Лабораторная работа №7 по курсу "Численные методы"

Тема ЛР - "Краевые задачи для дифференциального уравнения эллиптического типа"

Студент - Письменский Данила Владимирович

Группа - М8О-406Б-19

Задание

Решить краевую задачу для дифференциального уравнения эллиптического типа. Аппроксимацию уравнения произвести с использованием центрально-разностной схемы. Для решения дискретного аналога применить следующие методы: метод простых итераций (метод Либмана), метод Зейделя, метод простых итераций с верхней релаксацией. Вычислить погрешность численного решения путем сравнения результатов с приведенным в задании аналитическим решением U(x, y).

Вариант 1

```
rac{\partial^2 u}{\partial x^2}+rac{\partial^2 u}{\partial y^2}=0 u(0,y)=y u(1,y)=1+y u(x,0)=x u(x,1)=1+x Аналитическое решение: U(x,y)=x+y
```

```
f(x,y) = x + y
```

```
In [1]: # импортируем библиотеки import numpy as np import matplotlib.pyplot as plt
```

Константы

```
In [2]: x_start = 0
x_end = 1.05

y_start = 0
y_end = 1.05

h_x = 0.05
h_y = 0.05
```

Начальные условия

```
In [3]: # граничные условия по х def phi_0(y): return y
```

```
def phi_1(y):
    return 1 + y

# граничные условия по у
def psi_0(x):
    return x

def psi_1(x):
    return 1 + x

def exact_sol(x, y):
    return x + y
```

Аналитическое решение

Найдем аналитическое решение начально-краевой задачи для дифференциального уравнения эллиптического типа, затем будем сравнивать его с численными методами для того. Это нам пригодится, чтобы визуализировать зависимость максимального модуля ошибки от координаты y. Для этого реализовал функцию, которая возвращает матрицу U со значениями функции для аналитического решения.

```
In [4]: def analytical_solve(x_start, x_end, y_start, y_end, h_x, h_y):
    x = np.arange(x_start, x_end, h_x)
    y = np.arange(y_start, y_end, h_y)

    U = np.zeros((len(x), len(y)))
    for i_x in range(len(x)):
        for i_y in range(len(y)):
            U[i_y][i_x] = exact_sol(x[i_x], y[i_y])

    return U

In [5]: anal_solution = analytical_solve(x_start, x_end, y_start, y_end, h_x, h_y)

In [6]: anal_solution.shape

Out[6]: (21, 21)
```

Погрешность

В качестве погрешности буду использовать максимальный модуль ошибки.

```
In [7]: def max_abs_error(U_num, U_anal):
    return abs(U_num - U_anal).max()
```

L2 норма

Является геометрическим расстоянием между двумя точками в многомерном пространстве, вычисляемым по теореме Пифагора.

Формула:
$$\left|\left|X
ight|\right|_2 = \left(\sum_{i=1}^N \left|x_i
ight|^2
ight)^{rac{1}{2}}$$

```
In [8]: def L2_norm(X):
    n = X.shape[0]
    12_norm = 0
    for i in range(n):
```

```
12_norm += X[i] ** 2
return np.sqrt(12_norm)
```

Реализация функций построения графиков

Для того, чтобы визуализировать решение ДУ численными методами, реализую функцию построения графика функции U(x) при заданной координате y.

```
In [9]: def build_numerical_results_graphic(solution, method_name, coord_y, x_start, x_end, y_st
    x = np.arange(x_start, x_end, h_x)
    y = np.arange(y_start, y_end, h_y)
    cur_y_id = abs(y - coord_y).argmin()

plt.figure(figsize=(15, 9))
    plt.plot(x, anal_solution[cur_y_id], label='Аналитическое решение')
    plt.plot(x, solution[cur_y_id], label=method_name, color='r')

plt.xlabel('x')
    plt.ylabel('U(x)')
    plt.legend()
    plt.grid()
    plt.show()
```

Чтобы проверить, наскольно точно решение ДУ численными методами, необходимо реализовать функцию построения графика зависимости погрешности (максимального модуля ошибки) от координаты у.

```
In [10]: def build_errors_graphic(solution, method_name, y_start, y_end, h_y):
    y = np.arange(y_start, y_end, h_y)

plt.figure(figsize=(15, 9))
    max_abs_errors = np.array([max_abs_error(solution[i], anal_solution[i]) for i in ran plt.plot(y, max_abs_errors, label=method_name, color='g')

plt.xlabel('y')
    plt.ylabel('Максимальный модуль ошибки')

plt.legend()
    plt.grid()
    plt.show()
```

