

Workpackage 4 Verification & Validation & Safety approach

supported by:

openETCS@ITEA2 Project

Marc Behrens, Jan Welte

Paris, 04.07.2013

Verification and Validation Activities

Artifacts Triggered SCRUM-Verification and Validation Level

GANTT chart

3 Verification and Validation Level:

WP4 Progress

July 2013 Verification and Validation Plan

August 2013: Goal: full artifacts traceability, metaformats September 2013: Goal: test and proof coverage

October 2013: V&V Report on Preliminary Model

July 2013

Aug. 2013

Sept. 2013

Oct. 2013

Nov. 2013

July 2013:
Decision on
Preliminary Model
to evaluate

August 2013: Start of V&V level 1 October 2013: Goal: Complete VnV level 1 process Q4 2013 First Internal Assessment Report

Verification and Validation Inside openETCS

Verification and Validation Inside openETCS

Principles for artifacts integration (1st VnV level)

Qualification for generated artifacts

Using the same artifact as input – clearly defined interface

Having integrable outputs

Advantage: Not more effort on artifacts

Principles for artifacts integration (1st VnV level)

Qualification for generated artifacts

- Message Based Tests (Subset-026 chapter 7 & 8 transferability)
- Tests can contribute to Validation

Gaps in primary model

Top Level: Completing SSRS according to a first set of functions that can feed validation

Is needed for Verification!

Selection of toolchain

Selection of stable builds (all tool chain)

Code generator in the toolchain is needed

If there is no open source code generator, code generated by closed source will be taken for VnV level 1

Artifacts decision process

Results WP7 Tool-Benchmark

			GOPRR	ERTMSF	SysML v	SysML v	SCADE	EventB	Classica	System	Petri
3.1 Main usage of the approach	for which phases do you recommend the approach	1	18		9		18	9		15	-
	Ofor which type of activities do you recommend the approach	0,1	. 27	42	39	40	52	50	42	36	4
3.2 Language	Which are the main characteristics of the language	1	. 35	54	52	49	56	42	41	46	
	Ocapabilities of the language	1	. 57	65	62	74	81	63	73	74	
3.3 System Analysis	how the approach can be involved for the sub-system requirement specification	1	62	53	58	72	59	69	57	0	(
3.4.1 Semi-formal model	Concerning semi-formal model, how the WP2 requirements are covered?	1	. 0	94	69	87	0	91	74	68	1
	Concerning safety properties management, how the WP2 requirements are										
	Ocovered ?	1	. 0	39	24	35	0	55	54	48	
	ODoes the language allow to formalize (D2.6-02-069):	1	. 0	56	33	51	0	51	56	62	
3.4.2 Strictly formal model	Concerning strictly formal model, how the WP2 requirements are covered?	1	. 54	0	0	68	86	87	90	0	1
	ODoes the language allow to formalize (D2.6-02-070):	1	. 45	0	0	47	61	50	56	0	!
	How the approach allows to produce a functional software model of the on-										
3.5.1 Functional design	board unit ?	0,5	35	0	31	45	39	0	45	37	1
3.5.2 SSIL4 design	How the approach allows to produce in safety a software model? Which criteria for software architecture are covered by the methodology (see	(35	0	34	67	72	0	72	41	(
	0EN50128 table A.3):	(60	0	33	36	37	0	48	52	4
	Which criteria for software design and implementation are covered by the										
3.6 Software code generation	methodology (see EN50128 table A.4):	1	. 45	0	23	44	52	0	54	39	4
3.7 Main usage of the tool	Which task are covered by the tool?	1	. 33	32	16	34	54	48	50	40	4
3.8 Use of the tool	0	1	. 54	96	104	93	103	107	92	104	
	This section discusses how the tool can be classified according EN50128										
3.9 Certifiability	requirements (D2.6-02-085).	1	. 21	. 27	23	28	57	35	53	24	_
		Sum	581	. 558	610	880	827	757	975	686	9
		Maight Cum	111	E20	402	710	CE2	712	705	E 42	7

Weight	GOPRR	ERTMSFormalSpecs	SysML with papyrus	SysML with EA	SCADE	EventB	Classical	System	Petri	GNATprove	Semi-Formal	Formal
1		0	9	10		9	18	15	12	18	1	1
0,1			39	40		50	42			39	1	1
1	. 35	54	52	49	56	42				45	1	1
1			62	74	81			74		81	1	1
1	62		58		59					33	1	1
1	. 0	94	69	87	0	91	74	68	81	79	1	0
1	. 0	39	24	35	0	55	54	48	63	50	1	0
1			33	51						57	1	0
1			0	68						80	0	1
1		_	0	47	61	50				57	0	1
-	. 73	Ū	Ū	7,		30	50		34	37	· ·	-
0,5	35	0	31	45	39	0		37	42	37	0	1
C	35	0	34	67	72	0		41	69	58	0	1
C	60	0	33	36	37	0	48	52	44	75	0	1
1	45	0	23	44	52	0		39	42	48	0	1
1			16		54	48				45	1	1
1			104						_	110	1	1
-	. 54	50	104	73	103	107	52	104	7.7	110	-	_
1	21	27	23	28		35	53	24	51	43	1	1
Sum	581	558	610	880	827	757	975	686	914	955		
Weight Sum	444	520	492	719	652	712		542	738	768		
Semi Formal	283	520	454	537	433				535	565		
Formal	444	331	366	546	652	515	611	364	540	582		

Expectations to WP7

To develop the VnV Process:

- Support for consistency of process
 - Does the process work?
- Support for tool functionality
 - Which tasks are supported by the tools?
- Support for tool integration is needed
 - Do the tools integrate?
- Support for artifacts
 - Do the artifacts trace?

Model Transformation Possible

Primary Model for VnV level 1

SysML/papyrus (High level model) SCADE (Low level model & Code)

Justification:

SysML:

agreed on as primary tools for modelling (WP7- Workshop 4.7.2013)

SCADE:

Best available formal tool and code generation according to WP7 benchmark

Thank you for your attention!

For further regular information, please subscribe to the Verification &
 Validation group: wp4+subscribe@openetcs.org

Marc Behrens

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Marc.Behrens@DLR.de

Tel: +49 (0) 531 295 3451

Question round

Back

