Vizsgakérdések

Analízis 1.

Programtervező informatikus szak

2015-2016. tanév 2. félév

• Valós számok

1. Mondja ki a háromszög-egyenlőtlenségeket.

Válasz. Minden a és b valós számra

- (a) $|a+b| \le |a| + |b|$,
- (b) $|a| |b| \le |a b|$.

2. Hogyan szól a Bernoulli-egyenlőtlenség?

Válasz. Minden $h \geq -1$ valós számra és minden $n \in \mathbb{N}$ természetes számra

$$(1+h)^n \ge 1 + nh.$$

Ezekre a h és n értékekre egyenlőség akkor és csak akkor teljesül, ha h=0, vagy n=0, vagy n=1.

3. Fogalmazza meg a számtani és a mértani közép közötti egyenlőtlenséget.

Válasz. Legyen $n \geq 2$ tetszőleges természetes szám és a_1, a_2, \ldots, a_n tetszés szerinti nemnegatív valós szám. Ekkor

$$\sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \cdots + a_n}{n}.$$

Egyenlőség akkor és csak akkor áll fenn, ha $a_1 = a_2 = \cdots = a_n$.

4. Mit mond ki a teljességi axióma?

Válasz. Ha $A, B \subset \mathbb{R}, A \neq \emptyset, B \neq \emptyset$ és $\forall a \in A, \forall b \in B$ esetén a < b, akkor

$$\exists \ \xi \in \mathbb{R}, \ \text{hogy} \ \ \forall \ a \in A \ \text{\'es} \ \forall \ b \in B \ \ \text{eset\'en} \ \ a \leq \xi \leq b.$$

5. Fogalmazza meg a szuprémum elvet.

Válasz. Ha $H\subset\mathbb{R},\ H\neq\emptyset$ és H felülről korlátos, akkorH felső korlátai között van legkisebb.

6. Mit jelent az, hogy a $H \subset \mathbb{R}$ halmaz induktív?

Válasz. $H \subset \mathbb{R}$ induktív, ha $0 \in H$, továbbá, ha $x \in H$, akkor $x + 1 \in H$.

7. Hogyan értelmezi a természetes számok halmazát?

Válasz. \mathbb{N} a legszűkebb induktív részhalmaza \mathbb{R} -nek.

8. Fogalmazza meg a teljes indukció elvét!

Válasz. Legyen A(n) egy állítás minden $n \in \mathbb{N}$ -re. Tegyük fel, hogy A(0) igaz és ha A(n) igaz, akkor A(n+1) is igaz $(n \in \mathbb{N})$. Ekkor A(n) igaz minden $n \in \mathbb{N}$ -re.

9. Mikor van egy $\emptyset \neq A \subset \mathbb{R}$ halmaznak maximuma?

Válasz. Ha $\exists \alpha \in A$, amelyre $\forall x \in A$ esetén $x \leq \alpha$.

10. Pozitív állítás formájában fogalmazza meg azt, hogy a $\emptyset \neq A \subset \mathbb{R}$ halmaznak nincs maximuma.

Válasz. $\forall \alpha \in A \text{ elemhez } \exists x \in A, \text{ hogy } x > \alpha.$

(11. Pozitív állítás formájában fogalmazza meg azt, hogy a $\emptyset \neq A \subset \mathbb{R}$ halmaznak nincs minimuma.

Válasz. $\forall \alpha \in A \text{ elemhez } \exists x \in A, \text{ hogy } x < \alpha.$

12. Mikor felülről korlátos egy $\emptyset \neq A \subset \mathbb{R}$ halmaz?

Válasz. Ha $\exists K \in \mathbb{R}$, hogy $\forall a \in A$ esetén $a \leq K$.

13. Fogalmazza meg pozitív állítás formájában azt, hogy egy $\emptyset \neq A \subset \mathbb{R}$ halmaz felülről nem korlátos!

Válasz. $\forall K \in \mathbb{R}$ számhoz $\exists a \in A$, hogy a > K.

14. Legyen $\emptyset \neq A \subset \mathbb{R}, \ \xi \in \mathbb{R}$. Mit jelent az A elemeire nézve az, hogy $\xi = \sup A$?

Válasz. A $\xi = \sup A$ egyenlőség a következőkkel ekvivalens:

- (i) $\forall x \in A$ esetén $x \leq \xi$ és
- (ii) $\forall \varepsilon > 0$ számhoz $\exists x \in A$, amelyre $x > \xi \varepsilon$.
- **15.** Legyen $\emptyset \neq A \subset \mathbb{R}, \ \xi \in \mathbb{R}$. Mit jelent az A elemeire nézve az, hogy $\xi = \inf A$?

Válasz. A $\xi = \inf A$ egyenlőség a következőkkel ekvivalens:

- (i) $\forall x \in A \text{ eset\'en } x \geq \xi \text{ \'es}$
- (ii) $\forall \ \varepsilon > 0$ számhoz $\exists \ x \in A$, amelyre $x < \xi + \varepsilon$.
- **16.** Irja le az Archimedes-tételt.

Válasz. $\forall a, b \in \mathbb{R}, \ a > 0$ valós számokhoz $\exists \ n \in \mathbb{N}$ természetes szám, hogy b < na.

17. Mit állít a Cantor-féle közösrész-tétel?

Válasz. Tegyük fel, hogy $\forall n \in \mathbb{N}$ természetes számra adott az $[a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (\forall n \in \mathbb{N}).$$

Ekkor

$$\bigcap_{n=0}^{+\infty} [a_n, b_n] \neq \emptyset.$$

- Függvények
- 18. Adja meg a függvény definícióját.

