DAVL EXP 5 - YASH ASHOK SHIRSATH TE AIDS-69

```
import numpy as yash
import pandas as shirsath
import matplotlib.pyplot as yashshirsath
import statsmodels.tsa.stattools as ts
from statsmodels.tsa.arima.model import ARIMA

df = shirsath.read_csv("Advertising.csv")

train_size = int(len(df) * 0.8)
train, test = df[:train_size], df[train_size:]

model = ARIMA(train['Sales'], order=(5,1,0))
model_fit = model.fit()

print(model_fit.summary())
```

SARIMAX Results							
Dep. Variable Model: Date: Time: Sample:	A	RIMA(5, 1, 1, 12 Feb 20 17:31:	0) Log 24 AIC 11 BIC 0 HQIC		=======	160 -493.502 999.005 1017.418 1006.482	
Covariance Typ	=======		pg ======	======== P> z	:=====================================	 0.9751	
ar.L3 ar.L4 ar.L5	-0.8784 -0.8096 -0.5749 -0.4542 -0.2954 28.8057	0.088 0.102 0.106 0.094	-9.948 -7.971 -5.448 -4.823	0.000	-1.051 -1.009 -0.782	-0.705 -0.611 -0.368 -0.270	
Ljung-Box (L1) Prob(Q): Heteroskedast: Prob(H) (two-	icity (H):		0.06 0.80 1.22 0.47	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):		3.58 0.17 0.26 2.48

Warnings:

 $\[1\]$ Covariance matrix calculated using the outer product of gradients (complex-step).

```
yashshirsath.plot(train.index, train['Sales'], label='Actual')
yashshirsath.plot(train.index, model_fit.fittedvalues, color='red', label='Predicted')
yashshirsath.title('Actual vs. Predicted Sales (Training Set)')
yashshirsath.xlabel('Date/Index')
yashshirsath.ylabel('Sales')
yashshirsath.legend()
yashshirsath.show()
```



```
yashshirsath.plot(test.index, test['Sales'], label='Actual')
forecast = model_fit.forecast(steps=len(test))
yashshirsath.plot(test.index, forecast, color='green', label='Forecast')
yashshirsath.title('Actual vs. Forecasted Sales (Testing Set)')
yashshirsath.xlabel('Date/Index')
yashshirsath.ylabel('Sales')
yashshirsath.legend()
yashshirsath.show()
```



```
mse = ((forecast - test['Sales']) ** 2).mean()
rmse = mse ** 0.5
print("Mean Squared Error:-", mse)
print("Root Mean Squared Error:-", rmse)
```

Mean Squared Error:- 37.60876105920678 Root Mean Squared Error:- 6.132598230701794