FIABILITÉ DES CONDUITES FORCÉES EN SERVICE D'EDF:

OPTIMISATION DES DIAGNOSTICS MÉCANIQUES AVEC OPENTURNS

Emmanuel ARDILLON (EDF/R&D)

Philippe BRYLA (EDF/DTG)

Antoine DUMAS (PHIMECA)

15 juin 2018

LES CONDUITES FORCÉES À EDF

EDF exploite plus de 450 usines hydroélectirques Elles sont alimentées par plus de 250 km de conduites forcées (CF) – Age moyen > 50 ans

CFs soumises au risque de défaillance par instabilité plastique corrosion généralisée (interne et externe)

Nécessaire de justifier leur intégrité mécanique → DIAGNOSTICS inspections, mesures (épaisseur, materiau) $MF = \frac{J}{\sigma_C}$

calcul d'un facteur de marge déterministe FM

PRINCIPE DE L'ÉVALUATION DÉTERMINISTE

$$f_1(R_e; R_m) = min\left(\frac{R_e^d}{1,5}; \frac{R_m^d}{2,4}\right)$$

$$f_2(R_e; R_m) = min\left(\frac{R_e^d}{1,6}; \frac{R_m^d}{2,7}\right)$$

La CF est apte au service dès lors que FM ≥ 1 sur chaque tronçon

FM couvre les incertitudes de manière imprécise: cumul de pénalisations arbitraires

Parmi ces conservatismes, les quantiles suivants:

Limite à la rupture:
$$R_m{}^d = \mu_{Rm} - \gamma_{Rm}$$
 . σ_{Rm}

Perte d'épaisseur:
$$\Delta e^{\text{d}} = \mu_{\Delta e}$$
 - $\gamma_{\Delta e}$. $\sigma_{\Delta e}$

Conventionnellement, les multiplicateurs γ sont pris égaux à 2.

CE CHOIX EST-IL PERTINENT?
PEUVENT-ILS ETRE OPTIMISES?

MÉTHODOLOGIE

L'approche probabiliste intègre toute l'information disponible et permet un traitement rigoureux des incertitudes

A satisfying and appropriate level of conservatism is targeted

Les multiplicateurs γ sont calibrés pour viser un niveau de fiabilité satisfaisant ($P_f^{target} = 10^{-7}$) an)

→ Approche semi-probabiliste:

Le format d'évaluation reste déterministe mais les paramètres sont calibrés d'après des calculs probabilistes BS-7910

Target failure probability (events/year)

Failure consequences	Redundant component	Non-redundant component
Moderate	2.3 × 10 ⁻¹	10 ⁻³
Severe	10 ⁻³	7 × 10 ⁻⁵
Very severe	7 × 10 ⁻⁵	10-5
Extremely severe	10 ⁻⁵	10 ⁻⁷

VARIABLES D'ENTRÉE: L'ÉPAISSEUR RÉSIDUELLE

- 2 facteurs expliquent l'écart entre épaisseur réelle et nominale :
 - $_{\square}$ La surépaisseur d'approvisionnement : Δe_{appro}
 - $_{\square}$ La perte d'épaisseur due à la corrosion : Δe_{corr}

Prise en compte d'un majorant de la perte d'épaisseur annuelle par corrosion : Δe_{annuelle} = 100 μm/an
 (cinétiques constatées en l'absence de revêtement généralement comprises entre 10 μm/an et 50 μm/an)

 \Rightarrow Épaisseur résiduelle à l'année N : $e(N) = e_{nom} + \Delta e_{appro} - \Delta e_{corr}$

⇒ Épaisseur résiduelle à l'année N+1 : **e(N+1) = e(N) -** Δ**e**_{annuelle}

VARIABLES D'ENTRÉE: LES CARACTÉRISTIQUES DE L'ACIER

- Analyse menée sur un grand nombre de conduites forcées :
 - □ R_e et R_m généralement distribués selon une loi normale ou lognormale, avec : $CV(R_e) \le 10\%$, $CV(R_m) \le 10\%$ et $CV(R_e) > CV(R_m)$
 - □ Pour une nuance d'acier donnée, la dispersion sur R_e sachant R_m peut être décrite par : $\omega = CV(R_e|R_m)$, avec $\omega \le 5\%$
 - □ Sur un tuyau donné, la relation R_e-R_m est modélisée par la relation :

$$R_e = A \times R_m - B + \varepsilon$$

$$\sigma(\epsilon)$$

 $\mu(\epsilon)$: écart par rapport à la corrélation générale

 $\sigma(\epsilon) = \omega \ x \ \mu(R_e)$: dispersion de R_e , connaissant R_m sur une nuance donnée

