4M × 1-Bit Dynamic RAM

HYB 514100BJ-50/-60

Advanced Information

- 4 194 304 words by 1-bit organization
- 0 to 70 °C operating temperature
- Fast Page Mode Operation
- · Performance:

		-50	-60	
t_{RAC}	RAS access time	50	60	ns
t_{CAC}	CAS access time	13	15	ns
t_{AA}	Access time from address	25	30	ns
t_{RC}	Read/Write cycle time	95	110	ns
t_{PC}	Fast page mode cycle time	35	40	ns

- Single + 5 V (\pm 10 %) supply with a built-in $V_{\rm BB}$ generator
- Low power dissipation max. 660 mW active (-50 version) max. 605 mW active (-60 version)
- Standby power dissipation:
 11 mW max. standby (TTL)
 5.5 mW max. standby (CMOS)
- Output unlatched at cycle end allows two-dimensional chip selection
- Read, write, read-modify write, CAS-before-RAS refresh, RAS-only refresh, hidden refresh and test mode capability
- All inputs and outputs TTL-compatible
- 1024 refresh cycles/16 ms
- Plastic Packages: P-SOJ-26/20-2 with 300 mil width

The HYB 514100BJ is the new generation dynamic RAM organized as 4 194 304 words by 1-bit. The HYB 514100BJ utilizes CMOS silicon gate process as well as advances circuit techniques to provide wide operation margins, both internally and for the system user. Multiplexed address inputs permit the HYB 514100BJ to be packed in a standard plastic P-SOJ-26/20 package. This package size provides high system bit densities and is compatible with commonly used automatic testing and insertion equipment. System oriented features include single + 5 V (\pm 10 %) power supply, direct interfacing with high performance logic device families such as Schottky TTL.

Туре	Ordering Code	Package	Descriptions
HYB 514100BJ-50	Q67100-Q971	P-SOJ-26/20-2 300 mil	DRAM (access time 50 ns)
HYB 514100BJ-60	Q67100-Q759	P-SOJ-26/20-2 300 mil	DRAM (access time 60 ns)

Pin Configuration

Pin Names

A0 – A10	Address Input
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Read/Write Input
DI	Data In
DO	Data Out
$\overline{V_{\sf CC}}$	Power Supply (+ 5 V)
$\overline{V_{\mathtt{SS}}}$	Ground (0 V)
N.C.	No Connection

Block Diagram

Absolute Maximum Ratings

Operating temperature range	0 to 70 °C
Storage temperature range	– 55 to + 150 °C
Input/output voltage	– 1 to + 7 V
Power Supply voltage	– 1 to + 7 V
Data out current (short circuit)	50 mA

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 5 $\,$ 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit '	Values	Unit	Test	
		min.	min. max.		Condition	
Input high voltage	V_{IH}	2.4	$V_{\rm CC}$ + 0.5	V	1	
Input low voltage	V_{IL}	- 1.0	0.8	V	1	
Output high voltage ($I_{OUT} = -5 \text{ mA}$)	V_{OH}	2.4	_	V	1	
Output low voltage ($I_{OUT} = 4.2 \text{ mA}$)	V_{OL}	_	0.4	V	1	
Input leakage current, any input (0 V < $V_{\rm IN}$ < 7, all other input = 0 V)	$I_{I(L)}$	- 10	10	μΑ	1	
Output leakage current (DO is disabled, 0 < $V_{\rm OUT}$ < $V_{\rm CC}$)	$I_{O(L)}$	– 10	10	μΑ	1	
Average $V_{\rm CC}$ supply current -50 version -60 version	$I_{\rm CC1}$		120 110	mA mA	2, 3	
	$I_{\rm CC2}$	_	2	mA		
Average $V_{\rm CC}$ supply current during $\overline{\rm RAS}$ -only refresh cycles	I_{CC3}					
-50 version		_	120	mA	2	
-60 version		_	110	mA		
Average $V_{\rm CC}$ supply current during fast page mode operation	I_{CC4}					
-50 version		_	80	mA	2, 3	
-60 version		-	70	mA		

