ALGEBRA RELAZIONALE

Linguaggi per basi di dati

- I linguaggi per la interazione con DBMS sono una componente fondamentale per le basi dati (sino ad ora abbiamo solo fatto riferimento ad SQL):
 - operazioni sullo schema
 - DDL: data definition language
 - creazione tabelle, modifica attributi delle tabelle
 - specifica dei vincoli di integrità
 - operazioni sui dati
 - DML: data manipulation language
 - interrogazione ("query")
 - aggiornamento (inserimento, cancellazione, modifica)

Linguaggi di interrogazione per basi di dati

- In base a come si specifica una interrogazione,
 i Data Manipulation Languages si dividono in:
 - Dichiarativi specificano le proprietà del risultato ("che cosa")
 - Procedurali
 specificano le modalità di generazione del risultato ("come")

Linguaggi di interrogazione per il modello relazionale

- Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Algebra relazionale

 Costituito da un insieme di operatori definiti su relazioni e che producono relazioni come risultati

 Gli operatori possono essere composti in cascata per formulare interrogazioni complesse

Operatori dell'algebra relazionale

Unione, intersezione, differenza (operatori insiemistici)

 Ridenominazione, selezione, proiezione (operatori monadici, agiscono su una sola relazione)

 Join: join naturale, prodotto cartesiano, thetajoin (operatori su due o più relazioni)

Operatori insiemistici

- Dato che le istanze di relazioni sono insiemi ha senso considerare gli operatori definiti per gli insiemi
- Tuttavia una relazione nel modello relazionale differisce da una generica relazione insiemistica per la presenza dello schema
- Per evitare risultati non coerenti, l'applicazione degli operatori unione, intersezione, differenza deve essere limitata a relazioni definite sugli stessi attributi

• L'unione tra due relazioni R_1 ed R_2 definite sullo stesso insieme di attributi X è indicata con $R_1 \cup R_2$ ed è una relazione su X contenente le n-uple che appartengono ad R_1 o ad R_2 o ad entrambe

 Siccome in una relazione non possono esserci due n-uple uguali, le n-uple che sono presenti in entrambe le relazioni di partenza vengono rappresentate una sola volta nell'unione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∪ **Quadri**

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45
9297	Neri	33

- Grado?
- Cardinalità $\#(R_1 \cup R_2)$ rispetto a $\#(R_1)$ e $\#(R_2)$?

Intersezione

• L'intersezione tra due relazioni R_1 ed R_2 definite sullo stesso insieme di attributi X è indicata con $R_1 \cap R_2$ ed è una relazione su X contenente le n-uple che appartengono sia ad R_1 che ad R_2

Intersezione

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati ∩ **Quadri**

Matricola	Nome	Età
7432	Neri	54
9824	Verdi	45

Intersezione

- Grado?
- Cardinalità?

Differenza

- La differenza tra una relazione R₁ ed una relazione R₂ definite sullo stesso insieme di attributi X è indicata con R₁ - R₂ ed è una relazione su X contenente le n-uple di R₁ che non appartengono ad R₂
- La differenza NON È commutativa

Differenza

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Quadri

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

Laureati - Quadri

Matricola	Nome	Età
7274	Rossi	42

Differenza

- Grado?
- Cardinalità?

Operatori insiemistici e schemi

 Come applicare operatori insiemistici tra relazioni definite su schemi diversi?

Impiegati	Cognome	Ufficio	Stipendio
. •	Rossi	Roma	55
	Neri	Milano	64
Operai	Cognome	Fabbrica	Salario
•	Bruni	Monza	45
	Verdi	Latina	55

Impiegati ∪ Operai

Ridenominazione

- Operatore monadico (con un argomento)
- Modifica lo schema di una relazione cambiando il nome di uno o più attributi e lasciando inalterata l'istanza
- Data una relazione R definita su un insieme di attributi X la ridenominazione di A⊆X in A' si indica con:

$$REN_{A'\leftarrow A}(R)$$

Impiegati	Cognome	Ufficio	Stipendio
	Rossi	Roma	55
	Neri	Milano	64

Operai

Cognome	Fabbrica	Salario
Bruni	Monza	45
Verdi	Latina	55

 $\textbf{REN}_{Sede,\ Retribuzione} \leftarrow \textbf{Ufficio},\ \textbf{Stipendio}\ \textbf{(Impiegati)}$

REN _{Sede, Retribuzione ← Fabbrica, Salario} (Operai)

Cognome	Sede	Retribuzione
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Ridenominazione

- Grado?
- Cardinalità?

