

AAAI 2021

Measuring Dependence with Matrix-based Entropy Functional

<u>Shujian Yu¹</u>, Francesco Alesiani¹, Xi Yu², Robert Jenssen³, Jose Q. Principe²

¹NEC Laboratories Europe GmbH

²University of Florida

³UiT – The Arctic University of Norway

Contact: Shujian.Yu@neclab.eu

Statistical Dependence is Everywhere

- Statistics and Machine Learning
- Biology and Neuroscience
- Signal Processing ...

Commonly used Dependence Measures

Pearson correlation coefficient

•
$$\rho_{X,Y} = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]/\sigma_X\sigma_Y$$

Mutual information

•
$$I_{X,Y} = \int_{\mathcal{X}} \int_{\mathcal{Y}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right) dxdy$$

Mutual information neural estimator (MINE)^[1] ...

But ...

- Only applicable to two random variables
- Only applicable to scalar variables (rather than random vectors)
- Not interpretable
- Hard to estimate
- Not differentiable

[1] Luis Gonzalo Belghazi, etc. "Mutual information neural estimation." In International Conference on Machine Learning, pp. 531-540. 2018.

Our Target – A New Dependence Measure

- Applicable to more than two random variables
- Applicable to random vectors
- Interpretable (always between 0 and 1)
 - 0 indicates independence between any pairwise variables
 - 1 indicates functional dependence, e.g., $y^1 = y^2 = \cdots = y^L$
- Easy to estimate
 - Avoid density estimation
 - Avoid model training
- Differentiable
 - Applicable as a loss function to train deep neural networks

Problem Setup

- Given $L(L \ge 2)$ variables, $y^1 \in \mathbb{R}^{d_1}, y^2 \in \mathbb{R}^{d_2}, ..., y^L \in \mathbb{R}^{d_L}$, the total amount of dependence between $y^1, y^2, ..., y^L$?
- Two extreme cases
 - $L = 2 \rightarrow \text{random vector associations, e.g., MINE, HSIC}^{[2]}$
 - L>2 & $\forall_i d_i=1$ \rightarrow multivariate correlation analysis, e.g., Multivariate Spearman's $\rho^{[3]}$
- Our target: no restrictions on L and d_i (i = 1, 2, ..., L)

[2] Gretton, Arthur, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. "Measuring statistical dependence with Hilbert-Schmidt norms." In *International conference on algorithmic learning theory*, pp. 63-77. Springer, Berlin, Heidelberg, 2005.

[3] Schmid, Friedrich, and Rafael Schmidt. "Multivariate extensions of Spearman's rho and related statistics." *Statistics & probability letters* 77, no. 4 (2007): 407-416.

General Idea and Preliminary Knowledge

If variables are pairwise independent, then

$$P(y^1, y^2, \dots, y^L) = \prod_{i=1}^L P(y^i)$$

- Measure the difference between $P(y^1, y^2, ..., y^L)$ to $\prod_{i=1}^L P(y^i)$, i.e., $D\left(P(y^1, y^2, ..., y^L) \parallel \prod_{i=1}^L P(y^i)\right)$
- Two examples
 - $D_{\text{KL}}\left(P(y^1, y^2, ..., y^L) \parallel \prod_{i=1}^L P(y^i)\right) = \sum_{i=1}^L H(y^i) H(y^1, y^2, ..., y^L)$
 - $D_{\mathrm{MMD}}\left(P\left(f(y^1),f(y^2),\ldots,f(y^L)\right) \| \prod_{i=1}^L P\left(f(y^i)\right)\right)$, f is a transform (e.g., the probability integral transform)^[4]

[4] Póczos, Barnabás, Zoubin Ghahramani, and Jeff Schneider. "Copula-based kernel dependency measures." In *International Conference on Machine Learning*, pp. 1635-1642, 2012.

