MATEMATИЧНИЙ ОНЛАЙН-ТУРНІР MATHOLYMPONLINE

А. І. Дерієнко, Кременчук, Полтавська обл.

Уже 11 березня розпочинається другий математичний онлайн-турнір Matholymponline. У 4-5 номері журналу «Математика в школах України» були запропоновані бонусні задачі турніру, відповіді на які приймалися до 28 лютого 2017 року. У цьому номері наводимо розв'язання та пояснення цих задач.

4 клас. У шафі Малюка зберігається 2017 банок із варенням. Серед них є банки з абрикосовим, малиновим, полуничним і яблучним варенням. Уночі Карлсон вирішив узяти кілька банок так, щоб серед них було щонайменше 5 банок одного виду варення. Яку найменшу кількість банок він має взяти із шафи, щоб бути впевненим, що він виконає умову, якщо він у темряві не може визначити вид варення?

Для того щоб умова задачі не виконувалась, необхідно, щоб серед обраних банок не було 5 банок з одним видом варення. Тобто, найбільша кількість банок з однаковим видом може бути 4. Це означає, що може бути 4 банки з абрикосовим, 4 — з малиновим, 4 з полуничним і 4 — з яблучним варенням. Загалом — 16 банок. Ця ситуація можлива за умови, що у шафі є не менше ніж 4 банки кожного виду. Таким чином, узявши 16 банок, Карлсон не може бути впевненим, що він виконає умову задачі. Доведемо, що 17 банок гарантують виконання цієї умови. Припустимо, що й серед 17 банок немає п'яти банок одного виду варення, тоді серед них не більше 4 банок кожного з чотирьох видів, а це означає, що їх загальна кількість не перевищує 16, що протирічить припущенню (такі міркування в загальному вигляді називають принципом Діріхле). Отже, серед 17 банок обов'язково знайдуться щонайменше 5 банок одного виду варення. Звісно, може статися, що варення одного якогось виду або відразу кількох видів буде більше π 'яти, наприклад, (1, 1, 7, 8), але щонайменше 5 банок яблучного варення серед них є.

5 клас. До новорічних свят було придбано 2017 шоколадних батончиків. Серед яких «Mars» — 902 шт., «Nuts» — 355 шт. і «Lion» — 760 шт. Яку найбільшу кількість однакових подарунків із трьох батончиків можна скласти з них?

Розв'язання

Розглянемо всі можливі набори подарунків із трьох батончиків і обчислимо найбільшу можливу кількість для кожного набору:

(«Mars», «Mars», «Mars») —

$$902:3=300\frac{2}{3};$$

(«Mars», «Mars», «Nuts») — 902:2=451, але батончиків «Nuts» лише 355 шт.;

$$355:2=177\frac{1}{2};$$

(«Mars», «Nuts», «Lion») — «Nuts» лише 355 шт.:

(«Nuts», «Nuts», «Nuts») —

$$355;3=118\frac{1}{3};$$

(«Nuts», «Nuts», «Lion») —

$$355:2=177\frac{1}{2};$$

(«Nuts», «Lion», «Lion») —

але батончиків «Nuts» лише 355 шт.,

(«Lion», «Lion», «Lion») —
$$760:3=253\frac{1}{3}.$$

Отже, найбільша можлива кількість однакових подарунків становить 451, де набір складатиметься з двох батончиків «Mars» і одного «Lion».

6 клас. Із числа 20 172 017 201 720 172 017 потрібно викреслити 10 цифр так, щоб залишилося найбільше можливе число.

Розв'язання

Для того щоб залишилося найбільше можливе число, потрібно на вищих розрядах залишати найбільші цифри, тобто «7». Отже, потрібно викреслити 9 цифр

$\frac{201}{7}$

Десятою викресленою цифрою буде 0, тому залишиться 7772172017.

7 клас. Дівчина Ліза придбала в магазині 30 новорічних прикрас, серед яких були кульки вартістю 35 грн, зірочки вартістю 114 грн і кілька янголяток вартістю 84 грн. Загальна вартість покупки становила 2017 грн. Визначте кількість кульок, які придбала Ліза.

Розв'язання

Позначимо число придбаних кульок через x, кількість зірочок — y і янголят — z. Тоді маємо два рівняння:

$$x+y+z=30$$
 i $35x+114y+84z=2017$.

Із першого рівняння виражаємо

$$z=30-x-y$$

і підставляємо в друге рівняння, маємо:

$$35x+114y+84(30-x-y)=2017$$
.

Після спрощення дістанемо

$$-49x + 30y + 503 = 0$$

де x та y — цілі невід'ємні числа. Виражаємо змінну y:

$$y = \frac{49x - 503}{30} = x - 17 + \frac{19x + 7}{30}$$
.

Вираз

$$\frac{19x+7}{30}$$

позначимо через n, яке теж має бути цілим, тобто 19x+7=30, звідки

$$x = \frac{30n-7}{30} = n + \frac{11n-7}{19} = 2n - \frac{8n+7}{19}$$
.

