DRAFT: NCT

RA

2021-04-02

1 NCT models

Abbreviations: ODE = ordinary differential equations.

1.1 GSR'03 model of NCT

Ran gradient. First we implement the "minimal Ran gradient system" from [GSR03]. The equations are shown in Table 1 and the constants are collected in Table 2. The "dynamic capacity" Ex is an optional maximal steady-state (positive) flux of nuclear $Ran \cdot GTP$ to cytoplasmic $Ran \cdot GDP$, which we determine using the additional equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Ex} = k_{\mathsf{Ex}} \left[\mathsf{Ran} \cdot \mathsf{GTP} \right]_{\mathrm{nuc}}, \quad k_{\mathsf{Ex}} := 10 \, \mathrm{s}^{-2}, \quad \text{initial} \quad \mathsf{Ex} := 0 \, \mu \mathrm{M} \, \mathrm{s}^{-1}. \tag{1}$$

The fluxes are in units of concentration/time (μ M s⁻¹). The ones across the nuclear boundary have positive sign when exiting the nucleus and are normalized to the nuclear volume. The *amount* exiting the nucleus per unit of time is flux × V_{nuc} .

Simulating the ODE across the scenarios of [GSR03] we obtain results that are sufficiently close to the original, see Table 3. Importantly, a 1000-fold nuclear enrichment of Ran·GTP is sustained in steady-state.

Code: d56d16f/code/20210225-GSR/v1

Coupling to transport. A coupling of the Ran gradient to importin–cargo transport was proposed in [GSR03, Fig. 6A]. We formulate a version of it in Table 4.

With the constants from Table 5, the steady-state of the model (reached after some 10×10^4 s) is reported in Fig. 1. Nuclear accumulation of free cargo is over 20-fold. Sensitivity analysis shows that, in relative terms, the final nuclear concentration of free cargo depends most strongly on k_{knockoff} (and the volume of the nucleus). In particular, doubling k_{knockoff} almost doubles the concentration.

Code: 2a2199d/code/20210225-GSR/v2

Figure 1: Steady-state of the transport system from §1.1 / Table 4 with conditions of Table 5. The free cargo shows a 20-fold accumulation in the nucleus. Units are μM for species and $\mu M \, s^{-1}$ for fluxes. Initial conditions: $[{\sf Ran}\cdot{\sf GDP}]_{\rm cyt}=5\,\mu M,\ [{\sf Imp}\beta]_{\rm cyt}=1\,\mu M,\ [{\sf Cargo}]_{\rm cyt}=3\,\mu M,\ {\rm all}$ else zero.

TODO(1): ? [Cat+01] and [RM05] discuss the reaction $\mathsf{Imp}\beta \cdot \mathsf{Cargo} \Longleftrightarrow \mathsf{Imp}\beta^* \cdot \mathsf{Cargo}$

The following account for the cytoplasmic species. Here, [...] abbreviates the (cytoplasmic) concentration of the complex RanBP1 · Ran · GTP.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathrm{cyt}} = \mathsf{F}_{\mathsf{Ran}\cdot\mathsf{GDP}} \frac{\mathit{V}_{\mathrm{nuc}}}{\mathit{V}_{\mathrm{cyt}}} + \mathsf{GAP} + \mathsf{GAP}_{\mathsf{RanBP1}} + \mathsf{Ex} \frac{\mathit{V}_{\mathrm{nuc}}}{\mathit{V}_{\mathrm{cyt}}} \tag{2a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} = \mathsf{F}_{\mathsf{Ran}\cdot\mathsf{GTP}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} - \mathsf{GAP} - k_{\mathrm{on}}^{\mathrm{rbp}}[\mathsf{RanBP1}][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} + k_{\mathrm{off}}^{\mathrm{rbp}}[\ldots] \tag{2b}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{RanBP1}\cdot\mathsf{Ran}\cdot\mathsf{GTP}] = -\mathsf{GAP}_{\mathsf{RanBP1}} \\ + k_{\mathrm{on}}^{\mathrm{rbp}}[\mathsf{RanBP1}][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} - k_{\mathrm{off}}^{\mathrm{rbp}}[\ldots]$$
 (2c)

