

Delivery Robots

FOMRE NSF Workshop

A Brief History

The Challenge

Activity 1: Move It!

A few warnings!

 The ON/OFF button only controls the drive motors!

 The servo will run off of USB, but the provided cable is too weak to power it.

PID Control

 PID control is a common control method, and the theory behind it scales well to the students' ability

Control loops

 PID control is a common control method, and the theory behind it scales well to the students' ability

Demo: Set PID Coefficients

 PID control is a common control method, and the theory behind it scales well to the students' ability

Warning: Before you get started, check the values sent to setWheelSpeeds() in drive()

```
// A helper command to drive a set distance
void drive(float dist, float speed)
{
    Serial.println("drive()");
    setLED(HIGH);
    robotState = ROBOT_DRIVE_FOR;

    chassis.setWheelSpeeds(10, 10);
}
```

Calibrating the kinematic parameters

- You want to be confident that when you tell the robot to drive 50 cm, it drives 50 cm.
- And when you tell it to turn 90 degrees, it does.

 You can measure the robot and use values from the datasheet, but calibrating will give you better performance.

Distance

The distance a robot will travel, given a wheel diameter and a wheel rotation (in degrees), and

Solution: From the definition of a radian, the distance (length), L, that the robot will travel for a given wheel rotation is just the radius of the wheel times the angle, θ – in radians – that it turned.

$$L = \theta(rad) \cdot \frac{d}{2} = \left[\theta(deg) \cdot \frac{\pi}{180} \cdot \frac{d}{2} \right]$$
 (1)

• For ν encoder counts / revolution:

$$\theta(deg) = N \cdot \frac{360}{\nu}$$

$$L = N \cdot \frac{\pi d}{\nu}$$

Angle

The angle a robot will turn, given a wheel diameter, wheel track, and a wheel rotation (in degrees).

$$\phi(deg) = \frac{360L}{\pi D} = \frac{360}{\pi D} \cdot \theta(deg) \cdot \frac{\pi}{180} \cdot \frac{d}{2} = \boxed{\frac{d}{D}\theta(deg)}$$

• For ν encoder counts / revolution:

$$L = N \cdot \frac{\pi d}{\nu}$$

$$\phi(deg) = \frac{360}{\pi D} \cdot L = \frac{360}{\pi D} N \cdot \frac{\pi d}{\nu} = 360 \cdot \frac{N}{\nu} \cdot \frac{d}{D}$$

Task: Perform experiments to calibrate the motion

- Command the robot to drive 50 cm
- Measure how far it actually went
- Adjust the parameters until it drives the correct distance

- Then do the same with turning
 - You'll need to add the commands to handleKeyPress()

Activity 2: Staying on Track

Line following

- Line following is a common method for path following
- Our general strategy will be to read both line sensor elements and compare them

State machine

Maintenance and achievement goals

- Achievement goals generally correspond to events

 when you get something done, it's time to move to a new task
- Maintenance goals are associated with ongoing activities and typically associated with a state

Worcester Polytechnic Institute

State machine

Task: Line following

Worcester Polytechnic Institute

Detecting intersections

- Motivates a discussion of event detection
 - (short demo, time permitting)

Event detection

- An intersection is denoted by both sensors reading a dark surface.
- The event of reaching an intersection occurs when the sensors did not previously detect an intersection and now they do

		before	
		no	yes
now	no	F	F
	yes	т	F

Intersection

Worcester Polytechnic Institute

Activity 3: The Heavy Lifting

Mechanics

- Students are introduced to mechanics
 - Motors don't provide infinite torque
- Motivates a discussion of tradeoffs

Picking up a bag: Two methods

- Look, then drive: Measure the distance and drive that amount
 - Hard to get correct
- Drive and look: Drive towards the bag and stop when it gets to the right distance

In my solution, I actually used a combination of the two: drive until Romi gets close, then dead reckon the last bit.

Experiment vs. analysis

 We typically have the students solve a standard configuration, then give them a tool to help them explore other solutions

Experiment vs. analysis

 We typically have the students solve a standard configuration, then give them a tool to help them explore other solutions

"The difference between theory and practice is nothing in theory, and everything in practice."

Unanticipated interactions

- Lifting a bag motivates a discussion of unintended interactions
 - The line sensor values may change when the robot is carrying a heavy load
 - Heading corrections and turning typically become more "jerky"
 - Depending on the arm configuration, the bag may interfere with the ultrasonic rangefinder