BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

4 June, 2021

BERT

- Bidirectional Encoder Representations from Transformers
 - Model architecture: Transformers
 - Tasks in training: Masked LM, nest sentence prediction
 - Data: BooksCorpus (800M words) + English Wikipedia (2,500M words)
- Pre-trained language model
 - A model to predict next word or recover the missing word in the sequence
 - Feature-based: use task-specific architectures that include the pre-trained representations as additional features
 - Fine-tuning: is trained on the downstream tasks by simply fine-tuning all pretrained parameters

Transformers: Attention is all you need

Database

	key 1	value 1	
	key 2	value 2	
•	key 3	value 3	
	key i	value i	

query

$$\operatorname{attention}(q, \boldsymbol{k}, \boldsymbol{v}) = \sum_{i} \operatorname{similarity}(q, k_i) \times v_i$$

Attention mechanism in Transformers

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

RNNs vs. Transformers

Challenges with RNN	Transformer networks			
Long range dependencies	Facilitate long range dependencies			
Gradient vanishing and explosion	No gradient vanishing and explosion			
Large number of training steps	Fewer training steps			
Recurrence prevents parallel computation	No recurrence that facilitate parallel computation			

Pre-training BERT

Task #1: Masked LM

- Cloze task
- Bidirectional
 - 80% of the time: Replace the word with the [MASK] token, e.g., my dog is hairy \rightarrow my dog is [MASK]
 - 10% of the time: Replace the word with a random word, e.g., my dog is hairy → my dog is apple
 - 10% of the time: Keep the word unchanged, e.g., my dog is hairy → my dog is hairy. The purpose of this is to bias the representation towards the actual observed word.

Task #2: Next Sentence Prediction

Comparison with other LMs

- GPT, GPT-2
 - Decoder transformer predicting next word based on previous words: $P(x_t|x_1...x_{t-1})$
- BERT
 - Transformer predicting a missing word based on surrounding words: $P(x_t|x_1...x_{t-1},x_{t+1}...x_T)$

Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

But was beaten by XLNet later...