← Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

0/1 points

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

True

This should not be selected

False

Sequence models & Attention mechanism	8/10 points (80.00%)
Quiz, 10 questions 1 / 1 points	
2. In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to that apply.	oe true? Check all
Beam search will run more slowly.	
Correct	
Beam search will use up more memory.	
Correct	
Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid a)$	<i>c</i>))
Correct	
Beam search will converge after fewer steps.	
Un-selected is correct	

Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz 10 questions translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

True

Correct

False

1/1 points

4

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^-7$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

the search algorithm. Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz, 10Cquestitons

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
Yes, because $P(y^*\mid x)\leq P(\hat{y}\mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

1/1 points

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

0

True.

Correct

False.

← Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz 10 questions Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t,t'>}$

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_{x}} \exp(e^{})}$$

Which of the following statements about $lpha^{< t, t'>}$ are true? Check all that apply.

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

Correct

← Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz, 10 questions We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Un-selected is correct

 $\sum_t lpha^{< t,t'>} = 1$ (Note the summation is over t.)

Un-selected is correct

 $\sum_{t'} lpha^{< t,t'>} = 1$ (Note the summation is over t' .)

Correct

1/1 points

7.

The network learns where to "pay attention" by learning the values $e^{< t, t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

Correct

← Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz, 10 questionse

1/1 points

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

O

The input sequence length T_x is large.

Correct

igcap The input sequence length T_x is small.

0/1 points

9.

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

__c_oo_o_kk___b_ooooo__oo__kkk

- cokbok
- cookbook

Quiz, 10 que:	stions should not be selected	
~	1 / 1 points	
10. In trigg	er word detection, $x^{< t>}$ is:	
0	Features of the audio (such as spectrogram features) at time $t.$	
Corre	ect	
	The $t ext{-} ext{th}$ input word, represented as either a one-hot vector or a word embeddin	

Whether someone has just finished saying the trigger word at time t.

← Sequence models & Attention mechanism

8/10 points (80.00%)

Quiz, 10 questions