Genotype Likelihood Estimation

Andreas Füglistaler, PhD Wegmann Group

Calling Genotype

Read	Base
1	Α
2	G
3	T
4	Α
5	Α
6	G
7	G
8	Α
9	Α
10	G

Calling Genotype

Read Base 10 G

→ AG

Calling Genotype

Read Base 1 T

AT, CT, GT, TT ?

Is it even a T?

Likelihoods

Base Likelihoods: L(A), L(C), L(G), L(T)
Genotype Likelihood: L(ab) = 0.5×[L(a) + L(b)]

Read Base
1 T

$$L(AA) = ?$$

$$L(AC) = ?$$

$$L(AG) = ?$$

$$L(AT) = ?$$

$$L(CC) = ?$$

$$L(CG) = ?$$

$$L(CT) = ?$$

$$L(GG) = ?$$

$$L(GT) = ?$$

$$L(TT) = ?$$

Genotype Likelihoods

Assuming no Errors

Post-Mortem Damage

Deamination of Cytosine to Uracil: C→U Uracil will be read as Thymine: C→U→T

Estimation of C→T transition

Position: Distance from 5' read end For every C in the reference, count occurrence in data

- ➤ Number of C→T per position
- ➤ Total number of Cs per position

```
PMD(C \rightarrow T, p) = Number(C \rightarrow T, p)/tot(C, p)
```

- ➤ Either empiric values or fit exponential function
- \rightarrow (Same for $G\rightarrow A$ from 3' if paired ended reads)

Post-Mortem Damage

Genotype Likelihoods with PMD

Assuming PMD(C \rightarrow T) = 0.3

L(AA) = 0

Read Base
1 T

L(AC) =
$$0.5 \times (0 + 0.3)$$
L(AG) = 0
L(AT) = $0.5 \times (0 + 1)$
L(CC) = 0.3
L(CC) = 0.3
L(CC) = $0.5 \times (0.3 + 0)$
L(CT) = $0.5 \times (0.3 + 1)$
L(GG) = 0
L(GT) = $0.5 \times (0 + 1)$
L(TT) = 1

Sequencing Errors

Reported error probability by sequencing machine:

```
Q = -10 \times \log(\varepsilon)
```

- ➤ Not very accurate
- > Needs recalibration

Estimate recalibration

 $[G\rightarrow A, G\rightarrow C, -, G\rightarrow T],$

 $[T\rightarrow A, T\rightarrow C, T\rightarrow G, -]]$

> Expectation-maximization (EM) algorithm

Sequencing Errors

Genotype Likelihoods with Recal

Assuming:

PMD(C
$$\to$$
T) = 0.3, ε = 0.05 $\rho(A\to T)$ = 0.3, $\rho(C\to T)$ = 0.2, $\rho(G\to T)$ = 0.5

Read Base 1 T

$$L(A) = 0.3 \times 0.05$$

$$L(C) = 0.7 \times (0.2 \times 0.05)$$

$$+ 0.3 \times (0.95)$$

$$L(G) = 0.5 \times 0.05$$

$$L(T) = 0.95$$

ATLAS

Analysis Tools for Low-coverage and Ancient Samples

48 Tasks

- > call, theta, inbreeding, GLF, majorMinor, ...
- > Simulate data
- ➤ Estimate PMD
- > Estimate sequencing error recalibration

Implementation Inheritance

```
class Recal {
  virtual double f_quality(Quality q) {return empiric(q);}
  virtual couble f_context(Context c) {return empiric(c);}
public:
  double probability(Data d)
    {return logistic(f_quality(d.Q) + f_context(d.C));}
};
```

```
class RecalPolyQ : Recal {
  double f_quality(Quality q) override
    {return polynomial(q);}
};
```

```
class RecalPolyC : Recal {
  double f_context(Context c) override
    {return polynomial(c);}
};
```



```
class RecalPolyQC : RecalPolyQ, RecalPolyC {
   // How to cherry-pick functions?
};
```

Implementation Inheritance: Pro & Contra

- ✓ 'Natural evolution' from mono- to polymorphic
- Straightforward to implement
- ✓ Works well in small, easy cases
- x Multiplicative complexity (NxM implementations)
- x Long inheritance chains
- x Diamond inheritance problem
- x Magohamoth-sized classes
- x'But I only want feature a, not a, b, c & d!'

Interface Inheritance

```
struct QualityFn {virtual double apply(Quality q) = 0;};
struct ContextFn {virtual double apply(Context c) = 0;};
```

```
class Recal final {
   QualityFn* qf;
   ContextFn* cf;
public:
   Recal(QualityFn* q, ContextFn* c) {qf = q; cf = c;}
   double probability(Data d)
      {return logistic(qf→apply(d.Q) + cf→apply(d.C));}
};
```

```
class EmpiricQuality final: QualityFn {
  double apply(Quality q) override
    {return empiric(q);}
};

class PolyQuality final : QualityFn {
  double apply(Quality q) override
    {return polynomial(q);}
};
```

```
class EmpiricContext final : ContextFn {
  double apply(Context c) override
     {return empiric(c);}
};

class PolyContext final : ContextFn {
  double apply(Context c) override
     {return polynomial(c);}
};
```

Simulation

~/Git/atlas/build/atlas --task simulate --ploidy 2,2,1 --depth 2 --chrLength 500000 --pmd "doubleStrand:Exponential[50,0.5,0.1,0.01]:Exponential[50,0.5,0.1,0.01]" --recal "intercept[0.1];quality:polynomial[0.8,-0.05]"

Estimate PMD pattern

~/Git/atlas/build/atlas --task PMD --bam *.bam --fasta *.fasta --pmdModels "doubleStrand:Exponential:Exponential"

also possible

--pmdModels "singleStrand:Empiric"

Estimate recalibration Pattern

```
~/Git/atlas/build/atlas --task recal --bam *.bam --regions chr3.bed
--pmd *_PMD.txt --recal "intercept;quality:polynomial2"
```

also possible

```
--recal "intercept;quality:empiric"
--recal "intercept;quality;position;context;fragmentLength;mappingQuality"
--recal "intercept;quality:polynomial3;fragmentLength:probit;context"
```

Estimate θ

```
~/Git/atlas/build/atlas --task theta --bam *.bam
~/Git/atlas/build/atlas --task theta --bam *.bam --pmd *_PMD.txt
~/Git/atlas/build/atlas --task theta --bam *.bam
--pmd *_PMD.txt --recal *_recal.txt
```

Calculating Genotype Likelihoods

1. Estimate PMD pattern

Covariate: Position

ightharpoonup PMD(C→T) = Number(C→T)/Number(C)

2. Estimate Sequencing Error recalibration

Covariates: Sequencing quality, Mapping quality, Context, Position, Fragment length

- ➤ Use monomorphic/haploid sites
- ▶ EM on multi-variate recalibration function

3. Estimate Genotype Likelihoods

 $\rightarrow \theta$, inbreeding coefficient, ...