Beam-forming Tutorial

by Xuping Feng, 2017.6.10

Before our journey of Beam-forming, some basic principles of it are necessary, see material from article *ARRAY SEISMOLOGY:METHOD AND APPLICATIONS* by *Sebastian Rost* and *Christine Thomas*, 2002.

- 1. Prepare your SAC format data, but note that header variations of SAC file: stlo(longitude of station) stla(latitude of station) are valid;
- 2. Just run executable program beamforing with arguments as below,

beamforming sacfile.lst t1 t2 fre_low fre_high slow_low slow_high slow_step baz_step outputfile

```
<t1>
                Beginning time of inputting SAC files
<t2>
                Ending time of inputting SAC files
<sacfile.lst>
                File containing inputting SAC files
<fre low>
                Low limitation frequency of bandpass filter
<fre_high>
                High limitation frequency of bandpass filter
<slow low>
                Low limitation slowness of scanning
<slow_high>
                 High limitation slowness of scanning
<slow_step>
                 Step slowness length of scanning
<base><base>
                 Step back-azimuth length of scanning
<outputfile>
                 Outputting results file containing 3 columns
                      col1: back-azimuth col2: slowness col3: cross-coeffient
```

ATTENTION!!! program runs on Linux platform, actually Fedora 25, SAC (Seismic Analysis Code) with version 101.6a is necessary here!

3. plotting script is saved in file "plot.sh", ATTENTION, run "plot.sh" requires GMT(the Generic Mapping Tools), here with version 5.3.1,

5.2.1 will be OK;

4. Here give an example,

now we get information of this earthquake event:

[\$]saclst kzdate kztime stlo stla evlo evl	a evdp gcarc baz f 2011.236	.17.46.11.0*.	SAC					
2011.236.17.46.11.0000.XB.PM05BHZ.M.SAC	2011/08/24 17:46:11.000	-5.3368	35.2134	-74.538	-7.6203	149.3	77.7252	251.508
2011.236.17.46.11.0000.XB.PM06BHZ.M.SAC	2011/08/24 17:46:11.000	-5.639	35.3086	-74.538	-7.6203	149.3	77.5211	251.297
2011.236.17.46.11.0000.XB.PM09BHZ.M.SAC	2011/08/24 17:46:11.000	-5.1145	35.0273	-74.538	-7.6203	149.3	77.8395	251.686
2011.236.17.46.11.0000.XB.PM18BHZ.M.SAC	2011/08/24 17:46:11.000	-4.8195	34.15	-74.538	-7.6203	149.3	77.7984	252.048
2011.236.17.46.11.0000.XB.PM20BHZ.M.SAC	2011/08/24 17:46:11.000	-5.0329	33.9064	-74.538	-7.6203	149.3	77.5548	251.968
2011.236.17.46.11.0000.XB.PM21BHZ.M.SAC	2011/08/24 17:46:11.000	-5.3197	33.7205	-74.538	-7.6203	149.3	77.2702	251.832
2011.236.17.46.11.0001.XB.PM15BHZ.M.SAC	2011/08/24 17:46:11.000	-4.6997	34.4694	-74.538	-7.6203	149.3	77.9909	252.057
2011.236.17.46.11.0200.XB.PM12BHZ.M.SAC	2011/08/24 17:46:11.020	-4.6084	34.8505	-74.538	-7.6203	149.3	78.1797	252.037

then calculate predicted information of what seismic phase we are interested, here PcP, directed P, maybe there arrival times are not really divergent.

[\$]taup_time -h 149.3 -deg 77.8 -mod prem Model: prem Distance Depth Phase Travel Ray Param Takeoff Incident Purist Puris											
(deg)	(km)	Name	Time (s)	p (s/deg)	(deg)	(deg)	Distance	Name			
77.80 77.80 77.80 77.80 77.80 77.80 77.80 77.80 77.80	149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3	P PcP pP PKiKP S SKS SKS ScS sS	699.72 708.84 735.51 1036.17 1280.67 1298.08 1305.61 1344.31 1451.99	5.511 4.331 5.598 1.525 10.685 7.051 8.113 10.838 1.638	24.06 18.69 155.53 6.48 25.93 16.77 19.39 153.67 3.84	16.71 13.06 16.98 4.56 17.91 11.71 13.50 18.17 2.70	77.80 77.80 77.80 77.80 77.80 77.80 77.80 77.80 77.80	= P = PcP = pP = PKiKP = S = SKS = ScS = sS = SKiKS			

now we execute beam-forming, and result is visualized below, beamforming listfile $690\ 800\ 0.1\ 1.1\ 0\ 0.06\ 0.001\ 1$ out.txt

Result reveals the back-azimuth is 248 degree, which is near to realistic 251 or 252 degree. And the horizontal slowness is 0.039 sec/km namely 4.3366 sec/degree, which indicates the seismic phase PcP.