DSCI 5340-001— Predictive Analytics and Business Forecasting Spring 2020

FIRM NAME - WOMEN AVENGERS GROUP PROJECT NAME – US RAILTRAFFIC PREDICTION DATE – JULY 03, 2020

PEOPLE – Ugochi Madumere, Charitha Velamala, Madhu Latha Pasumarthy, Rojakrishna Moparthi, Sreya Mamillapalli, Vidhya Ramamurthy

Introduction

Predictions of future events and conditions are called forecasts and the act of making such events are called Forecasting, Bowerman et al (2005). Forecasting is critical to any organization as it helps determines the future events proactively and avoid risks of downfall or anticipate the demand for a supply. Business forecasting is the process of making predictions of future data with the help of past data. The prediction can be done with the help of different models. Among the various models utilized, we would produce the model which best fits the data to achieve a desired solution. In this project, we have multiple data sets with diversified data available. In this project, we, women avengers group have worked on data exploration and analysis of US rail traffic data to help predict future load for American Railroad Association which will assist them to be prepared for the next 7 months. This project although focuses on US Railroad data, we have also analysed observations of various files and data. Due to time constraint, we are focusing only on US Railroad for this assignment.

DATA EXPLORATION

Women avengers group analysed all the files and the observations are as below.

The Variables present across US and Canada are the same and listed hereunder.

- o Farm Products Excluding Grain
- Metallic Ores
- Coal
- Crushed Stone, Sand & Gravel
- Nonmetallic Minerals
- Grain Mill Products
- Food Products
- Primary Forest Products
- Lumber & Wood
- Pulp & Paper
- o Chemicals
- Petroleum Products
- Stone, Clay & Glass Products
- Coke
- Primary Metal Products
- Motor Vehicles & Parts
- Iron and Steel Scrap1
- Waste & Nonferrous Scrap
- All Other Carloads
- Total Carloads
- Trailers
- Containers
- Total Intermodal

Variables for the railroad data yearly and weekly was analyzed. From the observation, we have drawn the below conclusions for US, Canada, Mexico and North America Railroad Traffic as follows:

US Railroad traffic observations

- Current year data available from Jan 1988 until May 2020 apart from Iron and steel scrap which starts the rail traffic from Jan 2008 until May 2020.
- Previous year observations start from Jan 89 to May 20 with an exception of Iron and steel scrap initiating from Jan 2009 until May 20.
- Similarly, the weekly data is represented in a file for the same data observations however the US traffic rail observations for weekly contains only 12 variables listed below.
 - Total carloads
 - o Chemicals
 - o Coal
 - o Farm and Food Products, Excluding Grain
 - Forest Products
 - o Grain
 - Metallic Ores and Metals
 - Motor Vehicles and parts
 - Nonmetallic Minerals and Products
 - Petroleum and Petroleum Products
 - o Other
 - Intermodal

Canada Railroad traffic observations, Mexico Railroad traffic observations and North America Railroad observations:

- Current year data available from Jan 1996 until Jan 2016 apart from Iron and steel scrap which starts the rail traffic from Jan 2008 until Jan 2016.
- Previous year observations start from Jan '97 to Jan 2016 with an exception of Iron and steel scrap initiating from Jan 2009 until Jan 2016.
- Similarly the weekly data is represented in a file for the same data observations however the US traffic rail observations for weekly contains only 12 variables as specified above in US railroad.

Freight Summary observations:

In Freight summary observation noticed were as follows.

Freight volumes of different ports on a monthly and quarterly basis available from year Jan 2000 until 2020. However the data is available only for variables carloads and intermodal. Data represented for observations are provided in Appendix A and C.

DATA EXPLORATION SUMMARY

Post exploration of data, we determined the correlation with freight summary is deemed limited. Weekly rail data has less variables in comparison to the railtraffic data monthly which has 24 variables. Railtraffic data monthly had two countries listed which were USA and Canada. Canada had ceased values post Jan 2016. Hence upon observation for this project due to time constraint we concluded to analyse the US railtraffic data of monthly to predict the June until Dec 2020 US railtraffic carload across 24 variables. We also identified that there were missing values and outliers hence we addressed the same by transforming the data.

DATA ANALYSIS

SUMMARY

We proceeded with the data analysis post the research of observations. As discussed above, the use of US railroad data was analysed to forecast the carload from June until Dec 2020. These are predictions based on the past data available. Although the volumes are predicted it may have an impact due to COVID'19 scenario.

MODEL DETECTION AND EVALUATION

Box-Jenkins model requires 4 steps procedure.

- 1. Tentative identification of the model Based on the past values, the better Box-Jenkins model is identified.
- 2. Estimation Based on the model and the past data, an estimation is derived
- 3. Diagnostic checking Validation of adequacy of the model
- 4. Forecasting Once model is finalized then future time series is executed to uncover the forecasts.

Below is a summary of the steps conducted for this project:

- 1. We plotted the variables against time to identify the pattern of the time series with 'proc gplot'
- 2. All plots have seasonality
- **3.** Removed outliers and applied pre-differencing transformation where there was extreme variability respectively
- **4.** Applied Dickey fuller test to check for stationarity. First regular differencing y(1), first seasonal differencing y(12), first regular and seasonal differencing y(1,12) were done using 'proc arima'
- **5.** Checked the lags on ACF and PACF in the trend correlation analysis and for each variable, first regular differencing y(1), first seasonal differencing y(12) showed timeseries is not stationary across board
- **6.** First regular and seasonal differencing y(1,12) was appropriate as SAC dies down quickly or cut offs after lag (q) and SPAC also does the same at the seasonal and nonseasonal level hence the time series is stationary.

- **7.** Checked to ensure Pvalue related to Chisq for all lags are less that alpha = 0.001 to authenticate the significance of the parameters
- **8.** Used spikes at ACF and PACF (seasonal and non-seasonal level) and 'scan' to estimate the right model for each variable using the rules below:

 Rules to Interpret Non-seasonal ACF and PACF plots:

Non - Seasonal:

	AR(p)	MA(q)	ARMA(p,q)
ACF	Dies Down	Cuts off after lag q	Dies Down
PACF	Cuts off after lag p	Dies Down	Dies Down
Seasonal:		_	
	AR(P)	MA(Q)	ARMA(P,Q)
ACF	Dies Down	Cuts off after lag q	Dies Down
PACF	Cuts off after lag p	Dies Down	Dies Down

- **9.** Iterated and applied the best model (using proc arima) with the following characteristics using Ljung Box test:
 - Residuals are white noise
 - Pr<Chisq is greater than alpha(0.05) for each lag
 - Lowest standard error
 - Lowest AIC and BIC
- **10.** Moving Average (q,Q) worked generally although ARMA(p,P),(q,Q) worked in some cases
- 11. QQ plot showed normal distribution across all residuals
- **12.** Used 'proc forecast' to predict the next 7 lags of the values (June 2020 Dec 2020). Note that transformed variables were re-transformed back to y.

First data set analyzed was "Total Carloads" under the railtraffic US with the Box-Jenkins model to identify the tentative model to forecast the future 7 months. The Total carloads has current year, previous year data and the percentage change. The data is available from Jan 1988 to May 2020. Hence, we interpreted the prediction to be done for the following seven months commencing from June 2020 to Dec 2020.

