Devoir surveillé n°10

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1. a. Puisque A est la matrice de f dans une base, det(f) = det(A). Ainsi

$$\det(f) = \begin{vmatrix} -u & v & 0 \\ -2 & 0 & 2v \\ 0 & -1 & u \end{vmatrix}$$

$$= -u \begin{vmatrix} 0 & 2v \\ -1 & u \end{vmatrix} + 2 \begin{vmatrix} v & 0 \\ -1 & u \end{vmatrix}$$
 en développant par rapport à la première colonne
$$= -u \times 2v + 2 \times uv = 0$$

b. Puisque $\det(A) = 0$, A n'est pas inversible de sorte que $\operatorname{rg}(A) < 3$. Mais les deux premières colonnes de A sont clairement non colinéaires donc $\operatorname{rg}(A) \ge 2$. Ainsi $\operatorname{rg}(f) = \operatorname{rg}(A) = 2$. De plus, $\begin{pmatrix} -u \\ -2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} v \\ 0 \\ -1 \end{pmatrix}$ est une

base de Im(A) et donc $(-u-2X,v-X^2)$ est une base de Im(f).

On voit que $\begin{pmatrix} v \\ u \\ 1 \end{pmatrix} \in \text{Ker}(A)$ donc $v + uX + X^2 \in \text{Ker}(f)$. Or, d'après le théorème du rang, dim Ker(f) = 1 donc $(v + uX + X^2)$ est une base de Ker(f).

2. a. A nouveau,

$$\det(g) = \begin{vmatrix} -3 & w & 0 & 0 \\ -3 & -1 & 2w & 0 \\ 0 & -2 & 1 & 3w \\ 0 & 0 & -1 & 3 \end{vmatrix}$$

$$= -9 \begin{vmatrix} 1 & w & 0 & 0 \\ 1 & -1 & 2w & 0 \\ 0 & -2 & 1 & w \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

$$= -9 \begin{vmatrix} 1 & w & 0 & 0 \\ 0 & -1 & -w & 2w & 0 \\ 0 & -2 & 1 & w \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

$$= 9 \begin{vmatrix} 1 + w & 2w & 0 \\ 2 & 1 & w \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

$$= 9 \left((1 + w) \begin{vmatrix} 1 & w \\ -1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 2w & 0 \\ -1 & 1 \end{vmatrix} \right)$$
en développant par rapport à la première colonne
$$= 9((w + 1)^2 - 4w) = 9(w - 1)^2$$

Avec les notations de l'énoncé, on a donc $w_0 = 1$.

b. Supposons donc w = 1. Alors

$$B = \begin{pmatrix} -3 & 1 & 0 & 0 \\ -3 & -1 & 2 & 0 \\ 0 & -2 & 1 & 3 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

Puisque det(B) = 0, rg(B) < 4. Les trois premières colonnes de B sont clairement linéairement indépendantes

donc
$$rg(B) \ge 3$$
. Ainsi $rg(g) = rg(B) = 3$ puis dim $Ker(g) = 1$. On remarque que $\begin{pmatrix} 1 \\ 3 \\ 3 \\ 1 \end{pmatrix} \in Ker(A)$ donc $\begin{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 3 \\ 1 \end{pmatrix}$

est une base de Ker(A). Par conséquent, $(X^3 + 3X^2 + 3X + 1)$ i.e. $((X + 1)^3)$ est une base de Ker(g).

3. φ est clairement linéaire.

Comme $\deg(Q) = 2$ et Q est unitaire, il existe $(u, v) \in \mathbb{R}^3$ tel que $Q = X^2 + uX + v$. Soit $k \in [0, n]$. Alors

$$\varphi(X^k) = 2kX^{k-1}(X^2 + uX + v) - nX^k(2X + u) = 2(k - n)X^{k+1} + u(2k - n)X^k + 2vkX^{k-1}$$

Ainsi pour $k \in [0, n-1]$, $\deg(\varphi(X^k)) = k+1 \le n$ et $\deg(\varphi(X^n)) \le n$. Pour tout $k \in [0, n]$, $\varphi(X^k) \in \mathbb{R}_n[X]$. Comme $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[X]$, $\mathbb{R}_n[X]$ est stable par φ par linéarité de φ . Finalement, φ est bien un endomorphisme de $\mathbb{R}_n[X]$.

