МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Кафедра: математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Программная инженерия» Профиль подготовки: «Технологии цифровой трансформации»

ОТЧЕТ

по предмету "Параллельные численные методы"

Выполнил: студент группы 3824М1ПР1 Д.Э. Булгаков Подпись

Проверил: д.т.н., доц., К.А.Баркалов Подпись

Содержание

1.	Введение	3
2.	Постановка задачи	4
3.	Последовательный алгоритм	5
4.	Параллельный алгоритм	7
5.	Результаты	9
6.	Заключение	10
7.	Список литературы	11
8.	Приложение	12

1. Введение

Разложе́ние Холе́цкого (метод квадратного корня) — представление симметричной положительно определённой матрицы A в виде

$$A = LL^T$$
,

где L — нижняя треугольная матрица со строго положительными элементами на диагонали. Иногда разложение записывается в эквивалентной форме:

$$A = U^T U$$
,

где $U=L^T$ — верхняя треугольная матрица.

Разложение Холецкого всегда существует и единственно для любой симметричной положительно определённой матрицы.

2. Постановка задачи

Необходимо реализовать блочное разложение Холецкого для симметричной положительно определённой матрицы A, то есть представить её в виде произведения:

$$A = LL^T,$$

где L — нижняя треугольная матрица со строго положительными элементами на диагонали.

Требуется использовать технологии параллельного программирования с помощью OpenMP для повышения производительности.

3. Последовательный алгоритм

Шаги алгоритма

Пусть матрица A имеет размерность $n \times n$, и необходимо найти нижнюю треугольную матрицу L, для чего выполняются следующие шаги:

- 1. **Инициализация:** Создаём матрицу L размерности $n \times n$, инициализируя все её элементы нулями. Элементы на диагонали будут вычисляться как положительные числа, а элементы под диагональю как значения, соответствующие разложению.
- 2. Цикл по строкам и столбцам: Основной цикл состоит из двух вложенных:
 - Внешний цикл перебирает строки матрицы A и вычисляет элементы матрицы L.
 - Внутренний цикл вычисляет элементы L в каждой строке, используя формулы разложения Холецкого.

Для каждого элемента $L_{i,j}$, где $i \geq j$, вычисление происходит по следующей формуле:

$$L_{i,j} = \sqrt{A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k}},$$

если i = j (элементы на диагонали), или

$$L_{i,j} = \frac{1}{L_{j,j}} \left(A_{i,j} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} \right),$$

если i > j (элементы ниже диагонали).

- 3. **Построение матрицы** L: После вычисления всех элементов матрицы L, мы получаем её как результат разложения Холецкого. После этого матрица L может быть использована для проверки, путём вычисления LL^T , и сравнения с исходной матрицей A.
- 4. Завершение: Алгоритм завершается после вычисления всех элементов матрицы L.

Время выполнения

Время выполнения этого алгоритма в последовательной версии имеет сложность $O(n^3)$, что обусловлено необходимостью вычисления каждого элемента матрицы L через сумму по всем предыдущим элементам строки и столбца. Это приводит к тройному вложенному циклу, где каждый цикл выполняется n раз.

$$T_{\text{seq}} = O(n^3).$$

4. Параллельный алгоритм

Параллельный алгоритм разложения Холецкого

Для распараллеливания алгоритма разложения Холецкого применяется блочное разложение.

Алгоритм

1. **Инициализация матрицы** L. На первом шаге происходит инициализация всех элементов матрицы L значениями нулей. Это выполняется параллельно для всех элементов матрицы:

```
#pragma omp parallel for collapse(2)
for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j)
        L[i * n + j] = 0.0;</pre>
```

2. **Обработка блоков матрицы**. Основной цикл алгоритма выполняет обработку матрицы по блокам. Каждый блок размером $B \times B$ обрабатывается отдельно, начиная с диагональных элементов:

```
for (int k = 0; k < n; k += blockSize) {
  int end = std::min(k + blockSize, n);</pre>
```

(а) Вычисление диагональных элементов для каждого блока:

```
for (int i = k; i < end; ++i) {
   double sum = 0.0;
   for (int p = 0; p < i; ++p)
       sum += L[i * n + p] * L[i * n + p];
   L[i * n + i] = std::sqrt(A[i * n + i] - sum);
}</pre>
```