Послідовно замінюючи остачі новими змінними, дістанемо: n=19k+11. Після виконання обернених замін дістанемо:

$$x = 2(19k+11)-8k-5 = 30k+17;$$

$$y = 30k+17-17+19k+11 = 49k+11;$$

$$z = 30-30k-17-49k-11 = 2-79k.$$

Лише при k=0 всі три змінні набувають додатних значень: 17 кульок, 11 зірочок і 2 янголят придбала Ліза.

8 клас. Знайдіть у послідовності 3, 9, 18, 30, 45, 63, 84, ... число, що стоїть на 2017-ому місні.

Розв'язання

Запишемо різниці між наступним і попереднім елементом послідовності: 6, 9, 12, 15, 18, 21,... Легко бачити, що ці числа утворюють арифметичну прогресію з різницею 3, тобто кожен елемент цієї послідовності задається формулою $a_n = 3 + 3n$.

Тобто різниці:

$$b_2 - b_1 = a_1 = 3 + 3 \cdot 1,$$

$$b_3 - b_2 = a_2 = 3 + 3 \cdot 2,$$

$$b_4 - b_3 = a_3 = 3 + 3 \cdot 3,$$

$$b_{2017} - b_{2016} = a_{2016} = 3 + 3 \cdot 2016$$
.

Якщо додати всі ці рівності, то в лівій частині більшість доданків взаємознищуються і залишиться лише $b_{2017} - b_1$, а в правій частині дістанемо суму:

$$(3+3\cdot1)+(3+3\cdot2)+(3+3\cdot3)+\ldots+(3+3\cdot2016),$$
що дорівнює

$$3 \cdot 2016 + 3 \cdot (1 + 2 + 3 = 4 + \dots + 2016) =$$

$$= 3 \cdot 2016 + 3 \cdot \frac{1 + 2016}{2} \cdot 2016.$$

Отже.

$$b_{2017} = 3 \cdot 2016 + 3 \cdot \frac{2017}{2} \cdot 2016 + b_1 = 6105459.$$

9 клас. Розв'яжіть рівняння

$$\left[\frac{2x+13}{16}\right] + \left[\frac{5x-57}{81}\right] = \frac{20x+17}{111},$$

КОНКУРСИ, ТУРНІРИ, ОЛІМПІАДИ

де [a] позначається ціла частина дійсного числа a (найбільше ціле число, яке не перевищує самого a).

Розв'язання

Виконаємо заміну

$$\frac{20x+17}{111}=t.$$

Звідки знаходимо змінну x:

$$x = \frac{111t - 17}{20}$$

і підставляємо в початкове рівняння:

$$\left[\frac{2 \cdot \frac{111t - 17}{20} + 13}{16}\right] + \left[\frac{5 \cdot \frac{111t - 17}{20} - 57}{81}\right] = t.$$

Спростивши, маємо:

$$\left[\frac{111t+113}{160}\right] + \left[\frac{111t-245}{324}\right] = t.$$

Після цієї заміни необхідно шукати лише цілі значення змінної t, бо вона є сумою двох цілих чисел у правій частині рівності. За властивістю цілої частини числа оцінимо кожний доданок:

$$\left[\frac{111t+113}{160}\right] \le \frac{111t+113}{160} < \left[\frac{111t+113}{160}\right] + 1$$

$$\left[\frac{111t - 245}{324}\right] \le \frac{111t - 245}{324} < \left[\frac{111t - 245}{324}\right] + 1.$$

Тому одержуємо подвійну нерівність:

$$\begin{split} & \left[\frac{111t + 113}{160} \right] + \left[\frac{111t - 245}{324} \right] \le \\ & \le \frac{111t + 113}{160} + \frac{111t - 245}{324} < \\ & < \left[\frac{111t + 113}{160} \right] + \left[\frac{111t - 245}{324} \right] + 2. \end{split}$$

За умовою

$$\left[\frac{111t + 113}{160}\right] + \left[\frac{111t - 245}{324}\right]$$

замінюємо на t:

$$t \leq \frac{111t + 113}{160} + \frac{111t - 245}{324} < t + 2,$$

$$\begin{split} t \leq & \frac{111t + 113}{160} + \frac{111t - 245}{324} < t + 2\,, \\ & 12960t \leq & 81\big(111t + 113\big) + 40\big(111t - 245\big) < \\ & < 12960t + 25920, \\ & 12960t \leq & 13431t - 647 < 12960t + 25920, \\ & \frac{647}{471} \leq t < \frac{26567}{471}\,. \end{split}$$

Цю подвійну нерівність задовольняють усі цілі числа від 2 до 56. Підстановкою в початкове рівняння можна визначити всю множину коренів рівняння:

$$t \in \begin{cases} 11,12,14,15,17,18,20,21,23,24,25,26,27,28, \\ 29,30,31,32,33,34,35,36,37,39,40,42,43,45 \end{cases}$$

Обернена заміна дає відповідь

$$x = \frac{111t - 17}{20},$$

де змінна t набуває наведених вище значень. Найменший розв'язок рівняння — x = 60,2.

