CLASSE: PSI 1

Devoir Surveillé N°1

Durée: 4 heures

CONSIGNES GÉNÉRALES

N.B. : le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Aucun document ni discussion ne sont autorisés sous peine d'annulation de la copie.
- Les calculatrices, les téléphones portables et tout matériel électronique sont interdits.
- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition; d'autres couleurs, excepté le vert, bleu clair ou turquoise, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Le sujet est composé d'un exercice et de trois problèmes indépendants.

Exercice 1 Racine carrée d'une matrice

On désigne par f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 8 & 4 & -7 \\ -8 & -4 & 8 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Déterminer les nombres réels λ tels que $\det(A \lambda I_3) = 0$.
- 2. Déterminer une base (v_1, v_2, v_3) de \mathbb{R}^3 telle que $\ker(f) = \operatorname{Vect}(v_1)$, $\ker(f \operatorname{id}) = \operatorname{Vect}(v_2)$ et $\ker(f \lambda \operatorname{id}) = \operatorname{Vect}(v_3)$ et donner la matrice D de f dans cette nouvelle base.
- 3. Soit P la matrice de passage de la base canonique à la base (v_1, v_2, v_3) . Soit un entier $m \geq 1$. Sans calculer l'inverse de P, exprimer A^m en fonction de D, P et P^{-1} .
- 4. Calculer P^{-1} , puis déterminer la matrice de f^m dans la base canonique.
- 5. Déterminer toutes les matrices de $\mathcal{M}_3(\mathbb{R})$ qui commutent avec la matrice D trouvée à la question 2.
- 6. Montrer que si $H \in \mathcal{M}_3(\mathbb{R})$ vérifie $H^2 = D$, alors H et D commutent.
- 7. Déduire de ce qui précède toutes les matrices H de $\mathcal{M}_3(\mathbb{R})$ vérifiant $H^2=D$, puis déterminer tous les endomorphismes h de \mathbb{R}^3 vérifiant $h^2=f$ en donnant leur matrice dans la base canonique.

Problème 1 Endomorphismes échangeurs

Soit E un \mathbb{C} -espace vectoriel. On note $\mathcal{L}(E)$ l'espace vectoriel des endomorphismes de E. Un endomorphisme u de E est dit **échangeur** lorsqu'il existe des sous-espaces vectoriels F et G de E tels que

$$E=F\oplus G,\quad u(F)\subset G\quad \text{et}\quad u(G)\subset F$$

On dit que u est de **carré nul** lorsque u^2 est l'endomorphisme nul de E. On dit que u est **nilpotent** lorsqu'il existe un entier naturel $n \geq 1$ tel que $u^n = 0$. Une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est dite de **carré nul** lorsque $A^2 = 0$. Si $f \in \mathcal{L}(E)$ et F est un sous-espace stable par f, on note f_F l'endomorphisme induit par f sur F. L'objectif du problème est d'établir, pour un endomorphisme d'un \mathbb{C} -espace vectoriel de dimension finie, l'équivalence entre les conditions suivantes :

- (C1) l'endomorphisme f est échangeur;
- (C2) il existe $u, v \in \mathcal{L}(E)$, tous deux de carré nul, tels que f = u + v.

Partie 1.1 La condition (C1) implique (C2)

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie n. On suppose que f est échangeur et on se donne donc une décomposition $E = F \oplus G$ dans laquelle F et G sont des sous-espaces vectoriels vérifiant $f(F) \subset G$ et $f(G) \subset F$. On se propose de montrer que f vérifie la condition (C2).

1. On suppose dans cette question que $F=\{0\}$ ou $G=\{0\}$. Montrer que $f=0_{\mathcal{L}(E)}$ puis conclure.

On suppose dans la suite de cette partie que $F \neq \{0\}$ et $G \neq \{0\}$, et que $\dim F = p$ et $\dim G = q$.

