Problema de empacotamento de retângulos métodos de solução baseados em bottom-left

Gabriel Medeiros Lopes Carneiro Orientador: Pedro Belin Castellucci Coorientador: Rafael de Santiago

Universidade Federal de Santa Catarina

7 de junho de 2023

2023-06-07

Problema de empacotamento de retângulos

Meu nome é Gabriel e hoje vou apresentar uma prévia do meu tcc.

O trabalho trata sobre métodos de solução baseados em *bottom-left* para problema de empacotamento, ele foi feito sob orientação do professor Pedro e teve coorientação do professor Rafael.

Sumário

- 1. Conceitos básicos
- 2. Problema
- 3. Bottom-left
- 4. Resultados
- 5. Conclusão

Problema de empacotamento de retângulos

Problema
 Bottom-left
 Resultados
 Complução

└─Sumário

Vou começar explicando alguns termos que devo usar ao longo da apresentação.

Depois vou explicar o problema em si, passando por suas características e classificações.

Vou mostrar o que é *bottom-left*, como ela funciona e as adaptações feitas com base nela.

Também vou mostrar os resultados obtidos ao rodar instâncias de teste.

Por fim, vou apresentar algumas conclusões que podem ser feitas a partir do trabalho.

Modelos de otimização

$$\min/\max f(x), x \in \mathcal{X}.$$

- x: variável de decisão, $x = x_1, x_2, \dots, x_n$.
- \mathcal{X} : conjunto factível ou domínio;
- f(x): função objetivo.

Problema de empacotamento de retângulos

Conceitos básicos

Modelos de otimização

Conceitos básicos

delos de otimização

 $\min/\max f(x), x \in X$.

variável de decisão, $x = x_1, x_2$

Modelos de otimização são aproximações da realidade, representam o problema de maneira simples e objetiva, usando restrições. Geralmente quer minimizar ou maximizar uma função f(x) com x obedecendo algumas restrições.

- x: variável de decisão, $x = x_1, x_2, \dots, x_n$.
- \mathcal{X} : conjunto factível ou domínio, possui todas as soluções possíveis para o problema.
- f(x): função objetivo, a qual determinará o critério de escolha da solução.

Tipos de soluções

- Factivel.
 - Ótima.
 - Problema ilimitado.
- Problema infactível.

Problema de empacotamento de retângulos Conceitos básicos Tipos de soluções -Conceitos básicos

- Factível: satisfaz todas as restrições do problema.
- Ótima: melhor solução factível.
- Problema ilimitado: não é possível encontrar uma solução ótima, ou seja, sempre é possível achar uma melhor.
- Problema infactível: quando o problema não possui solução, geralmente devido a muitas restrições.

Modelo contínuo × discreto

Figura: Exemplo de modelo contínuo e discreto.

Problema de empacotamento de retângulos

Conceitos básicos

Tipos de soluções

Conceitos básicos

Um modelo é contínuo quando sua região factível é contínua, ou seja, dado um ponto dessa região todos os seus vizinhos também serão uma solução.

Modelos discretos não possuem seu domínio contínuo.

Métodos exatos × heurísticos

Exatos

- Solução ótima.
- Tempo.
- Recursos.

Heurísticos

- Solução factível.
- Simplicidade.
- Grande porte.

2023-06-07

Problema de empacotamento de retângulos

Conceitos básicos

Métodos exatos × heurísticos

Conceitos básicos

Exatos Heuristicos

- Sologio oftima.
- Songo.
- Tempo.
- Recursos.
- Gram

Métodos exatos sempre vão garantir a solução ótima para o problema, porém encontrar tal solução pode requerer grande tempo e/ou muitos recursos computacionais.

Já heurísticas buscam por soluções factíveis e são geralmente usadas em problemas de grande porte.

O problema de interesse é NP-difícil, então buscar uma solução ótima fica praticamente inviável devido a limitações de tempo e recursos computacionais. Uma heurística será utilizada para obter uma solução boa em tempo hábil.

Heurísticas geralmente são simples e acabam caindo em ótimos locais.

Alocar peças em um espaço.

- Difícil resolução.
- N-dimensional.
- Tipos de peças.
- Classificação.
- Variantes.

A premissa do problema é simples, alocar peças em um espaço. Pode parecer algo bobo de resolver, mas é de difícil resolução já que pode possuir N-dimensões e diversos tipos de peças, de modo que é preciso separar o problema em diferentes classes e ainda existem variantes dentro das classificações.

