

Universidade do Minho Escola de Engenharia **Universidade do Minho** Escola de Ciências

Computação Gráfica

Guião 4

Grupo 16

Carlos André Machado Costa a94543 João Miguel Rodrigues da Cunha a96386 Rúben Gonçalo Araújo da Silva a94633

a94543

a96386

a94633

27 de Maio de 2023

Índice

1	Introdução														2											
2	Imp	Implementações															3									
3	Generator 3.1 Normais/Indices de Texturas															4										
	3.1	Norma	ais	/Ind	lice	s d	e ′.	Гез	κtι	ıra	as															4
		3.1.1	Ι	3ezie	r.																					4
		3.1.2	7	Corus	3.																					4
		3.1.3	S	Spher	re .																					4
		3.1.4	Ι	Box																						4
		3.1.5	I	Plane																						4
		3.1.6	(Cone																						4
		3.1.7	(Cylin	der	•		٠											•				•			4
4	Eng	gine																								5
	4.1	Mater	ial	l																						5
	4.2	Lights	3 .																							5
	4.3	Textu	res	S																						5
	4.4	Sistem	na	Sola	r.																					6
5	Demos														7											
6	Conclusão														9											
7	Bibliografia/Webgrafia													10												

1 Introdução

Durante a quarta fase deste projeto, no âmbito da disciplina de Computação Gráfica, foi proposta a implementação de um sistema de luzes e texturas. Nesta nova etapa, o nosso grande objetivo era tornar o sistema solar num ambiente mais realista, adicionando efeitos de iluminação e aplicar texturas nos nossos objetos.

2 Implementações

De momento foi implementada as seguintes funcionalidades e scenes:

- Generator
 - Calcular as Normais
 - Calcular os indices para as texturas
- Engine:
 - Novas Features:
 - 1. Sistema de Luzes;
 - 2. Texturas.
- \bullet Scenes:
 - Finalizar Sistema Solar.

3 Generator

3.1 Normais/Indices de Texturas

3.1.1 Bezier

As normais no Bézier foram calculadas com a fórmula do cross product. Basicamente, a cada três vértices obtidos (formando um triângulo), foi calculado o cross product e normalizado. Esse vetor é a normal desses três vértices.

Para calcular os índices de texturas, seguimos a tesselação sem realizar nenhum cálculo, visto que são compreendidos entre 0 e 1.

3.1.2 Torus

No toro, as normais foram calculadas simplesmente dividindo o raio de cada componente de cada vértice. Os índices foram obtidos ao dividir 1 pela quantidade sides e pela quantidade de rings.

3.1.3 Sphere

Na esfera as normais foram calculadas simplesmente dividindo o raio a cada componente de cada vértice. Os indices foram obtidos a dividir 1 pela quantidade de *stacks* e pela quantidade de *slices*.

3.1.4 Box

Na box as normais foram atribuídas considerando a face em questão, onde todos os vértices da mesma face compartilham da mesma normal. Os índices foram obtidos dividindo 1 pela quantidade de divisões em ambas as componentes.

3.1.5 Plane

No plano, as normais foram atribuídas todas com z=1. Os índices foram obtidos simplesmente dividindo 1 pela quantidade de divisões em ambas as componentes.

3.1.6 Cone

No cone, as normais foram atribuídas com z=-1 na base, e na lateral foi necessário calcular a inclinação do cone. Para isso calculamos a razão entre o raio e a altura (Radius/Height), depois aplicamos a função atan() para obter o ângulo e, por fim, aplicamos o sin() para obter a altura em radianos. Os índices foram calculados com base na quantidade de stacks e slices na lateral. Na base, deslocamos o cálculo para o centro da imagem hipotética, dessa forma, ao obtermos índices maiores ou menores que [0,1], obtemos uma textura simétrica, visto que a textura se repete infinitamente.

3.1.7 Cylinder

No cilindro, as normais foram atribuidadas todas para z=-1 na base inferior e z=1 para a base de cima, e na lateral seguimos a trignometria básica da base do cilindro. Os índices foram calculados seguindo a quantidade de stacks e slices, isto na lateral. Na base deslocamos o cálculo para o centro da imagem hipotética e com isso, ao obtermos índices maiores ou menores que [0,1] obtemos uma textura simétrica visto que a textura se repete infinitamente.

4 Engine

Nesta fase, a nossa engine consegue definir os materiais de cada objeto, especificar onde e que tipos de luz queremos (até 8) e colocar texturas se for pedido.

4.1 Material

Cada objeto tem as seguintes propriedades de material:

- 1. diffuse;
- 2. ambient;
- 3. specular;
- 4. emisse;
- 5. shininess.

4.2 Lights

Cada light tem uma definição base de:

```
1. ambient: [0.2f, 0.2f, 0.2f, 1.0f];
```

2. diffuse: [1.0f, 1.0f, 1.0f, 1.0f];

3. specular: [1.0f, 1.0f, 1.0f, 1.0f]

Também temos a luz ambient com as seguintes definições: [0.3f, 0.3f, 0.3f, 1.0f] Para que a lightning faça sentido nos nossos objetos, é necessário, em primeiro

lugar, ter as normais de cada vértice e implementá-las previamente através de VBOs (Vertex Buffer Objects).

4.3 Textures

Para as texturas façam sentido nos nossos objetos, é necessário em primeiro lugar, termos os índices de cada vértice e estes serem previamente implementadas por VBOs. Também foi usada a função dada nas aulas práticas para obtermos o processamente das texturas e estas serem guardadas no sistema.

Sistema Solar 4.4

Nesta secção, temos alguns frames do nosso sistema solar. Para melhor visualização é recomendado assistir o vídeo gravado.

Figura 1: solar_system_1

Figura 2: solar_system_2

Figura 3: solar_system_3

Figura 4: solar_system_4

5 Demos

Nesta secção, apresentamos os testes pretendidos. Para demonstrar melhor o sistema solar, foi gravado um vídeo a mostrar todas as capacidades da engine e o sistema solar em si. Este arquivo encontra-se nos ficheiros entregue.

Figura 5: $test_3_1$

Figura 6: $test_3_2$

Figura 7: $test_3_1$

Figura 8: test_3_2

Figura 9: test_3_1

Figura 10: $test_3_2$

6 Conclusão

Durante esta quarta fase tivemos de lidar com situações difíceis como o cálculo das normais de cada objeto e a determinação dos seus índices para uma possível textura. Também enfrentamos um desafio na implementação dos materiais na engine e as luzes. Nesta fase em particular, sentimos que foi a mais importante pois foi necessário que tudo fosse criado na perfeição. Qualquer erro mínimo poderia comprometer como o objeto seria representado.

7 Bibliografia/Webgrafia

 $\bullet\,$ Material da cadeira de Computação Gráfica 22/23