4-Variable KARNAUGH MAP

		YX			
`		00	01	11	10
	00	m_0	m ₁	m ₃	m ₂
\ <i>\\\</i> 7	01	m_4	m ₅	m ₇	m ₆
WZ	11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
	10	m ₈	m ₉	m ₁₁	m ₁₀

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

		YX			
Ì		00	01	11	10
	00	1	1 m₁	0 _{m3}	1 m ₂
WZ	01	1 m₄	1 m ₅	0 _{m₇}	1 m ₆
VVZ	11	1 m ₁₂	1 m ₁₃	0 m ₁₅	1 m ₁₄
	10	1 m ₈	1 m ₉	0 m ₁₁	0 _{m₁₀}

 $F(W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

 $F (W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' +

$$F (W,Z,Y,X) = \sum_{i=1}^{n} m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$
$$= Y' +$$

 $F (W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX'

 $F (W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + WZYX'

 $F (W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'YX' + ZYX'

 $F (W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ = Y' + W'X' + WYX'

$$F (W,Z,Y,X) = \sum m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

= Y' + W'X' + ZX'

$$F (W,Z,Y,X) = \prod M(3, 7, 10, 11, 15)$$

= (YX)'(WZ'Y)'
= (Y'+X')(W'+Z+Y')

Click to Play!

https://en.wikipedia.org/wiki/Karnaugh_map#/media/File:Torus_from_rectangle.gif

				ΥX		
		00	01	11	10	
	00	1	0 m ₁	0 _{m3}	1	
WZ	01	\mathop{O}_{m_4}	0 m ₅	0 _{m₇}	0 m ₆	
	11	0 m ₁₂	0 m ₁₃	0 m ₁₅	0 m ₁₄	
	10	1 m ₈	$_{m_{g}}^{O}$	0 m ₁₁	1 m ₁₀	

F
$$(W,Z,Y,X) = \sum_{i=1}^{n} (0, 2, 8, 10)$$

= $Z'X'$

F (W,Z,Y,X) =
$$\sum$$
m(0, 2, 8, 10)
= Z'X'
= \prod M(1,3-7,9,11-15)
= (X)'(Z)'
= X'Z'

Given two unsigned numbers x and y, design a logic circuit to see

 $x \geq ? y$

Y2	Y1	X2	X1	$F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$	$F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	1	1

		X_2X_1			
		00	01	11	10
	00	1 m _o	1 m₁	1 m ₃	1 m ₂
Y ₂ Y ₁	01	0 m ₄	1 m ₅	1 m ₇	1 m ₆
	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	0 m ₁₄
	10	O m ₈	0 m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2,Y_1,X_2,X_1)=\Sigma$ m(0,1,2,3,5,6,7,10,11,15) $F(Y_2,Y_1,X_2,X_1)=\Pi$ M(4,8,9,12,13,14)

		X_2X_1			
		00	01	11	10
	00	1	1 m,	1 _{m3}	1 m ₂
VV	01	$_{m_{_{4}}}^{O}$	1 m ₅	1 m ₇	1 m ₆
Y ₂ Y ₁	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	0 m ₁₄
	10	0 m ₈	0 m ₉	1 m ₁₁	1 m ₁₀

 $F(Y_2,Y_1,X_2,X_1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2Y'_1$ +

 $F(Y_2,Y_1,X_2,X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2Y'_1 + X_2X_1$

 $F(Y_2,Y_1,X_2,X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ = $Y'_2Y'_1 + X_2X_1 + Y'_2X_1$

 $F(Y_2,Y_1,X_2,X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ $= Y'_2Y'_1 + X_2X_1 + Y'_2X_1 + Y'_2X_2$

 $F(Y_2,Y_1,X_2,X_1) = \Sigma m(0,1,2,3,5,6,7,10,11,15)$ $= Y'_2Y'_1 + X_2X_1 + Y'_2X_1 + Y'_2X_2 + Y'_1X_2$

Change of Variable:

 $X1 \rightarrow X$

 $X2 \rightarrow Y$

 $Y1 \rightarrow Z$

 $Y2 \rightarrow W$

		YX			
		00	01	11	10
	00	1 m _o	1 m₁	1 m ₃	1 m ₂
WZ	01	0 m ₄	1 m ₅	1 m ₇	1 m ₆
VVZ	11	0 m ₁₂	0 _{m₁₃}	1 m ₁₅	0 m ₁₄
	10	O m ₈	$_{m_{g}}^{O}$	1 m ₁₁	1 m ₁₀

