Bài 2. CÔNG THỰC LƯƠNG GIÁC

A. TÓM TẮT LÝ THUYẾT

1. Công thức cộng

Công thức cộng

- \odot $\cos(a-b) = \cos a \cos b + \sin a \sin b$.
- $\bigcirc \cos(a+b) = \cos a \cos b \sin a \sin b.$
- Θ $\sin(a+b) = \sin a \cos b + \sin b \cos a$.

2. Công thức nhân đôi

Công thức nhân đôi được xây dựng bằng cách thay b = a trong công thức cộng.

Công thức nhân đôi

- Θ $\sin 2a = 2 \sin a \cos a$.
- \odot $\cos 2a = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- Từ công thức nhân đôi, ta có công thức hạ bậc:

- Công thức hạ bậc $\sin^2 a = \frac{1 \cos 2a}{2}$. $\odot \cos^2 a = \frac{1 + \cos 2a}{2}$.
- $oldsymbol{\triangle}$ Áp dụng công thức cộng cho 3a=a+2a, ta có công thức nhân ba:

Công thức nhân ba

- Θ $\sin 3a = 3\sin a 4\sin^3 a$

3. Công thức biến đổi tích thành tổng

Công thức tích thành tổng

- $\odot \cos a \cos b = \frac{1}{2} [\cos(a-b) + \cos(a+b)].$

4. Công thức biến đổi tổng thành tích

Công thức biến đổi tổng thành tích được xây dụng bằng cách $a = \frac{a+b}{2}, b = \frac{a-b}{2}$ trong công thức biến đổi tích thành tổng.

Công thức tổng thành tích

- $\Theta \sin a + \sin b = 2\sin\frac{a+b}{2}\cos\frac{a-b}{2}. \qquad \Theta \sin a \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}.$

ĐIỂM:

"It's not how much time you have, it's how you use

QUICK NOTE

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	

																															•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

QUICK NOTE

B. CÁC DANG TOÁN THƯỜNG GĂP

Dạng 1. Áp dụng công thức cộng

Một số trường hợp rút gọn nên nhớ:

$$\Theta$$
 $\sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right).$

1. Ví du mẫu

VÍ DỤ 1 (NB). Không dùng máy tính, hãy tính $\cos 105^{\circ}$ và $\cot \frac{\pi}{12}$.

VÍ DỤ 2 (NB). Chứng minh rằng $\sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right)$.

VÍ DỤ 3 (TH). Tính $\sin\left(a + \frac{\pi}{4}\right)$, biết $\sin a = \frac{12}{13}$ và $0 < a < \frac{\pi}{2}$.

VÍ DỤ 4 (VDT). Không sử dụng máy tính, hãy tính $P = \cos 10^{\circ} \cos 35^{\circ} - \cos 55^{\circ} \cos 80^{\circ}$.

VÍ DU 5 (VDT). Chứng minh giá trị của biểu thức

$$P = \sin\left(\frac{\pi}{6} - \alpha\right) + \sin\left(\frac{\pi}{6} + \alpha\right) - \cos\alpha$$

không phụ thuộc vào α .

VÍ DỤ 6 (VDC). Một thiết bị trễ kỹ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần $f_1(t) = 5 \sin t$ và phát lại nốt thuần $f_2(t) = 5 \cos t$ thì âm kết hợp là $f(t) = f_1(t) + f_2(t)$, trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng $f(t) = k \sin(t + \varphi)$, tức là âm kết hợp là sóng hình sin. Hãy xác định biên độ âm k và pha ban đầu $\varphi (-\pi < \varphi < \pi)$ của sóng âm.

2. Bài tập rèn luyện

BÀI 1 (NB). Tính các giá trị lượng giác của góc 75°.

BÀI 2 (NB). Chứng minh rằng $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$

BÀI 3 (TH). Tính giá trị của biểu thức $P = \frac{\cos\frac{5\pi}{18}\cos\frac{\pi}{9} + \sin\frac{5\pi}{18}\sin\frac{\pi}{9}}{\sin\frac{\pi}{5}\cos\frac{3\pi}{10} + \cos\frac{\pi}{5}\sin\frac{3\pi}{10}}$.

BÀI 4 (TH). Tính $\tan\left(x + \frac{\pi}{4}\right)$ biết $\cos x = \frac{2}{3}$ và $0 < x < \pi$.

BÀI 5 (TH). Tính $\sin\left(x+\frac{\pi}{3}\right)$ biết $\sin x + \sqrt{3}\cos x = 1$.

BÀI 6 (VDT). Không sử dụng máy tính, hãy tính $P = \cos 20^{\circ} \cos 40^{\circ} - \sin 140^{\circ} \sin 160^{\circ}$.

BÀI 7 (VDT). Cho tam giác ABC có $\cos B = \frac{3}{5}$, $\cos C = \frac{\sqrt{21}}{5}$. Chứng minh rằng

$$\sin A = \sin B \cos C + \cos B \sin C$$

và tính $\sin A$.

BÀI 8 (VDT). Với giả thiết các biểu thức đều có nghĩa, chứng minh rằng

$$\cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}.$$

BÀI 9 (VDC). Một vật thực hiện đồng thời hai dao động điều hòa có phương trình $x_1(t) = 2\sqrt{3}\sin\left(4\pi t + \frac{\pi}{6}\right)$ và $x_2(t) = 2\cos\left(4\pi t + \frac{\pi}{6}\right)$. Chứng tỏ rằng phương trình dao động tổng hợp của vật đó $x(t) = x_1(t) + x_2(t)$ viết được dưới dạng $x(t) = A\cos(\omega t + \varphi)$, tức là dao động tổng hợp của vật đó là dao động điều hòa. Hãy xác định biên độ A, tần số góc ω và pha ban đầu φ ($-\pi < \varphi < \pi$) của dao động tổng hợp.

QUICK NOTE

3. Bài tập trắc nghiệm

CÂU 1. Với mọi a, b, ta có $\sin(a - b)$ bằng

- $(\mathbf{A})\sin a\sin b \cos a\cos b.$
- $(\mathbf{B})\sin b\cos a \sin a\cos b.$
- $(\mathbf{C})\sin a\cos b \cos a\sin b$
- $(\mathbf{D})\sin a\cos b + \cos a\sin b.$

CÂU 3. Thu gọn $\sin a \sin b - \cos a \cos b$, ta được

- $(\mathbf{A}) \cos(a+b)$.
- $(\mathbf{B})\cos(a-b).$
- $(\mathbf{C})\cos(a+b)$.

CÂU 4. Với điều kiện các biểu thức đều xác định, biểu thức nào sau đây bằng $\tan(a-b)$?

- $(\mathbf{A})\tan a \cot b \tan b \cot a.$
- $\tan a \tan b$

 $\bigcirc \frac{\tan a + \tan b}{1 - \tan a \tan b}.$

 $\frac{1 + \tan a \tan b}{1 - \tan a \tan b}$ $\frac{1 - \tan a \tan b}{\tan a + \tan b}$

CÂU 5. Cho a, b thỏa $\tan a = \tan b = 2$. Tính $\tan(a + b)$

- \bigcirc $\frac{3}{4}$.

CÂU 6. Với $\tan\left(x+\frac{\pi}{4}\right)$ và $\tan x$ xác định, biểu thức nào sau đây bằng $\tan\left(x+\frac{\pi}{4}\right)$? $\bullet \frac{1-\tan x}{1+\tan x}. \quad \bullet \frac{\tan x-1}{\tan x+1}. \quad \bullet \frac{\tan x+1}{\tan x-1}. \quad \bullet \frac{1+\tan x}{1-\tan x}.$

CÂU 7. Biểu thức nào sau đây bằng $\cos\left(x-\frac{\pi}{3}\right)$?

CÂU 9. Cho $x \in \left[0, \frac{\pi}{2}\right]$ thỏa $\sin x = \frac{7}{25}$, giá trị của $\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$ là

CÂU 10. Cho $x \in [0; \pi]$ thỏa $\cos x = \frac{3}{5}$. Tính $\tan \left(x + \frac{\pi}{4}\right)$.

- (A) 7.

CÂU 11. Giá trị của biểu thức $P = \frac{\sin\frac{2\pi}{13}\cos\frac{\pi}{13} - \cos\frac{2\pi}{13}\sin\frac{\pi}{13}}{\cos\frac{2\pi}{13}\cos\frac{\pi}{13} + \sin\frac{2\pi}{13}\sin\frac{\pi}{13}}$ là

- \bigcirc $\sin \frac{\pi}{13}$.

CÂU 12. Giá trị của biểu thức $P = \sin 10^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 10^{\circ}$ là

CÂU 13. Cho a, b thỏa $a + b \neq k\pi$. Biểu thức nào sau đây bằng $P = \cot(a + b)$?

- $\cos a \cos b \sin a \sin b$
- $\cos a \cos b + \sin a \sin b$ $\frac{\sin a \cos b + \cos a \sin b}{\sin a \cos b + \cos a \sin b}$
- $\frac{\sin a \cos b + \cos a \sin b}{\sin a \cos b + \cos a \sin b}$

CÂU 14. Cho $a,b \in \left[0; \frac{\pi}{2}\right]$ thỏa mãn $\sin a = \cos b = \frac{3}{5}$. Khi đó $\sin(a+b)$ bằng

Δ II	MOTI	-
	NOT	=

CÂU 15. Biểu thức $P = \cos 5^{\circ} \sin 70^{\circ} - \sin 175^{\circ} \sin 20^{\circ}$ có giá trị bằng với

- $(\mathbf{B})\cos 25^{\circ}$.
- $(\mathbf{C})\sin 15^{\circ}.$

CÂU 16. Cho $\alpha + \beta = \frac{\pi}{3}$ và $\sin \alpha \cos \beta = \frac{1 + \sqrt{3}}{4}$. Giá trị của $\sin(\alpha - \beta)$ bằng

CÂU 17. Cho tam giác ABC cân tại A có $\cos B = \frac{5}{13}$. Tính $\sin A$.

- $\frac{119}{169}$.

CÂU 18. Cho a,b thỏa mãn $\sin a = \frac{\sqrt{7}}{4}$ và $\sin b = \frac{\sqrt{3}}{4}$. Giá trị của $\sin(a+b)\sin(a-b)$

- \mathbf{c} $\frac{1}{2}$.

CÂU 19. Cho $\alpha \in \left[-\frac{2\pi}{3}, -\frac{\pi}{6}\right]$ thỏa mãn $\sin\left(\alpha + \frac{\pi}{6}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$. Giá trị của $\tan\alpha$ là

CÂU 20. Một vật thực hiện đồng thời hai dao động điều hòa có phương trình $x_1(t) =$ $\sin\left(\pi t + \frac{\pi}{3}\right)$ và $x_2(t) = \cos\left(\pi t + \frac{\pi}{3}\right)$. Phương trình dao động tổng hợp của vật x(t) = $x_1(t) + x_2(t)$ được viết dưới dạng $x(t) = A\cos(\omega t + \varphi)$, tức là dao động tổng hợp của vật đó là dao động điều hòa. Hãy xác định pha ban đầu $arphi~(-\pi<arphi<\pi)$ của dao động tổng hợp.

🖶 Dạng 2. Áp dụng công thức nhân đôi, hạ bậc

1. Ví du mẫu

VÍ DU 1. Biến đổi thành tích biểu thức sau

$$A = \sin 2x - \sin x + 2\cos x - 1.$$

VÍ DU 2. Rút gọn các biểu thức (giả sử các góc làm cho biểu thức có nghĩa).

- a) $A = \frac{(1 + \sin 2a)(\cos a \sin a)}{\cos 2a(\cos a + \sin a)}$.
- b) $B = \frac{\sin a + \sin 2a}{\cos a + \cos 2a + 1}$

VÍ DỤ 3. Cho $\cos a = \frac{5}{13}$ với $0 < a < \frac{\pi}{2}$. Tính $\sin 2a$, $\cos 2a$, $\tan 2a$, $\sin \left(2a + \frac{\pi}{3}\right)$, $\tan\left(2a-\frac{\pi}{6}\right)$.

VÍ DỤ 4. Cho $\sin 2a = \frac{3}{5}$ với $\frac{\pi}{2} < a < \pi$. Tính $\tan a + \cot a$, $\tan a - \cot a$.

VÍ DỤ 5. Cho $\sin a + \cos a = m$, $(-\sqrt{2} \le m \le \sqrt{2})$. Tính $|\sin a - \cos a|$.

VÍ DỤ 6. Rút gọn biểu thức $P = \frac{3 - 4\cos 2a + \cos 4a}{3 + 4\cos 2a + \cos 4a}$

VÍ DU 7. Chứng minh các đẳng thức

- a) $\sin^4 x + \cos^4 x = \frac{1}{4} \cos 4x + \frac{3}{4}$;
- b) $\sin^6 x + \cos^6 x = \frac{3}{9}\cos 4x + \frac{5}{9}$.

2. Bài tập rèn luyện

BÀI 1. Biến đổi thành tích biểu thức $B = \cos 2x + \cos x - \sin x$.

BÀI 2. Rút gọn biểu thức (giả sử các góc làm cho biểu thức có nghĩa)

$$P = \frac{\cos 2x + \cos x + \sin x}{\cos x - \sin x + 1} - \cos x - \sin x + 2023$$

BÀI 3. Chon $\sin 4x = \frac{1}{2}$. Tính giá trị biểu thức $A = \sin x \cos^3 x - \cos x \sin^3 x$.

BÀI 4. Biết $\tan^2 x + \cot^2 x + \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = 7$. Tính $\sin^2 2x$.

BÀI 5. Cho $\cos a = -\frac{2}{3}$ với $\frac{\pi}{2} < a < \pi$. Biết $S = \cos 2a + \sin 2a = m + n\sqrt{5}$ với $m, n \in \mathbb{Q}$ và $\frac{m}{n} = \frac{p}{q}$ là phân số tối giản. Tính p - q.

BÀI 6. Rút gon các biểu thức sau

a) $A = \sin x \cos x \cos 2x$.

- b) $B = \cos^4 2x \sin^4 2x$.
- c) $C = 4\sin x \cdot \sin\left(x + \frac{\pi}{2}\right) \cdot \sin\left(2x + \frac{\pi}{2}\right)$. d) $D = \sin 2x + \cos 2x 2\cos x \left(\sin x + \cos x\right) + \cos x$

BÀI 7. Cho $\cos 2x = \frac{1}{3}$ Tính giá trị các biểu thức sau

a) $A = \sin^2 x \cdot \cos^2 x$.

b) $B = \frac{1 + \sin^2 x}{\cos^2 x}$.

c) $C = \frac{1 + \cot^2 x}{1 - \cot^2 x}$.

d) $D = \sin^6 x + \cos^6 x$.

BÀI 8. Chứng minh đẳng thức $\sin^6 x \cos^2 x + \sin^2 x \cos^6 x = \frac{1}{8} (1 - \cos^4 2x)$.

BÀI 9. Chứng minh các đẳng thức sau

- a) $8\sin^4 x = 3 4\cos 2x + \cos 4x$.
- b) $\sin 4x = 4 \sin x \cdot \cos x (1 2 \sin^2 x)$.

BÀI 10. Chứng minh đẳng thức $\frac{\sin x + \cos x - 1}{\sin x - \cos x + 1} = \frac{\cos x}{1 + \sin x}$

BÀI 11. Chứng minh đẳng thức $\sin^2\left(\frac{\pi}{8}+x\right)-\sin^2\left(\frac{\pi}{8}-x\right)=\frac{\sqrt{2}}{2}\sin 2x$.

BÀI 12. Chứng minh đẳng thức $4\cos^4 x - 2\cos 2x - \frac{1}{4}\cos 4x = \frac{3}{2}$.

BÀI 13. Chứng minh đẳng thức $\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = 2 \tan 2x$ với x mà biểu thức có nghĩa.

BÀI 14. Chứng minh biểu thức

$$A = \cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(\frac{\pi}{3} - x\right)$$

có giá trị không phụ thuộc vào biến số x.

BÀI 15. Cho tam giác ABC không tù, thỏa mãn điều kiên

$$\cos 2A + 2\sqrt{2}\cos B + 2\sqrt{2}\cos C = 3.$$

Xác định ba góc của tam giác.

BÀI 16. Chứng minh rằng $\frac{\sin^4 x + \cos^4 x - 1}{\sin^6 x + \cos^6 x - 1} = \frac{2}{3}$.

BÀI 17. Chứng minh với mọi x, y, z, ta có

 $\cos^2 x + \cos^2 y - \cos^2 z - \cos^2 (x + y + z) = 2\cos(x + y)\sin(y + z)\sin(z + x).$

QUICK NOTE

Dạng 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích

1. Ví dụ mẫu

VÍ DU 1. Biến đổi các tổng sau thành tích

a)
$$A = \sin 5x + \sin 6x + \sin 7x + \sin 8x$$
.

b)
$$B = \sin x - \sin 3x + \sin 7x - \sin 5x$$
.

c)
$$C = \cos 7x + \sin 3x + \sin 2x - \cos 3x$$
.

d)
$$D = \sin 35^{\circ} + \cos 40^{\circ} + \sin 55^{\circ} + \cos 20^{\circ}$$
.

VÍ DỤ 2. Chứng minh đẳng thức
$$\cos^3 a \cos 3a - \sin^3 a \sin 3a = \frac{3}{4} \cos 4a + \frac{1}{4}$$
.

VÍ DU 3. Rút gọn các biểu thức sau

a)
$$A = \cos 11x \cos 3x - \cos 17x \cos 9x.$$

b)
$$B = \sin 18x \cos 3x - \sin 19x \cos 4x$$
.

c)
$$C = \sin x \sin 3x + \sin 4x \sin 8x$$
.

d)
$$D = \sin 2x \sin 6x - \cos x \cos 3x$$
.

e)
$$E = \sin x \sin\left(\frac{\pi}{3} - x\right) \sin\left(\frac{\pi}{3} + x\right)$$
.

f)
$$F = \cos \frac{x}{2} \cos \frac{3x}{2} - \sin x \sin 3x - \sin 2x \sin 3x$$
.

VÍ DỤ 4. Cho tan
$$3a=2023$$
. Tính giá trị biểu thức $P=\frac{\sin 2a-\sin 3a+\sin 4a}{\cos 2a-\cos 3a+\cos 4a}$

VÍ DỤ 5. Rút gọn biểu thức
$$S = 2\sin x (\cos x + \cos 3x + \cos 5x)$$
. Từ đó tính giá trị biểu thức

$$P = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}.$$

2. Bài tập rèn luyện

BÀI 1. Cho biểu thức $A = \cos^2 a - \cos^2 3a - \sin 4a \cdot \sin 2a$. Chứng minh A = 0.

BÀI 2. Cho $\cos^2 x + \cos^2 y = m$. Tính giá trị biểu thức $P = \cos(x+y) \cdot \cos(x-y)$.

BÀI 3. Biểu thức $A = 5 + 4 \sin 2x \cos 2x$ nhận tất cả bao nhiêu giá trị nguyên?

 \mathbf{B} Àl 4. Chứng minh rằng với mọi tam giác ABC ta luôn có

$$\sin A + \sin B - \sin C = 4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}.$$

 $\bf B A I \ 5.$ Chứng minh rằng với mọi tam giác nhọn ABC ta luôn có

$$\frac{\sin A + \sin B - \sin C}{\cos A + \cos B - \cos C + 1} = \tan \frac{A}{2} \tan \frac{B}{2} \cot \frac{C}{2}.$$

BÀI 6. Chứng minh rằng đẳng thức $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\cos 3x$, với mọi $x\in\mathbb{R}$

BÀI 7. Tính giá trị của biểu thức
$$S=\cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right)$$
.

BÀI 8. Chứng minh giá trị của biểu thức

$$A = \cos\left(\frac{\pi}{3} - x\right)\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{6} + x\right)\cos\left(\frac{3\pi}{4} + x\right)$$

không phụ thuộc vào giá trị của biến x.

BÀI 9. Chon $\sin 2x = m$, $(-1 \le m \le 1)$. Tính theo m giá trị của biểu thức

$$S = \frac{1}{2} \left(\cos \left(\frac{\pi}{3} - 2x \right) - \cos \left(\frac{\pi}{2} + 2x \right) \right) - \sin \frac{\pi}{12} \cdot \cos \left(\frac{\pi}{12} + 2x \right).$$

Vây S = m.

BÀI 10. Cho a, b thỏa mãn $\sin(2a+b) = 3\sin b$. Chứng minh rằng $\tan(a+b) = 2\tan a$.

BÀI 11. Chứng minh trong tam giác ABC, ta luôn co

$$\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C.$$

QUICK NOTE

BÁI 12. Cho tam giác ABC có ba góc A, B, C thỏa mãn hệ thức $\sin A = \cos B + \cos C$. Chứng minh rằng tam giác ABC là tam giác vuông.

BÀI 13. Cho biểu thức $T = \cos 2x \cdot \cos x + \sin x \cdot \cos x \cdot \sin 3x - \sin^2 x \cdot \cos 3x$. Gọi S là tập các giá trị nguyên mà T nhận. Tìm S.

BÀI 14. Chứng minh đẳng thức

$$\frac{\sin a + \sin 3a + \sin 5a + \dots + \sin(2n-1)a}{\cos a + \cos 3a + \cos 5a + \dots + \cos(2n-1)a} = \tan na.$$

BÀI 15. Cho a, b là các góc thỏa mãn $\begin{cases} \cos a + \cos b = m \\ \sin a + \sin b = n \end{cases}$ với m, n khác 0. Tính $\sin(a+b)$.

3. Bài tấp trắc nghiệm

CÂU 1. Đẳng thức nào sau đây **đúng**?

$$\mathbf{B}\cos x\sin y = \frac{1}{2}\left[\sin(x+y) - \sin(x-y)\right].$$

$$\mathbf{C}\sin^2 x = \frac{1 - 2\cos x}{2}.$$

CÂU 2. Cho $\sin \alpha = \frac{5}{13}, \ 0 < \alpha < \frac{\pi}{4}$. Giá trị của $\sin 2\alpha$ bằng $\sin 2\alpha = \frac{120}{169}$. **B** $\sin 2\alpha = -\frac{120}{169}$. **C** $\sin 2\alpha = \frac{60}{169}$.

$$\triangle \sin 2\alpha = \frac{120}{169}.$$

B
$$\sin 2\alpha = -\frac{120}{169}$$
.

$$\mathbf{C}\sin 2\alpha = \frac{60}{169}.$$

CÂU 3. Cho $\sin \alpha = \frac{3}{4}$. Khi đó $\cos 2\alpha$ bằng

$$\bigcirc \frac{1}{8}$$
.

$$\mathbf{c} - \frac{1}{8}$$
.

$$\bigcirc$$
 $-\frac{\sqrt{7}}{4}$.

CÂU 4. Cho $\sin \alpha + \cos \alpha = \frac{5}{4}$. Khi đó $\sin 2\alpha$ có giá trị bằng

$$\bigcirc \frac{5}{2}$$
.

$$\frac{3}{32}$$

$$\bigcirc \frac{9}{16}$$

CÂU 5. Rút gọn biểu thức $P = \frac{\cos a - \cos 5a}{\sin 4a + \sin 2a}$ (với $\sin 4a + \sin 2a \neq 0$) ta được $P = 2 \cot a$ (B) $P = 2 \cos a$. (C) $P = 2 \tan a$.

$$P = 2\cos a$$

$$\mathbf{C}P = 2 \tan a$$

CÂU 6. Cho $\cos x = -\frac{3}{5}$. Tính $\cos 2x$.

$$\triangle \cos 2x = -\frac{7}{25}.$$

(A)
$$\cos 2x = -\frac{7}{25}$$
. (B) $\cos 2x = -\frac{3}{10}$. (C) $\cos 2x = -\frac{8}{9}$. (D) $\cos 2x = \frac{7}{25}$.

$$\mathbf{c}\cos 2x = -\frac{8}{9}$$

$$\bigcirc \cos 2x = \frac{7}{25}.$$

CÂU 7. Cho $\sin 2\alpha = -\frac{1}{2}$, thì $\tan^2 \alpha + \cot^2 \alpha$ có giá trị bằng

CÂU 8. Cho cot $\alpha = 15$ thì $\sin 2\alpha$ bằng $\frac{11}{112}$. **B** $\frac{15}{113}$. **C** $\frac{17}{113}$.

$$\frac{11}{113}$$
.

