

Critical Features Tracking on Triangulated Irregular Networks by a Scale-Space Method

Haoan Feng hfengac@umd.edu

Yunting Song ytsong@umd.edu

Leila De Floriani deflo@umd.edu

Introduction

Critical features

- Critical features consist of representative points together with their relations and regions of influence where the surface topology undergoes significant changes.
- Critical points of a scalar function are locations where gradient of the function vanishes maxima (peaks), saddles, and minima (pits).

Critical features

- Understanding the topological structure of a surface is crucial in several downstream applications:
 - e.g. cartography, land-use planning.

Scale Space

- Scale space is a widely used framework in image processing and analysis.
- Similarly to the human visual system, a scale-space method processes data at different levels of details.

Image credit: <u>Wikipedia of scale-space</u>

Critical points tracking through a scale-space method

- Deep structure of a surface^[1]: tracking critical points across scales.
 - Critical points are identified in the finest scale and tracked.
- Life span: number of scales at which a critical point survives
 - It indicates its significance in the data's underlying structure.

Image credit: Wikipedia of scale-space

Critical points tracking through a scale-space method

Timestamp/Scale: 0.000

A virtually continuous representation of the deep structure of the scale space^[2]

- In a raster DEM, a scale space can be constructed by repeatedly applying a Gaussian smoothing operation on a regular grid.
- In [2], each regular grid cell is divided into two triangles to produce a piece-wise linear approximation of the terrain surface.
- Critical points are identified by inspecting the relative elevation to directly connected neighboring vertices on the triangle mesh.

A virtually continuous representation of the deep structure of the scale space^[2]

- Critical point tracking by
 - Virtually continuous scale-space assumption: vertex elevations change linearly between neighboring scale layers.
 - Edge flipping event: tracking critical point transition.
 - For example, relative elevation of two vertices changes at timestamp/scale s_{i+δ}

From regular grids to Triangulated Irregular Networks (TINs)

- Wide availability of point cloud data
 - Acquired extensively through LiDAR (Light Detection and Ranging), enabling detailed and accurate surface mapping.
- If we convert a point cloud to raster format and then triangulate the grid, the preset edge connection on a regular grid affects the classification of critical points.

From regular grids to Triangulated Irregular Networks (TINs)

- For regular grids, trade-off between accuracy and computation burden O(N²).
- Adaptive resolution of a TIN allows for accurate tracking with lower cost.
- TINs can naturally handle irregular boundary geometry.

Gridded DEMs vs.

TINs

Gridded DEMs vs.

TINs

Methodology

TIN generation from input point clouds

- Furthest Point Sampling (FPS)
 - Evenly distributed point cloud
- Patch-based FPS (PFPS)
 - Adaptive resolution for different local complexity levels

```
Algorithm 1: Patch-based Furthest Point Sampling
 Input: Point cloud pcd, patch size s, percentage of points to
           keep \rho
 Output: Down-sampled point cloud pcd_{down}
 pcd_{down} \leftarrow \emptyset
 // Divide the point cloud into patches over xy-plane
 patches \leftarrow subdivide(pcd, s)
 foreach patch in patches do
      // Estimate the local curvature via the covariance matrix
      covmat \leftarrow Covariance\ Matrix\ (patch)
      \lambda_1, \lambda_2, \lambda_3 \leftarrow Eigenvalues (covmat)
      // \lambda_1 \geq \lambda_2 \geq \lambda_3
      patch_{curv} \leftarrow \lambda_1/(\lambda_1 + \lambda_2 + \lambda_3)
 end
 // Normalize the estimated curvatures as sampling weights
 patch_w \leftarrow patch_{curv} / \sum_{patches} patch_{curv}
 foreach patch in patches do
      pcd_{patch} \leftarrow FPS (patch, \rho \times patch_w)
      pcd_{down} \leftarrow pcd_{down} \cup pcd_{patch}
 end
 return pcd<sub>down</sub>
```


TIN from input point cloud

(e) TIN - FPS down-sampling

(f) TIN - PFPS down-sampling 16

Hillshade

TIN wireframe

Gridded DEM wireframe

TIN generation from input point cloud

- Delaunay triangulation is applied to the down-sampled point cloud.
- Sliver triangles on the boundary are filtered out through alpha-shape.
- The resulting TIN is stored in a **Terrain Tree**^[3] an efficient spatial data structure for large triangulated 2½ D surfaces.

