MC404: Organização de Computadores e Linguagem de Montagem $1^{\frac{n}{2}}$ Prova (11/4/2012)

	Questão	Valor	Nota
	1	0,8	
Nome:	2	1,2	
	3	2,0	
RA:	4	3,5	
	5	2,5	
	Total	10,0	

Instruções: A duração da prova é de uma hora e cinquenta minutos. Qualquer tentativa de fraude será punida com zero para todos os envolvidos.

Questão 1. (0,8 pontos)

Determine o maior e o menor valor que podem ser representados usando-se $15 \ bits$. Mostre sua resposta em decimal.

Comple	emento de 2	Sinal e Magnitude		Complemento de 1		Sem Sinal	
Maior	Menor	Maior	Menor	Maior	Menor	Maior	Menor

Questão 2. (1,2 pontos) Preencha as lacunas em branco da tabela de acordo com a representação da coluna. Preencha o espaço com um traço se o número não puder ser representado no formato da coluna.

Decimal	Binário de 11 $bits$				
	Sem sinal	Complemento de 2	Sinal e Magnitude		
2046					
	100 0000 1010				
		100 0000 0000			
			100 0000 0010		

Questão 3. (2 pontos)

- a) Em que época (datas aproximadas) os computadores começaram a ser implementados com transistores?
- b) Qual o nome do primeiro microprocessador? Qual empresa o desenvolveu?
- c) O que é ENIAC?
- d) O que é a "Lei de Moore"?
- e) Quais as vantagens de se utilizar transistores em vez de válvulas para o desenvolvimento de computadores.

Figura 1: Organização detalhada do computador IAS

Questão 4. (3.5 pontos) Considere o seguinte mapa de memória, que descreve um programa do IAS em linguagem de máquina:

```
000 01 10 00 51 01

001 05 10 20 51 03

002 15 12 31 51 23

003 21 10 40 E0 03

100 00 00 00 00 0A __

101 00 00 00 00 0B __

102 00 00 00 00 0C __

103 00 00 00 00 00

104 00 00 00 00
```

- a) (0.5) O que este programa faz?
- b) (1.2) Qual o valor contido nos registradores AC, MBR, IBR, IR, MAR e PC ao término do ciclo de busca da instrução à esquerda da palavra de memória no endereço 0x001? (Para sua referência, a Figura 1 mostra a organização detalhada do computador IAS.)
- c) (1.8) Substitua os dígitos A, B, C e D, das palavras de memória nos endereço 0x100, 0x101, 0x102 e 0x103, respectivamente, pelos quatro últimos dígitos do seu RA. Por exemplo, para o RA 001387, o mapa de memória deve ser atualizado para:

```
100 00 00 00 00 01
101 00 00 00 00 03
102 00 00 00 00 08
103 00 00 00 00 07
```

Dada a modificação acima, qual o valor contido nos registradores AC, MBR, IBR, IR, MAR ao término do ciclo de execução da instrução à esquerda da palavra de memória no endereço 0x003?

Questão 5. (2,5 pontos) Monte o programa abaixo e preencha a tabela abaixo com o mapa de memória gerado.

```
.set INICIO 0x000
.org INICIO
laco:
  LOAD M(x1)
laco2:
  ADD M(x2)
  JUMP M(cont)
.align 1
cont:
  RSH
  STOR M(av)
  JUMP+ M(laco2)
.align 1
x1: .word 0000000000
x2: .word 0000000002
av: .word 0000000000
vm: .word x1
```

Resposta (mapa de memória). Utilize a mesma convenção da questão 4, ou seja, cada linha deve conter o endereço com três dígitos hexadecimais e o valor da memória, separado em 5 bytes, cada um representado com dois dígitos hexadecimais.

End.	Valor: 40 bits				

Conjunto de Instruções do Computador IAS

Tipo da Instrução	Código da operação	Representação Simbólica	Descrição
Transferência de Dados	00001010	LOAD MQ	Transfere o conteúdo do registrador MQ para o registrador AC
de Dados	00001001	${\rm LOAD~MQ,} {\rm M(X)}$	Transfere o conteúdo da memória no endereço X para o registrador MQ
	00100001	STOR $M(X)$	Transfere o conteúdo do registrador AC para a memória no endereço X
	00000001	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X})$	Transfere o conteúdo da memória no endereço X para o registrador AC
	00000010	LOAD - M(X)	Transfere o negativo do valor armazenado no endereço X da memória para o registrador AC
	00000011	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X}) $	Transfere o absoluto do valor armazenado no endereço X da memória para o registrador AC
Salto incondicional	00001101	JUMP M(X,0:19)	Salta para a instrução da esquerda na palavra contida no endereço X da memória
	00001110	JUMP M(X,20:39)	Salta para a instrução da direita na palavra contida no endereço X da memória
Salto condicional	00001111	JUMP+M(X,0:19)	Se o número no registrador AC for não negativo então salta para a instrução à esquerda da
	00010000	JUMP+M(X,20:39)	palavra contida no endereço X da memória Se o número no registrador AC for não negativo então salta para a instrução à direita da palavra contida no endereço X da memória
Aritmética	00000101	ADD M(X)	Soma o valor contido no endereço X da memória com o valor em AC e coloca o resultado em AC
	00000111	$\mathrm{ADD}\; \mathrm{M}(\mathrm{X}) $	Soma o absoluto do valor contido no endereço X da memória com o valor em AC e armazena o resultado em AC
	00000110	SUB M(X)	Subtrai o valor contido no endereço X da memória do valor em AC e coloca o resultado em AC
	00001000	SUB M(X)	Subtrai o absoluto do valor contido no endereço X da memória do valor em AC e armazena o
	00001011	MUL M(X)	resultado em AC Multiplica o valor no endereço X da memória pelo valor em MQ e armazena o resultado em AC e MQ.
	00001100	DIV M(X)	AC contém os <i>bits</i> mais significativos do resultado Divide o valor em AC pelo valor no endereço X da
	00010100	LSH	memória. Coloca o quociente em MQ e o resto em AC Desloca os <i>bits</i> do registrador AC para a esquerda. Equivale à multiplicar o valor em AC por 2
	00010101	RSH	Desloca os <i>bits</i> do registrador AC para a direita. Equivale à dividir o valor em AC por 2
Modificação de endereço	00010010	STOR M(X,8:19)	Move os 12 bits à direita de AC para o campo endereço da instrução à esquerda da palavra X na memória
ac chactego	00010011	STOR M(X,28:39)	Move os 12 bits à direita de AC para o campo endereço da instrução à direita da palavra X na memória