Lyapunov functions for pullback attractors of nonautonomous difference equations

Peter Kloeden

Goethe-Universität, Frankfurt am Main

- 1. P.E. Kloeden, Lyapunov functions for cocycle attractors in nonautonomous difference equations, *Izvetsiya Akad Nauk Rep Moldovia Mathematika* **26** (1998), 32–42.
- 2. P.E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, *Elect. J. Diff. Eqns.*, Conference 05 (2000), 91–102.
- 3. L. Grüne, P.E. Kloeden, S. Siegmund and F.R. Wirth, Lyapunov's second method for nonautonomous differential equations, *Discrete Conts. Dyn. Systems, Series A* **18** (2007), 375–403.

Aim: Construct a Lyapunov function characterising pullback attraction and pullback attractors for a discrete-time process generated by a nonautonomous difference equation in \mathbb{R}^d .

Consider a nonautonomous difference equation

$$x_{n+1} = f_n(x_n) \tag{1}$$

on \mathbb{R}^d , where the $f_n:\mathbb{R}^d o \mathbb{R}^d$ are Lipschitz continuous mappings.

This generates a process $\phi: \mathbb{Z}^2_{\geq} \times \mathbb{R}^d \to \mathbb{R}^d$ through iteration by

$$\phi(n,n_0,x_0)=f_{n-1}\circ\cdots\circ f_{n_0}(x_0)$$

for all $n \geq n_0$ and each $x_0 \in \mathbb{R}^d$.

This satisfies the initial condition property

$$\phi(n_0,n_0,x_0)=x_0$$

for each $x_0 \in \mathbb{R}^d$ and all $n_0 \in \mathbb{Z}$; the 2-parameter semigroup property

$$\phi(n_2, n_0, x_0) = \phi(n_2, n_1, \phi(n_1, n_0, x_0))$$

for each $x_0 \in \mathbb{R}^d$ and $n_0 \le n_1 \le n_2$ in \mathbb{Z} ; and the <u>continuity property</u>

 $x_0 \mapsto \phi(n, n_0, x_0)$ is <u>Lipschitz</u> continuous for all $n \ge n_0$.

Pullback attractors

Definition A ϕ -invariant family of nonempty compact subsets $\mathcal{A} = \{A_n : n \in \mathbb{Z}\}$ is called a <u>pullback attractor</u> w.r.t. a basin of attraction system \mathfrak{D}_{att} if it is pullback attracting,, i.e.,

$$\lim_{j\to\infty} dist(\phi(n,n-j,D_{n-j}),A_n)=0$$
 (2)

for all $n \in \mathbb{Z}$ and all $\mathcal{D} = \{D_n : n \in \mathbb{Z}\} \in \mathfrak{D}_{\mathsf{att}}$.

$$\phi$$
-invariance means that $A_n = \phi(n, n_0, A_{n_0})$ or $A_{n+1} = f_n(A_n)$.

The pullback attraction is taken with respect to a <u>basin of</u> attraction system \mathfrak{D}_{att} , which is defined as follows:

Definition A basin of attraction system \mathfrak{D}_{att} consists of families $\mathcal{D} = \{\overline{D_n} : n \in \mathbb{Z}\}$ of nonempty bounded subsets of \mathbb{R}^d with the property that $\mathcal{D}^{(1)} = \{D_n^{(1)} : n \in \mathbb{Z}\} \in \mathfrak{D}_{att}$ if $\mathcal{D}^{(2)} = \{D_n^{(2)} : n \in \mathbb{Z}\} \in \mathfrak{D}_{att}$ and $D_n^{(1)} \subseteq D_n^{(2)}$ for all $n \in \mathbb{Z}$.

Although somewhat complicated, the use of a basin of attraction system allows both <u>nonuniform</u> and <u>local attraction</u> regions, which are typical in nonautonomous systems, to be handled.

Obviously $\mathcal{A} \in \mathfrak{D}_{\mathit{att}}$.

Figure: Pullback attraction.

A pullback absorbing neighbourhood system

The <u>construction</u> of the Lyapunov function requires the existence of a pullback absorbing neighbourhood family.

Lemma Let A be a pullback attractor with a basin of attraction system $\mathfrak{D}_{\mathsf{att}}$ for a process ϕ .

Then there <u>exists</u> a pullback absorbing neighbourhood system $\mathcal{B} \subset \mathfrak{D}_{\mathsf{att}}$ of \mathcal{A} w.r.t. ϕ . Moreover, \mathcal{B} is ϕ -positive invariant.

