# \* Probabilidad y estadística

MAT 041, Primer semestre

Francisco Cuevas Pacheco 5 de diciembre de 2022 Pruebas de Hipótesis I

# Hipótesis estadística

Una hipótesis estadística es una afirmación respecto a una o varias poblaciones que se hace antes de tomar una muestra aleatoria.

## Hipótesis estadística

Una hipótesis estadística es una afirmación respecto a una o varias poblaciones que se hace antes de tomar una muestra aleatoria. La afirmación puede referirse a:

- La distribución de probabilidad de alguna variable aleatoria de interés X.
- ♣ Relación entre variables aleatorias X e Y.
- \* Parámetros poblacionales tales como  $\mu$ ,  $\sigma^2$ , una proporción p, dos medias  $\mu_1$  y  $\mu_2$ , etc.

## Hipótesis estadística

Una hipótesis estadística es una afirmación respecto a una o varias poblaciones que se hace antes de tomar una muestra aleatoria. La afirmación puede referirse a:

- La distribución de probabilidad de alguna variable aleatoria de interés X.
- Relación entre variables aleatorias X e Y.
- \* Parámetros poblacionales tales como  $\mu$ ,  $\sigma^2$ , una proporción p, dos medias  $\mu_1$  y  $\mu_2$ , etc.

Una de las hipótesis se llama hipótesis nula, se anota  $H_0$  y está basada en el estado actual. La otra hipótesis complementa la anterior, se llama hipótesis alternativa, se anota  $H_1$ . Los datos muestrales se usan para decidir si las hipótesis respecto a la población encuentran o no apoyo en la muestra.

1. Hipótesis respecto a la distribución de probabilidad:

 $H_0$ : X tiene distribución normal

 $H_1$  : X no tiene distribución normal

1. Hipótesis respecto a la distribución de probabilidad:

 $H_0$ : X tiene distribución normal

 $H_1$ : X no tiene distribución normal

2. Hipótesis respecto a la media de una población normal:

 $H_0$  :  $\mu \leq \mu_0$ 

 $H_1$  :  $\mu > \mu_0$ 

1. Hipótesis respecto a la distribución de probabilidad:

 $H_0$ : X tiene distribución normal

 $H_1$ : X no tiene distribución normal

2. Hipótesis respecto a la media de una población normal:

$$H_0$$
 :  $\mu \leq \mu_0$ 

$$H_1$$
 :  $\mu > \mu_0$ 

3. Hipótesis respecto a dos proporciones de poblaciones Bernoulli:

$$H_0$$
:  $p_1 - p_2 = 0$ 

$$H_1 \quad : \quad p_1 - p_2 \neq 0$$

,

1. Hipótesis respecto a la distribución de probabilidad:

 $H_0$ : X tiene distribución normal

 $H_1$ : X no tiene distribución normal

2. Hipótesis respecto a la media de una población normal:

$$H_0$$
 :  $\mu \leq \mu_0$ 

$$H_1$$
 :  $\mu > \mu_0$ 

3. Hipótesis respecto a dos proporciones de poblaciones Bernoulli:

$$H_0$$
:  $p_1 - p_2 = 0$ 

$$H_1 : p_1 - p_2 \neq 0$$

4. Hipótesis respecto a la independencia de variables aleatorias:

 $H_0$ : X e Y son independientes

 $H_1$ :  $X \ e \ Y$  no son independientes

## Clasificacion de los test de hipótesis

#### Hipótesis simple

Decimos que una hipótesis es simple si esta identifica la distribución en su totalidad

### Hipótesis compuesta

Decimos que una hipótesis es compuesta si no es simple

La decisión de rechazar o no rechazar  $H_0$  a partir de una muestra aleatoria tiene implícita la posibilidad de equivocarse porque la muestra sólo entrega información parcial de lo que ocurre a nivel poblacional.

La decisión de rechazar o no rechazar  $H_0$  a partir de una muestra aleatoria tiene implícita la posibilidad de equivocarse porque la muestra sólo entrega información parcial de lo que ocurre a nivel poblacional.

|                             | Decisión desde la muestra |                                   |
|-----------------------------|---------------------------|-----------------------------------|
| En la población             | Rechazar H <sub>0</sub>   | No Rechazar <i>H</i> <sub>0</sub> |
| H <sub>0</sub> es Verdadera | Error tipo I              | Correcta                          |
| H <sub>0</sub> es Falsa     | Correcta                  | Error tipo II                     |

La decisión de rechazar o no rechazar  $H_0$  a partir de una muestra aleatoria tiene implícita la posibilidad de equivocarse porque la muestra sólo entrega información parcial de lo que ocurre a nivel poblacional.

