Übungen zur Vorlesung Physik 1

	Ladung	Masse
Elektron	$-1,602 \cdot 10^{-19} \mathrm{C}$	$9{,}11 \cdot 10^{-31} \mathrm{kg}$
Proton	$+1,602 \cdot 10^{-19} \mathrm{C}$	$1,673 \cdot 10^{-27} \mathrm{kg}$
Neutron	0	$1,675 \cdot 10^{-27} \mathrm{kg}$
Atomare Masseneinheit 1 u	-	$1,660538921 \cdot 10^{-27} \mathrm{kg}$

Aufgabe 16: Bausteine Atome

Ein Gramm Kupfer wurde auf -1 nC aufgeladen.

- a) Bestimmen Sie die Anzahl der zusätzlichen freien Elektronen im Metall.
- b) Um wie viel Prozent ist das Metall schwerer geworden?

Aufgabe 17: Kernfusion

Der Deuteriumzyklus der Sonne kann als folgende Kernreaktion notiert werden:

$${}^{1}_{1}H^{+} + {}^{1}_{1}H^{+} \rightarrow {}^{2}_{1}D^{+} + e^{+} + \nu_{e} \qquad \text{(langsam)}$$

$${}^{2}_{1}D^{+} + {}^{1}_{1}H^{+} \rightarrow {}^{3}_{2}He^{2+} + \gamma \qquad \text{(rasch)}$$

$${}^{3}_{2}He^{2+} + {}^{3}_{2}He^{2+} \rightarrow {}^{4}_{2}He^{2+} + 2 {}^{1}_{1}H^{+} \qquad \text{(rasch)}$$

$${}^{4}_{1}H^{+} \rightarrow {}^{4}_{2}He^{2+} + 2 e^{+} + 2 \nu_{e} + \Delta E \qquad \text{(Bruttoreaktion)}$$

Verwenden Sie die Äquivalenz $E=mc^2$, um für die Bruttoreaktion die entstehende Energie ΔE zu berechnen. Geben Sie das Ergebnis in eV (und mit geeignetem Prefix) an. Hinweise: e^+ sind Positronen und haben die gleiche Masse wie Elektronen. Der Beitrag der Elektronneutrinos ν_e wird vernachlässigt.

Aufgabe 18: Wellen und Photonen

In Hamburg wird der Deutschlandfunk auf der Frequenz 88,7 MHz gesendet. Bestimmen Sie

- a) die Wellenlänge
- b) die Energie der Quanten in J und Elektronenvolt (eV)

Aufgabe 19: Photonen

Wie viele Photonen pro Sekunde sendet ein roter Laserpointer aus (Abgabeleistung $P=1\,\mathrm{mW},$ Wellenlänge $\lambda=630\,\mathrm{nm}$)?

Aufgabe 20: Photoeffekt

Die Austrittsarbeit für Elektronen beträgt bei Zink $W_{\rm A}=4{,}34\,{\rm eV}.$

- a) Licht welcher Wellenlänge benötigen Sie, um damit eine negativ geladene Zinkplatte zu entladen.
- b) Wie schnell können die austretenden Elektronen (maximal) werden, wenn die Zinkplatte mit Licht der Wellenlänge $\lambda=253\,\mathrm{nm}$ (Hauptlinie einer Quecksilberdampflampe) bestrahlt wird?

Aufgabe 21: Beugung am Gitter

Es soll das Beugungsmuster eines Laserpointers ($\lambda=632\,\mathrm{nm}$) an einem Gitter betrachtet werden. Die Interferenzbedingung kann wie folgt illustriert werden (vgl. Vorlesung)

Die Leinwand ist $1\,\mathrm{m}$ vom Gitter entfernt und der Abstand zwischer 0. Ordnung und 1. Ordnung beträgt $333\,\mathrm{mm}$. Wieviele Striche pro mm hat das Gitter?