Traductores finitos

Limitaciones de los AF

Cuando hablamos de Autómatas finitos vemos que la salida se limita a una respuesta binaria, es decir TRUE o FALSE. La única tarea explícita que realizan los autómatas finitos es reconocer un lenguaje, mientras que las computadoras pueden realizar cálculos y proveer resultados, es decir, proporcionar SALIDA.

A lo que surgen las máquinas **Moore** y **Mealy** que eliminan esta limitación y proporcionan resultados. Son AUTÓMATAS FINITOS **con SALIDA**

Veamoslas más en detalle :)

Máquina de Mealy

La salida del autómata (TF) está asociada con cada transición y es fija para cada símbolo y estado

Definimos $M = (Q, \Sigma, \Gamma, \delta, \omega, q_0)$ donde:

- Σ alfabeto de entrada.
- Γ alfabeto de salida. $\varphi \in \Gamma$ cadena vacía
- Q conjunto de estados, un conjunto finito y no vacío.
- q_0 estado inicial; $q_0 \in Q$.
- δ función de transición de estados; $\delta: Q \times \Sigma \to Q$.
- ω función de salida; $\omega: Q \times \Sigma \to \Gamma$.

Ejemplo de Máquina de Mealy

Sea el TF B = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$ dado por $\Sigma = \{a, b\}, \Gamma = \{0, 1\}, Q = \{q_0, q_1\}$

δ	а	b
\mathbf{q}_0	\mathbf{q}_0	q_1
q_1	\mathbf{q}_0	$q_{\mathtt{1}}$

ω	а	b
q_0	0	0
q_1	1	1

 q_1

Ejemplo de Máquina de Mealy

La función extendida de salida para B es una función $\omega^*: \mathbb{Q} \times \Sigma^* \to \Gamma^*$ definida como

1.
$$(\forall t \in Q) \omega^*(t, \lambda) = \lambda$$

2.
$$(\forall t \in Q)(\forall x \in \Sigma^*)(\forall a \in \Sigma)(\omega^*(t, ax) = \omega(t, a) \omega^*(\delta(t, a), x))$$

Notar que ω^* preserva la longitud : $(\forall t \in Q)(\forall x \in \Sigma^*) (|\omega^*(t,x)| = |x|)$.

Teorema de asociatividad

Sea A = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$ un TF:

• Entonces $(\forall x \in \Sigma^*)(\forall y \in \Sigma^*)(\forall q \in Q) (\omega^*(q, yx) = \omega^*(q, y) \cdot \omega^*(\delta^*(q, y), x))$

El resultado de la concatenación es la concatenación de los resultados

• $(\forall x \in \Sigma^*)(\forall y \in \Sigma^*)(\forall q \in Q)(\delta^*(q, yx) = \delta^*(\delta^*(q, y), x))$

El estado de la concatenación es la composición de las transiciones

Ejemplo del teorema

Si calculamos

$$\omega*(q0, y) \Rightarrow \omega*(q0, abaab) \Rightarrow 00100, y \delta*(q0, y) \Rightarrow q1$$

Sabemos que $\omega*(q1, baa) \Rightarrow 110$, y entonces :

 $\omega*(qq, abaabbaa) = \omega*(q0, yx) = \omega*(q0, y) \cdot \omega*(\delta(qq, y), x) = 00100110$

Función de traducción

Definimos la función de traducción para M,

denotada f_M , $f_M : \Sigma^* \rightarrow \Gamma^*$

Def: $f_{M}(x) = \omega * (q0, x)$

Notar que F_M preserva longitudes: $(\forall x \in \Sigma *)(|f_M(x)| = |x|)$

$$w^*(q_0,abaab) = f_M(abaab) = 00100$$

Equivalencias entre TFs

Sea A = $\langle QA, \Sigma, \Gamma, \delta A, \omega A, q0A \rangle y$ B = $\langle QB, \Sigma, \Gamma, \delta B, \omega B, q0B \rangle máquinas de Mealy :$

- A es equivalente a B si y sólo si f_Δ = f_B.
- A es la **mínima** máquina de Mealy para la traducción f_A sii para todo otro traductor finito B para el cual $f_A = f_B$, $||Q_A|| \le ||Q_B||$

Dado un TF M = $\langle Q, \Sigma, \Gamma, \delta, \omega, q0 \rangle$,

E_M es la relación de equivalencia de estados sobre M y está definida por

$$(\forall s \in Q)(\forall t \in Q)(sEMt \Leftrightarrow (\forall x \in \Sigma^*)(\omega^*(s,x) = \omega^*(t,x))$$

Esta equivalencia se puede llamar Equivalencia observacional

Máquina de Moore

La salida del autómata (TF) está asociada con cada estado, es fija para cada estado y el concepto de estado final **no existe** en la máquina de Moore

Definimos el MSM $M = (Q, \Sigma, \Gamma, \delta, \omega, q_0)$ donde:

- alfabeto de entrada.
- alfabeto de salida.
- conjunto de estados, conjunto finito y no vacío.
- q_0 estado inicial; $q_0 \in Q$.
- función de transición de estados; $\delta: Q \times \Sigma \rightarrow Q$.
- función de salida; $\omega: Q \to \Gamma$.