TIN generation from input point cloud

- Alpha-shape from a Delaunay Triangulation result
 - For each triangle cell, its circumradius is calculated compared to a preset threshold filtering out sliver triangles.

Gaussian smoothing on TINs

- Smoothing operation is formulated as a matrix-vector multiplication.
 - For a TIN with N vertices, vertex elevations are stored in a vector \overline{L} . Then vertex elevations transition can be formulated as:

$$\vec{L}_{t+1} = sparse_matvec(M_w, \vec{L}_t)$$

• An adjacency matrix M_w is a square symmetric matrix, where each element indicates whether a pair of vertices is connected by an edge (with entries typically set to 1 for adjacent vertices and 0 otherwise).

TIN generation TIN smoothing Introduction Tracking Experiments > Data structure Conclusion

Gaussian smoothing on TINs

Smoothing operation is formulated as matrix-vector multiplication.

 $\vec{L}_{t+1} = sparse_matvec(M_w, \vec{L}_t)$

 Gaussian smoothing re-weights the elements in the adjacency matrix based on edge lengths.

$$M_{w}[i, j] = \begin{cases} \frac{1}{Z} \exp\left(-\frac{d(i, j)^{2}}{2\sigma^{2}}\right) & \text{if } j \in Neighbor(i) \\ \text{otherwise} & \text{otherwise} \end{cases}$$
Normalization factor Variance

Gridded DEM smoothing

Naïve TIN smoothing

Gaussian smoothing on TINs

- Angle re-weighting
- Virtual neighbors

$$M_{w}[i,j] = \begin{cases} \frac{1}{Z} \exp\left(-d(i,j)^{2}/\left(2\sigma^{2}\right)\right) & \text{if } j \in Neighbor(i) \\ 0 & \text{otherwise} \end{cases}$$
(6)

j-th neighbor angle

Now,

Naïve TIN smoothing

Our TIN smoothing

Critical points tracking on a TIN

- Record and sort all the edge flipping events between intermediate scale layers – track critical points from fine to coarse scale
- Critical point transitions are classified into three categories: Displacement, Collapse, and Appearance.

Collapse of a *(maximum, saddle)* pair to two regular points

Critical points tracking on a TIN

• By the **Poincaré-Hopf index theorem**, *Collapse* or *Appearance* can only happen to critical points in pairs of the form: (maximum, saddle) or (minimum, saddle).

$$N_{max} + N_{min} - N_{saddle} = 2$$

Collapse of a *(maximum, saddle)* pair to two regular points

Transition table from a regular grid

Table 1

Possible transitions in the state of a pair of vertices connected by a flipping edge, after Rocca and Puppo (2013). r: a sloped point; M: a maximum; m: a minimum; s: a saddle; K: a monkey saddle. Note that for every event a specular one is also possible, for a total of 32 possible events. An example would be: $(M, K) \rightarrow (r, s)$ is equivalent to $(K, M) \rightarrow (s, r)$.

