PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-015487

(43)Date of publication of application: 15.01.2004

(51)Int.Cl.

H04N 5/232 G03B 17/18 H04N 1/401 H04N 5/16 H04N 5/225 H04N 5/228 // H04N101:00

(21)Application number: 2002-166910

(71)Applicant:

FUJI PHOTO FILM CO LTD

(22)Date of filing:

07.06.2002

(72)Inventor:

YOMO DAISUKE

(54) DISPLAY DEVICE WITH SHADING CORRECTING FUNCTION

(57)Abstract

PROBLEM TO BE SOLVED: To provide a display device with a function capable of easily performing a shading correction while a visual field is

displayed.

SOLUTION: A digital camera 10 is characterized in that for display on a monitor 23, an OSD (on—screen display) 200 puts together an area causing deterioration in picture quality due to a shading distortion characteristic included in an image signal 18a supplied from an imaging part 16 and pattern data read out of a ROM (read—only memory) 32 under the readout control of a system control part 20 corresponding to the area to reduce the processing quantity as compared with individual comparing processes for the whole image that were performed so far and speedily make corrections and the composited data are encoded by an encoding part 22 according to a display format and outputted to the monitor 24.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the exeminer's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出顧公開番号

特開2004-15487 (P2004-15487A)

(43) 公開日 平成16年1月15日(2004.1.15)

PQ12 PQ25 TT09

(51) Int.C1.7		FΙ				テーマ	コード	(参考)	
HO4N	5/232	HO4N	5/232	Z		2H1	02			
GO3B	17/18	GO3B	17/18	Z		5C0	21			
HO4N	1/401	HO4N	5/16	В		5CO	22			
HO4N	5/16	HO4N	5/225	В		5 C O	77			
HO4N	5/225	HO4N	5/225	F						
		審査請求	未請求	請求項の数	3 OL	(全 9	頁)	最終頁	に続く	
(21) 出願番号		特願2002-166910 (P2002-166910)	(71) 出原	其人 000005	201					
(22) 出願日		平成14年6月7日 (2002.6.7)	富士写真フイルム株式会社							
				神奈川県南足柄市中沼210番地						
			(74) 代理	里人 100079	991					
		•		弁理士	香取	孝雄				
			(72) 発明	月者 四方	大介					
				埼玉県朝霞市泉水三丁目11番46号 富						
			士写真フイルム株式会社内							
			Fターム	、(参考) 2HI	02 AA01	AA71	ABOO E	3A01	BA12	
		•			BB08	BB22	CA11			
				500	21 PA66	PA80 2	XA67			
				5C0	22 AA13	AB51	ACOO A	ACO3	AC32	
					AC69					
			I	500	77 LL04	MP08 1	PP08 P	P10 و	PP48	

(54) 【発明の名称】シェーディング補正機能付表示装置

(57)【要約】

【課題】被写界の表示を行いながら、容易にシェーディング補正を行うことができるシェーディング補正機能付表示装置の提供。

【選択図】

図 1

【特許請求の範囲】

【請求項1】

シェーディング 歪特性を有する 撮像系 から 得られた 画像信号に含まれるシェーディング 歪を補正して該 画像信号の表す 画像を表示するシェーディング 補正機能付表示装置において、該装置は、

該シェーディング 歪特性に対する逆の特性を有するパターンデータを記憶する第1の記憶 手段と、

第1の記憶手段に対する少なくとも、前記パダーンデータの読出し制御を行う読出し制御 手段と、

前記撮像系 から 得られた 画像信号のうち、前記シェーディング 歪を含む 領域と前記パター 10ンデータの対応する領域とを合成する表示合成手段と、

『該表示合成手段からの合成したデータを該装置の表示形式に調整する表示調整手段とを含むことを特徴とするシェーディング補正機能付表示装置。

【請求項2】

請求項1に記載の装置において、前記読出し制御手段、前記表示合成手段および前記表示調整手段はまとめて集積化され、第1の記憶手段は、該集積化した回路の外部に第1の記憶手段が配設されていることを特徴とするシェーディング補正機能付表示装置。

