

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	16.49 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.73	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	approx array normano sarrasor

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>109.50</u>	<u>5754.93</u>	k
Compressive Load =	3728.58	<u>4775.15</u>	k
Lateral Load =	<u>435.65</u>	3595.29	k
Moment (Weak Axis) =	<u>0.87</u>	0.34	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 162671.4 in-lbs Resisting Force Required = 2275.12 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3791.87 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 864.02 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2160.04 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 864.02 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f_c =$ Length =

 Bearing Pressure

 Ballast Width

 35 in
 36 in
 37 in
 38 in

 Pftg = (145 pcf)(11.92 ft)(1.5 ft)(2.92 ft) = 7560 lbs
 7776 lbs
 7992 lbs
 8208 lbs

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 1.0W		1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1230 lbs	1230 lbs	1230 lbs	1230 lbs	1825 lbs	1825 lbs	1825 lbs	1825 lbs	-46 lbs	-46 lbs	-46 lbs	-46 lbs
F _B	1394 lbs	1394 lbs	1394 lbs	1394 lbs	2022 lbs	2022 lbs	2022 lbs	2022 lbs	2418 lbs	2418 lbs	2418 lbs	2418 lbs	-2761 lbs	-2761 lbs	-2761 lbs	-2761 lbs
F_V	207 lbs	207 lbs	207 lbs	207 lbs	1577 lbs	1577 lbs	1577 lbs	1577 lbs	1318 lbs	1318 lbs	1318 lbs	1318 lbs	-1728 lbs	-1728 lbs	-1728 lbs	-1728 lbs
P _{total}	10352 lbs	10568 lbs	10784 lbs	11000 lbs	10812 lbs	11028 lbs	11244 lbs	11460 lbs	11802 lbs	12018 lbs	12234 lbs	12450 lbs	1730 lbs	1859 lbs	1989 lbs	2118 lbs
M	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3000 lbs-ft	3000 lbs-ft	3000 lbs-ft	3000 lbs-ft	4612 lbs-ft	4612 lbs-ft	4612 lbs-ft	4612 lbs-ft	5208 lbs-ft	5208 lbs-ft	5208 lbs-ft	5208 lbs-ft
е	0.35 ft	0.35 ft	0.34 ft	0.33 ft	0.28 ft	0.27 ft	0.27 ft	0.26 ft	0.39 ft	0.38 ft	0.38 ft	0.37 ft	3.01 ft	2.80 ft	2.62 ft	2.46 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	244.8 psf	244.0 psf	243.3 psf	242.6 psf	267.6 psf	266.2 psf	264.9 psf	263.7 psf	272.8 psf	271.2 psf	269.8 psf	268.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	350.9 psf	347.2 psf	343.7 psf	340.4 psf	354.5 psf	350.7 psf	347.1 psf	343.7 psf	406.4 psf	401.1 psf	396.2 psf	391.5 psf	134.1 psf	130.9 psf	128.8 psf	127.4 psf

Maximum Bearing Pressure = 406 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 2695.9 \text{ ft-lbs}$

Resisting Force Required = 1848.62 lbs S.F. = 1.67

Weight Required = 3081.03 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in	35 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	350 lbs	720 lbs	226 lbs	899 lbs	2344 lbs	803 lbs	145 lbs	211 lbs	23 lbs		
F _V	244 lbs	238 lbs	251 lbs	177 lbs	174 lbs	198 lbs	246 lbs	239 lbs	248 lbs		
P _{total}	9708 lbs	10079 lbs	9585 lbs	9808 lbs	11253 lbs	9712 lbs	2882 lbs	2947 lbs	2760 lbs		
М	969 lbs-ft	953 lbs-ft	990 lbs-ft	718 lbs-ft	722 lbs-ft	784 lbs-ft	969 lbs-ft	950 lbs-ft	977 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.34 ft	0.32 ft	0.35 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	222.0 psf	233.6 psf	217.2 psf	239.7 psf	281.0 psf	233.1 psf	25.5 psf	28.6 psf	21.6 psf		
f _{max}	336.7 psf	346.4 psf	334.4 psf	324.7 psf	366.5 psf	325.8 psf	140.3 psf	141.0 psf	137.2 psf		

Maximum Bearing Pressure = 366 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.868 k	Maximum Axial Load =	3.866 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>39%</u>	Utilization =	<u>52%</u>
<u>Diagonal Strut</u>			
Maximum Axial Load =	2.436 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>33%</u>		
		Struts under compression are	
		transfer from the girder. Singl	e M12 bolts are l

e shown to demonstrate the load gle M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.996 in 0.996 ≤ 1.219, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 120 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 331.976 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 120 \\ \mathsf{J} &= & 0.432 \\ & & 211.117 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_{b} = 104.56 \text{ in}$ J = 1.08 179.85 $S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$ S1 = 0.51461 $S2 = \left(\frac{C_{c}}{2}\right)^{2}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 29.0 \text{ ksi}$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

$L_b = 104.56$ J = 1.08 190.335

$$1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

28.9

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

3.4.16

 $\phi F_1 =$

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

$$\begin{array}{ll} \textbf{3.4.16.1} & \underline{\textbf{Used}} \\ \textbf{Rb/t} = & \textbf{18.1} \\ S1 = \left(\frac{Bt - 1.17 \frac{\theta_{\mathcal{Y}}}{\theta_{b}} Fcy}{1.6Dt} \right)^{2} \\ \textbf{S1} = & \textbf{1.1} \\ S2 = C_{t} \\ \textbf{S2} = & \textbf{141.0} \\ \phi \textbf{F}_{L} = & \phi \textbf{b} [\textbf{Bt-Dt}^{*} \sqrt{(\textbf{Rb/t})}] \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\varphi F_L = \varphi c[Bt-Dt^* \sqrt{(Rb/t)}]$
 $\varphi F_L = 31.09 \text{ ksi}$
 $\varphi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \\ \text{$\sqrt{(\text{LbSc})/(\text{Cb*} \\ \sqrt{(\text{lyJ})/2)})}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

S1 =
$$\left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
S2 = C_t
S2 = 141.0
 $\varphi F_L = 1.17 \varphi y Fcy$
 $\varphi F_L = 38.9 \text{ ksi}$

Weak Axis: 3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$\theta_{v} = 0$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 1.6Dp$$

 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

 $\phi F_1 = 43.2 \text{ ksi}$

$$M_{max}St = 1.460 \text{ k-ft}$$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDhr}$$

$$1 = \frac{\theta_b}{mDbr}$$

$$S1 = 36.9$$

$$S1 = 36.9$$

 $m = 0.65$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18

S4.16

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$8x = 0.624 \text{ in}^3$$

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

$$\begin{array}{rll} & \text{Iy} = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ & \text{x} = & 27.5 \text{ mm} \\ & \text{Sy} = & 0.621 \text{ in}^3 \\ & M_{\text{max}} \text{Wk} = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$
 $b/t = 24.5$
 $S1 = 12.21$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$\varphi F_L =$ 28.2 ksi

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.25 \text{ ksi}$$

$$\varphi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

6.29 kips $P_{max} =$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: 3.4.14

$$L_b = 78.35 \text{ in}$$
 $J = 0.942$
 122.273

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

$$\phi F_L$$
= 29.8 ksi

Weak Axis:

$$L_b = 78.35$$
 $J = 0.942$
 122.273

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$

$$\phi F_L = 29.8$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Bt - 1.17 \frac{\theta_y}{\alpha} Fcy\right)^2$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max} St = 1.460 \text{ k-ft}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46.866	-46.866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-47.984	-47.984	0	0
2	M14	У	-47.984	-47.984	0	0
3	M15	ý	-77.191	-77.191	0	0
4	M16	٧	-77.191	-77.191	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	108.485	108.485	0	0
2	M14	V	83.45	83.45	0	0
3	M15	V	45.897	45.897	0	0
4	M16	У	45.897	45.897	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	5.	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	707.714	2	1144.665	2	.907	1	.004	1	0	1	0	1
2		min	-886.988	3	-1369.224	3	-42.055	5	258	4	0	1	0	1
3	N7	max	.046	9	1123.473	1	-1.086	12	002	12	0	1	0	1
4		min	198	2	-56.004	5	-335.112	4	666	4	0	1	0	1
5	N15	max	.01	9	2868.136	1	0	11	0	11	0	1	0	1
6		min	-2.147	2	-84.23	3	-313.733	4	635	4	0	1	0	1
7	N16	max	2592.713	2	3673.189	2	0	3	0	3	0	1	0	1
8		min	-2765.608	3	-4426.867	3	-41.821	5	261	4	0	1	0	1
9	N23	max	.057	14	1123.473	1	18.728	1	.036	1	0	1	0	1
10		min	198	2	6.282	3	-321.68	5	644	4	0	1	0	1
11	N24	max	707.714	2	1144.665	2	066	12	0	12	0	1	0	1
12		min	-886.988	3	-1369.224	3	-42.968	5	261	4	0	1	0	1
13	Totals:	max	4005.6	2	10723.74	1	0	3						
14		min	-4539.664	3	-7236.981	3	-1088.44	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.087	1	424.965	1	-10.826	12	0	3	.304	1	0	4
2			min	6.52	12	-630.83	3	-211.511	1	015	2	.018	12	0	3
3		2	max	108.087	1	297.055	1	-8.507	12	0	3	.159	4	.597	3
4			min	6.52	12	-443.994	3	-162.288	1	015	2	.008	12	401	1
5		3	max	108.087	1	169.146	1	-6.187	12	0	3	.088	5	.987	3
6			min	6.52	12	-257.157	3	-113.065	1	015	2	057	1	66	1
7		4	max	108.087	1	41.236	1	-3.868	12	0	3	.047	5	1.169	3
8			min	6.52	12	-70.321	3	-63.841	1	015	2	155	1	777	1
9		5	max	108.087	1	116.515	3	-1.31	10	0	3	.009	5	1.143	3
10			min	6.52	12	-86.674	1	-36.036	4	015	2	199	1	752	1
11		6	max	108.087	1	303.352	3	34.606	1	0	3	01	12	.91	3
12			min	2.71	15	-214.584	1	-28.301	5	015	2	188	1	584	1
13		7	max	108.087	1	490.188	3	83.829	1	0	3	007	12	.469	3
14			min	-8.777	5	-342.494	1	-24.771	5	015	2	122	1	275	1
15		8	max	108.087	1	677.024	3	133.053	1	0	3	.002	2	.177	1
16			min	-21.889	5	-470.404	1	-21.241	5	015	2	082	4	18	3
17		9	max	108.087	1	863.86	3	182.276	1	0	3	.174	1	.77	1
18			min	-35.001	5	-598.314	1	-17.711	5	015	2	101	5	-1.036	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Description		Member	Sec		Axial[lb]	LC					Torque[k-ft]					
11			10											_	1.506	1
22															-2.099	3
24			11	max										_	.77	1
24				min		12		3		1	0	3		12	-1.036	3
25	23		12	max	108.087	1	470.404			12	.015	2	.08	4	.177	1
26	24			min	6.52	12	-677.024	3	-133.053	1	0	3	004	3	18	3
28	25		13	max	108.087	1	342.494	1	-3.09	12	.015	2	.036	5	.469	3
28				min	6.52	12	-490.188	3		1	0	3	122	1	275	1
28	27		14	max	108.087	1	214.584	1		12	.015	2	002	15	.91	3
15 max 108.087 1 86.674 1 14.618 1 015 2 009 12 1.7						12									584	1
Min -2.122 5 -116.515 3 -29.662 5 0 3 199 1 7			15			1				1	.015			12	1.143	3
31										_					752	1
17			16								_				1.169	3
33															777	1
34			17								_				.987	3
35			17												66	1
19			10								_				.597	3
19			10													1
M14			40							_	-			_	401	1
M14			19							_					0	
Min Min		1444	4												0	3
41 2 max 58.598 1 334.668 1 -8.858 12 .01 3 .234 4 .4 42 min 3.263 12 -360.224 3 -169.855 1 .013 2 .01 12 6 43 3 max 58.598 1 206.758 1 -6.539 12 .01 3 .133 5 44 min 3.263 12 -217.894 3 -120.631 1 .013 2 .024 1 -7.7 45 4 max 58.598 1 78.848 1 -4.219 12 .01 3 .072 5 .9 46 min 3.263 12 -75.565 3 -71.408 1 .013 2 .13 1 9 48 47 5 max 58.598 1 60.625 3 -71.408 1 .013 2		<u>IVI14</u>	1											_	0	4
Max Max															0	3
43 3 max 58.598 1 206.758 1 -6.539 12 .01 3 .133 5 . 44 min 3.263 12 -217.894 3 -120.631 1 -0.13 2 -0.04 1 -7.7 45 4 max 58.598 1 78.848 1 -4.219 12 .01 3 .072 5 .9 46 min 3.263 12 -75.565 3 -71.408 1 -0.013 2 13 1 9 47 5 max 58.598 1 66.765 3 -1.9 12 .01 3 .015 5 .9 48 min -3.498 5 -49.062 1 -55.532 4 013 2 182 1 9 50 min -16.61 5 -176.972 1 -45.619 5 013 2			2												.479	3
44 min 3.263 12 -217.894 3 -120.631 1 013 2 024 1 7 45 4 max 58.598 1 78.848 1 -4.219 12 .01 3 .072 5 .9 46 min 3.263 12 -75.565 3 -71.408 1 013 2 13 1 5 47 5 max 58.598 1 66.765 3 -1.9 12 .01 3 .015 5 .9 48 min -3.498 5 -49.062 1 -55.532 4 013 2 182 1 5 49 6 max 58.598 1 209.095 3 27.039 1 .01 3 .009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2															443	1
45 4 max 58.598 1 78.848 1 -4.219 12 .01 3 .072 5 .9 46 min 3.263 12 -75.565 3 -71.408 1 013 2 13 1 9 47 5 max 58.598 1 66.765 3 -1.9 12 .01 3 .015 5 .9 48 min -3.498 5 -49.062 1 -55.532 4 -013 2 182 1 9 49 6 max 58.598 1 209.095 3 27.039 1 .01 3 009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 7 max 58.598 1 351.424 3 76.262 1 <			3	max											.8	3
46 min 3.263 12 -75.565 3 -71.408 1 013 2 13 1 9 47 5 max 58.598 1 66.765 3 -1.9 12 .01 3 .015 5 .9 48 min -3.498 5 -49.062 1 -55.532 4 013 2 182 1 29 49 6 max 58.598 1 209.095 3 27.039 1 .01 3 009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>12</td> <td></td> <td>3</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>744</td> <td>1</td>				min		12		3		1				1	744	1
47 5 max 58.598 1 66.765 3 -1.9 12 .01 3 .015 5 .9 48 min -3.498 5 -49.062 1 -55.532 4 013 2 182 1 9 49 6 max 58.598 1 209.095 3 27.039 1 .01 3 009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 max 58.598 1 351.424 3 76.262 1 .01 3 .007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.791 1 -38.558 5 013	45		4	max	58.598	1	78.848	1	-4.219	12		3	.072	5	.964	3
48 min -3.498 5 -49.062 1 -55.532 4 013 2 182 1 9 49 6 max 58.598 1 209.095 3 27.039 1 .01 3 009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 432.791 1 -38.558 5 013	46			min	3.263	12	-75.565	3	-71.408	1	013	2	13	1	902	1
49 6 max 58.598 1 209.095 3 27.039 1 .01 3 009 12 .8 50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 <td>47</td> <td></td> <td>5</td> <td>max</td> <td>58.598</td> <td>1</td> <td>66.765</td> <td>3</td> <td>-1.9</td> <td>12</td> <td>.01</td> <td>3</td> <td>.015</td> <td>5</td> <td>.968</td> <td>3</td>	47		5	max	58.598	1	66.765	3	-1.9	12	.01	3	.015	5	.968	3
50 min -16.61 5 -176.972 1 -45.619 5 013 2 179 1 7 51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 3	48			min	-3.498	5	-49.062	1	-55.532	4	013	2	182	1	919	1
51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 <td>49</td> <td></td> <td>6</td> <td>max</td> <td>58.598</td> <td>1</td> <td>209.095</td> <td>3</td> <td>27.039</td> <td>1</td> <td>.01</td> <td>3</td> <td>009</td> <td>12</td> <td>.815</td> <td>3</td>	49		6	max	58.598	1	209.095	3	27.039	1	.01	3	009	12	.815	3
51 7 max 58.598 1 351.424 3 76.262 1 .01 3 007 12 .5 52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 <td>50</td> <td></td> <td></td> <td>min</td> <td>-16.61</td> <td>5</td> <td>-176.972</td> <td>1</td> <td>-45.619</td> <td>5</td> <td>013</td> <td>2</td> <td>179</td> <td>1</td> <td>793</td> <td>1</td>	50			min	-16.61	5	-176.972	1	-45.619	5	013	2	179	1	793	1
52 min -29.721 5 -304.881 1 -42.089 5 013 2 122 1 5 53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1 58 min 3.263 12 -778.413 3 -223.933 1 013 2<			7			1		3		1		3		12	.504	3
53 8 max 58.598 1 493.754 3 125.486 1 .01 3 0 10 .0 54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1 58 min 3.263 12 -778.413 3 -223.933 1 013 2 .014 12 -1.2 59 11 max 77.319 4 560.701 1 -7.378 12 .013 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>5</td> <td>013</td> <td></td> <td></td> <td></td> <td>526</td> <td>1</td>						5				5	013				526	1
54 min -42.833 5 -432.791 1 -38.558 5 013 2 137 4 1 55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1 58 min 3.263 12 -778.413 3 -223.933 1 013 2 .014 12 -1.3 59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 1 01 <t< td=""><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td>.034</td><td>3</td></t<>			8											10	.034	3
55 9 max 58.598 1 636.084 3 174.709 1 .01 3 .157 1 .4 56 min -55.945 5 -560.701 1 -35.028 5013 2172 55 57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1. 58 min 3.263 12 -778.413 3 -223.933 1013 2 .014 12 -1. 59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 101 3 .004 125 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 101 301 11 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 101 3122 15 65 14 max 58.598 1 176.972															128	2
56 min -55.945 5 -560.701 1 -35.028 5 013 2 172 5 5 57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1. 58 min 3.263 12 -778.413 3 -223.933 1 013 2 .014 12 -1. 59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 1 01 3 .004 12 5 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 1 01 <t< td=""><td></td><td></td><td>q</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.436</td><td>1</td></t<>			q												.436	1
57 10 max 90.43 4 688.611 1 -9.697 12 .01 3 .378 1 1. 58 min 3.263 12 -778.413 3 -223.933 1013 2 .014 12 -1. 59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 101 3 .004 12 -5 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 101 301 11 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 101 3122 15 65 14 max 58.598 1 176.972 142 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 401<															593	3
58 min 3.263 12 -778.413 3 -223.933 1 013 2 .014 12 -1.3 59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 1 01 3 .004 12 5 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 1 01 3 01 1 1 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>1.13</td><td>1</td></t<>			10											_	1.13	1
59 11 max 77.319 4 560.701 1 -7.378 12 .013 2 .234 4 .4 60 min 3.263 12 -636.084 3 -174.709 1 01 3 .004 12 5 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 1 01 3 01 1 1 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12			10											_	-1.379	3
60 min 3.263 12 -636.084 3 -174.709 1 01 3 .004 12 5 61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 1 01 3 01 1 1 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 </td <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>.436</td> <td>1</td>			11							_					.436	1
61 12 max 64.207 4 432.791 1 -5.058 12 .013 2 .13 4 .0 62 min 3.263 12 -493.754 3 -125.486 1 01 3 01 1 1 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12															593	3
62 min 3.263 12 -493.754 3 -125.486 1 01 3 01 1 1 63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12 -66.765 3 -45.895 5 01 3 <td></td> <td></td> <td>12</td> <td></td> <td>.034</td> <td>3</td>			12												.034	3
63 13 max 58.598 1 304.881 1 -2.739 12 .013 2 .068 5 .5 64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12 -66.765 3 -45.895 5 01 3 182 1 9			12											_		2
64 min 3.263 12 -351.424 3 -76.262 1 01 3 122 1 5 65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12 -66.765 3 -45.895 5 01 3 182 1 9			12												128	
65 14 max 58.598 1 176.972 1 42 12 .013 2 .011 5 .8 66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12 -66.765 3 -45.895 5 01 3 182 1 9			13												.504	3
66 min 3.263 12 -209.095 3 -56.692 4 01 3 179 1 7 67 15 max 58.598 1 49.062 1 22.184 1 .013 2 008 12 .9 68 min 3.263 12 -66.765 3 -45.895 5 01 3 182 1 9			4.4											_	526	1
67			14												.815	3
68 min 3.263 12 -66.765 3 -45.895 501 3182 19														_	793	1
			15												.968	3
60 16 may 58 508 1 75 565 2 71 400 1 042 2 005 40 0															919	1
	69		16	max	58.598	1	75.565	3	71.408	1	.013	2	005	12	.964	3
				min		5				5					902	1
			17	max											.8	3
				min		5		1		5		3		4	744	1
	73		18	max	58.598	1	360.224	3		1	.013	2		1	.479	3
				min		5	-334.668	1		5	01	3	177	5	443	1
	75		19	max	58.598	1		3		1	.013	2	.354	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Trans		Member	Sec		Axial[lb]		y Shear[lb]								_	
Test	76			min	-41.378	5	-462.578	_1_	-31.774	5	01	3	214	5	0	3
Page		<u>M15</u>	1													
B1				min												
81			2	max		5				12						3
B2	80			min	-62.859	1	-202.045	3	-169.78	1	009	3	.009	12	587	2
83	81		3	max	75.382	5		2	-6.463	12	.014	2	.172	5	.449	3
B46	82			min	-62.859	1	-126.476	3	-120.556	1	009	3	024	1	983	2
84	83		4	max	62.27	5	96.447	2	-4.144	12	.014	2	.096	5	.548	3
86	84			min	-62.859	1	-50.908	3	-84.265	4	009	3	131	1	-1.186	2
B6			5			5								5		
88														1		
88			6			5				1				12		
89																
90			7													
91																
93			Ω							_				_		
94										_						
94			0													
96			9									_		_		
96			40			•										
98			10											_		
98			4.4													
99			11													
100						•										
101			12													
102				min		•										_
103			13	max		12				12	.009	_	.09	5	.339	3
104	102			min	-62.859	1	-175.799				014	2	122	1	643	2
105	103		14	max	-3.862	12	249.312	2	495	12	.009	3	.018	5	.493	3
106	104			min	-62.859	1	-100.23	3	-70.566	4	014	2	18	1	-1.016	2
107	105		15	max	-3.862	12	76.432	2	22.11	1	.009	3	008	12	.562	3
108	106			min	-74.692	4	-24.661	3	-59.656	5	014	2	182	1	-1.197	2
108	107		16	max	-3.862	12	50.908	3	71.333	1	.009	3	005	12	.548	3
109				min		4				5		2		4		
110			17											3		
111																
112			18							_				_		
113 19 max -3.862 12 277.614 3 219.003 1 .009 3 .353 1 0 2 114 min -127.139 4 -615.085 2 -45.536 5 014 2 284 5 0 5 115 M16 1 max 96.069 5 577.868 2 -10.6 12 .012 1 .317 4 0 2 116 min -121.647 1 -248.921 3 -212 1 012 3 .017 12 0 3 117 2 max 82.957 5 404.989 2 -8.281 12 .012 1 .206 4 .235 3 118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max																
114 min -127.139 4 -615.085 2 -45.536 5 014 2 284 5 0 5 115 M16 1 max 96.069 5 577.868 2 -10.6 12 .012 1 .317 4 0 2 116 min -121.647 1 -248.921 3 -212 1 012 3 .017 12 0 3 117 2 max 82.957 5 404.989 2 -8.281 12 .012 1 .206 4 .235 3 118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 4 max			10												_	-
115 M16 1 max 96.069 5 577.868 2 -10.6 12 .012 1 .317 4 0 2 116 min -121.647 1 -248.921 3 -212 1 012 3 .017 12 0 3 117 2 max 82.957 5 404.989 2 -8.281 12 .012 1 .206 4 .235 3 118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max			13											_		
116 min -121.647 1 -248.921 3 -212 1 012 3 .017 12 0 3 117 2 max 82.957 5 404.989 2 -8.281 12 .012 1 .206 4 .235 3 118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1	$\overline{}$	M16	1													
117 2 max 82.957 5 404.989 2 -8.281 12 .012 1 .206 4 .235 3 118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43		IVITO				-										
118 min -121.647 1 -173.352 3 -162.777 1 012 3 .007 12 546 2 119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647			2													
119 3 max 69.846 5 232.11 2 -5.961 12 .012 1 .122 5 .385 3 120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
120 min -121.647 1 -97.784 3 -113.554 1 012 3 055 1 9 2 121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647			2													
121 4 max 56.734 5 59.23 2 -3.642 12 .012 1 .068 5 .452 3 122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007			3													
122 min -121.647 1 -22.215 3 -64.33 1 012 3 154 1 -1.062 2 123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647			4			_								_		
123 5 max 43.622 5 53.354 3 -1.323 12 .012 1 .018 5 .435 3 124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 </td <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			4									_				
124 min -121.647 1 -113.649 2 -47.686 4 012 3 198 1 -1.032 2 125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647			_													
125 6 max 30.511 5 128.923 3 34.117 1 .012 1 009 12 .333 3 126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2			5									_				
126 min -121.647 1 -286.529 2 -39.726 5 012 3 188 1 809 2 127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2														_		
127 7 max 17.399 5 204.491 3 83.34 1 .012 1 007 12 .148 3 128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2			6													
