Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informatik und Wirtschaftsinformatik

- Datensatzanalyse mithilfe lernender Verfahren -
 - Dataset Analysis using Machine Learning Techniques -

Ilian Kohl

Studiengang: Bachelor Informatik Matrikelnummer: 74592 Referent: Prof. Dr. Hein Korreferent: Prof. Dr. Baier

Problemstellung

- Realdaten schwer beschaffbar
- → synthetische als Alternative
- Viele Variationen synthetischer Daten möglich
- → Jede beeinflusst Modellleistung
- Notwendigkeit einer Auswahl von vielen verfügbaren Datensätzen
- → Individuelles Datensatztraining ist zeit- rechenintensiv

adidas_syn_se_adidas_syn_se_random_light
adidas_syn_se_random_texture
adidas_syn_se_random_texture
adidas_syn_se_no_lc_table
adidas_syn_se_random_camera
adidas_syn_se_random_camera
adidas_syn_simple_real_light
adidas_syn_dr_real_texture
adidas_syn_dr_real_texture
adidas_syn_dr_color_texture
adidas_syn_simple_random_light
adidas_syn_simple_random_texture
adidas_syn_simple_random_texture
adidas_syn_simple_random_texture
adidas_syn_simple_random_texture

adidas_syn_se_static_light

Ziel: Vor-Auswahl durch Performanz-Abschätzung

Zielsetzung

System zur Performanz-Abschätzung:

- 1. Abschätzung ohne Training pro Datensatz
- 2. Datensatz-Eigenschaften als Bewertungsgrundlage
- 3. Möglichst unabhängige Bewertung vom Datensatz und Anwendungsfall

Untergestellte Ziele:

- Lernendes Verfahren zur Dimensionsreduktion und Merkmalsextraktion
- → Autoencoder
- Methode zum Vergleich und Bewertung der Kodierungen (Feature-Vektoren)
- → Distanzen als Ähnlichkeitsmaß

Datensätze

17 Adidas-Datensätze

- Farbbilder der Größe 512x682
- 1 Real (5.452 Datenpunkte)
- 16 synthetische (14.000 Datenpunkte)
 - aus Domänen SE, Simple, DR
 - 3 synthetische Basis-Datensätze
 - 13 Varianten basierend auf 3 synthetische

Basis-Datensätze als Domänen-Repräsentanten:

- Real: adidas_real
- SE: adidas_syn_se
- Simple: adidas_syn_simple
- DR: adidas_syn_dr

Modell-Architektur

Resid Cah Cohvidution Aalt Autoodeo (EA (E) - CAE) Conv2D (3,3) **Batch Normalization** LeakyReLU ADD Conv2DTranspose (3,3) Conv2D (3,3), (Sigmoid) Residual Connection

Trainings-Konfigurationen

Allgemeine Bedingungen:

- Adam als Optimizer
- Mean Squared Error (MSE) als Loss-Function
- Kein EarlyStopping
- Batch-Size = 4
- Eingabe- (und Ausgabe-) Daten der Form (256,384,4)
- Strided Convolutions (2,2) → Halbierung (Downsampling) & Verdopplung (Upsampling)

$$256x384 - 128x192 - 64x96 - 32x48 - 16x24 - 8x12 - 4x6 - 2x3$$

(16,24,32)	(8,12,64)	(8,12,32)	(4,6,64)	(4,6,32)	(2,3,64)	(2,3,32)
12.288	6.144	3.072	1.536	768	384	192
96,88%	98,44%	99,22%	99,61%	99,80%	99,90%	99,95%

Trainings-Konfigurationen: Vorstudie

Ziele der Vorstudie:

- Ermittlung der Modell-Grenzen (→ Filteranzahl 32 und 64)
- Ermittlung optimaler Größe des Latenten Raums (Kodierungsgröße)

Bedingungen der Vorstudie:

- 2.500 Trainingsdaten & 500 Validierungsdaten von 6 Datensätzen:
 - adidas_syn_dr_real_texture
 - 2. adidas_syn_simple
 - 3. adidas_syn_simple_real_texture
 - 4. adidas_syn_se_random_light
 - 5. adidas syn se
 - 6. adidas_real
- 300 Epochen im Sequenziellen Training (50 Epochen pro Datensatz)

