Secondo Test di Calcolo Numerico - A.A. 2000/2001 15 Gennaio 2001

Si consideri il seguente problema di Cauchy del secondo ordine:

$$\begin{cases} \phi''(t) + \mu \phi'(t) + \omega^2 \phi(t) = E\pi \cos(120\pi t) & t > 0 \\ \phi(0) = 1 & \phi'(0) = 0 \end{cases}$$
 (1)

essendo μ , ω^2 , E costanti non negative assegnate.

Tale sistema descrive il moto di un punto sottoposto ad una forza elastica, ad una forza resistente di tipo viscoso, e ad una forza impressa sul sistema di tipo cosinusoidale.

Si consideri il metodo implementato nella function lawson.m, un metodo di tipo Runge-Kutta esplicito a 6 stadi, la cui regione di assoluta stabilità è rappresentata nella figura sottostante.

Punto 1.

Si prendano $\mu=0, \ \omega^2=4$ e E=0 in (1), ovvero si supponga che la forza viscosa e la forza impressa siano nulle. Sapendo che la soluzione analitica di (1) è $\phi(t)=\cos(2t)$, determinare sperimentalmente l'ordine di convergenza del metodo di Lawson.

Giustificare il comportamento "anomalo" dell'errore per h < 0.005.

Punto 2.

Sempre per $\mu=0,\,\omega^2=4$ e E=0, determinare sperimentalmente limitazioni su h affinchè il metodo di Lawson sia assolutamente stabile. Lavorare con $0< t \le 100.$

Punto 3.

Si consideri ora $\mu=101$, $\omega^2=100$, E=0, ovvero si abbiano una forza viscosa ed una forza elastica. Fornire limitazioni su h affinché si abbia un errore sulla soluzione esatta in t=5 pari a 10^{-5} , sapendo che la soluzione analitica è $\phi(t)=C_1e^{-t}+C_2e^{-100t}$, con $C_1=100/99$ e $C_2=-1/99$. Commentare i risultati ottenuti e descrivere la natura del problema.