

Olimpiada Națională de Matematică

Etapa Judeţeană/a Sectoarelor Municipiului Bucureşti, 2025

CLASA a X-a - soluţii

Problema 1. Rezolvați în mulțimea numerelor reale ecuația

$$\log_7(6^x + 1) = \log_6(7^x - 1).$$

Gazeta Matematică Soluția 1. Notând $\log_7(6^x+1) = \log_6(7^x-1) = y$, obținem sistemul $6^x+1 = 7^y$ și $7^x-1 = 6^y$2p Prin adunare deducem că $6^x + 7^x = 6^y + 7^y$. Din injectivitatea funcției $f: \mathbb{R} \to \mathbb{R}, f(x) =$ $6^x + 7^x$ (care este strict crescătoare, ca sumă de două funcții strict crescătoare), obținem că x = y. Determinarea lui x se reduce la rezolvarea ecuației $6^x + 1 = 7^x$, sau $\left(\frac{6}{7}\right)^x + \left(\frac{1}{7}\right)^x = 1$. Considerăm funcția $g: \mathbb{R} \to \mathbb{R}, g(x) = \left(\frac{6}{7}\right)^x + \left(\frac{1}{7}\right)^x$; relația precedentă se scrie sub forma g(x) = g(1). Ținând cont de injectivitatea funcției g (care este strict descrescătoare, ca sumă de două funcții strict descrescătoare), conchidem că x=1, valoare care verifică ecuația din enunt.3p Soluția 2. Considerăm funcția $f:\mathbb{R} \to (0,\infty)\,, f(x)=\log_7(6^x+1).$ Se arată că funcția feste inversabilă, cu inversa $f^{-1}:(0,\infty)\to\mathbb{R}, f^{-1}(x)=\log_6(7^x-1).$ 2p Ecuația dată devine $f(x) = f^{-1}(x)$, iar aceasta este echivalentă cu f(x) = x, unde $x \in$ $(0,\infty)$ Determinarea lui x se reduce la rezolvarea ecuației $6^x + 1 = 7^x$, sau $\left(\frac{6}{7}\right)^x + \left(\frac{1}{7}\right)^x = 1$. Considerăm funcția $g:(0,\infty)\to\mathbb{R}, g(x)=\left(\frac{6}{7}\right)^x+\left(\frac{1}{7}\right)^x;$ relația precedentă se scrie sub forma g(x) = g(1). Ținând cont de injectivitatea funcției g (care este strict descrescătoare, ca sumă de două funcții strict descrescătoare), conchidem că x=1 este unica soluție a ecuației **Problema 2.** Aflati numerele reale x pentru care $3^x + 3^{[x]} + 3^{\{x\}} = 4$ $([x] \le x]$ reprezintă partea întreagă, respectiv partea fracționară ale numărului real x.) Soluție. Nu există numere $x \in [1, \infty)$ cu proprietatea din enunț: dacă $x \ge 1$, atunci $[x] \ge 1$

