

Bayesian workflow

Marcel Lüthi, Departement of Mathematics and Computer Science, University of Basel

Why a Bayesian workflow?

- What are the steps?
- How to start?

Why a Bayesian workflow?

What is it?

Tools to navigate all your adventures in data analysis!

The workflow

Illustration: Bayesian Workflow, Gelman et al.

Pick a model

Start with very simple but reasonable model

Fit the model

 Perform probabilistic computations to update parameters of the model for given data

Use the model

Work with the model to do predictions

The workflow

Illustration: Bayesian Workflow, Gelman et al.

Prior checks

 Does a model correspond to known domain knowledge (previous experiments, measurements, experience, ...)?

Validate computation

Do the computations introduce bias or large approximation error?

Evaluate model

- Does the fitted model represent the original data?
- Can left out data be predicted?
- How much does our prior knowledge influence the result?

Compare models

Do other models work equally well, better?

Bayesian workflow in this course

Prior modelling and checks

- Modeling distribution over vertebra shapes
- 3D Shape visualizations
- Generation of 2D contours images

Computation

- Markov-Chain-Monte Carlo methods
- Fake-data simulations for checking computation

Model evaluation

- Visual assessment of generated contours and 3D reconstruction
- Posterior-predictive checks

Model comparison

 More realistic modelling real-world scenarios (unknown sensor-distance, pose, missing data)

Walkthrough: Initial Model

Modelling shapes as normal distributions

Walkthrough: Prior-predictive checks

Sampled contours from the model

Walkthrough: Computation

Running the Metropolis-Hastings algorithm on simulated data

Walkthrough: Fake data simulation

Can we fit generated samples from the model?

Posterior predictive checks

Is solution predictive of data we observed?

Model comparison and improvement

Model of shape only

Model with pose and sensordistance

Goal of the Bayesian workflow

Distribution of 3D shapes explaining the contour

- Understanding of the uncertainty
- Understanding of the limitations and capabilities
- Understanding of the influencing factors

