PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-373682

(43)Date of publication of application: 26.12.2002

(51)Int.Cl.

H01M 8/04 H01M 8/10

(21)Application number: 2001-181524

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

15.06.2001 (72)Invento

(72)Inventor: SUGAWARA TATSUYA

MIYANO KOJI

(54) FUEL CELL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To ensure interpolar differential pressure control, in a solid polymer electrolyte membrane fuel cell.

SOLUTION: This fuel cell system comprises the fuel cell 1, having an anode electrode and a cathode electrode on the opposite sides of a solid polymer electrolyte membrane to generate power, when gaseous hydrogen is supplied to the anode electrode and air is supplied to the cathode electrode, a regulator 5 for reducing the pressure of the gaseous hydrogen supplied to the fuel cell 1 according to the pressure of the air, and a purge valve 8, disposed in a hydrogen offgas recovery line 11 as a passage of gaseous hydrogen discharged from the fuel cell 1 and adapted to open, according to a differential pressure between both electrodes to release the pressure of hydrogen off-gas; and further comprises, on downstream side of the regulator 5, an interpolar differential pressure control valve 20 for controlling the differential pressure between both electrodes by releasing the gaseous hydrogen via valve travel control,

according to thrust difference caused, when a first thrust based on the pressure of the air and urging force of a bias setting spring and a second thrust, based on the pressure of the gaseous hydrogen are brought in opposed action.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A fuel cell which has an anode electrode and a cathode terminal on both sides of solid polyelectrolyte membrane, fuel gas is supplied to an anode electrode, and oxidant gas is supplied to a cathode terminal, and is generated, A regulator which decreases a pressure of said fuel gas and one gas of oxidant gas supplied to said fuel cell according to a pressure of gas of the other, In a fuel cell system provided with a purge valve which is provided in a channel of off-gas of said one [which is discharged from said fuel cell] gas, opens according to differential pressure between said two electrodes, and misses a pressure of said off-gas, An electrode-differential-pressure regulating valve which performs valve opening adjustment according to a thrust difference produced when it counters mutually and the 1st thrust based on a pressure of gas of said another side and energization force of an elastic body and the 2nd thrust based on a pressure of said one gas are made to act, misses said one gas, and adjusts differential pressure between said two electrodes, A fuel cell system having downstream from said regulator.

[Claim 2] The fuel cell system according to claim 1, wherein differential pressure between two electrodes which are the valve-opening threshold values of said purge valve is set up smaller than differential pressure between two electrodes which are the valve-opening threshold values of said differential pressure control valve.

[Claim 3] Said purge valve and said electrode-differential-pressure regulating valve are constituted by one, and one valve shares a valve of said purge valve, and a valve of said electrode-differential-pressure regulating valve, and them this valve, By an actuator of said purge valve which makes an electrical signal driving timing, while a switching action is possible. The fuel cell system according to claim 1 or 2 which is a septum coordinated with said valve and is characterized by valve opening adjustment being possible considering a septum which said 1st thrust and said 2nd thrust counter the both sides, and acts on them as an actuator of said electrode-differential-pressure regulating valve.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention]This invention relates to the electrode-differential-pressure control technique in a solid polyelectrolyte membrane type fuel cell.

[0002]

[Description of the Prior Art]In the fuel cell carried in a fuel cell electric vehicle etc. Equip the both sides of solid polyelectrolyte membrane with an anode electrode and a cathode terminal, supply fuel gas (for example, hydrogen gas) to an anode electrode, and oxidant gas (for example, oxygen or air) is supplied to a cathode terminal, There are some which extracted the chemical energy concerning the oxidation—reduction reaction of these gas as direct electrical energy. In this fuel cell, hydrogen gas ionizes by the anode side and it moves in the inside of a solid polymer electrolyte, and an electron can move to the cathode side through external load, and can take out now the electrical energy by a series of electrochemical reaction which reacts to oxygen and generates water.

[0003] An example of the conventional fuel cell system provided with this fuel cell is shown in drawing 5. In this fuel cell system, pressure up of the air as oxidant gas is carried out to predetermined pressure by the compressor 52, it humidifies with the cathode humidifier 53, and the cathode terminal of the fuel cell 51 is supplied. After power generation is presented, this air is discharged as air off-gas from the fuel cell 1, and is discharged via the pressure control valve 54. This pressure control valve 54 controls the air supply pressure in a cathode terminal. On the other hand, hydrogen gas as fuel gas is decompressed with the regulator 55, it humidifies with the anode humidifier 57 via the ejector 56, and the anode electrode of the fuel cell 1 is supplied. Here, the regulator 55 decreases the pressure of the hydrogen gas supplied to an anode electrode according to the pressure of the air supplied to a cathode terminal. After power generation is presented with hydrogen gas, it is discharged as hydrogen off-gas from the fuel cell 1, is attracted by the ejector through the hydrogen off-gas recovery passage 61, joins the fresh hydrogen gas which passed the regulator, and is again supplied to the anode electrode of the fuel cell 1.

[0004]By the way, in order to avoid breakage of solid polyelectrolyte membrane, it is necessary to hold down the differential pressure of the pressure of hydrogen gas of an anode electrode, and the pressure of the air of a cathode terminal to below predetermined default value, and to operate in this fuel cell system. Then, the purge valve 58 was controlled electrically to make the purge valve 58 open, when the purge valve 58 of an electromagnetism drive type is formed in the hydrogen off-gas recovery passage 61 and said differential pressure reaches said default value conventionally. The technology same also to JP,H7-78624,A as this is indicated. When the moisture contained in hydrogen off-gas drains the water of condensation condensed and generated, the purge valve 58 is not only opened for said differential pressure control, but is opened suitably if needed.

[Problem to be solved by the invention] However, when opening and closing of the purge valve 58 are electrically controlled like before and the differential pressure between said two poles is controlled. When fault arises the fracture of an electrical signal line, the fall of electric power, or on a computer, there is a possibility of the purge valve 58 stopping operating, and performing unnecessary valve opening and reducing system efficiency.

[0006]Replacing with the electrode-differential-pressure management using said purge valve, and missing excessive pressure mechanically by maximum-pressure management using a spring type pop off valve is also considered. Here, a spring type pop off valve is a mechanical relief valve which has the structure which spring load is set up beforehand open with the maximum specified-pressure value, and the valve currently pressed down by the valve closing condition according to spring load when the pressure exceeded default value opens, and misses a pressure. This spring type pop off

valve can set somewhere the maximum specified pressure which is a valve-opening threshold value only to the pressure value (constant pressure) of one point.

[0007] However, in the case of a fuel cell, as shown in <u>drawing 6</u>, according to the output value of a fuel cell, the upper limit of pressure of an anode electrode changes. Therefore, it is a spring type pop off valve to which only one point can set a valve-opening threshold value (the maximum specified-pressure value), and is that it is difficult to manage the maximum pressure of the anode electrode of a fuel cell, and substantially impossible. Then, this invention can ensure management of electrode differential pressure, even if the upper limit pressure of reactant gas changes according to the output value of a fuel cell, and it provides the fuel cell system which can ensure breakage prevention of solid polyelectrolyte membrane.

