## Fast Self-Healing Gradients

Jacob Beal, Jonathan Bachrach, Dan Vickery, Mark Tobenkin MIT CSAIL

# "Gradient": Local Calculation of Shortest-Distance Estimates

Common SA/SO building block

- Pattern Formation
  - Nagpal, Coore, Butera
- Distributed Robotics
  - Stoy, Werfel, McLurkin
- Networking
  - DV routing, Directed Diffusion



Nagpal, 2001





Need to adapt to changes

Intanagonwiwat, et al. 2002

#### Outline

- Rising Value Problem
- CRF-Gradient: self-stabilize in O(diameter)
- Verified in simulation and on Mica2 Motes



$$g_{x} = \begin{cases} 0 & \text{if } x \in S \\ \min\{g_{y} + d(x, y) \mid y \in N_{x}\} & \text{if } x \notin S \end{cases}$$



$$g_{x} = \begin{cases} 0 & \text{if } x \in S \\ \min\{g_{y} + d(x, y) \mid y \in N_{x}\} & \text{if } x \notin S \end{cases}$$



$$g_{x} = \begin{cases} 0 & \text{if } x \in S \\ \min\{g_{y} + d(x, y) \mid y \in N_{x}\} & \text{if } x \notin S \end{cases}$$



$$g_{x} = \begin{cases} 0 & \text{if } x \in S \\ \min\{g_{y} + d(x, y) \mid y \in N_{x}\} & \text{if } x \notin S \end{cases}$$

## Gradient + Communication Lag



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$



$$c_{x}(y,t) = g_{x}(t-\lambda_{x}(y,t)) + d(x,y)$$

$$g_{x}(t) = \begin{cases} 0 & \text{if } x \in S(t) \\ \min\{c_{x}(y,t) \mid y \in N_{x}(t)\} & \text{if } x \notin S(t) \end{cases}$$

## Previous Algorithms

- "Invalidate and Rebuild"
  - GRAB: single source, rebuild on high error
  - TTDD: static subgraph, rebuild on lost msg.
- "Incremental Repair"
  - Hopcount: Clement & Nagpal, Butera
  - Distorted Measure: Beal & Bachrach (naïve generalization of hopcount to continuous)

Can't exploit distance info in large nets

#### CRF-Gradient: Local Deconstraint



• Self-stabilization in *O(diameter)* 

#### CRF-Gradient: Local Deconstraint

$$c_{x}(y,t) = g_{x}(t - \lambda_{x}(y,t)) + d(x,y)$$

$$c'_{x}(y,t) = c_{x}(y,t) + (\lambda_{x}(y,t) + \Delta_{t}) \cdot v_{x}(t)$$

$$N'_{x}(t) = \{ y \in N_{x}(t) \mid c'_{x}(y,t) \leq g_{x}(t - \Delta_{t}) \}$$

$$0 \qquad \qquad \text{if } x \in S(t)$$

$$min\{c_{x}(y,t) \mid y \in N'_{x}(t) \} \quad \text{if } x \notin S(t), N'_{x}(t) \neq \emptyset \}$$

$$g_{x}(t) + v_{0} \cdot \Delta_{t} \qquad \text{if } x \notin S(t), N'_{x}(t) = \emptyset \}$$

$$v_{x}(t) = \begin{cases} 0 \qquad \text{if } x \in S(t) \\ 0 \qquad \text{if } x \notin S(t), N'_{x}(t) \neq \emptyset \\ v_{0} \qquad \text{if } x \notin S(t), N'_{x}(t) = \emptyset \end{cases}$$

Self-stabilization in O(diameter)



- zero at source
- rise at v<sub>o</sub> with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at v<sub>o</sub> with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at v<sub>o</sub> with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at v<sub>o</sub> with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at  $v_o$  with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at  $v_o$  with relaxed constraint
- otherwise snap to constraint



- zero at source
- rise at  $v_o$  with relaxed constraint
- otherwise snap to constraint

## Simulated CRF-Gradient



# **Experimental Setup**



## Experimental Results: Falling

Convergence Time (Close Pair Falling)



## Experimental Results: Rising



### Generalized CRF



#### Contributions

- Rising Value Problem
- CRF-Gradient: self-stabilize in O(diameter)
- Verified in simulation and on Mica2 Motes