B
$$\frac{15}{113}$$
.

$$\bigcirc \frac{17}{113}$$

$$\bigcirc \frac{13}{113}$$

CÂU 9. Khi $\cos \alpha = \frac{3}{4}$ thì tích số $16 \cdot \sin \frac{\alpha}{2} \cdot \sin \frac{3\alpha}{2}$ là một số nguyên. Số nguyên này bằng

(A) 6.

CÂU 10. Tìm khẳng định sai.

A
$$\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x$$
.

AU 10. Tìm khẳng định **sai**.
A
$$\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x$$
.
B $\sin^4 x + \cos^4 x = \frac{3}{4} - \frac{1}{4}\cos 4x$.
C $\sin^4 x - \cos^4 x = -\cos 2x$.
D $\sin^6 x + \cos^6 x = \frac{5}{8} + \frac{3}{8}\cos 4x$.

$$\mathbf{C}\sin^4 x - \cos^4 x = -\cos 2x$$

CÂU 11. Cho $\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \frac{1}{4}$. Khi đó $\cos 4x$ bằng

$$\frac{1}{2}$$
.

$$\mathbf{B} - \frac{1}{2}$$
.

CÂU 12. Cho $\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$. Tính $M = \cos(a+b) \cdot \cos(a-b)$. **(A)** $M = -\frac{12}{25}$. **(B)** $M = \frac{12}{25}$. **(C)** $M = -\frac{13}{25}$. **(D)** $M = \frac{13}{25}$.

$$M = -\frac{12}{25}.$$

$$\bigcirc M = -\frac{13}{25}.$$

$$\bigcirc M = \frac{13}{25}.$$

CÂU 13. Cho $\sin \alpha = m$. Tính

\sim 11	$1 \sim V$	MO.	
ยบ	ICK	NO.	ш

$P = \cos\left(\frac{\pi}{-}\right)$	α $\sin(\pi - \alpha) - \sin^{2}$	$\left(\frac{\pi}{-} - \alpha\right)$	$\cos(\pi - \alpha) + \sin^2(\alpha + 2018\pi).$
$I = \cos\left(\frac{\pi}{2}\right)$	$\alpha / \sin(\pi - \alpha) = \sin \alpha$	$(\frac{\pi}{2})^{\alpha}$	(α) (α) (α) (α) (α)

$$\mathbf{B})P = m^2 - 2.$$

(A)
$$P = m^2 + 2$$
. **(B)** $P = m^2 - 2$. **(C)** $P = m^2 + 1$. **(D)** $P = m + 1$.

$$\mathbf{D})P = m + 1.$$

$$A \frac{1616}{1612}$$

$$\mathbf{B} - \frac{1617}{1611}$$
.

$$\mathbf{c} - \frac{1615}{1611}$$

$$\bigcirc$$
 $-\frac{1616}{1612}$.

CÂU 15. Cho $\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \frac{1}{4}$. Khi đó $\cos 4x$ bằng

$$\frac{1}{2}$$
.

B
$$-\frac{1}{2}$$
.

CÂU 16. Cho $\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$. Tính $M = \cos(a+b) \cdot \cos(a-b)$. **(A)** $M = -\frac{12}{25}$. **(B)** $M = \frac{12}{25}$. **(C)** $M = -\frac{13}{25}$. **(D)** $M = \frac{13}{25}$.

$$M = -\frac{12}{25}.$$

B
$$M = \frac{12}{25}$$
.

$$\bigcirc M = -\frac{13}{25}.$$

CÂU 17. Giá trị của biểu thức $I = \frac{\cos 5x + \cos 3x}{\sin 5x - \sin 3x}$, biết $\tan x = \frac{1}{3}$ là

B
$$I = -\frac{1}{3}$$
.

$$\mathbf{C}I=3.$$

$$\mathbf{D}I = -3$$

CÂU 18. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$. Biết $\sin \alpha + 2\cos \alpha = -1$. Tính giá trị $\sin 2\alpha$.

B
$$\frac{24}{25}$$
.

$$\mathbf{c} - \frac{2\sqrt{6}}{5}$$
.

$$\bigcirc$$
 $-\frac{24}{25}$.

CÂU 19. Cho $\cos\left(\frac{\pi}{2} + x\right) = -\frac{1}{5}$ với $2\pi < x < \frac{5\pi}{2}$. Giá trị của $\sin 2x$ bằng

B
$$\frac{2\sqrt{6}}{5}$$
. **C** $-\frac{4\sqrt{6}}{25}$. **D** $-\frac{2\sqrt{6}}{5}$.

$$\bigcirc -\frac{2\sqrt{6}}{5}.$$

CÂU 20. Nếu biết $\sin \alpha = \frac{5}{13} \left(\frac{\pi}{2} < \alpha < \pi \right)$, $\cos \beta = \frac{3}{5} \left(0 < \beta < \frac{\pi}{2} \right)$ thì giá trị đúng của

$$\cos(\alpha - \beta) \text{ là}$$

$$\boxed{\mathbf{A}} \frac{16}{65}.$$

$$\mathbf{B} - \frac{18}{65}$$
.

$$\bigcirc$$
 $-\frac{16}{65}$.

$$\bigcirc \frac{56}{65}$$
.

CÂU 21. Nếu $\tan \alpha + \cot \alpha = 2 \left(0 < \alpha < \frac{\pi}{2} \right)$ thì $\sin 2\alpha$ bằng

$$\frac{\pi}{2}$$
.

$$\mathbf{c} - \frac{1}{3}$$
.

$$\bigcirc \frac{\sqrt{2}}{2}.$$

CÂU 22. Cho $\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$. Tính $M = \cos(a+b) \cdot \cos(a-b)$. **(A)** $M = -\frac{12}{25}$. **(B)** $M = \frac{12}{25}$. **(C)** $M = -\frac{13}{25}$.

$$M = -\frac{12}{25}.$$

$$5$$
, $M = \frac{5}{25}$.

$$\bigcirc M = -\frac{13}{25}$$

$$\bigcirc M = \frac{13}{25}.$$

CÂU 23. Cho hai góc nhọn x và y thỏa mãn $\begin{cases} 3\sin 2x - \sin 2y = 0 \\ 6\cos^2 x - 2\sin^2 y = 5 \end{cases}$. Khi đó số đo góc

2x+ygần bằng giá trị nào nhất trong các giá trị sau

CÂU 24. Nếu $\sin x + \cos x = \frac{1}{2}$ và $0 < x < \pi$ thì $\tan x = -\frac{a + \sqrt{b}}{3}$, $(a; b \in \mathbb{Z})$. Tính

$$S = a + b$$

$$A S = 3.$$

B
$$S = -11$$
.

$$S = 11.$$

$$\bigcirc S = -3.$$

CÂU 25. Biết rằng $\tan \alpha$, $\tan \beta$ là các nghiệm của phương trình $x^2 - px + q = 0$. Giá trị của biểu thức $A = \cos^2(\alpha + \beta) + p\sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + q\sin^2(\alpha + \beta)$ bằng

$$\bigcirc q$$
.

 $(\mathbf{B})p.$

$$\bigcirc \frac{p}{a}$$
.

🖶 Dạng 4. Kết hợp nhiều công thức lượng giác

1. Ví du mâu

VÍ DỤ 1 (VDT). Chứng minh rằng $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\cos 3x$, với mọi $x\in$

VÍ DỤ 2 (VDT). Chứng minh rằng với mọi $a \in \mathbb{R}$: $\cos^3 a \cos 3a - \sin^3 a \sin 3a = \frac{3}{4} \cos 4a + \frac{1}{4}$

QUICK NOTE

VÍ DU 3 (VDT). Chứng minh rằng giá trị của biểu thức sau đây không phu thuộc vào biến

 $S = \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right).$

VÍ DỤ 4 (VDT). Rút gọn biểu thức $A = 2\sin x(\cos x + \cos 3x + \cos 5x)$. Từ đó tính giá trị biểu thức $T = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}$

VÍ DU 5 (VDT). Tính giá trị biểu thức $A = \sin^2 10^\circ + \cos 70^\circ \cos 50^\circ$.

2. Bài tấp rèn luyên

BÀI 1 (VDT). Chứng minh các đẳng thức sau đây:

a)
$$\cos a + \cos b + \sin(a+b) = 4\cos\frac{a+b}{2}\cos\left(\frac{\pi}{4} - \frac{a}{2}\right)\sin\left(\frac{\pi}{4} + \frac{b}{2}\right)$$

b)
$$\sin^2 a + \sin^2 b + 2\sin a \sin b \cos(a+b) = \sin^2(a+b)$$

c)
$$\sin\left(2x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) - \cos\left(2x + \frac{\pi}{3}\right)\cos\left(\frac{2\pi}{3} - x\right) = \cos x$$

BÀI 2 (VDT). Chứng minh giá trị của biểu thức sau không phụ thuộc vào biến số x:

$$A = \cos\left(\frac{\pi}{3} - x\right)\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{6} + x\right)\cos\left(\frac{3\pi}{4} + x\right).$$

BÀI 3 (TH). Rút gọn các biểu thức sau đây:

a)
$$A = \frac{\cos 4a - \cos 2a}{\sin 4a - \sin 2a};$$

b)
$$B = \frac{\sin a - 2\sin 2a + \sin 3a}{\cos a - 2\cos 2a + \cos 3a}$$
.

BÀI 4 (VDT). Rút gọn các biểu thức:

a)
$$A = 4\sin\frac{x}{3}\sin\frac{x+\pi}{3}\sin\frac{x-\pi}{3}$$
;

b)
$$B = \frac{\cos^2 a - \cos^2 b}{\sin(a - b)}$$
.

BÀI 5. Tính giá trị các biểu thức:

a)
$$A = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$$
;

b)
$$B = \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$$
.

3. Bài tập trắc nghiệm

CÂU 1. Rút gọn biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ$.

B
$$M = \frac{\sqrt{3}}{2}$$
. **C** $M = \frac{1}{4}$.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc M = 0.$$

CÂU 2. Tính giá trị của biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ + \cos^2 15^\circ - \sin^2 15^\circ$. **(B)** $M = \frac{1}{2}$. **(C)** $M = \frac{1}{4}$. **(D)** M = 0.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc M = 0.$$

CÂU 3. Tính giá trị của biểu thức $M = \cos^6 15^\circ - \sin^6 15^\circ$.

$$\mathbf{B}M = \frac{1}{2}.$$

$$\mathbf{C}M = \frac{1}{4}.$$

$$\bigcirc M = \frac{15\sqrt{3}}{32}.$$

$$\bigcirc A \frac{\sqrt{3}}{2}.$$

$$\bigcirc \mathbf{B} - \frac{\sqrt{3}}{2}.$$

$$\bigcirc \frac{\sqrt{3}}{4}.$$

$$\bigcirc \frac{1}{2}$$
.

CÂU 5. Giá trị của biểu thức $P = \frac{\sin\frac{5\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{9}\cos\frac{5\pi}{18}}{\cos\frac{\pi}{4}\cos\frac{\pi}{12} - \sin\frac{\pi}{4}\sin\frac{\pi}{12}}$ là

$$\bigcirc \mathbf{B} \frac{1}{2}$$
.

$$\frac{12}{2}$$

$$\bigcirc \frac{\sqrt{3}}{2}$$
.

CÂU 6. Giá trị đúng của biểu thức $\frac{\tan 225^{\circ} - \cot 81^{\circ} \cdot \cot 69^{\circ}}{\cot 261^{\circ} + \tan 201^{\circ}}$ bằng

$$\bigcirc \frac{1}{\sqrt{2}}$$
.

$$\bigcirc \sqrt{3}$$

$$\bigcirc$$
 $-\sqrt{3}$.

♥ VNPmath - 0962940819 ♥			♂ CĈ	ÒNG THỰC LƯỢNG GIÁC
QUICK NOTE	CÂU 7. Giá trị ci	ủa biểu thức $M = \sin \frac{\pi}{24}$	$\sin\frac{5\pi}{24}\sin\frac{7\pi}{24}\sin\frac{11\pi}{24}$	bằng
	$\frac{1}{2}$.	\bigcirc $\frac{1}{4}$.	$\bigcirc \frac{1}{8}$.	
	CÂU 8. Giá trị cí	ủa biểu thức $M = \sin \frac{\pi}{48}$	$-\cos\frac{\pi}{\cos\frac{\pi}{\cos\frac{\pi}{24}}\cos\frac{\pi}{\cos\frac{\pi}{10}}\cos\frac{\pi}{\cos\frac{\pi}{10}}\cos\frac{\pi}{\cos\frac{\pi}{10}}\cos\frac{\pi}{\cos\frac{\pi}{10}}\cos\frac{\pi}{10}\cos\pi$	$\frac{\pi}{2}$ là
	1	_	48 24 12	<u> </u>
	$\frac{1}{32}$.	O	10	32
	CÂU 9. Tính giá	trị của biểu thức $M = c$	$\cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cot$	os 80°.
	$\mathbf{A}M = \frac{1}{16}\cos^2\theta$	10°. B $M = \frac{1}{2}\cos 10^{\circ}$.	$\mathbf{C}M = \frac{1}{4}\cos 10^{\circ}.$	
	CÂU 10. Tính gi	á trị của biểu thức $M=$	$=\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{4\pi}{7}$	$3\frac{6\pi}{\pi}$.
	I .	$\mathbf{B}M = -\frac{1}{2}.$		$ \begin{array}{c} 7\\ \bigcirc M=2. \end{array} $
		Δ		
		n biểu thức $M = \cos^2\left(\frac{\pi}{4}\right)$	1 / \1 /	
	$\mathbf{A}M = \sin 2\alpha.$		_	
		$= \cos x + \cos 2x + \cos 3x$		/1 \
		$c(\cos x + 1).$		$\left(\frac{1}{2} + \cos x\right).$
	$\bigcirc M = \cos 2x ($	$(2\cos x - 1).$		$\cos x + 1$).
		n biểu thức $M = \frac{\sin 3x - 1}{2\cos^2 x}$	$\frac{-\sin x}{x}$.	
	$\triangle \tan 2x$.	$2\cos^2$ B) $\sin x$.	$x-1$ \bigcirc $2 \tan x$.	\mathbf{D} $2\sin x$.
		\sim	_	
		n biểu thức $A = \frac{1 + \cos x}{2\cos x}$		
	$(\mathbf{A})\cos x.$	$(\mathbf{B}) 2 \cos x - 1.$	$\mathbf{C} 2 \cos x$.	$(\mathbf{D})\cos x - 1.$
	CÂU 15. Rút gọr	n biểu thức $A = \frac{\tan x - \tan x}{\tan x + \tan x}$	$\frac{\cot x}{\cot x} + \cos 2x$.	
	A 0.	$\mathbf{B} 2\cos^2 x.$	© 2.	\bigcirc cos $2x$.
	CÂU 16. Rút gọi	n biểu thức $A = \frac{1 + \sin 4}{1 + \sin 4}$	$\frac{4\alpha - \cos 4\alpha}{\cos 4\alpha}$.	
	$\mathbf{\hat{A}}\sin 2\alpha$.			\bigcirc $\cot 2\alpha$.
		$\mathbf{B}\cos 2\alpha.$	$\cot 2\alpha.$ $\sin^2 2\alpha + 4\sin^4 \alpha -$	_
·	CÂU 17. Khi α	$=\frac{\pi}{6}$ thì biểu thức A	$= \frac{\sin^2 2\alpha + 4\sin^2 \alpha}{4 - \sin^2 2\alpha}$	$\frac{4\sin^2\alpha\cdot\cos^2\alpha}{-4\sin^2\alpha}$ có giá trị
	bằng:	1	- 1	
	$\mathbf{A} \frac{1}{3}$.	$\mathbf{B}\frac{1}{6}$.	$\bigcirc \frac{1}{9}$.	$\bigcirc \frac{1}{12}$.
	CÂU 18. Rút gọi	n biểu thức $A = \frac{\sin 2a}{1 + \cos a}$	$\frac{\alpha + \sin \alpha}{\alpha}$.	
	$\triangle \tan \alpha$.	$1 + \cos \alpha$	$2\alpha + \cos \alpha$ $\cot 2\alpha + \tan \alpha$.	\bigcirc $ an 2\alpha$.
			_	van 2a.
	CAU 19. Rút gọr	n biểu thức $A = \frac{1 - \sin a}{\sin 2a}$	$\frac{a-\cos a}{a-\cos a}$.	
	A 1.	$lacksquare$ $\tan a$.	$\bigcirc \frac{5}{2}$.	\bigcirc 2 tan a .
		$\sin x$	$+\sin\frac{x}{z}$	
	CÂU 20. Rút gọn	n biểu thức $A = \frac{\sin x}{1 + \cos x}$	$\frac{2}{x}$ dược	
				<u> </u>
	$\mathbf{A} \tan \frac{x}{2}.$	$(\mathbf{B})\cot x.$	$\mathbf{C} \tan^2\left(\frac{\pi}{4} - x\right).$	$(\mathbf{D})\sin x.$
		📂 Dạng 5. Nh	ận dạng tam giác	
	A Mat cá lư			
		u ý khi giả thiết cho A, E		
	-A+I	$B+C=180^{\circ} \Rightarrow (A+B)^{\circ}$	và C bù nhau, tương	tu với $(B+C)$ và $A,$

với (B+C) và A,...

$$--\frac{A}{2}+\frac{B}{2}+\frac{C}{2}=90^{\circ}\Rightarrow\left(\frac{A}{2}+\frac{B}{2}\right)$$
 và $\frac{C}{2}$ phụ nhau, tương tự với $\left(\frac{B}{2}+\frac{C}{2}\right)$ và $\frac{A}{2},...$

- Các góc A, B, C đều có số đo trong khoảng $(0^{\circ}; 180^{\circ})$.
- Các góc $\frac{A}{2}, \frac{B}{2}, \frac{C}{2}$ đều là các góc nhọn nên có các giá trị lượng giác đều dương.
- O Phương pháp:
 - Biến đổi, dẫn đến $\sin A = 1$ hoặc $\cos A = 0$ sẽ có $A = 90^{\circ}$.
 - Nếu $a^2 + b^2 = c^2$ thì $C = 90^{\circ}$.
 - Nếu $\sin(A-B) = 0$ hoặc $\cos(A-B) = 1$ thì A=B, suy ra tam giác cân.
 - Tam giác cân mà có một góc bằng 60° là tam giác đều.

1. Ví du mẫu

VÍ DỤ 1. Chứng minh rằng $\triangle ABC$ vuông khi $\sin A \sin C = \cos A \cos C$.

VÍ DU 2. Chứng minh rằng $\triangle ABC$ cân khi $2 \sin A \sin B = 1 + \cos C$. (1)

VÍ DỤ 3. Tam giác ABC là tam giác gì nếu $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$?

2. Bài tập rèn luyện

BÀI 1. Trong tam giác ABC, biết: $3\sin A + 4\cos B = 6$ và $4\sin B + 3\cos A = 1$. Tính góc C.

BÀI 2. Chứng minh rằng tam giác ABC đều nếu

$$\cos A \cos B \cos C = \frac{1}{8}.$$

BÀI 3. Chứng minh ΔABC cân nếu: $\sin C = 2\sin A\sin B\tan\frac{C}{2}$.

BÀI 4. Chứng minh điều kiện cần và đủ để ΔABC vuông là:

$$\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}.$$

BÀI 5. Cho $\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C} = \cot \frac{A}{2} \cot \frac{B}{2}$. Chứng minh ΔABC cân.

BÀI 6. Chứng minh tam giác ABC vuông nếu: $\sin B + \sin C = \cos B + \cos C$.

QUICK	NOTE

LỜI GIẢI CHI TIẾT

Bài 2. CÔNG THỨC LƯỢNG GIÁC

A. TÓM TẮT LÝ THUYẾT

1. Công thức cộng

$$\odot$$
 $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

$$\Theta$$
 $\sin(a-b) = \sin a \cos b - \sin b \cos a$.

Công thức cộng

$$\Theta$$
 $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

$$\Theta$$
 $\sin(a+b) = \sin a \cos b + \sin b \cos a$.

2. Công thức nhân đôi

Công thức nhân đôi được xây dựng bằng cách thay b=a trong công thức cộng.

Công thức nhân đôi

 Θ $\sin 2a = 2\sin a\cos a$.

Từ công thức nhân đôi, ta có công thức hạ bậc:

Công thức hạ bậc

Áp dụng công thức cộng cho 3a = a + 2a, ta có công thức nhân ba:

Công thức nhân ba

$$\Theta \tan 3a = \frac{3\tan a - \tan^3 a}{1 - 3\tan^2 a}$$

3. Công thức biến đổi tích thành tổng

Công thức tích thành tổng

4. Công thức biến đổi tổng thành tích

Công thức biến đổi tổng thành tích được xây dựng bằng cách $a = \frac{a+b}{2}$, $b = \frac{a-b}{2}$ trong công thức biến đổi tích thành tổng.

Công thức tổng thành tích

$$\odot$$
 $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$.

$$\Theta \sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}.$$

B. CÁC DANG TOÁN THƯỜNG GĂP

Dạng 1. Áp dụng công thức cộng

Một số trường hợp rút gọn nên nhớ:

$$\odot$$
 $\sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) = \sqrt{2}\cos\left(x - \frac{\pi}{4}\right).$

1. Ví du mẫu

VÍ DỤ 1 (NB). Không dùng máy tính, hãy tính $\cos 105^{\circ}$ và $\cot \frac{\pi}{12}$

🗩 Lời giải.

$$\cos 105^{\circ} = \cos (45^{\circ} + 60^{\circ}) = \cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}.$$

$$\cos 105^{\circ} = \cos (45^{\circ} + 60^{\circ}) = \cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}.$$

$$\tan \frac{\pi}{12} = \tan \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\tan \frac{\pi}{3} - \tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{3} \tan \frac{\pi}{4}} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} = \frac{\left(\sqrt{3} - 1\right)^{2}}{\sqrt{3}^{2} - 1^{2}} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.$$

Suy ra cot
$$\frac{\pi}{12} = \frac{1}{2 - \sqrt{3}} = 2 + \sqrt{3}$$
.

VÍ DỤ 2 (NB). Chứng minh rằng $\sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right)$.

🗩 Lời giải.

Cách 1: Ta có
$$2 \sin \left(x + \frac{\pi}{3}\right) = 2 \left(\sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right) = 2 \left(\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x\right) = \sin x + \sqrt{3} \cos x.$$

Đẳng thức được chứng minh.

Cách 2: Ta có
$$\sin x + \sqrt{3}\cos x = 2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right) = 2\left(\sin\frac{\pi}{3}\sin x + \cos\frac{\pi}{3}\cos x\right) = 2\sin\left(x + \frac{\pi}{3}\right).$$

Đẳng thức được chứng minh.

VÍ DỤ 3 (TH). Tính $\sin\left(a+\frac{\pi}{4}\right)$, biết $\sin a = \frac{12}{12}$ và $0 < a < \frac{\pi}{2}$

🗩 Lời giải.

Ta có
$$\sin^2 a + \cos^2 a = 1 \Rightarrow \cos^2 a = 1 - \sin^2 a = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}$$

Vì
$$0 < a < \frac{\pi}{2}$$
 nên $\cos a > 0$, suy ra $\cos a = \sqrt{\frac{25}{169}} = \frac{5}{13}$.

Do đó
$$\sin\left(a + \frac{\pi}{4}\right) = \sin a \cos \frac{\pi}{4} + \cos a \sin \frac{\pi}{4} = \frac{12}{13} \cdot \frac{\sqrt{2}}{2} + \frac{5}{13} \cdot \frac{\sqrt{2}}{2} = \frac{17\sqrt{2}}{26}$$
.

$$V_{\text{ay}} \sin\left(a + \frac{\pi}{4}\right) = \frac{17\sqrt{2}}{26}.$$

VÍ DỤ 4 (VDT). Không sử dụng máy tính, hãy tính $P = \cos 10^{\circ} \cos 35^{\circ} - \cos 55^{\circ} \cos 80^{\circ}$.