[8000]

[Means for solving problem]In order to solve an aforementioned problem, invention indicated to Claim 1, Have an anode electrode and a cathode terminal on both sides of solid polyelectrolyte membrane, and to an anode electrode Fuel gas. The fuel cell (for example, fuel cell 1 in the embodiment mentioned later) which (for example, hydrogen gas in the embodiment mentioned later) is supplied, and oxidant gas (for example, air in the embodiment mentioned later) is supplied to a cathode terminal, and is generated, Said fuel gas and one gas of oxidant gas which are supplied to said fuel cell. The regulator (for example, regulator 5 in the embodiment mentioned later) which decreases the pressure of (hydrogen gas [for example,] in the embodiment mentioned later) according to the pressure of the gas (for example, air in the embodiment mentioned later) of another side, The channel of the off-gas of said one [which is discharged from said fuel cell] gas. The purge valve (for example, purge valve 8 in the embodiment mentioned later) which is provided in (for example, the hydrogen off-gas recovery passage 11 in the embodiment mentioned later), opens according to the differential pressure between said two electrodes, and misses the pressure of said off-gas, In preparation **************, it is the pressure and elastic body (for example) of gas of said another side. When it counters mutually and the 1st thrust based on the energization force of the spring 29 for bias sets in the embodiment mentioned later and the 2nd thrust based on the pressure of said one gas are made to act. It had the electrode-differential-pressure regulating valve (for example, electrode-differential-pressure regulating valve 20 in the embodiment mentioned later) which is alike, performs valve opening adjustment according to the thrust difference to produce, misses said one gas, and adjusts the differential pressure between said two electrodes downstream from said regulator.

[0009] Even if the pressure of the oxidant gas supplied to the pressure or cathode terminal of fuel gas supplied to an anode electrode by constituting in this way changes according to the output of a fuel cell, The differential pressure (henceforth electrode differential pressure) between two electrodes is controllable by both the purge valve, and electrode—differential—pressure both [either or]. Especially, in an electrode—differential—pressure regulating valve, said thrust difference also becomes large, so that the differential pressure of the pressure of said one gas and the pressure of the gas of another side is large, and an electrode—differential—pressure regulating valve, A valve opening is adjusted so that it may become large, electrode differential pressure is made small, so that said thrust difference is large, a valve opening is adjusted so that it may become small, and electrode differential pressure is enlarged, so that said thrust difference is small. As a result, it enables an electrode—differential—pressure regulating valve to adjust electrode differential pressure to a prescribed range. Since the operation of an electrode—differential—pressure regulating valve is a mechanical cable type purely, also when an electric trouble arises to a system, it operates normally.

[0010] The differential pressure between the two electrodes whose invention indicated to Claim 2 is the valve-opening threshold values of said purge valve in the invention according to claim 1 is set up smaller than the differential pressure between the two electrodes which are the valve-opening threshold values of said differential pressure control valve. When management of the electrode differential pressure at the time of normal operation is performed by the operation of a purge valve with a small valve-opening threshold value and electrode differential pressure becomes large by constituting in this way rather than the valve-opening threshold value of an electrode-differential-pressure regulating valve, both a purge valve and an electrode-differential-pressure regulating valve open, and electrode differential pressure is reduced more nearly promptly. Also when a purge valve causes a poor operation, the electrode-differential-pressure regulating valve should operate and breakage of solid polyelectrolyte membrane should be prevented.

[0011]In the invention according to claim 1 or 2 invention indicated in claim 3 clause, Said purge valve and said electrode-differential-pressure regulating valve are constituted by one, and One valve. (For example, the valve 27 in the embodiment mentioned later) shares the valve of said purge valve, and

the valve of said electrode-differential-pressure regulating valve, and them this valve, By the actuator (for example, the plunger 35 in the embodiment mentioned later, the coil 37 for solenoids) of said purge valve which makes an electrical signal driving timing, while a switching action is possible, It is a septum coordinated with said valve, and is characterized by valve opening adjustment being possible considering the septum (for example, pressure regulation diaphram 22 in the embodiment mentioned later) which said 1st thrust and said 2nd thrust counter the both sides, and acts on them as an actuator of said electrode-differential-pressure regulating valve. By constituting in this way, reduction of part mark and reduction of a setting space can be aimed at.

[Mode for carrying out the invention]Hereafter, the embodiment of the fuel cell system concerning this invention is described with reference to the Drawings of drawing 4 from drawing 1. The fuel cell system in each following embodiment is the mode carried in the fuel cell electric vehicle. [0013][A 1st embodiment] First, a 1st embodiment of a fuel cell system concerning this invention is described with reference to Drawings of drawing 3 from drawing 1. Drawing 1 is an outline block diagram of a fuel cell system. The fuel cell 1 laminates many cells in which it comes to provide a gas passageway for an anode electrode and a cathode terminal being provided in both sides of solid polyelectrolyte membrane, and supplying reactant gas to the outside of each electrode, and is constituted. Hydrogen gas as fuel gas is supplied to an anode electrode, and this fuel cell 1 generates electricity by supplying air as oxidant gas to a cathode terminal.

[0014] After having been pressurized by the air compressor 2, being humidified with the cathode humidifier 3, supplying the cathode terminal of the fuel cell 1 and offering oxygen in this air as an oxidizer, air is discharged as air off-gas from the fuel cell 1, and is emitted to the atmosphere via the pressure control valve 4. ECU10 controls the pressure control valve 4 and it adjusts the air supply pressure in a cathode terminal to the pressure according to the required power of the fuel cell 1 while it drives the air compressor 2 and supplies the air of the specified quantity to the fuel cell 1 according to the output (following, required power) demanded of the fuel cell 1.

[0015] After the hydrogen gas emitted from the high pressure hydrogen tank which is not illustrated on the other hand is decompressed by the regulator 5, it passes along the ejector 6, is humidified with the anode humidifier 7, and is supplied to the anode electrode of the fuel cell 1. After power generation is presented, this hydrogen gas is discharged as hydrogen off—gas from the fuel cell 1, is attracted by the ejector 6 through the hydrogen off—gas recovery passage 11, joins the hydrogen gas supplied from said high pressure hydrogen tank, and is again supplied to the fuel cell 1, and it circulates through it.

[0016] The regulator 5 consists of a proportional pressure control valve of an air type, for example, and is inputted via the pneumatic-signal introducing path 15 by making into signal pressure the pressure of the air supplied from the air compressor 2, and pressure reduction control is carried out so that the pressure of hydrogen gas of regulator 5 exit may serve as a predetermined pressure range according to said signal pressure. The regulator 5 is controlled by the fuel cell system in this embodiment so that the pressure ("anode pole gas pressure" is called hereafter) of the hydrogen gas supplied to an anode electrode becomes larger than the pressure ("cathode pole gas pressure" is called hereafter) of the air supplied to a cathode terminal.

