# CS559 Machine Learning Maximum Likelihood Estimation Bayesian Estimation

Tian Han

Department of Computer Science Stevens Institute of Technology

Week 3

#### Outline

- Introduction
  - Univariate Gaussian Example
- Maximum Likelihood Estimation
  - The General Principle
  - Multivariate Gaussian
  - Sequential Estimation
- Bayesian Estimation
  - Example
  - The General Principle
  - Connection to Bayesian Decision

## Introduction

## Design the Classifier

HAVE prior  $P(\omega)$  and class conditional  $p(\mathbf{x}|\omega)$ .

- Optimal classifier:
  - posterior  $p(\omega|\mathbf{x})$
  - conditional risk  $R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j) p(\omega_j|\mathbf{x})$
- In practice, we rarely have this complete information!

## Design the Classifier

HAVE prior  $P(\omega)$  and class conditional  $p(\mathbf{x}|\omega)$ .

- Optimal classifier:
  - posterior  $p(\omega|\mathbf{x})$
  - conditional risk  $R(\alpha_i|\mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j) p(\omega_j|\mathbf{x})$
- In practice, we rarely have this complete information!

ONLY HAVE a number of training samples.

- Prior estimation is easy.
- Class conditional  $p(\mathbf{x}|\omega)$  is hard. (sample too small,  $\mathbf{x}$  high dimension)

## Parametrization of $p(\mathbf{x}|\omega)$

Parametrization: assume the  $p(\mathbf{x}|\omega)$  has KNOWN form but UNKNOWN parameters.

- E.g., assume  $p(\mathbf{x}|\omega)$  is Gaussian, i.e.,  $N(x|\mu,\sigma^2)$ , but  $\mu$ ,  $\sigma$  unknown.

## Parametrization of $p(\mathbf{x}|\omega)$

Parametrization: assume the  $p(\mathbf{x}|\omega)$  has KNOWN form but UNKNOWN parameters.

- E.g., assume  $p(\mathbf{x}|\omega)$  is Gaussian, i.e.,  $N(x|\mu,\sigma^2)$ , but  $\mu$ ,  $\sigma$  unknown.

Estimating the unknown density function  $p(\mathbf{x}|\omega)$ 

 $\rightarrow \mbox{ parameter estimation}.$ 

## Parametrization of $p(\mathbf{x}|\omega)$

Parametrization: assume the  $p(\mathbf{x}|\omega)$  has KNOWN form but UNKNOWN parameters.

- E.g., assume  $p(\mathbf{x}|\omega)$  is Gaussian, i.e.,  $N(x|\mu,\sigma^2)$ , but  $\mu$ ,  $\sigma$  unknown.

Estimating the unknown density function  $p(\mathbf{x}|\omega)$ 

 $\rightarrow \mbox{ parameter estimation}.$ 

In this lecture, Maximum Likelihood Estimation (MLE) and Bayesian Estimation (BE).

- Results always identical, but underlying assumptions are different
- Using either estimation, will use  $p(\omega|\mathbf{x})$  as our classifier.

## Simple Example: Univariate Gaussian

#### Recall Gaussian Distribution:

$$N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- $\mathbb{E}(x) = \mu$   $\operatorname{Var}(x) = \sigma^2$



Figure: univariate Gaussian [C.Bishop 2006]

#### Likelihood Function

Given N training samples  $\{x_1,...,x_N\}$ , denote as  $\mathcal{D}=(x_1,...,x_N)^T$ , assume:

- drawn independently from Gaussian distribution whose mean  $\mu$  and variance  $\sigma^2$  are unknown.
- independent and identically distributed, abbreviated as i.i.d

The probability of the whole dataset  $\mathcal{D}$  is:

$$p(\mathcal{D}|\mu, \sigma^2) = \prod_{n=1}^{N} N(x_n|\mu, \sigma^2)$$

Likelihood function for the Gaussian.



