Möbius inversion formula

We revisit some arithmetic functions, introduce the Möbius function, and prove the Möbius inversion formula.

Definition 1. A function f is arithmetic if it is defined on all positive integers.

We have seen many arithmetic functions: the Euler ϕ -function, d(n) is the number of positive divisors of n, $\sigma(n)$ is the sum of positive divisors of n, $\omega(n)$ is the number of distinct prime divisors of n, $\Omega(n)$ is the number of primes dividing n counting multiplicity.

Definition 2. An arithmetic function f is multiplicative if for any relatively prime $m, n \in \mathbb{Z}$, f(mn) = f(m)f(n). The function is completely multiplicative if f(mn) = f(m)f(n) for all positive integers m and n.

Question 1 The Euler ϕ -function is:

Multiple Choice:

- (a) not multiplicative
- (b) multiplicative \checkmark
- (c) completely multiplicative

The function $f(n) = n^2$ is:

Multiple Choice:

- (a) not multiplicative
- (b) multiplicative
- (c) completely multiplicative ✓

Multiplicative functions are completely defined by their value on powers of primes. If $n=p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$, then for any multiplicative function f, $f(n)=f(p_1^{a_1})f(p_2^{a_2}\cdots f(p_r^{a_r}))$ by repeatedly applying the definition of a multiplicative function.

Learning outcomes: Author(s):

Theorem 1. Let f be an arithmetic function and for $n \in \mathbb{Z}$ with n > 0, let

$$F(n) = \sum_{d|n} f(d).$$

If f is multiplicative, then so is F(n).

Proof Let m and n be relatively prime positive integers. To prove that F(n) is multiplicative, we need to show that F(mn) = F(m)F(n). We have that $F(mn) = \sum_{d|mn} f(d)$. Since (m,n) = 1, each divisor d > 0 of mn can be written

as d_1d_2 where $d_1 \mid m, d_2 \mid n$, and $(d_1, d_2) = 1$ and each such product corresponds to a divisor d of mn (see homework 10). We have

$$F(mn) = \sum_{d_1|m,d_2|n} f(d_1d_2)$$

$$= \sum_{d_1|m,d_2|n} f(d_1)f(d_2)$$

$$= \sum_{d_1|m} f(d_1) \sum_{d_2|n} f(d_2)$$

$$= F(m)F(n)$$

Example 1. To clarify the previous proof, we look at an example: Let m=3 and n=4. We need to show that $F(3 \cdot 4) = F(3)F(4)$. We have

$$\begin{split} F(12) &= \sum_{d|12} f(d) \\ &= f(\boxed{1}) + f(\boxed{2}) + f(\boxed{3}) + f(\boxed{4}) + f(\boxed{6}) + f(\boxed{12}) \end{split}$$

Regroup so that the first 3 terms are factors of 4 and the last 3 terms are factors of 3.

$$=f(\boxed{1})+f(\boxed{2})+f(\boxed{4})+f(\boxed{3})+f(\boxed{6})+f(\boxed{12})$$

The factor each term

$$= f(1 \cdot 1) + f(1 \cdot 2) + f(1 \cdot 4) + f(3 \cdot 1) + f(3 \cdot 2) + f(3 \cdot 4)$$

$$= f(1)f(1) + f(1)f(2) + f(1)f(4) + f(3)f(1) + f(3)f(2) + f(3)f(4)$$

$$= [f(1) + f(3)[f(1) + f(2) + f(4)]$$

$$= \sum_{d_1|3} f(d_1) \sum_{d_2|4} f(d_2)$$

$$= F(3)F(4)$$

Definition 3. An integer n is square-free if it is not divisible by p^2 for any prime p.

Definition 4. Let $n \in \mathbb{Z}$ with n > 0. The Möbius μ -function, denoted $\mu(n)$, is

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p^2 \mid n, \ p \ prime \\ (-1)^r & \text{if } n = p_1 p_2 \cdots p_r, \ p_i \ prime \end{cases} = \begin{cases} 1 & \text{if } n = 1 \ or \\ & n \ square\text{-free}, \ even \ number \ of \ prime \ factors \\ 0 & \text{if } n \ not \ square\text{-free} \\ -1 & \text{if } n \ square\text{-free}, \ odd \ number \ of \ prime \ factors. \end{cases}$$

Question 2 Since $504 = 2^3 3^2 7$, $\mu(504)$ is

Multiple Choice:

- (a) 1
- (b) 0 ✓
- (c) -1

Since $30 = 2 \cdot 3 \cdot 5, \mu(30)$ is

Multiple Choice:

- (a) 1
- (b) 0
- (c) -1 ✓

Theorem 2. The Möbius μ function is multiplicative.

