Phương pháp tính MAT1099

Nguyễn Việt Minh Nghĩa github.com/nvmnghia

07-09-2020

Chapter 1

Error analysis

Exercise 1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0,1].

${\bf Solution} \ {\bf 1}$

as hey

Chapter 2

Solution approximation

2.1 The Bisection Method

Exercise 1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution 1

f(0)=-1 and $f(1)\approx 0.459\,697\,694$ have the opposite signs, so there's a root in [0,1].

Table of iteration for $f(x) = \sqrt(x) - \cos x$ on [0, 1]:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.170475781
2	0.5	1	0.75	0.134336535
3	0.5	0.75	0.625	-0.020393704

So $p_3 = 0.625$.

Exercise 2

Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method to find p_3 in the following intervals:

- (a) [-2, 1.5]
- (b) [-1.5, 2.5]

6

Solution 2

(a) f(-2) = -22.5 and f(1.5) = 3.75 have the opposite signs, so there's a root in [-2, 1.5].

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-2	1.5	-0.25	2.109375
2	-2	-0.25	-1.125	-1.294921875
3	-1.125	-0.25	-0.6875	1.878662109

So $p_3 = -0.6875$.

(b) f(-1.25) = -2.953125 and f(2.5)) = 31.5 have the opposite signs, so there's a root in [-1.25, 2.5].

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0

The solution is found in the first iteration so p_3 doesn't exist.

Exercise 3

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 - 7x^2 + 14x - 6 = 0$ in the following intervals:

- (a) [0,1]
- (b) [1, 3.2]
- (c) [3.2, 4]

Solution 3

(a) f(0) = -6 and f(1) = 2 have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.625
2	0.5	1	0.75	0.984375
3	0.5	0.75	0.625	0.259766
4	0.5	0.625	0.5625	-0.161865
5	0.5625	0.625	0.59375	0.054047
6	0.5625	0.59375	0.578125	-0.052624
7	0.578125	0.59375	0.5859375	0.001031

So $p \approx 0.5859$.

(b) f(1) = 2 and f(3.2) = -0.112 have the opposite signs, so there's a root in [1, 3.2].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	3.2	2.1	1.791
2	2.1	3.2	2.65	0.552125
3	2.65	3.2	2.925	0.085828
4	2.925	3.2	3.0625	-0.054443
5	2.925	3.0625	2.99375	0.006328
6	2.99375	3.0625	3.028125	-0.026521
7	2.99375	3.02813	3.010938	-0.010697
8	2.99375	3.010938	3.002344	-0.002333

So $p \approx 3.0023$.

(c) f(3.2) = -0.112 and f(4) = 2 have the opposite signs, so there's a root in [3.2, 4].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

n	a_n	b_n	p_n	$f(p_n)$
1	3.2	4	3.6	0.336
2	3.2	3.6	3.4	-0.016
3	3.4	3.6	3.5	0.125
4	3.4	3.5	3.45	0.046125
5	3.4	3.45	3.425	0.013016
6	3.4	3.425	3.4125	-0.001998
7	3.4125	3.425	3.41875	0.005382

So $p \approx 3.4188$.

Exercise 4

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4-2x^3-4x^2+4x+4=0$ for the following intervals:

- (a) [-2, -1]
- (b) [0, 2]
- (c) [2,3]
- (d) [-1,0]

Solution 4

(a) f(-2) = 12 and f(-1) = -1 have the opposite signs, so there's a root in [-2, -1].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	-1	-1.5	0.8125
2	-1.5	-1	-1.25	-0.902344
3	-1.5	-1.25	-1.375	-0.288818
4	-1.5	-1.375	-1.4375	0.195328
5	-1.4375	-1.375	-1.40625	-0.062667
6	-1.4375	-1.40625	-1.421875	0.062263
7	-1.421875	-1.40625	-1.414063	-0.001208

So $p \approx -1.4141$.