4. a. D'après la question précédente,

$$\varphi(1) = -2u - 4X$$
 $\varphi(X) = 2v - 2X^2$ $\varphi(X^2) = 4vX + 2uX^2$

La matrice de φ dans la base canonique de $\mathbb{R}_2[X]$ est donc 2A.

b. D'après la question,

$$Ker(\varphi) = vect(X^2 + uX + v) = vect(Q)$$

5. a. On calcule à nouveau

$$\varphi(1) = -6 - 6X \qquad \varphi(X) = 2w - 2X - 4X^2 \qquad \varphi(X^2) = 4wX + 2X^2 - 2X^3 \qquad \varphi(X^3) = 6wX^2 + 6X^3$$

La matrice de φ dans la base canonique de $\mathbb{R}_3[X]$ est donc 2B.

- **b.** Si w = 1, d'après la question , $Ker(\varphi) = vect((X + 1)^3)$. Si $w \neq 1$, $det(B) = 9(w - 1)^2 \neq 0$ donc φ est bijectif et $Ker(\varphi) = \{0\}$.
- **6.** On a donc $Q = (X \alpha)^2$.
 - **a.** La famille $((X \alpha)^k)_{0 \le k \le n}$ est une famille libre de $\mathbb{R}_n[X]$ car à degrés échelonnés. De plus, dim $\mathbb{R}_n[X] = n + 1$ donc c'est une base de $\mathbb{R}_n[X]$.
 - **b.** Pour $k \in [0, n]$,

$$\varphi((X - \alpha)^k) = 2k(X - \alpha)^{k-1}(X - \alpha)^2 - 2n(X - \alpha)^k(X - \alpha) = 2(k - n)(X - \alpha)^{k+1}$$

On en déduit que

$$\operatorname{Im}(\varphi) = \operatorname{vect}((X - \alpha)^{k+1})_{0 \le k \le n-1} = \operatorname{vect}((X - \alpha)^k)_{1 \le k \le n}$$

Notamment, $rg(\varphi) = n$ et dim $Ker(\varphi) = 1$. Comme $(X - a)^n \in Ker(\varphi)$,

$$Ker(\varphi) = vect((X - a)^n)$$

7. Soit $P \in \mathbb{R}_n[X]$. Comme indiqué dans l'énoncé

$$\left(\frac{P^2}{Q^n}\right)' = \frac{2P'PQ^n - nP^2Q'Q^{n-1}}{Q^{2n}} = \frac{P\phi(P)}{Q^{n+1}}$$

Ainsi $P \in Ker(\varphi)$ si et seulement si $\left(\frac{P^2}{Q}\right)' = 0$, autrement dit si et seulement si $\frac{P^2}{Q}$ est constante i.e. P^2 et Q^n sont colinéaires.

8. Supposons d'abord que Q n'admet aucune racine réelle. Q est donc irréductible. Supposons que $\operatorname{Ker}(\varphi) \neq \{0\}$. Soit P un polynôme non nul de $\operatorname{Ker}(\varphi)$. Alors, d'après la question 7, il existe $\lambda \in \mathbb{R}^*$ tel que $P^2 = \lambda Q^n$. Si D est un diviseur irréductible unitaire de P, alors D divise $P^2 = \lambda Q^n$ et donc Q. Ainsi D = Q car Q est irréductible et unitaire. Q est donc le seul diviseur irréductible unitaire de P. Il existe donc $\mu \in \mathbb{R}^*$ et $k \in \mathbb{N}$ tel que $P = \mu Q^k$. Mais alors $\mu^2 Q^{2k} = P^2 = \lambda Q^n$ puis n = 2k par unicité de la décomposition en facteurs irréductible. Notamment n est pair et $\operatorname{Ker}(\varphi) \subset \operatorname{vect}(Q^k)$. On vérifie aisément que $Q^k \in \operatorname{Ker}(\varphi)$ donc $\operatorname{Ker}(\varphi) = \operatorname{vect}(Q^k)$. On a également montré que si n est impair, alors $\operatorname{Ker}(\varphi) = \{0\}$.