Figure: Likelihood function for Gaussian [C.Bishop 2006]

Use training samples to determine the parameters in a probability distribution:

- Find parameter values that **maximize the likelihood** function.
- i.e., Adjusting the  $\mu$  and  $\sigma^2$  of Gaussian so as to **maximize** the product:  $\prod_{n=1}^{N} N(x_n | \mu, \sigma^2)$ .

$$\arg\max_{\mu,\sigma^2} p(\mathcal{D}|\mu,\sigma^2) \equiv \arg\max_{\mu,\sigma^2} \ln(p(\mathcal{D}|\mu,\sigma^2))$$

$$\arg\max_{\mu,\sigma^2} p(\mathcal{D}|\mu,\sigma^2) \equiv \arg\max_{\mu,\sigma^2} \ln(p(\mathcal{D}|\mu,\sigma^2))$$

$$LLD = \ln p(\mathcal{D}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

$$\arg\max_{\mu,\sigma^2} p(\mathcal{D}|\mu,\sigma^2) \equiv \arg\max_{\mu,\sigma^2} \ln(p(\mathcal{D}|\mu,\sigma^2))$$

$$LLD = \ln p(\mathcal{D}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

Take 
$$\frac{\partial LLD}{\partial \mu}=0$$
 and  $\frac{\partial LLD}{\partial \sigma^2}=0$ :

$$\arg\max_{\mu,\sigma^2} p(\mathcal{D}|\mu,\sigma^2) \equiv \arg\max_{\mu,\sigma^2} \ln(p(\mathcal{D}|\mu,\sigma^2))$$

$$LLD = \ln p(\mathcal{D}|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

Take 
$$\frac{\partial LLD}{\partial \mu} = 0$$
 and  $\frac{\partial LLD}{\partial \sigma^2} = 0$ :

- $\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n$ , i.e., sample mean.
- $\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n \hat{\mu})^2$ , i.e., sample variance

#### Bias

The Maximum Likelihood estimations  $\hat{\mu}$ ,  $\hat{\sigma}^2$  depends on training data  $\mathcal{D}$  which contains N samples. Consider different possible set of training samples, on average,

$$\begin{split} \mathbb{E}(\hat{\mu}) &= \mu \\ \mathbb{E}(\hat{\sigma}^2) &= \frac{N-1}{N} \sigma^2 \end{split}$$

#### Bias

The Maximum Likelihood estimations  $\hat{\mu}$ ,  $\hat{\sigma}^2$  depends on training data  $\mathcal{D}$  which contains N samples. Consider different possible set of training samples, on average,

$$\begin{split} \mathbb{E}(\hat{\mu}) &= \mu \\ \mathbb{E}(\hat{\sigma}^2) &= \frac{N-1}{N} \sigma^2 \end{split}$$

- Maximum Likelihood Estimation  $\hat{\sigma}^2$  is biased. i.e.,  $\mathbb{E}(\hat{\sigma}^2) \neq \sigma^2$
- Under estimate the true variance  $\sigma^2$ .





Figure: Averaged across three sets, mean is correct, variance is under-estimated. [C.Bishop 2006]

However, when we have large amount training samples, i.e.,  $N \to \infty$ , the variance estimator tends to become unbiased.

## Maximum Likelihood Estimation

General Principle Multivariate Gaussian Sequential Estimation

# The General Principle

## Setting and Assumption

- Training data  $\mathcal{D}$  contains the collection of samples from c classes/states, i.e.,  $\mathcal{D}$  can be partitioned as  $\mathcal{D}_1, ..., \mathcal{D}_c$ .
- Samples in  $\mathcal{D}_j$  are *i.i.d* samples from  $p(x|\omega_j)$ .
- $p(x|\omega_j)$  has known parametric form (e.g., Gaussian).
- $\theta_j$  consists of the unknown parameters that need to be estimated.  $\theta_j$  for  $\omega_j$ .
- Goal: use training samples  $\mathcal{D}$ , estimate unknown parameters  $\theta_1,...,\theta_c$  associated with each category.

## Independence Across Classes

We have training data for each class.



When estimating parameters for one class, will only use the data collected for that class.



The samples in  $\mathcal{D}_i$  give no information about  $\theta_i$  if  $i \neq j$ .

- Handle each class separately.

