MATH601 — Advanced Combinatorics

Based on the lectures by Maria Gillespie

Notes written by Ignacio Rojas

Fall 2024

Please note that these notes were not provided or endorsed by the lecturer and have been significantly altered after the class. They may not accurately reflect the content covered in class and any errors are solely my responsibility.

This course will focus on the combinatorics of Young tableaux, crystal bases, root systems, Dynkin diagrams, and symmetric functions arising in representation theory of matrix groups and Lie algebras.

Requirements

Familiarity with the basics of group theory and symmetric functions is helpful.

Contents

Contents			2	
1			3	
	1.1	Day 1 20240819	3	
	1.2	Day 2 20240821	4	
	1.3	Day 3 20240823	6	
	1.4	Day 4 20240826	7	
	1.5	Day 5 20240828	8	
	1.6	Day 6 20240830	10	
	1.7	Day 7 20240904	11	
	1.8	Day n 20240930	12	
	1.9	Day n+1 20241002	13	
		Day n+2 20241004	15	
	1.11	Day n+3 20241007	16	
	1.12	Day n+4 20241009	17	
	1.13	Day n+5 20241011	18	
Index				
Bibliography				

Chapter 1

1.1 Day 1 | 20240819

We will start by reviewing the representation theory of finite groups and the Lie group and Lie algebra representations. The objective is to classify semi-simple Lie algebras and groups. This classification is quite combinatorial.

Review of representation theory of finite groups

Recall groups are sets G endowed with a binary operation \circ such that

- (a) There is an identity element $e: g \circ e = e \circ g = g$.
- (b) Every element possesses an inverse. For each g, there is an h such that $g \circ h = e = h \circ g$.
- (c) The operation \circ is associative.

Example 1.1.1. The <u>symmetric group</u> is the set of permutations of [n]. We denote it (S_n, \circ) where our operation is composition. We will use this group quite a lot.

Example 1.1.2. We will be working with $GL_n(\mathbb{C})$ where \mathbb{C} will come in as more useful than \mathbb{R} . The <u>general linear group</u> is characterized by the property that $\det(A) \neq 0$ for $A \in GL_n(\mathbb{C})$.

Example 1.1.3. Given two groups we can construct $G \times H$ by doing operations pointwise. We can also take subgroups and quotient groups.

Example 1.1.4. Take the special linear group $\mathrm{SL}_n(\mathbb{C})$ which is the set of matrices A with $\det(A)=1$. This is a subgroup of $\mathrm{GL}_n(\mathbb{C})$.

There's a lot more of matrix groups such as $SO_n(\mathbb{C})$, $Sp_{2n}(\mathbb{C})$ and unitary groups $SU_n(\mathbb{C})$.

Groups which are representations of themselves

Symmetry groups are groups of linear transformations of \mathbb{C}^n (some Euclidean space) that fix some shape. Any such group is a subgroup of $GL_n(\mathbb{C})$. Matrices here don't collapse points nor anything.

Example 1.1.5. The symmetry group of a diamond in the plane can be found by analyzing the symmetries of the figure. HMMM The group in question is the Klein-4 group which can be seen as

$$\{ id, r_x, r_y, r_x r_y \}.$$

Similarly we can see it as

$$\{id, (24), (13), (13)(24)\}$$

Fell asleep

1.2 Day 2 | 20240821

We were looking at direct sums of representations. Recall representations are maps which take group elements to matrices.

$$\rho \oplus \sigma : G \to \mathrm{GL}_{n+m}(\mathbb{C})$$

and this map will send g to a block matrix. A central question in representation theory is to classify the irreducible representations of some object. This is a central question because for finite groups, irreducible is the same as indecomposable.

Definition 1.2.1. A representation is <u>indecomposable</u> when it can't be written as a direct sum of smaller representations.

Irreducible means that it has no non-trivial proper representations. This is analogous to the idea of prime and irreducible numbers. In the most general case where groups may be infinite, irreducible implies indecomposable.

Alternative definitions for representations

We may define it as a vector space V with an action $G \times V \to V$ so that

$$g(hv) = (gh)v$$

and it should be a linear action in the sense that $v \mapsto gv$ is a linear transformation.

This is equivalent to the previous definition because V can be seen as \mathbb{C}^n . So the definition gives rise to a map

$$G \to \operatorname{Aut}(V), g \mapsto g$$
.

