Overview

- Notation
- Sample Spaces
- Events
- Set Operations
- Axioms of Probability

Notation

- ullet $\mathbb Z$ is the integers
- ullet $\mathbb R$ is the real numbers
- $\{\cdots\}$ is a set
- $A \subset B$ means set A is a subset of set B
- $A \in B$ means A is a member of set B
- ∅ is the empty set
- |A| is the number of elements in set A
- | means "such that e.g. $\{2z|z\in\{1,2,3\}\}=\{2,4,6\}$
- P(E) means the probability of event E, although Prob(E), $\mathbb{P}(E)$ can also be used.

Sample Spaces

Sample space S: the set of all possible outcomes of an experiment.

```
 \begin{array}{lll} \text{Coin flip} & \{\text{Heads, Tails}\} \\ \text{Flipping two coins} & \{(H,H),(H,T),(T,H),(T,T)\} \\ \text{Roll of 6-sided die} & \{1,2,3,4,5,6\} \\ \text{Weather today} & \{\text{Sunny, Rainy, Snowy, Windy}\} \\ \text{Number of emails in a day} & \{z|z\in\mathbb{Z},z\geq0\} \\ \text{YouTube hours in a day} & \{z|z\in\mathbb{R},0\leq z\leq24\} \\ \end{array}
```

Events

Event E: a subset of sample space S, $E \subset S$. A set of possible outcomes when an experiment is performed

Coin comes up heads	$\{Heads\}$
One head and one tail on two flips	$\{(H,T),(T,H)\}$
Die roll is less than 3	{1,2}
Weather is wet	$\{Rainy,Snowy\}$
Number of emails is less than 20	$\{z z\in\mathbb{Z},0\leq z\leq 20\}$
Wasted day (at least 5 hours on YT)	$\{z z\in\mathbb{R},5\leq z\leq 24\}$

Suppose E and F are events in sample space S i.e. $E, F \subset S$

Suppose E and F are events in sample space S i.e. $E,F\subset S$

 $E \cup F$ is the event consisting of all the outcomes in E or F. \cup is called the union.

Suppose E and F are events in sample space S i.e. $E, F \subset S$

 $E \cap F$ is the event consisting of all the outcomes in both E and F. \cap is called the intersection.

Suppose E and F are events in sample space S, E, $F \subset S$

 E^c is the event consisting of all the outcomes not in E. c is called the complement.

Suppose E, F, G are sets. Basic properties of set union and intersection:

- $E \cup F = F \cup E$ and $E \cap F = F \cap E$
- $(E \cup F) \cup G = E \cup (F \cup G)$ and $(E \cap F) \cap G = E \cap (F \cap G)$
- $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$ and $E \cup (F \cap G) = (E \cup F) \cap (E \cup G)$

Suppose E and F are events in sample space S i..e $E, F \subset S$

$$(E \cup F)^c = E^c \cap F^c \qquad (E \cap F)^c = E^c \cup F^c$$

$$(\bigcup_{i=1}^n E_i)^c = \bigcap_{i=1}^n E_i^c \qquad (\bigcap_{i=1}^n E_i)^c = \bigcup_{i=1}^n E_i^c$$
(DeMorgan's Laws)

Axioms for Events

If E and F are events then so are:

- E ∪ F
- *E* ∩ *F*
- F^c and F^c

Consequently:

- For events E_i , $i = 1, 2, \dots n$ then
 - $E_1 \cup E_2$ is an event
 - $(E_1 \cup E_2) \cup E_3 = E_1 \cup E_2 \cup E_3$ is an event
 - $\bigcup_{i=1}^{n} E_i$ is an event
 - $\bigcap_{i=1}^{n} E_i$ is an event
- S is an event since $S = E \cup E^c$ for any event E.
- The empty set \emptyset is an event since $S^c = \emptyset$.
- Axioms really needed for sets with infinite number of elements (so n could be infinite). A technicality, but we'll confine ourselves to intersections, unions and complements when talking about events.

Axioms of Probability

Think of

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

where n(E) is the number of times event E occurs in n trials (we'll come back to this later).

What basic properties does this quantity always have ?

Axioms of Probability

- Axiom 1 $0 \le P(E) \le 1$
- Axiom 2 P(S) = 1, where S is sample space (set of all possible outcomes)
- Axiom 3 If E and F are mutually exclusive $(E \cap F = \emptyset)$ then $P(E \cup F) = P(E) + P(F)$. More generally,

$$P(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n P(E_i)$$

provided $E_i \cap E_j = \emptyset$ whenever $i \neq j$.

Implications of Axioms

$$P(E^c) = 1 - P(E)$$

- Since $S = E \cup E^c$ and $E \cap E^c = \emptyset$ then $P(S) = 1 = P(E) + P(E^c)$
- E.g. $S = \{Sunny, Rainy, Snowy, Windy\}$
 - If $E = \{Sunny\}$ then $E^c = \{Rainy, Snowy, Windy\}$
 - $P(E) + P(E^c) = 1$ so $P(E) = 1 P(E^c)$
 - $P(\{Sunny\}) = 1 P(\{Rainy, Snowy, Windy\})$
- Note $P(S) + P(S^c) = P(S) + P(\emptyset) = 1$ and P(S) = 1, so $P(\emptyset) = 0$ i.e. emptyset is just a formality.

Implications of Axioms

$E \subset F$ implies that $P(E) \leq P(F)$

- Since $F = E \cup (E^c \cap F)$ and $E \cap E^c = \emptyset$ then $P(F) = P(E) + P(E^c \cap F)$
- $P(E^c \cap F) \ge 0$ so $P(E) = P(F) P(E^c \cap F) \le P(F)$
- E.g. $S = \{Sunny, Rainy, Snowy, Windy\}$
 - If $E = \{Rainy\}$ then $F = \{Rainy, Snowy\}$
 - $P(\{Rainy\}) \le P(\{Rainy, Snowy\})$

Implications of Axioms

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

- $E \cup F = E \cup (E^c \cap F)$ and $E \cap (E^c \cap F) = \emptyset$ (mutually exclusive)
- $F = (E \cap F) \cup (E^c \cap F)$, also mutually exclusive
- So $P(E \cup F) = P(E) + P(E^c \cap F)$
- and $P(F) = P(E \cap F) + P(E^c \cap F)$ i.e. $P(E^c \cap F) = P(F) P(E \cap F)$

E.g. $S = \{Sunny, Rainy, Snowy, Windy\}$

- If $E = \{Rainy\}$ then $F = \{Snowy\}$
- $P(\{Rainy,Snowy\}) = P(\{Rainy\}) + P(\{Snowy\}) P(\{Rainy\})$ and $\{Snowy\}$)

Equally Likely Outcomes

In some experiments all outcomes are equally likely. E.g. tossing a fair coin:

- $S = \{ Heads, Tails \}$
- $P(\{Heads\}) = P(\{Tails\}) = p$ (coin is fair).
- Using axioms:
 - $P(S) = P(\{Heads, Tails\}) = 1$
 - $P(\{Heads, Tails\}) = P(\{Heads\}) + P(\{Tails\}) = 2p = 1$. Solve to get $p = \frac{1}{2}$

Equally Likely Outcomes

Another example:

- $S = \{1, 2, \dots, N\}$ and $P(\{1\}) = P(\{2\}) = \dots = P(\{N\}).$
- Then $P(\{1\}) = \frac{1}{N}$, $P(\{2\}) = \frac{1}{N}$ etc

And for events consisting of multiple outcomes:

- $P(E) = \frac{\text{Number of outcomes in E}}{\text{Number of outcomes in S}} = \frac{|E|}{|S|}$
- E.g. $S = \{1, 2, 3, 4, 5, 6\}$ and $E = \{3, 4\}$ then $P(E) = \frac{2}{6}$.

Rolling Two Dice

Roll two 6-sided dice

• What is the probability that the dice sum to 7?

And for events consisting of multiple outcomes:

- Sample space $S = \{(1,1), (1,2), (1,3), \cdots, (6,5), (6,6)\}$
- Event $E = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$
- $P(E) = \frac{6}{36} = \frac{1}{6}$

Tossing a Coin

Toss a fair coin twice:

- What is the probability that get two heads?
- Sample space $S = \{(H, H), (H, T), (T, H), (T, T)\}$
- Event $E = \{(H, H)\}$
- $P(E) = \frac{1}{4}$
- What is the probability that get heads then tails?
- Event $E = \{(H, T)\}$
- $P(E) = \frac{1}{4}$
- What is the probability that get one head and one tail?
- Event $E = \{(H, T), (T, H)\}$
- $P(E) = \frac{2}{4} = 0.5$

Drawing Balls from a Bag

Have an bag containing 4 red balls and 3 white balls. Draw 3 balls.

- What is P(1 red ball and 2 white balls drawn)?
- Can draw 3 balls out of bag containing 7 balls in $\binom{7}{3} = 35$ ways. So sample space S is of size |S| = 35.
- Event E is of size $\binom{4}{1}\binom{3}{2}=12$
- $P(1 \text{ red ball and } 2 \text{ white balls drawn}) = \frac{12}{35}$
- What is P(at least 2 red balls drawn)?
- Event *E* is of size $\binom{4}{2}\binom{3}{1} + \binom{4}{3} = 22$, $P(\geq 2 \text{ red balls drawn}) = \frac{22}{35}$
- What is P(at least 2 white balls drawn)?
- Event E is of size $\binom{3}{2}\binom{4}{1}+\binom{3}{3}=13$, $P(\geq 2 \text{ white balls drawn})=\frac{13}{35}$

Important Trick

Often its hard to count the number of times an event E occurs, but easy to count the number of time event E does <u>not</u> occur. Use $P(E) = 1 - P(E^c)$, where E^c is the event that E does not occur.

- We flip a coin 3 times. What is the probabilty that there is at least one heads?
 - Sample space $|S| = 2^3 = 8$.
 - Event that no heads is $E^c = \{(T, T, T)\}$. $|E^c| = 1$ so $P(E^c) = \frac{1}{2}$.
 - Therefore $P(E) = 1 P(E^c) = 1 \frac{1}{8}$ is the probability of one or more heads.
 - What if we flipped the coin 10 times ? 100 times ?
- We toss a dice twice. What is the probability that the sum is greater than 3?
 - Sample space $|S| = 6^2 = 36$.
 - Event that less than or equal to three is $E^c = \{(1,1), (1,2), (2,1)\}. |E^c| = 3 \text{ so } P(E^c) = \frac{3}{36}.$
 - Therefore $P(E) = 1 P(E^c) = 1 \frac{3}{36}$ is the probability the sum is greater than 3.

Birthdays

What is the probability of event E that of n people two or more share the same birthday (regardless of year) ?

Birthdays

What is the probability event E that of n people one or more of them shares a birthday with <u>you</u>?

Let's ask the complement E^c : of n people what is the probability that none of them shares a birthday with <u>you</u>?

- $|S| = 365^n$
- $|E^c| = 364^n$
- $P(E^c) = \frac{364^n}{365^n}$
- $P(E) = 1 P(E^c)$.

Some values:

- When n = 23 then $P(\text{no matching birthdays}) \approx 0.94$
- When n = 75 then $P(\text{no matching birthdays}) \approx 0.81$
- When n = 100 then $P(\text{no matching birthdays}) \approx 0.76$

Why are these probabilities so much higher than before ?

Poker Hands

- Straight flush is 5 consecutive cards of same suit.
- What is P(straight flush)?
- Sample space $|S| = {52 \choose 5} = 2598960$
- 4 suits. For each suit (each with 13 cards) can get a straight flush 10 different ways. Event $|E| = 10 \times 4$.
- $P(\text{straight flush}) = \frac{40}{2598960} \approx 1.5 \times 10^{-5}$
- What is P(four of a kind)?
- 13 ways to select 4 cards of the same kind. 5th card can be selected from remaining 12 kinds, and from each of 4 suits i.e. 12×4 ways. Event $|E| = 13 \times 12 \times 4 = 624$.
- $P(\text{four of a kind}) = \frac{624}{2598960} \approx 12.4 \times 10^{-4}$