

THE UNIVERSITY OF ZAMBIA School of Natural Sciences

Department of Computer Science

FINAL EXAMINATION

CSC 2912 NUMERICAL ANALYSIS

Date : 19 NOVEMBER 2018 Time : 14:00hrs - 17:00HRS

Duration: 3 Hours Venue: NSLT

Instructions

- There are two (2) Sections in this exam, Section A and Section B.
- In Section A, answer all the questions and in Section B choose any three (3) questions.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

- 1. Let $f:R\to R$ be a function defined on R. Define the following: a. Limit L of a f at x_0 b. Continuity of a f at x_0 c. Differentiability of a function at x_0
- Suppose a number p₀ approximates p. Define the following
 a. Absolute error of this approximation
 b. Relative error of this approximation
- State the following theorems
 a. Rolle's theorem
 b. Mean value theorem
- Taylor's theorem
 Suppose p₀, approximates 100 to 5 significant digits. What is the range of p₀? [4 Marks]
- Let a function f have a root in [2, 3]. How many iterations of the bisection method are required to approximate the root to 10⁻⁴ accuracy? [4 Marks]

SECTION B: ANSWER THREE (3) OF THE FOUR (4) QUESTIONS

1.

2.

c. Intermediate value theorem

a. Prove that if a function f is differentiable at a point x_0 , then it is also continuous at x_0 . [10 Marks]
b. Use the mean value theorem to show that for an interval [a,b], where a>0, and $\left|\frac{1}{x}\right|\leq K, \forall x\in [a,b]$, [10 Marks]

$$ln\left(\frac{b}{a}\right) \le K|b-a|$$

a. How many iterations are required to approximate √2 in [1, 2] to 10⁻⁴ accuracy using the Bisection method? [10 Marks]
 b. Use the Newton's method to approximate √2 to 10⁻⁴ accuracy. Let p₀ = 1 [10 Marks]

3.

- a. Suppose $x_0 = 1$, $x_1 = 2$, and $x_2 = 3$, and you are given that $P_{0,1}(x) = 2x$ and $P_{0,2}(x) = x^2$, find $P_{0,1,2}(2.5)$ [10 Marks]
- b. Given the following data

×	1	2	3	
У	1.6	4.4	12	

Use the Newton's divided difference method to interpolate f(1.5)

[10 Marks]

4.

- a. Estimate
 - i. f'(3)
 - ii. f"(2)
- b. Estimate

[8 Marks]

 $\int_{2}^{4} x^{2} dx$

using the composite

- i. Trapezoidal rule, with h = 1
- ii. Simpson rule, with n = 2

[12 Marks]