Exercise 3. Use the result of Remark 3 to determine the rates of convergence of e in L_2 and H^1 when m = 1 and k = 2 (i.e., quadratic elements).

$$\|e\|_{s} \le c h^{\beta} \|u\|_{k+1}$$
 $\beta = \min (k+1-s, 2(k+1-m))$
 $k=2 \quad m=1$
 $for e in L_{2}, s=0$
 $\beta = \min (3, 4) = 3$
 $\|e\|_{s} \le c h^{\beta} \|u\|_{s} \longrightarrow \text{rate of } 3$
 $for e in H', s=1$
 $\beta = \min (2, 4) = 2$
 $\beta = \min (2, 4) = 2$
 $\beta = \min (2, 4) = 2$

Exercise 4. Determine the convergence rates of e in L_2 , H^1 , and H^2 for Bernoulli-Euler beam theory (m = 2) and Hermite cubic shape functions (k = 3).

$$m=2$$
 $k=3$
 $\|e\|_{S} \le ch^{\beta} \|u\|_{K_{\xi_{1}}}$ $\beta = \min(k_{1}-S, \nu(k_{1}-m))$

for L_{2} , $S=0$ $\beta = \min(4, 4) = 4$

for H^{1} , $S=1$ $\beta = \min(3, 4) = 3$

for H^{2} , $S=2$ $\beta = \min(2, 4) = 2$

= . e1101:

