(NASA-CR-175872) A SOFTWAKE SIMULATION STUDY OF A (255,223) FEED-SCLCMCN ENCODER-DECODER (Jet Fregulsich Lab.) 43 p HC A03/MF AJ1 CSCL 17B

N85-28192

Unclas G3/32 21439

# A Software Simulation Study of a (255,223) Reed-Solomon Encoder/Decoder

Fatrizio Pollara

April 15, 1985



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California



\* Andrews .

# A Software Simulation Study of a (255,223) Reed-Solomon Encoder/Decoder

Fabrizio Pollara

April 15, 1985



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

(+)

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

# TABLE OF CONTENTS

| 1.  | INTRO     | OUUC | T10  | N.   | •    | • •  | •            | •   | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 1   |
|-----|-----------|------|------|------|------|------|--------------|-----|-----|----|-----|-----|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|----|-----|----|----|---|---|-----|
| 2.  | SIMUL     | LATI | ON   | SET  | `-UP | •    |              | •   | •   | •  | •   | •   |     | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 4   |
| 3.  | RS EN     | NCOL | ER   |      | •    |      | •            | •   | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 4   |
| 4.  | RS DE     | ECOI | DER  |      | •    |      | • •          |     | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 6   |
|     | 4.1       | DE   | ECOD | ER   | ALG  | ORI  | [Tł          | ΙM  |     |    | •   | •   |     | •   | •   | •   | •  | •   |     | •   | •   | •   | •   |     |    |     | •  | •  |   | • | 6   |
|     | 4.2       | E    | JCLI | D A  | LGC  | RIT  | rh           | 1.  | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 9   |
|     | 4.3       | IN   | IVER | SE   | FFT  |      | • •          | •   | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 10  |
| 5.  | USER      | GU   | I DE | ANI  | EX   | (AM) | PLI          | ES  | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | • • | •   | •   | •  | •   | •  | •  | • | • | 11  |
| 6.  | REFER     | RENC | CES  |      | •    |      | • •          |     | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | 14  |
| APP | ENDICES   | S    |      |      |      |      |              |     |     |    |     |     |     |     |     |     |    |     |     |     |     |     |     |     |    |     |    |    |   |   |     |
|     | <b>A.</b> | NI   | UMBE | ER C | )F 1 | (UL  | <b>T [</b> ] | PLI | CA  | TI | ON  | S I | REG | QU. | LRI | ED  | TO | ) ( | COI | 4PI | UTI | Ξ 7 | rh) | E S | SY | NDI | RO | ME |   |   |     |
|     |           | 01   | FA   | RS   | COI  | E .  | • 1          | • • | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | A-1 |
|     | в.        | R    | s en | (COI | DER  | SU   | BR           | DUT | IN  | E  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | B-1 |
|     | c.        | R:   | S DE | COI  | ER   | SUI  | BRO          | DUT | IN  | E  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | C-1 |
|     | D.        | E    | KAMI | PLE  | OF   | OU'  | TP           | UT  | •   | •  | •   | •   | •   | •   | •   | •   | •  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | D-1 |
|     | E.        | E    | KAME | LE   | OF   | RAI  | NDO          | OML | Y ( | CH | OS: | EN  | C   | )DI | ew  | ORI | )  | •   | •   | •   | •   | •   | •   | •   | •  | •   | •  | •  | • | • | E-1 |

# TABLE OF CONTENTS (cont.)

FIGURES

2.

| 1.     | Simulation Block Diagram                        | 5 |
|--------|-------------------------------------------------|---|
| 2.     | RS Encoder                                      | 7 |
| TABLES |                                                 |   |
| 1.     | Decimal Representation of Elements of $GF(2^8)$ | 2 |

Coefficients of Generator Polynomial . . . . . . .

#### **ABSTRACT**

A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT.

Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.

## 1. INTRODUCTION

A (255,223) Reed-Solomon (RS) code has been adopted as the standard outer code for concatenated coding systems by NASA and by the European Space Agency (ESA) [1]. This particular RS code is defined in  $GF(2^8)$  by the following parameters:

N = 255 = number of 8-bit symbols in a codeword (block)

K = 223 = number of information symbols in a block

T = N-K = number of parity symbols.

Such a code is capable of correcting up to T/2 = 16 symbol errors in a block. The generator polynomial g(x) of the code is given by,

$$g(x) = \prod_{i=M}^{M+T+1} (x - \alpha^{Gi}) = \sum_{j=0}^{T} g_{j} x^{j}$$
 (1)

-

where M = 112, G = 11, and  $\alpha$  is a root of the primitive polynomial over GF(2)

$$x^8 + x^7 + x^2 + x + 1$$

Every element of  $GF(2^8)$  can be represented as a polynomial in  $\alpha$  over GF(2) of degree less than 8, as shown in Table 1.

The constant M is chosen so that the polynomial has symmetrical coefficients, i.e.,

$$g_{j} = g_{T-j}, j=0,1,...,T$$

It is shown in [2] that this is true if  $M = 2^{8-1} - (T/2) = 112$ .

The constant G=11 is chosen to minimize the bit-serial implementation complexity of the encoder [3]. The polynomial coefficients are shown in Table 2.

