XPS Controller

Universal High-Performance Motion Controller/Driver

Programmer's Manual V2.6.x

Preface

Confidentiality & Proprietary Rights

Reservation of Title:

The Newport Programs and all materials furnished or produced in connection with them ("Related Materials") contain trade secrets of Newport and are for use only in the manner expressly permitted. Newport claims and reserves all rights and benefits afforded under law in the Programs provided by Newport Corporation.

Newport shall retain full ownership of Intellectual Property Rights in and to all development, process, align or assembly technologies developed and other derivative work that may be developed by Newport. Customer shall not challenge, or cause any third party to challenge, the rights of Newport.

Preservation of Secrecy and Confidentiality and Restrictions to Access:

Customer shall protect the Newport Programs and Related Materials as trade secrets of Newport, and shall devote its best efforts to ensure that all its personnel protect the Newport Programs as trade secrets of Newport Corporation. Customer shall not at any time disclose Newport's trade secrets to any other person, firm, organization, or employee that does not need (consistent with Customer's right of use hereunder) to obtain access to the Newport Programs and Related Materials. These restrictions shall not apply to information (1) generally known to the public or obtainable from public sources; (2) readily apparent from the keyboard operations, visual display, or output reports of the Programs; (3) previously in the possession of Customer or subsequently developed or acquired without reliance on the Newport Programs; or (4) approved by Newport for release without restriction.

2003 Newport Corporation 1791 Deere Ave. Irvine, CA 92606, USA (949) 863-3144

Table of Contents

1.	TCP/IP C	COMMUNICATION	8
	1.1. DES	CRIPTION	8
		CTION DESCRIPTION	
	1.2.1. C	CloseAllOtherSockets	9
	1.2.2. L	ogin	11
	1.2.3. C	PpenConnection	
	1.2.4. T	CP_CloseSocket	14
	1.2.5. T	CP_ConnectToServer	15
	1.2.6. T	CP_GetError	17
	1.2.7. T	CP_SetTimeout	19
2.	XPS FEA	TURES	21
	2.1. Gen	IERAL FEATURES	21
		ControllerMotionKernelTimeLoadGet (NEW)	
		ControllerStatusGet	
		ControllerStatusStringGet	
		PoubleGlobalArrayGet	
		OoubleGlobalArraySet	
		ErrorStringGet	
		ElapsedTimeGet	
		irmwareVersionGet	
		GroupStatusStringGet	
	2.1.10.	GlobalArrayGet	
	2.1.11.	GlobalArraySet	
	2.1.12.	KillAll	
	2.1.13.	Reboot	46
	2.1.14.	TimerGet	48
	2.1.15.	TimerSet	50
	2.2. Posi	ITIONER	52
	2.2.1. D	Description	52
	2.2.2. C	Object structure	52
	2.2.3. D	Definition of the different positions for a positioner	53
	2.2.4. F	Function description	54
	2.2.4.1.	PositionerAccelerationAutoScaling	54
	2.2.4.2.	PositionerAnalogTrackingPositionParametersGet	57
	2.2.4.3.	PositionerAnalogTrackingPositionParametersSet	60
	2.2.4.4.	PositionerAnalogTrackingVelocityParametersGet	63
	2.2.4.5.	PositionerAnalogTrackingVelocityParametersSet	66
	2.2.4.6.	PositionerBacklashDisable	69
	2.2.4.7.	PositionerBacklashEnable	71
	2.2.4.8.	PositionerBacklashGet	73
	2.2.4.9.		
	2.2.4.10		
	2.2.4.1		
	2.2.4.12		
	2.2.4.13	$oldsymbol{arepsilon}$	
	2.2.4.14		
	2.2.4.15		
	2.2.4.10		
	2.2.4.17	· · · · · · · · · · · · · · · · · · ·	
	2.2.4.18	•	
	2.2.4.19		
	2.2.4.20		
	2.2.4.2		
	2.2.4.22	2. PositionerCurrentVelocityAccelerationFiltersGet	115

XPS-C8 Controller

2.2.4.23.	PositionerCurrentVelocityAccelerationFiltersSet	
2.2.4.24.	PositionerDriverFiltersGet (NEW)	119
2.2.4.25.	PositionerDriverFiltersSet (NEW)	121
2.2.4.26.	PositionerDriverPositionOffsetsGet (NEW)	124
2.2.4.27.	PositionerDriverStatusGet	126
2.2.4.28.	PositionerDriverStatusStringGet	128
2.2.4.29.	PositionerEncoderAmplitudeValuesGet	
2.2.4.30.	PositionerEncoderCalibrationParametersGet	
2.2.4.31.	PositionerErrorGet	
2.2.4.32.	PositionerErrorRead	
2.2.4.33.	PositionerErrorStringGet	
2.2.4.34.	PositionerExcitationSignalGet	
2.2.4.35.	PositionerExcitationSignalSet	
2.2.4.36.	PositionerHardInterpolatorFactorGet	
2.2.4.37.	PositionerHardInterpolatorFactorSet	
2.2.4.38.	PositionerHardwareStatusGet	
2.2.4.39.	PositionerHardwareStatusStringGet	
2.2.4.40.	PositionerMaximumVelocityAndAccelerationGet	
2.2.4.41.	PositionerMotionDoneGet	
2.2.4.42.	PositionerMotionDoneSet	
2.2.4.43.	PositionerPositionCompareDisable	
2.2.4.44.	PositionerPositionCompareEnable	
2.2.4.45.	PositionerPositionCompareGet	167
2.2.4.46.	PositionerPositionCompareSet	170
2.2.4.47.	PositionerPositionComparePulseParametersGet	172
2.2.4.48.	PositionerPositionComparePulseParametersSet	
2.2.4.49.	PositionerPositionCompareAquadBAlwaysEnable	
2.2.4.50.	PositionerPositionCompareAquadBWindowedGet	
2.2.4.51.	PositionerPositionCompareAquadBWindowedSet	
2.2.4.52.	PositionerRawEncoderPositionGet	
2.2.4.53.	PositionersEncoderIndexDifferenceGet	
2.2.4.54.	PositionerSGammaExactVelocityAjustedDisplacementGet	
2.2.4.55.	PositionerSGammaParametersSet	
2.2.4.56.	PositionerSGammaParametersGet	
2.2.4.57.	PositionerSGammaPreviousMotionTimesGet	
2.2.4.58.	PositionerStageParameterGet	
2.2.4.59.	PositionerStageParameterSet	
2.2.4.60.	PositionerTimeFlasherDisable	
2.2.4.61.	PositionerTimeFlasherEnable	
2.2.4.62.	PositionerTimeFlasherGet	204
2.2.4.63.	PositionerTimeFlasherSet	207
2.2.4.64.	PositionerUserTravelLimitsGet	210
2.2.4.65.	PositionerUserTravelLimitsSet	212
2.2.5. Con	figuration files	215
2.3. GROUP		222
2.3.1. Des	cription	222
	ect structure	
,	ction description	
2.3.3.1.	GroupAccelerationSetpointGet	
2.3.3.2.	GroupAnalogTrackingModeDisable	
2.3.3.2.	GroupAnalogTrackingModeEnable	
2.3.3.4.	GroupCorrectorOutputGet	
2.3.3.5.		
	Group Initializa	
2.3.3.6.	GroupInitialize.	
2.3.3.7.	GroupInitializeWithEncoderCalibration	
2.3.3.8.	GroupHomeSearch	
2.3.3.9.	GroupHomeSearchAndRelativeMove	
2.3.3.10.	GroupJogModeDisable	
2.3.3.11.	GroupJogModeEnable	
2.3.3.12.	GroupJogCurrentGet	248
2.3.3.13.	GroupJogParametersGet	251

2.3.3.14.	GroupJogParametersSet	254
2.3.3.15.	GroupKill	257
2.3.3.16.	GroupMotionDisable	259
2.3.3.17.	GroupMotionEnable	261
2.3.3.18.	GroupMoveAbort	
2.3.3.19.	GroupMoveAbsolute	
2.3.3.20.	GroupMoveRelative	
2.3.3.21.	GroupPositionCurrentGet	
2.3.3.22.	GroupPositionPCORawEncoderGet	
2.3.3.23.	GroupPositionSetpointGet	
2.3.3.24.	GroupPositionTargetGet	
2.3.3.25.	GroupStatusGet	
2.3.3.26.	GroupReferencingActionExecute	
2.3.3.27.	GroupReferencingStart	
2.3.3.28.	GroupReferencingStop	
2.3.3.29. 2.4. SINGLE	Group Velocity Current GetEAXIS GROUP	
	ecription	
	te diagram	
	cific function description	
2.4.3.1.	SingleAxisSlaveModeDisable	
2.4.3.1.	SingleAxisSlaveModeEnable	
2.4.3.3.	SingleAxisSlaveParametersGet	
2.4.3.4.	SingleAxisSlaveParametersSet	
	ifiguration files	
	E GROUP	
	eription	
	te diagram	
	cific function description	
2.5.3.1.	GroupSpinCurrentGet	
2.5.3.2.	GroupSpinModeStop	
2.5.3.3.	GroupSpinParametersGet	
2.5.3.4.	GroupSpinParametersSet	
2.5.3.5.	SpindleSlaveModeDisable	
2.5.3.6.	SpindleSlaveModeEnable	
2.5.3.7.	SpindleSlaveParametersGet	
2.5.3.8.	SpindleSlaveParametersSet	317
2.5.4. Con	ıfiguration files	319
	OUP	
2.6.1. Des	cription	320
	te diagramte	320
-	cific function description	
2.6.3.1.	GroupPositionCorrectedProfilerGet	
2.6.3.2.	XYLineArcExecution	
2.6.3.3.	XYLineArcParametersGet	
2.6.3.4.	XYLineArcPulseOutputGet	
2.6.3.5.	XYLineArcPulseOutputSet	
2.6.3.6.	XYLineArcVerification	
2.6.3.7.	XYLineArcVerificationResultGet	
	ıfiguration files	
	ROUP	
	cription	
	te diagram	
-	cific function description	
2.7.3.1. 2.7.3.2.	XYZGroupPositionCorrectedProfilerGet	
2.7.3.2. 2.7.3.3.	XYZSplineExecution	
2.7.3.3. 2.7.3.4.	XYZSplineParametersGet	
2.7.3.4. 2.7.3.5.	XYZSplineVerificationXYZSplineVerificationResultGet	
	figuration files	
	PLEAXES GROUP	

2.8.1. Description	361
2.8.2. State diagram	
2.8.3. Specific function description	362
2.8.3.1. MultipleAxesPVTExecution	
2.8.3.2. MultipleAxesPVTParametersGet	
2.8.3.3. MultipleAxesPVTPulseOutputGet	
2.8.3.4. MultipleAxesPVTPulseOutputSet	
2.8.3.5. MultipleAxesPVTVerification	
2.8.3.6. MultipleAxesPVTVerificationResultGet	
2.8.4. Configuration files	
2.9. ANALOG AND DIGITAL I/O	
2.9.1. GPIO name list	
2.9.1.1. Digital inputs	
2.9.1.2. Digital outputs	
2.9.1.3. Analog inputs	
2.9.1.4. Analog outputs	
2.9.2. Function description	
2.9.2.1. GPIOAnalogGainGet	
2.9.2.2. GPIOAnalogGainSet	
2.9.2.3. GPIOAnalogGet	
2.9.2.4. GPIOAnalogSet	
2.9.2.5. GPIODigitalGet	
2.9.2.6. GPIODigitalSet	
2.10. GATHERING	
2.10.1. Function description	
2.10.1.1. GatheringConfigurationGet	
2.10.1.2. GatheringConfigurationSet	
2.10.1.3. GatheringCurrentNumberGet	
2.10.1.4. GatheringDataAcquire	
2.10.1.5. GatheringDataGet	
2.10.1.6. GatheringDataMultipleLinesGet	
2.10.1.7. GatheringExternalConfigurationGet	
2.10.1.8. GatheringExternalConfigurationSet	
2.10.1.9. GatheringExternalCurrentNumberGet	
2.10.1.10. GatheringExternalDataGet	
2.10.1.11. GatheringExternalStopAndSave	
2.10.1.12. GatheringReset	
2.10.1.13. GatheringRun	
2.10.1.14. GatheringRunAppend	
2.10.1.15. GatheringStop	428
2.10.1.16. GatheringStopAndSave	430
2.11. EVENTS AND ACTIONS	432
2.11.1. Functions description	
2.11.1.1. EventExtendedAllGet	432
2.11.1.2. EventExtendedConfigurationActionGet	434
2.11.1.3. EventExtendedConfigurationActionSet	436
2.11.1.4. EventExtendedConfigurationTriggerGet	440
2.11.1.5. EventExtendedConfigurationTriggerSet	442
2.11.1.6. EventExtendedGet	447
2.11.1.7. EventExtendedRemove	449
2.11.1.8. EventExtendedStart	451
2.11.1.9. EventExtendedWait	453
2.11.2. Obsolete Functions Description	
2.11.2.1. EventAdd	
2.11.2.2. EventGet	
2.11.2.3. EventRemove	
2.11.2.4. EventWait	
2.112.4 Eventwalt 2.12. TCL Programming	
2.12.1. Function Description	
2.12.1.1. TCLScriptExecute	
2.12.1.2. TCLScriptExecute AndWait	
2.12.1.2. I CEBCIIPEEACCUICEIIU W ait	

XPS-C8 Controller

	2.	12.1.3. TCLScriptExecuteWithPriority	464
	2.	12.1.4. TCLScriptKill	467
	2.13.	OPTIONAL MODULE PROGRAMMING	469
	2.13.	1. Function Description	469
	2.	13.1.1. OptionalModuleExecute	469
	2.	13.1.2. OptionalModuleKill	472
	2.14.	HARDWARE DATE AND TIME SETTING	474
	2.14.	- · · · · · · · · · · · · · · · · · · ·	
		14.1.1. HardwareDateAndTimeGet	
	2.	14.1.2. HardwareDateAndTimeSet	476
	2.15.	Version	
	2.15.	- · · · · · · · · · · · · · · · · · · ·	
		15.1.1. GetLibraryVersion	
	2.16.	POSITIONER ERROR LIST	
	2.17.	POSITIONER HARDWARE STATUS LIST	
	2.18.	POSITIONER DRIVER STATUS LIST	
	2.19.	GROUP STATUS LIST	
	2.20.	ERROR LIST	
	2.21.	CONTROLLER STATUS LIST	
	2.22.	FUNCTION LIST CLASSED IN CATEGORIES	489
3.	PRO	CESS EXAMPLES	493
	3.1.	MANAGEMENT OF THE ERRORS	
	3.2.	FIRMWARE VERSION	494
	3.3.	GATHERING WITH MOTION	495
	3.4.	EXTERNAL GATHERING	
	3.5.	OUTPUT COMPARE	499
	3.6.	SLAVE-MASTER MODE	
	3.7.	JOGGING	503
	3.8.	TRACKING	
	3.9.	BACKLASH	
	3.10.	TIMER EVENT AND GLOBAL VARIABLES	
	3 11	RUNNING SIMULTANEOUSLY SEVERAL MOTION PROCESSES	510

1. TCP/IP communication

1.1. Description

XPS is based on a 10/100 Base-T Ethernet communication link with TCP/IP protocol and uses a web site approach for all software tools and a FTP server for file transfer. This makes the XPS controller most independent from the operating system of the user. When networked, Unix, Linux or Windows users can access the same controller from any place in the world for remote control, code development, file transfer or diagnostics. The completely object oriented approach of the XPS firmware with powerful, multi-parameter Function's (commands) is also much more self-consistent and intuitive to use than old-style mnemonic commands.

To connect to the XPS controller you must open a socket with the "OpenConnection()" Function. Communication through this socket is done by specifying the socket identifier (socketID) with the Function.

Each Function returns a completion or error message. In case of a successful completion, the return is 0 (zero). In case of an error, the returned error code can be used for diagnosing the problem by the Function ErrorStringGet().

The function call is blocked until a reply is sent by the XPS, or until the timeout value has been reached. For running several processes in parallel (for instance for asking the position while a stage is moving), several sockets can be used in parallel. When using the XPS controller with programming languages that do not support multiple sockets, the timeout value of the Function can be also set to a low value (20 ms).

TCP/IP

1.2. Function description

1.2.1. Close All Other Sockets

NAME

CloseAllOtherSockets – Closes all sockets beside the one used.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check "Administrator" rights: ERR_NEED_ADMINISTRATOR_RIGHTS (-9)

DESCRIPTION

This function allows an administrator to close all sockets beside the one used to call this function.

All used sockets are closed. So, the ERR_SOCKET_CLOSED_BY_ADMIN error is sent to each function in running before to close the used socket.

NOTE

Call the "Login" function to identify the user as "Administrator".

If some TCL scripts are in progress (after a "TCLScriptExecute" function or a "TCLScriptExecuteAndWait" function), don't use this function before to kill these TCL scripts. So, you must call the "TCLScriptKill" function to stop the TCL execution and only next you can use the "CloseAllOtherSockets" function to close sockets.

RETURN

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_NEED_ADMINISTRATOR_RIGHTS (-107)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): No error

TCL

Prototype

CloseAllOtherSockets

Input parameters

None

Output parameters

None

Return

Error......Function error code

TCP/IP

C/C++

Prototype

int CloseAllOtherSockets ()

Input parameters

None

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long~CloseAllOtherSockets~()

Input parameters

None

Output parameters

None

Return

Error.......Long......Function error code

MATLAB

Prototype

[Error] CloseAllOtherSockets ()

Input parameters

None

Return

PYTHON

Prototype

[Error] CloseAllOtherSockets ()

Input parameters

None

Return

Error......Function error code

1.2.2. Login

NAME

Login – Self-identification.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the user name and the password: ERR_WRONG_USERNAME_OR_PASSWORD (-106)

DESCRIPTION

This function allows a user to identify himself as "SuperUser", "Administrator" or "User".

The user account must be exited else the ERR_WRONG_USERNAME_OR_PASSWORD (-106) error is returned.

NOTE:

To add a new user account, you must use the XPS web site with "Administrator" rights. In the main menu, select "CONTROLLER CONFIGURATION" and go to the "Users management" page.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_USERNAME_OR_PASSWORD (-106)

SUCCESS (0): no error

TCL

Prototype

Login \$SocketID \$UserName \$Password

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int Login (int SocketID, char *UserName, char *Password)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

MICRO-CONTROLE une société du groupe

Prototype

Long Login (ByVal SocketID As Long, ByVal UserName As String, ByVal Password As String)

Input parameters

UserName String user name
Password String password

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 Login (int32 SocketID, cstring UserName, cstring Password)

Input parameters

UserName cstring user name Password password

Return

Function error code

PYTHON

Prototype

integer Login (integer SocketID, string UserName, string Password)

Input parameters

UserName string user name Password string password

Return

Function error code

1.2.3. OpenConnection

NAME

OpenConnection – opens a socket to connect TCP server (local).

INPUT TESTS

- Check number of used sockets (Max = 100): if no free socket then the SocketID is affected to -1

DESCRIPTION

This function allows to open a socket in a TCL script located in the "Scripts" directory from XPS controller.

The TCP/IP communication is configured as like:

- Local Host Address = 127.0.0.1
- IP Port = 5001

This function returns a socket identifier to use for each function call. The socket identifier is defined between 0 to 99. If the TCP/IP connection failed then the "SocketID" value is -1.

RETURN

Socket identifier used in each function

TCL

Prototype

OpenConnection \$TimeOut SocketID

Input parameters
TimeOutfloating point......Timeout in seconds used for each Function execution

Output parameters
SocketIDSocket identifier used in each function

Return

Error code

1.2.4. TCP_CloseSocket

NAME

 $TCP_CloseSocket - Closes\ a\ socket.$

INPUT TESTS

- Check socket identifier (Max = 100).
- Socket must be used.

DESCRIPTION

Close the opened TCP/IP communication defined by the given socket identifier. If the socket is undefined or is not used then do nothing.

RETURN

None

TCL

Prototype

TCP_CloseSocket \$SocketID

Input parameters

SocketIDSocket identifier used in each function

Output parameters

None

C / C++

Prototype

void TCP_CloseSocket (int SocketID)

Input parameters

Output parameters

None

VISUAL BASIC

Prototype

TCP_CloseSocket (ByVal SocketID As Long)

Input parameters

Output parameters

None

MATLAB

Prototype

TCP_CloseSocket (int32 SocketID)

Input parameters

PYTHON

Prototype

TCP_CloseSocket (integer SocketID)

Input parameters

Socket IDSocket identifier used in each function

1.2.5. TCP_ConnectToServer

NAME

TCP_ConnectToServer - Configures the TCP/IP communication and opens a socket.

INPUT TESTS

- Check number of used sockets (Max = 100): if no free socket then the SocketID is affected to -1

DESCRIPTION

Configurate the TCP/IP communication and open a socket to connect TCP server.

This function returns a socket identifier to use with each function call. The socket identifier is defined between 0 to 99. If the TCP/IP connection failed then the "SocketID" value is -1.

OpenConnection function is used when users are in local, it only needs the timeout and socket number to open the connection with the XPS controller. TCP_ConnectToServer function needs more information like the port number and the IP address. This function is called with the DLL.

RETURN

Socket identifier used in each function

TCL

Prototype

TCP_ConnectToServer \$IP_Address \$IP_Port \$TimeOut SocketID

Input parameters

IP_Address...... string.......TCP IP address: 195.168.33.xxx or another IP_PortTCP IP port : 5001 for XPS controller TimeOutfloating point...... Timeout in seconds used for each Function execution

Output parameters

None

Return

SocketIDSocket identifier used in each function

C / C++

int TCP_ConnectToServer (char * IP_Address, int IP_Port, double TimeOut)

Input parameters

IP_PortTCP IP port : 5001 for XPS controller TimeOutdoubleTimeout in seconds used for each Function execution

Output parameters

None

Return

Socket identifier used in each function

VISUAL BASIC

Prototype

Long **TCP_ConnectToServer** (ByVal IP_Address As String, ByVal IP_Port As Long, ByVal TimeOut As Double)

Input parameters

IP_Address String TCP IP address : 195.168.33.xxx or another IP_Port Long TCP IP port : 5001 for XPS controller

Output parameters

None

Return

MATLAB

Prototype

int32 TCP_ConnectToServer (cstring IP_Address, int32 IP_Port, double TimeOut)

Input parameters

Return

PYTHON

Prototype

integer TCP_ConnectToServer (string IP_Address, integer IP_Port, double TimeOut)

Input parameters

Return

Socket IDSocket identifier used in each function

1.2.6. TCP_GetError

NAME

TCP_GetError – Gets the last error about socket.

INPUT TESTS

- Check socket identifier (Max = 100).
- Socket must be used.

_

DESCRIPTION

Gets the last error from the socket defined by the given socket identifier. If the socket is undefined or is not used, the error description is empty.

RETURN

None

TCL

Prototype

TCP_GetError \$SocketID ErrorString

Input parameters
SocketIDSocket identifier used in each function

Output parameters
ErrorStringstringLast error description

Return
Last error description.

C / C++

Prototype

void TCP_GetError (int SocketID, char * ErrorString)

Input parameters

Output parameters

ErrorStringchar *Last error description

VISUAL BASIC

Prototype

TCP_GetError (ByVal SocketID As Long, ErrorString As String)

Input parameters

Output parameters

ErrorStringLast error description

MATLAB

Prototype

[ErrorString] TCP_GetError (int32 SocketID)

Input parameters

Return

ErrorString Last error description

PYTHON

Prototype

[ErrorString] **TCP_GetError** (integer SocketID)

Input parameters

SocketIDSocket identifier used in each function

Return

ErrorString Last error description

1.2.7. TCP_SetTimeout

NAME

TCP_SetTimeout – Configures the timeout for TCP/IP communication.

INPUT TESTS

- Check number of used sockets (Maximum number = 100).
- Socket must be used.
- Timeout value must be positive.

DESCRIPTION

Sets a new timeout value in seconds for the opened TCP/IP communication defined by a socket identifier. If the timeout is inferior to 0.001, the timeout value is setting to 0.001.

If the socket is undefined or is not used then nothing is doing.

RETURN

None

TCL

Prototype

TCP_SetTimeout \$SocketID \$TimeOut

Return
TCL error (0 = success or 1 = syntax error)

C / C++

Prototype

void TCP_SetTimeout (int SocketID, double TimeOut)

Input parameters

Output parameters

None

Return

None

VISUAL BASIC

Prototype

TCP_SetTimeout (ByVal SocketID As Long, ByVal TimeOut As Double)

Output parameters

None

Return

None

MATLAB

Prototype

int32 TCP_SetTimeout (int32 SocketID, double TimeOut)

Input parameters

Socket identifier used in each function

TimeOutdoubleTimeout in seconds used for each Function execution

Return

None

PYTHON

Prototype

integer TCP_SetTimeout (integer SocketID, double TimeOut)

Input parameters

TimeOutdoubleTimeout in seconds used for each Function execution

Return

None

2. XPS features

2.1. General features

2.1.1. ControllerMotionKernelTimeLoadGet (NEW)

NAME

Controller Motion Kernel Time Load Get – Returns controller motion kernel time load.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

This function allows to get the last exact value of controller motion kernel time load (total, corrector, profier and servitudes calculation time).

CorrectorTimeLoad = CorrectorCalculationTime / CorrectorISRPeriod
ProfilerTimeLoad = ProfilerCalculationTime / CorrectorISRPeriod / ProfileGeneratorISRRatio
ServitudesTimeLoad = ServitudesCalculationTime / CorrectorISRPeriod / ServitudesISRRatio
TotalTimeLoad = CorrectorTimeLoad + ProfilerTimeLoad + ServitudesTimeLoad

Note: Refer to system.ref file to get CorrectorISRPeriod, ProfileGeneratorISRRatio and ServitudesISRRatio.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

 $\label{lem:controllerMotionKernelTimeLoadGet} CocketID\ CPUT otal Load Ratio\ CPUC orrector Load Ratio\ CPUP rofiler Load Ratio\ CPUS ervitudes Load Ratio$

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **ControllerMotionKernelTimeLoadGet** (int SocketID, double * CPUTotalLoadRatio, double * CPUCorrectorLoadRatio, double * CPUProfilerLoadRatio, double * CPUServitudesLoadRatio)

Input parameters

Output parameters

CPUTotalLoadRatiodouble *controller motion kernel total CPU time load CPUCorrectorLoadRatio...double *controller motion kernel corrector CPU time load CPUProfilerLoadRatio....double *controller motion kernel profiler CPU time load CPUServitudesLoadRatio double *controller motion kernel servitudes CPU time load

Return

Function error code

\"C"\\L BASIC

Prototype

Long ControllerMotionKernelTimeLoadGet (ByVal SocketID As Long, CPUTotalLoadRatio As Double, CPUCorrectorLoadRatio As Double, CPUProfilerLoadRatio As Double, CPUServitudesLoadRatio As Double)

Input parameters

Output parameters

CPUTotalLoadRatio Double controller motion kernel total CPU time load CPUCorrectorLoadRatio... Double controller motion kernel corrector CPU time load CPUProfilerLoadRatio.... Double controller motion kernel profiler CPU time load CPUServitudesLoadRatio Double controller motion kernel servitudes CPU time load

Return

Function error code

MATLAB

Prototype

[Error, CPUTotalLoadRatio, CPUCorrectorLoadRatio, CPUProfilerLoadRatio, CPUServitudesLoadRatio] ControllerMotionKernelTimeLoadGet (int32 SocketID)

Input parameters

Return

Error......Function error code

CPUTotalLoadRatiodoublecontroller motion kernel total CPU time load CPUCorrectorLoadRatio...doublecontroller motion kernel corrector CPU time load CPUProfilerLoadRatio....doublecontroller motion kernel profiler CPU time load CPUServitudesLoadRatio doublecontroller motion kernel servitudes CPU time load

PYTHON

Prototype

[Error, CPUTotalLoadRatio, CPUCorrectorLoadRatio, CPUProfilerLoadRatio, CPUServitudesLoadRatio] ControllerMotionKernelTimeLoadGet (integer SocketID)

XPS-C8 Controller

Firmware

Input parameters SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer"function
Return		
Error	integer	Function error code
CPUTotalLoadRatio	double	controller motion kernel total CPU time load
CPUCorrectorLoadl	Ratiodouble	controller motion kernel corrector CPU time load
CPUProfilerLoadRa	tiodouble	controller motion kernel profiler CPU time load
CPUServitudesLoad	Ratio double	controller motion kernel servitudes CPU time load

2.1.2. ControllerStatusGet

NAME

ControllerStatusGet – Returns the controller status code.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_INT (-15)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

Returns the controller status code. The controller status codes are listed in the "Controller status list" § 2.193. The description of the controller status code can be get with the "ControllerStatusStringGet" function.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

ControllerStatusGet SocketID ControllerStatus

Input parameters
SocketIDSocket identifier gets by the "TCP_ConnectToServer" function

Output parameters
ControllerStatusintergerStatus of the controller.

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int ControllerStatusGet (int SocketID, int *ControllerStatus)

Input parameters

Output parameters

ControllerStatus int * Status of the controller

Return

Function error code

\"C''\L BASIC

Long ControllerStatusGet (ByVal SocketID As Long, ControllerStatus As Long)

XPS-C8 Controller

Firmware

ControllerStatusLongStatus of the controller

Return

Function error code

MATLAB

Prototype

[Error, ControllerStatus] ControllerStatusGet (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[Error, ControllerStatus] ControllerStatusGet (integer SocketID)

Input parameters

SocketIDSocket identifier gets by the "TCP_ConnectToServer" function

Return

2.1.3. ControllerStatusStringGet

NAME

ControllerStatusStringGet – Get the controller status description from a controller status code.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns the controller status description corresponding to a controller status code (see §2.19 controller status list).

If the status code is not referenced then the "Unknown controller status code" message will be returned.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

 $\textbf{ControllerStatusStringGet} \ \$ Socket ID \ \$ Controller Status Code \ Controller Status String$

Input parameters	
SocketIDinteger	Socket identifier gets by the "TCP_ConnectToServer" function
ControllerStatusCode integer	Controller status code
Output parameters	
ControllerStatusString string	Controller status description
Return	
Errorinteger	TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int ControllerStatusStringGet (int SocketID, int ControllerStatusCode, char * ControllerStatusString)

Error......Function error code

VISUAL BASIC

Long ControllerStatusStringGet (ByVal SocketID As Long, ControllerStatusCode As Integer, ByVal ControllerStatusString As String)

Input parameters

ControllerStatusCode......Integer......Controller status code

Output parameters

ControllerStatusString.....String......Controller status description

MATLAB

[Error, ControllerStatusString] ControllerStatusStringGet (int32 SocketID, int32 ControllerStatusCode)

Input parameters

ControllerStatusCode.....int32......Controller status code

Return

Error..........int32.......Function error code

ControllerStatusString.....cstring......Controller status description

PYTHON

[Error, ControllerStatusString] ControllerStatusStringGet (integer SocketID, integer ControllerStatusCode)

Socket identifier gets by the "TCP ConnectToServer" function

ControllerStatusCode......integer......Controller status code

Error.....Function error code

ControllerStatusString.....string......Controller status description

2.1.4. DoubleGlobalArrayGet

NAME

DoubleGlobalArrayGet – Get a value from the global array of type "double".

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Verify the index number [0:1000[: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function gets the variable value from the global array of type "double", located by a "Number" index. So, the first variable value from the global array is located to the index "0".

The returned value is returned in a double.

NOTE:

The number of datas in the global array of type "double" is limited to 1000.

ERROR CODES

ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

DoubleGlobalArrayGet \$SocketID \$Number DoubleValue

Input parameters

C / C++

Prototype

int DoubleGlobalArrayGet (int SocketID, int Number, double * DoubleValue)

Input parameters

Output parameters

Double Valuedouble *......... Variable value

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **DoubleGlobalArrayGet** (ByVal SocketID As Long, Number As Integer, ByVal DoubleValue As Double)

Input parameters

Output parameters

Return

MATLAB

Prototype

[Error, DoubleValue] DoubleGlobalArrayGet (int32 SocketID, int32 Number)

Input parameters

Return

PYTHON

Prototype

[Error, DoubleValue] DoubleGlobalArrayGet (integer SocketID, integer Number)

Input parameters

Return

2.1.5. DoubleGlobalArraySet

NAME

DoubleGlobalArraySet – Set a value from the global array of type "double".

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15), ERR_WRONG_TYPE_DOUBLE (-14)
- Verify the index number [0:1000[: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function allows to set a new value in the global array located at the "Number" index and the new value is setting in a double.

NOTE:

The first variable value from the global array is always located to the index "0".

The number of datas in the global array is limited to 1000, so the last index is "999".

ERROR CODES

ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

DoubleGlobalArraySet \$SocketID \$Number \$DoubleValue

C / C++

Prototype

int DoubleGlobalArraySet (int SocketID, int Number, char * DoubleValue)

VISUAL BASIC

Prototype

Long **DoubleGlobalArraySet** (ByVal SocketID As Long, Number As Integer, ByVal DoubleValue As Double)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] DoubleGlobalArraySet (int32 SocketID, int32 Number, double DoubleValue)

Input parameters

Return

Error int32 Function error code

PYTHON

Prototype

[Error] DoubleGlobalArraySet (integer SocketID, integer Number, Double DoubleValue)

Input parameters

Number integer Index in the global array

Return

Error.....Function error code

2.1.6. ErrorStringGet

NAME

ErrorStringGet – Get the error description from a function error code.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

The function returns the error description corresponding to a function error code (see §2.20 Error list). If the error code is not referenced then the "Unknown error code" message will be returned.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

ErrorStringGet \$SocketID \$ErrorCode ErrorString

C / C++

Prototype

int ErrorStringGet (int SocketID, int ErrorCode, char *ErrorString)

VISUAL BASIC

Prototype

Long ErrorStringGet (ByVal SocketID As Long, ErrorCode As Integer, ByVal ErrorString As String)

Input parameters

Output parameters

ErrorString String Error description

Return

MATLAB

Prototype

[Error, ErrorString] ErrorStringGet (int32 SocketID, int32 ErrorCode)

Input parameters

Error......int32......Function error code

ErrorString Error description

PYTHON

rototype

[Error, ErrorString] ErrorStringGet (integer SocketID, integer ErrorCode)

Input parameters

Return

Error integer Function error code
ErrorString string Error description

2.1.7. ElapsedTimeGet

NAME

ElapsedTimeGet – Get the elapsed time since the controller power on.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR WRONG TYPE DOUBLE (-14)

DESCRIPTION

This function returns the time in seconds that elapsed since the controller power on.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

ElapsedTimeGet \$SocketID ElapsedTime

Input parameters
SocketIDSocket identifier got from "TCP_ConnectToServer" function

Output parameters
ErrorStringdoubleElapsed time (seconds)

Return
Error.......TCL error code (0 = success or 1 = syntax error) or function error code

C/C++

Prototype

int **ElapsedTimeGet** (int SocketID, double * ElapsedTime)

VISUAL BASIC

Prototype

Long ElapsedTimeGet (ByVal SocketID As Long, ErrorCode As Integer, ByVal ElapsedTime As Double)

MATLAB

1

Prototype

[Error, ElapsedTime] **ElapsedTimeGet** (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[Error, ElapsedTime] **ElapsedTimeGet** (integer SocketID)

Input parameters

Return

2.1.8. Firmware Version Get

NAME

FirmwareVersionGet – Gets the version of the firmware inside the controller.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

_

DESCRIPTION

This function gets the controller name and the firmware version number.

Example of returned version string:

"XPS-C8 Firmware V2.1.0"

- Controller name is XPS-C8
- Firmware version is **V2.1.0**

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
SUCCESS (0): no error

TCL

Prototype

FirmwareVersionGet \$SocketID Version

C / C++

Prototype

int FirmwareVersionGet (int SocketID, char * Version)

VISUAL BASIC

Prototype

Long FirmwareVersionGet (ByVal SocketID As Long, ByVal ErrorString As String)

Input parameters

Output parameters

Version......String......Controller version

Return

MATLAB

rototype

[Error, Version] FirmwareVersionGet (int32 SocketID)

Input parameters

Return

Error int32 Function error code

Version cstring Controller version

PYTHON

Prototype

[Error, Version] FirmwareVersionGet (integer SocketID)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

Return

Error integer Function error code
Version string Controller version

2.1.9. GroupStatusStringGet

NAME

GroupStatusStringGet – Get the group state description from a group state code.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns the group state description corresponding to a group state code (see § 2.19 Group state list). If the group state code is not referenced then the "Error: undefined status" message will be returned.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

 $Group Status String Get \$ Socket ID \$ Group Status Code \ Group Status String$

C / C++

Prototype

int GroupStatusStringGet (int SocketID, int GroupStatusCode, char * GroupStatusString)

Input parameters
SocketID

SocketIDSocket identifier got from "TCP_ConnectToServer" function GroupStatusCodeintGroup status code

Output parameters

GroupStatusString....char *.....Group status description

Return

VISUAL BASIC

Prototype

Long **GroupStatusStringGet** (ByVal SocketID As Long, GroupStatusCode As Integer, ByVal GroupStatusString As String)

Input parameters

GroupStatusCode Integer Group status code

Output parameters

GroupStatusString......String......Group status description

Return

MATLAB

Prototype

[Error, GroupStatusString] GroupStatusStringGet (int32 SocketID, int32 GroupStatusCode)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

GroupStatusCode Group status code

Return

Error.....Function error code

GroupStatusString......cstringGroup status description

PYTHON

Prototype

[Error, GroupStatusString] GroupStatusStringGet (integer SocketID, integer GroupStatusCode)

Input parameters

GroupStatusCode Group status code

Return

Error.....Function error code

GroupStatusString......string......Group status description

2.1.10. GlobalArrayGet

NAME

GlobalArrayGet – Get a value from the global array.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Verify the index number [0:100]: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function gets the variable value from the global array, located by a "Number" index. So, the first variable value from the global array is located to the index "0".

The returned value is returned in a string.

NOTE:

The number of datas in the global array is limited to 100.

ERROR CODES

ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

GlobalArrayGet \$SocketID \$Number StringValue

Input parameters
SocketID

SocketIDinteger.......Socket identifier got from "TCP_ConnectToServer" function
NumberIndex in the global array

Output parameters
StringValuestringVariable value

Return
Error.......integer......TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int GlobalArrayGet (int SocketID, int Number, char * StringValue)

Input parameters
SocketID
Number

 $Output\ parameters$

StringValuechar *.....Variable value

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long GlobalArrayGet (ByVal SocketID As Long, Number As Integer, ByVal StringValue As String)

Input parameters

Output parameters

Return

MATLAB

Prototype

[Error, StringValue] GlobalArrayGet (int32 SocketID, int32 Number)

Input parameters

Dotum

Error int32 Function error code
StringValue cstring Variable value

PYTHON

Prototype

[Error, StringValue] GlobalArrayGet (integer SocketID, integer Number)

Input parameters

Number Index in the global array

Return

2.1.11. GlobalArraySet

NAME

GlobalArraySet – Set a value from the global array.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15), ERR_WRONG_TYPE_CHAR (-13)
- Verify the index number [0:100] : ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function allows to set a new value in the global array located at the "Number" index and the new value is setting in a string.

NOTE:

The first variable value from the global array is always located to the index "0".

The number of datas in the global array is limited to 100, so the last index is "99".

ERROR CODES

ERR_PARAMETER_OUT_OF_RANGE (-17) ERR_WRONG_FORMAT (-7) ERR_WRONG_PARAMETERS_NUMBER (-9) ERR_WRONG_TYPE_CHAR (-13) ERR_WRONG_TYPE_INT (-15) SUCCESS (0): no error

TCL

Prototype

GlobalArraySet \$SocketID \$Number \$StringValue

Input parameters

NumberIndex in the global array

Output parameters

None

Return

C / C++

Prototype

int GlobalArraySet (int SocketID, int Number, char * StringValue)

Input parameters

NumberIndex in the global array StringValuechar *.....Variable value

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GlobalArraySet (ByVal SocketID As Long, Number As Integer, ByVal StringValue As String)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] GlobalArraySet (int32 SocketID, int32 Number, cstring StringValue)

Input parameters

StringValuevariable value

Return

Error..........int32..........Function error code

PYTHON

Prototype

[Error] GlobalArraySet (integer SocketID, integer Number, string StringValue)

Input parameters

Return

Error.....Function error code

2.1.12. KillAll

NAME

KillAll - Kills all groups.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)

DESCRIPTION

This function allows to kill and to reset all groups.

This function resets all analog and digital I/O too.

The differents steps to kill all groups are:

- 1) An "emergency stop" is done if the group state is defined as:
 - HOMING
 - REFERENCING
 - MOVING
 - JOGGING
 - ANALOG TRACKING
- 2) The motor is turned off, the motion done is stopped and the control loop is stopped.
- 3) An "ERR_EMERGENCY_SIGNAL" error is returned by each function in progress, where the group state is:
 - MOTOR INIT
 - ENCODER_CALIBRATING
 - HOMING
 - REFERENCING
 - MOVING
 - TRAJECTORY
 - ERR_EMERGENCY_SIGNAL
- 4) At end, the group state must become "NOT INITIALIZED" for all groups.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

KillAll \$SocketID

Input parameters

Socket IDinteger......Socket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

Error......TCL error code (0 = success or 1 = syntax error) or function error code

C/C++

Prototype

int KillAll (int SocketID)

Input parameters

Socket IDSocket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long KillAll (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] KillAll (int32 SocketID)

Input parameters

Returr

Error int32 Function error code

PYTHON

Prototype

[Error] KillAll (integer SocketID)

Input parameters

Return

Error.....Function error code

2.1.13. Reboot

NAME

Reboot – Reboots the controller.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)

DESCRIPTION

This function allows to reboot the controller.

Notes that this function is not a hardware reboot (power off / on), it's a firmware reboot.

NOTE

If an FTP client is connected, this function is not allowed and the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

ERROR CODES

ERR_NOT_ALLOWED_ACTION (-22)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

Reboot \$SocketID

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

C / C++

Prototype

int **Reboot** (int SocketID)

Input parameters

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long Reboot (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Error......Long.....Function error code

MATLAB

[Error] **Reboot** (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[Error] **Reboot** (integer SocketID)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

Returr

Error.....Function error code

2.1.14. TimerGet

NAME

TimerGet – Gets the number of frequency ticks for the selected timer.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter mnemonic: ERR_WRONG_TYPE (-10)
- Check output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the number of frequency ticks configured for the selected timer.

The "TimerName" can be defined as:

- Timer1
- Timer2
- Timer3
- Timer4
- Timer5

The "FrequencyTicks" allows to defined the frequency of the timer:

- One frequency tick represents a corrector period => 0.0001ms => 10 Khz
- N frequency ticks represent N corrector periods => N * 0.0001ms => $\frac{10}{N}$ KHz

NOTE:

The NULL "FrequencyTicks" (=0) means that the timer is disabled.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE (-10)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

TimerGet \$SocketID \$TimerName FrequencyTicks

Input parameters

Output parameters

FrequencyTicks.......Integer......Number of frequency ticks

Return

C / C++

Prototype

int TimerGet (int SocketID, char *TimerName, int* FrequencyTicks)

Input parameters

TimerNamechar *.....Name of timer

Output parameters

FrequencyTicks......int *Number of frequency ticks

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long TimerGet (ByVal SocketID As Long, ByVal TimerName As String, FrequencyTicks As Integer)

Input parameters

Output parameters

Returi

Error Long Function error code

MATLAB

Prototype

[Error, FrequencyTicks] **TimerGet** (int32 SocketID, cstring TimerName)

Input parameters

Return

Error.....Function error code

FrequencyTicks......nut32.....Number of frequency ticks

PYTHON

Prototype

[Error, FrequencyTicks] TimerGet (integer SocketID, string TimerName)

Input parameters

TimerNamestringName of timer

Return

FrequencyTicks.......number of frequency ticks

2.1.15. TimerSet

NAME

TimerSet – Sets the number of frequency ticks for the selected timer.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter mnemonic: ERR_WRONG_TYPE (-10)
- Check output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function sets the number of frequency ticks for the selected timer to activates it.

The "TimerName" can be defined as:

- Timer1
- Timer2
- Timer3
- Timer4
- Timer5

The "FrequencyTicks" allows to defined the frequency of the timer:

- One frequency tick represents a corrector period => 0.0001ms => 10 Khz
- N frequency ticks represent N corrector periods => N * 0.0001ms => $\frac{10}{N}$ KHz

NOTE:

If the "FrequencyTicks" is null (0) then the timer is disabled.

ERROR CODES

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE (-10)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

TimerSet \$SocketID \$TimerName \$FrequencyTicks

Input parameters

Output parameters

None

Return

C / C++

Prototype

int TimerSet (int SocketID, char *TimerName, int FrequencyTicks)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

TimerNamechar *.....Name of timer

FrequencyTicks......intNumber of frequency ticks

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long TimerSet (ByVal SocketID As Long, ByVal TimerName As String, ByVal FrequencyTicks As Integer)

Input parameters

TimerNameStringName of timer

Output parameters

None

Return

MATLAB

Prototype

[Error] TimerSet (int32 SocketID, cstring TimerName, int32 FrequencyTicks)

Input parameters

TimerNamecstringName of timer

FrequencyTicks.......nut32......Number of frequency ticks

Return

Error int32 Function error code

PYTHON

Prototype

[Error, FrequencyTicks] TimerSet (integer SocketID, string TimerName, integer FrequencyTicks)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

TimerNamestringName of timer

FrequencyTicks.......number of frequency ticks

Return

Error.....Function error code

2.2. Positioner

2.2.1. Description

Positioner objects are used to define all motion specific configuration parameters.

The positioner includes a mapping correction : X = f(X)

The positioner includes the SGamma profile.

The maximum number of positioners is limited to 8.

2.2.2. Object structure

To use a **positioner**, it must belong to a motion group. Positioners are defined by its **full positioner name**. The full positioner name is composed of the group name and the positioner name separated by a dot.

Example:

GroupName.PositionerName

2.2.3. Definition of the different positions for a positioner

For each positioner, three different positions can be called:

- ✓ The **SetpointPosition** is the profiler position. This is the position where the positioner should be according to his motion profile.
- ✓ The **CurrentPosition** is the encoder position of the stage after mapping corrections. This is the actual position of the positioner
- ✓ The **TargetPosition** is the final targeted position of the displacement.

The difference between the SetpointPosition and the CurrentPosition is called the following error.

For instance, during a motion from the position 0 (units) to 100 (units), we could have the following results:

SetpointPosition = 50

CurrentPosition = 49.998 (FollowingError = 50 - 49.998 = 0.002 unit)

TargetPosition = 100.

2.2.4. Function description

2.2.4.1. PositionerAccelerationAutoScaling

NAME

PositionerAccelerationAutoScaling - Auto-scaling process for stage scaling acceleration determination.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR WRONG PARAMETERS NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Positioner must not be a "Secondary Positioner": ERR_WRONG_OBJECT_TYPE (-8)
- Check positioner name: ERR_POSITIONER_NAME (-18)
- Check group type: ERR_WRONG_OBJECT_TYPE (-8)
- Control loop type must be "PIDFFAcceleration": ERR_UNCOMPATIBLE (-24)
- Group status must be "NOT_INITIALIZED": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

The function executes an auto-scaling process and returns the new calculated scaling acceleration. The selected group must be in "NOT INITIALIZED" state, else the ERR_NOT_ALLOWED_ACTION (-22) error is returned. This function works only if the positioner control loop type is "PIDFFAcceleration" (acceleration control), else it returns the ERR_UNCOMPATIBLE error.

This function begins to check the positioner error. If an error is detected, the hardware status register is reset (motor on) and the positioner error is cleared before to check it again. If a positioner error is always present, the motor is turn off, the ERR_POSITIONER_ERROR (-5) error is returned and the group status becomes "NOT INITIALIZED".

If no positioner error then the master-slave error is cleared, the encoder is preset (update encoder position) and the user travel limits are checked. If a travel limit error is detected then the motor is turn off, the ERR_TRAVEL_LIMITS (-35) error is returned and the group status becomes "NOT INITIALIZED".

If no error, the motor is now to be initialized in the case of stage acceleration control. If the motor initialization failed then the error ERR_MOTOR_INITIALIZATION_ERROR (-50) is returned and the group status becomes "NOT INITIALIZED".

If successful, the positions are preset, the motion is enabled (the motor is powered) permitting the process of autoscaling. If the motion can not be enabled, the ERR_NOT_ALLOWED_ACTION (-22) is returned.

During auto-scaling, if the auto-scaling fails the ERR_SCALING_CALIBRATION (-105) error is returned or if the motion becomes disabled then the ERR_EMERGENCY_SIGNAL (-26) error is returned.

The auto-scaling process is executed in 5 periods. At the end of each period, the auto-tuning process estimates the auto-tuning quality by calculating the noise/signal ratio. If the noise/signal ratio is very closed to zero (it means no oscillation) the ERR_RELAY_FEEDBACK_TEST_NO_OSCILLATION (-101) error is returned. Elsewhere if the noise ratio > MaximumNoiseRatio (normally between 0.1 and 0.2, exact value defined in system.ref) then the ERR_RELAY_FEEDBACK_TEST_SIGNAL_NOISY (-102) is returned.

If the number of acquired data points (minimum = 9) or the number of acquired signal periods (minimum = 5) is not enough for a good estimation then the ERR_SIGNAL_POINTS_NOT_ENOUGH (-103) error is returned.

At end of this function, the new value of scaling acceleration is returned and the group status becomes "NOT INITIALIZED" once again.

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21) ERR_MOTOR_INITIALIZATION_ERROR (-50) ERR_NOT_ALLOWED_ACTION (-22) ERR_PARAMETER_OUT_OF_RANGE (-17) ERR_POSITIONER_ERROR (-5) ERR_POSITIONER_NAME (-18) ERR_RELAY_FEEDBACK_TEST_NO_OSCILLATION (-101) ERR_RELAY_FEEDBACK_TEST_SIGNAL_NOISY (-102) ERR_SCALING_CALIBRATION (-105) ERR_SIGNAL_POINTS_NOT_ENOUGH (-103) ERR_TRAVEL_LIMITS (-35) ERR UNCOMPATIBLE (-24) ERR WRONG FORMAT (-7) ERR_WRONG_OBJECT_TYPE (-8) ERR WRONG PARAMETERS NUMBER (-9) ERR WRONG TYPE CHAR (-13) ERR_WRONG_TYPE_DOUBLE (-14) SUCCESS (0): no error

TCL

Prototype

PositionerAccelerationAutoScaling \$SocketID \$PositionerName Scaling

 Input parameters
 Socket ID
 Socket identifier got from "TCP_ConnectToServer" function

 PositionerName
 String
 Name of a positioner

 Output parameters
 Scaling
 Calculated scaling acceleration value

 Return
 Error
 TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int PositionerAccelerationAutoScaling (int SocketID, char * PositionerName, double *Scaling)

VISUAL BASIC

Prototype

Long **PositionerAccelerationAutoScaling** (ByVal SocketID As Long, ByVal PositionerName As String, Scaling As Double)

Input parameters
SocketID

Output parameters

Return

MATLAB

Prototype

[Error, Scaling] PositionerAccelerationAutoScaling (int32 SocketID, cstring PositionerName)

Input parameters

PositionerName......cstringName of a positioner

Return

Errorint32Function error code

ScalingdoubleCalculated scaling acceleration value

PYTHON

Prototype

[Error, Scaling] **PositionerAccelerationAutoScaling** (integer SocketID, string PositionerName, string Password)

Input parameters

PositionerName.....string......Name of a positioner

Return

Error.....Function error code

2.2.4.2. PositionerAnalogTrackingPositionParametersGet

NAME

PositionerAnalogTrackingPositionParametersGet – Gets the parameters of the current tracking position mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the current analog input name, the current offset and the current scale used by analog tracking position mode. For a more thorough description of the analog tracking mode, please refer to the XPS Motion Tutorial, section named Motion/Analog tracking.

NOTE:

"velocity" and "acceleration" define the maximum velocity and acceleration used in the position tracking mode.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerAnalogTrackingPositionParametersGet \$SocketID \$FullPositionerName GPIOName Offset Scale velocity acceleration

Error.......integer.......TCL error code (0 = success or 1 = syntax error) or function error code

		Socket identifier got from "TCP_ConnectToServer" functionPositioner name
Output parameters		
GPIOName	string	Analog input name (ADC)
Offset	double	Offset (volts)
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)
Return		

C / C++

Prototype

int **PositionerAnalogTrackingPositionParametersGet** (int SocketID, char FullPositionerName [250], char *GPIOName, double *Offset, double *Scale, double *velocity, double *acceleration)

Input parameters

Output parameters

GPIOName......char *Analog input name (ADC)

accelerationdouble *acceleration (Units / s²)

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerAnalogTrackingPositionParametersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal GPIOName As String, Offset As Double, Scale As Double, velocity As Double, acceleration As Double)

Input parameters

Output parameters

GPIOName String Analog input name (ADC)
Offset Double offset in volts
Scale Double Scale (Units / Volts)
velocity Double velocity (Units / s)
acceleration Double acceleration (Units / s²)

Return

MATLAB

Prototype

[Error, GPIOName, Offset, Scale, velocity, acceleration] **PositionerAnalogTrackingPositionParametersGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error int32 Function error code
GPIOName cstring Analog input name (ADC)
Offset double offset in volts
Scale double Scale (Units / Volts)
velocity double velocity (Units / s)
acceleration double acceleration (Units / s²)

PYTHON

[Error, GPIOName, Offset, Scale, velocity, acceleration] PositionerAnalogTrackingPositionParametersGet (integer SocketID, string FullPositionerName)

Input	parameters
IIIPUU	parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function	n
FullPositionerName	string	Positioner name	

Return

turri		
Error	integer	Function error code
GPIOName	string	Analog input name (ADC)
Offset	double	offset in volts
Scale	double	Scale (Units / Volts)
		velocity (Units / s)
•		acceleration (Units / s²)

2.2.4.3. PositionerAnalogTrackingPositionParametersSet

NAME

PositionerAnalogTrackingPositionParametersSet – Sets the parameters of the current tracking position mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter: ERR_POSITIONER_NAME (-18)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check Positioner and GPIO type (ADC): ERR_WRONG_OBJECT_TYPE (-8)
- Check velocity and acceleration: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function allows modify the analog input name, the offset and the scale used by the analog tracking position mode. To use this function, the group state must be READY else the ERR_NOT_ALLOWED_ACTION error is returned.

The "Offset" and the "Scale" parameters are used to calculate the target tracking position:

TrackingPosition = InitialPosition + (AnalogValue - Offset) * Scale

The "velocity" and "acceleration" parameters define the maximum velocity and acceleration used in the position tracking mode.

NOTE

The parameters of analog tracking position mode can be reset if the "GPIOName" parameter is empty.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR NOT ALLOWED ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerAnalogTrackingPositionParametersSet \$SocketID \$FullPositionerName \$GPIOName \$Offset \$Scale \$velocity \$acceleration

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
GPIOName	string	Analog input name (ADC)
Offset	double	Offset (volts)
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)

Output parameters

None

Return

Error.....integer TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int **PositionerAnalogTrackingPositionParametersSet** (int SocketID, char FullPositionerName [250], char *GPIOName, double Offset, double Scale, double velocity, double acceleration)

Input parameters

SocketID int Socket identifier got from "TCP_ConnectToServer" function

FullPositionerName char * Positioner name

GPIOName char * Analog input name (ADC)

Offset double offset in volts

Scale double Scale (Units / Volts)

velocity double velocity (Units / s)

acceleration double acceleration (Units / s²)

Output parameters

None

Return

VISUAL BASIC

Prototype

Long **PositionerAnalogTrackingPositionParametersSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal GPIOName As String, ByVal Offset As Double, ByVal Scale As Double, ByVal velocity As Double, ByVal acceleration As Double)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] **PositionerAnalogTrackingPositionParametersSet** (int32 SocketID, cstring FullPositionerName, cstring GPIOName, double Offset, double Scale, double velocity, double acceleration)

Input parameters

61 / 512

PYTHON

^Drototype

[Error] **PositionerAnalogTrackingPositionParametersSet** (integer SocketID, string FullPositionerName, string GPIOName, double Offset, double Scale, double velocity, double acceleration)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
GPIOName	string	Analog input name (ADC)
Offset	double	offset in volts
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
•		acceleration (Units / s²)
Return		

Error.....Function error code

2.2.4.4. PositionerAnalogTrackingVelocityParametersGet

NAME

PositionerAnalogTrackingVelocityParametersGet – Gets the parameters of the current tracking velocity mode.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the analog input name, the offset, the scale, the deadband threshold and the order used by analog traking velocity mode. For a more thorough description of the analog tracking mode, please refer to the XPS Motion Tutorial, section named Motion / Analog tracking.

Note:

"velocity" and "acceleration" define the maximum velocity and acceleration used in the velocity tracking mode.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

PositionerAnalogTrackingVelocityParametersGet \$SocketID \$FullPositionerName GPIOName Offset Scale DeadBandThreshold Order velocity acceleration

Input parameters		
SocketIDin	ntegerS	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName st	ringI	Positioner name
Output parameters		
GPIONamest	ring	Analog input name (ADC)
Offset do	ouble0	Offset (volts)
Scaledo	oubleS	Scale (Units / Volts)
DeadBandThreshold do	oubleI	Dead band threshold (Volts)
Orderin	nteger(Order (No unit)
velocitydo	oublev	velocity (Units / s)
acceleration do	oublea	acceleration (Units / s²)
Return		
Errorin	nteger	Γ CL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int **PositionerAnalogTrackingVelocityParametersGet** (int SocketID, char FullPositionerName [250], char *GPIOName, double *Offset, double *Scale, double *DeadBandThreshold, int *Order, double *velocity, double *acceleration)

Input parameters

FullPositionerName char *Positioner name

Output parameters

GPIOName......char *Analog input name (ADC)

Offsetdouble *offset in volts

Scaledouble *Scale (Units / Volts)

DeadBandThreshold double *Dead band threshold (Volts)

OrderOrder (No unit)

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerAnalogTrackingVelocityParametersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal GPIOName As String, Offset As Double, Scale As Double, DeadBandThreshold As Double, Order As Integer, velocity As Double, acceleration As Double)

Input parameters

FullPositionerName String Positioner name

Output parameters

GPIOName......StringAnalog input name (ADC)

DeadBandThreshold Double Dead band threshold (Volts)

OrderOrder (No unit)

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error, GPIOName, Offset, Scale, DeadBandThreshold, Order, velocity, acceleration]

PositionerAnalogTrackingVelocityParametersGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error int32 Function error code

GPIOName.......cstringAnalog input name (ADC)

Offsetdoubleoffset in volts

DeadBandThreshold double Dead band threshold (Volts)

OrderOrder (No unit)

velocitydoublevelocity (Units / s)

accelerationdoubleacceleration (Units / s^2)

PYTHON

Prototype.

