AD1 da disciplina Probabilidade e Estatística Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo 01.2010

1ª questão - Conhece-se os resultados de pesquisas aplicadas aos funcionários do setor de contabilidade de duas empresas, apresentados a seguir:

Empresa A

Tabela A1

Funcionários	Escolaridade	Idade	Salário	Anos de	Sexo
- arroioriarroo	(curso)	laaac	(em Reais)	Empresa	Coxo
1	superior	41	1.210,00	7	F
2	Superior	33	1.480,00	8	М
3	Superior	31	970,00	6	М
4	Superior	27	960,00	6	F
5	Superior	24	800,00	4	F
6	Médio	25	680,00	5	F
7	Médio	27	720,00	5	М
8	Médio	22	450,00	2	М
9	Fundamental	21	570,00	5	F
10	Fundamental	22	500,00	4	М

Empresa B

Tabela B-1

Tabela B T				
Faixas	Freqüência	Freqüência relativa	Freqüência acumulada	
Salariais (em reais)	(ni)	(fi)	(fac)	
450,00 650,00	12	0,32	0,32	
650,00 850,00	6	0,16	0,48	
850,00 1.050,00	4	0,1	0,58	
1.050,00 1.250,00	7	0,18	0,76	
1.250,00 1.500,00	9	0,24	1	
Total	38	1		

Tabela B-2

Sexo	Freqüência relativa		
	· (fi)		
М	0,57		
F	0,43		

Tabela B-3

Idade	Freqüência relativa (fi)
20 - 30	0,29
30 -40	0,42
40 -50	0,29

Tabela B-4

Anos de empresa	Freqüência relativa
	(fi)
1 - 4	0,21
4 - 7	0,50
7 - 10	0,29

Tabela B-5

Escolaridade	Freqüência relativa
	(fi)
Fundamental	0,29
Médio	0,42
Superior	0,29

ATENÇÂO: nesta questão houve dois tipos de interpretação da primeira coluna da tabela da Empresa A: uma delas, considera esta primeira coluna somente como um enumeração de funcionários (interpretação 1) e a segunda a considera com o número de funcionários em cada uma das situações (interpretação 2). Para que não haja problemas, colocaremos os resultados para as duas interpretações, que influenciam os itens (a), (d) e (f) desta questão.

Pergunta-se:

a) (0,5 pontos) Utilize as tabelas de frequências relativas para fazer uma comparação entre as duas empresas em relação à formação dos funcionários.

Solução (interpretação 1):

Passo 1: Construir tabela de freqüência de escolaridade da empresa A, utilizando como base a tabela A-1.

Tabela A-2

Curso	Freqüência (n _i)	Freq. Relativa (f_i)	Freq. Acumulada (f _{ac})
Superior	5	0,5	0,5
Médio	3	0,3	0,8
Fundamental	2	0,2	1
	10	1,0	

Passo 2: Comparando tabela A-2 (empresa A) com a tabela B-5 (empresa B) e observando a freqüência relativa de ambas as empresas podemos comparar a variável *curso* das 2 empresas:

Curso	Empresa A	Empresa B
	Freq. Relativa (f _i)	Freq. Relativa (f _i)
Superior	0,5	0,29

Médio	0,3	0,42
Fundamental	0,2	0,29
Total	1,0	1,0

Passo 3: Comparação -

Quanto a forma que os funcionários estão distribuídos nas 2 empresas: verificamos que a Empresa A possui mais funcionários com nível superior que a Empresa B e esta por sua vez possui mais funcionários de nível Médio e Fundamental que a Empresa A.

OBS: Esta comparação só é possível ser realizada pois estamos trabalhando com a freqüência relativa.

Solução (interpretação 2):

Passo 1: Construir tabela de freqüência de escolaridade da empresa A, utilizando como base a tabela A-1.

Tabela A-2

Curso	Freqüência (n _i)	Freq. Relativa (f_i)	Freq. Acumulada (f _{ac})
Superior	15	0,273	0,273
Médio	21	0,382	0,655
Fundamental	19	0,345	1,0
	55	1,0	

Passo 2: Comparando tabela A-2 (empresa A) com a tabela B-5 (empresa B) e observando a freqüência relativa de ambas as empresas podemos comparar a variável *curso* das 2 empresas:

Curso	Empresa A	Empresa B	
	Freq. Relativa (f _i)	Freq. Relativa (f _i)	
Superior	0,273	0,290	
Médio	0,382	0,420	
Fundamental	0,345	0,290	
Total	1,0	1,0	

Passo 3: Comparação -

Quanto a forma que os funcionários estão distribuídos nas 2 empresas: verificamos que a Empresa A e a Empresa B possuem mais funcionários de nível Médio.

Analisando cada nível observamos que a empresa B possui mais funcionários de nível superior que a empresa A e também mais funcionários de nível Médio.

OBS: Esta comparação só é possível ser realizada pois estamos trabalhando com a freqüência relativa.

b) (0,5 pontos) Faça o histograma da distribuição do salário da Empresa B.

