Chemical Engineering

Advisory Board Meeting

April 8, 2016

United States Military Academy
Department of Chemistry and Life Science

Thank You! Advisory Board 2014-2015 Needs Revision

Kevin Shipe ✓ Automation Innovation Engineer NALCO Champion 7705 Hwy 90A, Sugarland, TX 77498 281-263-7335 kevin.a.shipe@gmail.com	Lucy Hair ✓ EleCent Team Leader CPOIS Program Lawrence Livermore National Lab 925-423-8545 hair1@llnl.gov	COL (Ret) Paul Dietrich ✓ 3855 Victory Blvd Staten Island, NY 10314-6716 718-698-8526 paul@the-dietrichs.com
COL (Ret) Dwight Springer Former Deputy Head Chemistry and Life Science US Military Academy 817-431-5331 dss5456@verizon.net	Shekar Garde Professor and Department Head of Chemical & Biological Engineering Rensselaer Polytechnic Institute (518) 276-2511 gardes@rpi.edu	Anthony Pavone ✓ Process Economics Program HIS Chemicals (650) 384-4311 tonypavone@ihs.com
MAJ Matthew J. Armstrong ✓ Nuclear Research & Operations Officer, Nuclear Disablement Team 2	Brad Smythe Production Manager, Explosives Manufacturing, BAE Systems Inc., OSI	CPT Joshua P. White Battalion LNO, 3-27 th Field Artillery 619 Strother Road
20th SUPCOM (CBRNE) 410 -436-4543 matthew.armstrong@us.army.mil	4509 West Stone Drive Kingsport, TN 37660 ((423) 578-6252 brad.smythe@baesystems.com	Aberdeen, NC 28315 910-432-1859 joshua.p.white.mil@mail.mil

Thank you!

- For the opportunity to show you America's Military Academy
- For your service and insights to help our program improve
- For the time you have dedicated to this visit
- For your dedication to the profession

Advisory Board Meeting Agenda

April 8, 2016

Introductory remarks and orientation

Program assessment

Cadet Discussions

Future Challenges

Facilities and construction

Wrap-up

Chemical Engineering

Advisory Board Meeting

April 8, 2016

1. Introductory Remarks

United States Military Academy

Department of Chemistry and Life Science

USMA VISION

Within an Army in transition,
West Point is the preeminent leader
development and academic institution
whose graduates thrive in tomorrow's
complex security environments,
and are inspired to a lifetime of service to
our Army and the Nation.

USMA MISSION

To educate, train, and inspire the Corps of Cadets so that each graduate is a commissioned *leader of character* committed to the values of **Duty, Honor, Country** and prepared for a career of professional excellence and service to the Nation as an officer in the United States Army.

PROGRAM VISION

We envision an Army that is prepared for all dimensions of modern warfare, drawing upon disciplined, highly trained chemical engineers to develop solutions to the challenges facing the nation.

PROGRAM MISSION

The mission of the chemical engineering program is to prepare commissioned leaders of character who are proficient in applying chemical and engineering principles to solve problems in a complex operational environment.

Revised

Engineering Technology Accreditation Commission

Visit – 28-30 September 2014

Program Report Received – September 30, 2015

Accredited October 1, 2012 to present

Why ABET Accreditation?

- An external certification of quality
- Keeps us in touch with the engineering profession
- Helps USMA recruiting
- Provides important opportunities for graduates
- Allows USMA engineering majors to take the Fundamentals of Engineering Examination
- It is required by Army Regulations (10-87).
- Almost everything that ABET expects us to do is something we should be doing anyway.

The ABET Process

- It's what we should do anyway. A reservoir of best practices for engineering educational excellence:
 - Precisely (re)define success and how to measure it
 - Decide how to achieve it and allocate resources
 - Collect key data, systematically evaluate, decide how to improve
 - Execute improvements and check progress
- Contributes to quality admissions:
 - Parents and applicants expect it
 - Foundation for grad school and PE certification
- Keeps us engaged with the profession:
 - A natural way to benchmark with others
 - Helps articulate educational standards to the Army

About ABET

- Established in NY as Engineers Council for Professional Development (ECPD) in 1932 by seven engineering societies
- Original focus on guidance, education, recognition
- Evaluated first engineering degree programs in 1936
- Became Accreditation Board for Engineering and Technology (ABET) in 1980
- Became ABET, Inc. in 2005 with 28 member societies
- Currently accredits 3,569 programs in 40 disciplines at more than 714 colleges and universities in 29 countries
- There are more than 2,200 program evaluators and other volunteers

