Introduction to Computer Programming

1.2 Variables

Variables

- · We need a way to store and use values, e.g. numbers, within a program
- We can assign a value to a variable.
- The print function displays whatever is between the parenthses (...)

```
In [37]:
A = 1
print(A)

1
In [8]:
A = 1.0
B = 4.0

True
In [4]:
```

Data Types

A, B = 1.0, 4.0

Every variable has a type (int, float, string).

Basic Data Types (not exhaustive)

- int integer
- · float floating point number (number with decimal point)
- str string: text data enclosed within quotation marks
 e.g. 'text' or "text"
 (including number represented as text data)
- bool boolean: True or False

A type is automatically assigned when a variable is created.

Python's type() function returns the type of a variable within the parentheses (...).

Example: Create some variables and display their type

```
In [39]:
```

```
A = 1
print(A, type(A))

B = 1.0
print(B, type(B))

C = '1'
print(C, type(C))

D = True
print(D, type(D))

1 <class 'int'>
1.0 <class 'float'>
1 <class 'str'>
True <class 'bool'>
```

Casting

The data type of a variable can be converted by *casting* (int(variable_name), float(variable name)) **Example:** Convert from a floating point number to an integer

```
In [26]:
```

```
B = 1.0
E = int(B)
print(E, type(E))
```

```
1 <class 'int'>
```

Arithmetic Operators

Python can be used like a calculator.

Arithmetic operators (+, -, /, *) are used with numeric values to perform common mathematical operations.

Operators are listed ib order of operator precedence

```
** Exponent

* Multiplication

/ Division

// Floor division (round down to the next integer)

% Modulo a % b = a - b * (a // b) (remainder)

+ Addition

- Subtraction
```

Example: Find the area of a circle with diameter 2 metres


```
In [3]:
```

```
pi = 3.142
r = 2
A = pi * r ** 2
print(A, 'm2')
```

12.568 m2

Arithmetic operators - a word of warning!

Question: What will the output of the following code be?

```
A = 2
B = '2'

print(A + A)

print(A + B)

print(B + B)
```

```
A = 2B = '2'
```

Answer: Numbers represented as strings are not recognised as numerical values. Arithmetic Operators behave differently on numerical and non-numerical values.

```
print(A + A)
```

```
print(A + B)
```

Error.

Cannot add numerical and non-numerical value

```
print(A + A)
```

22

Adding string (text) data connect the two strings

In [43]:

```
A = 2
B = '2'
print (A + A)
# print (A + B) # generates an error
print (B + B) # strings are connected using +
```

22

Comments:

Comment are notes in the program that are not be run as code.

The hash # symbol is used to add a comment to a line of code.

When you complete the in-class exercises today you can choose to:

- save your answers to each exercise as separate .py (Python) files
- comment out some of your code to allow you to store it all in one file, but only run certain (uncommented)
 blocks of code

Strings

Strings behave differently from numerical data.

We can return the Nth character(s) of a string with string[N]:

```
In [6]:
```

```
x = 'Hello'
print(x[0]) # first letter

print(x[4]) # last letter
print(x[-1])

print(x[0:3]) # first 3 letters
print(x[:3])

print(x[2:5]) # last three letters
print(x[2:])
print(x[-3:])
```

H o o Hel Hel llo llo

In-class Demos

Example 1: Find the volume of a cone.

```
Base radius = 2 cm
Height = 10 cm
Volume of a cone: V = \frac{Ah}{3} where A = base area
```


In [5]:

```
pi = 3.142
r = 2
h = 10

A = pi * r ** 2 # (cm2)
# A can now be used as a variable in other equations
V = A * h / 3 # (cm3)
print(V, 'cm3')
```

41.893333333333 cm3

Example 2: Create a varibale Name and assign it a string value.

Use the variable to print the output: My name is followed by the value of Name . e.g.

My name is Hemma

In [10]:

```
Name = 'Hemma'
print('My name is ' + Name)
```

My name is Hemma