Sketch Proof For each $n_0 \in \mathbb{Z}$ pick $\delta_{n_0} > 0$ such that

$$B[A_{n_0};\delta_{n_0}]:=\{x\in\mathbb{R}^d:\ \mathrm{dist}(x,A_{n_0})\leq\delta_{n_0}\}$$
 so $\{B[A_{n_0};\delta_{n_0}]:n_0\in\mathbb{Z}\}\in\mathfrak{D}_{att}.$

Define

$$B_{n_0} := \overline{\bigcup_{j\geq 0} \phi(n_0, n_0 - j, B[A_{n_0-j}; \delta_{n_0-j}])}.$$

Obviously $A_{n_0} \subset \operatorname{int} B[A_{n_0}; \delta_{n_0}] \subset B_{n_0}$.

The <u>positive invariance</u> follows from the definition and the 2-parameter semigroup property to obtain

$$\phi(n_0+1,n_0,B_{n_0})\subseteq B_{n_0+1},$$

and then induction.

The <u>compactness</u> of B_{n_0} follows from the compactness of $B[A_{n_0-j}; \delta_{n_0-j}]$ and hence, by the continuity of $\phi(n_0, n_0-j, \cdot)$, of $\phi(n_0, n_0-j, B[A_{n_0-j}; \delta_{n_0-j}])$ for each $j \geq 0$ and $n_0 \in \mathbb{Z}$.

Finally, \mathcal{B} is <u>pullback absorbing</u> w.r.t. \mathfrak{D}_{att} since \mathcal{A} is pullback attracting.

Necessary and sufficient conditions

The main result is the construction of a Lyapunov function that characterizes this pullback attraction.

Theorem Let the f_n be uniformly Lipschitz continuous on \mathbb{R}^d for each $n \in \mathbb{Z}$ and let ϕ be the process that they generate. In addition, let \mathcal{A} be a ϕ -invariant family of nonempty compact sets that is pullback attracting with respect to ϕ with a basin of attraction system $\mathfrak{D}_{\mathsf{att}}$.

Then there exists a Lipschitz continuous function $V: \mathbb{Z} \times \mathbb{R}^d \to \mathbb{R}$ such that

Property 1 (upper bound): For all $n_0 \in \mathbb{Z}$ and $x_0 \in \mathbb{R}^d$

$$V(n_0, x_0) \leq dist(x_0, A_{n_0});$$
 (3)

<u>Property 2 (lower bound):</u> For each $n_0 \in \mathbb{Z}$ there exists a function $a(n_0,\cdot): \mathbb{R}^+ \to \mathbb{R}^+$ with $a(n_0,0)=0$ and $a(n_0,r)>0$ for all r>0 which is monotonically increasing in r such that

$$a(n_0,(x_0,A_{n_0})) \leq V(n_0,x_0), \quad \text{for all } x_0 \in \mathbb{R}^d;$$
 (4)

Property 3 (Lipschitz condition): For all $n_0 \in \mathbb{Z}$ and $x_0, y_0 \in \mathbb{R}^d$

$$|V(n_0,x_0)-V(n_0,y_0)| \leq ||x_0-y_0||;$$
 (5)

Property 4 (pullback convergence): For all $n_0 \in \mathbb{Z}$ and any $\mathcal{D} \in \mathcal{D}_{\mathsf{att}}$

$$\limsup_{n\to\infty} \sup_{z_{n_0-n}\in D_{n_0-n}} V(n_0,\phi(n_0,n_0-n,z_{n_0-n})) = 0.$$

In addition,

Property 5 (forward convergence): There exists $\mathcal{N} \in \mathfrak{D}_{\mathsf{att}}$, which is positively invariant under ϕ and consists of nonempty compact sets N_{n_0} with $A_{n_0} \subset \mathrm{int} N_{n_0}$ for each $n_0 \in \mathbb{Z}$ such that

$$V(n_0+1,\phi(n_0+1,n_0,x_0)) \le e^{-1}V(n_0,x_0)$$
 (6)

for all $x_0 \in N_{n_0}$, and hence

$$V(n_0 + j, \phi(j, n_0, x_0)) \le e^{-j} V(n_0, x_0), \quad \text{for } x_0 \in N_{n_0}, j \in \mathbb{N}.$$
 (7)

Proof

The aim is to <u>construct</u> a Lyapunov function $V(n_0, x_0)$ that characterises a pullback attractor \mathcal{A} and satisfies properties 1–5 of the Theorem.

