Problem Set 1

Fiona Fan

In collaboration with Winston Xu.

Section 1

1.3)

- i) G_1 is not an algebra, because its complement is closed and not included in the set. Since it's not algebra, it's not σ -algebra.
 - ii) G_2 is an algebra. It is not σ -algebra because $\bigcup_{i=1}^{\infty} (0, \frac{i-1}{i}] = (0,1)$, which is not included in the set.
- iii) G_3 is both am algebra but also a σ -algebra, because the union of infinite subsets of all three forms is still included in the subset.
- 1.7 $\{\emptyset, X\}$ is the smallest because a σ -algebra has to contain the element and its complement, and also has to include \emptyset . $\mathcal{O}(X)$ is the collection of all possible subsets of X, which satisfy all requirements of a σ -algebra.

1.10

$$\therefore X \in S_{\alpha} \quad \forall \alpha
\therefore X \in \cap_{\alpha} S_{\alpha}$$
(1)

Let $E \in \cap_{\alpha} S_{\alpha}$, then $X \setminus E \in S_{\alpha} \forall \alpha$

$$\therefore X \setminus E \in \cap_{\alpha} S_{\alpha} \tag{2}$$

Let $(E_n)_{n\in\mathbb{N}}\in\cap_{\alpha}S_{\alpha}$, then $(E_n)_{n\in\mathbb{N}}\in S_{\alpha}\forall\alpha$

$$\therefore (E_n)_{n \in \mathbb{N}} \in \cap_{\alpha} S_{\alpha} \tag{3}$$

Based on 1, 2 and 3, $\cap_{\alpha} S_{\alpha}$ is a σ -algebra.

1.17

i.

$$\begin{tabular}{l} :: A \subset B \\ :: B = A \cup (B \setminus A) \\ :: \mu(B) = \mu(A) + \mu(B \setminus A), \mbox{ where } \mu(B \setminus A) \geqslant 0 \mbox{ by assumption} \\ \mu A \leqslant \mu B \end{tabular}$$

ii.

Let
$$F_i = \bigcup_{i \in \mathbb{N}} A_i$$

then F_i is monotonically increasing, meaning $F_i \subseteq F_{i+1}$

$$\mu\left(\bigcup_{i\in N} A_i\right) = \lim_{i\to\infty} \mu(F_i)$$

$$= \lim_{i\to\infty} (A_1 \cup A_2 \dots \cup A_i)$$

$$\leqslant \lim_{i\to\infty} \sum_{k=1}^n \mu(A_k)$$

$$= \sum_{i=1}^\infty \mu(A_i)$$

1.18

Let
$$\mu_B(A) = \mu(A \cup B) \geqslant 0$$
 (4)

$$\mu_B(\bigcup_{n \in \mathbb{N}} A_n) = \mu\left(\left(\bigcup_{n \in \mathbb{N}} A_n\right) \cap B\right)$$

$$= \mu\left(\bigcup_{n \in \mathbb{N}} (A_n \cap B)\right)$$

$$= \sum_{n \in \mathbb{N}} \mu(A_n \cap B)$$

$$= \sum_{n \in \mathbb{N}} \mu(A_n)$$
 (5)

Also,
$$\mu_B(\varnothing) = \mu(\varnothing \cap B) = 0$$
 (6)

Based on 4, 5,6, μ_B is a measure

1.20

$$A_{i+1} = A_{i+1} \cap A_i$$

$$\bigcap_{i=1}^{\infty} A_i = \lim_{i \to \infty} A_i$$
Hence, $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{i \to \infty} \mu(A_i)$

Section 2

2.10 To prove the statement, we will shown that the \geqslant can be replaced by \leqslant in the Theorem 2.8. Since $B = (B \cap E) \cup (B \cap E^c)$ and μ^* is an outer-measure $\Rightarrow \mu^*$ is countably sub-additive $\Rightarrow \mu^*((B \cap E) \cup (B \cap E^c)) \leqslant \mu^*(B \cap E) + \mu^*(B \cap E^c) \Rightarrow \mu^*(B) \leqslant \mu^*(B \cap E) + \mu^*(B \cap E^c)$. From the Theorem 2.8, we obtain $\mu^*(B) \geqslant \mu^*(B \cap E) + \mu^*(B \cap E^c)$, hence we get the statement $\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c)$.