Even more *objecty* is the next definition. We can see a representation as a module over a group ring $\mathbb{C}G$. This set is made up of formal linear combinations of elements of G.

We endow it with a module structure, for any element $g \in G$ in particular in $\mathbb{C}G$ we can make it a coefficient $gv \in V$ as a $\mathbb{C}G$ -module.

Subrepresentations

Now that we have all the algebraic structure we can use it to define subrepresentations. Because a subrepresentation will be a subspace which inherits the action for example.

Definition 1.2.2. $W \subseteq V$ is a subrepresentation of G (when V represents G) if

- $\diamond W$ is a subspace of V, and
- $\diamond W$ is *G*-invariant in the sense that the image of $G \times W \to V$ is contained in *W*.

We will also say that V is <u>irreducible</u> if there's no proper nonzero subrepresentation $W \subseteq V$.

Sometimes it is possible to decompose a representation into a direct sum of subrepresentations.

fell asleep

Definition 1.2.3. A <u>character</u> of a representation is the trace map $g \mapsto \operatorname{tr}(\rho(g))$.

Properties

- (a) $\chi_{V \oplus W} = \chi_V + \chi_W$.
- (b) $\chi_{V \otimes W} = \chi_V \chi_W$.
- (c) χ_V uniquely determines the representation.

1.3 Day 3 | 20240823

Lie groups

Definition 1.3.1. A <u>Lie group</u> is a real smooth manifold G with a group structure such that

$$(g,h) \mapsto gh^{-1}$$

is differentiable.

A manifold is a set such that around each point there's a local neighborhood that's topologically equivalent to \mathbb{R}^n . Elliptic curves are examples of manifolds.

Definition 1.3.2. An algebraic group is an algebraic variety with a group structure. In this case the multiplication map should be algebraic.

In certain specializations these two are the same object. In the case of complex Lie groups, we talk about smooth complex manifolds.

Example 1.3.3. \diamond (\mathbb{C}^n , +) is a Lie group. But it's not compact. sleepy sleepy \diamond GL_n

Lemma 1.3.4. (Zariski-)Closed subgroups of a Lie group are also Lie groups.

Example 1.3.5. In particular B_n , the set of upper triangular matrices in GL_n , forms a Lie group. The torus T_n , the group of diagonal matrices, is also a Lie group.

It is called the torus because it's isomorphic to $(\mathbb{C}\backslash 0)^n$ and $\mathbb{C}\backslash 0$ looks like a circle while $(\mathbb{C}\backslash 0)^2$ is the product of two circles which is the torus.

The Classical Groups

The special linear group SL_n consists of matrices whose determinant is 1. The classical groups are called clasical because they have very nice properties. In particular type A is what we call SL_n .

To talk about the special orthogonal group SO_n we should first fix a symmetric bilinear form (\cdot, \cdot) which is positive-definite. The <u>orthogonal group</u> O_n consists of matrices which preserve this form. The special orthogonal group in particular is the subgroup of matrices with determinant 1.

Remark 1.3.6. Over \mathbb{R} , O_n is actually the group of rigid transformations which is generated by reflections and rotations. For SO_n , it's only the rotations group.

We can also alternatively define O_n as

$$\{A: A^{\mathsf{T}}A = I\}$$

because

$$\langle Av|Aw\rangle = \langle v|w\rangle$$

and from this

$$v^{\mathsf{T}}A^{\mathsf{T}}Aw = v^{\mathsf{T}}w.$$

Comparing entry by entry we get the desired property.

It's also a fact that O_n is disconnected, one component is SO_n and the other is the set of matrices with determinant -1. Finally type B means SO_{odd} while D means SO_{even} . The type C groups are the symplectic groups.

1.4 Day 4 | 20240826

Continuing on with the classical groups, we will be talking about the <u>Symplectic group</u> of even dimension. We will be fixing a symplectic form which is a non-degenerate, skew-symmetric, bilinear form.

Example 1.4.1. The dot product is not symplectic because it's symmetric.