[0017] The hydrogen off-gas recovery passage 11 is connected to the hydrogen offgas emission way 12 via the purge valve 8 of an electromagnetism drive type. Based on the output of the differential pressure sensor 9 which detects the differential pressure of anode pole gas pressure and cathode pole gas pressure, i.e., electrode differential pressure, ECU10 operates the electromagnetism actuator of the purge valve 8, and it performs opening and closing control. That is, the electromagnetism actuator of the purge valve 8 makes the electrical signal driving timing. This purge valve 8 opens, when the output value of the differential pressure sensor 9 amounts to deltaP1, it controls electrode differential pressure or less to deltaP1, and also when predetermined conditions are fulfilled, it opens, and it has an operation of draining so that water may not collect on the anode electrode side of the fuel cell 1.

[0018] The hydrogen supply way 13 which connects the anode humidifier 7 with the ejector 6 is connected to the hydrogen offgas emission way 12 via the hydrogen gas exhaust passage 14 provided with the electrode-differential-pressure regulating valve 20 which has the characteristic composition of this invention. This electrode-differential-pressure regulating valve 20 is explained with reference to the outline sectional view of drawing 2. The building envelope of the body 21 of the electrode-differential-pressure regulating valve 20 is divided up and down by the pressure regulation diaphram 22, space above the diaphram 22 has become the signal pressure room 23, and lower space has become the hydrogen gas passage 24. The signal pressure room 23 is the closed space provided with

the air introducing hole 25, and the air pressurized by the compressor 2 is introduced into the signal pressure room 23 from the air introducing hole 25 via the pneumatic-signal introducing path 15. [0019] The stem 26 is attached to the undersurface of the diaphram 22, and the valve 27 in which seating estrangement is possible is formed in the stem 26 from the upper part to the valve seat part 28 in the hydrogen gas passage 24. And the spring 29 for bias sets (elastic body) which energizes the valve 27 in the direction which sits down to the valve seat part 28 is formed in the signal pressure room 23.

[0020] The hydrogen gas entrance 31 which is open for free passage to the near hydrogen gas passage 24a where the valve 27 is arranged at the body 21, The hydrogen gas exit 32 which is open for free passage to the near hydrogen gas passage 24b where the valve 27 is not arranged is formed, the hydrogen gas entrance 31 is connected to the hydrogen supply pipe 13 via the hydrogen gas exhaust passage 14, and the hydrogen gas exit 32 is connected to the hydrogen offgas emission way 12 via the hydrogen gas exhaust passage 14. Therefore, if the hydrogen gas decompressed with the ejector 6 is introduced into the hydrogen gas passage 24a from the hydrogen gas entrance 31 and the valve 27 estranges and opens from the valve seat part 28 as shown in drawing 1 and drawing 2, The hydrogen gas introduced into the hydrogen gas passage 24a flows into the hydrogen gas passage 24b, and comes to flow into the hydrogen offgas emission way 12 from the hydrogen gas exit 32 further.

[0021]It is preferred to use what was excellent in the corrosion resistance over hydrogen about the parts which touch hydrogen gas among the parts which constitute the electrode-differential-pressure regulating valve 20, For example, the aluminum etc. which performed stainless steel or surface alumite treatment are suitable for the body 21, the valve 27, and the stem 26, and fluorocarbon rubber is suitable for the diaphram 22.

[0022]In the electrode-differential-pressure regulating valve 20 constituted in this way. The result to which the pressure of the air in the signal pressure room 23 and the energization force of the spring 29 act on the upper surface of the diaphram 22, The 1st thrust based on these acts on the upper surface of the diaphram 22 downward, and on the other hand, as a result of the pressure of hydrogen gas in the hydrogen gas passage 24a acting on the undersurface of the diaphram 22, the 2nd thrust based on this acts on the undersurface of the diaphram 22 upward. And the diaphram 22 will be governed by the thrust difference of these 1st thrusts and the 2nd thrust, and will move. Namely, when the 2nd thrust is smaller than the 1st thrust, downward power acts on the diaphram 22, The valve 27 is pushed in the direction (namely, valve closing direction) made to approach the valve seat part 28, when the 2nd thrust becomes larger than the 1st thrust, upward power acts on the diaphram 22, and it pushes in the direction (namely, valve opening direction) which makes the valve 27 estrange from the valve seat part 28.

[0023] By the way, a pressure of air supplied to the signal pressure room 23 is almost as at the same pressure as cathode pole gas pressure, and a pressure of hydrogen gas supplied to the hydrogen gas passage 24a is almost as at the same pressure as anode pole gas pressure. Therefore, the electrode-differential-pressure regulating valve 20 can be said to be a regulating valve which performs valve opening adjustment according to a thrust difference produced when the 1st thrust based on energization force of cathode pole gas pressure and the spring 29 and the 2nd thrust based on anode pole gas pressure are made to act on both sides of the diaphram 22 face to face.

[0024]And in the electrode-differential-pressure regulating valve 10 of this embodiment, It sets up as the spring 29 is compressed by a valve closing condition (setting up so that energization force of the spring 29 may act on the diaphram 22 in a valve closing condition if it puts in another way), and a pressure corresponding to energization force of the spring 29 in a valve closing condition is set as the upper limit Plim of electrode differential pressure. Since the 1st thrust will become large rather than the 2nd thrust when electrode differential pressure is below Plim if it sets up in this way, Since the 2nd thrust becomes large rather than the 1st thrust when the valve 27 holds a valve closing condition which sat down to the valve seat part 28 and electrode differential pressure exceeds the upper limit Plim, The valve 27 estranges and opens from the valve seat part 28, and hydrogen gas in the hydrogen gas passage 24a is missed to the hydrogen offgas emission way 12, and it acts so that electrode differential pressure may be decreased. And the valve 27 moves to a valve closing direction with reduction in electrode differential pressure, and if electrode differential pressure becomes below the upper limit Plim, the valve 27 will sit down and close the valve to the valve seat part 28. A following formula is materialized between the energization force F of the spring 29 in a valve closing condition, the upper limit Plim of electrode differential pressure, and the area S of the diaphram 22. F=Plim-S [0025] In this embodiment, the differential pressure value deltaP1 which is a valve-opening threshold value of the purge valve 8 is set up smaller than the upper limit Plim which is a valveopening threshold value of the electrode-differential-pressure regulating valve 20. If it does in this way, management of electrode differential pressure is performed by the purge valve 8 with a valve-opening threshold value small at the time of normal operation, and the fuel cell 1 can be maintained to good operational status. And when electrode differential pressure becomes large rather than a valve-opening threshold value of the electrode-differential-pressure regulating valve 20, in addition to the purge valve 8, both electrode-differential-pressure regulating valves 20 can open, electrode differential pressure can be reduced promptly, and breakage of solid polyelectrolyte membrane can be prevented certainly.

[0026]Since the electrode-differential-pressure regulating valve 20 operates mechanically purely. an electric trouble (for example, a fracture and lowering of electric power of an electrical signal line to the purge valve 8.) on a system a trouble on a computer, etc. — etc. — also when the purge valve 8 causes a poor operation, the electrode-differential-pressure regulating valve 20 operates certainly, prevents breakage of solid polyelectrolyte membrane, and is extremely excellent in respect of fail-safe. Pressure control in this fuel cell system, A maximum pressure of anode pole gas pressure is not managed using a spring type pop off valve to which only one point can set a valve-opening threshold value, Since electrode differential pressure is managed by both the purge valve 8, and electrode-differential-pressure both [either or] 20, Even if anode pole gas pressure or cathode pole gas pressure changes according to an output of the fuel cell 1, when managing electrode differential pressure, it is almost uninfluential, therefore breakage of solid polyelectrolyte membrane can be prevented certainly.