Displacements		Collapses	5		Appear	Appearances			
(<i>m</i> , <i>r</i>)	\rightarrow	(r, m)	(m, s)	\rightarrow	(<i>r</i> , <i>r</i>)	(<i>r</i> , <i>r</i>)	\rightarrow	(m, s)	
(M, r)	\rightarrow	(r, M)	(M, s)	\rightarrow	(r, r)	(r, r)	\rightarrow	(M, s)	
(s, r)	\rightarrow	(r, s)	(m, K)	\rightarrow	(r, s)	(r, s)	\rightarrow	(m, K)	
(K, r)	\rightarrow	(r, K)	(M, K)	\rightarrow	(r, s)	(r, s)	\rightarrow	(M, K)	
(K, r)	\rightarrow	(s, s)							
(s, s)	\rightarrow	(K, r)							
(K, s)	\rightarrow	(s, K)							

TIN smoothing TIN generation Introduction Tracking Experiments > Data structure Conclusion

Critical points tracking on a TIN

- For transition involving k-fold (Monkey) saddles
 - Each k-fold saddle is treated as k simple saddles overlapping at the location of current vertex.
 - Similarly, the critical point transition is separated into k transitions with each saddle treated separately.

Experimental comparison

Spot height placement

- Spot heights are included in topographic maps to quickly and accurately ascertain the elevation values of points on a terrain surface.
- Matching critical maxima with spot heights annotated in datasets.

- Datasets from the Swiss Federal Office of Topography
- Evaluation metrics:
 - Matching accuracy: precision, recall, F_{β} score, and average matching distance $dist_{ava}$.
 - Computation time and peak memory usage in scale-space pipeline.

Dataset	Dimension (km)	#points (million)	Type
Reichenburg	4×4	167	Suburban
Sörenberg	8×8	1529	Mountainous
Bannelpsee	12×12	3548	Mountainous

$$F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{\beta^2 \times precision + recall}$$

Spot height placement

Dataset	Dimension (km)	#points (million)	Type
Reichenburg	4×4	167	Suburban
Sörenberg	8×8	1529	Mountainous
Bannelpsee	12×12	3548	Mountainous

$$F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{\beta^2 \times precision + recall}$$

Datasets	Grid	#ed	lges	$dist_{avg}$ (m)		$F_{oldsymbol{eta}}$ score		t_{ss} (s)		Mem _{peak} (MBs)	
	cell size (m)	Grid	TIN	Grid	TIN	Grid	TIN	Grid	TIN	Grid	TIN
Reichenburg	16	186,501	170,265	18.20	4.85	0.79	0.92	39.33	36.52	24.38	22.75
Sörenberg	40	119,201	112,000	30.38	12.79	0.85	0.87	26.077	27.81	17.35	17.00
Bannelpsee	40	268,801	255,945	32.18	14.19	0.77	0.79	56.88	63.43	32.65	32.04

Spot height placement

Further zoomed-in comparison of the Reichenberg dataset

Suburban plateau region

(a) TIN - 1, 126 vertices

(c) TIN - 11, 447 vertices

(d) Grid - 1,600 vertices

Mountain region

Precision-Recall curve and F_{β} score graph

- Filter critical points by life spans from small to large values
- Our TIN-based matching achieves higher recall rates

(b) TIN - **best** $F_{\beta} = 0.79$

Conclusion

- An efficient method of critical features tracking on the scale space of a Triangulated Irregular Network (TIN).
- To take advantage of TINs' adaptive resolution, raw point clouds are down-sampled based on patch-wise curvature.
- Parallel computing of the scale space of a TIN with special customization: virtual neighbors and angle-based re-weighting.
- Compared to the previous grid-based method, working on a TIN allows more accurate localization and tracking of critical features especially when computational resources are limited.

Thank you!

Questions?

Scan me for project page

References

[1] Lindeberg, T. (2013). *Scale-space theory in computer vision* (Vol. 256). Springer Science & Business Media.

[2] Rocca, L., & Puppo, E. (2013). A virtually continuous representation of the deep structure of scale-space. In *Image Analysis and Processing–ICIAP* 2013: 17th International Conference, Naples, Italy, September 9-13, 2013, Proceedings, Part II 17 (pp. 522-531). Springer Berlin Heidelberg.

[3] Fellegara, R., Iuricich, F., Song, Y., & Floriani, L. D. (2023). Terrain trees: a framework for representing, analyzing and visualizing triangulated terrains. *GeoInformatica*, 27(3), 525-564.