Observação: Calculando a densidade:

$$Densidade_{(i)} = \frac{f_i}{comp. faixa_{(i)}}$$
 i = 1, 2, ..., n (n úmero de faixas)

Passo 2: Montar histograma da empresa B utilizando a tabela B-1.

			Freqüência Acumulada	
Faixa	Freqüência	(f_i)	(f _{ac})	Densidade
450,00 650,00	12	0,3	0,3	0,0016
650,00 850,00	6	0,2	0,5	0,0008
850,00 1.050,00	4	0,1	0,6	0,0005
1.050,00 1.250,00	7	0,2	0,8	0,0009
1.250,00 1.500,00	9	0,2	1,0	0,0009
-	38	1		

Histograma da empresa B

c) (0,5 pontos) Classifique cada uma das variáveis.

Solução:

Curso: qualitativa ordinal.
Idade: quantitativa discreta.
Salário: quantitativa continua.
Anos de empresa: quantitativa discreta.
Sexo: qualitativa nominal.

d) (0,5 pontos) Qual a empresa que tem (relativamente) mais trabalhadores com menos de 35 anos de idade? E qual tem mais trabalhadores com menos de 6 anos de empresa?

Observação: Freqüência relativa $f_i = \frac{n_i}{n}$

Solução (interpretação 1):

Passo 1: Construir a tabela de freqüência para empresa A utilizando a tabela A-1.

Tabela A-3- Tabela de freqüência da variável <u>idade</u> - empresa A.

Idade	n _i	f _i
20 35	9	0,9
35 - 50	1	0,1
	10	1

Passo 2: Compar a tabela A-3 com a tabela B-3, da empresa B.

A empresa A tem 90% dos seus funcionários com menos de 35 anos e a empresa B tem aproximadamente 50% dos funcionários com menos de 35 anos de idade, portanto a empresa A tem, relativamente, quase o dobro de funcionários com menos de 35 anos que a empresa B.

Passo 3: Trabalhadores com menos de 6 anos de casa

Para responder tal questão é necessário calcular a freqüência (n_i) e freqüência acumuldada (f_{ac}) da variável <u>anos de empresa</u> da Empresa A, utilizando como base a tabela A-1.

Tabela A-4 – Tabela de freqüência de anos de empresa da empresa A.

Anos de empresa	n _i	f _i	f _{ac}
1 4	1	0,10	0,10
4 - 7	7	0,70	0,80
7 10	2	0,20	1
	10	1	

Passo 4: Incluir na tabela B-4 a coluna da freqüência acumulada.

Tabela B-6 (é a tabela B-4 apenas com a freqüência acumulada).

Anos de empresa	f _i	f _{ac}
1 - 4	0,21	0,21
4 - 7	0,50	0,71
7 - 10	0,29	1
-	1	

Passo 5: Comparando os resultados:

Observando as tabelas A-4 e B-6 é possível verificar que, relativamente, a empresa A tem um pouco mais de funcionários com até 6 anos de empresa (80%) que a empresa B (71%).

Solução (interpretação 2):

Passo 1: Construir a tabela de freqüência para empresa A utilizando a tabela A-1.

Tabela A-3- Tabela de freqüência da variável idade - empresa A.

lda	ade	n _i	f _i
20	- 35	54	0,98
35	- 50	1	0,02
		55	1

Passo 2: Compar a tabela A-3 com a tabela B-3, da empresa B.

A empresa A tem 98% dos seus funcionários com menos de 35 anos e a empresa B tem aproximadamente 50% dos funcionários com menos de 35 anos de idade, portanto a empresa A tem, relativamente, quase o dobro de funcionários com menos de 35 anos que a empresa B.

Passo 3: Trabalhadores com menos de 6 anos de casa

Para responder tal questão é necessário calcular a freqüência (n_i) e freqüência acumuldada (f_{ac}) da variável <u>anos de empresa</u> da Empresa A, utilizando como base a tabela A-1.

Tabela A-4 – Tabela de freqüência de anos de empresa da empresa A.

Anos de empresa	n _i	f _i	f _{ac}
1 4	8	0,145	0,145
4 7	44	0,8	0,945
7 10	3	0,055	1
•	55	1	

Passo 4: Incluir na tabela B-4 a coluna da freqüência acumulada.

Tabela B-6 (é a tabela B-4 apenas com a freqüência acumulada).

Anos de empresa	f _i	f _{ac}
1 - 4	0,21	0,21
4 - 7	0,50	0,71
7 - 10	0,29	1
	1	

Passo 5: Comparando os resultados:

Vamos assumir que em cada faixa a distribuição de probabilidade é uniforme. Observando as tabelas A-4 e B-6 é possível verificar que, relativamente, a empresa A tem um pouco mais de funcionários com até 6 anos de empresa (94,5%) que a empresa B (71%).

e) (1,5 pontos) Calcule a média aritmética, variância e desvio padrão das 2 empresas e a faixa de salário onde se encontra a moda e a mediana. Como a tabela relacionada à empresa B fornece os salários por faixas, utilize o ponto médio, de cada faixa, para encontrar a média e a variância dos salários desta empresa.

