인터넷 프로토콜 계층

IP 프로토콜 구조 및 주요특징

학습 목표

• IP 프로토콜의 주요 특징을 이해한다.

 IP 프로토콜 헤더의 구조를 분석하여 각 필드의 역할을 이해한다.

• IP 패킷의 분할과 재조립 과정을 이해한다.

인터넷 프로토콜 (IP)

- 주요특징
 - > 네트워크 계층의 핵심 프로토콜
 - > TCP/UDP는 모두 IP에서 제공한 서비스를 사용
 - ▶ 전달 계층으로부터 세그먼트를 받아서 인접한 네트워크 가 요구하는 크기의 패킷으로 분할 전송
 - ▶기능
 - 경로 제공
 - 흐름 제어나 에러 제어 기능 제공하지 않음

IP 데이터그램의 구조

- 개요
 - ▶ IP 헤더는 총 20바이트의 기본길이와 옵션을 사용하여 그 크기가 총 60바이트까지 증가할 수 있다.
- 헤더 구조

Version	Hea	der Length		TOS	Total Length	
Identification	on Flag		Fragme		ntation Offset	
TTL	Protoco		l Checksum		necksum	
	Source Address					
	Destination Address					
Option						
Data						

IP 데이터그램 구조 설명 [1]

- Version
 - IP 프로토콜 버전
- > Header Length
 - 4 Bit 필드이며 헤더의 길이는 20-60 바이트 사이
 - 8 Bit 필드는 데이터그램이 라우터에서 어떻게 처리되는지를 결정
- > 서비스 유형 (TOS)
 - 데이터그램이 라우터에서 어떻게 처리되어야 하는지 정의함

- D Minimize Delay 0 = 보통, 1 = 낮음
- R Maximize Reliability 0 = 보통, 1 = 높음
- T Maximize Throughput 0 = 보통, 1 = 높음
 - Minimize Cost 0 = 보통, 1 = 낮음

IP 데이터그램 구조 설명 (2)

- TOS 값중 우선권 필드 역할
 - ▶ 개요
 - 우선권 필드는 IP 네트워크의 군사적인 기원을 반영한다.
 - Flash(플래시) 최대 우선권을 갖는다.
 - Immediate(즉시) 4시간 이내 처리.
 - Priority(우선순위) 동일한 날.
 - Routine(루틴) 하루 이내.
 - > 우선권 필드의 구조 ... 약 3바이트 구조를 갖는다.

우선권	의미
000	루틴
001	우선순위
010	즉시
011	플래시
100	플래시 무시
101	중요
110	네트워크간 제어
111	네트워크 제어

IP 데이터그램 구조 설명 (3)

- ▶ 전체 길이 (Total Length)
 - 데이터그램 전체 길이
 - 216 비트이므로 (65536-1) 크기로 제한
- ▶ 필요 이유
 - 하위 네트워크 접속 계층에서 데이터그램을 전송용 프레임으로 캡슐화하고자 할 때
 - 프래임의 크기가 너무 작으면 프래임 규격에 맞추기 위해 패딩(padding) 옵션을 사용하여 추가하는 경우가 있다.
- > 예제
 - Ethernet frame 데이터 길이의 최소값은 48 바이트, 최대값은 1500 바이트이다.
- > 식별자 (Identification), 플래그 (Flag), 분할 옵셋 (Fragmentation Offset)
 - 데이터그램의 분할과 재조립을 위해서 사용한다.
- > TTL (Time to Live)
 - 라인 상에 체류할 수 있는 시간을 홉 카운트로 나타내는 필드이다.
 - 라우터를 지날 때마다 1씩 감소하고 0이면 폐기됨
- 프로토콜 (Protocol)
 - IP 상위 계층의 프로토콜 식별자

프로토콜 종류	프로토콜 번호
ICMP	1
TCP	6
UDP	17
OSPF	89
IGRP	88
BGP	179

IP 데이터그램 구조 설명 (4)

- ▶ 검사합 (Checksum)
 - 에러 확인을 위한 16 비트 필드
- ▶ 발신 주소 (Source Address)
 - 송신시스템의 IP주소
- ▶ 착신 주소 (Destination Address)
 - 수신시스템의 IP주소
- > 옵션 (Option)
 - 1 바이트 옵션
 - 다중 옵션

분할 및 재조립

> 목적

모든 internetworking 장비들의 MTU 값이 각각 다르므로 네트워크내 사용하는 패킷의 크기에 따라 분할될 수 있으며 이것을 최종 도착지 디바이스에서는 다시 재조합을 하게 할 수 있다.

> MTU 값

캡슐 종류	MTU (바이트)
Hyperchannel	65,535
이더넷	1,500
토큰링 (16Mbps)	17,914
토큰링 (4Mbps)	4,464
FDDI	4,352
SMDS	9,180
X.25	576
РРР	296

데이터 분할 및 조립 과정

개요

만일 송신시스템이 수신시스템에게 데이터를 송신할 때에는 각 네트워크 구간마다 다른 패킷을 사용하므로 인해 MTU값이 각각 틀리고 이로 인해 패킷의 분할 및 조립과정이 되풀이 되면서 패 킷을 전송하게 된다.

