翻译: 黄海广备注: 请关注github的更新, 近期将更新完。

CS 229 机器学习课程复习材料

一、线性代数复习和参考

1. 基础概念和符号

线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以下方程组:

$$4x_1 - 5x_2 = -13$$
$$-2x_1 + 3x_2 = 9$$

这是两个方程和两个变量,正如你从高中代数中所知,你可以找到 x_1 和 x_2 的唯一解(除非方程以某种方式退化,例如,如果第二个方程只是第一个的倍数,但在上面的情况下,实际上只有一个唯一解)。 在矩阵表示法中,我们可以更紧凑地表达:

$$Ax=b$$
 with $A=egin{bmatrix} 4 & -5 \ -2 & 3 \end{bmatrix}, b=egin{bmatrix} 13 \ -9 \end{bmatrix}$

我们可以看到,这种形式的线性方程有许多优点(比如明显地节省空间)。

1.1 基本符号

我们使用以下符号:

- $A \in \mathbb{R}^{m \times n}$, 表示A为由实数组成具有m行和n列的矩阵。
- $x \in \mathbb{R}^n$,表示具有n个元素的向量。 通常,向量x将表示列向量: 即,具有n行和1列的矩阵。 如果我们想要明确地表示行向量: 具有1行和n列的矩阵 我们通常写 x^T (这里 x^Tx 的转置)。
- *x_i*表示向量*x*的第*i*个元素

$$x = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

• 我们使用符号 a_{ij} (或 A_{ij} , $A_{i,j}$ Aij,Ai,j等)来表示第i行和第j列中的A的元素:

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

• 我们用 a^j 或者 $A_{::i}$ 表示矩阵A的第j列:

$$A = \left[egin{array}{cccc} ert & ert & ert \ a^1 & a^2 & \cdots & a^n \ ert & ert & ert \end{array}
ight]$$

• 我们用 a^T 或者 $A_{i:}$ 表示矩阵A的第i行:

$$A = egin{bmatrix} -a_1^T - \ -a_2^T - \ dots \ -a_m^T - \end{bmatrix}$$

在许多情况下,将矩阵视为列向量或行向量的集合非常重要且方便。通常,在向量而不是标量上操作在数学上(和概念上)更清晰。用于矩阵的列或行的表示并没有通用约定,因此只要明确定义了符号。

2.矩阵乘法

两个矩阵相乘,其中 $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,则:

$$C = AB \in \mathbb{R}^{m \times p}$$

其中:

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

请注意,为了使矩阵乘积存在,A中的列数必须等于B中的行数。有很多方法可以查看矩阵乘法,我们将从检查一些特殊情况开始。

2.1 向量-向量乘法

给定两个向量 $x,y \in \mathbb{R}^n, x^Ty$ 通常称为**向量内积**或者**点积**,结果是个**实数**。

$$x^Ty \in \mathbb{R} = \left[egin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array}
ight] \left[egin{array}{c} y_1 \ y_2 \ dots \ y_n \end{array}
ight] = \sum_{i=1}^n x_i y_i$$

注意: $x^T y = y^T x$ 始终成立。

给定向量 $x\in\mathbb{R}^m$, $y\in\mathbb{R}^n$ (他们的尺寸是否相同都没关系), $xy^T\in\mathbb{R}^{m\times n}$ 叫做**向量外积**, 当 $(xy^T)_{ij}=x_iy_j$ 的时候,它是一个矩阵。

$$xy^T \in \mathbb{R}^{m imes n} = egin{bmatrix} x_1 \ x_2 \ dots \ x_m \end{bmatrix} egin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} = egin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \ x_2y_1 & x_2y_2 & \cdots & x_2y_n \ dots & dots & dots & dots \ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$

举一个外积如何使用的一个例子,让 $1 \in R^n$ 表示一个n维向量,其元素都等于1,此外,考虑矩阵 $A \in R^{m \times n}$,其列全部等于某个向量 $x \in R^m$ 。 我们可以使用外积紧凑地表示矩阵A:

2.2 矩阵-向量乘法

给定矩阵 $A \in \mathbb{R}^{m \times n}$,向量 $x \in \mathbb{R}^n$,它们的积是一个向量 $y = Ax \in R^m$ 。 有几种方法可以查看矩阵向量乘法,我们将依次查看它们中的每一种。