Solução (interpretação 1):

Passo 1: Cálculo da média aritmética

Média aritmética:
$$x_{obs} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$
 ou $x_{obs} = \frac{\sum_{i=1}^{n} x_i}{n}$

A Empresa A tem duas formas para cálculo da média justificáveis.

a) Uma é utilizando diretamente os dados da Tabela A-1 (a média é igual ao somatório dos salários dividido por 10)

Tabela A-5

Funcionários	Salário
1	1.210,00
2	1.480,00
3	970,00
4	960,00
5	800,00
6	680,00
7	720,00
8	450,00
9	570,00
10	500,00
Total	8.340,00

$$x_{obs(emp.A)} = \frac{Total}{10} = \frac{8340,00}{10} = 834,00$$

Solução (interpretação 2):

Passo 1: Cálculo da média aritmética

Média aritmética:
$$x_{obs} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$
 ou $x_{obs} = \frac{\sum_{i=1}^{n} x_i}{n}$

Tabela A-5

Funcionários	Salário
1	1.210,00
1	1.480,00
1	1.480,00
1	970,00
1	970,00
1	970,00
1	960,00
1	960,00
1	960,00
1	960,00
1	800,00
1	800,00
1	800,00
1	800,00
1	800,00
1	680,00
1	680,00
1	680,00
1	680,00
1	680,00

Funcionários	Salário
1	680,00
1	720,00
1	720,00
1	720,00
1	720,00
1	720,00
1	720,00
1	720,00
1	450,00
1	450,00
1	450,00
1	450,00
1	450,00
1	450,00
1	450,00
1	450,00
1	570,00
1	570,00
1	570,00
1	570,00

Salário
570,00
570,00
570,00
570,00
570,00
500,00
500,00
500,00
500,00
500,00
500,00
500,00
500,00
500,00
500,00
37.770,00

$$x_{obs(emp.A)} = \frac{Total}{55} = \frac{37770,00}{55} = 686,73$$

A outra forma é, como se quer comparar com a Empresa B e os dados dessa empresa estão por faixa salarial, pode-se admitir que se trabalhe também dessa forma com a Empresa A, embora perca-se informações. A média pode também ser calculada pela fórmula:

$$x_{obs} = \frac{\sum_{i=1}^{k} n_i x_i}{n}$$

Tabela A-8

				Sal. médio	(sal. médio
Faixa Salarial	n _i	f _i	f_{ac}	por faixa	p/faixa) x n _i
450,00 650,00	27	0,491	0,491	550,00	14.850,00
650,00 850,00	18	0,3272	0,8182	750,00	13.500,00
850,00 1.050,00	7	0,1272	0,9454	950,00	6.650,00
1.050,00 1.250,00	1	0,0182	0,9636	1.150,00	1.150,00
1.250,00 1.500,00	2	0,0364	1,00	1.375,00	2.750,00
Total	55	1,00			38.900,00

Nesse caso, a média será:

$$x_{obs(emp.A)} = \frac{\sum_{i=1}^{k} n_{1}(sal.medio.por.faixa)_{i}}{n} = \frac{total}{55} = \frac{38900,00}{55} = 707,28$$

O que significa que calculada da primeira forma, a média será R\$ 686,73 e da segunda, R\$707,28.

Para a Empresa B:

Tabela B-7

Faixas salariais			Sal.médio por	(Sal Médio
	n_i	f _i	faixa	p/faixa) x n _i
450,00 650,00	12	0,32	550,00	6.600,00
650,00 850,00	6	0,16	750,00	4.500,00
850,00 1.050,00	4	0,11	950,00	3.800,00
1.050,00 1.250,00	7	0,18	1.150,00	8.050,00
1.250,00 1.500,00	9	0,24	1.375,00	12.375,00
Total	38	1,00		35.325,00

$$x_{obs(emp.B)} = \frac{\sum_{i=1}^{k} n_{i} (sal.medios.por.faixa)_{i}}{n} = \frac{total}{38} = \frac{35325,00}{38} = 929,60$$

Passo 2:Cálculo da moda e da mediana

Moda - valor com maior freqüência de ocorrência

Mediana- o valor que está na posição central dos valores colocados em ordem:

Empresa A:

Mediana	Faixa 650,00 - 850,00
Moda	Faixa 450,00 - 650,00

Empresa B:

Mediana	Faixa 850,00 - 1050,00
Moda	Faixa 450,00 - 650,00

Passo 3: Cálculo da Variância e Desvio Padrão:

Variância:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_{obs})^2$$

Desvio Padrão:

$$dp_{obs} = \sqrt{\text{var}_{obs}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2}$$

O cálculo da variância da Empresa A será feito também para as duas possíveis formas:

a) <u>considerando o salário de cada trabalhador</u>: nessa tabela acrescentamos uma coluna com o valor da vairável menos a média e outra com o valor elevado ao quadrado, e na última linha dessa coluna está o somatório, que é o numerador da fórmula da variância.