Supposons maintenant que Q possède deux racines distinctes α et β i.e. $Q = (X - \alpha)(X - \beta)$. On suppose à nouveau que $\text{Ker}(\varphi) \neq \{0\}$ et on se donne un polynôme non nul P de $\text{Ker}(\varphi)$. On peut alors affirmer qu'il existe $\lambda \in \mathbb{R}^*$ tel que $P^2 = \lambda (X - \alpha)^n (X - \beta)^n$. On prouve comme précédemment que $X - \alpha$ et $X - \beta$ sont les seuls diviseurs irréductibles unitaires de P. Il existe donc $(p,q) \in \mathbb{N}^2$ et $\mu \in \mathbb{R}^*$ tel que $P = \mu (X - \alpha)^p (X - \beta)^q$. Par conséquent, $\mu^2 (X - \alpha)^{2p} (X - \beta)^{2q} = P^2 = \lambda (X - \alpha)^n (X - \beta)^n$. Par unicité de la décomposition en facteurs irréductibles, n = 2p = 2q. Notamment n est pair et $\text{Ker}(\varphi) = \text{vect}(Q^{n/2})$ comme précédemment. A nouveau, $\text{Ker}(\varphi) = \{0\}$ si n est impair.

Solution 1

1. Posons $u_n = H_n - \ln(n)$ pour $n \in \mathbb{N}^*$. Alors

$$u_n - u_{n-1} = \frac{1}{n} + \ln(n-1) - \ln(n) = \frac{1}{n} + \ln\left(1 - \frac{1}{n}\right) = \mathcal{O}(1/n^2)$$

car $\ln(1+x) = x + \mathcal{O}(x^2)$. Comme $\sum \frac{1}{n^2}$ converge, la série télescopique $\sum u_n - u_{n-1}$ converge et donc la suite (u_n) converge.

2. Pour tout $N \in \mathbb{N}^*$,

$$\begin{split} S_{2N} &= \sum_{n=1}^{2N} \frac{(-1)^n}{n} \\ &= \sum_{n=1}^{N} \frac{1}{2n} - \sum_{n=1}^{N} \frac{1}{2n-1} \qquad \text{en séparant termes d'indices pairs et impairs} \\ &= \frac{1}{2} H_N - \sum_{n=1}^{N} \frac{1}{2n-1} \\ &= H_N - \frac{1}{2} H_N - \sum_{n=1}^{N} \frac{1}{2n-1} \\ &= H_N - \sum_{n=1}^{N} \frac{1}{2n} - \sum_{n=1}^{N} \frac{1}{2n-1} \\ &= H_N - \sum_{n=1}^{2N} \frac{1}{n} \qquad \text{en regroupant termes d'indices pairs et impairs} \\ &= H_N - H_{2N} \end{split}$$

3. Remarquons que pour tout $N \in \mathbb{N}$,

$$S_{3N+3} = \sum_{n=0}^{N} \frac{1}{3n+1} + \frac{1}{3n+2} - \frac{1}{3n+3}$$

Or

$$\frac{1}{3n+1} \underset{n \to +\infty}{=} \frac{1}{3n} + o\left(\frac{1}{n}\right)$$

$$\frac{1}{3n+2} \underset{n \to +\infty}{=} \frac{1}{3n} + o\left(\frac{1}{n}\right)$$

$$\frac{1}{3n+3} \underset{n \to +\infty}{=} \frac{1}{3n} + o\left(\frac{1}{n}\right)$$

donc $\frac{1}{3n+1} + \frac{1}{3n+2} - \frac{1}{3n+3} \sim \frac{1}{n+\infty}$. La série $\sum_{n \in \mathbb{N}} \frac{1}{3n+1} + \frac{1}{3n+2} - \frac{1}{3n+3}$ diverge donc puisque la série à termes positifs $\sum \frac{1}{n}$ diverge. La suite (S_{3n+3}) diverge donc de même que la suite (S_n) puisqu'elle en est extraite. Par conséquent, la série $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$ diverge.

4. D'après la question 1,

$$H_n = \ln(n) + \gamma + o(1)$$

donc

$$H_{2n} = \ln(n) + \ln(2) + \gamma + o(1)$$

Finalement,

$$S_{2n} = H_n - H_{2n} = -\ln(2) + o(1)$$

Donc (S_{2n}) converge vers $-\ln 2$. Par ailleurs, $S_{2n+1} = S_{2n} - \frac{1}{2n+1}$ donc (S_{2n+1}) converge également vers $-\ln 2$. Finalement, (S_n) converge vers $-\ln 2$ i.e. la série $\sum_{n\in\mathbb{N}^*} \frac{\varepsilon_n}{n}$ converge et sa somme vaut $-\ln 2$.

