

ΤΕΧΝΙΚΕΣ ΕΞΟΡΥΞΗΣ ΔΕΔΟΜΕΝΩΝ

Εφαρμογή τεχνικών εξόρυξης δεδομένων και αξιολόγηση

Classification με χρήση του LDA

(Latent Dirichlet Allocation)

Κοντόπουλος Παναγιώτης ΑΜ: 1115201100124

Τσακριλής Αλέξανδρος-Παναγιώτης

AM: 1115201100092

ΑΘΗΝΑ 2016

Περιεχόμενα

Περιεχόμενα	1
Υλοποίηση κατηγοριοποίησης (Classification) με LDA	2
Δομή Κώδικα (+ οδηγίες για εκτέλεση κώδικα)	2
Δοκιμές	3
Συμπεράσματα	4
Παραδοχές	5

Υλοποίηση κατηγοριοποίησης (Classification) με LDA

Δομή Κώδικα (+ οδηγίες για εκτέλεση κώδικα)

Στον παρακάτω πίνακα φαίνεται η διάρθρωση της εργασίας σε αρχεία και φακέλους.

ΦΑΚΕΛΟΣ	APXEIO	ΛΕΠΤΟΜΕΡΕΙΕΣ
.J	data_classification_lda.py	Αποτελεί την υλοποίηση των συναρτήσεων για την εφαρμογή του classification με LDA και ex1 features.
./	data_csv_functions.py	Αποτελείται από το σύνολο των συναρτήσεων για την εισαγωγή και εξαγωγή δεδομένων από τα αρχεία csv.
./	data_feature_functions.py	Αποτελείται από τις συναρτήσεις για τα tokenizer, preprocessing και τη δημιουργία features
./	data_predict.py	Αποτελείται από την συνάρτηση που χρησιμοποιείται για την πρόβλεψη των κατηγοριών

Επίσης στον φάκελο data υπάρχουν τα αρχεία train_set.csv και test_set.csv.

Οδηγίες για την εκτέλεση του προγράμματος

Για την εκτέλεση στα μηχανήματα linux της σχολής ο χρήστης τρέχει την εντολή python data_classification_lda.py path_to_train_file path_to_test_file. Ένα

παράδειγμα χρήσης του είναι το ακόλουθο: python data_classification_lda.py ./data/train_set.csv ./data/test_set.csv

Κατά την εκτέλεση ζητείται από το χρήστη να δώσει μία από τις παρακάτω επιλογές:

- 1: για εκτέλεση μόνο με LDA features
- 2: για εκτέλεση με LDA features + ex1 features
- 3: για πρόβλεψη κατηγοριών
- 0: για έξοδο από το πρόγραμμα

Αφού εκτελεστεί το πρόγραμμα, θα παραχθούν τα αρχεία στον φάκελο data:

- EvaluationMetric_10fold_lda_only.csv, το οποίο περιέχει τον πίνακα με τις ακρίβειες για το LDA μόνο. (για την επιλογή 1)
- EvaluationMetric_10fold_ex1_features.csv, το οποίο περιέχει τον πίνακα με τις ακρίβειες για το LDA + ex1 features. (για την επιλογή 2)
- testSet_categories.csv, το οποίο περιέχει τις κατηγορίες των άρθρων που περιέχονται στο Test Set. (για την επιλογή 3)

Δοκιμές

Στις δοκιμές μας χρησιμοποιήσαμε το 75% του train_set για train των αλγορίθμων και το υπόλοιπο 25% σαν test_set, ώστε να ελέγξουμε την απόδοση των αλγορίθμων και να βρούμε τις βέλτιστες ρυθμίσεις.

EvaluationMetric_10fold_lda_only.csv						
Statistic Measure	K- Nearest- Neighbor	(Binomial)- Naive Bayes	SVM	(Multinomial)- Naive Bayes	Random Forest	My Method
Accuracy=10	0.916	0.733	0.909	0.897	0.922	0.903
Accuracy=50	0.936	0.858	0.925	0.927	0.947	0.927
Accuracy=100	0.928	0.878	0.904	0.928	0.945	0.924
Accuracy=1000	0.898	0.907	0.249	0.916	0.930	0.918

EvaluationMetric_10fold_ex1_features.csv						
Statistic	K-	(Binomial)-	SVM	(Multinomial)-	Random	Му
Measure	Nearest- Neighbor	Naive Bayes		Naive Bayes	Forest	Method
Accuracy=10	0.949	0.941	0.934	0.957	0.956	0.964
Accuracy=50	0.947	0.942	0.925	0.958	0.956	0.965
Accuracy=100	0.946	0.942	0.907	0.959	0.956	0.966
Accuracy=1000	0.936	0.942	0.248	0.959	0.957	0.966

Για τα features χρησιμοποιήσαμε tokenization διαφορετικό του παραδείγματος, που δόθηκε, διότι για K=1000 είχε θέμα η μνήμη ακόμα και σε υπολογιστή με 8GB RAM.

Συμπεράσματα

Από τις δοκιμές που έγιναν καταλήξαμε στα εξής συμπεράσματα:

Ερώτημα 1°:

- Το LDA μόνο δεν δίνει γενικά καλά αποτελέσματα, σε σύγκριση με την πρώτη εργασία.
- Από την άλλη όσο μεγαλώνει το Κ έχουμε σχετική βελτίωση, αλλά όχι σε όλες τις περιπτώσεις. Σε ορισμένες έχουμε και μείωση των επιδόσεων.

Ερώτημα 2°:

- Ο συνδυασμός του LDA με τα ex1 features προσφέρει ακόμα καλύτερη βελτίωση στην απόδοση, σε σύγκριση με το LDA features only.
- Και εδώ υπάρχουν περιπτώσεις, όπου το LDA δεν βελτιώνει, αλλά μπορεί να μειώσει την απόδοση.
- Μετά από δοκιμές και τους πίνακες παραπάνω, γίνεται εμφανές ότι το K=1000 με
 LDA features + ex1 features δίνει την καλύτερη απόδοση.

Ερώτημα 3°:

Λόγω τις καλύτερης απόδοσης παραπάνω για τη σύγκριση χρησιμοποιούμε το
 K=1000 με LDA features + ex1 features στην δικιά μας μέθοδο με τον SGDClassifier,
 η οποία έδωσε τα βέλτιστα αποτελέσματα από τις άλλες.

Γενικά:

 Ο αλγόριθμος SVC με kernel linear αποδίδει καλύτερα, από όταν χρησιμοποιήσουμε το kernel rbf. Μία πιθανή αιτιολόγηση για αυτό είναι ότι, όσο μεγαλώνει ο αριθμός των features με το training sample, o linear kernel είναι αρκετά καλύτερος. Πηγή: http://stackoverflow.com/questions/20566869/where-isit-best-to-use-svm-with-linear-kernel 07-06-2016

Παραδοχές

- Στο φάκελο data περιέχονται και τα αρχεία που δείχνουν τη διαφορά του SVC linear kernel με τον SVC rbf kernel για K=1000 και στις δύο περιπτώσεις:
 - o LDA features only
 - LDA features + ex1 features