EE5904/ME5404 Part II

Project 1 SVM for Classification of Spam Email Messages

REPORT DUE ON 23 APRIL 2021

Thushara Sandakalum sandakalum@u.nus.edu

EE5904/ME5404 Part II

Project 1 SVM for Classification of Spam Email Messages

REPORT DUE ON 23 APRIL 2021

Thushara Sandakalum

sandakalum@u.nus.edu

Outline

Project description

Recap

Task 1: Train

Task 2 : Test

Task 3 : Evaluate

Important Notes

Project Description

Project Goal

- Implement a SVM to classify spam or not a spam for the Spam Email Data
 Set
- Spam Email Data Set
 - 4601 samples of email metadata taken from UC Irvine Machine Learning Repository
 - 57 features per sample
 - Label: +1 (spam), -1 (non-spam)
 - http://archive.ics.uci.edu/ml/datasets/spambase

48 continuous real [0,100] attributes of type word_freq_WORD = percentage of words in the e-mail that match WORD, i.e. 100 * (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char_freq_CHAR = percentage of characters in the e-mail that match CHAR, i.e. 100 * (number of CHAR occurrences) / total characters in e-mail

Project Description

Project Goal

- Implement a SVM to classify spam or not a spam for the Spam Email Data
 Set
- Spam Email Data Set
 - 4601 samples of email metadata taken from UC Irvine Machine Learning Repository
 - 57 features per sample
 - Label: +1 (spam), -1 (non-spam)
 - http://archive.ics.uci.edu/ml/datasets/spambase
- Dataset divided into 3 subsets
 - Training set
 - Test set
 - Evaluation set (Not provided)

Name 📤	Value
🛨 eval_data	57x600 double
eval_label	600x1 double
🛨 test_data	57x1536 double
test_label	1536x1 double
🛨 train_data	57x2000 double
🛨 train_label	2000x1 double

Project Description

Train Construction: For a given training set $S = \{(\mathbf{x}_1, d_1), \dots, (\mathbf{x}_N, d_N)\}$, Slide 59 find optimal hyperplane $(\mathbf{w}_{\circ}, b_{\circ})$ such that, for all $i \in \{1, 2, \dots, N\}$,

$$\begin{array}{c|c} \mathbf{x}_i & g(\mathbf{x}_i) \\ \hline \end{array} \quad \mathbf{y}_i = d_i$$

$$\mathbf{y}_i = d_i$$

Test Testing: For a given test set $\bar{S} = \{(\bar{\mathbf{x}}_1, \bar{d}_1), \dots, (\bar{\mathbf{x}}_{\bar{N}}, \bar{d}_{\bar{N}})\}$, compute output \bar{y}_i of SVM (with \mathbf{w}_\circ and b_\circ) for all $i \in \{1, 2, \dots, \bar{N}\}$, and compare it against the known \bar{d}_i to evaluate performance of SVM

$$\begin{array}{c|c} \mathbf{\bar{x}}_i \\ \hline \end{array} \quad \mathbf{w}_{\circ}^T \mathbf{\bar{x}}_i + b_{\circ} \quad \begin{array}{c|c} g\left(\mathbf{\bar{x}}_i\right) \\ \hline \end{array} \quad \operatorname{sgn}[g\left(\mathbf{\bar{x}}_i\right)] \quad \begin{array}{c|c} \bar{y}_i \\ \hline \end{array}$$

Evaluate \longrightarrow Application: Given a SVM with hyperplane $(\mathbf{w}_{\circ}, b_{\circ})$, classify a data point $\mathbf{x}_{\mathsf{new}}$ that is not in $\Sigma = S \cup \bar{S}$:

$$\mathbf{x}_{\text{new}} \longrightarrow \mathbf{w}_{\circ}^{T} \mathbf{x}_{\text{new}} + b_{\circ} \xrightarrow{g(\mathbf{x}_{\text{new}})} \operatorname{sgn}[g(\mathbf{x}_{\text{new}})] \xrightarrow{y_{\text{new}}}$$

