CSC373 Worksheet 1 Solution

July 23, 2020

```
1_1
       Strassen_Algorithm(A,B):
           n = A.rows
           let C be a new n x n matrix
 3
           if n == 1
               C_{11} = A_{11} * B_{11}
6
           else partition as in step 3 of strassen's algorithm
8
               p1 = Strassen_Algorithm(A_11, B_12) -
                     Strassen_Algorithm(A_11, B_22)
11
12
13
               p2 = Strassen_Algorithm(A_11, B_22) +
                     Strassen_Algorithm(A_12, B_22)
14
15
               p3 = Strassen_Algorithm(A_21, B_11) +
16
                     Strassen_Algorithm(A_22, B_11)
17
               p4 = Strassen_Algorithm(A_22, B_21) -
19
                     Strassen_Algorithm(A_22, B_11)
20
21
               p5 = Strassen_Algorithm(A_11, B_11) +
                     Strassen_Algorithm(A_11, B_22) +
23
                     Strassen\_Algorithm(A\_22, B\_11) +
24
                     Strassen_Algorithm(A_22, B_22)
25
               p6 = Strassen_Algorithm(A_12, B_21) +
27
                     Strassen_Algorithm(A_12, B_22) -
28
                     Strassen_Algorithm(A_22, B_21) -
29
                     Strassen_Algorithm(A_22, B_22)
30
31
               p7 = Strassen_Algorithm(A_11, B_11) +
32
                     {\tt Strassen\_Algorithm(A\_11,\ B\_12)}
33
                     Strassen_Algorithm(A_21, B_11)
34
                     Strassen_Algorithm(A_21, B_12)
35
36
               C_{11} = p5 + p4 - p2 + p6
               C_{12} = p1 + p2
38
               C_{21} = p3 + p4
```

Notes:

- Strassen's method for matrix multiplication
 - Reduces the time complexity of matrix multiplication from $O(n^3)$ to $O(n^{\log_2 7}) = O(n^{2.81})$
 - Has four steps
 - 1) Divide the input matrices A and B and output matrix C into $n/2 \times n/2$ submatrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix},$$

2) Create 10 matrices, $S_1, S_2, ..., S_{10}$ each of which is $n/2 \times n/2$ and is the sum or difference of two matrices created in step 1

$$S_1 = B_{12} - B_{22}$$

$$S_2 = A_{11} + A_{12}$$

$$S_3 = A_{21} + A_{22}$$

$$S_4 = B_{21} - B_{11}$$

$$S_5 = A_{11} + A_{22}$$

$$S_6 = B_{11} + B_{22}$$

$$S_7 = A_{12} - A_{22}$$

$$S_8 = B_{21} + B_{22}$$

$$S_9 = A_{11} - A_{21}$$

$$S_{10} = B_{11} + B_{12}$$

3) Recursively multiply $n/2 \times n/2$ matrices seven times to compute the following $n/2 \times n/2$ matrices

$$\begin{split} P_1 &= A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} \\ P_2 &= S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} \\ P_3 &= S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\ P_4 &= A_{22} \cdot S_4 = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} \\ P_5 &= S_5 \cdot S_6 = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} \\ P_6 &= S_7 \cdot S_8 = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} \\ P_7 &= S_9 \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} \end{split}$$

4) Construct the four $n/2 \times n/2$ submatrices of the product C

$$C_{11} = P_5 + P_4 - P_2 + P_6 = A_{11} \cdot B_{11} + A_{12} + B_{12}$$

$$C_{12} = P_1 + P_2 = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = P_3 + P_4 = A_2 \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = P_5 + P_1 - P_3 - P_7 = A_{22} \cdot B_{22} + A_{21} \cdot B_{12}$$

Example: Use Strassen's algorithm to compute the matrix product

$$\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}$$

* STEP 1

$$A_{11} = 1, A_{12} = 3, A_{21} = 7, A_{22} = 5$$

 $B_{11} = 6, B_{12} = 8, B_{21} = 4, B_{22} = 2$

* STEP 2

$$S_{1} = B_{12} - B_{22} = 4 - 2 = 2$$

$$S_{2} = A_{11} + A_{12} = 1 + 3 = 4$$

$$S_{3} = A_{21} + A_{22} = 7 + 5 = 12$$

$$S_{4} = B_{21} - B_{11} = 4 - 6 = -2$$

$$S_{5} = A_{11} + A_{22} = 1 + 5 = 6$$

$$S_{6} = B_{11} + B_{22} = 6 + 2 = 8$$

$$S_{7} = A_{12} - A_{22} = 3 - 5 = -2$$

$$S_{8} = B_{21} + B_{22} = 8 + 2 = 10$$

$$S_{9} = A_{11} - A_{21} = 3 - 5 = -2$$

$$S_{10} = B_{11} + B_{12} = 6 + 4 = 10$$

* STEP 3

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot B_{12} - A_{11} \cdot B_{22} = 1 \cdot 4 - 1 \cdot 2 = 2$$

$$P_{2} = S_{2} \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22} = 1 \cdot 2 + 3 \cdot 2 = 8$$

$$P_{3} = S_{3} \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11} = 6 \cdot 7 + 6 \cdot 5 = 72$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot B_{21} - A_{22} \cdot B_{11} = 5 \cdot 4 - 5 \cdot 6 = -10$$

$$P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22} = 48$$

$$P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22} = -20$$

$$P_{7} = S_{9} \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12} = -20$$

