AMERICAN INTERNATIONAL UNIVERSITY - BANGLADESH

Faculty of Science and Information Technology

Assignment Cover Sheet

Assign./Case Title:	MID TERM AS	SSIGNMENT		
Assign./Case No:	01		Date of Submission:	18 March 2024
Course Title:	INTRODUCTI	ON TO DATA SCI	ENCE	
Course Code:	CSC 4180		Section:	С
Semester:	Spring	2023-24	Degree Program:	BSc [CSE]
Course Teacher:	TOHEDUL IS	LAM		

Declaration and Statement of Authorship:

- 1. I/we hold a copy of this Assignment/Case-Study, which can be produced if the original is lost/damaged.
- 2. This Assignment/Case-Study is my/our original work and no part of it has been copied from any other student's work or from any other source except where due acknowledgement is made.
- 3. No part of this Assignment/Case-Study has been written for me/us by any other person except where such collaboration has been authorized by the concerned teacher and is clearly acknowledged in the assignment.
- 4. I/we have not previously submitted or currently submitting this work for any other course/unit.
- 5. This work may be reproduced, communicated, compared and archived for the purpose of detecting plagiarism.
- 6. I/we give permission for a copy of my/our marked work to be retained by the Faculty for review and comparison, including review by external examiners.
- 7. I/we understand that Plagiarism is the presentation of the work, idea or creation of another person as though it is your own. It is a form of cheating and is a very serious academic offence that may lead to expulsion from the University. Plagiarized material can be drawn from, and presented in, written, graphic and visual form, including electronic data, and oral presentations. Plagiarism occurs when the origin of the material used is not appropriately cited.
- 8. I/we also understand that enabling plagiarism is the act of assisting or allowing another person to plagiarize or to copy my/our work.
- * Student(s) must complete all details except the faculty use part.
- ** Please submit all assignments to your course teacher or the office of the concerned teacher.

|--|

No	Name	ID	Signature
1	Ashik Ahamed	21-45368-2	
2	Srabone Raxit	21-45038-2	
3			
4			
5			
6			

Faculty use only		
FACULTY COMMENTS		
	Marks Obtained	
	Total Marks	

Data Set Description

The dataset from the provided link

"https://archive.ics.uci.edu/dataset/863/maternal+health+ris" is titled "Maternal Health Risk." It aims to assess the risk of maternal morbidity and mortality by providing a comprehensive array of demographic, medical, and health-related features for pregnant women. The dataset includes the following columns:

- Age: This column represents the age of the pregnant women, which is a key demographic factor in assessing maternal health risk.
- Infection: Indicates whether the pregnant women have any infections.
- <u>Smoking</u>: Indicates the smoking status of the pregnant women.
- Systolic BP: Represents the systolic blood pressure of pregnant women.
- <u>DiastolicBP</u>: Represents the diastolic blood pressure of pregnant women. Diastolic blood pressure, along with systolic blood pressure, is used to evaluate overall blood pressure.
- <u>BS:</u> Represents blood sugar levels or blood glucose levels.
- <u>BodyTemp:</u> Represents the body temperature of pregnant women.
- HeartRate: Represents the heart rate of pregnant women.
- <u>RiskLevel</u>: Indicates the risk level associated with each pregnant woman. Risk level assessment is crucial in prenatal care to identify high-risk pregnancies and provide appropriate management and interventions.

This dataset provides valuable insights into various maternal health risk factors and can be used to develop predictive models or risk assessment tools to improve maternal and fetal outcomes during pregnancy.