Численные методы

Конечно-разностная схема

Преобразуем исходное уравнение с производными в уравнение с их численными приближениями.

$$u_{i,j} - (u_{i,j-1} + u_{i,j+1}) rac{h_x^2}{2(h_x^2 + h_y^2)} - (u_{i-1,j} + u_{i+1,j}) rac{h_y^2}{2(h_x^2 + h_y^2)} = 0$$

Получили рекуррентное соотношение.

Записав такое соотношение для всех i, j получим систему уравнений. Решить ее можно итерационными способами.

```
In [11]: def finite_difference_schema(method, x_start, x_end, y_start, y_end, h_x, h_y, phi_0, ph
    x = np.arange(x_start, x_end, h_x)
```

```
y = np.arange(y start, y end, h y)
# Шаг 1. Инициализируем сетку граничными условиями
n = len(x)
m = len(y)
U = np.zeros((n, m))
# Используем начальные условия по у
for x i in range(n):
        U[x i][0] = psi 0(x[x i])
        U[x i][m - 1] = psi 1(x[x i])
# Используем начальные условия по х
for y i in range(m):
       U[0][y i] = phi 0(y[y i])
for y i in range(m):
        U[n - 1][y i] = phi 1(y[y i])
# Шаг 2. Создаём систему уравнений
bits map = np.zeros((n, m), dtype='int') # bits map[i][j] = номер уравнения, где и {
curr equation id = 0
for x i in range(1, n - 1):
        for y i in range (1, m - 1):
                bits map[x i][y i] = curr equation id
                curr equation id += 1
nums of equations = (n - 2) * (m - 2)
A = np.zeros((nums of equations, nums of equations))
b = np.zeros((nums of equations))
for x i in range(1, n - 1):
        for y i in range(1, m - 1):
                curr equation id = bits map[x i][y i]
                A[curr equation id][bits map[x i][y i]] = 1
                if y i - 1 == 0:
                         # и {i, j-1} вычислили из граничных условиях
                        b[curr\ equation\ id] += psi\ 0(x[x\ i]) * h x ** 2 / (2 * (h x **2 + h y **
                else:
                        A[curr equation id][bits map[x i][y i - 1]] = -h x ** 2 / (2 * (h x ** 2
                if y i + 1 == m - 1:
                         # и {i, j+1} вычислили из граничных условиях
                        b[curr equation id] += psi 1(x[x i]) * h x**2 / (2 * (h x**2 + h y**2))
                else:
                       A[curr equation id][bits map[x i][y i + 1]] = -h x**2 / (2 * (h x**2 + h))
                if x i - 1 == 0:
                         # и {i-1, j} вычислили из граничных условиях
                        b[curr\_equation\_id] += phi\_0(y[y\_i]) * h\_y**2 / (2 * (h x**2 + h y**2))
                else:
                        A[curr\_equation\_id][bits\_map[x\_i - 1][y\_i]] = -h y**2 / (2 * (h x**2 + h 
                if x i + 1 == n - 1:
                         # и {i+1, j} вычислили из граничных условиях
                        b[curr equation id] += phi 1(y[y i]) * h y**2 / (2 * (h x**2 + h y**2))
                else:
                        A[curr equation id][bits map[x i + 1][y i]] = -h y**2 / (2 * (h x**2 + h
# Шаг 3. Решаем систему уравнений
eq answer, iterations = method(A, b, eps)
for x i in range(1, n - 1):
        for y i in range (1, m - 1):
                U[x i][y i] = eq answer[bits map[x i][y i]]
return U, iterations
```

Метод простых итераций для решения СЛАУ

```
In [12]: def iterative method(A, b, eps):
             n = A.shape[0]
             a = np.zeros like(A, dtype='float')
             beta = np.zeros like(b, dtype='float')
             for i in range(n):
                  for j in range(n):
                      if i == j:
                          a[i][j] = 0
                      else:
                          a[i][j] = -A[i][j] / A[i][i]
                  beta[i] = b[i] / A[i][i]
             iterations = 0
             cur x = np.copy(beta)
             not converge = True
             while not converge:
                  prev x = np.copy(cur x)
                  cur x = a @ prev x + beta
                  iterations += 1
                  not converge = L2 \text{ norm}(\text{prev } x - \text{cur } x) > \text{eps}
              return cur x, iterations
```

