Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich

Ensemble methods

Context

- We have so far focussed on analysis of single classifiers
 - k-NN / plugin estimators:

$$\mathbb{E}[L_{\mathcal{D}}(\widehat{h}_S)] \to L_{\mathcal{D}}^*$$
 as $m \to \infty$, if conditions of Stone's theorem hold

• ERM over \mathcal{H} with $VCdim(\mathcal{H}) = d < \infty$ (linear classifiers, neural networks)

$$L_{\mathcal{D}}(\widehat{h}) \leq \inf_{\substack{h \in \mathcal{H} \\ \text{inductive bias}}} L_{\mathcal{D}}(h) + O\left(\sqrt{\frac{d \ln m}{m}}\right)$$

- Simple classifiers (1-NN, ERM over decision stumps)
 - are computationally faster, have low estimation error,
 - but inductive bias can be high, may not be close to Bayer error

Ensemble methods: Definition from scikit-learn

- The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator.
- In averaging methods, the driving principle is to build several estimators independently and then to average their predictions.
 - Examples: Voting classifiers, Bagging, Random Forests
- In **boosting methods**, base estimators are built sequentially and one tries to reduce the bias of the combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.
 - Examples: AdaBoost, Gradient Boosting (XGBoost)

Outline

- Voting and Averaged predictors
 - Generalisation error bound for majority vote
 - If individual classifiers are consistent, then averaged classifier is also consistent
- Bagging
 - Ensemble of 1-NNs is universally consistent
 - Bagging leads to classifiers with optimal sample complexity (so better than ERM)
- Boosting
 - Weak learning: Performing better than random guessing (error $<\frac{1}{2}$ for binary case)
 - Adaboost: Combines weak learners to build a PAC learner; Achieves low training error

Average / Majority vote classifier

- Let $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathcal{X} \times \{\pm 1\}$ be training sample
- Let $h_{S,1}, \ldots, h_{S,T}$ be T binary classifiers learned from S (or some sub-sample of S)
 - $h_{S,1}, \ldots, h_{S,T}$ are called base classifiers
 - Example: $h_{S,t} = \text{classifier learned using ERM on } \mathcal{H}_t \subset \{\pm 1\}^{\mathcal{X}}$ (\mathcal{H}_t is a base hypothesis class)
- Average / majority vote classifier:

$$h_S^{(T)}(x) = \operatorname{sign}\left(\frac{1}{T}\sum_{t=1}^T h_{S,t}(x)\right)$$

Hypothesis class of majority vote, and generalisation error

- Let $h_{S,t} = \text{classifier learned using ERM on } \mathcal{H}_t \subset \{\pm 1\}^{\mathcal{X}}, \text{ where } \mathrm{VCdim}(\mathcal{H}_t) = d < \infty$
- Hypothesis class of majority vote classifier:

$$M_{\mathcal{H}_1,\dots,\mathcal{H}_T} = \left\{ \operatorname{sign} \left(\frac{1}{T} \sum_{t=1}^T h_t(\cdot) \right) : h_t \in \mathcal{H}_t \ \forall t \right\} \subset \{\pm 1\}^{\mathcal{X}}$$

- Exercise: Show that $VCdim(M_{\mathcal{H}_1,...,\mathcal{H}_T}) = O(dT \cdot \log_2(dT))$
- Generalisation error bound: With probability 1δ (over $S \sim \mathcal{D}^m$),

$$L_{\mathcal{D}}\left(h_S^{(T)}\right) \leq L_S\left(h_S^{(T)}\right) + O\left(\sqrt{\frac{dT \cdot \log_2(dT)\ln(2em) + \ln(\frac{1}{\delta})}{m}}\right)$$

• Can we state a bound on $L_{\mathcal{D}}\left(h_S^{(T)}\right)$ in terms of $\inf_{h\in\mathcal{M}_{\mathcal{H}_1,...,\mathcal{H}_T}}L_{\mathcal{D}}(h)$?

Randomised classifiers

- Given training sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathcal{X} \times \mathcal{Y}$
- Randomised classifier:

$$\tilde{h}_S(x) = h_S(x, Z) =$$
 predictor learned from S , where learning involves a random variable/vector Z

- Example (bagging): $Z = (z_1, \dots, z_m) \in \{0, 1\}^m$ $z_i = \text{Bernoulli variable indicating } i\text{-th sample in } S \text{ is used for training}$
- Error of a randomised classifier \tilde{h}_S :

$$L_{\mathcal{D}}(\tilde{h}_S) = \mathbb{E}_{(x,y),Z} \left[\ell \left(h_S(x,Z), y \right) \right] = \mathbb{E}_{(x,y),Z} \left[\ell \left(h_S(x,Z), y \right) \middle| S \right]$$