2.14 Define $\mathcal{O} = \{A : A \text{ is open, } A \subset \mathbb{R}\}$, ν is a premeasure on \mathbb{R} , denote μ^* as the outer measure generated by ν . Let $\sigma(\mathcal{O})$ be the σ -algebra generated by \mathcal{O} and \mathcal{M} denote the σ -algebra from the Caratheodory construction. By Theorem 2.12, we obtain $\sigma(\mathcal{O}) \subset \mathcal{M}$, since $\sigma(\mathcal{O})$ is the σ -algebra generated by \mathcal{O} , which is the Borel-algebra. Hence, we have shown $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}$.

Section 3

3.1

Let
$$a \in \mathbb{R}$$
, then $a \subset [a - \epsilon, a + \epsilon] \quad \forall \epsilon > 0$.
Also, $\lambda^*(a) \leqslant \lambda^*([a - \epsilon, a + \epsilon]) = 2\epsilon \quad \forall \epsilon > 0$
Therefore, $\lambda^*(a) = 0 \quad \forall a \in \mathbb{R}$
Let $A = a_1, a_2, \ldots = \bigcup_{n=1}^{\infty} \{a_n\}$ be a countable set,
then, $\lambda^*(A) \leqslant \sum_{n=1}^{\infty} \lambda^*(a_n) = 0$

- **3.4** 1). First, let set $\{x \in X : f(x) < a\}$, $\forall a \text{ be A}$
- \therefore M is σ -algebra, \therefore $A^C = \{x \in X : f(x) \ge a\} \in \mathbb{M}, \forall a, \text{ and the definition still holds.}$
- 2). Then, we show that set $\{x \in X : f(x) > a\} \in \mathbb{M}$. Define $\{a_n = a + \frac{1}{n}\}_{n \in \mathbb{N}}$ in \mathbb{R} , then $\lim_{n \to \infty} a_n = a$. By the proof above, we know that $A_n = x \in X : f(x) \geqslant a_n \in \mathbb{M}$ $\forall a_n \in \mathbb{R}$.

Thus
$$\bigcup_{n=1}^{\infty} A_n \in \mathbb{M}$$

$$\Rightarrow \bigcup_{n=1}^{\infty} \{x \in X : f(x) \geqslant a\} = \bigcup_{n=1}^{\infty} \{x \in X : f(x) > \lim_{n \to \infty} a_n\}$$

 $\Rightarrow \{x \in X, f(x) > a\} \in \mathbb{M}$ 3). Thus, by the same logic in 1), $\{x \in X, f(x) > a\} \{x \in X, f(x) \leqslant a\}$. Thus we have the sets composed of all four operators belonging to \mathbb{M} .

- **3.7** 1). For case of f + g: Let F(x, y) = x + y, then f + g = F(f, g) and f + g is a continuous function. \Rightarrow By property 4, we show that f + g is measurable.
- 2). For case of $f \cdot g$: Let F(x, y) = xy, then $f \cdot g = F(f, g)$ and $f \cdot g$ is a continuous function. \Rightarrow By property 4, we show that $f \cdot g$ is measurable.
- 3). Let $f = \sup_{n \in \mathbb{N}} f_n(x)$, $g = \sup_{n \in \mathbb{N}} g_n(x)$. Also, let $\{K_n \mid_{n \in \mathbb{N}}\} = \{\{f_n\}_{n \in \mathbb{N}}, \{g_n\}_{n \in \mathbb{N}}\}$. $\sup_{n \in \mathbb{N}} K_n(x) = \max(\sup_{n \in \mathbb{N}} f_n(x), \sup_{n \in \mathbb{N}} g_n(x)) = \max(f, g)$
- $\Rightarrow \forall n, K_n(x)$ is measurable. $\Rightarrow \{K_n(x)\}_{n\in\mathbb{N}}$ is measurable
- \Rightarrow By property (2) we show that $\max(f,g)$ is measurable.
- 4). Similar to the above proof, change sup to inf, then $\inf_{n\in\mathbb{N}} K_n(x) = \min(f,g)$
- $\Rightarrow min(f,g)$ is measurable.
- 5). $|f| = \max(f, -f)$, by proof above \Rightarrow we know that |f| is measurable.
- **3.14** $\forall \epsilon > 0$, we constrict intervals and simple function as the proof in note.

