Примитивно-рекурсивные функции

Практическое занятие 1

Теория рекурсивных функций

В теории рекурсивных функций, как и вообще в теории алгоритмов, принят конструктивный (финитный) подход, основной чертой которого является то, что все множество исследуемых объектов (в данном случае функций) строится из конечного числа исходных объектов — базиса — с помощью простых операций, эффективная вычислимость которых достаточно очевидна. Операции над функциями называют операторами.

Для простоты будем рассматривать только числовые функции, т.е. функции, аргументы и значения которых принадлежат множеству натуральных чисел N (в теории рекурсивных функций полагают $N=0,1,2,\ldots$). Иначе говоря, числовой n-местной функцией $f(x_1,x_2,\ldots,x_n)$ называется функция, определенная на некотором подмножестве $N\subseteq N^n$ с натуральными значениями. Если область определения $f:N^n\to N$ совпадает с множеством N^n , то говорят, что функция f всюду определена, в противном случае — частично определена.

Частичными числовыми функциями $f(x_1,x_2,\ldots,x_n)$, где $x_i\in N$ ($1\leq i\leq n$), называют функции, определенные не на всех наборах $(x_1,x_2,\ldots,x_n)\in N^n$.

Простейшие числовые функции и операторы

- Нуль-функция: 0(x) = 0;
- Функция следования: S(x) = x + 1;
- ullet Функция проекции: $I_m^n(x_1,x_2,\ldots,x_n)=x_m$ ($m\leq n$).

Операторы

- Оператор суперпозиции
- Оператор примитивной рекурсии
- Оператор минимизации

Оператор суперпозиции

Оператором суперпозиции F_m^n называется подстановка в функцию от m переменных m функций, каждая из которых зависит от n одних и тех же переменных. Суперпозиция дает новую функцию уже от n переменных. Например, для функций $h(x_1,x_2,\ldots,x_m),\,g_1(x_1,x_2,\ldots,x_n),\,g_2(x_1,x_2,\ldots,x_n),\ldots,g_m(x_1,x_2,\ldots,x_n)$ их суперпозиция дает новую функцию $f(x_1,x_2,\ldots,x_n)$:

$$F_m^n(h,g_1,g_2,\ldots,g_m)=h(g_1(x_1,x_2,\ldots,x_n),g_2(x_1,x_2,\ldots,x_n),\ldots,g_m(x_1,x_2,\ldots,x_n))=f(x_1,x_2,\ldots,x_n)$$

В этом случае говорят, что n-местная функция $f(x_1,x_2,\ldots,x_n)$ получена с помощью оператора суперпозиции из m-местной функции $h(x_1,x_2,\ldots,x_m)$ и n-местных функций $g_1(x_1,x_2,\ldots,x_n)$, $g_2(x_1,x_2,\ldots,x_n)$, \ldots, $g_m(x_1,x_2,\ldots,x_n)$, если

$$f(x_1,x_2,\ldots,x_n)=h(g_1(x_1,x_2,\ldots,x_n),g_2(x_1,x_2,\ldots,x_n),\ldots,g_m(x_1,x_2,\ldots,x_n)).$$

Оператор примитивной рекурсии

Оператор примитивной рекурсии определяет (n+1)-местную функцию f через n-местную функцию g и (n+2)-местную функцию h следующим образом:

$$egin{cases} f(x_1,x_2,\ldots,x_n,0) = g(x_1,x_2,\ldots,x_n); \ f(x_1,x_2,\ldots,x_n,y+1) = h(x_1,x_2,\ldots,x_n,y,f(x_1,x_2,\ldots,x_n,y)). \end{cases}$$

Пара равенств называется схемой примитивной рекурсии.

Тот факт, что функция f определена схемой, выражается равенством

$$f(x_1,x_2,\ldots,x_n,y)=R_n(g,h).$$

Эта схема определяет f рекурсивно не только через другие функции, но и через значения f в предшествующих точках: значение f в точке y+1 зависит от значения f в точке y.

Для вычисления $f(x_1,x_2,\dots,x_n,k)$ понадобится k+1 вычислений по указанной схеме для $y=0,1,\dots,k$.

Существенным в операторе примитивной рекурсии является то, что независимо от числа переменных в f, рекурсия ведется только по одной переменной y, а остальные n переменных x_1, x_2, \ldots, x_n на момент применения схемы зафиксированы и играют роль параметров.

В случае, когда n=0, т.е. определяемая функция f является одноместной, схема принимает более простой вид:

$$\begin{cases} f(0) = C; \\ f(y+1) = h(y, f(y)) \end{cases}$$

где C — константа.

