Elliptic curves, lattices, and some differential geometry – part I

A "modular forms"-y gumbo

Tobias Magnusson

Chalmers University of Technology

November 3, 2020

► Modular forms should be viewed geometrically.

- ► Modular forms should be viewed geometrically.
- ► Why?

- ► Modular forms should be viewed geometrically.
- ► Why?
 - ▶ When doing computations want to reduce Fourier coefficients modulo *p*.

- ► Modular forms should be viewed geometrically.
- ► Why?
 - ▶ When doing computations want to reduce Fourier coefficients modulo *p*. Need to make sense of modular form with different field of coefficients.

- ► Modular forms should be viewed geometrically.
- ► Why?
 - ▶ When doing computations want to reduce Fourier coefficients modulo *p*. Need to make sense of modular form with different field of coefficients.
 - ► The geometric point of view has much richer theory.

- ► Modular forms should be viewed geometrically.
- ► Why?
 - ▶ When doing computations want to reduce Fourier coefficients modulo *p*. Need to make sense of modular form with different field of coefficients.
 - ► The geometric point of view has much richer theory.
- ► Goal of these talks:

- ► Modular forms should be viewed geometrically.
- ► Why?
 - ▶ When doing computations want to reduce Fourier coefficients modulo *p*. Need to make sense of modular form with different field of coefficients.
 - ► The geometric point of view has much richer theory.
- ► Goal of these talks: go from analytic/computational understanding to geometric understanding.

What even is a modular form?

 \blacktriangleright Function on the upper-half plane $\mathbb H$ that is very symmetric.

What even is a modular form?

- ightharpoonup Function on the upper-half plane $\mathbb H$ that is **very** symmetric.
- ► Defined in terms of two actions by

What even is a modular form?

- ▶ Function on the upper-half plane \mathbb{H} that is **very** symmetric.
- ▶ Defined in terms of two actions by

$$SL_2(\mathbb{Z}) = \{(a, b; c, d) : a, b, c, d \in \mathbb{Z}, ad - bc = 1\}.$$

First action

Definition (Möbius action)

Let $\tau \in \mathbb{H}$ and $\gamma = (a, b; c, d) \in \mathrm{SL}_2(\mathbb{Z})$. Define

First action

Definition (Möbius action)

Let $\tau \in \mathbb{H}$ and $\gamma = (a, b; c, d) \in \mathrm{SL}_2(\mathbb{Z})$. Define

$$\gamma.\tau = \frac{\mathsf{a}\tau + \mathsf{b}}{\mathsf{c}\tau + \mathsf{d}}$$

First action

Definition (Möbius action)

Let $\tau \in \mathbb{H}$ and $\gamma = (a, b; c, d) \in \mathrm{SL}_2(\mathbb{Z})$. Define

$$\gamma.\tau = \frac{a\tau + b}{c\tau + c}$$

Is left action.

Definition (Slash action)

Let k be an integer.

Definition (Slash action)

Let k be an integer. For function $f\colon \mathbb{H}\to\mathbb{C}$ and $\gamma=(a,b;c,d)\in \mathrm{SL}_2(\mathbb{Z})$, define

Definition (Slash action)

Let k be an integer. For function $f \colon \mathbb{H} \to \mathbb{C}$ and $\gamma = (a,b;c,d) \in \mathrm{SL}_2(\mathbb{Z})$, define

$$(f|_{k}\gamma)(\tau) = (c\tau + d)^{-k}f(\gamma.\tau).$$

Definition (Slash action)

Let k be an integer. For function $f\colon \mathbb{H}\to\mathbb{C}$ and $\gamma=(a,b;c,d)\in \mathrm{SL}_2(\mathbb{Z})$, define

$$(f|_k\gamma)(\tau)=(c\tau+d)^{-k}f(\gamma.\tau).$$

Is right action.

Definition

Let k be an integer.

Definition

Let k be an integer. Then a modular form of level 1 of weight k is a function $f \colon \mathbb{H} \to \mathbb{C}$ such that

Definition

Let k be an integer. Then a modular form of level 1 of weight k is a function $f \colon \mathbb{H} \to \mathbb{C}$ such that

(i) f is holomorphic on \mathbb{H}

Definition

Let k be an integer. Then a modular form of level 1 of weight k is a function $f \colon \mathbb{H} \to \mathbb{C}$ such that

- (i) f is holomorphic on \mathbb{H}
- (ii) $f|_{k}\gamma = f$ for every $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$

Definition

Let k be an integer. Then a modular form of level 1 of weight k is a function $f\colon \mathbb{H} \to \mathbb{C}$ such that

- (i) f is holomorphic on \mathbb{H}
- (ii) $f|_k \gamma = f$ for every $\gamma \in \mathrm{SL}_2(\mathbb{Z})$
- (iii) $f(\tau)$ is bounded as $\tau \to i\infty$.

Definition

Let k be an integer. Then a modular form of level 1 of weight k is a function $f\colon \mathbb{H} \to \mathbb{C}$ such that

- (i) f is holomorphic on \mathbb{H}
- (ii) $f|_k \gamma = f$ for every $\gamma \in \mathrm{SL}_2(\mathbb{Z})$
- (iii) $f(\tau)$ is bounded as $\tau \to i\infty$.

Set of modular forms of weight k and level 1 is a vector space, denoted by $M_k(\mathrm{SL}_2(\mathbb{Z})).$

▶ In level 1: only need to worry about Eisenstein series.