Table 1. Decimal Representation of Elements of  $GF(2^8)$ 

 $z = \alpha^{x}; x = \alpha^{y}$ 

| 4       2       16       5       198       32       6       100       64       7       1         8       3       135       9       205       137       10       199       149       11       1         12       101       221       13       126       61       14       107       122       15         16       4       111       17       141       222       18       206       59       19         20       200       236       21       212       95       22       189       190       23       2         24       102       113       25       221       226       26       127       67       27         28       108       139       29       32       145       30       43       165       31       2         32       5       29       33       87       58       34       142       116       35       2         36       207       87       37       172       174       38       79       219       39       1         40       201       98       41       217       196<    |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 8       3       135       9       205       137       10       199       149       11       1         12       101       221       13       126       61       14       107       122       15         16       4       111       17       141       222       18       206       59       19         20       200       236       21       212       95       22       189       190       23       2         24       102       113       25       221       226       26       127       67       27         28       108       139       29       32       145       30       43       165       31       2         36       207       87       37       172       174       38       79       219       39       1         40       201       98       41       217       196       42       213       15       43         44       190       60       45       148       120       46       226       240       47       1         48       103       206       49       39       27   | 99 8             |
| 12       101       221       13       126       61       14       107       122       15         16       4       111       17       141       222       18       206       59       19         20       200       236       21       212       95       22       189       190       23       2         24       102       113       25       221       226       26       127       67       27         28       108       139       29       32       145       30       43       165       31       2         36       207       87       37       172       174       38       79       219       39       1         40       201       98       41       217       196       42       213       15       43         44       190       60       45       148       120       46       226       240       47       1         48       103       206       49       39       27       50       222       54       51       2         52       128       216       53       177       55 |                  |
| 20       200       236       21       212       95       22       189       190       23       2         24       102       113       25       221       226       26       127       67       27         28       108       139       29       32       145       30       43       165       31       2         32       5       29       33       87       58       34       142       116       35       2         36       207       87       37       172       174       38       79       219       39       1         40       201       98       41       217       196       42       213       15       43         44       190       60       45       148       120       46       226       240       47       1         48       103       206       49       39       27       50       222       54       51       2         52       128       216       53       177       55       54       50       110       55         56       109       63       57       69       | 2 244            |
| 24     102     113     25     221     226     26     127     67     27       28     108     139     29     32     145     30     43     165     31     2       32     5     29     33     87     58     34     142     116     35     2       36     207     87     37     172     174     38     79     219     39     1       40     201     98     41     217     196     42     213     15     43       44     190     60     45     148     120     46     226     240     47     1       48     103     206     49     39     27     50     222     54     51     2       52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6214     65     155     43     66     88     86     67       68 <th>78 118</th>                                                                                    | 78 118           |
| 28     108     139     29     32     145     30     43     165     31     2       32     5     29     33     87     58     34     142     116     35     2       36     207     87     37     172     174     38     79     219     39     1       40     201     98     41     217     196     42     213     15     43       44     190     60     45     148     120     46     226     240     47     1       48     103     206     49     39     27     50     222     54     51     2       52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6     214     65     155     43     66     88     86     67       68     143     223     69     121     57     70     233     114     71     1                                                                                                  | 25 251           |
| 32     5     29     33     87     58     34     142     116     35     2       36     207     87     37     172     174     38     79     219     39     1       40     201     98     41     217     196     42     213     15     43       44     190     60     45     148     120     46     226     240     47     1       48     103     206     49     39     27     50     222     54     51     2       52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6     214     65     155     43     66     88     86     67       68     143     223     69     121     57     70     233     114     71     1       72     208     79     73     194     158     74     173     187     75     1 <th>49 134<br/>43 205</th>                                                                      | 49 134<br>43 205 |
| 40     201     98     41     217     196     42     213     15     43       44     190     60     45     148     120     46     226     240     47     1       48     103     206     49     39     27     50     222     54     51     2       52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6     214     65     155     43     66     88     86     67       68     143     223     69     121     57     70     233     114     71     1       72     208     79     73     194     158     74     173     187     75     1       76     80     101     77     117     202     78     132     19     79       80     202     76     81     252     152     82     218     183     83     1                                                                                                   | 2 232            |
| 44       190       60       45       148       120       46       226       240       47       1         48       103       206       49       39       27       50       222       54       51       2         52       128       216       53       177       55       54       50       110       55         56       109       63       57       69       126       58       33       252       59         60       44       254       61       13       123       62       244       246       63         64       6       214       65       155       43       66       88       86       67         68       143       223       69       121       57       70       233       114       71       1         72       208       79       73       194       158       74       173       187       75       11         76       80       101       77       117       202       78       132       19       79         80       202       76       81       252       152       82   | 31 49            |
| 48     103     206     49     39     27     50     222     54     51     2       52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6     214     65     155     43     66     88     86     67       68     143     223     69     121     57     70     233     114     71     1       72     208     79     73     194     158     74     173     187     75     1       76     80     101     77     117     202     78     132     19     79       80     202     76     81     252     152     82     218     183     83     1       84     214     85     85     84     170     86     66     211     87                                                                                                                                                                                       | 55 30<br>30 103  |
| 52     128     216     53     177     55     54     50     110     55       56     109     63     57     69     126     58     33     252     59       60     44     254     61     13     123     62     244     246     63       64     6     214     65     155     43     66     88     86     67       68     143     223     69     121     57     70     233     114     71     1       72     208     79     73     194     158     74     173     187     75     1       76     80     101     77     117     202     78     132     19     79       80     202     76     81     252     152     82     218     183     83     1       84     214     85     85     84     170     86     66     211     87                                                                                                                                                                                                                                                                        | 10 108           |
| 60 44 254 61 13 123 62 244 246 63 64 6 214 65 155 43 66 88 86 67 68 143 223 69 121 57 70 233 114 71 1 72 208 79 73 194 158 74 173 187 75 176 80 101 77 117 202 78 132 19 79 80 202 76 81 252 152 82 218 183 83 1 84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 220            |
| 64 6 214 65 155 43 66 88 86 67 68 143 223 69 121 57 70 233 114 71 1 72 208 79 73 194 158 74 173 187 75 19 76 80 101 77 117 202 78 132 19 79 80 202 76 81 252 152 82 218 183 83 1 84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 127<br>56 107 |
| 68 143 223 69 121 57 70 233 114 71 1 72 208 79 73 194 158 74 173 187 75 19 76 80 101 77 117 202 78 132 19 79 80 202 76 81 252 152 82 218 183 83 1 84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 172           |
| 76 80 101 77 117 202 78 132 19 79 80 202 76 81 252 152 82 218 183 83 1 84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 228            |
| 80 202 76 81 252 152 82 218 183 83 1<br>84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 241            |
| 84 214 85 85 84 170 86 66 211 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72 38<br>38 233  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36 33            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 153           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 186           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 48            |
| 104 129 96 105 230 192 106 178 7 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 14             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 224            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66 177           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 147            |
| 124 245 161   125 164 197   126 57 13   127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 26             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 249            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 166           |
| 140 234 203   141 160 17   142 113 34   143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 68             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23 213           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 239           |
| 156 133 130   157 161 131   158 73 129   159 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15 133           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 253            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 230            |
| 172 67 37 173 11 74 174 37 148 175 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 175           |
| 176 192 217   177 115 53   178 153 106   179 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 212            |
| last and the last and last at an last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32 255<br>74 198 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 68             |
| 192 105 176   193 197 231   194 98 73   195 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 160           |
| 204 242 199 205 31 9 206 48 18 207 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 36            |
| 208 130 72 209 171 144 210 231 167 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86 201           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 168<br>38 164 |
| 220 55 207 221 12 25 222 17 50 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 100            |
| 224 111 200   225 120 23   226 25 46   227 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54 92            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 210            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31 159<br>31 218 |
| 240 46 51 241 75 102 242 185 204 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 96 31            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 119           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23 235<br>33 99  |

(+

Table 2. Coefficients of Generator Polynomia1

|                       |   |                 |    | _                |
|-----------------------|---|-----------------|----|------------------|
| $\mathbf{g}_0$        | = | g <sub>32</sub> | =  | $\alpha^{O}$     |
| gl                    | = | g <sub>31</sub> | =  | $\alpha^{249}$   |
| <b>8</b> <sub>2</sub> | = | g <sub>30</sub> | =  | α <sup>59</sup>  |
| g <sub>3</sub>        | = | 829             | =  | α <sup>66</sup>  |
| g <sub>4</sub>        | = | g <sub>28</sub> | =  | α <sup>4</sup>   |
| <del>،</del><br>وج    | = | g <sub>27</sub> | =  | α <sup>4 3</sup> |
| 8 <sub>6</sub>        | = | 8 <sub>26</sub> | =  | <sub>α</sub> 126 |
|                       | = |                 | =  | <sub>α</sub> 251 |
| 87                    | _ | <sup>8</sup> 25 | _  | <br>97<br>α      |
| 88                    | • | 824             | _  |                  |
| 89                    | = | g <sub>23</sub> | 2  | α30              |
| g <sub>10</sub>       | = | g <sub>22</sub> | =  | $\alpha^3$       |
| g <sub>11</sub>       | = | g <sub>21</sub> | =  | α <sup>213</sup> |
| s <sub>12</sub>       | 3 | 8 <sub>20</sub> |    | α <sup>50</sup>  |
| 8 <sub>13</sub>       | = | 8 <sub>19</sub> | 22 | α <sup>66</sup>  |
| 8 <sub>14</sub>       | = | 8 <sub>18</sub> | =  | a <sup>170</sup> |
| g <sub>15</sub>       | = | g <sub>17</sub> |    | α <sup>5</sup>   |
|                       |   | α24             |    |                  |
| 8 <sub>16</sub>       | = | α_ ΄            |    |                  |

The algorithm used is a transform decoder as described in [4], which is based on a modified Euclid algorithm to compute the error locator polynomial. Therefore, this simulation can be used to verify the performance of the proposed pipeline hardware decoder.

The only modifications consist in adapting the algorithm to symmetric generator polynomials, using a finite field FFT (Fast Fourier Transform) to compute the error pattern, and testing for uncorrectable error patterns.

#### 2. SIMULATION SET-UP

The set of software subroutines includes a random generator (gen.c) of sequences taken from {0,1}, a RS encoder (rscod.c), a RS decoder (rsdec.c), and a block (error.c) which computes bit and symbol error probabilities.

These subroutines are called by a main program named "universe.c".

All programs are written in C-language on a VAX 750 computer. Figure 1(a) shows the block diagram of the simulation set-up. Channel errors are artificially introduced at the input of the RS decoder. If desired, the set-up may be modified to that of Fig. 1(b), where errors are produced by adding a sequence of random variables (for example Gaussian, if the subroutine "gauss.c" is used) to the encoded stream. Error bursts may be added with a separate subroutine, or by a concatenated, convolutional code and Viterbi decoding.

The modularity of the program allows the simulation of concatenated coding schemes to be described in a separate report.

#### 3. RS ENCODER

Since we are considering a systematic RS code, the encoder will first output the K information symbols  $a_j$ . The T parity symbols are the coefficients  $b_i$  of the remainder polynomial  $b(x) = b_0 + b_1 + \cdots + b_{T-1} + b_{T-$ 



(a) Fixed Error Pattern



(b) Random Error Pattern

Fig. 1. Simulation Block Diagram

This polynomial division can be easily implemented by a shift register divider, as shown in the logic diagram of Fig. 2, for the (255,223) RS code. Additions are to be interpreted modulo-two (exclusive-OR), multiplications in the field are performed by table look-up, where the table is automatically constructed during the first execution. The subroutine listing is shown in Appendix B.

The algorithm proceeds as follows:

- (0) Initialize  $b_i = 0$ , i=0,...,T
- (A) During the first 223 iterations ( $0 \le j \le 222$ ):
  - (1) get information symbol a;
  - (2)  $v = a_1 + b_{T-1}$
  - (3) output  $z = a_1$
- (B) During last 32 iterations (224<j<255):
  - $(1) \quad \mathbf{v} = \mathbf{0}$
  - (2) output  $z = b_{T-1}$
- (C) For all j's:
  - (1)  $b_i = b_{i-1} + (g_i * v), i=T-1,T-2,...,1$
  - (2)  $b_0 = v$

The encoder may be tested by forcing the generator to produce some given pattern whose corresponding codeword is known, and printing the output

#### 4. RS DECODER

#### 4:1 DECODER ALGORITHM

The decoder performs the following basic operations:

- get received codeword
- compute syndrome
- obtain the error-locator polynomial by using the medified
   Euclid algorithm
- compute the remaining elements of the error sequence transform
- compute the inverse transform yielding the estimated error pattern.



Fig. 2. RS Encoder

Consider the generator polynomial in (1), and define:

Then the decoder algorithm can be described as follows:

$$\frac{S}{s_j} = \frac{0}{u_{N-1-j}} + \alpha^{G(j+M)} s_j; j=0,...,T-1; i=0,...,N-1$$

(3) if 
$$d(S)=0$$
 go to (11)

$$E_{j+1} = s_{T-1-j}; j=0,...,T-1$$

$$\underline{R} = \underline{0}$$

$$r_{T} = 1$$

$$\underline{\mu} = \underline{0}$$

$$\mu_{0} = 1$$

$$\lambda = 0$$

L = 
$$d(R) - d(S)$$
  
if  $d(R) < T/2$  go to (6)  
else if  $d(S) < T/2$ ,  $\lambda = \mu$ , go to (6)  
else do EUCLID (see section 4.2)  
i + i+1

(6) compute normalized error-locator polynomial

$$B = \alpha^{-\lambda} d(\frac{\lambda}{2})$$

$$\lambda_{j} = B\lambda_{j} ; j=0,...,d(\underline{\lambda})$$

(7) compute remaining elements of error transform

$$E_{j+1} = 0 E_{j+1} = E_{j+1} + \lambda_{d(\lambda)-1-i} E_{j-1} ; i=0,...,d(\underline{\lambda})-1 E_{0} = E_{n}$$
  $j=T,...,N+T-1$ 

- (9) compute inverse transform e (see section 4.3)
- (10) compute corrected sequence,

$$\underline{U} = \underline{U} + \underline{e}$$

(11) output U

A complete listing of the decoder subroutine is shown in Appendix C.

The test in step (8) is explained in [6]. It may also be observed that this RS code is effective in terms of undetected errors, since [7, 8], for independent symbol errors, the probability of undetected error  $P_u$  is bounded by:

$$P_u < (N+1)^{-T} \sum_{i=0}^{T/2} {N \choose i} N^i < \frac{1}{(T/2)!}$$

For the (255,223) code,  $P_u < 4.8 \ 10^{-14}$ . But, for the (15,9) code considered in [4],  $P_u < 0.093$ .

## 4.2 EUCLID ALGORITHM

This is a modified version of Euclid's algorithm for polynomials [5], which does not need the computation of inverse field elements. It operates on two polynomials,

$$A(x) = x^{T}$$
 and  $S(x) = \sum_{K=1}^{T} a_{K} x^{T-K}$ 

and finds the i<sup>th</sup> remainder R<sub>i</sub>(x) of degree less than T/2, satisfying:  $\gamma_i(x) \ A(x) + \lambda_i(x) \ S(x) = R_i(x)$ 

At the end,  $\lambda_j(x)$  is the desired (unnormalized) locator polynomial. The algorithm is implemented as follows:

if 
$$d(\underline{R}) < d(\underline{S})$$

$$\begin{cases}
\frac{R}{\lambda} & \xrightarrow{\mu} \\
d(\underline{R}) & \xrightarrow{\mu}
\end{cases}$$

$$d(\underline{S}) & \xrightarrow{\mu} \\
\text{if } d(\underline{S}) & \xrightarrow{\mu} \\
\text{if } d(\underline{R}) & \xrightarrow{\mu} \\
\text{else}
\end{cases}$$

$$\begin{cases}
\frac{R}{\lambda} & \xrightarrow{\mu} \\
d(\underline{S}) & \xrightarrow{\mu} \\
d(\underline{S}) & \xrightarrow{\mu} \\
\frac{R}{\mu} & \xrightarrow{\mu} \\
\frac{R}{\mu} & \xrightarrow{\mu} \\
\text{if } d(R) & \xrightarrow{\mu} \\
\text{if } d(R) & \xrightarrow{\mu} \\
\text{return}
\end{cases}$$

where  $D_{|L|}(\underline{x})$  shifts right the components of a vector  $\underline{x}$  by |L| positions, and fills with zeros.

## 4.3 INVERSE FFT

A direct computation of the inverse transform,

$$e_j = \sum_{i=0}^{N-1} \alpha^{Gij} E_{N+1+i+M}; i=0,...,N-1; j=0,...,N-1$$

requires  $N^2$  = 65025 multiplications. The number of multiplications may be reduced by organizing the N-point one-dimensional array  $\underline{E}$  into a two-dimensional  $n_1 \times n_2$  array, where  $n_1 n_2 = N$ , and  $n_1$  and  $n_2$  are

relatively prime. This algorithm (Good-Thomas FFT [6]) is based on the Chinese remainder theorem.

Let  $b = (a)_N$  denote the remainder of a modulo N, and define

$$i_1 = (i)_{n_1}, i_2 = (i)_{n_2}, j_1 = (\widetilde{N}j)_{n_1}, \text{ and } j = (\widetilde{N}j)_{n_2}$$

Then,

$$i = (\tilde{N}(n_2i_1 + n_1i_2))_N$$
 and  $j = (n_2j_1 + n_1j_2)_N$ 

where, 
$$(\widetilde{N}(n_1 + n_2)) = 1 \longrightarrow \widetilde{N} = 8$$
.