Функция называется **примитивно-рекурсивной**, если она может быть получена из нуль-функции O(x), функции следования S(x) и функции проекции I_m^n с помощью конечного числа применений операторов суперпозиции и примитивной рекурсии.

Этому определению можно придать более формальный индуктивный вид:

- 1. Функции O(x), S(x) и I_m^n для всех натуральных n,m, где $m \leq n$, являются примитивнорекурсивными.
- 2. Если $g_1(x_1,x_2,\ldots,x_n)$, \$\ldots, $g_m(x_1,x_2,\ldots,x_n)$, $h(x_1,x_2,\ldots,x_n)$ примитивно-рекурсивные функции, то $F_m^n(h,g_1,g_2,\ldots,g_m)$ примитивно-рекурсивные функции для любых натуральных n,m.
- 3. Если $g(x_1, x_2, \dots, x_n)$ и $h(x_1, x_2, \dots, x_n, y, z)$ примитивно-рекурсивные функции, то $R_n(g, h)$ примитивно-рекурсивная функция.
- 4. Других примитивно-рекурсивных функций нет.

Оператор минимизации

Пусть задана некоторая функция f(x,y). Зафиксируем значение x и выясним, при каком y функция f(x,y)=0.

Более сложной задачей является отыскание для данной функции f(x,y) и фиксированного x наименьшего из тех значений y, при которых функция f(x,y)=0. Так как результат решения задачи зависит от x, то наименьшее значение y, при котором функция f(x,y)=0, есть функция x. Принято обозначение

$$\varphi(x) = \mu_y[f(x,y) = 0],$$

которое читается как: «наименьшее y такое, что f(x,y)=0».

Аналогично определяется функция многих переменных:

$$\varphi(x_1, x_2, \dots, x_n) = \mu_y[f(x_1, x_2, \dots, x_n, y) = 0].$$

Переход от функции $f(x_1, x_2, \dots, x_n, y)$ к функции $\varphi(x_1, x_2, \dots, x_n)$ принято называть применением μ -оператора.

Алгоритм вычисления функции arphi

1. Вычислим $f(x_1,x_2,\ldots,x_n,0)$. Если это значение $f(x_1,x_2,\ldots,x_n,0)$ равно нулю, то полагаем $\varphi(x_1,x_2,\ldots,x_n)=0$. Если $f(x_1,x_2,\ldots,x_n,0)\neq 0$, то переходим к следующему шагу.

2. Вычислим $f(x_1,x_2,\dots,x_n,1)$. Если $f(x_1,x_2,\dots,x_n,1)=0$, то полагаем $\varphi(x_1,x_2,\dots,x_n)=1$. Если же $f(x_1,x_2,\dots,x_n,1)\neq 0$, то переходим к следующему шагу. И так далее.

Если окажется, что для всех y функция $f(x_1,x_2,\ldots,x_n,y)\neq 0$, то функцию $\varphi(x_1,x_2,\ldots,x_n)$ в этом случае считают неопределенной. Но возможно, что существует такое y_0 , что $f(x_1,x_2,\ldots,x_n,y_0)=0$ и, значит, есть и наименьшее y, при котором $f(x_1,x_2,\ldots,x_n,y)=0$, и в то же время может случиться, что при некотором z ($0< z< y_0$) значение функции $f(x_1,x_2,\ldots,x_n,z)$ не определено. Очевидно, что в этом случае процесс вычисления наименьшего y, при котором $f(x_1,x_2,\ldots,x_n,y)=0$, не дойдет до y_0 . И здесь функцию $\varphi(x_1,x_2,\ldots,x_n)$ считают неопределенной.

Методология составления схем примитивной рекурсии

Для составления схемы примитивной рекурсии первоначально необходимо определить вид нужной схемы. Для этого следует ответить на вопрос: «От скольких переменных зависит данная функция?» Допустим, переменных $n \geq 2$. Значит, используется схема рекурсии с параметрами.

Следующие шаги:

- 1. Если не указано, по какой переменной составлять схему, то следует выбрать наиболее простую переменную (наименьшее количество операций с этой переменной или наиболее простые операции). Если при ответе на вопрос: «От скольких переменных зависит данная функция?» получено, что такая переменная одна единственная, значит, используется схема рекурсии без параметров.
- 2. Определить, чему равно значение функции в точке ноль? (верхний индекс в функциях и операциях для n>1 будет равен n-1).
- 3. Определить, чему равно значение функции в следующей точке (переменная, по которой берется рекурсия, плюс единица). Постарайтесь преобразовать получившееся значение к самой функции, верхний индекс в функциях и операциях для любого значения n будет равен n+1.
- 4. Записать функцию через операцию примитивной рекурсии.

