Government Publications

E9-17 COTTAGE POLLUTION STUDY

PART I - Methodology and Study of Three Lakes

by

Consultant and Development Section
Public Health Engineering Service

Public Health Division Environmental Health Branch

ONTARIO DEPARTMENT OF HEALTH

Hon. M. B. Dymond, M.D., C.M.

Minister

February 1968

CA20N Government H21 Publications 68056

COTTAGE POLLUTION STUDY

PART I - Methodology and Study of Three Lakes

by

Consultant and Development Section
Public Health Engineering Service

Public Health Division Environmental Health Branch

ONTARIO DEPARTMENT OF HEALTH
Hon. M. B. Dymond, M.D., C.M.
Minister

February 1968

STAFF

Project Engineers R. Laak, Ph.D. (to August 1967)

N.A. Chowdhry, P.Eng.

Senior Development Engineer

Project Supervisor N.R. Laxton, C.P.H.I.(C)

Assistant Project Supervisor W.J. Hogle, C.P.H.I.(C)

SURVEY TEAMS

Jack Lake Team

Steenburg Lake Team

A.L. Scully

C.H. Boucher

J.A. Wilkins

J.P. Mayer

D.H. Arrell

V. Libis

Digitized by the Internet Archive in 2024 with funding from University of Toronto

INDEX

Contents	Page No.
Summary	(i) - (iii)
Part I - Introduction	1 - 9
Part II - The Study of Jack Lake	10 - 30
Part III - The Study of Steenburg Lake	31 - 51
Part IV - The Study of Six Mile Lake	52 - 73
Part V - Comparing the Lakes	74 - 97
Part VI - Conclusions	98 - 100
Notice to Cottage Owners	Appendix I
Blank Data Sheet	Appendix II
Completed Data Sheet	Appendix III
Map of the Lakes	Appendix IV

ACKNOWLEDGEMENT

Acknowledgement is due the Muskoka and District,

Peterborough County-City, and the Hastings and Prince Edward Health

Units, the local cottage owners associations and the cottagers

whose cooperation assisted in the study.

SUMMARY

A pilot study to determine whether cottage waste producing systems were contributing pollution to the lakes was made in the summer of 1967. The objectives of the study were also to find out the effectiveness of the present legislation and enforcement designed to control pollution caused by cottage waste facilities and if disposal methods in use resulted in public health nuisances. No attempt was made to evaluate the lake water quality for recreational or other purposes. The study was the result of a report submitted to the Honourable M. B. Dymond, M.D., Minister of Health, by the Tourist Industry Committee of the Ontario Economic Council.

A survey was conducted of the cottage sanitary facilities on three selected lakes namely, Jack Lake in Peterborough County, Steenburg Lake in Hastings County and Six Mile Lake in the District of Muskoka. The health units responsible for the environmental health inspection services in the areas where the study was conducted indicated their interest and provided cooperation.

For this study 519 premises on the lakes were inspected for the purpose of collecting data. The results of the survey indicated that approximately 9.2% of the domestic sewage disposal systems, 6.3% of all kitchen waste disposal systems and 4.5% of all laundry waste disposal systems were found to be contributing material to the lake. In addition to this many systems were considered to be a public health nuisance within the meaning of The Public Health Act.

The primary reasons that systems were judged unsatisfactory were because of faulty design and insufficient soil cover.

In the case of systems "contributing to pollution" the laboratory reports received from lake water samples collected in the immediate area of the installation were considered in this evaluation.

Where local municipal refuse disposal sites were conveniently available to cottages, private refuse or garbage disposal did not create a problem.

The three health units considered that their programmes of private sewage disposal control at recreational areas were inadequate. It is assumed that many new systems are being established without their knowledge.

Amending local building by-laws to include automatic notification to the health unit when new development is considered and the provision of these by-laws in areas where they do not exist at present would be of benefit in control of this situation.

It is assumed that new property owners may not be aware of the restrictions involved in private sewage disposal. It would appear that these restrictions together with the health units services should be more fully advertised in order to ensure that all new owners are aware of the law in regard to private sewage disposal. Similar consideration should also be given to individual kitchen and laundry waste disposal systems.

Subdivision control by-laws are of considerable value. Only a few of the townships within the health units studied had such by-laws in effect.

Due to the heavy work load during the summer in recreational areas, in order to provide adequate control over sewage disposal installations, an increase in the inspection staff appears to be necessary.

Consideration should be given to the continuance of the cottage pollution study in 1968. In this way additional lakes in other geographical areas can be studied and further data collected resulting in a more conclusive evaluation.

PART I - INTRODUCTION

Purpose of Study

The cottage pollution study was instituted as a result of a report submitted to the Honourable M. B. Dymond, M. D., Minister of Health, by the Tourist Industry Committee of the Ontario Economic Council. The report is dated May 1966 and draws attention to the suspected pollution of the province's lakes and rivers resulting from summer cottage development.

In part, this document stated "Under present protection programmes at the Municipal, County and Provincial levels there would appear to be insufficient safeguards against pollution originating from inadequate or improperly functioning cottage sewage disposal systems. The Ontario Economic Council suggests for the consideration of governments at all levels a programme, based on the recommendations of the Tourist Industry Committee, which would insure that by 1970 all necessary steps are to be taken to stop pollution from this source."

On August 11, 1966 the Minister of Health, by letter, informed the Council that "The recommendations for a pilot study of the existing cottage waste disposal systems; for an improved co-operation with local officials concerned with cottage developments; and for a review of the subdivision control legislation are all welcomed as useful suggestions for effective action in what is recognized as a problem area of increasing magnitude."

The Public Health Engineering Service was directed to perform the pilot study which would evaluate the problem.

Objectives

The objectives of this pilot study were to determine the effectiveness of the present legislation and enforcement designed to control pollution caused by cottage waste producing systems and if necessary provide suggestions that would ensure adequate control.

No attempt would be made to evaluate the lake water for recreational or other purposes.

Preparation

Methods and water pollution indices were considered and established. Decisions were reached regarding the number and type of summer student staff required for field work and the equipment that would be needed. Programme costs were estimated.

During May the lakes to be studied were selected. An attempt was made to ensure that the lakes chosen would represent a random sample of the lakes in the recreational centres of the Province with consideration for differences in location, topography, size and length of time populated. In view of this, Six Mile Lake in the District of Muskoka, Jack Lake in Peterborough County and Steenburg Lake in Hastings County were selected. Discussions were held with the medical officers of health and chief public health inspectors of the health units involved. These officials were agreeable to the study and felt that the information gained from the survey would be of significant value.

It was decided that information obtained from the individual cottagers would be confidential apart from the final report. Six university students who would act as field staff and classified as

"health survey aides" attended an intensive course of instruction between June 1st and June 16th at the Public Health Engineering Service office and field training was included in the last week of instruction. Three field crews each consisting of two health survey aides were formed providing a single crew for each lake to be studied.

The Field Survey

It was the task of the field crew members working as a team to visit and inspect the cottages and commercial establishments along the lake shoreline with the understanding that one general area of shoreline would be completed before moving on to the next. An explanation concerning the nature of the study was outlined in a letter entitled "Notice to Cottage Owners" (Appendix I). Notices would be distributed to cottagers, attached to public billboards and placed in other conspicuous places. Each property would be visited at least twice during the course of the summer.

Each cottage and commercial property owner was interviewed and a data sheet completed by the crew. The individual data sheets (Appendix II) were concerned with domestic sewage disposal, kitchen waste disposal, laundry waste disposal and refuse disposal. Private water supply systems were also evaluated. The finished data sheet would include a complete diagram of the property including dimensions and measurements and the laboratory results of all water samples (bacteriological and chemical) collected from the lake water just off shore in the immediate vicinity of the premises, selecting where

other subjects of environmental health significance were also covered in the data sheet. By inspection, interview, laboratory reports, and the use of on-the-spot testing equipment the field crews would be able to locate the incidence of pollution. Each waste producing system at each location was evaluated as satisfactory, as a public health nuisance, or as contributing to environmental pollution. The recommendations contained in the booklet "Septic Tank Systems" concerning distance, sizes, soil quality were not adhered to for the purpose of evaluation. (For example this booklet states that a septic tank system should be located no closer than 50° to a lake or a stream. In this evaluation however, a system could be located less than 50° to a lake without being considered unsatisfactory provided that pollution or a public health nuisance did not occur.) A sample of a completed data sheet is appended to this report. (Appendix III)

Accommodation was provided on the lakes and the only method of transportation used was outboard motor boat. Each crew was visited weekly by a member of the regular staff. In order to ensure that the lake community would receive adequate coverage and surveillance, it was necessary for the individual crews to work throughout the weekends including the two statutory holidays in July and August. Compensating time was given during the week when the cottage population decreased.

Mid-way through the summer it became evident that the Six
Mile and Jack Lake crews would be unable to complete all the establishments on their shorelines. Steenburg Lake being relatively smaller
with 10 miles of shoreline and 167 establishments would be completed.

Field work on the lakes was terminated on September 1, 1967.

The health survey aides attended the Central Office for a short period of time during September when the raw data collected during the 10 working weeks were compiled into summary form. Each crew was also responsible for completing a crew's report on their activities, their acceptance on the lake, and situations peculiar to the lake. In addition to this, maps were completed showing the areas of the lake where pollution was gaining entrance to the lake water.

The table on pages 7 and 8 indicates the number of waste disposal systems and drinking water supplies inspected at each of the three lakes.

The table on page 9 indicates the distances that toilet and kitchen waste disposal systems were located from the shoreline of the lakes.

Throughout Parts II, III and IV of the report reference is made to the following three classifications as applied to all waste producing systems evaluated at each lake.

- 1. The classification CONTRIBUTING TO POLLUTION refers to the percentage of systems that could be proven to be contributing material to the lake water.
- 2. The classification PUBLIC HEALTH NUISANCE refers to the percentage of other systems than those in 1. above where a condition, not known to be contributing to pollution of the lake water, exists which "is or may become injurious or dangerous to health or that

prevents or hinders or may prevent or hinder in any manner the suppression of disease." This quotation is from Section 82 of The Public Health Act.

3. The classification TOTAL SATISFACTORY refers to the total percentage of all the systems inspected and found to be neither public health nuisances nor contributing to pollution.

DATA

Type of Toilet	Six Mile Lake	Steenburg Lake	Jack Lake
Flush	21	49	67
Modified Flush	61	42	22
Pail-A-Day	4	7	14
Pit Privy	66	73	132
Chemical	3	2	0
Others	10	0	0
(Total)	(165)	(173)	(235)
Kitchen Waste Disposal			
Leaching Pits	77	80	145
Surface Disposal	63	50	56
Others	8	0	1
(Total)	(148)	(130)	(202)
Laundry Waste Disposal			
Septic Tank	2	0	4
Leaching Pit	8	7	21
Surface	22	31	33
Lake	1	1	2
(Total)	(33)	(39)	(60)

Note: Combined toilet and kitchen waste disposal systems are included in "toilet disposal systems" and omitted from "kitchen waste disposal systems".

Refuse Disposal	Six Mile Lake	Steenburg Lake	Jack Lake
Burned on Lot	85	36	44
Buried	24	6	11
To Local Dump	30	152	115
To Home	90	7	27
Deposited in Bush	55	0	16
Deposited in Lake	0	0	2
(Total)	(284)	(201)	(215)
Drinking Water Supply and Treatment Source			
Lake	96	49	48
Cottage Well	1	15	61
Spring	1	3	2
Home	73	75	39
Local Town	8	18	16
Cistern	0	0	1
(Total)	(179)	(160)	(167)
Treatment			
Filtered	18	14	21
Disinfected	82	28 ·	16
No Treatment	11	33	67

Number of Disposal Systems

Distance From the Lake	Six Mi Toilet	lle Lake <u>Kitchen</u>	Steen Toilet	ourg Lake Kitchen	Jack Toilet	Lake Kitchen
01 - 501	43	81	42	73	65	76
51' - 75'	41,	31	32	22	46	21
76' - 100'	26	15	48	28	43	13
101' - 150'	32	16	21	7	16	7
151' - 200'	13	4	5	0	6	3
Unknown	10	1,	25	0	59	89
(Total)	(165)	(148)	(173)	(130)	(235)	(209)

^{*}Combined toilet and kitchen waste disposal systems are included in
"toilet disposal systems" and omitted from "kitchen waste disposal systems".

