A2017-GMQ715

TP3

JONATHAN GARIEPY-ROY Jonathan.gariepy-roy@usherbrooke.ca Garj2115 LOUIS CARRIER

louis.carrier@usherbrooke.ca
carl2621

VINCENT LE FALHER vincent.lefalher@usherbrooke.ca lefv2603

Diagramme de la simulation

Modèle Logique

Modèle physique

Requêtes

1. Quels sont les arrondissements affectés par chaque situation d'urgence ?

```
DROP VIEW question1 arrondissements affectes;
   CREATE VIEW question1 arrondissements affectes AS
3
   SELECT DISTINCT
4
       (su.id * 10000 + arr.id) id,
5
      arr.nom,
6
       arr.geom,
7
      su.id urg_id,
8
       arr.id arr_id
9 FROM
10
      arrondissement polygon arr,
11
      surface_affectee_polygon sa,
12
      situation urgence su,
13
      ta_intervention_situation_urgence_surface_affectee_polygon ta
14 WHERE
15
      ST_INTERSECTS(sa.geom, arr.geom)
       AND su.id = ta.id situation urgence
16
17
        AND sa.id = ta.id surface affectee polygon;
```

Note : le id est créé avec le id des arrondissements * 1000 pour éviter d'avoir un doublon et permettre l'affichage sans erreur dans QGIS.

4	id integer	nom character varying (60)	geom geometry	urg_id integer	arr_id integer
1	10001	Arrondissement de Rock ForestSaint-Élie	0106000	1	1
2	10003	Arrondissement de Jacques-Cartier	0106000	1	3
3	10005	Arrondissement du Mont-Bellevue	0106000	1	5
4	20002	Arrondissement de Fleurimont	0106000	2	2
5	20003	Arrondissement de Jacques-Cartier	0106000	2	3
6	20004	Arrondissement de Lennoxville	0106000	2	4
7	20006	Arrondissement de Brompton	0106000	2	6

2. Quels sont les municipalités affectées par chaque situation d'urgence ? Créer une vue pour une situation d'urgence spécifique

```
1
    DROP VIEW question2_municipalites_affectees;
2
    CREATE VIEW question2_municipalites_affectees AS
3
    SELECT DISTINCT
4
        (su.id * 10000 + mun.id) id,
5
        mun.nom,
6
        mun.geom,
7
        su.id su id,
8
        mun.id mun_id
9
10
        municipalite_polygon mun,
        surface_affectee_polygon sa,
11
12
        situation urgence su,
13
        ta_intervention_situation_urgence_surface_affectee_polygon ta
14
15
        ST_INTERSECTS(sa.geom, mun.geom)
16
        AND su.id = ta.id situation urgence
17
        AND sa.id = ta.id_surface_affectee_polygon;
```

Note : le id est créé avec le id des municipalitées * 1000 pour éviter d'avoir un doublon et permettre l'affichage sans erreur dans QGIS.

4	id integer	nom character varying (40)	geom geometry	su_id integer	mun_id integer
1	10048	Sherbrooke	0106000	1	48
2	10049	Saint-Denis-de-Bromp	0106000	1	49
3	10058	Hatley	0106000	1	58
4	10059	Waterville	0106000	1	59
5	20009	North Hatley	0106000	2	9
6	20010	Hatley	0106000	2	10
7	20048	Sherbrooke	0106000	2	48
8	20051	Magog	0106000	2	51
9	20058	Hatley	0106000	2	58
10	20060	Sainte-Catherine-de-H	0106000	2	60
11	20062	Ascot Corner	0106000	2	62

3. Quels sont les bâtiments affectés ?

```
DROP VIEW question3 batiments affectes;
    CREATE VIEW question3_batiments_affectes AS
    SELECT distinct
3
        bat.id,
4
5
        bat.geom,
        ('batiment ' || bat.id || ' surface affectee ' || sa.id) nom
6
7
    FROM
8
        batiment_polygon bat,
9
        surface_affectee_polygon sa
10
    WHERE
        ST INTERSECTS(sa.geom, bat.geom);
11
```


4. Quels sont les segments de rue affectés ?

```
DROP VIEW question4_rues_affectees;
    CREATE VIEW question4 rues affectees AS
 3
    SELECT DISTINCT
 4
        sr.id,
 5
        sr.geom,
        ('rue ' || sr.id || ' surface affectee ' || sa.id) nom
 6
 7
 8
        segment rue polyline sr,
9
        surface affectee polygon sa
10
        ST INTERSECTS(sa.geom, sr.geom);
11
```


5. Quelles sont les conduits d'aqueduc affectés ?

```
1 DROP VIEW question5 conduites affectees;
2 CREATE VIEW question5_conduites_affectees AS
   SELECT DISTINCT
4
       ca.id,
5
       ca.geom,
6
       ('conduit aqueduc ' || ca.id || ' surface affectee ' || sa.id) nom
7 FROM
8
       conduite_aqueduc_polyline ca,
9
       surface_affectee_polygon sa
10 WHERE
11
       ST_Intersects(sa.geom, ca.geom);
```

tee 3
tee 3
tee 3
tee 3
tee 3
ectee 3
ectee 3
ectee 3
ectee 3
ectee 3
ectee 3
ectee 3
ectee 2
ectee 3
ectee 3

... 6804 lignes retournées.