- 2. Justifier que p + q = n.
- 3. Soient (e_1, \ldots, e_p) une base de F et (e_{p+1}, \ldots, e_n) une base de G. Montrer que $\mathcal{B} = (e_1, \ldots, e_n)$ est une base de E.
- 4. Donner la forme par blocs de la matrice de f dans \mathcal{B} .
- 5. Montrer que *f* est de trace nulle.
- 6. Soient $A \in \mathcal{M}_{q,p}(\mathbb{C})$ et $B \in \mathcal{M}_{p,q}(\mathbb{C})$. On considère dans $\mathcal{M}_n(\mathbb{C})$ la matrice $M = \begin{pmatrix} 0_p & B \\ A & 0_q \end{pmatrix}$. Calculer le carré de la matrice $\begin{pmatrix} 0_p & B \\ 0_{q,p} & 0_q \end{pmatrix}$ de $\mathcal{M}_n(\mathbb{C})$. Montrer ensuite que M est la somme de deux matrices de carré nul.
- 7. Déduire des questions précédentes que f vérifie (C2).

Partie 1.2 La condition (C2) implique (C1)

Soit f un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension finie n. Dans cette partie, on suppose qu'il existe deux endomorphismes u et v de E tels que

$$f = u + v$$
 et $u^2 = v^2 = 0$

- 1. Montrer que $\operatorname{Im} u \subset \ker u$ et en déduire que $\dim(\ker u) \geq \frac{n}{2}$. Donner des résultats analogues pour v.
- 2. Dans cette question on suppose que *f* est un automorphisme.
 - a. Démontrer que $E = \ker u \oplus \ker v$, et que $\ker u = \operatorname{Im} u$ et $\ker v = \operatorname{Im} v$.
 - b. En déduire que f est échangeur.
- 3. Posons $N_k = \ker(f^k)$ et $I_k = \operatorname{Im}(f^k)$ pour tout $k \in \mathbb{N}$.
 - a. Montrer que la suite $(N_k)_{k\in\mathbb{N}}$ est croissante et que la suite $(I_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.
 - b. Montrer qu'il existe un entier naturel p tel que

$$\forall k \geq p, \quad N_k = N_p \quad \text{et} \quad I_k = I_p$$

- c. Montrer que $E = N_p \oplus I_p$ et en déduire que $E = \ker(f^{2p}) \oplus \operatorname{Im}(f^{2p})$.
- 4. On suppose dans la suite que f n'est pas un automorphisme et on pose $F = \ker(f^{2p})$ et $G = \operatorname{Im}(f^{2p})$.
 - a. Justifier que F et G sont stables par f.
 - b. Montrer que f_F est nilpotente et que f_G est un automorphisme.
 - c. Montrer que u et v commutent avec f^2 .
 - d. Montrer que le sous-espace vectoriel G est stable par u et v et que les endomorphismes induits u_G et v_G sont de carré nul.
 - e. En admettant que tout endomorphisme nilpotent d'un espace vectoriel de dimension finie est un échangeur, montrer que f est un échangeur.

Problème 2 Hyperplans de $\mathcal{M}_n(\mathbb{K})$

Partie 2.1 Forme linéaire sur $\mathcal{M}_n(\mathbb{K})$

1. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on pose

CLASSE: PSI 1

$$\varphi_A: \begin{cases} \mathcal{M}_n(\mathbb{K}) \to \mathbb{K} \\ M \mapsto \operatorname{tr}(AM) \end{cases}$$

Montrer que φ_A est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.

2. Montrer que l'application

$$\varphi: \begin{cases} \mathcal{M}_n(\mathbb{K}) \to (\mathcal{M}_n(\mathbb{K}))^* \\ A \mapsto \varphi_A \end{cases}$$

est un isomorphisme d'espaces vectoriels.

