Mr: HAMANI Ahmed

EXERCICE

1ère Partie Réduction d'une matrice

1.1. •
$$A - \beta I_n = \begin{pmatrix} b & b & \dots & b \\ b & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & b \end{pmatrix}$$
, b étant non nul, donc $rang(A - \beta I_n) = 1$.

- **1.2.** Par le théorème du rang $dimKer(A \beta I_n) = n 1 \ge 1$, donc $\beta \in Sp(A)$ et $dim(E_{\beta}(A)) = n 1$.
- 1.3. A étant symétrique réelle, donc d'après le théorème spectral, A est orthogonalement diagonalisable.
 - Soit λ l'autre valeur propre de A, alors $\lambda = Tr(A) (n-1)\beta = na (n-1)(a-b) = a + (n-1)b = \gamma$, donc $\exists P \in O_n(\mathbb{R})$ tel que $A = {}^tPDP$ où $D = diag(\beta,...,\beta,\gamma)$.
- **1.4.** $det(A) = det(D) = \beta^{n-1}\gamma$.
 - A est inversible si et seulement si, $\beta \gamma \neq 0$ si et seulement si, $(b-a)(a+(n-1)b) \neq 0$.
- **1.5.** A étant diagonalisable, donc le polynôme minimal de A est scindé à racines simples, c'est à dire $\Pi_A = (X \beta)(X \gamma)$.
 - Π_A est annulateur de A, donc $\Pi_A(A) = A^2 (\beta + \gamma)A + \beta\gamma I_n = A(A (\beta + \gamma)I_n) + \beta\gamma I_n = 0$, ce qui entraine que A est inversible et que $A^{-1} = -\frac{1}{\beta\gamma}(A (\beta + \gamma)I_n)$.
- **1.6.** En posant $\Delta = diag(\sqrt{\beta},...,\sqrt{\beta},\sqrt{\gamma})$ et $S = {}^tP\Delta P$, on aura $S^2 = A$ et $S \in S_n(\mathbb{R})$.

2 ème Partie

Application à l'étude d'une famille de vecteurs d'un espace euclidien

- **2.1. 2.1.1.** L'inégalité de Cauchy-Schwarz donne $|\alpha| \le ||u_i|| \cdot ||u_i|| = 1$, or $\alpha \notin \{0, 1\}$, donc $\alpha \in [0, 1] \setminus \{0\}$.
 - (u_i, u_i) liée si et seulement si, $|\alpha| = 1$ si et seulement si, $\alpha = -1$.

Donc si (u_i, u_j) est liée, on doit avoir $u_j = -u_i$, mais si $k \notin \{i, j\}$, $(u_i|u_k) = (u_j|u_k) = -1$, donc $u_k = -u_i = -u_j$, ce qui aboutit à la contradiction $u_i = u_j$. On conclut que si $i \neq j$ (u_i, u_j) ne peut être liée

- **2.1.2.** La famille $(u_1,...,u_{n+1})$ est de cardinal > n = dim(E), donc elle est liée.
- **2.1.3.** La liaison de la famille $(u_1,...,u_{n+1})$ entraine l'existence de $\alpha_1,...,\alpha_{n+1}$ non tous nuls tels que $\sum_{k=1}^{n+1}\alpha_ku_k=0\text{, donc }\forall i\in[[1,n+1]]\ 0=(u_i|\sum_{k=1}^{n+1}\alpha_ku_k)=\sum_{k=1}^{n+1}\alpha_k(u_i|u_k).$

Si on note C_k la k ème colonne de G, alors $\forall i \in [[1,n]], \ (\sum_{k=1}^{n+1} \alpha_k C_k)_i = \sum_{k=1}^{n+1} \alpha_k (u_i|u_k) = 0$, donc n+1

$$\sum_{k=1}^{n+1} \alpha_k C_k = 0$$
 c'est à dire $(C_1,...,C_{n+1})$ est liée.

