

decimal number = 5	1.																								
Unsigned = 0101	decim	191	90	m	be	er	Ξ,	5					de	im	al	n	UM	be	V	•	5				
3's complement (4-bit) Q1) 3t 4 310 = 001/2 Q2) 5-2 = 5 t(-2) $4_{10} = 0100_2$ $5_{10} = 0001$ 1000 1001 1000 1001 1000 1001 1000 1001 1000 1001 1000	u	nsi	ûn	ed			Ē	OΙ	01					un.) î 2	ine	d		2	Ĺ					
3's complement (4-bit) Q1) 3t 4 310 = 001/2 Q2) 5-2 = 5 t(-2) $4_{10} = 0100_2$ $5_{10} = 0001$ 1000 1001 1000 1001 1000 1001 1000 1001 1000 1001 1000	2	101	Je c	1			Ξ	01	0 1					Sì	ûn	e d	•		Ξ	- 1	10	ĺ			
3's complement (4-bit) Q1) 3t 4 310 = 001/2 Q2) 5-2 = 5 t(-2) $4_{10} = 0100_2$ $5_{10} = 0001$ 1000 1001 1000 1001 1000 1001 1000 1001 1000 1001 1000		. لن					_	αī	61					1	ָרָר <u>'</u>				Ξ	0	101	-	10	10	
3's complement (4-bit) Q1) 3+4 310 = 00112) (_	n ı	n 1					3	,				_	01	01	_, .			1 /
1 3 4 3 10 20 11 2 2 2 5 2 5 4 2 2 2 2 2 2 2 2 2		3					-	UI	UI					~	7					01	01	7		10	. ,
1 3 4 3 10 20 11 2 2 2 5 2 5 4 2 2 2 2 2 2 2 2 2																									
1 3 4 3 10 20 11 2 2 2 5 2 5 4 2 2 2 2 2 2 2 2 2	2'5 ((mp	1em	en	†	()	4 - b	it.)																
Hold Her Hill an overflow occur																									
Hold Her Hill an overflow occur	Q1) 3	† 4									1	Q	ე)	5-8) =	5	†(·	a)							
0011				40	0 :	- 01	00	1																	
0011								^ 0			, 2			5,	, =	01	01								
1000			00	[]	(-2,	₀ =	0	010	→ 1	101	t I -	-> l	110			
OILI = 1 # OIOI DITS 4 bit so TOOII The LOOI The LOOI		+	010	0	'		-	- 1 -	f 2	+4															
HOW / HHEN Hill an overflow occur (tve) + (tve) = (tve) (cve) + (tve) = (tve) HHY? no enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING POINT STANDARD) Exponent (anvert to binary exponent form: 159310 = 110 0011 10012 = 1.100011 1001 x210 a) (compute sign - bit positive = 0; negative = 1:							7	= 7	#						01	01		<i></i> י	0	01	1#				
HOW / HHEN Hill an overflow occur • (+ve) + (+ve) = (-ve) • (-ve) + (-ve) = (+ve) HHY? • no enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) Light 8 Bits Sign Exponent mamticsa Dicenvert to binary exponent form: 159310 = 110 0011 10012 = 1.100011 1001 x210 a) (ompute sign-bit positive = 0; negative = 1:									7					+ 1	11.1	0			L	ילוכ	c II	-124	0.0		
HOW / HHEN HILL AN Overflow occur (tve) + (tve) = (-ve) (-ve) + (-ve) = (tve) HHY? no enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 154 FLOATING-POINT STANDARD) 1 Bit 8 Bits 23 Bits Sign Exponent mamicsa 1) convert to binary exponent form: 159310 = 110 0011 10012 = 1.1000111001 x210 a) compute sign-bit positive = 0; negative = 1:													·	10	01	7		>		th	0 1	ויט	JU		
HOW / HHEN HILL AN Overflow occur (tve) + (tve) = (-ve) (-ve) + (-ve) = (tve) HHY? no enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 154 FLOATING-POINT STANDARD) 1 Bit 8 Bits 23 Bits Sign Exponent mamicsa 1) convert to binary exponent form: 159310 = 110 0011 10012 = 1.1000111001 x210 a) compute sign-bit positive = 0; negative = 1:		_											_			<u> </u>				1770	L	fhi		n h	0