### The General Principle

Use training samples  $\mathcal{D}=\{x_1,x_2,...,x_n\}$  drawn **i.i.d** from probability density  $p(x|\theta)$  to estimate the **unknown** parameter vector  $\theta$ .

The likelihood function for whole dataset  $\mathcal{D}$ :

$$p(\mathcal{D}|\theta) = \prod_{k=1}^{n} p(x_k|\theta)$$

- Maximum Likelihood Estimation (MLE)of  $\theta$ , i.e.,  $\hat{\theta}$ , should maximize  $p(\mathcal{D}|\theta)$ .
- It is the value that best agrees with the observed training data  $\mathcal{D}$ .

## Finding Optimal

• For  $\theta = (\theta_1, ..., \theta_p)^T$ , define gradient operator:

$$\nabla_{\theta} \equiv \left[ \begin{array}{c} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_p} \end{array} \right]$$

- log-likelihood function  $l(\theta)$ :  $l(\theta) \equiv \ln p(\mathcal{D}|\theta)$
- Maximum Likelihood Estimation  $\hat{\theta}$ :

$$\hat{\theta} = \arg\max_{\theta} l(\theta)$$

## Finding Optimal (Con't)

· Log-likelihood:

$$l(\theta) \equiv \ln p(\mathcal{D}|\theta)$$
  
=  $\sum_{k=1}^{n} \ln p(x_k|\theta)$ 

• Taking gradients w.r.t  $\theta$ 

$$\nabla_{\theta} l = \sum_{k=1}^{n} \nabla_{\theta} \ln p(x_k | \theta)$$

- Necessary condition:  $\nabla_{\theta} l = 0$
- A solution  $\hat{\theta}$  might represent local/global minimum/maximum, saddle point etc. Have to check.

## Multivariate Gaussian

#### Multivariate Gaussian

#### Univariate Gaussian:

$$N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

#### Multivariate Gaussian

Univariate Gaussian:

$$N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Multivariate Gaussian:

$$N(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

where  $\mu$  is D-dimensional mean vector,  $\Sigma$  is  $D \times D$  covariance matrix, and  $|\Sigma|$  denotes the determinant of  $\Sigma$ .

#### MLE for Multivariate Gaussian

Given training samples  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  which assumed to be *i.i.d* samples from multivariate Gaussian  $p(\mathbf{x}|\mu, \Sigma)$ .  $\mu$  and  $\Sigma$  are assumed to be unknown and need to be estimated.

• Log-likelihood function for  $\mathcal{D}$ :

$$\ln p(\mathcal{D}|\mu, \Sigma) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\Sigma| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \mu)^T \Sigma^{-1} (\mathbf{x}_n - \mu)$$

• 
$$\frac{\partial}{\partial \mu} \ln p(\mathcal{D}|\mu, \Sigma) = \sum_{n=1}^{N} \Sigma^{-1}(\mathbf{x}_n - \mu) = 0$$

•  $\frac{\partial}{\partial \Sigma} \ln p(\mathcal{D}|\mu, \Sigma) = 0$ , quite involved.

#### MLE for Multivariate Gaussian

The Maximum Likelihood Estimations  $\hat{\mu}$  and  $\hat{\Sigma}$  are:

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \hat{\mu}) (\mathbf{x}_n - \hat{\mu})^T$$

Similarly, we have:

$$\begin{split} \mathbb{E}(\hat{\mu}) &= & \mu \\ \mathbb{E}(\hat{\Sigma}) &= & \frac{N-1}{N} \Sigma \neq \Sigma \end{split}$$

Biased estimator for  $\Sigma$ , may use:

$$ilde{\Sigma} = rac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \hat{\mu}) (\mathbf{x}_n - \hat{\mu})^T$$
 (unbiased)

# Sequential Estimation

#### Motivation

The previous derived Maximum Likelihood Estimation is derived using *whole* dataset. However, in many cases:

- new data available in on-line application.
- the whole training dataset is too large.

Sequential estimation: needed in most of the model training, especially the learning of deep models.

## Example for Mean Estimation

Consider the MLE of mean, i.e.,  $\hat{\mu}$ , for univariate Gaussian.

