Assignment 3

Assignment Date	03 October 2022
Team ID	PNT2022TMID45005
Student Name	J.Akilandeswari
Student RollNumber	811219205002
Project Name	AI Based Discourse For Banking Industry
Maximum Marks	2 Marks

Problem Statement: Abalone Age Prediction

1. Download the dataset: Dataset

2. Load the dataset into the tool.

```
import numpy as np
import pandas as pd

ds=pd.read_csv("abalone.csv")

# Rings / integer / -- / +1.5 gives the age in years

ds['Age']=ds["Rings"]+1.5

ds.head(5)
```

Sex weight	Length \	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M	0.455	0.365	0.095	0.5140	0.2245	
0.1010						
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485						
2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415						
3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140						
4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395						

	Shell	weight	Rings	Age
0		0.150	15	16.5
1		0.070	7	8.5
2		0.210	9	10.5
3		0.155	10	11.5
4		0.055	7	8.5

3. Perform Below Visualizations.

Univariate Analysis

Bi-Variate Analysis

Multi-Variate Analysis

univarient analysis

#frequency table for age

```
ft = ds1['Age'].value counts()
print("Frequency table for Age is given below")
print("{}\n\n".format(ft))
# mean
print("Mean, Median, std \n")
ma=ds1['Age'].mean() #mean of age
mh = ds1['Height'].mean() #mean of height
mel = ds1['Length'].median() #median value of length
stw = ds1['Whole weight'].std() #standard devation of whole weight
#chart
import matplotlib.pyplot as plt # library for plot or graph
import seaborn as sns
plt.subplot(1,2,1)
ch = ds1.boxplot(column='Diameter', grid=True, color = 'red')
plt.title('Box plot')
plt.subplot(1,2,2)
DC = sns.kdeplot(ds1['Diameter'])
plt.title('Density Curve')
print("1-mean of age = ", ma)
print("2-mean of height = ", mh)
print("3-median value of length = ", mel) #
print("4-standard devation of whole weight = ",stw)
print("5-frequency table for rings = \n {}" .format(fre))
print("\nChart\n\n6-boxplot of Diameter", flush=True)
Frequency table for Age is given below
11.5
        32
10.5
        28
8.5
        20
9.5
       18
13.5
        17
12.5
       16
14.5
       13
15.5
       11
16.5
       10
17.5
        7
6.5
        6
```

```
5
7.5
21.5
       4
5.5
       4
      3 2
20.5
19.5
22.5
       2
     1
18.5
Name: Age, dtype: int64
Mean, Median, std
1-mean of age = 12.235
2\text{-mean of height} = 0.13482500000000000
3-median value of length = 0.53
4-standard devation of whole weight = 0.48292555269001314
5-frequency table for rings =
10
      32
9
      28
7
     20
8
     18
12
     17
11
     16
13
    13
14
    11
15
     10
16
     7
5
     6
6
      5
20
     4
4
      4
19
      3
18
      3
21
      2
17
      1
Name: Rings, dtype: int64
```

Chart

6-boxplot of Diameter

#multi-varient analysis

```
import matplotlib.pyplot as plt
import seaborn as sns

ds1=ds.head(200)
df=sns.countplot(x="Viscera weight",hue='Sex',data=ds1)
print(df)
AxesSubplot(0.125,0.125;0.775x0.755)
```


4. Perform descriptive statistics on the dataset.

ds.describe()

