1 网络整体框架

• Swin Transformer使用了类似卷积神经网络中的层次化构建方法(Hierarchical feature maps),比如特征图尺寸中有对图像下采样4倍的,8倍的以及16倍的,这样的backbone有助于在此基础上构建目标检测,实例分割等任务。而在之前的Vision Transformer中是一开始就直接下采样16倍【可以理解划分成16*16的Patch】,后面的特征图也是维持这个下采样率不变。

W-MSA (Windows Multi-Head Self-Attention)

在下图的4倍下采样和8倍下采样中,将特征划分成了多个不相交的区域(Window),并且Multi-Head Attention只在每个窗口(Window)内进行。而vit直接对整个(Global)特征图进行Multi-Head Self-Attention,这样可以减少计算量,特别是浅层特征图很大的时候【即输入图片很大时】。但是【note:图]这么做虽然减少了计算量但是也隔绝了不同窗口之间的信息传递,所以后文又提出了Shifted Windows MultiHead Self-Attention(SW-MSA)的概念,通过此方法让信息在相邻的窗口中进行传递】。

• 首先将图片输入到Patch Partition模块中进行分块,即4*4相邻的像素为一个Patch,然后在channel方向展平。假设输入的是RGB三通道图片,那么每个Patch就有4*4=16个像素,然后每个像素有R、G、B三个值所以展平后是16×3=48,所以经过Patch Partition后图像shape由 [H,W,3]变成了 [H/4,H/4,48]。然后再通过Linear Embedding层对每个像素的channel数据做线性变换,由48变成C,即图像的shape再由 [H/4,H/4,48]变成了 [H/4,H/4,C]。跟Vision Transformer类似,源码中Patch Partition和Linear Embedding就是直接通过一个卷积层实现的。

- 然后就是通过四个Stage构建不同大小的特征图,除了Stage1中先通过一个Linear Embeding层外,剩下三个stage都是先通过一个Patch Merging层进行下采样。然后都是重复堆叠Swin Transformer Block注意这里的Block其实有两种结构,如图(b)中所示,这两种结构的不同之处仅在于一个使用了W-MSA结构,一个使用了SW-MSA结构。而且这两个结构是成对使用的,先使用一个W-MSA结构再使用一个SW-MSA结构。所以你会发现堆叠Swin Transformer Block的次数都是偶数(因为成对使用)。
- 最后对于分类网络,后面还会接上一个Layer Norm层、全局池化层以及全连接层得到最终输出。图中没有画,但源码中是这样做的。

Swin Transformer Block中的 MLP 结构和Vision Transformer中的结构是一样的

2 Patch Merging详解

根据上文,在每个Stage中首先要通过一个Patch Merging层进行下采样(Stage1除外)。如下图所示,假设输入Patch Merging的是一个4×4的单通道特征图(feature map),Patch Merging会将每个2×2的相邻像素划分为一个Patch,然后将每个Patch中相同位置(同一颜色)像素给拼在一起就得到了4个feature map。接着将这四个feature map在深度方向【channel那个维度】进行concat拼接,然后通过一个Layernorm层。最后通过一个全连接层在feature map的深度方向做线性变化,将feature map的深度由C变成C/2。

通过Patch Merging层后, feature map的高和宽会减半,深度会翻倍。

3 W-MSA详解

引入Windows Multi-head Self-Attention(W-MSA)模块是为了减少计算量。如下图所示,左侧使用的是普通MSA模块,对于feature map中的每个像素(或称作token,patch)在Self-Attention计算过程中需要和所有的像素去计算。但在图右侧,在使用W-MSA模块时,首先将feature map按照M×M(本例中M=2)大小划分为一个个Windows,然后单独对每个Windows内部进行Self-Attention。

Multi-head Self-Attention

Windows Multi-head Self-Attention

$$\Omega({
m MSA}) = 4 {
m hwC}^2 + 2 ({
m hw})^2 {
m C} \quad (1)$$

$$\Omega({
m W-MSA}) = 4 {
m hwC}^2 + 2 {
m M}^2 {
m hwC} \quad (2)$$

- h代表feature map的高度
- w代表feature map的宽度
- C代表feature map的深度
- M代表每个窗口 (Windows) 的大小

