Actividad No. (2) 2024 Cálculo Vectorial.

Nombres: Camilo Rivera, Emerson Tavera, Karen Torres

- 1 Diga si la afirmación es verdadera o falsa. Justifique sus respuestas:
- a) La gráfica del dominio de $f(x,y) = \ln(9x^2 y^2 9)$

R// Falso
Pues Dada la función:
$$f(x,y) = \ln(9x^2 - y^2 - 9)$$

 $9x^2 - y^2 - 9 > 0$
 $9x^2 - y^2 > 9$
 $x^2 - \frac{y^2}{9} > 1$

lo que representado gráficamente es:

b)
$$F_{xx} = \frac{1}{2\cos(x)}$$
; $Si\ f(x,y) = \int_{y}^{x} \ln(\cos(t)) dt$.

$$f(x,y) = \int_{y}^{x} \ln(\cos(t)) dt$$

 f_x teorema fundamental del cálculo

$$f_x = \frac{\partial}{\partial x} \int_y^x \ln(\cos(t)) dt = \ln(\cos(x))$$

 f_{xx} regla de la cadena para diferenciar f_x con respecto a $x\colon$

$$f_{xx} = \frac{d}{dx}\ln(\cos(x)) = \frac{1}{\cos(x)} \cdot (-\sin(x)) = -\tan(x)$$

R// Falso
$$f_{xx} = -\tan(x) \neq \frac{1}{2\cos(x)}$$

c)
$$F_{yy} = \frac{y}{\cos(y)}$$
; $Si\ f(x,y) = \frac{\sin(x+y)}{x}$

$$f(x,y) = \frac{\sin(x+y)}{x}$$