EE 160 SIST, ShanghaiTech

Linear Time-Invariant Systems

Introduction

Matrix Exponentials

Construction of Solutions

Boris Houska 5-1

Contents

Introduction

Matrix Exponentials

Construction of Solutions

Let $A \in \mathbb{R}^{n_x \times n_x}$ and $b \in \mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$

- $x: \mathbb{R} \to \mathbb{R}^{n_x}$ is called state trajectory,
- $x_0 \in \mathbb{R}^{n_x}$ is called the initial value,
- t is called the free variable

Let $A \in \mathbb{R}^{n_x \times n_x}$ and $b \in \mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$

- $x: \mathbb{R} \to \mathbb{R}^{n_x}$ is called state trajectory,
- $x_0 \in \mathbb{R}^{n_x}$ is called the initial value,
- t is called the free variable

Let $A \in \mathbb{R}^{n_x \times n_x}$ and $b \in \mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$

- $x: \mathbb{R} \to \mathbb{R}^{n_x}$ is called state trajectory,
- $x_0 \in \mathbb{R}^{n_x}$ is called the initial value,
- t is called the free variable.

Let $A \in \mathbb{R}^{n_x \times n_x}$ and $b \in \mathbb{R}^{n_x}$ be given. The differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$

- $x: \mathbb{R} \to \mathbb{R}^{n_x}$ is called state trajectory,
- $x_0 \in \mathbb{R}^{n_x}$ is called the initial value,
- t is called the free variable.

Example: harmonic oscillator

A linear differential equation with b=0,

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \;, \quad \text{and} \quad x(0) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

is called a harmonic oscillator. Componentwise notation:

$$\left\{ \begin{array}{lll} \dot{x}_1(t) & = & x_2(t) \\ \dot{x}_2(t) & = & -x_1(t) \end{array} \right\} \quad \text{with} \quad \left\{ \begin{array}{ll} x_1(0) = 0 \\ x_2(0) = 1 \end{array} \right\}$$

A solution trajectory is given by

$$x(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$

Example: harmonic oscillator

A linear differential equation with b = 0,

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \;, \quad \text{and} \quad x(0) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

is called a harmonic oscillator. Componentwise notation:

$$\left\{ \begin{array}{lcl} \dot{x}_1(t) & = & x_2(t) \\ \dot{x}_2(t) & = & -x_1(t) \end{array} \right\} \quad \text{with} \quad \left\{ \begin{array}{ll} x_1(0) = 0 \\ x_2(0) = 1 \end{array} \right\}$$

A solution trajectory is given by

$$x(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$

Example: harmonic oscillator

A linear differential equation with b = 0,

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \;, \quad \text{and} \quad x(0) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)$$

is called a harmonic oscillator. Componentwise notation:

$$\left\{ \begin{array}{lcl} \dot{x}_1(t) & = & x_2(t) \\ \dot{x}_2(t) & = & -x_1(t) \end{array} \right\} \quad \text{with} \quad \left\{ \begin{array}{ll} x_1(0) = 0 \\ x_2(0) = 1 \end{array} \right\}$$

A solution trajectory is given by

$$x(t) = \left(\begin{array}{c} \sin(t) \\ \cos(t) \end{array}\right) .$$

Higher order linear differential equation (LDE) have the form

$$\frac{\partial^m}{\partial t^m}y(t) \; = \; \sum_{i=0}^{m-1} D_i \frac{\partial^i}{\partial t^i}y(t) + d \quad \text{with} \quad \frac{\partial^i}{\partial t^i}y(0) = y_i$$

for $i \in \{0, \dots, m-1\}$.

- The matrices $D_0, D_1, \dots, D_{m-1} \in \mathbb{R}^{n_y \times n_y}$ are given,
- the vector $d \in \mathbb{R}^{n_y}$ is called the offset,
- and $y_0, y_1, \dots, y_{m-1} \in \mathbb{R}^{n_y}$ denote initial values of the derivatives

Higher order linear differential equation (LDE) have the form

$$\frac{\partial^m}{\partial t^m}y(t) \; = \; \sum_{i=0}^{m-1} D_i \frac{\partial^i}{\partial t^i}y(t) + d \quad \text{with} \quad \frac{\partial^i}{\partial t^i}y(0) = y_i$$

for $i \in \{0, \dots, m-1\}$.