The following account for the nuclear species. Following [GSR03], E denotes free RCC1.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran} \cdot \mathsf{GDP}]_{\mathrm{nuc}} = -\mathsf{F}_{\mathsf{Ran} \cdot \mathsf{GDP}} + r_8[\mathsf{IntC}] - r_1[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GDP}]_{\mathrm{nuc}}$$
(3a)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{nuc}} = -\mathsf{F}_{\mathsf{Ran}\cdot\mathsf{GTP}} + r_4[\mathsf{IntA}] - r_5[\mathsf{E}][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{nuc}} - \mathsf{Ex} \tag{3b}$$

The nucleotide-exchange reaction $Ran \cdot GDP + GTP \Longrightarrow Ran \cdot GTP + GDP$ is catalyzed by RCC1. It is modeled as in [Kle+95, Fig. 6] / [GSR03, Fig. 1] with three intermediates. Note that it depends on the availability of GDP and GTP.

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntA}] = -(r_4 + r_6)[\mathsf{IntA}] + r_5[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GTP}]_{\mathsf{nuc}} + r_3[\mathsf{GTP}][\mathsf{IntB}] \tag{4a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntB}] = r_6[\mathsf{IntA}] + r_2[\mathsf{IntC}] - (r_3[\mathsf{GTP}] + r_7[\mathsf{GDP}])[\mathsf{IntB}] \tag{4b}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{IntC}] = -(r_2 + r_8)[\mathsf{IntC}] + r_1[\mathsf{E}][\mathsf{Ran} \cdot \mathsf{GDP}]_{\mathrm{nuc}} + r_7[\mathsf{GDP}][\mathsf{IntB}] \tag{4c}$$

Constraints on the total concentration:

Free RCC1:
$$[E] = RCC1_{total} - ([IntA] + [IntB] + [IntC])$$
 (5a)

Free RanBP1:
$$[RanBP1] = RanBP1_{total} - [RanBP1 \cdot Ran \cdot GTP]$$
 (5b)

Gradient-driven fluxes from the nucleus to the cytoplasm:

$$\mathsf{F}_{\mathsf{Ran},\mathsf{GTP}} = D_{\mathsf{Ran}\cdot\mathsf{GTP}} \left([\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{nuc}} - [\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cvt}} \right) \tag{6a}$$

$$\mathsf{F}_{\mathsf{Ran}.\mathsf{GDP}} = D_{\mathsf{Ran}\cdot\mathsf{GDP}} \left([\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathsf{nuc}} - [\mathsf{Ran}\cdot\mathsf{GDP}]_{\mathsf{cvt}} \right) \tag{6b}$$

RanGAP hydrolyzes the γ -phosphate of Ran · GTP. This is more efficient when Ran · GTP is bound to RanBP1 [Bis+95], reducing the IC50 seven-fold [GSR03, Table I, p. 1091].

$$GAP = k_{GAP}[RanGAP]/(1 + K_{GAP}/[Ran \cdot GTP]_{cvt})$$
(7a)

$$\mathsf{GAP}_{\mathsf{RanBP1}} = k'_{\mathsf{GAP}}[\mathsf{RanGAP}]/(1 + K'_{\mathsf{GAP}}/[\mathsf{RanBP1} \cdot \mathsf{Ran} \cdot \mathsf{GTP}]) \tag{7b}$$

Table 1: The minimal Ran gradient system from [GSR03, Fig. 2]. Ex is an additional potentially useful flux of nuclear Ran·GTP to cytoplasmic Ran·GDP, set by default to zero.

