Algebra and Number Theory

Solve every problem.

Problem 1. Let F be a field of characteristic zero. Consider the polynomial ring $F[x_1, \ldots, x_n]$.

(a) Prove Newton's identity over the field F

$$p_k - p_{k-1}e_1 + \dots + (-1)^{k-1}p_1e_{k-1} + (-1)^k ke_k = 0,$$

where

$$e_k(x_1,\ldots,x_n)=\sum_{1\leq i_1<\cdots<\beta_k\leq n}x_{i_1}\cdots x_{i_k}$$

for $1 \le k \le n$, $e_0 = 1$, $e_k = 0$ when k > n, and

$$p_k(x_1,\ldots,x_n)=x_1^k+\cdots+x_n^k.$$

(b) Prove that over the field of F of characteristic zero, an $n \times n$ matrix A is nilpotent if and only if the trace of A^k is equal to zero for all $k = 1, 2 \dots$

Hint: use Part (a).

(c) Prove that over the field of F of characteristic zero, two $n \times n$ matrix A and B have the same characteristic polynomial if and only if the trace of A^k and trace of B^k are equal for all $k = 1, 2 \dots$

Hint: use Part (a).

Solution: Part (a): Consider

$$E(y) = \prod_{i=1}^{n} (1 - x_i y) = 1 - e_1 y + e_2 y^2 + \dots + (-1)^n e_n y^n.$$

Using $-\ln(1-t) = \sum_{j=1}^{\infty} t^j/j$, we obtain

$$\ln(E(y)) = \sum_{i=1}^{n} \ln(1 - x_i y) = -\sum_{i=1}^{n} \sum_{j=1}^{\infty} (x_i y)^j / j = -\sum_{j=1}^{\infty} p_j y^j / j.$$

Apply d/dy to the above, we have

$$E'(y)/E(y) = -\sum_{j=1}^{\infty} p_j y^{j-1}$$
, or $-E'(y) = E(y) \sum_{j=1}^{\infty} p_j y^{j-1}$.

By comparing the coefficients of y^{k-1} of both sides, we obtain

$$-(-1)^{k}ke_{k} = \sum_{j=0}^{k-1} (-1)^{j} e_{j} p_{k-j}.$$

Part (b): Suppose A is nilpotent. Then, the minimal polynomial of A is x^r for some integer r. It follows that the characteristic of A is $f(x) = x^n$. The trace of A is equal to a_{n-1} where $-a_{n-1}$ is the coefficient of x^{n-1} of f(x), hence is equal to 0. Similarly, A^k is nilpotent, hence its trace is zero.

Conversely, assume trace of A^k equals 0 for all $k \ge 1$. If λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k . Since the trace is the sum of eigenvalues, we see that (the sums of powers) $p_k(\ldots,\lambda,\ldots) = 0$. By Part (a), we see that $e_k(\ldots,\lambda,\ldots) = 0$. Since the coefficients of the characteristic polynomial f(t) of A are precisely $e_k(\ldots,\lambda,\cdots)$ for $0 \le k \le n$ (possibly up to \pm signs), we obtain $f(t) = t^n$, hence $A^n = 0$.

Part (c): Suppose that A and B have the same characteristic polynomials. Let λ_A (resp. λ_B) be an eigenvalue of A (resp. B). Then, $e_k(\ldots,\lambda_A,\ldots)=e_k(\ldots,\lambda_B,\ldots)$ for all $k\geq 0$. By (a), $p_k(\ldots,\lambda_A,\ldots)=p_k(\ldots,\lambda_B,\ldots)$. Since the trace is the sum of eigenvalues, we obtain the trace of A^k and trace of B^k are equal. Conversely, if the trace of A^k and trace of A^k are equal for all A^k , then A^k and trace of A^k are equal. Hence, A^k are equal for all A^k are equal for all A^k and A^k are equal for all A^k and A^k are equal for all A^k and A^k and A^k are equal for all A^k .

Problem 2.

(a) Let M be a finitely generated R-module and $\mathfrak{a} \subset R$ an ideal. Suppose $\phi: M \to M$ is an R-module map such that $\phi(M) \subseteq \mathfrak{a}M$. Prove that there is a monic polynomial $p(t) \subset R[t]$ with coefficients from \mathfrak{a} such that $p(\phi) = 0$.

