

Applied Statistics for Data Scientists with R

Class 16: Sampling Distribution of Mean, One and Two-samples t-test

Central Limit Theorem

• Regardless of the population's distribution, the sampling distribution of the sample mean tends to be normal as the sample size increases ($n \ge 30$ is often sufficient).

Student's t distribution

- Describes the distribution of mean of samples when the standard deviation is unknown.
- Used to compare means.
- Has degrees of freedom, df = n 1

$$t = rac{ar{X} - \mu}{rac{s}{\sqrt{n}}}$$

Fun fact: William Sealy Gosset's pseudonym was Student

One sample *t*-test

- Used to:
 - Test the statistical difference between the mean value of a sample and a specific known or hypothesized population mean.
 - So, a mean value of a sample is compared to a fixed hypothesized value.

One sample *t*-test: Hypothesis

 H_0 : The sample mean is equal to X (may be any fixed value).

 H_a : The sample mean is not equal to X (may be any fixed value).

Mathematically,

$$H_0$$
: $\mu = \mu_0$
 H_a : $\mu \neq \mu_0$

$$H_a$$
: $\mu \neq \mu_0$

One sample *t*-test: Assumptions

- 1. Sample data should be independent.
- 2. Sample data is randomly selected.
- Data should come from a population distribution that follows normal distribution.
 (Using Shapiro-Wilk Test)

One sample *t*-test: Procedure

- Calculate mean \bar{X}
- Calculate sample standard deviation s
- Calculate test statistic

$$t = rac{ar{X} - \mu_0}{rac{s}{\sqrt{n}}} \longrightarrow SE = rac{s}{\sqrt{n}}$$

- Calculate degrees of freedom, df = n 1
- Calculate confidence interval

$$ar{X} \pm t_{lpha/2,df} imes SE$$

Critical value from the t-distribution for given confidence level and degrees of freedom

Confidence Interval

- Provides a range of plausible values for an unknown population parameter.
- General formula,

 $CI = Statistic \pm Mergin of Error$

 $CI = Statistic \pm Critical value \times SE$

$$ar{X} \pm t_{lpha/2,df} imes rac{s}{\sqrt{n}} \qquad \qquad \hat{p} \pm Z_{lpha/2} imes \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

Confidence Interval (cont.)

- A 95% confidence interval means that if we repeatedly take samples and compute CIs, 95% of them would contain the true parameter.
- A CI does not mean there is a 95% probability that the true mean is inside the interval.
- Increasing sample size decreases the width of the CI.
- Higher confidence levels (99%) make the interval wider.

Confidence Interval (cont.)

- Increasing sample size decreases the width of the CI.
- Higher confidence levels (99%) make the interval wider.

Independent Samples t-test

- Also known as two-sample t-test
- Used to:
 - Test the statistical difference between the means of two groups.
 - So, the dependent variable is a numeric variable, and the independent variable is categorical variable.
 - The dependent variable (values) depends on the independent variable (two groups).

Independent Samples t-test: Hypothesis

 H_0 : The two population means are equal

 H_a : The two population means are not equal.

Mathematically,

$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$

 H_0 : The difference between the two population means is equal to 0

 H_a : The difference between the two population means is not equal to 0.

Mathematically,

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_a: \mu_1 - \mu_2 \neq 0$

Independent Samples *t***-test: Assumptions**

- 1. Sample units are drawn randomly from the population.
- 2. The observations in the two samples are independent of each other. That is repeated measurements on the same individual is not taken.
- 3. The population from which the sample is drawn is assumed to be normally distributed.
- 4. The two samples come from population distributions that may differ in their mean value, but not in the standard deviation (homogeneity of variance).

Independent Samples *t***-test: Steps**

- Collect data from two groups
- Calculate means $\longrightarrow \bar{X}_1, \bar{X}_2$
- Calculate variances of each group and then pooled variance $\longrightarrow s_p^2 = \frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}$

• Calculate test statistic
$$\longrightarrow$$
 $t=rac{ar{X}_1-ar{X}_2}{\sqrt{s_p^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$ \longrightarrow $SE=\sqrt{s_p^2\left(rac{1}{n_1}+rac{1}{n_2}
ight)}$

- Calculate degrees of freedom \longrightarrow $df = n_1 + n_2 2$
- Calculate confidence interval \longrightarrow $(ar{X}_1 ar{X}_2) \pm t_{lpha/2,df} imes SE$

Critical value from the t-distribution for given confidence level and degrees of freedom

Unequal variance: Welch's t-test

- Also known as Welch's unequal variances *t*-test.
- Uses Welch-Satterthwaite equation to compute modified degrees of freedom.

$$df = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{rac{1}{n_1 - 1} \left(rac{s_1^2}{n_1}
ight)^2 + rac{1}{n_2 - 1} \left(rac{s_2^2}{n_2}
ight)^2}$$

Test for Homogeneity of Variance

- Recommended: Levene's Test
- Other tests:
 - Brown-Forsythe Test (more robust than Levene's test)
 - Bartlett's Test (sensitive to normality assumption)

Hypothesis:

 H_0 : The variances of all groups are equal.

 H_a : At least one group has a different variance.

Paired Samples t-test

- Used to compare the means of two related (paired) groups.
- Examples: Before & After measurements

• Hypothesis:
$$H_0: \mu_D = 0$$

 $H_a: \mu_D \neq 0$

• Test statistic,
$$t=rac{ar{D}-\mu_D}{rac{s_D}{\sqrt{n}}}$$

- ullet Degrees of freedom, $\ df=n-1$
- Confidence interval, $ar{D} \pm t_{lpha/2,df} imes rac{s_D}{\sqrt{n}}$

Subject	Before	After	Difference (D = Before - After)
1	140	135	5
2	150	145	5
3	160	158	2
4	130	128	2
5	135	132	3
6	145	140	5
7	155	150	5
8	138	136	2
9	148	142	6
10	152	148	4
		Average	3.9