🗩 Lời giải.

Ta có

$$P = \cos 10^{\circ} \cos 35^{\circ} + \cos 55^{\circ} \cos 80^{\circ} = \cos 10^{\circ} \cos 35^{\circ} - \sin 35^{\circ} \sin 10^{\circ} = \cos (10^{\circ} + 35^{\circ}) = \cos 45^{\circ} = \frac{\sqrt{2}}{2}.$$

$$V_{\text{ay}} P = \frac{\sqrt{2}}{2}.$$

VÍ DU 5 (VDT). Chứng minh giá trị của biểu thức

$$P = \sin\left(\frac{\pi}{6} - \alpha\right) + \sin\left(\frac{\pi}{6} + \alpha\right) - \cos\alpha$$

không phụ thuộc vào α .

🗩 Lời giải.

$$P = \sin\left(\frac{\pi}{6} - \alpha\right) + \sin\left(\frac{\pi}{6} + \alpha\right) - \cos\alpha$$

$$= \sin\frac{\pi}{6}\cos\alpha - \cos\frac{\pi}{6}\sin\alpha + \sin\frac{\pi}{6}\cos\alpha + \cos\frac{\pi}{6}\sin\alpha - \cos\alpha$$

$$= \frac{1}{2}\cos\alpha + \frac{1}{2}\cos\alpha - \cos\alpha$$

$$= 0.$$

Vậy giá trị của biểu thức P không phụ thuộc vào α .

VÍ DU 6 (VDC). Một thiết bị trễ kỹ thuật số lặp lại tín hiệu đầu vào bằng cách lặp lại tín hiệu đó trong một khoảng thời gian cố định sau khi nhận được tín hiệu. Nếu một thiết bị như vậy nhận được nốt thuần $f_1(t) = 5 \sin t$ và phát lại nốt thuần $f_2(t) = 5\cos t$ thì âm kết hợp là $f(t) = f_1(t) + f_2(t)$, trong đó t là biến thời gian. Chứng tỏ rằng âm kết hợp viết được dưới dạng $f(t) = k \sin(t + \varphi)$, tức là âm kết hợp là sóng hình sin. Hãy xác định biên độ âm k và pha ban đầu φ $(-\pi < \varphi < \pi)$ của sóng âm.

🗩 Lời giải.

Ta có
$$f(t) = f_1(t) + f_2(t) = 5\sin t + 5\cos t$$
.
Mà $\sin t + \cos t = \sqrt{2}\left(\frac{1}{\sqrt{2}}\sin t + \frac{1}{\sqrt{2}}\cos t\right) = \sqrt{2}\left(\sin t\cos\frac{\pi}{4} + \cos t\sin\frac{\pi}{4}\right) = \sqrt{2}\sin\left(t + \frac{\pi}{4}\right)$, suy ra $f(t) = 5\left(\sin t + \cos t\right) = 5\sqrt{2}\sin\left(t + \frac{\pi}{4}\right)$.

Vậy biên độ âm của sóng âm là $k=5\sqrt{2}$ và pha ban đầu của sóng âm là $\varphi=\frac{\pi}{4}$.

2. Bài tấp rèn luyên

BÀI 1 (NB). Tính các giá trị lượng giác của góc 75°. Lời giải.

$$\sin 75^{\circ} = \sin (30^{\circ} + 45^{\circ}) = \sin 30^{\circ} \cos 45^{\circ} + \cos 30^{\circ} \sin 45^{\circ} = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

$$\cos 75^{\circ} = \cos (30^{\circ} + 45^{\circ}) = \cos 30^{\circ} \cos 45^{\circ} - \sin 30^{\circ} \sin 45^{\circ} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

$$\tan 75^{\circ} = \frac{\sin 75^{\circ}}{\cos 75^{\circ}} = \frac{\sqrt{6} + \sqrt{2}}{4} : \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}} = \frac{\left(\sqrt{6} + \sqrt{2}\right)^{2}}{\sqrt{6}^{2} - \sqrt{2}^{2}} = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3}.$$

$$\cot 75^{\circ} = \frac{1}{\tan 75^{\circ}} = \frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{2^{2} + \sqrt{2}^{2}} = 2 - \sqrt{3}.$$

BÀI 2 (NB). Chứng minh rằng $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.

🗩 Lời giải.

Cách 1: Ta có

$$\sqrt{2}\sin\left(x+\frac{\pi}{4}\right) = \sqrt{2}\left(\sin x\cos\frac{\pi}{4} + \cos x\sin\frac{\pi}{4}\right) = \sqrt{2}\left(\frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x\right) = \sin x + \cos x.$$

Vậy $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$.

Cách 2: Ta có

$$\sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) = \sqrt{2} \left(\sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} \right) = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right).$$

Vậy $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$.

BÀI 3 (TH). Tính giá trị của biểu thức
$$P = \frac{\cos\frac{5\pi}{18}\cos\frac{\pi}{9} + \sin\frac{5\pi}{18}\sin\frac{\pi}{9}}{\sin\frac{\pi}{5}\cos\frac{3\pi}{10} + \cos\frac{\pi}{5}\sin\frac{3\pi}{10}}$$

Ta có
$$P = \frac{\cos\left(\frac{5\pi}{18} - \frac{\pi}{9}\right)}{\sin\left(\frac{\pi}{5} + \frac{3\pi}{10}\right)} = \frac{\cos\frac{\pi}{6}}{\sin\frac{\pi}{2}} = \frac{\sqrt{3}}{2}.$$

Vậy
$$P = \frac{\sqrt{3}}{2}$$
.

BÀI 4 (TH). Tính $\tan\left(x + \frac{\pi}{4}\right)$ biết $\cos x = \frac{2}{3}$ và $0 < x < \pi$. 🗩 Lời giải.

Ta có
$$\sin^2 x + \cos^2 x = 1 \Rightarrow \sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{2}{3}\right)^2 = \frac{5}{9}$$

Vì
$$0 < x < \pi$$
 nên $\sin x > 0$, suy ra $\sin x = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$.

Do đó
$$\tan x = \frac{\sin x}{\cos x} = \frac{\sqrt{5}}{3} : \frac{2}{3} = \frac{\sqrt{5}}{2}.$$

Suy ra
$$\tan\left(x + \frac{\pi}{4}\right) = \frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x \tan\frac{\pi}{4}} = \frac{\frac{\sqrt{5}}{2} + 1}{1 - \frac{\sqrt{5}}{2} \cdot 1} = \frac{\sqrt{5} + 2}{2 - \sqrt{5}} = \frac{\left(\sqrt{5} + 2\right)^2}{2^2 - \sqrt{5}^2} = -9 - 4\sqrt{5}.$$

Vậy tan
$$\left(x + \frac{\pi}{4}\right) = -9 - 4\sqrt{5}$$
.

BÀI 5 (TH). Tính
$$\sin\left(x+\frac{\pi}{3}\right)$$
 biết $\sin x + \sqrt{3}\cos x = 1$.

Ta có
$$\sin\left(x + \frac{\pi}{3}\right) = \sin x \cos\frac{\pi}{3} + \cos x \sin\frac{\pi}{3} = \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = \frac{1}{2}\left(\sin x + \sqrt{3}\cos x\right) = \frac{1}{2}.$$
 Vậy $\sin\left(x + \frac{\pi}{3}\right) = \frac{1}{2}.$

BÀI 6 (VDT). Không sử dụng máy tính, hãy tính $P = \cos 20^{\circ} \cos 40^{\circ} - \sin 140^{\circ} \sin 160^{\circ}$. 🗩 Lời giải.

Ta có

$$P = \cos 20^{\circ} \cos 40^{\circ} - \sin 140^{\circ} \sin 160^{\circ} = \cos 20^{\circ} \cos 40^{\circ} - \sin 40^{\circ} \sin 20^{\circ} = \cos (40^{\circ} + 20^{\circ}) = \cos 60^{\circ} = \frac{1}{2}.$$

Vây $P = \frac{1}{2}$.

BÀI 7 (VDT). Cho tam giác
$$ABC$$
 có $\cos B = \frac{3}{5}$, $\cos C = \frac{\sqrt{21}}{5}$. Chứng minh rằng

$$\sin A = \sin B \cos C + \cos B \sin C$$

và tính $\sin A$.

Lời giải.

Theo tính chất tổng ba góc trong một tam giác, ta có $A + B + C = \pi$.

Do đó $\sin A = \sin(\pi - A) = \sin(B + C) = \sin B \cos C + \cos B \sin C$.

Vậy $\sin A = \sin B \cos C + \cos B \sin C$.

Ta có
$$\sin^2 B + \cos^2 B = 1$$
, suy ra $\sin^2 B = 1 - \cos^2 B = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$.

Mà
$$0 < B < \pi$$
 nên $\sin B > 0$, suy ra $\sin B = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Lại có
$$\sin^2 C + \cos^2 C = 1$$
, suy ra $\sin^2 C = 1 - \cos^2 C = 1 - \left(\frac{\sqrt{21}}{5}\right)^2 = \frac{4}{25}$.

Mà
$$0 < C < \pi$$
 nên $\sin C > 0$, suy ra $\sin C = \sqrt{\frac{4}{25}} = \frac{2}{5}$.

Do đó
$$\sin A = \sin B \cos C + \cos B \sin C = \frac{4}{5} \cdot \frac{\sqrt{21}}{5} + \frac{3}{5} \cdot \frac{2}{5} = \frac{6 + 4\sqrt{21}}{25}$$

$$V_{\text{ay}} \sin A = \frac{6 + 4\sqrt{21}}{25}.$$

BÀI 8 (VDT). Với giả thiết các biểu thức đều có nghĩa, chứng minh rằng

$$\cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}.$$

🗩 Lời giải.

Ta có
$$\cot(a+b) = \frac{1}{\tan(a+b)} = \frac{1}{\frac{\tan a + \tan b}{1 - \tan a \tan b}} = \frac{1 - \tan a \tan b}{\frac{\tan a + \tan b}{1 - \tan a \tan b}} = \frac{\frac{1}{\tan a} \cdot \frac{1}{\tan b} - 1}{\frac{1}{\tan b} + \frac{1}{\tan a}} = \frac{\cot a \cdot \cot b - 1}{\cot a + \cot b}.$$

Vây $\cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}.$

$$V_{ay} \cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}.$$

BÀI 9 (VDC). Một vật thực hiện đồng thời hai dao động điều hòa có phương trình $x_1(t) = 2\sqrt{3}\sin\left(4\pi t + \frac{\pi}{6}\right)$ và $x_2(t) =$ $2\cos\left(4\pi t + \frac{\pi}{6}\right)$. Chứng tỏ rằng phương trình dao động tổng hợp của vật đó $x(t) = x_1(t) + x_2(t)$ viết được dưới dạng $x(t) = A\cos(\omega t + \varphi)$, tức là dao động tổng hợp của vật đó là dao động điều hòa. Hãy xác định biên độ A, tần số góc ω và pha ban đầu φ $(-\pi < \varphi < \pi)$ của dao động tổng hợp.

Dòi giải.

Ta có
$$x(t) = x_1(t) + x_2(t) = 2\sqrt{3}\sin\left(4\pi t + \frac{\pi}{6}\right) + 2\cos\left(4\pi t + \frac{\pi}{6}\right)$$
, đồng thời

$$\frac{1}{2}\cos\left(4\pi t + \frac{\pi}{6}\right) + \frac{\sqrt{3}}{2}\sin\left(4\pi t + \frac{\pi}{6}\right) = \cos\left(4\pi t + \frac{\pi}{6}\right)\cos\frac{\pi}{3} + \sin\left(4\pi t + \frac{\pi}{6}\right)\sin\frac{\pi}{3} = \cos\left(4\pi t - \frac{\pi}{6}\right),$$

suy ra
$$x(t) = 4\left[\frac{1}{2}\cos\left(4\pi t + \frac{\pi}{6}\right) + \frac{\sqrt{3}}{2}\sin\left(4\pi t + \frac{\pi}{6}\right)\right] = 4\cos\left(4\pi t - \frac{\pi}{6}\right).$$

Vậy dao động tổng hợp x(t) có biên độ A=4, tần số góc $\omega=4\pi$ và pha ban đầu $\varphi=-\frac{\pi}{6}$.

3. Bài tấp trắc nghiệm

CÂU 1. Với mọi a, b, ta có $\sin(a - b)$ bằng

$$\mathbf{A}\sin a\sin b - \cos a\cos b.$$

$$\mathbf{B}\sin b\cos a - \sin a\cos b.$$

$$\mathbf{c}$$
 $\sin a \cos b - \cos a \sin b$.

$$(\mathbf{D})\sin a\cos b + \cos a\sin b.$$

Lời giải.

Theo công thức cộng, ta có $\sin(a-b) = \sin a \cos b - \cos a \sin b$.

Chọn đáp án (C).....

CÂU 2. Biết rằng
$$\frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$$
, khi đó giá trị $\cos \frac{7\pi}{12}$ bằng $\frac{\pi}{4} \cos \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4}$. $\cos \frac{\pi}{3} \cos \frac{\pi}{4} - \cos \frac{\pi}{3} \sin \frac{\pi}{4}$.

$$\triangle \cos \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4}.$$

$$\mathbf{C}\sin\frac{\pi}{3}\cos\frac{\pi}{4} - \cos\frac{\pi}{3}\sin\frac{\pi}{4}.$$

$$\mathbf{D}\sin\frac{3}{3}\cos\frac{4}{4} + \cos\frac{3}{3}\sin\frac{4}{4}$$

Áp dụng công thức cộng, ta có $\cos \frac{7\pi}{12} = \cos \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos \frac{\pi}{3} \cos \frac{\pi}{4} - \sin \frac{\pi}{3} \sin \frac{\pi}{4}$

CÂU 3. Thu gọn $\sin a \sin b - \cos a \cos b$, ta được

$$\mathbf{B}$$
 $\cos(a-b)$.

$$\mathbf{C}\cos(a+b).$$

$$\bigcirc$$
 $-\cos(a-b)$.

Dòi giải.

Ta có $\sin a \sin b - \cos a \cos b = -(\cos a \cos b - \sin a \sin b) = -\cos(a+b)$.

CÂU 4. Với điều kiện các biểu thức đều xác định, biểu thức nào sau đây bằng $\tan(a-b)$? (A) $\tan a \cot b - \tan b \cot a$. (B) $\frac{\tan a - \tan b}{1 + \tan a \tan b}$. (C) $\frac{\tan a + \tan b}{1 - \tan a \tan b}$. (D) $\frac{1 - \tan a \tan b}{\tan a + \tan b}$.

$$\bigcirc \frac{\tan a + \tan b}{1 - \tan a \tan b}.$$

🗩 Lời giải.

Áp dụng công thức cộng, ta có $\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$

CÂU 5. Cho a, b thỏa $\tan a = \tan b = 2$. Tính $\tan(a + b)$.

$$-\frac{4}{3}$$
.

B
$$\frac{4}{3}$$
.

$$\bigcirc 0.$$

$$\bigcirc$$
 $\frac{3}{4}$

🗩 Lời giải.

Áp dụng công thức cộng, ta có $\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} = \frac{2+2}{1-2.2} = -\frac{4}{3}$

CÂU 6. Với $\tan\left(x+\frac{\pi}{4}\right)$ và $\tan x$ xác định, biểu thức nào sau đây bằng $\tan\left(x+\frac{\pi}{4}\right)$? (a) $\frac{1-\tan x}{1+\tan x}$. (b) $\frac{\tan x-1}{\tan x+1}$. (c) $\frac{\tan x+1}{\tan x-1}$.

$$\mathbf{c} \frac{\tan x + 1}{\tan x - 1}.$$

🗩 Lời giải.

Áp dụng công thức cộng, ta có $\tan\left(x + \frac{\pi}{4}\right) = \frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x \tan\frac{\pi}{4}} = \frac{\tan x + 1}{1 - \tan x}.$

Chọn đáp án (D).....

CÂU 7. Biểu thức nào sau đây bằng $\cos\left(x-\frac{\pi}{2}\right)$?

$$\bigcirc \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x$$

(A)
$$\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x$$
. (B) $\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x$. (C) $\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x$. (D) $\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x$.

Dèi giải.

Áp dụng công thức cộng, ta có $\cos\left(x-\frac{\pi}{3}\right)=\cos x\cos\frac{\pi}{3}+\sin x\sin\frac{\pi}{3}=\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x.$

Chon đáp án (C).....

CÂU 8. Thu gọn $\sin x + \cos x$ ta được

$$\mathbf{B}\sqrt{2}\cos\left(x-\frac{\pi}{4}\right).$$

$$\mathbf{c}\sin\left(x-\frac{\pi}{4}\right)$$
.

$$\bigcirc$$
 $\cos\left(x-\frac{\pi}{4}\right)$.

Lời giải.

Ta có $\sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2} \sin x} + \frac{1}{\sqrt{2}} \cos x \right) = \sqrt{2} \left(\cos x \cos \frac{\pi}{4} + \sin x \sin \frac{\pi}{4} \right) = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right).$

CÂU 9. Cho $x \in \left[0; \frac{\pi}{2}\right]$ thỏa $\sin x = \frac{7}{25}$, giá trị của $\sqrt{2}\cos\left(x + \frac{\pi}{4}\right)$ là

$$\boxed{\mathbf{C}}\sqrt{2}\cos\left(x+\frac{\pi}{4}\right) = \frac{31}{25}.$$

$$\mathbf{D}\sqrt{2}\cos\left(x+\frac{4}{\pi}\right) = \frac{17}{25}.$$

🗭 Lời giải.

Ta có $\sin^2 x + \cos^2 x = 1$, suy ra $\cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{7}{25}\right)^2 = \frac{576}{625}$

Mà $x \in \left[0; \frac{\pi}{2}\right]$ nên $\cos x \ge 0$, suy ra $\cos x = \sqrt{\frac{576}{625}} = \frac{24}{25}$

Lai có $\sqrt{2}\cos\left(x+\frac{\pi}{4}\right) = \sqrt{2}\left(\cos x\cos\frac{\pi}{4} - \sin x\sin\frac{\pi}{4}\right) = \sqrt{2}\left(\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x\right) = \cos x - \sin x$

suy ra $\sqrt{2}\cos\left(x+\frac{\pi}{4}\right) = \frac{24}{25} - \frac{7}{25} = \frac{17}{25}$

Chọn đáp án (D).....

CÂU 10. Cho $x \in [0; \pi]$ thỏa $\cos x = \frac{3}{5}$. Tính $\tan \left(x + \frac{\pi}{4} \right)$.

$$(B) - 7.$$

$$\bigcirc \frac{1}{7}$$
.

$$\bigcirc -\frac{1}{7}$$

🗩 Lời giải.

Ta có $\cos^2 x + \sin^2 x = 1$, suy ra $\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{3}{5}\right)^2 = \frac{16}{25}$

Vì $x \in [0; \pi]$ nên $\sin x \le 0$, suy ra $\sin x = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Ta có $\tan x = \frac{\sin x}{\cos x} = \frac{4}{5} : \frac{3}{5} = \frac{4}{3}$, suy ra $\tan \left(x + \frac{\pi}{4}\right) = \frac{\tan x + \tan \frac{\pi}{4}}{1 - \tan x \tan \frac{\pi}{4}} = \frac{1 + \frac{4}{3}}{1 - \frac{4}{3}} = -7$.

Chon đáp án B.....

CÂU 11. Giá trị của biểu thức $P = \frac{\sin\frac{2\pi}{13}\cos\frac{\pi}{13} - \cos\frac{2\pi}{13}\sin\frac{\pi}{13}}{\cos\frac{2\pi}{13}\cos\frac{\pi}{13} + \sin\frac{2\pi}{13}\sin\frac{\pi}{13}}$ là

 \triangle $\tan \frac{\pi}{13}$

$$\bigcirc$$
 $\sin \frac{\pi}{13}$.

$$\mathbf{C}\tan\frac{3\pi}{13}.$$

$$\bigcirc$$
 $\sin \frac{3\pi}{13}$

D Lời giải.

Ta có $P = \frac{\sin\frac{2\pi}{13}\cos\frac{\pi}{13} - \cos\frac{2\pi}{13}\sin\frac{\pi}{13}}{\cos\frac{2\pi}{13}\cos\frac{\pi}{13} + \sin\frac{2\pi}{13}\sin\frac{\pi}{13}} = \frac{\sin\left(\frac{2\pi}{13} - \frac{\pi}{13}\right)}{\cos\left(\frac{2\pi}{13} - \frac{\pi}{13}\right)} = \frac{\sin\frac{\pi}{13}}{\cos\frac{\pi}{13}} = \tan\frac{\pi}{13}.$

CÂU 12. Giá trị của biểu thức $P = \sin 10^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 10^{\circ}$ là

B
$$-\frac{\sqrt{3}}{2}$$
.

$$\frac{1}{2}$$
.

$$\bigcirc$$
 $-\frac{1}{2}$

🗭 Lời giải.

Ta có $P = \sin 10^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 10^{\circ} = \sin (10^{\circ} + 20^{\circ}) = \sin 30^{\circ} = \frac{1}{2}$

CÂU 13. Cho a, b thỏa $a + b \neq k\pi$. Biểu thức nào sau đây bằng $P = \cot(a + b)$?

A	$\cos a \cos b - \sin a \sin b$
	$\frac{1}{\sin a \cos b + \cos a \sin b}$

$$\bigcirc \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}$$

🗩 Lời giải.

Ta có $\cot(a+b) = \frac{\cos(a+b)}{\sin(a+b)} = \frac{\cos a \cos b - \sin a \sin b}{\sin a \cos b + \cos a \sin b}$

CÂU 14. Cho $a,b \in \left[0,\frac{\pi}{2}\right]$ thỏa mãn $\sin a = \cos b = \frac{3}{5}$. Khi đó $\sin(a+b)$ bằng

$$\frac{24}{25}$$

$$\bigcirc$$
 $-\frac{7}{25}$

D Lời giải.

Ta có $a, b \in \left[0; \frac{\pi}{2}\right]$, suy ra $\cos a > 0$ và $\sin b > 0$.

Lại có $\sin^2 a + \cos^2 a = \sin^2 b + \cos^2 b = 1$, suy ra $\cos a = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$ và $\sin b = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$.

Suy ra $\sin(a+b) = \sin a \cos b + \cos a \sin b = \frac{3}{5} \cdot \frac{3}{5} + \frac{4}{5} \cdot \frac{4}{5} = 1.$

CÂU 15. Biểu thức $P = \cos 5^{\circ} \sin 70^{\circ} - \sin 175^{\circ} \sin 20^{\circ}$ có giá tri bằng với

 $(\mathbf{A})\sin 25^{\circ}$.

$$(\mathbf{C})\sin 15^{\circ}.$$

🗩 Lời giải.

Ta có $P = \cos 5^{\circ} \sin 70^{\circ} - \sin 175^{\circ} \sin 20^{\circ} = \cos 5^{\circ} \cos 20^{\circ} - \sin 5^{\circ} \sin 20^{\circ} = \cos (5^{\circ} + 20^{\circ}) = \cos 25^{\circ}$.

CÂU 16. Cho $\alpha + \beta = \frac{\pi}{3}$ và $\sin \alpha \cos \beta = \frac{1 + \sqrt{3}}{4}$. Giá trị của $\sin(\alpha - \beta)$ bằng

$$\mathbf{c} - \frac{1}{2}$$
.

$$\bigcirc \frac{1}{2}$$
.

Dòi giải.

Ta có $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

suy ra $\cos \alpha \sin \beta = \sin(\alpha + \beta) - \sin \alpha \cos \beta = \sin \frac{\pi}{3} - \frac{1 + \sqrt{3}}{4} = \frac{\sqrt{3}}{2} - \frac{1 + \sqrt{3}}{4} = = \frac{\sqrt{3} - 1}{4}.$ Do đó $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta = \frac{1 + \sqrt{3}}{4} - \frac{\sqrt{3} - 1}{4} = \frac{1}{2}.$

Chọn đáp án \bigcirc D.....

