Let $f: [0, \overline{1}] \longrightarrow \mathbb{R}$ be a continuous function Find $\lim_{m \to +\infty} \int_{0}^{\overline{1}} (\sin x)^{n} f(x) dx$
Almost everywhere in $[0, \frac{\mathbb{T}}{2}]$ $(\sin x)^n f(x) \longrightarrow 0 \text{ as } n \longrightarrow +\infty$
$ (\sin x)^m f(x) \leq f(x) \forall x \in [0, \frac{\pi}{2}]$
use D. C. T. $\lim_{x \to \infty} \int_{-\infty}^{\frac{\pi}{2}} (\sin x)^n f(x) dx = 0$
The same argument is valid, if $f \in L'([0, \frac{\pi}{2}])$ In particular, $\lim_{n \to +\infty} \int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{n}}{\sqrt{\frac{\pi}{2}} - x} dx = 0$
Find $\lim_{m \to +\infty} \int_{0}^{\frac{\pi}{2} - m} \frac{(\sin x)^{m}}{(\sin x)^{m}} dx$
$ \frac{\forall \alpha \in [0, \frac{\pi}{2}]}{\frac{\pi}{2} - \alpha} \left(\frac{\sin \alpha}{2} \right)^{m} 1 \left[0, \frac{\pi}{2} - \frac{1}{m} \right] \left(\frac{1}{2} - \alpha \right) $

If	$\mu(x) < +\infty$	and if e L [∞] (x)	1 4
	Show that	lim ()	1100

If
$$X = (0, L)$$
 f, $X \longrightarrow \mathbb{R}$, measurable st. $f \notin L^{\infty}(X)$

$$|f|^{p} \in L^{\frac{1}{2}}(X) \quad \forall p > L$$

$$f = \log |x|$$
 or $\log \left(\frac{1}{x}\right)$

Example:
$$f(x) = \frac{1}{\sqrt{|x|}} \frac{1}{|x|} [-1,1]$$

$$\int_{-1}^{2} (x) = \frac{1}{|x|} \mathbb{1}_{[-1,1]} \notin L^{1}([-1,1])$$

By M.C.T.
$$\int_{-1}^{-\frac{1}{n}} \frac{dx}{|x|} + \int_{\frac{1}{n}}^{1} \frac{dx}{|x|} \longrightarrow \int_{0}^{2} = +\infty$$

$$\int_{\mathbb{R}} f(x) = \int_{\mathbb{R}} f(x-y) f(y) dy.$$

$$= \int_{-1}^{1} \frac{1}{\sqrt{|x-y|}} \frac{1}{\sqrt{|y|}} \mathbb{1}_{E-1,1}(x-y) dy$$

lemma: let f, g: IRd- [0,+00] be measurable Define $f * g(x) = \int_{\mathbb{R}^d} f(x-y)g(y)dy$

Then $x \longrightarrow f + g(x)$ is measurable

$$d=1$$

A and B are open intervals

Then $1_A * 1_B$ is measurable

A is open in IR, A is a countable disjoint union of open intervals.

Thanks to the M.C.T.

1_A × 1_B is measurable if A is open and B is an open interval

Now	let	A	be	a	lebesque	measurable	subset	of	IR
					0			V	

Show that there is a decreasing sequences open set V_m such that $A \subset V_m$ $m(\cap V_m \setminus A) = 0$

to m, we know that there is an open subset Wm in R and closed subset Fm in IR such that

For $CA \subset Wn$ and $m(Wn \setminus Fn) < \frac{1}{m}$ in particular $m(Wn \setminus A) < \frac{1}{m}$

Set $V_m = \bigcap_{k=1}^m W_k$

Vm is a decreasing sequence of subsets V_m is open $m(V_m | A) < \frac{1}{m}$ $V_m | A = V_1 | A$ and $m(V_1 | A) < 1$

by the decreasing set property,

 $m\left(\bigcap_{m=1}^{\infty}V_{m}/A\right)=\lim_{m\to+\infty}m\left(V_{m}/A\right)=0$

Thus,

10(2-y) 1_{Vn} (y) → 1_B(2-y) 1_A(y), a.e

 $0 \le 1_{B}(x-y)1_{V_{m}}(y) \le 1_{B}(x-y)1_{V_{1}}(y)$

Thus, $\int 1_{B}(x-y) 1_{V_{N}}(y) \longrightarrow \int 1_{B}(x-y) 1_{A}(y) dy$

Thus 1_A * 1_B is measurable

Fir all Lebesgue measurable sets A and all open internals B

Repeat the same argument to obtain that $1_A \times 1_B$ is measurable if A and B are any 2 lebesgue measurable subsets of IR.

