

Security

Outline

- Introduction
- Protecting data
- Protecting resources

Security

- Computer security is the protection of computer systems and information from harm, theft, and unauthorized use.
- This includes physical security (outside of our scope) as well as cyber security.

CIA definition of security

- Confidentiality only authorized users can access data and resources.
- Integrity data is not corrupted or modified
- Availability information and resources are available to authorized users.

Verifying identity

 Authentication is the process of verifying that you are who you say you are.

On the internet, nobody knows you're a dog

Self identification

- You register your identity with some service. provider.
- You provide some means for future verification of your identify.
 - What you know password, secret question, etc
 - What you have smart card, phone number, etc
 - What you are biometrics
- When you wish to use this service, you provide the verification.

Attested verification

- A third party verifies that you are who you say you are and registers you.
- The registration is documented by
 - Entering you Into a database
 - Providing you with credentials
 - Physical smart card, credit card, ID from third party
 - Digital key, certificate, external access to third party registration database

Authorization

- You are authorized to access resources if you have privileges enabling access.
- Privileges are usually associated with authentication mechanisms.
- Resources include individual files or an item's data, computer programs, computer devices and functionality provided by computer application.

Authorization server

- An authorization server
 - Assumes you have been authenticated
 - Provides a client a token that encodes privileges
- Tokens are usually ephemeral (expire after a specified interval).
- Examples:
 - OAuth
 - Kerberos

Security principles

- Least privilege: Users and programs should only have the necessary privileges to complete their tasks.
- Least functionality: Information systems are configured to provide only essential capabilities and to prohibit or restrict the use of non-essential functions, such as ports, protocols, and/or services that are not integral to the operation of that information system.

More principles

- Limiting access
 - Restrict number of access points. E.g. require access through a gateway
 - Restrict traffic. E.g. Firewalls can restrict access based on port numbers.

Outline

- Introduction
- Protecting data
- Protecting resources

Data

- Data should be protected from unauthorized reading or modification.
- Data can be
 - At rest stored on a permanent storage medium.
 In transit being transmitted over the internet
 - In use in memory of a process

Outline - protecting data

- Hashing
- TLS

Hashing

- A hash is a one way transformation based on a public algorithm with no key
- Not possible (very difficult) to decrypt
- NIST recommends the SHA-3 family of algorithms
- SHA-3 is notably faster than other hashing algorithms.
 - Measured in cycles per byte of value being hashed.
 - 12.6 cpb on a typical x86-64-based machine

Use of Hashing

- Used to verify integrity of data
 - Passwords: save hash of password but not password.
 When user enters password, compare to hash to verify.
 - Downloads: publish hash of software available for download. Compare hash of downloaded software.
 Verifies that software has not been modified.

Outline protecting data

- Hashing
- TLS

TLS

- TLS (Transport Layer Security) is designed to provide communications security over a computer network and to avoid eavesdropping and tampering.
- Broadly used.
- TLS depends on
 - Symmetric encryption
 - Asymmetric encryption
 - Public Key infrastructure

Encryption

- Encoding data so that it is not readable without key.
- Two forms of encryption
- Symmetric the same key is used for encryption and decryption.
- Asymmetric- one key is used for encryption and a separate key is used for decryption.

Symmetric encryption

- Use same key for encrypting and decrypting
- Suitable for data at rest
- A portion of solution for data in transit.
- NIST (National Institute of Science and Technology) approved algorithm is AES with key lengths of >128 bits

Asymmetric encryption

- Also known as public/private key encryption
- Messages encrypted with public key can be decrypted by private key (and vice versa)
- NIST approved algorithms: DSA, RSA, ECDSA >1024 bits

Performance comparison

- Symmetric encryption is ~4000x faster than asymmetric encryption.
- TLS uses asymmetric encryption to verify identity and symmetric encryption to transfer data

Public/private keys

- Public keys are available to the world.
- Private keys are kept private by the owner.
- Public and private keys are mathematically related but distinct.
- Knowing the public key of an individual does not allow you to deduce the private key of that individual.

Carnegie Mellon University Guaranteeing only recipient can read a message

- Suppose Bob wishes to send a message that only Alice can read.
- Bob encrypts the message with Alice's public key (known to the world).
- It can only be decrypted by Alice's private key (known only to Alice)

Guaranteeing a sender of a message

- Suppose Alice wishes to send a message that can only have come from her.
- She encrypts the message with her private key.
- It can be decrypted with her public key so anyone can read it.
- But only Alice knows her private key so only she can have sent it.

Digital Signature

- A digital signature is a means for sending an open signed letter.
- Anyone can read it but it is guaranteed to come from a particular party.
- You wish to send "text".
- Hash "text" to get a hash value
- Encrypt the hash value with your private key
- The message consists of "text"+encrypted hash value.

The message cannot be altered

- Message cannot be altered.
- The hash value guarantees the integrity of the message, and the senders private key encrypts the hash value.
- Changing the message would require knowing the sender's private key.

Why encrypt just the hash value?

