No-2 Conjecture

July 2, 2022

1 Introduction

The No-2 Conjecture says that there is no consecutive sequence of ones with a size equal to two in the sequence T_3 . In other words, no sequence of T translates to a sequence of T_3 that has exactly two consecutive ones.

Note that this pattern of exactly two consecutive ones does exist in T, but not T_3 .

Lemma 1.1 The smallest and only sequence that contains exactly two consecutive ones is 0110.

Lemma 1.2 There exists no consecutive sequences of ones or zeros greater than two in T.

E.g. 0110 and 1001 exist in T, but 1110 and 0100 do not.

Theorem 1.3 Any sequences of T that leads to a sequence of T_3 that contains two consecutive ones must have ones in locations 3, and 6.

$$E.g.$$
 . . . 1 . . 1 . . .

Theorem 1.4 Any sequences of T that leads to a sequence of T_3 that contains two consecutive ones must also have zeros in locations 0, and 9.

Corollary 1.4.1 The only sequences that translate to a sequence of T_3 that are equal to 0110 that follow Lemma 1.2, Theorem 1.2, and Theorem 1.3 are the following.

Lemma 1.5 For any sequence of length at most 2^n , if the Thue-Morse sequence doesn't contain it in the first 2^{n+3} digits, it contains it nowhere.

Corollary 1.5.1 None of the sequences from the list of possible T sequences that translates to T_3 equal to 0110 are contained in first $2^{9+3} = 4096$ digits of T, and therefore exist nowhere in T.

2 Code Verification

2.1 Possible T sequences that translates to T_3 equal to 0110 not found in first 4096 of T

The first 4096 of T do not contain any of the 8 possible T sequences that translates to T_3 equal to 0110.

```
first_4096 = ""
for x in range(0, 4096):
    first_4096 = "1" if bin(x).count('1') % 2 else "0"

possible = [
    '00110010100',
    '0011011010',
    '0101001100',
    '0101001100',
    '0101011010',
    '01011011010',
    '01011011010',
    '0101101100',
    '0101101100',
]

for x in possible:
    if x in first_4096:
        print("Found")
```

Listing 1: Possible T sequences that translates to T_3 equal to 0110 not found in first 4096 of T

2.2 Find possible T sequences that translates to T_3 equal to 0110

```
import itertools
from pprint import pprint
perms = ['', join(x) for x in itertools.product('01', repeat=10)]
def remove_less_than_two_in_a_row_t3(items: list[str]):
    exactly_two = []
    for x in items:
        if x[3] = '1' and x[6] = '1':
            exactly_two.append(x)
    return exactly_two
def remove_more_than_two_in_a_row_t3(items: list[str]):
    exactly_two = []
    for x in items:
        t3 = ""
        for a in range (0, 10, 3):
            t3 += x[a]
        if "111" not in t3:
            exactly_two.append(x)
    return exactly_two
def remove_more_than_two_in_a_row_t_new(items: list[str]):
    left = []
    for item in items:
        if "111" not in item and "000" not in item:
            left.append(item)
    return left
perms = remove_more_than_two_in_a_row_t_new(perms)
perms = remove_less_than_two_in_a_row_t3 (perms)
perms = remove_more_than_two_in_a_row_t3 (perms)
pprint (perms)
```

Listing 2: Find possible T sequences that translates to T_3 equal to 0110