HOW / HHEN Hill an overflow occur • (tve) + (tve) = (-ve) • (-ve) + (-ve) = (tve) HHY? • no enough to represent real answer in 4 bits SINGLE PRECISION (JEEE 754 FLOATING-POINT STANDARD) Let be a second mannissa I bit 8 bits 23 bits Sign Exponent mannissa O (onvert to binary exponent form: 1593:0 = 110 0011 10012 = 1.100011 1001 x2.10 a) (ompute sign-bit positive = 0; negative = 1:																									
• (+ve) + (+ve) = (-ve) • (-ve) + (-ve) = (+ve) WHY? • no enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) L Bit 8 Bits 23 Bits Sign Exponent manticsa 1) convert to binary exponent form: 159310 = 110 0011 10012 = 1.100011 1001 x216 2) compute sign - bit pasitive = 0; negative = 1: 0	1101) () ()	C A 1	1,	: 11	Δ.		0 > 0	^		1 0	C C 1										.,,,		
HHY? • NO enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) EXPONENT Bit 8 Bits 23 Bits Sign Exponent martissa O (onvert to binary exponent form: 159310 = 110 0011 10012 = 1.100011 1001 x216 O (onpute sign-bit positive = 0; negative = 1:	HUW		ни	, //	H (111	Ur		uve	1	104	1 0	LL	N V											
HHY? • NO enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) EXPONENT Bit 8 Bits 23 Bits Sign Exponent martissa O (onvert to binary exponent form: 159310 = 110 0011 10012 = 1.100011 1001 x216 O (onpute sign-bit positive = 0; negative = 1:	•	L T	- v e) †	(tve) .	(-	146																
• NO enough to represent real answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) Let be a second answer in 4 bits SINGLE PRECISION (IEEE 754 FLOATING-POINT STANDARD) Let be a second answer in 4 bits STANDARD) Let be a second answer in 4 bits STANDARD) Let be a second answer in 4 bits STANDARD) Let be a second answer in 4 bits Convert to binary exponent form: Let be a second answer in 4 bits Convert to binary exponent form: Let be a second answer in 4 bits Convert to binary exponent form: Let be a second answer in 4 bits Convert to binary exponent form: Convert to binary exponent form: Let be a second answer in 4 bits Convert to binary exponent form: Convert to binary expon			٧e) †	[-	100) -	l	tγ	e)															
SINGLE PRECISION (IEEE 754 FLOATING - POINT STANDARD) Letter of the standard																				_					
1 Bit 8 Bits 23 Bits Sign Exponent mamticsa Onvert to binary exponent form: 1593 to = 110 0011 1001 2 = 1.100011 1001 x210 a) (ompute sign - bit positive = 0; negative = 1:	•	n	0 e	ηO	иg	h	t 0	ne	pre	se	nt	re	al	an	SWE	ev	ìn	1	b	1†5	•				
1 Bit 8 Bits 23 Bits Sign Exponent mamticsa Onvert to binary exponent form: 1593 to = 110 0011 1001 2 = 1.100011 1001 x210 a) (ompute sign - bit positive = 0; negative = 1:																									
1 Bit 8 Bits 23 Bits Sign Exponent mamticsa Onvert to binary exponent form: 1593 to = 110 0011 1001 2 = 1.100011 1001 x210 a) (ompute sign - bit positive = 0; negative = 1:	0+11	<u> </u>			^ +	0-			* C C																
