

Sicone r lina i mla de ali (>> <r> Considerions ora < s, r2 > : S Non lina i => mm fina 5-2 $=) \langle 5, r^2 \rangle \longleftrightarrow Q(\sqrt{2})$ Infue (5 p, r2) () Q (J-2) ALTRO MO DO: (5, 12) 1 $r^{2} = \begin{cases} \sqrt[3]{2} & r \\ i & r \end{cases} + \sqrt[3]{2}$ Ma ollo $r^{2}(\sqrt{2}) = r^{2}((\sqrt{2})^{2}) = r^{2}(\sqrt{2})^{2} = (-\sqrt{2})^{2} = \sqrt{2}$ Pers all stems words $\gamma^2(\sqrt{-2}) = \sqrt{-2}$ $5(\sqrt{2}) = 5(\sqrt{2})^2 = \sqrt{2}$ $5(\sqrt{-2}) = 5(i) \cdot 5(\sqrt{2}) = -i \sqrt{2} = -\sqrt{-2}$ NO PE $\langle r^2, s \rangle \Leftrightarrow \mathbb{Q}(\sqrt{2}), \langle r^2, s r \rangle \Leftrightarrow \mathbb{Q}(\sqrt{-2})$ (**) On. che < r2> < <r>, <s, r2>, <sr, r2> Per la corr. de Galous regne che =) (v^2) = (v_1, v_2) = (v_1, v_2) = (v_2, v_3) e (v_4, v_4) = $(v_4, v$ $(2^{4}) \in K^{4}$ poidé 5 lina 4 (***) $Q \qquad Q \qquad Q \qquad = Q \qquad Q \qquad = Q \qquad Q \qquad = Q \qquad =$ 055: la domanda originaria era xoppure le sottoest di Q(°52) = K (5) Ma l'unico 1927. di Da contenente < 5> è < 5, r²> =) l'unio votto est. è V 25, r2) = Q(12)

Mancars V <5r>, V <5r2>, V <5r3> $S \Gamma = \begin{cases} 2 & r \\ 1 & r \\ 1 & r \end{cases}$ Cone cortenses un el finats pla s r? 955 UTILE IN GENERALE Dato de K, B:= d + (sr)(d) è functo da sr =) $(sr)(\beta) = (sr)(\alpha) + (sr)^{2}(\alpha) = (sr)(\alpha) + \alpha$ Sceolerts a=i mi vo mole i i+sr(i)=i-i=0 e voltè a=1/2: a=Alla $\beta^{4} = 2 \cdot (1-i)^{4} = 2 \cdot (y + (1) - 2i)^{2} = -8$ => B + 8 = 0 => B e radice du X + 8 = 0 Euridnalde? Sians xu = 0: $\left(\frac{x}{2}\right)^4 + \frac{1}{2} = 0$ =) il comp ottenuts aggingens B è come aggingere 1-2 $\mathbb{Q}\left(\sqrt[4]{-8}\right) = \mathbb{Q}\left(\sqrt[4]{-1/2}\right) = \mathbb{Q}\left(\sqrt[4]{-2}\right)$ x9 +2 -> vvz. per Eixenstein \Rightarrow $\langle sr \rangle = Q (\sqrt[q]{-2})$ $Sr^{2} = \begin{cases} 4\sqrt{2} & r \\ \sqrt{2} & r \\ \sqrt{2} & s \\ \sqrt{2} & s \\ \sqrt{2} & s \\ \sqrt{2} & r \end{cases}$

