Supervised and Unsupervised Learning

Different Machine Learning Paradigms

Supervised Learning

- To learn an unknown target function f
- Input: a training set of labeled examples (x_j,y_j) where y_i = f(x_i)
 - E.g., x_i is an image, $f(x_i)$ is the label "giraffe"
- Output: hypothesis h that is "close" to f, i.e., predicts well on unseen examples ("test set")
- Many possible hypothesis families for h
 - Linear models, logistic regression, neural networks, decision trees, examples (nearest-neighbor) etc.

Housing Price Prediction

Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

Task: If a residence has x square feet, predict its

price?

Housing Price Prediction

Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

Task: If a residence has x square feet, predict its

Solution: fitting linear/quadratic functions to the dataset.

High-dimensional Features

- $\triangleright x \in \mathbb{R}^d$ for large d
- ➤ E.g.,

Supervised Learning in CV

- Image Classification
 - -x =raw pixels of the image, y =the main object

Supervised Learning in CV

Object localization and detection

-x =raw pixels of the image, y =the bounding

boxes

kit fox

croquette

frog

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.'2015

Supervised Learning in Natural Language Processing

Machine translation

Google Translate 文 Text Documents **DETECT LANGUAGE** CHINESE **ENGLISH SPANISH** CHINESE (SIMPLIFIED) **ENGLISH SPANISH** Machine translation is a supervised learning 机器翻译是一种有监督的学习问题 X problem 52/5000 111111 Send feedback

 Note: This course only covers the basic and fundamental techniques of supervised learning (which are not enough for solving hard vision or NLP problems.)

Supervised Learning

Advantage

- You have full control over what the machine is learning.
- You can easily test and debug your learning machine.
 - Since the labelled data is available you can easily inspect its output and find out what errors it's making on what type of input data.

Supervised Learning

Disadvantage

 Collecting and labelling data is expensive and time-consuming.

Example: Speech Recognition, Medical Image Analysis, etc.

 Errors in Your training data might confuse your algorithm and lower its accuracy. Garbage-in -> Garbage-out

Unsupervised Learning

- Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

supervised

unsupervised

Clustering

Clustering Genes

Individuals

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Need for Unsupervised Learning

- Annotating large datasets is very costly and time consuming. Example: Speech Recognition, Medical Image Analysis, etc.
- There may be cases where we don't know how many/what classes is the data divided into.
 Example: Data Mining, Sentimental Analysis.
- We may want to use clustering to gain some insight into the structure of the data before designing a classifier.

Disadvantages of Unsupervised Learning

 Unsupervised Learning is harder as compared to Supervised Learning. Since, making the inference is difficult due to unavailable labels.

- How do we know if results are meaningful since it has unlabelled data?
 - External evaluation- Expert analysis.
 - Internal evaluation- Objective function.

Reinforcement Learning

A reinforcement learning algorithm, or agent, learns by interacting with its environment. The agent receives rewards by performing correctly and penalties for performing incorrectly.

Need for Reinforcement Learning

- Reinforcement learning can be used to solve very complex problems that cannot be solved by conventional techniques.
- In the absence of a training dataset, it is bound to learn from its experience.
- Reinforcement learning models can outperform humans in many tasks and learning process is similar to human learning.
- DeepMind's AlphaGo program, a reinforcement learning model, beat the world champion *Lee* Sedol at the game of Go in March 2016.

Disadvantages of Reinforcement Learning

- Reinforcement learning needs a lot of data and a lot of computation. It is data-hungry.
 - So for solving video games and puzzles it performs well.
- Reinforcement learning assumes the world is Markovian, which it is not.
 - The Markovian model describes a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.

What is classification problem?

- Let there are two classes of objects.
 - Class 1: Set of dog pictures
 - Class 2: Set of cat pictures
- Problem is
 - Given a picture, you should say whether it is cat or dog.
 - For a human being it is easy..., but for a machine it is a non-trivial problem.

What is classification problem?

Suppose we are given a training set of N observations

$$(x_1, \ldots, x_N)$$
 and $(y_1, \ldots, y_N), x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$

Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

Classification: Supervised Learning

Training Phase

We have shown a set of dog pictures and a set of cat pictures to a child.

Classification: Supervised Learning

Testing Phase

What is Learning?

- Child has learnt what is it that is common among dogs ... and, what is it that is common among cats... also, what are the distinguishing features/attributes.
- Child has learnt the pattern (regularity) behind all dogs and the pattern behind all cats.
- Child then recognized a test image as having a particular pattern that is unique to dogs.

What is Regression Problem?

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
 - -y is real-valued == regression

Popular ML algorithms

Classification

- Linear Classifiers
- Support Vector Machines
- Decision Trees
- K-Nearest Neighbor
- Random Forest

Regression

- Linear Regression
- Logistic Regression
- Polynomial Regression

Resources: Journals

- Journal of Machine Learning Research www.jmlr.org
- Machine Learning
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association

Resources: Conferences

- International Conference on Machine learning (ICML)
- European Conference on Machine Learning (ECML)
- Neural Information Processing Systems (NIPS)
- Computational Learning
- International Joint Conference on Artificial Intelligence (IJCAI)
- ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
- IEEE Int. Conf. on Data Mining (ICDM)

Thank You: Question?