Recap – Hard Margin

Discriminant function

Solve

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^T \mathbf{x} + b_{\circ}$$

Support vector: \mathbf{x}_i that satisfies

$$g(\mathbf{x}_i) = \pm 1$$

Primal problem

Given data set : $S = \{(\mathbf{x}_i, d_i)\}, i = 1, 2, \dots, N$

Find: \mathbf{w} and b

Minimizing: $f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to : $d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Known parameters: \mathbf{x}_i , d_i Unknown variables: \mathbf{w} , b

Optimum hyperplane

Recap – Hard Margin

Alternative formulation using method of Lagrange

multipliers

Finding optimal hyperplane (primal problem) Slide 73

Given data set : $S = \{(\mathbf{x}_i, d_i)\}$

Find: \mathbf{w} and b

Minimizing: $f(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$

Subject to: $d_i\left(\mathbf{w}^T\mathbf{x}_i+b\right) \geq 1$

Finding optimal hyperplane (dual problem) Slide 79

Given: $S = \{(\mathbf{x}_i, d_i)\}$

Find : Lagrange multipliers $\{\alpha_i\}$

Linear kernel

Subject to : (1) $\sum_{i=1}^{N}\alpha_i\,d_i=0$ Karush-Kuhn-Tucker conditions (2) $\alpha_i\geq 0$

For data point x_i that is a support vector $\alpha_{0,i} \neq 0$

Recap – Soft Margin

Dealing with non-separable patterns:

1. Find optimal hyperplane to minimize classification error Slide 94

New function to be minimized

$$f(\mathbf{w}, \boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \xi_i$$

Dual problem (with soft margin) Slide 100

Find: α_i

$$\text{Maximize}: \quad Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i \boldsymbol{\alpha}_i \mathbf{x}_i^T \mathbf{x}_j$$

Subject to :
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \leqslant \alpha_i \leq C$

Linear kernel

Slide 96

- ullet Value of C>0 reflects cost of violating constraints
 - $\circ\,$ A large C generally leads to smaller margin but also fewer misclassification of training data
 - \circ A small C generally leads to larger margin but more misclassification of training data
- As a design parameter, value of C is set by user

Soft Margin

Recap – Soft Margin

Dealing with non-separable patterns:

2. Transform data into higher dimension space for separation Slide 94

Dual problem with soft margin and transformation Slide 115

Find: α_i

 $\text{Maximize}: \quad Q(\boldsymbol{\alpha}) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i \boldsymbol{l}_j \boldsymbol{\varphi}^T(\mathbf{x}_i) \boldsymbol{\varphi}(\mathbf{x}_j)$

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0$, $0 \le \alpha_i \le C$

Nonlinear kernel

Soft Margin

Task 1 - Data

Training set – 2000 samples

- Given 'train.mat'
 - Features (57 x 2000)
 - Label (2000 x 1)
- Features of a sample

Label: +1 (spam), -1 (non-spam)

Task 1 – Training set

Import the training set (i.e. train.mat)

- train_data (57 x 2000)
- train_label (2000 x 1)

Preprocess the 'data' (Various methods can be used including Sample scaling and Standardization [CHOOSE ONE METHOD])^{a, b}

- Scale the data Rescale the individual sample x such that ||x|| = 1
- Standardize the data Transform each <u>feature</u> by removing the <u>mean</u> value of each feature and then dividing by each <u>feature's standard deviation</u>

Please ensure the 'label' is mapped into the set of {-1, +1}

^a https://scikit-learn.org/stable/modules/preprocessing.html

b https://en.wikipedia.org/wiki/Feature scaling

Task 1 – Kernels

Hard-margin SVM with the linear kernel

$$K(x_1, x_2) = x_1^T x_2$$

Hard-margin SVM with a polynomial kernel

$$K(x_1, x_2) = (x_1^T x_2 + 1)^p$$

Soft-margin SVM with a polynomial kernel

$$K(x_1, x_2) = (x_1^T x_2 + 1)^p$$

Task 1 – Hard and Soft Margins

```
Hard margin 0 \le \alpha_i

• C = + \infty (In theory)

0 \le \alpha_i \le C

• C = \text{Large value} (In practice e.g. 10^6)

Soft margin 0 \le \alpha_i \le C

• C = 0.1, 0.6, 1.1, 2.1
```


