Lie theory

Swapneel Mahajan

http://www.math.iitb.ac.in/~swapneel

Terminology

 ${\cal A}$ denotes a hyperplane arrangement which is fixed in the discussion.

 $\Sigma[\mathcal{A}]$ denotes the poset of faces. It is a monoid under the Tits product. We call this the Tits monoid.

 $L[\mathcal{A}]$ denote the set of chambers. It is a left module over $\Sigma[\mathcal{A}]$.

 $\Pi[\mathcal{A}]$ denotes the poset of flats. It is a monoid under the join operation. We call this the Birkhoff monoid.

The support map $s:\Sigma[\mathcal{A}]\to\Pi[\mathcal{A}]$ is a morphism of monoids.

This picture can be linearized. Let $\Sigma[\mathcal{A}]$ denote the Tits algebra, $\mathsf{L}[\mathcal{A}]$ denote the left module of chambers, and $\Pi[\mathcal{A}]$ denote the Birkhoff algebra. In each case, we use the letter H for the canonical basis.

1 Lie elements

Recall the module of chambers $L[\mathcal{A}]$. We write a typical element as

$$z = \sum_{C} x^{C} \mathbf{H}_{C}.$$

An element $z \in \mathsf{L}[\mathcal{A}]$ is a Lie element if

(1)
$$\sum_{C:HC=D} x^C = 0 \text{ for all } O < H \le D.$$

This is a linear system in the variables x^{C} .

We denote the set of Lie elements by $\mathrm{Lie}[\mathcal{A}].$ It is a subspace of $\mathrm{L}[\mathcal{A}].$

- ullet Note that H=O is excluded from (1): If not, then z=0 would be the only solution since all its coefficients x^C would be forced to be zero.
- If \mathcal{A} has rank zero, then $\text{Lie}[\mathcal{A}] = \mathbb{L}[\mathcal{A}] = \mathbb{k}$, spanned by \mathbb{H}_O . This is because, in this case,

there is only one chamber namely the central face, so (1) is vacuously true.

Lemma. Suppose A has rank at least one. Then the sum of the coefficients of any Lie element is zero, that is, $z \in \text{Lie}[A]$ implies

$$\sum_{C} x^{C} = 0.$$

Proof. Let D be any chamber. Since $\mathcal A$ has rank at least one, D>O. So we may choose H=D in (1). This yields $\sum_C x^C=0$, as required.

1.1 Friedrichs primitive part criterion

For any left Σ -module h, let $\mathcal{P}(\mathsf{h})$ denote the subspace consisting of the elements z such that $\mathsf{H}_H \triangleright z = 0$ for all H > O. We refer to $\mathcal{P}(\mathsf{h})$ as the primitive part of h. **Lemma.** The space of Lie elements is the primitive

part of the left module of chambers:

$$\mathcal{P}(\mathsf{L}[\mathcal{A}]) = \mathsf{Lie}[\mathcal{A}].$$

Explicitly, $z \in \text{Lie}[\mathcal{A}]$ *iff*

$$H_H \triangleright z = 0$$

for all H > O.

Proof. Let H be any face of A. Then

$$\mathbf{H}_{H} \triangleright \left(\sum_{C} x^{C} \mathbf{H}_{C}\right) = \sum_{C} x^{C} \mathbf{H}_{HC}$$

$$= \sum_{D: H \leq D} \left(\sum_{C: HC = D} x^{C}\right) \mathbf{H}_{D}.$$

This equals 0 iff

$$\sum_{C: HC=D} x^C = 0 \text{ for all } D \ge H.$$

The result follows from (1).

We refer to this characterization of Lie elements as the Friedrichs criterion.

1.2 Ree top-lune criterion

Any top-directed face (H, D) gives rise to a top-lune

$$s(H, D) := \{C \mid HC = D\}.$$

Note that D always belongs to this top-lune. Further, this top-lune is a singleton (consisting of D) iff H=O. The definition of a Lie element may now be rewritten as follows.

Lemma. We have $z \in \text{Lie}[\mathcal{A}]$ iff

$$\sum_{C \in \mathcal{V}} x^C = 0$$

for all non-singleton combinatorial top-lunes V in \mathcal{A} .

When V is the maximum flat, the above equation specializes to (2).

In fact, it suffices to consider only vertex-based top-lunes, since any non-singleton top-lune can be written as a disjoint union of vertex-based top-lunes.

Lemma. We have $z \in \text{Lie}[A]$ iff (3) holds for all

vertex-based combinatorial top-lunes V in A, or equivalently, (1) holds for all vertices H.

We refer to this description of Lie elements as the Ree criterion. A Lie element may be visualized as a scalar assigned to each chamber such that the sum of the scalars in every vertex-based top-lune is zero. (The scalar assigned to C is x^C .)

1.3 Antisymmetry and Jacobi identity

Let us try to understand Lie elements of arrangements of small rank.

Consider the rank-one arrangement shown below.

There is only one non-singleton top-lune consisting of the two chambers. It follows that $\mathrm{Lie}[\mathcal{A}]$ is one-dimensional. The coefficients of the two chambers are a and -a. The simplest choices are a=1 and

a=-1. Either of them spans $\mathrm{Lie}[\mathcal{A}]$, and their sum is zero. This can be shown as follows.

$$(4) \quad \left(\begin{array}{cc} 1 \\ \bullet \end{array}\right) + \left(\begin{array}{cc} 1 \\ \bullet \end{array}\right) = 0.$$

This is the antisymmetry relation. (By convention, 1 denotes -1.)

Now consider the dihedral arrangement of 3 lines.

There are six chambers. A non-singleton top-lune is either one of the six half-spaces or the full ambient space. It follows that $\mathrm{Lie}[\mathcal{A}]$ is two-dimensional. The coefficients of the chambers (read in clockwise cyclic order) are a,b,c,a,b and c subject to the condition a+b+c=0. For example, one may take a=1, b=-1, and c=0. Other similar choices are a=0,

b=1, and c=-1, or a=-1, b=0, and c=1. Any two of these yield a basis for $\mathrm{Lie}[\mathcal{A}]$, and the sum of all three is 0. This can be shown as follows.