• Si on pose $U={}^t(\alpha_1,...,\alpha_{n+1})$, alors $U\neq 0$ et l'égalité précédente s'écrit GU=0, donc $Ker(G)\neq \{0\}$ et par suite G n'est pas inversible.

$$\mathbf{2.1.4.} \bullet G = \begin{pmatrix} 1 & \alpha & \dots & \alpha \\ \alpha & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha \\ \alpha & \dots & \alpha & 1 \end{pmatrix}$$

G n'est pas inversible, donc d'après la question 1.4 de la partie précédente $\alpha=1$ ou $1+n\alpha=0$, la première condition étant exclue, ce qui donne $\alpha=-\frac{1}{n}$.

2.2. Étude de la réciproque

2.2.1. • On ait dans les conditions de la partie 1, avec a=1 et $b=-\frac{1}{n}$, donc $\beta=a-b=1+\frac{1}{n}$ et $\gamma=a+nb=1-1=0$ sont positifs, ce qui permet d'appliquer la question 1.6 de la partie 1 qui assure l'existence de $B\in S_{n+1}(\mathbb{R})$ vérifiant $B^2=M$.

- **2.2.2.** L'égalité $M=B^2$ est équivalente à $\forall i,j\in\{1,...,n+1\},$ $m_{i,j}=\sum_{k=1}^{n+1}b_{i,k}b_{k,j}.$
- **2.2.3.** B est symétrique, donc $m_{i,j} = \sum_{k=1}^{n+1} b_{i,k} b_{j,k} = < w_i | w_j > \text{avec } w_i = {}^t(b_{i,1},...,b_{i,n+1}),$ en particulier $1 = m_{i,i} = \|w_i\|^2$, donc w_i est unitaire.
- **2.2.4.** $\gamma = 0$ est une valeur propre de M, donc M n'est pas inversible.
 - Si on pose A la matrice de $M_{n+1}(\mathbb{R})$ de colonnes $w_1,...,w_{n+1}$, alors $M={}^tAA$, donc $0=det(M)=det^2(A)$, donc A n'est pas inversible et par suite la famille $(w_1,...,w_{n+1})$ est liée, ce qui entraine que $dimVect(w_1,...,w_{n+1}) \leq n$ d'où l'existence d'un sous-espace F de dimension n contenant ces vecteurs.

On peut même remarquer, puisque la somme des colonnes de M est nulle, que

$$\|\sum_{i=1}^{n+1} w_i\|^2 = \sum_{1 \le i, j \le n+1} \langle w_i | w_j \rangle = \sum_{1 \le i, j \le n+1} m_{i,j} = \sum_{i=1}^{n+1} (\sum_{j=1}^{n+1} m_{i,j}) = \sum_{i=1}^{n+1} 0 = 0, \text{ donc } \sum_{i=1}^{n+1} w_i = 0 \text{ et vu}$$
 que le rang de B est gale à n on aura (w_i, w_j) base de B

2.2.5. • Considérons f une isométrie de $F = Vect(w_1, ..., w_n)$ vers E donc f conserve le produit scalaire.(Une telle isométrie existe, il suffit de choisir une base orthonormée de E pour le produit scalaire (.|.) et une base orthonormée de F pour le produit scalaire (.|.) et considérer l'application linéaire qui transforme la base de F en la base de E).

Alors si on pose $v_i = f(w_i)$ pour tous $i \in \{1, ..., n+1\}$, alors $\forall i \neq j \in \{1, ..., n\}$, $(v_i|v_j) = < w_i|w_j> = -\frac{1}{n}$ et $(v_i|v_i) = < w_i|w_i> = 1$, de plus $\forall i \in \{1, ..., n\}$,

$$\bullet (v_{n+1}|v_i) = (f(w_{n+1})|f(w_i)) = (f(-\sum_{j=1}^n w_j)|f(w_i)) = -\sum_{j=1}^n \langle w_j|w_i \rangle = -1 + \frac{n-1}{n} = -\frac{1}{n}$$

•
$$(v_{n+1}|v_{n+1}) = (f(w_{n+1})|f(w_{n+1})) = (-\sum_{i=1}^{n} f(w_i)| - \sum_{j=1}^{n} f(w_j)) = \sum_{1 \le i,j \le n} \langle w_i|w_j \rangle = (-\sum_{j=1}^{n} f(w_j)|v_j| + \sum_{j=1}^{n} f(w_j)|v$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \langle w_i | w_j \rangle \right) = \sum_{i=1}^{n} \frac{1}{n} = 1.$$

La famille $(v_1, ..., v_{n+1})$ répond à la question.