Válasz. Legyenek A és B nemüres halmazok. A nemüres $f \subset A \times B$ reláció függvény, ha $\forall x \in \mathcal{D}_f$ elemhez egyértelműen $\exists y \in B$, hogy $(x, y) \in f$.

19. Mit jelent az $f \in A \to B$ szimbólum?

Válasz. Valamely $\emptyset \neq A, B$ halmazok esetén az $f \in A \rightarrow B$ szimbólum egy olyan függvényt jelent, amelyre $\mathcal{D}_f \subset A$ és $\mathcal{R}_f \subset B$.

20. Mit jelent az $f: A \to B$ szimbólum?

Válasz. Valamely $\emptyset \neq A, B$ halmazok esetén az $f:A \to B$ szimbólum egy olyan függvényt jelent, amelyre $\mathcal{D}_f = A$ és $\mathcal{R}_f \subset B$.

21. Hogyan értelmezzük halmaz függvény által létesített *képét*?

Válasz. Legyen $f: A \to B$ függvény. A $C \subset A$ halmaz f által létesített képe az

$$f[C] := \{ f(x) \in B \mid x \in C \}$$

halmaz (speciálisan $f[\emptyset] := \emptyset$).

22. Hogyan értelmezzük halmaz függvény által létesített *ősképét*?

Válasz. Legyen $f:A\to B$ függvény. A $D\subset B$ halmaz f által létesített ősképe az

$$f^{-1}[D] := \{x \in A \mid f(x) \in D\} \subset A$$

halmaz (speciálisan $f^{-1}[\emptyset] := \emptyset$).

23. Mikor nevezünk egy függvényt *invertálhatónak*?

Válasz. Az $f:A\to B$ függvény invertálható, ha különböző értelmezési tartománybeli elemekhez különböző helyettesítési értékeket rendel.

24. Definiálja az inverz függvényt.

Válasz. Legyen $f:A\to B$ invertálható függvény. f inverz függvénye az

$$f^{-1}: \mathcal{R}_f \ni y \mapsto x$$
, amelyre $f(x) = y$

függvény.

25. Mi a *bijekció* definíciója?

Válasz. Az $f:A\to B$ függvény az A és a B halmaz közötti bijekció (vagy az A és B halmaz elemei közötti $k\"{o}lcs\"{o}n\"{o}sen$ egyértelmű megfeleltetés), ha f invertálható és $\mathcal{R}_f=B$.

26. Irja le az *összetett függvény* fogalmát.

Válasz. Legyen $f:A\to B,\ g:C\to D$ és tegyük fel, hogy $\mathcal{R}_g\cap\mathcal{D}_f\neq\emptyset$. Ekkor f és g összetett függvénye az

$$f \circ g : \{x \in \mathcal{D}_g \mid g(x) \in \mathcal{D}_f\} \to B, \quad (f \circ g)(x) := f(g(x)).$$

függvény.

• Sorozatok

27. Definiálja a következő fogalmakat: *valós sorozat*; sorozat *n*-edik *tagja*, *index*.

Válasz. Egy $a: \mathbb{N} \to \mathbb{R}$ függvényt (valós) sorozatnak nevezünk. Ennek a függvénynek az $n \in \mathbb{N}$ helyen felvett a(n) helyettesítési értékét az a sorozat n-edik tagjának mondjuk és az a_n szimbólummal jelöljük. Az n szám az a_n tag indexe.

28. Mit jelent az, hogy egy $(a_n) : \mathbb{N} \to \mathbb{R}$ sorozat korlátos?

Válasz. $\exists K \in \mathbb{R}$, hogy $\forall n \in \mathbb{N}$ indexre $|a_n| \leq K$.

29. Pozitív állítás formájában fogalmazza meg azt, hogy az (a_n) sorozat nem korlátos.

Válasz. $\forall K \in \mathbb{R}$ számhoz $\exists n \in \mathbb{N}$ index, hogy $|a_n| > K$.

30. Mikor mondja azt, hogy egy valós sorozat monoton növő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat monoton növő, ha $a_n \leq a_{n+1} \ (n \in \mathbb{N})$.

31. Mikor mondja azt, hogy egy valós sorozat szigorúan monoton növő?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat szigorúan monoton növő, ha $a_n < a_{n+1} \ (n \in \mathbb{N})$.

32. Mikor mondja azt, hogy egy valós sorozat monoton fogyó?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat monoton fogyó, ha $a_n \geq a_{n+1} \ (n \in \mathbb{N})$.

33. Mikor mondja azt, hogy egy valós sorozat szigorúan monoton fogyó?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat szigorúan monoton fogyó, ha $a_n > a_{n+1} \ (n \in \mathbb{N})$.

34. Mit ért azon, hogy *indexsorozat*?

Válasz. Azt mondjuk, hogy a (ν_n) számsorozat indexsorozat, ha minden tagja természetes szám és $\nu_n < \nu_{n+1} \ (n \in \mathbb{N})$.

35. Hogyan definiálja egy sorozat *részsorozatát*?

Válasz. Tetszőleges $a=(a_n)$ sorozat és bármely $\nu=(\nu_n)$ indexsorozat esetén

$$a \circ \nu = (a_{\nu_n}) : \mathbb{N} \to \mathbb{R}$$

az (a_n) sorozat ν indexsorozat által meghatározott részsorozata.

