Zadanie 1

Przypomnij schematy programów na maszynę licznikową dla podprogramów, rekursji oraz operatora minimalizacji.

Rozwiązanie:

Podprogram:

- kopiowanie argumentów
- zerowanie pozostałych wykorzystywanych rejestrów
- wykonanie podprogramu
- kopiowanie wyliczonego wyniku

Rekursja:

- kopiowanie argumentów funkcji h do bezpiecznego obszaru pamięci
- wyznaczanie wartości funkcji f(x) = g(x,0)
- w pętli for wyznaczanie kolejnych wartości g(x,i+1) = h(x,y,g(x,i))
- kopiowanie uzyskanego wyniku do rejestru zerowego

Minimalizacja:

- kopiowanie argumentów funkcji f do bezpiecznego obszaru pamięci
- w pętli repeat wyznaczanie kolejnych wartości funkcji f(x,y) z inkrementacją y
- skopiowanie do rejestru zerowego pierwszej odnalezionej wartości y dla której f(x,y)=0

Zadanie 2

Napisz program na maszynę licznikową obliczający funkcje:

- 1. PLUS(x,y) = x + y
- 2. $MNOZ(x,y) = x \cdot y$ (nie korzystając z PLUS jako procedury)
- 3. $MNOZ(x,y) = x \cdot y$ (z wykorzystaniem PLUS jako procedury)
- 4. $MNOZ(x,y) = x \cdot y$ (z wykorzystaniem schematu rekursji)

Rozwiązanie:

1. Do rozwiązania części pierwszej zadania wykorzystamy program przykładowy z wykładu:

 $PLUS(1,2\rightarrow 0)$

1	1 2 0 0 (1,2 70)		
	0	I(2,3,4)	
	1	S(0)	
	2	S(3)	
	3	I(1,1,0)	
	4	T(1,0)	
	5		

2. Do zaimplementowania mnożenia wykorzystamy podobny pomysł. Tym razem wykorzystamy dwa rejestry kontrolne – w rejestrze 3 zapiszemy informacje o tym ile razy dodaliśmy już x, zaś w rejestrze 4 – ile jedynek dodaliśmy z aktualnie dodawanego x-a.

MNOZ	$(1,2\to 0)$
IVII (OZ)	1,4 /0/

	02(1,2 /0)
0	I(2,3,8)
1	I(1,4,5)
2	S(4)
3	S(0)
4	I(1,1,1)
5	Z(4)
6	S(3)
7	I(1,1,0)
8	

3. Wykorzystamy ten sam pomysł używając przygotowanego wcześniej podprogramu PLUS:

 $MNOZ(1,2\rightarrow 0)$

0	I(2,3,4)
1	PLUS(0,1→0)
2	S(3)
3	I(1,1,0)
4	

4. Weźmy f(x)=0 oraz g(x,y,h(x,y))=x+h(x,y). Wówczas:

$$h(x,y+1)\begin{cases} 0 & \text{dla } x = 0\\ x + h(x,y) & \text{dla } x \neq 0 \end{cases}$$

Zadanie 4

Wykaż, że następujące funkcje są ML-obliczalne:

- 1. $g_1(\bar{x}) = \mu y(f(\bar{x}, y) = k), k \in IN,$
- 2. $g_2(\bar{x}) = \mu y(f(\bar{x}, y) < k), k \in IN,$
- 3. $g_3(\bar{x}) = \mu y(f(\bar{x}, y) \ge k), k \in \mathbb{N},$

Rozwiązanie:

1. Ponieważ chcemy sprawdzić kiedy funkcja przyjmuje wartość k, a nie zero, wystarczy zmodyfikować program z dowodu twierdzenia o operatorze minimalizacji dodając na początku k razy instrukcję S(m+n+3). Wówczas, w instrukcji o numerze L+1, gdzie sprawdzany jest warunek końca pętli będziemy porównywać wyznaczoną wartość z k a nie z zerem.

