ESERCIZIO 1. Sia data la rete G = (V, A) con

$$V = \{S, 1, 2, 3, 4, D\}$$

$$A = \{(S,1), (S,2), (1,2), (1,3), (2,3), (2,4), (3,4), (3,D), (4,D)\}$$

con le capacità

$$c_{S1} = 5$$
 $c_{S2} = 6$ $c_{12} = 9$ $c_{13} = 2$ $c_{23} = 3$ $c_{24} = 8$ $c_{34} = 4$ $c_{3D} = 10$ $c_{4D} = 4$.

Supponendo di partire dal flusso ammissibile iniziale

$$x_{S1} = 5$$
 $x_{S2} = 0$ $x_{12} = 5$ $x_{13} = 0$ $x_{23} = 3$ $x_{24} = 2$

$$x_{34} = 0$$
 $x_{3D} = 3$ $x_{4D} = 2$.

si determini il flusso massimo e il taglio minimo per questa rete.

ESERCIZIO 2. Sia data la rete G = (V, A) con

$$V = \{S, 1, 2, 3, 4, 5, 6, 7, D\}$$

е

$$A = \{(S,1), \ (S,2), \ (S,3), \ (1,4), \ (1,5), \ (2,4), \ (3,5), \ (3,6), \ (4,7), \ (5,6), \ (5,7), \ (5,D), \ (6,D), \ (7,D)\}$$
 con le capacità

$$c_{S1} = 9$$
 $c_{S2} = 7$ $c_{S3} = 8$ $c_{14} = 5$ $c_{15} = 2$ $c_{24} = 1$

$$c_{35} = 2$$
 $c_{36} = 8$ $c_{47} = 3$ $c_{56} = 2$ $c_{57} = 2$ $c_{5D} = 8$ $c_{6D} = 2$ $c_{7D} = 3$.

Supponendo di partire dal flusso ammissibile iniziale

$$x_{S1} = 2$$
 $x_{S2} = 0$ $x_{S3} = 2$ $x_{14} = 0$ $x_{15} = 2$ $x_{24} = 0$

$$x_{35} = 2$$
 $x_{36} = 0$ $x_{47} = 0$ $x_{56} = 2$ $x_{57} = 2$ $x_{5D} = 0$ $x_{6D} = 2$ $x_{7D} = 2$.

si determini il flusso massimo e il taglio minimo per questa rete.

ESERCIZIO 3. Sia data la rete G = (V, A) con $V = \{S, 1, 2, 3, 4, 5, D\}$ e

$$A = \{(S,1); (S,2); (1,2); (1,3); (1,5); (2,5); (3,5); (3,D); (4,D); (5,4); (5,D)\}.$$

Siano date le seguenti capacità degli archi:

Г	(i, j)	(S,1)	(S,2)	(1, 2)	(1, 3)	(1,5)	(2,5)	(3, 5)	(3,D)	(4,D)	(5,4)	(5,D)
Γ	c_{ij}	5	4	1	3	2	3	2	1	6	6	5

Si consideri il seguente flusso:

$$x_{S1} = 5$$
 $x_{S2} = 2$ $x_{12} = 1$ $x_{13} = 2$ $x_{15} = 2$ $x_{25} = 3$

$$x_{35} = 1$$
 $x_{3D} = 1$ $x_{4D} = 5$ $x_{54} = 5$ $x_{5D} = 1$

Dopo aver verificato che si tratta di un flusso ammissibile, partire da questo con l'algoritmo di Ford-Fulkerson con la procedura di etichettatura per determinare una soluzione ottima del problema di flusso massimo. Determinare anche una soluzione ottima del problema di taglio minimo sulla stessa rete.