ABET Organization

- <u>Board of Directors</u> approves policies, procedures, and accreditation criteria
- <u>ABET Commissions</u> propose policies, procedures, and criteria; deliberate and make accreditation decisions for programs
 - Engineering Accreditation Commission (EAC)
 - Computing Accreditation Commission (CAC)
 - Technology Accreditation Commission (TAC)
 - Applied Science Accreditation Commission (ASAC)
- <u>Professional Societies</u> provide Program Evaluators and Program Criteria
- Goal is assurance of quality improvement in applied science, computing, engineering, and technology education
- ABET accredits programs, <u>not institutions</u>

USMA ABET Accreditation

- Four programs initially accredited in 1985 (with introduction of majors into curriculum)
 - Civil Engineering
 - Electrical Engineering
 - Engineering Management
 - Mechanical Engineering
- Three programs initially accredited in 1997
 - Computer Science
 - Environmental Engineering
 - Systems Engineering
- Two programs initially accredited in 2009
 - Information Technology
 - Nuclear Engineering
- One program initially accredited in 2015
 - Chemical Engineering

ABET Processes & Procedures

There are nine individual criteria used as the core of determining program accreditation:

- the first eight are common

and

 the *last is program-specific* – this criterion defines disciplinary differences between programs

ABET Criteria

- I. General Criteria for Baccalaureate Level Programs
 - 1. Students
 - 2. Program Educational Objectives
 - 3. Student Outcomes
 - 4. Continuous Improvement
 - 5. Curriculum
 - 6. Faculty
 - 7. Facilities
 - 8. Support

III. Program Criteria

Governs the curriculum – Basic Math and Science; design, analysis and control; hazards associated with processes

Terms You Should Know

Program Educational Objectives (PEOs)

- Gleaned by asking program constituents
 - For us: Army, profession, graduate schools, other
- Our external Advisory Board a key resource.
- Desired professional accomplishments of graduates 5-7 years after graduation
- Adjust every 3 years or so...

Student Outcomes

- What <u>students</u> should be able to do at graduation
- Must be measurable
- Designed to lead naturally to the PEOs
- Assess/evaluate some fraction yearly.

Assessment → Continuous improvement

- Collect meaningful data to evaluate performance indicators (PIs)
- Assess PIs for outcome attainment → information → COAs for change
- Implement change
- Assess its effects and level of success ("closing the loop")
- Repeat all the above
- Periodically check and adjust Student Outcomes and relevance of PEOs

Assessment -> Improvement

Assessment Cycle

Accreditation AAR

- Self-study review and Q&A 15 June to 27 September 2014.
- Site visit 28-30 September 2014
 - Document auditing and verification of self-study
 - Tour of facilities
 - Interviews with students and faculty
- The review process went extremely well
 - No shortcomings in program completely "clean"
 - Very impressed with curriculum, cadets, faculty, and facilities
 - Positive feedback to cadets
- Next level review ABET "editors"
 - Review self-study and findings from visit
 - Recommendation in July 2015
 - Backdate accreditation to October 1, 2012
- Initial PEV feedback was that we should streamline our student outcomes

Thoughts to Consider

- The ABET process is expensive in terms of faculty time
 - USMA is a <u>small undergraduate college</u> with limited human resources (faculty) and high faculty turnover
- The ABET accreditation is important to the institution and to the Army (so we tend to do it well)
- The only way we can be successful with ABET is to orient our program processes around the ABET criteria
 - By doubling up our efforts we obtain some efficiency
 - Much of what follows is oriented around the ABET processes and terminology
 - We need to be strategic in deciding on new initiatives.

Advisory Board Findings

Excerpts from Minutes of 6-7 March 2014

- •Curriculum was previously thin on on engineering credit hours. This problem has been well identified and rectified.
- •As a result of the review of student course grade performance, student performance on the FE exam, and survey results of graduating seniors and graduated Army officers, we find the curriculum amply satisfies the student outcomes.
- •Program provides a comprehensive student immersion in chemical engineering theory and practice.
- •The USMA ChE program and faculty are highly praised by the students.
- •Students feel that they must work considerably harder than other cadets.
- Students feel that they are isolated (from commercial ChE practice).