PROBLÈME

1 ère Partie Un résultat utile sur les fractions rationnelles

- **3.1.** L'inégalité est évidement vérifiée sur $\mathbb{C} \setminus D$.
 - Soit $a \in D$ qui est fini, donc z_0 est isolé, et par suite $\exists r > 0$ tel que B(a,r) ne rencontre D qu'au point a et soit une suite $(z_n)_n$ de $B(a,r) \setminus \{z_0\}$ qui converge vers a, alors la passage à la limite dans l'inégalité $|R(z_n)| \leq M|Q(z_n)|$ et grâce à la continuité des applications $z \longmapsto |R(z)|$ et $z \longmapsto M|Q(z)|$, entraine que $|R(a)| \leq M|Q(a)|$.

En définitive, l'inégalité est vérifiée pour tout $z \in \mathbb{C}$.

- **3.2.** Si $Q(z_0) = 0$, alors l'inégalité précédente, entraine que $R(z_0) = 0$, ce qui contredit que $R \wedge Q = 1$.
 - ullet Q est sans pôles dans $\mathbb C$, donc Q est constant, et par suite la fraction $\frac{R}{Q}$ devient un polynôme P de $\mathbb C[X]$.
- **3.3. 3.3.1.** $\bullet \int_0^{2\pi} e^{i(k-q)t} dt = 2\pi \delta_{k,q}$ où $\delta_{k,q}$ désigne le symbôle de Kroneker.

$$\textbf{3.3.2.} \bullet P = \sum_{k=1}^d a_k X^k, \, \text{donc} \, \int_0^{2\pi} P(re^{it}) e^{-iqt} dt = \sum_{k=1}^d a_k r^k \int_0^{2\pi} e^{i(k-q)t} dt = \sum_{k=1}^d a_k r^k \delta_{k,q} = 2\pi a_q r^q.$$

3.3.3. • Soit $r>0,\ q\in\{1,...,d\}$, alors $2\pi|a_q|r^q=|\int_0^{2\pi}P(re^{it}e^{-iqt}dt|\leq 2\pi M,\ \mathrm{donc}\ |a_q|\leq \frac{M}{r^q},\ \mathrm{ce}\ \mathrm{qui}$ entraine en tendant r vers $+\infty$ que $a_q=0$ pour tout $q\in\{1,...,d\}$ et par suite $P=a_0$.

2 ème Partie Étude du cas n=1 et applications

- 4.1. Étude du cas n=1
 - **4.1.1.** $x \neq 0$ et (x, f(x)) liée, donc $\exists \lambda_x \in \mathbb{C}$ tel que $f(x) = \lambda_x x$, c'est à dire λ_x valeur propre associée à x, d'où l'unicité.

- **4.1.2** x vecteur propre associé à λ_x et (x,y) liée, donc y est aussi vecteur propre associé à λ_x , d'où $f(y) = \lambda_x y = \lambda_y y$ et puisque $y \neq 0$, on obtient $\lambda_x = \lambda_y$.
- **4.1.3.** D'une part $f(x+y) = \lambda_{x+y}(x+y)$ et d'autre part $f(x+y) = f(x) + f(y) = \lambda_x x + \lambda_y y$ et par liberté de (x,y), on aura $\lambda_{x+y} = \lambda_x = \lambda_y$.
- **4.1.4.** On vient de montrer que $\forall x, y \in E \setminus \{0\}$, $\lambda_x = \lambda_y$, c'est à dire $\exists \lambda \in \mathbb{C}$ tel que $\forall x \in E \setminus \{0\}$, $f(x) = \lambda x$, donc $f = \lambda i d_E$.

