2843

solvent results in a stripe of dry reagent along the medium.

REMARKS

The present amendment is made to correct for inadvertent errors in the originally filed application and to connect claim dependency. No new matter has been added.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached page is captioned <u>"Version with markings to show changes made."</u>

Respectfully submitted,

Walter A. Hackler, Reg. No. 27,792

Attorney of Record

2372 S.E. Bristol, Suite B

Newport Beach, California 92660

(949) 851-5010

I HEREBY CERTIFY THAT THIS CORRESPONDENCE IS BEING DEPOSITED WITH THE U.S. POSTAL SERVICE AS FIRST CLASS MAIL IN AN ENVELOPE ADDRESSED TO: COMMISSIONER OF PATENTS AND TRADEMARKS, WASHINGTON, D.C. 20231, ON

(DATE SIGNED)

WALTER A. HACKLER REG. NO. 27,792

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE CLAIMS

Claims 4, 8 and 16 have been amended as follows:

- 4. (Amended) The device according to claim I wherein the reagent is particle based in evaporated from an aqueous buffer solution.
- 8. (Amended) The device according to claim 6 wherein the reagent is particle based in evaporated from an aqueous buffer solution.
- 11. (Amended) A method of producing a binding assay device, said method comprising the steps of:

providing a porous membrane comprising a material enabling capillary movement of a liquid sample from a first area of the membrane to a second area of the membrane;

disposing a detection site on the membrane between the first and second areas;

providing a non-absorbent medium having a bottom side with an adhesive disposed on the bottom side;

disposing a particle basedsolubilized reagent
onto the medium bottom side;

evaporating a solvent in the particle basedsolubilized reagent to provide a dry reagent on the medium bottom side; and

adhering the medium bottom side to the membrane between the first area and said deduction detection site.

- 16. (Amended) The method according to claim 15 11 wherein the non-porous medium is provided with adhesive covering the center medium bottom side and the solubilized reagent is disposed onto the adhesive.
- 17. (Amended) The method according to claim 16 wherein the evaporated reagent is disposed as a bead along the non porous absorbent medium and the step of evaporating the subject results in a stripe of dry reagent along the medium.
- 21. (Amended) The method according to claim 19 further comprising the step of varying a—the concentrate of the sugar in the solublized solubilized reagent in order to control a rate of mobilization of the reagent into the membrane upon passage of liquid sample therepast.
- 22. (Amended) The method according to claim 19 further comprising the step of varying a—the concentration of the sugar in the particle based reagent in order to increase a viscosity thereof thereby enabling reagent to be applied in bead form without collapse or separation of the bead upon movement of the medium and drying of the solublizedsolubilized reagents reagent.
- 23. (Amended) A method of producing a binding assay device, said method comprising the steps of:

providing a porous membrane comprising a material enabling capillary movement of a liquid from a first area of the membrane to a second area of the membrane;

disposing a detection site on the membrane between the first and second areas;

2843

providing a non-absorbent medium having a bottom side with an adhesive disposed on the bottom side;

disposing a solublized solubilized reagent onto the adhesive;

evaporating a solvent in the particle basedsolubilized reagent to provide a dry reagent on the adhesive; and

adhering the medium bottom side to the membrane between the first area and said detection site.

- 24. (Amended) The method according to claim 23 wherein the non-porous absorbent medium is provided with adhesive covering an entire medium bottom side.
- 25. (Amended) The method according to claim 24 wherein the evaporated reagent is disposed as a bead along the non-porous absorbent medium and the step of evaporation the solvent results in a stripe of dry reagent along the medium.