[0027]Drawing 3 is the modification which changed the installed position of the electrode-differential-pressure regulating valve 20. That is, in the example of drawing 3, the electrode-differential-pressure regulating valve 20 is formed in the hydrogen offgas emission way 16 which connects the hydrogen off-gas recovery passage 11 and the hydrogen offgas emission way 12. And the hydrogen off-gas which flows through the hydrogen off-gas recovery passage 11 is introduced into the hydrogen gas passage 24a via the hydrogen off-gas way 16 from the hydrogen gas entrance 31 of the electrode-differential-pressure regulating valve 20 of drawing 2. The air pressurized by the compressor 2 is introduced into the signal pressure room 23 from the air introducing hole 25 via the pneumatic-signal introducing path 17. Also by the electrode-differential-pressure regulating valve 20 installed in this way, when electrode differential pressure exceeds Plim, the electrode-differential-pressure regulating valve 20 can open, electrode differential pressure can be decreased, and same operation and the effect as the thing of the mode of drawing 1 can be acquired.

[0028][A 2nd embodiment] <u>Drawing 4</u> shows the example which unified the purge valve 8 and the electrode—differential—pressure regulating valve 20. Suppose for convenience that the whole valve unified here is called the electrode—differential—pressure regulating valve 20. Also in the case of this electrode—differential—pressure regulating valve 20, the body 21 and the pressure regulation diaphram (septum) 22, It has the signal pressure room 23, the hydrogen gas passages 24, 24a, and 24b, the air introducing hole 25, the stem 26, the valve 27, the valve seat part 28, the spring 29 for bias sets, the hydrogen gas entrance 31, and the hydrogen gas exit 32. The valve 27 is also a valve of an electrode—differential—pressure regulating valve while being a valve of a purge valve, therefore it is sharing the valve 27. In this electrode—differential—pressure regulating valve 20, the stem 26 is prolonged also to the diaphram 22 up side, The plunger 35 for purge valves (actuator of a purge valve) is formed in the upper bed of the stem 26, The plunger storage part 36 which stores the plunger 35 so that up—and—down motion is possible is established in the body 21, and the coil 37 for solenoids for moving the plunger 35 vertically to the outside of the plunger storage part 36 (actuator of a purge valve) is formed.

[0029]When making it function as the purge valve 8 which mentioned above this electrode—differential—pressure regulating valve 20, by sending current through the coil for solenoids, considering it as an electromagnet, resisting the energization force of the spring 29 and pulling up the plunger 35 up, the valve 27 is made to estrange from the valve seat part 28, and it opens. That is, the switching action of the valve 27 as a purge valve is carried out by the actuator (the plunger 35, the coil 37 for solenoids) which makes an electrical signal driving timing.

[0030]To the septum 22 coordinated with the valve 27 via the stem 26. The 1st thrust based on the pressure of the air in the signal pressure room 23, and the energization force of the spring 29, The 2nd thrust based on the pressure of hydrogen gas in the hydrogen gas passage 24a is acting face to face, and this septum 22 has the function as an actuator (actuator of an electrode—differential—pressure regulating valve) to perform valve opening adjustment of the valve 27. Namely, the situation where the normal operation as a purge valve is not performed by some electrical troubles (for example, a fracture, lowering of electric power, etc. of an electrical signal line) arises, Since said 2nd

thrust becomes large rather than said 1st thrust when electrode differential pressure exceeds the upper limit Plim, the valve 27 estranges and opens from the valve seat part 28, and hydrogen gas in the hydrogen gas passage 24a is missed to the hydrogen offgas emission way 12, and it acts so that electrode differential pressure may be decreased. And the valve 27 moves to a valve closing direction with reduction in electrode differential pressure, and if electrode differential pressure becomes below the upper limit Plim, the valve 27 will sit down and close the valve to the valve seat part 28. [0031]Thus, since one component parts of a system can be reduced and exclusive space can be reduced if a purge valve and an electrode—differential—pressure regulating valve are unified, in the fuel cell system for vehicles loading which has a limitation in a setting space, it becomes very advantageous.

[0032][Other embodiments] In addition, this invention is not restricted to the embodiment mentioned above. For example, although the embodiment mentioned above uses the between pressure adjustment valve for the electrode-differential-pressure adjustment in the fuel cell system which controls anode pole gas pressure more greatly than cathode pole gas pressure very much, It is also possible to use the between pressure adjustment valve 20 for the electrode-differential-pressure adjustment in the fuel cell system which controls cathode pole gas pressure more greatly than anode pole gas pressure very much.

[0033]

[Effect of the Invention] Even if the pressure of the oxidant gas supplied to the pressure or cathode terminal of fuel gas supplied to an anode electrode changes according to the output of a fuel cell according to invention indicated to Claim 1 so that it may explain above, Since electrode differential pressure is controllable by both the purge valve, and electrode—differential—pressure both [either or], While being able to maintain the good operational status of a fuel cell certainly, without reducing system efficiency, the outstanding effect that breakage of solid polyelectrolyte membrane can be prevented certainly is done so. Since especially an electrode—differential—pressure regulating valve adjusts electrode differential pressure to the range of desired by mechanical operation purely, also when an electric trouble arises to a system, it operates normally, and is extremely excellent also in respect of fail—safe.

[0034]According to invention indicated to Claim 2, management of the electrode differential pressure at the time of normal operation can be performed by the operation of a purge valve with a small valve-opening threshold value, Since both a purge valve and an electrode-differential-pressure regulating valve open and electrode differential pressure is promptly reduced when electrode differential pressure becomes large rather than the valve-opening threshold value of an electrode-differential-pressure regulating valve, breakage of solid polyelectrolyte membrane can be prevented certainly. Since the electrode-differential-pressure regulating valve should operate and breakage of solid polyelectrolyte membrane should be certainly prevented also when a purge valve causes a poor operation, it excels extremely also in respect of fail-safe. According to invention indicated to Claim 3, it is effective in the ability to aim at reduction of part mark, and reduction of a setting space.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is an outline block diagram in a 1st embodiment of the fuel cell system concerning this invention.

[Drawing 2] It is a sectional view of the electrode-differential-pressure regulating valve used for said 1st embodiment.

[Drawing 3]It is an outline block diagram in the modification of said 1st embodiment.

Drawing 4] It is a sectional view of the electrode-differential-pressure regulating valve in a 2nd embodiment of the fuel cell system concerning this invention.

[Drawing 5] It is an outline block diagram showing an example of the conventional fuel cell system.

[Drawing 6] It is a graph which shows the relation between the output of a fuel cell, and hydrogen pole upper limit.

