

SDE: System Design and Engineering

Lecture – 01 (A)
Introduction to
Linux Crash Course.

From Zero to Google: Architecting the Invisible Infrastructure

by

Aatiz Ghimire

Learning Objectives

- Become acquainted with the Linux OS
- Get to know some desktops
- Explore Linux and how it handles hardware
- Learn about working with linux

Table of contents

- 1. Overview
- 2. Linux Desktop
- 3. Linux System
- 4. Compiling Software

What is a Linux

- Originally developed by Linus Torvalds in 1991
- Open Source operating system https://github.com/torvalds/linux
- Available under GPL-2.0 license
- Commonly bundled as Linux Distributions
 (Ubuntu, Debian, Red Hat, Arch, ...)
- Omnipresent in HPC and servers

Tux the penguin, the mascot of Linux

Desktop Environment (DE)

- Unlike Windows or Mac, multiple DEs supported
- Most popular: GNOME, KDE
- DE (mostly) independent of Linux distribution
- Highly customizable
 - Window management and alignment
 - Replace file explorer, login manager, ...

Linux Desktop - Distributions

Linux Desktop - VirtualBox

- Add new Enter name, Linux, flavor
- Recommended is 2048MB but better is 4096MB RAM
- Create new HDD file now
 - Choose VDI
 - Dynamics allocation
 - At least 20GB of free space
- Later you may want to increase the number of Cores

Linux Desktop - VirtualBox

Linux Desktop - Install

Linux Desktop - Install

Linux Desktop - Example desktop: GNOME 48

Linux Desktop - Example desktop: xfce

Linux Desktop - Example desktop: mate

Linux Desktop - Example desktop: lxde

Linux Desktop - Example desktop: Cinnamon

Linux Desktop - Example desktop: budgi

Linux Desktop - Example desktop: KDE plasma

Linux Desktop - Installing software

- Using package manager
 - o apt, apt-get, pacman, yum, dnf
 - snap and snap packages
 - o flatpack
- Compiling from source (someone said gentoo??)
- Software manager APP

Linux Desktop - App/Software center

Linux Desktop - Want to play games

The Shell

- What is the Shell used for?
 - Your gateway to Linux Machine
 - Managing files and folders
 - Compiling from source
 - Running programs
 - Managing the system even without GUI
- Terminal emulator improved terminals
- Remove the need for a mouse
- Working with the best editor: VIM / NANO (My preference)

File System

- Many different file system (FS) implementations exist
- Some support **Journaling**
 - FS keeps a log (journal) of file operations
 - Enables consistency in case of crash during write
- Some are better for parallel IO
- NFS for network mounting
- See currently mounted FS via
 - o df -T

File System Types - Examples

- Ext4
 - Native Linux FS
- XFS
 - High-performance FS
- BeeGFS
 - High-performance parallel File system
- NTFS/FAT
 - Windows FS
 - o USB-Sticks, . . .
- HFS+
 - Mac FS
- Tmpfs
 - Linux temporary in-memory FS

Linux File Tree

Image Source: https://static.thegeekstuff.com/wp-content/uploads/2010/11/filesystem-structure.png

System Logging

- Logs commonly in /var/log
 - Find application and system logs here
 - Use tail -f file to follow changes
- dmesg print Kernel ring buffer
- journalctl for systemd logs

Linux Services and systemd

- Service management software (controversial but works)
- Interaction commands are:
 - systemctl status
 - systemctl start/stop
 - systemctl enable/disable
 - systemctl --user
- Try it out for these services
 - systemctl status sshd
 - systemctl status ntpd

Linux hardware files

- Mounting hard drives and USB Sticks
 - Find devices using lsblk
 - Mount a device mount /dev/sda1 /mnt
 - Unmount a device umount /mnt
- Finding the Battery
 - Could be at /sys/class/power_supply/BAT0/
 - Current status charge_now
- Finding the CPU lscpu / cat /proc/cpuinfo
 - Could be at /sys/devices/system/cpu/cpu0/cpufreq/
 - Current frequency scaling_cur_freq

Compiling own Software

- Compiling means to create an executable or a library from the source code
- Scientific software is often only available as source code
- Compiling on the target system often yields better performance
- Prepackaged software typically requires administrator (root) privileges ...
 - o (on the Cluster sudo or su won't work)
 - o but you can use Singularity containers!

Getting and Unpacking the Source Code

- Source code is usually packaged as "tarball"
 - Look for file extensions "tar.gz", "tar.bz2", "tgz"
 - Naming convention is often {NAME}-{VERSION}.tar.gz
- If the tarball is available on the web use "wget" to download
- Use "tar" to unpack the tarball
 - Use "tar xvzf "for 'tar.gz ", "tgz "
 - Use "tar xvjf "for "tar.bz2"

Recipe: wget and tar

• Using wget and tar to prepare the source code

> mkdir \$HOME/build

> cd \$HOME/build

> wget <tarball URL>

> tar xvzf .tar.gz

> cd <name-version>

Downloading Source Code

- create a directory with mkdir
 - o python-3.14
- switch into the directory
 - o cd python-3.14/
- download python-3.14
 - wget https://github.com/python/cpython/archive/refs/tags/v3.14.0b1.tar.gz
- you do the extraction with
 - o tar xvzf cpython-3.14.0b1.tar.gz

Compile the program

- load up the Compiler on the cluster (skip if not needed) (for HPC Users)
 - module load gcc
- Configure the prefix
 - o cd python-3.14
 - ./configure CC=gcc -prefix=/home/(yourusername)/python-3.14 --enable-optimizations
- with the prefix set you can compile the software
 - o make -j 4
- now check the installation, and install the program
 - make check
 - make install

Compile the program

- check the installation with
 - ls -alh /home/(yourusername)/python-3.14
- Now we have installed Python 3.14 successfully
- Check whether the installation is there
- Check if the permissions to execute are set
- Ensure you can execute it
 - /home/(yourusername)/python-3.14/bin/python3.14 --version
- Optional: Add it to your path in .bashrc
 - export PATH=/home/(yourusername)/python-3.14/bin/python3.14/bin:\$PATH

Summary

- You learned the beauty of Linux desktops
- You learned how to install software
- You should be able to:
 - Find your way around the file tree
 - Look for hardware and kernel parameters
 - Compile software