[Error, GPIOName, Offset, Scale, DeadBandThreshold, Order, velocity, acceleration]

PositionerAnalogTrackingVelocityParametersGet (integer SocketID, string FullPositionerName)

Input parameters

Return

Error	integer	Function error code
GPIOName	string	Analog input name (ADC)
Offset	double	offset in volts
Scale	double	Scale (Units / Volts)
DeadBandThreshold	double	Dead band threshold (Volts)
Order	integer	Order (No unit)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)

2.2.4.5. PositionerAnalogTrackingVelocityParametersSet

NAME

PositionerAnalogTrackingVelocityParametersSet – Sets the parameters of the current tracking velocity mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check Positioner: ERR_POSITIONER_NAME (-18), ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)
- Check GPIO type (ADC): ERR_WRONG_OBJECT_TYPE (-8)
- Check velocity and acceleration: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function allows modifying the GPIO name, the offset, the scale, the deadband threshold and the order used by the analog tracking velocity mode. To use this function the group state must be READY else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

The target tracking velocity is defined as like:

```
InputValue = GPIOAnalogInput - Offset
MaxADCAmplitude = 10/GPIOAnalogGain

if (InputValue >= 0) then
        InputValue = InputValue - DeadBandThreshold
        if (InputValue < 0) then InputValue = 0

else
        InputValue = AnalogInputValue + DeadBandThreshold
        if (InputValue > 0) then InputValue = 0

OutputValue = (|InputValue| / MaxADCAmplitude)

TrackingVelocity = Sign(InputValue) * OutputValue * Scale * MaxADCAmplitude
```

The "velocity" and "acceleration" define the maximum velocity and acceleration used in the velocity tracking mode.

NOTE:

The analog tracking velocity mode can be reset if the "GPIOName" parameter is empty.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error
```


TCL

Prototype

PositionerAnalogTrackingVelocityParametersSet \$SocketID \$FullPositionerName \$GPIOName \$Offset \$Scale \$DeadBandThreshold \$Order \$velocity \$acceleration

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
GPIOName	string	Analog input name (ADC)
Offset	double	Offset (volts)
Scale	double	Scale (Units / Volts)
DeadBandThreshold	double	Dead band threshold (Volts)
Order	integer	Order (No unit)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)

Output parameters

None

Return

C / C++

Prototype

int **PositionerAnalogTrackingVelocityParametersSet** (int SocketID, char FullPositionerName [250], char *GPIOName, double Offset, double Scale, double DeadBandThreshold, int Order, double velocity, double acceleration)

Input parameters

SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	char *	Positioner name
GPIOName	char *	Analog input name (ADC)
Offset	double	offset in volts
DeadBandThreshold	double	Dead band threshold (Volts)
Order	int	Order (No unit)
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)

Output parameters

None

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerAnalogTrackingVelocityParametersSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal GPIOName As String, ByVal Offset As Double, ByVal Scale As Double, ByVal DeadBandThreshold As Double, ByVal Order As Integer, ByVal velocity As Double, ByVal acceleration As Double)

 $Input\ parameters$

SocketID	Long	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	String	Positioner name
GPIOName	String	Analog input name (ADC)
Offset	Double	offset in volts
DeadBandThreshold	Double	Dead band threshold (Volts)
Order	Integer	Order (No unit)
Scale	Double	Scale (Units / Volts)
velocity	Double	velocity (Units / s)
acceleration	Double	acceleration (Units / s²)

Output parameters

None

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] **PositionerAnalogTrackingVelocityParametersSet** (int32 SocketID, cstring FullPositionerName, cstring GPIOName, double Offset, double Scale, double DeadBandThreshold, int32 Order, double velocity, double acceleration)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	cstring	Positioner name
GPIOName	cstring	Analog input name (ADC)
Offset	double	offset in volts
DeadBandThreshold	double	Dead band threshold (Volts)
Order	int32	Order (No unit)
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)
eturn		
Civili		

Return

Error int32 Function error code

PYTHON

Prototype

[Error] **PositionerAnalogTrackingVelocityParametersSet** (integer SocketID, string FullPositionerName, string GPIOName, double Offset, double Scale, double DeadBandThreshold, integer Order, double velocity, double acceleration)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
GPIOName	string	Analog input name (ADC)
Offset	double	offset in volts
DeadBandThreshold	double	Dead band threshold (Volts)
Order	integer	Order (No unit)
Scale	double	Scale (Units / Volts)
velocity	double	velocity (Units / s)
acceleration	double	acceleration (Units / s²)
otaras		

Return

2.2.4.6. PositionerBacklashDisable

NAME

PositionerBacklashDisable – Disables the backlash compensation.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function disables the backlash compensation. For a more thorough description of the backlash compensation, please refer to the XPS Motion Tutorial, section named Compensation / Backlash compensation.

In the "stages.ini" file the parameter "Backlash" allows to enable or disable the backlash compensation:

- Backlash = $0 \rightarrow$ Disable backlash
- Backlash > 0 → Enable backlash

NOTE:

The backlash compensation is not allowed with a secondary positioner (gantry mode).

The backlash must be disabled to execute a trajectory, to use the jog mode or to use the analog tracking mode.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

PositionerBacklashDisable \$SocketID \$FullPositionerName

Input parameters

Output parameters

None

Roturn

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **PositionerBacklashDisable** (int SocketID, char * FullPositionerName)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long PositionerBacklashDisable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 PositionerBacklashDisable (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer PositionerBacklashDisable (integer SocketID, string FullPositionerName)

Input parameters

Return

Function error code

2.2.4.7. PositionerBacklashEnable

NAME

PositionerBacklashEnable – Enables the backlash compensation.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Group status must be "NOT INITIALIZED": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function enables the backlash compensation defined in the "stages.ini" file or defined by the "PositionerBacklashSet" function. If the backlash compensation value is null then this function could not enable the backlash mode. For a more thorough description of the backlash compensation, please refer to the XPS Motion Tutorial, section named Compensation / Backlash compensation.

The group state must be NOT INITIALIZED to enable the backlash compensation. If it is not the case then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

In the "stages.ini" file the parameter "Backlash" allows to enable or disable the backlash compensation:

- Backlash = $0 \rightarrow$ Disable backlash
- Backlash > 0 → Enable backlash

NOTE:

The backlash must be disabled to execute a trajectory, to use the jog mode or to use the analog tracking mode.

CAUTION:

It is not possible to use backlash compensation with positioners that have a "HomeSearchSequenceType" defined as "CurrentPositionAsHome" or that have a "PositionerMappingFileName" defined in the stages.ini file.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

 $\textbf{PositionerBacklashEnable} \ \$ Socket ID \ \$ Full Positioner Name$

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int PositionerBacklashEnable (int SocketID, char * FullPositionerName)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long PositionerBacklashEnable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 PositionerBacklashEnable (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer PositionerBacklashEnable (integer SocketID, string FullPositionerName)

Input parameters

Return

Function error code

2.2.4.8. PositionerBacklashGet

NAME

PositionerBacklashGet – Gets the backlash compensation value.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function returns the backlash compensation value, defined in the "stages.ini" file or defined by the "PositionerBacklashSet" function, and the backlash status ("Enable" or "Disable"). For a more thorough description of the backlash compensation, please refer to the XPS Motion Tutorial, section named Compensation / Backlash compensation.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0) : no error

TCL

Prototype

PositionerBacklashGet \$SocketID \$FullPositionerName BacklashValue Status

C / C++

Prototype

int **PositionerBacklashGet** (int SocketID, char FullPositionerName [250], double * BacklashValue, char * Status)

Input parameters

Output parameters

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerBacklashGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, BacklashValue As Double, ByVal Status As String)

Input parameters

Output parameters

Return

MATLAB

Prototype

[Error, BacklashValue, Status] PositionerBacklashGet (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerName cstringPositioner name

Return

PYTHON

Prototype

[Error, BacklashValue, Status] **PositionerBacklashGet** (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerNamestringPositioner name

Return

Error.....Function error code

 $Backlash Value Backlash \ compensation \ value \ (units)$

2.2.4.9. PositionerBacklashSet

NAME

PositionerBacklashSet – Sets the backlash compensation value.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter: ERR_WRONG_TYPE_DOUBLE (-14)
- The "BacklashValue" must be positive: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function changes the backlash compensation value. For a more thorough description of the backlash compensation, please refer to the XPS Motion Tutorial, section named Compensation / Backlash compensation.

NOTE:

This function can be used only if a backlash compensation is defined in the "stages.ini" file (Backlash > 0) else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

Input parameters

PositionerBacklashSet \$SocketID \$FullPositionerName \$BacklashValue

Output parameters (None)

Return

C / C++

Prototype

int PositionerBacklashSet (int SocketID, char FullPositionerName [250], double BacklashValue)

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerBacklashSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal BacklashValue As Double)

Input parameters

FullPositionerNameStringPositioner name

Backlash Value Double Backlash compensation value (units)

Output parameters

None

Return

MATLAB

Prototype

[Error] PositionerBacklashSet (int32 SocketID, cstring FullPositionerName, double BacklashValue)

Input parameters

Backlash ValuedoubleBacklash compensation value (units)

Return

Error......Function error code

PYTHON

Prototype

[Error] PositionerBacklashSet (integer SocketID, string FullPositionerName, double BacklashValue)

Input parameters

Backlash ValuedoubleBacklash compensation value (units)

Return

Error.....Function error code

2.2.4.10. PositionerCorrectorAutoTuning

NAME

PositionerCorrectorAutoTuning – Auto-tuning process for position control loop PID values determination.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Positioner must not be a "Secondary Positioner": ERR_WRONG_OBJECT_TYPE (-8)
- Check positioner name: ERR_POSITIONER_NAME (-18)
- Check group type: ERR_WRONG_OBJECT_TYPE (-8)
 Control loop type must be "PIDFFVelocity", "PIDDualFFVoltage" or "PIDFFAcceleration": ERR_UNCOMPATIBLE (-24)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

The function executes an auto-tuning process and returns the new calculated PID setting (KP, KI and KD values). The selected group must be in "READY" state, else the ERR NOT ALLOWED ACTION (-22) error is returned.

This function works only if the positioner control loop type is "PIDFFVelocity" (velocity control), "PIDDualFFVoltage" (voltage control) or "PIDFFAcceleration" (acceleration control), else it returns the ERR UNCOMPATIBLE error.

If the function is called when the positioner is not in READY state, the ERR_NOT_ALLOWED_ACTION (-22) error will be returned.

The "Mode" input value indicates the control mode of the position loop (Short Settle or High Robustness).

- 1. In the **Short Settle** mode, the PID values are adjusted for have the high motion performance (short settling time, less following errors).
- 2. The High Robustness mode is used to have a relatively good performance in motion, but guarantees the robustness (stable) for all stage situations (positions, velocities, accelerations).

If every thing is OK, the auto-tuning goes in execution. During the auto-tuning, if the auto-tuning initialization fails the ERR PID TUNING INITIALIZATION (-104) error is returned, or if the motion becomes disabled then the ERR_EMERGENCY_SIGNAL (-26) error is returned.

The auto-tuning process is executed in 5 periods. At the end of each period, the auto-tuning process estimates the auto-tuning quality by calculating the noise/signal ratio. If the noise/signal ratio is very closed to zero (it means no oscillation) the ERR RELAY FEEDBACK TEST NO OSCILLATION (-101) error is returned. Elsewhere if the noise ratio > MaximumNoiseRatio (normally between 0.1 and 0.2, exact value defined in system.ref) then the ERR_RELAY_FEEDBACK_TEST_SIGNAL_NOISY (-102) is returned.

If the number of acquired data points (minimum = 9) or the number of acquired signal periods (minimum = 5) is not enough for a good estimation then the ERR_SIGNAL_POINTS_NOT_ENOUGH (-103) error is returned.

At end of this function, the new PID setting is returned and the group status becomes "READY" once again.

ERROR CODES

ERR FATAL INIT (-20) ERR_IN_INITIALIZATION (-21) ERR_NOT_ALLOWED_ACTION (-22) ERR_PARAMETER_OUT_OF_RANGE (-17) ERR_POSITIONER_ERROR (-5) ERR_POSITIONER_NAME (-18)

ERR_RELAY_FEEDBACK_TEST_NO_OSCILLATION (-101) ERR_RELAY_FEEDBACK_TEST_SIGNAL_NOISY (-102) ERR_PID_TUNING_INITIALIZATION (-104) ERR_SIGNAL_POINTS_NOT_ENOUGH (-103) ERR_UNCOMPATIBLE (-24) ERR WRONG FORMAT (-7) ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

PositionerCorrectorAutoTuning \$SocketID \$PositionerName \$Mode KP KI KD

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
PositionerName	string	Name of a positioner
		Loop control mode ($0 = \text{short settle}$, or $1 = \text{robust}$)
Output parameters		
KP	double *	Calculated KP value
KI	double *	Calculated KI value
KD	double *	Calculated KD value
Return		
Error	integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or function error
code	_	·

C / C++

Prototype

int PositionerCorrectorAutoTuning (int SocketID, char * PositionerName, int Mode, double *KP, double *KI, double *KD)

Input parameters Socket identifier got from "TCP_ConnectToServer" function PositionerName......char *Positioner name Output parameters KPdouble *Calculated KP value KIdouble *Calculated KI value KD......double *Calculated KD value Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorAutoTuning** (ByVal SocketID As Long, ByVal PositionerName As String, Mode As Integer, KP As Double, KI As Double, KD As Double)

Input parameters

SocketID	Long	Socket identifier got from "TCP_ConnectToServer" function
	_	Positioner name
	_	Loop control mode $(0 = \text{short settle}, \text{ or } 1 = \text{robust})$

Output parameters

KP	Double	Calculated KP value
KI	Double	Calculated KI value
KD	Double	Calculated KD value

Return

MATLAB

Prototype

[Error, KP, KI, KD] PositionerCorrectorAutoTuning (int32 SocketID, cstring PositionerName, int32 Mode)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
		Positioner name
Mode	int32	Loop control mode $(0 = \text{short settle}, \text{ or } 1 = \text{robust})$
Return		
110111111	int32	Function error code
		Calculated KP value

KP double Calculated KP value KI double Calculated KI value KD double Calculated KD value

PYTHON

Prototype

[Error, KP, KI, KD] **PositionerCorrectorAutoTuning** (integer SocketID, string PositionerName, integer Mode, string Password)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	•	Positioner name
	C	Loop control mode ($0 = \text{short settle}$, or $1 = \text{robust}$)
111000		minimized control mode (o short settle, of 1 100 dst)

Return

Error	integer	Function error code
KP	double	Calculated KP value
KI	double	Calculated KI value
KD	double	Calculated KD value

2.2.4.11. PositionerCorrectorNotchFiltersGet

NAME

PositionerCorrectorNotchFiltersGet – Gets the notch filter parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This functions returns the parameters defined for two notch filters.

First notch filter parameters:

- UserNotchFrequency1
- UserNotchBandwidth1
- UserNotchGain1
- •

Second notch filter parameters:

- UserNotchFrequency2
- UserNotchBandwidth2
- UserNotchGain2.

NOTE:

If the corrector type is "NoEncoderPositionCorrector" then the ERR_UNCOMPATIBLE (-24) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR IN INITIALIZATION (-21)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorNotchFiltersGet \$SocketID \$FullPositionerName NotchFrequency1 NotchBandwith1 NotchGain1 NotchFrequency2 NotchBandwith2 NotchGain2

Input parameters

Output parameters NotchFrequency1 doubleFrequency (Herz) for notch filter #1

NotchBandwith1doubleBand width (Herz) for notch filter #1
NotchGain1doubleFrequency (Herz) for notch filter #2
NotchBandwith2doubleBand width (Herz) for notch filter #2

NotchGain2......double......Gain for notch filter #2

Return

C / C++

Prototype

int PositionerCorrectorNotchFiltersGet (int SocketID, char FullPositionerName [250], double* NotchFrequency1, double* NotchBandwith1, double* NotchGain1, double* NotchFrequency2, double* NotchBandwith2, double* NotchGain2)

Input parameters

SocketIDintSocket identifier got from "TCP_ConnectToServer" function

FullPositionerName char *Positioner name

Output parameters

NotchFrequency1....... double *Frequency (Herz) for notch filter #1 NotchBandwith1 double *Band width (Herz) for notch filter #1

NotchGain1......double *Gain for notch filter #1
NotchFrequency2.......double *Frequency (Herz) for notch filter #2 NotchBandwith2......double *.....Band width (Herz) for notch filter #2

NotchGain2......double *Gain for notch filter #2

VISUAL BASIC

Prototype

Long PositionerCorrectorNotchFiltersGet (ByVal SocketID As Long, ByVal FullPositionerName As String, NotchFrequency1 As Double, NotchBandwith1 As Double, NotchGain1 As Double, NotchFrequency2 As Double, NotchBandwith2 As Double, NotchGain2 As Double)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function FullPositionerName StringPositioner name

NotchFrequency1...... DoubleFrequency (Herz) for notch filter #1 NotchBandwith1 Double Band width (Herz) for notch filter #1 NotchGain1 Double Gain for notch filter #1 NotchFrequency2...... DoubleFrequency (Herz) for notch filter #2

MATLAB

Prototype

[Error, NotchFrequency1, NotchBandwith1, NotchGain1, NotchFrequency2, NotchBandwith2, NotchGain2] PositionerCorrectorNotchFiltersGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function

Return

Error	int32	Function error code
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2

PYTHON

^Drototype

[Error, NotchFrequency1, NotchBandwith1, NotchGain1, NotchFrequency2, NotchBandwith2, NotchGain2] **PositionerCorrectorNotchFiltersGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

eturn		
Error	integer	Function error code
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2

2.2.4.12. PositionerCorrectorNotchFiltersSet

NAME

 $\label{lem:positionerCorrectorNotchFiltersSet} \textbf{-} Sets \ the \ notch \ filter \ parameters.$

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

NotchFrequency
$$\in \left[0: \frac{0.5}{\text{CorrectorPeriod}}\right]$$
 avec $\text{CorrectorPeriod} = 0.0001 \text{ s}$ $(10 \text{ KHz}) \Rightarrow \left[0:5000\right]$
NotchBandwidth $\in \left[0: \frac{0.5}{\text{CorrectorPeriod}}\right]$ avec $\text{CorrectorPeriod} = 0.0001 \text{ s}$ $(10 \text{ KHz}) \Rightarrow \left[0:5000\right]$

NotchGain
$$\in [0:100]$$

DESCRIPTION

This functions configures the parameters defined for two notch filters. If the "NotchFrequency" value is NULL or the "NotchGain" value is NULL then the notch filter is not activated.

First notch filter parameters:

- NotchFrequency1
- NotchBandwidth1
- NotchGain1

Second notch filter parameters:

- NotchFrequency2
- NotchBandwidth2
- NotchGain2.

NOTE:

If the corrector type is "NoEncoderPositionCorrector" then the ERR_UNCOMPATIBLE (-24) error is returned.

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorNotchFiltersSet \$SocketID \$FullPositionerName \$NotchFrequency1 \$NotchBandwith1 \$NotchGain1 \$NotchFrequency2 \$NotchBandwith2 \$NotchGain2

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2

Output parameters (None)

Return

Error.......integer.......TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int **PositionerCorrectorNotchFiltersSet** (int SocketID, char FullPositionerName [250], double* NotchFrequency1,double* NotchBandwith1, double* NotchGain1, double* NotchFrequency2, double* NotchBandwith2, double* NotchGain2)

Input parameters

pui purumeiers		
SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	char *	Positioner name
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2

 $Output\ parameters\ (None)$

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorNotchFiltersSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal NotchFrequency1 As Double, ByVal NotchBandwith1 As Double, ByVal NotchGain1 As Double, ByVal NotchGain2 As Double, ByVal NotchGain2 As Double)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer	" function
bocketib Longbocket identifier got from Tel_Conficet roserver	
FullPositionerName StringPositioner name	
NotchFrequency1DoubleFrequency (Herz) for notch filter #1	
NotchBandwith1 DoubleBand width (Herz) for notch filter #1	
NotchGain1DoubleGain for notch filter #1	
NotchFrequency2 DoubleFrequency (Herz) for notch filter #2	
NotchBandwith2DoubleBand width (Herz) for notch filter #2	
NotchGain2DoubleGain for notch filter #2	

Output parameters (None)

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] **PositionerCorrectorNotchFiltersSet** (int32 SocketID, cstring FullPositionerName, double NotchFrequency1, double NotchBandwith1, double NotchGain1, double NotchFrequency2, double NotchBandwith2, double NotchGain2)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	cstring	Positioner name
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2
Return		
	int32	Function error code

PYTHON

Prototype

[Error] **PositionerCorrectorNotchFiltersSet** (integer SocketID, string FullPositionerName, double NotchFrequency1, double NotchBandwith1, double NotchGain1, double NotchFrequency2, double NotchBandwith2, double NotchGain2)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
NotchFrequency1	double	Frequency (Herz) for notch filter #1
NotchBandwith1	double	Band width (Herz) for notch filter #1
NotchGain1	double	Gain for notch filter #1
NotchFrequency2	double	Frequency (Herz) for notch filter #2
NotchBandwith2	double	Band width (Herz) for notch filter #2
NotchGain2	double	Gain for notch filter #2
Return		
Error	integer	Function error code

2.2.4.13. PositionerCorrectorPIDDualFFVoltageGet

NAME

 $\label{positionerCorrectorPIDDualFFVoltageGet} \textbf{PositionerCorrector "PIDDualFFVoltage" parameters.}$

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allow to return the corrector parameter values used by a PID dual feed-forward with a motor voltage output.

NOTE:

The "CorrectorType" must be "PIDDualFFVoltage" in the stages.ini file. This servo loop type is used when the position servo loop drives directly the voltage applied to the motor.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

Input parameters

PositionerCorrectorPIDDualFFVoltageGet \$SocketID \$FullPositionerName ClosedLoopStatus KP KI KD KS IntegrationTime DerivativeFilterCutOffFrequency GKP GKI GKD KForm FeedForwardGainVelocity FeedForwardGainAcceleration Friction

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	e string	Positioner name
Output parameters		
I I		bool Position servo loop status (true=closed and fals

u	tput parameters		
	ClosedLoopStatus	.bool	Position servo loop status (true=closed and false=opened)
	KP	.double	PID servo loop proportional gain
	KI	.double	PID servo loop integral gain
	KD	.double	PID servo loop derivative gain
	KS	.double	PID integral saturation value (0 to 1)
	IntegrationTime	.double	PID integration time (seconds)
	Derivative Filter Cut Off Frequency	.double	PID derivative filter cut off frequency (Hz)
	GKP	.double	variable PID proportional gain multiplier
	GKI	.double	variable PID integral gain multiplier
	GKD	.double	variable PID derivative gain multiplier
	KForm	.double	variable PID form coefficient
	FeedForwardGainVelocity	.double	Velocity feedforward gain (units)
	FeedForwardGainAcceleration	.double	Acceleration feedforward gain (units)
	Friction	.double	friction compensation

Return

C / C++

Prototype

int **PositionerCorrectorPIDDualFFVoltageGet** (int SocketID, char FullPositionerName[250], bool* ClosedLoopStatus, double* KP, double* KI, double* KD, double* KS, double* IntegrationTime, double* DerivativeFilterCutOffFrequency, double* GKP, double* GKI, double* GKD, double* KForm, double* FeedForwardGainVelocity, double* FeedForwardGainAcceleration, double* Friction)

Friction.......double * friction compensation

VISUAL BASIC

Long **PositionerCorrectorPIDDualFFVoltageGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ClosedLoopStatus As Boolean, KP As Double, KI As Double, KD As Double, KS As Double, IntegrationTime As Double, DerivativeFilterCutOffFrequency As Double, GKP As Double, GKI As Double, GKD As Double, KForm As Double, FeedForwardGainVelocity As Double, FeedForwardGainAcceleration As Double, Friction As Double)

Input parameters

Output parameters

ClosedLoopStatusBooleanPosition servo loop status (true=closed and false=ope	ened)
KPDoublePID servo loop proportional gain	
KIPID servo loop integral gain	
KDDoublePID servo loop derivative gain	
KSDoublePID integral saturation value (0 to 1)	
IntegrationTimeDoublePID integration time (seconds)	
DerivativeFilterCutOffFrequencyDoublePID derivative filter cut off frequency (Hz)	
GKP	
GKI	
GKDDoublevariable PID derivative gain multiplier	
KFormDoublevariable PID form coefficient	
FeedForwardGainVelocityDoubleVelocity feedforward gain (units)	
FeedForwardGainAccelerationDouble Acceleration feedforward gain (units)	
FrictionDouble friction compensation	
- Veturn	

87 / 512

MATLAB

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainVelocity, FeedForwardGainAcceleration, Friction]

PositionerCorrectorPIDDualFFVoltageGet (int32 SocketID, cstring FullPositionerName)

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	cstring	Positioner name
Return		
Error	int32	Function error code
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain

Nr		. FID servo 100p proportional gain
KI	double	. PID servo loop integral gain
KD		
		. PID integral saturation value (0 to 1)
IntegrationTime		
ě .		. PID derivative filter cut off frequency (H

Friction double friction compensation

PYTHON

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainVelocity, FeedForwardGainAcceleration, Friction]

PositionerCorrectorPIDDualFFVoltageGet (integer SocketID, string FullPositionerName)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	-	

Return

9	turn		
	Error	.integer	Function error code
	ClosedLoopStatus	.boolean	Position servo loop status (true=closed and false=opened)
	KP	.double	PID servo loop proportional gain
	KI	.double	PID servo loop integral gain
	KD	.double	PID servo loop derivative gain
	KS	.double	PID integral saturation value (0 to 1)
	IntegrationTime	.double	PID integration time (seconds)
	DerivativeFilterCutOffFrequency	.double	PID derivative filter cut off frequency (Hz)
	GKP	.double	variable PID proportional gain multiplier
	GKI	.double	variable PID integral gain multiplier
	GKD	.double	variable PID derivative gain multiplier
	KForm	.double	variable PID form coefficient
	FeedForwardGainVelocity	.double	Velocity feedforward gain (units)
	FeedForwardGainAcceleration	.double	Acceleration feedforward gain (units)
	Friction	.double	friction compensation

2.2.4.14. PositionerCorrectorPIDDualFFVoltageSet

NAME

PositionerCorrectorPIDDualFFVoltageSet – Configures the corrector "PIDDualFFVoltage" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
KP \ge 0
KI \ge 0
KD \ge 0
0 \le KS \le 1
IntegrationTime \ge CorrectorPeriod (0.0001 s)
GKP > -1
GKI > -1
GKD > -1
KForm \ge 0
KFeedForwardVelocity \ge 0
KFeedForwardAcceleration \ge 0
Friction \ge 0
DerivativeFilterCutOffFrequency \in \left[0: \frac{0.5}{\text{CorrectorPeriod}}\right] => \left[0:5000\right] \text{ with CorrectorPeriod} = 0.0001 \text{ s}
```

DESCRIPTION

This function allows to configure the "PIDDualFFVoltage" corrector parameters. The "CorrectorType" must be "PIDDualFFVoltage" in the stages.ini file else the ERR_WRONG_OBJECT_TYPE (-8) error is returned.

NOTE:

This servo loop type is used when the position servo loop drives directly the voltage applied to the motor.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```


TCL

Prototype

PositionerCorrectorPIDDualFFVoltageSet \$SocketID \$FullPositionerName \$ClosedLoopStatus \$KP \$KI \$KD \$KS \$IntegrationTime \$DerivativeFilterCutOffFrequency \$GKP \$GKI \$GKD \$KForm \$FeedForwardGainVelocity \$FeedForwardGainAcceleration \$Friction

Input parameters	
SocketID	integerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	stringPositioner name
ClosedLoopStatus	boolPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFrequency	doublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
GKD	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainVelocity	doubleVelocity feedforward gain (units)
FeedForwardGainAcceleration	doubleAcceleration feedforward gain (units)
Friction	doublefriction compensation
Output parameters None	
Return	
Errorinteger	TCL error code ($0 = success \text{ or } 1 = syntax \text{ error}$) or function error code

C/C++

Prototype

int **PositionerCorrectorPIDDualFFVoltageSet** (int SocketID, char FullPositionerName[250], bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity, double FeedForwardGainAcceleration, double Friction)

Input parameters FullPositionerNamechar *Positioner name ClosedLoopStatusboolPosition servo loop status (true=closed and false=opened) KP.....doublePID servo loop proportional gain KIdoublePID servo loop integral gain KD......doublePID servo loop derivative gain KSdoublePID integral saturation value (0 to 1) IntegrationTimedoublePID integration time (seconds) DerivativeFilterCutOffFrequency.....doublePID derivative filter cut off frequency (Hz) GKPdoublevariable PID proportional gain multiplier GKIdoublevariable PID integral gain multiplier GKD......doublevariable PID derivative gain multiplier KForm.....doublevariable PID form coefficient FeedForwardGainVelocity......doubleVelocity feedforward gain (units) FeedForwardGainAccelerationdoubleAcceleration feedforward gain (units) Friction......doublefriction compensation

Output parameters

None

Return

VISUAL BASIC

Prototype

Long PositionerCorrectorPIDDualFFVoltageSet (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ClosedLoopStatus As Boolean, ByVal KP As Double, ByVal KI As Double, ByVal KD As Double, ByVal KS As Double, ByVal IntegrationTime As Double, ByVal DerivativeFilterCutOffFrequency As Double, ByVal GKP As Double, ByVal GKI As Double, ByVal GKD As Double, ByVal KForm As Double, ByVal FeedForwardGainVelocity As Double, ByVal FeedForwardGainAcceleration As Double, ByVal Friction As Double)

Input parameters

SocketID	LongSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	StringPositioner name
ClosedLoopStatus	BooleanPosition servo loop status (true=closed and false=opened)
KP	DoublePID servo loop proportional gain
KI	DoublePID servo loop integral gain
KD	DoublePID servo loop derivative gain
KS	DoublePID integral saturation value (0 to 1)
IntegrationTime	DoublePID integration time (seconds)
DerivativeFilterCutOffFrequency	DoublePID derivative filter cut off frequency (Hz)
GKP	Doublevariable PID proportional gain multiplier
GKI	Doublevariable PID integral gain multiplier
GKD	Doublevariable PID derivative gain multiplier
KForm	Doublevariable PID form coefficient
FeedForwardGainVelocity	DoubleVelocity feedforward gain (units)
FeedForwardGainAcceleration	DoubleAcceleration feedforward gain (units)
Friction	Doublefriction compensation
utput parameters	
wip wit periodicions	

Оu

None

Return

Error......Long.....Function error code

MATLAB

[Error] PositionerCorrectorPIDDualFFVoltageSet (int32 SocketID, cstring FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity, double FeedForwardGainAcceleration, double Friction)

Input parameters

S	ocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
	ullPositionerName		_
			Position servo loop status (true=closed and false=opened)
			PID servo loop proportional gain
K	I	double	PID servo loop integral gain
	D		
K	S	double	PID integral saturation value (0 to 1)
In	ntegrationTime	double	PID integration time (seconds)
D	erivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
G	KP	double	variable PID proportional gain multiplier
G	KI	double	variable PID integral gain multiplier
G	KD	double	variable PID derivative gain multiplier
K	Form	double	variable PID form coefficient
Fe	eedForwardGainVelocity	double	Velocity feedforward gain (units)
			Acceleration feedforward gain (units)
Fı	riction	double	friction compensation
Retur	rn		
E	rror	int32	Function error code

PYTHON

[Error] **PositionerCorrectorPIDDualFFVoltageSet** (integer SocketID, string FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity, double FeedForwardGainAcceleration, double Friction)

Input parameters
SocketIDintegerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerNamestringPositioner name
ClosedLoopStatusbooleanPosition servo loop status (true=closed and false=opened)
KPdoublePID servo loop proportional gain
KIdoublePID servo loop integral gain
KDdoublePID servo loop derivative gain
KSdoublePID integral saturation value (0 to 1)
IntegrationTimedoublePID integration time (seconds)
DerivativeFilterCutOffFrequencydoublePID derivative filter cut off frequency (Hz)
GKPdoublevariable PID proportional gain multiplier
GKIdoublevariable PID integral gain multiplier
GKDdoublevariable PID derivative gain multiplier
KFormdoublevariable PID form coefficient
FeedForwardGainVelocitydoubleVelocity feedforward gain (units)
FeedForwardGainAccelerationdoubleAcceleration feedforward gain (units)
Frictiondoublefriction compensation
Return
ErrorintegerFunction error code

2.2.4.15. PositionerCorrectorPIDFFAccelerationGet

NAME

PositionerCorrectorPIDFFAccelerationGet – Gets the corrector "PIDFFAcceleration" parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allow to return the corrector parameter values used by a PID feed-forward with an acceleration output.

NOTE:

The "CorrectorType" must be "PIDFFAcceleration" in the stages.ini file. This servo loop type is used when a constant value applied to the driver results in a constant acceleration of the stage.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorPIDFFAccelerationGet \$SocketID \$FullPositionerName ClosedLoopStatus KP KI KD KS IntegrationTime DerivativeFilterCutOffFrequency GKP GKI GKD KForm FeedForwardGainAcceleration

Input parameters	
SocketID	integerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	stringPositioner name
Output parameters	
ClosedLoopStatus	boolPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
KD	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFrequency	doublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
GKD	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainAcceleration	doubleAcceleration feedforward gain (units)
Return	
Errorinteger	TCL error code ($0 = success \text{ or } 1 = syntax \text{ error}$) or function error code

C/C++

int **PositionerCorrectorPIDFFAccelerationGet** (int SocketID, char FullPositionerName[250], bool* ClosedLoopStatus, double* KP, double* KI, double* KD, double* KS, double* IntegrationTime, double* DerivativeFilterCutOffFrequency, double* GKP, double* GKI, double* GKD, double* KForm, double* FeedForwardGainAcceleration)

Input parameters SocketID
Output parameters
ClosedLoopStatusbool *Position servo loop status (true=closed and false=opened)
KPdouble *PID servo loop proportional gain
KIdouble *PID servo loop integral gain
KDdouble *PID servo loop derivative gain
KSdouble *PID integral saturation value (0 to 1)
IntegrationTimedouble *PID integration time (seconds)
DerivativeFilterCutOffFrequencydouble *PID derivative filter cut off frequency (Hz)
GKPdouble *variable PID proportional gain multiplier
GKIdouble *variable PID integral gain multiplier
GKDdouble *variable PID derivative gain multiplier
KFormdouble *variable PID form coefficient
FeedForwardGainAcceleration double *Acceleration feedforward gain (units)
Return
ErrorFunction error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorPIDFFAccelerationGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ClosedLoopStatus As Boolean, KP As Double, KI As Double, KD As Double, KS As Double, IntegrationTime As Double, DerivativeFilterCutOffFrequency As Double, GKP As Double, GKI As Double, GKD As Double, KForm As Double, FeedForwardGainAcceleration As Double)

	,	
Input parameters SocketIDLong	Sock	et identifier got from "TCP_ConnectToServer" function
FullPositionerName String		
Output parameters		
4 4	Boolean	Position servo loop status (true=closed and false=opened)
KP	Double	PID servo loop proportional gain
KI	Double	PID servo loop integral gain
KD	Double	PID servo loop derivative gain
KS	Double	PID integral saturation value (0 to 1)
IntegrationTime	Double	PID integration time (seconds)
DerivativeFilterCutOffFrequency	Double	PID derivative filter cut off frequency (Hz)
GKP	Double	variable PID proportional gain multiplier
		variable PID integral gain multiplier
GKD	Double	variable PID derivative gain multiplier
KForm	Double	variable PID form coefficient
FeedForwardGainAcceleration	Double	Acceleration feedforward gain (units)
Return		
Error	Long	Function error code

MATLAB

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainAcceleration] **PositionerCorrectorPIDFFAccelerationGet** (int32 SocketID, cstring FullPositionerName)

Input parameters		
	Soc	ket identifier got from "TCP_ConnectToServer" function
FullPositionerNamecstrin		_
Tuni ositioneri tunieestini	.g	nioner name
Return		
Error	int32	Function error code
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
KD	double	PID servo loop derivative gain
KS	double	PID integral saturation value (0 to 1)
IntegrationTime	double	PID integration time (seconds)
DerivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
GKP	double	variable PID proportional gain multiplier
GKI	double	variable PID integral gain multiplier
GKD	double	variable PID derivative gain multiplier
KForm	double	variable PID form coefficient
FeedForwardGainAcceleration	double	Acceleration feedforward gain (units)

PYTHON

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainAcceleration] **PositionerCorrectorPIDFFAccelerationGet** (integer SocketID, string FullPositionerName)

Inpui	parameters	

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name

Return

ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
KD	double	PID servo loop derivative gain
KS	double	PID integral saturation value (0 to 1)
IntegrationTime	double	PID integration time (seconds)
DerivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
GKP	double	variable PID proportional gain multiplier
GKI	double	variable PID integral gain multiplier
GKD	double	variable PID derivative gain multiplier
KForm	double	variable PID form coefficient
FeedForwardGainAcceleration	double	Acceleration feedforward gain (units)

2.2.4.16. PositionerCorrectorPIDFFAccelerationSet

NAME

PositionerCorrectorPIDFFAccelerationSet – Gets the corrector "PIDFFAcceleration" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
\begin{split} \mathit{KP} &\geq 0 \\ \mathit{KI} &\geq 0 \\ \mathit{KD} &\geq 0 \\ 0 &\leq \mathit{KS} \leq 1 \\ \mathit{IntegrationTime} \geq \mathit{CorrectorPeriod} \ (0.0001 \ s) \\ \mathit{GKP} &> -1 \\ \mathit{GKI} &> -1 \\ \mathit{GKD} &> -1 \\ \mathit{KForm} &\geq 0 \\ \mathit{KFeedForwardAcceleration} \geq 0 \\ \mathit{DerivativeFilterCutOffFrequency} \in \left[0: \frac{0.5}{\mathsf{CorrectorPeriod}}\right] => \left[0:5000\right] \ \mathit{with CorrectorPeriod} = 0.0001 \ \mathit{s} \end{split}
```

DESCRIPTION

This function allows to configure the "PIDFFAcceleration" corrector parameters.

NOTE:

The "CorrectorType" parameter must be defined as "PIDFFAcceleration" in the "stages.ini" file else the ERR_WRONG_OBJECT_TYPE (-8) error is returned. This servo loop type is used when a constant value applied to the driver results in a constant acceleration of the stage.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```


TCL

Prototype

PositionerCorrectorPIDFFAccelerationSet \$SocketID \$FullPositionerName \$ClosedLoopStatus \$KP \$KI \$KD \$KS \$IntegrationTime \$DerivativeFilterCutOffFrequency \$GKP \$GKI \$GKD \$KForm \$FeedForwardGainAcceleration

Input parameters	
SocketID	integerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	stringPositioner name
ClosedLoopStatus	boolPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
KD	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFi	requencydoublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainAccele	erationdoubleAcceleration feedforward gain (units)
Output parameters	
None	
Return	
Error	integerTCL error code ($0 = success \text{ or } 1 = syntax \text{ error}$) or function error code

C/C++

Prototype

int **PositionerCorrectorPIDFFAccelerationSet** (int SocketID, char FullPositionerName[250], bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainAcceleration)

Input parameters

pui pui uniereis	
SocketID	intSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	char *Positioner name
ClosedLoopStatus	boolPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
KD	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFrequency	doublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
GKD	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainAcceleration	doubleAcceleration feedforward gain (units)

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long PositionerCorrectorPIDFFAccelerationSet (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ClosedLoopStatus As Boolean, ByVal KP As Double, ByVal KI As Double, ByVal KD As Double, ByVal KS As Double, ByVal IntegrationTime As Double, ByVal DerivativeFilterCutOffFrequency As Double, ByVal GKP As Double, ByVal GKI As Double, ByVal GKD As Double, ByVal KForm As Double, ByVal FeedForwardGainAcceleration As Double

Input parameters

SocketID	LongSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	StringPositioner name
ClosedLoopStatus	BooleanPosition servo loop status (true=closed and false=opened)
KP	DoublePID servo loop proportional gain
KI	DoublePID servo loop integral gain
KD	DoublePID servo loop derivative gain
KS	DoublePID integral saturation value (0 to 1)
IntegrationTime	DoublePID integration time (seconds)
DerivativeFilterCutOffFrequency	DoublePID derivative filter cut off frequency (Hz)
GKP	Doublevariable PID proportional gain multiplier
GKI	Doublevariable PID integral gain multiplier
GKD	Doublevariable PID derivative gain multiplier
KForm	Doublevariable PID form coefficient
FeedForwardGainAcceleration	DoubleAcceleration feedforward gain (units)
Output parameters	

None

Return

Error......Long.....Function error code

MATLAB

[Error] PositionerCorrectorPIDFFAccelerationSet (int32 SocketID, cstring FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainAcceleration)

Input parameters

SocketID	nt32Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	cstringPositioner name
ClosedLoopStatus	booleanPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
KD	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFrequency	doublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainAcceleration	doubleAcceleration feedforward gain (units)

Return

Error.....Function error code

PYTHON

Prototype

[Error] **PositionerCorrectorPIDFFAccelerationSet** (integer SocketID, string FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainAcceleration)

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
KD	double	PID servo loop derivative gain
KS	double	PID integral saturation value (0 to 1)
IntegrationTime	double	PID integration time (seconds)
DerivativeFilterCutOffFrequency.	double	PID derivative filter cut off frequency (Hz)
GKP	double	variable PID proportional gain multiplier
GKI	double	variable PID integral gain multiplier
GKD	double	variable PID derivative gain multiplier
KForm	double	variable PID form coefficient
FeedForwardGainAcceleration	double	Acceleration feedforward gain (units)
Return		
Error	integer	Function error code

2.2.4.17. PositionerCorrectorPIDFFVelocityGet

NAME

PositionerCorrectorPIDFFVelocityGet – Gets the corrector "PIDFFVelocity" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allow to return the corrector parameter values used by a PID with a velocity output: ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, Kform and FeedForwardGainVelocity.

NOTE:

The "CorrectorType" must be "PIDFFVelocity" in the stages.ini file. This servo loop type is used when a constant value applied to the driver results in a constant velocity of the stage.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorPIDFFVelocityGet \$SocketID \$FullPositionerName ClosedLoopStatus KP KI KD KS IntegrationTime DerivativeFilterCutOffFrequency GKP GKI GKD KForm FeedForwardGainVelocity

Input parameters		
SocketID integer	Socket iden	tifier got from "TCP_ConnectToServer" function
FullPositionerName string	Positioner r	name
Output parameters		
ClosedLoopStatus	bool	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
KD	double	PID servo loop derivative gain
KS	double	PID integral saturation value (0 to 1)
IntegrationTime	double	PID integration time (seconds)
DerivativeFilterCutOffFrequency.	double	PID derivative filter cut off frequency (Hz)
GKP	double	variable PID proportional gain multiplier
GKI	double	variable PID integral gain multiplier
GKD	double	variable PID derivative gain multiplier
KForm	double	variable PID form coefficient
FeedForwardGainVelocity	double	Velocity feedforward gain (units)
Return		

C / C++

int **PositionerCorrectorPIDFFVelocityGet** (int SocketID, char FullPositionerName[250], bool* ClosedLoopStatus, double* KP, double* KI, double* KD, double* KS, double* IntegrationTime, double* DerivativeFilterCutOffFrequency, double* GKP, double* GKI, double* GKD, double* KForm, double* FeedForwardGainVelocity)

ClosedLoopStatus bool * Position servo loop status (true=closed and false=opened)

KP double * PID servo loop proportional gain

KI double * PID servo loop integral gain

KD double * PID servo loop derivative gain

KS double * PID integral saturation value (0 to 1)

IntegrationTime double * PID integration time (seconds)

DerivativeFilterCutOffFrequency double * PID derivative filter cut off frequency (Hz)

GKP double * variable PID proportional gain multiplier

FeedForwardGainVelocity......double *Velocity feedforward gain (units)

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorPIDFFVelocityGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ClosedLoopStatus As Boolean, KP As Double, KI As Double, KD As Double, KS As Double, IntegrationTime As Double, DerivativeFilterCutOffFrequency As Double, GKP As Double, GKI As Double, GKD As Double, KForm As Double, FeedForwardGainVelocity As Double)

Output parameters

ClosedLoopStatus Boolean Position servo loop status (true=closed and false=opened)
KP Double PID servo loop proportional gain
KI Double PID servo loop integral gain
KD Double PID servo loop derivative gain
KS Double PID integral saturation value (0 to 1)
IntegrationTime Double PID integration time (seconds)
DerivativeFilterCutOffFrequency Double PID derivative filter cut off frequency (Hz)
GKP Double variable PID proportional gain multiplier
GKI Double variable PID integral gain multiplier
GKD Double variable PID derivative gain multiplier
KForm Double variable PID form coefficient
FeedForwardGainVelocity Double Velocity feedforward gain (units)

Return

MATLAB

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainVelocity] **PositionerCorrectorPIDFFVelocityGet** (int32 SocketID, cstring FullPositionerName)

Input parameters SocketID
Return
ErrorFunction error code
ClosedLoopStatusbooleanPosition servo loop status (true=closed and false=opened)
KPPID servo loop proportional gain
KIPID servo loop integral gain
KDdoublePID servo loop derivative gain
KSdoublePID integral saturation value (0 to 1)
IntegrationTimedoublePID integration time (seconds)
DerivativeFilterCutOffFrequencydoublePID derivative filter cut off frequency (Hz)
GKPdoublevariable PID proportional gain multiplier
GKIdoublevariable PID integral gain multiplier
GKDdoublevariable PID derivative gain multiplier
KFormdoublevariable PID form coefficient
FeedForwardGainVelocitydoubleVelocity feedforward gain (units)

PYTHON

Prototype

[Error, ClosedLoopStatus, KP, KI, KD, KS, IntegrationTime, DerivativeFilterCutOffFrequency, GKP, GKI, GKD, KForm, FeedForwardGainVelocity] **PositionerCorrectorPIDFFVelocityGet** (integer SocketID, string FullPositionerName)

 ${\it Input parameters}$

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" fund	ction
FullPositionerName	string	Positioner name	

Return

Error	ınteger	Function error code
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
KD	double	PID servo loop derivative gain
KS	double	PID integral saturation value (0 to 1)
IntegrationTime	double	PID integration time (seconds)
DerivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
GKP	double	variable PID proportional gain multiplier
GKI	double	variable PID integral gain multiplier
GKD	double	variable PID derivative gain multiplier
KForm	double	variable PID form coefficient
FeedForwardGainVelocity	double	Velocity feedforward gain (units)

2.2.4.18. PositionerCorrectorPIDFFVelocitySet

NAME

PositionerCorrectorPIDFFVelocitySet – Configures the corrector "PIDFFVelocity" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
KP \ge 0
KI \ge 0
KD \ge 0
0 \le KS \le 1
IntegrationTime \geq CorrectorPeriod (0.0001 s)
GKP > -1
GKI > -1
GKD > -1
KForm \ge 0
KFeedForwardVelocity \ge 0
DerivativeFilterCutOffFrequency \in \left[0: \frac{0.5}{\text{CorrectorPeriod}}\right] => \left[0:5000\right] \text{ with CorrectorPeriod} = 0.0001 \text{ s}
```

DESCRIPTION

This function allows to configure the "PIDFFVelocity" corrector parameters.

NOTE:

The "CorrectorType" parameter must be defined as "PIDFFVelocity" in the stages.ini file else the ERR_WRONG_OBJECT_TYPE (-8) error is returned. This servo loop type is used when a constant value applied to the driver results in a constant velocity of the stage.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```


TCL

Prototype

PositionerCorrectorPIDFFVelocitySet \$SocketID \$FullPositionerName \$ClosedLoopStatus \$KP \$KI \$KD \$KS \$IntegrationTime \$DerivativeFilterCutOffFrequency \$GKP \$GKI \$GKD \$KForm \$FeedForwardGainVelocity

Input parameters
SocketIDintegerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerNamestringPositioner name
ClosedLoopStatusboolPosition servo loop status (true=closed and false=opened)
KPdoublePID servo loop proportional gain
KIdoublePID servo loop integral gain
KDdoublePID servo loop derivative gain
KSdoublePID integral saturation value (0 to 1)
IntegrationTimedoublePID integration time (seconds)
DerivativeFilterCutOffFrequencydoublePID derivative filter cut off frequency (Hz)
GKPdoublevariable PID proportional gain multiplier
GKIdoublevariable PID integral gain multiplier
GKDdoublevariable PID derivative gain multiplier
KFormdoublevariable PID form coefficient
FeedForwardGainVelocitydoubleVelocity feedforward gain (units)
Output parameters
None
Return
ErrorintegerTCL error code (0 = success or 1 = syntax error) or function error code

C/C++

int PositionerCorrectorPIDFFVelocitySet (int SocketID, char FullPositionerName[250], bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity)

Input parameters

	SocketID	ınt	Socket identifier got from "TCP_ConnectToServer" function
	FullPositionerName	char *	Positioner name
	ClosedLoopStatus	bool	Position servo loop status (true=closed and false=opened)
	KP	double	PID servo loop proportional gain
	KI	double	PID servo loop integral gain
	KD	double	PID servo loop derivative gain
	KS	double	PID integral saturation value (0 to 1)
	IntegrationTime	double	PID integration time (seconds)
	DerivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
			variable PID proportional gain multiplier
	GKI	double	variable PID integral gain multiplier
			variable PID derivative gain multiplier
	KForm	double	variable PID form coefficient
	FeedForwardGainVelocity	double	Velocity feedforward gain (units)
L	utput parameters		

Output parameters

None

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorPIDFFVelocitySet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ClosedLoopStatus As Boolean, ByVal KP As Double, ByVal KI As Double, ByVal KD As Double, ByVal KS As Double, ByVal IntegrationTime As Double, ByVal DerivativeFilterCutOffFrequency As Double, ByVal GKP As Double, ByVal GKI As Double, ByVal GKD As Double, ByVal KForm As Double, ByVal FeedForwardGainVelocity As Double)

Input parameters

SocketID	Long	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	String	Positioner name
		Position servo loop status (true=closed and false=opened)
KP	Double	PID servo loop proportional gain
KI	Double	PID servo loop integral gain
KD	Double	PID servo loop derivative gain
KS	Double	PID integral saturation value (0 to 1)
IntegrationTime	Double	PID integration time (seconds)
DerivativeFilterCutOffFrequency	Double	PID derivative filter cut off frequency (Hz)
GKP	Double	variable PID proportional gain multiplier
GKI	Double	variable PID integral gain multiplier
GKD	Double	variable PID derivative gain multiplier
KForm	Double	variable PID form coefficient
FeedForwardGainVelocity	Double	Velocity feedforward gain (units)

Output parameters

None

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] **PositionerCorrectorPIDFFVelocitySet** (int32 SocketID, cstring FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity)

Input parameters

I	our parameters		
	SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
	FullPositionerName	cstring	Positioner name
	ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
	KP	double	PID servo loop proportional gain
	KI	double	PID servo loop integral gain
	KD	double	PID servo loop derivative gain
	KS	double	PID integral saturation value (0 to 1)
	IntegrationTime	double	PID integration time (seconds)
	DerivativeFilterCutOffFrequency	double	PID derivative filter cut off frequency (Hz)
	GKP	double	variable PID proportional gain multiplier
	GKI	double	variable PID integral gain multiplier
	GKD	double	variable PID derivative gain multiplier
	KForm	double	variable PID form coefficient
	FeedForwardGainVelocity	double	Velocity feedforward gain (units)
0	turn		

PYTHON

Prototype

[Error] **PositionerCorrectorPIDFFVelocitySet** (integer SocketID, string FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double KD, double KS, double IntegrationTime, double DerivativeFilterCutOffFrequency, double GKP, double GKI, double GKD, double KForm, double FeedForwardGainVelocity)

SocketID	integerSocket identifier got from "TCP_ConnectToServer" function
FullPositionerName	stringPositioner name
ClosedLoopStatus	booleanPosition servo loop status (true=closed and false=opened)
KP	doublePID servo loop proportional gain
KI	doublePID servo loop integral gain
KD	doublePID servo loop derivative gain
KS	doublePID integral saturation value (0 to 1)
IntegrationTime	doublePID integration time (seconds)
DerivativeFilterCutOffFrequen	doublePID derivative filter cut off frequency (Hz)
GKP	doublevariable PID proportional gain multiplier
GKI	doublevariable PID integral gain multiplier
GKD	doublevariable PID derivative gain multiplier
KForm	doublevariable PID form coefficient
FeedForwardGainVelocity	doubleVelocity feedforward gain (units)

Error.....Function error code

2.2.4.19. PositionerCorrectorPIPositionGet

NAME

PositionerCorrectorPIPositionGet – Gets the corrector "PIPosition" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allow to return the corrector parameter values used by a PI with a position output: ClosedLoopStatus, KP, KI and IntegrationTime.

