• Mean of the binary (Bernoulli) distribution:

$$\mu = p$$

• Variance of the binary (Bernoulli) distribution:

$$\sigma^2 = p(1-p)$$

• Difference between binary distribution and binomial distribution:

$$n = 1 \Rightarrow binary\ distribution$$

$$n > 1 \Rightarrow binomial\ distribution$$

Mean of the binomial distribution:

$$\mu = np$$

Variance of the binomial distribution:

$$\sigma^2 = np(1-p)$$

- Conditions for binomial distribution: Outcome is binary. We have n independent trials. The number of trials is fixed. The probability of success  $\pi$  must stay constant.
- Probability of x successes in n trials:

$$\Pr(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

• Binomial coefficient  $\binom{n}{k}$ :

$$\frac{n!}{(k!)(n-k)!}$$

Standard normal distribution(Z):

$$Z \sim N(\mu = 0, \sigma^2 = 1)$$

- $\mu$  (normal distribution) moves the curve but does not change its shape.
- $\sigma$  spreads the curve more widely about  $X = \mu$  but does not alter the centre.
- Compare a relative frequency histogram with a probability distribution: Relative frequency histogram represents a sample (smaller number of individuals). The probability density function represents a population (a large number of individuals).
- How to estimate the value of the parameters if estimating a probability distribution curve from a relative frequency histogram:  $\mu$  is estimated by the sample mean.  $\sigma$  is estimated by the sample standard deviation, s.
- What do the areas under the normal distribution curve represent? Probabilities.

- What is Z-score (Z-value)? Number of standard deviations away from the mean.
- Any normal distribution value,  $X \sim N(\mu_X, \sigma_X^2)$ , can be put on the standard normal scale,  $Z \sim N(0, 1)$ . The Z-score follows a standard normal distribution.
- Formula for Z-Value:

$$Z = \frac{(X - \mu_X)}{\sigma_X}$$

- When will the sampling distribution of the mean will follow a normal distribution? If x(the samples, not X) is large enough.
- Central Limit Theorem (CLT): The sampling distribution derived from a simple random sample will be approximately normally distributed.
- What is the mean of the sampling distribution? Population mean,  $\mu_{\bar{X}} = \mu_X$ .
- Variance of the sampling distribution:

$$\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}}$$

The variability of sample means.

• Notes on the sampling distribution: If sample size n is greater, then the standard error of the mean is smaller (more compact distribution, greater precision). If X is normal, then  $X_{bar}$  is normal (for any n). If X is not normal, then  $X_{bar}$  is approximately normal for large n (central limit theorem).