5. Remarquons que de manière général, $\frac{1}{n+1} = \int_0^1 x^n dx$.

a. En particulier,

$$\begin{split} \sum_{n=0}^{N} \frac{1}{4n+1} - \frac{1}{4n+3} &= \sum_{n=0}^{N} \int_{0}^{1} (x^{4n} - x^{4n+2}) \; \mathrm{d}x \\ &= \int_{0}^{1} (1-x^{2}) \sum_{n=0}^{N} x^{4n} \; \mathrm{d}x \\ &= \int_{0}^{1} (1-x^{2}) \cdot \frac{1-x^{4N+4}}{1-x^{4}} \; \mathrm{d}x \qquad \text{(somme de termes consécutifs d'une suite géométrique)} \\ &= \int_{0}^{1} \frac{1-x^{4N+4}}{1+x^{2}} \; \mathrm{d}x \qquad \text{car } 1-x^{4} = (1-x^{2})(1+x^{2}) \end{split}$$

b. Pour tout $N \in \mathbb{N}$,

$$\int_0^1 \frac{1 - x^{4N+4}}{1 + x^2} \, \mathrm{d}x = \int_0^1 \frac{\mathrm{d}x}{1 + x^2} - \int_0^1 \frac{x^{4N+4}}{1 + x^2} \, \mathrm{d}x = \frac{\pi}{4} - \int_0^1 \frac{x^{4N+4}}{1 + x^2} \, \mathrm{d}x$$

De plus, pour tout $x \in [0, 1]$,

$$0 \le \frac{x^{4N+4}}{1+x^2} \le x^{4N+4}$$

donc

$$0 \le \int_0^1 \frac{x^{4N+4}}{1+x^2} dx \le \int_0^1 x^{4N+4} dx = \frac{1}{4N+5}$$

On en déduit que

$$\lim_{N \to +\infty} \int_0^1 \frac{x^{4N+4}}{1+x^2} \, \mathrm{d}x = 0$$

puis

$$\sum_{n=0}^{+\infty} \frac{1}{4n+1} - \frac{1}{4n+3} = \frac{\pi}{4}$$

c. On procède de la même manière.

$$\begin{split} \sum_{n=0}^{N} \frac{1}{4n+2} - \frac{1}{4n+4} &= \sum_{n=0}^{N} \int_{0}^{1} (x^{4n+1} - x^{4n+3}) \; \mathrm{d}x \\ &= \int_{0}^{1} x(1-x^2) \sum_{n=0}^{N} x^{4n} \; \mathrm{d}x \\ &= \int_{0}^{1} x(1-x^2) \cdot \frac{1-x^{4N+4}}{1-x^4} \; \mathrm{d}x \qquad \text{(somme de termes consécutifs d'une suite géométrique)} \\ &= \int_{0}^{1} \frac{x(1-x^{4N+4})}{1+x^2} \; \mathrm{d}x \qquad \text{car } 1-x^4 = (1-x^2)(1+x^2) \end{split}$$

Pour tout $N \in \mathbb{N}$,

$$\int_0^1 \frac{x(1-x^{4N+4})}{1+x^2} dx = \int_0^1 \frac{x dx}{1+x^2} - \int_0^1 \frac{x^{4N+5}}{1+x^2} dx$$

D'une part,

$$\int_0^1 \frac{x \, dx}{1 + x^2} = \left[\frac{1}{2} \ln(1 + x^2) \right]_0^1 = \frac{1}{2} \ln 2$$

D'autre part, pour tout $x \in [0, 1]$,

$$0 \le \frac{x^{4N+5}}{1+x^2} \le x^{4N+5}$$

donc

$$0 \le \int_0^1 \frac{x^{4N+5}}{1+x^2} dx \le \int_0^1 x^{4N+5} dx = \frac{1}{4N+6}$$

On en déduit que

$$\lim_{N \to +\infty} \int_{0}^{1} \frac{x^{4N+5}}{1+x^{2}} dx = 0$$

puis

$$\sum_{n=0}^{+\infty} \frac{1}{4n+2} - \frac{1}{4n+4} = \frac{1}{2} \ln 2$$

d. Puisque, pour tout $N \in \mathbb{N}$,

$$S_{4N+4} = \sum_{n=0}^{N} \frac{1}{4n+1} - \frac{1}{4n+3} + \sum_{n=0}^{N} \frac{1}{4n+2} - \frac{1}{4n+4}$$