CÂU 17. Cho tam giác ABC cân tại A có $\cos B = \frac{5}{13}$. Tính $\sin A$.

$$igatharpoonup rac{119}{169}.$$

$$\bigcirc \frac{120}{169}$$

$$\bigcirc \frac{5}{13}$$

Lời giải.

Vì $0 < \widehat{B} < \pi$ nên $\sin B > 0$. Ta có $\sin^2 B + \cos^2 B = 1$, suy ra $\sin B = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}$.

Vì tam giác ABC cân tại A nên $\widehat{B} = \widehat{C}$, suy ra $\sin C = \frac{12}{13}$ và $\cos C = \frac{5}{13}$.

Theo tính chất tổng ba góc trong một tam giác, ta có $\widehat{A}+\widehat{B}+\widehat{C}=\pi$. Do đó $\sin A=\sin(\pi-A)=\sin(B+C)=\sin B\cos C+\cos B\sin C=\frac{12}{13}.\frac{5}{13}+\frac{5}{13}.\frac{12}{13}=\frac{120}{169}.$

Chọn đáp án (C).....

B
$$-\frac{1}{4}$$
.

$$\mathbf{c}$$
 $\frac{1}{2}$.

$$\bigcirc$$
 $-\frac{1}{2}$.

Dòi giải.

Ta có $\sin(a+b)\sin(a-b) = (\sin a \cos b + \cos a \sin b)(\sin a \cos b - \cos a \sin b) = \sin^2 a \cos^2 b - \cos^2 a \sin^2 b$. Lại có $\sin^2 a \cos^2 b - \cos^2 a \sin^2 b = \sin^2 a (1 - \sin^2 b) - \cos^2 a \sin^2 b = \sin^2 a - \sin^2 b (\sin^2 a + \sin^2 b)$

 $= \sin^2 a - \sin^2 b = \left(\frac{\sqrt{7}}{4}\right)^2 - \left(\frac{\sqrt{3}}{4}\right)^2 = \frac{1}{4}.$

Suy ra $\sin(a+b)\sin(a-b) = \frac{1}{4}$.

Chọn đáp án (A).....

CÂU 19. Cho
$$\alpha \in \left[-\frac{2\pi}{3}, -\frac{\pi}{6}\right]$$
 thỏa mãn $\sin\left(\alpha + \frac{\pi}{6}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$. Giá trị của $\tan\alpha$ là

A
$$2 - \sqrt{3}$$

B
$$2 + \sqrt{3}$$

$$(c)$$
 -2 + $\sqrt{3}$

$$\bigcirc \sqrt{3}$$
.

Ta có
$$-\frac{2\pi}{3} \le \alpha \le -\frac{\pi}{6}$$
, suy ra $-\frac{\pi}{2} \le \alpha \le 0$, do đó $\cos\left(\alpha + \frac{\pi}{6}\right) \ge 0$.
Lại có $\sin^2\left(\alpha + \frac{\pi}{6}\right) + \cos^2\left(\alpha + \frac{\pi}{6}\right) = 1$, suy ra

$$\cos\left(\alpha + \frac{\pi}{6}\right) = \sqrt{1 - \left(\frac{\sqrt{6} - \sqrt{2}}{4}\right)^2} = \sqrt{1 - \frac{\sqrt{8 - 2\sqrt{12}}}{16}} = \sqrt{\frac{8 + 2\sqrt{12}}{16}} = \sqrt{\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2} = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

Suy ra
$$\tan\left(\alpha + \frac{\pi}{6}\right) = \frac{\sin\left(\alpha + \frac{\pi}{6}\right)}{\cos\left(\alpha + \frac{\pi}{6}\right)} = \frac{\sqrt{6} - \sqrt{2}}{4} : \frac{\sqrt{6} + \sqrt{2}}{4} = 2 - \sqrt{3}.$$

Do đó
$$\tan \alpha = \tan \left(\alpha + \frac{\pi}{6} - \frac{\pi}{6}\right) = \frac{\tan \left(\alpha + \frac{\pi}{6}\right) - \tan \frac{\pi}{6}}{1 + \tan \left(\alpha + \frac{\pi}{6}\right) \tan \frac{\pi}{6}} = \frac{2 - \sqrt{3} - \frac{\sqrt{3}}{3}}{1 + (2 - \sqrt{3}) \cdot \frac{\sqrt{3}}{3}} = \frac{6 - 4\sqrt{3}}{2\sqrt{3}} = -2 + \sqrt{3}.$$

Chọn đáp án (C)....

CÂU 20. Một vật thực hiện đồng thời hai dao động điều hòa có phương trình $x_1(t) = \sin\left(\pi t + \frac{\pi}{3}\right)$ và $x_2(t) = \cos\left(\pi t + \frac{\pi}{3}\right)$. Phương trình dao động tổng hợp của vật $x(t) = x_1(t) + x_2(t)$ được viết dưới dạng $x(t) = A\cos(\omega t + \varphi)$, tức là dao động tổng hợp của vật đó là dao động điều hòa. Hãy xác định pha ban đầu φ $(-\pi < \varphi < \pi)$ của dao động tổng hợp.

$$\frac{\pi}{4}$$
.

$$\bigcirc \frac{\pi}{12}$$
.

$$\bigcirc \frac{5\pi}{12}.$$

$$\bigcirc -\frac{\pi}{4}$$

Lời giải.

Ta có
$$x(t) = x_1(t) + x_2(t) = \sin\left(\pi t + \frac{\pi}{3}\right) + \cos\left(\pi t + \frac{\pi}{3}\right).$$
Lại có $\sin\left(\pi t + \frac{\pi}{3}\right) + \cos\left(\pi t + \frac{\pi}{3}\right) = \sqrt{2}\left[\frac{\sqrt{2}}{2}\cos\left(\pi t + \frac{\pi}{3}\right) + \frac{\sqrt{2}}{2}\sin\left(\pi t + \frac{\pi}{3}\right)\right]$

$$= \sqrt{2}\left[\cos\frac{\pi}{4}\cos\left(\pi t + \frac{\pi}{3}\right) + \sin\frac{\pi}{4}\sin\left(\pi t + \frac{\pi}{3}\right)\right] = \sqrt{2}\cos\left(\pi t + \frac{\pi}{3} - \frac{\pi}{4}\right) = \sqrt{2}\cos\left(\pi t + \frac{\pi}{12}\right).$$
Suy ra $x(t) = \sqrt{2}\cos\left(\pi t + \frac{\pi}{12}\right)$. Vậy pha ban đầu của dao động tổng hợp là $\frac{\pi}{12}$.

Chọn đáp án (B).....

Dạng 2. Áp dụng công thức nhân đôi, hạ bậc

1. Ví du mẫu

VÍ DU 1. Biến đổi thành tích biểu thức sau

$$A = \sin 2x - \sin x + 2\cos x - 1.$$

🗩 Lời giải.

Ta có

$$A = \sin 2x - \sin x + 2\cos x - 1 = 2\sin x \cos x - \sin x + 2\cos x - 1$$

= $\sin x (2\cos x - 1) + (2\cos x - 1)$
= $(2\cos x - 1)(\sin x + 1)$.

VÍ DU 2. Rút gọn các biểu thức (giả sử các góc làm cho biểu thức có nghĩa).

a)
$$A = \frac{(1+\sin 2a)(\cos a - \sin a)}{\cos 2a(\cos a + \sin a)}.$$

b)
$$B = \frac{\sin a + \sin 2a}{\cos a + \cos 2a + 1}.$$

Dèi giải.

a) Ta có

$$A = \frac{(1+\sin 2a)(\cos a - \sin a)}{\cos 2a(\cos a + \sin a)} = \frac{(\sin a + \cos a)^2(\cos a - \sin a)}{(\cos^2 a - \sin^2 a)(\sin a + \cos a)} = 1.$$

b) Ta có

$$B = \frac{\sin a + \sin 2a}{\cos a + \cos 2a + 1} = \frac{\sin a(1 + 2\cos a)}{\cos a + 2\cos^2 a} = \frac{\sin a(1 + 2\cos a)}{\cos a(1 + 2\cos a)} = \tan a.$$

VÍ DỤ 3. Cho $\cos a = \frac{5}{13}$ với $0 < a < \frac{\pi}{2}$. Tính $\sin 2a$, $\cos 2a$, $\tan 2a$, $\sin \left(2a + \frac{\pi}{3}\right)$, $\tan \left(2a - \frac{\pi}{6}\right)$.

Ta có
$$\sin^2 a = 1 - \cos^2 a = 1 - \frac{25}{169} = \frac{144}{169} \Leftrightarrow \begin{bmatrix} \sin a = \frac{12}{13} \\ \sin a = \frac{-12}{13} \end{bmatrix}.$$

Vì $0 < a < \frac{\pi}{2}$ nên $\sin a > 0$, suy ra $\sin a = \frac{12}{13}$

$$\sin 2a = 2 \sin a \cos a = 2 \cdot \frac{5}{13} \cdot \frac{12}{13} = \frac{120}{169};$$

$$\cos 2a = 2 \cos^2 a - 1 = 2 \cdot \frac{25}{169} - 1 = -\frac{119}{169};$$

$$\tan 2a = \frac{\sin 2a}{\cos 2a} = -\frac{120}{119};$$

$$\sin \left(2a + \frac{\pi}{3}\right) = \sin 2a \cdot \cos \frac{\pi}{3} + \cos 2a \cdot \sin \frac{\pi}{3}$$

$$= \frac{120}{169} \cdot \frac{1}{2} - \frac{120}{119} \cdot \frac{\sqrt{3}}{2} = \frac{60(1 - \sqrt{3})}{119}.$$

$$\tan \left(2a - \frac{\pi}{6}\right) = \frac{\tan 2a - \tan \frac{\pi}{6}}{1 + \tan 2a \tan \frac{\pi}{6}} = \frac{-\frac{120}{119} - \frac{\sqrt{3}}{3}}{1 - \frac{120}{119} \cdot \frac{\sqrt{3}}{3}}$$

$$= -\frac{360 + 119\sqrt{3}}{357 - 120\sqrt{3}}.$$

VÍ DỤ 4. Cho $\sin 2a = \frac{3}{5}$ với $\frac{\pi}{2} < a < \pi$. Tính $\tan a + \cot a$, $\tan a - \cot a$. 🗩 Lời giải.

Ta có

$$\tan a + \cot a = \frac{\sin a}{\cos a} + \frac{\cos a}{\sin a} = \frac{\sin^2 a + \cos^2 a}{\sin a \cos a}$$
$$= \frac{1}{\frac{1}{2}\sin 2a} = \frac{2}{\sin 2a}.$$

Thay $\sin 2a = \frac{3}{5}$, ta được $\tan a + \cot a = \frac{2}{3} = \frac{10}{3}$.

Ta cũng có

$$\tan a - \cot a = \frac{\sin a}{\cos a} - \frac{\cos a}{\sin a} = \frac{\sin^2 a - \cos^2 a}{\sin a \cos a}$$
$$= \frac{-\cos 2a}{\frac{1}{2}\sin 2a} = -2\cot 2a.$$

Vì $\sin 2a = \frac{3}{5}$ và $\frac{\pi}{2} < a < \pi$ nên $\cos 2a < 0$, suy ra $\cos 2a = -\sqrt{1 - \sin^2 2a} = -\frac{4}{5}$.

Do đó
$$\tan a - \cot a = -\cot 2a = -\frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}.$$

VÍ DỤ 5. Cho $\sin a + \cos a = m$, $(-\sqrt{2} \le m \le \sqrt{2})$. Tính $|\sin a - \cos a|$. **Phòi giải.**

Ta có $m^2 = (\sin a + \cos a)^2 = 1 + 2\sin a \cos a = 1 + \sin 2a$. Suy ra $\sin 2a = m^2 - 1$. Do đó

$$|\sin a - \cos a| = \sqrt{(\sin a - \cos a)^2} = \sqrt{1 - \sin 2a} = \sqrt{2 - m^2}$$

VÍ DỤ 6. Rút gọn biểu thức $P=\frac{3-4\cos 2a+\cos 4a}{3+4\cos 2a+\cos 4a}$ **D Lời giải.**

Ta có

$$P = \frac{3 - 4\cos 2a + \cos 4a}{3 + 4\cos 2a + \cos 4a}$$

$$= \frac{3 - 4\cos 2a + 2\cos^2 2a - 1}{3 + 4\cos 2a + 2\cos^2 2a - 1}$$

$$= \frac{2\cos^2 2a - 4\cos 2a + 2}{2\cos^2 2a + 4\cos 2a + 2}$$

$$= \frac{2(\cos 2a - 1)^2}{2(\cos 2a + 1)^2} = \frac{(-2\sin^2 a)^2}{(2\cos^2 a)^2} = \tan^4 a.$$

VÍ DU 7. Chứng minh các đẳng thức

a)
$$\sin^4 x + \cos^4 x = \frac{1}{4}\cos 4x + \frac{3}{4};$$

b)
$$\sin^6 x + \cos^6 x = \frac{3}{8}\cos 4x + \frac{5}{8}$$
.

🗩 Lời giải.

a) Ta có

$$\sin^4 x + \cos^4 x = \left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cos^2 x$$

$$= 1 - \frac{1}{2}\sin^2 2x$$

$$= 1 - \frac{1}{2} \cdot \frac{1 - \cos 4x}{2}$$

$$= \frac{1}{4}\cos 4x + \frac{3}{4}.$$

b) Ta có

$$\sin^{6} x + \cos^{6} x = \left(\sin^{2} x + \cos^{2} x\right)^{3} - 3\sin^{2} x \cos^{2} x \left(\sin^{2} x + \cos^{2} x\right)$$

$$= 1 - \frac{3}{4}\sin^{2} 2x$$

$$= 1 - \frac{3}{4} \cdot \frac{1 - \cos 4x}{2}$$

$$= \frac{3}{8}\cos 4x + \frac{5}{8}.$$

2. Bài tập rèn luyện

BÀI 1. Biến đổi thành tích biểu thức $B = \cos 2x + \cos x - \sin x$. \bigcirc Lời giải.

Ta có

$$B = \cos^2 x - \sin^2 x + \cos x - \sin x$$
$$= (\cos x - \sin x)(\cos x + \sin x) + \cos x - \sin x$$
$$= (\cos x - \sin x)(\cos x + \sin x + 1).$$

BÀI 2. Rút gọn biểu thức (giả sử các góc làm cho biểu thức có nghĩa)

$$P = \frac{\cos 2x + \cos x + \sin x}{\cos x - \sin x + 1} - \cos x - \sin x + 2023$$

🗩 Lời giải.

Ta có

$$P = \frac{\cos 2x + \cos x + \sin x}{\cos x - \sin x + 1} - \cos x - \sin x + 2023$$

$$= \frac{\cos^2 x - \sin^2 x + \cos x + \sin x}{\cos x - \sin x + 1} - \cos x - \sin x + 2023$$

$$= \frac{(\cos x + \sin x)(\cos x - \sin x + 1)}{\cos x - \sin x + 1} - \cos x - \sin x + 2023$$

$$= \cos x + \sin x - \cos x - \sin x + 2023$$

$$= 2023.$$

BÀI 3. Chon $\sin 4x = \frac{1}{2}$. Tính giá trị biểu thức $A = \sin x \cos^3 x - \cos x \sin^3 x$.

🗩 Lời giải.

Ta có

$$A = \sin x \cos^3 x - \cos x \sin^3 x$$

$$= \sin x \cos x \left(\cos^2 x - \sin^2 x\right)$$

$$= \sin x \cdot \cos x \cdot \cos 2x = \frac{1}{2} \cdot \sin 2x \cdot \cos 2x$$

$$= \frac{1}{4} \cdot \sin 4x.$$

Vây
$$A = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$
.

BÀI 4. Biết $\tan^2 x + \cot^2 x + \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = 7$. Tính $\sin^2 2x$.

Ta có

$$\tan^2 x + \cot^2 x + \frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = 7$$

$$\Leftrightarrow \frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\sin^2 x} + \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cdot \cos^2 x} = 7$$

$$\Leftrightarrow \frac{\sin^4 x + \cos^4 x + 1}{\sin^2 x \cdot \cos^2 x} = 7$$

$$\Leftrightarrow \frac{\left(\sin^2 x + \cos^2 x\right)^2 - 2\sin^2 x \cdot \cos^2 x + 1}{\frac{1}{4}\sin^2 2x} = 7$$

$$\Leftrightarrow 2 - \frac{2}{4}\sin^2 2x = \frac{7}{4}\sin^2 2x$$

$$\Leftrightarrow \frac{9}{4}\sin^2 2x = 2 \Leftrightarrow \sin^2 2x = \frac{8}{9}.$$

 $V_{\text{ay }}\sin^2 2x = \frac{8}{9}.$

BÀI 5. Cho $\cos a = -\frac{2}{3}$ với $\frac{\pi}{2} < a < \pi$. Biết $S = \cos 2a + \sin 2a = m + n\sqrt{5}$ với $m, n \in \mathbb{Q}$ và $\frac{m}{n} = \frac{p}{q}$ là phân số tối giản.

🗩 Lời giải.

Vì $\frac{\pi}{2} < a < \pi$ nên $\sin a > 0$. Do đó

$$\sin a = \sqrt{1 - \cos^2 a} = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}.$$

Do đó

$$S = \cos^{2} a - \sin^{2} a + 2 \sin a \cdot \cos a$$
$$= \frac{4}{9} - \frac{5}{9} + 2 \cdot \frac{-2}{3} \cdot \frac{\sqrt{5}}{3}$$
$$= -\frac{1}{9} - \frac{4}{9} \cdot \sqrt{5}.$$

Suy ra $m=-\frac{1}{9}$ và $n=-\frac{4}{9}.$ Nên $\frac{m}{n}=\frac{1}{4}.$ Suy ra $p=1,\,q=4.$

BÀI 6. Rút gọn các biểu thức sau

a)
$$A = \sin x \cos x \cos 2x$$
.

b)
$$B = \cos^4 2x - \sin^4 2x$$
.

c)
$$C = 4\sin x \cdot \sin\left(x + \frac{\pi}{2}\right) \cdot \sin\left(2x + \frac{\pi}{2}\right)$$
.

d)
$$D = \sin 2x + \cos 2x - 2\cos x (\sin x + \cos x) + 1$$
.

🗩 Lời giải.

a)
$$A = \frac{1}{2} \cdot 2 \sin x \cos x \cos 2x = \frac{1}{2} \sin 2x \cos 2x = \frac{1}{4} \cdot 2 \sin 2x \cos 2x = \frac{1}{4} \sin 4x$$
.

b)
$$B = (\cos^2 2x + \sin^2 2x) (\cos^2 2x - \sin^2 2x) = \cos 4x$$
.

c)
$$C = 4\sin x \cdot \cos x \cdot \cos 2x = 2\sin 2x \cdot \cos 2x = \sin 4x$$
.

d)
$$D = \sin 2x + \cos 2x - \sin 2x - 2\cos^2 x + 1 = \cos 2x - \cos 2x = 0$$
.

BÀI 7. Cho $\cos 2x = \frac{1}{3}$ Tính giá trị các biểu thức sau

a)
$$A = \sin^2 x \cdot \cos^2 x$$
.

b)
$$B = \frac{1 + \sin^2 x}{\cos^2 x}$$
.

c)
$$C = \frac{1 + \cot^2 x}{1 - \cot^2 x}$$
.

$$d) D = \sin^6 x + \cos^6 x.$$

🗩 Lời giải.

a)
$$A = \frac{1}{2} (1 - \cos 2x) \cdot \frac{1}{2} (1 + \cos 2x) = \frac{1}{4} (1 - \cos^2 2x) = \frac{1}{4} (1 - \frac{1}{9}) = \frac{2}{9}$$
.

b)
$$B = \frac{1 + \frac{1}{2}(1 - \cos 2x)}{\frac{1}{2}(1 + \cos 2x)} = \frac{3 - \cos 2x}{1 + \cos 2x} = \frac{3 - \frac{1}{3}}{1 + \frac{1}{3}} = 2.$$

c)
$$C = \frac{\sin^2 x + \cos^2 x}{\sin^2 x - \cos^2 x} = \frac{-1}{\cos 2x} = \frac{-1}{\frac{1}{2}} = -3.$$

d)

$$D = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x)$$
$$= 1 - \frac{3}{4} (1 - \cos^2 2x) = \frac{1}{4} + \frac{3}{4} \cos^2 2x$$
$$= \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{9} = \frac{1}{3}.$$

BÀI 8. Chứng minh đẳng thức $\sin^6 x \cos^2 x + \sin^2 x \cos^6 x = \frac{1}{8} (1 - \cos^4 2x)$. P Lời giải.

Biến đổi về trái, ta có

$$VT = \sin^6 x \cos^2 x + \sin^2 x \cos^6 x$$

$$= \sin^2 x \cos^2 x \left(\sin^4 x + \cos^4 x\right)$$

$$= \frac{1}{4} \cdot \sin^2 2x \left(1 - 2\sin^2 x \cos^2 x\right)$$

$$= \frac{1}{4} \cdot \sin^2 2x \left(1 - \frac{1}{2}\sin^2 2x\right)$$

$$= \frac{1}{8} \cdot \sin^2 2x \left(2 - \sin^2 2x\right)$$

$$= \frac{1}{8} \cdot \left(1 - \cos^2 2x\right) \cdot \left(1 + \cos^2 2x\right)$$

$$= \frac{1}{8} \left(1 - \cos^4 2x\right) = VP.$$

BÀI 9. Chứng minh các đẳng thức sau

a)
$$8\sin^4 x = 3 - 4\cos 2x + \cos 4x$$
.

b) $\sin 4x = 4\sin x \cdot \cos x (1 - 2\sin^2 x)$.

🗩 Lời giải.

a)
$$VP = 3 - 4(1 - 2\sin^2 x) + 2\cos^2 2x - 1 = -2 + 8\sin^2 x + 2(1 - 2\sin^2 x)^2 = 8\sin^4 x = VT$$
.

b) $VP = 2\sin 2x \cdot \cos 2x = \sin 4x = VT$.

BÀI 10. Chứng minh đẳng thức $\frac{\sin x + \cos x - 1}{\sin x - \cos x + 1} = \frac{\cos x}{1 + \sin x}$.

Biến đổi về trái, ta được

$$VT = \frac{\sin x + \cos x - 1}{\sin x - \cos x + 1} = \frac{2\sin\frac{x}{2}\cos\frac{x}{2} - 2\sin^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2} + 2\sin^2\frac{x}{2}}$$

$$= \frac{2\sin\frac{x}{2}\left(\cos\frac{x}{2} - \sin\frac{x}{2}\right)}{2\sin\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)} = \frac{\cos\frac{x}{2} - \sin\frac{x}{2}}{\cos\frac{x}{2} + \sin\frac{x}{2}}$$

$$= \frac{\cos^2\frac{x}{2} - \sin^2\frac{x}{2}}{\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2} = \frac{\cos x}{1 + \sin x} = VP.$$

BÀI 11. Chứng minh đẳng thức $\sin^2\left(\frac{\pi}{8} + x\right) - \sin^2\left(\frac{\pi}{8} - x\right) = \frac{\sqrt{2}}{2}\sin 2x$.

Áp dụng công thức hạ bậc, biến đổi vế trái, ta được

$$VT = \sin^{2}\left(\frac{\pi}{8} + x\right) - \sin^{2}\left(\frac{\pi}{8} - x\right)$$

$$= \frac{1 - \cos\left(\frac{\pi}{4} + 2x\right)}{2} - \frac{1 - \cos\left(\frac{\pi}{4} - 2x\right)}{2}$$

$$= \frac{\cos\left(\frac{\pi}{4} - 2x\right) - \cos\left(\frac{\pi}{4} + 2x\right)}{2}$$

$$= \frac{-2\sin\frac{\pi}{4}\sin(-2x)}{2} = \frac{\sqrt{2}}{2}\sin 2x = VP.$$

BÀI 12. Chứng minh đẳng thức $4\cos^4 x - 2\cos 2x - \frac{1}{4}\cos 4x = \frac{3}{2}$. Phời giải.