 $\hat{\mu}^{(N)} \colon$  MLE estimation based on N observations.

Dissect out the contribution from final point  $x_N$ , we have:

$$\hat{\mu}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$= \frac{1}{N} x_N + \frac{1}{N} \sum_{n=1}^{N-1} x_n$$

$$= \frac{1}{N} x_N + \frac{N-1}{N} \hat{\mu}^{(N-1)}$$

$$= \hat{\mu}^{(N-1)} + \frac{1}{N} (x_N - \hat{\mu}^{(N-1)})$$

## Interpretation

We have:

$$\hat{\mu}^{(N)} = \hat{\mu}^{(N-1)} + \frac{1}{N} (x_N - \hat{\mu}^{(N-1)})$$

- After observing N-1 points, we have  $\hat{\mu}^{(N-1)}$ .
- Now observe  $x_N$ , have 'error signal'  $(x_N \hat{\mu}^{(N-1)})$ .
- Revise  $\hat{\mu}^{(N-1)}$  following direction of 'error signal'.

#### General Formulation

Consider random variables  $\theta$  and z which follows joint distribution  $p(z,\theta).$ 

Define regression function:

$$f(\theta) \equiv \mathbb{E}(z|\theta) = \int zp(z|\theta)dz$$

Goal: find root  $\theta^{\star}$ , such that  $f(\theta^{\star}) = 0$ 



Figure: Regression function  $f(\theta)$  and root  $\theta^*[C.Bishop 2006]$ 

## Robbins-Monro Algorithm

Suppose observe one (or batch) z at a time, find the corresponding sequential estimation scheme for  $\theta^\star$  ( i.e.,  $f(\theta^\star)=0$  )

Robbins-Monro procedure:

$$\theta^{(N)} = \theta^{(N-1)} - a_{N-1} z(\theta^{(N-1)})$$

where  $z(\theta^{(N-1)})$  is an observed value of z when  $\theta$  takes the value  $\theta^{(N)}.$ 

- Assume conditional variance of z is finite and some conditions on  $\{a_N\}$  sequence.
- The procedure converge to root  $\theta^*$  with probability one.

#### Robbins-Monro for MLE

Suppose we have likelihood function  $p(x|\theta)$ , then the maximum likelihood estimation  $\hat{\theta}$  satisfy:

$$\frac{\partial}{\partial \theta} \left[ -\frac{1}{N} \sum_{n=1}^{N} \ln p(x_n | \theta) \right] = 0$$

When  $N \to \infty$ , want:

$$-\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \theta} \ln p(x_n|\theta) = \mathbb{E}_x \left[ -\frac{\partial}{\partial \theta} \ln p(x|\theta) \right] = 0$$

Find the maximum likelihood solution corresponds to finding the root of a regression function.

#### Robbins-Monro for MLE

Use Robbins-Monro Algorithm for MLE:

$$\theta^{(N)} = \theta^{(N-1)} - a_{N-1} \frac{\partial}{\partial \theta^{(N-1)}} [-\ln p(x_N | \theta^{(N-1)})]$$

Specifically, if likelihood  $p(x|\theta)$  is Gaussian (i.e.,  $N(x|\mu,\sigma^2)$ ), then  $\theta^{(N)}$  is the MLE estimate  $\hat{\mu}^{(N)}$  of the mean of the Gaussian. And random variable z is given by:

$$z = \frac{\partial}{\partial \hat{\mu}} [-\ln p(x|\hat{\mu}, \sigma^2)] = -\frac{1}{\sigma^2} (x - \hat{\mu})$$

Choose 
$$a_N=rac{\sigma^2}{N}$$
, we get  $\hat{\mu}^{(N)}=\hat{\mu}^{(N-1)}+rac{1}{N}(x_N-\hat{\mu}^{(N-1)})$ 

#### Robbins-Monro for MLE

Recall:

$$z = \frac{\partial}{\partial \hat{\mu}} [-\ln p(x|\hat{\mu}, \sigma^2)] = -\frac{1}{\sigma^2} (x - \hat{\mu})$$

Suppose the training samples  $\{x_1,\ldots,x_n\}$  follows from  $\mathrm{N}(\mu,\sigma^2)$ . The distribution of z is Gaussian with mean  $-\frac{1}{\sigma^2}(\mu-\hat{\mu})$  which is also the regression function. The root for such regression function (which is also the maximum likelihood solution) is  $\hat{\mu}^\star=\mu$ . Thus the sequential MLE using Robbins-Monro could obtain the estimation which is the true mean.