	Length	Diameter	Height N	Whole weight	Shucked
weight \	-		-	_	
		177.000000 41	77.00000	4177.000000	
4177.0000	00				
mean	0.523992	0.407881	0.139516	0.828742	
0.359367					
std	0.120093	0.099240	0.041827	0.490389	
0.221963	0 075000	0 055000	0 000000	0 000000	
min 0.001000	0.075000	0.055000	0.000000	0.002000	
25%	0.450000	0.350000	0.115000	0.441500	
0.186000	0.450000	0.330000	0.115000	0.441500	
50%	0.545000	0.425000	0.140000	0.799500	
0.336000					
75%	0.615000	0.480000	0.165000	1.153000	
0.502000					
max	0.815000	0.650000	1.130000	2.825500	
1.488000					
		Shell weight			ge
count		4177.000000			
mean	0.180594				
std	0.109614		3.2241		
min	0.000500			00 2.5000	
25%	0.093500	0.130000		9.5000	
50%	0.171000	0.234000	9.0000	00 10.5000	00

```
75% 0.253000 0.329000 11.000000 12.500000 max 0.760000 1.005000 29.000000 30.500000
```

5. Check for Missing values and deal with them.

ds.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
9	Age	4177 non-null	float64
ــ الم	Fl+(1/0)	in+(1/1) abiast	/1\

dtypes: float64(8), int64(1), object(1)

memory usage: 326.5+ KB

ds.isnull().sum()

0 Sex Length Diameter 0 Height Whole weight 0 Shucked weight 0 Viscera weight 0 Shell weight Rings 0 0 Age dtype: int64

aojpo. 111001

ds.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	\
0	True	True	True	True	True	True	
1	True	True	True	True	True	True	
2	True	True	True	True	True	True	
3	True	True	True	True	True	True	
4	True	True	True	True	True	True	
4172	True	True	True	True	True	True	
4173	True	True	True	True	True	True	
4174	True	True	True	True	True	True	
4175	True	True	True	True	True	True	

4176	True	True	True	Tru	е	True	True
0	Viscera	weight True	Shell	True	Rings True	Age True	
1 2		True True		True True	True True	True True	
3 4		True True		True True	True True	True True	
•••		···				···	
4172 4173		True True		True True	True True	True True	
4174		True		True	True	True	
4175 4176		True True		True True	True True	True True	

[4177 rows x 10 columns]

6. Find the outliers and replace them outliers

#occurence of outliers
#a data point in a data set that is distant from all other
observations

sns.boxplot(ds.Diameter)

/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/ _decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

<AxesSubplot:xlabel='Diameter'>


```
Q1= ds.Diameter.quantile(0.25)
Q3=ds.Diameter.quantile(0.75)
IQR=Q3-Q1
            #spread the middle values are
upper limit =Q3 + 1.5*IQR
lower_limit =Q1 - 1.5*IQR
ds['Diameter'] =
np.where(ds['Diameter']>upper limit, 30, ds['Diameter'])
sns.boxplot(ds.Diameter)
/home/lokesh/anaconda3/lib/python3.9/site-packages/seaborn/
decorators.py:36: FutureWarning: Pass the following variable as a
keyword arg: x. From version 0.12, the only valid positional argument
will be `data`, and passing other arguments without an explicit
keyword will result in an error or misinterpretation.
  warnings.warn(
<AxesSubplot:xlabel='Diameter'>
```


7. Check for Categorical columns and perform encoding.

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

ds1['Sex'] = le.fit_transform(ds1['Sex'])
ds1

0 = female, 1 = infant, 2 = male

	Sex	Length	Diameter	Height	Whole	weight	Shucked weight	: \
0	2	0.455	0.365	0.095		0.5140	0.2245)
1	2	0.350	0.265	0.090		0.2255	0.0995)
2	0	0.530	0.420	0.135		0.6770	0.2565)
3	2	0.440	0.365	0.125		0.5160	0.2155)
4	1	0.330	0.255	0.080		0.2050	0.0895)
195	2	0.500	0.405	0.155		0.7720	0.3460)
196	0	0.505	0.410	0.150		0.6440	0.2850)
197	2	0.640	0.500	0.185		1.3035	0.4445)
198	2	0.560	0.450	0.160		0.9220	0.4320)
199	2	0.585	0.460	0.185		0.9220	0.3635)
	Visc	era weigh	nt Shell	weight	Rings	Age		
0		0.101	L O	0.150	15	16.5		
1		0.048	35	0.070	7	8.5		
2		0.141	L5	0.210	9	10.5		
3		0.114	10	0.155	10	11.5		
4		0.039	95	0.055	7	8.5		

```
. . .
                                        . . .
. .
                 . . .
195
                                         12 13.5
              0.1535
                              0.245
196
              0.1450
                              0.210
                                         11 12.5
197
              0.2635
                              0.465
                                         16 17.5
                                         15 16.5
198
              0.1780
                              0.260
199
              0.2130
                              0.285
                                         10 11.5
```