Alocar peças em um espaço

Difícil resolução.

N-dimensional.

Tipos de peças.

Classificação.

Variantes.

N-dimens $\overline{\tilde{o}}$ es

Figura: Represeção 1D, 2D e 3D.

Fonte:(CASTELLUCCI, 2019)

Problema de empacotamento de retângulos

Problema

N-dimensões

Problema

Como eu disse, o problema pode ter N-dimensões, aqui vou citar alguns exemplos.

- O caso 1D pode ser usado para empilhar caixas de mesma profundidade e largura.
- Já no 2D poderia ser aplicado em casos onde somente a profundidade é fixa.
- E o 3D seria alocar caixas em um depósito ou container.
- O trabalho se concentra somente no caso 2D.

Restrições

$$x_i \in \{0, \dots, W - w_i\}, y_i \in \{0, \dots, H - h_i\} (i \in \mathcal{I}')$$
 (1)

$$[x_i, x_i + w_i) \cap [x_j, x_j + w_j) = \emptyset \text{ ou } [y_i, y_i + h_i) \cap [y_j, y_j + h_j) = \emptyset (i, j \in \mathcal{I}', i \neq j)$$
 (2)

Como já definimos a dimensão do problema, podemos ver as restrições do modelo.

A primeira restrição garante que um item só é alocado no recipiente se couber nele.

Já a segunda impede sobreposição entre as peças.

Tipos de peças

Figura: Exemplos de peças regulares (esquerda) e irregulares (direita).

Fonte:(BARTMEYER et al., 2021)

Problema de empacotamento de retângulos

Problema
Tipos de peças
Problema

- Regulares: Possuem formato convexo.
- Irregulares: Possuem formato côncavo.
- Outra forma de se definir é checar se existe alguma reta que atravesse o objeto em dois pontos diferentes, se sim, é irregular.
- O trabalho foca em peças regulares retangulares.

Classificação

- Empacotamento em faixa.
- Empacotamento da mochila.
- Empacotamento em caixas.
- Empacotamento ortogonal.

Problema de empacotamento de retângulos

Problema
Classificação
Problema

Empacotamento em faixa.
 Empacotamento em faixa.
 Empacotamento da muchila.
 Empacotamento or cuisas.
 Empacotamento ortogonal.

- Empacotamento em faixa: Dado um conjunto de itens e uma caixa com comprimento fixo, queremos encontrar uma solução de altura mínima.
- Empacotamento da mochila: Nesse caso, queremos maximizar o valor da caixa (geralmente é a área da caixa).
- Empacotamento em caixas: Minimizar o número de caixas necessárias para empacotar todos os itens.
- Empacotamento ortogonal: Alocar todos os itens numa caixa.
- Todas classificações do problema são NP-difícil, com exceção da ortogonal (NP-completo)(IORI; LIMA et al., 2022).

Variantes

- Corte guilhotinado.
- Rotações ortogonais.
- Restrições de carga e descarga.
- Caixas de tamanho variável.

Problema de empacotamento de retângulos
Problema
Variantes
Problema

Problema
Venezio

Corte guillorimelo.

Corte guillorimelo.

Roacque ertogonia.

Roacque ertogonia.

Roacque de carga e decarga.

Catxas de tamanho variavel.

Aqui vou citar algumas variantes do problema, mas nehuma foi usada no trabalho.

- Corte guilhotinado: Consiste em cortar a caixa de forma paralela a um dos lados de forma recursiva.
- Rotações ortogonais: É um modo de relaxar o problema, permitindo rotações de 90° nos itens.
- Restrições de carga e descarga: Algumas peças precisam ser posicionadas em certa posição ou próximas a outras.
- Caixas de tamanho variável: Define que caixas não precisam ter o mesmo tamanho (aplicável somente para Empacotamento em Caixas).

$Bottom ext{-}left$

Figura: Representação de alocação.

Fonte: (BARTMEYER et al., 2021)

Problema de empacotamento de retângulos 2023-06-0 Bottom-left

-Bottom-left

Como o problema é NP-difícil uma heurística será usada e a bottom-left foi a escolhida.

Ela é bem simples, dado uma lista como entrada, os itens são retirados um a um e posicionados no ponto mais a baixo a mais a esquerda quanto for possível.

Caso a peça não caiba em nenhuma posição ela não entra na solução e passa-se para a próxima da fila.

Agui fica claro que a seguência de alocação tem impacto direto na qualidade da solução e é um ponto a ser resolvido. Mas como definir essa ordenação? Existe algum critério que se sobressai dos demais?

