In the Name of GOD

Guidance and Navigation I: Inertial Sensors

Hadi Nobahari Sharif University of Technology Department of Aerospace Engineering

Fundamental principles of gyroscopes

Gyroscopic inertia: a gyroscopic element tends to maintain the direction of spin axis with respect to the inertial frame

June 3, 2023

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors

Fundamental principles of gyroscopes

Angular momentum

$$H = I\omega_{\rm s}$$

the angular momentum is chosen to be very high

Drift: any undesired deviation of the spin axis

Angular momentum can be increased using a large rotor

=>

Drift ↓

 \odot

Startup time ↑

S

Bandwidth ↓

June 3, 2023

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors

Fundamental principles of gyroscopes

2

- Precession: If the disc is acted upon by a couple, that is, a torque being about the axis tt', the spin axis of the disc will be forced to turn about the axis pp'.
- Law of Gyroscope

$$T = \omega \times H$$

June 3, 2023

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors

Errors of a gyroscopic

- Fixed bias (°/h): the sensor output which is present even in the absence of an applied input rotation
- Acceleration/g-dependent bias (°/h/g): Biases which are proportional to the magnitude of the applied acceleration (as a result of mass unbalance in the rotor suspension)
- g²-dependent bias (°/h/g²): Biases which are proportional to the product of acceleration along orthogonal pairs of axes
- Scale-factor errors (ppm): Errors in the ratio relating the change in the output signal to a change in the input rate which is to be measured and compensated.
- Cross-coupling errors (ppm): sensitivity to turn rates about other axes (due to non-orthogonality of the sensor axes)

June 3, 2023

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors

13

Rate Table

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors

14

Tilt and Index Table

 Accelerations less than g can be exerted to the accelerometer using a tilt table

June 3, 2023 © Hadi Nobahari, Guidance and Navigation; Inertial Sensors 15

Centrifuge Turn Table

16

- A centrifuge turn table is used to calibrate an accelerometer.
- The accelerometer is installed in a given distance from the axis of rotation.
- a=rω²
- The output is measured in different turn rates and ...

June 3, 2023

© Hadi Nobahari, Guidance and Navigation: Inertial Sensors