Define

$$V(n_0, x_0) := \sup_{n \in \mathbb{N}} e^{-T_{n_0, n}} \operatorname{dist} (x_0, \phi(n_0, n_0 - n, B_{n_0 - n}))$$

for all $n_0 \in \mathbb{Z}$ and $x_0 \in \mathbb{R}^d$, where

$$T_{n_0,n} = n + \sum_{j=1}^{n} \alpha_{n_0-j}^+$$

with $T_{n_0,0} = 0$.

Here $\alpha_n = \log L_n$, where L_n is the uniform Lipschitz constant of f_n on \mathbb{R}^d , and $a^+ = (a + |a|)/2$, i.e., the positive part of a real number a.

Note: $T_{n_0,n} \ge n$ and $T_{n_0,n+m} = T_{n_0,n} + T_{n_0-n,m}$ for $n, m \in \mathbb{N}$, $n_0 \in \mathbb{Z}$.

Proof of property 1

Since $e^{-T_{n_0,n}} \le 1$ for all $n \in \mathbb{N}$ and dist $(x_0, \phi(n_0, n_0 - n, B_{n_0 - n}))$ is monotonically increasing from $0 \le \text{dist}(x_0, \phi(n_0, n_0, B_{n_0}))$ at n = 0 to dist (x_0, A_{n_0}) as $n \to \infty$,

$$V(n_0, x_0) = \sup_{n \in \mathbb{N}} e^{-T_{n_0, n}} \operatorname{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n}))$$

$$\leq 1 \cdot \operatorname{dist}(x_0, A_{n_0}).$$

$$|V(n_0,x_0)-V(n_0,y_0)|=$$

$$= \left| \sup_{n \in \mathbb{N}} e^{-T_{n_0,n}} \operatorname{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n})) - \sup_{n \in \mathbb{N}} e^{-T_{n_0,n}} \operatorname{dist}(y_0, \phi(n_0, n_0 - n, B_{n_0 - n})) \right|$$

$$\leq \sup_{n \in \mathbb{N}} e^{-T_{n_0,n}} \left| \operatorname{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n})) - \operatorname{dist}(y_0, \phi(n_0, n_0 - n, B_{n_0 - n})) \right|$$

$$\leq \sup_{n \in \mathbb{N}} e^{-T_{n_0,n}} \|x_0 - y_0\| \leq \|x_0 - y_0\|$$

since $|\operatorname{dist}(x_0, C) - \operatorname{dist}(y_0, C)| \le ||x_0 - y_0||$ for any x_0 , $y_0 \in \mathbb{R}^d$ and nonempty compact subset C of \mathbb{R}^d .

Proof of property 2

If $x_0 \in A_{n_0}$, then $V(n_0, x_0) = 0$ by Property 1, so assume that $x_0 \in \mathbb{R}^d \setminus A_{n_0}$.

Now the supremum in

$$V(n_0, x_0) = \sup_{n \ge 0} e^{-T_{n_0, n}} \operatorname{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n}))$$

involves the product of an exponentially decreasing quantity bounded below by zero and a bounded increasing function, since the sets $\phi(n_0, n_0 - n, B_{n_0 - n})$ are a <u>nested</u> family of compact sets decreasing to A_{n_0} with increasing n.

In particular,

$$dist(x_0, A_{n_0}) \ge dist(x_0, \phi(n_0, n_0 - n, B_{n_0 - n}))$$
 for $n \in \mathbb{N}$.

Hence there exists an $N^* = N^*(n_0, x_0) \in \mathbb{N}$ such that

$$\frac{1}{2} \mathsf{dist}(x_0, A_{n_0}) \le \mathsf{dist}(x_0, \phi(n_o, n_0 - n, B_{n_0 - n})) \le \mathsf{dist}(x_0, A_{n_0})$$

for all $n \ge N^*$, but not for $n = N^* - 1$. Then,

$$V(n_0, x_0) \geq e^{-T_{n_0, N^*}} \operatorname{dist}(x_0, \phi(n_0, n_0 - N^*, B_{n_0 - N^*}))$$

$$\geq \frac{1}{2} e^{-T_{n_0, N^*}} \operatorname{dist}(x_0, A_{n_0}).$$

Define

$$N^*(n_0, r) := \sup\{N^*(n_0, x_0) : \operatorname{dist}(x_0, A_{n_0}) = r\}.$$

Now $N^*(n_0, r) < \infty$ for $x_0 \notin A_{n_0}$ with dist $(x_0, A_{n_0}) = r$ and $N^*(n_0, r)$ is nondecreasing with $r \to 0$.