【請求項3】

請求項1または2に記載の装置において、該装置は、前記パターンデータを外部から通信により採り込む入出力手段と、

該入出力手段の前記通信を制御する通信制御手段と、

前記入出力手段を介して供給される前記パターンデータを前記読出し制御手段の制御により記憶する第2の記憶手段とを含み、

前記読出し制御手段は、第2の記憶手段により前記パターンデータを読み出し、第1の記憶手段に読み出したパターンデータを書き込む制御を行うことを特徴とするシェーディング補正機能付表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、 たとえば、 光学レンズが有するシェーディング 歪特性の 補正機能を有する表示 装置に関するものである。

[0002]

【従来の技術】

被写界からの光学精報を装置に撮り込むとき、入射光は、光学レンズを介して撮像案子に送られている。しかしながら、光学レンズの特性には、レンズ中央に比べてレンズの周縁での光量が少なくなる周辺減光特性がある。また、光学レンズを経た入射光は、撮像案子が形成する平らな撮像面に入射する。この結果、結像した像は入射光の光量がレンズの特性を反映してしまうことから、表示画像には周辺減光がシェーディング歪特性として現れる。この特性をイメージセンサに固有なシェーディング歪特性ともいう。

[0003]

このシェーディング 歪特性を有する 画像を記録し、この記録を再生してもシェーディング 歪特性が改善されない。特開平 0 8 - 4 6 7 8 2 号公報に記載における 画像橋 報読取装置用のシェーディング補正回路では、再生画像がライン全域で均一な明るさとなるように R A M (R A n d o m Access Memory) を用いず簡単な構成で実現する提案がされている。

[0004]

シェーディング補正回路は、EEPROM(EIectricallソ Erasable and Pro9rammable Read-Only Memory)にシェーディング歪特性を補正するデータを記憶させ、このデータをタイミング発生回路からの読出しパルスでシリアルに読み出し、シリアルーパラレル変換回路で読出しパルスに同期し

20

30

40

てパラレル変換する。シェーディング補正回路は、さらに、パラレル変換したデータをD/A変換器でアナログ信号に変換し、基準電圧としてコンパレータの一端側に供給される。コンパレータの他端側には原稿の画像信号が供給されている。コンパレータは、低電圧側基準電圧の上昇または高電圧側基準電圧の低下を行うことによりシェーディング補正を行っている。

[0005]

【発明が解決しようとする課題】

ところで、上述したシェーディング補正回路は、コンパレータで補正データと画像信号と を比較して補正を行っているため補正に時間がかかってしまう。これは、記録前の補正が されていない画像と補正後の画像とを確認用としてモニタに表示させようとしても、表示 が遅れることから、結果的に補正後の画像が確認されずに記録されてしまう。ユーザは、 で表示画像と記録画像との間にギャップを感じてしまう。

[0006]

本発明はこのような従来技術の欠点を解消し、被写界の表示を行いながら、容易にシェーディング補正を行うことができるシェーディング補正機能付表示装置を提供することを目的とする。

[00007]

【課題を解決するための手段】

本発明は上述の課題を解決するために、シェーディング歪特性を有する撮像系から得られた画像信号に含まれるシェーディング歪を補正してこの画像信号の表す画像を表示するシェーディング補正機能付表示装置において、このシェーディング歪特性に対する逆の特性を有するパターンデータを記憶する第1の記憶手段と、第1の記憶手段に対する少なくとも、前記パターンデータの読出し制御を行う読出し制御手段と、撮像系から得られた画像信号のうち、前記シェーディング歪を含む領域とパターンデータの対応する領域とを合成する表示合成手段と、この表示合成手段からの合成したデータをこの装置の表示形式に調整する表示調整手段とを含むことを特徴とする。

[0008]

本発明のシェーディング補正機能付表示装置は、撮像系から供給される画像信号に含まれるシェーディング歪を含む領域とこの領域に対応した読出し制御手段の読出し制御により第1の記憶手段から読み出したパターンデータとを表示合成手段で合成しているから、これまで行われてきた画像全体に対する個々の比較処理に比べて処理量を減らし、迅速に補正を施すことができ、この合成したデータを表示調整手段で表示形式に合わせてエンコードして出力することにより、シェーディング補正の結果をモニタしながら、撮影を行うことができる。

