Insight to Factor Analysis and PCA

Project -2

Advanced Statistics

Baijayanti Chakraborty

1 Contents

1.	Pro	ject Objective	2
		oloratory Data Analysis	
		Environment Set up	
	2.2.	Data Exploration	3
3.	Mu	lti-collinearity Evidence	8
4.	Sim	ple Linear Regression with all independent variables	10
5.	Principle Component Analysis10		
6.	Mu	Itiple Linear Regression after PCA	21

1. Project Objective

The objective of the project is to use the dataset "Factor-Hair-Revised.csv" to build an optimum regression model to predict satisfaction. We are expected to

- 1. Perform exploratory data analysis on the dataset. Showcase some charts, graphs. Check for outliers and missing values
- 2. Evidence and analysis of multicollinearity?
- 3. Perform simple linear regression for the dependent variable with every independent variable
- 4. Perform PCA/Factor analysis by extracting 4 factors. Interpret the output and name the Factors
- 5. Perform Multiple linear regression with customer satisfaction as dependent variables and the four factors as independent variables. Comment on the Model output and validity.

2. Exploratory Data Analysis

2.1. Environment Set up

```
setwd("~/Desktop/PGP-BABI/Project 2")
install.packages("DataExplorer")
install.packages("corrplot")
install.packages("ppcor")
install.packages("nFactors")
install.packages("psych")
install.packages("caTools")
install.packages("Metrics")
library(psych)
library(Hmisc)
library(DataExplorer)
library(corrplot)
library(ppcor)
library(ggplot2)
library(nFactors)
library(caTools)
library(car)
library(Metrics)
```

```
mydata= read.csv("Factor-Hair-Revised.csv" , header = TRUE)
mydata = mydata[,-1]
```

```
2.2.
      Data Exploration
#clear the global environment
rm(list = ls())
#read the data
mydata = read.csv("Factor-hair-Revised.csv",header = TRUE)
mydata = mydata[,-1]
#basic analysis of the data
View(mydata)
nrow(mydata) # 100 rows
## [1] 100
ncol(mydata) # 13 columns
## [1] 12
colnames(mydata) #[1]
                        "ProdQual"
                                        "Ecom"
                                                       "TechSup"
                                                                       "CompRes
       "Advertising"
    [1] "ProdQual"
                        "Ecom"
                                        "TechSup"
                                                        "CompRes"
##
    [5] "Advertising"
                        "ProdLine"
                                                       "ComPricing"
##
                                        "SalesFImage"
    [9] "WartyClaim"
                        "OrdBilling"
                                       "DelSpeed"
                                                       "Satisfaction"
                 # [7] "ProdLine"
                                        "SalesFImage"
                                                        "ComPricing"
                                                                       "WartyCl
       "OrdBilling"
                      "DelSpeed" "Satisfaction"
aim"
summary(mydata) # basic stats of the columns
##
       ProdQual
                           Ecom
                                         TechSup
                                                          CompRes
##
    Min.
           : 5.000
                     Min.
                             :2.200
                                             :1.300
                                                              :2.600
    1st Qu.: 6.575
                     1st Qu.:3.275
                                      1st Qu.:4.250
                                                       1st Qu.:4.600
##
    Median : 8.000
                     Median :3.600
                                      Median :5.400
                                                       Median :5.450
##
    Mean
           : 7.810
                     Mean
                            :3.672
                                      Mean
                                             :5.365
                                                       Mean
                                                              :5.442
##
    3rd Qu.: 9.100
                     3rd Qu.:3.925
                                      3rd Qu.:6.625
                                                       3rd Qu.:6.325
           :10.000
##
    Max.
                     Max.
                            :5.700
                                      Max.
                                              :8.500
                                                       Max.
                                                              :7.800
                                                        ComPricing
##
     Advertising
                        ProdLine
                                      SalesFImage
##
    Min.
                            :2.300
           :1.900
                    Min.
                                     Min.
                                             :2.900
                                                      Min.
                                                             :3.700
##
    1st Qu.:3.175
                     1st Qu.:4.700
                                     1st Qu.:4.500
                                                      1st Qu.:5.875
##
    Median :4.000
                    Median :5.750
                                     Median :4.900
                                                      Median :7.100
##
    Mean
           :4.010
                    Mean
                            :5.805
                                     Mean
                                            :5.123
                                                      Mean
                                                             :6.974
##
    3rd Qu.:4.800
                    3rd Qu.:6.800
                                     3rd Qu.:5.800
                                                      3rd Qu.:8.400
##
           :6.500
                            :8.400
                                            :8.200
                                                      Max.
                                                             :9.900
    Max.
                    Max.
                                     Max.
##
                                        DelSpeed
                                                       Satisfaction
      WartyClaim
                       OrdBilling
##
    Min.
           :4.100
                    Min.
                            :2.000
                                     Min.
                                             :1.600
                                                      Min.
                                                             :4.700
##
    1st Qu.:5.400
                     1st Qu.:3.700
                                     1st Qu.:3.400
                                                      1st Qu.:6.000
##
    Median :6.100
                    Median :4.400
                                     Median :3.900
                                                      Median :7.050
##
    Mean
           :6.043
                    Mean
                            :4.278
                                     Mean
                                            :3.886
                                                      Mean
                                                             :6.918