(b) f(0) = 4 and f(2) = -4 have the opposite signs, so there's a root in [0, 2]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	2	1	3
2	1	2	1.5	-0.6875
3	1	1.5	1.25	1.285156
4	1.25	1.5	1.375	0.312744
5	1.375	1.5	1.4375	-0.186508
6	1.375	1.4375	1.40625	0.063676
7	1.40625	1.4375	1.421875	-0.061318
8	1.40625	1.421875	1.414063	0.001208

So $p \approx 1.4141$.

(c) f(2) = -4 and f(3) = 7 have the opposite signs, so there's a root in [2, 3]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-3.1875
2	2.5	3	2.75	0.347656
3	2.5	2.75	2.625	-1.757568
4	2.625	2.75	2.6875	-0.795639
5	2.6875	2.75	2.71875	-0.247466
6	2.71875	2.75	2.734375	0.044125
7	2.71875	2.734375	2.726563	-0.103151

So $p \approx 2.7266$.

(d) f(-1) = -1 and f(0) = 4 have the opposite signs, so there's a root in [-1,0].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1	0	-0.5	1.3125
2	-1	-0.5	-0.75	-0.089844
3	-0.75	-0.5	-0.625	0.578369
4	-0.75	-0.625	-0.6875	0.232681
5	-0.75	-0.6875	-0.71875	0.068086
6	-0.75	-0.71875	-0.734375	-0.011768
7	-0.734375	-0.71875	-0.726563	0.027943

So $p \approx -0.7266$.

Exercise 5

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

- (a) $x 2^{-x} = 0, x \in [0, 1]$
- (b) $e^x x^2 + 3x 2 = 0, x \in [0, 1]$
- (c) $2x\cos 2x (x+1)^2 = 0, x \in [-3, -2]$
- (d) $x \cos x 2x^2 + 3x 1 = 0, x \in [0.2, 0.3]$

Solution 5

(a) f(0) = -1 and f(1) = 0.5 have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.207106781
2	0.5	1	0.75	0.155396442
3	0.5	0.75	0.625	-0.023419777
4	0.625	0.75	0.6875	0.066571094

5	0.625	0.6875	0.65625	0.021724521
6	0.625	0.65625	0.640625	-0.000810008
7	0.640625	0.65625	0.6484375	0.010466611
8	0.640625	0.6484375	0.64453125	0.004830646
9	0.640625	0.64453125	0.642578125	0.002010906
10	0.640625	0.642578125	0.641601562	0.000600596
11	0.640625	0.641601562	0.641113281	-0.000104669
12	0.641113281	0.641601562	0.641357422	0.000247972
13	0.641113281	0.641357422	0.641235352	0.000071654
14	0.641113281	0.641235352	0.641174316	-0.000016507
15	0.641174316	0.641235352	0.641204834	0.000027573
16	0.641174316	0.641204834	0.641189575	0.000005533
17	0.641174316	0.641189575	0.641181946	-0.000005487

So $p \approx -0.641 \, 182$.

(b) f(0) = -1 and f(1) = e have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	0.898721271
2	0	0.5	0.25	-0.028474583
3	0.25	0.5	0.375	0.439366415
4	0.25	0.375	0.3125	0.206681691
5	0.25	0.3125	0.28125	0.089433196
6	0.25	0.28125	0.265625	0.030564234
7	0.25	0.265625	0.2578125	0.001066368
8	0.25	0.2578125	0.25390625	-0.013698684
9	0.25390625	0.2578125	0.255859375	-0.006314807
10	0.255859375	0.2578125	0.256835938	-0.002623882
11	0.256835938	0.2578125	0.257324219	-0.000778673
12	0.257324219	0.2578125	0.257568359	0.000143868
13	0.257324219	0.257568359	0.257446289	-0.000317397
14	0.257446289	0.257568359	0.257507324	-0.000086763
15	0.257507324	0.257568359	0.257537842	0.000028553
16	0.257507324	0.257537842	0.257522583	-0.000029105
17	0.257522583	0.257537842	0.257530212	-0.000000276

So $p \approx 0.25753$.