[0009]

【発明の実施の形態】

次に添付図面を参照して本発明によるシェーディング補正機能付表示装置の一実施例を詳細に説明する。

[0010]

本実施例は、本発明のシェーディング補正機能付表示装置をディジタルカメラ10に適用した場合である。本発明と直接関係のない部分について図示および説明を省略する。以下の説明で、信号はその現れる接続線の参照番号で指示する。

[0011]

ティジタルカメラ10は、光学レンズ系12、 絞り調節機構14、 撮像部16、 前処理部18、 システム制御部20、エンコード部22、モニタ24、ドライバ26、 メモリ制御部28、 通信部30、 ROM(Read-Only Memory)32、 RAM(Random Access Memory)34、 操作部36 およびストレージ38を含んでいる。 ディジタルカメラ10は、この内、一点鎖線で囲む前処理部18、 システム制御部20、エンコード部22、ドライバ26、 メモリ制御部28、 通信部30 およびRAM34をLSI(Large-Scale Integrated circuit)と

10

20

30

40

して集積化している。

[0012]

光学レンズ系12には、光学レンズの配置を自動的に変位調節して被写体を焦点の合った位置関係に調節するオートフォーカス(AF: Automatic Focus)調節機構が含まれている。機構のそれぞれには、上述した位置に光学レンズを移動させるためモータが配設されている。これらの機構は、各モータにドライバ26からそれぞれ供給される駆動信号26のに応動して動作している。

[0013]

一、終り調節機構14は、具体的に図示しなりが入射光量を調節するAE(Automatic Exposure)調節機構であり、ドライバ26からの駆動信号266に応じてリング部を回転させる。リング部は、羽根を部分的に重ならせてアイリスの形状を丸く形成でし、入射する光束を通すようにアイリスを形成する。このようにして終り調節機構14はアイリスの口径を変えている。 終り調節機構14は、メカニカルシャッタをレンズシャッタとして光学レンズ系12に組み込んでもより。

[0014]

撮像部16は、図示しないが光学ローパスフィルタ、色フィルタおよび固体撮像案子を含む。光学ローパスフィルタは、入射光の空間周波数をナイキスト周波数以下にするフィルタである。色フィルタは、たとえば三原色RGBの色フィルタセグメントが固体撮像案子の個々の受光素子(PhOtOSenSitiVe cell)と一対一に所定の位置に依存する。固体撮像素子は、2次元アレイ状に受光素子が配設され、受光素子で形成する場像面に結像した光学像を電気信号に光電変換している。固体撮像素子には、光学レンズ系12を経て集光されたシェーディング歪特性を含む入射光が入射される。

[0015]

固体撮像素子には、ドライバ26から駆動信号26cが供給されている。固体撮像素子は、動作モードに応じた駆動信号26cが供給され、入射光から信号電荷が生成され、転送してQ/V変換してアナログ電圧信号に変換される。固体撮像素子では、この特性を反映した信号電荷が生成されるので、生成されたアナログ電圧信号もこの特性を有している。撮像部16は、アナログ電圧信号16のを前処理部18に出力する。

[0016]

前処理部18には、ノイズ除去に相関二重サンプリング(COrrelated Double Sampling: CDS)回路、ゲイン調整アンプ(<math>GCA: GainControl Amplifier)、および<math>A/D変換器(Analog-to-Digital Converter)が含まれている(図示せず)。前処理部18は、供給されるアナログ信号16<math>aに対してノイズ除去、波形整形、ディジタル化を行って得られた撮像データのすべてを画像データ18aとしてシステム制御部20c出力する。

[0017]

システム制御部20は、カメラ全体の汎用な部分やディジタル処理を行う部分を制御するマイクロコンピュータまたはCPU(Central Processing Unit to ある。システム制御部20は、操作部36から供給される信号36aに応じて動作させている。ディジタル処理には、画像処理も含んでいる。システム制御部20は、図示していないが動作の基本となるクロックも生成している。システム制御部20は、クロックを基にエンコード部22、ドライバ26、メモリ制御部28、通信部30およびROM32を制御している。

