MSBD 5004 Mathematical Methods for Data Analysis Homework 3

Due date: 10 April, 11:59pm, Friday

- 1. This question is about the inner product representation of bounded linear functions.
 - (a) Consider the function $E_{st}: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by $E_{st}(\boldsymbol{X}) = x_{st}$, where $\boldsymbol{X} = [x_{ij}]_{i,j=1}^n$, i.e., E_{st} obtains the (s,t)-entry of a matrix. Find a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ such that $E_{st}(\boldsymbol{X}) = \langle \boldsymbol{A}, \boldsymbol{X} \rangle$ for all $\boldsymbol{X} \in \mathbb{R}^{n \times n}$.
 - (b) Consider the trace function $\operatorname{Tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$ defined by $\operatorname{Tr}(\boldsymbol{X}) = \sum_{i=1}^n x_{ii}$, where $\boldsymbol{X} = [x_{ij}]_{i,j=1}^n$. Find a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ such that $\operatorname{Tr}(\boldsymbol{X}) = \langle \boldsymbol{A}, \boldsymbol{X} \rangle$ for all $\boldsymbol{X} \in \mathbb{R}^{n \times n}$.
 - (c) Given $\mathbf{a} \in \mathbb{R}^n$, consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(\mathbf{x}) = |\langle \mathbf{a}, \mathbf{x} \rangle|^2$ for any $\mathbf{x} \in \mathbb{R}^n$. Obviously f is NOT linear. Nevertheless, we can convert it to a linear function on the "lifted" matrix $\mathbf{x}\mathbf{x}^T \in \mathbb{R}^{n \times n}$. More precisely, there exists a linear function $F : \mathbb{R}^{n \times n} \to \mathbb{R}$ satisfying $f(\mathbf{x}) = F(\mathbf{x}\mathbf{x}^T)$. Find the inner product representation of F (i.e., find $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $f(\mathbf{x}) = F(\mathbf{x}\mathbf{x}^T) = \langle \mathbf{A}, \mathbf{x}\mathbf{x}^T \rangle$.) (This "lifting" technique is quite useful in, e.g., imaging and signal processing, machine learning.)
- 2. Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by

$$S_1 = \{ x \in V \mid \langle a_1, x \rangle = b_1 \}, \quad S_2 = \{ x \in V \mid \langle a_2, x \rangle = b_2 \}.$$

Let $y \in V$ be given. We consider the projection of y onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{\boldsymbol{x} \in S_1 \cap S_2} \|\boldsymbol{x} - \boldsymbol{y}\|. \tag{1}$$

- (a) Prove that $S_1 \cap S_2$ is a plane, i.e., if $x, z \in S_1 \cap S_2$, then $(1+t)z tx \in S_1 \cap S_2$ for any $t \in \mathbb{R}$.
- (b) Prove that z is a solution of (1) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \quad \forall \boldsymbol{x} \in S_1 \cap S_2.$$
 (2)

- (c) Find an explicit solution of (1).
- (d) Prove the solution found in part (c) is unique.
- 3. Let $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Assume N < n, and \boldsymbol{x}_i , i = 1, 2, ..., N, are linearly independent. Consider the ridge regression

$$\min_{oldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N \left(\langle oldsymbol{a}, oldsymbol{x}_i
angle - y_i
ight)^2 + \lambda \|oldsymbol{a}\|_2^2,$$

where $\lambda \in \mathbb{R}$ is a regularization parameter, and we set the bias b = 0 for simplicity.

- (a) Prove that the solution must be in the form of $\boldsymbol{a} = \sum_{i=1}^{N} c_i \boldsymbol{x}_i$ for some $\boldsymbol{c} = [c_1, c_2, \dots, c_N]^T \in \mathbb{R}^N$. (Hint: Similar to the proof of the representer theorem.)
- (b) Re-express the minimization in terms of $c \in \mathbb{R}^N$, which has fewer unknowns than the original formulation.