+I

Evaluierung: Vorstudie

Original Mask

adidas_ syn_ dr_ color_ texture

r_cae_fm16x24_dim12288

+I

Evaluierung: Vorstudie

Original Mask

adidas_ syn_ dr_ color_ texture

 $r_cae_fm8x12_dim6144$

Evaluierung: Vorstudie

adidas_ syn_ dr_ color_ texture

 $r_cae_fm8x12_dim3072$

Evaluierung: Vorstudie

adidas_ syn_ dr_ color_ texture

r_cae_fm4x6_dim1536

+1

Evaluierung: Vorstudie Original RGB

Original Mask

adidas_ syn_ dr_ color_ texture

r_cae_fm4x6_dim768

+1

Evaluierung: Vorstudie Original RGB

texture

adidas_
syn_
dr_
color_

Decoded RGB

r_cae_fm2x3_dim384

Evaluierung: Vorstudie Original RGB

adidas_ syn_ dr_ color_ texture

r_cae_fm2x3_dim192

4

Evaluierung: Vorstudie

Decoded RGB

r_cae_fm2x3_dim192

adidas_syn_simple

adidas_syn_simple_real_texture

r_cae_fm8x12_dim3072

Trainings-Konfigurationen: Hauptstudie

Ziele der Hauptstudie:

- Ermittlung des optimalen Modells mit verschiedenen Konfigurationen
- Training auf Domänenrepräsentierende Datensätze

Bedingungen der Hauptstudie:

- Jeweils 3.500 Trainings- & 700 Validierungs-Daten von 4 Datensätzen:
 - adidas real
 - adidas_syn_se

- → Basis-Datensätze als Domänen-Repräsentanten
- adidas_syn_simple
- adidas_syn_dr
- 120 Epochen für Sequenzielles Training
- 30 Epochen für Kombiniertes Training

- (30 pro 3.500 Daten eines Datensatzes)
- (30 auf 14.000 Daten insgesamt)

+

Evaluierung: Hauptstudie – CAE vs. R-CAE

equenziell	adidas_ real	adidas_ syn_ se	adidas_ syn_ simple	adidas_ syn_ dr	adidas_ syn_ dr_ real_ texture	adidas_ syn_ se_ random_ texture	adidas_ syn_ simple_ real_ texture	adidas_ syn_ simple_ random_ texture	mean_ score
SSI									
r_cae_on_base_seq_fm8x12_ dim3072_real3500	0,9494	0,8454	0,7705	0,7382	0,7572	0,7403	0,7605	0,7434	0,7881
r_cae_on_base_seq_fm8x12_ dim6144_real3500	0,9667	0,8909	0,8681	0,7946	0,8115	0,7944	0,8588	0,8274	0,8516
cae_on_base_seq_fm8x12_ dim3072_real3500	0,9049	0,7343	0,6651	0,6389	0,6517	0,6478	0,6528	0,6247	0,6900
cae_on_base_seq_fm8x12_ dim6144_real3500	0,9256	0,7549	0,6749	0,6667	0,6893	0,6532	0,6603	0,6290	0,7067
MSE									
r_cae_on_base_seq_fm8x12_ dim3072_real3500	25,73	147,11	245,17	325,18	292,24	466,53	262,97	172,24	242,15
r_cae_on_base_seq_fm8x12_ dim6144_real3500	14,04	98,27	84,36	214,52	206,31	335,72	97,06	102,92	144,15
cae_on_base_seq_fm8x12_ dim3072_real3500	138,22	463,12	473,41	970,16	853,23	1028,00	543,85	503,73	621,71
cae_on_base_seq_fm8x12_ dim6144_real3500	76,90	436,96	422,46	1018,50	761,11	1183,32	487,88	449,13	604,53

