Theorems on \bar{n} in AL Varying N

February 12, 2023

1 Setup

Recall that if valuations are independent of N, the following upper bound holds:

$$F_{n:n}(v) \le \sum_{m=n+1}^{\bar{n}} \frac{n}{(m-1)m} F_{m-1:m}(v) + \frac{n}{\bar{n}} F_{\bar{n}-1:\bar{n}}(v)$$

And the following lower bound holds:

$$F_{n:n}(v) \ge \sum_{m=n+1}^{\bar{n}} \frac{n}{(m-1)m} F_{m-1:m}(v) + \frac{n}{\bar{n}} \left(\phi_{\bar{n}-1:\bar{n}} \left(F_{\bar{n}-1:\bar{n}}(v) \right) \right)^{\bar{n}}$$

2 Theorems

2.1 Theorem 1

Let $S = \{n+1, n+2, ..., \bar{n}\}$ be the set of all possible upper limits of summation. The upper bound generated with $\max(S) = \bar{n}$ is the tightest upper bound for $F_{n:n,s}$ from all of $s \in S$.

Proof

Define $\bar{n}_2, \bar{n}_1 \in \mathbb{N}$ and let $n < \bar{n}_1 = \bar{n}_2 - 1 \le \bar{n}$. Then take the difference of these upper bounds,

$$\begin{split} F_{n:n,\bar{n}_1}(v) - F_{n:n,\bar{n}_2}(v) &= \frac{n}{\bar{n}_1} F_{\bar{n}_1 - 1:\bar{n}_1}(v) - \frac{n}{\bar{n}_2} F_{\bar{n}_2 - 1:\bar{n}_2}(v) - \frac{n}{\bar{n}_2(\bar{n}_2 - 1)} F_{\bar{n}_2 - 1:\bar{n}_2}(v) \\ &= \frac{n}{\bar{n}_1} F_{\bar{n}_1 - 1:\bar{n}_1}(v) - F_{\bar{n}_2 - 1:\bar{n}_2}(v) * \left(\frac{n + n(\bar{n}_2 - 1)}{\bar{n}_2(\bar{n}_2 - 1)}\right) \\ &= \frac{n}{\bar{n}_1} F_{\bar{n}_1 - 1:\bar{n}_1}(v) - \frac{n}{\bar{n}_2 - 1} F_{\bar{n}_2 - 1:\bar{n}_2}(v) \\ &= \frac{n}{\bar{n}_1} \left(F_{\bar{n}_1 - 1:\bar{n}_1}(v) - F_{\bar{n}_2 - 1:\bar{n}_2}(v)\right) \end{split}$$

Recall that the CDF of the second highest order statistic is $F_{k-1:k}(v) = kF(v)^{k-1} - (k-1)F(v)^k$. So,

$$\begin{split} F_{\bar{n}_1-1:\bar{n}_1}(v) - F_{\bar{n}_2-1:\bar{n}_2}(v) &= \bar{n}_1 F^{\bar{n}_1-1}(v) - (\bar{n}_1-1) \, F^{\bar{n}_1}(v) - \left[(\bar{n}_1+1) F^{\bar{n}_1}(v) - \bar{n}_1 F^{\bar{n}_1+1}(v) \right] \\ &= \bar{n}_1 F^{\bar{n}_1-1}(v) - 2\bar{n}_1 F^{\bar{n}_1}(v) + \bar{n}_1 F^{\bar{n}_1+1}(v) \\ &= \bar{n}_1 \left[F^{\bar{n}_1-1}(v) - 2F^{\bar{n}_1}(v) + F^{\bar{n}_1+1}(v) \right] \\ &= \bar{n}_1 F(v)^{\bar{n}_1-1} \left[1 - 2F(v) + F(v)^2 \right] \\ &= \bar{n}_1 F(v)^{\bar{n}_1-1} \left(1 - F(v) \right) \left(1 - F(v) \right) \\ &> 0 \end{split}$$

So $F_{n:n,\bar{n}_1}(v) \geq F_{n:n,\bar{n}_2}(v)$ for all v. It follows by an inductive argument that $F_{n:n,\bar{n}}(v)$ is indeed the lowest upper bound.

2.2 Theorem 2

Let $S = \{n + 1, n + 2, ..., \bar{n}\}$ be the set of all possible upper limits of summation. If valuations are *i.i.d.*, the lower bounds for $F_{n:n,s}$ from $s \in S$ are all equally tight.