1. Dataset Include

mydataa<-read.csv("C:/Users/User/Desktop/Data Science/mid_project/Dataset_midterm_Section(C).csv",header=TRUE,sep=",") mydataa

Output:

1	iliyuai									_		
					DiastolicBP			HeartRate				
1	25	yes	1	130		15.00	98		high			NA
2	35	yes	1	140		13.00	98		high			NA
3	29	yes	1	90	70	8.00	100		high			NA
4	30	yes	1	140	85	7.00	98		high			NA
5	35	no	3	120	60	6.10	98	76		risk		NA
6	23	yes	1	140	80	7.01	98		high			NA
7	23		2	130	70	7.01	98	78		risk		NA
8	NA	yes	1	85		11.00	102		high			NA
9	32	marginal	2	120	90	6.90	98	70		risk		NA
10		yes	1	130		18.00	98	70				NA
13		no	3	90	60	7.01	98	76		risk		NA
12		marginal	2	120	80	7.00	98	70		risk		NA
13		no	3	110	89	7.01	98	77		risk		NA
14		marginal	NA	120	75	7.01	100	70		risk		NA
1.		marginal	2	120	80	11.00	98	88		risk		NA
16		no	3	120	NA	7.01	98	70		risk		NA
17		yes	1	140		15.00	98		high			NA
18		yes	1	140	100	7.01	98	80				NA
19		marginal	2	120	80	6.90	101	76		risk		NA
20		no	3	70	50	6.90	98	70		risk		NA
2:		yes	1	140		18.00	98	90				NA
22		marginal	2	140	80	6.70	98	70		risk		NA
2		no	3	90	65	7.50	98	76		risk		NA
24		no	3	90	60	7.50	98	70		risk		NA
25		no	3	120	80	7.50	98	76		risk		NA
26		no	3	100	70	7.20	98	80		risk		NA
27			3	120	75	7.20	98	66	low	risk	NA	NA
28		no	3	100	65	7.20	98	70		risk		NA
29		no	3	120	90	7.20	98	77		risk		NA
30		no	3	90	60	7.20	-150	82		risk		NA
31		no	3	100	90	7.10	98	88		risk		NA
32		no	3	100	85	7.10	98	66		risk		NA
3	3 22	no	3	120	90	7.10	98	82	low	risk	NA	NA
34		no	NA	120	80	7.10	98	77		risk		NA
31	5 21	no	3	75	50	6.10	98	70	low	risk	NA	NA

At first, the dataset is included and stored in mydataa. Then mydataa is executed to show all the data.

2.

summary(mydataa)

Output:

Age	Infection	Smoking	SystolicBP	DiastolicBP
Min. : 10.00	Length:200	Min. :1.000	Min. : 70.0	Min. : 49.00
1st Qu.: 21.00	Class :character	1st Qu.:1.000	1st Qu.:100.0	1st Qu.: 65.00
Median : 25.00	Mode :character	Median :2.000	Median :120.0	Median: 80.00
Mean : 31.97		Mean :2.077	Mean :114.8	Mean : 78.32
3rd Qu.: 40.00		3rd Qu.:3.000	3rd Qu.:130.0	3rd Qu.: 90.00
Max. :170.00		Max. :3.000	Max. :160.0	Max. :100.00
NA's :5		NA's :4		NA's :4
BS	BodyTemp	HeartRate	RiskLevel	X
Min. : 6.000	Min. :-160.00	Min. :60.00	Length:200	Mode:logical
1st Qu.: 6.875	1st Qu.: 98.00	1st Qu.:70.00	Class :character	NA's:200
Median : 7.150	Median : 98.00	Median :76.00	Mode :character	
Mean : 8.831	Mean : 95.94	Mean :74.89		
3rd Qu.: 8.000	3rd Qu.: 98.00	3rd Qu.:80.00		
Max. :19.000	Max. : 103.00	Max. :90.00		
X.1	X.2			
Mode:logical	Length: 200			
NA's:200	Class :character			
	Mode :character			

The function returns an overall summary like the minimum, maximum, mean, median, first & third quartiles for numerical values.

3.

is.na(mydataa)

Output:

-	100	2.51.4								
F4 3					DiastolicBP			HeartRate		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE	FALSE	
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE	FALSE	
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE	FALSE	
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE	FALSE	
	TRUE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE		
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
	FALSE	FALSE	FALSE	FALSE		FALSE	FALSE	FALSE	FALSE	
	FALSE	FALSE	TRUE	FALSE		FALSE	FALSE	FALSE	FALSE	
[15,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[16,]	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	TRUE
[17,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[18,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[19,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[20,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[21,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[22,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[23,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[24,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[25,]	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[26,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[27,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[28,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[29,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[30,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[31,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
[32,]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE
- /-										

If there is any missing values, the function returns TRUE; otherwise FALSE for any numerical data. But for categorical data, it always return FALSE.

