

DATA SCIENCE & MACHINE LEARNING Introduction Course

(23 JAN - 01 March 2019)

Coordination Team:

Augusto Albuquerque (ISCTE-IUL)
Inês Cortez Esteves (Deloitte)
Pedro Sebastião (ISCTE-IUL/AUDAX-ISCTE)
Pedro Tavares (Deloitte)

Team:

António Raimundo (ISCTE-IUL)
Dária Baikova (ISCTE-IUL)
João Oliveira (ISCTE-IUL)
Ricardo Ribeiro (ISCTE-IUL)
Sérgio Moro (ISCTE-IUL)

DATA SCIENCE & MACHINE LEARNING Introduction Course

General Contents (23 JAN 2019)

- #0 Introduction Overview (23 JAN 2019)
- #1 IPython Beyond Normal Python (23 JAN 2019)
- #2 Introduction to NumPy
- #3 Data Manipulation and Visualization
- #4 Statistical Analysis
- #5 Time-Series and High Perfomance Pandas
- #6 Introduction to Machine Leaning
- #7 Machine Learning Techniques
- #8 Deep Learning
- #9 Network Analysis Social Networks
- #10 Recommendation Systems using NLP

DATA SCIENCE & MACHINE LEARNING #0 Introduction – Overview

(23 JAN 2019)

Lecturers: Sérgio Moro & António Raimundo

#0 Introduction – Overview Contents (23 JAN 2019)

- Introduction to Data Science
- CRISP-DM
- Practical example: CRM
- Practical example: Service Desk System

What is Data Science?

Interdisciplinary data-driven approach to address problems for which there is **available data**.

Data Mining CRISP-DM Methodology

Data Mining: knowledge discovery process that aims to unveil insightful patterns from raw data (it is encompassed within Data Science)

Text Mining: Unstructured data

Note: Machine Learning (ML) aims to learn from data.

Thus, ML may (and it is often) used for building models within a DM project.

Data Mining CRISP-DM Methodology

Business Understanding

- Hear from business experts:
 - How do they define the problem?
 - What are the factors that may influence the result?
 - How would they measure the success of a possible solution?
- Create a project
 - Goals
 - Risks
 - Stakeholders
 - Plan

Data Mining CRISP-DM Methodology

Data Understanding

- What are the variables that best characterize the problem (input variables)? What is their range of possible values and type (e.g., categorical vs. numeric)?
- From these, which best translate the business goal (for supervised learning)?
- Are there data quality issues?
 - Inconsistent data originated in more than one source
 - Missing values

Data Mining CRISP-DM Methodology

Data Preparation

- Data integration: consolidate data from distinct sources
- Feature selection: which input variables?
- Feature Engineering: computing new interesting variables
- Data cleaning: deal with missing values, outliers

Data Mining CRISP-DM Methodology

Modeling

- Uses Statistics or Machine Learning algorithms to train a model
- It depends on the goal:
 - Unsupervised learning find relations between input variables
 - Supervised learning use a target (dependent) variable to build a model based on input variables
 - If the target is categorical (e.g., grant loan: Y/N), then it is a classification problem; else (for numeric variables, e.g., how many products sold), it is a regression problem

Data Mining CRISP-DM Methodology

Evaluation

- Assess if the model is accurate
- For supervised learning models: how close are the predictions from the real values?
- For unsupervised learning: how consistent are the identified groups?
- In a production scenario: a model is trained using past data, and it is evaluated using future data
- During project (or for a quick model tuning): partition the dataset into train (to build the model)and test sets

Data Mining CRISP-DM Methodology

Evaluation

 K-fold cross validation: each fold is used once for testing and K-1 times for training

Data Mining CRISP-DM Methodology

Evaluation

Rolling Windows: to simulate a periodic train/test scenario

All occurrences of the problem (also called instances) must be sorted by date

This is what will happen once the model is deployed into production

Data Mining CRISP-DM Methodology

Deployment

- Install the model into a production environment
- Yet, the work isn't over:
 - Real problems are dynamic and the model's performance can quickly deteriorate
 - New variables may need to be incorporated, or some removed
 - Out-of-the-ordinary events may induce unexpected behavior
- Thus, tuning should be done periodically
- CRISP-DM is a cyclic methodology that advocates revision iterations

Data Mining CRISP-DM Methodology

Deployment

- Install the model into a production environment
- Yet, the work isn't over:
 - Real problems are dynamic and the model's performance can quickly deteriorate
 - New variables may need to be incorporated, or some removed
 - Out-of-the-ordinary events may induce unexpected behavior
- Thus, tuning should be done periodically
- CRISP-DM is a cyclic methodology that advocates revision iterations

Customer Relationship Management (CRM)

Back Office

Analytical CRM

Usual questions:

- Which customers to contact?
- Which products to sell?