End of Section 1

Chemical Engineering

Advisory Board Meeting

April 8, 2016

2. Outcomes Assessment

United States Military Academy
Department of Chemistry and Life Science

Student Outcomes

Identical to ABET a-k as described on slide 11

On completion of the chemical engineering program, our graduates will be able to:

- 1. Apply knowledge of mathematics, science, and engineering.
- 2. Design and conduct experiments, as well as analyze and interpret data.
- 3. Design a system, component, or process to meet desired needs within economic, environmental, social, political, ethical, health and safety, manufacturing, and sustainability constraints.
- 4. Function on multidisciplinary teams.
- 5. Identify, formulate, and solve engineering problems.
- 6. Understand professional and ethical responsibilities.
- 7. Communicate effectively.
- 8. Understand the impact of engineering solutions in a global economic, environmental, and societal context.
- 9. Recognize the need and develop the skills required for life-long learning.
- 10. Demonstrate knowledge of contemporary issues.
- 11. Demonstrate an ability to use techniques, skills, and modern engineering tools necessary for engineering practice.

 6/30/2020

Student Outcomes

Additional outcomes articulated by the program as described on slide 11

The program provides the graduate with a thorough grounding and working knowledge of the chemical sciences, including:

- 12. General, organic, and physical chemistry.
- 13. Material and energy balances on chemical processes, including safety and environmental factors.
- 14. Thermodynamics of physical and chemical equilibria.
- 15. Heat, mass, and momentum transfer.
- 16. Chemical reaction engineering.
- 17. Continuous and staged separation operations.
- 18. Process dynamics and control.
- 19. Modern experimental and computing techniques.
- 20. Process design.

Required Courses	
MA366	Engineering Mathematics with Applications
CH362	Mass & Energy Balances
CH363	Separation Processes
CH364	Chemical Reaction Engineering
XE472	Dynamic Modeling & Control
CH485	Heat & Mass Transfer
CH459	Chemical Engineering Laboratory
CH402	Chemical Engineering Process Design
CH400	Professional Practice
ME311	Thermal-Fluid Systems I
ME312	Thermal-Fluid Systems II
EE301	Fundamentals of Electrical Engineering
CE300	Fundamentals of Engineering Mechanics & Design (Statics & Dynamics)
CH481	Physical Chemistry (Chemical Engineering Thermodynamics in Fall 2015)
CH383	Organic Chemistry

Engineering Concentrations

Pre-approved elective sequences, but ultimately cadet choice (can choose any 3)

Materials Engineering

MC364 Mechanics of Materials MC380 Engineering Materials Open Elective

Nuclear Engineering

NE300 Nuclear Reactor Analysis NE350 Nuclear Reactor Design NE450 Nuclear Systems Design

Decision Analysis

SE301 Foundations of Engineering Design & Systems Management SE 481 Systems Simulation EM484 Dynamic Systems Analysis

Advanced Control Systems

EE360 Digital Computer Logic EM484 Dynamic Systems Analysis XE475 Mechatronics

Energy Conversion Systems

EE377 Electrical Power Generation ME472 Energy Conversion Systems ME480 Heat Transfer

Power Systems

ME306 Dynamics
ME491 Mechanical Power Plants
EE377 Electrical Power Generation

Industrial Engineering

SE301 Foundations of Engineering Design
& Systems Management
EM411 Project Management
EM420 Production Operations Management

Other Advanced Engineering Electives

Satisfy prerequisites Engineering Science or design = 3.0 credits Program director approval

Assessment

CHEME Coursework Embedded Indicators

MECHE Coursework Embedded Indicators

Fundamentals of Engineering Exam Topics

Participation in FE Exam (not pass rate)

Student end of semester surveys

Student CHEME Program Exit Surveys

Course Grades

Process

Example Data: Coursework Embedded Indicators

Student Outcome 1

Values in parentheses are coverage ratings from Table 5-3 in the Self Study, page 5-9

Data shown here is for Class of 2015
Similar data is collected for all 11 ABET outcomes

Performance on Embedded Indicators

Program Averages AY2009 to AY2014

Example Data: End-of-Semester SurveysRevised

Student Outcome 1

This course has improved my ability to apply knowledge of mathematics, science, and engineering.

Data shown here is for Class of 2015 Similar data is collected for all 11 ABET outcomes

End-of-Semester Surveys

Normalized Program Averages from AY10-15

Performance on Fund. of Engineering Exam

Outcome 9: Recognizing the Need and Develop the Skills for Life-long Learning

Program Outcome Evaluation

Performance Indicators AY07 to AY15

New Slide

■2007 ■2008

■2009 ■2010

2011

□2012 □2013

2014

■2015

Trends need to be lifted out so data is normalized against national average

Topical Outcomes Evaluation

Deviations from National Averages AY07 to AY15

Topical Outcomes Evaluation

Average Course GPA After Parsing from Transcripts

End of Section 2

(Advisory Board Completes Survey Part 1)

Chemical Engineering

Advisory Board Meeting

March 8, 2016

3. Assessment (Program Objectives)

United States Military Academy
Department of Chemistry and Life Science

Lunch – Cadet Mess

Sports Beverage

Skim/Low Fat Milk

50c

80c/100c

8oz

8oz

ABET Criterion 2: Objectives

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program's various constituencies, and these criteria.

