Data Mining for CS336

Simplest question: Find sets of items that appear together "frequently" in baskets

Support for itemset I: Number of baskets containing all items in I

 (Often expressed as a fraction of the total number of baskets)

 Given a support threshold s, then sets of items that appear in at least s baskets are called frequent itemsets

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Each row is a basket

Support of {Beer, Bread} = 2

Example: frequent itemset

- Items = {milk, coke, pepsi, beer, juice}
- Support threshold = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 \neq \{m, c, b, j\}$
 $B_7 \neq \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

If-then rules about the contents of baskets

• $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j"

• Confidence of this association rule is the probability of j given $I = \{i_1, ..., i_k\}$

$$conf(I \to j) = \frac{support(I \cup j)}{support(I)}$$

[3] Mining Association Rules of high confidence

Step1: Find all frequent itemsets via A-Priori algorithm

Step2: For each frequent itemset *I* conduct rule generation:

(2.1) For every subset
$$A$$
 of I , generate a rule $A \rightarrow I \setminus A$ (Since I is frequent, A is also frequent)

(2.2) Compute the confidence for each rule $\operatorname{confidence}(A \to I \setminus A) = \frac{\operatorname{support}(A) \cup \operatorname{support}(I \setminus A)}{\operatorname{support}(A)} = \frac{\operatorname{support}(I)}{\operatorname{support}(A)}$

(2.3) output the rules above the confidence threshold

[4] A-Priori Algorithm for finding frequent itemsets

For k = 1, 2, ... N, where N is the total number of items, k is the itemset size, **construct two sets of size k**:

- C_k = the set of candidate frequent itemsets (size k) = those that might be frequent itemsets (support >= s) based on information from the pass of k-1
- L_k = the set of truly frequent itemsets (size k)

Hypothetical steps of the A-Priori algorithm

- C₁ = { {b} {c} {j} {m} {n} {p} }
 - Count the support of itemsets in C₁
- Prune non-frequent: L₁ = { b, c, j, m }
- Generate C₂ = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }
- Count the support of itemsets in C₂
- Prune non-frequent: L₂ = { {b,m} {b,c} {c,m} {c,j} }
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C₃
- Prune non-frequent: L₃ = { {b,c,m} }