(c) $f(-3) \approx -9.761\,021\,72$ and $f(-2) = 1.614\,574\,483$ have the opposite signs, so there's a root in [-3,-2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-2	-2.5	-3.66831093
2	-2.5	-2	-2.25	-0.613918903
3	-2.25	-2	-2.125	0.630246832
4	-2.25	-2.125	-2.1875	0.038075532
5	-2.25	-2.1875	-2.21875	-0.280836176
6	-2.21875	-2.1875	-2.203125	-0.119556815
7	-2.203125	-2.1875	-2.1953125	-0.040278514
8	-2.1953125	-2.1875	-2.19140625	-0.000985195
9	-2.19140625	-2.1875	-2.18945312	0.018574337
10	-2.19140625	-2.18945312	-2.19042969	0.008801851
11	-2.19140625	-2.19042969	-2.19091797	0.003910147
12	-2.19140625	-2.19091797	-2.19116211	0.00146293
13	-2.19140625	-2.19116211	-2.19128418	0.000238981
14	-2.19140625	-2.19128418	-2.19134521	-0.000373078
15	-2.19134521	-2.19128418	-2.1913147	-0.000067041
16	-2.1913147	-2.19128418	-2.19129944	0.000085972

So $p \approx -2.191299$.

(d) $f(0.2) \approx -0.283\,986\,684$ and $f(0.3) = 0.006\,600\,946$ have the opposite signs, so there's a root in [0.2,0.3].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

n	a_n	b_n	p_n	$f(p_n)$
1	0.2	0.3	0.25	-0.132771895
2	0.25	0.3	0.275	-0.061583071
3	0.275	0.3	0.2875	-0.027112719
4	0.2875	0.3	0.29375	-0.010160959
5	0.29375	0.3	0.296875	-0.001756232

6	0.296875	0.3	0.2984375	0.002428306
7	0.296875	0.2984375	0.29765625	0.000337524
8	0.296875	0.29765625	0.297265625	-0.000708983
9	0.297265625	0.29765625	0.297460938	-0.000185637
10	0.297460938	0.29765625	0.297558594	0.000075967
11	0.297460938	0.297558594	0.297509766	-0.000054829
12	0.297509766	0.297558594	0.29753418	0.00001057
13	0.297509766	0.29753418	0.297521973	-0.000022129
14	0.297521973	0.29753418	0.297528076	-0.000005779

So $p \approx 0.297528$.

Exercise 6

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$3x - e^x = 0, x \in [1, 2]$$

(b)
$$2x + 3\cos x - e^x = 0, x \in [0, 1]$$

(c)
$$x^2 - 4x + 4 - \ln x = 0, x \in [1, 2]$$

(d)
$$x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$$

Solution 6

1. $f(1) \approx 0.281718172$ and f(2) = -1.389056099 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

n	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.01831093
2	1.5	2	1.75	-0.504602676
3	1.5	1.75	1.625	-0.203419037
4	1.5	1.625	1.5625	-0.083233182
5	1.5	1.5625	1.53125	-0.030203153
6	1.5	1.53125	1.515625	-0.005390404
7	1.5	1.515625	1.5078125	0.006598107
8	1.5078125	1.515625	1.51171875	0.000638447
9	1.51171875	1.515625	1.51367188	-0.002367313

10	1.51171875	1.51367188	1.51269531	-0.000862268
11	1.51171875	1.51269531	1.51220703	-0.00011137
12	1.51171875	1.51220703	1.51196289	0.000263674
13	1.51196289	1.51220703	1.51208496	0.000076186
14	1.51208496	1.51220703	1.512146	-0.000017584
15	1.51208496	1.512146	1.51211548	0.000029303
16	1.51211548	1.512146	1.51213074	0.00000586
17	1.51213074	1.512146	1.51213837	-0.000005861

So $p \approx 1.512138$.

