IEEE 2010

최은학 DSAIL Winter Intern

CONTENTS

Factorization Machines

- 1. Introduction
- 2. Prediction Under Sparsity
- 3. Factorization Machines
- 4. FM vs. SVM
- 5. FM vs. Other Factorization Model
- 6. Conclusion

Introduction

Support Vector Machine (SVM)

- 두 클래스를 가장 잘 구분짓는 선, 즉 초평면을 찾는 알고리즘
- 가장자리에 위치한 데이터간의 거리(Margin)가 가장 큰 구분선을 초평면으로 정의
- 선형 초평면을 기본으로 하지만, 커널 함수를 이용해 비선형 분류에 활용가능

Introduction

Introduction

Factorizaion Machine

• Sparse한 상황에 적용 가능

Linear Complexity

General Predictor

Dataset

Huge sparsity (average of x >> n)

- $X \subset \mathbb{R}^{M \times N}$, $n = |U| + |I| + |T| + \cdots$: feature data
- $x_i \subset \mathbb{R}^n \in D, i \in \{1, 2, ..., m\}$: feature vector
- $y_i \in \mathbb{R}, i \in \{1, 2, 3, 4, 5\}$: target value(rating)
- $\hat{y}(x)$: predicted value

Dataset

Dataset

Dataset

Model Equation

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

- W_0: Global bias
- W_i: 개별 특성의 가중치
- <V_i, V_j>: i, j번째 변수간의 상호작용을 모델링 $< v_i, v_j > := \sum_{f=1}^n v_{i,f} \cdot v_{j,f}$

Expressiveness

- ullet f가 충분히 크다면 Positive definite matrix W에 대해 $oldsymbol{W} = oldsymbol{V} \cdot oldsymbol{V}^T$ 을 만족하는 V가 존재
 - => f가 클때, 어떠한 Interaction Matrix W도 표현할 수 있음

- Sparse한 상황에서는 복잡한 상호작용 계산 어려움
 - => 작은 k를 사용해 일반화 성능을 높힘

Parameter Estimation Under Sparsity

factorized interaction $\langle v_A, v_{ST} \rangle$

No interaction

Parameter Estimation Under Sparsity

Similar interaction

Computation

$$O(kn^{2}) \sum_{i=1}^{n} \sum_{j=i+1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j}$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle x_{i} x_{j} - \frac{1}{2} \sum_{i=1}^{n} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle x_{i} x_{i}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{j,f} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{f=1}^{k} v_{i,f} v_{i,f} x_{i} x_{i} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right) \left(\sum_{j=1}^{n} v_{j,f} x_{j} \right) - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{f=1}^{k} \left(\left(\sum_{i=1}^{n} v_{i,f} x_{i} \right)^{2} - \sum_{i=1}^{n} v_{i,f}^{2} x_{i}^{2} \right)$$

$$O(kn)$$

d-way FM

$$\hat{y}(x) := w_0 + \sum_{i=1}^n w_i x_i$$

$$+ \sum_{l=2}^d \sum_{i_1=1}^n \dots \sum_{i_l=i_{l-1}+1}^n \left(\prod_{j=1}^l x_{i_j}\right) \left(\sum_{f=1}^{k_l} \prod_{j=1}^l v_{i_j,f}^{(l)}\right)$$

as Predictor

• Factorization Machine은 Regression, Binary classification, Ranking 가능

• 최적화 목표에 정규화항 추가

Learning

Gradient Descent

$$\hat{y}(\mathbf{x}) = w_0 + \sum_{i=1}^n w_i x_i + \frac{1}{2} \sum_{f=1}^k \left(\left(\sum_{i=1}^n v_{if} x_i \right)^2 - \sum_{i=1}^n v_{if}^2 x_i^2 \right)$$

$$\frac{\partial}{\partial \theta} \hat{y}(\mathbf{x}) = \begin{cases} 1, & \text{if } \theta \text{ is } w_0 \\ x_i, & \text{if } \theta \text{ is } w_i \\ x_i \sum_{j=1}^n v_{j,f} x_j - v_{i,f} x_i^2, & \text{if } \theta \text{ is } v_{i,f} \end{cases}$$
(4)
$$\text{i와 독립 >> Precompute}$$

FM vs SVM

Polynomial SVM

$$\hat{y}(\mathbf{x}) = w_0 + \sqrt{2} \sum_{i=1}^n w_i \, x_i + \sum_{i=1}^n w_{i,i}^{(2)} x_i^2 + \sqrt{2} \sum_{i=1}^n \sum_{j=i+1}^n w_{i,j}^{(2)} \, x_i \, x_j \quad (9)$$

