

XB2121-1.8 SOT23-5 XB2204-3.3 SOT23-5 XB2204-5.0 SOT23-5 XB2204-ADJ SOT23-5 Temperature Range -40 to +85°C

Description

The XB2204 series is a positive voltage regulator IC fabricated by high voltage EPNP process.

The XB2204 has features of wide input voltage range, high accuracy, high ripple rejection, low dropout voltage, low noise, current limit and ultra-low quiescent current which make it ideal for use in various USB and portable devices.

The IC consists of a voltage reference, an error amplifier, a resistor network for setting output voltage, a current limit circuit for current protection, and a chip enable circuit.

The XB2204 has 1.8V 3.3V 5.0V ADJ fixed voltage versions and adjustable voltage version.

Pin Assignments

Notes:

- 4. The substrate/exposed pad should be connected to GND.
- 5. The substrate/exposed pad should be connected to VIN.
- $\ensuremath{\mathsf{6}}.$ The exposed pad should be connected to GND for better dissipation.

Features

- Wide Input Voltage Range: 2.6V to 24V
- Wide Output Voltage Range: 1.24V to 22V
- Excellent Ripple Rejection: 60dB@ f = 1kHz
- Low Dropout Voltage: V_{DROP} = 100mV @ I_{OUT} = 100μA
- Low Ground Current
- High Output Voltage Accuracy
- Compatible with Low ESR Ceramic Capacitor
- Excellent Line/Load Regulation
- Thermal Shutdown Function
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Applications

- Battery-powered Equipment
- Laptop, Palmtops, Notebook Computers
- Portable Information Appliances

 $V_{OUT}=V_{REF}(1+(R1/R2))$

Pin Number					
SOT-23-5	Pin Name	Function			
1	VIN	Input voltage			
2	GND	Ground			
3	EN	Enable input			
4	ADJ/NC	Adjust output for ADJ version/Not connected for fixed version			
5	VOUT	Regulated output voltage			

Functional Block Diagram

Symbol	Parameter	Ratii	Rating	
Vin	Supply Input Voltage	38	38	
V _{CE}	Enable Input Voltage	38	38	
l _{OUT}	Output Current	250	250	
T _{LEAD}	Lead Temperature (Soldering, 10sec)	+26	+260	
TJ	Operating Junction Temperature	+15	+150	
θЈΑ	Thermal Resistance	SOT-23-5	250	°C/W
T _{STG}	Storage Temperature Range	-65 to -	-65 to +150	
_	ESD (Machine Model)	275	275	
_	ESD (Human Body Model)	200	2000	

Notes:

- 7. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 8. θ_{JA} is measured with the component mounted on a 2-Layer FR-4 PCB board with 1.5cm*1.5cm thermal sink pad in free air.

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit	
V _{IN}	Supply Input Voltage	2.6 (Note 9)	24	V	
TJ	Operating Junction Temperature	-40	+125	°C	

Note:

^{9.} Minimum recommended input voltage is the larger of 2.6V or V_{OUT} + 1V. Below this value the device may enter drop-out conditions and cease to regulate the output voltage correctly.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
V _{оит}	Output Voltage	Variation from Specified Vout		V _{ОUТ} ×98%	_	V _{OUT} ×102%	V	
V_{REF}	Reference Voltage	_	_		1.24	1.265	V	
VIN	Input Voltage	_		_	_	24	V	
I _{OUT(max)}	Maximum Output Current	V _{IN} -V _{OUT} = 1V, V _O	оит = 98% × V _{ОИТ}	150	200	_	mA	
$\Delta V_{OUT}/\Delta V_{IN}$	Line Regulation	V _{OUT} +1V ≤ V _{IN} ≤ 2	24V	_	0.05	_	%	
ΔV _{ΟυΤ} /V _{ΟυΤ}	Load Regulation	1mA ≤ I _{OUT} ≤ 150r	1mA ≤ I _{OUT} ≤ 150mA		0.5	_	%	
	Dropout Voltage	Ι _{ΟυΤ} = 100μΑ		_	100	150		
V_{DROP}		I _{OUT} = 50mA		_	270	350		
		I _{OUT} = 100mA		_	320	460	mV 60	
		I _{OUT} = 150mA		_	360	500		
	Ground Current	I _{OUT} = 0A		_	20	_		
I _{GND}		I _{OUT} = 100μA		_	50	_	μA	
		I _{OUT} = 50mA		_	0.5	_	mA	
		I _{OUT} = 100mA		_	1.3	_		
		I _{OUT} = 150mA		_	2.5	_		
I _{STD}	Standby Current	$V_{IN} = V_{OUT}+1V$ V_{EN} in OFF Mode		_	0.01	1.0	μΑ	
PSRR	Power Supply Rejection Ration	Ripple 0.5V _{P-P} V _{IN} = V _{OUT} +1V	f = 100Hz	_	60	_	dD.	
			f = 1kHz	_	60	_	dB	
$\Delta V_{OUT}/(V_{OUT} \times \Delta T)$	Output Voltage Temperature Coefficient	I _{OUT} = 100μA, -40 °C ≤ T _J ≤ +125°C		_	±100	_	ppm/°C	
V _{NOI}	RMS Output Noise	T _J = +25°C, 10Hz ≤ f ≤ 100kHz		_	30	_	μV_{rms}	
I _{ADJ}	ADJ Pin Current	I _{OUT} = 100μA		_	0.5	_	μΑ	
I _{EN}	EN Pin Current	V _{EN} = V _{OUT} +1V		_	1	_	μΑ	
_	EN "High" Voltage	EN Input Voltage "High"		2.0	_	_	V	
_	EN "Low" Voltage	EN Input Voltage "Low"		_	_	0.4	V	
θ _{JC}	Thermal Resistance (Junction to Case)	SOT-23-5		_	43	_	°C/W	

Output Voltage vs. Output Current

Output Voltage vs. Output Current

Output Voltage vs. Output Current

Dropout Voltage vs. Output Current

Dropout Voltage vs. Junction Temperature

Output Voltage vs. Input Voltage

Output Voltage vs. Input Voltage

Output Voltage vs. Junction Temperature

Supply Current vs. Input Voltage

Ground Current vs. Junction Temperature

Ground Current vs. Output Current

Enable Current vs. Enable Input Voltage

XB2121-1.8 SOT23-5 XB2204-3.3 SOT23-5 XB2204-5.0 SOT23-5 XB2204-ADJ SOT23-5 Temperature Range -40 to +85°C

 $\label{eq:line_line} Line Transient $$ (Conditions: V_{IN}=V_{EN}=3.5V to 8V, C_{IN}=1.0\mu F, C_{OUT}=2.2\mu F, I_{OUT}=1mA)$$$

Enable Input Response

Start-up Response

PSRR vs. Frequency (Conditions: V_{PP}=2V, I_{OUT}=10mA)

Output Voltage vs. Output Current

Maximum Output Current vs. Case Temperature

Case Temperature vs. Output Current

(1) Package Type: SOT-23-5

