Алфавит и его подмножества

Алфавит – конечное множество различных знаков (букв), символов, для которых определена операция конкатенации (присоединения символа к символу или цепочке символов).

Знак (буква) – любой элемент алфавита (элемент x алфавита X, где $x \in X$).

Слово – конечная последовательность знаков (букв) алфавита.

Словарь (словарный запас) - множество различных слов над алфавитом.

Кодирование данных — процесс преобразования символов алфавита X в символы алфавита Y.

Декодирование — процесс, обратный кодированию.

Символ — наименьшая единица данных, рассматриваемая как единое целое при кодировании/декодировании.

Кодовое слово – последовательность символов из алфавита Y, однозначно обозначающая конкретный символ алфавита X.

Средняя длина кодового слова – это величина, которая вычисляется как взвешенная вероятностями сумма длин всех кодовых слов. N

$$L = \sum_{i=1}^{\infty} p_i * l_i$$

Если все кодовые слова имеют одинаковую длину, то код называется **равномерным** (фиксированной длины). Если встречаются слова разной длины, то – **неравномерным** (переменной длины).

Сжатие данных — процесс, обеспечивающий уменьшение объёма данных путём сокращения их избыточности.

Сжатие данных — частный случай кодирования данных.

Коэффициент сжатия — отношение размера входного потока к выходному потоку.

Отношение сжатия — отношение размера выходного потока ко входному потоку.

Пример. Размер входного потока равен 500 бит, выходного равен 400 бит.

Коэффициент сжатия = 500 бит / 400 бит = 1,25.

Отношение сжатия = 400 бит / 500 бит = 0.8.

Случайные данные невозможно сжать, так как в них нет никакой избыточности.

Сжатие без потерь (полностью обратимое) — сжатые данные после декодирования (распаковки) не отличаются от исходных.

Сжатие с потерями (частично обратимое) — сжатые данные после декодирования (распаковки) отличаются от исходных, так как при сжатии часть исходных данных была отброшена для увеличения коэффициента сжатия.

Статистические методы — кодирование с помощью усреднения вероятности появления элементов в закодированной последовательности.

Словарные методы — использование статистической модели данных для разбиения данных на слова с последующей заменой на их индексы в словаре.

Теорема Шеннона об источнике шифрования

Теорема Шеннона об источнике шифрования устанавливает предел максимального сжатия данных и числовое значение энтропии (меры) Шеннона: невозможно сжать данные настолько, что оценка кода (среднее число бит на символ) меньше, чем энтропия Шеннона исходных данных, без потери точности информации.

 $i(S) = -\sum_{i=1}^{N} p_i \cdot \log_2 p_i$

P1	P2	Энтропия
0.50	0.50	1.00
0.60	0.40	0.97
0.70	0.30	0.88
0.80	0.20	0.72
0.90	0.10	0.47
0.99	0.01	0.08

Теорема Шеннона об источнике шифрования (2)

Пример. Дан алфавит «ABCDE» с вероятностями встречаемости символов 0,4, 0,2, 0,2, 0,1 и 0,1 соответственно.

Вероятность строки «AAAABBCCDE» = $0.4^4 * 0.2^2 * 0.2^2 * 0.1^1 * 0.1^1 = 4.096 * 10^{-7}$.

 $log_2 P = -21.21928.$

Наименьшее в среднем число для кодирования строки равно 22 бит.

Энтропийный кодер — кодер, достигающий сжатия максимально близкого к энтропии.

Условие Фано: если в код входит слово *a*, то для любой непустой строки *b* слова *ab* в коде не существует.

Роберт Фано (1917-2016)

Символ	Вероятность	Код 1	Код 2
a ₁	0,5	1	1
a ₂	0,3	01	01
a ₃	0,1	010	000
a ₄	0,1	001	001

$$\mathbf{a_1} \ \mathbf{a_3} \ \mathbf{a_2} \ \mathbf{a_1} \mathbf{a_1} \ \mathbf{a_4} \ \mathbf{a_2} \ \mathbf{a_2} \ \mathbf{a_1} \mathbf{a_1}$$
 1|010|01|1|1|001|01|01|1|1 — Код 1 1|000|01|1|1|001|01|01|1|1 — Код 2

Префиксный код — это код, в котором никакое кодовое слово не является префиксом любого другого кодового слова. Эти коды имеют переменную длину. **Оптимальный префиксный код** — это префиксный код, имеющий минимальную среднюю длину.

