- Consider a length-N sequence x[n] with an N-point DFT X[k] where $N = N_1N_2$
- Represent the indices *n* and *k* as

$$n = N_2 n_1 + n_2, \quad \begin{cases} 0 \le n_1 \le N_1 - 1 \\ 0 \le n_2 \le N_2 - 1 \end{cases}$$
$$k = k_1 + N_1 k_2, \quad \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le k_2 \le N_2 - 1 \end{cases}$$

Using these index mappings we can write

as
$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

$$X[k] = X[k_1 + N_1 k_2]$$

$$= \sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} x[N_2 n_1 + n_2] W_N^{(N_2 n_1 + n_2)(k_1 + N_1 k_2)}$$

$$= \sum_{n_2=0}^{N_2-1} \sum_{n_1=0}^{N_1-1} x[N_2 n_1 + n_2] W_N^{N_2 n_1 k_1} W_N^{n_2 k_1} W_N^{N_1 n_2 k_2} W_N^{N_1 N_2 n_1 k_2}$$

• Since $W_N^{N_2n_1k_1} = W_{N_1}^{n_1k_1}$, $W_N^{N_1n_2k_2} = W_{N_2}^{n_2k_2}$, and $W_N^{N_1N_2n_1k_2} = 1$, we have

$$X[k_1 + N_1k_2]$$

$$= \sum_{n_2=0}^{N_2-1} \left[\left(\sum_{n_1=0}^{N_1-1} x[N_2 n_1 + n_2] W_{N_1}^{n_1 k_1} \right) W_N^{n_2 k_1} \right] W_{N_2}^{n_2 k_2}$$

where $0 \le k_1 \le N_1 - 1$ and $0 \le k_2 \le N_2 - 1$

- The effect of the index mapping is to map the 1-D sequence x[n] into a 2-D sequence that can be represented as a 2-D array with n_1 specifying the rows and n_2 specifying the columns of the array
- Inner parentheses of the last equation is seen to be the set of N_1 -point DFTs of the N_2 -columns:

$$G[k_1, n_2] = \sum_{n_1=0}^{N_1-1} x[N_2n_1 + n_2] W_{N_1}^{n_1k_1}, \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le n_2 \le N_2 - 1 \end{cases}$$

- Note: The column DFTs can be done in place
- Next, these row DFTs are multiplied in place by the twiddle factors $W_N^{n_2k_1}$ yielding

$$\widetilde{G}[k_1, n_2] = W_N^{n_2 k_1} G[k_1, n_2], \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le n_2 \le N_2 - 1 \end{cases}$$

• Finally, the outer sum is the set of N_2 -point DFTs of the columns of the array:

$$X[k_1 + N_1 k_2] = \sum_{n_2 = 0}^{N_2 - 1} \tilde{G}[k_1, n_2] W_{N_2}^{n_2 k_2}, \quad \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le k_2 \le N_2 - 1 \end{cases}$$

- The row DFTs, $X[k_1 + N_1k_2]$, can again be computed in place
- The input x[n] is entered into an array according to the index map:

$$n = N_2 n_1 + n_2, \begin{cases} 0 \le n_1 \le N_1 - 1 \\ 0 \le n_2 \le N_2 - 1 \end{cases}$$

• Likewise, the output DFT samples *X*[*k*] need to extracted from the array according to the index map:

$$k = k_1 + N_1 k_2, \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le k_2 \le N_2 - 1 \end{cases}$$

- Example Let N = 8. Choose $N_1 = 2$ and $N_2 = 4$
- Then

$$X[k_1 + 2k_2] = \sum_{n_2=0}^{3} \left[\left(\sum_{n_1=0}^{1} x[4n_1 + n_2] W_2^{k_1 n_1} \right) W_8^{k_1 n_2} \right] W_4^{k_2 n_2}$$

for
$$0 \le k_1 \le 1$$
 and $0 \le k_2 \le 3$

• 2-D array representation of the input is

 The column DFTs are 2-point DFTs given by

$$G[k_1, n_2] = x[n_2] + (-1)^{k_1} x[4 + n_2], \begin{cases} 0 \le k_1 \le 1 \\ 0 \le n_2 \le 3 \end{cases}$$

• These DFTs require no multiplications

• 2-D array of row transforms is

$k_1^{n_2}$	0	1	2	3
0	G[0,0]	G[0,1]	G[0,2]	G[0,3]
1	G[1,0]	G[1,1]	G[1,2]	G[1,3]

• After multiplying by the twiddle factors $W_8^{n_2k_1}$ array becomes

- Note: $\widetilde{G}[k_1, n_2] = W_8^{n_2 k_1} G[k_1, n_2]$
- Finally, the 4-point DFTs of the rows are computed:

$$X[k_1 + 2k_2] = \sum_{n_2=0}^{3} \widetilde{G}[k_1, n_2] W_4^{n_2 k_2}, \begin{cases} 0 \le k_1 \le 1 \\ 0 \le k_2 \le 3 \end{cases}$$

• Output 2-D array is given by

k_1	0	1	2	3
0	X[0]	X[2]	X[4]	X[6]
1	X[1]	X[3]	X[5]	X[7]

- The process illustrated is precisely the first stage of the DIF FFT algorithm
- By choosing $N_1 = 4$ and $N_2 = 2$, we get the first stage of the DIT FFT algorithm
- Alternate index mappings are given by

$$n = n_1 + N_1 n_2, \begin{cases} 0 \le n_1 \le N_1 - 1 \\ 0 \le n_2 \le N_2 - 1 \end{cases}$$
$$k = N_2 k_1 + k_2, \begin{cases} 0 \le k_1 \le N_1 - 1 \\ 0 \le k_2 \le N_2 - 1 \end{cases}$$