There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program's constituents' needs, and these criteria.

ABET Criterion 2: Objectives

Change as of 2013-2014:

The program must have an assessment and evaluation process that periodically documents and demonstrates the degree to which the objectives are attained.

No longer required.

Program Objectives

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 2. Succeed in graduate school or advanced study programs.
- 3. Advance their careers through clear and precise technical communication.
- 4. Demonstrate effective leadership and chemical engineering expertise.

Program Objectives

During a career as commissioned officers in the United States Army and beyond, program graduates:

- 1. Demonstrate effective leadership and chemical engineering expertise. [formerly #4]
- 2. Contribute to the solution of infrastructure and operational problems in a complex operational environment.
- 3. Succeed in graduate school or advanced study programs.
- 4. Advance their careers through clear and precise technical communication.

Assessment Instruments for Objectives

Program Surveys

Program Advisory Board Surveys
Program Faculty Surveys
Program Cadet Surveys
Program Graduate Surveys (??)

Strategy going forward:

Assess consistency with the mission of the institution and the needs of the constituencies improve objectives.

How Cadets View the PEO Process

Cadets are a key constituency

Faculty responses are in the supplemental slides.

Enrichment Opportunities

Advanced Individual Academic Development (AIAD)

- Lawrence Livermore National Lab
- Army Research Labs
- Picatinny Arsenal
- BAE Systems
- Audia Group
- US Mint
- Renewal Energy Group
- US Department of Agriculture
- US Department of Homeland Security
- US Army Engineer Research Development Center
- Research, Development, and Engineering Command

29 fully funded internships

End of Section 3

(Advisory Board Completes Survey Part 2)

Chemical Engineering

Advisory Board Meeting

April 8, 2016

4. Future Challenges

United States Military Academy
Department of Chemistry and Life Science

Academic Excellence

#1 Most Accessible Professors

#6 Best College Library

#10 Best Athletic Facilities

#11 Best Classroom Experience

#1 Public College in the country

#1 Best Buy

#3 Liberal Arts College

#7 Overall College in the country

#2 Top Public Schools

#3 Best Undergrad Engineering Program

#2 Civil Engineering Program

#3 Mechanical Engineering Program

#7 Electrical Engineering Program

#24 National Liberal Arts College

Strategic Influence

Proposed Change 1

Addition of CH401 Chemical Engineering Design Principles

Assign 3.0 credit hours in AY2019

Reason - bolster the USMA chemical engineering performance on design principles in embedded indicators

Precedent - Parity with other USMA programs

- 1. EE400 EE Professional Considerations
- 2. CS400 Computer Science Seminar
- 3. MX400 Officership

Proposed Change 2

CH366 Chemical Engineering Process Control

- •Key potential shortcoming in response to assessment of chemical engineering control theory is apparent in the data.
- •Demonstrated effort at continuous program improvement is critical to ABET accreditation (Criterion 4).
- •Making this change is not a silver bullet (does not guarantee accreditation). But, it does demonstrate we are responding to the data.
- •Loss of XE472 and interdisciplinary nature of program is a concern.

Intimately connected with assessment. Having collected data over a long period of time, response to data is critical. This rationale for creating and altering courses was pivotal in last ABET visit.

Proposed Change 3

CH300 Technical Writing

- Response to curriculum changes.
- Perceived shortcoming in cadet writing ability across the core
- •Dean is currently requiring us to sacrifice technical content from one of our courses to address perceived shortcoming.
- •Opportunity for us to engage in engineering-specific communication skills

Apparently unconnected with assessment. This approach has some risks associated with ABET. However, our choices are limited and we would like to make the best of it.

Timeline for Curricular Actions

Visit: 14-16 September (Proposed)

Chemical Engineering Faculty

Can we support critical courses?

	AY14	AY15	AY16	AY17	AY18	AY19
Biaglow	Х	Х	Х	Х	Х	Х
Lachance	Χ	а	а	?	?	?
Woodka	Χ	Χ				
Gerfen	Χ	Χ	Χ			
Winter		X	X	?		
Belanger		Χ	Χ	?		
Bull		Χ	Χ			
Kalainoff		Χ	Χ	Х	Х	Х
Armstrong				X	Χ	Х
White				Х	Χ	Х
Onwuanumkpe				Х	Χ	Х
Pfluger					Х	Х
James					Χ	Х
Totals		8	7	5	7	7

a – available to teach; currently in registrar's office

End of Section 4

Chemical Engineering

Advisory Board Meeting

April 8, 2016

Supplemental Slides

United States Military Academy

Department of Chemistry and Life Science

Survey of Chemical Engineering Curricula

(Internal Study, July – Aug 2012; Occhlogross & Rosa, J. Chem. Eng. Ed., Sum 1996, pp. 184-187)

What the other guys are doing.