如果我们按行写A,那么我们可以表示Ax为:

$$y=Ax=egin{bmatrix} -&a_1^T&-\-&a_2^T&-\ dots&dots\-&a_m^T&- \end{bmatrix}x=egin{bmatrix} a_1^Tx\a_2^Tx\ dots\a_m^Tx \end{bmatrix}$$

换句话说,第 $i \land y$ 是A的第 $i \land \tau x$ 的内积,即: $y_i = y_i = a_i^T x$ 。

同样的, 可以把 A 写成列的方式,则公式如下:,

$$y=Ax=\left[egin{array}{cccc} ert & ert & ert \ a^1 & a^2 & \cdots & a^n \ ert & ert & ert \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ drave{arepsilon} \ x_n \end{array}
ight] = \left[a^1
ight] x_1 + \left[a^2
ight] x_2 + \left[a^n
ight] x_n$$

换句话说, y是A的列的线性组合, 其中线性组合的系数由x的条目给出。

到目前为止,我们一直在右侧乘以列向量,但也可以在左侧乘以行向量。 这是写的, $y^T=x^TA$ 表示 $A\in\mathbb{R}^{m\times n}$, $x\in\mathbb{R}^m$, $y\in\mathbb{R}^n$ 。 和以前一样,我们可以用两种可行的方式表达 y^T ,这取决于我们是 否根据行或列表达A.

第一种情况, 我们把A用列表示:

这表明 u^T 的第i个条目等于x和A的第i列的内积。

最后,根据行表示A,我们得到了向量-矩阵乘积的最终表示:

$$y^T = x^T A = \left[egin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array}
ight] egin{array}{cccc} -a_1^T - \ -a_2^T - \ dots \ -a_m^T - \end{array}
ight] = x_1 \left[-a_1^T -
ight] + x_2 \left[-a_2^T -
ight] + \ldots + x_n \left[-a_n^T -
ight]$$

所以我们看到 y^T 是A的行的线性组合,其中线性组合的系数由x的条目给出。

2.3 矩阵-矩阵乘法

有了这些知识,我们现在可以看看四种不同的(形式不同,但结果是相同的)矩阵-矩阵乘法:也就是本节开头所定义的C=AB的乘法。

首先,我们可以将矩阵 - 矩阵乘法视为一组向量-向量乘积。 从定义中可以得出:的最明显的观点是C的 (i, j)条目等于A的第i行和B的的j列的内积。如下面的公式所示:

$$C = AB = egin{bmatrix} - & a_1^T & - \ - & a_2^T & - \ dots & \ - & a_m^T & - \end{bmatrix} egin{bmatrix} dots & dots & \ b_1 & b_2 & \cdots & b_p \ dots & dots & dots & \ dots & dots & dots & \ dots & dots & dots & dots & dots \ a_m^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \ dots & dots & dots & dots & dots & dots \ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \ \end{bmatrix}$$

这里的 $A\in\mathbb{R}^{m\times n},B\in\mathbb{R}^{n\times p}$, $a_i\in\mathbb{R}^n$, $b^j\in\mathbb{R}^{n\times p}$, 这里的 $A\in\mathbb{R}^{m\times n}$, $B\in\mathbb{R}^{n\times p}$, $a_i\in\mathbb{R}^n$, $b^j\in\mathbb{R}^{n\times p}$, 所以它们可以计算内积。 我们用通常用行表示A而用列表示B时。 或者,我们可以用列表示A,用行表示B,这时AB是求外积的和。公式如下:

换句话说,AB等于所有的A的第i列和B第i行的外积的和。因此,在这种情况下, $a_i \in \mathbb{R}^m$ 和 $b_i \in \mathbb{R}^p$,外积 $a^ib_i^T$ 的维度是 $m \times p$,与C的维度一致。

其次,我们还可以将矩阵 - 矩阵乘法视为一组矩阵向量积。如果我们把B用列表示,我们可以将C的列视为A和B的列的矩阵向量积。公式如下:

$$C=AB=Aegin{bmatrix} ert & ert & ert & ert \ b_1 & b_2 & \cdots & b_p \ ert & ert & ert & ert \end{bmatrix}=egin{bmatrix} ert & ert & ert \ Ab_1 & Ab_2 & \cdots & Ab_p \ ert & ert & ert & ert \end{bmatrix}$$