[0018]

これらの制御を説明すると、システム制御部20は、メモリ制御部28を制御信号20cにより制御して供給された画像データ18cをRAM 34に送る。システム制御部20は、画像処理として、供給される画像データ18cに対するガンマ補正を行い、さらに、絞り値・シャッタ速度、ホワイトパランス(WB: White Balance)調整および階調補正等に関する演算を行う。後者の演算処理により、システム制御部20は、

10

20

30

40

撮像におけるパラメータを生成し、AF/AE調節に関する制御信号20bを生成し、ドライバ26に供給する。

[0019]

システム制御部20は、通信部30を制御信号20cにより制御して、たとえば外部のパーソナルコンピュータ(Personal Computer: PC)40とデータ通信を行わせる。また、システム制御部20は、ROM 32における書込み/読出し制御も制御信号20dにより行っている。システム制御部20は、この他、エンコード部22やストレージ38も制御している。ここで、制御信号20a. 20c. 20dは、データ線も含めて示している。

[0020]

システム制御部20には、OSD(On-Screen DisPlay)200が含まされている。OSD 200は、ROM 32から読み出した画像データ18のに対するピットマップパターンと画像データ18のを合成する機能を有している。この合成により、シェーディング歪特性が補正される。OSD 200は、合成した画像データ202をエンコード部22に供給する。この合成については後段でさらに説明する。

[0021]

また、システム制御部20には、マトリクス処理機能部が含まれ(図示せず)、供給される画像データ18のと所定の係数を用いて輝度データYと色データCb. CFを生成する。生成した画像データは、図示しない圧縮/伸長処理機能部に供給される。画像データ18のには、マトリクス処理の前に画素補間処理を施しておくと高品位な画像が得られる

[0022]

圧縮/伸長処理機能部は、たとえばスチル撮影を行う静止画モードにおいて供給される画像データ(Y/C)にJPEG(JOint PLOtO9FのPLic cOdin9 E×PertS GFOuP)や動画(ムーピ)撮影する動画モードにおいて供給される画像データ(Y/C)にMPEG(MOVin9 Picture cOdin9 E×PertS GFOuP)-1. MPEG-2等の規格でせれてれ、圧縮処理を施す。圧縮/伸長処理機能部は、テータ線38のを介して圧縮処理した画像データをストレージ38に送って記録する。圧縮/伸長処理機能部は、ストレージ38に記録した画像データをデータ線38のを介して供給して伸長処理を施す。この伸長処理は、圧縮処理の逆処理である。

[0023]

エンコード部 2 2 は、システム制御部 2 0 の O S D 2 0 0 にて合成した画像データ 2 0 2 をディジタルカメラ 1 0 で使用するモニタ 2 4 の表示形式にエンコード処理する。モニタ 2 4 には、LCD(Liquid Crystal DisPlay)やEVF(Electronic View Finder)が用いられる。モニタ 2 4 は、エンコード部 2 2 から供給されるデータ 2 2 a を表示する。モニタ 2 4 には、シェーディング 歪特性の無い画像が表示される。

[0024]

ドライバ26は、図示しないタイミング信号生成部で生成されたタイミング信号や制御信号20bを基に駆動信号26の、 26b・ 26cを生成する駆動回路を有している。ドライバ26は、制御信号20bを基に駆動信号26の、 26bを光学レンズ系12および絞り調節機構14にされせれ供給してAF調節やAE調節を行わせる。また、ドライバ26は、タイミング信号を基に生成した駆動信号26cを撮像部16に供給する。そして、撮像部16は、駆動信号26cに応動して固体撮像素子のされせれが露光期間中に光電変換により得られた信号電荷を蓄積させ、この蓄積した信号電荷を垂直転送レジスタに供給した後、水平転送させる。

[0025]

