

UNIVERSIDAD NACIONAL DE CÓRDOBA

FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES CÁTEDRA DE ELECTRÓNICA DIGITAL I

TRABAJO PRÁCTICO Nº 2

"SISTEMA DE ALARMA CON SECUENCIALES"

Grupo Nº 13

Alumnos: Gallone, Francesco Alfici, Facundo NOTA:

Profesor: Ing Vrech, Ruben

Comisión: Viernes de 11.30 a 14.30

Abril/2024

Consigna

Diseñar e implementar un sistema de alarma que tenga las siguientes especificaciones:

- -1 led verde indicará alarma desactivada
- -1 led amarillo indicará alarma armada
- -1 led rojo indicará alarma disparada y/o algún componente acústico (opcional Ej.:buzzer)
- -4 llaves (Switch) o teclado para generar códigos (números binarios) para el armado desarmado
- -El código de armado tendrá 2 cifras hexadecimales y será el número de Grupo (En nuestro caso 13)
- -El código de desarmado será de 2 cifras hexadecimales del número de Grupo invertido (En nuestro caso 31)
- 1 contacto NC que simulará sensor(es) de alarma (pulsador o algún tipo de sensor)
- -Pulsador con circuito antirebote (Ej.: LM555). Será el Clock del circuito, es decir que después de colocar el código binario en los switches, pulsamos este para que pase al siguiente estado. Diseño y explicación del mismo. Led asociado qué muestre cuando esté pulsado y ubicado físicamente al lado del pulsador
- 4 led de cualquier color, juntos y alineados, que indicarán el Nº de estado en binario (E0, E1, E2, . . .)que se encuentra el sistema (FFs)

Desarrollo

Diagrama de estados

Para el diagrama de estados tenemos un código de activación 13 y un código de desactivación 31, el trabajo fue pensado con 3 momentos "Reposo",

"Armado" y "Disparada" y se le agregaron momentos intermedios que fueron "Armándose", "Desarmandose" y "Desactivando"

por lo que el diagrama de estados queda con 6 estados, el sensor y el botón de pánico son externos a este diagrama (el sensor se pone a modo de mejor compresión).

Figura 1: Diagrama de estados (Fuente: Propia)

Tabla de verdad, tabla de transición y de LEDs

En la siguiente imagen además de las tablas de verdad para las combinaciones las tablas de transición de los flip flops y la tabla de los LEDs adjuntamos el orden de 0 y 1 de los FF para cada estado.

lueva	tabla													1					
		(1)	0/1 4	4 (1 . 4)	0(1.4)														-
x q0(t) q1	·/			4-(2:-)	j0	k0	j1	K1	j2	K2	ĿΧ	LA	_					-
0 0	C			0	0	0	X	0	X	0	X	1	0	0					
0 0				0	0	0	X	0	X	X	1	1	0	0					
0 0	1	L O	1	0	0	1	X	X	1	0	X	0	1	0			Q0	Q1	Q2
0 0	1	L 1	1	0	0	1	X	X	1	X	1	0	1	0		E0		0 (D
1	C	0	1	0	0	X	0	0	X	0	X	0	0	1		E1	(0 (0
0 1	C	1	1	0	0	X	0	0	X	X	1	0	0	1		E2	(0 1	1
0 1	1	L O	X	X	X	X	X	X	X	X	X	X	X	Х		E3	(0 1	1
1	1	L 1	X	X	X	X	X	Х	X	X	X	X	X	Х		E4		1 (0
1 0	C	0	0	0	1	0	X	0	Х	1	X	1	0	0		E5	:	1 (D
1 0	C	1	0	1	0	0	Х	1	Х	X	1	1	0	0					
1 0	1	L O	0	1	1	0	Х	Х	0	1	X	0	1	0					
1 0	1	L 1	0	0	0	0	Х	Х	1	Х	1	0	1	0					
1 1	C	0	1	0	1	Х	0	0	Х	1	Х	0	0	1					
1 1	C	1	0	0	0	Х	1	0	Х	Х	1	0	0	1		Tabla de tran	sición		
1 1	1	LO	X	X	Х	Х	Х	Х	X	X	Х	Х	Х	Х			Q(t+1)	J	K
1 1	1	1	X	X	X	X	X	X	X	X	X	Х	X	X		0	0	0	X
						-00		-								0	1	1	X
														İ		1	0	X	1
														1		1	1	X	0
														1				2	- 0
	-													1					+

Figura 2: Tablas (Fuente: Propia)

Mapa de Karnaugh de los FF

%	00	01	44	10	Or X	٥٥	91	44	10	Or X	٥٥	91	44	10	0, ×	00	91	44	10
00	0	1	X	X	00	×	Х	Х	0	00	٥	X	Х	0	00	×	4	Х	χ
٥٨	0	0	×	×	01	×	×	×	0	01	0	×	X	0	01	×	0	×	Х
41	0	0	×	×	44	X	×	×	1)	44	(1	X	X	0	44	X	٨	×	X
10	0	(X	×	40	X	X	X	0	10	0	×	Х	0	10	x	٨	X	×
jo	= 5	₹ Q 1			Ko=	Q۷	(ja <u>-</u>	: Q	χQ	9		K ₁ =	Q25	(+(રે	
×,	٥٥	91	44	10	Or X	00	91	44	10										
00	0	0	X	0		x		×	×										
۸۱	1	1	×	1	04	×	×	X	×										
۱1	X	X	×	×	41	4	1	×	7										
	J	√	J	v I			1	x	<u> </u>										