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_k(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_2(\mathbb{Z})} 1|_k \gamma,$$

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_k(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_2(\mathbb{Z})} 1|_k \gamma,$$

ightharpoonup Converges absolutely and locally uniformly on \mathbb{H} , so is holomorphic and can move in slash action.

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_k(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_2(\mathbb{Z})} 1|_k \gamma,$$

- ightharpoonup Converges absolutely and locally uniformly on \mathbb{H} , so is holomorphic and can move in slash action.
- ► This reorders factors, so is the same.

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_{\mathbf{k}}(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1|_{\mathbf{k}} \gamma,$$

- \blacktriangleright Converges absolutely and locally uniformly on $\mathbb{H},$ so is holomorphic and can move in slash action.
- ► This reorders factors, so is the same.
- ▶ Conclusion: $E_k(\tau) \in M_k(\mathrm{SL}_2(\mathbb{Z}))$.

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_{\mathbf{k}}(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1|_{\mathbf{k}} \gamma,$$

- ightharpoonup Converges absolutely and locally uniformly on \mathbb{H} , so is holomorphic and can move in slash action.
- ▶ This reorders factors, so is the same.
- ▶ Conclusion: $E_k(\tau) \in M_k(\mathrm{SL}_2(\mathbb{Z}))$.
- ► In fact

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_{\mathbf{k}}(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1|_{\mathbf{k}} \gamma,$$

- ightharpoonup Converges absolutely and locally uniformly on \mathbb{H} , so is holomorphic and can move in slash action.
- ► This reorders factors, so is the same.
- ▶ Conclusion: $E_k(\tau) \in M_k(\mathrm{SL}_2(\mathbb{Z}))$.
- ► In fact

$$\{E_4^a E_6^b : a, b \in \mathbb{Z}_{\geq 0} \text{ and } 4a + 6b = k\},$$

- ▶ In level 1: only need to worry about Eisenstein series.
- ▶ Let T = (1, 1; 0, 1) and let $\Gamma_{\infty} = \langle T, -I \rangle$. Then we define

$$E_{\mathbf{k}}(\tau) = \sum_{[\gamma] \in \Gamma_{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})} 1|_{\mathbf{k}} \gamma,$$

- ightharpoonup Converges absolutely and locally uniformly on \mathbb{H} , so is holomorphic and can move in slash action.
- ► This reorders factors, so is the same.
- ▶ Conclusion: $E_k(\tau) \in M_k(\mathrm{SL}_2(\mathbb{Z}))$.
- ► In fact

$$\{E_4^a E_6^b : a, b \in \mathbb{Z}_{\geq 0} \text{ and } 4a + 6b = k\},$$

basis for $M_k(\mathrm{SL}_2(\mathbb{Z}))$.

Lattices

▶ Using lattices, can get "simpler" alternative definition of modular forms.

Lattices

- ▶ Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line.

Lattices

- ► Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line. Lattice L generated by (ω_1, ω_2) is

- ► Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line. Lattice L generated by (ω_1, ω_2) is

$$L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2.$$

- ► Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line. Lattice L generated by (ω_1, ω_2) is

$$L=\mathbb{Z}\omega_1+\mathbb{Z}\omega_2.$$

▶ Consider quotient $\mathbb{C}/L = \{\tau + L : \tau \in \mathbb{C}\}.$

- ► Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line. Lattice L generated by (ω_1, ω_2) is

$$L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2.$$

- ▶ Consider quotient $\mathbb{C}/L = \{\tau + L : \tau \in \mathbb{C}\}.$
- ightharpoonup au + L has unique representative in "fundamental parallelogram".

- ► Using lattices, can get "simpler" alternative definition of modular forms.
- ▶ Let $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ not on the same line. Lattice L generated by (ω_1, ω_2) is

$$L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$$
.

- ▶ Consider quotient $\mathbb{C}/L = \{\tau + L : \tau \in \mathbb{C}\}.$
- ightharpoonup au + L has unique representative in "fundamental parallelogram".

We denote the set of lattices in \mathbb{C} by $\mathcal{L}(\mathbb{C})$.

Topology

► Homeomorphic to square with sides identified.

Topology

- ► Homeomorphic to square with sides identified.
- ▶ That is, homeomorphic to torus $S^1 \times S^1$.

Definition

Let k be an integer.

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

$$L(z) = \mathbb{Z}a + \mathbb{Z}z \in \mathcal{L}(\mathbb{C}).$$

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

$$L(z) = \mathbb{Z}a + \mathbb{Z}z \in \mathcal{L}(\mathbb{C}).$$

Then $F \circ L(z)$ holomorphic in z.

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

$$L(z) = \mathbb{Z}a + \mathbb{Z}z \in \mathcal{L}(\mathbb{C}).$$

Then $F \circ L(z)$ holomorphic in z.

(ii) If
$$\lambda \in \mathbb{C} \setminus \{0\}$$
 and $L \in \mathcal{L}(\mathbb{C})$, then

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

$$L(z) = \mathbb{Z}a + \mathbb{Z}z \in \mathcal{L}(\mathbb{C}).$$

Then $F \circ L(z)$ holomorphic in z.

(ii) If $\lambda \in \mathbb{C} \setminus \{0\}$ and $L \in \mathcal{L}(\mathbb{C})$, then

$$F(\lambda L) = \lambda^{-k} F(L).$$

Definition

Let k be an integer. Then a modular form of weight k is function $F:\mathcal{L}(\mathbb{C})\to\mathbb{C}$ satisfying

(i) For $a \in \mathbb{C}$ fixed, define the mapping

$$L(z) = \mathbb{Z}a + \mathbb{Z}z \in \mathcal{L}(\mathbb{C}).$$

Then $F \circ L(z)$ holomorphic in z.

