CHAPTER 2.

REVIEW OF THE LINEAR REGRESSION MODEL

SOLUTIONS

Wei Lin and Yingying Sun (University of California, Riverside)

Exercise 1

a. Conditional sample mean

$$\bar{y}_{Y|X=4} = \frac{0+15+6+5+2+2+2+2+6}{10} = 4.2$$

b. To calculate the conditional sample variance $\hat{\sigma}_{Y|X=5}^2$ given X=5, first calculate the conditional sample mean $\bar{y}_{Y|X=5}$,

$$\bar{y}_{Y|X=5} = \frac{20+16+6+7+5+5+4+6+8+16}{10} = 9.3.$$

Then, the conditional sample variance is

$$\hat{\sigma}_{Y|X=5}^2 = [(20 - 9.3)^2 + (16 - 9.3)^2 + (6 - 9.3)^2 + (7 - 9.3)^2 + (5 - 9.3)^2 + (5 - 9.3)^2 + (4 - 9.3)^2 + (6 - 9.3)^2 + (8 - 9.3)^2 + (16 - 9.3)^2]/9$$

$$\approx 33.1$$

c. Figure 1 shows the conditional histogram (in the vertical axis, read the number of counts) when X = 2.

d. To calculate the unconditional mean and standard deviation of Y, just calculate the sample mean and standard deviation for the whole sample of Y (regardless of the values of X). Therefore,

$$\bar{y} = 4.232$$

$$\hat{\sigma}_Y = \sqrt{\hat{\sigma}_Y^2} \approx 4.825$$

Exercise 2

The data for U.S. quarterly GDP and Standard & Poor's (SP) 500 Index are available on FRED and YAHOO! Finance websites. The sample ranges from 1950Q2 to 2012Q1. Let *GRGDP* and *RETURN* denote the quarterly growth rate of GDP and S&P500 index returns respectively. Figure 2 and Figure 3 show the histograms and descriptive statistics of the two series respectively. The contemporaneous sample correlation coefficient of these two series is approximately 0.270. The positive correlation between the two series indicates co-movements in the same direction between macroeconomic activity and the performance of financial markets such that when the economy grows, the stock market tends to be bullish, or when the growth is sluggish, the stock market tends to be bearish.

Figure 1: Conditional Histogram (counts) of Y when X=2

Exercise 3

Refer to Tables 1, 2, 3, 4 and 5. R-squared is a measure of goodness of fit and it indicates the proportion of the total sample variation of Y (dependent variable) that is explained by X (independent variables). The adjusted R-squared is also a measure of goodness of fit but it penalizes the introduction of irrelevant regressors in the model. We prefer model (d) because it has the largest adjusted R^2 . When the regression includes several regressors, we assess the goodness of fit with the adjusted R^2 .

Model	R^2	Adjusted \mathbb{R}^2
Model (a)	0.073031	0.069263
Model (b)	0.164929	0.161521
Model (c)	0.206594	0.193315
Model (d)	0.247690	0.231885

Table 1: R-squared and adjusted R-squared

Exercise 4

Refer to Tables 2 and 3

Model (3a) From Table II (Appendix B), we obtain the 5% critical value for $df = \infty$ given that the number of observations is quite large. For the two-tailed test, the critical value is 1.960. The t-statistic for $H_0: \beta_1 = 0$ is 3.426827, which is larger than 1.960. Therefore, we reject $H_0: \beta_1 = 0$ in favor of the alternative $H_1: \beta_1 \neq 0$. For the one-tailed test with $H_0: \beta_1 = 0$ and $H_1: \beta_1 > 0$, the critical value is 1.645. The t-statistic is larger than the critical value, thus we reject the null hypothesis. For the one-tailed test with $H_0: \beta_1 = 0$ and $H_1: \beta_1 < 0$, the critical value is -1.645. Now, the t-statistic falls in the acceptance region, thus we fail to reject the null. In the latter case, observe the role of the alternative hypothesis; in order to reject the null, the sample information needs to provide strong evidence for a negative β_1 , which is not the case, thus 'fail to reject' is the most that we should expect from this test.