(b) Вычисление элементов нижней треугольной части блока:

```
for (int j = i + 1; j < end; ++j) {
   double sum = 0.0;
   for (int p = 0; p < i; ++p)
      sum += L[j * n + p] * L[i * n + p];
   L[j * n + i] = (A[j * n + i] - sum) / L[i * n + i];
}</pre>
```

(c) **Обновление оставшихся блоков**: Обновление правого блока (верхняя часть матрицы A, которая не была обработана в первом цикле):

```
#pragma omp parallel for
for (int i = end; i < n; ++i) {
    for (int j = k; j < end; ++j) {
        double sum = 0.0;
        for (int p = 0; p < j; ++p)
            sum += L[i * n + p] * L[j * n + p];
        L[i * n + j] = (A[i * n + j] - sum) / L[j * n + j];
    }
}</pre>
```

Оценка сложности

Параллельный алгоритм имеет теоретическую сложность $O\left(\frac{n^3}{p}\right)$, где p — количество потоков, используемых в OpenMP. Эта оценка предполагает идеальную масштабируемость, что, однако, редко наблюдается на практике из-за накладных расходов на создание и синхронизацию потоков.

5. Результаты

Алгоритм был реализован на языке C++ с использованием библиотеки OpenMP для параллельных вычислений. Для проверки корректности параллельного алгоритма была использована случайно сгенерированная положительно определенная матрица. Результаты работы программы для различных размеров матриц и количества потоков приведены ниже.

Далее для тестов использовались случайно сгенерированные матрицы. Размер блока выбран 32. Время выполнения в секундах.

Потоки/Размерность	1000x1000	3000x3000	5000x5000
1	0.4551	12.1241	56.6328
2	0.2386	6.2803	28.8508
4	0.1358	3.2617	14.8578
6	0.0994	2.3387	10.5903

Таблица 1: Время выполнения разложения Холецкого для разных размеров матриц и количества потоков

6. Заключение

В ходе выполнения работы был изучен алгоритм разложения Холецкого. На основе полученных знаний был реализован блочный алгоритм разложения Холецкого на языке C++ с использованием библиотеки OpenMP для параллельных вычислений.

7. Список литературы

- 1. Нестеренко, В. П., Рябов, А. В. *Методы численного решения линейных систем.* М.: Наука, 2009.-512 с.
- 2. Чесноков, В. И. *Параллельные вычисления. Теория и практика.* М.: МЦНМО, 2017. 304 с.
- 3. Папалексис, В. В., Ортега, Дж. *Введение в параллельные методы решения линейных систем.* М.: Мир, 1991. 376 с.
- 4. OpenMP Architecture Review Board. *OpenMP Application Programming Interface. Version* 4.5. 2015. Режим доступа:. Загл. с экрана.

8. Приложение

```
void Cholesky Decomposition(double* A, double* L, int n) {
    int blockSize = 32;
    #pragma omp parallel for collapse(2)
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < n; ++j)
            L[i * n + j] = 0.0;
    for (int k = 0; k < n; k += blockSize) {
        int end = std::min(k + blockSize, n);
        for (int i = k; i < end; ++i) {
            double sum = 0.0;
            for (int p = 0; p < i; ++p)
                sum += L[i * n + p] * L[i * n + p];
            L[i * n + i] = std::sqrt(A[i * n + i] - sum);
            for (int j = i + 1; j < end; ++j) {
                sum = 0.0;
                for (int p = 0; p < i; ++p)
                    sum += L[j * n + p] * L[i * n + p];
                L[j * n + i] = (A[j * n + i] - sum) / L[i * n + i];
            }
        }
        #pragma omp parallel for collapse(2)
        for (int i = end; i < n; ++i) {
            for (int j = k; j < end; ++j) {
                double sum = 0.0;
                for (int p = 0; p < j; ++p)
                    sum += L[i * n + p] * L[j * n + p];
```

```
L[i * n + j] = (A[i * n + j] - sum) / L[j * n + j];
}

}
}
```