# Next-generation all-solid-state battery







## Tuan Vo<sup>a,b†</sup>, Claas Hüter<sup>b</sup>, Stefanie Braun<sup>a</sup>, Manuel Torrilhon<sup>a</sup>

<sup>a</sup>Department of Mathematics, Applied and Computational Mathematics (ACoM), RWTH Aachen University, Schinkelstraße 02, 52062 Aachen, Germany 

<sup>b</sup>Institute of Energy and Climate Research (IEK-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

### Mathematical modelling for the next-generation All-solid-state batteries: Nucleation $(SE|SSE)^{(*)}$ -interface

Rechargeable Lithium-ion battery (LIB) is at the heart of every electric vehicle (EV), portable electronic device, and energy storage system [1]. Nowadays, LIBs enable human life more efficient and help to solve global environment issues thanks to EVs' zero emission. However, conventional LIB (c-LIB) is sensible to temperature and pressure, hence, flammable and explosive. This bottleneck is mainly due to liquid-based electrolyte in c-LIBs. All-solid-state battery (ASSB) is one of promising candidates to overcome bottlenecks of c-LIBs. Thanks to solid-state electrolyte (SSE), ASSB is highly stable towards temperature and pressure. Nevertheless, metallic Li-dendrite triggered at (SE|SSE)-interface is the main drawback as these dendritic threads extrapolate into grain boundary network of SSE, causing crevice, degradation of ionic conductivity, and the probability of short-circuit. Next-generation All-solid-state battery (ng-ASSB) with a consideration of nucleation criterion defined by

$$\rho \, \partial_{t^2}^2 \boldsymbol{u}^{(s)} + \nabla \cdot \left( \mathbb{C}^{f_{(\lambda,\mu)}^{\mathbb{D}(\Omega)}} : \nabla \boldsymbol{u}^{(s)} \right) + \rho \nabla V_e = \boldsymbol{0},$$

$$\text{s.t. } a_{\mathsf{Griffith}} := a^* = \arg \min_{a \in \mathbb{R}} \left. \iint_{\Omega} f(a,\boldsymbol{u};\lambda,\mu,\boldsymbol{d} \otimes \boldsymbol{d}) \, d\Omega - \int_{\Gamma} f(a;\gamma) \, d\Gamma \right|_{\boldsymbol{u}}$$

where,

can help to improve ASSB performance.



#### Next-generation All-solid-state battery

**Interface** between solid electrode and solid-state electrolyte (SE|SSE) taking place at space charge layer (SCL) [2] found in all-solid-state lithium-ion batteries (ASSLiBs) critically exhibits mechanical and electrochemical instability [3]. This evidence points directly to the fact that the soft metallic lithium negative electrode is erroneously prone to triggering dendritic by-products of silvery lithium metal, under cycles of electric charge & discharge [4].



Besides, polycrystalline garnet-typed solid-state electrolyte such as LLZO exhibit grain boundaries and various sizes and shapes of grains under microscopic observation. Therefore, this type of microstructure distinctively leads to nuance destruction of ceramic-like materials. Consequentially, dendritic by-products contribute to degradation of ionic conductivity and trace along grain boundaries in SSE.



#### Nucleation interface: Taking place at the critical dendritic interface

Comparison

Distribution of the analytical maximal shear stress component  ${}^{v_2}\!\!\sigma_{x_1x_2}^\Pi$ , around the crack tip  $a_c$ .



The set of boundary conditions is likewise the path of the pressure-centric dendritic crack.

Nucleation interface: Taking place at the critical dendritic interface (SE|SSE)



Nucleation interface: Taking place at the critical dendritic interface (Solid electrode | Solid-state electrolyte)

### **Contact** References

Tuan Vo vo@acom.rwth-aachen.de

[1] **T.Vo**, Modeling the swelling phenomena of li-ion batt. cells based on a numerical chemo-mech. coupled approach. MA, Robert Bosch Battery Systems GmbH, 2018.

[2] **S.Braun**, C.Yada and A.Latz, *Thermodynamically consistent model for Space-Charge-Layer formation in a solid electrolyte*. Jr. Phys. Chem., 119, 22281-22288, 2015. [3] **C.Hüter**. S.Fu. M.Finsterbusch. E.Figgemeier. L.Wells. and R.Spatschek. *Electrode-electrolyte interface stability in solid state electrolyte system: influence of*