Funcionários	Salário	média	sal média	(sal média)²
1	1.210,00	686,73	523,77	273.814,3
1	1.480,00	686,73	793,27	629.281,6
1	1.480,00	686,73	793,27	629.281,6
1	970,00	686,73	283,27	80.243,44
1	970,00	686,73	283,27	80.243,44
1	970,00	686,73	283,27	80.243,44
1	960,00	686,73	273,27	74.677,98
1	960,00	686,73	273,27	74.677,98
1	960,00	686,73	273,27	74.677,98
1	960,00	686,73	273,27	74.677,98
1	800,00	686,73	113,27	12.830,71
1	800,00	686,73	113,27	12.830,71

1	800,00	686,73	113,27	12.830,71
1	800,00	686,73	113,27	12.830,71
1	800,00	686,73	113,27	12.830,71
1	680,00	686,73	-6,73	45,26
1	680,00	686,73	-6,73	45,26
1	680,00	686,73	-6,73	45,26
1	680,00	686,73	-6,73	45,26
1	680,00	686,73	-6,73	45,26
1	680,00	686,73	-6,73	45,26
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	720,00	686,73	33,27	1.107,07
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	450,00	686,73	-236,73	56.039,8
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	570,00	686,73	-116,73	13.625,26
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
1	500,00	686,73	-186,73	34.867,07
Total	37.770,00		0,0	3.063.610,91

Podemos observar que o somatório dos valores (salário – média) = 0,00, sendo essa uma possível conferência se os cálculos estão certos.

$$var_{obs(Emp.A)} = \frac{1}{55}(3063610,91) = 55702,02$$

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{55702,02} = 236,01$$

b) Considerando a Empresa A por faixas salariais

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	n_i	por faixa	média	- média)	p/faixa - média)2	p/faixa – média)²
450,00 - 650,00	27	550,00	707,28	-157,28	24.737,00	667.899,00
650,00 850,00	18	750,00	707,28	42,72	1.825,00	32.850,00
850,00 1050,00	7	950,00	707,28	242,72	58.913,00	412.391,00
1050,00 1250,00	1	1.150,00	707,28	442,72	196.001,00	196.001,00
1250,00 1500,00	2	1.375,00	707,28	667,72	445.850,00	891.700,00
Total (Σ=)	10					2.200.841,00

Nesse caso, a variância pode ser dada por:

$$var_{obs} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs})^2 = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2$$

A última linha da última coluna fornece o somatório do numerador da fórmula. Assim:

$$var_{obs(Emp.A)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - X_{obs})^2 = \frac{1}{55} (2200841) = 40015,29$$

E o desvio padrão:

$$dp_{obs(Emp.A)} = \sqrt{var_{obs(Emp.A)}} = \sqrt{40015,29} = 200,04$$

Para a Empresa B:

Para a Empresa B:						
Faixas salariais				(Sal. méd	(Sal. méd	
		Sal. médio		p/faixa –	`p/faixa	n _i x (Sal. méd
	n_i	p/ faixa	média	média)	– média)²	p/faixa - média)2
450,00 650,00	12	550,00	929,60	-379,60	144.100,16	1.729.201,87
650,00 850,00	6	750,00	929,60	-179,60	32.258,05	193.548,30
850,00 1050,00	4	950,00	929,60	20,40	415,95	1.663,78
1050,00 1250,00	7	1.150,00	929,60	220,40	48.573,84	340.016,88
1250,00 1500,00	9	1.375,00	929,60	445,40	198.376,47	1.785.388,24
Total (Σ=)	38					4.049.819,08

Logo a variância será:

$$var_{obs(Emp.B)} = \frac{1}{n} \sum_{i=1}^{k} n_i (x_i - \overline{x}_{obs})^2 = \frac{1}{38} (4.049.819,08) = 106.574,19$$

e o desvio padrão:

$$dp_{obs(Emp,B)} = \sqrt{var_{obs(Emp,B)}} = \sqrt{106.574,19} = 326,46$$

.Resumindo:

	E	Empresa A	Emp	resa B	
	por cada salário	por fai	xa salarial		-
Média	R\$ 834,00	R\$ 707,28 R\$ 929,60		29,60	
Variância	R\$ 55.702,02	R\$ 4	R\$ 40.015,29		5.574,19
Desvio padrão	R\$ 236,01	R\$	R\$ 200,04		26,46
Moda	multimodal	R\$ 650,00	R\$ 850,00	R\$ 850,00	- R\$ 1050,00
Mediana	R\$ 640,00	R\$ 450,00	- R\$ 650,00	R\$ 450,00	R\$ 650,00

f) (1,5 pontos) Mostre o que acontecerá com a média, a variância e o desvio padrão da empresa A se cada funcionário receber um gratificação fixa de "c". Mostre também o que acontecerá se na empresa B essa bonificação for de 20% sobre cada salário. Quanto terá que ser a gratificação "c" da empresa A para que sua média fique igual essa nova média da empresa B?