Apply linearity

if f * g : [R - o [0, +00]

are simple functions

f * g is measurable

Finally, to obtain the result for any measurable functions $f, g: \mathbb{R} \longrightarrow [0, +\infty]$ (simple approximation functions)

use for an increasing sequences of simple functions

converging to f and g and apply the MCT

```
Integrability of convolution products.
Proposition: Let f \in L^1(\mathbb{R}^d), g \in L^p(\mathbb{R}^d) p = 1, 2, a + \infty

Then f * g \in L^p(\mathbb{R}^d)

and ||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}
  (ase 1: p=1 assume that f and g are valued in [0, +00]
             f * g(x) = \int f(x-y)g(y) dy >0
          Thus \|f \star g\|_{L^1} = \int \int f(x-y)g(y) dy dx
             Fubbini's Theorem = \int g(y) \left( \int f(x-y) dx \right) dy
                                    Now if figure in L'(Rd)
      |f * g(x)| \le |f(x-y)g(y)| dy = |f(x-y)g(y) dy
                                            =|f|*|g|(2)
        but we have shown that
            |f| \times |g| \in L^1(\mathbb{R}^d)
          Thus fxg e L'(IRd)
                    ||f * g||_{L^{1}} \le ||f| * |g||_{L^{1}} = ||f||_{L^{1}} ||g||_{L^{1}}
                                                    = \| f \|_{L^{1}} \| g \|_{L^{1}}
Case 2: p=2

First assume that f and g are valued in [0,+0)
```

 $= \| \beta \|_{L^{1}} \| 9 \|_{L^{2}}$

$$\left(\int f(x-y) g(y) dy \right)^{2} = \left(\int f(x-y) g(y) dy \right) \left(\int f(x-y') g(y') dy' \right)$$
Fublini's Theorem
$$= \iint f(x-y) f(x-y') g(y) g(y') dy dy'$$

$$= \iint g(x-y) g(x-y') f(y) f(y') dy dy'$$
Thus
$$\int \left(f(x,y) (x) \right) dx =$$
Fubini's
$$\int \int f(y) f(y') \left(g(x-y) g(x-y') dx \right) dy dy'$$
By Cauchy schwartz inequality
$$\leq \iint f(y) f(y') \left(\left(g(x-y) dx \right) \right) \left(\left(g(x-y') dx \right) \right) dy dy'$$

$$= \|g\|_{L^{2}}^{2} \|f(y) f(y') dy dy'$$

$$= \|g\|_{L^{2}}^{2} \|f(y) f(y') dy dy'$$

$$= \|g\|_{L^{2}}^{2} \|f\|_{L^{2}}^{2}$$
Thus
$$\|f * g\|_{L^{2}} \leq \|g\|_{L^{2}} \|f\|_{L^{2}}^{2}$$
Ihus
$$\|f * g\|_{L^{2}} \leq \|g\|_{L^{2}} \|f\|_{L^{2}}^{2}$$

$$\|f\|_{L^{2}} \|f\|_{L^{2}}^{2}$$

$$\|f\|_{L^{2}} \|f\|_{L^{2}}^{2}$$
Thus shows that
$$|f * g|_{L^{2}} \leq \|f\|_{L^{2}}^{2} \leq \|f\|_{L^{2}}^{2} \leq \|f\|_{L^{2}}^{2}$$
Thus shows that
$$|f * g|_{L^{2}} \leq \|f\|_{L^{2}}^{2} \leq \|f\|_{L^{2}}^{2} \leq \|f\|_{L^{2}}^{2} \leq \|f\|_{L^{2}}^{2} \|f\|_{L^{2}$$

case
$$f \in L'(\mathbb{R}^d)$$
 $g \in L^{\infty}(\mathbb{R}^d)$
 $(f \star g \circ) \leq \int |g(x-y)| |f(y)| dy$
 $\leq ||g||_{\infty} \int |f(y)| dy = ||g||_{\infty} ||f||_{L^1}$