Điều phải chứng minh tương đương

$$4\cos^{4} x - 2\cos 2x - \frac{1}{4}\cos 4x - \frac{1}{2} = 1$$

$$\Leftrightarrow 4\left(\cos^{2} x\right)^{2} - 2\cos 2x - \frac{1}{2}\left(1 + \cos 4x\right) = 1$$

$$\Leftrightarrow 4\left(\frac{1 + \cos 2x}{2}\right)^{2} - 2\cos 2x - \frac{1}{2}\cdot 2\cos^{2} 2x = 1$$

$$\Leftrightarrow 1 + \cos^{2} 2x + 2\cos 2x - 2\cos 2x - \cos^{2} 2x = 1$$

$$\Leftrightarrow 1 = 1.$$

Đẳng thức cuối hiến nhiên đúng. Ta có điều cần chứng minh.

BÀI 13. Chứng minh đẳng thức $\frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x} = 2 \tan 2x$ với x mà biểu thức có nghĩa.

Biến đổi về trái, ta được

$$VT = \frac{\cos x + \sin x}{\cos x - \sin x} - \frac{\cos x - \sin x}{\cos x + \sin x}$$

$$= \frac{(\cos x + \sin x)^2 - (\cos x - \sin x)^2}{\cos^2 x - \sin^2 x}$$

$$= \frac{1 + \sin 2x - (1 - \sin 2x)}{\cos 2x}$$

$$= \frac{2\sin 2x}{\cos 2x} = 2\tan 2x$$

$$= VP.$$

BÀI 14. Chứng minh biểu thức

$$A = \cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(\frac{\pi}{3} - x\right)$$

có giá trị không phụ thuộc vào biến số x.

Lời giái.

Áp dụng công thức hạ bậc, ta được

$$A = \cos^{2} x + \cos^{2} \left(x + \frac{\pi}{3}\right) + \cos^{2} \left(\frac{\pi}{3} - x\right)$$

$$= \frac{1 + \cos 2x}{2} + \frac{1 + \cos\left(2x + \frac{2\pi}{3}\right)}{2} + \frac{1 + \cos\left(2x - \frac{2\pi}{3}\right)}{2}$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\left[\cos\left(2x + \frac{2\pi}{3}\right) + \cos\left(2x - \frac{2\pi}{3}\right)\right]$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\cdot 2\cdot\cos 2x \cdot \cos\frac{2\pi}{3}$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x - \frac{1}{2}\cos 2x$$

$$= \frac{3}{2}.$$

BÀI 15. Cho tam giác ABC không tù, thỏa mãn điều kiện

$$\cos 2A + 2\sqrt{2}\cos B + 2\sqrt{2}\cos C = 3.$$

Xác định ba góc của tam giác.

Dèi giải.

Xét $M = \cos 2A + 2\sqrt{2}\cos B + 2\sqrt{2}\cos C - 3$. Ta có

$$M = 2\cos^{2} A - 1 + 4\sqrt{2}\cos\frac{B+C}{2} \cdot \cos\frac{B-C}{2} - 3$$
$$= 2\cos^{2} A + 4\sqrt{2}\sin\frac{A}{2} \cdot \cos\frac{B-C}{2} - 4.$$

Do $\sin \frac{A}{2} > 0$ và $0 < \cos \frac{B-C}{2} \le 1$ nên

$$M \le 2\cos^2 A + 4\sqrt{2}\sin\frac{A}{2} - 4.$$

Mặt khác, tam giác ABC không tù nên $\cos A \ge 0 \Rightarrow \cos^2 A \le \cos A$. Do đó

$$M \leq 2\cos A + 4\sqrt{2}\sin\frac{A}{2} - 4$$

$$= 2\left(1 - 2\sin^2\frac{A}{2}\right) + 4\sqrt{2}\sin\frac{A}{2} - 4$$

$$= -2\left(\sqrt{2}\sin\frac{A}{2} - 1\right)^2 \leq 0.$$

Do đó $M \leq 0$ hay $\cos 2A + 2\sqrt{2}\cos B + 2\sqrt{2}\cos C \leq 3$. Dấu đẳng thức xảy ra khi và chỉ khi

$$\begin{cases} \cos^2 A = \cos A \\ \cos \frac{B-C}{2} = 1 \\ \sin \frac{A}{2} = \frac{\sqrt{2}}{2} \end{cases} \Leftrightarrow \begin{cases} A = 90^{\circ} \\ B = C = 45^{\circ}. \end{cases}$$

Vậy tam giác ABC vuông cân tại A.

BÀI 16. Chứng minh rằng $\frac{\sin^4 x + \cos^4 x - 1}{\sin^6 x + \cos^6 x - 1} = \frac{2}{3}$.

🗩 Lời giải.

Ta đã chứng minh được (xem Ví dụ 7) các kết quả $\sin^4 x + \cos^4 x = \frac{1}{4}\cos 4x + \frac{3}{4}; \sin^6 x + \cos^6 x = \frac{3}{8}\cos 4x + \frac{5}{8}.$ Do đó

$$VT = \frac{\sin^4 x + \cos^4 x - 1}{\sin^6 x + \cos^6 x - 1} = \frac{\frac{1}{4}\cos 4x - \frac{1}{4}}{\frac{3}{8}\cos 4x - \frac{3}{8}}$$
$$= \frac{\frac{1}{4}(\cos 4x - 1)}{\frac{3}{8}(\cos 4x - 1)} = \frac{2}{3}$$
$$= VP.$$

BÁI 17. Chứng minh với mọi x, y, z, ta có

$$\cos^2 x + \cos^2 y - \cos^2 z - \cos^2 (x + y + z) = 2\cos(x + y)\sin(y + z)\sin(z + x).$$

🗩 Lời giải.

Biến đổi vế trái, ta được

$$\begin{split} VT &=& \cos^2 x + \cos^2 y - \cos^2 z - \cos^2 \left(x + y + z \right) \\ &=& \frac{1 + \cos 2x}{2} + \frac{1 + \cos 2y}{2} - \frac{1 + \cos 2z}{2} - \frac{1 + \cos 2(x + y + z)}{2} \\ &=& \frac{1}{2} \left(\cos 2x + \cos 2y \right) - \frac{1}{2} \left(\cos 2(x + y + z) + \cos 2z \right) \\ &=& \cos(x + y) \cdot \cos(x - y) - \cos(x + y + 2z) \cdot \cos(x + y) \\ &=& -\cos(x + y) \left[\cos(x + y + 2z) - \cos(x - y) \right] \\ &=& 2\cos(x + y) \sin(y + z) \sin(z + x) \\ &=& VP. \end{split}$$

Dạng 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích

1. Ví du mẫu

VÍ DU 1. Biến đổi các tổng sau thành tích

a) $A = \sin 5x + \sin 6x + \sin 7x + \sin 8x$.

b) $B = \sin x - \sin 3x + \sin 7x - \sin 5x$.

c) $C = \cos 7x + \sin 3x + \sin 2x - \cos 3x$.

d) $D = \sin 35^{\circ} + \cos 40^{\circ} + \sin 55^{\circ} + \cos 20^{\circ}$.

🗩 Lời giải.

a)
$$A = (\sin 8x + \sin 5x) + (\sin 7x + \sin 6x) = 2\sin \frac{13x}{2}\cos \frac{3x}{2} + 2\sin \frac{13x}{2}\cos \frac{x}{2} = 2\sin \frac{13x}{2}\left(\cos \frac{3x}{2} + \cos \frac{x}{2}\right)$$

b) $B = (\sin 7x + \sin x) - (\sin 5x + \sin 3x) = 2\sin 4x \cos 3x - 2\sin 4x \cos x = 2\sin 4x (\cos 3x - \cos x)$.

c)
$$C = (\cos 7x - \cos 3x) + (\sin 3x + \sin 2x) = -2\sin 5x \sin 2x + 2\sin \frac{5x}{2}\cos \frac{x}{2} = 2\sin \frac{5x}{2}\left(-2\cos \frac{5x}{2}\sin 2x + \cos \frac{x}{2}\right)$$
.

d) $D = (\sin 55^{\circ} + \sin 35^{\circ}) + (\cos 40^{\circ} + \cos 20^{\circ}) = 2\sin 45^{\circ} \cos 10^{\circ} + 2\cos 30^{\circ} \cos 10^{\circ} = 2\cos 10^{\circ} (\sin 45^{\circ} + \cos 30^{\circ}).$

VÍ DỤ 2. Chứng minh đẳng thức $\cos^3 a \cos 3a - \sin^3 a \sin 3a = \frac{3}{4} \cos 4a + \frac{1}{4}$. 🗩 Lời giải.

Biến đổi về trái, ta có

$$VT = \cos^{3} a \cdot \cos 3a - \sin^{3} a \cdot \sin 3a$$

$$= (\cos a \cdot \cos 3a) \cdot \cos^{2} a - (\sin a \cdot \sin 3a) \cdot \sin^{2} a$$

$$= \frac{1}{2} [\cos 2a + \cos 4a] \cdot \cos^{2} a - \frac{1}{2} [\cos 2a - \cos 4a] \cdot \sin^{2} a$$

$$= \frac{1}{2} \cdot \cos 2a (\cos^{2} a - \sin^{2} a) + \frac{1}{2} \cdot \cos 4a (\cos^{2} a + \sin^{2} a)$$

$$= \frac{1}{2} \cdot \cos^{2} 2a + \frac{1}{2} \cdot \cos 4a = \frac{1}{2} \cdot \frac{1 + \cos 4a}{2} + \frac{1}{2} \cdot \cos 4a$$

$$= \frac{3}{4} \cos 4a + \frac{1}{4}$$

$$= VP.$$

VÍ DU 3. Rút gọn các biểu thức sau

- a) $A = \cos 11x \cos 3x \cos 17x \cos 9x$
- c) $C = \sin x \sin 3x + \sin 4x \sin 8x$.
- e) $E = \sin x \sin\left(\frac{\pi}{3} x\right) \sin\left(\frac{\pi}{3} + x\right)$.

- b) $B = \sin 18x \cos 3x \sin 19x \cos 4x$.
- d) $D = \sin 2x \sin 6x \cos x \cos 3x$.
- f) $F = \cos\frac{x}{2}\cos\frac{3x}{2} \sin x \sin 3x \sin 2x \sin 3x.$

🗩 Lời giải.

- a) $A = \frac{1}{2}\cos 14x + \frac{1}{2}\cos 8x \frac{1}{2}\cos 26x \frac{1}{2}\cos 8x = \frac{1}{2}(\cos 14x \cos 26x) = \sin 15x \sin 12x.$
- b) $B = \frac{1}{2}\sin 21x + \frac{1}{2}\sin 15x \frac{1}{2}\sin 23x \frac{1}{2}\sin 15x = \frac{1}{2}\left(\sin 21x \sin 23x\right) = -\cos 22x\sin x.$
- c) $C = -\frac{1}{2}\cos 4x + \frac{1}{2}\cos 2x \frac{1}{2}\cos 12x + \frac{1}{2}\cos 4x = \frac{1}{2}(\cos 12x + \cos 2x) = \cos 7x\cos 5x$.
- d) $D = -\frac{1}{2}\cos 8x + \frac{1}{2}\cos 4x \frac{1}{2}\cos 4x \frac{1}{2}\cos 2x = -\frac{1}{2}(\cos 8x + \cos 2x) = -\cos 5x\cos 3x$
- e) $E = \sin x \cdot \frac{1}{2} \left(\cos 2x + \frac{1}{2} \right) = \frac{1}{4} \sin 3x \frac{1}{4} \sin x + \frac{1}{4} \sin x = \frac{1}{4} \sin 3x.$
- f) $F = \frac{1}{2}\cos 2x + \frac{1}{2}\cos x + \frac{1}{2}\cos 4x \frac{1}{2}\cos 2x + \frac{1}{2}\cos 5x \frac{1}{2}\cos x = \frac{1}{2}(\cos 4x \cos 5x) = \sin \frac{9x}{2}\sin \frac{x}{2}$

VÍ DỤ 4. Cho tan 3a=2023. Tính giá trị biểu thức $P=\frac{\sin 2a-\sin 3a+\sin 4a}{\cos 2a-\cos 3a+\cos 4a}$ **P Lời giải.**

Ta có

$$P = \frac{\sin 2a - \sin 3a + \sin 4a}{\cos 2a - \cos 3a + \cos 4a}$$

$$= \frac{(\sin 4a + \sin 2a) - \sin 3a}{(\cos 4a + \cos 2a) - \cos 3a}$$

$$= \frac{2\sin 3a \cdot \cos a - \sin 3a}{2\cos 3a \cdot \cos a - \cos 3a}$$

$$= \frac{\sin 3a \cdot (2\cos a - 1)}{\cos 3a \cdot (2\cos a - 1)} = \tan 3a.$$

Vậy $P = \tan 3a = 2023$.

VÍ DỤ 5. Rút gọn biểu thức $S = 2\sin x (\cos x + \cos 3x + \cos 5x)$. Từ đó tính giá trị biểu thức

$$P = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}.$$

Dèi giải.

Ta có

$$S = 2\sin x (\cos x + \cos 3x + \cos 5x)$$

$$= 2\sin x \cdot \cos x + 2\sin x \cdot \cos 3x + 2\sin x \cdot \cos 5x$$

$$= \sin 2x + \sin 4x - \sin 2x + \sin 6x - \sin 4x$$

$$= \sin 6x.$$

Vây $S = \sin 6x$.

Áp dụng kết quả trên để tính $P = \cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}$.

Vì $\sin\frac{\pi}{7}\neq 0$ nên

$$P = \cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}$$

$$\Rightarrow 2P \cdot \sin \frac{\pi}{7} = 2\sin \frac{\pi}{7} \left(\cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7}\right)$$

$$= \sin \frac{6\pi}{7} = \sin \left(\pi - \frac{\pi}{7}\right) = \sin \frac{\pi}{7}$$

$$\Rightarrow P = \frac{1}{2}.$$

$$V_{\text{ay}} P = \frac{1}{2}.$$

2. Bài tập rèn luyện

BÀI 1. Cho biểu thức $A = \cos^2 a - \cos^2 3a - \sin 4a \cdot \sin 2a$. Chứng minh A = 0. **Dời giải.**

Ta có

$$\cos^{2} a - \cos^{2} 3a = (\cos a - \cos 3a)(\cos a + \cos 3a)$$

$$= -2\sin\frac{a+3a}{2}\sin\frac{a-3a}{2} \cdot 2\cos\frac{a+3a}{2}\cos\frac{a-3a}{2}$$

$$= -2\sin 2a \cdot \sin(-a) \cdot 2\cos 2a \cdot \cos(-a)$$

$$= 2\sin 2a \cdot \cos 2a \cdot 2\sin a\cos a$$

$$= \sin 4a \cdot \sin 2a.$$

Từ đó suy ra A=0.

BÀI 2. Cho $\cos^2 x + \cos^2 y = m$. Tính giá trị biểu thức $P = \cos(x+y) \cdot \cos(x-y)$. \bigcirc Lời giải.

Ta có

$$P = \cos(x+y) \cdot \cos(x-y)$$

$$= \frac{1}{2}[\cos(x+y+x-y) + \cos(x+y-x+y)]$$

$$= \frac{1}{2}(\cos 2x + \cos 2y)$$

$$= \frac{1}{2}(2\cos^2 x - 1 + 2\cos^2 y - 1)$$

$$= \frac{1}{2}(2\cos^2 x + 2\cos^2 y - 2)$$

$$= \cos^2 x + \cos^2 y - 1 = m - 1.$$

BÀI 3. Biểu thức $A = 5 + 4\sin 2x \cos 2x$ nhận tất cả bao nhiêu giá trị nguyên? **Dời giải.**

Ta có $A = 5 + 4\sin 2x \cos 2x = 5 + 2\sin 4x$.

 $\text{Mà} -1 \le \sin 4x \le 1 \Rightarrow -2 \le 2 \sin 4x \le 2 \Rightarrow 3 \le 5 + 2 \sin 4x \le 7$

 $\Rightarrow 3 \leq A \leq 7$ mà $A \in \mathbb{Z} \Rightarrow A \in \{3;4;\overline{5};6;7\}$ nên Anhận tất cả 5 giá trị nguyên.

 \blacksquare \blacksquare 4. Chứng minh rằng với mọi tam giác ABC ta luôn có

$$\sin A + \sin B - \sin C = 4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}.$$

Dèi giải.

$$\begin{split} &\text{Ta có} \sin A + \sin B - \sin C = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} - \sin \left(2 \cdot \frac{C}{2}\right) \\ &\text{Vì } \frac{A+B}{2} + \frac{C}{2} = 90^{\circ} \text{ nên sin } \frac{A+B}{2} = \cos \frac{C}{2} \text{ và sin } \frac{C}{2} = \cos \frac{A+B}{2}. \\ &\text{Từ đó } \sin A + \sin B - \sin C = 2 \cos \frac{C}{2} \cos \frac{A-B}{2} - 2 \sin \frac{C}{2} \cos \frac{C}{2}. \end{split}$$

$$\begin{split} &=2\cos\frac{C}{2}\left[\cos\frac{A-B}{2}-\cos\frac{A+B}{2}\right]\\ &=2\cos\frac{C}{2}\cdot(-2)\sin\frac{A}{2}\sin\left(-\frac{B}{2}\right)=4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}.\\ &\text{Vây }\sin A+\sin B-\sin C=4\sin\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}. \end{split}$$

BÀI 5. Chứng minh rằng với mọi tam giác nhọn ABC ta luôn có

$$\frac{\sin A + \sin B - \sin C}{\cos A + \cos B - \cos C + 1} = \tan \frac{A}{2} \tan \frac{B}{2} \cot \frac{C}{2}.$$

🗩 Lời giải.

$$\begin{aligned} &\operatorname{Ta} \operatorname{c\acute{o}} \frac{\sin A + \sin B - \sin C}{\cos A + \cos B - \cos C + 1} = \frac{2 \sin \frac{A + B}{2} \cos \frac{A - B}{2} - \sin \left(2 \cdot \frac{C}{2} \right)}{2 \cos \frac{A + B}{2} \cos \frac{A - B}{2} + 1 - \cos \left(2 \frac{C}{2} \right)} \\ &\frac{2 \cos \frac{C}{2} \cos \frac{A - B}{2} - 2 \sin \frac{C}{2} \cos \frac{C}{2}}{2 \sin \frac{C}{2} \cos \frac{A - B}{2} + 2 \sin^2 \frac{C}{2}} = \frac{2 \cos \frac{C}{2} \left(\cos \frac{A - B}{2} - \cos \frac{A + B}{2} \right)}{2 \sin \frac{C}{2} \cos \frac{A - B}{2} + \cos \frac{A + B}{2} \right)} \\ &= \cot \frac{C}{2} \frac{-2 \sin \frac{A}{2} \sin \left(-\frac{B}{2} \right)}{2 \cos \frac{A}{2} \cos \left(-\frac{B}{2} \right)} = \cot \frac{C}{2} \tan \frac{A}{2} \tan \frac{B}{2} = \tan \frac{A}{2} \tan \frac{B}{2} \cot \frac{C}{2}. \end{aligned}$$

$$\operatorname{Vây} \frac{\sin A + \sin B - \sin C}{\cos A + \cos B - \cos C + 1} = \tan \frac{A}{2} \tan \frac{B}{2} \cot \frac{C}{2}.$$

BÀI 6. Chứng minh rằng đẳng thức $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\cos 3x$, với mọi $x\in\mathbb{R}$.

Ta có

$$4\cos x \cos\left(\frac{\pi}{3} - x\right) \cos\left(\frac{\pi}{3} + x\right) = 4\cos x \cdot \frac{1}{2} \left[\cos(-2x) + \cos\frac{2\pi}{3}\right]$$
$$= 2\cos x \cos 2x - \cos x$$
$$= \cos 3x + \cos(-x) - \cos x$$
$$= \cos 3x, \forall x \in \mathbb{R}.$$

BÀI 7. Tính giá trị của biểu thức $S = \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right)$. **PLời giải.**

Ta có

$$S = \cos^{2} x + \cos^{2} \left(\frac{2\pi}{3} + x\right) + \cos^{2} \left(\frac{2\pi}{3} - x\right)$$

$$= \frac{1 + \cos 2x}{2} + \frac{1 + \cos\left(\frac{4\pi}{3} + 2x\right)}{2} + \frac{1 + \cos\left(\frac{4\pi}{3} - 2x\right)}{2}$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\left[\cos\left(\frac{4\pi}{3} + 2x\right) + \cos\left(\frac{4\pi}{3} - 2x\right)\right]$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2} \cdot 2\cos\frac{4\pi}{3}\cos 2x$$

$$= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2} \cdot 2 \cdot \left(-\frac{1}{2}\right)\cos 2x$$

$$= \frac{3}{2}.$$

BÀI 8. Chứng minh giá trị của biểu thức

$$A = \cos\left(\frac{\pi}{3} - x\right)\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{6} + x\right)\cos\left(\frac{3\pi}{4} + x\right)$$

không phụ thuộc vào giá trị của biến x.

Dèi giải.

Ta có
$$\cos\left(\frac{\pi}{6}+x\right)=\sin\left(\frac{\pi}{2}-\frac{\pi}{6}-x\right)=\sin\left(\frac{\pi}{3}-x\right);$$
 $\cos\left(\frac{3\pi}{4}+x\right)=\sin\left(-\frac{\pi}{4}-x\right)=-\sin\left(\frac{\pi}{4}+x\right).$ Do đó $A=\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{4}+x\right)-\sin\left(\frac{\pi}{3}-x\right)\sin\left(\frac{\pi}{4}+x\right)=\cos\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=\cos\frac{7\pi}{12}.$ Vậy giá trị của biểu thức A không phụ thuộc vào giá trị của biến x .

BÀI 9. Chon $\sin 2x = m$, $(-1 \le m \le 1)$. Tính theo m giá trị của biểu thức

$$S = \frac{1}{2} \left(\cos \left(\frac{\pi}{3} - 2x \right) - \cos \left(\frac{\pi}{2} + 2x \right) \right) - \sin \frac{\pi}{12} \cdot \cos \left(\frac{\pi}{12} + 2x \right).$$

Dèi giải.

Ta có

$$\frac{1}{2}\left(\cos\left(\frac{\pi}{3}-2x\right)-\cos\left(\frac{\pi}{2}+2x\right)\right)-\sin\frac{\pi}{12}\cdot\cos\left(\frac{\pi}{12}+2x\right)$$

$$=-\frac{1}{2}\left(\cos\left(\frac{\pi}{2}+2x\right)-\cos\left(\frac{\pi}{3}-2x\right)\right)-\sin\frac{\pi}{12}\cdot\cos\left(\frac{\pi}{12}+2x\right)$$

$$=\sin\frac{5\pi}{12}\sin\left(\frac{\pi}{12}+2x\right)-\sin\frac{\pi}{12}\cdot\cos\left(\frac{\pi}{12}+2x\right)$$

$$=\sin\left(\frac{\pi}{12}+2x\right)\cos\frac{\pi}{12}-\cos\left(\frac{\pi}{12}+2x\right)\sin\frac{\pi}{12}=\sin2x.$$

Vậy S = m.

BÀI 10. Cho a, b thỏa mãn $\sin(2a+b)=3\sin b$. Chứng minh rằng $\tan(a+b)=2\tan a$. \bigcirc Lời giải.

$$\sin(2a+b) = 3\sin b \Leftrightarrow \sin[(a+b)+a] = 3\sin[(a+b)-a]$$

$$\Leftrightarrow \sin(a+b)\cos a + \cos(a+b)\sin a = 3[\sin(a+b)\cos a - \cos(a+b)\sin a]$$

$$\Leftrightarrow \sin(a+b)\cos a = 2\cos(a+b)\sin a$$

$$\Leftrightarrow \frac{\sin(a+b)\cos a}{\cos(a+b)\cos a} = 2 \cdot \frac{\cos(a+b)\sin a}{\cos(a+b)\cos a}$$

$$\Leftrightarrow \tan(a+b) = 2\tan a.$$

BÀI 11. Chứng minh trong tam giác ABC, ta luôn co

$$\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C.$$

Dèi giải.