• For 0-1 loss, $L_{\mathcal{D}}(\tilde{h}_S) = \mathbb{P}_{(x,y),Z}(h_S(x,Z) \neq y)$

Voting / Average of Ramdomised Classifiers

- It helps to let class labels be $\{0,1\}$ Given training sample $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathcal{X} \times \{0,1\}$
- \tilde{h}_S is a randomised classifier:
 - Let Z_1, \ldots, Z_T be i.i.d. random variables/vectors
 - For every t = 1, ..., T, we learn a classifier $h_S(\cdot, Z_t) : \mathcal{X} \to \{0, 1\}$
- Voting classifier:

$$h_S^{(T)}(x) = \mathbf{1} \left\{ \frac{1}{T} \sum_{t=1}^T h_S(x, Z_t) \ge \frac{1}{2} \right\}$$

Averaged (expected) classifier:

$$\bar{h}_S(x) = \mathbf{1} \left\{ \mathbb{E}_Z[h_S(x, Z)] \ge \frac{1}{2} \right\}$$
 (similar to $T \to \infty$)

(Universal) consistency of voting classifier

• We say randomised classifier \tilde{h}_S is consistent with respect to \mathcal{D} if

$$\mathbb{E}_S\left[L_{\mathcal{D}}(\tilde{h}_S)\right] \to L_{\mathcal{D}}^* \text{ as } m \to \infty$$

 \tilde{h}_S is universally consistent if above holds for every distribution \mathcal{D}

Theorem En.1 (Voting/averaging of consistent randomised classifiers is consistent)

Assume 0-1 loss, and let h_S be a randomised classifier, consistent with respect to \mathcal{D} . Then the voting classifier $h_S^{(T)}$ and the averaged classifier \bar{h}_S are also consistent w.r.t. \mathcal{D} .

If \tilde{h}_S is universally consistent, then $h_S^{(T)}$ and \bar{h}_S are also universally consistent.

Proof left as exercise. Use hints/steps provided in next slides (exercises marked in red).

Proof sketch: Part-1 (Alternative formulation of consistency)

• Let $g: \mathcal{X} \to \{0,1\}$ be a (possibly randomised) classifier such that, conditioned on x, prediction g(x) and true label $y \sim \eta(x)$ are independent.

(1.1) Show that $\mathbb{P}(g(x) \neq y|x) \geq \min\{\eta(x), 1 - \eta(x)\} = \mathbb{P}(h^*(x) \neq y|x)$, where h^* is the Bayes classifier.

• FACT (you can assume this):

(1.1) implies classifier \tilde{h}_S is consistent w.r.t \mathcal{D} , that is $\lim_{m\to\infty} \mathbb{E}_S[L_{\mathcal{D}}(\tilde{h}_S)] = L_{\mathcal{D}}^*$, if and only if,

with probability 1 w.r.t $\mathcal{D}_{\mathcal{X}}$, $\lim_{m\to\infty} \mathbb{P}_{S,Z,y}(h_S(x,Z)\neq y|x) = \min\{\eta(x), 1-\eta(x)\}.$

• Informally, above statement says that proving consistency is equivalent to showing $\mathbb{P}_{S,Z,y}(h_S(x,Z) \neq y|x) \to \min\{\eta(x), 1-\eta(x)\}$ for "every" x.

Proof sketch: Part-1 (Alternative formulation of consistency)

- Let $g: \mathcal{X} \to \{0,1\}$ be a (possibly randomised) classifier that depends on m with $m \to \infty$.
 - (1.2) If $\eta(x) > \frac{1}{2}$, show that $\mathbb{P}(g(x) \neq y|x) \to \min\{\eta(x), 1 \eta(x)\}$ if and only if $\mathbb{P}(g(x) = 0|x) \to 0$. Similarly, for $\eta(x) < \frac{1}{2}$, show that $\mathbb{P}(g(x) \neq y|x) \to \min\{\eta(x), 1 - \eta(x)\}$ if and only if $\mathbb{P}(g(x) = 1|x) \to 0$.
- Combined with FACT, (1.2) implies that consistency of \tilde{h}_S is equivalent to $\mathbb{P}_{S,Z}(h_S(x,Z)=0|x)\to 0$ if $\eta(x)>\frac{1}{2}$ and $\mathbb{P}_{S,Z}(h_S(x,Z)=1|x)\to 0$ if $\eta(x)<\frac{1}{2}$.

