A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 7ED

Bookmark

Show all steps: (

ON

Problem

If $\alpha = \sqrt[4]{2}$ is a real fourth root of 2, then the four fourth roots of 2 are $\pm \alpha$ and $\pm i\alpha$. Explain parts 1–6, briefly but carefully:

Explain: $h(\alpha)$ must be a fourth root of 2 and h(i) must be equal to $\pm i$. Combining the four possibilities for $h(\alpha)$ with the two possibilities for h(i) gives eight possible automorphisms. List them in the format

$$\left\{ \begin{array}{ll} \alpha \to \alpha \\ i \to i \end{array} \right\}, \qquad \left\{ \begin{array}{ll} \alpha \to -\alpha \\ i \to i \end{array} \right\}, \dots$$

Step-by-step solution

Step 1 of 2

The objective is to list the automorphism of $\mathbb{Q}(\sqrt[4]{2},i)$ over \mathbb{Q} .

Comment

Step 2 of 2

Consider the Galois group of x^4-2 over $\mathbb Q$. The polynomial has $4 \operatorname{roots}$:

$$\sqrt[4]{2}, i\sqrt[4]{2}, -\sqrt[4]{2}, -i\sqrt[4]{2}$$

For any automorphism h of $\mathbb{Q}\left(\sqrt[4]{2},i\right)$ over \mathbb{Q} , $h\left(\sqrt[4]{2}\right)$ has to be a root of x^4-2 (4 possible values) and h(i) has to be a root of x^2+1 (2 possible values).

Thus, there are at most $4 \cdot 2 = 8$ automorphism of $\mathbb{Q}(\sqrt[4]{2}, i)$ over \mathbb{Q} .

Because $\left[\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\right]=8$, $Gal\left(\mathbb{Q}\left(\sqrt[4]{2},i\right):\mathbb{Q}\right)$ has size 8 and therefore all assignments of $h\left(\sqrt[4]{2}\right)$ and h(i) to roots of x^4-2 and x^2+1 , respectively, must be realized by field

automorphism.

Let r and s be the automorphism of $\mathbb{Q}\left(\sqrt[4]{2},i\right)$ over \mathbb{Q} determined by

$$r(\sqrt[4]{2}) = i\sqrt[4]{2}, \ r(i) = i, \ s(\sqrt[4]{2}) = \sqrt[4]{2}, \ s(i) = -i.$$

Then the following 8 different automorphism of $\mathbb{Q}(\sqrt[4]{2},i)$ over \mathbb{Q} is obtained as follows:

$$\begin{split} id: & \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r: \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r^2: \begin{cases} \sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i \mapsto i \end{cases} \quad r^3: \begin{cases} \sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto i \end{cases} \\ s: & \begin{cases} \sqrt[4]{2} \mapsto \sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad rs: \begin{cases} \sqrt[4]{2} \mapsto i\sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad r^2s: \begin{cases} \sqrt[4]{2} \mapsto -\sqrt[4]{2} \\ i \mapsto -i \end{cases} \quad r^3s: \begin{cases} \sqrt[4]{2} \mapsto -i\sqrt[4]{2} \\ i \mapsto -i \end{cases} \end{split}$$

Comment