

PSP103.8 MOSFET MODEL: IMPROVEMENT OF THE CHARGE MODEL FOR SHORT CHANNEL TRANSISTORS

MOS-AK ESSDERC/ESSCIRC event

O. Rozeau*, S. Martinie*, G.D.J. Smit**, A.J. Scholten**, N. Derrier***, A. Juge***, P. Scheer*** and T. Poiroux*

*CEA-Leti (F), **NXP (NL), ***STMicroelectronics (F)

September 6th, 2021

- Introduction to PSP
- Overview of recent PSP versions
- Parasitic charges included in PSP103.7 and before
- Inner fringe charge model
- Inversion charges of overlaps
- Conclusion

INTRODUCTION TO PSP

- PSP is a surface potential based model for deep-submicron bulk MOSFET
 - Its development is supported by the CMC (Compact Model Coalition): https://si2.org/cmc/
 - In December 2005, PSP has been elected a new industrial standard model by the CMC. This initial version was based on MM11 (from NXP Semiconductors) and SP (from Pennsylvania State University and later at Arizona State University).
 - PSP contains all relevant physical effects such as mobility degradation, velocity saturation, DIBL, gate leakage currents, lateral doping gradient effects, STI stress, etc.
 - PSP meets numerical requirements for Digital, Analog-Mixed Signal, and RF circuit designs, in particular continuous derivation of currents and charges is insured.
 - Since the first standard version, the developers have provided 16 releases.

OVERVIEW OF RECENT PSP VERSIONS

Since 2015, CEA-Leti is the main developer of PSP

Website address:

https://www.cea.fr/cea-tech/leti/pspsupport

Contains:

- Release information
- Model documentation for PSP and JUNCAP2
- Downloadable Verilog-A codes

OVERVIEW OF RECENT PSP VERSIONS

Since 2015, CEA-Leti is the main developer PSP: one release per year

Date	Release	Major improvements/features
08/2016	PSP103.4	Modeling of edge MOSFET to reproduce the subthreshold hump effect Improved model of the subthreshold slope degradation induced by the short channel effects
04/2017	PSP103.5	New parameters for Coulomb scattering effect in mobility Improvement of temperature dependence of the flatband voltage
12/2017	PSP103.6	New model of interface states for better accuracy of g _m /I _d
02/2019	PSP103.7	Improvement of gate leakage currents model Possibility of charge model decoupling from IV for accurate CV of short channel transistors in saturation
07/2020	PSP103.8	Model of Inner fringe charges Inversion charge of overlaps

PARASITIC CHARGES INCLUDED IN PSP103.7 AND BEFORE

Parasitic capacitances: COV, CFR, CGBOV, junction capacitances

$$\begin{split} Q_g &= Q_{g,i} + Q_{s,ov} + Q_{d,ov} + Q_{of,s} + Q_{of,d} + Q_{gb,ov} \\ Q_s &= Q_{s,i} - Q_{s,ov} - Q_{of,s} \\ Q_d &= Q_{d,i} - Q_{d,ov} - Q_{of,d} \\ Q_b &= -Q_g - Q_s - Q_d \\ & \text{In red, intrinsic charges} \end{split}$$

Bias independent gate to substrate overlap charge $Q_{ab,ov}$

Bias independent outer fringe charges: $Q_{of,S}$, and $Q_{of,d}$

Bias dependent gate to drain/source overlap charges $Q_{s,ov}$ and $Q_{d,ov}$ These charges model don't include the inversion regime

PARASITIC CHARGES INCLUDED IN PSP103.7 AND BEFORE

Analysis of PSP103.7 versus TCAD simulations: CV for short channel MOSFET

Red dots: TCAD Blue lines: PSP103.7

> Requires improvements in accumulation regime for short channel MOSFET:

- Inner fringe capacitances are not modeled
- Inversion of overlaps is not modeled

Intrinsic MOSFET: inner fringe charges versus channel charge

Surface potential profile near to the drain and the source

 $\psi_{2D} \approx \psi_{1D} + (\psi_{SD} - \psi_{1D}) \cdot exp\left(-\frac{L/2 - x}{\lambda}\right) + (\psi_{SD} - \psi_{1D}) \cdot exp\left(-\frac{L/2 + x}{\lambda}\right)$

 λ is the length of the electrostatic field penetration

Calculation of charges:
$$\begin{cases} Q_{g,inr} = -W' \cdot C'_{ox} \cdot \lambda \cdot (\psi_{SD} - \psi_{1D}) \\ Q_{b,inr} = W \cdot C'_{ox} \cdot \lambda \cdot q_{b,1D} \end{cases}$$
 Inner fringe capacitances

Modeling method of inner fringe charge

Rigorous calculation of λ is very complex and depends on doping profiles, thicknesses, etc.

