

TIME SERIES ANALYSIS FOR ENERGY DATA

M8.1 – ARIMA Model Identification and Parameter Estimation

Prof. Luana Medeiros Marangon Lima, Ph.D.

Learning Goals

- Simple Example of ACF and PACF computation
- ARIMA Model Parameters Estimation
 - AR coefficients
 - MA coefficients
 - Variance of residuals

ARIMA Parameter Estimation

ARIMA Modeling - Process

Parameter Estimation

- We know that AR coefficients come from PACF
- □ How can we get PACF?
- Simple example: Excel spreadsheet
 - "Temp_example_ACF_PACF_computation.xlsx"

Simple Example: ACF Computation

t	Y_t
1	14.2
2	16.4
3	11.9
4	15.2
5	18.5
6	22.1
7	19.4
8	25.1
9	23.4
10	18.1
11	22.6
12	17.2

			Lag 1			
	t	Y_t	Y1_t	[Y_t - Mu(Y)]	[Y1_t - Mu(Y)]	Mult
	1	14,2	-	-	-	-
	2	16,4	14,2	-2,275	-4,475	10,181
	3	11,9	16,4	-6,775	-2,275	15,413
	4	15,2	11,9	-3,475	-6,775	23,543
	5	18,5	15,2	-0,175	-3,475	0,608
	6	22,1	18,5	3,425	-0,175	-0,599
	7	19,4	22,1	0,725	3,425	2,483
	8	25,1	19,4	6,425	0,725	4,658
ACF(1)	9	23,4	25,1	4,725	6,425	30,358
	10	18,1	23,4	-0,575	4,725	-2,717
	11	22,6	18,1	3,925	-0,575	-2,257
	12	17,2	22,6	-1,475	3,925	-5,789
	Mean	18,68			SUM	75,882
	Std. Dev.	3,84			Num. Obs.	12
					COVARIANCE(Y,Y1)	6,32
_					CORRELATION(Y,Y1)	0,4288
				_		
		V 1	Lag 1	[V + NA-(V)]	[V2 + N4 (V)]	DAIa
	t	Y_t	Lag 1 Y2_t	[Y_t - Mu(Y)]	[Y2_t - Mu(Y)]	Mult
	1	14,2	Y2_t	-	-	-
	1 2	14,2 16,4	Y2_t	-	-	-
	1 2 3	14,2 16,4 11,9	Y2_t - - 14,2	- - -6,775	- - -4,475	- - 30,318
	1 2 3 4	14,2 16,4 11,9 15,2	Y2_t - - 14,2 16,4	- -6,775 -3,475	- - -4,475 -2,275	- - 30,318 7,906
	1 2 3 4 5	14,2 16,4 11,9 15,2 18,5	Y2_t 14,2 16,4 11,9	- -6,775 -3,475 -0,175	- -4,475 -2,275 -6,775	- 30,318 7,906 1,186
	1 2 3 4 5	14,2 16,4 11,9 15,2 18,5 22,1	Y2_t	- -6,775 -3,475 -0,175 3,425	- -4,475 -2,275 -6,775 -3,475	- 30,318 7,906 1,186 -11,902
	1 2 3 4 5 6	14,2 16,4 11,9 15,2 18,5	Y2_t 14,2 16,4 11,9	- -6,775 -3,475 -0,175 3,425 0,725	- -4,475 -2,275 -6,775	- 30,318 7,906 1,186
-	1 2 3 4 5 6 7	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1	Y2_t	- -6,775 -3,475 -0,175 3,425 0,725 6,425	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425	- 30,318 7,906 1,186 -11,902 -0,127 22,006
ACF(2)	1 2 3 4 5 6 7 8	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	Y2_t	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426
ACF(2)	1 2 3 4 5 6 7	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1	Y2_t	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694
ACF(2)	1 2 3 4 5 6 7 8 9 10	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	Y2_t	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546
ACF(2)	1 2 3 4 5 6 7 8 9	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694
ACF(2)	1 2 3 4 5 6 7 8 9 10 11	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848
ACF(2)	1 2 3 4 5 6 7 8 8 9 10 11 12 Mean	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848
ACF(2)	1 2 3 4 5 6 7 8 9 10 11	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925	- -4,475 -2,275 -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575	- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848
ACF(2)	1 2 3 4 5 6 7 8 8 9 10 11 12 Mean	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925		- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848
ACF(2)	1 2 3 4 5 6 7 8 8 9 10 11 12 Mean	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925		- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848 68,511 12
ACF(2)	1 2 3 4 5 6 7 8 8 9 10 11 12 Mean	14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4 18,1 22,6 17,2	Y2_t - 14,2 16,4 11,9 15,2 18,5 22,1 19,4 25,1 23,4	- -6,775 -3,475 -0,175 3,425 0,725 6,425 4,725 -0,575 3,925		- 30,318 7,906 1,186 -11,902 -0,127 22,006 3,426 -3,694 18,546 0,848