la suite (S_{4n}) converge vers $S = \frac{\pi}{4} + \frac{1}{2} \ln 2$. Comme

$$S_{4n+1} = S_{4n} + \frac{1}{4n+1}S_{4n+2} = S_{4n} + \frac{1}{4n+1} + \frac{1}{4n+2}S_{4n+3} = S_{4n} + \frac{1}{4n+1} + \frac{1}{4n+2} - \frac{1}{4n+3}$$

les suites (S_{4n}) , (S_{4n+1}) , (S_{4n+2}) , (S_{4n+3}) convergent toutes vers S. En conclusion, $\sum_{n\in\mathbb{N}^*}\frac{\varepsilon_n}{n}$ converge et sa somme est $\frac{\pi}{4}+\frac{1}{2}\ln 2$.

6. a. Tout d'abord,

$$\int_0^1 \frac{1+x+x^2}{1+x^3} \, \mathrm{d}x = \int_0^1 \frac{1+x}{1+x^3} \, \mathrm{d}x + \int_0^1 \frac{x^2}{1+x^3} \, \mathrm{d}x$$

D'une part,

$$\int_0^1 \frac{x^2}{1+x^3} \, \mathrm{d}x = \left[\frac{1}{3}\ln(1+x^3)\right]_0^1 = \frac{1}{3}\ln 2$$

D'autre part, comme $1 + x^3 = (1 + x)(1 - x + x^2)$,

$$\int_0^1 \frac{1+x}{1+x^3} dx = \int_0^1 \frac{dx}{x^2 - x + 1}$$

$$= \int_0^1 \frac{dx}{\left(x - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$= \frac{2}{\sqrt{3}} \left[\arctan\left(\frac{2x - 1}{\sqrt{3}}\right)\right]_0^1$$

$$= \frac{4}{\sqrt{3}} \arctan\left(\frac{1}{\sqrt{3}}\right) \quad \text{car arctan est impaire}$$

$$= \frac{4}{\sqrt{3}} \cdot \frac{\pi}{6} = \frac{2\pi}{3\sqrt{3}}$$

Finalement,

$$\int_0^1 \frac{1+x+x^2}{1+x^3} \, \mathrm{d}x = \frac{2\pi}{3\sqrt{3}} + \frac{1}{3} \ln 2$$

b. En raisonnant comme précédemment

$$\sum_{n=0}^{N} \frac{1}{6n+1} - \frac{1}{6n+4} = \int_{0}^{1} (1-x^{3}) \frac{1-x^{6N+6}}{1-x^{6}} dx$$

$$= \int_{0}^{1} \frac{1-x^{6N+6}}{1+x^{3}} dx$$

$$\xrightarrow[N \to +\infty]{} \int_{0}^{1} \frac{dx}{1+x^{3}}$$

$$\sum_{n=0}^{N} \frac{1}{6n+2} - \frac{1}{6n+5} = \int_{0}^{1} x(1-x^{3}) \frac{1-x^{6N+6}}{1-x^{6}} dx$$

$$= \int_{0}^{1} \frac{x(1-x^{6N+6)}}{1+x^{3}} dx$$

$$\xrightarrow[N \to +\infty]{} \int_{0}^{1} \frac{x dx}{1+x^{3}}$$

$$\sum_{n=0}^{N} \frac{1}{6n+3} - \frac{1}{6n+6} = \int_{0}^{1} x^{2}(1-x^{3}) \frac{1-x^{6N+6}}{1-x^{6}} dx$$

$$= \int_{0}^{1} \frac{x^{2}(1-x^{6N+6})}{1+x^{3}} dx$$

$$\xrightarrow[N \to +\infty]{} \int_{0}^{1} \frac{x^{2} dx}{1+x^{3}}$$

En sommant les relations précédentes, on en déduit que (S_{6n+6}) converge vers $\int_0^1 \frac{1+x+x^2}{1+x^3} \, \mathrm{d}x = \frac{2\pi}{3\sqrt{3}} + \frac{1}{3} \ln 2$ de même que (S_{6n}) . Comme précédemment, on montre que (S_{6n}) , (S_{6n+1}) , (S_{6n+2}) , (S_{6n+3}) , (S_{6n+4}) , (S_{6n+5}) convergent toutes vers cette limite donc (S_n) également.

En conclusion, $\sum_{n \in \mathbb{N}^*} \frac{\varepsilon_n}{n}$ converge et sa somme est $\frac{2\pi}{3\sqrt{3}} + \frac{1}{3} \ln 2$.