Sistemas Operacionais

Conceitos Básicos Prof. José Roberto Bezerra

Agenda

- Conceito de sistema operacional
- Conceito de sistema computacional
- Elementos de um SC
 - CPU
 - Ciclo de instruções
 - Pipeline
 - Superescalar
 - Modo núcleo/usuário
 - Memória
 - E/S
 - Busy waiting
 - Interrupções
 - DMA
 - Barramentos

Sistema Operacional

- Funções de um sistema operacional?
 - Estender a máquina
 - Gerenciar recursos

SO como máquina estendida

- Apresentar ao usuário/programador uma máquina estendida e acessível e ainda que seja mais fácil de programar do que o *hardware* diretamente.
- Fornece uma variedade de serviços que os programas podem obter usando instruções especiais (chamadas de sistema)

SO como máquina estendida

- Camada intermediária que facilite e uniformize o acesso aos recursos computacionais
 - Memórias
 - Dispositivos de E/S

SO como gerenciador de recursos

 Fornecer uma alocação ordenada e controlada de processadores, memórias e dispositivos de E/S entre vários programas que competem pelo uso destes recursos

Sistema Computacional

- O que é um sistema computacional?
- Onde encontramos um sistema computacional?
- Qual a finalidade de um sistema computacional?

Sistema Computacional

Sistema Computacional

Exemplos de SC

- Mainframes
- Desktops
- Laptops
- Palmtops
- Celulares/Smartphones
- Tablets
- Alguns eletrodomésticos

Processadores (CPU)

- Funções essenciais
- Ciclo básico
 - Busca instruções na memória
 - Decodifica para determinar os operandos
 - Executa
- Transferência de dados entre memória e dispositivos de entrada/saída (E/S)
- Responder interrupções externas
- Prover sinais de temporização e controle

Instruções

- Cada CPU possui um conjunto específico de instruções
 - Aritméticas
 - Lógicas
 - Transferência de dados
 - Desvio
- Registradores internos
 - Program Counter
 - PSW (Program Status Word)

Instruções

- Registradores internos
 - Program Counter (PC)
 - PSW (Program Status Word)

Ciclo convencional

Busca Instrução

Decodifica Instrução

Executa Instrução

Pipeline

- Consiste em aceitar novas instruções antes que as aceitas previamente tenham terminado
- Permite a CPU 'executar' mais de uma instrução ao mesmo tempo
- Unidades independentes de busca, decodificação e execução
- Enquanto executa a instrução n, decodifica a instrução n+1 e busca a instrução n+2

Lavanderia sequencial

Lavanderia com Pipeline

▶ Lavanderia pipeline levaria 3.5 horas para 4 cargas

Pipeline

Superescalar

- Arquiteturas Superescalares são aquelas capazes de buscar, decodificar e executar mais de uma instrução por ciclo de máquina
- Possui múltiplas unidades de execução
 - Números inteiros
 - Ponto Flutuante
 - Operações lógicas
- A cada ciclo são buscadas e decodificadas duas ou mais instruções e colocadas em um buffer
- A medida que uma unidade de execução está livre as instruções são executadas

Pipeline simples

Çã Decodifica В Instrução 1 u S

Superescalar Pipeline

Modo Núcleo e Usuário

- Controlado pelo PSW
- Modo Núcleo
 - Qualquer instrução pode ser executada
 - Sistema operacional roda neste modo
- Modo Usuário
 - Não permite o uso de instruções de que envolvem E/S e proteção de memória são inacessíveis
 - Programas de usuário utilizam este modo
- Chamadas ao sistema que incluem a instrução TRAP alterna entre os modos

Memória

- Memória Ideal
 - Rápida (mais veloz que a execução de uma instrução pela CPU)
 - Grande
 - Baixo custo
- Existem vários níveis/tipos de memória
 - Registradores
 - Cache
 - RAM
 - Discos

Registradores

- Internos a CPU e constituídos do mesmo material
- Não impõe atrasos a CPU
- Capacidades típicas
 - 32x32 bits (márquinas 32 bits)
 - 64x64 bits (máquinas 64 bits)

Memória cache

- Divide-se a memória principal em linhas
- As posições de memória mais utilizadas são copiadas para a cache
- Quando um programa faz uma busca na memória o hardware que gerencia a MC, procura pelo endereço na cache
- Caso esteja responde a requisição
- Caso contrário faz um busca na memória principal
- O tempo de resposta da cache equivale a 2 ciclos de CPU

Memória Principal

- RAM (Random Access Memory)
- Ordem de Gigabytes
- Possui unidade de gerenciamento própria (MMU)

Discos Magnéticos

- Memória permanente
- Capacidade de armazenamento superior
- Tempo de acesso aleatório (dezenas de ms)
- Velocidades 5400, 7200 e 10800 rpm

Memory Management Unit (MMU)

- Proteger os programas de outros programas e o SO de todos os programas
- Realocar a memória
- Registrador-base e Registrador-limite

Dispositivos de E/S

- Duas partes:
 - Controlador
 - Próprio dispositivo de E/S
- Driver de Dispositivo é o software necessário para que o SO possa controlar o dispositivo
 - São específicos para cada dispositivo e SO

Três formas de E/S

- Espera ociosa (busy waiting)
- Interrupções
- DMA (Direct Memory Access)

Espera Ociosa (Busy Waiting)

- Programa emite chamada ao sistema para acessar determinado dispositivo
- O SO, por sua vez, faz chamada ao respectivo driver de dispositivo
- O driver inicia um loop perguntando continuamente ao dispositivo se a operação de E/S foi concluída
- Quando isto acontece o driver escreve os dados em memória e retorna ao SO
- O controle é devolvido ao programa

Interrupção

- Programa necessita de operação de E/S
- Utilizando interrupção o driver inicia o dispositivo e devolve o controle da CPU ao SO
- O SO bloqueia o programa enquanto a operação de E/S é concluída
- SO busca outras tarefas para executar
- Quando a E/S é concluída o dispositivo gera uma interrupção e o SO volta a dar atenção ao dispositivo
- SO devolve o controle ao programa

DMA

- Hardware especial para tratar as interrupções
- Os dispositivos escrevem diretamente na memória sem a intervenção da CPU
- Evita que o SO tenha de copiar os dados do buffer do dispositivo para a memória do sistema

Barramentos idealizados

Barramento

Barramentos atuais

Dúvidas e Perguntas

Referências

Tanenbaum, A. S. Sistemas Operacionais Modernos.
4a. Edição. Editora Pearson. (Capítulo 1)

OBSERVAÇÃO

A disponibilização das notas de aula através de slides serve apenas como apoio aos estudos. Para um bom aproveitamento e aprendizado é necessário a leitura das referências (livro texto) e estar atento às aulas

Leitura sugerida

- Pipeline x Superescalar (em pdf).
 - Prof. Clodoaldo Lima (Unicamp)
 - Prof. Fernando Von Zuben (Unicamp)

FIM