Task 1 – Calculate α_i

How to calculate α_i

Use quadprog function (Quadratic programming)

Description

Solver for quadratic objective functions with linear constraints.

quadprog finds a minimum for a problem specified by

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

You can pass *f*, *lb*, and *ub* as vectors or matrices; see Matrix Arguments.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) solves the preceding problem using the optimization options specified in options. Use optimoptions to create options. If you do not want to give an initial point, set x0 = [].

Maximize
$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 Subject to
$$\sum_{i=1}^{N} \alpha_i d_i = 0 \quad 0 \leq \alpha \leq C$$

Subject to: $\sum_{i=1}^{N} \alpha_i d_i = 0, \ 0 \le \alpha_i \le C$

Description

Solver for quadratic objective functions with linear constraints.

quadprog finds a minimum for a problem specified by

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub. \end{cases}$$

Convert the problem from 'Max' to 'Min'

• Max Q(α) \rightarrow Min - Q(α)

If f is to be maximized instead, such a maximization problem Slide 62 can be expressed as a minimization problem by the transformation

$$\max_{\mathbf{w}} f(\mathbf{w}) = -\min_{\mathbf{w}} \left[-f(\mathbf{w}) \right]$$

$$\begin{aligned} &\text{Maximize}: \quad Q(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j) \\ &\text{Subject to}: \quad \sum_{i=1}^N \alpha_i d_i = 0 \,, \,\, 0 \leq \alpha_i \leq C \end{aligned}$$

Description

Not used

Solver for quadratic objective functions with linear constraints.

quadprog finds a minimum for a problem specified by

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \text{ such that } \begin{cases} A \cdot x \leq b, \\ Aeq \cdot x = beq, \\ lb \leq x \leq ub, \end{cases}$$

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x$$

$$H_{ij} = d_{i} d_{j} K(x_{i}, x_{j})$$

$$f = (-1, -1, \dots, -1)^{T}$$

$$A = []$$

$$b = []$$

$$Aeq \cdot x = beq,$$

$$deq \cdot x = beq,$$

$$beq = 0$$

$$lb \leq x \leq ub.$$

$$lb = (0, 0, \dots, 0)^{T}$$

$$ub = (C, C, \dots, C)^{T}$$

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

Hard-margin SVM with the <u>linear kernel</u>

$$K(x_1, x_2) = x_1^T x_2$$

For illustration only

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \qquad H(i,j) = d_{i} d_{j} x_{i}^{T} x_{j}$$

$$f = -\operatorname{ones}(2000,1)$$

$$A \cdot x \leq b, \qquad A = []$$

$$b = []$$

$$Aeq \cdot x = beq, \qquad Aeq = train_label'$$

$$beq = 0$$

$$lb \leq x \leq ub. \qquad beq = 0$$

$$lb = zeros(2000,1)$$

$$ub = \operatorname{ones}(2000,1) * C$$

$$x0 = [] \qquad options = optimset('LargeScale','off','MaxIter',1000)$$

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

Hard-margin SVM with a polynomial kernel

$$K(x_1, x_2) = (x_1^T x_2 + 1)^p$$

For illustration only

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \qquad H(i,j) = d_{i} d_{j} (x_{1}^{T} x_{2} + 1)^{p}$$