Vì
$$A$$
, B , C là ba góc trong $\triangle ABC$ nên $A+B+C=\pi$.
 $\sin 2A+\sin 2B+\sin 2C=2\sin(A+B)\cos(A-B)+2\sin C\cos C$

$$=2\sin C\cos(A-B)+2\sin C\cos C$$

$$=2\sin C\left[\cos(A-B)+\cos C\right]$$

$$=4\sin C\cos\frac{A-B+C}{2}\cos\frac{A-B-C}{2}.$$

Ta lại có

$$\frac{A - B + C}{2} + B = \frac{A + B + C}{2} = \frac{\pi}{2} \Rightarrow \frac{A - B + C}{2} = \frac{\pi}{2} - B \Rightarrow \cos \frac{A - B + C}{2} = \sin B.$$

$$\frac{A - B - C}{2} - A = -\frac{A + B + C}{2} = -\frac{\pi}{2} \Rightarrow \frac{A - B - C}{2} = -\frac{\pi}{2} + A \Rightarrow \cos \frac{A - B - C}{2} = \sin A.$$

Vậy suy ra $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.

BÀI 12. Cho tam giác ABC có ba góc A, B, C thỏa mãn hệ thức $\sin A = \cos B + \cos C$. Chứng minh rằng tam giác ABC là tam giác vuông.

Dèi giải.

Ta có

$$\sin A = \cos B + \cos C$$

$$\Leftrightarrow 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}$$

$$\Leftrightarrow 2 \sin \frac{A}{2} \cos \frac{A}{2} = 2 \cos \left(\frac{\pi}{2} - \frac{A}{2}\right) \cos \frac{B-C}{2}$$

$$\Leftrightarrow \cos \frac{A}{2} = \cos \frac{B-C}{2}.$$

Suy ra
$$\begin{bmatrix} \frac{A}{2} = \frac{B - C}{2} \\ \frac{A}{2} = -\frac{B - C}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} B = A + C \\ C = A + B. \end{bmatrix}$$
Vây tạm giác ABC vuông tại B hoặc tạ

Vậy tam giác ABC vuông tại B hoặc tại C.

BÀI 13. Cho biểu thức $T = \cos 2x \cdot \cos x + \sin x \cdot \cos x \cdot \sin 3x - \sin^2 x \cdot \cos 3x$. Gọi S là tập các giá trị nguyên mà T nhận.

🗩 Lời giải.

$$T = \cos x \left(\cos 2x - \sin x \cdot \sin 3x\right) - \sin^2 x \cdot \cos 3x$$

$$= \cos x \left(\cos 2x - \frac{1}{2} \left(\cos 2x - \cos 4x\right)\right) - \sin^2 x \cdot \cos 3x$$

$$= \cos x \cdot \frac{1}{2} \left(\cos 2x + \cos 4x\right) - \sin^2 x \cdot \cos 3x$$

$$= \left(\cos^2 x - \sin^2 x\right) \cos 3x$$

$$= \cos 2x \cdot \cos 3x.$$

 $V_1 - 1 \le \cos 2x \le 1, -1 \le \cos 3x \le 1 \text{ với } \forall x \in \mathbb{R} \text{ nên } S = \{-1, 0, 1\}.$

BÀI 14. Chứng minh đẳng thức

$$\frac{\sin a + \sin 3a + \sin 5a + \dots + \sin(2n-1)a}{\cos a + \cos 3a + \cos 5a + \dots + \cos(2n-1)a} = \tan na.$$

🗩 Lời giải.

Biến đổi về trái

$$VT = \frac{\sin a + \sin 3a + \sin 5a + \dots + \sin(2n - 1)a}{\cos a + \cos 3a + \cos + \dots + \cos(2n - 1)a}$$

$$= \frac{[\sin a + \sin(2n - 1)a] + [\sin 3a + \sin(2n - 3)a] + \dots + [\sin(n - 1)a + \sin(n + 1)a]}{[\cos a + \cos(2n - 1)a] + [\cos 3a + \cos(2n - 3)a] + \dots + [\cos(n - 1)a + \cos(n + 1)a]}$$

$$= \frac{2\sin na \cdot \cos(n - 1)a + 2\sin na \cdot \cos(n - 2)a + \dots + 2\sin na \cdot \cos a}{2\cos na \cdot \cos(n - 1)a + 2\cos na \cdot \cos(n - 2)a + \dots + 2\cos na \cdot \cos a}$$

$$= \frac{2\sin na [\cos a + \cos 2a + \dots + \cos(n - 1)a]}{2\cos na [\cos a + \cos 2a + \dots + \cos(n - 1)a]}$$

$$= \tan na$$

$$= VP.$$

BÀI 15. Cho a, b là các góc thỏa mãn $\begin{cases} \cos a + \cos b = m \\ \sin a + \sin b = n \end{cases}$ với m, n khác 0. Tính $\sin(a + b)$.

🗭 Lời giải.

Nhân về theo về các phương trình trong giả thiết, ta được

$$\begin{array}{rcl} m \cdot n & = & (\cos a + \cos b) \cdot (\sin a + \sin b) \\ & = & \sin a \cdot \cos a + \sin b \cdot \cos b + \sin a \cdot \cos b + \cos a \cdot \sin b \\ & = & \frac{1}{2} \cdot \sin 2a + \frac{1}{2} \cdot \sin 2b + \sin(a + b) \\ & = & \frac{1}{2} \left(\sin 2a + \sin 2b \right) + \sin(a + b) \\ & = & \sin(a + b) \cdot \cos(a - b) + \sin(a + b) \\ & = & \sin(a + b) \left[\cos(a - b) + 1 \right]. \end{array}$$

Lai có

$$m^{2} + n^{2} = (\cos a + \cos b)^{2} + (\sin a + \sin b)^{2}$$

$$= 2 + 2(\cos a \cdot \cos b + \sin a \cdot \sin b)$$

$$= 2 + 2\cos(a - b)$$

$$\Rightarrow \cos(a - b) = \frac{m^{2} + n^{2} - 2}{2}.$$
 (2)

Thay (2) vào (1) ta được

$$\sin(a+b) = \frac{m \cdot n}{\frac{m^2 + n^2 - 2}{2} + 1} = \frac{2m \cdot n}{m^2 + n^2}.$$

Vậy $\sin(a+b) = \frac{2m \cdot n}{m^2 + n^2}$

3. Bài tập trắc nghiệm

CÂU 1. Đẳng thức nào sau đây đúng?

$$(\mathbf{A})\cos 2x = 1 - 2\cos^2 x.$$

$$\mathbf{B}\cos x \sin y = \frac{1}{2} \left[\sin(x+y) - \sin(x-y) \right].$$

Dòi giải.

Theo công thức lượng giác.

Chọn đáp án (B).....

CÂU 2. Cho $\sin \alpha = \frac{5}{13}, \ 0 < \alpha < \frac{\pi}{4}$. Giá trị của $\sin 2\alpha$ bằng

$$\mathbf{B}\sin 2\alpha = -\frac{120}{169}.$$

$$\mathbf{c}\sin 2\alpha = \frac{60}{169}.$$

Vì $0 < \alpha < \frac{\pi}{4}$ nên $\cos \alpha > 0$, suy ra $\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{25}{160}} = \frac{12}{13}$.

Vậy $\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \cdot \frac{5}{13} \cdot \frac{12}{13} = \frac{120}{169}$

Chọn đáp án (A)...

CÂU 3. Cho $\sin \alpha = \frac{3}{4}$. Khi đó $\cos 2\alpha$ bằng

$$\bigcirc \frac{1}{8}$$

$$\bigcirc$$
 $-\frac{1}{8}$.

 $\mathbf{A} \frac{1}{8}$. \mathbf{p} Lời giải.

Ta có $\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2 \cdot \frac{9}{16} = -\frac{1}{8}$.

Chọn đáp án (A).....

CÂU 4. Cho $\sin \alpha + \cos \alpha = \frac{5}{4}$. Khi đó $\sin 2\alpha$ có giá trị bằng

$$\frac{3}{32}$$
.

$$\frac{9}{16}$$
.

🗭 Lời giải.

Từ giả thiết ta có

$$\left(\frac{5}{4}\right)^2 = (\sin\alpha + \cos\alpha)^2 = \sin^2\alpha + \cos^2\alpha + 2\sin\alpha \cdot \cos\alpha = 1 + \sin 2\alpha.$$

Vậy $\sin 2\alpha = \frac{25}{16} - 1 = \frac{9}{16}$

Chọn đáp án (D)...

CÂU 5. Rút gọn biểu thức $P=\frac{\cos a-\cos 5a}{\sin 4a+\sin 2a}$ (với $\sin 4a+\sin 2a\neq 0$) ta được

$$P = 2\cos a.$$

$$\bigcirc P = 2 \tan a.$$

$$\bigcirc P = 2\sin a.$$

🗩 Lời giải.

Ta có

$$\cos a - \cos 5a = 2\sin 3a\sin 2a$$

$$\sin 4a + \sin 2a = 2\sin 3a\cos a$$

Do đó $P = \frac{\sin 2a}{\cos a} = 2\sin a$.

CÂU 6. Cho $\cos x = -\frac{3}{5}$. Tính $\cos 2x$.

(A)
$$\cos 2x = -\frac{7}{25}$$
. (B) $\cos 2x = -\frac{3}{10}$. (C) $\cos 2x = -\frac{8}{9}$. (D) $\cos 2x = \frac{7}{25}$.

$$\mathbf{C}\cos 2x = -\frac{8}{9}.$$

$$\bigcirc \cos 2x = \frac{7}{25}$$

🗩 Lời giải.

Ta có $\cos 2x = 2\cos^2 x - 1 = -\frac{7}{25}$.

CÂU 7. Cho $\sin 2\alpha = -\frac{1}{2}$, thì $\tan^2 \alpha + \cot^2 \alpha$ có giá trị bằng

(C)14.

(D)16.

🗭 Lời giải.

Ta có

$$\tan^2 \alpha + \cot^2 \alpha = (\tan \alpha + \cot \alpha)^2 - 2\tan \alpha \cot \alpha = \left(\frac{1}{\sin \alpha \cos \alpha}\right)^2 - 2 = \left(\frac{2}{\sin 2\alpha}\right)^2 - 2 = 14.$$

CÂU 8. Cho cot $\alpha = 15$ thì $\sin 2\alpha$ bằng

$$igatharpoonup rac{11}{113}.$$

B
$$\frac{15}{113}$$
.

$$\bigcirc \frac{17}{113}.$$

$$\bigcirc \frac{13}{113}.$$

🗩 Lời giải.

Ta có

$$\cot \alpha = 15 \Rightarrow \tan \alpha = \frac{1}{15} \Rightarrow \frac{226}{15} = \cot \alpha + \tan \alpha = \frac{1}{\sin \alpha \cos \alpha} = \frac{2}{\sin 2\alpha} \Rightarrow \sin 2\alpha = \frac{15}{113}.$$

CÂU 9. Khi $\cos \alpha = \frac{3}{4}$ thì tích số $16 \cdot \sin \frac{\alpha}{2} \cdot \sin \frac{3\alpha}{2}$ là một số nguyên. Số nguyên này bằng

🗩 Lời giải.

Ta có $16 \cdot \sin \frac{\alpha}{2} \cdot \sin \frac{3\alpha}{2} = 8(\cos \alpha - \cos 2\alpha) = 8(\cos \alpha - 2\cos^2 \alpha + 1) = 5.$

Chọn đáp án (C).

CÂU 10. Tìm khẳng định sai.

$$\mathbf{\hat{A}}\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x.$$

$$\mathbf{C}\sin^4 x - \cos^4 x = -\cos 2x.$$

Dòi giải.

Ta có

$$\sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$$
$$= 1 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}\sin^2 2x$$
$$= 1 - \frac{1}{4}(1 - \cos 4x) = 1 - \frac{1}{4} + \frac{1}{4}\cos 4x$$
$$= \frac{3}{4} + \frac{1}{4}\cos 4x.$$

Suy ra đẳng thức $\sin^4 x + \cos^4 x = \frac{3}{4} - \frac{1}{4}\cos 4x$ là sai.

Chọn đáp án (B).....

CÂU 11. Cho $\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \frac{1}{4}$. Khi đó $\cos 4x$ bằng

 $(\mathbf{D})_1$.

🗩 Lời giải.

Ta có

$$\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \sin x \cdot \cos x \cdot (\cos^4 x - \sin^4 x)$$

$$= \sin x \cdot \cos x \cdot (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)$$

$$= \sin x \cdot \cos x \cdot (\cos^2 x - \sin^2 x)$$

$$= \frac{\sin 2x}{2} \cdot \cos 2x = \frac{\sin 4x}{4}.$$

Suy ra $\frac{\sin 4x}{4} = \frac{1}{4} \Rightarrow \sin 4x = 1 \Rightarrow \cos 4x = 0.$

CÂU 12. Cho $\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$. Tính $M = \cos(a+b) \cdot \cos(a-b)$.

$$M = -\frac{12}{25}$$
.

$$\mathbf{B}M = \frac{12}{25}$$

$$\mathbf{C}M = -\frac{13}{25}$$

 $\bigcirc M = \frac{13}{25}$

🗩 Lời giải.

Dùng công thức biến đổi tích thành tổng

$$M = \frac{1}{2} \left[\cos(a+b+a-b) + \cos(a+b-a+b) \right]$$

$$= \frac{1}{2} (\cos 2a + \cos 2b)$$

$$= \frac{1}{2} (2\cos^2 a - 1 + 2\cos^2 b - 1)$$

$$= \frac{1}{2} \left(2 \cdot \frac{9}{25} - 1 + 2 \cdot \frac{4}{25} - 1 \right)$$

$$= -\frac{12}{25}.$$

Chon đáp án A.....

CÂU 13. Cho $\sin \alpha = m$. Tính

$$P = \cos\left(\frac{\pi}{2} - \alpha\right)\sin(\pi - \alpha) - \sin\left(\frac{\pi}{2} - \alpha\right)\cos(\pi - \alpha) + \sin^2(\alpha + 2018\pi).$$

 $(A)P = m^2 + 2.$

 $\mathbf{B})P = m^2 - 2.$

 $(\mathbf{C})P = m^2 + 1.$

Dòi giải.

Ta có $P = \sin \alpha \cdot \sin \alpha - \cos \alpha \cdot (-\cos \alpha) + \sin^2 \alpha = \sin^2 \alpha + \cos^2 \alpha + \sin^2 \alpha = 1 + \sin^2 \alpha = 1 + m^2$. Chọn đáp án (C).....

Ta có $P=rac{1+2020\cdot 2\sinrac{lpha}{2}\cosrac{lpha}{2}}{1-2015\cdot 2\sinrac{lpha}{2}\cosrac{lpha}{2}}.$ Chia cả tử và mẫu cho $\cos^2rac{lpha}{2},$ ta được

$$P = \frac{\frac{1}{\cos^2 \frac{\alpha}{2}} + 4040 \tan \frac{\alpha}{2}}{\frac{1}{\cos^2 \frac{\alpha}{2}} - 4030 \tan \frac{\alpha}{2}} = \frac{1 + \tan^2 \frac{\alpha}{2} + 4040 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2} - 4030 \tan \frac{\alpha}{2}}$$
$$= \frac{1 + 2^2 + 4040 \cdot 2}{1 + 2^2 - 4030 \cdot 2} = -\frac{8085}{8055} = -\frac{1617}{1611}.$$

Chọn đáp án (B)...

CÂU 15. Cho $\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \frac{1}{4}$. Khi đó $\cos 4x$ bằng

(**D**)1.

🗭 Lời giải.

Ta có

$$\sin x \cdot \cos^5 x - \cos x \cdot \sin^5 x = \sin x \cdot \cos x \cdot (\cos^4 x - \sin^4 x)$$

$$= \sin x \cdot \cos x \cdot (\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x)$$

$$= \sin x \cdot \cos x \cdot (\cos^2 x - \sin^2 x)$$

$$= \frac{\sin 2x}{2} \cdot \cos 2x = \frac{\sin 4x}{4}.$$

Suy ra $\frac{\sin 4x}{4} = \frac{1}{4} \Rightarrow \sin 4x = 1 \Rightarrow \cos 4x = 0.$

CÂU 16. Cho $\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$. Tính $M = \cos(a+b) \cdot \cos(a-b)$.

 $M = -\frac{12}{25}$.

 $\bigcirc M = -\frac{13}{25}.$

 $\bigcirc M = \frac{13}{25}.$

🗩 Lời giải.

Dùng công thức biến đổi tích thành tổng

$$M = \frac{1}{2} \left[\cos(a+b+a-b) + \cos(a+b-a+b) \right]$$

$$= \frac{1}{2} (\cos 2a + \cos 2b)$$

$$= \frac{1}{2} (2\cos^2 a - 1 + 2\cos^2 b - 1)$$

$$= \frac{1}{2} \left(2 \cdot \frac{9}{25} - 1 + 2 \cdot \frac{4}{25} - 1 \right)$$

$$= -\frac{12}{25}.$$

Chọn đáp án (A)

$$\mathbf{B}I = -\frac{1}{3}.$$

$$\bigcirc I = 3$$

$$\bigcirc I = -3.$$

🗭 Lời giải.

Ta có

$$I = \frac{\cos 5x + \cos 3x}{\sin 5x - \sin 3x} = \frac{2\cos 4x \cos x}{2\cos 4x \sin x} = \frac{1}{\tan x} = 3.$$

Chọn đáp án (C)..

CÂU 18. Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$. Biết $\sin \alpha + 2\cos \alpha = -1$. Tính giá trị $\sin 2\alpha$.

$$\bigcirc \frac{24}{25}$$
.

$$\bigcirc -\frac{2\sqrt{6}}{5}$$
.

$$-\frac{24}{25}$$
.

🗭 Lời giải.

 $\text{X\'et hệ phương trình } \begin{cases} \sin\alpha + 2\cos\alpha = -1 \\ \sin^2\alpha + \cos^2\alpha = 1 \end{cases} \Leftrightarrow \begin{cases} \sin\alpha = -1 - 2\cos\alpha \\ 5\cos^2\alpha + 4\cos\alpha = 0 \end{cases} \Leftrightarrow \begin{cases} \cos\alpha = 0 \\ \cos\alpha = -\frac{4}{5} \end{cases}$

 $\text{Vì } \frac{\pi}{2} < \alpha < \pi \Rightarrow \cos \alpha = -\frac{4}{5} \Rightarrow \sin \alpha = \frac{3}{5} \text{ suy ra } \sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha = -\frac{24}{25}$

CÂU 19. Cho $\cos\left(\frac{\pi}{2} + x\right) = -\frac{1}{5}$ với $2\pi < x < \frac{5\pi}{2}$. Giá trị của $\sin 2x$ bằng

$$\bigcirc$$
 $-\frac{4\sqrt{6}}{25}$.

Ta có $\cos\left(\frac{\pi}{2} + x\right) = -\frac{1}{5} \Rightarrow \sin x = \frac{1}{5} \Rightarrow \cos x = \pm\sqrt{1 - \sin^2 x} = \pm\sqrt{1 - \left(\frac{1}{5}\right)^2} = \pm\frac{2\sqrt{6}}{5}$

Vì $2\pi < x < \frac{5\pi}{2}$ nên $\cos x = \frac{2\sqrt{6}}{5}$. Do đó $\sin 2x = 2\sin x \cos x = 2 \cdot \frac{1}{5} \cdot \frac{2\sqrt{6}}{5} = \frac{4\sqrt{6}}{25}$.

$$\frac{16}{65}$$
.

$$\mathbf{B} - \frac{18}{65}$$
.

$$\mathbf{C} - \frac{16}{65}$$
.

$$\bigcirc \frac{56}{65}$$

Lời aiải.

Có $\sin \alpha = \frac{5}{13} \Rightarrow \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \pm \frac{12}{13}$. Vì $\frac{\pi}{2} < \alpha < \pi$ nên $\cos \alpha = -\frac{12}{13}$.

Tương tự có $\sin \beta = \pm \frac{4}{5}$. Vì $0 < \beta < \frac{\pi}{2}$ nên $\sin \beta =$

Có $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta = -\frac{12}{13} \cdot \frac{3}{5} + \frac{5}{13} \cdot \frac{4}{5} = -\frac{16}{65}$

Chọn đáp án \bigcirc

CÂU 21. Nếu $\tan \alpha + \cot \alpha = 2 \left(0 < \alpha < \frac{\pi}{2} \right)$ thì $\sin 2\alpha$ bằng

$$\frac{\pi}{2}$$
.

$$\mathbf{c} - \frac{1}{3}$$
.

$$\bigcirc \frac{\sqrt{2}}{2}$$
.

🗭 Lời giải.

Ta có
$$\tan \alpha + \cot \alpha = 2 \Leftrightarrow \tan^2 \alpha - 2 \tan \alpha + 1 = 0 \Leftrightarrow \tan \alpha = 1 \Rightarrow \begin{cases} \sin \alpha = \frac{\sqrt{2}}{2} \\ \cos \alpha = \frac{\sqrt{2}}{2}. \end{cases}$$

Suy ra $\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = 1.$

Chọn đáp án (B).....

CÂU 22. Cho
$$\cos a = \frac{3}{5}, \cos b = \frac{2}{5}$$
. Tính $M = \cos(a+b) \cdot \cos(a-b)$.

$$M = -\frac{12}{25}.$$

$$\bigcirc M = -\frac{13}{25}$$

$$\bigcirc M = \frac{13}{25}.$$

Dòi giải.

Dùng công thức biến đổi tích thành tổng

$$M = \frac{1}{2} \left[\cos(a+b+a-b) + \cos(a+b-a+b) \right]$$

$$= \frac{1}{2} (\cos 2a + \cos 2b)$$

$$= \frac{1}{2} (2\cos^2 a - 1 + 2\cos^2 b - 1)$$

$$= \frac{1}{2} \left(2 \cdot \frac{9}{25} - 1 + 2 \cdot \frac{4}{25} - 1 \right)$$

$$= -\frac{12}{25}.$$

Chon đáp án (A).....

CÂU 23. Cho hai góc nhọn x và y thỏa mãn $\begin{cases} 3\sin 2x - \sin 2y = 0 \\ 6\cos^2 x - 2\sin^2 y = 5 \end{cases}$. Khi đó số đo góc 2x + y gần bằng giá trị nào nhất

trong các giá trị sau

Dòi giải.

$$\begin{cases} 3\sin 2x - \sin 2y = 0 \\ 6\cos^2 x - 2\sin^2 y = 5 \end{cases} \Leftrightarrow \begin{cases} 3\sin 2x = \sin 2y \\ 3\cos 2x + \cos 2y = 3. \end{cases}$$

Ta có $(3\sin 2x)^2 + (3\cos 2x)^2 = 9$.

Suy ra $\sin^2 2y + (3 - \cos 2y)^2 = 9 \Leftrightarrow \cos 2y = \frac{1}{6} \Leftrightarrow 2y \approx 80,4^\circ \Rightarrow y \approx 40,2^\circ.$

Do $\cos 2y = \frac{1}{6}$ nên ta có $3\cos 2x = \frac{17}{18} \Rightarrow 2x \approx 19.2^{\circ}$.

Vây $2x + y \approx 59.4^{\circ}$.

Chọn đáp án (A).....

CÂU 24. Nếu
$$\sin x + \cos x = \frac{1}{2}$$
 và $0 < x < \pi$ thì $\tan x = -\frac{a + \sqrt{b}}{3}$, $(a; b \in \mathbb{Z})$. Tính $S = a + b$ **(a)** $S = 3$. **(b)** $S = -11$. **(c)** $S = 11$.

■ Lời aiải.

Từ giả thiết ta có

$$\frac{1}{4} = (\sin x + \cos x)^2 = 1 + 2\sin x \cos x,$$

suy ra $\sin x \cos x = -\frac{3}{8}$. Do đó

$$\tan x + \cot x = \frac{1}{\sin x \cos x} = -\frac{8}{3},$$

hay

$$3\tan^2 x + 8\tan x + 3 = 0 \Leftrightarrow \tan x = \frac{-4 \pm \sqrt{7}}{3}$$
.