Nu există nici numere $x \in (-\infty, -1)$ cu proprietatea din enunț: dacă x < -1, atunci $[x] \le -2$ şi, cum $\{x\} \in [0,1)$, obţinem $4 = 3^x + 3^{[x]} + 3^{\{x\}} < 3^{-1} + 3^{-2} + 3^1 = 3\frac{4}{9}$, fals. **2p** Dacă $x \in [0,1)$, atunci [x] = 0, $\{x\} = x$, deci egalitatea dată devine $3^x + 1 + 3^x = 4 \Leftrightarrow$ Dacă $x \in [-1,0)$, atunci [x] = -1, $\{x\} = x + 1$, deci egalitatea dată devine $3^x + \frac{1}{3} + 3^{x+1} = \frac{1}{3}$ $4 \Leftrightarrow 4 \cdot 3^x = \frac{11}{3}$. Obţinem soluţia $x_2 = \log_3 \frac{11}{12}$, care aparţine intervalului [-1,0). În concluzie, există două numere reale, x_1 și x_2 , care au proprietatea din enunț. **2p Problema 3.** Determinați funcțiile $f: \mathbb{C} \to \mathbb{C}$ cu proprietatea că |wf(z) + zf(w)| = 2|zw|pentru orice $z, w \in \mathbb{C}$. Soluție. Dacă f este o funcție cu proprietatea din enunț, luând z=1 și w=0 în relația dată, deducem că f(0) = 0. Pentru $w = z \in \mathbb{C}^*$ obținem că |f(z)| = |z|; cum această egalitate Atunci |f(1)| = 1 și, pentru w = 1 în ecuația funcțională, obținem $2|z| = |f(z) + zf(1)| \le |f(z)| + |zf(1)| = 2|z|,$ Rezultă că avem egalitate în inegalitatea triunghiului. Prin urmare, pentru fiecare $z \in \mathbb{C}$, există $t_z \in \mathbb{R}$, $t_z \geq 0$ (t_z depinde de z), astfel încât $f(z) = t_z \cdot f(1)z$. Trecând la modul şi simplificând, deducem că $|f(z)| = t_z \cdot 1 \cdot |z| \Leftrightarrow 1 = t_z$, oricare ar fi $z \in \mathbb{C}^*$. In concluzie, f(z) = cz, pentru orice $z \in \mathbb{C}$, unde c = f(1) este un număr complex de modul Se verifică imediat faptul că orice funcție de forma f(z)=cz, unde $c\in\mathbb{C}, |c|=1$, este **Problema 4.** Fie ABCDEF un hexagon convex cu $\angle A \equiv \angle C \equiv \angle E$ şi $\angle B \equiv \angle D \equiv \angle F$. a) Demonstrați că există un unic punct în plan care este egal depărtat de laturile AB,CD $\sin EF$ ale hexagonului. b) Dacă notăm cu P punctul de la a), iar $G_1 \neq G_2$ sunt centrele de greutate ale triunghiurilor ACE respectiv BDF, arătaţi că $\angle G_1PG_2 = 60^\circ$. a) Dacă notăm $\angle A = \angle C = \angle E = \alpha$ și $\angle B = \angle D = \angle F = \beta$, atunci suma măsurilor unghiurilor hexagonului ABCDEF este $3\alpha + 3\beta = 720^{\circ}$, aşadar $\alpha + \beta = 240^{\circ}$1p Deoarece $\angle B + \angle C = \alpha + \beta = 240^{\circ}$, dreptele AB şi CD se vor intersecta într-un punct situat în exteriorul hexagonului. Analog pentru dreptele CD şi EF, respectiv EF şi AB. Notăm $\{X\} = AB \cap CD, \{Y\} = CD \cap EF, \{Z\} = EF \cap AB$. Centrul cercului înscris în triunghiul XYZ este unicul punct egal depărtat de laturile AB,CD și EF ale hexagonului. 2p

b) Triunghiul XYZ are toate unghiurile de 60° , deci este echilateral, iar P este centrul său. In planul complex, considerăm un reper cu originea în P și notăm cu literă mică afixul unui punct notat, corespunzător, cu litera mare. Din asemănarea $\Delta BCX \sim \Delta DEY \sim \Delta FAZ$ (u.u.), deducem că există $k \in \mathbb{R}, \ k > 0$ astfel încât

$$\frac{c-x}{b-x} = \frac{e-y}{d-y} = \frac{a-z}{f-z} = k \cdot \epsilon,$$

unde $\epsilon = \cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3}$.

Obţinem că $c - x = (b - x)k \cdot \epsilon$, $e - y = (d - y)k \cdot \epsilon$, $a - z = (f - z)k \cdot \epsilon$. $2\mathbf{p}$ $\mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p} = (b + d + f) \cdot k \cdot \epsilon \Leftrightarrow g_1 = g_2 \cdot k \cdot \epsilon.$

Deoarece $p=\frac{x+y+z}{3}=0$, prin adunare, deducem $c+e+a=(b+d+f)\cdot k\cdot \epsilon\Leftrightarrow g_1=g_2\cdot k\cdot \epsilon$. Din ipoteza că $G_1\neq G_2$ rezultă că g_1 și g_2 nu pot fi 0, deci G_1,G_2,P sunt puncte distincte

două câte două