Programme de 1STL

SECOND DEGRÉ

1.1. RÉSOUDRE $ax^2 + bx + c = 0$

$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
L'équation admet deux solutions	L'équation admet une seule solution	L'équation n'admet pas de solution.
$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$	$x = -\frac{b}{2a}$	

Exemples

Résoudre $x^2 - 7x + 12 = 0$	Résoudre $-x^2 + 4x - 4 = 0$	Résoudre $x^2 + 4x + 10 = 0$
a = 1 $b = -7$ $c = 12$	a=-1 $b=4$ $c=-4$	a=1 $b=4$ $c=10$
$\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48$	$\Delta = (4)^2 - 4 \times (-1) \times (-4) = 16 - 16$	$\Delta = 4^2 - 4 \times 1 \times 10$
$\Delta = 1$	$\Delta = 0$	$\Delta = -26$
$x_1 = \frac{7 - \sqrt{1}}{2} = 3$ $x_2 = \frac{7 + \sqrt{1}}{2} = 4$	$x_1 = \frac{4}{2 \times 1} \qquad x_1 = 2$	
$S = \{3; 4\}$	$S = \{2\}$	$S = \emptyset$

Second degré

1.2. ÉTUDIER LE SIGNE DE $ax^2 + bx + c$ EN FONCTION DE x RÉEL

A 0	x	$-\infty$	x_1	$x_2 + \infty$
$\Delta > 0$	$ax^2 + bx + c$	signe de a	0 signe de $-a$	$\stackrel{ }{0}$ signe de a
$\frac{\Delta = 0}{\Delta < 0}$		$ax^2 + bx + c$ e	est du signe de a su	ır R.

Établir le tableau de signes de $x^2 - 7x + 12$

x		$-\infty$	3	4	$+\infty$
$x^2 - 7x$	+ 12		0	0	

Établir le tableau de signes de $-x^2 + 7x - 12\,$

x	$-\infty$	3	4	$+\infty$
$-x^2 + 7x - 12$		0	0	

Étudier le signe de $x^2 - 4x + 4$ pour $x \in \mathbb{R}$

Réponse : $\Delta=16-16=0$ et a=1>0 donc $x^2-4x+4\geqslant 0$ pour tout $x\in\mathbb{R}$

Étudier le signe de $x^2+4x+10$ pour $x\in\mathbb{R}$ Réponse : $\Delta=16-40<0$ et a=1>0 donc $x^2+4x+10>0$ pour tout $x\in\mathbb{R}$

DÉRIVATION

2.1. Savoir calculer la dérivée d'une fonction

	Fonctions usuelles							
f(x)	D_f	f'(x)	Exemples					
f(x) = ax + b	\mathbb{R}	f'(x) = a	$f(x) = 5 D_f = \mathbb{R}$	$f'(x) = \dots$				
			$f(x) = x$ $D_f = \mathbb{R}$	$f'(x) = \dots$				
$f(x) = x^n$	\mathbb{R}	$f'(x) = n x^{n-1}$	$f(x) = 5x^4 D_f = \mathbb{R}$	$f'(x) = \dots$				
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$f'(x) = -\frac{1}{x^2}$						
$f(x) = \frac{1}{x^n}$	\mathbb{R}^*	$f'(x) = -\frac{n}{x^{n+1}}$	$f(x) = \frac{1}{x^5} D_f = \mathbb{R}^*$	$f'(x) = \dots$				
$f(x) = \sqrt{x}$	\mathbb{R}_+^*	$f'(x) = \frac{1}{2\sqrt{x}}$						
$f(x) = \sin x$	\mathbb{R}							
$f(x) = \cos x$	\mathbb{R}							

10 DÉRIVATION

Opérations sur les fonctions					
f(x)	D	f'(x)	Exemples		
$f(x) = k \cdot u(x)$	D_u	$f'(x) = k \cdot u'(x)$			
f(x) = u(x) + v(x)	$D_u \cap D_v$	f'(x) = u'(x) + v'(x)			
$f(x) = u(x) \cdot v(x)$	$D_u \cap D_v$	f'(x) = u'(x)v(x) + u(x)v'(x)			
$f(x) = \frac{1}{u(x)}$		$f'(x) = -\frac{u'(x)}{u^2(x)}$			
$f(x) = \frac{u(x)}{v(x)}$		$f'(x) = -\frac{u'(x)v(x) - u(x)v'(x)}{v^{2}(x)}$			

2.2. Utilisation de la dérivée

2.2.1. Étude des variations d'une fonction

2.2.2. Notion de tangente

TRIGONOMÉTRIE

3.1. Mesure en radians d'un angle orienté

3.1.1. Cercle trigonométrique

C'est le cercle de centre O, de rayon 1 et orienté dans le sens direct.