Critérios de ordenação

- Área.
- Perímetro.
- Largura.
- Altura.
- Id.

A partir desse ponto começa de fato o desenvolvimento do trabalho.

5 critérios de ordenação foram escolhidos: área, perímetro, largura, altura e id.

A ordenação por id considera a ordem em que os itens foram colocados na lista (ou criados), ou seja, seria a forma padrão de resolver.

Cada critério pode ser usado de forma crescente ou decrescente.

Com os critérios definidos, podemos passar para os próximos pontos do problema, que são a sobreposição e o domínio infinito.

Sobreposição e domínio infinito

Figura: Resolvendo sobreposição e domínio infinito.

Supondo que estejamos em um estado do modelo como mostra a figura, onde o item 0 foi o primeiro alocado e o item 1 foi alocado a sua direita na posição (2, 0), porque não cabia logo acima na posição (0, 2) devido a restrição 1.

Sobreposição e domínio infinito

Figura: Resolvendo sobreposição e domínio infinito.

Agora queremos alocar um terceiro item de largura 3 e altura 1. Ao posicionar a peça na posição (0, 2) percebe-se que a restrição 1 é satisfeita, porém a restrição 2 não.

Sobreposição e domínio infinito

Figura: Resolvendo sobreposição e domínio infinito.

Nesse caso, com poucas peças, com caixa pequena e um auxílio visual é fácil dizer que a posição (0,4) é válida, mas como chegar até ela? Existem infinitos pontos entre as coordenadas (0,2) e (0,4).

Sobreposição e domínio infinito

Figura: Resolvendo sobreposição e domínio infinito.

Como todas as instâncias tratam somente de peças e recipientes com valores inteiros uma abordagem possível seria discretizar o domínio.

Sobreposição e domínio infinito

Figura: Resolvendo sobreposição e domínio infinito.

Dessa forma somente coordenadas de valores inteiros precisariam ser checadas, resolvendo parcialmente o problema com o domínio, já que ainda temos muitos pontos para checar, principalmente em instâncias grandes. Mas isso não resolve a parte de sobreposição. Para cada ponto ainda é necessário verificar se existe sobreposição com cada uma das peças já alocadas, algo extremamente custoso. Além disso, a discretização não funcionaria tão bem em casos diferentes, com valores não inteiros, prejudicando a aplicação em vários problemas do mundo real.

Regiões

- Vertical.
- Horizontal.
- max(área).
- Nenhuma.

Ambos os problemas, de sobreposição e de domínio infinito, podem ser resolvidos utilizando a estratégia de criação de regiões. Utilizando essa técnica é possível ignorar a restrição 2. Nela, ao posicionar uma peça, duas regiões são criadas e o item seguinte somente será posicionado se couber em uma dessas regiões.

O domínio passa a ser somente o canto inferior esquerdo de cada uma das regiões e sobreposições não são mais possíveis. Além disso, a regra para definir se uma peça cabe em dada região é igual a restrição 1, tornando o algoritmo de solução bem simples. Escolhi criar as regiões de 4 formas diferentes, para identificar se isso teria algum impacto na solução.

 ${\rm Regi\tilde{o}es}$

Figura: Regiões criadas traçando uma linha vertical.

A primeira é traçando uma linha vertical a partir do canto superior direito de cada peça alocada. Nas figuras, retângulos indicados com um R no começo são regiões.

 ${\rm Regi\tilde{o}es}$

Figura: Regiões criadas traçando uma linha horizontal.

 ${\bf A}$ segunda é igual a primeira, porém usando uma linha horizontal.

 ${\rm Regi\tilde{o}es}$

Figura: Regiões criadas maximizando uma das regiões.

Já na terceira é traçada uma linha (vertical ou horizontal) que maximize a área de uma das regiões geradas, basicamente identifica qual dos dois primeiros métodos gera a maior área. Isso é interessente pois dá uma garantia maior de que o item seguinte será alocado, em contrapartida pode gerar muitas regiões pequenas que podem não ser utilizadas, diminuindo a qualidade da solução.

 ${\rm Regi\tilde{o}es}$

Figura: Regiões criadas possibilitando sobreposição.

Problema de empacotamento de retângulos $\begin{array}{c|c} & -Bottom\text{-}left \\ \hline & -Regi\~oes \\ \hline & -Bottom\text{-}left \end{array}$

No último modo nenhuma linha é traçada, todas as regiões vão até o final do recipiente. Nesse caso sobreposições de peças podem ocorrer, então verificações são necessárias para cumprir a restrição 2. Teoricamente ao permitir sobreposições possibilita que mais peças sejam alocadas. Esse modo foi criado justamente para verificar isso e qual seu custo.