DC Characteristics (cont'd)

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm SS}$ = 0 V, $V_{\rm CC}$ = 5 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symb	ol Lin	Limit Values U		Test	
		min.	max.		Condition	
Standby $V_{\rm CC}$ supply current	$I_{\rm CC5}$	_	1	mA	1	
Average V_{CC} supply current during $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh mode	$I_{\rm CC6}$				2	
	version version	 -	120 110	mA mA		

Capacitance

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5.0 V $\pm\,10$ %, f = 1 MHz

Parameter	Symbol	Lim	Unit	
		min.	max.	
Input capacitance (A0 to A10, DI)	C_{I1}	_	5	pF
Input capacitance (RAS, CAS, WE)	C_{l2}	_	7	pF
Output capacitance (DO)	C_{IO}	_	7	pF

AC Characteristics 5,6

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V \pm 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit Values			nbol Limit Values					Note
		-50		-50 -60						
		min.	max.	min.	max.					

Common Parameters

t_{RC}	95	_	110	_	ns
t_{RP}	35	_	40	_	ns
t_{RAS}	50	10k	60	10k	ns
$t_{\sf CAS}$	13	10k	15	10k	ns
t _{ASR}	0	_	0	_	ns
t_{RAH}	8	_	10	_	ns
t_{ASC}	0	_	0	_	ns
t _{CAH}	10	_	15	_	ns
t_{RCD}	18	37	20	45	ns
t_{RAD}	13	25	15	30	ns
t_{RSH}	13		15	_	ns
t_{CSH}	50		60	_	ns
	$t_{ m RP}$ $t_{ m RAS}$ $t_{ m CAS}$ $t_{ m ASR}$ $t_{ m RAH}$ $t_{ m ASC}$ $t_{ m CAH}$ $t_{ m RCD}$ $t_{ m RAD}$	t _{RP} 35 t _{RAS} 50 t _{CAS} 13 t _{ASR} 0 t _{RAH} 8 t _{ASC} 0 t _{CAH} 10 t _{RCD} 18 t _{RAD} 13 t _{RSH} 13	t _{RP} 35 t _{RAS} 50 10k t _{CAS} 13 10k t _{ASR} 0 - t _{RAH} 8 - t _{ASC} 0 - t _{CAH} 10 - t _{RCD} 18 37 t _{RAD} 13 25 t _{RSH} 13	t_{RP} 35 - 40 t_{RAS} 50 10k 60 t_{CAS} 13 10k 15 t_{ASR} 0 - 0 t_{RAH} 8 - 10 t_{ASC} 0 - 0 t_{CAH} 10 - 15 t_{RCD} 18 37 20 t_{RAD} 13 25 15 t_{RSH} 13 - 15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

AC Characteristics (cont'd) 5,6

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V ± 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol		Limit Values				Note
		-50		-60			
		min.	max.	min.	max.		
CAS to RAS precharge time	$t_{\sf CRP}$	5	_	5	_	ns	
Transition time (rise and fall)	t_{T}	3	50	3	50	ns	7
Refresh period	t_{REF}	_	16	_	16	ms	