Figure 2: Histogram and Descriptive Statistics for DGP Growth Rate

Figure 3: Histogram and Descriptive Statistics for S&P500 Returns

Dependent Variable: GRGDP						
Method: Least Squares						
Sample: 1950Q2 2012	2Q1					
Included observations	s: 248					
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	cation=4)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	0.710672	0.087362	8.134837	0.0000		
RETURN	0.043388	0.012661	3.426827	0.0007		
R-squared	0.073031	Mean deper	ndent var	0.795804		
Adjusted R-squared	0.069263	S.D. depend	lent var	0.975634		
S.E. of regression	0.941241	Akaike info	criterion	2.724796		
Sum squared resid	217.9397	Schwarz cri	terion	2.75313		
Log likelihood	-335.8747	F-statistic		19.38108		
Durbin-Watson stat	1.342014	Prob(F-stat	istic)	0.000016		

Table 2: Estimation Results. Model (3a)

Dependent Variable: GRGDP						
Method: Least Squares						
Sample (adjusted): 1	950Q3 2012Q	21				
Included observations	s: 247 after a	djustments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	cation=4)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	0.661818	0.0792 8.356244 0.0000				
RETURN(-1)	0.064728	0.010678	6.062054	0.0000		
R-squared	0.164929	Mean dependent var 0.786709				
Adjusted R-squared	0.161521	S.D. dependent var 0.967023				
S.E. of regression	0.885488	Akaike info criterion 2.602709				
Sum squared resid	192.1019	1019 Schwarz criterion 2.631125				
Log likelihood	-319.435	F-statistic 48.38834				
Durbin-Watson stat	1.475295	Prob(F-stat	istic)	0.000000		

Table 3: Estimation Results. Model (3b)

Dependent Variable: GRGDP						
Method: Least Squares						
Sample (adjusted): 1951Q2 2012Q1						
Included observations: 244 after adjustments						
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	eation=4)		
Variable Coefficient Std. Error t-Statistic Prob.						
C	0.571948	0.080907	7.069182	0.0000		
RETURN(-1)	0.056594	0.010447	5.417203	0.0000		
RETURN(-2)	0.018011	0.008314	2.166345	0.0313		
RETURN(-3)	0.015672	0.008257 1.898017 0.0589				
RETURN(-4)	0.011948	0.00855	1.397432	0.1636		
R-squared	0.206594	Mean deper	ndent var	0.767957		
Adjusted R-squared	0.193315	S.D. depend	lent var	0.94932		
S.E. of regression	0.852638	Akaike info criterion 2.539316				
Sum squared resid	173.7511 Schwarz criterion 2.61098					
Log likelihood	-304.797	797 F-statistic 15.5582				
Durbin-Watson stat	1.549082	Prob(F-stat	tistic)	0.000000		

Table 4: Estimation Results. Model (3c)

Dependent Variable: GRGDP						
Method: Least Squar	Method: Least Squares					
Sample (adjusted): 1	951Q2 2012Q	21				
Included observations	s: 244 after a	djustments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	eation=4)		
Variable Coefficient Std. Error t-Statistic Prob.						
C	0.44449	0.075037	5.923574	0.0000		
RETURN(-1)	0.050535	0.010033	5.037049	0.0000		
RETURN(-2)	0.007459	$0.009295 \qquad 0.802474 \qquad 0.4231$				
RETURN(-3)	0.011149	0.008294 1.344201 0.1802				
RETURN(-4)	0.007133	$0.00834 \qquad 0.855278 \qquad 0.3933$				
GRGDP(-1)	0.230396	0.067098	3.433746	0.0007		
R-squared	0.24769	Mean deper	ndent var	0.767957		
Adjusted R-squared	0.231885	S.D. dependent var 0.94932				
S.E. of regression	0.832005	Akaike info criterion 2.494326				
Sum squared resid	164.7513	54.7513 Schwarz criterion 2.580322				
Log likelihood	-298.308	F-statistic 15.67178				
Durbin-Watson stat	2.026326	Prob(F-stat	istic)	0.000000		

Table 5: Estimation Results. Model (3d)

Model (3b) Using the same critical values as in Model (3a), the t-statistic for $H_0: \beta_1 = 0$ is 6.062054, which is larger than 1.960. Therefore, we reject $H_0: \beta_1 = 0$ in favor of the alternative $H_1: \beta_1 \neq 0$. For the one-tailed test with $H_0: \beta_1 = 0$ and $H_1: \beta_1 > 0$, the 5% critical value is 1.645. The t-statistic is larger than the critical value, thus we reject the null hypothesis. For the one-tailed test with $H_0: \beta_1 = 0$ and $H_1: \beta_1 < 0$, the critical value is -1.645. The t-statistic falls in the acceptance region and we fail to reject the null. However, see the comment above for the interpretation of this decision.

The strong significance of β_1 in Model (3b) indicates that the stock market is at least one-quarter leading indicator for economic growth but we should ask whether we could find additional leading time in the data. This is the objective of the next two exercises.

