

5W+5W AMPLIFIER WITH DC VOLUME CONTROL

- 5+5W OUTPUT POWER $R_L = 8\Omega$ @THD = 10% $V_{CC} = 22V$
- ST-BY AND MUTE FUNCTIONS
- LOW TURN-ON TURN-OFF POP NOISE
- LINEAR VOLUME CONTROL DC COUPLED WITH POWER OP. AMP.
- NO BOUCHEROT CELL
- NO ST BY RC INPUT NETWORK
- SINGLE SUPPLY RANGING UP TO 35V
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- INTERNALLY FIXED GAIN
- SOFT CLIPPING
- VARIABLE OUTPUT AFTER VOLUME CONTROL CIRCUIT
- MULTIWATT 15 PACKAGE

DESCRIPTION

The TDA7496 is a stereo 5+5W class AB power am-

MULTIPOWER BI50II TECHNOLOGY

plifier assembled i the @ Multiwatt 15 package, specially designed for high quality sound, TV applications.

Features of the TDA7496 include linear volume control Stand-by and Mute functions.

The TDA7496 is pin to pin compatible with TDA7496S, TDA7496SA, TDA7495, TDA7495SA, TDA7494SA.

BLOCK DIAGRAM

September 2003 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	35	V
V _{IN}	Maximum Input Voltage	8	Vpp
P _{tot}	Total Power Dissipation (T _{amb} = 80°C)	15	W
T _{amb}	Ambient Operating Temperature (1)	0 to 70	°C
T _{stg} ,T _J	Storage and Junction Temperature	-40 to 150	°C
V ₃	Volume Control DC Voltage	7	V

PIN CONNECTION (top view)

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal Resistance junction-case	Typ. = 4; Max. = 4.6	°C/W
R _{th j-amb}	Thermal Resistance junction-ambient Max.	35	°C/W

ELECTRICAL CHARACTERISTCS

(Refer to the test circuit V_s = 22V; R_L = 8 Ω , R_g = 50 Ω , T_{amb} = 25°C)

Symbol	Parameter Test Condition		Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		10		32	V
Iq	Total Quiescent Current			25	50	mA
DCV _{os}	Output DC Offset Referred to SVR Potential	No Input Signal		200		mV
Vo	Quiescent Output Voltage			11		V
Po	Output Power	THD = 10%; $R_L = 8\Omega$; THD = 1%; $R_L = 8\Omega$;	5	5.5 4		W
		THD = 10%; $R_L = 4\Omega$; $V_S = 12V$ THD = 1%; $R_L = 4\Omega$; $V_S = 12V$		2.1 1.0		W
THD	Total Harmonic Distortion	$G_V = 30dB; P_O = 1W; f = 1KHz$			0.4	%

ELECTRICAL CHARACTERISTCS (continued) (Refer to the test circuit V_s = 22V; R_L = 8Ω , R_g = 50Ω , T_{amb} = $25^{\circ}C$)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
I _{peak}	Output Peak Current	(internally limited)	1.0	1.3		Α
V _{IN}	Input Signal				2.8	Vrms
G _V	Closed Loop Gain	V _{Ol Ctrl} >4.5V	28.5	30	31.5	dB
G _{VLine}	Monitor Out Gain	V _{Ol Ctrl} >4.5V; Zload >30KΩ	-1.5	0	1.5	dB
A _{Min} V _{OL}	Attenuation at Minimum Volume	V _{Ol Ctrl} <0.5V	80			dB
BW				0.6		MHz
e _N	Total Output Noise	f = 20Hz to 22KHz PLAY, max volume		500	800	μV
		f = 20Hz to 22KHz PLAY, max attenuation		100	250	μV
		f = 20Hz to 22KHz MUTE		60	150	μV
SR	Slew Rate		5	8		V/μs
R_i	Input Resistance		22.5	30		ΚΩ
R _{Var Out}	Variable Output Resistance			30	100	Ω
R _{L Var Out}	Variable Output Load		2			ΚΩ
SVR	Supply Voltage Rejection	$f = 1KHz$; max volume $C_{SVR} = 470\mu F$; $V_{RIP} = 1Vrms$	35	39		dB
		$f = 1KHz$; max attenuation $C_{SVR} = 470\mu F$; $V_{RIP} = 1Vrms$	55	65		dB
T_M	Thermal Muting			150		°C
T _S	Thermal Shut-down			160		°C
MUTE & IN	IPUT SELECTION FUNCTIONS		'	l	I	I
V _{ST-ON}	Stand-by ON Threshold		3.5			V
V _{ST-OFF}	Stand-by OFF Threshold				1.5	V
V _{MUTEON}	Mute ON threshold		3.5			V
V _{MUTEOFF}	Mute OFF threshold				1.5	V
A _{MUTE}	Mute Attenuation		50	65		dB
I _{qST-BY}	Quiescent Current @ Stand-by			0.6	1	mA
I _{stbyBIAS}	Stand-by bias current	Stand by ON: V _{ST-BY} = 5V; V _{mute} = 5V		80		μА
		Play or Mute	-20	-5		μΑ
I _{muteBIAS}	Mute Bias Current	Mute		1	5	μΑ
		Play		0.2	2	μΑ

