

INTRODUÇÃO

slide 2

Estrutura

- 1. Motivação
- 2. Conceitos
 - Alfabeto e Linguagens
- 3. Operadores

slide 3

Linguagens Formais

- Parte da área de Teoria da Computação
- Estuda a definição formal da sintaxe das linguagens
- Sintaxe vs. Semântica

- Sintaxe: é o formato

Semântica: é o significado

Linguagens Formais

- Aplicações práticas
 - Representar de maneira precisa a sintaxe de uma linguagem
 - Desafio: Tentar descrever C de maneira informal
 - Criação de compiladores mais eficientes

5

Conceitos

- Alfabeto
 - Conjunto finito
 - Elementos são chamados de símbolos
 - Notação: T ou Σ
- Símbolos
 - Analogia com valores do tipo "char" em C/C++/Java
 - Notação: usaremos letras minúsculas ou números a,
 b, c, ..., 0, 1

- Palavras ou Cadeias
 - Seqüência de símbolos justapostos
 - Analogia com strings em programação
 - "abaaa", "bbaa"

7

Conceitos

- Cadeias vazia
 - Analogia com a string "" de C ou Java
 - Não tem nenhum caractere
 - Notação: ε (ou λ)

- Conjunto de todas as cadeias sobre um alfabeto T dado
 - $T^* = \{ \epsilon, a, b, aa, ab, ba, bb, aaa, ... \}$
 - Inclui a cadeia vazia
 - Inclui cadeias de qualquer tamanho

9

Conceitos

- Linguagem L sobre alfabeto T
 - Qualquer conjunto de cadeias,

ou

– Qualquer subconjunto de T*

- C ou Java são linguagens finitas ou infinitas? É possível listar todos os programas válidos dessas linguagens?
- Como expressar de maneira <u>finita</u> linguagens (potencialmente) <u>infinitas</u>?

11

Linguagens Formais

- No decorrer da disciplina veremos como representar linguagens de maneira
 - Precisa, sem ambigüidade
 - Finita, mesmo que a linguagem seja infinita

- Exemplo
 - Alfabeto $\mathbf{T}_{\mathbf{a}}$: todos os caracteres ASCII

```
• T_a = \{ 'a', 'b', ..., 'A', 'B', ..., '*', '\n', '', ... \}
```

- Cadeias: textos ASCII qualquer
 - w = "Aula de Linguagens Formais"
 - y = "39e72h0AG d"
- T_a^* : todos os textos ASCII possíveis

13

Conceitos

- Linguagens sobre T_a
 - L_c = Linguagem C
 - As cadeias que descrevem programas C
 - Exemplo de cadeias/palavra da linguagem

```
"#include < stdio.h>
```

int main() { printf("Hi!"); }"

- **L**_h = Linguagem HTML
 - Análogo...

- Inicialmente, serão vistas linguagens bem mais simples do que C ou HTML
 - A linguagem que só aceita o símbolo 'a'
 - A linguagem que reconhece identificadores válidos de C

15

Operações

- Veremos agora, algumas operações e relações sobre
 - Cadeias/Palavras
 - Tamanho, Concatenação, Reverso, Concatenação sucessiva, Subcadeia
 - Linguagens
 - União, Intersecção, Complemento e Concatenação

Tamanho

- Tamanho de uma cadeia: |w|
 - Número de ocorrências de símbolos
 - |w| = n, para $w = a_1 a_2 ... a_n$
 - -/w/=0, para $w=\varepsilon$

17

Reverso

- Reverso de uma cadeia: w^R
 - Símbolos aparecem na ordem inversa
 - Seja $w = a_1 a_2 ... a_n$
 - Então teremos $w^R = a_n a_{n-1} ... a_1$

Concatenação

- O operador de concatenação justapõe os símbolos de duas cadeias formando uma nova cadeia
 - Sejam $\mathbf{x} = "a_1...a_n"$ e $\mathbf{y} = "b_1...b_n"$
 - $-x.y = x y = "a_1...a_n b_1...b_n"$ x

х у

19

Concatenação

- Concatenação sucessiva wⁿ
 - A palavra w concatenada consigo n vezes
 - $W^n = W W W W \dots W$
 - Atenção: w⁰ = ε n vezes

Concatenação

- Propriedades
 - Associatividade

$$v(w t) = (v w) t$$

- Elemento neutro

$$W \varepsilon = W$$

$$\varepsilon w = w$$

$$- |x y| = |x| + |y|$$

21

Subcadeia

- Subcadeia/subpalavra
 - Qualquer cadeia formada por uma parte contígua da seqüência de símbolos da palavra original
 - Dado w = "abacate", são subpalavras de w:
 - "aba", "cat", "acate"
 - Não são subpalavras:
 - "abate", "bate", "ae"

Prefixo e Sufixo

- Prefixo
 - Subcadeia que acontece no começo
 - Exemplo: "aba" é prefixo de "abacate"
- Sufixo
 - Subcadeia que acontece no fim
 - Exemplo: "te" é sufixo de "abacate"

23

União/Intersecção

- Linguagens são conjuntos, então as todas as operações de conjuntos são válidas para elas
- Dadas L₁={ aa, b } e L₂={ aa, c, dd }
 - $L_1 \cup L_2 = \{ aa, b, c, dd \}$
 - $L_1 \cap L_2 = \{ aa \}$

Complemento

- O conjunto T^* é tomado como conjunto universo para toda linguagem sobre um alfabeto T
- Assim, o complemento de L são todas as palavras de T^* que não estão em L

25

Complemento

```
    Sejam

            T = { a, b }
            T* = { ε, a, b, aa, ab, ba, bb, aaa, aab, ... }

    L = { w | w possui algum símbolo a }

            a, aa, ab, ba, aaa, aab, ... }
```

• Então o complemento de *L* será

```
- \neg L = T^* - L
= { w \mid w \text{ não tem nenhum símbolo } a }
= { \epsilon, b, bb, ... }
```

Referências

- Dois primeiros capítulos do livro em formato eletrônico
 - http://teia.inf.ufrgs.br/library.html

27

Linguagens Formais

UNICAP

Eduardo Araújo Oliveira http://sites.google.com/site/eaoufpe