# Informing Policy via Dynamic Models: Cholera in Haiti

Jesse Wheeler AnnaElaine Rosengart Zhuoxun Jiang Kevin Hao En Tan Noah Treutle Edward Ionides

2023-03-03

#### Section 1

#### Introduction

2/28

# **Partially Observed Markov Processes**

 The models we focus on are partially observed Markov processes (POMP)



Figure 1: Credit: [1]

#### **POMP Models**

- Parameter vector  $\theta$  that indexes the model
- One step transition density:  $f_{X_n|X_{n-1}}(x_n|x_{n-1};\theta)$  that we can simulate from (may not be able to evaluate or express in closed form).
- Measurement Model:  $f_{Y_n|X_n}(y_n|x_n;\theta)$ .
- Initial density:  $f_{X_0}(x_0; \theta)$

# **Advantages of Statistical Modeling**

- Nonlinear-dynamic statistical models have proven to be a useful tool for modeling infectious disease outbreaks (TODO: CITE)
- Most common examples are SIR models and their various extensions.
- These models enable the modeling of scientifically meaningful states, prediction of the future of the outbreak, and modeling the potential effects of interventions (such as vaccinations) (TODO: CITE)

#### Concerns

- Despite their utility, there exist many cautionary warnings against the use of these types of models (TODO: CITE).
- Concerns include:
  - TODO
  - TODO
  - TODO
- Despite these warnings, there is very little practical advice on how to approach these issues.

#### Cholera in Haiti

- We consider the 2010-2019 cholera outbreak in Haiti.
- Cholera was introduced to Haiti in 2010 following the devastating earthquake of the same year.
- Although some new cases have been detected, there were no recorded cholera cases in Haiti between February, 2019 and September 2022 (TODO: Cite).

#### Data



#### Data



#### Models

• We build on the study by Lee et. al (2020), in which four independent teams built non-linear models to describe cholera dynamics.

|                            | Model 1    | Model 2 | Model 3    |
|----------------------------|------------|---------|------------|
| Deterministic / Stochastic | Stochastic | Yes     | Stochastic |
| Spatial Model              | No         |         | Yes        |
| Fitting Method             | IF2        |         | IBPF       |

#### **Goals**

Our goals in this study is to provide practical advice on how to use non-linear dynamic models to make inference on a dynamic system. We specifically focus on the following topics:

- Model Fitting
- Diagnostics
- Forecasting
- Interpreting Results
- Reproducibility

#### Section 2

# **Model Fitting**

12 / 28

#### Computing

- Parameters of nonlinear dynamic models are often fit by finding their posterior distribution or by maximizing some objective measure.
- Because of the non-linear nature of the models, this can be computationally expensive.
- Great care should be taken to determine the necessary amount of computation needed to solve the problem at hand.

## **Example: Model 3**

- We calibrate this model using the new IBPF algorithm (TODO: Cite), which enables parameter estimation via maximum likelihood for high-dimensional nonlinear POMP models.
- The original version of this model was fit using an alternative approach designed to maximize the model likelihood.
- Without modifications to the model, we obtained parameter estimates corresponding to hundreds of log-likelihood unit improvements to the original model fit.

#### **Nested Models**

- Non-linear dynamic models make assumptions about the dynamics of the system in question.
- Consider testing scientifically meaningful nested hypothesis.
- For example, we consider adding a linear trend in transmission to
  Model 1 in order to account for the apparent decrease in cholera cases.

# **Example: Model 1**



## Model 1 (Continued...)

• Individuals move  $S \to E$  at time t with a rate of  $\lambda(t)$ , where:

$$\lambda(t) = (I + \epsilon A)^{\nu} \frac{d\Gamma(t)}{dt} \beta(t)/N,$$

$$\log \beta(t) = \sum_{j=1}^{6} \beta_j s_j(t) + \xi \overline{t}$$

•  $\frac{d\Gamma}{dt}$  is multiplicative Gamma white-process noise,  $\epsilon, \nu, \xi, \beta_{1:6}$  are parameters to be estimated,  $s_{1:6}(t)$  are a B-spline basis.

## Testing a linear trend

- We test for a linear trend in transmission using a 95% Monte Carlo adjust profile confidence interval (MCAP-CI) (TODO: Cite).
- The test suggests a marginally significant negative linear trend in transmission, with confidence interval  $\xi \in (-0.085, -0.005)$ .



#### Section 3

# **Model Diagnostics**

19/28

## Don't just rely on simulations

text

## **Interpreting Results**

text

#### Section 4

#### **Model Forecasts**

22 / 28

#### **Model Forecasts**

- One of the primary reasons dynamic models are fit to data is to obtain forecasts of the future state of the system.
- When done carefully, forecasts can be helpful in informing policy and may enable real-time testing of new scientific hypothesis [2].

## Using Real-time data on the system

- Recent information about a dynamic system should be more relevant for a forecast than older information.
- While the previous statement seems self-evident, it is not the case for deterministic models which depend only on initial conditions, and is often not done in practice.
- Let  $X_{0:N}$  and  $Y_{1:N}$  be random vectors denoting the latent and observed states from times  $t_0, t_1, \ldots, t_N$ , and let  $y_{1:N}^*$  be the observed data that we use to fit a model.
- Forecasts for future times  $t_{N+1}, \ldots, t_{N+s}$  should be based on draws from  $f_{Y_{N+1:N+S}|Y_{1:N}=Y_{1:N}^*}(Y_{N+1:N+S}|Y_{1:N}=y_{1:N}^*;\hat{\theta})$ , which can be done simulating starting from hidden states drawn from the filtering distribution at time  $t_N$ .

## **Accounting for All Uncertainty**

- Deterministic models are useful for obtaining estimates of general trends of the system but can lead to over-confidence in model forecasts (TODO: Cite kings paper).
- Stochastic models account can include randomness in both the process and measurement models (TODO: Cite ionides paper on this)
- It is important to also account for uncertainty in parameter estimates, as uncertainty in just a single parameter can lead to drastically different forecasts [3].

#### Section 5

### Reproducibility

26 / 28

## Reproducibility

Text

## **Bibliography**

- [1] KING, I., A. (2022). Short course on simulation-based inference for epidemiological dynamics. *Summer Institude in Statistics and Modeling in Infectious Diseases (SISMID)*.
- [2] LEWIS, A. S. L., ROLLINSON, C. R., ALLYN, A. J., ASHANDER, J., BRODIE, S., BROOKSON, C. B., COLLINS, E., DIETZE, M. C., GALLINAT, A. S., JUVIGNY-KHENAFOU, N., KOREN, G., McGLINN, D. J., MOUSTAHFID, H., PETERS, J. A., RECORD, N. R., ROBBINS, C. J., TONKIN, J. and WARDLE, G. M. (2023). The power of forecasts to advance ecological theory. *Methods in Ecology and Evolution* **14** 746–56.
- [3] SALTELLI, A., BAMMER, G., BRUNO, I., CHARTERS, E., DI FIORE, M., DIDIER, E., NELSON ESPELAND, W., KAY, J., LO PIANO, S., MAYO, D., et al. (2020). Five ways to ensure that models serve society: A manifesto.