Example 1.4.2. Consider the form

$$v_1w_{2n} + v_2w_{2n-1} + \dots + v_nw_{n+1} - v_{n-1}w_n - v_{n+1}w_n - v_{n+2}w_{n-1} - \dots - v_{2n}w_1.$$

If Ω is such a matrix of a form, for example when 2n=6 we have

$$\Omega := \begin{pmatrix} & & & & & 1 \\ & & & & 1 & \\ & & & 1 & \\ & & -1 & & \\ & & -1 & & \\ & -1 & & & \end{pmatrix} \Rightarrow (v, w) = v^{\mathsf{T}} \Omega w$$

From this our first definition of the symplectic group is matrices which preserve this product.

Definition 1.4.3. The symplectic group Sp_{2n} is

$$\{M: (Mv, Mw) = (v, w)\}$$

or equivalently

$$\{M: M^{\mathsf{T}}\Omega M = \Omega\}.$$

We will simplify the notation to type C.

Representation of Lie groups

Definition 1.4.4. A representation of a Lie group is a map which is also differentiable and a group homomorphism.

1.5 Day 5 | 20240828

For a partition $\lambda \vdash n$, we call $S^{\lambda}V$

$$\Lambda^{\mu_1}V \otimes \Lambda^{\mu_2}V \otimes \cdots \otimes \Lambda^{\mu_k}V$$

where μ is the conjugate partition.

Example 1.5.1. For example if $\lambda = (5, 4, 1)$, then $\mu = (3, 2, 2, 2, 1)$ and so

$$S^{(5,4,1)}V = \Lambda^3$$

Elements can be written as a filling to the Young diagram. Such an element could be

$$(v_1 \wedge v_2 \wedge v_3) \otimes (a \wedge b) \otimes (c \wedge d) \otimes (x \wedge y) \otimes z$$

and filling the diagram we have

It's important to familiarize ourselves with this idea so we will itechangebly talk about

$$(e_1 \wedge e_4 \wedge e_3) \otimes (e_1 \wedge e_2) \otimes (e_5 \wedge e_3) \otimes (e_2 \wedge e_1) \otimes e_2$$

and

The tableau $\frac{1}{1}$ is zero for example.

For a basis of S^{λ} , we can talk about it being spanned by elementary tableau where we order each column from least to greatest. These are called <u>column-strict tableau</u>. For example

If V is an n-dimensional vector space, then we have a largest element on our basis. This allows us to formulate the question:

How many column strict tableau are there with largest entry n? And shape λ .

From this

$$\binom{n}{\mu_1} \binom{n}{\mu_2} \dots \binom{n}{\mu_k} = S^{\lambda} V.$$

Definition 1.5.2. The Schur module V^{λ} is

$$V^{\lambda} = \frac{S^{\lambda}}{\left\langle v_T - \sum_S v_S \right\rangle}$$

where the sum is over S's obtained from T by

- (a) Choose two columns of C_1, C_2 of T.
- (b) Choose k elements from C_2 .
- (c) Exchange them with k elements from C_1 in all ways that preserve the order of the elements.

Example 1.5.3. Take (4,3,3) with the filling

so choose the first and third columns as C_1 and C_2 . One relation in V_{λ}

Theorem 1.5.4. The collection

$$\{e_T: Tsemistandard \operatorname{sh}(T) \vdash n\}$$

is a basis for the Schur module.

1.6 Day 6 | 20240830

Last time we defined the Schur modules. These are

$$S^{\lambda}V = \Lambda^{\mu_1}V \otimes \cdots \otimes \Lambda^{\mu_r}$$

where $\mu = \lambda^*$ is the conjugate or transpose. Now V^{λ} is S^{λ} modded out by column exchanges. We will show that

$$\{e_T : T \in SSYT(\lambda), \text{largest entry} \leq n\}$$

is a basis for V^{λ} .

Example 1.6.1. Consider the tableau

the second and third row are wrongfully ordered

Sleepy sleepy

We wil show that they are independent in the quotient.

Example 1.6.2. The idea for why D_T 's are independent. We can find lex orderings and make D_T have nice leading term and then an ordering on the leading terms. E.g. $1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3$ are independent because the leading terms are all distinct.

In
$$V = \begin{bmatrix} a \\ b & c \end{bmatrix}$$
 we have

$$D_{\boxed{2}} = \det \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} z_{11} = \dots$$

And

$$D_{\boxed{2}} = z_{12} \det$$

In the monomials $z_{11}^2 z_{22}$ is larger than $z_{11} z_{12} z_{22}$ and that's how we show that they're independent of each other. This shows the elementary symmetric functions are independent.