128 min -121.647 1 -459.408 2 -36.196 5 012 3 122 1 395 2 129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2														_		
129 8 max 4.287 5 280.06 3 132.564 1 .012 1 .001 10 .212 2 130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2			7			5				1						
130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2				min						5				1		
130 min -121.647 1 -632.288 2 -32.665 5 012 3 112 4 121 3 131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2	129		8	max	4.287	5	280.06	3	132.564	1	.012	1	.001	10	.212	
131 9 max -5.809 15 355.629 3 181.787 1 .012 1 .172 1 1.01 2	130			min	-121.647	1		2	-32.665	5	012	3	112	4	121	3
			9			15		3		1	.012	1	.172	1	1.01	2
132 min -121.647 1 -805.167 2 -29.135 5 012 3 143 5 474 3	132			min		1	-805.167	2	-29.135	5	012	3	143	5	474	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
133		10	max	-6.94	12	978.046	2	-10.274	12	.012	1_	.402	1_	2.001	2
134			min	-121.647	_1_	-431.198	3	-231.01	1	012	3	.016	12	911	3
135		11	max	-5.497	<u>15</u>	805.167	2	-7.955	12	.012	3	.211	4	1.01	2
136				-121.647	1_	-355.629	3	-181.787	1	012	1	.006	12	474	3
137		12	max	-6.94	12	632.288	2	-5.635	12	.012	3	11	4	.212	2
138				-121.647	_1_	-280.06	3	-132.564	1	012	1	003	3	121	3
139		13	max	-6.94	12	459.408	2	-3.316	12	.012	3	.053	5	.148	3
140			min	-121.647	_1_	-204.491	3	-83.34	1	012	1	122	1	395	2
141		14	max	-6.94	12	286.529	2	997	12	.012	3	.002	5	.333	3
142			min	-121.647	1	-128.923	3	-53.224	4	012	1	<u>188</u>	1_	809	2
143		15	max	-6.94	12	113.649	2	15.107	1	.012	3	009	12	.435	3
144			min	-121.647	_1_	-53.354	3	-41.052	5	012	1	198	1	-1.032	2
145		16	max	-6.94	12	22.215	3	64.33	1	.012	3	006	12	.452	3
146			min	-121.647	1	-59.23	2	-37.522	5	012	1	154	1	-1.062	2
147		17	max	-6.94	12	97.784	3	113.554	1	.012	3	001	12	.385	3
148			min	-121.647	1_	-232.11	2	-33.992	5	012	1	144	4	9	2
149		18	max	-6.94	12	173.352	3	162.777	1	.012	3	.098	1	.235	3
150			min	-129.875	4	-404.989	2	-30.462	5	012	1	165	5	546	2
151		19	max	-6.94	12	248.921	3	212	1	.012	3	.307	1	0	2
152			min	-142.987	4	-577.868	2	-26.931	5	012	1	197	5	0	5
153	M2	1	max	1010.382	1	2.056	4	.605	1	0	12	0	3	0	1
154			min	-1195.944	3	.498	15	-37.161	4	0	4	0	1	0	1
155		2	max	1010.911	1	1.985	4	.605	1	0	12	0	1	0	15
156		_		-1195.547	3	.481	15	-37.623	4	0	4	013	4	0	4
157		3		1011.441	1	1.914	4	.605	1	0	12	0	1	0	15
158				-1195.15	3	.464	15	-38.084	4	0	4	027	4	001	4
159		4	max		1	1.843	4	.605	1	0	12	0	1	0	15
160			min		3	.448	15	-38.545	4	0	4	041	4	002	4
161		5		1012.499	1	1.772	4	.605	1	0	12	0	1	0	15
162			min	-1194.356	3	.431	15	-39.006	4	0	4	055	4	003	4
163		6		1013.028	1	1.701	4	.605	1	0	12	.001	1	0	15
164			min	-1193.959	3	.414	15	-39.467	4	0	4	069	4	003	4
165		7		1013.558	1	1.63	4	.605	1	0	12	.001	1	0	15
166			min	-1193.562	3	.398	15	-39.929	4	0	4	083	4	004	4
167		8		1014.087	_ <u></u>	1.559	4	.605	1	0	12	.002	1	004	15
168		0	min	-1193.166	3	.381	15	-40.39	4	0	4	002 097	4	005	4
169		9		1014.616		1.488	4	.605	1	0	12	.002	1	003	15
170		9	_		3	.364	15	-40.851	4	0	4	112	4	005	4
		10	min						1	0	12		1		_
171		10		1015.146	1	1.417	4	.605				.002	<u> </u>	001	15
172		4.4		-1192.372	3	.348	15	-41.312	4	0	4	<u>127</u>	4	006	4
173		11		1015.675	_1_	1.345	4	.605	1	0	12	.002	1	001	15
174		40		-1191.975	3_	.331	<u>15</u>	-41.774	4	0	4	142	4	006	4
175		12		1016.204	_1_	1.274	4	.605	1	0	12	.002	1	002	15
176		40		-1191.578	3	.314	15	-42.235	4	0	4	1 <u>57</u>	4	007	4
177		13		1016.733	1_	1.203	4	.605	1	0	12	.003	1	002	15
178				-1191.181	3	.297	15	-42.696	4	0	4	172	4	007	4
179		14		1017.263	_1_	1.132	4	.605	1	0	12	.003	1_	002	15
180				-1190.784	3	.274	12	-43.157	4	0	4	187	4	007	4
181		15		1017.792	_1_	1.061	4	.605	1	0	12	.003	1	002	15
182				-1190.387	3	.246	12	-43.618	4	0	4	203	4	008	4
183		16		1018.321	_1_	.99	4	.605	1	0	12	.003	1	002	15
184				-1189.99	3	.219	12	-44.08	4	0	4	219	4	008	4
185		17		1018.851	_1_	.919	4	.605	1	0	12	.003	1	002	15
186				-1189.593	3	.191	12	-44.541	4	0	4	234	4	009	4
187		18	max	1019.38	1	.848	4	.605	1	0	12	.004	1	002	15
188			min	-1189.196	3	.163	12	-45.002	4	0	4	251	4	009	4
189		19	max	1019.909	1	.777	4	.605	1	0	12	.004	1	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]			LC	z-z Mome	LC
190			min	-1188.799	3_	.136	12	-45.463	4	0	4	267	4	009	4
191	<u>M3</u>	1	max		2	8.9	4	1.931	4	0	12	0	1	.009	4
192			min	-785.835	3_	2.103	15	.027	12	0	4	029	4	.002	15
193		2	max	624.444	2	8.031	4	2.536	4	0	12	0	1	.005	4
194			min	-785.962	3_	1.899	15	.027	12	0	4	028	4	0	12
195		3	max	624.273	2	7.162	4	3.141	4	0	12	0	1	.002	2
196			min	-786.09	3_	1.695	15	.027	12	0	4	026	4	0	3
197		4	max	624.103	2	6.293	4	3.746	4	0	12	.001	1	0	15
198			min	-786.218	3	1.49	15	.027	12	0	4	025	4	002	3
199		5	max	623.933	2	5.424	4	4.351	4	0	12	.001	1	0	15
200			min	-786.346	3	1.286	15	.027	12	0	4	023	4	004	6
201		6	max	623.762	2	4.555	4	4.956	4	0	12	.002	1_	002	15
202			min	-786.473	3_	1.082	15	.027	12	0	4	021	5	007	6
203		7	max	623.592	2	3.686	4	5.561	4	0	12	.002	1_	002	15
204			min	-786.601	3	.878	15	.027	12	0	4	018	5	009	6
205		8	max	623.422	2	2.818	4	6.166	4	0	12	.002	1_	002	15
206			min	-786.729	3_	.673	15	.027	12	0	4	016	5	01	6
207		9	max	623.251	2	1.949	4	6.771	4	0	12	.002	1_	003	15
208			min	-786.857	3	.469	15	.027	12	0	4	013	5	011	6
209		10	max	623.081	2	1.08	4	7.377	4	0	12	.002	1_	003	15
210			min	-786.984	3	.265	15	.027	12	0	4	009	5	012	6
211		11	max	622.911	2	.281	2	7.982	4	0	12	.003	1	003	15
212			min	-787.112	3	08	3	.027	12	0	4	006	5	012	6
213		12	max	622.74	2	144	15	8.587	4	0	12	.003	1	003	15
214			min	-787.24	3	659	6	.027	12	0	4	002	5	012	6
215		13	max	622.57	2	348	15	9.192	4	0	12	.003	1	003	15
216			min	-787.368	3	-1.528	6	.027	12	0	4	0	12	012	6
217		14	max	622.4	2	552	15	9.797	4	0	12	.007	4	003	15
218			min	-787.495	3	-2.397	6	.027	12	0	4	0	12	011	6
219		15	max	622.229	2	756	15	10.402	4	0	12	.012	4	002	15
220			min	-787.623	3	-3.266	6	.027	12	0	4	0	12	009	6
221		16	max	622.059	2	961	15	11.007	4	0	12	.017	4	002	15
222			min	-787.751	3	-4.135	6	.027	12	0	4	0	12	008	6
223		17	max		2	-1.165	15	11.612	4	0	12	.022	4	001	15
224			min	-787.879	3	-5.003	6	.027	12	0	4	0	12	006	6
225		18	max	621.718	2	-1.369	15	12.217	4	0	12	.028	4	0	15
226			min	-788.006	3	-5.872	6	.027	12	0	4	0	12	003	6
227		19	max	621.548	2	-1.573	15	12.822	4	0	12	.034	4	0	1
228			min	-788.134	3	-6.741	6	.027	12	0	4	0	12	0	1
229	M4	1	max	1120.407	_1_	0	1	-1.086	12	0	1	.027	4	0	1
230			min	-57.435	5	0	1	-334.056	4	0	1	0	12	0	1
231		2	max	1120.577	_1_	0	1	-1.086	12	0	1	.001	1	0	1
232			min	-57.356	5	0	1	-334.204		0	1	011	4	0	1
233		3	1	1120.748	1_	0	1	-1.086	12	0	1	0	12	0	1
234			min		5	0	1	-334.352	4	0	1	05	4	0	1
235		4	max	1120.918	1_	0	1	-1.086	12	0	1	0	12	0	1
236			min	-57.197	5	0	1	-334.499		0	1	088	4	0	1
237		5		1121.088	_1_	0	1	-1.086	12	0	1	0	12	0	1
238				-57.117	5	0	1	-334.647	4	0	1	126	4	0	1
239		6		1121.259	1	0	1	-1.086	12	0	1	0	12	0	1
240			min	-57.038	5	0	1	-334.795	4	0	1	165	4	0	1
241		7	max	1121.429	1	0	1	-1.086	12	0	1	0	12	0	1
242			min	-56.958	5	0	1	-334.942	4	0	1	203	4	0	1
243		8	max	1121.599	1	0	1	-1.086	12	0	1	0	12	0	1
244			min	-56.879	5	0	1	-335.09	4	0	1	242	4	0	1
245		9	max	1121.77	1	0	1	-1.086	12	0	1	0	12	0	1
246			min	-56.799	5	0	1	-335.238	4	0	1	28	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	1121.94	1	0	1	-1.086	12	0	1	0	12	0	1
248			min	-56.72	5	0	1	-335.385	4	0	1_	319	4	0	1
249		11	max		_1_	0	1	-1.086	12	0	_1_	001	12	0	1
250			min	-56.64	5	0	1	-335.533	4	0	1	357	4	0	1
251		12		1122.281	_1_	0	1_	-1.086	12	0	1	001	12	0	1
252			min	-56.561	5	0	1	-335.68	4	0	1	396	4	0	1
253		13		1122.451	_1_	0	1	-1.086	12	0	1	001	12	0	1
254			min	-56.481	5	0	1_	-335.828	4	0	1	434	4	0	1
255		14		1122.621	_1_	0	1	-1.086	12	0	1	001	12	0	1
256			min	-56.402	5_	0	1	-335.976	4	0	1	473	4	0	1
257		15		1122.792	_1_	0	1	-1.086	12	0	1	002	12	0	1
258		40	min		5_	0	1_	-336.123	4	0	1_	511	4	0	1
259		16		1122.962	_1_	0	1	-1.086	12	0	1	002	12	0	1
260		47	min	-56.243	5	0	1_4	-336.271	4	0	1	55	4	0	1
261 262		17	min	1123.132 -56.163	<u>1</u> 5	0	1	-1.086 -336.419	<u>12</u>	0	<u>1</u> 1	002 589	12	0	1
263		18	_	1123.303	<u> </u>	0	1	-1.086	12	0	1	002	12	0	1
264		10	min	-56.084	5	0	1	-336.566	4	0	1	627	4	0	1
265		19		1123.473	<u>5</u> 1	0	1	-1.086	12	0	+	002	12	0	1
266		13	min	-56.004	5	0	1	-336.714	4	0	1	666	4	0	1
267	M6	1		3199.622	1	2.211	2	0	1	0	1	0	4	0	1
268	1010		min	-3865.904	3	.301	12	-37.604	4	0	4	0	1	0	1
269		2		3200.151	1	2.156	2	0	1	0	1	0	1	0	12
270		_	min	-3865.507	3	.273	12	-38.065	4	0	4	014	4	0	2
271		3	max	3200.68	1	2.1	2	0	1	0	1	0	1	0	12
272			min	-3865.11	3	.246	12	-38.526	4	0	4	027	4	002	2
273		4	max	3201.21	1	2.045	2	0	1	0	1	0	1	0	12
274			min	-3864.713	3	.218	12	-38.987	4	0	4	041	4	002	2
275		5	max	3201.739	1	1.99	2	0	1	0	1_	0	1	0	12
276			min		3	.19	12	-39.449	4	0	4	055	4	003	2
277		6	max	3202.268	_1_	1.934	2	0	1_	0	_1_	0	1_	0	12
278			min	-3863.919	3	.163	12	-39.91	4	0	4	07	4	004	2
279		7		3202.797	_1_	1.879	2	0	1	0	1	0	1	0	12
280			min	-3863.523	3	.135	12	-40.371	4	0	4	084	4	004	2
281		8		3203.327	1	1.824	2	0	1	0	1_	0	1	0	12
282		0	min	-3863.126 3203.856	3	.107	<u>12</u>	-40.832	<u>4</u> 1	0	4	098	1	005	12
283 284		9	min	-3862.729	<u>1</u> 3	1.768 .07	3	-41.293	4	0	<u>1</u> 4	113	4	006	2
285		10		3204.385	<u> </u>	1.713	2	0	1	0	1	0	1	0	12
286		10		-3862.332	3	.029	3	-41.755	4	0	4	128	4	006	2
287		11		3204.915	1	1.658	2	0	1	0	1	0	1	0	12
288				-3861.935	3	013	3	-42.216	4	0	4	143	4	007	2
289		12	_	3205.444	1	1.602	2	0	1	0	1	0	1	0	12
290				-3861.538	3	054	3	-42.677	4	0	4	158	4	008	2
291		13		3205.973	1	1.547	2	0	1	0	1	0	1	0	12
292			min	-3861.141	3	096	3	-43.138	4	0	4	174	4	008	2
293		14	max	3206.502	1	1.492	2	0	1	0	1	0	1	0	12
294				-3860.744	3	137	3	-43.6	4	0	4	189	4	009	2
295		15		3207.032	1	1.436	2	0	1	0	1	0	1	0	12
296				-3860.347	3	179	3	-44.061	4	0	4	205	4	009	2
297		16		3207.561	_1_	1.381	2	0	1	0	1	0	1	0	3
298				-3859.95	3	22	3	-44.522	4	0	4	221	4	01	2
299		17		3208.09	1_	1.326	2	0	1	0	1	0	1	0	3
300				-3859.553	3	262	3	-44.983	4	0	4	237	4	01	2
301		18		3208.62	1_	1.27	2	0	1	0	1_	0	1	0	3
302		40		-3859.156	3	303	3	-45.444	4	0	4	253	4	011	2
303		19	max	3209.149	_1_	1.215	2	0	1	0	_1_	0	1	0	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-3858.759	3	345	3	-45.906	4	0	4	27	4	011	2
305	M7	1		2341.805	2	8.909	6	1.399	4	0	1	0	1	.011	2
306			min	-2434.069	3	2.091	15	0	1	0	4	029	4	0	3
307		2		2341.634	2	8.04	6	2.004	4	0	1	0	1	.008	2
308			min	-2434.196	3	1.887	15	0	1	0	4	028	4	002	3
309		3		2341.464	2	7.171	6	2.609	4	0	1	0	1	.005	2
310		-	min	-2434.324	3	1.683	15	0	1	0	4	027	4	004	3
311		4		2341.294	2	6.302	6	3.215	4	0	1	0	1	.002	2
312		_	min	-2434.452	3	1.479	15	0	1	0	4	026	4	005	3
313		5	-	2341.123	2	5.433	6	3.82	4	0	1	0	1	0	2
314			min	-2434.58	3	1.274	15	0	1	0	4	024	4	007	3
315		6		2340.953	2	4.564	6	4.425	4	0	1	0	1_	002	15
316			min	-2434.707	3	1.07	15	0	1	0	4	022	4	008	3
317		7		2340.783	2	3.695	6	5.03	4	0	1	0	1	002	15
318			min	-2434.835	3	.866	15	0	1	0	4	02	4	009	4
319		8		2340.612	2	2.826	6	5.635	4	0	1	0	1_	002	15
320		_	min	-2434.963	3	.662	15	0	1	0	4	017	4	01	4
321		9		2340.442	2	1.983	2	6.24	4	0	1	0	1	003	15
322			min	-2435.091	3	.378	12	0	1	0	4	015	4	011	4
323		10		2340.272	2	1.306	2	6.845	4	0	1	0	1	003	15
324			min	-2435.218	3	.022	3	0	1	0	4	011	4	012	4
325		11		2340.101	2	.629	2	7.45	4	0	1	0	1	003	15
326			min	-2435.346	3	486	3	0	1	0	4	008	4	012	4
327		12		2339.931	2	048	2	8.055	4	0	_1_	0	1	003	15
328			min	-2435.474	3	994	3	0	1	0	4	004	4	012	4
329		13	max	2339.761	2	359	15	8.66	4	0	1	0	1	003	15
330			min	-2435.602	3	-1.518	4	0	1	0	4	0	4	012	4
331		14	max	2339.59	2	564	15	9.265	4	0	1	.004	4	003	15
332			min	-2435.73	3	-2.387	4	0	1	0	4	0	1	011	4
333		15	max	2339.42	2	768	15	9.87	4	0	1	.008	4	002	15
334			min	-2435.857	3	-3.256	4	0	1	0	4	0	1	009	4
335		16	max		2	972	15	10.475	4	0	1_	.013	4	002	15
336			min	-2435.985	3	-4.125	4	0	1	0	4	0	1	008	4
337		17	max	2339.079	2	-1.176	15	11.08	4	0	1	.018	4	001	15
338			min	-2436.113	3	-4.994	4	0	1	0	4	0	1	006	4
339		18	max	2338.909	2	-1.381	15	11.686	4	0	1_	.023	4	0	15
340			min	-2436.241	3	-5.863	4	0	1	0	4	0	1	003	4
341		19	max	2338.739	2	-1.585	15	12.291	4	0	1_	.029	4	0	1
342			min	-2436.368	3	-6.732	4	0	1	0	4	0	1	0	1
343	M8	1	max	2865.07	1	0	1	0	1	0	1	.023	4	0	1_
344			min	-86.529	3	0	1	-317.409	4	0	1	0	1	0	1
345		2	max	2865.24	1	0	1	0	1	0	1	0	_1_	0	1
346			min	-86.402	3	0	1	-317.556	4	0	1	013	4	0	1
347		3	max	2865.411	1	0	1	0	1	0	1	0	1	0	1
348			min	-86.274	3	0	1	-317.704	4	0	1	05	4	0	1
349		4	max	2865.581	1	0	1	0	1	0	1	0	1	0	1
350			min	-86.146	3	0	1	-317.852	4	0	1	086	4	0	1
351		5	max	2865.751	1	0	1	0	1	0	1	0	1	0	1
352				-86.018	3	0	1	-317.999	4	0	1	123	4	0	1
353		6		2865.922	1	0	1	0	1	0	1	0	1	0	1
354			min	-85.891	3	0	1	-318.147	4	0	1	159	4	0	1
355		7	max	2866.092	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-318.295	4	0	1	196	4	0	1
357		8	max	2866.262	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-318.442	4	0	1	232	4	0	1
359		9		2866.433	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	-318.59	4	0	1	269	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	LC
361		10		2866.603	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-85.38	3	0	1_	-318.738	4	0	1_	305	4	0	1
363		11		2866.773	1_	0	1	0	1_1	0	1	0	1	0	1
364		40	min		3	0	1	-318.885	4	0	1_	342	4	0	1
365		12		2866.944	1	0	1	0	1_	0	1_	0	1	0	1
366		40	min		3_	0	1_	-319.033	4	0	1_	379	4	0	1
367		13		2867.114	1_	0	1	0	1	0	1	0	1	0	1
368		4.4	min	-84.996	3	0	1_	-319.18	4	0	1_	415	4	0	1
369		14		2867.284	1	0	1	0	1	0	1	0	1	0	1
370		4.5	min	-84.869	3	0	1_	-319.328	4	0	1_	452	4	0	1
371		15		2867.455	1_	0	1	0	1	0	1	0	1	0	1
372		40	min	-84.741	3	0	1_	-319.476	4	0	1	489	4	0	1
373		16		2867.625	1_	0	1	0		0	1	0	1	0	1
374			min		3	0	1	-319.623	4	0	1	525	4	0	1
375		17		2867.795	1_	0	1	0	_1_	0	1	0	1	0	1
376		10	min		3	0	1	-319.771	4	0	1	562	4	0	1
377		18		2867.966	_1_	0	1	0	1	0	1	0	1	0	1
378			min	-84.357	3_	0	1_	-319.919	4_	0	<u>1</u>	599	4	0	1
379		19		2868.136	1_	0	1	0	1_	0	1_	0	1	0	1
380			min	-84.23	3	0	1	-320.066	4	0	1_	635	4	0	1
381	<u>M10</u>	1		1010.382	_1_	1.99	6	034	12	0	_1_	0	4	0	1
382			min	-1195.944	3	.453	15	-37.53	4	0	5	0	3	0	1
383		2		1010.911	_1_	1.919	6	034	12	0	_1_	0	10	0	15
384				-1195.547	3	.437	15	-37.992	4	0	5	014	4	0	6
385		3	max	1011.441	<u>1</u>	1.848	6	034	12	0	_1_	0	12	0	15
386			min	-1195.15	3	.42	15	-38.453	4	0	5	027	4	001	6
387		4	max		1	1.777	6	034	12	0	1	0	12	0	15
388			min	-1194.753	3	.403	15	-38.914	4	0	5	041	4	002	6
389		5	max	1012.499	1_	1.706	6	034	12	0	1	0	12	0	15
390			min	-1194.356	3	.387	15	-39.375	4	0	5	055	4	003	6
391		6	max	1013.028	1	1.634	6	034	12	0	1	0	12	0	15
392			min	-1193.959	3	.37	15	-39.836	4	0	5	069	4	003	6
393		7	max	1013.558	1_	1.563	6	034	12	0	1	0	12	0	15
394			min	-1193.562	3	.353	15	-40.298	4	0	5	084	4	004	6
395		8	max	1014.087	1	1.492	6	034	12	0	1	0	12	0	15
396			min	-1193.166	3	.337	15	-40.759	4	0	5	098	4	004	6
397		9	max	1014.616	1	1.421	6	034	12	0	1	0	12	001	15
398			min	-1192.769	3	.32	15	-41.22	4	0	5	113	4	005	6
399		10	max	1015.146	1	1.35	6	034	12	0	1	0	12	001	15
400			min	-1192.372	3	.303	15	-41.681	4	0	5	128	4	005	6
401		11	max	1015.675	1	1.279	6	034	12	0	1	0	12	001	15
402			min	-1191.975	3	.286	15	-42.143	4	0	5	143	4	006	6
403		12	max	1016.204	1	1.208	6	034	12	0	1	0	12	001	15
404				-1191.578	3	.27	15	-42.604	4	0	5	158	4	006	6
405		13		1016.733	1	1.137	6	034	12	0	1	0	12	002	15
406				-1191.181	3	.253	15	-43.065	4	0	5	173	4	007	6
407		14	max	1017.263	1	1.066	6	034	12	0	1	0	12	002	15
408				-1190.784	3	.236	15	-43.526	4	0	5	189	4	007	6
409		15		1017.792	1	.995	6	034	12	0	1	0	12	002	15
410				-1190.387	3	.22	15	-43.987	4	0	5	205	4	007	6
411		16		1018.321	1	.924	6	034	12	0	1	0	12	002	15
412				-1189.99	3	.203	15	-44.449	4	0	5	221	4	008	6
413		17		1018.851	1	.869	2	034	12	0	1	0	12	002	15
414				-1189.593	3	.186	15	-44.91	4	0	5	237	4	008	6
415		18		1019.38	1	.813	2	034	12	0	1	0	12	002	15
416		10	min		3	.163	12	-45.371	4	0	5	253	4	002	6
417		19		1019.909	1	.758	2	034	12	0	1	0	12	002	15
111		10	mux	1.0.0.000				.00-	- 1 -						