Mapas de Karnaugh LEDs

	LED VERDE					1
	00/04/00					
4	Q0/Q1 Q2	0 0	01	11	10	
	0	1	1	0	0	LV=/Q0*/Q1
	1	0	0	X	X	
						1
L	ED AMARILL	0				
						1
	Q0/Q1 Q2	0 0	01	11	10	
	0	0	0	1	1	LA=/Q0*Q1
	1	0	0	X	X	1 1
	LED ROJO					
						1
	Q0/Q1 Q2	0 0	01	11	10	
	0	0	0	0	0	LR=Q0*/Q1
	1	1	1	X	X	

Ingreso de datos

Para el dígito 1 su equivalente a binario es 0001 por lo que para el dip switch de 4 entradas tendremos /A /B /C D

Para el dígito 3 su equivalente a binario es 0011 por lo que para el dip switch de 4 entradas tendremos /A /B C D

$$\begin{array}{ccc}
1 & \overline{ABCD} & = & \overline{AB} & + & \overline{CD} \\
& & & & & & \\
3 & \overline{ABCD} & = & \overline{AB} & + & \overline{CD}
\end{array}$$

Como nuestra X tiene sólo un 1 o 0 como entrada debemos hacerle entender al sistema si por ejemplo el 1 que se ingresa es para el código de activación o el de desactivación por lo que implementamos un combinacional que use el estado en el que está y el dígito que se quiere utilizar, por lo que a continuación se adjunta la X para cada estado

$$X_{0} = E_{0}D_{1} = \overline{Q}_{0}\overline{Q}_{1}\overline{Q}_{2}.D_{1} = \overline{\overline{Q}_{0}\overline{Q}_{1}} + \overline{\overline{Q}_{2}}D_{1}$$

$$X_{1} = E_{1}.D_{3} = \overline{Q}_{0}\overline{Q}_{1}Q_{1}.D_{3} = \overline{\overline{Q}_{0}}\overline{Q}_{1} + \overline{Q}_{1}D_{3}$$

$$X_{2} = E_{2}.D_{3} = \overline{Q}_{0}Q_{1}\overline{Q}_{1}.D_{3} = \overline{\overline{Q}_{0}Q_{1}} + \overline{\overline{Q}_{1}D_{3}}$$

$$X_{3} = E_{3}.D_{1} = \overline{Q}_{0}Q_{1}Q_{1}.D_{1} = \overline{\overline{Q}_{0}Q_{1}} + \overline{\overline{Q}_{1}D_{3}}$$

$$X_{4} = E_{4}.D_{3} = Q_{0}\overline{Q}_{1}\overline{Q}_{2}.D_{3} = \overline{\overline{Q}_{0}Q_{1}} + \overline{\overline{Q}_{1}D_{3}}$$

$$X_{5} = E_{5}.D_{1} = Q_{0}\overline{Q}_{1}Q_{2}.D_{1} = \overline{Q_{0}Q_{1}} + \overline{Q}_{1}\overline{D}_{1}$$

$$X: X_{0} + X_{1} + X_{1} + X_{2} + X_{3} + X_{4} + X_{5}$$

Figura 3: De Morgan de Ingreso de datos (Fuente:propia)

Sensor y Botón de Pánico

Por otra parte el sensor se activará con un switch cuando esté en el estado "armado" y pasará a disparada, nuevamente esto ocurrirá sólo si se está en el estado "armado"

Mientras que el botón de pánico se conecta a los SET y RESET de los 3 flip flop para que independientemente del estado en el que esté, se le fuerce el estado 100 (disparada)

Cálculos

Configuración LM 555

Al ser monostable manda 1 pulso por cada vez que se acciona Para controlar el tiempo del LM 555 Monostable debemos usar esta fórmula

T= 1.1 Ra C T=1,1 * 10KOHM * 10uF = 0,11 S

Calculo entrada de datos

Diagramas Circuitales

Figura 4: Diagrama circuital en Proteus (fuente:propia)

Materiales

- 2 CD4071
- 1 CD4081
- 1 CD4049
- 2 CD4011
- 2 CD4001
- 2 CD4027 (Utilizamos solo 3 de los 4 FF) clock ascendente
- 1 LM 555 monostable
- 7 resistencias 10k
- 1 resistencia 100
- 1 capacitor 10nF

- 1 capacitor 1mF
- 2 capacitor 1uF

Dip switch 4 entradas

- 1 Led Amarillo
- 1 Led Verde
- 1 Led Rojo / Buzzer

Gráficos Topológicos

Figura 5: Fotografía del circuito y señalización de componentes(fuente:propia)

Conclusiones

Este trabajo es útil para poner en práctica los sistemas secuenciales y un combinacional anterior, lo bueno de esto es que es similar a un sistema de alarma básico

Bibliografía y referencias

LEV ED1

MATERIAL TEÓRICO PDF ING RECABARREN

Hojas de Datos

https://www.alldatasheet.com/view.jsp?Searchword=CD4011

https://pdf1.alldatasheet.com/datasheet-pdf/view/50863/FAIRCHILD/CD4071.html

https://pdf1.alldatasheet.com/datasheet-pdf/view/103403/TI/CD4081B.html

https://pdf1.alldatasheet.com/datasheet-pdf/view/26882/TI/CD4049.html

https://www.alldatasheet.com/view.jsp?Searchword=CD4027

https://pdf1.alldatasheet.com/datasheet-pdf/view/26834/TI/CD4001.html

https://pdf1.alldatasheet.es/datasheet-pdf/view/791941/TI1/LM555.html

 $\underline{https://components101.com/sites/default/files/component_datasheet/Buzzer\%20Datas}$

heet.pdf