                                     3rd Qu.:4.425
    3rd Qu.:6.600
                     3rd Qu.:4.800
                                                      3rd Qu.:7.625
##
##
    Max.
           :8.100
                    Max.
                            :6.700
                                     Max.
                                            :5.500
                                                      Max.
                                                             :9.900
```

```
str(mydata) #different data types of the columns
   'data.frame':
                    100 obs. of 12 variables:
##
    $ ProdQual
                          8.5 8.2 9.2 6.4 9 6.5 6.9 6.2 5.8 6.4 ...
                   : num
                          3.9 2.7 3.4 3.3 3.4 2.8 3.7 3.3 3.6 4.5 ...
##
    $ Ecom
                   : num
                          2.5 5.1 5.6 7 5.2 3.1 5 3.9 5.1 5.1 ...
##
    $ TechSup
                    num
##
    $ CompRes
                   : num
                          5.9 7.2 5.6 3.7 4.6 4.1 2.6 4.8 6.7 6.1 ...
                          4.8 3.4 5.4 4.7 2.2 4 2.1 4.6 3.7 4.7 ...
    $ Advertising : num
                          4.9 7.9 7.4 4.7 6 4.3 2.3 3.6 5.9 5.7 ...
##
    $ ProdLine
                   : num
##
    $ SalesFImage : num
                          6 3.1 5.8 4.5 4.5 3.7 5.4 5.1 5.8 5.7 ...
##
    $ ComPricing : num
                          6.8 5.3 4.5 8.8 6.8 8.5 8.9 6.9 9.3 8.4 ...
##
    $ WartyClaim
                  : num
                          4.7 5.5 6.2 7 6.1 5.1 4.8 5.4 5.9 5.4 ...
    $ OrdBilling
                          5 3.9 5.4 4.3 4.5 3.6 2.1 4.3 4.4 4.1 ...
##
                  : num
##
    $ DelSpeed
                          3.7 4.9 4.5 3 3.5 3.3 2 3.7 4.6 4.4 ...
                   : num
                          8.2 5.7 8.9 4.8 7.1 4.7 5.7 6.3 7 5.5 ...
    $ Satisfaction: num
describe(mydata)
##
                                 sd median trimmed mad min
                        n mean
                                                              max range
                                                                          skew
                vars
## ProdOual
                    1 100 7.81 1.40
                                      8.00
                                               7.85 1.78 5.0 10.0
                                                                     5.0 - 0.24
                    2 100 3.67 0.70
                                      3.60
                                               3.63 0.52 2.2
                                                                          0.64
## Ecom
                                                               5.7
                                                                     3.5
## TechSup
                   3 100 5.37 1.53
                                      5.40
                                               5.40 1.85 1.3
                                                              8.5
                                                                     7.2 - 0.20
## CompRes
                   4 100 5.44 1.21
                                      5.45
                                               5.46 1.26 2.6
                                                              7.8
                                                                     5.2 - 0.13
## Advertising
                   5 100 4.01 1.13
                                      4.00
                                               4.00 1.19 1.9
                                                              6.5
                                                                     4.6
                                                                          0.04
                                      5.75
                                               5.81 1.56 2.3
## ProdLine
                   6 100 5.80 1.32
                                                              8.4
                                                                     6.1 - 0.09
## SalesFImage
                   7 100 5.12 1.07
                                      4.90
                                               5.09 0.89 2.9
                                                              8.2
                                                                     5.3
                                                                          0.37
## ComPricing
                   8 100 6.97 1.55
                                      7.10
                                               7.01 1.93 3.7
                                                              9.9
                                                                     6.2 - 0.23
## WartyClaim
                   9 100 6.04 0.82
                                      6.10
                                               6.04 0.89 4.1
                                                              8.1
                                                                     4.0
                                                                          0.01
## OrdBilling
                  10 100 4.28 0.93
                                      4.40
                                               4.31 0.74 2.0
                                                              6.7
                                                                     4.7 -0.32
                  11 100 3.89 0.73
                                      3.90
                                               3.92 0.74 1.6
                                                              5.5
                                                                     3.9 -0.45
## DelSpeed
                  12 100 6.92 1.19
                                               6.90 1.33 4.7
## Satisfaction
                                      7.05
                                                              9.9
                                                                     5.2
                                                                          0.08
                kurtosis
                            se
## ProdQual
                    -1.170.14
## Ecom
                    0.57 0.07
## TechSup
                    -0.63 0.15
## CompRes
                    -0.66 0.12
## Advertising
                    -0.94 0.11
## ProdLine
                    -0.60 0.13
## SalesFImage
                    0.26 0.11
## ComPricing
                    -0.96 0.15
## WartyClaim
                    -0.53 0.08
## OrdBilling
                    0.11 0.09
## DelSpeed
                    0.09 0.07
## Satisfaction
                    -0.86 0.12
#to check if any null values are present
is.na(mydata) #the data has no null values.hence the data is a clean one.
##
          ProdQual Ecom TechSup CompRes Advertising ProdLine SalesFImage
##
     [1,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
##
     [2,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
##
     [3,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
##
     [4,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
##
     [5,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
##
     [6,]
             FALSE FALSE
                            FALSE
                                    FALSE
                                                 FALSE
                                                          FALSE
                                                                       FALSE
```