Front Office

Operational CRM

Usual operations:

- Contact customer
- Sell product

Customer Relationship Management (CRM)

Back Office

Analytical CRM

How to answer usual questions:

 Through implemented Data Mining models

Front Office

Operational CRM

How to make usual operations:

Through

 operational
 applications (e.g.,
 contact center)

Customer Relationship Management (CRM)

Which customers to contact for selling a product?

Customer Relationship Management (CRM)

Closing the loop...

Customer Relationship Management (CRM)

Which customers to contact for selling a product?

Service Desk System (SD)

Incident management

Back Office

Usual questions:

- How to categorize incoming incidents (to prioritize them)?
- How to diagnose to suggest a solution?

Front Office

Usual operations:

- Categorize (or revise priority of) incidents
- Propose a solution to the problem
- Escalate to specialized staff

Service Desk System (SD)

Incident management – **Automatic categorization**

THANK YOU FOR YOUR PARTICIPATION #0 Introduction – Overview

(23 JAN 2019)

Next module is:

#1 IPython – Beyond Normal Python (23 JAN 2019)

DATA SCIENCE & MACHINE LEARNING #1 IPython – Beyond Normal Python

(23 JAN 2019)

Lecturers: Sérgio Moro & António Raimundo

#1 IPython – Beyond Normal Python Contents (23 JAN 2019)

- Shell or Notebook
- Help and Documentation in IPython
- Magic Commands
- Input and Output History
- Notebook and Shell Commands
- Errors and Debugging
- Profiling and Timing Code

- What is IPython?
 - Features
- Ties with Jupyter project
 - Notebook
- Shell or Notebook?

We will work all the code examples on Jupyter Notebook!

Jupyter Notebook

Launch Jupyter Notebook

- Create a folder on a desired location on your PC named: "DS&ML – Introduction Course"
- Create a subfolder called "Module 1"
 - You can create subfolders later for each module, according to the ongoing lectured module (2,3,4 and so on)
- (Windows users)
 - Enter "Module 1" folder, and type "cmd" on 'current location' bar
 - On the command line terminal, type: 'jupyter notebook'
- (Linux/MacOS users)
 - Open Terminal and type: 'jupyter notebook'
 - Navigate to "Module 1" folder using Notebook's explorer interface.

- #1.1 Help and Documentation in IPython
 - Accessing Documentation with '?'
 - Accessing Source Code with '??'
 - Exploring Modules with Tab-Completion
 - Tab-completion of object contents
 - Tab completion when importing

#1.2 Keyboard Shortcuts

ISCIE - INS. Interactive Demonstration

- #1.3 Notebook's Magic Commands
 - Run external code: %run
 - Create a file named 'script1.py' with the following content (continue on Notebook)

```
def square(x):
    """square a number"""
    return x ** 2
    for N in range(1, 4):
        print(N, "squared is", square(N))
```

- General description of magic commands: %magic
- List all available magic commands: %Ismagic

- #1.4 Input and Output History
 - Notebook's In and Out objects
 - Underscore Shortcuts and Previous Outputs
 - Suppressing Output
 - Related Magic Commands

- #1.5 Notebook and Shell Commands
 - Shell Commands
 - Shell Commands in Jupyter Notebook
 - Passing values to and from Shell

- #1.6 Errors and Debugging
 - Controlling Exceptions: %xmode
 - Debug mode
 - Partial list of debugging commands

Command	Description
list	Show the current location in the file
h(elp)	Show a list of commands, or find help on a specific command
q(uit)	Quit the debugger and the program
c(ontinue)	Quit the debugger, continue in the program
n(ext)	Go to the next step of the program
<enter></enter>	Repeat the previous command
p(rint)	Print variables
s(tep)	Step into a subroutine
r(eturn)	Return out of a subroutine

- #1.7 Profiling and Timing Code
 - Timing Code Snippets: %timeit and %time
 - Profiling Full Scripts: %prun
 - Line-by-Line Profiling: %lprun
 - Install Line Profiler using 'pip':

'pip install line_profiler'

- Profiling Memory Use: %memit and %mprun
 - Install Memory Profiler using 'pip':

'pip install memory_profiler'

THANK YOU FOR YOUR PARTICIPATION #1 IPython – Beyond Normal Python

(23 JAN 2019)

Next module is:

#2 Introduction to NumPy (25 JAN 2019)