Proof:

Define $\bar{n}_2, \bar{n}_1 \in \mathbb{N}$ and let $n < \bar{n}_1 = \bar{n}_2 - 1 \le \bar{n}$. Then take the difference of these upper bounds,

$$\begin{split} F_{n:n,\bar{n}_2}(v) - F_{n:n,\bar{n}_1}(v) &= \frac{n}{\bar{n}_2(\bar{n}_2 - 1)} F_{\bar{n}_2 - 1:\bar{n}_2}(v) + \frac{n}{\bar{n}_2} \left[\phi_{\bar{n}_2 - 1:\bar{n}_2} \left(F_{\bar{n}_2 - 1:\bar{n}_2}(v) \right) \right]^{\bar{n}_2} - \frac{n}{\bar{n}_1} \left[\phi_{\bar{n}_1 - 1:\bar{n}_1} \left(F_{\bar{n}_1 - 1:\bar{n}_1}(v) \right) \right]^{\bar{n}_1} \\ &= \frac{n}{\bar{n}_2(\bar{n}_2 - 1)} \left\{ F_{\bar{n}_2 - 1:\bar{n}_2}(v) + (\bar{n}_2 - 1) \left[\phi_{\bar{n}_2 - 1:\bar{n}_2} \left(F_{\bar{n}_2 - 1:\bar{n}_2}(v) \right) \right]^{\bar{n}_2} - (\bar{n}_2) \left[\phi_{\bar{n}_1 - 1:\bar{n}_1} \left(F_{\bar{n}_1 - 1:\bar{n}_1}(v) \right) \right]^{\bar{n}_1} \right\} \end{split}$$

Since valuations are i.i.d., $\phi_{k-1:k}(F_{k-1:k}(v)) = F(v)$, so we have,

$$F_{n:n,\bar{n}_{2}}(v) - F_{n:n,\bar{n}_{1}}(v) = \frac{n}{\bar{n}_{2}(\bar{n}_{2} - 1)} \left\{ F_{\bar{n}_{2} - 1:\bar{n}_{2}}(v) + \bar{n}_{1}F(v)^{\bar{n}_{2}} - \bar{n}_{2}F(v)^{\bar{n}_{1}} \right\}$$

$$= \frac{n}{\bar{n}_{2}(\bar{n}_{2} - 1)} \left\{ F_{\bar{n}_{2} - 1:\bar{n}_{2}}(v) - \left[\bar{n}_{2}F(v)^{\bar{n}_{1}} - \bar{n}_{1}F(v)^{\bar{n}_{2}} \right] \right\}$$

$$= \frac{n}{\bar{n}_{2}(\bar{n}_{2} - 1)} \left\{ F_{\bar{n}_{2} - 1:\bar{n}_{2}}(v) - F_{\bar{n}_{2} - 1:\bar{n}_{2}}(v) \right\}$$

$$= 0$$
(i)

(i): The CDF of the second highest order statistic is $F_{k-1:k}(v) = kF(v)^{k-1} - (k-1)F(v)^k$.

So we have $F_{n:n,\bar{n}_2}(v) = F_{n:n,\bar{n}_1}(v)$. Then, again following an inductive argument, the bounds for $F_{n:n}$ from S are all equally tight.

2.3 Theorem 3

Let $S = \{n+1, n+2, ..., \bar{n}\}$ be the set of all possible upper limits of summation. If valuations are common, the lower bounds for $F_{n:n,s}$ from $s \in S$ are increasing in in s.

Proof:

 $\overline{\text{Define }}\bar{n}_2, \bar{n}_1 \in \mathbb{N} \text{ and let } n < \bar{n}_1 = \bar{n}_2 - 1 \leq \bar{n}. \text{ If valuations are common, } F_{\bar{n}_2 - 1:\bar{n}_2}(v) = F_{\bar{n}_1 - 1:\bar{n}_1}(v) \equiv H. \text{ So write,}$

$$\begin{split} F_{n:n,\bar{n}_{2}}(v) - F_{n:n,\bar{n}_{1}}(v) &= \frac{n}{\bar{n}_{2}(\bar{n}_{2} - 1)} \left\{ H + \bar{n}_{1} \left[\phi_{\bar{n}_{2} - 1:\bar{n}_{2}} \left(H \right) \right]^{\bar{n}_{2}} - \bar{n}_{2} \left[\phi_{\bar{n}_{1} - 1:\bar{n}_{1}} \left(H \right) \right]^{\bar{n}_{1}} \right\} \\ &= \frac{n}{\bar{n}_{2}(\bar{n}_{2} - 1)} \left\{ H + \bar{n}_{1} \left[\phi_{\bar{n}_{1}:\bar{n}_{1} + 1} \left(H \right) \right]^{\bar{n}_{1} + 1} - \left(\bar{n}_{1} + 1 \right) \left[\phi_{\bar{n}_{1} - 1:\bar{n}_{1}} \left(H \right) \right]^{\bar{n}_{1}} \right\} \end{split}$$