To predict the future values based on past data, we have transported the data of total carloads and written a SAS program. We noticed the "Total carload" input variable had 396 observations. We had plotted the timeseries through gplot and identified that the data is random time series. In addition, the variance and mean are not constant and the original time series was dying down slowly. Hence, we concluded that data is not stationary. To make the time series stationary we applied the first differencing to the data and found that it is also not stationary but seasonal since we noticed the spikes at 1, 12, and 24. After this we applied the ARIMA model and executed the 1st, 2nd and 3rd differencing for the seasonal and non-stationary time series. To discover the suitable model, we applied scan and noticed that two models were appropriate. The models were

- 1. ARMA model with values as p+d=(1) and q=(5).
- 2. ARMA model with values as p+d=(5) and q=(3).
- 3. Moving average model with values as q=(1) (12)

In the first model, p value at 0.129 was greater than alpha wherein Alpha set at 0.05 and hence the model seemed to be adequate at ARMA model p+d=(1) and q(5) however did not yield the best standard error, AIC and BIC.

In the second model, p value at 0.001 wherein Alpha set at 0.05 and hence the model seemed to be not adequate at ARMA model p+d=(5) and q=(3).

In the first model, p value at 0.2023 which was greater than alpha wherein Alpha set at 0.05 and hence the model seemed to be adequate at MA model q=(1)(12) and yielded the low standard error, AIC and BIC compared to model 1 and 2.

MODEL CONCLUSION

Since the time series found to be seasonal and non-stationary and when both the model were compared, the first model (p+d=(1) and q=(5)) seemed to be appropriate as the standard error, Akaike information criterion (AIC) and Bayesian information criterion (BIC) was less for the first model in comparison to the second model. Hence by identifying and applying the proper model the next 7 months data was forecasted.

FURTHER ANALYSIS ACROSS 24 VARIABLES

Importantly, once accomplished the total carload data, this series of process was then further applied across 24 variables.

CONCLUSION

Thus, in all the 24 variables we identified the differencing and whichever model seemed to have less white noise, less standard error and AIC and BIC was identified and applied. We recognized from the results that Intermodal variable has more volume than all the variables for US railtraffic data. In addition the overall volumes in

In addition the overall volumes have spike in August with a decrease in trend for December. Although the abnormalities could not be predicted with example of continuing COVID'19 scenario, we have taken into consideration January until May 2020 rail traffic load. The American railroads authority can take precaution to eliminate such adversities.

In addition to the above, we performed an analysis to Thursday, July 2, 2020 09:16:15 PM 8 represent the data in Tableau with the overall volume of Railtraffic car load from the year 1988 January until May 2020 and in addition

with the data predicted of June 2020 until December 2020 across all 24 variables. Hereunder the prediction provided wherein we could see that year 1988 had less railroad traffic data and post which it is happening in the year 2020. We infer that due to external aspect like Corona virus from January of 2020 and the US transportation shut down could be the factor of less volume. For the month of June until Dec 2020, Railtraffic of US can be better determined with our prediction by American railroads association although external factors not inclusive of the data.

Thus Box-Jenkins model identifies the tentatively better model to predict future and forecast the upcoming events based on the past data.

	Thursday, July 2, 2020 09:16:15 PM 9
SAS CODE AND RESULT OF TOTA	L CAR LOAD VARIABLE

SAS CODE - Total Carload data raildata; input y; time=_n_; Lny=log(y); Sqrty=y**.5; QtRooty=y**.25; datalines; 295906.5 298504 303894.4 312908.5 312043.75 303028.2 291270.5 313627.6 313486.5 321212 309133.4 291284.5 299758.75 293216.5 306034.6 318582 308893.2 299452.5

309463 304484 316036.5 305956.4 269901 294673.4 304579.25 309923.5 310197.5 310725.8 315141 292591.25 307852.4 307123.25 312509.6 294641.25 271069.5 272090.6 291283.5 286572.5 285031.5 285876.2 298425.25 280286 308388.25 303855.5 309932.8 289959.75

279156.4

293030.5

294533.5

294957.8

295606

289108.25

286616.8

304905.5

299810.6

309441.5

296078

277026.4

293916.25

287493.75

290894.4

302889.75

304745.25

296229.4

276320.5

288350.75

299765.6

311674.25

297738.75

285506.6

284296.5

299040.75

310351.8

314487.5

308931.2 295594.75 325822.4 320352.5 326858.25 318984 306869.5 309330.75 320802 322219.4 322432.75 316840.6 319978 303963 326417.2 331981 329275.25 320368 300519.25 286489.2 311596.25 318555.75 322623.75 320595.2 323460.25 306776.6 330040 319411.5

301422.75 297578.4 321924 321411 318270.4 319006.75 323417 307491.4 328145 321566.75 326816 312832 303953.8 325568.25 320610 320812.5 325919.2 326627.25 328644.75 309798.4 332848 335869.2 338717 322603.25 301547 314867.25 329430.5 319531.6

326363 331744 313953.4 308484.75 330585.25 331021.6 335402.25 323252.75 310307 319480.5 321686.25 328546.4 323069 323848.2 326453 308934 333055.2 332347.5 335755.5 317964.6 291105 310916 318220.25 329607.25 324208.5 323489.6 324032.5 298846.25

322700.5 336856.2 319099.25 301763 304152.4 312993.75 309928.25 316713.25 317716.8 327976.5 308398.6 331830.75 325547.5 329718 316733 303429.75 301105.2 308181.5 316209 318706.8 315972.25 323211.75 305599.6 328340.25

327780

336557.8

320755

302968

330106.6 331658.75 334523.5 328385 315802 333471.5 329761 341369.75 327668 310525.8 315969 335191 337317.6 340551 333188.75 328383.8 315590.25 335317 335569 331475.25 326305.8 308221.25 329550.25 328545 337465.2 336948.75 341697.8 343914

321180.75 339159.4 336588.25 337389 323432.8 315580.25 309389 314536 326118 330006.5 326242.6 334730.75 311661 335746.8 333736 336010 329505.75 307590 311298.4 323070.25 326014.25 332166.6 327114 322843.25 319945.4 333687.25 318490 326756.2

258954.4 266125.75 276499 270477 255992.8 249005 259711.25 263771.2 279046.5 276167.4 275358.5 272120 248185.6 264372.5 272335.5 288900.6 294775 288342 283069.6 280679.75 295455 297376.8 298881.25 285083.25 271970.4 285924.25 284139 298895.8

289799.5 285800.6 277880 296546 298980 304211.25 295338.4 283765.25 286336.25 282172.6 280849 278340.5 278406.6 285134.5 275965.75 292349 288047.25 284510 282605.5 272220.25 268000.2 278229.75 279517.25 277212.25 280350 284086.25 277003.8 294612.25 289898.5

288807.2 286356 269706.5 269235 275234.25 289205.5 296351.2 296456 294520.5 294341.2 303015.25 297609.25 301591.6 290466 288984 290197.25 272302.75 279257.25 280608.8 268344 271766.5 275282.2 288989.25 283550 281117.5 260401.25 243888.6 242010.5 244760.5

261504.2

249542

243481

257035.25

262663.25

262756.5

263884

270192.25

```
277205.2
266706.5
267607.4
258016.75
255494.5
247697.4
249994.5
239286
260386
258334.2
255848.5
252820
263846.5
248135.5
244895.4
238894.75
232025.5
233146.6
231771
224918.25
196107
185042.75
run;
proc print data = raildata;
run;
proc gplot data=raildata;
plot y*time;
plot z*time;
symbol1 i = j v = dot c = blue;
```

```
Thursday, July 2, 2020 09:16:15 PM 24
```

```
symbol2 i=j v=dot c=red;

proc arima data=raildata;

identify var= y scan;

identify var= y(1);

identify var= y(12);

identify var= y(1,12);

run;

proc arima data=raildata;

identify var=y(1,12) scan;

estimate q=(1)(12) printall plot;

forecast lead =12 out=fcast1;

run;
```