To see this note that by the triangle rule

$$dist(x_0, A_{n_0}) \leq dist(x_0, \phi(n_0, n_0 - n, B_{n_0 - n})) + dist(\phi(n_0, n_0 - n, B_{n_0 - n}), A_{n_0}).$$

Also, by pullback convergence, there exists an $N(n_0, r/2)$ such that

$$\operatorname{dist}(\phi(n_0, n_0 - n, B_{n_0 - n}), A_{n_0}) < \frac{1}{2}r$$

for all $n \geq N(n_0, r/2)$.

Hence for $dist(x_0, A_{n_0}) = r$ and $n \ge N(n_0, r/2)$,

$$r \leq \operatorname{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n})) + \frac{1}{2}r,$$

that is

$$\frac{1}{2}r \leq \mathsf{dist}(x_0, \phi(n_0, n_0 - n, B_{n_0 - n})).$$

Obviously $N^*(n_0, r) \leq N^*(n_0, r/2)$.

Finally, define

$$a(n_0,r) := \frac{1}{2}r \ e^{-T_{n_0,N^*(n_0,r)}}.$$
 (8)

Note that there is no guarantee here (without further assumptions) that $a(n_0, r)$ does not converge to 0 for fixed $r \neq 0$ as $n_0 \to \infty$.

Proof of property 4

Assume the opposite.

Then there exists an $\varepsilon_0 > 0$, a sequence $n_j \to \infty$ in \mathbb{N} and points $x_j \in \phi(n_0, n_0 - n_j, D_{n_0 - n_j})$ such that $V(n_0, x_j) \ge \varepsilon_0$ for all $j \in \mathbb{N}$.

Since $\mathcal{D} \in \mathfrak{D}_{att}$ and \mathcal{B} is pullback absorbing, there exists an $\mathcal{N} = \mathcal{N}(\mathcal{D}, n_0) \in \mathbb{N}$ such that

$$\phi(n_0, n_0 - n_j, D_{n_0 - n_j}) \subset B_{n_0}$$
 for $n_j \geq N$.

Hence, $x_j \in B_{n_0}$ for all j such that $n_j \ge N$ and B_{n_0} is a compact set, so there exists a convergent subsequence $x_{j'} \to x^* \in B_{n_0}$.

$$x_{j'} \in \overline{\bigcup_{n \geq n_{j'}} \phi(n_0, n_0 - n, D_{n_0 - n})}$$

and

$$\bigcap_{n_{j'}} \overline{\bigcup_{n \geq n_{j'}} \phi(n_0, n_0 - n, D_{n_0 - n})} \subseteq A_{n_0}$$

by the definition of a pullback attractor. Hence $x^* \in A_{n_0}$ and $V(n_0, x^*) = 0$. But V is Lipschitz continuous in its second variable by property 3, so

$$\varepsilon_0 \leq V(n_0, x_{j'}) = \|V(n_0, x_{j'}) - V(n_0, x^*)\| \leq \|x_{j'} - x^*\|,$$

which contradicts the convergence $x_{i'} \rightarrow x^*$.

Proof of property 5

Define

$$N_{n_0} := \{x_0 \in B[B_{n_0}; 1] : \phi(n_0 + 1, n_0, x_0) \in B_{n_0 + 1}\},$$

where $B[B_{n_0};1]=\{x_0: \operatorname{dist}(x_0,B_{n_0})\leq 1\}$ is bounded because B_{n_0} is compact and \mathbb{R}^d is locally compact, so N_{n_0} is bounded. It is also closed, hence compact, since $\phi(n_0+1,n_0,\cdot)$ is continuous and B_{n_0+1} is compact.

Now $A_{n_0} \subset \mathrm{int} B_{n_0}$ and $B_{n_0} \subset N_{n_0}$, so $A_{n_0} \subset \mathrm{int} N_{n_0}$. In addition,

$$\phi(n_0+1,n_0,N_{n_0})\subset B_{n_0+1}\subset N_{n_0+1},$$

so $\mathcal N$ is positive invariant.

It remains to establish the exponential decay inequality (6).

