

INTRODUCTION TO GPU COMPUTING

What to expect?

- Broad view on GPU Stack
- Fundamentals of GPU Architecture
- Ways to GPU Computing
- Good starting point

FULL STACK OPTIMIZATION

Progress Of Stack In 6 Years

2013

cuBLAS: 5.0
cuFFT: 5.0
cuRAND: 5.0
cuSPARSE: 5.0
NPP: 5.0
Thrust: 1.5.3
CUDA: 5.0
Resource Mgr: r304

Base OS: CentOS 6.2

1000

GPU-Accelerated Computing

10

Moore's Law

CPU

Mar-13 Mar-14 Mar-15 Mar-16 Mar-17 Mar-18 Mar-19

Measured performance of Amber, CHROMA, GTC, LAMMPS, MILC, NAMD, Quantum Espresso, SPECFEM3D

2019

cuBLAS: 10.0

cuFFT: 10.0

cuRAND: 10.0

cuSOLVER: 10.0

cuSPARSE: 10.0

NPP: 10.0

Thrust: 1.9.0

CUDA: 10.0

Resource Mgr: r384

Base OS: Ubuntu 16.04

Accelerated Server with Volta

Accelerated Server With Fermi

ACCELERATED COMPUTING IS FULL-STACK OPTIMIZATION

2X More Performance with Software Optimizations Alone

NVIDIA UNIVERSAL ACCELERATION PLATFORM

Single Platform Drives Utilization and Productivity

HOW GPU ACCELERATION WORKS

ACCELERATED COMPUTING

CPU

Optimized for Serial Tasks

GPU Accelerator

Optimized for Parallel Tasks

CPU IS A LATENCY REDUCING ARCHITECTURE

CPUOptimized for Serial Tasks

CPU Strengths

- Very large main memory
- Very fast clock speeds
- Latency optimized via large caches
- Small number of threads can run very quickly

CPU Weaknesses

- Relatively low memory bandwidth
- Cache misses very costly
- Low performance/watt

GPU IS ALL ABOUT HIDING LATENCY

GPU Strengths

- High bandwidth main memory
- Significantly more compute resources
- Latency tolerant via parallelism
- High throughput
- High performance/watt

GPU Weaknesses

- Relatively low memory capacity
- Low per-thread performance

GPU Accelerator

Optimized for Parallel Tasks

HOW TO START WITH GPUS

- 1. Review available GPUaccelerated applications
- 2. Check for GPU-Accelerated applications and libraries
- 3. Add OpenACC Directives for quick acceleration results and portability
- 4. Dive into CUDA for highest performance and flexibility

GPU-ACCELERATED APPLICATIONS

620 Applications Across Domains

- Life Sciences
- Manufacturing
- Physics
- Oil & Gas
- Climate & Weather
- Media & Entertainment

- Deep Learning
- Federal & Defense
- Data Science & Analytics
- Safety & Security
- Computational Finance
- ► Tool & Management

GPU ACCELERATED LIBRARIES

"Drop-in" Acceleration for Your Applications

More libraries: https://developer.nvidia.com/gpu-accelerated-libraries

WHAT IS OPENACC

Programming Model for an Easy Onramp to GPUs

Directives-based programming model for parallel computing

```
Add Simple Compiler Directive
main()
  <serial code>
  #pragma acc kernels
    <parallel code>
```

Designed for performance portability on CPUs and GPUs

Simple

Powerful & Portable

Read more at www.openacc.org/about

SINGLE PRECISION ALPHA X PLUS Y (SAXPY)

GPU SAXPY in multiple languages and libraries

Part of Basic Linear Algebra Subroutines (BLAS) Library

 $z = \alpha x + y$

x, y, z: vector

 α : scalar

SAXPY: OPENACC COMPILER DIRECTIVES

Parallel C Code

Parallel Fortran Code

```
subroutine saxpy(n, a, x, y)
  real :: x(:), y(:), a
  integer :: n, i
!$acc kernels
  do i=1,n
     y(i) = a*x(i)+y(i)
  enddo
!$acc end kernels
end subroutine saxpy

...
! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...
```

SAXPY: CUBLAS LIBRARY

Serial BLAS Code

```
int N = 1<<20;
....
// Use your choice of blas library
// Perform SAXPY on 1M elements
blas_saxpy(N, 2.0, x, 1, y, 1);</pre>
```

Parallel cuBLAS Code

```
int N = 1<<20;

cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);

cublasShutdown();</pre>
```

You can also call cuBLAS from Fortran, C++, Python, and other languages:

http://developer.nvidia.com/cublas

SAXPY: CUDA C

Standard C

Parallel C

SAXPY: THRUST C++ TEMPLATE LIBRARY

Serial C++ Code (with STL and Boost)

Parallel C++ Code

www.boost.org/libs/lambda

http://thrust.github.com

SAXPY: CUDA FORTRAN

Standard Fortran

```
module mymodule contains
  subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    do i=1.n
     y(i) = a*x(i)+y(i)
    enddo
  end subroutine saxpy
end module mymodule
program main
  use mymodule
  real :: x(2**20), y(2**20)
  x = 1.0, y = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy(2**20, 2.0, x, y)
end program main
```

Parallel Fortran

```
module mymodule contains
  attributes(global) subroutine saxpy(n, a, x, y)
    real :: x(:), y(:), a
    integer :: n, i
    attributes(value) :: a, n
    i = threadIdx%x+(blockIdx%x-1)*blockDim%x
    if (i \le n) y(i) = a * x(i) + y(i)
  end subroutine saxpy
end module mymodule
program main
  use cudafor; use mymodule
  real, device :: x_d(2**20), y_d(2**20)
  x_d = 1.0, y_d = 2.0
  ! Perform SAXPY on 1M elements
  call saxpy <<<4096,256>>>(2**20, 2.0, x_d, y_d)
end program main
```


SAXPY: PYTHON

Standard Python

Numba: Parallel Python

```
import numpy as np
from numba import vectorize

@vectorize(['float32(float32, float32,
float32)'], target='cuda')
def saxpy(a, x, y):
    return a * x + y

N = 1048576

# Initialize arrays
A = np.ones(N, dtype=np.float32)
B = np.ones(A.shape, dtype=A.dtype)
C = np.empty_like(A, dtype=A.dtype)

# Add arrays onGPU
C = saxpy(2.0, A, B)
```

http://numpy.scipy.org

https://numba.pydata.org

ENABLING ENDLESS WAYS TO SAXPY

Developers want to build frontends for:

Java, Python, R, DSLs

Target other processors like:

ARM, FPGA, GPUs, x86

CUDA Compiler Contributed to Open Source LLVM

NVIDIA DEEP LEARNING SOFTWARE STACK

developer.nvidia.com/deep-learning-software

RAPIDS — OPEN GPU DATA SCIENCE

Software Stack Python

WHY RAPIDS

World's Fastest Machine Learning

H₂O.ai

H2O.ai Machine Learning - Generalized Linear Modeling

U.S. Census dataset (predict Income): 45k rows, 10k cols Parameters: 5-fold cross-validation, $\alpha = \{\frac{i}{7}, i = 0...7\}$, full λ -search

CHALLENGES UTILIZING AI & HPC SOFTWARE

NGC

The GPU-Optimized Software Hub

Simplify Deployments with Performance-optimized Containers

Innovate Faster with Ready-to-Use Solutions

Deploy Anywhere

SUMMARY

- Full Stack Optimization is key to performance
- Multiple choices for programming on GPU
- One is not an alternative to other. They co-exisit
- Universal hardware with Software stack is key to GPU computing