Proof sketch: Consistency of \bar{h}_S and $h_S^{(T)}$

- Part-2: Consistency of averaged classifier \bar{h}_S
 - (2.1) Show that $\mathbf{1}\{\bar{h}_S(x) = a\} \le 2\mathbb{P}_Z(h_S(x, Z) = a \mid x, S) \text{ for } a \in \{0, 1\}.$
 - (2.2) Use above to show that $\mathbb{P}_S(\bar{h}_S(x) = 0|x) \to 0$ if $\eta(x) > \frac{1}{2}$ and $\mathbb{P}_S(\bar{h}_S(x) = 1|x) \to 0$ if $\eta(x) < \frac{1}{2}$. Hence, argue that \bar{h}_S is consistent.
- Part-3: Consistency of voting classifier $h_S^{(T)}$
 - (3.1) Observe that, for $a \in \{0,1\}$, $h_S^{(T)}(x) = a$ if and only if $\frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{h_S(x, Z_t) = a\} \ge \frac{1}{2}$. Use the observation and Markov's inequality to show that

$$\mathbb{P}_{Z_1,...,Z_t} \left(h_S^{(T)}(x) = a \,|\, x, S \right) \le 2 \mathbb{P}_Z(h_S(x,Z) = a \,|\, x, S).$$

(3.2) Complete the proof following the same arguments as part-2.

Bagging 1-Nearest neighbours

- Bagging:
 - Given $S = \{(x_1, y_1), \dots, (x_m, y_m)\} \subset \mathbb{R}^d \times \{0, 1\}$
 - Random vectors $Z_1, \ldots, Z_T \in \{0, 1\}^m$
 - The t-th classifier $h_S(\cdot, Z_t)$ is trained using a subset of samples $S_t = \{(x_i, y_i)\}_{i:Z_t^i=1}$
- Bagging 1-NN:
 - Recall in 1-NN, for every test point x, $x_{\pi_1(x)}$ is NN of x from training sample S ... but $x_{\pi_1(x)}$ may not be present in S_t
 - Let $x_{\pi_1(x,Z_t)} = NN$ of x from subsample S_t (which depends on random Z_t)
 - Voting 1-NN: $h_S^{NN,(T)}(x) = \mathbf{1} \left\{ \frac{1}{T} \sum_{t=1}^T y_{\pi_1(x,Z_t)} \ge \frac{1}{2} \right\}$

Universal consistency of Averaged 1-NN

• Independent random subsampling:

Random vector $Z \in \{0,1\}^m$ is such that every sample $(x_i, y_i), i = 1, ..., m$ is included in subsample independently with probability $q_m \in (0,1]$, that is,

$$Z^1, \ldots, Z^m \sim_{iid} \mathrm{Bernoulli}(q_m)$$

• Averaged 1-NN: $\bar{h}_S^{NN}(x) = \mathbf{1} \left\{ \mathbb{E}_Z[y_{\pi_1(x,Z)}] \ge \frac{1}{2} \right\}$

Theorem En.2 (Universal consistency of Averaged 1-NN)

Although 1-NN classifier is not universally consistent, averaged 1-NN classifier is universally consistent if $q_m \to 0$ and $mq_m \to \infty$ as $m \to \infty$.

Proof: Averaged 1-NN as a plugin estimator

• For an x, without loss of generality, let x_1, \ldots, x_m indexed such that $||x - x_1|| \le ||x - x_2|| \le \ldots \le ||x - x_m||$, that is, $\pi_i(x) = i$ (x_i is i-th NN)

•
$$\bar{h}_S^{NN}(x) = \mathbf{1}\left\{\widehat{\eta}(x) \ge \frac{1}{2}\right\}$$
, where

$$\widehat{\eta}(x) = \mathbb{E}_Z[y_{\pi_1(x,Z)}] = \sum_{i=1}^m y_i \cdot \underbrace{\mathbb{P}_Z(\pi_1(x,Z)=i)}_{=w_i(x)}$$

 $w_i(x)$ = probability that *i*-th NN is nearest in subsample induced by Z

•
$$\pi_1(x, Z) = i$$
 if $Z_1 = Z_2 = \dots = Z_{i-1} = 0$, $Z_i = 1$
 $\implies w_i(x) = \mathbb{P}_Z(\pi_1(x, Z) = i) = (1 - q_m)^{i-1} q_m$

• Observe: $\sum_{i=1}^{m} w_i(x) = 1 - (1 - q_m)^m < 1$.