This needs the Lipschitz condition on $\phi(n_0 + 1, n_0, \cdot) \equiv f_{n_0}(\cdot)$:

$$\|\phi(n_0+1,n_0,x_0)-\phi(n_0+1,n_0,y_0)\| \leq e^{\alpha_{n_0}}\|x_0-y_0\|$$

for all x_0 , $y_0 \in D_{n_0}$ from which it follows that

$$\operatorname{dist}(\phi(n_0+1,n_0,x_0),\phi(n_0+1,n_0,C_{n_0})) \leq e^{\alpha_{n_0}} \operatorname{dist}(x_0,C_{n_0})$$

for any compact subset $C_{n_0} \subset \mathbb{R}^d$.

From the definition of V, we have $V(n_0 + 1, \phi(n_0 + 1, n_0, x_0)) =$

$$= \sup_{n\geq 0} e^{-T_{n_0+1,n}} \operatorname{dist}(\phi(n_0+1,n_0,x_0),\phi(n_0,n_0-n,B_{n_0-n}))$$

$$= \sup_{n\geq 1} e^{-T_{n_0+1,n}} \operatorname{dist}(\phi(n_0+1,n_0,x_0),\phi(n_0,n_0-n,B_{n_0-n}))$$

since $\phi(n_0+1,n_0,x_0)\in B_{n_0+1}$ when $x_0\in N_{n_0}$.

Hence re-indexing and then using the 2-parameter semigroup property and the Lipschitz condition on $\phi(1, n_0, \cdot)$ gives

$$\begin{split} &V(n_0+1,\phi(n_0+1,n_0,x_0)) = \\ &= \sup_{j\geq 0} e^{-T_{n_0+1,j+1}} \mathrm{dist}(\phi(n_0+1,n_0,x_0),\phi(n_0,n_0-j-1,B_{n_0-j-1})) \\ &= \sup_{j\geq 0} e^{-T_{n_0+1,j+1}} \mathrm{dist}(\phi(n_0+1,n_0,x_0),\\ &\qquad \qquad \phi(n_0+1,n_0,\phi(n_0,n_0-j,B_{n_0-j}))) \\ &\leq \sup_{j\geq 0} e^{-T_{n_0+1,j+1}} e^{\alpha_{n_0}} \mathrm{dist}(x_0,\phi(n_0,n_0-j,B_{n_0-j})) \end{split}$$

Now
$$T_{n_0+1,j+1}=T_{n_0,j}+1-lpha_{n_0}^+$$
, so $V(n_0+1,\phi(n_0+1,n_0,x_0))\leq$

$$\leq \sup_{j\geq 0} e^{-T_{n_0+1,j+1}+\alpha_{n_0}} \operatorname{dist}(x_0,\phi(n_0,n_0-j,B_{n_0-j}))$$

$$= \sup_{j\geq 0} e^{-T_{n_0,j}-1-\alpha_{n_0}^++\alpha_{n_0}} \operatorname{dist}(x_0,\phi(n_0,n_0-j,B_{n_0-j}))$$

$$\leq e^{-1} \sup_{j\geq 0} e^{-T_{n_0,j}} \operatorname{dist}(x_0,\phi(n_0,n_0-j,B_{n_0-j})) \leq e^{-1}V(n_0,x_0).$$

Moreover, since $\phi(n_0+1,n_0,x_0) \in B_{n_0+1} \subset N_{n_0+1}$, the proof continues inductively to give

$$V(n_0+j,\phi(n_0+j,n_0,x_0)) \leq e^{-j}V(n_0,x_0) \quad \text{for } j \in \mathbb{N}.$$

Comments on the Theorem

Comment 1: The forward convergence inequality (7) does not imply forward Lyapunov stability or Lyapunov asymptotical stability. Although

$$a(n_0+j, \operatorname{dist}(\phi(n_0+j, n_0, x_0), A_{n_0+j})) \le e^{-j}V(n_0, x_0)$$

there is no guarantee (without additional assumptions) that

$$\inf_{j\geq 0}a(n_0+j,r)>0$$

for r > 0, so $\operatorname{dist}(\phi(n_0 + j, n_0, x_0), A_{n_0 + j})$ need not become small as $j \to \infty$.

Counterexample Consider the process ϕ on \mathbb{R} generated by the nonautonomous difference equation with $f_n=g_1$ for $n\leq 0$ and $f_n=g_2$ for $n\geq 1$, where the mappings $g_1, g_2:\mathbb{R}\to\mathbb{R}$ are given by

$$g_1(x) := \frac{1}{2}x, \qquad g_2(x) := \max\{0, 4x(1-x)\}$$

for all $x \in \mathbb{R}$.