$$Cov(Y_t Y_s) = E[(Y_t - \mu)(Y_s - \mu)]$$

$$Cov(Y_t Y_s) = \frac{1}{n} \sum (Y_t - \mu)(Y_s - \mu)$$

$$Corr(Y_t Y_s) = \frac{Cov(Y_t Y_s)}{\sigma_s^2} = ACF(t - s)$$

Compare with R function:

```
> print(acf_temp$acf)
, , 1

[,1]
[1,] 1.00000000
[2,] 0.42875355
[3,] 0.38710748
[4,] 0.13060966
[5,] -0.24677581
[6,] -0.36416383
[7,] -0.30293249
[8,] -0.27678937
[9,] -0.23337053
[10,] 0.02054935
[11,] -0.08028336
```

Simple Example: ACF Computation

Lag 1

t	Y_t
1	14.2
2	16.4
3	11.9
4	15.2
5	18.5
6	22.1
7	19.4
8	25.1
9	23.4
10	18.1
11	22.6
12	17.2

			Lug I			
	t	Y_t	Y3_t	[Y_t - Mu(Y)]	[Y3_t - Mu(Y)]	Mult
	1	14,2	-	-	-	-
	2	16,4	-	-	-	-
	3	11,9	-	-	-	-
	4	15,2	14,2	-3,475	-4,475	15,551
	5	18,5	16,4	-0,175	-2,275	0,398
	6	22,1	11,9	3,425	-6,775	-23,204
	7	19,4	15,2	0,725	-3,475	-2,519
	8	25,1	18,5	6,425	-0,175	-1,124
ACF(3)	9	23,4	22,1	4,725	3,425	16,183
	10	18,1	19,4	-0,575	0,725	-0,417
	11	22,6	25,1	3,925	6,425	25,218
	12	17,2	23,4	-1,475	4,725	-6,969
	Mean	18,68			SUM	23,116
	Std. Dev.	3,84			Num. Obs.	12
		,				
					CORRELATION(Y,Y2)	1,93
					CORRELATION(Y,Y2)	0,1306
						.,
			Lag 1			
	t	Y_t	Y4 t	[Y_t - Mu(Y)]	[Y4_t - Mu(Y)]	Mult
	1	14,2	-	- ' '		-
	2	16,4	-	-	-	-
	3	11,9	-	-	-	-
	4	15,2	-	-	-	-
	5	18,5	14,2	-0,175	-4,475	0,783
	6	22,1	16,4	3,425	-2,275	-7,792
						-4,912
	7	19,4	11,9	0,725	-6,775	-4,512
	7 8	19,4 25,1	11,9 15,2	0,725 6,425	-6,775 -3,475	-22,327
ACF(4)		25,1	15,2	6,425	-3,475	-22,327
ACF(4)	8	25,1 23,4	15,2 18,5	6,425 4,725	-3,475 -0,175	-22,327 -0,827
ACF(4)	8 9 10	25,1 23,4 18,1	15,2 18,5 22,1	6,425 4,725 -0,575	-3,475 -0,175 3,425	-22,327 -0,827 -1,969
ACF(4)	8	25,1 23,4 18,1 22,6	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725	-22,327 -0,827 -1,969 2,846
ACF(4)	8 9 10 11	25,1 23,4 18,1	15,2 18,5 22,1	6,425 4,725 -0,575	-3,475 -0,175 3,425	-22,327 -0,827 -1,969
ACF(4)	8 9 10 11	25,1 23,4 18,1 22,6	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725	-22,327 -0,827 -1,969 2,846
ACF(4)	8 9 10 11 12 Mean	25,1 23,4 18,1 22,6 17,2	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725 6,425	-22,327 -0,827 -1,969 2,846 -9,477
ACF(4)	8 9 10 11 12	25,1 23,4 18,1 22,6 17,2	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725 6,425	-22,327 -0,827 -1,969 2,846 -9,477
ACF(4)	8 9 10 11 12 Mean	25,1 23,4 18,1 22,6 17,2	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725 6,425 SUM Num. Obs.	-22,327 -0,827 -1,969 2,846 -9,477 -43,675
ACF(4)	8 9 10 11 12 Mean	25,1 23,4 18,1 22,6 17,2	15,2 18,5 22,1 19,4	6,425 4,725 -0,575 3,925	-3,475 -0,175 3,425 0,725 6,425	-22,327 -0,827 -1,969 2,846 -9,477

