

MARKS	

ANNUAL NATIONAL ASSESSMENT 2013 GRADE 9 MATHEMATICS TEST

MARKS: 140											
TIME: $2\frac{1}{2}$ hours											
PROVINCE										 	
REGION											
DISTRICT										 	
SCHOOL NAME										 	
EMIS NUMBER (9	digits)										
CLASS (e.g. 9A)										 	
SURNAME										 	
NAME										 	
GENDER (√)	воу						GIRI	L			
DATE OF BIRTH		С	С	Υ	Υ	M	M	D	D		

This test consists of 24 pages, excluding the cover page.

Instructions to the learner

- 1. Read all the instructions carefully.
- Question 1 consists of 10 multiple-choice questions. Circle the letter of the correct answer.
- 3. Answer questions 2 to 14 in the spaces or frames provided.
- 4. Show all working.
- 5. Give a reason for each statement in QUESTION 8.
- 6. The test counts 140 marks.
- 7. The test duration is $2\frac{1}{2}$ hours.
- 8. The teacher will lead you through the practice exercise before you start the test.
- 9. You may use an approved scientific calculator (non-programmable and non-graphical).

Practice exercise

Circle the letter of the correct answer.

Which of the numbers below is a mixed number?

$$0; \quad 0,2; \quad \frac{1}{8}; \quad 2\frac{1}{4}$$

$$B 2\frac{1}{4}$$

D
$$\frac{1}{8}$$

You have answered the question correctly if you have circled B.

The test starts on the next page.

1

- 1.1 Which ONE of the following numbers is an irrational number?
 - A -:
 - B $\sqrt{5}$
 - C 0,3
 - D $\sqrt[3]{-64}$
- 1.2 Which number is missing in the number sequence?
 - $\frac{1}{3}$; ...; $\frac{1}{12}$; $\frac{1}{24}$; $\frac{1}{48}$
 - A $\frac{1}{6}$
 - B $\frac{1}{8}$
 - C $\frac{1}{9}$
 - D $\frac{1}{10}$
- 1.3 The straight line graph defined by 3y + 2x + 1 = 0 will cut the X-axis at the point ...
 - A (-2; 0)
 - B $\left(-\frac{1}{2}; 0\right)$
 - C (-3; 0)
 - D $\left(-\frac{1}{3}; 0\right)$

1.4 Given the expression: $\frac{x-y}{3} + 4 - x^2$

Circle the letter of the incorrect statement.

- A The expression consists of 3 terms.
- B The coefficient of x is 1.
- C The coefficient of x^2 is -1.
- D The expression contains 2 variables.
- 1.5 Complete: $(-3xy^2)^2 =$
 - A $-6x^2y^2$
 - $\mathsf{B} \qquad -9x^2y^4$
 - C $9x^2y^4$
 - D $6x^2y^2$
- 1.6 0,000065 written in scientific notation is:
 - A $0,65 \times 10^{-5}$
 - B 7.0×10^{-5}
 - C 6.5×10^{-5}
 - D 65×10^{-5}
- 1.7 Complete: $9^{-1} \div 3^{-1} =$
 - $A 3^2$
 - B 9
 - C 3
 - D $\frac{1}{3}$

1.8 In the figure below, $PS \parallel QR$. Which ONE of the following statements is true for this figure?

- A $\Delta PTS \equiv \Delta PQT$
- B $\Delta PTS \equiv \Delta RTQ$
- C ΔPTS III ΔSRT
- D ΔPTS III ΔRTQ
- 1.9 In the figure below, side DF of ΔEDF is produced to C. Calculate the size of \widehat{E} in terms of x.

- A 2x
- B 12x
- **C** 7*x*
- D 9*x*

1.10

The above discs are placed into a bag. What is the probability of taking out a disc marked with a number that is a multiple of 4?

- A $\frac{1}{11}$
- $\mathsf{B} \qquad \frac{8}{11}$
- C $\frac{4}{11}$
- D $\frac{3}{11}$

[10]

Simplify each of the following expressions:

 $\frac{2.1}{x^4} - \frac{6x^5}{3x^2} - \frac{15x^3}{3x^2}$

_____ (3)

2.2 x(x+2)-(x-1)(x-3)

_____ (4)

 $2.3 \qquad \sqrt{225x^4} - \sqrt[3]{125x^6}$

_____ (5)

2.4	$\frac{2x+1}{4} - \frac{x+2}{2} - \frac{1}{4}$	
		(4)
		[16]
QUE	ESTION 3	
Fact	torise fully:	
3.1	$6a^3 - 12a^2 + 18a$	
		(2)
3.2	$7x^2 - 28$	
		

(2) **[4]**

Solve for x:

4.1
$$3x - 1 = 5$$

(2)

4.2
$$2(x-2)^2 = (2x-1)(x-3)$$

(4)

(2) **[12]**

$$\frac{2x-3}{2} + \frac{x+1}{3} = \frac{3x-1}{2}$$

_____(4)

$$4.4 x^3 = 64$$

5.1	Write down the next TWO terms in the number sequence 7; 11; 15;	
		(2)
5.2	Write down the general term Tn of the above number sequence.	
	Tn =	(2)
5.3	Calculate the value of the 50 th term.	
		(2)
		[6]

Calculate th	e simple interest on R3 500 invested at 6% per annum for
3 years.	
Calculate ho	ow much money you will owe the bank after 3 years if you borrow
	the bank at 13% per annum compound interest.