Now the inverse transform may be written in the following two steps

$$D_{i_1,j_2} = \sum_{i_2=0}^{n_2-1} E_{N+1-M+i}^{Gn_1 i_2 j_2} \quad 0 < i_1 < n_1, 0 < j_2 < n_2$$

$$e_{j} = \sum_{i_{1}=0}^{n_{1}-1} p_{i_{1},j_{2}}^{Gn_{2}i_{1}j_{1}} = 0 < j_{1} < n_{1}, 0 < j_{2} < n_{2}$$

For N = 255 =  $17 \cdot 15 = n_1 n_2$ , the number of multiplications is reduced from  $N^2$  to  $N(n_1 + n_2)$ . A further reduction may be obtained, if desired, by factoring N as N =  $17 \cdot 5 \cdot 3$ .

### 5. USER GUIDE AND EXAMPLES

This software package may be run on any computer having a C-language compiler. The source code for the full set of subroutines is available by contacting the author. Subroutines required are:

(block management routines in object code form)

sequencer.o

block.o

fifo.o

(include files)

star.h

dstar.h

type.h

alloc.h

para.h

param.h

dfifo.h

ţ

By Bridge Control of the State of the State

(simulation blocks)

gen.c

rscod.c

rsdec.c

add.c

gauss.c

error.c

universe.c

Subroutines are also available to simulate the (15,9) RS code considered in [4]. If the UNIX operating system is used, it is advisable to create a "makefile" to maintain (compile and link) the set of subroutines. In any case the subroutines must be compiled and linked to produce an executable image file.

In order to run the simulation it is not necessary to provide any external parameter or data file, since the information symbols are generated incernally. If specific information sequences are of interest, the subroutine "gen.c" can be easily modified for this purpose. Non-real-time decoding of actual data could be accomplished by modifying "rsdec.c" so that it will read the data from a disk file in segments of a given number of blocks.

The output contains the number of channel symbol errors, and the number of corrected symbol and bit errors. If the number of channel errors is greater than T/2, a warning message is printed. If real data needs to be

decoded, the decoded symbols can be displayed by adding a print statement in "rsdec.c". All output is normally displayed on the standard output (CRT), but it can be redirected to a disk file through the operating system. As an example, under UNIX, we could type:

sim > outfile

The state of the s

where "sim" is the executable program and the file "outfile" will contain the output.

By including the print statements provided in the subroutine rsdec.c, it is possible to display all the intermediate steps of the decoder. Such an example of output is shown in Appendix D for a given codeword and the error pattern  $e_7 = \alpha^{202}$ ,  $e_{120} = \alpha^0$ ,  $e_i = 0$ ,  $i \neq 7$ , 120. Elements in GF(256) are represented in decimal base.

If no errors were present, the output would show that  $\underline{S} = \underline{0}$ .

A randomly chosen codeword is shown in Appendix E.

#### 6. REFERENCES

一般を記している。 一大 大大 でくてい

- [1] "Recommendation for Space Data System Standards: Telemetry Channel Coding," (Blue book), Consultative Committee for Space Data Systems, May 1984.
- [2] Berlekamp, E.R., Algebraic Coding Theory, McGraw-Hill, N.Y., 1968.
- [3] Berlekamp, E.R., "Bit-Serial Reed-Solomon Encoders," IEEE Transactions on Information Theory, Nov. 1982, p. 869.
- [4] Shao, H.M., et. al., "A Systolic VLSI Design of a Pipeline Reed-Solomon Decoder," TDA Progress Report 42-76, JPL, Feb. 1984, p. 99.
- [5] Brent, R.P. and H.T. Kung, "Systolic VLSI Arrays for Polynomial GCD Computations," Computer Science Dept. Report, Carnegie-Mellon Univ., Pittsburg, PA, 1982.
- [6] Blahut, R.E., <u>Theory and Practice of Error Control Codes</u>, Addison-Wesley, London, 1983.
- [7] Swanson, L. and R. McEliece, "Reed-Solomon Codes for Error Detection," 1985 International Symp. on Inform. Theory, in press.
- [8] Kasami, T. and S. Lin, "On the Probability of Undetected Error for Maximum Distance Separable Codes," IEEE Trans. on Comm., Vol. COM-32, Sept. 84, p. 998.

# APPENDIX A

· was the state of the state of the

The sale of the sale of the sale of the sale

一个一个人不是 是我不是

Number of Multiplications Required to Compute the Syndrome of a (255,223) RS Code with a Symmetric Generator Polynomial

A I HORSE ROLL RESIDENCE

$$s_{j} = \sum_{i=0}^{N-1} u_{i}^{Gi(j+M)}, j=0,...,T$$

Define the NxN matrix J,

$$J = \begin{bmatrix} 0 & 1^1 \\ 1 & 0 \end{bmatrix}$$

such that,

$$\frac{\tilde{u}}{\tilde{u}} = [\tilde{u}_0, \ldots, \tilde{u}_{N-1}] = [u_{N-1}, \ldots, u_0] = \underline{u}$$
 J

Then we can consider a new syndrome  $\frac{\hat{S}}{\hat{S}}$ 

$$\tilde{s}_{m} = \sum_{i=0}^{N-1} \tilde{u}_{i} \alpha^{Gi(m+M)}, m=0,...,T-1$$

$$= \sum_{i=0}^{N-1} u_{N-i-1} \alpha^{Gi(m+M)}, m=0,...,T-1$$

Let k = N - i - 1

$$\tilde{s}_{m} = \sum_{k=0}^{N-1} u_{k} J^{G(N-1-k)(m+M)} = \alpha^{-G(m+M)} \sum_{k=0}^{N-1} u_{k} \alpha^{-G(m+M)}$$

But,

$$\alpha^{-G(m+M)} = \alpha^{G(h+M)}$$
, where  $m = T - 1 - h$ ,  $h=0,...,T-1$ 

$$\widetilde{\mathbf{s}}_{T-1-h} = \alpha^{G(h+M)} \sum_{k=0}^{N-1} \mathbf{u}_k \alpha^{GK(h+M)}, h=0,\dots,T-1$$

And finally,  $\tilde{s}_{T-1-h} = \alpha^{G(h+M)} s_h$ , h=0,...,T-1

$$\frac{\widetilde{S}J = \underline{S}\Gamma, \text{ where } \Gamma = \begin{bmatrix} \alpha^{GM} & G(M+1) & 0 \\ \alpha & \alpha^{G(M+T-1)} \end{bmatrix}$$

$$S = uA$$
,

where 
$$A = [a_{ij}], a_{ij} = a^{Gi(j+M)}, i=0,...,N-1, j=0,...,T-1$$

$$\frac{\widetilde{S}}{S} = \underline{u}JA$$

$$\underline{S}(J+\Gamma) = \underline{u}AJ + \underline{u}JAJ = \underline{u}(AJ + JAJ) \stackrel{\Delta}{=} \underline{d}$$

Let

$$B = AJ + JAJ = \begin{bmatrix} \underline{b}_0 & \cdots & \underline{b}_j & \cdots & \underline{b}_{T-1} \end{bmatrix}^{\underline{\Delta}} \begin{bmatrix} \cdots & \frac{\underline{b}^*j}{b^*j} \\ \underline{J}\underline{b}^*j \end{bmatrix} \cdots \end{bmatrix}$$

be a partition of B into the column vectors  $\underline{\mathbf{b}}_{\mathbf{i}}$ , and

$$\underline{\mathbf{u}} = [\underline{\mathbf{u}}_1, \, \mathbf{u}_c, \, \underline{\mathbf{u}}_{\mathbf{u}}]$$

$$d_1 = \underline{u}_1 b^*_1 + \underline{u}_c b^* + \underline{u}_u J b^*_1 = (\underline{u}_1 + \underline{u}_u J) \underline{b}^*_1 + \underline{u}_c b^*$$