Here in dataset, for Infection and RiskLevel Column it is returning FALSE always.

4.

which(is.na(mydataa\$Age))

Output:

It returns the row number of missing values from AGE column.

5.

which(is.na(mydataa\$Infection))

Output:

integer(0)

As the column Infection is filled with categorical data, it can't detect the missing values and showing the output.

6.

View(mydataa)

Output:

•	Age [‡]	Infection [‡]	Smoking [‡]	SystolicBP +	DiastolicBP [‡]	BS [‡]	BodyTemp [‡]	HeartRate [‡]	RiskLevel [‡]	X ÷	X.1 [‡]	X.2
1	25	yes	1	130	80	15.00	98	86	high risk	NA	NA	
2	35	yes	1	140	90	13.00	98	70	high risk	NA	NA	Smoking
3	29	yes	1	90	70	8.00	100	80	high risk	NA	NA	1=yes
4	30	yes	1	140	85	7.00	98	70	high risk	NA	NA	2=sometime
5	35	no	3	120	60	6.10	98	76	low risk	NA	NA	3=no
6	23	yes	1	140	80	7.01	98	70	high risk	NA	NA	
7	23		2	130	70	7.01	98	78	mid risk	NA	NA	
8	NA	yes	1	85	60	11.00	102	86	high risk	NA	NA	
9	32	marginal	2	120	90	6.90	98	70	mid risk	NA	NA	
10	42	yes	1	130	80	18.00	98	70	high risk	NA	NA	
11	23	no	3	90	60	7.01	98	76	low risk	NA	NA	
12	19	marginal	2	120	80	7.00	98	70	mid risk	NA	NA	
13	25	no	3	110	89	7.01	98	77	low risk	NA	NA	
14	20	marginal	NA	120	75	7.01	100	70	mid risk	NA	NA	
15	48	marginal	2	120	80	11.00	98	88	mid risk	NA	NA	
16	15	no	3	120	NA	7.01	98	70	low risk	NA	NA	
17	50	yes	1	140	90	15.00	98	90	high risk	NA	NA	
18	25	yes	1	140	100	7.01	98	80	high risk	NA	NA	
19	30	marginal	2	120	80	6.90	101	76	mid risk	NA	NA	
20	10	no	3	70	50	6.90	98	70	low risk	NA	NA	
21	40	yes	1	140	100	18.00	98	90	high risk	NA	NA	
22	50	marginal	2	140	80	6.70	98	70	mid risk	NA	NA	
23	21	no	3	90	65	7.50	98	76	low risk	NA	NA	
24	18	no	3	90	60	7.50	98	70	low risk	NA	NA	
25	NA	no	3	120	80	7.50	98	76	low risk	NA	NA	
26	16	no	3	100	70	7.20	98	80	low risk	NA	NA	

It open a separate window and show all the data like spreadsheets.

7.

newDataset

	Age	Infection	Smoking	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate R	iskLevel
1	25.00000	yes	1.000000	130	80.00000	15.00	98	86 h	igh risk
2	35.00000	yes	1.000000	140	90.00000	13.00	98	70 h	igh risk
3	29.00000	yes	1.000000	90	70.00000	8.00	100	80 h	igh risk
4	30.00000	yes	1.000000	140	85.00000	7.00	98	70 h	igh risk
5	35.00000	no	3.000000	120	60.00000	6.10	98	76	low risk
6	23.00000	yes	1.000000	140	80.00000	7.01	98	70 h	igh risk
7	23.00000		2.000000	130	70.00000	7.01	98	78 ı	mid risk
8	31.96923	yes	1.000000	85	60.00000	11.00	102	86 h	igh risk
9	32.00000	marginal	2.000000	120	90.00000	6.90	98	70 ı	mid risk
10	42.00000	yes	1.000000	130	80.00000	18.00	98	70 h	igh risk
11	23.00000	no	3.000000	90	60.00000	7.01	98	76	low risk

Make new data set using usable column and stored them on newDataset variable. This is the visual presentation.