这里C的第i列由矩阵向量乘积给出,右边的向量为 $c_i=Ab_i$ 。 这些矩阵向量乘积可以使用前一小节中给出的两个观点来解释。 最后,我们有类似的观点,我们用行表示A,C的行作为A和C行之间的矩阵向量积。公式如下:

$$C = AB = egin{bmatrix} - & a_1^T & - \ - & a_2^T & - \ dots & dots \ - & a_m^T & - \ \end{bmatrix} B = egin{bmatrix} - & a_1^T B & - \ - & a_2^T B & - \ dots & dots \ - & a_m^T B & - \ \end{bmatrix}$$

这里第i行的C由左边的向量的矩阵向量乘积给出: $c_i^T = a_i^T B$

将矩阵乘法剖析到如此大的程度似乎有点过分,特别是当所有这些观点都紧跟在我们在本节开头给出的 初始定义(在一行数学中)之后。

这些不同方法的直接优势在于它们允许您**在向量的级别/单位而不是标量上进行操作**。为了完全理解线性代数而不会迷失在复杂的索引操作中,关键是要用尽可能多的概念进行操作。

实际上所有的线性代数都处理某种矩阵乘法,花一些时间对这里提出的观点进行直观的理解是非常必要的。

除此之外,了解一些更高级别的矩阵乘法的基本属性是很有必要的:

- 矩阵乘法交换律: (AB)C = A(BC)
- 矩阵乘法分配律: A(B+C) = AB + AC
- 矩阵乘法通常不是可交换的; 也就是说,通常 $AB \neq BA$ 。 (例如,假设 $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, 如果m和g不相等,矩阵乘积BA甚至不存在!)

如果您不熟悉这些属性,请花点时间自己验证它们。例如,为了检查矩阵乘法的相关性,假设 $A\in\mathbb{R}^{m\times n}$, $B\in\mathbb{R}^{n\times p}$, $C\in\mathbb{R}^{p\times q}$ 。注意 $AB\in\mathbb{R}^{m\times p}$,所以 $(AB)C\in\mathbb{R}^{m\times q}$ 。 类似地, $BC\in\mathbb{R}^{n\times q}$,所以 $A(BC)\in\mathbb{R}^{m\times q}$ 。 因此,所得矩阵的维度一致。 为了表明矩阵乘法是相关的,足以检查(AB)C的第(i,j)个元素是否等于A(BC)的第(i,j)个条目。 我们可以使用矩阵乘法的定义直接验证这一点:

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk}\right) C_{kj}$$

$$= \sum_{k=1}^{p} \left(\sum_{l=1}^{n} A_{il} B_{lk} C_{kj}\right) = \sum_{l=1}^{n} \left(\sum_{k=1}^{p} A_{il} B_{lk} C_{kj}\right)$$

$$= \sum_{l=1}^{n} A_{il} \left(\sum_{k=1}^{p} B_{lk} C_{kj}\right) = \sum_{l=1}^{n} A_{il} (BC)_{lj} = (A(BC))_{ij}$$

3运算和属性

在本节中,我们介绍矩阵和向量的几种运算和属性。 希望能够为您复习大量此类内容,这些笔记可以作 为这些主题的参考。

3.1 单位矩阵和对角矩阵

单位矩阵, $I \in \mathbb{R}^{n \times n}$,它是一个方阵,对角线的元素是1,其余元素都是0:

$$I_{ij} = \left\{ egin{array}{ll} 1 & i=j \ 0 & i
eq j \end{array}
ight.$$

对于所有 $A \in \mathbb{R}^{m \times n}$,有:

$$AI = A = IA$$

注意,在某种意义上,单位矩阵的表示法是不明确的,因为它没有指定I的维数。通常,l的维数是从上下文推断出来的,以便使矩阵乘法成为可能。 例如,在上面的等式中,AI=A中的I是 $n\times n$ 矩阵,而A=IA中的I是 $n\times m$ 矩阵。

对角矩阵是一种这样的矩阵:对角线之外的元素全为0。对角阵通常表示为: $D=diag(d_1,d_2,\ldots,d_n)$,其中:

$$D_{ij} = egin{cases} d_i & i = j \ 0 & i
eq j \end{cases}$$

很明显: 单位矩阵I = diag(1, 1, ..., 1).

