Transformers

Geometry of Data Points

The geometry of these data points consists of two clusters

Understanding Text

The texts form two clusters

Document

Time to tell the story of Tesla & SpaceX

Asteroid impact risk is well understood, but not comets.

Those worry me.

Yesterday, I did the most important thing I can do to support @BarackObama - I voted

The President has been steady on the issues

A favorite Obama family recipe is up for a vote

Geometry of Text

 Text documents in clusters have words about similar topics

Data points in clusters are close to each other

 Can we turn the notion of similar into a notion of close for text?

Can we give geometry to text?

Embeddings

- If we embed text, we turn text into a numeric data point
- A good embedding will encode meaning of the text in the geometry of the data points
- With a good embedding, we can do a lot of useful things with text

Document

Time to tell the story of Tesla & SpaceX

Asteroid impact risk is well understood, but not comets. Those worry me.

Yesterday, I did the most important thing I can do to support @BarackObama - I voted

The President has been steady on the issues

A favorite Obama family recipe is up for a vote

Embedding Text

We are given a corpus of text documents

Document	Text
1	The mouse is in the yard
2	The garden snake is in The Secret Garden!
3	The cat in the hat
4	The cat in the cradle

How can we embed this text?

Term Frequency (TF) Embedding

 Each document can be represented as a set of terms with different frequencies (counts)

- Ex) The garden snake is in The Secret Garden!
- tf embedding:

Term	Frequency
The	2
garden	1
snake	1
is	1
in	1
Secret	1
Garden	1
!	1

Cleaning Text

We like to clean the text before doing any analysis

- Common cleaning steps
 - Remove stop words: common words like "and", "the", etc.
 - Remove punctuation
 - Make all words lowercase

TF Embedding on Cleaned Text

Ex) The garden snake is in The Secret Garden!
 tf embedding

Term	Frequency
The	2
garden	1
snake	1
is	1
in	1
Secret	1
Garden	1
!	1

Clean tf embedding

Term	Frequency
garden	2
snake	1
secret	1

TF Embedding on Cleaned Text

Document	Text
1	The mouse is in the yard
2	The garden snake is in The Secret Garden!
3	The cat in the hat
4	The cat in the cradle

TF Embedding on Cleaned Text

Word	Doc 1	Doc 2	Doc 3	Doc 4
mouse	1	0	0	0
yard	1	0	0	0
garden	0	2	0	0
snake	0	1	0	0
secret	0	1	0	0
cat	0	0	1	1
hat	0	0	1	0
cradle	0	0	0	1

TF Embedding Properties

- Order of words doesn't matter
 - Tauhid eats fish = Fish eatsTauhid
- Word meaning is independent of its context
 - (baseball) bat = (vampire) bat
- Not the best embedding but a good start

Transformers

- Neural network developed in 2017 by Google
- Revolutionized natural language processing

Transformers

- Neural network developed in 2017 by Google
- Revolutionized natural language processing

Attention Is All You Need

Ashish Vaswani* Google Brain

avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

.Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention

What Can Transformers Do?

- Measure sentiment
- Translation
- Web search
- Text summarization
- Generate text
- Question answering
- Write Python code
- Be your friend ©
- ANYTHING!!!!

Transformer Architecture

- The transformer has many layers
- Each layer has an embedding vector for each word in the input text

Transformer Layer

- Each layer has many self-attention heads
- Each attention head operates on a small chunk of the input vectors in parallel

Self-Attention Head

- Each self-attention head computes weights from each word to each other word, creating an attention pattern
- This attention pattern represents some aspect of the language (subject, sentiment, etc)

Self-Attention Head

 Each self-attention head outputs a context dependent embedding vector for each word

Self-Attention Head

- Output embedding vector of a word is a weighted combination of input embedding vector of all words
- Weight is given by attention pattern

hungry

Word	Vector	Weight	Weight x Vector
CLS		0.01	
Ĩ		0.9	
am		0.07	
hungry		0.02	
		Sum:	

Consider these sentences that use the word bat

- 1. A bat flew out of the cave
- 2. The bat pooped on the ground
- 3. A bat bit me in the neck
- 4. Im afraid of a bat because it is like a rat with wings
- 5. A bat flew out of the baseball players hand
- 6. I hit a home run with the metal bat
- 7. No one swung a bat harder than Babe Ruth

- The transformer outputs a context dependent embedding vector for each word in each sentence
- Let's see if the bat embeddings differ depending on the meaning of the word

Generative Transformers

- A generative transformer turns the word embedding vector into a probability distribution over all words in the vocabulary
 - Ex) GPT, GPT-2, GPT-3, ChatGPT, GPT-4
- Text is generated by sampling from this distribution
- These types of transformers are also called large language models (LLMs)

ChatGPT

- GPT = Generative Pre-trained Transformer
- ChatGPT Released in 2023 by OpenAl
- Newest version of ChatGPT (GPT-40) has over 1.8 trillion parameters
 - More than 120 layers
 - More than 96 attention heads per layer
 - At least 12,288 dimensional word embedding
- Trained on all text data in the world + human labeled data

Transformer Basic Training

- A transformer is trained to complete the masked language task (MLT)
 - Fill in the masked word
- Unsupervised process no labeled data needed

