

Mobile Solar Panels

Sprint 2

Eric Armbruster, Florian Freund, Sebastian Klinke Garching, 17.06.2022

Last Sprint

This Sprint

Hardware

- Connect all missing sensors
- Contribute to / Fork 3rd party libraries
 - Required for I²C daisy chain support
- Calibrate measurements

CoAP

- On ESP: coap-lite Rust crate
- On Raspberry: aiocoap

MQTT

- Mosquitto as MQTT broker
- Containerized the cloud and edge applications

Prototype

Motor Angle Initialization

Team 1 | 17.06.2022 | Mobile Solar Panels

Grid Search

Initial Position

Grid Search

Initial Position

Grid Search

Sunrise to Zenith

Zenith to Sunset

Next Sprint

Next Sprint

- Until demo finish visual components:
 - Finalize the prototype (3D print)
 - Calibrate motion parameters for sun tracking algorithm
 - Cloud: Visualize data in Grafana
- Get started with anomaly detection