Từ đó, ta có tan $x = -\frac{4+\sqrt{7}}{3}$. Suy ra S = a+b = 4+7 = 11.

Chon đáp án (C)

CÂU 25. Biết rằng $\tan \alpha$, $\tan \beta$ là các nghiệm của phương trình $x^2 - px + q = 0$. Giá trị của biểu thức $A = \cos^2(\alpha + \beta) + \cos^2(\alpha + \beta)$ $p\sin(\alpha+\beta)\cdot\cos(\alpha+\beta)+q\sin^2(\alpha+\beta)$ bằng

$$\bigcirc \frac{p}{q}$$
.

 $(\mathbf{D})1.$

P Lời giải.

Vì tan α , tan β là các nghiệm của phương trình $x^2 - px + q = 0$ nên theo hệ thức Vi-ét ta có $\begin{cases} \tan \alpha + \tan \beta = p \\ \tan \alpha \cdot \tan \beta = q. \end{cases}$ Ta có

$$A = \cos^{2}(\alpha + \beta) + p \sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + q \sin^{2}(\alpha + \beta)$$

$$= \cos^{2}(\alpha + \beta) + (\tan \alpha + \tan \beta) \cdot \sin(\alpha + \beta) \cdot \cos(\alpha + \beta) + (\tan \alpha \cdot \tan \beta) \cdot \sin^{2}(\alpha + \beta)$$

$$= \cos^{2}(\alpha + \beta) + \frac{\sin^{2}(\alpha + \beta)}{\cos \alpha \cdot \cos \beta} \cdot (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + \sin^{2}(\alpha + \beta) \cdot (\tan \alpha \cdot \tan \beta)$$

$$= \cos^{2}(\alpha + \beta) + \sin^{2}(\alpha + \beta) \cdot (1 - \tan \alpha \cdot \tan \beta + \tan \alpha \cdot \tan \beta)$$

$$= \cos^{2}(\alpha + \beta) + \sin^{2}(\alpha + \beta) = 1.$$

Chọn đáp án D....

Dạng 4. Kết hợp nhiều công thức lượng giác

1. Ví du mẫu

VÍ DỤ 1 (VDT). Chứng minh rằng $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\cos 3x$, với mọi $x\in\mathbb{R}$.

🗩 Lời giải.

Ta có $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=4\cos x\cdot\frac{1}{2}\left[\cos(-2x)+\cos\frac{2\pi}{2}\right]$

$$= 2\cos x \cos 2x - \cos x = \cos 3x + \cos(-x) - \cos x = \cos 3x, \forall x \in \mathbb{R}.$$

Vậy $4\cos x\cos\left(\frac{\pi}{3}-x\right)\cos\left(\frac{\pi}{3}+x\right)=\cos 3x$, với mọi $x\in\mathbb{R}$.

VÍ DỤ 2 (VDT). Chứng minh rằng với mọi $a \in \mathbb{R}$: $\cos^3 a \cos 3a - \sin^3 a \sin 3a = \frac{3}{4}\cos 4a + \frac{1}{4}$. 🗩 Lời giải.

Ta có $\cos^3 a \cos 3a - \sin^3 a \sin 3a = (\cos 3a \cos a) \cos^2 a - (\sin 3a \sin a) \sin^2 a$ $= \frac{1}{2} \left[\cos 2a + \cos 4a \right] \cos^2 a - \frac{1}{2} \left[\cos 2a - \cos 4a \right] \sin^2 a$ $= \frac{1}{2}\cos 2a\cos^2 a + \frac{1}{2}\cos 4a\cos^2 a - \frac{1}{2}\cos 2a\sin^2 a + \frac{1}{2}\cos 4a\sin^2 a$ $= \frac{1}{2}\cos 2a \left(\cos^2 a - \sin^2 a\right) + \frac{1}{2}\cos 4a \left(\cos^2 a + \sin^2 a\right)$ $= \frac{1}{2}\cos 2a\cos 2a + \frac{1}{2}\cos 4a$ $= \frac{1}{4} (\cos 4a + \cos 0) + \frac{1}{2} \cos 4a$ $= \frac{3}{4}\cos 4a + \frac{1}{4}, \forall x \in \mathbb{R}.$ Vậy $\cos^3 a \cos 3a - \sin^3 a \sin 3a = \frac{3}{4} \cos 4a + \frac{1}{4}$, với mọi $x \in \mathbb{R}$.

VÍ DỤ 3 (VDT). Chứng minh rằng giá trị của biểu thức sau đây không phụ thuộc vào biến số x:

$$S = \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right).$$

Lời giải.

Ta có

$$\begin{split} S &= \cos^2 x + \cos^2 \left(\frac{2\pi}{3} + x\right) + \cos^2 \left(\frac{2\pi}{3} - x\right) \\ &= \frac{1 + \cos 2x}{2} + \frac{1 + \cos \left(\frac{4\pi}{3} + 2x\right)}{2} + \frac{1 + \cos \left(\frac{4\pi}{3} - 2x\right)}{2} \\ &= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\left[\cos \left(\frac{4\pi}{3} + 2x\right) + \cos \left(\frac{4\pi}{3} - 2x\right)\right] \\ &= \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\cdot 2\cos \frac{4\pi}{3}\cos 2x = \frac{3}{2} + \frac{1}{2}\cos 2x + \frac{1}{2}\cdot 2\cdot \left(-\frac{1}{2}\right)\cos 2x = \frac{3}{2} \end{split}$$

Vậy $S = \frac{3}{2}$ với mọi $x \in \mathbb{R}$ (không phụ thuộc vào biến số x).

VÍ DỤ 4 (VDT). Rút gọn biểu thức $A=2\sin x(\cos x+\cos 3x+\cos 5x)$. Từ đó tính giá trị biểu thức $T=\cos\frac{\pi}{7}+\cos\frac{3\pi}{7}+\cos\frac{5\pi}{7}$.

🗩 Lời giải.

Ta có

$$A = 2\sin x(\cos x + \cos 3x + \cos 5x) = 2\sin x\cos x + 2\sin x\cos 3x + 2\sin x\cos 5x$$

= $\sin 2x + \sin 4x + \sin(-2x) + \sin 6x + \sin(-4x) = \sin 2x + \sin 4x - \sin 2x + \sin 6x - \sin 4x$.

Như vậy, $A = 2\sin x(\cos x + \cos 3x + \cos 5x) = \sin 6x$.

Áp dụng kết quả trên, ta có

The data from the desired from the desired from the desired from
$$T = \cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7} \Rightarrow T \cdot 2\sin\frac{\pi}{7} = 2\sin\frac{\pi}{7} \left(\cos\frac{\pi}{7} + \cos\frac{3\pi}{7} + \cos\frac{5\pi}{7}\right) = \sin\frac{6\pi}{7}.$$

Do $\sin\frac{6\pi}{7} = \sin\left(\pi - \frac{\pi}{7}\right) = \sin\frac{\pi}{7}$ nên $T \cdot 2\sin\frac{\pi}{7} = \sin\frac{\pi}{7} \Rightarrow T = \frac{1}{2}.$

VÍ DU 5 (VDT). Tính giá trị biểu thức $A = \sin^2 10^\circ + \cos 70^\circ \cos 50^\circ$. 🗩 Lời giải.

Ta có

$$A = \sin^2 10^\circ + \cos 70^\circ \cos 50^\circ = \frac{1 - \cos 20^\circ}{2} + \frac{1}{2} \left[\cos 120^\circ + \cos 20^\circ \right]$$
$$= \frac{1}{2} - \frac{1}{2} \cos 20^\circ + \frac{1}{2} \cos 120^\circ + \frac{1}{2} \cos 20^\circ = \frac{1}{2} + \frac{1}{2} \cos 120^\circ = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

Vậy $A = \sin^2 10^\circ + \cos 70^\circ \cos 50^\circ = \frac{1}{4}$.

2. Bài tấp rèn luyên

BÀI 1 (VDT). Chứng minh các đẳng thức sau đây:

a)
$$\cos a + \cos b + \sin(a+b) = 4\cos\frac{a+b}{2}\cos\left(\frac{\pi}{4} - \frac{a}{2}\right)\sin\left(\frac{\pi}{4} + \frac{b}{2}\right)$$

b)
$$\sin^2 a + \sin^2 b + 2\sin a \sin b \cos(a+b) = \sin^2(a+b)$$

c)
$$\sin\left(2x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) - \cos\left(2x + \frac{\pi}{3}\right)\cos\left(\frac{2\pi}{3} - x\right) = \cos x$$

Dòi giải.

a) Chứng minh $\cos a + \cos b + \sin(a+b) = 4\cos\frac{a+b}{2}\cos\left(\frac{\pi}{4} - \frac{a}{2}\right)\sin\left(\frac{\pi}{4} + \frac{b}{2}\right)$. Ta có

$$\cos a + \cos b + \sin(a+b) = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2} + 2\sin\frac{a+b}{2}\cos\frac{a+b}{2}$$

$$= 2\cos\frac{a+b}{2}\left(\cos\frac{a-b}{2} + \sin\frac{a+b}{2}\right) = 2\cos\frac{a+b}{2}\left(\sin\frac{\pi-a+b}{2} + \sin\frac{a+b}{2}\right)$$

$$= 2\cos\frac{a+b}{2} \cdot 2\sin\left(\frac{\pi}{4} + \frac{b}{2}\right)\cos\left(\frac{\pi}{4} - \frac{a}{2}\right).$$

b) Chứng minh $\sin^2 a + \sin^2 b + 2\sin a \sin b \cos(a+b) = \sin^2(a+b)$. Ta có

$$\sin^2 a + \sin^2 b + 2\sin a \sin b \cos(a+b)$$

$$= \left[\frac{1 - \cos 2a}{2} + \frac{1 - \cos 2b}{2}\right] + 2\sin a \sin b \cos(a+b)$$

$$= \left[1 - \frac{1}{2}(\cos 2a + \cos 2b)\right] + \left[\cos(a-b) - \cos(a+b)\right] \cos(a+b)$$

$$= \left[1 - \cos(a+b)\cos(a-b)\right] + \left[\cos(a-b)\cos(a+b) - \cos^2(a+b)\right]$$

$$= 1 - \cos^2(a+b) = \sin^2(a+b).$$

c) Chứng minh $\sin\left(2x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) - \cos\left(2x + \frac{\pi}{3}\right)\cos\left(\frac{2\pi}{3} - x\right) = \cos x$. Ta có

$$\sin\left(2x + \frac{\pi}{3}\right)\cos\left(x - \frac{\pi}{6}\right) - \cos\left(2x + \frac{\pi}{3}\right)\cos\left(\frac{2\pi}{3} - x\right)$$

$$= \frac{1}{2}\left[\sin\left(3x + \frac{\pi}{6}\right) + \sin\left(x + \frac{\pi}{2}\right)\right] - \frac{1}{2}\left[\cos\left(x + \pi\right) + \cos\left(3x - \frac{\pi}{3}\right)\right]$$

$$= \frac{1}{2}\left[\sin\left(3x + \frac{\pi}{6}\right) - \cos\left(3x - \frac{\pi}{3}\right) + \sin\left(x + \frac{\pi}{2}\right) - \cos\left(x + \pi\right)\right]$$

$$= \frac{1}{2}\left[\sin\left(3x + \frac{\pi}{6}\right) - \cos\left(\frac{\pi}{3} - 3x\right) + \cos x - (-\cos x)\right]$$

$$= \frac{1}{2}\left[\sin\left(3x + \frac{\pi}{6}\right) - \sin\left(3x + \frac{\pi}{6}\right) + 2\cos x\right] = \cos x.$$

BÀI 2 (VDT). Chứng minh giá trị của biểu thức sau không phụ thuộc vào biến số x:

$$A = \cos\left(\frac{\pi}{3} - x\right)\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{6} + x\right)\cos\left(\frac{3\pi}{4} + x\right).$$

Lời giải.

Ta có

$$A = \cos\left(\frac{\pi}{3} - x\right)\cos\left(\frac{\pi}{4} + x\right) + \cos\left(\frac{\pi}{6} + x\right)\cos\left(\frac{3\pi}{4} + x\right)$$

$$= \frac{1}{2}\left[\cos\left(\frac{\pi}{12} - 2x\right) + \cos\frac{7\pi}{12}\right] + \frac{1}{2}\left[\cos\left(-\frac{7\pi}{12}\right) + \cos\left(\frac{11\pi}{12} + 2x\right)\right]$$

$$= \frac{1}{2}\left[\cos\left(\frac{11\pi}{12} + 2x\right) + \cos\left(\frac{\pi}{12} - 2x\right) + \cos\frac{7\pi}{12} + \cos\left(-\frac{7\pi}{12}\right)\right]$$

$$= \frac{1}{2}\left[0 + 2\cos\frac{7\pi}{12}\right] = \cos\frac{7\pi}{12}\left(\det\frac{11\pi}{12} + 2x + \frac{\pi}{12} - 2x = \pi\right).$$

Vậy $A=\cos\frac{7\pi}{12}$ với mọi $x\in\mathbb{R}$ (không phụ thuộc vào biến số x).

BÀI 3 (TH). Rút gọn các biểu thức sau đây:

a)
$$A = \frac{\cos 4a - \cos 2a}{\sin 4a - \sin 2a};$$

b)
$$B = \frac{\sin a - 2\sin 2a + \sin 3a}{\cos a - 2\cos 2a + \cos 3a}$$
.

🗩 Lời giải.

a) Ta có
$$A = \frac{\cos 4a - \cos 2a}{\sin 4a - \sin 2a} = \frac{-2\sin 3a \sin a}{2\cos 3a \sin a} = -\frac{\sin 3a}{\cos 3a} = -\tan 3a.$$

b) Ta có

$$B = \frac{\sin a - 2\sin 2a + \sin 3a}{\cos a - 2\cos 2a + \cos 3a} = \frac{(\sin 3a + \sin a) - 2\sin 2a}{(\cos 3a + \cos a) - 2\cos 2a}$$
$$= \frac{2\sin 2a\cos a - 2\sin 2a}{2\cos 2a\cos a - 2\cos 2a} = \frac{2\sin 2a(\cos a - 1)}{2\cos 2a(\cos a - 1)} = \frac{\sin 2a}{\cos 2a} = \tan 2a.$$

BÀI 4 (VDT). Rút gọn các biểu thức:

a)
$$A = 4 \sin \frac{x}{3} \sin \frac{x+\pi}{3} \sin \frac{x-\pi}{3}$$
;

b)
$$B = \frac{\cos^2 a - \cos^2 b}{\sin(a-b)}.$$

Dèi giải.

a) Ta có

$$A = 4\sin\frac{x}{3}\sin\frac{x+\pi}{3}\sin\frac{x-\pi}{3} = 4\sin\frac{x}{3} \cdot \frac{1}{2}\left[\cos\frac{2\pi}{3} - \cos\frac{2x}{3}\right]$$
$$= -\sin\frac{x}{3} + 2\sin\frac{x}{3}\cos\frac{2x}{3} = -\sin\frac{x}{3} + \sin x - \sin\frac{x}{3}$$
$$= \sin x.$$

b) Ta có

$$B = \frac{\cos^2 a - \cos^2 b}{\sin(a - b)} = \frac{(1 + \cos 2a) - (1 + \cos 2b)}{2\sin(a - b)}$$
$$= \frac{\cos 2a - \cos 2b}{2\sin(a - b)} = \frac{-2\sin(a + b)\sin(a - b)}{2\sin(a - b)}$$
$$= -\sin(a + b).$$

BÀI 5. Tính giá trị các biểu thức:

a)
$$A = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$$
;

b)
$$B = \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$$
.

Dèi giải.

a) Ta có

$$\begin{split} A \cdot \sin \frac{\pi}{7} &= \sin \frac{\pi}{7} \cos \frac{2\pi}{7} + \sin \frac{\pi}{7} \cos \frac{4\pi}{7} + \sin \frac{\pi}{7} \cos \frac{6\pi}{7} \\ &= \frac{1}{2} \left[\sin \frac{3\pi}{7} - \sin \frac{\pi}{7} + \sin \frac{5\pi}{7} - \sin \frac{3\pi}{7} + \sin \frac{7\pi}{7} - \sin \frac{5\pi}{7} \right] \\ &= \frac{1}{2} \left(-\sin \frac{\pi}{7} \right) = -\frac{1}{2} \sin \frac{\pi}{7} \\ &\Rightarrow A = -\frac{1}{2}. \end{split}$$

b) Ta có

$$\begin{split} B &= \tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ} = \tan 9^{\circ} + \tan 81^{\circ} - (\tan 27^{\circ} + \tan 63^{\circ}) \\ &= \frac{\sin 9^{\circ}}{\cos 9^{\circ}} + \frac{\sin 81^{\circ}}{\cos 81^{\circ}} - \left(\frac{\sin 27^{\circ}}{\cos 27^{\circ}} + \frac{\sin 63^{\circ}}{\cos 63^{\circ}}\right) \\ &= \frac{\sin 9^{\circ} \cos 81^{\circ} + \cos 9^{\circ} \sin 81^{\circ}}{\cos 9^{\circ} \cos 81^{\circ}} - \frac{\sin 27^{\circ} \cos 63^{\circ} + \cos 27^{\circ} \sin 63^{\circ}}{\cos 27^{\circ} \cos 63^{\circ}} \\ &= \frac{\sin 90^{\circ}}{\cos 9^{\circ} \sin 9^{\circ}} - \frac{\sin 90^{\circ}}{\cos 27^{\circ} \sin 27^{\circ}} = \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin 54^{\circ}} = \frac{2\left(\sin 54^{\circ} - \sin 18^{\circ}\right)}{\sin 54^{\circ} \sin 18^{\circ}} \\ &= \frac{4\cos 36^{\circ} \sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}} = 4\left(\operatorname{do} \cos 36^{\circ} = \sin 54^{\circ}\right). \end{split}$$

3. Bài tập trắc nghiệm

CÂU 1. Rút gọn biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ$.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc M = 0.$$

🗩 Lời giải.

Ta có

$$\begin{split} M &= \cos^4 15^\circ - \sin^4 15^\circ = \left(\cos^2 15^\circ\right)^2 - \left(\sin^2 15^\circ\right)^2 \\ &= \left(\cos^2 15^\circ - \sin^2 15^\circ\right) \left(\cos^2 15^\circ + \sin^2 15^\circ\right) \\ &= \cos^2 15^\circ - \sin^2 15^\circ = \cos\left(2.15^\circ\right) = \cos 30^\circ = \frac{\sqrt{3}}{2}. \end{split}$$

CÂU 2. Tính giá trị của biểu thức $M = \cos^4 15^\circ - \sin^4 15^\circ + \cos^2 15^\circ - \sin^2 15^\circ$.

$$\bigcirc M = \frac{1}{4}.$$

$$\bigcirc M = 0.$$

🗩 Lời giải.

Áp dụng công thức nhân đôi $\cos^2 a - \sin^2 a = \cos 2a$. Ta có

$$M = (\cos^4 15^\circ - \sin^4 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= (\cos^2 15^\circ - \sin^2 15^\circ) (\cos^2 15^\circ + \sin^2 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= (\cos^2 15^\circ - \sin^2 15^\circ) + (\cos^2 15^\circ - \sin^2 15^\circ)$$

$$= \cos 30^\circ + \cos 30^\circ = \sqrt{3}.$$

Chọn đáp án (A)....

CÂU 3. Tính giá trị của biểu thức $M = \cos^6 15^\circ - \sin^6 15^\circ$.

$$\bigcirc M = 1.$$

🗩 Lời giải.

Ta có

$$\cos^{6} \alpha - \sin^{6} \alpha = (\cos^{2} \alpha - \sin^{2} \alpha) (\cos^{4} \alpha + \cos^{2} \alpha \cdot \sin^{2} \alpha + \sin^{4} \alpha)$$
$$= \cos 2\alpha \cdot \left[(\cos^{2} \alpha + \sin^{2} \alpha)^{2} - \cos^{2} \alpha \cdot \sin^{2} \alpha \right]$$
$$= \cos 2\alpha \cdot \left(1 - \frac{1}{4} \sin^{2} 2\alpha \right).$$

Vậy $M = \cos 30^{\circ} \cdot \left(1 - \frac{1}{4}\sin^2 30^{\circ}\right) = \frac{\sqrt{3}}{2} \cdot \left(1 - \frac{1}{4} \cdot \frac{1}{4}\right) = \frac{15\sqrt{3}}{22}$

Chọn đáp án \bigcirc

CÂU 4. Giá trị của biểu thức $\cos \frac{\pi}{30} \cos \frac{\pi}{5} + \sin \frac{\pi}{30} \sin \frac{\pi}{5}$ là

$$\mathbf{B} - \frac{\sqrt{3}}{2}.$$

$$\bigcirc \frac{\sqrt{3}}{4}$$
.

$$\bigcirc \frac{1}{2}$$
.

Ta có $\cos \frac{\pi}{30} \cos \frac{\pi}{5} + \sin \frac{\pi}{30} \sin \frac{\pi}{5} = \cos \left(\frac{\pi}{30} - \frac{\pi}{5}\right) = \cos \left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}.$

CÂU 5. Giá trị của biểu thức $P = \frac{\sin \frac{5\pi}{18} \cos \frac{\pi}{9} - \sin \frac{\pi}{9} \cos \frac{5\pi}{18}}{\cos \frac{\pi}{4} \cos \frac{\pi}{12} - \sin \frac{\pi}{4} \sin \frac{\pi}{12}}$ là

$$\bigcirc$$
 $\frac{1}{2}$

$$\frac{1}{2}$$
.

$$\bigcirc \frac{\sqrt{3}}{2}$$

🗩 Lời giải.

 $\text{ \'{Ap dung công thức} } \begin{cases} \sin a \cdot \cos b - \cos a \cdot \sin b = \sin \left(a - b \right) \\ \cos a \cdot \cos b - \sin a \cdot \sin b = \cos \left(a + b \right) \end{cases}$

Khi đó $\sin\frac{5\pi}{18}\cos\frac{\pi}{9} - \sin\frac{\pi}{9}\cos\frac{5\pi}{18} = \sin\left(\frac{5\pi}{18} - \frac{\pi}{9}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$.

 $Va \cos \frac{\pi}{4} \cos \frac{\pi}{12} - \sin \frac{\pi}{4} \sin \frac{\pi}{12} = \cos \left(\frac{\pi}{4} + \frac{\pi}{12}\right) = \cos \frac{\pi}{3} = \frac{1}{2}. \ Vay \ P = \frac{1}{2} : \frac{1}{2} = 1.$

Chọn đáp án (A)....

CÂU 6. Giá trị đúng của biểu thức $\frac{\tan 225^\circ - \cot 81^\circ \cdot \cot 69^\circ}{\cot 261^\circ + \tan 201^\circ}$ bằng $\boxed{\mathbf{A}} \frac{1}{\sqrt{3}}.$ $\boxed{\mathbf{B}} - \frac{1}{\sqrt{3}}.$ $\boxed{\mathbf{C}} \sqrt{3}.$

$$\mathbf{A} \frac{1}{\sqrt{3}}.$$

B
$$-\frac{1}{\sqrt{3}}$$
.

$$\bigcirc$$
 $\sqrt{3}$

$$\bigcirc$$
 $-\sqrt{3}$.

🗭 Lời giải.

 $\operatorname{Ta} \circ \frac{\tan 225^{\circ} - \cot 81^{\circ} \cdot \cot 69^{\circ}}{\cot 261^{\circ} + \tan 201^{\circ}} = \frac{\tan (180^{\circ} + 45^{\circ}) - \tan 9^{\circ} \cdot \cot 69^{\circ}}{\cot (180^{\circ} + 81^{\circ}) + \tan (180^{\circ} + 21^{\circ})} = \frac{1 - \tan 9^{\circ} \cdot \tan 21^{\circ}}{\tan 9^{\circ} + \tan 21^{\circ}} = \frac{1}{\tan (9^{\circ} + 21^{\circ})} = \frac{1}{\tan 30^{\circ}} = \frac{1}{\tan (9^{\circ} + 21^{\circ})} = \frac{1}{\tan (9^$

 $\sqrt{3}$.