36. Milyen tételt tud mondani valós sorozatok és monoton sorozatok viszonyáról?

Válasz. Minden $a: \mathbb{N} \to \mathbb{R}$ valós sorozatnak van monoton részsorozata, azaz létezik olyan ν indexsorozat, amellyel $a \circ \nu$ monoton növő, vagy monoton fogyó.

37. Mit értettünk egy valós sorozat *csúcsán*?

Válasz. a_{n_0} az (a_n) sorozat csúcsa, ha $\forall n \geq n_0$ esetén $a_{n_0} \geq a_n$.

38. Mikor nevezünk egy (a_n) valós sorozatot konvergensnek?

Válasz. Ha

 $\exists\,A\in\mathbb{R},\ \ \forall\,\varepsilon>0\ \text{számhoz}\ \exists\,n_0\in\mathbb{N}\ \text{küszöbindex},\ \text{hogy}\ \forall\,n\in\mathbb{N},\ n\geq n_0\ \text{indexre}\ |a_n-A|<\varepsilon.$

39. Mit jelent az, hogy az (a_n) sorozat divergens?

Válasz. Az (a_n) sorozat divergens, ha nem konvergens, azaz

$$\forall A \in \mathbb{R} \quad \exists \ \varepsilon > 0 \quad \forall \ n_0 \in \mathbb{N} \quad \exists \ n \in \mathbb{N}, \ n \ge n_0 : \qquad |a_n - A| \ge \varepsilon.$$

40. Tegyük fel, hogy az $A \in \mathbb{R}$ szám minden környezete az (a_n) sorozatnak végtelen sok tagját tartalmazza. Következik-e ebből az, hogy az (a_n) sorozat konvergens?

Válasz. Nem. A $((-1)^n)$ sorozat divergens, de pl. az A = 1 szám minden környezetébe a sorozatnak végtelen sok tagja esik.

41. Milyen állítást ismer sorozatok esetén a konvergencia és a korlátosság kapcso-(latáról?)

Válasz. Ha az (a_n) sorozat konvergens, akkor korlátos is.

42. Mit tud mondani konvergens sorozatok részsorozatairól?

Válasz. Ha az $a: \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor tetszőleges ν indexsorozat esetén az $a \circ \nu$ részsorozat is konvergens és $\lim(a \circ \nu) = \lim a$.

43. Mit jelent az, hogy az (a_n) sorozat $(+\infty)$ -hez tart?

Válasz. $\lim(a_n) = +\infty \iff$

 $\forall P \in \mathbb{R}$ számhoz $\exists n_0 \in \mathbb{N}$ küszöbindex, hogy $\forall n \in \mathbb{N}, n \geq n_0$ indexre $a_n > P$.

44. Mi a definíciója annak, hogy az (a_n) sorozatnak $-\infty$ a határértéke?

Válasz. $\lim(a_n) = -\infty \iff \forall P \in \mathbb{R} \quad \exists n_0 \in \mathbb{N} \quad \forall n \in \mathbb{N}, n \geq n_0 : \quad a_n < P.$

45. Definiálja az $A \in \mathbb{R}$ elem r > 0 sugarú környezetét.

Válasz. Az $A \in \mathbb{R}$ valós szám r > 0 sugarú környezetén a

$$K_r(A) := (A - r, A + r)$$

intervallumot értjük. Az $A=+\infty$ elem r>0 sugarú környezete a

$$K_r(+\infty) := \left(\frac{1}{r}, +\infty\right),$$

az $A = -\infty$ elemé pedig a

$$K_r(-\infty) := \left(-\infty, -\frac{1}{r}\right)$$

intervallum.

46. Mit jelent az, hogy az (a_n) sorozatnak van határértéke?

Válasz. Azt, hogy a sorozat *konvergens*, vagy *plusz végtelenhez*, vagy pedig *mínusz végtelenhez* tart. Ez azzal egyenértékű, hogy

$$\exists A \in \overline{\mathbb{R}} \quad \forall \ \varepsilon > 0 \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N}, \ n \geq n_0 : \quad a_n \in K_{\varepsilon}(A).$$

47. Adott $(a_n): \mathbb{N} \to \mathbb{R}$, $A \in \overline{\mathbb{R}}$ esetén mi a definíciója a $\lim(a_n) = A$ egyen-lőségnek?

Válasz. $\forall \ \varepsilon > 0 \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N}, \ n \geq n_0 : \quad a_n \in K_{\varepsilon}(A).$

saudnich titch

48. Fogalmazza meg a sorozatokra vonatkozó közrefogási elvet.

Válasz. Tegyük fel, hogy az (a_n) , (b_n) és (c_n) valós sorozatokra teljesülnek a következők:

- (a) $\exists N \in \mathbb{N} : \forall n > N \text{-re } a_n \leq b_n \leq c_n;$
- (b) $\exists \lim(a_n), \exists \lim(c_n) \text{ és } \lim(a_n) = \lim(c_n) =: A \in \overline{\mathbb{R}}.$

Ekkor a közrefogott (b_n) sorozatnak is van határértéke és $\lim(b_n) = A$.

49. Milyen állításokat ismer a határérték és a rendezés között?

Válasz. Tegyük fel, hogy az (a_n) , (b_n) sorozatoknak van határértékük és

$$\lim(a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor

1º ha A>B, akkor $\exists\,N\in\mathbb{N}:\ \ \forall\,n>N,n\in\mathbb{N}$ -re $a_n>b_n.$

 2^o ha $\exists N \in \mathbb{N}: \ \forall n > N, n \in \mathbb{N}$ -re $a_n \geq b_n$, akkor $A \geq B$.