This is the Jacobi identity for the hexagon. (By convention, 1 denotes -1.)

The above analysis readily generalizes to the dihedral arrangement of n lines. The hexagon gets replaced by a 2n-gon, and $\mathrm{Lie}[\mathcal{A}]$ is (n-1)-dimensional. The coefficients of the chambers (read in clockwise cyclic order) are $a_1,\ldots,a_n,a_1,\ldots,a_n$ subject to the condition $a_1+\cdots+a_n=0$. Jacobi identity consists of n terms adding up to 0. Each term is a 2n-gon whose two adjacent sides (and their opposites) have coefficients 1 and 1, and the remaining sides have

coefficient 0. For instance:

This is the Jacobi identity for the octagon.

1.4 Lie elements and opposition map

Lemma. If $z \in \text{Lie}[A]$, then x^D and $x^{\overline{D}}$ differ at most by a sign:

(7)
$$x^{D} = (-1)^{\operatorname{rk}(\mathcal{A})} x^{\overline{D}}.$$

How will you prove this?

2 Zie elements

Consider the Tits algebra $\Sigma[\mathcal{A}]$. We write a typical element as

$$z = \sum_{F} x^{F} \mathbf{H}_{F}.$$

An element $z \in \Sigma[\mathcal{A}]$ is a Zie element if

(8)
$$\sum_{F: HF=G} x^F = 0 \text{ for all } O < H \le G.$$

This is a linear system in the variables x^F .

We denote the set of Zie elements by Zie[A]. It is a subspace of $\Sigma[A]$. Similar to Lie elements:

- ullet Note that H=O is excluded from the defining equations.
- If \mathcal{A} has rank zero, then $\mathrm{Zie}[\mathcal{A}] = \Sigma[\mathcal{A}] = \mathbb{k}$. This is because, in this case, there is only one face, namely, the central face, so (8) is vacuously true. Hence $\mathrm{Zie}[\mathcal{A}] = \Sigma[\mathcal{A}]$, spanned by H_O .

A Zie element z is special if the coefficient in z of the central face is 1, that is, if $x^O=1$.

2.1 Zie elements in small ranks

Let $\mathcal A$ be the rank-one arrangement consisting of the central face, and chambers C and $\overline C$. Then, the ambient space is the only non-singleton lune in $\mathcal A$. Hence,

$$x^O \mathbf{H}_O + x^C \mathbf{H}_C + x^{\overline{C}} \mathbf{H}_{\overline{C}} \in \mathsf{Zie}[\mathcal{A}] \iff x^O + x^C + x^{\overline{C}} = 0.$$

Thus, $\mathsf{Zie}[\mathcal{A}]$ is two-dimensional.

Let \mathcal{A} be the dihedral arrangement of 3 lines. A Zie element is shown in the diagram below.

The letters in magenta stand for negative numbers.

What is $\dim(\mathsf{Zie}[\mathcal{A}])$?

2.2 Flat equations and Möbius functions

Let us now concentrate on the equations indexed by

$$O < H \le G$$
 with $H = G$. Put $X := s(H) = s(G)$.

Then X is a non-minimum flat, and

$$HF = G \iff s(F) \le X.$$

This yields:

Lemma. Suppose z is a Zie element. Then

(9)
$$\sum_{F: s(F) \leq X} x^F = 0 \text{ for all non-minimum flats } X.$$

In particular, if ${\cal A}$ has rank at least one, then

$$\sum_{F} x^{F} = 0.$$

Lemma. Let $z \in \Sigma[\mathcal{A}]$. Then z satisfies (9) and $x^O = 1$ iff

(11)
$$\sum_{F: \, \mathbf{s}(F) = \mathbf{X}} x^F = \mu(\bot, \mathbf{X}) \text{ for all flats } \mathbf{X},$$

iff

$$\mathrm{s}(z) = \mathsf{Q}_{\perp},$$

the Q-basis element of the Birkhoff algebra.

In particular, if z is a special Zie element, then (11) holds.

Proof. For the first equivalence: Denote the lhs of (11) by f(X). The condition $x^O=1$ is the same as $f(\bot)=1$, and the equations (9) are equivalent to saying: for any $Y>\bot$,

$$\sum_{X: X < Y} f(X) = 0.$$

These together are equivalent to saying $f(X) = \mu(\bot, X)$ for all X.

For the second equivalence, we only need to recall that

$$\mathtt{Q}_{\perp} = \sum_{\mathbf{X}} \mu(\perp, \mathbf{X}) \, \mathtt{H}_{\mathbf{X}}.$$

2.3 Friedrichs primitive part criterion

The space of Zie elements is the primitive part of the Tits algebra (as a left module over itself). This is the Friedrichs criterion. It is elaborated below.

Lemma. We have

$$\mathcal{P}(\Sigma[A]) = \mathsf{Zie}[A].$$

Explicitly, $z \in \mathsf{Zie}[\mathcal{A}]$ iff

$$H_H \triangleright z = 0$$

for all H > O.

Proof. Let H be any face of A. Then

$$\mathbf{H}_{H} \triangleright \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) = \sum_{F} x^{F} \mathbf{H}_{HF}$$

$$= \sum_{G: H \leq G} \left(\sum_{F: HF = G} x^{F}\right) \mathbf{H}_{G}.$$

This equals 0 iff

$$\sum_{F: HF=G} x^F = 0 \text{ for all } G \ge H.$$

The result follows from (8).

Theorem. The first Eulerian idempotent of any complete system of the Tits algebra is a special Zie element.

Conversely, all special Zie elements arise in this manner.

Proof. Recall

$$\mathtt{Q}_O = \sum_G oldsymbol{\mu}(O,G)\,\mathtt{H}_G.$$

By the noncommutative Weisner formula, $H_F \triangleright Q_O = 0$ for F > O. Hence, by Friedrichs criterion, Q_O is a special Zie element.

Lemma. Any Zie element is a quasi-idempotent. More precisely, any Zie element z satisfies

$$z^2 = x^O z.$$

A nonzero Zie element is an idempotent iff it is special.

