Q1)

(se	F= & 1,2,5,4,7,11,12,15	
-9		
	77-	ABCID TO TO CD
	SOP = BZD +AZD + BCD+BCD	AS CO CO CO
		745 0 (1) 1 3 (V)
		AB DA US DI C
		AB Un U W
		A 2 8 9 11 1 1
	POS = (B+C+A) (A+C+A) (B+Z+A)	CP (+D C+D C+D C+D
	(B+5+A)	ATB 0 10
	(BFCTA)	··· 0 0 -
		Ø FA
		A+B O O
		Ā+B OO
		A+8 [[U][O [U]

(a) (523) 8

Hence 7's complement can be calculated by subtracting each bit by T.

 $(777 - 523)_8 = (254)_8$

(b) (467)

Hence 9's complement can be calculated by subtracting each bit by 9.

(999 - 467),0 = (532)10

(c) (10110)₂

1'5 complement is (01001)

Q3)

Χ	Υ	Z	Α	В	
0	1	0	0	1	
1	1	1	0	0	
0	0	1	0	1	
1	0	1	1	1	
0	1	1	1	0	

Q4)

(a)
$$Z(a,b,c) = a + \overline{b}c$$
 (from the clrust)

1. Converting 'Z' in canonical sop from.

 $Z = a(b+\overline{b})(c+\overline{c}) + (a+\overline{a})\overline{b}c$
 $Z = a(b+\overline{b})(c+\overline{c}) + (a+\overline{a})\overline{b}c$
 $Z = a(bc+b\overline{c}+\overline{b}c+\overline{b}c) + a\overline{b}c + a\overline{b}c$
 $Z = abc + ab\overline{c} + a\overline{b}c + a\overline{b}c + a\overline{b}c$
 $Z = abc + ab\overline{c} + a\overline{b}c + a\overline{b}c + a\overline{b}c$
 $Z = abc + ab\overline{c} + a\overline{b}c + a\overline{b}c + a\overline{b}c$
 $Z = abc + ab\overline{c} + a\overline{b}c + a\overline{b}c + a\overline{b}c$
 $Z = abc + ab\overline{c} + a\overline{b}c + a\overline{b}c + a\overline{b}c$

a	b	C	menterms	
00001	0 0 1 1 0 0 1 1	0 1 0 1 0 1	10 C C C C C C C C C C C C C C C C C C C	mo m1 m2 m3 m4 m5 m6

So,
$$Z(a,b,c) = \sum (1,4,5,6,7)$$
Sop form (canonical)

$$Z(a,b,c) = T(0,2,3)$$

 $\Rightarrow Pos from (canonical)$

The output is logic high

The output is logic high

when 1's are in magority

at the Enput else output

is logic low.

Truth-Table

 $C \mid F = \sum m(3,5,6,7)$

$$F = \overline{A}BC + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= (A+\overline{A})BC + \overline{ABC} + \overline{ABC}$$

$$= BC + \overline{ABC} + \overline{ABC}$$

$$= B(C+\overline{AC}) + \overline{ABC}$$

$$= B(C+\overline{AC}) + \overline{ABC}$$

$$= BC + BA + \overline{ABC}$$

$$= BC + BA + \overline{ABC}$$

$$= BC + BC + \overline{AC} \Rightarrow Mminized from$$

$$F = AB + BC + AC \Rightarrow Mminized from$$

$$f_1(A,B,C) = \sum (2,3,4)$$

 $f_2(A,B,C) = \pi (0,1,3,6,7)$ Converting to
 $= \sum (2,4,5)$ Standard SOP from

$$f_1 \cdot f_2 = \sum m(2,4)$$

Now, for function of to be zero,

$$f_3(A,B,C) = [f_1(A,B,C) \cap f_2(A,B,C)]$$

= $\sum (0,1,3,5,6,7)$

i., maximum minterme possible are 6.

Q7)

Given: 4-bits &'s complement Numbers

(i) 1011 (in 2's complement)

1-1

1010 (1's complement)

1 Replace (0 \$\to 1)

0101 (in 2's complement)

1-1

0101 (1's complement)

1 Replace (0 \$\to 1)

1010 (i.e+10)

Pescut = 10+5 \$\to 15 \$\to 1111_2

1 Replace (0 \$\to 1)

0000 (in 1's complement)

1+1

Am [0001] (2"s complement).

 $(45)_{10} - (45)_{16}$ for substraction, they must be in same radix $(45)_{16} = 5 \times 16^{\circ} + 4 \times 16^{\circ} = 5 + 64 = (69)_{10}$ Result = $(45)_{10} - (69)_{10} = (-24)_{10}$

 $(24)_{10} \rightarrow (011000)_{2}$ $\downarrow \text{ Replace}(\infty)_{1}$ (1001111) (in 1st complement) $\downarrow +1$ $\downarrow +1$ $\downarrow -24)_{10}$ $\downarrow -24)_{10}$ $\downarrow -24)_{10}$