$$\exists N_1 \in \mathbb{N}, \text{ s.t. } \frac{1}{2^{N_1}} < \epsilon$$

$$\exists N_2 \in \mathbb{N}, \text{ s.t. } f(x) < N_2$$

Let
$$N = \max\{N_1, N_2\}$$

for
$$n > N$$
, $\forall x \in X, x \in E_i^n$ for $0 \le i \le N, i \in \mathbb{N}$

$$\Rightarrow f(x) \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right) \text{ and } s_n(x) = \frac{i-1}{2^n}$$

$$\Rightarrow |f(x) - s_n(x)| < \frac{1}{2^n} < \frac{1}{2^N} < \epsilon$$

 \Rightarrow the convergence in (1) is uniform.

Section 4

- **4.13** Since $0 \le ||f|| < M$ on $E \in \mathbb{M}$, and $\mu(E) < \infty$ by proposition 4.5, $0 \le \int_E ||f|| d\mu \le M\mu(E) < \infty$
- $\Rightarrow f \in \mathbb{L}^1(\mu, E)$
- **4.14** We will prove by contradiction.

Without loss of generality, we need to show that $f = \infty$

Suppose $\exists A \subset E$ with positive measure μ s.t. $f = \infty$ somewhere on A.

Then,
$$\infty = \int_A f d\mu \leqslant \int_E f d\mu \leqslant \int_E ||f|| d\mu$$

- $\Rightarrow f \notin \mathbb{L}^1(\mu, E)$, which contradicts with $f \in \mathbb{L}^1(\mu, E)$
- **4.15** Let $S(f) = \{s : 0 \le s \le f, \text{ s measurable and simple}\}.$

$$f < q \Rightarrow f^+ < q^+ \text{ and } f^- > q^-$$

$$\Rightarrow S(f^+) \subset S(g^+) \quad \Rightarrow \int_E f^+ d\mu \leqslant \int_E g^+ d\mu$$

Similarly,
$$\Rightarrow S(g^-) \subset S(f^-) \Rightarrow \int_E g^- d\mu \leqslant \int_E f^- d\mu$$

$$\Rightarrow \int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu \leqslant \int_E g^+ d\mu - \int_E g^- d\mu = \int_E g d\mu$$

Hence $\int_E f d\mu \leqslant \int_E g d\mu$

4.16 Take an arbitrary simple function $s(x) = \sum_{i=1}^{N} c_i \chi_i E_i$, where E_i is measurable.

Then since $A \subset E \Rightarrow A \cap E_i \subset E \cap E_i \quad \forall i$

$$\begin{split} &\Rightarrow \mu(A \cap E_i) \leq \mu(E \cap E_i) \quad \forall i \\ &\Rightarrow \int_A s d\mu = \sum_{i=1}^N c_i \mu(A \cap E_i) \leq \sum_{i=1}^N c_i \mu(E \cap E_i) = \int_E s d\mu \\ &\Rightarrow \int_A ||f|| d\mu \leq \int_E ||f|| d\mu < \infty \\ &\Rightarrow f \in \mathbb{L}^1(\mu, A) \end{split}$$

4.21 Let $\lambda(\cdot)$ be a measure on μ

$$A = (A \setminus B) \cup (A \cap B)$$

$$\therefore B \subset A, \Rightarrow A = (A \setminus B) \cup B$$

$$\Rightarrow \lambda(A) = \lambda((A \setminus B) \cup B) = \lambda(A \setminus B) + \lambda(B)$$

$$\int_A f d\mu = \int_{A \backslash B} f d\mu + \int_B f d\mu$$

$$\because \int_{A \setminus B} f d\mu = 0$$

$$\Rightarrow \int_A f d\mu = \int_B f d\mu$$

$$\Rightarrow \int_A f d\mu \leqslant \int_B f d\mu$$