PART II - THE STUDY OF JACK LAKE

Sources of Information - Peterborough County-City Health Unit

- Lake Ontario Development Association
- Department of Lands and Forests,
 Silviculture Branch
- Jack Lake Cottage Owners' Association
- Jack Lake Land Company
- Property Owners

Location

Jack Lake is situated in the north-eastern section of Peterborough County approximately 3 miles via a township road south of the Hamlet of Apsley. A small part of the western portion of the lake is located in Burleigh Township while the majority of the shoreline is within the Township of Methuen.

Topography

The Jack Lake area provides approximately 48 miles of shoreline. The lake is roughly divided into a northern and a southern section connected by a channel called "The Narrows". Both sections contain many bays and islands of varying sizes. The lake is fed by several small streams and underground springs.

The shoreline of the lake is irregular and rocky, typical of the Precambrian Shield. In most cases the shoreline rises rather steeply from the water line. Soil is sandy loam and varies from several inches to a few feet in depth, however, the average depth of soil is less than 5 feet. Many islands are found in the lake, most being well elevated above lake level and rising sharply from the shoreline to a plateau or to a peak. In most cases the entire land area is heavily treed.

Part of the north shore of the north-western section and part of the eastern shore of the north-eastern section do not conform to the general rocky undulating characteristics of the lake. In these areas the land is low and the soil sandy. The water table in this portion is very high, usually only 2 feet below the surface especially in those areas where cottages have been constructed on filled swamp land. It was observed that in the spring and following heavy rains this land became practically flooded.

Population and Distribution

There is a total of 350 establishments on the lake, 345 being cottages and the remaining 5 are commercial establishments.

The summer cottage development extends around most of the shoreline but the greatest concentration exists in the northern portion of the lake.

By nationality perhaps 70% of the population is Canadian and 30% American.

Transportation of persons, supplies and materials at the lake is completely by boat since there are no roads circumventing the shoreline. A single township road extending south from Apsley

terminates at the government dock located on the north shore of the lake at Brook's Bay. All activity on the lake begins on the north shore.

Acceptance by Population

Excellent co-operation was extended by the cottagers who for the most part were pleased that the government was implementing steps towards preserving the natural quality of waters of the Province. Some, however, expressed regret that enforcement was not part of the programme.

Weather and Water Levels

The weather was extremely variable with no sustained warm, dry and sunny periods. Cool weather and excessive rainfall characterized the summer months.

Heavy rainfall in the spring and early summer was responsible for unusually high lake water levels. Jack Lake is a tributary of the Trent Canal System and the water level is regulated by a dam located at the south-eastern periphery of the lake. The Trent System was seriously flooded during late June and July. This condition prevented normal flows from leaving the lake during this period. On the 21st of July the water level began to drop and by the 14th of August it was only approximately 6 inches above seasonal normal.

This prolonged period of high water created a higher ground water table than usual throughout June and July and it is believed that this condition contributed to pollution in the low lying areas.

Organization in the Lake Community

(a) Local Cottagers Association - Membership in this

Association is subject to the applicant owning land on the lake and
paying an annual fee. Members are requested to obey the Association's
sanitary regulations which are available to all members in poster
form.

A modified pollution survey leaning heavily on bacteriological laboratory reports of lake water is usually conducted annually by members of the Association. On occasion the Association has forced cottagers to take steps such as moving privies they believed to be too close to the shoreline.

(b) The Land Company - The Land Company was formed and is owned by several of the cottagers on the Lake and has control of approximately 80% of the available undeveloped land on Jack Lake.

The Land Company has purchased some lots and islands that are unsuitable for cottages with the intention of holding these properties from the market and thus protecting the lake water quality and property values. The charter of the company states that the company was formed to preserve Jack Lake as a recreational community. Sale contracts require the buyer to purchase at least 500° of frontage, to obey the Association's sanitation regulations and to build a particular type of cottage. If a purchaser fails to comply with any clause of the contract the contract is broken and the land is to revert to the Company.

Because of these requirements it appears that crown land and land reclaimed by depositing fill material are being developed at a faster rate.

Relations with Local Officials

In general, the cottagers expressed concern regarding the level of services and what they considered to be a lack of interest provided by the township and the county in such fields as land sales, refuse disposal and water pollution.

Due to the presence of the Health Survey Aides on the lake during the past season a renewed interest was noted regarding the enforcing of the Association's sanitary regulations. Cottagers also became more knowledgeable concerning the function of the health unit.

PETERBOROUGH COUNTY-CITY HEALTH UNIT

The Peterborough County-City Health Unit was formed in 1965 and has jurisdiction over 19 municipalities and a population of approximately 80,000. Four public health inspectors and a chief inspector are responsible for carrying out the environmental health programme. It is estimated that 75% of the total time during the summer months is devoted to recreational sanitation matters.

Due to greatly increased work loads in all fields of environmental health during the tourist season the health unit is not able to carry out inspections and surveys on a routine basis and therefore its activity at cottage areas is on a demand basis only. It is felt that a significant increase in staff would be mandatory if the Health Unit's activity at recreational areas increased.

that the approval in writing of the medical officer of health be obtained before a private sewage disposal system is established.

One municipality within Peterborough County has availed itself of a septic tank by-law. The Peterborough County-City Health Unit requires that a permit be issued for new private sewage disposal systems and that each system be inspected. The Health Unit relies on owners, builders and contractors to approach the Health Unit for inspection and advice when the installation of a private sewage disposal system is planned. Municipal clerks are requested to direct all new property owners to the Health Unit for consultation in these matters when building permits are obtained.

The Health Unit reports that this method of approach is only partially satisfactory since it relies on the integrity of the owner or builder and the interest of the Municipal Clerk.

This policy also presupposes that new property owners are knowledgeable of the law relating to private sewage disposal, although these laws are not publicized by means of the mass media or in poster form.

Due to the variable topography and soil characteristics at cottage areas, and because numerous lakes are without road access, compromises in design, size and location are often necessary when considering private sewage disposal systems. The Health Unit reports that the application of the recommendations contained in the department's booklet "Septic Tank Systems" is less practical in cottage areas than it has proven to be in urban and suburban developments.

A public health inspector from the Peterborough County-City Health Unit visits Jack Lake weekly to answer specific requests for assistance and to inspect new sewage disposal systems when the installation of such systems is known.

SANITARY SURVEY RESULTS - JACK LAKE

Page 17 provides a statistical summary of the data collected on Jack Lake concerning the evaluation of:

- (a) Private sewage disposal systems (235 systems observed)
- (b) Kitchen waste disposal systems (202 systems observed)
- (c) Laundry waste disposal systems (60 systems observed)
- (d) Private refuse disposal practices (215 practices observed).

Pages 18 to 26 give details of the systems causing pollution or public health nuisances.

JACK LAKE

(An Evaluation of Waste Producing Systems)

	% % Total Satisfactory	ces s = 215)
	9.3 Public Health Wuisance	Private Refuse Disposal Practices (Total Practices ==
	2.3 Contributing to Pollution	Private Disposal (Total P
100	Per Cent Per Cent	P. P. C. T.
	Whotosisits IstoT 4.88	cems ns = 60)
	3.3 Contributing to Pollution	Laundry Waste Disposal Systems (Total Systems =
100	Per Cent	Lau Dis
	Viotoslatisa LatoT 0.78	ms = 202)
	10.9 Public Health Muisance	Waste Systems ystems ==
	I.5 Contributing to Pollution	Kitchen U Disposal (Total Sy
COL	Per Cent	NYI.
	T77.4 Total Satisfactory	ewage Systems stems = 235)
	7.2 Contributing to Pollution	*Private Sewage Disposal Syster (Total Systems
100	30 60 50 60 70 80 90	

Per Cent

Toilet Waste JACK LAKE

Pollution (P) or P.H. Nuisance (N)	Ωų	N	Q4	Z	Δ,	C4	N	£4	Z	Z	Z	Q,	Д	Δ,
Remarks	Draining to lake		Draining to lake		Draining to lake, Poor design	Close to lake, Poor design		Close to lake, surface wet				Close to water table, Surface wet	Close to water table, Poor design	Close to water table
Soil Depth Less than 5 Feet			×				×	×	×	×		×	×	×
Distance from Lake in Feet	07	170	2	70	07	30	30	5	80	80	150	65	75	100
System	Mod. Flush	Pit Privy	Pit Privy	Pit Privy	Pail-a-day	Pail-a-day	Pail-a-day	Pail-a-day	Pit Privy	Pit Privy	Flush	Mod. Flush	Mod. Flush	Mod. Flush
Sampling Location	10	12	15	17A	21A	21B	210	210	22B-C	220	22A	25	56	27

Pollution (P) or P.H. Nuisance (N)	×	Z	×	×	Z	×	Z	Z	N	N	Q.	Δ,	C.	N	Ω,
Remarks											Close to water table	Close to water table	Close to water table		Insufficient soil cover, Poor design
Soil Depth Less than 5 feet									×	×				×	×
Distance from Lake in Feet	170	130	130	90	90	90	96	06	120	95		70	70	70	70
System	Pit Privy	Pit Privy	Pit Privy	Pit Privy	Flush										
Sampling	28E	28G	28H	28I	281	28K	28L	28M	53	30	32	33	34	38	38

Pollution (P) or P.H. Nuisance (N)	×.	Ω	Ω	<u>C</u>	Z	N	N	N	N	N	N	Z	N	N	Z
Remarks		Close to lake	Insufficient soil cover, Close to lake	Insufficient soil cover, Close to lake											
Soil Depth Less than 5 Feet				×					×				×		
Distance from Lake in Feet	70	20	07	50	99	200	75	02	09	20	120	120	09	02	80
System	Pit Privy	Flush	Flush	Pit Privy	Pit Privy	Pit Privy	Flush	Flush	Pit Privy						
Sampling Location	177	77	67	7-7-	99	26X	477	92	80	778	85	98	06	96	127

Pollution (P) or P.H. Nuisance (N)	Z	Z	N	N	N	Ω.	Д	Z	Z
Remarks						Insufficient soil cover, Close to lake	Close to lake		
Soil Depth Less than 5 Feet			×			×		×	
Distance From Lake in Feet	20	09	70	06	75	50	10	50	80
System	Flush	Pit Privy	Pit Privy	Mod. Flush	Pit Privy				
Sampling	139	155	157	165	172	177	177A	188	189

Kitchen Waste

Pollution (P) or P.H. Nuisance (N)	N	Z	N	N	. A4	Z	Z	Z	Z	N	Z	Z	N	Z
Remarks					Insufficient soil cover, Close to water table and lake									
Soil Depth Less than 5 Feet	×	×	×	×	×		×							×
Distance from Lake in Feet	100	30	20	20	25	200	50	100	09	09	09		09	20
System	Surface	Surface	Surface	Surface	Leaching Pit	Surface	Leaching Pit	Surface						
Sampling Location	15	21A	21B	210	220	24H	25	28H	281	28J	28K	28L	28M	32

Pollution (P) or P.H. Nuisance (N)	N	N	N	hap k-d	Z	N	Z	N	ρι	Z	C ₄	N
Remarks									Insufficient soil cover, Close to lake		Insufficient soil cover, Close to lake	
Soil Depth Less than 5 Feet	×	×							×	×	×	
Distance from Lake in Feet	55	07	30	30	70	30	80	25	10	10	€	70
System	Surface	Leaching Pit	Surface	Surface	Leaching Pit	Surface	Surface	Surface	Surface	Surface	Leaching Pit	Surface
Sampling	37	39	24	53	92	85	66	105	145	175	177	187