Solução (interpretação 1):

Passo 1: O aluno deve concluir para esse caso, somar uma constante "c" aos valores da tabela, que:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original,
- no caso da variância o resultado não é alterado,
- e nesse caso, é claro que o desvio padrão também não é alterado.

Pode-se chegar a essa conclusão ou analisando as fórmulas ou fazendo os cálculos.

Analisando as fórmulas:

Para a média:

$$\frac{1}{x_{obs(EmpA+c)}} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + n \times c}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \frac{1}{x_{obs(Emp.A)}} + c$$

Para a variância:

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs(Emp.A)})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\overline{x}_{obs(Emp.A)} + c)]^2$$

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} [x_i + c - \overline{x}_{obs(Emp.A)} - c]^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs(Emp.A)})^2$$

Ou fazendo as contas:

$$x_{obs(EmpA)} = \frac{total}{10} = \frac{8340,00 + 10c}{10} = 834,00 + c$$

Funcionários	Salário	média	sal média	(sal média) ²	
1	1210,00+c	834,00+c	376,00	141376,00	
2	2 1480,00+c		646,00	417316,00	
3 970,00+c		834,00+c	136,00	18496,00	

4	960,00+c	834,00+c	126,00	15876,00
5	800,00+c	834,00+c	-34,00	1156,00
6	680,00+c	834,00+c	-154,00	23716,00
7	720,00+c	834,00+c	-114,00	12996,00
8	450,00+c	834,00+c	-384,00	147456,00
9	570,00+c	834,00+c	-264,00	69696,00
10	500,00+c	834,00+c	-334,00	11556,00
Total (Σ=)	8340,00 + 100		0,00	859640,00

Variância igual a tabela original

A mesma coisa pode ser mostrada para a Empresa A com cálculo de salários em faixas (caso o alunos tenham preferido essa alternativa) assim:

$$x_{obs(Emp.A+c)} = \frac{\sum_{i=1}^{k} n_i(x_i + c)}{n} = \frac{\sum_{i=1}^{k} n_i x_i + (n_1 + n_2 + \dots + n_k) \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i + n \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i}{n} + c$$

E a média sendo alterada somente do valor de "c" a variância e desvio padrão também não mudam.

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	n_i	por faixa	média	- média)	p/faixa - média)2	p/faixa - média)2
450,00+c 650,00+c	3	550,00+c	832,50+c	-282,50	79806,25	239418,75
650,00+c 850,00+c	3	750,00+c	832,50+c	-82,50	6806,25	20418,75
850,00+c 1050,00+c	2	950,00+c	832,50+c	117,50	13806,25	2761,25
1050,00+c 1250,00+c	1	1150,00+c	832,50+c	317,50	100806,25	100806,25
1250,00+c 1500,00+c	1	1375,00+c	832,50+c	542,50	294306,25	294306,25
Total (Σ=)	10					657711,25

Passo 4: Acrescentar 20% nas faixas salariais da empresa B, significa multiplicar cada valor do salário por 1,2 e pode ser vistoa também pela fórmula ou fazendo os cálculos. Pela fórmula:

$$\overline{x}_{obs(Emp.B)} = \frac{\sum_{i=1}^{n} 1, 2x_i}{n} = \frac{1, 2\sum_{i=1}^{n} x_i}{n} = 1, 2\overline{x}_{obs(Emp.B)}$$

$$var_{obs(Emp.B^*1,2)} = \frac{1}{n} \sum_{i=1}^{n} (1,2x_i - 1,2\overset{-}{x}_{obs(Emp.B)})^2 = \frac{1}{n} \sum_{i=1}^{n} [1,2(x_i - \overset{-}{x}_{obs(Emp.B)})]^2 =$$

$$var_{obs(Emp.B*1,2)} = \frac{1}{n} \sum_{i=1}^{k} 1, 2^{2} (x_{i} - x_{obs(Emp.B)})^{2} = \frac{1, 2^{2}}{n} \sum_{i=1}^{k} (x_{i} - x_{obs(Emp.B)})^{2} = 1, 2^{2} var_{obs(Emp.B)}$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original), ou seja, R\$391,75

Ou. fazendo os cálculos:

		Sal. médio p/	n _i x (sal. médio p/	média	(Sal. méd p/faixa –	(Sal. méd p/faixa	n _i x (Sal. méd
Faixas salariais	ni	faixa	faixa)		média)	– média)²	p/faixa - média)²
540,00 780,00	12	660,00	7.920,00	1.115,53	-455,53	207.504,22	2.490.050,69
780,00 1020,00	6	900,00	5.400,00	1.115,53	-215,53	46.451,59	278.709,56
1020,00 1260,00	4	1.140,00	4.560,00	1.115,53	24,47	598,96	2.395,84
1260,00 1500,00	7	1.380,00	9.660,00	1.115,53	264,47	69.946,33	489.624,31

1500,00 1800,00	9	1.650,00 14.850,00	1.115,53	534,47	285.662,12	2.570.959,07	
Total ($\sum =$)	38	42.390,00)		610.163,23	5.831.739,47	

$$\frac{-}{x_{obs(EmpB*1,2)}} = \frac{42.390,00}{38} = 1.153,53$$

$$var_{obs(Emp.B*1,2)} = \frac{5.831.739,47}{38} = 153.466,83$$

$$dp_{obs(Emp.B*1,2)} = \sqrt{var_{obs(Emp.B)}} = 391,75$$

Finalmente, vamos responder a pergunta:

que valor deve ter a constante "C" para que a média da Empresa A seja igual a média da Empresa B, com acréscimo de 20%?