Summary Statistics	
Programs in Survey	159
Programs in USA a,b	159
Percent Surveyed	100
States in Survey ^a	52
States with Programs	49
States without Programs	3
Percent of States Surveyed	100

^a Includes Puerto Rico and the District of Columbia

All programs are different and each is designed for the constituency of the program.

^b ABET lists 160 programs.

Program Benchmarking

What do department call themselves?

Summary Stats		
Programs in Survey:	159	
Programs in USAa,b	159	
% Surveyed:	100	
States ^a in Survey:	52	
States ^a w/ Programs:	49	
States ^a w/o Programs:	3	
% States Surveyed:	100	

alncludes DC & Puerto Rico

b160 programs are listed in ABET

ChemE "National" Curriculum

Course / Content	National, 1994 ^a	National, 2012	USMA
Design	4.9	5.7	3.5
Laboratory	3.7	4.1	3.5
Reactor Design	1.9	3.1	3.5
Separations	3.2	3.0	3.5
Control	2.3	3.0	3.0
Material & Energy Balances	3.6	3.6	3.5
Transport Phenomena	11.7	6.3	7.0
Chemical Engineering Thermodynamics	4.2	4.8	3.5
Chemistry (excl. Phys. Chem.)	19.0	14.7	10.5
Physical Chemistry	6.4	3.0	3.5
Physics mode: 0.0 (47)	1.1	1.1	7.0
Mathematics (through ODEs)	14.5	14.8	16.5
Computers / Programming	3.6	2.4	3.0
Statistics	3.0	1.0	3.0
Electrical Engineering	3.8	1.0	3.5
Civil Engineering	3.8	0.9	3.0

Cadet Enrollment in USMA Academic Majors

ABET Departments Only, Class of 2016, as of January 2014

•	
Major	Number
Mechanical Engineering	117
Systems Engineering	79
Computer Science	64
Civil Engineering	38
Life Science	35
Systems Design and Management	32
Chemical Engineering	30
Electrical Engineering	28
Environmental Engineering	26
Engineering Management (GE)	24
Human Geography	23
Physics	22
Environmental Science	16
Kinesiology	16
Nuclear Engineering	14
Information Technology	13
Geospatial Information Science	12
Chemistry	7
Engineering Management (CE)	7
Engineering Management (ENV)	7
Engineering Management (ME)	6
Interdisciplinary Science	5
Elec & Info Tech Sys	4
Environmental Geography	4
Engineering Management (EE)	2
Engineering Management (NE)	1

ABET Criteria

- 1. STUDENTS
- 2. PROGRAM EDUCATIONAL OBJECTIVES
- 3. PROGRAM OUTCOMES
- 4. CONTINUOUS IMPROVEMENT
- 5. CURRICULUM
- 6. FACULTY
- 7. FACILITIES
- 8. SUPPORT
- 9. PROGRAM CRITERIA

Definitions

Program Educational Objectives

Program educational objectives are broad statements that describe what graduates are expected to attain within a few years of graduation.

Student Outcomes

Student outcomes describe what students are expected to know and be able to do by the time of graduation (skills, knowledge, and behaviors).

Outcomes

- Program outcomes are ABET a-k outcomes plus any additional outcomes articulated by the program
- Program must have assessment and evaluation process that periodically demonstrates and documents the degree to which outcomes are attained

End of Section 5 (Supplements)