Testes

- 45 instâncias.
 - BKW.
 - GCUT.
 - NGCUT.
 - OF.
 - OKP.
- 5 testes por configuração.
- $45 \cdot 5 \cdot 2 \cdot 4 \cdot 5 = 9000$ execuções.
- ± 5 horas.

Para testar os métodos de solução criados foram usados 5 conjuntos de instâncias: BKW, GCUT, NGCUT, OF e OKP, totalizando 45 instâncias de teste.

Cada método foi executado 5 vezes em cada uma das instâncias para se obter um média, também foi calculado a mediana e desvio padrão.

Como temos 45 instâncias, 5 critérios de ordenação, cada critério pode ser crescente ou decrescente, 4 formas de criar regiões e cada uma dessas combinações foi executada 5 vezes, temos o total de 9000 execuções.

O tempo somado de todas as execuções foi de aproximadamente 5 horas (valor que ainda será alterado, pois falta rodar a maior instância com o método de solução mais demorado).

Ordenação

Tabela: Comparativo entre ordenação crescente e decrescente.

Desc.	Wons	Draws	Quality %	Items %	Time (s)
T	736	8	78.9136	46.3642	1.7798e+00
F	167	8	57.3060	47.6518	2.3715e+00

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

Tales. Compactive extra ordinarylar rescente e decrementabase. Was Straws Quility S Team V Tras (O)

7 786 8 78.318 65.3842 1.7798+70

F 167 8 57.3000 67.6518 2.2715+70

A primeira coisa que fica evidente com os resultados é discrepância na qualidade de solução entre a ordenação crescente e a decrescente, algo já esperado.

 ${\rm Ordenação}$

Figura: Regiões criadas na ordenação crescente.

Problema de empacotamento de retângulos Resultados Comparativo - Ordenação Resultados

Isso se deve a como as regiões são criadas, as figuras mostram o caso para ordenação crescente com a altura como critério e linha horizontal para criar a região.

${\rm Ordenação}$

Figura: Regiões criadas na ordenação crescente.

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

Ao posicionar uma peça uma das regiões ficará com a mesma altura do item recém-posicionado, como a ordenação é crescente a próxima peça terá no mínimo a mesma altura, mas o provável é que seja mais alta, impossibilitando que seja alocada nessa região.

Ordenação

Figura: Regiões criadas na ordenação crescente.

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

Fazendo com que muitas regiões fiquem sem poder receber peças.

${\rm Ordenação}$

Figura: Regiões criadas na ordenação crescente.

Problema de empacotamento de retângulos Resultados Comparativo - Ordenação Resultados

Essa figura mostra o estado final do modelo e grande parte do espaço ainda está livre. Algo semelhante ocorre com outros critérios de ordenação e criação regiões.

Critérios de ordenação

Tabela: Resultado para os critérios de ordenção.

Ordenação	Wons	Draws	Quality %	Items %	Time (s)
A	63	39	82.7353	44.0979	1.5874e+00
P	71	38	84.6986	44.8012	1.5769e+00
Н	40	16	77.4182	46.3004	1.5655e+00
W	66	24	81.1899	47.6751	2.0805e+00
I	16	5	68.5261	48.9461	2.0889e+00

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

	holo D	omitado i	para os critéri	on do ondone	- To
11	ment re	isilitaas	para os cracers	os de orden	pao.
Ordenação	Wons	Draws	Quality %	Items %	Time (s)
A	63	39	82.7353	44.0979	1.5874e+00
P	71	38	84.6986	44.8012	1.5769e+00
H	40	16	77.4182	46.3004	1.5655e+00
¥	66	24	81.1899	47.6751	2.0805e+00
	16	5	68.5261	48.9461	2.0889e+00

Os próximos resultados consideram somente os casos com ordenação decrescente, já que se fosse considerado a ordenação crescente faria com que a média ficasse abaixo do resultado real, além de poder causar interpretações erradas na coluna de quantidade de vitórias. Aqui fica claro que ter algum critério de ordenação melhora e muito na solução, já que ordernar por ID teve um péssimo desempenho. Mas o curioso é que todos os demais critérios são competitivos entre si. A literatura em geral usa somente ordenação pela área, esses resultados podem indicar que algumas instâncias possuem características que torne mais interessante outro método de ordenação.