LES ÉQUATIONS DU MODÈLE

- Critère de ruine basé sur le dépassement de la contrainte d'écoulement plastique (BS-7910:2013 annexe G) : $\sigma_f = \frac{R_e + R_m}{2}$
- Fonction d'état limite écrite sous une forme adimensionnée ne faisant plus intervenir le rayon du tuyau ni la pression de service :

À l'année N+1 :
$$\frac{R_e(\varepsilon) + R_m}{2} - \frac{min\left(\frac{R_e^{calcul}}{1,5}; \frac{R_m^{calcul}}{2,4}\right)}{FM_N} \cdot \frac{e_{nom} + \Delta e_{calcul}}{e_{nom} + \Delta e_{appro} - \Delta e_{corr} - \Delta e_{annuelle}} < 0$$

Valeurs de calcul :

$$egin{aligned} R_m^{calcul} &= \mu_{Rm} - oldsymbol{\gamma} \cdot oldsymbol{\sigma}_{Rm} \ & \Delta e^{calcul} &= \mu_{\Delta e} - oldsymbol{\gamma} \cdot oldsymbol{\sigma}_{\Delta e} \end{aligned}$$

$$\Delta e^{calcul} = \mu_{\Delta e} - \gamma \cdot \sigma_{\Delta e}$$

Variables aléatoires :

(Lois normales)

$$\Delta e_{appro}, \Delta e_{corr}, R_m, \epsilon$$

Perte d'épaisseur supplémentaire sur 1 an

L'ESTIMATION DES PROBABILITÉS DE DÉFAILLANCE

 On estime la probabilité que le tuyau soit non défaillant à l'année N et défaillant à l'année N+1

$$P_{annuelle} = P(\{G(\Delta e, R_m, \epsilon) \ge 0\} \cap \{G(\Delta e - \Delta e_{annuelle}, R_m, \epsilon) < 0\})$$
 (E₁)

La fonction d'état limite étant strictement décroissante en fonction du temps, cette probabilité peut s'écrire plus simplement :

$$P_{annuelle} = P(G(\Delta e, R_m, \epsilon) \cdot G(\Delta e - \Delta e_{annuelle}, R_m, \epsilon) < 0)$$
 (E₂)

- Estimation des probabilités de défaillance (γ=2)
 - □ Logiciel OpenTURNS® (V1.8rc1): FORM système (E₁) ou FORM (E₂) + tirages d'importance
 - Besoin de méthodes d'évaluation de probabilité système (événements combinés chantier 2018)
 - □ Quelques vérifications croisées concluantes avec le logiciel SYSREL® (SORM)
- « Optimisation » des γ
 - \Box Pour chaque configuration, recherche d'un γ_{opt} identique pour R_m et Δe
 - \Box Recherche de γ_{opt} dans l'intervalle [0; 2,5]
 - \square Recherche de zéros (P_f = 10⁻⁷): OT-NLopt, méthode de Brent

PROBABILITÉ D'INTERSECTION D'ÉVÉNEMENTS

Formulation de la probabilité

$$p_f = P\left(\bigcap_{i=0}^N g_i(X) < 0\right)$$

- \Box où g_i sont les fonctions de performances.
- Exemple en 2 dimensions avec 2 fonctions de performance :
 - $p_{f,Monte\ Carlo} = 1,235 \times 10^{-5}$
 - 818000 tirages, coefficient de variation = 10%

- Méthode de calcul préférentielle basée sur FORM et tirages d'importance
- 1. Création d'une fonction composite $g_c(\mathbf{X}) = \max(\{g_i(\mathbf{X})\})$
 - Evaluation de la probabilité suivante $p_f = P(g_c(\mathbf{X}) < 0)$
 - Méthode FORM classique + tirages d'importance
 - $P_{f,IS} = 1,42 \times 10^{-5}$
 - 970 tirages, coefficient de variation = 10%

• Problème : l'algorithme de recherche du point P* peut ne pas converger à cause de la complexité de la fonction composite.

2. FORM augmenté

• Résolution du problème d'optimisation

$$\min \sum_{i} u_i^2$$

$$sous \quad \{g_i(U) = 0\}_{i=1,\dots,N}$$

- $P_{f,IS} = 1.42 \times 10^{-5}$
- 970 tirages, coefficient de variation = 10%

• Problème : l'algorithme de recherche du point P* peut ne pas converger

3. FORM système

- FORM simple sur chaque fonction de performance puis tirages d'importance centrés sur chaque point P*.
- FORM système : $p_{f,FORM\ systeme} = P(\bigcap_{i=0}^{N} g_i(X) < 0) = \Phi_N(-\beta, [\rho]) = 4.21 \times 10^{-7}$
- $P_{f,IS} = 1.42 \times 10^{-5}$
- 6530 tirages, coefficient de variation = 10%

• Problème : suivant la position des état-limites entre eux, les tirages peuvent ne pas être centrés au bon endroit.