APPLICATION SUGGESTIONS

The recommended values of the external components are those shown on the application circuit of figure 1. Different values can be used, the following table can help the designer.

COMPONENT	SUGGESTION VALUE	PURPOSE	LARGER THAN SUGGESTION	SMALLER THAN SUGGESTION
R1	300K	Volume Control Circuit	Larger volume regulation time	Smaller volume regulation time
R2	10K	Mute time constant	Larger mute on/off time	Smaller mute on/off time
P1	50K	Volume Control Circuit		
C1	1000μF	Supply voltage bypass		Danger of oscillation
C2	470nF	Input DC decoupling	Lower low frequency cutoff	Higher low frequency cutoff
C3	470nF	Input DC decoupling	Lower low frequency cutoff	Higher low frequency cutoff
C4	470μF	Ripple rejection	Better SVR	Worse SVR
C5	100nF	Volume control time constant	Larger volume regulation time	Smaller volume regulation time
C6	1000μF	Output DC decoupling	Lower low frequency cutoff	Higher low frequency cutoff
C7	1μF	Mute time constant	Larger mute on/off time	Smaller mute on/off time
C8	1000μF	Output DC decoupling	Lower low frequency cutoff	Higher low frequency cutoff
C9	100nF	Supply voltage bypass		Danger of oscillation

Figure 1. Application Circui

MUTE STAND-BY TRUTH TABLE

MUTE	St-BY	OPERATING CONDITION
Н	Н	STAND-BY
L	Н	STAND-BY
Н	L	MUTE
L	L	PLAY

Turn ON/OFF Sequences (for optimizing the POP performances)

Figure 1. USING ONLY THE MUTE FUNCTION

USING ONLY THE MUTE FUNCTION

To semplify the application, the stand-by pin can be connected directly to Ground. During the ON/OFF transitions is recommended to respect the following conditions:

- At the turn-on the transition mute to mute play must be made when the SVR pin is higher than 2.5V
- At the turn-off the TDA7496 must be brought to mute from the play condition when the SVR pin is higher than 2.5V.

Figure 2. P.C.B. and Component layoutPCB and Component Layout

Figure 3.

Figure 4. Quiescent Current vs. Supply Voltage

Figure 7. Output DC Offset vs. Supply Voltage

Figure 5. Output Dc Offset vs. Supply Voltage

Figure 8. Output Power vs Supply Voltage

Figure 6. Output Power vs. Supply Voltage

Figure 9. Distortion vs Output Power

477

Figure 10. Distortion vs Output Power

Figure 11. Closed Loop Gain vs. Frequency

Figure 12. St-By Attenuation vs Vpin 9

Figure 13. Mute Attenuation vs Vpin 10

PINS DESCRIPTION

Figure 14. PIN SVR

Figure 15. PINS: INL,INR

9/11

Figure 17. PIN ST-BY

Figure 18. PIN: MUTE

Figure 19. PINS: OUT R, OUT L

Figure 20. PINS: VAROUT-L VAROUT-R

Figure 21. PIN: VOLUME

Figure 22. PINS: PW-GND, S-GND

DIM	mm		inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2003 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