|                             | Decisión desde la muestra |                                   |
|-----------------------------|---------------------------|-----------------------------------|
| En la población             | Rechazar H <sub>0</sub>   | No Rechazar <i>H</i> <sub>0</sub> |
| H <sub>0</sub> es Verdadera | Error tipo I              | Correcta                          |
| H₀ es Falsa                 | Correcta                  | Error tipo II                     |

La idea es crear reglas de decisión que mantengan bajo control las probabilidades de error tipo I y tipo II. Estas se definen de la siguiente manera.

$$\alpha = P(Error\ tipo\ I) = P(Rechazar\ H_0\ |\ H_0\ es\ Verdadera)$$

$$\beta = P(Error tipo II) = P(No rechazar H_0 | H_0 es Falsa)$$

La potencia de una regla de decisión o test se define como la probabilidad de hacer una decisión correcta del tipo Rechazar  $H_0$  (a partir de la muestra) cuando  $H_0$  es Falsa (en la población)

Potencia =  $P(Rechazar H_0 \mid H_0 \text{ es } Falso) = 1 - \beta.$ 

La potencia de una regla de decisión o test se define como la probabilidad de hacer una decisión correcta del tipo Rechazar  $H_0$  (a partir de la muestra) cuando  $H_0$  es Falsa (en la población)

Potencia = 
$$P(Rechazar H_0 \mid H_0 es Falso) = 1 - \beta$$
.

¿Cuál de los dos errores es más grave? ¿El Error tipo I o el Error tipo II?

La potencia de una regla de decisión o test se define como la probabilidad de hacer una decisión correcta del tipo Rechazar  $H_0$  (a partir de la muestra) cuando  $H_0$  es Falsa (en la población)

Potencia = 
$$P(Rechazar H_0 \mid H_0 \text{ es } Falso) = 1 - \beta$$
.

#### ¿Cuál de los dos errores es más grave? ¿El Error tipo I o el Error tipo II?

La mayoría de las veces resulta más grave el Error tipo I. Por tanto, la metodología estadística fija en primer lugar la probabilidad  $\alpha$  y luego entre todas las reglas de decisión que tienen una probabilidad de Error tipo I menor o igual que  $\alpha$  se busca la regla de decisión con la mayor potencia o menor  $\beta$ .

## Estadística de prueba, valor crítico y región de rechazo

Consideremos el caso en que compiten dos hipótesis simples.

Supongamos que  $X \sim N(\mu; \sigma^2)$  con  $\sigma^2$  conocida y que se quieren contrastar la hipótesis,

$$H_0: \mu = \mu_0 \quad v/s \quad H_1: \mu = \mu_1; \quad con \quad \mu_0 < \mu_1$$

Sabemos que  $\bar{X}=\sum X_i/n$  es un estimador de  $\mu$  y parece natural rechazar  $H_0: \mu=\mu_0$  en favor de  $H_1: \mu=\mu_1$  cuando  $\bar{X}>c$ .

El conjunto  $C=\{(X_1,X_2,\ldots,X_n)/\bar{X}>c\}$  se llama región crítica o región de rechazo y el complemento  $C'=\{(X_1,X_2,\ldots,X_n)/\bar{X}\leq c\}$  se llama región de no rechazo  $\Theta$  región de aceptación de  $H_0$ .

La constante c que define ambas regiones se llama valor crítico y es determinada fijando la probabilidad  $\alpha$  de Error tipo I.



Figura 1: Criterio de decisión para  $H_0: \mu = \mu_0 \text{ v/s } H_1: \mu = \mu_1; \mu_0 < \mu_1$ 

$$\alpha = P(Rechazar \ H_0 \ | \ H_0 \ es \ Verdadero)$$

$$= P(\bar{X} > c \ | \ \mu = \mu_0)$$

$$= P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} > \frac{c - \mu}{\sigma/\sqrt{n}} \ | \ \mu = \mu_0\right)$$

$$= P\left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{c - \mu_0}{\sigma/\sqrt{n}}\right)$$

$$= P\left(Z > \frac{c - \mu_0}{\sigma/\sqrt{n}}\right) \ porque \ Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0; 1)$$

$$\Leftrightarrow \frac{c - \mu_0}{\sigma/\sqrt{n}} = Z_{1-\alpha}$$

$$\Leftrightarrow c = \mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha}$$

Entonces, la regla de decisión es:

Rechace 
$$H_0$$
 si  $\bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha}$ 

Supongamos que  $X\sim N(\mu;\sigma^2)$  con  $\sigma^2=64$  y que se quieren contrastar la hipótesis  $H_0:\mu=12$  v/s  $H_1:\mu=15$ . Se toma una muestra de tamaño n=25 y resulta una media  $\bar{X}=14,7$ .