4.2. Quelques applications

- **4.2.1.** f laisse stable les droites vectorielles, donc $\forall x \in E \setminus \{0\}$ $f(x) \in Vect(x)$, donc daprès 4.1 f est une homothétie
- **4.2.2.** Soit x, y, z trois vecteurs librent deux à deux de E, alors $Vect(x, y) \cap Vect(x, z) = Vect(x)$ est stable par f, donc f laisse stable toutes les droites vectorielles, et la question précédente entraine que f est une homothétie.
- **4.2.3.** (i) f n'est pas une homothétie, donc par contraposée de la question 4.1, $\exists x_0 \in E \setminus \{0\}$ tel que $(x_0, f(x_0))$ est libre.
 - (ii) Le théorème de la base incomplète assure l'existence des vecteurs $e_3,...,e_p$ tel que $(x_0,f(x_0),e_3,...,e_p)$ soit une base de E.
 - (iii) $h(f(x_0)) = -f(x_0)$ et $f(h(x_0)) = f(x_0)$, or $f(x_0) \neq 0$, donc $h(f(x_0)) \neq f(h(x_0))$ et par suite $fh \neq hf$.
- **4.2.4.** Si f n'est pas une homothétie, la conclusion de la question 4.2.3 conduit à l'existence de h symétrie vectorielle de E tel que $fh \neq hf$, donc par contraposée on obtient l'implication demandée.

4.2.5. Traduction matricielle

- \Longrightarrow Si $A = \lambda I_p$ est une matrice scalaire, alors elle commute avec toutes les matrices.
- ullet \Leftarrow Si A commute avec toutes les matrices, considérons f l'endomorphisme canoniquement associé à A.

Soit g un endomorphisme de \mathbb{R}^n de matrice M dans la base canonique de \mathbb{R}^n , alors AM=MA, donc fg=gf c'est à dire f commute avec tous les endomorphismes de \mathbb{R}^n , et par la question 4.2.4, f est une homothétie, donc A est une matrice scalaire.

3 ème Partie Étude du cas général

- **5.1. 5.1.1.** L'ensemble $L=\{q\in[[1,n]]\ /\ (x,f(x),...,f^q(x)) \text{ est liée}\}$ est un sous-ensemble de $\mathbb N$ qui contient n, donc admet un plus petit élément n_x .
 - $n_x \in L$ et $n_x 1 \notin L$, donc $(x, f(x), ..., f^{n_x}(x))$ est liée et $(x, f(x), ..., f^{n_x-1}(x))$ est libre.
 - **5.1.2.** $f(Vect(x, f(x), ..., f^{n_x-1})) \subset Vect(f(x), ..., f^{n_x}(x))$, or d'après la question précédente $f^{n_x}(x) \in Vect(x, f(x), ..., f^{n_x-1}(x))$, donc $Vect(x, f(x), ..., f^{n_x-1}(x))$ est stable par f.
- **5.2. 5.2.1.** La question précédente assure que l'ensemble $\{n_x \mid x \in E \setminus \{0\}\}$ est non vide inclu dans [[1,n]], donc p existe et $p \leq n$ et $p = n_{x_0}$ où $x_0 \in E \setminus \{0\}$, donc $(x_0,f(x_0),...,f^{p-1}(x_0))$ est libre et $(x_0,f(x_0),...,f^p(x_0))$ est liée.
 - **5.2.2.** Par définition de $p, f^p(x_0) \in Vect(x_0, f(x_0), ..., f^{p-1}(x_0)), donc \exists a_0, a_1, ..., a_{p-1} \text{ tel que}$

$$f^p(x) = \sum_{i=0}^{p-1} a_i f^i(x_0) = P(x_0) \text{ avec } P = \sum_{i=0}^{p-1} a_i X^i.$$