(ii) If $\lambda \in \mathbb{C} \setminus \{0\}$ and $L \in \mathcal{L}(\mathbb{C})$, then

$$F(\lambda L) = \lambda^{-k} F(L).$$

(iii) $F(\mathbb{Z} + \mathbb{Z}\tau)$ is bounded as $\tau \to i\infty$.

Can show is equivalent to previous definition by

Can show is equivalent to previous definition by

$$f(\tau) = F(\mathbb{Z} + \mathbb{Z}\tau),$$

Can show is equivalent to previous definition by

$$f(\tau) = F(\mathbb{Z} + \mathbb{Z}\tau),$$

and

Can show is equivalent to previous definition by

$$f(\tau) = F(\mathbb{Z} + \mathbb{Z}\tau),$$

and

$$F(\mathbb{Z}\omega_1 + \mathbb{Z}\omega_2) = \omega_2^{-k} f(\omega_1/\omega_2),$$

for
$$\operatorname{Im}(\omega_1/\omega_2) > 0$$
.

▶ Allows us to associate elliptic curve to \mathbb{C}/L .

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

• $\wp(z; L)$ is *L*-periodic.

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ► Can show:

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ▶ Can show: $\wp(z; L)$ meromorphic with poles only at $z \in L$.

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ▶ Can show: $\wp(z; L)$ meromorphic with poles only at $z \in L$.
- $\wp'(z;L) = \sum_{l \in L} \frac{-2}{(z-l)^3}$, also *L*-periodic, poles only at $z \in L$.

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ▶ Can show: $\wp(z; L)$ meromorphic with poles only at $z \in L$.
- $\wp'(z;L) = \sum_{l \in L} \frac{-2}{(z-l)^3}$, also *L*-periodic, poles only at $z \in L$.
- ▶ Laurent expansion at z = 0:

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ▶ Can show: $\wp(z; L)$ meromorphic with poles only at $z \in L$.
- $\wp'(z;L) = \sum_{l \in L} \frac{-2}{(z-l)^3}$, also *L*-periodic, poles only at $z \in L$.
- ▶ Laurent expansion at z = 0:

$$\wp(z) = z^{-2} + \frac{g_4}{20}z^2 + \frac{g_6}{28}z^4 + O(z^6),$$

- ▶ Allows us to associate elliptic curve to \mathbb{C}/L .
- ▶ Let $z \in \mathbb{C}$ and $L \in \mathcal{L}(\mathbb{C})$. Then

$$\wp(z;L) = \frac{1}{z^2} + \sum_{l \in L \setminus \{0\}} \left(\frac{1}{(z-l)^2} - \frac{1}{l^2} \right).$$

- $\triangleright \wp(z; L)$ is *L*-periodic.
- ▶ Can show: $\wp(z; L)$ meromorphic with poles only at $z \in L$.
- $\wp'(z;L) = \sum_{l \in L} \frac{-2}{(z-l)^3}$, also *L*-periodic, poles only at $z \in L$.
- ▶ Laurent expansion at z = 0:

$$\wp(z) = z^{-2} + \frac{g_4}{20}z^2 + \frac{g_6}{28}z^4 + O(z^6),$$

where
$$g_4 = \frac{4}{3}\pi^4 E_4$$
 and $g_6 = \frac{8}{27}\pi^6 E_6$.

► Clever usage of Liouville's theorem:

► Clever usage of Liouville's theorem: bounded entire function is constant.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ► Since E(z; L) is L-periodic:

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all,

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ► Fundamental parallelogram is compact,

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ▶ Fundamental parallelogram is compact, so E(z; L) attains finite max there.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ▶ Fundamental parallelogram is compact, so E(z; L) attains finite max there.
- ► Since *L*-periodic,

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ▶ Fundamental parallelogram is compact, so E(z; L) attains finite max there.
- ▶ Since *L*-periodic, E(z; L) bounded everywhere.

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ▶ Fundamental parallelogram is compact, so E(z; L) attains finite max there.
- ▶ Since *L*-periodic, E(z; L) bounded everywhere.
- ▶ Liouville: E(z; L) = E(L) constant,

- ► Clever usage of Liouville's theorem: bounded entire function is constant.
- ► Let $E(z; L) = 4\wp(z; L)^3 g_4\wp(z; L) g_6 \wp'(z; L)^2$.
- ▶ Using Laurent: $\lim_{z\to 0} E(z; L) = 0$.
- ▶ Since E(z; L) is L-periodic: no poles at lattice points.
- ▶ Hence E(z; L) no poles at all, i. e. entire.
- ▶ Fundamental parallelogram is compact, so E(z; L) attains finite max there.
- ightharpoonup Since *L*-periodic, E(z; L) bounded everywhere.
- ▶ Liouville: E(z; L) = E(L) constant, so

$$E(L) = \lim_{z \to 0} E(z; L) = 0.$$

Mapping tori to elliptic curves

lacksquare Define $\psi: \mathbb{C}/L o \mathbb{C}^2$ by

Mapping tori to elliptic curves

▶ Define $\psi : \mathbb{C}/L \to \mathbb{C}^2$ by

$$\psi(z+L) = (x = \wp(z; L), y = \wp'(z; L)).$$

Mapping tori to elliptic curves

▶ Define $\psi : \mathbb{C}/L \to \mathbb{C}^2$ by

$$\psi(z+L) = (x = \wp(z; L), y = \wp'(z; L)).$$

► Then $y^2 = 4x^3 - g_4x - g_6$ is elliptic curve.

