

02450: Introduction to Machine Learning and Data Mining

AUC and ensemble methods

DTU Compute

Department of Applied Mathematics and Computer Science

Reading Material

Reading material:

C14, C15

Feedback Groups of the day:

- Tobias Brasch, Sigbjørn Hokland
- Philip Bendixen Larsen, Hans-Christian Thorsen-Meyer
- Jarrett Taylor, Jesper Nissen
- Caroline Harder Hovgesen, Patrick Janowski
- Georg Thomassen, John Johannesen
- Niels Beuschau, Søren Norge Andreassen
- Matthias Scharl, Henry Bliemel, Daniel Santaella
- Mette Kyhn Larsen, Simon Mørup Carlsson

Tue Herlau, Mikkel N. Schmidt and Morten Mørup

Introduction to Machine Learning and Data Mining

Course notes fall 2016, version 1

August 29, 2016

Technical University of Denmark

02450: Introduction to Machine Learning and Data Mining

Lecture Schedule

Introduction

30 August: C1

Data: Feature extraction, and visualization

2 Data and feature extraction 6 September: C2, C3

Measures of similarity and summary statistics

13 September: C4

4 Data Visualization and probability 20 September: C5. C6

Supervised learning: Classification and regression

Decision trees and linear regression 27 September: C7, C8 (Project 1 due before 13:00)

6 Overfitting and performance evaluation

Nearest Neighbor, Bayes and Naive Bayes

11 October: C10. C11

8 Artificial Neural Networks and Bias/Variance 25 October: C12, C13

AUC and ensemble methods

1 November: C14, C15

Unsupervised learning: Clustering and density estimation

K-means and hierarchical clustering 8 November: C16 (Project 2 due before 13:00)

Mixture models and density estimation

Association mining

Recap

Recap and discussion of the exam
29 November: C1-C19 (Project 3 due before 13:00)

Data modeling framework

After today you should be able to:

Explain the principle behind boosting and bagging and apply it to improve classifiers Be able to address issues of class-imbalances by resampling Understand the definition of Precision, Recall, ROC and AUC

Report 2 due at next lecture before 13:00. Please upload the report as a single PDF file to campusnet. You do not have to hand in a paper copy. Remember to answer all questions asked in the report.

Ensemble methods

- Combine multiple (weak) classifiers into one (strong) classifier
- · Each classifier trained using different variations of
 - Data set
 - Input attributes
 - Class labels

Ensemble methods

Why ensemble methods?

- · Can improve classification algorithms in terms of
 - Better classification accuracy
 - Increased stability
 - Reduced variance
 - Less overfitting
- Consider T independent classifiers for binary classification, each with accuracy p.
 The probabilty a classifier which use majority voting is correct is then given by:

$$P(\text{Majority voting is correct}) = \sum_{t=(T+1)/2}^{T} \{t \text{ of the classifiers are correct}\}$$

$$= \sum_{t=(T+1)/2}^{T} \binom{T}{t} p^{t} (1-p)^{T-t},$$

$P(\text{Majority voting is correct}) = \sum_{i=(T+1)/2}^{I} \{t \text{ of the classifiers are correct}\}$

Data example

• Classification using logistic regression

9

• New training data sets drawn randomly from pool with replacement

Pool of training data	1	2	3	4	5	6	7	8	9	10
	3	5	4	3	9	7	9	5	1	1
	5	8	2	6	2	3	8	3	5	1
New training data sets	1	7	4	1	10	6	10	8	8	7
	4	3	8	5	2	4	7	10	10	8

- Single classifier
 - Logistic regression
 - Two features, (x,y)

13

Notice, hollow dots are observations not included in bagging round

• Single classifier

Pool of training data Weights	.1	.1	3	.1	5 .1	6		8	9.1	10 .1
New training data set	3	5	4	3	9	7	9	5	1	1
Train classifier										

Pool of training data	1	2	3	4	5	6	7	8	9	10
Weights	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1
New training data set	3	5	4	3	9	7	9	5	1	1
Train classifier										
Classify all data objects	1/	2 x	3/	4 x	5/	6×	7./	8/	9/	10/

Pool of training data	1	2	3	4	5	6	7	8	9	10
Weights	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1
New training data set	3	5	4	3	9	7	9	5	1	1
T : 1 :C										
Train classifier										
						1				
Classify all data objects	1/	2 x	3/	4 x	5/	6×	7./	8/	9/	10/