Read Cycle

t_{RAC}	_	50	_	60	ns	8, 9
t_{CAC}	-	13	-	15	ns	8, 9
t _{AA}	_	25	-	30	ns	8, 10
t_{RAL}	25	_	30	_	ns	
t_{RCS}	0	_	0	_	ns	
t_{RCH}	0	_	0	_	ns	11
t_{RRH}	0	_	0	_	ns	11
t_{CLZ}	0	_	0	-	ns	8
t _{OFF}	0	13	0	15	ns	12
	t_{CAC} t_{AA} t_{RAL} t_{RCS} t_{RCH} t_{RRH}	$\begin{array}{ccc} t_{\text{CAC}} & - \\ t_{\text{AA}} & - \\ t_{\text{RAL}} & 25 \\ t_{\text{RCS}} & 0 \\ t_{\text{RCH}} & 0 \\ t_{\text{RRH}} & 0 \\ t_{\text{CLZ}} & 0 \\ \end{array}$	t_{CAC} - 13 t_{AA} - 25 t_{RAL} 25 - t_{RCS} 0 - t_{RCH} 0 - t_{RRH} 0 -	t_{CAC} - 13 - t_{AA} - 25 - t_{RAL} 25 - 30 t_{RCS} 0 - 0 t_{RCH} 0 - 0 t_{RRH} 0 - 0 t_{CLZ} 0 - 0	t_{CAC} - 13 - 15 t_{AA} - 25 - 30 t_{RAL} 25 - 0 - 0 - t_{RCS} 0 - 0 - t_{RCH} 0 - 0 - t_{RRH} 0 - 0 - t_{CLZ} 0 - 0 -	t_{CAC} - 13 - 15 ns t_{AA} - 25 - 30 ns t_{RAL} 25 - 30 - ns t_{RCS} 0 - 0 - ns t_{RCH} 0 - 0 - ns t_{RRH} 0 - 0 - ns t_{CLZ} 0 - 0 - ns

Write Cycle

Write command hold time	t_{WCH}	8	_	10	_	ns	
Write command pulse width	t_{WP}	8	_	10	-	ns	
Write command setup time	$t_{ m WCS}$	0	_	0	-	ns	13
Write command to RAS lead time	t_{RWL}	13	_	15	_	ns	
Write command to CAS lead time	t_{CWL}	13	_	15	_	ns	
Data setup time	t_{DS}	0	_	0	-	ns	14
Data hold time	t_{DH}	10	_	10	_	ns	14

Read-Modify-Write Cycle

Read-write cycle time	t_{RWC}	115	_	130	_	ns	
RAS to WE delay time	t_{RWD}	50	_	60	_	ns	13
CAS to WE delay time	$t_{\sf CWD}$	13	_	15	_	ns	13
Column address to WE delay time	t_{AWD}	25	_	30	_	ns	13

AC Characteristics (cont'd) 5,6

 $T_{\rm A}$ = 0 to 70 °C, $V_{\rm CC}$ = 5 V ± 10 %, $t_{\rm T}$ = 5 ns

Parameter	Symbol	Limit Values				Unit	Note
		-50		-60			
		min.	max.	min.	max.		
Fast Page Mode Cycle							
Fast page mode cycle time	t_{PC}	35	_	40	_	ns	
CAS precharge time	$t_{\sf CP}$	10	_	10	_	ns	
Access time from CAS precharge	t_{CPA}	_	30	_	35	ns	7
RAS pulse width	t _{RAS}	50	200k	60	200k	ns	
CAS precharge to RAS Delay	t_{RHCP}	30	_	35	_	ns	
Fast Page Mode Read-Modify-Write Cyc	alo						
Fast page mode read-write cycle time	t_{PRWC}	55	_	60	_	ns	
CAS precharge to WE	t_{CPWD}	30	_	35	_	ns	
CAS-before-RAS Refresh Cycle		1	1	1	1	1	1
CAS setup time	t _{CSR}	10	_	10	_	ns	
CAS hold time	t _{CHR}	10	_	10	_	ns	
RAS to CAS precharge time	t_{RPC}	5	_	5	_	ns	
Write to RAS precharge time	t_{WRP}	10	_	10	_	ns	
Write hold time referenced to RAS	t_{WRH}	10	_	10	_	ns	
CAS-before-RAS Counter Test Cycle							
CAS precharge time	t_{CPT}	35	_	40	_	ns	
Test Mode							
Write command setup time	t_{WTS}	10	_	10	_	ns	
Write command hold time	t_{WTH}	10	_	10	_	ns	
		-	1	-	1	1	1