Chemical Engineering

Advisory Board Meeting

April 8, 2016

Old Supplemental Slides

United States Military Academy

Department of Chemistry and Life Science

ABET Table 5-1

		Category (Credit Hours)			
		Math and	Engineering	General	
Semester	Course Number and Descritption	Basic	Check if contains	Educatio	Other
1	MA103 Math Modeling/Intro Calculus	4.0	n		
•	CH101 General Chemistry I	3.5	li		
	EN101 Composition		H		3.0
	HI10x History		H		3.0
	PL100 General Psychology		H		3.0
	PE11x Combatives/Boxing/Movement		H		0.5
	MD101 4th Class Military Perf I		H		0.5
	INDIOTACTICIASS Milicary Ferri		H		
2	MA104 Calculus I	4.5			
2			l iii		
	CH102 General Chemistry II	3.5	li li		
	EN102 Literature		Q		3.0
	HI10x History		0		3.0
	IT105 Intro to Computing and IT		0.5 ()		2.5
	MS100 Introduction to Warfighting		0		1.5
	MD102 4th Class Military Perf II		()		
3	MA205 Calculus II	4.5	()		
	PH201Physics I	3.5			
	Lx203 Foreign Language I		()		3.5
	SS201 Economics		0		3.5
	PY201 Philosophy		i)		3.0
	PE215 Fundamentals/Personal		lii.		1.5
	MS200 Fundamentals: Army		lii		1.5
	MD2013rd Class Military Perf I		lii		
			l ``		
4	MA366 Appl. Engineering	2.0	1.0		
•	CH362 Mass & Energy Balances	2.0	3.5		
	PH202 Physics II	3.5	<u> </u>		
	Lx204 Foreign Language II	0.0	H		3.5
	SS202 American Politics		H		3.5
	EV203 Physical Geography	2.5	H		0.5
		2.0	H		0.5
	PE2xx Lifetime Physical Activity		1,,		0.0
	MD202 3rd Class Military Perform. II		U		
-	0110000		0.5		
5	CH363 Separation Processes		3.5 (1)		
	EE301 Fund of Electrical Engineering		3.5 ()		
	CH383 Organic Chemistry I	3.5	Q		
	MC311 Thermal-Fluid Systems I		35 (√)		
	MA206 Probability and Statistics	2.5	0.5		
	PL300 Military Leadership		0		3.0
	PE320 Survival Swimming		()		0.5
	MS300 Platoon Operations		()		1.5
	MD3012nd Class Military Perf I				

tau murt tirfy one	Percent of Total: Minumum Credit Hours Percent of Total:		31.5% 48 Hours 37.5%	Н	0.0%	42.13
	155.5	00.44	OLEV		0.05	40.4
	Total Credit Hours:	41.0	49.0	Min. if all 3.0 electives		ctives
otals - A	BET Basic Level Requirements:	32.0	48.0		0.0	65.5
	•					
	MD402 1st Class Military Perf II			Ö		
	LW403 Constitutional/Military Law			Ŏ		3.5
	HI302 Military History II			o		3.0
	SS307 International Relations			m		3.5
	Engineering Elective 3		3.0	m		
	CH400 Chem Eng Professional		1.0	m		
8	CH402 Chem Eng Process Design		3.5	(√)		
	THE TOTIS Class Military Ferri			\vdash		
	MD4011st Class Military Perf I			┞┸┤		2.0
	MX400 Officership			HH		2.0
	PE450 Army Fitness Development			H		1.5
	HI301 Military History I		3.5	HH		3.0
	CH485 Heat and Mass Transfer		3.5	H		
	Engineering Elective 2	3.0	3.0	n		
7	CH459 Chem Engr Laboratory CH481 Physical Chemistry I	3.5	3.5	(v)		
_				4.6		
	, , , , , , , , , , , , , , , , , , , ,					
	MD302 2nd Class Military Perf II			М		
	PE360 Combat Applications			M		0.5
	EN302 Advanced Composition		0.0	n		3.0
	MC300 Fund of Engr Mech & Dsn		3.0	ί√i		
	MC312 Thermal-Fluid Systems II		3.0	H		
	Engineering Elective 1		3.0	H		
•	XE472 Dynamic Modeling & Control		3.0	n		
6	CH364 Chemical Reaction		3.5	(√)		

Shoring up engineering credits

- •adding CH365
- •increasing CH400 to 1.5 credits
- •extensive internal review

ABET-Proofing our Split Credit Courses

Fundamental Question – Are These Safe?

- Program evaluator (PEV) will see us at 49.0 versus 48.0 ET.
- •Split-credit courses are an ABET red flag issue. MA366, MA206, and IT105 are all at risk.
- •Pool of ABET PEVs is diverse (education, employment, background, etc.)
 - •Can we model the evaluation process using the advisory board?
- Design a method for quantifying the risk.
- •Summer ET-credit test survey.

Assessing Engineering Content

Instructions for Part 2: This survey contains several problems. Your job is to assess whether the primary theme of the problem is mathematics, basic science, or engineering. Following each problem is a short survey. For each problem, read the problem and then complete the survey. Darken the box under the term that most accurately describes your opinion regarding that response. Use your best judgment in making the assessment. There are absolutely no right or wrong answers.

An insulated cable placed in the Atlantic Ocean connecting the United States to the United
Kingdom is used for telecommunications. Symptoms develop in the operation of the cable
indicating the possibility that a hole may have formed in the insulation. Discuss possible
methods for finding (i) whether or not a hole has in fact formed, and (ii) the location of the hole,
if it exists.