* STEP 4

$$C_{11} = P_5 + P_4 - P_2 + P_6 = 48 - 10 - 8 - 20 = 10$$

 $C_{12} = P_1 + P_2 = 10$
 $C_{21} = P_3 + P_4 = 62$
 $C_{22} = P_5 + P_1 - P_3 - P_7 = 48 + 2 - 72 + 20 = -2$

- Is not preferred in practical purposes
 - 1) The constants used in Strassen's method are high and for a typical application Naive method works better.
 - 2) For Sparse matrices, there are better methods especially designed for them.
 - 3) The submatrices in recursion take extra space.
 - 4) Because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate in Strassen's algorithm than in Naive Method

References:

- 1) GeeksForGeeks, Divide and Conquer Set 5 (Strassen's Matrix Multiplication), link
- Regular matrix multiplication

_

- The master method for solving recurrences
 - provides 'cookbook' method for solving recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

- depends on the following theorem
 - * Let $a \leq 1$ and b > 1 be constants, let f(n) be a function and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1, and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Example:

$$T(n) = 9T(n/3) + n$$

Here,
$$a = 9$$
, $b = 3$, and $f(n) = n = O(n^{\log_3 9 - 1})$ where $\epsilon = 1$.

Thus,
$$T(n) = \Theta(n^{\log_3 9})$$
 or $T(n) = \Theta(n^2)$

Example 2:

$$T(n) = T(2n/3) + 1$$

Here,
$$a = 1$$
, $b = 3/2$, $f(n) = 1 = \Theta(n^{\log_{3/2} 1})$.

Thus,
$$T(n) = \theta(\lg n)$$

Example 3:

$$T(n) = T(n/4) + n \lg n$$

Here $a=1,\ b=4,$ and $f(n)=n\lg n$ has asymptotic lower bound of $f(n)=\Omega(n^{\log_4 3+\epsilon})=\Omega(n)$ where $\epsilon\approx 0.2$

Furthermore,

$$af(n/b) = (3n/4) \lg n/4$$

$$= (3/4)n \lg n/4$$

$$= (3/4)n \lg n/4$$

$$= 3/4n \lg n - \lg 4$$

$$< 3/4n \lg n$$

$$= cf(n)$$

where c = 3/4.

Thus, $T(n) = \Theta(n \lg n)$

Example 4:

$$T(n) = 2T(n/2) + n \lg n$$

Here,
$$a = 2$$
, $b = 2$, $f(n) = n \lg n$.

2. Let $n = 3^m$ where m is an element of $\mathbb{Z}^+ \cup \{0\}$

Then we know the time it takes to multiply $n \times n$ matrices in 3×3 matrices is $T(n) = kT(\frac{n}{3}) + \Theta(n^2)$.

Now, I need to look for the upper bound of k in $T(n) = \Theta(n^{\log_3 k})$ satisfying $O(n^{\lg 7}) \approx O(n^{2.81})$.

And using master's master's theorem, we can write that the upper limit of k is 21.

Improved Solution:

Let $n = 3^m$ where m is an element of $\mathbb{Z}^+ \cup \{0\}$

Then we know the time it takes to multiply $n \times n$ matrices in 3×3 matrices is $T(n) = kT(\frac{n}{3}) + \Theta(n^2)$.

Now, I need to look for the upper bound of k in $T(n) = \Theta(n^{\log_3 k})$ satisfying $O(n^{\lg 7}) \approx O(n^{2.81})$.

And using master's master's theorem, we can write that the upper limit of k is 21 (Following the first condition $f(n) = \mathcal{O}(n^{\log_3 k - \epsilon})$ where $\epsilon \approx 0.81$).

Notes:

- T(n) represents the time it takes to multiply two $n \times n$ matrices.
- At base case scalar multiplication is performed. So, $T(1) = \Theta(1)$.
- 8 represents the number of recursive calls on the function SQUARE-MATRIX-MULTIPLY-RECURSIVE
- $\Theta(n^2)$ represents the addition of two $\frac{n}{2} \times \frac{n}{2}$ matrices
- 3. 68×68 matrices using 132, 464 multiplications:

4.