Can go back – lattice of periods

► Next talk!

Can go back – lattice of periods

- ► Next talk!
- ▶ Key: need to associate a differential form to elliptic curve.

Can go back – lattice of periods

- ► Next talk!
- ► Key: need to associate a differential form to elliptic curve.
- ▶ Can map $(E, \omega) \mapsto L \in \mathcal{L}(\mathbb{C})$.

► We know:

▶ We know: can define modular forms on lattices.

► We know: can define modular forms on lattices.

► Hence: try to define modular forms on elliptic curves.

- ► We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ► How to "see" weight?

- ▶ We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.

- ► We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.
- ► Modular form:

- ► We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.
- ▶ Modular form: rule $\mathbb F$ that assigns to (E,ω) a complex number, and that satisfies

- ▶ We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.
- ▶ Modular form: rule $\mathbb F$ that assigns to (E,ω) a complex number, and that satisfies

$$\mathbb{F}(E, \lambda \omega) = \lambda^{-k} \mathbb{F}(E, \omega),$$

- ▶ We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.
- ▶ Modular form: rule $\mathbb F$ that assigns to (E,ω) a complex number, and that satisfies

$$\mathbb{F}(E, \lambda \omega) = \lambda^{-k} \mathbb{F}(E, \omega),$$

for
$$\lambda \in \mathbb{C} \setminus \{0\}$$
.

- ► We know: can define modular forms on lattices.
- ► Hence: try to define modular forms on elliptic curves.
- ▶ How to "see" weight? Consider pairs (E, ω) with E elliptic curve and ω "differential form" on E.
- ▶ Modular form: rule $\mathbb F$ that assigns to (E,ω) a complex number, and that satisfies

$$\mathbb{F}(E, \lambda \omega) = \lambda^{-k} \mathbb{F}(E, \omega),$$

for
$$\lambda \in \mathbb{C} \setminus \{0\}$$
.

▶ Connection: $\mathbb{F}(E,\omega) = F(L(E,\omega))$.

Excerpt from "p-adic Properties [...]"

Equivalently, a modular form of weight k and level 1 is a rule f which assigns to every pair (E/R, ω) consisting of an elliptic curve over (the spectrum of) a ring R together with a basis ω of $\underline{\omega}_{E/R}$ (i.e., a nowhere vanishing section of $\Omega^1_{E/R}$ on E), an element f(E/R, ω) \in R , such that the following three conditions are satisfied.

Ka-10

1. f(E/R, $\omega)$ depends only on the R-isomorphism class of the pair (E/R, $\omega)$.

78

- 2. f is homogeneous of degree -k in the "second variable"; for any $\lambda \in \mathbb{R}^X$ (the multiplicative group of R), $f(\Xi_j \lambda \omega) = \lambda^{-k} f(\Xi_j \omega) \ .$
- 3. The formation of $f(E/R,\omega)$ commutes with arbitrary extension of scalars $g\colon R\longrightarrow R'$ (meaning $f(E_R/R',\omega_R)=g(f(E/R,\omega))$).

Notice in particular that we now can work over other ground fields. Indeed, we can even work over rings!

This talk

lackbox Goal: try to understand \mathbb{C}/L as a complex manifold,

This talk

- ▶ Goal: try to understand \mathbb{C}/L as a complex manifold,
- \blacktriangleright and make sense of $\omega = dz$ as a differential form.

The left part

► Complex manifolds.

The left part

- ► Complex manifolds.
- ► Complex tori.

The left part

- ► Complex manifolds.
- ► Complex tori.
- ▶ Differential forms.

Let X be Hausdorff and $n \ge 1$ be an integer.

▶ A pair (U, ϕ) where $U \subseteq X$ is open and $\phi : U \to B \subseteq \mathbb{C}^n$ is a homeomorphism is called a complex coordinate system in X.

- ▶ A pair (U, ϕ) where $U \subseteq X$ is open and $\phi : U \to B \subseteq \mathbb{C}^n$ is a homeomorphism is called a complex coordinate system in X.
- ▶ If $p \in X$ is a point, then every complex coordinate system $(U \ni p, \phi)$ is called a coordinate system at p.

- ▶ A pair (U, ϕ) where $U \subseteq X$ is open and $\phi : U \to B \subseteq \mathbb{C}^n$ is a homeomorphism is called a complex coordinate system in X.
- ▶ If $p \in X$ is a point, then every complex coordinate system $(U \ni p, \phi)$ is called a coordinate system at p.
- ▶ The components of ϕ are called local coordinates with respect to (U, ϕ) ,

- ▶ A pair (U, ϕ) where $U \subseteq X$ is open and $\phi : U \to B \subseteq \mathbb{C}^n$ is a homeomorphism is called a complex coordinate system in X.
- ▶ If $p \in X$ is a point, then every complex coordinate system $(U \ni p, \phi)$ is called a coordinate system at p.
- ▶ The components of ϕ are called local coordinates with respect to (U, ϕ) ,
- ▶ and in particular the entries of $\phi(p)$ are called the coordinates of p with respect to (U, ϕ) .