For completeness, we may define $(x_0 = x, y_0 = 0)$ with $w_0(x) = (1 - q_m)^m$

Proof: Recap conditions for Stone's theorem

For \bar{h}_S^{NN} to be universally consistent, $w_0(x), \ldots, w_m(x)$ should satisfy:

(i) $\exists c$ such that, for every non-negative integrable function f with $\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[f(x)] < \infty$,

$$\mathbb{E}_{x,x_1,\dots,x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot f(x_i) \right] \le c \, \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[f(x)]$$

(ii) For all
$$a > 0$$
, $\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\sum_{i=1}^m w_i(x) \cdot \mathbf{1} \left\{ \|x_i - x\| > a \right\} \right] = 0$

(iii)
$$\lim_{m \to \infty} \mathbb{E}_{x, x_1, \dots, x_m \sim \mathcal{D}^{m+1}} \left[\max_{0 \le i \le m} w_i(x) \right] = 0$$

Proof: Satisfying conditions (ii)-(iii)

• Condition (iii):
$$\max_{0 \le i \le m} w_i(x) = \max \left\{ q_m, \underbrace{(1 - q_m)^m}_{\le e^{-q_m m}} \right\} \to 0$$

if $q_m \to 0$ and $q_m m \to \infty$

- Condition (ii):
 - Define $k_m = \left\lceil \sqrt{\frac{m}{q_m}} \right\rceil$. Note $\frac{k_m}{m} \to 0$ if $q_m m \to \infty$
 - Recall, if $k_m/m \to 0$, then $x_1, \ldots, x_{k_m} \to x$ in probability \ldots so $||x x_i|| < a$ for $i \le k_m$ We only need to consider sum over $i = (k_m + 1), \ldots, m$
 - Exercise: Assume $q_m m \to \infty$. Show that

$$\sum_{i=1}^{m} w_i(x) \cdot \mathbf{1} \{ \|x_i - x\| > a \} \le \sum_{i=k_m+1}^{m} w_i(x) \le (1 - q_m)^{k_m} \le e^{-\sqrt{q_m m}} \to 0$$

Proof: Satisfying condition (i)

- Since $w_i(x) = (1 q_m)^{i-1} q_m$, we have $w_1(x) \ge w_2(x) \ge ... \ge w_m(x)$
 - Let $a_m = w_m(x)$ and $a_i = w_i(x) w_{i+1}(x)$ $\Longrightarrow w_i(x) = \sum_{i=1}^m a_i$

$$\mathbb{E}\left[\sum_{i=1}^{m} w_i(x) \cdot f(x_i)\right] = \mathbb{E}\left[\sum_{i=1}^{m} \sum_{j=i}^{m} a_j \cdot f(x_i)\right]$$

$$= \mathbb{E}\left[\sum_{j=1}^{m} a_j \sum_{i=1}^{j} f(x_i)\right]$$

$$= \sum_{j=1}^{m} a_j \mathbb{E}\left[\sum_{i=1}^{j} f(x_i)\right] \leq C \cdot \mathbb{E}[f(x)] \cdot \sum_{j=1}^{m} a_j j$$

$$= \sum_{j=1}^{m} w_i(x) \leq 1$$
by Stone's lemma

Optimal sample complexity with bagging

• Recall sample complexity $m_{\mathcal{H}}(\epsilon, \delta) = \text{minimum number of samples needed to}$ (ϵ, δ) -PAC learn \mathcal{H} for any \mathcal{D}

$$\underbrace{C_1 \frac{d + \log_2(\frac{1}{\delta})}{\epsilon}}_{\text{impossible to PAC learn with fewer samples}} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq \underbrace{C_2 \frac{d \ln(\frac{1}{\epsilon}) + \ln(\frac{1}{\delta})}{\epsilon}}_{\text{samples needed by ERM}}$$

• Can we match the lower bound? — Yes, using bagging (proof skipped)

Theorem En.3 (Larsen, Bagging is an Optimal PAC Learner, COLT 2023)

Let $VCdim(\mathcal{H}) = d$. If $m \geq C_3 \frac{d + \ln(\frac{1}{\delta})}{\epsilon}$, then there is a bagging procedure that (ϵ, δ) -PAC learns \mathcal{H} using $T \geq 18 \ln(\frac{2m}{\delta})$ bootstrapped subsamples.

Outline

- Voting and averaged predictors
 - Generalisation error bound for majority vote
 - If individual classifiers are consistent, then averaged classifier is also consistent

Bagging

- Ensemble of 1-NNs is universally consistent
- Bagging leads to classifiers with optimal sample complexity (so better than ERM)

Boosting

- Weak learning: Performing better than random guessing (error $<\frac{1}{2}$ for binary case)
- Adaboost: Combines weak learners to build a PAC learner; Achieves low training error

PAC (strong) learner

- \mathcal{A} is a PAC (strong) learner for \mathcal{H} if
 - there is function $m_{\mathcal{H}}:(0,1)\times(0,1)\to\mathbb{N}$

such that for every

- $\epsilon, \delta \in (0,1)$
- $m \geq m_{\mathcal{H}}(\epsilon, \delta)$
- distribution \mathcal{D} that is realisable with respect to \mathcal{H}

