Max Bethune-Waddell and Kenneth J. Chau

Applied Electromagnetics Laboratory, School of Engineering, The University of British Columbia Okanagan, Kelowna BC, Canada

Introduction

There are different models for the electromagnetic momentum, stress, and force density inside a material (see Table 1). Some experiments have taken steps towards resolving their validity.

- The 1973 experiment by Ashkin and Dziedzic [1] showed that pulses directed onto an air-water interface caused it to bulge towards air (the lower index region) regardless of the illumination direction.
- A similar experiement by Casner et al. [2] showed that a beam directed onto a fluid-fluid interface caused it to bulge downwards, also towards the lower index region.

These observation suggest the Minkowski form but this has not been firmly established [3, 4].

We study radiation pressure on a fluid interface using a coupled electromagnetic and fluid dynamic simulator that solves Maxwell's equations, electromagnetic momentum continuity, and the Navier Stokes equation. Force densities of Abraham, Minkowski, and Einstein-Laub all predict fluid deformations consistent with experiment. Force densities of Amperian and Chu however, predict polarization-dependent deformation inconsistant with experiments.

$egin{aligned} \mathbf{Methodology} \end{aligned}$

Maxwell's equations are solved using FDTD. The force density is calculated from momentum continuity given the stess tensor \bar{T} and momentum density \vec{G} from the postulate sets listed in Table 1. Fluid deformation is modelled using the Navier Stokes equation.

Figure 1. Simulation framework used to study radiation pressure in fluid media. Because $t \ll t'$, the time-averaged (as oppossed to instantaneous) force density is used to calculate fluid deformation.

Form	\vec{G}	$ec{S}$	$ar{ar{T}}$
Minkowski	$\vec{D} imes \vec{B}$	$c^2 \vec{D} \times \vec{B}$	$(\vec{D}\cdot\vec{E}+\vec{B}\cdot\vec{H})\bar{ar{I}}/2-\vec{D}\vec{E}-\vec{B}\vec{H}$
Abraham	$\vec{E} \times \vec{H}/c^2$	$ec{E} imes ec{H}$	$(\vec{D} \cdot \vec{E} + \vec{B} \cdot \vec{H})\bar{\bar{I}}/2 - \vec{D}\vec{E} - \vec{B}\vec{H}$
Einstein-Laub	$\vec{E} \times \vec{H}/c^2$	$\vec{E} imes \vec{H}$	$(\varepsilon_o \vec{E}^2 + \mu_o \vec{H}^2) \bar{\bar{I}}/2 - \vec{D}\vec{E} - \vec{B}\vec{H}$
Amperian	$\varepsilon_o \vec{E} \times \vec{B}$	$\vec{E} \times \vec{B}/\mu_o$	$(\varepsilon_o \vec{E}^2 + \mu_o^{-1} \vec{B}^2) \bar{\bar{I}}/2 - \varepsilon_o \vec{E} \vec{E} - \mu_o^{-1} \vec{B} \vec{B}$
Chu	$\vec{E} \times \vec{H}/c^2$	$ec{E} imes ec{H}$	$(\varepsilon_o \vec{E}^2 + \mu_o \vec{H}^2) \bar{\bar{I}}/2 - \varepsilon_o \vec{E} \vec{E} - \mu_o \vec{H} \vec{H}$

Table 1. Five formulations of electrodynamics used here to model radiation pressure on fluid interfaces.

Results

Figure 3. Degeneracy of the time-averaged force densities predicted by different formulation of electrodynamics. Here we compare the (top row) instantaneous and (bottom row) time-averaged force densities for the case of monochromatic wave of 500 nm wavelength incident from air into water.

Figure 2. Simulation of the Ashkin-Dziedzic experiment using five electrodynamic models for illumination from above and below (magenta arrows) depict time-averaged force density and the (blue-arrows) depict the velocity field of the fluid.

Figure 4. Simulation of the Casner et al. experiment using the three models validated in Figure 2. Magenta arrows depict time-averaged force density.

Conclusions

- Radiation pressure on fluid interfaces cannot distinguish betweeen Abraham and Minkowski models.
- The Abraham, Minkowski, and Einstein-Laub models all correctly describe observations, but present different mechanisms for bulge formation. The first two rely interface forces, the latter relies on body forces.
- The Amperian and Chu models are inconsistent with experiments.

References

- [1] Ashkin A and Dziedzic J M. Radiation Pressure on a Free Liquid Surface. *Phys. Rev. Lett.*, 30:139–142, 1973.
- [2] Casner A and Delville J-P. Laser-Induced Hydrodynamic Instability of Fluid Interfaces. *Phys. Rev. Lett.*, 90:144503, 2003.
- [3] Kemp B A. Resolution of the Abraham-Minkowski debate: Implications for the electromagnetic wave theory of light in matter. *J. Appl. Phys.*, 109:111101, 2011.
- [4] Astrath N G C, Malacarne L C, Baesso M L, Lukasievicz G V B and Bialkowski S E. Unravelling the effects of radiation forces in water. *Nat. Commun.*, 5:023826, 2014.