We proved that for
$$f, g : \mathbb{R}^d \to [0, +\infty]$$
 measurable $f * g = g * f$

$$(f * g) * h = f * (g * h)$$

If f and g are in
$$L'(\mathbb{R}^4)$$

 $f * g = (f^+ - f^-) * g$

$$= f^{+} * g - f^{-} * g$$

$$= f^{+} * (g^{+} - g^{-}) - f^{-} * (g^{+} - g^{-})$$

$$= f^{+} * g^{+} - f^{+} * g^{-} - f^{-} * g^{+} + f^{-} * g^{-}$$

lemma: Let f be in $C_c(\mathbb{R}^d)$ and g be in $L^p(\mathbb{R}^d)$ p=1,2, or $+\infty$

Then
$$f * g \in L^{p}(\mathbb{R}^{d}) \cap C(\mathbb{R}^{d})$$

In fact, $f * g$ is uniformly continuous in \mathbb{R}^{d}

proof. Introduce K = {x \in Rd, f(x) \neq 0 } Since $f \in C_c(\mathbb{R}^d)$, K is compact. $|\{1 \leq 1_k \text{ sup } | f| \\ so \quad f \in L'(\mathbb{R}^d)$ and $f \star g \in L^p(\mathbb{R}^d)$ As $f \in C_c(\mathbb{R}^d)$, f is uniformly continuous in \mathbb{R}^d . $Fix \ \epsilon > 0$, f < > 0 $\forall u, v \in \mathbb{R}^q$ $|u-v| < \alpha \Rightarrow |f(u) - f(v)| < \epsilon$ Let x, z be in \mathbb{R}^d such that |x-z| < dcase p=1; |f*g(x) - f*g(z)|= $\int f(x-y) - \int (\overline{x}-y) g(y) dy$ < sup | f(x-y) - f(z-y) | | | g(y) | dy < E | | g | |_L p=2:| f * g(x) - f * g(z)| $\leq \int |f(x-y) - f(z-y)| |g(y)| dy$ Cauchy schwartz inequality $\leq \left(\int |f(x-y)-f(z-y)|dy\right)^{\frac{1}{2}} \|g\|_{L^{2}}$ $< \varepsilon \left[m(K + B(0, \alpha)) \right]^{\frac{1}{2}} ||g||_{\ell^{2}}$

Notations.

where $j = (j_1, j_2, \dots, j_d)$ in N^d

 $C_{\mathcal{C}}^{q}(\mathbb{R}^{d}) = \{ \text{ functions in } \mathcal{C}^{q}(\mathbb{R}^{d}) \text{ with compact support } \}$ $C^{\infty}(\mathbb{R}^{d}) = \bigcap_{q=1}^{q} C^{q}(\mathbb{R}^{d})$

 $C_c^{\infty}(\mathbb{R}^d) = \{ f \text{ in } C^{\infty}(\mathbb{R}^d) \text{ with compact support } \}$

If V is any open subset of IRd, we define similarly CCV), CcCV), ...

If
$$|x| < 1$$
 $f^{(q)}(x) = e^{-\frac{1}{x^2-1}} R_q(x)$ e^{-1}
Where $R_q(x)$ is a national fraction which is continuous in $(-1, 1)$ $e^{-\frac{1}{x^2-1}}$

Fix q in IN
$$\lim_{x \to 1} \frac{1}{(x-1)^2} = 0$$

if $d \ge 2$ Set $f(x) = \int_{0}^{x} e^{-|x|^2 - 1}$ if $|x| < 1$
 0 if $|x| \ge 1$

Proposition:

Let f be in $C_c^q(\mathbb{R}^d)$ and $g \in L^p(\mathbb{R}^d)$ When $f * g(\mathbb{R}^d) \in C^q(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$ and

for j in \mathbb{N}^d such that $|j| \leq q$

$$D_{j}(f*g) = (D_{j}f)*g$$

proof:
$$if q=1$$

$$f \in L^{1}(\mathbb{R}^{d}) \quad \partial_{i} f \in C_{c}(\mathbb{R}^{d}), \text{ thus } \partial_{i} f \in L^{1}(\mathbb{R}^{d})$$

$$f * g(x) = \int f(x-y)g(y) dy$$

if
$$p=1$$
 (learly $y \longrightarrow f(x-y)g(y)$
and $y \longrightarrow \partial_{y} f(x-y)g(y)$ are in $L^{1}(\mathbb{R}^{d})$
Now $|\partial_{y} f(x-y)g(y)| \leq \sup_{\mathbb{R}^{d}} |\partial_{y} f(y)|$

thus by dominated convergence f*g is differentiable in 1Rd

*g is differentiable in \mathbb{R}^n and $\frac{\partial}{\partial x}(f * g) = (\frac{\partial}{\partial x}f) * g$

Since $\partial_j f \in C_c(\mathbb{R}^d)$, due to the previous proposition $(\partial_j f) * g$ is continuous in \mathbb{R}^d

if p=2 Fix $x_0 \in \mathbb{R}^d$, let x be in $B(x_0, \alpha)$

() f(x-y) g(y) \ [g(y)] 1 (-K+B(x0, x) (y)

same condusion

Case $p = +\infty$ Fix $\alpha_0 \in \mathbb{R}^d$ For α in $B(\alpha_0, \alpha)$

|] f(x-y)g(y) | ≤ ||g|| 00 1 (-K+B(x0,α)

Repeat the same argument to obtain the result for any q

Conollary If $f \in C_c^{\infty}(\mathbb{R}^d)$ and $g \in L^p(\mathbb{R}^d)$ Then $f * g \in C^{\infty}(\mathbb{R}^d) \cap L^p(\mathbb{R}^d)$

and $\forall j \in \mathbb{N}^d$. $D_j(f*g) = (D_jf)*g$

Theorem let V be a (non empty) open subset of \mathbb{R}^d Then $C_c^{\infty}(V)$ is dense in $L^p(v)$ if p=1,2,

proof Fix
$$f \in L^{P}(V)$$

We proved that $f \in C_{C}(V)$ Such that $\|f - g\|_{L^{P}(V)} \leq E$
Set $f(x) = \int e^{-|x|^{2}-1} i \int |x| < 1$

Set
$$\int h > 0$$

Define $h_m(x) = \frac{n^d h(nx)}{\int h}$

set z=nx

$$\int h_n(x) = \frac{\int h(z)dz}{\int h} = 1$$

$$h_n(x) = 0 \quad \text{if } |x| \ge \frac{1}{m}$$

 $g \in C_C CIR^d$) Set K be a compact set such that $\forall x \in V \setminus K$ g(x) = 0 $d(K, V^c) > 0$.

If n is such that $\frac{1}{m} < d(K, V^c)$ then $h_m \times g = \int_{\mathbb{R}^d} h(x-y)g(y)dy$

is a function which is also compactly supported on V.

its support is in K+B(0,m)According to the previous proposition, $hn*g \in C^{\infty}(\mathbb{R}^d)$

We first show that him * g - n g uniformly in IRd Since g is continuous on the compact set K
it is uniformly continuous on K.
g is uniformly continuous on IRd $f_{\alpha}>0 \quad \forall u,v \in \mathbb{R}^d$ $|u-v| < \alpha \Rightarrow |g(u)-g(v)| < \varepsilon$ $h_n \star g(x) - g(x) = \left| \int g(x-y)h_n(y)dy - \int h_n(y)g(x)dy \right|$ $I_1 \leq \left| \mathcal{E} h_n(y) dy \right| \leq \left| y \right| \leq 1$ $\left| h_n \star g(x) \right|^{2} \leq \left(2 \max |g| \right)^{p} \mathbb{1}_{k+B(0,\frac{1}{m})}$ Dominance