+1

Evaluierung: Hauptstudie – Kleine Zielgrößen

Kombiniert

	mean_ssi	mean_mse
r_cae_fm2x3_dim192	0,6497	986,37
r_cae_on_base_comb_fm2x3_dim192_real3500	0,8010	423,50
r_cae_fm2x3_dim384	0,6602	870,85
r_cae_on_base_comb_fm2x3_dim384_real3500	0,8187	409,47
r_cae_fm4x6_dim768	0,7109	445,22
r_cae_on_base_comb_fm4x6_dim768_real3500	0,8392	211,17
r_cae_fm4x6_dim1536	0,7514	331,05
r_cae_on_base_comb_fm4x6_dim1536_real3500	0,8699	152,87
r_cae_fm8x12_dim3072	0,8384	171,01
r_cae_on_base_comb_fm8x12_dim3072_real3500	0,8817	92,21
r_cae_fm8x12_dim6144	0,8679	146,67
r_cae_on_base_comb_fm8x12_dim6144_real3500	0,9019	67,83

Evaluierung: Optimales Modell

Optimales Modell:

- → Trainingsdaten = Kombiniert
- → Dimensionsgröße = 3.072 und 6.144
- \rightarrow Real-Anteil = 2.500
- → Filteranzahl-Strategie = Abnehmend

Datensatz-Kodierungen mit Encoder von Modellen:

r_cae_on_base_comb_fm8x12_dim3072_real3500 (n,256,384,4) → (n,8,12,32)

• r_cae_on_base_comb_fm4x6_dim1536_real3500 $(n,256,384,4) \rightarrow (n,4,6,64)$

• r_cae_on_base_comb_fm8x12_dim6144_real3500 (n,256,384,4) → (n,8,12,64)

mean feature maps of dataset adidas_real

mean feature maps of dataset adidas_syn_dr

mean feature maps of dataset adidas_syn_dr_real_texture

mean feature maps of dataset adidas_syn_se_random_camera

mean feature maps of dataset adidas_syn_se_no_lc_table

mean feature maps of dataset adidas_syn_se

mean feature maps of dataset adidas_syn_se_random_light

mean feature maps of dataset adidas_syn_se_random_texture

mean feature maps of dataset adidas_syn_simple

mean feature maps of dataset adidas_syn_simple_real_camera

Distanzbasiertes Auswahlverfahren

1. Distanzmatrix aufstellen

- Feature-Vektor-Level
- Feature-Map-Level

2. Bestimmung der Bewertungskriterien

- Domänen-Reihenfolge der Domänen-Repräsentanten
- Domänen-Zugehörigkeit (nach Schwellenwert)
- Real-Nähe auf Feature-Vektor-Level
- (Importance-Score)

3. Ranking nach Bewertungskriterien-Kombinationen:

- → Ranking nach (Domänen +) Real-Nähe
- → (Ranking nach (Domänen +) Importance Score)

Repräsentanten im Auswahlverfahren

Bedingungen:

- → Manhattan-Distanz
- → Min-Max-Norm zu [0,1]

Domänen-Reihenfolge:

 \rightarrow Real – SE – DR – Simple

Domänen-Zuordnung:

 \rightarrow Schwellenwert α = 0,4

- 0.8

0.6

0.4

- 0.2

- 0.0

Repräsentanten im Auswahlverfahren

Ranking

Ordinale Referenzwerte:

- 1. adidas_real
- 2. adidas_syn_se_random_light
- 3. adidas_syn_se
- 4. adidas_syn_se_random_camera
- 5. adidas_syn_se_random_texture
- 6. adidas_syn_simple_real_camera
- 7. adidas_syn_simple
- 8. adidas_syn_se_no_lc_table
- 9. adidas_syn_dr_real_texture
- 10. adidas_syn_dr

Ranking: (Domänen +) Real-Nähe

	Dataset	Domain	Rank	Rank In Domain	Real- Nähe
1	adidas_real	REAL	1	1	0
2	adidas_syn_se_random_light	SE	2	1	0,5643
3	adidas_syn_se_random_camera	SE	2	2	0,5782
4	adidas_syn_se	SE	2	3	0,6020
5	adidas_syn_se_no_lc_table	SE	2	4	0,6633
6	adidas_syn_se_random_texture	SE	2	5	0,6712
7	adidas_syn_dr_real_texture	DR	3	1	0,7686
8	adidas_syn_dr	DR	3	2	0,7711
9	adidas_syn_simple_real_camera	SIMPLE	4	1	0,8031
10	adidas_syn_simple	SIMPLE	4	2	0,8941