3.1.2. Mesure d'un arc orienté

la mesure de l'arc=|mesure de l'arc orienté|

Trigonométrie

3.2. Cosinus et sinus d'un angle orienté

3.2.1. Définitions

 $\left(O;\overrightarrow{\mathrm{OI}};\overrightarrow{\mathrm{OJ}}\right)\!\operatorname{est}$ un repère orthonormé.

 \mathcal{C} est le cercle trigonométrique.

x est la mesure de l'angle orienté ($\overrightarrow{\mathrm{OI}};\overrightarrow{\mathrm{OJ}}$)

x est la mesure de l'arc IM

x est la mesure du segment (orienté) [Ia]

Exemple: $x = \frac{\pi}{3}$

M est l'image de $\frac{\pi}{3}$ sur le cercle trigonométrique.

Les coordonnées de M dans le repère $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ sont :

$$\begin{cases} x_M = \cos x = \cos\frac{\pi}{3} \\ y_M = \cos x = \cos\frac{\pi}{3} \end{cases}$$

Trigonométrie

3.2.2. Valeurs remarquables

Valeurs remarquables						
$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	$\cos\frac{\pi}{3} = \frac{1}{2}$	$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$				
$\sin\frac{\pi}{6} = \frac{1}{2}$	$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$	$\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$				

3.2.3. Savoir faire

Déterminer les valeurs des lignes trigonométriques suivantes :

$$\cos \frac{2\pi}{3} = \cos \frac{3\pi}{2} = \cos \left(-\frac{2\pi}{3}\right) = \sin \frac{5\pi}{6} = \cos \left(-\frac{5\pi}{6}\right) = \sin \left(-\frac{2\pi}{3}\right) = \sin \left(-\frac{$$

Déterminer x réel tel que

$$\begin{cases} \cos x = -\frac{\sqrt{2}}{2} \\ \sin x = \frac{\sqrt{2}}{2} \end{cases}$$

$$\begin{cases} \cos x = -\frac{\sqrt{3}}{2} \\ \sin x = \frac{1}{2} \end{cases}$$

$$x =$$

$$x =$$

$$\begin{cases} \cos x = -\frac{1}{2} \\ \sin x = -\frac{\sqrt{3}}{2} \end{cases}$$

$$\begin{cases} \cos x = \frac{1}{\sqrt{2}} \\ \sin x = \frac{1}{\sqrt{2}} \end{cases}$$

$$x =$$

$$x =$$

PRODUIT SCALAIRE

4.1. DÉFINITION

Le produit scalaire de deux vecteurs est le nombre réel noté : $\vec{u} \cdot \vec{v}$ Si on connait les coordonnées de $\vec{u}(a;b)$ et $\vec{v}(a';b')$: $\vec{u} \cdot \vec{v} = aa' + bb'$ Si on connait les normes $\|\vec{u}\|$ et $\|\vec{v}\|$ et l'angle orienté $(\widehat{u;v})$: $\vec{u} \cdot \vec{v} = \|\vec{u}\| \cdot \|\vec{v}\| \cdot \cos(\widehat{u;v})$

4.2. Exemples

Produit scalaire

3. Sachant que $\vec{u} \cdot \vec{v} = 3\sqrt{3}$, $\|\vec{u}\| = 3$, $\|\vec{v}\| = 2$, calculer une mesure de l'angle orienté $\left(\widehat{\vec{u};\vec{v}}\right)$.

4.3. Propriétés

On liste les diverses propriétés

Si $\vec{u} = \vec{0}$ alors a = 0 et b = 0 donc $\vec{u} \cdot \vec{v} = 0$

Si $\vec{v} = \vec{0}$ alors

Si
$$(\widehat{\vec{u}}; \widehat{\vec{v}}) = \frac{\pi}{2} + k\pi$$
 alors

Si $\vec{u} \cdot \vec{v} = 0$ alors

4.4. Déterminer l'angle orienté formé par deux vecteurs

Utiliser la calculatrice

4.5. Applications en physique

Travail mécanique W d'une force \vec{f} sur un déplacement $\vec{D}:W=\vec{f}\cdot\vec{D}$ Une force appliquée sur un point fixe $(\vec{D}=\vec{0})$ ne fournit aucun travail mécanique.