- ▶ A pair (U, ϕ) where $U \subseteq X$ is open and $\phi : U \to B \subseteq \mathbb{C}^n$ is a homeomorphism is called a complex coordinate system in X.
- ▶ If $p \in X$ is a point, then every complex coordinate system $(U \ni p, \phi)$ is called a coordinate system at p.
- ▶ The components of ϕ are called local coordinates with respect to (U, ϕ) ,
- ▶ and in particular the entries of $\phi(p)$ are called the coordinates of p with respect to (U, ϕ) .
- ▶ If f function in U, we consider it as a function of z_1, \ldots, z_n by

$$(z_1,\ldots,z_n)\mapsto f\circ\phi^{-1}(z_1,\ldots,z_n).$$

Definition

Let X be Hausdorff and $\mathcal{U}=(U,\phi)$ and $\mathcal{V}=(V,\psi)$ be two n-dimensional complex coordinate systems in X.

Definition

Let X be Hausdorff and $\mathcal{U}=(U,\phi)$ and $\mathcal{V}=(V,\psi)$ be two n-dimensional complex coordinate systems in X. Then \mathcal{U} and \mathcal{V} are called compatible iff $U\cap V=\emptyset$, or if

Definition

Let X be Hausdorff and $\mathcal{U}=(U,\phi)$ and $\mathcal{V}=(V,\psi)$ be two n-dimensional complex coordinate systems in X. Then \mathcal{U} and \mathcal{V} are called compatible iff $U\cap V=\emptyset$, or if

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V),$$

Definition

Let X be Hausdorff and $\mathcal{U}=(U,\phi)$ and $\mathcal{V}=(V,\psi)$ be two n-dimensional complex coordinate systems in X. Then \mathcal{U} and \mathcal{V} are called compatible iff $U\cap V=\emptyset$, or if

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V),$$

is biholomorphic (i. e. bijective holomorphic with holomorphic inverse).

Definition

Let X be Hausdorff and $n \ge 1$ be an integer.

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. Then a covering (with respect to the first component) of X by pairwise compatible n-dimensional complex coordinate systems is called an n-dimensional atlas on X.

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. Then a covering (with respect to the first component) of X by pairwise compatible n-dimensional complex coordinate systems is called an n-dimensional atlas on X.

Two atlases A_1, A_2 are called equivalent

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. Then a covering (with respect to the first component) of X by pairwise compatible n-dimensional complex coordinate systems is called an n-dimensional atlas on X.

Two atlases $\mathcal{A}_1, \mathcal{A}_2$ are called equivalent iff there exists coordinate systems $\mathcal{U} \in \mathcal{A}_1$ and $\mathcal{V} \in \mathcal{A}_2$

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. Then a covering (with respect to the first component) of X by pairwise compatible n-dimensional complex coordinate systems is called an n-dimensional atlas on X.

Two atlases $\mathcal{A}_1, \mathcal{A}_2$ are called equivalent iff there exists coordinate systems $\mathcal{U} \in \mathcal{A}_1$ and $\mathcal{V} \in \mathcal{A}_2$ such that \mathcal{U} and \mathcal{V} are compatible.

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. Then a covering (with respect to the first component) of X by pairwise compatible n-dimensional complex coordinate systems is called an n-dimensional atlas on X.

Two atlases $\mathcal{A}_1, \mathcal{A}_2$ are called equivalent iff there exists coordinate systems $\mathcal{U} \in \mathcal{A}_1$ and $\mathcal{V} \in \mathcal{A}_2$ such that \mathcal{U} and \mathcal{V} are compatible. We then write $\mathcal{A}_1 \sim \mathcal{A}_2$.

Complex structure

Definition

Let X be Hausdorff and $n \ge 1$ be an integer.

Complex structure

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. If $\mathcal A$ is an n-dimensional atlas on X,

Complex structure

Definition

Let X be Hausdorff and $n \geq 1$ be an integer. If $\mathcal A$ is an n-dimensional atlas on X, then an equivalence class $[\mathcal A]_\sim$ is called an n-dimensional complex structure on X.

Complex manifold

Definition

Let $n \ge 1$ be an integer.

Complex manifold

Definition

Let $n \geq 1$ be an integer. Then an n-dimensional complex manifold

Complex manifold

Definition

Let $n \geq 1$ be an integer. Then an n-dimensional complex manifold is a second countable Hausdorff space equipped with an n-dimensional complex structure.

 $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.

- $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.
- ► Let

- $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.
- ► Let

$$\mathcal{A}=\{(\mathbb{C}^n,\mathrm{id})\}.$$

- $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.
- ► Let

$$\mathcal{A} = \{(\mathbb{C}^n, \mathrm{id})\}.$$

Then A is an atlas.

- $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.
- ► Let

$$\mathcal{A} = \{(\mathbb{C}^n, \mathrm{id})\}.$$

Then A is an atlas.

▶ So $[A]_{\sim}$ is a complex structure.

- $ightharpoonup \mathbb{C}^n$ is second countable Hausdorff with respect to the Euclidean topology.
- ► Let

$$\mathcal{A} = \{(\mathbb{C}^n, \mathrm{id})\}.$$

Then A is an atlas.

- ▶ So $[A]_{\sim}$ is a complex structure.
- ▶ Hence $(\mathbb{C}^n, [A]_{\sim})$ is a complex *n*-dimensional manifold.

▶ Let $(X, [A]_{\sim})$ be an *n*-dimensional complex manifold.

