Inventory Control

What Is Inventory?

Inventory is a stock of items kept to meet future demand.

Material that has been purchased from a supplier, may have been partially or completely converted, but not yet sold to the customer (we "own" it - if it gets stolen, it is our loss).

Inventory, in production context, is an idle resource. Resource is idle does not mean it is serving no purpose. It is available when needed.

Types of Inventory

- Raw materials & purchased parts: Materials and components required for making a product.
- Partially completed goods called work in progress product (WIP):
 Materials and components that have begun their transformation to finished goods.
- Finished-goods inventories: Goods ready for sale to customers i.e, Items being transported and stored in ware houses.
- Tools and equipment.

Raw material
WIP product
Finished product

Inventory Control

Why Hold Inventory?

- To balance against uncertainty (safety)
- To smooth production requirements. Material buffers are used to avoid uncertainty in material deliveries
- To meet time varying demand or supply patterns. (To meet seasonal demand)
- To ensure a high level of customer service
- Economies of scale in production or purchasing
- To take advantage of quantity discounts
- To hedge against price increases

3

Inventory Costs

Holding or carrying costs (H): cost to carry an item in inventory for a length of time.

Holding cost = Storage cost + Handling cost + Depreciation cost + Insurance + Taxes

Holding cost increases as the order size increases because larger orders mean higher inventory levels.

Ordering costs (O): costs of ordering and receiving inventory. Primarily the staff costs associated with processing the order.

<u>Shortage costs</u>: costs when demand exceeds supply; temporary or permanent loss of sales when demand cannot be met.

Inventory Control Systems

Continuous system (fixed-orderquantity)

constant amount ordered when inventory declines to predetermined level

Periodic system (fixed-time-period) order placed for variable amount after fixed passage of time

5

ABC Classification System

Classifying inventory according to some measure of importance and allocating control efforts accordingly.

- ◆ Class A Very important
 - 5-15% of units
 - -70 80 % of value
- ◆ Class B Mod. important
 - **30** % of units
 - 15 % of value
- ◆ Class C least important
 - \bullet 50 60 % of units
 - 5-10% of value

ŝ

ABC Classification: Example

Part	Unit cost (\$)	Annual usage	Total cost (\$)
1	60	90	5400
2	350	40	14000
3	30	130	3900
4	80	60	4800
5	30	100	3000
6	20	180	3600
7	10	170	1700
8	320	50	16000
9	510	60	30600
10	20	120	2400
Total:		1000	85400

Sort parts in descending order of total cost

ABC Classification: Example (cont.)

PART	TOTAL VALUE (\$)	% OF TOTAL VALUE	% OF TOTAL QUANTITY	% C	UMMULATIVE
9	30,600	35.9	6.0		6.0
8	16,000	18.7	5.0	A	11.0
2	14,000	16.4	4.0		15.0
1	5,400	6.3	9.0		24.0
4	4,800	5.6	6.0	В	30.0
3	3,900	4.6	10.0		40.0
6	3,600	4.2	18.0		58.0
5	3,000	3.5	13.0		71.0
10	2,400	2.8	12.0	C	83.0
7	1,700	2.0	17.0		100.0
	85,400				

ABC Classification: Example (cont.)

PART	TOTAL VALUE (\$)	% OF TOTAL VALUE	% OF TOTAL QUANTITY	% CUMMULATIVE
9	30,600	35.9	6.0	6.0
8	16,000	18.7	5.0	A 11.0
2	14,000	16.4	4.0	15.0
1	5,400	6.3	9.0	24.0
4	4 800	5.6	6.0	R 20.0
-	CLASS	ITEMS	% OF TOTAL VALUE	% OF TOTAL QUANTITY
	Α	9, 8, 2	71.0	15.0
	В	1, 4, 3	16.5	25.0
	C	6, 5, 10, 7	12.5	60.0

Inventory models

Inventory models quantify the relationship to identify the order size that minimized total cost.

- ☐ Economic order quantity model (EOQ)
- ☐ Economic production quantity model (EPQ)

Assumptions of EOQ Model

- Only one product is involved
- Annual demand requirement is known
- Demand is even throughout the year
- Lead time does not vary
- Each order is received in a single delivery
- There are no quantity discounts

EOQ Model

Profile of Inventory Level Over Time

EOQ Model

 C_o - cost of placing order D - annual demand C_h - annual per-unit carrying cost Q - order quantity

Annual holding cost (H) = (average number of inventory) \times (holding cost/unit/year)

- Average number of inventory = (Q+0)/2 = Q/2
 Annual carrying cost (H) = (Q/2) C_h
- Annual ordering cost (O) = Cost per order × No. of order/year
 O = C_o × D/Q

Total Cost = Holding cost + Ordering cost

$$TC = (Q/2) \times C_h + C_o \times D/Q$$

EOQ Model

13

EOQ Model

Example:

Deriving Q_{opt}

$$TC = \frac{C_o D}{Q} + \frac{C_h Q}{2}$$

$$\frac{\partial TC}{\partial Q} = -\frac{C_o D}{Q^2} + \frac{C_h}{2}$$

$$Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_h}}$$

A toy manufacturer uses approximately 32,000 silicon chips annually. The chips are used at a steady rate during the 240 days a year that the plant operates. Annual holding cost is \$3 per chip, and ordering cost is \$120. Determine

- The optimal order quantity.
- Holding cost, ordering cost, and the total cost.
- The number of workdays in an order cycle.