The computation of  $d_j$  requires only 254/2 + 1 = 128 multiplications (instead of 255).

$$\underline{s} = \underline{d} (J+r)^{-1}$$

Note that  $(J+\Gamma)^{-1}$  has the form:

$$(J+\Gamma)^{-1} = \begin{bmatrix} \beta_0 & & & & & & & & & \\ \beta_1 & & & & & & & \\ & \beta_1 & & & & & & & \\ & 0 & & \ddots & & & & & \\ & \varepsilon_1 & & & & & & & \\ & \varepsilon_0 & & & & & & & \\ \end{bmatrix}$$

Therefore,

$$s_{j} = \beta_{j}d_{j} + \epsilon_{j}d_{T-1-j}, j=0,...,T-1$$

So that each  $S_j$  can be computed with 128 + 2 = 130 multiplications.

(+)

APPENDIX B

RS Encoder Subroutine

```
Reed-Solomon Encoder ( CCSDS Doc. #1 , Sept 1983) ***/
/****
#include <stdio.h>
#include "../type.h"
#include "../star.h"
                32
#define TT
                255
#define N
                223
#define K
                pstate->ent
#define CNT
#define V
                pstate->vv
                pstate->g
#define G
#define B
                pstate->h
#define H
                pstate->f
#define F
typedef struct {
        int non;
PARAM, *PARAMPTR;
typodef struct {
        unsigned char b[TT],g[TT+1],cnt,h[N],f[N+1],vv;
STATE, *STATEPTR;
rscod (pparam, size, pstate, pstar)
PARAMPTR pparam;
STATEPTR pstate;
STARPTR pstar;
int size;
 {
         SAMPLE x;
         int i,j;
         if (pstate == NULL) {
                 pstate = (STATEPTR) alloc_state_var(1, sizeof(STATE));
                 if (no_input_fifos( ) !=1 || no_output_fifos( ) !=2)
                         return(3);
 /eee H[ ] and F[ ] compute the power and log in GF(256)
                 H[0]=1;
                 for(i=0;i<8;i++) H[i+1]=2*H[i];
                 for(1=8;1<N;1++) H[1]=H[1-1]^H[1-6]^H[1-7]^H[1-8];
                 for(j=1;j<#+1;j++) {
                          for(1=0;1<N;1++) {
                                  if(H[i]==j) P[j]=i;
                          }
                  }
                  CHT=0;
                  V=0:
                  F[0]=0;
```

が大き

The second second

•!

```
G[] are the coefficients of the generating polynomial ****/
               G[0]=H[0];
               G[1]=H[249];
               G[2]=H[59];
               G[3]=H[66]:
               G[4]=H[4];
               G[5] = H[43];
               G[6] = H[126];
               G[7] = H[251];
               G[8] = H[97];
               G[9]=H[30]:
               G[10]=H[3]:
               G[11]=H[213];
               G[12]=H[50]:
               G[13]=H[66];
               G[14]=H[170];
               G[15]=H[5]:
               G[16]=H[24]:
               for(i=0;i<TT/2;i++) G[TT-i]=G[i];
       }
if(length_output_fifo(0) != leng\h_output_fifo(1)) return(7);
if (length_output_fifo(0)==maxlength_output_fifo(0)) return(0);
if (length_output_fifo(1) == maxlength_output_fifo(1)) return(0);
       while(length_input_fifo(0) >0 || CNT>=K )
if(length_output_fifo(0) == maxlength_output_fifo(0)) return(0);
if(length_output_fifo(1) == maxlength_output_fifo(1)) return(0);
       if(CNT==0) for(i=0;i<TT;i++) B[i]=0;
                if(CNT<K)
                                         /** information bits **/
                        get(0,&x);
                        V=((int)x)^B[TT-1];
                                         /** parity bits **/
                else
                        V=0;
                        x=(SAMPLE)B[TT-1];
       for(i=TT-1;1>0;1--)
B[1]=B[1-1]^(V!=0)*(H[(F[G[1]]+F[V])$N]);
       B[0]=(VI=0)^{(H[(F[G[0]]+F[V])SN])}:
                        put(0,x);
                        put(1,x);
                CMT=(CMT+1)SM:
       return (0);
```

Ţ.

APPENDIX C

A Market Commence

RS Decoder Subroutine

```
Read-Solomon Decoder
#include <stdio.h>
linclude "../type.h"
#include "../star.h"
#define TT
                 32
#define N
                 255
#define M
                 112
#define G
                 11
#define H
                 pstate->h
#define F
                 pstate->f
#define MUL(A, B)
                          ((B!=0)*(H[(A+F[(B)])%N]))
typedef struct {
        int non;
PARAM, *PARAMPTR;
typedef struct {
        unsigned char h[N],f[N+1];
STATE, *STATEPTR:
rsdec (pparam, size, pstate, pstar)
PARAMPTR pparam;
STATEPTR pstate;
STARPTR pstar;
int size;
        SAMPLE x;
        unsigned char et[17],ex[N],e[N],E[N+TT+1],S[TT+1],degR,degS;
        unsigned char R[TT+1], mu[TT+1], lam[TT+1], REC[N], tem, fa, fb;
        unsigned char *PR, *PS, *PT, *Plam, *Pmu, a, b;
        int i, j, L, CL, TH, ix, jx, i1, i2, j1, j2;
         if (pstate == NULL) {
        pstate = (STATEPTR) alloc_state_var(1,sizeof(STATE));
if (no_input_fifos() !=1 || no_output_fifos() !=1)
                          return(3);
/*** H[] and F[] compute the power and log in GF(256)
                 H[0]=1;
                 for(1=0;1<8;1++) H[1+1]=2*H[1];
                 for(i=8;i<N;i++) H[i]=H[i-1]^H[i-6]^H[i-7]^H[i-8];
                 for(j=1;j<N+1;j++)
                          for(i=0;i<N;i++)
                                   if(H[i]==j) F[j]=i;
                          }
                 }
                 F[0]=0:
         }
```

**一副人物海绵鸡、**龙、鸡

/\*\*\*\*\*\*

```
if (length_output_fifo(0) == maxlength_output_fifo(0)) return(0);
        while(length_input_fifo(0) >0
if (length_output_fifo(0) == maxlength_output_fifo(0)) return(0);
for(j=0;j<N;j++)
get(0,&x);
REC[j] = (char)x:
e[j]=0;
PR = R:
PS=S;
Plam=lam:
Pmu=mu;
for(j=0;j<=TT;j++) { R[j]=0; S[j]=0; lam[j]=0; mu[j]=0; }
/********** Syndrome calculation
for(i=0;i<N;i++)
ix=N-1-i:
for(j=0;j<TT;j++) S[j]=REC[ix]^MUL(G*(j+M),S[j]);</pre>
degS=TT;
while(*(degS+PS)==0 && degS>0) --degS;
if(degS>0)
 /***** Modified Euclid Algorithm ********
for(j=0;j<TT;j++) E[j+1]= #(PS+TT-1-j);</pre>
#(PR+TT)=1;
#mu=1;
degR=TT;
degS=TT;
1=1;
TH = TT/2;
while(i<=TT)
while(#(degR+PR)==0 && degR>0) --degR;
while(*(degS+PS)==0 && degS>0) --degS;
L=degR-degS;
CL=L;
if(L<0) CL= -L;
if(degR<TH | degS<TH)
        if(degR>=TH)
                         Plam=Pmu:
        break;
        }
else
```

