

LECTURA Nutrientes para las plantas¹

http://jardinespequenos.com/nutrientes-en-las-plantas/

Las plantas requieren de muchos nutrientes químicos para vivir y desarrollarse, los elementos fundamentales son 16. A partir del aire y del agua (en las reacciones fotosintéticas) se obtienen de manera combinada el carbono, hidrogeno y oxígeno. Los 13 elementos restantes se toman principalmente del suelo. El nitrógeno, fosforo, potasio, calcio, magnesio y azufre se necesitan en cantidades relativamente grandes y se les denomina macronutrientes. El molibdeno, hierro, boro, zinc, cobre, molibdeno y cloro son nutrientes que se requieren en cantidades considerablemente menores se les llama micronutrientes.

Los nutrientes se vuelven disponibles para las plantas a través de la desintegración de minerales y la descomposición de la materia orgánica, con excepción del nitrógeno que se incorpora al suelo al ser fijado de la atmosfera por medio de la acción microbiana de bacterias correspondientes al ciclo del nitrógeno. La fijación del nitrógeno es la combinación química del nitrógeno gaseoso con oxígeno e hidrogeno para formar el ion nitrato NO₃- o el ion amonio NH₄+.

-

¹ Rico, A., Pérez, R., (2013) Química, Segundo Curso para Estudiantes del Bachillerato del CCH. CCH-UNAM. México

La fertilidad de un suelo se refiere a la disposición de nutrientes para las plantas.

Los tres principales nutrientes son N, P, K. El nitrógeno estimula el crecimiento de tallos y hojas, el fosforo estimula el crecimiento de las raíces y la floración, y el potasio les permite ser resistentes a las enfermedades y sobrevivir a las heladas.

Los elementos utilizados para las plantas para su nutrición, se derivan en última instancia de los minerales de las rocas originales desintegradas, gases atmosféricos y agua. La mayoría del nitrógeno, azufre y fosforo requerido por los cultivos proviene de la descomposición de la materia orgánica cuyo origen son los residuos de las plantas y animales del suelo que se degradan por el proceso denominado mineralización dando como producto H₂O, CO₂, NH⁴⁺, NO³⁻, PO₄³⁻,SO₄²⁻ y H₂S.

En el cuadro N° 1 se presentan los principales nutrientes, sus funciones y la forma química en que la planta los aprovecha, esto es en forma de iones.

Principales nutrientes y sus funciones

NUTRIENTE	FUNCION	FORMA ASIMILABLE
Nitrógeno	Forma parte de proteínas y clorofila, da color verde a las plantas y promueve el desarrollo de hojas y tallos	NH ₄ ⁺ , NO ₃ ⁻
Fosforo	Es importante en el desarrollo inicial de las plantas, provoca un crecimiento inicial, rápido y vigoroso. Estimula la floración. Forma parte de las proteínas	H ₂ PO ₄ -, HPO ₄ ²⁻
Potasio	Da vigor y resistencia contra las enfermedades	K ⁺
Calcio	Promueve el desarrollo de raíces, mejora la absorción del nitrógeno. Constituye una base para la neutralización de ácidos	Ca ²⁺

	-	,		
or	CIZ	an	10	\cap S
Oi	Чυ	411		-

Magnesio	Mantiene el color verde obscuro en las hojas	Mg ²⁺	
Azufre	Ayuda en la formación de la clorofila. Promueve el desarrollo de las raíces. Forma parte de las proteínas	SO ₄ ²⁻ , SO ₃ ²⁻	
Boro	Ayuda a absorber calcio y nitrógeno	BO ₃ -	
Manganeso	Ayuda a la formación de la clorofila y Mn ²⁺ contrarresta el efecto de una aireación deficiente		
Fierro	Ayuda a la formación de la clorofila	Fe ²⁺ , Fe ³⁺	
Zinc	Importante para el metabolismo de la planta	Zn ²⁺	
С, Н, О	Elementos estructurales principales en los tejidos	H ₂ O, OH, CO ₂	

La absorción de los iones nutrientes es más eficiente cuando se cumplen las siguientes condiciones:

- a) Se encuentren en alta concentración.
- b) Suelo bien aireado que permita el intercambio gaseoso con la atmosfera (sale CO₂ y entra O₂).
- c) El suelo debe de estar suficientemente húmedo para permitir el contacto de los iones en solución con una mayor superficie de las raíces.

Si bien, un suelo apto para el cultivo de las plantas normalmente contiene todos los nutrientes que requiere para su desarrollo, estos terminan agotándose por la continua explotación del suelo como generador de alimentos, esto causa suelos deficientes en sales por lo que se hace necesaria su reposición.

¿Cómo mejorar un suelo deficiente en sales?

Cuando se cultiva el suelo, la reserva de nutrientes suele ser insuficiente, o su producción natural mediante el intemperismo y los procesos microbiológicos, es demasiado lenta. En estos casos es común la aplicación de los llamados fertilizantes químicos.

Un fertilizante es un material que en condiciones apropiadas para su aplicación al suelo o a la planta, proporciona uno o más de los nutrientes que necesitan los vegetales para su desarrollo. En el siguiente cuadro se muestran algunos de los fertilizantes más comunes y los nutrientes que aportan a las plantas.

Nutrientes que a aportan los fertilizantes más comunes.

FERTILIZANTE	FÓRMULA	NUTRIENTE QUE APORTA
1. Sulfato de amonio	(NH ₄) ₂ SO ₄	N
2. Urea	NH ₂ CONH ₂	N
3. Fosfato de amonio	(NH ₄) ₃ PO ₄	N
4. Cloruro de potasio	KCI	K
5.Nitrato de amonio	NH ₄ NO ₃	N
6. Nitrato de potasio	KNO ₃	K,N
7. Nitrato de sodio	NaNO ₃	N
8. Carbonato de calcio	CaCO ₃	Ca
9. Carbonato de magnesio	MgCO ₃	Mg
10. Hidrogeno fosfato de amonio	(NH ₄) ₂ HPO ₄	N,P

De la observación del cuadro anterior nos podemos percatar que la mayoría de las sustancias que aparecen en él son sales.

El rápido crecimiento demográfico de fines del siglo XIX y XX hizo aumentar la presión sobre el suministro de alimentos. Esta presión incrementó la demanda de fertilizantes. En buena parte es gracias al uso de fertilizantes principalmente los llamados fertilizantes nitrogenados (que contienen nitrógeno en su fórmula) que los agricultores pueden alimentar al mundo.