Chapter 4.5: Windowing — Smooth Transitions for FFT

4.1 Why Windowing Matters

- FFT assumes your signal repeats infinitely.
- Abrupt edges → FFT sees false frequencies (spectral leakage).
- Windowing = fade-in and fade-out at the edges \rightarrow smooth transition.

Analogy:

- DJ music clips: fade edges to avoid jarring transitions.
- Digital signals: edges fade → FFT interprets frequencies correctly.

4.2 Step-by-Step Example with Small Shifted Signal (N=9)

 Use N=9 samples of a sine wave shifted so it does not start at zero, highlighting window effect.

```
import numpv as np
import matplotlib.pyplot as plt

#_Parameters
N = 9
t = nn.linsnace(0. 1. N. endnoint=False)
signal = np.sin(2*np.pi*1*t + np.pi/4) # 1 Hz sine, phase shift pi/4
window = nn.hanning(N)
signal_windowed = signal * window

# Print sample-level details
print("Sample n | Signal x[n] | Window w[n] | Windowed x[n]*w[n]")
for n in range(N):
    print(f"{n:2d} | {signal[n]:6.3f} | {window[n]:6.3f}
```

Example Output:

amnle n I Siøn	al x[n] Window	w[n] Windowed x[n]*w[n
l 0.707	l 0.000	1 0.000
L 1.000	l 0.250	1 0.250
0.707	l 0.650	1 0.460
1 0.000	l 0.950	1 0.000
l -0.70	7 1.000	l -0.707
-1.00	0.950	l -0.950
l -0.70	7 1 0.650	1 -0.460
1 0.000	0.250	1 0.000
0.707	0.000	0.000

4.3 Observations

- 1. Edges fade-in/fade-out clearly (samples 0 & 8).
- 2. **Middle samples** retain most of their amplitude.
- 3. **FFT interprets this as a smooth signal** → reduces spectral leakage.
- 4. Windowed signal is **numerically different from original**, even though shape is similar.

4.4 Visual Understanding

```
plt.plot(t. signal. 'ro-'. label='Original Signal')
nlt.plot(t. window. 'g^-'. label='Hanning Window')

plt.plot(t. signal windowed. 'bs-'. label='Windowed Signal')
nlt.title("Windowing: Sample-level Insight (Shifted Sine)")
nlt.xlabel("Sample Index")
nlt.vlabel("Amplitude")
nlt.legend()
plt.grid(True)
plt.show()
```

Intuition:

- Red = original signal (phase shifted, starts above zero).
- Green = window weights (edges small, middle near 1).
- Blue = windowed signal → edges tapered.

You see and feel the fade-in/out at the edges numerically and visually.

4.5 Key Takeaways

- 1. Windowing = sample-by-sample amplitude shaping at edges.
- 2. Works even if the signal doesn't start at zero.
- 3. **Effect:** cleaner FFT spectrum, less energy spreading to wrong frequency bins.
- 4. Step-by-step approach:
 - Small N → understand numbers.
 - Visual plot → confirm fade effect.
 - FFT → see the power of windowing.