General Idea and Preliminary Knowledge

If variables are pairwise independent, then

$$P(y^1, y^2, \dots, y^L) = \prod_{i=1}^L P(y^i)$$

- Measure the difference between $P(y^1, y^2, ..., y^L)$ to $\prod_{i=1}^L P(y^i)$, i.e., $D\left(P(y^1, y^2, ..., y^L) \parallel \prod_{i=1}^L P(y^i)\right)$
- Two examples
 - $D_{\text{KL}}\left(P(y^1, y^2, ..., y^L) \parallel \prod_{i=1}^L P(y^i)\right) = \sum_{i=1}^L H(y^i) H(y^1, y^2, ..., y^L)$
 - $D_{\mathrm{MMD}}\left(P\left(f(y^1),f(y^2),\ldots,f(y^L)\right) \| \prod_{i=1}^L P\left(f(y^i)\right)\right)$, f is a transform (e.g., the probability integral transform)^[4]

[4] Póczos, Barnabás, Zoubin Ghahramani, and Jeff Schneider. "Copula-based kernel dependency measures." In *International Conference on Machine Learning*, pp. 1635-1642, 2012.

Q1: Is $\sum_{i=1}^{L} H(y^i) - H(y^1, y^2, ..., y^L)$ the only expression (in mathematical sense)?

Q2: How to estimate $H(y^i)$ and $H(y^1, y^2, ..., y^L)$?

Q3: How to become interpretable and differentiable?

- Q1: Is $\sum_{i=1}^{L} H(y^i) H(y^1, y^2, ..., y^L)$ the only expression (in mathematical sense)?
 - No!
- Shearer's inequality^[5]
 - $H(y^1, y^2, ..., y^L) \le \frac{1}{k} \sum_{\mathcal{S} \in \varphi} H(y^i, i \in \mathcal{S})$
 - φ refers to the family of all subsets of [L] with the property that every member of [L] lies in at least k members of φ
 - There are at least (L-1) potential mathematical formulas to quantify the dependence of $y^1, y^2, ..., y^L$.
 - Two special and simplest cases
 - If $\varphi = \binom{L}{1}$, $H(y^1, y^2, ..., y^L) \le \sum_{i=1}^{L} H(y^i)$,
 - -Total correlation

$$T(y^1, y^2, ..., y^L) = \sum_{i=1}^L H(y^i) - H(y^1, y^2, ..., y^L).$$

• If
$$\varphi = \binom{L}{L-1}$$
, $H(y^1, y^2, ..., y^L) \le \frac{1}{L-1} \left[\sum_{i=1}^L H(y^1, ..., y^{i-1}, y^i, ..., y^L) \right]$,

-Dual total correlation

$$D(y^1, y^2, ..., y^L) = \sum_{i=1}^L H(y^1, ..., y^{i-1}, y^i, ..., y^L) - (L-1)H(y^1, y^2, ..., y^L).$$

[5] Chung, Fan RK, Ronald L. Graham, Peter Frankl, and James B. Shearer. "Some intersection theorems for ordered sets and graphs." *Journal of Combinatorial Theory, Series A* 43, no. 1 (1986): 23-37.

- Q2: How to estimate $H(y^i)$ and $H(y^1, y^2, ..., y^L)$?
 - Matrix-based Rényi's α -entropy functional^[6]
 - Entropy of variable y (i.e., H(y)) is estimated as:
 - Given $Y = \{y_1, y_2, ..., y_N\}$ and a kernel Gram matrix $(K)_{ij} = \kappa(y_i, y_j)$:
 - $\mathbf{S}_{\alpha}(A) = \frac{1}{1-\alpha} \log[\sum_{i=1}^{N} \lambda_i(A)^{\alpha}]$, with $-A = K/\operatorname{tr}(K)$
 - $-\lambda_i(A)$ denotes the *i*-th eigenvalue of A
 - Measure entropy or uncertainty of data on the eigenspectrum of a Gram matrix in kernel space
 - Independent to dimension of y
 - Avoid density estimation and model training
 - Only two hyper-parameters (α and σ)
 - $-\alpha = 1.01$
 - $-\sigma$ (kernel size): many heuristic rules in kernel learning

[6] Shujian Yu, Luis Gonzalo Sanchez Giraldo, Robert Jenssen, and Jose C. Principe. "Multivariate Extension of Matrix-based Renyi's α-order Entropy Functional." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, pp. 2960 - 2966, 2020.