Notes

- 1. All voltages are referenced to $V_{\rm SS}$.
- 2. I_{CC1} , I_{CC3} , I_{CC4} and I_{CC6} depend on cycle rate.
- 3. I_{CC1} and I_{CC4} depend on output loading. Specified values are measured with the output open.
- 4. Address can be changed once or less while $\overline{RAS} = V_{IL}$. In the case of I_{CC4} it can be changed once or less during a fast page mode cycle (t_{PC}).
- 5. An initial pause of 200 μ s is required after power-up followed by 8 \overline{RAS} cycles of which at least one cycle has to be a refresh cycle, before proper device operation is achieved. In case of using internal refresh counter, a minimum of 8 \overline{CAS} -before- \overline{RAS} initialization cycles instead of 8 \overline{RAS} cycles are required.
- 6. AC measurements assume $t_T = 5$ ns.
- 7. $V_{\rm IH~(MIN.)}$ and $V_{\rm IL~(MAX.)}$ are reference levels for measuring timing of input signals. Transition times are also measured between $V_{\rm IH}$ and $V_{\rm II}$.
- 8. Measured with a load equivalent to 2 TTL loads and 100 pF.
- 9. Operation within the $t_{\rm RCD~(MAX.)}$ limit ensures that $t_{\rm RAC~(MAX.)}$ can be met. $t_{\rm RCD~(MAX.)}$ is specified as a reference point only: If $t_{\rm RCD}$ is greater than the specified $t_{\rm RCD~(MAX.)}$ limit, then access time is controlled by $t_{\rm CAC}$.
- 10. Operation within the $t_{\text{RAD (MAX.)}}$ limit ensures that $t_{\text{RAC (MAX.)}}$ can be met. $t_{\text{RAD (MAX.)}}$ is specified as a reference point only: If t_{RAD} is greater than the specified $t_{\text{RAD (MAX.)}}$ limit, then access time is controlled by t_{AA} .
- 11. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- $12.t_{\text{OFF (MAX.)}}$ defines the time at which the outputs achieve the open-circuit condition and are not referenced to output voltage levels.
- 13. $t_{\rm WCS}$, $t_{\rm RWD}$, $t_{\rm CWD}$, $t_{\rm AWD}$ and $t_{\rm CPWD}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{\rm WCS} > t_{\rm WCS~(MIN.)}$, the cycle is an early write cycle and the data out pin will remain open-circuit (high impedance) through the entire cycle; if $t_{\rm RWD} > t_{\rm RWD}$ (MIN.), $t_{\rm CWD} > t_{\rm CWD~(MIN.)}$, $t_{\rm AWD} > t_{\rm AWD(MIN.)}$ and $t_{\rm CPWD} > t_{\rm CPWD~(MIN.)}$, the cycle is a readwrite cycle and DO will contain data read from the selected cells. If neither of the above sets of conditions is satisfied, the condition of the DO pin (at access time) is indeterminate.
- 14. These parameters are referenced to the $\overline{\text{CAS}}$ leading edge in early write cycles and to the $\overline{\text{WE}}$ leading edge in read-write cycles.

Read Cycle

Write Cycle (Early Write)

Read-Write (Read-Modify-Write) Cycle

Fast Page Mode Read-Modify-Write Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

RAS-Only Refresh Cycle

CAS-Before-RAS Refresh Cycle

Hidden Refresh Cycle (Read)

Hidden Refresh Cycle (Early Write)

CAS-Before-RAS Refresh Counter Test Cycle

Test Mode Entry

Test Mode

The HYB 514100BJ is organized 4 194 304 words by 1-bit but can internally be configured as 524 288 words by 8-bits. A $\overline{\text{WE}}$, $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ cycle puts the device into Test Mode.

In Test Mode, data is written into 8 sectors in parallel and retrieved the same way. If, upon reading, all bits are equal, the data output pin indicates a "1". If any of the bits differ, the data output pin indicates a "0". In Test Mode the 4M DRAM can be tested as if it were a 512K DRAM. Test Mode is exited by any refresh operation which is not a $\overline{\text{WE}}$, $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ cycle. Addresses A10R, A10C and A0C do not care during Test Mode.

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm