Examenul de bacalaureat național - SIMULARE-Decembrie 2024

Proba E. d)

Proba scrisă la FIZICĂ

BAREM DE EVALUARE ŞI NOTARE

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ

(45 puncte)

Subjectul I

Nr.Item	Soluţie,rezolvare	Punctaj
I.1.	a	3p
2.	c	3p
3.	b	3p
4.	c	3p
5.	b	3p
TOTAL 1	pentru Subiectul I	15p

A.Subiectul al II-lea

II.a.	Reprezentarea F ; G_1 ; G_2 ; G_3 ; T_1 ; T_2	6x0,5p	3 p
b.	$m_1 \cdot a = T_1 - m_1 \cdot g \Rightarrow T_1 = m_1 (a + g)$	1p	4p
	$m_2 \cdot a = T_2 - m_2 \cdot g \Rightarrow T_2 = m_2 \cdot (a + g)$	1p	
	$\frac{T_1}{T_2} = \frac{m_1(a+g)}{m_2(a+g)} = \frac{m_1}{m_2}$	1p	
	rezultat final: $\frac{T_1}{T_2} = \frac{3}{1} = 3$	1p	
c.	$m_3 \cdot a = F - T_1 - T_2 - m_3 \cdot g$	2p	4p
	$F = (a+g)(m_1 + m_2 + m_3)$	1p	
	rezultat final: $F = 60N$	1p	
d.	$a = \frac{F - g(m_1 + m_2 + m_3)}{m_1 + m_2 + m_3}$	2р	4 p
	$F = 0 \Rightarrow a' = \frac{-g(m_1 + m_2 + m_3)}{m_1 + m_2 + m_3} = -g$	1p	
	rezultat final: $a^{\cdot} = -10 \frac{m}{s^2}$	1p	
TOTAI	pentru Subiectul al II-lea		15p

A.Subiectul al III-lea

III.a.	$E = E_C + E_P$	1p	3 p
	$E_P = 0$	1p	

	$E_C = \frac{m \cdot v_0^2}{2}$		
	rezultat final: $E = E_C = 400J$	1p	
b.	$L_{F_f} = -F_f \cdot d$	2p	4p
	$L_{F_f} = -\mu \cdot m_1 \cdot g \cdot d$	1p	
	$L_{F_f} = -0.5 \cdot 2 \cdot 10 \cdot 17, 5J = -175J$	1p	
c.	$p = (m_1 + m_2) \cdot u = p_0 = m_1 \cdot v_1 + 0$	1p	4p
	$p_1 = m_1 \cdot v_1 = \sqrt{2 \cdot m_1 \cdot E_{C_1}}$		
	$\Delta E_C = L_{F_f}$	1p	
	$E_{C_1} - E_0 = L_{F_f} \Longrightarrow E_{C_1} = E_0 + L_{F_f}$		
	$p_1 = \sqrt{2 \cdot m_1 \cdot \left(E_0 + L_{F_f}\right)}$	1p	
	$p_1 = 30N \cdot s$	1p	
d.	$\frac{(m_1 + m_2) \cdot u^2}{2} = \frac{(m_1 + m_2) \cdot v^2}{2} + (m_1 + m_2) \cdot g \cdot l$	1p	4 p
	$v = 4\frac{m}{s}$	1p	
	$F = \frac{\Delta p}{\Delta t} = \frac{\left(m_1 + m_2\right)\left[v - \left(-v\right)\right]}{\tau} = \frac{2\left(m_1 + m_2\right)v}{\tau}$	1p	
	$F = 40 \cdot 10^3 N = 4 \cdot 10^4 N$	1p	

B. ELEMENTE DE TERMODINAMICA

B-SUBIECTUL I

Nr.item	Soluție, rezolvare	Punctaj
I. 1.	C	3p
2.	D	3p
3.	В	3p
4.	В	3p
5.	C	3p
Total		15p

B-SUBIECTUL II

II. a.	$v = v_1 + v_2 = \frac{m}{\mu}$	1p	
	$\frac{m_1}{m} = 0.36$; $\frac{m_2}{m} = 0.64$	1p	3 pc
	rezultat final: μ ≡ 29,3 g/mol	1p	1
b.	$N = N_A \cdot \frac{m}{\mu}$	2p	
	$\frac{N_1}{N_2} = \frac{m_1}{m_2} \cdot \frac{\mu_2}{\mu_1}$	1p	A no
	rezultat final: $\frac{N_1}{N_2} \equiv 0,50$	1p	4 pc

c.	$p \cdot V = \frac{m}{\mu} \cdot R \cdot T $ 2p	
	$m = \frac{p \cdot V \cdot \mu}{R \cdot T}$	4 pc
	rezultat final: $m = 240 \mathrm{g}$	· F
d.	$p_1 \cdot V = \frac{\Delta m}{\mu} \cdot R \cdot T $ 1p	
	$\Delta m = m - 0.2 \cdot m = 0.8 \cdot m$	
	$p_1 = p \cdot \frac{\Delta m}{m} $ 1p	4 pc
	rezultat final: $p_1 \equiv 13,3 \cdot 10^5 \text{Pa}$	
Total		15p

B. Subiectul al III-lea

III. a.	Reprezentarea corectă a celor 4 transformări	4 pc
	pmin 2 3 pmin 1 V Vmin Vmax	
b.	$L = L_{12} + L_{23} + L_{34} + L_{41} $ 1 p	4 pc
	$L = 0 + p_2(V_3 - V_2) + 0 + p_1(V_1 - V_4)$ 2 p	
	L = 500 j 1 p	
c.	$p_2 / p_1 = T_2 / T_1$; $T_2 = 450 \text{ K}$ 1 p	3 pc
	$V_3/V_2 = T_3/T_2$; $T_3 = 900 \text{ K}$ 2 p	
d.	$Q_{abs} = Q_{12} + Q_{23}$ 1 p	
	$Q_{12} = vC_v(T_2 - T_1); Q_{23} = vC_p(T_3 - T_2)$ 1 p	
	$Q_{abs} = 6500 j$	
	$ Q_{ced} = Q_{abs} - L$; $ Q_{ced} = 6000 \text{ j}$	4 pc
	$Q_{ced} / Q_{abs} = -12/13$ 1 p	
Total		15
Total		15 p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU C. Subiectul I

C. Subiectul I		15 puncte
Nr.crt.	Soluție	Punctaj
1	c	3 p
2	c	3 p
3	a	3 p
4	c	3 p
5	d	3p

C.Subiectul II		15 puncte
a	$E_e = \frac{3E \cdot 2r + 2E \cdot 3r}{2} = \frac{12E}{2}$	1p
	$3r + 2r \qquad 5$ $E_e = 24 \text{ V}$	1p
	Le-24 V	1p

	$r_{e} = \frac{3r \cdot 2r}{5r} = \frac{6r}{5}$	1p
	$r_e=1,2\Omega$	
b	$R_p = \frac{R_2 R_3}{R_2 + R_3} = 2\Omega$	2p
	$R_2 + R_3$	1p
	$R_e = R_1 + R_p + R_4$	1p 1p
	$R_{\rm e} = 7 \Omega$	ıh
С	$R_{\rm pl} = \frac{R_4 R_5}{R_4 + R_5} = 1\Omega$	1p
	$R_4 + R_5$	1
	$R'_{e} = R_{1} + R_{p} + R_{p1}$	1p
	$R'_{e}=6\Omega$	1 p
	$I = \frac{E_e}{R_e + r_e}$	1p
	$R'_e + r_e$	
	$I=10/3\Omega$	
d	$I_{sc}=E_e/r_e$	2p
	$I_{sc}=20A$	1p

C.Subiectul III 15 puncte

a	$I = \frac{U_1}{R_1} = 3A$	1p
	$I=I_2+I_3$	
	$I_2=1A$	
	$R_2 = \frac{U_2}{I_2} = 10\Omega$	1p
	$P_2 = R_2 \cdot I_2^2$	1p
	$P_2 = 10W$	1p
b	$U_2=(R_3+R_4) I_3$	1p
	$R_4=3\Omega$	1p
	$W_4 = R_4 I_{3t}^2$	1p
	$W_4 = 43200J$	1p
С	$R_{e} = R_{1} + \frac{R_{2}(R_{3} + R_{4})}{R_{2} + R_{3} + R_{4}}$	1p
	$R_e = R_1 + \frac{R_2 + R_3 + R_4}{R_2 + R_4}$	
	R_e =40/3 Ω	1p
	$E=I(R_e+r)$	1 p
	E=60 V	1p
d		2p
	$\eta = \frac{R_e}{R_e + r}$	
	$\eta=2/3$	1p

D. OPTICĂ D.Subiectul I

(45 de puncte)

Nr.Item	Soluție, rezolvare	Punctaj
I.1.	c	3 p
2.	d	3p
3.	a	3р

4.	b	3 p
5.	a	3 p
TOTAL pentru Subiectul I		15p

D.Subiectul al II-lea

II.a.	$f = \frac{1}{(n-1)(\frac{1}{p_{-}} - \frac{1}{p_{-}})}$	2p	4p
	$f = \frac{1}{(n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$ $R_1 \to \infty \ atunci n = -\frac{R_2}{f} + 1$	1p	
	n = 1,5	1p	
b.	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	2p	
	$x_2 = 2m$	1p	4n
	$D = x_2 - x_1 = 4m$	1p	4 p
	Yo. Vo.		
c.	$\beta = \frac{x_2}{x_1} = \frac{y_2}{y_1}$	2p	3 p
	$-y_2 = 5 cm$	lp	
d.		2p	4 p
	$\frac{C}{C'} = \frac{n-1}{\frac{n}{n}-1}$	1p	
	$\frac{c}{c'}=4$	1p	
TOTAL pentru Subiectul al II-lea			15p

D.Subiectul al III-lea

III.a.	$\vartheta = \frac{c}{\lambda}$	2p	3p
	$\vartheta = 7.5 \cdot 10^{14} \mathrm{Hz}$	1p	
b.	$n = \frac{c}{v}$	2p	4 p
	$v = \frac{c}{n}$	1p	
	$v = 1,73 \cdot 10^8 \text{m/s}$	1p	
c.	$E_c = h \cdot \vartheta - h \cdot \vartheta_0$	2p	4p
	$E_c = h \cdot \vartheta - h \cdot \vartheta_0$ $E_c = h \cdot \frac{c}{\lambda} - h \cdot \frac{c}{\lambda_0}$ $E_c = 1,96 \cdot 10^{-19} \text{ J}$	1p	
	$E_{c} = 1,96 \cdot 10^{-19} \mathrm{J}$	1p	
d.	$E_c = \frac{m \cdot v^2}{2}$	2p	4 p
	$v = \sqrt{\frac{2 \cdot h \cdot c \cdot \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)}{n}}$	1p	
	$v = 6.6 \cdot 10^5 \text{m/s}$	1p	
TOTAL pentru Subiectul al III-lea			15p