Lesson 3.2: Transport Layer

CSC450 - COMPUTER NETWORKS | WITNER 2019-20

DR. ANDREY TIMOFEYEV

OUTLINE

- •TCP overview.
- •TCP segment structure.
 - Sequence number.
 - Acknowledgement number.
- •TCP connection management.
 - Handshake.
 - Teardown.
 - States.

TCP: OVERVIEW (1)

Transmission Control Protocol (TCP).

- Connection-oriented protocol.
 - "Three-way handshake" between processes before any transmission of segments.
 - Handshake exchange of control segments to establish the parameters of data transfer.
- Full-duplex service.
 - Bi-directional data flow in same connection.
- Point-to-point connection.
 - Single sender to single receiver.

TCP: OVERVIEW (2)

- Transmission Control Protocol (TCP).
 - Maintains send & receive buffers.
 - Initialized during handshake.
 - Maximum segment size (MSS).
 - Maximum amount of data that can be placed into segment.
 - Constrained by maximum transmission unit (MTU).
 - Length of the largest link-layer frame that can be sent by the sending host.
 - Offers reliable data transfer, flow control & congestion control services.

TCP: SEGMENT STRUCTURE (1)

•TCP **segment** consists of:

- Header fields:
 - Source port #, destination port #, & checksum.
 - Sequence number & acknowledgement number.
 - 32-bit fields used to implement reliable data transfer.
 - Receive window.
 - 16-bit field used for flow control.
 - Header length field.
 - 4-bit field specifies length of TCP header.
 - Options field.
 - Optional & variable length field used to negotiate MSS.
 - Flag field.
 - 6-bit field used to set control flags.
- Data field.
 - Limited by MSS.

TCP: SEGMENT STRUCTURE (2)

•Flag field:

- URG.
 - Indicates that portion of data in the segment is "urgent".
 - **Urgent data pointer** indicates the last byte of this urgent data.
- ACK.
 - Indicates that the value in the acknowledgement filed is valid.
- PSH.
 - Indicates that the receiver should pass the data immediately.
- RST.
 - Indicates that the connection has to be terminated right away.
- SYN.
 - Used in the initial handshake to set the sequence number.
- FIN.
 - Used to end TCP connection.

TCP: SEQUENCE NUMBER

- •TCP views data as an ordered stream of bytes.
 - Sequence number byte-stream number of first byte in segment's data.

•Example:

- Host A sends stream of data to Host B over TCP.
- Size of data stream file = 500 000 bytes.
- MSS = 1000 bytes.
- TCP constructs 500 segments.
 - First byte of data stream is numbered $0 \rightarrow$ first segment has sequence number 0, second 1000, third 2000.

TCP: ACKNOWLEDGMENT NUMBER

•TCP is full-duplex.

- Host A may be receiving data from Host B while sending data to Host B.
- Acknowledgement number sequence number of the next byte Host A expects from Host B.

•Example:

- Host A received all bytes 0-535 from Host B and about to send a segment to Host B.
- Host A uses 536 as the acknowledgement number.
 - It is awaiting for byte 536 and all subsequent bytes from Host B.

TCP: SEQUENCE VS. ACKNOWLEDGMENT

•Example:

- Host A initiates Telnet session with Host B.
- "Echo back" scenario.
 - Each character typed by client sent to serve & server sends back a copy of each character.
- Client starting sequence = 42.
 - Sequence number of the first segment sent from client.
- Server starting sequence = 79.
 - Sequence number of the first segment sent from server.
- Second segment is a piggybacked acknowledgement.

TCP CONNECTION: HANDSHAKE (1)

- •TCP connection establishment process ("three-way handshake"):
 - Client sends special SYN segment to server.
 - SYN flag = 1.
 - No application data.
 - Random initial sequence number (client_isn).
 - Server sends connection-granted SYNACK segment to client.
 - SYN & ACK flags = 1.
 - No application data.
 - Random initial sequence number (server isn).
 - Acknowledgement number filed = client_isn + 1.
 - Client sends special ACK segment to server.
 - SYN flag = 0.
 - Acknowledgement number field = server_sin + 1.
 - Acknowledges server's SYNACK segment.
 - May carry application data (piggybacked).

TCP CONNECTION: HANDSHAKE (2)

•TCP connection establishment process ("three-way handshake"):

TCP CONNECTION: TEARDOWN (1)

•TCP connection teardown process:

- Client sends special FIN shutdown segment to server.
 - FIN flag = 1.
 - No application data.
- Server sends ACK segment to client.
 - ACK flag = 1.
 - No application data.
- Server sends special FIN shutdown segment to client.
 - FIN flag = 1.
 - No application data.
- Client sends ACK segment to server.
 - ACK flag = 1.
 - No application data.
- All resource in two hosts are deallocated.

TCP CONNECTION: TEARDOWN (2)

•TCP connection teardown process:

TCP CONNECTION: CLIENT STATES

•Sequence of **TCP states** visited by **client**:

TCP CONNECTION: SERVER STATES

•Sequence of **TCP states** visited by **server**:

SUMMARY

- Send / receive buffers.
- Maximum segment size.
- Segment structure.
- Sequence & acknowledgement numbers.
- Three-way handshake process.
- Teardown process.
- Client & server states.