- 2. f(0)=2 and $f(1)\approx 0.902\,625\,089$ have the same sign, so there's no root in [0,1].
- 3. f(1) = 1 and f(2) = -0.693147181 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.155465108
2	1	1.5	1.25	0.339356449
3	1.25	1.5	1.375	0.072171269
4	1.375	1.5	1.4375	-0.046499244
5	1.375	1.4375	1.40625	0.011612476
6	1.40625	1.4375	1.421875	-0.017747908
7	1.40625	1.421875	1.4140625	-0.003144013
8	1.40625	1.4140625	1.41015625	0.004215136
9	1.41015625	1.4140625	1.41210938	0.00053079
10	1.41210938	1.4140625	1.41308594	-0.001307804
11	1.41210938	1.41308594	1.41259766	-0.000388805
12	1.41210938	1.41259766	1.41235352	0.000070918
13	1.41235352	1.41259766	1.41247559	-0.000158962
14	1.41235352	1.41247559	1.41241455	-0.000044027
15	1.41235352	1.41241455	1.41238403	0.000013444
16	1.41238403	1.41241455	1.41239929	-0.000015292
17	1.41238403	1.41239929	1.41239166	-0.000000924

So $p \approx 1.412392$.

4. f(0) = 1 and f(1) = -0.5 have the opposite signs, so there's a root in

[0, 0.5].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.5 - 0}{2^n} < 10^{-5} \iff n \ge 16$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	0.5	0.25	-0.164213562
2	0	0.25	0.125	0.359633135
3	0.125	0.25	0.1875	0.076359534
4	0.1875	0.25	0.21875	-0.050036568
5	0.1875	0.21875	0.203125	0.011726391
6	0.203125	0.21875	0.2109375	-0.019525681
7	0.203125	0.2109375	0.20703125	-0.003990833
8	0.203125	0.20703125	0.205078125	0.003845166
9	0.205078125	0.20703125	0.206054688	-0.00007851
10	0.205078125	0.206054688	0.205566406	0.001881912
11	0.205566406	0.206054688	0.205810547	0.000901347
12	0.205810547	0.206054688	0.205932617	0.00041133
13	0.205932617	0.206054688	0.205993652	0.000166388
14	0.205993652	0.206054688	0.20602417	0.000043934
15	0.20602417	0.206054688	0.206039429	-0.000017289
16	0.206 024 17	0.206039429	0.206 031 799	0.000013322

So $p \approx 0.206\,032$.

Exercise 7

- (a) Sketch the graphs of y = x and $y = 2 \sin x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x = 2 \sin x$.

Solution 7

(a) Graph of y = x and $y = 2 \sin x$ is as follow:

(b) According to the graph, the first positive root p of $f = x - 2\sin x$ is in $[\frac{\pi}{2}, \pi]$.

The number of iteration n needed to approximate p to within 10^{-5} in that range is:

$$|p_n - p| \le \frac{\pi - \frac{\pi}{2}}{2^n} < 10^{-5} \iff n \ge 18$$

We have the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1.57079633	3.14159265	2.35619449	0.941980928
2	1.57079633	2.35619449	1.96349541	0.115736343
3	1.57079633	1.96349541	1.76714587	-0.194424693
4	1.76714587	1.96349541	1.86532064	-0.048560033
5	1.86532064	1.96349541	1.91440802	0.031319893
6	1.86532064	1.91440802	1.88986433	-0.009192031
7	1.88986433	1.91440802	1.90213618	0.010921526
8	1.88986433	1.90213618	1.89600025	0.000829072
9	1.88986433	1.89600025	1.89293229	-0.004190408
10	1.89293229	1.89600025	1.89446627	-0.001682899
11	1.89446627	1.89600025	1.89523326	-0.000427471
12	1.89523326	1.89600025	1.89561676	0.000200661
13	1.89523326	1.89561676	1.89542501	-0.00011344
14	1.89542501	1.89561676	1.89552088	0.000043602
15	1.89542501	1.89552088	1.89547295	-0.000034921
16	1.89547295	1.89552088	1.89549692	0.00000434
17	1.89547295	1.89549692	1.89548493	-0.000015291
18	1.89548493	1.89549692	1.89549092	-0.000005476

So $p \approx 1.895491$.