Please place this page on the front of your work, with the integrity statement signed

R.G. Meltor Spring 2020	NAME:
	AERSP 458/550
	Problem Set #8
	Due Friday April 3 at 11:59pm
	Submit your work via Canvas upload. Please submit a high-contrast pdf (scan or tablet output) – no photos please.
AERSP 458	, 550: do all of the problems
perfor	#1 (Earth orbit) has $a_1 = 20000$ km and $e_1 = 0.5$. When the s/c reaches $\theta_1 = 30$ deg, i ms a single-impulse maneuver that places it on orbit #2 (same plane as orbit #1) with $a_2 = a_1$ a new true anomaly $\theta_2 = 60$ deg. $\mu_{\oplus} = 3.986 \times 10^5 \text{ km}^3/\text{s}^2$.
(a) C	Calculate the new eccentricity e_2 .
(b) C	Calculate the Δv required for the maneuver.
	Determine the alternative location (true anomaly) on orbit #1 where the maneuver could be erformed to produce the same orbit #2. (It's not necessary to repeat parts a and b here).
	that, for a pure inclination change, the maneuver location (node) closer to apoapsis will always a lower Δv .
	(continued on reverse)
must l	hay discuss homework problems and work on them together, but the work that you submine your own. In the space below, write and sign the integrity statement: I have completed this with integrity.
	Write and sign the integrity statement here:

3. Consider a Hohmann-like transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO). The typical LEO has non-zero inclination (usually the same as the latitude of the launch site), whereas GEO has zero inclination. To reduce the total required Δv for the transfer, the s/c performs Δv_1 to depart LEO on the Hohmann ellipse in the same orbital plane as LEO. When it arrives at GEO, it performs a single Δv_2 (at the apoapsis of the ellipse) that both increases the orbital speed to v_{GEO} and changes the orbital plane to zero inclination, as shown in the figure.

For $r_{LEO} = 7000 \text{ km}$, $i_{LEO} = 28.5 \text{ deg}$, and $r_{GEO} = 42164 \text{ km}$,

- (a) Calculate the total $\Delta v_{TOT} = \Delta v_1 + \Delta v_2$ for the transfer as described above.
- (b) Now consider what happens if the s/c performs two separate maneuvers when it arrives at GEO: 1) $\Delta v_{GEO,c}$ which simply places it on a circular orbit with radius r_{GEO} but with no change in inclination, then 2) $\Delta v_{GEO,i}$ which is a pure inclination change from i_{LEO} to i=0. Calculate the $\Delta v_{TOT} = \Delta v_1 + \Delta v_{GEO,c} + \Delta v_{GEO,i}$ for the transfer and compare it with the value in part a) above.
- 4. A s/c on Earth orbit #1 with $a_1 = 12500$ km, $e_1 = 0.4$, $i_1 = 51.6$ deg, $\Omega_1 = 17$ deg, $\omega_1 = 45$ deg performs a single-impulse maneuver at true anomaly $\theta_1 = 22$ deg, resulting in a plane-rotation of 10 deg. (positive right-hand sense about the \vec{r} vector. The new orbit #2 has the same values of a and e.
 - (a) Calculate the new values of i_2, Ω_2, ω_2 .
 - (b) Calculate the required Δv for this maneuver. Note that a and e are unchanged, so this is similar to a pure inclination change.