

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине:

Введение в искусственный интеллект

	_		
Абидоков Рашид Ширамбиевич			
PK6-11M			
1-2			
Программирование искусственного нейр			
	<u> Абидоков Р. Ш.</u>		
подпись, дата	Абидоков Р. Ш. фамилия, и.о.		
подпись, дата			
	PK6-11M 1-2		

Оглавление

Задание на лабораторную работу	. 3
Описание входных данных	3
Описание используемой модели	.4
Описание программной реализации	5
Результаты обучения	. 6

Задание на лабораторную работу

Цель лабораторной работы — создание программы, реализующей искусственный нейрон; разработка процедуры обучения нейрона; использование полученных результатов для решения тестовой задачи классификации

Тип нейрона – персептрон

Вариант обучающих данных на Рис.1

Рис 1.

Описание входных данных

Были взяты точки, распределенные на плоскости в соответствии с Рис. 1. Координаты точек и их класс приведены в таблице ниже. Из них был сформирован входной файл points.txt

Табл. 1

i	x_i	y_i	класс
1	7	2	0
2	3	10	1
3	12	3	0

4	6	5	1
5	14	0	0
6	6	9	1
7	17	-2	0
8	8	13	1
9	16	10	1

Рис 2. Принятое распределение точек

Описание используемой модели

Перцептрон – это нейрон со ступенчатой функцией активации, т.е.

$$y_i = f(u_i) = \begin{cases} 1, & u_i \ge 0 \\ 0, & u_i < 0 \end{cases}$$

Где $u_i = \sum_{j=1}^m w_j x_{ij}$ — взвешенная сумма входных сигналов, i — номер объекта обучающей выборки, j — номер параметра, m — количество параметров

Обучение нейрона сводится к подбору весов w_j путем минимизации среднеквадратичной ошибки на обучающей выборке

$$Q = \frac{1}{2} \sum_{i=1}^{n} (y_i - d_i)^2$$

Где n — количество объектов обучающей выборки, d_i — класс i-го объекта

В силу дискретности функции активации и, как следствие, невозможности брать производные функции ошибки, невозможно использование методов оптимизации выше нулевого порядка, таких как, например, градиентные методы.

Поэтому обучение производилось с помощью правила персептрона:

- 1. Выбираются начальные значения весов $w_i = w_{i0}$
- 2. Для каждой обучающей пары $(x_{i1}, x_{i2}), d_i$ выполняется ряд циклов уточнений входных весов:

Вычисляется y_i

Если
$$(d_i - y_i) = 1$$
, то $w_i(t+1) = w_i(t) + \eta x_{ij}$

Если
$$(d_i - y_i) = -1$$
, то $w_i(t+1) = w_i(t) - \eta x_{ij}$

Если $(d_i - y_i) = 0$ или $t = t_{max}$, то цикл прекращается

3. Повторяем циклические проходы по обучающей выборке до тех пор, пока решение не сойдется либо пока не будет превышено максимальное количество итераций

Описание программной реализации

Программная реализация выполнена на языке C++ с использованием компилятора gcc. Считываются координаты и классы точек из входного txt-файла, задается начальное приближение весов, нейрон обучается по алгоритму, описанному выше, после чего выводятся веса после обучения и метки классов d_i и y_i

```
unsigned perceptron::fit_one(const std::vector<std::vector<double> >& X train,
                             const std::vector<bool>& y_train, size_t idx, unsigned max_iter) {
 double y_true = y_train[idx];
 while (count < max_iter) {</pre>
   double y_pred = this->out(X_train[idx]);
   if (y_true == y_pred) {
     break;
   weights_[0] += f_coeff * (y_true - y_pred);
    for (size_t i = 1; i < N_inputs_; i++) {</pre>
     weights_[i] += f_coeff * (y_true - y_pred) * X_train[idx][i - 1];
unsigned perceptron::fit(const std::vector<std::vector<double> >& X_train,
                         const std::vector<bool>& y train, unsigned max iter) {
 unsigned total count = 0;
  for (unsigned iter = 0; iter < max_iter; iter++) {</pre>
    for (size_t i = 0; i < X_train.size(); i++) {</pre>
      total_count += this->fit_one(X_train, y_train, i, 10);
  return total count;
```

Результаты обучения

Обучение производилось с двумя различными начальными значениями весов. В первом случае все веса принимались нулевыми – при таком начальном приближении решение сошлось за два шага

Листинг 2. Вывод программы при нулевом начальном приближении

```
C:\Study\Introduction-to-AI\lab3>bin\main.out
weights0:
w0 : 0
w1 : 0
w2 : 0
weights after fit:
w0 : 0
w1 : -2
w2 : 4
n_iters: 2
p0: y_true0|
p1: y_true1|
p2: y_true0|
p3: y_true1|
p4: y_true0|
                    y_pred0
                    y_pred1
                    y_pred0
      y_true1
                       pred0
pred1
      y_true0
      y_true1
y_true1
                    y_pred1
```


Рис 3. Прямая, соответствующая полученным весам

Табл. 2

N шага	0	1	2
w_0	0	-0.5	0
w_1	0	-3.5	-2
w_2	0	1	4

Во втором случае в качестве начальных весов были приняты значения (-60, -9.5, -3) — при таких весах разделяющая прямая выглядит так, как показано на Рис. 4. Т.е. приближение можно считать плохим

Рис 4. Прямая, соответствующая "плохому" нач. приближению

В этом случае решение сошлось за 4 итерации

Листинг 3. Вывод программы при плохом начальном приближении

N шага	0	1	2	3	4
w_0	-60	-59.5	-59	-58.5	-58
w_1	-9.5	-8	-6.5	-5	-2
w_2	-3	2	7	12	14.5

Рис 5. Прямая, соответствующая полученным весам