6. Quels sont les tronçons de voie ferrée affectés ?

```
1 DROP VIEW question6_voie_ferrees_affectees;
SELECT DISTINCT
4
      vf.id id,
5
      vf.geom,
      ('voie ferree ' || vf.id || ' surface affectee ' || sa.id) nom
6
7
   FROM
8
      voie_ferree_polyline vf,
9
      surface affectee polygon sa
10 WHERE
11
      ST_Intersects(sa.geom, vf.geom);
```

4	id integer	geom geometry	nom text
1	78	0105000	voie ferree 78 surface affectee 3
2	80	0105000	voie ferree 80 surface affectee 3
3	171	0105000	voie ferree 171 surface affectee 3
4	172	0105000	voie ferree 172 surface affectee 3
5	173	0105000	voie ferree 173 surface affectee 3
6	174	0105000	voie ferree 174 surface affectee 3
7	175	0105000	voie ferree 175 surface affectee 3
8	176	0105000	voie ferree 176 surface affectee 3
9	177	0105000	voie ferree 177 surface affectee 3
10	178	0105000	voie ferree 178 surface affectee 3
11	179	0105000	voie ferree 179 surface affectee 3
12	180	0105000	voie ferree 180 surface affectee 3
13	181	0105000	voie ferree 181 surface affectee 3
14	182	0105000	voie ferree 182 surface affectee 3
15	183	0105000	voie ferree 183 surface affectee 3

... 317 lignes retournées.

7. Trouver les bornes d'incendie qui se trouvent à 300 m ou moins de chaque surface affectée.

```
1 DROP VIEW question7_borne_incendie_moins_300m;
    CREATE VIEW question7_borne_incendie_moins_300m AS
    SELECT DISTINCT
 4
       bi.id,
 5
       bi.geom,
 6
       ('borne incendie ' || bi.id || ' surface affectee ' || sa.id) nom
7
8
      borne incendie point bi,
9
      surface_affectee_polygon sa
10 WHERE
11 ST_DISTANCE(bi.geom, sa.geom) <= 300;</pre>
```

4	id integer	geom geometry	nom text
1	8	0104000	borne incendie 8 surface affectee 3
2	9	0104000	borne incendie 9 surface affectee 3
3	13	0104000	borne incendie 13 surface affectee 3
4	15	0104000	borne incendie 15 surface affectee 3
5	29	0104000	borne incendie 29 surface affectee 3
6	30	0104000	borne incendie 30 surface affectee 3
7	31	0104000	borne incendie 31 surface affectee 3
8	33	0104000	borne incendie 33 surface affectee 3
9	40	0104000	borne incendie 40 surface affectee 3
10	41	0104000	borne incendie 41 surface affectee 3
11	47	0104000	borne incendie 47 surface affectee 3
12	50	0104000	borne incendie 50 surface affectee 3
13	66	0104000	borne incendie 66 surface affectee 3
14	102	0104000	borne incendie 102 surface affectee 3
15	134	0104000	borne incendie 134 surface affectee 4

... 1159 lignes retournées.

- 8. Quels sont les postes de police à contacter ? (au moins un par surface affectée. On doit indiquer, selon la distance, l'ordre dans lequel les postes de police doivent être contactés)
 - a. Pour vérifier les trois postes de police les plus proche de leurs surfaces affectées:

```
SELECT
     (sa outer.id * 100000 + ao.id) id,
     ao.nom.
     ao.geom,
    ao.id ao id,
     sa_outer.id sa_outer_id,
     ST Distance(sa outer.geom, ao.geom) dist
     surface_affectee_polygon sa_outer,
     autorite_organisme_point ao,
     (SELECT 3 val) n
 WHERE ao.id IN
□(
     SELECT sl.ao_id
     FROM
SELECT
            sa inner.id sa id,
            ao.id ao id,
            ST Distance(sa inner.geom, ao.geom) dist
             autorite organisme point ao,
             type_autorite_organisme tao,
             surface_affectee_polygon sa_inner
         WHERE
            ao.id type au = tao.id
             AND tao.type = 'Police'
            AND sa_inner.id = sa_outer.id
         order by ST Distance(sa inner.geom, ao.geom)
         LIMIT n.val
 ORDER BY sa_outer_id, ST_Distance(sa_outer.geom, ao.geom), ao.id;
```