- The matrices $D_0, D_1, \dots, D_{m-1} \in \mathbb{R}^{n_y \times n_y}$ are given,
- the vector $d \in \mathbb{R}^{n_y}$ is called the offset,
- and $y_0, y_1, \dots, y_{m-1} \in \mathbb{R}^{n_y}$ denote initial values of the derivatives.

Higher order linear differential equation (LDE) have the form

$$\frac{\partial^m}{\partial t^m}y(t) \; = \; \sum_{i=0}^{m-1} D_i \frac{\partial^i}{\partial t^i}y(t) + d \quad \text{with} \quad \frac{\partial^i}{\partial t^i}y(0) = y_i$$

for $i \in \{0, \dots, m-1\}$.

- The matrices $D_0, D_1, \dots, D_{m-1} \in \mathbb{R}^{n_y \times n_y}$ are given,
- the vector $d \in \mathbb{R}^{n_y}$ is called the offset,
- and $y_0, y_1, \dots, y_{m-1} \in \mathbb{R}^{n_y}$ denote initial values of the derivatives.

Higher order linear differential equation (LDE) have the form

$$\frac{\partial^m}{\partial t^m}y(t) \; = \; \sum_{i=0}^{m-1} D_i \frac{\partial^i}{\partial t^i}y(t) + d \quad \text{with} \quad \frac{\partial^i}{\partial t^i}y(0) = y_i$$

for $i \in \{0, \dots, m-1\}$.

- The matrices $D_0, D_1, \dots, D_{m-1} \in \mathbb{R}^{n_y \times n_y}$ are given,
- the vector $d \in \mathbb{R}^{n_y}$ is called the offset,
- and $y_0, y_1, \dots, y_{m-1} \in \mathbb{R}^{n_y}$ denote initial values of the derivatives.

Higher order linear differential equation (LDE) have the form

$$\frac{\partial^m}{\partial t^m}y(t) \; = \; \sum_{i=0}^{m-1} D_i \frac{\partial^i}{\partial t^i}y(t) + d \quad \text{with} \quad \frac{\partial^i}{\partial t^i}y(0) = y_i$$

for $i \in \{0, \dots, m-1\}$.

- The matrices $D_0, D_1, \dots, D_{m-1} \in \mathbb{R}^{n_y \times n_y}$ are given,
- the vector $d \in \mathbb{R}^{n_y}$ is called the offset,
- and $y_0, y_1, \dots, y_{m-1} \in \mathbb{R}^{n_y}$ denote initial values of the derivatives.

Solution strategy: introduce a new state

$$x(t) = \left[y(t)^\intercal, \dot{y}(t)^\intercal, \ddot{y}(t)^\intercal, \dots, \frac{\partial^{m-1}}{\partial t^{m-1}} y(t)^\intercal \right]^\intercal$$

and define

$$A = \begin{pmatrix} 0 & I & & & & \\ & 0 & I & & & \\ & & \ddots & \ddots & & \\ & & & 0 & I \\ D_0 & D_1 & \dots & D_{m-2} & D_{m-1} \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ d \end{pmatrix}.$$

Don't forget the initial value:
$$x_0 = \begin{bmatrix} y_0^\mathsf{T}, y_1^\mathsf{T}, y_2^\mathsf{T}, \dots, y_{m-1}^\mathsf{T} \end{bmatrix}^\mathsf{T}$$
.