Ejemplo de Máquina de Moore

Dada la MSM $M = (Q, \Sigma, \Gamma, \delta, \omega, q_0)$

Definimos la función de salida extendida como:

•
$$(\forall t \in Q) \omega^*(t, \lambda) = \lambda$$

• $\forall t \in Q$)($\forall x \in \Sigma$ *)($\forall a \in \Sigma$)(ω *(t, ax) = ω (δ (t, a)) ω *(δ (t, a), x))

δ/ω	input		output
	α=0	α=1	
q ₀	q ₃	q 1	0
q 1	q ₁	q ₂	1
q ₂	q ₂	q₃	0
q₃	q ₃	q₀	0

Segundo ejemplo

Contador de ocurrencias de aab

$$M = \langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$$

$$Q = \{q0,q1,q2,q3\}$$

$$\Sigma = \{a,b\}$$

$$\Gamma = \{0,1\}$$

La cantidad de 1's en la salida es el número de veces que "aab" aparece en la entrada

Dada una MSM M = $\langle Q, \Sigma, \Gamma, \delta, \omega, q0 \rangle$

Definimos la función de traducción para M,

denotada por f_M , $f_M : \Sigma * \rightarrow \Gamma *$

Def: definida por $f_M(x) = \omega^*(q0, x)$

Equivalencia entre autómatas de Mealy y Moore

$MSM \rightarrow TF$

Dada una MSM A = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$

Definimos la correspondiente máquina de Mealy M está dada por

 $M = \langle Q, \Sigma, \Gamma, \delta, \omega', q_0 \rangle, \text{ donde } \omega' \text{ está definida por } (\forall a \in \Sigma)(\forall q \in Q)(\omega'(q, a) = \omega(\delta(q, a)))$

Teorema: Dada una MSM A = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$

Definimos la correspondiente máquina de Mealy M = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$

es equivalente a A; esto es, $(\forall x \in \Sigma^*)(f_M(x) = f_\Delta(x))$

Ejemplo MSM → TF

$$(\forall a \in \Sigma)(\forall q \in Q)(\omega'(q, a) = \omega(\delta(q, a)))$$

$\mathsf{TF} \to \mathsf{MSM}$

Dada una TM M = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$

Definimos la correspondiente máquina de Moore A está dada por

 $A=\langle Q\times\Gamma, \Sigma, \Gamma, \delta', \omega'\langle q_0, \alpha\rangle \rangle$, donde α (arbitrario) y δ' está definida por

 $(\forall q \in Q)(\forall b \in \Gamma)(\forall a \in \Sigma)(\delta'(\langle q,b\rangle,a)=(\delta(q,a),\omega(q,a)))$ y ω' está definida por $(\forall q \in Q)(\forall b \in \Gamma)(\omega'(\langle q,b\rangle)=b)$

Teorema: Dada una TM M = $\langle Q, \Sigma, \Gamma, \delta, \omega, q_0 \rangle$,

Definimos la correspondiente máquina de Moore A = $\langle Q \times \Gamma, \Sigma, \Gamma, \delta', \omega' \langle q0, \alpha \rangle$

es equivalente a M; esto es, $(\forall x \in \Sigma^*)(f_A(x) = f_M(x))$

Ejemplo TF → MSM

Detector de secuencia binaria

m_n: ningún símbolo reconocido m₁: subcadena 1 reconocida m₁₀: subcadena 10 reconocida m₁₀₁: cadena 101 reconocida

Máquina de Mealy

Máquina de Moore

Control del tráfico

Se quiere diseñar una máquina de estados que permita detectar vehículos que circulan en dirección contraria por una carretera. Dicho sistema tendrá dos entradas e1 y e2 que serán las señales de dos células fotoeléctricas. Dependiendo del orden de activación de dichas señales se podrá detectar si el vehículo circula en sentido correcto o no. Las células están situadas a una distancia menor que la longitud del vehículo y la separación entre vehículos

Control del tráfico: Máquina de Mealy

m \ e ₁ e ₂	00	01	10	11	Salida
m1	m1	m5	m2	x	0
m2	Χ	Χ	m2	m3	0
m3	Χ	m4	Χ	m3	0
m4	m1	m4	Χ	Χ	0
m5	Χ	m5	Χ	m6	1
m6	Χ	Χ	m7	m6	1
m7	m1	Χ	m7	Χ	1

Control del tráfico: Máquina de Moore

Tabla de transición de estados					
m \ e ₁ e ₂	00	01	10	11	Salida
NO	NO	SI	SC	x	0
SC	NO	SC	SC	SC	0
SI	NO	SI	SI	SI	1