By D.C.T. $h_n * g \rightarrow g$ in $L^p(V)$ p=1,2, so 3 NEN 11 hn *g-9 1/20/ E By triangle inequality \| \f - \h_N \times g \|_{P(V)} < 28 Application let f be in L'([a,b]) Show that $\lim_{n\to+\infty} \int_a^b \sin(nx) f(x) dx = 0$ Fix $\varepsilon > 0$. Let g be in $C_c^{\infty}([a,b])$ s.t. $\int_a^b |f-g| < \varepsilon$ $\int_{a}^{b} \sin(nx) g(x) dx = -\int_{a}^{b} \frac{-\cos(nx)}{m} g'(x) dx$ $\leq \frac{1}{n} \int_{a}^{b} |g'| \longrightarrow 0$ as $n \longrightarrow +\infty$ $\left| \int_{a}^{b} \sin(nx) g(x) dx \right| \leq \varepsilon$ for n > N, $\left| \int_{a}^{b} \sin(nx) f(x) dx \right| \leq \left| \int_{a}^{b} \sin(nx) \left(f(x) - g(x) \right) dx \right|$ + $\int_a^b \sin(nx) g(n) dn \leq \int_a^b |f - g| + \varepsilon = 2\varepsilon$

Application to Fourier Series in L2 ([-II, II]) In this section, functions will be valued in C $f \in L^2([-1], [])$ if, by definition Ref and Imf are in L2 (E-II, II) Let f and g be in $L^2([-1], [1])$.

Define $\langle f, g \rangle = \int_{-1}^{11} f \overline{g}$ set $||f||, - |\langle f, f \rangle^{\frac{1}{2}}$ lemma. We have the Cauchy schwartz inequality for f, $g \in L^2(E\pi, \pi)$ |<f,g>| \le || f|| 2 || g||_2 proof. for any λ in \mathbb{C} , $0 \le \langle f + \lambda g, f + \lambda g \rangle = \int_{-\pi}^{\pi} |f|^2 + \lambda \int_{-\pi}^{\pi} g f + \overline{\lambda} \int_{-\pi}^{\pi} f g$ + | \(\) | | | | | | | | | | | = $\|f\|_2^2 + 2 \operatorname{Re}[\lambda \cdot (f\bar{g}) + |\lambda|^2 \|g\|_2^2$ Set $\int f\bar{g} = \rho e^{i\theta}$ where $\rho > 0$ and $f \in [0, 2\pi)$ Set $\lambda = ae^{-i\theta}$, where $a \in \mathbb{R}$ $0 \leq \|f\|_{2}^{2} + 2a \cdot p + a^{2} \|g\|_{2}^{2} \quad \text{fr all } a \text{ in } \mathbb{R}$

Thus $(2p)^2 - 4 \|f\|_2^2 \|g\|_2^2 \le 0$

Thus
$$\rho^2 \le \|f\|_2^2 \|g\|_2^2$$

and
$$\rho \leq \|f\|_2 \|g\|_2$$
, where $\rho = \left|\int_{-\pi}^{\pi} f \overline{g}\right|$

because
$$\|f+g\|_2^2 = \langle f+g, f+g \rangle \leq (Apply Cauchy schwartz inequality)$$

Remark: If
$$f$$
 and g are orthogonal, that is, if $\int_{-\overline{\Pi}}^{\overline{\Pi}} f \overline{g} = \overline{\sigma}$
then $\|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$

Proposition. Set
$$e_n(x) = \frac{1}{12\pi}e^{inx}$$
 $n \in \mathbb{Z}$

The en's form an orthonormal system in
$$L^2(-\Pi, \Pi)$$
 In other words,

$$\langle e_n, e_m \rangle = \begin{cases} 1 & \text{if } n=m \\ 0 & \text{if } n\neq m \end{cases}$$

proof:
$$\langle en, em \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{imx} e^{imx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx$$

if
$$m \neq m$$

$$= \frac{1}{2\pi} \left[\frac{e^{i(n-m)x}}{i(m-m)} \right]_{-\pi}^{\pi} = 0$$

Theorem: The vector space spanned by the en, ncZ is dense in L'(-II, II)

proof. Step L: let of be in Co (-IT, IT)

