R Programming/Probability Distributions

This page review the main probability distributions and describe the main R functions to deal with them.

R has lots of probability functions.

- r is the generic prefix for random variable generator such as runif(), rnorm().
- d is the generic prefix for the probability density function such as dunif(), dnorm().
- p is the generic prefix for the cumulative density function such as punif(), pnorm().
- q is the generic prefix for the quantile function such as qunif(), qnorm().

Contents

Discrete distributions

Benford Distribution

Bernoulli

Binomial

Hypergeometric distribution

Geometric distribution

Multinomial

Negative binomial distribution

Poisson distribution

Zipf's law

Continuous distributions

Beta and Dirichlet distributions

Cauchy

Chi Square distribution

Exponential

Fisher-Snedecor

Gamma

Levy

Log-normal distribution

Normal and related distributions

Pareto Distributions

Student's t distribution

Uniform distribution

Weibull

Extreme values and related distribution

Distribution in circular statistics

See also

References

Discrete distributions

Benford Distribution

The Benford Distribution (http://en.wikipedia.org/wiki/Benford_distribution) is the distribution of the first digit of a number. It is due to Benford 1938^[1] and Newcomb 1881^[2].

```
> library(VGAM)
> dbenf(c(1:9))
[1] 0.30103000 0.17609126 0.12493874 0.09691001 0.07918125 0.06694679 0.05799195 0.05115252 0.04575749
```

Bernoulli

We can draw from a <u>Bernoulli (http://en.wikipedia.org/wiki/Bernoulli_distribution)</u> using sample(), runif () or rbinom() with size = 1.

```
> n <- 1000
> x <- sample(c(0,1), n, replace=T)
> x <- sample(c(0,1), n, replace=T, prob=c(0.3,0.7))
> x <- runif(n) > 0.3
> x <- rbinom(n, size=1, prob=0.2)</pre>
```

Binomial

We can sample from a <u>binomial distribution</u> (http://en.wikipedia.org/wiki/Binomial_distribution) using the rbinom() function with arguments n for number of samples to take, size defining the number of trials and prob defining the probability of success in each trial.

```
> x <- rbinom(n=100,size=10,prob=0.5)
```


Hypergeometric distribution

We can sample n times from a <u>hypergeometric</u> <u>distribution</u> (http://en.wikipedia.org/wiki/Hypergeometric_distribution) using the rhyper() function.

```
> x <- rhyper(n=1000, 15, 5, 5)
```

Geometric distribution

The geometric distribution (http://en.wikipedia.org/wiki/Geometric_distribution).

```
> N <- 10000
> x <- rgeom(N, .5)
> x <- rgeom(N, .01)
```

Multinomial

The multinomial distribution (http://en.wikipedia.org/wiki/Multinomial_distribution).

```
> sample(1:6, 100, replace=T, prob= rep(1/6,6))
```

Negative binomial distribution

The <u>negative binomial distribution (http://en.wikipedia.org/wiki/Negative_binomial_distribution)</u> is the distribution of the number of failures before k successes in a series of Bernoulli events.

```
> N <- 100000
> x <- rnbinom(N, 10, .25)
```

Poisson distribution

We can draw n values from a Poisson distribution (http://en.wikipedia.org/wiki/Poisson_distribution) with a mean set by the argument lambda.

```
> x <- rpois(n=100, lambda=3)
```

Zipf's law

The distribution of the frequency of words is known as <u>Zipf's Law (http://en.wikipedia.org/wiki/Zipf%27s_Law)</u>. It is also a good description of the distribution of city size [3]. dzipf() and pzipf() (**VGAM**)

```
> library(VGAM)
> dzipf(x=2, N=1000, s=2)
```

Continuous distributions

Beta and Dirichlet distributions

- beta distribution (http://en.wikipedia.org/wiki/Beta_distribution)
- Dirichlet (http://en.wikipedia.org/wiki/Dirichlet_distribution) in gtools and MCMCpack

```
>library(gtools)
>?rdirichlet
>library(bayesm)
>?rdirichlet
>library(MCMCpack)
>?Dirichlet
```

Cauchy

We can sample n values from a <u>Cauchy distribution (http://en.wikipedia.org/wiki/Cauchy_distribution)</u> with a given location parameter x_0 (default is 0) and scale parameter γ (default is 1) using the reauchy() function.

```
> x <- rcauchy(n=100, location=0, scale=1)
```

Chi Square distribution

Quantile of the Chi square distribution (http://en.wikipedia.org/wiki/Chi-square_distribution) (χ^2 distribution)

```
> qchisq(.95,1)
[1] 3.841459
> qchisq(.95,10)
[1] 18.30704
> qchisq(.95,100)
[1] 124.3421
```


Exponential

We can sample n values from a <u>exponential distribution</u> (http://en.wikipedia.org/wiki/Exponential_distribution) with a given rate (default is 1) using the rexp() function

```
> x <- rexp(n=100, rate=1)
```