NOTE:

The "CorrectorType" must be "PIPosition" in the stages.ini file. This servo loop type is used when the position servo loop outputs directly a position value.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorPIPositionGet \$SocketID \$FullPositionerName ClosedLoopStatus KP KI IntegrationTime

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
Output parameters		
ClosedLoopStatus	bool	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
IntegrationTime	double	PID integration time (seconds)
Return		
Error	integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or function error code

C / C++

Prototype

int PositionerCorrectorPIPositionGet (int SocketID, char FullPositionerName[250], bool* ClosedLoopStatus, double* KP, double* KI, double* IntegrationTime)

VISUAL BASIC

Prototype

Long **PositionerCorrectorPIPositionGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ClosedLoopStatus As Boolean, KP As Double, KI As Double, IntegrationTime As Double)

MATLAB

Prototype

[Error, ClosedLoopStatus, KP, KI, IntegrationTime] **PositionerCorrectorPIPositionGet** (int32 SocketID, cstring FullPositionerName)

 Input parameters

 SocketID
 int32
 Socket identifier got from "TCP_ConnectToServer" function

 FullPositionerName
 Positioner name

 Return
 Error
 int32
 Function error code

 ClosedLoopStatus
 boolean
 Position servo loop status (true=closed and false=opened)

 KP
 double
 PID servo loop proportional gain

 KI
 double
 PID servo loop integral gain

IntegrationTimedouble......PID integration time (seconds)

PYTHON

Prototype

[Error, ClosedLoopStatus, KP, KI, IntegrationTime] **PositionerCorrectorPIPositionGet** (integer SocketID, string FullPositionerName)

Input parameters SocketIDFullPositionerName		Socket identifier got from "TCP_ConnectToServer" functionPositioner name
Return		
Error	integer	Function error code
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
		PID servo loop integral gain
		PID servo loop proportional gainPID servo loop integral gain

IntegrationTimedouble......PID integration time (seconds)

2.2.4.20. PositionerCorrectorPIPositionSet

NAME

PositionerCorrectorPIPositionSet – Configures the corrector "PIPosition" parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type and the corrector type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_BOOL (-12), ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
KP \ge 0

KI \ge 0

IntegrationTime \ge CorrectorPeriod\ (0.0001\ s)
```

DESCRIPTION

This function allows to configure the "PIPosition" corrector parameters.

NOTE:

The "CorrectorType" parameter must be defined as "PIPosition" in the stages.ini file else the ERR_WRONG_OBJECT_TYPE (-8) error is returned. This servo loop type is used when the position servo loop outputs directly a position value.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```

TCL

Prototype

PositionerCorrectorPIPositionSet \$SocketID \$FullPositionerName \$ClosedLoopStatus \$KP \$KI \$IntegrationTime

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
ClosedLoopStatus	bool	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
IntegrationTime	double	PID integration time (seconds)
Output parameters		
None		
Return		
Error	integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or function error code

C/C++

Prototype

int **PositionerCorrectorPIPositionSet** (int SocketID, char FullPositionerName[250], bool ClosedLoopStatus, double KP, double KI, double IntegrationTime)

Input parameters

SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	char *	Positioner name
ClosedLoopStatus	bool	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
		PID integration time (seconds)

Output parameters

None

Return

VISUAL BASIC

Prototype

Long **PositionerCorrectorPIPositionSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ClosedLoopStatus As Boolean, ByVal KP As Double, ByVal KI As Double, ByVal IntegrationTime As Double)

Input parameters

SocketID	Long	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	String	Positioner name
ClosedLoopStatus	Boolean	Position servo loop status (true=closed and false=opened)
KP	Double	PID servo loop proportional gain
KI	Double	PID servo loop integral gain
IntegrationTime	Double	PID integration time (seconds)

Output parameters

None

Return

Error...........Long.......Function error code

Error......Function error code

MATLAB

Prototype

[Error] **PositionerCorrectorPIPositionSet** (int32 SocketID, cstring FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double IntegrationTime)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName		
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
KP	double	PID servo loop proportional gain
KI	double	PID servo loop integral gain
IntegrationTime	double	PID integration time (seconds)
Return		

PYTHON

[Error] **PositionerCorrectorPIPositionSet** (integer SocketID, string FullPositionerName, bool ClosedLoopStatus, double KP, double KI, double IntegrationTime)

Input	parameters
-------	------------

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
ClosedLoopStatus	boolean	Position servo loop status (true=closed and false=opened)
		PID servo loop proportional gain
		PID servo loop integral gain
		PID integration time (seconds)

Return

Error.....Function error code

2.2.4.21. PositionerCorrectorTypeGet

NAME

PositionerCorrectorTypeGet – Returns the corrector type.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns the corrector type used by the selected positioner.

The corrector type can be one of this list:

- 1. PositionerCorrectorPIDFFAcceleration
- 2. PositionerCorrectorPIDFFVelocity
- 3. PositionerCorrectorPIDDualFFVoltage
- 4. PositionerCorrectorPIPosition
- 5. NoCorrector

NOTE

The corrector type is defined in the stages.ini file with the "CorrectorType" parameter.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
SUCCESS (0): no error

TCL

Prototype

PositionerCorrectorTypeGet \$SocketID \$FullPositionerName CorrectorType

C / C++

Prototype

int PositionerCorrectorTypeGet (int SocketID, char FullPositionerName[250], char* CorrectorType)

Input parameters

Outnut parameters

CorrectorTypechar *Corrector type

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerCorrectorTypeGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal CorrectorType As String)

Input parameters

FullPositionerNameString......Positioner name

Output parameters

CorrectorTypeStringCorrector type

Return

Error......Function error code

MATLAB

Prototype

 $[Error, Corrector Type] \ \textbf{Positioner Corrector Type Get} \ (int 32 \ Socket ID, \ cstring \ Full Positioner Name)$

Input parameters

Return

PYTHON

Prototype

[Error, CorrectorType] PositionerCorrectorTypeGet (integer SocketID, string FullPositionerName)

Input parameters

Return

2.2.4.22. PositionerCurrentVelocityAccelerationFiltersGet

NAME

PositionerCurrentVelocityAccelerationFiltersGet – Gets the velocity and acceleration filter cut off frequencies.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allows to return the current velocity cut off frequency and the current acceleration cut off frequency used by the gathering for the selected positioner.

The gathering uses these parameters to filter the current velocity and the current acceleration. These parameters are defined in the stages.ini file.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

$\textbf{Positioner} \textbf{Current Velocity Acceleration Filters Get} \ \$ \textbf{Socket ID} \ \$ \textbf{Full Positioner Name}$

VelocityCutOffFrequency AccelerationCutOffFrequency

C/C++

Prototype

int **PositionerCurrentVelocityAccelerationFiltersGet** (int SocketID, char FullPositionerName[250], double* VelocityCutOffFrequency, double* AccelerationCutOffFrequency)

Error......Function error code

VISUAL BASIC

Long **PositionerCurrentVelocityAccelerationFiltersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, VelocityCutOffFrequency As Double, AccelerationCutOffFrequency As Double)

Input parameters

FullPositionerName StringPositioner name

Output parameters

VelocityCutOffFrequency..........double........Velocity filter cut off frequency (Hz) AccelerationCutOffFrequency....double.........Acceleration filter cut off frequency (Hz)

Return

MATLAB

Prototype

[Error, VelocityCutOffFrequency, AccelerationCutOffFrequency]

PositionerCurrentVelocityAccelerationFiltersGet (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerName cstringPositioner name

Return

VelocityCutOffFrequency.......double......Velocity filter cut off frequency (Hz)

AccelerationCutOffFrequency.... double.......Acceleration filter cut off frequency (Hz)

PYTHON

Prototype

[Error, VelocityCutOffFrequency, AccelerationCutOffFrequency]

PositionerCurrentVelocityAccelerationFiltersGet (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerNamestringPositioner name

Return

Error integer Function error code

VelocityCutOffFrequency....... double......Velocity filter cut off frequency (Hz)

AccelerationCutOffFrequency.... double.......Acceleration filter cut off frequency (Hz)

2.2.4.23. PositionerCurrentVelocityAccelerationFiltersSet

NAME

PositionerCurrentVelocityAccelerationFiltersSet – Sets the velocity and acceleration filter cut off frequencies.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

$$\begin{aligned} \textit{VelocityCutOffFrequency} &\in \left[0: \frac{0.5}{\text{CorrectorISRPeriod}}\right] \\ \textit{AccelerationCutOffFrequency} &\in \left[0: \frac{0.5}{\text{CorrectorISRPeriod}}\right] \end{aligned}$$

Note: Refer to system.ref file to get CorrectorISRPeriod value.

DESCRIPTION

This function allows to set a new velocity cut off frequency and a new acceleration cut-off frequency for the selected positioner.

The gathering uses these parameters to filter the current velocity and the current acceleration. These parameters are defined in the stages.ini file.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

$\textbf{PositionerCurrentVelocityAccelerationFiltersSet} \ \$ Socket ID \ \$ Full Positioner Name \\$

 $\$VelocityCutOffFrequency\ \$AccelerationCutOffFrequency$

Input parameters

Output parameters

None

Return

C / C++

Prototype

 $int \begin{tabular}{l} \textbf{PositionerCurrentVelocityAccelerationFiltersSet} (int SocketID, char FullPositionerName [250] , double VelocityCutOffFrequency, double AccelerationCutOffFrequency) \\ \end{tabular}$

Input parameters

Output parameters

None

Return

Error int. Function error code

VISUAL BASIC

Prototype

Long **PositionerCurrentVelocityAccelerationFiltersSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal VelocityCutOffFrequency As Double, ByVal AccelerationCutOffFrequency As Double)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] **PositionerCurrentVelocityAccelerationFiltersSet** (int32 SocketID, cstring FullPositionerName, double VelocityCutOffFrequency, double AccelerationCutOffFrequency)

Input parameters

PYTHON

Prototype

[Error] **PositionerCurrentVelocityAccelerationFiltersSet** (integer SocketID, string FullPositionerName, double VelocityCutOffFrequency, double AccelerationCutOffFrequency)

Input parameters

Return

Error......Function error code

2.2.4.24. PositionerDriverFiltersGet (NEW)

NAME

PositionerDriverFiltersGet – Gets the piezo driver notch and lowpass filters parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check driver type, if not PIEZO: ERR_UNCOMPATIBLE (-24)
- If piezo driver, check if driver is not initialized: ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

DESCRIPTION

This function allows to return current values of the piezo driver filters parameters (KI, notch frequency, notch bandwidth, notch gain, lowpass frequency).

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_UNCOMPATIBLE (-24)

ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

SUCCESS (0): no error

TCL

Prototype

PositionerDriverFiltersGet \$SocketID \$FullPositionerName KI NotchFrequency NotchBandwidth NotchGain LowpassFrequency

Input parameters

Output parameters

NotchFrequency.......double......Driver notch frequency (Hz)
NotchBandwidth......double......Driver notch bandwidth (Hz)

NotchGain......double......Driver notch gain

LowpassFrequency double Driver lowpass frequency (Hz)

Return

C / C++

Prototype

int **PositionerDriverFiltersGet** (int SocketID, char FullPositionerName[250], double *KI, double* NotchFrequency, double* NotchBandwidth, double* NotchGain, double* LowpassFrequency)

Input parameters

VISUAL BASIC

Prototype

Long **PositionerDriverFiltersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, KI As Double, NotchFrequency As Double, NotchBandwidth As Double, NotchGain As Double, LowpassFrequency As Double)

Input parameters

Output parameters

KI Double Driver KI

NotchFrequency Double Driver notch frequency (Hz)

NotchBandwidth Double Driver notch bandwidth (Hz)

NotchGain Double Driver notch gain

LowpassFrequency Double Driver lowpass frequency (Hz)

Return

MATLAB

Prototype

[Error, KI, NotchFrequency, NotchBandwidth, NotchGain, LowpassFrequency] **PositionerDriverFiltersGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error int32......Function error code

KI double Driver KI

NotchFrequency double Driver notch frequency (Hz)

NotchBandwidth double Driver notch bandwidth (Hz)

NotchGain double Driver notch gain

LowpassFrequency double Driver lowpass frequency (Hz)

PYTHON

Prototype

[Error, KI, NotchFrequency, NotchBandwidth,NotchGain, LowpassFrequency] **PositionerDriverFiltersGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

Error integer Function error code

KI double Driver KI

NotchFrequency double Driver notch frequency (Hz)

NotchBandwidth double Driver notch bandwidth (Hz)

NotchGain double Driver notch gain

LowpassFrequency double Driver lowpass frequency (Hz)

2.2.4.25. PositionerDriverFiltersSet (NEW)

NAME

PositionerDriverFiltersSet – Set the piezo driver filters parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)
- Check driver type, if not PIEZO: ERR_UNCOMPATIBLE (-24)
- If piezo driver, check group and driver status:
 - o If the driver is not initialized: ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)
 - o If the group state is NOTREF or READY: ERR_FUNCTION_ONLY_ALLOWED_IN_DISABLED_STATE (-117)

$$KI >= 0$$
 $NotchFrequency \in \left[0: \frac{0.5}{CorrectorISRPeriod}\right]$
 $NotchBandwith \in \left[0: \frac{0.5}{CorrectorISRPeriod}\right]$
 $NotchGain \in \left[0:100\right]$
 $LowpassFrequency \in \left[0: \frac{0.5}{CorrectorISRPeriod}\right]$

Note: Refer to system.ref file to get CorrectorISRPeriod value.

DESCRIPTION

This function allows to set parameters of the driver (KI integral, notch and lowpass filters) for a piezo driver positioner.

ERROR CODES

ERR FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE DOUBLE (-14)

ERR_UNCOMPATIBLE (-24)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_MOTOR_INITIALIZATION_ERROR (-50)

ERR_FUNCTION_ONLY_ALLOWED_IN_DISABLED_STATE (-117)

ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

SUCCESS (0): no error

TCL

Prototype

PositionerDriverFiltersSet \$SocketID \$FullPositionerName \$KI \$NotchFrequency \$NotchBandwidth \$NotchGain \$LowpassFrequency

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
KI	double	Driver KI
NotchFrequency	double	Driver notch frequency (Hz)
NotchBandwidth	double	Driver notch bandwidth (Hz)
NotchGain	double	Driver notch gain
LowpassFrequency	double	Driver lowpass frequency (Hz)
Output parameters		
None		
Return		
Error	integer	TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

int PositionerDriverFiltersSet (int SocketID, char FullPositionerName[250], double KI, double NotchFrequency, double NotchBandwidth, double NotchGain, double LowpassFrequency)

Input parameters

SocketID	. int	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	. char *	Positioner name
KI	. double	Driver KI
NotchFrequency	. double	Driver notch frequency (Hz)
NotchBandwidth	. double	Driver notch bandwidth (Hz)
NotchGain	. double	Driver notch gain
LowpassFrequency	. double	Driver lowpass frequency (Hz)
·		

Output parameters

None

Return

Error......Function error code

VISUAL BASIC

Long PositionerDriverFiltersSet (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal KI As Double, ByVal NotchFrequency As Double, ByVal NotchBandwidth As Double, ByVal NotchGain As Double, ByVal LowpassFrequency As Double)

Input parameters

	SocketID	. Long	Socket identifier got from "TCP_ConnectToServer" function
	FullPositionerName	. String	Positioner name
	KI	. Double	Driver KI
	NotchFrequency	. Double	Driver notch frequency (Hz)
	NotchBandwidth	. Double	Driver notch bandwidth (Hz)
	NotchGain	. Double	Driver notch gain
	LowpassFrequency	. Double	Driver lowpass frequency (Hz)
),,	tput parameters		
ru	ipui parameiers		

Ou

None

Return

MATLAB

Prototype

[Error] PositionerDriverFiltersSet (int32 SocketID, cstring FullPositionerName, double KI, double NotchFrequency, double NotchBandwidth, double NotchGain, double LowpassFrequency)

PYTHON

Prototype

[Error] **PositionerDriverFiltersSet** (integer SocketID, string FullPositionerName, double KI, double NotchFrequency, double NotchBandwidth, double NotchGain, double LowpassFrequency)

Input parameters

	SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	FullPositionerName	string	Positioner name
	KI	double	Driver KI
	NotchFrequency	double	Driver notch frequency (Hz)
	NotchBandwidth		
	NotchGain	double	Driver notch gain
	LowpassFrequency		<u>e</u>
_	111111		• • • • • • • • • • • • • • • • • • • •

Return

Error......Function error code

2.2.4.26. PositionerDriverPositionOffsetsGet (NEW)

NAME

PositionerDriverPositionOffsetsGet – Gets current value of piezo driver stage and gage position offsets.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check driver type, if not PIEZO: ERR_UNCOMPATIBLE (-24)
- If piezo driver, check group and driver status:
 - o If the driver is not initialized: ERR NOT ALLOWED DRIVER NOT INITIALIZED (-118)
 - If the group state is NOTREF or READY:
 ERR_FUNCTION_ONLY_ALLOWED_IN_DISABLED_STATE (-117)

DESCRIPTION

This function allows to return current value of the piezo driver position offset parameters (stage position offset, gage position offset).

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_UNCOMPATIBLE (-24)

ERR NOT ALLOWED ACTION (-22)

ERR_FUNCTION_ONLY_ALLOWED_IN_DISABLED_STATE (-117)

ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

SUCCESS (0): no error

TCL

Prototype

 $\textbf{Positioner Driver Position Off Sets Get} \ \$ Socket ID \ \$ Full Positioner Name \ Stage Position Off Set \ Gage Position O$

Return

C / C++

Prototype

int **PositionerDriverPositionOffsetsGet** (int SocketID, char FullPositionerName[250], double* StagePositionOffset, double* GagePositionOffset)

Input parameters

FullPositionerName	char *	Positioner name
		Driver stage position offset (units)Driver gage position offset (units)
Return Error	int	Function error code

VISUAL BASIC

Prototype

Long **PositionerDriverPositionOffsetsGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, StagePositionOffset As Double, GagePositionOffset As Double)

MATLAB

Prototype

[Error, StagePositionOffset, GagePositionOffset] **PositionerDriverPositionOffsetsGet** (int32 SocketID, cstring FullPositionerName)

PYTHON

Prototype

[Error, StagePositionOffset, GagePositionOffset] **PositionerDriverPositionOffsetsGet** (integer SocketID, string FullPositionerName)

2.2.4.27. PositionerDriverStatusGet

NAME

PositionerDriverStatusGet – Gets the positioner driver status code.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must be not a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8), ERR_UNCOMPATIBLE (-24), ERR_POSITIONER_NAME (-18)
- Check output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function allows to return the positioner driver status from the driver board. Use the "PositionerDriverStatusStringGet" function to get the driver status description.

NOTE:

See the positioner driver status list describes in § 2.18

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerDriverStatusGet \$SocketID \$FullPositionerName PositionerDriverStatus

C / C++

Prototype

int PositionerDriverStatusGet (int SocketID, char FullPositionerName[250], int * PositionerDriverStatus)

Input parameters

Output parameters

PositionerDriverStatus int *.....Driver status code

Return

Error int.......Function error code

VISUAL BASIC

Prototype

Long **PositionerDriverStatusGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, PositionerDriverStatus As Integer)

Input parameters

FullPositionerName StringPositioner name

Output parameters

PositionerDriverStatus Integer Driver status code

Return

MATLAB

Prototype

[Error, PositionerDriverStatus] PositionerDriverStatusGet (int32 SocketID, cstring FullPositionerName)

Input parameters

SocketIDint32......Socket identifier got from "TCP_ConnectToServer" function

FullPositionerName cstringPositioner name

Return

Error int32 Function error code PositionerDriverStatus int32 Driver status code

PYTHON

Prototype

[Error, PositionerDriverStatus] PositionerDriverStatusGet (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName stringPositioner name

Return

2.2.4.28. PositionerDriverStatusStringGet

NAME

PositionerDriverStatusStringGet – Gets the positioner driver status description.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns a driver status description from a positioner driver status code.

NOTE:

See the positioner driver status list describes in § 2.18

ERROR CODES

ERR FATAL INIT (-20) ERR_IN_INITIALIZATION (-21) ERR_WRONG_FORMAT (-7) ERR_WRONG_PARAMETERS_NUMBER (-9) ERR_WRONG_TYPE_CHAR (-13) ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

PositionerDriverStatusStringGet \$SocketID \$FullPositionerName \$PositionerDriverStatus PositionerDriverStatusString

Input parameters		
SocketID	. integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	. string	Positioner name
PositionerDriverStatus		
Output parameters PositionerDriverStatusString	. integer	Driver status description
Return		
Error	. integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or function
		error code

C / C++

Prototype

int PositionerDriverStatusStringGet (int SocketID, char FullPositionerName[250], int PositionerDriverStatus, char * PositionerDriverStatusString)

Input parameters

PositionerDriverStatus int *.....Driver status code

Output parameters

PositionerDriverStatusString int *......Driver status description

Return

Error......Function error code

VISUAL BASIC

Long **PositionerDriverStatusStringGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal PositionerDriverStatus As Integer, ByVal PositionerDriverStatusString As String)

Input parameters

Output parameters

PositionerDriverStatusString Integer.......Driver status description

Return

MATLAB

Prototype

[Error, PositionerDriverStatusString] **PositionerDriverStatusStringGet** (int32 SocketID, cstring FullPositionerName, int32 PositionerDriverStatus)

Input parameters

PositionerDriverStatus int32......Driver status code

Return

PYTHON

Prototype

[Error, PositionerDriverStatusString] **PositionerDriverStatusStringGet** (integer SocketID, string FullPositionerName, integer PositionerDriverStatus)

Input parameters

PositionerDriverStatus integer Driver status code

Return

2.2.4.29. PositionerEncoderAmplitudeValuesGet

NAME

 $\label{lem:positionerEncoderAmplitudeValuesGet} \textbf{PositionerEncoderAmplitudeValuesGet} - \textbf{Gets the encoder amplitude values}.$

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner: ERR_WRONG_OBJECT_TYPE (-8)
- Check the encoder type (must be "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the maximum and current amplitudes values (in volts) of the used analog encoder input.

CAUTION:

The encoder type must be "AnalogInterpolated" in the stages.ini file ("EncoderType" parameter).

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerEncoderAmplitudeValuesGet \$SocketID \$FullPositionerName MaxSinusAmplitude CurrentSinusAmplitude MaxCosinusAmplitude CurrentCosinusAmplitude

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
Output parameters		
MaxSinusAmplitude	double	Encoder sinus signal maximum amplitude value (Volts)
CurrentSinusAmplitude	double	Encoder sinus signal current amplitude value (Volts)
MaxCosinusAmplitude	double	Encoder cosinus signal maximum amplitude value (Volts)
CurrentCosinusAmplitude	double	Encoder cosinus signal current amplitude value (Volts)
Return		
Error	integer	TCL error code (0=success or 1=syntax error) or function error code

C / C++

Prototype

int **PositionerEncoderAmplitudeValuesGet** (int SocketID, char FullPositionerName[250], double * MaxSinusAmplitude, double * CurrentSinusAmplitude, double * MaxCosinusAmplitude, double * CurrentCosinusAmplitude)

Input parameters

Output parameters

Return

VISUAL BASIC

Prototype

Long **PositionerEncoderAmplitudeValuesGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, MaxSinusAmplitude As Double, CurrentSinusAmplitude As Double, MaxCosinusAmplitude As Double, CurrentCosinusAmplitude As Double)

Input parameters

Output parameters

MaxSinusAmplitudeDoubleEncoder sinus signal maximum amplitude value (Volts)CurrentSinusAmplitudeDoubleEncoder sinus signal current amplitude value (Volts)MaxCosinusAmplitudeDoubleEncoder cosinus signal maximum amplitude value (Volts)CurrentCosinusAmplitudeDoubleEncoder cosinus signal current amplitude value (Volts)

Return

MATLAB

Prototype

[Error, MaxSinusAmplitude, CurrentSinusAmplitude, MaxCosinusAmplitude, CurrentCosinusAmplitude]

PositionerEncoderAmplitudeValuesGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

PYTHON

[Error, MaxSinusAmplitude, CurrentSinusAmplitude, MaxCosinusAmplitude, CurrentCosinusAmplitude]

PositionerEncoderAmplitudeValuesGet (integer SocketID, string FullPositionerName)

Input parameters SocketID FullPositionerName	_	Socket identifier got from "TCP_ConnectToServer" functionPositioner name
Return		
Error	integer	Function error code
MaxSinusAmplitude	double	Encoder sinus signal maximum amplitude value (Volts)
CurrentSinusAmplitude	double	Encoder sinus signal current amplitude value (Volts)
MaxCosinusAmplitude	double	Encoder cosinus signal maximum amplitude value (Volts)
CurrentCosinusAmplitude	double	Encoder cosinus signal current amplitude value (Volts)

2.2.4.30. PositionerEncoderCalibrationParametersGet

NAME

PositionerEncoderCalibrationParametersGet – Gets the encoder calibration parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must be not a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the encoder type (must be "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

After a calibration of the analog encoder input (by the function "GroupInitializeWithEncoderCalibration"), this function returns the optimum parameters for the analog encoder interface. To take these parameters into account (recommended to achieve best performance), these values must be entered manually in the corresponding section of the stages.ini file. The parameters to set in the stages.ini file are:

CAUTION:

The encoder type must be "AnalogInterpolated" in the stages.ini file ("EncoderType" parameter).

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerEncoderCalibrationParametersGet \$SocketID \$FullPositionerName SinusOffset CosinusOffset DifferentialGain PhaseCompensation

C / C++

Prototype

int **PositionerEncoderCalibrationParametersGet** (int SocketID, char FullPositionerName[250], double * SinusOffset, double * CosinusOffset, double * DifferentialGain, double * PhaseCompensation)

Input parameters

FullPositionerNamechar * Positioner name

Output parameters

SinusOffsetdouble * Encoder sinus signal offset (Volts)

CosinusOffset......double * Encoder cosinus signal offset (Volts)

PhaseCompensationdouble * Encoder phase compensation (Deg)

Return

VISUAL BASIC

Prototype

Long **PositionerEncoderCalibrationParametersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, SinusOffset As Double, CosinusOffset As Double, DifferentialGain As Double, PhaseCompensation As Double)

Input parameters

FullPositionerName String...... Positioner name

Output parameters

SinusOffset Double...... Encoder sinus signal offset (Volts)
CosinusOffset..... Double...... Encoder cosinus signal offset (Volts)

DifferentialGain Double...... Encoder differential gain

PhaseCompensation Double....... Encoder phase compensation (Deg)

Return

Error......Long......Function error code

MATLAB

Prototype

[Error, SinusOffset, CosinusOffset, DifferentialGain, PhaseCompensation]

PositionerEncoderCalibrationParametersGet (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerNamecstring Positioner name

Return

Error.......int32......Function error code

SinusOffsetdouble Encoder sinus signal offset (Volts)

CosinusOffset......double Encoder cosinus signal offset (Volts)

DifferentialGaindouble Encoder differential gain

PhaseCompensationdouble Encoder phase compensation (Deg)

PYTHON

Prototype

[Error, SinusOffset, CosinusOffset, DifferentialGain, PhaseCompensation]

PositionerEncoderCalibrationParametersGet (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName Positioner name

Return

Error......Function error code

SinusOffsetdouble Encoder sinus signal offset (Volts)

CosinusOffset......double Encoder cosinus signal offset (Volts)

DifferentialGain......double Encoder differential gain

PhaseCompensationdouble Encoder phase compensation (Deg)

2.2.4.31. PositionerErrorGet

NAME

PositionerErrorGet – Returns the positioner error code and clears it.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_INT (-15)
- Valid positioner name: ERR_POSITIONER _NAME (-18)
- Valid secondary positioner: ERR_UNCOMPATIBLE (-18)

DESCRIPTION

Returns the positioner error code and clears it.

The positioner error codes are listed in the "Positioner error list" § 2.16. The description of the positioner error code can be get with the "GroupPositionerErrorStringGet" function.

NOTE:

The "PositionerErrorRead" function allows read the positioner error without clear it.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerErrorGet \$SocketID \$PositionerName PositionerError

Input parameters

Output parameters

PositionerError......Positioner error code.

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **PositionerErrorGet** (int SocketID, char * PositionerName, int * PositionerError)

Input parameters

Output parameters

PositionerError.....int *Positioner error code

Return

Function error code

VISUAL BASIC

Long PositionerErrorGet (ByVal SocketID As Long, ByVal PositionerName As String, PositionerError As Long)

Input parameters

PositionerName......StringPositioner name

Output parameters

PositionerError......Long......Positioner error code

Return

Function error code

MATLAB

[Error, PositionerError] PositionerErrorGet (int32 SocketID, cstring PositionerName)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function

PositionerName.......cstringPositioner name

Error.....Function error code

PositionerErrorint32Positioner error code

PYTHON

[Error, PositionerError] PositionerErrorGet (integer SocketID, string PositionerName)

Input parameters

PositionerName......string......Positioner name

Return

Error.....Function error code PositionerError......Positioner error code

2.2.4.32. PositionerErrorRead

NAME

PositionerErrorRead – Returns the positioner error code without clears it.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_INT (-15)
- Valid positioner name: ERR_POSITIONER _NAME (-18)
- Valid secondary positioner: ERR_UNCOMPATIBLE (-18)

DESCRIPTION

Returns the positioner error code without clears it.

The positioner error codes are listed in the "Positioner error list" § 2.16. The description of the positioner error code can be get with the "GroupPositionerErrorStringGet" function.

NOTE:

The "PositionerErrorGet" function allows clear the positioner error.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerErrorRead \$SocketID \$PositionerName PositionerError

Input parameters

Output parameters

PositionerError.....interger Positioner error code.

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int PositionerErrorRead (int SocketID, char * PositionerName, int * PositionerError)

Input parameters

Output parameters

PositionerError.....int *Positioner error code

Return

Function error code

VISUAL BASIC

Prototype

Long **PositionerErrorRead** (ByVal SocketID As Long, ByVal PositionerName As String, PositionerError As Long)

Input parameters

PositionerName......StringPositioner name

Output parameters

PositionerError......Long......Positioner error code

Return

Function error code

MATLAB

Prototype

[Error, PositionerError] **PositionerErrorRead** (int32 SocketID, cstring PositionerName)

Input parameters

PositionerName.......cstringPositioner name

Returi

Error.....Function error code

PositionerError......nt32......Positioner error code

PYTHON

Prototype

[Error, PositionerError] PositionerErrorRead (integer SocketID, string PositionerName)

Input parameters

PositionerName......Positioner name

Return

2.2.4.33. PositionerErrorStringGet

NAME

PositionerErrorStringGet – Gets the positioner error description.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns a positioner error description from a positioner error code.

NOTE:

See the positioner error list describes in § 2.16

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerErrorStringGet \$SocketID \$FullPositionerName \$PositionerErrorCode PositionerErrorString

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
PositionerErrorCode	integer	Positioner error code
Output parameters		
PositionerErrorString	integer	Positioner error description
Return		
Error	integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or function
		error code

C / C++

Prototype

int **PositionerErrorStringGet** (int SocketID, char FullPositionerName[250], int PositionerErrorCode, char * PositionerErrorString)

Input parameters

Output parameters

PositionerErrorString int *.....Positioner error description

Return

VISUAL BASIC

Prototype

Long **PositionerErrorStringGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal PositionerErrorCode As Integer, ByVal PositionerErrorString As String)

Input parameters

Output parameters

PositionerErrorString IntegerPositioner error description

Return

MATLAB

Prototype

[Error, PositionerErrorString] **PositionerErrorStringGet** (int32 SocketID, cstring FullPositionerName, int32 PositionerErrorCode)

Input parameters

Return

PYTHON

Prototype

[Error, PositionerErrorString] **PositionerErrorStringGet** (integer SocketID, string FullPositionerName, integer PositionerErrorCode)

Input parameters

Return

Error integer Function error code
PositionerErrorString string Positioner error description

2.2.4.34. PositionerExcitationSignalGet

NAME

PositionerExcitationSignalGet – Returns the currently configured parameters of the excitation signal functionality.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type: ERR_WRONG_OBJECT_TYPE (-8)
- Valid positioner name: ERR_GROUP_NAME (-19)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Valid output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function gets the previously configured excitation signal parameters.

ERROR CODES

ERR FATAL INIT (-20)

ERR_GROUP_NAME (-19)

ERR IN INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerExcitationSignalGet SocketID \$PositionerName SignalType Frequency Amplitude Time

Input parameters

 $Socket IDSocket identifier gets by the "TCP_ConnectToServer" function PositionerName.....positioner name (maximum size = 250)$

Output parameters

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **PositionerExcitationSignalGet** (int SocketID, char *PositionerName, int* SignalType, double* Frequency, double* Amplitude, double* Time)

Input parameters

Output parameters

SignalType	int *	Type of signal
Frequency		71 &
Amplitude	double *	Amplitude (acceleration, velocity or voltage unit)
Time	double *	During time (seconds)

Return

Function error code

VISUAL BASIC

rototype

Long **PositionerExcitationSignalGet** (ByVal SocketID As Long, ByVal GroupName As String, SignalType As Long, Frequency As Double, Amplitude As Double, Time As Double)

Input parameters

SocketID	Long	Socket identifier gets by the	"TCP_	_ConnectToServer"	function
PositionerName	String	Positioner name			

Output parameters

SignalType	Long	Type of signal
Frequency	-	7.2
		Amplitude (acceleration, velocity or voltage unit)
Time		•

Return

Function error code

MATLAB

Prototype

[Error, SignalType, Frequency, Amplitude, Time] **PositionerExcitationSignalGet** (int32 SocketID, cstring PositionerName)

Input parameters

SocketID	int32	Socket identifier gets by the "TCP_ConnectToServer"function
PositionerName		- ·

Return

Error	int32	Function error code
SignalType	int32Ptr	Type of signal
Frequency		••
1 .		Amplitude (acceleration, velocity or voltage unit)
Time		

PYTHON

Prototype

[Error, SignalType, Frequency, Amplitude, Time] **PositionerExcitationSignalGet** (integer SocketID, string PositionerName)

Input parameters

SocketID	integer	Socket identifier g	gets by the "TCP	_ConnectToServer"function
	_	Positioner name	-	-

Return

Error	integer	Function error code
SignalType	integerPtr	Type of signal
Frequency	doublePtr	Frequency (Hz)
Amplitude	doublePtr	Amplitude (acceleration, velocity or voltage unit)
Time		

2.2.4.35. PositionerExcitationSignalSet

NAME

PositionerExcitationSignalSet – Configure and activate the signal of excitation.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR WRONG PARAMETERS NUMBER (-9)
- Valid object type: ERR_WRONG_OBJECT_TYPE (-8)
- Secondary positioner or has a secondary positioner: ERR_WRONG_OBJECT_TYPE (-8)
- Valid control loop type: ERR_UNCOMPATIBLE (-24)
- Valid positioner name: ERR_GROUP_NAME (-19)
- Valid output parameter type: ERR WRONG TYPE INT (-15)
- Valid output parameter type: ERR WRONG TYPE DOUBLE (-14)
- Check command status (must be not in progress): ERR NOT ALLOWED ACTION (-22)
- Check type of signal (0, 1, 2 or 3): ERR PARAMETER OUT OF RANGE (-17)
- Check the time window (>0): ERR PARAMETER OUT OF RANGE (-17)
- Check the amplitude [-Acceleration (Velocity or Voltage) limit to Acceleration (Velocity or Voltage) limit]: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

The excitation-signal functionality generates a typical signal (a sine, a blank noise or an echelon signal) that the controller sends to motors to excite the system. In measuring the output signal of the excited system, we can determine some system characteristics, like the system transfert function.

The PID excitation-signal functionality is only available with the stages controlled in acceleration (acceleration control, ex: brushless / linear motors), velocity (velocity control) or in voltage (voltage control). It does not exist with the stages controlled in position (ex: stepper motors).

The excitation-signal function **PositionerExcitationSignalSet** can be executed only when the positioner is in the "READY" state. When the excitation-signal process is in progression, the positioner is in the "ExcitationSignal" state. At the end of the process, the positioner returns to the "READY" state (see group state diagram).

The **PositionerExcitationSignalSet** function sends an excitation command to the motor during a time. This function is allowed for "PIDFFAcceleration", "PIDFFVelocity" or "PIDDualFFVoltage" control loop. The parameters to configure are *signal type* (0:sine, 1:echelon,2:random-amplitude,3:random-pulse-width binary-amplitude, integer), *frequency* (Hz, double), *amplitude* (acceleration, velocity or voltage unit, double) and *during time* (seconds, double).

The function effective parameters for each mode are : (here : Limit means AccelerationLimit, VelocityLimit or VoltageLimit)

- Sine signal mode : Frequency (>=1 and <= 5000), Amplitude (>0 and <= Limit), Time(>0)
- Echelon signal mode: Amplitude (>0 and <= Limit, or <0 and >= -Limit), Time (>0).
 - + During Time: Signal = Amplitude
 - + End of Time: Signal = 0
- Random-amplitude signal mode : Amplitude (>0 and <= Limit), Time(>0), Frequency (>= 1 and <= 5000).

Signal is generated with a random value at every controller base time (Tbase = 0.1 ms), then is filtered with a second order low-pass filter at the cut-off *Frequency* value.

- Random-pulse-width binary-amplitude signal mode :

Amplitude (>0 and <= Limit), Time (>0), Frequency (>= 1 and <= 5000).

Signal is a sequence of pulses (Signal = Amplitude or = 0) with pulse randomly varied width (multiple of Tbase).

Frequency is the controlled system band-width (cut-off frequency), necessary for the PRBS (Pseudo Random Binary Sequence) function configuration.

The function non-effective parameters can accept any value, the value 0 is recommended for simplicity.

NOTE:

If during the excitation signal generation the stage position exceeds the user minimum or maximum target positions, the motor excitation command is stopped and an error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_WRONG_TYPE_INT (-15)

ERR_EXCITATION_SIGNAL_INITIALIZATION (-112)

SUCCESS (0): no error

TCL

Prototype

PositionerExcitationSignalSet SocketID \$PositionerName \$SignalType \$Frequency \$Amplitude \$Time

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer" function
PositionerName	string	Positioner name (maximum size = 250)
SignalType	integer	Type of signal
Frequency	floating point	Frequency (Hz)
Amplitude	floating point	Amplitude (acceleration, velocity or voltage unit)
Time	floating point	During time (seconds)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **PositionerExcitationSignalSet** (int SocketID, char *PositionerName, int SignalType, double Frequency, double Amplitude, double Time)

Input parameters

SocketID	1nt	Socket identifier gets by the "TCP_ConnectToServer function
PositionerName	char *	Positioner name
SignalType	int	Type of signal
Frequency	double	Frequency (Hz)
Amplitude	double	
Time	double	

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long **PositionerExcitationSignalSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal SignalType As Long, ByVal Frequency As Double, ByVal Amplitude As Double, ByVal Time As Double)

Input parameters

SocketID	Long	Socket identifier gets by the "TCP_ConnectToServer" function
	-	Positioner name
SignalType	Long	Type of signal
Frequency	Double	Frequency (Hz)
Amplitude	Double	
		During time (seconds)

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **PositionerExcitationSignalSet** (int32 SocketID, cstring PositionerName, SignalType, Frequency, Amplitude, Time)

Input parameters

		Socket identifier gets by the "TCP_ConnectToServer"function
PositionerName	cstring	Positioner name
SignalType	int32	Type of signal
Frequency	double	Frequency (Hz)
Amplitude	double	Amplitude (acceleration, velocity or voltage unit)
Time	double	During time (seconds)
Return		
Error	int32	Function error code

PYTHON

rototype

[Error] **PositionerExcitationSignalSet** (integer SocketID, string PositionerName, SignalType, Frequency, Amplitude, Time)

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer"function
PositionerName	string	Positioner name
	•	Type of signal
0 11	_	Frequency (Hz)
		During time (seconds)
Return		

2.2.4.36. PositionerHardInterpolatorFactorGet

NAME

PositionerHardInterpolatorFactorGet – Gets the interpolation factor from position compare mode.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must be not a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the encoder type (must be "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the interpolation factor of the hardware interpolator used in the "Position Compare" mode. The interpolation factor value is defined as like:

InterpolationFactor = round (EncoderScalePitch / HardInterpolatorResolution)

NOTE

The encoder type must be "AnalogInterpolated" in the stages.ini file ("EncoderType" parameter).

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

$\textbf{PositionerHardInterpolatorFactorGet} \ \$ Socket ID \ \$ Full Positioner Name \ Interpolation Factor \ \texttt{Socket} ID \ \$ Full Positioner Name \ Interpolation Factor \ \texttt{Socket} ID \ \$ Full Positioner Name \ \texttt{Socket} ID \ \texttt{Socke}$

C/C++

Prototype

int PositionerHardInterpolatorFactorGet (int SocketID, char FullPositionerName[250], int * InterpolationFactor)

Input parameters

Output parameters

InterpolationFactor......int *......Interpolation factor

Return

VISUAL BASIC

Prototype

Long **PositionerHardInterpolatorFactorGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, InterpolationFactor As Integer)

Input parameters
SocketID
FullPositionerName

FullPositionerNameString.......Positioner name

 $Output\ parameters$

InterpolationFactor......Integer...... Interpolation factor

Returr

Error......Long......Function error code

MATLAB

Prototype

[Error, SinusOffset, CosinusOffset, DifferentialGain, PhaseCompensation]

PositionerHardInterpolatorFactorGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error......int32.......Function error code InterpolationFactor......int32.......Interpolation factor

PYTHON

Prototype

[Error, SinusOffset, CosinusOffset, DifferentialGain, PhaseCompensation]

PositionerHardInterpolatorFactorGet (integer SocketID, string FullPositionerName)

Input parameters

Return

Error Function error code InterpolationFactor Interpolation factor

2.2.4.37. PositionerHardInterpolatorFactorSet

NAME

PositionerHardInterpolatorFactorGet – Sets the interpolation factor from position compare mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must be not a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group state (must be NOT INITIALIZED): ERR_NOT_ALLOWED_ACTION (-22)
- Check the encoder type (must be "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR WRONG TYPE INT (-15)
- Check input parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function allows to set the interpolation factor of the hardware interpolator used in the "PositionCompare" mode. The IP200 is updated and the position compare resolution is setting as like:

 $Position Compare Resolution = Encoder Scale Pitch \ / \ Interpolation Factor$

The "InterpolationFactor" value must be define with one of these values:

- 1								
- 1	20	25	40	50	00	100	1.00	200
- 1	70	/ /)	40	וטר	XU	1 ()()	Inu	/()()
- 1	20		10	50	00	100	100	200

If the input interpolator factor value is different of these values then the ERR_PARAMETER_OUT_OF_RANGE error is returned.

NOTE:

The group must be NOT INITIALIZED to use this function else the ERR_NOT_ALLOWED_ACTION error is returned.

The encoder type must be "AnalogInterpolated" in the stages.ini file ("EncoderType" parameter) else the error is returned

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerHardInterpolatorFactorGet \$SocketID \$FullPositionerName InterpolationFactor

Input parameters

Output parameters

InterpolationFactor......interger...... Interpolation factor

Return

C / C++

Prototype

 $int\ \textbf{PositionerHardInterpolatorFactorGet}\ (int\ Socket ID,\ char\ FullPositionerName [250]\ ,\ int\ *InterpolationFactor)$

Input parameters

Output parameters

InterpolationFactor......int *......Interpolation factor

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerHardInterpolatorFactorGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, InterpolationFactor As Integer)

Input parameters

FullPositionerName String...... Positioner name

Output parameters

InterpolationFactor......Integer....... Interpolation factor

Return

Error......Long.......Function error code

MATLAB

Prototype

[Error, InterpolationFactor] **PositionerHardInterpolatorFactorGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerNamecstring Positioner name

Return

PYTHON

Prototype

[Error, InterpolationFactor] **PositionerHardInterpolatorFactorGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

Error......Function error code InterpolationFactor......integer.....Interpolation factor

2.2.4.38. PositionerHardwareStatusGet

NAME

PositionerHardwareStatusGet – Gets the positioner hardware status code.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must be not a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8), ERR_UNCOMPATIBLE (-24), ERR_POSITIONER_NAME (-18)
- Check output parameter type: ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function allows to return the hardware status of the selected positioner. The positioner hardware status is composed of the "corrector" hardware status and the "servitudes" hardware status:

- The "Corrector" returns the motor interface and the position encoder hardware status.
- The "Servitudes" returns the general inhibit and the end of runs hardware status.

NOTE:

See the positioner hardware status list describes in § 2.17

ERROR CODES

ERR_FATAL_INIT (-20) ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerHardwareStatusGet \$SocketID \$FullPositionerName PositionerHardwareStatus

Input parameters

SocketIDinteger Socket identifier got from "TCP_ConnectToServer" function FullPositionerNamestring Positioner name

Output parameters

PositionerHardwareStatus.....integer Hardware status code

Return

Error.....integer TCL error code (0 = success or 1 = syntax error) or function error

C / C++

Prototype

int **PositionerHardwareStatusGet** (int SocketID, char FullPositionerName[250], int * PositionerHardwareStatus)

Input parameters

Output parameters

PositionerHardwareStatus...... int *.....Hardware status code

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionerHardwareStatusGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, PositionerHardwareStatus As Integer)

Input parameters

FullPositionerName StringPositioner name

Output parameters

PositionerHardwareStatus.......Integer......Hardware status code

Return

MATLAB

Prototype

[Error, PositionerHardwareStatus] **PositionerHardwareStatusGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerNamecstringPositioner name

Return

Error int32 Function error code
PositionerHardwareStatus int32 Hardware status code

PYTHON

Prototype

[Error, PositionerHardwareStatus] **PositionerHardwareStatusGet** (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName stringPositioner name

Return

2.2.4.39. PositionerHardwareStatusStringGet

NAME

PositionerHarwareStatusStringGet – Gets the positioner error description.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function returns the hardware status description from a positioner hardware status code.

NOTE:

See the positioner hardware status list describes in § 2.17

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

PositionerHarwareStatusStringGet \$SocketID \$FullPositionerName \$PositionerHardwareStatusCode PositionerHardwareStatusString

Input parameters

PositionerHardwareStatusCodePositioner hardware status code

Output parameters

PositionerHardwareStatusString integerPositioner hardware status description

Returi

C / C++

Prototype

int **PositionerHarwareStatusStringGet** (int SocketID, char FullPositionerName[250], int PositionerHardwareStatusCode, char * PositionerHardwareStatusString)

Input parameters

FullPositionerNamechar *Positioner name

PositionerHardwareStatusCode int *......Positioner hardware status code

Output parameters

PositionerHardwareStatusString int *......Positioner hardware status description

Return

VISUAL BASIC

Long PositionerHarwareStatusStringGet (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal PositionerHardwareStatusCode As Integer, ByVal PositionerHardwareStatusString As String)

Input parameters

FullPositionerName StringPositioner name

PositionerHardwareStatusCode Integer Positioner hardware status code

Output parameters

PositionerHardwareStatusString IntegerPositioner hardware status description

MATLAB

Prototype

[Error, PositionerHardwareStatusString] **PositionerHarwareStatusStringGet** (int32 SocketID, cstring FullPositionerName, int32 PositionerHardwareStatusCode)

Input parameters

FullPositionerNamecstringPositioner name

PositionerHardwareStatusCodeint32......Positioner hardware status code

Return

Error int32 Function error code

PositionerHardwareStatusStringPositioner hardware status description

PYTHON

[Error, PositionerHardwareStatusString] PositionerHarwareStatusStringGet (integer SocketID, string FullPositionerName, integer PositionerHardwareStatusCode)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

FullPositionerNamestringPositioner name

PositionerHardwareStatusCodePositioner hardware status code

Error.....Function error code

PositionerHardwareStatusString stringPositioner hardware status description

2.2.4.40. PositionerMaximumVelocityAndAccelerationGet

NAME

PositionerMaximumVelocityAndAccelerationGet - Gets the maximum of the velocity and the acceleration from profiler generators.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the maximum velocity and maximum acceleration of the profile generators. These parameters represents the limits in the profiler and are defined in the stages.ini file:

```
; unit / second
MaximumVelocity =
                         ; unit / second2
MaximumAcceleration =
```

ERROR CODES

ERR FATAL INIT (-20) ERR IN INITIALIZATION (-21) ERR WRONG FORMAT (-7) ERR_WRONG_OBJECT_TYPE (-8) ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

PositionerMaximumVelocityAndAccelerationGet \$SocketID \$FullPositionerName MaximumVelocity MaximumAcceleration

Input parameters

FullPositionerNamestring Positioner name

Output parameters

Maximum Velocitydouble....... Maximum velocity (units / seconds) Maximum Accelerationdouble....... Maximum acceleration (units / seconds²)

C / C++

Prototype

int PositionerMaximumVelocityAndAccelerationGet (int SocketID, char FullPositionerName[250], double * MaximumVelocity, double * MaximumAcceleration)

Input parameters

FullPositionerNamechar *...... Positioner name

Output parameters

Maximum Velocitydouble *..... Maximum velocity (units / seconds) Maximum Accelerationdouble *.... Maximum acceleration (units / seconds²)

Return

VISUAL BASIC

Long **PositionerMaximumVelocityAndAccelerationGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, MaximumVelocity As Double, MaximumAcceleration As Double)

Input parameters

FullPositionerName StringPositioner name

Output parameters

Return

MATLAB

Prototype

[Error, MaximumVelocity, MaximumAcceleration] **PositionerMaximumVelocityAndAccelerationGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerName cstringPositioner name

Return

Error..........int32......Function error code

Maximum Velocity doubleMaximum velocity (units / seconds)

PYTHON

Prototype

[Error, MaximumVelocity, MaximumAcceleration] **PositionerMaximumVelocityAndAccelerationGet** (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerNamestringPositioner name

Return

Error integer Function error code

Maximum Velocity doubleMaximum velocity (units / seconds)

Maximum Acceleration doubleMaximum acceleration (units / seconds²)

2.2.4.41. PositionerMotionDoneGet

NAME

PositionerMotionDoneGet – Gets the motion done parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the motion done mode (must be "VelocityAndPositionWindow"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the motion done parameters only for the "VelocityAndPositionWindow" MotionDone mode. If the MotionDone mode is defined as "Theoretical" then the ERR_WRONG_OBJECT_TYPE (-8) error is returned.

The "MotionDoneMode" parameter from the stages.ini file allows to define a motion done mode. The motion done can be defined "Theoretical" (the motion done mode is not used) or "VelocityAndPositionWindow". For a more thorough description of the motion done mode, please refer to the XPS Motion Tutorial, section named Motion / Motion Done.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

Innut namamatana

PositionerMotionDoneGet \$SocketID \$FullPositionerName PositionWindow VelocityWindow CheckingTime MeanPeriod Timeout

Input parameters	
SocketID	integer Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string Positioner name
Output parameters	
PositionWindow	double Position window (units)
VelocityWindow	double Velocity window (units / seconds)
CheckingTime	double Checking time (seconds)
MeanPeriod	double Mean period (seconds)
Timeout	double Motion done time out (seconds)
Raturn	

C / C++

Prototype

int PositionerMotionDoneGet (int SocketID, char FullPositionerName[250], double * PositionWindow, double * VelocityWindow, double * CheckingTime, double * MeanPeriod, double * Timeout)

Input parameters

Output parameters

PositionWindow......double *Position window (units)

VelocityWindow.......double *Velocity window (units / seconds)

Checking Time.......double *......Checking time (seconds) MeanPeriod.......double *......Mean period (seconds)

Timeout......double *......Motion done time out (seconds)

Error int Function error code

VISUAL BASIC

Prototype

Long PositionerMotionDoneGet (ByVal SocketID As Long, ByVal FullPositionerName As String, PositionWindow As Double, VelocityWindow As Double, CheckingTime As Double, MeanPeriod As Double, Timeout As Double)

Input parameters

FullPositionerName StringPositioner name

Return

MATLAB

Prototype

[Error, PositionWindow, VelocityWindow, CheckingTime, MeanPeriod, Timeout] PositionerMotionDoneGet (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerNamecstringPositioner name

Return

PositionWindow......double......Position window (units)

VelocityWindow.......double.......Velocity window (units / seconds)

Checking Time.......double.......Checking time (seconds)

PYTHON

Prototype

[Error, PositionWindow, VelocityWindow, CheckingTime, MeanPeriod, Timeout] **PositionerMotionDoneGet** (integer SocketID, string FullPositionerName)

Input	parameters
IIIPUU	parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	-	

Return

turn		
Error	integer	Function error code
PositionWindow	double	Position window (units)
VelocityWindow	double	Velocity window (units / seconds)
CheckingTime	double	Checking time (seconds)
MeanPeriod	double	Mean period (seconds)
Timeout	double	Motion done time out (seconds)

2.2.4.42. PositionerMotionDoneSet

NAME

PositionerMotionDoneSet – Sets the motion done parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allows to update the motion done parameters only for the "VelocityAndPositionWindow" MotionDone mode. The "MotionDoneMode" parameter from the stages.ini file must be defined as "VelocityAndPositionWindow" else the ERR_WRONG_OBJECT_TYPE (-8) error is returned.

For a more thorough description of the Motion Done mode, please refer to the XPS Motion Tutorial, section named Motion / Motion Done.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerMotionDoneSet \$SocketID \$FullPositionerName \$PositionWindow \$VelocityWindow \$CheckingTime \$MeanPeriod \$Timeout

Input parameters

FullPositionerName stringPositioner name	
PositionWindowdoublePosition window (units)	
VelocityWindowdoubleVelocity window (units / seconds)	
Checking Time double	
MeanPerioddoubleMean period (seconds)	
TimeoutdoubleMotion done time out (seconds)	

Output parameters (None)

Return

Error......TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int **PositionerMotionDoneSet** (int SocketID, char FullPositionerName[250], double * PositionWindow, double * VelocityWindow, double * CheckingTime, double * MeanPeriod, double * Timeout)

Input parameters

Timeout......double.......Motion done time out (seconds)

Output parameters (None)

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerMotionDoneSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal PositionWindow As Double, ByVal VelocityWindow As Double, ByVal CheckingTime As Double, ByVal MeanPeriod As Double, ByVal Timeout As Double)

Input parameters

FullPositionerName String Positioner name

PositionWindow......DoublePosition window (units)

VelocityWindow......Double......Velocity window (units / seconds)

MeanPeriod...... DoubleMean period (seconds)

Timeout......DoubleMotion done time out (seconds)

Output parameters (None)

Return

Error.......Long......Function error code

MATLAB

Prototype

[Error] **PositionerMotionDoneSet** (int32 SocketID, cstring FullPositionerName, double PositionWindow, double VelocityWindow, double CheckingTime, double MeanPeriod, double Timeout)

Input parameters

FullPositionerName cstringPositioner name

PositionWindow.......double......Position window (units)

VelocityWindow.........double.......Velocity window (units / seconds)

Checking TimedoubleChecking time (seconds)

Mean PerioddoubleMean period (seconds)

Timeout......double.......Motion done time out (seconds)

Return

PYTHON

Prototype

[Error] **PositionerMotionDoneSet** (integer SocketID, string FullPositionerName, double PositionWindow, double VelocityWindow, double CheckingTime, double MeanPeriod, double Timeout)

триі	para	ıme	ier	2
So	ocket	tID		
_				

SocketIDintegerSocket identifier got from "TCP_ConnectToServer" function

FullPositionerName stringPositioner name

PositionWindow......double......Position window (units)

VelocityWindow......double......Velocity window (units / seconds)

Timeout......double......Motion done time out (seconds)

Return

2.2.4.43. PositionerPositionCompareDisable

NAME

PositionerPositionCompareDisable – Disables the position compare mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the encoder ("AquadB" or "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function allows to disable the position compare mode.

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

PositionerPositionCompareDisable~\$SocketID~\$FullPositionerName

C / C++

Prototype

int PositionerPositionCompareDisable (int SocketID, char FullPositionerName[250])

Error........int......Function error code

VISUAL BASIC

Prototype

Long PositionerPositionCompareDisable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

FullPositionerName StringPositioner name

Output parameters

None

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] **PositionerPositionCompareDisable** (int32 SocketID, cstring FullPositionerName)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

FullPositionerName cstringPositioner name

Return

PYTHON

Prototype

[Error] PositionerPositionCompareDisable (integer SocketID, string FullPositionerName)

Input parameters

SocketIDsocket identifier got from "TCP_ConnectToServer" function

FullPositionerName stringPositioner name

Return

2.2.4.44. PositionerPositionCompareEnable

NAME

PositionerPositionCompareEnable – Enables the position compare mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the encoder ("AquadB" or "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check the group state (must be READY): ERR_NOT_ALLOWED_ACTION (-22)
- Check the position compare parameters (must be configured): ERR NOT ALLOWED ACTION (-22)

DESCRIPTION

This function allows to enable the position compare mode. The group must be in READY state to use this function else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

If the position compare parameters are not configured (by the "PositionerPositionCompareSet" function) then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

Positioner Position Compare Enable~\$Socket ID~\$Full Positioner Name

C / C++

Prototype

int PositionerPositionCompareEnable (int SocketID, char FullPositionerName[250])

Input parameters

FullPositionerName char *Positioner name

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long PositionerPositionCompareEnable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

FullPositionerName StringPositioner name

Output parameters

None

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] PositionerPositionCompareEnable (int32 SocketID, cstring FullPositionerName)

Input parameters

SocketIDint32......Socket identifier got from "TCP_ConnectToServer" function

FullPositionerName cstringPositioner name

Return

Error......Function error code

PYTHON

Prototype

[Error] PositionerPositionCompareEnable (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName stringPositioner name

Return

Error integer Function error code

2.2.4.45. PositionerPositionCompareGet

NAME

PositionerPositionCompareGet – Gets the position compare parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the position compare parameters (must be configured): ERR_POSITION_COMPARE_NOT_SET (-23)
- Check the position encoder ("AquadB" or "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_BOOL (-12)

DESCRIPTION

This function returns the configured parameters of the position compare output trigger and gives its state (enabled or disabled).

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_POSITION_COMPARE_NOT_SET (-23)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)

TCL

Prototype

SUCCESS (0): no error

PositionerPositionCompareGet \$SocketID \$FullPositionerName MinimumPosition MaximumPosition PositionStep EnableState

Input parameters	
SocketID	integer Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string Positioner name
Output parameters	
MinimumPosition	double Minimum position (units)
MaximumPosition	double Maximum position (units)
PositionStep	double Position step (units)
EnableState	bool Position compare state (true=enabled or false=disabled)
Return	
Error	integer TCL error code (0=success or 1=syntax error) or function error code

C / C++

Prototype

int **PositionerPositionCompareGet** (int SocketID, char FullPositionerName[250], double* MinimumPosition, double* MaximumPosition, double* PositionStep, bool * EnableState)

Input parameters

Output parameters

 MinimumPosition
 double *Minimum position (units)

 MaximumPosition
 double *Maximum position (units)

 PositionStep
 double *Position step (units)

EnableStatebool *Position compare state (true=enabled or false=disabled)

Return

Error int Function error code

VISUAL BASIC

Prototype

Long **PositionerPositionCompareGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, MinimumPosition As Double, MaximumPosition As Double, PositionStep As Double, EnableState As Boolean)

Input parameters

Output parameters

 MinimumPosition
 Double
 Minimum position (units)

 MaximumPosition
 Double
 Maximum position (units)

 PositionStep
 Double
 Position step (units)

 EnableState
 Boolean
 Position compare state (true=enabled or false=disabled)

Return

MATLAB

Prototype

[Error, MinimumPosition, MaximumPosition, PositionStep, EnableState] **PositionerPositionCompareGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

PYTHON

Prototype

[Error, MinimumPosition, MaximumPosition, PositionStep, EnableState] **PositionerPositionCompareGet** (integer SocketID, string FullPositionerName)

Input	parameters

SocketID	integer	Socket identifier got from	"TCP	_ConnectToServer"	function
FullPositionerName	string	Positioner name			

Return

Error	. integer	Function error code
MinimumPosition	· ·	
MaximumPosition	. double	Maximum position (units)
PositionStep	. double	Position step (units)
•		Position compare state (true=enabled or false=disabled)

2.2.4.46. PositionerPositionCompareSet

NAME

PositionerPositionCompareSet – Sets the position compare parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check the position encoder ("AquadB" or "AnalogInterpolated"): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check output parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

MinimumPosition < MaximumPosition

MinimumPosition >= *MinimumTargetPosition*

MaximumPosition <= *MaximumTargetPosition*

 $0 \le PositionStep \le (MaximumPosition - MinimumPosition)$

- Check position compare state (must be disabled): ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

This function allows to set the parameters for the position compare output trigger of the PCO connector on the XPS controller cards.

These parameters are used only when the position compare mode is enabled. For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

NOTE:

This function can be used only with a position encoder. If no position encoder then the ERR_UNCOMPATIBLE (-24) error is returned.

ERROR CODES

ERR FATAL INIT (-20)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_UNCOMPATIBLE (-24)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerPositionCompareSet \$SocketID \$FullPositionerName \$MinimumPosition \$MaximumPosition \$PositionStep

 $Input\ parameters$

SocketIDsocket identifier got from "TCP_ConnectToServer" function

FullPositionerName stringPositioner name

Minimum Position doubleMinimum position (units)

Maximum Position double Maximum position (units)

PositionStep doublePosition step (units)

Output parameters (None)

Return

C / C++

Prototype

int **PositionerPositionCompareSet** (int SocketID, char FullPositionerName[250], double MinimumPosition, double MinimumPosition, double PositionStep)

Input parameters

Output parameters (None)

Return

Error......int......Function error code

VISUAL BASIC

Prototype

Long **PositionerPositionCompareSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal MinimumPosition As Double, ByVal MaximumPosition As Double, ByVal PositionStep As Double)

Input parameters

Output parameters (None)

Return

MATLAB

Prototype

[Error] **PositionerPositionCompareSet** (int32 SocketID, cstring FullPositionerName, double MinimumPosition, double MaximumPosition, double PositionStep)

Input parameters

PYTHON

Prototype

[Error] **PositionerPositionCompareSet** (integer SocketID, string FullPositionerName, double MinimumPosition, double MaximumPosition, double PositionStep)

Input parameters

2.2.4.47. PositionerPositionComparePulseParametersGet

NAME

PositionerPositionComparePulseParametersGet – Gets the position compare PCO pulse parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function returns the configured parameters of the position compare PCO pulse parameters.

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerPositionComparePulseParametersGet \$SocketID \$FullPositionerName PCOPulseWidth EncoderSettlingTime

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
		Width of PCO pulses (µs) Encoder signal settling time (µs)
Return		
Error	integer	TCL error code (0=success or 1=syntax error) or function error code

C/C++

Prototype

int **PositionerPositionComparePulseParametersGet** (int SocketID, char FullPositionerName[250], double* PCOPulseWidth, double* EncoderSettlingTime)

 Input parameters
 Socket ID
 int
 Socket identifier got from "TCP_ConnectToServer" function

 FullPositionerName
 char *
 Positioner name

 Output parameters
 PCOPulseWidth
 double *
 Width of PCO pulses (μs)

 EncoderSettlingTime
 double *
 Encoder signal settling time (μs)

 Return

VISUAL BASIC

Prototype

Long **PositionerPositionComparePulseParametersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, PCOPulseWidth As Double, EncoderSettlingTime As Double)

SocketID FullPositionerName

FullPositionerName StringPositioner name

Output parameters

Return

MATLAB

Prototype

[Error, PCOPulseWidth, EncoderSettlingTime] **PositionerPositionComparePulseParametersGet** (int32 SocketID, cstring FullPositionerName)

Input parameter

FullPositionerName cstringPositioner name

Return

PYTHON

Prototype

[Error, PCOPulseWidth, EncoderSettlingTime] **PositionerPositionComparePulseParametersGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

2.2.4.48. PositionerPositionComparePulseParametersSet

NAME

PositionerPositionComparePulseParametersSet – Sets the position compare PCO pulse parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the position encoder ("AquadB" or "AnalogInterpolated"): ERR_UNCOMPATIBLE (-24)
- Check input parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

PCOPulseWidth value must equal to 0.2 (default), 1, 2.5 or 10 (μs) **EncoderSettlingTime** value must equal to 0.075 (default), 1, 4 or 12 (μs)

- Check position compare state (must be disabled): ERR NOT ALLOWED ACTION (-22)
- Check if the CIE board supports this function: ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)

DESCRIPTION

This function allows to set two additional parameters for the position compare output trigger of the PCO connector on the XPS controller cards. The first additional parameter is the pulse width. The second parameter is the encoder settling time value which is the time the encoder inputs have to be stable after a change of state to be detected. These parameters are used only when the position compare mode is enabled. For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

NOTE:

- This function can be used only with a position encoder. If no position encoder then the ERR_UNCOMPATIBLE (-24) error is returned.
- This function is called automatically at controller reboot and at GroupInitialize() execution to set the position compare pulse parameters to default values (PCOPulseWidth to 0.2 μs, EncoderSettlingTime to 0.075 μs)

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_UNCOMPATIBLE (-24)
ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)
SUCCESS (0): no error

TCL

Prototype

PositionerPositionComparePulseParametersSet \$SocketID \$FullPositionerName \$PCOPulseWidth \$EncoderSettlingTime

Input parameters

Output parameters (None)

Return

C / C++

Prototype

int **PositionerPositionComparePulseParametersSet** (int SocketID, char FullPositionerName[250], double PCOPulseWidth, double EncoderSettlingTime)

Input parameters

Socket identifier got from "TCP ConnectToServer" function

FullPositionerName char *Positioner name

PCOPulseWidth double Width of PCO pulses (µs)

EncoderSettlingTime doubleEncoder signal settling time (µs)

Output parameters (None)

Return

Error Function error code

VISUAL BASIC

Prototype

Long PositionerPositionComparePulseParametersSet (ByVal SocketID As Long, ByVal

FullPositionerName As String, ByVal PCOPulseWidth As Double, ByVal EncoderSettlingTime As Double)

Input parameters

FullPositionerName StringPositioner name

PCOPulseWidth DoubleWidth of PCO pulses (µs)

EncoderSettlingTime DoubleEncoder signal settling time (μs)

Output parameters (None)

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] **PositionerPositionComparePulseParametersSet** (int32 SocketID, cstring FullPositionerName, double PCOPulseWidth, EncoderSettlingTime)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function

FullPositionerName cstringPositioner name

PCOPulseWidth double Width of PCO pulses (µs)

EncoderSettlingTime doubleEncoder signal settling time (µs)

Return

Error......Function error code

PYTHON

Prototype

[Error] **PositionerPositionComparePulseParametersSet** (integer SocketID, string FullPositionerName, double PCOPulseWidth, double EncoderSettlingTime)

Input parameters

SocketIDintegerSocket identifier got from "TCP_ConnectToServer" function

FullPositionerName stringPositioner name

PCOPulseWidth double Width of PCO pulses (µs)

EncoderSettlingTime doubleEncoder signal settling time (µs)

Return

2.2.4.49. PositionerPositionCompareAquadBAlwaysEnable

NAME

PositionerPositionCompareAquadBAlwaysEnable – Enable the AquadB signal in the always mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check the position encoder ("AquadB" or "AnalogInterpolated"): ERR_UNCOMPATIBLE (-24)
- Check if the CIE board supports this function: ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)

DESCRIPTION

This function enables the generation of AquadB output signal on the PCO connector (the 2&3 or 4&5 pins) of the XPS controller cards. The always mode means that the AquadB signal is generated all the time (not position windowed).

NOTE:

This function can be used only with a position encoder. If there is no position encoder then the ERR_UNCOMPATIBLE (-24) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_UNCOMPATIBLE (-24)

ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)

SUCCESS (0): no error

TCL

Prototype

PositionerPositionCompareAquadBAlwaysEnable \$SocketID \$FullPositionerName

Input parameters

Output parameters (None)

Return

C / C++

Prototype

int PositionerPositionCompareAquadBAlwaysEnable (int SocketID, char FullPositionerName[250])

Input parameters

Output parameters (None)

Return

VISUAL BASIC

Long **PositionerPositionCompareAquadBAlwaysEnable** (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

Output parameters (None)

Return

Error......Long.....Function error code

MATLAB

Prototype

[Error] PositionerPositionCompareAquadBAlwaysEnable (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error......int32.....Function error code

PYTHON

Prototype

[Error] PositionerPositionCompareAquadBAlwaysEnable (integer SocketID, string FullPositionerName)

Input parameters

Return

2.2.4.50. PositionerPositionCompareAquadBWindowedGet

NAME

PositionerPositionCompareAquadBWindowedGet - Gets the windowed AquadB mode parameters and state...

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the position compare parameters (must be configured): ERR_POSITION_COMPARE_NOT_SET (-23)
- Check the configured mode type (must be WindowedAquadB): ERR_UNCOMPATIBLE (-24)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_BOOL (-12)

DESCRIPTION

This function returns the configured parameters of the position windowed AquadB output signal and gives its state (enabled or disabled).

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR POSITION COMPARE NOT SET (-23)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_BOOL (-12)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerPositionCompareAquadBWindowedGet \$SocketID \$FullPositionerName MinimumPosition MaximumPosition EnableState

Input parameters

Output parameters

MinimumPositiondouble...... Minimum position (units)

MaximumPositiondouble...... Maximum position (units)

EnableStatebool Windowed AquadB state (true=enabled or false=disabled)

Return

Error......integer TCL error code (0=success or 1=syntax error) or function error code

C / C++

Prototype

int **PositionerPositionCompareAquadBWindowedGet** (int SocketID, char FullPositionerName[250], double* MinimumPosition, double* MaximumPosition, bool * EnableState)

Input parameters

Output parameters

MinimumPosition double *Minimum position (units)

MaximumPosition double *Maximum position (units)

XPS-C8 Controller

Firmware

EnableState	bool *	Windowed AquadB state (true=enabled or false=disabled)
Return		
Error	int	Function error code

VISUAL BASIC

Prototype

Long PositionerPositionCompareAquadBWindowedGet (ByVal SocketID As Long, ByVal

FullPositionerName As String, MinimumPosition As Double, MaximumPosition As Double, EnableState As Boolean)

Input parameters

Output parameters

MinimumPosition DoubleMinimum position (units)

MaximumPosition DoubleMaximum position (units)

Return

Error......LongFunction error code

MATLAB

Prototype

[Error, MinimumPosition, MaximumPosition, EnableState]

PositionerPositionCompareAquadBWindowedGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

PYTHON

Prototype

[Error, MinimumPosition, MaximumPosition, EnableState]

PositionerPositionCompareAquadBWindowedGet (integer SocketID, string FullPositionerName)

Input parameters

Return

2.2.4.51. PositionerPositionCompareAquadBWindowedSet

NAME

PositionerPositionCompareAquadBWindowedSet – Sets the windowed AquadB signal parameters.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type: ERR_WRONG_OBJECT_TYPE (-8)
- Check the position encoder ("AquadB" or "AnalogInterpolated"): ERR_UNCOMPATIBLE (-24)
- Check input parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

MinimumPosition < MaximumPosition

MinimumPosition >= MinimumTargetPosition

MaximumPosition <= *MaximumTargetPosition*

- Check if the CIE board supports this function: ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)
- Check position compare state (must be disabled): ERR NOT ALLOWED ACTION (-22)

DESCRIPTION

This function allows to set the parameters for the position windowed AquadB output signal on the PCO connector (the 2&3 or 4&5 pins) of the XPS controller cards.

These parameters are effectives only when the position compare mode is enabled by the *PositionerPositionCompareEnable()* function.

NOTE:

This function can be used only with a position encoder ("AquadB" or "AnalogInterpolated"). If there is no position encoder then the ERR_UNCOMPATIBLE (-24) error is returned.

ERROR CODES

ERR FATAL INIT (-20)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)

SUCCESS (0): no error

TCL

Prototype

PositionerPositionCompareAquadBWindowedSet \$SocketID \$FullPositionerName \$MinimumPosition \$MaximumPosition

 $Input\ parameters$

SocketIDintegerSocket identifier gets by the "TCP_ConnectToServer" function

 $Full Positioner Name \ string Positioner \ name$

Minimum Position doubleMinimum position (units)

Maximum Position double Maximum position (units)

Output parameters (None)

Return

C / C++

Prototype

int **PositionerPositionCompareAquadBWindowedSet** (int SocketID, char FullPositionerName[250], double * MinimumPosition, double * MaximumPosition)

Input parameters

MinimumPosition doubleMinimum position (units)

MaximumPosition doubleMaximum position (units)

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long **PositionerPositionCompareAquadBWindowedSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal MinimumPosition As Double, ByVal MaximumPosition As Double)

Input parameters

MaximumPosition.......double......Maximum position (units)

Output parameters (None)

Return

MATLAB

Prototype

[Error] **PositionerPositionCompareAquadBWindowedSet** (int32 SocketID, cstring FullPositionerName, double MinimumPosition, double MaximumPosition)

Input parameters

Returr

Error int32 Function error code

PYTHON

Prototype

[Error] **PositionerPositionCompareAquadBWindowedSet** (integer SocketID, string FullPositionerName, double MinimumPosition, double MaximumPosition)

Input parameters

Return

Error......Function error code

2.2.4.52. PositionerRawEncoderPositionGet

NAME

PositionerRawEncoderPositionGet – Returns the raw encoder position for a positioner.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type: ERR_WRONG_OBJECT_TYPE (-8)
- Valid positioner name: ERR_GROUP_NAME (-19)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allows get the raw encoder position from a user corrected position for a positioner.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR GROUP NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR POSITIONER NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionerRawEncoderPositionGet SocketID PositionerName UserEncoderPosition RawEncoderPosition

Input parameters

Output parameters

RawEncoderPosition......floating point......Raw encoder position

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

UserEncoderPosition......floating point.......User corrected encoder position

C / C++

Prototype

int **PositionerRawEncoderPositionGet** (int SocketID, char * PositionerName, double UserEncoderPosition, double * RawEncoderPosition)

Input parameters

PositionerName......char *Positioner name

Output parameters

RawEncoderPosition......double *Raw encoder position

Return

Function error code

VISUAL BASIC

Prototype

Long **PositionerRawEncoderPositionGet** (ByVal SocketID As Long, ByVal PositionerName As String, ByVal UserEncoderPosition As Double, RawEncoderPosition As Double)

Input parameters

PositionerName......Positioner name

Output parameters

RawEncoderPosition......DoubleRaw encoder position

Return

Function error code

MATLAB

Prototype

[Error, RawEncoderPosition] **PositionerRawEncoderPositionGet** (int32 SocketID, cstring PositionerName, double UserEncoderPosition)

Input parameters

SocketIDSocket identifier gets by the "TCP_ConnectToServer" function

PositionerName.......cstringPositioner name

Return

PYTHON

Prototype

[Error, RawEncoderPosition] **PositionerRawEncoderPositionGet** (integer SocketID, string PositionerName, double UserEncoderPosition)

Input parameters

PositionerName......string......Positioner name

Return

2.2.4.53. PositionersEncoderIndexDifferenceGet

NAME

PositionersEncoderIndexDifferenceGet – Gets the distance between the two index encoders (gantry).

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a SingleAxis or an XY): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner name : ERR_POSITIONER_NAME (-18)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner type (must be "gantry"): ERR_UNCOMPATIBLE (-24)
- Check the positioner was at least once homed: ERR NEED TO BE HOMED AT LEAST ONCE (-109)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the distance between the two index encoders of a "primary positioner – secondary positioner" couple. To use this function, the positioner must be configured in "grantry" mode else the ERR UNCOMPATIBLE (-24) error is returned.

For further information about the gantry mode, refer to the "SYSTEM – Manual Configuration – Gantries (Secondary Positioners)" section in the user's manual.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NEED_TO_BE_HOMED_AT_LEAST_ONCE (-109)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

PositionersEncoderIndexDifferenceGet \$SocketID \$FullPositionerName Distance

Distancedouble....... Distance between the two index encoders (units)

Return

C / C++

Prototype

int PositionersEncoderIndexDifferenceGet (int SocketID, char FullPositionerName[250], double* Distance)

Input parameters

Output parameters

Distancedouble *.......Distance between the two index encoders (units)

Return

Error......Function error code

VISUAL BASIC

Prototype

Long **PositionersEncoderIndexDifferenceGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, Distance As Double)

Input parameters

FullPositionerName StringPositioner name

Output parameters

Return

MATLAB

Prototype

[Error, Distance] PositionersEncoderIndexDifferenceGet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error.....Function error code

PYTHON

Prototype

 $[Error, Distance] \begin{tabular}{ll} Positioners Encoder Index Difference Get (integer Socket ID, string Full Positioner Name) \\ \end{tabular}$

Input parameters

Return

Error......Function error code

2.2.4.54. PositionerSGammaExactVelocityAjustedDisplacementGet

NAME

PositionerSGammaExactVelocityAjustedDisplacementGet – Gets adjusted displacement to get exact velocity.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the profiler type (must be "SGamma"): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the closest optimum displacement to obtain a most precise velocity during the displacement.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerSGammaExactVelocityAjustedDisplacementGet \$SocketID \$FullPositionerName \$DesiredDisplacement AdjustedDisplacement

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
DesiredDisplacement	double	Desired displacement (units)
Output parameters		
AdjustedDisplacement	double	Ajusted displacement (units)
Return		
Error	integer	TCL error code (0=success or 1=syntax error) or function error code

C/C++

Prototype

int **PositionerSGammaExactVelocityAjustedDisplacementGet** (int SocketID, char FullPositionerName[250], double DesiredDisplacement, double * AdjustedDisplacement)

Input parameters

SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	char *	Positioner name
DesiredDisplacement	double	Desired displacement (units)

Output parameters

AdjustedDisplacement double * Ajusted displacement (units)

Return

VISUAL BASIC

Prototype

Long **PositionerSGammaExactVelocityAjustedDisplacementGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal DesiredDisplacement As Double, AdjustedDisplacement As Double)

Input parameters

DesiredDisplacementdoubleDesired displacement (units)

Output parameters

AdjustedDisplacement double Ajusted displacement (units)

Retur

MATLAB

Prototype

[Error, AdjustedDisplacement] **PositionerSGammaExactVelocityAjustedDisplacementGet** (int32 SocketID, cstring FullPositionerName, double DesiredDisplacement)

Input parameters

Return

Error......int32.....Function error code

AdjustedDisplacement double Ajusted displacement (units)

PYTHON

Prototype

[Error, AdjustedDisplacement] **PositionerSGammaExactVelocityAjustedDisplacementGet** (integer SocketID, string FullPositionerName, double DesiredDisplacement)

 $Input\ parameters$

Return

Error......Function error code

AdjustedDisplacement double Ajusted displacement (units)

2.2.4.55. PositionerSGammaParametersSet

NAME

PositionerSGammaParametersSet – Sets new motion values for the SGamma profiler.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the profiler type (must be "SGamma"): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14)
- Check input parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)
 - $0 < NewVelocity \le MaximumVelocity$
 - $0 < NewAcceleration \le MaximumAcceleration$
 - $2*ISRProfileGeneratorPeriod \leq NewMinimumJerkTime \leq NewMaximumJerkTime$ (with ISRProfileGeneratorPeriod = 0.0004 ms)

DESCRIPTION

This function allows to define the new SGamma profiler values that will be use in the future displacements.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerSGammaParametersSet \$SocketID \$FullPositionerName \$Velocity \$Acceleration \$MinimumJerkTime \$MaximumJerkTime

Input parameters

SocketID	ınteger	. Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	. Positioner name
Velocity	double	motion velocity (units / seconds)
Acceleration	double	motion acceleration (units / seconds ²)
MinimumJerkTime	double	minimum jerk time (seconds)
MaximumJerkTime	double	maximum jerk time (seconds)

Output parameters (None)

Return

C / C++

Prototype

int **PositionerSGammaParametersSet** (int SocketID, char FullPositionerName[250], double Velocity, double Acceleration, double MinimumJerkTime, double MaximumJerkTime)

Input parameters

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long **PositionerSGammaParametersSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal Velocity As Double, ByVal Acceleration As Double, ByVal MinimumJerkTime As Double, ByVal MaximumJerkTime As Double)

Input parameters

SocketID Long Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName String Positioner name

Velocity Double motion velocity (units / seconds)

Acceleration Double motion acceleration (units / seconds²)

MinimumJerkTime Double minimum jerk time (seconds)

MaximumJerkTime Double maximum jerk time (seconds)

Output parameters (None)

Return

MATLAB

Prototype

[Error] **PositionerSGammaParametersSet** (int32 SocketID, cstring FullPositionerName, double Velocity, double Acceleration, double MinimumJerkTime, double MaximumJerkTime)

Input parameters

Return

PYTHON

Prototype

[Error] **PositionerSGammaParametersSet** (integer SocketID, string FullPositionerName, double Velocity, double Acceleration, double MinimumJerkTime, double MaximumJerkTime)

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
Velocity	double	motion velocity (units / seconds)
Acceleration	double	motion acceleration (units / seconds²)
MinimumJerkTime	double	minimum jerk time (seconds)
MaximumJerkTime	double	maximum jerk time (seconds)
Return		
Error	integer	Function error code

2.2.4.56. PositionerSGammaParametersGet

NAME

PositionerSGammaParametersGet - Gets current motion values from the SGamma profiler.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the profiler type (must be "SGamma"): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allow to get the current SGamma profiler values that are used in the displacements.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerSGammaParametersGet \$SocketID \$FullPositionerName Velocity Acceleration MinimumJerkTime MaximumJerkTime

SocketID	integer Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string Positioner name
Output parameters	
Velocity	doublemotion velocity (units / seconds)
Acceleration	doublemotion acceleration (units / seconds²)
MinimumJerkTime	doubleminimum jerk time (seconds)
MaximumJerkTime	doublemaximum jerk time (seconds)
Return	

C / C++

Prototype

int **PositionerSGammaParametersGet** (int SocketID, char FullPositionerName[250], double *Velocity, double *Acceleration, double *MinimumJerkTime, double *MaximumJerkTime)

Input parameters

Output parameters

Velocity.......double *motion velocity (units / seconds)

Acceleration......double *motion acceleration (units / seconds²)

MaximumJerkTime......double *.....maximum jerk time (seconds)

Return

Error int Function error code

VISUAL BASIC

Prototype

Long **PositionerSGammaParametersGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, Velocity As Double, Acceleration As Double, MinimumJerkTime As Double, MaximumJerkTime As Double)

Input parameters

Output parameters

 Velocity
 Double
 motion velocity (units / seconds)

 Acceleration
 Double
 motion acceleration (units / seconds²)

 MinimumJerkTime
 Double
 minimum jerk time (seconds)

 MaximumJerkTime
 Double
 maximum jerk time (seconds)

Return

MATLAB

Prototype

[Error, Velocity, Acceleration, MinimumJerkTime, MaximumJerkTime] **PositionerSGammaParametersGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

PYTHON

Prototype

[Error, Velocity, Acceleration, MinimumJerkTime, MaximumJerkTime] **PositionerSGammaParametersGet** (integer SocketID, string FullPositionerName)

Input	parameters
IIIPUU	parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	-	

Return

i vii i i		
Error	integer	Function error code
	_	motion velocity (units / seconds)
•		motion acceleration (units / seconds ²)
MinimumJerkTime	double	minimum jerk time (seconds)
		maximum ierk time (seconds)

2.2.4.57. PositionerSGammaPreviousMotionTimesGet

NAME

PositionerSGammaPreviousMotionTimesGet – Gets the setting time and the settling time.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the profiler type (must be "SGamma"): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the motion (setting) and settling times from the previous motion.

The setting time represents the defined time to do the previous displacement.

The settling time represents the effective settling time for a motion done.

ERROR CODES

ERR FATAL INIT (-20

ERR_IN_INITIALIZATION (-21)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

 $\textbf{PositionerSGammaPreviousMotionTimesGet} \ \$ Socket ID \ \$ Full Positioner Name \ Settling Time \ Settling$

Input parameters	
SocketID	integer Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string Positioner name
Output parameters	
SettingTime	doublesetting time (seconds)
SettlingTime	doublesettling time (seconds)
Return	
Error	integer TCL error code (0=success or 1=syntax error) or function error code

C/C++

Prototype

int **PositionerSGammaPreviousMotionTimesGet** (int SocketID, char FullPositionerName[250], double* SettingTime, double* SettlingTime)

Input parameters

Output parameters

SettingTime.......double *setting time (seconds)

SettlingTime......double *settling time (seconds)

Return

VISUAL BASIC

Prototype

Long **PositionerSGammaPreviousMotionTimesGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, SettingTime As Double, SettlingTime As Double)

SocketID FullPositionerName

FullPositionerName StringPositioner name

Output parameters

SettingTime.......double......setting time (seconds)
SettlingTime.....double.....settling time (seconds)

Return

MATLAB

Prototype

[Error, SettingTime, SettlingTime] **PositionerSGammaPreviousMotionTimesGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error int32 Function error code
SettingTime double setting time (seconds)
SettlingTime double settling time (seconds)

PYTHON

Prototype

[Error, SettingTime, SettlingTime] **PositionerSGammaPreviousMotionTimesGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

Error integer Function error code
SettingTime double setting time (seconds)
SettlingTime double settling time (seconds)

2.2.4.58. PositionerStageParameterGet

NAME

PositionerStageParameterGet – Gets a stage parameter value from the stages.ini file.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input/output parameter types: ERR_WRONG_TYPE_CHAR (-13)
- Check the positioner name and the parameter name: ERR_UNCOMPATIBLE (-24)

DESCRIPTION

This function allows return the stage parameter value from the stages.ini file for a selected positioner.

The positioner name allows get the stage name. And next, the parameter name is reading in the section of this stage name

ERROR CODES

ERR FATAL INIT (-20)

ERR IN INITIALIZATION (-21)

ERR_UNCOMPATIBLE (-24)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

SUCCESS (0): no error

TCL

Prototype

PositionerStageParameterGet \$SocketID \$FullPositionerName \$ParameterName ParameterValue

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	U	_
ParameterName	string	Parameter name
	•	

Output parameters

Input parameters

Parameter Value Parameter value

Returr

C / C++

Prototype

int **PositionerStageParameterGet** (int SocketID, char FullPositionerName[250], char * ParameterName, char * ParameterValue)

Input parameters

Output parameters

Return

Error.....Function error code

VISUAL BASIC

Prototype

Long **PositionerStageParameterGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ParameterName As String, ByVal ParameterValue As String)

Input parameters

Output parameters

Parameter Value String Parameter value

Return

MATLAB

Prototype

[Error, ParameterValue] **PositionerStageParameterGet** (int32 SocketID, cstring FullPositionerName, cstring ParameterName)

Input parameters

ParameterName......cstring......Parameter name

Return

PYTHON

Prototype

[Error, ParameterValue] **PositionerStageParameterGet** (integer SocketID, string FullPositionerName, string ParameterName)

Input parameters

FullPositionerName string Positioner name
ParameterName string Parameter name

Return

2.2.4.59. PositionerStageParameterSet

NAME

PositionerStageParameterSet – Saves a new stage parameter value into the stages.ini file.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input/output parameter types: ERR_WRONG_TYPE_CHAR (-13)
- Check the positioner name and the parameter name: ERR_UNCOMPATIBLE (-24)
- Check the user rights (must be identified as administrator): ERR_NEED_ADMINISTRATOR_RIGHTS (-107)

DESCRIPTION

This function allows save a new stage parameter value in the "stages.ini" file.

The positioner name allows get the stage name and next, the parameter name is scanned in the section of this stage name. Once the parameter is found, the parameter value is modified by the new value.

If the file reading failed then the ERR_READ_FILE (-61) error is returned If the file writing failed then the ERR_WRITE_FILE (-60) error is returned

NOTE:

To use this function, the user must be identified with administrator rights ("Login" function)

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NEED_ADMINISTRATOR_RIGHTS (-107)

ERR_READ_FILE (-61)

ERR_UNCOMPATIBLE (-24)

 $ERR_WRITE_FILE~(-60)$

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

SUCCESS (0): no error

TCL

Prototype

PositionerStageParameterSet \$SocketID \$FullPositionerName \$ParameterName ParameterValue

Input parameters

FullPositionerNamestringPositioner name
ParameterNamestringParameter name

Output parameters

Parameter Value Parameter value

Return

C / C++

Prototype

int PositionerStageParameterSet (int SocketID, char FullPositionerName[250], char * ParameterName, char * ParameterValue)

Input parameters

Output parameters

Return

VISUAL BASIC

Prototype

Long **PositionerStageParameterSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal ParameterName As String, ByVal ParameterValue As String)

Input parameters

Output parameters

Parameter Value String Parameter value

Return

MATLAB

Prototype

[Error, ParameterValue] **PositionerStageParameterSet** (int32 SocketID, cstring FullPositionerName, cstring ParameterName)

Input parameters

Return

PYTHON

Prototype

[Error, ParameterValue] **PositionerStageParameterSet** (integer SocketID, string FullPositionerName, string ParameterName)

 $Input\ parameters$

Return

2.2.4.60. PositionerTimeFlasherDisable

NAME

PositionerTimeFlasherDisable – Disables the time flasher mode.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function disables the time flasher mode. The time flasher mode is a trigger output per axis that can be either configured to output distance spaced pulses or time spaced pulses. The output pulses are accessible from the PCO connector at the back of the XPS controller.

For a more thorough description of the position compare output, please refer to the XPS User's manual, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

PositionerTimeFlasherDisable \$SocketID \$FullPositionerName

C / C++

Prototype

int **PositionerTimeFlasherDisable** (int SocketID, char FullPositionerName[250])

VISUAL BASIC

Prototype

Long PositionerTimeFlasherDisable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

FullPositionerName StringPositioner name

Output parameters

None

Return

MATLAB

Prototype

[Error] **PositionerTimeFlasherDisable** (int32 SocketID, cstring FullPositionerName)

Input parameters

FullPositionerName cstringPositioner name

Return

Error...........int32......Function error code

PYTHON

Prototype

[Error] PositionerTimeFlasherDisable (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName string Positioner name

Return

Error.....Function error code

2.2.4.61. PositionerTimeFlasherEnable

NAME

PositionerTimeFlasherEnable – Enables the time flasher mode.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the time flasher parameters (must be configured): ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

This function enables the time flasher mode. The time flasher mode is a trigger output per axis that can be either configured to output distance spaced pulses or time spaced pulses. The output pulses are accessible from the PCO connector at the back of the XPS controller.

To use this function, the group must be in READY state else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

For a more thorough description of the position compare output, please refer to the XPS User's manual, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

PositionerTimeFlasherEnable \$SocketID \$FullPositionerName

C / C++

Prototype

int PositionerTimeFlasherEnable (int SocketID, char FullPositionerName[250])

VISUAL BASIC

Prototype

Long PositionerTimeFlasherEnable (ByVal SocketID As Long, ByVal FullPositionerName As String)

Input parameters

FullPositionerName String Positioner name

Output parameters

None

Return

MATLAB

Prototype

[Error] **PositionerTimeFlasherEnable** (int32 SocketID, cstring FullPositionerName)

Input parameters

SocketIDint32......Socket identifier got from "TCP_ConnectToServer" function

FullPositionerName cstringPositioner name

Return

Error........int32......Function error code

PYTHON

rototype

[Error] PositionerTimeFlasherEnable (integer SocketID, string FullPositionerName)

Input parameters

FullPositionerName string Positioner name

Return

Error......Function error code

2.2.4.62. PositionerTimeFlasherGet

NAME

PositionerTimeFlasherGet – Gets the time flasher parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter types: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_BOOL (-12)
- Check the time flasher parameters (must be configured) : ERR_POSITION_COMPARE_NOT_SET (-23)

DESCRIPTION

This function returns the parameters of the time flasher trigger. The time flasher mode is defined by:

- a position window defined by a minimum position and a maximum position
- a time period to set the time spaced pulses.

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_POSITION_COMPARE_NOT_SET (-23)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_BOOL (-12)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

PositionerTimeFlasherGet \$SocketID \$FullPositionerName MinimumPosition MaximumPosition TimePeriod EnableState

	integer Socket identifier got from "TCP_ConnectToServer" functionstring Positioner name
Output parameters	
MinimumPosition	double Minimum position (units)
MaximumPosition	double Maximum position (units)
TimePeriod	double Time period (seconds)
EnableState	bool Enable time flasher state (true=enabled and false=disabled)
Return	
Error	integer TCL error code (0=success or 1=syntax error) or function error code

C / C++

Prototype

int **PositionerTimeFlasherGet** (int SocketID, char FullPositionerName[250], double * MinimumPosition, double * MaximumPosition, double * TimePeriod, bool * EnableState)

Input parameters

Output parameters

EnableStatebool *Enable time flasher state (true=enabled and false=disabled)

Return

VISUAL BASIC

Prototype

Long **PositionerTimeFlasherGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, MinimumPosition As Double, MaximumPosition As Double, TimePeriod As Double, EnableState As Boolean)

Input parameters

Output parameters

EnableStateBooleanEnable time flasher state (true=enabled and false=disabled)

Return

MATLAB

Prototype

[Error, MinimumPosition, MaximumPosition, TimePeriod, EnableState] **PositionerTimeFlasherGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

EnableStateboolEnable time flasher state (true=enabled and false=disabled)

PYTHON

[Error, MinimumPosition, MaximumPosition, TimePeriod, EnableState] **PositionerTimeFlasherGet** (integer SocketID, string FullPositionerName)

Input	parameters
-------	------------

SocketID	integer	Socket identifier got from	"TCP_ConnectToServer"	function
FullPositionerName	string	Positioner name		

Reti

rturn		
Error	integer	Function error code
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	Maximum position (units)
TimePeriod	double	Time period (seconds)
		Enable time flasher state (true=enabled and false=disabled)

2.2.4.63. PositionerTimeFlasherSet

NAME

PositionerTimeFlasherSet – Sets the time flasher parameters.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check the position encoder (must be used): ERR_UNCOMPATIBLE (-24)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14)
- Check if the CIE board supports this function: ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)
- Check the time flasher state (must be disabled): ERR NOT ALLOWED ACTION (-22)
- Check input parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
MinimumPosition < MaximumPosition

MinimumPosition >= MinimumTravelLimit

MaximumPosition <= MaximumTravelLimit

0.0000004 <= TimePeriod <= 50.0 (Max 2.5 MHz and Min 0.02 Hz)
```

DESCRIPTION

This function configured the time flasher parameters. The time flasher output trigger uses the PCO connector on the XPS controller cards. The time flasher mode is defined by:

- a position window defined by a minimum position and a maximum position
- a time period to set the time spaced pulses.

NOTES:

This function is not available without a position encoder.

These parameters are used only when the time flasher mode is enabled. To enable the time flasher mode, use the "PositionerPositionCompareEnable" function.

For a more thorough description of the position compare output, please refer to the XPS Motion Tutorial, section named Triggers / Position Compare Output.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_UNCOMPATIBLE (-24)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_HARDWARE_FUNCTION_NOT_SUPPORTED (-115)
SUCCESS (0): no error
```

TCL

Prototype

PositionerTimeFlasherSet \$SocketID \$FullPositionerName \$MinimumPosition \$MaximumPosition \$TimePeriod

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	_	
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	Maximum position (units)

C / C++

Prototype

int **PositionerTimeFlasherSet** (int SocketID, char FullPositionerName[250], double * MinimumPosition, double * MaximumPosition, double * TimePeriod, bool * EnableState)

Input parameters

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long **PositionerTimeFlasherSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, MinimumPosition As Double, MaximumPosition As Double, TimePeriod As Double, EnableState As Boolean)

Input parameters

Output parameters (None)

Return

MATLAB

Prototype

[Error] PositionerTimeFlasherSet (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

Error......Function error code

PYTHON

Prototype

[Error] PositionerTimeFlasherSet (integer SocketID, string FullPositionerName)

XPS-C8 Controller

Firmware

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	string	Positioner name
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	Maximum position (units)
TimePeriod	double	Time period (seconds)
Return		
Error	integer	Function error code

2.2.4.64. PositionerUserTravelLimitsGet

NAME

PositionerUserTravelLimitsGet – Gets the user travel limits.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter types: ERR_WRONG_TYPE_DOUBLE (-14)
- If piezo driver, check if driver is not initialized: ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

DESCRIPTION

This function returns the user travel limits defined for the selected positioner. These limits are used to check each displacement.

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

SUCCESS (0): no error

TCL

Prototype

PositionerUserTravelLimitsGet \$SocketID \$FullPositionerName UserMinimumTarget UserMaximumTarget

C / C++

Prototype

int **PositionerUserTravelLimitsGet** (int SocketID, char FullPositionerName[250], double * UserMinimumTarget, double * UserMaximumTarget)

Input parameters

Output parameters

UserMinimumTarget......double *.....User minimum travel limit (units)
UserMaximumTarget......double *.....User maximum travel limit (units)

Return

VISUAL BASIC

Prototype

Long **PositionerUserTravelLimitsGet** (ByVal SocketID As Long, ByVal FullPositionerName As String, UserMinimumTarget As Double, UserMaximumTarget As Double)

Input parameters

Output parameters

UserMinimumTarget......Double.......User minimum travel limit (units)
UserMaximumTarget......Double.......User maximum travel limit (units)

Return

MATLAB

Prototype

[Error, UserMinimumTarget, UserMaximumTarget] **PositionerUserTravelLimitsGet** (int32 SocketID, cstring FullPositionerName)

Input parameters

Return

UserMaximumTarget......double......User maximum travel limit (units)

PYTHON

Prototype

[Error, UserMinimumTarget, UserMaximumTarget] **PositionerUserTravelLimitsGet** (integer SocketID, string FullPositionerName)

Input parameters

Return

2.2.4.65. PositionerUserTravelLimitsSet

NAME

PositionerUserTravelLimitsSet – Sets the user travel limits.

INPUT TESTS

- Check command format: ERR_WRONG_FORMAT (-7)
- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner type (must not be a secondary positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Check output parameter types: ERR_WRONG_TYPE_DOUBLE (-14)
- Check input parameter values: ERR_PARAMETER_OUT_OF_RANGE (-17)

UserMinimumTargetPosition < *UserMaximumTargetPosition*

 $MinimumTargetPosition \le UserMinimumTargetPosition \le MaximumTargetPosition$

 $MinimumTargetPosition \le UserMaximumTargetPosition \le MaximumTargetPosition$

UserMinimumTargetPosition <= *ProfilerPosition*

UserMaximumTargetPosition >= *ProfilerPosition*

- If piezo driver, check if driver is not initialized: ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

DESCRIPTION

This function sets the new user travel limits of the selected positioner. These limits are used to check each displacement.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE DOUBLE (-14)

ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED (-118)

SUCCESS (0): no error

TCL

Prototype

PositionerUserTravelLimitsSet \$SocketID \$FullPositionerName \$UserMinimumTarget \$UserMaximumTarget

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
FullPositionerName	•	_
UserMinimumTarget	double	User minimum travel limit (units)
UserMaximumTarget	double	User maximum travel limit (units)

Output parameters (None)

Return

C / C++

Prototype

int **PositionerUserTravelLimitsSet** (int SocketID, char FullPositionerName[250], double UserMinimumTarget, double UserMaximumTarget)

Input parameters

UserMaximumTarget.......double...........User maximum travel limit (units)

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long **PositionerUserTravelLimitsSet** (ByVal SocketID As Long, ByVal FullPositionerName As String, ByVal UserMinimumTarget As Double, ByVal UserMaximumTarget As Double)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[Error] **PositionerUserTravelLimitsSet** (int32 SocketID, cstring FullPositionerName, double UserMinimumTarget, double UserMaximumTarget)

Input parameters

Return

Error int32 Function error code

PYTHON

Prototype

[Error] **PositionerUserTravelLimitsSet** (integer SocketID, string FullPositionerName, double UserMinimumTarget, double UserMaximumTarget)

Input parameters

FullPositionerNamestringPositioner name	SocketID		integer	Socket identifier got from "TCP_ConnectToServer" function
			_	
UserMinimumTargetdoubleUser minimum travel limit (units)	UserMinin	numTarget	double	User minimum travel limit (units)
UserMaximumTargetdoubleUser maximum travel limit (units)	UserMaxin	numTarget	double	User maximum travel limit (units)

Return

Error.....Function error code

2.2.5. Configuration files

Two configuration files are used by the controller: "System.ini" and "Stages.ini". These configuration files are read during the booting of the controller.

- 1. The **system.ini** file specifies the system configuration and defines the used motion groups.
- 2. The **stages.ini** file defines the stage parameters for all positioners (see "ConfigurationWizard" document to know the stage parameters). The stages.ini file must at least include those positioners referenced to in the system.ini file, but it might also include positioners that are currently not used by the system.

System.ini file:

Stages.ini file:

```
[MySTAGE]
;--- STAGE
SmartStageName =
                                ; Smart stage name
;--- DRIVER
DriverName =
                ; XPS-DRV00 (pass through board)
                ; XPS-DRV00P (driver for external driver)
                ; XPS-DRV01 (driver for DC servo and stepper motors)
                ; XPS-DRV02 (driver for 3-phase DC brushless motors)
               ; XPS-DRV03
                ; XPS-DRVMx (driver for dedicated motors : x = 1 to 5)
                ; XPS-DRVP1 (driver for piezo motors)
; If DriverName = XPS-DRV01 driver
   ; If MotorDriverInterface = AnalogVelocity
   DriverPWMFrequency =
   DriverErrorAmplifierGain =
   DriverTachometerGain=
   ; If MotorDriverInterface = AnalogVoltage
   PWMFrequency =
   ; If MotorDriverInterface = AnalogStepper
   PWMFrequency =
   DriverStepperWinding=
; If DriverName = XPS-DRVMx driver (x = 1 to 5)
DriverBridgeFreeWheel = \\
DriverBrake =
; If DriverName = XPS-DRV02 driver
DriverMotorResistance =
DriverMotorInductance =
DriverCutOffFrequency =
DriverMaximumPeakCurrent =
DriverMaximumRMSCurrent =
DriverRMSIntegrationTime =
DriverThermistanceThreshold =
; If DriverName = XPS-DRV03 driver
   ; If MotorDriverInterface = AnalogAcceleration
   DriverMotorResistance =
   DriverMotorInductance =
   DriverCurrentCutOffFrequency =
   DriverMaximumPeakCurrent =
   DriverMaximumRMSCurrent =
   DriverRMSIntegrationTime =
   DriverMaximumMotorVoltage =
   ; If MotorDriverInterface = AnalogVoltage
   DriverMaximumRMSCurrent =
   DriverRMSIntegrationTime =
   ; If MotorDriverInterface = AnalogVelocity
   DriverMotorResistance =
   DriverMotorInductance =
   DriverCurrentCutOffFrequency =
   DriverMaximumRMSCurrent =
   DriverRMSIntegrationTime =
```


DriverMaximumMotorVol DriverVelocityCutOffFreq DriverMotorVoltageConst DriverTachoGeneratorVol DriverStageInertia = DriverGearRatio = ; If DriverName = XPS-DRV DriverNotchFrequency = DriverNotchBandwidth = DriverNotchGain = DriverLowpassFrequency DriverKI =	uency = ant = tage = P1 driver		
DriverFatalFollowingError DriverStagePositionOffset DriverTravelCorrection =			
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	AnalogStepperPosition AnalogVelocity AnalogVoltage AnalogAcceleration AnalogSin60Acceleration AnalogSin120Acceleration AnalogSin120Acceleration AnalogDualSin60Accelerat AnalogDualSin90Accelerat AnalogDualSin120Accelerat AnalogDualSin1con AnalogPosition PulsePulse AnalogSin60AccelerationL AnalogSin90AccelerationL AnalogSin90AccelerationL AnalogSin120AccelerationL AnalogSin120Acceleration	tion tion ation MI MI	
; If MotorDriverInterface = A	nalogVelocity		
ScalingVelocity =	; unit / s		
VelocityLimit =	; unit / s		
; If MotorDriverInterface = A			
ScalingAcceleration =	; unit $/ s^2$		
AccelerationLimit =	; unit / s²		
; If MotorDriverInterface = A	nalogVoltage		
MaximumCurrent =	; amps		
VoltageLimit =	; volts		
; If MotorDriverInterface = A	nalogPosition		
MinimumTargetPositionVolta			
MaximumTargetPositionVolta			
; If MotorDriverInterface = A	analogPositionPiezo; No parame	ter	
; If MotorDriverInterface = A	nalogStepperPosition		
DisplacementPerFullStep =	; units		
ScalingCurrent =	; amps for 1) volts	
PeakCurrentPerPhase =	; amps		


```
StandbyPeakCurrentPerPhase =
                                             ; amps
BaseVelocity =
                                             ; units / s
; If MotorDriverInterface = PulseDir or PulsePulse
DigitalStepperPulseLogic =
                                            ; Positive or Negative
DigitalStepperDirectionLogic =
                                            ; Positive or Negative
DisplacementPerFullStep =
                                            ; units
BaseVelocity =
                                            ; units / s
; If MotorDriverInterface = AnalogSin ...
ScalingAcceleration =
                                            ; unit / s<sup>2</sup>
AccelerationLimit =
                                            ; unit / s<sup>2</sup>
MagneticTrackPeriod =
                                            ; units
InitializationAccelerationLevel =
                                            ; percent (LMI)
InitializationCycleDuration =
                                            ; seconds (LMI)
; If MotorDriverInterface = AnalogDualSin ...
ScalingAcceleration =
                                            ; unit / s<sup>2</sup>
AccelerationLimit =
                                            ; unit / s<sup>2</sup>
MagneticTrackPeriod =
                                            ; units
InitializationAccelerationLevel =
                                            ; percent
InitializationCycleDuration =
                                            ; seconds
FirstMotorForceBalance =
SecondMotorForceBalance =
;--- ENCODER
EncoderType =
                   ; AquadB
                   ; AnalogInterpolated
; If EncoderType = AquadB
EncoderResolution =
                                            ; units
; If EncoderType = AnalogInterpolated
EncoderZMPlug =
                      ; Driver
                      ; Encoder
EncoderResolution =
                                            ; units
EncoderInterpolationFactor =
EncoderScalePitch =
                                            ; units
EncoderADC1Offset =
                                            ; volts
EncoderADC2Offset =
                                            ; volts
Encoder Phase Compensation = \\
                                             ; deg
EncoderDifferentialGain =
;--- BACKLASH
Backlash =
                                             ; unit (0 = not activated)
;--- POSITIONER MAPPING
LinearEncoderCorrection =
                                             ; ppm
PositionerMappingFileName =
; If PositionerMappingFileName is defined then the mapping is enabled and must be configured:
PositionerMappingLineNumber =
Positioner Mapping Max Position Error = \\
;--- TRAVELS
; If ServitudesType = Spindle
   HomePreset =
                                             ; units
   SpindlePeriod =
                                             ; units
; If ServitudesType = Piezo
                                             ; No parameter
```



```
; else
   MinimumTargetPosition =
                                           ; units
   HomePreset =
                                           ; units
   MaximumTargetPosition =
                                           ; units
;--- PROFILE GENERATOR
MaximumVelocity =
                                           ; units / second
MaximumAcceleration =
                                           ; units / second<sup>2</sup>
EmergencyDecelerationMultiplier =
MinimumJerkTime =
                                           ; seconds
MaximumJerkTime =
                                           ; seconds
TrackingCutOffFrequency =
                                           ; Hz
;--- HOME
HomeSearchSequenceType = ; MechanicalZeroAndIndexHomeSearch
                             ; MechanicalZeroHomeSearch
                             ; MinusEndOfRunAndIndexHomeSearch
                             ; MinusEndOfRunHomeSearch
                              ; PlusEndOfRunHomeSearch
                              ; IndexHomeSearch
                              ; CurrentPositionAsHome
HomeSearchMaximumVelocity =
                                           ; units / second
HomeSearchMaximumAcceleration =
                                           ; units / second<sup>2</sup>
HomeSearchTimeout =
                                           ; seconds
;--- CORRECTOR
CorrectorType =
                   ; PIDFFAcceleration
                                                 => MotorDriverInterface « Acceleration »
                                                 => MotorDriverInterface « Velocity »
                    ; PIDFFVelocity
                   ; PIDDualFFVoltage
                                                 => MotorDriverInterface « Voltage »
                   ; PIPosition
                                                 => MotorDriverInterface « Position »
                   ; NoEncoderPosition
                                                 => MotorDriverInterface « Position »
; If CorrectorType is PIDFFAcceleration
KP =
                                           ; 1 / seconds<sup>2</sup>
KI =
                                           : 1 / seconds<sup>2</sup>
KD =
                                           ; 1 / seconds<sup>2</sup>
KS =
IntegrationTime =
                                           ; seconds
DerivativeFilterCutOffFrequency =
                                           ; Hertz
GKP =
GKD =
GKI =
KForm =
                                           ; units
KFeedforwardAcceleration =
ClosedLoopStatus = ; Opened or Closed
FatalFollowingError =
                                           ; units
DeadBandThreshold =
                                           ; units
; If CorrectorType is PIDFFVelocity
KP =
                                           ; 1 / seconds
KI =
                                           ; 1 / seconds<sup>2</sup>
KD =
KS =
IntegrationTime =
                                           ; seconds
DerivativeFilterCutOffFrequency =
                                           ; Hertz
GKP =
GKD =
GKI =
KForm =
                                           ; units
KFeedforwardVelocity =
```



```
ClosedLoopStatus = ; Opened or Closed
FatalFollowingError =
                                           ; units
DeadBandThreshold =
                                           ; units
; If CorrectorType is PIDDualFFVoltage
KP =
                                           ; volts / units
KI =
                                           ; volts / units / seconds
KD =
                                           ; volts * seconds / units
KS =
IntegrationTime =
                                           ; seconds
DerivativeFilterCutOffFrequency =
                                           ; Hertz
GKP =
GKD =
GKI =
KForm =
KFeedforwardAcceleration =
                                           ; volts / (units / seconds<sup>2</sup>)
KFeedforwardVelocity =
                                           ; volts / (units / seconds)
KFeedforwardVelocityOpenLoop =
Friction =
                                           ; volts
ClosedLoopStatus = ; Opened or Closed
FatalFollowingError =
                                           ; units
DeadBandThreshold =
                                           ; units
; If CorrectorType is PIPosition
KP =
KI =
                                           ; 1 / seconds
KD =
                                           ; seconds
KS =
IntegrationTime =
                                           ; seconds
DerivativeFilterCutOffFrequency =
                                           ; Hertz
GKP =
GKD =
GKI =
KForm =
                                           ; units
ClosedLoopStatus = ; Opened or Closed
FatalFollowingError =
                                           ; units
DeadBandThreshold =
                                           ; units
;--- NOTCH FILTER
NotchFrequency1 =
                                           ; Hertz (0 = not activated)
NotchBandwith1 =
                                           ; Hertz
NotchGain1 =
NotchFrequency2 =
                                           ; Hertz (0 = not activated)
NotchBandwith2 =
                                           ; Hertz
NotchGain2 =
;--- GATHERING FILTERS
CurrentVelocityCutOffFrequency =
                                          : Hertz
CurrentAccelerationCutOffFrequency =
                                           ; Hertz
;--- MOTION DONE
MotionDoneMode =
                       ; Theoretical
                       ; Velocity And Position Window
; If MotionDoneMode = VelocityAndPositionWindow
MotionDonePositionThreshold =
                                     : units
MotionDoneVelocityThreshold =
                                     ; units / second
MotionDoneCheckingTime =
                                      ; seconds
MotionDoneMeanPeriod =
                                      ; seconds
MotionDoneTimeout =
                                      ; seconds
```


;--- SERVITUDES
ServitudesType =

; StandardEORDriverPlug ; StandardEOREncoderPlug ; Spindle ; Piezo

2.3. Group

2.3.1. Description

The "Group" objects are used to define one or several "positioners" in a same motion group. The availabled motion groups are defined is the section [GROUPS] in the system.ini file and the group types are:

- 1. SingleAxis (1 positioner) / "Gantry" SingleAxis (2 positioners)
- 2. **Spindle** (1 positioner)
- 3. **XY** (2 positioners) / "**Gantry**" **XY** (3 or 4 positioners)
- 4. **XYZ** (3 positioners)
- 5. MultipleAxes (1 to 8 positioners)

2.3.2. Object structure

A motion "**Group**" is built in relation to a **group type** (SingleAxis, Spindle, XY, XYZ or MultipleAxes). A group is defined by a **group name**.

To defined a new group see §2.2.5 (configuration file).

NOTE:

The maximum number of positioners in a same group is limited to 8.

2.3.3. Function description

2.3.3.1. GroupAccelerationSetpointGet

NAME

GroupAccelerationSetpointGet – Returns the setpoint acceleration for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR POSITIONER NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

Returns the setpoint acceleration for one or all positioners of the selected group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

GroupAccelerationSetpointGet SocketID GroupName SetpointAcceleration ...

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupAccelerationSetpointGet** (int SocketID, char *GroupName, int NbPositioners, double * SetpointAcceleration)

Input parameters

Output parameters

SetpointAcceleration......double *Setpoint Acceleration array

Return

Function error code

\"C''\L BASIC

Prototype

Long **GroupAccelerationSetpointGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, SetpointAcceleration As Double)

Input parameters

GroupName......StringGroup name

NbPositioners......Long......Number of positioners in the selected group

Output parameters

SetpointAcceleration...... DoubleSetpoint Acceleration array

Return

Function error code

MATLAB

Prototype

[Error, SetpointAcceleration] GroupAccelerationSetpointGet (int32 SocketID, cstring GroupName)

Input parameters

GroupName......Group name

Return

Error int32 Function error code

SetpointAcceleration......doublePtr.....Setpoint Acceleration array

PYTHON

Prototype

[Error, SetpointAcceleration] **GroupAccelerationSetpointGet** (integer SocketID, string GroupName)

Input parameters

GroupName......string......Group name

Return

Error.....Function error code

SetpointAcceleration......doublePtr.....Setpoint Acceleration array

2.3.3.2. GroupAnalogTrackingModeDisable

NAME

GroupAnalogTrackingModeDisable - Exits the analog tracking mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)
- Group status must be "ANALOG TRACKING": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Disables the analog tracking mode. The group exits the "ANALOG TRACKING" state to come back to the "READY" state. If the group state is not "ANALOG TRACKING", the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

NOTE:

The tracking mode allows to interpret ADC value as a position command or as a velocity command. To enable the analog tracking mode used the "GroupAnalogTrackingModeEnable" function.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error
```

TCL

Prototype

GroupAnalogTrackingModeDisable \$SocketID \$GroupName

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupAnalogTrackingModeDisable (int SocketID, char *GroupName)

Input parameters

SocketID ... intSocket identifier got from "TCP_ConnectToServer" function GroupNamechar *.....SingleAxis group name

Output parameters

None

Return

Function error code

\"C''\L BASIC

XPS-C8 Controller

Firmware

P	ro	t0	ty	p	6
		- 1			

Long GroupAnalogTrackingModeDisable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

GroupName.....StringSingleAxis group name

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupAnalogTrackingModeDisable (int32 SocketID, cstring GroupName)

Input parameters

GroupName......SingleAxis group name

Return

Function error code

PYTHON

Prototype

integer GroupAnalogTrackingModeDisable (integer SocketID, string GroupName)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

GroupName......SingleAxis group name

Return

2.3.3.3. GroupAnalogTrackingModeEnable

NAME

GroupAnalogTrackingModeEnable - Exit the analog tracking mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid tracking type ("Position" or "Velocity"): ERR_WRONG_OBJECT_TYPE (-8)
- Configured tracking: ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Enables the analog tracking mode. To use this function, the group must be in READY state and the tracking must be configured before, else an error ERR_NOT_ALLOWED_ACTION (-22) is returned.

Once the tracking mode is enabled, the group status must be "ANALOG TRACKING" (48 : Analog tracking state due to a TrackingEnable command).

"Position" analog tracking

In case of "Position" tracking type, the analog input is interpreted as a position command. The parameters must be settled by the "AnalogTrackingPositionParametersSet" function and can be read by the "AnalogTrackingPositionParametersGet" function.

"Velocity" analog tracking

In case of "Velocity" tracking type, the analog input is interpreted as a velocity command. The parameters must be settled by the "AnalogTrackingVelocityParametersSet" function and can be read by the "AnalogTrackingVelocityParametersGet" function.

NOTE

To disable the analog tracking mode used the "GroupAnalogTrackingModeDisable" function.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

GroupAnalogTrackingModeEnable \$SocketID \$GroupName \$Type

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupAnalogTrackingModeEnable (int SocketID, char *GroupName, char *Type)

Input parameters

GroupNamechar *SingleAxis group name

Typechar *Tracking type ("Position" or "Velocity")

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long **GroupAnalogTrackingModeEnable** (ByVal SocketID As Long, ByVal GroupName As String, ByVal Type As String)

Input parameters

GroupName.....StringSingleAxis group name

Type String Tracking type ("Position" or "Velocity")

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupAnalogTrackingModeEnable (int32 SocketID, cstring GroupName, cstring Type)

Input parameters

GroupName......SingleAxis group name

Type Cstring Tracking type ("Position" or "Velocity")

Return

Function error code

PYTHON

Prototype

integer GroupAnalogTrackingModeEnable (integer SocketID, string GroupName, string Type)

Input parameters

Type string Tracking type ("Position" or "Velocity")

Return

2.3.3.4. GroupCorrectorOutputGet

NAME

GroupCorrectorOutputGet – Returns corrector output for one or for all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Valid output parameter: ERR_WRONG_TYPE_DOUBLE (-14)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)

DESCRIPTION

Returns corrector output for one or for all positioners of the selected group.

The input parameter "group name" can be a positioner name.

For a group, this function returns the corrector output for each positioner from the selected group.

For a positioner, this function returns only the corrector output associated to the selected positioner.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupCorrectorOutputGet \$SocketID \$GroupName CorrectorOutput ...

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	_	
Output parameters		
CorrectorOutput	floating poin	tCorrector output, must be repeated for each positioner of group
Return		
TCL error code (0 :	= success or $1 =$ sy	rntax error) or Function error code

C/C++

Prototype

int **GroupCorrectorOutputGet** (int SocketID, char *GroupName, int NbPositioners, double *CorrectorOutputs)

Input parameters

SocketID	int	
GroupName	char *	Group name or Positioner name
NbPositioners	int	Number of positioners in the selected group (1 if positioner)

Output parameters

CorrectorOutputsdouble *Corrector output array

Return

Function error code

Note: CorrectorOutputs must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GroupCorrectorOutputGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, CorrectorOutputs As Double)

Input parameters

NbPositioners......Long......Number of positioners in the selected group (1 if positioner)

Output parameters

CorrectorOutputsDoubleCorrector output array

Return

Function error code

Note: CorrectorOutputs must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, CorrectorOutput] **GroupCorrectorOutputGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

NbPositionersint32.......Number of positioners in the selected group (1 if positioner)

Return

Error.......int32.......Function error code
CorrectorOutput......doublePtr......Corrector output array

Note: CorrectorOutputs must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, CorrectorOutput] **GroupCorrectorOutputGet** (integer SocketID, string GroupName, integer NbPositioners)

Input parameters

NbPositioners......integer......Number of positioners in the selected group (1 if positioner)

Return

Note: CorrectorOutputs has the elements number equel to NbPositioners.

2.3.3.5. GroupCurrentFollowingErrorGet

NAME

GroupCurrentFollowingErrorGet – Returns the current following error for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR WRONG TYPE DOUBLE (-14)

DESCRIPTION

Returns the current following error for one or all positioners of the selected group.

ERROR CODES

ERR FATAL INIT (-20)

ERR GROUP NAME (-19)

ERR IN INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupCurrentFollowingErrorGet SocketID GroupName CurrentFollowing error ...

Input parameters

Output parameters

CurrentFollowingError floating point Current following error (must be repeated for each positioner of group)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupCurrentFollowingErrorGet** (int SocketID, char *GroupName, int NbPositioners, double *CurrentFollowingError)

Input parameters

NbPositionersintNumber of positioners in the selected group

Output parameters

CurrentFollowingError double * Current following error array

Return

\"C''\L BASIC

Prototype

Long **GroupCurrentFollowingErrorGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, CurrentFollowingError As Double)

Input parameters

GroupName......StringGroup name

NbPositionersLong......Number of positioners in the selected group

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, CurrentFollowingError] GroupCurrentFollowingErrorGet (int32 SocketID, cstring GroupName)

Input parameters

Return

Error.....Function error code

CurrentFollowingError doublePtr......Current following error array

PYTHON

Prototype

[Error, CurrentFollowingError] GroupCurrentFollowingErrorGet (integer SocketID, string GroupName)

Input parameters

SocketIDSocket identifier gets by the "TCP_ConnectToServer" function GroupName......Group name

Datum

Error.....Function error code

CurrentFollowingErrordoublePtr......Current following error array

2.3.3.6. GroupInitialize

NAME

GroupInitialize - Initializes the motor and activates the servo loop of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group status must be "Not initialized": ERR_NOT_ALLOWED_ACTION (-22)
- Actor must be a group: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

The selected group must be in "NOT INITIALIZED" state, else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

This function begins to check the positioner error. If an error is detected, the hardware status register is reset (motor on) and the positioner error is cleared before to check it again. If a positioner error is always present, the motor is turn off, the ERR POSITIONER ERROR (-5) error is returned and the group is "NOT INITIALIZED".

If no positioner error then the group status becomes "MOTOR_INIT". The master-slave error is cleared, the encoder is preset (update encoder position) and the user travel limits are checked. If a travel limit error is detected then the motor is turn off, the error ERR_TRAVEL_LIMITS (-35) is returned and the group is "NOT INITIALIZED".

If no error, the motor is initialized in case of "AnalogSinAcc" or "AnalogDualSinAcc". The error ERR_MOTOR_INITIALIZATION_ERROR (-50) is returned if the initialization failed and the group is "NOT INITIALIZED".

If successful, the positions are preset, the servo loop is activated and the motor is on. The group is now "NOT REFERENCED".

NOTE:

In Master-Slave mode, after an emergency stop, the master group and the slave group are in "Not Initialized" status. To restart a master-slave relation the slave group(s) must be reinitialised **before** the master group.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_ERROR (-5)

ERR_POSITIONER_NAME (-18)

ERR_MOTOR_INITIALIZATION_ERROR (-50)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_TRAVEL_LIMITS (-35)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GroupInitialize \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupInitialize (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

Function error code

\"C''\1L BASIC

Prototype

Long GroupInitialize (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupInitialize (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupInitialize (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.7. GroupInitializeWithEncoderCalibration

NAME

GroupInitializeWithEncoderCalibration - Initializes motor, calibrates encoder and activates servo loop.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS NUMBER (-9)
- Group status must be "Not initialized": ERR_NOT_ALLOWED_ACTION (-22)
- Actor must be a group: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

If the selected group is not in "NOT INITIALIZED" state, then the "ERR_NOT_ALLOWED_ACTION (-22)" error is returned by this function.

Initializes the motor, calibrates the encoder and activates the servo loop of each positioner of the selected group. To get the calibration results for each positioner, use the "PositionerEncoderCalibrationParametersGet" function.

This function begins to check the positioner error. If an error is detected, the hardware status register is reset (motor on) and the positioner error is cleared before to check it again. If a positioner error is always present, the motor is turn off, the ERR_POSITIONER_ERROR (-5) error is returned and the group is "NOT INITIALIZED".

If no positioner error then the group status becomes "MOTOR_INIT". The master-slave error is cleared, the encoder is preset (update encoder position) and the user travel limits are checked. If a travel limit error is detected then the motor is turn off, the error ERR_TRAVEL_LIMITS (-35) error is returned and the group is "NOT INITIALIZED".

If no error, the motor is initialized in case of "AnalogSinAcc" or "AnalogDualSinAcc". The ERR_MOTOR_INITIALIZATION_ERROR (-50) error is returned if the initialization failed and the group is "NOT INITIALIZED".

After the group initialization, the encoder is calibrating and the group status becomes "ENCODER_CALIBRATING". If a following error is occurred during the calibration, the ERR_FOLLOWING_ERROR (-25) error is returned and the group is "NOT INITIALIZED".

If successful, the motor is initialized, the encoder is calibrated and the servo loop is activated. The group is now "NOT REFERENCED".

NOTE:

In Master-Slave mode, after an emergency stop, the master group and the slave group are in "Not Initialized" status. To restart a master-slave relation the slave group(s) must be reinitialised **before** the master group.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_FOLLOWING_ERROR (-25)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_MOTOR_INITIALIZATION_ERROR (-50)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_ERROR (-5)

ERR_POSITIONER_NAME (-18)

ERR_TRAVEL_LIMITS (-35)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

 $\textbf{GroupInitializeWithEncoderCalibration} \ \$ Socket ID \ \$ Group Name$

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int GroupInitializeWithEncoderCalibration (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

Function error code

VIEL AL BASIC

Prototype

Long GroupInitializeWithEncoderCalibration (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupInitializeWithEncoderCalibration (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype

integer GroupInitializeWithEncoderCalibration (integer SocketID, string GroupName)

Input parameters

----8.....

Return

2.3.3.8. GroupHomeSearch

NAME

GroupHomeSearch - Initiates a home search.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Group status must be "Not referenced": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

This function initiates a home search for each positioner of the selected group.

The group must be initialized and the group must be in "NOT REFERENCED" state else this function returns the ERR_NOT_ALLOWED_ACTION (-22) error. If no error then the group status becomes "HOMING".

The home search can be failed due to:

- a following error: ERR_FOLLOWING_ERROR (-25)
- a ZM detection error: ERR_GROUP_HOME_SEARCH_ZM_ERROR (-49)
- a home search time out: ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

For all these error cases, the group comes back to the "NOT INITIALIZED" state.

After the home search sequence, each positioner error is checked. If an error is detected, the hardware status register is reset (motor on) and the positioner error is cleared before to check it again. If a positioner error is always present, the ERR_TRAVEL_LIMITS (-35) error is returned and the group becomes "NOT INITIALIZED".

Once the home search is finished with success, the group must be in "READY" state.