Laundry Waste

Pollution (P)	P.H. Nuisance (N)	Ω,	Z	Z	Ω,
	Remarks	Washing in lake			Washing in lake
	Lake	×	ı	ı	×
П	Surface	1	×	×	1
DISPOSA	Septic Tank Leaching Pit	ł	ŧ	ŧ	I
DI	Septic Tank	ı	ı	ı	1
	Method	Manua1	Machine	Machine	Manual
Samnling	Location	134	157	165	172

Solid Waste

Pollution (P)	P.H. Nuisance (N)	Q.	Z	N	Z	Z	Z	N	Ω.,	۵	N	Z	N
	Remarks	Dumped into lake							Deposited on lot and drains into lake	Partly burnt, drains into lake			
	Lake	×	ı	ı	ı	ı	ı	ı	1	1	ı	1	1
	Deposited in Bush	ı	Į.	ı	ı	×	ī	i	×	ı	ı	8	ŧ
S A	Home	ł	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
DISPOS	Local	ı	1	×	1	ı	1	1	I	I	8	ı	×
	Buried	1	ı	1	1	1	ı	1	t	Î	ı	1	ı
	HI									×			
	Sampling	47	6	17B	18	20	27	29	32	34	37	39	17

(a)	or Nuisance (N)														
(a) == ; +== [== a		<u>C</u> ,	, 🗷	Z	N	Z	N	N	N	ρ.,	7	N	Z	Z	Z
D.	P.H.														
		Drains to the lake								lake					
	9	s to th								Deposited in lake					
	Remarks	Drain								Deposi					
	Lake	ı	ı	1	ı	ı	1	ı	ı	×	ı	ı	ı	1	ı
	긔														
	Deposited in Bush	ı	× .	,t	1	ŧ	×	×	×	×	×	ı	8	×	×
A L	Dep														
2	Home	1	×	8	1	1	1	i	1	1	ŝ	1	ı	Į.	ŧ
DISPO	ocal mp	ı	1	ı	×	ı	ı	1	11	×	×	1	1	1	1
П	고립														
ш,	Local Buried Dump	×	1	ı	ı	ı	ı	ı	1	1	1	F	i	×	i
	Burned	1	1	×	×	×	1	ı	1	1	I	×	×	×	1
	ing									4.					
	Sampling	777	81	84	85	96	101	130	155	158	162	187	189	191	192

Inspections of 196 premises, including 5 commercial establishments, were completed along 15 miles of shoreline on Jack Lake. However, it should be pointed out that these figures need have no positive bearing on the number of systems observed. For example, a single cottage may have a privy as well as a septic tank and if the cottage is used only on weekends there may be no provision for laundry.

The graph on page 17 indicates that 7.2% of all private sewage disposal systems; 3.3% of all laundry waste disposal systems; 2.3% of the total refuse disposal practices and 1.5% of all kitchen waste disposal systems were contributing to pollution.

The graph on page 29 indicates the types of sewage disposal systems encountered and the number and percentage of each type contributing to water pollution or causing a public health nuisance.

The graph on page 29 shows that septic tank systems were the main contributors of pollution at this lake while privies were responsible for the majority of public health nuisances.

A map of Jack Lake indicating the area of the lake studied is found on page 30.

The statistics relating to the collection of lake water samples, both bacteriological and chemical will be included later in this report.

FACK LAKE

Break Down of Private Sewage Disposal Systems

Unsatisfactory	15.5	28.0		N/A
Unsatis	.i.	28	0	2
Total	76	37	0	53
Type	5.8	22.7	0	N/A
No. of Public Health Nuisances	9	30	. 0	36
Type of	9.7	5.3	0	N/A
No. Contributing to Pollution	10	7	0	17
% of Total Systems	43.8	56.2	0	100.0%
Number	103	132	0	235
Type of System	Septic Tank	Privy	Other	Total

82	38	89
7.	15.	22.
11	11	11
235	36	$\frac{53}{235} = 22.6\%$
Percentage of Total Systems Contributing to Pollution	Percentage of Total Systems Causing a Public Health Nuisance	Percentage of Total Systems Unsatisfactory
Systems	Systems	Systems
Total	Total	Total
of	of	of
Percentage	Percentage	Percentage

Breakdown of Private Sewage Disposal Systems

(17 systems Contributing to Pollution = 100%) Percentage by which the Different Types of Systems Contributed to Pollution

1001

96

20

80

9

(36 systems Causing Public Health Nuisances = 100%) Percentage by which the Different Types of Systems Caused Public Health Nuisances

Type of System

Privies 41.28 Septic 0

Mo.0 eradto

Lsnks

30

20

10

%8°85

07

20

88

Type of System

PART III - THE STUDY OF STEENBURG LAKE

Sources of Information - Hastings and Prince Edward Counties Health Unit

- Department of Lands and Forests; District
 Foresters Office; Silviculture Branch
- Steenburg Lake Cottagers Association
- Property Owners.

Location

Steenburg Lake is a relatively small body of water on the borders of Limerick and Tudor Townships in the northern part of Hastings County. It is approximately 20 miles south of the Town of Bancroft and 1 mile west of Highway #62.

Topography

This lake has approximately 10 miles of shoreline and consists of three principle bays with many islands of varying sizes. It is reported that Steenburg Lake is mainly spring fed however one major stream and a number of smaller streams and marshes feed the lake intermittently. The outlet is a slow moving stream which flows into Limerick Lake 5 miles to the east.

The southern and eastern shorelines are irregular and hilly. Individual lots in this area may contain large outcroppings of bedrock and the soil depth may vary from nil to pockets several feet in depth. The northern and western shores are reasonably level and contain a fair depth of soil cover, however, in most cases this depth is less than 5 feet. A substantial tree growth is supported by the sandy soil which appears to have good absorption qualities.

Population and Distribution

There are 167 establishments on the lake, two of these being commercial establishments. Summer cottage development surrounds the majority of the shoreline with the exception of a large peninsula which consists of approximately 3 miles of shoreline in the south-western portion of the lake. This peninsula is referred to locally as "The Headland".

In most cases cottagers are able to drive to their cottage without relying on water transport.

The majority of cottagers are Canadian citizens, and residents of local towns. The Toronto-Hamilton area, and the Ottawa area are also represented. Approximately 5% of the lake population are American citizens from New York State.

Acceptance by Population

The survey was very well accepted by the lake community.

Most of the cottagers, if not all, were concerned about water pollution and their only regret was the lack of enforcement involved in this study.

Weather and Water Levels

Varying amounts of rain fell practically every day during June and July. August, however, was more variable with less rain.

During June and July the lake water levels varied from 12 to 16 inches above seasonal normal. It was observed that any heavy rainfall was capable of noticeably raising lake water levels for short periods of time. This condition would lead to a raising of the ground water table which could affect the operation of sub-surface waste disposal systems.

Organizations in the Lake Community

(a) The Cottagers' Association - This body is reported to be quite strong commanding the full support of the cottagers.

The Association apparently does not attempt to enforce public health standards itself, but forwards complaints to the local health agency.

Of primary concern to the Association is the possible subdivision of the large undeveloped peninsula referred to as "The Headland".

(b) Local Governments of Limerick and Tudor Townships—
There appeared to be some evidence of a conflict between the summer cottagers and the local township councils, notably over the locations of two township dumps situated near the lake.

In the past, prior to the formation of the Health Unit,
Limerick Township attempted to enforce some public health measures through
a local building or plumbing inspector. One measure consisted of having
all privies moved at least 100 feet from the lakeshore.

THE HASTINGS AND PRINCE EDWARD COUNTIES HEALTH UNIT

The Hastings County Health Unit was formed in September 1966.

During 1967 the unit combined with the already established Prince

Edward County Health Unit to form the Hastings and Prince Edward

Counties Health Unit, giving full time health services to 39

municipalities with a total population of approximately 110,000

people. Five public health inspectors and a chief inspector are responsible for implementing the environmental health programme.

and this wealth of recreation resource results in a great increase in the population of the counties during the tourist season at a time when workloads are normally increased in all fields of environmental sanitation. Because of this, inspectional services at recreation areas are necessarily on a demand basis with minimum routine surveillance being given. Approximately 30% of the inspectors, time is spent on recreational sanitation matters during the summer season.

All municipalities within the unit have building by-laws. The enforcement of these by-laws, however, is considered to be highly variable. Subdivision control by-laws are in force in 12 townships. No municipalities within the health unit have passed sewage disposal by-laws amending the statutory by-law in effect under Schedule B of The Public Health Act.

The Health Unit requires that a permit be issued prior to the installation of a new septic tank system or the replacement of an old one. Application forms are available from the health unit office and at the office of each municipal clerk. When a new owner secures a building permit, the clerk will, in most cases, ask whether a septic tank system will be installed. If such a system is planned,

the clerk will forward completed application forms to the health unit. If the owner is not immediately planning to install a water carried sewerage system, no notification is forwarded to the Health Unit. The installation of other sewage disposal systems such as privies and kitchen waste water systems are not normally referred to the Health Unit. The Health Unit estimates that 75% of all new septic tank systems and approximately 20% of the renovated systems at cottage areas are presently being inspected.

The Health Unit indicates that it is practically impossible to apply the recommended standards contained in the booklet "Septic Tank Systems" at cottage areas. It is often necessary to compromise in size, design and location of new septic tank systems. Opinion was expressed that strict enforcement of present recommended standards would greatly restrict cottage development and lead to more serious problems of controlling installations through evasion.

The County of Hastings is studying a county wide building by-law which will include automatic notification of the health unit regarding the installation of private sewage disposal systems.

The law relating to sewage disposal and the position of the health unit is advertised in local newspapers during the tourist season. The results from this practice are limited and the health unit is considering advertising in poster form in the future. It is felt that additional staff, part-time or permanent, would be required if a total programme of private sewage disposal control was implemented in recreational areas.

SANITARY SURVEY RESULTS - STEENBURG LAKE

A statistical summary of the data collected at Steenburg Lake during the survey is outlined on page 37 under the following established catagories.

- (a) Private Sewage Disposal Systems (173 systems observed)
- (b) Kitchen Waste Disposal Systems (130 systems observed)
- (c) Laundry Waste Disposal Systems (39 systems observed)
- (d) Private Refuse Disposal Practices (201 practices observed)

One hundred and fifty-nine premises including 2 commercial establishments were visited along the 10 miles of shoreline. Two cottages could not be fully evaluated since they were not inhabited during the summer.

Again the figures for establishments completed and systems observed need have no direct correlation since some cottages have more than one sewage disposal system and some cottages have no laundry waste disposal system.

The graph on page 37 (an evaluation of waste producing systems) indicates that 11.0% of private sewage disposal systems, 7.7% of the kitchen waste disposal systems and 5.1% of the laundry waste disposal systems were contributing to pollution.

Steenburg Lake was completed in total. A map of the lake is found on page 51.

The details of systems causing pollution or public health nuisance are shown on pages 38 to 47.

