Gestión de Energía en Circuitos Integrados

FIUBA 1er Cuatrimestre 2025 TP#1

1. Análisis y diseño de un conversor buck-boost. En la siguiente figura se muestra una implemetación práctica usando un transistor y un diodo.

- a. Obtener la tensión de salida V y la corriente i_L en función de D, V_g y R. Asumir ripple pequeño en inductor y capacitor.
- b. Graficar V para $0 \le D \le 1$.
- c. Diseñar para las siguientes especificaciones:

$$V_g = 30 \text{ V}$$
 $V = -20 \text{ V}$
 $R = 4 \Omega$ $f_s = 40 \text{ kHz}$

- i. Obtener $D \in I$
- ii. Calcular el valor de L para el cual el ripple en i_L es un 10% de la corriente promedio I_L .
- iii. Elegir C de modo que el pico máximo de la tensión de salida sea 0.1 V
- d. Graficar $i_T(t)$ para el diseño obtenido en c. Incluir los efectos del ripple en la corriente del inductor. Cuál es el valor pico de i_T ? Como se modifica la respuesta si se modifica el valor de L de forma tal que Δi_L es 50% de I_L .
- e. Graficar i_D para los dos casos del punto d.
- 2. Las llaves del siguiente conversor, actúan en forma sincrónica: ambos en la posición 1 para $0 < t < DT_s$ y en la posición 2 para $DT_s < t < T_s$.

Obtener el factor de conversión $M(D) = V/V_g$. Graficar M(D) vs. D.