Obs	y	time	Lny	Sqrty	QtRooty
1	295906.5 0	1	12.597 8	543.97 3	23.3232
2	298504.0 0	2	12.606 5	546.35 5	23.3742
3	303894.4 0	3	12.624 4	551.26 6	23.4791
4	312908.5 0	4	12.653 7	559.38 2	23.6513
5	312043.7 5	5	12.650 9	558.60 9	23.6349
6	303028.2 0	6	12.621 6	550.48 0	23.4623
7	291270.5 0	7	12.582 0	539.69 5	23.2313
8	313627.6 0	8	12.656 0	560.02 5	23.6648
9	313486.5 0	9	12.655 5	559.89 9	23.6622
10	321212.0 0	10	12.679 9	566.75 6	23.8066
11	309133.4 0	11	12.641 5	555.99 8	23.5796
12	291284.5 0	12	12.582 1	539.70 8	23.2316
13	299758.7 5	13	12.610 7	547.50 2	23.3988
14	293216.5 0	14	12.588 7	541.49 5	23.2700
15	306034.6 0	15	12.631 5	553.20 4	23.5203
16	318582.0 0	16	12.671 6	564.43 1	23.7578
17	308893.2 0	17	12.640 8	555.78 2	23.5750
18	299452.5 0	18	12.609 7	547.22 3	23.3928

Thursday, July 2, 2020 09:16:15 PM **26**

Obs	y	time	Lny	Sqrty	QtRooty
19	269887.7 5	19	12.505 8	519.50 7	22.7927
20	309463.0 0	20	12.642 6	556.29 4	23.5859
21	304484.0 0	21	12.626 4	551.80 1	23.4904
22	316036.5 0	22	12.663 6	562.17 1	23.7102
23	305956.4 0	23	12.631	553.13 3	23.5188
24	269901.0 0	24	12.505 8	519.52 0	22.7930
25	294673.4 0	25	12.593 6	542.83 8	23.2989
26	304579.2 5	26	12.626 7	551.88 7	23.4923
27	309923.5 0	27	12.644 1	556.70 8	23.5947
28	310197.5 0	28	12.645 0	556.95 4	23.5999
29	310725.8 0	29	12.646 7	557.42 8	23.6099
30	315141.0 0	30	12.660 8	561.37 4	23.6933
31	292591.2 5	31	12.586 5	540.91 7	23.2576
32	307852.4 0	32	12.637 4	554.84 4	23.5551
33	307123.2 5	33	12.635 0	554.18 7	23.5412
34	312509.6 0	34	12.652 4	559.02 6	23.6437
35	294641.2 5	35	12.593 5	542.80 9	23.2983
36	271069.5 0	36	12.510 1	520.64 3	22.8176

Thursday, July 2, 2020 09:16:15 PM **27**

Obs	y	time	Lny	Sqrty	QtRooty
37	272090.6 0	37	12.513 9	521.62	22.8391
38	291283.5 0	38	12.582 1	539.70 7	23.2316
39	286572.5 0	39	12.565 7	535.32 5	23.1371
40	285031.5 0	40	12.560 4	533.88	23.1059
41	285876.2 0	41	12.563 3	534.67 4	23.1230
42	298425.2 5	42	12.606 3	546.28 3	23.3727
43	280286.0 0	43	12.543 6	529.42 0	23.0091
44	308388.2 5	44	12.639 1	555.32 7	23.5654
45	303855.5 0	45	12.624	551.23 1	23.4783
46	309932.8 0	46	12.644 1	556.71 6	23.5948
47	289959.7 5	47	12.577 5	538.47 9	23.2052
48	280689.0 0	48	12.545 0	529.80 1	23.0174
49	279156.4 0	49	12.539 5	528.35 3	22.9859
50	293030.5 0	50	12.588 0	541.32 3	23.2663
51	294533.5 0	51	12.593 1	542.70 9	23.2961
52	294957.8 0	52	12.594 6	543.10 0	23.3045
53	295606.0 0	53	12.596 8	543.69 7	23.3173
54	289108.2 5	54	12.574 6	537.68 8	23.1881

Thursday, July 2, 2020 09:16:15 PM **28**

Obs	y	time	Lny	Sqrty	QtRooty
55	286616.8 0	55	12.565 9	535.36 6	23.1380
56	304905.5 0	56	12.627 8	552.18 2	23.4986
57	299810.6 0	57	12.610 9	547.55 0	23.3998
58	309441.5 0	58	12.642 5	556.27 5	23.5855
59	296078.0 0	59	12.598 4	544.13 0	23.3266
60	277026.4 0	60	12.531 9	526.33 3	22.9419
61	293916.2 5	61	12.591 1	542.14 0	23.2839
62	287493.7 5	62	12.569 0	536.18 4	23.1557
63	290894.4 0	63	12.580 7	539.34 6	23.2238
64	302889.7 5	64	12.621 1	550.35 4	23.4596
65	304745.2 5	65	12.627 2	552.03 7	23.4955
66	296229.4 0	66	12.598 9	544.27 0	23.3296
67	276320.5 0	67	12.529 3	525.66 2	22.9273
68	288350.7 5	68	12.571 9	536.98 3	23.1729
69	299765.6 0	69	12.610 8	547.50 9	23.3989
70	311674.2 5	70	12.649 7	558.27 8	23.6279
71	297738.7 5	71	12.604 0	545.65 4	23.3592
72	285506.6 0	72	12.562 0	534.32 8	23.1155

Thursday, July 2, 2020 09:16:15 PM **29**

Obs	y	time	Lny	Sqrty	QtRooty
73	284296.5 0	73	12.557 8	533.19 5	23.0910
74	299040.7 5	74	12.608 3	546.84 6	23.3847
75	310351.8 0	75	12.645 5	557.09 2	23.6028
76	314487.5 0	76	12.658 7	560.79 2	23.6810
77	319152.7 5	77	12.673 4	564.93 6	23.7684
78	308931.2 0	78	12.640 9	555.81 6	23.5757
79	295594.7 5	79	12.596 7	543.68 6	23.3171
80	325822.4 0	80	12.694 1	570.80 9	23.8916
81	320352.5 0	81	12.677 2	565.99 7	23.7907
82	326858.2 5	82	12.697 3	571.71 5	23.9106
83	318984.0 0	83	12.672 9	564.78 7	23.7652
84	306869.5 0	84	12.634 2	553.95 8	23.5363
85	309330.7 5	85	12.642 2	556.17 5	23.5834
86	320802.0 0	86	12.678 6	566.39 4	23.7990
87	322219.4 0	87	12.683 0	567.64 4	23.8253
88	322432.7 5	88	12.683 6	567.83 2	23.8292
89	316840.6 0	89	12.666 2	562.88 6	23.7252
90	319978.0 0	90	12.676 0	565.66 6	23.7837

Thursday, July 2, 2020 09:16:15 PM **30**

Obs	y	time	Lny	Sqrty	QtRooty
91	303963.0 0	91	12.624 7	551.32 8	23.4804
92	326417.2 0	92	12.695 9	571.32 9	23.9025
93	331981.0 0	93	12.712 8	576.17 8	24.0037
94	329275.2 5	94	12.704 6	573.82 5	23.9546
95	320368.0 0	95	12.677 2	566.01 1	23.7910
96	300519.2 5	96	12.613	548.19 6	23.4136
97	286489.2 0	97	12.565 5	535.24 7	23.1354
98	311596.2 5	98	12.649 5	558.20 8	23.6264
99	318555.7 5	99	12.671 6	564.40 7	23.7573
100	322623.7 5	100	12.684 2	568.00 0	23.8327
101	320595.2 0	101	12.677 9	566.21 1	23.7952
102	323460.2 5	102	12.686 8	568.73 6	23.8482
103	306776.6 0	103	12.633 9	553.87 4	23.5345
104	330040.0 0	104	12.707 0	574.49 1	23.9685
105	319411.5 0	105	12.674 2	565.16 5	23.7732
106	331768.6 0	106	12.712 2	575.99 4	23.9999
107	315705.5 0	107	12.662 6	561.87 7	23.7039
108	301422.7 5	108	12.616 3	549.02 0	23.4312

