Tematy finalu konkursu "Bieg po indeks" organizowanego przez Politechnikę Koszalińską Edycja 2021

Z poniższego zestawu 15 zadań należy wybrać dowolnych 5 zadań. Każde z wybranych zadań uczestnik konkursu rozwiązuje na odrębnej kartce wpisując w jej nagłówku imię i nazwisko oraz numer rozwiązywanego zadania. W rozwiązaniach zadań należy przedstawić tok rozumowania i obliczenia prowadzące do ostatecznego wyniku oraz ewentualne rysunki.

Ocenie przez komisję konkursową podlegać będzie tylko ta piątka zadań, która została zadeklarowana do sprawdzenia w ankiecie, jaką uczestnik otrzymał podczas trwania finału konkursu. Każde z wybranych zadań ocenione zostanie w skali 0 – 20 punktów. Maksymalna liczba punktów możliwych do zdobycia iest równa 100.

O kolejności na liście laureatów, obejmującej 30 nazwisk, decydować będzie liczba zdobytych punktów. Pod uwagę będą brani tylko ci uczestnicy finału, którzy uzyskali co najmniej 50 punktów.

Czas trwania finalu - 120 minut

Zadania z informatyki

Zadanie 1

Na szachownicy (patrz rys. 1.) znajduje się robot, który ma odwiedzić wszystkie pola ze znakami zapytania i wykonać w nich pewną akcję. Posługując się symbolami bloków przedstawionych na rys. 1 opracuj sekwencje działań robota, które mogą się składać

z maksymalnie dziewięciu BLOKÓW PROGRAMU i w śród których można wywoływać funkcję, która może być opracowana z maksymalnie czterech bloków (BLOKI FUNKCJI). Każdy blok można zastosować wielokrotnie. Uwaga: stosując bloki pętli należy określić liczbę iteracji w jej bloku początkowym. Na rysunku 2 przedstawiono przykład prawidłowo opracowanej pętli, której działanie polega na przemieszczeniu się robota i 5 pól w prawo. Nie wpisuj odpowiedzi na karcie zadań, przepisz blok programu i blok funkcji do kartek

z odpowiedziami i tam wpisz właściwy program.

Rys. 1. Schemat do analizy szachownicy z robotem

Listing 1.

Zadanie 4

Prosta baza danych biblioteki może składać się zaledwie z kilku tabel, przykładowa realizacja takiej bazy danych w środowisku MS Access znajduje się na rysunku 4. Wypisz jakie kolumny i w jakiej kolejności zostaną zwrócone w wyniku następujących instrukcji SQL:

1. select k.KSI Tytul as "Tytul", count(*) as "Liczba" from egzemplarz e inner join ksiazka k on

k.KSI_Id = e.EGZ_KSI_Id group by k.KSI_Tytul

2. select [k.KSI_Tytul], [k.KSI_RokWydania], [w.WYD_Nazwa] from Ksiazka k inner join Wydawnictwo w on k.KSI_WYD_Id = w.WYD_Id

3. SELECT [k.KSI_Tytul] AS Tytuł, Left(a.AUT_Imie,1) & '.' & '. & a.AUT_Nazwisko AS Autor

FROM Ksiazka AS k INNER JOIN Autor AS a ON k.KSI_AUT_Id = a.AUT_Id;

Na górnym schemacie z rysunku 4 widoczne są relacje pomiędzy tabelami. Napisz jaką funcję należy włączyć w MS Access, aby na diagramie pojawiły się oznaczenia jeden i wiele (symbol nieskończoności).


```
Jaką treść wypisze w konsoli program z listingu 2.
int main()
  char tab[5][5];
          for (int i = 0; i < 5; i++)
                   for (int j = 0; j < 5; j++)
                            if (i == j) tab[i][j] = 'X';
                             else if (i == 1 || j == 1) tab[i][j] = 'O';
                             else if (i == 2 || j == 2) tab[i][j] = '-';
                             else if (i == 3 || j == 3) tab[i][j] = '=';
                              else if (i == 4 || j == 4) tab[i][j] = '/';
                              else tab[i][j] = ']';
                      }
              for (int i = 0; i < 5; i++)
                       for (int j = 0; j < 5; j++)
                                cout << tab[i][j];
                                cout << ' ';
                        cout << endl;
                std::getchar();
           return 0;
```

Zadania z fizyki

Listing 2.