	S(n+m+3)
	S(n+m+3)
k	T(1,m+1)
k+n-1	T(n,m+n)
L	$F[m+1,,m+n+1 \rightarrow r]$
	I(r,m+n+3,K)
	S(m+n+1)
	I(1,1,L)
K	T(n+m+1,0)

2. Ponieważ chcemy sprawdzić kiedy funkcja przyjmuje wartość mniejszą niż k, a nie zero, wystarczy zmodyfikować program z dowodu twierdzenia o operatorze minimalizacji dodając pętle inkrementującą k-l razy wartość w R(m+n+3). Wówczas, w instrukcji o numerze "L+1", gdzie sprawdzany jest warunek końca pętli, będziemy porównywać wyznaczoną wartościami od l0 do l1 a nie z zerem. Należy też pamiętać o zerowaniu wartości w l2 l3 przed każdym testem.

	S(n+m+4)	
	S(n+m+4)	Z[n+m+4]=k
	T(1,m+1)	
	T(n,m+n)	
L	$F[m+1,,m+n+1 \rightarrow r]$	
	Z(m+n+3)	zerowanie
U	I(m+n+4,m+n+3,V)	czy osiągnęliśmy k?
"L+1"	I(r,m+n+3,K)	
	S(m+n+3)	kolejna wartość do testów
	I(1,1,U)	goto U
V	S(m+n+1)	
	I(1,1,L)	
K	T(n+m+1,0)	

3. Ponieważ chcemy sprawdzić kiedy funkcja przyjmuje wartość większą lub równą *k*, a nie zero, wystarczy zmodyfikować program z dowodu twierdzenia o operatorze minimalizacji dodając pętle inkrementującą *k-1* razy wartość w *R*(*m*+*n*+*3*). Postępować będziemy podobnie jak w przypadku zadania 2, należy tylko odwrócić warunek (równość odpowiednich rejestrów jest teraz warunkiem pozostania w pętli a nie wyjścia z niej). Zauważmy jeszcze, że w oryginalnym dowodzie nie ma różnicy, czy inkrementacji komórki *m*+*n*+*1* dokonamy przed czy po instrukcji testującej. W tym przypadku jest jednak istotne, aby zrobić to przed testem.

	S(n+m+4)	
	S(n+m+4)	Z[n+m+4]=k
	T(1,m+1)	
	•••	
	T(n,m+n)	
L	$F[m+1,,m+n+1 \rightarrow r]$	
	S(m+n+1)	przesunięta wcześniej inkrementacja
	Z(m+n+3)	zerowanie
U	I(m+n+4,m+n+3,K)	czy osiągnęliśmy k?
	I(r,m+n+3,L)	
	S(m+n+3)	kolejna wartość do testów
	I(1,1,U)	goto U
K	T(n+m+1,0)	

Zadanie 3

Podaj przykład funkcji totalnej, dla której zastosowanie operatora minimalizacji da w wyniku funkcję, która nie jest totalna.

Rozwiązanie:

Weźmy funkcję f(x,y)=x+y. Wówczas $g(x)=\mu y(f(x,y)=0)$, określona jest tylko dla x=0, gdzie wartość g(0)=0, gdyż f(0,0)=0. Dla każdej innej wartości x, wartość f(x,y)>x, czyli w szczególności $f(x,y)\neq 0$, a więc wartość g(x) jest nieokreślona.

Zadania domowe:

A. Zapisz równoważny instrukcji T(n,m) ciąg złożony z pozostałych instrukcji maszyny licznikowej.

- B. Wykaż, że następujące funkcje są ML-obliczalne:
 - 1. $g_I(\bar{x}) = \mu y(f(\bar{x}, y) > k), k \in \mathbb{N},$
 - 2. $g_2(\bar{x}) = \mu y(f(\bar{x}, y) \le k), k \in \mathbb{N},$

C. Uzasadnij, że jeśli $f \in \mathbb{C}_n$, to również $f \in \mathbb{C}_{n+1}$.