Systems)
Producing
Waste
of
Evaluation
(An

Viotoslaitae LatoT L. 99	S S S S S S S S S S S S S S S S S S S
0.9 Public Health Nuisance	Refuse Practi
0.0 Contributing to Pollution	Private Disposal
Per Cent	Pri Dis
Viotosisits Satio 8.21	ms - 20)
82.1 Public Health Nuisance	Waste
noitullog to Pollution 1.2	Laundry Waste Disposal Syst
1000 90 90 90 90 90 90 90 90 90 90 90 90	Lau Dis
Per Cent	
Wiotoslatis Lator 0.00	11
32.3 Fublic Health Nuisance	Waste Systems
noitulfod of gnitudinfroo 7.7	Kitchen Disposal (Total S
Per Cent Per Cent	Kit Dis
Viotosleited Letor 1.08	ns = 173)
2.9 Public Health Nuisance	Sewage al Systems Systems
noitulfod ot gaitudintanoo O.11	*Private Disposal (Total S
100	

Per Cent

(Total Practices = 201)

Toilet Waste

STEENBURG LAKE

38															
Pollution (P) or P.H. Nuisance (N)	Ω	۵	Q,	Q,	Δ	Ω	Ω,	Ω,	ρ,	Ω	ρ	Ω ₄	Ωų	ρ ₄	Д
Remarks	Insufficient soil depth, Poor design	Close to lake	Insufficient soil depth, Close to lake	Draining to lake	Close to lake	Insufficient soil cover, Close to lake	Close to lake	Insufficient soil cover, Close to lake	Draining to lake	Poor design	Close to lake				
Soil Depth Less than 5 feet	×		×							×		×			
Distance from Lake in Feet	07	20	1.5	100	35	20	2	~	8	30	15	25	80	06	30
System	Mod. Flush	Flush	Flush	Pit Privy	Pail-a-day	Mod. Flush	Pit Privy	Pit Privy	Pit Privy	Flush	Flush	Flush	Flush	Mod. Flush	Flush
Sampling Location	9	7	₩	11	19A	20	29	32	33	37	39	54	55	809	99

Pollution (P) or P.H. Nuisance (N)	Ω4	Ω,	N	N	N	Q.,	. Q. ,	N	Z
Remarks	Draining to lake	Insufficient soil cover, Close to lake				Insufficient soil cover, Close to lake	Close to stream		
Soil Depth Less than 5 feet	×	×	×			×		×	
Distance from Lake in Feet	100	30	100	50	30	07	50	100	150
System	Mod. Flush	Flush	Flush	Flush	Flush	Flush	Flush	Pit Privy	Pit Privy
Sampling	77	97	107	110	111	122	123	151	152

STEENBURG LAKE

Kitchen Waste

Sampling Location	System	Distance from Lake in Feet	Soil Depth Less than 5 Feet	Remarks	Pollution (P) or P.H. Nuisance (N)
3	Surface				Z
7	Surface				Z
5	Surface	0		Draining to lake	Д
9	Surface	50	×		Z
₩	Surface	25	×		Z
6	Surface	50			N
Ħ	Surface	09		Draining to lake	Δ
12	Surface	75			Z
13	Surface	09			N
77	Surface	100	×		N
16	Surface		×		N
18	Leaching Pit	~		Close to lake	Ц
19B	Surface				Z
20	Surface	0		Draining to lake	Ω

Pollution (P) or P.H. Nuisance (N)	N	Q.	N	Ω	ρ.	Q.	N	N	N	Ω,	N	N	Ω ₄ ·	N	N
Remarks		Draining to lake		Draining to lake	Draining to lake	Close to lake				Draining to swamp then to lake			Draining to lake		
Soil Depth Less than 5 Feet				×						×		×			
Distance from Lake in Feet	20	0	07	20	0	15	150	125		80		09	0	100	75
System	Surface	Surface	Surface	Surface	Surface	Leaching Pit	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Sampling	777	29	31	32	36	39	177	877	51	55	809	63	17	477	79

Pollution (P) or P.H. Nuisance (N)	N	N	N	N	N	N	N	N	N	Z	N	Z	Z	Z	N
Remarks															
Soil Depth Less than 5 Feet	×								×				×		
Distance from Lake in Feet	70	06		25			80	50	50	110	50	110	80	80	75
System	Surface														
Sampling	80	87	88	91	91B	105	112	118	122	125	127	128	133	138	143

Pollution (P) or P.H. Nuisance (N)	N	N	N	Z	N	N	Z	N
sh 1 Remarks								
Soil Depth Less than 5 Feet			×					
Distance from Lake in Feet		50		120			100	06
System	Surface	Leaching Pit						
Sampling Location	151	153	154	155	159	160	162	165

STEENBURG LAKE

Laundry Waste

Pollution (P)	P.H. Nuisance (N)	N	N	N	Δ,	N	N	N	N	N	N	Z	N	Z	Z
	Remarks				Washing in lake										
	Lake	ı	ı	i	×	1	ı	i	ı	1	ı		ı	ı	ī
니	Surface	×	×	×	1	×	×	×	×	×	×	×	×	×	×
DISPOSAL	Leaching Pit	f	ı	ı	ı	ŧ	ı	ŧ	ŧ	í	ı	ŧ	1	ŧ	î
I O	Septic Tank	1	ı	ı	1	ŧ	1	ı	i	ı	\$	8	ì	1	1
	Method	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine	Machine
	Sampling	-	රා	6	19A	777	25	31	33	34	35	38	07	177	43

Pollution (P)	P.H. Nuisance (N)	N	N	Z	N	N	N	N	N	Z	N	N	N	۵۰	Z	Z
	Remarks													Draining to lake		
	Lake	1	ı	ı	ı	ı	ı	t	1	t	ſ	1	1	1	1	ŧ
I	Surface	×	×	×	×	ı	×	×	×	×	×	×	×	1	×	×
DISPOSAL	Leaching Pit	ı	l	ŧ	É	×	ı	ì	ı	1	ı	î	ı	×	1	i
I Q	Septic Tank	Î	ŧ	ŧ	ŧ	ŧ	â	ı	ŧ	î	Ü	ı	Î	ů	ê	1
	Method	Machine	Machine	Manua1												
r comp	Location	45	847	62	63	7/4	77	78	83	06	91	95	96	107	138	139

(N

Follution (F)	P.H. Nuisance	N	Z	Z	Z	Z	N
	Remarks						
	Lake	1	ı	1	1	ı	ı
Н	Surface	×	×	×	×	×	×
SPOSAL	Leaching Pit Surface Lake Remarks	i	ŧ	1	t	1	ı
DI	Septic Tank	I	ı	i	1	i	ŧ
	Method	Machine	Manual	Machine	Machine	Machine	Machine
	Sampling						157

Solid Waste

(a) withing	or P.H. Nuisance (N)	N	V
	Remarks		
	Lake	1	ı
L]	Deposited in Bush	8	1
A	Ноте	1	ı
DISPOS	Local	ı	×
Q	Buried	×	ı
	Burned	ı	X
	Sampling. Location	57	80

Z

The table on page 49 indicates the types of sewage disposal systems encountered and the number and percentage of each type contributing to water pollution or causing a public health nuisance.

The graph on page 50 provides a further breakdown of the private sewage disposal systems contributing to pollution or causing public health nuisance.

Statistics relating to the laboratory results of lake water samples, bacteriological, chemical and biochemical, will be included later in this report.

None of the private refuse disposal practices were considered to be contributing to pollution and this appears to be a direct result of the fact that 96.0% of all cottagers made use of the two conveniently located municipal dumps.

STEENBURG LAKE

Break Down of Private Sewage Disposal Systems

Unsatisfactory	18.4	\$ 50	0	0	N/A	
Total	18	9	0	0	274	
% of Type	3.1	2.8	0	0	N/A	
No. of Public Health Nuisances	3	~	0	0	70	
% of	15.3	5.6	0	0	N/A	
No. Contributing to Pollution	15	77	0	0	19	
% of Total Systems	9.95	41.0	1.2	1.2	100.0%	
Number	98	17	~	8	173	
Type of System	Septic Tank	Privy	Chemical	Other	Total	

Percentage of Total Systems Contributing to Pollution Percentage of Total Systems Causing a Public Health Nuisance Percentage of Total Systems Unsatisfactory	$\frac{19}{173} = 11.0\%$	12 = 2.9%	$\frac{24}{173} = 13.9\%$
Percentage of Total Systemerentage of Total Systemerentage of Total Systemerentage of Total Systemerentage	sms Contributing to Pollution	oms Causing a Public Health Nuisance	ems Unsatisfactory
Percentage of Total Percentage of Total Percentage of Total	System	System	System
Percentage of Percentage of	Total	Total	Total
Percentage Percentage Percentage	6H 0	of	of
	Percentage	Percentage	Percentage

STEENBURG LAKE

Breakdown of Private Sewage Disposal Systems

(5 systems Causing Public Health Nuisances = 100%) Percentage by which the Different Types of Systems Caused Public Health Nuisances (19 systems Contributing to Pollution = 100%) Percentage by which the Different Types of Systems Contributed to Pollution

1001

8

96

20

9

20

७९

Type of System

Type of System

Others 0.0%

Septic Tanks

20

10

0

Privies 21.1%

%6°84

9

30

PART IV - THE STUDY OF SIX MILE LAKE

Sources of Information - Muskoka and District Health Unit

- Department of Lands and Forests, Unit
 Forester, Coldwater
- Six Mile Lake Cottage Association
- Property Owners.

Location of Lake

Quarter of a mile east of Highway 103 and 21 miles north of the
Village of Coldwater. The lake is mainly situated in Baxter Township
with a small section in the Township of Gibson. The lake consists
of many bays and separated areas of water rather than a great
expanse of open water. Crooked Bay and Long Lake are situated in
the north-western portion, with Six Mile Lake proper in the central
portion and Hungry Bay in the north-east. Many islands and peninsulas
separate these areas resulting in narrow channels connecting the bays.
There are two dams in the south and one in the north. The lake drains
into Georgian Bay in the north and the Severn River and Gloucester
Pool in the south. It has two major inlets, Pretty Channel and Lost
Channel in the south-east corner of the lake.

Topography

Six Mile Lake has typical Georgian Bay characteristics found north of the Severn River in the Precambrian Shield country. The shoreline is irregular with many granite rock outcroppings.

The terrain consists of a few inches of topsoil and a base of hardpan.

Most of the topsoil is found in small depressions between the rock

ridges. Areas of marshland are found around the shoreline of the lake.

The water table was generally well below the ground surface.

Weather and Water Levels

The weather at the lake was extremely variable. There was no sustained warm, dry and sunny period. The summer was cool with a great deal of rain. Heavy rains in the spring and early summer were responsible for unusually high water levels. The water level rose to 12 inches above seasonal normal several times during the summer following heavy rain periods.

Population Distribution

There are about 750 cottages on the lake and 5 commercial establishments. A total of 162 cottages and 2 commercial establishments were visited during the sanitary survey. The majority of the cottagers were Canadian citizens and residents of Toronto. Approximately 3% were American citizens, from the State of New York.

Local Organizations

The Cottage Association is active at the lake and officials of the Association were contacted prior to and during the survey. A modified pollution survey in the form of a lake water sampling programme has been conducted annually by members of the Association.

Because Baxter and Gibson Townships have no municipal organization there is no opportunity for the cottage owners to have

contact with a local municipal council. The Muskoka Health Unit officials and Provincial government departments are the agencies responsible for the supervision of the area and for providing any assistance requested by the Cottage Association or individual cottagers.

MUSKOKA AND DISTRICT HEALTH UNIT

The Muskoka and District Health Unit has jurisdiction over 4,000 square miles. There are 45 townships (9 are without municipal organization) which support a resident population of 37,000. During the summer months this population is reported to increase to over 200,000.

Four public health inspectors, a chief inspector and two summer assistants are responsible for carrying out the environmental health programme. It is estimated that approximately 90% of the inspectors, time during the summer season is spent on recreational sanitation matters of a demand nature. The Health Unit reports that it is impossible to estimate the number of systems that are installed without their knowledge or approval.

With the increase in summer cottagers, formerly unpopulated lakes are being developed and rocky sites which were not in demand previously are being sold and built upon. Most of the cottages in these areas provide for water carried systems and septic tank installations. The public concern for the control of pollution has placed increased demands on the inspection staff resulting in the environmental health programme being mainly directed towards lot

inspections, new septic tank systems and pollution complaints, with other important activities receiving secondary action.