Exercise 5

Refer to Table 4

Model (3c) Using the same critical values as in Model (3a), the t-statistic for β_1 is 5.417203 and for β_2 is 2.166345, which are larger than 1.960. We reject the null for $\beta_1 = 0$ and for $\beta_2 = 0$ at the 5% significance level. The t-ratio for β_3 is 1.898017 and for β_4 is 1.397432, which are smaller than 1.960. We fail to reject the null for $\beta_3 = 0$ and for $\beta_4 = 0$ at the 5% significance level. This means that there is some evidence for claiming that the stock market leads for about two quarters output growth.

The F statistic for overall significance of the regression is 15.5582; this test has 4 degrees of freedom (number of restrictions) in the numerator and 239 (244-5) degrees of freedom in the denominator. The 5% critical value is about 2.37. Consequently, we reject the null hypothesis because 15.5582 > 2.37, thus the overall set of regressors are informative to explain output growth.

Exercise 6

Refer to Table 5

Model (3d) Following the same guidelines as in the previous exercises, we only reject the null $H_0: \beta_1 = 0$ at the 5% significance level but we fail to reject the null for $H_0: \beta_2 = 0$, $H_0: \beta_3 = 0$ and $H_0: \beta_4 = 0$. However, β_5 is very significant; the regressor GRGDP(-1), which measures the inertia of GDP growth, is most relevant to explain growth in the next period.

The F statistic for overall significance of the regression is 15.6717, and as before, it is very significant. This is expected because of the strong significance of several regressors. We conclude that, once we control for the inertia of output growth, the stock market seems to be a leading indicator of real activity with a lead time of one quarter.

Exercise 7

The data for 'number of unemployed workers' and 'number of people in poverty' are available on FRED and U.S. Census Bureau websites. Table 6 reports the descriptive statistics for the growth rates of unemployed workers (G_UNEM) and number of people in poverty (G_POV) . The correlation coefficient of the two series is 0.71. This large positive correlation means that when the number of unemployed workers increase (decrease), the number of people in poverty also tends to increase (decrease). Observe that the growth rate of unemployed people has a large dispersion compared to the growth rate of poor people. The Great Recession of 2008 was particularly sanguine by producing an increase of 59.76% in the number of unemployed people.

Sample: 1959-2010					
	G_POV (%)	G_UNEM (%)			
Mean	0.448861	4.003674			
Median	-0.55958	-2.37613			
Maximum	12.2737	59.76986			
Minimum	-14.0877	-20.245			
Std. Dev.	5.37858	17.3895			
Skewness	0.027338	1.425472			
Kurtosis	2.885234	4.739782			
Jarque-Bera	0.034341	23.70378			
Probability	0.982976	0.000007			
Observations	51	51			

Table 6: Descriptive Statistics

Exercise 8

Let G_POV_t and G_UNEM_t denote the growth rates of number of people in poverty and unemployed persons respectively. We specify the following three regression models,

```
 \begin{aligned} & \text{Model (8a):} & & G\_POV_t = \beta_0 + \beta_1 G\_UNEM_{t-1} + u_t; \\ & \text{Model (8b):} & & G\_POV_t = \beta_0 + \beta_1 G\_UNEM_{t-1} + \beta_2 G\_UNEM_{t-2} + \beta_3 G\_UNEM_{t-3} + u_t; \\ & \text{Model (8c):} & & G\_POV_t = \beta_0 + \beta_1 G\_UNEM_{t-1} + \beta_2 G\_UNEM_{t-2} + \\ & & & + \beta_3 G\_UNEM_{t-3} + \beta_4 G\_POV_{t-1} + u_t. \end{aligned}
```

Model (8a) claims that unemployment growth is one-year leading indicator for poverty growth. Model (8b) examines a more extensive dynamic relation between unemployment and poverty growth by including the past three years of unemployment growth. Model (8c) expands Model (8b) by adding previous growth in poverty, which captures the inertia of the poverty growth rate.

Tables 7, 8 and 9 report the estimation results of the three models. When there is more than one regressor in the model, we should examine the adjusted R-squared instead of the R-squared. Comparing the three models, we prefer model (8c) because it has the largest adjusted R-squared, about 32%. Models (8a) and (8b) inform about unemployment being somewhat a leading indicator of poverty but the better fit provided by Model (8c) is due to the effect of the poverty inertia.

That is, poverty growth tends to be persistent over time, positive (negative) growth is followed by positive (negative) growth. When this regressor is included, the effect of unemployment growth is greatly diminished.