[Explanations of letters or numerals]

- 1 Fuel cell
- 5 Regulator
- 8 Purge valve
- 11 Hydrogen off-gas recovery passage (channel of the off-gas of one gas)
- 20 Electrode-differential-pressure regulating valve
- 22 Pressure regulation diaphram (septum)
- 27 A valve
- 29 A spring for bias sets (elastic body)
- 35 A plunger (actuator of a purge valve)
- 37 A coil for solenoids (actuator of a purge valve)

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-373682 (P2002-373682A)

(43)公開日 平成14年12月26日(2002.12.26)

(51) Int.Cl.'
H 0 1 M 8/04
8/10

識別記号

FI H01M 8/04 8/10 テーマコード(参考) A 5H026 5H027

審査請求 未請求 請求項の数3 OL (全 8 頁)

(21)出願番号	特願2001-181524(P2001-181524)	(71)出願人	000005326
			本田技研工業株式会社
(22)出顧日	平成13年6月15日(2001.6.15)		東京都港区南青山二丁目1番1号
		(72)発明者	菅原 竜也
			埼玉県和光市中央1丁目4番1号 株式会
			社本田技術研究所内
		(72)発明者	
		(1-)	埼玉県和光市中央1丁目4番1号 株式会
			社本田技術研究所内
		(74)代理人	
		(14) (44)	弁理士 志賀 正武 (外5名)
			最終頁に続く
			AZITY, PATENCE Y

(54) 【発明の名称】 燃料電池システム

(57)【要約】

【課題】 固体高分子電解質膜型の燃料電池における極間差圧管理を確実にする。

【解決手段】 固体高分子電解質膜の両側にアノード電極とカソード電極を有し、アノード電極に水素ガスが供給されカソード電極に空気が供給されて発電する燃料電池1と、燃料電池1に供給される水素ガスの圧力を空気の圧力に応じて減少させるレギュレータ5と、燃料電池1から排出される水素ガスの流路である水素オフガスの圧力を逃がすパージ弁8とを備え、さらに、空気の圧力およびバイアス設定用スプリングの付勢力に基づく第1の推力と水素ガスの圧力に基づく第2の推力とを互いに対向して作用させたときに生じる推力差に応じて弁開度調整を行い水素ガスを逃がして前記両電極間の差圧を調整する極間差圧調整弁20を、レギュレータ5の下流に備える。

【特許請求の範囲】

【請求項1】 固体高分子電解質膜の両側にアノード電極とカソード電極を有し、アノード電極に燃料ガスが供給されカソード電極に酸化剤ガスが供給されて発電する燃料電池と、

前記燃料電池に供給される前記燃料ガスと酸化剤ガスのいずれか一方のガスの圧力を他方のガスの圧力に応じて減少させるレギュレータと、

前記燃料電池から排出される前記一方のガスのオフガス の流路に設けられ、前記両電極間の差圧に応じて開き前 記オフガスの圧力を逃がすパージ弁と、

を備えた燃料電池システムにおいて、

前記他方のガスの圧力および弾性体の付勢力に基づく第1の推力と前記一方のガスの圧力に基づく第2の推力とを互いに対向して作用させたときに生じる推力差に応じて弁開度調整を行い前記一方のガスを逃がして前記両電極間の差圧を調整する極間差圧調整弁を、前記レギュレータの下流に備えたことを特徴とする燃料電池システム

【請求項2】 前記パージ弁の開弁閾値である両電極間 20 の差圧は、前記差圧調整弁の開弁閾値である両電極間の 差圧よりも小さく設定されていることを特徴とする請求 項1に記載の燃料電池システム。

【請求項3】 前記パージ弁と前記極間差圧調整弁は一体に構成されており、一つの弁体が前記パージ弁の弁体と前記極間差圧調整弁の弁体を共有し、この弁体は、電気的信号を駆動タイミングとする前記パージ弁の駆動部により開閉動作可能であるとともに、前記弁体に連係する隔壁であってその両側に前記第1の推力と前記第2の推力が対向して作用する隔壁を前記極間差圧調整弁の駆 30動部として弁開度調整可能であることを特徴とする請求項1または請求項2に記載の燃料電池システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、固体高分子電解 質膜型の燃料電池における極間差圧制御技術に関するも のである。

[0002]

【従来の技術】燃料電池自動車等に搭載される燃料電池には、固体高分子電解質膜の両側にアノード電極とカソード電極とを備え、アノード電極に燃料ガス(例えば水素ガス)を供給し、カソード電極に酸化剤ガス(例えば酸素あるいは空気)を供給して、これらガスの酸化還元反応にかかる化学エネルギを直接電気エネルギとして抽出するようにしたものがある。この燃料電池では、アノード側で水素ガスがイオン化して固体高分子電解質中を移動し、電子は、外部負荷を通ってカソード側に移動し、酸素と反応して水を生成する一連の電気化学反応による電気エネルギを取り出すことができるようになっている。

【0003】この燃料電池を備えた従来の燃料電池シス テムの一例を図5に示す。この燃料電池システムでは、 酸化剤ガスとしての空気をコンプレッサ52により所定 圧力に昇圧し、カソード加湿器53で加湿して燃料電池 51のカソード電極に供給する。この空気は発電に供さ れた後、燃料電池1から空気オフガスとして排出され、 圧力制御弁54を介して排出される。この圧力制御弁5 4 はカソード電極での空気の供給圧を制御する。一方、 燃料ガスとしての水素ガスをレギュレータ55で減圧 し、エゼクタ56を経由して、アノード加湿器57で加 湿し、燃料電池1のアノード電極に供給する。ここで、 レギュレータ55は、カソード電極に供給される空気の 圧力に応じて、アノード電極に供給される水素ガスの圧 力を減少させる。水素ガスは発電に供された後、燃料電 池1から水素オフガスとして排出され、水素オフガス回 収路61を通ってエゼクタに吸引され、レギュレータを 通過した新鮮な水素ガスと合流して再び燃料電池1のア ノード電極に供給される。

【0004】ところで、この燃料電池システムでは、固体高分子電解質膜の破損を回避するために、アノード電極の水素ガスの圧力とカソード電極の空気の圧力との差圧を所定の規定値以下に抑えて運転する必要がある。そこで、従来は、水素オフガス回収路61に電磁駆動式のパージ弁58を設け、前記差圧が前記規定値に達したときにパージ弁58を開弁させるようにパージ弁58を電気的に制御していた。特開平7-78624号公報にもこれと同様の技術が開示されている。なお、パージ弁58は、前記差圧制御のために開弁されるだけでなく、水素オフガス中に含まれる水分が凝縮して生成される凝縮水を排水するときなど、必要に応じて適宜開弁されるものである。

[0005]

【発明が解決しようとする課題】しかしながら、従来のようにパージ弁58の開閉を電気的に制御して前記両極間の差圧を制御した場合には、電気信号線の破断や電力の低下により、あるいはコンピュータ上で不具合が生じた場合には、パージ弁58が作動しなくなったり、不必要な開弁を行ってシステム効率を低下させる虞がある。