Proof. Let z be a Zie element. By Friedrichs criterion,

$$z \triangleright z = \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) \triangleright z = \sum_{F} x^{F} (\mathbf{H}_{F} \triangleright z) = x^{O} z.$$

This proves the first claim. Note that z is an idempotent iff $x^Oz=z$. Assuming z to be nonzero, this happens precisely when $x^O=1$, that is when z is special. \Box

2.4 Ree lune criterion

Any directed face (H,G) gives rise to a lune

$$s(H,G) = \{F \mid HF = G \text{ and } s(F) = s(G)\}.$$

Note that G always belongs to this lune. Further, this lune is a singleton (consisting of G) iff H=O. The closure, interior and boundary of $\mathrm{s}(H,G)$ are given by

$$\{F \mid HF \leq G\}, \quad \{F \mid HF = G\} \quad \text{and} \quad \{F \mid HF < G\}$$

respectively. This lune $\mathrm{s}(H,G)$ is a flat precisely when H=G, in which case its closure equals its interior.

For a lune V, let Cl(V), V^o and V^b denote its closure, interior and boundary.

Lemma. We have $z \in \mathsf{Zie}[\mathcal{A}]$ iff

$$\sum_{F\in\mathcal{V}^o}x^F=0$$
 for all non-singleton combinatorial lunes \mathcal{V} .

When V runs over non-minimum flats, this statement specializes to (9).

The lemma also hold if V^o is replaced by $\mathop{\rm Cl}(V)$. Why?

2.5 Image of the action of a Zie element

Let h be a left module over the Tits algebra. Let $\Psi(z)$ denotes the linear operator on h induced by the element $z \in \Sigma[\mathcal{A}]$. That is,

$$\Psi(z): \mathsf{h} \to \mathsf{h}, \qquad \Psi(z)(h) := z \triangleright h.$$

Let z(h) denote the image of this operator. In other words, z(h) consists of all elements of the form $z \triangleright h$, as h varies over elements of h.

Example. Take h to be the module of chambers L on the rank-one arrangement. Let $z={\rm H}_O+{\rm H}_C$. Then the linear operator $\Psi(z)$ is given by

$$H_C \mapsto 2H_C, \qquad H_{\overline{C}} \mapsto H_{\overline{C}} + H_C.$$

Proposition. Any Zie element sends h to $\mathcal{P}(h)$. Moreover, on $\mathcal{P}(h)$ it acts by scalar multiplication by its coefficient of the central face. In particular, any special Zie element projects h onto $\mathcal{P}(h)$.

Proof. Let z be a Zie element and let $h \in h$. Then

$$H_H \triangleright (z \triangleright h) = (H_H \triangleright z) \triangleright h = 0$$

for all H>O. Thus $z\triangleright h\in \mathcal{P}(\mathsf{h})$ as required. If h itself is primitive, then

$$z \triangleright h = \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) \triangleright h = \sum_{F} x^{F} \mathbf{H}_{F} \triangleright h = x^{O} h.$$

Example. Let us go back to the rank-one arrangement. A special Zie element is given by

$$\operatorname{H}_O - p \operatorname{H}_C - (1-p) \operatorname{H}_{\overline{C}},$$

where p is an arbitrary scalar. Let us compute the action of this element on L.

$$(\mathbf{H}_{O} - p \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}}) \triangleright \mathbf{H}_{C} = \mathbf{H}_{C} - p \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}}$$
$$= (1-p) \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}},$$

which is a Lie element. Further,

$$(\operatorname{H}_{O} - p \operatorname{H}_{C} - (1 - p) \operatorname{H}_{\overline{C}}) \triangleright (\operatorname{H}_{C} - \operatorname{H}_{\overline{C}}) = \operatorname{H}_{C} - \operatorname{H}_{\overline{C}}.$$

So its action on a Lie element gives back the same Lie element.

3 Dynkin elements

3.1 Generic hyperplane

Let \mathcal{A} be any arrangement of rank at least 1. A generic hyperplane wrt \mathcal{A} is a codimension-one subspace of the ambient space which contains the central face O but does not contain any vertex of \mathcal{A} . For example:

Adding a generic hyperplane, say H, to \mathcal{A} yields a new arrangement \mathcal{A}' . Let us compare the set of faces of \mathcal{A} and \mathcal{A}' . A face of \mathcal{A} which is not cut by H remains a face of \mathcal{A}' . In contrast, a face of \mathcal{A} which is cut by H splits into three distinct faces of \mathcal{A}' : one face consists of those points which lie on H, while the remaining two consist of those points which lie on either side of H.

3.2 Dynkin element

Let H be a generic hyperplane wrt \mathcal{A} . There are two opposite half-spaces with base H. Fix one of them arbitrarily. Call it h. We say that h is generic wrt \mathcal{A} . Now define

(13)
$$\theta_{\mathbf{h}} := \sum_{F: F \subset \mathbf{h}} (-1)^{\mathrm{rk}(F)} \, \mathbf{H}_F \in \mathbf{\Sigma}[\mathcal{A}].$$

The sum is over all faces F of \mathcal{A} which are contained in the fixed half-space h. These are precisely those faces of \mathcal{A} which are not cut by H and which are on the h-side of H.

We refer to θ_h as the Dynkin element associated to the half-space h. The central face is contained in h and since its rank is zero, it appears in θ_h with coefficient 1.

Example. Let \mathcal{A} be the rank-one arrangement, with chambers C and \overline{C} . The origin is a generic hyperplane. In this case, $\mathcal{A}=\mathcal{A}'$. Thus, there are two generic half-spaces, and $\mathrm{H}_O-\mathrm{H}_C$ and $\mathrm{H}_O-\mathrm{H}_{\overline{C}}$ are the two Dynkin elements. Note that they are special Zie elements.

Example. Let \mathcal{A} be the dihedral arrangement of n lines, with $n \geq 2$. The spherical model is the 2n-gon. A line passing through the origin is generic wrt \mathcal{A} if it cuts two opposite sides of the 2n-gon. For definiteness, we demand that the lines bisect the two sides that they cut.