- ▶ Let $(X, [A]_{\sim})$ be an *n*-dimensional complex manifold.
- ▶ Let $B \subseteq X$ open.

- ▶ Let $(X, [A]_{\sim})$ be an *n*-dimensional complex manifold.
- ▶ Let $B \subseteq X$ open.
- ▶ Define $\mathcal{B} = \{(U \cap B, \phi|_{U \cap B}) : (U, \phi) \in \mathcal{A}\}.$

- ▶ Let $(X, [A]_{\sim})$ be an *n*-dimensional complex manifold.
- ▶ Let $B \subseteq X$ open.
- ▶ Define $\mathcal{B} = \{(U \cap B, \phi|_{U \cap B}) : (U, \phi) \in \mathcal{A}\}$. Atlas on B.

- ▶ Let $(X, [A]_{\sim})$ be an *n*-dimensional complex manifold.
- ▶ Let $B \subseteq X$ open.
- ▶ Define $\mathcal{B} = \{(U \cap B, \phi|_{U \cap B}) : (U, \phi) \in \mathcal{A}\}$. At las on B.
- ▶ $(B, [\mathcal{B}]_{\sim})$ is *n*-dimensional complex manifold.

▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L ,

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi: \mathbb{C}^n \to \mathbb{C}^n/L$ by $\pi(z) = z + L$.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi: \mathbb{C}^n \to \mathbb{C}^n/L$ by $\pi(z) = z + L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

$$\pi|_{U}:U\to\pi(U),$$

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

$$\pi|_{U}:U\to\pi(U),$$

bijective (Careful!).

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

$$\pi|_{U}:U\to\pi(U),$$

bijective (Careful!). Then because continuous open bijective, is homeomorphism.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

$$\pi|_{U}:U\to\pi(U),$$

bijective (Careful!). Then because continuous open bijective, is homeomorphism.

▶ Define coordinate system at \tilde{x} by $(\pi(U), \phi)$ where $\phi = \pi|_{U}^{-1} : \pi(U) \to U$.

- ▶ Let $L = \sum_{i=1}^{n} \mathbb{Z}\omega_i$ and let L act on \mathbb{C}^n by translation.
- ▶ Consider \mathbb{C}^n/L , let $\pi:\mathbb{C}^n\to\mathbb{C}^n/L$ by $\pi(z)=z+L$.
- ▶ For $U \subset \mathbb{C}^n$ open have

$$\pi^{-1}(\pi(U)) = \bigcup_{\lambda \in L} U + \lambda,$$

so $\pi(U)$ open.

▶ Let $\tilde{x} \in \mathbb{C}^n/L$ and take $x \in \mathbb{C}^n$ such that $\pi(x) = \tilde{x}$. Let $U \ni x$ open, satisfying

$$\pi|_{\mathcal{U}}: \mathcal{U} \to \pi(\mathcal{U}),$$

bijective (Careful!). Then because continuous open bijective, is homeomorphism.

- ▶ Define coordinate system at \tilde{x} by $(\pi(U), \phi)$ where $\phi = \pi|_{U}^{-1} : \pi(U) \to U$.
- ▶ Does it make an atlas?

▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- \blacktriangleright Suppose $(\pi(\textit{U}),\pi|_{\textit{U}}^{-1})$ and $(\pi(\textit{V}),\pi|_{\textit{V}}^{-1})$ satisfies

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ▶ Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ► Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

► Then

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ► Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

► Then

$$\pi|_{V}^{-1}(\pi(U\cap V))=U\cap V$$
 and $\pi|_{U}^{-1}(\pi(U\cap V))=U\cap V$.

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ► Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

► Then

$$\pi|_{V}^{-1}(\pi(U\cap V))=U\cap V$$
 and $\pi|_{U}^{-1}(\pi(U\cap V))=U\cap V$.

▶ If $a \in U \cap V$, then

$$\pi|_{U}^{-1} \circ \pi|_{V}(a) = \pi|_{U}^{-1}(\pi(a)) = a,$$

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ► Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

► Then

$$\pi|_{V}^{-1}(\pi(U\cap V))=U\cap V$$
 and $\pi|_{U}^{-1}(\pi(U\cap V))=U\cap V$.

▶ If $a \in U \cap V$, then

$$\pi|_{U}^{-1} \circ \pi|_{V}(a) = \pi|_{U}^{-1}(\pi(a)) = a,$$

so
$$\pi|_{U}^{-1} \circ \pi|_{V} = id$$
.

- ▶ Since can form for any $\tilde{x} \in \mathbb{C}^n/L$, it must be is cover.
- ▶ Suppose $(\pi(U), \pi|_U^{-1})$ and $(\pi(V), \pi|_V^{-1})$ satisfies

$$\pi(U) \cap \pi(V) = \pi(U \cap V) \neq \emptyset.$$

► Then

$$\pi|_{V}^{-1}(\pi(U\cap V))=U\cap V$$
 and $\pi|_{U}^{-1}(\pi(U\cap V))=U\cap V$.

▶ If $a \in U \cap V$, then

$$\pi|_{U}^{-1} \circ \pi|_{V}(a) = \pi|_{U}^{-1}(\pi(a)) = a,$$

so
$$\pi|_{U}^{-1} \circ \pi|_{V} = id$$
.

► Clearly biholomorphic.

Follows from:

► Bijective:

Follows from:

▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

so
$$a_1 = a_2$$
.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

so $a_1 = a_2$. Surjective immediate.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

so $a_1 = a_2$. Surjective immediate.

