Dr. Christopher S. Simmons (csim@ices.utexas.edu)

August 27, 2015

Class Intro

CSE 380: Tools and Techniques of Computational Science

Welcome

- * Class outline
 - * Syllabus
- * Canvas
- Computer Accounts
- Field Trip

Class Outline

- * Office Hours
 - * After class in POB (ACES) 6.340
- * Grading
 - * 5 Homeworks (50%)
 - * 1 Project (40% each)
 - * Final is a presentation (10%)
- Lecture notes posted on Canvas the day after class

Other Related Classes

- * Fall
 - * CSE 380: Tools and Techniques o Computational Science
 - * Prerequisites include:
 - numerical analysis
 - some *nix familiarity
 - * C/C++/F90 programing background
 - SSC 335/394 Scientific and Technical Computing
 - Less stringent prerequisites
- * Spring: SSC Parallel Computing for Science and Engineering
- * Summer: SSC introduction to programming classes

Class Goals – at the end, students should be able to ...

- * Understanding floating point arithmetic and how cache hierarchy works
- * Understand "speeds and feeds"; disk access times vs. interconnect vs. memory vs. cache
- * Understand the fundamentals of instruction sets and vectorization
- * Grok the Unix Operating System and get a good intro to the tools available
- * Use version control as well as good software engineering practices
- * Perform both code and solution verification across a wide range of problem types
- * Debug, profile, optimize code
- * Produce reproducible "well-documented" research and be the envy of their peers

More goals ...

- * Exposure to:
 - * on-node, off-node and Hybrid parallelization
 - * offloading including GPGPUs and Xeon Phis (MICs)
- Improve your (research group's) software
- Learn what tools are available for a range of applications
- Learn to be productive on HPC systems
- Learn the foundations of reproducible science/computing
- * possibly enabling you to get closer to graduation?

Computer Accounts

- * We will use 3 primary resources for this class
 - * UT's newest supercomputer, Stampede
 - * Canvas
 - Bitbucket or Github (haven't decided yet)

Stampede – High Level Overview

- Dell/Intel/Mellanox
 - Intel Sandy Bridge processors
 - * 6,400 compute nodes
 - * 56 Gb/s Mellanox FDR Infiniband Interconnect
 - * More than 100k cores, 2.2 petaflops peak performance
- * Co-processors
 - * Intel Xeon Phi "MIC" Many Integrated Core processors
 - * 61 cores per card
 - * 7.3 petaflops additional performance

Supercomputer Sizes

Production Environment

- * Jobs run in a managed environment
 - * login to the login node
 - * submit jobs to the scheduler
 - * wait
 - * collect results
 - *
 - * profit?

Final Comments

- * You will need to have access to a laptop or desktop to do this class
- * This should be a "fun" class that provides practical computing exposure, introduction to some best practices and to fill the gap in computational science education
- * I do have a day job, but feel free to email me with any questions or suggestions
 - csim@ices.utexas.edu
 - * make sure to include CSE380 in the subject line!

First Assignment

- Checkout the Canvas site for this class
 - http://canvas.utexas.edu/
- * Sign up for a TACC account
 - http://portal.tacc.utexas.edu
- * Email me your TACC account infos
- * Start thinking about your projects and discussing this with your advisor; come to office hours to discuss possibilities

Field Trip?

- * TACC Visit Tour of Stampede and TACC Facilities
- * Directions http://www.tacc.utexas.edu/about/
 contact-us/directions
- * Doodle pool will be created to come up with times once everyone sends me their TACC usernames