Thursday, July 2, 2020 09:16:15 PM **31**

Obs	y	time	Lny	Sqrty	QtRooty
109	297578.4 0	109	12.603 4	545.50 7	23.3561
110	321924.0 0	110	12.682 1	567.38 3	23.8198
111	321411.0 0	111	12.680 5	566.93 1	23.8103
112	318270.4 0	112	12.670 7	564.15 5	23.7519
113	319006.7 5	113	12.673 0	564.80 7	23.7657
114	323417.0 0	114	12.686 7	568.69 8	23.8474
115	307491.4 0	115	12.636 2	554.51 9	23.5482
116	328145.0 0	116	12.701 2	572.83 9	23.9341
117	321566.7 5	117	12.681 0	567.06 9	23.8132
118	326816.0 0	118	12.697 2	571.67 8	23.9098
119	312832.0 0	119	12.653 4	559.31 4	23.6498
120	303953.8 0	120	12.624 6	551.32 0	23.4802
121	325568.2 5	121	12.693 3	570.58 6	23.8869
122	320610.0 0	122	12.678 0	566.22 4	23.7955
123	320812.5 0	123	12.678 6	566.40 3	23.7992
124	325919.2 0	124	12.694 4	570.89 3	23.8934
125	326627.2 5	125	12.696 6	571.51 3	23.9063
126	328644.7 5	126	12.702 7	573.27 5	23.9432

Thursday, July 2, 2020 09:16:15 PM **32**

Obs	y	time	Lny	Sqrty	QtRooty
127	309798.4 0	127	12.643 7	556.59 5	23.5923
128	332848.0 0	128	12.715 4	576.93 0	24.0194
129	335869.2 0	129	12.724 5	579.54 2	24.0737
130	338717.0 0	130	12.732 9	581.99 4	24.1246
131	322603.2 5	131	12.684 2	567.98 2	23.8324
132	301547.0 0	132	12.616 7	549.13 3	23.4336
133	314867.2 5	133	12.659 9	561.13 0	23.6882
134	329430.5 0	134	12.705 1	573.96 0	23.9575
135	319531.6 0	135	12.674 6	565.27 1	23.7754
136	326363.0 0	136	12.695 8	571.28 2	23.9015
137	331744.0 0	137	12.712 1	575.97 2	23.9994
138	313953.4 0	138	12.657 0	560.31 5	23.6710
139	308484.7 5	139	12.639 4	555.41 4	23.5672
140	330585.2 5	140	12.708 6	574.96 5	23.9784
141	331021.6 0	141	12.709 9	575.34 5	23.9863
142	335402.2 5	142	12.723 1	579.13 9	24.0653
143	323252.7 5	143	12.686 2	568.55 3	23.8444
144	310307.0 0	144	12.645	557.05 2	23.6020

Thursday, July 2, 2020 09:16:15 PM 33

Obs	y	time	Lny	Sqrty	QtRooty
145	319480.5 0	145	12.674 5	565.22 6	23.7745
146	321686.2 5	146	12.681	567.17 4	23.8154
147	328546.4 0	147	12.702 4	573.19 0	23.9414
148	323069.0 0	148	12.685 6	568.39 2	23.8410
149	323848.2 0	149	12.688 0	569.07 7	23.8553
150	326453.0 0	150	12.696 0	571.36 1	23.9032
151	308934.0 0	151	12.640 9	555.81 8	23.5758
152	333055.2 0	152	12.716 1	577.10 9	24.0231
153	332347.5 0	153	12.713 9	576.49 6	24.0103
154	335755.5 0	154	12.724 1	579.44 4	24.0716
155	317964.6 0	155	12.669 7	563.88 3	23.7462
156	291105.0 0	156	12.581 4	539.54 1	23.2280
157	310916.0 0	157	12.647 3	557.59 8	23.6135
158	318220.2 5	158	12.670 5	564.11 0	23.7510
159	329607.2 5	159	12.705 7	574.11 4	23.9607
160	324208.5 0	160	12.689 1	569.39 3	23.8620
161	323489.6 0	161	12.686 9	568.76 1	23.8487
162	324032.5 0	162	12.688 6	569.23 9	23.8587

Thursday, July 2, 2020 09:16:15 PM **34**

Obs	y	time	Lny	Sqrty	QtRooty
163	298846.2 5	163	12.607 7	546.66 8	23.3809
164	325803.0 0	164	12.694 0	570.79 2	23.8912
165	322700.5 0	165	12.684 5	568.06 7	23.8342
166	336856.2 0	166	12.727 4	580.39 3	24.0913
167	319099.2 5	167	12.673 3	564.88 9	23.7674
168	301763.0 0	168	12.617 4	549.33 0	23.4378
169	304152.4 0	169	12.625	551.50 0	23.4840
170	312993.7 5	170	12.653 9	559.45 8	23.6529
171	309928.2 5	171	12.644 1	556.71 2	23.5947
172	316713.2 5	172	12.665 8	562.77 3	23.7228
173	317716.8 0	173	12.668 9	563.66 4	23.7416
174	327976.5 0	174	12.700 7	572.69 2	23.9310
175	308398.6 0	175	12.639 1	555.33 6	23.5656
176	331830.7 5	176	12.712 4	576.04 8	24.0010
177	325547.5 0	177	12.693 3	570.56 8	23.8866
178	329718.0 0	178	12.706 0	574.21 1	23.9627
179	316733.0 0	179	12.665 8	562.79 0	23.7232
180	303429.7 5	180	12.622 9	550.84 5	23.4701

Thursday, July 2, 2020 09:16:15 PM **35**

Obs	y	time	Lny	Sqrty	QtRooty
181	301105.2 0	181	12.615 2	548.73 1	23.4250
182	308181.5 0	182	12.638 4	555.14 1	23.5614
183	316209.0 0	183	12.664	562.32 5	23.7134
184	318706.8 0	184	12.672 0	564.54 1	23.7601
185	315972.2 5	185	12.663 4	562.11 4	23.7089
186	323211.7 5	186	12.686 1	568.51 7	23.8436
187	305599.6 0	187	12.630 0	552.81 1	23.5119
188	328340.2 5	188	12.701 8	573.01 0	23.9376
189	327780.0 0	189	12.700 1	572.52 1	23.9274
190	336557.8 0	190	12.726 5	580.13 6	24.0860
191	320755.0 0	191	12.678 4	566.35 2	23.7982
192	302968.0 0	192	12.621 4	550.42 5	23.4611
193	318569.0 0	193	12.671 6	564.41 9	23.7575
194	318222.0 0	194	12.670 5	564.11 2	23.7510
195	330106.6 0	195	12.707 2	574.54 9	23.9698
196	331658.7 5	196	12.711 9	575.89 8	23.9979
197	334523.5 0	197	12.720 5	578.38 0	24.0495
198	328385.0 0	198	12.701 9	573.04 9	23.9384

