Spring 2020 Syllabus Complex Networks

Prof. Dr. Dr. Frank Schweitzer Dr. Giona Casiraghi Christoph Gote Chair of Systems Design ETH Zurich fschweitzer@ethz.ch

Lecture: Tuesday, 10:15-11:55 (V), HG E 1.2

Exercise: Tuesday, 09:15-10:00 (U), HG E 21

Exercises are predominantly programming assignments that can be solved using python. Sample programs and code skeletons will be provided. During the exercise sessions, students are expected to present their solutions, which will then be discussed. Sample solutions are provided after the exercise session.

1. Introduction to Networks: Basic and Advanced Metrics

Lecture 01 – Motivation 18.02.2020

Educational Objective: In this lecture, participants will get an overview of the course and will learn the differences between an agent-based modeling and a complex networks perspective.

- Administrative issues and overview of the course
- Introduction: Agent-based modeling vs. a network approach
- Motivation: The role of network structures in complex systems
- Illustrative examples of complex networks in nature, society, economy and technology

Exercise 01: Introduction to pathpy and python due 25.02.2020

Lecture 02 – Introduction to Networks	25.02.2020
Educational Objective: In this lecture, students will learn how to mathematical plex networks and how to quantitatively analyse the importance of nodes.	
• Basic definitions: graph, network, adjacency matrix, path, cut, degree	
• Importance of nodes: betweenness, closeness and degree centrality	
• Modules and clusters: clustering coefficient and modularity	
• Example: Open Source collaboration network	
Exercise 02: Paths, Centralities, and Community Structure	due 03.03.2020
2. Stochastic Models of Complex Networks	
Lecture 03 – Ensemble Perspective of Complex Networks	03.03.2020
Educational Objective: In this lecture, participants will learn how networks cand analysed from a statistical point of view.	an be represented
• Graph theory vs. network science: the ensemble perspective	
• Erdös-Renyi (ER) random graph model	
• Degree distribution and average degree in ER graphs	
• Counterexample: degree distribution in OSS collaboration network	
Exercise 03: Empirical Networks and Random Graphs	due 10.03.2020

Lecture 04 – Small-world networks and Ensembles with fixed degree distributions	10.03.2020
Educational Objective: In this lecture, participants will learn how to generate ne reproduce the small diameter and large clustering coefficient observed in a number of networks.	
• Degree distribution, diameter and clustering coefficient of random networks	
• Navigability and funneling in small-world networks	
• Watts-Strogatz model: average shortest path length and clustering coefficient	
• Ensembles with fixed distribution of degrees: Molloy-Reed algorithm	
Exercise 04: Random Graphs and Small World Networks due	e 17.03.2020
Lecture 05 – Generating Functions and the Friendship Paradox	17.03.2020
Educational Objective: In this lecture, students will learn how to can make states the properties of a network if one only knows the distribution of node degrees.	ments about
• The generating functions framework	
• Properties of generating functions	
• Application to the friendship paradox	
Exercise 05: Ensembles with fixed degree sequences and the Friendship Paradox due	e 24.03.2020

Lecture 06 – Generating Functions: the giant connected component	24.03.2020
Educational Objective: In this lecture, participants will learn how the frame functions can be applied to study the emergence of a giant connected connectworks with arbitrary degree distributions.	_
• Reminder: generating functions and complex networks	
• friendship paradox and sampling biases	
• emergence of a giant connected component	
• the Molloy-Reed criterion	
Exercise 06: Robustness and Scale Free Networks	due 31.03.2020
Lecture 07 – Scale-Free Networks and Limitations of Ensemble Studies	31.03.2020
Educational Objective: In this lecture, participants will learn what fallacies applying findings from ensemble studies to real-world networks.	one encounters when
• Analyzing robustness with generating functions	
• Robustness of Scale-free networks	
• Limitations of ensemble-based approaches	
• Example: AS-level Internet topology	
Exercise 07: Limitations of Ensemble Studies	due 7.04.2020

Prof. Dr. Dr. Frank Schweitzer Dr. Giona Casiraghi Christoph Gote:

Spring 2020 Syllabus: Complex Networks

3. Dynamical Processes on Complex Networks	
Lecture 08 – Random Walks and Diffusion in Complex Networks	7.04.2020
Educational Objective: In this lecture, students will learn how we can networks by means of random walks.	nodel diffusion in complex
• Dynamical processes in networks	
• Diffusion processes in networks	
• Random walks as model for diffusion processes	
• Markov chain convergence theorem	
Exercise 08: Simulating diffusion with pathpy	due 21.04.2020
Easter break	14.04.2020
Lecture 09 – Spectral Properties of Complex Networks	21.04.2020
Educational Objective: In this lecture, students will learn how the idiffusion processes is captured in the eigenvalues of matrix representation of these representations can be used to define feedback centrality meaning	ions and how eigenvectors
• Stationary distributions of random walks	
• Feedback centrality measures	
• Diffusion speed in complex networks	
• Eigenvalue gap of transition matrices	
Exercise 09: Spectral analysis using numpy and scipy	due 28.04.2020

4. Generative Models and Statistical Inference Lecture 10 - Block Models and Statistical Inference 28.04.2020 Educational Objective: In this lecture, students will learn how the ensemble perspective on complex networks can be used to infer community structures in relational data. • Statistical ensembles and statistical inference • Maximum likelihood approach and stochastic models of networks • Stochastic block model and community detection • Minimum description length approach due 05.05.2020 Exercise 10: Inferring communities with pathpy Lecture 11 - Learning in Networks: Model Selection 05.05.2020 Educational Objective: n this lecture, students will learn how information-theoretic concepts can be used to avoid an overfitting of community structures. • Motivation: overfitting and model selection • Entropy of statistical ensembles

Exercise 11: Statistical inference with pathpy

• Flow compression: InfoMap

• Stochastic block model: minimising description length

due 12.05.2020

Lecture 12 - Exponential Random Graph Models

12.05.2020

Educational Objective: In this lecture, students will learn how Exponential Random Graph Models can be used to model and analyze relational data on complex systems.

.......

• Generative models of complex networks

• Exponential Random Graph Models	
• Statistical Inference with ERGMs	
• Example: Analyzing a social network using ERGMs	
There will be no exercise class on the	19.05.2020
5. Temporal Networks	
Lecture 13 – Research Trend: Analyzing Sequential Data	19.05.2020
Educational Objective: In this lecture, students will get an overbased methods for the modeling of time-stamped and sequentia	
• Motivation: Limitations of the network perspective	
• Network evolution and dynamical processes	
• Temporal networks: Basics	
• A novel perspective on temporal networks	
Exercise 13: Time Series Network Data	due 26.05.2020
Lecture 14 – Summary/ Wrap-up of the course	26.05.2020
Educational Objective: In this lecture, students will have to checourse and about the examination.	ance to ask questions about the
Session Examination	