Dependent Variable: G_POV						
Method: Least Squares						
Sample (adjusted): 1	Sample (adjusted): 1961 2010					
Included observations	s: 50 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ice (lag trunc	cation=3)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	-0.002186	1.016725 -0.00215 0.9983				
G_UNEM(-1)	0.110109	0.042274	2.604665	0.0122		
R-squared	0.126749	Mean deper	ndent var	0.439555		
Adjusted R-squared	0.108556	S.D. depend	dent var	5.432771		
S.E. of regression	5.129423	Akaike info criterion 6.147041				
Sum squared resid	1262.927	Schwarz criterion 6.223522				
Log likelihood -151.676 F-statistic 6.966994						
Durbin-Watson stat	1.190826	Prob(F-stat	tistic)	0.011165		

Table 7: Estimation Results. Model (8a)

Dependent Variable: G_POV						
Method: Least Squar	es					
Sample (adjusted): 1963 2010						
Included observations	s: 48 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ice (lag trunc	cation=3)		
Variable Coefficient Std. Error t-Statistic Prob.						
C	0.257569	1.194321	0.215661	0.8302		
G_UNEM(-1)	0.131781	0.047236	2.789818	0.0078		
G_UNEM(-2)	-0.06389	0.036097	-1.76992	0.0837		
G_UNEM(-3)	-0.01437	0.037591	-0.38223	0.7041		
R-squared	0.175445	Mean deper	ndent var	0.522257		
Adjusted R-squared	0.119226	S.D. dependent var 5.527656				
S.E. of regression	5.187682	Akaike info criterion 6.210106				
Sum squared resid	um squared resid 1184.13 Schwarz criterion 6.36604					
Log likelihood	-145.043	F-statistic		3.120714		
Durbin-Watson stat	1.276532	Prob(F-stat	istic)	0.035395		

Table 8: Estimation Results. Model (8b)

Exercise 9

The estimation results in Tables 7, 8 and 9 report the t-ratios corresponding to the null hypothesis of each regression coefficient to be zero as well as the F-tests for overall significance of the regressions. Let us choose a significance level of 5% and perform two-tailed t-tests, so that the critical values are -1.96 and 1.96. Models (a) and (b) show that the coefficients of $G_{-}UNEM_{t-1}$ are statistically significant but those of $G_{-}UNEM_{t-2}$ and $G_{-}UNEM_{t-3}$ are not. Thus, this is evidence to claim that unemployment growth leads to poverty growth with a lead time of one year. However, once we account for the inertia effect in Model (c), that is, we include a very significant regressor $G_{-}POV_{t-1}$ (one lag of dependent variable), unemployment growth is less relevant on leading poverty growth.

The F-tests for overall significance in the three models all reject the null hypothesis, so that the regressors considered are informative to explain poverty growth. Observe that Model (c) provides the F-test with the lowest p-value. Overall, t-ratios and F-tests point towards a relation between changes in unemployment and poverty. Given these results, the reader may be interested in estimating the following models: $G_POV_t = \beta_0 + \beta_1 G_UNEM_{t-1} + \beta_2 G_POV_{t-1} + u_t$ and

Dependent Variable: G_POV						
Method: Least Squares						
Sample (adjusted): 1	963 2010					
Included observations	s: 48 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	cation=3)		
Variable Coefficient Std. Error t-Statistic Prob.						
C	0.627246	0.813263	0.771271	0.4448		
G_UNEM(-1)	-0.0131	0.056898	-0.23014	0.8191		
G_UNEM(-2)	-0.08934	34 0.033879 -2.63715 0.0116				
G_UNEM(-3)	-0.01451	0.033168	-0.43738	0.6640		
G_POV(-1)	0.674105	0.141986	4.74767	0.0000		
R-squared	0.379635	Mean deper	ndent var	0.522257		
Adjusted R-squared	0.321927	S.D. dependent var 5.527656				
S.E. of regression	4.551759	Akaike info criterion 5.967237				
Sum squared resid	890.8958 Schwarz criterion 6.162154					
Log likelihood	-138.214	8.214 F-statistic 6.57852				
Durbin-Watson stat	2.082441	Prob(F-stat	tistic)	0.000319		

Table 9: Estimation Results. Model (8c)

 $G_{-}POV_{t} = \beta_{0} + \beta_{1}G_{-}POV_{t-1} + u_{t}$, and assess whether unemployment plays any role in poverty growth.

Exercise 10

Note to the instructor: This exercise is designed to bring some warnings on regression between non-stationary stochastic processes. The student does not have knowledge yet of stationarity and non-stationarity, and it will be premature to put much weight on the results of Tables 10, 11, and 12. It could serve as an illustration to the concepts to be explained in Chapter 3. However, the students will need to understand the regression output of Tables 7, 8, and 9.

