MATH1081 - Assignment 1

1. Prove that $\{15m-7: m \in \mathbb{Z}\}$ is a proper subset of $\{5n+3: n \in \mathbb{Z}\}$.

Proof: We are required to prove that $\{15m-7: m\in\mathbb{Z}\}$ is a proper subset of $\{5n+3: n\in\mathbb{Z}\}$. Let $S=\{15m-7: m\in\mathbb{Z}\}$, and $T=\{5n+3: n\in\mathbb{Z}\}$. Consider the set S, which can be manipulated as follows.

$$S = \{15m - 7 : m \in \mathbb{Z}\}$$
$$= \{15m - 10 + 3 : m \in \mathbb{Z}\}$$
$$S = \{5(3m - 2) + 3 : m \in \mathbb{Z}\}$$

Let $x \in S$. Because m is an integer, so too is 3m-2. Thus, let n=3m-2. Therefore, $x \in T$, because $x \in S$. Therefore $S \subseteq T$.

Assume that $T\subseteq S$. By definition, every element of T must also be an element of S. Select n=0. This gives the element y=3, where $y\in T$, clearly. In order for $y\in S$, we must satisfy 15m-7=3, where $m\in \mathbb{Z}$. Therefore, $m=\frac{4}{5}$, which is clearly not an integer. Thus, $y\notin S$, and hence our assumption that $T\subseteq S$ is incorrect. Hence, $T\nsubseteq S$, and so $S\neq T$.

A proper subset of a set A, is a set B, where $B \subseteq A$, and $A \neq B$. Thus, as $S \subseteq T$, and $S \neq T$, then clearly, S is a proper subset of T.

2. A relation \leq is defined on $\mathbb R$ by

 $x \leq y$ if and only if y = x + k for some integer $k \geq 0$.

Prove that \leq is a partial order.

Proof: We are required to prove that a relation \preceq defined on \mathbb{R} by $x \preceq y$ if and only if y = x + k, for some integer $k \geq 0$. In order to prove \preceq is a partial order, we must prove that \preceq is reflexive, anti-symmetric, and transitive. As a result, the proof will be completed by proving these properties hold for \preceq . Select k = 0. Therefore $k \in \mathbb{Z}$ and $k \geq 0$.

<u>Reflexive:</u> A partial order defined on a set S is reflexive if $\forall x \in S$, $x \leq x$. Let $a \in \mathbb{R}$. For all real numbers, a = a, which can be written as a = a + 0, which is also equivalent to a = a + k, based on the selection of k. Thus, $a \leq a$. Therefore, \leq is reflexive.

Anti-Symmetric: A partial order defined on a set S is anti-symmetric if $\forall x,y \in S$, $x \leq y$ and $y \leq x$ implies x=y. Let $a,b \in \mathbb{R}$, $a \leq b$, and $b \leq a$. We can rewrite these statements as b=a+k, and a=b+k. Based on the selection of k, the previous statements become b=a, and a=b. Thus, $a \leq b$ and $b \leq a$ implies a=b. Therefore, \leq is anti-symmetric.

<u>Transitive</u>: A partial order defined on a set S is transitive if $\forall x,y,z\in S$, $x\preceq y$, and $y\preceq z$ implies $x\preceq z$. Let $a,b,c\in\mathbb{R},\ a\preceq b$, and $b\preceq c$. These statements can be written as b=a+k, and c=b+k. With the selection of $k,\ b=a$, and c=b. Therefore c=a, which can be written as c=a+k, from the selection of k. Thus, $a\preceq c$, and so $a\preceq b$, and $b\preceq c$ imply $a\preceq c$. Therefore, \preceq is transitive.

As \leq is reflexive, anti-symmetric, and transitive, \leq is a partial order.

3. Prove that for an integer $k \ge 0$

$$(4(k+1)-1)5^{k+1} - (4k-1)5^k = (16k+16)5^k.$$

Hence simplify

$$\sum_{k=0}^{n-1} (k+1)5^k.$$

Proof: Let $k \in \mathbb{Z}$, such that $k \geq 0$. Let P(k) be the predicate

$$(4(k+1)-1)5^{k+1} - (4k-1)5^k = (16k+16)5^k.$$

Consider the LHS of P(k).

LHS =
$$(4(k+1) - 1)5^{k+1} - (4k-1)5^k$$

= $5^k [(4(k+1) - 1)5 - (4k-1)]$
= $5^k [(4k+4-1)5 - 4k-1]$
= $5^k [20k+15 - 4k+1]$
= $5^k [16k+16]$
= $(16k+16)5^k$
= RHS of $P(k)$

This clearly verifies that P(k) is true $\forall k \in \mathbb{Z}$ such that $k \geq 0$.

Consider again the predicate P(k), which we have previously proved true, and thus we shall label it now the statement S(k), after swapping the LHS and RHS.

$$\begin{split} \sum_{k=0}^{n-1} \left[(16k+16)5^k \right] &= \sum_{k=0}^{n-1} \left[(4(k+1)-1)5^{k+1} - (4k-1)5^k \right] & \text{[Summing from } 0 \text{ to } n-1] \\ 16 \sum_{k=0}^{n-1} \left[(k+1)5^k \right] &= \sum_{k=0}^{n-1} \left[(4(k+1)-1)5^{k+1} - (4k-1)5^k \right] \\ \text{RHS} &= \sum_{k=0}^{n-1} \left[(4(k+1)-1)5^{k+1} - (4k-1)5^k \right] \\ &= \sum_{k=0}^{n-1} \left[(4(k+1)-1)5^{k+1} \right] - \sum_{k=0}^{n-1} \left[(4k-1)5^k \right] & \text{[Splitting the summation by term]} \\ &= \sum_{k=1}^{n} \left[(4k-1)5^k \right] - \sum_{k=0}^{n-1} \left[(4k-1)5^k \right] & \text{[Changing the summation index]} \\ &= (4n-1)5^n + \sum_{k=1}^{n-1} \left[(4k-1)5^k \right] - \sum_{k=1}^{n-1} \left[(4k-1)5^k \right] - (4(0)-1)5^0 \\ &= (4n-1)5^n + 1 \end{split}$$

The statement S(k) now becomes $16\sum_{k=0}^{n-1}\left[(k+1)5^k\right]=(4n-1)5^n+1$, and thus the simplification of $\sum_{k=0}^{n-1}(k+1)5^k$ is

$$\sum_{k=0}^{n-1} \left[(k+1)5^k \right] = \frac{1}{16} \left[(4n-1)5^n + 1 \right]$$

This completes the proof.