Regiões

Tabela: Comparativo entre criação de regiões.

Região	Wons	Draws	Quality %	Items %	Time (s)
V	98	79	76.4030	45.0191	2.7157e-03
Н	70	60	75.9970	45.5439	6.2101e-03
M	104	89	79.7175	47.6795	1.3743e-02
N	176	119	83.6420	47.2335	7.2176e+00

	los				
rgičex					
	Tabel	a: Comps	rativo entre cr	riação de rej	giões.
Região	Wons	Draws	Quality %	Items %	Time (s)
V	98	79	76.4030	45.0191	2.7157e-03
н	70	60	75 9970	45 5439	6 2101e-03
М	104	89	79.7175	47.6795	1.3743e-02
	176	119	83.6420	47.2335	7.2176e+00
N					
N	1/6				
N	1/6				

Indo para o comparativo entre regiões percebemos que a que permite sobreposições se saiu melhor, tanto em quantidade como em qualidade, ainda que na maioria dos casos não foi a única que encontrou a melhor solução, porém com um custo autíssimo de tempo. Regiões criadas com linhas verticais e horizontais foram mais rápidas, mas com soluções de pior qualidade. Enquanto maximizando as regiões criadas levou um pouco a mais de tempo, mas também com acréscimo na qualidade. Aqui a gente percebe que ter sobreposição demora em torno de 1000 vezes mais. Mas por que tanta diferença entre com e sem sobreposição?

Regiões

- Sem sobreposição: $R = O\left(\frac{n^2 + n}{2}\right)$.
- Com sobreposição: $R = O\left(\frac{n^2 + n}{2}\right), S = O\left(\frac{n^3 n}{3}\right).$ $n = 3152 \rightarrow R = 4969128, S = 10438481552.$

Como dito antes, sem sobreposições temos somente que checar se um item cabe em uma região, no pior caso teremos que fazer isso para $(n^2+n)/2$ regiões. Enquanto com sobreposição, além de ter esse número de regiões, para cada uma delas também é necessário checar possíveis sobreposições com as peças já alocadas, sendo o número de verificações igual o somatório de $(n^3 - n)/3$, isso no pior caso, algo extremamente custoso. Por exemplo, para uma instância com 3152 itens podem ser necessárias mais de 10 bilhões de verificações de sobreposição. Então, aquela diferença de 1000 vezes fica ainda maior de acordo com a quantidade de itens a serem alocados.

Melhores combinações de solução

Tabela: Resultados da comparação entre todas combinações.

R	0	Desc.	W	D	Quality %	Items %	Time (s)
V	W	T	9	8	84.5497	47.0580	2.4820e-03
M	Р	T	7	6	85.8682	46.3078	1.2944e-02
N	Α	T	13	11	87.2957	43.8875	6.4349e+00
N	W	T	16	10	85.9266	49.2806	8.4384e+00

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

	Tab	ela: Rest	iltado	s da	comparação es	itre todas o	ombinações.
R	п	Desc.	¥	D	Quality %	Items %	Time (s)
Y	v	T	9	-8	84.5497	47.0580	2.4820e-03
н	P	T	7	6	85.8682	46.3078	1.2944e-02
	4	T	13	11	87.2957	43.8875	6.4349e+00
32			16	10	85.9266	49.2806	8.4384e+00

Aqui eu mostro uma tabela com os resultados das combinações que se saíram melhores. Em termos de quantidade, quem se saiu melhor foi a criação de regiões com sobreposição, com a largura como critério de ordenação. Já em qualidade o melhor resultado foi obtido com sopreposição e ordenação por área. A maximização de regiões e ordenação por perímetro ficou bem próxima, ainda mais consirando o custo-benefício. A primeira linha da tabela mostra a combinação entre a criação de regiões na vertical e ordenação pela largura, esse resultado é bem interessante pois têm um dos menores tempos e ainda consegue ser competitivo tanto em qualidade quanto em quantidade.

Conjuntos de instâncias

Tabela: Resultados para os conjuntos de instância.

Conjunto	Qualidade %	Itens %	Tempo Total (s)
BKW	94.4783	85.7782	1.2688e+01
GCUT	84.6060	20.0994	2.0189e-01
NGCUT	88.2085	35.0307	8.1531e-01
OF	92.0714	34.0580	1.0821e-02
OKP	93.9360	22.8232	1.1026e-01

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação

Resultados

Nessa tabela eu trouxe os resultados separados de acordo com o conjunto de instância, a BKW demorou mais por ter os maiores números de itens a serem alocados dentre todas as instâncias. Em geral, temos bons resultados para cada conjunto, mas vale investigar se algum deles possui alguma característica que torne melhor determinado método de solução.

