EBMYL 505 – (DOĞRUSAL SİSTEM TEORİSİ) DÖNEM İÇİ ÖDEVİ #1

Aşağıda fiziksel bir sisteme ilişkin diferansiyel denklem takımı verilmiştir. Bu denklemlerde, ℓ_i (i=1,2,3), sisteme ilişkin temel fiziksel büyüklük fonksiyonunu, b_i (i=1,2,3) ise sisteme ilişkin giriş fonksiyonlarını ifade etmektedir.¹

$$\ddot{3}\dot{\ell}_{1} + \dot{\ell}_{1} + \ell_{1} - 4\dot{\ell}_{2} - 3\ell_{2} - 2\dot{\ell}_{3} - \ell_{3} = b_{1}(t)$$

$$-4\dot{\ell}_{1} - 3\ell_{1} + \ddot{\ell}_{2} + 7\dot{\ell}_{2} + 2\ell_{2} - 4\dot{\ell}_{3} - \ell_{3} = b_{2}(t)$$

$$-2\dot{\ell}_{1} - \ell_{1} - 4\dot{\ell}_{2} - \ell_{2} + 2\ddot{\ell}_{3} + 2\dot{\ell}_{3} + 6\ell_{3} = b_{3}(t)$$

Bu verilere göre:

- a. Bu sistem, doğrusallık ve zamanla değişmezlik açısından ne tür bir sistemdir? Açıklayınız.
- b. $b_2(t)$ fonksiyonunu giriş fonksiyonu, $\ell_1 + \ell_2$ fonksiyonunu da çıkış olarak belirleyerek, oluşacak olan SISO sistemin durum uzayı modelini elde ediniz. Burada ℓ_1 , $\dot{\ell}_1$, $\dot{\ell}_2$, $\dot{\ell}_2$, $\dot{\ell}_3$, $\dot{\ell}_3$ fonksiyonlarını durum değişkenleri olarak belirleyiniz.
- c. Aynı giriş ve çıkış için, durum uzayı gösterilimini, durum değişkenlerini $\ell_1-\ell_2,\ \dot{\ell_1},\ \ell_2,\ \dot{\ell_2},\ \ell_2+\ell_3,\ \dot{\ell_3}$ fonksiyonları olarak belirleyerek elde ediniz.
- d. $b_1(t)$, $b_3(t)$ fonksiyonlarını giriş fonksiyonları, $\ell_1 + \ell_2$, ℓ_3 fonksiyonlarını da çıkış fonksiyonları olarak belirleyerek, oluşacak olan MIMO sistemin durum uzayı modelini elde ediniz. (Durum değişkenlerini istediğiniz gibi belirleyebilirsiniz.)
- e. $b_1(t)$, $b_2(t)$, $b_3(t)$ fonksiyonlarını giriş fonksiyonları, $\dot{\ell}_1$, $\dot{\ell}_2 + \ell_3$, ℓ_3 fonksiyonlarını da çıkış fonksiyonları olarak belirleyerek, oluşacak olan MIMO sistemin durum uzayı modelini elde ediniz. (Durum değişkenlerini istediğiniz gibi belirleyebilirsiniz.)
- f. $b_1(t)$ giriş ve ℓ_3 çıkış olmak üzere, sistemin transfer fonksiyonunu, yani $G(s) = \frac{\ell_3(s)}{b_1(s)}$ ifadesini bulunuz.
- g. Bulduğunuz transfer fonksiyonundan hareketle sistemin durum uzayı modelini elde ediniz.

 $[\]ell_1,\ell_2,\ell_3$ t'nin fonksiyonlarıdır, ancak denklemin yer kaplamaması açısından $\ell_1(t),\ell_2(t),\ell_3(t)$ olarak gösterilmemiştir.