Ridenominazione

Vincoli:

 Non si può assegnare ad un attributo un nome che compare già tra i nomi degli attributi della relazione

Selezione

operatore monadico

produce un risultato che:

- ha lo stesso schema dell'operando
- contiene un sottoinsieme delle ennuple dell'operando
 - quelle che soddisfano una condizione di selezione

Selezione

- Una condizione di selezione su un insieme di attributi X è una formula proposizionale su X ottenuta combinando con i connettivi logici AND(∨), OR(∧) e NOT(¬) condizioni atomiche del tipo AχB o Aχc dove:
 - $-\chi$ è un operatore di confronto (=,<,>,...)
 - A e B sono attributi di X su cui χ abbia senso
 - c è una costante compatibile con il dominio di A

Selezione, sintassi e semantica

sintassi

 Condizione: espressione booleana (come quelle dei vincoli di ennupla)

- semantica
 - il risultato contiene le ennuple dell'operando che soddisfano la condizione

- impiegati che guadagnano più di 50

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

SEL_{Stipendio > 50} (Impiegati)

impiegati che guadagnano più di 50
 e lavorano a Milano

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

SEL_{Stipendio > 50 AND Filiale = 'Milano'} (Impiegati)

 impiegati che hanno lo stesso nome della filiale presso cui lavorano

Impiegati

Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

Selezione

- Grado?
- Cardinalità?

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Età
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

 la formula proposizionale è FALSA per quelle n-ple in cui qualcuno degli attributi coinvolti ha valore nullo

Un risultato non desiderabile

SEL
$$_{\text{Età}>30}$$
 (Persone) \cup SEL $_{\text{Età}\leq30}$ (Persone) \neq Persone

- Perché? Perché le selezioni vengono valutate separatamente!
- Ma anche

 Perché? Perché anche le condizioni atomiche vengono valutate separatamente!

Selezione con valori nulli

SEL_{Età > 40} (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL
IS NOT NULL

Selezione con valori nulli

A questo punto:

```
SEL_{Et\grave{a}>30} \text{ (Persone)} \cup SEL_{Et\grave{a}\leq30} \text{ (Persone)} \cup SEL_{Et\grave{a}\mid S} 
NULL \text{ (Persone)} 
= 
SEL_{Et\grave{a}>30 \text{ OR } Et\grave{a}\leq30 \text{ OR } Et\grave{a}\mid S \text{ NULL}} \text{ (Persone)} 
=
```

Persone

Impiegati

Matricola	Cognome	Filiale	Età
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

Selezione e proiezione

- operatori "ortogonali"
- selezione: decomposizione orizzontale
- proiezione: decomposizione verticale

Proiezione

- operatore monadico
- produce un risultato che
 - È definito su un sottoinsieme Y degli attributi dell'operando
 - contiene n-uple ottenute considerando i valori su
 Y delle n-uple dell'operando

Proiezione, sintassi e semantica

 Data una relazione R(X) ed un insieme Y⊂ X la proiezione di R su Y si indica con PROJ_Y(R) ed è una relazione R' definita su Y e contenente le n-ple di R considerandone solo i valori su Y:

$$PROJ_{Y}(R) = \{t[Y] \mid t \in R\}$$

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

- per tutti gli impiegati:
 - matricola e cognome
 - cognome e filiale

- matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

PROJ Matricola, Cognome (Impiegati)

Proiezione

- Grado?
- Cardinalità?

cognome e filiale di tutti gli impiegati

Cognome	Filiale
Neri	Napoli
Neri	Milano
Rossi	Roma

PROJ Cognome, Filiale (Impiegati)