MSA模块计算量

对于每个feature map中的每个像素(或称作token,patch),都要通过 w_q,W_k,W_v 生成对应的 query,key以及value。这里假设q,k,v的向量长度与feature map的深度C保持一致。那么对应所有像素 生成Q的过程如下式:

$$A^{hw \times C} \cdot W_q^{C \times C} = Q^{hw \times C}$$

- $A^{\mathrm{hw} \times \mathrm{C}}$ 为将所有像素 (token)拼接在一起得到的矩阵 (一共有 hw 个像素,每个像素的深度为C)
- $W_q^{C imes C}$ 为生成query的变换矩阵
- $Q^{\mathrm{hw} imes \mathrm{C}}$ 为所有像素通过 $\mathrm{W}^{\mathrm{C} imes \mathrm{C}}_{\mathrm{q}}$ 得到的query拼接后的矩阵

根据矩阵运算的计算量公式可以得到生成Q的计算量为hw×C×C,生成K和V同理都是 hwC^2 ,那么总共是 $3hwC^2$ 。接下来Q和 K^T 相乘,对应计算量为 $(hw)^2C$:

$$Q^{hw \times C} \cdot K^{T(C \times hw)} = X^{hw \times hw}$$

接下来忽略除以 $\sqrt{\mathrm{d}}$ 以及softmax的计算量,假设得到 $\Lambda^{\mathrm{hw} \times \mathrm{hw}}$,最后还要乘以V,对应的计算量为(hw) 2C :

$$\Lambda^{\mathrm{hw} imes \mathrm{hw}} \cdot \mathrm{V}^{\mathrm{hw} imes \mathrm{C}} = \mathrm{B}^{\mathrm{hw} imes \mathrm{C}}$$

那么对应的单头Self-Attention模块,总共需要

 $3hwC^2+(hw)^2C+(hw)^2C=3hwC^2+2(hw)^2C$ 。而在实际使用过程中,使用的是多头的 Mutli-head Self-Attention模块,多头注意力机制能够并行计算,所以多头注意力模块比单头注意力模块 的计算量仅多了最后一个融合矩阵 W_o 的计算量 hwC^2 。

$$B^{hw \times C}$$
. $W_o^{C \times C} = O^{hw \times C}$

所以总共加起来是: $4hwC^2 + 2(hw)^2C$

W-MSA模块计算量

对于W-MSA模块首先要将feature map划分到一个个窗口(Windows)中,假设每个窗口的宽高都是M,那么总共是得到 $\frac{h}{M} imes \frac{w}{M}$ 个窗口,然后对每个窗口内使用多头注意力机制。刚刚计算高为h,宽为w,深度为C的feature map的计算量为 $4hwC^2+2(hw)^2C$,这里每个窗口的高为M宽为M,带入公式可得:

$$4(MC)^2 + 2(M)^4C$$

又因为有 $\frac{h}{M} \times \frac{w}{M}$ 个窗口,则:

$$rac{h}{M} imesrac{w}{M} imes(4(MC)^2+2(M)^4C)=4hwC^2+2M^2hwC$$

故使用W-MSA模块的计算量为: $4hwC^2 + 2M^2hwC$

4 SW-MSA详解

上文写道,采用W-MSA模块时,只会在每个窗口内进行自注意力计算,所以窗口与窗口之间是无法进行信息传递的。因此,作者提出了Shifted Windows Multi-Head Self-Attention(SW-MSA)模块,即进行偏移的W-MSA。如下图所示,左图使用的是W-MSA(假设是第I层),那么第I+1层使用的就是SW-MSA。对比两张图可知,窗口(Windows)发生了偏移【可以理解为窗口从左上角分别向右侧和下方各偏移了 $\left|\frac{M}{2}\right|$ 个像素,由左图可以知道这张图片被划分成4块,每块的大小是4*4,所以M是4】。

根据上图,可以发现通过将窗口进行偏移后,由原来的4个窗口变成9个窗口了。后面又要对每个窗口内部进行MSA,这样做无疑增大了计算量。为了解决这个这个麻烦,作者又提出了Efficient batch computation for shifted configuration

Figure 4. Illustration of an efficient batch computation approach for self-attention in shifted window partitioning.

用下面这个图更加清晰明了

这里计算Attention是在每一个4*4的窗口中进行计算的,4与5是不连续的,那么就不能做注意力计算

接着便是计算 QK^T ,在图中相同颜色区域的相互计算后会依旧保持颜色,而黄色和蓝色区域计算后会变成绿色,而绿色的部分便是无意义的相似度。这部分就是掩码,最后得到 0 和-100组成的二值矩阵。

5 Relative Position Bias详解

	ImageNet		COCO		ADE20k
	top-1	top-5	AP ^{box}	AP^{mask}	mIoU
w/o shifting	80.2	95.1	47.7	41.5	43.3
shifted windows	81.3	95.6	50.5	43.7	46.1
no pos.	80.1	94.9	49.2	42.6	43.8
abs. pos.	80.5	95.2	49.0	42.4	43.2
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1
rel. pos.	81.3	95.6	50.5	43.7	46.1 ISDN @太阳花的小绿豆

$$\operatorname{Attention}(Q, K, V) = \operatorname{SoftMax}(\frac{QK^T}{\sqrt{d}} + B)V$$

