Project 1 (Part A)

Given that the both versions always expand the unexpanded fringe node with the smallest f-value, the heuristics for both of these methods are admissible and consistent, and hence, they are optimal. One of the properties of consistency claims that $f(n) \le f(n')$. In this problem, given that C is the cost of optimal solution path, then both versions of A* search expand all nodes with $f(n) \le C$. However, since we are more concerned about the number of expanded nodes, the distinction between both versions can be clearly seen by displaying the tree representations of both searches:

Let's take a 4x4 grid that has the following structure:

1 2 3				
A .	S	5	4	3
В	5	4	3	2
C	4	3	2	1
D	3	2	1	G

If we do the A* search with the version of the smallest g, we will get the following tree:

As we can see in the graph above, A^* search with the smaller g expands a lot of nodes. Let's see what happens with the A^* search of the larger g preference.

By looking at the tree above, we can clearly see that the A^* search with the larger g preference expands much less nodes. Why? If we analyze the formula given in class $[0 \le h(s) \le c(s, s') + h(s')]$, the optimal cost is getting further away from optimality. Because the smallest g has more expansions. In other words, if we choose the biggest h (and h=0 at the goal state), and choosing the biggest h means choosing the furthest point from the goal. Hence, the second version of the A^* search expands less nodes due to smaller g. Since in both versions we keep the same standard of optimality, the ratio between both versions of A^* search doesn't change and is therefore true in all cases.