[200 rows x 10 columns]

8. Split the data into dependent and independent variables.

#Splitting the Dataset into the Independent Feature Matrix

```
x = ds1.iloc[:, 0:9]
Х
     Sex Length Diameter Height Whole weight Shucked weight \
0
       2
           0.455
                     0.365
                            0.095
                                           0.5140
                                                            0.2245
1
       2
           0.350
                     0.265 0.090
                                           0.2255
                                                            0.0995
2
           0.530
                     0.420 0.135
       0
                                           0.6770
                                                            0.2565
3
       2
           0.440
                     0.365
                            0.125
                                           0.5160
                                                            0.2155
4
           0.330
                     0.255 0.080
       1
                                           0.2050
                                                            0.0895
     . . .
             . . .
                       . . .
                               . . .
. .
                                                               . . .
                                               . . .
195
       2
           0.500
                     0.405 0.155
                                           0.7720
                                                            0.3460
196
       0
           0.505
                     0.410 0.150
                                           0.6440
                                                            0.2850
197
       2
          0.640
                     0.500 0.185
                                           1.3035
                                                            0.4445
198
       2
           0.560
                     0.450 0.160
                                           0.9220
                                                            0.4320
199
       2
           0.585
                              0.185
                                           0.9220
                     0.460
                                                            0.3635
     Viscera weight
                     Shell weight Rings
             0.1010
                             0.150
                                       15
0
                                        7
                             0.070
1
             0.0485
2
                                        9
             0.1415
                             0.210
3
             0.1140
                             0.155
                                       10
4
             0.0395
                             0.055
                                        7
. .
                 . . .
                               . . .
                                       . . .
195
             0.1535
                             0.245
                                       12
             0.1450
                             0.210
196
                                       11
             0.2635
                             0.465
                                       16
197
198
             0.1780
                             0.260
                                       15
199
             0.2130
                             0.285
                                       10
```

[200 rows x 9 columns]

#Extracting the Dataset to Get the Dependent Vector

```
y = ds1.iloc[:,9:10]
print(y)

         Age
0     16.5
```

```
1 8.5

2 10.5

3 11.5

4 8.5

......

195 13.5

196 12.5

197 17.5

198 16.5

199 11.5

[200 rows x 1 columns]
```