- Q2: How to estimate $H(y^i)$ and $H(y^1, y^2, ..., y^L)$?
 - Matrix-based Rényi's α -entropy functional^[6]
 - Joint entropy of L variables $y^1, y^2, ..., y^L$ (i.e., $H(y^1, y^2, ..., y^L)$) is estimated as:
 - Given a collection of N samples $\{y_i = (y_i^1, y_i^2, ..., y_i^L)\}_{i=1}^N$, with $v^1 \in \mathbb{R}^{d_1}, v^2 \in \mathbb{R}^{d_2}, ..., v^L \in \mathbb{R}^{d_L}$
 - Evaluate a kernel Gram matrix for each of the L variables, that is $(A^1)_{ij} = \kappa(y_i^1, y_i^1)$, $(A^2)_{ij} = \kappa(y_i^2, y_i^2)$, ..., $(A^L)_{ij} = \kappa(y_i^L, y_i^L)$
 - $\mathbf{S}_{\alpha}(A^1, A^2, \dots, A^L) = \mathbf{S}_{\alpha}\left(\frac{A^1 \circ A^2 \circ \dots \circ A^L}{\operatorname{tr}(A^1 \circ A^2 \circ \dots \circ A^L)}\right)$, with
 - "o" denotes the Hadamard product
 - Avoid density estimation and model training
 - Only two hyper-parameters (α and σ)

[6] Shujian Yu, Luis Gonzalo Sanchez Giraldo, Robert Jenssen, and Jose C. Principe. "Multivariate Extension of Matrix-based Renyi's α-order Entropy Functional." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 22, pp. 2960 - 2966, 2020.

Q3: How to become interpretable and differentiable?

Interpretability

Normalization to [0,1] by upper bound

•
$$T^*(\mathbf{y}) = \frac{\left[\sum_{i=1}^{L} H(y^i)\right] - H(y^1, y^2, ..., y^L)}{\left[\sum_{i=1}^{L} H(y^i)\right] - \max_{i} H(y^i)}$$

• $D^*(\mathbf{y}) = \frac{\left[\sum_{i=1}^{L} H(y^{[L]\setminus i})\right] - (L-1)H(y^1, y^2, ..., y^L)}{H(y^1, y^2, ..., y^L)}$

- $T^*(y)$ and $D^*(y)$ reduces to 0 iff $y^1, y^2, ..., y^L$ are independent
- Additional notes on normalization
 - When do we need normalization?
 - Influence on quantitative performance (e.g., deep neural networks) generalization error)
 - -Normalization depends on application and priority on interpretability
 - When L = 2, $T^*(y) = D^*(y)$ $-I^*(\mathbf{y}) = \frac{H(y^1) + H(y^2) - H(y^1, y^2)}{\min H(y^i)}$: normalized mutual information $-I^*(y) = \frac{H(y^1) + H(y^2) - H(y^1, y^2)}{\max H(y^i)}$: an alternative form (usually performs better practically)

- Q3: How to become interpretable and differentiable?
- Differentiability
 - Analytical gradient of matrix-based Rényi's α -entropy functional
 - Automatically differentiable with PyTorch (recommend) and Tensorflow

$$\frac{\partial S_{\alpha}(A)}{\partial A} = \frac{\alpha}{(1-\alpha)} \frac{A^{\alpha-1}}{\operatorname{tr}(A^{\alpha})},$$

$$\frac{\partial S_{\alpha}(A,B)}{\partial A} = \frac{\alpha}{(1-\alpha)} \left[\frac{(A \circ B)^{\alpha-1} \circ B}{\operatorname{tr}(A \circ B)^{\alpha}} - \frac{I \circ B}{\operatorname{tr}(A \circ B)} \right]$$

$$\frac{\partial I_{\alpha}(A;B)}{\partial A} = \frac{\partial S_{\alpha}(A)}{\partial A} + \frac{\partial S_{\alpha}(A,B)}{\partial A}$$

Ability in detecting (nonlinear) dependence:

- Example 1.
- $y^1 \sim \mathcal{N}(0, I)$
- Each sample in y^2 is generated as $y_i^2 = y_i^1 \varepsilon_i$, ε_i is independent normal variable.
- ullet Non-monotonic dependence between y^1 and y^2 .