4	id bigint	nom character varying (254)	geom geometry	ao_id bigint	sa_outer_id bigint	dist double precision
1	101059	poste_police59	0104000	1059	1	1734.64751271627
2	101058	poste_police58	0104000	1058	1	2654.47883108451
3	101009	poste_police9	0104000	1009	1	5836.8549697005
4	201009	poste_police9	0104000	1009	2	0
5	201051	poste_police51	0104000	1051	2	0
6	201060	poste_police60	0104000	1060	2	0
7	301048	poste_police48	0104000	1048	3	0
8	301049	poste_police49	0104000	1049	3	2831.45435644241
9	301050	poste_police50	0104000	1050	3	6927.093937995
10	401074	poste_police74	0104000	1074	4	2057.36778458905
11	401048	poste_police48	0104000	1048	4	3853.06096881967
12	401062	poste_police62	0104000	1062	4	10465.735498083
13	501062	poste_police62	0104000	1062	5	5654.98002800787
14	501048	poste_police48	0104000	1048	5	9638.92434038527
15	501074	poste_police74	0104000	1074	5	10196.4409172697

b. La vue:

```
DROP VIEW question8_police_surface;
CREATE VIEW question8_police_surface AS
 SELECT DISTINCT
     ao.id,
     ao.nom,
     ao.geom
 FROM
     surface_affectee_polygon sa_outer,
     autorite_organisme_point ao, (SELECT 3 val) n
 WHERE ao.id IN
□ (
      SELECT sl.ao_id
      FROM
          SELECT
            sa_inner.id sa_id,
             ao.id ao id,
             ST_Distance(sa_inner.geom, ao.geom) dist
             autorite_organisme_point ao,
             type_autorite_organisme tao,
             surface_affectee_polygon sa_inner
          WHERE
             ao.id_type_au = tao.id
             AND tao.type = 'Police'
          AND sa_inner.id = sa_outer.id

ORDER BY ST_Distance(sa_inner.geom, ao.geom)
          LIMIT n.val
```


- 9. Quels sont les casernes de pompiers à contacter ? (au moins une par surface affectée. On doit indiquer, selon la distance, l'ordre dans lequel les postes de police doivent être contactés)
 - a. Pour vérifier les trois casernes de pompier les plus proche de leurs surfaces affectées:

```
SELECT
     (sa outer.id * 100000 + ao.id) id,
     ao.nom,
     ao.geom,
     ao.id ao id,
     sa outer.id sa outer id,
     ST_Distance(sa_outer.geom, ao.geom) dist
     surface_affectee_polygon sa_outer,
     autorite_organisme_point ao,
     (SELECT 3 val) n
 WHERE ao.id IN
□ (
     SELECT sl.ao id
     FROM
白
         SELECT
             sa inner.id sa id,
             ao.id ao id,
             ST_Distance(sa_inner.geom, ao.geom) dist
             autorite_organisme_point ao,
             type autorite organisme tao,
             surface affectee polygon sa inner
             ao.id_type_au = tao.id
             AND tao.type = 'Pompier'
             AND sa inner.id = sa outer.id
         ORDER BY ST_Distance(sa_inner.geom, ao.geom)
         LIMIT n.val
 ORDER BY sa_outer_id, ST_Distance(sa_outer.geom, ao.geom), ao.id;
```

4	id bigint	nom character varying (254)	geom geometry	ao_id bigint	sa_outer_id bigint	dist double precision
1	102058	poste_pompier58	0104000	2058	1	1819.6203558483
2	102059	poste_pompier59	0104000	2059	1	2312.05753005004
3	102076	poste_pompier76	0104000	2076	1	2533.321659347
4	202009	poste_pompier9	0104000	2009	2	0
5	202051	poste_pompier51	0104000	2051	2	0
6	202060	poste_pompier60	0104000	2060	2	0
7	302048	poste_pompier48	0104000	2048	3	0
8	302075	poste_pompier75	0104000	2075	3	0
9	302076	poste_pompier76	0104000	2076	3	1873.08850072629
10	402079	poste_pompier79	0104000	2079	4	0
11	402048	poste_pompier48	0104000	2048	4	3272.55225931341
12	402078	poste_pompier78	0104000	2078	4	3371.18398566312
13	502078	poste_pompier78	0104000	2078	5	1907.95229971182
14	502077	poste_pompier77	0104000	2077	5	2838.34567743438
15	502062	poste_pompier62	0104000	2062	5	6405.75667575672

b. La vue:

```
DROP VIEW question9 pompier surface;
CREATE VIEW question9 pompier surface AS
 SELECT DISTINCT
     ao.id,
     ao.geom,
     ao.nom
 FROM
     surface affectee polygon sa outer,
     autorite organisme point ao,
     (SELECT 3 val) n
 WHERE ao.id IN
□ (
      SELECT sl.ao id
     FROM
     (
₽
          SELECT
            sa inner.id sa id,
             ao.id ao id,
             ST_Distance(sa_inner.geom, ao.geom) dist
             autorite_organisme_point ao,
             type_autorite_organisme tao,
             surface affectee polygon sa inner
          WHERE
             ao.id_type_au = tao.id
             AND tao.type = 'Pompier'
          AND sa_inner.id = sa_outer.id

ORDER BY ST_Distance(sa_inner.geom, ao.geom)
          LIMIT n.val
      ) s1
```