Solution strategy: introduce a new state

$$x(t) = \left[y(t)^{\mathsf{T}}, \dot{y}(t)^{\mathsf{T}}, \ddot{y}(t)^{\mathsf{T}}, \dots, \frac{\partial^{m-1}}{\partial t^{m-1}} y(t)^{\mathsf{T}} \right]^{\mathsf{T}}$$

and define

Don't forget the initial value: $x_0 = \begin{bmatrix} y_0^\mathsf{T}, y_1^\mathsf{T}, y_2^\mathsf{T}, \dots, y_{m-1}^\mathsf{T} \end{bmatrix}^\mathsf{T}$.

$$A=\left(\begin{array}{cccc}0&1\\&\ddots&&\ddots\\&&0&1\\&&&0\end{array}\right)\quad\text{with}\quad b=0\quad\text{and}\quad x_0=\left(\begin{array}{c}0\\\vdots\\0\\1\end{array}\right)\;.$$

- ullet The last component satisfies $\dot{x}_{n_x}(t)=0$, i.e., we have $x_{n_x}(t)=1$
- Next, $\dot{x}_{i-1}(t) = x_i(t)$ for all $i \in \{2, \dots, n_x\}$ (= recursive integration)
- Solution can be written explicitly as $x_{n_x-i}(t) = \frac{t^i}{i!}$

- \bullet The last component satisfies $\dot{x}_{n_x}(t)=0,$ i.e., we have $x_{n_x}(t)=1.$
- Next, $\dot{x}_{i-1}(t) = x_i(t)$ for all $i \in \{2, \dots, n_x\}$ (= recursive integration)
- Solution can be written explicitly as $x_{n_x-i}(t)=rac{t^i}{i!}$

- \bullet The last component satisfies $\dot{x}_{n_x}(t)=0$, i.e., we have $x_{n_x}(t)=1.$
- \bullet Next, $\dot{x}_{i-1}(t) = x_i(t)$ for all $i \in \{2, \dots, n_x\}$ (= recursive integration)
- Solution can be written explicitly as $x_{n_x-i}(t)=rac{t^i}{i!}$

- \bullet The last component satisfies $\dot{x}_{n_x}(t)=0$, i.e., we have $x_{n_x}(t)=1.$
- \bullet Next, $\dot{x}_{i-1}(t) = x_i(t)$ for all $i \in \{2, \dots, n_x\}$ (= recursive integration)
- Solution can be written explicitly as $x_{n_x-i}(t)=\frac{t^i}{i!}.$

- spring force is $F_{\rm s}(t) = -Ds(t)$,
- drag force $F_{\rm d}(t) = -\gamma v(t) = -\gamma \dot{s}(t)$
- Newton's laws of motion $m\ddot{s}(t) = -Ds(t) \gamma \dot{s}(t)$

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t)$$

- spring force is $F_{\rm s}(t) = -Ds(t)$,
- ullet drag force $F_{
 m d}(t) = -\gamma v(t) = -\gamma \dot{s}(t)$
- $m\ddot{s}(t) = -Ds(t) \gamma \dot{s}(t)$

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t)$$

- spring force is $F_{\rm s}(t) = -Ds(t)$,
- drag force $F_{\rm d}(t) = -\gamma v(t) = -\gamma \dot{s}(t)$
 - Newton's laws of motion $m\ddot{s}(t) = -Ds(t) \gamma \dot{s}(t)$

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t)$$

- spring force is $F_{\rm s}(t) = -Ds(t)$,
- drag force $F_{\rm d}(t) = -\gamma v(t) = -\gamma \dot{s}(t)$
- Newton's laws of motion $m\ddot{s}(t) = -Ds(t) \gamma \dot{s}(t) \label{eq:mstar}$

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t)$$

- spring force is $F_{\rm s}(t) = -Ds(t)$,
- drag force $F_{\mathrm{d}}(t) = -\gamma v(t) = -\gamma \dot{s}(t)$
- Newton's laws of motion $m\ddot{s}(t) = -Ds(t) \gamma \dot{s}(t) \label{eq:mstar}$

$$\begin{split} \dot{s}(t) &= v(t) \\ \dot{v}(t) &= -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t) \end{split}$$

The differential equation

$$\dot{s}(t) = v(t)$$

$$\dot{v}(t) = -\frac{D}{m}s(t) - \frac{\gamma}{m}v(t)$$

can be written in the standard form $\dot{x}(t) = Ax(t) + b$ with

$$A = \left(\begin{array}{cc} 0 & 1 \\ -\frac{D}{m} & -\frac{\gamma}{m} \end{array} \right) \quad \text{and} \quad b = 0 \; ,$$

where $x = [s, v]^{\mathsf{T}}$.