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\mathcal{A}(S)) \le \epsilon \right) \ge 1 - \delta$$

• Example: ERM over \mathcal{H} if $VCdim(\mathcal{H}) < \infty$

γ -Weak learner for $\mathcal{H} \subseteq \{\pm 1\}^{\mathcal{X}}$

- Fix $\gamma \in (0, \frac{1}{2})$
- \mathcal{A} is a γ -weak learner for \mathcal{H} if
 - there is function $\tilde{m}_{\mathcal{H}}:(0,1)\to\mathbb{N}$

such that for every

- $\delta \in (0,1)$
- $m \geq \tilde{m}_{\mathcal{H}}(\delta)$
- distribution \mathcal{D} that is realisable with respect to \mathcal{H}

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left(L_{\mathcal{D}}(\mathcal{A}(S)) \le \frac{1}{2} - \gamma \right) \ge 1 - \delta$$

Weak learnability vs PAC learnability

Strong and weak learnability

 ${\mathcal H}$ is PAC (strong) learnable if there exists a PAC (strong) learner ${\mathcal A}$ for ${\mathcal H}$

 \mathcal{H} is γ -weak learnable if there exists a γ -weak learner \mathcal{A} for \mathcal{H}

Why are we interested in weak learning?

- Weak vs strong learning
 - Strong learner: Almost accurate, test error $\leq \epsilon$
 - Weak learner: Better than random guessing, test error $\leq \frac{1}{2} \gamma$
- Exercise: Argue that
 - \mathcal{H} is PAC learnable \implies \mathcal{H} is γ -weak learnable for all $\gamma < \frac{1}{2}$
 - $VCdim(\mathcal{H}) < \infty$ \implies ERM over \mathcal{H} is also weak learner for \mathcal{H}
- We will use ERM over a simple class \mathcal{H}' to weakly learn a complex class \mathcal{H}
 - \bullet Choose \mathcal{H}' such that ERM is efficiently implementable

Weak learning with decision stumps

• Recall class of decision stumps over \mathbb{R}

$$\mathcal{H}_{ds-1} = \{ h_{t,b}(x) = b \cdot \text{sign}(x-t) : b \in \{\pm 1\}, t \in \mathbb{R} \}$$

• Class of intervals over R

$$\mathcal{H}_{int} = \left\{ h_{s,t,b}(x) = b \text{ for } x \in (s,t), \text{ and } -b \text{ otherwise } : b \in \{\pm 1\}, s,t \in \mathbb{R}, s < t \right\}$$

Weakly learning intervals using decision stumps

- Let \mathcal{D} realisable with respect to \mathcal{H}_{int}
 - True labels $y = h_{s^*,t^*,b^*}(x)$ for some $h_{s^*,t^*,b^*} \in \mathcal{H}_{int}$
- Fitted stump will err at least one of three intervals $(-\infty, s^*]$, (s^*, t^*) or $[t^*, \infty)$
- Under marginal $\mathcal{D}_{\mathcal{X}}$, one of the intervals has probability $\leq \frac{1}{3}$
 - Let decision stump err on interval with smallest probability

Stumps better than random guessing for learning intervals

- Example: Assume $b^* = +1$ and $\mathbb{P}_{x \sim \mathcal{D}_{\mathcal{X}}}(x \geq t^*) \leq \frac{1}{3}$
 - Choose $h_{t,b}$ with $t = s^*, b = +1$
 - $L_{\mathcal{D}}(h_{t,b}) \leq \frac{1}{3}$

 \dots Verify formally

- Verify: For every true $h_{s^*,t^*,b^*} \in \mathcal{H}_{int}$,
 - there is some $h_{t,b} \in \mathcal{H}_{ds-1}$ with $L_{\mathcal{D}}(h_{t,b}) \leq \frac{1}{3}$
- We use ERM over \mathcal{H}_{ds-1} to find above $h_{t,b}$
- Claim: ERM over \mathcal{H}_{ds-1} weakly learns any $h_{s^*,t^*,b^*} \in \mathcal{H}_{int}$

$\frac{1}{12}$ -Weak learning using ERM over \mathcal{H}_{ds-1}

• Take
$$\epsilon = \frac{1}{12}$$

... can take any
$$\epsilon < \frac{1}{6}$$
 (affects γ)

