Relational Database Administration Notes

Chuks Okoli

18 December, 2023

Week 1

Overview of Database Management Tasks

Typical day for a database administrator:

- Checking the state of the database. Database should be running with no errors.
- Check that scheduled backups have completed and resolve issues.
- Responding to support tickets.
- Meeting with developers and other stakeholders.
- Monitoring database activity.
- Determine appropriate server resources needed for planning a new database.

Database Management Lifecycle

The database lifecycle is shown in Fig. 1.

The database life cycle Monitoring and Maintenance Analysis Design and Plan Design and Plan

Figure 1: The database lifecycle

Requirement analysis

- Understand purpose and scope of the database
 - Establish what data is involved
 - Talk to the users and producers of the data, and develop samples of how users will use the data such as reports and dashboards

• Work with stakeholders such as Developers, Data Engineers, DBAs, Technology Managers, End-Users and determine requirements

Design and Plan

- Develop a plan for implementing the database by working with database objects such as instances, databases, tables, and indexes.
 - Develop database model showing which instances contains which databases and tables, how tables
 relate to each other, how users access data and so on.
 - Design Entity Relationship Diagrams or ERDs
- Determine appropriate server resources like storage space, memory, processing power, and log file size.
- Plan for how database objects are physically stored.

Implementation

- Create and configure database objects like instances, databases, tables, views, and indexes.
- Configuring database security, granting access for database users, groups, and roles
- Automates repeated database tasks such as backups, restores, and deployments to improve efficiency
- Import data from other databases, export data based on a query from a different source, or migrate projects from one environment to another, such as moving a project from the Application Development environment to the Production environment.

Monitoring and Maintenance

- Looks after the daily operations of the database
- Monitor the system for long-running queries and help end-users optimize them to run faster and not overuse system resources
- Review report and monitor activity, identify expensive queries, resource waits
- Apply upgrades and security patches to database software.
- Recommend and implement emerging database technologies
- Automate deployments and routine tasks such as backups whenever possible to keep processes working
 efficiently.
- Reviews logs and alerts, looking for failed logins and data access attempts to identify potential threats and vulnerabilities.
- Maintains database user and application permissions revoking access to users and groups who should no longer have access and adding new users and roles as required to perform their jobs.

Server Objects and Hierarchy

Database Objects

- An instance is a logical boundary for a database or set of databases where you organize database objects and set configuration parameters.
- Common database objects are items that exist within the database such as tables, constraints, indexes, keys, views, aliases, triggers, events, and log files.
- Different RDBMSs use different names for their system objects. Most use the terms system schema, system tables, catalog, or directory.
- Database storage is managed through logical database objects and physical storage.

Week 2

Backup and Restore Databases

Backup and restore refer to the process of backing up data for protection purposes-restoring it after data loss from an unplanned shutdown, accidental deletion, or data corruption.

Backup and Restore scenarios

• Saving a copy of data for protection

- Recovering from data loss
 - After unplanned shutdown
 - Accidental deletion
 - Data corruption
- Move to a different database system
- Share data with business partners
- Use a copy of the data, e.g., in development or test environment

Physical vs. logical backups

- Logical backup
 - Contains DDL and DML commands to recreate database
 - Can reclaim wasted space
 - Slow and may impact performance
 - Granular
 - Backup/restore, import/export, dump & load utilities
- Physical backup
 - Copy of physical files, including logs, and configuration
 - Smaller and quicker
 - Less Granular
 - Can only restore to similar RDBMS
 - Common for specialized storage and cloud

What to backup

- Database
- Schema
- Tables
- Subset of data
- Other objects

Key considerations

- Check that your backup is valid
- Check that your restore plan works
- Ensure that your back up files are secure

Types of Backup

- Full backups complete copy of all of the data in the object or objects that you are backing up
- Point-in-time backups uses logged transactions to restore to an earlier point in time
- Differential backups a copy of any data that has changed since the last full backup was taken
- Incremental backup a copy of any data that has changed since the last backup of any type was taken

Backup Policies

Hot backup or online backup - are performed while the data is in use, while in Cold backup, the data is offline. Many decisions have to be made about backup policies such as:

- Physical or logical
- Full, differential, or incremental
- Hot or cold
- Compression
- Encryption
- Frequency:
 - Is data regularly changing or being added?
 - Is the existing table large?
- Schedule:
 - Is the data accessed equally across the 24-hour day?
 - Is it accessed at weekends?

- Automated backups
- Consider cloud backups

Summary

- The types of backups are full, point-in-time, differential, and incremental.
- The difference between physical backups and logical backups, and between hot backups and cold backups.
- Your backup policy should be determined from your recovery needs and your data usage.
- Database transaction logs keep track of all activities that change the database structure and record transactions that insert, update, or delete data in the database.

Week 3

Monitoring and Optimization

- A shell script is a program that begins with a 'shebang' directive and is used to run commands and programs. Scripting languages are interpreted rather than compiled.
- Filters are shell commands. The pipe operator '|' allows you to chain filter commands.
- Shell variables can be assigned values with '=' and listed using 'set.' Environment variables are shell variables with extended scope, and you can list them with 'env.'
- Metacharacters are special characters that have meaning to the shell.
- Quoting specifies whether the shell should interpret special characters as metacharacters or 'escape' them.
- Input/Output, or I/O redirection, refers to a set of features used for redirecting.
- You can use command substitution to replace a command with its output.
- Command line arguments provide a way to pass arguments to a shell script.
- In concurrent mode, multiple commands can run simultaneously.
- You can schedule cron jobs to run periodically at selected times. 'm h dom mon dow command' is the cron job syntax.
- You can edit cron jobs by running 'crontab -e,' and 'crontab -l' lists all cron jobs in the cron table.

Week 4

Troubleshooting and Automation