One exciting conclusion to look at it's characters. For a Lie group the right notion is to consider H a maximal torus in a Lie group G. This is the maximal connecated, abelian Lie sub group.

Example 1.6.3. $T_n \subseteq \operatorname{GL}_n$ in this case $\chi_V : H \to \mathbb{C}$ where $h \mapsto \operatorname{tr}(h \text{ acts on } V)$. This χ_V determines V and has nice properties with direct sum and tensor products.

$$\chi_V \operatorname{diag}(x_1,\ldots,x_n)$$

is the trace of that matrix acting on V^{λ} . It suffices to look at a basis. For a given e_T where T is a SSYT, X acts on each e_i by doing x_ie_i . see

now the trace is the sum of the eigenvalues and this is x^T . So

$$\sum_{TSSYT} x^T = s_{\lambda}(\underline{x}).$$

1.7 Day 7 | 20240904

Theorem 1.7.1. A representation of GL_n is irreducible if and only if it has a unique highest weight vector.

Definition 1.7.2. A weight vector of V is $v \in V$ such that for $x \in T_n$ (the torus),

$$x \cdot v = x_1^{\alpha_1} \dots x_n^{\alpha_n} v$$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{Z}^n$ is weight.

Recall that being in the torus meant $x = \begin{pmatrix} x_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & x_n \end{pmatrix}$.

Definition 1.7.3. A highest weight vector is a weight vector such that

$$B_n \cdot v = \mathbb{C}^* \cdot v$$

where B_n is the Borel matrices compromised of upper triangular matrices.

A representation is a sum of its weights: $V=\bigoplus_{\alpha}V_{\alpha}$ where $V_{\alpha}=\{v\colon x\boldsymbol{\cdot} dotv=x^{\alpha}v\}$. Lemma 1.7.4. The only highest weight vector in V^{λ} is e_{T_0} where T_E

1.8 Day n | 20240930

Combinatorics of sl₃ representations

Our goal for today is to see how all irreducible \mathfrak{sl}_3 representations live in $(V^{(1,0)})^{\otimes n}$. We would like to describe them. Recall $V^{(1,0)}$ means that we have $1L_1$ and no L_2 .

As a shorthand we will say

$$F_1 = F_{12}, F_2 = F_{23}, E_1 = E_{12}, \dots$$

Definition 1.8.1. The word $a_1 \dots a_n \in \{1, 2, 3\}^n$ represents the weight space corresponding to the L-diagram calculation in $(V^{(1,0)})^{\otimes n}$ corresponding to $a_1 \otimes \dots \otimes a_n$.

Lemma 1.8.2. The weight of $(a_1 ... a_n)$ is (#1's, #2's, #3's).

Proof

By induction on n, the base case is a diagram. ASK FOR DIAGRAM,. Then the induction step wishes to show that something is additive across \otimes . So recall, ξ why are weights additive across \otimes ? Let v_{α}, v_{β} be weight vectors. We want to show $\alpha, \beta \in \eta^* = \{H \to \mathbb{C}\}$. Then finish

Corollary 1.8.3. The highest weight words in $(V^{(1,0)})^{\otimes n}$ are $a_1 \dots a_n$ such that very suffix has $(\#1's) \geqslant (\#2's) \geqslant (\#3's)$.

The proof is basically noting that E_1 , E_2 map the word to zero when it's of highest weight.

Example 1.8.4. $(V^{(1,0)})^{\otimes 3}$ so first we find the heighest weight words: 111, 121, 211 and 321. So this first one gives us an adjoint representation, the next one also gives us another adjoint. So this last one for 111 gives us the last 10 elements. The 321 gives us the last one. From this the representation decomposes as

$$V^{(3,0)} \oplus (V^{(2,1)})^{(1)} \oplus 2) \oplus V^{(0,0)}$$
.

They all have the same weight but are independent one-dimensional weight spaces. Each word on the 111 diagram has a different weight. How many words have weight (1, 2), its 122, 212 and 221 so the dimesion of that space is $3 = \binom{3}{2} = \binom{3}{1}$.

Question. In $(V^{(1,0)})^{\otimes n}$, ¿what is the dimension of the weight space $\alpha=(a,b,c)=(a-c,b-c)$? It's however many words of length n have a 1's, b 2's and c 3's. This is $\binom{n}{a,b,c}=\frac{n!}{a!b!c!}$, which is counted by taking all the words and then dividing by possible rearrangements. This gives us something with the dots in the diagram.