10 клас. Робін Гуд намагається з'ясувати найбільшу відстань, із якої він може влучити в яблуко. Відомо, що якщо Робін влучив у яблуко з п метрів, то він обов'язково влучить у нього з будь-якої відстані меншої від п, а якщо він не влучив у яблуко з т метрів, то він обов'язково не влучить у нього з будь-якої відстані більшої за т. Яблуко, у яке вже влучила стріла Робіна, не можна більше використовувати для тестування. Яку найменшу кількість пострілів потрібно зробити Робін Гуду, щоб напевно виявити максимальну відстань, із якої він улучає в яблуко, якщо він має лише 2 яблука? Усі відстані вимірюються цілим числом метрів, що не перевищує 120 м.

Розв'язання

Звернемо увагу на те, що коли залишиться неушкодженим тільки одне яблуко, потрібно використовувати лінійний пошук (від максимальної можливої відстані до мінімальної, зменшуючи на кожному кроці відстань на 1 м) і в той момент, коли Робін улучить у яблуко, це й буде максимальною відстанню, із якої він улучає в ціль. Наприклад, якщо перше яблуко залишається неушкодженим у результаті пострілу з 50 метрів, але розбивається під час

пострілу з 45 метрів, тоді друге яблуко доведеться перевіряти поступово (у гіршому випадку) з 49 м, 48 м, 47 м і 46 м. Припустимо, що Робін перший постріл робить зі 110 метрів, потім зі 100 метрів, 90 метрів...

Якщо він улучив у перше яблуко з першого пострілу (зі 110 метрів), то йому, у гіршому випадку, доведеться зробити не більше ніж 10 пострілів.

Якщо Робін улучить із 10 метрів, тоді йому, у гіршому випадку, доведеться зробити 21 постріл (110 м, 100 м, 90 м, ..., 10 м і потім — із 19 м до 11 м).

Спробуємо виконати балансування навантаження, щоб виділити два найбільш вірогідні випадки. У добре збалансованій системі значення broke (apple1) +broke (apple2) буде сталим, незалежно від того, із якої відстані Робін улучить у перше яблуко.

На кожному пострілі в перше яблуко потрібно скорочувати на одиницю довжину відрізка, потенційно необхідних другому яблуку. Якщо перший постріл спочатку виконати зі 100 метрів, а потім — із 90 метрів, тоді для другого яблука знадобиться не більше ніж 9 пострілів. Коли Робін Гуд робитиме черговий постріл, він повинен зменшити відстань для другого яблука до 8 м. Для цього достатньо зробити наступний постріл із 81 метра.

Отже, послідовність пострілів у перше яблуко має бути такою:

106, 92, 79, 67, 56, 46, 37, 25, 18, 12, 7, 3.

Так, у результаті влучання зі 106 метрів у найгіршому випадку доведеться зробити ще 14 пострілів: 120, 119,...107.

А в результаті влучанні з 37 метрів у найгіршому випадку доведеться зробити ще 8 пострілів: 45, 44, 43,...,38.

Отже, у всіх випадках (крім останнього) знадобиться максимум 15 пострілів. Це й буде найменша кількість пострілів, які потрібно зробити Робіну, щоб напевно виявити максимальну відстань, із якої він улучає в яблуко, за наявності 2 яблук. Як і в інших завданнях максимізації/мінімізації, ключем до розв'язання є «балансування гіршого випадку».

Ще не придбали нашу чудову книгу?

Ми та ваші колеги дуже рекомендуємо!

Прийоми педагогічної техніки (Автор А. Гін)

112 с., укр. мова, формат А4, м'яка обкладинка

Книга містить:

- √ апробовані і чітко сформульовані прийоми управління класом, підтримання дисципліни і уваги;
- √ технологію організації традиційних і нетрадиційних форм роботи на уроці, взаємодопомоги учнів;
- √ дидактичні прийоми та прийоми забезпечення ефективної перевірки знань.

Відгуки:

«Надзвичайно актуальна і корисна настільна книга для сучасних учителів. Як завуч провела презентацію книги. Замовляю ще для своїх педагогів».

«Я працюю вчителем 22 роки, але завжди використовую в роботі матеріали ваших посібників. "Прийоми педагогічної техніки"— це не просто книга. Це настільна книга для будьякого учителя-предметника».

«Чудова настільна книга!!! Дивно, що все, про що пише автор, просто і лежить на поверхні, але багато чого ми не помічаємо. Ця книга— це прямі поради до практичних дій, шкода що так пізно я її придбала, але, як кажуть у народі, краще пізно, ніж

«Дуже цікава та неординарна книга. Цінні поради».

Обов'язково замовте! Корисність гарантовано!

Замовлення можна зробити: за тел.: (057) 731-96-35, (067) 572-30-37; на сайті: http://book.osnova.com.ua. Вартість поштової доставки — 12,95 грн.

OCHOB₹