Different programming languages support different styles of programming (called programming paradigms). New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. Following a consistent programming style often helps readability. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Different programming languages support different styles of programming (called programming paradigms). Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less guickly. Use of a static code analysis tool can help detect some possible problems. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Integrated development environments (IDEs) aim to integrate all such help. Programming languages are essential for software development. Whatever the approach to development may be, the final program must satisfy some fundamental properties. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). When debugging the problem in a GUI, the programmer can try to skip some user interaction from the original problem description and check if remaining actions are sufficient for bugs to appear. Integrated development environments (IDEs) aim to integrate all such help.