3. Déduire que pour toute forme linéaire f sur $\mathcal{M}_n(\mathbb{K})$, il existe une unique matrice A de $\mathcal{M}_n(\mathbb{K})$ telle que

$$\forall M \in \mathcal{M}_n(\mathbb{K}), \quad f(M) = \operatorname{tr}(AM).$$

- 4. Soit f un élément de $(\mathcal{M}_n(\mathbb{K}))^*$ tel que : $\forall (M,N) \in \mathcal{M}_n(\mathbb{K})^2, f(MN) = f(NM)$.
 - a. Montrer qu'il existe une unique matrice A de $\mathcal{M}_n(\mathbb{K})$ telle que pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $f(M) = \operatorname{tr}(AM)$.
 - b. Montrer que MA = AM pour tout $M \in \mathcal{M}_n(\mathbb{K})$.
 - c. En déduire qu'il existe un réel λ tel que $A = \lambda I_n$.
 - d. Conclure.

Partie 2.2 Hyperplan de $\mathcal{M}_n(\mathbb{K})$

Soit H un hyperplan de $\mathcal{M}_n(\mathbb{K})$.

1. Montrer qu'il existe une matrice non nulle A de $\mathcal{M}_n(\mathbb{K})$ telle que

$$H = \{ M \in \mathcal{M}_n(\mathbb{K}) \mid \operatorname{tr}(AM) = 0 \}.$$

2. Soit x un élément de \mathbb{K} et $(i,j) \in \{1,\ldots,n\}^2$ tel que $i \neq j$. Montrer que :

$$\forall x \in \mathbb{K}, \quad I_n + x E_{ij} \in GL_n(\mathbb{K}).$$

3. On suppose que $H \cap GL_n(\mathbb{K}) = \emptyset$. Soit $(i,j) \in \{1,\ldots,n\}^2$ tel que $i \neq j$. Montrer que :

$$\forall x \in \mathbb{K}, \quad x \operatorname{tr}(AE_{ij}) + \operatorname{tr}(A) \neq 0.$$

4. En déduire que pour tout $(i,j) \in \{1,\ldots,n\}^2$ tel que $i \neq j$, on a $E_{ij} \in H$.

Montrer que

$$J = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix} \in H.$$

6. Conclure.

Partie 2.3 Hyperplan de $\mathcal{M}_n(\mathbb{K})$ stables par produit

Dans cette partie, on suppose que H est un hyperplan de $\mathcal{M}_n(\mathbb{K})$ qui est stable par produit :

$$\forall A, B \in H, \quad AB \in H.$$

On se propose de montrer que $I_n \in H$ et on raisonne par l'absurde en supposant que $I_n \notin H$.

- 1. Justifier que $\mathcal{M}_n(\mathbb{K}) = H \oplus \operatorname{Vect}(I_n)$.
- 2. On note p la projection sur $Vect(I_n)$ parallèlement à H. Prouver que l'on a

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K}), \quad p(AB) = p(A)p(B).$$

- 3. Démontrer que $M^2 \in H \Rightarrow M \in H$.
- 4. Prouver alors que

$$\forall (i,j) \in \{1,\ldots,n\}^2, \quad E_{ij} \in H.$$

5. Conclure.

Problème 3 Décompositions de $\mathcal{M}_2(\mathbb{C})$ en somme directe de deux sous-espaces vectoriels stables par les endomorphismes φ_M

Dans ce problème, $\mathcal{M}_2(\mathbb{C})$ désigne l'espace vectoriel des matrices carrées d'ordre 2 à coefficients complexes; la matrice identité de $\mathcal{M}_2(\mathbb{C})$ est notée I_2 . Si M et N sont deux matrices de $\mathcal{M}_2(\mathbb{C})$, on pose [M,N]=MN-NM et on note φ_M l'endomorphisme de $\mathcal{M}_2(\mathbb{C})$ défini par

$$\varphi_M(X) = [M, X] = MX - XM, \quad X \in \mathcal{M}_2(\mathbb{C})$$

On considère les matrices

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Le but du problème est de déterminer toutes les décompositions de $\mathcal{M}_2(\mathbb{C})$ en somme directe de deux sous-espaces vectoriels non nuls et stables par tous les endomorphismes φ_M .

