RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations Jan/Feb-21

Computer Science and Engineering

FINITE AUTOMATA AND FORMAL LANGUAGES

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Give DFA accepting the language over $\Sigma = \{a, b\}$. The set of all string	
		that has even number of a's and b's.	01
	1.2	Consider the following automata given in Fig. 1.2. What is the set of	
		reachable status for the input string 'abb'?	
		-> (5) - B)	
		(C) b.	
		Fig. 1.2	01
	1.3	The minimum state automation equivalent to the FA shown in Fig 1.3	
		has how many number of states?	
		0 292	
		0,10	
		\rightarrow (90) (9) (9)	
		(9/3)	
		Fig 1.3	02
	1.4	Find the string of minimum length in $\Sigma = \{0, 1\}$. Not in the language	
		corresponding to the regular expression $1^*(0\ 1)^*\ 0^*$	01
	1.5	Write a regular expression to describe each of the following	
		languages:	
		i) $\{w \in \{a, b\}^* : \text{ every } a \text{ in } w \text{ is immediately followed} \text{ and } w \in \{a, b\}^* : \text{ every } a \text{ in } w \text{ is immediately followed}$	
		preceded by b }.	
		ii) $\{w \in \{a, b\}^* : w \text{ does not end in } ba\}$	01
	1.6	Find $R_{12}^2 = ?$	
		\bigcap	
		\rightarrow	
		Fig 1.6	01
	1.7	Define Non-deterministic push down automata	01

1.8	Define E- closure (q) , where $q \in Q$ of an automata. And compute	
	eps(q) for each state in Q for the given NFA in Fig.1.8.	
	0 b C.	
	E E E	
	$\rightarrow (a_1) \longrightarrow (a_2)$	
	Fig 1.8	02
1.9	What is the language generated by the CFG with the productions	
	$S \rightarrow aSa bsb \epsilon$	01
1.10	Define Right-most derivation. Give RMD for aaabbabbba in the	
	grammar with productions	
	$S \rightarrow aB Ba$	
	$A \rightarrow aS bAA a$	
	$B \rightarrow bS aBB b$	02
1.11	Identify the nullable variables in the grammar given below:	
	$S \rightarrow aTa, T \rightarrow ABC, A \rightarrow Aa C, B \rightarrow Bb C, C \rightarrow c \epsilon$	01
1.12	Define Deterministic push down automata.	01
1.13	Obtain turning machine over{1} which can compute a concatenation	
	function.	02
1.14	Define right linear grammar Consider left linear grammar.	
	$S \rightarrow Aa, A \rightarrow ab$.	
	Find the right linear grammar which is equivalent to the above left	
	grammar.	01
1.15	Recursively enumerable languages are also called as	01
1.16	What is the solution to the instance of <i>PCP</i> given below	
	x y	
	b b^3	
	bab^3 ba	
	bab^3 a	01

PART-B

2 a	Find the regular expressions corresponding to each of the following	
	subsets of $\{a, b\}^*$	
	i) $L = \{ w \in \{a, b\}^* : w \text{ is even} \}$	
	ii) $L = \{ w \in \{a, b\}^* : w \text{ contains odd number of } a's \}$	04
b	Consider the NFA shown in Fig 2.b, using the subset construction	
	method draw the DFA accepting the language which is same as the	
	language accepted by NFA.	
	- Q C C C C C C C C C C C C C C C C C C	
	Fig 2.b	06
С	For the DFA in Fig 2.c use the minimization algorithm to find a	
	minimum state <i>DFA</i> recognizing the same language.	
	3 (3) (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
	(H) (5)	
	a	
	Fig 2.c	06

3	a	State and prove pumping lemma for regular languages.	05
	b	Using pumping lemma show that the language $L = \{ww^R : w \in \{a, b\}^*\}$	
	_	is not regular.	05
	С	Let M_1 and M_2 are the <i>DFA</i> 's as shown in Fig 3.c accepting languages	
		L_1 and L_2 respectively. Draw <i>DFAs</i> accepting the following languages:	
		$\begin{array}{cccc} & \text{i)} & L_1 \cap L_2 \\ & \text{ii)} & I = I \end{array}$	
		ii) $L_1 - L_2$	
		- 12 0 B 15 (EXO,1	
		-3(P) (D) (D)	
		Fig 3.c	06
		ÖR	
4	a	Define <i>CFG</i> . Construct <i>CFG</i> to generate the following languages:	
		i) $L1 = \{ a^i b^j c^k i = j + k \}$	
		ii) $L_2 = \{ a^i b^j c^k j - i \text{ or } j = k \}$	06
	b	Define ambiguity in CFG. Show that the CFG below is ambiguous.	
		$S \rightarrow ABA$	
		$A \rightarrow Aa \mid \epsilon$	
		$B \rightarrow bB \mid \epsilon$	04
	С	Given below a CFG G, find a CFG G' in GNF	
		generating $L(G) - \{\epsilon\}$	
		$S \rightarrow XA \mid BB$	
		$B \rightarrow b \mid SB$	
		$X \to b$	06
		$A \rightarrow a$	06
5	a	Define <i>PDA</i> . Construct <i>PDA</i> to accept the language	
	u	$L = \{ w \subset w^R : w \in \{a, b\}^* \}.$	
		Show by <i>IDs</i> the string aabcbba is accepted.	06
	b	Obtain a <i>CFG</i> for the <i>PDA</i> below:	
		$\delta (q_1, q, 2) = (q_0, AZ)$	
		$\delta (q_0, Aa) = (q_0, A)$	
		$\delta (q_0, b, A) = (q_1, \varepsilon)$	
		$\delta(q_1, \varepsilon, 2) = (q_2, \varepsilon)$	04
	С	List the steps to convert the given CFG to equivalent PDA by empty	
		stack. Convert the CFG below to it's equivalent PDA.	
		$R = \{E \to E + T \mid T$	
		$T \rightarrow T * F \mid F$	
		$F \rightarrow E \mid id \}$	06
		OR	
6	a	State and prove pumping lemma for CFLs. Show that the language,	
		$L = \{ w \subset w : w \in \{a, b\}^* \}. \text{ is not context-free.}$	06
	b	Let $L_1 = \{ a^n b^n c^m : n, m \ge 0 \}$ and $L_2 = \{ a^m b^n c^n : n, m \ge 0 \}$. Show	
		that L_1 and L_2 are context free but also $L_1 \cap L_2$ is not context free.	06
	С	If the PDA $L = \{ w : w \in \{a, b\}^* \}$ and $\#_a(w) = \#_b(w) \}$ is deterministic.	04
7	a	Design a tuning machine over{1} which can compute a concatenation	
		function.	06
	b	Explain variants of tuning machine.	06
	С	If \bar{L} and \bar{L} are both recursively enumerable, show that W and \bar{L} are	
		recursive.	04

8	а	Define Linear Bounded Automata. Construct <i>LBA</i> to accept the language given in the transition table.	
		state 4 4 0 1	
		→9, 4R9, 1292 OR92	
		92 (4R94 12a3 129,	
		93 \$19, 1R93 1R93	
		Hult OLAN ORAN	06
	b	Define context sensitive grammar. Give context sensitive grammar to	00
		generate the language = $\{a^n b^n c^n n \ge 1\}$. Show that the string <i>aaabbbccc</i> is generated.	06
	c	Define unrestricted Grammar. Give unrestricted grammar to generate	
		the Language $L = \{ a^n b^n c^n \mid n \ge 1 \}$. Shwo that the string <i>aabbcc</i> is	0.4
		generated by the grammar.	04