Compare with R values:

```
> print(acf_temp$acf)
, , 1

[,1]
[1,] 1.00000000
[2,] 0.42875355
[3,] 0.38710748
[4,] 0.13060966
[5,] -0.24677581
[6,] -0.36416383
[7,] -0.36416383
[7,] -0.30293249
[8,] -0.27678937
[9,] -0.23337053
[10,] 0.02054935
[11,] -0.08028336
```

PACF Concept

Consider the two regression models

$$y_t = \beta_0 + \beta_1 y_{t-2}$$

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2}$$

- $\ \square$ What is the meaning of eta_1 in the first model and eta_2 in the second model?
- They both represent the linear dependence between observation y_t and y_{t-2}
- \square But what's difference between eta_1 in the first model and eta_2 in the second model?
- The eta_2 in the second model is the linear dependence between y_t and y_{t-2} WITH the dependency between y_t and y_{t-1} ALREADY accounted for

ARIMA Parameter Estimation

- What do we need to estimate?
 - AR coefficients
 - MA coefficients
 - Variance of the residuals (error or innovation)
- Estimation Methods for ARIMA coefficients
 - Least squares method
 - Maximum Likelihood
 - Methods of Moments or Yule-Walker equations
- Other Methods: Bayesian estimation or Kalman Filtering

Estimating AR(p) parameters

□ AR(p)

$$\begin{aligned} Y_t &= \phi_1 \ddot{Y}_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + a_t \\ a_t \sim i. \ i. \ d. \ (0, \sigma^2) \end{aligned} \qquad for \ t = 1, 2, \dots, n$$

- \square Need to estimate $\phi = (\phi_1 \, \phi_2 \, ... \, \phi_p)$ ' and σ^2
- Estimation method: Method of moments (Yule-Walker equations)
- Yule Walker equations relate AR model coefficients to the autocovariance (ACF) of the random process
- Note: They do not address the model order, they are simply used to estimate AR parameters

Estimating AR coefficients

Consider AR(p) model with a zero mean

$$Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \dots + \phi_{p}Y_{t-p} + a_{t}$$

$$Y_{t}Y_{t-h} = \phi_{1}Y_{t-1}Y_{t-h} + \phi_{2}Y_{t-2}Y_{t-h} + \dots + \phi_{p}Y_{t-p}Y_{t-h} + a_{t}Y_{t-h} \quad (with \ h > 0)$$

$$E[Y_{t}Y_{t-h}] = E[\phi_{1}Y_{t-1}Y_{t-h}] + E[\phi_{2}Y_{t-2}Y_{t-h}] + \dots + E[\phi_{p}Y_{t-p}Y_{t-h}] + E[a_{t}Y_{t-h}]$$

$$E[Y_{t}Y_{t-h}] = \phi_{1}E[Y_{t-1}Y_{t-h}] + \dots + \phi_{p}E[Y_{t-p}Y_{t-h}] + E[a_{t}Y_{t-h}] \quad Eq. (1)$$

