Problemas de valor inicial (PVI)

- Ejercicio 5
- Ejemplo de aplicación
- Orden > 1
- RK2
- RK4

Guia PVI – Ec. Diferencial del ejercicio 5

Ecuación diferencial de orden 1: $u' = -u^2$ $u(0) = u_0 = 1$

$$u' = -u^2$$

$$u(0) = u_0 = 1$$

Primer avance:

Euler • Euler Implícito $u_{n+1} = u_n + hf(u_n, t_n) \mid u_{n+1} = u_n + hf(u_{n+1}, t_{n+1})$

$$= u_n + hf(u_n, t_n) \mid u_{n+1} = u_n + hf(u_{n+1}, t_{n+1})$$

$$u_{n+1} = u_n + h(-u_n^2)$$
 $u_{n+1} = u_n + h(-u_{n+1}^2)$

$$u_{\uparrow}$$

$$u_{n+1} = u_n - hu_n^2 \qquad \qquad u_{n+1} = \frac{-1 + \sqrt{1 + 4hu_n}}{2h}$$

La mayoría de las veces u_{n+1} no se puede despejar → ENL

Aplicación PVI

En situación de equilibrio (sin aceleración): L = T

T = mg

Sustentación Resultante

Angulo de ataque del kite en el viento

Tensión de las líneas de vuelo

Se quiere analizar el movimiento del sistema tabla+surfer cuando el barrilete se aparta de la posición de equilibrio La fuerza de sustentación pasa a tener proyecciones sobre el plano xy.

*Para este modelo consideramos el agua calma (sin velocidad)

L: Fuerza de sustentación (Lift)

W: Velocidad del viento (dirección y)

T: Resultante de tensión en las 4 líneas

Se considera que el desplazamiento de la tabla es únicamente en la dirección \mathbf{x} (transversal al viento)

$$T_{x} - D = ma_{x}$$

$$T_{y} - R_{y} = 0$$

$$T_{z} + N - mg = 0$$

En el barrilete: **T=L** (masa despreciable)

D: Fuerza de arrastre debida al rozamiento con el agua (Drag)

Ry: Reacción de vinculo que compensa exactamente Ty y mantiene la trayectoria sobre el eje x

Se considera que el desplazamiento de la tabla es únicamente en la dirección **x** (transversal al viento)

$$T_{x} - D = ma_{x}$$

$$T_{y} - R_{y} = 0$$

$$T_{z} + N - mg = 0$$

En el barrilete: **T=L** (masa despreciable)

D: Fuerza de arrastre debida al rozamiento con el agua (Drag)

Ry: Reacción de vinculo que compensa exactamente Ty y mantiene la trayectoria sobre el eje x

Aplicación PVI

Ecuación de movimiento:

 $L\sin\varphi\cos\theta - D = ma_x$

C_L: coeficiente experimental de sustentación en aire

 C_D : coeficiente experimental de arrastre en agua

A_{BARR}: Área del barrilete **A**_{TABLA}: Área del barrilete **m**: masa de Tabla+Surfer

θ,φ: ángulos de posición del barrilete sobre la semiesfera

W: velocidad del viento respecto de tierra

$$\begin{bmatrix} C_L \frac{1}{2} \rho_{AIRE} |\bar{v} - \bar{W}|^2 A_{BARR} \end{bmatrix} \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} v_x^2 A_{TABLA} = m \, a_x$$

$$\left[C_L \frac{1}{2} \rho_{AIRE} (\boldsymbol{v_x^2} + W^2) A_{BARR}\right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} \boldsymbol{v_x^2} A_{TABLA} = m \frac{d\boldsymbol{v_x}}{dt}$$

Ecuación para el problema numérico: v'=f(t,v) con v(t=0)=0

El tiempo t no aparece explícito (en este caso particular)

$$\frac{dv_x}{dt} = \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE} (v_x^2 + W^2) A_{BARR} \right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} v_x^2 A_{TABLA}$$

Diferencias y similitudes con la ecuación del ejercicio 5?