$$f = -\operatorname{ones}(2000,1)$$

$$A \cdot x \leq b, \qquad A = []$$

$$b = []$$

$$Aeq \cdot x = beq, \qquad Aeq = train_label'$$

$$beq = 0$$

$$lb \leq x \leq ub. \qquad beq = 0$$

$$lb = zeros(2000,1)$$

$$ub = \operatorname{ones}(2000,1) * C$$

$$x0 = [] \qquad options = optimset('LargeScale', 'off', 'MaxIter', 1000)$$

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

Soft-margin SVM with a polynomial kernel

$$K(x_1, x_2) = (x_1^T x_2 + 1)^p$$

For illustration only

$$\min_{x} \frac{1}{2} x^{T} H x + f^{T} x \qquad H(i,j) = d_{i} d_{j} (x_{1}^{T} x_{2} + 1)^{p}$$

$$f = -\operatorname{ones}(2000,1)$$

$$A = []$$

$$b = []$$

$$Aeq \cdot x = beq,$$

$$deq \cdot x = beq,$$

$$deq = train_label'$$

$$beq = 0$$

$$deq = train_label'$$

$$beq = 0$$

$$deq = train_label'$$

$$deq $$deq = tr$$

Task 1 – Select support vectors

Based on KKT conditions

- For a support vector, $\alpha_i \neq 0$ (In theory, $\alpha_i > 0$)
- However, in practice, $\alpha_i > threshold$
- How to decide?
 - \circ Choose an appropriate threshold (e.g. 1e-4) to determine the corresponding α_i to the support vectors

Task 1 - Discriminant function g(x)

Hard Margin SVM with Linear Kernel

$$\text{Maximizing}: \quad Q(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \, \alpha_j \, d_i \, d_j \, \mathbf{x}_i^T \mathbf{x}_j$$

Subject to : (1) $\sum_{i=1}^{N} \alpha_i d_i = 0$

(2) $\alpha_i \geq 0$

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^T \mathbf{x} + b_{\circ}$$

After $\alpha_{\circ,i}$ is obtained, we can calculate \mathbf{w}_{\circ} and b_{\circ} as follows: Slide 85

$$\mathbf{w}_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \mathbf{x}_{i}, \quad b_{\circ} = \frac{1}{d^{(s)}} - \mathbf{w}_{\circ}^{T} \mathbf{x}^{(s)}$$

where $\mathbf{x}^{(s)}$ is a support vector with label $d^{(s)}$

Task 1 - Discriminant function g(x)

Soft Margin SVM with Linear Kernel

$$\text{Maximize}: \quad Q(\boldsymbol{\alpha}) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

Subject to :
$$\sum_{i=1}^{N} \alpha_i d_i = 0$$
 and $0 \le \alpha_i \le C$

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^{T} \mathbf{x} + b_{\circ}$$

After $\alpha_{o,i}$ is obtained, we can calculate \mathbf{w}_o as follows: Slide 104,105

$$\mathbf{w}_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} \, d_i \, \mathbf{x}_i$$

After \mathbf{w}_{\circ} is obtained, we can calculate b_{\circ} as follows:

2 Take b_{\circ} as the average of all such $b_{\circ,i}$

① For each example \mathbf{x}_i with $0 < \alpha_i \le C$,

$$b_{\circ,i} = \frac{1}{d_i} - \mathbf{w}_{\circ}^T \mathbf{x}_i$$

$$b_{\circ} = \frac{\sum_{i=1}^{m} b_{\circ,i}}{m}$$

where m is the total number of \mathbf{x}_i with $0 < \alpha_i \le C$.

Task 1 - Discriminant function g(x)

Soft Margin SVM with Nonlinear Kernel

$$\begin{array}{lll} \text{Maximize}: & Q(\pmb{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \pmb{\varphi}^T(\mathbf{x}_i) \pmb{\varphi}(\mathbf{x}_j) \\ \text{Subject to}: & \sum_{i=1}^{N} \alpha_i d_i = 0 \,, \, \, 0 \leq \alpha_i \leq C \end{array} \qquad \begin{array}{ll} \text{Discriminant function} \\ g(\mathbf{x}) & = \sum_{i=1}^{N} \alpha_{\circ,i} d_i K(\mathbf{x},\mathbf{x}_i) + b_{\circ} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots & \vdots & \vdots \\ i = 1 & \vdots \\ i$$