NOTE:

- The home search routine for each positioner is defined in the "stages.ini" file by the "HomeSearchSequenceType" key.
- The home search time out is defined in the "stages.ini" file by the "HomeSearchTimeOut" key.
- The home search sequence is defined in the "system.ini" file by the "InitializationAndHomeSearchSequence" key for each group with several positioners.

XY group

The home search sequence can be "Together", "XthenY" or "YthenX" in a standard XY configuration. If the XY group is "Gantry" (dual positioner on X or on Y axis) only "XthenY" or "YthenX" are allowed.

XYZ group

The home search sequence can be "Together" or "XthenYthenZ".

MultipleAxes group

The home search sequence can be "Together" or "OneAfterAnother".

ERROR CODES

ERR FATAL INIT (-20)

ERR FOLLOWING ERROR (-25)

ERR_GROUP_HOME_SEARCH_TIMEOUT (-28)

ERR_GROUP_HOME_SEARCH_ZM_ERROR (-49)

ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_TRAVEL_LIMITS (-35)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GroupHomeSearch \$SocketID \$GroupName

GroupName......string......Group name (maximum size = 250)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupHomeSearch (int SocketID, char *GroupName)

Innut navameters

GroupName......char *Group name

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long GroupHomeSearch (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupHomeSearch (int32 SocketID, cstring GroupName)

Input parameters

Return

XPS-C8 Controller

Firmware

PYTHON

2

Prototype

integer GroupHomeSearch (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.9. GroupHomeSearchAndRelativeMove

NAME

GroupHomeSearchAndRelativeMove - Initiates a home search followed by a relative move.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Group status must be "Not referenced": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid "Displacement" parameter: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function initiates a home search followed by a relative move at the end of the home search.

The group must be initialized and the group must be in "NOT REFERENCED" state else this function returns the ERR_NOT_ALLOWED_ACTION (-22) error. If no error then the group status becomes "HOMING".

The home search sequence can be failed due to:

- a following error: ERR FOLLOWING ERROR (-25)
- a ZM detection error: ERR_GROUP_HOME_SEARCH_ZM_ERROR (-49)
- a home search time out: ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

For all these error cases, the group comes back to the "NOT INITIALIZED" state.

Once the home search is realized, a relative move is executed. After this sequence without error, each positioner error is checked. If an error is detected, the hardware status register is reset (motor on) and the positioner error is cleared before to check it again. If a positioner error is always present, the ERR_TRAVEL_LIMITS (-35) error is returned and the group is "NOT INITIALIZED".

If the home search is successful, the group must be in "READY" state.

NOTE:

The home search routine for each positioner is defined in the *stages.ini* file by the "HomeSearchSequenceType" key.

The home search time out is defined in the *stages.ini* file by the "HomeSearchTimeOut" key.

The home search sequence is defined in the *system.ini* file by the "InitializationAndHomeSearchSequence" key for each group with several positioners:

XY group

The home search sequence can be "Together", "XthenY" or "YthenX" if the XY group is standard configuration. If the XY group is Gantry (dual positioner on X or on Y axis) only the "XthenY" or "YthenX" are allowed.

XYZ group

The home search sequence can be "Together" or "XthenYthenZ".

MultipleAxes group

The home search sequence can be "Together" or "OneAfterAnother".

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_FOLLOWING_ERROR (-25)
ERR_GROUP_NAME (-19)
ERR_GROUP_HOME_SEARCH_TIMEOUT (-28)
ERR_GROUP_HOME_SEARCH_ZM_ERROR (-49)
ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_TRAVEL_LIMITS (-35)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

GroupHomeSearchAndRelativeMove \$SocketID \$GroupName \$Displacement ...

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupHomeSearchAndRelativeMove** (int SocketID, char *GroupName, int NbPositioners, double *Displacement)

Input parameters

Output parameters

None

Return

Function error code

Note: Displacement must have array size in accordance to NbPositioners to avoid array overrun.

VICTIAL BASIC

Prototype

Long **GroupHomeSearchAndRelativeMove** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, Displacement As Double)

Input parameters

Output parameters

None

Return

XPS-C8 Controller

Firmware

Note: Displacement must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

int32 GroupHomeSearchAndRelativeMove (int32 SocketID, cstring GroupName, doublePtr Displacement)

Input parameters

DisplacementdoublePtr.....Relative displacement array

Return

Function error code

Note: Displacement must have the same elements number as the positioners number of the group.

PYTHON

Prototype

integer GroupHomeSearchAndRelativeMove (integer SocketID, string GroupName, double Displacement)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

GroupName......string......Group name

Displacement double list List of relative displacements

Return

Function error code

Note: Displacement must have the same elements number as the positioners number of the group.

2.3.3.10. GroupJogModeDisable

NAME

GroupJogModeDisable – Disables the jog mode

- Not allowed for a spindle group -

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters [1]: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Group status must be "JOGGING": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Disables the Jog mode. To use this function, the group must be in the "JOGGING" state and all positioners must be idle (means velocity must be 0).

This function allows to exit the "JOGGING" state and to come back to the "READY" state. If the group state is not "JOGGING" or if the profiler velocity is not null then the error ERR_NOT_ALLOWED_ACTION (-22) is returned.

NOTE:

To enable the jog mode used the "GroupJogModeEnable" function.

CAUTION:

The jog mode can not be used with a spindle group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GroupJogModeDisable \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupJogModeDisable (int SocketID, char *GroupName)

Input parameters

GroupName......char *Group name

Output parameters

None

Return

Function error code

VICUAL BASIC

Prototype

Long GroupJogModeDisable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupJogModeDisable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupJogModeDisable (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.11. GroupJogModeEnable

NAME

GroupJogModeEnable – Enables the jog mode - *Not allowed for a spindle group* -

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Backlash must not be activated: ERR_NOT_ALLOWED_BACKLASH (-46)
- Number of command parameters [1]: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group): ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Enables the Jog mode. To use this function, the group must be in the "READY" state and all positioners must be idle (means velocity must be 0).

This function allows to go to the "JOGGING" state. If the group state is not "READY", the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

NOTE:

To disable the jog mode used the "GroupJogModeDisable" function.

CAUTION:

The jog mode can not be used with a spindle group.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_NOT_ALLOWED_BACKLASH (-46)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GroupJogModeEnable \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupJogModeEnable (int SocketID, char *GroupName)

Input parameters

SocketID ... intSocket identifier got from "TCP_ConnectToServer" function

GroupNamechar *.....Group name

Output parameters

None

Return

Function error code

VICUAL BASIC

Prototype

Long GroupJogModeEnable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupJogModeEnable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupJogModeEnable (integer SocketID, string GroupName)

nput parameters

Return

2.3.3.12. GroupJogCurrentGet

NAME

GroupJogCurrentGet – Returns the current velocity and acceleration from the jog profiler.

- Not allowed for a spindle group -

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the current velocity and acceleration from the jog profiler for one positioner or for all positioners of the selected group.

So, this function must be called when the group is in "JOGGING" mode else the current velocity and the current acceleration will be null.

CAUTION:

The jog mode can not be used with a spindle group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

GroupJogCurrentGet \$SocketID \$GroupName Velocity Acceleration ...

Input parameters

Returr

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupJogCurrentGet** (int SocketID, char *GroupName, int NbPositioners, double *Velocity, double *Acceleration)

Input parameters

Output parameters

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\AL BASIC

Prototype

Long **GroupJogCurrentGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, Velocity As Double, Acceleration As Double)

Input parameters

Output parameters

Velocity......DoubleCurrent velocity array AccelerationDoubleCurrent Acceleration array

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, Velocity, Acceleration] **GroupJogCurrentGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

Return

Error int32 Function error code

Velocity Current velocity array

Acceleration doublePtr Current Acceleration array

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, Velocity, Acceleration] **GroupJogCurrentGet** (integer SocketID, string GroupName, integer NbPositioners)

XPS-C8 Controller

	•	Socket identifier got from "TCP_ConnectToServer" functionGroup name or Positioner name
		Number of positioners in the selected group (1 if a positioner)
Return		
Error	integer	Function error code
Velocity	double	Current velocity repeated for each positioner of group
Acceleration	double	Current acceleration

2.3.3.13. GroupJogParametersGet

NAME

GroupJogParametersGet – Returns the velocity and acceleration set by "GroupJogParametersSet".

- Not allowed for a spindle group -

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Output parameter type: ERR WRONG TYPE DOUBLE (-14)

DESCRIPTION

This function returns the velocity and the acceleration set by the user to use the jog mode for one positioner or for all positioners of the selected group.

So, this function must be called when the group is in "JOGGING mode" else the velocity and the acceleration will be null.

To change on fly the velocity and the acceleration in the jog mode, call the "GroupJogParametersSet" function.

CAUTION:

The jog mode can not be used with a spindle group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

 ${\bf GroupJogParametersGet}~\$ Socket ID~\$ Group Name~Velocity~Acceleration~\dots$

Input parameters

 $Output\ parameters$

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupJogParametersGet** (int SocketID, char *GroupName, int NbPositioners, double *Velocity, double *Acceleration)

Input parameters

NbPositionersintNumber of positioners in the selected group

Output parameters

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GroupJogParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, Velocity As Double, Acceleration As Double)

Input parameters

Output parameters

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, Velocity, Acceleration] **GroupJogParametersGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

NbPositionersint32.......Number of positioners in the selected group

Return

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, Velocity, Acceleration] **GroupJogParametersGet** (integer SocketID, string GroupName, integer NbPositioners)

XPS-C8 Controller

Firmware

Input parameters		
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	Group name
NbPositioners	integer	Number of positioners in the selected group
Return	-	
	•	
		Function error code
Velocity	double	User jog velocity repeated for each positioner of group
		User jog Acceleration

2.3.3.14. GroupJogParametersSet

NAME

GroupJogParametersSet – Changes "on the fly" the velocity and the acceleration in the jog mode.

- Not allowed for a spindle group -

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group status must be "JOGGING": ERR_NOT_ALLOWED_ACTION (-22)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR POSITIONER NAME (-18)
- Input parameters for each positioner :
 - 1) Velocity > MaximumVelocity => Velocity = MaximumVelocity
 2) Velocity < -MaximumVelocity => Velocity = -MaximumVelocity
 3) Acceleration \leq 0 => ERR_JOG_OUT_OF_RANGE (-42)
 4) Acceleration > MaximumAcceleration => Acceleration = MaximumAcceleration

DESCRIPTION

This function allows to change "on the fly" the velocity and the acceleration used by the jog mode. If an error occurs, each positioner stops and the velocity value is setting to zero.

To use this function, the jog mode must be enabled (requires call of the "GroupJogModeEnable" function). If the group status is not "JOGGING" then an "ERR_NOT_ALLOWED_ACTION (-22)" error is returned.

If a slave error or a following error is detected during the jog setting then an "ERR_FOLLOWING_ERROR (-25)" or "ERR_SLAVE (-44)" error is returned. In this case, the motion is stopped, the jog mode is disabled and the group status becomes "DISABLE".

CAUTION:

The jog mode can not be used with a spindle group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_FOLLOWING_ERROR (-25)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_JOG_OUT_OF_RANGE (-42)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_SLAVE (-44)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

GroupJogParametersSet \$SocketID \$GroupName \$Velocity \$Acceleration

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupJogParametersSet** (int SocketID, char *GroupName, int NbPositioners, double *Velocity, double *Acceleration)

Input parameters

Output parameters

None

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\AL BASIC

Prototype

Long **GroupJogParametersSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, Velocity As Double, Acceleration As Double)

 $Input\ parameters$

Output parameters

None

Return

Function error code

Note: Velocity and Acceleration must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error] **GroupJogParametersSet** (int32 SocketID, cstring GroupName, double array Velocity, double array Acceleration)

Input parameters

Return

Note: Velocity and Acceleration must have array size in accordance to the positioners number of the group.

PYTHON

Prototype

[Error] **GroupJogParametersSet** (integer SocketID, string GroupName, double list Velocity, double list Acceleration)

Input parameters

Return

Error.....Function error code

Note: *Velocity* and *Acceleration* must have elements number in accordance to the positioners number of the group.

2.3.3.15. GroupKill

NAME

GroupKill - Kills the selected group to go in the "not initialized" status.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group): ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

Kills the selected group to stop its action. The group comes back to "NOT INITIALIZED" state.

NOTE:

If an initialization, an encoder calibrating, a homing, a referencing, a moving or a trajectory is in progress, an "emergency stop" will be done. So, for each of these functions, an "ERR_EMERGENCY_SIGNAL (-26)" error will be generated.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GroupKill \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupKill** (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GroupKill (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupKill (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupKill (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.16. GroupMotionDisable

NAME

GroupMotionDisable – Disables a "ready" group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Actor must be a group: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

Turns OFF the motors, stops the corrector servo loop and disables the position compare mode if it's active. The group status becomes "DISABLE".

If the group is not in the "READY" status then an ERR_NOT_ALLOWED_ACTION (-22) error is returned.

NOTE:

In "DISABLED" status the encoder is still read.

To come back in "READY" status, call the "GroupMotionEnable" function.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GroupMotionDisable \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupMotionDisable (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

Function error code

VICTIAL BASIC

Prototype

Long GroupMotionDisable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupMotionDisable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupMotionDisable (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.17. GroupMotionEnable

NAME

GroupMotionEnable – Enables a "disabled" group to turn motor on and to restart corrector loops.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group status must be "DISABLE": ERR_NOT_ALLOWED_ACTION (-22)
- Actor must be a group: ERR_WRONG_OBJECT_TYPE (-8), ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

Turns ON the motors and restarts the corrector servo loop. The group status becomes "READY". If the group is not in the "DISABLE" status then the "ERR_NOT_ALLOWED_ACTION (-22)" error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

$\textbf{GroupMotionEnable} \ \$SocketID \ \$GroupName$

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupMotionEnable (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GroupMotionEnable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupMotionEnable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupMotionEnable (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.18. GroupMoveAbort

NAME

GroupMoveAbort – abort the motion or the jog in progress for a group or a positioner.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters [1]: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group status must be "Not initialized": ERR_NOT_ALLOWED_ACTION (-22)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)

DESCRIPTION

This function allows to aborts a motion or a jog in progress. The group status must be "MOVING" or "JOGGING" else the "ERR_NOT_ALLOWED_ACTION (-22)" error is returned.

For a group:

If the group status is "MOVING", this function stops all motion in progress.

If the group status is "JOGGING", this function stops all "jog" motion in progress and disables the jog mode. After this "group move abort" action, the group status becomes "READY".

For a positioner:

If the group status is "MOVING", this function stops the motion in progress of the selected positioner.

If the group status is "JOGGING", this function stops the "jog" motion in progress of the selected positioner.

If the positioner is idle, an ERR_NOT_ALLOWED_ACTION (-22) error is returned.

After this "positioner move abort" action, if all positioners are idle then the group status becomes "READY", else the group stays in the same state.

NOTE:

If the "move abort" action failed, an ERR_GROUP_ABORT_MOTION (-27) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_ABORT_MOTION (-27)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR POSITIONER NAME (-18)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GroupMoveAbort \$SocketID \$GroupName

 $Input\ parameters$

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupMoveAbort (int SocketID, char *GroupName)

Input parameters

GroupName.......char *Goup name

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long GroupMoveAbort (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 GroupMoveAbort (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer GroupMoveAbort (integer SocketID, string GroupName)

Input parameters

Return

2.3.3.19. GroupMoveAbsolute

NAME

GroupMoveAbsolute - Initiates an absolute move for a positioner or a group.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid input parameter type: ERR WRONG TYPE DOUBLE (-14)
- Verify target position in relation with the travel limits: ERR_PARAMETER_OUT_OF_RANGE (-17)

TargetPosition ≥ MinimumTargetPosition TargetPosition ≤ MaximumTargetPosition

DESCRIPTION

Initiates an absolute move to one or all positioners of the selected group. The group state must be "READY" or "MOVING" else the ERR_NOT_ALLOWED_ACTION (-22) error is returned. If the group is "ready" then the group status becomes "MOVING".

An absolute motion is defined by the distance between to the current position and the target position. If the current position is the same as the target position then no move will be done.

Each "positioner" move refers to the acceleration, velocity, minimumTjerkTime and maximumTjerkTime as defined in the "Stages.ini" file or as redefined by the "PositionerSGammaParametersSet" function.

If a slave error or a following error is detected during the moving then ERR_FOLLOWING_ERROR (-25) or ERR_SLAVE (-44) error is returned. In this case, the motion in progress is stopped and the group status becomes "DISABLE".

If a "MotionDoneMode" is defined as "VelocityAndPositionWindowMotionDone" then an ERR_GROUP_MOTION_DONE_TIMEOUT (-33) error can be returned if the time out (defined by "MotionDoneTimeout" in the stages.ini file) is reached before the motion done.

If a "GroupMoveAbort" is done, an ERR_GROUP_ABORT_MOTION (-27) error is returned. In this case, the motion in progress is stopped and the group status becomes "READY".

If a "GroupKill" command, an emergency brake or an emergency stop is occurred, an "ERR_EMERGENCY_SIGNAL (-26)" error is returned. In this case, the motion in progress is stopped and the group status becomes "NOT INITIALIZED".

NOTE:

The asynchronous moves for positioners of a same group are possible through the use of different sockets to send the functions.

ERROR CODES

ERR_EMERGENCY_SIGNAL (-26)
ERR_FATAL_INIT (-20)
ERR_FOLLOWING_ERROR (-25)
ERR_GROUP_ABORT_MOTION (-27)
ERR_GROUP_MOTION_DONE_TIMEOUT (-33)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_POSITIONER_NAME (-18)
ERR_SLAVE (-44)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)

TCL

Prototype

GroupMoveAbsolute \$SocketID \$GroupName \$TargetPosition ...

Input parameters

SUCCESS (0): no error

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupMoveAbsolute (int SocketID, char *GroupName, int NbPositioners, double *TargetPosition)

Input parameters

Output parameters

None

Return

Function error code

Note: TargetPosition must have array size in accordance to NbPositioners to avoid array overrun.

VICTIAL BASIC

Prototype

Long **GroupMoveAbsolute** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, TargetPosition As Double)

Input parameters

Output parameters

None

Return

XPS-C8 Controller

Firmware

Note: TargetPosition must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

int32 GroupMoveAbsolute (int32 SocketID, cstring GroupName, double TargetPosition)

Input parameters

Return

Function error code

Note: TargetPosition must have the same elements number as the positioners number of the group.

PYTHON

Prototype

integer GroupMoveAbsolute (integer SocketID, string GroupName, double list TargetPosition)

Input parameters

Return

Function error code

Note: *TargetPosition* must have the same elements number as the positioners number of the group.

2.3.3.20. GroupMoveRelative

NAME

GroupMoveRelative - Initiates a relative move for a positioner or a group.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Group status must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid input parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Verify target displacment in relation with the travel limits: ERR_PARAMETER_OUT_OF_RANGE (-17)

TargetPosition ≥ MinimumTargetPosition TargetPosition ≤ MaximumTargetPosition

DESCRIPTION

Initiates a relative move defined by the target displacement to one or all positioners of the selected group. The group state must be "READY" or "MOVING" else the ERR_NOT_ALLOWED_ACTION (-22) error is returned. If the group is "ready" then the group status becomes "MOVING".

The target displacement and the current position allows to define the new target position to reach: NewTargetPosition = CurrentTargetPosition + TargetDisplacement

Each "positioner" move refers to the acceleration, velocity, minimumTjerkTime and maximumTjerkTime as defined in the "Stages.ini" file or as redefined by the "PositionerSGammaParametersSet" function.

If a slave error or a following error is detected during the moving then an "ERR_FOLLOWING_ERROR (-25)" or "ERR_SLAVE (-44)" error is returned. In this case, the motion in progress is stopped and the group status becomes "DISABLE".

If a "MotionDoneMode" is defined as "VelocityAndPositionWindowMotionDone" then an "ERR_GROUP_MOTION_DONE_TIMEOUT (-33)" error can be returned if the time out (defined by "MotionDoneTimeout" in the stages.ini file) is reached before the motion done.

If a "GroupMoveAbort" is done, an "ERR_GROUP_ABORT_MOTION (-27)" error is returned. In this case, the motion in progress is stopped and the group status becomes "READY".

If a "GroupKill" command, an emergency brake or an emergency stop is occurred, an "ERR_EMERGENCY_SIGNAL (-26)" error is returned. In this case, the motion in progress is stopped and the group status becomes "NOT INITIALIZED".

NOTE:

The asynchronous moves for positioners of a same group are possible through the use of different sockets to send the functions.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_EMERGENCY_SIGNAL (-26)
ERR_FOLLOWING_ERROR (-25)
ERR_GROUP_ABORT_MOTION (-27)
ERR_GROUP_MOTION_DONE_TIMEOUT (-33)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_SLAVE (-44)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR WRONG PARAMETERS NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupMoveRelative \$SocketID \$GroupName \$Displacement ...

Input parameters

Displacementfloating point.........Relative displacement (must be repeated for each positioner of group)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupMoveRelative (int SocketID, char *GroupName, int NbPositioners, double *Displacement)

Input parameters

GroupName......char *Group name

NbPositionersintNumber of positioners in the selected group

Displacementdouble*Relative displacement array

Output parameters

None

Return

Function error code

Note: Displacement must have array size in accordance to NbPositioners to avoid array overrun.

\"C'' \L BASIC

Prototype

Long **GroupMoveRelative** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, Displacement As Double)

Input parameters

GroupName.....StringSingleAxis group name

NbPositioners.....Long.....Number of positioners in the selected group

Output parameters

None

Return

XPS-C8 Controller

Firmware

Note: Displacement must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

int32 GroupMoveRelative (int32 SocketID, cstring GroupName, double Displacement)

Input parameters

Return

Function error code

Note: Displacement must have the same elements number as the positioners number of the group.

PYTHON

Prototype

integer GroupMoveRelative (integer SocketID, string GroupName, double list Displacement)

Input parameters

Return

Function error code

Note: Displacement must have the same elements number as the positioners number of the group.

2.3.3.21. GroupPositionCurrentGet

NAME

GroupPositionCurrentGet – Returns the current position for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

Returns the current position for one or all positioners of the selected group.

The current position is defined as like:

CurrentPosition = SetpointPosition - FollowingError

ERROR CODES

ERR_FATAL_INIT (-20)

ERR GROUP NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupPositionCurrentGet \$SocketID \$GroupName CurrentPosition ...

Input parameters

Output parameters

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupPositionCurrentGet (int SocketID, char *GroupName, int NbPositioners, double * CurrentPosition)

Input parameters

Output parameters

CurrentPositiondouble *Current position array

Return

Function error code

Note: CurrentPosition must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GroupPositionCurrentGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, CurrentPosition As Double)

Input parameters

GroupName......StringGroup name

NbPositioners.....Long.....Number of positioners in the selected group

Output parameters

Return

Function error code

Note: CurrentPosition must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, CurrentPosition] **GroupPositionCurrentGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

GroupName.....Group name

NbPositionersint32......Number of positioners in the selected group

Return

Error int32 Function error code

Note: CurrentPosition must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, CurrentPosition] **GroupPositionCurrentGet** (integer SocketID, string GroupName, integer NbPositioners)

Input parameters

GroupName.....string......Group name

NbPositionersintegerNumber of positioners in the selected group

Return

Note: CurrentPosition has the elements number equel to NbPositioners.

2.3.3.22. GroupPositionPCORawEncoderGet

NAME

GroupPositionPCORawEncoderGet – Returns the PCO raw encoders position for an XY group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type: ERR_WRONG_OBJECT_TYPE (-8)
- Valid group type (must be a XY group): ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allows get the PCO raw encoder positions X and Y from the user corrected positions X and Y.

NOTE:

This function is only allowed with a XY group.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR WRONG PARAMETERS NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupPositionPCORawEncoderGet SocketID GroupName PositionX PositionY PCORawPositionX CorrectedPositionY

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer" function
GroupName	string	XY group name (maximum size = 250)
PositionX	floating point.	User corrected position X
PositionY	floating point.	User corrected position Y

Output parameters

PCORawPositionX	floating point	PCO Raw position X
PCORawPositionY	floating point	PCO Raw position Y

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupPositionPCORawEncoderGet** (int SocketID, char *GroupName, double PositionX, double PositionY, double *PCORawPositionX, double *PCORawPositionY)

Input parameters

SocketID	int	Socket identifier gets by the "TCP_ConnectToServer"function
GroupName		_
PositionX	double	User corrected position X
PositionY	double	User corrected position Y

Output parameters

PCORawPositionX	double *	PCO Raw position X
PCORawPositionY	double *	PCO Raw position Y

Return

Function error code

VISUAL BASIC

Prototype

Long **GroupPositionPCORawEncoderGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal PositionX As Double, ByVal PositionY As Double, PCORawPositionX As Double, PCORawPositionY As Double)

Input parameters

SocketID	Long	Socket identifier gets by the "TCP_ConnectToServer" function
GroupName	_	· ·
PositionX	Double	User corrected position X
PositionY	Double	User corrected position Y

Output parameters

PCORawPositionX	Double	PCO Raw position X
PCORawPositionY	Double	PCO Raw position Y

Return

Function error code

MATLAB

Prototype

[Error, PCORawPositionX, PCORawPositionY] **GroupPositionPCORawEncoderGet** (int32 SocketID, cstring GroupName, double PositionX, double PositionY)

Input parameters

SocketID	int32	Socket identifier gets by the "TCP_ConnectToServer"function
		XY group name
1	C	User corrected position X
		User corrected position Y

Return

Error	int32	Function error code
PCORawPositionX	doublePtr	PCO Raw position X
PCORawPositionY	doublePtr	PCO Raw position Y

PYTHON

Prototype

 $[Error, PCORawPositionX, PCORawPositionY] \label{local_prop_position} \textbf{GroupPositionPCORawEncoderGet} \ (integer\ SocketID, string\ GroupName,\ double\ PositionX,\ double\ PositionY)$

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer"function
GroupName		• •
PositionX	double	User corrected position X
PositionY	double	User corrected position Y

Return

Error	integer	Function error code
	-	PCO Raw position X
		PCO Raw position Y

2.3.3.23. GroupPositionSetpointGet

NAME

GroupPositionSetpointGet – Returns the setpoint position for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

Returns the setpoint position for one or all positioners of the selected group.

The "setpoint" position is calculated by the profiler and represents the "theoretical" position to reach.

ERROR CODES

ERR FATAL INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupPositionSetpointGet \$SocketID \$GroupName SetpointPosition ...

Input parameters

Output parameters

SetpointPosition floating point........Setpoint position (must be repeated for each positioner of group)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupPositionSetpointGet (int SocketID, char *GroupName, int NbPositioners, double * SetpointPosition)

Input parameters

NbPositioners......int......Number of positioners in the selected group

Output parameters

SetpointPositiondouble * Setpoint position array

Return

Function error code

Note: SetpointPosition must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\L BASIC

Long **GroupPositionSetpointGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, SetpointPosition As Double)

Input parameters

GroupName......StringGroup name

NbPositioners.....Long.....Number of positioners in the selected group

Output parameters

SetpointPosition Double Setpoint position array

Return

Function error code

Note: SetpointPosition must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, SetpointPosition] **GroupPositionSetpointGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

GroupName......Group name

NbPositionersint32......Number of positioners in the selected group

Return

Error......Function error code

SetpointPositiondoubleSetpoint position array

Note: SetpointPosition must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, SetpointPosition] **GroupPositionSetpointGet** (integer SocketID, string GroupName, integer NbPositioners)

Input parameters

GroupName......string......Group name

NbPositionersintegerNumber of positioners in the selected group

Return

SetpointPositiondouble listList of setpoint positions

Note: SetpointPosition has the elements number equel to NbPositioners.

2.3.3.24. GroupPositionTargetGet

NAME

GroupPositionTargetGet – Returns the target position for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

Returns the target position for one or all positioners of the selected group.

The target position represents the "end" position after the move.

For instance, during a move from 0 to 10 units, the position values are:

GroupPositionTargetGet => 10 GroupPositionCurrentGet => 4.9995 GroupPositionSetpointGet => 5

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

GroupPositionTargetGet \$SocketID \$GroupName TargetPosition ...

Input parameters

Output parameters

TargetPosition......floating point.......Target position (must be repeated for each positioner of group)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupPositionTargetGet (int SocketID, char *GroupName, int NbPositioners, double * TargetPosition)

Input parameters

GroupName......char *Group name

Output parameters

TargetPosition......double *Target position array

Return

Function error code

Note: TargetPosition must have array size in accordance to NbPositioners to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GroupPositionTargetGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, TargetPosition As Double)

Input parameters

GroupName......StringGroup name

NbPositionersLong......Number of positioners in the selected group

Output parameters

TargetPosition......DoubleTarget position array

Return

Function error code

Note: TargetPosition must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, TargetPosition] **GroupPositionTargetGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

GroupName......Group name

NbPositionersint32......Number of positioners in the selected group

Return

Error int32 Function error code

TargetPosition......doubleTarget position array

Note: TargetPosition must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, TargetPosition] **GroupPositionTargetGet** (integer SocketID, string GroupName, integer NbPositioners)

Input parameters

GroupName......string......Group name

NbPositionersnumber of positioners in the selected group

XPS-C8 Controller

Firmware

Return		
Error	integer	Function error code
		List of target positions

 $\textbf{Note}: \quad \textit{TargetPosition} \text{ has the elements number equal to } \textit{NbPositioners}.$

2.3.3.25. GroupStatusGet

NAME

GroupStatusGet – Returns the group status code.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_INT (-15)
- Valid group name: ERR_GROUP_NAME (-19)

DESCRIPTION

Returns the group status code. The group status codes are listed in the "Group status list" § 2.19. The description of the group status code can be get with the "GroupStatusStringGet" function.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

GroupStatusGet \$SocketID \$GroupName GroupStatus

C/C++

Prototype

int GroupStatusGet (int SocketID, char *GroupName, int *GroupStatus)

Input parameters

Output parameters

GroupStatusint *Status of the group

Return

VISUAL BASIC

Prototype

Long GroupStatusGet (ByVal SocketID As Long, ByVal GroupName As String, GroupStatus As Long)

Input parameters

GroupName......StringGroup name

Output parameters

GroupStatusLong.....Status of the group

Return

Function error code

MATLAB

Prototype

[Error, GroupStatus] GroupStatusGet (int32 SocketID, cstring GroupName)

Input parameters

GroupName......Group name

Return

PYTHON

Prototype

[Error, GroupStatus] GroupStatusGet (integer SocketID, string GroupName)

Input parameters

GroupName.....string.....Group name

Return

2.3.3.26. GroupReferencingActionExecute

NAME

GroupReferencingActionExecute – Initiates the given action, with the given sensor and parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Group status must be "NOT REFERENCED": ERR_NOT_ALLOWED_ACTION (-22)
- Valid action name and sensor name: ERR_WRONG_OBJECT_TYPE (-8)
- Valid input parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Input parameter coherence: ERR_PARAMETER_OUT_OF_RANGE (-17)
 For a "LatchOnHighToLowTransition" or "LatchOnLowToHighTransition" or "LatchOnIndex" or "LatchOnIndexAfterSensorHighToLowTransition" or "MoveToPreviouslyLatchedPosition" action.

 Parameter ≤ MaximumVelocity
 Parameter ≠ 0
- Referencing state: ERR_NOT_ALLOWED_ACTION (-22)
 Latch must be done since referencing start for a "MoveToPreviouslyLatchedPosition" action.

DESCRIPTION

Initiates a referencing action for a positioner. A referencing action is defined by a given action name (see action list), with a given sensor name (see sensor list) and parameters. For more detail, see XPS User's manual referencing section.

Action list	Sensor to define
LatchOnHighToLowTransition	Yes
LatchOnIndex	None
LatchOnIndexAfterSensorHighToLowTransition	Yes
LatchOnLowToHighTransition	Yes
MoveRelative	None
MoveToPreviouslyLatchedPosition	None
SetPosition	None
SetPositionToHomePreset	None

Sensor list

MechanicalZero MinusEndOfRun PlusEndOfRun None

If a following error is occurred during the referencing, an emergency brake is done if a motion is in progress and the ERR_FOLLOWING_ERROR (-25) error is returned. The group status becomes "NOT INITIALIZED".

If the home search time out is reached, the ERR_GROUP_HOME_SEARCH_TIMEOUT (-28) error is returned. The group status becomes "NOT INITIALIZED".

When the referencing is done, you can exit the "REFERENCING" state to go in "READY" state with the "GroupReferencingStop" function.

CAUTION:

This function must be only used with a **positioner**.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_FOLLOWING_ERROR (-25)

ERR_GROUP_HOME_SEARCH_TIMEOUT (-28)

ERR_IN_INITIALIZATION (-21)

ERR NOT ALLOWED ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupReferencingActionExecute \$SocketID \$PositionerName \$Action \$Sensor \$Parameter

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
PositionerName	string	Positioner name (maximum size = 250)
Action	string	Referencing action name
	_	Referencing sensor name
	_	Referencing parameter (related to the referencing action)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int **GroupReferencingActionExecute** (int SocketID, char * PositionerName, char * Action, char * Sensor, double Parameter)

Input parameters

SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
PositionerName	char *	Positioner name
Action	char *	Referencing action name
Sensor	char *	Referencing sensor name
Parameter	double	Referencing parameter (related to the referencing action)

Output parameters

None

Return

\"C''\L BASIC

Prototype

Long **GroupReferencingActionExecute** (ByVal SocketID As Long, String PositionerName, ByVal Action As String, ByVal Sensor As String, ByVal Parameter As Double)

Input parameters

PositionerName......Positioner name

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **GroupReferencingActionExecute** (int32 SocketID, cstring PositionerName, cstring Action, cstring Sensor, double Parameter)

Input parameters

Return

Error......Function error code

PYTHON

Prototype

[Error] **GroupReferencingActionExecute** (integer SocketID, string PositionerName, string Action, string Sensor, double Parameter)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

PositionerName......string......Positioner name

Action string Referencing action name
Sensor string Referencing sensor name

ParameterdoubleReferencing parameter (related to the referencing action)

Return

Error.....Function error code

2.3.3.27. GroupReferencingStart

NAME

GroupReferencingStart – Starts the referencing mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)
- Group status must be "NOT REFERENCED": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Starts the referencing mode and sets the group status as "REFERENCING".

To use this function, the selected group must be in "NOT REFERENCED" state, else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

To stop the referencing mode and to go in "READY" state, call the "GroupReferencingStop" function.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GroupReferencingStart \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupReferencingStart (int SocketID, char * GroupName)

Input parameters

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GroupReferencingStart (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] GroupReferencingStart (int32 SocketID, cstring GroupName)

Input parameters

GroupName.....Group name

Return

PYTHON

Prototype

[Error] GroupReferencingStart (integer SocketID, string GroupName)

Input parameters

GroupName......group name

Return

Error.....Function error code

2.3.3.28. GroupReferencingStop

NAME

GroupReferencingStop – Stops the referencing mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid group name: ERR_GROUP_NAME (-19)
- Group status must be "REFERENCING": ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Stops the referencing mode and sets the group status as "READY".

To use this function, the selected group must be in "REFERENCING" state, else the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

The travel limits are checked before to stop referencing mode. The ERR_TRAVEL_LIMITS (-35) error is returned if the profiler position is out of range of the software travel limits and so the group stays in the "REFERENCING" state.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_TRAVEL_LIMITS (-35)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GroupReferencingStop \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupReferencingStop** (int SocketID, char * GroupName)

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long GroupReferencingStop (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] GroupReferencingStop (int32 SocketID, cstring GroupName)

Input parameters

Return

Error int32 Function error code

PYTHON

Prototype

[Error] GroupReferencingStop (integer SocketID, string GroupName)

Input parameters

Return

Error......Function error code

2.3.3.29. GroupVelocityCurrentGet

NAME

GroupVelocityCurrentGet – Returns the current velocity for one or all positioners of the selected group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid positioner name: ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

Returns the current velocity for one or all positioners of the selected group.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GroupVelocityCurrentGet \$SocketID \$GroupName CurrentVelocity ...

Input parameters		
	•	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	Group name (maximum size = 250)
Output parameters CurrentPosition	floating point	tCurrent velocity (must be repeated for each positioner of group)
Return		
TCL error code $(0 =$	success or $1 = \text{synt}$	ax error) or Function error code

C/C++

Prototype

int GroupVelocityCurrentGet (int SocketID, char *GroupName, int NbPositioners, double * CurrentVelocity)

Input parameters
SocketID

Output parameters

CurrentVelocitydouble *Current velocity array

Return

Function error code

Note: CurrentVelocity must have array size in accordance to NbPositioners to avoid array overrun.

VISUAL BASIC

Prototype

Long **GroupVelocityCurrentGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal NbPositioners As Long, CurrentVelocity As Double)

Input parameters

NbPositionersLong......Number of positioners in the selected group

Output parameters

Return

Function error code

Note: CurrentVelocity must have array size in accordance to NbPositioners to avoid array overrun.

MATLAB

Prototype

[Error, CurrentVelocity] **GroupVelocityCurrentGet** (int32 SocketID, cstring GroupName, int32 NbPositioners)

Input parameters

NbPositionersint32......Number of positioners in the selected group

Return

Note: CurrentVelocity must have array size in accordance to NbPositioners to avoid array overrun.

PYTHON

Prototype

[Error, CurrentVelocity] **GroupVelocityCurrentGet** (integer SocketID, string GroupName, integer NbPositioners)

Input parameters

NbPositionersintegerNumber of positioners in the selected group

Return

Note: CurrentVelocity has the elements number equel to NbPositioners.

2.4. SingleAxis group

2.4.1. Description

The SingleAxis is composed of one single positioner object that allows execution of motion commands.

A SingleAxis group can be use in GANTRY mode (dual positioner).

The controller can handle several SingleAxis objects (1 to 8).

There is no relation between SingleAxis objects and other objects handled by the controller.

2.4.2. State diagram

Called function:

- (a) GroupInitialize
- (b) GroupHomeSearch (c) GroupMoveAbsolute
- (d) GroupMoveRelative
- (e) GroupMotionDisable
- (f) GroupMotionEnable
- (g) GroupMoveAbort
- (h) GroupKill or KillAll
- (i) GroupJogModeEnable
- (j) GroupJogModeDisable
- (k) GroupSlaveModeEnable
- (k) GroupSlaveModeDisable
- (m) GroupAnalogTrackingModeEnable
- (n) GroupAnalogTrackingModeDisable
- (o) GroupInitializeWithEncoderCalibration
- (p) GroupReferencingStart
- (q) GroupReferencingStop
- (r) PositionerAccelerationAutoScaling
- (s) PositionerCorrectorAutoTuning

2.4.3. Specific function description

2.4.3.1. SingleAxisSlaveModeDisable

NAME

 ${\bf Single Axis Slave Mode Disable} - {\bf Disables} \ the \ slave-master \ mode.$

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "SLAVE": ERR_NOT_ALLOWED_ACTION (-22)
- Check the group name: ERR_GROUP_NAME (-19)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a SingleAxis group): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function allows disable the master-slave mode. If a motion is in progress then it is aborted.

To use this function, the group state must be SLAVE (46). If it's not the case then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

SingleAxisSlaveModeDisable \$SocketID \$GroupName

Input parameters

Output parameters (None)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int SingleAxisSlaveModeDisable (int SocketID, char *GroupName)

Input parameters

Output parameters (None)

Return

VISUAL BASIC

Prototype

Long SingleAxisSlaveModeDisable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 SingleAxisSlaveModeDisable (int32 SocketID, cstring GroupName)

Input parameters

Roturn

Function error code

PYTHON

Prototype

integer SingleAxisSlaveModeDisable (integer SocketID, string GroupName)

Input parameters

Return

2.4.3.2. SingleAxisSlaveModeEnable

NAME

SingleAxisSlaveModeEnable – Enables the slave-master mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Check the group name: ERR_GROUP_NAME (-19)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a SingleAxis group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the slave parameters (must be configured): ERR SLAVE CONFIGURATION (-41)

DESCRIPTION

This function enables the master-slave mode only if the slave group is in ready mode. In this mode the slave must be defined as a SingleAxis group and the master can be a positioner from any group.

To use this function, the SingleAxis group must be in the READY state. If it's not the case then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

To use this function, the master positioner and the slave ratio must be configured by the "SingleAxisSlaveParametersSet" function. If it's not the case then the ERR_SLAVE_CONFIGURATION (-41) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR IN INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_SLAVE_CONFIGURATION (-41)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

SingleAxisSlaveModeEnable \$SocketID \$GroupName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int SingleAxisSlaveModeEnable (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

Function error code

VICUAL BASIC

Prototype

Long SingleAxisSlaveModeEnable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 SingleAxisSlaveModeEnable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer SingleAxisSlaveModeEnable (integer SocketID, string GroupName)

Input parameters

Return

2.4.3.3. SingleAxisSlaveParametersGet

NAME

 $\label{lem:singleAxisSlaveParametersGet} \textbf{-} \ \text{Returns the slave parameters}.$

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a SingleAxis group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_CHAR (-13)
- Check the slave parameters (must be configured): ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

This function returns the slave parameters: the master positioner name and the master-slave ratio.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```

TCL

Prototype

SingleAxisSlaveParametersGet \$SocketID \$GroupName MasterPositionerName Ratio

 Input parameters
 SocketID
 integer
 Socket identifier got from "TCP_ConnectToServer" function

 GroupName
 string
 Group name (maximum size = 250)

 Output parameters
 MasterPositionerName
 string
 Master positioner name from any group

 Ratio
 double
 Gear ratio between the master and the slave

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **SingleAxisSlaveParametersGet** (int SocketID, char *GroupName, char * MasterPositionerName , double * Ratio)

Input parameters

GroupName......char *Group name

Output parameters

Return

Function error code

\"C''\AL BASIC

Prototype

Long **SingleAxisSlaveParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal MasterPositionerName As String, Ratio As Double)

Input parameters

Output parameters

MasterPositionerName....StringMaster positioner name from any group

Ratio......DoubleGear ratio between the master and the slave

Return

Function error code

MATLAB

Prototype

[Error, MasterPositionerName, Ratio] SingleAxisSlaveParametersGet (int32 SocketID, cstring GroupName)

Input parameters

Return

Error.........int32.......Function error code

PYTHON

Prototype

[Error, MasterPositionerName, Ratio] SingleAxisSlaveParametersGet (integer SocketID, string GroupName)

Input parameters

Return

Error.....Function error code

MasterPositionerName....string.......Master positioner name from any group
Ratio......double......Gear ratio between the master and the slave

2.4.3.4. SingleAxisSlaveParametersSet

NAME

SingleAxisSlaveParametersSet – Sets the slave parameters.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the master positioner name: ERR_POSITIONER_NAME (-18)
- Check the master group type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_CHAR (-13)
- Check the slave parameters (must be configured): ERR_NOT_ALLOWED_ACTION (-22)
- Check the base velocity value (must be null): ERR BASE VELOCITY (-48)
- Check the ratio value (Ratio > 0): ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function configures the slave parameters only for a SingleAxis group.

The slave is a master copy and a ratio can be applied: Slave = Ratio * Master.

The slave-master mode is activated only after the call of "SingleAxisSlaveModeEnable" function.

The master can be a positioner from any group, except from the spindle group. If the master group is a spindle then the ERR_NOT_ALLOWED_ACTION (-22) error is returned. The master positioner must be different to the slave positioner else the ERR_WRONG_OBJECT_TYPE (-8) is returned.

NOTE:

After an emergency stop, the master group and the slave group are in "Not Initialized" status. To restart a master-slave relation, the slave group(s) must be reinitialised **before** the master group.

ERROR CODES

ERR BASE VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

SingleAxisSlaveParametersSet \$SocketID \$GroupName \$MasterPositionerName \$Ratio

Input parameters

SocketID	integer .	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	Group name (maximum size = 250)
MasterPositionerName.	string	
Ratio	double.	Gear ratio between the master and the slave

Output parameters (None)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **SingleAxisSlaveParametersSet** (int SocketID, char *GroupName, char * MasterPositionerName , double Ratio)

Input parameters

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long **SingleAxisSlaveParametersSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal MasterPositionerName As String, ByVal Ratio As Double)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **SingleAxisSlaveParametersSet** (int32 SocketID, cstring GroupName, cstring MasterPositionerName, double Ratio)

Input parameters

Keturn

Error......Function error code

Error.....Function error code

PYTHON

[Error] SingleAxisSlaveParametersSet (integer SocketID, string GroupName, string MasterPositionerName, double Ratio)

Input parameters

300 / 512

2.4.4. Configuration files

Example of the definition of a SingleAxis group (named "MySingleAxis") in the system.ini file. The "MySingleAxis" group is build by a positioner named "MyPositioner".

The positioner "MyPositioner" uses the parameters of "MYSTAGE" from the stages.ini file and is connected to the plug 1 of the XPS controller. The Positioner "MyPositioner" has a secondary positioner (option to build a "gantry" position). This secondary positioner uses the parameters of "MYSTAGE" from the stages.ini file and is connected to the plug 2 of the XPS controller.

System.ini file:

[GROUPS]

SingleAxisInUse = **MySingleAxis**

 $[\textbf{MySingleAxis}] \ ; \ \textit{Configuration of "MySingleAxis" SingleAxis group}$

Positioner In Use = MyPositioner

[MySingleAxis. MyPositioner]

PlugNumber = 1

StageName = MYSTAGE

;---- Secondary positioner (optional)

SecondaryPlugNumber = 2

SecondaryStageName = MYSTAGE

Secondary Positioner Gantry End Referencing Position = 0

SecondaryPositionerGantryEndReferencingTolerance = 0

Secondary Positioner Gantry Offset After Initialization = 0

Stages.ini file:

[MYSTAGE]

MYSTAGE configuration => See § "Positioner: Configuration filess"

2.5. Spindle group

2.5.1. Description

A Spindle group is very similar to the SingleAxis group. It's composed of only one positioner. It has one main difference, it does not handle software or hardware end of runs. Therefore, it is allowed to spin indefinitely in any direction. SingleAxis group motion commands are still allowed (beside the jog, that is replaced by spin).

The controller can handle several Spindle objects.

There is no relation between Spindle objects and other objects handled by the controller.

2.5.2. State diagram

Called function:

- (a) GroupInitialize
- (b) GroupHomeSearch
- (c) GroupMoveAbsolute
- (d) GroupMoveRelative
- (e) GroupMotionDisable
- (f) GroupMotionEnable
- (g) GroupMoveAbort
- (h) GroupKill or KillAll
- (i) GroupJogModeEnable
- (j) GroupJogModeDisable
- (k) GroupSlaveModeEnable
- (k) GroupSlaveModeDisable
- (m) GroupAnalogTrackingModeEnable
- (n) GroupAnalogTrackingModeDisable(o) GroupInitializeWithEncoderCalibration
- (p) GroupReferencingStart
- (q) GroupReferencingStop
- (r) PositionerAccelerationAutoScaling
- (s) PositionerCorrectorAutoTuning

2.5.3. Specific function description

2.5.3.1. **GroupSpinCurrentGet**

NAME

GroupSpinCurrentGet – Returns the spin mode parameters.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a Spindle group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the current (or actual) velocity and acceleration used by the SPIN mode.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR WRONG PARAMETERS NUMBER (-9)
ERR WRONG TYPE DOUBLE (-14)
SUCCESS (0): no error
```

TCL

GroupSpinCurrentGet \$SocketID \$GroupName Velocity Acceleration

Input parameters

SocketIDinteger Socket identifier got from "TCP_ConnectToServer" function GroupName...... string Spindle group name (maximum size = 250) Output parameters Velocity......double Velocity (units / s) Acceleration double Acceleration (units / s²)

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

int GroupSpinCurrentGet (int SocketID, char *GroupName, double * Velocity, double * Acceleration)

Input parameters

Socket identifier got from "TCP ConnectToServer" function GroupName......char *Spindle group name

Output parameters

Velocity......double *Velocity (units / s)

\"C" \L BASIC

Prototype

Long **GroupSpinCurrentGet** (ByVal SocketID As Long, ByVal GroupName As String, Velocity As Double, Acceleration As Double)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, Velocity, Acceleration] GroupSpinCurrentGet (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype

[Error, Velocity, Acceleration] GroupSpinCurrentGet (integer SocketID, string GroupName)

Input parameters

Return

2.5.3.2. GroupSpinModeStop

NAME

GroupSpinModeStop – Stops motion of the spindle group.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner name (must be a group name): ERR_POSITIONER_NAME (-18)
- Check the group type (must be a Spindle group): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function stops motion of a spindle group and sets the group state to READY.

To use this function, the group must be in SPINNING status else the ERR_NOT_ALLOWED_ACTION (-22) is returned.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

$Group Spin Mode Stop \ \$Socket ID \ \$Group Name$

Input parameters

SocketID integer Socket identifier got from "TCP_ConnectToServer" function GroupName...... string Spindle group name (maximum size = 250)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int GroupSpinModeStop (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GroupSpinModeStop (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

GroupName.....StringSpindle group name

Output parameters

None

Return

Function error code

MATLAB

[Error] GroupSpinModeStop (int32 SocketID, cstring GroupName)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function GroupName......Spindle group name

Return

PYTHON

[Error] GroupSpinModeStop (integer SocketID, string GroupName)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function GroupName......stringSpindle group name

Return

Error.....Function error code

2.5.3.3. GroupSpinParametersGet

NAME

GroupSpinParametersGet – Returns the spin profiler parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a spindle group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the function (must be a spindle function): ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the "Setpoint" (theoretical) velocity and acceleration used by the SPIN mode.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

GroupSpinParametersGet \$SocketID \$GroupName Velocity Acceleration

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupSpinParametersGet (int SocketID, char *GroupName, double * Velocity, double * Acceleration)

Input parameters

Output parameters

Velocity......double *Setpoint Velocity (units / s)
Accelerationdouble *Setpoint Acceleration (units / s²)

Return

VISUAL BASIC

Prototype

Long **GroupSpinParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, Velocity As Double, Acceleration As Double)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, Velocity, Acceleration] **GroupSpinParametersGet** (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype

[Error, Velocity, Acceleration] GroupSpinParametersGet (integer SocketID, string GroupName)

Input parameters

Return

Error integer Function error code

Velocity double Setpoint Velocity (units / s)

Acceleration double Setpoint Acceleration (units / s²)

2.5.3.4. GroupSpinParametersSet

NAME

GroupSpinParametersSet – Sets the spin profiler parameters.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a spindle group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the function (must be a spindle function): ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check input parameter value: ERR_PARAMETER_OUT_OF_RANGE (-17)

```
Velocity <= MaximumVelocity

Velocity >= - MaximumVelocity

Acceleration > 0

Acceleration ≤ MaximumAcceleration
```

DESCRIPTION

This function starts the SPIN mode and also allows change on-the-fly the velocity and the acceleration used by the SPIN mode. If an error occurs, the positioner stops and the velocity value is setting to zero.

After the tests on input values:

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error
```

TCL

Prototype

GroupSpinParametersSet \$SocketID \$GroupName \$Velocity \$Acceleration

```
Input parameters
```

```
SocketID .........integer ........ Socket identifier got from "TCP_ConnectToServer" function GroupName.......string .......... Spindle group name (maximum size = 250) Velocity......... double ........ Setpoint Velocity (units / s) Acceleration ........ double ........ Setpoint Acceleration (units / s²)
```

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GroupSpinParametersSet (int SocketID, char *GroupName, double Velocity, double Acceleration)

Input parameters

GroupName......char *Spindle group name

Velocity......doubleSetpoint Velocity (units / s)

AccelerationdoubleSetpoint Acceleration (units / s²)

Output parameters

None

Return

Function error code

VICTIAL BASIC

Prototype

Long **GroupSpinParametersSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal Velocity As Double, ByVal Acceleration As Double)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function

GroupName.....StringSpindle group name

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **GroupSpinParametersSet** (int32 SocketID, cstring GroupName, double Velocity, double Acceleration)

Input parameters

GroupName.....Spindle group name

Velocity......doubleSetpoint Velocity (units / s)

Return

PYTHON

Prototype

[Error, Velocity, Acceleration] **GroupSpinParametersSet** (integer SocketID, string GroupName, double Velocity, double Acceleration)

Input parameters

Return

Error.....Function error code

2.5.3.5. SpindleSlaveModeDisable

NAME

SpindleSlaveModeDisable – Disables the slave-master mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "SLAVE": ERR_NOT_ALLOWED_ACTION (-22)
- Check the group name: ERR_GROUP_NAME (-19)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a Spindle group): ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

This function allows disable the master-slave mode for a spindle group. If a motion is in progress then it is aborted.

To use this function, the group state must be SLAVE (46). If it's not the case then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

${\bf Spindle Slave Mode Disable}~\$ Socket ID~\$ Group Name$

Input parameters

Output parameters (None)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int SpindleSlaveModeDisable (int SocketID, char *GroupName)

Input parameters

Output parameters (None)

Return

Function error code

VIET AL BASIC

XPS-C8 Controller

Firmware

Prototype

Long SpindleSlaveModeDisable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

GroupName.....Spindle group name

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 SpindleSlaveModeDisable (int32 SocketID, cstring GroupName)

Input parameters

 $Socket ID \\ ... \\ Socket identifier got from "TCP_ConnectToServer" function$

GroupName......spindle group name

Return

Function error code

PYTHON

Prototype

integer SpindleSlaveModeDisable (integer SocketID, string GroupName)

Input parameters

GroupName......string......Spindle group name

Return

2.5.3.6. SpindleSlaveModeEnable

NAME

SpindleSlaveModeEnable – Enables the slave-master mode.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Check the group name: ERR_GROUP_NAME (-19)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a Spindle group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the slave parameters (must be configured): ERR_SLAVE_CONFIGURATION (-41)

DESCRIPTION

This function enables the master-slave mode only if the slave group is in ready mode. In this mode the slave must be defined as a Spindle group and the master can be a positioner from any group.

To use this function, the Spindle group must be in the READY state. If it's not the case then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

To use this function, the master positioner and the slave ratio must be configured by the "SpindleSlaveParametersSet" function. If it's not the case then the ERR_SLAVE_CONFIGURATION (-41) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR IN INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_SLAVE_CONFIGURATION (-41)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

${\bf Spindle Slave Mode Enable}~\$ Socket ID~\$ Group Name$

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int SpindleSlaveModeEnable (int SocketID, char *GroupName)

Input parameters

Output parameters

None

Return

Function error code

VICUAL BASIC

Prototype

Long SpindleSlaveModeEnable (ByVal SocketID As Long, ByVal GroupName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 SpindleSlaveModeEnable (int32 SocketID, cstring GroupName)

Input parameters

Return

Function error code

PYTHON

Prototype

integer SpindleSlaveModeEnable (integer SocketID, string GroupName)

Input parameters

Return

2.5.3.7. SpindleSlaveParametersGet

NAME

SpindleSlaveParametersGet – Returns the slave parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the group type (must be a Spindle group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_CHAR (-13)
- Check the slave parameters (must be configured): ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

This function returns the slave parameters: the master positioner name and the master-slave ratio.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GROUP_NAME (-19)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

SpindleSlaveParametersGet \$SocketID \$GroupName MasterPositionerName Ratio

C / C++

Prototype

int **SpindleSlaveParametersGet** (int SocketID, char *GroupName, char * MasterPositionerName , double * Ratio)

Input parameters

Output parameters

Return

Function error code

\"C''\L BASIC

Prototype

Long **SpindleSlaveParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal MasterPositionerName As String, Ratio As Double)

Input parameters

GroupName.....Spindle Group name

Output parameters

MasterPositionerName....StringMaster positioner name from any group
Ratio......DoubleGear ratio between the master and the slave

Return

Function error code

MATLAB

Prototype

[Error, MasterPositionerName, Ratio] SpindleSlaveParametersGet (int32 SocketID, cstring GroupName)

Input parameters

GroupName.....Spindle Group name

Return

Error.....Function error code

MasterPositionerName.....cstringMaster positioner name from any group

Ratio......doubleGear ratio between the master and the slave

PYTHON

Prototype

[Error, MasterPositionerName, Ratio] **SpindleSlaveParametersGet** (integer SocketID, string GroupName)

Input parameters

GroupName......string......Spindle Group name

Return

Error.....Function error code

MasterPositionerName.....string.......Master positioner name from any group

2.5.3.8. SpindleSlaveParametersSet

NAME

SpindleSlaveParametersSet – Sets the slave parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the master positioner name: ERR_POSITIONER_NAME (-18)
- Check the master group type: ERR_WRONG_OBJECT_TYPE (-8)
- Check input parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_CHAR (-13)
- Check the slave parameters (must be configured): ERR_NOT_ALLOWED_ACTION (-22)
- Check the base velocity value (must be null): ERR BASE VELOCITY (-48)
- Check the ratio value (Ratio > 0): ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

This function configures the slave parameters only for a Spindle group.

The slave is a master copy and a ratio can be applied: Slave = Ratio * Master.

The slave-master mode is activated only after the call of "SingleAxisSlaveModeEnable" function.

The master can be a positioner from a spindle group only. If the master group is another group type then the ERR_NOT_ALLOWED_ACTION (-22) error is returned. The master positioner must be different to the slave positioner else the ERR_WRONG_OBJECT_TYPE (-8) is returned.

NOTE:

After an emergency stop, the master group and the slave group are in "Not Initialized" status. To restart a master-slave relation, the slave group(s) must be reinitialised **before** the master group.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

SpindleSlaveParametersSet \$SocketID \$GroupName \$MasterPositionerName \$Ratio

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	Spindle Group name (maximum size = 250)
MasterPositionerName	string	Master positioner name from any group
Ratio	double	Gear ratio between the master and the slave

Output parameters (None)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **SpindleSlaveParametersSet** (int SocketID, char *GroupName, char * MasterPositionerName , double Ratio)

Input parameters

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long **SpindleSlaveParametersSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal MasterPositionerName As String, ByVal Ratio As Double)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **SpindleSlaveParametersSet** (int32 SocketID, cstring GroupName, cstring MasterPositionerName, double Ratio)

Input parameters

Error.....Function error code

PYTHON

[Error] **SpindleSlaveParametersSet** (integer SocketID, string GroupName, string MasterPositionerName, double Ratio)

 $Input\ parameters$

2.5.4. Configuration files

Example of the definition of a Spindle group (named "AXIS") in the system.ini file. The group POSITIONER is build by a positioner named "STAGE". The positioner "STAGE" uses the parameters of "MYSTAGE" from the stages.ini file and is connected to the plug 1 of the XPS controller.

System.ini file:

[GROUPS]

SpindleInUse = POSITIONER

[POSITIONER]

; AXIS Spindle group configuration

PositionerInUse = STAGE

[POSITIONER.STAGE]

PlugNumber = 1

StageName = MYSTAGE

Stages.ini file:

[MYSTAGE]

MYSTAGE configuration => See § "Positioner: Configuration filess"

2.6. XY group

2.6.1. Description

An XY group is composed of two positioner objects, typically in an orthogonal XY configuration.

An XY group can be use in GANTRY mode (dual positioner for X or for Y).

It includes an XY mapping feature : XY = f(XY)

It includes an XY line-arc trajectory (2D).

2.6.2. State diagram

Called function:

- (a) GroupInitialize
- (b) GroupHomeSearch
- (c) GroupMoveAbsolute (d) GroupMoveRelative
- (e) XYLineArcExecution
- (f) GroupMotionDisable
- (g) GroupMotionEnable
- (h) GroupMoveAbort
- (i) GroupKill or KillAll
- (j) GroupJogModeEnable
- (k) GroupJogModeDisable
- (I) GroupAnalogTrackingModeEnable
- (m) GroupAnalogTrackingModeDisable (n) GroupInitializeWithEncoderCalibration
- (o) GroupReferencingStart
- (p) GroupReferencingStop
- (q) PositionerAccelerationAutoScaling
- (r) PositionerCorrectorAutoTuning

2.6.3. Specific function description

2.6.3.1. GroupPositionCorrectedProfilerGet

NAME

GroupPositionCorrectedProfilerGet – Returns the corrected profiler position corresponding to a profiler position.