1/2

, A

```
if(degR<degS)
                 PT = PR;
                 PR=PS;
                 PS=PT;
                 PT=Plam;
                 Plam=Pmu;
                 Pmu=PT;
                 tem=degR;
                 degR=degS;
                 degS=tem;
        if(\#(PS+degS)==0)
        degS--;
        if(degS<TH)
                 Plam=Pmu;
                 break;
        }
        else
/# compute R lam **
a = *(PR + degR);
b = \#(PS + degS);
fa=F[a];
fb=F[b];
        degP--;
for(j=0;j<=TT;j++)
tem=(j>=CL)*(*(PS+j-CL));
PT=PR+j;
*PT=(b!=0) *MUL(fb, *PT) ^(a!=0) *MUL(fa, tem);
tem=(j>=CL)^{\#}(\#(Pmu+j-CL));
PT=Plam+j;
*PT=(b!=0)*MUL(fb,*PT)^(a!=0)*MUL(fa,tem);
        if(degR<TH) break;
/******* Error locator polynomial
degR=TT;
while(\#(degR+Plam)==0 && degR>0) --degR;
tem=N-F[ = (Plam+degR)];
for(j=0;j<=degR;j++)
        PT=Plam+j;
        *PT=MUL(tem, *PT);
```

```
(4)
```

```
for( j=TT; j<N+TT; j++)</pre>
        E[j+1]=0;
        for(i=0;i<degR;i++)
                tem= *(Plam+degR-i-1);
                jx=j-i;
                if(tem!=0) E[j+1] ^= MUL(F[tem], E[jx]);
E[0]=E[N];
for(j=1;j<=TT;j++)
if(E[j] != E[j+N]) \{ printf("ln * TEST FAILED ***"); j=0; break; \}
if(j!=0)
{
/****** Inverse FFT
for(j2=0;j2<15;j2++)
        jx=G#17#j2;
        for(i1=0;i1<17;i1++)
                et[i1]=0;
                for(i2=0;i2<15;i2++)
                         i=(N+1-M+8*(15*i1+17*i2))$N;
                         et[i1] ^= MUL(jx*12,E[i]);
                 }
        for(j1=0;j1<17;j1++)
                ix=G*15*j1;
                         j=(15#j1+17#j2)%N;
                         e[j]=0;
                         for(11=0;11<17;11++)
                                 e[j] ^= MUL(ix*i1,et[i1]);
                }
        for(j=0;j<N;j++) REC[j] ^= e[j];
}
for(j=0;j<N;j++)
        x=(SAMPLE)REC[j];
        put(0,x);
return (0);
```

Marian Co.

APPENDIX D

Example of Output

| i                                        | น | ı į                                                                                                                                          | u | i                                        | υ     | ı i                                                                                                             | υ                                       | u |  |
|------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|--|
| 0482604826048260482604826048260482604826 | 0 | 13<br>17<br>12<br>12<br>13<br>17<br>12<br>12<br>13<br>17<br>12<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 0 | 2604826048260482604826048260482604826048 | 0 0 0 | 1 1 1 2 2 3 3 5 3 4 7 1 5 5 9 3 3 4 7 1 5 5 9 9 3 7 1 1 1 1 2 3 3 5 1 3 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |   |  |

No. of input errors = 2

```
1
           log()
      8
            4
                  (Syndrome)
   0
      16
   1 117 136
         184
    121
   3
    191
          134
   4
     113
           24
   5
      55
           53
   6
    187
           74
   7 243
           96
   8 248 246
   9 218 239
  10 100
          223
  11
      66
           88
  12 233
           83
  13
      30
           43
           85
  14 170
          145
  15 151
  16
      58
           33
  17 190
           22
  18 238 248
  19
      33
           87
  20 130
         156
  21 254
           60
  22 209 171
  23 133
         159
  24 165
           30
  25 188 182
  26
      21
          212
  27
     107
           63
  28
     241
           75
  29
      74
          173
  30
      37 172
  31
       16
            4
d(R) = 32 d(S) = 31 L=
   0 b=
           4
```

| i                                                                      | s                                                                                                                                                                                | log()                                                                             | r                                                                                                             | log()                                                                                                      |                                                       | log() | u                                       | log() |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-----------------------------------------|-------|
| 0123456789011213456789012222222223333                                  | 16<br>117<br>121<br>121<br>135<br>148<br>121<br>135<br>148<br>148<br>158<br>166<br>170<br>166<br>170<br>170<br>181<br>181<br>181<br>181<br>181<br>181<br>181<br>181<br>181<br>18 | 1364443346693883355328<br>1 3287661902235328<br>1 3287601902235324<br>1 153267324 | 1 0 16 117 121 191 191 191 191 191 191 191 191 191                                                            | * 46 44 43 46 69 38 8 48 55 53 28 87 60 1 90 2 2 3 5 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 010000000000000000000000000000000000000               |       | 100000000000000000000000000000000000000 |       |
| i=<br>d(R)<br>a=17                                                     |                                                                                                                                                                                  | d(S)=<br>4                                                                        | 31 L=                                                                                                         | 0                                                                                                          |                                                       |       |                                         |       |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 1 16<br>1 17<br>1 121<br>1 191<br>1 113<br>1 55<br>1 187<br>1 248<br>1 200<br>1 66<br>1 233                                                                                      | 136<br>184<br>134<br>24<br>53<br>74<br>96<br>246<br>239<br>223<br>88              | 217<br>  176<br>  199<br>  103<br>  240<br>  156<br>  134<br>  46<br>  251<br>  52<br>  212<br>  124<br>  180 | 192<br>204<br>47<br>46<br>133<br>27<br>226<br>23<br>128<br>179<br>245                                      | 37<br>16<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 172   |                                         |       |

The Man State of the State of t

| 30<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170 85<br>151 145<br>58 33<br>190 22<br>238 248<br>33 87<br>130 156<br>254 60<br>209 171<br>1°3 159<br>11°5 30<br>188 182<br>21 212<br>107 63<br>241 75<br>174 173<br>37 172<br>16 4 | 99 186 114 70 83 138 231 193 185 236 65 155 7 106 174 37 148 174 202 77 173 11 119 247 11 188 72 208 219 38 169 146 177 115                                                                                                                                                                                                                                                                |                                                           |                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|
| d(R):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>= 30 d(S)= 3<br>4 b=115                                                                                                                                                         | 1 L= -1                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                                                                          |
| 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 179 119<br>196 41<br>159 235<br>19 78<br>202 77<br>125 164<br>252 58<br>4 2<br>110 54<br>133 159<br>167 210<br>95 21<br>94 181<br>98 40<br>41 217<br>12 101<br>150 169               | 217 176<br>  176 192<br>  199 204<br>  103 47<br>  240 46<br>  156 133<br>  134 27<br>  46 226<br>  251 23<br>  52 128<br>  212 179<br>  124 245<br>  180 150<br>  137 9<br>  185 236<br>  114 76<br>  83 138<br>  231 193<br>  185 236<br>  65 155<br>  7 100<br>  174 37<br>  148 174<br>  202 77<br>  173 11<br>  119 247<br>  11 188<br>  72 208<br>  219 38<br>  169 146<br>  177 115 | 37 172<br>16 4<br>0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • | 177 115<br>217 176<br>135 8<br>0 **<br>0 **<br>0 **<br>0 **<br>0 **<br>0 **<br>0 **<br>0 |

> i = 5d(R) = 1 d(S) = 30 L=-29

> > i o log()