Cardinalità delle proiezioni

- una proiezione
 - contiene al più tante ennuple quante l'operando
 - può contenerne di meno

- se X è una superchiave di R, allora...
 PROJ_x(R) contiene
 - esattamente tante ennuple quante R

Selezione e proiezione

• Gli operatori di selezione e proiezione possono essere combinati...

matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

L'ordine dei due operatori non sempre è commutabile

Join

 Combinando selezione e proiezione, possiamo estrarre informazioni da una relazione

 Non possiamo però correlare informazioni presenti in relazioni diverse

 Il JOIN è l'operatore dell'algebra relazionale che permette di correlare dati in relazioni diverse

Join

 Quali esami ha superato Maria Rossi e con quale votazione?

studenti	Matricola Cognome		Nome	Data di na	scita
	6554	Rossi	Mario	05/12/19	78
	8765	Neri	Paolo	03/11/19	76
	9283	Verdi	Luisa	12/11/19	79
(3456	Rossi	Maria	01/02/19	78
	esami	Matricola	Voto	Corso	
		3456	30	Analisi I	
		3456	24	Chimica	
		9283	28	Analisi I	
		6554	26	Fisica	
				. 10.04	

Join naturale

operatore binario (generalizzabile)

 produce una relazione definita sull'unione degli attributi degli operandi (non concatenazione)

 le righe del risultato sono ottenute combinando le tuple degli operandi sulla base di valori uguali in attributi con lo stesso nome

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
Α	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	A	Mori
Neri	В	Bruni
Bianchi	В	Bruni

 le righe del risultato sono ottenute combinando le tuple degli operandi sulla base di valori uguali in attributi con lo stesso nome

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

i
ì

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

 Per capire la definizione formale del JOIN è utile osservare che ogni riga del risultato è costituita dall'unione di due parti a ciascuna delle quali corrisponde una riga nelle tabelle di ingresso

Join, sintassi e semantica

- $R_1(X_1)$, $R_2(X_2)$
- R_1 JOIN R_2 è una relazione su $X_1 \cup X_2$

$$R_1$$
 JOIN $R_2 = \{ t \text{ su } X_1 \cup X_2 \mid \exists t_1 \in R_1 \text{e } t_2 \in R_2 \text{ con } t[X_1] = t_1 \text{e } t[X_2] = t_2 \}$

JOIN Completo

 Se ogni n-pla delle due relazioni contribuisce al risultato il JOIN si dice completo

Altrimenti il join non è completo

Un join non completo

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
C	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

JOIN vuoto

 Un caso particolare del JOIN non completo è il JOIN vuoto che dà come risultato la relazione vuota

Un join vuoto

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Capo
Mori
Bruni

Impiegato Reparto Capo

JOIN completo

 Il JOIN è completo se ogni n-upla delle due relazioni si combina con ALMENO UNA n-upla dell'altra relazione

 Un caso particolare di JOIN completo è quello in cui ogni n-upla delle due relazioni si combina con TUTTE le n-uple dell'altra relazione

Un join completo, con n x m ennuple

Impiegato	Reparto
Rossi	В
Neri	В

Reparto	Capo
В	Mori
В	Bruni

Impiegato	Reparto	Capo
Rossi	В	Mori
Rossi	В	Bruni
Neri	В	Mori
Neri	В	Bruni

Cardinalità del JOIN

• Il join di R_1 e R_2 contiene un numero di n-ple compreso fra zero e il prodotto di $|R_1|$ e $|R_2|$

• Il fatto che il JOIN sia completo non significa che $|R_1|$ JOIN $|R_2| = |R_1| * |R_2|$

Cardinalità del JOIN

 se gli attributi in comune X sono una chiave di R₂, allora la cardinalità del JOIN...

 se gli attributi in comune X sono una chiave di R₂ ed esiste tra loro un vincolo di integrità referenziale, allora la cardinalità del JOIN...