Basierend auf Kodierungen von: r_cae_on_base_comb_fm8x12_dim3072_real3500

Ranking

Ordinale Referenzwerte:

- 1. adidas_real
- 2. adidas_syn_se_random_light
- 3. adidas_syn_se
- 4. adidas_syn_se_random_camera
- 5. adidas_syn_se_random_texture
- 6. adidas_syn_simple_real_camera
- 7. adidas_syn_simple
- 8. adidas_syn_se_no_lc_table
- 9. adidas_syn_dr_real_texture
- 10. adidas_syn_dr

Ranking: (Domänen +) Real-Nähe

	Dataset	Domain	Rank	Rank In Domain	Real- Nähe
1	adidas_real	REAL	1	1	0
2	adidas_syn_se_random_light	SE	2	1	0,5756
3	adidas_syn_se_random_camera	SE	2	2	0,5865
4	adidas_syn_se	SE	2	3	0,6244
5	adidas_syn_se_no_lc_table	SE	2	4	0,6866
6	adidas_syn_se_random_texture	SE	2	5	0,7354
7	adidas_syn_dr_real_texture	DR	3	1	0,7726
8	adidas_syn_dr	DR	3	2	0,7782
9	adidas_syn_simple_real_camera	SIMPLE	4	1	0,8316
10	adidas_syn_simple	SIMPLE	4	2	0,9404

Basierend auf Kodierungen von: r_cae_on_base_comb_fm8x12_dim6144_real3500

Ranking

Ordinale Referenzwerte:

- 1. adidas_real
- 2. adidas_syn_se_random_light
- 3. adidas_syn_se
- 4. adidas_syn_se_random_camera
- 5. adidas_syn_se_random_texture
- 6. adidas_syn_simple_real_camera
- 7. adidas_syn_simple
- 8. adidas_syn_se_no_lc_table
- 9. adidas_syn_dr_real_texture
- 10. adidas_syn_dr

Ranking: (Domänen +) Real-Nähe

	Dataset	Domain	Rank	Rank In Domain	Real- Nähe
1	adidas_real	REAL	1	1	0
2	adidas_syn_se_random_camera	SE	2	1	0,6172
3	adidas_syn_se_random_light	SE	2	2	0,6221
4	adidas_syn_se	SE	2	3	0,6584
5	adidas_syn_se_no_lc_table	SE	2	4	0,6983
6	adidas_syn_se_random_texture	SE	2	5	0,7383
7	adidas_syn_dr	DR	3	1	0,7918
8	adidas_syn_dr_real_texture	DR	3	2	0,7941
9	adidas_syn_simple_real_camera	SIMPLE	4	1	0,8161
10	adidas_syn_simple	SIMPLE	4	2	0,8651

Basierend auf Kodierungen von: r_cae_on_base_comb_fm4x6_dim1536_real3500

Fazit

Kritik:

- Modelle zu einfach (wenige Filter)
- Daten zu hochdimensional → Distanzen konvergieren → Keine zuverlässige Interpretation
- Balance zwischen starker Dimensionsreduktion und aussagekräftigen Feature Vektoren

Ausblick:

- Komplexere Schichten mit mehr Filter
- Modell-Erweiterung mit Stacked (R-)CAEs
- Auswahlverfahren basierend auf Lernmodell statt Distanzen

