Übungsserie 2

Lösung

Aufgabe 1:

a) Für die 15-stellige Mantisse im Dualsystem gibt es 2^{14} verschiedene Möglichkeiten (die erste Nachkommaziffer muss ja 1 sein). Zusammen mit dem Vorzeichen gibt es also 2^{15} Möglichkeiten. Für den 5-stelligen Exponenten im Dualsystem gibt es 2^5 Möglichkeiten, inkl. Vorzeichen also 2^6-1 (da die Null doppelt gezählt wurde). Insgesamt gibt es also $2^{15} \cdot (2^6-1) = 2064384$ Möglichkeiten. Nimmt man die Zahl Null noch hinzu ergibt dies 2064385 Möglichkeiten.

b) $eps = 5 \cdot 10^{-16}$

c) $eps_1=2^{-53}$, $eps_2=8\cdot 16^{-14}=2^{-53}$. Wegen $eps_1=eps_2$ rechnen also beide Maschinen mit derselben Genauigkeit.

.

Aufgabe 2:

a) Vergleich der beiden Darstellungen:

b) & c) Vergleich der beiden Darstellungen:

Aufgabe 3:

Vergleich der beiden Iterationsgleichungen:

Aufgabe 4:

Startet man mit eps=1 und halbiert eps fortlaufend solange, bis eps+1=eps gilt, so erhält man eps=1.110223...e-16 (Achtung: diese Notation ist gleichbedeutend mit $1.110223...\cdot10^{-16}$), was $eps=2^{-53}$ entspricht.

Damit ist die Basis B=2 und die Anzahl Mantisse-Stellen 53 (hidden bit!).

Mit fortlaufender Verdoppelung von q_{min} (vom Startwert 1 aus), bis $q_{min}+1=q_{min}$ gilt, erhält man $q_{min}=9.007199...e+15$, was gerade dem Kehrwert 1/eps entspricht.