So we want to show that $H + \bar{n}_1 \left[\phi_{\bar{n}_1 : \bar{n}_1 + 1} \left(H \right) \right]^{\bar{n}_1 + 1} - \left(\bar{n}_1 + 1 \right) \left[\phi_{\bar{n}_1 - 1 : \bar{n}_1} \left(H \right) \right]^{\bar{n}_1} \ge 0.$

Lemma: $\phi_{n:n+1}(H) \ge \phi_{n-1:n}(H)$ for all $n \ge 2$ and $H \in [0,1]$.

<u>Proof:</u> For reduced notation let $\phi \equiv \phi_{n-1:n}$ in this proof. Recall that $H = n\phi^{n-1} - (n-1)\phi^n$. Now differentiate this with respect to n. To do so, we need to use the identity $\left(\left(\alpha_n\right)^{\beta(n)}\right)' = \alpha(n)^{\beta(n)}\beta'(n)\log\alpha(n) + \alpha(n)^{\beta(n)-1}$. So,

$$(n\phi^{n-1})'_n = \phi^{n-1} + n \left[\phi^{n-1} \log \phi + \phi^{n-2} (n-1)\phi' \right]$$

$$((n-1)\phi^n)'_n = \phi^n + (n-1) \left[\phi^n \log \phi + \phi^{n-1} n\phi' \right]$$

Then it follows that,

$$\phi^{n-1} + n \left[\phi^{n-1} \log \phi + \phi^{n-2} (n-1) \phi' \right] = \phi^n + (n-1) \left[\phi^n \log \phi + \phi^{n-1} n \phi' \right]$$

Rearranging,

$$\phi' = \frac{\phi - \phi^2 + n\phi \log \phi - (n-1)\phi^2 \log \phi}{n(n-1)(\phi - 1)}$$

Recall that $\phi \in [0,1]$, so to show this derivative is ≥ 0 , we only need to show that the numerator ≤ 0 . We can write,

$$1 - \phi + n \log \phi - (n - 1)\phi \log \phi = 1 - \phi + [n - (n - 1)\phi] \log \phi$$

$$\leq 1 - \phi + [n - (n - 1)\phi] (\phi - 1)$$

$$= (1 - \phi)^{2} [1 - n]$$

$$\leq 0$$
(i)

(i): This follows from the Taylor expansion centered at 1: $\log x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots$ So $\log(x) \le x - 1$ for all $x \in [0,1]$.

Now, again recall that $H = k\phi_{k-1:k}^{k-1} - (k-1)\phi_{k-1:k}^{k}$. Substitute H where $k = \bar{n}_1 + 1$, then

$$\begin{split} H + \bar{n}_{1} \left[\phi_{\bar{n}_{1}:\bar{n}_{1}+1} \left(H \right) \right]^{\bar{n}_{1}+1} - \left(\bar{n}_{1}+1 \right) \left[\phi_{\bar{n}_{1}-1:\bar{n}_{1}} \left(H \right) \right]^{\bar{n}_{1}} \\ = \left(\bar{n}_{1}+1 \right) \left[\phi_{\bar{n}_{1}:\bar{n}_{1}+1} \left(H \right) \right]^{\bar{n}_{1}} - \left(\bar{n}_{1}+1 \right) \left[\phi_{\bar{n}_{1}-1:\bar{n}_{1}} \left(H \right) \right]^{\bar{n}_{1}} \\ = \left(\bar{n}_{1}+1 \right) \left[\phi_{\bar{n}_{1}:\bar{n}_{1}+1} \left(H \right)^{\bar{n}_{1}} - \phi_{\bar{n}_{1}-1:\bar{n}_{1}} \left(H \right)^{\bar{n}_{1}} \right] \end{split}$$

But from the Lemma, $\phi_{\bar{n}_1:\bar{n}_1+1}(H) \ge \phi_{\bar{n}_1-1:\bar{n}_1}(H)$. So $F_{n:n,\bar{n}_2}(v) - F_{n:n,\bar{n}_1}(v) \ge 0$. It follows by an inductive argument that the lower bounds for $F_{n:n,s}$ from $s \in S$ are increasing in in s, and thus $F_{n:n,\bar{n}}(v)$ is indeed the greatest lower bound.