The Pendulum Turn: Are Rally Drivers Wrong?

Arvind Balachandran

Problem Statement

PEP: Pendulum Turn

Experiment with vehicle parameters (especially inertia) to see if it occurs. (Are many rally drivers wrong?)

Initial values

Problem Statement

PEP: Pendulum Turn

Experiment with vehicle parameters (especially inertia) to see if it occurs. (Are many rally drivers wrong?)

Cost functions:

$$J = \begin{cases} \mathsf{Min} & t + 0.1 \left(\beta_x + \beta_y\right) & \min t \\ \mathsf{Max} & v_x(t_f) + 0.1 \left(\beta_x + \beta_y\right) & \max v_f \end{cases}.$$

subject to
$$\dot{x}=f(x,u), \qquad \qquad \text{ODE}$$

$$f_u(u) \leq 0 \qquad \qquad \text{Constraints}$$

$$f_o(x,u) \leq 0 \qquad \qquad \text{Path}$$

 $x_0, x_f,$

Some Results

Always interesting to see Arvind diagrams.

- min t max v_f

Seems like the pendulum turn is the optimal solution when the goal is to maximize exit velocity.

	t_f	v_f
(topt) Min t_f	7.83 s	25.11 m/s (90.4 km/h)
(vopt) Max v_f	8.84 s	26.68 m/s (96 km/h)

$$\begin{array}{c|cccc} & t_f & v_f \\ \hline \text{(topt) Min } t_f & 7.83 \, \text{s} & 25.11 \, \text{m/s (}90.4 \, \text{km/h)} \\ \text{(vopt) Max } v_f & 8.84 \, \text{s} & 26.68 \, \text{m/s (}96 \, \text{km/h)} \\ \end{array}$$

Relative velocities of the two scenarios, vopt is 1.57 m/s faster at $Y_p=0\,\mathrm{m}.$

$$\begin{array}{c|cccc} & t_f & v_f \\ \hline \text{(topt) Min } t_f & 7.83 \, \text{s} & 25.11 \, \text{m/s (}90.4 \, \text{km/h)} \\ \text{(vopt) Max } v_f & 8.84 \, \text{s} & 26.68 \, \text{m/s (}96 \, \text{km/h)} \\ \end{array}$$

Relative velocities of the two scenarios, vopt is 1.57 m/s faster at $Y_p=0\,\mathrm{m}$. Assuming equal acceleration for both cases, will the vopt vehicle catch up to topt?

Relative velocities of the two scenarios, vopt is 1.57 m/s faster at $Y_p=0\,\mathrm{m}$. Assuming equal acceleration for both cases, will the vopt vehicle catch up to topt?

$$\begin{array}{c|cccc} & t_f & v_f \\ \hline \text{(topt) Min } t_f & 7.83 \, \text{s} & 25.11 \, \text{m/s} \, (90.4 \, \text{km/h}) \\ \text{(vopt) Max } v_f & 8.84 \, \text{s} & 26.68 \, \text{m/s} \, (96 \, \text{km/h}) \\ \end{array}$$

Relative velocities of the two scenarios, vopt is 1.57 m/s faster at $Y_p=0\,\mathrm{m}.$

Assuming equal acceleration for both cases, will the vopt vehicle catch up to topt?

Assuming a point mass model.

Yes! If $V_{T0} < V_{yo(V)}$, i.e., $\mu < 0.158$. So icy conditions at the end of the hairpin?

For the pendulum term to be "viable", $V_{T0} < V_{yo(V)}$. In other words, the topt solution?

Houston, we have a problem

The hairpin turn maneuver is difficult to find a solution.

400 Bad Request

- Restoration Failed.
- Solver encountered NaN.
- Reproblem may be infeasable.

Challenging to re-create the results. Very sensitive to the initial conditions (initial guesses).

Houston, we have a problem

The hairpin turn maneuver is difficult to find a solution.

400 Bad Request

Restoration Failed.

Solver encountered NaN.

Reproblem may be infeasable.

Challenging to re-create the results. Very sensitive to the initial conditions (initial guesses). A right-hand turn maneuver easier to find a solution.

So what's good

- No need for homotopic.
- Fast computation time.

Houston, we have a problem

The hairpin turn maneuver is difficult to find a solution.

400 Bad Request

Restoration Failed.

Solver encountered NaN.

Reproblem may be infeasable.

Challenging to re-create the results.

Very sensitive to the initial conditions (initial guesses).

A right-hand turn maneuver easier to find a solution.

So what's good

- No need for homotopic.
- Fast computation time.

The investigation hereafter considers a right-hand turn maneuver for the ST-model with load transfer.

Some results

Still talking numbers.

		Dry Asphalt		Wet Asphalt		Snow	
		t_f	v_f	t_f	v_f	t_f	v_f
topt	$Min\ t_f$	6.64 s	29.1 m/s	6.86 s	27.68 m/s	10.9 s	17.64 m/s
			104.77 km/h		99.65 km/h		63.49 km/h
vopt	$Max\ v_f$	8.15 s	29.66 m/s	7.94 s	28.23 m/s	11.77 s	18.18 m/s
	v		106.78 km/h		101.69 km/h		65.43 km/h

Some results

Still talking numbers.

		Dry Asphalt		Wet Asphalt		Snow	
		t_f	v_f	t_f	$ v_f $	t_f	v_f
topt	$Min\ t_f$	6.64 s	29.1 m/s	6.86 s	27.68 m/s	10.9 s	17.64 m/s
			104.77 km/h		99.65 km/h		63.49 km/h
vopt	$Max\ v_f$	8.15 s	29.66 m/s	7.94 s	28.23 m/s	11.77 s	18.18 m/s
			106.78 km/h		101.69 km/h		65.43 km/h

Arvind

The velocity optimized is still "slower" than the time optimized

However...

We Have Hope

Similar time- and velocity-optimized trajectories for snow conditions.

Arvind Balachandran www.liu.se