Sobreposição

Tabela: Resultados para sobreposição.

Superposição	Qualidade %	Tempo Total (s)
Não	90.8278	1.6299e+01
Sim	87.2957	2.8313e+02

Problema de empacotamento de retângulos

Resultados

Comparativo - Ordenação
Resultados

 Tabels: Resultados para sobreposição.

 Superposição Qualifada N. Tempo Total (s)

 Mão 90.8278 1.6299e-01

 Sim 87.2967 2.8313e-02

Na última tabela eu trouxe os números da comparação entre regiões com e sem sobreposição. Na primeira linha temos os resultados de todas as combinações possíveis com regiões sem sobreposição e o tempo total que levou para executar todas as instâncias. Já na segunda linha somente o critério de ordenação pela área foi considerado, já que obteve os melhores resultados. Os demais critérios não foram considerados pois esse sozinho já ultrapassa o tempo de todos os métodos sem sobreposição, caso fossem considerados o tempo total seria cerca de 10 vezes maior enquanto a qualidade teria pouco acréscimo.

Aqui fica nítido que compensa muito mais, tanto em qualidade quanto em tempo, rodar todas as combinações possíveis com regiões sem sobreposição e escolher o melhor resultado.

Conclusão

- Múltiplos métodos de solução.
- Resultados inesperados.
- Com sobreposição × sem sobreposição.
 - Escalabilidade.

Problema de empacotamento de retângulos —Conclusão

└─Conclusão

2023-06-0

Múltiplos métodos de solução.
 Resultados inesperados.
 Com sobreposição × sem sobreposição.
 Escalabilidade.

Bom, indo para as conclusões. Foram testados vários métodos de solução, todos baseados em *bottom-left*, ficou evidente que ordenar a lista de entrada de forma decrescente é vantajoso.

Tivemos alguns resultados inesperados como a competitividade entre todos os critérios de ordenação, sendo necessária uma investigação sobre características das instâncias. E também a pouca, ou nenhuma, vantagem em termos de qualidade quando usamos regiões que permitem sobreposições.

De modo geral, pode-se resolver um problema com todas as combinações que usem regiões sem sobreposição e buscar a de melhor solução, já que seu tempo de execução é pequeno. Resolver usando regiões com sobreposição só é recomendado em casos onde o modelo será usado mais de uma vez e sem alterações.

Por fim, caso se queira aumentar a escala dos problemas, seja na dimensão ou na quantidade de itens, compensa somente trabalhar com regiões sem sobreposição. No caso de aumentar a dimensão seu custo é baixo, sendo necessário verificar somente um parâmetro extra.

Referências I

ARENALES, Marcos et al. **Pesquisa Operacional**. [S.l.]: Elsevier, 2007.

BARTMEYER, Petra Maria et al. Aprendizado por reforço aplicado ao problema de empacotamento de peças irregulares em faixas. **Anais**, 2021. Disponível em:

<https://repositorio.usp.br/directbitstream/455094df-864a-4fad-8a97-c5f59fd3d6ca/3051981.pdf>.

BEASLEY, J E. Algorithms for unconstrained two-dimensional guillotine cutting. **Journal of the Operational Research Society**, Taylor & Francis, v. 36, n. 4, p. 297–306, 1985.

____. An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure.. **Operations Research**, v. 33, n. 1, 1985

Problema de empacotamento de retângulos —Conclusão

-Referências

erências I

ARENALES, Marcos et al. **Pesquisa Operacional.** [S.l.]: Elsevier, 2007.

BARTMEVER, Petra Maria et al. Aprendiando per reforço aplicado o problema de caspacontamo de peposa frequiente másicas. Anais. 2021. Disponivel em:
-https://proposterois.ups/bridirecthitutrama/485094df-864a-4fad-867-4550fdd66ca/3051991.pdf >BEASLEY, J. E. Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the Operational Resourch Society, Piptor & Paraise, V. Sin. 4, p. 297-366, 1985.

