

OCT 14 2003  
PATENT & TRADEMARK OFFICE

CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

1/10

FIG. 1





CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

2/10

*FIG. 2A*  
 $P_a$



*FIG. 2B*  
 $P_b$



*FIG. 2C*  
 $P_c$



*FIG. 2D*  
 $P_d$



*FIG. 2E*  
 $T$



3/10

FIG. 3A  
 $P_a$



FIG. 3B  
 $P_b$



FIG. 3C  
 $P_c$



FIG. 3D  
 $P_d$



FIG. 3E  
 $P_e$



FIG. 3F  
 $P_f$



FIG. 3G  
 $P_g$



FIG. 3H  
 $P_h$





CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

4/10

### FIG. 4A

METHOD LUB ( $p, q$ )

**Input:**  $p$  and  $q$  are tree patterns.

**Output:** A tree pattern representing the LUB of  $p$  and  $q$ .

- 1) **if** ( $q \sqsubseteq p$ ) **then return**  $p$ ;
- 2) **if** ( $p \sqsubseteq q$ ) **then return**  $q$ ;
- 3) Initialize  $TCSubPat[v, w] = \emptyset$ ,  
 $\forall v \in \text{Nodes}(p), \forall w \in \text{Nodes}(q);$
- 4) Let  $v_{root}$  and  $w_{root}$  denote the root nodes of  $p$  and  $q$ , resp.;
- 5) **for each**  $v \in \text{Child}(v_{root}, p)$  **do**
- 6)     **for each**  $w \in \text{Child}(w_{root}, q)$  **do**
- 7)          $TCSubPat[v, w] = \text{LUB\_SUB} (v, w, TCSubPat);$
- 8) Create a tree pattern  $x$  with root node label  $/$ . and  
the set of child sub-patterns  
$$\bigcup_{v \in \text{Child}(v_{root}, p), w \in \text{Child}(w_{root}, q)} TCSubPat[v, w];$$
- 9) **return**  $\text{MINIMIZE} (x);$



5/10

*FIG. 4B*

**METHOD LUB\_SUB ( $v, w, TCSubPat$ )**

**Input:**  $v, w$  are nodes in tree patterns  $p, q$  (respectively),  
 $TCSubPat$  is a 2-dimensional array such that  
 $TCSubPat[v, w]$  is the set of tightest container  
 sub-patterns of  $Subtree(v, p)$  and  $Subtree(w, q)$ .

**Output:**  $TCSubPat[v, w]$ .

- 1) **if** ( $TCSubPat[v, w] \neq \emptyset$ ) **then**
- 2)     **return**  $TCSubPat[v, w]$ ;
- 3) **else if** ( $Subtree(w, q) \sqsubseteq Subtree(v, p)$ ) **then**
- 4)     **return**  $\{Subtree(v, p)\}$ ;
- 5) **else if** ( $Subtree(v, p) \sqsubseteq Subtree(w, q)$ ) **then**
- 6)     **return**  $\{Subtree(w, q)\}$ ;
- 7) **else**
- 8)     Initialize  $R = \emptyset$ ;  $R' = \emptyset$ ;  $R'' = \emptyset$ ;
- 9)     **for** each  $v' \in Child(v, p)$  **do**
- 10)       **for** each  $w' \in Child(w, q)$  **do**
- 11)            $R = R \cup LUB\_SUB (v', w', TCSubPat)$ ;
- 12)       **for** each  $v' \in Child(v, p)$  **do**
- 13)            $R' = R' \cup LUB\_SUB (v', w, TCSubPat)$ ;
- 14)       **for** each  $w' \in Child(w, q)$  **do**
- 15)            $R'' = R'' \cup LUB\_SUB (v, w', TCSubPat)$ ;
- 16)     Let  $x$  be the pattern with root node label  $MaxLabel(v, w)$   
         and set of child subtree patterns  $R$ ;
- 17)     Let  $x'$  be the pattern with root node label //  
         and set of child subtree patterns  $R'$ ;
- 18)     Let  $x''$  be the pattern with root node label //  
         and set of child subtree patterns  $R''$ ;
- 19)     **return**  $TCSubPat[v, w] = \{x, x', x''\}$ ;

6/10

*FIG. 5A*

METHOD CONTAINS ( $p, q$ )

**Input:**  $p$  and  $q$  are two tree patterns.

**Output:** Returns *true* if  $q \sqsubseteq p$ ; *false* otherwise.

- 1) Initialize  $Status[v, w] = null$ ,  
 $\forall v \in Nodes(p), \forall w \in Nodes(q);$
- 2) Let  $v_{root}$  and  $w_{root}$  denote the root nodes of  $p$  and  $q$ , resp.;
- 3) **if**  $(Child(v_{root}, p) = \emptyset)$  **then**
- 4)   **return** *true*;
- 5) **else**
- 6)   **return** CONTAINS\_SUB ( $v_{root}, w_{root}, Status$ );

OCT 14 2003  
U.S. PATENT & TRADEMARK OFFICE

CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

7/10

*FIG. 5B*

METHOD CONTAINS\_SUB ( $v, w, Status$ )

**Input:**  $v, w$  are nodes in tree patterns  $p, q$  (respectively),  
 $Status$  is a 2-dimensional array such that each  
 $Status[v, w] \in \{null, false, true\}$ .