(2a)	$V_{ m nuc} = 1.2 m pl, V_{ m cyt} = 1.8 m pl$	[GSR03, Table II]	
(2a)	initial condition $[Ran \cdot GDP]_{cyt} = 5 \mu M$	[GSR03, Table II]	
(2b)- $(2c)$	$k_{\text{on}}^{\text{rbp}} = 0.3 \mu\text{M}^{-1}\text{s}^{-1}, k_{\text{off}}^{\text{rbp}} = 4 \times 10^{-4}\text{s}^{-1}$	[GSR03, Supp. Table A]	
(3a)-(4c)	$r_1 = 74 \mu\text{M}^{-1}\text{s}^{-1}, r_8 = 55 \text{s}^{-1}$		
	$r_7 = 11 \mu\text{M}^{-1}\text{s}^{-1}, r_2 = 21\text{s}^{-1}$	[GSR03, Supp. Table A]	
	$r_3 = 0.6 \mu\text{M}^{-1}\text{s}^{-1}, r_6 = 19\text{s}^{-1}$	[Kle+95, Fig. 6]	
	$r_5 = 100 \mu\text{M}^{-1}\text{s}^{-1}, r_4 = 55\text{s}^{-1}$		
(4a)- $(4c)$	$[GTP] = 500 \mu M, [GDP] = 1.6 \mu M$	[GSR03, Table II]	
(5a)	$RCC1_{total} = 0.7 \mu M$	[GSR03, Supp. Table B]	
(5b)	$RanBP1_{total} = 2\mu\mathrm{M}$	[GSR03, Fig. 4]	
(6a)	$D_{Ran\cdotGTP} = 0.03\mathrm{s}^{-1}$	[GSR03, Table II]	
(6b)	$D_{Ran\cdotGDP} = 0.12\mathrm{s}^{-1}$		
(7a)	$k_{\text{GAP}} = 10.6 \mathrm{s}^{-1}, K_{\text{GAP}} = 0.7 \mathrm{\mu M}$	[GSR03, Supp. Table A]	
(7b)	$k'_{GAP} = 10.8 \mathrm{s}^{-1}, K'_{GAP} = 0.1 \mu\mathrm{M}$	[GSR03, Table I]	
(7a)-(7b)	$cytoplasmic \; [RanGAP] = 0.7 \mu\mathrm{M}$	[GSR03, Table II / ST B]	

Table 2: Constants for the "standard simulation condition" of §1.1 at 25 °C. Except for (2a), all species are initialized to zero at t=0.

Condition	Affected	Nuclear	Cytoplasmic	Dynamic
	parameters	RanGTP, µM	RanGTP, nM	capacity, µM/s
"Standard"	See Table 2	4.26 (4.3)	7.75 (7.7)	0.59 (0.60)
Omission of RanBP1	$RanBP1_{total} := 0$	4.27 (4.3)	8.13 (8.1)	0.59 (0.60)
200% RCC1	RCC1 _{total}	3.95 (4.0)	7.17 (7.1)	0.59 (0.60)
50% RCC1	RCC1 _{total}	4.31 (4.3)	7.82 (7.7)	0.58 (0.60)
10% RCC1	RCC1 _{total}	3.59 (3.6)	6.50 (6.4)	0.46 (0.48)
1% RCC1	RCC1 _{total}	1.40 (1.4)	2.52(2.5)	0.075 (0.08)
GTP:GDP = 500:0	$[GDP] := 0\mu\mathrm{M}$	4.80 (4.8)	8.72 (8.6)	0.59 (0.60)
GTP:GDP = 500:50	$[GDP] := \frac{1}{10}[GTP]$	0.98 (0.8)	1.76(1.5)	0.57 (0.58)
GTP:GDP = 500:500	[GDP] := [GTP]	0.12 (0.12)	0.22(0.21)	0.34 (0.34)
Saturating NTF2	$D_{Ran \cdot GDP} := 0.48 \mathrm{s}^{-1}$	5.12 (5.1)	9.32 (9.2)	2.18 (2.2)
No NTF2	$D_{Ran\cdotGDP} := D_{Ran\cdotGTP}$	2.55(2.5)	4.60(4.5)	0.15 (0.16)
200% RanGAP	[RanGAP]	4.27(4.3)	3.95(3.9)	0.59 (0.60)
50% RanGAP	[RanGAP]	4.26(4.3)	14.9 (14)	0.59 (0.60)
50% permeability	$D_{Ran\cdotGTP}$	4.91 (4.9)	4.44(4.4)	0.59 (-)
200% permeability	$D_{Ran\cdotGTP}$	3.41 (3.4)	12.4 (12.3)	0.59 (-)
400% permeability	$D_{Ran\cdotGTP}$	2.46 (2.5)	18.0 (17.8)	0.59 (-)