- L'unicité vient de la liberté de la famille $(x_0, f(x_0), ..., f^{p-1}(x_0))$.
- De plus s'il existe $Q \in \mathbb{C}_{p-1}[X]$ non nul tel que $Q(f)(x_0) = 0$, alors la famille $(x_0, f(x_0), ..., f^{p-1}(x_0))$ est liée, ce qui est absurde.
- **5.3. 5.3.1.** $f^p(x_0) \in Vect(x_0, f(x_0), ..., f^{p-1}(x_0))$ et $p \ge n_e$, donc $f^p(e) \in Vect(e, f(e), ..., f^{p-1}(e))$, ce qui assure la stabilité de F par f.
 - **5.3.2.** La famille $(x_0, f(x_0), ..., f^{p-1}(x_0))$ est libre de cardinal p, donc $dim(F) \ge p$.
 - $f^p(x_0) \in Vect(x_0, f(x_0), ..., f^{p-1}(x_0))$ et $f^p(e) \in Vect(e, f(e), ..., f^{p-1}(e))$, donc $F = Vect(x_0, f(x_0), ..., f^{p-1}(x_0), e, f(e), ..., f^{p-1}(e))$, et par suite $dim(F) \leq 2p$.
 - **5.3.3.** La famille $(x_0, f(x_0), ..., f^{p-1}(x_0))$ est libre dans F, on la complète en une base de F. Une forme linéaire sur F est totalement détérminée par ses images sur une base de F. On considère pour $j \in \{1, ..., p-1\}$ la forme linéaire φ_j sur F qui prend 1 sur $f^j(x_0)$ et nulle sur les autres vecteurs de la base, alors $(\varphi_0, ..., \varphi_{p-1})$ répond à la question.
- 5.4. \bullet Pour $i,j \in \{1,...,p-1\}$, $\varphi_j(f^i(v_\lambda)) = \delta_{i,j} + \lambda \varphi_j(f^i(e))$. Si on note $M(v_\lambda)$ la matrice $(\varphi_j(f^i(v_\lambda)))_{1 \leq i,j \leq p-1}$, alors $M(v_\lambda) = I_p + \lambda M(e)$,donc $\Delta(\lambda) = det(M_{v_\lambda})$
 - $\Delta(0) = det(I_p) = 1.$

est un polynôme en λ de degré $\leq p$.

- 5.5. Par définition de $p, p \geq n_{v_{\lambda}}$, donc $f^p(v_{\lambda}) \in Vect(v_{\lambda}, f(v_{\lambda}), ..., f^{p-1}(v_{\lambda}))$, ce qui assure l'existence de $\text{la famille }\alpha_0(\lambda),...,\alpha_{p-1}(\lambda) \text{ tel que } f^p(v_\lambda) = \sum^{p-1} \alpha_k(\lambda) f^k(v_\lambda).$
- **5.6. 5.6.1.** La linéarité de φ_i donne le système (2).

$$\textbf{5.6.2.} \bullet \textbf{Le système} \ (2) \ \textbf{s'écrit} \ M_{v_{\lambda}} \left(\begin{array}{c} \alpha_0(\lambda) \\ \vdots \\ \alpha_{p-1}(\lambda) \end{array} \right) = \left(\begin{array}{c} \varphi_0(f^p(v_{\lambda})) \\ \vdots \\ \varphi_{p-1}(f^p(v_{\lambda})) \end{array} \right)$$

 $\forall \lambda \in \mathbb{C} \setminus Z$, $\Delta(\lambda) = det(M(v_{\lambda})) \neq 0$, donc le système admet une solution unique, à savoir $\alpha_i(\lambda)=rac{1}{\Delta(\lambda)}det(A)$ où A est la matrice $M(v_\lambda)$ en remplaçant la ième colonne par le second membre du système (2). On a donc α_i est une fraction rationnelle en λ définie sur $\mathbb{C}\setminus Z$.

5.7. 5.7.1. • Soit
$$a_0, ..., a_{p-1} \in \mathbb{C}$$
 tel que $\sum_{i=0}^{p-1} a_i f^i(v_\lambda) = 0$, alors

$$\forall j \in \{0,...,p-1\}, \quad 0 = \varphi_j(\sum_{i=0}^{p-1} a_i f^i(v_\lambda)) = \sum_{i=0}^{p-1} a_i \varphi_j(f^i(v_\lambda)) = \sum_{i=0}^{p-1} a_i \delta_{i,j} = a_j,$$

donc la famille $(v_{\lambda}, f(v_{\lambda}), ..., f^{p-1}(v_{\lambda}))$ est libre.

5.7.2. • Soit pour
$$\lambda \in \mathbb{C} \setminus Z$$
 et $j \in \{0,...,p-1\}$, $Q_j = \prod_{\substack{k=i \ k \neq j}}^{p-1} (X - \beta_k(\lambda))$.

 Q_j est de degré p-1 et la famille $(v_\lambda, f(v_\lambda), ..., f^{p-1}(v_\lambda))$ est libre, donc $Q_j(f)(v_\lambda) \neq 0$.