Proof Let m and n be relatively prime positive integers. We must show that $\mu(mn) = \mu(m)\mu(n)$. If m = 1 or n = 1, then we are done (see participation assignment).

Either m or n is divisible by p^2 for some prime p if and only if mn is divisible by p^2 . Then $\mu(mn) = 0$ and either $\mu(m) = 0$ or $\mu(n) = 0$, so $\mu(m)\mu(n) = 0$.

If m and n are both square-free, then $m=p_1p_2\cdots p_r$ and $n=q_1q_2\cdots q_s$ with $p_1,p_2,\ldots,p_r,q_1,q_2,\ldots,q_s$ distinct primes. Then

$$\mu(mn) = \mu(p_1 p_2 \cdots p_r q_1 q_2 \cdots q_s) = (-1)^{r+s}$$

= $(-1)^r (-1)^s$
= $\mu(m)\mu(n)$

3

Theorem 3. Let $n \in \mathbb{Z}$ with n > 0. Then

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & if \ n = 1 \\ 0 & otherwise \end{cases}$$

Proof Since $\mu(n)$ is multiplicative, the first theorem from this section says that $\sum_{d|n} \mu(d)$ is also multiplicative. Thus, the value of this function is determined

by it's value on power of primes. Now, $F(1) = \boxed{1}$. If p is prime, then

$$F(p^{a}) = \sum_{d|p^{a}} F(d)$$

$$= \mu(1) + \mu(p) + \mu(p^{2}) + \dots + \mu(p^{a-1}) + \mu(p^{a})$$

$$= \boxed{1} + \boxed{-1} + \boxed{0} + \dots + \boxed{0}$$

$$= 0.$$

Theorem 4 (Möbius Inversion Formula). Let f and g be arithmetic functions. Then

$$f(n) = \sum_{d|n} g(d)$$

if and only if

$$g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) f(d).$$

Proof Note that $\sum_{d|n} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$ since $\frac{n}{d}$ and d are both on the list of all divisors of d.

 (\Rightarrow) Assume that $f(n) = \sum_{d|n} g(d)$. Then

$$\sum_{d|m} \mu(d) f(\frac{n}{d}) = \sum_{d|n} \left(\mu(d) \sum_{c|\frac{n}{d}} g(c) \right)$$
$$= \sum_{c|n} \left(g(c) \sum_{d|\frac{n}{d}} \mu(d) \right) \text{ why?}$$

By the previous theorem, $\sum_{d|n} \mu(d) = 0$ unless $\frac{n}{c} = 1$, ie c = n. Thus, the only term in the summation is g(c).

(\Leftarrow) Assume that $g(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$. Then

$$\sum_{d|n} g(d) = \sum_{d|n} \left(\sum_{c|d} \mu(\frac{d}{c}) f(c) \right)$$

$$= \sum_{d|n} \left(f(c) \sum_{d=cm|n} \mu(\frac{d}{c}) \right) \text{ why?}$$

$$= \sum_{c|n} \left(f(c) \sum_{m|\frac{n}{c}} \mu(m) \right) \text{ why?}$$

Again, $\sum_{m \mid \frac{n}{c}} \mu(d) = 0$ unless $\frac{n}{c} = 1$, ie c = n. Thus, the only term left is f(n).

Example 2. Let $n \in \mathbb{Z}$ with n > 0, and g(n) = n. We have

$$g(n) = n = \sum_{d|n} \phi(n).$$

By the Möbius inversion formula

$$\phi(n) = \sum_{d|n} \mu(d)g(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d})g(d).$$

Equivalently,

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} = \sum_{d|n} \mu(\frac{n}{d}) d.$$

Example 3. Let $n \in \mathbb{Z}$ with n > 0. We have

$$d(n) = \sum_{d|n} 1 = \sum_{d|n} g(d),$$

where g(n) = 1 for all n > 0. By the Möbius inversion formula

$$1 = g(n) = \sum_{d|n} \mu(d)d(\frac{n}{d})$$