

Image formation Lecture 1.1 - Light, camera, optics and colour

Idar Dyrdal

Imaging with visible light

Direct and indirect illumination

Thermal radiation - Planck distribution

Reflected and emitted radiation

Image in visible light:

 Imaging with reflected (and scattered) radiation from the sun or other natural or artificial sources.

Infrared (thermal) image:

 Imaging with (mainly) the emitted thermal radiation from the scene.

Other frequency domains and wave types used for imaging:

- Millimeter waves, x-rays, ... (electromagnetic waves)
- Acoustic (sonar), seismic, ... (mechanical waves)

Image formation

No image is formed!

Simple camera - Pinhole camera

Pinhole camera

Camera obscura

illum in tabula per radios Solis, quam in cœlo contingit: hoc est, si in cœlo superior pars deliquiù patiatur, in radiis apparebit inferior desicere, vt ratio exigit optica.

Sic nos exacte Anno . 1544 . Louanii eclipsim Solis observauimus, inuenimusq; deficere paulò plus q dex-

Camera with a lens

Imaging with a lens

Object at infinity

Lens equation:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{f}$$

$$a = \infty \quad \Rightarrow \quad b = f$$

i.e. image is formed in focal plane.

Depth of focus

F-number: f/D (examples: f/2.8, f/4, f/5.6, f/8, f/11, f/22)

Narrow depth of focus

Large f-number

Large depth of focus

Depth of field – large aperture

Large aperture Narrow depth of field

Depth of field – small aperture

Too small aperture will lead to diffraction and loss of sharpness

Practical lenses

Fixed focal length lens

Zoom lens (variable focal length)

Image capture

Detector

Imaging system (camera)

CMOS image sensor (CMOSIS 48Mp)

(Artwork by Holly Fischer)

Shutter:

- Mechanical / electronic
- Global / rolling

Digital image

	255	255	255	255	255	255	255	255	255	255
•	255	255	255	255	255	255	255	255	255	255
	255	255	255	0	0	255	255	255	255	255
	255	255	255	0	0	85	255	255	255	255
	255	255	0	85	85	0	255	255	255	255
	255	255	0	85	85	170	170	255	255	255
	255	85	85	0	170	170	85	85	255	255
	255	255	170	170	85	85	85	255	255	255
	255	255	255	255	255	255	255	255	255	255
	255	255	255	255	255	255	255	255	255	255

image(i,j)

Colour images

Red

RGB colour image

Green

Blue

Human Vision

(OpenStax College - Anatomy & Physiology)

Colour Sensing in digital cameras - Bayer filter

Undersampled (incomplete) colour information

Demosaicing (debayering)

Reconstruction of full colour image from incomplete colour information from the image sensor.

Algorithms:

- Nearest-neighbor interpolation
- Bilinear interpolation
- Bicubic interpolation

Other methods:

- Splines
- Lanczos resampling
- Methods utilizing pixel values

Digital representation of colour images

139 | 138

B

RGB colour space

Normalized RGB values:

$$r = \frac{R}{R + G + B}$$
$$g = \frac{G}{R + G + B}$$
$$b = \frac{B}{R + G + B}$$

(Illumination invariance)

Colour coordinate systems:

 $RGB \Rightarrow XYZ \Rightarrow LAB$

RGB normalization (example)

RGB original Normalized RGB

Lab colour space (CIE 1976 L* a* b*)

«Perceptually uniform» colour space:

- Approximation to human vision
- L* = Lightness
- a*, b* = Colour opponent dimensions
- L* = darkest black to brightest white (0 100)
- $a^* = \text{green to red } (-100 \text{ to } +100)$
- $b^* = blue to yellow (-100 to +100)$

Lab - example

HSV colour space (Hue, Saturation, Value)

(Jacob Rus, 2010)

Intuitive colour space:

- Cylindrical representation of RGB values
- Hue = angle from 0° to 360°
- Saturation = 0 100% (gray to primary colour)
- Value = 0 100% (totally black to bright colours)

HSV

Hue

Saturation

Value

Summary

Image formation:

- Illumination
- Cameras
- Optics
- Image Capture
- Colour Sensing.

More information: Szeliski 2.2 and 2.3