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0, \ 0 \le \alpha_i \le C$

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{\circ,i} d_i K(\mathbf{x}, \mathbf{x}_i) + b_{\circ}$$

Determine b_{\circ} in Slide 123

$$g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{o,i} d_i K(\mathbf{x}, \mathbf{x}_i) + b_o$$

using the fact that for a support vector $\mathbf{x}^{(s)}$

$$g(\mathbf{x}^{(s)}) = \pm 1 = d^{(s)}$$

Take b_{\circ} as the average of all such $b_{\circ,i}$

$$b_{\circ} = \frac{\sum_{i=1}^{m} b_{\circ,i}}{m}$$

where m is the total number of \mathbf{x}_i with $0 < \alpha_i \le C$.

Task 1 – Summary

Given a training set
$$S = \{(\mathbf{x}_i, d_i)\}, i = 1, \dots, N$$
 Slide 123

1 Find a suitable kernel

Choose expression then check Mercer's condition

Soft Margin <u>condition</u>

- 2 Choose a value for C
- 3 Solve for $\alpha_{\circ,i}$

4 Determine b_{\circ} in

 $g(\mathbf{x}) = \sum_{i=1}^{N} \alpha_{\circ,i} d_i K(\mathbf{x}, \mathbf{x}_i) + b_{\circ}$

using the fact that for a support vector $\mathbf{x}^{(s)}$

$$g(\mathbf{x}^{(s)}) = \pm 1 = d^{(s)}$$

Quadratic - programming

Maximize:
$$Q(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$

Subject to : $\sum_{i=1}^{N} \alpha_i d_i = 0$, $0 \le \alpha_i \le C$

Support vector machine: $\xrightarrow{\mathbf{x}} \operatorname{sgn}[g(\mathbf{x})] \xrightarrow{y}$

Kernel

Task 2 - Data

Test set – 1536 samples

- Given 'test.mat'
 - Features (57 x 1536)
 - Label (1536 x 1)
- Features of a sample

Label: +1 (spam), -1 (non-spam)

Task 2 – Test set

Import the test set (i.e. test.mat)

- test_data (57 x 1536)
- test_label (1536 x 1)

Preprocess the 'data' (Various methods can be used including Sample scaling and Standardization [CHOOSE ONE USE for TRAINING])^{a, b}

- Scale the data Rescale the individual sample x such that ||x|| = 1
- Standardize the data Transform each <u>feature</u> in the same manner with the training data. Use the <u>mean and variance of each feature</u> from <u>your</u> <u>training set</u>.

Please ensure the 'label' is mapped into the set of {-1, +1}

^a https://scikit-learn.org/stable/modules/preprocessing.html

b https://en.wikipedia.org/wiki/Feature scaling

Task 2 – Test set

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^{T} \boldsymbol{\varphi}(\mathbf{x}) + b_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \underbrace{\boldsymbol{\varphi}^{T}(\mathbf{x}_{i}) \boldsymbol{\varphi}(\mathbf{x})}_{K(\mathbf{x}_{i},\mathbf{x})} + b_{\circ}$$

To classify a new data point x_{new}

$$d_{\mathsf{new}} = \mathsf{sgn}\left[g(\mathbf{x}_{\mathsf{new}})\right]$$

For illustrations only

$$g(x_{test}) = \sum_{i=1}^{N} \alpha_{o,i} d_i K(x_i, x_{test}) + b_0$$

Task 2 – Test set

Discriminant function

$$g(\mathbf{x}) = \mathbf{w}_{\circ}^{T} \boldsymbol{\varphi}(\mathbf{x}) + b_{\circ} = \sum_{i=1}^{N} \alpha_{\circ,i} d_{i} \underbrace{\boldsymbol{\varphi}^{T}(\mathbf{x}_{i}) \boldsymbol{\varphi}(\mathbf{x})}_{K(\mathbf{x}_{i},\mathbf{x})} + b_{\circ}$$

