Projeto do algoritmo

ALUNOS:

Daniel Sá Barretto Prado Garcia 103734344

Felipe Guilermmo Santuche Moleiro 10724010

Laura Alves de Jesus 10801180

Tiago Marino Silva 10734748

PCAM

Particionamento

A matriz de ordem NxM é particionada em M colunas, em que para cada coluna existirão K métricas a serem calculadas, ou seja, teremos MxK tarefas. Cada tarefa possui uma coluna e uma função de métrica da mesma para calcular. O cálculo de cada métrica em cada coluna pode ser feito em paralelo.

Comunicação

As colunas são independentes entre si. Ocorrem algumas dependências sobre métricas de uma mesma coluna. São elas:

- Variância depende da Média Aritmética
- Desvio Padrão depende da Variância
- Coeficiente de variação depende da Média Aritmética e do Desvio Padrão
- Mediana e Moda precisam da coluna ordenada

Aglomeração

Será feita uma thread para cada núcleo. Nela serão criadas tasks para cada métrica e suas dependências, cada thread executa uma próxima tarefa conforme termina de executar a prévia. Na nossa aglomeração cada task se responsabiliza por calcular uma métrica por coluna, mas as tasks podem ser feitas em paralelo. As tasks a serem feitas por colunas são:

- Task para cálculo da média aritmética
- Task para cálculo da média harmônica
- Task para ordenação da coluna
- Task para cálculo da mediana
- Task para cálculo da moda
- Task para cálculo da variância
- Task para cálculo do desvio padrão
- Task para cálculo do coeficiente de variação

Essas tasks são colocadas em um task pool e para serem atribuídas às threads conforme estas ficam livres.

Mapeamento

Há um número de threads T, assim, cada coluna enfileira suas tasks em um task pool. As threads vão executando essas tasks conforme ficam ociosas. O número de thread depende da máquina, portanto pode acontecer de cada núcleo processar apenas uma thread ou precisar processar mais de uma thread (se o número de threads for superior ao de núcleos), esse escalonamento será feito pelo SO que fará um escalonamento dinâmico para a execução das threads nos núcleos.