Thursday, July 2, 2020 09:16:15 PM **36**

Obs	y	time	Lny	Sqrty	QtRooty
199	315802.0 0	199	12.662 9	561.96 3	23.7058
200	333471.5 0	200	12.717 3	577.47 0	24.0306
201	329761.0 0	201	12.706 1	574.24 8	23.9635
202	341369.7 5	202	12.740 7	584.26 9	24.1716
203	327668.0 0	203	12.699 8	572.42 3	23.9254
204	310525.8 0	204	12.646 0	557.24 8	23.6061
205	315969.0 0	205	12.663 4	562.11 1	23.7089
206	335191.0 0	206	12.722 5	578.95 7	24.0615
207	337317.6 0	207	12.728 8	580.79 0	24.0996
208	340551.0 0	208	12.738 3	583.56 7	24.1571
209	333188.7 5	209	12.716 5	577.22 5	24.0255
210	328383.8 0	210	12.701 9	573.04 8	23.9384
211	315590.2 5	211	12.662 2	561.77 4	23.7018
212	335317.0 0	212	12.722 8	579.06 6	24.0638
213	335569.0 0	213	12.723 6	579.28 3	24.0683
214	331475.2 5	214	12.711	575.73 9	23.9946
215	326305.8 0	215	12.695 6	571.23 2	23.9005
216	308221.2 5	216	12.638 6	555.17 7	23.5622

Thursday, July 2, 2020 09:16:15 PM **37**

Obs	y	time	Lny	Sqrty	QtRooty
217	329550.2 5	217	12.705 5	574.06 5	23.9596
218	328545.0 0	218	12.702 4	573.18 8	23.9414
219	337465.2 0	219	12.729 2	580.91 8	24.1022
220	336948.7 5	220	12.727 7	580.47 3	24.0930
221	341697.8 0	221	12.741 7	584.54 9	24.1775
222	343914.0 0	222	12.748 1	586.44 2	24.2166
223	321180.7 5	223	12.679 8	566.72 8	23.8061
224	339159.4 0	224	12.734 2	582.37 4	24.1324
225	336588.2 5	225	12.726 6	580.16 2	24.0866
226	337389.0 0	226	12.729 0	580.85 2	24.1009
227	323432.8 0	227	12.686 7	568.71 2	23.8477
228	315580.2 5	228	12.662 2	561.76 5	23.7016
229	309389.0 0	229	12.642 4	556.22 7	23.5845
230	314536.0 0	230	12.658 9	560.83 5	23.6820
231	326118.0 0	231	12.695 0	571.06 7	23.8970
232	330006.5 0	232	12.706 9	574.46 2	23.9679
233	326242.6 0	233	12.695 4	571.17 7	23.8993
234	334730.7 5	234	12.721 1	578.55 9	24.0533

Thursday, July 2, 2020 09:16:15 PM **38**

Obs	y	time	Lny	Sqrty	QtRooty
235	311661.0 0	235	12.649 7	558.26 6	23.6277
236	335746.8 0	236	12.724 1	579.43 7	24.0715
237	333736.0 0	237	12.718 1	577.69 9	24.0354
238	336010.0 0	238	12.724 9	579.66 4	24.0762
239	329505.7 5	239	12.705 3	574.02 6	23.9588
240	307590.0 0	240	12.636 5	554.60 8	23.5501
241	311298.4 0	241	12.648 5	557.94 1	23.6208
242	323070.2 5	242	12.685 6	568.39 3	23.8410
243	326014.2 5	243	12.694 7	570.97 7	23.8951
244	332166.6 0	244	12.713 4	576.33 9	24.0071
245	327114.0 0	245	12.698 1	571.93 9	23.9152
246	322843.2 5	246	12.684 9	568.19 3	23.8368
247	319945.4 0	247	12.675 9	565.63 7	23.7831
248	333687.2 5	248	12.718 0	577.65 7	24.0345
249	318490.0 0	249	12.671 3	564.34 9	23.7560
250	326756.2 0	250	12.697 0	571.62 6	23.9087
251	296544.0 0	251	12.600 0	544.55 9	23.3358
252	258954.4 0	252	12.464 4	508.87 6	22.5583

Thursday, July 2, 2020 09:16:15 PM **39**

Obs	y	time	Lny	Sqrty	QtRooty
253	266125.7 5	253	12.491 7	515.87 4	22.7129
254	276499.0 0	254	12.530 0	525.83 2	22.9310
255	270477.0 0	255	12.507 9	520.07 4	22.8051
256	255992.8 0	256	12.452 9	505.95 7	22.4935
257	249005.0 0	257	12.425 2	499.00 4	22.3384
258	259711.2 5	258	12.467	509.61 9	22.5747
259	263771.2 0	259	12.482 8	513.58 7	22.6624
260	279046.5 0	260	12.539 1	528.24 9	22.9837
261	276167.4 0	261	12.528 8	525.51 6	22.9241
262	275358.5 0	262	12.525 8	524.74 6	22.9073
263	272120.0 0	263	12.514 0	521.65 1	22.8397
264	248185.6 0	264	12.421 9	498.18 2	22.3200
265	264372.5 0	265	12.485 1	514.17 2	22.6754
266	272335.5 0	266	12.514 8	521.85 8	22.8442
267	288900.6 0	267	12.573 8	537.49 5	23.1839
268	294775.0 0	268	12.594 0	542.93 2	23.3009
269	288342.0 0	269	12.571 9	536.97 5	23.1727
270	283069.6 0	270	12.553 4	532.04 3	23.0661

Thursday, July 2, 2020 09:16:15 PM **40**

Obs	y	time	Lny	Sqrty	QtRooty
271	280679.7 5	271	12.545 0	529.79 2	23.0172
272	295455.0 0	272	12.596 3	543.55 8	23.3143
273	297376.8 0	273	12.602 8	545.32 3	23.3521
274	298881.2 5	274	12.607 8	546.70 0	23.3816
275	285083.2 5	275	12.560 5	533.93 2	23.1070
276	271970.4 0	276	12.513 4	521.50 8	22.8365
277	285924.2 5	277	12.563 5	534.71 9	23.1240
278	284139.0 0	278	12.557 2	533.04 7	23.0878
279	298895.8 0	279	12.607 9	546.71 4	23.3819
280	294360.0 0	280	12.592 6	542.55 0	23.2927
281	289799.5 0	281	12.576 9	538.33 0	23.2019
282	285800.6 0	282	12.563 0	534.60	23.1215
283	277880.0 0	283	12.534 9	527.14 3	22.9596
284	296546.0 0	284	12.600 0	544.56 0	23.3358
285	298980.0 0	285	12.608 1	546.79 1	23.3836
286	304211.2 5	286	12.625 5	551.55 3	23.4852
287	295338.4 0	287	12.595 9	543.45 0	23.3120
288	283765.2 5	288	12.555 9	532.69 6	23.0802

Thursday, July 2, 2020 09:16:15 PM **41**

Obs	y	time	Lny	Sqrty	QtRooty
289	286336.2 5	289	12.564 9	535.10 4	23.1323
290	282172.6 0	290	12.550 3	531.19 9	23.0478
291	280849.0 0	291	12.545 6	529.95 2	23.0207
292	278340.5 0	292	12.536 6	527.58 0	22.9691
293	278406.6 0	293	12.536 8	527.64 2	22.9705
294	285134.5 0	294	12.560 7	533.98 0	23.1080
295	275965.7 5	295	12.528 0	525.32 4	22.9200
296	292349.0 0	296	12.585 7	540.69 3	23.2528
297	288047.2 5	297	12.570 9	536.70 0	23.1668
298	284510.0 0	298	12.558 5	533.39 5	23.0953
299	282605.5 0	299	12.551 8	531.60 7	23.0566
300	272220.2 5	300	12.514 4	521.74 7	22.8418
301	268000.2 0	301	12.498 7	517.68 7	22.7527
302	278229.7 5	302	12.536 2	527.47 5	22.9668
303	279517.2 5	303	12.540 8	528.69 4	22.9933
304	277212.2 5	304	12.532 5	526.50 9	22.9458
305	280350.0 0	305	12.543 8	529.48 1	23.0105
306	284086.2 5	306	12.557 0	532.99 7	23.0867