- $\mathcal{A}_{ERM_{ds-1}} = \text{ERM over } \mathcal{H}_{ds-1}$
- For $m \geq m_{\mathcal{H}_{ds-1}}(\epsilon, \delta)$

$$L_{\mathcal{D}}\left(\mathcal{A}_{ERM_{ds-1}}(S)\right) < L_{\mathcal{D}}(\mathcal{H}_{ds-1}) + \epsilon \qquad \text{with probability } 1 - \delta$$

$$\leq \frac{1}{3} + \frac{1}{12}$$

$$= \frac{1}{2} - \frac{1}{12}$$

• Define
$$\tilde{m}_{\mathcal{H}_{int}}(\delta) = m_{\mathcal{H}_{ds-1}}(\epsilon, \delta)$$

$$\mathcal{A}_{ERM_{ds-1}}$$
 $\frac{1}{12}$ -weakly learns \mathcal{H}_{int}

Boosting

- Create a strong learner using several weak learners
 - Learn several weak learners, each perfectly fitting part of data
 - Use majority voting of weak learners
- Example: Majority vote of three decision stumps perfectly learns h_{s^*,t^*,b^*}
 - Some estimation error if we use ERM, but majority vote still PAC learns

Adaptive Boosting (AdaBoost)

- Use an iterative approach for boosting
- \bullet Learn a predictor h using weak learning
- \bullet Find parts of data that are not fitted well using h
- Learn new rule h' giving more importance to poorly learned data ...
- Iterate till all parts are learned well by some predictor

Weighted empirical risk

- Need to solve ERM giving more importance to poorly learned parts of data
- Weighted empirical risk of m samples
 - Probability weight vector $\mathbf{D} = (\mathbf{D}_1, \dots, \mathbf{D}_m) \in [0, 1]^m$ with $\sum_i \mathbf{D}_i = 1$
 - Weighted risk: $L_{\mathbf{D}}(h) = \sum_{i=1}^{m} \mathbf{D}_{i} \mathbf{1} \{h(x_{i}) \neq y_{i}\}$
 - $L_S(h) = L_{\mathbf{D}}(h)$ for $\mathbf{D} = (\frac{1}{m}, \dots, \frac{1}{m})$
- Weighted ERM for specified training set S and weight D:

$$\underset{h \in \mathcal{H}}{\text{minimise}} \ L_{\mathbf{D}}(h)$$

Key components of AdaBoost

- WL = γ -weak learner used to solve weighted ERM
- h_1, h_2, \ldots = predictors learned in different iterations using WL
- $\mathbf{D}^{(t)}$ = weights on training samples used for learning h_t
 - $\mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$
- Final predictor $h_{ada}(\cdot) = \mathrm{sign}\left(\sum\limits_{t=1}^T w_t h_t(\cdot)\right)$

T = #iterations

- Weighted majority vote
- w_t depends on our trust of predictor h_t (high if h_t has low weighted risk)

Popular choices for w_t and $\mathbf{D}^{(t)}$

- Define $\epsilon_t = L_{\mathbf{D}^{(t)}}(h_t) \leq \frac{1}{2} \gamma$
- Choice of w_t

... something that theoretically fits well

$$w_t = \frac{1}{2} \ln \left(\frac{1}{\epsilon_t} - 1 \right)$$

• Update of $\mathbf{D}_1^{(t)}, \dots, \mathbf{D}_m^{(t)}$

... exponential update reduces error faster

$$\mathbf{D}_{i}^{(t+1)} \propto \mathbf{D}_{i}^{(t)} \exp\left(-w_{t} \cdot y_{i} h_{t}(x_{i})\right)$$

• Reduce relative weight of x_i if $h_t(x_i)$ is correct, else increase

AdaBoost

Input:

- Training samples $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$
- Weak learner WL that solves weighted ERM
- \bullet Number of rounds T

Initialisation:

$$\bullet \ \mathbf{D}^{(1)} = (\frac{1}{m}, \dots, \frac{1}{m})$$

AdaBoost

Iterations:

- For t = 1, 2, ..., T
 - h_t = minimum weighted ERM solution obtained from WL
 - Compute $\epsilon_t = L_{\mathbf{D}_i^{(t)}}(h_t)$ and $w_t = \frac{1}{2} \ln \left(\frac{1}{\epsilon_t} 1 \right)$
 - Update $\mathbf{D}_{i}^{(t+1)} = \frac{\mathbf{D}_{i}^{(t)} \exp\left(-w_{t} y_{i} h_{t}(x_{i})\right)}{\sum\limits_{j=1}^{m} \mathbf{D}_{j}^{(t)} \exp\left(-w_{t} y_{j} h_{t}(x_{j})\right)}$

Output:

• Weighted majority classifier $h_{ada}(\cdot) = \operatorname{sign}\left(\sum_{t=1}^{T} w_t h_t(\cdot)\right)$