Hint: p(t) is basically just the characteristic polynomial.

(b) If M is a finitely generated R-module such that aM = M for some ideal $a \subset R$, then there exits $x \in R$ such that $1 - x \in a$ and xM = 0.

Solution: Part (a): Let x_1, \ldots, x_m be a generating set for M as an R-module. We have

$$\phi(x_i) = \sum a_{ij} x_j$$

for some $a_{ij} \in \mathfrak{a}$. Let A_{ij} be the operator $\delta_{ij}\phi - a_{ij}\operatorname{Id}_M$ where $\operatorname{Id}_M: M \to M$ is the identity hom and δ_{ij} is the Kronecker's symbol. Then we have $\sum_j A_{ij}x_j = 0$ for all j. The matrix $A = (A_{ij})$ annihilates the column vector $v = (x_j)_{j=1}^m$, Consider M as an $R[\phi]$ -module, then $A_{ij} \in R[\phi]$. Thus, A is a matrix with entries in $R[\phi]$. Its adjugate is well-defined. Multiplying Av = 0 on the left by the adjugate gives rise to $\det A x_j = 0$ for all j. Let $p(\phi) = \det A(\phi)$ (recall $A = (\delta_{ij}\phi - a_{ij}\operatorname{Id}_M)$). Then, p(t) is a monic polynomial and $p(\phi) = 0$ on M.

Part (b): By Part (a), $Id_M : M \to M$ satisfies

$$\operatorname{Id}_{\mathsf{M}}^{r} + a_{1}\operatorname{Id}_{\mathsf{M}}^{r-1} + \dots + a_{r}\operatorname{Id}_{\mathsf{M}} = 0$$

for some $a_i \in \mathfrak{a}$. Let $x = 1 + a_1 + \cdots + a_r$, then $x - 1 \in \mathfrak{a}$ and xM = 0.

Problem 3. Let $R = F[x, y]/(y^2 - x^2 - x^3)$ for some field F.

- (a) Prove that *R* is an integral domain.
- (b) Compute the normalization of R (i.e., the integral closure of R in its field of fraction).

Solution: Part (a): It suffices to prove that $y^2 - x^2 - x^3$ is irreducible in F(x)[y]. It is reducible if it has a root $f(x)/g(x) \in F(x)$, where f(x) and g(x) are co-prime. But $(f(x)/g(x))^2 - x^2 - x^3 = 0$ implies $f(x)^2 = g(x)^2(x^2 + x^3) = (g(x)x)^2(x + 1)$. Thus, (x + 1) divides f(x). Hence, $(x + 1)^2$ divides $f(x)^2$. It follows that (x + 1) divides g(x), a contradiction. This implies that R is an integral domain.

Part (b): We have $0 = y^2 - x^3 - x^2 = x^2(y^2/x^2 - x - 1) = x^2(t^2 - x - 1)$. As K is an integral domain, $t^2 - x - 1 = 0$, that is, $t^2 - x - 1 = 0$. Then $t^2 - x - 1 = 0$, that is, $t^2 - x - 1 = 0$. Then $t^2 - x - 1 = 0$, that is, $t^2 - x - 1 = 0$. Then $t^2 - x - 1 = 0$. Then $t^2 - x - 1 = 0$ is a polynomial in t, hence $t^2 - x - 1 = 0$. Therefore $t^2 - x - 1 = 0$ is a polynomial in t, hence $t^2 - x - 1 = 0$.

Now let S be the integral closure of R in K. We claim S = F[t]. Let $f(t) \in F[t]$. Let s = 2k be an even integer. Then

$$t^{s} = (t^{2})^{k} = ((t^{2} - 1) + 1)^{k} = \sum_{i=0}^{k} {k \choose i} (t^{2} - 1)^{i} = \sum_{i=0}^{k} {k \choose i} x^{i}.$$

Let s = 2k + 1 be an odd integer with s > 3, using the above, we obtain

$$t^{s} = t^{s} - t^{s-2} + t^{s-2} = t^{s-3}(t^{2} - 1)t + t^{s-2} = \left(\sum_{i=0}^{k-1} \binom{k-1}{i} x^{i}\right) y + t^{s-2}.$$

Repeat the above for the odd integer s-2, by induction, we see that t^s is of the form g(x,y)+at. Combing all the above, we see that f(t) is of the form h(x,y)+bt for some $b \in \mathbb{Z}$ and $h(x,y) \in R$. Then, f(t) is a root of

$$(X - h(x, y))^2 - b^2 - b^2 x \in R[X].$$

it follows that $f(t) \in S$. Hence, $F[t] \subset S$. But, $R \subset F[t]$ and F[t] is integrally closed in F(t), hence $S \subset F[t]$. Therefore S = F[t].