A Dynkin element for n=3 is

and for n=4 is

Proposition. For any generic half-space h, the Dynkin element θ_h is a special Zie element. In particular, it is an idempotent.

This can be checked using the Ree criterion. We do not give a formal proof but illustrate it on an example.

The generic hyperplane is shown in blue, and the half-space h is the region to the right of it. The lune V is shown in green. It is bounded by two half-circles and is fully visible. The faces in $Cl(V)\cap h$ are those on and inside the region defined by the magenta edges (consisting of a triangle and a rectangle). Topologically, this set is a ball with an edge hanging out.

For any arrangement \mathcal{A} , define

$$\mu(\mathcal{A}) := \mu(\bot, \top).$$

We refer to this as the Möbius number of \mathcal{A} . It is a particular value of the Möbius function of the lattice of flats $\Pi[\mathcal{A}]$.

Corollary. The number of chambers contained in any generic half-space wrt A is given by $|\mu(A)|$.

Proof. Apply (11) to the special Zie element θ_h for the flat $X = \top$.

3.3 Action on chambers and Lie elements

Recall that the Tits algebra $\Sigma[A]$ acts on the left on the module of chambers L[A].

Proposition. The Dynkin element θ_h is an idempotent operator which sends L[A] onto Lie[A].

We now work towards a formula for the action of the Dynkin element on chambers. For a generic half-space h, and chambers C and D, put

$$A = \{ H \in \Sigma[A] \mid HC = D \}$$

and

$$B = \{ H \in \Sigma[A] \mid H \le D, H \subseteq h \}.$$

Both A and B consist of faces of D, with $D \in A$ and $O \in B$. Further,

(14)
$$\langle \theta_{\mathbf{h}} \triangleright \mathbf{H}_C, \mathbf{H}_D \rangle = \sum_{H \in \mathbf{A} \cap \mathbf{B}} (-1)^{\mathrm{rk}(H)}.$$

The lhs denotes the coefficient of H_D in $\theta_h \triangleright H_C$. We

would like to understand the rhs.

For simplicity, we will assume the arrangement to be simplicial.

Let $\mathrm{Des}(C,D)$ denote the smallest face H of D such that HC=D. In other words,

$$HC = D \iff \operatorname{Des}(C, D) \le H \le D.$$

We say that $\mathrm{Des}(C,D)$ is the descent of D wrt C. Note that

$$Des(C, D) = D \iff \overline{C} = D$$

and

$$Des(C, D) = O \iff C = D.$$

Thus,

$$A = \{H \mid Des(C, D) \le H \le D\}.$$

For a generic half-space h and a chamber D, let h(D) denote the largest face of D which is contained in h.

This is illustrated above in rank 3. The half-space h is shaded in light blue. Since the arrangement is simplicial, each chamber D is a triangle, and there are four possibilities for h(D) depending on how the vertices of D lie wrt h. Each case is shown separately with the face h(D) marked in dark blue.

Thus,

$$B = \{H \mid H \le h(D)\}.$$

Lemma. Let A be a simplicial arrangement. Then

$$\theta_{\mathbf{h}} \triangleright \mathbf{H}_C = \sum_{D: \operatorname{Des}(C,D) = \mathbf{h}(D)} (-1)^{\operatorname{rk}(\mathbf{h}(D))} \mathbf{H}_D.$$

Proof. In the simplicial case, (14) simplifies to

$$\langle \theta_{\mathbf{h}} \triangleright \mathbf{H}_C, \mathbf{H}_D \rangle = \sum_{H: \operatorname{Des}(C,D) \leq H \leq \operatorname{h}(D)} (-1)^{\operatorname{rk}(H)}.$$

The indexing set (which could be empty) is a Boolean poset. So the sum will be zero unless the set is a singleton, that is, $\mathrm{Des}(C,D)=\mathrm{h}(D)$. \square

Lemma. If $\operatorname{Des}(C,D)=\operatorname{h}(D)$, then $\overline{C}\subseteq\operatorname{h}$.

Proof. For simplicity of notation, put $G:=\mathrm{h}(D)$. Let G' be the face of D complementary to G. Then observe that

 $\mathrm{Des}(C,D)=\mathrm{h}(D)\iff C$ lies in the gallery interval $[E,\overline{G}D]$,

where E is the chamber opposite to D in the star of G'. But this entire gallery interval lies in the interior of $\overline{\mathbf{h}}$. (In the figure, the latter is the region between the two dotted lines.) So if $\mathrm{Des}(C,D)=\mathrm{h}(D)$, then \overline{C} is contained in h .

Proposition. Let A be a simplicial arrangement. Then (15)

$$\theta_{\mathbf{h}} \triangleright \mathbf{H}_{C} = \begin{cases} \mathbf{H}_{C} + (-1)^{\mathrm{rk}(\mathcal{A})} \mathbf{H}_{\overline{C}} + \sum_{D} \pm \mathbf{H}_{D} & \text{if } \overline{C} \subseteq \mathbf{h}, \\ 0 & \text{otherwise.} \end{cases}$$

The sum is over chambers D which are cut by the base of $\mathbf h$ (so that part of D lies in $\mathbf h$ and part in $\overline{\mathbf h}$) and which satisfy $\mathrm{Des}(C,D)=\mathrm{h}(D)$.

Proof. The second case follows from previous Lemmas. So suppose that $\overline{C}\subseteq h$. Then

$$Des(C, D) = h(D) = O \iff D = C$$

and

$$Des(C, D) = h(D) = D \iff D = \overline{C}.$$

This yields the terms ${\rm H}_C$ and $(-1)^{{\rm rk}(\mathcal{A})}{\rm H}_{\overline{C}}$. In the remaining cases, $O<{\rm h}(D)< D$ and hence D is cut by the base of ${\rm h}$.

3.4 Dynkin basis

Proposition. Let A be any arrangement. For any generic half-space h wrt A, the set

$$\{\theta_{\mathbf{h}} \triangleright \mathbf{H}_C \mid \overline{C} \subseteq \mathbf{h}\}$$

is a basis of Lie[\mathcal{A}].