50. Igaz-e az, hogy ha az (a_n) és a (b_n) sorozatoknak van határértéke és $a_n > b_n$ minden n-re, akkor $\lim(a_n) > \lim(b_n)$?

Válasz. Nem, pl. $a_n := \frac{1}{n}, \ b_n := 0$ esetén $a_n > b_n \ (n = 1, 2, ...), \ de \lim(a_n) = \lim(b_n) = 0.$

51. Mondja ki a monoton sorozatok konvergenciájára és határértékére vonatkozó állításokat.

Válasz. 1º Ha az (a_n) sorozat monoton növekedő és felülről korlátos [monoton csökkenő és alulról korlátos], akkor konvergens, és

$$\lim(a_n) = \sup\{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R} \quad [\lim(a_n) = \inf\{ a_n \mid n \in \mathbb{N} \} \in \mathbb{R}].$$

 2^o Ha az (a_n) sorozat monoton növekedő és felülről nem korlátos [monoton csökkenő és alulról nem korlátos], akkor

$$\lim(a_n) = +\infty$$
 $[\lim(a_n) = -\infty].$

52. Milyen műveleti tételeket ismer konvergens sorozatokra?

Válasz. Ha az (a_n) és a (b_n) sorozat konvergens és $\lim(a_n) =: A \in \mathbb{R}$, $\lim(b_n) =: B \in \mathbb{R}$, akkor

 1^o az $(a_n + b_n)$ összegsorozat is konvergens és $\lim(a_n + b_n) = A + B$;

 2^{o} az $(a_{n}b_{n})$ szorzatsorozat is konvergens és $\lim(a_{n}b_{n})=A\cdot B$;

 3^o ha még $b_n \neq 0 \ (n \in \mathbb{N})$ és $B \neq 0$ is teljesül, akkor

az $\left(\frac{a_n}{b_n}\right)$ hányadossorozat is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B}$.

53. Igaz-e az, hogy ha (a_n) konvergens és (b_n) divergens, akkor $(a_n + b_n)$ is divergens.

Válasz. Igen, mert ha $(a_n + b_n)$ konvergens lenne, akkor $(a_n + b_n - a_n) = (b_n)$ is konvergens lenne

54. Milyen állítást tud mondani (tágabb értelemben) határértékkel bíró sorozatok összegéről?

Válasz. Tegyük fel, hogy az (a_n) és a (b_n) sorozatoknak van határértéke, és

$$\lim(a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor az (a_n+b_n) összegsorozatnak is van határértéke, és $\lim(a_n+b_n)=A+B$, feltéve hogy A+B értelmezve van.

55. Milyen állítást tud mondani (tágabb értelemben) határértékkel bíró sorozatok szorzatáról?

Válasz. Tegyük fel, hogy az (a_n) és a (b_n) sorozatoknak van határértéke, és

$$\lim(a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor az $(a_n b_n)$ szorzatsorozatnak is van határértéke, és $\lim(a_n b_n) = AB$, feltéve hogy AB értelmezve van.

56. Milyen állítást tud mondani (tágabb értelemben) határértékkel bíró sorozatok hányadosáról?

Válasz. Tegyük fel, hogy az (a_n) és a $(b_n): \mathbb{N} \to \mathbb{R} \setminus \{0\}$ sorozatoknak van határértéke, és

$$\lim(a_n) =: A \in \overline{\mathbb{R}}, \qquad \lim(b_n) =: B \in \overline{\mathbb{R}}.$$

Ekkor az (a_n/b_n) hányadossorozatnak is van határértéke, és $\lim(a_n/b_n)=A/B$, feltéve hogy A/B értelmezve van.

57. Fogalmazza meg a *Bolzano-Weierstrass-féle kiválasztási tételt*.

Válasz. Minden korlátos valós sorozatnak van konvergens részsorozata.

58. Definiálja a Cauchy-sorozatot.

Válasz. Az (a_n) sorozat Cauchy-sorozat, ha

 $\forall \; \varepsilon > 0 \; \text{számhoz} \; \exists \; n_0 \in \mathbb{N} \; \text{küszöbindex, hogy} \; \; \forall \; m,n \in \mathbb{N}, \; m,n \geq n_0 \; \text{indexre} \; \; |a_n - a_m| < \varepsilon.$

59. Fogalmazza meg a sorozatokra vonatkozó Cauchy-féle konvergenciakritériumot.

Válasz. Egy valós sorozat akkor és csak akkor konvergens, ha Cauchy-sorozat.

60. Hogyan értelmeztük az *e* számot?

Válasz. Az $a_n := \left(1 + \frac{1}{n}\right)^n \ (n = 1, 2, ...)$ sorozat monoton növekedő és felülről korlátos, tehát konvergens. e-vel jelöljük ennek a sorozatnak a határértékét:

$$e := \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

7

61. Milyen állítást ismer a (q^n) mértani sorozat határértékével kapcsolatosan?

Válasz.

$$\lim_{n \to +\infty} q^n \begin{cases} = 0, & \text{ha } |q| < 1 \\ = 1, & \text{ha } q = 1 \\ = +\infty, & \text{ha } q > 1 \\ \text{nem létezik}, & \text{ha } q \le -1. \end{cases}$$

62. Milyen nevezetes sorozatokat tekintettünk a nagyságrendi kérdésekkel kapcsolatosan?

Válasz. $\mathbf{1}^o$ Ha $k \in \mathbb{N}$ és a > 1, akkor $\lim_{n \to +\infty} \frac{n^k}{a^n} = 0$.