Problem 4. Let p and ℓ be two prime numbers and $[\ell_x]$ denote the ℓ -th cyclotomic polynomial $1 + x + \cdots + x^{\ell-1}$.

- (a) Prove that $[\ell_x]$ is an irreducible element of $\mathbb{Q}[x]$.
- (b) Show that $[\ell_x]$ is divisible by x-1 in $\mathbb{F}_p[x]$ if $p=\ell$. Here \mathbb{F}_p is the finite field $\mathbb{Z}/p\mathbb{Z}$.
- (c) Suppose $p \neq \ell$. let a be the order of p in \mathbb{F}_{ℓ} . Show that a is the first value of m for which the group $\mathrm{GL}_m(\mathbb{F}_p)$ of invertible $m \times m$ matrices with entries from \mathbb{F}_p contains an element of order ℓ .

Hint: Derive and use the formula for the number of elements in $GL_m(\mathbb{F}_p)$.

Solution: Part (a): $[\ell_x]$ is irreducible over \mathbb{Q} if and only if $[\ell_{x+1}]$ is irreducible \mathbb{Q} .

$$[\ell_{x+1}] = ((x+1)^{\ell} - 1)/((x+1) - 1) = x^{\ell-1} + \ell x^{\ell-2} + \dots + \ell(\ell-1)/2x + \ell.$$

This is irreducible by Eisenstein's criterion.

Part (b): $p = \ell$. If p = 2, then $[2]_x = 1 + x = x - 1$ If p > 2, then

$$[p]_x = (x^p - 1)/(x - 1) = (x - 1)^{p-1}.$$

Part (c): Let e_1,\ldots,e_m be the standard basis of \mathbb{F}_q^n , where q is a prime power. If $A\in \mathrm{GL}_m(\mathbb{F}_q)$, then the columns of A, $\{Ae_1,\ldots,Ae_n\}$, form a basis for \mathbb{F}_q^n . Conversely, any basis form columns of an element $A\in \mathrm{GL}_m(\mathbb{F}_q)$. Thus, it is equivalent to count the number of bases $\mathcal{B}=(f_1,\ldots,f_n)$ for \mathbb{F}_q^n . The first vector has q^m-1 choices. The second, not a multiple of the first, has q^m-q choices. The third vector $f_3\in\mathbb{F}_q^n\setminus\{af_1+bf_2\mid a,b\in\mathbb{F}_q\}$ has q^m-q^2 choices. Inductively, f_i has q^m-q^i choices. Therefore

$$\left| \operatorname{GL}_m(\mathbb{F}_q) \right| = (q^m - 1)(q^m - q) \cdots (q^m - q^{m-1}).$$

If $GL_m(\mathbb{F}_p)$ contains an element of order ℓ , then ℓ divides

$$|GL_m(\mathbb{F}_p)| = p^{\binom{m}{2}} \prod_{i=1}^m (p^i - 1).$$

Sicne $\ell \neq p$, the first value of m such that ℓ divides the above is when ℓ divides the highest term $p^m - 1$ for the first time. This happens when $p^a - 1 = 0 \mod \ell$.

Problem 5. Let $p \ge 3$ be a prime number and let \mathbb{Z}_p be the ring of p-adic integers.

- (a) Show that an element in $1 + p\mathbb{Z}_p$ is a p-th power in \mathbb{Z}_p if and only if it lives in $1 + p^2\mathbb{Z}_p$.
- (b) Let \mathbb{Z}_p^{\times} denote the group of units in \mathbb{Z}_p . Show that there exist $a,b,c\in\mathbb{Z}_p^{\times}$ such that $a^p+b^p=c^p$ if and only if

$$\sum_{i=1}^{p-1} i^{p-2} t^i \equiv 0 \pmod{p}$$

for some integer $t \in \{2, 3, ..., p-1\}$. (In particular, this condition holds for p = 7 by taking t = 3. Therefore, Fermat's Last Theorem does not hold for \mathbb{Z}_7 .)