メモリ制御部28は、供給される画像データ18のを一時的に格納するRAM 34の制

10

20

30

40

御を行う機能を有している。メモリ制御部28は、制御機能の一つにRAM 34の動作 特性に対応するように所定の期間毎にRAM 84に対してリフレッシュ制御を行ってい る。

[0026]

通信部30には、画像データを外部の機器と入出力する外部I/F回路が配されている。 外部I/F回路としては、たとえば、PIO (Pro9rammed InPut/O utPut), UART (Universal Asynchronous Recei Ver/Transmitter: 非同期シリアル通信用送受信回路)、USB (Uni _versal Serial Bus)、IEEE1394規格(the Instit ute of Electrical and Electronics Engine e r S : 米国電気電子技術者協会) に基づくインタフェース等がある。

* [0027]

3 2 には、書き込んだデータを電気的に消去し、新たなデータの書き込みが可能 なEEPROM (Electrically Erasable and Progra mmable Read-Only Memory) や高速データ読出しが可能なROM 等のような不揮発性メモリが用いられる。また、RAM 34には、高速アクセスを行う ことのできるSRAM (Static Random Access Memory)等 が用いられる。

[0028]

操作部36には、図示しないがモード選択スイッチおよびレリーズシャッタボタンが含ま れている。モード選択スイッチは、静止画撮影モードと動画撮影モードのうち、いずれの モードにするかの選択を行う。レリーズシャッタポタンは、2段階のストロークを有する ボタンで、第1段のストロークでディジタルカメラ10を予備撮像の段階(81)と、第 2 段のストロークで本撮像の段階(S 2)とを報知する。操作部 3 6 は、モード信号やト りが信号を操作信号36のとしてシステム制御部20に出力する。操作部36には、この 他、ズーム選択スイッチおよび十字ボタンを設けてもよく、液晶表示パネルに表示される 条件項目をカーソルの表示位置で選択位置を示して選択する機能を持たせてもより。

ストレージ38は、半導体メモリ等を記録媒体として用いて、システム制御部20から供 給される画像データ38aを記録する。記録媒体には、光ディスクや光磁気ディスク等を 用いてもよい。この場合ストレージ38は、各記録媒体に適したピックアップやピックア ップと磁気ヘッドを組み合わせて記録再生用ヘッドを用いてデータの書込み/読出しを行 す。データの書込み/読出しは、図示しないがシステム制御部20の制御に応じて行われ

[0030]

なお、シェーディング歪特性における補正用ピットマップパターンは、出荷時に記憶させ る方法に限定されるものでなく、ネットワークを介して使用する光学レンズに対するピッ トマップパターンを採り込むようにしてもよい。ピットマップパターンは、PC 経て通信部30、システム制御部20からストレープ38に格納する。使用する光学レン プに合わせて、ユーザは、ストレージ38からROM 32 にピットマップ パターンを書 き込んで撮影に対応させる。これにより、 適用した機器に対するシェーディング補正にお ける柔軟性を大いに高めることができる。

[0031]

次にディジタルカメラ10におけるシェーディング歪特性の補正について図1および図2 を参照しながら、説明する。これまでにも説明してきたように光学レンズの特性によって 、撮像部16の周縁に対して入射光線が斜めに入射し、中央付近に比べて光量が不足して しまうことがあった。この結果、たとえば画像の四隅が暗く撮影されてしまう。シェーデ ィング歪特性は使用する光学レンズに依存する特性であるから、あらかじめ知ることがで きる。この特性を調べて製造側では、出荷時に図2(α)に示すような逆の特性を有する ピットマップパターン340を生成し、ROM 34に記憶させる。このピットマップパ

10

20

30

340c. 340d E ターン340は、画像の暗くなる四隅340a. 340b. 明るく、斜線部分340cを暗くするように形成している。

ディジタルカメラ10は、被写界からの入射光を光学レンズ系12を介して撮像部16に 入射させ、撮像部16で光電変換を行い、画像データ18のを得る。得られた画像データ 18aには、シェーディング歪特性が含まれているので、図2(b)に示す画像240か モニタ24に表示される。すなわち、四隅240a. 240b. 240c. **むが暗く(斜線部分)、斜線のない部分240色が明るい。**