8. Handle Missing Value replace by Average Value

```
newDataset <- newDataset %>%
  mutate_all(~ ifelse(is.na(.), mean(., na.rm = TRUE), .))
Here,
```

- mutate all() applies the specified function to all columns of the data frame.
- \bullet is used to create an anonymous function (lambda function) that takes each column as input.
- ifelse() is used to check if the value is missing (is.na(.)) and replace it with the mean of the column (mean(., na.rm = TRUE)) if it is, otherwise keep the original value (.).

9.

```
mydataaAvg <- as.data.frame(newDataset)
mydataaAvg
```

Here, the handled dataset is stored in new variable called mydataaAvg.

10.

summary(mydataaAvg)

Output:

_					
Age	Infection	Smoking	SystolicBP	DiastolicBP	BS
Min. : 10.00	Length:200	Min. :1.000	Min. : 70.0	Min. : 49.00	Min. : 6.000
1st Qu.: 21.00	Class :character	1st Qu.:1.000	1st Qu.:100.0	1st Qu.: 65.00	1st Qu.: 6.875
Median : 27.00	Mode :character	Median :2.000	Median :120.0	Median : 80.00	Median : 7.150
Mean : 31.97		Mean :2.077	Mean :114.8	Mean : 78.32	Mean : 8.831
3rd Qu.: 39.25		3rd Qu.:3.000	3rd Qu.:130.0	3rd Qu.: 90.00	3rd Qu.: 8.000
Max. :170.00		Max. :3.000	Max. :160.0	Max. :100.00	Max. :19.000
BodyTemp	HeartRate	RiskLevel			
Min. :-160.00	Min. :60.00	Length:200			
1st Qu.: 98.00	1st Qu.:70.00	Class :character			
Median : 98.00	Median :76.00	Mode :character			
Mean : 95.94	Mean :74.89				
3rd Qu.: 98.00	3rd Qu.:80.00				
Max. : 103.00	Max. :90.00				

View(mydataaAvg)

^	Age [‡]	Infection	Smoking [‡]	SystolicBP [‡]	DiastolicBP [‡]	BS [‡]	BodyTemp [‡]	HeartRate [‡]	RiskLevel
1	25.00000	yes	1.000000	130	80.00000	15.00	98	86	high risk
2	35.00000	yes	1.000000	140	90.00000	13.00	98	70	high risk
3	29.00000	yes	1.000000	90	70.00000	8.00	100	80	high risk
4	30.00000	yes	1.000000	140	85.00000	7.00	98	70	high risk
5	35.00000	no	3.000000	120	60.00000	6.10	98	76	low risk
6	23.00000	yes	1.000000	140	80.00000	7.01	98	70	high risk
7	23.00000		2.000000	130	70.00000	7.01	98	78	mid risk
8	31.96923	yes	1.000000	85	60.00000	11.00	102	86	high risk
9	32.00000	marginal	2.000000	120	90.00000	6.90	98	70	mid risk
10	42.00000	yes	1.000000	130	80.00000	18.00	98	70	high risk
11	23.00000	no	3.000000	90	60.00000	7.01	98	76	low risk
12	19.00000	marginal	2.000000	120	80.00000	7.00	98	70	mid risk
13	25.00000	no	3.000000	110	89.00000	7.01	98	77	low risk

The summary and View function showing the datas of mydataaAvg as like before.

11. Prepare Data before visualization

numeric columns <- mydataaAvg[, sapply(mydataaAvg, is.numeric)]</p>

Filter those columns which have numeric values and stored in numeric columns variable.