Table 3: Steady-state concentrations for the simulation scenarios from [GSR03, Table II/III], with their results shown in brackets. Value for $D_{\mathsf{Ran}\,\cdot\,\mathsf{GDP}}$ is from [GSR03, Fig. 3].

The following equations comprise the handling of cargo by $Imp\beta$ in the cytoplasm.

$$\mathsf{R}_{\mathsf{cyt}} := -k_{\mathsf{on}}^{\mathsf{R}}[\mathsf{Imp}\beta][\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cyt}} + k_{\mathsf{off}}^{\mathsf{R}}[\mathsf{Imp}\beta\cdot\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathsf{cyt}} \tag{8a}$$

$$\mathsf{C}_{\mathsf{cyt}} := -k_{\mathsf{on}}^{\mathsf{C}}[\mathsf{Imp}\beta][\mathsf{Cargo}]_{\mathsf{cyt}} + k_{\mathsf{off}}^{\mathsf{C}}[\mathsf{Imp}\beta \cdot \mathsf{Cargo}]_{\mathsf{cyt}} \tag{8b}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta\cdot\mathsf{Ran}\cdot\mathsf{GTP}]_{\mathrm{cyt}} = -\mathsf{R}_{\mathsf{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta\cdot\mathsf{Ran}\cdot\mathsf{GTP}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} - \mathsf{GAP}_{\mathsf{Imp}\beta} + \mathsf{Knockoff}_{\mathsf{cyt}} \tag{8c}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta]_{\mathrm{cyt}} = +\mathsf{R}_{\mathsf{cyt}} + \mathsf{C}_{\mathsf{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} + \mathsf{GAP}_{\mathsf{Imp}\beta}$$
(8d)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Imp}\beta\cdot\mathsf{Cargo}]_{\mathrm{cyt}} = -\mathsf{C}_{\mathsf{cyt}} + \mathsf{F}_{\mathsf{Imp}\beta\cdot\mathsf{Cargo}}\frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} - \mathsf{Knockoff}_{\mathsf{cyt}} \tag{8e}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{Cargo}]_{\mathrm{cyt}} = +\mathsf{C}_{\mathsf{cyt}} + \mathsf{F}_{\mathsf{Cargo}} \frac{V_{\mathrm{nuc}}}{V_{\mathrm{cyt}}} + \mathsf{Knockoff}_{\mathsf{cyt}} \tag{8f}$$

The flux of the reaction

$$\mathsf{Imp}\beta \cdot \mathsf{Cargo} + \mathsf{Ran} \cdot \mathsf{GTP} \longrightarrow \mathsf{Imp}\beta \cdot \mathsf{Ran} \cdot \mathsf{GTP} + \mathsf{Cargo} \tag{9}$$

is called Knockoff. It is modeled as a one-way reaction with forward rate k_{knockoff} . The previous equations are modified accordingly:

$$\frac{d}{dt}[\mathsf{Ran} \cdot \mathsf{GDP}]_{cyt} = (2a) + \mathsf{GAP}_{\mathsf{Imp}\beta} \tag{2a'}$$

$$\frac{d}{dt}[\mathsf{Ran}\cdot\mathsf{GTP}]_{cyt} = (2b) + \mathsf{R}_{\mathsf{cyt}} - \mathsf{Knockoff}_{\mathsf{cyt}} \tag{2b'}$$