Cardinalità del join, esempi

$$R_1(X_1) \text{ JOIN } R_2(X_2) \quad B = X_1 \cap X_2$$

in generale

$$0 \le |R_1 \text{ JOIN } R_2| \le |R_1| \times |R_2|$$

• se B è chiave in R₂

$$0 \leq |R_1 \text{ JOIN } R_2| \leq |R_1|$$

 se B è chiave in R₂ ed esiste vincolo di integrità referenziale fra B in R₁ e R₂:

$$|R_1 \text{ JOIN } R_2| = |R_1|$$

Proprietà del JOIN

• Il JOIN naturale soddisfa le proprietà:

• Commutativa:

$$R_1$$
 Join $R_2 = R_2$ Join R_1

Associativa:

 R_1 Join R_2 Join $R_3 = (R_1$ Join $R_2)$ Join $R_3 = R_1$ Join $(R_2$ Join $R_3)$

Riassunto

- Vincolo di integrità referenziale
- Operazioni di aggiornamento e violazione dei vincoli
- Linguaggi per l'interazione con DBMS
 - DDL, DML
 - Linguaggi dichiarativi e procedurali
 - Algebra relazionale: unione, intersezione, differenza, ridenominazione, selezione, proiezione, join naturale, completezza del join

Join, una difficoltà

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
C	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

 Se il JOIN non è completo alcune n-ple non contribuiscono al risultato: l'informazione nel risultato non contiene alcune delle informazioni negli operandi

Join esterno

 Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)

• esiste in tre versioni:

sinistro, destro, completo

Join esterno

 sinistro: mantiene tutte le ennuple del primo operando, estendendole con valori nulli, se necessario

– destro: ... del secondo operando ...

– completo: ... di entrambi gli operandi ...

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
C	Bruni

Impiegati Join Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL

Impiegato	Reparto
Rossi	A
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati Join Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
C	Bruni

Impiegati Joinfull Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

Cardinalità JOIN esterno

La cardinalità minima, da 0 diventa:

— |R₁| per il LEFT join

 $-|R_2|$ per il RIGHT join

 $-MAX(|R_1|, |R_2|)$ per il FULL join

JOIN e proiezioni

Date due relazioni R₁(X₁) ed R₂(X₂) si ha che

$$PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$$

 Infatti, nel caso che il JOIN non sia completo, al risultato potrebbe partecipare solo un sottoinsieme delle n-ple di R₁.

Join e proiezioni

Impiegato	Reparto	Re
Rossi	Α	
Neri	В	
Bianchi	В	

Reparto	Capo
В	Mori
C	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo
В	Mori

JOIN e proiezioni

• Data una relazione R(X) con X = $X_1 \cup X_2$ si ha che:

$$(PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R)) \supseteq R$$

Si ha il segno = solo nel caso in cui ...

Proiezioni e join

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	Α

Reparto	Capo
В	Mori
В	Bruni
Α	Bini

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Neri	В	Bruni
Bianchi	В	Mori
Verdi	Α	Bini

Join e proiezioni

R₁(X₁), R₂(X₂)

$$PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$$

• R(X), $X = X_1 \cup X_2$

$$(PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R)) \supseteq R$$

Un caso limite...

- Che succede se eseguo un join naturale tra relazioni che non hanno attributi in comune?
 - Ogni n-pla della prima relazione può combinarsi con ognuna delle n-ple della seconda
 - Il risultato contiene sempre un numero di n-ple pari al prodotto delle cardinalità degli operandi
- In questo caso il JOIN diventa il prodotto cartesiano tra i due operandi

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	A	Mori
Bianchi	В	В	Bruni

 Il prodotto cartesiano, in pratica, ha senso solo se seguito da selezione:

 L'operazione viene chiamata theta-join e indicata con

Perché "theta-join"?