9. Scale the independent variables

#scaling the independent variables using scale and MinMaxScaler

```
from sklearn.preprocessing import scale
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
x scaled = mm.fit transform(x)
y scaled = mm.fit transform(y)
x scaled
array([[1.
                , 0.51351351, 0.52808989, ..., 0.17680075,
0.14070352,
        0.64705882],
                 , 0.32432432, 0.30337079, ..., 0.07857811,
       [1.
0.06030151,
       0.17647059],
                  , 0.64864865, 0.65168539, ..., 0.2525725,
       [0.
0.20100503,
       0.29411765],
       . . . ,
                  , 0.84684685, 0.83146067, ..., 0.4808232 ,
       [1.
0.45728643,
        0.70588235],
                 , 0.7027027 , 0.71910112, ..., 0.32086062,
0.25125628,
       0.64705882],
                  , 0.74774775, 0.74157303, ..., 0.38634238,
0.27638191,
        0.35294118]])
y scaled
array([[0.64705882],
       [0.17647059],
```

```
[0.29411765],
[0.35294118],
[0.17647059],
[0.23529412],
[0.94117647],
[0.70588235],
[0.29411765],
[0.88235294],
[0.58823529],
[0.35294118],
[0.41176471],
[0.35294118],
[0.35294118],
[0.47058824],
[0.17647059],
[0.35294118],
[0.17647059],
[0.29411765],
[0.41176471],
[0.35294118],
[0.47058824],
[0.29411765],
[0.35294118],
[0.41176471],
[0.41176471],
[0.47058824],
[0.64705882],
[0.41176471],
[0.35294118],
[0.64705882],
[0.82352941],
[0.88235294],
[0.52941176],
[0.23529412],
[0.70588235],
[0.23529412],
[0.41176471],
[0.29411765],
[0.29411765],
[0.58823529],
[0.05882353],
[0.05882353],
[0.
[0.17647059],
[0.29411765],
[0.17647059],
[0.11764706],
[0.29411765],
[0.23529412],
[0.17647059],
```

```
[0.35294118],
[0.35294118],
[0.17647059],
[0.23529412],
[0.23529412],
[0.23529412],
ΓΟ.
           1,
[0.17647059],
[0.17647059],
[0.29411765],
[0.35294118],
[0.17647059],
[0.23529412],
[0.23529412],
[0.47058824],
[0.52941176],
[0.35294118],
[0.11764706],
[0.52941176],
[0.23529412],
[0.94117647],
[0.41176471],
[0.52941176],
[0.64705882],
[0.29411765],
[0.35294118],
[0.41176471],
[0.58823529],
[0.29411765],
[0.47058824],
[0.70588235],
[1.
           ],
[0.58823529],
[0.47058824],
[0.52941176],
[0.35294118],
[0.29411765],
[0.47058824],
[0.64705882],
[0.47058824],
[0.52941176],
[0.35294118],
[0.64705882],
[0.58823529],
[0.29411765],
[0.23529412],
[0.17647059],
[0.35294118],
[0.17647059],
[0.64705882],
```

```
[0.64705882],
[0.35294118],
[0.47058824],
[0.47058824],
[0.41176471],
[0.35294118],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.29411765],
[0.41176471],
[0.41176471],
[0.41176471],
[0.35294118],
[0.29411765],
[0.23529412],
[0.29411765],
[0.17647059],
[0.58823529],
[0.11764706],
[0.11764706],
[0.05882353],
[0.11764706],
[0.23529412],
[0.88235294],
[0.82352941],
[0.76470588],
[0.29411765],
[0.17647059],
[0.17647059],
[0.17647059],
[0.23529412],
[0.17647059],
[0.29411765],
[0.29411765],
[0.29411765],
[0.35294118],
[0.35294118],
[0.70588235],
[0.41176471],
[0.35294118],
[0.35294118],
[0.35294118],
[0.29411765],
[0.05882353],
[0.
[0.64705882],
[0.29411765],
```

```
[0.35294118],
[0.35294118],
[0.47058824],
[0.35294118],
[0.52941176],
[0.70588235],
[0.52941176],
[0.52941176],
[0.52941176],
[0.52941176],
[0.47058824],
[0.82352941],
[0.70588235],
[0.58823529],
[0.94117647],
[0.94117647],
[0.58823529],
[0.47058824],
[0.58823529],
[0.17647059],
[0.23529412],
[0.23529412],
[0.05882353],
[0.17647059],
[0.05882353],
[0.23529412],
[0.
           ],
[0.41176471],
[0.58823529],
[1.
[0.35294118],
[0.35294118],
[0.47058824],
[0.52941176],
[0.47058824],
[0.35294118],
[0.41176471],
[0.29411765],
[0.52941176],
[0.47058824],
[0.58823529],
[0.23529412],
[0.35294118],
[0.47058824],
[0.41176471],
[0.70588235],
[0.64705882],
[0.35294118]]
```