Recall from when we talked about RSK insertion: It is compatible with \mathfrak{sl}_2 crystal operations on tableau reading word. In other words this is, if $\underline{a} \xrightarrow{F_i} \underline{b}$ then

- \diamond The RSK insertion tableau of $\underline{a}, \underline{b}$ matches.
- $\diamond \operatorname{rw}(\operatorname{ins}(\underline{a})) \xrightarrow{F_i} \operatorname{rw}(\operatorname{ins}(\underline{b})).$

So in conclusion, each connected component (irreducible representation) in $(V^{(1,0)})^{\otimes n}$ corresponds to a recording tableau. Let's see how this works:

Example 1.8.5. If we take the RSK insertion of the diagram we get diagram. The bumping sequence is all the same! What that means is that we can take the reading word and apply F_1 . So all the stuff we did on crystals in 502 is coming back.

If we take the other one for 211, the RSK insetion is 2 but the recording tableau is 2 so we're gonna count how many times an irreducible representation shows up by counting tableau.

1.9 Day n+1 | 20241002

Recall $(V^{(1,0)})^{\otimes n}$ is described by words of 1,2,3 of length n with F_1,F_2 bracketing rules. E_1,E_2 also have bracketing rules. Consider the word

$$1223112133212 \rightarrow)((?))()??()($$

so E_1 changes the leftmost unpaired 2 to a 1 which leaves us with

$$1223112133211 \rightarrow)((?))()??()).$$

The highest weight is the ballot word which when read right to left has more #i's than #i + 1's.

Example 1.9.1. We have $(V^{(1,0)})^{\otimes 4}$ with dimension $3^4 = 81$. The highest weight words, or ballot words are

corresponding to

$$V^{(4,0)}, V^{(3,1)}, V^{(3,1)}, V^{(2,1,1)} = V^{(1,0)}, V^{(3,1)}, V^{(2,2)}, V^{(2,2)}, V^{(1,0)}, V^{(1,0)}. \\$$

So this is

$$V^{(4,0)} \oplus (V^{(3,1)})^{\oplus 3} \oplus (V^{(2,2)})^{\oplus 2} \oplus (V^{(1,0)})^{\oplus 3}.$$

Recall that $V^{(2,1,1)} = V^{(1,0)}$ because $L_1 + L_2 + L_3 = 0$ and we can quotient out by (1,1,1).

Let's recall some crystal/Young tableaux facts:

- (a) RSK recording tableau is unchanged via F_1 , F_2 .
- (b) Any highest weight word has RSK insertion tableau that looks like

where all i's are in row i from the bottom.

This facts imply that two connected components of $(V^{(1,0)})^{\otimes n}$ crystal have different recording tableau as RSK is a bijection.

Example 1.9.2. We have that

$$3121 \xrightarrow{RSK} [[3[]]]$$

¹Yamanouchi or reverse ballot

1.10 Day n+2 | 20241004

Characters of sl₃ representations

The last time we talked about

$$\chi(V) = \sum_{\alpha \in \Lambda} \dim(V_{\alpha}) x^{\alpha}.$$

There's this fact which is the *highest weight theorem* which states:

Theorem 1.10.1. V is determined by $\chi(V)$.

The idea of this for \mathfrak{sl}_3 is that we had the hexagonal lattice which was generated by a unique highest weight element.

So given $\operatorname{ch}(V)$, let x^{α} appear in $\operatorname{ch}(V)$ where α is a highest weight, subtract $\operatorname{ch}(V^{\alpha})$ and iterate.

With the notation

$$x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3}$$

we ask what is the character of $V^{(a,b)}$?

Example 1.10.2. We've written $V^{(1,0)}$ as

FIGURE

Summing up the monomials we can see that this is

$$\chi(V^{(2,1)}) = s_{(2,1)} \bmod x_1 x_2 x_3.$$

Proposition 1.10.3. The character of $V^{(a,b)}$ is

$$\chi(V^{(a,b)}) = s_{(a,b)}(x_1, x_2, x_3) \bmod x_1 x_2 x_3.$$

This isn't immediately obvious. We have a bunch of words and insert them, but we need to see that every SSYT occurs.