41 GV.VŨ NGOC PHÁT

CÂU 7. Giá trị của biểu thức $M = \sin \frac{\pi}{24} \sin \frac{5\pi}{24} \sin \frac{7\pi}{24} \sin \frac{11\pi}{24}$ bằng

$$\bigcirc \frac{1}{2}$$
.

$$\mathbf{B}\frac{1}{4}$$

$$\mathbf{c}$$
 $\frac{1}{8}$.

$$\bigcirc \frac{1}{16}$$
.

P Lời giải.

 $\text{Ta có} \sin \frac{7\pi}{24} = \cos \frac{5\pi}{24} \text{ và } \sin \frac{11\pi}{24} = \cos \frac{\pi}{24}.$ $\text{Do dó } M = \sin \frac{\pi}{24} \sin \frac{5\pi}{24} \cos \frac{5\pi}{24} \cos \frac{\pi}{24} = \frac{1}{4} \cdot \left(2 \sin \frac{\pi}{24} \cdot \cos \frac{\pi}{24}\right) \cdot \left(2 \sin \frac{5\pi}{24} \cdot \cos \frac{5\pi}{24}\right)$

 $= \frac{1}{4} \cdot \sin \frac{\pi}{12} \cdot \sin \frac{5\pi}{12} = \frac{1}{4} \cdot \frac{1}{2} \left(\cos \frac{6\pi}{12} + \cos \frac{\pi}{3} \right) = \frac{1}{8} \cdot \left(0 + \frac{1}{2} \right) = \frac{1}{16}.$

Chọn đáp án D.....

CÂU 8. Giá trị của biểu thức $M = \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6}$ là

$$\frac{1}{32}$$
.

$$\bigcirc \frac{\sqrt{3}}{16}$$
.

$$\bigcirc \frac{\sqrt{3}}{32}.$$

🗩 Lời giải.

Áp dụng công thức $\sin 2a = 2\sin a \cdot \cos a$, ta có

 $A = \sin\frac{\pi}{48} \cdot \cos\frac{\pi}{48} \cdot \cos\frac{\pi}{24} \cdot \cos\frac{\pi}{12} \cdot \cos\frac{\pi}{6} = \frac{1}{2} \cdot \sin\frac{\pi}{24} \cdot \cos\frac{\pi}{24} \cdot \cos\frac{\pi}{12} \cdot \cos\frac{\pi}{6}$ $=\frac{1}{4}\cdot\sin\frac{\pi}{12}\cdot\cos\frac{\pi}{12}\cdot\cos\frac{\pi}{6}=\frac{1}{8}\cdot\sin\frac{\pi}{6}\cdot\cos\frac{\pi}{6}=\frac{1}{16}\cdot\sin\frac{\pi}{3}=\frac{\sqrt{3}}{32}$

Chọn đáp án \bigcirc

CÂU 9. Tính giá trị của biểu thức $M = \cos 10^{\circ} \cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}$.

$$M = \frac{1}{16} \cos 10^{\circ}.$$

🗩 Lời giải.

$$\begin{split} & \text{Vì} \sin 10^\circ \neq 0 \text{ nên suy ra} \\ & M = \frac{16 \sin 10^\circ \cos 10^\circ \cos 20^\circ \cos 40^\circ \cos 80^\circ}{16 \sin 10^\circ} = \frac{8 \sin 20^\circ \cos 20^\circ \cos 40^\circ \cos 80^\circ}{16 \sin 10^\circ} \\ & \Rightarrow M = \frac{4 \sin 40^\circ \cos 40^\circ \cos 80^\circ}{16 \sin 10^\circ} = \frac{2 \sin 80^\circ \cos 80^\circ}{16 \sin 10^\circ} = \frac{\sin 160^\circ}{16 \sin 10^\circ}. \\ & \Rightarrow M = \frac{\sin 20^\circ}{16 \sin 10^\circ} = \frac{2 \sin 10^\circ \cos 10^\circ}{16 \sin 10^\circ} = \frac{1}{8} \cos 10^\circ. \end{split}$$

Chọn đáp án \bigcirc

CÂU 10. Tính giá trị của biểu thức $M = \cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$.

B
$$M = -\frac{1}{2}$$
.

$$\bigcirc M = 1.$$

$$\bigcirc M = 2.$$

🗩 Lời giải.

Áp dụng công thức $\sin a - \sin b = 2 \cdot \cos \frac{a+b}{2} \cdot \sin \frac{a-b}{2}$.

Ta có

$$2\sin\frac{\pi}{7} \cdot M = 2 \cdot \cos\frac{2\pi}{7} \cdot \sin\frac{\pi}{7} + 2 \cdot \cos\frac{4\pi}{7} \cdot \sin\frac{\pi}{7} + 2 \cdot \cos\frac{6\pi}{7} \cdot \sin\frac{\pi}{7}$$
$$= \sin\frac{3\pi}{7} - \sin\frac{\pi}{7} + \sin\frac{5\pi}{7} - \sin\frac{3\pi}{7} + \sin\frac{7\pi}{7} - \sin\frac{5\pi}{7}$$
$$= -\sin\frac{\pi}{7} + \sin\pi = -\sin\frac{\pi}{7}.$$

Vậy giá trị biểu thức $M = -\frac{1}{2}$.

Chọn đáp án (B).....

CÂU 11. Rút gọn biểu thức $M = \cos^2\left(\frac{\pi}{4} + \alpha\right) - \cos^2\left(\frac{\pi}{4} - \alpha\right)$.

$$\mathbf{C}M = -\cos 2\alpha.$$

🗩 Lời giải.

Ta có

$$\begin{split} M &= \cos^2\left(\frac{\pi}{4} + \alpha\right) - \cos^2\left(\frac{\pi}{4} - \alpha\right) \\ &= \frac{1 - \cos\left(\frac{\pi}{2} + 2\alpha\right)}{2} - \frac{1 - \cos\left(\frac{\pi}{2} - 2\alpha\right)}{2} \\ &= \frac{1}{2}(\sin 2\alpha + \sin 2\alpha) \\ &= \sin 2\alpha. \end{split}$$

Chọn đáp án $\boxed{\mathbb{D}}$

CÂU 12. Gọi $M = \cos x + \cos 2x + \cos 3x$ thì

$$\mathbf{C}M = \cos 2x \, (2\cos x - 1).$$

$$\mathbf{D}M = \cos 2x \, (2\cos x + 1).$$

🗭 Lời giải.

Ta có

 $M* = \cos x + \cos 2x + \cos 3x = 2\cos 2x \cos x + \cos 2x = \cos 2x (2\cos x + 1).$

Chọn đáp án $\boxed{\mathbb{D}}$

CÂU 13. Rút gọn biểu thức $M = \frac{\sin 3x - \sin x}{2\cos^2 x - 1}$.

 \triangle $\tan 2x$.

 $(\mathbf{B})\sin x.$

 \mathbf{c} $2 \tan x$.

 $\bigcirc 2\sin x.$

🗩 Lời giải.

Ta có

$$M = \frac{\sin 3x - \sin x}{2\cos^2 x - 1} = \frac{2\cos 2x \sin x}{\cos 2x} = 2\sin x.$$

Chọn đáp án \bigcirc D.....

CÂU 14. Rút gọn biểu thức $A = \frac{1 + \cos x + \cos 2x + \cos 3x}{2\cos^2 x + \cos x - 1}$

 $\triangle \cos x$.

 $\bigcirc 2\cos x.$

 \bigcirc $\cos x - 1$.

🗩 Lời giải.

Ta có

$$A = \frac{1 + \cos x + \cos 2x + \cos 3x}{2\cos^2 x + \cos x - 1} = \frac{2\cos^2 x + 2\cos 2x \cos x}{\cos 2x + \cos x}$$
$$= \frac{2\cos x(\cos 2x + \cos x)}{\cos 2x + \cos x}$$
$$= 2\cos x.$$

CÂU 15. Rút gọn biểu thức $A = \frac{\tan x - \cot x}{\tan x + \cot x} + \cos 2x$.

 \bigcirc 0.

 \mathbf{B} $2\cos^2 x$.

 \bigcirc 2

 \bigcirc $\cos 2x$.

🗩 Lời giải.

Ta có

$$A = \frac{\tan x - \cot x}{\tan x + \cot x} + \cos 2x = \frac{\sin^2 x - \cos^2 x}{\sin^2 x + \cos^2 x} + \cos 2x = -\cos 2x + \cos 2x = 0.$$

Chọn đáp án iga(A).

CÂU 16. Rút gọn biểu thức $A = \frac{1+\sin 4\alpha - \cos 4\alpha}{1+\sin 4\alpha + \cos 4\alpha}$

 $\mathbf{A}\sin 2\alpha$.

 $\mathbf{B}\cos 2\alpha$.

 \bigcirc tan 2α .

 \bigcirc cot 2α .

D Lời giải.
Ta có

$$A = \frac{1 + \sin 4\alpha - \cos 4\alpha}{1 + \sin 4\alpha + \cos 4\alpha} = \frac{2\sin^2 2\alpha + 2\sin 2\alpha \cos 2\alpha}{2\cos^2 2\alpha + 2\sin 2\alpha \cos 2\alpha}$$
$$= \frac{2\sin 2\alpha}{2\cos 2\alpha} = \tan 2\alpha.$$

Chọn đáp án (C)...

CÂU 17. Khi $\alpha = \frac{\pi}{6}$ thì biểu thức $A = \frac{\sin^2 2\alpha + 4\sin^4 \alpha - 4\sin^2 \alpha \cdot \cos^2 \alpha}{4 - \sin^2 2\alpha - 4\sin^2 \alpha}$ có giá trị bằng: $(\textbf{A}) \frac{1}{3}.$ $(\textbf{B}) \frac{1}{3}.$

$$\bigcirc \mathbb{B} \frac{1}{6}$$

$$c$$
 $\frac{1}{9}$.

$$\bigcirc \frac{1}{12}$$
.

🗩 Lời giải.

Ta có

$$A = \frac{\sin^2 2\alpha + 4\sin^4 \alpha - 4\sin^2 \alpha \cdot \cos^2 \alpha}{4 - \sin^2 2\alpha - 4\sin^2 \alpha} = \frac{4\sin^2 \alpha \cos^2 \alpha + 4\sin^4 \alpha - 4\sin^2 \alpha \cdot \cos^2 \alpha}{4(1 - \sin^2 \alpha) - 4\sin^2 \alpha \cos^2 \alpha}$$
$$= \frac{4\sin^4 \alpha}{4\cos^2 \alpha(1 - \sin^2 \alpha)} = \tan^4 \alpha.$$

Với $\alpha = \frac{\pi}{6}$ ta có $A = \tan^4 \frac{\pi}{6} = \frac{1}{9}$.

Chọn đáp án \bigcirc

CÂU 18. Rút gọn biểu thức $A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha}$.

 $(\mathbf{A})\tan\alpha$.

(B) $2 \tan \alpha$.

 $(\mathbf{c})\tan 2\alpha + \tan \alpha$.

 $(\mathbf{D})\tan 2\alpha$.

🗩 Lời giải.

Ta có

$$A = \frac{\sin 2\alpha + \sin \alpha}{1 + \cos 2\alpha + \cos \alpha} = \frac{2\sin \alpha \cos \alpha + \sin \alpha}{2\cos^2 \alpha + \cos \alpha}$$
$$= \frac{2\sin \alpha (\cos \alpha + 1)}{2\cos \alpha (\cos \alpha + 1)} = \tan \alpha.$$

Chọn đáp án (A)...

CÂU 19. Rút gọn biểu thức $A = \frac{1 - \sin a - \cos 2a}{\sin 2a - \cos a}$

(A) 1.

 $(\mathbf{B})\tan a.$

c $\frac{5}{2}$.

 $(\mathbf{D})2\tan a$.

🗩 Lời giải.

Ta có

$$A = \frac{1 - \sin a - \cos 2a}{\sin 2a - \cos a} = \frac{2\sin^2 a - \sin a}{2\sin a\cos a - \cos a}$$
$$= \frac{\sin a(2\sin a - 1)}{\cos a(2\sin a - 1)} = \tan a.$$

Chọn đáp án (B).....

CÂU 20. Rút gọn biểu thức $A = \frac{\sin x + \sin \frac{x}{2}}{1 + \cos x + \cos \frac{x}{2}}$ được

 $\frac{x}{2}$ tan $\frac{x}{2}$.

 $(\mathbf{B})\cot x.$

 \bigcirc $\tan^2\left(\frac{\pi}{4}-x\right)$.

 $(\mathbf{D})\sin x$.

🗩 Lời giải.

Ta có

$$A = \frac{\sin x + \sin \frac{x}{2}}{1 + \cos x + \cos \frac{x}{2}} = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2} + \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2} + \cos \frac{x}{2}}$$
$$= \frac{2 \sin \frac{x}{2} \left(2 \cos \frac{x}{2} + 1\right)}{2 \cos \frac{x}{2} \left(2 \cos \frac{x}{2} + 1\right)} = \tan \frac{x}{2}.$$

Chọn đáp án (A)

(1)

🗁 Dạng 5. Nhận dạng tam giác

- \odot Một số lưu ý khi giả thiết cho A, B, C là ba góc của một tam giác

 - $-\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ} \Rightarrow \left(\frac{A}{2} + \frac{B}{2}\right)$ và $\frac{C}{2}$ phụ nhau, tương tự với $\left(\frac{B}{2} + \frac{C}{2}\right)$ và $\frac{A}{2}$,...
 - Các góc A, B, C đều có số đo trong khoảng $(0^{\circ}; 180^{\circ})$.
 - Các góc $\frac{A}{2}$, $\frac{B}{2}$, $\frac{C}{2}$ đều là các góc nhọn nên có các giá trị lượng giác đều dương.
- Phương pháp:
 - Biến đổi, dẫn đến $\sin A = 1$ hoặc $\cos A = 0$ sẽ có $A = 90^{\circ}$.
 - Nếu $a^2 + b^2 = c^2$ thì $C = 90^\circ$.
 - Nếu $\sin(A-B) = 0$ hoặc $\cos(A-B) = 1$ thì A=B, suy ra tam giác cân.
 - Tam giác cân mà có một góc bằng 60° là tam giác đều.

1. Ví du mẫu

VÍ DU 1. Chứng minh rằng $\triangle ABC$ vuông khi $\sin A \sin C = \cos A \cos C$. Dèi giải.

Ta có

$$\sin A \sin C = \cos A \cos C \Leftrightarrow \cos A \cos C - \sin A \sin C = 0$$

$$\Leftrightarrow \cos(A + C) = 0 \Leftrightarrow -\cos B = 0 \Leftrightarrow \cos B = 0 \Leftrightarrow B = 90^{\circ}.$$

Vậy tam giác ABC vuông tại B.

VÍ DU 2. Chứng minh rằng $\triangle ABC$ cân khi $2 \sin A \sin B = 1 + \cos C$. Dèi giải.

Ta có (1) tương đương với

$$\cos(A - B) - \cos(A + B) = 1 + \cos C$$

$$\Leftrightarrow \cos(A - B) + \cos C = 1 + \cos C$$

$$\Leftrightarrow \cos(A - B) = 1 \Leftrightarrow A - B = 0 \Leftrightarrow A = B.$$

Vậy tam giác ABC cân tại C.

VÍ DỤ 3. Tam giác ABC là tam giác gì nếu $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$? D Lời giải.

$$\operatorname{Ta} \, \operatorname{co} \, \sin A = \frac{\sin B + \sin C}{\cos B + \cos C} \Leftrightarrow \sin A = \frac{2 \sin \frac{B + C}{2} \cos \frac{B - C}{2}}{2 \cos \frac{B + C}{2} \cos \frac{B - C}{2}} \Leftrightarrow \sin A = \tan \frac{B + C}{2}$$

$$\Leftrightarrow \sin\left(2\cdot\frac{A}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{A}{2}\right) \Leftrightarrow 2\sin\frac{A}{2}\cos\frac{A}{2} = \cot\frac{A}{2} \Leftrightarrow 2\sin^2\frac{A}{2}\cos\frac{A}{2} = \cos\frac{A}{2}$$

Do
$$0^{\circ} < \frac{A}{2} < 90^{\circ}$$
 nên $\cos \frac{A}{2} \neq 0$ và $\sin \frac{A}{2} > 0$.

Từ đó
$$2\sin^2\frac{A}{2}\cos\frac{A}{2}=\cos\frac{A}{2} \Leftrightarrow 2\sin^2\frac{A}{2}=1 \Leftrightarrow \sin\frac{A}{2}=\frac{\sqrt{2}}{2} \Leftrightarrow \frac{A}{2}=45^\circ \Leftrightarrow A=90^\circ.$$

Vây ABC là tam giác vuông tai A.

2. Bài tấp rèn luyên

BÀI 1. Trong tam giác ABC, biết: $3\sin A + 4\cos B = 6$ và $4\sin B + 3\cos A = 1$. Tính góc C. Lời giải.

Bình phương hai vế 2 phương trình rồi cộng lại, ta được:

$$24(\sin A\cos B + \cos A\sin B) = 12 \Leftrightarrow \sin(A+B) = \frac{1}{2} \Leftrightarrow \sin C = \frac{1}{2} \Rightarrow \begin{bmatrix} C = 30^{\circ} \\ C = 150^{\circ} \end{bmatrix}.$$

Nhưng nếu $C=150^{\circ} \Rightarrow A<30^{\circ} \Rightarrow 3\sin A+4\cos B<\frac{3}{2}+4<6$. (Mâu thuẫn). Vậy $C=30^{\circ}$.

BÀI 2. Chứng minh rằng tam giác ABC đều nếu

$$\cos A \cos B \cos C = \frac{1}{8}.$$

🗩 Lời giải.

Ta có đẳng thức đã cho tương đương với

$$\frac{1}{2}[\cos(A-B) + \cos(A+B)]\cos C = \frac{1}{8} \Leftrightarrow [\cos(A-B) - \cos C]\cos C = \frac{1}{4}$$

$$\Leftrightarrow \frac{1}{4} + \cos^2 C - \cos(A-B)\cos C = 0$$

$$\Leftrightarrow \cos^2 C - \cos(A-B)\cos C + \frac{\cos^2(A-B)}{4} + \frac{\sin^2(A-B)}{4} = 0$$

$$\Leftrightarrow \left[\cos C - \frac{1}{2}\cos(A-B)\right]^2 + \frac{1}{4}\sin^2(A-B) = 0$$

$$\Leftrightarrow \left\{\sin(A-B) = 0\right\}$$

$$\Leftrightarrow \left\{\sin(A-B) = 0\right\}$$

$$\Leftrightarrow \left\{\cos C = \frac{1}{2}\cos(A-B)\right\} \Leftrightarrow \left\{A = B\right\}$$

$$\cos C = \frac{1}{2}\cos(A-B) \Leftrightarrow \left\{\cos C = \frac{1}{2}\right\}$$

BÀI 3. Chứng minh ΔABC cân nếu: $\sin C = 2\sin A\sin B\tan \frac{C}{2}$

🗩 Lời giải.

Ta có:

Gt
$$\Leftrightarrow [\cos(A-B) - \cos(A+B)] \frac{\sin\frac{C}{2}}{\cos\frac{C}{2}} = 2\sin\frac{C}{2}\cos\frac{C}{2}$$

 $\Leftrightarrow \cos(A-B) + \cos C = 2\cos^2\frac{C}{2} = 1 + \cos C$
 $\Leftrightarrow \cos(A-B) = 1 \Rightarrow A = B$.

Vậy tam giác ABC cân tại C.

BÀI 4. Chứng minh điều kiện cần và đủ để ΔABC vuông là:

$$\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}.$$

Dèi giải.

Ta có
$$\sin A = \frac{\sin B + \sin C}{\cos B + \cos C} \Leftrightarrow \sin A = \frac{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}}{2\cos\frac{B+C}{2}\cos\frac{B-C}{2}}$$

$$\Leftrightarrow \sin A = \frac{\sin \frac{B+C}{2}}{\cos \frac{B+C}{2}} \text{ (vì } \cos \frac{B-C}{2} \neq 0)$$

$$\Leftrightarrow 2\sin\frac{A}{2}\cos\frac{A}{2} = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} \text{ (vì } \frac{B+C}{2} + \frac{A}{2} = \frac{\pi}{2}\text{)}$$

$$\Leftrightarrow 2\sin\frac{A}{2} = \frac{1}{\sin\frac{A}{2}} \text{ (vì } \cos\frac{A}{2} \neq 0)$$

$$\Leftrightarrow 2\sin^2\frac{A}{2} = 1 \Leftrightarrow 1 - \cos A = 1 \Leftrightarrow A = \frac{\pi}{2} \text{ (vì } 0 < A < \pi)$$

 $\Leftrightarrow \Delta AB\tilde{C}$ vuông tại A

BÀI 5. Cho $\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C} = \cot \frac{A}{2} \cot \frac{B}{2}$. Chứng minh $\triangle ABC$ cân.

Lời giải.

Ta có:

$$\frac{\sin A + \sin B + \sin C}{\sin A + \sin B - \sin C} = \frac{2\sin\frac{A+B}{2}\cos\frac{A-B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}}{2\sin\frac{A+B}{2}\cos\frac{A-B}{2} - 2\sin\frac{C}{2}\cos\frac{C}{2}}$$

$$= \frac{2\cos\frac{C}{2}\left(\cos\frac{A-B}{2} + \cos\frac{A+B}{2}\right)}{2\cos\frac{C}{2}\left(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\right)}$$

$$= \frac{2\cos\frac{A}{2}\cos\frac{B}{2}}{2\sin\frac{A}{2}\sin\frac{B}{2}} = \cot\frac{A}{2}\cot\frac{B}{2}.$$

Do đó,

$$\cot\frac{A}{2}\cot\frac{B}{2} = \cot\frac{A}{2}\cot\frac{C}{2} \Leftrightarrow \cot\frac{B}{2} = \cot\frac{C}{2} \Leftrightarrow B = C.$$

Vậy tam giác ABC cân đỉnh A.

BÀI 6. Chứng minh tam giác ABC vuông nếu: $\sin B + \sin C = \cos B + \cos C$. \bigcirc Lời giải.

Ta có:
$$\sin B + \sin C = \cos B + \cos C$$

 $\Leftrightarrow 2 \sin \frac{B+C}{2} \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}$
 $\Leftrightarrow \cos \frac{A}{2} = \sin \frac{A}{2} \text{ (vì } \cos \frac{B-C}{2} > 0 \text{ và } \frac{B+C}{2} = \frac{\pi}{2} - \frac{A}{2} \text{)}$
 $\Leftrightarrow \tan \frac{A}{2} = 1 \Rightarrow \frac{A}{2} = \frac{\pi}{4} \text{ (vì } 0 < A < \pi \text{)}$
 $\Rightarrow A = \frac{\pi}{2} \Rightarrow \Delta ABC \text{ vuông tại } A.$

Bài 2.	Công thức lượng giác	1
A	Tóm tắt lý thuyết	1
B	Các dạng toán thường gặp	2
	Dạng 1.Áp dụng công thức cộng	
	Dạng 2.Áp dụng công thức nhân đôi, hạ bậc	4
	Dạng 3.Áp dụng công thức biến đổi tích thành tổng, tổng thành tích	
	Dạng 4.Kết hợp nhiều công thức lượng giác	
	► Dạng 5.Nhận dạng tam giác	10
LỜI GIẢI CHI TIẾT		12
Bài 2.	Công thức lượng giác	12
A	Tóm tắt lý thuyết	12
B	Các dạng toán thường gặp	13
	Dạng 1.Áp dụng công thức cộng	13
	Dạng 2.Áp dụng công thức nhân đôi, hạ bậc	19
	Dạng 3.Áp dụng công thức biến đổi tích thành tổng, tổng thành tích	
	声 Dạng 4.Kết hợp nhiều công thức lượng giác	37
	► Dang 5.Nhân dang tam giác	45