Performance of AdaBoost

• AdaBoost can overfit training data

$$L_S(h_{ada}) < \exp(-2\gamma^2 T)$$
 ... $L_S(h_{ada}) = 0$ for $T = \frac{\ln m}{2\gamma^2}$

- AdaBoost can still generalise
 - Fix $T = \frac{\ln m}{2\gamma^2}$, and assume WL is strong learner for class \mathcal{B} with $VCdim(\mathcal{B}) = d_{\mathcal{B}}$

$$L_{\mathcal{D}}(h_{ada}) = O\left(\sqrt{\frac{d_{\mathcal{B}}(\ln m)^2 \log_2(d_{\mathcal{B}}\ln(m)) + \ln(\frac{1}{\delta})}{m}}\right) \quad \text{with probability } 1 - \delta$$

• Application: Viola-Jones face detection (Understanding ML book, Section 10.4)

Empirical risk of AdaBoost

Theorem En.4 (Upper bound on empirical risk of AdaBoost)

Assume, at every iteration, WL returns a hypothesis with $\epsilon_t \leq \frac{1}{2} - \gamma$

Choose
$$w_t = \frac{1}{2} \ln \left(\frac{1}{\epsilon_t} - 1 \right)$$
 and $\mathbf{D}_i^{(t+1)} \propto \mathbf{D}_i^{(t)} \exp \left(-w_t \cdot y_i h_t(x_i) \right)$

Then, after T iterations,

$$L_S(h_{ada}) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1} \{h_{ada}(x_i) \neq y_i\} < \exp(-2\gamma^2 T)$$

Choosing
$$T = \left\lceil \frac{\ln m}{2\gamma^2} \right\rceil \implies L_S(h_{ada}) < \frac{1}{m} \implies L_S(h_{ada}) = 0$$

Proof (see Understanding ML, Theorem 10.2)

• Verify $\mathbf{1}\{h(x) \neq y\} \leq e^{-yh(x)}$. So

$$L_S(h_{ada}) \le \frac{1}{m} \sum_{i=1}^m e^{-y_i h_{ada}(x_i)}$$

• Define $f_t(\cdot) = \sum_{p \le t} w_p h_p(\cdot)$

... $f_T = h_{ada}$, $f_0 = \text{zero function}$

• Define $Z_t = \frac{1}{m} \sum_{i=1}^m e^{-y_i f_t(x_i)}$

 $\dots Z_0 = 1, L_S(h_{ada}) \le Z_T$

• Enough to show: $Z_T \leq e^{-2\gamma^2 T}$

$$Z_T = \frac{Z_T}{Z_0} = \frac{Z_1}{Z_0} \cdot \frac{Z_2}{Z_1} \cdot \ldots \cdot \frac{Z_T}{Z_{T-1}}$$

• Enough to show: $\frac{Z_{t+1}}{Z_t} \leq e^{-2\gamma^2}$ for every $t = 0, 1, \dots$

$$\frac{Z_{t+1}}{Z_t} = \frac{\sum_{i} e^{-y_i f_{t+1}(x_i)}}{\sum_{j} e^{-y_j f_{t}(x_j)}} = \frac{\sum_{i} e^{-y_i f_{t}(x_i)} e^{-y_i w_{t+1} h_{t+1}(x_i)}}{\sum_{j} e^{-y_j f_{t}(x_j)}}$$

$$= \sum_{i} \frac{e^{-y_i f_{t}(x_i)}}{\sum_{j} e^{-y_j f_{t}(x_j)}} e^{-y_i w_{t+1} h_{t+1}(x_i)}$$

• Probability weight updates

$$\mathbf{D}_{i}^{(t+1)} \propto \mathbf{D}_{i}^{(t)} e^{-w_{t}y_{i}h_{t}(x_{i})} \propto \mathbf{D}_{i}^{(t-1)} e^{-w_{t-1}y_{i}h_{t-1}(x_{i})} e^{-w_{t}y_{i}h_{t}(x_{i})}$$

$$\dots \propto \mathbf{D}_{i}^{(1)} e^{-\sum_{p \leq t} w_{p}y_{i}h_{p}(x_{i})}$$

$$= 1/m = e^{-y_{i}f_{t}(x_{i})}$$

•
$$\mathbf{D}_{i}^{(t+1)} \propto e^{-y_{i}f_{t}(x_{i})}$$
 and $\sum_{i=1}^{m} \mathbf{D}_{i}^{(t+1)} = 1$
 $\implies \mathbf{D}_{i}^{(t+1)} = \frac{e^{-y_{i}f_{t}(x_{i})}}{\sum_{i} e^{-y_{j}f_{t}(x_{j})}} \implies \frac{Z_{t+1}}{Z_{t}} = \sum_{i=1}^{m} \mathbf{D}_{i}^{(t+1)} e^{-y_{i}w_{t+1}h_{t+1}(x_{i})}$