Proof

Recall

$$s_{(a,b)}(x_1, x_2, x_3) = \sum_{\substack{T \in SSYT(a,b) \\ 1,2,3}} x^T.$$

We claim that every SSYT T is obtained from a sequence of F_1 , F_2 's applied to

We ought to show we can get back to it with E's. Let's do this more generally for \mathfrak{sl}_n . If T is not highest weight, we will show that we can apply a raising operator. Let r be the lowest row such that T doesn't have all r's in that row. Say r=3 then in

we take the rightmost element i of row r. This means that i > r. This is, in this case i = 5. We may now apply E_{i-1} which is well defined because in row r, there's no i-1 below it. Here $i-1 \ge r$ for all rows below a r-1. So bracketing i, i-1 there is an upaired i to which we may apply E_i insertion sleep

This first Littlewood Richardson rule is concatenate reading words like in \mathfrak{sl}_2 . The coefficient is

$$c_{\lambda\mu}^{\nu} = \# pairs(T, S) of shapes \lambda, mu(unfinished)$$

The third LR rule is in terms of skew tableau. The LR coefficient is then # of skew SSYT of shape ν/λ and content μ with a ballot reading word. Proving this is harder but it's not so bad when we think of a skew crystal. It's not obvious what's going on. Recall the Hall inner product which gives us

$$\langle s_{\mu}s_{\lambda}|s_{\nu}\rangle = c_{\lambda\mu}^{\nu} = \langle s_{\mu}|s_{\nu/\lambda}\rangle.$$

1.11 Day n+3 | 20241007

Representations of \mathfrak{sl}_n

There's no steps of thinking to this. It's the same as \mathfrak{sl}_3 . Recall \mathfrak{sl}_n corresponds to $n \times n$ matrices which are traceless. The Cartan subalgebra of \mathfrak{sl}_n is

$$\mathfrak{h} = \{ \text{ diagonal matrices } M, \text{ tr } M = 0 \}.$$

Then elements here are $H = \operatorname{diag}(x_1, \dots, x_n)$ such that $\sum x_i = 0$. To define weights, these live in \mathfrak{h}^* and they are joint eigenvalues of H in a representation V of \mathfrak{sl}_n . In 16

other words, $\alpha \in \mathfrak{h}^*$ with $v_{\alpha} \in V$ such that

$$Hv_{\alpha} = \alpha(H)v_{\alpha}$$
, for $H \in \mathfrak{h}$.

Example 1.11.1. If $\alpha \operatorname{diag}(x_1, \dots, x_n) = x_1$ then this is L_1 . L_i is such that $L_i \operatorname{diag}(\underline{x}) = x_i$.

The <u>weight space</u> is $L_1 + \cdots + L_n = 0$. What are all the weights which are valid for representations? The weight lattice is $\langle L_1, \ldots, L_n \rangle$ and all weights lie on the lattice. The proof proceeds the same way, taking block copies of \mathfrak{sl}_2 .

Adjoint representation of \mathfrak{sl}_n

In \mathfrak{sl}_3 , the adjoint representation had dimension 8.

Crystals for \mathfrak{sl}_n

$$(1,0,\ldots,0)=L_1$$

Theorem 1.11.2.
$$(V^{L_1})^{\otimes m} = \bigoplus c_{\lambda}V^{\lambda}$$
 where $c_{\lambda} = \#SYT(\lambda)$

The proof is done using crystals and RSK, every connected component corresponds to a unique recording tableau.

1.12 Day n+4 | 20241009

\mathfrak{sl}_n crystals and Stembridge axioms

Consider the word

we claim that the operations F_1 and F_3 commute in \mathfrak{sl}_n . Observe that F_1 brackets (1,2) and F_3 brackets (3,4). We thus get:

$$F_1(21132342132) = 21232342132$$

$$F_3(21132342132) = 21132442132$$

and then applying F_3 , F_1 respectively we get the same word

Sometimes F_1F_3 is not defined so we actually mean that

$$F_1F_3(x) = y \Rightarrow F_3F_1(x) = y$$

even when y = 0. We have a lot of commuting squares then! We may generalize to

Theorem 1.12.1. F_i, F_j commute when |i - j| > 1.

This characterizes the crystal graphs but not completely, that's where the Stembridge axioms come into play.

