UE COM

Learning Deep CNN Denoiser Prior for Image Restoration

Adrien Zabban

8 janvier 2024

Le Probleme inverse

But

On a une image observée dégradée y et l'on veut retrouver l'image d'origine x. On sait que cette image a été dégradée de la façon suivante :

$$y = Hx + v$$

où H est la matrice de dégradation que l'on connait, et v est un bruit gaussien d'écart-type σ inconnue.

Figure: image d'orignine x (à gauche) et l'image dégradée y (à droite).

Maximiser la log likelihood

$$\begin{aligned} \max_{x} \log(p(x|y)) &= \max_{x} \log(p(x,y)) &\quad \text{car } p(x|y) = p(x,y) \times p(y) \\ &= \max_{x} \log(p(y|x)) + \log(p(x)) \\ &\quad \text{or } (y|x) = (v + Hx|x) \sim \mathcal{N}(Hx, \sigma^{2}) \\ &= \max_{x} - \frac{||y - Hx||^{2}}{2\sigma^{2}} + \log(p(x)) \\ &= \min_{x} \frac{1}{2} ||y - Hx||^{2} + \lambda \Phi(x) \quad \text{avec } \Phi = -\frac{\log \circ p}{\lambda} \end{aligned}$$

Maximiser la log likelihood

$$\begin{aligned} \max_{x} \log(p(x|y)) &= \max_{x} \log(p(x,y)) &\quad \text{car } p(x|y) = p(x,y) \times p(y) \\ &= \max_{x} \log(p(y|x)) + \log(p(x)) \\ &\quad \text{or } (y|x) = (v + Hx|x) \sim \mathcal{N}(Hx, \sigma^{2}) \\ &= \max_{x} - \frac{||y - Hx||^{2}}{2\sigma^{2}} + \log(p(x)) \\ &= \min_{x} \frac{1}{2} ||y - Hx||^{2} + \lambda \Phi(x) \quad \text{avec } \Phi = -\frac{\log \circ p}{\lambda} \end{aligned}$$

But

On veut donc trouver \hat{x} tel que: $\hat{x} = \arg\min_{x} \frac{1}{2} ||y - Hx||^2 + \lambda \Phi(x)$

Une première méthode: ISTA

raconter ISTA

Une deuxièm méthode: HQS

raconter HQS

Les systèmes de plug and play

en quoi ça consiste

Le Denoiser

le model

Le Denoiser

train et inférance

Plug and play

résultats