Messung Inbetriebnahme Prototyp (autonom)

Autor: Manuel König Messdatum: 19. Mai 2016

Zusammenfassung

Bei hohen Geschwindigkeiten nimmt die Zeit die benötigt wird, um das TI-SensorTag zu starten und BLE-Pakete zu versenden, ab.

1 Aufgabenstellung

Es soll der Verlauf von VSUP und VCC_STS bei verschiedenen Geschwindigkeiten aufgenommen werden, um zu zeigen, wie oft Bluetooth Smart Pakete verschickt werden können.

2 Messschaltung/Messverfahren

Abbildung 1: Messaufbau

Abbildung 2: Schema des Prototyps

Vorgehen

Es wurde jeweils eine Ladeperiode des STS aufgenommen und eine Detailaufnahme während der Zeit, wo VSUP aktiv ist. Die Geschwindigkeit wurde auf $10^{km}/_h$, $15^{km}/_h$, $20^{km}/_h$ und $40^{km}/_h$ eingestellt.

3 Ergebnis

Abbildung 3: rot: VCC_STS, grün: VSUP, 10 km/h

Abbildung 4: rot: VCC_STS, grün: VSUP, 10 km/h

Es braucht 40 – 50 s, um genug Energie zu sammeln für ein erneutes Aufstrarten des TI-SensorTags.

Abbildung 5: rot: VCC_STS, grün: VSUP, 15 km/h

Abbildung 6: rot: VCC_STS, grün: VSUP, 15 km/h

Es braucht 10 – 12 s, um genug Energie zu sammeln für ein erneutes Aufstrarten des TI-SensorTags.

Abbildung 7: rot: VCC_STS, grün: VSUP, 20 km/h

Abbildung 8: rot: VCC_STS, grün: VSUP, 20 km/h

Es braucht 6 – 8 s, um genug Energie zu sammeln für ein erneutes Aufstrarten des TI-SensorTags.

Abbildung 9: rot: VCC_STS, grün: VSUP, 40 km/h

Abbildung 10: rot: VCC_STS, grün: VSUP, 40 km/h

Es braucht 1.6 – 2.4 s, um genug Energie zu sammeln für ein erneutes Aufstrarten des TI-SensorTags.

4 Schlusswort

Bei hohen Geschwindigkeiten nimmt die Zeit die benötigt wird, um das TI-SensorTag zu starten und BLE-Pakete zu versenden, ab.

5 Inventar

KO: Tektronix MSO2024; Serie-Nr. C012115