Simulazione dell'esame di Logica, Università degli Studi di Torino, Filosofia

Seed: 850563, v.1

Punti: / 30	Tempo:
1 (3 pt) Dato il seguente testo:	
 Esplicitare l'argomento, se esiste 	
1	rmalizzabile secondo il linguaggio della logica enunciativa
3. Dimostrare perché l'argomento de lo è.	è valido secondo il linguaggio della logica enunciativa classica, se
4. Determinare se l'argomento è fo	ndato.
I cani sono affettuosi. Anche i gatti sono affettuosi.	lo sono. Perciò non si può dire che non sia vero che i gatti e i cani
siano contraddittori 3. determinare): 1. formalizzare ogni enunciato 2. determinare se (x_n, x_{n+1}) se formino un insieme coerente 4. determinare se il secondo el primo tramite « $x_n \models x_{n+1}$ » oppure « $x_n \not\models x_{n+1}$ ».
a_1 . x se y e vice versa.	
$\boldsymbol{a_2}$. \boldsymbol{x} è condizione necessaria e s	sufficiente per y .
$\boldsymbol{b_1}$. Mangio a meno che io non se	enta fame.
$oldsymbol{b_2}$. Ho fame e mangio oppure no	on ho fame e non mangio.
c_1 . Non x , se non y .	
c_2 . x è condizione necessaria pe	r <i>y</i> .

3 (9 pt)

a.
$$(p\supset q)\wedge (q\supset r)\vdash (p\supset r)$$

$$\mathbf{b.} \vdash (p \supset {\sim} p) \supset {\sim} p$$

$$\mathbf{c.}\; (p\supset q) \land (p\supset r) \vdash p\supset (q \land r)$$

4 (15 pt)

Teoria (1). Dati il linguaggio **L** e qualsiasi interpretazione V, dare due esempi diversi di formule ben formate che rappresentino una funzione di verità $f:\{0,1\}^2 \to \{0,1\}$ tale che $f(x_1,x_2)=1$ sse $[x_2]_V \neq [x_2]_V$.

Teoria (2). Dimostrare che per ogni coppia di insiemi A, B si ha $A \cup (B \setminus A) = A \cup B$

Teoria (3). Fornire un esempio di argomento deduttivamente invalido dotato di forza induttiva (senza usare esempi contenuti nel manuale).

Teoria (4). Fornire esempi di: (a) funzione iniettiva non suriettiva; (b) funzione suriettiva non iniettiva, (c) funzione né iniettiva né suriettiva.

Teoria (5). Dimostrare che se $\Gamma \cup \{\alpha\} \vdash \beta$ e $\Gamma \cup \{\alpha\} \vdash \sim \beta$, allora $\Gamma \vdash \sim \alpha$.