CS57300 PURDUE UNIVERSITY NOVEMBER 15, 2021

DATA MINING

DESCRIPTIVE MODELING

ANNOUCENMENT

- Midterm grades are out!
- Assignment 5 is out!
 - Due date: November 28, 11:59pm

HOW TO LEARN GMMS?

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

- Popular algorithm for parameter estimation in data with hidden/unobserved values
 - Hidden variables=cluster membership
- Basic idea
 - Initialize parameters
 - Predict values for hidden variables given current parameters
 - Estimate parameters given current prediction for hidden variables
 - Repeat

EM FOR GMM

- Suppose we make a guess for the parameters values
- Use these to evaluate posterior probs for cluster memberships (using Bayes rule)

$$\Gamma(x_n) = [\gamma_1(x_n), ..., \gamma_K(x_n)]$$

E-STEP

Now compute the log-likelihood using predicted cluster memberships

$$log \ p(x, z | \theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_i(x_n) [log \ w_k + log \ N(x_n | \mu_k, \Sigma_k)]$$

• Use expected complete likelihood to determine MLE for parameters (w_k, μ_k, Σ_k)

MORE ON EM

- Often both the E and the M step can be solved in closed form
- Neither the E step nor the M step can decrease the log-likelihood
- Algorithm is guaranteed to converge to a local maximum of the likelihood
- Must specify initialization and stopping criteria

GMM EXAMPLE

PROBABILISTIC CLUSTERING

- Model provides full distributional description for each component
 - May be able to interpret differences in the distributions
- Soft clustering (compared to k-mean hard clustering)
 - Given the model, each point has a k-component vector of membership probabilities
- Key cost: assumption of parametric model

MIXTURE MODELS

- Knowledge representation?
 - Parametric model
 parameters = mixture coefficient and component parameters
- Score function?
 - Likelihood
- Search?
 - **Expectation maximization** iteratively find parameters that maximize likelihood and predicts cluster memberships
- Optimal? Exhaustive?

CLUSTERING: EVALUATION 16

DESCRIPTIVE MODELING: EVALUATION

CLUSTER VALIDITY

- For prediction tasks there are a variety of external evaluation metrics
 - Accuracy, precision, recall, area under ROC, etc.
- For cluster analysis the external evaluation should evaluate the "goodness" of the resulting clusters
- Why do we want external validation?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - ▶ To compare two sets of clusters

RANDOM DATA: CLUSTERING STILL RETURNS RESULTS

EVALUATION APPROACHES

- Determine the clustering tendency of the data
- Evaluate the quality of clustering results
 - Evaluate the clusters using known class labels
 - Evaluate how well the clusters "fit" the data
 - Determine which of two different clustering results is better
 - Determine the "correct" number of clusters

CLUSTERING TENDENCY

- Evaluate whether a dataset has clusters before clustering
- Most common approach (for low-dimensional Euclidean data)
 - Use a statistical test for spatial randomness
 - ▶ Hopkins statistic: sample *p* points from dataset, generate *p* random points in same space

$$H = \frac{\sum_{i=1}^{p} u_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$
 u_i : distance from random point to NN in data w_i : distance from sample point to NN in data

HOPKINS STATISTIC

$$H = \frac{\sum_{i=1}^{p} u_i}{\sum_{i=1}^{p} u_i + \sum_{i=1}^{p} w_i}$$

 u_i : distance from random point to NN in data

 w_i : distance from sample point to NN in data

H close to 1, clustered!

H close to 0.5, random data!

TYPES OF CLUSTERING EVALUATION MEASURES

Supervised

Measures the extent to which clusters match external class label values

Unsupervised

Measures goodness of fit without class labels

SUPERVISED: EVALUATING CLUSTER QUALITY WITH LABELS

- If you have class labels why cluster?
 - Usually labels come from small hand-labeled dataset for evaluation
 - But have remaining large dataset to cluster automatically
 - May want to assess how close clusterings correspond to classes but still allow for more variation in the clusters

24

CLASSIFICATION-ORIENTED

- **Purity**: a measure of the degree to which a cluster/group (G_i) contains objects of one particular class (C_i)
 - A cluster Gi will be labeled as the majority class among all objects in Gi

$$purity(C, G) = \frac{1}{N} \sum_{i=1}^{K} max_{j} | x \in G_{i}, x \in C_{j} |$$

$$\text{cluster 1} \qquad \text{cluster 2} \qquad \text{cluster 3}$$

High purity is easy to achieve when the number of clusters is large

CLASSIFICATION-ORIENTED

- Entropy: the degree to which each cluster (G) consists of objects of a single class (C)
 - For each cluster G_i compute the probability of class j (within the cluster)

$$entropy(C,G) = \sum_{i=1}^{K} -\sum_{j=1}^{C} p_{ij}log(p_{ij})$$

How does score for this clustering change?

CLASSIFICATION-ORIENTED

Normalized mutual information gain:

Measures the amount of information by which our knowledge about the classes (C) increases when the clusters (G) are identified

$$NMI(C,G) = \frac{I(C,G)}{H(C) + H(G)}$$

$$= \frac{\sum_{c} \sum_{g} p(c,g) \log \frac{p(c,g)}{p(c)p(g)}}{-\sum_{c} p(c) \log p(c) - \sum_{g} p(g) \log p(g)}$$

- NMI score is between 0 (min) and 1 (max).
- Denominator (normalization) adjusts for problem that entropy tends to increase with the number of clusters