- $\mathbf{2}^o$ Ha $k \in \mathbb{N}$ és |q| < 1, akkor $\lim_{n \to \infty} n^k \cdot q^n = 0$.
- $\mathbf{3}^o$ Minden $a \in \mathbb{R}$ esetén $\lim_{n \to +\infty} \frac{a^n}{n!} = 0$.
- $\mathbf{4}^o \lim_{n \to +\infty} \frac{n!}{n^n} = 0.$
- **63.** Milyen konvergenciatételt tanult az $(\sqrt[n]{a})(a > 0)$ sorozatról?

Válasz. Bármely $0 < a \in \mathbb{R}$ esetén az $(\sqrt[n]{a})$ sorozat konvergens és $\lim (\sqrt[n]{a}) = 1$.

64. Milyen konvergenciatételt tanult az $\binom{n}{\sqrt[n]{n}}$ sorozatról?

Válasz. Az $(\sqrt[n]{n})$ sorozat konvergens és $\lim (\sqrt[n]{n}) = 1$.

- **65.** Fogalmazza meg egy valós szám m-edik gyökének a létezésére vonatkozó tételt. **Válasz.** Ha $m \in \mathbb{N}, \ m \geq 2$, akkor $\forall \ A \geq 0 \ \exists \ ! \ \alpha \geq 0 : \ \alpha^m = A$.
- **66.** Legyen $A>0, 1< m\in \mathbb{N}$. Melyik az a sorozat, amelynek határértéke $\sqrt[m]{A}$? Válasz.

$$\begin{cases} x_0 > 0, \\ x_{n+1} := \frac{1}{m} \left(\frac{A}{x_n^{m-1}} + (m-1)x_n \right) & (n = 0, 1, 2, \ldots). \end{cases}$$

• Végtelen sorok

67. Mi a végtelen sor definíciója?

Válasz. Az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozatból képzett

$$s_n := a_1 + a_2 + \dots + a_n \quad (n \in \mathbb{N})$$

sorozatot nevezzük az (a_n) sorozat által generált *végtelen sornak*, aminek a jelölésére a $\sum a_n$ szimbólumot használjuk.

8

68. Mit jelent az, hogy a $\sum a_n$ végtelen sor konvergens, és hogyan értelmezzük az összegét?

Válasz. A $\sum a_n$ sor konvergens, ha a részletösszegeinek az $s_n = a_1 + \cdots + a_n$ $(n \in \mathbb{N})$ sorozata konvergens. A $\lim(s_n)$ számot nevezzük a sor összegének, amit így jelölünk:

$$\sum_{n=0}^{+\infty} a_n.$$

69. Milyen tételt ismer $q \in \mathbb{R}$ esetén a $\sum_{n=0}^{\infty} q^n$ geometriai sor konvergenciájáról?

Válasz. A $\sum_{n=0}^{\infty}q^n$ sor akkor és csak akkor konvergens, ha |q|<1 és ekkor $\frac{1}{1-q}$ az összege.

70. Mi a teleszkópikus sor és mi az összege?

Válasz. A
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 sor és az összege $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$.

71. Mi a harmonikus sor, és milyen állítást ismer a konvergenciájával kapcsolatban?

Válasz. A $\sum_{n=1}^{\infty} \frac{1}{n}$ sor, ami divergens.

72. Milyen állítást ismer a $\sum_{n}^{1} \frac{1}{n^{\alpha}}$ hiperharmonikus sor konvergenciájával kapcsolatban?

Válasz. A sor $1 < \alpha \in \mathbb{R}$ esetén konvergens, ha $\alpha \leq 1$ valós szám, akkor pedig divergens.

73. Melyik végtelen sor összegeként állítottuk elő az e számot?

Válasz. A
$$\sum \frac{1}{n!}$$
 sor konvergens és $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$.

74. Hogyan szól a Cauchy-kritérium végtelen sorokra?

Válasz. A $\sum a_n$ végtelen sor akkor és csak akkor konvergens, ha

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \forall m, n \in \mathbb{N}, m > n \ge n_0: |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$

75. Mondjon szükséges feltételt arra nézve, hogy a $\sum a_n$ végtelen sor konvergens legyen.

Válasz. Ha a $\sum a_n$ végtelen sor konvergens, akkor $\lim(a_n) = 0$.

76. Igaz-e az, hogy ha $\lim(a_n) = 0$, akkor a $\sum a_n$ sor konvergens? (A válaszát indokolja meg!)

Válasz. Nem igaz, ui. a $\sum \frac{1}{n}$ harmonikus sor divergens és $\lim(\frac{1}{n}) = 0$.

77. Mikor nevez egy végtelen számsort abszolút konvergensnek?

Válasz. Legyen $(a_n): \mathbb{N} \to \mathbb{R}$, ekkor a $\sum a_n$ végtelen sor abszolút konvergens, ha a $\sum |a_n|$ végtelen sor konvergens.

78. Adjon meg egy olyan végtelen sort, amelyik konvergens, de nem abszolút konvergens.

Válasz.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}.$$

79. Fogalmazza meg a végtelen sorokra vonatkozó összehasonlító kritériumokat.

Válasz. Tegyük fel, hogy az $(a_n), (b_n) : \mathbb{N} \to \mathbb{R}$ sorozatokra

$$\exists N \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq N : 0 \leq a_n \leq b_n.$$

Ekkor:

 1^o ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ is konvergens;

 2^{o} ha a $\sum a_{n}$ sor divergens, akkor $\sum b_{n}$ is divergens.