Thursday, July 2, 2020 09:16:15 PM **42**

Obs	y	time	Lny	Sqrty	QtRooty
307	277003.8 0	307	12.531 8	526.31 2	22.9415
308	294612.2 5	308	12.593 4	542.78 2	23.2977
309	289898.5 0	309	12.577	538.42	23.2039
310	288807.2 0	310	12.573 5	537.40 8	23.1821
311	286356.0 0	311	12.565 0	535.12 2	23.1327
312	269706.5 0	312	12.505 1	519.33 3	22.7889
313	269235.0 0	313	12.503 3	518.87 9	22.7789
314	275234.2 5	314	12.525 4	524.62 8	22.9048
315	289205.5 0	315	12.574 9	537.77 8	23.1900
316	296351.2 0	316	12.599 3	544.38 1	23.3320
317	296456.0 0	317	12.599 7	544.47 8	23.3340
318	294520.5 0	318	12.593 1	542.69 7	23.2959
319	294341.2 0	319	12.592 5	542.53 2	23.2923
320	303015.2 5	320	12.621 5	550.46 8	23.4621
321	297609.2 5	321	12.603 5	545.53 6	23.3567
322	301591.6 0	322	12.616 8	549.17 4	23.4345
323	290466.0 0	323	12.579 2	538.94 9	23.2153
324	288984.0 0	324	12.574 1	537.57 2	23.1856

Thursday, July 2, 2020 09:16:15 PM **43**

Obs	y	time	Lny	Sqrty	QtRooty
325	290197.2 5	325	12.578 3	538.70 0	23.2099
326	272302.7 5	326	12.514 7	521.82 6	22.8435
327	279257.2 5	327	12.539 9	528.44 8	22.9880
328	280608.8 0	328	12.544 7	529.72 5	23.0158
329	268344.0 0	329	12.500 0	518.01 9	22.7600
330	271766.5 0	330	12.512 7	521.31 2	22.8323
331	275282.2 0	331	12.525 6	524.67 3	22.9058
332	288989.2 5	332	12.574 1	537.57 7	23.1857
333	283550.0 0	333	12.555 1	532.49 4	23.0758
334	281117.5 0	334	12.546 5	530.20 5	23.0262
335	260401.2 5	335	12.470 0	510.29 5	22.5897
336	243888.6 0	336	12.404 5	493.85 1	22.2228
337	242010.5 0	337	12.396 7	491.94 6	22.1798
338	244760.5 0	338	12.408 0	494.73 3	22.2426
339	239233.4 0	339	12.385 2	489.11 5	22.1159
340	236092.2 5	340	12.372 0	485.89	22.0430
341	240642.7 5	341	12.391	490.55 4	22.1484

Thursday, July 2, 2020 09:16:15 PM **44**

Obs	y	time	Lny	Sqrty	QtRooty
342	249005.0 0	342	12.425 2	499.00 4	22.3384
343	254809.7 5	343	12.448 3	504.78 7	22.4675
344	269597.8 0	344	12.504 7	519.22 8	22.7866
345	267161.0 0	345	12.495 6	516.87 6	22.7349
346	266748.5 0	346	12.494 1	516.47 7	22.7261
347	263801.6 0	347	12.483 0	513.61 6	22.6631
348	243410.5 0	348	12.402 5	493.36 6	22.2119
349	249143.2 5	349	12.425 8	499.14	22.3415
350	261010.0 0	350	12.472 3	510.89 1	22.6029
351	256697.8 0	351	12.455 7	506.65 4	22.5090
352	255825.0 0	352	12.452 2	505.79 1	22.4898
353	257215.0 0	353	12.457 7	507.16 4	22.5203
354	266494.0 0	354	12.493 1	516.23 1	22.7207
355	254809.7 5	355	12.448 3	504.78 7	22.4675
356	268681.0 0	356	12.501	518.34 4	22.7672
357	261140.7 5	357	12.472 8	511.01 9	22.6057
358	266444.2 5	358	12.492 9	516.18 2	22.7196
359	261504.2 0	359	12.474 2	511.37 5	22.6136

Thursday, July 2, 2020 09:16:15 PM **45**

Obs	y	time	Lny	Sqrty	QtRooty
360	249542.0 0	360	12.427 4	499.54 2	22.3504
361	243481.0 0	361	12.402 8	493.43 8	22.2135
362	257035.2 5	362	12.457 0	506.98 6	22.5164
363	262663.2 5	363	12.478 6	512.50 7	22.6386
364	262756.5 0	364	12.479 0	512.59 8	22.6406
365	263884.0 0	365	12.483 3	513.69 6	22.6649
366	270192.2 5	366	12.506 9	519.80 0	22.7991
367	262073.2 5	367	12.476 4	511.93 1	22.6259
368	277205.2 0	368	12.532 5	526.50 3	22.9456
369	266706.5 0	369	12.493 9	516.43 6	22.7252
370	267607.4 0	370	12.497 3	517.30 8	22.7444
371	258016.7 5	371	12.460 8	507.95	22.5378
372	255494.5 0	372	12.451 0	505.46 5	22.4825
373	247697.4 0	373	12.420 0	497.69 2	22.3090
374	249994.5 0	374	12.429 2	499.99 4	22.3606
375	239286.0 0	375	12.385 4	489.16 9	22.1172
376	260386.0 0	376	12.469 9	510.28 0	22.5894
377	258334.2 0	377	12.462 0	508.26 6	22.5448

Thursday, July 2, 2020 09:16:15 PM **46**

Obs	y	time	Lny	Sqrty	QtRooty
378	255848.5 0	378	12.452 3	505.81 5	22.4903
379	252820.0 0	379	12.440 4	502.81	22.4235
380	263846.5 0	380	12.483 1	513.66 0	22.6641
381	248135.5 0	381	12.421 7	498.13	22.3189
382	244895.4 0	382	12.408 6	494.86 9	22.2457
383	238894.7 5	383	12.383	488.76 9	22.1081
384	232025.5 0	384	12.354 6	481.69 0	21.9474
385	233146.6	385	12.359 4	482.85	21.9739
386	231771.0 0	386	12.353 5	481.42 6	21.9414
387	224918.2 5	387	12.323 5	474.25 5	21.7774
388	196107.0 0	388	12.186 4	442.84 0	21.0438
389	185042.7 5	389	12.128 3	430.16 6	20.7404

Name of Variable =	= y
Mean of Working Series	298743. 7
Standard Deviation	27643.3 4
Number of Observations	389

	Autocorrelation Check for White Noise										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations							
6	1466.70	6	<.0001	0.88 7	0.81	0.75 4	0.74 8	0.76 6	0.75 0		
12	2587.73	12	<.0001	0.71	0.66	0.63	0.65 9	0.68	0.73		
18	3441.03	18	<.0001	0.66	0.60	0.55 8	0.55 9	0.58	0.57		
24	4173.41	24	<.0001	0.55 4	0.51	0.49	0.52 9	0.55 7	0.60		

Sq	uared (Canonio	cal Cori	elation	Estima	tes
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	0.821	0.711	0.629	0.630	0.672	0.657
AR 1	0.019	0.001	0.068	0.016	0.033	0.010
AR 2	0.004	0.014	0.021	0.040	0.039	0.002
AR 3	0.083	0.019	0.023	0.004	0.019	0.024
AR 4	0.083	0.039	0.020	0.022	0.020	0.024
AR 5	0.000	0.001	0.011	0.000	0.025	0.015

