Tarefa 4 – Método dos Mínimos Quadrados

Kauan Peçanha Lira

Matrícula: 2021-1-004891-1

Descrição da Tarefa

A Tarefa 4.1 consiste na criação de um programa que seja capaz de efetuar a Regressão Linear, retornando os coeficientes linear e angular, com seus devidos desvios, bem como os parâmetros R^2 e χ^2 .

Não só isso, como a segunda parte da Tarefa 4 consiste em comparar os resultados apresentados tanto pelo SciDAVis quanto pela rotina criada pelo aluno, baseados em uma série de dados experimentais dados pelo professor.

Apresentação da tarefa

Equações Utilizadas:

Figura 1 – Fórmula da Média:

$$X_M = \frac{1}{n} \sum_{i=1}^n X_i$$

Figura 2 – Coeficiente Angular da "reta mais adequada":

$$a = \frac{(\sum X_i^2)(\sum Y_i) - (\sum X_i)(\sum X_i Y_i)}{D}$$

Figura 3 – Coeficiente Linear da "reta mais adequada":

$$b = \frac{n(\sum X_i Y_i) - (\sum X_i)(\sum Y_i)}{D}$$

Figura 4 – Fórmula da variável D:

$$D = n(\sum X_i^2) - (\sum X_i)^2$$

Figura 5 – Fórmula do Desvio Padrão do Valor Médio do Coeficiente Angular:

$$(\delta a)^2 = \frac{1}{D} (\sum X_i^2) \sigma^2$$

Figura 6 – Fórmula do Desvio Padrão do Valor Médio do Coeficiente Linear:

$$(\delta b)^2 = \frac{1}{D} n \sigma^2$$

Figura 7 – Fórmula de σ^2 :

$$\sigma^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - a - bX_i)^2$$

Primeiro, foi criada uma planilha no Excel responsável por fazer todos os devidos cálculos, e assim, retornar os coeficientes linear e angular, com seus devidos desvios, da "reta que mais se adequa" aos pontos, bem como retornar R^2 e χ^2 .

Desta forma, eu criei planilhas no Excel, responsável por calcular todos os valores necessários, desde o Desvio Padrão Médio até os diversos somatórios necessários para os devidos cálculos das medidas dos Coeficientes Lineares e Angulares, e seus respectivos Desvios.

Tarefa 4

Estas planilhas podem ser acessadas pelos links que se seguem em cada parte da Tarefa, de forma que se promova a melhor visualização, uma vez que consistem em grandes planilhas, e assim não sendo possível expressá-la por figuras, neste relatório.

Desta forma, professor, peço que se acesse os links, para que o senhor não tenha dificuldade com a visualização dos dados.

Link de acesso à planilha criada para os primeiros dados fornecidos:

https://docs.google.com/spreadsheets/d/1nVkVkUDin_dCZ-1KxbWwANNVD9ARgBQr/edit?usp=sharing&ouid=111122621145878575539&rtpof=true&sd=true

Uma vez que a planilha foi criada, segue-se os dados fornecidos, e seus devidos resultados, tanto no SciDAVis, quanto na rotina criada para esta tarefa.

Tarefa 4.2.1 – Movimento Uniforme

Dados fornecidos:

Tabela 1 – Dados fornecidos para a Tarefa 4.2.1

s(mm)	delta(s)	t(s)	delta(t)
8	10	5	1
84	10	10	1
150	10	15	1
219	10	20	1
258	10	25	1
322	10	30	1
370	10	35	1
448	10	40	1
520	10	45	1
568	10	50	1
648	10	55	1
674	10	60	1
746	10	65	1
800	10	70	1
856	10	75	1
919	10	80	1

Simplificando esta tabela em uma tabela T(segundos)xS(milímetros):

Tabela 2 – Tabela T(s)xS(mm):

T(s)	S(mm)
5	8
10	84
15	150
20	219
25	258
30	322
35	370
40	448
45	520
50	568
55	648
60	674
65	746
70	800
75	856
80	919

Na planilha do Excel, há a necessidade de se informar os Desvios Padrões dos Valores Médios da medida da ordenada Y(neste caso, S), uma vez que este valor se faz imprescindível para o cálculo de χ^2 .