1 Bit 8 Bits 23 Bits Sign Exponent mantissa 1) Convert to binary exponent form: 159310 = 110 0011 1001 2 = 1.1000111001 $\times 2^{10}$ 2) Compute sign -bit positive = 0; negative = 1:	21 N	JLE	;	'K E	: (1	7,1() N	l.	111	t	427	 	LUH	111	G -	107	NT	72	ANI	DAR	D)			
1 Bit 8 Bits 23 Bits Sign Exponent mantissa 1) Convert to binary exponent form: 159310 = 110 0011 1001 2 = 1.1000111001 $\times 2^{10}$ 2) Compute sign -bit positive = 0; negative = 1:				,								<u> </u>													_
Sign Exponent mantissa 1) (anvert to binary exponent form: 159310 = 110 0011 10012 = 1.1000111001 x210 2) (ampute sign - bit positive = 0; negative = 1:		+				Q	Dit									1) 1	27+1							<u>r</u>
1) (onvert to binary exponent form: $159310 = 110 0011 1001_{2}$ $= 1.1000111001 \times 2^{10}$ a) (ompute sign - bit positive = 0; negative = 1:																									
$ 1593 _{0} = 100011 _{0}01 _{2}$ $= 1.100011 _{0}01 _{2}$ a) Compute sign - bit positive = 0; negative = 1:	sigi	n				t	x po	ner	γŤ							17) (anti	6.20	\						
$ 1593 _{0} = 100011 _{0}01 _{2}$ $= 1.100011 _{0}01 _{2}$ a) Compute sign - bit positive = 0; negative = 1:	1) (un	vpvł	to	h	าเกก	VII	0	(00)	ากท	۱ ۱	forn	1 :													
= 1. 1000111001×2^{10} a) Compute sign -bit positive = 0; negative = 1:	7 (1/1	1011	10	U	1110	' 'y	C)	יטקי	TEIL		ווןטנ														
= 1. 1000111001×2^{10} a) Compute sign -bit positive = 0; negative = 1:	19	593 (0 =	11	0 (100	١	100	۽ ا																
a) compute sign - bit positive = 0; negative = 1:)															
6																									
6	a) (om	pute	i2 Si	qn	-b	rt 1	i 20 ¢	tiv	6 =	0;	ne	qa	111	6 =) :										
				7								7													
	C)																							
3) mantica is unatorer allow the decimal point																									
THE COLUMN TERM OF THE PARTY OF	3) mg	ntil	10	ìſ	1.1	h a l	0 \ 1) V	110	0 4	+10	0	40	M i	n۱	<i>D V</i>	ìn	-							

		bn.																					
		k:	ະ ລັ	ŧ _ ˈ	ء (15:	+		6 = 1	0													
		8-	-b11	T 6) X L	'nΝ	on-	t															
		=	b11 k t	9	· /·)	0.,																	
		7	127	Fti	D																		
		-	13.	ļ 10																			
E	101	(1 9 t	664	i 0 i	n																	
	2 7-						to	0n ((() W	611	tor	+	0 (nno	th	ÞΥ						
				J	,, -,			,,,,		0 11	ייע		<u> </u>	,									
	3	ИŒI	1 C		•	Pm	ntu	h)	1.1					ر— <u> </u>	οv	0 n	ρα	ız tı	ıà	0			
		. 51	J `			1) (N	d d	<u>()</u>	i hr	\	hit		•		۱۱ ع	70	-111	J				
						Ŀ	y h	b). d d a н l	νυι 	k 1	1	~ ''		\	o d	Ч	V W 1	י . 4 ג	힉	1			
							(an	n n +	40	† D r	+ 1	M W 1	tinı	0 1	nite	pur	' 'Y		•			
								- vi 111	101	ue	,		11	יץיי		y : 13	. 1	, , ,					
					•	(h	P(t	101	m														
					•	(1	ı (lì	C	RP d	งก	da	ทยเ	Cı	10 Cl	1.1	C	CRC)					
							J • · ·					3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
						_	_															\rightarrow	