Ability in detecting (nonlinear) dependence:

- Example 2.
- $\bullet y^1 = \left(\frac{1}{I-1} \sum_{i=2}^{L} y^i\right)^2$
- $y^2, y^3, ..., y^L$ are uniformly and independently distributed.
- Decaying dependence with the increase of *L*.

Applications

- Gene regulatory network inference
- Robust machine learning under covariate shift and non-Gaussian noise
- Deep deterministic information bottleneck

Gene Regulatory Network Inference

- Reconstruct gene regulatory network from gene expression data
- Evaluate pairwise dependence on g_i and g_j with $D(g_i; g_j)$
- Only consider undirected graph (dependence is symmetric)

Figure credit to: Sanguinetti, Guido. "Gene regulatory network inference: an introductory survey." In Gene Regulatory Networks, pp. 1-23. Humana Press, New York, NY, 2019.

Gene Regulatory Network Inference

- Reconstruct gene regulatory network from gene expression data
- Evaluate pairwise dependence on g_i and g_j with $D(g_i; g_j)$
- Only consider undirected graph (dependence is symmetric)

Data set	ρ	MI (bin)	MI (KSG)	MIG	I_{lpha}^{*}
Network 1	0.62	0.59	0.74	0.75	0.78
Network 2	0.52	0.58	<u>0.76</u>	0.74	0.87
Network 3	0.44	0.61	0.83	0.76	0.84
Network 4	0.45	0.60	0.75	0.75	0.75
Network 5	0.38	0.61	0.88	0.89	0.97

GRN inference results (AUC score) on DREAM4 challenge. The first and second best performances are in bold and underlined, respectively.

Robust Machine Learning under Covariate Shift

Classification in Distribution Shift

Training Data

Test Data

Figure credit to: https://d2l.ai/chapter_multilayer-perceptrons/environment.html

- Robust Machine Learning under Covariate Shift
 - Classification in Distribution Shift
 - How to learn models which are robust to a-priori unknown changes in test distribution?
 - Source distribution $P_s(x,y)$
 - Target distribution $P_t(x, y) \in Q$

sets of possible targets Q

Robust Machine Learning under Covariate Shift

- Classification in Distribution Shift
- How to learn models which are robust to a-priori unknown changes in test distribution?
 - Source distribution $P_s(x, y)$
 - Target distribution $P_t(x,y) \in Q$
- Covariate Shift
 - $P_s(y|x) = P_t(y|x), P_s(x) \neq P_t(x)$
 - We want a single model f that works well on all possible $P_t(x,y) \in Q$
 - We cannot use any labeled or unlabeled samples data from $P_t(x,y)$

Robust Machine Learning under Covariate Shift

- Our Approach
 - Find f such that $y f(x) \perp x$: the prediction residual is independent to input instances
 - A model is robust against covariate shift iff $y f(x) \perp x$ [7]
 - $y f(x) \perp x$ also encourages model is robust against noise in labels: $\tilde{y} = y + e$
- Matrix-based Independence Criterion (MIC)

[7] Greenfeld, Daniel, and Uri Shalit. "Robust learning with the hilbert-schmidt independence criterion." In International Conference on Machine Learning, pp. 3759-3768. PMLR, 2020.