7.1 Use the graph below to answer the questions that follow.

7.1.1 Write down the coordinates of points A, B and C in the table.

	А	В	С
x-coordinate			
y-coordinate			

(3)

7.1.2 Use the table in question 7.1.1 or any other method to determine the equation of line ABC.

- 7.2 Use the grid below to answer the questions that follow.
 - 7.2.1 Draw the graphs defined by y = -2x + 4 and x = 1 on the given set of axes. Label each graph and clearly mark the points where the lines cut the axes.

(5)

(2)

	7.2.2	Write down the coordinates of the point where the two lines cut one another.	(2 <u>)</u> [12]
QUE	ESTION 8		[12]
8.1	In Δ <i>PRT</i>	below, M is the midpoint of PR and $MR = MT$.	
		$\frac{M}{2}$	
	If $\hat{P} = 25$	5°, calculate with reasons:	
	8.1.1	The size of \widehat{T}_1	
			(1
	8.1.2	The size of \widehat{M}_2	•
			(1
	8.1.3	The size of \hat{R}	
			(2)
			(3

8.2 In \triangle ABC, D and E are points on BC such that BD = EC and AD = AE.

8.2.1 Why is BE = CD? (1)

8.2.2 Which triangle is congruent to $\triangle ABE$?

_____ (1)

8.3 In the figure below ΔKNQ and ΔMPQ have a common vertex Q. P is a point on KQ and N is a point on MQ. KQ = MQ and PQ = QN.

Prove with reasons that $\Delta KNQ \equiv \Delta MPQ$.

(4)

8.4 In $\triangle NML$ below, P and Q are points on the sides MN and LN respectively such that $QP \mid\mid LM$.

MN = 16 cm, QP = 3 cm and LM = 8 cm.

8.4.1 Complete the following (give reasons for the statements):

Prove with reasons that $\Delta QPN \mid \mid \mid \Delta LMN$.

In $\triangle QPN$ and $\triangle LMN$

1.
$$\widehat{N} = \dots$$

2.
$$\hat{P}_1 = \dots$$

3.
$$\hat{Q}_1 = \dots$$

$$\therefore \quad \Delta QPN \mid \mid \mid \Delta \dots \tag{4}$$

8.4.2 Hence, calculate the length of *PN*.

(3) **[18]**

- 9.1 Use the given grid to draw $\Delta A'OB'$, the reflection of ΔAOB in the X-axis. (2)
- 9.2 Write down the coordinates of B', the image of B. (1)
- 9.3 On the same grid, draw the rotation of ΔAOB through 180° about the origin to form $\Delta A''OB''$. (2)
- 9.4 Hence, determine the length of A'A''. (1)
 - [6]

10.1

10.1.1 Show that the area of the shaded ring is equal to $\pi(R^2 - r^2)$.

(2)

10.1.2 Determine the area of the shaded ring in terms of π if $R=14~\mathrm{cm}$ and $r=8~\mathrm{cm}$.

_____(2)

10.2 In the triangular prism below, $\Delta PQT \equiv \Delta PRT$, PQ = PR and $PT \perp QR$.

10.2.1 Determine the length of QT if QR = 48 cm. (Give a reason for your answer).

_____(2)

10.2.2 If PQ = PR = 25 cm, show that PT = 7cm.

_____(4)

10.2.3 Hence, calculate the area of ΔPQR .

(3)

The histogram below illustrates the Mathematics test marks, out of 10, obtained by a Grade 9 class.

11.1 Complete the frequency table for the given histogram.

Mark	Frequency	Product
x	f	f.x
1	2	2
2		

(4)

Calculate th	ne mean test mark.	
he mean r	mark =	
	=	
	=	
/hat percei	ntage of the learners obtained 7 or more out of 10 fo	or the test?

The following are the heights, in centimetres, of a group of Grade 9 learners.

156	147	173	165	170
145	153	165	149	158
163	156	153	157	137
177	146	150	153	158

12.1 Draw a stem-and-leaf plot to illustrate the data.

Stem	Leaves
13	
14	
15	
16	
17	

(5)

12.2 Use the data to complete each of the following:

12.2.4 The number of learners who are shorter than
$$160 \text{ cm} =$$
_____. (1) [9]

	contains 3 blue, 4 white and 5 green marbles of the same size.
13.1	If you take out 1 marble, what is the probability that you will take out a green marble?
13.2	What is the probability of then taking out a white marble if you replace the marble that you took out of the box previously?
13.3	If you take out a white marble and do not replace it, what is the probability of taking out another white marble?
QUES ⁻	TION 14
	O Grade 9 boys in a school play soccer, hockey or both. If 150 boys play soccer 0 play hockey, calculate how many of them play BOTH soccer and hockey.

TOTAL: 140