【0006】また、前記パージ弁を用いた極間差圧管理に代えて、バネ式ポップオフ弁を用いた最大圧力管理により機械的に過大圧力を逃がすことも考えられる。ここで、バネ式ポップオフ弁は、最大規定圧力値で開弁するようにバネ荷重を予め設定しておき、圧力が規定値を超えるとバネ荷重により閉弁状態に押さえられていた弁体が開弁して圧力を逃がす構造を有する機械式の逃がし弁である。このバネ式ポップオフ弁は開弁閾値である最大規定圧力をどこか1点の圧力値(一定圧)にしか設定できない。

【0007】しかしながら、燃料電池の場合には、図6 50 に示すように、燃料電池の出力値に応じてアノード電極 の上限圧が変化する。したがって、開弁関値(最大規定 圧力値)を一点しか設定できないバネ式ポップオフ弁 で、燃料電池のアノード電極の最大圧力を管理するのは 困難であり、実質的に不可能である。そこで、この発明 は、燃料電池の出力値に応じて反応ガスの上限圧力が変 化しても極間差圧の管理を確実に行うことができ、固体 高分子電解質膜の破損防止をより確実にできる燃料電池 システムを提供するものである。

[0008]

【課題を解決するための手段】上記課題を解決するため に、請求項1に記載した発明は、固体高分子電解質膜の 両側にアノード電極とカソード電極を有し、アノード電 極に燃料ガス(例えば、後述する実施の形態における水 素ガス)が供給されカソード電極に酸化剤ガス(例え ば、後述する実施の形態における空気)が供給されて発 電する燃料電池(例えば、後述する実施の形態における 燃料電池1)と、前記燃料電池に供給される前記燃料ガ スと酸化剤ガスのいずれか一方のガス(例えば、後述す る実施の形態における水素ガス)の圧力を他方のガス (例えば、後述する実施の形態における空気)の圧力に 20 応じて減少させるレギュレータ(例えば、後述する実施 の形態におけるレギュレータ5)と、前記燃料電池から 排出される前記一方のガスのオフガスの流路(例えば、 後述する実施の形態における水素オフガス回収路11) に設けられ、前記両電極間の差圧に応じて開き前記オフ ガスの圧力を逃がすパージ弁(例えば、後述する実施の 形態におけるパージ弁8)と、を備えた燃料電池システ ムにおいて、前記他方のガスの圧力および弾性体(例え ば、後述する実施の形態におけるバイアス設定用スプリ ング29)の付勢力に基づく第1の推力と前記一方のガ スの圧力に基づく第2の推力とを互いに対向して作用さ せたときに生じる推力差に応じて弁開度調整を行い前記 一方のガスを逃がして前記両電極間の差圧を調整する極 間差圧調整弁(例えば、後述する実施の形態における極 間差圧調整弁20)を、前記レギュレータの下流に備え たことを特徴とする。

【0009】このように構成することにより、アノード電極に供給される燃料ガスの圧力あるいはカソード電極に供給される燃料ガスの圧力が燃料電池の出力に応じて変化しても、両電極間の差圧(以下、極間差圧という)をパージ弁と極間差圧調整弁のいずれかあるいは両方で制御することができる。特に、極間差圧調整弁では、前記一方のガスの圧力と他方のガスの圧力との差圧が大きいほど前記推力差も大きくなり、極間差圧調整弁は、前記推力差が大きいほど弁開度を大きくなるように調整して極間差圧を小さくし、前記推力差が小さいほど弁開度を小さくなるように調整して極間差圧を大きくする。その結果、極間差圧調整弁は、極間差圧を所定範囲に調整することが可能になる。また、極間差圧を開盟分の作動は純粋に機械式であるので、システムに電気的なト

ラブルが生じた時にも正常に作動する。

【0010】請求項2に記載した発明は、請求項1に記 載の発明において、前記パージ弁の開弁閾値である両電 極間の差圧は、前記差圧調整弁の開弁閾値である両電極 間の差圧よりも小さく設定されていることを特徴とす る。このように構成することにより、正常運転時の極間 差圧の管理は開弁閾値が小さいパージ弁の作動により実 行し、極間差圧が極間差圧調整弁の開弁閾値よりも大と なったときには、パージ弁と極間差圧調整弁の両方が開 弁して極間差圧をより迅速に低下させる。また、万が 一、パージ弁が作動不良を起こした時にも、極間差圧調 整弁が作動して固体高分子電解質膜の破損を防止する。 【0011】請求3項に記載した発明は、請求項1また は請求項2に記載の発明において、前記パージ弁と前記 極間差圧調整弁は一体に構成されており、一つの弁体 (例えば、後述する実施の形態における弁体27) が前 記パージ弁の弁体と前記極間差圧調整弁の弁体を共有 し、この弁体は、電気的信号を駆動タイミングとする前 記パージ弁の駆動部(例えば、後述する実施の形態にお けるプランジャ35、ソレノイド用コイル37)により 開閉動作可能であるとともに、前記弁体に連係する隔壁 であってその両側に前記第1の推力と前記第2の推力が 対向して作用する隔壁(例えば、後述する実施の形態に おける調圧ダイヤフラム22)を前記極間差圧調整弁の 駆動部として弁開度調整可能であることを特徴とする。 このように構成することにより、部品点数の減少、設置 スペースの減少を図ることができる。

[0012]

【発明の実施の形態】以下、この発明に係る燃料電池システムの実施の形態を図1から図4の図面を参照して説明する。なお、以下の各実施の形態における燃料電池システムは燃料電池自動車に搭載された態様である。

【0013】〔第1の実施の形態〕初めに、この発明に 係る燃料電池システムの第1の実施の形態を図1から図 3の図面を参照して説明する。図1は燃料電池システム の概略構成図である。燃料電池1は、固体高分子電解質 膜の両側にアノード電極とカソード電極が設けられ各電 極の外側に反応ガスを供給するためのガス通路が設けられてなるセルを多数積層して構成されている。この燃料 電池1は、アノード電極に燃料ガスとしての水素ガスが 供給され、カソード電極に酸化剤ガスとしての空気が供 給されて発電を行う。

【0014】空気はエアコンプレッサ2によって加圧され、カソード加湿器3で加湿されて燃料電池1のカソード電極に供給され、この空気中の酸素が酸化剤として供された後、燃料電池1から空気オフガスとして排出され、圧力制御弁4を介して大気に放出される。ECU10は、燃料電池1に要求されている出力(以下、要求出力)に応じて、エアコンプレッサ2を駆動して所定量の空気を燃料電池1に供給するとともに、圧力制御弁4を

制御してカソード電極での空気の供給圧を燃料電池 1 の 要求出力に応じた圧力に調整する。

【0015】一方、図示しない高圧水素タンクから放出された水素ガスはレギュレータ5により減圧された後、エゼクタ6を通り、アノード加湿器7で加湿されて燃料電池1のアノード電極に供給される。この水素ガスは発電に供された後、燃料電池1から水素オフガスとして排出され、水素オフガス回収路11を通ってエゼクタ6に吸引され、前記高圧水素タンクから供給される水素ガスと合流し再び燃料電池1に供給され循環するようになっている。