10. Split the data into training and testing

```
from sklearn.model selection import train test split # library for
split the data into training and testing
x train,x test,y train,y test =
train test split(x scaled, y scaled, train size=0.80, test size =
0.20, random state=0)
x train
array([[0.5
               , 0.17117117, 0.15730337, ..., 0.0261927 ,
0.01809045,
        0.176470591,
                  , 0.71171171, 0.69662921, ..., 0.34985968,
       [0.
0.31155779,
        0.47058824],
                  , 0.73873874, 0.71910112, ..., 0.49672591,
       [0.
0.27638191,
        0.41176471],
       . . . ,
                  , 0.48648649, 0.47191011, ..., 0.16651076,
       [1.
0.15577889,
        0.35294118],
                  , 0.52252252, 0.5505618 , ..., 0.19363891,
0.14070352,
        0.17647059],
                  , 0.63963964, 0.68539326, ..., 0.42376052,
       [1.
0.27638191,
        0.2352941211)
y train
array([[0.17647059],
       [0.47058824],
       [0.41176471],
       [0.29411765],
       [0.58823529],
       [0.17647059],
       [0.29411765],
       [0.64705882],
       [0.29411765],
       [0.41176471],
       [0.23529412],
       [0.11764706],
       [0.47058824],
       [0.23529412],
       [0.
                  ],
       [0.35294118],
       [0.35294118],
```

```
[0.52941176],
[0.29411765],
[0.23529412],
[0.29411765],
[0.29411765],
[1.
[0.29411765],
[0.35294118],
[0.52941176],
[0.17647059],
[0.82352941],
[0.17647059],
[0.52941176],
[0.29411765],
[0.64705882],
[0.29411765],
[0.64705882],
[0.35294118],
[0.47058824],
[0.29411765],
[0.35294118],
[0.47058824],
[0.35294118],
[0.35294118],
[0.29411765],
[0.29411765],
[0.47058824],
[0.29411765],
[0.35294118],
[0.29411765],
[0.17647059],
[0.17647059],
[0.70588235],
[0.05882353],
[0.58823529],
[0.35294118],
[0.41176471],
[0.41176471],
[0.
[0.17647059],
[0.11764706],
[0.35294118],
[0.29411765],
[0.52941176],
[0.47058824],
[0.23529412],
[0.64705882],
[0.64705882],
[0.29411765],
[0.58823529],
```

```
[0.23529412],
[0.94117647],
[0.58823529],
[0.11764706],
[0.29411765],
[0.11764706],
[0.47058824],
[0.35294118],
[0.52941176],
[0.29411765],
[0.47058824],
[0.23529412],
[0.41176471],
[0.47058824],
[0.41176471],
[0.47058824],
[0.35294118],
[0.17647059],
[0.29411765],
[0.35294118],
[0.41176471],
[0.70588235],
[0.64705882],
[0.94117647],
[0.35294118],
[0.58823529],
[0.17647059],
[0.35294118],
[0.17647059],
[0.52941176],
[0.47058824],
[0.35294118],
[0.35294118],
[0.23529412],
[0.64705882],
[0.23529412],
[0.23529412],
[0.23529412],
[0.17647059],
[0.29411765],
[0.47058824],
[0.05882353],
[0.47058824],
[0.17647059],
[0.23529412],
[0.35294118],
[0.41176471],
[0.17647059],
[0.35294118],
[0.70588235],
```

```
[0.88235294],
       [0.52941176],
       [0.64705882],
       [0.41176471],
       [0.29411765],
       [0.64705882],
       [0.94117647],
       [0.23529412],
       [0.05882353],
       [0.82352941],
       [0.70588235],
       [0.47058824],
       [0.29411765],
       [0.41176471],
       [0.35294118],
       [0.70588235],
       [0.58823529],
       [0.41176471],
       [0.05882353],
       [0.23529412],
       [0.94117647],
       [0.35294118],
       [0.41176471],
       [0.58823529],
       [0.47058824],
       [0.41176471],
       [0.05882353],
       [0.52941176],
       [0.29411765],
       [0.
       [0.35294118],
       [0.29411765],
       [0.52941176],
       [0.35294118],
       [0.70588235],
       [0.35294118],
       [0.88235294],
       [0.35294118],
       [0.52941176],
       [0.58823529],
       [0.35294118],
       [0.17647059],
       [0.23529412]])