An Exact Two-Dimensional Non-Guillotine Cutting
Tree Search Procedure.. Operations Research, v. 33, n. 1, 1985

Referências II

BELLUZZO, Luciano: MORABITO, Reinaldo. Otimização nos padrões de corte de chapas de fibra de madeira reconstituída: um estudo de caso. Pesquisa Operacional, SciELO Brasil, v. 25, p. 391–415, 2005. Disponível em: https: //www.scielo.br/j/pope/a/tTXXckvGTHbDfZQkmzCqdkp>.

BURKE, E K: KENDALL, G; WHITWELL, G. A new placement heuristic for the orthogonal stock-cutting problem. **Operations** Research, INFORMS, v. 52, n. 4, p. 655–671, 2004.

CASTELLUCCI, Pedro Belin. Consolidation problems in freight transportation systems: mathematical models and algorithms. 2019. Tese (Doutorado) – Universidade de São Paulo. Disponível em: https://pdfs.semanticscholar.org/ 90e7/bd898951e1350c2694478b63fbcde508e189.pdf>.

Problema de empacotamento de retângulos Conclusão

-Referências

RELLUZZO Luciano: MORARITO Reinaldo Otimização nos padrões de corte de chapas de fibra de madeira reconstituída: um estudo de caso. Pesquisa Operacional. SciELO Brasil. v. 25. p. 391-415, 2005, Disponível em: <https:// //www.scielo.br/j/pope/a/tTXXckvGTHbDfZQkmzCqdkp BURKE, E.K.: KENDALL, G.: WHITWELL, G. A new placement heuristic for the orthogonal stock-cutting problem. Operations Research, INFORMS, v. 52, n. 4, p. 655-671, 2004.

90e7/bd898951e1350c2694478b63fbcde508e189.pdf>.

CASTELLUCCI, Pedro Belin. Consolidation problems in freight transportation systems: mathematical models and algorithms, 2019, Tese (Doutorado) - Universidade de São Paulo, Disponível em: https://pdfs.semanticscholar.org/

Referências III

CAVALI, Roberto. Problemas de corte e empacotamento na indústria de Móveis: um estudo de caso. Universidade Estadual Paulista (Unesp), 2004. Disponível em:

https://repositorio.unesp.br/bitstream/handle/11449/ 94286/cavali_r_me_sjrp.pdf>.

CINTRA, G F et al. Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation q. European Journal of Operational Research, v. 191, p. 61–85, 2008.

CÔTÉ, Jean-François; DELL'AMICO, Mauro; IORI, Manuel.

Combinatorial Benders' cuts for the strip packing problem. Operations Research, INFORMS, v. 62, n. 3, p. 643–661, 2014 Problema de empacotamento de retângulos Conclusão

-Referências

CAVALI, Roberto. Problemas de corte e empacotamento na indústria de Môveis: um estudo de caso. Universidade Estadual Paulista (Unesp), 2004. Disponível em:

https://repositorio.unesp.br/bitstream/handle/11449. 94286/cavali_r_me_sjrp.pdf: CINTRA, G F et al. Algorithms for two-dimensional cutting stock

and strip packing problems using dynamic programming and column generation o. European Journal of Operational Research, v. 191, p. 61-85, 2008. CÔTÉ, Jean-François; DELL'AMICO, Mauro; IORI, Manuel Combinatorial Benders' cuts for the strip packing problem.

Operations Research, INFORMS, v. 62, n. 3, p. 643-661, 2014.

Referências IV

DELORME, Maxence: IORI, Manuel: MARTELLO, Silvano. Logic based Benders' decomposition for orthogonal stock cutting problems. Computers & Operations Research, Elsevier. v. 78, p. 290–298, 2017.

FEKETE, Sándor P; SCHEPERS, Jörg. A new exact algorithm for general orthogonal d-dimensional knapsack problems. In: SPRINGER. ALGORITHMS—ESA'97: 5th Annual European Symposium Graz, Austria, September 15–17, 1997 Proceedings 5. [S.l.: s.n.], 1997. p. 144–156.

FURINI, Fabio: MALAGUTI, Enrico: THOMOPULOS, Dimitri. Modeling two-dimensional guillotine cutting problems via integer programming. INFORMS Journal on Computing, INFORMS, v. 28, n. 4, p. 736–751, 2016.

Problema de empacotamento de retângulos Conclusão

-Referências

v. 78. p. 290-298, 2017.

DELORME Maxence IORI Mannel MARTELLO Silvano Loric based Benders' decomposition for orthogonal stock cutting problems, Computers & Operations Research, Elsevier.

