Título

Max Lugo

Versión Preliminar: 1 de diciembre de 2018. Documento de trabajo.

Resumen

El presente documento identifica ...

${\bf \acute{I}ndice}$

1.	Introducción	2											
2.	Literatura relacionada	2											
3.	Metodología												
	3.1. Indicadores	2											
	3.2. Datos	2											
	3.3. Modelo	5											
4.	Resultados del modelo	5											
	4.1. Modelo de equilibrio	5											
5.	5. Conclusiones y consideraciones finales												
Bibliografía													
Aı	anexo 7												

1. Introducción

De acuerdo con la Organización para la Cooperación y el Desarrollo Económicos (OCDE), México ...

2. Literatura relacionada

De acuerdo con Glewwe y Miguel (2008)

3. Metodología

3.1. Indicadores

En primera instancia, se describen los indicadores....

Supongamos que el país cuenta con s estados en t periodos. De cada estado ... Ecuación no numerada.

$$P_{B,A} = \frac{V_B}{V_A}$$

3.2. Datos

Se ha generado una base de datos ...

Cuadro 1: Estadística descriptiva

Variable	μ	σ	Min	Max
PCA1	12.66	7.59	5.83	57.24
P10P5	1.61	0.24	1.27	2.56
P25P5	3.11	1.21	1.76	9.99
P50P5	5.59	3.04	2.42	23.85
P75P5	9.38	5.77	3.74	44.00
P90P5	15.21	9.89	6.46	74.74
P95P5	20.88	13.61	8.50	101.54
P25P10	1.89	0.43	1.39	4.79
P50P10	3.36	1.32	1.91	11.44
P75P10	5.63	2.69	2.95	21.00
P90P10	9.12	4.78	5.03	35.33
P95P10	12.52	6.70	6.67	48.00
P50P25	1.74	0.27	1.38	3.37
P75P25	2.89	0.71	2.13	7.23
P90P25	4.66	1.40	3.39	13.03
P95P25	6.40	2.05	4.24	18.45
P75P50	1.64	0.11	1.49	2.15
P90P50	2.63	0.30	2.15	4.03
P95P50	3.61	0.50	2.67	5.80
P90P75	1.60	0.08	1.46	1.888
P95P75	2.19	0.18	1.79	2.74
P95P90	1.37	0.50	1.24	1.52
Aportaciones/PIB (%)	6.69	3.64	0.61	19.77
Escolaridad (Años)	8.48	0.75	5.97	10.45
Desempleo (%)	3.27	1.15	0.87	6.22
Dependencia (%)	57.03	5.79	44.33	74.50
PIB real per cápita (miles)	124.58	142.01	42.28	1134.81
Densidad	291.12	1029.89	7.42	5990.94
Gasto electoral/PIB (%)	0.061	0.047	0.003	0.276
Observaciones	320			

Fuente: Elaboración propia con base en datos de SHCP, INEGI, CONAPO y Cuentas Públicas e Institutos electorales a nivel estatal.

El índice se construyó como una medida de desigualdad la cual capturara diferentes...

Figura 1: Gasto social e índice de Gini del ingreso laboral

Fuente: El índice de Gini fue elaborada basado en la Encuesta Nacional de Ingresos y Gastos de los Hogares 2016 elaborada por INEGI. El PCA (índice construido) fue construido basado en datos de la ENOE.

Aunado a lo anterior, existe una relación positiva....

Figura 2: Índice PCA1 y gasto social

Fuente: Elaboración propia.

3.3. Modelo

En la presente subsección...Ecuación numerada

$$D_{kj,t} = \beta_0 + \beta_1 D_{i,t-1} + \beta_2 a_{i,t} + \beta_3 E s c_{i,t}$$

$$+ \beta_4 u_{i,t} + \beta_5 d_{i,t} + \beta_6 y_{i,t} + \beta_7 y_{i,t}^2 + \beta_8 de n_{i,t} + v_i + \mu_t + \epsilon_{i,t}$$
 (1)

4. Resultados del modelo

A continuación se muestran los resultados. Se estiman MCO sin efectos y con efectos fijos por estado utilizando la ecuación 1. Para abordar el problema de endogeneidad, la ecuación 2 utiliza el estimador Arrellano-Bond instrumentando con los rezagos de 2 a 8 en niveles (colapsados) y el gasto electoral....