- ullet denote with I(t) the current in the circuit,
- voltage at the inductor: $V_L(t) = L\dot{I}(t)$,
- voltage $V_C(t)$ at the capacitor satisfies $I(t) = CV_C(t)$,
- Kirchhoff's voltage law: $V_C(t) + V_L(t) = 0$

- ullet denote with I(t) the current in the circuit,
- ullet voltage at the inductor: $V_L(t) = L\dot{I}(t)$,
- voltage $V_C(t)$ at the capacitor satisfies $I(t) = C\dot{V}_C(t)$
- Kirchhoff's voltage law: $V_C(t) + V_L(t) = 0$

- ullet denote with I(t) the current in the circuit,
- ullet voltage at the inductor: $V_L(t)=L\dot{I}(t)$,
- \bullet voltage $V_C(t)$ at the capacitor satisfies $I(t) = C \dot{V}_C(t)$,
- Kirchhoff's voltage law: $V_C(t) + V_L(t) = 0$

- ullet denote with I(t) the current in the circuit,
- ullet voltage at the inductor: $V_L(t)=L\dot{I}(t)$,
- \bullet voltage $V_C(t)$ at the capacitor satisfies $I(t) = C \dot{V}_C(t)$,
- Kirchhoff's voltage law: $V_C(t) + V_L(t) = 0$

Substituting these physical relations gives

$$I(t) = C\dot{V}_C(t) = -C\dot{V}_L(t) = -LC\ddot{I}(t)$$
 \Leftrightarrow $\ddot{I}(t) = -\frac{1}{LC}I(t)$.

This can be written as a differential equation in standard form.

$$\dot{I}(t) = \frac{1}{L}V_L(t) \\ \dot{V}_L(t) = -\frac{1}{C}I(t)$$
, i.e.,
$$A = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & 0 \end{pmatrix}$$

and b=0. The states $x(t)=(I(t),V_L(t))^{\mathsf{T}}$ are the current and the voltage at the inductor.

Substituting these physical relations gives

$$I(t) = C\dot{V}_C(t) = -C\dot{V}_L(t) = -LC\ddot{I}(t)$$
 \Leftrightarrow $\ddot{I}(t) = -\frac{1}{LC}I(t)$.

This can be written as a differential equation in standard form:

$$\dot{I}(t) = \frac{1}{L}V_L(t)$$
 , i.e., $A = \begin{pmatrix} 0 & \frac{1}{L} \\ -\frac{1}{C} & 0 \end{pmatrix}$

and b=0. The states $x(t)=(I(t),V_L(t))^{\mathsf{T}}$ are the current and the voltage at the inductor.

Contents

Introduction

Matrix Exponentials

Construction of Solutions

Matrix exponentials

For a matrix $A \in \mathbb{R}^{n \times n}$ we define the exponential via its Taylor series,

$$X(t) = e^{tA} = \sum_{i=0}^{\infty} \frac{1}{i!} [tA]^i$$
.

- The sum on the right-hand side converges uniformly
- Syntax in JULIA / MATLAB:

$$X = expm(t*A)$$

Matrix exponentials

For a matrix $A \in \mathbb{R}^{n \times n}$ we define the exponential via its Taylor series,

$$X(t) = e^{tA} = \sum_{i=0}^{\infty} \frac{1}{i!} [tA]^i$$
.

- The sum on the right-hand side converges uniformly.
- Syntax in JULIA / MATLAB:

$$X = expm(t*A)$$

Matrix exponentials

For a matrix $A \in \mathbb{R}^{n \times n}$ we define the exponential via its Taylor series,

$$X(t) = e^{tA} = \sum_{i=0}^{\infty} \frac{1}{i!} [tA]^i$$
.