 La condizione C è spesso una combinazione (AND) di condizioni atomiche di confronto A₁θ A₂ dove θ è uno degli operatori di confronto (=, >, <, ...)

 se l'operatore è sempre l'uguaglianza (=) allora si parla di equi-join

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	A	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Impiegati

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Impiegato	Reparto	Capo
Rossi	Α	Mori
Neri	В	Bruni
Bianchi	В	Bruni

JOIN naturale ed equi-join

 Il JOIN naturale può essere ottenuto per mezzo di operatori di ridenominazione, equijoin e proiezione

Join naturale ed equi-join

Impiegati Reparti

Impiegato Reparto Capo

Impiegati JOIN_{nat} Reparti =

```
PROJ<sub>Impiegato,Reparto,Capo</sub> (
Impiegati JOIN<sub>Reparto=Codice</sub> REN<sub>Codice ← Reparto</sub> (Reparti)
```

JOIN e vincoli di integrità referenziale

- Il vincolo di IR esplicita un legame tra gli attributi di due tabelle diverse.
 - Livello sintattico: valori della tabella interna sono vincolati a comparire nella tabella esterna
 - Livello semantico: equi join tra attributi interessati a vincolo IR esplicita un'informazione non presente né in R₁ né in R₂ se prese separatamente

JOIN e vincoli di integrità referenziale

 Esempio: Lo schema sotto riportato rappresenta informazioni sui dipendenti di un'azienda. Ogni dipendente è affiliato ad un dipartimento. Ogni dipartimento ha un direttore che è uno dei dipendenti

Dipendente(matricola, nome, cognome, dipartimento, stipendio)

Dipartimento(codice, descrizione, direttore)

Dipendente				
matricola	nome	cognome	dipartimento	stipendio
015234	Carlo	Minetti	D002	20000
034727	Giovanni	Pirli	D002	25000
026777	Franca	Franchi	D001	30000

Dipartimento				
codice descrizione direttore				
D001	Ricerca	026777		
D002	Sviluppo	034727		

JOIN e vincoli di integrità referenziale

 Esempio: Lo schema sotto riportato rappresenta informazioni sui dipendenti di un'azienda. Ogni dipendente è affiliato ad un dipartimento. Ogni dipartimento ha un direttore che è uno dei dipendenti

Dipendente(matricola, nome, cognome, dipartimento, stipendio)

Dipartimento(codice, descrizione, direttore)

- Quale informazione è resa esplicita da Dipendente JOIN_{dipartimento=codice} Dipartimento
- Quale informazione è resa esplicita da Dipendente JOIN_{direttore=matricola} Dipartimento

Esempi

Impiegati	Matricola	Nome	Età	Stipendio
	7309	Rossi	34	45
	5998	Bianchi	37	38
	9553	Neri	42	35
	5698	Bruni	43	42
	4076	Mori	45	50
	8123	Lupi	46	60
Supe	rvisione	Impiegat	to	Capo
		7309		5698
		5998		5698
		9553		4076
		5698		4076
		4076		8123

Esempi

- Matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 milioni
- Matricola, nome ed età degli impiegati che guadagnano più di 40 milioni
- Matricole dei capi degli impiegati che guadagnano più di 40 milioni
- Nome e stipendio dei capi degli impiegati che guadagnano più di 40 milioni
- Impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo
- Matricole dei capi i cui impiegati guadagnano tutti più di 40 milioni

Impiegati

Mati Icola	MOILLE	∟ıa	Superior
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60
	-		

Ftà

Stinandia

Matricola Nome

Supervisione

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 milioni

Impiegati

4076

8123

Supervisione	impiegato	Capo
•	7309	5698
	5998	5698
	9553	4076

5698

4076

Nome	Età	Stipendio
Rossi	34	45
Bianchi	37	38
Neri	42	35
Bruni	43	42
Mori	45	50
Lupi	46	60
	Bianchi Neri Bruni Mori	Rossi 34 Bianchi 37 Neri 42 Bruni 43 Mori 45

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40 milioni

SEL_{Stipendio>40}(Impiegati)

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

SEL_{Stipendio>40}(Impiegati)

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40 milioni

6		n	Δ	rv/	110	ne
U	u	v	G.	ΙV	10	

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40 milioni

PROJ_{Matricola, Nome, Età} (SEL_{Stipendio>40} (Impiegati))

Matricola	Nome	Età
7309	Rossi	34
5698	Bruni	43
4076	Mori	45
8123	Lupi	46

 Trovare le matricole dei capi di quegli impiegati che guadagnano più di 40 milioni

