INFORMATION RETRIEVAL

HOMEWORK EXERCISES LO2. EVALUATION

The following list of Rs and Ns represent relevant (R) and nonrelevant (N) returned documents in a ranked list of 20 documents retrieved in response to a query from a collection of 10,000 documents. The top of the ranked list is on the left of the list. This list shows 6 relevant documents. Assume there are 8 relevant documents in total in the collection.

- Calculate (show your calculations):
 - a. Precision
 - b. Recall
 - c. F1

EXERCISE 1 - SOLUTION

The following list of Rs and Ns represent relevant (R) and nonrelevant (N) returned documents in a ranked list of 20 documents retrieved in response to a query from a collection of 10,000 documents. The top of the ranked list is on the left of the list. This list shows 6 relevant documents. Assume there are 8 relevant documents in total in the collection.

- Calculate (show your calculations):
 - a. Precision = 6/20 = 0.3
 - b. Recall = 6/8 = 0.75
 - c. $F1 = 2*(0.3*0.75)/(0.3+0.75) \approx 0.43$

RRNNN NNNRN RNNNR NNNNR

Given this same result list and the known number of relevant documents in the collection, calculate (show your calculation) the Average Precision

RRNNN NNNRN RNNNR NNNNR

Given this same result list and the known number of relevant documents in the collection, calculate (show your calculation) the Average Precision

 \rightarrow AP = $(1/1+2/2+3/9+4/11+5/15+6/20) / 8 <math>\approx$ 0.42

RRNNN NNNRN RNNNR NNNNR

Given this same result list, draw the Precision-Recall graph

- Given this same result list, draw the Precision-Recall graph
- > IIR, section 8.4
- the interpolated precision p_{interp} at a certain recall level r is defined as the highest precision found for any recall level $r' \ge r$:

$$p_{interp}(r) = \max_{r' \ge r} p(r')$$

				5 II	Interpolated
	Precision	Recall	Precision	Recall	precision
1	1/1	1/8	1.000	0.125	1.000
2	2/2	2/8	1.000	0.250	1.000
3	2/3	2/8	0.667	0.250	0.667
4	2/4	2/8	0.500	0.250	0.500
5	2/5	2/8	0.400	0.250	0.400
6	2/6	2/8	0.333	0.250	0.364
7	2/7	2/8	0.286	0.250	0.364
8	2/8	2/8	0.250	0.250	0.364
9	3/9	3/8	0.333	0.375	0.364
10	3/10	3/8	0.300	0.375	0.364
11	4/11	4/8	0.364	0.500	0.364
12	4/12	4/8	0.333	0.500	0.333
13	4/13	4/8	0.308	0.500	0.333
14	4/14	4/8	0.286	0.500	0.333
15	5/15	5/8	0.333	0.625	0.333
16	5/16	5/8	0.313	0.625	0.313
17	5/17	5/8	0.294	0.625	0.300
18	5/18	5/8	0.278	0.625	0.300
19	5/19	5/8	0.263	0.625	0.300
20	6/20	6/8	0.300	0.750	0.300

- Assume that the gain for a relevant document (R) is 1 and for a non-relevant document (N) is 0.
- Calculate (show your calculations):
 - a. CG@20
 - b. DCG@20
 - c. nDCG@20

- Assume that the gain for a relevant document (R) is 1 and for a non-relevant document (N) is 0.
- Calculate (show your calculations):
 - a. CG@20 = 6
 - b. DCG@20 = $1+1/\log_2(2)+1/\log_2(9)+1/\log_2(11)+1/\log_2(15)+1/\log_2(20) \approx \frac{3.1}{2}$
 - c. nDCG@20 = DCG/iDCG $iDCG = 1+1/log_2(2)+1/log_2(3)+1/log_2(4)+1/log_2(5)+1/log_2(6)+1/log_2(7)$ $+1/log_2(8) \approx 4.6$ $nDCG@20 \approx 3.1/4.6 \approx 0.67$