Supongamos que  $X \sim N(\mu; \sigma^2)$  con  $\sigma^2 = 64$  y que se quieren contrastar la hipótesis  $H_0: \mu = 12$  v/s  $H_1: \mu = 15$ . Se toma una muestra de tamaño n = 25 y resulta una media  $\bar{X} = 14, 7$ .

- a) Si se fija la probabilidad de Error tipo I en  $\alpha=0,05$  cree usted que la muestra apoya la hipótesis nula?
- b) ¿Cuál es la potencia de la regla de decisión usada?

Supongamos que  $X\sim N(\mu;\sigma^2)$  con  $\sigma^2=64$  y que se quieren contrastar la hipótesis  $H_0:\mu=12$  v/s  $H_1:\mu=15$ . Se toma una muestra de tamaño n=25 y resulta una media  $\bar{X}=14,7$ .

- a) Si se fija la probabilidad de Error tipo I en  $\alpha=0,05$  cree usted que la muestra apoya la hipótesis nula?
- b) ¿Cuál es la potencia de la regla de decisión usada?

#### Solución

a) Estadística de prueba observada:

$$Z_{obs} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{(14, 7 - 12)}{8 / \sqrt{25}} \approx 1,69$$

Valor crítico:  $Z_{1-\alpha} = Z_{0.95} = 1,645$ 

Región de rechazo o región crítica: Z > 1,645

Decisión: Como  $Z_{obs}=1,69>1,645$  la estadística de prueba cae en la región de rechazo y por tanto se rechaza  $H_0:\mu=12$  en favor de  $H_1:\mu=15$  con  $\alpha=0,05$ .

Conclusión: Con  $\alpha=0,05$  la muestra no es consistente con  $H_0$  y sugiere aceptar  $H_1: \mu=15$ 

Decisión: Como  $Z_{obs}=1,69>1,645$  la estadística de prueba cae en la región de rechazo y por tanto se rechaza  $H_0: \mu=12$  en favor de  $H_1: \mu=15$  con  $\alpha=0,05$ .

Conclusión: Con  $\alpha=0,05$  la muestra no es consistente con  $H_0$  y sugiere aceptar  $H_1: \mu=15$ 

b) De acuerdo a la regla de decisión, la probabilidad de Error tipo II es

$$\beta = P(\text{No rechazar } H_0 \mid H_0 \text{ es } Falso)$$

$$= P\left(\bar{X} \leq \mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} \mid \mu = \mu_1\right)$$

$$= P\left(\frac{\bar{X} - \mu_1}{\frac{\sigma}{\sqrt{n}}} \leq \frac{\mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right)$$

$$\Leftrightarrow \beta = P\left(Z \leq \frac{\mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right)$$
(1)

Reemplazando los datos se obtiene que

la respuesta es aumentar el tamaño de la muestra.

$$\beta = P\left(Z \le \frac{12 + \frac{8}{\sqrt{25}}1,645 - 15}{\frac{8}{\sqrt{25}}}\right) \approx P(Z \le -0,23) \approx 0,4090$$

Por tanto la potencia es:

$$potencia = 1 - \beta = 1 - 0,4090 = 0,5910$$

La potencia de 0,5910 obtenida en el ejemplo anterior no es muy buena . Entonces, surgen la pregunta ¿Cómo aumentar la potencia manteniendo el valor de  $\alpha$  y manteniendo la regla de decisión?

En general, el resultado de la función de potencia puede ser calculado cuando la hipótesis alternativa simple, toma un valor específico  $\mu$ , dando la fórmula

$$potencia(\mu) = 1 - eta(\mu) = 1 - \phi\left(\sqrt{25}\left(rac{12-\mu}{8}
ight) + Z_{1-lpha}
ight)$$



## Tamaño de la muestra para $\alpha$ y $\beta$ dados

Habiendo fijado el valor  $\alpha$  ¿Cuál debe ser el tamaño de la muestra para que la regla de decisión no supere el valor  $\beta$ ?

$$\beta = P(Aceptar \ H_0 \ | \ H_0 \ es \ Falso)$$

$$= P\left(\bar{X} \le \mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} \ | \ \mu = \mu_1\right)$$

$$= P\left(\frac{\bar{X} - \mu_1}{\frac{\sigma}{\sqrt{n}}} \le \frac{\mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right)$$

$$= P\left(Z \le \frac{\mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} - \mu_1}{\frac{\sigma}{\sqrt{n}}}\right)$$

Esta condición se cumple si

the condition se cumple si
$$\frac{\mu_0 + \frac{\sigma}{\sqrt{n}} Z_{1-\alpha} - \mu_1}{\frac{\sigma}{\sqrt{n}}} = Z_{\beta} = -Z_{1-\beta}$$

$$\Leftrightarrow \quad \frac{\sigma}{\sqrt{n}} [Z_{1-\alpha} + Z_{1-\beta}] = \mu_1 - \mu_0$$

$$\Leftrightarrow \quad n = \sigma^2 \left( \frac{Z_{1-\alpha} + Z_{1-\beta}}{\mu_1 - \mu_0} \right)^2$$

La formula anterior permite resaltar varios hechos importantes.