Robust Machine Learning under Covariate Shift

Matrix-based Independence Criterion (MIC)

Algorithm 1 Learning with matrix-based independence criterion (MIC)

- 1: Input: samples $(\mathbf{x}_i, y_i)_{i=1}^n$, kernel size σ_x for input \mathbf{x} and σ_e for error e, Rényi's entropy order α , mini-batch size m.
- 2: Initialize neural network parameter θ .
- 3: Repeat:
- Sample mini-batch $(\mathbf{x}_i, y_i)_{i=1}^m$
- Evaluate the error for each instances in mini-batch $e_i = y_i f_{\theta}(x_i)$ 5:
- Compute the (normalized) Gram matrices of size $m \times m$ for $\{\mathbf{x}_i\}_{i=1}^m$ and $\{e_i\}_{i=1}^m$ (denote them $A_{\mathbf{x}}$ and A_{e} , respectively).
- Compute the normalized Rényi's α -entropy mutual information (i.e., $I_{\alpha}^{*}(\mathbf{x}, e)$) based on A_x and A_e with Eq. (6).
- Update $\theta \leftarrow \text{Optimize}(I_{\alpha}^*(\mathbf{x}; e)).$
- 9: Until convergence.
- 10: Compute the estimated source bias: $b \leftarrow \frac{1}{n} \sum_{i=1}^{n} y_i \frac{1}{n} \sum_{i=1}^{n} f_{\theta}(\mathbf{x}_i)$
- 11: Outputs $f(\mathbf{x}) = f_{\theta}(\mathbf{x}) + b$.

- Robust Machine Learning under Covariate Shift
 - Predict the number of hourly bike rentals in Porto (a Kaggle challenge^[8])
 - First 3 seasons as training data, last season as test data

Gaussian noise

[8] https://www.kaggle.com/c/bike-sharing-demand/

Representation Learning with Information Bottleneck

- Given input X and task Y, learn a useful representation Z or p(z|x)
- Information bottleneck principle^[9]

$$\max_{p(z|x)} I(Z;Y) \quad \text{s.t.}, I(Z;X) \le \alpha$$
$$\max_{p(z|x)} I(Z;Y) - \beta I(Z;X)$$

- Z is the trade-off between sufficiency and minimality
 - Sufficiency
 - -Z contains all information regarding Y that can be obtained also from X
 - Minimality
 - -Z contains only relevant information regarding Y, but least information from X

A representation Z that is maximally expressive about Y while being maximally compressive about X

[9] Tishby, Naftali, Fernando C. Pereira, and William Bialek. "The information bottleneck method." In *Proc. of the* 37-th Annual Allerton Conference on Communication, Control and Computing, pp. 368-377, 2000.

Representation Learning with Information Bottleneck

Neural Network parameterization of IB

•
$$J = \max_{\theta} I(Z; Y) - \beta I(Z; X)$$

- An alternative formulation of $\max_{A} I(Z; Y)$ in deep learning
 - $\max_{A} I(Z;Y) \Leftrightarrow \min_{A} H(\hat{Y};Y)$, the cross-entropy loss
- Deep Information Bottleneck

•
$$J = \min_{\theta} H(\hat{Y}; Y) + \beta I(Z; X)$$

- How to estimate I(Z;X)?
 - Neural Mutual Information Estimator (MINE)
 - -Variational lower bound
 - -Matrix-based Dependence Measure (MDM)

Representation Learning with Information Bottleneck

Evaluation on generalization and robustness

•
$$J = \min_{\theta} I(\hat{Y}; Y) + \beta I(Z; X)$$

Conclusions

New Dependence Measure based on Rényi's α -entropy

- Easy to estimate
 - Avoid density estimation
 - Avoid model training
- Statistically more powerful than most of existing ones (e.g., HSIC)
- Automatically differentiable (deep neural networks training)
 - Robust learning under covariate shift
 - Deep information bottleneck
- Applicable to different scenarios (insensitive to # variables and dim. of variables) and problems (e.g., bioinformatics, neuroscience, economics, etc.)
- Limitation
 - Given L variables and N samples, complexity is nearly $\mathcal{O}(LN^2) + \mathcal{O}(N^3)$.
 - Taking subsamples can significantly reduce complexity with negligible performance loss (more discussion in supplementary material).

Conclusions

- New Dependence Measure based on Rényi's α -entropy
 - Resource and contact information

Orchestrating a brighter world