80. Fogalmazza meg a végtelen sorokra vonatkozó Cauchy-féle gyökkritériumot.

Válasz. Tekintsük a $\sum a_n$ sort, és tegyük fel, hogy létezik az $A := \lim \left(\sqrt[n]{|a_n|} \right) \in \overline{\mathbb{R}}$ határérték. Ekkor:

 1^o ha $0 \le A < 1$, akkor a $\sum a_n$ sor abszolút konvergens, tehát konvergens is;

 2^{o} ha A > 1, akkor a $\sum a_n$ sor divergens;

 3^o ha A=1,akkor a $\sum a_n$ sor lehet konvergens is és divergens is.

81. Fogalmazza meg a végtelen sorokra vonatkozó *D'Alembert-féle hányadoskritéri-umot*.

Válasz. Tekintsük a $\sum a_n$ sort, és tegyük fel, hogy $a_n \neq 0 \pmod{n \in \mathbb{N}}$, továbbá létezik az $A := \lim \left(\frac{|a_{n+1}|}{|a_n|}\right) \in \overline{\mathbb{R}}$ határérték. Ekkor:

 1^o ha $0 \le A < 1$, akkor a $\sum a_n$ sor abszolút konvergens, tehát konvergens is;

 2^{o} ha A > 1, akkor a $\sum a_n$ sor divergens;

 3° ha A=1, akkor a $\sum a_n$ sor lehet konvergens is és divergens is.

82. Mik a *Leibniz-típusú sorok* és milyen konvergenciatételt ismer ezekkel kapcsolatban?

Válasz. Ha $0 \le a_{n+1} \le a_n$ $(n \in \mathbb{N})$, akkor a $\sum (-1)^{n+1}a_n$ sort nevezzük Leibniz-típusú sornak. Ezek akkor és csak akkor konvergensek, ha $\lim(a_n) = 0$. Ha $A := \sum_{n=1}^{+\infty} (-1)^{n+1}a_n$, akkor

$$|A - \sum_{k=1}^{n} (-1)^{k+1} a_k| \le a_n$$
 $(n = 1, 2, ...).$

83. Milyen állítást tanult valós számok tizedestört-alakjával kapcsolatban?

Válasz. Tetszőleges $\alpha \in [0,1]$ számhoz van olyan $(x_n) : \mathbb{N}^+ \to \{0,1,\ldots,9\}$ sorozat, amellyel $\alpha = \sum_{n=1}^{+\infty} \frac{x_n}{10^n}$

84. Hogyan értelmezi egy végtelen sor zárójelelezését?

Válasz. Tekintsük az (a_n) sorozat által generált $\sum a_n$ végtelen sort. Legyen adott az (m_n) indexsorozat és tegyük fel, hogy $m_0 = 0$. Ekkor a $\sum a_n$ sor (m_n) indexsorozat által meghatározott zárójelezésén a $\sum \alpha_n$ végtelen sort értjük, ahol

$$\alpha_n := \sum_{i=m_n}^{m_{n+1}-1} a_i \qquad (n = 0, 1, 2, \ldots).$$

85. Tegyük fel, hogy a $\sum a_n$ végtelen sor konvergens. Mit tud mondani a szóban forgó sor $\sum \alpha_n$ zárójelezéseinek a konvergenciájáról?

Válasz. Ha a $\sum a_n$ végtelen sor konvergens, akkor bármely $\sum \alpha_n$ zárójelezett sora is konvergens és

$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} \alpha_n.$$

86. Tegyük fel, hogy a $\sum a_n$ végtelen sor valamely $\sum \alpha_n$ zárójelezett sora konvergens. Milyen feltételek mellett konvergens a $\sum a_n$ végtelen sor?

Válasz. Tegyük fel, hogy a $\sum a_n$ végtelen sorra és az (m_n) indexsorozatra teljesülnek a következő feltételek:

 $1^o\ m_0=0$ és $(m_{n+1}-m_n)$ korlátos sorozat;

 $2^o \lim(a_n) = 0,$

- 3^o a $\sum a_n$ sor (m_n) indexsorozat által meghatározott $\sum \alpha_n$ zárójelezése konvergens. Ekkor a $\sum a_n$ végtelen sor is konvergens.
- 87. Hogyan értelmezi egy végtelen sor átrendezését?

Válasz. Legyen $(p_n): \mathbb{N} \to \mathbb{N}$ egy bijekció, $\sum a_n$ pedig egy végtelen sor. Ekkor a $\sum a_n$ sor (p_n) által meghatározott átrendezésén a $\sum a_{p_n}$ végtelen sort értjük.

88. Milyen állítást ismer abszolút konvergens sorok átrendezéseit illetően?

Válasz. Ha a $\sum a_n$ végtelen sor abszolút konvergens, akkor minden $(p_n): \mathbb{N} \to \mathbb{N}$ bijekció esetén a $\sum a_{p_n}$ átrendezése is abszolút konvergens és $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} a_{p_n}$.

89. Fogalmazza meg a *feltételesen konvergens* sorok átrendezésére vonatkozó *Riemann-tételt*.

11

Válasz. Tegyük fel, hogy a $\sum a_n$ végtelen sor feltételesen konvergens (vagyis konvergens, de nem abszolút konvergens). Ekkor

$$1^{\circ} \ \forall \ A \in \overline{\mathbb{R}} \text{ esetén } \exists \ \sum a_{p_n} \text{ átrendezés, hogy } \sum_{n=1}^{+\infty} a_{p_n} = A;$$

 $2^o \;\; \exists \; \sum a_{p_n}$ átrendezés, ami divergens.