plot_missing(mydata)


```
#to check the outliers
box = boxplot(mydata , color = "blue" , main = "boxplot for the various data
types" , col = c("red", "pink", "blue", "magenta"))
```

boxplot for the various datatypes


```
outlier = box$out
```

```
#the customer satisfaction rate
hist1 = hist(mydata$Satisfaction,col = "red" , main = "Customer Satisfaction
" , breaks = 15 ,xlab = "Satisfaction" ,ylab = "Frequency")
```

Customer Satisfaction

#a comparitive study on advertising and pricing.
plot = qplot(mydata\$Advertising,mydata\$ProdLine,xlab = "Advertising" , ylab
= "Product Line",main = "Advertisement and product line comparision" , margi
ns = TRUE , col = "deeppink01")
#The graph hence shows that as advertisement increases the product line also
increases.
print(plot)

Advertisement and product line comparision

#a comparitive study between customer satisfaction and complaint resolution
plot2 = plot(mydata\$CompRes,mydata\$Satisfaction , xlab = "Complaint Resoluti
on" , ylab = "Satisfcation" , main = "study between customer satisfaction an
d complaint resolution" ,col = "magenta")

#The plot shows that complains resolved are satisfactory for the customers.

#a study of warranty claims and customer satisfcation
plot3 = plot(mydata\$WartyClaim,mydata\$Satisfaction , col = "blue",xlab = "Wa
rranty claims",ylab = "Satisfaction" , main = "Cliams and satisfactions stud
y")

Cliams and satisfactions study

#The plot shows that the relation is quite scattered. Though much of the scatter is between the center area.

3. Multi-collinearity Evidence

```
#correlation of the variables
plot(mydata, main = "Matrix scatter plot of all the variables", col = "blue"
)
```

```
Matrix scatter plot of all the variables
                                                      25 40 55
                                                                                                                                                                                    CompRes CompRe
                                                                                             Advertising Advertising
Produce Section Company of the Product of the Produ
            Comprising
```

```
corr = cor(mydata , method = "pearson")
corr
##
                   ProdQual
                                      Ecom
                                                  TechSup
                                                             CompRes
## ProdQual
                 1.00000000 -0.1371632174
                                            0.0956004542
                                                           0.1063700
## Ecom
                -0.13716322
                              1.0000000000
                                             0.0008667887
                                                           0.1401793
## TechSup
                 0.09560045
                              0.0008667887
                                            1.0000000000
                                                           0.0966566
## CompRes
                 0.10637000
                              0.1401792611
                                            0.0966565978
                                                           1.0000000
## Advertising
                -0.05347313
                              0.4298907110 -0.0628700668
                                                           0.1969168
## ProdLine
                 0.47749341 -0.0526878383
                                             0.1926254565
                                                           0.5614170
## SalesFImage
                -0.15181287
                              0.7915437115
                                            0.0169905395
                                                           0.2297518
## ComPricing
                -0.40128188
                              0.2294624014 -0.2707866821 -0.1279543
## WartyClaim
                 0.08831231
                              0.0518981915
                                            0.7971679258
                                                           0.1404083
                                            0.0801018246
## OrdBilling
                 0.10430307
                              0.1561473316
                                                           0.7568686
## DelSpeed
                 0.02771800
                              0.1916360683
                                            0.0254406935
                                                           0.8650917
## Satisfaction
                 0.48632500
                                            0.1125971788
                                                           0.6032626
                              0.2827450147
##
                Advertising
                                ProdLine SalesFImage ComPricing
                                                                   WartyClaim
## ProdQual
                -0.05347313
                              0.47749341 -0.15181287 -0.40128188
                                                                   0.08831231
                                          0.79154371
## Ecom
                 0.42989071 -0.05268784
                                                       0.22946240
                                                                   0.05189819
                                          0.01699054 -0.27078668
## TechSup
                -0.06287007
                              0.19262546
                                                                   0.79716793
## CompRes
                 0.19691685
                              0.56141695
                                          0.22975176 -0.12795425
                                                                   0.14040830
## Advertising
                 1.00000000 -0.01155082
                                          0.54220366
                                                      0.13421689
                                                                   0.01079207
## ProdLine
                -0.01155082
                              1.00000000
                                         -0.06131553 -0.49494840
                                                                   0.27307753
                                          1.00000000
## SalesFImage
                 0.54220366 -0.06131553
                                                       0.26459655
                                                                   0.10745534
## ComPricing
                 0.13421689 -0.49494840
                                          0.26459655
                                                       1.00000000 -0.24498605
## WartyClaim
                 0.01079207
                              0.27307753
                                          0.10745534 -0.24498605
                                                                   1.00000000
## OrdBilling
                 0.18423559
                              0.42440825
                                          0.19512741 -0.11456703
                                                                   0.19706512
## DelSpeed
                                          0.27155126 -0.07287173
                 0.27586308
                              0.60185021
                                                                   0.10939460
## Satisfaction
                 0.30466947
                              0.55054594
                                          0.50020531 -0.20829569
                                                                   0.17754482
##
                 OrdBilling
                                DelSpeed Satisfaction
```

```
## ProdQual
                 0.10430307
                             0.02771800
                                            0.4863250
## Ecom
                 0.15614733
                             0.19163607
                                            0.2827450
## TechSup
                 0.08010182 0.02544069
                                            0.1125972
## CompRes
                 0.75686859
                             0.86509170
                                            0.6032626
## Advertising
                 0.18423559
                             0.27586308
                                            0.3046695
## ProdLine
                 0.42440825
                             0.60185021
                                            0.5505459
                             0.27155126
## SalesFImage
                 0.19512741
                                            0.5002053
## ComPricing
                -0.11456703 -0.07287173
                                           -0.2082957
## WartyClaim
                             0.10939460
                                            0.1775448
                 0.19706512
## OrdBilling
                 1.00000000
                             0.75100307
                                            0.5217319
## DelSpeed
                 0.75100307
                             1.00000000
                                            0.5770423
## Satisfaction 0.52173191 0.57704227
                                            1.0000000
#plot the correlation
corrplot(corr , type = "lower" , title = "correlation plot" , method = "numb
er")
```


