### **Local Search: Hill Climbing Algorithm**

- Hill climbing algorithm is a local search algorithm which continuously moves in the direction of increasing elevation/value to find the peak of the mountain or best solution to the problem. It terminates when it reaches a peak value where no neighbor has a higher value.
- It is also called greedy local search as it only looks to its good immediate neighbor state.
- A node of hill climbing algorithm has two components which are state and value.
- Hill Climbing is mostly used when a good heuristic is available.
- In this algorithm, we don't need to maintain and handle the search tree or graph as it only keeps a single current state.

### **Local Search: Hill Climbing Algorithm**

### Features of Hill Climbing:

Following are some main features of Hill Climbing Algorithm:

- **Generate and Test variant:** Hill Climbing is the variant of Generate and Test method. The Generate and Test method produce feedback which helps to decide which direction to move in the search space.
- Greedy approach: Hill-climbing algorithm search moves in the direction which optimizes the cost.
- No backtracking: It does not backtrack the search space, as it does not remember the previous states.

# **State Space Diagram for Hill Climbing**



- graphical representation of the hill-climbing algorithm which is showing a graph between various states of algorithm and Objective function/Cost.
- on Y-axis we have taken the function which can be an objective function or cost function
- state-space on the x-axis
- function on Y-axis is cost then, the goal of search is to find the global and local minimum.
- function of Y-axis is Objective function, then the goal of the search is to find the global maximum and local maximum.

# **State Space Diagram for Hill Climbing**



### Different regions in the state space landscape:

- Local Maximum: Local maximum is a state which is better than its neighbor states, but there is also another state which is higher than it.
- Global Maximum: Global maximum is the best possible state of state space landscape. It has the highest value of objective function.
- **Current state:** It is a state in a landscape diagram where an agent is currently present.
- **Flat local maximum:** It is a flat space in the landscape where all the neighbor states of current states have the same value.
- **Shoulder:** It is a plateau region which has an uphill edge.



### **Types of Hill Climbing**

- Simple hill Climbing
- Steepest-Ascent hill-climbing
- Stochastic hill Climbing

# **Simple Hill Climbing**

- Simple hill climbing is the simplest way to implement a hill climbing algorithm.
- It only evaluates the neighbor node state at a time and selects the first one which optimizes current cost and set it as a current state.
- It only checks it's one successor state, and if it finds better than the current state, then move else be in the same state.
- This algorithm has the following features:
  - a. Less time consuming
  - b. Less optimal solution and the solution is not guaranteed

### **Simple Hill Climbing**

### **Algorithm for Simple Hill Climbing:**

- Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make the initial state as the current state.
- Loop until the solution state is found or there are no new operators present which can be applied to the current state.
  - Select a state that has not been yet applied to the current state and apply it to produce a new state.
  - Perform these to evaluate the new state.
    - If the current state is a goal state, then stop and return success.
    - If it is better than the current state, then make it the current state and proceed further.
    - If it is not better than the current state, then continue in the loop until a solution is found.
- Exit from the function.

### **Steepest Ascent Hill Climbing**

- The steepest-Ascent algorithm is a variation of simple hill climbing algorithm.
- This algorithm examines all the neighboring nodes of the current state and selects one neighbor node which is closest to the goal state.
- This algorithm consumes more time as it searches for multiple neighbors

### **Steepest Ascent Hill Climbing**

#### **Algorithm for Steepest-Ascent hill climbing:**

- 1. Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make the initial state as the current state.
- 2. Repeat these steps until a solution is found or the current state does not change
  - Select a state that has not been yet applied to the current state.
  - Initialize a new 'best state' equal to the current state and apply it to produce a new state.
  - Perform these to evaluate the new state
    - If the current state is a goal state, then stop and return success.
    - If it is better than the best state, then make it the best state else continue the loop with another new state.
  - Make the best state as the current state and go to Step 2 of the second point.
- 3. Exit from the function.

### **Stochastic Hill Climbing**

- It does not examine all the neighboring nodes before deciding which node to select.
- It just selects a neighboring node at random and decides

# **Stochastic Hill Climbing**

#### **Algorithm:**

- Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make the initial state the current state.
- Repeat these steps until a solution is found or the current state does not change.
  - Select a state that has not been yet applied to the current state.
  - Apply the successor function to the current state and generate all the neighbor states.
  - Among the generated neighbor states which are better than the current state choose a state randomly.
  - If the chosen state is the goal state, then return success, else make it the current state and repeat step 2 of the second point.
- Exit from the function

### **Problems in Hill Climbing Algorithm**

Hill climbing cannot reach the optimal/best state(global maximum) if it enters any of the following regions :

- Local maximum: A local maximum is a peak state in the landscape which is better than each of its neighboring states, but there is another state also present which is higher than the local maximum.
  - **a.** To overcome the local maximum problem: Utilize the backtracking technique. Maintain a list of visited states. If the search reaches an undesirable state, it can backtrack to the previous configuration and explore a new path.
- **Plateau:** On the plateau, all neighbors have the same value. Hence, it is not possible to select the best direction.
  - **a. To overcome plateaus:** Make a big jump. Randomly select a state far away from the current state. Chances are that we will land in a non-plateau region.
- **Ridge:** Any point on a ridge can look like a peak because movement in all possible directions is downward. Hence the algorithm stops when it reaches this state.
  - **a. To overcome Ridge:** With the use of bidirectional search, or by moving in different directions, we can improve this problem.