Fisher-Snedecor

We can draw the density of a <u>Fisher distribution</u> (http://en.wikipedia.org/wiki/F-distribution) (F-distribution):

```
> par(mar=c(3,3,1,1))
> x <- seq(0,5,len=1000)
> plot(range(x),c(0,2),type="n")
> grid()
> lines(x,df(x,df1=1,df2=1),col="black",lwd=3)
> lines(x,df(x,df1=2,df2=1),col="blue",lwd=3)
> lines(x,df(x,df1=2,df2=1),col="green",lwd=3)
> lines(x,df(x,df1=5,df2=2),col="green",lwd=3)
> lines(x,df(x,df1=100,df2=1),col="red",lwd=3)
> lines(x,df(x,df1=100,df2=100),col="grey",lwd=3)
> lines(x,df(x,df1=100,df2=100),col="grey",lwd=3)
> legend(2,1.5,legend=c("n1=1, n2=1","n1=2, n2=1","n1=5, n2=2","n1=100, n2=1","n1=100, n2=100"),col=c("black", "blue","green","red","grey"),lwd=3,bty="n")
```

Gamma

We can sample n values from a gamma distribution (http://en.wikipedia.org/wiki/Gamma_distribution) with a given shape parameter and scale parameter θ using the rgamma() function. Alternatively a shape parameter and rate parameter $\beta=1/\theta$ can be given.

```
> x <- rgamma(n=10, scale=1, shape=0.4)
> x <- rgamma(n=100, scale=1, rate=0.8)</pre>
```

Levy

We can sample n values from a <u>Levy distribution (http://en.wikipedia.org/wiki/Levy_distribution)</u> with a given location parameter μ (defined by the argument m, default is o) and scaling parameter (given by the argument s, default is 1) using the rlevy() function.

```
> x <- rlevy(n=100, m=0, s=1)
```

Log-normal distribution

We can sample n values from a log-normal distribution (http://en.wikipedia.org/wiki/Lognormal) with a given meanlog (default is 0) and sdlog (default is 1) using the rlnorm() function

```
> x <- rlnorm(n=100, meanlog=0, sdlog=1)
```

Normal and related distributions

We can sample n values from a <u>normal (http://en.wikipedia.org/wiki/Normal_distribution)</u> or gaussian Distribution with a given mean (default is 0) and sd (default is 1) using the rnorm() function

```
> x <- rnorm(n=100, mean=0, sd=1)
```

Quantile of the normal distribution

```
> qnorm(.95)
[1] 1.644854
> qnorm(.975)
[1] 1.959964
> qnorm(.99)
[1] 2.326348
```

- The **mvtnorm** package includes functions for multivariate normal distributions.
 - rmvnorm() generates a multivariate normal distribution.

```
[1,] 1.0000000 0.8172368
[2,] 0.8172368 1.0000000
```

Pareto Distributions

- Generalized Pareto (http://en.wikipedia.org/wiki/Pareto_distribution) dgpd() in evd
- dpareto(), ppareto(), rpareto(), qpareto() in actuar
- The **VGAM** package also has functions for the Pareto distribution.

Student's t distribution

Quantile of the Student t distribution (http://en.wikipedia.org/wiki/Student%27s_t-distribution)

```
> qt(.975,30)
[1] 2.042272
> qt(.975,100)
[1] 1.983972
> qt(.975,1000)
[1] 1.962339
```

The following lines plot the .975th quantile of the t distribution in function of the degrees of freedom:

```
curve(qt(.975,x), from = 2 , to = 100, ylab = "Quantile 0.975 ", xlab = "Degrees of freedom", main = "Student
t distribution")
abline(h=qnorm(.975), col = 2)
```

Uniform distribution

We can sample n values from a <u>uniform distribution (http://en.wikipedia.org/wiki/Uniform_distribution_(continuous))</u> (also known as a rectangular distribution] between two values (defaults are o and 1) using the runif() function

```
> runif(n=100, min=0, max=1)
```

Weibull

We can sample n values from a Weibull distribution (http://en.wikipedia.org/wiki/Weibull_distribution) with a given shape and scale parameter μ (default is 1) using the rweibull() function.

```
> x <- rweibull(n=100, shape=0.5, scale=1)
```

Extreme values and related distribution

- The Gumbel distribution (http://en.wikipedia.org/wiki/Gumbel distribution)
- The logistic distribution (http://en.wikipedia.org/wiki/Logistic_distribution): distribution of the difference of two gumbel distributions.

plogis, qlogis, dlogis, rlogis

- Frechet dfrechet() evd
- Generalized Extreme Value dgev() evd
- Gumbel dgumbel() evd
- Burr, dburr, pburr, qburr, rburr in actuar

Distribution in circular statistics

- Functions for circular statistics are included in the CircStats package.
 - dvm() Von Mises (http://en.wikipedia.org/wiki/Von_Mises_distribution) (also known as the nircular normal or Tikhonov distribution) density function
 - dtri() triangular density (http://en.wikipedia.org/wiki/Triangular distribution) function
 - dmixedvm() Mixed Von Mises density
 - dwrpcauchy() wrapped Cauchy density
 - dwrpnorm() wrapped normal density.

See also

Packages VGAM, SuppDists, actuar, fBasics, bayesm, MCMCpack

References

- 1. Benford, F. (1938) The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, 78, 551–572.
- 2. Newcomb, S. (1881) Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics, 4, 39–40.
- 3. Gabaix, Xavier (August 1999). "Zipf's Law for Cities: An Explanation". Quarterly Journal of Economics 114 (3): 739–67. doi:10.1162/003355399556133. ISSN 0033-5533. http://pages.stern.nyu.edu/~xgabaix/papers/zipf.pdf.

This page was last edited on 30 March 2017, at 19:25.

Text is available under the <u>Creative Commons Attribution-ShareAlike License.</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use and Privacy Policy.</u>