Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32131	К работе допущен	14.11.22
Студент_	Исрат Джахан	Работа выполнена	14.11.22

Преподаватель Эльвира Олеговна Отчет принят

Рабочий протокол и отчет по лабораторной работе №4.04 Определение показателя преломления стеклянной пластины интерференционным методом

1. Цель работы.

- Определение показателя преломления стеклянной пластины с помощью интерференционной картины полос равного наклона и расчет порядка интерференции для центра картины

2. Задачи, решаемые при выполнении работы.

- Определение координат минимумов интерференционных колец
- Определение показателя преломления пластины
- Измерение толщины пластины

3. Объект исследования.

- Стеклянная пластина

4. Метод экспериментального исследования.

- Метод интерференционный, предварительный лабораторный эксперимент.

5. Рабочие формулы и исходные данные.

$$\lambda = 632.82 \pm 0.01$$
 нм $2 \mathrm{d} \sqrt{n^2 - sin^2 \theta_1} = (\mathrm{m} + \Delta \mathrm{m}) \lambda$, где $\theta = 90^\circ$ $\mathrm{n} = \frac{d(D_2^2 - D_1^2)}{16L^2 \lambda \Delta \mathrm{m}}$ $m = \frac{2dn}{\lambda}$

$$\varepsilon_z = \sqrt{\left(\frac{\partial \ln z}{\partial a} \Delta_a\right)^2 + \left(\frac{\partial \ln z}{\partial b} \Delta_b\right)^2 + \left(\frac{\partial \ln z}{\partial c} \Delta_c\right)^2 + \dots \cdot 100\%}.$$

6. Измерительные приборы.

<i>№</i> n / n	Наименование	Тип прибора	Используе мый диапазо н	Погрешно сть прибор а
1	Линейка на оптической скамье	Вычислительны й	(0; 1)м	$1_{\text{MM}} = 0.001_{\text{M}}$
2	Ученическая линейка	Вычислительны й	(0; 0,2) м	$1_{\text{MM}} = 0.001_{\text{M}}$

7.Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Оптическая схема опыта

Экспериментальная установка

Рис. 2. Вид экспериментальной установки. 1 — лазер, 2 — микро-объектив с экраном, 3 — плоскопараллельная пластина, 4 — экран

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

$$- L = 48 cm$$

- Координаты пересечения

Υ	X	D	$D_1 = 18 \text{ MM}$
0.9	0.9	1.8	$D_2 = 23 \text{ MM}$
1.15	1.15	2.3	$D_3 = 28 \text{ MM}$
1.4	1.4	2.8	
1.6	1.6	3.2	$D_4 = 32 \text{ MM}$
1.8	1.8	3.6	$D_5 = 36 \text{ MM}$
1.9	1.9	3.8	$D_6 = 38 \text{ MM}$

$$D_4^2 - D_1^2 = 32^2 - 18^2 = 700$$
мм

$$D_5^2 - D_2^2 = 36^2 - 23^2 = 767$$
mm
 $D_6^2 - D_3^2 = 38^2 - 28^2 = 660$ mm

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

- Среднее значение
$$D_2^2-D_1^2=D_{\mathrm{cp}}$$

$$D_{\mathrm{cp}}=\frac{700+767+660}{3}=709$$
мм

- Показатель преломления

$$n = \frac{15,82 \cdot 10^{-3} \cdot 7,09 \cdot 10^{-4}}{16 \cdot 0,48^2 \cdot 632,82 \cdot 10^{-9} \cdot 3} \approx 1,603$$

- Порядок интерференции в центре интерференционной картины

$$m = \frac{2 \cdot 15,82 \cdot 10^{-3} \cdot 1,603}{632.82 \cdot 10^{-9}} \approx 80147,4$$

10.Расчет погрешностей измерений (для прямых и косвенных измерений).
$$- \varepsilon_n = \sqrt{\left(\frac{0,005}{15,82}\right)^2 + \left(\frac{0,05}{7,09}\right)^2 + 2 \cdot \left(\frac{0,1}{48}\right)^2 + \left(\frac{0,01}{632,82}\right)^2} \approx 0,0076 = 0,76\%$$

$$=> \Delta_n = 1,603 \cdot 0,0076 \approx 0,012$$

-
$$\varepsilon_m = \sqrt{\left(\frac{0.005}{15.82}\right)^2 + (0.0076)^2 + \left(\frac{0.01}{632.82}\right)^2} \approx 0.0076 = 0.76\%$$

=> $\Delta_m = 80147.47 \cdot 0.0076 \approx 609.1$

11.Окончательные результаты.

- $n = [1,603 \pm 0,012]$; $\varepsilon_n = 0,76\%$; $\alpha = 0,95$
- $m = [80147,47 \pm 609,12]$; $\varepsilon_m = 0,0076$; $\alpha = 0.95$

12.Выводы и анализ результатов работы.

- То, с помощью интерференционной картины полос равного наклона и расчета порядка интерференции для центра картины m
- Мы определили показатель преломления стеклянной пластинки п

- 1. Дополнительные задания.
- 2. Выполнение дополнительных заданий.
- 3. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

- Примечание: 1. Пункты 1-13 Протокола-отчета обязательны для заполнения.
 - 2. Необходимые исправления выполняют непосредственно в протоколе-отчете.
 - 3. Для построения графиков используют только миллиметровую бумагу.
 - 4. Приложения 1 и 2 вкладывают в бланк протокола-отчета.