2020 EBU5302 Week Four Problems

1. For MFSS, with $f_c = 250kHz$, $f_d = 25kHz$ and M=8, list all the frequency assignments for each of the data combinations. What is the data rate?

000
001
010
011
100
101
110
111

$$R = \frac{1}{T} = 2Lf_d = 150kbps$$

2. A system transmits at 30 kbps, sending 3 bits per symbol. The time between hops for a FHSS system is 0.125ms. Is the system using slow-frequency-hop spread spectrum or fast-frequency-hop spread spectrum?

$$R = 30 \ kbps$$
, L= 3, $T_c = 0.125ms$, $R_S = \frac{R}{L} = 10 \ kbps$, $T_S = \frac{1}{R_S} = 0.1ms$, $T_C > T_S$, so a slow-frequency-hop spread spectrum

3. A multilevel digital communication system sends of 16 possible levels over the channel every 0.8ms?

1) what is the number of bits corresponding to each level? 4 bits

2) What is the baud rate? 1250kbps

3) What is the bit rare? 5kbps

4. If the received signal level for a particular digital system is -151dBW and the receiver system effective noise temperature is 1500 K, what is E_b/N₀ for a link transmitting 2400bps?

 $(E_b/N_0)_{dB} = \, -151 \,\, dBW - 10 \, log \,\, 2400 - 10 \, log \,\, 1500 + 228.6 \,\, dBW = 12 \,\, dBW$

5. In a simple free-space radio propagation model, the received signal power is proportional to $1/d^4$, where d is distance. Calculate the interfering power from the co-channel cells in a 7-cell cluster (P_{i7}) and compare it with the interfering power in a 3-cell cluster – i.e. evaluate P_{i7}/P_{i3} in dB. Assume the cell radius is the same in each case.

$$R_{u} = r\sqrt{3N}$$

 $R_u = r\sqrt{3N}$ Power transmitted by a base station is P so interference from the 6 co-channel cells is:

$$P_{i} = \frac{6P}{d^{4}} = \frac{6P}{R_{u}^{4}} = \frac{6P}{(r\sqrt{3N})^{4}} = \frac{6P}{9r^{4}N^{2}}$$
 $\frac{P_{i7}}{P_{i3}} = \frac{3^{2}}{7^{2}} = \frac{9}{49} = -7.4$ dB