Дана последовательность символов: AAABCCCCDEEEFG

Встречаемость символов: A = 3, B = 1, C = 4, D = 1, E = 3, F = 1, G = 1.

Построим таблицу с вероятностями, отсортируем в порядке уменьшения вероятностей.

Символ	Вероятность
А	3/14
В	1/14
С	4/14
D	1/14
E	3/14
F	1/14
G	1/14

Символ	Вероятность
С	4/14
Α	3/14
E	3/14
В	1/14
D	1/14
F	1/14
G	1/14

Построим кодовое дерево по методу Шеннона-Фано (от корня к листьям).

Разбивать на каждом уровне дерева на 2 ветки с максимально близкой суммарной вероятностью.

Алгоритм Шеннона-Фано (2)

Ветвление осуществлять используя последовательные символы, полученные в результате сортировки вероятностей. (т.е. CA + EBDFG, а не CBDF + AEG).

Левому символу (с б<u>о</u>льшей вероятностью) присвоим значение 1, правому – 0.

Составим таблицу кодировки.

Символ	1	2	3	4	Код
С	1		11		11
А			10	10	
Е		01	011		011
В		ΟŢ	010		010
D	0		001	0011	0011
F		00		0010	0010
G			0	00	000

Дана последовательность символов: AAABCCCCDEEEFG

Коэффициент сжатия = $(14 * 16 \text{ бит}) / 37 \text{ бит} \approx 6,054.$

Средняя длина кодового слова = (C) $4/14 * 2 + (A) 3/14 * 2 + (E) 3/14 * 3 + (B) 1/14 * 3 + (D) 1/14 * 4 + (F) 1/14 * 4 + (G) 1/14 * 3 = 8/14 + 6/14 + 9/14 + 3/14 + 4/14 + 3/14 = 37 / 14 <math>\approx$ 2,643 бит/символ

Дана последовательность символов: AAABCCCCDEEEFG Встречаемость символов:

A = 3, B = 1, C = 4, D = 1, E = 3, F = 1, G = 1. Построим таблицу с вероятностями, отсортируем в порядке уменьшения вероятностей.

Вероятность
4/14
3/14
3/14
1/14
1/14
1/14
1/14

Дэвид Хаффман (1925-1999)

Построим кодовое дерево по методу Хаффмана с оптимальными префиксными кодами.

- 1. Выберем 2 элемента с минимальной вероятностью.
- 2. Формируем новый узел с вероятностью, равной сумме предыдущих 2 элементов. Полученная сумма становится новым элементом таблицы, занимающим соответствующее место в списке убывающих по величине вероятностей.
- 3. Эта процедура продолжается до тех пор, пока в таблице не останутся всего два элемента.

Символ	Вероят- ность, p0	Символ	p1	Символ	p2	Символ	рЗ	Символ	p4	Символ	р5
С	4/14	С	4/14	С	4/14	С	4/14	AE	6/14	CFGBD	8/14
А	3/14	А	3/14	A	3/14	FGBD	4/14	С	4/14	AE	6/14
E	3/14	E	3/14	E	3/14	А	3/14	FGBD	4/14		
В	1/14	FG	2/14	FG	2/14	Е	3/14				
D	1/14	В	1/14	BD	2/14						
F	1/14	D	1/14								
G	1/14										

Двум наименьшим символам или узлам на каждом уровне присвоим значение 0 (меньшему) или 1 (большему).

Символ	Вероят- ность, рО	Символ	p1	Символ	p2	Символ	рЗ	Символ	p4	Символ	р5
С	4/14	С	4/14	С	4/14	С	4/14	AE	6/14	CFGBD [1]	8/14
А	3/14	А	3/14	А	3/14	FGBD	4/14	C [1]	4/14	AE [O]	6/14
E	3/14	E	3/14	Е	3/14	A [1]	3/14	FGBD [0]	4/14		
В	1/14	FG	2/14	FG [1]	2/14	E [0]	3/14				
D	1/14	B [1]	1/14	BD [0]	2/14						
F [1]	1/14	D [0]	1/14								
G [0]	1/14										

Построим кодовое дерево (от корня).