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
418			min	-1188.799	3	.136	12	-45.832	4	0	5	269	4	009	6
419	M11	1	max		2	8.849	6	1.645	5	0	_1_	0	12	.009	6
420			min	-785.835	3	2.069	15	472	1	0	4	029	4	.002	15
421		2	max	624.444	2	7.98	6	2.251	5	0	1	0	12	.005	2
422			min	-785.962	3	1.865	15	472	1	0	4	028	4	0	12
423		3	max	624.273	2	7.112	6	2.856	5	0	1_	0	12	.002	2
424			min	-786.09	3	1.661	15	472	1	0	4	027	4	0	3
425		4	max	624.103	2	6.243	6	3.461	5	0	1	0	12	0	2
426			min	-786.218	3	1.457	15	472	1	0	4	025	4	002	3
427		5	max	623.933	2	5.374	6	4.066	5	0	1	0	12	001	15
428			min	-786.346	3	1.252	15	472	1	0	4	023	4	005	4
429		6	max	623.762	2	4.505	6	4.671	5	0	1	0	12	002	15
430			min	-786.473	3	1.048	15	472	1	0	4	021	4	007	4
431		7	max	623.592	2	3.636	6	5.276	5	0	1	0	12	002	15
432			min	-786.601	3	.844	15	472	1	0	4	019	4	009	4
433		8	max	623.422	2	2.767	6	5.881	5	0	1	0	12	003	15
434			min	-786.729	3	.64	15	472	1	0	4	016	4	01	4
435		9	max	623.251	2	1.898	6	6.486	5	0	1	0	12	003	15
436			min	-786.857	3	.435	15	472	1	0	4	014	4	012	4
437		10	max	623.081	2	1.029	6	7.091	5	0	1	0	12	003	15
438			min	-786.984	3	.231	15	472	1	0	4	01	4	012	4
439		11	max	622.911	2	.281	2	7.696	5	0	1	0	12	003	15
440			min	-787.112	3	08	3	472	1	0	4	007	4	012	4
441		12	max	622.74	2	177	15	8.301	5	0	1	0	12	003	15
442		12	min	-787.24	3	709	4	472	1	0	4	003	4	012	4
443		13	max	622.57	2	382	15	8.906	5	0	1	.002	5	003	15
444		13	min	-787.368	3	-1.578	4	472	1	0	4	003	1	012	4
445		14	max	622.4	2	586	15	9.511	5	0	1	.006	5	003	15
446		17	min	-787.495	3	-2.447	4	472	1	0	4	003	1	011	4
447		15	max	622.229	2	79	15	10.116	5	0	1	.011	5	002	15
448		13	min	-787.623	3	-3.316	4	472	1	0	4	004	1	002	4
449		16	max		2	994	15	10.722	5	0	1	.015	5	002	15
450		10	min	-787.751	3	-4.185	4	472	1	0	4	004	1	002	4
451		17	max		2	-1.199	15	11.327	5	0	1	.021	5	008 001	15
452		17		-787.879	3	-5.054	4	472	1	0	4	004	1		4
453		18	min max		2	-1.403	15	11.932	5	0	1	.026	5	006 0	15
454		10	_	-788.006	3	-5.923	4	472	1	0	4	004	1	003	4
455		19	min	621.548	2	-1.607	15	12.537	5		1	.032	5		1
		19	max			-6.792			1	0			1	0	1
456	N440	4	min	-788.134	3		4	472		0	4	004		0	
457	M12	1		1120.407	1	0	1	19.321	1	0	1	.026	5_1	0	1
458		2	min		3	0	1	-322.21	4	0	4	004	12	0	1
459		2		1120.577	1	0	1	19.321	1	0	1	0	12	0	1
460		2	min	4.11	3	0	1	-322.357	4	0	1	012	4	0	1
461		3		1120.748		0	1	19.321	1	0	1	0	11	0	1
462		4	min	4.238	3	0	1	-322.505	4	0	1	049	4_	0	1
463		4		1120.918		0	1	19.321	1	0	1	.003	1_4	0	1
464		-	min	4.366	3_	0	1	-322.653		0	1_	086	4_	0	1
465		5		1121.088	1	0	1	19.321	1	0	1	.005	1_	0	1
466			min		3	0	1	-322.8	4	0	1_	123	4	0	1
467		6		1121.259	1	0	1	19.321	1	0	1_	.008	1_	0	1
468		-	min		3	0	1	-322.948		0	1_	16	4	0	1
469		7		1121.429	1_	0	1	19.321	1	0	1	.01		0	1
470			min	4.749	3	0	1	-323.096		0	1_	197	4	0	1
471		8		1121.599		0	1	19.321	1	0	1	.012	1_	0	1
472			min	4.877	3	0	1	-323.243		0	1_	234	4_	0	1
473		9	max		1_	0	1	19.321	1	0	<u>1</u>	.014	_1_	0	1
474			min	5.004	3	0	1	-323.391	4	0	<u>1</u>	271	4	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1121.94	1	0	1	19.321	1	0	1	.016	1	0	1
476			min	5.132	3	0	1	-323.539	4	0	1	309	4	0	1
477		11	max	1122.11	1	0	1	19.321	1	0	1	.019	1	0	1
478			min	5.26	3	0	1	-323.686	4	0	1	346	4	0	1
479		12	max	1122.281	1	0	1	19.321	1	0	1	.021	1	0	1
480			min	5.388	3	0	1	-323.834	4	0	1	383	4	0	1
481		13	max	1122.451	1	0	1	19.321	1	0	1	.023	1	0	1
482			min	5.516	3	0	1	-323.981	4	0	1	42	4	0	1
483		14	max	1122.621	1	0	1	19.321	1	0	1	.025	1	0	1
484			min	5.643	3	0	1	-324.129	4	0	1	457	4	0	1
485		15		1122.792	1	0	1	19.321	1	0	1	.028	1	0	1
486			min	5.771	3	0	1	-324.277	4	0	1	495	4	0	1
487		16	max	1122.962	1	0	1	19.321	1	0	1	.03	1	0	1
488			min	5.899	3	0	1	-324.424	4	0	1	532	4	0	1
489		17	_	1123.132	1	0	1	19.321	1	0	1	.032	1	0	1
490			min	6.027	3	0	1	-324.572	4	0	1	569	4	0	1
491		18		1123.303	1	0	1	19.321	1	0	1	.034	1	0	1
492			min	6.154	3	0	1	-324.72	4	0	1	606	4	0	1
493		19		1123.473	1	0	1	19.321	1	0	1	.036	1	0	1
494		13	min	6.282	3	0	1	-324.867	4	0	1	644	4	0	1
495	M1	1		211.519	1	630.773	3	54.5	5	0	1	.304	1	0	3
496	IVII		min	-15.542	5	-422.592	1	-107.869	1	0	3	138	5	015	2
497		2	max		1	629.679	3	55.961	5	0	1	.237	1	.249	1
498				-15.149	5	-424.051	1	-107.869	1	0	3	104	5	391	3
499		3		505.239	3	492.925	1	21.5	5	0	3	.17	1	.502	1
500		3	max	-308.778	2	-467.367	3	-107.597	1	0	<u> </u>	069	5	77	3
		4						22.96			_				1
501 502		4		505.871 -307.936	<u>3</u> 2	491.466	3		5	0	<u>3</u>	.103	1	.197	3
		_				-468.461		-107.597	1_	0		055	5	<u>479</u>	
503		5		506.503	3_	490.007	1	24.42	5	0	3	.036	1	005	15
504		6	min	-307.093	2	-469.555	3	-107.597	1	0	1	041	5	188	3
505		6		507.134	3	488.548	1	25.88	5	0	3	002	12	.104	3
506		-	min	-306.251	2	-470.65	3	-107.597	<u>1</u>	0	1	032	4	433	2
507		7	max		3	487.089	1	27.341	5_	0	3	006	15	.396	3
508				-305.408	2	-471.744	3	-107.597	1_	0	1_	097	1	733	2
509		8	max	508.398	3_	485.63	1	28.801	5_	0	3_	.009	5	.689	3
510				-304.566	2	-472.838	3	-107.597	1_	0	1	164	1	-1.032	2
511		9		525.877	3	44.507	2	71.407	_5_	0	9	.101	1	.805	3
512				-212.929	2	.439	15	-166.265	_1_	0	3	172	5	-1.181	2
513		10		526.508	3_	43.048	2	72.867	5_	0	9	0	12	.785	3
514			min	-212.086	2	004	5	-166.265	1_	0	3	129	4	-1.209	2
515		11		527.14	3	41.589	2	74.327	5	0	9	006	12	.766	3
516				-211.244	2	-1.791	4	-166.265	<u>1</u>	0	3	106	4	<u>-1.235</u>	2
517		12			3_	311.508	3	186.806	_5_	0	2	.161	1	<u>.669</u>	3
518				-125.271	10	-573.573	2	-103.493	1_	0	3	291	5	-1.094	2
519		13		545.132	3_	310.414	3	188.266	5	0	2	.096	1	.476	3
520				-124.569	10	-575.033	2	-103.493	1	0	3	175	5	738	2
521		14	max	545.764	3	309.319	3	189.726	5	0	2	.032	1	.283	3
522			min	-123.867	10	-576.492	2	-103.493	1	0	3	058	5	385	1
523		15	max	546.395	3	308.225	3	191.186	5	0	2	.061	5	.092	3
524				-123.165	10	-577.951	2	-103.493	1	0	3	032	1	051	1
525		16		547.027	3	307.131	3	192.646	5	0	2	.18	5	.337	2
526				-122.463	10	-579.41	2	-103.493	1	0	3	096	1	099	3
527		17		547.659	3	306.036	3	194.106	5	0	2	.3	5	.697	2
528				-121.761	10	-580.869	2	-103.493	1	0	3	16	1	29	3
529		18	max		5	580.234	2	-6.941	12	0	5	.268	5	.349	2
530				-212.836	1	-247.946	3	-144.597	4	0	2	231	1	142	3
531		19		26.931	5	578.775	2	-6.941	12	0	5	.197	5	.012	3
					_										<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