# Bayesian Estimation Example for Gaussian General Principle Connecting to Bayesian Decision Problem

# Example for Gaussian

### Bayesian Inference for Gaussian

Recall: based on training  $\mathcal{D}=\{x_1,\ldots,x_n\}$ , estimate  $\mu$ ,  $\sigma^2$  to maximize  $p(\mathcal{D}|\mu,\sigma^2)$ .

- In Maximum Likelihood framework:  $\mu$ ,  $\sigma^2$  are unknown but **fixed**.
- In Bayesian Estimation framework:  $\mu$ ,  $\sigma^2$  are unknown and random variables.

#### Define Prior on $\mu$

Assume  $\sigma^2$  is known, only estimate/infer  $\mu$  from N observations, i.e.,  $\mathcal{D}=\{x_1,\dots,x_N\}.$ 

The likelihood function which can be viewed as a function of  $\mu$  is given by:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right)$$

Note the only unknown is  $\mu$ . Prior knowledge about  $\mu$  can be expressed by *known* prior density  $p(\mu)$  which is assumed as:

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

#### Prior on $\mu$

Prior density on  $\mu$ :

$$p(\mu) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

- $\mu_0$  is our best priori guess for  $\mu$ , and  $\sigma_0$  measures the uncertainty about this guess.
- The crucial assumption is we **know** the prior distribution.

#### Think in this way

- A value is drawn for  $\mu$  from  $p(\mu)$ .
- Such value becomes the true value of  $\mu$ , and will be used to determines the density of training data  $\mathcal{D}$ .

#### Think in this way

- A value is drawn for  $\mu$  from  $p(\mu)$ .
- Such value becomes the true value of  $\mu$ , and will be used to determines the density of training data  $\mathcal{D}$ .

How does the training data  $\mathcal{D}$  affects our beliefs about the true value of  $\mu$ ?

## Estimating $\mu$ : $p(\mu|\mathcal{D})$

Bayes formula to get posterior distribution:

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu)p(\mu)}{\int p(\mathcal{D}|\mu)p(\mu)d\mu}$$
$$= C * \prod_{n=1}^{N} p(x_n|\mu)p(\mu)$$

C is the normalization constant which depends on  $\mathcal D$  and independent of  $\mu.$ 

## $p(\mu|\mathcal{D})$ is still Gaussian

After some manipulations:

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N^2)$$

where:

$$\begin{array}{rcl} \mu_{N} & = & \frac{\sigma^{2}}{N\sigma_{0}^{2}+\sigma^{2}}\mu_{0}+\frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2}+\sigma^{2}}\hat{\mu} \\ \\ \sigma_{N}^{2} & = & \frac{\sigma_{0}^{2}\sigma^{2}}{N\sigma_{0}^{2}+\sigma^{2}} \\ \\ \hat{\mu} & = & \frac{1}{N}\sum_{n=1}^{N}x_{n} \end{array}$$

Recall  $\hat{\mu}$  is the maximum likelihood solution.

#### Interpretation: Vary Number of Samples

$$\mu_{N} = \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{0} + \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\hat{\mu}$$

$$\sigma_{N}^{2} = \frac{\sigma_{0}^{2}\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}}$$

- $\mu_N$  represents our best guess for  $\mu$  after observing N training samples,  $\sigma_N^2$  measures our uncertainty about this guess.
- $\mu_N$ : compromise between the prior mean  $\mu_0$  and maximum likelihood solution  $\hat{\mu}$ .
- N=0:  $\mu_N=\mu_0$ ,  $\sigma_N^2=\sigma_0^2$
- $N \to \infty$ :  $\mu_N \to \hat{\mu}, \ \sigma_N^2 \to 0$

#### Bayesian Learning



Figure: Bayesian inference for  $\mu$ . [C.Bishop 2006]

- When number of observations N increase,  $\sigma_N^2$  decrease monotonically,  $p(\mu|\mathcal{D})$  become more and more peaked.
- When infinite number of observations  $N \to \infty$ , bayesian estimation recovers the maximum likelihood estimation for  $\mu$ .