#As expected the correlation between sales force image and ecommerce is high ly significant;

#so is the correlation between delivery speed and order billing with complaint resolution. Also,

#the correlation between order & billing and delivery speed. We can safely a ssume that there

#is a high degree of collinearity between the independent variables

Observation:

E-commerce and Salesforce Image	Highly Correlated
Technical Support and Warranty Claim	Highly Correlated
Complaint Resolution and Order Billing	Highly Correlated
Complaint Resolution and Delivery Speed	Highly Correlated
Product Line and Delivery Speed	Highly Correlated

4. Simple Linear Regression with all independent variables

```
#Building the initial linear model of dependent variable with all the indepe
ndent model
model1 = lm(Satisfaction~ProdQual,data = mydata)
summary(model1)
##
## Call:
## lm(formula = Satisfaction ~ ProdQual, data = mydata)
##
## Residuals:
       Min
                  10
                      Median
                                    3Q
                                            Max
## -1.88746 -0.72711 -0.01577 0.85641
                                        2.25220
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                                     6.151 1.68e-08 ***
## (Intercept) 3.67593
                          0.59765
                                     5.510 2.90e-07 ***
## ProdQual
              0.41512
                           0.07534
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.047 on 98 degrees of freedom
## Multiple R-squared: 0.2365, Adjusted R-squared: 0.2287
## F-statistic: 30.36 on 1 and 98 DF, p-value: 2.901e-07
par(mfrow = c(2,2))
plot(model1)
```


#Inference from the model be that the model is having confidence of 22% appr ox which is not a good sign, also p value is not less then 0.05 so null hypo thesis is accepted.

```
#Our next model can be between CompRes and satisfaction
model2 = lm(Satisfaction~CompRes ,data = mydata)
summary(model2)
##
## lm(formula = Satisfaction ~ CompRes, data = mydata)
##
## Residuals:
##
        Min
                  10
                       Median
                                     3Q
                                             Max
## -2.40450 -0.66164
                      0.04499
                               0.63037
                                         2.70949
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                      8.310 5.51e-13 ***
## (Intercept)
                3.68005
                           0.44285
                                      7.488 3.09e-11 ***
## CompRes
                0.59499
                           0.07946
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.9554 on 98 degrees of freedom
## Multiple R-squared: 0.3639, Adjusted R-squared: 0.3574
## F-statistic: 56.07 on 1 and 98 DF, p-value: 3.085e-11
par(mfrow = c(2,2))
plot(model2)
```