Método de Euler (explícito)

Ecuación para el problema numérico: v'=f(t,v) con v(t=0)=0

$$v_{n+1} = v_n + \mathbf{h} f(t_n, v_n)$$
 \rightarrow Hay que definir un paso de tiempo \mathbf{h}

$$\boldsymbol{v_{n+1}} = \boldsymbol{v_n} + \mathbf{h} \left\{ \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE} (\boldsymbol{v_n^2} + W^2) A_{BARR} \right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} \boldsymbol{v_n^2} A_{TABLA} \right\}$$

Para n=0 (primer avance discreto) $\rightarrow v_0 = 0$

$$\mathbf{v_1} = \mathbf{v_0} + \mathbf{h} \left\{ \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE} (\mathbf{v_0^2} + W^2) A_{BARR} \right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} \mathbf{v_0^2} A_{TABLA} \right\}$$

$$\mathbf{v_1} = \mathbf{h} \left\{ \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE}(W^2) A_{BARR} \right] \sin \varphi \cos \theta \right\}$$
 \rightarrow Velocidad $\mathbf{v_1}$ distinta de 0

Para n=1 (2do avance discreto)

$$v_2 = v_1 + h \left\{ \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE} (v_1^2 + W^2) A_{BARR} \right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} v_1^2 A_{TABLA} \right\}$$

Método de Euler (explícito) - Resultados

Método de Euler (explícito) - Resultados

Método de Euler (explícito) - Resultados

Estudio del parámetro CD

$$\frac{dv_x}{dt} = \frac{1}{m} \left[C_L \frac{1}{2} \rho_{AIRE} (v_x^2 + W^2) A_{BARR} \right] \sin \varphi \cos \theta - C_D \frac{1}{2} \rho_{H2O} v_x^2 A_{TABLA}$$

En la ecuación diferencial no aparece explicito el tiempo **t**. ¿Qué mejora del modelo podría incluir una dependencia temporal explícita?

Guia PVI - Ejercicio 5 - RK2

Ecuación diferencial de orden 1: $u' = -u^2$ u(0) = 1

$$u' = -u^2$$

$$u(0) = 1$$

Euler	Euler Implícito	Runge-Kutta 2
$u_{n+1} = u_n + hf(u_n, t_n)$	$u_{n+1} = u_n + hf(u_{n+1}, t_{n+1})$	12 7 10 10
		$q_2 = h f(u_n + q_1, t_{n+1})$
		$q_2 = h f(u_n + q_1, t_{n+1})$ $u_{n+1} = u_n + \frac{1}{2}(q_1 + q_2)$
$u_{n+1} = u_n + h(-u_n^2)$	$u_{n+1} = u_n + h(-u_{n+1}^2)$	$q_1 = h(-u_n^2) \qquad q_1$
		$q_2 = h \left[-(u_n + h(-u_n^2))^2 \right]$
		$u_{n+1} = u_n + \frac{1}{2}(q_1 + q_2)$
$u_{n+1} = u_n - hu_n^2$	$u_{n+1} = \frac{-1 + \sqrt{1 + 4hu_n}}{2h}$	$u_{n+1} = u_n - hu_n^2 + h^2 u_n^3 - \frac{1}{2}h^3 u_n^4$
	La mayoría de las veces u_{n+1} no se puede despejar $ ightarrow$ ENL	

Guia PVI - Ejercicio 5 - RK2

Ecuación diferencial de orden 1: $u' = -u^2$ u(0) = 1

$$u' = -u^2$$

$$u(0) = 1$$

Euler	Euler Implícito	Runge-Kutta 2
$u_{n+1} = u_n + hf(u_n, t_n)$	$u_{n+1} = u_n + hf(u_{n+1}, t_{n+1})$	$q_1 = h f(u_n, t_n)$
		$q_2 = h f(u_n + q_1, t_{n+1})$
		$u_{n+1} = u_n + \frac{1}{2}(q_1 + q_2)$
paso SIMPLE	paso SIMPLE	paso SIMPLE
Explicito	Implícito	Explicito
Orden 1	Orden 1	Orden 2

Estabilidad?