Section 4 (2) of Ontario Regulation 277/62, Sanitary Code for Unorganized Territory and Section 14, Schedule B of The Public Health Act, require that the approval in writing of the Medical Officer of Health be obtained before a private sewage disposal system is established. Apart from this there are no municipal by-laws to control the installation of septic tanks. The Health Unit requires that an application for approval of a sewage disposal system must be made by the owner or contractor. The onus is on the owner or contractor to obtain an application form for the establishment of a septic tank system. Forms may be obtained from the health unit offices, the Clerks of the municipalities and Building Inspectors. The Clerks and Building Inspectors distribute the Ontario Department of Health booklet "Septic Tank Systems" with the application form. This procedure is efficient only when municipal officials, owners and contractors co-operate and accept their responsibility.

The health unit advises that it is often necessary to compromise in the recommended standards contained in the booklet "Septic Tank Systems" for cottage installations in respect to size of the septic tank, absence of soil depth and inadequate size or shape of the lot.

Baxter and Gibson townships until August 1967 were not covered under subdivision control legislation. At that time, however, the Department of Municipal Affairs under the authority of The Planning Act issued an Order that all lands in the above two townships be

designated as an area of subdivision control under Clause (B) of Subsection 1 of Section 27 of the Act. All or part of 14 municipalities within the health unit have this legislation in effect for subdivision control.

Health unit officials state they found little evidence of gross pollution caused by cottage septic tank systems. On the other hand systems installed prior to the health unit formation and those installed without their knowledge do not always meet the basic public health requirements. Complaints regarding private sewage disposal installations are investigated as soon as possible.

The health unit advises the public during the summer months, by means of the local press in the four health unit centres, of their requirements concerning private sewage disposal systems. The Department of Health booklet "Septic Tank Systems" and local specifications are mailed to known applicants for building permits.

SANITARY SURVEY RESULTS - SIX MILE LAKE

Page 58 provides a statistical summary of the data collected on Six Mile Lake concerning the evaluation of:

- (a) Private sewage disposal systems (165 systems observed)
- (b) Kitchen waste disposal systems (148 systems observed)
- (c) Laundry waste disposal systems (33 systems observed)
- (d) Private refuse disposal practices (284 practices observed).

One hundred and sixty-four premises, including 2 commercial establishments, were inspected along 17 miles of shoreline of Six Mile Lake. However, again it should be pointed out that this figure need

have no positive bearing on the number of systems observed. For example, a single cottage may have a privy as well as a septic tank and if the cottage is used only on weekends, there may be no provision for laundry.

The graph on page 58 indicates that 10.3% of all private sewage disposal systems, 6.1% of all laundry waste disposal systems, 1.8% of the total refuse disposal practices and 11.5% of all kitchen waste disposal systems were contributing to pollution.

The table on page 71 indicates the type of sewage disposal systems encountered and the number and percentage of each type contributing to water pollution or causing a public health nuisance.

The graph on page 72 provides a further breakdown of the private sewage disposal systems contributing to pollution or causing public health nuisance.

A map of Six Mile Lake indicating the area of the lake studied is found on page 73.

The statistics relating to the collection of lake water samples, both bacteriological and chemical, will be included later in this report.

The details of the systems causing pollution or public health nuisance are shown on pages 59 to 70.

		284)
	87.6 Total Satisfactory	တ္ ။
	10.6 Public Health Muisance	Befuse al Practice Practices
	noitulloq ot gaitudirtanol 8.1 [Private Refuse Disposal Pract (Total Practic
100	Per Cent	
	Vrotoslaitad Lator 7.00	ns = 33)
ę	27.2 Public Health Nuisance	<u>න</u> බ
	noitullog ot garitudirtano0 1.0	Laundry Waste Disposal Syst (Total System
100	Per Cent Per Cent	JO
	S6.1 Total T.08	ns = 148)
	32.4 Public Health Nuisance	Waste Syster ystems
-	11.5 Contributing to Pollution	Kitchen Disposal (Total S
100	Per Cent	
	74.5 Total Satisfactory	165)
	15.2 Public Health Nuisance	Sewage 1 Systems Systems = 165
	noitulloq ot gaituditanoo E.O1	Private Sewage Disposal Syster (Total Systems
00	90 880 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	P. Di.

Per Cent

SIX MILE LAKE

Toilet Waste

Pollution (P) or P.H. Nuisance (N)	Z	N	N	Ω,	<u>a</u> ,	Q.	C4	Д	Z .	ρ.,	Q.	N	Ω,	N
Remarks				Insufficient soil cover	Poor design	Insufficient soil cover	Toilet tile almost on water table, Distance only 15 feet	Toilet waste draining to lake		Pit privy on rock	Disposal field very close to lake		Toilet waste 2' above water table	
Soil Depth Less than 5 Feet	X	×		X	×	×	×	×		×	×	×	×	
Distance from Lake in Feet	100	65	100	81	65	99	25	. 36	200	150	20	160	70	33
System	Pit Privy	Pit Privy	Pit Privy	Mod. Flush	Mod. Flush	Mod. Flush	Mod. Flush	Flush	Pit Privy	Pit Privy	Mod. Flush	Pit Privy	Mod. Flush	Mod. Flush
Sampling	8	10	12	13	15	16	17	18	23	77.	29	33	39	97

Pollution (P) or P.H. Nuisance (N)	Ъ	<u>C</u> ,	Z	Z	Z	Z	Z	Z	Z	Z	Z	N	Z	Z	Z	Ω,
Remarks	Draining to lake	Waste empties into marsh, No weeping tile														Tile field 20° from lake
Soil Depth Less than 5 Feet	×	×				×	×	×			×	×	×		×	×
Distance From Lake in Feet	09	150	07	20	250	25	150	120	130	110	35	100	09	200	120	50
System	Mod. Flush	Mod. Flush	Mod. Flush	Pit Privy	Pit Privy	Mod. Flush	Flush	Pit Privy	Mod. Flush	Pit Privy	Pit Privy	Mod. Flush				
Sampling Location	847	67	53	99	65	99	69	70	72	7/4	80	81	86	100	109	111

Pollution (P) or P.H. Nuisance (N)	Z	ρ,	Z	N	N	Д	Сı	Д	Дų	Z	N	Д
Remarks		Leaching Pit 25° from lake				Draining to lake	Close to a stream	Close to a stream and draining to lake	Poor design, Disposal area 25° from lake			Poor Construction
Soil Depth Less than 5 Feet	×	×		×	×				×			×
Distance from Lake in Feet	50	25	09	120	50	85	120	115	25	110	125	100
System	Mod. Flush	Flush	Pit Privy	Pit Privy	Mod. Flush	Mod. Flush	Pit Privy	Pit Privy	Mod. Flush	Pit Privy	Container	Flush
Sampling Location	117	125	126	131	137	777	142	145	977	151	152	160

SIX MILE LAKE Kitchen Waste

Pollution (P) or P.H. Nuisance (N)	N	N	Z	Ω,	ρ,	Ωι	N	N	D.	N	Ω ₄	N	Z	Q.
Remarks				Insufficient soil cover, Close to lake	Insufficient soil cover, Close to lake	Draining to lake			Insufficient soil cover, Close to lake		Draining to lake			Insufficient soil cover
Soil Depth Less than 5 feet				×		×		×	×	×	×			×
Distance from Lake in Feet	150	160	70	09	09	07	100	75	36	33	15	45	200	09
System	Surface	Surface	Surface	Leaching Pit	Leaching Pit	Surface	Surface	Surface	Surface	Surface	Surface	Leaching Pit	Surface	Leaching Pit
Sampling Location	McG.	٦	8	~	7	10	12	13	15	16	21	22	23	772

S

ction (P) or Nuisance (N	N	Z	N	N	N	N	N	N	N	N	N	N	N	Z	N
Pollution (P) or P.H. Nuisance														:	
								,							
Remarks															
Depth than															
Soil Dept Less than 5 feet				×				×		×			×	×	
Distance from Lake in Feet	150	100	50	09	50	70	30	100	100	45	250	100	20	25	
Dist from	1,5	1(3 (44 (30	Ä)[23	Ä			
System	Surface	Leaching Pit	Surface	Surface	Surface	Surface	Surface								
bn El	S	S	, S	ું જ	ડે	Š	స్ట	Š	Š	ĭ	స్ట	స	<u> </u>	S	S
Sampling	56	28B	43	847	67	52	53	55	57	58	59	79	99	99	29

Pollution (P) or P.H. Nuisance (N)	Z	N	N	N	N	N	N	N	۵۰	Z	N	N	N	N	N
Remarks									Insufficient soil cover, Close to lake						
Soil Depth Less than 5 Feet							×		×	×			×	×	
Distance from Lake in Feet	150	180	150	70	50	150	20		50	07	30	25	130	100	
System	Surface	Leaching Pit	Surface	Surface	Surface	Leaching Pit	Surface	Surface	Surface	Surface	Surface	Surface	Leaching Pit	Leaching Pit	Surface
Sampling Location	69	17	72	73	412	92	78	81	85	98	68	96	96	26	86

Pollution (P) or P.H. Nuisance (N)	N	Д	N	N	Q.	Д	N	Z	N	۵	Q	Z	N	Z	ρ,
Remarks		Insufficient soil cover, Close to lake			Insufficient soil cover	Insufficient soil cover, Close to lake				Insufficient soil cover, Close to lake	Insufficient soil cover, Close to lake				Insufficient soil cover, Close to lake
Soil Depth Less than 5 Feet		×			×	×	×	×		×	×		×		
Distance from Lake in Feet		07		07	07	30	07	130	50	25	15	35	50	06	4
System	Surface	Surface	Surface	Surface	Leaching Pit	Leaching Pit	Surface	Surface	Surface	Leaching Pit	Leaching Pit	Surface	Surface	Surface	Surface
Sampling	66	100	105	106	109	111	112	114	116	123	125	126	127	131	137

Pollution (P) or P.H. Nuisance	٩	Q,	N	N	Ф	N
Remarks	Poor design, Close to lake	Insufficient soil cover, Close to lake			Poor design	
Soil Depth Less than 5 Feet	×	×	×		×	×
Distance from Lake in Feet	35	35	25	09	75	99
System	Leaching Pit	Leaching Pit	Surface	Surface	Surface	Surface
Sampling Location	140	977	156	159	160	170

	Pollution (P)	or P.H. Nuisance (N)	N	N	N	N	N	Z	Z	Q.	Ω	Z
		Remarks								Draining into lake	Washing in the lake	
Laundry Waste		Lake	ı	ı	ī	ŧ	1	ı	ı	×	ı	1
Laundr	. 71	Surface	×	×	×	ı	×	×	×	1	×	×
	SPOSAL	Leaching Pit	I	ŧ	ŧ	1	ı	1	ı	ž.	ŧ	ı
	DISP	Septic Tank	t	1	ı	×	ŧ	1	ı	1	ī	ĵ
		Method	Machine	Machine	Machine	Manual	Machine	Machine	Machine	Manual	Machine	Machine
	Sampling	Location	⊢ f	70	10	16	647	52	69	72	76	100

×

Machine

(a) ; + (b)	P.H. Nuisance (N)	Ω.,	Ω4	Z	N	Z	Z	Z	Z	N	N	N	Z	2
	Remarks	Incineration on edge of lake	Drains to lake											
	Lake	ŧ	8	t	ı	ŧ	1	1	1	1	ī	ŧ.	ŧ	1
T	Deposited in Bush	I	×	×	×	×	×	×	×	>4	×	⋈	×	×
	Home	3	ı	ı	ı	ı	1	ŧ	ı	1	ı	ı	ı	ŧ.
DISPOS	Local	×	ì	ı	1	ı	1	×	t	ł	ŧ	ı	1	ı
ما	Buried	1	1	ī	1	1	t	1	ı	ŧ	1	ı	×	1
	Burned	×	t	×	×	×	×	×	×	×	t	×	×	ŧ
	Sampling	7	10	П	12	13	18	19	20	22	23	24	26	29