Hochschule Karlsruhe

University of Applied Sciences

Fakultät für

Informatik und Wirtschaftsinformatik H K A

Vielen Dank für Ihre Aufmerksamkeit

Evaluierung: Hauptstudie – Real-Anteil Abnahme –

Kombiniert

	adidas_real_ ssi	mean_ ssi	adidas_real_ mse	mean_ mse
r_cae_on_base_comb_fm8x12_dim3072_real3500	0,9370	0,8817	37,60	92,21
r_cae_on_base_comb_fm8x12_dim3072_real2500	0,9350	0,8789	37,64	89,06
r_cae_on_base_comb_fm8x12_dim3072_real1500	0,9254	0,8853	54,35	105,57
r_cae_on_base_comb_fm8x12_dim3072_real500	0,9122	0,8880	67,66	107,85
r_cae_on_base_comb_fm8x12_dim6144_real3500	0,9477	0,9019	29,76	67,83
r_cae_on_base_comb_fm8x12_dim6144_real2500	0,9509	0,9091	25,04	61,55
r_cae_on_base_comb_fm8x12_dim6144_real1500	-	-	-	-
r_cae_on_base_comb_fm8x12_dim6144_real500	0,9434	0,8943	42,76	92,62

+

Evaluierung: Hauptstudie – Datensatz-Reihenfolge –

MSE	adidas_ real	adidas_ syn_ se	adidas_ syn_ simple	adidas_ syn_ dr	adidas_ syn_ dr_ real_ texture	adidas_ syn_ se_ random_ texture	adidas_ syn_ simple_ real_ texture	adidas_ syn_ simple_ random_ texture	mean_ score
r_cae_on_base_seq_fm8x12_ dim3072_real3500_ dr_si_se_re	25,73	147,11	245,17	325,18	292,24	466,53	262,97	172,24	242,15
r_cae_on_base_seq_fm8x12_ dim6144_real3500_ dr_si_se_re	14,04	98,27	84,36	214,52	206,31	335,72	97,06	102,92	144,15
r_cae_on_base_seq_fm8x12_ dim3072_real3500_ re_se_si_dr	170,82	130,04	64,47	140,54	114,43	303,16	90,41	89,46	137,92
r_cae_on_base_seq_fm8x12_ dim6144_real3500_ re_se_si_dr	143,93	89,93	45,81	102,42	81,09	216,70	65,85	54,25	100,00
r_cae_on_base_seq_fm8x12_ dim3072_real3500_ si_dr_se_re	17,72	114,28	229,26	268,45	260,94	395,00	254,77	202,73	217,89
r_cae_on_base_seq_fm8x12_ dim6144_real3500_ si_dr_se_re	32,17	108,23	153,93	239,56	240,09	333,28	167,63	140,50	176,93

Evaluierung: Hauptstudie – Filteranzahl-Strategie –

Wachsend:

 Beginnt mit wenigen Filtern im ersten Encoding-Schritt und verdoppelt die Anzahl schrittweise in den Encoding-Schritten und halbiert sie in den Decoding-Schritte

Absteigend:

 Beginnt mit vielen Filtern im ersten Encoding-Schritt und halbiert die Anzahl schrittweise in den Encoding-Schritten und verdoppelt sie in den Decoding-Schritten

Kombiniert

	filter_list	latent_ dim	mean_ ssi	mean_ mse
r_cae_on_base_comb_fm4x6_dim1536_real3500	[64,64,64,64,64]	(4,6,64)	0,8699	152,87
r_cae_on_base_comb_fm8x12_dim1536_real3500_down	[64,64,32,32,16]	(8,12,16)	0,8809	112,00
r_cae_on_base_comb_fm4x6_dim1536_real3500_up	[16,16,32,32,64,64]	(4,6,64)	0,8444	186,70

+

Support Vector Machine (SVM)

	Dataset Name	DR	Simple	SE	Real
0	adidas_syn_se_ random_texture	825	0	13175	0
1	adidas_syn_dr_real_texture	13998	0	2	0
2	adidas_syn_simple_random_texture	2	13998	0	0
3	adidas_syn_simple_real_texture	0	14000	0	0
4	adidas_syn_dr_color_texture	13999	0	1	0
5	adidas_syn_se_ random_light	152	0	13848	0
6	adidas_syn_se_static_light	0	0	14000	0
7	adidas_syn_simple_ random_light	1022	12062	916	0
8	adidas_syn_simple_real_light	0	14000	0	0
9	adidas_syn_se_color_texture	0	1	13999	0
10	adidas_syn_se_ random_camera	8534	1	5441	24
11	adidas_syn_simple_real_camera	0	14000	0	0
12	adidas_syn_se_ no_lc_table	1072	0	12928	0