500	Member	Sec		Axial[lb]						Torque[k-ft]					
532	N 4 C	4	min		1_	-249.04	3	-143.137	4_	0	2	307	1	012	1
533	M5	1	max		1_	2101.231	3	111.683	5_	0	1	0	1	.03	2
534			min	20.098	12	-1440.176	1	0	_1_	0	4_	301	4	0	3
535		2	max		_1_	2100.136	3	113.143	5_	0	_1_	0	1	.922	1
536			min	20.519	12	-1441.635	1_	0	_1_	0	4_	232	4	-1.304	3
537		3	max	1603.788	3_	1440.629	1_	83.441	_4_	0	4_	0	1	1.786	1
538		_	min	-1065.51	2	-1467.071	3	0	_1_	0	1_	162	4	-2.568	3
539		4	max		3_	1439.17	_1_	84.901	_4_	0	_4_	0	1_	.892	1
540			min	-1064.667	2	-1468.165	3	0	1_	0	1_	109	4	-1.657	3
541		5	max	1605.052	3_	1437.711	_1_	86.361	_4_	0	_4_	0	1_	.024	9
542			min	-1063.825	2	-1469.26	3	0	_1_	0	1_	056	4	745	3
543		6	max	1605.683	3_	1436.252	_1_	87.821	4	0	4_	0	1_	.167	3
544			min	-1062.982	2	-1470.354	3	0	1	0	1	002	5	939	2
545		7	max	1606.315	3	1434.793	1	89.281	4	0	4	.053	4	1.08	3
546			min	-1062.14	2	-1471.448	3	0	1	0	1	0	1	-1.817	2
547		8	max	1606.947	3	1433.334	1	90.741	4	0	4	.109	4	1.993	3
548			min	-1061.298	2	-1472.543	3	0	1	0	1	0	1	-2.695	2
549		9	max	1636.508	3	149.056	2	238.981	4	0	1	0	1	2.295	3
550			min	-871.55	2	.445	15	0	1	0	1	262	4	-3.076	2
551		10	max		3	147.597	2	240.442	4	0	1	0	1	2.223	3
552		10	min	-870.707	2	.005	15	0	1	0	1	114	4	-3.168	2
553		11	_	1637.772	3	146.138	2	241.902	4	0	1	.036	4	2.152	3
554		- ' '	min	-869.865	2	-1.458	6	0	1	0	1	0	1	-3.259	2
555		12	_	1667.571	3	957.736	3	265.718	4	0	1	0	1	1.889	3
		12			2	-1713.882	2	0	1	-	4		4		2
556		40	min	-680.143				_	_	0	•	426		-2.914	
557		13	max		3_	956.641	3	267.178	4_	0	1_	0	1	1.295	3
558		4.4	min	-679.3	2	-1715.341	2	0	_1_	0	4_	26	4	-1.85	2
559		14		1668.834	3_	955.547	3	268.638	_4_	0	1_	0	1	.702	3
560				-678.458	2	-1716.8	2	0	1_	0	4	094	4	812	1
561		15		1669.466	3	954.453	3	270.098	_4_	0	1	.073	4	.281	2
562			min	-677.616	2	-1718.259	2	0	1_	0	4	0	1	0	13
563		16	max	1670.098	3_	953.359	3	271.558	_4_	0	_1_	.241	4	1.348	2
564			min	-676.773	2	-1719.718	2	0	1_	0	4	0	1	483	3
565		17	max	1670.73	3	952.264	3	273.018	4	0	1	.41	4	2.416	2
566			min	-675.931	2	-1721.177	2	0	1	0	4	0	1	-1.074	3
567		18	max	-20.969	12	1961.981	2	0	1	0	4	.429	4	1.238	2
568			min	-462.877	1	-861.949	3	-28.098	5	0	1	0	1	56	3
569		19	max	-20.547	12	1960.522	2	0	1	0	4	.413	4	.023	1
570			min	-462.034	1	-863.043	3	-26.638	5	0	1	0	1	024	3
571	M9	1		211.519	1	630.773	3	107.869	1	0	3	018	12	0	3
572				10.825	12	-422.592	1	6.519	12	0	4	304	1	015	2
573		2	max		1	629.679	3	107.869	1	0	3	014	12	.249	1
574		_		11.247	12	-424.051	1	6.519	12	0	4	237	1	391	3
575		3		505.239	3	492.925	1	107.597	1	0	1	01	12	.502	1
576				-308.778	2	-467.367	3	6.484	12	0	3	17	1	77	3
577		4		505.871	3	491.466	1	107.597	1	0	1	006	12	.197	1
578				-307.936		-468.461	3	6.484	12	0	3	103	1		3
		5			3	490.007	<u> </u>		<u>12</u> 1	0	<u>ာ</u> 1	103 002	12	479 005	
579		3		506.503 -307.093				107.597	12	0					15
580		^			2	-469.555	3	6.484			3	055	4	188	3
581		6		507.134	3	488.548	1	107.597	1	0	1	.031	1	.104	3
582		_		-306.251	2	-470.65	3	6.484	12	0	3	021	5	433	2
583		7		507.766	3_	487.089	1_	107.597	1_	0	1	.097	1_	.396	3
584				-305.408	2	-471.744	3	6.484	12	0	3	.003	15	733	2
585		8		508.398	3	485.63	1	107.597	1_	0	1_	.164	1	.689	3
586				-304.566	2	-472.838	3	6.484	12	0	3	.01	12	-1.032	2
587		9		525.877	3_	44.507	2	166.265	_1_	0	3	006	12	.805	3
588			min	-212.929	2	.454	15	9.74	12	0	9	212	4	-1.181	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	526.508	3	43.048	2	166.265	1	0	3	.002	1	.785	3
590			min	-212.086	2	.013	15	9.74	12	0	9	127	4	-1.209	2
591		11	max	527.14	3	41.589	2	166.265	1	0	3	.105	1	.766	3
592			min	-211.244	2	-1.676	6	9.74	12	0	9	066	5	-1.235	2
593		12	max	544.5	3	311.508	3	229.476	4	0	3	009	12	.669	3
594			min	-125.271	10	-573.573	2	5.885	12	0	2	357	4	-1.094	2
595		13	max	545.132	3	310.414	3	230.936	4	0	3	006	12	.476	3
596			min	-124.569	10	-575.033	2	5.885	12	0	2	214	4	738	2
597		14	max	545.764	3	309.319	3	232.396	4	0	3	002	12	.283	3
598			min	-123.867	10	-576.492	2	5.885	12	0	2	07	4	385	1
599		15	max	546.395	3	308.225	3	233.857	4	0	3	.074	4	.092	3
600			min	-123.165	10	-577.951	2	5.885	12	0	2	.002	12	051	1
601		16	max	547.027	3	307.131	3	235.317	4	0	3	.22	4	.337	2
602			min	-122.463	10	-579.41	2	5.885	12	0	2	.005	12	099	3
603		17	max	547.659	3	306.036	3	236.777	4	0	3	.367	4	.697	2
604			min	-121.761	10	-580.869	2	5.885	12	0	2	.009	12	29	3
605		18	max	-11.022	12	580.234	2	121.853	1	0	2	.36	4	.349	2
606			min	-212.836	1	-247.946	3	-97.887	5	0	3	.013	12	142	3
607		19	max	-10.601	12	578.775	2	121.853	1	0	2	.317	4	.012	3
608			min	-211.994	1	-249.04	3	-96.427	5	0	3	.017	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.176	2	.01	3	1.213e-2	2	NC	1	NC	1
2			min	-1.035	4	035	3	005	2	-2.475e-3	3	NC	1	NC	1
3		2	max	0	1	.264	3	.051	1	1.36e-2	2	NC	5	NC	2
4			min	-1.035	4	01	9	031	5	-2.473e-3	3	803.159	3	4782.15	1
5		3	max	0	1	.506	3	.121	1	1.508e-2	2	NC	5	NC	3
6			min	-1.035	4	142	1	037	5	-2.471e-3	3	443.757	3	1997.315	1
7		4	max	0	1	.653	3	.181	1	1.655e-2	2	NC	5	NC	3
8			min	-1.035	4	214	1	027	5	-2.469e-3	3	348.894	3	1334.734	1
9		5	max	0	1	.687	3	.211	1	1.802e-2	2	NC	5	NC	5
10			min	-1.035	4	212	1	007	5	-2.467e-3	3	332.341	3	1144.005	1
11		6	max	0	1	.611	3	.203	1	1.949e-2	2	NC	5	NC	5
12			min	-1.035	4	137	1	.009	15	-2.465e-3	3	371.438	3	1190.975	1
13		7	max	0	1	.448	3	.158	1	2.096e-2	2	NC	5	NC	10
14			min	-1.035	4	016	9	.01	10	-2.463e-3	3	497.202	3	1526.955	1
15		8	max	0	1	.24	3	.091	1	2.243e-2	2	NC	1	NC	10
16			min	-1.035	4	.005	15	0	10	-2.461e-3	3	872.621	3	2674.933	1
17		9	max	0	1	.311	2	.038	4	2.39e-2	2	NC	4	NC	1
18			min	-1.035	4	.009	15	009	10	-2.459e-3	3	1784.908	2	6252.889	4
19		10	max	0	1	.369	2	.03	3	2.537e-2	2	NC	3	NC	1
20			min	-1.035	4	034	3	021	2	-2.457e-3	3	1242.86	2	NC	1
21		11	max	0	12	.311	2	.032	3	2.39e-2	2	NC	4	NC	1
22			min	-1.035	4	.009	15	024	5	-2.459e-3	3	1784.908	2	NC	1
23		12	max	0	12	.24	3	.091	1	2.243e-2	2	NC	1	NC	4
24			min	-1.035	4	.005	15	023	5	-2.461e-3	3	872.621	3	2674.933	1
25		13	max	0	12	.448	3	.158	1	2.096e-2	2	NC	5	NC	5
26			min	-1.035	4	016	9	007	5	-2.463e-3	3	497.202	3	1526.955	1
27		14	max	0	12	.611	3	.203	1	1.949e-2	2	NC	5	NC	5
28			min	-1.035	4	137	1	.01	15	-2.465e-3	3	371.438	3	1190.975	1
29		15	max	0	12	.687	3	.211	1	1.802e-2	2	NC	5	NC	10
30			min	-1.035	4	212	1	.019	10	-2.467e-3	3	332.341	3	1144.005	1
31		16	max	0	12	.653	3	.181	1	1.655e-2	2	NC	5	NC	3
32			min	-1.035	4	214	1	.017	10	-2.469e-3	3	348.894	3	1334.734	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
33		17	max	0	12	.506	3	.121	1	1.508e-2	2	NC	_5_	NC	3
34			min	-1.035	4	142	1	.01	10	-2.471e-3	3	443.757	3	1997.315	1
35		18	max	0	12	.264	3	.052	4	1.36e-2	2	NC	5	NC	2
36		40	min	<u>-1.035</u>	4	01	9	.002	10	-2.473e-3	3	803.159	3	4527.551	4
37		19	max	0	12	.176 035	2	.01	3	1.213e-2	2	NC	1_	NC NC	1
38	N44.4	1	min	-1.035	1		3	005	2	-2.475e-3	3	NC NC	1	NC NC	1
39	M14	1	max	749	4	.333	3	.009	2	7.027e-3	3	NC NC	<u>1</u> 1	NC NC	1
40		2	min	748 0	1	<u>544</u> .657	3	005 .034	1	-5.037e-3 8.29e-3	2	NC NC	<u></u>	NC NC	2
42			max min	748	4	876	2	034 046	5	-6.06e-3	3	706.968	1	5462.987	5
43		3	max	/40 0	1	.936	3	046 .095	1	9.553e-3	2	NC	15	NC	3
44		5	min	748	4	-1.167	2	055	5	-7.083e-3	3	376.929	1	2565.313	1
45		4	max	0	1	1.137	3	.152	1	1.082e-2	2	9324.955	15	NC	3
46			min	748	4	-1.39	2	038	5	-8.107e-3	3	278.335	1	1593.366	1
47		5	max	0	1	1.245	3	.184	1	1.208e-2	2	8068.611	15	NC	3
48			min	748	4	-1.53	2	007	5	-9.13e-3	3	239.862	1	1311.742	1
49		6	max	0	1	1.26	3	.182	1	1.334e-2	2	7732.605	15	NC	3
50			min	748	4	-1.585	2	.015		-1.015e-2	3	228.569	1	1330.857	1
51		7	max	0	1	1.196	3	.145	1	1.46e-2	2	7999.255	15	NC	3
52			min	748	4	-1.566	2	.009	10	-1.118e-2	3	234.63	1	1675.133	1
53		8	max	0	1	1.085	3	.088	4	1.587e-2	2	8740.244	15	NC	3
54			min	748	4	-1.497	2	0	10	-1.22e-2	3	251.824	2	2703.512	4
55		9	max	0	1	.971	3	.058	4	1.713e-2	2	9734.342	15	NC	1
56			min	748	4	-1.418	2	008	10	-1.322e-2	3	274.794	2	4068.488	4
57		10	max	0	1	.916	3	.027	3	1.839e-2	2	NC	15	NC	1
58			min	748	4	-1.377	2	019	2	-1.425e-2	3	288.07	2	NC	1
59		11	max	0	12	.971	3	.028	3	1.713e-2	2	9734.306	<u>15</u>	NC	1
60			min	748	4	<u>-1.418</u>	2	045	5	-1.322e-2	3	274.794		5580.726	5
61		12	max	0	12	1.085	3	.084	1_	1.587e-2	2	8740.14	15	NC	3
62			min	748	4	-1.497	2	051	5	-1.22e-2	3	251.824	2	2889.077	1
63		13	max	0	12	1.196	3	.145	1	1.46e-2	2	7999.085	<u>15</u>	NC	3
64			min	748	4	<u>-1.566</u>	2	033	5	-1.118e-2	3	234.63	1_	1675.133	1
65		14	max	0	12	1.26	3	.182	1	1.334e-2	2	7732.367	<u>15</u>	NC 1000 057	3
66		45	min	748	4	<u>-1.585</u>	2	0		-1.015e-2	3	228.569	1_	1330.857	1
67		15	max	0	12	1.245	3	.184	1	1.208e-2	2	8068.287	<u>15</u>	NC	3
68		4.0	min	748	4	-1.53	2	.017	10	-9.13e-3	3	239.862	1_	1311.742	1
69		16	max	0 748	12	1.137	3	.152	1	1.082e-2 -8.107e-3	2	9324.488	<u>15</u>	NC	3
70		17	min		12	<u>-1.39</u>		.014	1		3	278.335	1_	1593.366	
71 72		11/	max min	0 748	4	.936 -1.167	3	.095 .008	10	9.553e-3 -7.083e-3	3	NC 376.929	<u>15</u> 1	NC 2551.469	3
73		18	max	0	12	.657	3	.061	4				5		2
74		10	min	748	4	876	2	0	10	-6.06e-3	3	706.968	1	3898.992	
75		19		0	12	.333	3	.009	3	7.027e-3	2	NC	1	NC	1
76		10	min	748	4	544	2	005	2	-5.037e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.34	3	.008	3	4.285e-3	3	NC	1	NC	1
78	11110		min	592	4	543	2	004	2	-7.31e-3	2	NC	1	NC	1
79		2	max	0	12	.56	3	.034	1	5.158e-3	3	NC	5	NC	2
80			min	592	4	957	2	061	5	-8.63e-3	2	579.209	2	4055.39	5
81		3	max	0	12	.754	3	.095	1	6.03e-3	3	NC	15	NC	3
82			min	592	4	-1.316	2	074	5	-9.95e-3	2	310.583	2	2552.455	1
83		4	max	0	12	.905	3	.153	1	6.903e-3	3	9340.673	15	NC	3
84			min	592	4	-1.58	2	054	5	-1.127e-2	2	231.567	2	1587.239	
85		5	max	0	12	1.003	3	.185	1	7.775e-3	3	8083.857	15	NC	3
86			min	592	4	-1.729	2	014	5	-1.259e-2	2	202.449	2	1307.244	1
87		6	max	0	12	1.046	3	.182	1	8.648e-3	3	7749.439	15	NC	3
88			min	592	4	-1.762	2	.016	10	-1.391e-2	2	196.907	2	1326.206	
89		7	max	0	12	1.042	3	.145	1	9.52e-3	3	8019.811	15	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90		_	min	592	4	<u>-1.697</u>	2	.01	10 -1.523e-2	2	207.928	2	1668.078	
91		8	max	0	12	1.005	3	.104	4 1.039e-2	3	8767.111	<u>15</u>	NC	3
92			min	592	4	<u>-1.571</u>	2	0	10 -1.655e-2	2	233.413	2	2297.445	
93		9	max	0	12	.959	3	.071	4 1.127e-2	3	9769.52	15	NC	1
94		40	min	592	4	<u>-1.439</u>	2	008	10 -1.787e-2	2	267.817	2	3335.125	4
95		10	max	0	1	.936	3	.025	3 1.214e-2	3	NC 200,200	<u>15</u>	NC NC	1
96		4.4	min	592	4	<u>-1.375</u>	2	018	2 -1.919e-2	2	288.399	2	NC NC	1
97		11	max	0	1	.959	3	.026	3 1.127e-2	3	9769.489	<u>15</u>	NC	1
98		40	min	592	4	-1.439	2	058	5 -1.787e-2	2	267.817		4278.464	
99		12	max	0 592	1	1.005	3	.085	1 1.039e-2	3	8767.032 233.413	<u>15</u> 2	NC	3
		13	min		4	<u>-1.571</u>		067	5 -1.655e-2	2			2869.498	3
101		13	max	0	1	1.042	3	.145	1 9.52e-3	3	8019.689	<u>15</u>	NC	
102		4.4	min	592	1	<u>-1.697</u>	2	<u>044</u>	5 -1.523e-2	2	207.928	2	1668.078	
103		14	max	0		1.046	3	.182	1 8.648e-3	3	7749.272	<u>15</u>	NC	3
104		15	min	592	4	<u>-1.762</u>	2	003	5 -1.391e-2	2	196.907	<u>2</u>	1326.206	2
105		15	max	0	1	1.003	3	.185	1 7.775e-3	3	8083.632	<u>15</u>	NC	3
106		4.0	min	592	4	<u>-1.729</u>	2	.017	10 -1.259e-2	2	202.449	2	1307.244	1
107		16	max	0	1	.905	3	.153	1 6.903e-3	3	9340.351	<u>15</u>	NC	3
108		47	min	592	4	<u>-1.58</u>	2	.014	10 -1.127e-2	2	231.567	2	1587.239	
109		17	max	0 592	1 4	.754 -1.316	3	.113	4 6.03e-3	2	NC 240 F92	<u>15</u>	NC	3
111		10	min		1			.008	10 -9.95e-3		310.583	5	2110.068	2
		18	max	0		.56	3	.076	4 5.158e-3	3	NC F70 200	2	NC 3123.155	
112		40	min	592	1	<u>957</u>	2	0	10 -8.63e-3	2	579.209	_		
113		19	max	0		.34	3	.008	3 4.285e-3	3	NC	1_	NC NC	1
114	MAC	4	min	592	4	<u>543</u>	2	<u>004</u>	2 -7.31e-3	2	NC NC	1_	NC NC	1
115	M16	1	max	0	12	.161	1	.007	3 7.775e-3	3	NC NC	1_	NC NC	1
116		2	min	149	4	11 <u>5</u>	3	004	2 -1.045e-2	1	NC NC	1_	NC NC	1
117		2	max	0	12	.003	13	.051	1 8.967e-3	3	NC OFC 744	5	NC 40.40.000	2
118		2	min	149	4	094	2	044	5 -1.158e-2	1_	956.741	2	4846.638	
119 120		3	max	0 149	12	.05 293	3	.12 055	1 1.016e-2 5 -1.271e-2	<u>3</u>	NC 533.597	<u>5</u>	NC 2011.648	3
121		4	min	149 0	12	<u>293</u> .084	3	<u>055</u> .18	1 1.135e-2	3	NC	5	NC	3
122		4	max		4				5 -1.384e-2			2	1339.743	_
			min	149	12	405	3	042	1 1.254e-2	1	426.967	5		1
123		5	max	0		.074		.211		<u>3</u>	NC 440.6		NC	3
124 125		6	min	149 0	12	415 .023	3	015 .203	5 -1.497e-2 1 1.373e-2	3	419.6 NC	<u>2</u> 5	1145.222 NC	3
126		0	max	149	4	326	2	.203 .01	15 -1.61e-2	1	497.568	2	1188.705	
127		7	min	149 0	12	.002	13	.01 .159		3	NC	5	NC	3
128		+	max min	149	4	158	2	.012	1 1.493e-2 10 -1.723e-2	1	761.894	2	1516.878	
129		8		149 0	12		1	.012	1 1.612e-2	3	NC	4	NC	3
130		0	max min		4	.093 157	3	.003	10 -1.836e-2					
131		9	max	0	12	.257	1	.003	4 1.731e-2	3	NC	4	NC	2
132		9	min	149	4	242	3	006	10 -1.949e-2	1	1891.604	3	4951.718	
133		10	max	0	1	.33	1	.021	3 1.85e-2	3	NC	<u>5</u>	NC	1
134		10	min	149	4	279	3	016	2 -2.062e-2	1	1425.405	1	NC	1
135		11	max	149 0	1	.257	1	.026	1 1.731e-2	3	NC	4	NC	2
136		- 11	min	149	4	242	3	034	5 -1.949e-2	1	1891.604	3	7327.546	
137		12	max	0	1	.093	1	.092	1 1.612e-2	3	NC	4	NC	3
138		12	min	148	4	157	3	035	5 -1.836e-2	1	2171.012	2	2626.691	1
139		13		0	1	.002	13	.159	1 1.493e-2	3	NC	5	NC	3
140		13	max min	148	4	158	2	015	5 -1.723e-2	1	761.894	2	1516.878	
