SYNCHRONOUS MOTOR LAB

EEE3091F: Lab Report

Prepared By:

Ronak Mehta - MHTRON001 Lab Session #: 3A

Faculty of Engineering and the Built Environment

09th May 2019

AIM

To determine the operating characteristics of a synchronous machine connected to Infinite Bus bars, to measure the parameters of the equivalent circuit and to use this circuit to verify the motor performance.

DATA

Watt meter multiplication factor = X20 VAR meter multiplication factor = X30

Table 1: Effect of Field current

I _{ac} [A]	V _{ac} [V]	Power[W]	Power factor	If [A]	Idrive [A]	Rotor angle	VARs	VAR flow direction	Lead/Lag
5.0	228	120	0.099	8.5	0.7	88.0°	1200	+ve	Lag
2.5	229	80	0.139	6.8	0.7	87.5°	570	+ve	Lag
0.0	229	<mark>40*</mark>	0.555	5.4	0.7	89.0°	<mark>60*</mark>	Neutral	Neutral
2.5	229	100	0.173	3.6	0.7	88.0°	570	-ve	Lead
5.0	229	140	0.119	1.9	0.7	89.0°	1170	-ve	Lead

^{*}Should be zero but there is an offset

Table 2: Effect of Mechanical Power Flow

I _{ac} [A]	V _{ac} [V]	Power[W]	Power factor	I _f [A]	Idrive [A]	Rotor angle	VARs	VAR flow direction	Lead/Lag
2.0	229	400	0.976	5.3	0.70	102°	90	-ve	Lead
1.0	229	160	0.936	5.3	0.65	96°	60	-ve	Lead
0.0	229	20	1.000	5.25	0.60	90°	0	Neutral	Neutral
1.0	229	140	0.978	5.2	0.60	86°	30	+ve	Lag
2.0	227	400	0.997	5.2	0.35	78°	<mark>30*</mark>	+ve	Lag

^{*}There seems to be an issue as the value should have been around 90 VARs

Table 3: Exercise

I _{ac} [A]	V _{ac} [V]	Power[W]	Power factor	I _f [A]	Idrive [A]	Rotor angle	VARs	VAR flow direction	Lead/Lag
2.15	229	300	0.8	6.4	0.65	98°	225	+ve	Lag

Calculations for Exercise:

Pf = cos(arctan (VAR/W))

0.8 = cos(arctan (VAR/W)) tan(arccos (0.8)) = VAR/W 0.75 = VAR/W

If W = 300:

VAR = 0.75*300 = **225**

Table 4: Effect of Field Current

If [A]	V _{ac} [V]	Speed [rpm]		
5.22	230	3040		
4	188	3040		
3	139	3040		
2	99	3040		
0	0	3040		

Table 5: Short circuit test

If [A]	I _{ac} [A]	Speed [rpm]		
4.9	7.25	2950		
4	6.20	2980		
3	4.55	2995		
2	2.95	3000		
0	0	3000		

Stator Resistance:

 $A = 0.828 \Omega$

B = 0.937 Ω

 $C = 0.870 \Omega$

Average = 0.878Ω

Hence, Stator resistance, R = 0.878 Ω

RESULTS

Question 1:

Question 2:

Given that the supply has a frequency of 50Hz and the machine is 2-pole, the theoretical synchronous speed is:

Ns =
$$(120*f)/p = (120*50)/2 = 3000rpm$$

From tables 4 and 5, we see that the maximum speed is 3040rpm.

Then maximum error =
$$\frac{3040-3000}{3000}$$
 * 100% = $\underline{1.33\%}$

This agrees well within the accuracy of the tachogenerator which is ±1.5%

Question 3:

By adjusting I_f , it is possible to get more than one identical value for I_{ac} . This is possible because the machine can supply reactive power (act as an inductor) or absorb reactive power (act as a capacitor). As a result, we get similar I_{ac} values for different I_f values since the direction of VARs get changed. This can be seen in tables 1 and 2.