# Interpretation: $\sigma^2$ vs. $\sigma_0^2$

$$\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \hat{\mu}$$

$$\sigma_N^2 = \frac{\sigma_0^2 \sigma^2}{N\sigma_0^2 + \sigma^2}$$

$$\hat{\mu} = \bar{x}_N = \frac{1}{N} \sum_{n=1}^N x_n$$

- $\hat{\mu}$ : sample mean, reflect the empirical information in the samples.
- If  $\sigma_0 = 0$ :  $\mu_N = \mu_0$ , priori certainty is so strong, no observation will change our opinion.
- If  $\sigma_0 \gg \sigma$ :  $\mu_N \to \bar{x}_N$ , priori guess is so uncertain, use only samples to estimate.

• The form of density  $p(x|\theta)$  is assumed to be *known*, but the value of parameter vector  $\theta$  is not known exactly.

- The form of density  $p(x|\theta)$  is assumed to be *known*, but the value of parameter vector  $\theta$  is not known exactly.
- Our initial knowledge about  $\theta$  is assumed to be contained in a known priori density  $p(\theta)$ .

- The form of density  $p(x|\theta)$  is assumed to be *known*, but the value of parameter vector  $\theta$  is not known exactly.
- Our initial knowledge about  $\theta$  is assumed to be contained in a *known* priori density  $p(\theta)$ .
- The rest of our knowledge about  $\theta$  is contained in  $\mathcal D$  of  $\{x_1,\ldots,x_N\}$  drawn independently from unknown density p(x).

- The form of density  $p(x|\theta)$  is assumed to be *known*, but the value of parameter vector  $\theta$  is not known exactly.
- Our initial knowledge about  $\theta$  is assumed to be contained in a *known* priori density  $p(\theta)$ .
- The rest of our knowledge about  $\theta$  is contained in  $\mathcal{D}$  of  $\{x_1,\ldots,x_N\}$  drawn independently from unknown density p(x).
- Basic problem: find  $p(\theta|\mathcal{D})$ .

## Compute $p(\theta|\mathcal{D})$

Bayes formula:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta}$$
(1)

Where:

$$p(\mathcal{D}|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$
 (2)

- MLE: maximum eqn. (2) to get point estimate  $\hat{\theta}$ .
- Bayesian estimation: use *all* available information (i.e., prior as well as training samples) to get probability estimation for  $\theta$ , i.e.,  $p(\theta|\mathcal{D})$ .

#### Sequential Estimation

Recall in MLE, we show that estimation can be done in a sequential manner to utilize the new collected data. The Bayesian paradigm naturally leads to sequential view (write  $\mathcal{D}^N = \{x_1, \dots, x_N\}$ ):

$$p(\mathcal{D}^N|\theta) = p(x_N|\theta)p(\mathcal{D}^{N-1}|\theta)$$

Then:

$$p(\theta|\mathcal{D}^{N}) = \frac{p(x_{N}|\theta)p(\mathcal{D}^{N-1}|\theta)p(\theta)}{\int p(x_{N}|\theta)p(\mathcal{D}^{N-1}|\theta)p(\theta)d\theta}$$
$$= C * \underbrace{\left[p(\theta)\prod_{n=1}^{N-1}p(x_{n}|\theta)\right]}_{\propto p(\theta|\mathcal{D}^{N-1})} p(x_{N}|\theta)$$

#### Sequential Estimation

$$p(\theta|\mathcal{D}^{N}) = C * \underbrace{\left[p(\theta) \prod_{n=1}^{N-1} p(x_{n}|\theta)\right]}_{\propto p(\theta|\mathcal{D}^{N-1})} p(x_{N}|\theta)$$

- Use such sequential procedure, we get  $p(\theta)$ ,  $p(\theta|x_1)$ ,  $p(\theta|x_1,x_2)$  and so forth.
- Example of on-line learning.