Data	Prediction
I went to the [MASK]	[MASK] = store
I went to the store to buy [MASK]	[MASK] = eggs
I went to the store to buy eggs and they were [MASK]	[MASK] = expensive

ChatGPT (GPT-3.5)

- ChatGPT (GPT-3.5) was a major advancement in generative AI
- Trained using a clever technique: reinforcement learning from human feedback (RLHF)

Transformer Advanced Training

- Masked language task (MLT) takes a transformer from a baby to a child
- To go from an child to a superhuman a new training technique was needed: Reinforcement Learning from Human Feedback (RLHF)
 - 1. Fine-tune on human created data
 - 2. Train a reward model to score how good the transformer is
 - 3. Let the transformer try to beat its high score

Fine Tuning

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Prompt dataset is a series of prompts previously submitted to the Open API

40 contractors hired to write responses to prompts

Input / output pairs are used to train a supervised model on appropriate responses to instructions.

Reward Model

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

Responses are generated by the SFT model

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

(k/2) combinations of rankings served to the model as a batch datapoint

Beat High Score with Reinforcement Learning

GPTs Need GPUs

TECHNOLOGY | ARTIFICIAL INTELLIGENCE

Sam Altman Seeks Trillions of Dollars to Reshape Business of Chips and AI

OpenAI chief pursues investors including the U.A.E. for a project possibly requiring up to \$7 trillion

By Keach Hagey Follow and Asa Fitch Follow

Feb. 8, 2024 9:00 pm ET

GPTs Need GPUs

GPTs Need GPUs?

GPTs Need Fewer GPUs

How DeepSeek Makes Transformers Cheaper

- DeepSeek uses a few clever ideas to make it fast and cheap
 - Smaller model
 - Lower numerical precision
 - Mixture of Experts
 - Multi-headed Latent Attention
 - Reinforcement learning without human feedback

Smaller Model

 DeepSeek has 200 billion parameters vs ChatGPTs 1.8 trillion parameters

GPT-40

DeepSeek

Lower Numerical Precision

 Lower numerical precision – 8 bits to represent a number vs 32 bits

32 bits

3.1415927

8 bits

3.14

Mixture of Experts

 Mixture of Experts – Pass text to a subset of the parameters (an expert) instead of all the parameters

Multi-Headed Latent Attention

- Do attention in low dimensional latent space
- Need many fewer parameters in model

RL without Human Feedback

- DeepSeek does not do fine tuning
- DeepSeek does not train a reward model
 - Reward is whether or not response is correct
 - Math and coding problems
- Reduces training cost

DeepSeek vs GPT-4o

Sentiment Analysis with Transformers

Sentiment

Tweet 1: My birthday cake was awful

Tweet 2: My birthday cake was great

Sentiment and Keywords

- Sentiment is conveyed by specific words
- Maybe we could use a word frequency approach to measure sentiment

- Early sentiment classifiers did this
 - Naïve Bayes classifier

Sentiment and Context

Tweet 1: My birthday cake was great, if you want my honest opinion

Tweet 2: My birthday cake was great, if you want me to get diabetes

Term Frequency Embeddings

 Term frequency based embeddings may cluster tweets with similar words, but different sentiment

Context Dependent Embeddings

 A context dependent embedding can cluster by sentiment

My birthday cake was **great**, if you want my honest **opinion**

My birthday cake was great

My birthday cake was **great**, if you want me to get **diabetes**

My birthday cake was awful

Sentiment and Attention

Sentiment is conveyed by specific words

We also need to know the context of the words

Context = to which words does a word pay attention?

Attention

 We need a model that allows words in a sentence to pay "attention" to other words

Words can pay attention in different ways

 We can choose the type of "attention" that captures sentiment

Solution: Transformers

Transformer Embeddings and Sentiment

- We already saw how the attention mechanism lets a transformer make context dependent embeddings
- Transformer embeddings are able to capture sentiment geometrically
- The transformer embedding "separates" tweets based on their sentiment

Measuring Sentiment with Pre-Trained Transformers

- In the old days, we would have to train a transformer to measure sentiment
 - Collect and label data ⊗
 - Train for hours on a GPU ⊗
- Today, we have ChatGPT
 - No training data needed
 - No training needed
 - Sometimes you don't even need any examples

Few-Shot Learning

- How do we make the language model generate text for a specific task?
- Old way fine tune on new set of data
 - Collect and label data ⊗
 - Train for hours on a GPU ⊗
- New way few-shot learning
 - Put a few example texts in the input
 - No training needed
 - Works surprisingly well if the model is large enough

Few-Shot Learning

Emergent Behavior

- The transformer was trained to complete sentences
- It has shown the ability to perform many behaviors it was not trained on
- These are emergent behaviors
 but no one really
 understands why the emerge
- Emergent behaviors are the reason why transformers are so powerful

Measuring Sentiment with ChatGPT

- ChatGPT can measure sentiment based on a prompt
- Ex) "You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

You will be given a sentence and must grade its sentiment from 0 to 100, 0 meaning very negative and 100 meaning very positive. Return only the numerical score: I hate my job

ChatGPT vs DeepSeek

ChatGPT

DeepSeek

Measuring Complex Sentiment with ChatGPT

ChatGPT can give us more nuanced sentiment and explain why

Next Time: Coding Session

 We will learn to measure tweet sentiment with ChatGPT and visualize tweet embeddings

