	设计文档验收表								
执行小组 2017HYS		E03	验收小组 2017HY		'SE04				
评审大类及项目		评审 结果	描述		跟踪结 果				
软件架构设计	1.1 系统应用架构是否逻辑清晰、关系明确、层次合理?		否	总体符合,但类图中缺少对图形界面类的架构设计,建议补充。		已 充 子 图 面 设 计			
	1.2 系统开发技术架构是否先进、充分考虑系统功能可重用、可扩展的要求。		是	文档中代码部分考虑到了可重用可扩展的要求。					
	1.3 设计是否易于理解,易于修改,易于测试和调试,稳定性较好,方便用户未来的系统运维。		是	设计总体容易理解,可修改性较好,功能稳定。					
	1.4 系统架构设计是否充分考虑计算机支撑平台的实际情况,明确软件配置项部署方式及要求。		是	描述了运行环境和硬件	-需求。				
软件功能设计	2.1 系统功能设计是否覆盖了 所有已确定的软件需求项,软 件单元每一成分都能可追溯到 相应需求。没有明显遗漏。		否	基本覆盖了需求,但是 面和编辑类放在一起容 单独分为一项。		已改图完类的 经类并了间系			
	2.2 系统功能单元数据结构是 否被详细说明,达到句法级的 粒度,对功能单元运行的异常 情况,有相应的处理方式和记 录		是	单元数据结构说明详约 理。	田,有出错处				
	2.3 是否做到功能单元的数据结构正确,程序变量命名规范、前后一致,变量初始化是否包含缺省值、缺省值取值是否正确,变量参数类型、取值范围、精度、度量单位设计合理,无明显错误。		是	功能单元的数据结构正确,程序变量设计规范。					
软件接口设计	3.1 系统间的接口单元设计能 完全涵盖软件内部、外部的 不同部分的联系,软件内部 接口和外部接口定义明确, 无重大		是	对于各个核心方法的实 图中的基本定义,同时 设计标准					

	遗漏。		
	3.2 接口单元的发起方和接收	是	己确认各个接口之间的逻辑关系都
		疋	正确无误 正确无误
	方逻辑关系正确,输入、输出 参数的数量、类型和顺序能		上"佣儿庆
	够匹配,接口实现技术方式		
	正确无误。		
	3.3 系统接口的数据结构设计	是	对于各个数据结构都有对类型的定
	详细,达到句法级程度,能详		义,以及基本功能的介绍
	细说明各类参数的度量单		
	位、取值范围、类型,符合软		
	件编码的要求。		
	4.1 提出的类图符合解释器	是	能够实现基本的功能,并且各个模块
	的功能需求,内部的逻辑正		之间的逻辑关系正确
	确		
	4.2 模型算法设计充分考虑	是	考虑到了实际的输入数据处理的情
	解释器运行的实际条件,明		况,并且对于解释器的输出做出了不
	确模型的输入数据来源渠		同的讨论
	道、质量要求、数据获取的可		
茶	行性程度、数据的可信性程		
分模	度。		
业务模型设计	4.3 模型算法满的精度要求	是	模型中的算法基本能够满足解释器
	足解释器及时效性要求。		性能的需求
	4.4 模型的输出结果具备一	是	在测试方案中包含精度方面的测试
	定的软件级精度验证方法。		验证
	4.5 模型算法的数据结构被	是	核心的数据结构和算法都给出了详
	详细说明,算法具有伪代码,		细的说明,同时可读性非常强
	达到		
	句法级粒度,符合软件编码		
	的要求。		
软件界面设计	5.1 人机界面设计符合集成	是	界面设计符合 IDE 运行的要求, 布局
	开发环境运行要求,界面布		合理, 易于理解和操作
	局组织合理,界面元素易于		
	理解,交互方式易于操作。		
	5.2 界面风格(色彩、图标、	否	界面较为简陋
	样式等)美观、得体,符合综		
	合集成开发环境特点。		
	5.3 同一系统内不同界面元	是	界面风格做到了统一一致
	素风格一致,不同系统间界		
	面风格总体统一。		

	6.1 验证设计思路与实际演	是	设计小组在演示时讲解了设计的关	
	示效果的一致性,设计小组		键内容,与设计思路一致	
	在评审汇报过程中, 以系统			
	重要流程的业务场景为基			
	础,通过界面截图和讲解,验			
	证设计的关键内容。			

评审结论

QA 小组经过评审与讨论,认为 SE 小组的设计文档在总体结构上十分严密,在各个模块主要算法的设计上也非常详细认真,对于给出的几个改进意见也都进行了修改,因此对于该小组设计文档的评审结果是通过。