【0016】レギュレータ5は、例えば空気式の比例圧力制御弁からなり、エアコンプレッサ2から供給される空気の圧力を信号圧として空気信号導入路15を介して入力され、レギュレータ5出口の水素ガスの圧力が前記信号圧に応じた所定圧力範囲となるように減圧制御する。なお、この実施の形態における燃料電池システムでは、レギュレータ5は、アノード電極に供給される水素ガスの圧力(以下、「アノード極ガス圧」と称す)がカソード電極に供給される空気の圧力(以下、「カソード 20極ガス圧」と称す)よりも大きくなるように制御する。

【0017】水素オフガス回収路11は電磁駆動式のパージ弁8を介して水素オフガス排出路12に接続されている。ECU10は、アノード極ガス圧とカソード極ガス圧との差圧、すなわち極間差圧を検出する差圧センサ9の出力に基づいて、パージ弁8の電磁駆動部を作動して開閉制御を行う。すなわち、パージ弁8の電磁駆動部は電気的信号を駆動タイミングとしている。このパージ弁8は、差圧センサ9の出力値がΔP1に達したときに開弁して極間差圧をΔP1以下に制御するほか、所定の条件が満たされたときに開弁して、燃料電池1のアノード電極側に水が溜まらないように排水するなどの作用がある。

【0018】エゼクタ6とアノード加湿器7を接続する水素供給路13は、本発明の特徴的な構成を有する極間差圧調整弁20を備えた水素ガス排出路14を介して水素オフガス排出路12に接続されている。この極間差圧調整弁20について図2の概略断面図を参照して説明する。極間差圧調整弁20のボディ21の内部空間は調圧ダイヤフラム22によって上下に仕切られていて、ダイ40ヤフラム22よりも上側の空間は信号圧室23になっていて、下側の空間は水素ガス通路24になっている。信号圧室23は空気導入孔25を備えた密閉空間になっていて、コンプレッサ2で加圧された空気が空気信号導入路15を介して空気導入孔25から信号圧室23に導入される。

【0019】ダイヤフラム22の下面にはステム26が 取り付けられており、ステム26には、水素ガス通路2 4内のバルブシート部28に対して上側から着座離反可 能な弁体27が設けられている。そして、信号圧室23 50 には、弁体27をバルブシート部28に着座する方向に 付勢するバイアス設定用スプリング(弾性体)29が設 けられている。

【0020】また、ボディ21には、弁体27が配置されている側の水素ガス通路24aに連通する水素ガス入口31と、弁体27が配置されていない側の水素ガス通路24bに連通する水素ガス出口32が設けられていて、水素ガス入口31は水素ガス排出路14を介して水素供給管13に接続され、水素ガス出口32は水素ガス排出路14を介して水素オフガス排出路12に接続されている。したがって、図1および図2に示すように、エゼクタ6で減圧された水素ガスが水素ガス入口31から水素ガス通路24aに導入され、弁体27がバルブシート部28から離間して開弁すると、水素ガス通路24aに導入された水素ガスは水素ガス通路24bに流出し、さらに水素ガス出口32から水素オフガス排出路12へと流れるようになる。

【0021】なお、極間差圧調整弁20を構成する部品のうち水素ガスに触れる部品については水素に対する耐食性に優れたものを使用するのが好ましく、例えば、ボディ21、弁体27、ステム26にはステンレスあるいは表面アルマイト処理を施したアルミニウムなどが好適であり、ダイヤフラム22にはフッ素ゴムが好適である。

【0022】このように構成された極間差圧調整弁20 では、信号圧室23内の空気の圧力とスプリング29の 付勢力がダイヤフラム22の上面に作用する結果、これ らに基づく第1の推力がダイヤフラム22の上面に下向 きに作用し、一方、水素ガス通路24a内の水素ガスの 圧力がダイヤフラム22の下面に作用する結果、これに 基づく第2の推力がダイヤフラム22の下面に上向きに 作用する。そして、ダイヤフラム22はこれら第1の推 力と第2の推力の推力差に支配されて動くこととなる。 すなわち、第2の推力が第1の推力よりも小さいときに はダイヤフラム22に下向きの力が作用し、弁体27を バルプシート部28に接近させる方向(すなわち、閉弁 方向)へ押動し、第2の推力が第1の推力よりも大きく なったときにはダイヤフラム22に上向きの力が作用 し、弁体27をバルブシート部28から離間させる方向 (すなわち、開弁方向)へ押動する。

【0023】ところで、信号圧室23に供給される空気の圧力はカソード極ガス圧とほぼ同圧であり、水素ガス通路24aに供給される水素ガスの圧力はアノード極ガス圧とほぼ同圧である。したがって、極間差圧調整弁20は、カソード極ガス圧およびスプリング29の付勢力に基づく第1の推力とアノード極ガス圧に基づく第2の推力とをダイヤフラム22を挟んで対向して作用させたときに生じる推力差に応じて弁開度調整を行う調整弁と言うことができる。

【0024】そして、この実施の形態の極間差圧調整弁

10においては、閉弁状態でスプリング29が圧縮され ているように設定し(換言すれば、閉弁状態においてス プリング29の付勢力がダイヤフラム22に作用するよ うに設定し)、且つ、閉弁状態におけるスプリング29 の付勢力に対応する圧力を極間差圧の上限値Plimに設 定する。このように設定すると、極間差圧がPlin以下 のときには第1の推力が第2の推力よりも大となるの で、弁体27がバルブシート部28に着座した閉弁状態 を保持し、極間差圧が上限値Plimを越えたときには第 2の推力が第1の推力よりも大となるので、弁体27が バルブシート部28から離間して開弁し、水素ガス通路 24 a 内の水素ガスを水素オフガス排出路 12へと逃が して、極間差圧を減少させるように作用する。そして、 極間差圧の減少とともに弁体27が閉弁方向に動き、極 間差圧が上限値Plim以下になると弁体27がバルブシ ート部28に着座して閉弁する。なお、閉弁状態におけ るスプリング29の付勢力F、極間差圧の上限値Pli m、ダイヤフラム22の面積Sとの間には、次式が成立 する。

$F = P lim \cdot S$

【0025】また、この実施の形態においては、パージ 弁8の開弁閾値である差圧値ΔP1を、極間差圧調整弁 20の開弁閾値である上限値Plimよりも小さく設定す る。このようにすると、正常運転時においては開弁閾値 が小さいパージ弁8により極間差圧の管理が行われ、燃 料電池1を良好な運転状態に維持することができる。そ して、極間差圧が極間差圧調整弁20の開弁閾値よりも 大となったときには、パージ弁8に加え極間差圧調整弁 20の両方が開弁して極間差圧を迅速に低下させ、固体 高分子電解質膜の破損を確実に防止することができる。 【0026】さらに、極間差圧調整弁20は純粋に機械 的に作動するので、万が一、システム上の電気的なトラ ブル (例えば、パージ弁8に対する電気信号線の破断や 電力低下、コンピュータ上のトラブル等)などによりパ ージ弁8が作動不良を起こした時にも、極間差圧調整弁 20は確実に作動して固体高分子電解質膜の破損を防止 し、フェールセーフの点で極めて優れている。また、こ の燃料電池システムにおける圧力管理は、開弁閾値を1 点しか設定できないバネ式ポップオフ弁を用いてアノー ド極ガス圧の最大圧力を管理するのではなく、パージ弁 8と極間差圧調整弁20のいずれかあるいは両方によっ て極間差圧を管理しているので、アノード極ガス圧ある いはカソード極ガス圧が燃料電池1の出力に応じて変化 しても、極間差圧を管理する上では殆ど影響がなく、し たがって、固体高分子電解質膜の破損を確実に防止する ことができる。

