Лекция №21 1

Определение. Будем говорить, что x_n сходится к $a(\lim_{n\to\infty}x_n=a)$, если $\forall \varepsilon>0\ \exists\ N=N(\varepsilon): \forall n>0$ $N, |x_n - a| < \varepsilon$

Геометрический смысл:

а — предел
$$x_n,\, a-\varepsilon < x_n < a+\varepsilon$$
 $O_a = (a-\varepsilon,\, a+\varepsilon)$ — ε -окрестность т. а

Примеры:

1. Док-ть
$$\lim_{n\to\infty}\frac{1}{n}=0$$

$$orall arepsilon>0$$
 \exists $N=N(arepsilon): orall n>N,$ док-ть: $\left|rac{1}{n}-0
ight| $\left|rac{1}{n}-0
ight|=\left|rac{1}{n}\right|=rac{1}{n}rac{1}{arepsilon} > N=rac{1}{arepsilon}$ $N=\left[rac{1}{arepsilon}
ight]+1\in\mathbb{N}([\mathbf{x}]$ — выделение целой части)$

$$[x] \leq x < [x] + 1$$

$$\frac{1}{[x]+1} < \frac{1}{x}$$

действительно:
$$\frac{1}{n}<\frac{1}{N}=\frac{1}{\left[\frac{1}{\varepsilon}\right]+1}<\frac{1}{\varepsilon}=\varepsilon,\text{ ч.т.д.}$$

2. Док-ть
$$\lim_{n\to\infty} \frac{n}{n+1} = 1$$

$$\forall \varepsilon > 0 \; \exists \; N = N(\varepsilon) : \forall n > N, \; \text{док-ть:} \; \left| \frac{n}{n+1} - 1 \right| < \varepsilon$$
 $\left| \frac{n}{n+1} - 1 \right| = \left| \frac{n-n-1}{n+1} \right| = \frac{1}{n+1} < \frac{1}{n} < \varepsilon, \; \text{ч.т.д.} \; (N = [\frac{1}{\varepsilon} - 1] + 1)$

 α_n — приближение б.д.д. по недостатку с точностью до $\frac{1}{10^n}$

Покажем, что $\alpha_n \longrightarrow_{n\to\infty} \alpha$

$$\forall \varepsilon > 0 \ \exists \ N : \forall n > N, \ |\alpha_n - \alpha| < \varepsilon$$

$$|\alpha_n - \alpha| = |a, a_1, a_2, \dots, a_n - a, a_1, a_2, \dots, a_n, a_{n+1}, a_{n+2} \dots| = 0, \underbrace{0 \dots 0}_{n}, a_{n+1}, a_{n+2} \dots < \frac{1}{10^n} < \frac{1}{9n} < \frac{1}{10^n} < \frac{1}{1$$

$$<\varepsilon$$

 $10^n = (1+9)^n > 9n$ $n > \frac{1}{9\varepsilon}$
 $N = \left[\frac{1}{9\varepsilon}\right] + 1$

Сходимость может быть разной

$$x_n = \frac{1}{n}$$

$$x_n = -\frac{1}{n}$$

$$x_n = \frac{(-1)^n}{n}$$