MATH 357 hw 5

Yellow Group

March 19, 2021

0.1

Take a G-homomorphism $\varphi: V \to W$. Show that

- 1. $Ker(\varphi)$ is a subrepresentation of V, and
- 2. $\operatorname{Im}(\varphi)$ is a subrepresentation of W.

Let $\varphi: V \to W$ be a homomorphism of representations, and put $K = \ker \varphi$ and $I = \operatorname{im} \varphi = \varphi(V)$. First, we verify that K is a subrepresentation of V. It is clear that K is a vector subspace of V. Now, let

We will use the relationship $\phi((p_V)_g(v)) = (p_W)_g(\phi(v))$ as seen in the notes often so let us keep it in mind. To see that $Ker(\phi)$ is a subrepresentation, we must show that the g action on any element brings it back to $Ker(\phi)$. Thus, let us take any $v \in Ker(\phi)$ and note that we get $\phi((p_V)_g(v)) = (p_W)_g(\phi(v)) = (p_W)_g(0)$ since $\phi(v) = 0$ by definition. Since we must also have that $(p_W)_g$ must map 0 to 0 in V, this becomes $\phi((p_W)_g(v)) = 0$, showing that $(p_W)_g(v) \in Ker(\phi)$, as desired.

For the image of ϕ , let us take a $w \in W$ such that $w \in Im(\phi)$, which implies that there exists a $v \in V$ such that $w = \phi(v)$. Then we see that $(p_W)_g(w) = (p_W)_g(\phi(v)) = \phi((p_V)_g(v))$, showing that $(p_W)_g(w) \in Im(\phi)$, as desired.

More facts about characters

Proposition let (V, ρ) be a representation of (T, mol) take $g \in G$. Then

(1) XV(e) = dim V(2) XV(g) is a sum of roots of unity

(3) $XV\otimes W(g) = XV(g) + XW(g)$ [Here, (XV + XW)(g) = XV(g) + XW(g)]

(4) $XV(g^{-1}) = XV(g)$.

(5) XV is a character if G; thre, XV(g) = XV(g)

- (1) Since ρ is a group homomorphism, we have that $\rho(e) = I_{n \times n}$. It is clear then that $\chi_v(e) = \text{trace } I_{n \times x} = n \cdot 1 = n$, where n is the dimension of V.
- (3) $\rho_{v \oplus w}(g)x = (\rho_v(g)x, \rho_w(g)x)$. (This means we are appending the two vectors together)

0.3

Exercise 4: Prove directly that the map from $\varphi: a+b\sqrt{2} \mapsto a-b\sqrt{2}$ is an isomorphism of $Q(\sqrt{2})$ with itself.

First we note that for the identity element 1, we have that $\varphi(1+0\sqrt{2})=1-0\sqrt{2}=1$. Next we note that $\varphi((a_1+b_1\sqrt{2})(a_2+b_2\sqrt{2}))=\varphi(a_1a_2+2b_1b_2+(a_1b_2+a_2b_1)\sqrt{2})=a_1a_2+2b_1b_2-a_1b_2\sqrt{2}-a_2b_1\sqrt{2}=(a_1-b_1\sqrt{2})(a_2-b_2\sqrt{2})=\varphi(a_1+b_1\sqrt{2})\varphi(a_2+b_2\sqrt{2}),$ as desired. Finally, we have that $\varphi(a_1+b_1\sqrt{2}+a_2+b_2\sqrt{2})=\varphi(a_1+a_2+(b_1+b_2)\sqrt{2})=a_1+a_2-(b_1+b_2)\sqrt{2}=(a_1-b_1\sqrt{2})+(a_2+b_2\sqrt{2})=\varphi(a_1+b_1\sqrt{2})+\varphi(a_2+b_2\sqrt{2}),$ showing that φ is a ring homomorphism, as desired.

Since for each $x=a+b\sqrt{2}\in\mathbb{Q}[\sqrt{2}]$, we have that $x=\varphi(a-b\sqrt{2})$, so φ is onto. Furthermore, if $a+bi\neq c+di$, then either $a\neq c$ or $b\neq d$. In either case, $\varphi(a+b\sqrt{2})=a-b\sqrt{2}\neq c-d\sqrt{2}=\varphi(c+d\sqrt{2})$, so φ is one to one.

0.4

0.5 A

Given a finite abelian group G, describe its irreducible complex representations, up to equivalence. Illustrate this for the Klein-four group $G=C_2\times C_2$.