x test
array([[1. , 0.35135135, 0.37078652, 0.21052632, 0.08948413,
        0.08160377, 0.06828812, 0.09045226, 0.17647059],
                , 0.94594595, 0.94382022, 0.92105263, 0.76448413,
        0.66226415, 1. , 0.58291457, 0.58823529],
       [0. , 0.59459459, 0.60674157, 0.44736842, 0.25297619,
```

```
0.23632075, 0.23386342, 0.21105528, 0.35294118],
          , 0.54054054, 0.53932584, 0.47368421, 0.19543651,
0.17971698, 0.23666978, 0.15577889, 0.17647059],
       , 0.26126126, 0.25842697, 0.23684211, 0.04503968,
0.04009434, 0.0767072, 0.04020101, 0.23529412],
          , 0.7027027 , 0.71910112, 0.63157895, 0.39424603,
0.39481132, 0.48924228, 0.29145729, 0.35294118],
          , 0.45945946, 0.38202247, 0.28947368, 0.12757937,
0.12311321, 0.13283442, 0.11055276, 0.23529412],
          , 0.52252252, 0.49438202, 0.42105263, 0.19246032,
0.20141509, 0.1898971 , 0.14723618, 0.35294118],
          , 0.57657658, 0.56179775, 0.5 , 0.20297619,
0.19528302, 0.1655753, 0.18090452, 0.41176471],
[0. , 0.83783784, 0.86516854, 0.78947368, 0.53234127,
0.46792453, 0.55846586, 0.44221106, 0.35294118],
          , 0.6036036 , 0.61797753, 0.36842105, 0.23611111,
0.27783019, 0.28718428, 0.16582915, 0.29411765],
       , 0.18018018, 0.14606742, 0.10526316, 0.01706349,
0.01698113, 0.03180543, 0.0201005, 0.05882353],
          , 0.72072072, 0.78651685, 0.73684211, 0.3609127 ,
0.36650943, 0.36202058, 0.28643216, 0.58823529],
          , 0.71171171, 0.71910112, 0.5 , 0.38035714,
0.35518868, 0.26753976, 0.30150754, 0.47058824],
          , 0.72972973, 0.70786517, 0.52631579, 0.36150794,
0.35283019, 0.45930776, 0.27638191, 0.29411765],
          , 0.67567568, 0.66292135, 0.44736842, 0.29285714,
0.26745283, 0.26753976, 0.25125628, 0.70588235],
          , 0.91891892, 0.94382022, 0.71052632, 0.7015873 ,
0.75896226, 0.72217025, 0.44723618, 0.88235294],
          , 0.76576577, 0.78651685, 0.65789474, 0.48888889,
0.44622642, 0.51730589, 0.40201005, 0.76470588],
          , 0.5045045 , 0.50561798, 0.34210526, 0.19543651,
0.21367925, 0.20579981, 0.13567839, 0.23529412],
          , 0.78378378, 0.71910112, 0.81578947, 0.42380952,
0.44386792, 0.52946679, 0.30653266, 0.52941176],
          , 0.81081081, 0.7752809 , 0.71052632, 0.39146825,
0.4009434 , 0.38821328, 0.31658291, 0.35294118],
          , 0.57657658, 0.56179775, 0.44736842, 0.20595238,
0.22122642, 0.18896165, 0.16482412, 0.35294118],
          , 0.3963964 , 0.37078652, 0.28947368, 0.06865079,
0.07264151, 0.07202993, 0.06532663, 0.17647059],
          , 0.72972973, 0.74157303, 0.65789474, 0.43412698,
0.27169811, 0.32179607, 0.4321608, 0.52941176],
          , 0.5045045 , 0.48314607, 0.34210526, 0.15138889,
0.15990566, 0.19831618, 0.12562814, 0.17647059],
          , 0.36036036, 0.30337079, 0.18421053, 0.07301587,
[1.
          , 0.08325538, 0.06030151, 0.11764706],
          , 0.73873874, 0.7752809 , 0.57894737, 0.37301587,
[1.
0.35330189, 0.39289055, 0.34170854, 0.41176471],
          , 0.81081081, 0.80898876, 0.78947368, 0.47142857,
```

```
0.50471698, 0.54256314, 0.34673367, 0.52941176],
                  , 0.62162162, 0.66292135, 0.52631579, 0.29206349,
        0.27688679, 0.31057063, 0.24623116, 0.58823529],
                , 0.07207207, 0.04494382, 0.05263158, 0.0047619 ,
       0.00660377, 0.01122544, 0.00502513, 0.
                 , 0.33333333, 0.33707865, 0.23684211, 0.10337302,
        0.07971698, 0.06173994, 0.10552764, 0.17647059],
                 , 0.59459459, 0.60674157, 0.52631579, 0.25059524,
       0.23207547, 0.31618335, 0.21105528, 0.23529412],