Set Cn = < f, en> The nth Fourier coefficients of f

Show that $f(x) = \sum_{m=-\infty}^{+\infty} c_m e_n(x)$

 $\sum_{n=-N}^{N} \frac{c_n e^{inx}}{\sqrt{2\pi}} - f(x) \qquad pointwise$

 $= \frac{1}{\sqrt{2\pi}} \sum_{n=-N}^{N} \int_{\pi}^{\pi} e^{in(x-t)} f(t) dt - f(x)$

 $=\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}(f(x-t)-f(x))\sum_{n=-N}^{N}e^{int}dt$

But $\sum_{n=-N}^{N} e^{int} = \sum_{m=-N}^{N} (e^{it})^m = (e^{it})^{-N} \sum_{n=0}^{2N} (e^{it})^m$ $= (e^{it})^{-N} \frac{1 - (e^{it})^{2N+1}}{1 - e^{it}} \quad if \quad t \neq 0$

 $= \frac{e^{-iNt} - e^{i(N+1)t}}{1 - e^{it}}$ $= \frac{e^{i(N+\frac{1}{2})t} - e^{i(N+\frac{1}{2})t}}{e^{it/2} - e^{it/2}} = \frac{\sin(N+\frac{1}{2})t}{\sin(\frac{t}{2})}$

The integral becomes

 $\int_{-\pi}^{\pi} \frac{f(x-t) - f(x)}{\sin(x+2)} \sin(x+2) t dt$

Explain that
$$t \longrightarrow \frac{f(z-t)-f(z)}{\sin(\frac{t}{z})}$$
 is in $L'([-\pi,\pi])$

As $f \in C_{\infty}^{\infty}([-\pi,\pi])$

By Mean value theorem
$$|f(z-t)-f(z)| \leq \max_{[-\pi,\pi]}|f'||t|$$

thus $t \longrightarrow \frac{f(z-t)-f(z)}{\sin(\frac{t}{z})}$ is in $L^{\infty}([-\pi,\pi])$

We have shown that $\sum_{n=-\infty}^{\infty} C_n \frac{e^{n\alpha}}{dz\pi}$ is pointwise convergent to $f(z)$.

Show that the convergence is uniform
$$|c_m| = \left| \frac{1}{dz\pi} \int_{-\pi}^{\pi} f'(z) \frac{e^{-inz}}{e^{-inz}} dz \right|$$

$$= \left| \frac{1}{dz\pi} \int_{-\pi}^{\pi} f'(z) \frac{e^{-inz}}{e^{-inz}} dz \right|$$

$$= \left| \frac{1}{dz\pi} \int_{-\pi}^{\pi} f''(z) \frac{e^{-inz}}{e^{-inz}} dz \right|$$

$$\leq \frac{1}{m^2} \frac{1}{dz\pi} \int_{-\pi}^{\pi} f''(z) \frac{e^{-inz}}{e^{-inz}} dz$$
Thus, $\sum_{n=-\infty}^{\infty} \frac{c_n e^{inz}}{c_n e^{-inz}}$ is uniformly convergent to $f(z)$ in $[-\pi,\pi]$

as $m([-\pi,\pi])$ is finite,
this implies that $\sum_{n=-\infty}^{\infty} C_n e_n$ converges to f in $L^2([-\pi,\pi])$