#Inference from the model be that the model is having confidence of 35% appr ox which is not a good sign, also p value is not less then 0.05 so null hypo thesis is accepted.

```
#One more model say between DelSpeed and Satisfaction
model3 = lm(Satisfaction~DelSpeed ,data = mydata)
summary(model3)
##
## lm(formula = Satisfaction ~ DelSpeed, data = mydata)
##
## Residuals:
##
        Min
                  10
                       Median
                                    3Q
                                            Max
## -2.22475 -0.54846
                      0.08796
                              0.54462
                                        2.59432
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                            0.5294
                                     6.194 1.38e-08 ***
## (Intercept)
                 3.2791
                                     6.994 3.30e-10 ***
## DelSpeed
                 0.9364
                            0.1339
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.9783 on 98 degrees of freedom
## Multiple R-squared: 0.333, Adjusted R-squared: 0.3262
## F-statistic: 48.92 on 1 and 98 DF, p-value: 3.3e-10
#Inference from the model be that the model is having confidence of 32% appr
```

ox which is not a good sign, also p value is not less then 0.05 so null hypo

thesis is accepted.

```
#We can also have a model between TechSup and Satisfaction
model4 = lm(Satisfaction~TechSup,data = mydata)
summary(model4)
##
## Call:
## lm(formula = Satisfaction ~ TechSup, data = mydata)
## Residuals:
##
                       Median
                                    3Q
       Min
                  1Q
                                            Max
## -2.26136 -0.93297 0.04302 0.82501
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                             <2e-16 ***
## (Intercept) 6.44757
                           0.43592
                                   14.791
## TechSup
                0.08768
                           0.07817
                                     1.122
                                              0.265
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 1.19 on 98 degrees of freedom
## Multiple R-squared: 0.01268,
                                   Adjusted R-squared:
## F-statistic: 1.258 on 1 and 98 DF, p-value: 0.2647
#Inference from the model be that the model is having confidence of 2% appro
x which is not a good sign, also p value is not less then 0.05 so null hypot
hesis is accepted.
#Model4 is not in radar of acceptance.
model5 = lm(Satisfaction~Ecom,data = mydata)
summary(model5)
##
## Call:
## lm(formula = Satisfaction ~ Ecom, data = mydata)
## Residuals:
##
        Min
                  10
                       Median
                                    30
                                            Max
## -2.37200 -0.78971 0.04959 0.68085
                                        2.34580
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     8.361 4.28e-13 ***
                 5.1516
                            0.6161
## Ecom
                 0.4811
                            0.1649
                                     2.918 0.00437 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.149 on 98 degrees of freedom
## Multiple R-squared: 0.07994,
                                    Adjusted R-squared:
## F-statistic: 8.515 on 1 and 98 DF, p-value: 0.004368
#Inference from the model be that the model is having confidence of 7% appro
x which is not a good sign, but p value is less then 0.05 so null hypothesis
is rejected here.
```

```
model6 = lm(Satisfaction~Advertising , data = mydata)
summary(model6)
##
## Call:
## lm(formula = Satisfaction ~ Advertising, data = mydata)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -2.34033 -0.92755 0.05577
                             0.79773
                                      2.53412
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                                   13.279 < 2e-16 ***
                            0.4237
## (Intercept)
                5.6259
## Advertising
                0.3222
                           0.1018
                                    3.167 0.00206 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.141 on 98 degrees of freedom
## Multiple R-squared: 0.09282, Adjusted R-squared:
                                                        0.08357
## F-statistic: 10.03 on 1 and 98 DF, p-value: 0.002056
#Inference from the model is that the p-value is less than 0.05 but confiden
ce is only 8%. Null Hypothesis gets accepted.
model7 = lm(Satisfaction~ProdLine , data = mydata)
summary(model7)
##
## Call:
## lm(formula = Satisfaction ~ ProdLine, data = mydata)
## Residuals:
               1Q Median
      Min
                               3Q
                                      Max
## -2.3634 -0.7795 0.1097 0.7604
                                  1.7373
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                          0.45471
                                    8.845 3.87e-14 ***
## (Intercept) 4.02203
## ProdLine
               0.49887
                          0.07641
                                    6.529 2.95e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1 on 98 degrees of freedom
## Multiple R-squared: 0.3031, Adjusted R-squared:
## F-statistic: 42.62 on 1 and 98 DF, p-value: 2.953e-09
#Inference:p-value is less than 0.05.Confidence is only 29%
model8 = lm(Satisfaction~SalesFImage , data = mydata)
summary(model8)
##
## Call:
## lm(formula = Satisfaction ~ SalesFImage, data = mydata)
```

```
##
## Residuals:
      Min
                10 Median
                                3Q
                                       Max
## -2.2164 -0.5884 0.1838 0.6922 2.0728
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                     8.000 2.54e-12 ***
## (Intercept) 4.06983
                           0.50874
                                     5.719 1.16e-07 ***
## SalesFImage 0.55596
                           0.09722
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.037 on 98 degrees of freedom
## Multiple R-squared: 0.2502, Adjusted R-squared: 0.2426
## F-statistic: 32.7 on 1 and 98 DF, p-value: 1.164e-07
#Inference : p-value is less than 0.05 and confidence is 24%
model9 = lm(Satisfaction~ComPricing , data = mydata)
summary(model9)
##
## Call:
## lm(formula = Satisfaction ~ ComPricing, data = mydata)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -1.9728 -0.9915 -0.1156 0.9111
                                   2.5845
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 8.03856
                           0.54427
                                   14.769
                                             <2e-16 ***
## ComPricing -0.16068
                           0.07621
                                   -2.108
                                             0.0376 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.172 on 98 degrees of freedom
## Multiple R-squared: 0.04339,
                                   Adjusted R-squared:
## F-statistic: 4.445 on 1 and 98 DF, p-value: 0.03756
#p-value is less than 0.05 and confidence is only 3%
model10 = lm(Satisfaction~WartyClaim , data = mydata)
summary(model10)
##
## Call:
## lm(formula = Satisfaction ~ WartyClaim, data = mydata)
## Residuals:
##
        Min
                  1Q
                       Median
                                    3Q
                                            Max
## -2.36504 -0.90202 0.03019 0.90763
                                        2.88985
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 5.3581
                           0.8813 6.079 2.32e-08 ***
## WartyClaim
                0.2581
                           0.1445
                                    1.786
                                            0.0772 .
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 1.179 on 98 degrees of freedom
## Multiple R-squared: 0.03152,
                                   Adjusted R-squared:
## F-statistic: 3.19 on 1 and 98 DF, p-value: 0.0772
#p-value is not less than 0.05 and confidence is only 2%
model11 = lm(Satisfaction~OrdBilling , data = mydata)
summary(model11)
##
## Call:
## lm(formula = Satisfaction ~ OrdBilling, data = mydata)
##
## Residuals:
               10 Median
      Min
                               3Q
                                      Max
## -2.4005 -0.7071 -0.0344 0.7340 2.9673
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                                    8.377 3.96e-13 ***
## (Intercept)
                4.0541
                           0.4840
                                    6.054 2.60e-08 ***
## OrdBilling
                0.6695
                           0.1106
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.022 on 98 degrees of freedom
## Multiple R-squared: 0.2722, Adjusted R-squared: 0.2648
## F-statistic: 36.65 on 1 and 98 DF, p-value: 2.602e-08
#p-value is less than 0.05 and confidence is only 26%
```

