		0.04
69 70	M	1.25	P-10	201	2.05	18.90	126.90	1,206.90	none		1
		0.00		0	2.10	21.00	210.00	2,100.00			none
71	Q	0.00	P-10	533	2.13	13.96	108.46	1,053.46			2.00
72	M	1.25	N N	1.000	1.10	9.46	62.26	584.26	15.00		
73	100		N	700	1.75	14.30	117.30	847.30			0.00
74 75	B	1.35 0.83	N	9	2.75	20.55	130.10	1,012.60	none	none	2.00
		0.03	D 10	1	3.00	30.00	190.00	1,155.00	*20.00		none
76		0.83	D-10	400	3.53	29.40	193.15	1,218.15	25.00		1
77		1.50	N	-	2.90	17.75	125.00		20.00	- Liville	
78		1.50	N	300		6.92	43.17	380.67	none	none	0.50
79	-	1.33	N	445	1.33	8.55	69.60		none	none	3.00
80	Q	0.83	P-10	667	0.90	0.33	09.00	077.10	Hone	Hone	

|| Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit; flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

101011

1	2	3	4	5	6	7	8	9
Community*	No. of Em-			Custome	rs		Resid. Svces. Me-	Publi Svces Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
81. Cape Girardeau, Mo. 82. Carthage, Mo. 7/55		5,642	677		14	6,333	100	100
83. Cedar Falls, Iowa		4,591	84		14	4,689	100	100
84. Cedar Rapids, Iowa	70	20,972	428		32	21,432	100	100
85. Chambersburg, Pa.	39	4,337	264	40	45	4,686	100	100
86. Champaign, Ill.*	35	13,884	1,055	81	39	15,059	100	100
87. Charleroi, Pa.		9,745	421	41	50	10,257	100	100
88. Charleston, S.C.	105	23,994		552		24,546	100	
89. Charleston, W.Va.		43,089	2,531	365		43,985	100	
90. Charlotte, N.C.7/88						51,000	100	
91. Chicago, Ill.	2,728					474,414	§28	
92. Clarksburg, W.Va.		7,450	868	37	43	8,398	100	100
93. Clarksdale, Miss. 10/88	15				36	4,900	100	100
94. Cleburne, Tex. 10/55						5,653	100	
95. Cleveland, Ohio		†	253,223	6,710	380	*261,296	100	100
96. Clinton, Iowa		7,934	669	63	29	8,695	*98	100
97. Cobb County, Ga.	11					*	100	
98. Coffeyville, Kan.	28					6,194	100	
99. Collinsville, Ill.		5,073	66			5,139	100	
100. Colorado Spgs., Colo.	65	18,945	2,727	40	28	21,740	100	100
101. Columbia, Mo. 10/88						7,570	100	
102. Columbia, S.C. ^{7/86}						18,553	100	
103. Columbia, Tenn.7/55	1 3	4,807	589	12		5,408	*100	
104. Columbus, Miss.						4,587	100	
105. Concord, N.H.	29	†	5,468	11	114	5,593	§95	0
106. Corpus Christi, Tex. 8/55		34,163		5,272	24	39,459	100	100
107. Coshocton, Ohio						4,050	100	
108. Council Bluffs, Iowa	65	12,999	362	415	25	13,786	100	60
109. Covington, Ky.	65	1,373		41	5	1,419	100	100
110. Crawfordsville, Ind.		3,583	613	38	33	4,267	100	100
111. Cudahy, Wis.		2,630	257	25		2,912	100	
112. Cuyahoga Falls, Ohio	1	11,712	578	13	14	12,317	100	100
113. Dallas, Tex. 10/88		149,039	13,274	83	294	162,690	100	100
114. Danville, Va.	47	9,060	894	112	51	10,117	100	100
115. Dayton, Ohio		64,800	3,600	3,300	300	72,000	100	100
116. Dearborn, Mich.7/88	33					30,406	100	
117. Decatur, Ala. 5/55	15	5,929	696	12	8	6,645	100	100
118. De Kalb, Ill. 5/88	5	3,564	384	46	25	4,029	100	100
119. De Kalb County, Ga.						44,000	100	
120. Denison, Tex. 3/55	25	5,846	354	12		6,212	100	

^{*} See notes beginning on p. 694,
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per Month	Penalty or	Allow- ance on		Monthly I	Rates@-\$	/cu ft		ic Fire Charge	Billing Writter Off
	Periodl	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/in,-mi.	%
81	M	1.25	P-5	333	3.75	32.00	154.60	1,369.60	*		
82	M	1.50	P-5	300	4.50	32.50	222.50	2.022.50			
83	M	1.00	P-10	330	3.00	21.00	106.03	871.03	none	none	none
84	В	1.25	D-5	500	2.60	22.00	157.00	1,057.00	none	HOHE	0.05
85	Q	0.75	P-10	500	1.50	15.00	66.00	453.60	50.00		none
86	Q	1.20	P-2	234	4.38	27.58	122.08	842.08	20.00		0.20
87	õ	1.67	P. D	445	4.75	34.50	145.65	012.00	25.00	200.00	0.20
88	Q	1.00	N	500	2.00	19.00	158.67	1.180.11	none	none	
89	M	1.40	N	267	4.40	34.32	183.82	1,308.82	Hone	none	0.25
90	M	1.00	N	300	2.67	25.07	94.67	671.87	none	nono	0.60
70	141	1.00		300	2.01	23.01	94.07	0/1.0/	none	none	0.00
91	M, B		D-5		0.90	9.00	90.00	900.00	none	none	
92	B	1.30	P-\$0.25	400	3.25	27.40	175.40	1,570.40	none	none	0.00
93	M	1.00	N	400	2.25	15.75	86.50				1.00
94	M	1.35	P-10	240	3.05	22.05	158.30				0.00
95	Q	0.50	P-3	333	0.99	7.82	73.82	710.42			
96 97	Q	1.81	N	372	4.88	29.22	186.60	1,290.00			
98	M	1.50	P-5	533	2.72	23.60	193.60	1,171.10	none	none	2.00
99	0	1.50	P-15	267	5.63	37.13					1.00
100	M	1.50	N	500	2.30	16.70	153.00	1,300.00			0.03
101	M	0.60	P-5	200	2.75	21.25	201.25	2,001.25			0.00
102	M	1.50	N	600	2.30	19.50	181.50	1,621.50			0.00
103	M	1.00	N	333	3.00	21.90	136.00	1,050.00			0.97
104	M	1.50	P-10	400	3.30	23.30	135.80	1,080.00	none	none	0.00
105	Q	1.03	P-10	500	1.98	14.92	105.08	738.59	none	none	none
106	M	1.00	N	400	2.48	21.20	135.00	1,010.00	none	none	
107	0	1.00		333	2.50	14.00	121.00	1,001.00	none	none	1.00
108	B	0.80	P-10	200	3.70	26.20	187.20	1,717.20	none	none	0.00
109	0	1.03	1 10	267	2.47	18.47	127.13	1,207.13	none	none	0.14
110	M	2.00	P-10	427	4.58	30.85	188.60	1,213.60	75.00	none	0.14
111	0		P-5	0	3.27	18.08	140.80	1.054.00	12.00	528.00	
112	ő	1.20	N	625	1.90	18.00	143.50	1,142.50	1	1	none
113	M	1.00	P-10	133	2.78	18.30	146.55	994.05	none	none	none
114	M	1.20	P-10	600	2.00	18.80	88.30	673.30			0.27
115	Q	0.70	P. D	333	1.70	13.75	105.00	619.00			0.13
116	0	0.62	P-5	333	1 20	11.40	110.10	1 002 72	15.00		
116	Q		15		1.38	11.40	110.40	1,003.73	15.00		none
117	M	2.00	D 10	533	3.75	23.13	112.00	528.75	1		
118	Q	0.50	D-10	100	1.75	12.40	62.45	502.33			none
119	M	2.00	D-10	800	2.60	29.60	299.60				2.20
120	M	1.25	P-\$1.00	140	4.10	23.20	146.50	1,231.50	none	none	0.01

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.

¶ No limit; flat rate to most or all residential users.

@ Discounted rates are shown if prompt-payment discount is offered.

ial

Se

1.1.1.1.

1:

1	2	3	4	5	6	7	8	9
Community*	No. of		(Customer	s		Resid. Svces. Me-	Publi Svces Me-
Community	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
121. Denton, Tex. 6/55		6.093	870	6	54	7.023	100	100
122. Denver, Colo.	650	98,572	15,578	575	278	115,003	5	100
23. Derby, Conn.	000	1,716	186	57	13	1.972	*20	100
	190	1,710	100			56,559	100	
124. Des Moines, Iowa 125. Des Plaines, III.	190	6,500	200	25	12	6,737	100	100
126. Detroit, Mich. 7/55		360,246	31,895	2,316	912	395,369	100	100
127. Dodge City, Kan.	10	,					100	
128. Dover, N.J.	18	+	3,790	20	10	3,820	100	100
	31		0,120	-		-,	100	50
129. Dubuque, Iowa 130. Duluth, Minn.	31					23,803	100	30
131. Durant, Okla.7/55	14					3,100	100	
131. Durant, Okid.	133					19,426	100	
132. Durham, N.C. ^{7/85}	133					17,120	100	
133. Dyersburg, Tenn. 7/85	1.150	220 520	17,435	1.038	1.081	248,082	100	100
134. E. Bay M.U.D., Calif. 7/55*		228,528		1,038	-,			
135. East Detroit, Mich. 7/55	14	10,403	475		10	10,888	100	100
136. East Jefferson, La.	109					23,448	100	
137. East Lansing, Mich. 7/55	8	1	2,685		3	2,688	100	100
138. East Orange, N.J.		9,753	825	18	52	10,648	100	100
139. Eau Claire, Wis.	35	8,460	749	69	37	9,315	100	4.3
140. Ecorse, Mich. 7/55		3,707	99	†		3,806	100	
141. El Centro, Calif.								
142. El Dorado, Kan.	32					4,600	100	1
143. Elizabeth, N.J.	44					17,615	100	
144. Elizabeth City, N.C. ^{7/88}						4,312	100	
145. Elmira, N.Y.	70	16,820		238	100	17,158	100	100
146. Elwood, Ind.	10	+	3,123	35	14	3,172	100	100
147. Emporia, Kan.	14	4,779	504	+		5,283		
	1.3	1,112	501	1		8,374	100	
148. Endicott, N.Y.	106	22 454	2 506	926	19	37,695	*1	74
149. Erie, Pa.	186	33,154	3,596	920	19		-	
150. Escanaba, Mich. 7/88						4,190	100	
151. Eugene, Ore.	44	8,381	2,296	1	88	10,765	100	100
152. Evanston, Ill.	45	12,059	874	1		12,933	100	
153. Fargo, N.D. ^{7/88}		8,672	896		1	9,569	100	1
154. Faribault, Minn.		2,978	323	38	27	3,366	100	1
155. Fayetteville, N.C.7/65		11,277	1,395		4	12,676	100	7.
156. Fergus Falls, Minn.4/88	14						100	
157. Flint, Mich. 7/55		49,996	650	+	100	50,746	100	100
158. Florence, Ala. 10/55	21	7,053	858			7,911	100	1
159. Fort Collins, Colo.	~1	4,453	2.149	†	12	6,614	0	1
139. Fort Collins, Colo,	30		645	68	34	7,701	100	10
160. Fort Dodge, Iowa	30	6,954	043	00	0.4	1,001	100	10

^{*}See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

td.)

blic res. red

al

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly	Rates@—	B/cu ft	Pub Svc.	lic Fire Charge	Billing Writte Off
	Periodil	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi.	%
121	M	2.50	N	500	4.15	25.90	208.30	2,030.80			0.00
122	Q	1.05	P-\$1.00	400	1.97	15.21	118.71	909.96	22.50	none	none
123	õ	1.11		167	2.72	18.51	154.68	923.34	none	48.58	none
124	Õ	0.67		222	3.00	24.00	124.00	988.80	none	none	0.33
125	Q	1.50	N	67	3.30	33.00	220.00	1,650.00	lione		0.00
126	0	0.55	P-5	300	1.16	9.92	79.16	644.84	none	none	0.00
127	~	1.25	P-10	533	3.55	15.05	116.30	1,128.80	none	none	0.00
128	Q	1.11	D-10	333	3.33	27.75	184.75	1,113.75	50.00	none	<1
129	ŏ	1.08	N	300	3.60	23.10	176.10	1,121.10	30.00		1
130	M	0.75	N	347	2.00	20.00	124.00	1,114.00	19.00		0.03
131	M	1.50	P-10	400	3.25	21.90	143.40	1,223.40			1.00
132	M	1.50	N	500	2.85	27.15	177.15	437.50	*30.00		0.03
133	M	1.00	P-10	133	3.32	24.31	126.66	867.18	none	none	0.36
134	В	1.60	N	300	3.00	21.16	155.64	1,120.63	*	none	
135	Q	0.92	P-5	500	1.52	11.72	110.72	1,100.72	none	none	0.15 none
136	В	1.50	P-10		3.00	26.75	201.75	1.888.25			
137	Q	1.20	D-10	400	3.60	20.52	182.52	1,862.52	20.00		none
138	õ	0.80	P-1	333	2.40	24.00	223.33	2,203.33			none
139	Q	1.00	P-5	267	2.47	1		4,200.00	none	none *	none
140	Q	0.67	P-10	445	2.00	6.13	36.30 150.00	1,500.00	20.00		none
141	M	3.50	P-\$2.50	3,333	3.50	10.00	95.25	905.25			
142	M	2.30	P-5	300	5.75	37.25	90.00	303.23	none	none	
143	Q	1.00	N	400	2.50	21.50	183.50	570.17	none	none	none
144	M	0.67	N	133	5.03	33.75	164.90	1,177.40	none	none	1.00
145	Q	1.17	D-10	333	2.55	12.60	85.50	614.50	50.00		0.50
146	М	1.60	P-10	400	3.76	29.76	174.76	804.76	6.00		
147	M	0.65	P-\$0.25	133	2.47	17.07	99.62	782.62	none	none	0.07
48	Q	1.50	D	400	3.75	25.98	145.23	737.73	90.00	none	0.00
149	ŏ	1.20	P-5	750	1.60	7.80	54.60	522.60	*57.50		none
50	2	1.00	P-5	0	3.48	19.00	111.10	322.00	40.00		none
51	M	1.15	N	400	1.99	8.79	72.94	712.24			0.10
152	O	1.00	P-10	467	2.10	17.00	118.66	1,108.66	none	none	none
153	õ	0.42	P-10	0	2.25	22.50	182.50	1,272.50	none	HOHE	Hone
154	õ	0.50	D-20	167	2.40	8.00	80.00	800.00			1.00
55	M	1.00	N	400	2.35	18.10	120.60	1,133.10	none	none	1.00
56	В	0.60	P-10	0	2.10	16.60	159.60	825.00	30.00		0.20
57	O	1.12	P-10	400	2.20	15.15	106.15	916.15	5.00		none
58	2	1.50	P-10	267	4.21	24.40		1.159.65	5.00		
59	0	3.22	N	4	2.70		144.65				0.13
	Q					15.50	100.80	845.80			none
60	Q	0.53	D-10	178	2.43	11.59	57.27	482.52	none	none	

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit; flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		C	ustomer	8		Resid. Svces. Me-	Public Svces. Me-
Community	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
61 Fort Madison, Iowa						3,789	100	
62. Fort Scott, Kan.						10	400	400
63. Fort Wayne, Ind.	173	36,213	4,252		110	40,575	100	100
164. Fostoria, Ohio	10	4,500	125	†		4,625	100	
165. Frankfort, Ky.7/55		4,438	1,115	†		5,553	100	
166. Franklin, Ind.		2,219	325	7	20	2,571	100	100
167. Franklin, Pa.		5,003	339	22	6	5,370	*0	0
168. Fredericksburg, Va. 7/88	5	3,454	200	20		3,674	26	
169. Freeport, Ill. 10/66	30					7,333	100	
170. Fremont, Neb.						5,108	100	
171. Fresno, Calif. 7/55		+	42,413			42,413	14	
171. Fresno, Calif. 7/88	45		,					
173. Fulton, Mo. 7/88	7	1,958	269	6		2,233	100	
173. Fulton, Mo. 752 174. Gainesville, Ga.		.,,,,,				5,278	100	
174. Gamesville, Ga. 175. Garden City, N.Y. ^{8/66}						5,545	100	
176. Gary, Ind.	131	28,475	3,119	73	108	31,775	100	98
176. Gary, 1nd. 177. Gastonia, N.C. ^{7/66}	101	20,000	,					
178. Glen Cove, N.Y.	11	+	4,643	60	40	4,743		
178. Glen Cove, N. 1. 179. Glendale, Calif. 7/55		,	1			28,234		100
180. Gloversville, N.Y.	19					5,695	100	
100. Gloversville, 14, 1.	1							
181. Goldsboro, N.C.		6,304	50	60		6,414		
182. Goshen, Ind.	28					3,540		
183. Grand Island, Neb.8/88		7,192	64	2		7,258		
184. Grand Junction, Colo.	21	7,105	1,150	27		8,282	100	
185. Grand Rapids, Mich. 7/86								
186. Great Bend, Kan.		5,304	808		5	6,117		
	25	13,423	1,167	121	1	14,848	100	
187. Green Bay, Wis.	80	21,500	1,500			23,000		
188. Greensboro, N.C. 7/55	32	8,500	520		22	9,092		
189. Greenville, Miss ^{10/88} 190. Greenville, N.C. ^{7/88}	32	5,021	840			5,887		
	(2)	20 452	2,201	126	45	30,825	100	100
191. Greenville, S.C. 8/85	62	28,453	2,201	120	43	5,042		
192. Greenwood, Miss. 10/64		4	4 175	67	7	4.249		
193. Greenwood, S.C.		1,096	4,175		1	4,249		
194. Griffin, Ga. 12/54		4,086	897	1		4,903	100	
195. Haddonfield, N.J.							100	
196. Hagerstown, Md.						48.000	400	
197. Hamilton, Ohio	65	16,343				17,897		
198. Hammond, Ind.	75	23,855		737		24,592		
199. Hannibal, Mo. 6/88	47					6,514		
200. Hanover, Pa.	19	6,148	415	97	18	6,678	3 100	0 10

^{*} See notes beginning on p. 694.
† included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

td.))

blic es. e-

ial

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly	Rates@-\$	/cu ft	Publ Svc.	lic Fire Charge	Billing
	Period	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi.	Off %
161	M	1.00	P-\$1.00	267	3.63	17.75	91.75	766.75	40.00		0.01
162	1	1.40	P-10	400	3.50	31.50	185.50	1,097.50	20100		0.00
163	M	1.40	N	500	2.45	17.85	124.05	846.55	40.00		0.11
164	0	0.80	P-5	100	2.60	18.58	113.39	788.39	40.00		0.11
165	M	1.00	P-10	440	2.00	13.00	97.75	537.75	10.00		0.01
166	M	2.30	P-10	455	4.48	31.15	179.40	1,259.40	75.00		0.25
167	0	1.50	P-5	333	3.00	18.42	74.67	1,207.10	75.00	1	0.23
168	ŏ	1.50	N	445	2.87	16.20	100.00	819.90	50.00		1.50
169	M. B	0.88	P-10	220	4.00	33.60	131.20	1,031.20	11.22	39.60	0.10
170	M	0.75	N	700	1.10	7.80	52.80	412.80	11.22	39.00	0.10
171	В	1.60	P-\$2.00	500	2.30	11.95	66.61	480.11	2.00		
172	B	1.50	P-\$1.00	667	1.85	10.40		400.11	3.00		
173	M	0.50	N	150	3.50	27.50	70.20 252.50		15.00		0.50
174	M	1.35	N	300	4.50	40.00		2 120 00	none	none	0.50
175	Q	1.38	14	667	2.06	19.06	230.80 155.19	2,120.80	none	none	
176	В	1.59	P-10	400	3.26	18.88	109.38	919.38	75.00		0.00
177	M	1.35	P-\$0.50	400	3.38	29.25	193.00	1,093.00			0.08
178	M. O	1.30	N	400	3.10	22.10	157.10	1,093.00	none	none	2.00
179	M, B	1.00	N	588	1.70	17.00	135.00	760.00	40.00		0.00
180	SA SA	0.67	D-10	267	2.41	10.58	71.91	760.00 411.91	24.00 none	none	0.06
181	0	0.72	P-\$0.33	100	3.10	22.65	158.33	1 460 00			0.10
182	M	0.72	P-10	500	1.25	9.00		1,469.00	none	none	0.10
183		0.70	D-10	500	1.50		60.20	420.20			
	Q	1.50	D-10	400		9.40	81.40	631.40			none
184 185	Q	0.60	P-10	0	2.82	17.59 9.08	122.59 80.33	730.00	30.00	none	
186	M	1.50	P-5	400	2.75	11.00	65.45	537.05	40.00		
187		0.42	P-5	0		14.80	65.45	537.95	40.00		
	Q				1.67		85.55	692.55			none
188	M, Q	1.00	N	300	2.90	22.74	166.74	1,306.74			none
189 190	M	1.75	N N	535 400	2.51 2.70	16.56	100.75	764.85	none	none	0.10
190	IVI	1.50	14	400	2.70	13.10	87.58	807.58			1.00
191	Q	1.00	N	357	2.60	17.05	125.47	836.30	none	none	1.00
192	M	1.25	N	667	1.69	11.15	70.15				0.05
193	M	1.00	N	445	2.50	20.75	100.75		none	none	0.01
194	M	1.40	P-\$0.50	467	3.00	22.00	142.00	1,062.00	none	none	2.00
195	SA	1.00	P-6	445	2.25	22.50	225.00	2,250.00			none
196		1.00	N	445	2.25	19.50	151.50	1,366.50	50.00		0.56
197	M	0.90	N	225	4.00	27.40	241.40	2,221.40	none	none	none
198	Q	1.20	P-\$0.10	667	1.64	15.00	110.00	987.50	50.00		none
199	Q	1.00	P-10	300	3.37	8.75	57.91	363.40			0.10
200	0	1.00	P-10	90	3.70	15.25	103.25	980.75	25.00		none

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit; flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		1	Customer	rs		Resid. Svces. Me-	Public Svces. Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
201. Harlingen, Tex.	31	5,150	1,100	20	38	6,308	100	100
202. Hartford, Conn.*	379					57,750	896	
203. Hastings, Neb.					14	6,003	100	100
204. Haverstraw, N.Y.	11	+	3,161	37	32	3,230	100	66
205. Helena, Ark.	12	2,029	394	+	25	2,448	100	100
206. Hibbing, Minn.						5,223	889	
207. Highland Park, Mich. 7/65		7,195	826	57	7	8,085	100	100
208. Hilo, T.H.*	49	.,,	040			7,346	100	100
209. Holland, Mich.	**					4,693	100	
210. Hollywood, Fla. 10/55	42					10,885	100	
211. Honolulu, T.H.		32,574	5,610	306	490	38,980	100	100
212. Hopkinsville, Ky. 8/88	38	4,962	647	29	43	5,681	100	100
213. Hoquiam, Wash.	00	3,490	011	30	28	3,548	97	100
214. Hot Springs, Ark.		7,752	2.171	15	16	9,954	100	100
215. Houston, Tex.	700	†	158,520	5	345	158,870	100	100
216. Huntington Pk., Calif. 7/86	18						100	0
217. Hutchinson, Kan. ^{2/88}	15					10,367	100	U
218. Independence, Kan.	25					4,300	100	0
219. Independence, Mo.	74	19,763	962	28	14	20,767	100	100
220. Indianapolis, Ind.	354	113,500		1,160	302	122,107	100	30
221. Ironton, Ohio ^{2/85}						4,966	100	
222. Ithaca, N.Y.	40					6,425	100	100
223. Jackson, Mich. 7/88	10	13,750	375	+		14,125	100	100
224. Jacksonville, Fla.	200	10,750	3/3	1		63,678	100	
225. Jacksonville, Ill.	12					5,357	100	
226. Jamaica, N.Y.	222	99,765	8,887	+		108,652	3	
227. Jamestown, N.Y.	39	11,809	1,028	212	89	13,138	*100	94
228. Janesville, Wis.	12	7,252	522	106	30	7,910	100	74
229. Jefferson City, Mo.	27	5,694	770	19	30	6,513	100	100
230. Jeffersonville, Ind.		6,506	681	17	49	7,253	100	100
231. Johnson City, N.Y. 6/55								
232. Johnstown, N.Y.	7	2,570	454	+		3,024	0	
233. Jonesboro, Ark.		-,010	101		1	5.068	100	
234. Junction City, Kan.	i	3,596	146			3,742	100	
235. Kalamazoo, Mich.		0,070	110			21,280	100	
236. Kankakee, Ill.		9,306	900	45		10,251	100	
237. Kansas City, Mo. 5/55	530	82,565	14,578	247	3	97,393	100	100
2.								100
				+	00	,		100
					101			100
238. Kearney, Neb. 239. Kennewick, Wash. 240. Kenosha, Wis.		2,864 4,653 13,558	375 622 1,225	† 108	30	3,269 5,275 15,098	100 100 100	10

^{*}See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

1	10	11	12	13	14	15	16	17	18	19	20
	Resid.	Min. Charge per	Penalty	Allow- ance on	N	fonthly R	ates@—\$/	cu ft	Public Svc. C	Fire harge	Billing Written Off
	Period	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	8/in,-mi.	%
201	M	1.75	N	560	2.85	16.00	123.75	1,068.25	35.00		0.70
201		0.63	P-5	267	2.30	21.70	192.15	1,092.15	5.00		none
202	SA		N N	770	1.30	8.75	57.05	507.05	none	none	0.00
203	M	1.00		400	4.65	43.80	235.30		96.00		0.00
204	M, Q M, Q	1.86	N P-10	300	3.50	29.40	122.40	797.40	50.00		0.00
		1 71	P-5	667	2.33	22.00	171.50	1,656.50			
206	M	1.74		333	1.00	6.85	65.35	650.35	none	none	none
207	SA	0.33	P-5	0	3.10	22.00	197.00	1,735.00			
208	M	1.00	P-10			21.60	153.81	4,100.00	40.00		0.01
209	Q	1.60	D-10	333	3.00		234.18	2,252.70	none	none	none
210	M	1.50	N	533	2.89	29.80	234.10	2,202.10	none	110110	
211	M	1.00	N	0	3.25	20.50	144.00	1,017.00			0.05
211	1	1.50	N	295	5.00	38.50	191.17		30.00		0.28
212	M	1.40	1	330	4.23	31.35	92.83	709.33			0.10
213	B		P-10	307	3.30	29.25	183.25		20.50		0.01
214	M B	1.00	P-5	400	3.21	25.38	175.84	1,030.84	none	none	0.01
		1 50	N	1,000	1.50	15.00	150.00	1,500.00	none	none	0.40
216		1.50	P-2	500	2.00	14.50	72.00	387.00			<1
217		1.00	P-10	200	2.80	17.30	119.80	827.30	none	none	<1
218		1.00	N N	267	5.03	38.93	258.26	1,984.93	41.00		0.03
219		1.73	N	500		29.02	178.22	1,078.22	12.00	58.61	0.10
			P-10	133	3.15	20.90	164.40	1.514.40			none
221		1.00		0		13.67	107.00	910.00	*75.00		none
222		0.00	-	300	-	12.85	68.50	321.00	1		none
223	100	0.96		800		12.00	71.75	409.25	25.00		0.21
224		1.00		133	to	38.02	198.02	1,750.52	none	none	1.00
		4.00	N.	400	2.50	19.15	160.90	1,578.40	47.00		0.00
220		1.80		267	1 2 2 2	20.00	200.00	.,	*35.00		none
22		0.53		333		11.92	59.85	244.95	45.00		none
228		0.53	0.0	200		31.57	251.02	1	50.00		1
230		1.00	1	480		29.25	162.75	1,115.25	90.00	1	0.23
				450	1.49	10.82	54.99	459.99			none
23		0.67		250			44.95			none	none
23		0.70		400			77.46				0.10
23		0.90					260.00			none	0.50
23		0.50		300			106.66				0.00
				40	0 4.98	37.92	175.32	1,047.02	52.00)	0.25
23		2.10		37		1					0.04
23	-	1.00		65		-	60.61			none	0.15
23		1.00		49	-	1	1				
23		2.50			-					1	none
24	0 SA	0.8	3 P-10	33	3 1.03	12.43	100.00				1

[|] Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.

\$ Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.

9 No limit: flat rate to most or all residential users.

@ Discounted rates are shown if prompt-payment discount is offered.

Se

25 25

25 26

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		(Custome	rs		Resid. Svces. Me-	Public Svces. Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
241. Kent, Ohio	10	3,550	26	16		3,592	100	
242. Keokuk, Iowa		5,500	200	25	37	5,762	100	67
243. Key West, Fla. 9/88*	50					-,	100	
244. Kirksville, Mo.	10						100	
245. Klamath Falls, Ore.	20	7,147	862	19	46	8,074	100	30
246. Knoxville, Tenn.	218					38,658	100	
247. Laconia, N.H.		2,192	885	+	38	3,115	*99	89
248. La Crosse, Wis.		10,670	1,077	113	95	11,955	100	51
249. Lafayette, La. 10/85	49	10,010	1,011	110	1	10,176	100	100
250. Lake Worth, Fla. 11/88	10	5,393	121		33	5,547	100	100
		0,070	1			0,021	100	100
251. Lakeland, Fla. ^{9/66}	19				70	13,922	100	100
252. Lakewood, Ohio		14,173	375	68	80	14,696	100	66
253. La Mesa, Calif.*	130					21,344	100	
254. Lancaster, Ohio								
255. Laredo, Tex.	57					10,200	100	
256. Las Cruces, N.M. ^{7/86}		4,837	342	+		5,179	*100	
257. Las Vegas, Nev.7/88	45					13,025	*0	
258. Latrobe, Pa.4/88		5,008	402	20	47	5,477	*2	9
259. Lawrence, Kan.						6,501	100	
260. Leavenworth, Kan.						6,900	100	
261. Lebanon, Pa.	22					10,882	§26	
262. Lewiston, Idaho ^{7/88}	-					3,981	100	
263. Lewistown, Pa.	15	7,079	377	36	15	7,507	100	100
264. Lima, Ohio	10	15,310	108	98	10	15,516	100	100
265. Lincoln, Neb. 9/84		27,810	2,515	,,,	259	30,584	100	100
266. Lincoln Park, Mich. 7/55		13,086	390	10	24	13,510	100	0
267. Little Rock, Ark.	135	29,239	3,867	69	216	33,391	100	100
268. Logansport, Ind.	18	,	0,001		324	6,640	100	0
269. Long Beach, Calif. 7/68	240				021	65,811	100	0
270. Long Island, N.Y.*	157	50,648	2,846	27	34	53,555	100	0
271. Longview, Wash.	20	6.693	602	†	13	7,398	100	77
272. Lorain, Ohio	51	14,140	350	56	52	14.598	100	100
273. Los Angeles, Calif. 7/88	31	448,800	63,933	142	10,054	522,929	100	100
274. Louisville, Ky.	366	92,069	9,357	542	516	102,484	100	100
275. Lynchburg, Va. 7/88	300	11,870	828	296	48	13,042	100	100
276. Madison, Wis.	75	20,543	2,221	102	154	23,020	100	100
277. Manchester, Conn.	30	20,040	2,221	102	101	5,932	100	100
278. Manchester, N.H.	70	t	16,443	57		16,500	100	
279. Manhattan, Kan.	70	1	10,443	31		10,500	100	
280. Manhattan B., Calif. 7/55*		9,256	142	6	52	9,456	100	100
200. Mailiattan D., Calli.		9,230	172	0	32	7,230	100	100

*See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly l	Rates@-\$	/cu ft		lic Fire Charge	Billing Writte
	Period	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi.	%
241	Q	1.25	P-10	625	2.00	18.67	180.67	1,800.67	none	none	none
242	Õ	0.90	D-10	200	3.75	21.05	125.43	1,097.43	20.69		3.00
243	M	3.00	P-10	400	7.50				25.00		0.33
244	0	0.75	P-5	100	3.00	30.00	300.00				none
245	M	1.25	N	300	2.15	12.15	92.15	829.90	37.44		0.00
246	M	1.25	P-10	500	2.70	27.00	136.50	1,036.50	15.00	*100.00	0.00
247	0	1.17	P-\$0.50	167	2.42	13.42	108.92	1,011.92	20100		0.00
248	SA	0.53	P-10	267	1.26	9.17	68.93	548.09			none
			N	333	3.00	20.50	123.00	1,135.50			0.00
249	M	1.00		1				928.12	27.00	1	1
250	M	1.50	N	800	1.77	14.12	109.12	928.12	27.00		none
251	M	1.05	N	535	1.86	15.92	110.31	1.045.87	45.00		
252	0	0.47		333	1.40	14.00	140.00	1,400.00			none
253	B	1.50	P-5	450	3.10	14.40	95.40	905.40	none	none	none
254	D	1.00	1 3	400	2.50	25.00	205.00	2.005.00			
255	M	2.00	N	1,067	2.00	16.55	117.80	1,130.30			0.09
256	M	2.10	D-10	400	3.36	22.26	211.26	2,101.26			
257	M	2.10	N	100	3.18	19.40	144.65	1,292.15	none	none	1
258		2.75	P-5		4.13	36.25	188.00	1,408.00	40.00	110110	
	Q		P-10	267	4.53	36.15	178.40	1,393.40	10.00		
259 260	M	1.50	N	200	3.57	24.77	180.19	1,072.03	none	none	0.05
261	0	1 20	P-5	267	3.50	19.50	142.00	974.50	25.00		none
261	Q	1.30	P-\$0.50	300	6.50	37.25	296.95	2,381.96	none	none	none
262		1.25		300	2.60	13.25	58.60	581.94	44.00	Hone	1.00
263	Q	0.50	P-10	100			121.95		44.00		1.00
264 265	Q M, Q	1.00	N	167 550	2.35	13.95 9.60	83.85	1,118.67 826.35	none	none	none
		0.70	D.f	222	2.10	18.05	153.20				none
266	Q	0.78	P-5	333		29.32	227.96	1,238.93	23.33		0.03
267	M	1.28	P-10	400	3.20			987.65	50.00		0.03
268	M	1.50	P-10	400	3.30	26.15	162.65				0.10
269 270	M, B Q	0.60	N N	400	2.50	18.90 26.45	126.50 215.45	896.50 2,105.45	55.00	none	0.10
											1.00
271	M	1.24	N	400	3.10	21.75	128.68	1,028.68	-		0.01
272	Q	1.28	P-5	667	1.70	13.47	106.13	1,003.47	none	none	
273	В	0.48	N	0	2.08	15.14	122.77	986.21	36.00	1	0.06
274	В	0.87	D-20	133	2.26	18.46	127.66	595.66	36.00		0.11
275	M	2.80	P-\$1.00	600	4.85	44.50	200.28				0.22
276	SA	0.33	P-10	0	1.33	9.75	79.75	575.58	12.00		none
277	Q	0.63	P-6	211	3.00	10.00	58.00	580.00			none
278	Q	1.00	P-\$0.20	89	1.50	15.00	146.00	844.00	*50.00		none
279	M	1.10		40	2.75	25.00	193.75	1,678.75			
280	В	1.60	N	200	2.66	12.56	111.56	1,098.90	6.00		

 $[\]label{eq:control_eq} \begin{array}{ll} \text{H. Key: } M{-}\text{monthly; } B{-}\text{bimonthly; } Q{-}\text{quarterly; } SA{-}\text{semiannually; } A{-}\text{annually.} \\ \# Key: } P{-}\text{penalty; } D{-}\text{discount; } N{-}\text{net. } "P{-}S" \text{ means 5 per cent penalty.} \\ \P \text{ No limit; flat rate to most or all residential users.} \\ @ \text{ Discounted rates are shown if prompt-payment discount is offered.} \end{array}$

2222

22222

1	2	3	4	5	6	7	8	9
Community*	No. of		(Customer	s		Resid. Svces. Me-	Public Svces. Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
281. Manitowoc, Wis.		6,559	644	125	1	7,329	100	100
282. Marinette, Wis.		3,519	283	42	1	3,845	79	0
283. Marshalltown, Iowa		5,506	400	50	10	5,966	100	100
284. Mason City, Iowa		0,000				8,644	100	
285. Massillon, Ohio		9,884	773	43	25	10,725	100	100
286. McKinney, Tex. 2/55		3,100	552	71	20	3,743	100	25
287. Meadville, Pa.		4,983	444	46	12	5,485	100	100
288. Medford, Ore. 7/86	25	5,576	1,139	13	19	6,747	16	5
289. Memphis, Tenn.	-	86,181	20,955		957	108,093	100	100
290. Menasha, Wis.		3,246	188	36	1	3,471	100	100
291. Meriden, Conn.						10,424	899	
292. Merrick, N.Y.*	71	†	26,432	3	44	26,479	100	68
293. Mesa, Ariz. ^{7/86}								
294. M.W.D. So. Calif. 7/86*						*115		
295. Miami, Fla. 7/86	375	76,959	3,691		325	80,970	100	100
296. Michigan City, Ind.	33	†	7,826	110		7,936	100	
297. Middletown, Conn.	19					4,896	100	
298. Midland, Mich. 7/88	20							
299. Milford, Mass.	11	3,000	100	25	25	3,150	100	100
300. Milwaukee, Wis.	480	116,223	12,032	2,449	1,999	132,703	100	63
301. Minneapolis, Minn.	375					115,226	100	
302. Mishawaka, Ind.		8,011	701	273	37	9,022	100	100
303. Missoula, Mont.		9,184		124	56	9,364	0	100
304. Mobile, Ala.						35,840	100	0
305. Modesto, Calif. 7/85	13	6,740	2,600	35		9,375	0	
306. Monroe, Mich. 7/88	18	6,275	545	29	84	6,933	100	100
307. Monroe, N.C.7/55		3,339	506	109	30	3,984	100	100
308. Monterey Park, Calif. 7/81	20	10,087	317	16	10	10,430	100	100
309. Moorhead, Minn.	9	3,840	266			4,026	98	
310. Mount Vernon, N.Y.	26	9,202	476	272	50	10,000	100	100
311. Murfreesboro, Tenn.		3,863	250	25		4,138	100	
312. Nacogdoches, Tex.4/88	16	3,260	350	32	70	3,712	100	100
313. Nashua, N.H.	29					6,990	§62	100
314. Nashville, Tenn.		40,990	10,536	634		52,160	100	
315. Natick, Mass.	14				30	7,351	100	100
316. Naugatuck, Conn.	18	3,852	180	20	13	4,065	99	100
317. Neenah, Wis.		4,049	272	48	26	4,395	100	100
318. New Albany, Ind.		8,977	1,361	56	70	10,464	100	100
319. New Bedford, Mass.	85	18,547	616	25	50	19,238	100	100
320. New Haven, Conn.		1	59,149	435	413	59,997	§74	100

^{*} See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly	Rates@-	\$/cu ft	Publ Svc.	ic Fire Charge	Billing Written Off
	Period	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/in,-mi.	%
281	M	0.35	P-5	200	1.47	9.07	50.57	410.57	12.00	26.40	none
282	0	1.15	P-10		2.77	17.62	110.52				1.00
283	Q	1.00	P-10	167	4.40	24.40	139.40	1,046.67		Ì	0.10
284	Q	1.00	P-10	267	3.50	18.00	117.00	1,017.00	none	none	0.05
285	M	2.10	P-5	200	5.70	41.20	203.20				
286	M	0.75	N	133	5.15	42.50	121.50	797.50	none	none	1.00
287	Q	0.55	P-5	267	1.92	13.40	40.00	400.00			none
288	M, B	1.65	N	667	1.92	7.75	59.95	461.95			0.25
289	M	1.20	P-10	400	3.00	23.70	152.70	1,412.70			0.30
290	M	1.00	N	533	2.05	18.10	97.30	607.05			
291	SA	0.75	P-5	525	4.50	14.25	76.50	907.88			
292 293	M, B	2.05	N	400	3.99	24.86	180.11		*		0.00
294	M	0.00	N	0							none
295	Q	1.25	N	600	2.05	19.00	120.90	1,020.90	30.00		0.25
296	M	1.38	P-10	1,000	1.38	11.28	81.48	621.48	60.00		0.01
297	SA	1.00	N	1,000	1.00	4.75	35.55	160.55	none	none	none
298	Q	1.13	P-\$0.50	178	3.85	20.00	155.00	1,505.00	50.00		none
299	Q	1.37	N	250	4.50	31.50	193.50	1,813.50	50.00		
300	Q	0.25	P-5	0	0.93	7.50	73.33	620.83			none
301	Q	1.00	P-10	500	2.00	20.00	200.00	2,000.00	none	none	0.01
302	Q	0.75	N	500	1.50	9,93	72.93	702.93			0.10
303	M	0.85		1	1.50	15.00	84.00	407.00			
304	M	2.40	N	533	*4.50	*41.25	*266.25	*1,511.25			0.25
305		2.25	D-5	1	0.68	6.30	55.65	258.15			none
306	В	1.43	D-5	400	2.71	20.38	145.78	1,171.78			0.04
307	M	1.00		200	3.40	22.65					0.15
308	В	1.50	N	800	1.80	16.70	151.85				
309	M	1.00	P-5	250	2.10	12.80	87.30	762.30	40.00		0.46
310	Q	0.67	P-10	333	2.00	20.00	161.67	1,511.67	none	none	none
311	M	1.75	P-10	437	3.25	19.95	153.95	1,288.95	50.00		0.10
312	M	1.25	N	333	3.44	14.88	116.13	1,128.63	none	none	0.20
313	Q	1.92	N	890	1.92	17.00	111.67	746.16	20.00	47.52	0.80
314	Q	0.90	*P	0	2.40	19.15	143.40	1,023.40	48.00	none	0.08
315	Q	0.50	P-\$0.20	200	2.50	19.00	111.50	741.50	none	none	none
316	Q	1.25	N	307	3.28	17.53	118.78	1,131.28	10.00	38.55	0.00
317	Q	1.00	P-10	267	2.67	20.95	141.57	844.57			
318	M	2.75	P-10	560	4.68	36.20	184.70	957.20	75.00		0.25
319	Q	0.50	P-\$0.50	333	1.50	13.33	109.17	552.50	none	none	none
320	Q	1.60	N	333	3.27	25.77	172.43	922.43	14.40	27.94	0.05

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit; flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

Ser

3. 3. 3. 3

Can Can Can Can Can

1	2	3	4	5	6	7	8	9
	No. of		c	ustomer	9		Resid. Svces.	Public Svces.
Community*	Em- ployees	Resid.	Coml.	Ind.	Public	Total	Me- tered %‡	Me- tered %
321. New Iberia, La.*		18,262	2,187		160	20,609	100	100
322. New Orleans, La.	7.	21 774	1 122	62	94	23,062	100	100
323. New Rochelle, N.Y.	71	21,774	1,132	02	24	758,375	\$25	100
324. New York, N.Y. 325. Newport Beach, Calif. 7/58	18					8,961	100	0
		26.062	971			36,933	100	
326. Newport News, Va.*		36,062	871 65	15	15	4,445	99	100
327. Newton, Iowa		4,350	280	29	18	4.712	100	11
328. Newton, Kan.	102	4,385	150	245	10	20,743	100	
329. Niagara Falls, N.Y. 330. Niles, Ohio	102	20,348	130	243		5,788	100	
331. Norfolk, Neb.	7	3,500	400	50	65	4,015	100	77
332. Norfolk, Va.	215	56,537	3,652	†		60,189	97	
333. North Miami, Fla.						9,616	100	
334. North Platte, Neb.	18					4,571	100	
335. Norwich, Conn.		†	6,856	79	7	6,942	95	100
336. Oak Park, Ill.		13,500	650			14,150	100	
337. Oak Ridge, Tenn.		,				7,541	100	
338. Ocala, Fla. 10/86	19					4,429	100	
339. Oceanside, Calif. 7/64						4,741		
340. Oklahoma City, Okla. 7/85	289						100	
341. Olean, N.Y. 6/55	29	6,700		42	8	6,750	100	100
342. Omaha, Neb.		71,264	664	6	2	71,936	100	100
343. Oneonta, N.Y.	16	3,680		25	15	3,720	63	0
344. Ontario, Calif.		-,				11,802	100	
345. Orange, Calif. 7/88	25					5,235	100	
346. Orlando, Fla.	85					29,875	100	
347. Oskaloosa, Iowa	12	3,895	150	15		4,060	100	
348. Ossining, N.Y.	15	,				3,500	100	
349. Ottawa, Kan.		2,889	636			3,525	100	
350. Ottumwa, Iowa	35	9,028	403	131		9,562	100	
351. Owatonna, Minn. 3/55	9	2,961	321	+	12	3,294	100	100
352. Oxnard, Calif. 5/68		-		1	1	6,500	§49	
353. Painesville, Ohio		4,327	513	30		4,870	100	
354. Palo Alto, Calif. 7/88						16,244		
355. Paris, Tex. 7/88					50	7,300	100	(
356. Pasadena, Calif. 7/88	125				175			
357. Pasco, Wash.	18	2,800	556	15	12	3,383		
358. Passaic Val. Com., N.J.		-,				45,534		
359. Peekskill, N.Y.	31				15	3,709		
360. Pendleton, Ore. 7/65	1	3,400	200		1	3,600	100	

* See notes beginning on p. 694.

1 Included in "Coml."

1 Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.

5 Includes commercial and industrial.

(.)

lic s.

1	10	11	12		13	14	15	16	17	18	19	20
	Resid Billing Period	per	ge Penal	Ly	Allow- ance on Min.		Monthly	Rates@-	-\$/cu ft	Pul Svc.	olic Fire Charge	Billing
_		8			cu fi	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi	Off %
321	M	1.2			400	2.60	18.60	93.60	768.60		-	-
322	Q	0.6			0	2.28	6.60					
323	Q	1.20	5 N		400	3.15	31.50	210.74			(0.00	
324						1.50	15.00	150.00			69.00	0.10
325		2.53	N		700	2.91	14.91	123.87		none	none	0.30
326	0	1.83	N		600	5 20	20.68				none	0.50
327	M	1.10	1		600	5.20	28.67	164.17				0.02
328	Q	1.20			200	3.75	23.62	137.62		75.00		0.40
329	ő	1.03			300	2.95	22.86	134.73				0.00
330	1 700				100	1.65	16.50	127.00	714.00	none	none	none
330	Q	1.00	N		333	3.00	15.50	105.50	691.60		none	0.01
331	Q	0.75	N		500	*3.75	*26.15	*135.16	*552.00			
332	Q	1.60	N		400	2.25	22.50	147.00	1,362.00	100.00		none
333	M	1.70	D-5		667	2.55	22.86	225.36	1,302.00	100.00		0.50
334	M	0.75	N	1	667	1.05	9.40	66.75	17675			
335	Q	1.00	P-5		167	1.47	7.32	53.65	476.75 370.32	30.00	66.00	none
336	0	1.08	D 10		100	0.00				00.00	00.00	none
337	M	1.20	D-10		100	2.70	27.00	244.00	2,074.00			
338	M		P-10		333	3.07	22.55	151.55				
339		1.50	P		500	2.85	24.35	171.35	1,611.35	50.00		0.50
	M	2.50	P-10	1,0	000	2.50	7.90	61.90	601.90			0.50
340	В	1.50	P, D			3.80	22.35	151.85	1,076.85			0.10
41	Q	1.17	P-10	3	33	2.97	21.27	138.27	1,058.27			
42	M	1.25	N	5	00	2.10	14.90	115.40	925.40			none
43	A	1.67	P-5		45	3.75	34.00	202.00	923.40	10.00		0.03
44	В	1.50	P		00	1.86	11.16	94.32	721 22	40.00		none
45	В	2.25	P	1,0		2.25	21.30	183.30	724.32			0.20
				2,0		2.20	21.00	100.00	1,803.30	none	none	none
46	M Q	1.00	D 10			1.75	14.25	92.80	756.00	25.00		0.06
48		0.92	D-10			4.50	25.05	142.80	1,267.80			0.00
19	Q	1.33	P-5			3.92	33.08	267.08		none	none	none
	M	1.00	P-10			3.23	19.43	132.83	1,212.83	*		0.10
50	Q	1.50	P-5	4	00 .	3.60	26.40	154.40	1,209.40	none	none	0.30
51	Q	1.00	P-10	3	33	2.67	11.17	74 17	740 47	45.00		
52	B	1.50	P			3.00	18.30	74.17	749.17	15.00		0.03
53		1.00	N	40		2.40	19.20	141.30	1,059.32	10.00		0.00
4		1.35	N	50		2.70		141.60	2011.0			none
5		1.00	D-10	20			24.10 14.68	211.10 143.02	2,011.10 809.02	18.00		0.06
6	В	1 50	N	-								0.10
7		1.50	N P ea oo	50			15.85	135.00	1,041.80			0.12
8	1	2.00	P-\$2.00	50	- 1	.00	8.00	64.00	528.00	12.00		none
		0.75	N		-		16.40	138.32	939.80	10.00	2000	none
9	740).33	P-1	20	0 1	.60	15.00	117.35	1,107.35	none		none
0	M	1.10	P-\$1.00	46		.70						

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually. # Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty. ¶ No limit; flat rate to most or all residential users.

@ Discounted rates are shown if prompt-payment discount is offered.

S

1	2	3	4	5	6	7	8	9
Community*	No. of Em- ployees			Custome	rs		Resid. Svces. Me-	Publi Svces Me-
	pioyees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
361. Phenix City, Ala.								
362. Philadelphia, Pa.						513,000	584	
363. Phila. Sub. Wtr. Co., Pa.*		148,755	4,095	3,084	982	156,916	*100	42
364. Phoenix, Ariz. 7/55		1 10,100	1,055	5,004	202	59,037	100	42
365. Pittsburg, Calif.7/55	9	3,957	795	20	16	4,788	100	100
366. Pittsburg, Kan.	30							
367. Pittsburgh, Pa.		444 043		2 240			100	
	553	111,813	7,611	2,219	4	121,647	*82	100
368. Pomona, Calif. 7/88		14,249	950	475	158	15,832	100	100
369. Pontiac, Mich.		18,275	703	Ť		18,978	96	
370. Poplar Bluff, Mo.	20	4,279	486		50	4,815	100	100
371. Portland, Me.	159					30,362	§53	
372. Portland, Ore. 7/85	440	102,334	9,959	838	384	113,516	*100	100
373. Portsmouth, Va. ^{7/55}		29,100	1,200	150	50	30,400	100	100
374. Prichard, Ala.		+	12,104	30	2	12,136	\$84	100
375. Providence, R.I. 10/54	175	53,334	2,535	1,329		57,198	*100	100
376. Puerto Rico A.S.A. 7/85*		165,192	19,636	1.230	2 022	100 001	*00	
377. Queens County, N.Y.*	30	†	19,030	57	2,933	188,991	*80	0
378. Racine, Wis.	53	18,289	1,464	367	95	19,360	§7	47
379. Rahway, N.J.	33	10,209	1,404	307	118	20,238	100	100
380. Reno, Nev.	40	13,612	1,843	+		6,610	100	
2001 110110, 11011	40	15,012	1,043	,		15,455	§0	
381. Richmond, Va. 7/85						58,341	100	
382. Ridgewood, N.J.	30	14,000	380	22	16	14,418	100	100
383. Roanoke, Va.	140	23,296	1,800	420	100	25,616	100	100
384 Robbinsdale, Minn.	4	Ť	3,800			3,800	100	100
385 Rochester, N.H.	15					0,000	100	
386. Rochester, N.Y.*	55	t	25,185	130	124	25,439	100	72
387. Rome, N.Y.	26	7,950	547	28	25	8,550	100	72
388. Sacramento, Calif.	150	46,449	398	+	23	46,847	0	U
389. St. Charles, Mo.4/88	150	10,112	370	,		40,047	0	
390. St. Cloud, Minn.	20	5,767		12		5,779	99	
391. St. Louis, Mo.4/84	830	141,581	584	+	335	142 500	10	100
392. St. Louis County, Mo.	385	114,327	5,238	41	71	142,500 119,677	100	100
393. St. Louis Park, Minn.	20	,021	0,200	2.1	11		100	100
394. St. Paul, Minn.	300	70,530	2,240			9,550	200	
395. Salem, Ohio	12	†	4,313	55		72,770 4,368	100 100	
396. Salem, Ore. 7/55		11 160	1 020	100	25			
397. Salina, Kan.	25	11,168	1,820	102	35	14,125	100	100
	35	4 700	(200					
398. Salisbury, Md. 399. Salt Lake City, Utah	19	4,700	675	†	5	5,380	5	0
	170	48,911	2,404	246	327	51,888	100	100
100. San Angelo, Tex. 10/54	46	14,417	1,500	100	120	16,137	100	100

^{*} See notes beginning on p. 694,
†Included in "Coml."

Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.

§ Includes commercial and industrial.

d

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per Month	Penalty or	Allow- ance on		Monthly	Rates@-\$	/cu ft	Pub Svc.	lic Fire Charge	Billing Writte Off
	Periodll	Month \$	Discount#	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi.	%
361		2.25	N	667	3.13	24.25	171.75	1,391.75			0.25
362	A	0.88	P-10	333	1.34	8.48	92.54		20.00		5.00
363	0	0.00			4.98	39.85	232.03				0.13
364	M	2.00	N	1.000	2.00	*14.60	*136.60	*830.03	none	none	0.20
365	В	1.65		700	2.35	21.80	190.00	1,900.00			0.50
366	M	1.25	P-10	267	3.42	23.92	193.92	1,881.42	8.50	none	2.00
367	0	0.28	P, D	0	2.55	25.50	202.50	1,890.00	none	none	
368	B	1.63		600	2.30	17.67	135.02	766.52			0.02
369	0	1.10	N	500	3.30	8.96	85.32	663.00			
370	M	0.77	N	267	2.40	12.61	93.61	903.61			0.38
371	0	1.12	N	400	2.54	19.34	99.34	819.34			0.00
372	õ	0.85	N	600	1.41	13.29	108.10	668.00	none	none	none
373	õ	0.90		400	1.92	19.23	164.25	1,406.25		none	
374	M	1.50	P-\$0.25	533	2.81	22.38		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			4.00
375	A	0.67	N	370	1.80	13.98	91.97	766.97			
376	В	1.05		350	2.91	24.50	173.98	1,131.58	none	none	0.01
377	M, O	0.90	N	400	2.25	10.01	84.26		45.00		0.00
378	Q	0.83	P-10	333	2.03	16.06	107.60	684.06			none
379	õ	1.50	P	533	2.76	9.00	75.00	559.53			
380	M	3.15	N	9					24.00		0.10
381	M	1.50	N	600	2.26	19.36	101.36	821.36	92.15		0.30
382	Q	0.50	D-3	0	2.75	23.33	144.00		40.00		0.10
383	Õ	1.25	N	200	3.81	27.01	187.01	935.01	45.00		1.00
384	õ	1.50	P-5	1,000	1.50	15.00	150.00	1,500.00			none
385	SÃ	0.83	P-6	390	2.17	18.73	60.00	375.00	60.00		none
386	M, Q	1.35	D-\$0.10	400	2.47	18.74	172.34	1,387.34			0.00
387	SA	0.50	P-5	400	2.30	12.50	61.83	466.83			
388	Q	0.70	N	1	1.50	12.00	90.00	630.00			
389		1.22	P-5								
390	Q	0.50	P-10	167	3.00	23.50	120.00	900.00	50.00		2.00
391	SA	0.16		117	1.45	10.65	80.65	693.98			0.00
392	Q	1.20	N	400	2.40	18.73	132.00	1,077.00	36.00		0.12
393	0	0.63	P, D	317	2.00	20.00	200.00	2,000.00			2.00
394	Õ	0.25	P	0	1.75	15.60	125.00	815.00	5.00		none
395	Q	1.33	D-10	167	1.88	11.99	66.59	384.59	none	none	none
396	M	1.20	N	360	2.30	13.40	67.60	517.60	none	none	none
397	M	1.75	P-10	700	2.50	21.10	164.10	1,604.10			0.26
398	Q	1.00	N	1	2.13	19.00	196.96	871.20	none	none	none
399		1.00	N	48	1.80	18.00	120.00	1,200.00			none
400		1.50	N	267	3.40	21.25	152.08	1,520.80			0.50

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually, #Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty.

