Section 9.1: The Definition of Function

Juan Patricio Carrizales Torres

July 7, 2022

A very famous type of relation is the function. For some sets A, B, a function f is a relation from A to B, expressed as $f: A \to B$, such that for every $a \in A$, $(a, b) \in f$ for only one $b \in B$. Hence, |A| = |f|. Also, since f is a relation, dom(f) = A and codom(f) = B. For a function $f: A \to B$, Consider some $(a, b) \in f$. Because every ordered pair in f is adscribed to only one $a \in A$, it follows that $(a, b), (a, c) \in f$ implies b = c. Thus, b = f(a) is considered as the **image** of a. In fact this is known as **mapping**. For instance, f is said to map a into b. Hence, the **range** of this relation f can be expressed as

range
$$(f) = \{b \in B : (a, b) \in f, a \in A\}$$

= $\{f(a) : a \in A\}$.

Now, suppose that we have some subset C of A. Then,

$$f(C) = \{f(x) : x \in C\}$$

is known as the **image** of C. Obviously, if C = A, then f(C) = range(f). Furthermore, for some subset D of B, its **inverse image** is denoted as

$$f^{-1}(D) = \{ a \in A : f(a) \in D \}.$$

Due to the definition of a function, $f^{-1}(B) = A$.