label

- adidas_real
- adidas_syn_se
- adidas_syn_simple
- adidas_syn_dr
- adidas_syn_se_random_light
- adidas_syn_se_random_camera
- adidas_syn_se_random_texture
- adidas_syn_se_static_light
- adidas_syn_se_color_texture
- adidas_syn_se_no_lc_table
- adidas_syn_simple_real_camera
- adidas_syn_simple_real_texture
- adidas_syn_simple_real_light
- adidas_syn_simple_random_light
- adidas_syn_simple_random_texture
- adidas_syn_dr_real_texture
- adidas_syn_dr_color_texture

label

- adidas_real
- adidas_syn_se
- adidas_syn_simple
- adidas_syn_dr
- adidas_syn_se_random_light
- adidas_syn_se_random_camera
- adidas_syn_se_random_texture
- adidas_syn_se_static_light
- adidas_syn_se_color_texture
- adidas_syn_se_no_lc_table
- adidas_syn_simple_real_camera
- adidas_syn_simple_real_texture
- adidas_syn_simple_real_light
- adidas_syn_simple_random_light
- adidas_syn_simple_random_texture
- adidas_syn_dr_real_texture
- adidas_syn_dr_color_texture

label

- adidas_real
- adidas_syn_se
- adidas_syn_simple

adidas_syn_dr

- adidas_syn_se_random_light
- adidas_syn_se_random_camera
- adidas_syn_se_random_texture
- adidas_syn_se_static_light
- adidas_syn_se_color_texture
- adidas_syn_se_no_lc_table
- adidas_syn_simple_real_camera
- adidas_syn_simple_real_texture
- adidas_syn_simple_real_light
- adidas_syn_simple_random_light
- adidas_syn_simple_random_texture
- adidas_syn_dr_real_texture
- adidas_syn_dr_color_texture

label

- adidas_real
- adidas_syn_se
- adidas_syn_simple
- adidas_syn_dr
- adidas_syn_se_random_light
- adidas_syn_se_random_camera
- adidas_syn_se_random_texture
- adidas_syn_se_static_light
- adidas_syn_se_color_texture
- adidas_syn_se_no_lc_table
- adidas_syn_simple_real_camera
- adidas_syn_simple_real_texture
- adidas_syn_simple_real_light
- adidas_syn_simple_random_light
- adidas_syn_simple_random_texture
- adidas_syn_dr_real_texture
- adidas_syn_dr_color_texture

+I

Referenzwerte der Objekterkennungsaufgabe

Datensatz	mAP	std_dev
adidas_real	88,99	0,37
adidas_syn_se_random_light	78,33	0,74
adidas_syn_se	75,53	1,15
adidas_syn_se_random_camera	74,96	1,14
adidas_syn_se_random_texture	53,08	3,48
adidas_syn_simple_real_camera	36,49	2,40
adidas_syn_simple	28,34	0,79
adidas syn se no lc table	27,13	5,79
adidas_syn_dr_real_texture	22,26	3,68
adidas_syn_dr	10,73	2,24

Importance Score

Reward und Penalty Datensätze bestimmen:

- Reward für Real-Eigenschaften (adidas real)
- Penalty für Random-Eigenschaften (adidas_syn_dr)

Feature Importance Ranking nach Varianz:

• Datenform vor Aggregation (n, fm_height, fm_width, dim); dim = k

•
$$Var_k = \frac{1}{n} \sum_{l=1}^{n} \sum_{i=1}^{fm_height} \sum_{j=1}^{fm_width} (x_{lijk} - \mu_k)^2$$

Berechnung der Importance Score:
$$Score_{new} = Score_{old} \pm \sum_{k=1}^{dims} \frac{\left|D_i^{(k)}(d_i, r) - D_i^{(k)}(d_i, s_{dr})\right|}{f_k}$$

Importance Score

- Größte Varianz in Feature Map 7
 - Distanzmatrix k = 7
 - Feature Importance Rank = 1
- Feature Map mit Eigenschaften, die in Simple & SE ähnlich hervorgehoben werden

0.8

- 0.6

- 0.4

- 0.2

- 0.0

Dataset