► Hausdorff:

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U+a_1-a_2)\ni a_2+(a_1-a_2)=a_1\in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U + a_1 - a_2) \ni a_2 + (a_1 - a_2) = a_1 \in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

▶ Say $[z_1] \neq [z_2]$, pick U, V as above.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U + a_1 - a_2) \ni a_2 + (a_1 - a_2) = a_1 \in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

Say $[z_1] \neq [z_2]$, pick U, V as above. Then if $z \in \pi(U) \cap \pi(V)$ it holds that z = u + L = v + L for some $u \in U$ and $v \in V$, so

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U + a_1 - a_2) \ni a_2 + (a_1 - a_2) = a_1 \in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

Say $[z_1] \neq [z_2]$, pick U, V as above. Then if $z \in \pi(U) \cap \pi(V)$ it holds that z = u + L = v + L for some $u \in U$ and $v \in V$, so

$$(U+v-u)\ni u+(v-u)=v\in V,$$

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U + a_1 - a_2) \ni a_2 + (a_1 - a_2) = a_1 \in U,$$

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

▶ Say $[z_1] \neq [z_2]$, pick U, V as above. Then if $z \in \pi(U) \cap \pi(V)$ it holds that z = u + L = v + L for some $u \in U$ and $v \in V$, so

$$(U+v-u)\ni u+(v-u)=v\in V,$$

so z cannot exist.

Follows from:

- ▶ Bijective: if $z \in \mathbb{C}^n$, there exists $U \ni z$ open such that $(U + \lambda) \cap U = \emptyset$ unless $\lambda = 0$.
- ▶ Take U as above, say $\pi(a_1) = \pi(a_2)$ with $a_1, a_2 \in U$, then

$$(U + a_1 - a_2) \ni a_2 + (a_1 - a_2) = a_1 \in U$$
,

so $a_1 = a_2$. Surjective immediate.

▶ Hausdorff: if $\pi(z_1) \neq \pi(z_2)$ then exists opens $U \ni z_1$ and $V \ni z_2$ such that

$$(U+\lambda)\cap V=\emptyset$$
,

for every $\lambda \in L$.

▶ Say $[z_1] \neq [z_2]$, pick U, V as above. Then if $z \in \pi(U) \cap \pi(V)$ it holds that z = u + L = v + L for some $u \in U$ and $v \in V$, so

$$(U+v-u)\ni u+(v-u)=v\in V,$$

so z cannot exist. Hence
$$\pi(U) \cap \pi(V) = \emptyset$$
.

Conclusion

► For proofs of these two facts, see e. g. Fritzsche and Grauert.

Conclusion

- ▶ For proofs of these two facts, see e. g. Fritzsche and Grauert.
- ▶ Now \mathbb{C}^n/L is complex manifold.

Conclusion

- ▶ For proofs of these two facts, see e. g. Fritzsche and Grauert.
- ▶ Now \mathbb{C}^n/L is complex manifold.
- ► What about *dz*?

Let X be an n-dimensional manifold and let $a \in X$ be a point.

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

$$\mathcal{E}(B,\mathbb{C}) = \{f \colon B \to \mathbb{C} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \},$$

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

$$\mathcal{E}(B,\mathbb{C}) = \{f \colon B \to \mathbb{C} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \},$$

and

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

$$\mathcal{E}(B,\mathbb{C}) = \{f \colon B \to \mathbb{C} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \},$$

and

$$\mathcal{E}(B) = \{f \colon B \to \mathbb{R} : \forall \text{ c. s. } (U, \phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \}.$$

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

$$\mathcal{E}(B,\mathbb{C}) = \{f \colon B \to \mathbb{C} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \},$$
 and

$$\mathcal{E}(B) = \{ f : B \to \mathbb{R} : \forall \text{ c. s. } (U, \phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \}.$$

Definition

A derivation on X at a is an \mathbb{R} -linear map $v:\mathcal{E}(X) \to \mathbb{R}$ satisfying

Let X be an n-dimensional manifold and let $a \in X$ be a point. For $B \subseteq X$ open let

$$\mathcal{E}(B,\mathbb{C}) = \{f \colon B \to \mathbb{C} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \},$$

and

$$\mathcal{E}(B) = \{f \colon B \to \mathbb{R} : \forall \text{ c. s. } (U,\phi) \text{ s. t. } U \cap B \neq \emptyset, \text{ } f \circ \phi^{-1} \text{ is smooth} \}.$$

Definition

A derivation on X at a is an \mathbb{R} -linear map $v:\mathcal{E}(X) \to \mathbb{R}$ satisfying

$$v[f \cdot g] = v[f] \cdot g(a) + f(a) \cdot v[g].$$

▶ Using cut-off functions, can see if $f|_U = 0$ for some open neighborhood $U \ni a$,

▶ Using cut-off functions, can see if $f|_U = 0$ for some open neighborhood $U \ni a$, then v[f] = 0 for every derivation on X at a.

- ▶ Using cut-off functions, can see if $f|_U = 0$ for some open neighborhood $U \ni a$, then v[f] = 0 for every derivation on X at a.
- ▶ Means we can work with local coordinates.