Составим таблицу кодировки.

Символ	1	2	3	4	Код	
С	1		11		11	
А	_		01 00			
E	0					
В		1 10	100	1001	1001	
D	1		100	1000	1000	
F	_		101	1011	1011	
G				1010	1010	

Дана последовательность символов: AAABCCCCDEEEFG

Коэффициент сжатия = $(14 * 16 \text{ бит}) / 36 \text{ бит} \approx 6,222.$

Средняя длина кодового слова = (C) $4/14 * 2 + (A) 3/14 * 2 + (E) 3/14 * 2 + (B) 1/14 * 4 + (D) 1/14 * 4 + (F) 1/14 * 4 + (G) 1/14 * 4 = 8/14 + 6/14 + 6/14 + 4/14 + 4/14 + 4/14 + 4/14 = 36 / 14 <math>\approx$ 2,571 бит/символ

Toororooororoororooroooroo

Ошибки при передаче и хранении данных

Причины:

- Альфа-частицы от примесей в чипе микросхемы.
- Нейтроны из фонового космического излучения.

Частота единичных битовых ошибок (на 1 GB):

• От 1 раза в час до 1 раза в тысячелетие (по данным исследования Google получилось 1 раз в сутки).

Способы обработки данных:

- Использовать полученные данные без проверки на ошибки.
- Обнаружить ошибку, выполнить запрос повторной передачи поврежденного блока.
- Обнаружить ошибку и отбросить поврежденный блок.
- Обнаружить и исправить ошибку.
- Тройная модульная избыточность.

Помехоустойчивые коды

Помехоустойчивые коды — коды, позволяющие обнаружить и (или) исправить ошибки в кодовых словах, которые возникают при передаче по каналам связи.

- 1) Блочные фиксированные блоки длиной i символов преобразуются в блоки длиной n символов:
 - Неравномерные редко используемые символы кодируются большим количеством символов (имеют большую длину).
 - Равномерные длина блока (символа) постоянна:
 а)Неразделимые коды с постоянной плотностью единиц.
 - б)Разделимые можно отделить (выделить) служебные биты r от информационных битов i.
- 2) Непрерывные (свёрточные) передаваемая информационная последовательность не разделяется на блоки.

Коэффициент избыточности — отношение числа проверочных разрядов (r) к общему числу разрядов (n).

Контрольная сумма — некоторое число, рассчитанное путем применения определенного алгоритма к набору данных и используемое для проверки целостности этого набора данных при их передаче или хранении.

Бит чётности — частный случай контрольной суммы, представляющий из себя 1 контрольный бит, используемый для проверки четности количества единичных битов в двоичном числе.

Сумма по модулю 2 — исключающее «ИЛИ» (для двух операндов), логическое сложение или битовое сложение, разность двух/трёх множеств.

$$A \ mod 2 \ B = A \oplus B = (\neg(A \land B)) \land (A \lor B) = \neg((A \land B) \lor (\neg A \lor \neg B))$$

Пример. Есть 1 информационный бит i = 1. K нему идёт один бит чётности r_1 . $i = r_1, i \oplus r_1 = 0$.

і исх	$r_{_1}$ исх	і рез	r_1 pes	i pes ⊕ r ₁ pes
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Α	В	A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	С	$A \oplus B \oplus C$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Код Хэмминга — блочный равномерный разделимый самокорректирующийся код. Исправляет одиночные битовые ошибки, возникшие при передаче или хранении данных.

Синдром последовательности **S** — набор информационных и проверочных разрядов.

Пример. Есть 1 информационный бит i=1. К нему идут два бита чётности r_1 и r_2 . $i=r_1=r_2$, $s_1=i\oplus r_1$, $s_2=i\oplus r_2$.