【0027】図3は極間差圧調整弁20の設置位置を変更した変形例である。すなわち、図3の例では、水素オフガス回収路11と水素オフガス排出路12とを接続する水素オフガス排出路16に極間差圧調整弁20を設け 50

ている。そして、水素オフガス回収路11を流れる水素オフガスが水素オフガス路16を介して図2の極間差圧調整弁20の水素ガス入口31から水素ガス通路24aに導入される。さらに、コンプレッサ2で加圧された空気が空気信号導入路17を介して空気導入孔25から信号圧室23に導入される。このように設置した極間差圧調整弁20によっても、極間差圧がPlimを越えた場合に極間差圧調整弁20が開弁して極間差圧を減少させることができ、図1の態様のものと同様の作用・効果を得ることができる。

【0028】〔第2の実施の形態〕図4はパージ弁8と 極間差圧調整弁20とを一体化した例を示している。な お、ここでは一体化された弁全体を便宜上、極間差圧調 整弁20と呼ぶこととする。この極間差圧調整弁20の 場合にも、ボディ21と、調圧ダイヤフラム(隔壁)2 2と、信号圧室23と、水素ガス通路24,24a,2 4 bと、空気導入孔25と、ステム26と、弁体27 と、バルブシート部28と、バイアス設定用スプリング 29と、水素ガス入口31と、水素ガス出口32を備え ている。弁体27は、パージ弁の弁体であるとともに極 間差圧調整弁の弁体でもあり、したがって、弁体27を 共有している。この極間差圧調整弁20では、ステム2 6がダイヤフラム22の上側にも延びていて、ステム2 6の上端にパージ弁用のプランジャ(パージ弁の駆動 部) 35が設けられており、ボディ21にはプランジャ 35を上下動可能に収納するプランジャ収納部36が設 けられており、プランジャ収納部36の外側にプランジ ャ35を昇降動させるためのソレノイド用コイル(パー ジ弁の駆動部) 37が設けられている。

)【0029】この極間差圧調整弁20を前述したパージ 弁8として機能させるときには、ソレノイド用コイルに 電流を流して電磁石とし、プランジャ35をスプリング 29の付勢力に抗して上方に引き上げることにより、弁 体27をバルブシート部28から離間させ開弁する。す なわち、パージ弁としての弁体27は、電気的信号を駆 動タイミングとする駆動部(プランジャ35,ソレノイ ド用コイル37)によって開閉動作される。

【0030】また、ステム26を介して弁体27に連係する隔壁22には、信号圧室23内の空気の圧力およびスプリング29の付勢力に基づく第1の推力と、水素ガス通路24a内の水素ガスの圧力に基づく第2の推力が、対向して作用しており、この隔壁22は弁体27の弁開度調整を行う駆動部(極間差圧調整弁の駆動部)としての機能を有している。すなわち、何らかの電気的トラブル(例えば、電気信号線の破断や電力低下等)などによりパージ弁としての正常な作動が行われない事態が生じて、極間差圧が上限値Plimを越えたときには、前記第2の推力が前記第1の推力よりも大となるので、弁体27がバルブシート部28から離間して開弁し、水素ガス通路24a内の水素ガスを水素オフガス排出路12

へと逃がして、極間差圧を減少させるように作用する。 そして、極間差圧の減少とともに弁体27が閉弁方向に 動き、極間差圧が上限値Plin以下になると弁体27が バルブシート部28に着座して閉弁する。

【0031】このように、パージ弁と極間差圧調整弁を一体化すると、システムの構成部品を一つ減らすことができ、専有空間を減らすことができるので、設置スペースに限りがある車両搭載用の燃料電池システムでは非常に有利になる。

【0032】 〔他の実施の形態〕尚、この発明は前述した実施の形態に限られるものではない。例えば、前述した実施の形態は、アノード極ガス圧をカソード極ガス圧よりも大きく制御する燃料電池システムにおける極間差圧調整に極間圧調整弁を用いているが、カソード極ガス圧をアノード極ガス圧よりも大きく制御する燃料電池システムにおける極間差圧調整に極間圧調整弁20を用いることも可能である。

[0033]

【発明の効果】以上説明するように、請求項1に記載した発明によれば、アノード電極に供給される燃料ガスの 20 圧力あるいはカソード電極に供給される酸化剤ガスの圧力が燃料電池の出力に応じて変化しても、極間差圧をパージ弁と極間差圧調整弁のいずれかあるいは両方で制御することができるので、システム効率を低下させることなく燃料電池の良好な運転状態を確実に維持することができるとともに、固体高分子電解質膜の破損を確実に防止することができるという優れた効果が奏される。特に、極間差圧調整弁は、純粋に機械的な作動により極間差圧を所望の範囲に調整するので、システムに電気的なトラブルが生じた時にも正常に作動し、フェールセーフ 30 の点でも極めて優れている。

【0034】請求項2に記載した発明によれば、正常運転時の極間差圧の管理は開弁閾値が小さいパージ弁の作動により実行することができ、極間差圧が極間差圧調整*

* 弁の開弁閾値よりも大となったときには、パージ弁と極間差圧調整弁の両方が開弁して極間差圧を迅速に低下させるので、固体高分子電解質膜の破損を確実に防止することができる。また、万が一、パージ弁が作動不良を起こした場合も、極間差圧調整弁が作動して固体高分子電解質膜の破損を確実に防止するので、フェールセーフの点でも極めて優れている。請求項3に記載した発明によれば、部品点数の減少、設置スペースの減少を図ることができるという効果がある。

10 【図面の簡単な説明】

【図1】 この発明に係る燃料電池システムの第1の実施の形態における概略構成図である。

【図2】 前記第1の実施の形態に使用される極間差圧 調整弁の断面図である。

【図3】 前記第1の実施の形態の変形例における概略 構成図である。

【図4】 この発明に係る燃料電池システムの第2の実施の形態における極間差圧調整弁の断面図である。

【図5】 従来の燃料電池システムの一例を示す概略構成図である。

【図6】 燃料電池の出力と水素極上限値との関係を示すグラフである。

【符号の説明】

- 1 燃料電池
- 5 レギュレータ
- 8 パージ弁
- 11 水素オフガス回収路(一方のガスのオフガスの流路)
- 20 極間差圧調整弁
- 10 22 調圧ダイヤフラム(隔壁)
 - 27 弁体
 - 29 バイアス設定用スプリング(弾性体)
 - 35 プランジャ (パージ弁の駆動部)
 - 37 ソレノイド用コイル (パージ弁の駆動部)

[図2]

[図6]

【図1】

[図3]

【図5】

フロントページの続き

F ターム(参考) 5H026 AA06 KK02 KK05 KK12 MM01 MM02