- Efficiency The hash value is much shorter than the full message. The time to decrypt depends on the length of the message. Shorter is faster.
- Compatibility. Different signing schemes exist and just encrypting the hash provides compatibility with multiple schemes.

Public Key Infrastructure

- A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures needed to create, manage, distribute, use, store and revoke digital certificates
- A Certificate Authority (CA) is an independent organization that will issue a certificate only to a party that can verify its identity.

Digital Certificate

- A digital certificate is an electronic document used to prove the validity of a public key. The certificate includes information about the key, information about the identity of its owner and the digital signature of a CA.
- Two important elements of a certificate
 - URL of web site that has been certified.
 - Digital signature of a CA.

Getting a certificate

Accessing Web Site

Alice verifies certificate using CA's public key and knows she is talking to Bob's web site

Web site sends certificate

Man in the middle attack

- You are in the airport scanning for an available ISP
- You find "freewifi" and get an IP address from them.
- "freewifi" may be an attacker
- "freewifi" can
 - modify messages to spoof the web site and steal your credentials
 - eavesdrop on your communication with a web site

TLS Overview

- TLS begins with a handshake to establish identity and create symmetric key.
- Symmetric key is used to encrypt actual messages
- Discarded after session completes
- Another session will generate a different key

TLS handshake

- Establish identify
- Uses certificates which depend on public/private keys
- Because certificates are digitally signed, they can neither be modified or spoofed
- Use Diffie-Hellman algorithm to create session key for symmetric encryption

Creating symmetric key

- Suppose Alice and Bob wish to communicate securely.
- Communication over the internet is open to eavesdropping.
- Step 1 is to develop a shared symmetric key.

Diffie-Hellman

- The Diffie-Hellman algorithm is a means for Alice and Bob to generate a shared symmetric key even if there is an eavesdropper on their communication.
- Security of the algorithm is dependent on the difficulty of factoring large numbers.
- We present a more intuitive description using colors

Carnegie Mellon University Intuitive explanation of Diffie-Hellman

Alice and Bob agree on a shared color.

- Alice and Bob both independently choose a secret color.
- Alice mixes the shared color with her secret color and sends the mixture to Bob
- Bob mixes the sharedshared color with his secret color and sends to Alice.
- Alice adds her secret color to the mixture she got from Bob. Bob does the same.

The resulting color, on both sides, has the same components

Explanation of algorithm

- Determining the components of a color mixture is hard.
- A common large prime number and secret large prime numbers take the place of the colors in the example.
- Finding the prime factors of a number is NP hard.

Carnegie Mellon University Additional implementation issues

- The shared key is ephemeral. Once a session is over, it is cleared from memory. Even if it is leaked, the damage is limited to a single session.
- Generating the secret large primes depends on finding large random numbers.
- This in turn depends on physical phenomenon.
 E.g. electrical noise from computer components.

Thwarting man in the middle

- Man in the middle may see all messages but
 - Credential is digitally signed so it cannot be modified
 - Diffie-Hellman protects against eavesdropper (the man in the middle)
- Your communication with web site is encrypted using key unknown to man in the middle

TLS steps (again)

- Handshake to
 - establish identify
 - Create symmetric key
- Use symmetric key to encrypt all communications
- After session is complete, discard symmetric key.

Data in use

- Within an application
- Within a cookie
- Within cache
- Within log
- Typically decrypted

Protectting data in use

- Require authorization to access data
- Restrict sensitive data in use. Do not store sensitive data in cookies or logs
- Purge caches
 - Periodically or
 - On specific events. E.g. session end

Outline

- Introduction and general security activities
- Protecting data
- Protecting resources

Protecting resources

- Perimeter security
 - Restricting access
 - Authentication
 - Authorization
 - Assumption is that if user can get through perimeter, they are not malicious
- Zero trust security
 - Perimeter + authorization tokens. Do not trust even users who get through perimeter authorization checks.

Authorization tokens

- The authorization method issues tokens to users.
- Tokens embody access privileges.
- Tokens are ephemeral (expire after specified time).
- Resource manager possibly API verifies tokens prior to allowing access.

Denial of Service attack

- A Distributed Denial of Service (DDoS) is an attempt to limit availability by overloading the networks or servers hosting an application.
- To mitigate a DDoS attack
 - Limit attack surface
 - Ensure adequate network capacity
 - Ensure adequate server capacity
 - Maintain current back ups with different access privileges.

Limit attack surface

- The attack surface is the total number of all possible entry points for unauthorized access into any system.
- Techniques include
 - Disabling access to most ports. Firewalls only forward messages to specific ports.
 - Segmenting networks. Use principle of least privilege to control access

Use a Content Distribution Network

- A CDN is a network of servers linked together with the goal of delivering content as quickly, cheaply, reliably, and securely as possible.
- A CDN will place servers at the exchange points between different networks.

Backups

 Maintaining current backups in distinct datacenters with distinct access controls will guard against a ransomware attack.

Summary

- Security involves protecting both data and resources
- Data at rest can be protected by symmetric encryption
- Data in transit can be proteted by TLS\
- The integrity of data can be verified by hash function.
- Protecting resources involves
 - Authentication
 - Authorization
 - Access controls at resources

