

1. DADOS DE IDENTIFICAÇÃO

CURSO: <u>Física</u> DISCIPLINA: <u>Física Matemática II</u>

CÓDIGO:DEFI0147CARGA HORÁRIA: 60 hPRÉ- REQUISITOS: Física Matemática ICREDITOS: 4.0.0

2. EMENTA

Transformada de Laplace, Transformada de Fourier, Equações Diferenciais Parciais

3. OBJETIVOS GERAIS

Complementar os conhecimentos de Matemática necessários ao estudos de cursos avançados de Física.

4. CONTEÚDO PROGRAMÁTICO

4.1. TRANSFORMAÇÃO DE LAPLACE

- 4.1.1. Transformada de Laplace, Transformada inversa e Linearidade.
- 4.1.2. Transformadas de Laplace de derivadas e integrais.
- 4.1.3. Deslocamento do Eixo-S, Deslocamento de Eixo-T e Função Degrau.
- 4.1.4. Outras aplicações. Função Delta de Dirac.
- 4.1.5. Diferenciação e integração da transformada.
- 4.1.6. Convolução. Equações integrais.
- 4.1.7. Frações parciais. Sistemas de equações diferenciais.
- 4.1.8. Funções periódicas. Outras aplicações.

4.2. SÉRIES DE FOURIER, INTEGRAIS DE FOURIER E TRANSFORMADAS DE FOURIER

- 4.2.1. Funções periódicas. Séries trigonométricas.
- 4.2.2. Séries de Fourier.
- 4.2.3. Funções de qualquer período.
- 4.2.4. Funções pares e ímpares.
- 4.2.5. Expansões em meio período.
- 4.2.6. Cálculo dos coeficientes de Fourier sem integração.
- 4.2.7. Oscilações forçadas.
- 4.2.8. Aproximações por polinômios trigonométricos, erro quadrático.
- 4.2.9. Integral de Fourier.
- 4.2.10. Transformação de Fourier em seno e cosseno.
- 4.2.11. Transformações de Fourier.

4.3. EQUAÇÕES DIFERENCIAIS PARCIAIS

- 4.3.1. Conceitos básicos.
- 4.3.2. Modelamento: corda vibrante. Equação de onda unidimensional.
- 4.3.3. Método da separação de variáveis.
- 4.3.4. Solução da equação de ondas de D'Alembert.
- 4.3.5. Fluxo de calor.
- 4.3.6. Fluxo de calor em uma barra infinita.
- 4.3.7. Modelamento: Membrana Vibrante. Equação da onda bidimensional.
- 4.3.8. Membrana retangular.
- 4.3.9. Laplaciana em coordenadas polares.
- 4.3.10. Membrana circular. Equações de Bessel.
- 4.3.11. Equação de Laplace. Potencial.
- 4.3.12. Equação de Laplace em coordenadas esféricas. Equações de Legendre.
- 4.3.13. Transformação de Laplace aplicadas a equações diferenciais parciais.
- 4.3.14. Transformações de Fourier aplicadas a equações diferenciais parciais.

5. BIBLIOGRAFIA.

BÁSICA:

KREYZIG, E., Advanced Engineering Mathematics, 6a Edição, Wiley, New York, 1988.

FIGUEIREDO, D.G., Análise de Fourier e Equações Diferenciais Parciais, IMPA - Projeto Euclides, Rio de Janeiro, 1977.

APOIO:

AVILA, G.S.S., Equações Diferenciais Parciais, IMPA - 90 Colóquio Brasileiro de Matemática, Poços de Caldas, Julho 1973.

MONZALA, G.P., Introdução às Equações Diferenciais Parciais, IMPA - 110 Colóquio Brasileiro de Matemática, Poços de Caldas, Julho 1977.

SNEDDON, I., Elements of Partional Differential Equations, McGraw-Hill, Kogakusha, Tokio, 1957.

Aprovado em Assembléia Departamental Em: 22/04/94