141		14	max	146 0	1	.023	3	.203	1 1.373e-2	3	NC	5	NC	3
142		14	min	148	4	326	2	.203 .01	15 -1.61e-2	<u> </u>	497.568	2	1188.705	
143		15		146 0	1		3	. <u></u> .211	1 1.254e-2	3	NC	5	NC	3
144		10	max min	148	4	.074 415	2	.018	12 -1.497e-2	<u> </u>	419.6	2	1145.222	1
145		16	max	140 0	1	415 .084	3	. <u>.016</u> .18	1 1.135e-2	3	NC	5	NC	3
146		10	min	148	4	405	2	.015	12 -1.384e-2	1	426.967	2	1339.743	
140			111111	140	4	403		.015	12 1.3046-2		420.507		1008.740	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.05	3	.12	1	1.016e-2	3_	NC	5_	NC	3
148			min	148	4	293	2	.011	10	-1.271e-2	1_	533.597	2	2011.648	1
149		18	max	.001	1	.002	13	.065	4	8.967e-3	3	NC	5	NC	2
150			min	148	4	094	2	.003	10	-1.158e-2	1_	956.741	2	3644.517	4
151		19	max	.001	1	.161	1	.007	3	7.775e-3	3	NC	<u>1</u>	NC	1_
152			min	148	4	115	3	004	2	-1.045e-2	1_	NC	1	NC	1
153	M2	1	max	.008	1	.009	2	.014	1	2.699e-3	5	NC	1_	NC	2
154			min	009	3	015	3	964	4	-3.33e-4	1	8686.98	2	80.364	4
155		2	max	.007	1	.007	2	.013	1	2.762e-3	5	NC	1	NC	2
156			min	008	3	014	3	886	4	-3.161e-4	1	NC	1	87.484	4
157		3	max	.007	1	.006	2	.012	1	2.824e-3	5	NC	1	NC	2
158			min	008	3	014	3	808	4	-2.992e-4	1	NC	1	95.936	4
159		4	max	.006	1	.005	2	.011	1	2.886e-3	5	NC	1	NC	2
160			min	007	3	014	3	731	4	-2.823e-4	1	NC	1	106.065	4
161		5	max	.006	1	.003	2	.01	1	2.948e-3	5	NC	1	NC	2
162			min	007	3	013	3	655	4	-2.653e-4	1	NC	1	118.345	4
163		6	max	.005	1	.002	2	.008	1	3.01e-3	5	NC	1	NC	2
164			min	006	3	013	3	581	4	-2.484e-4	1	NC	1	133.425	4
165		7	max	.005	1	0	2	.007	1	3.072e-3	5	NC	1	NC	1
166			min	006	3	012	3	509	4	-2.315e-4	1	NC	1	152.232	4
167		8	max	.005	1	0	2	.006	1	3.134e-3	5	NC	1	NC	1
168		T .	min	005	3	012	3	44	4	-2.146e-4	1	NC	1	176.113	4
169		9	max	.004	1	0	15	.005	1	3.198e-3	4	NC	1	NC	1
170		-	min	005	3	011	3	374	4	-1.977e-4	1	NC	1	207.094	4
171		10	max	.004	1	001	15	.005	1	3.266e-3	4	NC	1	NC	1
172		10	min	004	3	001 01	3	312	4	-1.808e-4	1	NC	1	248.338	4
173		11		.003	1	001	15	.004				NC	•	NC	1
		111	max						1	3.334e-3	4		<u>1</u> 1		
174		40	min	004	3	01	3	254	4	-1.639e-4		NC NC	•	305.014	4
175		12	max	.003	1	001	15	.003	1	3.402e-3	4	NC NC	1	NC 200.040	1
176		40	min	003	3	009	3	201	4	-1.47e-4	1_	NC NC		386.048	4
177		13	max	.003	1	001	15	.002	1	3.47e-3	4	NC NC	1	NC FOZ OZE	1
178		4.4	min	003	3	008	3	1 <u>53</u>	4	-1.3e-4	1_	NC NC	1	507.975	4
179		14	max	.002	1	001	15	.002	1	3.538e-3	4_	NC	1	NC 704.05	1
180			min	002	3	007	3	<u>11</u>	4	-1.131e-4	1_	NC	1_	704.35	4
181		15	max	.002	1	001	15	.001	1	3.606e-3	_4_	NC	1	NC	1
182			min	002	3	006	3	074	4	-9.622e-5	_1_	NC	1_	1052.271	4
183		16	max	.001	1	0	15	0	1	3.674e-3	_4_	NC	1	NC	1
184			min	001	3	004	6	044	4	-7.93e-5	_1_	NC	<u>1</u>	1763.875	4
185		17	max	0	1	0	15	0	1	3.742e-3	_4_	NC	_1_	NC	1_
186			min	0	3	003	6	021	4	-6.239e-5	<u>1</u>	NC	1	3620.01	4
187		18	max	0	1	0	15	0	1	3.81e-3	4_	NC	_1_	NC	1_
188			min	0	3	002	6	007	4	-4.548e-5	1_	NC	_1_	NC	1_
189		19	max	0	1	0	1	0	1	3.878e-3	4_	NC	<u>1</u>	NC	1
190			min	0	1	0	1	0	1	-2.856e-5	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	5.413e-6	1	NC	1_	NC	1
192			min	0	1	0	1	0	1	-8.42e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.021	4	4.177e-5	1	NC	1	NC	1
194			min	0	2	003	6	0	1	-2.535e-5	5	NC	1	NC	1
195		3	max	0	3	001	15	.04	4	8.114e-4	4	NC	1	NC	1
196			min	0	2	006	6	0	1	4.389e-6	12	NC	1	7954.73	5
197		4	max	.001	3	002	15	.058	4	1.638e-3	4	NC	1	NC	1
198			min	001	2	009	6	0	1	6.403e-6		NC	1	6002.957	5
199		5	max	.002	3	003	15	.074	4	2.465e-3	4	NC	1	NC	1
200			min	001	2	012	6	0	1	8.417e-6		8520.357	6	5157.93	5
201		6	max	.002	3	003	15	.089	4	3.292e-3	4	NC	5	NC	1
202			min	002	2	015	6	0	1	1.043e-5		6904.454	6	4794.105	_
203		7	max	.003	3	004	15	.103	4	4.118e-3	4	NC	5	NC	1
200			πιαλ	.000	J	004	IJ	. 100	<u> </u>	T. 1 10C-3	_	INC	J	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
204			min	002	2	017	6	0	1	1.245e-5		5931.236	6	4719.521	5
205		8	max	.003	3	004	15	.116	4	4.945e-3	4_	NC	5_	NC	1
206			min	002	2	019	6	0	12	1.446e-5	12	5331.006	6	4876.016	5
207		9	max	.003	3	005	15	.128	4	5.772e-3	4	NC	5	NC	1
208			min	003	2	021	6	0	12	1.647e-5		4976.818	6	5272.409	5
209		10	max	.004	3	005	15	.139	4	6.599e-3	4_	NC	5_	NC	1
210			min	003	2	021	6	0	12	1.849e-5	12	4807.129	6	5978.494	5
211		11	max	.004	3	005	15	.15	4	7.425e-3	4	NC	5_	NC	1
212			min	003	2	021	6	0	12	2.05e-5	12	4796.991	6	7159.244	5
213		12	max	.005	3	005	15	.161	4	8.252e-3	4	NC	5	NC	1_
214			min	004	2	021	6	0	12	2.252e-5	12	4948.492	6	9186.08	5
215		13	max	.005	3	004	15	.171	4	9.079e-3	4	NC	5	NC	1
216			min	004	2	019	6	0	12	2.453e-5	12	5292.785	6	NC	1
217		14	max	.006	3	004	15	.182	4	9.905e-3	4	NC	5	NC	1
218			min	004	2	017	6	0	12	2.654e-5	12	5906.173	6	NC	1
219		15	max	.006	3	003	15	.193	4	1.073e-2	4	NC	3	NC	1
220			min	005	2	015	6	0	12	2.856e-5	12	6957.519	6	NC	1
221		16	max	.006	3	002	15	.204	4	1.156e-2	4	NC	1	NC	1
222			min	005	2	012	6	0	12	3.057e-5	12	8855.603	6	NC	1
223		17	max	.007	3	002	15	.217	4	1.239e-2	4	NC	1	NC	1
224			min	005	2	008	1	0	12	3.259e-5	12	NC	1	NC	1
225		18	max	.007	3	0	15	.231	4	1.321e-2	4	NC	1	NC	2
226			min	006	2	005	1	0	12	3.46e-5	12	NC	1	9284.565	1
227		19	max	.008	3	0	5	.247	4	1.404e-2	4	NC	1	NC	2
228			min	006	2	002	1	0	12	3.661e-5	12	NC	1	7746.103	1
229	M4	1	max	.003	1	.006	2	0	12	2.336e-4	1	NC	1	NC	3
230			min	0	5	008	3	247	4	-6.414e-4	5	NC	1	100.619	4
231		2	max	.003	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
232			min	0	5	007	3	227	4	-6.414e-4	5	NC	1	109.447	4
233		3	max	.002	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
234			min	0	5	007	3	207	4	-6.414e-4	5	NC	1	119.95	4
235		4	max	.002	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
236			min	0	5	007	3	187	4	-6.414e-4	5	NC	1	132.565	4
237		5	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
238			min	0	5	006	3	168	4	-6.414e-4	5	NC	1	147.885	4
239		6	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
240			min	0	5	006	3	149	4	-6.414e-4	5	NC	1	166.729	4
241		7	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
242			min	0	5	005	3	13	4	-6.414e-4	5	NC	1	190.265	4
243		8	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
244			min	0	5	005	3	113		-6.414e-4		NC	1	220.191	4
245		9	max	.001	1	.003	2	0	12		1	NC	1	NC	2
246			min	0	5	004	3	096	4	-6.414e-4	5	NC	1	259.067	4
247		10	max	.001	1	.003	2	0	12	2.336e-4	1	NC	1	NC	2
248		10	min	0	5	004	3	08	4	-6.414e-4	5	NC	1	310.894	4
249		11	max	.001	1	.003	2	0	12	2.336e-4	1	NC	1	NC	2
250		+ ' '	min	0	5	004	3	065	4	-6.414e-4	5	NC	1	382.217	4
251		12	max	.001	1	.002	2	0	12	2.336e-4	1	NC	1	NC	2
252		12	min	0	5	003	3	051	4	-6.414e-4	5	NC	1	484.357	4
253		13	max	0	1	.002	2	<u>051</u> 0	12	2.336e-4	<u> </u>	NC NC	1	NC	1
254		13	min	0	5	002	3	039	4	-6.414e-4	5	NC NC	1	638.328	4
255		11				.002	2	<u>039</u> 0				NC NC	•	NC	
		14	max	0	5				12	2.336e-4			1_1		1
256		4.5	min	0		002	3	028	4	-6.414e-4	5	NC NC	1_	886.881	4
257		15	max	0	1	.001	2	0	12	2.336e-4	1_	NC	1_	NC	1
258		40	min	0	5	002	3	019	4	-6.414e-4	5	NC NC	1_	1328.564	
259		16	max	0	1	0	2	0	12	2.336e-4	1_	NC	1_	NC	1
260			min	0	5	001	3	011	4	-6.414e-4	5	NC	<u>1</u>	2235.791	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	00	12	2.336e-4	_1_	NC	_1_	NC	1_
262			min	0	5	0	3	005	4	-6.414e-4	5	NC	1_	4618.582	4
263		18	max	0	1	0	2	0	12	2.336e-4	_1_	NC	_1_	NC	1
264			min	0	5	0	3	002	4	-6.414e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	2.336e-4	1	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-6.414e-4	5	NC	1_	NC	1
267	<u>M6</u>	1_	max	.024	1	.033	2	0	1	2.864e-3	_4_	NC	3	NC	1
268			min	029	3	046	3	975	4	0	1_	2317.09	2	79.483	4
269		2	max	.023	1	.03	2	0	1	2.923e-3	4	NC	3	NC	1
270		_	min	027	3	043	3	896	4	0	_1_	2554.046	2	86.525	4
271		3	max	.021	1	.027	2	0	1	2.983e-3	4	NC	3	NC	1
272			min	026	3	041	3	817	4	0	1_	2842.305	2	94.885	4
273		4	max	.02	1	.024	2	0	1	3.042e-3	_4_	NC	3_	NC	1
274			min	024	3	039	3	739	4	0	1_	3197.199	2	104.904	4
275		5	max	.019	1	.021	2	0	1	3.102e-3	_4_	NC	3_	NC	1
276			min	022	3	036	3	662	4	0	1_	3640.453	2	117.049	4
277		6	max	.017	1	.018	2	0	1	3.161e-3	4	NC	3	NC	1_
278			min	021	3	034	3	587	4	0	1_	4203.695	2	131.966	4
279		7	max	.016	1	.016	2	0	1	3.221e-3	4	NC	1_	NC	1
280			min	019	3	031	3	<u>515</u>	4	0	1	4934.451	2	150.568	4
281		8	max	.015	1	.013	2	0	1	3.28e-3	4	NC	_1_	NC	1_
282			min	018	3	029	3	445	4	0	1_	5906.891	2	174.188	4
283		9	max	.013	1	.011	2	0	1	3.34e-3	_4_	NC	_1_	NC	1_
284			min	016	3	026	3	378	4	0	1	7242.254	2	204.83	4
285		10	max	.012	1	.008	2	0	1	3.399e-3	4	NC	_1_	NC	1_
286			min	014	3	024	3	315	4	0	1_	9150.438	2	245.624	4
287		11	max	.011	1	.006	2	0	1	3.459e-3	4	NC	_1_	NC	1
288			min	013	3	021	3	257	4	0	1_	NC	1_	301.68	4
289		12	max	.009	1	.005	2	0	1	3.518e-3	4	NC	_1_	NC	1_
290			min	011	3	019	3	203	4	0	1_	NC	1_	381.826	4
291		13	max	.008	1	.003	2	0	1	3.578e-3	_4_	NC	_1_	NC	1_
292			min	01	3	016	3	154	4	0	1_	NC	1_	502.412	4
293		14	max	.007	1	.002	2	0	1	3.637e-3	_4_	NC	_1_	NC	1_
294			min	008	3	013	3	111	4	0	1_	NC	1_	696.619	4
295		15	max	.005	1	0	2	0	1	3.697e-3	4	NC	_1_	NC	1_
296			min	006	3	011	3	074	4	0	1_	NC	1_	1040.675	
297		16	max	.004	1	00	2	0	1	3.756e-3	4	NC	_1_	NC	1_
298			min	005	3	008	3	044	4	0	1_	NC	1_	1744.301	4
299		17	max	.003	1	0	2	0	1	3.816e-3	4	NC	_1_	NC	1_
300			min	003	3	005	3	022	4	0	1_	NC	1_	3579.28	4
301		18	max	.001	1	0	2	0	1	3.875e-3		NC	1_	NC	1
302			min	002	3	003	3	007	4	0	<u>1</u>	NC	<u>1</u>	NC	1
303		19	max	0	1	0	1	0	1	3.935e-3	_4_	NC	_1_	NC	1_
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	<u>M7</u>	1_	max	00	1	00	1	0	1	0	_1_	NC	_1_	NC	1_
306			min	0	1	0	1	0	1	-8.549e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	15	.021	4	0	_1_	NC	_1_	NC	1
308			min	001	2	004	3	0	1	-5.615e-5	4	NC	1_	NC	1
309		3	max	.003	3	001	15	.041	4	7.426e-4	4	NC	1_	NC	1
310			min	003	2	007	3	0	1	0	1	NC	1_	7071.216	4
311		4	max	.004	3	002	15	.059	4	1.541e-3	4	NC	1	NC	1
312			min	004	2	01	3	0	1	0	1	NC	1_	5282.925	4
313		5	max	.005	3	003	15	.075	4	2.34e-3	4	NC	_1_	NC	1_
314			min	005	2	013	3	0	1	0	1	8575.985	4	4486.358	4
315		6	max	.007	3	004	15	.09	4	3.139e-3	4	NC	1_	NC	1
316			min	006	2	016	3	0	1	0	1	6945.504	4	4112.418	
317		7	max	.008	3	004	15	.104	4	3.937e-3	4	NC	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	008	2	018	3	0	1	0	1_	5963.694	4	3981.329	
319		8	max	.009	3	005	15	.117	4	4.736e-3	4	NC	5	NC	1
320			min	009	2	02	4	0	1	0	_1_	5358.103	4_	4029.738	
321		9	max	.011	3	005	15	.129	4	5.535e-3	4	NC FOOD F	5	NC 40.40,000	1
322		40	min	01	2	021	4	0	1	0 6.334e-3	1_	5000.5	<u>4</u>	4246.099	4
323		10	max	.012	3	005 022	15	.14	4		4	NC	<u>5</u> 4	NC 4655.653	1
324 325		11	min	011	3		15	<u>0</u>	4	7.132e-3	1_1	4828.695 NC		NC	1
326			max	.013 013	2	005 022	4	<u>.15</u>	1	7.132e-3	_ <u>4</u> 1	4817.411	<u>5</u> 4	5327.218	
327		12	max	013 .015	3	022 005	15	.16	4	7.931e-3	4	NC	-4 5	NC	1
328		12	min	014	2	005 021	4	0	1	0	1	4968.599	4	6404.114	
329		13	max	.016	3	005	15	.17	4	8.73e-3	4	NC	5	NC	1
330		13	min	015	2	003	4	0	1	0.736-3	1	5313.43	4	8188.28	4
331		14	max	.017	3	004	15	.179	4	9.528e-3	4	NC	5	NC	1
332		17	min	017	2	018	4	0	1	0	1	5928.411	4	NC	1
333		15	max	.019	3	004	15	.189	4	1.033e-2	4	NC	1	NC	1
334		10	min	018	2	016	3	0	1	0	1	6982.947	4	NC	1
335		16	max	.02	3	003	15	.199	4	1.113e-2	4	NC	1	NC	1
336			min	019	2	014	3	0	1	0	1	8887.199	4	NC	1
337		17	max	.021	3	002	15	.21	4	1.192e-2	4	NC	1	NC	1
338			min	02	2	011	3	0	1	0	1	NC	1	NC	1
339		18	max	.022	3	001	15	.222	4	1.272e-2	4	NC	1	NC	1
340			min	022	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.024	3	0	10	.236	4	1.352e-2	4	NC	1	NC	1
342			min	023	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.022	2	0	1	0	1_	NC	1_	NC	1
344			min	0	3	025	3	236	4	-8.699e-4	4	NC	1_	105.252	4
345		2	max	.006	1	.021	2	0	1	0	_1_	NC	_1_	NC	1
346			min	0	3	023	3	217	4	-8.699e-4	4	NC	1_	114.505	4
347		3	max	.006	1	.02	2	0	1	0	_1_	NC	_1_	NC	1
348			min	0	3	022	3	198	4	-8.699e-4	4	NC	1_	125.514	4
349		4	max	.006	1	.018	2	0	1	0	_1_	NC	_1_	NC	1
350			min	0	3	02	3	<u>179</u>	4	-8.699e-4	4_	NC	1_	138.736	4
351		5	max	.005	1	.017	2	0	1	0	1_	NC	1_	NC 454.70	1
352			min	0	3	019	3	16	4	-8.699e-4	4_	NC NC	1_	154.79	4
353		6	max	.005	1	.016	2	0	1	0 000 4	1_1	NC NC	1_1	NC	1
354		7	min	0	3	018	2	142	1	-8.699e-4	4_	NC NC	1_1	174.538	4
355			max	.005	3	.015 016	3	0 125	4	0 -8.699e-4	1_	NC NC	1_1	NC	1
356 357		8	min	<u> </u>	1	.016 .014	2	<u>125</u> 0	1	0	<u>4</u> 1	NC NC	1	199.201 NC	1
358		0	max min	<u>.004</u> 0	3	015	3	108		-8.699e-4		NC NC	1	230.561	4
359		9	max	.004	1	.012	2	<u>100</u> 0	1	0	1	NC	1	NC	1
360		9	min	0	3	014	3	091	4	-8.699e-4	4	NC	1	271.3	4
361		10	max	.003	1	.011	2	0	1	0.0336-4	1	NC	1	NC	1
362		10	min	0	3	012	3	076	4	-8.699e-4	4	NC	1	325.611	4
363		11	max	.003	1	.01	2	0	1	0	1	NC	1	NC	1
364			min	0	3	011	3	062	4	-8.699e-4	4	NC	1	400.354	4
365		12	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
366			min	0	3	01	3	049	4	-8.699e-4	4	NC	1	507.394	4
367		13	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
368			min	0	3	008	3	037	4	-8.699e-4	4	NC	1	668.757	4
369		14	max	.002	1	.006	2	0	1	0	1	NC	1	NC	1
370			min	0	3	007	3	027	4	-8.699e-4	4	NC	1	929.253	4
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	005	3	018	4	-8.699e-4	4	NC	1	1392.179	4
373		16	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
		10	IIIax	.001	3	.004				U		INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