0 37 172 (Error-locator polynomial)
1 16 4
2 0 •
3 0 •
4 0 •
5 0 •
6 0 •
7 0 •
8 0 •

```
9
         0
10
11
         0
         0
12
          0
13
          0
          0
15
          0
16
          0
          0
17
 18
          0
 19
          0
          0
 20
 21
          0
          0
 22
 23
           0
           U
 24
           0
 25
 26
           0
           0
 27
 28
29
30
           0
           0
            0
  31
            0
  32
                                                                                     1
                                                                                                     log
                                                                         log
                                                         i
                                              log
                              1
                  log
  1
                                                                                                             (Error
                                                                                               0
                                                                                       3
                                                           2
                                                                   0
                                        0
                    •
                                                                                                               pattern)
            0
    0
                                                                                       7
                                                                                             80
                                                                                                   202
                                                            6
                                                                   0
                                        0
                                5
            0
    4
                                                                                               0
                                                                                     11
                                                                    0
                                                          10
                              9
13
                                        0
                    •
            0
    8
                                                                    0
                                                                                      15
                                        0
   12
            0
                                                                                               0
                                                                    0
                                                                                      19
                                                          18
                                        0
                              17
21
25
29
33
37
41
             0
   16
                                                                                               0
                                                                                      23
                                                                    0
                                                          22
                                        0
             0
                                                                                               0
   20
                                                                                      27
                                                                    0
                                                          26
             0
   24
                                                          30
34
38
42
                                                                                      31
35
39
43
47
51
55
67
                                                                    0
                                        0
            0 0
                     28
                                                                                                00000
                                                                    000
                                        0
0
0
0
                     •
   32
36
40
44
48
52
56
60
                                                 .
             0 0 0 0
                                                                    0
                                                           46
                     •
                               45
                                                          50
54
58
62
66
70
74
78
                                                                    0
                               49
53
57
61
65
69
                                         0
                                                                                                0
                                                                    0
                                         0
                                                                                                 0
                                                 •
                                         0 0
                                                                                                 0
                                                                     00000
             0
                                                                                                0
                      •
    64
                                                                                       71
                                                                             #
                                         0
              0
    68
                                                                                                 0
                                                                                       75
                                         0
                                73
77
81
    72
                                                                                       79
83
87
                                                                                                 0
    76
              0
                                                                                                 0
                                                                     0
                                                            82
                                          0
              0000
     80
                                                                                                 0
                                                            86
                                85
     84
                                                                                                 0
                                                                                        91
95
                                                                      0
                              89
93
97
101
                                                            90
                                          0
     88
                                                                                                 0
                                                                      0
                                          0
                                                            94
   92
96
100
104
108
                                                                                      99
103
                                                                                                  0
                                                          98
102
                                                                      0
                                          0
               0
                                                                                                  0
                                                                      0
                                           0
               Ö
                                                                                                  0
                                                                                      107
                                                          106
                                                                      0
                                           0
                               105
               0
                                                                                                  0
                                                          110
                                                                      0
                               109
```

The state of the s

| ı | 112 | 0 |     | 113 | 0 | • ! | 114 | 0 | • | 115  | 0 |   |
|---|-----|---|-----|-----|---|-----|-----|---|---|------|---|---|
| i | 116 | Ŏ |     | 117 | ō | •   | 118 | ō |   | 119  | Ō |   |
| i | 120 | 1 | o i | 121 | Ŏ |     | 122 | Ö | • | 123  | ō |   |
| İ | 124 | 0 |     | 125 | 0 |     | 126 | Ō | # | 127  | Ō | • |
| Ì | 128 | 0 |     | 129 | 0 |     | 130 | 0 | • | 131  | 0 |   |
| 1 | 132 | 0 |     | 133 | 0 |     | 134 | 0 |   | 135  | 0 | • |
| 1 | 136 | 0 |     | 137 | 0 |     | 138 | 0 | • | 130  | 0 |   |
| 1 | 140 | 0 |     | 141 | 0 | •   | 142 | 0 | • | 143  | 0 | • |
| 1 | 144 | 0 | •   | 145 | 0 |     | 146 | 0 |   | 1 47 | 0 |   |
| 1 | 148 | 0 | • ; | 149 | 0 | •   | 150 | 0 |   | 151  | 0 | • |
| 1 | 152 | 0 |     | 153 | 0 | •   | 154 | 0 | • | 155  | 0 | # |
| 1 | 156 | 0 | • ; | 157 | 0 |     | 158 | 0 | • | 159  | 0 | • |
| ı | 160 | 0 | •   | 161 | 0 | •   | 162 | 0 | • | 163  | 0 |   |
| 1 | 164 | 0 | • ; | 165 | 0 | •   | 166 | 0 | • | 167  | 0 | • |
| ı | 168 | 0 | •   | 169 | 0 |     | 170 | 0 | • | 171  | 0 | • |
|   | 172 | 0 | •   | 173 | 0 | • ; | 174 | 0 | • | 175  | 0 | • |
| İ | 176 | 0 |     | 177 | 0 | •   | 178 | 0 |   | 179  | 0 | • |
| ı | 180 | 0 | •   | 181 | 0 | •   | 182 | 0 | • | 183  | 0 |   |
| 1 | 184 | 0 |     | 185 | 0 | • ; | 186 | 0 | • | 187  | 0 |   |
| 1 | 188 | 0 | •   | 189 | 0 | #   | 190 | 0 |   | 191  | 0 |   |
| 1 | 192 | 0 | #   | 193 | 0 | •   | 194 | 0 |   | 195  | 0 | 2 |
| ł | 196 | 0 | •   | 197 | 0 | •   | 198 | 0 | • | 199  | 0 | • |
| 1 | 200 | 0 |     | 201 | 0 | •   | 202 | 0 | • | 203  | 0 | • |
| 1 | 204 | 0 | •   | 205 | 0 | •   | 206 | 0 | • | 207  | 0 | 4 |
| I | 208 | 0 | •   | 209 | 0 | •   | 210 | 0 | • | 211  | 0 | • |
| l | 212 | 0 | • } | 213 | 0 | •   | 214 | 0 |   | 215  | 0 | • |
| ı | 216 | 0 | • 1 | 217 | 0 | •   | 218 | 0 | # | 219  | 0 | • |
| ı | 220 | 0 | • { | 221 | 0 | •   | 222 | 0 |   | 223  | 0 | • |
|   | 224 | 0 | •   | 225 | 0 | •   | 226 | 0 | • | 227  | 0 | • |
| I | 228 | 0 | •   | 229 | 0 | •   | 230 | 0 | • | 231  | 0 | • |
| ! | 232 | 0 | •   | 233 | 0 | •   | 234 | 0 | • | 235  | 0 | • |
| 1 | 236 | 0 | •   | 237 | 0 | #   | 238 | 9 | • | 239  | 0 | • |
| 1 | 240 | 0 | •   | 241 | 0 |     | 242 | 0 | • | 243  | 0 | • |
| 1 | 244 | 0 | •   | 245 | 0 | •   | 246 | 0 | • | 247  | 0 | • |
| 1 | 248 | 0 | •   | 249 | 0 | •   | 250 | 0 | • | 251  | 0 |   |
| 1 | 252 | 0 | •   | 253 | 0 |     | 254 | 0 | • |      |   |   |