90. Definiálja a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ végtelen sorok *téglányszorzatát*.

Válasz. A $\sum_{n=0}^{\infty} t_n$ végtelen sor, ahol $t_n := \sum_{\max\{i,j\}=n}^{\infty} a_i b_j \ (n \in \mathbb{N}).$

91. Definiálja a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ végtelen sorok *Cauchy-szorzatát*.

Válasz. A
$$\sum_{n=0}^{\infty} c_n$$
 végtelen sor, ahol $c_n := \sum_{i+j=n}^{\infty} a_i b_j \ (n \in \mathbb{N}).$

92. Fogalmazza meg az *abszolút konvergens* sorok szorzatára vonatkozó *Cauchy- tételt*.

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és a $\sum_{n=0}^{\infty} b_n$ sorok mindegyike abszolút konvergens. Ekkor

- (a) a $\sum_{n=0} t_n$ téglányszorzatuk is abszolút konvergens,
- (b) a $\sum_{n=0}^{\infty} c_n$ Cauchy-szorzatuk is abszolút konvergens,
- (c) az összes a_ib_j $(i,j=0,1,2,\ldots)$ szorzatból tetszés szerinti sorrendben képzett $\sum_{n=0}^{\infty}d_n$ végtelen sor is abszolút konvergens, és az összeg mindegyik esetben a tényezők összegének a szorzata:

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} d_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

93. Fogalmazza meg a *Mertens-tételt*

Válasz. Tegyük fel, hogy a $\sum a_n$, $\sum b_n$ sorok konvergensek és legalább az egyikük abszolút konvergens. Ekkor a $\sum c_n$ Cauchy-szorzatuk konvergens és

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

• Hatványsorok, elemi függvények

94. Írja le a *hatványsor* definícióját,

Válasz. Az $(\alpha_n): \mathbb{N} \to \mathbb{R}$ sorozattal és az $a \in \mathbb{R}$ számmal képzett

$$\sum_{n=0} \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

végtelen sort a középpontú, (α_n) együtthatós hatványsornak nevezzük.

95. Hogyan szól a hatványsor konvergenciahalmazára vonatkozó, a konvergencia-sugarát meghatározó tétel?

Válasz. Tetszőlegesen megadott (α_n) sorozattal és $a \in \mathbb{R}$ számmal képzett

$$\sum \alpha_n (x-a)^n \qquad (x \in \mathbb{R})$$

hatványsor konvergenciahalmazára a következő három egymást kizáró esetek egyike érvényes:

- (a) $\exists ! R > 0$ valós szám, hogy a hatványsor $x \in \mathbb{R}$ esetén abszolút konvergens, ha |x a| < R és divergens, ha |x a| > R;
- (b) a hatványsor csak az x = a pontban konvergens (legyen ekkor R := 0);
- (c) a hatványsor $\forall x \in \mathbb{R}$ pontban konvergens (ekkor $R := +\infty$).

 $0 \le R \le +\infty$ a hatványsor konvergenciasugara.

96. Fogalmazza meg a Cauchy-Hadamard-tételt.

Válasz. Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \ \lim \left(\sqrt[n]{|\alpha_n|}\right) =: A \in \overline{\mathbb{R}}.$$

Ekkor

$$R := \begin{cases} \frac{1}{A}, & \text{ha } 0 < A < +\infty \\ 0, & \text{ha } A = +\infty \\ +\infty, & \text{ha } A = 0 \end{cases}$$

a hatványsor konvergenciasugara. Ez azt jelenti, hogy

- (a) ha $0 < R < +\infty$, akkor a hatványsor $x \in \mathbb{R}$ esetén abszolút konvergens, ha |x-a| < R és divergens, ha |x-a| > R;
- (b) ha R = 0, akkor a hatványsor csak az x = a pontban konvergens;
- (c) ha $R = +\infty$, akkor a hatványsor $\forall x \in \mathbb{R}$ pontban konvergens.
- **97.** Adjon meg egy olyan *hatványsort*, amelyiknek a konvergenciahalmaza a (-1,1) intervallum.

Válasz. $\sum x^n$.

98. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a (-1,1] intervallum.

Válasz.
$$\sum \frac{(-1)^n}{n} x^n$$
.

99. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a [-1,1) intervallum.

Válasz.
$$\sum \frac{x^n}{n}$$
.

100. Adjon meg egy olyan hatványsort, amelyiknek a konvergenciahalmaza a [-1,1] intervallum.

Válasz.
$$\sum \frac{x^n}{n^2}$$
.

101. Adjon meg egy olyan hatványsort, amelyik csak az a=2 pontban konvergens.

Válasz.
$$\sum n^n(x-2)^n$$
.

102. Definiálja az exp függvényt.

Válasz.
$$\exp(x) := \sum_{n=0}^{+\infty} \frac{x^n}{n!} \quad (x \in \mathbb{R}).$$

103. Írja fel az exp függvény függvényegyenletét.

Válasz.
$$\exp(x+y) = \exp(x) \cdot \exp(y) \ (x, y \in \mathbb{R}).$$

104. Definiálja a sin függvényt.

Válasz.
$$\sin(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad (x \in \mathbb{R}).$$

105. Definiálja a cos függvényt.

Válasz.
$$\cos(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \quad (x \in \mathbb{R}).$$

106. Definiálja a sh függvényt.

Válasz. sh
$$(x) := \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \quad (x \in \mathbb{R}).$$

107. Definiálja a ch függvényt.

Válasz.
$$\operatorname{ch}(x) := \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \quad (x \in \mathbb{R}).$$

• Függvény határértéke

108. Mit jelent az, hogy $a \in \mathbb{R}$ torlódási pontja a $H \subset \mathbb{R}$ halmaznak?

Válasz. Az a bármely környezetében végtelen sok H-beli elem van.