Média da Empresa A (Emp. A + c) = R\$ (834,00+c) Média da Empresa B (Emp.B * 1,2)= R\$1.153,53

$$1153,53 = 834,00 + c \Rightarrow c = 319,53$$

Ou, considerando a Empresa A pela faixa salarial veremos que dará uma diferença de menos de R\$2,00. Média da Empresa A (Emp. A + c) = R\$ (832,50+c) Média da Empresa B (Emp.B *1,2)= R\$1.153,53

$$1153,53 = 832,50 + c \Rightarrow c = 321,03$$

Solução (interpretação 2):

Passo 1: O aluno deve concluir para esse caso, somar uma constante "c" aos valores da tabela, que:

- no caso da média, soma-se a constante "c" ao resultado da média da tabela original,
- no caso da variância o resultado não é alterado,
- e nesse caso, é claro que o desvio padrão também não é alterado.

Pode-se chegar a essa conclusão ou analisando as fórmulas ou fazendo os cálculos.

Analisando as fórmulas:

Para a média:

$$\frac{1}{x_{obs(EmpA+c)}} = \frac{\sum_{i=1}^{n} (x_i + c)}{n} = \frac{\sum_{i=1}^{n} x_i + n \times c}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + c = \frac{1}{x_{obs(Emp.A)}} + c$$

Para a variância:

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_{obs(Emp.A)})^2 = \frac{1}{n} \sum_{i=1}^{n} [(x_i + c) - (\bar{x}_{obs(Emp.A)} + c)]^2$$

$$var_{obs(Emp.A+c)} = \frac{1}{n} \sum_{i=1}^{n} [x_i + c - \overline{x}_{obs(Emp.A)} - c]^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}_{obs(Emp.A)})^2$$

Ou fazendo as contas:

$$x_{abs(EmpA)} = \frac{total}{55} = \frac{37770 + 55c}{55} = 686.73 + c$$

Variância igual a tabela original

A mesma coisa pode ser mostrada para a Empresa A com cálculo de salários em faixas (caso o alunos tenham preferido essa alternativa) assim:

$$x_{obs(Emp.A+c)} = \frac{\sum_{i=1}^{k} n_i(x_i + c)}{n} = \frac{\sum_{i=1}^{k} n_i x_i + (n_1 + n_2 + \dots + n_k) \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i + n \times c}{n} = \frac{\sum_{i=1}^{k} n_i x_i}{n} + c$$

E a média sendo alterada somente do valor de "c" a variância e desvio padrão também não mudam.

		Sal. médio		(sal.médio	(sal.médio	ni x (sal.médio
Faixa Salarial	n _i	por faixa	média	- média)	p/faixa - média)2	p/faixa - média)2
450,00+c - 650,00+c	27	550,00+c	707,28+c	-157,28	24.737,00	667.899,00
650,00+c 850,00+c	3	750,00+c	707,28+c	42,72	1.825,00	32.850,00
850,00+c - 1050,00+c	2	950,00+c	707,28+c	242,72	58.913,00	412.391,00
1050,00+c - 1250,00+c	1	1.150,00+c	707,28+c	442,72	196.001,00	196.001,00
1250,00+c 1500,00+c	1	1.375,00+c	707,28+c	667,72	445.850,00	8.910.700,00
Total (Σ=)	55					2.200.841,00

Passo 4: Acrescentar 20% nas faixas salariais da empresa B, significa multiplicar cada valor do salário por 1,2 e pode ser vistoa também pela fórmula ou fazendo os cálculos. Pela fórmula:

$$\bar{x}_{obs(Emp.B)} = \frac{\sum_{i=1}^{n} 1, 2x_i}{n} = \frac{1, 2\sum_{i=1}^{n} x_i}{n} = 1, 2\bar{x}_{obs(Emp.B)}$$

$$var_{obs(Emp.B*1,2)} = \frac{1}{n} \sum_{i=1}^{n} (1,2x_i - 1,2\overline{x}_{obs(Emp.B)})^2 = \frac{1}{n} \sum_{i=1}^{n} [1,2(x_i - \overline{x}_{obs(Emp.B)})]^2 = var_{obs(Emp.B*1,2)} = \frac{1}{n} \sum_{i=1}^{k} (1,2^2(x_i - \overline{x}_{obs(Emp.B)})^2 = \frac{1}{n} \sum_{i=1}^{k} (x_i - \overline{x}_{obs(Emp.B)})^2 = 1,2^2 var_{obs(Emp.B)}$$