 $HC = C_0Q/2 = 3*800 = 2400$ $OC = C_0D/Q = 120*32000/1600 = 2400$

No. of Workdays = Q/Daily consumption rate = 12Daily consumption rate = D/240 = 400/3

Economic Production Quantity Model (EPQ)

- An inventory system in which an order is received gradually, as inventory is simultaneously being depleted
- p daily rate at which an order is received over time, or production rate
- d daily rate at which inventory is demanded

EPQ Model

Maximum inventory level = $Q - \frac{Q}{p}d$ = $Q\left[1 - \frac{d}{p}\right]$

Average inventory level = $\frac{Q}{2} \left(1 - \frac{d}{p} \right)$

$$TC = \frac{C_o D}{Q} + \frac{C_h Q}{2} \left(1 - \frac{d}{p} \right)$$

$$Q_{\rm opt} = \sqrt{\frac{2C_o D}{C_h \left(1 - \frac{d}{\rho}\right)}}$$

Quantity Discount Model

Quantity Discount Model

Price per unit decreases as order quantity increases

Quantity Discount: Example

QUANTITY	PRICE
1 - 49	\$ 1,400
50 - 89	1,100
90+	900

 C_o = \$2,500 C_h = \$190 per computer per year D = 200

Step 1: First determine the optimal order size and total cost with the basic EOQ model.

 $Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_h}} = \sqrt{\frac{2(2500)(200)}{190}} = 72.5 \text{ PCs}$

For Q = 72.5

 $TC = \frac{C_o D}{Q_{\text{opt}}} + \frac{C_h Q_{\text{opt}}}{2} + PD = $233,784$

Step 2: Compute Q using the lowest unit price

For
$$Q = 90$$

$$TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} + PD = $194,105$$

Optimum order quantity = 90

Inventory Control

Reorder Point: Level of inventory at which a new order is placed

$$ROP = dL$$
 where,

d = demand rate per periodL = lead time

Example: Demand is 20 items per day and lead time is one week. What is the reorder point (ROP)?

ROP = 20*7=140

Inventory Control

- <u>Reorder Point</u> When the quantity on hand of an item drops to this amount, the item is reordered.
- <u>Safety Stock</u> Stock that is held in excess of expected demand due to variable demand rate and/or lead time.
- <u>Stockout</u> An inventory shortage
- <u>Service Level</u> Probability that demand will not exceed supply during lead time.

Variable Demand with a Reorder Point

Reorder Point with a Safety Stock

Reorder Point With Variable Demand

Normal distribution PDF

ROP = Expected demand during lead time + safety stocks

ROP for variable demand and constant lead time

ROP for variable lead time and constant demand

$$ROP = \overline{d} \times LT + z\sqrt{LT}\sigma_d$$

$$ROP = d \times \overline{LT} + zd\sigma_{LT}$$

z – standard normal

24

Reorder Point With Variable Demand

The carpet store wants a reorder point with a 95% service level and a 5% stockout probability

 \overline{d} = 30 yards per day

LT = 10 days

 σ_d = 5 yards per day

For a 95% service level, z = 1.65

ROP =
$$\overline{d} LT + z \sigma_d \sqrt{LT}$$

= 30(10) + (1.65)(5)($\sqrt{10}$)
= 326.1 yards

Safety stock =
$$z \sigma_d \sqrt{LT}$$

= $(1.65)(5)(\sqrt{10})$
= 26.1 yards

ROP for variable lead time and constant demand

The housekeeping department of a Hotel uses approximately 600 bars of soap per day, and this tends to be fairly constant. Lead time for soap delivery is normally distributed with a mean of six days and standard deviation of two days. A service lead of 98% is desired. Find the ROP.

$$ROP = d \times \overline{LT} + zd\sigma_{LT}$$

Case of: ROP for variable lead time and constant demand

Given data:

 $\frac{d = 600 \text{ bars/day}}{LT = 6 \text{ days}}$ $\sigma_{LT} = 2 \text{ days}$ $\sigma_{LT} = 2 \text{ days}$

ROP = 600*6 + 1.96*600*2 = 5952

26

ROP for variable demand and variable lead time

The Hotel replaces broken glasses at a rate of 25 per day. In the past, this quantity has tend to vary normally and have a standard deviation of 3 glasses per day. Glasses are ordered from a Cleveland supplier. Lead time is normally distributed with an average of 10 days and a standard deviation of 2 days. What ROP should be used to achieve a service level of 95%?

$$ROP = \overline{d} \times \overline{LT} + z\sqrt{\overline{LT}\sigma_d^2 + \overline{d}^2\sigma_{LT}^2}$$

Case of: variable lead time and variable demand

Given data:

 $ar{d}$ = 25 glasses/day $\sigma_{\!d}$ = 3 glasses/day \overline{LT} = 10 days $\sigma_{\!LT}$ = 2 days Z = 1.65

ROP =
$$25*10+1.65\sqrt{10*(3*3)+(25*25)*(2*2)}$$

= 315.371