 $F(Y_2,Y_1,X_2,X_1)=\Pi M(4,8,9,12,13,14)$

Change of Variable:

 $X1 \rightarrow X$

 $X2 \rightarrow Y$

 $Y1 \rightarrow Z$

 $Y2 \rightarrow W$

		YX			
		00	01	11	10
	00	1 m _o	1 m ₁	1 m ₃	1 m ₂
WZ	01	O m₄	1 m ₅	1 m ₇	1 m ₆
VVZ	11	0 m ₁₂	0 m ₁₃	1 m ₁₅	0 m ₁₄
	10	O m ₈	O m ₉	1 m ₁₁	1 m ₁₀

$$F(Y_2,Y_1,X_2,X_1)=\Pi M(4,8,9,12,13,14)$$

 $F(W,Z,Y,X)=()'$

 $F(Y_2,Y_1,X_2,X_1)=\Pi M(4,8,9,12,13,14)$ F(W,Z,Y,X) = (WY' +)'

 $F(Y_2,Y_1,X_2,X_1)=\Pi M(4,8,9,12,13,14)$ F(W,Z,Y,X) = (WY' + ZY'X' +)'

 $F(Y_2,Y_1,X_2,X_1)=\Pi M(4,8,9,12,13,14)$ F(W,Z,Y,X)=(WY'+ZY'X'+WZX')'

$$F(Y_2,Y_1,X_2,X_1) = \Pi M(4,8,9,12,13,14)$$

$$F(W,Z,Y,X) = (WY' + ZY'X' + WZX')'$$

$$= (WY')' (ZY'X')' (WZX')'$$

$$= (W'+Y) (Z'+Y+X)' (W'+Z'+X)$$

5-Variable KARNAUGH MAP

n-Variable KARNAUGH MAP

n-Variable Quine–McCluskey Algorithm

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm

 $1878 \leftarrow 1937 \leftarrow 1952 \leftarrow 1956$

Demo Quine—McCluskey Algorithm https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/

Don't Care Conditions

In practice, in some applications the function is not specified for certain combinations of the variables.

Z	Y	X	F=if input is positive(2's comp.) then 1 else 0
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Z	Y	X	F=if input is positive(2's comp.) then 1 else 0
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Z	Y	X	$F=\sum m(1,2,3)=\prod M(0,4,5,6,7)$			
0	0	0	0			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

$$F(Z,Y,X) = \sum m(1, 2, 3)$$

= $Z'X + Z'Y$

Boolean algebra → Z'(X+Y)

$$F(Z,Y,X) = \prod M(0,4,5,6,7)$$

= $(Z + Y'X')'$
= $Z'(Y+X)$

Z	Y	X	F=if positive(2's comp.) then 1 if negative 0			
0	0	0	0			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

Z	Y	X	F=if positive(2's comp.) then 1 if negative 0			
0	0	0				
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	0			
1	1	0	0			
1	1	1	0			

F
$$(Z,Y,X) = \sum m(1, 2, 3) + \sum d(0)$$

= $Z'X + Z'Y$

	ΥX					
		00	01	11	10	
7	0	1 m ₀	1 m₁	1 m ₃	1 m ₂	
Z	1	O m ₄	O m ₅	O m ₇	O m ₆	

$$F(Z,Y,X) = \sum_{i=1}^{n} m(1, 2, 3) + \sum_{i=1}^{n} m(0)$$

= Z'

In this case, the don't care condition help to more simplification

$$F(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$$

= (Z)'
= Z'

			YX			
		00	01	11	10	
Z	0	O_{m_0}	1 m ₁	1 m ₃	1 m ₂	
	1	$0 \atop m_4$	0 m ₆	0 m ₇	0 m ₆	

$$F(Z,Y,X) = \prod M(0,4,5,6,7) + \sum M(0)$$

= $(Z + Y'X')'$
= $Z' (Y+X)$

In this case, the don't care condition does NOT help to more simplification

Don't Care Conditions

Functions that have unspecified outputs for some input combinations are called *incompletely specified functions*.

Don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

Don't Care Conditions

To distinguish the don't-care condition from 1's and 0's, an X is used.

	ΥX						
		00	01	11	10		
Z	0	X_{m_0}	1 m ₁	1 m ₃	1 m ₂		
Z	1	O m ₄	O m ₅	O m ₇	O_{m_6}		

F
$$(Z,Y,X) = \sum m(1, 2, 3) + \sum d(0)$$

F $(Z,Y,X) = \prod M(4,5,6,7) + \sum D(0)$