Proof. We prove this assuming that \mathcal{A} is simplicial. For $\overline{C} \subseteq h$, by the first case of formula (15), the term H_C only occurs in $\theta_h \rhd H_C$, so these elements are linearly independent. Further, by Proposition 3.3, these elements span $\text{Lie}[\mathcal{A}]$. Hence they form a basis. \square

Corollary. The dimension of $\text{Lie}[\mathcal{A}]$ is $|\mu(\mathcal{A})|$.

Proof. This follows from the previous result and Corollary 3.2.

We call (16) the Dynkin basis associated to h.

Example. Consider the dihedral arrangement of n lines. In this case, we know independently that dimension of $\mathrm{Lie}[\mathcal{A}]$ and $|\mu(\mathcal{A})|$ are both n-1.

Now fix any two opposite chambers, say D and \overline{D} . Let $\mathbf h$ be one of the two half-spaces whose base bisects D and \overline{D} . Then the set

$$\{\mathbf{H}_C + \mathbf{H}_{\overline{C}} - \mathbf{H}_D - \mathbf{H}_{\overline{D}} \mid \overline{C} \subseteq \mathbf{h}\}$$

is a basis for $\mathrm{Lie}[\mathcal{A}]$. It has n-1 elements. This is precisely the Dynkin basis associated to h and also to \overline{h} . For instance, for n=4, a choice for the Dynkin basis is shown below.

4 A little homological algebra

4.1 Chain complexes and homology

A chain complex is a sequence of vector spaces equipped with linear maps

$$\cdots \to \mathcal{C}_{k+1} \xrightarrow{\partial_{k+1}} \mathcal{C}_k \xrightarrow{\partial_k} \mathcal{C}_{k-1} \xrightarrow{\partial_{k-1}} \cdots$$

such that the composite of two consecutive maps is 0, that is, $\partial_{k-1}\partial_k=0$ for all k.

The \mathcal{C}_k are called chain groups and ∂_k are called boundary maps.

Given a chain complex C, for each k, define

$$\mathcal{H}_k(\mathcal{C}) := \frac{\ker \partial_k}{\operatorname{image} \partial_{k+1}}.$$

This is called the k-th homology group of \mathcal{C} .

Given a chain complex \mathcal{C} , one can dualize it to obtain

$$\cdots \leftarrow \mathcal{C}_{k+1}^* \xleftarrow{\partial_{k+1}^*} \mathcal{C}_k^* \xleftarrow{\partial_k^*} \mathcal{C}_{k-1}^* \xleftarrow{\partial_{k-1}^*} \cdots$$

Let us write \mathcal{C}^k instead of \mathcal{C}_k^* and δ_k instead of ∂_k^* . That is,

$$\cdots \leftarrow \mathcal{C}^{k+1} \stackrel{\delta_{k+1}}{\longleftarrow} \mathcal{C}^k \stackrel{\delta_k}{\longleftarrow} \mathcal{C}^{k-1} \stackrel{\delta_{k-1}}{\longleftarrow} \cdots$$

This is called a cochain complex. The \mathcal{C}^k are called cochain groups and δ_k are called coboundary maps.

The identity $\delta_k \delta_{k-1} = 0$ holds. We define

$$\mathcal{H}^k(\mathcal{C}) := \frac{\ker \delta_k}{\operatorname{image} \delta_{k-1}}.$$

This is called the k-th cohomology group of \mathcal{C} . It is isomorphic to the dual of $\mathcal{H}_k(\mathcal{C})$, with the duality induced by the duality between the chain and cochain complexes.

4.2 (Co)homology of the lattice of flats

Fix an arrangement \mathcal{A} . Put $r:=\mathrm{rk}(\mathcal{A})$. We now associate a chain complex to the lattice of flats $\Pi[\mathcal{A}]$.

For $-1 \le k \le r-2$, the chain group $\mathcal{C}_k(\Pi[\mathcal{A}])$ is the vector space over \mathbb{k} with basis consisting of chains

$$\bot < X_1 < \cdots < X_{k+1} < \top$$
.

The remaining chain groups are 0. Note that

- ullet $\mathcal{C}_{r-2}(\Pi[\mathcal{A}])$ has a basis of maximal chains, while
- $\mathcal{C}_{-1}(\Pi[\mathcal{A}])$ is one-dimensional and spanned by the chain $\bot < \top$.

The boundary operator

$$\partial_k : \mathcal{C}_k(\Pi[\mathcal{A}]) \to \mathcal{C}_{k-1}(\Pi[\mathcal{A}])$$

is given by

$$\partial_k(\bot < X_1 < \dots < X_{k+1} < \top)$$

$$= \sum_{i=1}^{k+1} (-1)^i (\bot < X_1 < \dots < \hat{X}_i < \dots < X_{k+1} < \top),$$

where by standard convention, \hat{X}_i means that X_i has been deleted from the chain.

One can readily check that $\partial_{k-1}\partial_k=0$.

We write $\mathcal{H}_k(\Pi[\mathcal{A}])$ for the homology group in position k.

The cochain complex is obtained by dualizing the chain complex. We denote the cochain groups by $\mathcal{C}^k(\Pi[\mathcal{A}])$ and the coboundary operators by

$$\delta_k: \mathcal{C}^k(\Pi[\mathcal{A}]) \to \mathcal{C}^{k+1}(\Pi[\mathcal{A}]).$$

Explicitly,

(17)
$$\delta_k(\bot < X_1 < \cdots < X_{k+1} < \top)^* =$$

$$\sum_{i=1}^{k+2} (-1)^i \sum_{X_{i-1} < X < X_i} (\bot < X_1 < \ldots < X_{i-1} < X < X_i < \ldots < X_{k+1} < \top)^*,$$

with the convention that $X_0 = \bot$ and $X_{k+2} = \top$.

The superscript * stands for the dual basis.

We write $\mathcal{H}^k(\Pi[\mathcal{A}])$ for the cohomology group in position k.