Calculate mean values for each numeric variable

mean_df <- data.frame(variable = names(mean_values), mean_value = mean_values)
mean_df</pre>

Output:

```
variable mean_value
                   Age 31.969231
Age
Smoking
               Smoking
                         2.076531
SystolicBP
            SystolicBP 114.770000
DiastolicBP DiastolicBP 78.316327
BS
                    BS
                         8.830850
BodyTemp
              BodyTemp 95.935000
HeartRate
             HeartRate 74.885000
```

Convert mean values to a data frame. We make average values from each column to generate a bar graph.

12. Visualization

theme(axis.text.x = element text(angle = 45, hjust = 1))

Output:

13. Convert Categorical Data to Numeric

```
# "Infection" column
mydataaAvgN <- mydataaAvg %>%
 mutate(Infection numeric = case when(
  Infection == "yes" \sim 1,
  Infection == "no" \sim 0,
  Infection == "marginal" \sim 0.5,
  TRUE ~ NA real # For any other cases not specified
 ))
# "RiskLevel" column
mydataaAvgN <- mydataaAvg %>%
 mutate(RiskLevel numeric = case when(
  RiskLevel == "high risk" \sim 1,
  RiskLevel == "low risk" \sim 0,
  RiskLevel == "mid risk" \sim 0.5,
  TRUE ~ NA_real_ # For any other cases not specified
 ))
View(mydataaAvgN)
```


The dataset is included with 2 new columns Infection numeric and RiskLevel numeric.

14. Truncating categorical data columns

newDatasetNumeric <- mydataaAvgN[, c("Age", "Infection_numeric", "Smoking", "SystolicBP", "DiastolicBP",

"BS", "BodyTemp", "HeartRate", "RiskLevel numeric")]

newDatasetNumeric

Output:

	Age	Infection_numeric	Smoking	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate	RiskLevel_numeric
1	25.00000	1.0	1.000000	130	80.00000	15.00	98	86	1.0
2	35.00000	1.0	1.000000	140	90.00000	13.00	98	70	1.0
3	29.00000	1.0	1.000000	90	70.00000	8.00	100	80	1.0
4	30.00000	1.0	1.000000	140	85.00000	7.00	98	70	1.0
5	35.00000	0.0	3.000000	120	60.00000	6.10	98	76	0.0
6	23.00000	1.0	1.000000	140	80.00000	7.01	98	70	1.0
7	23.00000	NA	2.000000	130	70.00000	7.01	98	78	0.5
8	31.96923	1.0	1.000000	85	60.00000	11.00	102	86	1.0
9	32.00000	0.5	2.000000	120	90.00000	6.90	98	70	0.5
10	42.00000	1.0	1.000000	130	80.00000	18.00	98	70	1.0
11	23.00000	0.0	3.000000	90	60.00000	7.01	98	76	0.0
12	19.00000	0.5	2.000000	120	80.00000	7.00	98	70	0.5
13	25.00000	0.0	3.000000	110	89.00000	7.01	98	77	0.0

This is the new dataset only using Numerical datas. All categorical datas are truncated.

15. Deleting rows having missing values

newDatasetNumeric <- na.omit(newDatasetNumeric)</pre>

View(newDatasetNumeric)

^	Age [‡]	Infection_numeric	Smoking [‡]	SystolicBP [‡]	DiastolicBP	BS [‡]	BodyTemp [‡]	HeartRate [‡]	RiskLevel_numeric
1	25.00000	1.0	1.000000	130	80.00000	15.00	98	86	1.0
2	35.00000	1.0	1.000000	140	90.00000	13.00	98	70	1.0
3	29.00000	1.0	1.000000	90	70.00000	8.00	100	80	1.0
4	30.00000	1.0	1.000000	140	85.00000	7.00	98	70	1.0
5	35.00000	0.0	3.000000	120	60.00000	6.10	98	76	0.0
6	23.00000	1.0	1.000000	140	80.00000	7.01	98	70	1.0
8	31.96923	1.0	1.000000	85	60.00000	11.00	102	86	1.0
9	32.00000	0.5	2.000000	120	90.00000	6.90	98	70	0.5
10	42.00000	1.0	1.000000	130	80.00000	18.00	98	70	1.0

Omit missing value row from the dataset.