Estabilidad - Ejercicio 5 - Euler

A que está asociada la estabilidad? Al método o a la ecuación diferencial? En principio **AMBOS**

Se analiza la estabilidad para encontrar restricciones sobre el paso h.

Estabilidad para Euler (explicito) en la ecuación: $u' = -u^2$ u(0) = 1

$$u_{n+1} = u_n + h(-u_n^2)$$

Perturbamos a ambos lados de la ecuación con valores $\varepsilon \ll u$

$$u_{n+1} + \varepsilon_{n+1} = u_n + \varepsilon_n + h(-(u_n + \varepsilon_n)^2)$$

$$u_{n+1} + \varepsilon_{n+1} = u_n + \varepsilon_n - h(u_n^2 + 2u_n\varepsilon_n + \varepsilon_n)^2$$

$$\varepsilon_{n+1} = \varepsilon_n - 2hu_n\varepsilon_n$$
Condición de estabilidad
$$\left|\frac{\varepsilon_{n+1}}{\varepsilon_n}\right| < 1$$
Se busca que la perturbación del paso nel la d

$$\varepsilon_{n+1} = \varepsilon_n (1 - 2hu_n)$$

$$\frac{\varepsilon_{n+1}}{\varepsilon_n} = 1 - 2hu_n$$

Condición de estabilidad

$$\left| \frac{\mathcal{E}_{n+1}}{\mathcal{E}_n} \right| < 1$$
 Se busca que la perturbación del paso $\mathbf{n+1}$ sea ser menor que la del paso \mathbf{n}

Para este caso (Euler y $u' = -u^2$)

$$|1 - 2hu_n| < 1 \begin{cases} 1 - 2hu_n < 1\\ 1 - 2hu_n > -1 \end{cases}$$

$$\begin{cases} h > 0 \\ h < \frac{1}{u_n} \end{cases}$$

Ejemplo de discretización para orden>1

Supongamos ecuación diferencial de **orden 2**:

$$\theta'' + \omega^2 \sin \theta = 0$$

$$\theta'' = -\omega^2 \sin \theta = f(t, \theta, \theta')$$
problema problema problema numérico "en 2 variables"
$$\theta(t) = u_n(t_n) + v_n(t_n) + v_n(t_$$

$$con \begin{cases}
\theta(0) = \theta_0 \\
\theta'(0) = 0
\end{cases}$$
(ω es dato)

$$\begin{cases} u' = v \\ v' = -\omega^2 \sin u \end{cases} \quad u' = f(t, u, v) \qquad u(0) = \theta_0 \\ v' = g(t, u, v) \qquad v(0) = 0 \end{cases}$$

Sistema de ecuaciones diferenciales de **orden 1**

Método de **Euler** (explicito) para el sistema:

$$\begin{cases} u_{n+1} = u_n + hf(t_n, u_n, v_n) \\ v_{n+1} = v_n + hg(t_n, u_n, v_n) \end{cases} \qquad u_{n+1} = u_n + hv_n \\ v_{n+1} = v_n + h[-\omega^2 \sin u_n] \end{cases}$$

Ejemplo de discretización para orden>1

$$\begin{cases} u' = v \\ v' = -\omega^2 \sin u \end{cases} \quad \mathbf{u}' = f(t, u, v) \qquad u(0) = \theta_0 \\ v' = g(t, u, v) \qquad v(0) = 0 \end{cases}$$

Método de **Euler Implicito** para el sistema:

$$\begin{cases} u_{n+1} = u_n + hf(t_n, u_n, v_n) \\ v_{n+1} = v_n + hg(t_n, v_n) \end{cases} \longrightarrow \begin{cases} u_{n+1} = u_n + hv_{n+1} \\ v_{n+1} = v_n + h[-\omega^2 \sin u_{n+1}] \end{cases}$$

Para n=0 y h=1:
$$u_1 = u_0 + hv_1$$
 $u_1 = \theta_0 + v_1$ $v_1 = v_0 + h[-\omega^2 \sin u_1]$ $v_1 = -\omega^2 \sin u_1$ SENL