                , 0.75675676, 0.7752809 , 0.55263158, 0.40595238,
        0.40660377, 0.47801684, 0.31658291, 0.64705882],
                 , 0.53153153, 0.51685393, 0.34210526, 0.15912698,
       0.15235849, 0.18802619, 0.16582915, 0.29411765],
       [0. , 0.71171171, 0.69662921, 0.60526316, 0.3609127 ,
        0.39339623, 0.38821328, 0.26130653, 0.47058824],
                  , 0.74774775, 0.74157303, 0.68421053, 0.35813492,
        0.33443396, 0.494855 , 0.28140704, 0.29411765],
                 , 0.97297297, 0.92134831, 0.65789474, 0.76547619,
       0.71320755, 0.47614593, 0.77386935, 0.82352941],
                 , 0.28828829, 0.28089888, 0.21052632, 0.06944444,
        0.0745283 , 0.06173994, 0.04522613, 0.17647059],
                , 0.76576577, 0.7752809 , 0.63157895, 0.5109127 ,
                , 0.42563143, 0.57286432, 1. ],
       0.375
                  , 0.67567568, 0.6741573 , 0.65789474, 0.30634921,
        0.26698113, 0.33021515, 0.27135678, 0.41176471]])
y_test
array([[0.17647059],
       [0.58823529],
       [0.35294118],
       [0.17647059],
       [0.23529412],
       [0.35294118],
       [0.23529412],
       [0.35294118],
       [0.41176471],
       [0.35294118],
       [0.29411765],
       [0.05882353],
       [0.58823529],
       [0.47058824],
       [0.29411765],
       [0.70588235],
       [0.88235294],
       [0.76470588],
       [0.23529412],
       [0.52941176],
       [0.35294118],
       [0.35294118],
       [0.17647059],
```

```
[0.52941176],
       [0.17647059],
       [0.11764706],
       [0.41176471],
       [0.52941176],
       [0.58823529],
       [0.
                  1,
       [0.17647059],
       [0.23529412],
       [0.64705882],
       [0.29411765],
       [0.47058824],
       [0.29411765],
       [0.82352941],
       [0.17647059],
       [1.
       [0.41176471]])
print(x_scaled.shape)
print(y scaled.shape)
print(x train.shape)
print(y train.shape)
print(x test.shape)
print(y test.shape)
(200, 9)
(200, 1)
(160, 9)
(160, 1)
(40, 9)
(40, 1)
11. Build the Model
from sklearn.linear model import LinearRegression
mlr = LinearRegression()
mlr.fit(x train, y train)
LinearRegression()
12. Train the Model
13. Test the Model
prediction = mlr.predict(x test)
prediction
array([[1.76470588e-01],
       [5.88235294e-01],
       [3.52941176e-01],
```

```
[1.76470588e-01],
       [2.35294118e-01],
       [3.52941176e-01],
       [2.35294118e-01],
       [3.52941176e-01],
       [4.11764706e-01],
       [3.52941176e-01],
       [2.94117647e-01],
       [5.88235294e-02],
       [5.88235294e-01],
       [4.70588235e-01],
       [2.94117647e-01],
       [7.05882353e-01],
       [8.82352941e-01],
       [7.64705882e-01],
       [2.35294118e-01],
       [5.29411765e-01],
       [3.52941176e-01],
       [3.52941176e-01],
       [1.76470588e-01],
       [5.29411765e-01],
       [1.76470588e-01],
       [1.17647059e-01],
       [4.11764706e-01],
       [5.29411765e-01],
       [5.88235294e-01],
       [2.20691474e-16],
       [1.76470588e-01],
       [2.35294118e-01],
       [6.47058824e-01],
       [2.94117647e-01],
       [4.70588235e-01],
       [2.94117647e-01],
       [8.23529412e-01],
       [1.76470588e-01],
       [1.00000000e+00],
       [4.11764706e-01]])
prediction.astype(int)
array([[0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
       [0],
```

```
[0],
[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [1],
        [0]])
y_test.astype(int)
array([[0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
        [0],
```

```
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[0],
[1],
[0]])
```