Ou seja, a média fica multiplicada pela constante (1,2), a variância, pela constante ao quadrado e o desvio padrão também será multiplicado pela constante, isto é, será igual a 1,2 X (desvio padrão original), ou seja, R\$391,75

Ou, fazendo os cálculos:

Faixas salariais	n _i	Sal. médio p/ faixa	n _i x (sal. médio p/ faixa)	média	(Sal. méd p/faixa – média)	(Sal. méd p/faixa – média)²	n _i x (Sal. méd p/faixa - média)²
540,00 780,00	12	660,00	7.920,00	1.115,53	-455,53	207.504,22	2.490.050,69
780,00 1020,00	6	900,00	5.400,00	1.115,53	-215,53	46.451,59	278.709,56
1020,00 - 1260,00	4	1.140,00	4.560,00	1.115,53	24,47	598,96	2.395,84

1260,00 -				1.115,53			
1500,00	7	1.380,00	9.660,00		264,47	69.946,33	489.624,31
1500,00				1.115,53			
1800,00	9	1.650,00	14.850,00		534,47	285.662,12	2.570.959,07
Total (∑ =)	38		42.390,00			610.163,23	5.831.739,47

$$-\frac{1}{x_{obs(EmpB*1,2)}} = \frac{42.390,00}{38} = 1.153,53$$

$$var_{obs(Emp.B*1,2)} = \frac{5.831.739,47}{38} = 153.466,83$$

$$dp_{obs(Emp.B*I,2)} = \sqrt{var_{obs(Emp.B)}} = 391,75$$

Finalmente, vamos responder a pergunta:

que valor deve ter a constante "C" para que a média da Empresa A seja igual a média da Empresa B, com acréscimo de 20%?

Média da Empresa A (Emp. A + c) = R\$ (686,73+c) Média da Empresa B (Emp.B * 1,2)= R\$1.153,53

$$1153.53 = 686.73 + c \Rightarrow c = 466.8$$

Ou, considerando a Empresa A pela faixa salarial veremos que dará uma diferença de menos de R\$2,00. Média da Empresa A (Emp. A + c) = R\$ (707,28+c) Média da Empresa B (Emp.B *1,2)= R\$1.153,53

$$1153,53 = 707,28 + c => c = 446,25$$

2ª questão (1,0 ponto) - Considere 4 fábricas, F₁, F₂, F₃, F₄, que produzem teclados de computadores em lotes semanais de 150, 200, 300 e 350 teclados, respectivamente. Uma empresa compra teclados dessas 4 fábricas para revender. Ao chegar nessa empresa os lotes semanais das 4 fábricas são misturadas. Suponha que a probabilidade de se encontrar teclados defeituosos em cada uma das fábricas seja de 2%, 10%, 7% e 5%, respectivamente. Selecionando-se um desses teclados ao acaso, determine a probabilidade dele:

a) ser da fábrica F2;

$$P(F_2) = \frac{200}{1000} = 0.2$$

b) ser defeituoso, sabendo que o teclado foi fabricado na fábrica F₂;

$$P(Def \mid F_2) = \frac{P(Def \cap F_2)}{P(F_2)} = \frac{0.1}{0.2} = 0.5$$

c) não ser defeituoso;

$$P(NDef) = 1 - P(Def)$$

$$P(Def) = P(Def|F_1) * P(F_1) + P(Def|F_2) * P(F_2) + P(Def|F_3) * P(F_3) + P(Def|F_4) * P(F_4)$$

$$P(Def) = \left\{ 0.02 * \frac{150}{1000} + 0.1 * \frac{200}{1000} + 0.07 * \frac{300}{1000} + 0.05 * \frac{350}{1000} \right\} = 0.0615$$

Logo,

$$P(NDef) = 1 - P(Def) = 1 - 0.0615 = 0.9385$$

d) ser da fábrica F₂, sabendo que o teclado é defeituoso.

$$P(F_2|Def) = \frac{P(Def|F_2) * P(F_2)}{P(Def)} = 0.1 * \frac{0.2}{0.0615} = 0.3252$$

3ª questão (1,0 ponto) – Durante no primeiro dia de um feriado da Semana Santa do ano passado, 2009, a chegada de ônibus na Rodoviária Novo Rio se deu segundo o modelo de Poisson com taxa de 1 ônibus por minuto. Supondo que neste ano a demanda se mantenha:

 $\lambda = 1$ (média de 1 ônibus por minuto)

X = Quantidade de ônibus chegando à rodoviária

$$P(X=x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

(i) determine a probabilidade da chegada de 2 ônibus em um minuto qualquer no primeiro dia de feriado da próxima Semana Santa;

$$P(X=2) = \frac{1^2 e^{-1}}{2!} = 0.184$$

(ii) se for possível desembarcar somente 2 ônibus por minuto, qual a probabilidade de haver ônibus sem desembarque imediato?