Para n=1 y h=1:
$$u_2 = u_1 + hv_2$$
 $u_2 = u_1 + v_2$ $v_2 = v_1 + h[-\omega^2 \sin u_2]$ $v_2 = v_1 - \omega^2 \sin u_2$ SENL (otro)

Ejemplo de discretización para orden>1

$$\begin{cases} u' = v \\ v' = -\omega^2 \sin u \end{cases} \quad \mathbf{u}' = \mathbf{f}(t, u, v) \qquad u(0) = \theta_0 \\ v' = \mathbf{g}(t, u, v) \qquad v(0) = 0 \end{cases}$$

Método de **Runge Kutta de orden 2**:
$$q_1 = h f(u_n, t_n)$$

$$q_2 = h f(u_n + q_1, t_{n+1})$$

$$u_{n+1} = u_n + \frac{1}{2}(q_1 + q_2)$$

Para 2 variables:

$$q_{1u} = h f(u_n, v_n, t_n)$$

$$q_{2u} = h f(u_n + q_{1u}, v_n + q_{1v}, t_{n+1})$$

$$q_{2v} = h g(u_n, v_n, t_n)$$

$$q_{2v} = h g(u_n + q_{1u}, v_n + q_{1v}, t_{n+1})$$

$$u_{n+1} = u_n + \frac{1}{2}(q_{1u} + q_{2u})$$

$$v_{n+1} = v_n + \frac{1}{2}(q_{1v} + q_{2v})$$

Para el problema planteado:

$$q_{1u} = hv_n \qquad q_{1v} = h(-\omega^2 \sin u_n) \qquad q_{1u}$$

$$q_{2u} = h[v_n - \omega^2 h \sin u_n] \qquad q_{2v} = h[-\omega^2 \sin(u_n + hv_n)]$$

$$u_{n+1} = u_n + hv_n - \frac{\omega^2 h^2}{2} \sin u_n \qquad v_{n+1} = v_n - \frac{\omega^2 h^2}{2} \sin u_n - \frac{\omega^2 h^2}{2} \sin(u_n + hv_n)$$

Resumen para orden 2

Ecuación diferencial de orden 2: $\theta'' + \omega^2 \sin \theta = 0$ con $\begin{cases} \theta(0) = \theta_0 \\ \theta'(0) = 0 \end{cases}$

Euler	Euler Implícito	Runge-Kutta 2
$u_{n+1} = u_n + hf(t_n, u_n, v_n)$ $v_{n+1} = v_n + hg(t_n, u_n, v_n)$		$\begin{vmatrix} q_{1u} = h f(u_n, v_n, t_n) & q_{2u} = h f(u_n + q_{1u}, v_n + q_{1v}, t_{n+1}) \\ q_{1v} = h g(u_n, v_n, t_n) & q_{2v} = h g(u_n + q_{1u}, v_n + q_{1v}, t_{n+1}) \\ u_{n+1} = u_n + \frac{1}{2} (q_{1u} + q_{2u}) & v_{n+1} = v_n + \frac{1}{2} (q_{1v} + q_{2v}) \end{vmatrix}$
$u_{n+1} = u_n + hv_n$	$u_{n+1} = u_n + hv_{n+1}$	$u_{n+1} = u_n + hv_n - \omega^2 h^2 \sin u_n$ $\omega^2 h^2$
$v_{n+1} = v_n + h[-\omega^2 \sin u_n]$	$v_{n+1} = v_n + h[-\omega^2 \sin u_{n+1}]$	$v_{n+1} = v_n - \frac{\omega^2 h^2}{2} \sin u_n - \dots$ $-\frac{\omega^2 h^2}{2} \sin(u_n + hv_n)$

Estabilidad?