109. Mivel egyenlő az
$$\mathbb{R}'$$
 és az $\left(\left\{\frac{1}{n} \mid 0 < n \in \mathbb{N}\right\}\right)'$ halmaz?

Válasz.
$$\mathbb{R}' = \overline{\mathbb{R}}, \ \mathbb{Q}' = \overline{\mathbb{R}} \text{ és } \left(\left\{ \frac{1}{n} \mid 0 < n \in \mathbb{N} \right\} \right)' = \{0\}.$$

110. Mikor mondja azt, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely $a \in \overline{\mathbb{R}}$ helyen van határértéke?

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$ és tegyük fel, hogy $a \in \mathcal{D}'_f$. Ekkor azt mondjuk, hogy az f függvénynek az a helyen van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \ x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \ f(x) \in K_{\varepsilon}(A).$$

111. Adja meg egyenlőtlenségek segítségével a *végesben vett véges* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f' \cap \mathbb{R}$, $A \in \mathbb{R}$. Ekkor:

$$\lim_{\varepsilon} f = A \in \mathbb{R} \iff \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \quad |f(x) - A| < \varepsilon.$$

112. Adja meg egyenlőtlenségek segítségével a *végesben vett plusz végtelen* határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, \ a \in \mathcal{D}_f' \cap \mathbb{R}$. Ekkor:

$$\lim_{a} f = +\infty \iff \forall P > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \ f(x) > P.$$

113. Adja meg egyenlőtlenségek segítségével a végesben vett mínusz végtelen határérték definícióját.)

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}'_f \cap \mathbb{R}$. Ekkor:

$$\lim_{x \to a} f = -\infty \iff \forall P < 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \ f(x) < P.$$

 $\lim_a f = -\infty \iff \forall P < 0 \ \exists \ \delta > 0 \ \forall \ x \in \mathcal{D}_f, \ 0 < |x - a| < \delta : \ f(x) < P.$ **114.** Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett véges határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}'_f, A \in \mathbb{R}$. Ekkor:

$$\lim_{t \to \infty} f = A \iff \forall \varepsilon > 0 \ \exists x_0 > 0 \ \forall x \in \mathcal{D}_f, x > x_0 : \ |f(x) - A| < \varepsilon.$$

115. Adja meg egyenlőtlenségek segítségével a mínusz végtelenben vett véges határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, -\infty \in \mathcal{D}_f', A \in \mathbb{R}$. Ekkor:

$$\lim_{T \to \infty} f = A \iff \forall \varepsilon > 0 \ \exists x_0 < 0 \ \forall x \in \mathcal{D}_f, x < x_0 : \ |f(x) - A| < \varepsilon.$$

116. Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett plusz végtelen határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}'_f$. Ekkor:

$$\lim_{t \to \infty} f = +\infty \iff \forall P > 0 \ \exists x_0 > 0 \ \forall x \in \mathcal{D}_f, x > x_0 : \ f(x) > P.$$

117. Adja meg egyenlőtlenségek segítségével a plusz végtelenben vett mínusz végtelen határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, +\infty \in \mathcal{D}_f'$. Ekkor:

$$\lim_{t \to \infty} f = -\infty \iff \forall P < 0 \ \exists x_0 > 0 \ \forall x \in \mathcal{D}_f, x > x_0 : f(x) < P.$$

118. Adja meg egyenlőtlenségek segítségével a mínusz végtelenben vett plusz végtelen határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, -\infty \in \mathcal{D}_f'$. Ekkor:

$$\lim_{-\infty} f = +\infty \iff \forall P > 0 \ \exists x_0 < 0 \ \forall x \in \mathcal{D}_f, x < x_0 : f(x) > P.$$

119. Adja meg egyenlőtlenségek segítségével a mínusz végtelenben vett mínusz végtelen határérték definícióját.

Válasz. Legyen $f \in \mathbb{R} \to \mathbb{R}, -\infty \in \mathcal{D}_f'$. Ekkor:

$$\lim_{x \to \infty} f = -\infty \iff \forall P < 0 \ \exists x_0 < 0 \ \forall x \in \mathcal{D}_f, x < x_0 : f(x) < P.$$

120. Írja le a határértékre vonatkozó átviteli elvet.

Válasz. Legyen $f\in\mathbb{R}\to\mathbb{R},\,a\in\mathcal{D}_f'$ és $A\in\overline{\mathbb{R}}.$ Ekkor

$$\lim_{a} f = A \quad \Longleftrightarrow \quad \forall \ (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \ \lim(x_n) = a \text{ eset\'en } \lim_{n \to +\infty} (f(x_n)) = A.$$

121. Mit tud mondani a hatványsor összegfüggvényének a határértékéről?

Válasz. Tegyük fel, hogy a $\sum_{n=0}^{\infty} \alpha_n(x-a)^n$ hatványsor R konvergenciasugara pozitív. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \quad (x \in K_R(a))$$

az összegfüggvény. Ekkor bármely $b \in K_R(a)$ esetén létezik a $\lim_i f$ határérték és

$$\lim_{b} f = f(b) = \sum_{n=0}^{+\infty} \alpha_n (b-a)^n.$$