• 自注意力机制本身并不包含任何关于元素位置的信息。这意味着,如果没有位置编码,模型将无法 区分序列中不同位置的元素,即使它们在内容上是相同的。因此,位置编码的引入是为了弥补这一 缺陷,它通过向模型提供关于元素位置的信息,使得模型能够更好地理解和处理序列数据。

• 这里描述的一直是相对位置索引,并不是相对位置偏执参数,相对位置偏执参数是我们要求的B。但是上面的结果是二维的,而最终获取的**位置参数表对于每个Head**来说是**一维**的,故需要将上面的这个结果转换为一维的形式。由于索引值的范围为[-M+1,M-1],这里是[-1,1],原始的相对位置索引加上M-1,使得索引值大于等于0,变为[0,2M-2]。

对于每行,即不同像素间,希望得到的索引位置是不同的,但是如果直接横纵坐标相加的话,往往 会出现像素不同,索引相同的情况,如下所示:

所以最后将所有横坐标都乘上2M-1,最后再将横坐标和纵坐标求和,这样**每行不同像素间**得到的索引就具有独一性。

最后将行标和列标进行相加,得到独一的一维的索引,这样即保证了相对位置关系,而且不会出现上述0 +1 = 1 + 0 的问题了。

3, 1	3, 0	0, 1	0,0		4	3	1	0
3, 2	3, 1	0, 2	0, 1	横纵坐标相加	5	4	2	1
6, 1	6, 0	3, 1	3,0		7	6	4	3
6, 2	6, 1	3, 2	3, 1		8	7 知	乎 6 第	法小乔

至此就计算出了相对位置的索引,其并不是公式中的位置偏置参数。

真正使用到的可训练参数使保存在**相对位置偏置表 relative position bias table**中的,这个表的size为 9,因为上面矩阵中索引值为0到8 是9个数。

即 N = (2M-1)*(2M-1) = (4-1)*(4-1) = 9,其是可训练的,随着训练过程,其内部的数值是不断优化更新的。

6 模型详细配置参数

上图是原论文中给出的关于不同Swin Transformer的配置, T(Tiny), S(Small), B(Base), L(Large), 其中:

- win. sz. 7x7表示使用的窗口 (Windows) 的大小
- dim表示feature map的channel深度 (或者说token的向量长度)
- head表示多头注意力模块中head的个数

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L	
stage 1	4× (56×56)	concat 4×4 , 96-d, LN win. sz. 7×7 , dim 96, head 3 \times 2	concat 4×4 , 96-d, LN win. sz. 7×7 , dim 96, head 3 \times 2	concat 4×4, 128-d, LN win. sz. 7×7, dim 128, head 4 × 2	concat 4×4, 192-d, LN win. sz. 7×7, dim 192, head 6 × 2	
stage 2	8× (28×28)	concat 2×2, 192-d, LN $ \begin{bmatrix} win. sz. 7×7, \\ dim 192, head 6 \end{bmatrix} \times 2 $	concat 2×2, 192-d, LN $ \begin{bmatrix} win. sz. 7×7, \\ dim 192, head 6 \end{bmatrix} \times 2 $	concat 2×2 , 256-d, LN win. sz. 7×7 , dim 256, head 8 \times 2	concat 2×2, 384-d, LN win. sz. 7×7, dim 384, head 12 × 2	
stage 3	16× (14×14)	concat 2×2, 384-d, LN $ \begin{bmatrix} win. sz. 7×7, \\ dim 384, head 12 \end{bmatrix} × 6 $	concat 2×2, 384-d , LN win. sz. 7×7, dim 384, head 12 × 18	concat 2×2 , 512-d, LN win. sz. 7×7 , dim 512, head 16 \times 18	concat 2×2, 768-d, LN win. sz. 7×7, dim 768, head 24 × 18	
stage 4	32× (7×7)	concat 2×2 , $768-d$, LN win. sz. 7×7 , dim 768 , head 24 \times 2	concat 2×2 , $768-d$, LN win. sz. 7×7 , dim 768 , head 24 \times 2	concat 2×2 , 1024 -d , LN win. sz. 7×7 , dim 1024 , head 32 $\times 2$	concat 2×2, 1536-d, LN win. sz. 7×7, dim 1536, head 48 × 2	
Table 7. Detailed architecture specifications. CSDN @太阳花的小绿豆						