INPUT TESTS

- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check parameter range: ERR PARAMETER OUT OF RANGE (-17)
- Valid object type (group or positioner): ERR_WRONG_OBJECT_TYPE (-8)
- Valid group name: ERR GROUP NAME (-19)
- Valid positioner name: ERR POSITIONER NAME (-18)

DESCRIPTION

Returns the corrected profiler position for one or all positioners of the selected group.

This function is to be used with Position Compare Output or Time Flasher hardware functions. The positions returned by this function will allow to place accurately the start and stop positions taking in account the encoder and XY mappings.

ERROR CODES

ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_GROUP_NAME (-19)
ERR_POSITIONER_NAME (-18)
ERR_WRONG_OBJECT_TYPE (-8)
SUCCESS (0): no error

TCL

Prototype

GroupPositionCorrectedProfilerGet \$SocketID \$GroupName \$ProfilerPosition CorrectedProfilerPosition

Input parameters
SocketID

Output parameters

CorrectedProfilerPosition floating point.......Current Position (must be repeated for each positioner of group)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **GroupPositionCorrectedProfilerGet** (int SocketID, char *GroupName, double PositionX, double PositionY, double * CorrectedProfilerPositionX, double * CorrectedProfilerPositionY)

Input parameters

Output parameters

Return

Function error code

VICTIAL BASIC

Prototype

Long **GroupPositionCorrectedProfilerGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal PositionX As Double, ByVal PositionY As Double, CorrectedProfilerPositionX As Double, CorrectedProfilerPositionY As Double)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, CorrectedProfilerPositionX, CorrectedProfilerPositionY] **GroupPositionCorrectedProfilerGet** (int32 SocketID, cstring GroupName, double PositionX, double PositionY)

Input parameters

Return

Error int32 Function error code
CorrectedProfilerPositionX double X corrected position
CorrectedProfilerPositionY double Y corrected position

PYTHON

Prototype

[Error, CorrectedProfilerPositionX, CorrectedProfilerPositionY] **GroupPositionCorrectedProfilerGet** (integer SocketID, string GroupName)

Input	parameters
-------	------------

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	string	_
PositionX	double	X Profiler position
PositionY	double	Y Profiler position
		•

Return

Error	integer	Function error code
CorrectedProfilerPositionX	double	X Profiler position
CorrectedProfilerPositionY	double	Y Profiler position

2.6.3.2. XYLineArcExecution

NAME

XYLineArcExecution – Executes an XY LineArc trajectory.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Check the group (must not be a gantry): ERR_POSITIONER_NAME (-18)
- Check the group type (must be an XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Check backlash (must not be enabled): ERR_NOT_ALLOWED_BACKLASH (-46)
- Check the trajectory file name length: ERR STRING TOO LONG (-3)
- Check the trajectory file existence: ERR_READ_FILE (-61)
- Check the input value (> 0): ERR_PARAMETER_OUT_OF_RANGE (-17)
- Check the velocity (0 < Velocity <= TrajectoryMaximumVelocity): ERR TRAJ VEL LIMIT (-68)
- Check the acceleration (0 < Acceleration <= TrajectoryMaximumAcceleration): ERR_TRAJ_ACC_LIMIT (-69)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function executes an XY LineArc trajectory. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR TRAJ INITIALIZATION (-72) is returned.

Before a trajectory execution, it is recommended to check its possible execution using the "XYLineArcVerification" and "XYLineArcVerificationResultGet" functions.

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

NOTE:

In case of a ERR_GROUP_MOTION_DONE_TIMEOUT (-33) error, a ERR_FOLLOWING_ERROR (-25) error or ERR_SLAVE (-44) error, the group state becomes DISABLE. To help you to know what is the error source, check the positioner errors, the hardware status and the driver status.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR FATAL INIT (-20)

ERR_FOLLOWING_ERROR (-25)

ERR GROUP MOTION DONE TIMEOUT (-33)

ERR IN INITIALIZATION (-21)

ERR NOT ALLOWED ACTION (-22)

ERR NOT ALLOWED BACKLASH (-46)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_READ_FILE (-61)

ERR_SLAVE (-44)

ERR_STRING_TOO_LONG (-3)

ERR TRAJ ACC LIMIT (-69)

ERR_TRAJ_VEL_LIMIT (-68)

ERR_TRAJ_INITIALIZATION (-72)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14),

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

XYLineArcExecution \$SocketID \$GroupName \$FileName \$Velocity \$Acceleration \$ExecutionNumber

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYLineArcExecution** (int SocketID, char *GroupName, char *FileName , double Velocity, double Acceleration, int ExecutionNumber)

Input parameters

SocketID int Socket identifier got from "TCP_ConnectToServer" function

GroupName char * XY group name

FileName char * Trajectory file name (maximum size = 250)

Velocity double Trajectory velocity (units / seconds)

Acceleration double Trajectory acceleration (units / seconds²)

ExecutionNumber int Number of trajectory executions

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long **XYLineArcExecution** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String, ByVal Velocity As Double, ByVal Acceleration As Double, ByVal ExecutionNumber As Integer)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

int32 **XYLineArcExecution** (int32 SocketID, cstring GroupName, cstring FileName, double Velocity, double Acceleration, int ExecutionNumber)

Input parameters

Return

Function error code

PYTHON

Prototype

integer **XYLineArcExecution** (integer SocketID, string GroupName, string FileName, double Velocity, double Acceleration, int ExecutionNumber)

Input parameters

Return

2.6.3.3. XYLineArcParametersGet

NAME

XYLineArcParametersGet – Returns the LineArc trajectory parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a gantry): ERR_POSITIONER_NAME (-18)
- Check the group type (must be a XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the LineArc trajectory type: ERR_NOT_ALLOWED_ACTION (-22)
- Valid output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the XY LineArc trajectory parameters (trajectory name, trajectory velocity, trajectory acceleration, current executing element number) of the currently executed LineArc trajectory.

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR WRONG PARAMETERS NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

XYLineArcParametersGet \$SocketID \$GroupName FileName Velocity Acceleration ElementNumber

Input parameters

Output parameters

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYLineArcParametersGet** (int SocketID, char *GroupName, char * FileName, double * Velocity, double * Acceleration, int * ElementNumber)

Input parameters

Output parameters

FileName......char *Executing trajectory file name (maximum size = 250)

Velocity......double *Trajectory velocity (units / seconds)
Acceleration......double *Trajectory acceleration (units / seconds²)

ElementNumberint *.....Current executing element number

Return

Function error code

\"C'' \L BASIC

Prototype

Long **XYLineArcParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String, Velocity As Double, Acceleration As Double, ElementNumber As Integer)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, FileName, Velocity, Acceleration, ElementNumber] **XYLineArcParametersGet** (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype
[Error, FileName, Velocity, Acceleration, ElementNumber] XYLineArcParametersGet (integer SocketID, string GroupName)

- mnui narameiers	Input	parameters
-------------------	-------	------------

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	XY Group name

Return

Error	integer	Function error code
	_	Executing trajectory file name (maximum size = 250)
	_	Trajectory velocity (units / seconds)
•		Trajectory acceleration (units / seconds²)

2.6.3.4. XYLineArcPulseOutputGet

NAME

XYLineArcPulseOutputGet – Returns the configuration of pulse generation on LineArc trajectory.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a positioner) : ERR_POSITIONER_NAME (-18)
- Check the group type (must be a XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the last configuration of pulse generation on XY LineArc trajectory. The pulse output configuration is defined by a start length, an end length, and a path length interval.

Example:

One pulse is generated every 10 μm on the Line-Arc trajectory between 10 mm and 30 mm. Start length = 10 mm

End length = 30 mm

path length interval = 0.01 mm

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

XYLineArcPulseOutputGet \$SocketID \$GroupName StartLength EndLength PathLengthInterval

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	XY Group name (maximum size = 250)

Output parameters

StartLength	double	Start length (units)
EndLength	double	End length (units)
PathLengthInterval	double	Path length interval (units)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int XYLineArcPulseOutputGet (int SocketID, char *GroupName, double * StartLength, double * EndLength, double * PathLengthInterval)

Input parameters

Output parameters

StartLength...........double *Start length (units)

EndLength...........double *End length (units)

PathLengthInterval.......double *Path length interval (units)

Return

Function error code

\"C'' \L BASIC

Prototype

Long **XYLineArcPulseOutputGet** (ByVal SocketID As Long, ByVal GroupName As String, StartLength As Double, EndLength As Double, PathLengthInterval As Double)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, StartLength, EndLength, PathLengthInterval] **XYLineArcPulseOutputGet** (int32 SocketID, cstring GroupName)

Input parameters

Return

Error int32 Function error code

StartLength double Start length (units)

EndLength double End length (units)

PathLengthInterval double Path length interval (units)

PYTHON

Prototype

[Error, StartLength, EndLength, PathLengthInterval] **XYLineArcPulseOutputGet** (integer SocketID, string GroupName)

Input parameters

Return

Error integer Function error code
StartLength double Start length (units)
EndLength double End length (units)

PathLengthInterval......doublePath length interval (units)

2.6.3.5. XYLineArcPulseOutputSet

NAME

XYLineArcPulseOutputSet – Sets the configuration of pulse generation on LineArc trajectory.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a positioner) : ERR_POSITIONER_NAME (-18)
- Check the group type (must be a XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the pulse generation must not be in progress: ERR_NOT_ALLOWED_ACTION (-22)
- Valid input parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function configures and activates the pulse generation on XY LineArc trajectory. The pulse generation is defined by a start length, an end length, and a path length interval. If a pulse generation is already activated on the selected XY Line-Arc trajectory then this function returns the ERR NOT ALLOWED ACTION error.

Please note, that the pulse output settings are automatically removed when the trajectory is over. Hence, with the execution of every new trajectory, it is also required to define the pulse output settings again.

This capability allows output of pulses at constant trajectory length intervals on Line-Arc trajectories. The pulses are generated between a start length and an end length. All lengths are calculated in an orthogonal XY plane. The StartLength, EndLength, and PathLengthInterval refer to the Setpoint positions.

Example:

XYLineArcPulseOutputSet(XY, 10, 30, 0.01)

One pulse will be generated every 10 µm on the next Line-Arc trajectory between 10 mm and 30 mm

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

XYLineArcPulseOutputSet \$SocketID \$GroupName \$StartLength \$EndLength \$PathLengthInterval

Input parameters

SocketID	integer	Socket identifier got from "TCP ConnectToServer" function
GroupName	string	XY Group name (maximum size = 250)
StartLength		
EndLength	double	End length (units)
PathLengthInterval	double	Path length interval (units)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYLineArcPulseOutputSet** (int SocketID, char *GroupName, double StartLength, double EndLength, double PathLengthInterval)

Input parameters

Output parameters

None

Return

Function error code

\"C''\AL BASIC

Prototype

Long **XYLineArcPulseOutputSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal StartLength As Double, ByVal EndLength As Double, ByVal PathLengthInterval As Double)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **XYLineArcPulseOutputSet** (int32 SocketID, cstring GroupName, double StartLength, double EndLength, double PathLengthInterval)

Input parameters

Return

PYTHON

Prototype
[Error] XYLineArcPulseOutputSet (integer SocketID, string GroupName, double StartLength, double EndLength, double PathLengthInterval)

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	_	XY Group name
StartLength	double	Start length (units)
EndLength	double	End length (units)
PathLengthInterval	double	Path length interval (units)

Return

Error.....Function error code

2.6.3.6. XYLineArcVerification

NAME

XYLineArcVerification – Verifies a line-arc trajectory data file.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a gantry): ERR_POSITIONER_NAME (-18)
- Check the group type (must be an XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the trajectory file name length: ERR_STRING_TOO_LONG (-3)
- Check the trajectory file existence: ERR_READ_FILE (-61)
- Check the trajectory (number of elements > 0) : ERR TRAJ EMPTY (-66)
- Check trajectory element types in file (FirstTangent, ...): ERR_WRONG_TYPE_DOUBLE (-14)
- Check keys in file ("FirstTangent" and "DiscontinuityAngle"): ERR_READ_FILE_PARAMETER_KEY (-74)
- Check trajectory element (distance and tangent): ERR TRAJ ELEM LINE (-65)

```
| XElementDistance | \geq 1e-14
| YElementDistance | \geq 1e-14
| TangentOut \neq 1.797e308
```

- Check trajectory element (radius) : ERR_TRAJ_ELEM_RADIUS (-63)

 $Radius \ge 1e-14$

Check trajectory element (sweep angle): ERR_TRAJ_ELEM_ SWEEP (-64)
 SweepAngle ≥1e-14

DESCRIPTION

This function verifies the possible execution of an XY LineArc trajectory. The results of the verification can be gathered with the "XYLineArcVerificationResultGet" function. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR_TRAJ_INITIALIZATION (-72) is returned.

This function can be executed at any time and is independent from the trajectory execution. This function performs the following:

- ✓ Checks the trajectory file for data coherence.
- ✓ Calculates the trajectory limits, which are: the required travel per positioner, the maximum possible trajectory velocity and the maximum possible trajectory acceleration. This function helps define the parameters for the trajectory execution.
- ✓ If all is OK, it returns "SUCCESS" (0). Otherwise, it returns a corresponding error.

NOTE:

The "XYLineArcVerification" function is independent from the "XYLineArcExecution" function. So users don't need to execute this function before executing a LineArc trajectory. However, it is recommended to do that.

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

ERROR CODES

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_POSITIONER_NAME (-18)
ERR_READ_FILE (-61)
ERR_READ_FILE_PARAMETER_KEY (-74)
ERR_STRING_TOO_LONG (-3)
ERR_TRAJ_ELEM_LINE (-65)
ERR_TRAJ_ELEM_RADIUS (-63)
ERR_TRAJ_ELEM_SWEEP (-64)
ERR_TRAJ_EMPTY (-66)
```


ERR_TRAJ_INITIALIZATION (-72)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

XYLineArcVerification \$SocketID \$GroupName \$FileName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int XYLineArcVerification (int SocketID, char *GroupName, char *FileName)

Input parameters

Output parameters

None

Return

Function error code

VICTIAL BASIC

Prototype

Long **XYLineArcVerification** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String)

Input parameters

FileName......StringTrajectory file name (maximum size = 250)

Output parameters

None

Return

MATLAB

Prototype

int32 XYLineArcVerification (int32 SocketID, cstring GroupName, cstring FileName)

Input parameters

FileName.....cstringTrajectory file name (maximum size = 250)

Return

Function error code

PYTHON

Prototype

integer XYLineArcVerification (integer SocketID, string GroupName, string FileName)

Input parameters

FileName.....string......Trajectory file name (maximum size = 250)

Return

2.6.3.7. XYLineArcVerificationResultGet

NAME

XYLineArcVerificationResultGet – Returns the results of the previous "XYLineArcVerification" function.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a XY group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the last XY LineArc verification (must be done): ERR_NOT_ALLOWED_ACTION (-22)
- Check the positioner name length: ERR_STRING_TOO_LONG (-3)
- Check the positioner (must not be a gantry): ERR_POSITIONER_NAME (-18)
- Valid output parameter type: ERR WRONG TYPE CHAR (-13), ERR WRONG TYPE DOUBLE (-14)

DESCRIPTION

This function returns the results of the previous "XYLineArcVerification" function, positioner by positioner. The results are the travel requirements (min and max values), the possible maximum velocity and the possible maximum acceleration.

If no verification has be done then the ERR NOT ALLOWED ACTION (-22) error is returned.

For a more thorough description of the line-arc trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Line-arc Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR STRING TOO LONG (-3)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13),

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

XYLineArcVerificationResultGet \$SocketID \$ PositionerName FileName MinimumPosition MaximumPosition MaximumVelocity MaximumAcceleration

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	_	XY positioner name (maximum size = 250)

Output parameters

FileName	string	Examined trajectory file name (maximum size = 250)
	Ü	Minimum position (units)
		Maximum position (units)
MaximumVelocity	double	Maximum trajectory velocity (units / seconds)
•		Maximum trajectory acceleration (units / seconds²)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYLineArcVerificationResultGet** (int SocketID, char * PositionerName, char * FileName, double * MinimumPosition, double * MaximumPosition, double * MaximumVelocity, double * MaximumAcceleration)

Input parameters

Output parameters

FileName......char *Examined trajectory file name (maximum size = 250)

Minimum Positiondouble * Minimum position (units)

MaximumPosition......double *Maximum position (units)

Maximum Velocitydouble *Maximum trajectory velocity (units / seconds)

MaximumAcceleration double * Maximum trajectory acceleration (units / seconds²)

Return

Function error code

\"C''\AL BASIC

Prototype

Long **XYLineArcVerificationResultGet** (ByVal SocketID As Long, ByVal PositionerName As String, ByVal FileName As String, MinimumPosition As Double, MaximumPosition As Double, MaximumVelocity As Double, MaximumAcceleration As Double)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration] **XYLineArcVerificationResultGet** (int32 SocketID, cstring PositionerName)

Input parameters

Return

Minimum PositiondoubleMinimum position (units)

MaximumVelocitydoubleTrajectory trajectory velocity (units / seconds)

PYTHON

Prototype

[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration] **XYLineArcVerificationResultGet** (integer SocketID, string PositionerName)

•	Socket identifier got from "TCP_ConnectToServer" functionXY positioner name
integer	Function error code
string	Examined trajectory file name (maximum size = 250)
double	Minimum position (units)
double	Maximum position (units)
double	Trajectory velocity (units / seconds)
double	Trajectory acceleration (units / seconds²)
	string

2.6.4. Configuration files

Example of the definition of an XY group (named "XY") in the system.ini file. The group XY is build by two positioners named "XGantry" and "Y". The XY home search sequence is "XThenY" and no XY mapping is used.

The positioner "XGantry" uses the parameters of "MYSTAGE1" from the stages.ini file and is connected to the plug 1 of the XPS controller. The positioner "XGantry" has a secondary positioner that uses the parameters of "MYSTAGE1" from the stages.ini file and is connected to the plug 3 of the XPS controller.

The positioner "Y" uses the parameters of "MYSTAGE2" from the stages.ini file and is connected to the plug 2 of the XPS controller.

System.ini file:

```
[GROUPS]
XYInUse = XY
[XY]; XY group configuration
PositionerInUse = XGantry, Y
InitializationAndHomeSearchSequence = XThenY
                                                    ; Together, XThenY
;--- Mapping XY
XMappingFileName =
XMappingLineNumber =
                                 If "XMappingFileName" is defined
XMappingColumnNumber =
                                     ; must be same unit as positioner
XMappingMaxPositionError=
YMappingFileName =
YMappingLineNumber =
                                 If "YMappingFileName" is defined
YMappingColumnNumber =
YMappingMaxPositionError=
                                    ; must be same unit as positioner
;--- XY Gantry Force Ratio parameters
YOffsetForForceRatio = 0
PrimaryYForceRatio = 0
Secondary YF or ce Ratio = 0
[XY.XGantry]
PlugNumber = 1
StageName = MYSTAGE1
;---- Secondary positioner (X2)
SecondaryPlugNumber = 3
SecondaryStageName = MYSTAGE1
Secondary Positioner Gantry End Referencing Position = 0 \\
Secondary Positioner Gantry End Referencing Tolerance = 0 \\
Secondary Positioner Gantry Offset After Initialization = 0 \\
[XY.Y]
PlugNumber = 2
StageName = MYSTAGE2
;---- Secondary positioner (X2)
; None
```

Stages.ini file:

[MYSTAGE1]

MYSTAGE positioner configuration => See § "Positioner: Configuration files"

[MYSTAGE2]

MYSTAGE positioner configuration => See § "Positioner: Configurationfiles"

2.7. XYZ group

2.7.1. Description

An XYZ group is a three positioner object, typically in an orthogonal XYZ configuration. It includes an XZ mapping feature: XYZ = f(XYZ)

It also includes 3D spline trajectories.

2.7.2. State diagram

Called function:

- (a) GroupInitialize
- (b) GroupHomeSearch
- (c) GroupMoveAbsolute
- (d) GroupMoveRelative
- (e) XYLineArcExecution
- (f) GroupMotionDisable
- (g) GroupMotionEnable
- (h) GroupMoveAbort
- (i) GroupKill or KillAll (j) GroupJogModeEnable
- (k) GroupJogModeDisable
- $\textbf{(I)}\ Group Analog Tracking Mode Enable$
- (m) GroupAnalogTrackingModeDisable
- (n) GroupInitializeWithEncoderCalibration
- (o) GroupReferencingStart
- (p) GroupReferencingStop
- (q) PositionerAccelerationAutoScaling
- (r) PositionerCorrectorAutoTuning

2.7.3. Specific function description

2.7.3.1. XYZGroupPositionCorrectedProfilerGet

NAME

XYSGroupPositionCorrectedProfilerGet – Returns the corrected profiler position for all positioners of an XYZ group.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Valid object type: ERR_WRONG_OBJECT_TYPE (-8)
- Valid group type (must be a XYZ group): ERR_POSITIONER_NAME (-18)
- Valid group name: ERR_GROUP_NAME (-19)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function allows to correct a theoretical position. This corrected position is the theoretical position recalculated with the XYZ mapping correction.

This function applies the XYZ mapping on the theoretical user positions and returns the corrected positions. These corrected profiler positions (X, Y and Z) take the XYZ mapping correction into account.

NOTE:

This function is only allowed with a XYZ group.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GROUP_NAME (-19)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

Prototype

XYZGroupPositionCorrectedProfilerGet SocketID GroupName PositionX PositionY PositionZ CorrectedPositionX CorrectedPositionY CorrectedPositionZ

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer" function
	•	XYZ group name (maximum size = 250)
PositionX		,
PositionY	floating point	Theoretical position Y
PositionZ	O I	*
	01	1

Output parameters

CorrectedPositionX	floating point	Corrected theoret	ical position X
CorrectedPositionY	floating point	Corrected theoret	ical position Y
CorrectedPositionZ	floating point	Corrected theoret	ical position Z

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int **XYZGroupPositionCorrectedProfilerGet** (int SocketID, char *GroupName, double PositionX, double PositionY, double PositionY, double * CorrectedPositionY, double * CorrectedPositionY, double * CorrectedPositionZ)

Input parameters

SocketID	int	Socket identifier gets by the "TCP_ConnectToServer"function
GroupName	char *	XYZ group name
PositionX	double	Theoretical position X
PositionY	double	Theoretical position Y
PositionZ	double	Theoretical position Z
		•

Output parameters

CorrectedPositionXdouble *	Corrected theoretical position X
CorrectedPositionYdouble *	Corrected theoretical position Y
CorrectedPositionZdouble *	Corrected theoretical position Z

Return

VISUAL BASIC

Prototype

Long **XYZGroupPositionCorrectedProfilerGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal PositionX As Double, ByVal PositionY As Double, ByVal PositionX As Double, CorrectedPositionX As Double, CorrectedPositionY As Double, CorrectedPositionZ As Double)

Input parameters

SocketID	Long	Socket identifier gets by the "TCP_ConnectToServer" function
GroupName		
PositionX	Double	Theoretical position X
PositionY	Double	Theoretical position Y
PositionZ	Double	Theoretical position Z

Output parameters

CorrectedPositionX	Double .	Corrected theoretical position X
CorrectedPositionY	Double .	Corrected theoretical position Y
CorrectedPositionZ	Double .	

Return

Function error code

MATLAB

Prototype

[Error, Corrected Position X, Corrected Position Y, Corrected Position Z]

XYZGroupPositionCorrectedProfilerGet (int32 SocketID, cstring GroupName, double PositionX, double PositionY, double PositionZ)

Input parameters

SocketID	int32	Socket identifier gets by the "TCP_ConnectToServer"function
GroupName	cstring	XYZ group name
PositionX	double	Theoretical position X
PositionY	double	Theoretical position Y
PositionZ	double	Theoretical position Z
Return		
Error	int32	Function error code
CorrectedPositionX	doublePtr	Corrected theoretical position X
CorrectedPositionY	doublePtr	Corrected theoretical position Y

PYTHON

Prototype

[Error, CorrectedPositionX, CorrectedPositionY, CorrectedPositionZ]

CorrectedPositionZ.......doublePtr......Corrected theoretical position Z

XYZGroupPositionCorrectedProfilerGet (integer SocketID, string GroupName, double PositionX, double PositionY, double PositionZ)

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer"function
		XYZ group name
PositionX	double	Theoretical position X
PositionY	double	Theoretical position Y
PositionZ	double	Theoretical position Z
-4		

Return

Error	. integer	Function error code
	•	Corrected theoretical position X
CorrectedPositionY	.doublePtr	Corrected theoretical position Y
CorrectedPositionZ	.doublePtr	Corrected theoretical position Z

2.7.3.2. XYZSplineExecution

NAME

XYZSplineExecution – Executes an XYZ spline trajectory.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Check the base velocity value (must be null) : ERR_BASE_VELOCITY (-48)
- Check the group: ERR_POSITIONER_NAME (-18)
- Check the group type (must be an XYZ group): ERR_WRONG_OBJECT_TYPE (-8)
- Check backlash (must not be enabled): ERR NOT ALLOWED BACKLASH (-46)
- Check the trajectory file name length: ERR STRING TOO LONG (-3)
- Check the trajectory file existence or file reading: ERR READ FILE (-61)
- Check the message queue filling: ERR MSG OUEUE (-71)
- Check the input value (velocity and acceleration > 0): ERR PARAMETER OUT OF RANGE (-17)
- Check the velocity (0 < Velocity <= TrajectoryMaximumVelocity): ERR_TRAJ_VEL_LIMIT (-68)
- Check the acceleration (0 < Acceleration <= TrajectoryMaximumAcceleration): ERR_TRAJ_ACC_LIMIT (-69)
- Check input parameter types: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function executes an XYZ Spline trajectory. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR_TRAJ_INITIALIZATION (-72) is returned.

Before a trajectory execution, it is recommended to check its possible execution using the "XYZSplineVerification" and "XYZSplineVerificationResultGet" functions.

For a more thorough description of the spline trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Spline Trajectories.

NOTE:

In case of a ERR_GROUP_MOTION_DONE_TIMEOUT (-33) error, a ERR_FOLLOWING_ERROR (-25) error or ERR_SLAVE (-44) error, the group state becomes DISABLE. To help you to know what is the error source, check the positioner errors, the hardware status and the driver status.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR FOLLOWING ERROR (-25)

ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

ERR IN INITIALIZATION (-21)

ERR_MSG_QUEUE (-71)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_NOT_ALLOWED_BACKLASH (-46)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_POSITIONER_NAME (-18)

ERR_READ_FILE (-61)

ERR_SLAVE (-44)

ERR_STRING_TOO_LONG (-3)

ERR_TRAJ_ACC_LIMIT (-69)

ERR_TRAJ_VEL_LIMIT (-68)

ERR_TRAJ_INITIALIZATION (-72)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14), SUCCESS (0): no error

TCL

Prototype

XYZSplineExecution \$SocketID \$GroupName \$FileName \$Velocity \$Acceleration

Input parameters

 SocketID
 integer
 Socket identifier got from "TCP_ConnectToServer" function

 GroupName
 string
 XYZ group name (maximum size = 250)

 FileName
 string
 Trajectory file name (maximum size = 250)

 Velocity
 double
 Trajectory velocity (units / seconds)

 Acceleration
 double
 Trajectory acceleration (units / seconds²)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYZSplineExecution** (int SocketID, char *GroupName, char *FileName, double Velocity, double Acceleration)

Input parameters

SocketID int Socket identifier got from "TCP_ConnectToServer" function

GroupName char * XYZ group name

FileName char * Trajectory file name (maximum size = 250)

Velocity double Trajectory velocity (units / seconds)

Acceleration double Trajectory acceleration (units / seconds²)

Output parameters

None

Return

Function error code

\"C''\L BASIC

Prototype

Long **XYZSplineExecution** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String, ByVal Velocity As Double, ByVal Acceleration As Double)

Input parameters

 SocketID
 Long
 Socket identifier got from "TCP_ConnectToServer" function

 GroupName
 String
 XYZ group name

 FileName
 String
 Trajectory file name (maximum size = 250)

 Velocity
 Double
 Trajectory velocity (units / seconds)

 Acceleration
 Double
 Trajectory acceleration (units / seconds²)

Output parameters

None

Return

MATLAB

Prototype

int32 **XYZSplineExecution** (int32 SocketID, cstring GroupName, cstring FileName, double Velocity, double Acceleration)

Input parameters

Return

Function error code

PYTHON

Prototype

integer **XYZSplineExecution** (integer SocketID, string GroupName, string FileName, double Velocity, double Acceleration)

Input parameters

Return

2.7.3.3. XYZSplineParametersGet

NAME

XYZSplineParametersGet – Returns the Spline trajectory parameters.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a XYZ group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the trajectory type (Spline): ERR_NOT_ALLOWED_ACTION (-22)
- Valid output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the XYZ Spline trajectory parameters (trajectory name, trajectory velocity, trajectory acceleration, current executing element number) of the current executed XYZ Spline trajectory.

For a more thorough description of the Spline trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Spline Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE CHAR (-13)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

XYZSplineParametersGet \$SocketID \$GroupName FileName Velocity Acceleration ElementNumber

Input parameters

Output parameters

FileName string Executing trajectory file name (maximum size = 250)

Velocity double Trajectory velocity (units / seconds)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **XYZSplineParametersGet** (int SocketID, char *GroupName, char * FileName, double * Velocity, double * Acceleration, int * ElementNumber)

Input parameters

Output parameters

FileName......char *Executing trajectory file name (maximum size = 250)

ElementNumberint *.....Current executing element number

Return

Function error code

\"C'' \L BASIC

Prototype

Long **XYZSplineParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String, Velocity As Double, Acceleration As Double, ElementNumber As Integer)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, FileName, Velocity, Acceleration, ElementNumber] **XYZSplineParametersGet** (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype
[Error, FileName, Velocity, Acceleration, ElementNumber] XYZSplineParametersGet (integer SocketID, string GroupName)

Input	parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
GroupName	string	XYZ Group name

Return

Error	integer	Function error code
	•	Executing trajectory file name (maximum size = 250)
	_	Trajectory velocity (units / seconds)
•		Trajectory acceleration (units / seconds²)
		Current executing element number

2.7.3.4. XYZSplineVerification

NAME

XYZSplineVerification – Verifies a XYZ Spline trajectory data file.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be an XYZ group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the base velocity value (must be null) : ERR_BASE_VELOCITY (-48)
- Check the trajectory file name length: ERR_STRING_TOO_LONG (-3)
- Check the trajectory file existence and the file format: ERR READ FILE (-61)
- Check the trajectory (number of elements > 0) : ERR_TRAJ_EMPTY (-66)
- Check trajectory element types in file: ERR_WRONG_TYPE_DOUBLE (-14)

-

DESCRIPTION

This function verifies the possible execution of an XYZ Spline trajectory. The results of the verification can be gathered with the "XYZSplineVerificationResultGet" function. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR_TRAJ_INITIALIZATION (-72) is returned.

This function can be executed at any time and is independent from the trajectory execution. This function performs the following:

- ✓ Checks the trajectory file for data coherence.
- ✓ Calculates the trajectory limits, which are: the required travel per positioner, the maximum possible trajectory velocity and the maximum possible trajectory acceleration. This function helps define the parameters for the trajectory execution.
- ✓ If all is OK, it returns "SUCCESS" (0). Otherwise, it returns a corresponding error.

NOTE:

The "XYZSplineVerification" function is independent from the "XYZSplineExecution" function. So users don't need to execute this function before executing a Spline trajectory. However, it is recommended to do that.

For a more thorough description of the Spline trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Spline Trajectories.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_READ_FILE (-61)

ERR_STRING_TOO_LONG (-3)

ERR_TRAJ_EMPTY (-66)

ERR TRAJ INITIALIZATION (-72)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

XYZSplineVerification \$SocketID \$GroupName \$FileName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int XYZSplineVerification (int SocketID, char *GroupName, char *FileName)

Input parameters

Output parameters

None

Return

Function error code

VICTIAL BASIC

Prototype

Long **XYZSplineVerification** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String)

Input parameters

FileName......StringTrajectory file name (maximum size = 250)

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 XYZSplineVerification (int32 SocketID, cstring GroupName, cstring FileName)

Input parameters

Return

PYTHON

2

Prototype

integer XYZSplineVerification (integer SocketID, string GroupName, string FileName)

Input parameters

Roturn

2.7.3.5. XYZSplineVerificationResultGet

NAME

XYZSplineVerificationResultGet – Returns the results of the previous "**XYZSplineVerification**" function.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a XYZ group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner name length: ERR_STRING_TOO_LONG (-3)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the last XYZ Spline verification (must be done): ERR_NOT_ALLOWED_ACTION (-22)
- Valid output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the results of the previous "XYZSplineVerification" function, positioner by positioner. The results are the travel requirements (min and max values), the possible maximum velocity and the possible maximum acceleration.

If no verification has be done then the ERR_NOT_ALLOWED_ACTION (-22) error is returned.

For a more thorough description of the XYZ Spline trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / Spline Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_STRING_TOO_LONG (-3)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13),

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

XYZSplineVerificationResultGet \$SocketID \$PositionerName FileName MinimumPosition MaximumPosition MaximumVelocity MaximumAcceleration

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
PositionerName	string	XYZ positioner name (maximum size = 250)

Output parameters

FileName	string	Examined trajectory file name (maximum size = 250)
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	
MaximumVelocity	double	

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int XYZSplineVerificationResultGet (int SocketID, char * PositionerName, char * FileName, double * MinimumPosition, double * MaximumPosition, double * MaximumVelocity, double * MaximumAcceleration)

PositionerName......char *XYZ positioner name

MinimumPositiondouble *Minimum position (units)

MaximumPosition......double *Maximum position (units)

MaximumAcceleration double * Maximum trajectory acceleration (units / seconds²)

Function error code

"C'' \L BASIC

Prototype

Long XYZSplineVerificationResultGet (ByVal SocketID As Long, ByVal PositionerName As String, ByVal FileName As String, MinimumPosition As Double, MaximumPosition As Double, MaximumVelocity As Double, MaximumAcceleration As Double)

Input parameters

Socket identifier got from "TCP_ConnectToServer" function PositionerName......StringXYZ positioner name

Output parameters

FileName..........String........Examined trajectory file name (maximum size = 250)

Minimum Position Double Minimum position (units)

Function error code

MATLAB

[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration] **XYZSplineVerificationResultGet** (int32 SocketID, cstring PositionerName)

Socket identifier got from "TCP_ConnectToServer" function PositionerName......cstringXYZ positioner name

Return

Error.....Function error code FileName....... cstring Examined trajectory file name (maximum size = 250)

Minimum PositiondoubleMinimum position (units)

MaximumVelocitydoubleTrajectory trajectory velocity (units / seconds)

PYTHON

Prototype
[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration]

XYZSplineVerificationResultGet (integer SocketID, string PositionerName)

	_	Socket identifier got from "TCP_ConnectToServer" functionXYZ positioner name
Return		
Error	integer	Function error code
FileName	string	Examined trajectory file name (maximum size = 250)
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	
MaximumVelocity	double	Trajectory velocity (units / seconds)
•		Trajectory acceleration (units / seconds²)

2.7.4. Configuration files

Example of the definition of an XYZ group (named "XYZ") in the system.ini file. The XYZ gour is buildby three positioners named "X", "Y" and "Z". The positioner "X" uses the parameters of "MYSTAGE1" from the stages.ini file and is connected to the plug 1 of the XPS controller. The HomeSearchSequence is "Together", and an XYZ mapping is used.

System.ini file:

[GROUPS] XYZInUse = XYZ[XYZ]; XYZ group configuration PositionerInUse = X, Y, ZInitializationAndHomeSearchSequence = Together ; Together or XThenYThenZ ;--- Mapping XYZ XMappingFileName = MatriceX.txt XMappingXLineNumber = 5XMappingYColumnNumber = 3XMappingZDimNumber = 3XMappingMaxPositionError = 2; must be same unit as positioner YMappingFileName = MatriceY.txt YMappingXLineNumber = 5YMappingYColumnNumber = 3YMappingZDimNumber = 3YMappingMaxPositionError = 2; must be same unit as positioner ZMappingFileName = MatriceZ.txt ZMappingXLineNumber = 5ZMappingYColumnNumber = 3ZMappingZDimNumber = 3ZMappingMaxPositionError = 2 ; must be same unit as positioner [XYZ.X] PlugNumber = 1StageName = MYSTAGE1*X positioner configuration => See § "Positioner : Configuration files"* [XYZ.Y] PlugNumbere = 2StageName = MYSTAGE2*X positioner configuration => See § "Positioner : Configuration files"* [XYZ.Z] PlugNumber = 3StageName = MYSTAGE3*X positioner configuration => See § "Positioner : Configuration files"*

Stages.ini file:

[MYSTAGE1]

 $\textit{MYSTAGE1 configuration} => \textit{See} \ \S \ \textit{``Positioner: Configuration files''}$

[MYSTAGE2]

MYSTAGE2 configuration => See § "Positioner: Configuration files"

[MYSTAGE3]

MYSTAGE3 configuration => See § "Positioner: Configuration files"

2.8. MultipleAxes group

2.8.1. Description

A MultipleAxes group is a n-positioner(s) object, where n can be any number from one to eight (N $\max = 8$). It includes the PVT trajectory.

2.8.2. State diagram

Called function :

- (a) GroupInitialize
- (b) GroupHomeSearch
- (c) GroupMoveAbsolute(d) GroupMoveRelative
- (e) XYLineArcExecution
- (f) GroupMotionDisable
- (g) GroupMotionEnable
- (h) GroupMoveAbort
- (i) GroupKill or KillAll
- (j) GroupJogModeEnable
- (k) GroupJogModeDisable
- (I) GroupAnalogTrackingModeEnable
- (m) GroupAnalogTrackingModeDisable
- (n) GroupInitializeWithEncoderCalibration
- (o) GroupReferencingStart
- $(\textbf{p}) \ Group Referencing Stop$
- (q) PositionerAccelerationAutoScaling
- (r) PositionerCorrectorAutoTuning

2.8.3. Specific function description

2.8.3.1. MultipleAxesPVTExecution

NAME

MultipleAxesPVTExecution – Executes a PVT trajectory.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Group state must be "READY": ERR_NOT_ALLOWED_ACTION (-22)
- Check backlash (must not be enabled): ERR_NOT_ALLOWED_BACKLASH (-46)
- Check the base velocity value (must be null) : ERR_BASE_VELOCITY (-48)
- Check the group: ERR_POSITIONER_NAME (-18)
- Check the group type (must be an XYZ group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check the input value (Number of executions > 0): ERR_PARAMETER_OUT_OF_RANGE (-17)
- Check the trajectory file name length: ERR_STRING_TOO_LONG (-3)
- Check the trajectory file existence or file reading: ERR_READ_FILE (-61)
- Check the message queue filling: ERR MSG OUEUE (-71)

DESCRIPTION

This function executes a PVT (Position Velocity Time) trajectory. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR_TRAJ_INITIALIZATION (-72) is returned.

Before a trajectory execution, it is recommended to check its possible execution using the "MultipleAxesPVTVerification" and "MultipleAxesPVTVerificationResultGet" functions.

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / PVT Trajectories.

NOTE:

In case of a ERR_GROUP_MOTION_DONE_TIMEOUT (-33) error, a ERR_FOLLOWING_ERROR (-25) error or ERR_SLAVE (-44) error, the group state becomes DISABLE. To help you to know what is the error source, check the positioner errors, the hardware status and the driver status.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR_FOLLOWING_ERROR (-25)

ERR_GROUP_MOTION_DONE_TIMEOUT (-33)

ERR_IN_INITIALIZATION (-21)

ERR_MSG_QUEUE (-71)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_NOT_ALLOWED_BACKLASH (-46)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR POSITIONER NAME (-18)

ERR_READ_FILE (-61)

ERR SLAVE (-44)

ERR_STRING_TOO_LONG (-3)

ERR_TRAJ_INITIALIZATION (-72)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTExecution \$SocketID \$GroupName \$TrajectoryFileName \$ExecutionNumber

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

 $int \ \textbf{MultipleAxesPVTExecution} \ (int \ SocketID, \ char \ *GroupName \ , \ char \ *TrajectoryFileName, \ int \ ExecutionNumber)$

Input parameters

Output parameters

None

Return

Function error code

\"C''\AL BASIC

Prototype

Long **MultipleAxesPVTExecution** (ByVal SocketID As Long, ByVal GroupName As String, ByVal TrajectoryFileName As String, ByVal ExecutionNumber As Long)

 $Input\ parameters$

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 **MultipleAxesPVTExecution** (int32 SocketID, cstring GroupName, cstring TrajectoryFileName, int32 ExecutionNumber)

Input parameters

GroupName......MultipleAxes group name

TrajectoryFileName......cstring......Trajectory file name (maximum size = 250)

ExecutionNumberint32......Number of trajectory executions

Return

Function error code

ExecutionNumber)

PYTHON

Prototype integer MultipleAxesPVTExecution (integer SocketID, string GroupName, string TrajectoryFileName, integer

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

TrajectoryFileName string Trajectory file name (maximum size = 250)

ExecutionNumberintegerNumber of trajectory executions

Return

Function error code

2.8.3.2. MultipleAxesPVTParametersGet

NAME

 $\label{eq:multipleAxesPVTParametersGet} \textbf{MultipleAxesPVTParameters} \textbf{C} - \textbf{Returns the PVT trajectory parameters}.$

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a MultipleAxes group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the trajectory type (PVT): ERR_NOT_ALLOWED_ACTION (-22)
- Valid output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function returns the PVT trajectory parameters (trajectory name and current executing element number) of the current executed PVT trajectory.

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / PVT Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR WRONG TYPE INT (-15)

SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTParametersGet \$SocketID \$GroupName FileName ElementNumber

Input parameters

Output parameters

FileName......string......Executing trajectory file name (maximum size = 250)

ElementNumber......Current executing element number

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **MultipleAxesPVTParametersGet** (int SocketID, char *GroupName, char * FileName, int * ElementNumber)

Input parameters

Output parameters

ElementNumberint *.....Current executing element number

Roturn

Function error code

\"C''\AL BASIC

Prototype

Long **MultipleAxesPVTParametersGet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String, ElementNumber As Integer)

Input parameters

Output parameters

Return

Function error code

MATLAB

Prototype

[Error, FileName, ElementNumber] MultipleAxesPVTParametersGet (int32 SocketID, cstring GroupName)

Input parameters

Return

Error int32 Function error code

FileName......cstring......Executing trajectory file name (maximum size = 250)

ElementNumberint32Current executing element number

PYTHON

Prototype

[Error, FileName, ElementNumber] MultipleAxesPVTParametersGet (integer SocketID, string GroupName)

Input parameters

Return

Error Function error code

FileName.....string......Executing trajectory file name (maximum size = 250)

2.8.3.3. MultipleAxesPVTPulseOutputGet

NAME

MultipleAxesPVTPulseOutputGet – Returns the configuration of pulse generation on PVT trajectory.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a positioner) : ERR_POSITIONER_NAME (-18)
- Check the group type (must be a MultipleAxes group): ERR_WRONG_OBJECT_TYPE (-8)
- Valid output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the last configuration of pulse generation on PVT trajectory.

The pulse output configuration is defined by a start element, an end element, and a time interval in seconds.

Example

One pulse will be generated every 10 ms between the start of the 3rd element and the end of the 5th element.

Start element= 3

End element = 5

Time interval = 0.01 seconds

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, sections named Trajectories / PVT Trajectories and Ouput triggers.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTPulseOutputGet \$SocketID \$GroupName StartElement EndElement TimeInterval

Input parameters

Output parameters

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **MultipleAxesPVTPulseOutputGet** (int SocketID, char *GroupName, int * StartElement, int * EndElement, double * TimeInterval)

Input parameters

Output parameters

Return

Function error code

VICTIAL BASIC

Prototype

Long **MultipleAxesPVTPulseOutputGet** (ByVal SocketID As Long, ByVal GroupName As String, StartElement As Long, EndElement As Long, TimeInterval As Double)

Input parameters

Output parameters

StartElement.......Long......Start Element number
EndElement.....Long.....End Element number
TimeInterval.....Double....Time interval (seconds)

Return

Function error code

MATLAB

Prototype

[Error, StartElement, EndElement, TimeInterval] **MultipleAxesPVTPulseOutputGet** (int32 SocketID, cstring GroupName)

Input parameters

Return

PYTHON

Prototype [Error, StartElemer GroupName)	nt, EndElement, Time	eInterval] MultipleAxesPVTPulseOutputGet (integer SocketID, string
	C	Socket identifier got from "TCP_ConnectToServer" functionMultipleAxes Group name
Return		
Error	integer	Function error code
StartElement	integer	Start Element number
EndElement	integer	End Element number

TimeInterval.......doubleTime interval (seconds)

2.8.3.4. MultipleAxesPVTPulseOutputSet

NAME

MultipleAxesPVTPulseOutputSet – Sets the configuration of pulse generation on PVT trajectory.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group (must not be a positioner) : ERR_POSITIONER_NAME (-18)
- Check the group type (must be a MultipleAxes group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the pulse generation must not be in progress : ERR_NOT_ALLOWED_ACTION (-22)
- Valid input parameter type: ERR_WRONG_TYPE_DOUBLE (-14), ERR_WRONG_TYPE_INT (-15)

DESCRIPTION

This function configures and activates the pulse generation on PVT trajectory. The pulse generation is defined by a start element, an end element, and a time interval in seconds. If a pulse generation is already activated on the selected PVT trajectory then this function returns the ERR NOT ALLOWED ACTION error.

Please note, that the pulse output settings are automatically removed when the trajectory is over. Hence, with the execution of every new trajectory, it is also required to define the pulse output settings again.

This capability allows output of pulses at constant time intervals on a PVT trajectory. The pulses are generated between a first and a last trajectory element. The minimum possible time interval is $100 \, \mu s$.

Example:

MultipleAxesGroupPVTPulseOutputSet (Group1, 3, 5, 0.01)

One pulse will be generated every 10 ms between the start of the 3rd element and the end of the 5th element.

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, sections named Trajectories / PVT Trajectories and Ouput triggers.

ERROR CODES

ERR FATAL INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14)

ERR WRONG TYPE INT (-15)

SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTPulseOutputSet \$SocketID \$GroupName \$StartElement \$EndElement \$TimeInterval

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	•	XY Group name (maximum size = 250)
StartElement	integer	Start Element number
EndElement	integer	End Element number
TimeInterval	double	Time interval (seconds)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **MultipleAxesPVTPulseOutputSet** (int SocketID, char *GroupName, int StartElement, int EndElement, double TimeInterval)

Input parameters

Output parameters

None

Return

Function error code

\"C''\1L BASIC

Prototype

Long **MultipleAxesPVTPulseOutputSet** (ByVal SocketID As Long, ByVal GroupName As String, ByVal StartElement As Long, ByVal EndElement As Long, ByVal TimeInterval As Double)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **MultipleAxesPVTPulseOutputSet** (int32 SocketID, cstring GroupName, int32 StartElement, int32 EndElement, double TimeInterval)

Input parameters

SocketID int32 Socket identifier got from "TCP_ConnectToServer" function
GroupName cstring XY Group name
StartElement int32 Start Element number
EndElement int32 End Element number
TimeInterval double Time interval (seconds)

Return

PYTHON

Prototype
[Error] MultipleAxesPVTPulseOutputSet (integer SocketID, string GroupName, integer StartElement, integer EndElement, double TimeInterval)

Input	parameters
IIIPUU	parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	•	XY Group name
StartElement	integer	Start Element number
	•	End Element number
		Time interval (seconds)
		` '

Error.....Function error code

2.8.3.5. MultipleAxesPVTVerification

NAME

MultipleAxesPVTVerification – Verifies a PVT trajectory data file.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a MultipleAxes group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the base velocity value (must be null) : ERR_BASE_VELOCITY (-48)
- Check the trajectory file name length: ERR_STRING_TOO_LONG (-3)
- Check the trajectory file existence and the file format: ERR_READ_FILE (-61)
- Check the trajectory (number of elements > 0) : ERR_TRAJ_EMPTY (-66)
- Check trajectory element types in file: ERR_WRONG_TYPE_DOUBLE (-14)
- Check the end output velocity (must be null): ERR_TRAJ_FINAL_VELOCITY (-70)
- Check the velocity (Minimum Velocity <= Velocity <= Maximum Velocity): ERR_TRAJ_VEL_LIMIT (-68)
- Check the acceleration (Minimum acc. <= acceleration <= Maximum acc.): ERR_TRAJ_ACC_LIMIT (-69)
- Check the delta time (Delta Time > 0): ERR_TRAJ_TIME (-75)

DESCRIPTION

This function verifies the possible execution of a PVT trajectory. The results of the verification can be gathered with the "MultipleAxesPVTVerificationResultGet" function. The trajectory file must be stored in the folder "\ADMIN\Public\Trajectory" of the XPS controller. If the trajectory can not be initialized (message queue or task error) then the ERR TRAJ INITIALIZATION (-72) is returned.

This function can be executed at any time and is independent from the trajectory execution. This function performs the following:

- ✓ Checks the trajectory file for data coherence.
- ✓ Calculates the trajectory limits, which are: the required travel per positioner, the maximum possible trajectory velocity and the maximum possible trajectory acceleration. This function helps define the parameters for the trajectory execution.
- ✓ If all is OK, it returns "SUCCESS" (0). Otherwise, it returns a corresponding error.

NOTE:

The "MultipleAxesPVTVerification" function is independent from the "MultipleAxesPVTExecution" function. So users don't need to execute this function before executing a PVT trajectory. However, it is recommended to do that.

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / PVT Trajectories.

ERROR CODES

ERR_BASE_VELOCITY (-48)

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_POSITIONER_NAME (-18)

ERR_READ_FILE (-61)

ERR_STRING_TOO_LONG (-3)

ERR TRAJ EMPTY (-66)

ERR_TRAJ_ACC_LIMIT (-69)

ERR_TRAJ_FINAL_VELOCITY (-70)

ERR_TRAJ_INITIALIZATION (-72)

ERR_TRAJ_TIME (-75)

ERR_TRAJ_VEL_LIMIT (-68)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_DOUBLE (-14) SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTVerification \$SocketID \$GroupName \$FileName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int MultipleAxesPVTVerification (int SocketID, char *GroupName, char *FileName)

Input parameters

Output parameters

None

Return

Function error code

VIELLAL BASIC

Prototype

Long **MultipleAxesPVTVerification** (ByVal SocketID As Long, ByVal GroupName As String, ByVal FileName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

int32 MultipleAxesPVTVerification (int32 SocketID, cstring GroupName, cstring FileName)

Input parameters

Return

Function error code

PYTHON

2

Prototype

integer MultipleAxesPVTVerification (integer SocketID, string GroupName, string FileName)

Input parameters

Return

Function error code

2.8.3.6. MultipleAxesPVTVerificationResultGet

NAME

MultipleAxesPVTVerificationResultGet – Returns the results of "MultipleAxesPVTVerification" function.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of command parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check the group type (must be a MultipleAxes group): ERR_WRONG_OBJECT_TYPE (-8)
- Check the positioner name length: ERR_STRING_TOO_LONG (-3)
- Check the positioner name: ERR_POSITIONER_NAME (-18)
- Check the last MultipleAxes PVT verification (must be done): ERR_NOT_ALLOWED_ACTION (-22)
- Valid output parameter type: ERR_WRONG_TYPE_CHAR (-13), ERR_WRONG_TYPE_DOUBLE (-14)

DESCRIPTION

This function returns the results of the previous "MultipleAxesPVTVerification" function, positioner by positioner. The results are the travel requirements (min and max values), the possible maximum velocity and the possible maximum acceleration.

If no verification has be done then the ERR NOT ALLOWED ACTION (-22) error is returned.

For a more thorough description of the PVT trajectory capability, please refer to the XPS Motion Tutorial, section named Trajectories / PVT Trajectories.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_POSITIONER_NAME (-18)

ERR STRING TOO LONG (-3)

ERR WRONG FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13),

ERR_WRONG_TYPE_DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

MultipleAxesPVTVerificationResultGet \$SocketID \$PositionerName FileName MinimumPosition MaximumPosition MaximumVelocity MaximumAcceleration

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
PositionerName	string	MultipleAxes positioner name (maximum size = 250)

Output parameters

FileName	string	Examined trajectory file name (maximum size = 250)	J)
MinimumPosition	double	Minimum position (units)	

MaximumPosition......doubleMaximum position (units)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **MultipleAxesPVTVerificationResultGet** (int SocketID, char *PositionerName, char * FileName, double * MinimumPosition, double * MaximumPosition, double * MaximumVelocity, double * MaximumAcceleration)

Input parameters

Output parameters

FileName......char *Examined trajectory file name (maximum size = 250)

MinimumPositiondouble *Minimum position (units)

MaximumPosition......double *Maximum position (units)

Maximum Velocitydouble *Maximum trajectory velocity (units / seconds)

MaximumAccelerationdouble *Maximum trajectory acceleration (units / seconds²)

Return

Function error code

\"C''\L BASIC

Prototype

Long **MultipleAxesPVTVerificationResultGet** (ByVal SocketID As Long, ByVal PositionerName As String, ByVal FileName As String, MinimumPosition As Double, MaximumPosition As Double, MaximumVelocity As Double, MaximumAcceleration As Double)

Input parameters

Output parameters

FileName......StringExamined trajectory file name (maximum size = 250)

Minimum Position Double Minimum position (units)

Maximum Position Double Maximum position (units)

Waximum osition Doublewiaximum position (units)

Return

Function error code

MATLAB

Prototype

[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration] **MultipleAxesPVTVerificationResultGet** (int32 SocketID, cstring PositionerName)

Input parameters

Return

Minimum PositiondoubleMinimum position (units)

MaximumVelocitydoubleTrajectory trajectory velocity (units / seconds)

PYTHON

Prototype
[Error, FileName, MinimumPosition, MaximumPosition, MaximumVelocity, MaximumAcceleration]

MultipleAxesPVTVerificationResultGet (integer SocketID, string PositionerName)

	•	Socket identifier got from "TCP_ConnectToServer" functionMultipleAxes positioner name
Return		
Error	integer	Function error code
FileName	string	Examined trajectory file name (maximum size = 250)
MinimumPosition	double	Minimum position (units)
MaximumPosition	double	Maximum position (units)
MaximumVelocity	double	Trajectory velocity (units / seconds)
MaximumAcceleration.	double	Trajectory acceleration (units / seconds²)

2.8.4. Configuration files

Example of the definition of a MultipleAxes group (named "MULTI") in the system.ini file. The group MULTI is build by two positioners named "ONE" and "TWO". The positioner "ONE" uses the parameters of "MYSTAGE1" from the stages.ini file and is connected to the plug 1 of the XPS controller. The HomeSearchSequence is "Together".

System.ini file:

[GROUPS]

MultipleAxesInUse = MULTI

[MULTI] ; AXIS MultipleAxes group configuration

PositionerInUse = ONE, TWO

PositionerNumber = 2

InitializationAndHomeSearchSequence = Together ; Together or OneAfterAnother

[MULTI.ONE]

PLugNumber = 1

StageName = MYSTAGE1

STAGE configuration => See § "Positioner: Configurationfiles"

[MULTI.TWO]

PLugNumber = 2

StageName = MYSTAGE2

STAGE configuration => See § "Positioner: Configuration files"

Stages.ini file:

[MYSTAGE1]

MYSTAGE1 configuration => See § "Positioner: Configuration files"

[MYSTAGE2]

MYSTAGE2 configuration => See § "Positioner: Configuration files"

2.9. Analog and digital I/O

2.9.1. GPIO name list

2.9.1.1. Digital inputs

GPIO1.DI	Digital Input of the I/O board connector # 1 (8 bits)
GPIO2.DI	Digital Input of the I/O board connector # 2 (6 bits)
GPIO3.DI	Digital Input of the I/O board connector # 3 (6 bits)
GPIO4.DI	Digital Input of the I/O board connector # 4 (16 bits)

2.9.1.2. Digital outputs

GPIO1.DO	Digital Output of the I/O board connector # 1 (8 bits)
GPIO3.DO	Digital Output of the I/O board connector # 3 (6 bits)
GPIO4.DO	Digital Output of the I/O board connector # 4 (16 bits)

2.9.1.3. Analog inputs

GPIO2.ADC1	Analog Input # 1 of the I/O board connector # 2
GPIO2.ADC2	Analog Input # 2 of the I/O board connector # 2
GPIO2.ADC3	Analog Input # 3 of the I/O board connector # 2
GPIO2.ADC4	Analog Input # 4 of the I/O board connector # 2

2.9.1.4. Analog outputs

GPIO2.DAC1	Analog Output # 1 of the I/O board connector # 2
GPIO2.DAC2	Analog Output # 2 of the I/O board connector # 2
GPIO2.DAC3	Analog Output # 3 of the I/O board connector # 2
GPIO2.DAC4	Analog Output # 4 of the I/O board connector # 2

2.9.2. Function description

2.9.2.1. GPIOAnalogGainGet

NAME

GPIOAnalogGainGet – Gets the gain for one or several analog inputs (ADC)

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR WRONG FORMAT (-7)
- Number of parameters: ERR WRONG PARAMETERS NUMBER (-9)
- Output parameter type: ERR WRONG TYPE INT (-15)
- Check board: ERR WRONG OBJECT TYPE (-8)
- GPIO name (ADC): ERR WRONG OBJECT TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Gets the gain value for one or several analog inputs. Please refer to the appendix *B.5 Analog I/O* of the XPS Motion Tutorial for further information about the ADC gain.

The gain value must be 1, 2, 4 or 8.

The maximum number of INT boards, that can be plugged inside the XPS controller, is setting to 2. So, you can increase the number of analog outputs: 4 to 8 ADC.

CAUTION:

The programmable GPIO's are not available anymore since hardware E4224.

This version number can be checked in the XPS web site. Choose the "Administrator" connection and select the "CONTROLLER CONFIGURATION" menu. Next, click on the "General" sub-menu ... the version numbers are displayed in the "Internal hardware" informations.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR NOT ALLOWED ACTION (-22)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

GPIOAnalogGainGet \$SocketID \$GPIOName AnalogGainValue...

Input parameters

Output parameters

AnalogGainValue integervalue of analog input gain

Return

TCL error (0 = success or 1 = syntax error) or Function error code

Note: \$GPIOName and AnalogGainValue pair can be repeted to get several channels.

C / C++

Prototype

int GPIOAnalogGainGet (int SocketID, int NbElements, char* GPIONames, double* AnalogGainValues)

Input parameters

Output parameters

AnalogGainValues.....int *....array of analog input gain

Return

Function error code

Note: GPIONames and Analog Gain Values must have array size in accordance to NbElements to avoid array

overrun.

VICTIAL BASIC

Prototype

Long **GPIOAnalogGainGet** (ByVal SocketID As Long, ByVal NbElements As Long, GPIONameList As String, AnalogGainValueArray As Long)

Input parameters

GPIONameListString.....List of analog input names – separator is semicolon

Output parameters

AnalogGainValueArrayLongarray of analog input gain

Return

Function error code

Note: *GPIONameList* and *AnalogGainValueArray* must have array size in accordance to *NbElements* to avoid array overrun.

MATLAB

Prototype

[Error, AnalogGainValues] GPIOAnalogGainGet (int32 SocketID, cstring GPIONames)

Input parameters

Return

Errorint32..........Function error code
AnalogGainValues........int32Ptrarray of analog input gain

Note: Analog Gain Values must have the same elements number as that of GPIONames.

PYTHON

Prototype

[Error, AnalogGainValues] GPIOAnalogGainGet (integer SocketID, string list GPIONames)

Input parameters

XPS-C8 Controller

Firmware

Return

Error......Function error code
AnalogGainValues......integer listlist of analog input gain values

 $\textbf{Note}: \quad \textit{Analog Gain Values} \ \, \text{have the same elements number as } \ \, \text{that of } \textit{GPIONames}.$

2.9.2.2. GPIOAnalogGainSet

NAME

GPIOAnalogGainSet – Sets a gain for one or several analog inputs (ADC)

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR WRONG FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check board: ERR_WRONG_OBJECT_TYPE (-8)
- GPIO name (ADC): ERR_WRONG_OBJECT_TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)
- Check outpout value (1, 2, 4 or 8): ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

Sets a gain value for one or several analog inputs.

The gain value can be: 1, 2, 4 or 8

If the conversion of the gain value to bits failed then the ERR_NOT_ALLOWED_ACTION is returned.

The maximum number of INT boards, that can be plugged inside the XPS controller, is setting to 2. So, you can increase the number of analog outputs: 4 to 8 ADC.

CAUTION:

The programmable GPIO's are not available anymore since hardware E4224.

This version number can be checked in the XPS web site. Choose the "Administrator" connection and select the "CONTROLLER CONFIGURATION" menu. Next, click on the "General" sub-menu ... the version numbers are displayed in the "Internal hardware" informations.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE INT (-15)

SUCCESS (0): no error

TCL

Prototype

GPIOAnalogGainSet \$SocketID \$GPIOName \$AnalogGainValue...

Input parameters

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

Note: \$GPIOName and \$AnalogGainValue pair can be repeted to set several channels.

C / C++

Prototype

int GPIOAnalogGainSet (int SocketID, int NbElements, char* GPIONames, double* AnalogGainValues)

Input parameters

NbElements.....number of analog GPIO to set.

GPIONamesList of analog input names – separator is semicolon

AnalogGainValues.....int *arrays of analog input gain

Output parameters

None

Return

Function error code

Note: GPIONames and Analog Gain Values must have elements number in accordance to NbElements to avoid

array overrun.

\"C''\L BASIC

Prototype

Long **GPIOAnalogGainSet** (ByVal SocketID As Long, ByVal NbElements As Long, GPIONames As String, AnalogGainValues As Long)

Input parameters

GPIONamesString.....List of analog input names – separator is semicolon

AnalogGainValues......Long array.....array of analog input gain

Output parameters

None

Return

Function error code

Note: GPIONames and Analog Gain Values must have elements number in accordance to NbElements to avoid

array overrun.

MATLAB

Prototype

[Error] GPIOAnalogGainSet (int32 SocketID, cstring GPIONames, int32 array AnalogGainValues)

Input parameters

Return

Error......Function error code

Return

Function error

XPS-C8 Controller

Firmware

Note: Analog Gain Values must have the same elements number as that of GPIONames.

PYTHON

Prototype

[Error] GPIOAnalogGainSet (integer SocketID, string list GPIONames, integer list AnalogGainValues)

Input parameters

Return

Error.....Function error code

Note: Analog Gain Values must have the same elements number as that of GPIONameList.

2.9.2.3. GPIOAnalogGet

NAME

GPIOAnalogGet – Read one or several analog GPIO (DAC or ADC)

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- GPIO name (ADC or DAC): ERR_WRONG_OBJECT_TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Read one or several analog IO and returns the value(s) in an array.

The GPIO must be one or several analog inputs (ADC) and/or analog outputs (DAC) of GPIO2 connector. See analog input list §2.9.1.3 and analog output list §2.9.1.4

NOTE

The GPIO2 connector is present on the INT board inside the controller. The maximum number of INT boards, that can be plugged inside the XPS controller, is setting to 2. So, you can increase the number of analog IOs: 4 to 8 ADC and 4 to 8 DAC.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_NOT_ALLOWED_ACTION (-22)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR WRONG TYPE DOUBLE (-14)

SUCCESS (0): no error

TCL

Prototype

GPIOAnalogGet \$SocketID \$GPIOName AnalogValue...

Input parameters

Output parameters

AnalogValuefloating number.... value of analog input

Return

TCL error (0 = success or 1 = syntax error) or Function error code

Note: \$GPIOName and AnalogValue pair can be repeted to get several channels.

C / C++

Prototype

int GPIOAnalogGet (int SocketID, int NbElements, char* GPIONames, double* AnalogValues)

Input parameters

XPS-C8 Controller

Firmware

Note: GPIONames and Analog Values must have the same elements number as that of NbElements.

\"C''\L BASIC

Long **GPIOAnalogGet** (ByVal SocketID As Long, ByVal NbElements As Long, GPIONames As String, AnalogValues As Long)

Input parameters

Output parameters

Analog Values......Double.....array of analog inputs

Return

Function error code

Note: *GPIONames* and *AnalogValues* must have the same elements number as that of *NbElements*.

MATLAB

Prototype

[Error, AnalogValues] GPIOAnalogGet (int32 SocketID, cstring GPIONames)

Input parameters

Return

Note: Analog Values must have the same elements number as that of GPIONames.

PYTHON

Prototype

[Error, AnalogValues] GPIOAnalogGet (integer SocketID, string list GPIONames)

Input parameters

Return

Error Function error code Analog Values double list list of analog inputs

Note: Analog Values have the same elements number as that of the GPIONames.

2.9.2.4. GPIOAnalogSet

NAME

GPIOAnalogSet – Sets one or several analog output (DAC)

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_DOUBLE (-14)
- Check board: ERR_WRONG_OBJECT_TYPE (-8)
- GPIO name (DAC): ERR_WRONG_OBJECT_TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)
- Check outpout value [-10V..10V]: ERR_PARAMETER_OUT_OF_RANGE (-17)

DESCRIPTION

Sets the analog value for one or several analog outputs (DAC) of GPIO2 connector. See analog output list §2.9.1.4

NOTE:

The GPIO2 connector is present on the INT board inside the controller. The maximum number of INT boards, that can be plugged inside the XPS controller, is setting to 2. So, you can increase the number of analog outputs: 4 to 8 DAC.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_DOUBLE (-14)
SUCCESS (0): no error

TCL

Prototype

GPIOAnalogSet \$SocketID \$GPIOName \$AnalogValue ...

Input parameters

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

Note: \$GPIOName and \$AnalogValue pair can be repeted to set several channels.

C / C++

Prototype

int GPIOAnalogSet (int SocketID, int NbElements, char* GPIONames, double *AnalogValues)

Input parameters

Output parameters

None

Return

Function error

Note: GPIONames and Analog Values must have array size in accordance to NbElements to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GPIOAnalogSet** (ByVal SocketID As Long, ByVal NbElements As Long, GPIONames As String, AnalogValues As Double)

Input parameters

Output parameters

None

Return

Function error

Note: GPIONames and Analog Values must have array size in accordance to NbElements to avoid array overrun.

MATLAB

Prototype

[Error] GPIOAnalogSet (int32 SocketID, cstring GPIONames, double array AnalogValues)

Input parameters

Return

Function error

Note: Analog Values must have the same elements number as that of GPIONames.

PYTHON

Prototype

[Error] GPIOAnalogSet (integer SocketID, string list GPIONames, integer list AnalogValues)

Input parameters

XPS-C8 Controller

Firmware

Return		
Error	integer	Function error code

Note: Analog Values must have the same elements number as that of GPIONames.

2.9.2.5. GPIODigitalGet

NAME

GPIODigitalGet – Read one digital input or output.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_UNSIGNEDINT (-16)
- GPIO name (DI or DO): ERR_WRONG_OBJECT_TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Returns the value of the digital input (DI) or of the digital output (DO). See digital output list §2.9.1.2 and digital input list §2.9.1.1

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_UNSIGNEDINT (-16)

SUCCESS (0): no error

TCL

Prototype

GPIODigitalGet \$SocketID \$GPIOName DigitalValue

Input parameters

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GPIODigitalGet (int SocketID, char* GPIOName, unsigned int* DigitalValue)

Input parameters

Output parameters

Digital Valueunsigned int *......Digital value (DI or DO)

Return

Function error

VISUAL BASIC

Prototype

Long GPIODigitalGet (ByVal SocketID As Long, GPIOName As String, DigitalValue As Integer)

Input parameters

Output parameters

DigitalValue......Digital value (DI or DO)

Return

Function error

MATLAB

Prototype

[Error, DigitalValue] GPIODigitalGet (int32 SocketID, cstring GPIOName)

Input parameters

Return

Function error

DigitalValue......uint16Ptr.....Digital value (DI or DO)

PYTHON

Prototype

[Error, DigitalValue] GPIODigitalGet (integer SocketID, string GPIOName)

Input parameters

Return

Error.....Function error

DigitalValue.....unsigned short *....Digital value (DI or DO)

2.9.2.6. GPIODigitalSet

NAME

GPIODigitalSet – Sets one digital output.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_UNSIGNEDINT (-16)
- GPIO name (DO): ERR_WRONG_OBJECT_TYPE (-8)
- Hardware compatibility or XPS initialization in progress: ERR_NOT_ALLOWED_ACTION (-22)

DESCRIPTION

Sets the value of the selected digital output (DO). See digital output list §2.9.1.2

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_NOT_ALLOWED_ACTION (-22)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_UNSIGNEDINT (-16)
SUCCESS (0): no error

TCL

Prototype

GPIODigitalSet \$SocketID \$GPIOName \$Mask \$DigitalOutputValue

Input parameters

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int **GPIODigitalSet** (int SocketID, char* GPIOName, unsigned short Mask, unsigned short DigitalOutputValue)

Input parameters

Maskunsigned short.....Mask

DigitalOutputValue......unsigned short......Digital output value

Output parameters

None

Return

Function error

\"C''\AL BASIC

Prototype

Long **GPIODigitalSet** (ByVal SocketID As Long, GPIOName As String, ByVal Mask As Integer, ByVal DigitalOutputValue As Integer)

Input parameters

MaskMask

DigitalOutputValue.......Digital output value

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GPIODigitalSet (int32 SocketID, cstring GPIOName, uint16 Mask, uint16 DigitalOutputValue)

Input parameters

Returr

PYTHON

Prototype

[Error] **GPIODigitalSet** (integer SocketID, string GPIOName, unsigned short Mask, unsigned short DigitalOutputValue)

Input parameters

Maskunsigned short.....Mask

DigitalOutputValue......unsigned short......Digital output value

Return

Error.....Function error code

2.10. Gathering

2.10.1. Function description

2.10.1.1. GatheringConfigurationGet

NAME

GatheringConfigurationGet – Returns the current configuration of the internal triggered data gathering.

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_ CHAR (-13)
- Gathering must be configured: ERR GATHERING NOT CONFIGURED (-32)

DESCRIPTION

This function returns the current configuration of the internal triggered data gathering. Use the "GatheringListGet" function to retrieve a complete list of allowed gathering types.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_CONFIGURED (-32)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringConfigurationGet \$SocketID TypeList

TCL error (0 = success or 1 = syntax error) or Function error

C/C++

Prototype

int GatheringConfigurationGet (int SocketID, char * TypeList)

Return

Function error

VICUAL BASIC

Prototype

Long GatheringConfigurationGet (ByVal SocketID As Long, ByVal TypeList As String)

Input parameters

Output parameters

Return

Function error

MATLAB

Prototype

[Error, TypeList] GatheringConfigurationGet (int32 SocketID)

Input parameters

Returi

Error.....Function error

TypeList......cstringList of configured gathering types (separator is semicolon)

PYTHON

Prototype

[Error, TypeList] GatheringConfigurationGet (integer SocketID)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

Return

Error.....Function error

TypeList.....string.....List of configured gathering types (separator is semicolon)

2.10.1.2. GatheringConfigurationSet

NAME

GatheringConfigurationSet – Configures a gathering.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input gathering mnemonic: ERR_MNEMOTYPEGATHERING (-29)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)

DESCRIPTION

Defines one or several type of data gathered during the internal triggered data gathering.

Maximum of 1000000 points can be acquired.

Maximum of 25 data types can be configured in a gathering.

Gathering data types:

PositionerName.CorrectorOutput

PositionerName.CurrentAcceleration

PositionerName.CurrentPosition

PositionerName.CurrentVelocity

PositionerName.FollowingError

PositionerName.SetpointAcceleration

PositionerName.SetpointPosition

PositionerName.SetpointVelocity

PositionerName. Excitation Signal Input

GPIO1.DI

GPIO1.DO

GPIO2.DI

GPIO3.DI

GPIO3.DO

GPIO4.DI GPIO4.DO

GPIO2.ADC1

GPIO2.ADC2

GPIO2.ADC3

GPIO2.ADC4

GPIO2.DAC1

GPIO2.DAC1

GPIO2.DAC3

GPIO2.DAC3

CPUTotalLoadRatio

The "GatheringListGet" function can be used to retrieve a complete list of gathering types.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GATHERING_RUNNING (-43)

ERR_IN_INITIALIZATION (-21)

ERR_MNEMOTYPEGATHERING (-29)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GatheringConfigurationSet \$SocketID \$GatheringType ...

Input parameters

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

Note: \$GatheringType can be repeted to set several gathering types.

C / C++

Prototype

int GatheringConfigurationSet (int SocketID, int NbElements, char * TypeArray)

Input parameters

Output parameters

None

Return

Function error

Note: Gathering Types must have elements number in accordance to NbElements to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GatheringConfigurationSet** (ByVal SocketID As Long, ByVal NbElements As Long, ByVal GatheringTypes As String)

Input parameters

Output parameters

None

Return

Function error

Note: Gathering Types must have elements number in accordance to NbElements to avoid array overrun.

MATLAB

Prototyne

[Error] GatheringConfigurationSet (int32 SocketID, cstring GatheringTypes)

Input parameters

XPS-C8 Controller

Firmware

Return			
Error	int32	.Function error	ſ

Note: Gathering Types can have some elements to set in one time several gathering types.

PYTHON

Prototype

[Error] GatheringConfigurationSet (integer SocketID, string list GatheringTypes)

Input parameters

Return

Error.....Function error

Note: Gathering Types can have some elements to set in one time several gathering types.

2.10.1.3. GatheringCurrentNumberGet

NAME

GatheringCurrentNumberGet - Returns the current and maximum number of gathered data.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_INT (-15)
- Gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)

DESCRIPTION

This function returns the current and maximum number of data gathered during the internal triggered data gathering.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_CONFIGURED (-32)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7) ERR_WRONG_TYPE_INT (-15)

ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GatheringCurrentNumberGet \$SocketID CurrentNumber MaxSamplesNumber

Input parameters

Socket IDSocket identifier got from "TCP_ConnectToServer" function

Output parameters

CurrentNumberintegerCurrent number during acquisition MaxSamplesNumberintegerMaximum number of samples

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringCurrentNumberGet (int SocketID, int * CurrentNumber, int * MaxSamplesNumber)

Input parameters

Output parameters

Return

\"C''\L BASIC

Prototype

Long **GatheringCurrentNumberGet** (ByVal SocketID As Long, CurrentNumber As Long, MaxSamplesNumber As Long)

Input parameters

Output parameters

CurrentNumber Long Current number during acquisition MaxSamplesNumber Long Maximum number of samples

Return

Function error

MATLAB

Prototype

[Error, CurrentNumber, MaxSamplesNumber] GatheringCurrentNumberGet (int32 SocketID)

Input parameters

Returi

Error int32 Function error

PYTHON

Prototype

[Error, CurrentNumber, MaxSamplesNumber] GatheringCurrentNumberGet (integer SocketID)

Input parameters

Return

Error Function error

2.10.1.4. GatheringDataAcquire

NAME

GatheringDataAcquire – Acquires manually only one data.

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)
- Check gathering buffer size: ERR_GATHERING_BUFFER_FULL (-111)

DESCRIPTION

This function allows acquire manually only one data (configured by the "GatheringConfigurationSet" function).

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_BUFFER_FULL (-111)
ERR_GATHERING_NOT_CONFIGURED (-32)
ERR_GATHERING_RUNNING (-43)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

Input parameters

GatheringDataAcquire \$SocketID

n .

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringDataAcquire (int SocketID)

Output parameters
None

Return

\"C'' \L BASIC

Prototype

Long GatheringDataAcquire (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringDataAcquire (int32 SocketID)

Input parameters

Return

Error int32 Function error

PYTHON

Prototype

[Error] GatheringDataAcquire (integer SocketID)

Input parameters

Return

Error.....Function error

2.10.1.5. GatheringDataGet

NAME

GatheringDataGet – Reads a data line from the current gathering buffer.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Check gathering state: ERR_GATHERING_NOT_CONFIGURED (-32)
- Check index number: ERR_PARAMETER_OUT_OF_RANGE (-17)

IndexPoint ≥ 0

IndexPoint < currently gathered data number

DESCRIPTION

This function enables to read a data line from the current gathering buffer. The buffer line number is defined by the index of an acquired point.

The separator is ";" in the returned data line.

A gathering must be configured to use this function, else the ERR_GATHERING_NOT_CONFIGURED (-32) error is returned.

ERROR CODES

ERR FATAL_INIT (-20) ERR_GATHERING_NOT_CONFIGURED (-32) ERR_IN_INITIALIZATION (-21) ERR_PARAMETER_OUT_OF_RANGE (-17) ERR_WRONG_FORMAT (-7) ERR_WRONG_PARAMETERS_NUMBER (-9) ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

GatheringDataGet \$SocketID \$IndexPoint DataBufferLine

Input parameters

Index PointintegerIndex of an acquired data from the current gathering buffer.

Output parameters

DataBufferLinestringString contains values from the current buffer at the selected index.

Return

Error......integer......TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int GatheringDataGet (int SocketID, int IndexPoint, char *DataBufferLine)

		Socket identifier got from "TCP_ConnectToServer" functionIndex of an acquired data from the current gathering buffer.
Output parameters DataBufferLine index.	char *	String contains values from the current buffer at the selected
Return		

VISUAL BASIC

Prototype

Long GatheringDataGet (ByVal SocketID As Long, ByVal IndexPoint As Long, DataBufferLine As String)

MATLAB

Prototype

[Error, DataBufferLine] GatheringDataGet (int32 SocketID, cstring IndexPoint)

PYTHON

Prototype

[Error, DataBufferLine] GatheringDataGet (integer SocketID, string UserName, string Password)

2.10.1.6. GatheringDataMultipleLinesGet

NAME

GatheringDataMultipleLinesGet – Reads several data lines from the current gathering buffer in memory.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Check gathering state: ERR_GATHERING_NOT_CONFIGURED (-32)
- Check index number: ERR_PARAMETER_OUT_OF_RANGE (-17)

IndexPoint ≥ 0 (**Note:** index #0 = line #1) IndexPoint < currently gathered data number

DESCRIPTION

This function enables to read one or several data lines from the current gathering buffer. The buffer line number is defined by the index of an acquired point.

The separator is ";" in the returned data line and the end of each line is carriage return "\n".

A gathering must be configured to use this function, else the ERR_GATHERING_NOT_CONFIGURED (-32) error is returned.

Example of gathering buffer in memory:

index	Data1	Data2	Data3	Data4	Data5
$0 \rightarrow$	1	10	0.1	21	100
$1 \rightarrow$	2	20	0.2	22	102
$2 \rightarrow$	3	30	0.3	23	103
$3 \rightarrow$	4	40	0.4	24	104
5 →	5	50	0.5	25	105

GatheringDataMultipleLinesGet(0, 3, myString)

- => 0 = the start line is #1
- \Rightarrow 3 = the number of lines to read is 3
- => myString = buffer to get the part of buffer (65536 characters maximum)

index	Data1	Data2	Data3	Data4	Data5
$0 \rightarrow$	1	10	0.1	21	100
$1 \rightarrow$	2	20	0.2	22	102
$2 \rightarrow$	3	30	0.3	23	103
3 →	4	40	0.4	24	104
5 →	5	50	0.5	25	105

"myString" result:

1;10;0.1;21;100

2;20;0.2;22;102

3;30;0.3;23;103

GatheringDataMultipleLinesGet(1, 4, myString)

- \Rightarrow 1 = the start line is #2
- => 4 = the number of lines to read is 4
- => myString = buffer to get the part of buffer (65536 characters maximum)

index	Data1	Data2	Data3	Data4	Data5
$0 \rightarrow$	1	10	0.1	21	100
$1 \rightarrow$	2	20	0.2	22	102
$2 \rightarrow$	3	30	0.3	23	103
$3 \rightarrow$	4	40	0.4	24	104
5 →	5	50	0.5	25	105

"myString" result:

2;20;0.2;22;102 3;30;0.3;23;103 4;40;0.4;24;104

5;50;0.5;25;105

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GATHERING_NOT_CONFIGURED (-32)

ERR_IN_INITIALIZATION (-21)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

GatheringDataMultipleLinesGet \$SocketID \$IndexPoint DataBufferLine

Input parameters		
SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer" function
IndexPoint	integer	Index of an acquired data from the current gathering buffer.
NbLines	integer	Number of lines to get.
Output parameters DataBufferLine	string	String contains lines from the current buffer at the selected index.
Return		
Error	integer	TCL error code ($0 = \text{success or } 1 = \text{syntax error}$) or Function error
code		

C / C++

Prototype

Error.....Function error code

int GatheringData	MultipleLinesGet ((int SocketID, int IndexPoint, char *DataBufferLine)
Input parameters		
SocketID	int	Socket identifier gets by the "TCP_ConnectToServer" function
IndexPoint	int	
NbLines	int	Number of lines to get.
Output parameters DataBufferLine	char *	String contains lines from the current buffer at the selected index.
Return		

VISUAL BASIC

Prototype

Long **GatheringDataMultipleLinesGet** (ByVal SocketID As Long, ByVal IndexPoint As Long, DataBufferLine As String)

Input parameters

Output parameters

DataBufferLineString contains lines from the current buffer at the selected index.

Return

Error.......Long......Function error code

MATLAB

Prototype

[Error, DataBufferLine] GatheringDataMultipleLinesGet (int32 SocketID, cstring IndexPoint)

Input parameters

SocketID int32 Socket identifier gets by the "TCP_ConnectToServer" function IndexPoint int32 Index of an acquired data from the current gathering buffer.

NbLines int32 Number of lines to get.

Return

Error int32 Function error code

DataBufferLineString contains lines from the current buffer at the selected index.

PYTHON

Prototype

[Error, DataBufferLine] **GatheringDataMultipleLinesGet** (integer SocketID, string UserName, string Password)

Input parameters

Return

DataBufferLinestringString contains lines from the current buffer at the selected index.

2.10.1.7. GatheringExternalConfigurationGet

NAME

GatheringExternalConfigurationGet – Returns the current configuration of the external triggered data gathering.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_ CHAR (-13)
- Gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)

DESCRIPTION

This function returns the current configuration of the external triggered data gathering.

Use the "GatheringExternalListGet" function to retrieve a complete list of external gathering types.

For a more thorough description of the external data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / External Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_CONFIGURED (-32)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringExternalConfigurationGet \$SocketID TypeList

Input parameters
SocketIDSocket identifier got from "TCP_ConnectToServer" function

Output parameters
TypeListstringList of configured gathering types (separator is semicolon)

Return
TCL error (0 = success or 1 = syntax error) or Function error

C/C++

Prototype

int GatheringExternalConfigurationGet (int SocketID, char * TypeList)

\"C''\L BASIC

Prototype

Long GatheringExternalConfigurationGet (ByVal SocketID As Long, ByVal TypeList As String)

Input parameters

Output parameters

TypeList......String.....List of configured gathering types (separator is semicolon)

Return

Function error

MATLAB

Prototype

[Error, TypeList] GatheringExternalConfigurationGet (int32 SocketID)

Input parameters

Return

TypeList......cstringList of configured gathering types (separator is semicolon)

PYTHON

Prototype

[Error, TypeList] GatheringExternalConfigurationGet (integer SocketID)

Input parameters

Return

Error.....Function error

TypeList......string.....List of configured gathering types (separator is semicolon)

2.10.1.8. GatheringExternalConfigurationSet

NAME

 $\label{lem:configurationSet} \textbf{GatheringExternalConfigurationSet} - \textbf{Configures} \ an \ \textbf{external gathering}.$

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input external gathering mnemonic: ERR_MNEMOTYPEGATHERING (-29)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)

DESCRIPTION

Defines one or several types of data gathered during the external triggered data gathering.

Maximum of 1000000 points can be acquired.

Maximum of 25 data types can be configured in a gathering.

External gathering data types:

PositionerName.ExternalLatchPosition

GPIO2.ADC1

GPIO2.ADC2

GPIO2.ADC3

GPIO2.ADC4

GPIO2.DAC1

GPIO2.DAC2

GPIO2.DAC3

GPIO2.DAC4

The "GatheringExternalListGet" function can be used to retrieve a complete list of gathering types.

For a more thorough description of the external data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / External Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_RUNNING (-43)
ERR_IN_INITIALIZATION (-21)
ERR_MNEMOTYPEGATHERING (-29)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GatheringExternalConfigurationSet \$SocketID \$GatheringType ...

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

Note: \$GatheringType can be repeted to set several gathering types.

C / C++

Prototype

int GatheringExternalConfigurationSet (int SocketID, int NbElements, char * TypeArray)

Input parameters

Output parameters

None

Return

Function error

Note: Gathering Types must have elements number in accordance to NbElements to avoid array overrun.

\"C''\L BASIC

Prototype

Long **GatheringExternalConfigurationSet** (ByVal SocketID As Long, ByVal NbElements As Long, ByVal GatheringTypes As String)

Input parameters

NbElements......Long.....Number of types

Gathering Types String Gathering types (seperated by semicolon)

Output parameters

None

Return

Function error

Note: Gathering Types must have elements number in accordance to NbElements to avoid array overrun.

MATLAB

Prototype

[Error] GatheringExternalConfigurationSet (int32 SocketID, cstring GatheringTypes)

Input parameters

Return

Error.....Function error

Note: Gathering Types can have some elements to set in one time several gathering types.

PYTHON

Prototype

[Error] GatheringExternalConfigurationSet (integer SocketID, string list GatheringTypes)

Input parameters

XPS-C8 Controller

Firmware

Return			
Error	integer	Function error	

Note: Gathering Types can have some elements to set in one time several gathering types.

2.10.1.9. GatheringExternalCurrentNumberGet

NAME

GatheringExternalCurrentNumberGet - Returns the current and maximum number of external gathered data.

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR WRONG FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_INT (-15)
- External gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)

DESCRIPTION

This function returns the current and maximum number of data gathered during the external triggered data gathering.

For a more thorough description of the external data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / External Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_CONFIGURED (-32)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_TYPE_INT (-15)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringExternalCurrentNumberGet \$SocketID CurrentNumber MaxSamplesNumber

C / C++

Prototype

int GatheringExternalCurrentNumberGet (int SocketID, int * CurrentNumber, int * MaxSamplesNumber)

TCL error (0 = success or 1 = syntax error) or Function error

Return

\"C'' \L BASIC

Prototype

Long **GatheringExternalCurrentNumberGet** (ByVal SocketID As Long, CurrentNumber As Long, MaxSamplesNumber As Long)

Input parameters

Output parameters

CurrentNumber Long Current number during acquisition MaxSamplesNumber Long Maximum number of samples

Return

Function error

MATLAB

Prototype

[Error, CurrentNumber, MaxSamplesNumber] GatheringExternalCurrentNumberGet (int32 SocketID)

Input parameters

Returi

Error.....Function error

PYTHON

Prototype

[Error, CurrentNumber, MaxSamplesNumber] GatheringExternalCurrentNumberGet (integer SocketID)

Input parameters

Return

Error......Function error

2.10.1.10. GatheringExternalDataGet

NAME

GatheringExternalDataGet - Reads one data line from the current external gathering buffer.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Check command format: ERR_WRONG_FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check input parameter type: ERR_WRONG_TYPE_INT (-15)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Check gathering state: ERR_GATHERING_NOT_CONFIGURED (-32)
- Check index number: ERR_PARAMETER_OUT_OF_RANGE (-17)

IndexPoint ≥ 0

IndexPoint < currently gathered data number

DESCRIPTION

This function enables to read a data line from the current gathering gathering buffer. The buffer line number is defined by the index of an acquired point.

The separator is ";" in the returned data line.

A gathering must be configured to use this function, else the ERR_GATHERING_NOT_CONFIGURED (-32) error is returned.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_CONFIGURED (-32)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
ERR_WRONG_TYPE_INT (-15)

TCL

Prototype

SUCCESS (0): no error

${\bf Gathering External Data Get}~\$ Socket ID~\$ Index Point~Data Buffer Line$

		Socket identifier gets by the "TCP_ConnectToServer" function
IndexPoint	integer	Index of an acquired data from the current gathering buffer.
Output parameters DataBufferLineindex.	string	String contains values from the current buffer at the selected
Return Errorcode	integer	

C / C++

Prototype

int GatheringExternalDataGet (int SocketID, int IndexPoint, char *DataBufferLine)

VISUAL BASIC

Prototype

Long **GatheringExternalDataGet** (ByVal SocketID As Long, ByVal IndexPoint As Long, DataBufferLine As String)

Input parameters

Output parameters

DataBufferLineStringString contains values from the current buffer at the selected index.

Return

MATLAB

Prototype

[Error, DataBufferLine] GatheringExternalDataGet (int32 SocketID, cstring IndexPoint)

PYTHON

Prototype

[Error, DataBufferLine] GatheringExternalDataGet (integer SocketID, string UserName, string Password)

2.10.1.11. GatheringExternalStopAndSave

NAME

GatheringExternalStopAndSave - Stops external triggered data gathering and saves data to the XPS controller.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check number of data (> 0): ERR_GATHERING_NOT_STARTED (-30)
- Check file opening: ERR_WRITE_FILE (-60)

DESCRIPTION

This function stops external triggered data gathering and saves data to the XPS controller. Gathered data are stored in the file "GatheringExternal.dat" in the "..\PUBLIC" folder of the XPS controller.

For a more thorough description of the external data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / External Data Gathering.

.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_STARTED (-30)
ERR_IN_INITIALIZATION (-21)
ERR_WRITE_FILE (-60)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringExternalStopAndSave \$SocketID

Input parameters
SocketIDintegerSocket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringExternalStopAndSave (int SocketID)

Output parameters

None

Return

\"C''\L BASIC

Prototype

Long GatheringExternalStopAndSave (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringExternalStopAndSave (int32 SocketID)

Input parameters

Return

Error int32 Function error

PYTHON

Prototype

[Error] GatheringExternalStopAndSave (integer SocketID)

Input parameters

Return

Error.....Function error

2.10.1.12. GatheringReset

NAME

GatheringReset – Resets gathered data to start new gathering from scratch.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Command format: ERR WRONG FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)

DESCRIPTION

This function allows reset gathered data to start new gathering from scratch.

The number of gathered data is setting to zero.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_RUNNING (-43)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringReset \$SocketID

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringReset (int SocketID)

Input parameters

Output parameters

None

Return

\"C''\L BASIC

Prototype

Long GatheringReset (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringReset (int32 SocketID)

Input parameters

Returi

Error int32 Function error

PYTHON

Prototype

[Error] GatheringReset (integer SocketID)

Input parameters

Return

Error.....Function error

2.10.1.13. GatheringRun

NAME

GatheringRun – Starts to gather data.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)
- Gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)

DESCRIPTION

This function allows to start a new data gathering.

The data gathering needs to be configured before using this function (See GatheringConfigurationSet)

The parameters are the number of data to be gathered and the divisor of the frequency (servo frequency) at which the data gathering will be done.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)

ERR_GATHERING_RUNNING (-43)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_GATHERING_NOT_CONFIGURED (-32)

SUCCESS (0): no error

TCL

Prototype

GatheringRun \$SocketID \$DataNumber \$Divisor

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
	· ·	The number of data line to gather
	•	The divisor of the servo frequency

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringRun (int SocketID, int DataNumber, int Divisor)

Input parameters

Output parameters

None

Return

Function error

\"C''\L BASIC

Prototype

Long GatheringRun (ByVal SocketID As Long, ByVal DataNumber As Long, ByVal Divisor As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringRun (int32 SocketID, int32 DataNumber, int32 Divisor)

Input parameters

Error int32 Function error

PYTHON

Prototype

[Error] GatheringRun (integer SocketID, integer DataNumber, integer Divisor)

Input parameters

Return

Error.....Function error

2.10.1.14. GatheringRunAppend

NAME

GatheringRunAppend – Do again the gathering, continuing from the last gathered data.

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Gathering must not be in progress: ERR_GATHERING_RUNNING (-43)
- Gathering must be configured: ERR_GATHERING_NOT_CONFIGURED (-32)

DESCRIPTION

This function allows to do again the gathering from the data point that is previously stopped, if the gathering current data number has not reached the *DataNumber* specified before with the *GatheringRun()* function. The gathering must to be configured, executed and stopped before using this function (see *GatheringConfigurationSet*, *GatheringRun*, *GatheringStop* functions)

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_RUNNING (-43)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_GATHERING_NOT_CONFIGURED (-32)
SUCCESS (0): no error

TCL

Prototype

GatheringRunAppend \$SocketID

Input parameters
SocketIDSocket identifier gets by the "TCP_ConnectToServer" Function

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringRunAppend (int SocketID)

Output parameters

None

Return

VISUAL BASIC

Prototype

Long GatheringRunAppend (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringRunAppend (int32 SocketID)

Input parameters

Return

Error int32 Function error

PYTHON

Prototype

[Error] GatheringRunAppend (integer SocketID)

Input parameters

Returr

Error.....Function error

2.10.1.15. GatheringStop

NAME

GatheringStopAndSave – Stops internal and external triggered data gathering.

INPUT TESTS

- XPS configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check number of data (> 0): ERR_GATHERING_NOT_STARTED (-30)
- Check file opening: ERR_WRITE_FILE (-60)

DESCRIPTION

This function stops internal and external triggered data gathering. To save it to a file, use GatheringStopAndSave function.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_STARTED (-30)
ERR_IN_INITIALIZATION (-21)
ERR_WRITE_FILE (-60)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)

SUCCESS (0): no error

TCL

Prototype

GatheringStop \$SocketID

 $Input\ parameters$

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringStop (int SocketID)

Input parameters

Output parameters

None

Return

\"C'' \L BASIC

Prototype

Long GatheringStop (ByVal SocketID As Long)

 $Input\ parameters$

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringStop (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[Error] GatheringStop (integer SocketID)

Input parameters

Return

Error.....Function error

2.10.1.16. GatheringStopAndSave

NAME

GatheringStopAndSave – Stops internal triggered data gathering and saves data to the XPS controller.

INPUT TESTS

- XPS configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check number of data (> 0): ERR_GATHERING_NOT_STARTED (-30)
- Check file opening: ERR_WRITE_FILE (-60)

DESCRIPTION

This function stops internal triggered data gathering and saves data to the XPS controller. Data is stored in the file GATHERING.DAT in the "...\PUBLIC" folder of the XPS controller.

For a more thorough description of the internal data gathering capability, please refer to the XPS Motion Tutorial, section named Data Gathering / Internal Data Gathering.

ERROR CODES

ERR_FATAL_INIT (-20)
ERR_GATHERING_NOT_STARTED (-30)
ERR_IN_INITIALIZATION (-21)
ERR_WRITE_FILE (-60)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

GatheringStopAndSave \$SocketID

Input parameters

Socket IDSocket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

TCL error (0 = success or 1 = syntax error) or Function error

C / C++

Prototype

int GatheringStopAndSave (int SocketID)

Input parameters

Output parameters

None

Return

\"C''\L BASIC

Prototype

Long GatheringStopAndSave (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

Function error

MATLAB

Prototype

[Error] GatheringStopAndSave (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[Error] GatheringStopAndSave (integer SocketID)

Input parameters

Return

Error.....Function error

2.11. Events and actions

2.11.1. Functions description

2.11.1.1. EventExtendedAllGet

NAME

EventExtendedAllGet – Return all "event and action" identifiers in progress.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

Get the list of all "event and action" combination identifiers from the event scheduler (filled by the **ExtendedEventStart** or **ExtendedEventWait** function).

The list separator is the comma. If no "event and action" combination is in progress (in the event scheduler) then the error ERR_EVENT_ID_UNDEFINED (-83) is returned.

ERRORS

ERR_EVENT_ID_UNDEFINED (-83)
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
SUCCESS (0): no error

TCL

Prototype

EventExtendedAllGet \$SocketID \$EventID EventIdentifiersList

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int EventExtendedAllGet (int SocketID, int EventID, char * EventIdentifiersList)

Input parameters

SocketIDint... Socket identifier got from "TCP_ConnectToServer" function EventIDint... "Event and action" identifier from "ExtendedEventStart"

Output parameters

EventIdentifiersListchar *List of "event and action" identifiers in scheduler

Return

Function error code

VISUAL BASIC

Prototype

Long **EventExtendedAllGet** (ByVal SocketID As Long, ByVal EventID As Long, EventIdentifiersList As String)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function EventIDLong"Event and action" identifier from "ExtendedEventStart"

Output parameters

EventIdentifiersList String List of "event and action" identifiers in scheduler

Return

Function error code

MATLAB

Prototype

[Error, EventIdentifiersList] EventExtendedAllGet (int32 SocketID, int32 EventID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function
EventIDint32"Event and action" identifier from "ExtendedEventStart"

Return

Error......Function error code

EventIdentifiersListcstringList of "event and action" identifiers in scheduler

PYTHON

Prototype

[Error, EventIdentifiersList] EventExtendedAllGet (integer SocketID, integer EventID)

Input parameters

Return

Error......Function error code

EventIdentifiersList string List of "event and action" identifiers in scheduler

2.11.1.2. EventExtendedConfigurationActionGet

NAME

EventExtendedConfigurationActionGet – Return the action combination defined in buffer.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Last action configuration in memory: ERR_ACTIONS_NOT_CONFIGURED (-81)

DESCRIPTION

Get the combination of action(s) defined by "EventExtendedConfigurationActionSet" function. If no action is configured in buffer, the ERR_ACTIONS_NOT_CONFIGURED (-81) error is returned.

NOTE:

This function doesn't return the last activated action. A combination of action(s) can be just defined in buffer and not activated...

ERRORS

ERR_ACTIONS_NOT_CONFIGURED (-81)
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
SUCCESS (0): no error

TCL

Prototype

EventExtendedConfigurationActionGet \$SocketID ActionConfiguration

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

 $int\ \textbf{EventExtendedConfigurationActionGet}\ (int\ SocketID,\ char\ *\ ActionConfiguration)$

Input parameters

SocketID int ... Socket identifier got from "TCP_ConnectToServer" function

Output parameters

ActionConfiguration string Action combination configured in buffer

Return

Function error code

VISUAL BASIC

Prototype

Long EventExtendedConfigurationActionGet (ByVal SocketID As Long, ActionConfiguration As String)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function

Output parameters

ActionConfiguration String Action combination configured in buffer

Return

Function error code

MATLAB

Prototype

[Error, ActionConfiguration] **EventExtendedConfigurationActionGet** (int32 SocketID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

Returr

Error.....Function error code

ActionConfiguration cstring Action combination configured in buffer

PYTHON

Prototype

 $[Error, Action Configuration] \ \textbf{EventExtendedConfigurationActionGet} \ (integer\ Socket ID)$

Input parameters

Return

Error integer Function error code

ActionConfiguration string Action combination configured in buffer

2.11.1.3. EventExtendedConfigurationActionSet

NAME

EventExtendedConfigurationActionSet – Define a combination of one or several actions in buffer.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Last action configured in memory: ERR_ACTIONS_NOT_CONFIGURED (-81)
- Action name: ERR_MNEMO_ACTION (-39)
- Action parameters: ERR_PARAMETER_OUT_OF_RANGE (-17), ERR_WRONG_OBJECT_TYPE (-8)
- Action to execute: ERR_GATHERING_NOT_CONFIGURED (-32) "Gathering" action.

DESCRIPTION

Just define a combination of one or several actions but don't activate it. Use the "EventExtendedStart" function to activate this definition action(s). For each action, 4 parameters can be configured ... see event specification to know if necessary. The actions are defined in § "Events and Actions" in the XPS user's manual.

The number of actions in a combination is limited to 10 actions.

Event Extended Action Configuration Set

Action list

- 1. GPIOName.DOToggle
- 2. GPIOName.DOPulse
- 3. GPIOName.DOSet
- 4. GPIOName.DACSet.CurrentPosition
- 5. GPIOName.DACSet.CurrentVelocity
- 6. GPIOName.DACSet.SetpointPosition
- 7. GPIOName.DACSet.SetpointVelocity
- 8. GPIOName.DACSet.SetpointAcceleration
- 9. GPIOName.DACSet.Value
- 10. ExecuteTCLScript
- 11. KillTCLScript
- 12. ExternalGatheringRun
- 13. GatheringRun
- 14. GatheringRunAppend
- 15. GatheringOneData
- 16. GatheringStop
- 17. GroupName.MoveAbort

Action parameters

	Act	tor				Parameters		
Group	Positioner	GPIO	Timer#	Action name	1	2	3	4
		•		DOToggle	Mask	0	0	0
		•		DOPulse	Mask	0	0	0
		•		DOSet	Mask	Value	0	0
		•		DACSet.SetpointPosition	Positioner name	Gain	Offset	0
		•		DACSet.SetpointVelocity	Positioner name	Gain	Offset	0
		•		DACSet.SetpointAcceleration	Positioner name	Gain	Offset	0
		•		DACSet.CurrentPosition	Positioner name	Gain	Offset	0
		•		DACSet.CurrentVelocity	Positioner name	Gain	Offset	0
		•		DACSet.Value	Value	0	0	0
				ExecuteTCLScript	TCL file name	Task name	Arguments	0
				KillTCLScript	Task name	0	0	0
				GatheringOneData	0	0	0	0
				GatheringRun	Nb of points	Divisor	0	0
				GatheringRunAppend	0	0	0	0
				GatheringStop	0	0	0	0
				ExternalGatheringRun	Nb of points	Divisor	0	0
•				MoveAbort	0	0	0	0

NOTE:

Before activating the defined actions, you must configure the events. Only then, you can use the "EventExtendedStart" or "EventExtendedWait" function.

For the "ExecuteTCLScript" action, the "ActionParameter3" represents a list of arguments. So, the separator must be a semicolon (;).

ERRORS

ERR_ACTIONS_NOT_CONFIGURED (-1)

ERR_FATAL_INIT (-20)

ERR_GATHERING_NOT_CONFIGURED (-32)

ERR_IN_INITIALIZATION (-21)

ERR_MNEMO_ACTION (-39)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_CHAR (-13)

SUCCESS (0): no error

TCL

Prototype

EventExtendedConfigurationActionSet \$SocketID **{\$**ActionName \$ActionParameter1 \$ActionParameter2 \$ActionParameter3 \$ActionParameter4} ...

Input parameters

SocketID	integer	Socket identifier got from "TCP ConnectToServer" function
	C	event full name (maximum size = 250) - see § Events -
	_	optional action parameter #1 (maximum size = 250)

ActionParameter3	string	optional action	n parameter #3	(maximum size = 250)
ActionParameter4	string	optional action	n parameter #4	(maximum size = 250)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

Note: \$ActionName, \$ActionParameter1, \$ActionParameter2, \$ActionParameter3 and \$ActionParameter4 can be repeted to set several action types.

C / C++

Prototype

int **EventExtendedConfigurationActionSet** (int SocketID, int NbElements, char* ActionNameList, char* ActionParameter1List, char* ActionParameter2List, char* ActionParameter4List)

Input parameters

Output parameters

None

Return

Function error code

Note: ActionNameList, ActionParameter1List, ActionParameter2List, ActionParameter3List and ActionParameter4List must have elements number in accordance to *NbElements*.

VISUAL BASIC

Prototype

Long **EventExtendedConfigurationActionSet** (ByVal SocketID As Long, ByVal NbElements As Long, ByVal ActionNameList As String, ByVal ActionParameter1List As String, ByVal ActionParameter2List As String, ByVal ActionParameter3List As String, ByVal ActionParameter4List As String)

Input parameters

приграго	IIICICIS		
Socket	ID	Long	Socket identifier got from "TCP_ConnectToServer" function
NbEle	ments	Long	number of events in configuration.
Action	NameList	String	event full name list (names separated by semicolon)
Action	Parameter1List	String	optional action parameter #1 list (separated by semicolon)
Action	Parameter2List	String	optional action parameter #2 list (separated by semicolon)
Action	Parameter3List	String	optional action parameter #3 list (separated by semicolon)
Action	Parameter4List	String	optional action parameter #4 list (separated by semicolon)

Output parameters

None

Return

Function error code

Note: ActionNameList, ActionParameter1List, ActionParameter2List, ActionParameter3List and ActionParameter4List must have elements number in accordance to *NbElements*.

MATLAB

Prototype

int32 **EventExtendedConfigurationActionSet** (int32 SocketID, int32 NbElements, cstring ActionNameList, cstring ActionParameter1List, cstring ActionParameter3List, cstring ActionParameter3List, cstring ActionParameter4List)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
ActionNameList	cstring	action full name list (separated by space (blank) character)
ActionParameter1List	cstring	optional action parameter #1 list (separated by space character)
ActionParameter2List	cstring	optional action parameter #2 list (separated by space character)
ActionParameter3List	cstring	optional action parameter #3 list (separated by space character)
ActionParameter4List	cstring	optional action parameter #4 list (separated by space character)
	ActionNameListActionParameter1List ActionParameter2List ActionParameter3List	ActionNameList cstring ActionParameter1List cstring ActionParameter2List cstring ActionParameter3List cstring

Output parameters

None

Return

Function error code

Note: ActionParameter1List, ActionParameter2List, ActionParameter3List and ActionParameter4List must have the same elements number as that of ActionNameList.

PYTHON

Prototype

integer **EventExtendedConfigurationActionSet** (integer SocketID, string list ActionNameList, string list ActionParameter1List, string list ActionParameter3List, string list ActionParameter3List, string list ActionParameter4List)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function	ion
ActionNameListstring listevent full name list	
ActionParameter1List string listoptional action parameter #1 list	
ActionParameter2List string listoptional action parameter #2 list	
ActionParameter3List string listoptional action parameter #3 list	
ActionParameter4List string listoptional action parameter #4 list	

Output parameters

None

Return

Function error code

Note: ActionParameter1List, ActionParameter2List, ActionParameter3List and ActionParameter4List must have the same elements number as that of ActionNameList.

2.11.1.4. EventExtendedConfigurationTriggerGet

NAME

EventExtendedConfigurationTriggerGet – Return the trigger defined in buffer.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Last event configuration in memory: ERR_EVENTS_NOT_CONFIGURED (-80)

DESCRIPTION

Get the last event defined in buffer by "EventExtendedConfigurationTriggerSet" function. If no event is defined in buffer, the ERR_EVENTS_NOT_CONFIGURED (-80) error is returned.

NOTE:

This function doesn't return the last activated event. An event can be just configured and not activated...

ERRORS

SUCCESS (0): no error ERR_FATAL_INIT (-20) ERR_IN_INITIALIZATION (-21) ERR_WRONG_FORMAT (-7) ERR_WRONG_PARAMETERS_NUMBER (-9) ERR_WRONG_TYPE_CHAR (-13) ERR_EVENTS_NOT_CONFIGURED (-80)

TCL

Prototype

 $\textbf{EventExtendedConfigurationTriggerGet} \ \$ Socket ID \ Event Trigger Configuration \ Trigger Config$

Input parameters

Output parameters

EventTriggerConfiguration..... string...... Event combination configured in buffer

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int EventExtendedConfigurationTriggerGet (int SocketID, char * EventTriggerConfiguration)

Input parameters

SocketID int ... Socket identifier got from "TCP_ConnectToServer" function

Output parameters

EventTriggerConfiguration..... string....... Event combination configured in buffer

Return

Function error code

VISUAL BASIC

Prototype

Long **EventExtendedConfigurationTriggerGet** (ByVal SocketID As Long, EventTriggerConfiguration As String)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function

Output parameters

EventTriggerConfiguration..... String....... Event combination configured in buffer

Return

Function error code

MATLAB

Prototype

[Error, EventTriggerConfiguration] EventExtendedConfigurationTriggerGet (int32 SocketID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

Return

Error.....Function error code

EventTriggerConfiguration..... cstring...... Event combination configured in buffer

PYTHON

Prototype

 $[Error, EventTriggerConfiguration] \ \textbf{EventExtendedConfigurationTriggerGet} \ (integer\ SocketID)$

Input parameters

Return

EventTriggerConfiguration..... string....... Event combination configured in buffer

2.11.1.5. EventExtendedConfigurationTriggerSet

NAME

EventExtendedConfigurationTriggerSet - Define a combination of one or several events in buffer.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Event name: ERR_MNEMO_EVENT (-40)
- Event actor: ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

Just define one trigger (combination of one or several events) but don't activate it. Use the "EventExtendedStart" function to activate this definition event(s). For each event, 4 parameters can be configured ... see event specification to know if necessary. The events are defined in § "Events and Actions" in the XPS user's manual.

The number of events in a combination is limited to 10 events.

Event Extended Trigger Configuration Set

Each full event name is defined as [actor].[category].event (see Event list):

[actor] - Optional actor name (Group name, Positioner name, GPIO name or Nothing) [category] - Optional category name (Event category or Nothing)

event - Event name

Event list

- 1. Always
- 2. Immediate
- 3. Timer1
- 4. Timer2
- 5. Timer3
- 6. Timer4
- 7. Timer5
- 8. PositionerName.MotionDone
- 9. PositionerName.PositionerError
- $10. \quad Positioner Name. Positioner Hardware Status$
- 11. PositionerName.Category.ConstantVelocityStart
- 12. PositionerName.Category.ConstantVelocityEnd
- 13. PositionerName.Category.ConstantVelocityState
- 14. PositionerName.Category.ConstantAccelerationStart
- 15. PositionerName.Category.ConstantAccelerationEnd
- $16. \quad Positioner Name. Category. \textbf{ConstantAccelerationState}$
- 17. PositionerName.Category.ConstantDecelerationStart
- $18. \quad Positioner Name. Category. \textbf{Constant Deceleration End}$
- PositionerName.Category.ConstantDecelerationState
 PositionerName.Category.MotionStart
- 21. PositionerName.Category.MotionEnd

- 22. PositionerName.Category.MotionState
- 23. GroupName.Category.TrajectoryStart
- 24. GroupName.Category.TrajectoryEnd
- 25. GroupName.Category.TrajectoryState
- 26. GroupName.Category.TrajectoryPulse
- 27. GroupName.Category.TrajectoryPulseState
- $28. \quad Group Name. Category. \textbf{Element Number Start}$
- 29. GroupName.Category.ElementNumberState
- 30. GPIOName.ADCHighLimit
- 31. GPIOName.ADCLowLimit
- 32. GPIOName.DILowHigh
- 33. GPIOName.DIHighLow
- 34. GPIOName.DIToggle

Category list for "profile" positioner events

- 1. SGamma
- 2. Slave
- 3. Spin
- 4. Jog
- 5. TrackingPosition
- 6. Tracking Velocity

Category list for "trajectory" group events

- 1. XYLineArc
- 2. Spline
- 3. PVT

Event parameters

	Actor Category				Paramete	ers							
Group	Positioner	GPIO	Timer#	SGamma	Jog	XY LineArc	XYZ Spline	PVT	Event name	1	2	3	4
									Immediate	0	0	0	0
									Always	0	0	0	0
			•						Timer	0	0	0	0
	•			•	•				MotionStart	0	0	0	0
	•			•	•				MotionStop	0	0	0	0
	•			•	•				MotionState	0	0	0	0
	•			•	•				ConstantVelocityStart	0	0	0	0
	•			•					ConstantVelocityEnd	0	0	0	0
	•			•	•				ConstantVelocityState	0	0	0	0
	•			•					ConstantAccelerationStart	0	0	0	0
	•			•					ConstantAccelerationEnd	0	0	0	0
	•			•					ConstantAccelerationState	0	0	0	0
	•			•					ConstantDecelerationStart	0	0	0	0
	•			•					ConstantDecelerationEnd	0	0	0	0
	•			•					ConstantDecelerationState	0	0	0	0
•						•	•	•	TrajectoryStart	0	0	0	0
•						•	•	•	TrajectoryEnd	0	0	0	0
•						•	•	•	TrajectoryState	0	0	0	0
•						•	•	•	ElementNumberStart	Element #	0	0	0
•						•	•	•	ElementNumberState	Element #	0	0	0
•	•								MotionDone	0	0	0	0
•						•		•	TrajectoryPulse	0	0	0	0
•						•		•	TrajectoryPulseOutputState	0	0	0	0
		•							DILowHigh	Bit index	0	0	0
		•							DIHighLow	Bit index	0	0	0
		•							DIToggle	Bit index	0	0	0
		•							ADCHighLimit	Value	0	0	0
		•							ADCLowLimit	Value	0	0	0

I	•				PositionerError	Mask	0	0	0
	•				PositionerHardwareStatus	Mask	0	0	0

NOTE:

Before activating this event combination, you must define one or several action(s) with the "EventExtendedConfigurationTriggerSet" function. Next, use the "EventExtendedStart" or "EventExtendedWait" function to launch these definitions "event and action".

ERRORS

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_MNEMO_EVENT (-40)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_OBJECT_TYPE (-8)
ERR_WRONG_PARAMETERS_NUMBER (-9)
SUCCESS (0): no error

TCL

Prototype

EventExtendedConfigurationTriggerSet \$SocketID {\$EventName \$EventParameter1 \$EventParameter2 \$EventParameter3 \$EventParameter4} ...

Input parameters

SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function
EventName	string	event full name (maximum size = 250) - see § Events -
EventParameter1	string	optional event parameter #1 (maximum size = 250)
EventParameter2	string	optional event parameter #2 (maximum size = 250)
EventParameter3	string	optional event parameter #3 (maximum size = 250)
EventParameter4	string	optional event parameter #4 (maximum size = 250)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

Note: \$EventName, \$EventParameter1, \$EventParameter2, \$EventParameter3 and \$EventParameter4 can be repeted to set several action types.

C / C++

Prototype

int **EventExtendedConfigurationTriggerSet** (int SocketID, int NbElements, char* EventNameList, char* EventParameter1List, char* EventParameter2List, char* EventParameter3List, char* EventParameter4List)

Input parameters

۲	our percenterers		
	SocketID	int	Socket identifier got from "TCP_ConnectToServer" function
			number of events in configuration.
	EventNameList	char* .	event full name list (names separated by semicolon)
	EventParameter1List	char* .	optional event parameter #1 list (separated by semicolon)
	EventParameter2List	char* .	optional event parameter #2 list (separated by semicolon)
	EventParameter3List	char* .	optional event parameter #3 list (separated by semicolon)
	EventParameter4List	char* .	optional event parameter #4 list (separated by semicolon)

Output parameters

None

Return

Function error code

Note: EventNameList, EventParameter1List, EventParameter2List, EventParameter3List and EventParameter4List must have elements number in accordance to *NbElements*.

VISUAL BASIC

Prototype

Long **EventExtendedConfigurationTriggerSet** (ByVal SocketID As Long, ByVal NbElements As Long, ByVal EventNameList As String, ByVal EventParameter1List As String, ByVal EventParameter2List As String, ByVal EventParameter3List As String, ByVal EventParameter4List As String)

Input parameters

SocketID	Long	Socket identifier got from "TCP_ConnectToServer" function
NbElements	Long	number of events in configuration.
EventNameList	String	event full name list (names separated by semicolon)
EventParameter1List	String	optional event parameter #1 list (separated by semicolon)
EventParameter2List	String	optional event parameter #2 list (separated by semicolon)
EventParameter3List	String	optional event parameter #3 list (separated by semicolon)
	-	optional event parameter #4 list (separated by semicolon)

Output parameters

None

Return

Function error code

Note: EventNameList, EventParameter1List, EventParameter2List, EventParameter3List and EventParameter4List must have elements number in accordance to *NbElements*.

MATLAB

Prototype

int32 **EventExtendedConfigurationTriggerSet** (int32 SocketID, cstring EventNameList, cstring EventParameter1List, cstring EventParameter2List, cstring EventParameter3List, cstring EventParameter4List)

Input parameters

SocketID	int32	Socket identifier got from "TCP_ConnectToServer" function
EventNameList	cstring	event full name list (names separated by space (blank) character)
EventParameter1List	cstring	optional event parameter #1 list (separated by space character)
EventParameter2List	cstring	optional event parameter #2 list (separated by space character)
EventParameter3List	cstring	optional event parameter #3 list (separated by space character)
EventParameter4List	cstring	optional event parameter #4 list (separated by space character)

Output parameters

None

Return

Function error code

Note: EventParameter1List, EventParameter2List, EventParameter3List and EventParameter4List must have the same elements number as that of EventNameList.

PYTHON

Prototype

integer **EventExtendedConfigurationTriggerSet** (integer SocketID, string list EventNameList, string list EventParameter1List, string list EventParameter2List, string list EventParameter3List, string list EventParameter4List)

Input parameters

XPS-C8 Controller

Firmware

EventParameter1List	string list	optional	event p	arameter	#1 li	st
EventParameter2List	string list	optional	event p	arameter	#2 li	st
EventParameter3List	string list	optional	event p	arameter	#3 li	st
EventParameter4List	string list	optional	event p	arameter	#4 li	st

Output parameters

None

Return

Function error code

Note: EventParameter1List, EventParameter2List, EventParameter3List and EventParameter4List must have the same elements number as that of EventNameList.

2.11.1.6. EventExtendedGet

NAME

EventExtendedGet – Return the detail of "event and action" combination in scheduler defined by an identifier.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Parameter type: ERR_WRONG_TYPE_INT (-15), ERR_WRONG_TYPE_CHAR (-13)
- Event identifier [0:49]: ERR_EVENT_ID_UNDEFINED (-83)

DESCRIPTION

Get the composition of events and actions in progress defined by the identifier. This identifier is provided by the "EventExtendedStart" function.

The identifier must be defined between 0 and 49, if its value is "-1" then it's not defined. If the configured event is already deleted, the ERR_EVENT_ID_UNDEFINED (-83) error is returned.

Event scheduler

```
ID(0): EventConfiguration + ActionConfiguration
ID(1): EventConfiguration + ActionConfiguration
ID(2): EventConfiguration + ActionConfiguration
ID(3):
ID(4):
ID(5):
ID(6): EventConfiguration + ActionConfiguration
...
ID(6): EventConfiguration + ActionConfiguration
ID(1): EventConfiguration + ActionConfiguration
ID(1): EventConfiguration + ActionConfiguration
```

ERRORS

```
SUCCESS (0): no error

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_INT (-15)

ERR_WRONG_TYPE_CHAR (-13)