Let POV_t and $UNEM_t$ denote the number of people in poverty and the number of unemployed persons respectively. We specify three similar models to those in Exercise 8. Observe that now we are modeling the relation between the levels of the series and not their growth.

```
Model (d): POV_t = \beta_0 + \beta_1 UNEM_{t-1} + u_t;

Model (e): POV_t = \beta_0 + \beta_1 UNEM_{t-1} + \beta_2 UNEM_{t-2} + \beta_3 UNEM_{t-3} + u_t;

Model (f): POV_t = \beta_0 + \beta_1 UNEM_{t-1} + \beta_2 UNEM_{t-2} + \beta_3 UNEM_{t-3} + \beta_4 POV_{t-1} + u_t.
```

Tables 10, 11 and 12 report the regression results. The R-squared statistics are larger than those of the models in Exercise 8. Models (10d) and (10e) support the claim that unemployment is a one-year leading indicator of poverty. Observe that the Durbin-Watson statistic is very low and it is pointing out towards serial correlation in the residuals. Model (10f) corrects this serial correlation by introducing POV(-1). Pay attention to the estimate of the coefficient attached to POV(-1), which is very large, and to the increase in the adjusted R-squared, which jumped from 37% (Model 10e) to 93%. At face value, all these numbers are impressive but we should exercise some caution in interpreting any of the results of these tables because we need to consider the statistical properties of the time series POV and UNEMP. These are important issues that will be explained in the forthcoming chapters.

Dependent Variable: POV						
Method: Least Squares						
Sample (adjusted): 1	960 2010					
Included observations	s: 51 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	cation=3)		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	24661.7	$3672.889 \qquad 6.714523 \qquad 0.0000$				
UNEM(-1)	1.234397	0.458921	2.689783	0.0097		
R-squared	0.267241	Mean deper	ndent var	32854.71		
Adjusted R-squared	0.252287	S.D. depend	lent var	5612.197		
S.E. of regression	4852.89	Akaike info criterion 19.85096				
Sum squared resid	1.15E+09	Schwarz criterion 19.92672				
Log likelihood						
Durbin-Watson stat	0.124404	Prob(F-stat	istic)	0.000103		

Table 10: Estimation Results. Model (10d)

Dependent Variable: POV						
Method: Least Squares						
Sample (adjusted): 1	962 2010					
Included observations	s: 49 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	cation=3)		
Variable	Variable Coefficient Std. Error t-Statistic Prob.					
С	21934.14	3883.059	5.648674	0.0000		
UNEM(-1)	1.846762	0.556685	3.317427	0.0018		
UNEM(-2)	-1.37004	0.864561 -1.58467 0.1200				
UNEM(-3)	1.108042	0.786683	1.408499	0.1659		
R-squared	0.408648	Mean deper	ndent var	32573.69		
Adjusted R-squared	0.369225	S.D. dependent var 5545.536				
S.E. of regression	4404.341	4.341 Akaike info criterion 19.69668				
Sum squared resid	8.73E+08 Schwarz criterion 19.85111					
Log likelihood	-478.569	F-statistic 10.3656				
Durbin-Watson stat	0.238175	Prob(F-stat	istic)	0.000026		

Table 11: Estimation Results. Model (10e)

Dependent Variable: POV						
Method: Least Squares						
Sample (adjusted): 1	962 2010					
Included observations	s: 49 after ad	justments				
Newey-West HAC St	andard Error	s & Covarian	ce (lag trunc	eation=3)		
Variable Coefficient Std. Error t-Statistic Prob.						
C	788.0351	1105.691	0.712708	0.4798		
UNEM(-1)	0.909875	0.18758	4.850593	0.0000		
UNEM(-2)	-1.03858	0.2534	-4.09859	0.0002		
UNEM(-3)	0.501	0.216324	2.315968	0.0253		
POV(-1)	0.900449	0.047469	18.96932	0.0000		
R-squared	0.935503	Mean deper	ndent var	32573.69		
Adjusted R-squared	0.929639	S.D. dependent var 5545.536				
S.E. of regression	1470.986	Akaike info criterion 17.5217				
Sum squared resid	d 95207132 Schwarz criterion 17.71475					
Log likelihood	-424.282	F-statistic 159.5499				
Durbin-Watson stat	1.550375	Prob(F-stat	istic)	0.000000		

Table 12: Estimation Results. Model (10f)