- 1. Determina el tamaño de muestra necesario para contrastar las hipótesis  $H_0: \mu=\mu_0$  y  $H_1: \mu=\mu_1, \ \mu_0<\mu_1$ , para probabilidades de error tipo I y II  $\alpha$  y  $\beta$  dadas.
- 2. Permite establecer que para un tamaño de muestra n fijo no es posible disminuir simultáneamente las probabilidades de error tipo I y II  $\alpha$  y  $\beta$ .
- 3. Mientras más cerca está  $\mu_1$  de  $\mu_0$  la diferencia  $\mu_1 \mu_0$  se hace más pequeña y en consecuencia el tamaño de muestra n deberá ser más grande para discernir una diferencia entre  $\mu_1$  y  $\mu_0$ .

5. La formula anterior puede ser escrita como

$$n = \left(\frac{Z_{1-\alpha} + Z_{1-\beta}}{\delta}\right)^2$$

donde

$$\delta = \frac{\mu_1 - \mu_0}{}$$

se llama tamaño de efecto y su valor absoluto representa la distancia estandarizada entre las dos distribuciones normales propuestas por las hipótesis  $H_0: \mu = \mu_0$  y  $H_1: \mu = \mu_1$ . Es decir, el tamaño de efecto indica que fracción es la distancia entra las dos distribuciones normales  $\mu_1 - \mu_0$  de la desviación estándar común  $\sigma$ .

Suponga que X es una variable aleatoria normal con media  $\mu$  y varianza  $\sigma^2=64$ . Hasta ahora se sabía que  $\mu=50$  pero hay sospechas de que esa media ha aumentado a 60. Para probar esta hipótesis se toma una muestra aleatoria de tamaño n=36 y resulta  $\bar{X}=54$ . Usando  $\alpha=0,05$  establezca si la muestra es consistente con  $H_0$ .

Suponga que X es una variable aleatoria normal con media  $\mu$  y varianza  $\sigma^2=64$ . Hasta ahora se sabía que  $\mu=50$  pero hay sospechas de que esa media ha aumentado a 60. Para probar esta hipótesis se toma una muestra aleatoria de tamaño n=36 y resulta  $\bar{X}=54$ . Usando  $\alpha=0,05$  establezca si la muestra es consistente con  $H_0$ .

#### Solución

Hipótesis:  $H_0$ :  $\mu = 50$  v/s  $H_1$ :  $\mu = 60$ ,

Suponga que X es una variable aleatoria normal con media  $\mu$  y varianza  $\sigma^2=64$ . Hasta ahora se sabía que  $\mu=50$  pero hay sospechas de que esa media ha aumentado a 60. Para probar esta hipótesis se toma una muestra aleatoria de tamaño n=36 y resulta  $\bar{X}=54$ . Usando  $\alpha=0,05$  establezca si la muestra es consistente con  $H_0$ .

#### Solución

Hipótesis:  $H_0$ :  $\mu = 50 \text{ v/s } H_1$ :  $\mu = 60$ ,

Estadística de Prueba:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Suponga que X es una variable aleatoria normal con media  $\mu$  y varianza  $\sigma^2=64$ . Hasta ahora se sabía que  $\mu=50$  pero hay sospechas de que esa media ha aumentado a 60. Para probar esta hipótesis se toma una muestra aleatoria de tamaño n=36 y resulta  $\bar{X}=54$ . Usando  $\alpha=0,05$  establezca si la muestra es consistente con  $H_0$ .

#### Solución

Hipótesis:  $H_0$ :  $\mu = 50 \text{ v/s } H_1$ :  $\mu = 60$ ,

Estadística de Prueba:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Valor observado de la estadística de prueba:

$$Z_{obs} = \frac{54 - 50}{8/\sqrt{36}} = 3,0$$

Región de rechazo:  $Z>z_{1-lpha}=z_{0,95}=1,645$ ,

Región de rechazo:  $Z > z_{1-\alpha} = z_{0,95} = 1,645$ ,

Decisión: Como 3>1,645 la estadística de prueba resultó estar en la región de rechazo y en consecuencia la decisión es rechazar  $H_0: \mu=50$  en favor de  $H_1: \mu>50$ . Conclusión: Los datos del problema sugieren que la media poblacional ha aumentado por sobre el valor  $\mu=50$ .

Pruebas de Hipótesis II