16. Visualization of the New data set having no categorical data

```
numeric_columns2 <- newDatasetNumeric[, sapply(newDatasetNumeric, is.numeric)]

mean_values <- colMeans(numeric_columns2)

mean_df2 <- data.frame(variable = names(mean_values), mean_value = mean_values)

ggplot(mean_df2, aes(x = variable, y = mean_value)) +

geom_bar(stat = "identity", fill = "yellow") +

labs(title = "Mean Values of All Columns",

x = "Column Name",

y = "Mean Value") +

theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Output:

New bar graph using all columns where categorical datas are converted into numerical.

17. Mean, Median & Mode from Specific Columns

```
mean age <- mean(newDatasetNumeric$Age)
median age <- median(newDatasetNumeric$Age)
mode age <- as.numeric(names(sort(-table(newDatasetNumeric$Age)))[1])
summary stats <- data.frame(</pre>
 Statistic = c("Mean", "Median", "Mode"),
 Value = c(mean age, median age, mode age)
)
print(summary stats)
Output:
                                  Statistic
                                                 Value
                                        Mean 32.27814
                                1
                                2
                                      Median 28.00000
                                3
                                        Mode 23.00000
```

Here, the mean, median and mode values of Age column are stored in variables mean_age, median_age & mode_age. For calculating mode, the data are sorted in descending order. Then a data frame named summary_stats is created where Statistics hold variable names and Value hold the values. Then, the data frame is printed.

PS: We can do this for each column, but only Age column is showed here.

18. Graph Plot of summary stats

```
library(ggplot2)
ggplot(summary_stats, aes(x = Statistic, y = Value, fill = Statistic)) +
geom_bar(stat = "identity", width = 0.5) +
labs(title = "Summary Statistics of Age",
        x = "Statistic",
        y = "Value") +
theme minimal()
```


Here, library(ggplot2) helps to fill different colors to the bars with help of fill = Statistic.

19.

newDatasetNumeric\$Smoking <- floor(newDatasetNumeric\$Smoking)

head(newDatasetNumeric)

Output:

	Age	Infection_	_numeric	Smoking	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate	RiskLevel_numeric
1	25		1	1	130	80	15.00	98	86	1
2	35		1	1	140	90	13.00	98	70	1
3	29		1	1	90	70	8.00	100	80	1
4	30		1	1	140	85	7.00	98	70	1
5	35		0	3	120	60	6.10	98	76	0
6	23		1	1	140	80	7.01	98	70	1
>										

Here, some values were in float after handing the missing values. So, the floats are converted to integer using floor in Smoking column.

20. Graph Plot

newDatasetNumeric\$Smoking <- factor(newDatasetNumeric\$Smoking, levels = c(1, 2, 3), labels = c("yes", "sometimes", "no"))

theme minimal()

Output:

Here the Smoking column is plotted. From the dataset, we can see that there are 60 chain smokers, 55 people smoke sometimes and the number of non-smokers is only 75. Using the data set we can gather a lot of information according to our needs.

21. Data Modify

newDatasetNumeric <- newDatasetNumeric[newDatasetNumeric\$BodyTemp >= 0,]
newDatasetNumeric\$Age <- floor(newDatasetNumeric\$Age)
newDatasetNumeric

Output:

	Ane	Infection numeric	Smoking	Systolican	Diastolican	RS	BodyTemn	HeartDate	RiskLevel_numeric
1	25	1.0	Jillok Trig	130			98	86	
1			1						1.0
2	35	1.0	1	140	90.00000	13.00	98	70	1.0
3	29	1.0	1	90	70.00000	8.00	100	80	1.0
4	30	1.0	1	140	85.00000	7.00	98	70	1.0
5	35	0.0	3	120	60.00000	6.10	98	76	0.0
6	23	1.0	1	140	80.00000	7.01	98	70	1.0
8	31	1.0	1	85	60.00000	11.00	102	86	1.0
9	32	0.5	2	120	90.00000	6.90	98	70	0.5
10	42	1.0	1	130	80.00000	18.00	98	70	1.0
11	23	0.0	3	90	60.00000	7.01	98	76	0.0
12	19	0.5	2	120	80.00000	7.00	98	70	0.5
13	25	0.0	3	110	89.00000	7.01	98	77	0.0
14	20	0.5	2	120	75.00000	7.01	100	70	0.5
15	18	0.5	2	120	80 00000	11 00	Q٩	8.8	0.5

Here, negative data from BodyTemp column is handled and Float numbers from Age column is converted to integer.

22. Extract Information from BodyTemp column

bodyTemp <- newDatasetNumeric\$BodyTemp

below normal count <- 0

normal_range_count <- 0

illness count <- 0

Here, we gave ranges for different body temperature in if else statements and count the number of people.

23. Missing data

is.na(newDatasetNumeric)

Output:

```
> is.na(newDatasetNumeric)
      Age Infection_numeric Smoking SystolicBP DiastolicBP
                                                               BS BodyTemp HeartRate RiskLevel_numeric
    FALSE
                      FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                FALSE
   FALSE
                      FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                FALSE
                                                                                                  FALSE
3 FALSE
                      FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                FALSE
                                                                                                  FALSE
                      FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                                  FALSE
    FALSE
                               FALSE
                                          FALSE
                                                                                FALSE
   FALSE
                      FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                FALSE
                                                                                                  FALSE
   FALSE
                       FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                     FALSE
                                                                                FALSE
                                                                                                  FALSE
8
    FALSE
                       FALSE
                               FALSE
                                          FALSE
                                                      FALSE FALSE
                                                                      FALSE
                                                                                FALSE
                                                                                                  FALSE
```

We can see that, there is no missing data in the dataset as returning FALSE.

is.na(mydataa)

is.na(mydataa)												
Age	Infection	Smoking	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate	RiskLevel	X	X.1	X.2	
[1,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[2,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[3,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[4,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[5,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[6,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[7,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[8,] TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[9,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[10,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	
[11,] FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	

In the provided data set, we can see many TRUE which belongs to the missing data.

24.

most_frequent_DiastolicBP <- names(sort(table(newDatasetNumeric\$DiastolicBP), decreasing = TRUE)[1])

most frequent DiastolicBP

Output:

```
> most_frequent_DiastolicBP <-
> most_frequent_DiastolicBP
[1] "90"
```

From the dataset, in the DiastolicBP column we can see that the most frequence BP is 90.

25.

barplot(table(newDatasetNumeric\$DiastolicBP), main = "Count VS DiastolicBP", xlab = "DiastolicBP", ylab = "Count", ylim=c(0,110), col = c("lightgreen", "pink"))

Output:

Here, x axis indicates the DiastolicBP and y axis indicates the number of people. For example, we can see that around 25 people's Diastolic BP is 100.

26.

heartRate_mean <- mean(newDatasetNumeric\$HeartRate, na.rm = TRUE)
heartRate_sd <- sd(newDatasetNumeric\$HeartRate, na.rm = TRUE)

heartRate_range <- range(newDatasetNumeric\$HeartRate, na.rm = TRUE)
cat("Heart Rate -> Mean:", heartRate_mean, "SD:", heartRate_sd, "Range:", heartRate_range,
"\n")

Output:

```
Heart Rate -> Mean: 74.78191 SD: 7.953763 Range: 60 90
```

Graph:

hist(newDatasetNumeric\$HeartRate,main=" Data of Heart Rate", xlab="heart_rate", xlim = c(0,200),ylim=c(60,90), breaks=10)

boxplot(newDatasetNumeric\$HeartRate, main = "Data of Heart Rate", ylab = "heart rate")

Output:

Summary of HeartRate:

summary(newDatasetNumeric\$HeartRate)

Output:

```
> summary(newDatasetNumeric$HeartRate)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
60.00 70.00 76.00 74.78 80.00 90.00
```

27.

names(newDatasetNumeric)

Output:

```
[1] "Age" "Infection_numeric" "Smoking" "SystolicBP" "DiastolicBP" [6] "BS" "BodyTemp" "HeartRate" "RiskLevel_numeric"
```

Shows column names from the dataset.