5. Principle Component Analysis

```
#Lets now create a new model for the satisfaction including all the factors on
which it would depend like product quality, tech support etc.
model13 = lm(Satisfaction~.,data = mydata)
summary(model13)
##
## Call:
## lm(formula = Satisfaction ~ ., data = mydata)
##
## Residuals:
                  1Q
                       Median
                                    3Q
                                            Max
## -1.43005 -0.31165
                      0.07621 0.37190
                                        0.90120
## Coefficients:
```

```
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.66961
                            0.81233
                                     -0.824
                                              0.41199
## ProdQual
                            0.05177
                                      7.173 2.18e-10 ***
                0.37137
                                     -3.289
## Ecom
               -0.44056
                            0.13396
                                              0.00145 **
## TechSup
                0.03299
                            0.06372
                                      0.518
                                              0.60591
## CompRes
                0.16703
                            0.10173
                                      1.642
                                              0.10416
## Advertising -0.02602
                                              0.67382
                            0.06161
                                     -0.422
## ProdLine
                0.14034
                            0.08025
                                      1.749
                                              0.08384
                                      8.247 1.45e-12 ***
## SalesFImage
                0.80611
                            0.09775
## ComPricing
               -0.03853
                            0.04677
                                     -0.824
                                              0.41235
## WartyClaim
                                              0.40587
               -0.10298
                            0.12330
                                     -0.835
## OrdBilling
                0.14635
                            0.10367
                                      1.412
                                              0.16160
## DelSpeed
                0.16570
                            0.19644
                                      0.844
                                              0.40124
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5623 on 88 degrees of freedom
## Multiple R-squared: 0.8021, Adjusted R-squared: 0.7774
## F-statistic: 32.43 on 11 and 88 DF, p-value: < 2.2e-16
par(mfrow = c(2,2))
plot(model13)
```



```
vif(model13)
                                                                       ProdLine
##
      ProdQual
                                 TechSup
                                              CompRes Advertising
                       Ecom
##
      1.635797
                   2.756694
                                2.976796
                                             4.730448
                                                          1.508933
                                                                       3.488185
                                           OrdBilling
                 ComPricing
                              WartyClaim
                                                          DelSpeed
## SalesFImage
##
      3.439420
                   1.635000
                                3.198337
                                             2.902999
                                                          6.516014
```

