기초 인공지능 프로그래밍

10장 MatPlotLib 라이브러리 (데이터 시각화)

- 점이나 선, 막대 그래프 등의 시각적 이미지를 사용하여 데이터를 시각화하는 라이브러리
 - 데이터 분석 및 추론에 도움
 - matplotlib 라이브러리의 pyplot 모듈을 사용

from matplotlib import pyplot as plt 또는 import matplotlib.pyplot as plt

- matplotlib.pyplot 모듈 함수
 - plt.plot(x축값, y축값, 'option')
 - : 라인(실선, 점선....) 플롯을 그리는 함수
 - plt.bar(x축값, y축값)
 - : 수직 막대 그래프를 그리는 함수
 - plt.scatter(x축값, y축값)
 - : 산점도를 그리는 함수
 - plt.pie()
 - : 파이 차트를 그리는 함수
 - plt.title(제목)
 - : 그래프에 제목 붙이는 함수
 - plt.xlabel(제목), plt.ylabel(제목)
 - : x축, y축에 제목 붙이는 함수
 - plt.legend([라인1범례, 라인2범례,])
 - : 각 라인에 대한 범례 추가, 범례를 순서대로 지정하면 됨
 - plt.xlim(n, m), plt.ylim(n, m)
 - : x축, y축의 범위 설정(n에서 m 까지)
 - plt.show()
 - : 그래프를 화면에 표시

■ 선의 색상, 스타일, 마커 등의 옵션(option)을 지정하여 그래프를 그릴 수 있음

color

Character	Color
ʻb'	blue
ʻgʻ	green
'r'	red
'C'	cyan
'm'	magenta
'y'	yellow
'k'	black

line style

Character	description
	dotted line style
''	dashed line style

marker

Character	description
•	point marker
'o'	circle marker
's'	square marker
'*'	star marker
'^'	triangle_up marker

import matplotlib.pyplot as plt plt.plot(x, y) plt.plot(x, y, 'g--o') # green, dashed line, circle marker 지정

■ 2차 함수 (*y* = *x*²) 그래프 그리기

x 값 증가에 따른 y 값 증가 속도를 좀 더 확실하게 파악할 수 있음

■ 3개 함수 그래프 그리기

```
1 import matplotlib.pyplot as plt
     2 import numpy as np
     3 \times = \text{np.arange}(-20, 20)
     4 y1 = x
     5 y2 = x**2
     6 y3 = -x**2
     7 plt.plot(x, y1, 'b:')
     8 plt.plot(x, y2, 'g--o')
     9 plt.plot(x, y3, 'r--*')
    10 plt.legend(["y =x", "y = x**2", "y = -x**2"])
    11 plt.axis([-20, 20, -20, 20])
    12 plt.show()
₽
          ····· v = x

→ v = -x**2
      -5
     -10
     -15
     -20
             -15
                   -10
                                                15
                                          10
```

■ 3개 programming language에 대한 년도 별 20명 학생의 선호도 그래프 그리기(난수로 임의의 데이터 생성)

```
1 import matplotlib.pyplot as plt
2 import numpy as np
3 year = range(2017,2023)
4 Python = np.random.randint(0,21,6)
5 cPlus = np.random.randint(0,21,6)
6 Java = np.random.randint(0,21,6)
7 plt.plot(year, Python)
8 plt.plot(year, cPlus)
9 plt.plot(year, Java)
10 plt.title("Language preference")
11 plt.xlabel("year")
12 plt.ylabel("language")
13 plt.legend(["Python", "Cplus", "Java"])
14 plt.show()
```