Cuadro 2: Resultados estimación ecuación 1 por MCO sin efectos fijos

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
	PCA1	P10P5	P25P5	P50P5	P75P5	P90P5	P95P5	P25P10	P50P10	P75P10	P90P10	P95P10	P50P25	P75P25	P90P25	P95P25	P75P50	P90P50	P95P50	P95P50	P95P50	P95P50
	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se	b/se
Lag	0.841***	0.823***	0.890***	0.870***	0.859***	0.846***	0.834***	0.860***	0.849***	0.861***	0.861***	0.857***	0.873***	0.910***	0.917***	0.914***	0.814***	0.861***	0.864***	4.488***	2.074***	5.470***
	(0.028)	(0.032)	(0.025)	(0.027)	(0.028)	(0.028)	(0.029)	(0.029)	(0.030)	(0.029)	(0.029)	(0.028)	(0.029)	(0.025)	(0.023)	(0.023)	(0.034)	(0.026)	(0.026)	(0.191)	(0.086)	(0.396)
a	0.287***	0.005	0.024*	0.089***	0.181***	0.349***	0.534***	0.010*	0.048***	0.086***	0.156***	0.235***	0.011***	0.018**	0.032**	0.053**	0.004**	0.008**	0.015**	0.040***	0.048***	0.081***
	(0.087)	(0.003)	(0.013)	(0.034)	(0.065)	(0.115)	(0.158)	(0.005)	(0.016)	(0.032)	(0.056)	(0.078)	(0.003)	(0.008)	(0.014)	(0.022)	(0.002)	(0.004)	(0.006)	(0.008)	(0.007)	(0.010)
Escolaridad	-0.551	0.034°	0.051	-0.037	-0.203	-0.490	-0.881	0.003	-0.120*	-0.290**	-0.556**	-0.870***	-0.054***	-0.105***	-0.182**	-0.289***	-0.022***	-0.039**	-0.069**	-0.241***	-0.297***	-0.442***
	(0.347)	(0.017)	(0.061)	(0.142)	(0.266)	(0.464)	(0.636)	(0.024)	(0.063)	(0.125)	(0.227)	(0.317)	(0.016)	(0.037)	(0.070)	(0.106)	(0.008)	(0.018)	(0.030)	(0.037)	(0.036)	(0.047)
u	0.033	-0.015*	-0.018	-0.013	-0.013	-0.010	0.009	0.001	0.026	0.055	0.102	0.156	0.011*	0.023	0.042	0.064	-0.001	-0.001	-0.000	0.037**	0.020	-0.013
	(0.168)	(0.008)	(0.030)	(0.071)	(0.132)	(0.228)	(0.312)	(0.012)	(0.030)	(0.057)	(0.102)	(0.141)	(0.007)	(0.015)	(0.029)	(0.045)	(0.003)	(0.008)	(0.014)	(0.018)	(0.017)	(0.023)
d	-0.001	0.004	0.009	0.011	0.016	0.018	0.001	0.003	-0.001	-0.004	-0.013	-0.033	-0.003	-0.004	-0.007	-0.016	-0.000	-0.001	-0.004	-0.004	-0.012**	-0.028***
	(0.052)	(0.003)	(0.010)	(0.022)	(0.041)	(0.070)	(0.096)	(0.004)	(0.009)	(0.018)	(0.031)	(0.044)	(0.002)	(0.005)	(0.009)	(0.014)	(0.001)	(0.002)	(0.004)	(0.005)	(0.005)	(0.007)
v	0.016***	0.000	0.001	0.005*	0.010**	0.020**	0.030***	0.000	0.002**	0.005**	0.009**	0.014**	0.001**	0.001**	0.002**	0.004**	0.000***	0.001**	0.002***	0.004***	0.003***	0.005***
,	(0.006)	(0.000)	(0.001)	(0.002)	(0.005)	(0.008)	(0.011)	(0.000)	(0.001)	(0.002)	(0.004)	(0.006)	(0,000)	(0.001)	(0.001)	(0.002)	(0.000)	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)
u^2	-0.000**	-0.000	-0.000	-0.000	-0.000*	-0.000**	-0.000**	-0.000	-0.000	-0.000*	-0.000*	-0.000**	-0.000**	-0.000*	-0.000*	-0.000*	-0.000**	-0.000**	-0.000**	-0.000***	-0.000***	-0.000***
9	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0,000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0,000)	(0.000)
den	0.000	-0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000*	0.000*	0.000*	0.000*	0.000*	0.000	0.000	0.000***	0.000**	0.000*	0.000***	0.000***	0.000***
cicii	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0,000)	(0.000)	(0.000)	(0.000)	(0,000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0,000)	(0.000)
Constante	2.212	-0.277	-0.727	-0.798	-0.507	0.228	2.613	-0.076	0.824	2.030	4.880	8.162*	0.646***	1.025**	1.611*	2.654*	0.438***	0.546**	0.877**	-2.195***	1.480***	0.282
Comounic	(4.699)	(0.232)	(0.883)	(1.987)	(3.673)	(6.359)	(8,687)	(0.329)	(0.852)	(1.634)	(3.042)	(4.235)	(0.216)	(0.488)	(0.922)	(1.389)	(0.126)	(0.260)	(0.429)	(0.632)	(0.537)	(0.826)
N.	288,000	288,000	288,000	288,000	288,000	288,000	288.000	288.000	288,000	288.000	288,000	288.000	288,000	288,000	288,000	288,000	288,000	288,000	288,000	288.000	288,000	288,000
-0	0.940	0.834	0.921	0.933	0.937	0.935	0.935	0.905	0.939	0.949	0.949	0.950	0.943	0.955	0.957	0.954	0.911	0.930	0.923	0.875	0.878	0.776
1.2			0.921	0.933	0.937	0.935	0.930	0.905	0.939	0.949	0.949	0.950	0.943	0.900	0.907	0.954	0.911	0.930	0.923	0.875	0.878	0.770
* p < 0,10, ** p < 0,05, *** p < 0,01																						

Nota: Se generan los estimadores ponderados por la población por estado en t y se presentan errores por clusters por estado.

4.1. Modelo de equilibrio

....

....

5. Conclusiones y consideraciones finales

....

Bibliografía

Glewwe, P. y Miguel, E. A. (2008). The Impact of Child Health and Nutrition on Education in Less Developed Countries, volumen 4 de Handbook of Development Economics. Elsevier.

Anexos

Anexo....