#From the above linear model13 we see that out of 11 factors only 3 of them are highly significant namely "ProdQual", "Ecom" and Sales FI mage"

```
#Lets implement Factor analysis on the dataset
#To do the factor analysis lets first create a subset of the dataset containing
only the independent variables
subset_mydata = subset(mydata, select = c(-12))
corr3 = cor(subset mydata)
KMO(r=corr3)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = corr3)
## Overall MSA = 0.65
## MSA for each item =
      ProdOual
                               TechSup
                                            CompRes Advertising
                                                                   ProdLine
##
                      Ecom
##
          0.51
                                  0.52
                                               0.79
                                                           0.78
                                                                       0.62
                      0.63
## SalesFImage ComPricing
                            WartyClaim
                                        OrdBilling
                                                       DelSpeed
          0.62
                                               0.76
                                                           0.67
##
                      0.75
                                  0.51
#since MSA > 0.5 we can go ahead with the factor analysis
ev = eigen(corr)
Eigen Values = ev$values
Eigen_Values
    [1] 4.04285997 2.55292440 1.69222417 1.21754639 0.63596293 0.56853132
    [7] 0.40282774 0.32448016 0.23613948 0.14422355 0.09913845 0.08314143
```

#We have the eigen values we can now find the factors which should be appropiat e for the test.

 $\# Eigen\ values > 1\ can\ be\ considered\ as\ number\ of\ factors\ to\ consider\ for\ PCA\ (K\ aizer\ principle)$


```
#from the graph we see that number of factors which can be considered for PCA i
s 4.
factor analysis1 = fa(r = subset mydata, nfactors = 4, rotate = "varimax", fm =
print(factor_analysis1)
## Factor Analysis using method = pa
## Call: fa(r = subset_mydata, nfactors = 4, rotate = "varimax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##
                PA1
                      PA2
                            PA3
                                  PA4
                                        h2
                                              u2 com
## ProdQual
               0.02 -0.07
                           0.02 0.65 0.42 0.576 1.0
## Ecom
                     0.79
                           0.03 -0.11 0.64 0.362 1.1
               0.07
## TechSup
               0.02 -0.03 0.88 0.12 0.79 0.205 1.0
## CompRes
               0.90
                     0.13 0.05 0.13 0.84 0.157 1.1
## Advertising 0.17
                     0.53 -0.04 -0.06 0.31 0.686 1.2
## ProdLine
               0.53 -0.04
                           0.13 0.71 0.80 0.200 1.9
## SalesFImage 0.12
                     0.97
                           0.06 -0.13 0.98 0.021 1.1
                     0.21 -0.21 -0.59 0.44 0.557 1.6
## ComPricing -0.08
## WartyClaim
               0.10
                     0.06
                           0.89
                                 0.13 0.81 0.186 1.1
## OrdBilling
               0.77
                     0.13
                           0.09 0.09 0.62 0.378 1.1
               0.95
                     0.19 0.00 0.09 0.94 0.058 1.1
## DelSpeed
##
                         PA1 PA2 PA3 PA4
##
                        2.63 1.97 1.64 1.37
## SS loadings
## Proportion Var
                        0.24 0.18 0.15 0.12
## Cumulative Var
                        0.24 0.42 0.57 0.69
## Proportion Explained 0.35 0.26 0.22 0.18
## Cumulative Proportion 0.35 0.60 0.82 1.00
##
## Mean item complexity = 1.2
## Test of the hypothesis that 4 factors are sufficient.
## The degrees of freedom for the null model are 55 and the objective functio
n was 6.55 with Chi Square of 619.27
## The degrees of freedom for the model are 17 and the objective function was
0.33
##
## The root mean square of the residuals (RMSR) is 0.02
## The df corrected root mean square of the residuals is 0.03
##
## The harmonic number of observations is 100 with the empirical chi square 3
.19 with prob <
## The total number of observations was 100 with Likelihood Chi Square = 30.
   with prob < 0.024
##
## Tucker Lewis Index of factoring reliability = 0.921
## RMSEA index = 0.096 and the 90 % confidence intervals are 0.032 0.139
## BIC = -48.01
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy
                                                     PA1 PA2
                                                               PA3
## Correlation of (regression) scores with factors
                                                    0.98 0.99 0.94 0.88
```

Multiple R square of scores with factors
Minimum correlation of possible factor scores

0.96 0.97 0.88 0.78 0.93 0.94 0.77 0.55

#Let us see the module of grouping of the factors.
fa.diagram(factor_analysis1)

#Diagram suggests 4 Principle Components

Sr. No.	Factors	Variables	Label	Short Description
1	PA1	DelSpeed, CompRes & OrdBilling	Purchase	Variables related to Order Placing, Order Delivery and Complaints
2	PA2	SalesFImage, Ecom & Advertising	Marketing	Variables are related to Website experience, Advertising, etc
3	PA3	TechSup & WartyClaim	Support	Variables are related to product support experience
4	PA4	ProdQual, ComPricing & ProdLine	Product	Variables are related to the product variety and pricing

