Lista 04 de Circuitos Lógicos

Leo - DRE: XXXXXXXXX

¹Universidade Federal do Rio de Janeiro (UFRJ)

leonardongc@poli.ufrj.br

1. Lógica NOR

Apenas podemos utilizar **NOR** $(A, B) = \overline{(A + B)}$.

Sendo assim, a porta NOT fica:

$$\overline{A} = \overline{(A+A)}$$

A porta AND fica:

$$(A.B) = \overline{(\overline{(A+A)} + \overline{(B+B)})}$$

A porta **OR** fica:

$$(A+B) = \overline{(\overline{(A+B)} + \overline{(A+B)})}$$

A porta **XOR** fica:

$$(A \oplus B) = \overline{(\overline{(A+B)} + \overline{(\overline{(A+A)} + \overline{(B+B)})})}$$

resultando nos seguintes circuitos:

2. Comunicação em canal compartilhado.

A saída do dispositivo $\bf A$ e a saída do dispositivo $\bf B$ (chamando de A_{data} e B_{data} respectivamente) compartilham um mesmo canal, portanto essas saídas devem ser mediadas através de buffers de três estados, colocando a saída de um no canal enquanto a outra está em auto-impedância e vice versa. Dada a alternância dos sinais poderemos usar um buffer ativo em baixa e outro ativo em alta com um mesmo sinal de acionamento, no caso o sinal C geado por $\bf A$. Colocando essas informações numa tabela (sendo o buffer de $\bf A$ ativo em baixa):

С	A_{data}	\mathbf{B}_{data}	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(Observação, se não houver forma de sincronizar C no local de leitura do sinal, não sei como o dispositivo $\mathbf Y$ irá discriminar de qual sensor vem o sinal)