Домашнее задание 1

Камаров Лазизбек БИВ201

1.

Найти вероятность того, что среди случайно выбранных r людей ровно у троих совпадающие дни рождения.

Вероятность, что конкретная тройка будет иметь день рождения в определенный день $(\frac{1}{365})^3 * (\frac{364}{365})^{n-3}$

Умножаем на число дней в году, на число троек и получаем

$$p = 365 * \left(\frac{n(n-1)(n-2)}{6}\right) * \frac{364^{n-3}}{365^n}$$

2.

n человек случайно и независимо друг от друга садятся а) за круглый стол

б) в ряд. Найти вероятность того, что три фиксированных лица сядут подряд.

$$P = \frac{M}{N}$$

Найдем общее число исходов N: разместим n человек на n мест — (перестановки без повторений) P_n

а) Найдем число благоприятных исходов M: за круглым столом рассадим n-3 человека на n-3 места (перестановки без повторений) P_{n-3} и по схеме делегаций выберем место из n вариантов и учтем порядок рассадки заданных 3 человек

(перестановки без повторений) P_3 . Тогда $M=nP_{n-3}P_3$

$$P = \frac{6n(n-3)!}{n!} = \frac{6}{(n-1)(n-2)}$$

б) Найдем число благоприятных исходов. В ряд рассадим n-3 человека на n-3 места (перестановки без повторений) P_{n-3} . По схеме делегаций выберем место из n-2 для 3 определенных людей и учтем их порядок рассадки P_3 . Тогда $M=P_{n-3}P_3(n-2)$.

$$P = \frac{6(n-2)!}{n!} = \frac{6}{n(n-1)}$$

3.

Из n различимых пар ботинок наугад извлекают k ботинок. С какой вероятностью среди них окажется ровно r пар ботинок.

$$P = \frac{M}{N}$$

Найдем общее число исходов N: выберем k ботинок из 2n (сочетания без повторений) \mathcal{C}_{2n}^k

Найдем число благоприятных исходов M: выберем r пар из n (сочетания без повторений) \mathcal{C}_n^r , затем выберем k-2r пар из

оставшихся n-r пар (сочетания без повторений) C_{n-r}^{k-2r} и для каждой пары выберем ботинок (размещения с повторениями) \bar{A}_2^{k-2r}

Итого
$$N = \frac{2n!}{(2n-k)! \, k!}$$
, $M = \frac{n!}{(n-r)! \, r!} \frac{(n-r)!}{(n+r-k)! \, (k-2r)!} 2^{k-2r}$

$$P = \frac{n! \, k! \, (2n - k)! \, 2^{k - 2r}}{2n! \, r! \, (n + r - k)! \, (k - 2r)!} = \frac{C_n^r C_{n - r}^{k - 2r} \bar{A}_2^{k - 2r}}{C_{2n}^k}$$

4.

В шестизначном номере на любом месте с равной вероятностью могут стоять цифры от 0 до 9. С какой вероятностью в нем окажется 3 одинаковых цифры и 2 другие одинаковые цифры.

$$P = \frac{M}{N}$$

Найдем общее число исходов N: расположим на 6 местах цифры от 0 до 9 (размещения с повторениями) $\bar{A}_{10}^6=10^6$

Найдем число благоприятных исходов: выберем 3 цифры из 10 так, что первая повторяется 3 раза, вторая 2 раза, третья 1 раз (размещение без повторений) A_{10}^3 . Найдем число перестановок 6 цифр в числе (перестановки) P_6 и учтем перестановки одинаковых цифр P_3 и P_2 (поделим на них, так как

номера останутся одинаковыми). Тогда $M = \frac{A_{10}^3 P_6}{P_3 P_2} = \frac{10! \, 6!}{7! \, 3! \, 2!} = 43200$

Итого P = 0.0432

5.

В США от 52 в Сенат выбирают по 2 представителя. С какой вероятностью из 40 наугад взятых сенаторов

- А) 3 определенных штата представлены
- Б) представлено ровно 40 штатов
- В) представлено ровно 20 штатов
- Г) ровно 10 штатов представлено 2 сенаторами

$$P = \frac{M}{N}$$

Найдем общее количество исходов N: выберем 40 сенаторов из 104 (сочетания без повторений) C_{104}^{40}

Найдем количество благопритных исходов М:

А) Рассмотрим 4 различных варианта представительства: все штаты представлены 2 сенаторами; 2 штата – 2, 1 – 1; 1 штат – 2, 2 – 1, все 1. Сложим количество всех исходов.

Выберем из трех штатов те n, которые представлены 1 сенатором — C_3^n . Для них выберем сенатора — 2^n . Выберем оставшихся 34+n сенаторов из других штатов — C_{98}^{34+n} .

Итого
$$M = \sum_{n=0}^{3} 2^n C_3^n C_{98}^{34+n} = C_{98}^{34} + 2C_3^1 C_{98}^{35} + 4C_3^2 C_{98}^{36} + 8C_{98}^{37}$$

- Б) Выберем 40 штатов из 52 (сочетания без повторений) C_{52}^{40} и по схеме делегаций выберем у каждого штата представителя 2^{40} . Таким образом $M=C_{52}^{40}2^{40}$
- В) Выберем 20 штатов из 52 (сочетания без потворений) C_{52}^{20} .
- Г) Выберем 30 штатов, которые будут представлены первые 10 двумя

сенаторами, оставшиеся 20 одним (размещения без повторений) A_{52}^{30} . При этом перестановки в первой и второй группах не важны (делим на) P_{10} и P_{20} Далее выберем для каждого из 20 штатов сенатора — всего 2^{20} исходов.

Итого
$$M = \frac{A_{52}^{30} 2^{20}}{P_{10} P_{20}}.$$

$$P_A = \frac{\sum_{n=0}^{3} 2^n C_3^n C_{98}^{34+n}}{C_{104}^{40}}$$

$$P_{\rm B} = \frac{C_{52}^{40} 2^{40}}{C_{104}^{40}}$$

$$P_{\rm B} = \frac{C_{52}^{20}}{C_{104}^{40}}$$

$$P_{\Gamma} = \frac{A_{52}^{30} 2^{20}}{P_{10} P_{20} C_{104}^{40}}$$