Fulton chapter 3

Intersection Numbers

Aritra Kundu Problem Set - 2
Email: aritra@cmi.ac.in Topic: Algebraic Geometry

k is an algebraically closed field. F, G are two affine plane curves in k[X,Y]. $P \in A^2$

Property 1: $I(P, F \cap G) \geq 0$, the equality holds if and only if $P \notin V(F) \cap V(G)$

Property 2: Assume F, G both passes through P. $I(P, F \cap G) < \infty \iff F, G$ has no common component passes through P. Otherwise $I(P, F \cap G) = \infty$

Property 3: For any affine transformation T $I(P, F \cap G) = I(Q, F^T \cap G^T)$ where T(P) = Q

Property 4: $I(P, F \cap G) = I(P, G \cap F)$. Let P be a simple point of both F, G. F and G are said to be intersected transversely if they do not share the tangent at P.

Property 5: $I(P, F \cap G) \ge m_P(F)m_P(G)$ the equality holds if and only if F and G have no common tangent at P. This property requires to ensure the condition that F, G intersect transversely if and only if $I(P, F \cap G) = 1$

Property 6: $I(P, F \cap GH) = I(P, F \cap G) + I(P, F \cap H)$

Property 7: $I(P, F \cap G) = I(P, F \cap G + AF) \forall$ polynomial A in k[x, y]. If F is irreducible then $I(P, F \cap G)$ only depends on the image of G in $\tau(F)$

Definition: If F, G has no common component passing through P then F, G has said to be intersected properly. Lets assume $I(P, F \cap G)$ exists for any two affine curves.

Problem 1 Claim

Intersection number of F, G at $P, I(P, F \cap G)$ which has the 7 properties is unique.

Solution: We can assume P = (0,0)[as by property 3 we can apply an affine transformation to make P to be origin by keeping unchanged $I(P,F \cap G)$]

- 1. If F, G has a common component passing through P then $I(P, F \cap G) = \infty$ [by property 2]
- 2. $I(P, F \cap G) = 0 \iff \text{either } F(P) \neq 0 \text{ or } G(P) \neq 0$
- 3. $I(P, F \cap G) = m_P(F)m_p(G) \iff F, G \text{ do not share any tangent at } P$.

So we can assume F, G has intersected properly and $I(P, F \cap G)$ can not be computed directly from the 3 properties mentioned. Let F(X,0), G(X,0) are polynomials of degree of degree r, s respectively. Let's assume r = 0. P(n) be the statement that if $I(P, F \cap G)$ has a value less than n then it is unique.

P(1) is true [by property 1][as then $I(P, F \cap G) = 0 \iff P \notin V(F) \cap V(G)$]. Let P(n) be true. Let F, G be affine curves such that $I(P, F \cap G)$ has a value equal to n. So, $F = YH_1$ and $G = Yg_1 + g_2(X)$ where

$$g_2(X) = X^{m_1}(a_0 + a_1 X ... a_{s-m_1} X^{s-m_1} .a_0 \neq 0 \ [m_1 > 0 \text{ as } P \in V(G)]$$

Now by property 6 $I(P, F \cap G) = I(P, Y \cap G) + I(P, H_1 \cap G)$

$$I(P, Y \cap G) = I(P, Y \cap X^{m_1}) + I(P, Y \cap (a_0 + a_1X + ...a_{s-m_1}X^{s-m_1})) = m_1(I(P, Y \cap X))$$

= m_1 [as $a_0 \neq 0 \implies I(P, Y \cap (a_0 + a_1X + ...a_{s-m_1}X^{s-m_1})) = 0$]

so,

$$I(P, H_1 \cap G) + m_1 = I(P, F \cap G)$$

Now $I(P, H_1 \cap G) < I(P, F \cap G)$ so $I(P, H_1 \cap G) < n$ so $I(P, H_1 \cap G)$ is unique and so $I(P, F \cap G)$ is unique. Therefore P(n+1) is true. So, P(n) is true $\forall n \in \mathbb{N}$ [by principle of mathematical induction].

Let r > 0. WLOG assume that $r \leq s$ [by property 4]. a, b be the leading coefficients of F(X, 0) and G(X, 0). Let $H_1 = G - (b/a)X^{s-r}F$. So,

$$I(P, F \cap G) = I(P, F \cap H_1)$$

clearly $deg(H_1(X,0)) < deg(G(X,0))$. If $deg(H_1(X,0)) > deg(F(X,0))$ then repeating the process for finite number of times we get H s.t.deg(H(X,0)) < deg(F(X,0)) and $I(P,F\cap G) = I(P,F\cap H)$. Then interchanging the role of F,H and after repeating the process for finitely many times we can make the minimum of degA(X,0), degB(X,0) is 0 and then go to the previous case.