_ [0033]

図2(の)のピットマップパターン340と図2(b)の画像240か示す破断線II-I I においてデータと画像データを比較すると、図2(c)に示す関係が得られる。一点 鎖線342は、ピットマップパターンの特性で、画像の両端に対応してレベルを高く、中 央付近のレベルを低くしている。また、実線242は、シェーディング歪特性を表して、 画像の両端240a、 240b、 240c、 240cに対応してレベルが低く、中 央付近の領域240eでレベルが高くなっている。

[0034]

システム制御部20は、画像データ18のの供給に同期して、ROM 32に対する読出 し制御を行ってピットマップパターン340をOSD 200に読み出す。OSD 0 では、ピットマップパターン340と画像データ18瓜とを合成する。このとき、合成 は、画面全体に対して行ってもよいが、歪の顕著な部分、すなわち四隅に着目して合成を 行う。この合成によってシェーディング歪特性が改善され、エンコード部22の処理を経 た、図2(d)に示す均一でクリアな画像240かモニタ24に表示される。

[0035]

ここで、合成は、画像全体に対して行うのでなく、部分的な合成で済ませることができる ので、合成処理の時間が短くて済む。部分的な合成は、たとえばあらかじめシェーディン グ補正を行うレベルを設定し、該当するピットマップパターン側に対して補正対象の領域 を決めておく。使用機器がわかり、画素数の設定等が既知の場合、ピットマップパターン における領域の境界は、アドレスとして知ることができるから、境界に対する補正対象の 領域を限定することができる。これにより、画像全体に対して逐次比較する処理に比べて 大幅に処理を軽減することができ、シェーディング補正された画像が直ちにモニタ24に 表示できる。

[0036]

モニタ24には、撮像前の画像であっても遅れなく、すでにシェーディング補正された画 像が表示されるから、ユーザは、モニタ24を見ながら撮影を行うことができるようにな る。したがって、ユーザは、記録した画像に対してソフト処理を施す場合、これまであっ たシェーディング歪特性を含むモニタ画像とシェーディング歪特性のない記録した画像と の間に感じていたギャップ感(違和感)を少なくすることができる。

[0037]

以上のように構成することにより、これまでのシェーディング補正に比べて容易に補正す ることから、シェーディング補正された画像を直ちに表示させることができ、ユーザは、 補正された画像を見ながらシーンを確認して記録することになる。これにより、モニタ表 示の画像と記録した画像との間にギャップ感を少なくすることができ、使い勝手の良いデ ィジタルカメラを提供できるようになる。

[0038]

【発明の効果】

このように本発明によれば、読出し制御手段の読出し制御により第1の記憶手段から読み 出したパターンデータと、撮像系からの画像信号がシェーディング歪を含む領域とをまと めて表示合成手段で合成しているから、これまで行われてきた画像全体に対する個々の比 較処理に比べて処理量を減らし、迅速に補正を施すことができ、この合成したデータを表 示調整手段で表示形式に合わせてエンコードして出力し、シェーディング補正の結果をモ

10

20

30

ニタしながら、撮影を行うことにより、ユーザに表示画像と記録画像との間にギャップ感を少なくし、使い勝手の良い装置を提供することができる。

【図面の簡単な説明】

【図1】本発明のシェーディング補正機能付表示装置を適用したディジタルカメラの概略的な構成を示すプロック図である。

【図2】図1において画像データに含まれるシェーディング歪特性を補正する原理を説明する図である。

【符号の説明】

- .10 ディジタルカメラ
 - 12 光学レンズ系
 - 14 絞り調節機構
 - 16 撮像部
 - 20 システム制御部
 - 22 エンコード部
 - 24 モニタ
 - 3 2 R O M
 - 38 ストレージ
 - 200 OSD

フロントページの続き

(51)Int.CL.⁷ H 0 4 N 5/228 // H04N 101:00

ΓI

テーマコード(参考)

H O 4 N 5/228 Z H 0 4 N 1/40 101A

H 0 4 N 101:00