¶ No limit; flat rate to most or all residential users.

@ Discounted rates are shown if prompt-payment discount is offered,

S

44444

1	2	3	4	5	6	7	8	9
	No. of			Customer	18		Resid. Svces.	Publi Svces
Community*	Em- ployees	Resid.	Coml.	Ind.	Public	Total	Me- tered %‡	Me- tered %
401. San Antonio, Tex.	415	104,461	2,265	†		106,726	100	
402. San Bernardino, Calif. 7/66	97	25,938	,	1	72	26,010	100	100
403. San Francisco, Calif. 7/88		123,946	31,421	+	691	156,058	100	100
404. Sandusky, Ohio		+	8,330	48	27	8,403	100	100
405. Sanford, Fla. 10/88		3,810	570	4	13	4,397	100	100
406. Sanford, N.C. ^{7/88}	10				50	3,600	100	0
407. Santa Barbara, Calif. 7/55	69	+	15,348	20	300	15,668	100	0
108. Santa Cruz, Calif. 7/88	40	11,516	90	*162	300	11,768	100	0
109. Santa Fe, N.M.	27	5,424	1,438	102	2	6,864	100	100
110. Santa Paula, Calif.	16	†	3,598	*58				
FIU. Santa Faula, Calif.	10	1	3,390	30	11	3,667	100	100
111. Santa Rosa, Calif.7/65						10,843	§99	
112. Schenectady, N.Y.		2245		1,169	9			100
413. Scottsbluff, Neb.		3,265	504	†	50	3,819	100	0
114. Scranton, Pa.*		119,150	8,385	730	998	129,263	*35	41
415. Seattle, Wash.	368	141,535	6,002	†	483	148,020	100	100
116. Shamokin, Pa.*	45	11,453	566	108	12	12,139	100	100
117. Sharon, Pa.*		13,493	1,133	34	4	14,664	100	0
118. Shawnee, Okla.7/88	37					8,250	100	
119. Sheboygan, Wis.	38	10,357	1.032	142	157	11,688	100	83
120. Sheffield, Ala. 6/85		3,374	424	43	10	3,851	100	100
121. Shelbyville, Ind.		3,465	506	48	24	4,043	100	100
122. Sheridan, Wyo.	8	3,200	*815	+		4,015	100	100
123. Shorewood, Wis.	5	0,200	010	'		4,010	100	
124. Shreveport, La.	262	31,814	3,936	246	2	35,998	100	100
125. Sioux City, Iowa	62	22,800	1,000	†		23,800	100	100
126. Sioux Falls, S.D.		14,000	1,000	+		15,000	100	
127. Snyder, Tex. 10/88	10	14,000	1,000	1		15,000	100	
	21	0.054	1 227	1.001	25	12 207	100	
128. South Gate, Calif. 7/66	21	9,954	1,327	1,991	35	13,307	100	0
129. South Milwaukee, Wis. 130. South Orange, N.J.	12	3,373	222	34	42	3,671 3,975	100	100
124 C .1 C. D 1 M. 1155		4.240	80		20			
131. South St. Paul, Minn. 4/55	200	4,240	78	8	20	4,356	100	100
132. So. Calif. Water Co.*	300	†	92,746	974	337	94,057	891	99
33. Spokane, Wash.	125	44,989	6,471	1	250	51,710	100	100
34. Springfield, Ill. ^{3/66}	150	Ţ	29,094	60		29,154	100	
35. Springfield, Mass.		Ť	35,392		349	35,741	899	70
36. Springfield, Mo.	96	23,711	1,500	110		25,321	100	
37. Stamford, Conn.	47					14,660	100	
38. Sterling, Ill.	22	5,646	296	37	21	6,000	100	91
39. Stevens Point, Wis.		3,820	425	27	49	4,321	100	100
40. Struthers, Ohio	1	5,036	226	4	40	5,306	100	100

^{*} See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

ic s.

20	19	18	17	16	15	14	13	12	11	10	1
Billing Writte Off	lic Fire Charge	Publ Svc.	cu ft	Rates@-\$	Monthly		Allow- ance on	Penalty or	Min. Charge per	Resid. Billing	
%	\$/inmi.	\$/hyd.	1,000,000	100,000	10,000	1,000	Min.	Discount#	Month \$	Period	
0.35	none	none	517.27	76.14	13.86	1.57	500	D-10	1.00	В	401
0.00			731.00	106.00	13.00	1.75			1.75	M	402
0.06		36.00	1,559.89	205.36	25.36	3.29	0	N	0.70	В	403
	none	none	1,004.20	104.20	13.15	1.60	870	D-10	1.38	0	404
	none	none	931.37	118.87	22.62	3.50	533	N	2.27	M	405
<1			1,261.22	138.60	17.28	3.37	300	D-10	1.62		406
0.01	none	none	1,615.00	175.00	21.00	2.10		N	1.60	В	407
0.20	none	inone	705.10	75.10	12.10	2.00	500		1.25	В	408
0.50		22.50	1,534.38	184.38	24.00	5.44	267	N	2.00	M	409
0.10		*	1,004.00	104.00	14.00	2.00	500	N	1.25	M	410
none			1,432.80	150.30	20.55	2.48	667	N	1.55	В	411
none			730.00	80.00	8.00	0.80		P	0.71		412
	none	none	603.25	63.25	9.00	1.85	667	N	1.25	M	413
none		*	1,135.28	117.62	16.95	3.73	667	P-5	1.00	0	414
none			1,700.70	170.70	17.70	1.70	300	N	0.50	Q	415
0.07			*1,476.60	*160.35	*28.72	*6.98	133	D-5	1.50	Q	416
0.25	*270.00	10.00	1,673.14	245.81	35.30	4.66	100	D-5	0.99	õ	417
0.00			-,	238.80	40.15	5.88	133	N	1.50	M	418
none	*580.80	11.00	477.51	79.67	11.34	1.49	200	P-5	0.45	Q	419
0.24			806.70	189.70	25.20	3.15	400	P-10	1.50	M	420
0.21			868.25	118.25	21.75	3.05	560	P-10	1.85	M	421
	none	none	323.59	43.59	6.59	1.47	700	N	1.25	M	422
none				150.83	15.25	1.70	0	P-5	0.00	0	423
0.00		40.00	1.089.75	144.75	25.00	2.63	382	N	1.50	M	424
0.30		30.00	1,081.43	112.80	15.94	3.47	400	P-\$1.50	1.45	M	425
			907.70	107.70	16.93	2.70	267	N	0.75	0	426
0.03	none	none		250.82	28.19	4.85	400	N	3.00	M	427
1.50			766.00	76.60	10.20	1.30			1.30		428
0.00			625.16	78.59	10.79	1.61	300	P-5	0.50	*	429
				316.00	31.92	3.40	160	P-6	0.75	SA	430
0.28			505.65	93.15	16.00	1.65	312		0.50	Q	431
0.26		24.00	1,106.42	151.42	18.77	2.37	700	N	1.80	M, B	432
	none	none	724.46	89.96	9.01	0.93	833		0.75	*	433
0.00			1.003.50	103.50	13.50	1.75	600	P-10	1.00		434
none			713.50	83.50	14.50	2.20	333	N	0.73	Q	435
0.00		60.00	1,382.91	212.91	41.31	4.41	400	N	1.95	Q	436
0.08	36.43		899.64	149.94	31.34	3.34	300	N	1.10	Q	437
0.11		42.50	1,458.19	228.16	33.66	4.44	300	P-5	1.50	M	438
none			640.40	85.40	13.90	1.96	333	P-5	1.00	0	139
		35.00	1,968.54	215.40	27.10	3.27	333	N	1.22	õ	440

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually. # Key: P—penalty: D—discount; N—net. "P-5" means 5 per cent penalty. ¶ No limit: flat rate to most or all residential users. @ Discounted rates are shown if prompt-payment discount is offered.

S

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		С	ustomer	3		Resid. Svces. Me-	Public Svces. Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
Att Superior Wie		8,183	718	131	1	9,033	*100	0
441. Superior, Wis. 442. Swampscott, Mass. 443. Syracuse, N.Y.	10	3,600			36	3,636	100 100	100
444. Tacoma, Wash. 445. Tampa, Fla. 10/86	213					58,714	100	
446. Taunton, Mass.	40	7,373	130	110	68	7,681	100	100
447. Terrell, Tex. 4/55		3.050	45	10		3,105	98	
448. Texarkana, Tex.		11,578	1,264	42	84	12,968	100	100
449. Texas City, Tex. 7/88						6,693	100	
450. Toledo, Ohio	325	†	94,574	790	1,200	96,564	100	0
451. Tonawanda, N.Y.		4,744	11	56	8	4,819	75	100
452. Topeka, Kan.		-,				32,665	100	
453. Torrance, Calif. 7/66	30	+	13,857	157	47	14,061	100	100
454. Torrington, Conn.	14	4.444	128	52	24	4,648	100	87
455. Tucson, Ariz. 8/68					50	22,448	100	100
456. Tulare, Calif. 7/65	9	3.895	383	3	12	4,293	*2	(
457. Tulsa, Okla. 7/45	500					76,032	100	
458. Two Rivers, Wis.		3,011	239	31	42	3,323	87	(
459. Uniontown, Pa.		5,077	210	30	70	5,387	98	100
460. Vancouver, Wash.		12,754	1,047			13,801	91	
461. Ventura, Calif. 7/86	35	7,426	763	41	17	8,447	100	100
462. Vernon, Tex.4/88						3,987	100	1
463. Vincennes, Ind.		†	5,643	48	45	5,736	100	100
464. Virginia, Minn.4/88	18	3,683	400			4,083	100	
465. Walla Walla, Wash.						7,637	100	
466. Wallingford, Conn.	15	4,411	300	68	6	4,785	99	10
467. Washington, D.C. ^{7/55}	748	113,645	15,148	761	547	130,101	96	100
468. Washington, Ind.	11	3,950	50	4	6	4,010	100	8.
469. Washington C. H., Ohio*	1	3,316	310	36	24	3,686	100	100
470. Waterloo, Iowa	32					16,724	100	
471. Watertown, N.Y.7/66	38	7,244		171		7,415	100	
472. Watertown, S.D.	1	1				2,859	100	1
473. Waterville, Me.	20	5,458	530	55	110	6,153	*85	
474. Waukegan, Ill. 6/86	31	11.459	197	1	24	11,680		
475. Wauwatosa, Wis.		9,690	255	28	37	10,010	100	10
476. Waycross, Ga.						4,934		
477. Webster, Mass.		2,412	4	8	9	2,433		
478. West Allis, Wis.	22	11,038	798	106		11,942		
479. W. University Pl., Tex.		5,210		1		5,350		
480. West View, Pa.	55	21,884	745	50	49	22,728	100	10

^{*} See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

td.)

iblic ces. fe-red

ial

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly	Rates@-4	3/cu ft		lic Fire Charge	Billing Writte Off
	Period	Month \$	Discount #	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/in,-mi.	%
441	M	0.85	N	0	3.05	14.30	114.10	887.10			
442	Q. A	1.00	N	333	2.33	17.42	152.42	1,502.42			1
443	0	0.75	P-5	417	1.80	18.00	113.33	1,103.33			none
444	B	1.00		267	1.30	10.75	69.75	519.75			0.10
445	M	1.82	D-10	667	2.18	20.29	142.07	1,255.80	20.00		<1
446	Q	0.73	N	35	2.75	19.46	123.09	1,023.09	none	none	none
447	M	1.50	D-10	267				.,	none	none	5.00
448		1.50	P-10	333	3.70	21.80	156.80	1,506.80	37.50		0.20
449	M	1.35	N	267	3.25	20.50	156.75	1,506.75	01.00		0.20
450	Q	0.87	N	667	1.30	13.00	126.40	1,033.60	none	none	none
451	0	1.25	P-10	667	1.88	11.75	69.45	542.75			
452	1 %	0.35	N	100	2.96	18.26	123.26	1,113.26	35.00		
453	В	1.50	N	600	2.14	16.54	124.54	834.54	none	none	0.01
454	Q	1.57	N	133	4.04	23.12	156.12	906.12	10.00	110.88	0.50
455	M	1.77	N	700	2.07	11.16	102.06	1,011.06	24.00	110.00	none
456	M	2.50	P-20	•	2.00	9.00	73.50	748.50	none	2020	0.12
457	M	1.25	P-\$0.10	133	4.18	28.85	141.35	978.85		none	0.12
458	M	1.30	P-5		3.40	21.80	104.80	734.80	none	none	
459		1.72	N N	300 100	5.39	37.69	298.50	1,854.00			none
460	Q B	1.50	N	400	3.30	21.30	93.10	551.50			0.50
461	В	1.84	N	800	2.18	17.48	125.48	1,205.48	none	none	0.10
462	L.	1.50	N	267	3.70	20.45	155.45	1,505.45	none	none	1.60
463	M	1.50	P-10	400	3.00	22.80	167.80	887.80	12.00	13.20	0.10
	M	1.50	P-10	500	2.60	26.00	174.00	1,614.00	40.00	13,20	0.10
464 465	M	1.00	N N	667	1.50	12.25	81.25	534.00	40.00		none
166	SA	1.25	P	445	2.75	18.00	150.00	1.095.00	35.00		none
167	SA	1.00	P-10	600	1.44	11.34	110.34	1,100.34	none	none	none
168	M	2.00	P-10	500	4.00	35.50	190.50	730.50	85.00	none	3.00
169	M	1.65	N	200	4.77	30.83	260.06	2,552.59	05.00		3.00
170	141	0.75	P-10	300	2.18	14.35	74.34	614.34	none	none	0.00
171	0	1.13	P-10	300	2.85	18.08	113.06	923.06	none	none	none
172	M	1.00	P-5	400	2.50	20.48	90.88	720.88	HOHE	none	none
173	0	1.00	N	667	1.50	15.00	50.00	345.00	30.00		none
174	õ	0.90	D	400	1.97	17.12	107.70	760.40	4.00		0.00
175	Q	0.25	P-10	0	1.35	13.50	135.00	1,350.00	4.00		none
176	M	1.25	N	400	2.75	20.05	130.45		none	none	
177	O, SA	0.58	N	292	2.00	19.33	155.33		none	none	
178	Q	0.75	P-5	0	1.90	13.50	127.75	1,137.75	HOHE	none	none
179	M	1.50	P-10	535	2.38	16.00	151.00	1,501.00	none	none	0.00
180	O	1.42	D-\$0.25	311	4.00	34.75	182.60	1,581.89	none 35.00	none	0.00
100	2	1.42	D-30.23	311	4.00	34.13	102.00	1,301.09	33.00		0.00

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually.
Key: P—penalty: D—discount; N—net. "P-5" means 5 per cent penalty.
¶ No limit; flat rate to most or all residential users.
@ Discounted rates are shown if prompt-payment discount is offered.

1	2	3	4	5	6	7	8	9
Community*	No. of Em-		C	Customer	's		Resid. Svces. Me-	Public Svces. Me-
	ployees	Resid.	Coml.	Ind.	Public	Total	tered %‡	tered %
481. Westchester Co., N.Y.* 482. Westerly, R.I.	48					8,500 5,636	100 100	100
483. Westmoreland Co., Pa. 4/86 484. Weymouth, Mass.	40	32,431 11,059	3,726 89	207	190	36,554 11,148	100	100
485. Whittier, Calif. 7/85		9,833				9,833	100	
486. Wichita, Kan.*	174	52,210	9,080	278	260	61,828	*100	97
487. Wilkinsburg-Penn, Pa.	149	35,424	649	51	103	36,227	100	100
488. Williamsport, Pa. 7/55 489. Wilmington, N.C. 7/55	70	14,745	1,079	127	74	16,025	100	100
490. Wilson, N.C.7/88		6,500	735	8	25	7,268	100	100
491. Winnetka, Ill.4/88	5	3,457	166	0	5	3,628	100	100
492. Wisconsin Rapids, Wis. 493. Worcester, Mass.	41	3,270	354	33		3,657 33,767	100	
494. Wyandotte, Mich. 10/88 495. Yonkers, N.Y.		10,332	1,010	250	30	11,622	100 100	100
	78	25,492	1,363	608	144	27,607	*18	100
496. York, Pa. 497. Youngstown, Ohio	10	†	46,336	194	50	46,580	100	100

^{*} See notes beginning on p. 694.
† Included in "Coml."
‡ Figure given is percentage of total residential services; unless otherwise noted, commercial and industrial services are 100 per cent metered.
§ Includes commercial and industrial.

d.)

.

olic es. e-

0 0

0 0 0

al

1	10	11	12	13	14	15	16	17	18	19	20
	Resid. Billing	Min. Charge per	Penalty or	Allow- ance on		Monthly l	Rates@—\$	/cu ft		ic Fire Charge	Billing Writter Off
	Periodil	Month \$	Discount #	Min.	1,000	10,000	100,000	1,000,000	\$/hyd.	\$/inmi.	%
481	Q	1.33	P-2	333	3.53	30.17	201.33	1,648.92	65.00		none
482		1.15	N		3.00	23.25	157.50		25.00		none
483	Q			*	*	*	*	*	*	*	0.00
484	Q	0.67	N	208	3.50	19.59	124.35	911.55	none	none	
485	M	2.00	N	1,000	2.00	20.00	115.00		none	none	0.02
486	0	0.67	D-10	1.33	4.48	35.82	61.12	434.57	13.72	96.57	0.36
487	M, Q	1.50	N	417	3.48	34.08				280.00	0.05
488	Q	0.97	P-10	222	3.15	15.47	107.98	785.48	60.00	9	
489	Õ	1.42	N	500	2.62	22.22	144.38	1,166.05	none	none	0.07
490	M	1.20	N	500	1.20	16.29	135.11	1,323.11	15.00	none	1.00
491	В	0.85	P-\$0.25	247	2.10	21.00	210.00	2,100.00	18.50	none	
492	Q	1.50	N	333	3.50	29.00	183.67	1,133.67			
493	SA	0.67	N	333	2.00	16.50	142.50	1,402.50	none	none	0.04
494	0	0.63	D-10	290	1.81	12.33	79.83	754.83			none
495	SA	0.73	P-8	333	2.20	22.00	204.00	1,748.00			none
496	M	1.95	D-2	280	4.23	15.34	120.64	867.09			0.04
497	Q	1.00	D-10	333	0.90	8.19	48.69	288.69			

^{||} Key: M—monthly; B—bimonthly; Q—quarterly; SA—semiannually; A—annually, #Key: P—penalty; D—discount; N—net. "P-5" means 5 per cent penalty. ¶ No limit; flat rate to most or all residential users. @ Discounted rates are shown if prompt-payment discount is offered.

1	2	3	4	5	6	7	8
			Rev	enue—\$1,0	00 units		
Community*							
	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
1. Aberdeen, S.D.	137.4	61.9			199.3		
2. Adrian, Mich. 7/55	102.1	13.1	130.6	0.8	246.6	3.3	5.3
3. Akron, Ohio	1,516.4	144.0	800.0	11.8	2,472.2		
4. Albany, N.Y.							
5. Albemarle, N.C. ^{7/88}	108.7		20.8		129.5		
6. Albert Lea, Minn.					94.7		3.1
7. Albion, Mich.					75.9		
8. Albuquerque, N.M. ^{7/88}					2,092.8		
9. Alexandria, La. 8/88					423.3		
10. Alhambra, Calif.7/88	Ť	489.0			489.0		
11. Allen Park, Mich.							
12. Alliance, Ohio	+	207.2	113.5		320.7		
13. Amarillo, Tex. 10/55					1,629.8	İ	
14. Americus, Ga.							
15. Ames, Iowa					342.5		
16. Anaheim, Calif.						100	
17. Annapolis, Md.7/66					238.6		
18. Anniston, Ala.4/55	335.7	14.3	206.9	7.8	564.7	3.8	11.1
19. Ansonia, Conn.	+	133.7	71.7	0.1	205.5	3.9	19.6
29. Antioch, Calif. 7/85	1				225.3		
21. Appleton, Wis.	166.9	52.2	72.8	3.4	295.3	19.3	77.2
22. Arcadia, Calif. 7/88			7210	0.1	270.0	17.0	11.2
23. Arlington, Va.7/88					1,107.2		
24. Asheville, N.C.7/66		1	1	Ì	1,099.2		
25. Ashland, Ohio				To the state of th	167.7		
26. Athol, Mass.	71.0	20.0			91.0		
27. Atlanta, Ga.	1,833.4	2,026.4	965.0	68.4	4,893.2		
28. Atlantic City, N.J.					574.7		
29. Auburn, Me.	74.0	11.2	2.8		88.0	3.1	
30. Auburn, N.Y. ^{7/55}	159.8	150.2	†		310.0		
31. Augusta, Ga.				+	1,209.1		
32. Augusta, Me.	83.4	16.3	31.4	1.8	136.9	17.9	8.9
33. Austin, Minn. 8/88	1				191.2	1.1	5.4
34. Austin, Tex. 10/55					2,855.9	94.0	
35. Baltimore, Md.				9.5	9,877.4		32.6
36. Bangor, Me.	167.3	59.7	12.6	3.1	242.7	0.2	15.8
37. Barberton, Ohio	155.0	25.0	110.0		290.0	0.2	10.0
38. Batavia, N.Y.					137.8		
39. Baton Rouge, La.	1						
40. Bay City, Mich. 7/55	441.4	147.1	†	4.9	593.4	6.8	40.0

^{*} See notes beginning on p. 694. † Included in "Coml,"

rt I

ire

.3

1	9	10	11	12	13	14	15	16	17	18
	1	Revenue (con	td.)				Exp	enses	1	
	Misc. \$1,000		16-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 1	3-16
	\$1,000	\$1,000	\$/cap.§		\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	3/cap.
1		199.3		50.9	162.3	‡			162.3	7.06
2	11.3			none	149.4	1			149.4	7.17
3	324.3			469.0	840.4	401.9	16.9	227.7	1,486.9	5.01
4		1,443.1							989.8	7.34
5		129.5	8.63	18.5	49.9	30.0			79.9	5.32
6	0.6		6.15		45.8	t			45.8	2.86
7	3.3		6.10		43.1	8.2			51.3	3.96
8	162.9	-,			894.5	354.0		30.6	1,279.1	7.52
9	68.0				271.7	39.6			311.3	5.77
10		489.0	8.89	1.5	220.5	69.2	2.5	62.1	354.3	6.44
11										
12	26.2	346.9	11.19	22.7	140.7	50.1		1.0	191.8	6.19
13	58.6	1,688.4	12.98	none	353.7	88.3	2.1	1.0	444.1	3.42
14									777.1	3.42
15		342.5	14.90	4.1	116.4	21.0		32.5	169.9	7.40
16										
17	12.0		9.29		101.5	2.5			104.0	3.85
18	0.8	580.4	11.85	none	112.8	31.7	12.9		157.4	3.22
19	19.0	248.0	13.78	none	66.9	5.2	74.3	8.6	155.0	8.61
20	8.4	233.7	16.70	none	55.9	54.3			110.2	7.88
21	13.0	404.8	10.11	none	194.5	19.6			214.0	5.35
22		479.1	13.70						213.0	3.33
23	245.2	1,352.4	8.30		875.9	1		1.0	876.9	5.38
24		1,099.2	10.99						687.7	6.88
25		167.7	10.48		106.4	41.5			147.9	9.24
26		91.0	7.58	7.6	20.0	34.0	0.2		54.2	4.51
27	13.9	4,907.1	9.58	747.0	993.9	832.9			1,826.8	3.57
28	34.4	609.1	6.77	145.8	279.7	1	10.0		289.7	3.22
29	6.8	97.9	5.15	none	23.5	34.6			58.1	3.06
30	22.5	332.5	6.94	3.5	183.6	27.2		17.7	228.5	4.77
31		1,209.1	8.06		221.8	123.2		8.1	353.1	2.35
32	0.2	163.9	7.45	none	61.6	12.3	0.7	0.4	74.6	3.39
33	4.0	201.7	8.40						62.0	2.58
34	860.6	2,949.9	15.25	none					858.4	4.41
35	568.3	10,478.3	8.06		2,603.5	967.6		0.2	3,571.3	2.75
36	26.2	284.9	8.90	none	107.7	46.5	1.2	63.9	219.3	6.85
37		290.0	8.28	30.0	250.0	75.0		2013	325.0	9.28
38	47.8	185.6	10.31	16.1	93.9	44.2			138.1	7.67
10	8.8	649.0	10.81	none	198.7	81.5		104.4	384.6	6.41

Included in preceding column. Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Fund	s for Capita	l Additions	-\$1,000	Book (Depres	Value	Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	Reserve	Debt \$1,000
1		41.7				41.7	1,607	70		29	
3	0.6	71.1	1 200 2	17 5		71.1	1,628	81	11483	263	495
4	0.0		1,308.2	17.5		1,325.7	28,834	97	none	1,127	9,047
5		132.8				132.8					
6						56.4	515	32	180		
7		6.1				6.1	284	22	150	337	
8			1,640.0			1,640.0	16,595	98	4,154	3,342	14,151
9	0.5	214.2				214.2	1,642 4,143	30 75	339 1,512	none	none 282
-	0.5	214.2				217.2	4,143	13	1,312	none	202
11 12		48.4	60.0			108.4	5,036	162		197	1,249
13	0.1	69.2	00.0	3,169.6		3,238.8	16,672	128	none	590	9,755
14											
15		45.8		481.8		527.6	708	31	143	62	505
16											
17 18	2.2	3.4 199.0				3.4 199.0	1,638 3,836	61 78	561	823	1,056
	30.0	21.2	19.3			40.5	1,015	56		511 none	1,837
20		53.8				53.8	1,410			78	020
21				0.00		619.3	3,035	76	197	283	831
23		262.2		1,170.9		1,433.1	111,645	172	none	247	
24				-/		-,	9,130	91	none	none	6,236
25				161.5		161.5				46	695
26	0.2						1,650	137	none	none	98
27		40.3		2,462.7		2,462.7	35,226	69	none	none	14,883
28 29	1.6	40.3			30.0	40.3 30.0	‡7,077 ‡1,447	‡79 ‡76	none 495	none 300	831 171
30		44.0			30.0	44.0	41,337	470	493	300	1/1
31		51.9		266.7		318.6	3,879	26	none	147	3,316
32	0.4	17.4	150.0		50.0	217.4	2,434	110	709	130	705
33		200.2		050 8		. 222.0	2,055	86			none
34 35		377.3 829.2	9,042.8	850.7		1,228.0 9,872.0	15,706 ‡188,220	\$1 ‡145	none	none	80,478
36	0.4		28.9			28.9	2,351	73			
37	0.4		20.7	325.0		325.0	6,500	186			375
38		1			29.7	29.7	10.00				0
39		7.5		24.0		40.2	5 500	0.2			2
10		7.5		34.8		42.3	5,582	93	none	none	3,145

* See Col. 1 of preceding left-hand page and notes beginning on p. 694.
† Customer contributions toward construction.
† Undepreciated.
† Population served at retail.
|| Accounting record.

H

1	30	31	32	33	34	35	36	37	38	39
	0	Earnings			Dispos	ition of Earn	ings-\$1,6	000 units		,
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
1	1:1.2	37.0	4			142.3				-5.3
2	1:1.8	117.0	10.7	20.0	15.5	20.0			1140.8	50.8
3	1:1.9	1,309.6	208.3	3.3	446.4	502.0			11500.4	149.6
4	1:1.5	453.3								
5	1:1.6	49.6	49.4			40.5				
6	1:2.1	52.6						t13.5	10.9	
7	1:1.5	27.8			6.1				119.9	21.7
8	1:1.8	976.6	223.7	78.4	598.3	*545.0			718.1	
9	1:1.6	180.0			71.9			151.0	25.0	-66.9
10	1:1.4	134.7	29.4		214.2			37.5		-146.4
11										
12	1:1.8	155.1	33.6	10.0	48.4	54.0				9.1
13	1:3.8	1,244.3	290.5		516.7	410.0				27.1
14										
15	1:2.0	172.6	7.6	82.0		55.0			10.6	17.4
16										
17	1:2.4	146.6	18.4		45.1	66.8		x2.0	1154.9	14.3
18	1:3.7	423.0	62.2		199.0	87.0		51.3	1154.6	23.5
19	1:1.6	93.0	11.4				49.7		1122.1	31.9
20	1:2.1	123.5	0.9		24.6	8.0		90.0		1
21	1:1.9	190.8	19.5			23.0		t97.4	1139.1	50.9
22 23	1:1.5	475.5	1		262.2	F1426		20		
24	1:1.6	411.5	7)	384.2	202.2	1143.6		2.8		66.9
25	1:1.1	19.8	19.1	304.2						27.3
20	1.1.1	17.0	17.1							0.7
26	1:1.7	36.8	2.0		22.5	16.0				-3.7
27	1:2.7	3,080.3	285.2	17.2	64.0	490.0		2,223.9		
28	1:2.1	319.4	23.0		40.3	92.0		100.0		
29	1:1.7	39.8	5.6	0.4		1			1126.8	33.8
30	1:1.5	104.0			44.0			60.0		
31	1:3.4	856.0		292.0	54.0			510.0		
32	1:2.2	89.3	15.3			20.0			1151.0	9.9
33	1:3.2	139.7							37.7	
34	1:3.5	2,091.5	4 004 4	2	374.3			s396.7	11224.8	
35	1:2.9	6,907.0	1,801.1	2,141.0	829.2			2,135.7		
36	1:1.3	65.6	2.3		38.1	23.0			1141.8	2.2
37	1:0.9	-35.0	42.0	30.0	62.0	25.0				
38	1:1.3	47.5	1.1			21.5				
39 40	1:1.7	264.4	62.1	25.0	87.3	90.0			11160 4	
TU.	1.1./	209.4	02.1	25.0	01.3	90.0			1168.1	

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
		-	Rev	enue \$1,0	000 units		
Community*							
	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
41. Beaver Falls, Pa.	479.4	79.4	103.1	10.9	672.8	15.9	48.3
42. Beckley, W.Va.43. Bellaire, Ohio	248.6	59.9	8.7	1.1	318.3		8.1
44. Bellaire, Tex. 10/55 45. Bellingham, Wash.	273.0 179.0		†		278.2 424.4	2.3	16.0
46. Belmont, Mass.	†	196.7			196.7		
47. Bemidji, Minn.		1			34.7		4.0
48. Benton Harbor, Mich.	1 .	1074			256.8		17.0
49. Berlin, N.H. 50. Beverly Hills, Calif. 7/65	1	105.6	18.2	1.2	123.8 689.7	13.1	1.0
51. Bexley, Ohio ^{11/86}	80.0	5.0			85.0		
52. Billings, Mont.	424.5	101.0	55.8	3.6	584.9	17.1	21.6
 Binghamton, N.Y. Birmingham, Ala. 	1,853.8	476.8 1,030.4	400.7	36.0	476.8 *3,482.9	108.3	104.7
55. Birmingham, Mich. 7/56	1,033.0	1,050.4	400.7	30.0	225.2	0.9	11.5
56. Bismarck, N.D. 7/88	210.4	89.8			300.2	5.7	3.6
57. Bloomfield, N.J.				0.5	473.8		
58. Bloomington, Ill. 6/88 59. Boone, Iowa	78.4	34.3		0.5	548.3 112.7		
60. Boston, Mass.	70,1	04.0		33.0	6,237.1		
61. Boulder, Colo.					346.4		8 4
62. Braddock, Pa.					76.4		
63. Bradenton, Fla.64. Bradford, Pa.	127.4	11.8	45.0	0.1	184.3		
65. Brawley, Calif. 7/55	131.5	45.4	25.1	0.1	202.0		
66. Bremerton, Wash.			000		0.000.0		
67. Bridgeport, Conn. 68. Bristol, Tenn. 6/86	1	2,825.5	997.0	1.4	3,823.9		560.1
69. Bristol, Va.	95.1	105.7	+	1.9	190.8 202.7	0.9	18.9
70. Brockton, Mass.	75.1	105.7	'	1.2	458.9	0.2	16.9
71. Brookline, Mass.	387.2	24.7	İ		411.9		
72. Brownsville, Tex.					402.3	42.7	122.4
73. Buffalo, N.Y. 74. Burbank, Calif. 7/88	736.2	167.5	142.3	9.5	3,443.1 1,055.5	42.7 24.0	122.4
75. Burlington, Iowa	198.2	141.8	†	1.0	341.0	24.0	
76. Burlington, N.J.77. Burlington, N.C.^{7/55}	63.0	62.5		0.5	126.0 404.5		7.9 14.3
78. Butte, Mont.79. Cambridge, Ohio					140.8		
80. Canton, Ohio	496.5	226.2	+		140.8 722.7		
Suntoni Sino	2,010	-20.2			,		

^{*} See notes beginning on p. 694, † Included in "Coml."

td.)

ire

3.3

0.

1	9	10	11	12	13	14	15	16	17	18
	1	Revenue (con	ntd.)				Ea	penses		
	Misc. \$1,000	Tot	al 6-9	Free Service Value \$1,000	Op.	Maint	Taxes	Misc.	Total	13–16
	\$1,000	\$1,000	\$/cap.	1	\$1,000	\$1,000			\$1,000	\$/cap.\$
41		752.0	10.58	none	272.3	58.	77			-
42		367.0	7.35	none	144.3		92.	7	331.0	5.09
43		000				1	72.	1	237.0	4.74
45		278.2	1000	41.7	144.0	16.	6		160,6	7.30
40		442.7	11.36	попе	321.6		13.	9 24.9	360.4	9.24
46	7.1	203.8	6.79			1				7.21
47		38.7	0112	0.1	77.2	92.4		35.3	204.9	6.83
48	17.8	291.6		none	17.9	3.0			20.9	2.09
49	.0.2	124.0		11.0	70.6	52.7	7		123.3	5.61
50	1.7	705.5		none	200	‡			57.5	3.20
			10.11	none	412.4	21.1	6.3	72.1	511.9	11.91
51		85.0	6.06	10.8	1	1				
52	50.5	674.1	11.23	none	276.3	İ			15.0	1.07
53	39.1	515.9	5.43	63.3	391.0	+			276.3	4.61
54	72.0	3,767.9	7.39	none	1,211.6	291.8	21.0	16.5	391.0	4.11
55	12.3	249.9	10.86	none			-1.0	10.5	1,540.9 103.5	3.02 4.50
56	19.5	329.0	11 20						100.5	4.30
57	115.1	588.9	14.30	none	39.4	108.5			147.9	6.43
58	110.1	548.3	14.42	61.0	105.3	147.5		75.5	328.3	6.31
59	6.9	119.6	9.20	61.9	192.1	95.2	0.1		287.4	7.56
60		6,237.1	8.78	7.0	72.7	18.1	2.3	1 1	93.1	7.16
			0.70		473.3	5,705.9	1		6,179.2	8.70
61	26.9	381.7	11.92	none					400 .	
62		76.4	4.50	1.4					199.4	6.23
63		376.7	26.92						55.9	3.29
64 65	2.6	186.9	9.34	63.3	70.1	İ			177.4 70.1	12.68
03	4.8	206.8	14.78		72.6	29.6			102.2	3.50 7.31
66									100.4	1.01
67	107.1	4,491.1	16.76	none	1 001 0	200 -				
68		190.8	9.54	none	1,001.9	208.9	1,442.1	20.0	2,673.0	9.98
69	4.1	226.6	12.59	none	49.1	73.6		23.9	146.6	7.33
70		458.9	7.06	none	14.0 294.5	20.5			34.5	1.92
1				none	294.3	‡			294.5	4.54
71	35.0	446.9	7.70	21.2	500.9	1			#00 o	
72		402.3	8.05	none	231.2	*			500.9	8.63
73	18.7	3,626.9	6.20						231.2 2,078.0	4.63
~	15.5	1,095.0	11.90		175.3	165.1		195.2	535.6	3.55
15	31.0	372.0	12.00	30.0	236.8	‡			236.8	5.82 7.64
6		133.9	9.56						200.0	7.04
7	85.7	503.5	16.78	1.0	74.8	‡			74.8	5.34
8	50.7	000.0	10.70	none	110.2	44.3			154.5	5.15
9		140.8	7.82		74.2	60.0				
0	105.0	827.7	6.09	85.6	74.2	60.8			135.0	7.50
1			0.07	0.00	516.5	281.5		51.5	849.5	6.25

Included in preceding column. Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Fund	s for Capita	l Addition	\$1,000	Book V (Deprec	alue iated)	Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20–23	\$1,000	\$/cap.\$	Reserve Funds \$1,000	Reserve	Debt \$1,000
41		223.6				223.6	6,135	94		2,800	3,860
42 43	25.2	48.7				48.7	1,912	38	437	977	253
44		36.0				36.0	1,789	81		41	984
45	3.1	110.5				110.5	4,864	125	2,244	3,274	82
46							1,134	38		140	none
47		37.1				37.1	396	40		51	
48		33.6				33.6	2,551	116	563	361	1,975
49 50	0.9	32.8	1,083.0			32.8	677	38 80	2 001	553	120
30	0.9	40.0	1,083.0			1,129.0	3,457	80	2,091	1,794	2,840
51 52				1.232.1		1,232.1	5,172	86	none	270	1,950
53		16.2		1,232.1		16.2	3,172	00	none	210	1,930
54	0.6	1,367.8		1,512.9		2,880.7	29,723	59		4,571	24,570
55		23.9				23.9	2,027	88	796	302	312
56		12.7		340.0		352.7	2,176	95	579	1,020	1,231
57 58	0.0	57.9	138.2	195.9		392.0	4,479	118	907	2,408	1,645
59	1.9	134.0				134.0	900	69	none	87	none
60		200.0				200.0	27,840	39			
61		63.1	458.1			521.2	4,170	130	none	413	2,280
63						1	1,474	105			
64							3,162	158	none	none	1,950
65		17.4	63.6			81.0	1,058	75			
66 67	32.2					1,793.9	‡30,461	İ114	116,599	2,681	10,300
68	32.2	75.4				75.4	430,401	+114	0,399	183	200
69		13.1				13.1	3,239	180	none	228	2,305
70			1,800.0			1,800.0					
71							3,381	58			
72		33.9	Ì			33.9	4,044	81			
73							46,000	79			7,927
74 75		93.2		200.7		293.9	5,249	57	none	none	none 590
76		24.2		83.2		107.4	\$1,592	1114	none	71	810
77		102.9		0.01.0		102.9	41,072	7	.10110		010
78							1,400	78			155
30							9,600	71		275	128

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction. † Undepreciated. † Population served at retail. | Accounting record.

ntd.)

ebt

	1 3	30	31	3	32	33	34	35	30	37	38	39
	0-	er-	Earning	18		1	Die	position of E				39
_	ati	ng tio	Earning (Col. 16 Minus Col. 17 \$1,000		rest	Debt Retire ment Reserv	Capita	I Bonde	Div	i- Paid	to Depre	Added to Reserve
4	1 1:2 2 1:1 3		421.0 130.6		2.0	28.	177.0	80. 29.		0.0	7. 38	2 26.4
4			117.6 82.3	2	1.1	23.0	5	28.	0	t26.	44.	9
4			-1.1 17.8							120.	1	56.2
49 50	1:2.	2	168.3 66.5 193.6	(3.8 5.7 9.4		29.8 46.6)	t22.0	0 1173.8 1118.4	8
51 52 53 54 55	1:2. 1:1. 1:2. 1:2.	3 4	397.8 124.9 2,227.0 146.4	701	.5	71.5	905.2	50.0 40.0 639.0 12.0		x27.8 t121.5		181.6 51.6
56 57 58 59 60	1:2.5 1:1.8 1:1.9 1:1.3	3	181.1 260.6 260.9 26.5 57.9	19. 26. 27.	1	83.6	12.7 75.0 26.5	114.0 35.0 65.0		50.0 9.8	32.7	110.4 74.5 158.3
61 62 63 64 65	1:1.9 1:1.4 1:2.1 1:2.7 1:2.0		182.3 20.5 199.3 116.8 104.6	69. 0. 101.8 15.6	6	1.1	63.1 13.9 17.4	50.0 12.8 149.9 48.0		7.1	57.9	49.4
6 7 8 9 0	1:1.7 1:1.3 1:1.6	1	,818.1 44.2 192.1 164.4	321.7 8.8 62.9 180.0		47.1	2.1	15.0 80.0	748.0	s16.1	1154.2	748.4 4.3 -11.0
1	1:0.9 1:1.7 1:1.7 1:2.0 1:1.6	1,	-54.0 171.0 548.9 559.4	307.9	2	269.0	6.5	528.7		436.8 d409.8	18.7	-15.6
	1:1.8 1:3.3		59.1 349.0	21.7		1.0	93.2	30.0		2107.0	1137.0	147.9 -16.8
1	1:1.0		5.8	117.7			102.9	111.3				17.1

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).

¶ Interest included in Col. 35.

¶ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

2	3	4	5	6	7	8
		Rev	enue-\$1,0	00 units		1
Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
135.1	74.2			209.3	0.7	11.6
				136.0		
					2.1	
1	1	20.8				
81.7	11.4	30.7	0.1	123.9	1.5	12.0
605.8	101.2	13.4	1.1	751 5	45.4	15.8
	1					13.0
	02.0	10110			10.5	
1.380.2	359.4	362.1	12.3			80.7
.,				2)11110		00.7
				21 060 0		
177 7	110 3	150.1				
1,,,,,	117.0	150.1				
			0.4			
			23.3	12,588.4		
				250.0		
				239.0		
518.0	198.3	136.8		853.1	25.6	
1				072 3		
114.2	41.2	93.3				7.4
1	11.0	70.0				1.72
1 +	153.1	35.4		188.5		
1 202 0	1 100 7			2 404 7		
1,293.0	1,190.7					
324.1	20.5	103.8				
1					282.4	
111.2	39.8	26.5	2.7	180.2		17.3
200	22.5	F2.4				
1			0.7			33.2
					144.0	
						28 0
149.8	34.4	31.3		2,147.7	7.4	37.2
						24.0
106 5	71.7	64.7			7.6	31.8
			5.9			15.6
100.0	17.0	30.0			1.0	
				1.224.3		
	Resid. 135.1 494.3 81.7 605.8 272.0 1,380.2 177.7 518.0 114.2 † 1,293.0 324.1 †	Resid. Coml. 135.1 74.2 494.3 269.3 81.7 11.4 605.8 101.2 272.0 32.5 1,380.2 359.4 177.7 119.3 518.0 198.3 114.2 41.2 † 153.1 1,293.0 1,198.7 324.1 20.5 † 372.7 111.2 39.8 75.9 22.7 209.3 50.5 5,618.0 1,193.8 149.8 54.4	Resid. Coml. Ind. 135.1 74.2 494.3 269.3 81.7 11.4 30.7 605.8 101.2 43.4 272.0 32.5 181.0 1,380.2 359.4 362.1 177.7 119.3 150.1 518.0 198.3 136.8 114.2 41.2 93.3 † 153.1 35.4 1,293.0 1,198.7 324.1 20.5 193.8 † 372.7 96.5 111.2 39.8 26.5 75.9 22.7 53.1 209.3 50.5 14.4 5,618.0 1,193.8 210.7 149.8 54.4 31.5	Revenue—\$1,0 Resid. Coml. Ind. Pvt. Fire 135.1 74.2 494.3 269.3 3.7 0.1 605.8 101.2 43.4 1.1 272.0 32.5 181.0 14.9 1,380.2 359.4 362.1 12.3 177.7 119.3 150.1 0.4 23.3 114.2 41.2 93.3 † 153.1 35.4 1,293.0 1,198.7 324.1 20.5 193.8 † 372.7 96.5 111.2 39.8 26.5 2.7 75.9 22.7 53.1 0.7 75.9 22.7 53.1 0.7 75.9 22.7 53.1 0.7 149.8 54.4 31.5	Revenue—\$1,000 units Resid. Coml. Ind. Pvt. Fire Total 2-5 135.1 74.2 209.3 136.0 132.2 136.0 132.2 764.1 123.9 132.5 181.0 14.9 500.4 1,058.0 1,380.2 359.4 362.1 12.3 2,114.0 177.7 119.3 150.1 31,068.8 447.1 156.6 214.1 156.6 0.4 214.1 156.6 0.4 214.1 156.6 0.4 214.1 156.6 0.4 23.3 12,588.4 114.2 41.2 93.3 248.7 236.3 188.5 1,293.0 1,198.7 236.3 188.5 1,293.0 1,198.7 324.1 20.5 193.8 1 35.4 188.5 1,293.0 1,198.7 324.1 20.5 193.8 26.5 2.7 180.2 111.2 39.8 26.5 2.7 180.2 75.9 22.7 53.1 0.7 152.4 269.3 50.5 14.4 274.2 7,022.5 149.8 54.4 31.5 235.7 2,147.7 147.0 324.7 7,022.5 235.7 2,147.7 149.8 54.4 31.5 12.21.1 338.8 207.0 196.5 71.7 64.7 5.9 235.7 2,147.7 147.0 338.8 207.0 196.5 71.7 64.7 5.9 235.7 2,147.7 147.0 338.8 207.0	Revenue—\$1,000 units Resid. Coml. Ind. Pvt. Fire Total 2-5 Munic. 135.1 74.2 209.3 0.7 136.0 132.2 2.1 494.3 269.3 0.5 764.1 132.2 2.1 605.8 101.2 43.4 1.1 751.5 45.4 272.0 32.5 181.0 14.9 500.4 18.3 1,058.0 1,058.0 1,058.0 1,058.0 1,058.0 1,380.2 359.4 362.1 12.3 2,114.0 177.7 119.3 150.1 31,068.8 447.1 156.6 0.4 214.1 23.3 12,588.4 259.0 518.0 198.3 136.8 853.1 25.6 114.2 41.2 93.3 248.7 236.3 † 153.1 35.4 188.5 1,293.0 1,198.7 2,491.7 147.0 324.1 20.5 193.8 538.4 538.4 469.2

^{*} See notes beginning on p. 694, † Included in "Coml."

d.)

re

6

0.8

1	9	10	11	12	13	14	15	16	17	18
	Re	evenue (cont	d.)				Expe	enses		
	Misc.	Total	6-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 1	3-16
	\$1,000	\$1,000	\$/cap.§		\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.
81	1.2	222.8	9.28	none	89.7	17.1	55.2		162.0	6.75
82		136.0	11.33	15.2					57.7	4.81
83	2.0	136.3	8.02	0.3	47.8	16.0			63.8	3.75
84	143.0	907.1	11.34	80.6	383.0	101.9			484.9	6.06
85		137.4	6.87	7.6	68.9	‡		0.8	69.7	3.48
86	4.5	817.2	10.62	1.1	222.1	79.5	197.0		498.6	6.48
87	1.5	520.2	11.31							
88		1,058.0	7.29	54.9	375.5	62.6		331.0	769.1	5.30
89	32.3	2,227.0	12.04	none	943.3	139.4	421.4		1,504.1	8.13
90		1,733.1	9.64							
91	600.8	31,669.6	7.16	1,519.8	19,002.1	4,276.9		23.5	23,302.5	5.27
92	39.1	486.2	11.31	76.4	199.9	41.8			241.7	5.62
93	1.5	158.1	7.53	24.5	54.9	21.9			76.8	3.66
94		214.1	10.70		83.9	‡			83.9	4.19
95	630.9	13,219.3	10.33	360.0	5,600.0	1,613.4		54.5	7,267.9	5.68
96										
97					104.1	12.4		0.9	117.4	
98	14.2	273.2	12.41	1.0	100.0	89.5	0.3		189.8	8.62
99								1		
100	50.3	929.0	12.39	196.0	525.9	96.5			622.4	8.30
101										
102		972.3	9.17		246.7	44.8	i	- 1	291.5	2.75
103	0.1	256.2	13.49	none	103.2	13.1	4.7		121.0	6.37
104		236.3	12.43		82.7	19.3		- 1	102.0	5.37
105	0.4	188.9	6.75		103.6	10.8			114.4	4.09
106	54.3	2,546.0	14.15							
107		147.0	9.19		90.0	7.0		- 1	97.0	6.06
108	86.5	624.9	12.50	45.8	332.5	‡			332.5	6.65
109	6.5	758.1	3.79	54.8	378.8	31.4	12.7	9.8	432.7	2.16
110		204.2	14.59	none	63.0	15.5	59.6		138.1	9.87
111	1.6	187.2	11.70						118.4	7.40
112	68.8	343.0	8.37	5.5	137.5	71.1			208.6	5.09
113	238.6	7,402.3	12.66	223.4	3,269.6	247.8			3,517.4	6.01
114	35.6	315.9	6.32	none	140.6	22.2			162.8	3.26
115	96.3	2,244.0	7.01	142.6	1,532.3	1	0.7	60.1	1,593.1	4.98
116	68.9	1,329.4	10.23	none	896.2	88.8			985.0	7.58
117	2.2	356.6	13.72	none	103.9	10.4		İ	114.2	4.40
118	10.0	218.0	12.82		30.0	24.0			54.0	3.18
119	50.0	1,274.5	7.97							
120	6.9	295.6	14.08				1		166.4	7.93

[‡] Included in preceding column. § Population served at retail.

F

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Funds	for Capital	Additions	-\$1,000	Book V (Depreci		Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	in Reserve \$1,000	Debt \$1,000
81	24.8					48.1	‡1,387	‡58	11191		
82							753	63		50	
83		61.8				61.8	628	37	456	50 54	none
84				147.5		147.5	4,426	55	none	4	1,454 737
85		26.6				26.6	1,529	76	188	**	131
06	24.4					404.9	\$5,190	167	11699		2,456
86 87	24.1					10112	4,044	88	428	328	3,157
88		59.3		622.6		681.9	15,810	109	629		3,400
89 90	18.9					778.8	13,139	71	1,221		
91		4,828.9		8,340.8		13,169.7	270,470			6,191	54,700
92		143.3				143.3	3,267	76	none	2,628	1,776
93							1,431	68	10	102	68
94	1	100.1				100.1	1,210	61	29,990	103 51,589	56,202
95						4,155.2	82,507	0.5	29,990	31,369	30,202
96							2 425		107	217	3,100
97						none	3,425 1,348		107	217	263
98							1,340	01	133		200
99		1,021.4		5,000.0		6,021.4	21,019	280	2,061	108	13,650
101				400 5		100 5					4,685
102		70.4		189.5	†46.3	189.5 116.4	2,152	113	none	none	1,644
103		70.1			140.3	92.0	1,207		none	none	1,01
04		55.9	26.2			82.1	2,492		925	13	140
06						120.0					359
107		128.0				128.0 125.5	2,808	56	none	70	
108				155.9		155.9	5,642		none	11	1,43
1(133.5		59.8	770				
111						22.5	2.054	0.4		199	499
112		33.7	1			33.7 1,417.4	3,854		none	199	29,54
13		29.5	1,417.4			463.4	3,465		1,102		1,590
114				1,760.0		2,225.2	15,809		none	1,042	
110	5	95.6				95.6	5,29		799	547	
117						119.6	2,420		54	150	
118		8.0		113.0		121.0	\$2,045		21	130	86.
119							13,219		mone	53	1,68
120)					none	3,36	160	none	33	1,00

*See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

† Undepreciated.

† Population served at retail.

| Accounting record.

