Южно-Уральский государственный университет (НИУ) Высшая школа электроники и компьютерных наук Кафедра «Информационно-измерительная техника»

УТВЕРЖДАЮ
Заведующий кафедрой
2021 г.

ЗАДАНИЕ НА РАБОТУ

на курсовую работу студентам: группа: КЭ-4XX

- 1. Дисциплина: Программное обеспечение измерительных процессов.
- 2. Тема работы: _Разработка устройства охлаждения метрологического стенда _

1. Требования к разработке:

- Устройство должно измерять температуру фотоэлектронных умножителей с помощью встроенного АЦП с платиного терморезистора
 - АЦП должно работать в режиме DMA
 - Период измерения температуры должен быть 1 раз в секунду
 - Температура должна рассчитываться по формуле:

```
T = At + code * Bt + code^2 * Ct,где
```

At,Bt,Ct - градуировочные коэффициенты.

code – код АЦП (кстати можно его отнормировать);

Т - температура

- Для охлаждения будет использоваться элемент Петье
 - Для включения элемента Петье нужно... TBD
 - Чтобы отключить элемент Петье, нужно ... TBD

- Устройство должно регулировать силу тока, протекающую по элементам Пельтье
- Для регулирования силы тока должен использоваться модуль PWM
- Сила тока должна рассчитываться по формуле:

А - коэффициент зависимости.

duty - скважность в %

• Зависимость скважности от температуры описывается следующей формулой

Duty(t) =
$$K_{p}$$
 * $e(t)$ + K_{i} int_0^tau $e(t)dt$ + K_{d} * $(de(t))/dt$,где

Duty - скважность % (от 0 до 100%)

dt = 1000ms+ e(t) - ошибка между 23С и текущей измеренной температурой

Кр - пропорциональный коэффициент

Кі - интегральный коэффициент

Kd - дифференциальный коэффициент

(Коэффициенты должны быть подобраны экспериментальным путем)

или в дискретном варианте

Duty =
$$P + I + D$$
,где

Р - пропорциональная составляющая регулятора

I - интегральная составляющая регулятора

D - дифференциальная составляющая регулятора

$$P(t) = K_p + e, где$$

Р - пропорциональная составляющая регулятора

е - ошибка между 23С и текущей измеренной температурой

Кр - пропорциональный коэффициент

$$I = I_{(i-1)} + K_{i*e}$$
,где

I - интегральная составляющая регулятора

е - ошибка между 23С и текущей измеренной температурой

Кі - интегральный коэффициент

I[i-1] = предыдущее значение интегральной составляющая регулятора

$$D = K_d *(e - e_{i-1}),$$
где

D - дифференциальная составляющая регулятора

е - ошибка между 23С и текущей измеренной температурой

e[i-1] - предыдущее значение ошибки между 23С и текущей измеренной температурой

Кd - дифференциальный коэффициент

- Для измерения расхода должен использоваться датчик SEN02141B
 - При отсутствии расхода, устройство должно отключить элемент Петье
- Устройство должно использовать плату [TBD]
- Общение с платой расширения должно осуществляться через USART1, по протоколу MODBUS RTU????
 - Адреса регистров:

- **Температура**: (Input Registers) : 30001 (Float32)
- Расход: (Input Registers): 30003 (Float32)
- code: (Input Registers): 3005 (Float32)
- **duty**: (Input Registers) : 3007 (Float32)
- At: (Holding Registers): 40001 (Float32)
- Bt: (Holding Registers): 40003 (Float32)
- Ct: (Holding Registers): 40005 (Float32)
- Ai: (Holding Registers): 40007 (Float32)
- **Kp**: (Holding Registers) : 40009 (Float32)
- **Ki**: (Holding Registers) : 4011 (Float32)
- Kd: (Holding Registers): 4013 (Float32)
- Архитектура должна быть представлена в виде UML диаграмм в пакете Star UML
- Приложение должно быть написано на языке C++ с использованием компилятора ARM 9.30.2
- При разработке должна использоваться Операционная Система Реального Времени FreeRTOS и C++ обертка над ней

2. Перечень вопросов, подлежащих разработке:

- В ходе работы необходимо разработать архитектуру программного обеспечения в виде диаграммы UML.
- В ходе работы необходимо разработать код программного обеспечения.
 - Код должен соответствовать стандарту кодирования Стэнфордского университета, см также оригинал
- Работа программы должна быть продемонстрирована совместно с платой XNUCLEO-F411RE.
- Содержание работы должно соответствовать ГОСТ 19.402–78 «Единая система программной документации. Описание программы».
 - работа должна быть оформлена в формате Asciidoc и выложена на Github
- Описание архитектуры в виде UML диаграмм должно быть оформлено в разделе «Описание логической структуры» "Алгоритм программы".
- Дополнительно к архитектуре, в разделе «Описание логической структуры» → "Структура программы с описанием функций составных частей и связи между ними" должен быть описан принцип работы программы и взаимодействия разных блоков программы друг с другом.
- Оформление пояснительной записки к курсовой работе в соответствии с СТО ЮУрГУ 04–2008 «Курсовое и дипломное проектирование. Общие требования к содержанию и оформлению».

3. Календарный план:

• Сдача этапов выполнения курсовой работы осуществляется строго в соответствии с

календарным планом.

Наименование разделов курсовой работы	Срок выполнения разделов работы	Отметка руководителя о выполнении
Разработка общей архитектуры программы	16 апреля 2023 г.	
Разработка кода каркаса программы	22 апреля 2023 г.	
Разработка детальной архитектуры модуля измерения температуры	29 апреля 2023 г.	
Разработка кода для модуля измерения температуры	29 апреля 2020 г.	
Разработка детальной архитектуры модуля работы с PWM	6 мая 2020 г.	
Разработка кода для модуля работы с PWM	6 мая 2020 г.	
Разработка детальной архитектуры модуля работы с USART и Модбас	13 мая 2020 г.	
Разработка кода для модуля работы с USART и модбас	13 мая 2020 г.	
Разработка детальной архитектуры и кода для оставшихся модулей	20 мая 2023 г.	
Сдача и демонстрация работы устройства	27 мая 2023 г.	
Оформление пояснительной записки к курсовой работе	31 мая 2023 г.	

Руководитель работы:		/C. B. K	олодий/
	(подпись)		
Студент			/
	(подпись)		
Студент			/
	(подпись)		