IFT 6268 Self-Supervised Representation Learning

Michael Noukhovitch

Fall 2020

Notes written from Aaron Courville's lectures.

Contents

1	Introduction			
	1.1	Transfer Learning	3	
	1.2	Image Methods	3	
	1.3	Contrastive Methods	3	
	1.4	Iterated Learning	4	

1 Introduction

1.1 Transfer Learning

Domain D consists of a feature space \mathbb{X} and marginal po Given a source domain D_s and learning task T_s , a target domain D_t and learning task T_t . Transfer learning aims to improve learning a function f to

- 1. inductive same domain, different tasks
- 2. transductive different domain, same task domain adaptation
- 3. **unsupervised** both different

SSL is usually source unlabelled, target labelled For SSL, the source task T_s

- unsupervised
- extracts semantic information from input
- learns correct invariances

1.2 Image Methods

Rotation prediction: how much each image is rotated

- generate your own label
- but learning the answer gets you some semantic knowledge about images

GANs: is it SSL?

- if you're just creating a generator, no (just generative modelling)
- learning a discriminator augmented with fake data (Salimans et al., 2016), yes

1.3 Contrastive Methods

Mutual information $I(X,Y) = D_{KL}(P_{X,Y}||P_X \otimes P_Y)$

- intersection of marginal entropies
- difficult to compute

MINE (Belghazi et al, 2018) optimize a lower bound to MI

- encode an image with a network
- learn a discriminator with lower bound MI loss

Deep Infomax (Hjelm et al, 2019) try to learn "important" image regions

- use local image patches
- $\bullet\,$ MI between global vector and local patches

CPC (van der Oord, 2018)

- predict feature vectors from context vectors
- single neurons learn semantic meaning

1.4 Iterated Learning

Iterated learning uses learners to teach other learners

- compositional structure of NL may have emerged through teaching language (Kirby et al, 2014)
- may encourage compositional structure in neural models
- may encourage systematic generalization

 ${\bf Self\text{-}training} \ {\bf similarly} \ {\bf learns} \ {\bf from} \ {\bf its} \ {\bf own} \ {\bf pseudo-labels}$

• self-training with noisy students (Xie et al, 2020) iterates on imagenet

Systematic generalization is generalizing through shared rules between training and testing, not shared distribution

- seq2seq models can't regularly do that (Lake and Baroni, 2016)
- maybe SSL can help here