# Connecting to Bayesian Decision Problem

#### Connection to Decision

Suppose we have c state of nature  $\omega_1, \ldots, \omega_c$ , recall the decision theory discussed in previous chapter is based on posterior  $p(\omega_i|x)$ .

- $P(\omega_i)$  and  $p(x|\omega_i)$  are unknown
- use training samples  $\mathcal{D}$  to estimate, denote as  $p(\omega_i|x,\mathcal{D})$ .

We have:

$$p(\omega_i|x, \mathcal{D}) = \frac{p(x|\omega_i, \mathcal{D})P(\omega_i|\mathcal{D})}{\sum_{j=1}^{c} p(x|\omega_j, \mathcal{D})P(\omega_j|\mathcal{D})}$$

Assume independence across class:

$$p(\omega_i|x, \mathcal{D}) = \frac{p(x|\omega_i, \mathcal{D}_i)P(\omega_i)}{\sum_{j=1}^{c} p(x|\omega_j, \mathcal{D}_j)P(\omega_j)}$$

Each class is treated independently.

#### Connection to Decision

Treat each class separately:

$$p(\omega_i|x, \mathcal{D}) = \frac{p(x|\omega_i, \mathcal{D}_i)P(\omega_i)}{\sum_{j=1}^{c} p(x|\omega_j, \mathcal{D}_j)P(\omega_j)}$$

We have c separate problems of the form: use a set  $\mathcal{D}$  of samples drawn independently according to the fixed but unknown probability density p(x) to determine  $p(x|\omega_i,\mathcal{D}_i)$  which is simplified as  $p(x|\mathcal{D})$ .

Assume: (1)  $\{x_1,\ldots,x_N\} \sim p(x)$ , p(x) is unknown but has *known* parametric form, i.e, function  $p(x|\theta)$  is completely known,  $\theta$  is unknown.

Assume: (1)  $\{x_1,\ldots,x_N\} \sim p(x)$ , p(x) is unknown but has *known* parametric form, i.e, function  $p(x|\theta)$  is completely known,  $\theta$  is unknown.

(2) the prior knowledge about  $\theta$  is contained in known prior density  $p(\theta).$ 

Assume: (1)  $\{x_1,\ldots,x_N\} \sim p(x)$ , p(x) is unknown but has *known* parametric form, i.e, function  $p(x|\theta)$  is completely known,  $\theta$  is unknown.

(2) the prior knowledge about  $\theta$  is contained in *known* prior density  $p(\theta)$ .

Goal: compute  $p(x|\mathcal{D})$  which is as close as we can get to obtaining unknown p(x).

$$p(x|\mathcal{D}) = \int p(x,\theta|\mathcal{D})d\theta$$
$$= \int p(x|\theta,\mathcal{D})p(\theta|\mathcal{D})d\theta$$
$$= \int p(x|\theta)p(\theta|\mathcal{D})d\theta$$

- The distribution of x is known completely when we know value of the parameter vector  $\theta$ .
- Links  $p(x|\mathcal{D})$  to the posterior density  $p(\theta|\mathcal{D})$  for the unknown parameter vector.
- The integration may need Monte-Carlo simulation which is computation intensive.

Recall the previous example that estimate  $\mu$ : we assume  $p(\mu) \sim \mathrm{N}(\mu|\mu_0,\sigma_0^2)$ ,  $p(x_i|\mu) \sim \mathrm{N}(x|\mu,\sigma^2)$  where  $\sigma^2$  is known. Then for training set  $\mathcal{D}$ , we have:

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N^2)$$

Recall the previous example that estimate  $\mu$ : we assume  $p(\mu) \sim \mathrm{N}(\mu|\mu_0,\sigma_0^2)$ ,  $p(x_i|\mu) \sim \mathrm{N}(x|\mu,\sigma^2)$  where  $\sigma^2$  is known. Then for training set  $\mathcal{D}$ , we have:

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N^2)$$

Take step further:

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D})d\mu$$
  
=  $N(\mu_N, \sigma^2 + \sigma_N^2)$ 

Recall the previous example that estimate  $\mu$ : we assume  $p(\mu) \sim \mathrm{N}(\mu|\mu_0,\sigma_0^2)$ ,  $p(x_i|\mu) \sim \mathrm{N}(x|\mu,\sigma^2)$  where  $\sigma^2$  is known. Then for training set  $\mathcal{D}$ , we have:

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N^2)$$

Take step further:

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D})d\mu$$
  
=  $N(\mu_N, \sigma^2 + \sigma_N^2)$ 

Note: increased variance to account for additional uncertainty in x due to inexact knowledge of  $\mu$ .

Recall the previous example that estimate  $\mu$ : we assume  $p(\mu) \sim \mathrm{N}(\mu|\mu_0,\sigma_0^2)$ ,  $p(x_i|\mu) \sim \mathrm{N}(x|\mu,\sigma^2)$  where  $\sigma^2$  is known. Then for training set  $\mathcal{D}$ , we have:

$$p(\mu|\mathcal{D}) = N(\mu|\mu_N, \sigma_N^2)$$

Take step further:

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D})d\mu$$
  
=  $N(\mu_N, \sigma^2 + \sigma_N^2)$ 

Note: increased variance to account for additional uncertainty in x due to inexact knowledge of  $\mu$ .

 $p(x|\mathcal{D})$  is the desired class conditional density  $p(x|\omega_i, \mathcal{D}_i)$ , together with prior  $P(\omega_i)$ , we define the posterior  $p(\omega_i|x,\mathcal{D})$  based on which classifier is built.

• When  $N \to \infty$  (infinite training data), maximum likelihood and Bayesian solutions are equivalent. i.e.,  $p(x|\mathcal{D}) \approx p(x|\hat{\theta})$ .

- When  $N \to \infty$  (infinite training data), maximum likelihood and Bayesian solutions are equivalent. i.e.,  $p(x|\mathcal{D}) \approx p(x|\hat{\theta})$ .
- When use "flat" or uniform prior  $p(\theta)$ , Bayesian estimation is equivalent to maximum likelihood estimation.

- When  $N \to \infty$  (infinite training data), maximum likelihood and Bayesian solutions are equivalent. i.e.,  $p(x|\mathcal{D}) \approx p(x|\hat{\theta})$ .
- When use "flat" or uniform prior  $p(\theta)$ , Bayesian estimation is equivalent to maximum likelihood estimation.
- Maximum Likelihood method is computational efficient, i.e., only need gradient. Bayesian methods needs integration which are hard to approximate. (recall  $p(x|\mathcal{D}) = \int p(x|\theta)p(\theta|\mathcal{D})d\theta$ )

- When  $N \to \infty$  (infinite training data), maximum likelihood and Bayesian solutions are equivalent. i.e.,  $p(x|\mathcal{D}) \approx p(x|\hat{\theta})$ .
- When use "flat" or uniform prior  $p(\theta)$ , Bayesian estimation is equivalent to maximum likelihood estimation.
- Maximum Likelihood method is computational efficient, i.e., only need gradient. Bayesian methods needs integration which are hard to approximate. (recall  $p(x|\mathcal{D}) = \int p(x|\theta)p(\theta|\mathcal{D})d\theta$ )
- Maximum likelihood give single best model, while bayesian method give a weighted average of models.

- When  $N \to \infty$  (infinite training data), maximum likelihood and Bayesian solutions are equivalent. i.e.,  $p(x|\mathcal{D}) \approx p(x|\hat{\theta})$ .
- When use "flat" or uniform prior  $p(\theta)$ , Bayesian estimation is equivalent to maximum likelihood estimation.
- Maximum Likelihood method is computational efficient, i.e., only need gradient. Bayesian methods needs integration which are hard to approximate. (recall  $p(x|\mathcal{D}) = \int p(x|\theta)p(\theta|\mathcal{D})d\theta$ )
- Maximum likelihood give single best model, while bayesian method give a weighted average of models.
- Bayesian methods use more of the information through  $p(\theta|\mathcal{D})$ , if such information is reliable, then its better than maximum likelihood.