

- Infeasible problem
 - A linear program is infeasible if there is no point that satisfies all the constraints
 - Consider the linear program

Maximize
$$5x + 3y$$

Subject to $4x + 2y \le 8$
 $x \ge 4$
 $y \ge 6$

• When $x \ge 4$ and $y \ge 6$, 4x + 2y > 8

$$4(4) + 2(6) = 28 > 8$$

$$4(5) + 2(7) = 34 > 8$$

• A linear program may have multiple optimal solutions if there are two or more extreme points along the optimal level curve for the problem

• Consider the linear program

Maximize	40x + 30y
Subject to	$x + 2y \le 40$
	$x \ge 0$
	$y \ge 0$

• Optimal points: (24,8) & (30,0)

$$40(24) + 30(8) = 1200$$

$$40(30) + 30(0) = 1200$$

- Unbounded problem
 - A linear program is unbounded if the feasible region is not closed and the objective function grows (decreases) indefinitely without bound
 - Similar to the infeasible problem where no solution exists
 - Consider the two linear programs with identical feasible regions

A) Maximize
$$2x + y$$
 B) Minimize $2x + y$ Subject to $x + y \ge 5$ Subject to $x + y \ge 5$ $x \le 4$ $x \ge 0$ $y \ge 0$

Which linear program is unbounded, A or B?

- Unbounded problem
 - In both linear programs, the feasible region is unbounded

- The maximization linear program is unbounded
- The minimization linear program has a single optimal solution at (0,5)

- Majority of linear programs solved using a computer
- Excel's built-in tool called Solver is capable of handling linear optimization using the simplex algorithm from George Dantzig
- Recall: Beaver Creek Pottery Company from Lecture 2
 - Download BeaverCreek.xlsx from website link called Sheet 1
 - Linear Program

Maximize	40x + 50y
Subject to	$x + 2y \le 40$
	$4x + 3y \le 120$
	$x \ge 0$
	$y \ge 0$

• Optimal: 24 Bowls and 8 Mugs

	Α	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8							
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8							
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0	Objective	Function:	B4*B*11+(4*B12	

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50	Labor Use	d: B6*B11+	-C6*B12	
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8				Clay Used	: B7*B11+C	7*B12	
9				,	,		
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50				
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8						Capacity	
9							
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

	А	В	С	D	Е	F	G
1	The Beaver Creek P	ottery Compa	any				
2							
3	Products:	Bowl	Mug				
4	Profit per unit:	40	50			Labor Wa	ste: F6-D6
5	Resources:			Usage	Constraint	Available	Left over
6	Labor (hr/unit)	1	2	0	<=	40	40
7	Clay (lb/unit)	4	3	0	<=	120	120
8						Clay Wa	ste: F6-D6
9						,	
10	Production:						
11	Bowls =	0					
12	Mugs =	0					
13	Profit =	0					

- Optimizing with Excel
 - Select Data and then select Solver by the Analyze section
 - Observe window

- Optimizing with Excel
 - Cell you are trying to optimize with objective function

Maximize or minimize

• Choose your decision variables

10 Production:		
11 Bowls =	0	By Changing Variable Cells:
12 Mugs =	0	\$B\$11:\$B\$12

- Optimizing with Excel
 - Create your constraints using Add
 - You can type or click to select cell
 - You will see your constraints in the Subject to the Constraints
 - Notice box for nonnegativity

✓ Make Unconstrained Variables Non-Negative

5	Resources:			Usage	Constraint	Available	S <u>u</u> bject to the Co
6	Labor (hr/unit)	1	2	0	<=	40	\$D\$6 <= \$F\$6
7	Clay (lb/unit)	4	3	0	<=	120	\$D\$7 <= \$F\$7

- Optimizing with Excel
 - Select Solve

• Optimal solution can be found in decision variables

Production:	
Bowls =	0
Mugs =	0
Profit =	0

Production:	
Bowls =	24
Mugs =	8
Profit =	1360

- Annabelle Sizemore has a massive amount of money (AKA stacks) from numerous sources that she needs to do something with (AKA make it rain)
- After researching the market, she has decided to split her money to 2 places
 - S&P index fund from Shield Securities
 - Internet stock fund from Madison Funds, Inc.
- Q: How should Annabelle split her money in these two funds?
- Decision Variables
 - x = Amount Invested in S&P Index Fund
 - y = Amount Invested in Internet Stock Fund
 - $u = Number\ of\ S\&P\ Index\ Fund\ Shares$
 - $v = Number\ of\ Internet\ Stock\ Fund\ Shares$

- Average annual return over the last 3 years for the S&P index fund was 17% and 28% for the internet stock fund
 - Goal: Maximize return on her investment
 - Objective function: Z = 0.17x + 0.28y
 - Price per share of S&P index fund is \$175 and \$208 for internet stock fund
 - Objective function: Z = 0.17(175u) + 0.28(208v)
- Constraints
 - Must invest nonnegative amounts : $x \ge 0 \ \& \ y \ge 0 \ (u \ge 0 \ \& \ v \ge 0)$
 - Only has \$120,000 to invest: $x + y \le 120,000$ $(175u + 208v \le 120,000)$
 - The proportion of the dollar amount she invests in the index fund relative to the internet fund should be at least one-third: $x/y \ge 1/3$ or $3x y \ge 0$ $(3(175u) 208v \ge 0)$
 - Amount invested in index fund no more than twice the amount invested in the internet fund: $x \le 2y$ or $x 2y \ge 0$ $(175u 2(208v) \ge 0)$

Full linear program

Maximize 0.17x + 0.28ySubject to $x + y \le 120,000$ $3x - y \ge 0$ $x - 2y \le 0$

 $x \ge 0$
 $y \ge 0$

Maximize Subject to

0.17(175u) + 0.28(208v) $175u + 208v \le 120,000$ $3(175u) - 208v \ge 0$ $175u - 2(208v) \ge 0$ $u \ge 0$ $v \ge 0$

- Alternative approach: use growth vector and level curves (contours)
 - Download AnnabelleInvest.xlsx from website link called Sheet 2
 - Try to use Excel Solver to find the optimal solution
 - Solution
 - *x* =\$30,000
 - *y* =\$90,000
 - Return is \$30,300

The End