A2017-GMQ715-TP3 JONATHAN GARIEPY-ROY LOUIS CARRIER VINCENT LE FALHER

- 10. Quels sont les centres de santé à contacter ? (au moins un par surface affectée. On doit indiquer, selon la distance, l'ordre dans lequel les postes de police doivent être contactés)
 - a. Pour vérifier les trois centres de santé les plus proche de leurs surfaces affectées:

```
SELECT
    (sa outer.id * 100000 + ao.id) id,
   ao.nom,
   ao.geom,
   ao.id ao id,
    sa outer.id sa_outer_id,
   ST_Distance(sa_outer.geom, ao.geom) dist
    surface affectee polygon sa outer,
    autorite organisme point ao,
    (SELECT 3 val) n
WHERE ao.id IN
    SELECT sl.ao id
    FROM
        SELECT
           sa inner.id sa id,
           ao.id ao id,
           ST Distance (sa inner.geom, ao.geom) dist
        FROM
           autorite organisme point ao,
           type autorite organisme tao,
           surface affectee polygon sa inner
        WHERE
           ao.id type au = tao.id
           AND (tao.type = 'Sante' OR tao.type = 'Hopital')
           AND sa inner.id = sa outer.id
        ORDER BY ST Distance(sa inner.geom, ao.geom)
        LIMIT n.val
ORDER BY sa outer id, ST Distance(sa outer.geom, ao.geom), ao.id;
```

4	id bigint	nom character varying (254)	geom geometry	ao_id bigint	sa_outer_id bigint	dist double precision
1	103078	clsc78	0104000	3078	1	1870.31030062735
2	104073	hopital73	0104000	4073	1	2439.57697418319
3	103059	clsc59	0104000	3059	1	2547.90796932707
4	203009	clsc9	0104000	3009	2	0
5	203058	clsc58	0104000	3058	2	0
6	204010	hopital10	0104000	4010	2	0
7	303048	clsc48	0104000	3048	3	0
8	303075	clsc75	0104000	3075	3	0
9	304072	hopital72	0104000	4072	3	0
10	403076	clsc76	0104000	3076	4	435.84956514833
11	403079	clsc79	0104000	3079	4	2905.12035286943
12	403048	clsc48	0104000	3048	4	5375.01393750384
13	503079	clsc79	0104000	3079	5	2335.65434513701
14	503077	clsc77	0104000	3077	5	2540.63161198601
15	504073	hopital73	0104000	4073	5	3297.65292451126

b. La vue:

```
DROP VIEW question10 sante surface;
CREATE VIEW question10 sante surface AS
 SELECT DISTINCT
    ao.id,
     ao.geom,
     ao.nom
 FROM
     surface_affectee_polygon sa_outer,
     autorite_organisme_point ao,
     (SELECT 3 val) n
 WHERE ao.id IN
□ (
      SELECT s1.ao id
     FROM
          SELECT
             sa_inner.id sa_id,
             ao.id ao_id,
             ST_Distance(sa_inner.geom, ao.geom) dist
         FROM
             autorite_organisme_point ao,
             type_autorite_organisme tao,
             surface_affectee_polygon sa_inner
         WHERE
             ao.id_type_au = tao.id
             AND (tao.type = 'Sante' OR tao.type = 'Hopital')
             AND sa inner.id = sa outer.id
         ORDER BY ST Distance(sa_inner.geom, ao.geom)
         LIMIT n.val
     ) s1
```

A2017-GMQ715-TP3 JONATHAN GARIEPY-ROY LOUIS CARRIER VINCENT LE FALHER

Conclusion globale sur les connaissances acquises durant le cours

Ce cours nous a permis de prendre connaissance des règles de modélisation des bases de données relationnelles incluant des références spatiales. Nous avons aussi pu comprendre comment les géométries spatiales vectorielles peuvent être stockées dans une base de données PostgreSQL avec l'extension PostGIS et manipulées avec le langage SQL. Enfin nous avons pu expérimenter la visualisation (vue) et la validation des requêtes spatiales provenant de la base de données PostgreSQL dans le logiciel SIG QGIS.