Proposition. For any arrangement A, the lattice of flats $\Pi[A]$ has (co)homology only in position r-2, and further

$$\dim \mathcal{H}_{r-2}(\Pi[\mathcal{A}]) = \dim \mathcal{H}^{r-2}(\Pi[\mathcal{A}]) = |\mu(\mathcal{A})|.$$

This is a result of Folkman. We omit the proof. We only mention that the second claim can be deduced from the first using the fact that $\mu(\mathcal{A})$ is the Euler characteristic of the (co)chain complex of $\Pi[\mathcal{A}]$.

The top homology $\mathcal{H}_{r-2}(\Pi[\mathcal{A}])$ is a well-studied object. Björner and Wachs have constructed a basis for it starting with a generic half-space h.

5 Orientation space

We discuss the notion of orientation for any arrangement \mathcal{A} . Let $\mathsf{E}^{\mathbf{o}}[\mathcal{A}]$ denote the space spanned by maximal chains in the poset of faces $\Sigma[\mathcal{A}]$ subject to the relations: If two maximal chains differ in exactly one position, then they are negatives of each other.

We call $E^{\mathbf{o}}[\mathcal{A}]$ the orientation space of \mathcal{A} . We denote the image of a maximal chain f in the orientation space by [f].

An orientation of \mathcal{A} is an element of $\mathsf{E}^\mathbf{o}[\mathcal{A}]$ of the form [f] for some maximal chain of faces f.

Example. Let \mathcal{A} be the rank-one arrangement, with chambers C and \overline{C} . There are two maximal chains, namely $O \lessdot C$ and $O \lessdot \overline{C}$. Since they differ in exactly one position, we write

$$[O \lessdot C] = -[O \lessdot \overline{C}].$$

So $\mathsf{E}^\mathbf{o}[\mathcal{A}]$ is one-dimensional. It has two orientations, namely, $[O\lessdot C]$ which we call the right orientation, and $[O\lessdot \overline{C}]$ which we call the left orientation.

Example. Let $\mathcal A$ be the dihedral arrangement of n lines. A maximal chain has the form $O\lessdot F\lessdot C$. There are 4n maximal chains. The relations can be expressed as

$$[O\lessdot F\lessdot C]=-[O\lessdot G\lessdot C],$$

where F and G are the two vertices of C, and

$$[O\lessdot F\lessdot C]=-[O\lessdot F\lessdot D],$$

where C and D are the two chambers greater than F.

Again we note that $E^{\mathbf{o}}[\mathcal{A}]$ is one-dimensional. There are two orientations, which we can think of as clockwise and anticlockwise. This is illustrated below for n=3.

The six maximal chains which give the anticlockwise orientation are shown on the left, while the six which give the clockwise orientation are shown on the right.

Lemma. For any arrangement, the orientation space is one-dimensional. Any arrangement has two orientations.

The relevant fact is that

- one can pass from one maximal chain to another by a sequence of maximal chains in which two consecutive maximal chains differ in exactly one position, and
- any such journey from a maximal chain back to itself takes an even number of steps.

We will use the letter σ to denote an orientation; the opposite orientation will be $-\sigma$.

There is a canonical isomorphism

(18)
$$\mathsf{E}^{\mathbf{o}}[\mathcal{A}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \xrightarrow{\cong} \mathbb{k}, \quad \sigma \otimes \sigma \mapsto 1,$$

where σ is either of the two orientations of \mathcal{A} . Changing σ to $-\sigma$ incurs two minus signs, so the map is well-defined.

For any flat X, there is an isomorphism

(19)
$$\mathsf{E}^{\mathbf{o}}[\mathcal{A}^{\mathrm{X}}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}_{\mathrm{X}}] \xrightarrow{\cong} \mathsf{E}^{\mathbf{o}}[\mathcal{A}], \quad \sigma_1 \otimes \sigma_2 \mapsto \tau,$$

where τ is obtained by "concatenating" σ_1 and σ_2 : Suppose c_1 is a maximal chain of faces in \mathcal{A}^X which represents σ_1 . Let c_1' denote the corresponding chain in \mathcal{A} . It ends at a face with support X. Call that face F. Similarly, let c_2 be a maximal chain of faces in \mathcal{A}_X which represents σ_2 . It corresponds to a chain c_2' in \mathcal{A} which starts at F. The concatenation of c_1' and c_2' is a maximal chain in \mathcal{A} . Its class is the required τ .

Iterating this procedure yields, for any chain of flats

$$\begin{split} &(\bot < X_1 < \dots < X_k < \top) \text{, an isomorphism} \\ &(\textbf{20}) \\ & \mathsf{E}^{\mathbf{o}}[\mathcal{A}^{X_1}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}^{X_2}_{X_1}] \otimes \dots \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}_{X_k}] \overset{\cong}{\longrightarrow} \mathsf{E}^{\mathbf{o}}[\mathcal{A}]. \end{split}$$

6 Joyal-Klyachko-Stanley

Fix an arrangement \mathcal{A} . Put $r:=\mathrm{rk}(\mathcal{A})$. We set up some terminology.

For any chain of faces $f = (F_1 < \cdots < F_k)$, define its support by

$$s(f) := (s(F_1) < \cdots < s(F_k)).$$

This is a chain of flats.

For a maximal chain of faces f, let $\operatorname{last}(f)$ denote the last face in the chain f (which is necessarily a chamber).

For any orientation σ and a maximal chain of faces f,

$$(\sigma:f):= \begin{cases} 1 & \text{if } \sigma=[f],\\ -1 & \text{if } \sigma=-[f]. \end{cases}$$

Recall the cochain group $\mathcal{C}^{r-2}(\Pi[\mathcal{A}])$ with a basis consisting of maximal chains of flats. We now define a linear map

(21)
$$\mathcal{C}^{r-2}(\Pi[\mathcal{A}]) \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \to \mathsf{L}[\mathcal{A}].$$

We provide a number of equivalent definitions.

The map (21) is given by

(22a)
$$z^* \otimes \sigma \mapsto \sum_{f: s(f) = z} (\sigma : f) \, \mathbb{H}_{\text{last}(f)},$$

where z is any maximal chain of flats and σ is an orientation.