S	CAN C	hi-Squa	re[1] P	robabili	ty Valu	es
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5
AR 0	<.000	<.000	<.000	<.000	<.000	<.000
	1	1	1	1	1	1
AR 1	0.005	0.447	<.000	0.022	0.001	0.073
	7	9	1	2	2	2
AR 2	0.212	0.040	0.022	0.000	0.001	0.487
	3	7	3	5	8	7
AR 3	<.000	0.019	0.033	0.386	0.093	0.051
	1	9	9	8	3	3
AR 4	<.000	0.001	0.051	0.057	0.022	0.075
	1	1	0	8	2	5
AR 5	0.707	0.505	0.046	0.824	0.061	0.151
	3	8	5	4	9	5

ARMA Tentativ Selectio	e Order					
SCAN						
p+d	q					
1	5					
5	3					

(5% Significance Level)

Name of Variable = y						
Period(s) of Differencing	1					
Mean of Working Series	-					
	285.731					
Standard Deviation	11842.1					
	4					
Number of Observations	388					
Observation(s) eliminated by differencing	1					

	Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations								
6	63.41	6	<.0001	-0.176	-0.054	-0.260	-0.128	0.181	0.10			
12	275.94	12	<.0001	0.133	-0.127	-0.257	-0.028	-0.116	0.64			
18	327.60	18	<.0001	-0.096	-0.056	-0.257	-0.116	0.172	0.07			
24	505.88	24	<.0001	0.148	-0.152	-0.247	-0.001	-0.087	0.56			

Name of Variable = y	
Period(s) of Differencing	12
Mean of Working Series	2278.11
Standard Deviation	16326.4 8
Number of Observations	377
Observation(s) eliminated by differencing	12

	Autocorrelation Check for White Noise												
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations									
6	799.95	6	<.0001	0.796	0.678	0.606	0.531	0.467	0.367				
12	859.34	12	<.0001	0.259	0.185	0.096	0.007	-0.077	-0.192				
18	945.36	18	<.0001	-0.158	-0.179	-0.198	-0.201	-0.210	-0.192				
24	999.25	24	<.0001	-0.175	-0.167	-0.156	-0.128	-0.129	-0.136				

Name of Variable = y						
Period(s) of Differencing	1,12					
Mean of Working Series	205.169					
Standard Deviation	9761.00 7					
Number of Observations	376					
Observation(s) eliminated by differencing	13					

	Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations								
6	21.79	6	0.0013	-0.219	-0.035	0.002	-0.021	0.080	0.038			
12	93.39	12	<.0001	-0.108	0.052	0.008	-0.005	0.080	-0.403			
18	107.18	18	<.0001	0.159	-0.049	-0.008	0.037	-0.076	-0.019			
24	115.82	24	<.0001	0.041	0.000	-0.042	0.080	0.008	-0.108			

Name of Variable = y	
Period(s) of Differencing	1,12
Mean of Working Series	205.169
Standard Deviation	9761.00 7
Number of Observations	376
Observation(s) eliminated by differencing	13

	Autocorrelation Check for White Noise											
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations								
6	21.79	6	0.0013	-0.219	-0.035	0.002	-0.021	0.080	0.038			
12	93.39	12	<.0001	-0.108	0.052	0.008	-0.005	0.080	-0.403			
18	107.18	18	<.0001	0.159	-0.049	-0.008	0.037	-0.076	-0.019			
24	115.82	24	<.0001	0.041	0.000	-0.042	0.080	0.008	-0.108			

Sq	Squared Canonical Correlation Estimates											
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5						
AR 0	0.048	0.001	<.000	0.000	0.006	0.001						
	2	3	1	5	9	6						
AR 1	0.008	<.000	0.000	<.000	0.003	0.009						
	2	1	4	1	9	5						
AR 2	0.001	0.000	<.000	0.001	0.002	0.003						
	0	4	1	5	3	0						
AR 3	0.001	0.002	0.004	0.002	0.003	0.005						
	3	4	2	6	5	5						
AR 4	0.005	0.004	0.000	0.006	0.001	0.002						
	5	7	5	2	5	3						
AR 5	0.006	0.012	0.005	0.005	0.001	0.001						
	3	4	7	5	5	8						

S	SCAN Chi-Square[1] Probability Values									
Lags	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5				
AR 0	<.000 1	0.502 6	0.974 6	0.689 9	0.125 9	0.470 2				
AR 1	0.079 5	0.911	0.741 5	0.896 7	0.341	0.079 4				
AR 2	0.542 4	0.720 2	0.978	0.470 7	0.485	0.359				
AR 3	0.485 6	0.389 7	0.343	0.484	0.411	0.213				
AR 4	0.150 8	0.245 6	0.718 4	0.321	0.579	0.541				
AR 5	0.124 9	0.053 9	0.259 9	0.396 7	0.662 7	0.665 5				

ARMA(p+d,q) Tentative Order Selection Tests						
SCAN						
p+d	q					
1	0					
0	1					

(5% Significance Level)

Preliminary Estimation

Initial Moving Average Estimates						
Estimate						
1	0.21904					

Av	l Moving verage timates
	Estimate
12	0.40337

Constant Term Estimate	-205.169
White Noise Variance Est	8194423
	5

	(Condition	al Least S	Squares	Estimation	l	
Iteration	SSE	MU	MA1,1	MA2,1	Constant	Lambda	R Crit
0	2.567E1	-	0.2190	0.4033	-205.169	0.00001	1
	0	205.169	4	7			
1	2.075E1	10.0779	0.2476	0.7957	10.07798	1E-6	0.35320
	0	8	6	2			4
2	2.059E1	-	0.2498	0.8794	-71.9106	1E-7	0.12268
	0	71.9106	2	4			7
3	2.05E10	-	0.2473	0.8451	-60.4005	1E-8	0.07175
		60.4005	5	6			6
4	2.05E10	-	0.2482	0.8534	-52.8934	1E-9	0.01463
		52.8934	1	1			1
5	2.05E10	-	0.2480	0.8501	-53.9974	1E-10	0.00558
		53.9974	6	1			4
6	2.05E10	-	0.2481	0.8513	-53.6818	1E-11	0.00200
		53.6818	6	2			9
7	2.05E10	-	0.2481	0.8511	-53.7271	0.1	0.00076
		53.7271	5	0			

ARIMA Estimation Optimization Summary					
Estimation Method	Conditional Least Squares				
Parameters Estimated	3				
Termination Criteria	Maximum Relative Change in Estimates				
Iteration Stopping Value	0.001				
Criteria Value	0.000843				
Alternate Criteria	Relative Change in Objective Function				
Alternate Criteria Value	1.497E-7				
Maximum Absolute Value of Gradient	25638035				
R-Square Change from Last Iteration	0.00076				
Objective Function	Sum of Squared Residuals				
Objective Function Value	2.05E10				
Marquardt's Lambda Coefficient	0.1				
Numerical Derivative Perturbation Delta	0.001				
Iterations	7				

Conditional Least Squares Estimation									
Parameter Estimate Standard Error t Value Pr > t L									
MU	53.72706	50.55020	-1.06	0.2885	0				
MA1,1	0.24815	0.05108	4.86	<.0001	1				
MA2,1	0.85110	0.03114	27.33	<.0001	12				

Constant Estimate	-53.7271
Variance Estimate	5496197 4
Std Error Estimate	7413.63 4

AIC	7771.15 9
SBC	7782.94 8
Number of Residuals	376

* AIC and SBC do not include log determinant.