Zadanie 5

"Pocisk" o masie m_1 poruszający się z poziomą prędkością v_1 zderza się całkowicie niesprężyście z wózkiem o masie m_2 poruszającym się bez tarcia po poziomej powierzchni. Jaka część energii kinetycznej zostanie przy takim zderzeniu utracona? Jaka powinna być masa wózka aby energia kinetyczna po zderzeniu była n razy mniejsza niż energia przed zderzeniem?

Do cylindra o masie M i wysokości H (załóżmy, że denko ma masę nieporównywalnie mniejszą niż reszta cylindra) nasypano tyle piasku (masa m i wyskość h), że całość jest najstabilniejsza, czyli kat odchylenia od pionu gdy cylinder się przewraca jest największy. Gdzie znajduje się środek ciężkości układu? W jakiej relacji do siebie są wielkości M, H, m, h? Jaka byłaby masa piasku m gdyby środek ciężkości wypadł w 1/3 wysokości H?

Zadanie 8

Gumową piłeczkę upuszczamy z wysokości jednego metra na powierzchnię od której się odbija ze skutecznością (sprawnością) energetyczną 90%. Zakładając ruch idealnie pionowy oraz inne Naszkicuj zależność h(t), v(t), a(t) w skali czasu trzech odbić.

Zadanie 9

Wyobraźmy sobie dwie kuleczki żelazne o masach 56 gramów (liczba atomowa 26, masa atomowa 56) oddalone od siebie o 1 m. Załóżmy także, że jedynie jedną bilionową część elektronów z jednej kulki przenosimy na drugą. Z jaką siłą oddziaływania między kulkami mielibyśmy wtedy do czynienia? Jakie byłoby natężenie pola elektrycznego pośrodku między kulkami?

Zadanie 10

Oblicz ile wody można by doprowadzić do wrzenia (od temperatury otoczenia) za pomocą akumulatora z telefonu o pojemności 2500 mAh i napięciu 3,3 V. Jaką pojemność musiałby mieć kondensator ładowany do takiego samego napięcia by móc wywołać ten sam efekt. Za ciepło właściwe wody przyjmij 4200 J/(kg °C).

Zadania z matematyki

Zadanie 11.

Wyznaczyć pierwszy wyraz oraz iloraz nieskończonego i zbieżnego ciągu geometrycznego, w którym wyraz trzeci wynosi $\frac{2}{9}$ oraz stosunek sumy wyrazów o wskaźnikach nieparzystych do sumy wszystkich jego wyrazów jest równy sumie wyrazów o wskaźnikach parzystych.

Zadanie 12.

Dany jest trapez, którego podstawy mają długości: a=44, b=16, a ramiona: c=17, d=25. Trapez ten obrócono wokół dłuższej podstawy. Obliczyć objętość i pole powierzchni otrzymanej bryły.

Zadanie 13.

Punkt C(5,4) jest wierzchołkiem trójkąta równoramiennego (w którym |AC| = |BC|) wpisanego w okrąg o równaniu: $x^2 + y^2 - 4x - 2y - 13 = 0$. Wyznaczyć współrzędne wierzchołków A i B tego trójkąta oraz jego pole wiedząc, że środek danego okręgu dzieli wysokość opuszczony z wierzchołka C w stosunku 2:3.

Zadanie 14.

VSporządzić wykres funkcji $f(x) = ||x^2 - 4x| + x|$, a następnie na jego podstawie podać liczbę rozwiązań równania f(x) = m, w zależności od parametru $m \in R$.

Zadanie 15.

Tworzymy wszystkie podzbiory zbioru $X = \{1,2,3,4,5,6,7,8,9\}$, a następnie losujemy jeden z nich. Obliczyć prawdopodobieństwo, że wylosowano podzbiór, w którym:

- a) suma liczb jest nieparzysta,
- b) iloczyn liczb jest parzysty,
- c) najmniejszą liczbą jest 5.

POWODZENIA!