1	30	31	32	33	34	35	36	37	38	39
		Earnings			Disposi	ition of Earn	ings—\$1,0	000 units		
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
81	1:1.4	60.8								
82	1:2.4	78.3			36.3	1			118.8	
83	1:2.1	72.5	2.4		23.1	20.0			23.3	3.7
84	1:1.9	422.2	21.8	36.8	293.6	70.0			1180.0	
85	1:2.0	67.7		40.6				40.0	1.2	
86	1:1.6	318.6	81.5		221.5		15.6		1109.8	
87 88	1.14	288.9				1		200.0		88.9
89	1:1.4	722.9						200.0		00.9
90	1:1.5	122.9								
91	1:1.4	8,367.2	1,441.3		2,425.9	4,500.0				
92	1:2.0	244.5	51.7			. 1			1150.7	192.8
93	1:2.1	81.3	3.9	14.7	40.1			x13.0	7.2	2.4
94	1:2.6	130.2	18.5	7.1	48.3	10.0			1128.7	46.3
95	1:1.8	5,951.4	1,205.7	762.7		1,227.0			1,463.5	1,292.5
96										
97			104.5	53.3	15.3				71.8	77.3
98	1:1.4	83.4	4.4		28.4	25.6			1167.8	25.0
99	1:1.5	306.6	276.7	165.6		127.0			11219.3	
101										
102	1:3.3	680.8	120.3	34.9		258.0		267.6		
103	1:2.1	135.2	54.7	6.0	44.9	22.0		201.0	1146.2	7.6
104	1:2.3	134.3	34.1	0.0	92.0	22.0		33.9	1140.9	8.4
105	1:1.6	74.5	2.5		24.9	10.0		00.7	37.1	0.1
106										
107	1:1.5	50.0		17.0		17.0				16.0
108	1:1.9	292.4	123.6	11.0	125.5	11.0			11120.3	43.3
109	1:1.8	325.4	48.5	136.8	9.0			131.1	12010	1010
110	1:1.5	66.1	10.0	10010					1116.4	
111	1:1.6	68.8								
112	1:1.6	134.4	17.9			34.0				
113	1:2.1	3,884.9	807.4	1,954.4	912.2					210.9
114	1:1.9	153.1	23.7					t64.8	164.6	64.6
115	1:1.4	650.9	134.2		483.2	336.0			11389.5	-302.5
116	1:1.3	344.4	35.6	6.0	146.5	89.0				67.3
117	1:3.1	242.4	61.4	13.3	59.2	42.0		t12.0	46.9	7.6
118	1:4.0	164.0	36.5	12.0	7.2			96.0	4.8	7.5
119		100.0	25.0	100	43.0	22.0		20.7		
120	1:1.8	129.2	35.2	17.5	13.8	33.0		29.7		

[#] Ratio of expenses (Col. 17) to revenue (Col. 10),
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Rev	enue -\$1,0	000 units		1
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
121. Denton, Tex. 6/85					365.1		
122. Denver, Colo.					5,846.4	31.7	137.0
123. Derby, Conn.	1 +	84.9	26.1	0.5	111.5		13.7
124. Des Moines, Iowa	1	2,156.5		2.0	2,158.5		29.7
125. Des Plaines, Ill.							
126. Detroit, Mich. 7/66	6,228.5	3,087.1	2,828.6		*16,464.5		
127. Dodge City, Kan.		1			162.3		
128. Dover, N.J.					115.7		0.8
129. Dubuque, Iowa				4.2	409.0		
130. Duluth, Minn.				4.8	800.3		27.9
131. Durant, Okla. 7/88	120.0	60.0			180.0		
132. Durham, N.C.7/86				25.9	899.2		44.2
133. Dyersburg, Tenn. 7/55					120.9		
134. E. Bay M.U.D., Calif. ^{7/8}	8,914.6	1,419.0	1,528.5		11,862.1	880.1	*2,541.1
135. East Detroit, Mich. 7/88					192.2	208.6	
136. East Jefferson, La.					1,116.7		
137. East Lansing, Mich. 7/85					128.0		3.3
138. East Orange, N.J.							
139. Eau Claire, Wis.	213.4	57.9	202.4	1.9	475.6	17.6	77.2
140. Ecorse, Mich. 7/88							
141. El Centro, Calif.					262.8		
142. El Dorado, Kan.	1 +	480.0			480.0		
143. Elizabeth, N.J.	660.0	274.8	†		934.8		
144. Elizabeth City, N.C. ^{7/88}					151.9		
145. Elmira, N.Y.	412.7	150.9	†	7.7	571.3		14.6
146. Elwood, Ind.	†	90.9	10.3	1.6	102.8	2.4	15.3
147. Emporia, Kan.	101.8	48.5	†		150.3		
148. Endicott, N.Y.	1	276.0	169.8	4.2	450.0	9.7	52.0
149. Erie, Pa.	746.5	132.5	448.8		1,327.8		9.7
150. Escanaba, Mich. ^{7/86}					151.8	3.8	15.4
151. Eugene, Ore.	217.2	301.6	†		518.8	36.5	16.5
152. Evanston, Ill.					1,064.2		
153. Fargo, N.D. ^{7/65}	216.4	198.2			414.6		35.0
154. Faribault, Minn.	0.00	400.5			95.6		
155. Fayetteville, N.C. ^{7/86}	273.3	129.2			402.5		
156. Fergus Falls, Minn.4/86	48.2	13.4	34.8		96.4		6.8
157. Flint, Mich. 7/85	1,219.7	1,471.9			2,691.6		16.2
158. Florence, Ala. 10/88	267.3	36.8			304.1		14.2
159. Fort Collins, Colo.					267.8	12.0	
160. Fort Dodge, Iowa					219.5		

^{*} See notes beginning on p. 694, † Included in "Coml,"

ntd.)

Fire

7.0 3.7 9.7

0.8 7.9

1.2 .1

.3 .2

6 3

1	9	10	11	12	13	14	15	16	17	18
		Revenue (a	mtd.)				Ex	penses		
	Misc.	Tol	al 6-9	Free Service Value		1			Total	13-16
	\$1,000	\$1,000	3/cap.	\$1,000	Op. \$1,000	Maint. \$1,000	Taxes \$1.000	Misc. \$1,000	\$1,000	1
121		365.	1 13.03	Bone		-		-	\$1,000	\$/cap.\$
122	281.		1			1			256.9	9.17
123	1.	-1		none					2,392.8	4.35
124	3.0			none	0100	200			97.1	9.71
125		2,171.	10.19		818.2	288.4			1,106.6	5.14
126	1,238.0	17.702.	9.28							
127	1,000,0	162	-1.00	27.0					7,798.5	4.09
128	12.0			27.0		-			51.2	4.26
129	1.5	* ****		18.9	1.421.00	20.4	0.5		96.1	7.39
130	1.4			85.0		37.4			194.7	3.60
	1.4	029.0	7.90	none	420.9	126.8			547.7	5.22
131		180.0	13.84		26.8	21 2				
132	59.7		11.80	none	286.6	31.3			58.1	4.47
133		120.9		Hone	40.7	222.6			509.2	5.99
134	1,253.7	16,537.0		none	3,698.9	19.0			59.7	4.59
135		400.8	1	none		941.1	56.2	193.2	4,889.4	4.88
		100.0	10.02	none	245.6	89.6			335.2	8.38
136	307.7	1,424.4	16.77						000 0	
137		131.3	10.10	none	90.9	1			998.2	11.75
138				none		4			90.9	6.99
139		570.3	15.84	none	235.6	İ			225 6	
40						*			235.6	6.54
41		262.8	16.42		63.8	70.0				
42		480.0	30.00		03.6	70.8		10.5	145.1	9.07
43	32.4	967.2	7.44	90.0	663.0				312.3	19.52
44	0.9	152.8	10.18	20.0	133.4	1 1		- 1	663.0	5.10
45	9.3	595.2	8.50	48.7	249.4	15.3			148.7	9.91
			0.00	70.7	249.4	90.4	25.6		365.4	5.22
46	8.5	129.0	9.93						176	2 < 0
47		150.3	8.35	7.0	82.3	13.3			47.6	3.67
48		511.7	8.39		171.9	47.5	117.6	15.1	95.6	5.31
49	105.7	1,443.2	9.56	110.6	1,054.5	†	111.0	66.4	352.1	5.77
50	3.4	174.4	11.62	none	66.3	23.5		00.4	1,231.6	8.16 5.98
51		571.8	13.00	none	173.5	12.5				0.20
52	30.7	1,094.9	14.41	33.1		42.5			216.0	4.91
53	25.6	475.2	10.56	33.1	369.4	‡			369.4	4.86
54	2.2	97.8	6.12	55.0	307.7	‡	3.9		311.6	6.92
55	60.1	462.6	7.71	4.5	17.7 94.7	63.3		1	52.6	3.29
6	14.0	1105			7.1.1	03.3			158.0	2.63
7	14.8	118.0	8.43	4.0	42.7	12.8		17.9	73.4	5.24
8	110.8	2,818.6	14.83	129.6	1,206.0	244.3	5.9		1,456.2	7.66
9	4.8	323.1	11.13	none	117.0	:			117.0	4.03
	37.9	317.7	13.81	12.0					133.5	5.80
0	36.7	256.2	8.54	27.0	139.4	t			139.4	4.65

[†] Included in preceding column. Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Funds	for Capital	Additions-	-\$1,000	Book V (Deprec		Depre- ciation	Surplus	Funded
*	(% of Total Rev.	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	Reserve	Debt \$1,000
121			50.7	1,012.0		1,062.7	2,484	89	83	none	954
122		1,910.6	3,000.9			4,911.5	64,550	117			36,742
123						2 121 1	752	75	1162	170	
124 125		616.2				2,434.4	11,716	55	4,288	10,830	1,93
126		5,106.0		1,000.0		6,106.0	154,730	81	none	1,336	27,19
127		73.1				73.1	1,269	106	23	40	440
128	0.4	1				10.0	754	58	744	50	10
129		62.4		1,500.0		1,562.4	2,713	50	40		1,650
130		200.9				200.9	5,518	53	none	366	1,13
131		6.0				6.0	2,000	154			
132			203.5			203.5	\$9,755	‡115	none	none	4,50
133		70.0				70.0	630	48			
134		8,830.0			†857.0	9,687.0	\$165,027	‡165	1137,722	97,896	38,88
135					†277.1		1,831	46	none	55	5.
136							10,855	128	890		10,00
137						none	433	33			
138							11.120	1100			
$\frac{139}{140}$				1,154.3		1,154.3	‡4,430	‡123	none	160	1,93
141			1,430.0			1,430.0	1,821	114			
142			442.0			1,792.0	3,829	240			
143		52.7	112.0	1,000.0		52.7	15,654	144	3,608	528	1,99
144							823	55	390		42
145	4.3	368.7				368.7	\$4,718	‡67	11328	16	none
146							633	49	69	133	91
147		16.2				16.2	1,726	96	none	none	19
148	23.0	1	036.0	*		89.3	\$2,638	‡42	11552	659	1,15
$\frac{149}{150}$		149.9	936.2			1,086.1	13,581	90	6,225	11,911	3,010
130		10.0				10.0	1,497	100	21	20	84.
151		249.2				249.2	‡5,553		11,840	312	1,30
152	0.0						12,836	169		21.5	4.55
153 154	0.8						3,804	85		215 40	1,57
155		607.8				607.8	1,771 5,616	111 94	none	none	none none
156		35.1				35.1	885	63	245	27	8
157	0.2			797.5		797.5	16,060	85	none		10,28
158		67.3				67.3	3,643	126	none	none	2,30
159			1,500.0			1,500.0	2,761	120		469	1,86
160		80.5				80.5	2,633	88	none	none	none

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

**Undepreciated.

**Population served at retail.

**I Accounting record.

d

22

1	30	31	32	33	34	35	36	37	38	39
		Earnings			Dispos	ition of Earn	ings-\$1,0	000 units		
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
121	1:1.4	108.2	26.6			33.0			82.4	
122	1:2.6	3,913.7	914.8	90.6	916.3	1,025.0			11967.0	
123	1:1.3	29.2			2.6		18.8			7.8
124 125	1:2.0	1,085.2	99.2	94.2					201.9	689.9
126	1:2.3	9,904.0	2,598.3	1,983.3	2,800.0	1,186.0			113,303.6	1,336.4
127	1:3.2	111.1	40.6	39.9		25.0			28.6	-23.0
128	1:1.3	32.4	0.4		10.0			20.0	1.0	1.0
129	1:2.1	215.9	28.1	86.7	60.1				1160.6	40.0
130	1:1.5	281.9	20.3			76.9			1138.8	184.7
131	1:3.1	121.9			6.0			115.9		
132	1:2.0	493.9	146.0		0.5	195.3		8152.1		
133	1:2.0	61.2						14.7	117.9	
134	1:3.4	11,646.7	1,690.1		7,852.5	2,105.0			12,673.0	
135	1:1.2	65.6								65.0
136	1:1.4	426.2	100		400					-
137	1:1.4	40.4	1.9		10.0	5.0			16.5	7.0
138 139	1:2.4	334.7	51.3	55.8	50.3	62.0		t107.9	1162.2	7.4
140	1.2.4	334.1	31.3	33.0	30.3	02.0		1107.9	02.2	1.9
141	1:1.8	117.7								
142	1:1.5	167.7								
143	1:1.5	304.2	126.1		45.1	133.0			1133.0	
144	1:1.0	4.1	14.0		24.8	23.1			11390.4	
145	1:1.6	229.8			229.8				1153.1	
146	1:2.7	81.4	34.8	2.0	13.8					30.8
147	1:1.6	54.7	4.0		16.2	19.0			1139.2	15.
148	1:1.5	159.6	47.6		69.0				1143.0	43.0
149	1:1.2	211.6	42.4		150.9	25.0			11277.9	18.
150	1:1.9	84.6	22.4			25.0		t19.6		0.8
151	1:2.6	355.8	29.2	157.8	114.1	352.0			1154.7	-297
152 153	1:3.0	725.5	57.1 38.6						56.8	68.3
154	1:1.9	45.2	30.0						30.8	5.0
155	1:2.9	304.6			304.6					3.
156	1:1.6	44.6	1.9	1.2	35.1	7.0			112.8	27.0
157	1:1.9	1,362.4	267.7	50.0	168.0	245.0		t120.0	11439.5	511.
158	1:2.8	206.1	86.0	20.0	55.8	11.0		t33.3		
159	1:2.4	184.2	44.2		00.5	113.0			154.1	27.0
160	1:1.8	116.8			80.5					36.

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Rev	venue—\$1,6	000 units	1	1
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
161. Fort Madison, Iowa	-			1.3	109.0	0.1	11.5
162. Fort Scott, Kan.					111.9		4.9
163. Fort Wayne, Ind.	832.4	704.3	†	11.9	1,548.6	28.7	71.1
164. Fostoria, Ohio 165. Frankfort, Ky. ^{7/88}	83.5	44.2	†		127.7 158.4		
166. Franklin, Ind.	77.4	24.3	30.8	0.4	132.9	5.9	12.6
167. Franklin, Pa.	96.8	5.4	7.4		109.6	0.7	12.0
168. Fredericksburg, Va. 7/55					180.6		7.0
169. Freeport, Ill. 10/55	1 1	228.6	38.2	3.8	270.6	5.6	30.3
170. Fremont, Neb.					94.0	4.4	
171. Fresno, Calif. 7/88	1,068.0	471.6	†		1,539.6	28.7	8.7
172. Fullerton, Calif. 7/55	12.1	10.5	4.2		542.8		
173. Fulton, Mo. ^{7/88} 174. Gainesville, Ga.	42.1	19.5	4.3		65.9		
175. Garden City, N.Y. ^{3/55}					278.9 372.7	6.1	
176. Gary, Ind.	1,043.5	375.4	171.7	5.3	1,595.9	63.4	99.8
177. Gastonia, N.C. 7/88	1				448.4		
178. Glen Cove, N.Y.	1 + 1	182.1	21.5	2.8	206.4	4.9	22.0
179. Glendale, Calif. 7/88 180. Gloversville, N.Y.					1,334.3		40.6
181. Goldsboro, N.C.				12.5	223.3		
182. Goshen, Ind.				12.0	64.1		10.7
183. Grand Island, Neb. 8/88					178.0	8.4	6.0
184. Grand Junction, Colo.	1				407.0	0.4	0.0
185. Grand Rapids, Mich. 7/86	827.1	336.8	393.8	29.1	1,586.8		121.6
186. Great Bend, Kan.	167.1	50.4			217.5		13.3
187. Green Bay, Wis.	201.1	76.5	110.0	3.4	391.0	8.3	74.5
188. Greensboro, N.C. ^{7/55}					1,168.3		
189. Greenville, Miss. 10/88 190. Greenville, N.C. 7/88	217.5	82.5	72.5		371.5 238.2		
191. Greenville, S.C. ^{8/88}	690.6	218.5	188.8	12.8	1,110.7		
192. Greenwood, Miss. 10/84	0,010		10010	1.7	150.2		
193. Greenwood, S.C.	+	113.4	49.2	1.4	164.0		
194. Griffin, Ga. 18/64	137.9	134.3	†		272.2		
195. Haddonfield, N.J.					89.1		
196. Hagerstown, Md.	438.4	14.2	†	6.2	458.8		22.5
197. Hamilton, Ohio	473.1	194.2	92.7		760.0		***
198. Hammond, Ind.	553.4		407.7		961.1	4.2	70.6
199. Hannibal, Mo. 6/88	163.6	28.4	20.0		185.2		
200. Hanover, Pa.	163.6	27.1	29.0	5.9	225.6	1.2	1.7

^{*} See notes beginning on p. 694, † Included in "Coml."

ntd.)

Fire

1.5 4.9 1.1

2.6

7.0

3.7

.8

.0

.7

.6

1	9	10	11	12	13	14	15	16	17	18
	Rev	enue (conto	1.)				Expe	nses		
	Misc.	Total	6-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 1	3-16
	\$1,000	\$1,000	\$/cap.§	91,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.{
161	5.0	125.6	8.37		75.7	t	2.3		78.0	5.20
162		116.8	11.68							
163	20.3	1,668.7	11.92	15.8	1,044.0	1	27.6	2.0	1,073.6	7.67
164	6.3	134.0	8.37		91.0	11.4			102.4	6.40
165		158.4	7.92	none						
166		151.4	15.14	none	37.4	11.4	49.1		97.9	9.79
167	14.6	124.2	8.87	0.1	62.5	34.8			97.3	6.95
168		187.6	12.50		35.0	4.0		0.9	39.9	2.66
169		306.5	9.58		117.1	30.2			147.3	4.60
170		98.4	5.47						76.1	4.23
171	77.4	1,654.4	12.73		447.8	1		363.9	811.7	6.25
172		542.8	13.23		234.8	90.4		87.9	413.1	10.07
173		65.9	5.49	6.1	44.7	1	2.8		47.5	3.96
174		278.9	13.95						142.4	7.12
175		378.8	18.02	none	252.8	:			252.8	12.02
176	20.0	1,779.1	9.73	0.3	557.4	168.7	467.2		1,193.3	6.53
177		448.4	8.79	0.7	111.6	68.9			180.5	3.54
178	3.7	237.0	11.85		74.0	14.6	90.4		179.0	8.95
179	48.7	1,423.6	12.71	none	7 410		2011	1	823.6	7.35
180	10.1	168.3	7.02		142.2	50.0			192.2	8.02
181	22.6	245.9	8.19	1.2	95.9	11.6			107.5	3.58
182	5.1	79.9	6.15		60.8	1	0.7		61.5	4.73
183	8.2	200.6	8.03	none	71.5	22.1			93.6	3.75
184		407.0	16.28	110110	75.0	1		1 1	75.0	3.00
185	278.9	1,987.3	10.14	none	1,342.1	1			1,342.1	6.85
186	0.4	231.2	11.01		36.3	32.1			68.4	3.26
187	4.6	478.4	7.97	none	194.8	50.7			245.5	4.09
188		1,168.3	12.70		274.9	133.4		1 1	418.3	4.55
189		371.5	9.28	7.1	91.6	114.2		1 1	205.8	5.14
190		238.2	13.23	none					118.5	6.58
191	137.8	1.248.5	7.57	225.0	236.1	111.7			347.8	2.11
192	8.1	158.3	8.34	33.6					57.5	3.03
193	0.1	164.0	7.13	8.4	81.2	31.1			112.3	4.89
194	11.0	283.2	11.32	33.9	98.2	24.9		0.4	123.5	4.94
195	12.0	89.1	7.42	00.7	40.6	14.6		0.1	55.2	4.60
196	54.2	535.5	10.92	none	237.5	1			237.5	4.84
197	31.6	791.6	11.31	32.7	311.1	106.7	0.3	2.3	420.4	6.00
198	137.6	1,173.5	11.73	none	547.9	1	10.5		558.4	5.58
199		185.2	8.82	15.4	77.0	129.1	2010		206.1	9.82
200	13.5	242.0	10.52	4.9	88.2	25.8	0.2		114.2	4.97
200	10.0	212.0	10.02	1.7	00.2	20.0	0.4		2 2 2 4 4	4.71

[‡] Included in preceding column. § Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax	Source	of Funds	for Capital	Addition	\$1,000	Book V (Deprec	alue iated)	Depre- ciation	Surplus	Funded
*	Paid (% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	Reserve \$1,000	Debt \$1,000
61	1.8	20.0				20.0				138	360
62		2011		****		1 107 2	615	62	16	4,979	5,896
63 64 65	1.7	386.6		720.7		1,107.3	11,279	81	46	4,979	3,890
66	32.4					10.6	581	58			
67							795	57		3	
68		74.0				74.0	744	50	11.422	504	56
69 70		378.5				378.5	1,285	40	11433	504	949
71							5,429		H1,958	none	843
72		686.2				686.2	2,108				
73	4.2						497	41 54			1,581
74						none	1,072 1,532		443	214	297
76	26.3					839.5	‡ 11,491	163	2,118	819	5,300
77	2010			239.7		239.7	4,869		none	none	3,163
78	38.2						1,028		218		4 250
79 80		444.4		93.7		538.1 38.9	14,151 2,026	126 84	none	none	1,350
181		67.0	1,033.0			1,100.0					
82	1	5.4				5.4	681	52 37	71 644		none
83		71.0				71.0 1,680.0	915	31	044		Hone
84		329.3	1,500.0	721.9		1,051.2	12,475	64			3,170
86	1			5,700.0		5,700.0	3,522	59	830	1.222	6,140
87		269.4	863.7	5,700.0		1,133.1	18,217		none	353	5,107
89		207.4	145.0			145.0	2,498		none	20	250
91	1	163.9		2,237.7		2,401.6	12,004		none	1,503	7,310
92		67.5		20.0		67.5	628	33	185	45	none
93				30.0		30.0	2,348	94	572		
194						3.0	583		0,2		
196						208.0					
197			100.0			986.9	5,066		191	262	3,074
198				1,622.6		1,622.6	8,191	82	none	none	3,790
199						63.5	\$1,614 1,758				547
200	0.1						1,130	10			01

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

1 Undepreciated.

2 Population served at retail.

Accounting record.

entd.)

nded ebt ,000

,896

	1 30	31	32	33	34	35	36	1 22	1	1
-	_							37	38	39
	Oper	Earnings			Dispo	sition of Earn	nings—\$1	,000 units		
	ating Ratio	(Col. 10	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
16		47.6	11.4	25.0	11.2					-
16	-		7.4			37.0		3.9	1112.4	17.6
16 16			156.0	25.4	213.7	200.0			11244.1	17.0
16.		31.6	15.3							
16	6 1:1.5	53.5								
16		0010							112.8	
168	8 1:4.7	147.7	1.0		74.0	8.0				
169	1:2.1	159.2	34.3	31.0	14.0	8.0		64.7	70.0	
170	1:1.3	22.3							78.8	
171	1	842.7	39.5		705.2	68.0		t30.0	11141.1	
172		129.7	0		129.7				141.1	
173		18.4						18.4		
175		136.5 126.0	. 50							
1/3	1.1.5	120.0	5.2		21.9				48.3	50.6
176		585.8	200.5						1153.2	207 2
177	1	267.9	101.2	- 1	75.0	99.8			1133.2	$385.3 \\ -8.1$
178 179	1:1.3	58.0								-0.1
180	1:1.7	600.0 -23.9	26.7		190.4	75.0		d590.0	254.0	-536.1
181	1:2.3	138.4	24.4							
182	1:1.3	18.4	31.1		0.0	41.3		66.0		
183	1:2.1	107.0			8.0				10.4	
184		332.0	9		80.0	¶147.0	1		34.6	72.4
185	1:1.5	645.2	33.1	19.2	00.0	90.0			1139.4	105.0 502.9
186	1:3.4	162.8								
187	1:1.9	232.9	25.2		31.7	57.0		t70.6	48.4	
188	1:2.8	750.0	158.2		376.1	184.8		170.0	40.4	30.9
189 190	1:1.8	165.7 119.7				60.9		84.8		20.0
191	1:3.6	900.7	154.2	200.0						
192	1:2.8	100.8	134.2	280.2	53.2	302.0			164.3	
193	1:1.5	51.7			33.2			26.0	21.6	21.6
194	1:2.3	159.7	76.0	38.7		45.0			1150.0	
195	1:1.6	33.9		00.7		45.0			160.9	
196	1:2.3	298.0	80.9						00.6	
197	1:1.9	371.2	85.9	37.2	40.9	131.0			80.6	760
198	1:2.1	615.1	87.7	312.3	105.1	110.0			1163.9	76.2
199	1:0.9	-20.9							1123.4	
200	1:2.1	127.8	31.2		56.8	47.0			1129.0	-7.2

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
¶ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Res	venue—\$1,	000 units		3
	-	1	Ī	1	1	1	1
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
		-			-		
201. Harlingen, Tex.					362.6		9.7
202. Hartford, Conn.* 203. Hastings, Neb.		1		1.1	2,609.0	172.5	25.4
204. Haverstraw, N.Y.	+	127.8	31.5	2.8	183.8 162.1	2.2	22.5
205. Helena, Ark.	55.1	38.8	†	3.1	97.0	4.0	6.3
206. Hibbing, Minn.							
207. Highland Park, Mich. 7/88	107.3	101.3	311.3		519.9		
208. Hilo, T.H.*				0.3	447.7		
209. Holland, Mich.				1.1	219.3	1.4	21.1
210. Hollywood, Fla. 10/55					515.6		
211. Honolulu, T.H.	1,744.0	1,481.4	370.4	19.7	3,615.5	4.5	
212. Hopkinsville, Ky. 6/56	170.6	56.3	24.2	3.6	254.7	8.2	9.4
213. Hoquiam, Wash.					136.7	2.3	
214. Hot Springs, Ark.	161.0	158.9	11.7	4.3	335.9	1.1	6.4
215. Houston, Tex.	t	6,259.2	380.9		6,640.1		
216. Huntington Pk., Calif. 7/55					286.0		
217. Hutchinson, Kan. ^{2/45}							
218. Independence, Kan.	610.0	1270	46.0	4.0	120.6		
219. Independence, Mo.220. Indianapolis, Ind.	630.8	127.8	46.8	1.2	806.6	500	42.6
220. Indianapons, Ind.	4,033.0	1,368.4	1,223.8	66.9	7,294.1	58.0	533.0
221. Ironton, Ohio ^{2/88}	122.1		10.7		132.8		
222. Ithaca, N.Y.					205.6		7.8
223. Jackson, Mich. ^{7/55}	256.5	198.4	1		454.9	44.9	- 3 - 1
224. Jacksonville, Fla.					1,798.6	33.0	56.4
225. Jacksonville, Ill.					300.4		
226. Jamaica, N.Y.	3,110.1	1,113.8	+	40.8	4,264.7		442.8
227. Jamestown, N.Y.	204.8	79.5	107.0	4.4	395.7	23.1	37.3
228. Janesville, Wis.	95.0	26.6	38.1	2.5	162.2	4.4	32.4
229. Jefferson City, Mo.	152.7	74.8	9.4	2.0	238.9	19.0	
230. Jeffersonville, Ind.	196.6	55.3	39.5	1.5	292.9	9.7	32.4
231. Johnson City, N.Y. 6/66							
232. Johnstown, N.Y.	35.0	43.9	†		78.9		
233. Jonesboro, Ark.			1	1	126.8		
234. Junction City, Kan. 235. Kalamazoo, Mich.				8.6	138.1 696.3	2.9	52.3
236. Kankakee, Ill.	292.3	205.4	149.8	4.9	652.4		17.6
237. Kansas City, Mo. 5/55	1.820.5	2,351.1	147.0	10.5	*5,341.3		17.0
238. Kearney, Neb.	54.9	24.8		10.0	79.7	4.6	
239. Kennewick, Wash.					256.1	1.0	2.6
240. Kenosha, Wis.	252.9	78.1	134.5	6.1	471.6	27.3	120.4

^{*} See notes beginning on p. 694. † Included in "Coml."

ntd.)

Fire

9.7 5.4

2.5

.1

.4

1	9	10	11	12	13	14	1	1	1	66
	-			-	13	14	15	16	17	18
	-	Revenue (a	ontd.)	Free			Ex	penses		
	Misc. \$1,000		tal 6-9	Value	Op.	Maint		Misc.	Total	13-16
-		\$1,000	\$/cap.	5	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.§
201 202	11.					1			205.0	6.21
203	49.	-1		AREA RES	1,150.4	495.	0	1	1,645.4	4.84
204	0	186.				1			82.0	3.28
205	0.0	2000			62.8	17.8	8 68.	9	149.5	13.60
203	4.3	2 107.	5 9.78		49.8	1	0	3 20.9	71.0	6.46
206									11.0	0.40
207	592.3	1,112.	2 24.20		190.7	2520		1		
208	6.7					353.6		413.1	956.8	20.82
209	2.2				207.7	46.9	,		254.6	7.72
210		515.0			74.3	1			74.3	3.91
		010.	10.51		119.0	12.6			131.6	2.63
211	81.3	3,701	3 14.23	none	2,123.3	İ				
212	6.0		3 13.92	none	88.7	20.4			2,123.3	8.16
213	2.0	141.0		- Hone	71.5	1		1	109.1	5.46
214	7.8	351.2	2 10.64	1.9		29.2	4.7	6.0	82.2	6.32
215		6,640.1	9.16	680.0		‡			166.2	5.04
				000.0	0,000,0	+			3,638.0	5.02
216		286.0	9.53	71.5	83.7	65.2		1 1	1400	100
217	m c								148.9	4.96
218	7.8	128.4			51.0	19.3			70.3	4.60
219	11.4	860.6		517.6	493.9	53.2	66.8	6.7	620.6	4.69 9.00
220	56.1	7,941.2	15.36	none	1,906.4	360.8	2,862.8	0.1	5,130.0	9.00
221	6.1	138.9	0.60						0,100.0	7.72
222	44.8	258.2	8.68 7.59		102.5	39.0			141.5	8.84
223	74.8	529.7	9.63	8.0	33.7	162.4	6.2	13.5	215.8	6.35
224	64.4	1,952.4	6.51		289.8	65.0		18.0	372.8	6.78
225	04.4	300.4	12.01		200				1,109.5	3.70
		000.4	12.01	6.5	37.8	99.0			136.8	5.47
226	35.2	4,742.7	8.65		1,429.5	5100	1 262 7			
227	4.3	460.4	9.20	none	188.7	518.8	1,363.7	127.6	3,439.6	6.27
228	8.8	207.8	6.93	none	68.0	50.4	21.0		260.1	5.20
229	5.3	263.2	9.40	none	132.2	6.3	470	0.2	109.7	3.66
230		335.0	12.89	none	94.8	27.4	47.9		186.4	6.66
				none	74.0	21,4	99.6		221.8	8.53
231		161.2	6.20			1	-			-
232	4.7	83.6	7.60						144.3	5.55
233		126.8	7.05	15.0	46.1	18.7	1		66.0	6.00
234	37.0	175.1	10.94	36.0	22.0	40.2	1		64.8	3.60
235	72.8	824.3	9.93	none	235.5	66.1		38.2	62.2 339.8	3.89
236	19.6	690 6	1100					00.2	339.8	4.09
237	20.3	5,361.6	14.07		323.3	53.6	93.9	3.8	474.6	9.68
238	14.2		7.53		3,163.9	133.1			3,297.0	4.63
239	1.5	98.5	7.58	none	51.1	13.2			64.3	4.95
240	8.9	260.2 628.2	13.01		72.6	35.4	7.7	4.6	120.3	6.02
	0.9	0.28.7	10.47		304.4	1	0.6			V. V.

[†] Included in preceding column. § Population served at retail.

F

1	19	20	21	22	23	24	25	26	27	28	29
	Tax	Source	of Funds	for Capital	Additions-	-\$1,000	Book V (Depreci		Depre- ciation	Surplus	Funded
*	Paid (% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20–23	\$1,000	\$/cap.8	Reserve Funds \$1,000	Reserve \$1,000	Debt \$1,000
201							2,044	62	492		1,261
202		1,673.8		426.8	*1,132.6	3,233.2	‡49,718	‡146	8,322		12,394
203		3.3				3.3	1,069	43	323		
204	36.4						621	56	11189	375	389
205	0.3	103.3		389.0		492.3	514	47	18	313	309
206						176.0	2,332	51	1,025	578	none
207		176.0			*99.3	176.0 149.0	3,216	97	1,023	130	none
208		49.7			-99.3	47.1	579	30	481	137	2,700
$\frac{209}{210}$		79.7				79.7	2,791	56	191	66	1,424
211		76.2		343.4		419.6	25,009	96		275	7,909
211		18.9		252.4		271.3	1,617	81	30		1,047
213				202.1			‡880		496	383	
214		49.3	17.5			66.8	‡3,830		27	none	2,366
215		1,205.2		1,520.6		2,725.8	60,465	83		1,377	40,731
216		66.0				66.0	949	32	636	none	none
217		27.0				25.2	748	50		135	none
218		25.2				1,028.9	4.709		11467		
219		2,522.8	3,000.0		-1,150.0		46,520		114,142		22,275
221						none					
222						none	4,749				200
223							1,477			60	
224	8						13,500		263	9,344	4,910 2,985
225	5		1,250.0	942.9		2,192.9	3,634	145	563	1,117	2,900
220	28.8	2				2,040.0	125,187	146	4,307	1,025	
22			5			118.5	‡3,134	‡63	704	2,007	
22		293.0				293.0	1,837		464	1,013	none
229		2				84.4	1,502				
230	0 29.	7				105.0	1,393	3 54			
23										134	none
23.							820	46			
23.	. 1	150	7	225.0		236.7	29		none	none	21
23		496.3		223.0		496.3	4,45		1,227	132	none
22	6 13.	6				118.0	4,02	1 82	459		2,20
23	-	5,643.	3			5,643.3	54,37		14,125	16,964	
23		36.0				36.6	‡61	3 \$47	none	none	none
23						375.4	1,75	1 88			1,51
24			7			142.7	4,00	5 67	869		

* See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

2 Undepreciated.

3 Population served at retail.

td.)

led ot 00

1	30	31	32	33	34	35	36	37	38	39
	0	Earnings		,	Dispos	ition of Earn	ings—\$1,0	000 units	-	
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
201	1:1.9	178.8	36.2	6.3	62.6	30.0		t16.4	1189.0	27.3
202	1:1.7	1,211.1	284.9	*534.8	279.1			t88.9	11483.0	23.4
203	1:2.3	104.0				1		t11.7	1118.0	92.3
204	1:1.3	40.0								
205	1:1.5	36.5	7.9	1.1					11.9	
206	,									
207	1:1.2	155.4			130.7	İ		24.7	1137.1	
809	1:1.8	199.8	62.0	25.8	25.8	30.0		-16.7	1198.5	92.4
209	1:3.3	169.7	19.6		47.1	1			30.4	72.6
210	1:3.9	384.0		89.0	79.7			25.0	35.0	155.3
211	1:1.7	1,578.0	207.4		529.2				766.3	75.1
212	1:2.6	169.2	35.0	14.0	48.1	27.0			1137.2	45.1
213	1:1.7	58.8							13.2	
214	1:2.1	185.0	80.8	6.5	7.3	60.0		t13.1	17.3	
215	1:1.8	3,002.1	1,023.6	765.5	75.0					1,138.0
216 217	1:1.9	137.1								137.1
218	1:1.8	58.1			25.2					6.4
219	1:1.4	240.0								-
220	1:1.5	2,811.2	639.6		1,309.1		603.2		11475.0	259.3
221	1:1.0	-2.6								
222	1:1.2	42.4	2.7		13.7	10.0		s16.0		
223	1:1.4	156.9	13.0						64.4	79.5
224	1:1.8	842.9	98.5	184.6					62.6	497.2
225	1:2.2	163.6	35.0	42.5		36.5			9.9	1.9
226	1:1.4	1,303.1	318.4				473.3		358.5	
227	1:1.8	200.3	2.8		90.8	10.0		35.0	161.7	61.7
228	1:1.9	98.1				1		t42.3	17.8	38.0
229	1:1.4	76.8								
230	1:1.5	113.2							1130.7	
231	1:1.1	16.9								
232	1:1.3	17.6						t11.1		6.5
233	1:2.0	62.0			57.3	1		t4.7	1128.6	
234	1:2.8	112.9			22.9	34.1				55.8
235	1:2.4	484.5			299.2			t65.0	117.7	2.6
236	1:1.5	215.0	67.6		24.1		50.0	x15.6	57.7	
237	1:1.6	2,064.6	623.3			951.0			584.9	
238	1:1.5	34.2			34.2				111.5	
239	1:2.2	139.9	52.7	25.0	50.5			t11.7		
240	1:1.7	264.0	9.5			20.0		t76.2	1159.8	15.0

Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Rev	enue-\$1,6	000 units		
Community*							
	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
241. Kent, Ohio	75.7	31.5	t		107.2		
242. Keokuk, Iowa	96.0	16.0	50.0	1.0	163.0	0.2	2.4
243. Key West, Fla. ^{9/66*} 244. Kirksville, Mo.					820.0 105.7		3.8
245. Klamath Falls, Ore.	219.8	92.0	9.8	2.3	323.9	6.8	16.0
246. Knoxville, Tenn.				16.5	1,526.5	51.2	80.3
247. Laconia, N.H.				2.2	106.2	6.5	35.3
248. La Crosse, Wis.	158.2	64.8	79.5	3.0	305.5	11.8	91.7
249. Lafayette, La. 10/88 250. Lake Worth, Fla. 11/88	285.4	25.0			310.4 278.1	0.9	15.9
251. Lakeland, Fla. 9/66					417.0	8.1	33.3
252. Lakewood, Ohio	304.4	39.8	66.0	0.3	410.5	9.4	
253. La Mesa, Calif.*							
254. Lancaster, Ohio					2106	120	
255. Laredo, Tex.					512.6	12.0	
256. Las Cruces, N.M. ^{7/88}					4 222 5	40.4	0.0
257. Las Vegas, Nev. ^{7/88} 258. Latrobe, Pa. ^{4/88}					1,223.7 389.9	10.4	0.9
259. Lawrence, Kan.					408.0	3.0	4.5
260. Leavenworth, Kan.					236.4		
261. Lebanon, Pa.	236.7	43.9	87.0		367.6	15.8	2.1
262. Lewiston, Idaho ^{7/65}				-	189.7		
263. Lewistown, Pa.	116.7	15.4	40.5	7.9	180.5	3.7	6.1
264. Lima, Ohio 265. Lincoln, Neb. ^{9/64}	568.1	418.3		1.8	611.7 988.2	110.9	
266. Lincoln Park, Mich. 7/88					285.5		
267. Little Rock, Ark.	793.0	418.3	130.3	1.2	*1,551.6	84.4	38.9
268. Logansport, Ind.				1.4	254.0		16.2
269. Long Beach, Calif. 7/88					3,259.6	25.9	
270. Long Island, N.Y.*	2,180.8	309.6	9.2	4.5	2,504.1		186.4
271. Longview, Wash.					236.6		14.5
272. Lorain, Ohio	312.6	7.7	126.7	*205.5	447.0	1 105 0	1 200 1
273. Los Angeles, Calif. 7/88 274. Louisville, Ky.	16,876.2	1,163.3	272.8 944.3	*295.5	25,218.5 4,270.1	1,105.8	1,200.4
275. Lynchburg, Va. 7/86	2,102.3	1,100.3	711.3		625.5	8.6	20.7
276. Madison, Wis.	333.9	207.3	72.0	6.4	619.6	35.6	135.7
277. Manchester, Conn.	†	182.0	5.1	2.2	189.3	4.0	31.9
278. Manchester, N.H.	†	470.6	155.0	20.0	645.6		
279. Manhattan, Kan.					238.4		2.4
280. Manhattan B., Calif. 7/86*							2.1

^{*} See notes beginning on p. 694. † Included in "Coml."

)

1	9	10	11	12	13	14	15	16	17	18
	Rever	nue (contd.)		7		Expe	nses		
-		Total 6	-9	Free Service Value	Op.	Maint.	Taxes	Misc.	Total 13	-16
	Misc. \$1,000	\$1,000	\$/cap.\$	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.5
244	7.9	115.1	9.60	20.0	58.4	16.4		2.9	77.7	6.48
241	8.00	176.6	11.03	2.6	41.5	40.0			81.5	5.09
242	11.0		22.52	none	621.0	1			621.0	15.52
243	77.2	901.0	8.80	none	74.2	1			74.2	6.18
244		105.7			98.7	20.7	96.3		215.7	9.38
245	0.2	346.9	15.09	none	90.1	20.7	70.0			
246	27.2	1,685.2	9.91	none	616.7	413.4	1.8		1,031.9	6.07
246	27.2		10.72	110110	69.5	1	27.7		97.2	6.94
247	2.1	150.1	8.55		02.0	*			225.2	4.69
248	1.3	410.3			193.4	35.8			229.2	6.03
249	6.5	333.7	8.78			28.6		57.4	122.8	5.34
250	17.5	295.6	12.85		36.8	20.0		31.1	122.0	0.00
		4 E Q 4	9.56	none	204.5	41.2			245.7	5.12
251	2.0	458.4	6.37	Hone	201.0				428.3	6.12
252	26.2	446.1	0.31						4,961.7	
253		5,442.7						1	.,	
254			0.00		210.7	24.4			244.1	3.81
255	6.3	530.9	8.29	none	219.7	24.4			211.1	
256										
256	76.6	1,311.6	27.90	none	322.8	1		25.1	347.9	7.40
	9.4	399.3	19.97	110110					151.8	7.59
258	9.4	415.5	16.62	none	142.7	11.4			154.1	6.17
259 260	3.0	239.4	9.97	Hone	64.5	59.3			123.8	5.15
200	0.0						1		220.0	4.19
261	64.2	449.7	8.17	30.2					230.8	
262	0	189.7	14.58	8.7	106.8	31.5			138.3	10.63
263	13.5	203.8	1	none	80.2	1		1.1	81.3	3.25
264	10.0	611.7	-		220.5	196.3			416.8	5.78
265	42.6	1,141.7		none	432.9	43.2		1.4	477.6	3.79
-			1		202.0	24.6			226.6	4.72
266	22.5	308.0		8.0	202.0	24.6			515.3	
267	41.8	1,716.7			388.1	127.2			102.8	
268	1.4	271.6	10.86		95.7	4.0				
269	134.9	3,420.4	11.88	265.2	1,385.0				1,817.2	
270	14.7	2,705.2	13.00	none	840.9	1	938.	7	1,779.6	8.55
		050.5	0.43	16.5	76.9	17.	5 6.	1 1.6	102.1	3.41
271	1.4	252.5			199.0	-		4 410	267.4	
272	118.3	565.3						6	*14.711.5	
273	1,460.4	28,985.1			9,779.4		3 047	41.6		
274	14.3	4,284.4	4 8.57		2,487.2		2	41.0	181.8	
275	17.0	671.8	8 11.78	none	74.5	107.	3		101.0	3.1
080	60 =	859.4	4 7.35	none	361.7	86.	8	12.2	460.	
276	68.5		-		78.1				92.:	3.8
277	2.2	227.	_			17.	22	.3		
278		645.0					44		171.	5 8.1
279	15.0	253.							111.	0.1
280		385.	0 12.02	2	1					

[†] Included in preceding column. § Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Funds	s for Capita	l Additions	-\$1,000	Book V (Deprec		Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	3/cap.§	Reserve Funds \$1,000	Reserve \$1,000	Debt \$1,000
241		10.4				10.4	473	39	none	26	155
242		76.9				76.9	1,075	67			
243							1,264	32	none		594
244 245	27.8					52.1	1,725	75	445	35	1,986
243	21.0					34.1	1,723	13	443	33	1,900
246	0.1					1.115.6	7,075	42	none	none	2,658
247	18.5	30.0				30.0	770	55		200	250
248							2,816	59	755	632	
249		66.4		222.2		288.6	4,472	118	none	none	none
250							1,627	71			964
251				130.8		130.8					
252		17.2		130.0		17.2					
253		17.2				142.9	8,137	120	none	none	3,571
254						114.7	0,10,	120	none		0,011
255							3,658	57	none	none	2,777
256											
257		68.3	2,506.5			2,574.8			none	474	8,700
258							3,227	161		1,323	2,291
259		24.6		1,249.1		1,249.1	6,004	240	422	211	
260		34.6				34.6	944	39	none	219	none
261							4,765	87	50		2,071
262		41.7		1		41.7	1,524	117	none	200	none
263							1,977	79			1,425
264		63.2				63.2					
265		344.9		4,300.6		4,645.5	15,977	127	2,641	8,654	5,740
266		55.9				55.9	2,636	55		93	138
267						-	13,450	99	338	1,576	7,381
268	0.9	34.2				34.2	1,280	51	42		
269	0.0	530.3				530.3	22,113	77	none	none	5,070
270	34.7						14,968	72			8,294
271	2.4	192.5				192.5	2,573	86	412	555	746
272		98.2	29.4			127.6	17,808	1124		222	1,489
273	2.2	5,974.9		9,000.0	†2,902.7	17,877.6	‡317,768	‡142	1182,882	1197,736	88,199
274		1,126.5		1,724.1		2,850.6	25,850	52	none	5,061	9,275
275		203.8			426.8	630.6	‡5,134	‡90	43	26	891
276						513.5	6,346	54	1,155	2,027	901
277			600.0			600.0	\$2,807	‡117	620	none	1,218
278	3.5	3.6				3.6	7,451	86			
279		28.1				28.1	1,971	94		1,855	1,485
280											

* See Col. 1 of preceding left-hand page and notes beginning on p. 694. † Customer contributions toward construction. † Undepreciated. † Population served at retail. | Accounting record.

d

1	30	31	32	33	34	35	36	37	38	39
		Earnings			Dispos	ition of Earn	ings-\$1,6	000 units	1	
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
241	1:1.5	37.4	3.8	2.2	10.4	5.0			1125.0	16.0
242	1:2.2	95.1	2.0		76.9				115.0	16.3
243	1:1.5	280.0	21.2		161.8	21.0			1148.6	76.0
244	1:1.4	31.5	13.1	0.4		15.0				3.0
245	1:1.6	131.2	45.2				57.8		1128.2	28.2
246	1:1.6	653.3	84.3			161.0		t95.0	11141.4	
247	1:1.5	52.9	9.1	5.6		10.0			1118.9	28.2
248	1:1.8	185.1						t44.0	42.8	98.3
249	1:1.5	104.5	43.3			137.2			1176.0	-76.0
250	1:2.4	172.8	25.8		70.4	56.3		20.3		
251	1:1.9	212.7	44.4		153.3					
252	1:1.0	17.8								17.3
253	1:1.1	481.0								
254										
255	1:2.2	286.8	89.3	27.8	50.9	50.0		31.7		37.1
256										
257	1:3.8	963.7	353.3	170.1	68.3				154.2	217.8
258	1:2.6	247.5	60.5			1				187.0
259	1:2.7	261.4	74.5	29.5	1				47.2	60.0
260	1:1.9	115.6							1129.7	115.0
261	1:2.0	218.9	200.0	50.3						-31.4
262	1:1.4	51.4				1				51.4
263	1:2.5	122.6	24.9			35.0				62.7
264	1:1.5	194.9	116.9			1				
265	1:2.4	664.2	137.2	130.0	44.9	115.4			1161.2	236.7
266	1:1.4	81.4	5.1		32.6	5.0				38.
267	1:3.3	1,201.4	217.6		465.8	188.0		67.4	*125.8	206.3
268	1:2.6	168.8							124.5	
269	1:1.9	1,603.2	127.2		444.3	425.0		100.0	11506.7	506.
270	1:1.5	925.6	275.1						11213.4	
271	1:2.5	150.4	19.9					t8.2	1150.9	122.3
272	1:2.1	297.9	25.3		98.2	68.0				106.4
273	1:2.0	14,273.6	2,346.6	228.0	98.9	3,669.0		1,208.0	116,088.6	6,723.
274	1:1.7	1,755.5						750.0	517.8	487.
275	1:3.7	490.0	41.4	7.0	203.8	54.3		t120.2	43.0	20.3
276	1:1.9	398.7	13.2	26.9		20.0		t168.4	96.5	73.
277	1:2.5	135.2	15.4		86.0	25.0		t8.8	1136.0	
278					382.8				1195.4	
279	1:1.5	81.9	17.2		25.0				39.7	
280						1				

Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
⑤ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

F

1	2	3	4	5	6	7	8
			Rev	enue—\$1,0	00 units		
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
281. Manitowoc, Wis.	81.6	35.0	55.3	2.6	174.5		46.1
282. Marinette, Wis. 283. Marshalltown, Iowa	75.3	25.5	23.5	30.7	155.0		
284. Mason City, Iowa 285. Massillon, Ohio	338.6	75.7	24.2	8.3	224.1 446.8	3.1	29.1
286. McKinney, Tex. ^{2/65} 287. Meadville, Pa.	74.4	21.9	32.2		170.5 128.5		
288. Medford, Ore. ^{7/88} 289. Memphis, Tenn.	1,977.1	1,737.2		0.5 39.5	351.8 3,753.8	4.0	34.3
290. Menasha, Wis.	57.2	12.1	71.4	2.4	143.1		27.3
291. Meriden, Conn. 292. Merrick, N.Y.* 293. Mesa, Ariz. ^{7/56}	t	1,071.1	1.2	0.7	*1,137.1	10.3	74.9
294. M.W.D. So. Calif. ^{7/88*} 295. Miami, Fla. ^{7/88}	2,127.1	1,032.6	†		5,805.0 *4,369.4	82.7	82.7
296. Michigan City, Ind.	†	207.8	115.6	4.6	. 328.0		37.0
297. Middletown, Conn. 298. Midland, Mich. ^{7/88}	Ť	200.4	28.5	0.4	229.3 665.1		17.0
299. Milford, Mass. 300. Milwaukee, Wis.	106.2 1,530.4	21.9 670.9	5.1 1,771.0	27.0	133.2 *4,540.0	3.2 111.8	11.2 309.7
301. Minneapolis, Minn. 302. Mishawaka, Ind.	3,538.2	802.3	†	3.5 0.6	4,344.0 209.6	101.0	
303. Missoula, Mont. 304. Mobile, Ala. 305. Modesto, Calif. ^{7/88}					2,209.8 328.8		
306. Monroe, Mich. ^{7/85} 307. Monroe, N.C. ^{7/88} 308. Monterey Park, Calif. ^{7/86}	95.2 282.0	28.8 31.3	6.2		264.5 130.2 313.3		36.0
309. Moorhead, Minn. 310. Mount Vernon, N.Y.	202.0	31.3		7.1	130.8 537.2	1.4	14.7
311. Murfreesboro, Tenn. 312. Nacogdoches, Tex. 4/56 313. Nashua, N.H. 314. Nashville, Tenn. 315. Natick, Mass.	103.8	32.5	16.0		250.0 152.3 279.8 2,098.6 152.0	5.8	49.2 138.4
316. Naugatuck, Conn. 317. Neenah, Wis.	† 83.2	128.8 19.5	145.4 38.2	7.6 1.9	281.8 142.8	4.8	21.1
318. New Albany, Ind. 319. New Bedford, Mass.	338.1 208.0	120.5	36.6 133.3	4.4	499.6 458.5	30.2 8.7	25.9
320. New Haven, Conn.	†	2,762.8	614.2	31.3	3,408.3	106.4	200.9

^{*} See notes beginning on p. 694, † Included in "Coml."

=

e

1

3

9

.7

.0

0.0

1.7

9.2

1.1 7.3 5.9

0.9

1	9	10	11	12	13	14	15	16	17	18
	Reve	nue (contd.)				Expen	ses		
		Total 6	5-9	Free Service Value	Op.	Maint.	Taxes	Misc.	Total 13-	-16
	Misc. \$1,000	\$1,000	\$/cap.\$	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.\$
281	5.8	226.4	7.55	none	70.5	8.2	0.2	1.2	80.1	2.67
282	1.6	156.6	11.19		73.2	1	8.7		81.9	5.85
283								95.1	242.1	7.57
284	92.4	316.5	9.89	26.0	147.0	1 7	1150	93.1	306.1	8.05
285	4.9	483.9	12.73	none	154.6	35.7	115.8		500.1	0.00
		450.5	11.37		83.2	:			83.2	5.55
286		170.5		8.7	00.2				129.7	6.49
287		128.5	6.43	0.1	92.8	21.8	3.9		118.5	5.39
288	21.6	411.7	18.71	112.0	1,349.1	935.3			2,284.4	4.57
289	95.1	3,848.9	7.70		102.5	‡	15.4		117.9	7.86
290	0.1	170.5	11.37	none	102.5	*	2012			
291		252.5	6.02						050 2	5.54
292	13.2	1,235.5	7.97	none	362.7	49.7	445.9		858.3	3.34
293	13.2	1,200.0	1							
294									4 001 0	6.26
295		4,534.8	14.25		1,643.7	348.2			1,991.9	0.20
					1227	84.3	6.0		213.0	6.87
296	18.4	383.4		none	122.7		0.0		133.2	5.32
297	7.9	237.2		4.6	133.2	27.4		5.9	262.9	11.95
298	47.7	729.8	1	2.0	229.6 63.9	10.5	48.5	0.5	122.9	8.20
299	3.8	151.4		2.0		672.5	40.0	58.0	3,256.2	4.60
300	9.4	4,970.9	7.11	none	2,525.7	012.0				
204	226 7	4,681.7	8.67		3,166.6	1		174.2	3,340.8	6.19
301	236.7	222.4		11.8	113.6	35.8	2.1	8.3	159.8	4.8
302	12.0	222.7	0.10							
303	131.8	2,341.6	14.64						1,296.7	8.10
304 305	50.2	379.0			144.3	1			144.3	4.8
303	30.2	01710						68.0	193.3	7.7
306	8.0	308.5	12.34		110.9	16.6		65.8	82.1	6.8
307	9.9	140.1	11.67	4.8	28.7	53.4			189.4	
308	1	313.3		10.0	98.7	90.7			71.7	
309	38.0	184.9	9.24		56.4	15.3			465.2	-
310		545.0	5 7.27	38.5	54.1	411.1			403.2	0.2
		050	14 70							
311		250.0			81.3	t			81.3	
312		163.4			77.4		133.	3 0.1	229.3	
313		346.			71.4				796.9	
314	1	2,237.			66.5	27.9		33.3	127.7	4.7
315	20.0	112.	0.57	1					207.3	10.9
316	2.7	305.	6 16.09	none	101.5	28.6	78.	2	207.3	10.5
317		184.	9 12.32	?			100	0	379.2	2 9.4
318		555.		none	164.3			9	383.5	
319				1	122.5			0 20 7		
320			_		1,243.7	92.0	1,246.	9 20.7	2,003.5	0.0

Included in preceding column. Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Fund	s for Capits	d Addition	s-\$1,000	Book V (Deprec		Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	in Reserve \$1,000	Debt \$1,000
281 282 283		112.6				112.6	1,858	62			
284 285		38.3				38.3	982	31	127	63	none
286							‡549	137			95
287		15.3				15.3	680	34	112	155	none
288	1	183.3				183.3	4,995	227	none	83	2,650
289		617				2,058.6	34,675	69	117,985	1,206	8,511
290	9.0	61.7				61.7	1,139	76	342	541	none
291											
292	36.1						6,226	40	1613		
293 294							315,340				202 924
295				2,067.4		2,067.4	132,348	1102	1,615	none	202,824 26,445
296	1.6	120.9				120.9	2,619	85	504	262	913
297 298		79.6	187.8		†215.0		2,099 8,345	84 379	161	350 248	710 4,795
299		27.8	107.0		10.0	37.8	561	37	312	168	120
300	32.0	2,595.5		1	10.0	2,595.5	52,338	75	10,923	none	2,338
301		302.6				302.6	26,715	50		2,775	7.830
302	1.0					37.6	11,318	140	277	19	none
303	1.0						4-1	4.00			none
304											
305		150.8				150.8					
306		105.3				105.3	3,296	132			2,055
307		28.1	466.4	1		495.4	1,572	131	İ	12	692
308		55.0				55.0	2,250	75	1	28	
309		130.5	70.0			130.5	1,194	60	376	834	410
310	1	50.0	50.0			100.0	3,754	50			432
311											
312		37.2	1			37.2	1,198	80	194	70	455
313	38.6		*75.0		60.0		2,132	61	516	none	438
314		485.6	127.8	21.0		613.4	20,306	87	1,874	none	
315		53.2		34.2		87.4	1,904	71	none	140	222
316	25.6		292.0			292.0	2,102	111	626	341	492
317											
	29.0	20.0	45.5			130.8	2,013	50			
319	22.2	39.9	43,0		207.0	83.9	8,174	66	none	none	404
320	33.3	580.0			297.0	*3,045.0	16,581	55	7,259		7,000

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

† Undepreciated.