- ▶ Using cut-off functions, can see if $f|_U = 0$ for some open neighborhood $U \ni a$, then v[f] = 0 for every derivation on X at a.
- ▶ Means we can work with local coordinates.
- ▶ Let $(U, \phi = (z_1, ..., z_n))$ be local coordinates at a,

- ▶ Using cut-off functions, can see if $f|_U = 0$ for some open neighborhood $U \ni a$, then v[f] = 0 for every derivation on X at a.
- ▶ Means we can work with local coordinates.
- Let $(U, \phi = (z_1, \dots, z_n))$ be local coordinates at a, write $z_k = x_k + iy_k$ and

- ▶ Using cut-off functions, can see if $f|_{U} = 0$ for some open neighborhood $U \ni a$, then v[f] = 0 for every derivation on X at a.
- Means we can work with local coordinates.
- Let $(U, \phi = (z_1, \dots, z_n))$ be local coordinates at a, write $z_k = x_k + iy_k$ and

$$(\partial/\partial x_k)_a[f] = (f \circ \phi^{-1})_{x_i}(\phi(a))$$
$$(\partial/\partial y_k)_a[f] = (f \circ \phi^{-1})_{y_i}(\phi(a))$$

$$(\partial/\partial y_k)_a[f] = (f \circ \phi^{-1})_{y_i}(\phi(a))$$

▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.

- ▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.
- ▶ For $f \in \mathcal{E}(X, \mathbb{C})$ write f = g + ih and define v[f] = v[g] + iv[h].

- ▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.
- ▶ For $f \in \mathcal{E}(X, \mathbb{C})$ write f = g + ih and define v[f] = v[g] + iv[h].
- ▶ Define J(v)[f] = iv[f] and $(a + ib)v = av + b \cdot J(v)$.

- ▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.
- ▶ For $f \in \mathcal{E}(X, \mathbb{C})$ write f = g + ih and define v[f] = v[g] + iv[h].
- ▶ Define J(v)[f] = iv[f] and $(a + ib)v = av + b \cdot J(v)$.
- ▶ Then $T_a(X)$ is complexification $(T_a^{\mathbb{R}}(X) \oplus T_a^{\mathbb{R}}(X), J)$.

- ▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.
- ▶ For $f \in \mathcal{E}(X, \mathbb{C})$ write f = g + ih and define v[f] = v[g] + iv[h].
- ▶ Define J(v)[f] = iv[f] and $(a + ib)v = av + b \cdot J(v)$.
- ▶ Then $T_a(X)$ is complexification $(T_a^{\mathbb{R}}(X) \oplus T_a^{\mathbb{R}}(X), J)$.

Has real dimension 2n with basis:

- ▶ Let $\mathbb{T}_a^{\mathbb{R}}(X)$ be real vector space of derivations on X at a.
- ▶ For $f \in \mathcal{E}(X, \mathbb{C})$ write f = g + ih and define v[f] = v[g] + iv[h].
- ▶ Define J(v)[f] = iv[f] and $(a + ib)v = av + b \cdot J(v)$.
- ▶ Then $T_a(X)$ is complexification $(T_a^{\mathbb{R}}(X) \oplus T_a^{\mathbb{R}}(X), J)$.

Has real dimension 2n with basis:

$$\{(\partial/\partial x_1)_a,\ldots,(\partial/\partial x_n)_a,(\partial/\partial y_1)_a,\ldots,(\partial/\partial y_n)_a\}$$

Let X be n-dimensional complex manifold and $x \in X$ a point.

▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ▶ Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{x}(v)=v[f],$$

Let X be n-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{x}(v)=v[f],$$

for $v \in T$.

Let X be *n*-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{\times}(v)=v[f],$$

for $v \in T$. Then $(df)_x \in F$.

Let X be n-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{\times}(v)=v[f],$$

for $v \in T$. Then $(df)_x \in F$. Example of a differential 1-form on X.

Let X be n-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{\times}(v)=v[f],$$

for $v \in T$. Then $(df)_x \in F$. Example of a differential 1-form on X.

▶ Let (U, ϕ) coordinate system at x.

Let X be n-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{\times}(v)=v[f],$$

for $v \in T$. Then $(df)_x \in F$. Example of a differential 1-form on X.

Let (U, ϕ) coordinate system at x. Write

Let X be n-dimensional complex manifold and $x \in X$ a point.

- ▶ Write $T = T_x(X)$ and $T^{\vee} = \operatorname{Hom}_{\mathbb{R}}(T, \mathbb{R})$.
- ► Cotangent space: $F = T^{\vee} \oplus iT^{\vee}$. Note: is of **complex** dimension 2n.
- ► Let *f* be smooth function (real- or complex-valued) on neighborhood of *x*, let:

$$(df)_{\times}(v)=v[f],$$

for $v \in T$. Then $(df)_x \in F$. Example of a differential 1-form on X.

Let (U, ϕ) coordinate system at x. Write

$$dz_i = (d\phi_i)_x.$$

Conclusion for today

Now we know what

 $(\mathbb{C}/L, dz),$

means!

Explain "lattice of periods".

► Explain "lattice of periods". Need integration.

- ► Explain "lattice of periods". Need integration.
- ► Consider right part of "big picture".

- ► Explain "lattice of periods". Need integration.
- ► Consider right part of "big picture". Generalize *dz* to differential on elliptic curve (or any scheme).

- ► Explain "lattice of periods". Need integration.
- ► Consider right part of "big picture". Generalize *dz* to differential on elliptic curve (or any scheme).
- ▶ *q*-series expansion from a geometric point of view

- ► Explain "lattice of periods". Need integration.
- ► Consider right part of "big picture". Generalize *dz* to differential on elliptic curve (or any scheme).
- q-series expansion from a geometric point of view the Tate curve.

gg,bye