In depletion, we can write the inner fringe capacitance as:

Model parameter for dependence with the channel depletion thickness

$$C_{gs,inr} = C_{sg,inr} = \mathbf{CINR} \cdot (\mathbf{FCINRDEP} \cdot (f_{inr,dep} - 1) + 1)$$

$$C_{gd,inr} = C_{dg,inr} = \mathbf{CINRD} \cdot (\mathbf{FCINRDEP} \cdot (f_{inr,dep} - 1) + 1)$$

With,
$$\begin{cases} f_{inr,dep} = \frac{1}{1 + exp\left(-\frac{V_{GB}^* - \mathbf{DVFBINR}}{\phi_T^* \cdot \Delta_{inr,dep}}\right)} \\ \Delta_{inr,dep} = \frac{1}{2} \cdot \left(\frac{\phi_B}{2 \cdot \phi_T^*} + \frac{G}{\sqrt{2}} + 1\right) \end{cases}$$

Modeling method of inner fringe charge

In accumulation, the decrease of inner fringe charges due to screening effect is done by:

$$C_{gs,inr} = C_{sg,inr} = \mathbf{CINR} \cdot f_{inr,acc}$$

 $C_{ad.inr} = C_{d.g.inr} = \mathbf{CINRD} \cdot f_{inr,acc}$

 $f_{inr,acc}$ is a mathematical function to reproduce the behavior

$$V_{\mathrm{g,inr}} = V_{\mathrm{GB,ac}}^* - \mathrm{DVFBINR} + V_{\mathrm{inr,max}}$$

$$V_{\mathrm{x1,inr}} = MAXA \left(V_{\mathrm{g,inr}}, V_{\mathrm{inr,max}}, a_{\mathrm{inr}} \right)$$

$$V_{\mathrm{x2,inr}} = V_{\mathrm{x1,inr}} \cdot \left(2 \cdot V_{\mathrm{x1,inr}} - V_{\mathrm{inr,max}} - V_{\mathrm{g,inr}} \right)$$

$$V_{\mathrm{g,inr,eff}} = \frac{V_{\mathrm{g,inr}} \cdot V_{\mathrm{inr,max}}}{V_{\mathrm{x1,inr}}} \qquad \text{Parameter for screening effect in accumulation}$$

$$f_{\mathrm{q,inr}} = \sqrt{1 - \mathrm{FCINRACC}} \cdot V_{\mathrm{g,inr,eff}}$$

$$f_{\mathrm{inr,acc}} = \left(\frac{1}{2 \cdot f_{\mathrm{q,inr}}} - 1 \right) \cdot \frac{V_{\mathrm{x2,inr}} + V_{\mathrm{g,inr}} \cdot \left(V_{\mathrm{inr,max}} - V_{\mathrm{x1,inr}} \right)}{V_{\mathrm{x2,inr}}} \cdot \frac{V_{\mathrm{inr,max}}}{V_{\mathrm{x1,inr}}} + 1$$

Modeling method of inner fringe charge

In general case, by combining both effects:

$$C_{gs,inr} = C_{sg,inr} = \mathbf{CINR} \cdot f_{inr}$$

$$C_{gd,inr} = C_{dg,inr} = \mathbf{CINRD} \cdot f_{inr}$$
"Channel" depletion
$$f_{inr} = \mathbf{FCINRDEP} \cdot f_{inr,dep} + (1 - \mathbf{FCINRDEP}) \cdot f_{inr,acc}$$

In PSP, the calculations of the inner fringe charges are based on these equations