$$P(X > 2) = 1 - \{P(X = 2) + P(X = 1) + P(X = 0)\} =$$

= 1 - \{0.184 + 0.368 + 0.368\} = 0.08

4ª questão (1,0 ponto) - Sabe-se que os pacientes diagnosticados com câncer de próstata precocemente têm 80% de probabilidade de serem completamente curados. Para um grupo de 20 pacientes nessas condições, use o modelo binomial e calcule qual a probabilidade de:

Dados do problema:

Modelo Binomial

Tamanho da população n= 20 Probabilidade de sucesso p = 80%=0,8 Probabilidade de fracasso (1-p)=1-0,8=0,2

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

(i) treze (13) ficarem completamente curados;

$$P(X = 13) = {20 \choose 13} 0.8^{13} (0.2)^{20-13}$$

$$P(X = 13) = 77520 * 0.055 * 0.0000128 = 0.0546$$

(ii) menos que 3 permanecerem com a doença;

$$P(X \le 17) = 1 - \{P(X = 18) + P(X = 19) + P(X = 20)\}$$
 onde
$$P(X = 18) = {20 \choose 18} \, 0.8^{18} (0.2)^{20-18} = 190 * 0.02 * 0.04 = 0.152$$

$$P(X = 19) = {20 \choose 19} \, 0.8^{19} (0.2)^{20-19} = 20 * 0.0144 * 0.2 = 0.0576$$

$$P(X = 20) = {20 \choose 20} \, 0.8^{20} (0.2)^{20-20} = 1 * 0.01153 * 1 = 0.01153$$

Portanto

$$P(X \le 17) = 1 - \{0.152 + 0.0576 + 0.01153\} = 0.78$$

(iii) de 5 a 7 pacientes (ou seja: 5 |---| 7) não ficarem curados.

$$P(5 \le Doentes \le 7) = P(X = 15) + P(X = 14) + P(X = 13)$$
 onde
$$P(X = 13) = {20 \choose 13} 0.8^{13} (0.2)^{20-13} = 77520 * 0.055 * 0.0000128 = 0.0546$$

$$P(X = 14) = {20 \choose 14} 0.8^{14} (0.2)^{20-14} = 38760 * 0.044 * 0.000064 = 0.109$$

$$P(X = 15) = {20 \choose 15} 0.8^{15} (0.2)^{20-15} = 15504 * 0.0352 * 0.000032 = 0.0175$$

Portanto,

$$P(5 \le Doentes \le 7) = 0.0546 + 0.109 + 0.0175 = 0.1811$$

5ª questão (1,0 ponto) – Considere a empresa que compra os teclados para revender, da 2ª questão, e faça um estudo das probabilidade de se encontrar um defeito, pela primeira vez, em cada uma dos 10 primeiros teclados a serem escolhidos ao acaso (com reposição), ou seja, de se encontrar o primeiro teclado com defeito; de encontrar o segundo teclado com defeito, ..., até o 10° teclado com defeito (use o computador para facilitar seus cálculos).

Da questão dois sabemos que a probabilidade de encontrar um teclado defeituoso é dada por:

$$P(Def) = \left\{0.02 * \frac{150}{1000} + 0.1 * \frac{200}{1000} + 0.07 * \frac{300}{1000} + 0.05 * \frac{350}{1000}\right\} = 0.0615$$

e, chamando de "sucesso" a probabilidade de encontrar um teclado defeituoso, temos o seguinte resultado, utilizando o modelo geométrico:

$$P(X = k+1) = p (1-p)^k$$

k+1	P(X=k+1)
1	0,0615
2	0,057718
3	0,054168
4	0,050837
5	0,04771
6	0,044776
7	0,042022
8	0,039438
9	0,037013
10	0,034736

6ª questão (1,0 ponto) — Num aquário de um instituto de pesquisa, pesquisadores acompanham o crescimento de 20 peixes de água doce: 12 da espécie A e 8 da espécie B, avaliando periodicamente seus pesos e tamanhos. Se em determinado dia de avaliação três peixes forem capturados de uma única vez, utilize um modelo de probabilidade para determinar a probabilidade de:

20 peixes - 12 de A e 8 de B.

Dados do problema:

Modelo Hipergeométrico

Tamanho da população n= 20

Tamanho da amostra r = 3

Sucesso (espécie A) m = 12

Sucesso amostra k = ?

$$P(X = k) = \frac{\binom{m}{k} \binom{n-m}{r-k}}{\binom{n}{r}}$$

(i) Maioria ser da espécie A, isto é, X=2

$$P(X=2) = \frac{\binom{12}{2}\binom{20-12}{3-2}}{\binom{20}{3}} = \frac{66 * 8}{1140} = 0,4632$$

(ii) Todos serem da espécie A;

$$P(X=3) = \frac{\binom{12}{3}\binom{20-12}{3-3}}{\binom{20}{3}} = \frac{220*1}{1140} = 0,193$$

(iii) Pelo menos 1 ser da espécie A.

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{\binom{12}{0}\binom{20 - 12}{3 - 0}}{\binom{20}{3}} = 1 - \frac{1 * 56}{1140} = 0.951$$