Локальная кластеризация временных рядов

Грабовой Андрей Валериевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2019г

Цель работы

Исследуется

Исследуется задача локального распознавания и локальной разметки человеческой активности в течении некоторого времени.

Требуется

Требуется предложить локальное признаковое описание временного ряда, а также кластеризации точек данного ряда после получения его признакового описания.

Проблемы

Построение признаквого описания временного ряда низкой размерности.

Список литературы

- И. П. Ивкин, М. П. Кузнецов Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию. // Машинное обучение и анализ данных, 2015.
- V. V. Strijov, A. M. Katrutsa Stresstes procedures for features selection algorithms. // Schemometrics and Intelligent Laboratory System, 2015.
- A. D. Ignatov, V. V. Strijov Human activity recognition using quasiperiodic time series collected from a single tri-axial accelerometer. // Multimedial Tools and Applications, 2015.
- I. Borg, P. J. F. Groenen Modern Multidimensional Scaling. New York: Springer, 2005. 540 p.
- Д. Л. Данилова, А. А. Жигловский Главные компоненты временных рядов: метод "Гусеница". СПбУ, 1997.

Постановка задачи

Задан временной ряд: $\mathbf{x} \in \mathbb{R}^N, \quad \mathbf{x} = [\mathbf{v}_1, \cdots, \mathbf{v}_M], \quad \mathbf{v}_i \in \mathcal{V},$ где \mathcal{V} множество возможных сигналов.

Предположения:

- $|\mathcal{V}| = K$,
- $\forall \mathbf{v} \in \mathcal{V} |\mathbf{v}| \leq T$,
- ullet $\forall i$ выполняется $oldsymbol{v}_i = oldsymbol{v}_{i-1}$ или $oldsymbol{v}_i = oldsymbol{v}_{i+1}$,

где $|\mathcal{V}|$ мощность множества сигналов, а $|\mathbf{v}|$ длина сигнала.

Постановка задачи

Рассмотрим отображение:

$$a: x \to \{1, \cdots, K\}$$

где $x \in X$ некоторая точка временного ряда.

Отображение должно удовлетворять следующим свойствам:

$$\left\{egin{aligned} a\left(x_{1}
ight)=a\left(x_{2}
ight), & ext{если } \exists \mathbf{v}\in\mathcal{V}:x_{1},x_{2}\in v \ a\left(x_{1}
ight)
eq a\left(x_{2}
ight), & ext{если }
eta\mathbf{v}\in\mathcal{V}:x_{1},x_{2}\in v \end{aligned}
ight.$$

Кластеризация точек

Фазовая траектория ряда X:

$$\mathcal{H} = \{\mathbf{h}_t | \mathbf{h}_t = [x_{t-T}, x_{t-T+1}, \cdots, x_t], \ \mathsf{T} \le t \le \mathsf{N}\}.$$

Фазовые подпространства:

$$S = \{ s_t | s_t = [h_{t-2T}, h_{t-2T+1}, \cdots, h_t], \ 2T \le t \le N \}.$$

Пространство базисов:

$$\mathcal{W} = \{ \mathbf{W}_t | \mathbf{W}_t = [\mathbf{w}_t^1, \mathbf{w}_t^2] \}, \quad \mathcal{L} = \{ \boldsymbol{\lambda}_t | \boldsymbol{\lambda}_t = [\boldsymbol{\lambda}_t^1, \boldsymbol{\lambda}_t^2] \},$$

где $[\mathbf{w}_t^1, \mathbf{w}_t^2]$ и $[\lambda_t^1, \lambda_t^2]$ это базисные векторы и сингулярные числа метода главных компонент для подпространства S_t .

Кластеризация точек

Расстояние между элементами \mathcal{W} : $ho\left(\mathbf{W}_1,\mathbf{W}_2\right) = \max_{\{\mathbf{a},\mathbf{b},\mathbf{c}\}\subset\mathbf{W}_1\cup\mathbf{W}_2} V\left(\mathbf{a},\mathbf{b},\mathbf{c}\right),$ где $V\left(\mathbf{a},\mathbf{b},\mathbf{c}\right)$ объем паралелепипеда на $\mathbf{a},\mathbf{b},\mathbf{c}$.

Расстояние между элементами \mathcal{L} :

$$\rho\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right) = \sqrt{\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)^{\mathsf{T}}\left(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{2}\right)}.$$

Расстояние между точками временного ряда:

$$\rho(t_1, t_2) = \rho(\mathbf{W}_1, \mathbf{W}_2) + \rho(\lambda_1, \lambda_2).$$

Матрица попарных растояний:

$$\mathbf{M} = [0,1]^{N \times N}.$$

Эксперимент

Таблица: Описание выборок

Physical Motion 1	900	2	20
Physical Motion 2	1000	2	20
Synthetic 1	2000	2	20
Synthetic 2	2000	3	20

Рис.: Пример синтетически построенных временных рядов

Рис.: Матрица попарных расстояний ${\bf M}$ между точками временного ряда

Рис.: Проекция точек временного на плоскость при помощи матрицы попарных расстояний ${\bf M}$

Рис.: Кластеризация точек временного ряда

Рис.: Пример временных рядов полученных из мобильного акслерометра

Рис.: Матрица попарных расстояний ${\bf M}$ между точками временного ряда

Рис.: Проекция точек временного на плоскость при помощи матрицы попарных расстояний ${\bf M}$

Заключение

- Был предложен алгоритм поиска характерных сигналов, который основывается на методе главных компонент для локального снижения размерности.
- Была предложена функция расстояния между локальными базисами в каждый момент времени, которые интерпретировались как признакового описание точки временного ряда.
- Предложенный алгоритм хорошо разделяет точки которые принадлежат разным классам сигналов, что хорошо для кластеризации точек временного ряда.

Публикации

- Грабовой А. В., Стрижов В. В. Локальная кластеризация временных рядов // (в процессе)
- Грабовой А. В., Бахтеев О. Ю., Стрижов В. В.
 Определение релевантности параметров нейросети // Информатика и ее применения, 2019, 13(3).
- Гадаев Т. Т., Грабовой А. В., Мотренко А. П., Стрижов В. В. Численные методы оценки объема выборки в задачах регрессии и классификации //(в процессе)
- Бучнев Т. Т., Грабовой А. В., Гадаев Т. Т., Стрижов В. В. Ранее прогнозирование достаточного объема выборки для обобщенно линейной модели // (в процессе)