FEKETE, Såndor P; SCHEPERS, Jörg. A new exact algorithm for general orthogonal d-dimensional knapsack problems. In: SPRINGER, ALGORITHMS-ESA'97: 5th Annual European Symposium Graz, Austria, September 15-17, 1997 Proceedings 5 [S.L: s.n.], 1997. p. 144-156.

FURINI, Fabio; MALAGUTI, Enrico; THOMOPULOS, Dimitri. Modeling two-dimensional guillotine cutting problems via integer programming INFORMS Journal on Computing, INFORMS, v. 28, n. 4, p. 736-751, 2016.

-Referências

·Conclusão

IORI, Manuel: DE LIMA, Vinícius L. et al. Exact solution techniques for two-dimensional cutting and packing. European Journal of Operational Research, v. 289, n. 2, p. 399–415, 2021. ISSN 0377-2217. DOI:

https://doi.org/10.1016/j.ejor.2020.06.050. Disponível em: khttps://www.sciencedirect.com/science/article/pii/ S0377221720306111>.

IORI, Manuel: LIMA, Vinícius Loti de et al. 2DPackLib: a two-dimensional cutting and packing library. **Optimization** Letters, Springer, v. 16, n. 2, p. 471–480, 2022.

Referências VI

MARTIN, Mateus et al. Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern. **International Transactions in Operational Research**, Wiley Online Library, v. 27, n. 2, p. 767–793, 2020.

MERCA, Mircea. An alternative to Faulhaber's formula. **The American Mathematical Monthly**, Taylor & Francis, v. 122, n. 6, p. 599–601, 2015.

MORABITO NETO, Reinaldo; WIDMER, Joao Alexandre.

Abordagem em grafo-e-ou para o problema do empacotamento: aplicacao ao carregamento de paletes e conteineres. 1992. Tese (Doutorado). Disponível em:

<https://repositorio.usp.br/item/000734666>.

Problema de empacotamento de retângulos —Conclusão

—Referências ferências VI

MARTIN, Mateus et al. Models for the two-dimensional rectangular single large placement problem with guillotine cuts and constrained pattern. International Transactions in

Operational Research, Wiley Online Library, v. 27, n. 2, p. 767-793, 2020.

MERCA, Mircea. An alternative to Faulhaber's formula. The American Mathematical Monthly, Taylor & Francis, v. 122.

American Mathematical Monthly, Taylor & Francis, n. 6, p. 599-601, 2015.

MORABITO NETO, Reinaldo; WIDMER, Joao Alexandre. Abordagem em grafo-e-ou para o problema do empacotamento: aplicacao ao carregamento de paletes e conteineres. 1992. Tese (Douterado). Disponível em: https://repositorio.usp.br/tien/00734666>

Referências VII

MRAD, Mehdi. An arc flow-based optimization approach for the two-stage guillotine strip cutting problem. Journal of the Operational Research Society, Taylor & Francis, v. 66, n. 11, p. 1850–1859, 2015.

OLIVEIRA, Jose Fernando: FERREIRA, Jose Soeiro, An improved version of Wang's algorithm for two-dimensional cutting problems. European Journal of Operational Research, Elsevier, v. 44, n. 2, p. 256–266, 1990.

QUEIROZ. Lavane Rodrigues de Souza. Estudo de problemas de corte de itens irregulares com incertezas. 2022. Tese (Doutorado) – Universidade de São Paulo. Disponível em: <https:

//www.teses.usp.br/teses/disponiveis/55/55134/tde-10032022-110656/en.php>.

2023-06-0

Problema de empacotamento de retângulos Conclusão

-Referências

Operational Research Society, Taylor & Francis, v. 66, p. 11 p. 1850-1859, 2015, OLIVEIRA, Jose Fernando; FERREIRA, Jose Soeiro. An improved version of Wang's algorithm for two-dimensional cuttin

problems. European Journal of Operational Research. Elsevier, v. 44, n. 2, p. 256-266, 1990. QUEIROZ, Layane Rodrigues de Souza. Estudo de problemas de corte de itens irregulares com incertezas. 2022. Tese

(Doutorado) - Universidade de São Paulo, Disponível em:

MRAD, Mehdi. An arc flow-based optimization approach for the

two-stage guillotine strip cutting problem. Journal of the

//www.teses.usp.br/teses/disponiveis/55/55134/tde-10032022-110656/en.php:

VELASCO, André Soares; UCHOA, Eduardo. Improved state space relaxation for constrained two-dimensional guillotine cutting problems. European Journal of Operational Research, Elsevier, v. 272, n. 1, p. 106–120, 2019.

·Conclusão