모든 $w_{i,j}$ 는 independent

feature간의 상호작용이 없으면 estimation 어려움

FM vs SVM

Summary

Netflix: Rating Prediction Error

- SVM은 직접적인 상호작용의 관찰이 필요 하지만, FM은 직접적인 상호작용이 없어 도 추정 가능 (under sparsity)
- SVM과 다르게 FM은 바로 학습 가능
- SVM은 특정 학습 데이터에 의존하지만, FM은 학습데이터에 무관

FM vs Other Factorization Models

- Matrix and Tensor Factorization
- SVD++
- PITF for Tag Recommendation
- Factorized Personalized Markov Chains

FM can mimic many of these models by using the right input data

FM vs Other Factorization Models

PITF for Tag Recommendation

users U, items I, tags T (binary indicator)

$$n := |U \cup I \cup T|, \quad x_j := \delta \left(j = i \lor j = u \lor j = t \right) \quad (13)$$

Used for ranking between two tags

$$\hat{y}(\mathbf{x}) = w_0 + w_u + w_i + w_t + \langle \mathbf{v}_u, \mathbf{v}_i \rangle + \langle \mathbf{v}_u, \mathbf{v}_t \rangle + \langle \mathbf{v}_i, \mathbf{v}_t \rangle$$

$$\hat{y}_{u,i,t} = \sum_f \hat{u}_{u,f} \cdot \hat{t}_{t,f}^U + \sum_f \hat{i}_{i,f} \cdot \hat{t}_{t,f}^I$$
PITF equation

$$\hat{y}(\mathbf{x}) := w_t + \langle \mathbf{v}_u, \mathbf{v}_t
angle + \langle \mathbf{v}_i, \mathbf{v}_t
angle$$
 FM equation

W_t, Interaction의 독립성을 제외하면 매우 비슷

FM vs Other Factorization Models

Summary

- MF와 다르게 FM은 general prediction model
- FM은 더 쉽게 적용이 가능하고 성능은 비슷

Conclusion

In contrast to SVM

- 매우 sparse한 상황에서도 estimation 가능
- 선형 모델 방정식을 통해 직접 최적화 가능

Discussion

- 일반화된 성능을 위해 작은 k를 선택했다고 하는데 그래프를 보면 k가 증가할수록 성능이 향상
- 시간, 최근 평가한 영화 변수가 추가되었는데 이후 시점의 영화도 input data에 포함
- >> [1|0|0], [0.5|0.5|0], [0.3|0.3|0.3]?

Netflix: Rating Prediction Error

Feature vector x											Targ	get y											
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0			5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	A	B Us	C ser		П		SW Movie	ST		TI Otl	NH her M	SW lovies	ST s rate	ed	Time	ال	NH ast l	SW Movie	ST e rate	 ed	$\ $		

Implementation

Baseline

Adding feature

user의 성별, 나이, 위치 추가 movie의 장르 추가

Implementation Baseline

```
ratings_df['Timestamp'] = pd.to_datetime(ratings_df['Timestamp'], unit='s') UserID, Timestamp기준으로 sorting (Last Movie 반영) ratings_df = ratings_df.sort_values(['UserID', 'Timestamp']) ratings_df.reset_index(drop=True, inplace=True)
```

```
# Last Movie rated 奉办
ratings_df['Last_MovieID'] = ratings_df.groupby('UserID')['MovieID'].shift(1)
```

Last MovieID feature 추가

	UserID	M	lovieID	Rating	Timestamp	Last_l	MovieID
182	3		593	3	2000-12-31 21:10:18		NaN
183	3		2858	4	2000-12-31 21:10:39		593.0
184	3		3534	3	2000-12-31 21:11:08		2858.0
185	3		1968	4	2000-12-31 21:11:08		3534.0
186	3		1431	3	2000-12-31 21:11:35		1968.0

