Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1	$\sqrt{1}$ (Previously Presented). A method for authenticating a user an for input			
2	of control information for an electronic device, said method comprising:			
3	acquiring through a scanner at least two fingerprint images of a			
4	finger;			
5	computing image correlations between the acquired fingerprint			
6	images;			
7	extracting from each said fingerprint image at least one contact			
8	parameter, calculated by the step of computing image correlations, the			
9	contact parameter being determined between image attributes in each said			
10	fingerprint image; and			
11	using said fingerprint images and said at least one contact			
12	parameter to authenticate said user and to control said electronic device.			
1 2	Original). A method as in claim 1, wherein said contact parameter is rotation.			
1	(Original). A method as in claim 1, wherein said contact parameter is			
2	translation.			
1	4 (Original). A method as in claim 3, further comprising calculating pitch			
2,	and roll rotations.			
	102			
1	5 (Previously Presented). A method as in claim 1, wherein the step of			
2	computing image correlations is performed for a single portion of said			
3	image.			

() ()

	2/			
1	10 6 (Previously Presented). A method as in claim 1, wherein the step of			
2	computing image correlations is performed between a multiplicity of sma			
3	regions.			
	2/18			
1	7 (Previously Presented). A method as in claim 1, further comprising the			
2	step of determining the rate of change of some control parameter where			
3	rotation or translation of said finger relative to a reference position is us			
4	to determine the rate of change of some control parameter of the computer			
	3/16			
1	8 (Previously Presented). A method as in claim 7, further comprising the steps of:			
2	steps of:			
3	measuring a pitch and roll rotation of said finger; and			
4	using measured pitch and roll rotation to control the position of a			
5	cursor in the computer.			
	10/2/201			
1	(Previously Presented). A method as in claim 7, wherein said the			
2	reference position is the position at which contact with the scanner is first			
3	registered, further comprising the step of resetting the reference point			
4	every time the finger reestablishes contact with the scanner.			
	13/637			
1	10 (Previously Presented). A method as in claim 1, further comprising the			
2	step of comparing successive, and possibly consecutive, images taken from			
3	a single period of contact of said finger with said scanner.			
	10V			
1	11 (Original). A method as in claim 1 wherein at least one said fingerprint			
2	images is a reference image captured previously.			
	10 V (0 · · · ·)			
1	12 (Original). A method as in claim 11 wherein the reference image is			
2	labeled with known rotation information.			

1

1

13 (Previously Presented). A method as in claim 12, further comprising the

2	step of prompting the user to present the finger at known rotations in an			
3	enrollment stage to provide said known rotation information			
1	14 (Previously Presented. A system for authenticating a user and for input			
2	of pointing information for a computer, said system comprising:			
3	a fingerprint image acquisition scanner for acquiring at least two			
4	fingerprint images of a finger, wherein said scanner is able to capture			
5	successive images of a finger in motion on a surface of said scanner;			
6	computing means for computing image correlations between the			
7	acquired fingerprint images;			
8	an image processor for extracting from said fingerprint image at			
9	least one contact parameter calculated by said computing means, other than			
10	any optional authentication status data for said fingerprint image; and			
11	means for using said successive fingerprint images and said at least			
12	one contact parameter to control a pointing device and to authenticate said			
13	user.			
1	15 (Original). A system as in claim 14 wherein a multiplicity of variations			
2	in each of said contact parameters are used to verify an acquisition of data			
3	in real time from a live user.			
1	16 (Previously Presented). A system as in claim 15, said system further			
2	comprising means for directing a user to follow through on any			
3	combination of a multiplicity of prompts including: change a position of,			
4	add pressure to contact or rotate said finger from which a fingerprint image			
5	is acquired and wherein said multiplicity of prompts are verified by the			
6	system to ensure that the data is being generated at the time of direction.			

17 (Previously Presented). A system as in claim 14, said system further

2	comprising means for prompting the user to enact a sequence of finger			
3	actions previously registered by the user as a "password" for the device.			
1	18 (Previously Presented). A system as in claim 14 wherein a motion of			
2	the finger tip is interpreted as a gesture for recognition by a gesture engine.			
1	19 (Original). The system of claim 14, further comprising:			
2	a feature extraction processor for extracting representative feature			
3	from said fingerprint image;			
4	a memory for storing representative features of at least one			
5	authorized user; and			
6	a feature comparison processor for comparing said stored			
7	representative features with said extracted representative features, and			
8	generating authentication status data therefrom.			
1	20 (Original). A system as in claim 19 wherein an identity of a user is used			
2	to set customized features of the computer.			
1	21 (Original). A system as in claim 19 where the identity of said user is			
2	used to set customized parameters of the pointing device.			
1	22 (Previously Presented). A system for imaging a fingerprint for input of			
2	control information for an electronic device, said system comprising:			
3	a fingerprint image acquisition scanner for acquiring at least two			
4	fingerprint images of a finger, wherein said scanner is able to capture			
5	successive images of a finger in motion on a surface of said scanner;			
6	computing means for computing image correlations between the			
7	acquired fingerprint images; and			
8	an image processor for extracting from said finger print image at			
9	least one contact parameter representing the angle of the finger in relation			

 $\ddot{\mathcal{C}}$

10	to the scanner, where said angle is calculated by said computing means as				
l 1	correlations between image attributes of two or more images acquired from				
12	fingerprint image acquisition scanner,				
13	wherein said successive fingerprint images and said at least one				
14	contact parameter are used for control of said electronic device and for				
15	authentication of a user.				
1	23 (Previously Presented). A system for authenticating a user and for input				
2	of pointing information for a computer, said system comprising:				
3	a multiplicity of fingerprint image acquisition scanners providing a				
4	large input surface for acquiring successive fingerprint images of a finger				
5	computing means for computing image correlations between the				
6	successively acquired fingerprint images; and				
7	an image processor for extracting from each said fingerprint image				
8	at least one contact parameter calculated by said computing means, other				
9	than any optional authentication status data for said fingerprint image; and				
10	means for using said fingerprint images and said at least one				
l 1	contact parameter to authenticate said user and as input of pointing				
12	information for a computer.				
1	24 (Original). A system as in claim 23, where the scanner consists of a				
2	one-dimensional array of small fingerprint scanners.				
1	25 (Original). A system as in claim 24, where the scanner consists of a				
2	two-dimensional array of small fingerprint scanners.				
1	26 (Original). A system as in claim 17, where the "password" is a sequence				
2	of touching individual small fingerprint scanners in a specific order with				
3	the same finger.				
_	ma omite titibot.				

	4	parallel.
C	3	more than one finger being used in the sequence either serially or in
~	2	or touching individual small fingerprint scanners in a specific order, with
	1	27 (Original). A system as in claim 26, where the password is a sequence