- The sum on the right-hand side converges uniformly.
- Syntax in JULIA / MATLAB:

$$X = expm(t*A)$$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- X(t) commutes with A, i.e., AX(t) = X(t)A.
- If $A \cdot B = B \cdot A$, then $e^{A+B} = e^A \cdot e^B$.
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- \bullet The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- X(t) commutes with A, i.e., AX(t) = X(t)A.
- If $A \cdot B = B \cdot A$, then $e^{A+B} = e^A \cdot e^B$.
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- $\bullet \ X(t) \ {\rm commutes \ with} \ A \ {\rm i.e.,} \ AX(t) = X(t)A.$
- If $A \cdot B = B \cdot A$, then $e^{A+B} = e^A \cdot e^B$.
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- $\bullet \ X(t) \ {\rm commutes \ with} \ A \ {\rm i.e.,} \ AX(t) = X(t)A.$
- $\bullet \ \ \text{If} \ A \cdot B = B \cdot A \text{, then} \ e^{A+B} = e^A \cdot e^B.$
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- $\bullet \ X(t) \ {\rm commutes \ with} \ A \ {\rm i.e.,} \ AX(t) = X(t)A.$
- $\bullet \ \ \text{If} \ A \cdot B = B \cdot A \text{, then} \ e^{A+B} = e^A \cdot e^B.$
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- \bullet The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- \bullet We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- $\bullet \ X(t) \ {\rm commutes \ with} \ A \ {\rm i.e.,} \ AX(t) = X(t)A.$
- $\bullet \ \ \text{If} \ A \cdot B = B \cdot A \text{, then} \ e^{A+B} = e^A \cdot e^B.$
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- The function $X(t)=e^{tA}$ is invertible, $X(t)^{-1}=e^{-tA}$

Define
$$X(t) = e^{tA}$$
.

- We have X(0) = I.
- The time derivative of X satisfies $\dot{X}(t) = A \cdot X(t)$.
- X(t) commutes with A, i.e., AX(t) = X(t)A.
- $\bullet \ \ \text{If} \ A \cdot B = B \cdot A \text{, then} \ e^{A+B} = e^A \cdot e^B.$
- But in general $e^{A+B} \neq e^A \cdot e^B$!!!
- $X(t_1) \cdot X(t_2) = X(t_1 + t_2)$ for all $t_1, t_2 \in \mathbb{R}$.
- The function $X(t) = e^{tA}$ is invertible, $X(t)^{-1} = e^{-tA}$.

Matrix exponentials for diagonalizable matrices

Let A be diagonalizable, $A = TDT^{-1}$ with $D = \operatorname{diag}(\lambda_1, \dots, \lambda_{n_x})$, and T invertible.

• The matrix exponential function $X(t) = e^{At}$ can be written as

$$X(t) = \sum_{i=0}^{\infty} \frac{1}{i!} (TDT^{-1})^i t^i$$

$$= T \left(\sum_{i=0}^{\infty} \frac{1}{i!} D^i t^i \right) T^{-1}$$

$$= T \operatorname{diag} \left(e^{\lambda_1 t}, \dots, e^{\lambda_n t} \right) T^{-1} ,$$

Matrix exponentials for diagonalizable matrices

Let A be diagonalizable, $A=TDT^{-1}$ with $D=\mathrm{diag}\,(\lambda_1,\ldots,\lambda_{n_x})$, and T invertible.

• The matrix exponential function $X(t) = e^{At}$ can be written as

$$X(t) = \sum_{i=0}^{\infty} \frac{1}{i!} (TDT^{-1})^i t^i$$

$$= T \left(\sum_{i=0}^{\infty} \frac{1}{i!} D^i t^i \right) T^{-1}$$

$$= T \operatorname{diag} \left(e^{\lambda_1 t}, \dots, e^{\lambda_n t} \right) T^{-1},$$

Matrix exponentials for diagonalizable matrices

Let A be diagonalizable, $A = TDT^{-1}$ with $D = \operatorname{diag}(\lambda_1, \dots, \lambda_{n_x})$, and T invertible.