Then the family \mathcal{A} of subsets $A_{n_0} = \{0\}$ for all $n_0 \in \mathbb{Z}$ is pullback attracting for ϕ , but is <u>not</u> forward Lyapunov asymptotically stable.

Comment 2: The forward convergence inequality (7) can be rewritten as

$$V(n_0, \phi(n_0, n_0 - j, x_{n_0 - j})) \leq e^{-j} V(n_0 - j, x_{n_0 - j})$$

$$\leq e^{-j} \operatorname{dist}(x_{n_0 - j}, A_{n_0 - j})$$

for all $x_{n_0-j} \in N_{n_0-j}$ and $j \in \mathbb{N}$.

Definition A family $\mathcal{D} \in \mathfrak{D}_{\mathsf{att}}$ is called <u>past-tempered</u> w.r.t. \mathcal{A} if

$$\lim_{j\to\infty} \frac{1}{j} \log^+ dist(D_{n_0-j}, A_{n_0-j}) = 0, \quad \textit{for } n_0 \in \mathbb{Z}\,,$$

or equivalently if

$$\lim_{j\to\infty}e^{-\gamma j} dist(D_{n_0-j},A_{n_0-j})=0 \quad \text{for } n_0\in\mathbb{Z},\,\gamma>0.$$

This says that there is at most <u>sub-exponential growth</u> of the starting sets backwards in time.

For a past-tempered family $\mathcal{D} \subset \mathcal{N}$ it follows that

$$V(n_0,\phi(n_0,n_0-j,x_{n_0-j})) \le e^{-j} {\sf dist}(D_{n_0-j},A_{n_0-j}) \longrightarrow 0$$
 as $j\to\infty$. Hence

$$a(n_0,\operatorname{dist}(\phi(n_0,n_0-j,x_{n_0-j}),A_{n_0})) \leq e^{-j}\operatorname{dist}(D_{n_0-j},A_{n_0-j}) \longrightarrow 0$$

as $j \to \infty$.

Since n_0 is fixed in the term on the left, this implies the pullback convergence

$$\lim_{j\to\infty}\operatorname{dist}(\phi(n_0,n_0-j,D_{n_0-j}),A_{n_0})=0.$$

Rate of pullback convergence

Since \mathcal{B} is a pullback absorbing neighbourhood system, for every $n_0 \in \mathbb{Z}$, $n \in \mathbb{N}$ and $\mathcal{D} \in \mathfrak{D}_{att}$ there exists an $N(\mathcal{D}, n_0, n) \in \mathbb{N}$ such that

$$\phi(n_0-n,n_0-n-m,D_{n_0-n-m})\subseteq B_{n_0-n}$$
 for $m\geq N$.

Thus

$$V(n_0, \phi(n_0, n_0 - m, z_{n_0 - m})) \le e^{-T_{n_0, n}} \text{dist}(B_{n_0}, A_{n_0})$$

for all
$$z_{n_0-m}\in D_{n_0-m}$$
, $m\geq n+N(\mathcal{D},n_0,n)$ and $n\geq 0$.

It can be assumed that the mapping $n \mapsto n + N(\mathcal{D}, n_0, n)$ is monotonic increasing in n and is hence invertible.

Let the <u>inverse</u> of $m = n + N(\mathcal{D}, n_0, n)$ be $n = M(m) = M(\mathcal{D}, n_0, m)$. Then

$$V(n_0, \phi(n_0, n_0 - m, z_{n_0 - m})) \le e^{-T_{n_0, M(m)}} \operatorname{dist}(B_{n_0}, A_{n_0})$$

for all $m \geq N(\mathcal{D}, n_0, 0) \geq 0$. Usually $N(\mathcal{D}, n_0, 0) > 0$.

This expression can be modified to hold for all $m \geq 0$ by replacing M(m) by $M^*(m)$ defined for all $m \geq 0$ and then introducing a constant $K_{\mathcal{D},n_0} \geq 1$ to account for the behaviour over the finite time set $0 \leq m < N(\mathcal{D}, n_0, 0)$. For all $m \geq 0$ this gives

$$V(n_0, \phi(n_0, n_0 - m, z_{n_0 - m})) \le K_{\mathcal{D}, n_0} e^{-T_{n_0, M^*(m)}} \text{dist}(B_{n_0}, A_{n_0})$$