To classify a new data point x_{new}

$$d_{\mathsf{new}} = \mathsf{sgn}\left[g(\mathbf{x}_{\mathsf{new}})\right]$$

Type of SVM	Training accuracy				Test accuracy			
Hard margin with								
Linear kernel	?			?				
Hard margin with	p=2	p=3	p=4	p=5	p=2	p=3	p=4	p=5
polynomial kernel	?	?	?	?	?	?	?	?
Soft margin with								
polynomial kernel	C = 0.1	C = 0.6	C = 1.1	C = 2.1	C = 0.1	C = 0.6	C = 1.1	C = 2.1
p = 1	?	?	?	?	?	?	?	?
p=2	?	?	?	?	?	?	?	?
p=3	?	?	?	?	?	?	?	?
p=4	?	?	?	?	?	?	?	?
p=5	?	?	?	?	?	?	?	?

Task 3 - Data

Evaluation set – 600 samples

- Not Given 'eval.mat'
 - eval_data (57 x 600)
 - eval_label (600 x 1)

Task 3 - Evaluation

Design your own SVM

- Hard margin or Soft margin?
- Linear or Polynomial kernel?
- What are the values for p and C?

To classify the 600 samples in the evaluation set

```
Not Given – 'eval.mat'
eval_data (57 x 600)
eval_label (600 x 1)
```

Output: A column vector (600 x 1) named 'eval_predicted'

Task 3 - Evaluation

Hardcode the discriminant function g(x) in the file for evaluation

 If necessary, store the required variables in a separate *.mat file and load at the beginning of the code

Prepare the code so that it could handle the evaluation dataset and able to preprocess the evaluation dataset

Note: the eval_data is a (57 x 600) matrix

Your code should generate a column vector (600 x 1) named 'eval_predicted'

Task 3 - Evaluation

Please name your m-file for Task 3 as 'svm_main.m'

Do Not clear any variable in the 'svm_main' script

Before submitting your code, please ensure that the code runs without errors by testing it with a dummy data set (Dummy dataset can be created using the training set and test set)

Important Notes

Preprocess your data – Choose one method

Sample scaling/ Mean normalization/ standardization/ Rescaling ...

Use the <u>training set statistics</u> to preprocess the other data sets

Check Mercer Condition for Kernel suitability

Important Notes

Procedure to build SVM

- Preprocess data
- Choose a suitable kernel
 - Linear/ Nonlinear ?
- Choose C
 - Hard margin/ Soft margin
 - Hard margin $0 \le \alpha_i$
 - ∘ $C = +\infty$ (In theory)
 - C = Large value (In practice e.g. 10⁶)
- Solve for α_i
 - Quadratic programming
- Support vector selection
 - Choose an appropriate threshold (e.g. 1e-4) to determine the corresponding α_i to the support vectors
- Determine the discriminant function g(x)

Important Notes: Submission

Submit all your codes that you have implemented for the entire project

Make sure your codes run without error

All codes should be executable with the given datasets in the workspace without any additional inputs

Important Notes: Submission

Report

- Details on Implementation
- Completed Table 1
- Discuss the results and their implications
 - Admissibility of the kernels
 - Exitance of optimal hyperplanes
 - Comments on results (with supporting arguments)

Type of SVM	Training accuracy			Test accuracy				
Hard margin with Linear kernel	2					>		
Efficat Reffici		:			<u> </u>			
Hard margin with	p=2	p=3	p=4	p=5	p=2	p=3	p=4	p=5
polynomial kernel	?	?	?	?	?	?	?	?
Soft margin with								
polynomial kernel	C = 0.1	C = 0.6	C = 1.1	C = 2.1	C = 0.1	C = 0.6	C = 1.1	C = 2.1
p=1	?	?	?	?	?	?	?	?
p=2	?	?	?	?	?	?	?	?
p=3	?	?	?	?	?	?	?	?
p=4	?	?	?	?	?	?	?	?
p=5	?	?	?	?	?	?	?	?

TABLE I: Results of SVM classification.

Important Notes: Submission

Due date 23 April 2021

sandakalum@u.nus.edu