Question 4:

This machine is known as a synchronous condenser and is operated in a borderline condition between a motor and a generator with no mechanical load to fulfill this condition. It can compensate either a lagging or a leading power factor by absorbing or supplying reactive power to the line. This enhances power-line voltage regulation.

Question 5:

When the machine was supplying VARs to the system, the rotor angle was lagging.

Question 6:

Figure 1: Open circuit voltage vs. Field current

Figure 2: Short circuit current vs. Field current

Using E_f =
$$I_a * \sqrt{Xs^2 + R^2}$$
 , where R = 0.878 Ω

E _f [V]	I _a [A]	$(Xs)^2 [\Omega^2]$	Xs [Ω]	I _f [A]
230	7.25	1005.65	31.71199	5
188	6.2	918.688	30.30987	4
139	4.55	932.498	30.53683	3
99	2.95	1125.457	33.54783	2
0	0	0	0	0

Figure 3: Xs vs. Field current

> Xs departs from a linear curve because the machine is driven into saturation.

$$Xs (rated) = \sqrt{\left(\frac{Ef \ airgap}{Iac}\right)^2 - R^2}$$

Xs (rated) =
$$\sqrt{(\frac{270}{7.7})^2 - 0.878^2}$$
 = 35.05 Ω

- \triangleright Xs (rated) = 35.05 Ω
- \triangleright Average Xs from graph = 31.53 Ω

Xs as a percentage of the rated basis = $\left(\frac{31.53}{35.05}\right) * 100\% = 89.96\%$

Stator resistance as a percentage = 0.878*100% = 87.8%

Equivalent Circuit Diagram:

where:

Ta: 2.15A, Ra = 0.8781 , Xs= 31531 , V= 229 V

Ia = 1Ep12(0,-6) - No1200

 $|T_a^* z_s| = E_f \cos(\theta_s - \delta) + E_f \sin(\theta_s - \delta) - V_t$ $(2.15)(\sqrt{(31.53)^2 + 0.878)^2}) = E_f 238.83 [\cos(\theta_s - \delta) + \sin(\theta_s - \delta)] - 229$ $\cos(\theta_s - \delta) + \sin(\theta_s - \delta) = 1.243$ Let $\alpha = \theta_s - \delta$

181883300

(1-51n2d) + sind = 1.243

25in2d - 2.4865md + 0.545 = 0 sind = 0.2842 or sind 0.95ce d = 16.51

but d = 0s - 8 S = 0s - d = 90 - (-16.51)Potox Angle $\rightarrow 8 = 106.51^{\circ}$

(m)= (Ef) + (Ve)2 - 2(Ef)(Ve) cos 106.51.

 $|\vec{m}| \cos \beta = 200 \text{ V}_t$ $|\vec{k}| = 374.89 \cos \beta = 229$ $|\beta| = 52.35^{\circ}$ $|\theta| = 90 - \beta = 90 - 52.35^{\circ}$ $|\theta| = 37.65$ $|\vec{p}| = \cos \theta = 0.79$

Thus, the measured power factor and rotor angle agree with the calculated value expressed as a percentage of the measured value in the following way:

Active Power = $s*cos\theta = 380*cos(37.65) = 300.9W$ Reactive Power = $s*sin\theta = 380*sin(37.65) = 232.1 VAR$

- % error in Rotor angle = $\frac{106.5 98}{98}$ * 100% = 8.67%
- % error in PF = $\frac{0.8 0.79}{0.8}$ * 100% = 1.25%
- % error in Reactive Power = $\frac{232.1 225}{225}$ * 100% = 3.16%
- % error in Active Power = $\frac{300.9 300}{300}$ * 100% = 0.3%

Hence:

Power factor = **0.79 ± 1.25%**

Reactive Power = (232.10 ± 3.16%) VARs

Real Power = (300.9 ± 0.3%) Watts