	Great extent		Moderate		Not at all
To what extent is this a mathematics problem?					
To what extent is this a basic science problem?					
To what extent is an engineering problem?					
To what extent is this some other type of problems	s? 🗆				

Comparing the Assessments

Author's intention versus reader's perception

-1 for each 1-point deviation from instructor's answer.

For example, if the instructor answered 5 and you answered 4, 1 pt. was deducted for that response.

Total points determined from total possible cuts.

Comparing the Assessments

Author's intention versus reader's perception

-1 for each 1-point deviation from instructor's answer.

For example, if the instructor answered 5 and you answered 4, 1 pt. was deducted for that response.

Total points determined from total possible cuts.

ABET-Proofing our Split Credit Courses

Conclusions

- •A good program evaluator (PEV) will examine book and background of faculty in addition to course content.
- •At this time, USMA process (ABET Committee) involves course content only.
- •Interest in continuing this study, imperfect as it is? If so, need volunteers to examine MA366.
- •Long-term fix is to not use split credit hours (challenging with 26 core courses).

How Faculty View the PEO Process?

Faculty are another key constituency.

Funding Pipeline

Challenge 1 - ABET Bean Counting

ABET Self Study Table 5-1

Course			Subject Area (Credit Hours)					
		Required, Elective or Selected Elective (R, E or an SE)	Math & Basic Sciences	Engineering Topics	General Education	Other	Last Two Terms the Course was Offered	Maximum Section Enrollment for the Last Two Terms the Course was Offered ²
Term 1 (Semester	1):		-					-
MA103 Math Modeling/Intro Calculus		R	4.0				14-1, 14-2	19
CH101 General Chemistry I		R	3.5				14-1,14-2	20
EN101 Composition		R				3.0	14-1,14-2	18
HI10x History		R				3.0	14-1,14-2	18
PL100 General Psychology		R				3.0	14-1,14-2	19
PE11x Combatives/Boxing/	PE11x Combatives/Boxing/Movement R					0.5	14-1,14-2	44
IT105 Introduction to Comp	uting & IT	R		0.5		2.5	14-1,14-2	18
MA366 Applied Engineering Math		R	2.0	1.0			13-2,14-2	18
MA206 Probability and Statistics		R	2.5	0.5			14-1,14-2	19
<u> </u>					^ <u>}</u>	^ \		T ~
TOTALS-ABET BASIC-LEVEL REQUIREMENTS		41.0	49.5		66.5			
OVERALL TOTAL CREDIT HOURS 156.0								
PERCENT OF TOTAL		26.0	31.4		42.5			
Total must satisfy either credit hours or percentage	Minimum Semester Credit Hours		32 Hours	48 Hours				
	Minimum Percentage		25%	37.5 %				

Career Counseling

FIIAIIIEEI

Year Group 2014

INTELLIGENCES: Interpersonal, Logical-Mathematical, Spatial

SKILLS: Engineer officers must possess an innate ability to evaluate and assess problems, the resident knowledge to brainstorm possibilities, and then quickly implement solutions to solve problems facing our maneuver commanders. This requires a design mindset – the ability to develop tasks and work processes for teams and motivate those teams to reach harmoniously, efficiently, and effectively desired outcomes. Officers must thrive in the world of abstract concepts and data-based reasoning, be able to discriminate and filter information of importance, and be capable of rapid visualization; all while skillfully possessing the ability to communicate concepts verbally or in writing. Collectively, these skills make Engineer officers superb problem solvers and invaluable to our Army and Nation.

KNOWLEDGE: The Engineer branch strongly desires officers with academic backgrounds in the domain-specific disciplines listed below, with particular emphasis on degrees that are accredited by the Accreditation Board for Engineering and Technology (ABET). These disciplines provide officers with a foundation in the scientific method that enhances their ability to become expert problem solvers.

- ➤ RELEVANT EDUCATION PRIORITY 1: ABET Engineering Majors (Civil, Mechanical, Electrical, Systems, Environmental, Chemical, Nuclear, Engineering Management, Computer Science, Information Technology).
- > RELEVANT EDUCATION PRIORITY 2: Non-ABET Engineering; Science, Technology, and Mathematics (STEM) disciplines.
- > RELEVANT EDUCATION PRIORITY 3: All other disciplines.
- > RELEVANT TRAINING/EXPERIENCE: Cadet Troop Leading Time / Leader Development Time (CTLT / CLDT) with Engineer Unit or Academic Enrichment Program in engineering or related activity (not all inclusive).

