Příklad 1 - lineární regrese

V experimentu byla změřena závislost délky pružiny na hmotnosti závaží, kterým byla pružina zatížena, viz obrázek. Pro velikost síly, působící na pružinu, platí lineární vztah

$$F = k \cdot \Delta y$$

kde k je tuhost pružiny a $\Delta y = y - y_0$ je prodloužení pružiny v důsledku působení síly F = mg.

Naměřená závislost byla proložena obecnou přímkou danou rovnicí $\lambda(x) = ax + b$ s následujícími parametry: a = 0.02894, $\sigma_a = 0.00017$, b = 21.94, $\sigma_b = 0.12$. Určete tuhost pružiny a její délku v nezatíženém stavu. Počítejte s velikostí tíhového zrychlení q = 9.81 m s⁻².

Poznámky k řešení:

- (a) Jaké jsou jednotky parametrů a, σ_a, b, σ_b ?
- (b) Jaký je vztah mezi tuhostí pružiny k, délkou nezatížené pružiny y_0 a nafitovanými parametry a, b? Pro výpočet chyb k a y_0 použijte tyto vztahy a metodu přenosu chyb.
- (c) Výsledky zapište **ve správném tvaru** a se správnou jednotkou SI!

(5 bodů)

Příklad 2 - odhady parametrů

V tabulce je uvedeno 12 hodnot rychlosti proudící kapaliny změřených učitelem a 5 hodnot rychlosti proudící kapaliny následně změřených studentem.

n_1	$v \text{ (cm s}^{-1})$	$ n_2 $	$v \text{ (cm s}^{-1})$
1	5.34	1	4.29
2	4.87	2	8.07
3	6.24	3	5.91
4	3.81	4	3.09
5	6.17	5	6.33
6	5.52		
7	5.33		
8	4.80		
9	7.09		
10	4.39		
11	5.84		
12	4.98		

- (a) Na základě měření provedeného učitelem vypočítejte nejlepší odhad očekávané hodnoty μ a standardní odchylky σ náhodné proměnné v.
- (b) Definujte konfidenční interval hodnot $(\mu 3\sigma, \mu + 3\sigma)$ neboli tzv. 3σ kritérium.
- (c) Otestujte, zda není žádná z hodnot naměřených studentem zatížená hrubou chybou.
- (d) Na základě všech spolehlivě naměřených hodnot (učitelem i studentem) vypočítejte nový nejlepší odhad očekávané hodnoty a standardní odchylky náhodné proměnné v.
- (e) Určete průměrnou rychlost proudící kapaliny a její chybu. Výsledek zapište **ve správném tvaru**!

(10 bodů)