

Simbologia elementar

$$S + I + R = N$$
, aproxi C^{te} $S + E + I + R = N$

$$s = S/N, i = I/N, r = R/N$$

 $s = S/N, e = E/N, i = I/N, r = R/N$

$$s+i+r=1$$

$$s+e+i+r=1$$

Os contactos

Contacto efectivo – contacto em que a infecção pode ser transmitida

β Número médio de contactos de 1 indivíduo por unidade tempo

Depende de:

- -Hábitos sociais / comportamentais
- -Características da infecção em causa

Assuma-se: mistura aleatória de indivíduos na população β é o mesmo para todos os indivíduos

Qual o número de contactos de 1 infeccioso com susceptiveis em 1 unidade de tempo?

Incidência da doença

- Infeccioso
- Susceptível
- Imune

eta contactos aleatórios em 1 unid tempo

βs número de contactos com susceptíveis = número de novas infecções causadas por 1 infeccioso em 1 unid tempo

Incidência da doença

(Multiplicando pelo total de infecciosos)

BsI

= número de novas infecções em 1 unid tempo

Ou ainda,

 $\beta SI/N = \beta i S$

Força de infecção

Incidência =
$$\beta i S$$

$$\lambda = \beta i = \text{força de infecção}$$

 λ = Incidência / S

Probabilidade de um susceptível ser infectado em 1 unid tempo

Período de infecciosidade

Tempo médio de estadia no estádio infeccioso

$$=\frac{1}{c+d}$$

c e d são taxas "per capita"

da infecção, c

Número de indivíduos por indivíduo por unid tempo

c+d = taxa total de saída do estado infeccioso

Período	médio	de in	feccio	sidade
		40		Jiaaao

2 a 4 dias Gripe 5 a 7 dias Sarampo "Papeira" 7 a 11 dias 15 a 21 dias "Tosse convulsa" 21 a 30 dias Tétano Tuberculose meses > 1 ano HIV/SIDA potencialmente mtos anos Hepatite B

R₀ núm básico de reprodução da doença

Qual é o número médio de contactos infecciosos tidos por 1 infeccioso enquanto está infeccioso ?

Número contactos em 1 unid tempo x número de unids tempo em que está infeccioso

$$R_0 = \frac{\beta}{c+d}$$

Número médio de novas infecções causadas por um infeccioso numa população <u>inteiramente</u> susceptível

Para a doença invadir e persistir uma população: R₀ ≥ 1

Estimativas de R₀

	Área	Período	R_0
			_
Sarampo	Kansas, USA	1918-21	5 a 6
	England + Wales	1950-68	16 a 18
	Ghana	1960-68	14 a 15
	Eastern Nigeria	1960-68	16 a 17
"Papeira"	England + Wales	1960-80	11 a 14
	Netherlands	1970-80	11 a 14
	Portugal	1990	7 a 8
Difteria	Now York 110A	1010 10	1 o 5
Differia	New York, USA	1918-19	4 a 5
	Portugal	1954-63	8 a 9
Dubásla	Mara da satan 1117	4070.00	7 0 0
Rubéola	Manchester, UK	1970-82	7 a 8
	West Germany	1972	6 a 7
	Portugal	1990	7 a 8

Força de infecção vs R₀

- Força de infecção
 Probabilidade de 1 susceptível ser infectado em 1 unid tempo
- R₀ Número básico de reprodução
 Número de contactos de 1 infeccioso

$$\lambda = R_0(c+d)i$$
 TPC \odot

Alguns dos R₀ contactos não resultam em novas infecções

$R_{\it O}\,s\,$ número de substitutos

- = número de novas infecções causadas por 1 infeccioso
- = "net reproduction number" (taxa "líquida" de reprodução)

A epidemia

A disponibilidade de susceptíveis determina o evoluir da epidemia

Tempo médio de vida

$$\frac{dN}{dt} = -dN$$

Quanto tempo está em média um indivíduo dentro do compartimento?

$$t_{m} = \frac{\int_{0}^{\infty} t N_{t} dt}{\int_{0}^{\infty} N_{t} dt} = \frac{N_{0} \int_{0}^{\infty} t e^{-dt} \partial t}{N_{0} \int_{0}^{\infty} e^{-\lambda t} \partial t} = \frac{1}{d}$$

Tempo médio de vida

Taxa total de saída d + c + v

Tempo médio de estadia

1/(d+c+v)

O tempo médio de estadia num estádio é o inverso da taxa total de saída desse estádio