- \square Closer look at last term $E[a_tY_{t-h}]$
 - \mathbf{a}_t is uncorrelated with Y_{t-h} , therefore $E[a_t Y_{t-h}] = a_t E[Y_{t-h}]$
 - $E[Y_t] = 0$ since this is a zero mean process, therefore

$$E[a_t Y_{t-h}] = a_t E[Y_{t-h}] = a_t * 0 = 0$$

Back in Eq. (1)

$$E[Y_t Y_{t-h}] = \phi_1 E[Y_{t-1} Y_{t-h}] + \dots + \phi_p E[Y_{t-p} Y_{t-h}] + E[a_t Y_{t-h}]$$

$$E[Y_t Y_{t-h}] = \phi_1 E[Y_{t-1} Y_{t-h}] + \dots + \phi_p E[Y_{t-p} Y_{t-h}] \qquad Eq. (2)$$

Estimating AR coefficients (cont'd)

- Recall two definitions from Lect. 3
 - $1 \gamma_{t,s} = Cov(Y_t Y_s) = E[Y_t Y_s] \mu_t \mu_s$
 - 2. For a stationary process $\gamma_{t,s} = \gamma_{0,|t-s|}$
- Since we are considering a zero mean series the above relationships leads to

$$\gamma_{t,s} = E[Y_t Y_s] - \mu \mu_s^0 : E[Y_t Y_s] = \gamma_{t,s}$$

lacksquare Rewriting in terms of t and t-h we get

$$E[Y_tY_{t-h}] = \gamma_{t,t-h} = \gamma_{0,h}$$
 or simply $E[Y_tY_{t-h}] = \gamma_h$

Substituting in Eq. (2)

$$E[Y_{t}Y_{t-h}] = \phi_{1}E[Y_{t-1}Y_{t-h}] + \dots + \phi_{p}E[Y_{t-p}Y_{t-h}]$$

$$\gamma_{h} = \phi_{1}\gamma_{h-1} + \dots + \phi_{p}\gamma_{h-p}$$

Estimating AR coefficients (cont'd)

 For a zero mean process autocovariance divided by variance equal autocorrelation, therefore

$$\rho_h = \phi_1 \rho_{h-1} + \dots + \phi_p \rho_{h-p}$$

□ Writing this equation for h = 1, 2, ..., p we get

$$h = 1$$
 $\rho_1 = \phi_1 \rho_0 + \phi_2 \rho_1 + \dots + \phi_p \rho_{p-1}$ $h = 2$ $\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0 + \dots + \phi_p \rho_{p-2}$ \vdots

$$h = p$$
 $\rho_p = \phi_1 \rho_{p-1} + \phi_2 \rho_{p-2} + \dots + \phi_p \rho_0$

Note that for h=1: $\rho_{h-p}=\rho_{1-p}=\rho_{p-1}$

Yule-Walker equations

Estimating AR coefficients (cont'd)

In matrix form

$$\begin{bmatrix}
\rho_{1} \\
\rho_{2} \\
\rho_{3} \\
\vdots \\
\rho_{p}
\end{bmatrix} = \begin{bmatrix}
\rho_{0} & \rho_{1} & \rho_{2} & \cdots & \rho_{p-1} \\
\rho_{1} & \rho_{0} & \rho_{1} & \cdots & \rho_{p-2} \\
\rho_{2} & \rho_{1} & \rho_{0} & \cdots & \rho_{p-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho_{p-1} & \rho_{p-2} & \rho_{p-3} & \cdots & \rho_{0}
\end{bmatrix} \cdot \begin{bmatrix}
\phi_{1} \\
\phi_{2} \\
\phi_{3} \\
\vdots \\
\phi_{p}
\end{bmatrix}$$

 $lue{}$ This a linear system with p equations and p variables

$$\rho_p = R_p \cdot \phi_p \quad \longrightarrow \quad \phi_p = R_p^{-1} \cdot \rho_p$$

