Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 5 — Produits scalaires et orthogonalité

Exercice 1. Dans $E = \mathbb{R}^3$, on considère les vecteurs $u = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, ainsi que les sous-espaces F = Vect(u) et G = Vect(u, v). Par ailleurs, on considère la forme linéaire définie par $f(x) = x_1 - 2x_3 + x_3$.

- 1. On note F^{\perp} et G^{\perp} les orthogonaux de F et G pour le produit scalaire usuel. Donner une base de chacun d'eux.
- 2. Trouver un vecteur w tel que $f(x) = \langle w, x \rangle$ pour tout $x \in E$.

On pose maintenant $\varphi(x,y) = x_1y_1 + 2x_1y_2 + 2x_2y_1 + 5x_2y_2 + 2x_3y_3$.

- 3. Montrer que φ est un produit scalaire.
- 4. On note $F^{\perp_{\varphi}}$ et $G^{\perp_{\varphi}}$ les orthogonaux de F et G pour φ . Donner une base de chacun d'eux.
- 5. Trouver un vecteur w' tel que $f(x) = \varphi(w', x)$ pour tout $x \in E$.

Exercice 2. Soit E un espace euclidien et F et G deux sous-espaces. Montrer que $(F+G)^{\perp}=F^{\perp}\cap G^{\perp}$ et $(F\cap G)^{\perp}=F^{\perp}+G^{\perp}$.

Exercice 3. Soit x > 0, on note E_x l'ensemble des fonctions $f \in \mathcal{C}^1([0, x], \mathbf{R})$ telles que f(0) = 0 et on pose $\varphi_x(f, g) = \int_0^x f'(t) g'(t) dt$.

- 1. Montrer que φ_x est un produit scalaire sur E_x .
- 2. En déduire que que $\sup_{0\leqslant x\leqslant 1} |f(x)|\leqslant \left(\int_0^1 \bigl(f'(t)\bigr)^2\,\mathrm{d}t\right)^{1/2}.$

Exercice 4. Montrer que $1 + 2\sqrt{2} + \cdots + n\sqrt{n} \le n(n+1)\sqrt{2n+1}/2\sqrt{3}$.

Exercice 5. On considère la forme φ définie par

$$\varphi(x,y) = x_1y_1 + 3x_2y_2 + 9x_3y_3 - x_1y_2 - x_2y_1 + 2x_1y_3 + 2x_3y_1 - 4x_2y_3 - 4x_3y_2.$$

- 1. Montrer que φ est bilinéaire.
- 2. Donner sa matrice A dans la base canonique et en déduire que φ est symétrique.
- 3. Appliquer la méthode de Gauss et en déduire que φ est un produit scalaire.
- 4. On pose $f_1(x) = x_1 x_2 + 2x_3$ puis $f_2(x) = x_2 x_3$ et enfin $f_3(x) = x_3$. Justifier brièvement que (f_1, f_2, f_3) est une base de $(\mathbf{R}^3)^*$.
- 5. Calculer sa base préduale et montrer sans calculs qu'elle est orthogonale pour φ .
- 6. Donner la matrice B de φ dans cette nouvelle base.
- 7. Expliciter les relations entre A et B.