‡ Population served at retail.

|| Accounting record.

ntd.)

29

nded ,000

ne

95 ne ,650 ,511 ne

824 445

830 ne

1	30	31	32	33	34	35	36	37	38	39
		Franks			Dispos	ition of Earn	ings-\$1,0	000 units	- X	-
	Oper- ating	Earnings (Col. 10				I		1 1		1
	Ratio	Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
281 282 283	1:2.8 1:1.9	146.3 74.7						t30.8 t15.0	11.1	115.5
284 285	1:1.4	74.4 177.8			38.3				30.9 27.5	5.2
286 287	1:2.0	87.3 -1.2			12.6					74.7
288 289 290	1:3.5 1:1.7 1:1.4	293.2 1,564.5 52.6	56.6 212.5	4.9	84.3 66.7 37.6	45.0 560.2		4.5 15.0	715.7 115.9	107.3
291 292 293	1:1.4	377.2								
294 295	1:2.3	2,542.9	650.2	102.5		625.0		336.4	524.1	304.7
296	1:1.8	170.4	28.5			32.0			67.3	42.0
297	1:1.8	104.0	13.4		29.5	58.0			1149.1	3.1
298	1:2.8	466.9	101.9	6.7	79.6	183.0			3.8	91.9
299	1:1.2	28.5	4.8			1	22.0		118.5	1.7
300	1:1.5	1,714.7	22.0	18.4	456.5			t700.0	11517.8	517.8
301 302 303	1:1.4 1:1.4	1,340.9 62.6	173.1		37.6	482.0			11498.5	685.8 25.0
304	1:1.8	1.044.9				1				
305	1:2.6	234.7	4.6		150.8	11.2		68.1		
306	1:1.6	115.2						x52.7	62.5	
307	1:1.7	58.0			5.3	41.0				11.7
308	1:1.7	123.9			55.0	1		t40.5		28.4
309	1:2.6	113.2	8.0	6.5	70.0	20.0			1133.7	8.7
310	1:1.2	80.4	8.0	3.0				84.9		
311										
312	1:2.0	82.1	9.8	4.9	37.2	12.7			1128.5	17.5
313	1:1.5	116.8	14.9			2.0	49.0		1131.3	50.9
314	1:2.8	1,440.1	138.5		451.4	311.0		539.2	1131.9	
315	1:1.3	44.3	5.0			28.3				11.0
316	1:1.5	98.3	20.7			5.0	35.0		131.0	37.6
318	1:1.5	176.5							1145.1	
319	1:1.3	105.7	8.8		39.9	70.0		68.0		
320	1:1.4	1,138.8	245.6		225.0	23.0	480.0		11348.4	

[#] Ratio of expenses (Col. 17) to revenue (Col. 10),
¶ Interest included in Col. 35.
¶ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Rev	enue-\$1,0	00 units		
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
321. New Iberia, La.*	440.1	144.2			584.3		20.0
322. New Orleans, La. 323. New Rochelle, N.Y. 324. New York, N.Y.	†	1,578.1	157.5	14.6	3,502.8 1,750.1	31.0	183.2
325. Newport Beach, Calif. 7/80					268.4		
326. Newport News, Va.*	1,090.6	546.3	15.7		1,652.6		86.8
327. Newton, Iowa	110.0	15.0	45.0		170.0		22.0
328. Newton, Kan. 329. Niagara Falls, N.Y.	+	445.6	792.1		200.3 1,237.7		
330. Niles, Ohio	†	160.3	128.2		288.5		
331. Norfolk, Neb.					76.5		
332. Norfolk, Va.					3,285.6		24.8
333. North Miami, Fla. 334. North Platte, Neb.					483.7 131.7		
335. Norwich, Conn.	†	203.7	65.7	5.0	274.4	12.0	42.4
336. Oak Park, Ill.							
337. Oak Ridge, Tenn.							
338. Ocala, Fla. 10/85					215.7		11.0
339. Oceanside, Calif. ^{7/84} 340. Oklahoma City, Okla. ^{7/85}	+	4,313.3	9.4		205.1 4,322.7		
341. Olean, N.Y. 6/65	158.8		75.2	0.8	234.8		
342. Omaha, Neb.	†	1,817.9		37.8	3,016.5		222.6
343. Oneonta, N.Y.					128.4		1.3
344. Ontario, Calif. 345. Orange, Calif. 7/85					250.0		
346. Orlando, Fla.					974.3	i	22.2
347. Oskaloosa, Iowa	90.2	26.6	7.4		124.2		
348. Ossining, N.Y.				1.6	187.8		
349. Ottawa, Kan.	60.5	42.4	1	0.1	103.0		10.2
350. Ottumwa, Iowa	225.5	52.7	120.6	1.5	400.3		
351. Owatonna, Minn. 3/65	57.4	36.3	†		93.7	2.9	3.8
352. Oxnard, Calif. 5/85					291.8		5.6
353. Painesville, Ohio 354. Palo Alto, Calif. 7/86					241.9 876.7	27.0	19.2
355. Paris, Tex. ^{7/88}		30			231.6	21.0	19.2
356. Pasadena, Calif. 7/88				12.9	2,019.6	98.5	3.0
357. Pasco, Wash.				0.3	252.7	7.0	2.1
358. Passaic Val. Com., N.J.*					3,571.7	34.5	139.0
359. Peekskill, N.Y.	1050	25.0			227.4		
360. Pendleton, Ore. ^{7/86}	125.0	25.0			150.0		

^{*} See notes beginning on p. 694. † Included in "Coml."

td.)

ire

.0

1	9	10	11	12	13	14	15	16	17	18
	R	evenue (cos	ud.)				Expe	enses		
	Misc. \$1,000	Tota	ıl 6-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 1	13–16
	\$1,000	\$1,000	\$/cap.§		\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.§
321	10.6	614.9	10.25	8.0	7.0	23.8		8.3		
322		3,502.8	5.58		2,302.8	1		0.0	2,302.8	267
323	7.1	1,971.4	14.19	none	901.1	112.5	441.0		1,454.6	3.67
324		46,397.5	6.06			11210	111.0		15,794.8	2.06
325		268.4	13.42		136.0	56.7		7.3	200.0	10.00
326	160.4	1,899.8	9.50		653.1	1	76.0	24.0	2620	1
327		192.0			88.0	4 1	76.0	34.8	763.9	3.82
328	2.5	202.8			00.0	25.0			113.0	8.06
329		1,237.7		none	628.0				84.5	6.50
330		288.5		0.5	172.4	27.9			628.0 200.3	5.23 9.54
331		26.5	F.00						200.0	7.54
332	62.5	76.5	5.88							
333	62.5 79.5	3,372.9	9.50						1,224.3	3.45
334	35.1	563.2	13.10		248.1	1			248.1	5.77
335	4.3	166.8	10.43	7.8	55.0	44.2			99.2	6.20
333	4.3	333.1	9.00	none	85.1	25.3	2.9		113.3	3.06
336										
337										
338	14.9	241.6	17.27	none	98.5	31.8			130.3	9.31
339	14.6	219.7	9.57						135.7	5.92
340		4,322.7	14.46	120.5	864.3	607.1			1,471.4	4.92
341	0.1	234.9	10.21	18.0	134.9		0.2			
342	110.9	3,350.0	11.55	63.7	1,577.2	445.5	0.2		135.1	5.87
343	8.0	137.7	6.89	4.5	39.2	38.9		12.4	2,035.1	7.01
344			0.05	4.0	39.2	36.9			78.1	3.91
345	1.8	251.8	12.59							
346	100.3	1,096.8	10.45	none	535.5	1			535.5	F 10
347	12.6	136.8	11.40		70.8	6.0	2.1	3.6	82.5	5.10
348	17.2	205.0	12.81	24.2	133.7	‡	5.1	4.4	143.2	6.87
349		113.2	10.29			*	3.1	7.7	143.2	8.95
50	21.8	422.1	12.05	43.3	198.0	74.3			272.3	7.77
51	3.6	104.0	8.67	0.2	22.0	42.0				
52	40.7	338.1	11.66	0.2	33.0	13.2		0.4	46.6	3.89
53	14.9	256.8	16.05	1.5	121 5	20.0			94.4	3.26
54	154.5	1,077.4	21.98	1.5	121.5	32.6			154.1	9.63
55	43.8	275.4	11.47	none	256.0	178.3	1		434.3	8.87
									164.6	6.86
56	70.0	2,121.1	15.95		1,182.7	:	8.5		1,191.2	8.96
57	70.8	332.6	23.75	none	76.3	12.0	7.3		95.6	6.83
58	46.5	3,791.7	13.35	none	1,474.1	374.4	29.4		1,877.9	6.61
59	12.5	239.9	10.90						240.8	10.94
60		150.0	10.71		89.0	5.0			94.0	6.71

[‡] Included in preceding column. § Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	of Fund	s for Capita	l Additions	-\$1,000	Book V (Deprec	alue iated)	Depre- ciation	Surplus	Funded
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	Reserve \$1,000	Debt \$1,000
321							3,255	54	736		
322 323	22.4					1,503.4 556.1	43,150 9,763		1,943	721	6,226
324	22.1					330.1	9,700	70	1,243	121	0,220
325		61.5				61.5					
326	4.0	275.2	1,167.5			1,442.7	10,486	52	2,859	8,468	3,700
327		32.0		550.0		582.0	2,143	153	485		550
328 329		82.2	577.8			82.2 577.8	11,642	97	2,307		7,610
330			01110			011.0	2,600	123	none	none	none
331		25.0				25.0	1,225	94			
332				204.1		204.1	27,942	79			12,500
333		0.5		276.6		276.6	2,326	54	11427	759	767
334 335	0.9	0.5		27.3	40.0	27.8 40.0	980 2,170	61 59	42 1,186	807 1,735	120 363
336											
337											
338						none	1,177	84	none	826	351
339 340				-		36.2 545.3	1,140	50			317
244		42.2				10.0		40	240		
341	0.1	12.2 1,790.1		3,649.9		12.2 5.440.0	1,116 19,120	49 66	348 none	none 6,120	9,350
343		1,17011		0,017.7		0,110.0	1,200	60	none	44	none
344											
345											none
346		483.1				483.1	6,768	64			
347 348	1.5	22.4 12.6	6.9			22.4 19.5	674 ‡1,212	56 176	317 none	none	100 205
349	2.3	12.0	0.9			19.5	41,212	110	none	поне	203
350						none	\$2,365	‡68			
351		97.2				97.2	606	51	486		
352		235.6				235.6	1,854	64		153	180
353 354				81.4		81.4	3,715 3,373	232	11700	96	61
355							3,959	165		20	470
356	0.4	554.1				554.1	9,007	68	114,420	11,136	none
357	2.2	151.4		4.6		156.0	‡3,018	‡217	none	none	1,006
358 359	0.8	436.1				436.1	‡35,419 1,402	‡125 64	17,674	764 112	16,917
360						0.8	1,402	04		112	

* See Col. 1 of preceding left-hand page and notes beginning on p. 694.
† Customer contributions toward construction.
† Undepreciated.
† Population served at retail.
|| Accounting record.

i.)

d

1	30	31	32	33	34	35	36	37	38	39
		Earnings			Dispo	sition of Earn	ings\$1,	000 units		
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
321										
322	1:1.5	1,200.0								
323	1:1.4	516.8	213.0	60.5		#100 POR 4			103.8	139.5
324	1:2.9	30,602.7	1			139,707.6				
325	1:1.3	68.4								
326	1:2.5	1,135.9	118.4			239.5		375.0	11205.2	403.0
327	1:1.7	79.0	11.0	31.7	30.0	35.0			1136.0	
328	1:2.4	118.3		51.8	66.5					
329	1:2.0	609.7		350.0				t105.0	1175.0	154.7
330	1:1.4	88.2			55.8				0.3	32.1
331										
332	1:2.8	2,148.6	311.9	0.6		712.0		1,124.0		
333	1:2.3	315.1	22.4			21.0		1	1170.0	271.7
334	1:1.7	67.6	1.8		41.8	10.0			112.6	14.0
335	1:2.9	219.8	14.9		32.3	53.0		82.6	37.0	
336										
337										
338	1:1.9	111.3	15.1	18.9	49.0	17.0				
339	1:1.6	84.0						1		
340	1:2.9	2,851.3								
341	1:1.7	99.8			12.2			s71.6	118.0	16.0
342	1:1.6	1,314.9	180.9		783.2			69.0	11296.3	281.8
343	1:1.8	59.6		44.0		10.0		t5.6		
344										
345										
346	1:2.0	561.3						1	11241.4	
347	1:1.7	54.3	2.1	1.8	22.4	20.0			1118.0	8.0
348	1:1.4	61.8	9.2	4.8	19.5	15.0		4.8		8.5
349										
350	1:1.6	149.8	9.1	116.1	24.6					
351	1:2.2	57.4							117.2	57.4
352	1:3.6	243.7		1.0		17.0		40.0		52.8
353	1:1.7	102.7	8.2	8.1	57.1	24.0				5.3
354	1:2.5	643.1	16.9		278.8	44.0		t253.0	164.1	50.2
355	1:1.7	110.8	13.5		59.9	20.0		17.4		
356	1:1.8	929.9			402.6			d527.3	11262.3	
357	1:3.5	237.0	19.2	29.2	151.4	16.0		t5.9	1187.5	15.3
358	1:2.0	1,913.8	722.2		287.2	797.5				106.9
359	1:1.0	-0.9								
360	1:1.6	56.0								

Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
⑤ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Reve	enue—\$1,00	00 units		
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
361. Phenix City, Ala. 362. Philadelphia, Pa. 363. Phila. Sub. Wtr. Co., Pa.* 364. Phoenix, Ariz, 7/55 365. Pittsburg, Calif. 7/55	5,575.6	549.6	393.8	38.3	212.4 12,495.6 6,557.3 3,460.6	146.0 88.0	618.7 183.5
366. Pittsburg, Kan. 367. Pittsburgh, Pa. 368. Pomona, Calif. 7/88	3,650.5	1,603.3	1,487.0		238.4 6,740.8 739.8	2.5	
369. Pontiac, Mich. 370. Poplar Bluff, Mo.	76.7	37.3			114.0		
371. Portland, Me. 372. Portland, Ore. 7/86	682.0	240.4	118.8	27.1	1,068.3 3,645.0	77.7	87.4
373. Portsmouth, Va. 7/55 374. Prichard, Ala. 375. Providence, R.I. 10/54	† 1,105.7	285.8 342.4	9.6 750.0	6.1 49.3	1,010.8 301.5 2,247.4		73.7
376. Puerto Rico A.S.A. ^{7/55*} 377. Queens County, N.Y.* 378. Racine, Wis. 379. Rahway, N.J.	3,791.0 † 307.4 †	1,082.7 466.0 92.0 159.5	394.8 14.0 215.0 168.0 *14.5	4.0 13.3	5,268.5 484.0 627.7 327.5 801.7	1,686.8 5.9 28.9	68.2 117.2
 380. Reno, Nev. 381. Richmond, Va. 7188 382. Ridgewood, N.J. 383. Roanoke, Va. 384. Robbinsdale, Minn. 385. Rochester, N.H. 	740.0	242.6 240.0 66.9	85.0 7.8	0.4	2,064.0 407.1 1,065.4 55.4 74.7	43.3	299.5 28.2 23.0
386. Rochester, N.Y.* 387. Rome, N.Y. 388. Sacramento, Calif.	† 170.1	705.6	244.8 120.2	9,3	*1,355.9 290.3 1,125.8 188.1	8.4	82.4
389. St. Charles, Mo. ^{4/88} 390. St. Cloud, Minn.	150.0		20.0		170.0		52.0
391. St. Louis, Mo.4/84 392. St. Louis County, Mo.	2,280.3 3,214.9	2,930.3 563.3	† 346.9	8.1 92.0	5,218.7 *4,372.0 301.6	122.7 19.7	169.3
393. St. Louis Park, Minn.394. St. Paul, Minn.395. Salem, Ohio	t	141.9	41.0	22.7	2,459.6 182.9		27.9
396. Salem, Ore. 7/55 397. Salina, Kan. 398. Salisbury, Md. 399. Salt Lake City, Utah 400. San Angelo, Tex. 10/55	265.9 102.0	135.8	51.9		458.3 465.3 203.0 2,042.3 1,215.0		

^{*} See notes beginning on p. 694. † Included in "Coml."

2 2 8

5 2 0

2

0

3

	9	10	11	12	13	14			1	
	Rev	enue (consd.	.)				Expen	ses		
		Total (6-9	Free Service Value	Op.	Maint.	Taxes	Misc.	Total 13-	-16
	Misc. \$1,000	\$1,000	\$/cap.§	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.§
	160	228.6	9.53		136.9	1		1.1	138.0	5.75
361	16.2		6.18	1	7,433.8	1,998.2			9,432.0	4.29
362	335.4	13,595.7	12.47		2,125.0	581.1	1,291.9		3,998.0	7.20
363	92.5	6,921.3			1,300.2	1	34.1		1,334.3	6.18
364	1	3,460.6	16.03		52.3	94.7			147.0	8.65
365		215.0	12.65		32.3	94.1				
		246.0	11.75	none	99.5	48.4	4.0	0.6	152.5	7.26
366	5.9	246.8		508.2	4.303.0	1			4,303.0	6.62
367	469.6	7,210.4	11.10	300.2	191.0	300.9	0.9		492.8	9.67
368	9.3	777.1	15.24		191.0	300.7	0.2			
369			1 . 00		25.5	16.2		29.1	70.8	4.17
370	4.9	118.9	6.99	4.5	25.5	10.2		27.1	,	
			0.01		333.5	156.5	18.3		508.3	3.85
371	37.7	1,193.4	9.04	none			10.0		1.830.8	4.58
372		3,722.7	9.31	45.6	1,830.8	‡		1	372.5	2.48
373	37.6	1,114.9	7.43	none	313.1	59.4	5.4		129.5	2.82
374		301.5	6.56		97.4	26.7	5.4	10.4	804.1	2.37
375	224.1	2,545.2	7.51	none	763.7	‡		40.4	004.1	2.01
			- 10		2,357.8	810.9	4.1	20.0	3,192.8	2.46
376	42.6	6,997.9		none		29.9	184.9	20.0	448.0	3.45
377	0.4	558.5		none	233.2		104.7		458.6	5.73
378	39.1	812.9	10.16	none	342.4	116.2		1 1	228.9	9.95
379		327.5	14.24	69.2	228.9	1	2000		493.8	8.97
380	3.6	820.1	14.91	none	211.4	75.6	206.8		475.0	0.71
	50 F	2 496 2	10.36	none	712.0	312.6		13.5	1,038.1	4.32
381	79.5	2,486.3		none	227.0	t			227.0	4.37
382	86.7	522.0		63.0	317.9	90.5			408.4	4.00
383	129.2	1,227.6		03.0	48.6	1			48.6	3.48
384	8.8	64.2			28.6	15.7	0.5		44.8	2.99
385	12.4	87.3	5.82		20.0	13.1	0.0			
201	22.4	1.469.1	13.61	0.2	695.8	57.0	392.1		1,144.9	
386	22.4				64.0	67.9	27.8	3	159.7	3.63
387	24.9				670.0		2.1		672.1	4.12
388	39.0				0.0.0					
389		188.1		5.5	72.0	43.0		5.0	120.0	4.00
390	1	222.0	0 7.91	3.5	12.0	1				1
201	49.3	5,390.	7 6.07	1,347.7	5,271.5	1			5,271.5	
391			-				1,123.	0	2,761.8	
392	3.2								136.3	
393		301.0			1,724.9	1		300.4	2,025.3	
394	146.0	2,633					3		91.2	3.5
395		102.	10.07	1				1	480.0	1 12
396	52.4	510.	7 12.17	23.7	117.6	61.	3		178.9	
397	39.1	-				1			207.0	
	9.0				64.	67.	0		131.7	
398	9.0	2,042.							729.0	1
399		1,215.			634.	71.	9		706.1	1 10.8

[†] Included in preceding column. § Population served at retail.

Fit

1	19	20	21	22	23	24	25	26	27	28	29
	Tax	Source	of Funda	for Capital	Additions	\$1,000	Book V (Depreci		Depre- ciation	Surplus	Funded
*	Paid (% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Reserve Funds \$1,000	Reserve \$1,000	Debt \$1,000
264		57.0				57.0	1,748	73	11208	869	1,150
361 362		37.0	9,601.4			9,601.4			2.066		28,225
363	18.7		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			8,764.5	‡60,872	‡110	3,866	none	17,092
364						1,379.3	28,393	131	none	none	11,074
365						none	1,625	90			
266	1.6	784.0				784.0	1,931	92			275
366 367		298.7				298.7	20,981	32	18,509	none	275
$\frac{367}{368}$		270.1		351.6		351.6	5,313	104	1,142		1,582
369				1		30.3	693	58	265	377	130
370		30.3	3			30.5	0,0				
371	1.5	374.8	2	1,200.0		1,574.8	18,105		3,234	1167	12,649
372		372.0	1	-,		none	31,673		none	none	9,520
373		346.	6			346.6	12,976		112,819	none 30	288
374		130.	0			130.0	1,134		945	10,468	15,000
37	5						56,209	100	710	20,500	
370	6 01	1,982.	1		1,721.6	*8,450.4	*74,429		104	5,995	19,631
37							1,77		11526	none	123
37		500.	3			500.3	5,12	8 64	none	none	140
37						46.2 438.4	5,51	7 100	627		
38	0 25.2	2				438.4	3,31	100	02.		
20		10.	5 258.	3		268.8	12,33	1 51	6,546	2,759	
38		218.	-	134.7		352.7	5,59			70	
38		210.		452.7		452.7	12,32		528	264	
38			1				26				
38		6					1,45	0 97	309	101	
20	0 00	~					5,03	6 47	11,503		
38			.1			3.1				152	2 4
38		-		1		251.4	12,00	3 74		1	
38		7				2 000 0					
39			3,000	.0		3,000.0					
39							57,83				none
39		6 1,534	4	*4.700.0	600.0	6,834.4					
39	-		.6	-,		64.6				23,76	
	04	452		949.	1	1,401.6				23,70	
	95		1.4			14.4	1,70	12	2 none		1
-		100	12			150.3	3,6	79 8	8	10	-
	96	150	1.2	400.	0	400.0		09 9		10	
	97			400.			2,0	00 11			1,6
	98	329	0.4			329.				8 99	
	00		0.5	614.	2	684.	7 5,9	78 9	2 75	0 99	0,9

*See Col. 1 of preceding left-hand page and notes beginning on p. 694.
† Customer contributions toward construction.
† Undepreciated.
§ Population served at retail.
|| Accounting record.

td.)

ded bt

	1 3	0	31	32	33	34	35	36	37	38	20
			Family			Dist	position of E			30	39
	Op		(Col. 10 Minus	-	1		1	es mings	-\$1,000 ans	13	
_	Ra #	tio	Minus Col. 17) \$1,000	Interest	Debt Retire ment Reserv	- Capital	Bonds Retired	Div	Paid Gene Funds	ral Depre	e- Added to Reserve
	61 1:1	.7	90.6	34.9		55.7		-			
	62 1:1		4,163.7	1,033.6	1,822.						
	63 1:1		2,923.3	944.5	1	200.0		1,740	0	11200	844.8
	64 1:2		2,126.3	432.4		673.0	761.0		259	11307	
30	55 1:1	.5	68.0				1		50		.0
36	56 1:1	6	94.3		07.1	.1		1	1		
36			2,907.4	15.1	27.7		14.0			52	6
36		-	284.3	45.7	400	58.1	163.3	1	1,000.		
36			204.5	43.1	48.0	111.6	79.0			11122.	
37	0 1:1.	7	48.1	2.7	15.2	11.8				18.	
37	1 1:2.	4	685.1	296.0	122 1					10.	*
37		-	1,891.9	232.3	122.1 450.0					11246.	6 267.0
37.	3 1:3.		742.4	0.6	100.0		450.0		t207.		
37	4 1:2.	3	172.0	10.4	16.2	200.8	1.0	1	440.	0 1125.	
37.	5 1:3.	2	1,741.1	610.0	310.1	415.6	9.0			6.	4
					010.1	413.0			t225	180.0	0
370			3,805.1	682.7	535.0	570.8	562.3				
377	1		110.5			0.0.0	302.3		x41.5	892.0	520.8
378			354.3	8.1		231.1			t115.1	1100	
379 380	1		98.6	3.0		47.3			2.6		
300	1:1.7		326.3						2.0		29.0
381	1		,448.2	230.7	503.7						
382			295.0	23.1		218.9	53.0		t510.9	11523.5	202.9
383			819.2	166.2		178.6	339.2			4250	1
384 385	4.410	1	15.6							135.2	
303	1:1.9		42.5	16.0						113.0	1
386	1:1.3		324.2							10.1	11.4
387	1:2.0		155.5	0.6		24.2					
388	1:1.7		492.7	53.2		31.3	8.0		t115.0	0.6	
389				30.0		231.4	167.6		x20.5		
390	1:1.9		102.0								
391	1:1.0		119.2								
392	1:1.7			574.5							
393	1:2.2		165.3		53.8	64.6		75.4		11514.9	1,152.5
394	1:1.3		508.2	91.6	208.8	04.0	224.0				46.9
395	1:2.0		91.7	39.9	1.6	7.2	224.0 43.0				
396	1:2.9		331.8	55.5		180.2	74.0			110.5	
397	1:2.4	2	297.4		100.0	81.4	66.0			1192.2	22.1
398	1:1.6		80.3	16.3			64.0			24.0	
100	1:2.8		13.3	w 1	122.0	329.4	01.0		1,246.1		
	1 1 /	-	08.9	81.4	366.9	687.5			ALCO TU. I		

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

1	2	3	4	5	6	7	8
			Rev	enue—\$1,0	000 units		
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
401. San Antonio, Tex.				17.1	3,890.7		
402. San Bernardino, Calif. 7/6	1,158.4			1.7	1,160.1		
403. San Francisco, Calif. 7/88	4,651.1	4,482.3	†		*12,986.7	542.0	259.7
404. Sandusky, Ohio	1	288.7	80.4		369.1		
405. Sanford, Fla. 10/85					186.6		
406, Sanford, N.C. 7/88					85.0		
407. Santa Barbara, Calif. 7/55	662.0		0.9	6.0	668.9		
408. Santa Cruz, Calif. 7/88	312.8	10.8	66.4	1.1	391.1		0.7
409. Santa Fe, N.M.	318.5	210.6		0.2	529.3	2.1	4.6
410. Santa Paula, Calif.	†	130.9	35.2	0.1	166.2	1.0	2.7
411. Santa Rosa, Calif. 7/66 412. Schenectady, N.Y.					454.3		
413. Scottsbluff, Neb.					121.2		
414. Scranton, Pa.*	3,558.3	712.3	884.2	88.3	5,243.1	50.8	84.6
415. Seattle, Wash.					3,875.9	8.9	48.0
416. Shamokin, Pa.*	329.5	35.0	75.5	5.0	*500.0		17.2
417. Sharon, Pa.*	462.3	107.9	222.4	4.0	796.6		28.3
418. Shawnee, Okla. 7/88	10010			. 1.0	170.0		20,0
419. Sheboygan, Wis.	165.0	47.1	84.1	5.3	301.5	11.9	73.8
420. Sheffield, Ala. 5/55	92.8	54.4	15.6	13.0	175.8		
421. Shelbyville, Ind.	88.2	34.8	37.2	4.0	164.2	4.1	13.4
422. Sheridan, Wyo.	67.8	17.2	2.6	1.0	*100.1	T.1	10.7
423. Shorewood, Wis.					131.6	0.4	12.9
424. Shreveport, La.	1,110.4	279.1	407.6	1.0	1,798.1		
425. Sioux City, Iowa					492.0		
426. Sioux Falls, S.D.					565.0		
427. Snyder, Tex. 10/55	199.6	37.4	12.5	j	249.5		
428. South Gate, Calif. 7/65	301.2	39.5	62.6	51.7	455.0	3.1	6.1
429. South Milwaukee, Wis.	55.6	7.7	57.0		120.3	4.4	27.6
430. South Orange, N.J.					190.2	25.0	
431. South St. Paul, Minn.4/66	84.9	9.9	0.8		95.6		
432. So. Calif. Water Co.*	†	3,413.6	272.4	10.4	3,696.4	92.0	90.0
433. Spokane, Wash.	643.8	488.0	+	3.1	1,134.9	56.2	
434. Springfield, Ill. ^{8/66}							
435. Springfield, Mass.					1,589.4		
436. Springfield, Mo.	739.0	341.5	57.9	1.3	1,217.4		77.8
437. Stamford, Conn.	†	711.9	143.4	13.5	868.8	15.1	65.6
438. Sterling, Ill.	182.2	37.6	37.0	3.9	260.7	4.8	14.2
439. Stevens Point, Wis.	74.4	28.2	13.1	2.8	118.5		31.2
440. Struthers, Ohio	134.2	11.7	8.1		154.0	1.6	8.9

^{*} See notes beginning on p. 694. † Included in "Coml."

ontd.)

8

. Fire

59.7

0.7 4.6 2.7

4.6

7.2

.4

1	9	10	11	12	13	14	15	16	17	18
		Revenue (contd.)			1	E	xpenses		1
	Misc		otal 6-9	Free Service Value	te	W-:-			Total	13-16
	\$1,00	\$1,00	0 \$/cat	\$1,00	Op. \$1,000	Main \$1,00			io -	1
401	66	5 3,957	7.2 8.5	1 669.	E 1 200 0		_		\$1,000	\$/cap.\$
402	1.				-1		-		2,033.6	4.37
403						1		.0 74.9	441.5	
404	49.	9 419		1 2 4 40 5	- INTEREST	-1	4 713.	.5 446.0	6,088.9	7.71
405		186	.6 9.3		124.7	1 ‡			230.7 124.7	0.22
406		85	.0 5.67	7	76.7				124.7	6.24
407	119.		0.00			#			76.7	5.12
408	0.0				103.5 118.9	233.0			336.5	5.18
409	12.				160.3	33.0	Ad a		185.4	6.62
410	4.3				70.2	19.1	2001		310.0	9.38
444					10.2	17.1	35.	2	122.5	8.75
411		454.			164.5	60.8	3		225 2	1
413	2.5	617.							225.3	6.09
414	3.5 120.0			14.2	54.9	4.6	0.8	3	60.3	1
415	18.5			none	1,047.1	370.8			2,677.4	4.31
***	10.5	3,931.	6.59	259.2	1,975.5	‡	100.1		2,075.6	5.15 3.46
416	2.7	519.9	9 10.20	none	202.6	60.0	60.0			
417	8.4	833.	3 15.14	none	347.0	60.0	1		363.9	7.14
418		440.1	14.67	- ione	541.0	33.4	134.6		515.0	9.36
419	3.4	390.0	8.68	none	175.7	48.8	0.4		159.9	5.33
420	9.8	185.6	12.38	none	74.8	‡	0.4	1	224.9	5.00
424						+		40.6	115.4	7.70
421	2.4	181.7	1 4-10-0	none	54.8	10.8	54.0		110.6	
422	2.1	102.2	0.02	19.1	41.2	26.0	34.0		119.6	9.20
424	0.3	145.2			129.3	1			67.2	4.49
425	8.6	1,806.7	1		622.0	193.4			129.3	7.61
123		492.0	5.19	61.6	388.7	1	12.6		815.4 401.3	4.53
426		565.0	9.42						101.5	4.23
127	7.8	257.3	15.13	45.7	52.4	40.2				
128	29.9	494.1	12.35	none	162.6	19.3			71.7	4.22
129	5.1	157.4	10.49	none	101.4	33.3			195.9	4.90
130		215.2	12.67	none	60.8	59.6	1		101.4	6.76
31	226	110.0			00.0	39.0			120.4	7.09
32	23.6	119.2	6.28	19.5	49.4	21.0		11.8	82.2	4 22
33	3.4	3,920.4	13.85	none	1,386.5	227.9	833.4	10.4	2,458.2	4.33
34	0.4	1,194.5	6.46	none	419.9	223.2	51.7		694.8	8.68 3.76
35	506.6	2,095.0	9.45	136.1	419.3	137.0		4.6	560.9	
	200.0	4,093.0	12.03	130.8	858.0	55.0		5.0	918.0	5.10 5.27
36	14.4	1,309.6	14.88		334.9	74.8	232.5			
37	83.9	1,033.4	14.76		295.4	36.3	359.7		642.2	7.30
38	2.0	281.7	10.84	0.2	85.3	22.9			691.4	9.88
10	1.9	151.6	9.47	none	50.7	17.2	81.2		189.4	7.29
	5.2	169.7	6.53	none	85.0	A. F. s.de		1	67.9	4.24

[‡] Included in preceding column. § Population served at retail.

ta

1	19	20	21	22	23	24	25	26	27	28	29
	Tax Paid	Source	e of Fund	s for Capit	al Addition	s-\$1,000	Book V (Deprec		Depre-	Surplus	
*	(% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	ciation Reserve Funds \$1,000	in Reserve \$1,000	Funded Debt \$1,000
401		2,874.8				2,874.8	27,896	60	8,235	попе	3,288
402		584.4				584.4	5,412	63	221	596	
403 404 405	ł i	2,801.5	2,026.7			4,828.2	127,622	162	55,057		43,897
406		14.5				14.5					870
407						none	11,079	170		650	1,272
408		204.7				204.7	2,326	83	385		475
409							3,950	120			
410	20.2					*108.7	679	49	321	16	none
411		231.4				231.4	2,536	69	none	none	none
413		15.0		1		15.0	447	32	11298	547	17
414		626.2				626.2	50,807	98	115,452	7,128	27,273
415	2.5	705.8				705.8	32,094	53	none	none	975
416		45.1				45.1	\$4,726	‡93	1,914	549	1.161
417						248.8	\$4,964	‡90	408	384	2,975
418		78.2				none	2,014	67	none	none	811
420		111.5				78.2 111.5	1,975 1,350	90	965 247	297 383	none 883
421	29.7			-		19.1	525	40			
422		14.9				14.9	4,364	291		35	375
423				1			615	36		00	313
424		628.7				628.7	12,506	69	2,503	3,951	5,175
425	2.6		520.0			520.0	4,327	46			
426		46.3									
427 428		16.3	56.7			73.0	1,417	83	none	64	650
429		103.0				103.0 332.9	2,463 1,164	62 78	1,014	330	none
430		25.0				25.0	2,178	128	246	none 83	none 988
431		24.7		35.8		60.5	1,231	65	52		none
432	21.2					2,706.9	23,451	83	4,206	2,072	10,380
433	4.3	584.4				584.4	13,951	75	4,806	726	
134 135		483.1 75.0	325.9	5.8		814.8 2,123.8	6,250 15,007	57 86	1,684 none	3,765 352	3,587
			, , , , , , , ,							332	8,809
136	17.8	359.6 164.3			2,150.0	2,509.6	2,219	25	704	40	6,000
	28.8	84.1				164.3 84.1	6,463	92	2,169	973	1,000
139	20.0	67.1	89.4			151.5	‡1,352 ‡1,158	‡52 ‡72	none	none	244
	20.8					101.0	41,130	412	none	none	344

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694.
† Customer contributions toward construction.
† Undepreciated.
† Population served at retail.
|| Accounting record.

1	30	31	32	33	34	35	36	37	38	39
		Franks			Disposi	tion of Earni	ngs-\$1,0	00 units		
	Operating Ratio	Earnings (Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
401	1:1.9	1.923.6	185.3	250.6	907.2				11580.5	580.5
402	1:2.6	719.9	10010		548.1	6.9		*163.9		
103	1:2.3	8,079.1	1,582.0		1,883.6	3,574.4		480.4	112,741.6	558.7
104	1:1.8	188.3	28.7		76.6	56.0				27.0
105	1:1.5	61.9	20.1							
		0.2	20.0		14.5	26.5		-62.7		
406	1:1.1	8.3	30.0	25.0	210.3	114.8		02.7		83.4
407	1:2.3	451.6	18.1	25.0	60.9	37.5		15.0	82.3	
408	1:2.1	207.0	11.3		00.9	31.3		10.0	53.1	
409	1:1.8	238.5	0.9				35.5		17.6	-2.
410	1:1.4	51.7	0.9				0010			
411	1:2.0	229.0			231.4	29.8				-32.2
412	1.21	64.4		30.0					117.7	34.4
413	1:2.1	64.4		30.0						
414	1:2.1	2,821.1 1,875.7	49.6	29.9	705.9	175.0		t892.1	11991.7	23.
713	1.1.						F7 0		34.2	17.
416	1:1.4	156.0	46.7			22.0	57.8		53.3	45.
417	1:1.6	318.3	76.3	0.2		23.0	120.0	220.2	33.3	43.
418	1:2.8	280.2			51.9			228.3	33.7	1.0
419	1:1.7	165.6			56.1	26.0		t74.8	1139.6	-7.
420	1:1.6	70.2	42.2			26.0		t9.7	1139.0	
421	1:1.5	62.1			1				1112.0	
422	1:1.5	35.0	7.7	21.0	14.9	14.0				-22.
423	1:1.1	15.9	2.3					t9.7	7.7	0.
424	1:2.2	991.3	76.6			273.0			11327.4	641.
425	1:1.2	90.7	7.4	-	48.3	35.0			1178.6	
426										
427	1:3.6	185.6	26.6	19.0	16.3	18.0		121.7		-16.
428	1:2.5	298.2						103.7	72.4	122.
429	1:1.6	56.0	1.4					t10.0	117.4	44.
430	1:1.8	94.8	22.3		5.0	54.0				13.
424	1.4 "	37.0	5.0							
431	1:1.5		304.8			40.0	563.2		11417.8	554.
432	1:1.6		304.0		389.6	10.0		t67.0		43.
433	1:1.7	499.7 478.5	79.3		307.0	152.0			106.3	140.
434	1:1.9				136.5	532.0			11441.3	345
100	2.2.0						164 3	x11.0	1109.6	134
436	1:2.0						161.3		1185.9	
437	1:1.5						180.0			
438	1:1.5					0.0		.46	1125.5	
439						8.0		t16.1	11.9	
440	1:1.3	40.6							17.0	

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
¶ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

F

1	2	3	4	5	6	7	8
			Rev	enue-\$1,0	00 units		
Community*	Resid.	Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
441. Superior, Wis. 442. Swampscott, Mass.	190.0	60.6	46.8	4.5	301.9		85.9
443. Syracuse, N.Y. 444. Tacoma, Wash.	751.4	575.8	127.1	15.5	1,808.5 1,469.8	77.9	50.9
445. Tampa, Fla. 10/85	102.1			10.1	2,069.4	31.6	52.2
446. Taunton, Mass. 447. Terrell, Tex. ^{4/56}	153.0	123.9	†		276.9	4.2	
448. Texarkana, Tex.	328.0	94.7	25.4	3.1	451.2	25.5	16.5
449. Texas City, Tex. 7/88					255.3		
450. Toledo, Ohio				16.1	3,373.7		
451. Tonawanda, N.Y.	101.9	13.4	66.7		182.0		
452. Topeka, Kan.					1,261.7		
453. Torrance, Calif. 7/88					667.0		
454. Torrington, Conn.	158.6	37.6	54.6	5.7	256.5	5.3	47.5
455. Tucson, Ariz. ^{3/55}					1,141.7	22.1	36.0
456. Tulare, Calif. 7/88					133.7		
457. Tulsa, Okla. ^{7/86}	85.0	47.4	20.2	4.2	4,886.0	7.0	20.0
458. Two Rivers, Wis. 459. Uniontown, Pa.	75.2 176.0	17.4	30.2 59.6	1.3	124.1 250.6	7.2	28.0
460. Vancouver, Wash.	170.0	13.3	39.0	1.0	414.5	31.7	0.0
461. Ventura, Calif. 7/88	264.0	42.0	132.3		438.3		
462. Vernon, Tex.4/85					165.9		
463. Vincennes, Ind.	Ť	156.9	41.8	2.8	201.5	16.7	35.1
464. Virginia, Minn. 4/88	100.3	64.8			165.1		8.5
465. Walla Walla, Wash.					361.8		7.9
466. Wallingford, Conn.	†	143.4	78.4	3.5	225.3		15.4
467. Washington, D.C. ^{7/88}	2,592.9	4,087.4	†		6,680.3	250	
468. Washington, Ind.	1	117.8	22.9	1.4	142.1	26.9	60
469. Washington C. H., Ohio* 470. Waterloo, Iowa	74.6	21.8	19.8	1.2	117.4 474.3	4.1	6.8
					7/7.3		
471. Watertown, N.Y. 7/65	233.3		101.6	9.4	344.3		
472. Watertown, S.D.	00.6	24.2			88.9	0.1	100
473. Waterville, Me.	92.6	21.3	55.0	4.6	173.5 *590.4	2.4	10.9
474. Waukegan, Ill. ^{5/86} 475. Wauwatosa, Wis.	205.4	34.3	10.3	0.3	250.3	32.3	5.1
476. Waycross, Ga.					215.5		
477. Webster, Mass.					65.9		
478. West Allis, Wis.	140.0	49.7	114.6	1.4	305.7		58.8
479. W. University Pl., Tex.*					126.6		
480. West View, Pa.	652.9	103.9	55.6	92.0	904.4	29.0	38.5

^{*} See notes beginning on p. 694. † Included in "Coml."

.)

re

9

.9

.5

7.5

8.0

5.1 8.5 7.9

5.4

6.8

5.1

58.8 38.5

1	9	10	11	12	13	14	15	16	17	18		
	Reve	nue (contd.)		Expenses							
	Misc.	Total 6	-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 13	-16		
	\$1,000	\$1,000	\$/cap.\$	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.\$		
441 442	0.2	388.0	11.08	none	152.9	49.9	78.7		281.5	8.04		
443	160.7	1,969.2	7.88		671.6	1	130.6	173.0	975.2	3.90		
444	56.1	1,654.7	10.03		677.0	207.7	51.8	0.3	936.8	5.68		
445	6.5	2,159.7	9.19	none	847.1	1			847.1	3.60		
446 447	17.7	298.8	7.47	68.2	231.5	‡			231.5	5.79		
448		493.2	9.67	none	217.9	50.1			268.0	5.26		
448	14.5	269.8	9.00	none	111.2	1			111.2	3.71		
450	520.8	3,894.5	8.60	304.0	1,746.4	846.1			2,592.5	5.72		
454		182.0	10.71						152.5	8.97		
451 452		1,261.7	10.34	1.0	693.1	151.9		85.8	930.8	7.62		
453	114.0	781.0	17.35	15.1	94.0	275.3			369.3	8.20		
454	114.0	310.3	12.41		60.7	23.0	60.2		143.9	5.75		
454	26.0	1,225.8	13.03	none	546.2	‡	9,9		556.1	5.91		
156		133.7	10.28		41.0	28.6		0.9	70.5	5.42		
456	355.4	5,241.4	21.82						1,293.1	5.38		
457	2.2	161.5	14.68	none	69.9	İ		16.4	86.3	7.84		
458 459	18.9	270.3	10.81	none	113.3	32.4	10.5	22.0	178.2	7.13		
460	10.9	446.2	8.12		172.1	42.9	15.4	4.7	235.1	4.28		
461	59.0	497.3	16.05	2.9	231.7	1		71.0	302.7	9.77		
462	0,10	165.9	11.85						00.3	2.60		
463	0.2	253.5	10.57	none	76.5	9.6	2.1		88.2	3.68		
464	1.0	174.6	11.64		124.5	11.3			135.8	9.08		
465	20.2	389.9	14.45		196.4	1	11.9	7.6	215.9	8.00		
466		240.7	10.46	9.0	42.0	38.0			80.0			
467	842.4	7,522.7		293.1	5,113.8	1			5,113.8			
468	5.8	174.8		1	58.0	1	1.4		59.4			
469	-	128.4		none	61.8	6.7	24.	6 0.1	93.2			
470		474.3		27.9	278.5	1			278.5	3.98		
471	34.0	378.3	9.96		212.1	52.1			264.2			
472		88.9			73.1	1	1		73.1			
473		186.8	6.23	none	78.0	17.5			95.5			
474		*686.8	3		304.6				304.0			
475		282.0		none	182.0	45.0)		227.0	6.14		
476		215.	5 10.20						40.	9 3.0		
477		65.		8.4					42.			
478				1	272.5		1		397.			
479			3 7.2	1	110.4				110.			
480		997.	2 10.5	none	366.0	116.	3		482.	3.0		

Included in preceding column. Population served at retail.

1	19	20	21	22	23	24	25	26	27	28	29
	Tax	Source	of Funds	for Capital	Additions-	\$1,000	Book V	alue ated)	Depre- ciation	Surplus	Funded
*	Paid (% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	Funds \$1,000	Reserve \$1,000	Debt \$1,000
41	20.3	29.7				29.7					
12	20.0						0.074	26	6.465	347	2,678
43	6.6						9,071	36 147	6,465 8,869	341	7,679
44	3.1	166.2		1,464.4		1,630.6	24,300	63	121	277	13,267
45		779.3		548.6		1,327.9	14,783	03	141		10,20.
46			1,031.5			1,031.5	3,781	95			1,169
47			1,002.0							. 254	
48	1	64.8		521.2		586.0	6,842	134	1,035	1,354	1.041
49							2,417	81			1,941 11,833
50		73.4		3,056.7		3,130.1	39,112	86			11,000
			205.0			325.0					
51		1026	325.0	1		403.6	4,007	33	1,912	none	368
52		403.6	1			142.7	3,004		714	863	2,085
15.		2.6				2.6	2,077		541	89	490
154	-	1	1			none	10,828	115	none	629	6,460
						23.4	826	64			
150		23.4	ŀ			2,196.8	38,860				
15						2,190.0	1,320		260	496	487
15						52.8	1,471		484	355	none
15		1	5			401.3	4,900		721	18	665
		24.0				24.0	3,573	105	154	23	none
46		24.									1 160
46		8 24.	8	50.0		74.8	1,72			214	1,160
46	-						23		none	3.080	950
46		1					‡2,76	6 1102		3,000	930
		75.	0			75.0	2,38	6 104	565		
46		2,300.			*3,000.0	and the same of the same	171,83			325	
46			9		0,000.		1,32	2 102	177	554	315
46	9 19.					none	5,06		none	none	none
				56.8		56.8	2,04	1 54	none	26	96
47	7			00.0			43	1 31			
47		33.	3	41.9		75.2	\$2,73				
47		42.				42.9	3,26	5 67			
47		63.				63.0	1,85	3 50	738	3 25	2 202
4747	77					none	78	6 38	1141	7	
47						044.0	8.36				5,64
48	30					944.8	0,30	00			-,

* See Col. 1 of preceding left-hand page and notes beginning on p. 694.
† Customer contributions toward construction.
† Undepreciated.
§ Population served at retail.
|| Accounting record.

ontd.)

anded Debt 1,000

2,678 7,679 3,267 1,169

1,941 1,833

368 2,085 490 5,460

487 one 665 one ,160 950

647

1	30	31	32	33	34	35	36	37	38	39
-		Earnings			Dispos	ition of Earn	ings-\$1,	000 units		1
	Operating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve
441	1:1.4	106.5								
443	1:2.0	994.0	99,9	168.3	241.6			*570 E	11222.0	042
444	1:1.8	717.9	111.3	100.5	166.2	318.0		*578.5 t120.6	1232.0	-94.3
445	1:2.6	1,312.6	341.3	222.2	772.3	259.0		250.0	11638.5	2.1 106.3
446 447	1:1.3	67.3	13.3			46.0		8.0		
448	1:1.8	225.2	154.8	128.9				t14.2		
449	1:2.4	158.6	101.0	120.7	53.6	194.0		114.2		
450	1:1.5	1,302.0	238.2	98.3	33.0	462.5				503.0
451	1:1.2	29.5	11.7		12.0					5.8
452	1:1.4	330.9	7.7		134.4	46.0		t28.5	1114.3	114.3
453	1:2.1	411.7	24.9		142.7	89.0		t35.0	115.0	159.8
454	1:2.2	166.4	26.4		2.6	10.0	27.0	*64.2	36.2	
455	1:2.2	669.7	186.3		214.8	118.0		100.0		50.6
456	1:1.9	63.2			23.4					39.8
457	1:4.0	3,948.3		960.2				2,988.1	11547.8	
458	1:1.9	75.2	9.4					t36.8		29.0
459 460	1:1.5	92.1 211.1	6.9	33.5	66.6	25.0		x65.2	26.9	
400	1:1.9	211.1	0.9	33.3	66.6	25.0		t77.3	177.1	1.8
461 462	1:1.6	194.6	33.4		24.0	74.0			1163.2	63.2
463	1:2.9	165.3	44.6		10.1	95.0			115.6	15.6
464	1:1.3	38.8	0.7		5.3	8.4			1123.5	24.4
465	1:1.8	174.0		75.0				t60.0	20.0	39.0
466	1:3.0	160.7	4.5		126.2	21.0		9.0	1142.7	
467	1:1.5	2,408.9	9		1,579.7	1144.8				684.4
468	1:2.9	115.4	31.3			1		t1.0	17.2	65.9
469	1:1.4	35.2							10.4	
470	1:1.7	195.8							1184.5	
471	1:1.4	114.1	1.9		64.9	6.0				41.3
472	1:1.2	15.8	17.0	21.6						
473	1:2.0	91.3	17.2	24.6	45.5	== 0		t4.0	****	
474	1.12	382.2	144.0	39.0	42.9	55.0			*318.6	77.3
475	1:1.2	55.6	3.5			19.0		t34.1	141.3	
176	1.15	22.0								
177	1:1.5	23.0						422 5	1120 =	
178 179		18.3			40.8			t32.5	1120.5	-14.2
180	1:1.2	514.9	124.3	75.0	100.0	90.0				-20.9
100	1:4.1	314.9	124.3	13.0	100.0	90.0			1	125.6

Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
@ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

	1	2	3	4	5	6	7	8
				Rev	enue—\$1,00	00 units		
	Community*		Coml.	Ind.	Pvt. Fire	Total 2-5	Munic.	Pub. Fire
481	Westchester Co., N.Y.*					538.0		51.2
	Westerly, R.I.				1.4	198.5		9.4
	Westmoreland Co., Pa.4/66							
	Weymouth, Mass.	254.0	40.0			294.0		
	Whittier, Calif. 7/86					502.4	1.5	
196	Wichita, Kan.*					3,719.6	86.3	174.5
	Wilkinsburg-Penn, Pa.	1.138.6	87.1	482.2	11.5	1,719.4	25.0	76.8
	Williamsport, Pa.7/55	273.4	57.8	98.3	6.6	436.1	15.0	29.2
480	Wilmington, N.C.7/55					573.0		
490.	Wilson, N.C.7/88	123.7	47.9	16.1		187.7	30.0	8.1
404	3372					248.6		9.3
491.	Winnetka, Ill. 4/86 Wisconsin Rapids, Wis.	89.4	49.6	35.8	1.7	176.5	1.0	54.1
	Worcester, Mass.	02,4	17.0	00,0		1.649.7		
	Wyandotte, Mich. 10/55					273.4		
	Yonkers, N.Y.							
406	York, Pa.	918.4	117.6	280.4	25.7	1,342.1	13.2	40.2
	Youngstown, Ohio	†	1.266.0	300.9	2.0	1,568.9		

^{*} See notes beginning on p. 694. † Included in "Coml."

2

1	9	10	11	12	13	14	15	16	17	18	
*******	Rev	renue (conta	1.)		Expenses						
	Misc.	Total	6-9	Free Service Value \$1,000	Op.	Maint.	Taxes	Misc.	Total 1	3-16	
	\$1,000	\$1,000	\$/cap.\$	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$/cap.	
481	28.3	617.5	14.70		313.5	127.7	1.5		442.7	10.53	
482		207.9	11.55		37.6	1			37.6	2.09	
483		2,169.3	14.85		517.6	127.1			644.7	4.41	
484		294.0	7.00		67.4	151.7		i i	219.1	5.22	
485	45.1	549.0	17.16	1,000.0	66.0	225.7			291.7	9.12	
486	12.7	3,993.1	16.84	none	998.0	157.0	804.1	53.3	2,012.4	8.48	
487	4.6	1,825.8	8.70	none	871.4	146.2	10.7		1,028.3	4.90	
488	11.2	492.5	8.21	none	122.4	31.0			153.4	2.56	
489		573.0	10.43	46.4	113.9	225.0		4.4	343.3	6.25	
490	60.1	285.9	10.21	none	99.7	18.0			117.7	4.20	
491	28.4	286.3	20.45	none	134.0	17.0			151.0	10.78	
492		231.6	16.54								
493		1,649.7	7.94		69.0	498.5			567.5	2 73	
494	130.4	403.8	9.62	27.4	177.2	1		6.9	184.1	4.38	
495		1,477.7	9.24						1,410.9	8.82	
496	31.4	1,426.9	14.27	none	436.6	40.0	434.7	9.1	920.4	9.20	
497	175.4	1,744.3	8.90	191.5	1,008.7	532.9			1,541.6	7.87	

[‡] Included in preceding column. § Population served at retail.

F

4:44

1	19	20	21	22	23	24	25	26	27	28	29
* (Tax	Source	of Fund	for Capita	Addition	s-\$1,000	Book Value (Depreciated)		Depre-	Surplus	
	Paid (% of Total Rev.)	Prior Earn- ings	G.O. Bonds	Revenue Bonds	Bank Loans	Total 20-23	\$1,000	\$/cap.§	ciation Reserve Funds \$1,000	in Reserve \$1,000	Funded Debt \$1,000
481	0.2										
482 483		38.5				38.5	1,888 25,969				33
484		0.1	17.1	55.6		72.8				39	342
485		43.0	165.6			208.6	5,055	158	none	132	
486	20.2										
487	0.6	983.3				983.3	15,191	72	3,722	3,041	8,840
488		116.2				116.2	6,809	113	344		5,452
489		33.1				33.1	5,068	92	none	none	3,039
490		95.9				95.9	3,112	111	208		717
491		60.9				60.9	1,491	106	424	5	none
492											
493			1,798.7			1,798.7	22,220	107			6,737
494		755.7				755.7	2,324	55			15
495											
496	30.5	336.5	1,000.0			1,336.5	6,500	65	1,474	1,295	1,980
497		210.7				210.7	4,587	23			275

^{*} See Col. 1 of preceding left-hand page and notes beginning on p. 694, † Customer contributions toward construction.

1 Undepreciated.

2 Population served at retail.

td.)

)

ded bt

33 342

e 137 15

80 75

1	30	31	32	33	34	35	36	37	38	39		
	Oper-	Earnings	Disposition of Earnings-\$1,000 units									
	ating Ratio	(Col. 10 Minus Col. 17) \$1,000	Interest	Debt Retire- ment Reserve	Capital Expense	Bonds Retired	Divi- dends	Paid to General Funds@	Depre- ciation	Added to Reserve		
481	1:1.4	174.8						174.8				
482	1:5.5	170.3			38.5							
483	1:3.4	1,524.6				i						
484	1:1.3	74.9	6.8			45.0				23.1		
485	1:1.9	257.3	202.1		6.1			*47.1	1107.7	2.0		
486	1:2.0	1,980.7	390.7	567.0	145.8	174.2			281.5			
487	1:1.8	797.5	200.7	205.0	384.6				1205.0	7.2		
488	1:3.2	339.1	115.3	3.0		128.2				92.6		
489	1:1.7	229.7	77.7		33.1	93.9		25.0				
490	1:2.4	168.2	20.0		95.9	24.7			*147.7			
491	1:1.9	135.3			60.9			49.3	20.1	5.0		
492						1		t25.2				
493	1:2.9	1,082.2				990.6						
494	1:2.2	219.7	3.8		137.9	15.0			1163.0	63.0		
495	1:1.0	66.8										
496	1:1.6	506.5	66.0				288.0		1134.7	152.5		
497	1:1.1	202.7	6.0		74.0	25.0			1125.2	97.7		

[#] Ratio of expenses (Col. 17) to revenue (Col. 10).
¶ Interest included in Col. 35.
⑤ Letters preceding certain entries indicate that amounts shown also include (or consist entirely of) "local taxes" (t) paid by publicly owned utilities, payments to regional water districts (d), sewer system allocations (s), and outlays for purposes other than those itemized in this table (x).

Notes to Survey Tables

Applicable to All Tables

Data shown in all tables are for the year 1955, except as indicated by superscript numerals following the name of the community; for example, 3/86 indicates that data are for the year beginning March [first] 1955.

Communities are arranged alphabetically and are numbered consecutively; a given community will have the same number in every table. The italic number preceding each of the notes below is the community number.

The following notes give the full name of communities listed in abbreviated form in the tables; some notes contain other relevant information regarding the particular community or the utility serving it:

86. Includes Urbana, Ill.

134. East Bay Municipal Utility District (Oakland, Calif.).

202. Water Bureau of the Metropolitan

District of Hartford County.

- 208. Hawaii County Board of Water Supply (manages 21 systems on the island of Hawaii).
- 243. Florida Keys Aqueduct Commission. 253. Helix Irrigation District (formerly La Mesa, Lemon Grove, and Spring Valley Irrigation District).

270. That portion of the island served by Long Island Water Corporation.

280. Manhattan Beach, Calif.

292. Merrick plant of New York Water Service Corporation.

294. Metropolitan Water District of

Southern California.

- 321. Central Louisiana Electric Company, serving also Crowley, Eunice, and other areas.
 - 326. Includes Hampton and Warwick, Va.
- 358. Passaic Valley Water Commission. 363. Philadelphia Suburban Water Com-

- 376. Puerto Rico Aqueduct and Sewer Authority (includes all suburban communities-more than 70-on the island).
- 377. Woodhaven plant of New York Water Service Corporation.

386. Rochester plant of New York Water Service Corporation.

414. Scranton-Spring Brook Water Service Company, serving also Wilkes-Barre and more than 50 other communities.

Roaring Creek Water Company.

417. Shenango Valley Water Company.

432. Southern California Water Company (serves 25 separate districts, mainly in Los Angeles County).

469. Washington Court House, Ohio.

479. West University Place, Tex. 481. Westchester Joint Water Works

No. 1.

Supply and treatment facilities municipally owned; pumps and distribution system privately owned during period of survey. Financial data (Table 4) represent combined figures for supply (municipal) and distribution (private).

Table 1

For notes to Col. 1, see notes applicable to all tables (above).

28. Col. 2: Varies from 65,000 in winter

to 125,000 in summer.

91. Col. 3: Includes 675.000 suburban population, largely wholesale.

91. Col. 8: Chlorination, 100 per cent: filtration, 35 per cent.

208. Col. 8: Of 21 systems, 4 use filtration and 6 chlorination.

208. Col. 10: Of 21 systems, 20 are gravity supply.

210. Col. 2: Varies from 35,000 in sum-

mer to 72,000 in winter. 211. Col. 8: Approximately 5 per cent of

supply. 250. Col. 2: Varies from 16,000 in sum-

mer to 32,000 in winter. 294. Col. 3: Supplemental (wholesale) supply to more than 6,000,000 people.

324. Col. 6: Ground water, 0.3 per cent;

surface water, 99.7 per cent.

486. Col. 4: Supply and treatment facilities municipally owned; pumps and distribution system privately owned during period of survey.

Table 2

For notes to Col. 1, see notes applicable to all tables (above).

19. Col. 13: Flood loss and cleanup.

45. Col. 11: An additional 15,585 mil gal of raw water was delivered to industrial users.

137. Col. 13: Plant use.

183. Col. 11: An additional 2,417 mil gal of raw water was used for condenser cooling at the city power plant.

276. Col. 13: Fire service.

298. Col. 11: 5,301 mil gal was pumped from Lake Huron, of which 30 per cent (1,608 mil gal) was treated, and the remainder untreated for industrial use.

414. Col. 2, 5: Transmission mains included in Col. 5.

441. Col. 13: Company use.

Table 3

om-

in in

rks

nu-

ys-

rey.

ned

bu-

ble

iter

ban

nt;

ion

av-

111-

of

m-

le)

nt;

ili-

11-

of

ble

gal

ial

For notes to Col. 1, see notes applicable to all tables (p. 694).

18. Col. 18: Ranges from \$30.00 to \$50.00. 23. Col. 4: Includes 1,909 apartments.

26. Col. 12: Discount of \$0.20 per 1,000

29. Col. 8: Commercial, 18 per cent; industrial, 64 per cent.

30. Col. 18: Outside city only.

32. Col. 8: Commercial 76 per cent; industrial, 100 per cent.

32. Col. 18: Ranges from \$30.00 to \$60.00.

35. Col. 18: In surrounding counties only. 36. Col. 8: Commercial, 93 per cent; industrial, 94 per cent.

41. Col. 8: Commercial, 100 per cent; industrial, 65 per cent.

49. Col. 8: Commercial, 100 per cent; industrial, 84 per cent.

60. Col. 14-17: Quarterly. Col. 14-17: Quarterly.

65. Col. 8: Commercial, 25 per cent; industrial, 28 per cent.

76. Col. 18: \$40.00 in Burlington Township Water District.

81. Col. 18: Ranges from \$25.00 to \$30.00.

95. Col. 7: Includes 978 charitable institutions and 5 suburban master meters.

96. Col. 8: Commercial, 97 per cent; industrial, 100 per cent.

97. Col. 7: Wholesale only, to systems comprising 18,300 retail services.

103. Col. 8: Commercial, 99 per cent; industrial, 100 per cent.

103. Col. 18: Ranges from \$30.00 to \$68.18.

123. Col. 8: Commercial, 86 per cent; industrial, 56 per cent.

132. Col. 18: \$60.00 outside city limits. 134. Col. 18: Charge is made for cost of

installing hydrants. 139. Col. 19: \$36.96 per mile for mains larger than 6 in.

149. Col. 8: Commercial, 31 per cent; industrial, 58 per cent.

149. Col. 18: Outside city only.

167. Col. 8: Commercial, 14 per cent; industrial, 100 per cent.

222. Col. 18: Outside city only.

227. Col. 8: Commercial, 100 per cent; industrial, 91 per cent.

227. Col. 18: \$45.00 outside city limits.

235. Col. 12: Penalty of \$1.00 per 1,000 cu ft.

246. Col. 19: Per mile.

247. Col. 8: Commercial and industrial. 97 per cent.

256. Col. 8: Commercial and industrial, 88 per cent.

257. Col. 8: Has 25 metered accounts.

258. Col. 8: Commercial, 32 per cent; industrial, 100 per cent.

278. Col. 18: Outside city only.

292. Col. 18: Ranges from \$45.00 to \$55.00.

294. Col. 7: Wholesale only; supplemental supply to more than 6,000,000 people.

304. Col. 14-17: Includes sewer service charge.

314. Col. 12: Penalty of \$0.20 per 1,000 cu ft.

331. Col. 14-17: Ouarterly.

349. Col. 18: Ranges from \$15.00 to \$42.50.

363. Col. 8: Commercial, 100 per cent; industrial, 21 per cent.

364. Col. 15-17: Rates shown are for winter season; corresponding summer rates are \$11.90, \$106.90, and \$764.03.

367. Col. 8: Commercial, 97 per cent; industrial, 45 per cent.

372. Col. 8: Commercial, 96 per cent; industrial, 100 per cent.

373. Col. 18: Ranges from \$30.00 to \$50.00.

375. Col. 8: Commercial, 100 per cent; industrial, 94 per cent.

376. Col. 8: Commercial, 95 per cent; industrial, 99 per cent.

386. Col. 18: Ranges from \$45.00 to \$75.00.

387. Col. 8: Commercial, 45 per cent; industrial, 100 per cent.

408. Col. 5: Includes 89 irrigation customers.

410. Col. 5: Includes 40 irrigation customers.

410. Col. 18: \$6.00 for 4-in. diameter or less; \$12.00 if greater than 4 in.

414. Col. 8: Commercial, 53 per cent; industrial, 97 per cent.

414. Col. 18: \$30.00 in Scranton area; \$20.00 in Wilkes-Barre area.

416. Col. 14-17: Rates shown are for gravity supply; for pumped supply, add \$0.90 per 1,000 cu ft.

417. Col. 19: Per mile.

419. Col. 19: Per mile.

422. Col. 4: Includes customers outside city limits.

429. Col. 10: Billing every 4 months. 433. Col. 10: Billing every 4 months.

441. Col. 8: Commercial, 100 per cent; industrial, 86 per cent.

456. Col. 8: Commercial, 93 per cent; industrial, 100 per cent.

473. Col. 8: Commercial, 87 per cent; industrial, 71 per cent.

483. Col. 11, 13-19: Rates and charges vary in numerous districts served.

486. Col. 8: Commercial, 99 per cent; industrial, 83 per cent.

488. Col. 19: Varying schedule of charges. 496. Col. 8: Commercial, 71 per cent; industrial, 70 per cent.

Table 4

For notes to Col. 1, see notes applicable to all tables (p. 694).

8. Col. 35: \$400,500 in tax funds allocated to debt service.

41. Col. 32: Includes \$4,700 interest on unfunded debt.

unfunded debt. 54. Col. 6: Includes \$162,000 wholesale

126. Col. 6: Includes \$4,320,300 suburban sales revenue.

134. Col. 8: Tax revenue.

202. Col. 23: In anticipation of bond

202. Col. 33: Includes \$78,600 in amortization and capitalization charges.

208. Col. 23: Customer contributions and county loans.

237. Col. 6: Includes \$1,169,700 suburban sales revenue.

267. Col. 6: Includes \$208,800 wholesale revenue.

267. Col. 38: \$55,100 to depreciation reserve: \$70,700 accounting record only.

273. Col. 5: Included in Col. 2-4.

273. Col. 17: \$420,800 depreciation item credited.

292. Col. 6: Includes \$64,100 wholesale revenue.

295. Col. 6: Includes \$1,209,700 wholesale revenue.

300. Col. 6: Includes \$540,700 wholesale revenue.

313. Col. 21: Serial notes.

320. Col. 24: Includes \$2,000,000 stock issue and \$168,000 in customer contributions.

376. Col. 24: Includes \$4,746,700 in contributions toward construction.

376. Col. 25: Includes sewer and electric properties.

380. Col. 4: Untreated water for irrigation.

386. Col. 6: Includes \$396,200 wholesale revenue.

392. Col 6: Includes \$154,900 wholesale revenue.

392. Col. 22: \$1,700,000 first mortgage and \$3,000,000 preferred stock.

402. Col. 37: Includes \$52,400 for litigation.

403. Col. 6: Includes \$3,853,300 suburban sales revenue.

410. Col. 24: Preferred stock.

416. Col. 6: Includes \$55,000 wholesale revenue.

422. Col. 6: Includes \$12,500 wholesale revenue.

443. Col. 37: Includes \$29,400 charged to damages sustained.

454. Col. 37: Charged to flood damage.

467. Col. 23: United States government loan.

474. Col. 6, 10: Combined water and sewer utility revenue.

474. Col. 38: \$171,300 to depreciation reserve; \$147,300 accounting record only.

485. Col. 37: Refunds on donations.

490. Col. 38: \$104,100 to depreciation reserve; \$43,600 accounting record only.

WA

re-

tem

sale sale

ock ons. oneric gaale ale ge

ile

le

to

nt

id

Palatable Water Results 111 GOOD WILL"

Your best "good will" ambassador is a tap water which is clear, sparkling, and free from any noticeable taste or odor. Very few consumers will relish water containing odors of chlorine, fish, grass, cucumbers, etc. It is an accepted fact that adequate dosages of AQUA NUCHAR activated carbon will permit you to deliver to your consumers a palatable water with an added sparkle that will delight both you and your customers.

Our Technical staff will gladly, without obligation, give your plant a complete odor survey and recommend how and where AQUA NUCHAR can best be used to produce palatable water.

GOOD CARBON · GOOD WATER · GOOD WILL

New York Control Suchbing 230 Park Are., New York 17, 8, 1 Phile Ital's Bank Bidg Bread & Chestnut Ste., Phile, 7, P. indus rid

Pers Oil Building
16 E. Wacher Drive, Chicago 1.
1775 E. Mareland Environd

lar

fac er; we

tin

co

ce

wa of

of m

re

ot

ne

re

th

as

di by

su

th ve

th

th

1½" or 2" Style 3 Meter matches performance of complicated compound . . . with less cost and fuss

For 1½" and 2" water service lines, the Trident Style 3 meter is simpler, costs less to buy and maintain, is every bit as accurate, and produces just as much revenue over a wide range of flows as any compound, including our own. Trident was first to give you an easy-to-set pressure adjustment. And since modern Style 3 parts fit older meters, there's never any absolescence.

So why put up with the fuss and expense of two measuring units when one Style 3 will do the job? You'll find conclusive evidence in your own records . . . or ask your Neptune man.

NEPTUNE METER COMPANY

19 West 50th Street . New York 20, N.Y.

NEPTUNE METERS, LTD. 1430 Lakeshore Road • Toronto 14, Ontario

Branch Offices in Principal
American and Canadian Cities.

Percolation and Runoff

Water Works Week 1957 was inaugurated on May 12, when AWWA's 77th Annual Conference opened in Atlantic City. That it was a big week is certain, although our story of how big will have to await the confirmation of fact. Meanwhile, more and more, every week seems to be water works week in the news, until the publicity we once had to hunt now threatens at times to overwhelm us.

As usual the largest headlines have continued too "too" for our taste, accentuating the negatives of too much water or too little. Actually, in terms of publicity, "too much" falls far short of "too little," for though floods do make a big splash, they usually recede relatively quickly. "Too little," on the other hand, more or less spectacularly is the source of practically all the water news-from such full-scale coverage as received by the Southwest drought to the localized handling of such a story as that of the recent engineering survey of Nassau County, N.Y., which indicated that its water use would double by the year 2000, requiring augmented supply systems to handle a demand of 252.5 mgd. Too little, too, is behind the current rash of stories on the conversion of saline water to fresh at costs said now to reach as low as 30 cents per thousand gallons, the renewal of the California-Arizona legal battle for the waters of the Colorado River, the

plans to advance \$100,000,000 in loans for Texas city, county, and state water supply projects, the consideration by the legislatures of practically all 37 "riparian" states of the "new" problem of water rights, the discussion of a federal water supply agency to protect the public interest in the proper use of the nation's water resources. Even such stories as that of the current arguments of Detroit and surrounding Wayne County authorities over the responsibility for the future water supply of the area and the news that the Indianapolis Water Co. has retained the firm of Alvord, Burdick & Howson, together with consultants Samuel B. Morris and Abel Wolman, to consider the long-range future of the Indianapolis area and to make recommendations for providing the water it needs are based on the fear of "too little" later.

That "too little" isn't confined to "the land of plenty" is quite clear. In our own neighborhood, Canada is now talking of diverting 29,000 cfs from the Columbia and Kootenay rivers without even waiting for a US okay, and in Mexico the Dept. of Water Resources is planning to spend some \$16,000,000 for improving small village water supplies. Further away, "too little" has impelled the island of Aruba to install a 2.7-mgd sea water distillation plant, operating on the inexpensive fuel from

IN

is

ar

de

pi

aı

B

(Continued from page 33 P&R)

nearby Lago refinery, to provide water not only for domestic uses but for the ultimate in irrigation-hydroponicsas well. And at Rio, news of a 2- or 3-day-a-week supply is attributed to a system designed for 2,000,000 trying to serve 3,000,000. Even in Switzerland there are water worries, with industrial and domestic wastes beginning to foul many of those crystal-clear Alpine lakes. And the struggles of Israel and Syria over the waters of the River Jordan as well as those of India and Pakistan over the Indus are enough to carry the too-littleness at least halfway around the world.

That all the too-littleness is a matter of water supply rather than water resources, however, ought to be obvious from the fact that we now use only about 5 per cent of the rainfall available to us. The \$100,000,000 a year that the rejuvenated Soil Conservation Service will be spending on watershed conservation and flood prevention by the mid-1960's ought to help, as would the "network of water pipelines across the country . . . carrying water from sources of supply-including desalting plants-to areas where it's needed" foreseen by Interior Secretary Fred Seaton. Certainly a nation that can afford to spend \$50,000,000,000 a year for defense can afford to realize the goal of "All the Water You Need, When and Where You Need It!" And if it makes up its mind to, we really can make headlines of Water Works Week instead of water works weak.

Water Works Strong, on the other hand, are the new officers and directors taking the reins of AWWA on Friday, May 17, at Atlantic City, led by Prexy Fred Merryfield and Veep

Lew Finch, who apparently (see photo above) had their part in the act all cooked up way back in 1954, when Karl Mann, snapping then for *Water Works Engineering*, caught them in this chummy pose. Actually both were completely unofficial in those days, and Karl deserves a posy for his foresight. As for Fred and Lew and the rest of the crew, they get theirs below:

President-Fred Merryfield, professor of sanitary engineering, Oregon State College, and consulting engineer, Cornell, Howland, Hayes & Merryfield, Corvallis, Ore. Born in 1900, he received a B.S. degree from Oregon State College (1923) and an M.S. from the University of North Carolina (1930), and is a registered professional engineer in Oregon. He served as engineer with the Southern Pacific Railroad and US Army Corps of Engineers from 1923 to 1927. In 1927, he joined the faculty of Oregon State College as an instructor in the department of engineering, and served in that capacity until 1929, when he was appointed assistant engineer to the Dept. of Conservation and Natural Resources of North Carolina. In 1930, he returned to Oregon State College, where he served until 1942 as, succesUsers of INFILCO's NEW recarbonator report:

0.5

oto all en ter in ere nd ht.

on er,

00,

-9

S.

na

es-

ed

fic

n-

27,

ite

rt-

p-

pt.

e-80, ge,

S-

"More efficient water stabilization in ¼ the space with less operating attention!"

INFILCO's modern water stabilization system is based on improved methods of CO₂ generation and distribution. This system has been found highly satisfactory by engineers responsible for the design of industrial and municipal water plants.

Inquiries and samples are invited on all problems in the treatment of water, sewage and wastes for municipalities, institutions and industry. For our new catalog—write for Bulletin 80.

Let us show you how an INFILCO recarbonator system will give you all these advantages:

- 1. SPACE SAVING: No furnace or scrubber!
- 2. NO COSTLY COOLING APPARATUS . . . NO HAZARD FROM HIGH TEMPERATURE PIPING:
 No separate heat exchanger, all high temperature piping submerged!
- 3. SCALE EASILY REMOVED: Scale occurs only on outside of immersed downcomer and piping!
- CONSTANT SUPPLY OF CLEAN CO₂: All of the fuel (gas or oil) is effectively burned without production of smoke or solid combustion products.
- ECONOMY OF OPERATION: Only required fuel is burned; no excess combustion gases to be discharged, no furnace or boiler to be maintained.
- 8. CORROSION MINIMIZED: Combustion gas temperature never drops below condensation point to produce corrosive liquid. Stainless steel in combustion chamber and wrought iron distribution system minimize corrosion from burned gases.
- ADDITIONAL SAFETY DEVICES: Recarbonator, compressor, motor, gas valve or oil
 pump are automatically shut off by any flame failure or flashback. Locked controls
 necessitate manual restarting (automatic starting devices available).
- CENTRAL CONTROL: Starting controls, indicator lights, operating valves and flow manometers are easily read and checked. Variable fuel and air flow to satisfy demand for CO₂.

For complete details, write today for Bulletin 1310.

THE ONLY COMPANY impartially offering equipment for ALL types of water and waste processing—coagulation, precipitation, sedimentation, flotation, filtration, ion exchange and biological treatment.

General Offices - Tucson, Arizona - P.O. Box 5033
Field offices throughout the United States
and in foreign countries

Ma

(Continued from page 34 P&R)

sively, assistant and associate professor, engaged in teaching, research, and the design of water, sewage, and hydroelectric facilities. In 1943 he entered service as a staff officer and served with the Sixth Army in the Southwest Pacific Area until 1944. Since 1945 he has served in his present capacity as professor and consultant in sanitary engineering at Oregon State College, and as a member of the Oregon State Water Resources Board.

An AWWA member since 1934, he has been secretary-treasurer (1936-43 and 1945-49) and director (1950-53) of the Pacific Northwest Section, which gave him its Fuller Award in 1944. He served successively as trustee (1950-52), secretary (1952-53), and chairman (1953-54) of the Water Resources Division. Committees on which he has been a member include Water Works Research Needs, Education, and the 1954 Convention Management Committee. In 1955 he served as chairman of the Harry E. Jordan Scholarship Award Committee, and in 1956-57 he was AWWA vicepresident.

Other organizations with which he is affiliated include ASCE, FSIWA, the Pacific Northwest Sewage & Industrial Wastes Assn. (past chairman), the American Society for Engineering Education, and the Willamette River Basin Committee. He is presently vice-chairman of the Region VII Education and Accreditation Committee of the Engineers' Council for Professional Development.

Vice-President—Lewis S. Finch, vice-president and chief engineer, Indianapolis Water Co., Indianapolis, Ind. Born in Anna, Ill., in 1897, he attended Purdue University, from

Treas.-Orchard

which he was graduated in 1921, receiving the civil engineering degree in 1931. He is a registered professional engineer in Indiana. In the employ of the Milwaukee Sewerage Commission as senior engineer from 1923 to 1925, he joined the Indiana Board of Health in the latter year, serving as chief engineer until 1933, when he opened an office as consulting engineer. In 1942 he joined the Indianapolis Water Co. as principal assistant engineer, becoming chief engineer 2 years later, a director in 1948, and vice-president in 1950.

A corporate representative or active member of AWWA since 1926, he has been vice-chairman (1931), chairman (1932), and national director (1952–55) for the Indiana Section, which nominated him for the Fuller Award in 1949. His extensive committee activities have included vice-chairmanship of the Committee on Water Works Administration and chairmanship of the Committee on Water Main Extension Policy and the Committee on Public Use of Watershed Areas.

He has also been a member of the Ohio River Board of Engineers, the Great Lakes Board of Engineers, the Advisory Board of the Indiana Administrative Building Council, and the Indiana Advisory Health Council. At

10.5

ird

rein nal of ion

25

alth

enan 942 Co.

mdiin

ive

he

ir-

tor

on,

ler

m-

ce-

on

nd

on he

er-

he

he he

dhe

At

DIFFERENCE!

See for yourself the design features that make this one particular positive displacement chemical proportioning pump "the established standard of the industry". The cutaway view above shows the simplified internal mechanism of Proportioneers Chem-O-Feeder® which allows "in-motion" infinite adjustment of feed rate . . . plus operation features that put it in a class by itself.

- Provides maximum convenience and control
- Available in simplex, duplex, and triplex models
- · Feed rates from 0.2 to 57 GPH
- · Discharge pressures up to 125 psig
- Each pumping head can be set independently
- "See-thru" head handles many corrosive liquids
- Other reagent ends available for handling almost all other corrosive liquids

Request Bulletin 1225-2 for complete details. You can rely on the Chem-O-Feeder, the best all-purpose chemical proportioning pump available. Write to PROPORTIONEERS, INC., 365 Harris Avenue, Providence 1, Rhode Island.

2 PROPORTIONEERS

B-I-F INDUSTRIES

Ma

(Continued from page 36 P&R)

present he is vice-chairman of the Indiana Stream Pollution Control Board. Other technical societies to which he belongs are ASCE (past president, Indiana Section), Indiana Engineering Society (past president), Indiana Engineering Council (past president), Central States Sewage Works Assn. (past president), FSIWA (director), Indianapolis Construction League (president), and NSPE.

Treasurer-William I. Orchard. consultant, Wallace & Tiernan Inc., Belleville, N.J. Born in Boston. Mass., in 1888, he was graduated from Massachusetts Institute of Technology in 1911 with a degree in sanitary engineering. He served with the Massachusetts Board of Health and the Metropolitan Water Commission, and also held the post of assistant sanitary engineer with the New Jersey Health Dept. In 1915 he entered the employ of the Wallace & Tiernan organiza-During World War I he originated and developed mobile water purification equipment for the US Army. He rose to the position of general manager of Wallace & Tiernan, retiring in 1954 but continuing as consultant to the company.

An Honorary Member of AWWA (joined in 1917), he received the Diven Medal in 1954 and the Jordan Achievement Award in 1956. A director for many years, he has served as chairman of the Convention Management Committee and as a member of the Executive Committee and the General Policy Committee. Since 1951 he has been chairman of the Finance Committee. Other organizations to which he belongs include WSWMA (past president), NEWWA, FSIWA, and APHA.

SECTION DIRECTORS

California-Cornelius P. Harnish, president and director, Southern California Water Co., Los Angeles, Calif. Born in Butler, Pa., in 1892, he received a B.S. in sanitary engineering from the University of Pittsburgh in 1915. He is a registered civil engineer in California. From 1916 to 1918 he worked as an assistant engineer with the consulting firm of Morris Knowles, Inc., Pittsburgh. He was engineer and partner in the consulting firm of Olmsted & Gillelen, Los Angeles, from 1918 to 1929. In the latter year he joined his present company as chief engineer, later becoming vice-president and president.

An AWWA member since 1929, he served as chairman of the California Section in 1945, after 6 years as a member of its executive committee. He also belongs to ASCE.

Chesapeake—Robert W. Haywood Jr., consultant on water and waste treatment, Engineering Service Div., Engineering Dept., E. I. du Pont de Nemours & Co., Inc., Wilmington, Del. Born in New Bern, N.C., in 1906, he was graduated from North Carolina State College in 1928 with a B.S. in chemical engineering. He is

California— Harnish

Chesapeake-Haywood

5

f.

n

e h

of ne

e

a

1

e

"Out of sight—out of mind" can be a mighty expensive philosophy in any water distribution system. The above unretouched photograph proves this point. It shows a badly tuberculated eight inch main whose inside diameter was reduced to an average of almost 4.5 inches. Resultant higher pumping costs with reduced pressure and carrying capacity make it costly to tolerate such conditions. That is why the savings effected in reduced pumping costs frequently pay for the low cost of National water main cleaning.

Since there's never a charge or obligation to inspect your mains, call National now!

ATLANTA, GA; 333 Candler Building * BERKELEY, CALIF; 905 Grayson Street * DECATUR, GA; P. O. Box 385 * BOSTON, MASS; 115 Peterboro Street * CHICAGO; 8 So. Dearborn Street * ERIE, PA; 439 E. 6th Street * FLANDREAU, S.D; 315 N. Crescent Street * KANSAS CITY, MO; 406 Merchandise Mart and 2201 Grand Avenue * LITTLE FALLS, N.J; Box 91 * LOS ANGELES; 5075 Santa Fe Avenue * MINNEAPOLIS, MINN; 200 Lumber Exchange Building * RICHMOND, VA; 210 E. Franklin Street * SALT LAKE CITY; 149-151 W. Second South Street * SIGNAL MOUNTAIN, TENNESSEE; 204 Slayton Street * MONTREAL, CANADA; 2032 Union Avenue * WINNIPEG, CANADA; 576 Wall Street * HAVANA, CUBA; Lawrence H. Daniels, P. O. Box 531 * SAN JUAN, PUERTO RICO; Louis F. Caratini, Apartado 2184.

Dependability is the

Pipe, like chain, must be strong in all elements.

Listed below are five factors of strength that have enabled cast iron pipe to achieve a record of dependability and long life unmatched by any other.

44 North American cities are still being served by cast iron water mains laid a century or more ago. Hundreds of others have passed the 50 year mark.

Impressive as this record is, today's modernized cast iron pipe is even more efficient. Tougher, stronger, more durable. You can stake your reputation on cast iron pipe.

The record proves it!

DEPENDABILITY IS BASED ON STRENGTH-STRENGTH IS BASED ON THESE 5 FACTORS

- CRUSHING STRENGTH*... Standard 6" Class 150 cast iron pipe will withstand a crushing load, under standard tests, of 17,900 pounds per foot... important where heavy fill or unusually heavy traffic loads must be overcome.
- BEAM STRENGTH*... Settlement or disturbance of the soil by other utilities
 or resting on an obstruction places a heavy strain on pipe. 6" class 150 pipe bears up
 under a load of 20,790 pounds and deflects 2.32 inches.
- BURSTING STRENGTH*... The average of many tests prove that standard 6" class 150 cast iron pipe will not burst until subjected to internal pressure of 3000 pounds psi... ample to resist water hammer or unusual working pressures.
- 4. JOINT STRENGTH... A full range of leak-proof, low cost, easy-to-assemble joints and fittings are available to meet all conditions.
- CORROSION RESISTANCE . . . Cast Iron Pipe resists corrosion effectively . . . vital factor in its demonstrated long life and dependability.
 *Bosed on independent laboratory tests.

CAST IRON PIPE

. 5

RS

hesum of many parts...

CAST (INON

Cast from Pipe Research Association Thes. F. Wolfe, Menoging Director, Suite 3440, Prudential Plaza, Chicago 1, III.

SERVES FOR CENTURIES ...

(Continued from page 38 P&R)

Cuban-Daniel

Fla.—Eidsness

a licensed professional engineer in Pennsylvania, and holds operator's certificates from Texas and Illinois. After serving as a junior bacteriologist with the Bureau of Sanitary Engineering of the North Carolina Dept. of Health in 1929-30, he went to Gastonia, N.C., as city chemist, in charge of water and sewage plant operation. During 1932-36 he was superintendent of filtration for Lehigh Water Co. (later city of Easton), Easton, Pa. In 1936 he became technical sales representative for Industrial Chemical Sales Div., West Virginia Pulp & Paper Co., New York, leaving in 1941 to take the post of filtration plant chemist for the Chester (Pa.) Municipal Authority. Since 1942 he has supervised water and waste treatment for a number of ordnance and chemical firms. He accepted his present position with du Pont in 1951.

An AWWA member since 1937, he has been trustee and vice-chairman of the Chesapeake Section. AWWA committees on which he has served include Capacity and Loadings of Water Treatment Processes, Industrial Water Use, and Revision of Manual of Water Quality and Treatment He is also a member of FSIWA.

Cuban-Laurence H. Daniel, president and chief engineer. Laurence H. Daniel, Inc., Engrs., Havana, Cuba. Born in 1901, he holds degrees from La Salle College in Havana and Cornell University. He is a registered engineer in Cuba. He was instrumental in introducing chlorination in Cuba and has been active in all branches of water purification for the past 30 years. In 1949 he invented the Daniel system of cane juice sterilization. bringing to the sugar industry much of the technique used in water purification.

An AWWA member since 1939, he served the Cuban Section as secretary from 1940, the year it was founded. until 1956. His active role in Section affairs earned him the Fuller Award in 1953. Other professional societies to which he belongs are Cuban Society of Engineers, Inter-American Assn. of Sanitary Engineering, Sugar Technologists Assn., and FSIWA.

Florida-Fred A. Eidsness, vicepresident, Black & Assocs., Inc., and Black Labs., Inc., Gainesville, Fla.; research professor, Div. of Water Research, University of Florida, Gainesville. Born in Washington, D.C., in 1913, he holds a B.S. from the College of William and Mary (1936) and a Ph.D. from the University of Florida (1956). He is a licensed professional engineer in Florida.

An AWWA member since 1941, he has been trustee and chairman of the Florida Section, which nominated him for the Fuller Award in 1944. Other professional organizations to which he belongs include AIChE, ACS, ASCE, NSPE, Florida Sewage & Industrial Wastes Assn., and Florida Engineering Society (senior member).

at
Atlantic City
and
throughout
America

BETTER
WATER
STORAGE
dwells in

elevated steel tanks by PITTSBURGH -DES MOINES

The dependable service furnished by PDM Elevated Steel Tanks is equalled by design versatility and complete range of capacities for communities of every size. We invite you to send for our descriptive "Modern Water Storage" brochure, free on request.

ATLANTIC CITY, N.J. 1,000,000 Calles Radial Cone Design

Rediel Comp 2,500,000 get.

Pedestal Sphere 100,000 gal.

Obloidel Design 1,000,000 gal.

PITTSBURGH . DES MOINES STEEL CO.

Plants at PITTSBURGH, DES MOINES, SANTA CLARA, FRESNO, and CADIZ, SPAIN

PITTSBURGH (25) 3424 Neville Island
NEWARK (2) 221 Industrial Office Bidg.
CHICAGO (3), 1228 First National Bank Bidg.
EL MONTE, CAL P. 0. Bex 2068

DES MOINES (8).. 925 Tuttle Street
DALLAS (1).. 1229 Proeterion Brig.
SEATTLE...... 532 Lone Street
SANTA CLARA, CAL., 631 Airise Read

Hemispherical Bette 100,000 gal.

Soo,000 gal.

(Continued from page 42 P&R)

Mont.—Thomas

Illinois-H. H. Gerstein, assistant chief water engineer, Bureau of Water, Dept. of Water & Sewers, Chicago, Ill. A chemical engineering graduate of Armour Institute of Technology, his early experience was in the meat-packing business. He then became associated with-and for many years served as chief of-the Water Safety Control Section of Chicago's Water Purification Div. During World War II he was a major in the Sanitary Corps, attached to the Air Force. After 7 years as chief filtration chemist in charge of Chicago's South Dist. Filtration Plant, he succeeded to his present position in One of the country's leading authorities on the subject, he did much to establish the concept of free residual He also developed a chlorination. continuous odor monitor.

A Life Member of AWWA (joined in 1925), he is chairman of the Water Purification Division. In 1955 he was tendered the Fuller Award by the Illinois Section, of which he is past chairman.

Montana—David S. Thomas, district engineer, Board of Fire Underwriters of the Pacific, Great Falls, Mont. Born in 1893, he holds a degree in civil engineering from Montana State College (1917) and is a registered professional civil engineer. After

2 years with an irrigation project and a term of military service, he entered the employ of his present organization in 1920 and has since been engaged in fire protection engineering.

An AWWA member since 1927, he has been vice-chairman and chairman of the Montana Section, which nominated him for the Fuller Award in 1944. He is also a member of the Society of Fire Protection Engineers.

North Central—L. H. Coult, chemist and superintendent of water treatment, Water & Light Commission, Fairmont, Minn. Born in 1900, he was graduated as a chemical engineer from the University of Minnesota in 1923. He entered the water supply field in 1937, when he accepted his present position. An AWWA member since 1946, he has served the North Central Section (formerly Minnesota Section) as trustee, vice-chairman, and chairman. He is also a member of the Minnesota Federation of Engineering Societies.

Ohio—Donald D. Heffelfinger, engineer-superintendent, Dept. of Water & Sewage, Alliance, Ohio. Born in Kenton, Ohio, in 1911, he received a B.S. from Mount Union College in 1933 and is a registered professional

North Central— Coult

Ohio— Heffelfinger

Better Valves for Water Works Service

ROCKWELL Butterfly Valves

Built to AWWA Standard Specifications C504-55T

- Compact—Lighter Weight
- Reduced Installation Space
- Lowest Installed Cost
- Efficient Reliable Operation
- Drop-Tight Shutoff
- Minimum Restriction to Flow
- Minimum Pressure Drop
- Non-Clogging
- Better Control—Manual or Automatic
- Less Maintenance

Write for Bulletin 574 on AWWA Valves

W. S. Rockwell Butterfly Valves offer advanced design and rugged construction. Made in all standard sizes of cast iron, cast steel, stainless steel, bronze or other alloys; natural or synthetic gum rubber seat with clamping segments, or spool type rubber liner extending over flange faces. Operators—manual: AWWA nut, handwheel, chain wheel or other types; automatic: electric motor or cylinder.

W. S. ROCKWELL COMPANY

2607 Eliot Street - Fairfield, Connecticut

Soil conserved...

but how about our most precious possession... water?

mation because our very life depends upon it. And we We are paying billions for land conservation and reclaare lucky - there's land to reclaim. But what about

now-with Badger Meters. They're the best investment THAT'S WHY THE THEE TO STAIT WATER COUSELVATION IS

Mo

(Continued from page 44 P&R)

Manufacturer— Howe

engineer in Ohio. In 1933 he accepted the post of chemist at the Alliance Sewage Treatment Plant, becoming assistant superintendent in 1938 and superintendent in 1939. In the latter year he became chemist of the city's water purification plant, and in 1944 he was named director of public safety and service. He took up his present position in 1945.

An AWWA member since 1941, he has been trustee and chairman of the Ohio Section. He also belongs to FSIWA, Ohio Sewage & Industrial Wastes Treatment Conference (past chairman), Ohio Society of Professional Engineers (past chairman, municipal section), and Canton Engineers Society (past president).

Southwest—Karl F. Hoefle, consulting engineer, Forrest & Cotton, Dallas, Tex. Born in Fort Worth, Tex., in 1891, he holds a B.S. in civil engineering from Texas A&M (1912) and is a registered professional engineer in that state. From 1912 through 1923 he was engineer and superintendent of development for Oriental Consolidated Mining Co., Unsan, Korea. From 1924 to 1955 he served the city

of Dallas as resident engineer on water works construction (until 1933), superintendent of street paving and maintenance (until 1936), Water Dept. distribution engineer (until 1945), and Water Dept. superintendent (until June 1955).

An AWWA member since 1940, he has been vice-chairman and chairman of the Southwest Section. He is also a member of NSPE, ASCE, Texas Water Conservation Assn. (past director), and Texas Water & Sewage Works Assn. (honorary life member).

Manufacturer-Harvey S. Howe, vice-president-sales, Lock Joint Pipe Co., East Orange, N.J. Born in Wagon Mound, N.M., in 1900, he saw service with the Signal Corps in World War I and then entered the University of Colorado, from which he was graduated in 1925 with a B.S. in civil engineering. From 1925 to 1928 he worked as a field engineer with Pitometer Co. He joined Federal Water Service Corp. in 1928, first as a project engineer in New York City, later as engineer and chemist in the Pennsylvania Div., and finally as chief engineer of Scranton-Springbrook Water Service Co. In 1942 he entered the Office of War Utilities, War Production Board, and was deputy director of the Water Div. when he resigned in 1945 to become assistant vice-president of Lock Joint. While there, he has also served the US Dept. of Commerce in various capacities.

An AWWA member since 1939, he has been on the board of governors of the Water & Sewage Works Manufacturers Assn. since 1952 and was its president in 1955.

5

d

d

il

n

Unretouched photograph of Armco Pipe after 17 years in water line service.

When this section of the 17-year-old Armco Pipe was uncovered, coating on the exterior showed practically no sign of deterioration.

Spartanburg, South Carolina, Finds 17-Year-Old Armco Pipe Good as New

In 1939, the city of Spartanburg, South Carolina, installed 40,-000 feet of Armco Welded Steel Pipe for a water line. In 1956, contractors removed a 5½-foot section of the 17-year-old pipe to insert a tee connection.

The unearthed section (shown above) still had its original smooth lining. In 17 years there had been no loss of flow capacity. The pipe line is good for many, many more years of dependable service.

You will find that Armco Pipe offers you many other advantages. It is supplied in a wide range of diameters, from 6 to 36 inches; wall thicknesses from %4- to ½-inch; lengths up to 50 feet. Coatings are supplied to AWWA specifications.

Write for prices and delivery time. Armco Drainage & Metal Products, Inc., Welded Pipe Sales Division, 4827 Curtis Street, Middletown, Ohio. Subsidiary of Armco Steel Corporation. In Canada: write Guelph, Ontario.

ARMCO WELDED STEEL PIPE

Mas

Your call brings quick delivery from a Jones plant

CHLORINE service that's only a telephone away

Call us for Chlorine as you need it, and get safe, swift delivery-often in just a few hours.

You can eliminate the high cost and nuisance of storing large amounts of Chlorine by ordering it as you use it. There are seven Jones Company plants conveniently located across the U.S. ready to supply youwhether you want 16-, 105-, 150-lb. cylinders or 1-ton tanks.

Quality of Jones Chlorine is unexcelled - meets all rigid government specifications.

Learn yourself why Jones supplies more municipalities in the U.S. than any other Chlorine packer. We will be glad to review your contract requirements at any time. Call or write for information.

CALEDONIA, N.Y.
100 Sunny Sol Blvd.
Tele: Caledonia 84,79,339
Torrance, CALIF.
1904 Border Ave.
Tele: Fairfax 8-6383

INDIANAPOLIS, IND. 600 Bethel Ave. Beech Grove (Indpls), Ind. Tele: STate 6-1443-1444

CHARLOTTE, N.C. 610 McNinch St. Tele: Franklin 6-7790, 4.1922

TORRANCE, CALIF. Nevada 6-6795

JACKSONVILLE, FLA. 2365 Dennis St. Tele: Elgin 4-5503, 6-3321

NORTH MIAMI, FLA. 14400 N.E. 20th Lane Tele: North Dade 6-1461 6-1462

RIVERVIEW, WYANDOTTE, MICH. 1 8000 Payne Ave. Tele: Avenue 3-0676

JOHN WILEY JONES CO.

(Continued from page 48 P&R)

Editors' Anomalies is not a typographical error, but a title for those offbeat items that Editors Anonymous occasionally include in their contributions to P&R. Such was the news of a 1957 decrease of 25 per cent in water rates to the customers of the South Farmingdale, N.Y., Water Dist., where apparently the old flat rate of 20 cents per \$100 of assessed valuation was a fat rate. Such, too, was the news from the Illinois water survey that the well recharge program had last year resulted in a rise in ground water levels despite the 5½-in. rainfall deficiency. And such, especially, was the report last March that local water rates led the list of nongoods priced by the federal government in their increase since 1952, with a rise of 35 per cent. Even the label "nongoods" or the fact that upon nongoods rather than goods or foods was placed the blame for the recent rise in living costs hardly dampened our spirits. Down, we can agree, with mortgage interest, up 30 per cent in the same period; down with radio-TV repairs, up 25 per cent; down with movie admissions, up 20 per cent; down even with haircuts, up 14 per cent; but up and UP with water rates. until the basic anomalousness of their position in the price scale is corrected.

Dorr-Oliver Inc. has announced plans for a major expansion and reallocation of its United States production facilities, involving centralization of all domestic filter manufacture at the already expanding Hazelton, Pa., plant, as well as conversion of facilities at the Oakland, Calif., plant. Further expansion is also planned for the Dorr-Oliver-Long plant at Orillia, Ont.

(Continued on page 52 P&R)

0.5

ose ous

of va-

ere ers

ell re-

ey. ort ed dce

en

at

or e-

D-

e,

nt

oth

t;

er

ir

d.

d

e-

c-

at 1.,

es

er

NO LUBRICATION. NO FRICTION NO LEAKAGE WITH DEZURIK OPERATING PLUG VALVES

DeZurik's exclusive eccentric principle guarantees easy operation without lubrication. The plug is pivoted eccentrically in the valve and touches the valve seat only when the valve is closed. Opening the valve swings the plug back away from the valve seat and the valve opens wide with an easy quarter turn.

The resilient plugfacing of DeZurik Valves assures tight shutoff despite solids in the flow. On raw water inlet, sand filter intake (discharge and backwash), structure drainage discharge and many other services, DeZurik Valves perform with equal excellence.

DeZurik Valves are available in sizes from ½" thru 20", for manual or remote operation. Representatives in all principal cities. For details, write to

(Continued from page 50 P&R)

An exprex will become an exprof next month when Abel Wolman retires as professor of sanitary engineering at Johns Hopkins University. Not only an exprex of AWWA, Abel's list of services and honors from the time of his joining in March 1918 reads like a full review of what the Association has to offer: Editor '22-'37. Diven Medal '37. Director '39-'42, '43-'44. Vice-Pres. '42. President '43. Honorary M. '48. Fuller Award '52. Jordan Achievement Award '52. Management Div. Award '56. And having served since its formation in 1935 as chairman of the Association's National Water Policy Committee, he continues to do a most important job for the Asso-

ciation and the industry. Certainly all who know or know of Abel will understand why we're particularly proud that his first work with AWWA was with the JOURNAL.

In Abel's retirement, it is likely that only Johns Hopkins will recognize the change, for in his work as a member of the AEC's Reactor Safeguard Committee and its Safety and Industrial Health Advisory Board, as chairman of the board of consultants to Israel's National Water Planning Board, as consultant to Baltimore's Dept. of Public Works, the US Public Health Service, the Tennessee Valley Authority, Bethlehem Steel Co. (Sparrows

Point), Assn. of American Railroads, US Geological Survey, West Virginia Pulp & Paper Co., and the Interstate Commission on the Potomac River Basin, and his activity on ten different standing committees of various associations and governmental agencies, he is unlikely to have any more time for his slippers and easy chair than before.

In an appreciation of Abel's career at the 65-mile post, Engineering News-Record has been particularly perceptive in recognizing his value as a "pointer of the way" and an urger on to bigger things. His work in AWWA and his articles in the JOURNAL have demonstrated that genius as well as his uncommon facility in the use of language. At the moment, Abel is turning these talents toward two major concerns: the safe disposition of radioactive "garbage," which he discusses in the lead article of this issue (p. 505); and the convincing of water works men that "the public is entitled to all the water it wants and will pay for, short of truly wasteful uses," for which we could kiss him. Having been rather buffeted on the impracticality of our idea that the water works field should aim to provide the public with "all the water it needs, when and where it needs it," we can take heart at finding such an ally. "The situation," he has said, "will not be met by bemoaning privately the extraordinary habits of the American people and by resisting to the last ditch their insistence to be permitted to use water for purposes which they prefer."

Having read his summation of the radioactive-garbage problem and having experienced some of the resistance to the "all the water" idea, we are certain that Abel's retirement could be more than full even if he were to give up all his official activities in favor of

0.5

ds, nia ate Baent ocihe for re.

eer

vsive ter

er

nis

n-

11-

ge.

se

S:

r-

ad

he

er ly ss

1e 0-

it

ve

y.

ot

r-

n

h

se

22

ie

1-

e

-

e

re

of

DELIVERING WATER CHEAPER

This 48,980-foot water supply line at Spartanburg, S. C., was installed in 50-foot steel pipe lengths. Ease in making up the Dresser joints was the factor in speeding up installation of the line, thereby causing a minimum of inconvenience to property owners.

Pipe Line With Built-in Public Relations

Dresser Couplings build good will with speed, convenience, flexibility, long life

Water pipe installations have a thousand superintendents. They are the public — people whose homes, businesses, or daily routines are affected by the project.

Many watermen have found that use of steel pipe and Dresser Couplings offers an excellent way to build and maintain public good will. This versatile combination helps remove the principal sources of public irritation because of these important results:

Speed. Easy-to-install Dresser Couplings require only two man-minutes per bolt, or less; allow joints to be completed in record time.

Convenience. Most waterworks operators backfill a Dresser-coupled line on the heels of the laying crew. Streets, driveways and sidewalks are tied up for a shorter time.

Flexibility. Dresser Couplings compensate for slight misalignments, permit bypassing obstructions. You can make curves with straight pipe — get up to 4° deflection at each joint of a new main or main extension.

Long life. Leakproof joints eliminate annoyance of redigging for repairs. Specially compounded rubber gaskets protect lines for life.

Good will is just one great advantage of using steel pipe and Dresser Couplings. The job is also done more economically.

Wherever water flows, steel pipes it best. Always put steel pipe and Dresser Couplings in your specifications. Dresser Manufacturing Division,

Manufacturing Division, Bradford, Pa. Sales offices in: New York, Philadelphia, Chicago, S. San Francisco, Houston, Denver, Toronto and Calgary.

FILTERS

SOFTENERS

TASTE AND ODOR

DEMINERALIZATION

ON RUST REMOVAL

ALKALINITY CONTROL

HIGH CAPACITY

ESINOUS ZEOLITE

RIENCE . KNOW-HOW

is" plus the

A GENERAL FILTER

WATER TREATMENT PLANT WILL FIT YOUR NEEDS LIKE A

Prescription!

That's right! General Filter actually prescribes a water treatment plant to fit the individual needs and requirements of each industry or municipality . . . designs, engineers and constructs it to assure an adequate supply of pure water . . . to provide dependable, economical, trouble-free operation over the years.

That's why more and more industries and municipalities are installing General Filter water treatment plants. They know they can depend an General Filter to solve their problem the right way. No job is too big or too small. General Filter's field-trained water specialists will prescribe a plant, . . its experienced engineers will design it and its skilled construction engineers will build it to lit your needs exactly.

Find out how General Filter solves Water Treatment problems for Industries and Municipalities . . . Find out how General Filter can solve yours.

Write today for complete information . . . no obligation . . .

General Filter Company

"yours for better water"

5

Professional Services

ALBRIGHT & FRIEL, INC.

Consulting Engineers

Water, Sewage, Industrial Wastes and Incineration Problems

City Planning, Highways, Bridges and Airports Dams, Flood Control, Industrial Buildings Investigations, Reports, Appraisals and Rates

Three Penn Center Plaza Philadelphia 2, Pa.

BOGERT and CHILDS

Consulting Engineers

CLINTON L. BOGERT FRED S. CHILDS IVAN L. BOGERT DONALD M. DITMARS ROBERT A. LINCOLN CHARLES A. MANGANABO WILLIAM MARTIN

Water & Sewage Works Highways and Bridgee

Refuse Disposal Airfielde

145 East 32nd Street, New York 16, N. Y.

ALVORD, BURDICK & HOWSON

Engineers

Water Works, Water Purification, Flood Relief, Sewage Disposal Drainage, Appraisals, Power Generation

20 North Wacker Drive

Chicago 6

Bowe, Albertson & Associates

Engineers

Water and Sewage Works Industrial Wastes—Refuse Disposal—Municipal Projects Industrial Buildings—Reports
Plans—Specifications
Supervision of Construction and Operation—Valuations Laboratory Service

75 West Street

New York 6, N.Y.

AYRES, LEWIS, NORRIS & MAY

Consulting Engineers

Louis E. Ayres GEORGE E. LEWIS STUART B. MAYNARD ROBERT NORRIS DONALD C. MAY HOMER J. HAYWARD

Waterworks, Sewerage, Electric Power

500 Wolverine Building, Ann Arbor, Michigan

BROWN AND CALDWELL

Civil and Chemical Engineers

Water-Sewage-Industrial Waste Consultation-Design-Operation

Chemical and Bacteriological Laboratories

66 Mint Street

San Francisco 3

BLACK & VEATCH

Consulting Engineers

1500 Meadow Lake Parkway, Kansas City 14, Missouri

Water Supply Purification and Distribution; Electric Lighting and Power Generation, Transmission and Distribution; Sewerage and Sewage Disposal; Valuations, Special

Investigations and Reports

BUCK, SEIFERT AND IOST

Consulting Engineers

WATER SUPPLY-SEWAGE DISPOSAL-HYDRAULIC DEVELOPMENTS Reports, Investigations, Valuations, Rates, Design, Construction, Operation, Management, Chemical and Biological Laboratories

112 E. 19th St., New York 3, N. Y.

BLACK AND ASSOCIATES, INC. BLACK LABORATORIES, INC.

Engineers and Chemists

Water, Sewerage, Hydrology, Waste Treatment Complete Laboratory Services

700 S. E. 3rd St.

Gainesville, Fla.

BURGESS & NIPLE

Consulting Engineers

(Established 1908)

Water Supply, treatment and distribution Sewage and industrial wastes disposal Investigations, reports, appraisals, rates Municipal engineering Laboratory Supervision

2015 W. Fifth Ave.

Columbus 12, Ohio

Professional Services

BURNS & McDONNELL

Engineers-Architects-Consultants

Kansas City, Mo. P.O. Box 7088 Phone DElmar 3-4375

CHAS. W. COLE & SON

Engineers-Architects

Sewerage, Water Supply, Bridges, Highways, Toll Roads, Industrial, Municipal and Commercial Buildings

220 W. LaSalle Ave. South Bend, Indiana Central 4-0127

JAMES M. CAIRD

Established 1898
C. E. CLIPTON, H. A. BENNETT
Chemist and Bacteriologist

WATER ANALYSIS TESTS OF FILTER PLANTS

Cannon Bldg.

Troy, N. Y.

CONSOER, TOWNSEND & ASSOCIATES

Water Supply—Sewerage Flood Control & Drainage—Bridges Ornamental Street Lighting—Paving Light & Power Plants—Appraisals

360 E. Grand Ave.

Chicago 11

CAMP, DRESSER & McKEE

Consulting Engineers

Water Works, Water Treatment, Sewerage and Wastes Disposal, Flood Control

Investigations, Reports, Design Supervision, Research, Development

6 Beacon St.

Boston 8, Mass.

Cotton, Pierce, Streander, Inc.

Associated Consulting Engineers

E. R. Cotton
G. A. Gieseke
I. J. Silverstone
P. B. Streander
H. G. Damon

Water Supply, Water Purification Sewerage, Sewage Treatment Refuse Disposal

132 Nassau Street New York 38, N.Y. 55 Caroline Road Gowanda, N.Y.

CAPITOL ENGINEERING CORP.

Consulting Engineers

Water Works, Sewage Disposal, Airports, Dams and Bridges, Roads and Streets, Planning, Design and Surveys.

Dillsburg, Pa.

Rochester, N. Y.

Dallas, Texas

DE LEUW, CATHER & COMPANY

Consulting Engineers

Public Transit Traffic & Parking Expressways Grade Separations Urban Renewal

Subways Railroad Facilities Industrial Plants Municipal Works Port Development

150 N. Wacker Drive, Chicago 6
San Francisco Toronto Oklahoma City

THE CHESTER ENGINEERS

Water Supply and Purification Sewage and Industrial Waste Treatment Power Plants—Incineration—Gas Systems Valuations—Rates—Management Laboratory—City Planning

> 601 Suismon Street Pittsburgh 12, Penna.

Fay, Spofford & Thorndike, Inc. Engineers

Water Supply and Distribution — Drainage
Sewerage and Sewage Treatment
Airports — Bridges — Turnpikes

Investigations Reports Valuations Designs Supervision of Construction

Boston, Massachusetts

Professional Services

FINKBEINER, PETTIS & STROUT

CARLETON S. FINEBEINER CHARLES E. PETTIS HAROLD K. STROUT

Consulting Engineers

Reporta, Designs, Supervision, Water Supply, Water Treatment, Sewerage, Sewage Treatment, Wastes Treatment, Valuations & Appraisals

518 Jefferson Avenue

Toledo 4, Ohio

Glace & Glace, Inc.

Water Supply, Purification and Distribution, Dams, Sewerage, Sewage and Industrial Waste Treatment Investigations, Reports, Designs

Supervision of Construction and Operation 1001 North Front Street, Harrisburg, Penna. Wash., D.C.—Easley, S. C.—Tallahassee, Fla.

FREESE & NICHOLS

FREESE, NICHOLS & TURNER

Houston, Texas

Industrial and Municipal Engineering—Water Supply and Purification—Sewerage and Industrial Waste Treatment—Highways and Structures — Dams — Drainage Works — Airports—Investigations—Valuation—Design and Super-

GREELEY AND HANSEN

Engineers

Water Supply, Water Purification Sewerage, Sewage Treatment Refuse Disposal

220 S. State Street, Chicago 4

FROMHERZ ENGINEERS

Structural—Civil—Sanitary
Four Generations Since 1867

Water Supply; Sewerage; Structures; Drainage; Foundations

Investigations; Reports; Plans and Specifications; Supervision

New Orleans

WILLIAM F. GUYTON & ASSOCIATES

Consulting Ground-Water Hydrologists

Underground Water Supplies Investigations, Reports, Advice

307 W. 12th St. Austin 1, Texas Phone: GR-7-7165 3301 Montrose Blvd. Houston 6, Texas Phone: JA-2-9885

GANNETT FLEMING CORDDRY & CARPENTER, Inc.

Engineers

Water Works—Sewerage Industrial Wastes—Garbage Disposal Roads—Airports—Bridges—Flood Control Town Planning—Appraisals Investigations & Reports

Harrisburg, Pa. Pittsburgh, Pa. Philadelphia, Pa. Daytona Beach, Fla.

FRANK E. HARLEY, C. E.

Consulting Engineer

Water Supplies, Highways Municipal Problems

> 260 Godwin Ave. Wyckoff, N.J.

GARRITY & MOSHER

Engineers

Enginee

Leo V. Garrity L. W. Mosher

Municipal and Industrial Water and Sewage Works

Water System Analyses
Tunnels and Foundations
Reports, Designs, Plans and Specifications

14050 W. McNichols Rd. Detroit 35, Mich.

HASKINS, RIDDLE & SHARP

Consulting Engineers

Water—Sewage & Industrial Wastes— Hydraulics

Reports, Design, Supervision of Construction, Appraisals, Valuations, Rate Studies

1009 Baltimore Avenue

Kansas City 5, Mo.

HAVENS & EMERSON

W. L. Havens
J. W. Avery
F. S. Palocsay
F. C. Tolles, Consultant

Consulting Engineers

Water, Sewage, Garbage, Industrial Wastes, Valuations—Laboratories

Leader Bldg. CLEVELAND 14 Woolworth Bldg. NEW YORK 7

JONES, HENRY & WILLIAMS

Consulting Sanitary Engineers

Water Works Sewerage & Treatment Waste Disposal

Security Bldg.

Toledo 4, Ohio

HAZEN AND SAWYER

Engineers

Water and Sewage Works Industrial Waste Disposal Drainage and Flood Control Reports, Design, Supervision of Construction and Operation Appraisals and Rates

122 East 42nd Street New York 17, N.Y. 3333 Book Tower Detroit 26, Mich.

HARRY J. KEELING

Consulting Engineer

Electrical—Mechanical—Corrosion

Investigations—Reports—Advisory Service
Mobile radio communication systems;
Special mechanical design problems;
Soil corrosion, Electrolysis,
Cathodic protection
of buried or submerged metal surfaces.

1718 Livonia Avenue Los Angeles 35, Calif.

ANGUS D. HENDERSON

Consulting Engineer

Water Supply and Sanitation

330 Winthrop St. 210-07-29th Ave.

Westbury, New York Bayside, New York

ENGINEERING OFFICE OF CLYDE C. KENNEDY

RICHARD R. KENNEDY ROBERT M. KENNEDY

Investigation—Design
Water Supply Water Purification
Sewage and Waste Treatment
Water Reclamation

604 Mission St.

San Francisco 5

HORNER & SHIFRIN

Consulting Engineers

W. W. Horner E. E. Bloss V. C. Lischer

Water Supply—Airports—Hydraulic Engineering—Sewerage—Sewage Treatment—Municipal Engineering—Reports

Shell Building

St. Louis 3, Mo.

MORRIS KNOWLES INC.

Engineers

Water Supply and Purification, Sewerage and Sewage Disposal, Industrial Wastes, Valuations, Laboratory, City Planning

Park Building

Pittsburgh 22, Pa.

ROBERT W. HUNT CO.

Inspection Engineers

(Established 1888)

Inspection and Test at Point of Origin of Pumps, Tanks, Conduit, Pipe and Accessories

175 W. Jackson Blvd. Chicago 4, Ill. and Principal Mfg. Centers

KOEBIG & KOEBIG

Consulting Engineers Since 1910

Investigations, Reports, Designs Water Supply & Water Treatment Sewerage & Sewage Treatment Municipal Engineering

3242 W. Eighth St. Los Angeles 5, Calif.

THE IENNINGS-LAWRENCE CO.

Civil & Municipal Engineers Consultants

Water Supply, Treatment & Distribution Sewers & Sewage Treatment

Reports-Design-Construction

1392 King Avenue

Columbus 12, Ohio

LEGGETTE, BRASHEARS & GRAHAM

Consulting Ground Water Geologists

Water Supply Dewatering Recharging Salt Water Problems Investigations Reports

551 Fifth Avenue

New York 17, N. Y.

METCALF & EDDY

Engineers

Water, Sewage, Drainage, Refuse and Industrial Wastes Problems Airports Valuations Laboratory

> Statler Building Boston 16

THE PITOMETER ASSOCIATES, INC.

Engineers

Water Waste Surveys
Trunk Main Surveys
Water Distribution Studies
Water Measurement & Special
Hydraulic Investigations

50 Church Street

New York

IAMES M. MONTGOMERY

Consulting Engineer

Water Supply—Water Purification
Sewerage—Sewage and Waste Treatment
Flood Control—Drainage
Valuations—Rates
Investigations—Design—Operation

535 E. Walnut St.

Pasadena, Calif.

LEE T. PURCELL

Consulting Engineer

Water Supply & Purification; Sewerage & Sewage Disposal; Industrial Wastes; Investigations & Reports; Design; Supervision of Construction & Operation

Analytical Laboratories

36 De Grasse St.

Paterson 1, N. J.

Nussbaumer, Clarke & Velzy, Inc.

Sewage Treatment-Water Supply

Incineration—Drainage Industrial Waste Treatment Appraisals

327 Franklin St., Buffalo, N. Y. 500 Fifth Ave., New York 36, N. Y.

RADER AND ASSOCIATES

Engineers and Architects

Sewers and Sewage Treatment Water Supply, Treatment and Distribution Investigations, Reports, Plans Supervision of Construction and Operation

111 N. E. 2nd Ave , Miami 32, Florida 1025 Connecticut Ave. N. W. Washington 6, D. C.

Apartado 4356 (Estación Exposición) Panama City, Panama

THE H. C. NUTTING COMPANY

Testing Engineers—Inspection Service
Foundation Investigation—Test Borings
Soil Mechanics—Sewage Flows—Analysis
Construction Control—Soil—Concrete
Bituminous Pavements—Water Waste Survey
Specifications—Consultations

4120 Airport Rd.

Cincinnati 26, Ohio

THOMAS M. RIDDICK

Consulting Engineer and Chemist

Municipal and Industrial Water Purification, Sewage Treatment, Plant Supervision, Industrial Waste Treatment, Laboratories for Chemical and Bacteriological Analyses

369 E. 149th St. New York 55, N.Y. MOtt Haven 5-2424

PARSONS, BRINCKERHOFF, HALL & MACDONALD

G. Gale Dixon, Associate Civil and Sanitary Engineers

Water, Sewage, Drainage and Industrial Waste Problems.

Structures — Power — Transportation

51 Broadway New York 6, N.Y.

RIPPLE & HOWE, INC.

Consulting Engineers

O. J. RIPPLE V. A. VASEEN B. V. Howe Appraisals—Reports Design—Supervision

Water Works Systems, Filtration and Softening Plants, Reservoirs, and Dams, Sanitary and Storm Sewers, Sewage Treatment Plants, Refuse Disposal, Airports

833-23rd St., Denver 5, Colo.

MALCOLM PIRNIE ENGINEERS

Civil & Sanitary Engineers

MALCOLM PIRNIE ERNEST W. WHITLOCK ROBERT D. MITCHELL CARL A. ARENANDER MALCOLM PIRNIE, JR.

Investigations, Reports, Plans Supervision of Construction and Operations Appraisals and Rates

25 W. 43rd St. New York 36, N. Y.

RUSSELL & AXON

Consulting Engineers

Civil—Sanitary—Structural Industrial—Electrical Rate Investigations

408 Olive St., St. Louis 2, Mo. Municipal Airport, Daytona Beach, Fla.

M

Professional Services

ALDEN E. STILSON & ASSOCIATES

(Limited)
Consulting Engineers

Water Supply—Sewerage—Waste Disposal Bridges—Highways—Industrial Buildings Studies—Surveys—Reports

245 N. High St.

Columbus, Ohio

J. HOMER SANFORD

Consulting Engineer—Hydrologist 37 Years of Groundwater Investigation

Groundwater Development, Recharge, Dewatering and Salt Intrusion Analysis of Available Supply and Safe Yield Litigation Reports and Testimony

1143 E. Jersey Street

Elizabeth 4, N. I.

J. STEPHEN WATKINS

J. S. Watkins

G. R. Watking

Consulting Engineers

Municipal and Industrial Engineering, Water Supply and Purification, Sewerage and Sewage Treatment, Highways and Structures, Reports, Investigations and Rate Structures.

251 East High Street Lexington, Kentucky
Branch Office
4726 Preston Highway, Louisville 13, Kentucky

SCHAEFER & WALTON

Consulting Ground-Water Hydrologists
Investigations, Reports, Advice

Ground Water Development, Induced Infiltration From Surface Streams, Artificial Recharge, Dewatering.

16 Leland Ave. Columbus 14, Ohio Telephone AMherst 8-3316

R. KENNETH WEEKS

ENGINEERS

Designers

Consultants

Water Supply and Purification Sewerage and Sewage Treatment Investigations and Reports Supervision of Construction

Streets and Highways

6165 E. Sewells Point Road, Norfolk 13, Va.

J. E. SIRRINE COMPANY

Engineers

Water Supply & Purification, Sewage & Industrial Waste Disposal, Stream Pollution Reports, Utilities, Analyses

Greenville

South Carolina

WESTON & SAMPSON

Consulting Engineers

Water Supply and Purification; Sewerage, Sewage and Industrial Wastes Treatment. Reports, Designs, Supervision of Construction and Operation; Valuations. Chemical and Bacteriological Analyses

14 Beacon Street

Boston 8, Mass.

SMITH AND GILLESPIE

Consulting Engineers

MUNICIPAL UTILITIES
AND PUBLIC WORKS

Complete Engineering Services

JACKSONVILLE, FLORIDA

WHITMAN & HOWARD

Engineers

(Eat. 1869)

Investigations, Designs, Estimates, Reports and Supervision, Valuations, etc., in all Water Works and Sewerage Problems

89 Broad St.

Boston, Mass.

STANLEY ENGINEERING COMPANY

Consulting Engineers

Hershey Building Muscatine, Ia. 208 S. LaSalle St. Chicago 4, Ill.

WHITMAN, REQUARDT & ASSOCIATES

Engineers

Consultants

Civil—Sanitary—Structural Mechanical—Electrical Reports, Plans Supervision, Appraisals

1304 St. Paul St.

Baltimore 2, Md.

The "Baffling" answer to your flocculation problems

Here's the answer to more efficient, economical flocculation—the Rex Floctrol. Designed with a unique combination of mixing paddles, rotating baffles and fixed partition walls, this exclusive Rex® development gives you these outstanding advantages:

- Minimum amount of chemical required...low cost.
- Flexibility...tank sizes, paddle and baffle arrangements to suit any condition or volume.
- Large, readily settleable floc.
- No "short circuiting"...paddle

axis parallel to line of flow.

 Low horsepower cost...no wasted power "bucking" flow.

The cross section below indicates the efficiency of the Floctrol design...small rotating influent baffles and large effluent baffles assure full utilization of tank volume. These proportioned baffles and ports eliminate short circuiting...reduce amount of chemicals needed...assure most efficient floculation.

For complete information, write CHAIN Belt Company, 4609 W. Greenfield Ave., Milwaukee 1, Wis.

CHAIN BELT COMPANY
Milwaukee 1, Wisconsin

xpe

ver

rd.

nelp

New Y

Pittsbu

Condensation

Key: In the reference to the publication in which the abstracted article appears, 39:473 (May '47) indicates volume 39, page 473, issue dated May 1947. If the pub-

lication is paged by the issue, 39:5:1 (May '47) indicates volume 39, number 5, page 1, issue dated May 1947. Abbreviations following an abstract indicate that it was taken, by permission, from one of the following periodicals: BH—Bulletin of Hygiene (Great Britain); CA—Chemical Abstracts; Corr.—Corrosion; IM—Institute of Metals (Great Britain); PHEA—Public Health Engineering Abstracts; SIW—Sewage and Industrial Wastes; WPA—Water Pollution Abstracts (Great Britain).

AQUATIC ORGANISMS

The Phytoplankton of Great Pond, Massachusetts. E. M. HULBURT. Biol. Bul., 110: 157 ('56). During 1950, survey was made to det. concns. of phytoplankton in Great Pond. small shallow estuary near Falmouth, Mass. It was found that, particularly in summer, concn. of phytoplankton was greater within Great Pond than in sea water at its entrance. During autumn, winter, and spring, same species were found in pond and in sea, but in summer number of species occurred within pond which were not present in sea and are not characteristic of river water. In summer flora in pond contained large proportion of flagellates, while flora in sea water was composed entirely of diatoms. Preponderance of motile forms within pond in summer is attributed to good growth conditions, which stimulated endemic flora, and to quiet shoal water, which should favour non-settling type of cell.-WPA

The Estimation and Characterization of Plankton Populations by Pigment Analysis. III. A Note on the Use of "Millipore" Membrane Filters in the Estimation of Plankton Pigments. G. I. CREITZ & F. A. RICHARDS. J. Marine Research, 14: 211 ('55). Technique is described for use of aerosol-assay type Millipore membrane filters instead of centrifugation in method of Richards and Thompson for estg. plankton pops. by pigment anal. It is shown that dissolution of membrane filters in 90% acetone used to extract pigments does not interfere with spectrophotometric detn. of chlorophyll and carotenoid components. Retention of plankton by membrane filter and Foerst centrifuge techniques are compared. Subsequent membrane filtration of material passed by centrifuge showed that centrifuging gave markedly low est. of chlorophyll c and slightly low estimate of

chlorophyll b. Results of comparison of techniques are tabulated, and discussed in relation to estn. of plankton pops. by pigment anal.—WPA

The Ecology of the Zymogenic Planktonic Bacterial Flora of Natural Waters. H. W. JANNASCH. Arch. Mikrobiol. (Ger.), 23: 146 ('55). Author describes investigations into morphology of bact. flora of different types of natural waters by direct method of examn. of quant, and form. Information on degree of trophism of water can be obtained not only from bact. number but also from forms present. Samples of very different types of water but with equal contents of nutrient matter show very similar bact, pops. Study was made of phenomenon of adsorption. Distr. of bacteria in water varies with distr. of nutrient matter between solid particles and free water, and is more homogenous greater the content of dissolved org. matter in water. Formation of poverty forms and effect of content of nutrient matter on metabolism were studied.-PHEA

Aquatic Macro-Invertebrate Communities as Indicators of Organic Pollution in Lytle Creek. A. R. GAUFIN & C. M. TARZ-Sewage and Ind. Wastes, 28:906 Distr. and abundance of bacteria, protozoa, and algae in Lytle Creek were largely detd. by nutrients and predator-prey relations. Approx. 99% of coliform bacteria in stream below sewage outfall were contributed by sewage. In first 2 mi. of stream below outfall, coliforms and enterococci decreased, whereas total bact. pop. increased. Zoogloea, Sphaerotilus, and certain protozoa were most abundant in section immediately below sewage outfall while poln.-tolerant blue-green algae increased progressively in polls for distance of 2 mi. downstream with diatoms reaching their peak below this section. Seasonal diurnal changes were great

GRAVER BUILDS THE ANSWERS TO WATER STORAGE PROBLEMS

Nationwide manufacturing facilities, backed by 100 years of skilled fabricating experience in steels and alloys, enable Graver to build the water storage tanks for every requirement. Designed, fabricated and erected to the highest welding standard, Graver tanks of every type are built to meet individual needs. Let Graver telp in solving your water storage problems. GRAVER TANK & MFG. CO. INC.

New York • Philadelphia • Edge Moor, Del. • EAST CHICAGO, INDIANA Pittsburgh • Detroit • Chicago • Tulsa • Sand Springs, Okla.

0.5

the

ites ub-

sue

is-CA EA

-

of in g-

ic

ns nt of on ed m

Ma

(Continued from page 62 P&R)

and were most marked in recovery zone. Diurnal fluctuations in D.O. and pH were greatest in late spring and early summer. Little reliance can be placed upon mere occurrence of single species in given locality. In Lytle Creek 9 species characteristic of septic zone also occurred in recovery and clean water zones, but in much smaller numbers. Distr. and number of species and individuals in septic zone differed greatly from that in clean water areas. Septic zone had less than 1 as many species as clean-water zone, but number of individuals of each species and total number of organisms per unit area were many times greater. Septic zone was characterized by species adapted to live under low D.O. conditions (less than 1 ppm) as Tubifex and Limnodrilus, or those able to secure their oxygen directly from air as do Culex pipiens, Eristalis bastardi, and Physa integra. Hemiptera and Coleoptera were found in septic zone, but these were also equally numerous in other zones. Modification of their tracheal system and general body surface which increases internal air capac. of the tracheal system and enables them to use ext. air stores which serve like physical gills, enabled them to withstand very low D.O. levels (7 to 0.5 ppm), and made their mere presence poor indicator of D.O. content. Community of organisms most characteristic of avg. conditions in the recovery zone consisted of lesser numbers of species found in septic zone plus variable numbers of more tolerant forms found in clean water, especially those having variety of methods for securing oxygen. These included certain larvae of the blackfly, Simulium vittatum; midge, Tanypus stellatus; and caddis fly, Cheumatopsyche sp.; and nymphs of mayfly, Callibaetes sp., and dragonfly, Libellula lydia. Clean waters were characterized by great variety of invertebrate communities consisting of herbivores, carnivores, and omnivores; prey and predators; lung, tracheal-tube, and gill breathers. In general pop. contg. abundant gill-breathing forms. mayflies, stoneflies, and caddis flies was indicative of clean water conditions and their absence denoted presence of poln. and/or low oxygen.-PHEA

Algae of the Eastern Bernese Oberland. E. Messikommer. Mitt. Naturforsch. Ges. Bern., 13:81 ('56). Mainly listing of freshwater algae encountered. Phys. and chem.

compn. of some lakes and ponds are discussed. Anal. of water of Blausee at Kandergrund is given; it is high in Ca, Mg, and SO₄.—PHEA

Stream Enrichment and Microbiota. J. B. LACKEY. Public Health Rep., 71:708 ('56). In comparative studies of 3 streams in U.S., quant, and qual, detns, of suspended algae and protozoa provided specific evidence of fertilizing effects of treated sewage effluent on some species of these organisms. Lytle Creek, small stream in southwestern Ohio which receives effluent from primary sewage treatment plant, total of 167 species were found. Certain species of Euglenophyceae were exceptionally abundant at points below plant outfall. Chlorophyceae and Chrysophyceae were adversely affected by effluent. Of 92 species of microbiota in Cowan Creek, similar but unfertilized stream in same area, only Chrysophyceae and diatoms (Bacillarieae) were abundant .-- PHEA

A Qualitative and Quantitative Study of the Plankton Algae in Southwestern Georgia. G. J. SCHUMACHER. Am. Midland Naturalist, 56:88 ('56). Purpose of this survey was to present qual, and quant, study of plankton algae of Southwestern Georgia. Qual. collections were limited only by boundaries of 11 counties, whereas qual, samples were restricted to 15 ponds. 15 mo. were spent in field gathering necessary material. Total of 399 species and varieties, 93 genera and 31 families was determined. 207 species represent new records for state of Georgia and 85 species are reported for first time for Southeastern Coastal Plain. Some of more noteworthy finds are Chrysopyxis bipes, Coelastrum chodosi, Dinobryon divergens, Paridinium limbatum, Phymatodocis nordstedtiana and Pleurotaenium spinulosum. Genera represented by largest number of species are as follows: Cosmarium, 43; Staurastrum, 41; Closterium, 29; Euastrum, 23; Micrasterias, 23; Scenedesmus, 15. Families with largest number of species are the following: Desmidiaceae, 211; Oocystaceae, 34; Chroococcaceae, 23; Scenedesmaceae, 18; Oscillatoriaceae, 15. Babcock Pond had richest flora with 114 species of plankton algae. Those ponds approaching this number are Big Bypress, 111; Cane Water, 93; Putney, 89; Mossy, 88 and Porter, 88. mill ponds, Sheffield's and Ivy's, had lowest

0.5

lisanlg,

B. 6). S., ae of nt In rn гу es ts nd Dy m 4 of n

DE LAVAL pumps America's water...

The three De Laval turbine-driven centrifugal pumps (shown above) have given dependable service in the Howard Bend Station of the St. Louis, Mo. water works system for more than a quarter of a century. The two smaller units have a capacity of 60 mgd and the larger one of 120 mgd, all designed to deliver against 40 ft. head.

In the St. Louis Chain of Rocks Station, De Laval pumps have an even longer service record. Two 40 mgd units were installed in 1912 and a 100 mgd unit in 1918. Two of these three pumps are still on the line. The third has been altered and is still in constant service.

For St. Louis' expanding needs, De Laval is now building ten more centrifugal pumps with a total capacity of 450 million gallons per day.

Write for your copy of new De Laval Bulletin 1004

DE LAVAL STEAM TURBINE COMPANT

MPLO

ow a

or co

IT y

he ba

Jsed ubate

icular

isaste

inava

ation

ecom

rever

UPPL

MON

alastic

ilter

of lic

oling

nailii

THE F

arge

(Continued from page 64 P&R)

number with 29 and 32, respectively. Qual. findings are presented in annotated list, while quant. results are recorded graphically by mo. for each pond. Blooms of Dinobryon divergens and Microcystis aeruginosa were noted during winter and summer mo., respectively. Attempt was made to classify ponds on basis of number and variety of algae found therein, with particular emphasis placed on Desmidinceae. This resulted in establishment of 3 groups. Group 1 was characterized by having limited quant. numbers of algae, rather even seasonal distr. and wide variety of species, especially among desmids. Second group likewise possessed large variety of desmid species but had phytoplankton pop. which was generally rich in numbers and exhibiting marked seasonal pulsations. Final group has intrinsic property of being desmid-poor while having relatively high numbers of diatoms and bluegreens. Members of group 3 had clear cool waters and sandy bottoms whereas those ponds in groups 1 and 2 had warm dark waters and mucky organic bottoms.-PHEA

General Features of Algal Growth in Sewage Oxidation Ponds. M. B. ALLEN.
Calif. State Water Pollution Control Bd. Publ. No. 13 ('55). Studies have shown that unicellular green algae, Chlorella and Scenedesmus, are important on operation of pilot-scale sewage oxidation ponds. These algae do not grow on sewage in dark and do not reduce content of oxidizable matter. Max. algal crop which can be grown on domestic sewage is 1-2 g (dry weight)/1 Stage of oxidation is indicated by algal flora. During active oxidation, Chlorella is present, and this is followed in later stages by Scenedesmus and Chlamydomonas. Large ponds operate satisfactorily under wide variety of conditions, and are mainly self-regulating. For max, algal growth, supplementary carbon and nitrogen are necessary.-WPA

POLLUTION CONTROL

Industrial Pollution Control. Part II—The Problem as it Affects Industrial Management. R. F. WESTON. Industrial Wastes, 1:170 ('56). It is estimated that, to date, industry in United States has spent over \$1 billion for water poln. abatement and, within next 10 yr, will spend additional \$4 to \$5 billion for this purpose. Public

(Continued on page 68 P&R)

with the MILLIPORE FIELD MONITORING KIT

MPLOYING THE BASIC MILLIPORE FILTER TECHNIQUE. ow approved as an Acceptable alternate Method or coliform testing, the FIELD MONITORING IT yields accurate, direct field determinations of he bacterial content of waters in 18 to 20 hours. Jsed in conjunction with the Millipore Field Inubator, the FIELD MONITORING KIT is paricularly adapted for use in rural areas or under lisaster conditions where laboratory facilities are mavailable. In use by the World Health Organiation, the FIELD MONITOR has also been ecommended by the U.S. Navy for use by its reventive Medicine Units.

UPPLIED STERILE and ready for use, the FIELD MONITORING KIT contains two disposable blastic Monitor units which serve as combination ilter holders and culturing dishes, two ampules of liquid nutrient medium, and two plastic samoling tubes. The Kit is packaged in a convenient nailing box to allow easy shipment if desired.

THE FIELD MONITORING KIT allows the sampling of arge volumes of water, eliminates the cost and

inconvenience of sample shipments in glass bottles. and requires no laboratory facilities. It is FAST, ACCURATE, REPRODUCIBLE AND ECONOMICAL.

FIELD MONITOR top removed to show Coliform Bacteria Sheen Colonies developed on the MF® surface after 18 hours of incubation.

*By the U.S. Public Health Service *Write for a copy of the new color-illustrated booklet

WATER TESTING IN THE FIELD - IN EIGHT STEPS

0.5

al. ile by

on ere ·efy of

aed

as

n-

d

g

d

d

h

1

-

1

MILLIPORE FILTER CORPORATION

36 PLEASANT STREET, WATERTOWN 72, MASSACHUSETTS, U.S.A.

May

(Continued from page 66 P&R)

demand for clean streams; increasing need for clean water for domestic water supply, industry, agriculture and recreation; and continued increase in poln.—all indicate that poln. control will become an increasingly important item for industrial concern. It will be in best interests of industry to voluntarily undertake surveys of its wastes and institute policies that will abate poln. Its activities in this field will result in prosperous business through good public relations; prevention of losses from forced shutdowns, costly lawsuits, or claims for damages; and reduction of losses caused by lowered water quality,—PHEA

Natural Sediments as a Factor in Stream Pollution Control. R. D. HOAK & H. C. BRAMER. Sewage and Ind. Wastes, 28:311 ('56). 3 methods are presented for estimating load of suspended solids in streams. Method to be used will depend on quant. and qual. of available data, location for which information is desired, accuracy required and time allowed to get information. Where there are no data on suspended solids and characteristics of drainage areas do not differ greatly from those in Ohio and Delaware river basins. Eq. 8 may be used to estimate sediment loads. If location is in Ohio R. or Delaware R. basin, Eqs. 6 or 7 may be used. Where actual load data are available, full statistical method should be used to make precise ests. Example is given to illustrate effect of natural sediment on clarifier operation. It is proposed that regulations governing discharge of suspended inorg, solids be related to normal load of such material carried by receiving stream. -PHEA

The Adverse Influence of any Type of Organic Matter on the Quality of Underground Water and the Ways and Means of Controlling Such Risks in Sweden.

A. ULLERSTAM. Vattenhygien (Sw.), 12:81 ('56). Underground water, important in Sweden's water supply, is usually found in coarse materials which do not obstruct penetration by foreign substances. Most serious poln. is by petroleum products from faulty ground storage tanks and by sulfite waste liquor used as a dust-binding medium on roads. Intrusion can be continuous and gradual, as it usually is with sewage, or

intermittent, as with petroleum products. Although sewage contmn. can be controlled with chlorination, petroleum contmn. may destroy water source. Practice of providing protected areas for wells is increasing, and 1940 water law provides fines for disregarding prohibitive protective measures. It also sanctions limitations of adjacent properties (with compensation to owners) where necessary to carry out protective measures. Public Health Law empowers municipal health depts. to establish protective measures for respective communities. Measures, however, are unsatisfactory because of difficulty of enforcement and because enforcing authority is not clearly delegated. Protection can be improved by more stringent and specific legislation. Allowable extent of encroachment of private property (where protective measures necessitate it) should be stated and limits of legally protected areas clearly defined. Use and storage of dangerous substances should be carefully controlled as should excavation and placement of gravel pits and disposal of sewage. Studies of rates of spread of contmn., of survival of bacteria, and of techniques of purif. following contmn. are valuable. A coordinated investigation of whole problem on international level is needed. 22 examples of contmn, in Swedish communities are given.-Ed.

Water Pollution-Magnetic Abatement. W. R. STEMEN. Tech. Assoc. Pulp Paper Ind., 39:255 ('56). In method which has been devised for clarification of white water from paper factories, white water is mixed rapidly with coagulant and ferromagnetic powder. Mixture is agitated gently to promote floc formation, and floc is then removed in revolving drum contg. stationary magnet which attracts floc to surface of drum. Pilot-plant studies gave reductions in B.O.D. of 30-50%, in total suspended solids of 60-70%, and in settleable solids of 90%. Vol. of sludge produced is about 65% of vol. produced by gravity sedimentation. It is now planned to operate a full-scale magnetic drum, at rate of 250 gpm. method is not suitable for recovery of fibers, and cost of chem, is slightly higher than for conventional treatment methods, but advantages are compactness of the equip. and speed at which treatment is completed.-PHEA

0.5

cts. led. ay ing ind rd-1so ies eces. pal res wlty 111on)e-11-0be as

nnt re.

r-

if. li-

29

re

t.

er

RS

er

ed ic

d

n.

11

s f

i,

1

Aerial view of Big Walnut plant. Built for City of Columbus, Ohio—Floyd C. Redick, Director, Department of Public Service; Paul C. Laux, Superintendent of the Division of Water. Uhlman Associates were the consulting engineers for design and construction.

Columbus, Ohio selects Leopold Filter Bottoms, Operating Tables and Carbon Slurry Agitators

Built at an approximate cost of \$5,750,000, the Big Walnut project is designed to provide adequate water supply capacity to meet the ever-increasing needs of the City of Columbus. The new, modern facilities (shown above) have a nominal capacity of 50 mgd, a maximum rated capacity of 73 mgd, and are equipped with twelve Leopold five-valve operating tables, six Leopold carbon slur-

ry agitators, and twelve sets of Leopold glazed tile filter bottoms.

Like this new project, more and more water treatment plants are using Leopold equipment—whether for new construction or modernization programs. It will pay you big dividends to do the same! For details on Leopold water purification and filter plant equipment, write today. There's no obligation.

F. B. LEOPOLD CO., INC.

TELIENOPLE PA.

COMPLETE WATER PURIFICATION AND FILTER PLANT EQUIPMENT - BUTTERFLY VALVES FILTER OPERATING TABLES - MIXING EQUIPMENT - DRY CHEMICAL FEEDERS GLAZED TILE FILTER BOTTOMS

NEW SIMPLEX ELECTRON PROGRAMS FILTER WAS

Fully-interlocked system regulates flow; shuts down, washes and reopens filters

Now simplicity, efficiency and manpower savings come to filter plants with the new Simplex Automated Filter Operating Table.

From one central point, filtering and washing cycles can be initiated automatically . . . all rates and times maintained accurately. Valve action is completely pneumatic! The system contains no electrical devices that might malfunction in the dampness of a wet pipe gallery.

Shut-off and Cut-off

This new system automatically shuts off a filter if the clearwell is filled—returns it to service when needed. Depending on the control you prefer, a filter will be automatically removed from service for backwashing when (1) loss of head reaches cut-off point you pre-set (usually 8') or (2) electric timer has run through the value you pre-set (80 to 120 hrs.). At any point, the operator can manually over-ride these automatic controls.

No-Flood Washing

When automatic program starts, the filter Influent Valve is closed, water level drops to wash-trough lips, then the filter Effluent Valve is closed.

Next the Drain Valve is opfollowed by the Wash-Water V Pneumatic interlocks prevent ing: wash valve can't open drain valve is fully open.

Washing is precisely timed at fast-slow rates . . . so bed is cle and hydraulically graded for starts and optimum results.

Saves Treated Water

To prevent flooding, Drain V can't close until all Wash V have first closed. To prevent v of treated water, filter Influent V can't open until drain valve has pletely closed. Washing period be extended, if desired.

Controlled Starts

Au

vio to tl

use

e'll

tegi

clin

era

To prevent turbid starts, wher Influent Valve is opened, the I ent Valve stays closed until v reaches operating level. Float sy then opens Effluent Valve.

No Sequence Errors

Cascade programming makes takes impossible. All valves oper close in their proper sequence. Vo. 5

en

for

ter n V nt nt ' nas riod

her ie 1

t sv

S

es

er

Rdneumatic System ISNG AUTOMATICALLY

NEW SIMPLEX AUTOMATED FILTER TABLE: Large dials indicate and/or record rate of flow and loss of head. Smaller dials set filtration and wash rates. Colored lights show progress of the automatic cycle. Manual levers permit operator to over-ride the automatic programming at any point.

Automated Filter Plants

viously the control functions built to this new Simplex Table can also used to control a series of filters. e'll gladly discuss your plans for tegrated sequential control that inlinks all filters for fully automatic eration of an entire filter plant.

Your Plans

We'll gladly rush further details or a Bulletin to help you. Write Simplex Valve & Meter Company, Dept. JA-5, 7 E. Orange Street, Lancaster, Pa.

Visit Booth 302 at AWWA Convention

(Continued from page 68 P&R)

Pollution of Surface Water in Europe. A. Key. Bul. World Health Organization. 14:845 ('56). This long paper deals primarily with problems confronting western European countries as regards surface water and its poln. Meaning of poln. as used in this paper is defined: river is considered to be pold, when water in it is altered in compn. or condition, directly or indirectly as result of activities of man, so that it is less suitable for any or all purposes for which it would be suitable in its natural state. It is to be noted that this definition would include as poln, any artificial increase or decrease in temp, if that interfered with use of water. General problems of poln, of surface waters in Europe are described, after which great deal of particularized information is given of conditions in 18 countries of Europe concerning area and pop., physical features and rainfall, sewerage and water supply, degree and type of industrialization, condition of rivers and estuaries. use made of rivers for bathing, fishing and agriculture, river authorities, powers of poln. prevention, sewage treatment, industrial wastes disposal, tests for river qual, and existing research authorities. These individual accounts, though brief, show clearly great variations which exist in types and intensity of water poln, problems in Europe. These problems are thoughtfully discussed. Water poln. in Europe is sufficiently severe in some countries to constitute urgent national problem: in others it is primarily of local importance only; and in few it hardly exists. But in almost all countries where poln. is already severe it is recognized that matter requires urgent attention, and most are making strenuous efforts, within limits of their resources, to deal with it .-- BH

Pollution of Ground Water in Europe. S. BUCHAN & A. KEY. Bul. World Health Organization, 14:949 ('56). This report on poln. of ground water in Europe is the natural complement to preceding article on surface water poln. It gives much information

(Continued on page 74 P&R)

On Call . . . to tell your story for you!

Willing Water wants work on or as your public relations staff. Let him be your spokesman to your customers ... to your personnel. You'll find him a master of the art of putting across your ideas . . . of soliciting co-operation ... of establishing good will. Call him up . . . put him to work on your publicity, your signs, your bulletins, your bills, your reports ... you'll find him ready, able and, of course, willing.

Low-cost blocked electrotypes or newspaper mats, 59 different poses, are immediately available to you. Write now for a catalog and price

2 Park Avenue

AMERICAN WATER WORKS ASSOCIATION New York 16, New York

New Cochrane SOLIDS-CONTACT REACTOR combines

mixing, precipitation, sludge concentration, clarification & softening

The relatively hard, turbid Rocky River supply for the city of Berea, Ohio, is quickly reduced in hardness to approximately 3.5 gr/gal and to a turbidity of less than 10 ppm by the Cochrane Solids-Contact Reactor shown above. An existing concrete basin 28' square x 15' deep was modernized by conversion to the Solids-Contact type. Using hydrated lime, soda ash and alum, the Reactor treats over 2,000,000 gpd at surprisingly low cost.

5

e - f

Because the design of the Cochrane Reactor provides higher quality treated water faster, in less space, with minimum chemicals, their use has grown tremendously for municipal applications. High slurry strength in the reaction zone speeds precipitation—there is very little waste water. Automatic desludging saves time and labor. In addition to softening and clarification, Cochrane Reactors remove color, taste, odor; reduce alkalinity, silica, fluorides, etc.

Cochrane's background in water conditioning makes possible the installation of complete systems under a single responsibility for continued, consistent performance. Write for Publication 5001-A and case history reprints.

Cochrane

CORPORATION

3124 N. 17TH STREET, PHILADELPHIA 32, PA.
NEW YORK • PHILADELPHIA • CHICAGO

Representatives in 30 principal cities in U.S.; Toronto, Canada; Paris, France; Mexico City, Mexico; La Spezia, Italy; Havana, Cuba; Caraca; Venezuela; San Juan, Puerto Rico; Honolulu, Hawaii; Malmo, Sweden; Santiago, Chile. Potistown Metal Products Division—Custom built carbon steel and alloy products.

Cochrane also manufactures circular reactors

Demineralizers • Hot Process Softeners • Hot Zeolite Softeners • Dealkalizers • Reactors

Decembers • Continuous Bloweff • Condensate Return Systems • Specialities

(Continued from page 72 P&R)

obtained from 20 countries of European region in reply to questionnaire sent out by World Health Organization regional office for Europe. Data are recorded under headings of geology and hydrogeology, water supply, poln., methods of purification, control and legislation. Much polg. matter of various types occurs, or is placed, on surface in Europe in circumstances where it can percolate downwards to ground water. Geological and other phys, conditions will then determine whether or not ground water is rendered unsafe or unsuitable for use. Whole subject is described and discussed with reference to some exptl. investigations which are being conducted.-BH

Pollution of the Aare Between the Bielersee and the Rhine. K. SAUER. Gas- u. Wasserfach, 96:120 ('55). Results are discussed of a chem. examination of a 120 km stretch of the Aare and use of water for bathing, industrial supply, and supplementing ground water is considered. Investigation shows the necessity for mechanical treatment of all waste waters and for biol. treatment of waste waters discharged to tributaries with low water flows.—WPA

Pollution of Rivers by Phenolic Waste Waters. K. VIEHL. Gas- u Wasserfach, 96:105 ('55). Author describes problem of discharge of phenolic waste waters to German rivers, with special reference to the Pleisse which in recent years has been heavily pold. above Leipzig by waste waters from works using distn. and hydrogenation processes for production of benzene from brown coal. Data are then given of composition of waste waters containing phenol

from treatment of coal and from other industries using phenol, such as manufacture of plastics. Effect of phenol and of different waste waters containing phenol on fish and other organisms and on selfpurifying cap. of water is then discussed with special reference to the pold. stretch of Pleisse above Leipzig. Brief accounts are then given of various methods possible for extraction or destruction of phenol in waste waters and conditions for which different methods are suitable.—WPA

CHEMICAL ANALYSIS

Indicator for Titration of Calcium in Presence of Magnesium Using Disodium Dihydrogen Ethylenediaminetetra-acetate. H. DIEHL & J. L. ELLINGBOE. Anal. Chem., 28:882 ('56). New indicator has been developed for use in detn. of calcium with disodium dihydrogen ethylenediaminetetraacetate in presence of magnesium. Indicator, called calcein, is prepared by condensing imino-diacetic acid with fluorescein. It is necessary to carry out titration at pH 12, at which value indicator is brown and its calcium complex is yellow-green. At lower pH values color of free indicator is also yellow-green. Magnesium does not form complex with indicator, but excessively high conens. of magnesium and sodium cause results to be slightly low. Copper and iron interfere, but this can be prevented by addition of cvanide.-WPA

New Indicator for Titration of Calcium With (ethylenedinitrilo) Tetra-acetate. J. PATTON & W. REEDER. Anal. Chem., 28:

(Continued on page 78 P&R)

ATTENTION Water Meter Repairmen!

Patrick COPPER AND BRASS DIP

In Concentrate Form—For finished product add water
QUICK ACTING, RESTORES LUSTER TO COPPER, BRASS,
AND BRONZE

12 containers of concentrate makes 12 gallons of C.B. Dip, approximate weight 33 lbs. \$28.20 prepaid.

LEO R. LEARY, Manufacturer

237 Columbus Ave.

Buffalo, 20, N.Y.

Why Chicago Water Costs Less... AMERICAN CAST IRON PIPE

Delivered to the consumer at approximately 3c per ton, Chicago city water is furnished at a lower cost than that of any of the major cities of the United States.

Capable management helps keep this cost low. The 4,000 miles of cast iron pipe in Chicago's distribution system also help keep the cost low because it serves longer, with fewer replacements or repairs. For example, cast iron pipe under busy State Street, installed 105 years ago, still serves.

The American Cast Iron Pipe Company is proud to be one of the suppliers to the City of Chicago Water Department.

Include the proven long-term economy of cast iron pipe in your own plans. Your American Cast Iron Pipe Company representative will be glad to assist you.

Meet our representatives at Atlantic City... Visit Booths 214 and 216, AWWA Conference, May 12-17

SALES OFFICES

New York City • Chicago Kansas City • Minneapola Dallas • Orlando • Denver Los Angeles • Pittsburgh San Francisco • Cleveland

ra

b

ti

F

tl

tl

5

I

in d

Are You Ready for Municipal Water Softening?

Today's growing trend to soft water has brought with it a number of problems for water-works engineers and other officials concerned with water treatment. One of these problems has to do with regeneration of softeners using base-exchange zeolites and/or resins. As a service to communities throughout the country, International Salt Company has prepared a series of articles on the use of salt brine in water-softener regeneration. Here is the third in that series . . .

How to reduce costs of salt handling and brine making in the modern treatment plant.

Many large industrial and municipal plants are now saving money on salt deliveries, on salt handling, and on brine production—simply by installing a Storage Lixator. An exclusive development of International Salt Company, the Storage Lixator is basically a large combination salt-storage and salt-dissolving tank.

The Storage Lixator is strong—can easily hold the weight of heavy trucks or railroad cars. It's adaptable—can be located almost anywhere, either inside the plant or outside. It's fully automatic—continuously replenishes whatever amounts of brine are drawn off through the piping system to points of use. And it needs no maintenance.

Another money-saving feature: with the Storage Lixator, brine-storage tanks are rarely necessary. This is because International's Lixate principle, on which every Storage Lixator is based, makes use of "Wet Storage"—meaning that undissolved salt is stored in the same tank with saturated brine. Even when the Lixator is completely filled with salt, there is ample room between the salt crystals for storing fully saturated brine.

The operation of every Storage Lixator is basically the same, but there are many design

possibilities, by which International's Lixate principle can be adapted to any plant requirements. Here are some typical Storage Lixators, showing how they are engineered to meet specific needs.

1. The Inside Single-Compartment Storage Lixator . . . ideal for congested areas

where outside property is not available. Salt is dumped from a truck directly into the dissolving chamber (the Lixator is just inside the plant wall), and salt-handling costs are reduced. The Lixator controls are easily accessible from inside the plant.

2. The Shed-Type Storage Lixator is very practical for small-scale storage and dissolving operations when space is available adjoining the plant building. Large doors permit easy salt entry by portable conveyor belt fed directly from a dump truck or railroad car. With this setup, any available space can be used for an inexpensive brine-making unit inside the shed.

3. The Integral Brine Tank Storage Lixator . . . one of the best for operations

which require large amounts of fully saturated brine only at certain times. (The brine-storage tank included in the Lixator can be made as large as necessary.) Because the top of this Lixator is at ground level, traffic can pass over it—and delivery trucks can pour salt directly into the loading manholes.

4. The Underground-Tank Storage Lixator is a single-compartment rock-salt storage and dissolving unit which adjoins a rail-road siding. With the top of the Lixator on the same level as the floor of the railroad car, salt delivery by power scoop, or portable conveyor belt is an easy operation. Fully saturated brine, made automatically in this Lixator, can be pumped any distance to the points of use.

5. The Undertrack Dual-Unit Storage Lixator . . . popular with large salt users.

It has been found that its relatively high installed cost is more than offset by the most inexpensive salt delivery method known to-day (and possible only with this undertrack design). A railroad hopper car passes over the Lixator, and salt drops directly into storage. No conveyor belt is needed, and salt delivery is entirely automatic.

There are many other types and designs of Storage Lixators—along with numerous refinements to suit your particular needs.

International makes available its full range of technical and engineering service on regeneration of baseexchange zeolites and/or resins

For example, through skilled and experienced "Salt Specialists," International can give you helpful information on modern regeneration techniques. This information has been developed as a result of International's extensive work on water softening in the chemical, textile, food-processing, and meatpacking industries.

In addition, the "Salt Specialists" will work with you or your consulting engineers in selecting the right type and size of salt for your regeneration needs . . . in finding effective salt-storage and salt-handling methods . . . in planning a Lixator installation . . . and in determining the best means for distributing brine—to mention just a few of their services.

One feature of this advisory service which is of special importance is its complete impartiality. Because International produces all types and sizes of salt, we have no reason to recommend one salt product over another. We simply recommend the best possible type and size of salt for your water-softening needs.

To get this free technical assistance . . . simply contact your nearest International Sales Office. There's one in your area.

Sales Offices: Atlanta, Ga.; Chicago, Ill.; New Orleans, La.; Baltimore, Md.; Boston, Mass.; Detroit, Mich.; St. Louis, Mo.; Newark, N.J.; Buffalo, N.Y.; New York, N.Y.; Cincinnati, O.; Cleveland, O.; Philadelphia, Pa.; and Richmond, Va.

INTERNATIONAL SALT CO., INC.

SCRANTON 2. PA.

Ma

(Continued from page 74 P&R)

1026 ('56). New indicator, 2-hydroxy-1-(2-hydroxy-4-sulpho-1-naphthylazo)-3-naphthoic acid, has been developed for use in detn. of calcium with (ethylenedinitrilo) tetra-acetate in presence of magnesium. Indicator gives sharp stable color change from wine red to pure blue at end-point. Usual ammoniammonium chloride buffer is replaced by odorless monoethanolamine-hydrochloric acid buffer containing complexed magnesium. Detailed procedure is given for detn. of calcium and magnesium in water, limestone, salt, and boiler scale.—WPA

Colorimetric Specific Method for Determination of Traces of Chlorine in Chlorinated Tap Water. L. M. Kul'BERG & L. D. Borzova. J. Chim. Ukr. (U.S.S.R.), 22:100 ('56). Method for detg. traces of chlorine in tap water has been developed. based on formation of blue sodium indophenolate as result of action of chlorine on mixture of aniline and phenol in presence of sodium hydroxide. 2 modifications of method, for detg. concn. less than 1 µg and more than 1 µg per ml, are described. To det. concn. less than 1 µg per ml, chlorine is concd, by extraction with chloroform and extract is treated with sodium hydroxide to form hypochlorite. No interference is caused by iron, manganese, nitrite, or other common ions.-WPA

Diallyldithiocarbamido-hydrazine as an Analytical Reagent. I. Determination of Copper, Nickel, Zinc and Lead and Separations of Their Binary Mixtures. N. K. Dutt & K. P. S. Sarma. Anal. Chim. Acta, 15:21 ('56). Use of diallyldithio-carbamido-hydrazine for quant. detn. of copper, nickel, zinc, and lead is described. Copper is prtd. at pH 2.5-3.5, lead at pH 5-6, zinc at pH 7.5-8.6, and nickel at pH 8-9. Complexes formed have definite chem. compns. and can be weighed directly in weighed crucible. Elements can be detd. individually and also in their binary mixtures after adjustment of pH yalues.—WPA

Quadrivalent Uranium as a Reducing Agent in Potentiometric Titrations. II. Estimation of Dichromate, Permanganate, Bromate and Tellurate. I. M. 185A & I. M. E. SHERIF. Anal. Chim. Acta, 14:474 (156). Use of quadrivalent uranium as reducing agent in potentiometric titrations has been

extended to detn. of dichromate, permanganate, tellurate, and bromate, either alone or in mixture also containing ferric, ceric, and vanadic ions.—WPA

Simple Instrument for Titrimetry Without Visual Indicators. Gasometric Titrations. X. Cerimetry. Chlorometry. Nitrate, Nitrite, Hydroxide and Carbonate Determinations, O. R. GOTTLIEB. Analyt. Chim. Acta, 13:531 ('55). Gas pressure technique for detn, of endpoint in titrimetric anal. where no visual endpoint can be obtained, has been further developed so that endpoint may be solved graphically by intersection of curves obtained by plotting gas vol. or pressure against vol. of titrant used. Descriptions are given of instrument used and of application of graphical method in cerimetric and chlorometric titrations, and in detn. of nitrate, nitrite, hydroxide and carbonate; results obtained compared favorably with those given by conventional visual endpoint methods. Use of technique for quant. anal. of binary mixtures is discussed. -WPA

Quantitative Determination of Ethylene Glycol in Water. E. R. HESS, C. B. JOR-DAN, & H. K. Ross. Anal. Chem., 28:134 ('56). Procedure is described for quant. detn. of ethylene glycol in water, based on time taken for silver iodate ppt. to appear after addition of nitric acid and periodic acid to mixture of sample and aqueous silver nitrate. A nomograph, constructed to facilitate calcn, of ethylene glycol concn., and data illustrating accuracy and reproducibility of method are given. Method may be used for rapid calcn. of large numbers of detns. of ethylene glycol in water, and may be applied to other substances with reasonable reaction rates; substances reducing periodate to iodate or pptg, silver iodate from acid solution interfere.-WPA

Colorimetric Determination of Fluoride in Water by Heteropoly Blue System. R. P. Curry & M. G. Mellon. Anal. Chem., 28: 1567 ('56). New method for detn. of fluoride in water utilizes distn. of fluoride as silicon tetrafluoride from sulfuric acid medium. Silicon tetrafluoride is carried by nitrogen gas steam into sodium borate-boric acid buffer and hydrolyzed, after which sol.

Request Bulletin 840-L23A.
Builders-Providence, Inc.

Harris Ave.
Providence 1, Rhode Island

*FVVF means Full Vision Vacuum Feed, that extra margin of safety so vital when handling chlorine gas. Protect both personnel and plant equipment with Builders Chlorinizer. Get FVVF...plus the shortest gas flow path design offered by any manufacturer... for the SAFEST chlorination available.

Model EVS Chlorinizer offers FVVF with "see-thru" components that give visual proof of operation and positive evidence of effective vacuum. Low initial cost results from design simplicity. Eye-level Sightflo Indicator (with wide range, linear scale) provides easy, accurate reading and setting of feed rate. Available in 11 standard RATE capacities ranging from 4 to 400 lbs. of chlorine per 24 hrs.

Check These Other Features

- Easy Installation
- · Automatic Safety Features
- · Low Maintenance
- · No Chlorine "Ice" Problems
- No Tray Odors
- 8 to 1 Metering Range
- Accurate within ±4% of actual feed rate
- Money-back performance guarantee!!

TRANSITE FILTER BOTTOMS

Cut Your Filtration Costs

4X SAFETY FACTOR

Strong . . . practical . . . and rugged. Withstands many times the force of the severest filter run. Non-corrosive Transite filter bottoms are designed and tested to withstand a load of 5,000 lbs. per sq. ft., insuring a safety factor of over 4×. Stable under all conditions. No anchoring necessary . . . resists six to seven times normal force of uplift during backwash.

Practical design assures constant flow and uniform backwash. Scientifically manufactured so that the ports cannot be gravel blocked . . . closed by expansion . . or enlarged. Departure from traditional design substantially reduces labor and costs. Field assembly requires about five minutes and a screw-driver.

Write For Literature

FILTRATION

EQUIPMENT CORPORATION 271 HOLLENBECK ST. ROCHESTER 21, N. Y. (Continued from page 78 P&R)

silicate is detd. by formation of molybdosilicic acid and subsequent reduction to corresponding heteropoly blue. This method affords accurate and precise detn. of fluoride in range from 0.1 to 2.0 mg. Effects of following variables were investigated: presence of 25 diverse ions, distn. time, and water conen. on distn. system. Beer's law is followed from 0.1 to 2.0 mg. of fluoride with a standard deviation of 0.024 mg. Sensitivity of method is 0.18 absorbance unit per 0.1 mg. of fluoride.—PHEA

Differential Spectrophotometric Determination of Fluoride. J. J. LOTHE. Anal. Chem., 28:949 ('56). Differential method of anal, has been applied to indirect spectrophotometric detn. of fluoride with thorium-Alizarin Red S reagent at pH 2.8. Absorbance of sample soln, is taken against 1 of set of 3 reference standards containing 50, 100, and 200 µg of fluoride per 50 ml. Coefficient of variation of method is less than 1% for concns, of 50-200 ug of fluoride per 50 ml, and less than 2% for concns. of 25-50 μg. Optimum concn. of color reagent and effect of pH value and interfering ions are discussed. Color reagent is stable for at least 1 month.-WPA

Effect of pH on High-Salt-Thorium Fluoride Titration. D. F. Adams & R. K. Koppe. Anal. Chem., 28:116 ('56). Investigation into effect of pH value of final titration soln. on microdetn. of fluoride by saltacid-thorium method is described. It was shown that apparent concn. of fluorine was inversely related to pH value of final titration. Modified procedure giving greater reproducibility is described, in which titration is conducted at pH value of 2.9 instead of 2.7 and correction is made for effect of pH value.—WPA

The Determination of Microgram Quantities of Fluoride. V. The Use of the Aluminium-Chromeazurol-S. Complex. B. J. MacNulty & L. D. Woollard. Anal. Chim. Acta, 14:452 ('56). Spectrophotometric method for detg. fluoride, using aluminium-chromeazurol-S complex, is described. Fluoride in soln., free from interfering ions, or obtained by distr. as hydrofluosilicic acid, is detd. by destruction of complex, amt. destroyed being directly proportional to concr. of fluoride. Method can

(Continued on page 84 P&R)

5

d f

YOU CUT LARGE DIAMETER YOU NEED THESE

HINGED PIPE CUTTERS New RE 4-WHEEL

Users tell us these completely new cutters are so efficient they often "pay for themselves" through the savings in crew time on a half-dozen cuts. They are the first really practical tools for cutting off steel or cast iron pipe in sizes from 21/2" to 12". You can, for example, cut 8" steel pipe completely off in less than five minutes.

