

Bayesian Optimization

Bayesian Optimization

Bayesian Optimization is a sequential approach for global optimization of black-box objective functions, that are costly to evaluate.

Bayesian Optimization

Mathematically, we want to find the global maximizer (or minimizer) of an unknown (black-box) objective function *f*:

$$\mathbf{x}^{\star} = \arg\max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

where x are the hyperparameters.

The objective function f

- f is continuous
- f is difficult to evaluate \rightarrow too much time or money
- f lacks known structure, like concavity or linearity \rightarrow f is black-box
- f has no derivative → we can't evaluate a gradient
- f can be evaluated at arbitrary points of x (the hyperparameters)
 - We can make point-wise observations of f

Bayesian Optimization

f is unknown

$$\mathbf{x}^{\star} = \argmax_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

- In Bayesian optimization we treat f as a random function and place a prior over it.
 (the prior is a function that captures the belief -distribution, behaviour- of f)
- 2. Then, we evaluate f at certain points.
- 3. With the new data, the prior (f original belief) is updated to a new the **posterior** distribution.
- 4. The posterior distribution is used to construct an acquisition function to determine the next query point.

Estimating the prior

- Gaussian processes
- Tree-parzen estimator
- Random Forests

Acquisition Function

- Expected Improvement (EI)
- Gaussian process upper confidence bound (UCB)

Coming up next:

- Bayes Inference
- Conditional probability
- Bayes Rule
- Sequential Model based Global Optimization (SMBO)
- Gaussian processes
- Acquisition functions
- Specific algorithms for hyperparameter tuning.

THANK YOU

www.trainindata.com