	Pollution (P) or P.H. Nuisance	N	Z	Z	N	Z	N	ρ,	Ç,	Z	Д	N ·	Z	N	N
	Remarks							Incomplete incineration on lakeshore	Swamp into lake		Swamp into lake	,			
	Lake	1	1	ı	1	ı	1	ı	1	ı	ı	ı	1		1
⊢	Deposited in Bush	X	×	×	×	ŧ	×	×	X	×	X	×	×	×	×
0 S A	Home	8	8	1	B	1	1	×	1	×	ı	i	â	1	×
DISP	Local	1	1	1	1	×	1	ı	ı	ı	1	B	8	ł	ı
	Buried	1	×	1	ı	1	ı	ı	ŧ	, 1	ı	×		i	1
	Burned	×	ı	×	×	×	1	×	ı	×	í	X	×	×	ŧ
	Sampling	31	77	50	52	55	65	99	7/4	87	06	93	98	66	111

Pollution (P)	or P.H. Nuisance (N)	N	2	N	N	Z	N	Z	N
	മി								
	Remarks								
	Lake	ı	ı	ı	ŧ	t	1	ī	1
	Deposited in Bush	1	×	×	×	×	×	×	×
OSAL	Home	×	ı	t	ı	î	ŧ	1	1
DISPO	Local	ı	ł	I	1	ŧ	ı	ı	ı
	Buried	1	t	1	1	ŧ	ı	ı	ı
	Burned	×	×	t	ŧ	×	×	×	×
	Sampling	127	134	135	140	152	153	173	174

Break Down of Private Sewage Disposal Systems

Unsatisfactory	24.4	30.3	0	10.0	N/A			
Total Ur Number	21	30	0	Н	77	$\frac{7}{5} = 10.3\%$	$\frac{5}{5} = 15.28$	$\frac{2}{5} = 25.5\%$
% of	8.1	25.8	0	10.0	N/A	165	sance 25/165	165
No. of Public Health Nuisances	7	17	0	н	25	Percentage of Total Systems Contributing to Pollution	Total Systems Causing a Public Health Nuisance	atisfactory
% of	16.3	4.5	0	0	N/A	cems Cont	cems Caus	cems Unsa
No. Contributing to Pollution	174	~	0	0	17	ntage of Total Syst	Percentage of Total Syst	Percentage of Total Systems Unsatisfactory
% of Total Systems	52.1	0.04	۳.	6.1	100.0%	Perce	Perce	Perce
Number	98	99	m	10	165			
Type of System	Septic Tank	Privy	Chemical	Other	Total			

SIX MILE LAKE

Breakdown of Private Sewage Disposal Systems

Percentage by which the Different Types of Systems Contributed to Pollution (17 systems Contributing to Pollution = 100%)

100

80

96

20

9

50

Be

07

Percentage by which the Different Types of Systems Caused Public Health Nuisances (25 systems Causing Public Health Nuisances = 100%)

Type of System

Type of System

Others 0.0%

Privies 17.6%

Septic Tanks 82.4%

20

10

0

30

PART V - COMPARISON OF THE LAKES

In this part, the intention is to review the lakes collectively for the purpose of comparison and summary and to determine any similarities or trends that may be occurring. It is, however, obvious that due to the small sample of only three lakes any suggestions of predictability for recreational areas in general would be statistically invalid.

The three lakes are summarized under the following headings:

- 1. Waste producing systems
- 2. Criteria for rating a system as unsatisfactory
- 3. Bacteriological water reports on lake water samples
- 4. Chemical and biochemical water reports on lake water samples
- 5. Health Unit activity

Waste Producing Systems

Waste producing systems in this survey include:

Туре	Total Systems Inspected	Total Classified As Public Health Nuisance	Total Contributing to Pollution
Private Sewage Disposal Systems	573	66	53
Kitchen Waste Disposal Systems	480	112	30
Laundry Waste Disposal Systems	132	62	9
Private Refuse Disposal Practice	s 700	34	10

Systems are not counted for kitchen and laundry wastes when their wastes are directed through a common system which is combined with the domestic sewage disposal system.

In the category "Public Health Nuisance" a review of the statistics contained in parts II, III and IV indicates a fairly wide fluctuation in the frequency with which increments were made to this category when evaluating the different types of systems.

The category "Contributing to Water Pollution" is of singular importance in this study and therefore a comparative evaluation of this category is outlined in graph form with percentage figures on page 76.

Reference to this graph indicates that in the case of private sewage disposal systems, 9.2% of the total systems were contributing to pollution in a range between 7.2% at Jack Lake and 11.0% at Steenburg Lake.

A fair degree of uniformity is also apparent in the comparison of (a) refuse disposal and (b) laundry waste disposal systems found to be contributing to pollution.

The same graph shows that in the case of private refuse disposal, Six Mile and Jack Lake deviate by only 5/10 of 1%. As explained earlier (The Study of Steenburg Lake) Steenburg Lake was in the unique position of having municipal dump sites conveniently available to 96% of the lake population which tends to explain the reason that no systems at this lake were contributing to pollution.

The widest variance between lakes was found in the number of kitchen waste disposal systems indicated as contributing to pollution. The range is from 1.5% contributing to pollution on Jack Lake to 11.5% at Six Mile Lake. One possible cause for this may be that Jack Lake utilized more subsurface disposal methods than the other two lakes.

PERCENTAGE OF SYSTEMS CONTRIBUTING TO POLLUTION

(A Summary and Comparison)

Per Cent 1 1.8 Six Mile Lake 1 2.3 Jack Lake	Private Refuse Disposal Practices Contributing to Pollution	Total Practices = 700	Contributing to Pollution = 10(1.4%)
Per Cent 1 5.1 Steenburg Lake 3.3 Jack Lake	Laundry Waste Disposal Systems Contributing to Pollution	Total Systems = 132	Contributing to Pollution = 9 (6.8%)
Per Cent 11.5 Six Mile Lake 7.7 Steenburg Lake	Kitchen Waste Disposal Systems Contributing to Pollution	Total Systems = 480	Contributing to Pollution = 30 (6.3%)
o 5 % % % % % % % % % % % % % % % % % %	Private Sewage Disposal Systems Contributing to Pollution	Total Systems = 573	Contributing to Pollution = 53 (9.2%)

Per Cent

In summary, it appears that, excluding kitchen waste disposal systems, general uniformity exists within the three lakes in the percentage of systems found contributing to water pollution. It is emphasized that the category "Contributing to Water Pollution" refers to systems that could be proven to be contributing material to the lake water, however, the quantity and quality of this pollution could not be accurately measured.

CRITERIA FOR RATING A SYSTEM AS UNSATISFACTORY

The graph on page 80 illustrates the parameters used and their frequency of appearance in evaluating systems as unsatisfactory. The 4 parameters involved are discussed below.

<u>Proximity to Water Table</u> - waste disposal systems located in or so close to the water table that pollution must be assumed.

<u>Proximity to Lake</u> - waste disposal systems located so near to the lake that pollution resulted.

Insufficient Soil Cover - waste disposal systems installed in areas unsatisfactory due to the lack of a reasonable depth of suitable soil cover over bedrock or hardpan for the installation of sub-surface waste disposal systems.

<u>Faulty Design</u> - Systems so constructed or in such a state of repair that their function was unsatisfactory. Insufficient size and the failure to provide a satisfactory system were also included in this category.

established recommendations and good practice were not considered as prime evidence for an unsatisfactory rating (e.g. the booklet "Septic Tank Systems" published by the Ontario Department of Health states that a septic tank system should be no closer than 50 feet to any lake, stream or pond. In this study a septic tank may have been located 35 feet from the lake yet due to other factors such as soil, quality, depth of soil, topography and the amount of effluent produced, this system could be judged as satisfactory). In some cases a system would be judged unsatisfactory for more than one reason.

The graph on page 80 indicates clearly that in many cases the causes for the unsatisfactory ratings were variable for an individual lake and again when the three lakes were considered collectively.

On Steenburg Lake and Six Mile Lake "faulty design" and "insufficient soil cover" received almost identical weight as the causes for unsatisfactory sewage disposal systems. "Faulty design" was again the prime reason for condemning kitchen waste disposal systems on these lakes.

In general it would appear that failure to (a) properly design and construct suitable waste disposal systems and (b) the lack of a reasonable depth of suitable soil cover are the primary reasons that systems were considered unsatisfactory although other

factors are also involved to varying degrees and cannot be overlooked. Indications were that the provision of technical assistance and proper supervision prior to installation could have averted many of these problems.

CRITERIA FOR RATING SYSTEMS AS UNSATISFACTORY

LABORATORY REPORTS - LAKE WATER

(a) <u>Bacteriological Water Samples</u>

As stated in the introduction to this report, field crew members collected water samples for bacteriological examination from the lake at the immediate front of all premises. In this way observations concerning the function of individual waste disposal practices could be further evaluated on a lot by lot basis. The Jack and Steenburg Lake crews submitted the samples to the Regional Laboratory at Peterborough while the Six Mile Lake crew utilized the Regional Laboratory in Orillia. Water samples were collected daily and submitted twice weekly under refrigeration.

In total 1758 samples were collected for bacteriological examination and the reports received from these samples were placed in one of the four following categories.

- 1. O Total Coliform Organisms O Faecal Coliform Organisms /100 ml.
- 2. Less than 2400 Total Coliform Org. O Faecal Coliform Org. /100 ml.
- 3. Greater than 2400 Total Coliform Org. O Faecal Coliform Org. /100 ml.
- 4. Positive for Total Coliform Org. Positive for Faecal Coliform Org.

Total coliform organisms are composed of organisms that normally live in soil, various types of vegetation, or faecal discharge but smaller in numbers than the faecal coliforms.

In general terms, the presence of total coliform organisms in water usually suggests pollution with soil run-off water or water polluted with sewage sometime in the past. Faecal coliforms in water indicate a recent or possibly dangerous faecal (human or animal) contamination.

Some organisms of the total coliform group will survive longer in water than faecal coliform organisms, thus a past history of sewage pollution, or sewage pollution from a distant source, could cause a laboratory report to show the absence of faecal coliforms with the presence of total coliforms.

The graph on page 83 indicates the number of samples collected at each lake which fall under the above four categories.

The table on page 84 indicates the number of samples collected at each lake and the percentage of those samples falling in each of the four categories.

The following graph on page 85 compares the sample results by category for each lake. It is apparent from the graphs that the shoreline water in all three lakes is markedly similar in bacteriological quality.

It is emphasized, however, that the majority of bacteriological water samples were collected as closely to the shoreline as possible in an attempt to correlate bacteriological results with the physical conditions.

The presence of total and faecal coliform organisms as an independent criteria could not be considered as an indication of pollution from a given premises for well known reasons such as lake currents, flow of water and the contributions of animals and birds.

Where there was evidence of liquid waste or sewage ponding on a lot, bacteriological samples were also collected in order to determine the nature of the ponding material. These samples are distinct from the above discussion and are not included in the graphical analysis.

0.1 > 24.00 T.C0 6.0.7 T.C0 6.0.0 -0.0.0 T.C. F.C0 71.0 T.C. F.C0 71.0 F.C0	Steenburg Lake	633 Total Samples
Per Cent Per Cent	St	63
	Jack Lake	opu lotal pamples
Per Cent Per Cent Per Cent		
Per Cent 8.0 % % % % % % % % % % % % % % % % % % %	Six Mile Lake	ardina man / h

Bacteriological water samples were collected as closely as possible to the shoreline in an attempt to indicate the incidence of pollution. These results are not intended to evaluate the bacteriological quality of lake water for recreational purposes.

