Obviously W contains an open neighborhood of zero. Now let $z=(r(f_1),r(f_2),\cdots,r(f_n))$. By assumption and the fact that \overline{W} is compact, $z \notin \overline{W}$. Since \overline{W} compact we can find a bounded linear functional that strictly separates \overline{W} and z_0 . Namely we can find $(\lambda_1,\lambda_2,\cdots,\lambda_n) \in \mathbb{C}^n$ such that:

$$\sum_{i\leqslant n}\lambda_i r(f_i)>1 \qquad \quad \text{and} \qquad \quad \forall \, (x_1,\cdots,x_n)\in \overline{W}, \quad \sum_{i\leqslant n}\lambda_i x_i\leqslant 1$$

Therefore $\|\sum_{i \leq n} \lambda_i f_i\| \leq 1$ and hence:

$$1 < r \left(\sum_{i \le n} \lambda_i f_i \right) \le \|r\| \left\| \sum_{i \le n} \lambda_i f_i \right\| \le 1$$

which is absurd. Hence for any $\{f_i\}_{i \leq n} \subseteq X^*$ and $\sigma \in (0,1)$:

$$(r(f_1), \dots, r(f_n)) \in \overline{\{(f_1(x), \dots, f_n(x)) \mid x \in X_{\leq 1}\}} \subseteq (1 + \sigma)\{(f_1(x), \dots, f_n(x)) \mid x \in X_{\leq 1}\}$$

or

$$(r(f_1), \dots, r(f_n)) \in \{(f_1(x), \dots, f_n(x)) \mid x \in X_{\leq 1+\sigma}\}$$

Proposition 5.3. Any non-reflexive Banach space X will have a bounded bi-orthogonal system $(e_i, f_j)_{i,j \in \mathbb{N}}$ such that $\sup_n \|\sum_{i \leqslant n} e_i\| < \infty$ or $\sup_n \|\sum_{i \leqslant n} f_i\| < \infty$

Proof. Let $r \in X^{**} \setminus Q(X)$ and suppose H is an arbitrary finite dimensional subspace of X. Define:

$$\rho = \sup \{ |r(y)| : y \in X_{=1}^* \cap H^{\perp} \}.$$

Suppose $H = \operatorname{Span}\{h_1, h_2, \cdots, h_n\}$ and $H^* = \operatorname{Span}\{f_1, f_2, \cdots, f_n\}$ where $f_i(h_j) = 1$ iff i = j. If $\rho = 0$, then $r \in (H^{\perp})^{\perp}$. Observe that $Q(H)^{\perp} = Q'(H^{\perp})$ and $(H^{\perp})^{\perp} \subseteq Q'(H^{\perp})_{\perp}$. Then $r \in [Q(H)^{\perp}]_{\perp} = Q(H) \subseteq Q(X)$, which is absurd. Hence $\rho > 0$. Below we will start constructing the desired bi-orthogonal system.

Suppose ||r|| = 1. Fix $\sigma \in (0,1)$. $y_1 \in X_{=1}^*$ so that $\beta_1 = r(y_1) > \frac{1}{2}$. By **Proposition 5.2** we can find $b_1 \in X_{\leq 1+\sigma}$ so that $y_1(b_1) = \beta_1$. Define $E_1 = \text{Span}\{b_1\}$ and:

$$\rho_1 = \sup \left\{ r(y) \, | \, y \in X_{=1}^* \cap E_1^{\perp} \right\}$$

By the previous remark, we have $\rho_1 > 0$. Next find $y_2 \in X_{\leqslant 1}^* \cap E_1^{\perp}$ so that $\beta_2 = r(y_2) > \frac{1}{2}\rho_1$. Again by **Proposition 5.2**, find $b_2 \in X_{\leqslant 1+\sigma}$ so that $y_1(b_2) = \beta_1, y_2(b_2) = \beta_2$. Define $E_2 = \operatorname{Span}\{b_1, b_2\}$ and:

$$\rho_2 = \sup \{ r(y) \, | \, y \in X_{=1}^* \cap E_2^{\perp} \}$$

and similarly $\rho_2 > 0$. By induction for each $n \in \mathbb{N}$ we will have $\{b_i\}_{i \leqslant n} \subseteq X_{\leqslant 1+\sigma}$, $E_n = \operatorname{Span}\{b_i\}_{i \leqslant n}$, $y_{i+1} \in X_{\leqslant 1}^* \cap E_i^{\perp}$, $\{\beta_i\}_{i \leqslant n}$ and:

$$\rho_n = \sup \{ r(y) \mid y \in X_{=1}^* \cap E_n^{\perp} \}$$

such that $\beta_1 = r(y_1) > \frac{1}{2}$, $\beta_{n+1} = r(y_{n+1}) \in \left(\frac{1}{2}\rho_n, \rho_n\right]$ and for each $i, j \in \{1, 2, \dots, n\}$:

$$y_i(b_j) = \begin{cases} r(y_i), & 1 \le i \le j \le n \\ 0, & 1 \le j < i \le n \end{cases}$$

Since H_n^{\perp} is decreasing as n increases, we have $\{\rho_n\}$ is non-increasing sequence in (0,1] and hence convergent. Assume that $\inf_n \rho_n = \lim_n \rho_n = 0$. For each $\epsilon \in (0,1)$ and then suppose $\rho_n < \epsilon$ for all $n \ge N$. Fix $f \in X_{\le 1}^*$ and for each $n \in \mathbb{N}$, define $\tau_n(f) = \max_{i \le n} |f(b_i)|$ and:

$$z_n(f) = \frac{1}{\beta_1} f(b_1) y_1 + \sum_{1 < i \le n} \frac{1}{\beta_i} [f(b_i) - f(b_{i-1})] y_i$$

Since for each $n \in \mathbb{N}$:

$$0 < \frac{1}{2}\rho_{n+1} < \beta_n \leqslant \rho_n$$