Решениие системы из конечно-разностной схемы с помощью метода простых итераций

```
In [13]: iterative_solution, iterative_iterations = finite_difference_schema(iterative_method, x_
In [14]: iterative_solution.shape
Out[14]: (21, 21)
```

Максимальный модуль ошибки для метода простых итераций

```
In [15]: print(f'Максимальный модуль ошибки для метода простых итераций = {max_abs_error(iterativ Максимальный модуль ошибки для метода простых итераций = 7.991032175969082e-07
```

Количество итераций для метода простых итераций

```
In [16]: print(f'Количество итераций для метода простых итераций = {iterative_iterations}')

Количество итераций для метода простых итераций = 1171
```

Визуализация решения системы из конечно-разностной схемы с помощью метода простых итераций

```
In [17]: build_numerical_results_graphic(iterative_solution, "Метод простых итераций", 0.5, x_sta
```


Визуализация погрешности метода простых итераций

Метод Зейделя для решения СЛАУ

```
ans = np.copy(x)
    for i in range(alpha.shape[0]):
       ans[i] = beta[i]
       for j in range(alpha.shape[1]):
           ans[i] += alpha[i][j] * ans[j]
    return ans
def seidel method(A, b, eps):
   n = A.shape[0]
    # Находим alpha и beta
   alpha = np.zeros like(A, dtype='float')
   beta = np.zeros like(b, dtype='float')
   for i in range(n):
       for j in range(n):
            if i == j:
               alpha[i][j] = 0
            else:
               alpha[i][j] = -A[i][j] / A[i][i]
       beta[i] = b[i] / A[i][i]
   iterations = 0
   cur ans = np.copy(beta)
   not converge = True
   while not converge:
       prev ans = np.copy(cur ans)
       cur ans = seidel multiplication(prev ans, alpha, beta)
       iterations += 1
        not converge = L2 norm(prev ans - cur ans) > eps
    return cur ans, iterations
```

Решение системы из конечно-разностной схемы с помощью метода Зейделя

```
In [20]: seidel_solution, seidel_iterations = finite_difference_schema(seidel_method, x_start, x_
In [21]: seidel_solution.shape
Out[21]:
```

Максимальный модуль ошибки для метода Зейделя

```
In [22]: print(f'Максимальный модуль ошибки для метода Зейделя = {max_abs_error(seidel_solution, Максимальный модуль ошибки для метода Зейделя = 3.9464804979516543e-07
```

Количество итераций для метода Зейделя

```
In [23]: print(f'Количество итераций для метода Зейделя = {seidel_iterations}')

Количество итераций для метода Зейделя = 617
```

Визуализация решения системы из конечно-разностной схемы с помощью метода Зейделя

```
In [24]: build_numerical_results_graphic(seidel_solution, "Метод Зейделя", 0.5, x_start, x_end, y
```


Визуализация погрешности метода Зейделя


```
In [26]: print(f'Количество итераций для метода простых итераций = {iterative_iterations}')
    print(f'Количество итераций для метода Зейделя = {seidel_iterations}')
```

Количество итераций для метода простых итераций = 1171 Количество итераций для метода Зейделя = 617 Из сравнения количества итераций для обоих методов можно сделать вывод о том, что метод Зейделя сходится за меньшее количество итераций, чем метод простых итераций (в 1.9 раза меньше).

Метод верхних релаксаций для решения СЛАУ

Метод верхних релаксаций для решения СЛАУ является модификацией метода Зейделя, заключающийся в том, что новое значение неизвестных расчитывается как среднее взвешенное значений на текущей и прошлой итерации.