• The matrix exponential function $X(t)=e^{At}$ can be written as

$$X(t) = T \operatorname{diag}\left(e^{\lambda_1 t}, \dots, e^{\lambda_n t}\right) T^{-1},$$

• The diagonal "modes" are easy to analyze:

$$e^{\lambda_i t} = e^{\sigma_i t} \left(\cos(\omega_i t) + \sin(\omega_i t) \sqrt{-1} \right) ,$$

- $\sigma_i = \text{Re}(\lambda_i)$ can be interpreted as a exponential growth/decay factor.
- $\omega_i = \operatorname{Im}(\lambda_i)$ can be interpreted as oscillation frequency

Jordan normal form

What if
$$A$$
 is not diagonalizable? Example: $A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$

In this case, we can only find a Jordan normal form

$$A = T \left(D + N \right) T^{-1} ,$$

D is diagonal, T invertible, N nil-potent, $N^m = 0$, DN = ND.

ullet The function $X(t)=e^{At}$ can then be written as

$$X(t) = Te^{t(D+N)}T^{-1} = Te^{tD}e^{tN}T^{-1}$$

since D and N commute and $e^{tN} = \sum_{i=0}^{m-1} \frac{1}{i!} N^i t^i$

Jordan normal form

What if
$$A$$
 is not diagonalizable? Example: $A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$

• In this case, we can only find a Jordan normal form

$$A = T \left(D + N \right) T^{-1} ,$$

D is diagonal, T invertible, N nil-potent, $N^m=0$, DN=ND.

ullet The function $X(t)=e^{At}$ can then be written as

$$X(t) = Te^{t(D+N)}T^{-1} = Te^{tD}e^{tN}T^{-1}$$

since D and N commute and $e^{tN} = \sum_{i=0}^{m-1} \frac{1}{i!} N^i t^i$

Jordan normal form

What if
$$A$$
 is not diagonalizable? Example: $A = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$

• In this case, we can only find a Jordan normal form

$$A = T(D+N)T^{-1},$$

D is diagonal, T invertible, N nil-potent, $N^m=0$, DN=ND.

ullet The function $X(t)=e^{At}$ can then be written as

$$X(t) = Te^{t(D+N)}T^{-1} = Te^{tD}e^{tN}T^{-1} ,$$

since D and N commute and $e^{tN} = \sum_{i=0}^{m-1} \frac{1}{i!} N^i t^i.$

Example: recursive integrator

The recursive integrator system is already in Jordan normal form,

$$A = \left(\begin{array}{cccc} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 \\ & & & 0 \end{array}\right) .$$

Thus, the function $X(t) = e^{tA}$ takes the form

$$X(t) = \sum_{i=0}^{n_x - 1} \frac{1}{i!} A^i t^i = \begin{pmatrix} 1 & t & \frac{t^2}{2} & \dots & \frac{t^{n_x - 1}}{(n_x - 1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2} \\ & & & 1 & t \end{pmatrix}$$

Example: recursive integrator

The recursive integrator system is already in Jordan normal form,

$$A = \left(\begin{array}{cccc} 0 & 1 & & & \\ & \ddots & \ddots & & \\ & & 0 & 1 & \\ & & & 0 \end{array}\right) .$$

Thus, the function $X(t) = e^{tA}$ takes the form

$$X(t) = \sum_{i=0}^{n_x - 1} \frac{1}{i!} A^i t^i = \begin{pmatrix} 1 & t & \frac{t^2}{2} & \dots & \frac{t^{n_x - 1}}{(n_x - 1)!} \\ & 1 & t & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2} \\ & & & 1 & t \\ & & & & 1 \end{pmatrix}.$$

