Taller VII

- 1. Definición: Sea $U \subseteq \mathbb{C}$ un abierto del plano complejo, f función definida sobre U y sea f(U) = V. Se dique que f es isomorfismo analítico si V es abierto y existe una función $g: V \to U$ tal que $f \circ g = id_V$, $g \circ f = id_U$.
 - Se dice que f es isomorfismo analítico local en z_0 , si existe un abierto U, $z_0 \in U$ y f es isomorfismo analítico sobre U.
 - Suponga $0 \in U$, sea f analítica en z = 0 y suponga que $f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots$ con $a_1 \neq 0$. Probar que f es isomorfismo analítico local en z = 0.
- 2. Definición: Sea $U \subseteq \mathbb{C}$ un abierto del plano complejo, f función definida sobre U. Se dice que f es una aplicación abierta si para todo abierto $\tilde{U} \subseteq U$, entonces $f(\tilde{U})$ es abierto.
 - Sea f es analítica sobre un abierto U. Suponga que en cada punto $z_0 \in U$, f es no constante en un disco centrado en ese punto. Probar que f es una aplicación abierta.
- 3. Sea f es analítica sobre un abierto U y suponga que es inyectiva. Sea f(U) = V. Probar que $f: U \to V$ es isomorfismo analítico.
- 4. Definición: Se dice que una función f es localmente constante en z_0 , si existe un disco abierto $D(z_0, r)$, tal que f es constante sobre D.
 - Sea f es analítica sobre un abierto U, sea $z_0 \in U$ un máximo para |f| $(|f(z_0)| \ge |f(z)|$, para todo $z \in U$). Probar que f es localmente constante en z_0 .
- 5. Sea f es analítica sobre un abierto U, sea $z_0 \in U$ un máximo para Re(f) (parte real de f) ($Re(f(z_0)) \ge Re(f(z))$, para todo $z \in U$). Probar que f es localmente constante en z_0 .
- 6. Sea f es analítica sobre un abierto U, sea $z_0 \in U$ un máximo para Im(f) (parte imaginaria de f). Probar que f es localmente constante en z_0 .
- 7. Sea $f(z) = a_0 + a_1 z + a_2 z^2 + ... + a_m z^m$ un polinomio no constante. Probar, existe z_0 tal que $f(z_0) = 0$.
- 8. Sea $f(z) = \sum_{0}^{\infty} a_n z^n$, con radio de convergencia r. Probar:
 - \bullet $g(z) = \sum_{1}^{\infty} n a_n z^{n-1}$ tiene el mismo radio de convergencia de f.

- \bullet f es holomorfica en D(0,r) y f'(z)=g(z).
- Pruebe $a_n = \frac{f^{(n)}(0)}{n!}$.
 Sea $h(z) = \sum_0^\infty \frac{a_n}{n+1} z^{n+1}$. Pruebe que h tiene radio de convergencia r. (Note que h'(z) = f(z), h se le llama primitiva de f).
- 9. Si $f(z) = \sum_{0}^{\infty} \frac{z^{2n}}{(2n)!}$. Probar f''(z) = f(z).
- 10. Si $f(z) = \sum_{0}^{\infty} \frac{z^{2n}}{(n!)^2}$. Probar $z^2 f''(z) + z f'(z) = 4z^2 f(z)$.
- 11. Sea $f(z) = z \frac{z^3}{3} + \frac{z^5}{5} \frac{z^7}{7} + \cdots$. Mostrar que $f'(z) = \frac{1}{z^2 + 1}$.
- 12. Si $J(z) = \sum_{0}^{\infty} \frac{(-1)^n}{(n!)^2} (\frac{z}{2})^{2n}$. Probar

$$z^{2}J''(z) + zJ'(z) + z^{2}J(z) = 0.$$

13. Para k entro positivo, sea $J_k(z)=\sum_0^\infty \frac{(-1)^n}{n!(n+k)!}(\frac{z}{2})^{2n+k}$. Probar

$$z^{2}J_{k}''(z) + zJ_{k}'(z) + (z^{2} - k^{2})J_{k}(z) = 0.$$