Partie 3.1 Construction de deux sous-espaces non nuls, supplémentaires dans $\mathcal{M}_2(\mathbb{C})$ et stables par tous les endomorphismes φ_M

Prof: Khalid el Bakkioui 5/6 ■ +212 661 645600

- 1. Calculer les matrices [A, B], [C, A] et [C, B].
- 2. Montrer que la famille (I_2, A, B, C) est une base de $\mathcal{M}_2(\mathbb{C})$.
- 3. Soit $M = \lambda I_2 + \alpha A + \beta B + \gamma C \in \mathcal{M}_2(\mathbb{C})$, avec $\lambda, \alpha, \beta, \gamma \in \mathbb{C}$.
 - a. Si $\alpha = \beta = \gamma = 0$, déterminer $\{N \in \mathcal{M}_2(\mathbb{C}) \mid MN = NM\}$.
 - b. Si $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, montrer que $\{N \in \mathcal{M}_2(\mathbb{C}) \mid MN = NM\}$ est le sousespace vectoriel de $\mathcal{M}_2(\mathbb{C})$ engendré par la famille (I_2, M) . Quelle est sa dimension?
- 4. Dans la suite, on note \mathcal{F} le sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$ engendré par la famille (A, B, C), et $\mathbb{C}I_2$ celui engendré par la matrice $I_2 : \mathbb{C}I_2 = \{\lambda I_2 \mid \lambda \in \mathbb{C}\}.$
 - a. Déterminer la dimension de \mathcal{F} .
 - b. Montrer que les sous-espaces vectoriels \mathcal{F} et $\mathbb{C}I_2$ sont supplémentaires dans $\mathcal{M}_2(\mathbb{C})$.
 - c. Montrer que les sous-espaces vectoriels \mathcal{F} et $\mathbb{C}I_2$ sont stables par φ_M , pour toute matrice $M \in \mathcal{M}_2(\mathbb{C})$.

Partie 3.2 \mathcal{F} et $\mathbb{C}I_2$ sont les seuls possibles

- 1. Calculer $\varphi_B(A)$ en fonction de C et $\varphi_B(C)$ en fonction de B.
- 2. Soit V un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$ stable par φ_M , pour toute matrice $M \in \mathcal{M}_2(\mathbb{C})$. On suppose de plus que V contient un élément $X = \lambda I_2 + \alpha A + \beta B + \gamma C$, avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, où $\lambda, \alpha, \beta, \gamma \in \mathbb{C}$.
 - a. Si $\gamma \neq 0$,
 - i. Calculer $\varphi_C \circ \varphi_A(X)$ et en déduire que $A \in V$.
 - ii. Justifier que B et C sont éléments de V.
 - iii. En déduire que $\mathcal{F} \subset V$.
 - b. Envisager les cas restants et montrer que $\mathcal{F} \subset V$.
- 3. Soient V et W deux sous-espaces vectoriels non nuls et supplémentaires dans $\mathcal{M}_2(\mathbb{C})$. On suppose de plus que V et W sont stables par φ_M , pour toute matrice $M \in \mathcal{M}_2(\mathbb{C})$.
 - a. On suppose qu'il existe $X = \lambda I_2 + \alpha A + \beta B + \gamma C \in V$ avec $(\alpha, \beta, \gamma) \neq (0, 0, 0)$, où $\lambda, \alpha, \beta, \gamma \in \mathbb{C}$. Montrer que $V = \mathcal{F}$ et $W = \mathbb{C}I_2$.
 - b. Dans le cas contraire, montrer que $W = \mathcal{F}$ et $V = \mathbb{C}I_2$.