Uniqueness of Solutions

If we have two solutions $x_1, x_2 : \mathbb{R} \to \mathbb{R}^{n_x}$, then $y = x_1 - x_2$ satisfies

$$\dot{y}(t) = Ay(t) \quad \text{with} \quad y(0) = 0 \; . \label{eq:y0}$$

The auxiliary function $v(t) = e^{-At}y(t)$ satisfies

$$\dot{v}(t) = -Ae^{-At}y(t) + e^{-At}Ay(t) = -Ae^{-At}y(t) + Ae^{-At}y(t) = 0$$

$$v(0) = 0$$

since the matrices A and e^{-At} commute

$$\implies v(t) = y(t) = 0 \implies x_1 = x_2$$

Uniqueness of Solutions

If we have two solutions $x_1, x_2 : \mathbb{R} \to \mathbb{R}^{n_x}$, then $y = x_1 - x_2$ satisfies

$$\dot{y}(t) = Ay(t)$$
 with $y(0) = 0$.

The auxiliary function $v(t) = e^{-At}y(t)$ satisfies

$$\dot{v}(t) = -Ae^{-At}y(t) + e^{-At}Ay(t) = -Ae^{-At}y(t) + Ae^{-At}y(t) = 0$$

$$v(0) = 0,$$

since the matrices A and e^{-At} commute;

$$\implies v(t) = y(t) = 0 \implies x_1 = x_2$$

Uniqueness of Solutions

If we have two solutions $x_1, x_2 : \mathbb{R} \to \mathbb{R}^{n_x}$, then $y = x_1 - x_2$ satisfies

$$\dot{y}(t) = Ay(t)$$
 with $y(0) = 0$.

The auxiliary function $v(t) = e^{-At}y(t)$ satisfies

$$\dot{v}(t) = -Ae^{-At}y(t) + e^{-At}Ay(t) = -Ae^{-At}y(t) + Ae^{-At}y(t) = 0$$

$$v(0) = 0,$$

since the matrices A and e^{-At} commute;

$$\implies v(t) = y(t) = 0 \implies x_1 = x_2$$
.

Steady States

A state $x_{\mathbf{s}} \in \mathbb{R}^{n_x}$ is called a steady-state if

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_s$

implies $x(t) = x_s$ for all t.

• Necessary and sufficient condition for x_s to be a steady state:

$$0 = \dot{x}(t) = Ax_{\mathsf{s}} + b$$

Steady States

A state $x_{\mathsf{s}} \in \mathbb{R}^{n_x}$ is called a steady-state if

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_s$

implies $x(t) = x_s$ for all t.

ullet Necessary and sufficient condition for $x_{
m s}$ to be a steady state:

$$0 = \dot{x}(t) = Ax_{\rm s} + b \; . \label{eq:constraint}$$

Contents

Introduction

Matrix Exponentials

Construction of Solutions

Our aim is to construct a solution of the differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$.

Recall: if there exists a solution, then it is unique.

Our aim is to construct a solution of the differential equation

$$\dot{x}(t) = Ax(t) + b$$
 with $x(0) = x_0$.

Recall: if there exists a solution, then it is unique.

Recall that the functions $X(t) = e^{tA}$ satisfies

$$\dot{X}(t) = AX(t), \qquad X(0) = I$$

We can construct another function $Y(t)=X(t)\int_0^t X(au)^{-1}\,\mathrm{d} au$, which satisfies

and
$$\dot{Y}(t) = AY(t) + I$$
, $Y(0) = 0$.

Recall that the functions $X(t) = e^{tA}$ satisfies

$$\dot{X}(t) = AX(t), \qquad X(0) = I$$

We can construct another function $Y(t)=X(t)\int_0^t X(\tau)^{-1}\,\mathrm{d}\tau$, which satisfies

$$\text{and} \qquad \dot{Y}(t) \quad = \quad AY(t) + I \;, \quad Y(0) = 0 \;. \label{eq:Y_total_eq}$$

Next, we show that the function

$$x(t) = X(t)x_0 + Y(t)b = e^{At}x_0 + \int_0^t e^{A(t-\tau)} b d\tau$$

satisfies all requirements:

$$\dot{x}(t) = \dot{X}(t)x_0 + \dot{Y}(t)b = AX(t)x_0 + (AY(t) + I)b
= A(X(t)x_0 + Y(t)b) + b
= Ax(t) + b
x(0) = X(0)x_0 + Y(0)b = x_0.$$

