[4]

OR iii. Find the polar plot of following:

- (a) $G(s) = \frac{14}{[s(s+1)(s+2)]}$
- (b) $G(s) = \frac{sa}{[(1+sa)]}$

Q.5 Attempt any two

- What do you mean by compensator? Classify it and explain each 5 classification with suitable diagram.
- Discuss lag compensator. Sketch the Bode plot of a lag compensator. 5 Give the design steps of a lag compensator.
- 5 iii. Sketch the Bode plot and pole-zero plot of a lag-lead compensator.

Q.6 Attempt any two:

- Write the properties of state transition matrix. (at least 4) 2
- Find the controllability of the system described by the state equation-3

$$\begin{bmatrix} \dot{x1} \\ \dot{x2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 3 \end{bmatrix} \mathbf{u}$$

iii. Find the transfer function when-

$$A = \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

- OR iv. Express the following transfer function in 5
 - (a) CCF Forms
 - (b) OCF Forms

$$\frac{Y(s)}{U(s)} = \frac{[5 s^2 + 2 s + 6]}{[s^3 + 7 s^2 + 11 s + 8]}$$

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

7

5

Faculty of Engineering End Sem Examination May-2024 EC3CO09 Control Systems

Branch/Specialisation: EC Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

Q.1	i.	In a control system the output of the controller is given to-		1
		(a) Amplifier	(b) Sensor	
		(c) Final control element	(d) Comparator	

- ii. What is the effect of feedback in the overall gain of the system?
 - (b) Decreases (a) Increases
- (c) Zero (d) No change
- iii. First order system is defined as: 1
 - (a) Number of poles at origin
 - (b) Order of the differential equation
 - (c) Total number of poles of equation
 - (d) Total number of poles and order of equation
- iv. Which of the following quantities give a measure of the transient 1 characteristics of a control system, when subjected to unit step excitation.
 - I. Maximum overshoot
 - II. Maximum undershoot
 - III. Overall gain
 - IV. Delay time
 - V. Rise time
 - VI. Fall time
 - (b) II, IV and V (a) I, III and V
 - (c) II, IV and VI (d) I, IV and V
- v. The critical value of gain for the system is 40. The system is operating 1 at a gain of 20. The gain margin of the system is:
 - (a) 2 Db (b) 3 Db
- (c) 6 dB
 - (d) 4 dB

P.T.O.

1

- vi. The phase angle of the system $G(s) = s+5/s^2+4s+9$; varies between 1
 - (a) 0° and 90°

- (b) 0° and -90°
- (c) 0° and -180°
- (d) -90° and -180°
- vii. The input of a controller is-

1

1

3

- (a) Sensed signal
- (b) Error signal
- (c) Desired variable value
- (d) Signal of fixed amplitude not dependent on desired variable value
- viii. Lead compensation leads to:
 - (a) Increases bandwidth
- (b) Attenuation
- (c) Increases damping factor (d) Second order
- ix. The transfer function for the state representation of the continuous time 1 LTI system:

dq(t)/dt=Aq(t)+Bx(t)

Y(t)=Cq(t)+Dx(t)

is given by:

- (a) $C(sI-A)^{-1}B+D$
- (b) $B(sI-A)^{-1}B+D$
- (c) $C(sI-A)^{-1}B+A$
- (d) $D(sI-A)^{-1}B+C$
- x. The values of the characteristic equation is given by:
 - (a) Eigen values
- (b) State matrix
- (c) Eigen vector
- (d) None of these
- Q.2 i. Define open-loop and closed-loop control systems with their **2** applications.
 - ii. Find C(s)/R(s) for the following system using Mason's gain formula:

iii. Derive the transfer function of the system shown in fig. using block 5 Diagram reduction techniques-

OR iv. Determine the transfer function of a system represented by the 5 differential equation-

(a)
$$\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = \frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3x$$

(b)
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = 2\frac{d^2x}{dt^2} + 6x$$

- Q.3 i. States the effects of adding of poles and zeros in root-locus. (At least 4 2 effects for each)
 - ii. Find type, error coefficient and steady-state error of the system having 3 unity feedback and open-loop transfer function-

$$G(s) = \frac{k(s+4)}{[s^2(s^3+8s^2+4)]}$$

When input is $\frac{A}{2} t^2$...

- iii. Define the following with suitable diagram:
 - (a) Transient Response
 - (b) Peak time
 - (c) Rise Time
 - (d) Settling Time
 - (e) % Overshoot
- OR iv. The open-loop transfer function of a unity feedback control system is

$$G(s) = \frac{k}{[s(s+4)(s+6)]}$$

Draw the root locus of the system.

- Q.4 i. Find frequency domain specification for a second-order system with 3 unity feedback and $G(s) = \frac{169}{[s(s+7)]}$.
 - ii. A unity feedback control system has-

G(s) =
$$\frac{k}{[s(s+4)(s+10)]}$$

Draw the bode plot. Find K when the system is marginally stable.

P.T.O.

7

5

[4]

Marking Scheme Control Systems (T) - EC3CO09 (T)

Q.1	i)	c		1
	ii)	b		1
	iii)	d		1
	iv)	d		1
	v)	c		1
	vi)	b		1
	vii)	b		1
	viii)	a		1
	ix)	a		1
	x)	a		1
	Λ)	a		1
Q.2	i.	Each difference	1 Mark	2
Q.2	ii.	Correct calculation	2 Marks	3
	11.	Formula	2 Mark	3
	iii.	Each correct steps	1 Mark (1*4)	5
	111.	Answer	1 Marks	J
OR	iv.	Correct steps	1.5 Marks	5
		Answer(for both)	1 Marks	
		,		
Q.3	i.	Statements	0.5 Marks each	2
	ii.	Each value	1 Mark (1*3)	3
	iii.	1 Marks each	(1*5) 5 Marks	5
OR	iv.	Each step	1 Mark(1*4)	5
	1,,	Diagram	1 Marks	
		8		
Q.4	i.	Each Step	(1*2) 2 Marks	3
		Diagram	1 Mark	
	ii.	Step marks	4 Marks	7
		Diagram	2 Marks	
		K	1 Mark	
OR	iii.	Correct steps	1 Mark (1*5)	7
		Diagram	2 Marks	
Q.5	i.	Definition	2 Marks	5
		Classification	3 Marks	_
	ii.	Definition	1 Mark	5
		Steps	3 Marks	
		Plot	1 Mark	

OR	iii.	Correct steps for both plots	1 Mark each	5
		Correct steps for both plots	1 Mark each	
Q.6				
	i.	Each 2 properties	1 Mark (1*2)	2
	ii.	Formula	1 Mark	3
		Calculation steps	2 Marks	
	iii.	Formula	1 Mark	5
		Calculation steps	4 Marks	
	iv.	2.5 Marks each	5 Marks (2.5*2)	5