Analogous nuclear equations (without GAP) are implemented but are omitted here. Analogously to (6a)/(6b) we have the additional nuclear-to-cytoplasmic diffusion fluxes

$$F_{Imp\beta\cdot Ran\cdot GTP}$$
, $F_{Imp\beta}$, $F_{Imp\beta\cdot Cargo}$, F_{Cargo} . (10)

Table 4: Equations for the coupling of the minimal Ran gradient system from §1.1 to importing mediated cargo transport.

(8a)	$k_{\text{on}}^{\text{R}} = 0.096 \mu\text{M}^{-1}\text{s}^{-1}, k_{\text{off}}^{\text{R}} = 4.8 \times 10^{-6}\text{s}^{-1}$	[GSR03, Supp. Table A], [RM05, Table II]
(8b)	$k_{\text{on}}^{\text{C}} = 0.49 \mu\text{M}^{-1}\text{s}^{-1}, k_{\text{off}}^{\text{C}} = 0.017\text{s}^{-1}$	[Cat+01, below Fig. 3], [RM05, Table II]
(9)	$k_{\text{knockoff}} = 2 \times 10^{-2} \mu\text{M}^{-1}\text{s}^{-1}$	[RM05, Table II]
(10)	$\begin{array}{c} D_{\text{Imp}\beta \cdot \text{Ran} \cdot \text{GTP}} = 0.07 \text{s}^{-1}, D_{\text{Imp}\beta} = 0.4 \text{s}^{-1} \\ D_{\text{Imp}\beta \cdot \text{Cargo}} = 0.25 \text{s}^{-1}, D_{\text{Cargo}} = 5 \times 10^{-4} \text{s}^{-1} \end{array}$	[RM05, Table III]

Table 5: Constants for the $Imp\beta$ -mediated transport from §1.1 / Table 4.

References

- [Bis+95] F. R. Bischoff, H. Krebber, E. Smirnova, W. Dong, and H. Ponstingl. "Co-activation of RanGTPase and inhibition of GTP dissociation by Ran–GTP binding protein RanBP1". In: *The EMBO Journal* 14.4 (Feb. 1995), pp. 705–715. DOI: 10.1002/j.1460-2075.1995.tb07049.x (cit. on p. 3).
- [Kle+95] C. Klebe, H. Prinz, A. Wittinghofer, and R. S. Goody. "The Kinetic Mechanism of Ran-Nucleotide Exchange Catalyzed by RCC1". In: *Biochemistry* 34.39 (Oct. 1995), pp. 12543–12552. DOI: 10.1021/bi00039a008 (cit. on pp. 3, 4).
- [Cat+01] B. Catimel, T. Teh, M. R. Fontes, I. G. Jennings, D. A. Jans, G. J. Howlett, E. C. Nice, and B. Kobe. "Biophysical Characterization of Interactions Involving Importin-α during Nuclear Import". In: Journal of Biological Chemistry 276.36 (Sept. 2001), pp. 34189–34198. DOI: 10.1074/jbc.m103531200 (cit. on pp. 2, 5, 6).
- [GSR03] D. Görlich, M. J. Seewald, and K. Ribbeck. "Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation". In: *The EMBO Journal* 22.5 (Mar. 2003), pp. 1088–1100. DOI: 10. 1093/emboj/cdg113 (cit. on pp. 1, 3–5).
- [RM05] G. Riddick and I. G. Macara. "A systems analysis of importin- α - β mediated nuclear protein import". In: *Journal of Cell Biology* 168.7 (Mar. 2005), pp. 1027–1038. DOI: 10.1083/jcb.200409024 (cit. on pp. 2, 5, 6).

TODOs:

1. p.1. ? [Cat+01] and [RM05] discuss the reaction $Imp\beta \cdot Cargo \Longrightarrow Imp\beta^* \cdot Cargo$