Solution: Part (a): If an element in $1 + p\mathbb{Z}_p$ is a p-th power, it must have form $(1 + p\alpha)^p$ for some $\alpha \in \mathbb{Z}_p$. A simple calculation yields

$$(1+p\alpha)^p = 1 + \binom{p}{1}p\alpha + \binom{p}{2}(p\alpha)^2 + \dots \in 1 + p^2\mathbb{Z}_p.$$

To prove sufficiency, recall the two functions

$$\exp: p\mathbb{Z}_p \to 1 + p\mathbb{Z}_p, \quad \log: 1 + p\mathbb{Z}_p \to p\mathbb{Z}_p$$

which are inverses to each other. For any $a = 1 + p^2x \in 1 + p^2\mathbb{Z}_p$, consider

$$a^{\frac{1}{p}} := \exp\left(\frac{1}{p}\log(a)\right).$$

Notice that

$$\frac{1}{p}\log(a) = \frac{1}{p}\log(1 + p^2x) = \frac{1}{p}\sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} \left(p^2x\right)^i \in p\mathbb{Z}_p$$

and hence $a^{\frac{1}{p}}$ is well-defined. It is clear that $\left(a^{\frac{1}{p}}\right)^p=a$.

Part (b): As an immediate corollary from Part (a), if we write an element $a \in \mathbb{Z}_p^{\times}$ in terms of Witt coordinates $a = (a_0, a_1, \ldots)$, then a is a p-th power in \mathbb{Z}_p if and only if $a_1 = 0$. In particular, whether an element in \mathbb{Z}_p^{\times} is a p-th power can be detected by its image under the projection $\mathbb{Z}_p = W(\mathbb{F}_p) \to W_2(\mathbb{F}_p)$.

Hence, there exist $a, b, c \in \mathbb{Z}_p^{\times}$ such that $a^p + b^p = c^p$ if and only if there exist $a_0, b_0, c_0 \in \mathbb{F}_p^{\times}$ such that $(a_0, 0) + (b_0, 0) = (c_0, 0)$ in $W_2(\mathbb{F}_p)$. Using the addition formula of Witt coordinates, the later equation translates to $a_0 + b_0 = c_0$ and

$$\frac{1}{p}\left(a_0^p + b_0^p - (a_0 + b_0)^p\right) = 0.$$

Direct calculation gives

$$\frac{1}{p}(a_0^p + b_0^p - (a_0 + b_0)^p) = -\sum_{i=1}^{p-1} \frac{1}{p} \binom{p}{i} a_0^i b_0^{p-i}$$

$$= -\sum_{i=1}^{p-1} \frac{1}{i} \frac{(p-1)(p-2)\cdots(p-i+1)}{(i-1)\cdots1} a_0^i b_0^{p-i}$$

$$\equiv \sum_{i=1}^{p-1} \frac{1}{i} (-1)^i a_0^i b_0^{p-i} \equiv \sum_{i=1}^{p-1} i^{p-2} \left(-\frac{a_0}{b_0} \right)^i \pmod{p}$$

Since $a_0 + b_0 = c_0 \neq 0$, we have $-\frac{a_0}{b_0} \neq 1$. Namely, there exists $t \in \{2, 3, \dots, p-1\}$ such that

$$\sum_{i=1}^{p-1} i^{p-2} t^i \equiv 0 \pmod{p}.$$

All steps above are clearly reversible and hence cover both the "if" and "only if" parts. This completes the proof.

Problem 6. Recall that a metric space is called *spherically complete* if any decreasing sequence of closed balls has nonempty intersection.

Let p be a prime number and let \mathbb{Q}_p be the field of p-adic numbers. For every integer $n \geq 1$, consider the finite extension $\mathbb{Q}_p(\mu_{p^n})$ of \mathbb{Q}_p generated by all p^n -th roots of unity. Let $\mathbb{Q}_p(\mu_{p^\infty})$ =

 $\bigcup_{n\geq 1} \mathbb{Q}_p(\mu_{p^n})$. All of these algebraic extensions of \mathbb{Q}_p are equipped with the unique norm $|\cdot|$ extending the usual p-adic norm on \mathbb{Q}_p .

