Intensité et niveau sonore

La fonction logarithme décimal est définie sur]0; $+\infty$ [par $\log(x) = \frac{\ln(x)}{\ln(10)}$

Elle vérifie les mêmes propriétés algébriques que la fonction logarithme népérien.

En physique, le **niveau sonore** N en décibels (dB) d'un son d'un son d'**intensité acoustique** I en watt par m² est donné par la relation $N(I) = 10 \log \left(\frac{I}{I_0}\right)$ où $I_0 = 10^{-12}$ W/m² est la plus faible intensité perceptible par l'oreille humaine.

Partie A: Quelques exemples

- 1. Quel est le niveau sonore N_0 d'un son d'intensité acoustique I_0 ?
- 2. L'intensité acoustique d'une moto est estimée à $10^{-5}~{\rm W/m^2}.$

Quel est le niveau sonore de cette moto?

Le niveau sonore d'une salle de classe est estimé à 60 dB.

Quelle est l'intensité acoustique de cette salle?

4. Les scientifiques estiment que le seuil de douleur est atteint à partir d'un niveau sonore de 120 dB. Quelle est l'intensité acoustique correspondante?

Rapport entre niveau sonore et intensité acoustique

- 1. L'intensité de la sonnerie d'un téléphone portable est de 60 dB, celle d'un avion au décollage à 200 m est 120 dB. Combien faudrait-il de téléphones portables pour atteindre le niveau sonore d'un avion au décollage à 200 m?
- 2. Vrai ou faux? : Si l'intensité acoustique est multipliée par 10, le niveau sonore augmente de 10 dB.
- 3. Le 9 août 2017, la législation sur le niveau sonore dans les discothèques et les salles de concert a évolué. Le niveau sonore moyen, mesuré sur 15 minutes, ne peut plus dépasser 102 décibels, alors que le niveau maximal était fixé à 105 décibels depuis 1998.

Comment a évolué l'intensité acoustique maximale autorisée?

Durée limite d'exposition (sans protection) avant dommage auditif :

- De 120 à 140 dB: quelques secondes suffisent à provoquer des lésions irréversibles;
- 100 dB: 5 min par jour;
- 95 dB: 15 min par jour;
- 92 dB: 30 min par jour;
- 89 dB: 1 h par jour;
- 86 dB: 2 h par jour;
- 80 dB: 8 h par jour.

Sismologie

Info:

Deux paramètres sont utilisés pour mesurer la force des séismes : la **magnitude** et l'**intensité**.

Un séisme est associé à une seule **magnitude** et à une gamme de valeurs d'**intensité**. En effet, la magnitude caractérise l'énergie libérée par la rupture de la faille à l'origine des secousses tandis que l'intensité sismique varie d'un site à l'autre pour un même séisme (par exemple : ressenti des habitants, dégâts matériels, etc.).

Les médias font souvent référence à la magnitude du séisme sur l'échelle ouverte de Richter. Elle a été définie en 1935 par Charles Francis Richter qui a établi une échelle pour classer et comparer les séismes californiens.

Charles Francis Richter vers 1970

Magnitude d'un séisme

L'échelle de Richter, basée sur les mesures faites par les sismographes, exprime la magniture M d'un séisme.

Cette magnitude est définie par la relation $M=\log\left(\frac{A}{A_0}\right)$ où A est l'amplitude maximale relevée par le sismographe et A_0 est une amplitude de référence; log est la fonction logarithme décimal définie sur l'intervalle]0; $+\infty[$ par $\log(x)=\frac{\ln(x)}{\ln(10)}.$

- 1. Que vaut la magnitude d'un séisme si l'amplitude relevée est 10 000 fois plus grande que l'amplitude de référence ?
- 2. Un séisme est dit « léger » si sa magnitude est comprise entre 4 et 5. Monter que son amplitude A vérifie alors $10^4 \times A_0 \leqslant A \leqslant 10^5 \times A_0$.
- 3. La magnitude connue la plus importante est de 9,5. Elle a été enregistrée lors du séisme de Valdivia au Chili en 1960. Démontrer que son amplitude A vérifie $A=\sqrt{10}\times 10^9 A_0$.
- **4.** Un pays vient de connaître un séisme de magnitude 8 suivi d'une réplique de magnitude 4. Un journaliste écrit alors que la réplique a été deux fois moins puissante que le premier séisme. Qu'en pensez-vous?

Énergie libérée par un séisme

L'énergie E, en joule (J), libérée par un séisme se calcule à l'aide de l'égalité $\log(E) = a + bM$ où M est la magnitude du séisme et a et b sont deux nombres réels.

Plus le séisme a libéré d'énergie, plus sa magnitude est élevée.

Un accroissement de 1 de la magnitude correspond à une multiplication par 30 de l'énergie libérée.

- **1.** Justifier que a et b sont solutions du système (S) : $\begin{cases} & \log(E) = a + bM \\ & \log(30E) = a + b + bM \end{cases}$
- 2. Déterminer a et b sachant qu'un séisme de magnitude 3 a libéré une énergie égale à $6,4\times10^{15}$ joules. Arrondir au centième.
- 3. Calculer l'énergie libérée au foyer d'un séisme de magnitude 5.