• From definition of w_t , we get $e^{w_{t+1}} = \sqrt{\frac{1}{\epsilon_{t+1}} - 1}$

• Also
$$\epsilon_{t+1} = L_{\mathbf{D}^{(t+1)}}(h_{t+1}) = \sum_{i=1}^{m} \mathbf{D}_{i}^{(t+1)} \mathbf{1} \left\{ h_{t+1}(x_{i}) \neq y_{i} \right\} = \sum_{i: y_{i}h_{t+1}(x_{i}) = -1} \mathbf{D}_{i}^{(t+1)}$$

$$\frac{Z_{t+1}}{Z_t} = \sum_{i=1}^m \mathbf{D}_i^{(t+1)} e^{-y_i w_{t+1} h_{t+1}(x_i)}$$

$$= e^{w_{t+1}} \sum_{i:y_i h_{t+1}(x_i) = -1} \mathbf{D}_i^{(t+1)} + e^{-w_{t+1}} \sum_{i:y_i h_{t+1}(x_i) = 1} \mathbf{D}_i^{(t+1)}$$

$$= e^{w_{t+1}} \epsilon_{t+1} + e^{-w_{t+1}} (1 - \epsilon_{t+1})$$

$$= 2\sqrt{\epsilon_{t+1} (1 - \epsilon_{t+1})}$$

$$\frac{Z_{t+1}}{Z_t} = 2\sqrt{\epsilon_{t+1}(1 - \epsilon_{t+1})}$$

$$\leq 2\sqrt{(\frac{1}{2} - \gamma)(\frac{1}{2} + \gamma)} \qquad \dots \quad \epsilon_{t+1} \leq \frac{1}{2} - \gamma, \text{ and } a(1 - a) \text{ increases for } a \leq \frac{1}{2}$$

$$= \sqrt{1 - 4\gamma^2}$$

$$< \sqrt{e^{-4\gamma^2}} \qquad \dots \quad 1 - a \leq e^{-a} \quad (< e^{-a} \text{ if } a > 0)$$

$$= e^{-2\gamma^2}$$

Generalisation error for AdaBoost

Theorem En.5 (Generalisation error bound for AdaBoost)

Assume WL is strong learner for base hypothesis class \mathcal{B} with $VCdim(\mathcal{B}) = d_{\mathcal{B}}$

Assume T is odd and AdaBoost satisfies $L_S(h_{ada}) < \exp(-2\gamma^2 T)$

With probability $1 - \delta$,

$$L_{\mathcal{D}}(h_{ada}) < \exp(-2\gamma^2 T) + C\sqrt{\frac{d_{\mathcal{B}}T \log_2(d_{\mathcal{B}}T) \ln m + \ln(\frac{1}{\delta})}{m}}$$
 $C = constant$

$$T = \left\lceil \frac{\ln m}{2\gamma^2} \right\rceil \implies L_{\mathcal{D}}(h_{ada}) < C\sqrt{\frac{d_{\mathcal{B}}(\ln m)^2 \log_2\left(\frac{d_{\mathcal{B}}\ln(m)}{2\gamma^2}\right) + \ln\left(\frac{1}{\delta}\right)}{2\gamma^2 m}}$$

Boosting in agnostic setting

- So far: PAC learn \mathcal{H} using γ -weak learners for \mathcal{H}
 - Key assumption: \mathcal{D} is realisable w.r.t \mathcal{H} , that is, $L_{\mathcal{D}}(\mathcal{H}) = \inf_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = 0$
- Ben-David et al., Agnostic Boosting, COLT 2001:
 - Given access to a γ -weak agnostic learner, a variant of AdaBoost returns \hat{h} such that

$$L_{\mathcal{D}}(\widehat{h}) \leq c_{\gamma} \cdot \left(L_{\mathcal{D}}(\mathcal{H})\right)^{c'_{\gamma}} + \epsilon$$
 ϵ can be made small, c_{γ}, c'_{γ} depend only on γ

- Diakonikolas et al., Boosting in the Presence of Massart Noise, COLT 2021:
 - Noise PAC setting: $h^* \in \mathcal{H}$, but noisy labels $err(x) = \mathbb{P}(y \neq h^*(x)|x) \in [0, \eta], \ \eta < 1/2$
 - Given access to a (α, γ) -Massart weak learner, a boosting algorithm returns \hat{h} such that

$$L_{\mathcal{D}}(\widehat{h}) \le \eta \cdot (1 + O(\alpha))$$