Parameter description of inner fringe charge model

Charge quantities

Screening effect in accumulation

Introduction and validation of inner fringe charge model

Red dots: TCAD

Blue lines: PSP103.8

Charges induced by the inner fringes are introduced as:

$$Q_g = Q_{g,i} + Q_{g,inr} + Q_{s,ov} + Q_{d,ov} + Q_{of,s} + Q_{of,d} + Q_{gb,ov}$$

$$Q_s = Q_{s,i} + Q_{s,inr} - Q_{s,ov} - Q_{of,s}$$

$$Q_d = Q_{d,i} + Q_{d,inr} - Q_{d,ov} - Q_{of,d}$$

$$Q_b = -Q_g - Q_s - Q_d$$

- Improvement on C_{gs} and C_{ad}
- Issue: C_{ab} is too low due to the lack of inversion charges in overlap regions

INVERSION CHARGES OF OVERLAPS

Analysis from TCAD simulations: partial inversion of overlaps

INVERSION CHARGES OF OVERLAPS

Introduction of overlap charges in inversion (channel in accumulation)

Charges induced by the inversion of overlaps are added at the gate and the bulk

$$\begin{aligned} Q_g &= Q_{g,i} + Q_{g,inr} + Q_{s,ov} + Q_{d,ov} + Q_{of,s} + Q_{of,d} + Q_{gb,ov} + Q_{g,ov} + Q_{g,dov} \\ Q_s &= Q_{s,i} + Q_{s,inr} - Q_{s,ov} - Q_{of,s} \\ Q_d &= Q_{d,i} + Q_{d,inr} - Q_{d,ov} - Q_{of,d} \\ Q_b &= -Q_g - Q_s - Q_d \end{aligned}$$
 The calculation

The calculation of these charges is based on the use of Lambert W-function:

$$x_{\mathrm{gb,eff,ov}} = \ln \left(1 + \exp \left(\mathbf{CGOVACCG} \cdot \left(\frac{V_{\mathrm{GB}} - V_{\mathrm{FB}}}{2 \cdot \phi_{\mathrm{T}}} + \Delta x_{\mathrm{gb,ov}} \right) \right) \right)$$

$$Q_{\rm g,ov} = -2 \cdot \phi_{\rm T} \cdot \text{FCGOVACC} \cdot \text{CGOV} \cdot \frac{x_{\rm gb,eff,ov}}{\text{CGOVACCG}} \cdot \left(1 - \frac{\ln\left(1 + x_{\rm gb,eff,ov}\right)}{2 + x_{\rm gb,eff,ov}}\right)$$

$$x_{\rm gb,eff,dov} = \ln \left(1 + \exp \left(\text{CGOVACCG} \cdot \left(\frac{V_{\rm GB} - \boldsymbol{V}_{\rm FB}}{2 \cdot \phi_{\rm T}} + \boldsymbol{\Delta} \boldsymbol{x}_{\rm gb,dov} \right) \right) \right)$$

$$Q_{\rm g,dov} = -2 \cdot \phi_{\rm T} \cdot \text{FCGOVACC} \cdot \text{CGOVD} \cdot \frac{x_{\rm gb,eff,dov}}{\text{CGOVACCG}} \cdot \left(1 - \frac{\ln\left(1 + x_{\rm gb,eff,dov}\right)}{2 + x_{\rm gb,eff,dov}}\right)$$

INVERSION CHARGES OF OVERLAPS

Improvement of gate-bulk capacitance for short channel transistors

Blue lines: PSP103.8

CONCLUSION

Model validation using experimental data

Better description of CV characteristics in accumulation and depletion regimes for short channel MOSFET (here L=35nm)

CONCLUSION

Validations of Source-Drain symmetry and capacitance reciprocities

No issue during the symmetry test on capacitances using definition from C. McAndrew (TED 2006)

 V_{as} =-2V to 0V

☐ Reciprocities of parasitic capacitances whatever the supplied voltages

> L=60nm $V_{ds}=0V$ to 2V $V_{bs}=0V$

CONCLUSION

- PSP103.8 is a significant release for the modeling of short channel CV in accumulation regime
- Where to find PSP releases
 - Verilog-A versions of PSP are free downloadable at https://www.cea.fr/cea-tech/leti/pspsupport
 - PSP can be used in most of commercial circuit simulators
 - PSP103.8.0 has been released in July 2020
 - PSP103.8.1, containing minor bug fixes and new parameters for temperature control, has been released in Avril 2021

Thank Ofou

CEA-Leti, technology research institute

Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