Данное изменение позволяет обеспечить более быструю сходимость.

```
def upper relaxations method(A, b, eps, w=1.47):
In [27]:
            n = A.shape[0]
             # Вычисляем alpha и beta
            alpha = np.zeros like(A, dtype='float')
            beta = np.zeros like(b, dtype='float')
             for i in range(n):
                for j in range(n):
                    if i == j:
                         alpha[i][j] = 0
                     else:
                         alpha[i][j] = -A[i][j] / A[i][i]
                 beta[i] = b[i] / A[i][i]
            iterations = 0
            cur ans = np.copy(beta)
            not converge = True
             while not converge:
                prev ans = np.copy(cur ans)
                cur ans = seidel multiplication(prev ans, alpha, beta)
                cur ans = w * cur ans + (1-w) * prev ans
                 iterations += 1
                not converge = L2 norm(prev ans - cur ans) > eps
             return cur_ans, iterations
```

Решение системы из конечно-разностной схемы с помощью метода верхних релаксаций

```
In [28]: upper_relaxations_solution, upper_relaxations_iterations = finite_difference_schema(uppe
In [29]: upper_relaxations_solution.shape
Out[29]: (21, 21)
```

Максимальный модуль ошибки для метода верхних релаксаций

```
In [30]: print(f'Максимальный модуль ошибки для метода верхних релаксаций = {max_abs_error(upper_ Makcимальный модуль ошибки для метода верхних релаксаций = 2.6626110694039085e-07
```

Количество итераций для метода верхних релаксаций

```
In [31]: print(f'Количество итераций для метода верхних релаксаций = {upper_relaxations_iteration Количество итераций для метода верхних релаксаций = 428
```

Визуализация решения системы из конечно-разностной схемы с помощью метода верхних релаксаций

In [32]: build_numerical_results_graphic(upper_relaxations_solution, "Метод верхних релаксаций",

Визуализация погрешности метода верхних релаксаций


```
In [34]: print(f'Количество итераций для метода Зейделя = {seidel_iterations}')
print(f'Количество итераций для метода верхних релаксаций = {upper_relaxations_iteration}

Количество итераций для метода Зейделя = 617
Количество итераций для метода верхних релаксаций = 428
```

Как и ожидалось, метод верних релаксаций сходится за меньшее количество итераций, чем метод Зейделя.

Сравнение численных методов с аналитическим решением

```
In [35]: def build all numerical results graphic(sol1, sol2, sol3, m n1, m n2, m n3, coord y, x s
            x = np.arange(x start, x end, h x)
             y = np.arange(y start, y end, h y)
            cur y id = abs(y - coord y).argmin()
            plt.figure(figsize=(15, 9))
            plt.plot(x, anal solution[cur y id], label='Аналитическое решение')
            plt.plot(x, sol1[cur y id], label=m n1, color='r')
            plt.plot(x, sol2[cur y id], label=m n2, color='g')
            plt.plot(x, sol3[cur y id], label=m n3, color='m')
            plt.xlabel('y')
            plt.ylabel('U(x)')
            plt.legend()
            plt.grid()
            plt.show()
In [36]: def build all errors graphic(sol1, sol2, sol3, m n1, m n2, m n3, y start, y end, h y):
            y = np.arange(y start, y end, h y)
            plt.figure(figsize=(15, 9))
            max abs errors1 = np.array([max abs error(sol1[i], anal solution[i]) for i in range(
            max abs errors2 = np.array([max abs error(sol2[i], anal solution[i]) for i in range(
            max abs errors3 = np.array([max abs error(sol3[i], anal solution[i]) for i in range(
            plt.plot(y, max abs errors1, label=m n1, color='g')
            plt.plot(y, max abs errors2, label=m n2, color='r')
            plt.plot(y, max abs errors3, label=m n3, color='b')
            plt.xlabel('v')
            plt.ylabel('Максимальный модуль ошибки')
            plt.legend()
            plt.grid()
            plt.show()
```

Визуализация результатов работы численных методов

```
In [37]: build_all_numerical_results_graphic(iterative_solution, seidel_solution, upper_relaxatio
```


Визуализация зависимости погрешности от координаты у для численных методов

Вывод

В ходе данной лабораторной работы научился решать краевые задачи для дифференциального уравнения эллиптического типа с помощью конечно-разностной схемы.

Применение конечно-разностной схемы позволяет нам получить СЛАУ, решаемую с помощью следующих методов:

- метод простых итераций (метод Либмана);
- метод Зейделя;
- метод верхних релаксаций;

Получил довольно точное решение ДУ с помощью каждого метода, однако, из общего графика зависимости погрешности от коодинаты у можно сделать вывод о том, что метод верних релаксаций является наиболее точным среди остальных реализованных методов решения ДУ.