The map (21) is given by

$$(22b) z^* \otimes \sigma \mapsto \sum_D \pm \mathbf{H}_D,$$

where z is any maximal chain of flats and σ is an orientation. The sum is over those chambers D for which there exists a maximal chain of faces f with ${\rm last}(f)=D$ and ${\rm s}(f)=z$. The coefficient of ${\rm H}_D$ is

$$+1$$
 if $[f] = \sigma$ and -1 if $[f] = -\sigma$.

The map (21) is given by

(22c)
$$s(f)^* \otimes [f] \mapsto (H_{F_1} - H_{G_1}) \triangleright \ldots \triangleright (H_{F_r} - H_{G_r}),$$

where $f=(O\lessdot F_1\lessdot\cdots\lessdot F_r)$ is a maximal chain of faces, and for $1\leq i\leq r$, G_i is the face opposite to F_i in the star of F_{i-1} (with the convention $F_0=O$).

Lemma. The image of (21) belongs to Lie[A].

Proof. This can be proved from (22c) by using the Friedrichs criterion. For instance, in rank-two, we need to show for F>O,

$$H_F \triangleright (H_{F_1} - H_{G_1}) \triangleright (H_{F_2} - H_{G_2}) = 0.$$

In the case when F is either F_1 or G_1 ,

 ${
m H}_F
hd ({
m H}_{F_1} - {
m H}_{G_1})$ equals 0. If not, then this is some linear combination of chambers, so multiplying it with $({
m H}_{F_2} - {
m H}_{G_2})$ produces 0, and we are done. This method generalizes to any r.

As a consequence, (21) induces a map

(23)
$$\mathcal{C}^{r-2}(\Pi[\mathcal{A}]) \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \to \mathsf{Lie}[\mathcal{A}].$$

We refer to the image of $z^* \otimes \sigma$ under (22b) as the unbracketing of z wrt σ . Thus, the unbracketing of a maximal chain of flats (or any linear combination of them) determines, up to sign, a Lie element. The sign can be fixed by choosing an orientation.

Example. For the rank-one arrangement \mathcal{A} with chambers C and \overline{C} , we have

$$\mathcal{C}^{-1}(\Pi[\mathcal{A}]) \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \xrightarrow{\cong} \mathsf{Lie}[\mathcal{A}],$$
$$(\bot < \top)^* \otimes [O \lessdot C] \mapsto \mathsf{H}_C - \mathsf{H}_{\overline{C}}.$$

(Both sides are 1-dimensional.)

Example. Let \mathcal{A} be the dihedral arrangement of n lines. Any maximal chain of flats has the form $\bot \lessdot \mathsf{H} \lessdot \top$. So maximal chains correspond to hyperplanes. Unbracketing $\bot \lessdot \mathsf{H} \lessdot \top$ yields a Lie element of the form $\mathsf{H}_C + \mathsf{H}_{\overline{C}} - \mathsf{H}_D - \mathsf{H}_{\overline{D}}$, where C and D are adjacent, and their common panel has support H . An example is shown below.

The unbracketing is done wrt the anticlockwise direction.

Let us go back to the general case.

A coboundary relation is an element of $\mathcal{C}^{r-2}(\Pi[\mathcal{A}])$ of the form $\delta_{r-3}(z^*)$ for some chain of flats z. (The coboundary map is given in (17).) Note that the top cohomology group $\mathcal{H}^{r-2}(\Pi[\mathcal{A}])$ is the quotient of $\mathcal{C}^{r-2}(\Pi[\mathcal{A}])$ by the subspace spanned by the coboundary relations.

Example. Let us return to the rank-two example.

There is only one coboundary relation, namely

$$\sum_{H} (\bot \lessdot H \lessdot \top)^*.$$

The sum is over all hyperplanes. Note that this element after unbracketing produces the Jaocbi identity. This is illustrated below for n=3.

In the figure, the orientation chosen for unbracketing is the anticlockwise direction. Thus, in this case, we have an induced isomorphism

$$\mathcal{H}^0(\Pi[\mathcal{A}]) \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \to \mathsf{Lie}[\mathcal{A}].$$

Let us go back to the general case.

Lemma. The map (23) sends any coboundary relation (tensored with an orientation) to zero.

Proof. Let

$$z=(\perp\lessdot X_1\lessdot\cdots\lessdot X_{i-1}< X_i\lessdot\cdots\lessdot X_{k+1}\lessdot\top)$$
 be an element of $\mathcal{C}_{r-3}(\Pi)$, with $\mathrm{rk}(X_i)-\mathrm{rk}(X_{i-1})=2.$ Then

$$\delta_{r-3}(z^*) = (-1)^i \sum_{w} w^*,$$

where w runs over all maximal chains obtained from z by inserting a flat between X_{i-1} and X_i . Put $\alpha = \delta_{r-3}(z^*) \otimes \sigma$ for some orientation σ . We need to show that (21) sends α to 0. Let us use (22b). If there is no chain of faces ending in D with support z, then the coefficient is clearly zero. So we may assume that

$$f = (O \lessdot F_1 \lessdot \cdots \lessdot F_{i-1} \lessdot F_i \lessdot \cdots \lessdot F_{k+1} \lessdot D)$$
 is a chain of faces with support z . In this case, there

are exactly two faces that can be inserted between F_{i-1} and F_i . The resulting maximal chains have opposite orientations, so their contributions cancel.

Thus (23) induces a map

(24)
$$\mathcal{H}^{r-2}(\Pi[\mathcal{A}]) \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}] \to \mathsf{Lie}[\mathcal{A}].$$

By tensoring both sides by $E^{o}[A]$ and using (18), it can be expressed in the equivalent form:

(25)
$$\mathcal{H}^{r-2}(\Pi[\mathcal{A}]) \to \mathsf{Lie}[\mathcal{A}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}].$$

Theorem. The maps (24) and (25) are isomorphisms.

We call this the Joyal-Klyachko-Stanley theorem, or JKS for short. We refer to (24) as the JKS isomorphism. Under this isomorphism the dual of the Björner-Wachs basis corresponds to the Dynkin basis. In fact, these two bases can be used to prove JKS.

7 Presentation for Lie

Let us slightly alter our viewpoint on the JKS isomorphism (24).