■ 특정 날짜의 통화별 매매기준율 그래프 그리기

■ 2차 방정식 그래프 그리기

```
1 import numpy as np
 2 import matplotlib.pyplot as plt
 4 \times = np.arange(20)
 5 \vee = \times * * 2 + 4 * \times + 4
6 plt.plot(x, y)
7 plt.grid("True")
8 plt.xlabel("x")
9 plt.ylabel("x**2 + 4*x + 4")
10 plt.xlim(0, 20)
11 plt.ylim(0, 500)
12 plt.title("perfect square expression")
13 plt.show()
                    perfect square expression
   500
   400
x^{**}2 + 4^*x + 4
  300
  200
   100
                                    12.5
     0.0
            2.5
                  5.0
                         7.5
                              10.0
                                           15.0
                                                 17.5
```

히스토그램은 주어진 데이터를 몇 개의 구간으로 나누고, 각 구간의 빈도를 조사하여 나타내는 막대 그래프이며 데이터의 분포 상태확인에 유용함

■ 평균과 표준편차가 다른 정규 분포 히스토그램

```
1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 %matplotlib inline
 4 \text{ m} = [0, 10, 20, 30]; \text{ std} = [1, 2, 4, 6]
 5 \text{ data} = \text{np.zeros}((\text{len}(\text{m}), 10000))
 6 for i in range(len(m)):
     data[i] = m[i] + std[i]*np.random.randn(10000)
       plt.hist(data[i], bins = 20)
 9 plt.xlabel("value")
10 plt.ylabel("freq")
11 plt.show()
  1600
  1400
  1200
  1000
   800
   600
   400
   200
                           20
                                   30
                                           40
                                                   50
                              value
```

■ 평균 0과 여러 표준 편차 값으로 정규 분포 데이터를 10개씩 얻어 데이터의 분포 상태를 그래프 그리기

```
1 import numby as no
2 import matplotlib.pyplot as plt
3 std = [10, 20, 30, 40]
4 data = np.zeros((len(std), 5))
5 for i in range(len(std)):
      data[i] = np.random.normal(0, std[i], 5) #평균 0, 표준 편차 std[i]인 데이터 5개
      plt.plot(data[i])
8 plt.legend(["std = "+str(std[0]), "std = "+str(std[1]), "std = "+str(std[2]), "std = "+str(std[3])]) # 범례
9 plt.show()
 60
 40
 20
 0
-20
        std = 10
        std = 20
-40
        std = 30
        std = 40
         0.5
              1.0
                   1.5
                        2.0
                             2.5
                                  3.0
                                       3.5
```

- 여러 개의 그래프 그리기
 - 도화지 한 장에 그래프 한 개 그리기 개념이면 앞 강의 예제와 같은 방식으로 그리면 됨
 - 표현할 각 그래프가 서로 연관성이 없는 그래프인 경우는 그래프를 각자의 도화지에 그리는 것이 좋음
 - 같은 주제이거나 연관성이 있는 그래프인 경우는 하나의 도화지를 영역 분할하여 같이 그리는 것이 좋음
 - figure : 도화지에 해당
 - subplot : figure 에서 그래프가 그려지는 영역

- 여러 개의 figure에 각 그래프 그리기
 - 지정한 ID를 가지는 figure를 생성
 - 선택된 figure에 그래프 그리기

```
1 import matplotlib.pyplot as plt
2 import numpy as np
3 \text{ year} = \text{range}(2017, 2023)
4 Python = np.random.randint(0,21,6)
5 \text{ cPlus} = \text{np.random.randint}(0,21,6)
6 \text{ Java} = \text{np.random.randint}(0.21.6)
7 \text{ fig1} = \text{plt.figure}(1, \text{ figsize} = (4,3))
8 plt.plot(year, Python)
9 plt.title("Python Language")
10 fig2 = plt.figure(2, figsize = (4,3))
11 plt.plot(year, cPlus)
12 plt.title("C plus Language")
13 \text{ fig3} = \text{plt.figure}(3, \text{ figsize}/= (4,3))
14 plt.plot(year, Java)
15 plt.title("Java Language")
16 plt.show()
```

ID, size 지정을 해주지 않아도 됨

- 하나의 figure에 여러 개의 그래프 그리기
 - figure를 원하는 만큼의 subplot으로 구분하여 각 sbuplot에 그래프 그림