Number of Samples in Categories (M.P.N. Per 100 ml.)

for liforms			
Positive for Faecal Coliforms	180	283	324
Total Coliforms -> 2400 Faecal Coliforms - 0	21	N	4
Total Coliforms -<- 2400 Faecal Coliforms - 0	237	308	250
Total Coliforms - 0 Faecal Coliforms - 0	37	57	55
, s, s, c,	Six Mile Lake	Jack Lake	Steenburg Lake

(A Summary and Comparison)

1
ΣΤ°Σ Steenburg Lake
73.6 Јаск Љаке
37.7 Six Mile Lake
Per Cent 10 20 30 60 70 80 90 80
0.1 Steenburg Lake
O.3 Jack Lake
3.2 Six Mile Lake
Per Cent Per Cent
70°0 Steenburg Lake
үү.ү дзек Гаке
Six Mile Lake
Per Cent.
S.7 Steenburg Lake
8.7 Jack Lake
3.0 Six Mile Lake
Per Cent Per Cent

Bacteriological water samples were collected as closely as possible to the shoreline in an attempt to indicate the incidence of pollution. These results are not intended to evaluate the bacteriological quality of lake water for recreational purposes.

Positive for F.C.

F.C.-0/100 ml.

>2400 T.C.

F.C.-0/100 ml.

< 2400 T.C

F.C.-0/100 ml.

T.C. P

(b) Chemical and Biochemical Water Samples

Water samples for chemical analyses were collected along the shoreline in different areas or in front of those lots where pollution was indicated and also from the interior of the lakes to serve as a control. The three categories have been named as L, A and C respectively. A total of 64 samples, always preserved with ice, had been shipped promptly to the Central Public Health Laboratory in Toronto for analyses. The laboratory results for biological oxygen demand, suspended solids, ammonia nitrogen, organic nitrogen and soluble phosphate are tabulated on pages 89 to 94. In the cases where suspended solids had high values, volatile suspended solids were also determined.

Biological oxygen demand (B.O.D.) is a test for determining the quantity of oxygen that would be required for the complete stabilization of a polluted water through biochemical decomposition of organic matter under aerobic conditions. It is an index showing the polluting power or strength of sewage, industrial waste or of a polluted water. In Ontario the objective of the Ontario Water Resources Commission for discharge of effluent into a water stream is 4 p.p.m. of B.O.D.

Suspended solids are the foating and relatively slow to settle particles in an effluent or water and the test may indicate that pollution is occurring. The quantity of volatile suspended solids is a measure of the quantity or organic matter present in the solids and an indication of the adequacy of the sewage treatment provided. Presence of these solids results in difficulties in water purification processes. O.W.R.C. objective for suspended solids is 15 p.p.m.

Free ammonia and organic nitrogen taken together is an index of the organic nitrogenous matter present in an effluent or water; ammonia being the initial soluble product in the decomposition process. The concentration of ammonia in water in excess of 0.1 mgm. per litre might render the water suspect of recent pollution. The normal range for total nitrogen in water is considered to be 0.1 to 0.5 mgm. per litre.

Phosphates in surface waters are seldom found in a significant concentration. A high concentration could be due to the use of detergents, leaching from cesspools or from excessive application of fertilizers. Phosphorous is an essential nutrient for algae and weed growth. A concentration of more than 0.2 mgm. per litre of phosphorous in surface water might be considered as an indication that some phosphorous of sewage origin could be present.

In the present study the values of the chemical constituents as determined from the shoreline samples were in general, similar to those of control samples taken from the interior of the lake. In a few samples, however, where the sewage could be seen flowing into the lake and the coliform index had indicated a high count, the effect of pollution was reflected in the chemical analyses. The samples showing relatively higher values than the rest but still well within the accepted limits of water quality criteria are tabulated on page 88.

Remarks												
**Faecal Coliforms		2,300	240,000	23	240		. 15	2,400	240,000			0
**Total Coliforms		2,400	240,000	23	240		15	240,000	240,000			150
*Soluble Phosphate PO,		0.2	9.0	0.2	0.1		0.2	0.2	0.1			0.2
*Nitrogen (N)		0.16	0.30	0.26	.168		.264	0.27	0.42			0.1444
*Nitrogen (N)		.072	.768	.018	.042		.042	.18	.02			.018
*Wolatile Suspended Solids		18.7	1	12.7	8		ı	15.4	89			ı
*Suspended		36.3	7.8	27.7	7.5		1.2	19.7	113			12.7
*B.O.D.		1.0	8.0	3.5	0.4		9.0	0.5	3.5			0.5
Sampling Location	Steenburg Lake	L54B	L55B	160	171	Jack Lake	L2	L32	L38	, , , , , , , , , , , , , , , , , , ,	SIX MILE Lake	119

** M.P.N. per 100 ml.

*Parts per million (p.p.m.)

JACK LAKE

*Chemical Analysis

	Remarks	West end of Brooks Bay				Mid Brooks Bay				Mouth Brooks Bay	
	P04	< 0.1	0.2	< 0.1	<0.1	~ 0.1	0.1	<0.1	0.1	< 0.1	0.2
Nitrogen (N)	Organic	0.138	0.138	0.264	0.132	0.138	0.102	0.210	0.138	0.132	0.270
Nitr	Armonia	0.042	0.048	0.042	0.024	0.015	0.012	090.0	0.036	0.072	0.180
Volatile	Solids										15.4
Snananded	Solids	0	1.2	1.9	Traces	Traces	7.5	2.3	9.0	1:1	19.7
	B.O.D.	2.0	9.0	0.75	8.0	7.0	6.0	0.35	0.7	800	0.5
	Samples	Control 4	L2	L21B	L22D	Control 1	1.24	L27	L28	Control 2	L32

* Parts per million (p.p.m.)

	Remarks	Swamp				Halle's Creek			
	POT	0.1	104	0.2	0.3	0.1	< 0.1	< 0.1	777
Nitrogen (N)	Organic	0.42	72	7/80*0	0.102	0.210	0.108	0.252	39
Nitro	Ammonia	0.024	300	0.024	0.012	0.120	0.012	0.018	18,8
Volatile	Solids	68	2,950						2,400
7	Solids	113	11,420	0.7	1.2	% &	1.0	3.4	000.7
	B.O.D.	3.5	1	8.0	8.0	1.1	0.5	0.8	High
	Samples	L38		1.47	L55	Control 3	174	1745	

SIX MILE LAKE

* Chemical Analysis

	Remarks	In front of rock face	Mouth of Bay		Bay where creek runs in weeds	At mouth of swamp			Weedy Bay
	PO4	< 0.1	< 0.1	-0.1	0.2	-0.1	-0.1	-0.1	0.1
Nitrogen (N)	Organic	0.102	0.120	0.102	0.144	0.156	0.144	0.120	0.138
Nitro	Ammonia	900.00	0.012	900°0	0.018	0.018	0.018	0.036	0.024
Volatile	Solids								
יל היים היים היים היים היים היים היים הי	Solids	0.8	2.0	Ø.0	12.7	1.0	1.5	2.2	J. 8
	B.O.D.	7.0	0.0	0.0	0.5	0.2	7.0	7.0	0.5
	Samples	115	15	1.17	1.19	1.24	145	745	L50

* Parts per million (p.p.m.)

STEENBURG LAKE

* Chemical Analysis

	Remarks	Upper West arm of lake For Location L2 to L25							One location		Midpoint of North arm of lake	
	PO4	< 0.1	0.2	< 0.1	ω° 23	0.1	< 0.1	0.1	<0.1)	<0.1)	-0.1	-0.1
Nitrogen (N)	Organic	0.156	0.168	0.144	0.114	0.120	0.138	0.132	0.120	0.144	0.180	0.102
Nitro	Ammonia	0.030	0.018	0.036	0.078	0.012	0.024	0.018	0.012	0.012	0.024	0.030
Volatile	Solids											
7	Solids	1.6	0.5	1.5	2.3	1.6	1.0	1.4	1.4	1.4	1.8	1.2
	B.O.D.	0.7	1.6	1	1.6	0.5	1.4	8.0	1.7	1.6	9.0	0.8
	Samples	Control A				1.2	97	111	L20		Control Bl	

* Parts per million (p.p.m.)

9	Remarks	Lower end of North arm	or take	For location L27 to L37				One location	For location L54 to L55		For location L56 to L57		
	PO4	-0.1	<0.1	< 0.1	-0.1	< 0.1	<0.1)	(9.0	0.1	0.2	0.1	-0.1	< 0.1
Nitrogen (N)	Organic	0.156	0.150	0.132	0.156	0,160	0.184	0.300	0.150	0.264	0.120	0.168	0.168
Nitro	Ammonia	0.012	0.024	0.018	0.072	0.072	0.078	0.768	0.054	0.018	900°0	0.042	0.030
Volatile	Solids					18.7				12.7			
Susnended	Solids	0.7	2.1	1.7	2.0	36.3	3.3	7.8	2.2	27.7	2,2	1.5	2.2
	B.O.D.	1.8	9.0	9.0	0.7	1.0	1.3	0.0	0.0	3.5	9.0	0.4	7.0
	Samples	Control B2		Area 7	L33B	L54B	L55		Area 10	T60	Area 11	171	L77

	Remarks	For location 181 to 183	For location L84 to L94	Mid point of East arm	T TOYLO		, + + c c c c c c c c c c c c c c c c c	ole rocation	Lower west arm of Lake	
	P04	<0.1	<0.1	0.2	<0.1	< 0.1	<0.1)	<0.1)	0.1	0.2
Nitrogen (N)	Organic	0.132	0.168	0,102	0.168	0.138	0.180	0,360	0.132	0.150
Nitro	Ammonia	0.042	0.018	0.012	0.024	960.0	0.024	870.0	0.030	0.018
Volatile	Solids									
Suspended	Solids	3.2	J.0	1.4	1.2	2.4	1.5	3.8	1.7	1.7
	B.O.D.	2.0	1.4	0.0	6.0	0.65	0.90	0.80	7.0	9.0
	Samples	Area 14 & 15		Control C		1119	L125		Control D	

Health Unit Activity in Land Development and Private Sewage Disposal Control

The following table indicates the year that each of the health units were formed and the resident population that they serve. It is stressed once again that population increases from 20% in one of the units to over 500% in another unit during the summer season.

Name of Health Unit	Year Health Unit Formed	Resident Population of Health Unit	Lake Studied
Peterborough County-City Health Unit	1965	78,800	Jack Lake
Hastings and Prince Edward Counties Health Unit	1966	107,500	Steenburg Lake
Muskoka and District Health Unit	1950	37,000	Six Mile Lake

Section 14, Schedule B of The Public Health Act is a statutory by-law in force in all organized municipalities until amended by the municipal council. This section states: "No privy-vault, cesspool, septic tank or reservoir into which a privy, water closet, stable or sink is drained shall be established until the approval in writing of the medical officer of health has been obtained."

In the unorganized territory, Schedule B of The Public Health Act is not applicable. However, in its place Section 4 (2), Ontario Regulation 277/62, Sanitary Code for Unorganized Territory, does apply to the establishment of private sewage disposal systems.

Only one municipality within the areas studied has provided a septic tank by-law although most organized municipalities have building by-laws which are enforced to varying degrees. Two of the health units feel that the present statutory legislation is adequate.

Some municipalities within the health units studied have enacted subdivision control by-laws under the authority of The Planning Act administered by the Department of Municipal Affairs. Such by-laws are intended to ensure adequate planning in new land developments. Under such by-laws the Community Planning Branch of the Department of Municipal Affairs requests health units to provide a report on the suitability of proposed subdivisions concerning the public health aspects of the site.

When crown land is offered for sale, the Ontario Department of Lands and Forests requests the Health Unit involved to carry out an inspection of the site. The Health Unit's report and recommendations are submitted to the Community Planning Branch.