 $C(t^{7}+t^{-7}) \leq C(t)$ U:= t7 + t-7. Polinsmis minins di t su C(u) è $ut^{7} = t^{19} + 1 \rightarrow x^{14} - ux^{7} + 1$ E minures poiché è virrobraible, poiché rella voriable u la grade 1 $U(-x^{7}) + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x)))$ $1 + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x))$ $1 + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x))$ $1 + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x))$ $1 + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x))$ $1 + (x^{14} + 1) = (a(x) \cdot (b(x) \cdot u + c(x))$ $1 + (x^{14} + 1) = (a(x)$ =) $\alpha(x)/(x^2, x^{14}+1)=1$ =) α è (mortible =) è variolnable => ((t)/((u) la gross 19. (x) È Colois: vestions cle e el cos me ((u) di $\mu(x):=x - u x^{2} + 1$ Una è t. Alle sei sono t57 per i=1, --., 6 $(t3_{7}^{i})^{19} - u(t3_{7}^{i})^{7} + i = t^{19} - ut^{7} + i = 0$ L'altra metà? Questo polinomo è SIMMÉTRICO: quendi de « è radice lo è anche « - $\mu(\frac{1}{t}) = \frac{1}{t^{19}} - \frac{u}{t^7} + 1 = \frac{1}{t^{19}} (t^{19} - u t^7 + 1) = 0$ => Radici oli $\mu(x) = j + 5_{i}^{i}, t^{-1} 5_{i}^{i}, i = 0, ..., e j = C(t)$ =) C(t) è cds di μ (x) su $\sigma(u)$ => Galsis

$$G := Gol(C(t) / C(t)), \# G = 14.$$

$$=) G = Z/_{4} Z \text{ opyma } D_{2}$$

$$Autom flow ovi:$$

$$(2) G(t) = G(u)(t) \xrightarrow{} tS_{2}$$

$$G(u) = G(u)(S_{2}t) \cdot G(t)$$

$$G(u) = G(u)(S_{2}t) \cdot G(u)(S_{2}t) \cdot G(u)$$

$$G(u) = G(u)(S_{2}t) \cdot G(u)(S_{2}t) \cdot G(u)$$

$$G(u) = G(u)(S_{2}t) \cdot G(u)(S_{2}t) \cdot G(u)$$

$$G(u) = G(u)(G(u) / G(u)) \cdot G(u)$$

$$G(u) = G(u)(G(u) / G(u)$$

$$G(u) =$$

l'acticle di sotto estensioni sh ((t)/((u) $\frac{\left\{iol\right\}}{\left\langle sr^{5}\right\rangle \left\langle sr^{6}\right\rangle }$ $\frac{\left\langle sr^{3}\right\rangle \left\langle sr^{4}\right\rangle \left\langle sr^{4}\right\rangle }{\left\langle sr^{3}\right\rangle \left\langle sr^{4}\right\rangle }$ $\left(C(t)^{\langle 5\rangle} = C(t^{-1}+t) = C(t^{2}+1)$ $C(t^{7})$ C(u)dover, = 0, S:= 02 $r = t \rightarrow t J_{7}$, durigne $r(t^{7}) = (t J_{7})^{7} = t^{7}$ Incuranente opundi C(t7) = ((t) < r> Sortengo che $C(t^7) = C(t)^{2r}$: per un 0.55 visto rella brisa de 0.55 visto rella brisa 0.55 visto rella brisa 0.55Duragre [C(t): ((t²)] = 7, ma per Corrispondenta ('è una) la rottoert. di C(t)/((u) el cui grado è 7 e quendi deve essere aprenta · Ora, C(t) Strategia di prima: $B:=S(t)+t=t+t-1 \quad \text{(ha grado 2! YEE)}$ $C(t) \stackrel{<}{<} sr^{i} > ?$ $\gamma := sr^{i}(t) + t = s(ts_{i}) + t = \frac{s_{i}}{t} + t$

f € Q[x] shi grado p prus, p-2 rashed reali Dupponions of irriducible. Det. il Gol di f (x). =: 6 Sia K = Cols (f). K = Q(a, ---, dn) Q(2) Q (forriducable) Dol tereno di Couchy, & contree un el. di ordere p => un p-ado. O Sia T: C -> C il coninges complems. T/k ha rero poidé

(d,,-,dn) è Mable per l'orrore di T, e moltre fins a => T/k & Gol (k/Q) Se WLDG d, e d2 sons le due rodici complene coningote
Ollson T/K (core el . di 5,1) è (1,2) - Gol (K/Q) - Spe (1,2), or & Gol (K/Q) Ma (2-cido, n-cido) = Sp => Gol (K/Q) = 5p