Question: Which of the following are spherically complete? Explain why.

- (a) \mathbb{Q}_p ;
- **(b)** $\mathbb{Q}_p(\mu_{p^n});$
- (c) $\mathbb{Q}_p(\mu_{p^{\infty}})$;
- (d) $\widehat{\mathbb{Q}_p(\mu_{p^{\infty}})}$, the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$.

Hint: Show that there exists a sequence $a_1, a_2, \ldots \in \overline{\mathbb{Q}_p(\mu_{p^{\infty}})}$ such that $|a_1| > |a_2| > \cdots$ and $\lim |a_i| > 0$, and such that the closed balls

$$B_i := \left\{ x \in \widehat{\mathbb{Q}_p(\mu_{p^{\infty}})} : |x - a_1 - a_2 - \dots - a_i| \le |a_i| \right\}$$

have empty intersection.

Solution: (a) and (b) are spherically complete. In fact, every finite extension of \mathbb{Q}_p is spherically complete. Such a field is discretely valued and complete. In this case, a decreasing sequence of closed balls either eventually stabilizes, or has radius converging to 0. In both cases, the intersection is nonempty.

- (c) is not spherically complete. Notice that spherical completeness implies completeness. (Why? From any Cauchy sequence, one can construct a decreasing sequence of closed balls whose intersection gives the limit of the Cauchy sequence.) However, it is well-known that $\mathbb{Q}_p(\mu_{p^\infty})$ is not complete, hence not spherically complete.
- (d) is not spherically complete. Assume that $\widehat{\mathbb{Q}_p(\mu_{p^\infty})}$ is spherically complete. Notice that

$$\left| \widehat{\mathbb{Q}_p(\mu_{p^{\infty}})} \right| = 0 \cup \left\{ p^{\frac{m}{p^n(p-1)}} : m \in \mathbb{Z}, n \ge 0 \right\}.$$

In particular, $\overline{\mathbb{Q}_p}(\mu_{p^{\infty}})$ is not discretely valued. Choose and fix a sequence of negative rational numbers $r_1 > r_2 > \cdots$ such that

$$r_i \in \left\{ -\frac{m}{p^n(p-1)} : m \in \mathbb{Z}_{>0}, n \ge 0 \right\}$$

and $r := \lim_i r_i$ exists. We can find a sequence of elements $a_1, a_2, \ldots \in \mathbb{Q}_p(\mu_{p^\infty})$ such that $|a_i| = p^{r_i}$ for all i. In particular, we have $|a_1| > |a_2| > \cdots$ and $\lim |a_i| = p^r > 0$. Consider closed balls

$$B_i := \left\{ x \in \widehat{\mathbb{Q}_p(\mu_{p^{\infty}})} : |x - a_1 - a_2 - \dots - a_i| \le |a_i| \right\}.$$

If $|x - a_1 - a_2 - \cdots - a_{i+1}| \le |a_{i+1}|$, then

$$|x - a_1 - a_2 - \dots - a_i| \le |a_{i+1}| < |a_i|$$
.

This means $B_1 \supseteq B_2 \supseteq \cdots$ is a strictly decreasing sequence of closed balls. By assumption, $B := \bigcap_{i=1}^{\infty} B_i$ is nonempty. It is necessarily an open subset of $\widehat{\mathbb{Q}_p(\mu_{p^\infty})}$, and hence contains at least an element $q \in \mathbb{Q}_p(\mu_{p^\infty})$.

Now, we vary $a=(a_1,a_2,\ldots)$ and write " B_a ," " q_a " instead of " B_i ," " q_a " Running through all possible a's, we obtain uncountably many disjoint B_a 's. (Why? If two a's have the same a_1,\ldots,a_{i-1} but $|a_i-a_i'|>|a_{i+1}|$, then the two B_{i+1} 's are disjoint.) On the other hand, from each of these B_a , we have an element

$$q_a \in B_a \cap \mathbb{Q}_p(\mu_{p^{\infty}}).$$

These q_a 's map to distinct elements in $\mathbb{Q}_p(\mu_{p^\infty})/(s)$ where $s \in \mathbb{Q}_p(\mu_{p^\infty})$ has $0 < |s| \le p^r$. However, $\mathbb{Q}_p(\mu_{p^\infty})/(s)$ is a countable set, a contradiction.