Pool of training data	1	2	3	4	5	6	7	8	9	10
Weights	.1	.1	.1	.1	.1	.1	.1	.1	.1	.1
New training data set	3	5	4	3	9	7	9	5	1	1
Train classifier										
Classify all data objects	1/	2 x		4 x	5/	6 x		8/	9/	10/
Update weights	.07	.17	.07	.17	.07	.17	.07	.07	.07	.07
New training data set	6	4	7	3	2	4	10	2	5	6
Train classifier										

AdaBoost

Algorithm 6: AdaBoost algorithm

- 1: Initialize $w_i(1) = \frac{1}{N}$ for $i = 1, \dots, N$
- 2: **for** t = 1, ..., T **do**
- Create \mathcal{D}_t by sampling (with replacement) from \mathcal{D} according to $\boldsymbol{w}(t)$
- Let f_t be the classifier trained on \mathcal{D}_t
- 5: $= \sum_{i=1}^{N} w_i \left(1 \delta_{f_t(\boldsymbol{x}_i), y_i}\right) \text{ (weighted error of } f_t \text{ on all data)}.$ 6: $= \sum_{i=1}^{N} w_i \left(1 \delta_{f_t(\boldsymbol{x}_i), y_i}\right) \text{ (weighted error of } f_t \text{ on all data)}.$
- For each i update weights using eq. (15.7):

$$w_i(t+1) = \frac{\tilde{w}_i(t+1)}{\sum_{j=1}^N \tilde{w}_j(t+1)}, \quad \tilde{w}_j(t+1) = \begin{cases} w_j(t)e^{-\alpha_t} & \text{if } f_t(\boldsymbol{x}_i) = y_i \\ w_j(t)e^{\alpha_t} & \text{if } f_t(\boldsymbol{x}_i) \neq y_i. \end{cases}$$

- 8: end for
- 9: $f^*(\mathbf{x}) = \arg\max_{y=1,2} \sum_{t=1}^{T} \alpha_t \delta_{f_*(\mathbf{x}),y}$ (Majority voting classifier)

A: A dataset is sampled with replacement and a classifier trained.

B: Mis-classified observations are identified.

New round:
Based on the
updated weights a
new dataset is
sampled and a
classifier trained
(shown), misclassified
observations
identified and
given more
emphasis...

Class imbalance problem

- Many data sets have imbalanced class distributions
 - Example: Detection of defects that only occur rarely (e.g. 1/1,000,000)
 - Danger: Algorithm that says nothing is defect will be 99.999% correct

Solution approaches

- Resample to balance data sets
- Modify existing classification algorithms
- Measure performance in a way that takes balance into account

Resampling balanced data

- New sample has equal number of data objects from each class
- Approaches
 - Undersampling majority class: Throws out potentially useful data
 - **Oversampling** minority class: Increase data size and computational burden
 - Somewhere in between...

Imbalanced training data	1	2	3	4	5	6	7	8	9	10
Oversampling	<u>1</u>	<u>2</u>	3	4 8	5 8	7 8	9	10	6	6
Undersampling	3	5	6	8						
Somewhere in between	3	5	4	3	9	6	6	8	8	8

Confusion matrix

Precision and recall

Precision

 Fraction of true positive among objects predicted to be positive

$$=\frac{TP}{TP+FP}$$

Recall

 Fraction of objects predicted to be positive among all positive objects

		Pred	icted
		positive	negative
ıal	positive	TP True Positive	FN False Negative
Actual	negative p	False Positive	TN True Negative

Precision Recall

Group exercise

- You consider two different classifiers, on a test set with 20 positive objects
 - Classifier 1 detects 54 positives of which 18 are actually positive
 - Classifier 2 detects 16 positives of which 14 are actually positive
- Compute the **precision** and **recall** for the two classifiers
- Which classifier (if any) is the best?
- Which would you use if the objective is to detect credit card fraud (consider what is most costly – missing or falsely detecting a positive)

Precision

 Fraction of true positive among objects predicted to be positive

$$p = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

Recall

 Fraction of objects predicted to be positive among all positive objects

$$r = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

		Pred	icted
		positive	negative
Actual	positive	TP True Positive	FN False Negative
Act	negative	FP False Positive	TN True Negative

Receiver operating characteristic

Receiver operating characteristic