375	atio LC
378	1
378	
380	1
380	1
381 M10	1
382	1
383	2
384	
385	2
386	
387	2
388	
389	2
390	
391	2
392	
393	2
394	
395	1_
396	
397	1
398	
10 max	1
400 min 004 3 01 3 315 4 1.142e-5 12 NC 1 246. 401 11 max .003 1 002 15 0 12 3.433e-3 4 NC 1 NC 402 min 004 3 01 3 256 4 1.036e-5 12 NC 1 302.3 403 12 max .003 1 002 15 0 12 3.491e-3 4 NC 1 NC 404 min 003 3 009 3 202 4 9.297e-6 12 NC 1 382.7 405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NC 405 14 max .002 1 002 15 0 12 3.549e-3 4	
401 11 max .003 1 002 15 0 12 3.433e-3 4 NC 1 NC 402 min 004 3 01 3 256 4 1.036e-5 12 NC 1 302.3 403 12 max .003 1 002 15 0 12 3.491e-3 4 NC 1 NC 404 min 003 3 009 3 202 4 9.297e-6 12 NC 1 382.7 405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NC 406 min 003 3 008 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.666e-3 4 <td>1</td>	1
402 min 004 3 01 3 256 4 1.036e-5 12 NC 1 302.3 403 12 max .003 1 002 15 0 12 3.491e-3 4 NC 1 NC 404 min 003 3 009 3 202 4 9.297e-6 12 NC 1 382.7 405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NC 406 min 003 3 008 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NC 408 min 002 3 007 4 111 4 7.172e-6 12 N	7 4
403 12 max .003 1 002 15 0 12 3.491e-3 4 NC 1 NC 404 min 003 3 009 3 202 4 9.297e-6 12 NC 1 382.7 405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NC 406 min 003 3 008 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NC 408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 </td <td>1</td>	1
404 min 003 3 202 4 9.297e-6 12 NC 1 382.7 405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NO 406 min 003 3 008 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NO 408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NO 410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 104	52 4
405 13 max .003 1 002 15 0 12 3.549e-3 4 NC 1 NC 406 min 003 3 088 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NC 408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NC 41 NC 44 1 NC 44 1	1
406 min 003 3 008 3 154 4 8.234e-6 12 NC 1 503.6 407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NC 408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NC 410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 1043.3 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 412 min 001 3 005 4 044 4 5.047e-6 12 <td< td=""><td>06 4</td></td<>	06 4
407 14 max .002 1 002 15 0 12 3.606e-3 4 NC 1 NC 408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NC 410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 1043.3 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 41 NC 41 NC 41 NC 1 NC 1 NC 41	1
408 min 002 3 007 4 111 4 7.172e-6 12 NC 1 698.3 409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NC 410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 1043.3 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 <	02 4
409 15 max .002 1 002 15 0 12 3.664e-3 4 NC 1 NC 410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 1043.3 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 412 min 001 3 005 4 044 4 5.047e-6 12 NC 1 1749.3 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 NC 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC<	1
410 min 002 3 006 4 074 4 6.109e-6 12 NC 1 1043.3 411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 412 min 001 3 005 4 044 4 5.047e-6 12 NC 1 1749.3 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 3590.4 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC <td< td=""><td>31 4</td></td<>	31 4
411 16 max .001 1 001 15 0 12 3.722e-3 4 NC 1 NC 412 min 001 3 005 4 044 4 5.047e-6 12 NC 1 1749. 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 3590. 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 0 <td< td=""><td>1</td></td<>	1
412 min 001 3 005 4 044 4 5.047e-6 12 NC 1 1749. 413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 3590.9 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1	66 4
413 17 max 0 1 0 15 0 12 3.779e-3 4 NC 1 NC 414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 3590.9 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 -3.612e-7 12 NC 1 NC	1
414 min 0 3 004 4 022 4 3.984e-6 12 NC 1 3590.9 415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 -3.612e-7 12 NC 1 NC	67 4
415 18 max 0 1 0 15 0 12 3.837e-3 4 NC 1 NC 416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 -3.612e-7 12 NC 1 NC	1
416 min 0 3 002 4 007 4 2.922e-6 12 NC 1 NC 417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 -3.612e-7 12 NC 1 NC	91 4
417 19 max 0 1 0 1 0 1 3.895e-3 4 NC 1 NC 418 min 0 1 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 0 1 -3.612e-7 12 NC 1 NC	1
418 min 0 1 0 1 0 1 1.859e-6 12 NC 1 NC 419 M11 1 max 0 1 0 1 -3.612e-7 12 NC 1 NC	1
419 M11 1 max 0 1 0 1 0 1 -3.612e-7 12 NC 1 NC	1
	1
1420 min 0 1 0 1 0 1 0 4 0 1520 1 1 NO 1 NO	1
120 1 0 1 0 1 0 1 100	1
421 2 max 0 3 0 15 .021 4 -2.375e-6 12 NC 1 NC	1
422 min 0 2003 4 0 12 -4.177e-5 1 NC 1 NC	1
423 3 max 0 3002 15 .04 4 7.668e-4 5 NC 1 NC	1
424 min 0 2006 4 0 12 -7.813e-5 1 NC 1 7454.8	87 4
425 4 max .001 3002 15 .058 4 1.568e-3 4 NC 1 NC	1
426 min001 201 4 0 12 -1.145e-4 1 NC 1 5599.9	09 4
427 5 max .002 3003 15 .074 4 2.372e-3 4 NC 1 NC	1
428 min001 2013 4 0 12 -1.509e-4 1 8243.393 4 4785.4	46 4
429 6 max .002 3004 15 .089 4 3.177e-3 4 NC 5 NC	
430 min002 2016 4 0 12 -1.872e-4 1 6699.357 4 4418.8	
431 7 max .003 3004 15 .103 4 3.981e-3 4 NC 5 NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	002	2	018	4	0	10	-2.236e-4	_1_	5768.609	4	4315.447	4
433		8	max	.003	3	005	15	.116	4	4.786e-3	_4_	NC	5	NC	1_
434			min	002	2	02	4	0	1	-2.599e-4	<u>1</u>	5194.924	4_	4414.291	4
435		9	max	.003	3	005	15	.128	4	5.59e-3	4	NC	5	NC	1
436			min	003	2	022	4	0	1	-2.963e-4	1_	4857.653	4	4712.604	4
437		10	max	.004	3	006	15	.139	4	6.394e-3	_4_	NC	5_	NC	1_
438			min	003	2	022	4	001	1	-3.327e-4	1_	4698.434	4	5254.193	4
439		11	max	.004	3	006	15	.149	4	7.199e-3	_4_	NC	5	NC	1
440			min	003	2	023	4	002	1	-3.69e-4	1_	4693.931	4	6146.438	4
441		12	max	.005	3	005	15	.159	4	8.003e-3	_4_	NC	5_	NC	1_
442			min	004	2	022	4	002	1	-4.054e-4	1_	4846.893	4	7619.194	4
443		13	max	.005	3	005	15	.169	4	8.808e-3	_4_	NC	5	NC	1
444			min	004	2	021	4	003	1	-4.417e-4	1_	5188.366	4	NC	1
445		14	max	.006	3	005	15	.179	4	9.612e-3	4	NC	5	NC	1
446			min	004	2	019	4	004	1	-4.781e-4	1_	5793.604	4	NC	1
447		15	max	.006	3	004	15	.189	4	1.042e-2	4_	NC	3	NC	1
448			min	005	2	016	4	006	1	-5.145e-4	1	6828.716	4	NC	1
449		16	max	.006	3	003	15	.2	4	1.122e-2	4	NC	1_	NC	1_
450			min	005	2	013	4	007	1	-5.508e-4	1	8695.476	4	NC	1
451		17	max	.007	3	002	15	.212	4	1.203e-2	4	NC	1_	NC	1
452			min	005	2	01	4	009	1	-5.872e-4	1	NC	1	NC	1
453		18	max	.007	3	002	15	.224	4	1.283e-2	4	NC	1	NC	2
454			min	006	2	006	4	011	1	-6.235e-4	1_	NC	1_	9284.565	1
455		19	max	.008	3	0	10	.238	4	1.363e-2	4	NC	1	NC	2
456			min	006	2	002	1	013	1	-6.599e-4	1	NC	1	7746.103	1
457	M12	1	max	.003	1	.006	2	.013	1	-1.346e-5	12	NC	1	NC	3
458			min	0	3	008	3	238	4	-7.454e-4	4	NC	1	104.017	4
459		2	max	.003	1	.005	2	.012	1	-1.346e-5	12	NC	1	NC	3
460			min	0	3	007	3	219	4	-7.454e-4	4	NC	1	113.151	4
461		3	max	.002	1	.005	2	.011	1	-1.346e-5	12	NC	1	NC	3
462			min	0	3	007	3	2	4	-7.454e-4	4	NC	1	124.019	4
463		4	max	.002	1	.005	2	.01	1	-1.346e-5	12	NC	1	NC	3
464			min	0	3	007	3	181	4	-7.454e-4	4	NC	1	137.072	4
465		5	max	.002	1	.004	2	.009	1	-1.346e-5	12	NC	1	NC	3
466			min	0	3	006	3	162	4	-7.454e-4	4	NC	1	152.923	4
467		6	max	.002	1	.004	2	.008	1	-1.346e-5	12	NC	1	NC	3
468			min	0	3	006	3	144	4	-7.454e-4	4	NC	1	172.42	4
469		7	max	.002	1	.004	2	.007	1	-1.346e-5	12	NC	1	NC	3
470			min	0	3	005	3	126	4	-7.454e-4	4	NC	1	196.77	4
471		8	max	.002	1	.004	2	.006	1	-1.346e-5	12	NC	1	NC	3
472			min	0	3	005	3	109	4	-7.454e-4		NC	1	227.732	4
473		9	max	.001	1	.003	2	.005	1	-1.346e-5	12	NC	1	NC	2
474			min	0	3	004	3	093	4	-7.454e-4	4	NC	1	267.955	4
475		10	max	.001	1	.003	2	.004	1	-1.346e-5		NC	1	NC	2
476		1.0	min	0	3	004	3	077	4	-7.454e-4	4	NC	1	321.577	4
477		11	max	.001	1	.003	2	.004	1	-1.346e-5	12	NC	1	NC	2
478			min	0	3	004	3	063	4	-7.454e-4	4	NC	1	395.37	4
479		12	max	.001	1	.002	2	.003	1	-1.346e-5	12	NC	1	NC	2
480		14	min	0	3	003	3	05	4	-7.454e-4	4	NC	1	501.049	4
481		13	max	0	1	.002	2	.002	1	-1.346e-5	12	NC	1	NC	1
482		13	min	0	3	003	3	038	4	-7.454e-4	4	NC	1	660.358	4
483		14		0	1	.002	2	.002	1	-1.346e-5	12	NC	1	NC	1
484		14	max min	0	3	002	3	027	4	-7.454e-4	-	NC NC	1	917.533	4
485		15		0	1		2		1		12	NC NC	1		1
		15	max		3	.001		.001		-1.346e-5	12	NC NC	1	NC	_
486		16	min	0		002	3	018	4	-7.454e-4	4		_	1374.545	
487		16	max	0	1	0	2	0	1	-1.346e-5		NC NC	1	NC	1
488			min	0	3	001	3	011	4	-7.454e-4	4_	NC	1_	2313.286	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	-1.346e-5	12	NC	1_	NC	1
490			min	0	3	0	3	005	4	-7.454e-4	4	NC	1_	4778.943	4
491		18	max	0	1	0	2	0	1	-1.346e-5	12	NC	1	NC	1
492			min	0	3	0	3	002	4	-7.454e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-1.346e-5	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-7.454e-4	4	NC	1	NC	1
495	M1	1	max	.01	3	.176	2	1.035	4	1.363e-2	1	NC	1	NC	1
496			min	005	2	035	3	0	12	-2.325e-2	3	NC	1	NC	1
497		2	max	.003	3	.085	2	1	4	1.033e-2	4	NC	5	NC	1
498			min	005	2	016	3	01	1	-1.154e-2	3	1492.897	2	8154.439	
499		3		.01	3	.015	3	.964	4	1.769e-2	4	NC	5	NC	2
		- 3	max												
500		-	min	005	2	012	2	014	1	-2.973e-4	1_	720.457	2	4499.566	
501		4	max	.01	3	.065	3	.926	4	1.536e-2	4_	NC 170 100	<u>15</u>	NC	2
502		_	min	005	2	121	2	013	1	-4.722e-3	3	456.103	2	3267.96	5
503		5	max	.009	3	.128	3	.887	4	1.303e-2	_4_	9888.605	15	NC	1
504			min	005	2	235	2	009	1	-9.326e-3	3	329.798	2	2649.039	5
505		6	max	.009	3	.196	3	.847	4	1.435e-2	<u>1</u>	7801.805	<u>15</u>	NC	1
506			min	005	2	345	2	004	1	-1.393e-2	3	260.094	2	2272.759	5
507		7	max	.009	3	.261	3	.807	4	1.923e-2	1	6571.235	15	NC	1
508			min	005	2	443	2	0	3	-1.853e-2	3	218.905	2	1998.653	4
509		8	max	.009	3	.316	3	.765	4	2.411e-2	1	5843.791	15	NC	1
510			min	005	2	521	2	0	12	-2.314e-2	3	194.53	2	1791.765	4
511		9	max	.009	3	.351	3	.722	4	2.667e-2	1	5463.678	15	NC	1
512		Ť	min	004	2	57	2	0	1	-2.346e-2	3	181.823	2	1654.548	
513		10	max	.008	3	.364	3	.675	4	2.867e-2	2	5347.623	15	NC	1
514		10	min	004	2	586	2	0	12	-2.091e-2	3	178.095	2	1613.544	_
		11			3		3								4
515		11	max	.008		.356		.624	4	3.068e-2	2	5463.429	<u>15</u>	NC	1
516		40	min	004	2	57	2	0	12	-1.836e-2	3	182.45	2	1648.407	4
517		12	max	.008	3	.326	3	.569	4	2.955e-2	2	5843.207	15	NC 4700 050	1
518		10	min	004	2	<u>518</u>	2	<u>001</u>	1	-1.558e-2	3	196.406	2	1766.253	
519		13	max	.008	3	.277	3	.508	4	2.372e-2	2	6570.101	<u>15</u>	NC	1
520			min	004	2	437	2	0	1	-1.246e-2	3	223.409	2	2097.599	4
521		14	max	.008	3	.216	3	.442	4	1.79e-2	2	7799.724	15	NC	1
522			min	004	2	335	2	0	12	-9.346e-3	3	269.64	2	2833.175	4
523		15	max	.007	3	.146	3	.374	4	1.207e-2	2	9884.782	15	NC	1
524			min	004	2	223	2	0	12	-6.227e-3	3	349.307	2	4587.604	4
525		16	max	.007	3	.074	3	.309	4	1.079e-2	4	NC	15	NC	1
526			min	004	2	11	2	0	12	-3.109e-3	3	496.91	2	NC	1
527		17	max	.007	3	.005	3	.248	4	1.208e-2	4	NC	5	NC	2
528			min	004	2	006	2	0	12	8.591e-6	12	804.887	1	9539.203	
529		18	max	.007	3	.083	1	.194	4	9.861e-3	2	NC	5	NC	1
530		10	min	004	2	057	3	0	12			1696.958	1	NC	1
531		19	max	.007	3	.161	1	.148	4	1.958e-2	2	NC	1	NC	1
532		19	min	004	2	115	3	001	1	-7.345e-3	3	NC	1	NC	1
	N/E	4											•		
533	<u>M5</u>	1	max	.03	3	.369	2	1.035	4	0 747 0	1_4	NC NC	1	NC NC	1
534			min	021	2	034	3	0	1	-9.747e-6	4	NC NC	1_	NC NC	1
535		2	max	.03	3	.177	2	1.008	4	9.078e-3	4_	NC	5	NC	1
536			min	021	2	012	3	0	1	0	_1_	710.862	2	6030.126	
537		3	max	.03	3	.047	3	.974	4	1.795e-2	4	NC	15	NC	1
538			min	021	2	039	2	0	1	0	1_	333.836	2	3566.54	4
539		4	max	.029	3	.17	3	.935	4	1.462e-2	4	6861.793	15	NC	1
540			min	021	2	298	2	0	1	0	1	204.099	2	2787.746	4
541		5	max	.029	3	.339	3	.893	4	1.13e-2	4	4786.947	15	NC	1
542			min	02	2	579	2	0	1	0	1	143.414	2	2422.273	4
543		6	max	.028	3	.528	3	.85	4	7.976e-3	4	3676.477	15	NC	1
544			min	02	2	858	2	0	1	0	1	110.695	2	2200.009	
545		7	max	.028	3	.713	3	.806	4	4.652e-3	4	3036.624	15	NC	1
J 10			max	.020		., .0		.500	<u> </u>			JUJU.UL-T		.,,,	