Next, we show that the function

$$x(t) = X(t)x_0 + Y(t)b = e^{At}x_0 + \int_0^t e^{A(t-\tau)} b d\tau$$

satisfies all requirements:

$$\begin{array}{rcl} \dot{x}(t) & = & \dot{X}(t)x_0 + \dot{Y}(t)b = AX(t)x_0 + (AY(t) + I)\,b \\ \\ & = & A\left(X(t)x_0 + Y(t)b\right) + b \\ \\ & = & Ax(t) + b \\ \\ \text{and} & x(0) & = & X(0)x_0 + Y(0)b = x_0 \;. \end{array}$$

If A is invertible we can simplify the integral

$$Y(t) = \int_0^t e^{A(t-\tau)} d\tau.$$

For this aim, we write out

$$Y(t) = \int_0^t e^{A(t-\tau)} d\tau = \int_0^t \sum_{i=0}^\infty \frac{1}{i!} A^i (t-\tau)^i d\tau$$
$$= \sum_{i=0}^\infty \frac{1}{(i+1)!} A^i t^{i+1} = \left(\sum_{i=0}^\infty \frac{1}{i!} A^i t^i - I\right) A^{-1}$$
$$= \left(e^{At} - I\right) A^{-1}.$$

If A is invertible we can simplify the integral

$$Y(t) = \int_0^t e^{A(t-\tau)} d\tau.$$

For this aim, we write out

$$Y(t) = \int_0^t e^{A(t-\tau)} d\tau = \int_0^t \sum_{i=0}^\infty \frac{1}{i!} A^i (t-\tau)^i d\tau$$
$$= \sum_{i=0}^\infty \frac{1}{(i+1)!} A^i t^{i+1} = \left(\sum_{i=0}^\infty \frac{1}{i!} A^i t^i - I\right) A^{-1}$$
$$= \left(e^{At} - I\right) A^{-1}.$$

Solution trajectory using steady-state notation

Recall that the solution trajectory is given by

$$x(t) = X(t)x_0 + Y(t)b$$

If A is invertible, the steady $x_s = -A^{-1}b$ exist, we have

$$x(t) = X(t)x_0 + Y(t)b = e^{At}x_0 + (e^{At} - I)A^{-1}b$$

and consequently

$$x(t) = e^{At}(x_0 - x_s) + x_s$$

Solution trajectory using steady-state notation

Recall that the solution trajectory is given by

$$x(t) = X(t)x_0 + Y(t)b$$

If A is invertible, the steady $x_s = -A^{-1}b$ exist, we have

$$x(t) = X(t)x_0 + Y(t)b = e^{At}x_0 + (e^{At} - I)A^{-1}b$$

and consequently

$$x(t) = e^{At}(x_0 - x_s) + x_s$$

Solution trajectory using steady-state notation

Recall that the solution trajectory is given by

$$x(t) = X(t)x_0 + Y(t)b$$

If A is invertible, the steady $x_s = -A^{-1}b$ exist, we have

$$x(t) = X(t)x_0 + Y(t)b = e^{At}x_0 + (e^{At} - I)A^{-1}b$$

and consequently

$$x(t) = e^{At}(x_0 - x_s) + x_s$$
.

Eliminating constant offsets

If a steady exists, we can introduce the shifted state $y(t)=x(t)-x_{\mathrm{s}}$, which satisfies

$$\dot{y}(t) = Ay(t)$$
 with $y(0) = x_0 - x_s$.

So, if a steady-state exists, we can "get rid" of the offset b by shifting x

Eliminating constant offsets

If a steady exists, we can introduce the shifted state $y(t)=x(t)-x_{\mathrm{s}}$, which satisfies

$$\dot{y}(t) = Ay(t)$$
 with $y(0) = x_0 - x_s$.

So, if a steady-state exists, we can "get rid" of the offset b by shifting $\boldsymbol{x}.$