- Exemple avec une intersection loin des points P*
 - $_{\square}~p_{f_{reference}}=9\times10^{-6}$
 - □ Tirages d'importances centrés sur les 2 points P* :
 - $P_{f,IS} = 1.1 \times 10^{-5}$
 - 1 074 000 tirages, coefficient de variation = 10%
 - □ Tirages d'importance centrés sur le point intersection
 - $P_{f,IS} = 9.1 \times 10^{-6}$
 - 17 580 tirages, coefficient de variation = 10%

La probabilité sur les conduites correspondent à ce cas.

LE PLAN D'EXPÉRIENCE MIS EN ŒUVRE

Modélisation de plus de 700 combinaisons de paramètres couvrant la plupart des configurations de Conduites Forcées :

○ **Résistance moyenne** R_m : 320 MPa ≤ μ_{Rm} ≤ 750 MPa

○ Coef. de variation de R_m : $2\% \le CV_{Rm} \le 10\%$

○ **Épaisseur nominale :** $5 \text{ mm} \le e_{\text{nom}} \le 30 \text{ mm}$

○ Écart-type de Δe_{corr} : 0,25 mm $\leq \sigma_{\Delta e} \leq$ 1 mm

○ Coef. de variation ω de $R_{p0,2}$ sachant R_m : $2\% \le \omega \le 5\%$

o Cinétique de corrosion : $\Delta e_{annuelle} = 100 \mu m/an$

■ 3 cas de figure pour la relation $\mu(R_e) = A. \mu(R_m) - B + \mu_e$:

Corrélation moyenne : μ_ε = 0

Matériau « au-dessus » de la corrélation moyenne : μ_ε = + 30 MPa

o Matériau « au-dessous » de la corrélation moyenne : $\mu_{\epsilon} = -50 \text{ MPa}$

ESTIMATION DES PROBABILITÉS DE RUINE POUR FM=1

- Probabilité annuelle estimée avec $\gamma = 2$ (pratique actuelle) avec les combinaisons les plus sévères (CV_{Rm}=10%, ω = 5%)
 - □ Dans la plupart des cas : P_{annuelle} ≤ 10⁻⁹
 - \Box Quelques cas conduisent à $P_{annuelle}$ au-dessus de P_{cible} : lorsque l'épaisseur nominale est faible (5 mm) et l'écart-type de Δe_{corr} élevé

« OPTIMISATION » DES VALEURS DE CALCUL

- On choisit le multiplicateur d'écart-type y pour que P_{annuelle} reste inférieure ou égale à P_{cible} lorsque FM=1 (avec P_{cible} = 10⁻⁷ / an)
- Sur l'ensemble des cas simulés :
 - $\Rightarrow \gamma_{\text{opt}} < 1$ dans la majorité (92%) des cas
 - \Rightarrow γ_{opt} < 1,33 dans quelques cas (3%) plus sévères
 - \Rightarrow $\gamma_{opt} > 2,50$ dans des cas avec très faibles épaisseurs et Δ e très dispersée

1 16

BORNES SUP DE Γ_{OPT} POUR CERTAINS GROUPES DE CFS

Selon µ_{Rm}:

Pour μ_{Rm} = 600 MPa, la borne sup de γ_{opt} (γ_{opt}^{sup}) est égale à 1,28;

Pour μ_{Rm} = 750 MPa, la borne sup de γ_{opt} (γ_{opt}^{sup}) est égale à 1,10.

cv_{Rm} n'est pas un paramètre influent

Selon e_{nom}:

e _{nom}		e _{nom} = 10 mm		30 mm	e _{nom} ≥ 10 mm μ _e = 30 MPa	\cap
γ_{opt}^{sup}	1,27	1,27	0,80	0,71	0,96	0,98

Selon $\sigma_{\Delta e}$

$\sigma_{\Delta e}$	$\sigma_{\Delta e} = 1$ mm	$\sigma_{\Delta e} = 0.5 \text{ mm}$	$\sigma_{\Delta e}$ = 0,25 mm	$\sigma_{\Delta e} \leq 0.5 \text{ mm} \cap \text{cv}_{\text{Rm}} \leq 0.05$
γ _{opt} sup	2,5	1,27	1,11	0.77