S		n	Δ	r۱	/	C	1	\bigcap	n	Δ
U	u	ν	C	I 1	/	J	П,	U		C

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

 Trovare nome e stipendio dei capi di quegli impiegati che guadagnano più di 40 milioni

Supervisione	
	۱
Oupoi vioioiio	ï

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

Sui	oerv	/ISI	one

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60
5698 4076	Bruni Mori	43 45	42 50

 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40 milioni

Su	bel	rvis	SIOI	ne

Impiegato	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

Matricola	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

- Estrarre Nome e Cognome degli studenti lavoratori
- Nome e Cognome degli studenti NON lavoratori
- Nome e cognome degli studenti lavoratori che hanno sostenuto almeno un esame con più di 4 crediti
- Nome e Cognome degli studenti che hanno preso almeno un trenta e mai un voto inferiore a 27
- Nome e Cognome degli studenti che hanno dato Analisi I e non Geometria
- Nome e Cognome degli studenti che hanno dato almeno due esami
- Nome e Cognome degli studenti che hanno dato almeno due esami con lo stesso docente

 Estrarre Nome e Cognome degli studenti lavoratori

PROJ_{nome,cognome}(
REN_{mat←matricola}(StudentiLav)
JOIN_{mat=matricola}(Studenti))

 Nome e Cognome degli studenti NON lavoratori

```
\begin{aligned} & \mathsf{PROJ_{nome, cognome}}(\\ & \mathsf{REN_{mat\leftarrow matricola}}(\mathsf{PROJ_{matricola}}(\mathsf{Studenti}) \text{ - StudentiLav})\\ & \mathsf{JOIN_{mat=matricola}}(\mathsf{Studenti})) \end{aligned}
```

PROJ_{nome,cognome}((PROJ_{matricola}(Studenti) - StudentiLav) JOIN Studenti)

 Nome e cognome degli studenti lavoratori che hanno sostenuto almeno un esame con più di 4 crediti

```
PROJ<sub>nome,cognome</sub>(
(PROJ<sub>studente</sub>(Esami JOIN <sub>corso=codice AND crediti>4</sub> Corsi))
JOIN<sub>studente=matricola</sub>(Studenti JOIN StudentiLav))
```


 Nome e Cognome degli studenti che hanno preso almeno un trenta e mai un voto inferiore a 27

```
\begin{aligned} & \mathsf{PROJ}_{\mathsf{nome},\mathsf{cognome}}(\;(\mathsf{Studenti})\mathsf{JOIN}_{\mathsf{studente}=\mathsf{matricola}} \\ & (\;\mathsf{PROJ}_{\mathsf{studente}}(\mathsf{SEL}_{\,\mathsf{voto}=30}\;(\mathsf{Esami})\;) - \\ & \mathsf{PROJ}_{\mathsf{studente}}(\mathsf{SEL}_{\,\mathsf{voto}<27}\;(\mathsf{Esami})\;)\;\;) \end{aligned}
```


 Nome e Cognome degli studenti che hanno dato Analisi I e non Geometria

```
PROJ<sub>nome,cognome</sub>( (Studenti) JOIN<sub>studente=matricola</sub>
( PROJ<sub>studente</sub>(Esami JOIN <sub>corso=codice AND nome='Analisi I'</sub> Corsi) –
PROJ<sub>studente</sub>(Esami JOIN <sub>corso=codice AND nome='Geometria'</sub> Corsi) ))
```


 Nome e Cognome degli studenti che hanno dato almeno due esami

```
PROJ<sub>nome,cognome</sub>( (Studenti) JOIN<sub>studente=matricola</sub>
REN<sub>stud2,corso2←studente,corso</sub>(PROJ<sub>studente,corso</sub> (Esami))
JOIN<sub>stud2 = studente AND corso2<>corso</sub>(PROJ<sub>studente,corso</sub> (Esami) ))
```


 Nome e Cognome degli studenti che hanno dato almeno due esami con lo stesso docente