6. Multiple Linear Regression after PCA

```
#Let us perform the regression analysis
regression_data = cbind(mydata[12],factor_analysis1$scores)
head(regression_data)
##
     Satisfaction
                         PA1
                                    PA2
                                                 PA3
                                                             PA4
## 1
              8.2 -0.1338871 0.9175166 -1.719604873
                                                     0.09135411
## 2
              5.7
                   1.6297604 -2.0090053 -0.596361722
                                                      0.65808192
## 3
              8.9 0.3637658 0.8361736 0.002979966 1.37548765
## 4
              4.8 -1.2225230 -0.5491336 1.245473305 -0.64421384
## 5
              7.1 -0.4854209 -0.4276223 -0.026980304 0.47360747
## 6
              4.7 -0.5950924 -1.3035333 -1.183019401 -0.95913571
names(regression_data) = c("Satisfaction", "Purchase", "Marketing", "Support", "
Product")
head(regression data)
##
     Satisfaction
                    Purchase Marketing
                                             Support
                                                         Product
## 1
              8.2 -0.1338871 0.9175166 -1.719604873 0.09135411
## 2
              5.7 1.6297604 -2.0090053 -0.596361722 0.65808192
## 3
              8.9 0.3637658 0.8361736 0.002979966
                                                     1.37548765
## 4
              4.8 -1.2225230 -0.5491336 1.245473305 -0.64421384
## 5
              7.1 -0.4854209 -0.4276223 -0.026980304 0.47360747
## 6
              4.7 -0.5950924 -1.3035333 -1.183019401 -0.95913571
str(regression_data)
## 'data.frame':
                    100 obs. of 5 variables:
   $ Satisfaction: num 8.2 5.7 8.9 4.8 7.1 4.7 5.7 6.3 7 5.5 ...
## $ Purchase
                : num
                        -0.134 1.63 0.364 -1.223 -0.485 ...
                  : num 0.918 -2.009 0.836 -0.549 -0.428 ...
## $ Marketing
##
   $ Support
                  : num
                        -1.7196 -0.59636 0.00298 1.24547 -0.02698 ...
                  : num 0.0914 0.6581 1.3755 -0.6442 0.4736 ...
  $ Product
#Divide the data into test set and train set
set.seed(1)
sample_data = sample(1:nrow(regression_data),0.7*nrow(regression_data))
train_data = regression_data[sample_data,]
test_data = regression_data[-sample_data,]
str(test data)
## 'data.frame':
                    30 obs. of 5 variables:
## $ Satisfaction: num 8.9 4.8 7.1 6.3 7 5.5 6 8 6.6 6.8 ...
## $ Purchase
                 : num 0.364 -1.223 -0.485 -0.113 0.958 ...
## $ Marketing
                        0.836 -0.549 -0.428 -0.131 0.348 ...
                  : num
##
   $ Support
                  : num 0.00298 1.24547 -0.02698 -0.69924 -0.14226 ...
   $ Product
                  : num
                       1.375 -0.644 0.474 -1.366 -0.935 ...
#New regression model be
model14 = lm(Satisfaction~.,data = train data)
summary(model14)
##
## Call:
## lm(formula = Satisfaction ~ ., data = train_data)
```

```
##
## Residuals:
                1Q Median
##
       Min
                                3Q
                                       Max
## -1.7214 -0.4681 0.0869 0.3945
                                    1.1392
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                6.92697
                           0.07987
                                    86.724
                                           < 2e-16
                                     7.539 1.92e-10 ***
## Purchase
                0.58291
                           0.07732
                                      7.826 5.95e-11 ***
## Marketing
                0.59318
                           0.07580
                0.02175
                           0.08450
                                      0.257
                                               0.798
## Support
                                     6.656 7.00e-09 ***
                0.59345
## Product
                           0.08916
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.6616 on 65 degrees of freedom
## Multiple R-squared: 0.7396, Adjusted R-squared: 0.7236
## F-statistic: 46.16 on 4 and 65 DF, p-value: < 2.2e-16
par(mfrow = c(2,2))
plot(model14)
```



```
vif(model14)
## Purchase Marketing Support Product
## 1.016649 1.023243 1.005772 1.001513
## R-squared for train dataset
summary(model14)$r.squared
## [1] 0.7396184
```

```
#predict the train model
pred_train = predict(model14,train_data)
#train model performance
mse_train_perf = mse(train_data$Satisfaction,pred_train)
rmse_train_perf = sqrt(mse_train_perf)
print(rmse_train_perf)
## [1] 0.6375662
pred_test = predict(model14,test_data)
#prediction model performance
mse_test_perf = mse(test_data$Satisfaction , pred_test)
rmse_test_perf = sqrt(mse_test_perf)
print(rmse_test_perf)
## [1] 0.6916997
## R-squared for Test dataset
cor(test data$Satisfaction, pred test)^2
## [1] 0.556584
```

Value	Train Data	Test Data
R-Squared	0.7396184	0.556584
RMSE	0.6375662	0.6916997

There is not much variation in the R-squared and RMSE values of the trained and test datasets; so it can be inferred that the model is good and not over fitting.

Customer Satisfaction is having variation because of Purchase, Marketing and Product variety. The equation here would be:

Satisfaction = 0.58291 *Purchase + 0.59318 *Marketing + 0.59348*Product