QUELQUES COMPLÉMENTS D'ÉTUDE

- 1. Analyse de sensibilité de la probabilité de ruine en fonction de la valeur du Facteur de Marge : entre 0,90 et 1,20
 - \Box On étudie le ratio : $r = P_{annuelle}(FM) / P_{annuelle}(FM=1)$
- Analyse de l'impact d'une épreuve hydraulique initiale sur la probabilité de défaillance :
 - Est-il possible de prendre une contrainte admissible compte tenu de la réduction implicite des incertitudes résultant de l'information suivante :
 - « les tuyaux ont résisté à P_{épreuve} = k x P » (par exemple k= 2) ?
 - Dans ce cas, on cherche à estimer la probabilité conditionnelle suivante :

$$\begin{aligned} \textit{\textit{P}}_{\textit{annuelle}}^{\textit{conditionnelle}} = \textit{\textit{P}} \begin{pmatrix} \left\{ G\left(P, \Delta e_{nom} + \Delta e_{appro} - \Delta e_{corr}, R_m, \epsilon\right) \geq 0 \right\} \\ \cap \left\{ G\left(P, \Delta e_{nom} + \Delta e_{appro} - \Delta e_{corr} - \Delta e_{annuelle}, R_m, \epsilon\right) < 0 \right\} \\ \mid \left\{ G\left(P_{\acute{e}preuve}, \Delta e_{nom} + \Delta e_{appro}, R_m, \epsilon\right) \geq 0 \right\} \end{aligned}$$

 Les simulations montrent que le calcul de cette probabilité n'est pas toujours possible : la recherche de l'intersection des surfaces d'état limite pose parfois problème

COMMENT ÉVOLUE LA PROBABILITÉ DE RUINE EN FONCTION DU FACTEUR DE MARGE ?

Lorsque FM = 0,90 :

⇒ Risque nominal de ruine multiplié par un facteur ≤ 10

lorsque FM = 1,20 :

- ⇒ Risque nominal **divisé par 10** (au moins) dans la plupart des cas
- \Rightarrow Risque nominal **divisé par 2** (au moins) si $e_{nom} = 5$ mm et $\sigma_{\Delta e} = 1$ mm

EFFET DE L'ÉPREUVE HYDRAULIQUE

- 3 cas sont possibles pour la probabilité conditionnelle de défaillance :
 - 1. L'épreuve initiale est informative et décale la courbe $P_{annuelle} = f(FM_N)$ vers la gauche
 - 2. La probabilité conditionnelle reste égale à la probabilité sans l'épreuve
 - 3. La probabilité conditionnelle tend vers 0 (non calculable)

Exemple 1 : Epreuve "informative" : $10^2 < P_{\text{épreuve}} / P_{\text{annuelle}}(N) < 10^4$

 \Rightarrow L'épreuve initiale diminue la probabilité annuelle de défaillance si $\sigma(\Delta e_{corr})$ reste modérée

EFFET DE L'ÉPREUVE HYDRAULIQUE

Réalisation de l'optimisation : plusieurs résultats possibles

- Utilisation de l'algorithme « Brent » pour l'optimisation (exemple cas 7)
- □ Existence seulement d'une solution approchée → utilisation de l'algorithme Cobyla (exemple cas 6)
- □ L'intervalle de confiance de la probabilité conditionnelle pour FM = 1 contient la probabilité cible \rightarrow optimisation non nécessaire
- □ La probabilité conditionnelle est nulle → pas d'optimisation possible

CONCLUSIONS

Intérêt de l'étude :

- Des probabilités de défaillance par ruine plastique ont pu être associées
 à des plages de Facteur de Marge en présence de dispersions sur les caractéristiques mécaniques et les épaisseurs résiduelles
- dans la plupart des cas, prendre des valeurs de calcul à 2 écarts-types avec un coefficient de sécurité de
 2,4 sur R_m est très conservatif
- Hormis quelques cas particuliers (faible épaisseur nominale associée à une forte dispersion de perte d'épaisseur), des valeurs de calcul prises à 1 écart-type de la moyenne permettent de garantir P_{annuelle} ≤ P_{cible} lorsque FM ≥ 1

OpenTURNS

- Chantier 2018 sur la fiabilité système (proba d'événements combinés)
- Vérifications concluantes avec autre outil (SYSREL®)
- Algorithmes satisfaisants pour l'étude

Compléments d'étude :

- Quantification des apports de l'épreuve hydraulique
 - Nombreux cas où la probabilité conditionnelle est nulle, jusqu'à FM = 0,7
- Résolution des problèmes de convergence associés