Implementation Baseline

```
ratings_df['Year'] = ratings_df['Timestamp'].dt.year
ratings_df['Month'] = ratings_df['Timestamp'].dt.month

ratings_df['Month_Num'] = (ratings_df['Year'] - 2000) * 12 + ratings_df['Month'] - 11

month_num = ratings_df['Month_Num'].reset_index(drop=True)
month_num.index = ratings_df['MovieID']

def Encoding(df = ratings_df, column='UserID', index='MovieID'):
```

```
def Encoding(df = ratings_df, column='UserID', index='MovieID'):
#원-호드인코딩
encoded_data = pd.get_dummies(df[column], prefix=column)
encoded_data.index = df[index]
encoded_data = encoded_data.astype(int)

return encoded_data
```

```
def create_other_movies_rated(df = ratings_df):

user_movie_ratings = df.pivot_table(index='UserID', columns='MovieID', values='Rating')
user_movie_ratings.columns = ['other_' + str(col) for col in user_movie_ratings.columns]
user_movie_ratings.fillna(0.0, inplace=True)

# binary indicator
user_movie_ratings = user_movie_ratings.applymap(lambda x: 1 if x >= 1 else 0)

# 愛示意
user_movie_ratings = user_movie_ratings.div(user_movie_ratings.sum(axis=1), axis=0)

# Create other movies rated matrix
Other_Movie = df['UserID'].apply(lambda x: user_movie_ratings.loc[x])
Other_Movie.index = df['MovieID']
return Other_Movie
```

Month

User, Movie, Last Movie rated

Other Movie rated

Implementation Baseline

```
class FM(keras.Model):
    def __init__(self, n_features, n_factor=10, regularization_factor=0.01):
       super().__init__()
       self.w_0 = tf.Variable([0.0])
       self.w = tf.Variable(tf.zeros(shape = [n_features]))
       self.v = tf.Variable(tf.random.normal(shape = (n_features, n_factor)))
       self.regularization_factor = regularization_factor
   def call(self, inputs):
       # linear term
       degree_1 = tf.reduce_sum(tf.multiply(self.w,inputs),axis= 1)
       # interaction_term
       degree_2 = 0.5 * tf.reduce_sum(
         tf.math.pow(tf.matmul(inputs,self.v),2)
           -tf.matmul(tf.math.pow(inputs,2),tf.math.pow(self.v,2))
            ,keepdims=False
       predict = self.w_0 + degree_1 + degree_2 # Regression은 그대로, binary classification은 sigmoid로
       return predict
   def compute_loss(self, y_true, y_pred):
       mse_loss = tf.reduce_mean(tf.square(y_true - y_pred))
       rmse_loss = tf.sqrt(mse_loss)
       12_loss = self.regularization_factor * (tf.nn.12_loss(self.w) + tf.nn.12_loss(self.v))
       total_loss = rmse_loss + 12_loss
       return total_loss
   def compute_loss_val(self, y_true, y_pred):
       mse_loss = tf.reduce_mean(tf.square(y_true - y_pred))
       rmse_loss = tf.sqrt(mse_loss)
       total_loss = rmse_loss
       return total_loss
   def train_step(self, data):
       x, y_true = data
       with tf.GradientTape() as tape:
           y_pred = self(x, training=True)
           loss = self.compute_loss(y_true, y_pred)
       gradients = tape.gradient(loss, self.trainable_variables)
       self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
       return {'loss': loss}
   def test_step(self, data):
       x, y_true = data
       y_pred = self(x, training=False)
       loss = self.compute_loss_val(y_true, y_pred)
       return {'loss': loss}
```

Result

k	RMSE
2	0.5503
5	0.5361
10	0.5287
20	0.5456
40	0.5396

user 수: 500

Ir: 0.005, epochs: 30

Implementation Adding feature

```
# 첫 번째 자리 분리
users_df['Zip_1'] = users_df['Zip-code'].str[0]

# 첫 두 자리 분리
users_df['Zip_2'] = users_df['Zip-code'].str[:2]
```

```
def Encoding_addfeature(df, column, index):
    encoded_data = pd.get_dummies(df[column], prefix=column)
    data = ratings_df['UserID'].apply(lambda x: encoded_data.loc[x-1])
    data.index = ratings_df['MovieID']

return data
```

```
## 영화 장로 원-핫 인코딩
encoded_genre = movies_df['Genres'].str.get_dummies(sep='|')
encoded_genre.index = movies_df['MovieID']

genre = ratings_df['MovieID'].apply(lambda x: encoded_genre.loc[x])
genre.index = ratings_df['MovieID']
```

User 성별, 직업, 지역

Movie 장르

Implementation Adding feature

Result

k	RMSE
2	0.657
5	0.6855
10	0.6853
20	0.6863
40	0.6767

user 수: 500

Ir: 0.005, epochs: 30

- feature를 추가하니 성능이 감소
- n 대신 m(x)에 대해서 연산해야하는데 구현하지 못함
- 전체적을 성능이 너무 높게 나옴
- 여러번 반복하지 못함