BLOCK= 0 SYMERR= 0 BITERR= 0

# APPENDIX E

Example of Output for Randomly Chosen Codeword

|   | i        | u          | 1            | u          | 1       | u          | i     | u          |            |
|---|----------|------------|--------------|------------|---------|------------|-------|------------|------------|
| 1 | 0        |            | 1            | 143        | 2       | 104        | 3     | 10         | (Codeword) |
| - | 4        | 157        | 5            | 95         | 6       | 32         | 7     | 68         |            |
| l | 8        | 139        | 9            | 200        | 10      | 143        | 1 11  | 186        |            |
| - | 12       | 130        | 13           | 130        | 1 14    | 240        | 15    | 26<br>176  |            |
| i | 16<br>20 | 124        | 17           | 179<br>164 | 1 18    | 133<br>4   | 1 19  | 176<br>211 |            |
| 1 | 24       | 222<br>42  | 21 25        |            | 26      | 131        | 23    | 219        |            |
| 1 | 28       |            | 29           |            | 30      |            | 3:    | 151        |            |
| i | 32       |            | 33           |            | 34      | 189        | 35    | 61         |            |
| i | 36       |            | 37           |            | 38      |            | 39    | 227        |            |
| i | 40       |            | 41           |            | 42      | 223        | 43    | 111        |            |
| i | 44       |            | 45           | 245        | 46      | 58         | 47    | 12         |            |
| i | 48       |            | 49           |            | 50      |            | 51    | 31         |            |
| 1 | 52       |            | 53           | 144        | 54      | 96         | 55    | 187        |            |
| 1 | 56       | 154        | 57           |            | 58      | 239        | 59    | 148        |            |
| - | 60       |            | 61           |            | 62      | 172        | 63    | 113        |            |
| - | 64       |            | 65           |            | 66      |            | 67    | 38         |            |
| 1 | 68       |            | 69           |            | 70      |            | 71    | 3          |            |
| 1 | 72       |            | 73           |            | 74      |            | 75    | 201        |            |
| ļ | 76       |            | 1 77         |            | 78      |            | 79    | 30         |            |
| i | 80       |            | 81           |            | 82      | 29         | 83    | 130        |            |
| i | 84       |            | 85           |            | 1 86    | 162        | 87    | 197        |            |
| i | 88<br>92 |            | 89           |            | 90      | 141        | 91    | 236        |            |
| 1 | 96       |            | 93           |            | 94      | 216<br>246 | 95    | 201<br>192 |            |
| i | 100      | 62         | 101          |            | 102     | _          | 103   | 95         |            |
| i | 104      | -          | 105          |            | 106     | 215        | 107   | 66         |            |
| i | 108      |            | 109          |            | 1 110   | 32         | 1111  | 138        |            |
| i | 112      |            | 1113         | 136        | 1114    | 165        | 1115  | 209        |            |
| 1 | 116      |            | 117          | 141        | 1 118   | 129        | 1119  | 162        |            |
| 1 | 120      | 139        | 121          | 157        | 122     | 81         | 123   | 100        |            |
| 1 | 124      | 86         | 125          |            | 1 1 2 6 | 158        | 1 127 | 215        |            |
| - | 128      | 195        | 123          |            | 130     | 199        | 131   | 5          |            |
| ļ | 132      |            | 133          |            | 1 134   | 111        | 135   | 177        |            |
| Ţ | 136      |            | 137          | •          | 138     | 107        | 1 139 | 84         |            |
| 1 | 140      | 72         | 141          | 226        | 1 142   | 39         | 1 143 | 138        |            |
| 1 | 144      | 112<br>111 | 145<br>  149 | 220<br>81  | 1 146   | 156<br>177 | 1 147 | 9<br>20    |            |
| i | 152      | 185        | 1 153        | 14         | 1 154   | 50         | 1 151 | 112        |            |
| i | 156      | 135        | 157          | 108        | 158     |            | 159   | 216        |            |
| i | 160      |            | 161          |            | 162     | 2          | 1 163 | 237        |            |
| i | 164      | 252        | 165          | 224        | 1 166   | 142        | 167   | 178        |            |
| Ì | 168      | 126        | 169          | 180        | 1 170   | 87         | 1 171 | 121        |            |
| 1 | 172      |            | 173          | _          | 174     |            | 1 175 | 88         |            |
| 1 | 176      | 234        | 177          |            | 1 178   | 120        | 1 179 | 33         |            |
| 1 | 180      | -          | 181          | -          | 182     | -          | 183   | 211        |            |
| ļ | 184      |            | 185          |            | 1 186   |            | 1 187 | 140        |            |
| ļ | 188      |            | 189          |            | 190     |            | 191   | 3          |            |
| į | 192      | -          | 193          | 61         | 1 194   | _          | 1 195 | 116        |            |
| ļ | 196      | 79         | 197          |            | 1 198   |            | 199   | 29         |            |
| ı | 200      | 13         | 201          | 189        | . 202   | 145        | 203   | 43         |            |

| 1 | 204 | 77  | - | 205 | 172 | 1 | 206 | 108 | 1 | 207  | 47  |
|---|-----|-----|---|-----|-----|---|-----|-----|---|------|-----|
| 1 | 208 | 118 | 1 | 209 | 54  | 1 | 210 | 177 | 1 | 211  | 22  |
| - | 212 | 155 | ŀ | 213 | 40  | ŀ | 214 |     |   | 215  | 153 |
| - | 216 | 44  | 1 | 217 | 101 | 1 | 218 | 37  | 1 | 219  | 51  |
| - | 220 | 28  | 1 | 221 | 156 | i | 222 | 167 | 1 | 223  | 175 |
| 1 | 224 | 80  | ł | 225 | 108 | 1 | 226 | 20  | 1 | 227  | 122 |
| 1 | 228 | 202 | 1 | 229 | 251 | i | 230 | 31  | 1 | 231  | 81  |
| i | 232 | 29  | - | 233 | 89  | 1 | 234 | 159 | 1 | 235  | 134 |
| 1 | 236 | 60  | i | 237 | 217 | i | 238 | 91  | 1 | 239  | 13  |
| 1 | 240 | 243 | - | 241 | 103 | 1 | 242 | 83  | l | ز 24 | 142 |
| 1 | 244 | 162 | i | 245 | 69  | 1 | 246 | 174 | 1 | 247  | 177 |
| 1 | 248 | 55  | 1 | 249 | 20  | - | 250 | 163 | 1 | 251  | 108 |
| ! | 252 | 191 | - | 253 | 74  | 1 | 254 | 141 |   |      |     |

| 1. Report No.  JPL Pub. 85-23                                     | 2. Government Accession No.             | 3. Recipient's Catalog No.            |
|-------------------------------------------------------------------|-----------------------------------------|---------------------------------------|
| 4. Title and Subtitle A Software Simulation Stud                  | - · · · · · · · · · · · · · · · · · · · | 5. Report Date April 15, 1985         |
| Reed-Sclomon Encoder/Decod                                        | er                                      | 6. Performing Organization Code       |
| 7. Author(s) Fabrizio Pollara                                     |                                         | 8. Performing Organization Report No. |
| 9. Parforming Organization Name an                                | d Address                               | 10. Work Unit No.                     |
| JET PROPULSION LABO<br>California Institut<br>4800 Oak Grove Driv | e of Technology                         | 11. Contract or Grant No. NAS7-918    |
| Pasadena, Californi                                               |                                         | 13. Type of Report and Period Covered |
| 2. Sponsoring Agency Name and Ado                                 | dress                                   | JPL Publication                       |
| NATIONAL AERONAUTICS AND S<br>Washington, D.C. 20546              | 14. Sponsoring Agency Code              |                                       |

## 15. Supplementary Notes

Unclassified

#### 16. Abstract

A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT.

Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.

17. Key Words (Selected by Author(s))

Communications
Information Theory
Voyager Project

19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of Pages

22. Price

Unclassified

JPL 0184 R 9/43