Ричард Уэсли Хэмминг (1915–1998)

контрольных сумм

і исх	r ₁ исх	<i>r</i> ₂ исх	і рез	$r_{_1}$ pes	r_2 pes	$S_\mathtt{1}$	S ₂
1	1	1	0	0	0	0	0
1	1	1	0	0	1	0	1
1	1	1	0	1	0	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	0	1	1
1	1	1	1	0	1	1	0
1	1	1	1	1	0	0	1
1	1	1	1	1	1	0	0

r_{1}	r_2	$r_{_3}$	i,	i	i_3	i_{Λ}
		3	1		3	4

$$r_1 = i_1 \oplus i_2 \oplus i_4$$

$$r_2 = i_1 \oplus i_3 \oplus i_4$$

$$r_3 = i_2 \oplus i_3 \oplus i_4$$

	1	2	3	4	5	6	7	
2 ^x	r_{1}	r_2	i ₁	r_3	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		Х	Х			Х	Х	S ₂
4				Х	Х	Х	Х	S ₃

$$r_{1} = i_{1} \oplus i_{2} \oplus i_{4}$$

$$r_{2} = i_{1} \oplus i_{3} \oplus i_{4}$$

$$r_{3} = i_{2} \oplus i_{3} \oplus i_{4}$$

$$s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4}$$

$$s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4}$$

$$s_{3} = r_{3} \oplus i_{2} \oplus i_{3} \oplus i_{4}$$

Синдром S (s1, s2, s3)	000	001	010	011	100	101	110	111
Конфигурация ошибок (позиция в сообщении)	HET	0001000	0100000	0000010	1000000	0000100	0010000	0000001
Ошибка в символе	HET	<i>r</i> ₃	r_2	i ₃	<i>r</i> ₁	i ₂	i ₁	i ₄

		0100010100	4000101011001
		Protototoo	010000000000000000000000000000000000000
00	1211107117	(fito)	21000010010010
1100		10010	000011110000 000011110000

11	1	2	3	4	5	6	7	
Пример полученног сообщения	o 1	1	1	0	0	0	1	
2 ^x	$r_{_1}$	r ₂	i ₁	<i>r</i> ₃	i ₂	i ₃	i ₄	S
1	Х		Х		Х		Х	S ₁
2		X	Х			Х	Х	S ₂
4				Χ	Х	Х	Х	S ₃

$$s_{1} = r_{1} \oplus i_{1} \oplus i_{2} \oplus i_{4} = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$s_{2} = r_{2} \oplus i_{1} \oplus i_{3} \oplus i_{4} = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$s_{3} = r_{3} \oplus i_{2} \oplus i_{3} \oplus i_{4} = 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

Ошибка в бите i_{4} .

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	$r_{_1}$	r_2	i ₁	r_3	i ₂	i ₃	i ₄	$r_{_4}$	i ₅	i ₆	i ₇	i ₈	i ₉	i ₁₀	i ₁₁	S
1	Х		Χ		Х		Х		Χ		Χ		Χ		Х	S ₁
2		X	Х			X	Х			Х	Х			X	Х	S ₂
4				Х	Х	Х	Х					Х	Х	Х	Х	S ₃
8								Χ	Х	Х	Х	Х	Χ	Χ	Х	S ₄

По таблице видно, за какие информационные биты отвечает каждый проверочный бит: контрольный бит с номером N контролирует все последующие N бит через каждые N бит, начиная с позиции N.

Аналогично с ошибочным битом.

Пример. Имеем синдром S (0,0,1,1). Проверяем, за какой бит отвечают только r_3 и r_4 .

Ответ: i_{8} (12-й символ сообщения).

Классический код Хэмминга

Определение минимального числа контрольных разрядов: $2^r \ge r + i + 1$.

Классические коды Хэмминга с маркировкой (*n*; *i*): (7,4); (15,11); (31,26)...

Диапазон	Минимальное					
информационных	число контрольных					
разрядов, <i>і</i>	разрядов, <i>r</i>					
1	2					
2-4	3					
5-11	4					
12-26	5					
27-57	6					

Коэффициент избыточности — отношение числа проверочных разрядов (r) к общему числу разрядов (n = i + r).