Although the health units objectives relating to the control of private sewage disposal systems are similar the procedures of this control are variable.

Each of the units studied requires that an application form be completed by the owner or contractor before the private sewage disposal system is established. Following a satisfactory inspection report, approval is issued and the particulars of the installation are recorded.

Application forms for private sewage disposal systems are always available at Health Unit offices and in most cases from the Municipal Clerk. In the Muskoka Health Unit municipal clerks and/or building inspectors distribute "application forms for inspection".

Some municipalities request the public health inspectors to carry out lot inspections prior to issuing a building permit.

This type of programme is only effective when municipal officials, owners and contractors accept their responsibility and co-operate. Again, in order to achieve effectiveness, the public must be aware of the requirements of the health unit. In many cases difficulty has been experienced by the prospective owner who is unaware of the standards and restrictions for private sewage disposal systems. Use of the local press has been made by inserting notices advising the public of the health units requirements in two of the units. None of the units studied presently use other methods such as posters placed at recreational areas to inform cottagers.

The provincial department's booklet "Septic Tank Systems" is distributed by the health units to individuals planning a septic tank system.

Prior to the formation of all health units and health departments, part-time medical officers of health were responsible for the enforcement of The Public Health Act and minimum control was exercised over private sewage disposal installations. Many of the problems encountered today regarding sewage disposal result from this former situation.

Although the three units spend a high percentage of the inspectors' time on recreational sanitation and in doing so sacrifice other important areas of environmental health, no unit considers its present programme of private sewage disposal control adequate. In order to achieve effectiveness in the programme many modifications in policy and an increase in staff would seem to be essential.

PART VI - CONCLUSIONS

- 1. Approximately 9.2% of the domestic sewage disposal systems inspected were found to be contributing pollution to the lake water ranging from 7.2% at Jack Lake to 11.0% at Steenburg Lake. In addition to this, many of the systems not contributing to pollution were considered to be public health nuisances.
- (b) Kitchen waste disposal systems were found to be contributing to pollution within a range of 1.5% at Jack Lake to 11.5% at Six Mile Lake. Considering the three lakes collectively 6.3% of these systems were contributing to pollution. Those systems judged as public health nuisances varied from 10.9% at one lake to 32.4% at another.
- (c) It was found that 4.5% of all laundry waste disposal systems were contributing material to the lake water in a range varying from 3.3% to 6.1%.
- (d) The primary reasons that systems were judged to be unsatisfactory were because of "Faulty Design" and "Insufficient Suitable Soil Cover". Although the three lakes studied are geographically located within the Precambrian Shield which is characterized by shallow soil, rock and irregular terrain, it appears that with adequate technical knowledge and supervision satisfactory systems could have been installed in most cases.
- 2. Where local refuse disposal sites were conveniently available to cottagers private refuse or garbage disposal did not create a problem. At the two lakes without local municipal dumpsites

- 2.3% and 1.8% of the private refuse disposal practices employed were found to be contributing to pollution. At the other lake where dump sites were available no pollution from this source was observed at the cottage sites.
- 3. None of the health units concerned with this study considered that its programme of private sewage disposal control at recreational areas was adequate and all reported that in their opinion many new systems were being installed without their knowledge. In most cases, privies, laundry and kitchen waste disposal systems were not inspected.
- 4. Strict enforcement of municipal building by-laws and the provision of such by-laws in areas where they do not exist at present would be of benefit for providing better control in this situation. Local building by-laws could be amended to include automatic notification to the health unit when construction is considered by a new owner. This information would afford a course of action for the local health authorities.
- of the restrictions involved in private sewage disposal. It would appear that these restrictions together with the health units' services should be more fully advertised in order to ensure that all new owners are aware of the law in regard to private sewage disposal. Similar consideration should also be given to individual kitchen and laundry waste disposal systems.
- 6. Only a few of the townships within the health units studied had subdivision control by-laws in effect. Local subdivision control legislation should be of considerable value in controlling new land development.

- 7. It has been shown that the population at recreational areas is greatly increased during the summer months and at present a high degree of the inspectional time is spent on matters of recreational sanitation. In order to provide adequate control over all new sewage disposal installations and other recreational sanitation matters an increase in inspection staff either part-time or permanent appears to be essential.
- 8. Information, preferably in the form of a booklet, should be prepared and distributed to the local health units by the Department of Health concerning "alternate methods of sewage disposal" that would be more applicable than the present booklet "Septic Tank Systems" for use in the cottage areas.
- 9. The Cottage Pollution Survey (1967) was limited to the evaluation of only three lakes. It is indicated, as a result of the information obtained, that this programme should be continued during 1968 and possibly thereafter, in order that additional lakes in other geographical areas could be included and more complete data collected.

APPENDIX I

DEPARTMENT OF HEALTH

NOTICE TO SUMMER COTTAGERS

The Ontario Department of Health has selected your lake as one of three lakes in a pilot study to be conducted during the summer months. This study is being made at the request of the Ontario Economic Council on behalf of its Tourist Industry Committee.

The purpose of the study is to establish the effectiveness of the methods used for cottage sewage, laundry and kitchen waste and refuse disposal. The quality of the lake water in immediate, individual cottage areas will be assessed by bacteriological and chemical examination.

Each cottage will be visited by two members of the Department's staff to interview the cottage occupants and complete a questionnaire. The data obtained will be kept in confidence and used for the purpose of the study only.

Your Medical Officer of Health has given his full support to this study.

Your co-operation will greatly assist the Department in the collection of the necessary information and contribute to the success of the survey.

COTTAGE SANITARY SURVEY

							the same of the sa	-
		PUBLIC HEALTH ENGI	NEERING SERVICES, ON	PARIO DEPARTMENT OF HEAD	LTH	LCCA	KOITE	
HEALTH	SURVEY AIDE	DATE	TIME HEAD	LTH UNIT CONSULTED	HEALTH UNIT INSPEC	TED 🔲		
COTTAGE	CIROTER	HOD I AND WE SERVED	NO. OF	ROOMS	TREATING FOR WATER	WEEDS		
COMPERCIAL INDUSTRIAL	WINTER	USE ☐ ACE <5 YEARS USE ☐	II NO. OF	OCCUPANT DAYS	OUTSIDE SPRAYING (INSECTS)		
1	DISI	POSAL METHOD		1	WATER	SUPPL	Y	
OF TOILET TOILET WAST	E DISPOSAL	KITCHEN WASTE	LAUNDRY	REFUSE DISPOSAL	DREIKING		OTHER USE	_
SEPTIC TANK		COMB. SYSTEM	WASHING FACILITIES	BURNED ON LOT BURIED ON LOT	RUINING WATER SYSTEM		RUNNING WATER SYSTEM	
O. FLUSH MATERIAL _		LEACHING PIT	WASTE DISPOSAL	TO LOCAL DUMP	SOURCE		SOUTICE	
DAY DEURIED IRIVY LEACHING PI CHICAL TILE BED		TO SURFACE	METHOD	DEPOSITED IN BUSH DEPOSITED IN LAKE COLLECTION SERVICE	LAYE		LAND WOLL CISTERN	
DISPOSAL AREA		DISPOSAL AREA			TREATMENT AT COTT	'AGE	TREATMENT AT COTTAC	E
COMMPHY SUITABLE ANDE FROM LAMB TO DOTH <5 FRET FACE WET THING TO LAME		DISTANCE FROM LAKE FT. SOIL DEPTH < 5 FT. SURFACE WET DRAIN. TO LAKE			FILTERED DISINFECTED NONE	百	FILTERED DISINFECTED NONE	
STATE OF THE PROPERTY OF THE P		POLDUTING LAKE	POLLUTING LAKE	POLLUTING LAKE	STRUCTURE UNSAT.			
LUTING LAKE P.H. NUISAN	CE[]	P.H. NUISANCE	P.H. NUISANCE	P.H. NUISANCE	LOCATION UNSAT.			
					TREATMENT UNSAT.			

LAKE

PESCRIPTION	VOLUME OF WASTE WATER FLOW PER OCCU-	WASTE WATER	DATE	TC/100 ml.	FC/100 ml.	BOD5	NITROGE	E=1, 10	PO4	Summer Su
	FLOW PER OCCU- PANT PER DAY INTO LAKE REFER TO SAMPLE NO.	SAMPLE NO.								
	LAKE SAM	PLE SAMPLE NO								
CURRENT MOVEMENT FT/ MIN										

COTTAGE SANITARY SURVEY

		PUBLIC HEALTH ENGIN	NEERING SERVICES, ONT	ARIO DEPARTMENT OF HEAI	лн	IO	CATION	
	HEALTH SURVEY AIDE	J. DOE DATE JULY 9/6	7 TIME 3:45 HEAL	TH UNIT CONSULTED	HEALTH UNIT INSPE	CTED 🗌		
	COTTAGE 🔀		NO. OF	ROOMS6	TREATING FOR WATE	RWEEDS [
	COLLEGE SUMMER INDUSTRIAL WINTER	USE ⊠ AGE <5 YEARS USE □	NO. OF	OCCUPANT DAYS 152	OUTSIDE SPRAYING	(INSECTS) [
	DISF	POSAL METHOD			WATER	SUPP	LY	
OF TOILET	TOILET WASTE DISPOSAL	KITCHEN WASTE	LAUNDRY	REFUSE DISPOSAL	DRINKING	1	OTHER USE	
H 🖾	SEPTIC TANK [X]	COMB. SYSTEM	WASHING FACILITIES TYPE NONE	BURIED ON LOT IN	RUNNING WATER SYSTEM		RUNNING WATER SYSTEM	123
FLUSH 🔲	MATERIAL STEEL	LEACHING PIT	WASTE DISPOSAL	TO LOCAL DUMP	SOURCE		SOURCE	
PRIVY	EURIED LEACHING PIT TILE BED 30 FT.	TO SURFACE	METHOD N/A	DEPOSITED IN BUSH EDEPOSITED IN LAKE COLLECTION SERVICES	LAKE	Designation of Control	LAIE WELL CISTERN	MUC
DISPOSAL AREA	A	DISPOSAL AREA			TREATMENT AT COT	TAGE	TREATMENT AT COTT	EDA
GIAPHY SUITAI ANCE FROM LAI DEPTH <5 FEI ACE WET JING TO LAKE	E 3S FT.	DISTANCE FROM LAKE 50 FT. SOIL DEPTH <5 FT X SURFACE WET X DRAIN. TO LAKE X			FILTERED DISINFECTED NONE	The state of the s	FILTERED DISINFECTED NONE	LILIX
		POLLUTING LAKE X	POLLUTING LAKE	POLLUTING LAKE	STRUCTURE UNSAT.			
WING LAKE	P.H. NUISANCE[P.H. NUISANCE	P.H. NUISANCE	P.H. NUISANCE	LOCATION UNSAT.			
					TREATMENT INISAT			

		Comp Manuar					NITROG	EN	Phos- phate	Suspe Solid
ROOF WHITE COTTAGE BLACK	VOLUME OF WASTE WATER FLOW PER OCCU-	WASTE WATER INTO LAKE	DATE	TC/100 ml.	FC/100 ml.	BOD ₅	AMMONIA	ORGANIC	P04	.s.s
4"	PANT PER DAY INTO LAKE	SAMPLE NO.								
TWR ROAD	REFER TO SAMPLE NO.									
		-	-						Control Statement of	
TOOL SHED			-							
DEDTO TOUR	. 1		-							
SEPTIC TANK SYSTEM										
STOCK STATE 30' 35'	LAKE SAM	PLE								
		SAMPLE NO. A		24,000						
A & 100'		B		0.30	230					
CURRENT		B			240,000+					
		MICAL A				8.80	0.048	0.360	41	2
CURRENT MOVEMENT 8 FT/ 1 MIN	CHE	MICAL B	JULY 18		,	06.8	0.024	0.180	41	2
	109									