BEHAVIORS: (In addition to foundational)

- > ADAPTABLE
- > DEPENDABLE
- > INNOVATIVE

> PROACTIVE

> AMBITIOUS

- > DETAIL FOCUSED
- > INSPIRING

> PROBLEM SOLVING

- > CHARISMATIC > COMMITTED
- > DILIGENT > EXPERT

- > INTELLECTUALLY CURIOUS
 > PERCEPTIVE
- > TENACIOUS > VISIONARY

TALENT PRIORITIES:

- **1. DOMAIN-SPECIFIC EDUCATION:** Possessing an engineering degree (ABET-preferred), high performers in science, technology, engineering, and math (STEM) disciplines.
- 2. PROJECT MANAGER: Able to determine requirements, develop work processes, delegate responsibilities, and lead teams to desired outcomes.
- 3. PROBLEM SOLVER: Able to choose between best practices and unorthodox approaches to reach a solution. Accomplishes the task.
- 4. INSPIRATIONAL LEADER: Motivates teams to work harmoniously and productively towards a common goal.
- 5. SPATIALLY INTELLIGENT: Easily perceives, understands, and operates within the multi-dimensional world.

Branch Distribution of Chemical Engineers

Where our graduates are currently serving

All USMA "green-suiter" graduates as of July 2013

Government Employment of Chemical Engineers

As of July 2013

Government Employment of Chemical Engineers

As of July 2013

Government Employment of Chemical Engineers

Labor Market Survey

Chemical Engineering Salary Survey

Occupation: Chemical Engineers (SOC code 172041)		
Period: May 2012		
Industry (NAICS Code)	Employment(1)	Annual mean wage(2)
Professional Scientific and Technical Services (541000)	10170	\$104,840
Chemical Manufacturing (325000)	9850	\$99,440
Petroleum and Coal Products Manufacturing (324000)	1890	\$109,280
Management of Companies and Enterprises (551000)	1250	\$142,790
Plastics and Rubber Products Manufacturing (326000)	960	\$81,410
Educational Services (611000)	780	\$74,080
Computer and Electronic Product Manufacturing (334000)	720	\$95,280
Merchant Wholesalers Nondurable Goods (424000)	690	\$89,160
Oil and Gas Extraction (211000)	580	\$133,870
Utilities (221000)	550	\$118,150
Paper Manufacturing (322000)	480	\$91,360
Wholesale Electronic Markets and Agents and Brokers (425000)	410	\$91,160
Machinery Manufacturing (333000)	380	\$85,860
Mining (except Oil and Gas) (212000)	40	\$106,280
Beverage and Tobacco Product Manufacturing (312000)	40	\$91,150
Textile Mills (313000)	40	\$79,770
Government	1140	\$104,210
Department of the Army	433	\$101,757
Department of the Navy	312	\$98,270
Department of the Air Force	61	\$99,423
Departent of Defense	15	\$99,423
Footpotos		

Footnotes:

- (1) Estimates for detailed occupations do not sum to the totals because the totals include occupations not shown separately. Estimates do not include self-employed workers.
- (2) Annual wages have been calculated by multiplying the hourly mean wage by 2080 hours; where an hourly mean wage is not published the annual wage has been directly calculated from the reported survey data.
- (8) Estimate not released.

SOC code: Standard Occupational Classification code -- see http://www.bls.gov/soc/home.htm

NAICS code: North American Industry Classification System code -- see http://www.bls.gov/bls/naics.htm

Data extracted on June 21 2013

Topical (Criterion "9") Outcomes Evaluation

FE Exam Pass Rates for USMA Engineers in the Graduating Class of 2012

Discipline-Specific Results Reported by the National Council for Engineering Education

Fundamentals of Engineering Exam 6 April 2013

	USMA			National			
Major	Took	Passed	Percent	Took	Passed	Percent	
Mechanical	66	54	82%	5406	4468	83%	
Civil	44	42	95%	5312	6638	80%	
Electrical	25	22	88%	1060	1472	72%	
Eng. Management	43	27	63%	53	33	62%	
Systems	47	39	83%	53	43	81%	
Chemical	12	11	92%	1507	1301	86%	
Environmental	17	17	100%	629	551	88%	
Nuclear ^a	14	12	86%	18	16	89%	

^a No discipline-specific exam offered.

USMA engineers scored at or above the national average in all disciplines.

Delete

Program Graduates Survey Results

26 out of 55 active duty graduates responded.

Program Graduates Survey Results

26 out of 55 active duty graduates responded.

How many times have you been called upon to use your chemical engineering expertise in the last year?

Continuing education activities

Program Graduates Survey Results

26 out of 55 active duty graduates responded.

Rank and Branch demographics

End of Section 6 (Old Supplements)