**Output:**  $Status[v, w]$ .

- 1) **if** ( $Status[v, w] \neq null$ ) **then**
- 2)   **return**  $Status[v, w]$ ;
- 3) **if** ( $v$  is a leaf node in  $p$ ) **then**
- 4)    $Status[v, w] = (\text{label}(w) \preceq \text{label}(v))$ ;
- 5) **else if** ( $\text{label}(w) \not\preceq \text{label}(v)$ ) **then**
- 6)    $Status[v, w] = \text{false}$ ;
- 7) **else**
- 8)    $Status[v, w] = \bigwedge_{v' \in \text{Child}(v, p)} \left( \bigvee_{w' \in \text{Child}(w, q)} \text{CONTAINS\_SUB } (v', w', Status) \right);$
- 9)   **if** ( $Status[v, w] = \text{false}$ ) **and** ( $\text{label}(v) = //$ ) **then**
- 10)    $Status[v, w] = \bigwedge_{v' \in \text{Child}(v, p)} \text{CONTAINS\_SUB } (v', w, Status);$
- 11) **if** ( $Status[v, w] = \text{false}$ ) **and** ( $\text{label}(v) = //$ ) **then**
- 12)    $Status[v, w] = \bigvee_{w' \in \text{Child}(w, q)} \text{CONTAINS\_SUB } (v, w', Status);$
- 13) **return**  $Status[v, w]$ ;

OCT 1 4 2003  
PATENT & TRADEMARK OFFICE

CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

8/10





CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

9/10

## FIG. 7

METHOD  $SEL(v, t)$

**Input:**  $v$  is a node in tree pattern  $p$ ,  $t$  is a node in  $DT$ .

**Output:**  $SelSubPat[v, t]$ .

- 1) **if** ( $SelSubPat[v, t]$  is already computed) **then**
- 2)   **return**  $SelSubPat[v, t]$ ;
- 3) **else if** ( $label(t) \not\leq label(v)$ ) **then**
- 4)   **return**  $SelSubPat[v, t] = 0$ ;
- 5) **else if** ( $v$  is a leaf) **then**
- 6)   **return**  $freq(t)/N$ ;
- 7) **for** each child  $v_c \in Child(v, p)$  **do**
- 8)    $Sel_{v_c} = \max_{t_c \in Child(t, DT)} \{SEL(v_c, t_c)\}$ ;
- 9)  $Sel = \prod_{v_c \in Child(v, p)} Sel_{v_c}$ ;
- 10) **if** ( $label(v) = //$ ) **then**
- 11)    $Sel_v = \prod_{v_c \in Child(v, p)} SEL(v_c, t)$ ;
- 12)    $Sel = \max\{Sel, Sel_v\}$ ;
- 13)    $Sel_v = \max_{t_c \in Child(t, DT)} \{SEL(v, t_c)\}$ ;
- 14)    $Sel = \max\{Sel, Sel_v\}$ ;
- 15) **return**  $SelSubPat[v, t] = Sel$



CHAN 3-1-2-14-51  
Serial No.: 10/600,996  
Ryan, Mason & Lewis, LLP; R. J. Mauri (203) 255-6560

10/10

## FIG. 8

### METHOD AGGREGATE ( $S, k$ )

**Input:**  $S$  is a set of tree patterns,  $k$  is a space constraint.

**Output:** A set of tree patterns  $S'$  such that  $S \sqsubseteq S'$   
and  $\sum_{p \in S'} |p| \leq k$ .

- 1) Initialize  $S' = S$ ;
- 2) **while** ( $\sum_{p \in S'} |p| > k$ ) **do**
- 3)    $C_1 = \{x \mid x = \text{PRUNE}(p, |p| - 1), p \in S'\}$ ;
- 4)    $C_2 = \{x \mid x = \text{PRUNE}(p \sqcup q, |p| + |q| - 1), p, q \in S'\}$ ;
- 5)    $C = C_1 \cup C_2$ ;
- 6)   Select  $x \in C$  such that  $\text{Benefit}(x)$  is maximum;
- 7)    $S' = S' - \{p \mid p \sqsubseteq x, p \in S'\} \cup \{x\}$ ;
- 8) **return**  $S'$ ;