Theorem 1.12.2. In an \mathfrak{sl}_n crystal, for $F_1(w)$, $F_2(w)$ either:

- (a) $\exists z(z = F_1F_2(w) = F_2F_1(w))$, or
- (b) $\exists u, v, s, t, z \text{ such that the crystal is just like the adjoint representation. This means that}$

$$F_2F_1F_1F_2 = F_1F_2F_2F_1$$
.

¿Why can't we have more complicated words than that? The proof for this will be very combinatorial and we will analyze a lot of words.

Proof

Let a be the rightmost unpaired 1 in w for (1,2). Then call b the rightmost unpaired 2 in w for (2,3).

- \diamond In the first case, we assume that removing b does not unbracket a 1. Take for examplesleep
- \diamond In the next case $F_1F_1F_2$
- \diamond The third case is basically removing b=2 unpairs c=1, where b is left of a and there exists and unpaired 3 to the left of a. This is

$$-2 - 1 - (3) - 1 -$$

so applying F_1 gets us -2132 and F_2 leaves us with -3131. This both meet up after applying F_2 and F_1 respectively.

 \diamond Finally it could be like before but there's no unpaired 3 left of a. Here we get another figure 8 diagram. For this case we get

This all comes from Stembridge's 2004 paper.

1.13 Day n+5 | 20241011

We were talking about how the figure 8 and square characterizes stuff. We will now characterize crystals as graphs.

Crystals of type A

Definition 1.13.1. A type *A* <u>Kashiwara</u> crystal of finite type is

- $\diamond B$ a crystal base (weight spaces' generators are bases), nonempty set.
- \diamond Two arrow maps $e_i, f_i : B \to B \cup \{emptyset\} \text{ for } i \in [n-1].$
- \diamond Two length maps $\varepsilon_i, \varphi_i : B \to \mathbb{Z}$ which correspond to the number of times you can apply e_i and f_i .
- \diamond And a weight function to thw lattice $\operatorname{wt}: B \to \Lambda$ where $\Lambda \mathbb{Z} \langle L_1, \dots, L_n \rangle$ and $\sum L_i = 0$. Elements here are $\underline{a}/\underline{1}$, i.e. modded by translations.

They must satisfy the properties

(a) If $x, y \in B$, then

$$e_i(X) = y \iff x = f_i(y)$$

and in this case

$$\operatorname{wt}(y) = \operatorname{wt}(x) + \alpha_i$$

where $\alpha_i = (0, 0, \dots, 1, -1, 0, \dots, 0)$ with 1 in position i and -1 in the next one.

And also

$$\varphi_i(y) = \varphi_i(x) + 1.$$

(b) For all i, x_i

$$\varphi_i(x) - \varepsilon_i(x) = \operatorname{wt}(x)_i - \operatorname{wt}(x)_{i+1}.$$

To state this for general crystals we need an inner product.

Exercise 1.13.2. Analyze how tableaux crystals fit into this picture.

Example 1.13.3. In n = 2, we had \mathfrak{sl}_2 but now we can make an infinite chain. Let us take our basis

$$B = \{v_0, v_{-2}, v_{-4}, \dots\}$$

where the f arrow

Index

algebraic group, 6

character, 5

column-strict tableau, 8

general linear group, 3

highest weight vector, 11

indecomposable, 4 irreducible, 5

Kashiwara, 19

Lie group, 6

orthogonal group, 6

Schur module, 9 special linear group, 3 subrepresentation, 5 symmetric group, 3 Symplectic group, 7

type B, 7

weight space, 17 weight vector, 11

Bibliography

- [1] Anders Bjorner and Francesco Brenti. *Combinatorics of Coxeter Groups*. Graduate Texts in Mathematics. Springer Berlin Heidelberg, 2005.
- [2] Daniel Bump and Anne Schilling. *Crystal Bases: Representations And Combinatorics*. World Scientific Publishing Company, 2017.
- [3] William Fulton. *Young Tableaux: With Applications to Representation Theory and Geometry*. London Mathematical Society Student Texts #35. Cambridge University Press, 1999.
- [4] William Fulton and Joe Harris. *Representation Theory: A First Course.* Graduate Texts in Mathematics. Springer New York, 2013.
- [5] Jin Hong and Seok-Jin Kang. *Introduction to Quantum Groups and Crystal Bases*. Advances in the Mathematical Sciences. American Mathematical Society, 2002.
- [6] Bruce Eli Sagan. *The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions*. Graduate Texts in Mathematics №203. Springer, 2 edition, 2001.