3.2 转置

矩阵的转置是指翻转矩阵的行和列。

给定一个矩阵:

 $A \in \mathbb{R}^{m \times n}$, 它的转置为 $n \times m$ 的矩阵 $A^T \in \mathbb{R}^{n \times m}$, 其中的元素为:

$$(A^T)_{ij} = A_{ji}$$

事实上,我们在描述行向量时已经使用了转置,因为列向量的转置自然是行向量。

转置的以下属性很容易验证:

- $(A^T)^T = A$
- $(AB)^T = B^T A^T$
- $(A+B)^T = A^T + B^T$

3.3 对称矩阵

如果 $A=A^T$,则矩阵 $A\in\mathbb{R}^{n\times n}$ 是对称矩阵。 如果 $A=-A^T$,它是反对称的。 很容易证明,对于任何矩阵 $A\in\mathbb{R}^{n\times n}$,矩阵 $A+A^T$ 是对称的,矩阵 $A-A^T$ 是反对称的。 由此得出,任何方矩阵 $A\in\mathbb{R}^{n\times n}$ 可以表示为对称矩阵和反对称矩阵的和,所以:

$$A=\frac{1}{2}(A+A^T)+\frac{1}{2}(A-A^T)$$

上面公式的右边的第一个矩阵是对称矩阵,而第二个矩阵是反对称矩阵。 事实证明,对称矩阵在实践中用到很多,它们有很多很好的属性,我们很快就会看到它们。 通常将大小为n的所有对称矩阵的集合表示为 \mathbb{S}^n ,因此 $A \in \mathbb{S}^n$ 意味着A是对称的 $n \times n$ 矩阵;

3.4 矩阵的迹

方矩阵 $A \in \mathbb{R}^{n \times n}$ 的迹,表示为 $\mathrm{tr}(A)$ (或者只是 $\mathrm{tr}(A)$ 如果括号显然是隐含的),是矩阵中对角元素的总和:

$$\operatorname{tr} A = \sum_{i=1}^n A_{ii}$$

如CS229讲义中所述,迹具有以下属性(如下所示):

- 对于矩阵 $A \in \mathbb{R}^{n \times n}$,则: $\operatorname{tr} A = \operatorname{tr} A^T$
- 对于矩阵 $A, B \in \mathbb{R}^{n \times n}$,则: $\operatorname{tr}(A + B) = \operatorname{tr} A + \operatorname{tr} B$
- 对于矩阵 $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, 则: $\operatorname{tr}(tA) = t \operatorname{tr} A$.
- 对于矩阵 A, B, AB 为方阵, 则: $\operatorname{tr} AB = \operatorname{tr} BA$
- 对于矩阵 A, B, C, ABC为方阵, 则: $\operatorname{tr} ABC = \operatorname{tr} BCA = \operatorname{tr} CAB$, 同理,更多矩阵的积也是有这个性质。

$$\operatorname{tr} AB = \sum_{i=1}^{m} (AB)_{ii} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} B_{ji} \right)$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji} A_{ij}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} B_{ji} A_{ij} \right) = \sum_{j=1}^{n} (BA)_{jj} = \operatorname{tr} BA$$

这里,第一个和最后两个等式使用迹运算符和矩阵乘法的定义,重点在第四个等式,使用标量乘法的可交换性来反转每个乘积中的项的顺序,以及标量加法的可交换性和相关性,以便重新排列求和的顺序。

3.5 范数

向量的范数||x||是非正式度量的向量的"长度"。例如,我们有常用的欧几里德或 ℓ_2 范数,

$$\|x\|_2=\sqrt{\sum_{i=1}^n x_i^2}$$

注意: $||x||_2^2 = x^T x$

更正式地, 范数是满足4个属性的函数 $(f: \mathbb{R}^n \to \mathbb{R})$:

- 1. 对于所有的 $x \in \mathbb{R}^n$, f(x) > 0(非负).
- 2. 当且仅当x = 0 时,f(x) = 0 (明确性).
- 3. 对于所有 $x \in \mathbb{R}^n$, $t \in \mathbb{R}$,则 f(tx) = |t| f(x) (正齐次性).
- 4. 对于所有 $x, y \in \mathbb{R}^n$, $f(x+y) \leq f(x) + f(y)$ (三角不等式)

其他范数的例子是 ℓ₁ 范数:

$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

和 ℓ_{∞} 范数:

$$\|x\|_{\infty} = \max_i |x_i|$$

事实上,到目前为止所提出的所有三个范数都是 ℓ_p 范数族的例子,它们由实数 $p \geq 1$ 参数化,并定义为:

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

也可以为矩阵定义范数,例如Frobenius范数:

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{\operatorname{tr}ig(A^T Aig)}$$

许多其他更多的范数,但它们超出了这个复习材料的范围。

后面部分还在翻译中,请关注github的更新,近期将更新完。