Four wheel design requires minimum swing of handleless digging in ditch work, easier "tight-corner" cuts.

Closed frame permits light weight with complete rigidity for better cutting.

4-point guide aligns the cutter on the pipe . . . assures perfect tracking and a right angle cut.

Reed Razor Blade wheels track perfectly, cut easily and roll down burr on steel pipe.

Unconditionally guaranteed to be the most efficient cutter you have ever used. Ask your jobber or write for literature.

MANUFACTURING COMPANY PERMUTIT[®] presents the

VALVELESS FILTER

Completely Automatic Gravity Filter Costs Less than Manual Unit

Uses no valves, no pumps, no flow controllers

Here's an entirely new concept in water filters for cities, factories and power stations: a filter that *eliminates* operation and maintenance expense . . . yet costs *less* than a conventional manually-operated gravity filter of the same size.

The Permutit Valveless Filter can be used wherever gravity flow is feasible. Units are now in operation providing both plant process and drinking water.

FOOLPROOF OPERATION

The Valveless Filter thinks for itself. It starts backwashing at a predeter-

mined head loss, rinses and returns to service automatically . . . and as efficiently as an expertly operated manual filter. It assures uniform. high quality effluent because it eliminates "human error." It cannot be forced. It cannot backwash or rinse too soon or too late, too fast or too slow, too much or too little. It cannot develop a negative head and thus eliminates the chief cause of mudballs, channelling, upset beds. The absence of gravel eliminates another cause of upset beds. Backwash or rinse water cannot be accidentally run to service.

PERMUTIT°

rhymes with "compute it"

Water Conditioning

Ion Exchange • Industrial Waste Treatment

HOW IT WORKS

Filtering. Water enters at left, flows through sand, strainers and false bottom up effluent duct to service. As head loss increases during run, water rises in backwash pipe. At maximum headloss, water spills into downward section of backwash pipe and starts backwash (siphon) action.

Backwashing. Siphon draws water from storage down through ducts, up through strainers and sand to expand and wash bed, then to waste. At low storage level, air enters siphon breaker to stop backwash. Flow reverses and filtered (rinse) water flows into storage until full. All flow then goes to service.

PROVEN PERFORMANCE

Photo shows two Valveless Filters in a large industrial plant. (Shut-off valve at left is used only to take front filter out of service.)

LOW INSTALLATION AND EXPANSION COST

Filters up to 10 ft. diameter are shipped set up. Piping is simple. Future filters are easy to add since they require no additional backwash water storage or pump capacity. Filters use minimum floor space.

FREE BULLETIN

New bulletin, "The Permutit Valveless Filter," includes details, drawings, operating conditions, capacities. Address: The Permutit Company, Dept. JA-5, 330 West 42nd St., New York 36, N. Y. or Permutit Company of Canada Ltd., Toronto 1, Ont. (Continued from page 80 P&R)

be used to det. concn. of 0.02-20 μg of fluoride, with accuracy of $\pm 0.6~\mu g$.—WPA

Rapid Argentimetric Determination of Halides by Direct Potentiometric Titration. V. J. Shiner & M. L. Smith. Anal. Chem., 28:1043 ('56). Direct potentiometric titration method with silver nitrate has been developed for quant. detn. of chloride, bromide, and iodide in soln. of acetate buffer containing few drops of liquid, non-ionic detergent. Error is less than 0.1% for concns. as low as 0.002M, and less than 1% at limiting concn. of 10⁻⁴, 10⁻⁵, and 10⁻⁶M for chloride, bromide, and iodide respectively. Method is rapid, and can be used for direct detn. of mixed halides.—WPA

New Process for Determination of Small Amounts of Hydrogen Cyanide in Water and Waste Water. G. GAD & H. SCHLICHT-Gesundh. Ing. (Ger.), 76:373 ('55). Authors carried out comparative expts. with Liebig and Volhard volumetric methods and colorimetric method of detn. of cyanide. Results, which are given in a table, showed great differences between volumetric and colorimetric methods. These are ascribed to loss of cyanide during warming necessary to complete conversion of cyanide to thiocyanate. Both volumetric methods gave satisfactory results when concn. of cyanide was greater than about 1 mg; for concn. down to about 0.5 mg Liebig method was more sensitive. Efforts were then made to increase sensitivity of Liebig method, which is limited by the soly. of silver chloride, by using greater amt. of water, by limiting amt. of distillate, and by concg. distillate. Finally new method was developed, based on observation that, in detn. of silver with Feigl reagent, red silver compd. did not form in presence of cyanide ion. If drops of silver nitrate soln, are added to weakly alkaline solution of cyanide, positive silver ion first combines with cyanide ion to form negative complex silver cyanide ion. When all cyanide is used, excess silver ions form red silver salt with reagent. Color reaction is sensitive and endpoint of titration is clear and much more easily seen than turbidity which shows endpoint in Liebig method. Results, compared in table with those of other methods, show that new method is 10 times more sensitive than other volumetric methods and considerably more accurate and reliable than

colorimetric detn. Details of reagents and procedure for simple and complex cyanides are given.—WPA

Determination of Iodine in Potable Water. A. HAIM & J. F. SAREDO. An. Fac. Quim. Farm., Montevideo (Ur.), 4:155 ('55). Procedure for detn. of iodine in water, based on method of Bratton, McClendon, Foster, and White, in which iodine is oxidized to iodate with bromine water and titrated with thiosulfate, is described. Factors affecting sensitivity of method were investigated. If starch is used as indicator, at least 0.4 g of iodine is required to effect color change. Up to 3% of iodine is not oxidized by treatment with bromine, up to 1.7% fails to distil over into bromine water, and as much as 8% may be lost during preliminary calcination of sample.-WPA

Determination of Total Nitrogen in Waste Waters From Sugar Factories. E. ZYMNY. & Z. Zuckerind. (Czech.), 5:81 ('55). For detn. of total nitrogen in presence of nitrate and nitrite nitrogen, author recommends, in place of method given in German Standard Methods, a method described by Authenrieth and Taege in 1922. This method, omitting distn. and using Hellige Universal Colorimeter, gives satisfactory results. 100 ml of waste waters with 5 ml of concd. sulfuric acid, 5 g of potassium sulfate, and about 0.5 g of selenium reaction mixture, are heated in long-necked Kjeldahl flask for about 1 hr with vigorous boiling. After cooling, contents of flask are rinsed.-WPA

Practical Use of Electrochemical Method of Determination of Oxygen in Water. I. Principles; Long-Term Measurements. H. AMBÜHL Schweiz, Z. Hydrol. (Switz.). 17:123 ('55). Author discusses basic principles of electrochemical detn. of oxygen and problems which arise in practical application of method. Expts. made to reduce influence of flow of water on oxygen diffusion current showed that lattice-like cathodes of gold gave best results; such gold screens could be constructed as microcathodes. Influence of variations in cond. on diffusion current cannot be completely eliminated; cond. current curves run parallel to axis only at high contents of salt; influence can, however, be considerably reduced by reducing size of cathode. Lime incrustations, which in water

les

m.

to th ng If of e. ttil as

te

Y.

70

te

in

d

h g

ic

it e r r 4

d

n

e

1

Roberts Filter

means...

MUNICIPAL WATER PURIFICATION

The combined capacity of Roberts-equipped filtration plants is well over 5 billion gallons (5,000,000,000) per day. Regardless of the size of the plant or the nature of the filtration problem, Roberts Filter can be depended upon for equipment that is reliable in years of service.

INDUSTRIAL WATER RECTIFICATION

Water treatment has long been a specialty of Roberts Filter. Zeolite water softeners are guaranteed to meet all requirements for which recommended, and are available in a wide range of capacities. Roberts water conditioning equipment is widely used to control precisely the desired chemical content of water for industrial use.

SWIMMING POOL RECIRCULATING SYSTEMS

The combination of thoroughly clarified water and efficient recirculation are features for which Roberts pools are famous. Systems for both outdoor and indoor pools are designed and installed by men long experienced in the conditions peculiar to a successful swimming pool installation.

PRESSURE FILTERS

Closed pressure filters have wide usage where gravity filters are not justified. Roberts vertical filters are available in standard types from 12" to 96" diameter; horizontal pressure filters are all 8'0" in diameter and in varying lengths from 10'0" to 25'0".

When you think of good water—think of Roberts Filter

MECHANICAL EQUIPMENT BY RUSSISS FUTTO NEG TO

Roberts Filter

Manufacturing Company . Darby, Penna-

Super De Lavaud

CAST IRON PIPE

Alabama's Super De Lavaud Cast Iron Pipe for long years of dependable, trouble free service.

For water, gas and sewage.

In sizes of 3" to 24". Modern long lengths. Bell and spigot, roll-on-joint, mechanical joint and flanged.

We invite inquiries to our nearest sales office.

122 South Michigan Avenue Chicago 3, Illinois

350 Fifth Avenue New York

ALABAMA
PIPE
COMPANY

General Sales
Offices

ANNISTON, ALABAMA

(Continued from page 84 P&R)

containing bicarbonate render measurement difficult or impossible, cannot be eliminated by use of Tödt's gold amalgam electrode. Long-term expts. with water contg. and free from carbonate, showed that cathodes of gold plate, gold screen, gold amalgam screen, and mercury gave inconstant values, the current decreasing with increasing time; use of zinc anode behind diaphragm did not give much improvement. Mercury cathode, cleaned automatically at intervals of few minutes by motor-driven rubber spatula, gave an almost constant current, and small residual decrease could be completely eliminated by using zinc anode behind diaphragm. It is thus possible to record over any required period oxygen content of water with constant cond., temp., and rate of flow. Self-cleaning mercury electrode is being developed for general use in lab. and water works practice. Improved oxygen plummet for short-term measurements in field is in preparation.-WPA

A New Method for the Colorimetric Determination of Oxygen Dissolved in Wa-M. TANAKA. Mikrochim. Acta (Aust.), pp. 1048 ('55). Colorimetric method has been devised for detn. of D.O., using decolorized soln. of manganese-formaldoxime. Preparation of manganic derivative of formaldoxime and its reduction by zinc powder are described, and procedure and app. for detn., are described and illustrated. Orange-red color, which develops within 5 min and is stable for over an hour, can be measured spectrophotometrically at wavelength of $475m \mu$, or by comparison with color standards. Ferric iron interferes, but no interference is caused by nitrate, nitrite, ferrous iron, or organic matter.-PHEA

Determination of High-boiling Paraffin Hydrocarbons in Polluted Water. F. J. LUDZACK & C. E. WHITFIELD. Anal. Chem., 28:157 ('56). In studies of poln. of water by oil, difficulties have often been experienced in anal. methods used, resulting in incomplete recovery of oily materials, lack of identification of major components, or inadequate removal of interfering substances. Method has now been devised by which it is possible to det. amt. type, and condition of oily residues in presence of mixed components in pold. water. Method involves continuous liquid-liquid extraction with air agitation, infrared anal. for quant. detn. of

(Continued on page 88 P&R)

0.5

ted ode.

ree old and

ent inc uch au-

by ase inc ble gen up.,

use ved re-

ric O., alive

nd ed. 5

be

reith

tare

te,

in

J.

n.,

er

in

ck

10

:3.

it m

îr

of

...AND YOU'VE SAID IT TOO...WITH YOUR ORDERS!!

In Builders Chronosto Telemetering Systems: The transmitting and receiving reactions depend only upon the *positively* controlled duration of regular electric circuit closures and *nothing* more.

*The Telemeter is a pure, *positive-action* positioning system.

- It does not have to translate units of electric measurement into terms of rate of flow or other factors measured.
- It requires no relatively delicate electric components.
- It doesn't employ a series of contact rods "shorted out" by step-by-step action of rising mercury.
- It is not affected by normally encountered induced voltages.
- Receiver accuracy not affected by room temperature, line pressure, duration of "down time", and similar factors.

*The Chronoflo Receiver is not inferentially positioned except with respect to time duration of the Transmitter signals.

These are only a few reasons why time-impulse telemetering is "Tops". Let the company which pioneered this system over 25 years ago and has the experience gained in engineering thousands of installations give you complete proof of its dependability and accuracy.

Request Bulletin 230-H4A. Write Builders-Providence, Inc., 365 Harris Ave., Providence 1, R. I.

M

(Continued from page 86 P&R)

oil concn., and chromatographic sepn. to isolate mineral oils from animal or vegetable oils, soaps, and miscellaneous extractable components.—WPA

Determination of Steam-Volatile Phenols in Water From Distillation of Brown Coal. H. Anders. No. 6, 194-196; Literaturber. Wasser, Abwasser Luft u. Boden, 4: 236 ('55). Various methods for detn. of phenol are described. In examining waste water from distn. of coal by Koppenschaar method, preliminary treatment of sample is necessary because of presence of interfering substances. Large amts. of hydrogen sulfide are driven off by acidifying sample with acetic acid and boiling in reflux condenser. 5 ml of sample are treated with excess of ammoniacal copper sulfate soln, and then with 5-8 ml of 40% potash lye, and are boiled in sloping distn. flask until no more ammonia is detectable. Distd. water is added, sample is neutralized with carbon dioxide, and finally volatile phenol is driven off in current of carbon dioxide. Distn. must be repeated 3 times, if necessary with addition of distd. water. Detn. is carried out iodometrically. Unused bromine can also be determined with arsenious acid by back-titration with 0.1 N bromide-bromate soln, without use of iodine. For detn. of small amts, of phenol nitraniline process is recommended, and for detn. of total phenol a counter-current extraction process. Phenols are detd. gravimetrically and those fractions which are distd. off with solvent (Phenosolvan) must be taken into account; a process for their detn, is given.—WPA

The Determination of Small Amounts of Sulfate by Reduction to Hydrogen Sulfide and Titration with Mercuric or Cadmium Salts with Dithizone as Indicator. E. E. ARCHER. Analyst (Br.), 81:181 ('56). Procedure is described for detn. of sulfate. Sulfate is reduced to hydrogen sulfide by heating at 100°C with mixture of hydriodic and hypophosphorous acids, hydrogen sulfide evolved carried over in stream of nitrogen and absorbed in dilute alkali-acetone mixture to which little dithizone has been added. On titration with mercuric acetate, insol. sulfides are pptd., but at endpoint bright red dithizonate is formed. Cadmium sulfate can be used as titrant instead of mercuric acetate, but gives less accurate results when very small amts. of sulfur are present, possibly as result of slight soly. of cadmium sulfide.-WPA

The Use of Ion Exchange in Hydrochemical Analysis. II. M. V. Tovbin & F. G. Dyatlovitskaya. J. Chim. Ukr. (U.S.-S.R.), 20:434 ('54). It is thought that anion-exchange resins are not suitable for anal. of natural waters as their use requires considerable time and large amts. of reagents. In method for detn. of chloride in presence of sulfate, excess barium hydroxide is added to sample and ppt. of barium sulfate is filtered off. Excess barium hydroxide is neutralized by passage through cation-exchange resin, and amt. of acid formed is equiv. to concn. of chloride in water.—WPA

The Physico-Chemical Analysis of Water. G. Noisette. L'Eau (Fr.), 43:169 ('56). It has been shown that in event of deep drilling, when water of abnormal mineralization is found in course of flow tests, compn. of water in respect to its alkaline content is function of time of storage at those depths. This is shown by means of graphic charts using a cationic water. Development of such graphs permits estn. or anticipation of true compn. of acceptable potable water, and consequently value of drilling through which it was found.—PHEA

Application of Versenes to the Analysis of Water. E. M. Lena. An. Fac. Quim. Farm., Montevideo (Ur.), 4:181 ('55). Magnesium and calcium in local waters round Montevideo were detd. by titration with Versene, using Eriochrome black T as indicator. Optimum pH value was found to be 10. If pH value is acidic, magnesium-Versene complex is unstable and endpoint is not clear, while pH values above 10 magnesium hydroxide is pptd. Results obtained by this method compared favorably with those obtained by soap methods.—WPA

DAMS AND RESERVOIRS

Twelve Years of Chemical and Biological Investigations on the Pleisse Dam. B. Meissner. Wassewr.-WassTechn., 4:326 ('54). Since filling in 1941 of Pleisse dam, which supplies water for 2 large brown-coal works, chemical, physical and biological observations have been made almost daily. During 12 yrs, condition of water has deteriorated, as result of increase in amt. of domestic and industrial waste water carried into it by Pleisse. Self-purification is no

5

In May, 1882, Mahlon E. Layne drilled his first water well, thus beginning an organization that would be world-wide. He designed the Layne Vertical Turbine Pump, Layne Shutter Screen and Layne Gravel Wall Well which are recognized throughout the world. This pattern of complete service has earned Layne the reputation for world-wide leadership. We owe this leadership to the trust our valued customers have placed in our organization.

Water Wells Vertical Turbine Pumps Water Treatment

WATER WELLS . VERTICAL TURBINE PUMPS . WATER TREATMENT

LAYNE & BOWLER, INC. MEMPHIS

General Offices and Factory . Memphis 8, Tennessee

LAYNE ASSOCIATE COMPANIES THROUGHOUT THE WORLD

oper

are refu

ge h

ning

se n

eco

ved

u m atin

Liquid Alum Means

GREATER EFFICIENCIA

Delivery of liquid alum is clean, efficient and speedy. There is no interruption of operating routine.

oma Tank containing one day's alum re quirement is gauged quickly an aces accurately by Herbert Plowman urate Chief Chemist.

CAND CLEANLINESS

in sts at Gary, Indiana

ar Liquid Alum system has been operation since May, 1954, and are entirely satisfied with it. reful study during the planning ge had shown that considerable ings could be realized by dening for Liquid Alum. After se many months of constant use, Hobe economy of the operation has ved out. The operation is also an and efficient . . . much prefere to the handling of dry Alum, h which we have had some perience."

u may be planning a new waterating installation or a modernization of your present dry Alum operation. In either case, Cyanamid can contribute valuable know-how on the design and installation of Liquid Alum systems... as well as valuable information gained from previous experience in dry-to-liquid Alum conversions.

Why not call in your Cyanamid representative and let him determine approximately what your savings will be? Apart from economies which will quickly pay off installation costs, you can count on a greater operating flexibility with the same manpower.

um repmatic orifice metering of liquid alum y an ices supervisory requirements—assures wmar urate control.

CYANAMID

AMERICAN CYANAMID COMPANY

HEAVY CHEMICALS DEPARTMENT

30 Rockefeller Plaza, New York 20, N. Y.

In Canada: North American Cyanamid,
Toronto and Montreal

(Continued from page 88 P&R)

longer sufficient and deposition of sludge has encouraged plant growth which in turn increases sludge deposits. Concn. and deg. of saturation with oxygen have decreased, aggressive carbon dioxide has been formed. and concn. of hydrogen sulfide in sludge has increased from few mg per kg to about 900 mg per kg. Organisms present, which were originally of oligo- and \(\beta\)-mesosaprobic types, are now mainly a-mesosaprobic and polysaprobic. Sludge deposits have increased to thickness of 20 cm and decomposition of sludge causes secondary pollution of supernatant water. Lack of oxygen, presence of aggressive carbon dioxide, and strong plankton development have led to difficulties in water supplies and use of water from dam may have to cease in not-too-distant future. -WPA

Construction of a Covered Service Reservoir in Colloidal Group Concrete. H. SEDDON. J. Inst. Water Engrs., 10:20 ('56). Colloidal grout has a very useful application in design of water-retaining structures. Colloidal grout concrete construction is eminently suitable where only small labor force is available, and it is not desired to spend large capital sums on plant. Colloidal grout concrete can be used very effectively in construction of reinforced-concrete beams and roofs. Large areas of reinforced colloidalgrout concrete can be laid without expansion or contraction joints, without any apparent cracking. Although reasonably cheap reservoir has been obtained by method of construction described in paper, it is apparent that considerable economies may be obtained by varying design in certain details, depending on site chosen, although still adhering to basic principles.-PHEA

Weir Wood Reservoir and Treatment Works Ensuring a Water Supply for Crawley New Towns Growing Demands. Anon. The Surveyor, 114:955 ('55). Res. capac. is 1,240 mil gal. Earth dam is 41 ft high and tapers from 15 ft to 300 ft in width. Its core is local puddle clay. 90-ft deep cut-off trench is grouted with concrete. Dam has settled 3 in. There are two levels for drawoff. Flood water is carried off in a 10-ft diam. tunnel. Water enters treatment plant through venturi meter that measures flow and proportions alum and chlorine flash mixed. Flocculation takes place in 12 upward-flow, sludge blanketed sedimentation

tanks. There are 5 rapid gravity filters that normally operate at 80 gal/sq ft/hr but can be worked at 25% overload. Cleaning is by compressed air process. Chlorine is applied at clear-water tank inlet. Pumping plant is vertical spindle borehole type. 2 new concrete distributing res. having capacs. of 1 and 4 mil gal have been built.—PHEA

The Usk Reservoir Scheme of the Swansea Corporation. Water & Water Eng., 59:377 ('55). Details are given of constr. of dam and headworks of Usk res. to impound up to 2,700 mil gal as addnl. supply of water for Swansea, S. Wales. Compensation water to be returned to river avgs. 1.9 mgd. Of total catchment area of 3,880 acres, avg. annual rainfall of which is 66 in., 2,040 acres are owned by Swansea Corporation Water Undertaking; approx. of Corporation's land is leased to Forestry Commission, planting of trees being advantageous in reducing flood discharge and in increasing runoff in dry weather. From stilling basin at downstream end of dam water is carried in a 28-in. main to treatment works at Bryn Gwyn; treatment consists of flash mixing with aluminium sulfate as coagulant, flocculation and sedimentation, filtration through 8 rapid gravity filters, and chlorination. Water from filtered-water storage tank of 0.5 mil gal capac. is delivered a further 9 mi. to a break-pressure tank at Craig Fawr, and thence to 2 newly-constructed service res., each of 2.5 mil gal capac. at Swansea.-WPA

Biology of the Eve Brook Reservoir-II: The Second Seven Years. G. C. S. OLIVER. J. Inst. Water Engrs., 9:611 ('55). This paper is sequel to one published by author in 1948, which described biology of res. of Corby (Northants.) and District Water Company-Eye Brook Res., during first 7 yrs. of its existence. Now after second 7 vrs. of observation of its biology, res. would appear to have settled down, especially as regards algae. Composition of plankton over period is analyzed, and results of copper sulfate dosing, which was found to be necessary on 2 occasions, are given. Fish pop., and its various infections is considered, while birds seen within res. boundary are listed in appendix. In addn., land vegetation occurring while level of water drops sufficiently to expose bottom mud, is mentioned. -PHEA

0.5

by lied t is con-

the ter of res. Inl. les. ver of is sea . 3 try anin om am at--110

ate

on, nd

a at

ngal

I:

P.

or

of

er

7

as

D-

be sh d,

re

d.

City of New York, && diameter steel water pipe line, lined and coated, installed approximately 50 years ago. Still in service.

STEEL PIPE the "Water Boy" that never shows its age

Of all the water carriers, strong, durable steel pipe is the one pipe that assures you the most dependable, trouble-free service for the longest time. City after city is still getting top performance from steel pipe lines that are 50, 60, 70 years old . . . or even older. That's one reason why those same cities again choose reliable steel pipe when they extend their water mains. They know, too, that the great improvements in steel and pipe fabrication, plus the added protection of scientifically-applied linings, coatings and wrappings, guarantee an even longer, more useful life for their new pipe lines.

So if you, too, want a pipeline that will stand up under generations of hard usage without showing its age, you're smart to specify STEEL pipe.

"WHEREVER WATER FLOWS-STEEL PIPES IT BEST"

STEEL PLATE FABRICATORS ASSOCIATION

79 W. MONROE ST., CHICAGO 3, ILL.

Two Worthington two-stage centrifugal

SHARON, PA.

NIAGARA FALLS, N. Y. Worthington high lift pumps in the Water Filtration Plant. In all, there are ten Worthington pumps, 15 to 30 MGD each.

MIAMI, FLA. One of four Worthington 15 MGD pumps

Two Worthington two-stage centrifugal SHARON, PA. MIAMI, FLA. One of four Worthington 15 MGD pumps

Reliability proved a thousand times a day You benefit 3 ways when you deal with Worthingtonworld's leading builder of water works equipment

High output and low costs. Literally thousands of municipalities from the smallest to the largest have found that they get high volume output and low operating costs when they install water works equipment by Worthington. Every day, the reliability of this equipment is thoroughly proved in installations like those pictured here.

ment recommendation based on a broad look at all available ways of doing the job. Trained specialists will help you analyze An unbiased recommendation. Because Worthington makes all types of pumps and drives, you get the advantage of an equipyour requirements and select the proper equipment.

Unit responsibility. You do business with one company -elimi-

nating delays and inconvenience that can occur when you are forced to co-ordinate the efforts of several suppliers. Unit responsibility by Worthington saves you time and money.

Some of the water works equipment built by Worthington include: horizontal and vertical centrifugal pumps; vertical turbine pumps; diesel, gas and dual fuel engines; steam turbines; speed increasing gears; and water meters.

nearest Worthington District Office, or write Section W66, Worthington Corporation, Public Works Department, Harrison, N. J. In Canada: Worthington (Canada) 1955, Ltd., Toronto, For more information on any of these products, call your

WORTHINGTON

ALL MAJOR PUBLIC WORKS EQUIPMENT UNDER ONE RESPONSIBILITY

(Continued from page 52 P&R)

concentrating on these two projects. That it will be more than more than full we are certain, too. And in congratulating him on another job well done, we look forward to many happy returns of the day.

The brass ring in the above photograph circles the 500th member of the Indiana Section and the first governor on the rolls of AWWA. Smiling above the bow tie in the center is Governor Harold W. Handley of the Hoosier State, surrounded by the brass of the Indiana Section, including (left to right): Robert W. Heider, acting director, Div. of Sanitary Engineering, Indiana Board of Health; Howard S. Morse, board chairman, Indianapolis Water Co., twice national director and former Section chairman; Jack Gordon, consultant, South Bend, Section membership committee; Ray Rinehart, James B. Clow & Sons, South Bend, present Section chairman; Clyde E. Williams, consultant, South Bend, national director for the Section; Garland G. Skelton, Public Service Commission member who sponsored Governor Handley's membership; and Lewis S. Finch, vice-president and chief engineer, Indianapolis Water Co., and AWWA's new veep. Through his membership, the governor hopes, he said, "to be in constant touch with the problems confronting the water utilities of the state, as well as the overall situation regarding both surface and ground water supplies."

To the Indiana Section, we can say congratulations not only for a 500th member, but for an alert and dramatic step to point up the importance of water supply problems, as well as to gain support for the water works field. To the Michigan Section in its membership competition with Indiana, hmmm. And to the other 46 states

0.5

E

a-

r-

n-

V-

nd nd

gh

S,

h

er

le

V

h

ic

1-

n

0

ferri-floc

FERRIC SULFATE

The Superior COAGULANT With The Plus FACTORS-

Ferri-Floc gives smoother, more efficient and trouble free operation. Whatever your particular water treatment problem may be, you can depend on Ferri-Floc doing a superior job and doing it efficiently and economically—Ferri-Floc is a free flowing granular salt which can be fed with few modifications through any standard dry feed equipment. It is only mildly hygroscopic, thereby permitting easy handling as well as storage in closed hoppers over long periods of time.

WATER TREATMENT

SEWAGE TREATMENT

Efficient coagulation of surface or well water. Effective in lime sodaash softening. Adaptable to treatment of all industrial applications.

LIQUID

LIQUID

HIGHEST

OUALITY

SO

SULFUR DIOXIDE is effectively used for dechlorination in water treatment and to remove objectionable adors remaining after purification. Ferri-Floc coagulates wastes over wide pH ranges — It provides efficient operation regardless of rapid variations of raw sewage — Is effective for conditioning sludge prior to vacuum filtration or drying on sand beds.

COPPER SULFATE

COPPER SULFATE will control about 90% of the microorganisms normally encountered in water treatment more economically than any other chemical.

Excellent taste and odor control

CIPA DA CONTRACTOR DE CONTRACT

- Increased filter runs
- Coagulation over wide pH ranges
- Rapid floc formation Economy
- Turbidity removal a Color removal
- Manganese and Silical removal
- Bacteria removal Ease of Operation

FREE BOOKLET

Let us send you without charge, a 38 page booklet that deals specifically with all phases of coagulation just send us a postal card.

TENNESSEE

CORPORATION

617-629 Grant Building, Atlanta, Ga.

1940-1955

INDEX TO THE JOURNAL

These features make the new 16-year Cumulative Index (clothbound, 192 pp.) a time-saving, easy-to-use guide to JOURNAL AWWA for 1940–1955:

- topic index—titles of all articles on a particular subject are listed together under the appropriate heading, with cross references to related topics.
- geographic index—lists names of places and areas dealt with by articles in detail.
- author index—provides a key to all articles by every author during the 16-year period covered.
- other reference aids—complete topical outline, alphabetical list of subjects, table of text page numbers for each issue.

List price, \$4.50

Price to members sending cash with order, \$3.60.

AMERICAN WATER WORKS ASSOCIATION

2 Park Ave., New York 16, N. Y.

(Continued from page 96 P&R)

A substitute for water has at long last been announced, the revelation coming from Dr. J. M. Sharf, research scientist of Lancaster. Pa. Of course. the Sharf substitution is intended only as a stopgap during atomic attack and then only for drinking, but we, who have had some first-hand experience along that line, can concede the genius of the idea. The formula varies, but in all variations is extremely potable; it is generally available and easy to store; and it is almost certain to make the shelter a happier place to be. The idea, of course, is beer-canned beerand we're stocking our cellar right

Meanwhile, as one slightly harder to please, Nelson Eidson, a plumber at Dallas, N.C., recently designed and installed his own system for protecting his plumbing against a dryup in the event of a main break through enemy or, for that matter, any action. Unfortunately Eidson didn't wait for an emergency to cut in his auxiliary supply, and a revenue officer happened to turn on the kitchen tap during one of the frequent drills. Being an old hand, the officer didn't take long to trace the copper tubing to a 42-gal tank in the backyard with the proof—as a matter of fact, 100 proof-that the source was illegal.

Eidson is free now on \$500 bond—the price of being ingenious rather than just plain genius. As a matter of fact, having seen what the atom bomb can do and translating that into the destructiveness of an H-bomb, we aren't so sure that the Eidson whisky system isn't 33 per cent, or 66 proof, better than the Sharf beer plan. As the expression goes: "When rape is inevitable..."

(Continued on page 100 P&R)

5. 5

ng on ch se, ly id

ce

15

ut

e; to ce

11

o

d

g

e

-

n -

f

e

e

Orlando, Florida Water Treatment Plant includes three Walker Process Clariflows for lime softening as well as algae and color removal. The unit in the foreground, completed in 1954, increases the plant capacity to 24 MGD. The two original Clariflows were installed in 1949. Each unit is 56' square x 17' deep.

ORLANDO, FLORIDA

Consulting Engineers—
Robert & Co.,
Atlanta, Ga.
Gen'l. Mgr. — Orlando
Utilities Commission —
Mr. C. H. Stanton, Mgr.
Orlando Water Dept.—
Mr. L. L. Garrett

The Clariflow combines flocculation, good fluid mechanics and clarification in a relatively small tank. Mixing, flocculation, stilling and sedimentation are independently operated and controlled. The positive control of flocculation and clarification enables the operator to readily select the most economical method of operation when handling changeable water conditions.

Short circuiting tendencies are eliminated by means of exclusive multiple, tangential diffusers which simultaneously and equally distribute the flow. Balanced multiple surface weir troughs make efficient use of short detention periods and insure clarified overflows.

The Clariflow is applicable wherever there is a municipal or industrial need for water or waste treatment. It can be used in all operations including combined intimate chemical homogenizing, flocculation and clarification in rectangular, square or circular basins. The Clariflow gives excellent results in the treatment of municipal and industrially water for—softening—turbidity removal—color removal—algae removal. Industrially it is universally used in—oil separation and emulsion breaking plants—blast furnace flue dust thickening—paper stock reclamation.

Write for bulletin 6W 46.

WALKER PROCESS EQUIPMENT INC. FACTORY—ENGINEERING OFFICES—LABORATORY AURORA, ILLINOIS

(Continued from page 98 P&R)

Garvin H. Dyer, manager and chief engineer, Independence Div., Missouri Water Co., takes over Jul. 1 as president of the National Society of Professional Engineers.

General Waterworks Corp. has acquired the Wakefield Water Co. in Rhode Island and the Carolina Water Co. in North Carolina. The corporation now serves more than 200 communities in nineteen states.

Face has always been a matter of first importance in Japan, and apparently it still is. Thus, when the dogbitten postmen of Toyooka decided that they had had enough of canines' canines, they put their letter of complaint to dog owners in these terms: "Please keep your beloved dogs leashed

during the daytime so that we may be able to maintain dignity and rights as humans." In the US, the letter would probably have been a little less polite and, undoubtedly, a lot more materialistic in its reasons. But then, as meter readers are well aware, it isn't face that has to be saved when US dogs attack.

H. R. Godfrey has been named manager of product sales for Allis-Chalmers' West Allis centrifugal pump department. He was formerly assistant to the general manager of the firm's General Products Div.

Lester E. Jordan has been appointed district engineer in charge of the Philadelphia office of Portland Cement Assn. He has been with the organization since 1947.

WRITE TODAY For 108 PAGE CATALOG W.S. DARLEY & CO. Chicago 12

BELL JOINT LEAK CLAMPS GASKET SEALER COMPOUND C-I-60 CAST IRON BOLTS

Carson glands and bolts made of corrosion-resistant C-I-60 cast iron—last as long as cast iron pipe. Glands accommodate variations in pipe dimensions, insure uniform compression of rubber gasket.

Write for information

H. Y. CARSON COMPANY
1221 Pinson St. Birmingham, Ala.

5. 5

be as ald ite al-

er

gs

ed is-

np sti's

ed an. "LIFELINES FOR CIVILIZATION"

A NEW DOCUMENTARY FILM
ON WATER SUPPLY SYSTEMS

...AT AMERICAN WATER

Prehistoric man lived near sources of water.

Water transported into Rome by aqueducts.

Concrete Pressure Pipe supplies water for modern industry.

...AT AMERICAN WATER WORKS ASSOCIATION CONVENTION

Week of May 12, 1957

At Convention Hall, Atlantic City, N.J.

You are cordially invited— Plan now to see this new film.

Film showing to be 9:00 A.M., Thursday, May 16.

AMERICAN CONCRETE
PRESSURE PIPE

ASSOCIATION

228 North LaSalle Street
Chicago 1, Illinois

WATER FOR GENERATIONS TO COME

Correspondence

Me-ow-ter

To the Editor:

Re your cat's meow story (March 1957 P&R, p. 78):

ROY RUGGLES

Atlanta, Ga. Feb. 18, 1957

Tin Can Ally

To the Editor:

Gold mining has been carried on in the Siskiyou Mountain region of southern Oregon since the precious metal was discovered there in 1849. Thousands of white men and Chinese have extracted millions of dollars in gold from the gravel of the stream beds and veins of ore in the surrounding mountains.

As a lad in my early teens, I spent several summer vacations with my parents at a placer mining camp on Sucker Creek, a tributary of the Rogue River. All supplies, including condensed milk in tin cans, were brought into the mines by pack horses and mules over trails. One of my jobs at the mine was turning the grindstone in the shop where tools were sharpened, and it was a very tiresome and boring job for a young fellow who

was more interested in fishing and hunt-

ing

One day during the summer of 1911, the idea came to me that the empty tin milk cans could be made into a pipeline for a water wheel power plant that could turn the grindstone. So I proceeded to take the tops and bottoms off the cans by heating them in the forge to melt the solder, and then to swell one end of each can by placing the tin cylinders over the anvil horn and hammering the edge so that the cans would fit together like sections of stovepipe [see photo below]. The pipeline was then laid up the hill behind the shop to a ditch carrying water to the mine workings. The ditch was about 20 ft higher than the shop.

A water wheel was made by placing cone-shaped cups, made of tin, on the edge of a 14-in. wooden disk which was mounted in the shop. A belt and pulleys connected the water wheel to the grindstone, and, when water was turned into the pipeline, the little power plant worked beautifully. A lad's ingenuity and a pile of empty milk cans had harnessed water

0.5

intine ine uld to by the ach the so ec-

he 20

ng

he

d-

to

er

METER REPAIR BENCH ...

Complete with Vise and Sink

Send for Ford Catalog No. 56. Here is a repair bench designed specifically for the water meter shop. A 34" x 72" working top supports a 15" acid resisting sink, a meter vise that holds meters from 5%" to 1" in size and a tool drawer. Above the bench is a shelf. Bench may be equipped with pressed wood top, two drawers or two shelves if desired. Electrical and air hose connections are standard equipment. Complete information gladly supplied.

FOR BETTER WATER SERVICES

THE FORD METER BOX COMPANY, INC. Wabash, Indiana

A

Correspondence

(Continued from page 102 P&R)

power to do his job so that he could go fishing.

While on a vacation trip the summer of 1953, I visited the site, which has been a ghost camp for 30 years, and found the log buildings crumpled and sagging. As I prowled around the old shop, I caught sight of that little old tin pipeline almost intact and in a remarkable state of preservation, considering that it had been exposed to the elements for over 40 years. There must have been a lot of tin in those cans.

FRED OSBORN

Corvallis, Ore. Mar. 10, 1957

Friend Osborn's story of the heroics of tin-tin-tin might normally have elicited some doggerel at the very least. Unfortunately (?), the doggerel is now dead and buried in the interstices of our own

home, together with the radiant-heating system that drowned it. There were days back in early February when we almost followed it as, with hammer and chisel, we spent every free hour chopping holes through a 3-in, concrete floor to discover why our meter was meowing with all the taps shut off. The answer, of course. was the failure of the 1-in, steel pipe that had been laid in sand between the two 3-in. slabs of concrete on which the house stands. From the fact that the pipe wall had been eaten away to eggshell thinness from the outside, the cause was assumed to be stray-current electrolysis. when some 12 ft of floorbreaking had failed to reveal any pipe solid enough to repair, the cure was solid concrete—and baseboard radiation. Some of the wizardry of Osborn would have stood us in good stead then-condensed milk cans. that is, instead of evaporated steel.-Ep.

Switch to

ANTHRAFILT.

the MODERN

All-Purpose Filtering Medium

Anthrafilt Offers Many
Advantages Over Sand and Quartz

- DOUBLES length of filter runs.
- REQUIRES only half as much wash water.
- KEEPS Filters in service over longer periods.
- INCREASES Filter output with better quality effluent.
- · GIVES better support to synthetic resins.
- PROVIDES better removal of fibrous materials, bacteria, micro-organic matter, taste, odor, etc.
- IDEAL for industrial acid and alkaline solutions.
- EFFECTIVE filtration from entire bed.
- LESS coating, caking or balling with mud, lime, iron, or manganese.

Write for further information, test samples and quotations to:

PALMER FILTER EQUIPMENT CO. P.O. Box 1696—822 E. 8th St., Erie, Pa.

Representing:

ANTHRACITE EQUIPMENT CORP.
Anthracite institute Bidg., Wilkee-Barre, Pa.

Employment Information

Classified ads will be accepted only for "Positions Available" or "Positions Wanted." Rate: \$1.50 per line (minimum \$5.00), payable before publication. Deadline for ad copy: first of month prior to month of publication desired. To place ad, obtain "Classified Ad Authorization Form" from: Classified Ad Dept., Journal American Water Works Assn., 2 Park Ave., New York 16, N.Y.

Positions Available

Manager, Water Div., Public Utility Agency of Guam. Will have administrative, technical, and supervisory responsibilities. Salary \$8,580-\$10,725, plus two-way transportation for employee and family; furnished housing provided at reasonable rental. Two-year contract subject to renewal by mutual agreement. Write: Peter C. Siguenza, Director, Dept. of Labor & Personnel, Government of Guam, Agana, Guam.

JOIN THE PARADE

City after City Town after Town

Swinging to

CALMET

"IT MEASURES EVERY DROP"

WELL MACHINERY & SUPPLY CO., INC.

Section Meetings

Illinois Section: The 47th annual meeting, Mar. 20–22, at the LaSalle Hotel, Chicago, was the largest ever held by the Illinois Section. A total of 474 were in attendance throughout the 3 days. At the business luncheon, the following officers were elected for the ensuing year: C. L. Baylor, chairman; T. E. Larson, vice-chairman; J. C. Vaughn, junior trustee; and H. H. Gerstein, director. The reports of the various committees were read and placed on file.

At the banquet, the annual nominee for the Fuller Award was announced—Horace R. Frye, superintendent of the Evanston Water Dept. Life Membership certificates were awarded to Max Fishstein and Ralph Noble. This year the Section, for the first time, gave a special award to one of its outstanding members, M. H. Foley, in appreciation of his service and leadership on many entertainment committees over an extended period of years, for both the Section and the Association.

Many excellent papers of both a scientific and a practical character were presented, with emphasis on the latter. These covered all phases of water works operation. [A list will appear in the December 1957 JOURNAL.] Three movies on water construction projects were shown. The first covered the Gary, Ind., Filtration Plant; the second, the installation of Bascule Gates on the dam at Decatur, Ill.; and the third, the erection of large elevated storage tanks.

D. W. Johnson Secretary-Treasurer

Southeastern Section: Meeting at the Francis Marion Hotel, Charleston, S.C.,

Mar. 17-19, 1957, the 28th annual session of the Southeastern Section was attended by 335 registered members and guests, a record high for the Section. This increase was due in part to the unusually large number of wives who accompanied their husbands to the meeting and enjoyed the gracious entertainment provided by the Hostess Committee under the able guidance of Mrs. John R. Bettis, wife of Charleston's water department superintendent.

One of the features of this meeting was a luncheon on Monday, Mar. 18, honoring the retired members of the Section and their wives. On hand for this occasion were seven retired superintendents or engineers from the Section, including Mr. and Mrs. John F. Pearson, Orangeburg, S.C.; Mr. and Mrs. Francis B. Mc-Dowell, Charleston, S.C.; Mr. and Mrs. Frank W. Chapman, Greenwood, S.C.; B. B. Meng Sr., Winnsboro, S.C.; Homer Schumpert, Newberry, S.C.; Guy H. White, Columbia, S.C.; and B. P. Rice, Atlanta, Ga. Also present were Mr. and Mrs. T. M. Starnes of the Alabama-Mississippi Section and C. L. Korner of the North Carolina Section, both retired.

Speaking at this luncheon, E. L. Filby, engineer, Black & Veatch, Kansas City, Mo. (formerly state sanitary engineer in South Carolina), related numerous amusing, interesting, and informative incidents connected with the water works profession in South Carolina in the World War I period.

The technical part of the meeting opened Monday morning, when Mayor Pro-Tem C. O. Thompson welcomed the group to Charleston. He was followed by AWWA President Paul Weir and by

COME TO REILLY

Each of the Reilly salesmen knows what the others are doing thanks to the hard work of Ed Goodman. This is important to the buyers of Coal Tar Enamels, for in this way they can be kept advised of the most up-to-date experience of others.

COLORADO

KANSAS

MISSOURI

NEW MEXICO

 Ernie Rouland enjoys the goodwill of Reilly customers because he carries out the Company's mission of supplying high quality products and comprehensive service. For Reilly Coal Tar Enamel, Ernie will be proud to have you call him.

Reilly Tar & Chemical Corporation

MERCHANTS BANK BUILDING, INDIANAPOLIS 4, INDIANA

Sales Offices in Principal Cities

P.O. Box 370, Granite City, Illinois

Section Meetings

(Continued from page 106 P&R)

Chairman Carl C. Lanford, who spoke about some of the needs of the Section. [A list of the technical papers presented will appear in the December 1957 JOURNAL.]

At the business meeting Tuesday morning, the following officers were elected to serve for the coming year: chairman—Robert C. Kauffman, Atlanta, Ga.; vice-chairman—John R. Bettis, Charleston, S.C.; and trustee—Oscar M. Fuller, Union, S.C. Sherman Russell, national director, and L. R. Simonton, trustee, continue in office for another year. N. M. deJarnette was reappointed secretary-treasurer.

The Annual Banquet was held Tuesday evening. The Fuller Award Committee announced W. T. Linton, state sanitary engineer, South Carolina Board of Health, as the Section's choice for the award.

Additional activities at this meeting included a "Meet and Greet" party Sunday evening; cocktail parties and other entertainment provided by the manufacturers' representatives and WSWMA, ably planned by Denzle Q. Whitehair and his Club Room Committee; a boat trip around the Charleston harbor as guests of the US Navy's Mine Craft Base, commanded by Admiral Neil K. Dietrich; and, for the ladies, a boat trip up the Ashley River to the Magnolia Gardens, a bus tour of the city and its scenic and historical spots, and a luncheon at the Country Club as guests of the Charleston Water Dept.

> N. M. DEJARNETTE Secretary-Treasurer

IRON REMOVAL & WATER SOFTENING

During 1956 we built a large number of durable and efficient low cost water treating plants for the removal of iron, manganese, hardness and other undesirable impurities. These plants operate automatically, require very little space and are unusually inexpensive to operate and maintain.

Full Particulars on Request

HUNGERFORD & TERRY, INC.

CLAYTON 5, NEW JERSEY

ts

"Air Flow" design prevents cavitation in Butterfly Valve

96" valve for penstock intake at Pleasant Valley Hydro-Electric Power Plant, Los Angeles, Calif. ENGINEERS: Los Angeles Department of Water and Power.

Throttling water at a high rate of flow may cause critically high velocities through the restricted area and develop a vapor pocket immediately down stream of the valve. The alternate buildup and collapse of this vapor pocket develops supernormal pressures on the face of the valve disc, accelerating erosion and causing shocks in the piping system. This phenomenon, known as cavitation, may occur regardless of the shape of the valve disc or its material of construction.

This unusual problem arose in planning the Pleasant Valley Hydro-electric Plant. Although ultimately intended for open-shut service, the 96" penstock intake valve would have to throttle flow through the waterway during the plant construction period. Pratt engineers knew from experience that cavitation would probably occur and sought to forestall damage to the valve disc and pipeline structure.

The problem was solved with a design which allows atmospheric air to pass down

the valve shaft and out through holes in the valve disc, preventing the formation of low pressure areas.

The valve and reducer are under 65 feet of water and the electric motor operator is on a floor 68 feet above the valve centerline. An oil-filled standpipe balances pressure in the reducer with outside water pressure.

This imaginative engineering is the result of 30 years experience in butterfly valve design. Specifying Pratt valves puts this experience to work for you. It helps keep installation costs down and assures years of efficient, economical operation.

NEW! Latest, most accurate pressure drop and flow data, conversion tables, discussion of butterfly valve theory and application plus other technical information.

Write for Manual B-2C.

PRATT

Butterfly Valves

Henry Pratt Company, 2222 S. Halsted St., Chicago 8, Ill. Representatives in principal cities

NEW MEMBERS

Applications received Mar. 1-31, 1957

Adams, Clyde B., Supt., Water & Sewers, Quindaro Township, 5031 Welborn Lane, Kansas City, Kan. '57) MD

Adams, Ray, Supt., Water & Sew-erage Dept., Thomaston, Ga. (Jan.

Adams, Tom L., Office Mgr., Water Dept., 200 N. Walker, Oklahoma City, Okla. (Jan. '57) M

Burton; see Perrysburg (Ohio) Water Dept.

Anderson, W. J., Village Engr., 161 Lakeshore Rd., Port Credit, Ont. (Jan. '57)

Armentrout, Charles L., Sr. Designing Engr., Washington Sub-urban San. Com., Hyattsville, Md. (Jan. '57) D

Ash, Harold, Supt., Municipal Water Works, Chester, W. Va. (Jan.

Auken, Oscar W., Gen. Mgr., Water & Light Utilities, Madison, N.J. (Jan. '57) PD

Ault, Willard F.; see Olympic Welding Co., Inc.

Austin, Benjamin Beid, Water & Light Dept. Supt. Clinton,

Water & Light Dept., Clint S.C. (Jan. '57) MRPD Battey, Everett M., Dist. M Infilco, Inc., 325 W. 25th Chicago 16, Ill. (Jan. '57) P Bell. John W.

Exec.-Secy., H. 829 S. 2nd Bell, John H., Exec.-Sec Bell & Assocs., Inc., 829 St., Chicago, Ill. (Jan. '57)

Beno, Robert O., Trustee, Works, Pearl & Broadway, Council Bluffs, Iowa (Jan. '57) M

Bhagat, Mrunal N., Tech. to Mng. Director, Structural Eng. Works, Ltd., Manekji Wadia Bldg., Mahatma Gandhi Rd., Bombay, India (Jan. '57) MD

Bill, Howard F., Filtration Plant Operator, Water Works, Box 70, Keyser, W.Va. (Jan. '57) MP

Operatus, W.Va. (Jan. '57) Mr Keyser, W.Va. (Jan. '57) Mr Blevens, Vester E., Supt., Water & Sewage Works, Oncida, Tenn. (Jan. '57) MRPD

Bolton, Charles M., Supt., Water Works, City Hall, Cincinnati, Ohio (Jan. '57) M

Bonsteel, Paul John, Design Engr., Eddy Valve Co., Waterford, N.Y. (Jan. '57) MD

Bothwell, Leroy Morrison, Assoc. Engr., Clyde C. Kennedy, 604 Mission St., San Francisco, Calif. (Jan. '57) MD

Bremer, Joe H., Salesman, Long-view Lime Corp., Box 2015, Sa-vannah, Ga. (Jan. '57)

Brisbane, Donald Sydney, Student. Pennsylvania State Univ dent, Pennsylvania State Univ., York, Pa. (Jr. M. Jan. '57) MPD

Broslaw, Joseph, Exec. Vice-Pres Ralf Shockey & Assocs., Inc., 350 5th Ave., New York, N. Y. (Jan. 5th Ave., N

Bulet, Francis H., Cons. Engr., 1323 N. Broadway, Santa Ana, Calif. (Apr. '57)

Burd, Harold N., Supt., Bernards Water Co., 22 Olcott Square, Bernardsville, N.J. (Jan. '57) M

Cady, Caal J., Asst. Gen. Mgr., Davis Mfg. Co., 321 N. Maple Dr., Beverly Hills, Calif. (Jan. '57)

Call Public Works Dept., Technical Sec., Nicolas Ramos G., Gen. Mgr., Apdo. Nal 661, Call, Colombia (Munic. Sv. Sub. Jan. '57) MRPD

Caseyville Water Co., Earl Ohlen-dorf, Water Supt., Caseyville, Ill. dorf, Water Supt., (Corp. M. Jan. '57)

Clarke, Lester J., San. Engr., State Dept. of Health, 3400 N. Eastern, Oklahoma City, Okla. (Jan. '57) RPD

Cleator, F. J., Supt., Water Dist., Mukilton, Wash. (Jan. '57)

Clore, John T., Jr., Plant Supt., West Helena Water Co., 519à Poplar St., Helena, Ark. (Jan.

Cohen, Stanley L., Partner, Sidney G. Spero & Co., 521—5th Ave., New York, N.Y. (Jan. '57)

Collier, William Henry, Super-visor, Services & Meters, Water Works & Sewage, Suite 14, 154 St., Winnipeg 10, Man. Evanson (Jan. '57)

Collings, Roy, Supt. of Utilitis Johnson, Kan. (Jan. '57) MRD Cook, David M., Attorney, Mc-Hale, Cook, Welch & McKinney, 1006 Chamber of Commerce Bldg., Indianapolis 4, Ind. (Jan. '57)

Cook, Donald M., Consultant, Middle West Service Co., 20 N. Wacker Dr., Chicago 6, Ill. (Jan.

Thomas Blacknall, Proj-Engr., Dept. of San. Eng., b St. & Pennsylvania Ave., 14th St. & Pennsylvania Ave., N.W., Washington, D.C. (Jan.

Coonrad, Robert S., Asst. En Barker & Wheeler, 36 State Albany, N.Y. (Jan. '57) RPD Asst. Engr.,

Costello, James J., San. Engr. II. S. Dist. Filtration Plant, 3300 E. Cheltenham Pl., Chicago, (Jan. '57) P

Courtney, Joe Davis, Maintenance & Purification, Pan American troleum Corp., Box 12, H Island, Tex. (Jan. '57) MRPD

Crews, Gordon M., Sales Repr., Neptune Meter Co., 554 E. Har-bor St., Los Angeles 22, Calif. bor St., Los (Jan. '57) D

DeLeGal, Philip; see Forsyth, Ga.

DeLuca, Joseph Robert, Civ. Engr., Seelye, Stevenson, Value & Knecht, 101 Park Ave., New York, N.Y. (Jan. '57) PD

Dixon Water Dept., O. B. Spen-cer, Supt., 121 E. 1st St., Dixon, Ill. (Munic. Sv. Sub. Jan. '57) M

Dougherty, E. R., Supervisor, San. Dist., 3012 Broadway, Indianapolis, Ind. (Apr. '57)

Doyle, M. B., City Civ. Engr., Box 273, Bloomington, Ind. (Jan. '57) MRD

Ellis, Otto, Supt., Water Dept., 227 E. South B, Gas City, Ind. (Jan. '57) D

Iston, M. G., Resident Engr Newton Eng., Ltd., Box 2290 Whitehorse, Yukon (Jan. '57) Elaton.

Evans, Lloyd F., Gen. Mgr., Utilities Operating Co., Inc., 17 E. Acre Dr., Plantation, Fort Lauderdale, Fla. (Jan. '57) M

Falconer, Jonathan Paul, Civ. Engr., Chief, Tech. Liaison Branch, Corps of Engrs., U.S. Army, 112 Montgomery St., Syracuse, N.Y. (Jan. '57) RPD

t E., Cons. Fix & Assocs., 1500 Bank Bldg., Fix, Robert E., Co Wisenbaker, Fix & As Peoples National Ba Tyler, Tex. (Jan. '57)

Foley, Charles S., Sales Repr., Gifford-Hill-American, Inc., 10317 Crestover Dr., Dallas 29, Tex. (Apr. '57)

Forsyth, City of, Philip DeLeGal, Forsyth, Ga. (Munic. Sv. Sub. Jan. '57) PD

Friedrichs, Carl C., Sales Engr., Wallace & Tiernan, Inc., 1229 W. Washington Ave., Chicago, Ill. (Ian.

Gallagher, J. E., Mgr., Culligan Soft Water Service Co., Anderson, Ind. (Jan. '57)

Geeslin, Edward, Supt., Water & Light Works, Box 351, Brady, Tex. (Jan. '57) M

Geyer, Herbert Bennett, Foreman, Muskegon, Mich. (Jan. '57) D Gill, Howard W., Mgr., Gill Water Co., Powell, Tenn., (Jan. '57) MP Glass, Andrew Carper, San. Engr., Directorate of Installations, T.A.C., Langley Field, Va. (Jan. T.A.C., Langley Field, Va. (Jan. '57) RP

Goffin, George Robert, Chief Engr., Humes, Ltd., 114 King St., Melbourne, Victoria, Australia (Jan. '57) D

Gonzalez-Hurtado, Civ. Engr., Tech. Sec., Public Works Dept., Apdo. Nal 509, Cali, Colombia (Jan. '57) PD

Goodland, City of, Howard E. Underwood, City Supt., Goodland, Kan. (Corp. M. Jan. '57) MRPD

Gorman, Horatio Eugene, Mgr., Water Dept., M (Jan. '57) MRPD Monticello, Ark.