For the rank-one arrangement $\mathcal A$ with chambers C and $\overline C$, we have

$$\mathsf{E}^{\mathbf{o}}[\mathcal{A}] \stackrel{\cong}{\longrightarrow} \mathsf{Lie}[\mathcal{A}], \qquad [O \lessdot C] \mapsto \mathsf{H}_C - \mathsf{H}_{\overline{C}}.$$

(Both spaces are 1-dimensional.)

Now suppose \mathcal{A} is the dihedral arrangement of n lines. Then (23) along with the identification (19) can be rewritten as

$$igoplus_{i=1}^n \, \mathsf{E}^{\mathbf{o}}[\mathcal{A}^{\mathrm{X}_i}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}_{\mathrm{X}_i}] o \mathsf{Lie}[\mathcal{A}],$$

where the X_i are the n lines (one-dimensional flats) of \mathcal{A} . This map is surjective. The lhs is n-dimensional while the rhs is (n-1)-dimensional. The kernel is

spanned by the element

$$(26) \sum_{i=1}^{n} \tau^{i} \otimes \tau_{i}$$

where τ^i and τ_i are orientations of \mathcal{A}^{X_i} and \mathcal{A}_{X_i} such that their concatenation is (say) the anticlockwise orientation of \mathcal{A} . This element corresponds to the Jacobi identity.

Now let ${\mathcal A}$ be arbitrary. The map (23) can be rewritten as

$$\bigoplus_{z} \mathsf{E}^{\mathbf{o}}[\mathcal{A}^{X_{1}}] \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}^{X_{2}}_{X_{1}}] \otimes \cdots \otimes \mathsf{E}^{\mathbf{o}}[\mathcal{A}_{X_{r-1}}] \to \mathsf{Lie}[\mathcal{A}],$$

where the sum is over all maximal chains of flats $z=(\bot\lessdot X_1\lessdot\cdots\lessdot X_{r-1}\lessdot\top)$. (In this rewriting, the second tensor factor $\mathsf{E}^{\mathbf{o}}[\mathcal{A}]$ in the lhs of (23) is identified with the summands in the lhs above via (20).) Theorem 6 says that the kernel of (27) is the subspace generated by (26). (The latter corresponds to the

coboundary relations.) To summarize:

Theorem. The space Lie[A] is freely generated by the orientation space in rank 1 subject to the Jacobi identities (in rank two).

8 Substitution product of Lie

It is convenient to write $\mathcal{H}^{\text{top}}(\Pi[\mathcal{A}])$ for the top-dimensional cohomology of the lattice of flats of \mathcal{A} . For any flat X, there is a map

(28)
$$\mathcal{H}^{\mathsf{top}}(\Pi[\mathcal{A}^{\mathrm{X}}]) \otimes \mathcal{H}^{\mathsf{top}}(\Pi[\mathcal{A}_{\mathrm{X}}]) \to \mathcal{H}^{\mathsf{top}}(\Pi[\mathcal{A}])$$

obtained by concatenating: A maximal chain of flats in \mathcal{A}^X can be identified with a chain of flats in \mathcal{A} ending at X, while a maximal chain of flats in \mathcal{A}_X can be identified with a chain of flats in \mathcal{A} starting at X. So, concatenating the two yields a maximal chain of flats in \mathcal{A} . The map (28) is obtained by passing to the homology classes. Combining with (19) and using the JKS isomorphism (24) we obtain: For any flat X, there is a map

(29)
$$\operatorname{\mathsf{Lie}}[\mathcal{A}^{\mathrm{X}}] \otimes \operatorname{\mathsf{Lie}}[\mathcal{A}_{\mathrm{X}}] \to \operatorname{\mathsf{Lie}}[\mathcal{A}].$$

We call this the substitution product of Lie. How do we think of this map? An illustration is given below.

9 Classical Lie elements

For any letters a and b, define

$$[a,b] := a|b - b|a,$$

Note that

$$[a,b] = -[b,a].$$

Let us iterate this operation. Thus,

$$[[l,i],e] = [l|i-i|l,e] = l|i|e-i|l|e-e|l|i+e|i|l.$$

Let us visualize this element in the braid arrangement on $I=\{l,i,e\}$.

Thus, what we have is the Lie element obtained by unbracketing the maximal chain

$$\{l, i, e\} \lessdot \{\{l, i\}, \{e\}\} \lessdot \{\{l\}, \{i\}, \{e\}\}.$$

Note that

$$[[l, i], e] + [[e, l], i] + [[i, e], l] = 0,$$

and this is precisely our Jacobi identity.

Now it will also be clear why we used the term "unbracketing".

10 Problems

Exercise. Prove formula (7).

Exercise. Let \mathcal{A} be the dihedral arrangement of n lines. Show that the set of all Dynkin elements form a basis of $\mathrm{Zie}[\mathcal{A}]$.

Exercise. What is the number of generic half-spaces in the rank 3 braid arrangement? (Two generic half-spaces are to be regarded the same if they break the set of chambers in the same way.) Describe these half-spaces as well as you can. Are the corresponding Dynkin elements linearly independent?

Exercise. Let X and Y be complements in the lattice of flats, that is, $X \wedge Y = \bot$ and $X \vee Y = \top$. Each chamber F in \mathcal{A}^X is contained in a unique chamber of \mathcal{A}_Y , which we denote by YF. Prove or disprove.

If $\sum_F x^F \mathbf{H}_F$ is a Lie element of $\mathcal{A}^{\mathbf{X}}$, then $\sum_F x^F \mathbf{H}_{\mathbf{Y}F}$ is a Lie element of $\mathcal{A}_{\mathbf{Y}}$.

Exercise. In the braid arrangement on the letters a,b,c,d, write down the Lie elements obtained by unbracketing the maximal chains

$$(\{abcd\} \lessdot \{ab, cd\} \lessdot \{a, b, cd\} \lessdot \{a, b, c, d\})$$

and

$$(\{abcd\} \lessdot \{a,bcd\} \lessdot \{a,bc,d\} \lessdot \{a,b,c,d\}).$$

Also represent them in the bracket notation.