Os resultados podem ser visualizados aqui:

Figura 8 – Resultados oriundos da Tabela 2:

a =	-35.65							
δa =	5.985282194							
b =	12.00058824							
δb =	0.12379663							
D =	136000							
σ ² =	130.2676471							
r ² =	0.998512373							
$\chi_{^{2}1} =$	1823.747059	Observação:	Utilizar este p	ara quando a	ordenada N	ÃO tiver m	edidas de ir	ncertezas
$\chi^{2}_{2} =$	51.4940346	Observaçã	o: Utilizar este	para quando	a ordenada	TIVER med	lidas de inc	ertezas

Legenda:

Amarelo: Medidas relevantes

Branco: Medidas para fins de cálculo

Cinza-Azulado: Valores das Medidas relevantes

Por parte do SciDAVis, é retornado os seguintes dados:

Figura 9 – Resultados da Tabela 2, no SciDAVis(resposta ao item a):

Figura 10 – Gráfico da Tabela 2, no SciDAVis(resposta ao item a):

Figura 11 – Ajuste Linear, feito no Excel(programa feito para isto – resposta ao item b):

Figura 12 – Gráfico do Ajuste Linear, no Excel(resposta ao item b):

Tarefa 4.2.2.1 - Densidade

Link da Planilha(por favor, acessar para fim de melhor visualização):

https://docs.google.com/spreadsheets/d/1hHFi0Z21iC20pWO7TcEVMrNaE29N-Nhh/edit?usp=sharing&ouid=111122621145878575539&rtpof=true&sd=true

Tabela 3 – Dados fornecidos para a Tarefa 4.2.2

m (g)	delta(m)	V (cm^3)	delta(V)
4	1	20	5
11	1	50	5
16	1	75	5
19	1	100	5
27	1	130	5
29	1	150	5
37	1	180	5
39	1	200	5
49	1	250	5

Valor de referência: 0.2g/cm³

Simplificando esta tabela em uma tabela T(s)xS(mm):

Tabela 4 – Tabela V x m:

V (cm^3)	m (g)
20	4
50	11
75	16
100	19
130	27
150	29
180	37
200	39
250	49

Os resultados podem ser visualizados aqui:

Figura 11 – Ajuste Linear no SciDAVis(Resposta do Item a):

Figura 12 – Resultados oriundos da Tabela 4(Resposta do Item b):

a =	0.762518685		
δa =	0.664042211		
b =	0.194058296		
δb =	0.00453665		
D =	401400		
$\sigma^2 =$	0.917921204		
r ² =	0.996188939		
$\chi_{^{2}1} =$	6.42544843	Observação: Utilizar este para quando a ordenada NÃO tiver medidas de incertezas	
$\chi^{2}_{2} =$	0.010372921	Observação: Utilizar este para quando a ordenada TIVER medidas de incertezas	

Figura 13 – Gráfico da Tabela 4, no SciDAVis:

4.2.2.2 - Densidade dos Cilindros:

Professor, infelizmente, não tive tempo o suficiente para fazer esta parte da Tarefa.

Tarefa 4.2.3 – 3°Lei de Kepler

Link para acesso à Tabela:

https://docs.google.com/spreadsheets/d/1R0vNFTh1fwoZ4hBpLPBf_5GqCzb8HQy1/edit?usp=sharing&ouid=111122621145878575539&rtpof=true&sd=true

Observação: Esta tabela se diferencia das duas anteriores, uma vez que foi preciso adaptá-la para uma situação de **Linearização Direta**. Para isto, foi criada uma tabela auxiliar, que se encontra à direita da Principal, e tem a função de elevar T e R ao quadrado e ao cubo, respectivamente.

Só então, é possível copiar os valores obtidos após essa operação de exponenciação, e copiá-los para a tabela principal, que origina todas as relações necessárias para a confecção e determinação dos coeficientes angular e linear, seus desvios, e os valores de R^2 e χ^2 .

Tabela 5 – Tabela que re	laciona os va	lores fornecidos
--------------------------	---------------	------------------

T(anos)	R(u.a.)
0.241	0.387
0.615	0.723
1.000	1.000
1.888	1.524
11.860	5.204
29.600	9.580
83.700	19.140
165.400	30.200
248.000	39.400

Figura 14 – Gráfico R x T, do SciDAVis(resposta ao item a):

Figura 15 – (Linearização Direta) Gráfico T² x R³(resposta ao item b):

Figura 16 – Resultados do Gráfico T²xR³, usando os valores fornecidos pela Tabela 5, no SciDAVis:

Figura 17 – Resultados do Gráfico T^2 x R^3 , usando os valores fornecidos pela Tabela 5, no Excel(resposta ao item c):

a =	-27100196.83	
δa =	43504471.38	
b =	0.001004022	
δb =	1.93496E-06	
D =	3.15864E+28	
$\sigma^2 =$	1.31402E+16	
r ² =	0.999974002	
$\chi_{^{2}1} =$	9.19814E+16	Observação: Utilizar este para quando a ordenada NÃO tiver medidas de incertezas
$\chi^{2}_{2} =$	1.88702E-09	Observação: Utilizar este para quando a ordenada TIVER medidas de incertezas

Sabendo que:

$$T^2 = K * R^3$$

Então, por "acompanhar" R³, pode-se concluir que K é o coeficiente angular. Desta forma, baseando-se nos dados vistos anteriormente, pode-se inferir que:

$$K = (-2,71 \pm 4,35) * 10^7 \frac{anos^2}{(u.a)^3}$$

Professor, infelizmente, não consegui responder ao item D.

Tarefa 4.2.4 - Massa-Mola

Link da Planilha(por favor, acessar para fim de melhor visualização):

https://docs.google.com/spreadsheets/d/19BLeJU90Zb6ou82mOt6Brjcq1yarmf-F/edit?usp=sharing&ouid=111122621145878575539&rtpof=true&sd=true

Tabela 6 – Dados fornecidos para a Tarefa 4.2.4

10*T(s)	delta(10*T)	m(g)	delta(m)
19	1	10	1
25	1	15	1
27	1	20	1
32	1	25	1
34	1	30	1
37	1	35	1
41	1	40	1
43	1	45	1
45	1	50	1
49	1	60	1
52	1	70	1
57	1	80	1
60	1	90	1
63	1	100	1

Simplificando esta tabela em uma tabela T(s)xS(mm):

Tabela 4 – Tabela T x m:

T(s)	m(kg)
19	10
25	15
27	20
32	25
34	30
37	35
41	40
43	45
45	50
49	60
52	70
57	80
60	90
63	100

Tabela 4 – Tabela T² x m, desenvolvida para fins de Linearização Direta:

T ² (S ²)	m(kg)
361	10
625	15
729	20
1024	25
1156	30
1369	35
1681	40
1849	45
2025	50
2401	60
2704	70
3249	80
3600	90
3969	100

Os resultados podem ser visualizados aqui:

Figura 11 – Resultados da Tabela x, no SciDAVis(Resposta ao item a):

Figura 12 – Linearização do Gráfico representado na figura x(Resposta do Item b):

Figura 13 – Resultados da Linearização Direta, obtidos do SciDAVis:

Results Log

[segunda-feira, 8 de agosto de 2022 22:38:56 Hora oficial do Brasil Plot: "Graph1"]

Linear Regression fit of dataset: Table1_3, using function: A*x+B

Y standard errors: Unknown

From x = 10 to x = 100

B (y-intercept) = -5,91762711864385 +/- 27,9985287564389 A (slope) = 40,0370847457627 +/- 0,507568228382805

Chi^2 = 32.571,2247457627 R^2 = 0,999521025671415

Considerando:

$$Y = (A * X) + B$$

Tem-se que:

$$A = \frac{4 * (\pi^2)}{K}$$

Assim, obtem-se:

$$K \approx 0.98696$$
; $\delta K \approx 0.98696$

Desta forma, obtém-se(resposta ao item b):

$$K = (1,00 \pm 0,02) \frac{N}{m}$$

Figura 14 – Linearização do Gráfico representado na figura x(Resposta do Item c):

0 -	-5.917627119						
a =							
δa =	27.99852876						
b =	40.03708475	LRm(y)	Qtd.		Xm =	47.85714286	
δb =	0.507568228	0	14		Ym =	1910.142857	
D =	147500	δm(y) =	7.608452				
σ ² =	2714.268729	$\delta p(y) =$	7.608452				
r ² =	0.998075099						
$\chi_{^{2}1} =$	32571.22475	Observaçã	Observação: Utilizar este para quando a ordenada NÃO tiver medidas de incertezas				
$\chi^{2}_{2} =$	562.6541061	Observaçã	Observação: Utilizar este para quando a ordenada TIVER medidas de incertezas				

Tarefa 4.2.5 - Capacitor

Professor, infelizmente não tive tempo o suficiente pra fazer esta parte da Tarefa.