ERR_EVENT_ID_UNDEFINED (-83)
```

TCL

Prototype

EventExtendedGet \$SocketID \$EventID EventConfiguration ActionConfiguration

C / C++

Prototype

int EventExtendedGet (int SocketID, int EventID, char * EventConfiguration, char * ActionConfiguration)

Input parameters

SocketIDint... Socket identifier got from "TCP_ConnectToServer" function EventIDint... "Event and action" identifier from "ExtendedEventStart"

Output parameters

EventConfiguration......char * Event combination defined in scheduler ActionConfigurationchar * Action combination defined in scheduler

Return

Function error code

VISUAL BASIC

Prototype

Long **EventExtendedGet** (ByVal SocketID As Long, ByVal EventID As Long, EventConfiguration As String, ActionConfiguration As String)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function EventIDLong"Event and action" identifier from "ExtendedEventStart"

Output parameters

EventConfiguration......StringEvent combination defined in scheduler ActionConfigurationStringAction combination defined in scheduler

Return

Function error code

MATLAB

Prototype

[Error, EventConfiguration, ActionConfiguration] **EventExtendedGet** (int32 SocketID, int32 EventID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function
EventIDint32"Event and action" identifier from "ExtendedEventStart"

Return

PYTHON

Prototype

[Error, EventConfiguration, ActionConfiguration] **EventExtendedGet** (integer SocketID, integer EventID)

Input parameters

Return

Error Function error code

EventConfiguration......string...... Event combination defined in scheduler ActionConfiguration.....string....... Action combination defined in scheduler

2.11.1.7. EventExtendedRemove

NAME

EventExtendedRemove – Remove an "event and action" combination in scheduler defined by an identifier.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of parameters [1]: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Parameter type: ERR_WRONG_TYPE_INT (-15)
- Event identifier [0:49]: ERR_EVENT_ID_UNDEFINED (-83), ERR_PARAMETER_OUT_OF_RANGE (-17)
- Actor event: ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

Delete the "event(s) and action(s)" combination in scheduler defined by an event identifier. This identifier is provided by the "EventExtendedStart" function.

The identifier must be defined between 0 and 49, if its value is "-1" then it's not defined.

If the configured event is already deleted, the ERR EVENT ID UNDEFINED (-83) error is returned.

ERRORS

ERR_EVENT_ID_UNDEFINED (-83)
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_PARAMETER_OUT_OF_RANGE (-17)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_INT (-15)
SUCCESS (0): no error

TCL

Prototype

EventExtendedRemove \$SocketID \$EventID

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int EventExtendedRemove (int SocketID, int EventID)

Input parameters

SocketIDint... Socket identifier got from "TCP_ConnectToServer" function

EventID.....int... "Event and action" identifier

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long EventExtendedRemove (ByVal SocketID As Long, ByVal EventID As Long)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function

EventID.....Long"Event and action" identifier

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] EventExtendedRemove (int32 SocketID, int32 EventID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

EventID.....int32"Event and action" identifier

Return

Error.....int32Function error code

PYTHON

Prototype

[Error] **EventExtendedRemove** (integer SocketID, integer EventID)

Input parameters

EventID.....integer" "Event and action" identifier

Return

Error......Function error code

2.11.1.8. EventExtendedStart

NAME

EventExtendedStart – Activate the "event and action" defined in buffer.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Output parameter type: ERR_WRONG_TYPE_INT (-15)
- Number of compositions in execution: ERR_EVENT_BUFFER_FULL (-82)
- Last event configuration in memory: ERR_EVENTS_NOT_CONFIGURED (-80)
- Last action configuration in memory: ERR_ACTIONS_NOT_CONFIGURED (-81)
- Event name to execute: ERR_MNEMO_EVENT (-40), ERR_WRONG_TYPE (-10), ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

Launch the configured event(s) and action(s) from the event configuration buffer to fill it in the event scheduler and gets an event identifier. The identifier must be defined between 0 and 49, if its value is "-1" then that means it's not defined.

If no event is configured in buffer, the ERR_EVENTS_NOT_CONFIGURED (-80) error is returned. If no action is configured in buffer, the ERR_ACTIONS_NOT_CONFIGURED error is returned.

NOTE

In the event scheduler, when a configured event is occurred then it is deleted and free its space in event scheduler.

CAUTION:

If the configured event is PERMANENT then it is not deleted after to be occurred ... it must use the "EventExtendedRemove" function to delete it.

ERRORS

ERR_ACTIONS_NOT_CONFIGURED (-81)

ERR_EVENT_BUFFER_FULL (-82)

ERR_EVENTS_NOT_CONFIGURED (-80)

ERR_FATAL_INIT (-20)

ERR IN INITIALIZATION (-21)

ERR MNEMO EVENT (-40)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE (-10)

ERR_WRONG_TYPE_INT (-15)

SUCCESS (0): no error

TCL

Prototype

EventExtendedStart \$SocketID EventID

Input parameters

Output parameters

EventID.....integer"Event and action" identifier

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int EventExtendedStart (int SocketID, int * EventID)

Input parameters

SocketIDint... Socket identifier got from "TCP_ConnectToServer" function

Output parameters

EventID.....int * "Event and action" identifier

Return

Function error code

VISUAL BASIC

Prototype

Long EventExtendedStart (ByVal SocketID As Long, EventID As Long)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function

Output parameters

EventID.....Long"Event and action" identifier

Return

Function error code

MATLAB

Prototype

[Error, EventID] **EventExtendedStart** (int32 SocketID)

 $Input\ parameters$

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

Return

Error.....int32Function error code

EventID.....int32"Event and action" identifier

PYTHON

Prototype

[Error, EventID] EventExtendedStart (integer SocketID)

Input parameters

Return

Error......Function error code

EventID..... "Event and action" identifier

2.11.1.9. EventExtendedWait

NAME

EventExtendedWait – Activate the last "event" configuration in memory and wait it occurs.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments [0]: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Number of compositions in execution: ERR_EVENT_BUFFER_FULL (-82)
- Last event configuration in memory: ERR_EVENTS_NOT_CONFIGURED (-80)
- Event name to execute: ERR_MNEMO_EVENT (-40), ERR_WRONG_TYPE (-10)
- Event actor: ERR_WRONG_OBJECT_TYPE (-8)

DESCRIPTION

Launch the last configured event(s) to fill it in the event scheduler and wait it occurs to unlock the socket. If no "event and action" combination is configured in the event configuration buffer, the ERR_EVENTS_NOT_CONFIGURED (-80) error is returned.

ERRORS

ERR_EVENT_BUFFER_FULL (-82)

ERR_EVENTS_NOT_CONFIGURED (-80)

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR MNEMO EVENT (-40)

ERR_WRONG_FORMAT (-7)

ERR_WRONG_OBJECT_TYPE (-8)

ERR_WRONG_PARAMETERS_NUMBER (-9)

ERR_WRONG_TYPE_ (-10)

SUCCESS (0): no error

TCL

Prototype

EventExtendedWait \$SocketID

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int EventExtendedWait (int SocketID)

Input parameters

 $Socket ID.....int... Socket identifier got from ``TCP_ConnectToServer'' function$

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long EventExtendedWait (ByVal SocketID As Long)

Input parameters

SocketIDLongSocket identifier got from "TCP_ConnectToServer" function

Output parameters

None

Return

Function error code

MATLAB

rototype

[Error] EventExtendedWait (int32 SocketID)

Input parameters

SocketIDint32Socket identifier got from "TCP_ConnectToServer" function

Return

Error.....int32Function error code

PYTHON

Prototype
[Error] EventExtendedWait (integer SocketID)

Input parameters			
SocketID	integer	Socket identifier got from "TCP_ConnectToServer" function	on
Return			
Error	integer	Function error code	

2.11.2. Obsolete Functions Description

Do not use for new projects! These Functions are only maintained for already written programs. Use above described Functions.

2.11.2.1. EventAdd

TCL Prototype	int EventAdd (int SocketID, char FullPositionerName[250], char EventName[250], char		
	EventParameter[250], char ActionName[250], char ActionParameter1[250], char		
	ActionParameter2[250], char ActionParameter3[250])		
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function)		
	char [250] : FullPositionerName		
	char [250] : EventName (see § Events)		
	char [250] : EventParameter		
	char [250] : ActionName (see § Actions)		
	char [250] : ActionParameter1		
	char [250] : ActionParameter2		
	char [250] : ActionParameter3		
Output parameters	None		
Return	TCL error ($0 = \text{success or } 1 = \text{syntax error}$) or Function error		

DLL Prototype	int EventAdd (int SocketID, char *FullPositionerName, char *EventName, char		
	*EventParameter, char *ActionName, char *ActionParameter1, char *ActionParameter2, char		
	*ActionParameter3)		
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function)		
	char * : FullPositionerName		
	char * : EventName (see § Events)		
	char * : EventParameter		
	char * : ActionName (see § Actions)		
	char * : ActionParameter1		
	char * : ActionParameter2		
	char * : ActionParameter3		
Output parameters	None		
Return	Function error		

Function Input tests	Verify the number of parameters.		
	Verify the full positioner name, the event name and the action name.		
	Verify the type of all output parameters.		
	Parameters coherence test.		
Function Description	Adds an action associated to an event for the defined positioner.		
	For a more thorough description and a complete list of possible events and the actions, please		
	refer to the XPS Motion Tutorial, section named Event triggers.		
Function Errors	0 -7 -8 -9 -13 -39 -40		

2.11.2.2. **EventGet**

TCL Prototype	int EventGet (int SocketID, char FullPositionerName [250], char EventList[250])
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char [250] : FullPositionerName
Output parameters	char [250] : EventList
Return	TCL error (0 = success or 1 = syntax error) or Function error

DLL Prototype	int EventGet (int SocketID, char *FullPositionerName, char *EventList)
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char * : FullPositionerName
Output parameters	char *: EventList
Return	Function error

Function Input tests	Verify the number of parameters. Verify the positioner name and the event name. Verify the type of all output parameters. Parameters coherence test.
Function Description	Returns the list of events and actions in progress for the selected positioner. For a more thorough description and a complete list of possible events and the actions, please refer to the XPS Motion Tutorial, section named Event triggers.
Function Errors	0 -7 -8 -9 -13

2.11.2.3. EventRemove

TCL Prototype	int EventRemove (int SocketID, char FullPositionerName[250], char EventName[250], char EventParameter[250])
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char [250] : FullPositionerName char [250] : EventName (see § Events) char [250] : EventParameter
Output parameters	None
Return	TCL error (0 = success or 1 = syntax error) or Function error

DLL Prototype	int EventRemove (int SocketID, char *FullPositionerName, char *EventName , char *EventParameter)
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char * : FullPositionerName char * : EventName (see § Events) char * : EventParameter
Output parameters	None
Return	Function error

Function Input tests	Verify the number of parameters. Verify the positioner name and the event name. Verify the event. Verify the type of all output parameters. Parameters coherence test.
Function Description	Deletes an action associated to an event for the defined positioner. For a more thorough description and a complete list of possible events and the actions, please refer to the XPS Motion Tutorial, section named Event triggers.
Function Errors	0 -7 -8 -9 -13 -40

2.11.2.4. EventWait

TCL Prototype	int EventWait (int SocketID, char FullPositionerName [250], char EventName[250], char EventParameter[250])		
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char [250] : FullPositionerName char [250] : EventName (see § Events) char [250] : EventParameter		
Output parameters	None		
Return	TCL error (0 = success or 1 = syntax error) or Function error		

DLL Prototype	int EventWait (int SocketID, char *FullPositionerName, char *EventName , char *EventParameter)		
Input parameters	int : SocketID (Socket identifier got from "TCP_ConnectToServer" function) char * : FullPositionerName char * : EventName (see § Events) char * : EventParameter		
Output parameters	None		
Return	Function error		

Function Input tests	Verify the number of parameters. Verify the positioner name and the event name. Verify the event. Verify the type of all output parameters. Parameters coherence test.
Function Description	Waits for an event for the selected positioner. The socket is locked. As soon as the event occurs, the socket gets unlocked. For a more thorough description and a complete list of possible events and the actions, please refer to the XPS Motion Tutorial, section named Event triggers.
Function Errors	0 -7 -8 -9 -13 -40

2.12. TCL Programming

2.12.1. Function Description

2.12.1.1. TCLScriptExecute

NAME

TCLScriptExecute – Executes a TCL script.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check task name: ERR_WRONG_TCL_TASKNAME (-47)
- Check TCL file name: ERR_UNKNOWN_TCL_FILE (-36)
- Check TCL interpretor (task loading): ERR_TCL_INTERPRETOR (-37)

DESCRIPTION

This function executes a TCL script. The TCL script file must be saved in the folder "..\Public\Scripts" of the XPS controller.

- ✓ *TaskName* is a user designation for the TCL script in execution. If two TCL scripts are executed at the same time with the same task name, The ERR_WRONG_TCL_TASKNAME (-47) is returned because it is not allowed to have the same TaskName.
- ✓ *InputArguments* represents the input arguments to the TCL script to be executed. The number of these input arguments is not limited but the string length is limited to 250 characters. The argument separator is a comma.

ERRORS

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_TCL_INTERPRETOR (-37)
ERR_UNKNOWN_TCL_FILE (-36)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TCL_TASKNAME (-47)
SUCCESS (0): no error

TCL

Prototype

TCLScriptExecute \$SocketID \$TCLFileName \$TaskName \$InputArguments

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int TCLScriptExecute (int SocketID, char *TCLFileName, char *TaskName, char *InputArguments)

Input parameters

InputArgumentschar *Input argument string (separator is a comma)

Output parameters

None

Function error code

VISUAL BASIC

Prototype

Long TCLScriptExecute (ByVal SocketID As Long, ByVal TCLFileName As String, ByVal TaskName As String, ByVal InputArguments As String)

Input parameters

TCLFileName String File name contains the TCL script

TaskName String Task name

Output parameters

None

Return

Function error code

MATLAB

[Error] TCLScriptExecute (int32 SocketID, cstring TCLFileName, cstring TaskName, cstring InputArguments)

Input parameters

TCLFileNamecstringFile name contains the TCL script

TaskName cstring Task name

Input ArgumentscstringInput argument string (separator is a comma)

Error.....int32Function error code

PYTHON

[Error] TCLScriptExecute (integer SocketID, string TCLFileName, string TaskName, string InputArguments)

Input parameters

SocketIDSocket identifier got from "TCP_ConnectToServer" function

TCLFileName string File name contains the TCL script

TaskName string Task name

Input Arguments string Input argument string (separator is a comma)

Return

Error.....Function error code

2.12.1.2. TCLScriptExecuteAndWait

NAME

TCLScriptExecuteAndWait - Executes a TCL script and waits the end of execution.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check task name: ERR_WRONG_TCL_TASKNAME (-47)
- Check TCL file name: ERR_UNKNOWN_TCL_FILE (-36)
- Check TCL interpretor (task loading): ERR_TCL_INTERPRETOR (-37)

DESCRIPTION

This function executes a TCL program. The "TCLScriptExecuteAndWait" function is different than the "TCLScriptExecute" function because it blocks the socket until the script teminates. The TCL script file must be saved in the folder "...\Public\Scripts" of the XPS controller. The file extension is ".tcl".

- ✓ *TaskName* is a user designation for the TCL script in execution. If two TCL scripts are executed at the same time with the same task name, The ERR_WRONG_TCL_TASKNAME (-47) is returned because it is not allowed to have the same TaskName.
- ✓ *InputArguments* represents the input arguments to the TCL script to be executed. The number of these input arguments is not limited but the string length is limited to 250 characters. The argument separator is a comma.
- ✓ *OutputArguments* represents the output arguments to the TCL script to be executed. The number of these output arguments is not limited but the string length is limited to 250 characters. The argument separator is a comma.

ERRORS

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_TCL_INTERPRETOR (-37)
ERR_UNKNOWN_TCL_FILE (-36)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TCL_TASKNAME (-47)
SUCCESS (0): no error

TCL

Prototype

TCLScriptExecuteAndWait \$SocketID \$TCLFileName \$TaskName \$InputArguments OutputArguments

Input parameters

Output parameters

Output Arguments string Output argument string (separator is a comma)

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int **TCLScriptExecuteAndWait** (int SocketID, char *TCLFileName, char *TaskName, char *InputArguments, char *OutputArguments)

VISUAL BASIC

Prototype

Long **TCLScriptExecuteAndWait** (ByVal SocketID As Long, ByVal TCLFileName As String, ByVal TaskName As String, ByVal InputArguments As String)

Input parameters

InputArguments String Input argument string (separator is a comma)

Output parameters

OutputArguments......StringOutput argument string (separator is a comma)

Return

Function error code

MATLAB

Prototype

[Error] **TCLScriptExecuteAndWait** (int32 SocketID, cstring TCLFileName, cstring TaskName, cstring InputArguments, cstring OutputArguments)

Input parameters

PYTHON

Prototype

[Error,OutputArguments] **TCLScriptExecuteAndWait** (integer SocketID, string TCLFileName, string TaskName, string InputArguments)

Input parameters

Returr

Error Function error code

OutputArguments...... string...... Output argument string (separator is a comma)

2.12.1.3. TCLScriptExecuteWithPriority

NAME

TCLScriptExecuteWithPriority – Execute a TCL script with TCL task given priority.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check task name: ERR_WRONG_TCL_TASKNAME (-47)
- Priority mnemonic incorrect: ERR_PARAMETERS_OUT_OF_RANGE (-17)
- Check TCL file name: ERR_UNKNOWN_TCL_FILE (-36)
- Check TCL interpretor (task loading): ERR TCL INTERPRETOR (-37)

DESCRIPTION

This function executes a TCL script with the TCL task that its priority level is defined by user. The TCL script file must be saved in the folder "...\Public\Scripts" of the XPS controller.

- ✓ *TaskName* is a user designation for the TCL script in execution. If two TCL scripts are executed at the same time with the same task name, The ERR_WRONG_TCL_TASKNAME (-47) is returned because it is not allowed to have the same TaskName.
- ✓ *InputArguments* represents the input arguments to the TCL script to be executed. The number of these input arguments is not limited but the string length is limited to 250 characters. The argument separator is a comma.
- ✓ PriorityLevel has three possible values: "HIGH", "MEDIUM" and "LOW"
 - o *HIGH* (task priority = 30): TCL task with priority higher than FTP (55), DHCP (56), HTTP (200), Telnet (215) tasks's one.
 - o *MEDIUM* (task priority = 105): TCL task with priority lower than FTP, DHCP tasks's one but higher than HTTP and Telnet tasks's.
 - o LOW (task priority = 205): TCL task piority lower than FTP, DHCP, HTTP tasks's one, but higher Telnet tasks's. It is the same priority of the TCL task created with TCLScriptExecute() function.

ERRORS

ERR_FATAL_INIT (-20)

ERR_IN_INITIALIZATION (-21)

ERR TCL INTERPRETOR (-37)

ERR_UNKNOWN_TCL_FILE (-36)

ERR_WRONG_FORMAT (-7)

ERR WRONG PARAMETERS NUMBER (-9)

ERR_PARAMETER_OUT_OF_RANGE (-17)

ERR_WRONG_TCL_TASKNAME (-47)

SUCCESS (0): no error

TCL

Prototype

TCLScriptExecuteWithPriority \$SocketID \$TCLFileName \$TaskName \$Priority \$InputArguments

Input parameters

Input Arguments string Input argument string (separator is a comma)

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **TCLScriptExecuteWithPriority** (int SocketID, char *TCLFileName, char *TaskName, char *Priority, char *InputArguments)

Input parameters

TaskNamechar *Task name

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long **TCLScriptExecuteWithPriority** (ByVal SocketID As Long, ByVal TCLFileName As String, ByVal TaskName As String, ByVal Priority As String, ByVal InputArguments As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] **TCLScriptExecuteWithPriority** (int32 SocketID, cstring TCLFileName, cstring TaskName, cstring Priority, cstring InputArguments)

 $Input\ parameters$

Return

Error.....int32Function error code

PYTHON

Prototype.

[Error] **TCLScriptExecuteWithPriority** (integer SocketID, string TCLFileName, string TaskName, string Priority, string InputArguments)

Input parameters

SocketID	integer	Socket identifier gets by the "TCP_ConnectToServer" Function
	•	File name contains the TCL script
TaskName	_	
		TCL task priority (HIGH, MEDIUM or LOW)
•	-	
F 8	8	

Return

Error.....Function error code

2.12.1.4. TCLScriptKill

NAME

TCLScriptKill – Kills a TCL script.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check TCL interpretor (task loading) and task name: ERR_TCL_SCRIPT_KILL (-38)
- Check semaphore to use the TCL interpretor: ERR_TCL_INTERPRETOR (-37)

DESCRIPTION

This function kills a running TCL script selected by its task name. The task name is a user designation for the TCL script in execution.

NOTE:

For the boot script, the task name is "BootScript".

ERRORS

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_TCL_INTERPRETOR (-37)
ERR_TCL_SCRIPT_KILL (-38)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TCL_TASKNAME (-47)
SUCCESS (0): no error

TCL

Prototype

TCLScriptKill \$SocketID \$TaskName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int TCLScriptKill (int SocketID, char *TaskName)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long TCLScriptKill (ByVal SocketID As Long, ByVal TaskName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] TCLScriptKill (int32 SocketID, cstring TaskName)

Input parameters

TaskName cstring Task name to kill

Return

PYTHON

Prototype

[Error] TCLScriptKill (integer SocketID, string TaskName)

Input parameters

TaskName string Task name to kill

Return

Error.....Function error code

2.13. Optional module programming

The optional module programming allows to manage (load, execute and stop execution) the written by user program blocks (optional modules) inside the XPS controller, with the following conditions:

- Every optional module is written in C language (GNU with WindRiver Tornado) and built under the form "*.out".
- The module name must begin with "Optional Module", for example "Optional Module_Laser Manage.out".
 - The module main function must has the same name that the module name, for example : void OptionalModule_LaserManage(void)

```
{
...
}
```

- The optional module file must be in the "/ADMIN/Firmware/" on the XPS controller.
- All optional modules need the "clib.out" module file (in the "/ADMIN/Firmware/") to interface with the XPS controller. The "clib.out" is loaded automatically with the OptionalModuleExecute() function. Don't put the "clib.out" module in the "system.ref" file, if you do so the OptionalModuleExecute() function will not work (return ERR_OPTIONAL_EXTERNAL_MODULE_LOAD).

2.13.1. Function Description

2.13.1.1. OptionalModuleExecute

NAME

OptionalModuleExecute – Executes an optional (user) external module.

INPUT TESTS

- Configuration files reading: ERR FATAL INIT (-20)
- XPS initialization in progress: ERR_IN_INITIALIZATION (-21)
- Valid command format: ERR WRONG FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check task name: ERR_OPTIONAL_EXTERNAL_MODULE_EXECUTE (-95)
- Check module file name: ERR_OPTIONAL_EXTERNAL_MODULE_FILE (-94)
- Check module loading: ERR_OPTIONAL_EXTERNAL_MODULE_LOAD (-97)

DESCRIPTION

This function executes a optinal (user) module. The optional module file must be saved in the folder "\ADMIN\Firmware" of the XPS controller.

- ✓ An optinal module has always a main function whose name is identical to the module name. The term "execute a module" means executing its main function.
- ✓ *TaskName* is a user designation for the module in execution. It is not possible to execute a module at the same time with a same task name, elsewhere the ERR_OPTIONAL_EXTERNAL_MODULE_EXECUTE (-95) is returned.

ERRORS

```
ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_OPTIONAL_EXTERNAL_MODULE_FILE (-94)
ERR_OPTIONAL_EXTERNAL_MODULE_EXECUTE (-95)
ERR_OPTIONAL_EXTERNAL_MODULE_LOAD (-97)
SUCCESS (0): no error
```


TCL

Prototype

OptionalModuleExecute \$SocketID \$ModuleFileName \$TaskName

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C/C++

Prototype

int OptionalModuleExecute (int SocketID, char * ModuleFileName, char *TaskName)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long **OptionalModuleExecute** (ByVal SocketID As Long, ByVal ModuleFileName As String, ByVal TaskName As String)

Input parameters

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] OptionalModuleExecute (int32 SocketID, cstring ModuleFileName, cstring TaskName)

Input parameters
SocketID

TaskName cstring Task name

Return

Error.....int32Function error code

PYTHON

Prototype

[Error] OptionalModuleExecute (integer SocketID, string ModuleFileName, string TaskName)

Input parameters

Return

Error......Function error code

2.13.1.2. OptionalModuleKill

NAME

OptionalModuleKill – Kill the execution of a optional module.

INPUT TESTS

- Configuration files reading: ERR_FATAL_INIT (-20)
- XPS initialization in progress: ERR IN INITIALIZATION (-21)
- Valid command format: ERR_WRONG_FORMAT (-7)
- Number of arguments: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check task name and task killing: ERR_OPTIONAL_EXTERNAL_MODULE_KILL (-96)

DESCRIPTION

This function kills a running optional module selected by its task name. The task name is a user designation for the optional module in execution (see OptionalModuleExecute).

ERRORS

ERR_FATAL_INIT (-20)
ERR_IN_INITIALIZATION (-21)
ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_OPTIONAL_EXTERNAL_MODULE_KILL (-96)
SUCCESS (0): no error

TCL

Prototype

${\bf Optional Module Kill}~\$ Socket ID~\$ Task Name$

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int OptionalModuleKill (int SocketID, char *TaskName)

 $Input\ parameters$

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long OptionalModuleKill (ByVal SocketID As Long, ByVal TaskName As String)

Input parameters

TaskName String Task name to kill

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] OptionalModuleKill (int32 SocketID, cstring TaskName)

Input parameters

TaskName cstring Task name to kill

Return

PYTHON

rototype

[Error] OptionalModuleKill (integer SocketID, string TaskName)

Input parameters

TaskName string Task name to kill

Return

Error.....Function error code

2.14. Hardware date and time setting

2.14.1. Function Description

2.14.1.1. HardwareDateAndTimeGet

NAME

HardwareDateAndTimeGet – Get the current date and time.

INPUT TESTS

- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check output parameter type: ERR_WRONG_TYPE_CHAR (-13)
- Check output format: ERR_WRONG_FORMAT (-7)

DESCRIPTION

This function gets the current date and time of the XPS controller under the form "WeekDay Month Day Hour: Minute: Second Year", for example "Tue Jan 15 10:28:06 2008".

ERRORS

ERR_WRONG_PARAMETERS_NUMBER (-9) ERR_WRONG_TYPE_CHAR (-13) ERR_WRONG_FORMAT (-7) SUCCESS (0): no error

TCL

Prototype

HardwareDateAndTimeGet \$SocketID DateAndTime

Input parameters
SocketIDSocket identifier gets by the "TCP_ConnectToServer" function

Output parameters
DateAndTime....stringController date and time

Return
Error.....integer.....TCL error code (0 = success or 1 = syntax error) or function error code

C / C++

Prototype

int HardwareDateAndTimeGet (int SocketID, char * DateAndTime)

VISUAL BASIC

Prototype

Long HardwareDateAndTimeGet (ByVal SocketID As Long, ByVal DateAndTime As String)

Input parameters

Output parameters

DateAndTime......StringController date and time

Return

MATLAB

Prototype

[Error, DateAndTime] HardwareDateAndTimeGet (int32 SocketID)

Input parameters

Return

Errorint32............Function error code

DateAndTime......cstringController date and time

PYTHON

Prototype

[Error, DateAndTime] HardwareDateAndTimeGet (integer SocketID)

Input parameters

Return

2.14.1.2. HardwareDateAndTimeSet

NAME

HardwareDateAndTimeSet – Set the date and time.

INPUT TESTS

- Check command format: ERR WRONG FORMAT (-7)
- Verify the number of parameters: ERR_WRONG_PARAMETERS_NUMBER (-9)
- Check intput parameter type: ERR_WRONG_TYPE_CHAR (-13)

DESCRIPTION

This function sets the date and time of the XPS controller. The setting form must be "WeekDay Month Day Hour: Minute: Second Year", for example "Tue Jan 15 10:28:06 2008".

ERRORS

ERR_WRONG_FORMAT (-7)
ERR_WRONG_PARAMETERS_NUMBER (-9)
ERR_WRONG_TYPE_CHAR (-13)
SUCCESS (0): no error

TCL

Prototype

HardwareDateAndTimeSet \$SocketID \$DateAndTime

Input parameters

Output parameters

None

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

int **HardwareDateAndTimeSet** (int SocketID, char * DateAndTime)

Input parameters

Output parameters

None

Return

Function error code

VISUAL BASIC

Prototype

Long HardwareDateAndTimeSet (ByVal SocketID As Long, ByVal DateAndTime As String)

 $Input\ parameters$

Output parameters

None

Return

Function error code

MATLAB

Prototype

[Error] HardwareDateAndTimeSet (int32 SocketID, cstring DateAndTime)

Input parameters

Return

PYTHON

Prototype

[Error] HardwareDateAndTimeSet (integer SocketID, string DateAndTime)

Input parameters

Return

Error.....Function error code

2.15. Version

2.15.1. Function Description

2.15.1.1. GetLibraryVersion

NAME

GetLibraryVersion – Gets the version of DLL library.

INPUT TESTS

None

DESCRIPTION

This function returns the version of DLL library.

The library version represents the firmware version that used to build the library.

ERRORS

None

TCL

Prototype

GetLibraryVersion \$SocketID LibVersion

Output parameters

LibVersion DLL library version

Return

TCL error code (0 = success or 1 = syntax error) or Function error code

C / C++

Prototype

char * GetLibraryVersion (int SocketID)

Input parameters

Output parameters

None

VISUAL BASIC

Prototype

String GetLibraryVersion (ByVal SocketID As Long)

Input parameters

Output parameters

None

Return

MATLAB

Prototype

[LibVersion] GetLibraryVersion (int32 SocketID)

Input parameters

Return

PYTHON

Prototype

[LibVersion] GetLibraryVersion (integer SocketID)

Input parameters

Return

LibVersion pLL library version

2.16. Positioner error list

code	Error description
0	
0x80000001	General inhibition detected
0x80000002	Fatal following error detected
0x80000004	Home search time out
0x80000008	Motion done time out
0x80000010	Requested position exceed travel limits in trajectory or slave mode
0x80000020	Requested velocity exceed maximum value in trajectory or slave mode
0x80000040	Requested acceleration exceed maximum value in trajectory or slave mode
0x80000100	Minus end of run activated
0x80000200	Plus end of run activated
0x80000400	Minus end of run glitch
0x80000800	Plus end of run glitch
0x80001000	Encoder quadrature error
0x80002000	Encoder frequency and coherancy error
0x80010000	Hard interpolator encoder error
0x80020000	Hard interpolator encoder quadrature error
0x80100000	First driver in fault
0x80200000	Second driver in fault
0x81000000	Home search mechanical zero inconsistency
0x88000000	Fatal internal error

NOTE: The most significant bit is always set to 1. So, all positioner errors are negative.

2.17. Positioner hardware status list

code	Error description
0x00000001	General inhibition detected
0x00000004	ZM high level
0x00000100	Minus end of run activated
0x00000200	Plus end of run activated
0x00000400	Minus end of run glitch
0x00000800	Plus end of run glitch
0x00001000	Encoder quadrature error
0x00002000	Encoder frequency or coherancy error
0x00010000	Hard interpolator encoder error
0x00020000	Hard interpolator encoder quadrature error
0x00100000	First driver in fault
0x00200000	Second driver in fault
0x00400000	First driver powered on
0x00800000	Second driver powered on

<u>NOTE:</u> Positioner errors are used to trigger consequences on the system, for instance disable, emergency break, etc. Positioner hardware status information is mainly provided for information purposes.

Explanation about positioner hardware status:

General inhibition detected: This refers to the general Inhibition connector at the rear panel or the Stop All button at the front panel of the XPS controller. The General Inhibition connector is a safety features and can be used for a custom STOP ALL emergency switch. Inhibition (pin#2), must always be connected to GND during normal operation of the controller. In this case, inhibition is not detected. An open circuit is equivalent to pressing STOP ALL on the front panel. In that case, inhibition is detected.

ZM high level: This refers to the mechanical zero signal used with some stages. The ZM signal is high during one part of the travel and low during the other part of the travel. The detection of the ZM high/low transition in combination with an encoder index pulse signal allows a fast and repeatable origin search (MechanicalZeroAndIndexHomeSearch).

Minus end of run activated: Refers to the hardware minus end of run limit switch. During normal operation, this end of run switch gets ever actuated and any motion will be latest stopped by the detection of the minus software limit.

Plus end of run activated: Refers to the hardware positive end of run limit switch. During normal operation, this end of run switch gets ever actuated and any motion will be latest stopped by the detection of the positive software limit.

Minus end of run glitch: Undesirable, momentary instability of the hardware minus end of run signal, for instance generated by ripple or noise.

Plus end of run glitch: Undesirable, momentary instability of the hardware positive end of run signal, for instance generated by ripple or noise.

Encoder quadrature error: Error generated when the signals of both encoder channels simultaneously changes. In normal operation, only one quadrature signal changes state at once. This error can occur due to an undesirable level change or a glitch.

Encoder freq. and coherency error: Error generated when the frequency of the signal and coherency error: Error generated when the frequency of the encoder input is 25MHz.

Hard interpolator encoder error: Error generated when the difference of the sine/cosine encoder signals from a unity circle is too large (for instance when signals are phase shifted or amplitude modified).

Hard interpolator quad. encoder error: Error generated when the signals of both encoder channels of the hardware interpolated encoder output simultaneously changes. Same error as Encoder quadrature error except that the quadrature signals are those converted from the sine / cosine signals of the hard interpolator. The hardware interpolator is used only with AnalogInterpolated encoders to trigger the position compare output and to gather positions during external data gathering.

First driver in fault: problem with the first driver.

Second driver in fault: problem with the second driver in case two drivers are connected to one axis.

First driver powered on: First driver on motor ON, after initialization.

Second driver powered on: Second driver on motor ON, after initialization, in case two drivers are connected to one axis.

2.18. Positioner driver status list

Bit	code	DRV00x	DRV01	DRV02x	D6U DRV03		DRVP1	DRVM
0	a			Short-circuit	Short-circuit Short-circuit			
1	b			Broken fuse	Broken fuse	Broken fuse	Voltage out of range	
2				Thermistor	Thermistor		Over	
4	С			fault	fault		temperature	
3	d			Initialization	Initialization	Initialization	Initialization	
3	u			error	error	error	error	
4	e			I ² T	I ² T	I ² T	Dynamic error	
5	f			Current limit	Current limit			
6	~					TG is opened	No stage	
O	g					1 G is opened	connected	
7	h	Inhibition	Inhibition	Inhibition	Inhibition	Inhibition	Inhibition	Inhibition
,	11	input	input	input	input	input	input	input
8	i	Driver in	Driver in	Driver in fault	Driver in Driver in		Driver in	Driver in
0	1	fault	fault	Driver III fault	fault	fault	fault	fault

2.19. Group status list

Code	Description				
0	Not initialized state				
1	Not initialized state due to an emergency brake : see positioner status				
2	Not initialized state due to an emergency stop : see positioner status				
	Not initialized state due to a following error during homing				
4	Not initialized state due to a following error				
5	Not initialized state due to an homing timeout				
	Not initialized state due to a motion done timeout during homing				
	Not initialized state due to a KillAll command				
8	Not initialized state due to an end of run after homing				
9	Not initialized state due to an encoder calibration error				
10	Ready state due to an AbortMove command				
11	Ready state from homing				
12	Ready state from motion				
13	Ready State due to a MotionEnable command				
14	Ready state from slave				
15	Ready state from jogging				
	Ready state from analog tracking				
17	Ready state from trajectory				
18	Ready state from spinning				
20	Disable state				
21	Disabled state due to a following error on ready state				
22	Disabled state due to a following error during motion				
23	Disabled state due to a motion done timeout during moving				
24	Disabled state due to a following error on slave state				
	Disabled state due to a following error on jogging state				
	Disabled state due to a following error during trajectory				
	Disabled state due to a motion done timeout during trajectory				
	Disabled state due to a following error during analog tracking				
	Disabled state due to a slave error during motion				
	Disabled state due to a slave error on slave state				
	Disabled state due to a slave error on jogging state				
	Disabled state due to a slave error during trajectory				
	Disabled state due to a slave error during analog tracking				
	Disabled state due to a slave error on ready state				
	Disabled state due to a following error on spinning state				
36	Disabled state due to a slave error on spinning state				
37	Disabled state due to a following error on auto-tuning				
	Disabled state due to a slave error on auto-tuning				
	Emergency braking				
41	Motor initialization state				
	Not referenced state				
	Homing state				
	Moving state				
	Trajectory state				
46	Slave state due to a SlaveEnable command				
47	Jogging state due to a JogEnable command				
48	Analog tracking state due to a TrackingEnable command				
49	Analog interpolated encoder calibrating state Not initialized state due to a mechanical zero inconsistency during homing				
50	Not initialized state due to a mechanical zero inconsistency during homing				
63	Spinning state due to a SpinParametersSet command Not initialized state due to a motor initialization error				
64	Not initialized state due to a motor initialization error Referencing state				
04	NOTOTOTIONING STATE				

XPS-C8 Controller

Firmware

66	Not initialized state due to a perpendicularity error homing
67	Not initialized state due to a master/slave error during homing
68	Auto-tuning state
69	Scaling calibration state
70	Ready state from auto-tuning
71	Not initialized state from scaling calibration
72	Not initialized state due to a scaling calibration error
73	Excitation signal generation state
74	Disable state due to a following error on excitation signal generation state
75	Disable state due to a master/slave error on excitation signal generation state
76	Disable state due to an emergency stop on excitation signal generation state
77	Ready state from excitation signal generation

2.20. Error list

Error mnemonic	code	Error description
ERR_TCL_INTERPRETOR_ERROR	1	TCL interpretor error: wrong syntax
SUCCESS	0	Successful command
ERR_BUSY_SOCKET	-1	Busy socket: previous command not yet finished
ERR_TCP_TIMEOUT	-2	TCP timeout
ERR_STRING_TOO_LONG	-3	String command too long
ERR_UNKNOWN_COMMAND	-4	Unknown command
ERR_POSITIONER_ERROR	-5	Not allowed due to a positioner error
ERR_WRONG_FORMAT	-7	Wrong format in the command string
ERR_WRONG_OBJECT_TYPE	-8	Wrong object type for this command
ERR_WRONG_PARAMETERS_NUMBER	-9	Wrong number of parameters in the command
ERR_WRONG_TYPE	-10	Wrong parameter type in the command string
ERR_WRONG_TYPE_BIT_WORD	-11	Wrong parameters type in the command string : word or word * expected
ERR_WRONG_TYPE_BOOL	-12	Wrong parameter type in the command string: bool or bool * expected
ERR_WRONG_TYPE_CHAR	-13	Wrong parameter type in the command string: char * expected
ERR_WRONG_TYPE_DOUBLE	-14	Wrong parameter type in the command string: double or double * expected
ERR_WRONG_TYPE_INT	-15	Wrong parameter type in the command string: int, short, int * or short * expected
ERR_WRONG_TYPE_UNSIGNEDINT	-16	Wrong parameter type in the command string: unsigned int, unsigned short, unsigned int * or unsigned short * expected
ERR_PARAMETER_OUT_OF_RANGE	-17	Parameter out of range
ERR_POSITIONER_NAME	-18	Positioner Name doesn't exist
ERR_GROUP_NAME	-19	GroupName doesn't exist or unknown command
ERR_FATAL_INIT	-20	Fatal Error during initialization, read the error.log file for more details
ERR_IN_INITIALIZATION	-21	Controller in initialization
ERR_NOT_ALLOWED_ACTION	-22	Not allowed action
ERR_POSITION_COMPARE_NOT_SET	-23	Position compare not set
ERR_UNCOMPATIBLE	-24	Not available in this configuration
ERR_FOLLOWING_ERROR	-25	Following Error
ERR_EMERGENCY_SIGNAL	-26	Emergency signal
ERR_GROUP_ABORT_MOTION	-27	Move Aborted
ERR_GROUP_HOME_SEARCH_TIMEOUT	-28	Home search timeout
ERR_MNEMOTYPEGATHERING	-29	Mnemonique gathering type doesn't exist
ERR_GATHERING_NOT_STARTED	-30	Gathering not started
ERR_HOME_OUT_RANGE	-31	Home position is out of user travel limits
ERR_GATHERING_NOT_CONFIGURED	-32	Gathering not configurated
ERR_GROUP_MOTION_DONE_TIMEOUT	-33	Motion done timeout
ERR_TRAVEL_LIMITS	-35	Not allowed: home preset outside travel limits
ERR_UNKNOWN_TCL_FILE	-36	Unknown TCL file
ERR_TCL_SCRIPT_KILL	-37	TCL interpretor doesn't run
ERR_TCL_INTERPRETOR	-38	TCL script can't be killed
ERR_MNEMO_ACTION	-39	Mnemonique action doesn't exist
ERR_MNEMO_EVENT	-40	Mnemonique event doesn't exist
ERR_SLAVE_CONFIGURATION	-41	Slave-Master mode not configurated
ERR_JOG_OUT_OF_RANGE	-42	Jog value out of range
ERR_GATHERING_RUNNING	-43	Gathering running
ERR_SLAVE	-44	Slave error disabling master
ERR_END_OF_RUN	-45	End of run activated
ERR_NOT_ALLOWED_BACKLASH	-46	Not allowed action due to backlash
ERR_WRONG_TCL_TASKNAME	-47	Wrong TCL task name: each TCL task name must be different
ERR_BASE_VELOCITY	-48	BaseVelocity must be null
ERR_GROUP_HOME_SEARCH_ZM_ERROR	-49	Inconsistent mechanical zero during home search
ERR_MOTOR_INITIALIZATION_ERROR	-50	Motor initialization error : check InitializationAcceleration
ERR_SPIN_OUT_OF_RANGE	-51	Spin value out of range

ERR_WRITE_FILE ERR_READ_FILE -60 Error during file writing or file doesn't exist ERR_READ_FILE -61 Error during file reading or file doesn't exist ERR_TRAJ_ELEM_TYPE -62 Wrong trajectory element type ERR_TRAJ_ELEM_RADIUS -63 Wrong XY trajectory element arc radius ERR_TRAJ_ELEM_SWEEP -64 Wrong XY trajectory element sweep angle Trajectory line element discontinuity error or new element is too small ERR_TRAJ_EMPTY -65 Trajectory doesn't content any element or not loaded ERR_TRAJ_VEL_LIMIT -68 Velocity on trajectory is too high ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_ELEM_RADIUS ERR_TRAJ_ELEM_SWEEP ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE -65 Trajectory element was eep angle Trajectory line element discontinuity error or new element is too small ERR_TRAJ_EMPTY -66 Trajectory doesn't content any element or not loaded ERR_TRAJ_VEL_LIMIT -68 Velocity on trajectory is too high ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_ELEM_RADIUS ERR_TRAJ_ELEM_SWEEP ERR_TRAJ_ELEM_LINE ERR_TRAJ_ELEM_LINE ERR_TRAJ_EMPTY ERR_TRAJ_VEL_LIMIT ERR_TRAJ_ACC_LIMIT ERR_TRAJ_ACC_LIMIT ERR_TRAJ_FINAL_VELOCITY ERR_MSG_QUEUE -63 Wrong XY trajectory element arc radius Trajectory line element discontinuity error or new element is too small Trajectory doesn't content any element or not loaded Velocity on trajectory is too high Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_ELEM_SWEEP -64 Wrong XY trajectory element sweep angle Trajectory line element discontinuity error or new element is too small ERR_TRAJ_EMPTY -66 Trajectory doesn't content any element or not loaded ERR_TRAJ_VEL_LIMIT -68 Velocity on trajectory is too high ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is not zero ERR_TRAJ_FINAL_VELOCITY -70 Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_ELEM_LINE -65 Trajectory line element discontinuity error or new element is too small ERR_TRAJ_EMPTY -66 Trajectory doesn't content any element or not loaded ERR_TRAJ_VEL_LIMIT -68 Velocity on trajectory is too high ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is too high ERR_TRAJ_FINAL_VELOCITY -70 Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_EMPTY
ERR_TRAJ_VEL_LIMIT -68 Velocity on trajectory is too high ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is too high ERR_TRAJ_FINAL_VELOCITY -70 Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_ACC_LIMIT -69 Acceleration on trajectory is too high ERR_TRAJ_FINAL_VELOCITY -70 Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_FINAL_VELOCITY -70 Final velocity on trajectory is not zero ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_MSG_QUEUE -71 Error write or read from message queue
ERR_TRAJ_INITIALIZATION -72 Error during trajectory initialization
ERR_END_OF_FILE -73 End of file
ERR_READ_FILE_PARAMETER_KEY -74 Error file parameter key not found
ERR_TRAJ_TIME -75 Time delta of trajectory element is negative or null
ERR_EVENTS_NOT_CONFIGURED -80 Event not configured
ERR_ACTIONS_NOT_CONFIGURED -81 Action not configured
ERR_EVENT_BUFFER_FULL -82 Event buffer is full
ERR_EVENT_ID_UNDEFINED -83 Event ID not defined
ERR_HOME_SEARCH_GANTRY_TOLERANCE_ERROR -85 Secondary positioner index is too far from first positioner
ERR_OPTIONAL_EXTERNAL_MODULE_FILE -94 Module file doesn't exist or module name incorrect (must be OptionalModuleout)
ERR_OPTIONAL_EXTERNAL_MODULE_EXECUTE -95 Error of executing an optional module
ERR_OPTIONAL_EXTERNAL_MODULE_KILL -96 Error of stopping an optional module
ERR_OPTIONAL_EXTERNAL_MODULE_LOAD -97 Error of loading an optional module
ERR_OPTIONAL_EXTERNAL_MODULE_UNLOAD -98 Error of unloading an optional module
ERR_FATAL_EXTERNAL_MODULE_LOAD -99 Fatal external module load : see error.log
ERR_INTERNAL_ERROR -100 Internal error due to a memory allocation failure
ERR_RELAY_FEEDBACK_TEST_NO_OSCILLATION -101 Relay Feedback Test failed : No oscillation
ERR_RELAY_FEEDBACK_TEST_SIGNAL_NOISY -102 Relay Feedback Test failed : Signal too noisy
ERR_SIGNAL_POINTS_NOT_ENOUGH -103 Relay Feedback Test failed: Signal data not enough for analy
ERR_PID_TUNING_INITIALIZATION -104 Error of tuning process initialization
ERR_SCALING_CALIBRATION -105 Error of scaling calibration initialization
ERR_WRONG_USERNAME_OR_PASSWORD -106 Wrong user name or password
ERR_NEED_ADMINISTRATOR_RIGHTS -107 This function requires to be logged in with Administrator rig
ERR_SOCKET_CLOSED_BY_ADMIN -108 The TCP/IP connection was closed by an administrator
ERR_NEED_TO_BE_HOMED_AT_LEAST_ONCE -109 Group need to be homed at least once to use this function (distance mesured during home search)
ERR_NOT_ALLOWED_FOR_GANTRY -110 Execution not allowed for Gantry configuration
ERR_GATHERING_BUFFER_FULL -111 Gathering buffer is full
ERR_EXCITATION_SIGNAL_INITIALIZATION -112 Error of excitation signal generation initialization
ERR_BOTH_ENDS_OF_RUNS_ACTIVATED -113 Both end of runs are activated
ERR_HARDWARE_FUNCTION_NOT_SUPPORTED -115 Function is not supported by current hardware
ERR_FUNCTION_ONLY_ALLOWED_IN_DISABLED_STATE -117 Function is only allowed in DISABLED group state
ERR_NOT_ALLOWED_DRIVER_NOT_INITIALIZED -118 Not allowed action driver not initialized

2.21. Controller status list

Controller status code	code	Controller status description
CONTROLLER_STATUS_OK	0x00000000	Controller status OK
CONTROLLER_STATUS_INITIALIZATION_FAILED	0x00000001	Controller status initialization failed
CONTROLLER_STATUS_NB_OPENED_SOCKETS_REA	0x00000002	Number of currently opened sockets reached maximum
CHED_MAXIMUM_ALLOWED	0x0000002	allowed number
CONTROLLER_STATUS_CPU_OVERLOAD	0x00000004	Controller CPU is overloaded
CONTROLLER_STATUS_CORRECTOR_OVER_CALCU	0x00000008	Current measured corrector period exceeds 2 *
LATED 0X0000008		IRSCorrectorPeriod
CONTROLLER_STATUS_PROFILER_OVER_CALCULA	0x00000010	Profile generator calculating time exceeds
TED	0x00000010	ProfileGeneratorISRRatio * IRSCorrectorPeriod

Note:

- Within about 5 minutes after the controller startup, due to the hardware thermal stabilization, the
 CONTROLLER_STATUS_CORRECTOR_OVER_CALCULATED,
 CONTROLLER_STATUS_PROFILER_OVER_CALCULATED, CONTROLLER_STATUS_CPU_OVERLOAD or
 CONTROLLER_STATUS_NB_OPENED_SOCKETS_REACHED_MAXIMUM_ALLOWED status flags may be raised.
- These flags are automatically reset after a controller status reading using the *ControllerStatusGet()* command.
- Another way to avoid these flags raised duning 5 first minutes after boot is to set the following parameter in system.ref to 300 (seconds):
 - o DelayBeforeStartup = 300 ; Controller is booted completely after 300 seconds

2.22. Function list classed in categories

General function

- 1. CloseAllOtherSockets
- ControllerMotionKernelTimeLoadGet
- ControllerStatusGet
- 4. ControllerStatusStringGet
- 5. DoubleGlobalArrayGet
- 6. DoubleGlobalArraySet
- 7. ElapsedTimeGet
- 8. ErrorStringGet
- 9. EventAdd
- 10. EventGet
- 11. EventRemove
- 12. EventWait
- 13. EventExtendedConfigurationTriggerSet
- 14. EventExtendedConfigurationTriggerGet
- 15. EventExtendedConfigurationActionSet
- 16. EventExtendedConfigurationActionGet
- 17. EventExtendedStart
- 18. EventExtendedAllGet
- 19. EventExtendedGet
- 20. EventExtendedRemove
- 21. EventExtendedWait
- 22. FirmwareVersionGet
- 23. GatheringConfigurationGet
- 24. GatheringConfigurationSet
- 25. GatheringCurrentNumberGet
- 26. GatheringDataAcquire
- 27. GatheringDataGet
- 28. GatheringDataMultipleLinesGet
- 29. GatheringExternalConfigurationSet
- 30. GatheringExternalConfigurationGet
- 31. GatheringExternalCurrentNumberGet
- 32. GatheringExternalDataGet
- $33. \quad Gathering External Stop And Save$
- 34. GatheringReset
- 35. GatheringRun
- 36. GatheringRunAppend
- 37. GatheringStop
- 38. GatheringStopAndSave
- 39. GlobalArrayGet
- 40. GlobalArraySet
- 41. GPIOAnalogGet
- 42. GPIOAnalogSet
- 43. GPIOAnalogGainGet
- 44. GPIOAnalogGainSet
- 45. GPIODigitalGet
- 46. GPIODigitalSet
- 47. HardwareDateAndTimeGet
- 48. HardwareDateAndTimeSet
- 49. KillAll
- 50. Login
- 51. OtionalModuleExecute
- 52. OtionalModuleKill
- 53. Reboot
- 54. TCLScriptExecute

- 55. TCLScriptExecuteAndWait
- 56. TCLScriptExecuteWithPriority
- 57. TCLScriptKill
- 58. TimerGet
- 59. TimerSet

Positioner functions

- 1. PositionerAccelerationAutoScaling
- PositionerAnalogTrackingPositionParametersGet
- $3. \quad Positioner Analog Tracking Position Parameters Set\\$
- 4. PositionerAnalogTrackingVelocityParametersGet
- 5. PositionerAnalogTrackingVelocityParametersSet
- 6. PositionerBacklashGet
- 7. PositionerBacklashSet
- 8. PositionerBacklashEnable
- 9. PositionerBacklashDisable
- 10. PositionerCorrectorAutoTuning
- 11. PositionerCorrectorNotchFiltersSet
- 12. PositionerCorrectorNotchFiltersGet
- 13. PositionerCorrectorPIDFFAccelerationSet
- 14. PositionerCorrectorPIDFFAccelerationGet
- 15. PositionerCorrectorPIDFFVelocitySet
- 16. PositionerCorrectorPIDFFVelocityGet
- 17. PositionerCorrectorPIDDualFFVoltageSet
- 18. PositionerCorrectorPIDDualFFVoltageGet
- 19. PositionerCorrectorPIPositionSet
- 20. PositionerCorrectorPIPositionGet
- 21. PositionerCorrectorTypeGet
- 22. PositionerCurrentVelocityAccelerationFiltersSet
- 23. PositionerCurrentVelocityAccelerationFiltersGet
- 24. PositionerDriverFiltersGet
- 25. PositionerDriverFiltersSet
- 26. PositionerDriverPositionOffsetsGet
- 27. PositionerDriverFiltersGet
- 28. PositionerDriverFiltersSet
- 29. PositionerDriverPositionOffsetsGet
- 30. PositionerDriverStatusGet
- 31. PositionerDriverStatusStringGet
- 32. PositionerEncoderAmplitudeValuesGet
- 33. PositionerEncoderCalibrationParametersGet
- 34. PositionerErrorGet
- 35. PositionerErrorRead
- 36. PositionerErrorStringGet
- 37. PositionerExcitationSignalGet
- 38. PositionerExcitationSignalSet
- 39. PositionerHardwareStatusGet
- 40. PositionerHardwareStatusStringGet
- 41. PositionerHardInterpolatorFactorGet
- 42. PositionerHardInterpolatorFactorSet
- 43. PositionerMaximumVelocityAndAccelerationGet
- 44. PositionerMotionDoneGet
- 45. PositionerMotionDoneSet
- 46. PositionerPositionCompareDisable
- 47. PositionerPositionCompareEnable
- 48. PositionerPositionCompareGet
- 49. PositionerPositionCompareSet
- $50. \ Positioner Position Compare Pulse Parameters Get$

- $51. \ Positioner Position Compare Pulse Parameters Set$
- 52. PositionerPositionCompareAquadBAlwaysEnable
- 53. PositionerPositionCompareAquadBWindowedGet
- 54. PositionerPositionCompareAquadBWindowedSet
- 55. PositionerRawEncoderPositionGet
- 56. PositionersEncoderIndexDifferenceGet
- $57.\ Positioner SG amma Exact Velocity Ajusted Displacement Get$
- 58. PositionerSGammaParametersGet
- 59. PositionerSGammaParametersSet
- 60. PositionerSGammaPreviousMotionTimesGet
- 61. PositionerStageParameterGet
- 62. PositionerStageParameterSet
- 63. PositionerTimeFlasherDisable
- 64. PositionerTimeFlasherEnable
- 65. PositionerTimeFlasherGet
- 66. PositionerTimeFlasherSet
- 67. PositionerUserTravelLimitsGet
- 68. PositionerUserTravelLimitsSet

Group functions

	SingleAxis GROUP	Spindle GROUP	XY GROUP	XYZ GROUP	MultipleAxes GROUP	POSITIONER
GroupAccelerationSetpointGet	×	×	×	X	×	X
2. GroupAnalogTrackingModeEnable	×	×	×	×	×	
3. GroupAnalogTrackingModeDisable	×	×	×	×	×	
4. GroupCorrectorOutputGet	×	×	×	×	×	×
5. GroupCurrentFollowingErrorGet	×	×	X	×	×	×
6. GroupHomeSearch	×	×	X	×	×	
7. GroupHomeSearchAndRelativeMove	×	×	X	×	X	
8. GroupInitialize	×	×	X	×	×	
9. GroupInitializeWithEncoderCalibration	×	×	X	×	×	
10. GroupJogParametersSet	×		X	×	×	×
11. GroupJogParametersGet	×		X	×	×	×
12. GroupJogCurrentGet	×		X	×	×	×
13. GroupJogModeEnable	×		X	×	×	
14. GroupJogModeDisable	×		X	×	×	
15. GroupKill	×	×	X	×	×	
16. GroupMoveAbort	×	×	X	×	×	×
17. GroupMoveAbsolute	×	×	X	×	×	×
18. GroupMoveRelative	×	×	X	×	×	×
19. GroupMotionDisable	×	×	×	×	×	
20. GroupMotionEnable	×	×	×	×	×	
21. GroupPositionCorrectedProfilerGet			×			
22. GroupPositionCurrentGet	×	×	×	×	×	×
23. GroupPositionSetpointGet	×	X	×	×	×	×
24. GroupPositionTargetGet	×	X	×	×	×	×
25. GroupPositionPCORawEncoderGet			×			
26. GroupReferencingActionExecute						×
27. GroupReferencingStart	×	X	×	X	×	

28. GroupReferencingStop		×	×	X	X	
29. GroupStatusGet	×	×	×	×	×	
30. GroupStatusStringGet	×	×	×	×	×	
31. GroupVelocityCurrentGet	×	×	×	×	X	×

SingleAxes group functions

- 1. SingleAxisSlaveModeDisable
- 2. SingleAxisSlaveModeEnable
- 3. SingleAxisSlaveParametersGet
- 4. SingleAxisSlaveParametersSet

Spindle group functions

- 1. GroupSpinCurrentGet
- 2. GroupSpinModeStop
- 3. GroupSpinParametersGet
- 4. GroupSpinParametersSet
- 5. SpindleSlaveModeDisable
- 6. SpindleSlaveModeEnable
- 7. SpindleSlaveParametersGet
- 8. SpindleSlaveParametersSet

XY group functions

- 1. GroupPositionCorrectedProfilerGet
- 2. XYLineArcExecution
- 3. XYLineArcParametersGet
- 4. XYLineArcPulseOutputGet
- 5. XYLineArcPulseOutputSet
- 6. XYLineArcVerification
- 7. XYLineArcVerificationResultGet

XYZ group functions

- 1. XYZSplineExecution
- 2. XYZSplineParametersGet
- 3. XYZSplineVerification
- 4. XYZSplineVerificationResultGet

MultipleAxes group functions

- 1. MultipleAxesPVTExecution
- $2. \ \ Multiple Axes PVT Parameters Get$
- $3. \ \ Multiple Axes PVTPulse Output Get$
- $4. \ \ Multiple Axes PVT Pulse Output Set$
- 5. MultipleAxesPVTVerification
- 6. MultipleAxesPVTVerificationResultGet

3. Process examples

This part provides examples of programming sequences. Graph7 diagrams are presented to show you the order of use of the different Functions. To see the programming code examples, please refer to:

- The TCL Manual for TCL scripts (part 7. Examples of TCL programs with XPS).
- The Software Drivers Manual for C++ sequences (part 1.3 Example of C++ programs using the XPS DLL).

3.1. Management of the errors

In good practices of programming, when an error occurs, it is desirable to analyze and treat it. The following display error and close procedure could be useful to detect and display the errors during the execution of a program. This sequence could be added to each program and called each time users need to test certain parts of a program.

Display error and close procedure:

3.2. Firmware version

3.3. Gathering with motion

3.4. External gathering

3.5. Output compare

3.6. Slave-master mode

3.7. Jogging

Examples

3.9. Backlash

Examples

3.10. Timer event and global variables

Examples

3.11. Running simultaneously several motion processes

Newport Corporation Worldwide Headquarters

North America & Asia:

Newport Corporation 1791 Deere Avenue Irvine, CA 92606 USA

Tel: (949)-863-3144 or (800)-222-6440 Fax: (949)-253-1680

Email: sales@newport.com tech@newport.com

Europe:

Newport / Micro-Contrôle S.A. 11 Rue du Bois Sauvage F-91055 Evry Cedex FRANCE

Tel: 33-(0)1-60-91-68-68 Fax: 33-(0)1-60-91-68-69

Email: france@newport-fr.com
tech europe@newport.com

Newport

Visit Newport Online at: www.newport.com

Newport Corporation, Irvine, California, has been certified compliant with ISO 9001 by the British Standards Institution