Simple Example: PACF Computation

Compare with R values:

```
> print(pacf_temp$acf)
, , 1

[,1]
[1,]  0.4287535
[2,]  0.2490630
[3,] -0.1316882
[4,] -0.4645661
[5,] -0.2730998
[6,]  0.2045947
[7,]  0.1920660
[8,] -0.2915612
[9,] -0.1206727
[10,] -0.1351969
```

Estimating the variance of AR(p)

□ To get an estimate for the variance use same approach $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + a_t$

 \square Multiply by Y_{t-h} and take expectations

$$E[Y_t Y_{t-h}] = \phi_1 E[Y_{t-1} Y_{t-h}] + \dots + \phi_p E[Y_{t-p} Y_{t-h}] + E[a_t Y_{t-h}]$$

 $\hfill\square$ But now we consider the case where h=0, so the last term is no equal to zero, instead

$$E[a_t Y_t] = \sigma^2$$

Therefore

$$\rho_0 = \phi_1 \rho_1 + \dots + \phi_p \rho_p + \sigma^2 \implies \sigma^2 = \rho_0 - \phi_1 \rho_1 - \dots - \phi_p \rho_p$$

 \square From estimates of $\phi_1,...,\phi_p$ we can get an estimate for σ^2

Estimating MA coefficients

- Difficult because regressors are unknown residuals
- Assuming invertibility we can right a MA process as an AR and then use the Yule-Walker equations
- □ Example: MA(1) to AR(∞)
 - \blacksquare MA(1): $Y_t = \epsilon_t \theta \epsilon_{t-1}$
 - \blacksquare Define operator L such that: $L\epsilon_t = \epsilon_{t-1}$ (also denoted by B and know as back shift operator)
 - Therefore $LL\epsilon_t = L\epsilon_{t-1} = \epsilon_{t-2}$
 - lacksquare In terms of back shift operator: $Y_t = (1-\theta L)\epsilon_t$
 - $\blacksquare \text{ Rewriting: } \frac{Y_t}{(1-\theta L)} = \epsilon_t$

Sum of Geometric Progression: $S_{\infty} = a + ra + r^2a + \cdots = \frac{a}{1-r}$ if |r| < 1

Estimating MA coefficients (cont'd)

 \square In that case if $|\theta| < 1$

$$\frac{Y_t}{(1-\theta L)} = Y_t + \theta L Y_t + \theta^2 L^2 Y_t + \theta^3 L^3 Y_t + \dots = \epsilon_t$$

 \square Isolating Y_t we get

$$Y_t = -\theta L Y_t - \theta^2 L^2 Y_t - \theta^3 L^3 Y_t - \dots + \epsilon_t$$

$$Y_{t-1} \qquad Y_{t-2} \qquad Y_{t-3} \qquad \text{From the definition of operator L}$$

Therefore

$$Y_t = -\theta Y_{t-1} - \theta^2 Y_{t-2} - \theta^3 Y_{t-3} - \dots + \epsilon_t$$

Now you can use the same AR methods

Example of Parameter Estimation

Temperature Data

Series: temp

ARIMA(2,0,0) with non-zero mean

Coefficients:

	ar1	ar2	mean
	0.3190	0.2711	-0.4614
s.e.	0.2803	0.2907	2.0245

sigma^2 estimated as 14.31: log likelihood=-31.45 AIC=70.9 AICc=76.62 BIC=72.84

Call:

 $lm(formula = Y[, 1] \sim Y[, 2] + Y[, 3])$

Coefficients:

[1] "Yule Walker results:"

$$Y_{t-1}$$

$$Y_{t-2}$$

Electricity Prices Data

Series: random_price

ARIMA(2,0,0) with non-zero mean

Coefficients:

sigma^2 estimated as 0.007577: log likelihood=208.03 AIC=-408.06 AICc=-407.85 BIC=-394.82

Call:

$$lm(formula = Y[, 1] \sim Y[, 2] + Y[, 3])$$

Coefficients:

[1] "Yule Walker results:"

THANK YOU!

luana.marangon.lima@duke.edu