- **5.7.3.** L'égalité (1) de la question 5.5, s'écrit $0 = P_{\lambda}(f)(v_{\lambda}) = (f \beta_{j}(\lambda)id_{E})(Q_{j}(f)(v_{\lambda})),$ donc $Q_j(f)(v_\lambda) \in Ker(f - \beta_j(\lambda)id_E)$ et $Q_j(f)(v_\lambda) \neq 0$, donc $\beta_j(\lambda) \in Sp(f)$.
- **5.8. 5.8.1.** Soit $g \in \mathcal{L}(E)$ tel que ||g|| = 0, alors g = 0 sur la sphère S(0,1), donc $\forall x \in F \setminus \{0\}$, $\frac{x}{||x||} \in S(0,1)$ S(0,1), et par suite $g(\frac{x}{\|x\|})=\frac{1}{\|x\|}g(x)=0$, donc g=0 sur $F\setminus\{0\}$ et g(0)=0, on conclut que g=0
 - $\forall \lambda \in \mathbb{C}$, $\|\lambda g\| = \sup_{\|x\|=1} \|\lambda g(x)\| = |\lambda| \|g\|$.
 - $\forall x \in S(0,1), \forall g, h \in \mathcal{L}(F) \ \|g(x) + h(x)\| \le \|g(x)\| + \|h(x)\| \le \|g\| + \|h\|$ et par passage au sup, on obtient $||g + h|| \le ||g|| + ||h||$.
 - **5.8.2.** Soit $x \in F \setminus \{0\}$, $\forall g \in \mathcal{L}(F) \ \|g(x)\| = \|g(\frac{x}{\|x\|})\|.\|x\| \le \|g\|.\|x\|$,

 $\mathsf{donc} \ \forall x \in F \setminus \{0\}, \ \|(gh)(x) = g(h(x))\| \leq \|g\|.\|h(x)\| \leq \|g\|.\|h\|.\|x\| \ \text{ et par suite } \|gh(\frac{x}{\|x\|})\| \leq \|g\|.\|h\|.\|x\|$ ||g||.||h|| et le passage au sup entraine que $||gh|| \le ||g||.||h||$.

- **5.8.3.** Soit x un vecteur propre unitaire de f_F associé à $\beta_j(\lambda)$, alors $\|\beta_j(\lambda)x\| = |\beta_j(\lambda)| = \|f_F(x)\| \le 1$

$$\begin{aligned} &\textbf{5.8.4.} \, \bullet \, \text{Les formules de Viète s'écrivent} \, \forall k \in \{1,...,p\}, \, \alpha_{p-k} = (-1)^{k-1} \sum_{0 \leq i_1 < ... < i_k \leq p-1} \beta_{i_1} ... \beta_{i_k}. \\ &\bullet \, |\alpha_{p-k}| \leq \sum_{0 \leq i_1 < ... < i_k \leq p-1} |\beta_{i_1}| ... |\beta_{i_k}| \leq \sum_{0 \leq i_1 < ... < i_k \leq p-1} \|f_F\|^k = C_p^k \|f_F\|^k \leq M = \max_{1 \leq k \leq p} (C_p^k \|f_F\|^k). \end{aligned}$$

5.9. • Les α_i sont des fractions rationnelles bornées sur $\mathbb{C}\setminus Z$ où Z est fini, donc d'après la première partie, ces fractions sont constantes, donc $\forall \lambda \in \mathbb{C}, \forall k \in \{0,...,p-1\}, \alpha_k(\lambda) = \alpha_k(0)$ et par suite

$$P_{\lambda}=X^p-\sum_{k=0}^{p-1}\alpha_k(0)X^k$$
, or $v_0=x_0$ et l'égalité (1) de la question 5.5 , avec $\lambda=0$ s'écrit $P_{\lambda}(f)(x_0)=P_0(f)(x_0)=0$.

- P_{λ} est unitaire de degré p tel que $P_{\lambda}(f)(x_0) = 0$, or l'unicité d'un tel polynôme assurée par la question 5.2.2 entraine que $P_{\lambda} = P$.
- Avec $\lambda = 1$, $P_{\lambda}(f)(e) = P_{\lambda}(f)(v_{\lambda} x_0) = P_{\lambda}(f)(v_{\lambda}) P_{\lambda}(f)(x_0) = 0 0 = 0$.