Примеры

Доказать примитивную рекурсивность суммы f(x,y)=x+y

Решение.

$$f_+(x,0) = x = I_1^1(x); \ f_+(x,y+1) = f_+(x,y) + 1 = S(f_+(x,y)).$$

Таким образом,

$$f_+(x,y) = h(x,y-1,f(x,y-1)) = R_1(I_1^1(x),h(x,y,z)),$$

где h(x, y, z) = z + 1.

Действительно, имеем:

$$f_+(x,0)=x;$$
 $f_+(x,1)=h(x,0,f_+(x,0))=x+1;$ $f_+(x,2)=h(x,1,f_+(x,1))=x+1+1=x+2;$ $f_+(x,3)=h(x,2,f_+(x,2))=x+2+1=x+3;$ \vdots $f_+(x,y-1)=h(x,y-2,f_+(x,y-2))=x+(y-2)+1=x+y-1;$ $f_+(x,y)=h(x,y-1,f_+(x,y-1))=x+(y-1)+1=x+y.$

Доказать примитивную рекурсивность произведения f(x,y)=xy

Решение.

$$f_ imes(x,0)=0;$$
 $f_ imes(x,y+1)=x\cdot(y+1)=x\cdot y+x=f_x(x,y)+x=f_+(x,f_x(x,y));$ Или $f_x(x,y+1)=h(x,y,f_x(x,y))=x+z$, где $z=f_x(x,y).$

Выполняя действия по полученной схеме, получаем:

$$f_x(x,0) = 0; \ f_x(x,1) = x + 0 = x; \ f_x(x,2) = x + x = 2x;$$

$$f_x(x,3)=x+2x=3x;$$
 $dots$ $f_x(x,y-1)=x+(y-2)x=x\cdot y-x;$ $f_x(x,y)=x+x\cdot y-x=x\cdot y.$

Доказать примитивную рекурсивность возведения в степень $f_exp(x,y) = x^y$

Решение.

$$f_{exp}(x,0)=x^0=1;$$
 $f_{exp}(x,y+1)=x^{y+1}=x^y\cdot x=x\cdot f_{exp}(x,y)=f_{ imes}(x,f_{exp}(x,y)).$ $f_{exp}(x,y+1)=h(x,y,f_{exp}(x,y))=x\cdot z,$ где $z=f_{exp}(x,y).$

Действительно, выполняя вычисления по полученной схеме, получаем:

$$egin{aligned} f_{exp}(x,0) &= x^0 = 1; \ f_{exp}(x,1) &= x \cdot 1 = x; \ f_{exp}(x,2) &= x \cdot x = x^2; \ f_{exp}(x,3) &= x \cdot x^2 = x^3; \ dots &dots &dots \ \vdots &dots &dots \ f_{exp}(x,y-1) &= x \cdot x^{y-2} = x^{y-1}; \ f_{exp}(x,y) &= x \cdot x^{y-1} = x^y. \end{aligned}$$

Задания

- 1. Доказать примитивную рекурсивность факториала f(x) = x!.
- 2. Доказать примитивную рекурсивность псевдоразности

$$f(x,y)=x-y=egin{cases} x-y, & ext{если } x\geq y; \ 0, & ext{иначе.} \end{cases}$$

3. Доказать примитивную рекурсивность знаковой функции

$$f(x)=sg(x)=egin{cases} 0, & ext{если } x=0; \ 1, & ext{если } x>0. \end{cases}$$

4. Доказать примитивную рекурсивность равенства

$$f(x,y)=eql(x,y)=egin{cases} 1, & ext{если } x=y; \ 0, & ext{иначе.} \end{cases}$$

5. Доказать примитивную рекурсивность модуля разности:

$$f(x,y)=mod(x,y)=egin{cases} x \div y, & ext{ecли } x \geq y; \ y \div x, & ext{иначе.} \end{cases}$$

6. Доказать примитивную рекурсивность функции «больше»:

$$f(x,y) = more(x,y) = egin{cases} 1, & ext{если } x > y; \ 0, & ext{иначе.} \end{cases}$$

7. Доказать примитивную рекурсивность функции «больше или равно»:

$$f(x,y) = moreql(x,y) = egin{cases} 1, & ext{если } x \geq y; \ 0, & ext{иначе.} \end{cases}$$