Strongly Connected Components - Math

Def (Strongly Connected Component)

G = (V, E) 是個有向圖, $C \subseteq V$ 是個 G 的 connected component。若:

 $\forall u, v \in G. \ u \leadsto v \text{ and } v \leadsto u$

且:

 $\forall w \in V \setminus C. V \cup \{w\}$ is not a connected component

則稱 C 是個 Strongly Connected Component.

更精簡的訂法:

SCC is the equivalent class of "mutually reachable"

Observation (轉置後 SCC 不變)

G = (V, E) 是一張有向圖,則:

U is a SCC of $G \iff U$ is a SCC of G^T

假定 G 中 $u\overset{p_1}{\leadsto}v$ 且 $v\overset{p_2}{\leadsto}u$ 。則顯然 G^{T} 中 $v\overset{p_1^{\mathrm{T}}}{\leadsto}u$ 且 $u\overset{p_2^{\mathrm{T}}}{\leadsto}v$,因此在 G 中連通的各點,在 G^{T} 中仍然連通。

因為 $G = (G^{T})^{T}$, 所以 G^{T} 中連通的各點, 在 G 中也保持連通。

所以知道:

u,v mutually reachable in $G\iff u,v$ mutually reachable in G^{T}

由此得證。

Lemma (SCC 們是個 DAG)

G = (V, E) 是一張有向圖,C', C 是 G 相異的 SCC, $u, v \in C$, $u', v' \in C'$,則:

$$u \rightsquigarrow u' \Rightarrow v' \rightsquigarrow v$$

若 $v \rightsquigarrow v'$, 則對於 C 中的任意點 $w \not \supset C'$ 中任一點 w':

$$\begin{array}{ll} w \leadsto u \\ u \leadsto u' & \Rightarrow w \leadsto w' \\ u' \leadsto w' \end{array}$$

及:

$$w' \leadsto v'$$

$$v' \leadsto v \implies w' \leadsto w$$

$$v \leadsto w$$

故 C',C 都不是 Strongly Connected Component,矛盾。

Def (Discovery and Finish Time for Sets of Vertices)

G = (V, E) 是一張有向圖, $U \subseteq V$,則定義 DFS 的起始與結束時間:

$$\left\{ \begin{aligned} d(U) &= \min \left(\left\{ u.\, d \mid u \in U \right\} \right) \\ d(U) &= \max \left(\left\{ u.\, d \mid u \in U \right\} \right) \end{aligned} \right.$$

Lemma (邊的指向就是遍歷順序)

G = (V, E) 是一張有向圖, C', C 是 G 相異的 SCC。 假定 $v \in C$, $v' \in C'$, 且 $(v, v') \in E$,則:

假定 d(C) < d(C'),令 $x \in C$ 是 C 中第一個被發現的點。在 x.d 時間時, C,C' 全白。 對於任意 $w' \in C'$:

$$x \leadsto v \to v' \leadsto w$$

是一條全白路徑。因此 C 中所有點都是 x 的子節點。由 Nestings 得證。

假定 d(C) > d(C'),假定 x' 是 C' 中第一個發現的點。因 d(C) > d(C'),故在 x'.d 時, C 為全白。由 Lemma 知 :

$$\neg \exists u \in C, u' \in C'.\, (u',u) \in E$$

所以在 x'. d 時:

$$orall w \in C. \, x' \overset{ ext{WHITE}}{\longrightarrow} w$$

因此 C 中任意點,都不是 x' 的子節點。由 Nestings 的狀況 1. 知 C 中每一點的 f 值都 比 C' 中每一點的 f 值大。由此得證。

如果把 SCC 收縮之後的圖想成 DAG,再用 DAG 的性質下去做感覺也可以?

Corollary

G=(V,E) 是一張有向圖, C',C 是 G 相異的 SCC。 假定 $v\in C$, $v'\in C'$, 且 $(v',v)\in E^T$,則:

$$(v',v) \in E^T \iff (v,v') \in E$$

因為 G 和 G^T 的 SCC 相同,因此套用 Lemma 即得證。