[0],

14. Measure the performance using Metrics.

```
from sklearn.metrics import r2 score
r2 score(prediction, y_test)
1.0
from sklearn.preprocessing import PolynomialFeatures
plr = PolynomialFeatures(degree=2)
x poly = plr.fit transform(x)
x poly
array([[1.00000e+00, 2.00000e+00, 4.55000e-01, ..., 2.25000e-02,
        2.25000e+00, 2.25000e+02],
       [1.00000e+00, 2.00000e+00, 3.50000e-01, ..., 4.90000e-03,
        4.90000e-01, 4.90000e+01],
       [1.00000e+00, 0.00000e+00, 5.30000e-01, ..., 4.41000e-02,
        1.89000e+00, 8.10000e+01],
       [1.00000e+00, 2.00000e+00, 6.40000e-01, ..., 2.16225e-01,
       7.44000e+00, 2.56000e+02],
       [1.00000e+00, 2.00000e+00, 5.60000e-01, ..., 6.76000e-02,
        3.90000e+00, 2.25000e+02],
       [1.00000e+00, 2.00000e+00, 5.85000e-01, ..., 8.12250e-02,
        2.85000e+00, 1.00000e+02]])
```

Abalone Age Prediction

1. LinearRegression from sklearn.linear model import LinearRegression lr = LinearRegression() lr.fit(x poly,y) LinearRegression() lr.predict(plr.transform([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0. 285, 16]])) /home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/ base.py:450: UserWarning: X does not have valid feature names, but PolynomialFeatures was fitted with feature names warnings.warn(array([[17.5]]) 2. Ridge from sklearn.linear model import Ridge r = Ridge()r.fit(x,y)Ridge() r.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]]) /home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/ base.py:450: UserWarning: X does not have valid feature names, but Ridge was fitted with feature names warnings.warn(array([[17.49624459]]) 3. Lasso from sklearn.linear model import Lasso 1 = Lasso()l.fit(x,y)Lasso() l.predict([[1,0.350,0.410,0.185,1.3035,0.3635,0.1010,0.285,16]]) /home/lokesh/anaconda3/lib/python3.9/site-packages/sklearn/

base.py:450: UserWarning: X does not have valid feature names, but

Lasso was fitted with feature names

warnings.warn(

array([17.08721342])