데이터 분할 및 조립 예제

- > 식별자 (Identification)
 - 데이터그램이 분할될 때 서로 같은 데이터그램을 명시
- ▶ 플래그 (Flag)
 - 분할 여부를 식별할 때 사용한다.
 - 3 비트 필드 중 첫 비트는 사용하지 않고, 두 번째 비트가 1이면 분할 가능, 0이면 분할 불가능을 나타낸다.
 - 세 번째 비트가 1이면 마지막 조각이 아니고, 0이면 마지막 조각임을 나타낸다.
- > 분할 옵셋 (Fragmentation Offset)
 - 분할 데이터그램 중 데이타그램의 시작 번호를 명시한다.
 - 13 비트로 구성되어 있다.
- ▶ 분할 데이터그램 예
 - 약 3000 바이트 데이터를 MSS 값이 1480 바이트인 데이터그램으로 분할

IP 옵션

- 개요
 - ▶ IP는 데이타그램, 출발지 경로설정 정보 및 타임스탬프 정보의 보안을 나타내기 위한 기능을 구현한다.
- 옵션 종류
 - 보안
 - 경로 기록
 - 정밀 출발지 경로 설정
 - 일반 출발지 경로 설정
 - 인터넷 타임 스탬프
- 옵션 형식
 - 옵션 필드는 길이가 일정치 않으며, 값은 32비트 워드의 배수이다. 만일 32배수가 되지 못할 때는 항상 padding을 이용하여 값을 채운다.
 - ▶ 옵션 형식 1
 - 옵션 종류를 나타내는 1옥텍

옵션 종류

▶ 옵션 형식 2

옵션 종류	옵션 길이	옵션 데이타
-------	-------	--------

옵션 종류

- 개요
 - 옵션 종류 옥텍은 총 8비트로 구성되어 있으며 옵션사양을 나타낸다. 옵션 형식 1에서 옵션 종류 옥텍은 유일한 옥텍이며, 옵션 형식 2에서는 그 뒤에 2개의 다른 필드가 온다.
- 옵션 종류의 구조

0	1	2	3	4	5	6	7
복사 플래그	옵션	클래스		옵션	<u> 1</u> 번	호	

- 옵션 클래스
 - > 총 2비트로 구성되어 있으며 내용은 다음과 같다.

코드	의미
0	네트워크 제어
1	예약
2	디버깅과 측정
3	예약

옵션 종류

• 옵션 종류에 대한 의미

옵션 클래스	옵션 번호	길이	의미
0	0	_	옵션 목록 끝
0	1	_	작동 없음
0	2	_	기본 보안
0	3	가변	일반 출발지 경로 결정
0	5	66	확장 보안
0	7	66	경로 기록
0	9	"	정밀 출발지 경로 설정
2	4	66	인터넷 타임 스탬프

경로 기록 옵션

- 개요
 - > 송신자가 IP데이타그램을 목적지에 발송하는 라우터의 IP주소를 기록하기 위해 사용한다.
- 구조

- 첫 번째 필드 값 경로 기록 옵션
- ▶ 두 번째 필드 값 🗕 옵션 헤더 길이
- ▶ 세 번째 필드 값 주소가 새로 삽입될 위치
- 예제

경로 설정 옵션 [1]

- 엄격한 경로(Strict Source Route)
 - 데이타그램 자체는 목적지 주소만 가지고 있고, 모든 것은 라우팅 구조에서 명시한 route를 순서대로 따라야 함. 여기서는 첫 번째 필드 137.
- 구조

8비트	8비트	8비트		레코드	데이타	
종류 = 137	옥텍 길이	포인터	IP 주소1	IP 주소2	IP 주소3	IP 주소N

예제

경로 설정 옵션 [2]

- 느슨한 경로 (Loose Source Route)
 - 발신지 호스트가 지정한 라우터는 반드시 거쳐야 하지만 다른 중계 라우터는 해당 라우터의 경로 결정 요소 값에 의해 결정된다.

8비트	8비트	8비트		레코드	데이타	
종류 = 131	옥텍 길이	포인터	IP 주소1	IP 주소2	IP 주소3	IP 주소N

- Time Stamp
 - > 라우터가 데이터그램을 처리할 때 소요되는 시간을 기록

인터넷 타임 스탬프 옵션

개요

이 옵션은 각 라우터에서 IP 데이타그램을 수신하는 타임스탬프를 기록하기 위해 사용된다. 라우터의 IP주소와 라우터가 IP 데이타그램을 수신하는 시간을 기록한다.

특징

- ▶ 타임스탬프는 협정 세계시(UTC : Universal Time Coordinated)의 자정부터 계산한 밀리초 수로 잰다.
- ▶ 옵션 종류는 68이면 3개의 옥텍수를 갖는다.
- › 이 옵션의 데이터 필드는 32비트값 2개를 갖는다. 그중 1개는 라우터 IP주소이고 또 하나는 그것이 기록된 시간이다.
- 구조

• 플래그값의 의미

플래그 값	의 미
0	타임스탬프만을 연속한 32비트 워드로 저장한다(IP주소 생략).
1	각 타임스탬프 앞에 기록 라우터 IP주소를 삽입한다.
3	송신자 IP주소 필드를 지정한다.

요점 정리

- IP 패킷은 실제 데이터를 운반하기 위해 최적의 경로와 논리적 주소를 제공한다.
- IP 헤더의 주요 특징은 다음과 같다.
 - 논리적 주소 제공
 - 최적의 경로 제공
 - 분할 및 재조립
 - 경로 설정
- IP 헤더 구조는 총 20바이트를 기본으로 60바이트까지 증가시킬 수 있다.