More Notes on Set Operations and Venn Diagrams

More Notes on Set Operations

```
Office Hours (This week only)
```

· TW 4:45 ~ 6:15

Relative Complement $A \setminus B = \{ \pi : \pi \in A \text{ and } x \notin B \}$

If it is understood/agreed that all sets in a discussion are subsets of a fixed set T, one often uses the short-hand notation A^c (read as "A complement") in place of $T \setminus A$.

Example. Let A and B be subsets of a fixed set T. Then

- $(A^c)^c = A$
- $A \setminus B = A \cap B^c$
- De Morgan's laws (with S replaced by T) can be written succinctly as

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$$\int S(AUB) = (SA) n (8B)$$
$$S(AB) = (SA) U (SB)$$

Recall: X=Y means (4x)(x ∈ X iff x ∈ Y) Relative Complement (cont')

Previously (Do this way for HW this week.)

Proof: For each object to,

16 S \ (A \ B)

iff RES and 1 & A \ B

165 and - (LEALB)

iff 165 and 7 (x6A and x & B) ...

= Sn(ACUB) Jby 1st bullet of

 $S((A|B) = S \cap (A|B)^{c}$ = $S \cap (A \cap B^{c})^{c}$ | bullet pt. = Sn(ACU(BC)) by DeMorgan's

Proof Let T be a set containing S.A. and B.

Now with the comprenent notation:

Revisiting S10E15(a) Let S, A, and B be sets. Then $S \setminus (A \setminus B) = (S \setminus A) \cup (S \cap B).$

$$=$$
 $(S \setminus A) \cup (s \cap B)$

Disjointness

i.e., A and B do not share of any element in common.

Definition 1 (Disjointness)

- To say that two sets A and B are disjoint means that $A \cap B = \emptyset$.
- To say that several sets A,B,C,\ldots are pairwise disjoint means that each two of them are disjoint.
- To say that a set of sets \mathcal{M} is pairwise disjoint means that each two distinct element of \mathcal{M} are disjoint. $(\forall A \in \mathcal{M})(\forall B \in \mathcal{M})[A \neq B \Rightarrow A \cap B = \emptyset]$ To say that

Example.

- The sets $A=\{2k:k\in\mathbb{Z}\}$ and $B=\{2k+1:k\in\mathbb{Z}\}$ are disjoint.
- The set $\mathcal{M} = \{\{1,2,3\}, \{4,5,6\}, \{3,6,9\}\}$ is not pairwise disjoint, because $\{1,2,3\} \cap \{3,6,9\} \neq \emptyset$.

A.B., and C are pairwise disjoint

 $A \cap B = \emptyset$, $A \cap C = \emptyset$, and $B \cap C = \emptyset$

Venn Diagrams

Venn Diagrams

Venn diagrams provide a graphical means to confirm set identities.

- The universe of discourse is represented by a rectangle;
- Subsets of the universe of discourse are represented by regions within the rectangle.

Venn Diagrams: Set Operations on Two Sets

ANB= (x: LEA and LEB)
AUB= (x: LEA or 16B)

Venn Diagrams: Set Operations on Two Sets (cont')

Question. In the diagram below, shade the region representing the set $B \setminus (B \setminus A)$. Make an observation.

 $\frac{\text{S to E (5 (b))}}{\text{B \ (B \ A)}} = \text{B \ A}$ $= \text{A \ A \ B}.$

Obs. This region is the same as the one representing ANB. That is, this confirms that B(BA) = ANB pictorially.

Venn Diagrams: Set Operations on Three Sets

Venn Diagrams: Set Operations on Three Sets (cont')

Question. In the diagrams below, shade the regions representing the sets $A \cap B$ and $S \setminus (A \cap B)$.

Venn Diagrams: Set Operations on Three Sets (cont')

Question. In the diagrams below, shade the regions representing the sets $S \setminus A$, $S \setminus B$, and $(S \setminus A) \cup (S \setminus B)$.

Venn Diagram and Truth Table

Understanding $S \setminus (A \cap B)$

	$x \in S$	$x \in A$	$x \in B$	$x \in A \land x \in B$	$x \in S \land \neg (x \in A \land x \in B)$
1.	Т	Т	Т	Т	F
2.	Т	Т	F	F	Т
3.	Т	F	Т	F	Т
4.	Т	F	F	F	Т
5.	F	Т	Т	Т	F
6.	F	Т	F	F	F
7.	F	F	Т	F	F
8.	F	F	F	F	F

Venn Diagram and Truth Table (cont')

Understanding $(S \setminus A) \cup (S \setminus B)$

	$x \in S \wedge x \notin A$	$x \in S \land x \notin B$	$(x \in S \land x \notin A) \lor (x \in S \land x \notin B)$
1.	F	F	F
2.	Т	F	Т
3.	F	Т	Т
4.	Т	Т	Т
5.	F	F	F
6.	F	F	F
7.	F	F	F
8.	F	F	F