Now · Let g be in $L^2(E-\Pi, \Pi)$ and E>0 $f \in C_c^{\infty}((-\Pi, \Pi))$ such that $\|f-g\|_{L^2} \leq E$ Date There is a N in IN and 2N+1 coefficients in C C_N, ..., Co, ... CN such that $\|\sum_{m=-N}^{N} C_m e_m - f\|_2 \le (By Triangle inequality)$ thus $\|g - \sum_{n=1}^{N} c_n e_n\|_2 < 2\varepsilon$ Corollary let f be in $L^2(-TT,TT)$ Assume that $\langle f, en \rangle = 0 \quad \forall m \in \mathbb{Z}$ then f = 0 in $L^2(-TT,TT)$ proof. Set $\varepsilon > 0$ There is a trigometric polynomial $p_N = \sum_{n=-N}^{N} c_n e_n$ st /- PN/2<8 But < f, PN >= 0 thus $\|f-P\|_2^2 = \|f\|_2^2 + \|P_N\|_2^2$ So | | f | | 2 < E 2 or | | f | | 2 < E As E>0 is authorary, || fl=0 Theorem: Plancherel's theorem

Theorem: Plancherel's theorem

Let f be in $L^2\left((-\Pi, \Pi)\right)$, let $Cm = \langle f, en \rangle$ Then $\|f\|^2 = \sum_{m=-\infty}^{N} |C_m|^2$ and $\lim_{N\to+\infty} \|f - \sum_{m=-N}^{N} C_m e_m\|_2 = 0$

* Nove precisely, let
$$f$$
 and g be in $L^{2}((-\Pi, \Pi))$

let $C_{m} = \langle f, e_{m} \rangle$
 $d_{m} = \langle g, e_{m} \rangle$

Then $\langle f, g \rangle = \int_{-\Pi}^{\Pi} f \overline{g} = \sum_{m=-\infty}^{\infty} C_{m} \overline{d}_{m}$

let A_{m} , $n \in \mathbb{Z}$ be a sequence in C

such that $\sum_{m=-\infty}^{\infty} J_{am} | \mathbb{Z} \langle +\infty \rangle$

then $\sum_{m=-\infty}^{\infty} J_{am} e_{m}$ determines an element in $L^{2}((-\Pi, \Pi))$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} e_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$

We have obtained $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$
 $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$

We have obtained $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$

Show that $\begin{cases} \sum_{m=-\infty}^{\infty} J_{m} & \text{determines an element in } L^{2}((-\Pi, \Pi)) \end{cases}$

If p>q>1. $||F_p-F_q||_2^2 = ||\sum_{q+1}^2 G_n e_n||_2^2$ $= \sum_{q+1 \le |n| \le p} |G_n|^2 < \varepsilon \text{, for any fixed } \varepsilon$ $= \sum_{q+1 \le |n| \le p} |G_n|^2 < \varepsilon \text{, for any fixed } \varepsilon$ $= \frac{\sum_{q+1 \le |n| \le p} |G_n|^2}{||f_n||^2} = \frac{1}{2} ||f_n||^2$

Since $\sum_{m=-\infty}^{+\infty} |G_n|^2$ converges

Thus Fr is Cauchy in L2 (C-TT, TT))

For converges to some F. in L2 (C-II, II)

For filed m in \mathbb{Z} , $\langle F, en \rangle = Gn = \langle f, en \rangle$ Thus $\langle F - f, en \rangle = 0$ for any $m \in \mathbb{Z}$

Thus F = f in $L^{2}(C-T,T)$ $||F_{N}||_{2}^{2} = \sum_{n=-N}^{N} |a_{n}|^{2}$ $||F_{N}||_{2}^{2} = \sum_{n=-\infty}^{\infty} |a_{n}|^{2}$ $||F||_{2}^{2} = \sum_{n=-\infty}^{\infty} |a_{n}|^{2}$

Now let $f, g \in L^2(C-\pi, \pi)$ $cn = \langle f, en \rangle$ $dn = \langle g, en \rangle$ $\sum_{m=-\infty}^{+\infty} |cndn| \leq \sum_{m=-\infty}^{+\infty} |cn|^2 \Big|^2 \Big(\sum_{m=-\infty}^{+\infty} |dn|^2\Big)^{\frac{1}{2}}$ thus $\sum_{m=-\infty}^{+\infty} cndn$ is absolutely convergent.

Date										
			 		·	 ,			γ	
			 			 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
										,
,			 			 				
,	***************************************		 							
		.,	 			 				
								* v		
						 		6-AV		
,			 					•		

							*			
			 	-		 				
			100							•
•										