Estabilidad para sistemas + Euler

Estabilidad para Euler (explicito) en el sistema:
$$\begin{cases} u' = v & u(0) = \theta_0 \\ v' = -\omega^2 \sin u & v(0) = 0 \end{cases}$$

$$u_{n+1} = u_n + hv_n$$

$$v_{n+1} = v_n + h[-\omega^2 \sin u_n]$$

perturbo
$$\varepsilon \ll u$$

$$\delta \ll v$$

$$u_{n+1} + \varepsilon_{n+1} = u_n + \varepsilon_n + h(v_n + \delta_n)$$

$$v_{n+1} + \delta_{n+1} = v_n + \delta_n - \omega^2 h \sin(u_n + \varepsilon_n)$$

$$\varepsilon_{n+1} = \varepsilon_n + h\delta_n$$

$$\delta_{n+1} = \delta_n - \omega^2 h \cos(u_n) \varepsilon_n$$

$$v_{n+1} + \delta_{n+1} = v_n + \delta_n - \omega^2 h \sin(u_n + \varepsilon_n)$$
linealizar antes

Calculo auxiliar para linealizar:

$$\sin(u+\varepsilon) \to f(u) = \sin(u) \to f(u+\varepsilon)$$
??

$$f(u+\varepsilon) \sim f(u) + \frac{df}{du}\varepsilon$$

$$\sin(u+\varepsilon) \sim \sin(u) + \cos(u) \varepsilon$$

$$\begin{bmatrix} \varepsilon_{n+1} \\ \delta_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & h \\ -\omega^2 h \cos(u_n) & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_n \\ \delta_n \end{bmatrix}$$

Las perturbaciones están acopladas. Impongo las condiciones sobre los autovalores de la matriz de amplificación

Estabilidad para sistemas + Euler

$$\det[A - \lambda I] = \begin{vmatrix} 1 - \lambda & h \\ -\omega^2 h \cos(u_n) & 1 - \lambda \end{vmatrix} = 0 \qquad (1 - \lambda)^2 + \omega^2 h^2 \cos(u_n) = 0$$

$$(1 - \lambda)^2 = -\omega^2 h^2 \cos(u_n) \qquad \longrightarrow \qquad \lambda_{1,2} = 1 \pm \omega h \sqrt{-\cos(u_n)}$$

La condición de estabilidad es sobre los autovalores: $\left|\lambda_{1,2}\right| < 1$

En este caso, ambos son números complejos → Se busca el modulo de todas formas:

$$|\lambda_{1,2}| = 1 + \omega^2 h^2 \cos(u_n)$$
 \rightarrow Incondicionalmente inestable

Como cambia el análisis si la ecuación hubiera sido... $\theta'' + \omega^2 \theta = 0$ con $\begin{cases} \theta(0) = \theta_0 \\ \theta'(0) = 0 \end{cases}$

O bien...
$$x'' + \omega^2 x = 0$$
 con $\begin{cases} x(0) = x_0 \\ x'(0) = 0 \end{cases}$

Método de Runge Kutta de orden 4

Calcula 4 incrementos diferentes y hace un promedio pesado para el avance:

Genérico:

$$q_1 = h f(U_n, t_n)$$

$$q_2 = h f \left(U_n + \frac{1}{2} q_1, t_{n + \frac{1}{2}} \right)$$

$$q_3 = h f \left(U_n + \frac{1}{2} q_2, t_{n + \frac{1}{2}} \right)$$

$$q_4 = h f(U_n + q_3, t_{n+1})$$

$$U_{n+1} = U_n + \frac{1}{6}(q_1 + 2q_2 + 2q_3 + q_4)$$

Aplicado a: U' = -U

$$\mathbf{q_1} = h(-U_n)$$

$$q_2 = h \left[-\left(U_n + \frac{1}{2} h(-U_n) \right) \right]$$

$$q_2$$

$$q_3 = h \left[-\left(U_n + \frac{1}{2} \left[h \left[-\left(U_n + \frac{1}{2} h(-U_n) \right) \right] \right] \right) \right]$$

$$q_4 = h \left[-\left(U_n + h \left[-\left(U_n + \frac{1}{2} \left[h \left[-\left(U_n + \frac{1}{2} h(-U_n) \right) \right] \right] \right) \right] \right) \right]$$

$$U_{n+1} = \cdots$$

En la programación no hace falta hacer estos reemplazos!

Pseudocodigo SENL con Modelo PVI