IL PROBLEMA DEL BUS

Max Pierini

bus@maxpierini.it May 18, 2020

Figure 1: Double Decker Bus

Abbiamo un Double Decker Bus (figura 1). Chi esce dal bus non può più rientrare. Scelto un posto (al piano superiore o inferiore), non si può cambiare. Abbiamo alcune informazioni in due tempi, t_i e t_{i+1} . In Δt , ovvero tra t_i e t_{i+1} , il bus ha effettuato una fermata permettendo uscita ed entrata.

Sappiamo che:

- al tempo t_i
 - $-\,$ sul bus ci sono 83324 passeggeri di cui 68679 al piano inferiore e 14645 al piano superiore
 - il numero totale di persone entrate nel bus dall'inizio della corsa è 219070 e il numero totale di passeggeri usciti dal bus è 135746
- al tempo t_{i+1}
 - sul bus ci sono 82488 passeggeri di cui 67950 al piano inferiore e 14538 al piano superiore
 - il numero totale di persone entrate nel bus dall'inizio della corsa è 219814 e il numero totale di passeggeri usciti dal bus è 137326.

Possiamo calcolare che nella fermata in Δt :

- sono usciti 1580 passeggeri
- sono entrate 744 persone
- ci sono infatti 836 passeggeri in meno sul bus (1580 744), di cui:
 - 729 in meno al piano inferiore
 - 107 in meno al piano superiore

Domanda: è possibile calcolare

- 1. quante delle persone entrate in Δt sono andate al piano superiore e quante al piano inferiore?
- 2. quanti dei passeggeri usciti in Δt erano al piano superiore e quanti al piano inferiore?