Model Name

Schletter, Inc.HCV

....

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	019	2	-1.112	2	0	1	0	1_	91.733	2	2016.93	4
547		8	max	.027	3	.868	3	.764	4	1.328e-3	4		<u>15</u>	NC	1
548			min	019	2	<u>-1.315</u>	2	0	1	0	1_	80.684	2	1822.187	4
549		9	max	.026	3	.968	3	.722	4	0	1_		15	NC 1010.070	1
550		40	min	019	2	<u>-1.445</u>	2	0	1	-5.859e-6	5	75.004	2	1648.279	
551		10	max	.026	3	1.004	3	<u>.674</u> 0	4	0 -5.651e-6	1	2417.616 73.344	<u>15</u>	NC 1636 400	4
552		11	min	018	3	<u>-1.488</u> .979	3		4	0-9169.6-	5		<u>2</u> 15	1626.409 NC	1
553 554			max	.025 018	2	<u>.979</u> -1.444	2	<u>.623</u> 0	1	-5.443e-6	<u>1</u> 5	2475.104 75.284		1672.588	
555		12	max	.024	3	.894	3	<u>0</u> .571	4	8.441e-4	4		15	NC	1
556		12	min	018	2	-1.31	2	<u>.57 1</u>	1	0.4416-4	1	81.591	2	1730.609	_
557		13	max	.024	3	.757	3	.51	4	2.958e-3	4		15	NC	1
558		13	min	017	2	-1.095	2	0	1	0	1	94.073	2	2048.764	
559		14	max	.023	3	.585	3	.441	4	5.072e-3	4		15	NC	1
560		17	min	017	2	83	2	0	1	0	1	115.976	2	2935.086	
561		15	max	.022	3	.392	3	.369	4	7.186e-3	4		15	NC	1
562			min	017	2	542	2	0	1	0	1	154.768	1	5797.712	4
563		16	max	.022	3	.197	3	.299	4	9.3e-3	4		15	NC	1
564			min	017	2	262	2	0	1	0	1	227.006	1	NC	1
565		17	max	.021	3	.015	3	.237	4	1.141e-2	4		15	NC	1
566			min	016	2	02	2	0	1	0	1	385.973	1	NC	1
567		18	max	.021	3	.173	1	.186	4	5.773e-3	4	NC	5	NC	1
568			min	016	2	14	3	0	1	0	1	847.118	1	NC	1
569		19	max	.021	3	.33	1	.149	4	0	1	NC	1	NC	1
570			min	016	2	279	3	0	1	-5.737e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.176	2	1.035	4	2.325e-2	3	NC	1_	NC	1
572			min	005	2	035	3	001	1	-1.363e-2	1	NC	1	NC	1
573		2	max	.01	3	.085	2	1.006	4	1.154e-2	3	NC	5	NC	1
574			min	005	2	016	3	0	12	-6.563e-3	1	1492.897	2	6427.583	
575		3	max	.01	3	.015	3	.972	4	1.789e-2	4_	NC	5_	NC	2
576			min	005	2	012	2	0	12	2.868e-7	<u>10</u>	720.457	2	3737.116	_
577		4	max	.01	3	.065	3	.934	4	1.4e-2	5		<u>15</u>	NC	2
578		+_	min	005	2	121	2	0	12	-4.653e-3	2	456.103	2	2866.034	
579		5	max	.009	3	.128	3	.893	4	1.055e-2	5_		<u>15</u>	NC 0445.040	1
580			min	005	2	235	2	0	12	-9.467e-3	1_	329.798	2	2445.319	
581		6	max	.009	3	.196	3	.85	4	1.393e-2	3		<u>15</u>	NC	1
582		7	min	005	3	345	3	0	12	-1.435e-2	1	260.094	<u>2</u>	2189.304	
583			max	.009	2	.261	2	.807	1	1.853e-2	<u>3</u> 1	6541.38 218.905	<u>15</u> 2	NC 1993.452	4
584 585		8	min	005 .009	3	443 .316	3	<u> </u>	4	-1.923e-2 2.314e-2	3		15	NC	1
586		0	max min		2	521	2	001		-2.411e-2		104.53	<u>၂၁</u>	1808.153	
587		9	max	.009	3	.351	3	.722	4	2.346e-2	3		15	NC	1
588		-	min	004	2	57	2	0	12	-2.667e-2	1	181.823	2	1648.572	
589		10	max	.008	3	.364	3	.675	4	2.091e-2	3		15	NC	1
590		10	min	004	2	586	2	0	1	-2.867e-2	2	178.095	2	1614.715	4
591		11	max	.008	3	.356	3	.623	4	1.836e-2	3		15	NC	1
592			min	004	2	57	2	0	1	-3.068e-2	2	182.45	2	1656.189	-
593		12	max	.008	3	.326	3	.57	4	1.558e-2	3		15	NC	1
594		T -	min	004	2	518	2	0	12	-2.955e-2	2	196.406	2	1750.403	
595		13	max	.008	3	.277	3	.508	4	1.246e-2	3		15	NC	1
596			min	004	2	437	2	0	12	-2.372e-2	2	223.409	2	2097.986	4
597		14	max	.008	3	.216	3	.44	4	9.346e-3	3		15	NC	1
598			min	004	2	335	2	003	1	-1.79e-2	2	269.64	2	2942.447	5
599		15	max	.007	3	.146	3	.369	4	6.832e-3	5		15	NC	1
600			min	004	2	223	2	008	1	-1.207e-2	2	349.307		5191.418	5
601		16	max	.007	3	.074	3	.301	4	9.198e-3	5		15	NC	1
602			min	004	2	11	2	012	1	-6.24e-3	2	496.91	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.239	4	1.159e-2	4	NC	5	NC	2
604			min	004	2	006	2	013	1	-8.497e-4	1	804.887	1	9539.203	1
605		18	max	.007	3	.083	1	.189	4	5.527e-3	5	NC	5	NC	1
606			min	004	2	057	3	009	1	-9.861e-3	2	1696.958	1	NC	1
607		19	max	.007	ω	.161	1	.149	4	7.345e-3	3	NC	1	NC	1
608			min	004	2	115	3	0	12	-1.958e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{\sf ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.