5. a) Here, a = 2, b = 2, f(n) = 4.

Since $f(n) = n^{\log_2 2+3} = n^{\log_b a+\epsilon}$ where $\epsilon = 3$, and $af(\frac{n}{b}) = 2\left(\frac{n^4}{16}\right) = \frac{n^4}{8} \le cn^4$ where $c = \frac{1}{8}$ for sufficiently large n, the case 3 of master's theorem applies.

Thus, T(n) has upper bound of $\mathcal{O}(n^4)$ and lower bounds of $\Omega(n^4)$, or $\Theta(n^4)$.

b) Here $a = 1, b = \frac{10}{7}, f(n) = n$.

Since $f(n) = 1 = n^{0+1} = n^{\log_{10/7}(1)+1} = n^{\log_b(a)+\epsilon}$, where $\epsilon = 1$, and $af(\frac{n}{b}) = \frac{7n}{10} \le cn^4$ where $c = \frac{7}{10}$ for sufficiently large n, the case 3 of master's theorem applies.

Thus, T(n) has upper bound of $\mathcal{O}(n)$ and lower bounds of $\Omega(n^4)$, or $\Theta(n)$.

c) Here we have $a = 16, b = 4, f(n) = n^2$.

Since $f(n) = n^2 = n^{\log_4 16} = n^{\log_b a}$, case 2 of master's theorem applies.

Thus, T(n) has upper bound of $\mathcal{O}(n^2 \lg n)$ and lower bounds of $\Omega(n^2 \lg n)$.

d) Here we have $a = 7, b = 3, f(n) = n^2$.

Since $n^2 = n^{\log_3 7 + \epsilon} = n^{\log_b a + \epsilon}$ where $\epsilon \approx 0.23$, and $af(\frac{n}{b}) \leq cn^2$ where $c = \frac{7}{9}$, the case 3 of master's theorem applies.

Thus, T(n) has upper bound of $\mathcal{O}(n^2)$ and lower bounds of $\Omega(n^2)$, or $\Theta(n^2)$.

e) Here we have $a = 7, b = 2, f(n) = n^2$.

Since $f(n) = n^2 = n^{\log_2(7) - \epsilon}$, where $\epsilon \approx 0.81$, case 1 of master theorem applies.

Thus, T(n) has upper bound of $\mathcal{O}(n^{\log_2 7})$ and lower bound of $\Omega(n^{\log_2 7})$, or $\Theta(n^{\log_2 7})$.

f) Here we have $a = 2, b = 4, f(n) = \sqrt(n)$.

Since $f(n) = \sqrt{n} = n^{\log_4 2} = n^{\log_b a}$, case 2 of master's theorem applies.

Thus T(n) has upper bound of $\mathcal{O}(\sqrt{n} \lg n)$, and lower bound of $\Omega(\sqrt{n} \lg n)$, or $\Theta(\sqrt{n} \lg n)$.

g) Solution:

Using recurrence tree method, we can see that the tree has depth of $\frac{n}{2}$, level cost of $(n-2i)^2$ where i=0,1,...,n-1, and bottom level cost of T(1) or $\Theta(1)$.

So, the total cost of T(n) is:

$$T(n) = \sum_{i=0}^{\frac{n}{2}-1} (n-2i) + \Theta(1)$$
 (1)

$$= \frac{n^2}{2} - 2\sum_{i=0}^{\frac{n}{2}-1} i + \Theta(1)$$
 (2)

$$= \frac{n^2}{2} - \left(\frac{n}{2}\right) \left(\frac{n}{2} - 1\right) + \Theta(1) \tag{3}$$

$$= \left(\frac{n^2}{2}\right) - \left(\frac{n^2}{4} - \frac{n}{2}\right) + \Theta(1) \tag{4}$$

$$= \frac{n^2}{4} + \frac{n}{2} + \Theta(1) \tag{5}$$

$$=\Theta(n^2) \tag{6}$$

And to verify T(n), I will use subtitution method.

Let the guess be $T(n) \le cn^3$.

Then,

$$T(n) = T(n-2) + n^2 (7)$$

$$\leq c(n-2)^3 + n^2 \tag{8}$$

$$= c(n^3 - 6n^2 + 12n - 8) + n^2 (9)$$

$$= c(n^3 - 5n^2 + 12n - 8) - n^2(c - 1)$$
(10)

$$\leq c(n^3 + 12n - 8) - n^2(c - 1) \tag{11}$$

$$\leq c(n^{3} + 12n - 8) - n^{2}(c - 1)$$

$$= cn^{3} - n^{2}(c - 1)$$
[Since n^{3} dominates n] (12)

$$\leq cn^3
\tag{13}$$

and the boundary holds as long as $c \ge 1$.