Green, David P., Engr. in Charge, Pollution Control, State Dept. Public Health, State Office Cheyenne, Wyo. (Jan. '57) MRPD

Green Island Water Dept., Frank A. Wilson, Village Clerk, 20 Clinton St., Green Island, N.Y. (Munic. Sv. Sub. Jan. '57) MD 7

Motor Operated Stand with Integral Control Equipment

MOTOR OPERATED VALVE

Power actuation is available as a complete carefully engineered unit. Actuation may be by electric motor, air motor, or air or fluid cylinder type motivation. The power unit is compact and self contained, with sturdy supports which attach to the top of any Ludlow Valve.

Manual operation is provided for all electric and air motor operated valves. Our engineers will be glad to help you lay out a plan based on the many years of Ludlow experience in power actuation systems of all kinds for all purposes.

"NO POSSIBLE DIFFERENCE IN FIRST COST CAN OVERBALANCE THE PERPETUAL ECONOMY OF QUALITY."

CYLINDER OPERATED VALVE

LUDLOW & Rensselaer

(LUDLOW RENSSELAER) VALVES & HYDRANTS

Since 1861 THE LUDLOW VALVE MANUFACTURING CO. Troy, N. Y.

(Continued from page 110 P&R)

Greenblatt, Arthur Oscar, Civ. Everett, James Lewis, Staff Mgr., Eng. Asst., Dept. of Water & Direct Sales, Johns-Manville Sales Corp., Box 255, Houston 1, Tex. geles, Calif. (Jan. '57) RPD

Greenhill, Joseph, Tech. Repr., Bennett & Wright, Ltd., 45 Cran-field Rd., Toronto 16, Ont. (Jan.

Hagg, Harold, Gen. Mgr., Culligan Soft Water Service, 4165 College Ave., Indianapolis, Ind. (Jan. '57) MRPD

'57) MRPD'
Hall, J. P., Water Supt., Box 926,
Sinton, Tex. (Jan. '57) D
Hallock, Clair Brantley, Civ.
Engr., Comrs. of Public Works,
Charleston, S.C. (Jan. '57) D
Plant Operator.

Halt, Jennings, Plant Operator, Utilities Operating Co., 17 E. Acre Dr., Plantation, Fort Lauderdale, Fla. (Jan. '57) P

Halter, Richard A., Supt. of Water & Light, Municipal Utilities, Elk River, Minn. (Jan. '57) PD

Ham, George S., Jr., Engr., Porter, Barry & Assocs., Box 1708, Baton Rouge, La. (Jan. '57) PD Handley, Harold W., Governor, State House, Indianapolis, Ind. (Jan. '57) R

Hardle, John W., Constr. Engr., Greeley & Hansen, 220 S. State St., Chicago 4, Ill. (Jan. '57) PD Hardin, J. B.; see City of Neo-desha (Kan.)

Harris, Melvin Leon, Civ. Engr., Hudgins-Thompson-Ball & Assocs., 1411 Classen Blvd., Oklahoma 1411 Classen Blvd., Okla City, Okla. (Jan. '57) RPD

Hart, William E., Jr., Service Engr., The Flox Co., Inc., 1409 Willow St., Minneapolis, Minn. (Jan. '57) MP

Hatch, Charles C., Supt., Mech. & Electrical Maintenance, E. Bay Munic. Utility Dist., 2127 Ade-Munic. Utility Dist., 2127 Adeline St., Oakland 7, Calif. (Apr.

Hayes, William S., Engr., Board of Fire Underwriters of the Pacific, 208 Eklunel Bldg., Mont. (Jan. '57) MR Great Falls,

Helberg, Harold J., Repr., Hersey Mfg., 50 Church St., New York 7, N.Y. (Jan. '57) D

Henderson, Charles William, Supt., Water Dept., Hope, Ind. (Jan. '57) PD

Hewitt, Claude Wilbur, Assoc. Hydraulic Engr., State Dept. of Water Resources, 1100 S. Grand, Los Angeles, Calif. (Jan. '57)

lite, George M., Partner, Greeley & Hansen, 220 S. State St., Chicago 4, Ill. (Jan. '57) PD

Hixson, John E., Supt. of Utilities, Anthony, Kan. (Jan. '57)

Howe, Martin William, Dist. Mgr., Wallace & Tiernan, 301-395 Main St., Winnipeg, Man. (Jan. '57)

Hoyt, Charles H., Supt. of Utilities, Cimarron, Kan. (Jan. '57) MRD

Huggins, Cecil, Chemist, Water Works Plant, Columbia, S.C. (Jan. '57) MP

Jerman, Daniel L., Sales Agent, Adams Pipe Repair Clamps, 784 Salem St., Teaneck, N.J. (Jan.

Jeske, Richard J., Engr., Guy Villa & Sons, Inc., 1320 Raritan Rd., Clark, N.J. (Jan. '57) RPD

Jester, William J., Sales Mgr., The Bond-o Co., 760 Fairview Ave., Fairview, N.J. (Jan. '57) n

Johnson, L. L. Johnny, Asst. Regional Mgr., Byron Jackson Pumps, Inc., 407 S. Dearborn, Chicago 5, Ill. (Jan. '57)

Jones, William Farbridge, Chief Civ. Engr., Skidmore, Owings & Merrill, 1 Montgomery St., San Francisco, Calif. (Jan. '57) RD Katherman, H. P.; see Sparton Control Systems Control Systems

(Continued on page 114 P&R)

KLETT SUMMERSON ELECTRIC PHOTOMETER

Adaptable for Use in Water Analysis

KLETT MANUFACTURING CO. 179 EAST 87th STREET . NEW YORK, N. Y. 5

ili-

95 an. ili-7) ter

uy an

FLOW COEFFICIENT=155

The ebony-like finish on the inside surface of the steel water pipe shown above is a typical spun lining of Bitumastic 70-B AWWA Enamel. This type of lining has been tested and proved to have the highest flow coefficient available today.

That's one reason why steel pipe, lined with Bitumastic 70-B AWWA Enamel is such a good investment for water lines. Delivery stays high, too, year after year, since this enamel provides the best protection against tuberculation and incrustation known today.

Investigate steel water pipe—lined and coated with Bitumastic 70-B AWWA Enamel—for your next water-supply project.

Koppers Company, Inc., Tar Products Division, Pittsburgh 19, Pa.

ONLY KOPPERS MAKES

BITUMASTIC REG. U. S. PAT. OFF.

70-B ENAMEL

(Continued from page 112 P&R)

- Kazienko, Henry J., Development Engr., Johns-Manville Research Center, Manville, N.J. (Jan. '57) n
- Keebler & Matthews Ranches, Inc., 118 N. Brown Ave., Scottsdale, Ariz. (Jan. '57) MR
- Kelth, George W., Jr. Partner, The Chester Engrs., 601 Suisman St., Pittsburgh 12, Pa. (Jan. '57) MRPD
- Kipp, Hapgood, Dist. Mgr., Simplex Valve & Meter Co., E. Orange St., Lancaster, Pa. (Jan. '57) P
- Kisiel, Chester C., Civ. Eng. Dept., Univ. of Pittsburgh, 4720 McKee Dr., Pittsburgh 36, Pa. (Ian. '57)
- Robbins, Carl Theodore, Jr., Partner, John C. Norton & Assocs., Masonic Bldg., Trave Mich. (Jan. '57) MRPD Traverse City,
- Kuhlman, Harold E., Chief Engr., State Inspection Bureau, Box 559, Oklahoma City 1, Okla. (Jan. '57) MRD
- LaFrentz, LeRoy J., Owner, Des-canso Park Water Co., 11301 W. Pico Blvd., Los Angeles 64, Calif. (Jan. '57) MD
- Lemon, Thomas L., Mayor, City Hall, Bloomington, Ind. (Jan. '57) MR

- Life, Neville Woodhouse, Munic. Engr., Municipality of Saanich, Royal Park P.O., Vancouver Is-land, B.C. (Jan. '57) MD
- Lumbert, Bernard C., Chemist, Water Dept., 555 Lincoln, Evanston, Ill. (Jan. '57) P
- Lunceford, Lyle Douglas, Asst. Water & Sewer Supt., City Hall, Groves, Tex. (Jan. '57) PD
- Mahlert, Karl; see Thyssensche (Germany) Gas & Waterworks
- Mangun, Kermit A., Asst. Chemist, Board of Public Utilities, Quindaro Station, Kansas City, Kan. (Jan. '57) P
- Manitou Springs Water Dept., J. G. Meury, Supervisor of Public Works, City Hall, 606 Manitou Ave., Manitou Springs, Colo. (Munic. Sv. Sub. Jan. '57) MPD
- Mantle, Robert, Shop Supt., Ver-non Water Dept., 412 Griswold
- Ave., Glendale, Calif. (Oct. '54)

 Martin, P. T., Utility Supt., City
 Hall, Brownwood, Tex. (Jan. '57)
- McBride, Frank Harry, Sales Engr., B-I-F Industries, Inc., 406 W. 34th St., Kansas City, Mo. (Jan. '57) P

- Lewis, Harley A., Supt., Water & Sewer Dept., Mulberry, Ark. (Jan. '57) MPD .

 Life, Neville Woodhouse, Munic. (Jan. '57) P
 - McNitt, Willard C., Gen. Mgr. of Sales, Clayton Mark & Co., 1900 Dempster St., Evanston, Ill. (Jan. 57) D
 - Meury, J. G.; see Manitou Springs (Colo.) Water Dept.
 - Michaud, Raymond Frederick, Civ. Engr., Water Dept., Rm. 401, City Hall, Milwaukee, Wis. (Jan. '57) D
 - Miller, Jesse, Water Works, 1604 Main St., Elwood, Ind. (Jan. '57)
 - Miller, John W., Asst. Mgr., New Jersey Water Co., 214 W. Atlantic Ave., Haddon Heights, N.J. (Jan. Ave., H '57) M
 - Musgrave, Dennis C., Sr. Pennock Canadian-British. 46 Elgin St., Ottawa, Ont. (Jan.
 - Nall, Morris E., Partner, Morris E. Nall & Assocs., 604 Prospect, Cleveland 15, Ohio (Jan. '57) PD Nelson, Carl H., Distr. Supervisor, Water Dept., N. 2724 Hamilton, Spokane, Wash. (Jan. '57) MD
 - Neodesha, City of, J. B. Hardin, City Engr., Neodesha, Kan. (Corp. M. Jan. '57)

1 C 4 th eed

his, talle

fa Fo

rese nen

ases apa

1g a

D

om

lari ince

mo ases

(Continued on page 116 P&R)

For Public Water Fluoridation

Sodium Silicofluoride-98%

(Powder)

Sodium Fluoride—98%

(Powder or Granular)

Meet AWWA specifications

White or tinted blue Minimum of dust in handling Minimum of storage space Available in bags and drums

The AMERICAN AGRICULTURAL CHEMICAL Co.

50 Church Street, New York 7, N. Y.

WITH CELITE DIATOMITE FILTRATION
YOU CAN GET CRYSTAL CLEAR WATER AND...

Cut space requirements as much as 75%

A Celite* diatomite filtration system requires only 4 the housing space that a sand filtration system eeds to deliver the same water capacity. Because of his, an actual Celite diatomite filter station was intalled by Johns-Manville for only 55% of the cost of a comparable sand filter plant.

For those communities that wish to increase their resent water capacity but must hold down improvement costs, a Celite diatomite filter can in most ases be added right in the existing sand plant. apacity can be more than doubled without spending a penny for additional land or construction.

Diatomite systems not only save space, but, under omparable conditions, they also improve water larity. For with Celite, turbidity is usually lower, ince more suspended impurities, including all floc, moebae and algae, are removed. In fact in some ases, turbidity is so low it can't be measured.

Mined by Johns-Manville at the world's largest and purest commercial diatomite deposit, Celite is carefully processed for purity and uniformity. It is available in a wide range of grades to deliver the best practical balance of clarity and flow rate with any suitable filter. For further information see your nearby Celite engineer or write for free technical reprints and illustrated brochure to Johns-Manville, Box 14, New York 16, N. Y. In Canada, Port Credit. Ontario.

Celite filter aids are composed of microscopic irregularly shaped particles like these. 90% of a given quantity of Celite is composed of countless channels and voids that trap the finest impurities while permitting the free passage of clear liquid.

**Celite ta Johns-Manville's registered trade mark for its diatomaccous silica products. †See Comparison Studies of Diatomite and Sand Filtration by G. R. Bell, Journal American Water Works Association, September, 1956 or write for free reprint.

Johns-Manville CELITE Filter Aids

M

(Continued from page 114 P&R)

Newton, Donald, Partner, Greeley & Hansen, 220 S. State St., Chi-cago, Ill. (Jan. '57) RP

Ohlendorf, Earl; see Caseyville (III) Water Co.

Olympic Welding Co., Inc., Willard F. Ault, Pres., 3449—11th Ave., S.W., Seattle 4, Wash. (As-Ave., S.W., Seattl soc. M. Jan. '57)

Owades, Joseph L., Chief Chem-ist, Schwarz Labs. Inc., 230 Wash-ington St., Mount Vernon, N.Y. St., M (Jan.

Papazian, Albert, Supt., Saltfleet Township Water Area 1, Winona, Ont. (Jan. '57)

Pappenhagen, James M., Prof. of Chem., Kenyon Gambier, Ohio (Jan. '57) College,

Penna, Edwin, Sales Repr., Diehl Pump & Supply Co., Robards Lane, Louisville, Ky. (Jan. '57) R

Perrott, Thelo Albert, Cons. Civ. Engr., 156 University Ave., Palo Alto, Calif. (Jan. '57) MRD

Perry, Bernard T., Water Works Accounting, 6208 College Ave., In-dianapolis, Ind. (Jan. '57) M

Perrysburg Water Dept., Burton Ames, Supt., 205 E. Boundary St., Perrysburg, Ohio (Corp. M. Jan.

Peters. William H., Supt., Dept Waterworks, Valparaiso, Ind. (Jan. '57) M

Pickle, Herbert E., Director of Public Works, Hollywood, Fla. (Jan. '57) MPD

Puglisi, S. Joseph, Director of Research & Development, Cuno Eng. Corp., Meriden, Conn. (Jan. '57) P

Purdle, Robert Wright, Assoc. Engr., Clyde C. Kennedy, 604 Mission St., San Francisco, Calif. Mission St., San (Jan. '57) RPD

Ramos G., Nicolas; see Cali (Colombia) Public Works Dept.

Rasinen, Edwin M., Personnel Director, Dept. of Water Supply, 735 Randolph, Detroit 26, Mich. (Jan. '57) M

Reinker, Charles A., Salesman, Gen. Chem. Div., Allied Chem. & Dye Corp., Rm. 430, The Mer-Dye Corp., Rm. 430, And Chandise Mart, Chicago 54, Ill.

Rose, Hugh Glen, Jr., Asst. Engr State Water Survey, Box 232, Ur-bana, Ill. (Jan. '57) RPD

Rowley, Albert E., Supervisor, Supply Yard, Maintenance & Constr. Div., Dept. of Water Sup-ply, 6129 Radnor Ave., Detroit 24, Mich. (Jan. '57) D

Rutley, Thomas E., Supt., Maintenance Div., Bureau of Water Supply, Park Terminal Bldg., Baltimore, Md. (Jan. '57) MD

Saltzman, Curtis D., Owner, Safargo Co., Ohio, Ill. (Jan. '57) Sampley, John Lowery, Supt., Water Works Com., Monterey, Tenn. (Jan. '57) RPD

Sanders, Lovie, Supt., Water & Sewer Dept., Bremen, Ga. (Jan. '57) MP

'57) MP Sanford, William D., Sanit Installations Engr. Sanitation fice, Stewart Air Force Base, Tenn. (Jan. '57) MP Schewe, Edward A., Chief Mech. Engr., J & G Daverman Co., Grand Rapids, Mich. (Jan. '57) PD

Schillmoller, Charles
Schillmoller, Charles
Tech. Repr., Development & Research Div., Interna-tional Nickel Co., Inc., 538 Petroleum Bldg., Los A Calif. (Jan. '57) MPD Angeles 15.

Schwenk, Henry C., Valve Sales Mgr., Henry Pratt Co., 2222 S. Halsted St., Chicago 8, Ill. (Jan. '57) PD

Seaton, Kermit C., Supervisor, Water Meter Shop, Public Service Board, El Paso, Tex. (Jan. '57) Sellers, Jerry, Water Plant Supt., Cocoa, Fla. (Jan. '57) P

Sells, James Hunter, Dist. Mgr., Rockwell Mfg. Co., 525 Market St., San Francisco, Calif. (Jan. '57)

Supt., Treashroyer, Edward, Supt., Treat-ment Plant, Water Plant, 13th & Richland, Wheeling, W.Va. (Apr. Shroyer, Ed 57)

imons, Steve, Plant Operator, Operator, Public Service Board, Box 7203, El Paso, Tex. (Jan. '57) RP Simons,

'57) RP Smith, Louis J., Supervisor, Pan Patroleum Corp., High American Petroleum Corp., Hi Island, Tex. (Jan. '57) MRPD

Island, Tex. (Jan. '57) MRPD
Snyder, Herschel Simon, Supt.,
Water Dept., 202 S. Main St.,
Liberty, Ind. (Jan. '57)
Sparton Control Systems, Div.
of Sparton Corp., H. P. Katherman, Gen. Mgr., 2301 E. Michigan
Ave., Jackson, Mich. (Assoc. M.
Jan. '57)

Spence, Robert Edwin, Supt. of Public Works, Improvement Dist., Deep River, Ont. (Jan. '57) MPD Spencer, O. B.; see Dixon (Ill.) Water Dept.

Stewart, Clinton L., Engr., De-Kalb County Water System, Box 331, Decatur, Ga. (Jan. '57) MRPD

Stolcovy, George Thomas, Water System Controlman, Public Works Center, Guam, M.I. (Jan. '57)

Stone, Wirt J., Industrial Chem. Sales, B. Preiser Co., Inc., 1203 Early St., Charleston, W.Va. (Jan. 2571

Swank. Bichard Whitford, Civ. Engr., County Court House, Ventura, Calif. (Jan. '57) MRPD Sylvester, David G., 4204 N. Villa, Oklahoma City, Okla. (Apr. '53)

empleton, Carson Howard, Pres., Templeton Eng. Co., 1632 Portage Ave., Winnipeg 12, Man. (Jan. '57) D Templeton,

Thyssensche Gas & Water-works, Karl Mahlert, Director, Duisburger Strasse 161, Duisburg-Hamborn, Germany (Corp. M. Jan. '57) MRPD

Tolnay, James G., Distr. Foreman, Water Dept., 3102 Cedar, Everett, Wash. (Jan. '57) MRPD

otten, Aubrey James, Chief Operator, Nitro Water Plant, West Virginia Service, Charleston, W.Va. (Jan. '57) MP

Underwood, Howard E.; see City of Goodland (Kan.)

Valentine, Martin J., Supt., Munic. Water Dept., 318 Fremont St., Whitewater, Wis. (Apr. '57)

Van Dinther, Louis, Foreman, Water & Sewer Dept., 1000 Michi-gan Ave., Muskegon, Mich. (Jan. '57) D

Vay Ry, Charles Arie, Supt. of Public Works, 14 Church St., Camden, N.Y. (Jan. '57) MRPD

Vines, Euel, Sales Repr., Koppers Co., Inc., 1312 United Artist Bldg., Detroit 26, Mich. (Jan. '57) D

Warden, Thomas Benjamin, Jr., Filter Plant Mgr., Williamson Co., Jonestown, Tex. (Jan. '57) MD

Warren, Robert A., Asst. Engr., Greeley & Hansen, 220 S. State St., Chicago 4, Ill. (Jan. '57)

Weatherford, A. E., Chemist, Atchison City Water Works, Inc., Atchison, Kan. (Jan. '57) P

Webb, Carl L., Mgr., Suburban Utility Dist., Rte. 7, Knoxville, Tenn. (Jan. '57) MPD

Webb, Clark D., Sales Repr., U. S. Pipe & Foundry Co., 905 Monad-nock Bldg., San Francisco 5, Bldg., San (Yan, '57) MD Calif. (Jan.

Weller, Fred, Supt., Atlantic High-lands, N.J. (Jan. '57) RPD

Welch, James H., Mgr., Water & Sewer Works, Beebe Municipal Water Co., Beebe, Ark. (Jan. '57) MRPD

Welty, Clint, Sales Repr., Barada & Page, 2041 N. Mosley, Wichita, Kan. (Jan. '57) MRPD

hite, William J., Sr., Supt., American Valve Mfg. Co., Cox-sackie, N.Y. (Jan. '57) White,

Viehle, William E., Utilities Chemist, Goodyear Atomic Corp., Box 623, Portsmouth, Ohio (Jan. Wiehle.

Wilson, Anthony Tech. Director, Wilson Tech. Director, Wilson Stone, Ltd., 3 Broadway, Port on Spain, Trinidad, B.W.I. (Jan. '57)

Wilson, Frank A.; see Green Island (N.Y.) Water Dept.

Wisenbaker, Royee E., Cons. Engr., Wisenbaker, Fix & Assocs., 1500 Peoples National Bank Bldg., Tyler, Tex. (Jan. '57) MRPD

Wittesaele, Rene A., Water Sys-tem Maintenance Foreman, Dept. tem Maintenance Foreman, Dept. of Water Supply, 735 Randolph St., Detroit, Mich. (Jan. '57) MD

Fyndham, Herbert B., Jr., Engr., Malcolm Pirnie Engrs., 25 W. 43rd St., New York 36, N.Y. (Jan. '57) RP Wyndham,

(Jan. '57) Kt.
Ye-Shih, Lin, Assoc. San. Engr.,
Provincial Health Dept., 2-chungMei-nung, Kao-shung, Zeng St., Mei-nung, Taiwan (Jan. '57) RP

Young, Harold C., 1911 McCall Rd., Austin, Tex. (Apr. '57) Young, William F., Hydr. Engr., Cornell Univ., Day Hall, Ithaca, N.Y. (Jul. '52)

Zabban, Walter, Chester Engrs. 601 Suismon St., Pittsburgh 12 Pa. (Jan. '57) MRP Pittsburgh 12.

immerman, John K., Sales Engr., Johns-Manville Sales Corp., Box 2327, Corpus Christi, Tex. (Jan. '57) Zimmerman,

5

D

st,

le,

h-

2,

X-

es

g.

h

11

.

- Modern Improved Design
- . Designed for the Man in the Ditch
- One Third Lighter
- Easier to Handle
 Easier to Operate
- Edsiel to Operate
- Speedier Operation
- Use with Any Standard Make of Stops
- . See for Yourself What it Will Do for You

MODEL B ALUMINUM ALLOY TAPPING MACHINE

Join the A. W. W. A.
HAYS is one of the eleven
Charter Members of the
Manufacturers Section of
the American Water
Works Association.

WATER WORKS PRODUCTS

HAYS MANUFACTURING CO. ERIE, PA.

Index of Advertisers' Products

Activated Carbon: Industrial Chemical Sales Div. Permutit Co.

Activated Silica Generators: Omega Machine Co. (Div., B-I-F Industries)

Wallace & Tiernan Inc.
Aerators (Air Diffusers):
American Well Works
Carborundum Co.
General Filter Co.
Infilco Inc.
Permutit Co.
Walker Process Equipment, Inc.

Air Compressors: Allis-Chalmers Mfg. Co. DeLaval Steam Turbine Co. Worthington Corp.

Alum (Sulfate of Alumina):
American Cyanamid Co., Heavy
Chemicals Dept.
General Chemical Div.
Ammonia, Anhydrous:
General Chemical Div.
John Wiley Jones Co.
Ammoniators:

Fischer & Porter Co.
Proportioneers, Inc. (Div., B-I-F
Industries)
Wallace & Tiernan Co., Inc.
Ammonium Sillcofluoride
American Agricultural Chemical Co.

Brass Goods: American Brass Co. M. Greenberg's Sons Hays Mfg. Co. Mueller Co. Brine-Making Equipment:
International Salt Co., Inc.
Calcium Hypochlorite:
John Wiley Jones Co.
Carbon Dioxide Generators:
Infico Inc.
Walker Process Equipment, Inc.
Cathodic Protection:
Electro Rust-Profing Corp.
Harco Corp.
Cement, Portland:

Cement, Portland:
Monolith Portland Midwest Co.
Cement Mortar Lining:
Centriline Corp.
Chemical Feed Apparatus:
Cochrane Corp.
Fischer & Porter Co.
Graver Water Conditioning Co.
Infilco Inc.

F. B. Leopold Co. Omega Machine Co. (Div., B-I-F Industries) Permutit Co. Proportioneers, Inc. (Div., B-I-F Industries)

Industries)
Ross Valve Mfg. Co.
Simplex Valve & Meter Co.
Wallace & Tiernan Inc.
Chemists and Engineers:
(See Professional Services)
Chlorination Equipment:
Builders-Providence, Inc. (Div.,
B-1-F Industries)
Everson Mfg. Corp.

Everson Mig. Corp. Fischer & Porter Co. Proportioneers, Inc. (Div., B-I-F Industries) Wallace & Tiernan Inc. Chlorine Comparators: Klett Mfg. Co. Wallace & Tiernan Inc.

Chlorine, Liquid: John Wiley Jones Co. Wallace & Tiernan Inc.

Clamps and Sleeves, Pipe: James B. Clow & Sons Dresser Mg. Div. M. Greenberg's Sons Mueller Co. Rensselaer Valve Co. Skinner, M. B., Co. A. P. Smith Mfg. Co. Smith-Blair, Inc. Trinity Valley Iron & Steel Co.

Clamps, Bell Joint: James B. Clow & Sons Dresser Mfg. Div. Skinner, M. B., Co.

Clamps, Pipe Repair: James B. Clow & Sons Dresser Mfg. Div. Skinner, M. B., Co. Trinity Valley Iron & Steel Co.

Clariflers:
American Well Works
Chain Belt Co.
Cochrane Corp.
Dorr-Oliver Inc.
Etablissements Degremont
General Filter Co.
Graver Water Conditioning Co.
Infilco Inc.
Permutit Co.
Walker Process Equipment, Inc.

ELEVATED STEEL TANKS

Elevated Steel Tanks for water supply, ranging from 5,000 to 2,000,000 gallons—ranging from standard hemispherical self-supporting bottom to spherical tank on tubular tower.

Correctly built in accordance with AWWA specifications. Send us your inquiry, stating capacity, height to bottom and location. Established 1854. Write for Tank Talks.

0.5

Serving American Water Works Yesterday and Today

M. GREENBERG'S SONS

San Francisco's 104-year-old brass foundry, M. Greenberg's Sons, is justly proud of their past and present contributions to the field of American Water Works. Today M. Greenberg's Sons is the largest manufacturer of bronze products in the West, including industrial bronze valves and fittings, fire hydrants, hose valves and fire protection materials to underwriter standards, plumbing hardware, and many many more.

Underwriters and Factory Mutual Approved

FIRE HYDRANTS

No. 74. California Type Wet Barrel Dauble Hydrant for non-freezing weather. INDEPENDENT valves for each outlet; integral curved deflector head; full 6½," waterway through hydrant body. Greenberg "Cascade" Dry Barrel hydrants are also available for freezing climates.

Underwriters and Factory Mutual Approved HOSE GATE VALVES

300 lb bronze
Cross Section 1064 GR-UN-FM suitable
for a variety of installations requiring
heavy duty hose gate outlets. These
valves are standard equipment for Federal, State and Municipal, as well as
industrial installations calling for
300 lb. Underwriters' Approved valves.

STABILITY since 1854

Have you your copy?

Anniversary Catalog

Completely engineered catalog. A must for every engineer, architect, purchasing agent, Pipe, Valve, Fitting and Plumbing Jobber. Write for your copy today

M. GREENBERG'S SONS

765 Folsom Street San Francisco 7, California

Offices in Principal Cities throughout United States

PLEASE MAIL THIS COUPON TODAY

M. GREENBERG'S SONS . 765 FOLSOM ST. . SAN FRANCISCO 7, CALIFORNIA

Gentlemen: Please send me a copy of your new catalog.

Firm Name

Firm isome

Address

City

Zone

By

If additional copies are desired, please list name and title of person to receive catalog.

M

Condensers: Alco Products, Inc. Allis-Chalmers Mfg. Co. United States Pipe & Foundry Co. Contractors, Water Supply: Layne & Bowler, Inc. Controllers, Liquid Level, Rate of Flow: Builders-Providence, B-I-F Industries) Inc. (Div.. Fischer & Porter Co. Foxboro Co. General Filter Co. Infilco Inc. Minneapolis-Honeywell Regulator Co. Simplex Valve & Meter Co. Sparling Meter Co. Copper Sheets: American Brass Co. Copper Sulfate: General Chemical Div. Phelps Dodge Refining Corp. Tennessee Corp. Corrosion Control: Alco Products, Inc. Calgon, Inc. Philadelphia Quartz Co. Couplings, Flexible: DeLaval Steam Turbine Co. Dresser Mfg. Div. Diaphragms, Pump: Dorr-Oliver Inc. Southern Pipe & Casing Co. Engines, Hydraulic: Ross Valve Mfg. Co. Engineers and Chemists: (See Professional Services) Feedwater Treatment: Allis-Chalmers Mfg. Co. Calgon, Inc. Cochrane Corp. Graver Water Conditioning Co. Hungerford & Terry, Inc. Infilco Inc. Permutit Co. Proportioneers, Inc. (Div., B-I-F Industries) Ferric Sulfate: Tennessee Corp Filter Materials: Anthracite Equipment Corp. Carborundum Co. General Filter Co. Infilco Inc. Johns-Manville Corp. Northern Gravel Co. Permutit Co. Carl Schleicher & Schuell Co. Stuart Corp. Filters, incl. Feedwater: Cochrane Corp. Dorr-Oliver Inc Etablissements Degrement Graver Water Conditioning Co. Infilco Inc. Permutit Co. Proportioneers, Inc. (Div., B-I-F Industries) Roberts Filter Mfg. Co. Ross Valve Mfg. Co. Filters, Membrane (MF): AG Chemical Co. Millipore Filter Corp. Carl Schleicher & Schuell Co. Filtration Plant Equipment: Builders-Providence, Inc. (Div., Builders-Providence, B-I-F Industries) Chain Belt Co. Cochrane Corp. Etablissements Degremont General Filter Co.
Graver Water Conditioning Co.

Hungerford & Terry, Inc. Infilco Inc. F. B. Leopold Co. Omega Machine Co. (Div., B-I-F Industries) Permutit Co. Roberts Filter Mfg. Co. Simplex Valve & Meter Co. Stuart Corp.
Wallace & Tiernan Inc.
Fittings, Copper Pipe: Dresser Mfg. Div. M. Greenberg's Sons Hays Míg. Co. Mueller Co. Fittings, Tees, Ells, etc.: Alco Products, Inc. American Cast Iron Pipe Co. James B. Clow & Sons Crane Co. Crane Co.
Dresser Mfg. Div.
M & H Valve & Fittings Co.
Trinity Valley Iron & Steel Co.
United States Pipe & Foundry Co.
R. D. Wood Co. Flocculating Equipment: Chain Belt Co. Cochrane Corp. Dorr-Oliver Inc. General Filter Co.
Graver Water Conditioning Co.
Infilco Inc.
F. B. Leopold Co. Permutit Co. Stuart Corp. Fluoride Chemicals: American Agricultural Chemical Co. Davison Chemical Co. Fluoride Feeders: Fischer & Porter Co. Omega Machine Co. (Div., B-I-F Industries) Proportioneers, Inc. (Div., B-I-F Industries) Wallace & Tiernan Co., Inc. Furnaces: Jos. G. Pollard Co., Inc. Gages, Liquid Level: Builders-Providence, Inc B-I-F Industries) Infilco Inc. Minneapolis-Honeywell Regulator Co.
Simplex Valve & Meter Co.
Sparling Meter Co. Wallace & Tiernan Inc. Gages, Loss of Head, Pressure Vacuum, Rate of Flow, Sand Expansion: Builders-Providence, B-I-F Industries) Foxboro Co. Inc. (Div., Infilco Inc. Minneapolis-Honeywell Regulator Co., Inc.
Jos. G. Pollard Co., Inc.
Simplex Valve & Meter Co.
Wallace & Tiernan Inc. Gasholders: Bethlehem Steel Co.
Chicago Bridge & Iron Co.
Graver Tank & Mfg. Co.
Hammond Iron Works
Pittsburgh-Des Moines Steel Co. Gaskets, Rubber Packing: James B. Clow & Sons Johns-Manville Corp. Gates, Shear and Sluice: Armco Drainage & Metal Products, Inc. Chapman Valve Mfg. Co. James B. Clow & Sons Mueller Co. R. D. Wood Co.

Gears, Speed Reducing: DeLaval Steam Turbine Co. Worthington Corp. Glass Standards-Colorimetric Analysis Equipment: Klett Mfg. Co. Wallace & Tiernan Inc. Goosenecks (with or without Corporation Stops): James B. Clow & Sons Hays Mfg. Co. Mueller Co. Hydrants: James B. Clow & Sons Darling Valve & Mfg. Co. M. Greenberg's Sons Kennedy Valve Mfg. Co. Ludlow Valve Mfg. Co., Inc. M & H Valve & Fittings Co. Mueller Co. A. P. Smith Mfg. Co. Rensselaer Valve Co. R. D. Wood Co. Hydrogen Ion Equipment: Wallace & Tiernan Inc. Hypochlorite; see Calcium Hypochlorite; Sodium Hypochlorite Ion Exchange Materials: Allis-Chalmers Mfg. Co. Allis-Chaimers and Co. Cochrane Corp. General Filter Co. Graver Water Conditioning Co. Hungerford & Terry, Inc. Infileo Inc. Permutit Co Roberts Filter Mfg. Co. Iron, Pig: Woodward Iron Co. Iron Removal Plants: American Well Works Chain Belt Co. Cochrane Corp General Filter Co. Graver Water Conditioning Co. Hungerford & Terry, Inc. Infilco Inc. Permutit Co. Roberts Filter Mfg. Co. Walker Process Equipment, Inc. Jointing Materials: Hydraulic Development Corp. Johns-Manville Corp. Keasbey & Mattison Co. Leadite Co., Inc. Joints, Mechanical, Pipe: American Cast Iron Pipe Co. Cast Iron Pipe Research Assn. James B. Clow & Sons Dresser Mfg. Div.
Trinity Valley Iron & Steel Co.
United States Pipe & Foundry Co.
R. D. Wood Co. Leak Detectors: Jos. G. Pollard Co., Inc. Lime Slakers and Feeders: Dorr-Oliver Inc General Filter Co. Infilco Inc. Omega Machine Co. (Div., B-I-F Industries) Permutit Co Wallace & Tiernan Inc.
Magnetic Dipping Needles: W. S. Darley & Co. Meter Boxes: Ford Meter Box Co. Pittsburgh Equitable Meter Div. Pittsburgh Equitable Meter Div.
Meter Couplings and Yokea:
Badger Meter Mig. Co.
Dresser Mig. Div.
Ford Meter Box Co.
Hays Mig. Co.
Hersey Mig. Co. Mueller Co.

out

Oskaloosa, lowa

Neptune Meter Co. Pittsburgh Equitable Meter Div. Worthington-Gamon Meter Co. Meter Reading and Record Books: Badger Meter Mfg. Co. Meter Testers:
Badger Meter Mfg. Co.
Ford Meter Box Co. Hersey Mfg. Co. Neptune Meter Co Pittsburgh Equitable Meter Div. Meters, Domestic: Meter's, Domestic:
Badger Meter Mfg. Co.
Buffalo Meter Co.
Hersey Mfg. Co.
Neptune Meter Co.
Pittsburgh Equitable Meter Div. Well Machinery & Supply Co. Worthington-Gamon Meter Co. Meters, Filtration Plant. Pumping Station, Transmission Line: Builders-Providence, B-I-F Industries) (Div., Foster Eng. Co. Infilco Inc. Minneapolis-Honeywell Regulator Co. Simplex Valve & Meter Co. Sparling Meter Co. Meters, Industrial, Commer-Badger Meter Mfg. Co. Buffalo Meter Co. Inc. (Div., Builders-Providence, B-I-F Industries) Fischer & Porter Co. Hersey Mfg. Co. Neptune Meter Co. Neptune Meter Co. Pittsburgh Equitable Meter Div. Simplex Valve & Meter Co. Sparling Meter Co. Well Machinery & Supply Co. Worthington-Gamon Meter Co. Mixing Equipment: Chain Belt Co. General Filter Co. Infilco Inc. F. B. Leopold Co. Paints: Barrett Div. Inertol Co., Inc. Koppers Co., Inc. Pipe, Asbestos-Cement: Johns-Manville Corp. Keasbey & Mattison Co. Pipe, Brass: American Brass Co. Pipe, Cast Iron (and Fittings): Alabama Pipe Co. American Cast Iron Pipe Co. Cast Iron Pipe Research Assn. James B. Clow & Sons Trinity Valley Iron & Steel Co. United States Pipe & Foundry Co. R. D. Wood Co. Pipe, Cement Lined: American Cast Iron Pipe Co. American Cast fron Pipe Co.
Cast Iron Pipe Research Assn.
James B. Clow & Sons
United States Pipe & Foundry Co.
R. D. Wood Co. Pipe, Concrete: American Concrete Pressure Pipe Assn. American Pipe & Construction Co. Lock Joint Pipe Co. Pipe, Copper: American Brass Co. Pipe, Steel: Alco Products, Inc. Armco Drainage & Metal Products,

Inc. Bethlehem Steel Co.

Pipe Cleaning Services: Ace Pipe Cleaning, Inc. National Water Main Cleaning Co. Pipe Cleaning Tools and and Equipment: Flexible Inc. Pipe Coatings and Linings: American Cast Iron Pipe Co. Barrett Div. Cast Iron Pipe Research Assn. Centriline Corp. Inertol Co., Inc Koppers Co., Inc. Reilly Tar & Chemical Corp. Pipe Cutters: James B. Clow & Sons Ellis & Ford Mfg. Co. Jos. G. Pollard Co., Inc. Reed Mfg. Co.
A. P. Smith Mfg. Co.
Spring Load Mfg. Corp.
Pipe Jointing Materials; see Jointing Materials Pipe Locators: W. S. Darley & Co. Jos. G. Pollard Co., Inc. Pipe Vises: Reed Mfg. Co. Spring Load Mfg. Corp. Plugs, Removable: James B. Clow & Sons Jos. G. Pollard Co., Inc. A. P. Smith Mfg. Co. Potassium Permanganate: Carus Chemical Co. Pressure Regulators: Allis-Chalmers Mfg. Co. Foster Eng. Co. Golden-Anderson Valve Specialty Co. Mueller Co. Ross Valve Mfg. Co. Pumps, Boiler Feed: Allis-Chalmers Mfg. DeLaval Steam Turbine Co. Worthington Cor Pumps, Centrifugal: Allis-Chalmers Mfg. Co. American Well Works DeLaval Steam Turbine Co. H. Wheeler Mfg. Co. Worthington Corp Pumps, Chemical Feed: Infilco Inc. Proportioneers, Inc. (Div., B-I-F Industries) Wallace & Tiernan Inc. Pumps, Deep Well: American Well Works Layne & Bowler, Inc. Worthington Corp. Pumps. Diaphragm: Dorr-Oliver Inc. S. Rockwell Co. Wallace & Tiernan Inc. Pumps, Hydrant: W. S. Darley & Co. Jos. G. Pollard Co., Inc. Pumps, Hydraulic Booster: Ross Valve Mfg. Co. Pumps, Sewage:
Allis-Chalmers Míg. Co.
DeLaval Steam Turbine Co.
C. H. Wheeler Míg. Co.
Worthington Corp. Pumps, Sump: DeLaval Steam Turbine Co. C. H. Wheeler Mfg. Co. Worthington Corp. Pumps, Turbine: DeLaval Steam Turbine Co. Layne & Bowler, Inc. Recorders, Gas Density, CO2, NH₃, SO₂, etc.: Permutit Co. Wallace & Tiernan Inc.

Recording Instruments: Builders-Providence, B-I-F Industries) Inc. (Div., Fischer & Porter Co. Infilco Inc. Minneapolis-Honeywell Regulator Co. Simplex Valve & Meter Co. Wallace & Tiernan Inc. Reservoirs, Steel: Bethlehem Steel Co Bettienem Steel Co.
Chicago Bridge & Iron Co.
R. D. Cole Mfg. Co.
Graver Tank & Mfg. Co.
Hammond Iron Works
Pittsburgh-Des Moines Steel Co.
Sparling Meter Co. Sand Expansion Gages; see Sleeves: see Clamps Sleeves and Valves, Tapping: James B. Clow & Sons M & H Valve & Fittings Co. Mueller Co. Rensselaer Valve Co. A. P. Smith Mfg. Co. Studge Blanket Equipment: General Filter Co. Graver Water Conditioning Co. Permutit Co Sodium Aluminate: Monolith Portland Midwest Co. Sodium Chloride: Frontier Chemical Co. International Salt Co., Inc. Sodium Fluoride American Agricultural Chemical Co. Sodium Hexametaphosphate: Calgon, Inc. Sodium Hypochlorite: John Wiley Jones Co. Wallace & Tiernan Inc. Sodium Silicate: Philadelphia Quartz Co. Sodium Silicofluoride American Agricultural Chemical Co. Softeners: Cochrane Corp Dorr-Oliver Inc. General Filter Co. Graver Water Conditioning Co. Hungerford & Terry, Inc. Infilco Inc. oberts Filter Mfg. Co. Walker Process Equipment, Inc. Softening Chemicals and Compounds: Calgon, Inc. General Filter Co. Infilco Inc. International Salt Co., Inc. Permutit Co Tennessee Corp Standpipes, Steel: Standpipes, Steel:
Bethlehem Steel Co.
Chicago Bridge & Iron Co.
R. D. Cole Mig. Co.
Graver Tank & Mig. Co.
Hammond Iron Works
Pittsburgh-Des Moines Steel Co. Steel Plate Construction: Alco Products, Inc. Alco Products, Inc.
Bethlehem Steel Co.
Chicago Bridge & Iron Co.
R. D. Cole Mig. Co.
Graver Tank & Mig. Co.
Hammond Iron Works
Pittsburgh-Des Moines Steel Co. Stops, Curb and Corporation: Hays Mfg. Co. Mueller Co. Storage Tanks: see Tanks

Div.,

g:

Co.

Waterspheroid at Ocala, Florida

This 500,000-gallon Waterspheroid stores 500,000 gallons of water and serves the Northeast section of the City of Ocala. The tank, used for general service and fire protection, has a diameter of 55 feet, 6 inches. The tank is 132 feet, 6 inches to the bottom capacity line.

Horton Ellipsoidal bottom elevated tanks, standpipes, reservoirs, radial-cone tanks and Waterspheres are also available to meet your water storage requirements. Write our nearest office for an estimate or information.

CHICAGO BRIDGE & IRON COMPANY

Plants in Birmingham, Chicago, Salt Lake City and Greenville, Pa.

BIRMINGHAM PHILADELPHIA SAN FRANCISCO CHICAGO NEW YORK HOUSTON TULSA DETROIT ATLANTA BOSTON SEATTLE CLEVELAND SALT LAKE CITY SOUTH PASADENA PITTSBURGH NEW ORLEANS

In Canada—HORTON STEEL WORKS, LIMITED, FORT ERIE, ONT.

A

Strainers, Suction: James B. Clow & Sons M. Greenberg's Sons Johnson, Edward E., Inc. R. D. Wood Co.

Surface Wash Equipment: Cochrane Corp. Permutit Co.

Swimming Pool Sterilization: Builders-Providence, Inc. (Div., Inc. (Div., B-I-F Industries) Fischer & Porter Co. Omega Machine Co. (Div., B-I-F Industries) Proportioneers, Inc. (Div., B-I-F Industries)

Wallace & Tiernan Inc.

Tanks, Steel: Alco Products, Inc. Bethlehem Steel Co. Betniehem Steel Co. Chicago Bridge & Iron Co. R. D. Cole Mfg. Co. Graver Tank & Mfg. Co. Hammond Iron Works Pittsburgh-Des Moines Steel Co.

Tapping-Drilling Machines: Hays Mfg. Co. Mueller Co. A. P. Smith Mfg. Co. Tapping Machines, Corp.: Hays Mfg. Co.

Mueller Co.

Taste and Odor Removal: Builders-Providence, Inc. (Div., B-I-F Industries) Cochrane Corp. General Filter Co. Graver Water Conditioning Co. Industrial Chemical Sales Div. Infileo Inc. Permutit Co. Proportioneers, Inc. (Div., B-I-F Industries) Wallace & Tiernan Inc.

Tenoning Tools: Spring Load Mfg. Corp. Turbidimetric Apparatus (For Turbidity and Sulfate De-terminations):

Wallace & Tiernan Inc. Turbines, Steam: Allis-Chalmers Mfg. Co. DeLaval Steam Turbine Co.

Turbines. Water: Allis-Chalmers Mfg. Co. DeLaval Steam Turbine Co.

Valve Boxes: James B. Clow & Sons Ford Meter Box Co. M & H Valve & Fittings Co. Mueller Co. Rensselaer Valve Co. P. Smith Mfg. Co. Trinity Valley Iron & Steel Co. R. D. Wood Co.

Valve-Inserting Machines: Mueller Co. A. P. Smith Mfg. Co.

Valves, Altitude: Golden-Anderson Valve Specialty Co. W. S. Rockwell Co. Ross Valve Mfg. Co., Inc. S. Morgan Smith Co.

Vaives, Butterfly, Check, Flap, Foot, Hose, Mud and Plug: Builders-Providence, Inc. (Div., B-I-F Industries Chapman Valve Mfg. Co. James B. Clow & Sons DeZurik Corp. M. Greenberg's Sons M. Greenberg's Sons Kennedy Valve Mig. Co. M & H Valve & Fittings Co. Mueller Co. Henry Pratt Co. Rensselaer Valve Co. W. S. Rockwell Co S. Morgan Smith Co. R. D. Wood Co. Valves, Detector Check: Hersey Mfg. Co.

Valves, Electrically Operated: Builders-Providence, Inc. (Div., B-I-F Industries Chapman Valve Mfg. Co. James B. Clow & Sons

Crane Co.
Darling Valve & Mig. Co.
DeZurik Corp. Golden-Anderson Valve Specialty Co. Kennedy Valve Mfg. Co. M & H Valve & Fittings Co. Mueller Co.

Henry Pratt Co. Rensselaer Valve Co. W. S. Rockwell Co. A. P. Smith Mfg. Co. S. Morgan Smith Co. Valves, Float: James B. Clow & Sons

Golden-Anderson Valve Specialty Co. Henry Pratt Co. W. S. Rockwell Co Ross Valve Mfg. Co., Inc. Valves, Gate: Chapman Valve Mfg. Co. James B. Clow & Sons Crane Co.
Darling Valve & Mfg. Co.
DeZurik Corp.

Dresser Mig. Div.
Kennedy Valve Mig. Co.
Ludlow Valve Mig. Co., Inc.
M & H Valve & Fittings Co.
Mueller Co. Rensselaer Valve Co.

W. S. Rockwell Co. A. P. Smith Mfg. Co. R. D. Wood Co. Valves, Hydraulically Operated:

Builders-Providence, Inc. (Div., B-I-F Industries) Chapman Valve Mfg. Co. James B. Clow & Sons Crane Co. Darling Valve & Mfg. Co. DeZurik Corp. Golden-Anderson Valve Specialty Co. Kennedy Valve Mfg. Co. Leopold Co. M & H Valve & Fittings Co. Mueller Co.

Henry Pratt Co.
Rensselaer Valve Co.
W. S. Rockwell Co.
A. P. Smith Mfg. Co. S. Morgan Smith Co. R. D. Wood Co.

Valves, Large Diameter: Chapman Valve Mig. Co.

James B. Clow & Sons Crane Co. Darling Valve & Mfg. Co. Golden-Anderson Valve Specialty Co. Kennedy Valve Mfg. Co. Ludlow Valve Mfg. Co., Inc. M & H Valve & Fittings Co. Muller Co. Henry Pratt Co. Rensselaer Valve Co, W. S. Rockwell Co. A. P. Smith Mfg. Co. S. Morgan Smith Co. R. D. Wood Co. Valves, Regulating: DeZurik Corp. Foster Eng. Co. Golden-Anderson Valve Specialty Co. Minneapolis-Honeywell Regulator Co. Mueller Co. Henry Pratt Co. W. S. Rockwell Co. Ross Valve Mfg. Co. Morgan Smith Co. Valves, Swing Check: Chapman Valve Mfg. Co. James B. Clow & Sons Crane Co.
Darling Valve & Mfg. Co.
Golden-Anderson Valve Specialty Co. M. Greenberg's Sons M & H Valve & Fittings Co. Mueller Co. Rensselaer Valve Co. W. S. Rockwell Co. A. P. Smith Mfg. Co. R. D. Wood Co. Venturi Tubes: Builders-Providence, B-I-F Industries) Inc. (Div., Infilco Inc. Simplex Valve & Meter Co. Waterproofing:

Barrett Div. Inertol Co., Inc. Koppers Co., Inc. Water Softening Plants; see Softeners

Water Supply Contractors: Layne & Bowler, Inc. Water Testing Apparatus: Wallace & Tiernan Inc. Water Treatment Plants: American Well Works Chain Belt Co.

Chicago Bridge & Iron Co. Cochrane Corp. Dorr-Oliver Inc Etablissements Degremont Fischer & Porter Co. General Filter Co.

Graver Water Conditioning Co. Hammond Iron Works Hungerford & Terry, Inc. Infilco Inc. Permutit Co.

Pittsburgh-Des Moines Steel Co. Roberts Filter Mfg. Co. Walker Process Equipment, Inc. Wallace & Tiernan Inc. Well Drilling Contractors: Layne & Bowler, Inc.

Wrenches, Ratchet: Dresser Mfg. Div. Ion Exchange Zeolite: see Materials

A complete Buyers' Guide to all water works products and services offered by AWWA Associate Members appears in the 1955 AWWA Directory.

Co.

Co.

Co.

iv.,

Impact Insurance Against

- **1-LOSS OF FIRE PROTECTION.**
- 2-EXCAVATION AND PAVEMENT REPLACEMENT.
- 3-COSTLY REPAIRS INVOLVING MAJOR HYDRANT COMPONENTS.
- 4 FLOODING.

The Smith Protectop Hydrant is designed to permit rapid return to service at minimum cost when a Hydrant is damaged as a result of a traffic accident.

The Protectop Hydrant Standpipe and Valve Stem are equipped with Special Couplings located just above the ground. The Couplings withstand operating pressures and ordinary impact with an ample factor of safety. Under excessive impact occasioned by traffic accidents the Couplings fracture at the design points thus minimizing the damage and permitting speedy return to service at low cost.

All Smith Hydrants are equipped with Compression Type Valves which definitely eliminate flooding since the line pressure holds the Valve against its seat in the closed position.

Write for details.

36

THE A.P. SMITH MFG. CO.

EAST ORANGE. NEW JERSEY

Rockwell Dual Unit Compound Meter Assemblies

EASIEST To Handle, Install, Service

Big, bulky 8 in. compound meters are always a trial to install, even more of a problem to service. Now, with Rockwell-two meter single register compound manifolds you can save time and money. The complete assembly weighs approximately 100 lbs. less than a single big meter. Two men can handle it with ease. Maintenance of this Rockwell unit is a cinch. Either meter can be used to record offpeak loads while a new or repaired meter is being installed. And remember, Rockwell Dual Unit meter assemblies are razor sharp

in the measurement department. They record all the flows with far greater accuracy than a single 8" compound. And they cost less. Write for latest bulletin.

ROCKWELL MANUFACTURING COMPANY PITTSBURGH 8, PA. Atlanta Charlotte Dallas Chicago Denver Los Angeles Midland, Tex. Houston New Orleans New York N. Kansas City Philadelphia Pittsburgh San Francisco Seattle Shreveport Tulsa In Canada: Rockwell Manufacturing Company of Canada, Ltd., Toronto, Ontario

ROCKWELL WATER METERS

A Size and Type For Every Kind of Service .

The solution to this problem is always the same . . . but

Water Treatment Problems are different

No two water treatment problems are exactly alike. The right solution to each can only be arrived at after a careful situdy of the local conditions. Variables such as raw water composition, rate of flow and results required automatically rule out the cure-all approach. The installation shown below is a good example of how equipment should be selected to fit the job . . . and not vice versa.

St. Louis County, Missouri

New 36 MGD North County Plant Designed and Constructed in Less than 11 Months

One of the three water purification plants operated by the St. Louis County Water Company, the North County Plant began operation in 1955. Designed for a capacity of 36 MGD, this plant was designed and constructed in less than eleven months. The plant is located on the South bank of the Missouri River because of favorable river channel conditions for intake operation and because it would be possible to protect the plant against maximum river floods.

In the flowsheet at the North County Plant a 130'

dia. Dorr Heavy-Duty Torq Clarifier serves as the pre-sedimentation basin. This basin, which holds 4,300,000 gallons, provides a detention time of approximately 2½ hours. Four Dorrco Squarex Clarifiers, each 145' aq., comprise the primary and secondary settling zones.

If you would like more information on the complete line of Dorr-Oliver Water Treatment Equipment, write for Bulletin No. 9141, Dorr-Oliver Incorporated, Stamford, Connecticut.

Every day over 81/2 billion gallons of water are treated by Dorr-Oliver equipment.

Squares Trademark Reg. U. S. Pet. Off.

WORLD-WIDE RESEARCH - ENGINEERING - EQUIPMENT

LEADITE

Jointed for . . . Permanence with LEADITE

Generally speaking, most Water Mains are buried beneath the Earth's surface, to be forgotten,—they are to a large extent, laid for permanency. Not only must the pipe itself be dependable and long lived,—but the joints also must be tight, flexible, and long lived,—else leaky joints are apt to cause the great expense of digging up well-paved streets, beautiful parks and estates, etc.

Thus the "jointing material" used for bell and spigot Water Mains MUST BE GOOD,—MUST BE DEPENDABLE,—and that is just why so many Engineers, Water Works Men and Contractors aim to PLAY ABSOLUTELY SAFE, by specifying and using LEADITE.

Time has proven that LEADITE not only makes a tight durable joint,—but that it improves with age.

The pioneer self-caulking material for c. i. pipe.
Tested and used for over 40 years.
Saves at least 75%

THE LEADITE COMPANY
Girard Trust Co. Bldg. Philadelphia, Pa.