Correlations of Parameter Estimates									
Parameter MU MA1,1 MA2,1									
MU	1.00	0.016	0.084						
MA1,1	0.01	1.000	0.014						
MA2,1	0.08	0.014	1.000						

	Autocorrelation Check of Residuals										
To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations							
6	5.96	4	0.2023	0.025	-0.091	-0.050	0.012	0.036	0.053		
12	9.33	10	0.5011	-0.043	0.053	-0.035	-0.044	-0.029	0.004		
18	12.16	16	0.7331	0.032	-0.057	-0.046	0.010	-0.022	-0.013		
24	19.75	22	0.5985	0.016	-0.005	-0.050	0.032	-0.002	-0.123		
30	23.10	28	0.7278	-0.034	0.036	-0.018	-0.019	0.070	-0.012		
36	26.78	34	0.8061	0.042	-0.048	-0.025	-0.033	0.036	-0.042		
42	29.68	40	0.8839	-0.034	0.024	-0.017	-0.028	0.053	-0.035		
48	31.64	46	0.9472	0.032	0.002	-0.004	-0.025	-0.017	0.051		

Model for variable y		
Estimated Mean	-	
	53.7271	
Period(s) of Differencing	1,12	

Moving Average Factors			
Factor 1:	1 - 0.24815 B**(1)		
Factor 2:	1 - 0.8511 B**(12)		

Forecasts for variable y						
Obs	Forecast	Std Error	95% Confidence Limits			
390	191980.5	7413.63	177450. 0	206510. 9		
391	185914.2	9275.30	167735. 0	204093. 5		
392	200639.9	10821.29	179430. 5	221849. 2		
393	193734.8	12172.49	169877. 1	217592. 4		
394	194513.9	13388.00	168273. 9	220753. 9		
395	185191.2	14501.99	156767. 8	213614. 6		
396	172480.7	15536.31	142030. 1	202931.		
397	173091.6	16505.94	140740. 6	205442. 7		
398	176619.5	17421.69	142473. 7	210765. 4		
399	176579.0	18291.65	140728. 0	212430. 0		
400	174638.0	19122.07	137159. 4	212116. 5		
401	171620.2	19917.90	132581. 8	210658. 6		

APPENDIX A

DATA EXPLORATION FOR FREIGHT SUMMARY

For Weekly Avg. Class I Rail Volumes (Carloads + Intermodal), Cass Shipment (Index), ATA Truck (Tonnage), and West Coast Ports (TEU's) data is available from Jan 2000 to April 2020.

For VA Export Coal Loadings (Tons, 000s) data is available from Jan 2003 to Feb 2020.

For Spot Dry Van TL Pricing (includes fuel), and Spot Flatbed TL Pricing (includes fuel) data is available from Jan 2008 to April 2020.

For Trucking Market Demand Index data is available from Feb 2008 to April 2020.

For IANA Domestic Containers, Class 8 Truck Orders, Trailing 3-Month SAAR, and Backlog/Build data is available from Jan 2000 to March 2020.

For Trucking Market Demand Index data is available from Feb 2008 to April 2020.

For East Coast Ports (TEU's) (Imports, Exports, and Total) and IATA Int'l Air Cargo(Volumes (FTK's), Capacity (AFTK's)) data is available from Jan 2003 to March 2020.

For Canadian Ports (TEU's) (Imports, Exports, and Total) data is available from July 2009 to March 2020.

For Spot Container Rates (HK-LA) data is available from Jan 2006 to April 2020.

For Domestic Integrator Volumes(UPS Louisville) data is available from Jan 2016 to March 2020.

For Domestic Integrator Volumes (FDX Memphis) data is available from Jan 2015 to March 2020.

For Shanghai Pudong Air Cargo (PACTL) (Tonnage) data is available from Jan 2010 to March 2020.

For Air Freight Price (Index) data is available from Nov 2008 to March 2020.

APPENDIX B

NA Class I Rail Volumes (Carloads + Intermodal), Cass Shipment (Index), ATA Truck (Tonnage), West Coast Ports (TEU's) (Imports, Exports, and Total), and Freight Average data is available from Jan 2001 to April 2020.

VA Export Coal Loadings (Tons, 000s) data is available from Jan 2001 to Feb 2020.

Spot Dry Van TL Pricing (includes fuel), Spot Flatbed TL Pricing (includes fuel), and TL Market Demand Index data is available from Feb 2009 to April 2020.

LTL Monthly Tonnage / Day Simple Avg. data is available from Jan 2008 to March 2020.

IANA Domestic Containers, Class 8 Truck Orders, and Trailing 3-Month SAAR data is available from Jan 2001 to March 2020.

East Coast Ports (TEU's) and IATA Int'l Air Cargo data is available from Jan 2004 to March 2020.

Canadian Ports (TEUs) data is available from July 2010 to March 2020.

Spot Container Rates (HK-LA) data is available from Jan 2007 to April 2020.

Domestic Integrator Volumes(UPS Louisville, simple average) data is available from Jan 2017 to March 2020.

Domestic Integrator Volumes(FDX Memphis) data is available from Jan 2016 to March 2020.

Shanghai Pudong Air Cargo (PACTL) (Tonnage) data is available from Jan 2011 to March 2020.

Air Freight Price (Index) data is available from Nov 2009 to March 2020.

APPENDIX C

NA Class 1 Rail Volumes (Carloads + Intermodal), Cass Shipment (Index), ATA Truck (Tonnage), and West Coast Ports (TEU's) quarterly data is available from the year 2000 to 2020.

For VA Export Coal Loadings (Tons, 000s) quarterly data is available from 1st quarter of the year 2000 to 2020.

Case Shipment (index) and ATA Truck (Tonnage) data is available from 1st quarter of year 2000 to 1st quarter of year 2020.

For Dry Van TL Pricing (includes fuel) and Flatbed TL Pricing (includes fuel) data is available from 4th quarter 2008 to 1st quarter 2020.

In TL Market Demand Index quarterly data is available from 2nd quarter of the year 2008 to 1sr quarter of the year 2020.

Quarterly data for IANA Domestic Containers, Class 8 Truck Orders is available from 1st quarter of the year 2000 to 1st quarter of the year 2020.

For West Coast ports (TEU's) (Imports, Exports, and Total quarterly data is available from the year 2000 to 2020

For East Coast Ports (TEU's) (Imports, Exports, and Total) quarterly data is available form1st quarter of 2000 to 4th quarter of 2019.

For Canadian Ports (TEU's) (Imports, Exports, and Total) quarterly data is available from 3rd quarter of the year 2009 to 4th quarter of the year 2019.

For Spot Container Rates (HK-LA) quarterly data is available from 1st quarter of the year 2006 to 1st quarter of 2020.

In Domestic Integrator Volumes (UPS Louisville) quarterly data is available from 1st quarter of the year 2016 to 1st quarter of the year 2020.

In Domestic Integrator Volumes (UPS Louisville) quarterly data is available from 1st quarter of the year 2015 to 4th quarter of the year 2019.

For IATA Int'l Air Cargo (Volumes (FTK's), Capacity (AFTK's)) quarterly data is available from 1st quarter of 2003 to 1st quarter of the year 2020.

In Shanghai Pudong Air Cargo (PACTL) (Tonnage) quarterly data is available from 1^{st} quarter of the year 2010 to 4^{th} quarter of the year 2019.

For Air Freight Price (Index) quarterly data is available from 4th quarter of 2008 to 1st quarter of the year 2020.

REFERENCES

- Forecasting, Time Series, and Regression, 4th edition, 2005, Bowerman, O'Connell, and Koehler, Thomson Learning ISBN 0-534-40977-6 (REQUIRED)
- Brocklebank & Dickey, SAS for Forecasting Time Series, 2nd Ed., Wiley 2009, ISBN 978-1-59047-182-1 (OPTIONAL text)
- SAS Institute (2017) THE ARIMA PROCEDURE Available from:
 https://documentation.sas.com/?docsetId=etsug&docsetTarget=etsug_arima_overview.
 htm&docsetVersion=14.3&locale=en