Additional results

Juan Maroñas¹, Daniel Ramos² and Roberto Paredes¹

PRHLT Research Center, Universitat Politècnica de València, Spain
AUDIAS Lab, Universidad Autónoma de Madrid, Spain

1 Introduction

This pdf shows additional results complementary to those presented in the main paper. We provide the results alongside with the topologies used to compute the tables in the experimental section appendix of the work. Tables below show performance over test set. Mixup coefficient for BIRDS, CARS and SVHN is selected with a validation and for CIFAR10 and CIFAR100 is taken from the original work. $ARC(x_1, x_2)$ means that the ARC loss is applied over x_1 and x_2 separately while $ARC(\tilde{x})$ indicates that is applied over the Mixup image. This simbol X indicates that M=5-15-30. The results from table 5 in the main work has been computed using a densenet-121 without dropout, with M=1 and V_1

2 CIFAR10

CIFAR 10 BASELINES

MODEL	Dropout	baseline	line	Mixup		
	Dropode		11110	$(\gamma =$	= 1)	
		ACC	ECE	ACC	ECE	
Densenet-121	0	95.35	2.97	96.55	3.44	
Densenet-121	0.2	94.79	3.46	95.48	2.32	
ResNet-101	0	94.51	3.92	96.11	3.46	
ResNet-101	0.5	94.42	3.93	96.10	4.27	
WideResNet-28x10	0	95.93	2.07	97.19	4.65	
WideResNet-28x10	0.3	94.48	3.49	95.44	7.57	
ResNet-18	0	94.46	3.49	95.66	4.66	
ResNet-18	0.5	94.11	3.94	95.53	4.42	

CIFAR10 ARC loss

		ARC		ARC +Mixup								
MODEL	•	V		Hyperparameters	ACC ECE							
Densenet-121				V_1 $M=1$ $\beta=4$ $ARC(x_1,x_2)$								
Densenet-121	0.2	$V_2 M = X \beta = 2$	94.71 3.40	$ \mathtt{V}_1 M=1$ $eta=2$ $\mathtt{ARC}(x_1,x_2)$	95.62 1.49							
ResNet-101	0	$V_1 M = 1 \beta = 1$	94.14 4.26	$ \mathtt{V}_1 M=1$ $\beta=4$ $\mathtt{ARC}(x_1,x_2)$	95.94 0.98							
ResNet-101	0.5	$V_2 M = X \beta = 2$	$94.53 \ 3.90$	$ \mathtt{V}_1 M=1$ $eta=2$ $\mathtt{ARC}(x_1,x_2)$	95.71 2.08							
WideResNet-28x10	0	$V_1 M = 1 \beta = 1$	95.99 2.01	$ \mathtt{V}_1 M=1$ $\beta=4$ $\mathtt{ARC}(x_1,x_2)$	97.09 1.03							
WideResNet-28x10	0.3	$V_2 M = X \beta = 2$	95.35 2.99	$ \mathtt{V}_1 M=1$ $eta=2$ $\mathtt{ARC}(x_1,x_2)$	95.41 2.66							
ResNet-18	0	$V_1 M = 1 \beta = 1$	$94.22\ 3.68$	$ \mathtt{V}_1 M=1$ $\beta=4$ $\mathtt{ARC}(x_1,x_2)$	95.60 2.05							
ResNet-18	0.5	$V_2 M = X \beta = 2$	94.43 3.61	$ \mathbf{V}_1 M=1$ $\beta=2$ $\mathrm{ARC}(x_1,x_2)$	95.79 1.07							

CIFAR10 MMCE loss

-		M	MCE		MMCE +Mixup				
MODEL	Dropout	Hyperparams	Accuracy	ECE	Hyperparams	Accuracy	ECE		
Densenet-121	0	$\beta = 0.5$	93.72	2.38	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	95.97	3.61		
Densenet-121	0.2	$\beta = 0.5$	93.54	1.44	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	92.56	7.32		
ResNet-101	0	$\beta = 0.5$	93.54	2.99	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	95.94	1.42		
ResNet-101	0.5	$\beta = 0.5$	93.94	2.97	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	93.70	6.72		
WideResNet-28x10	0	$\beta = 0.5$	95.58	1.21	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	97.02	1.11		
WideResNet-28x10	0.3	$\beta = 0.5$	94.98	1.71	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	90.04	13.44		
ResNet-18	0	$\beta = 0.5$	94.38	2.41	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	95.50	1.53		
ResNet-18	0.5	$\beta = 0.5$	94.21	2.29	$\beta = 0.4 \; \texttt{MMCE}(x_1, x_2)$	74.48	10.36		

74.480 CIFAR10 MCE (%)

Model	Dropout	Baseline	Baseline+Mixup	MMCE	MMCE +Mixup	ARC	ARC +Mixup
DenseNet-121	0.0	1.8	2.72	0.64	2.03	1.89	0.52
DenseNet-121	0.2	2.28	1.25	0.47	1.20	2.03	0.45
ResNet-101	0.0	2.66	2.44	1.74	0.56	2.94	0.26
ResNet-101	0.5	2.61	3.30	1.54	2.43	2.65	1.08
WideResNet-28x10	0.0	1.23	3.11	0.46	0.73	1.02	0.39
WideResNet-28x10	0.3	1.95	4.65	0.91	9.32	2.02	1.73
ResNet-18	0.0	2.26	2.98	1.34	0.23	2.12	1.52
ResNet-18	0.5	2.52	2.56	1.36	5.30	2.35	0.31

${\rm CIFAR10~BS}\times 100$

Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC} + \mathrm{Mixup}$
DenseNet-121	0.0	0.77	0.56	1.00	0.67	0.78	0.66
DenseNet-121	0.2	0.86	0.71	0.97	1.30	0.86	0.72
ResNet-101	0.0	0.92	0.63	1.00	0.65	0.98	0.66
ResNet-101	0.5	0.94	0.65	0.95	1.29	0.92	0.72
WideResNet-28x10	0.0	0.65	0.47	0.67	0.45	0.62	0.48
WideResNet-28x10	0.3	0.89	0.78	0.78	2.17	0.78	0.74
ResNet-18	0.0	0.91	0.69	0.87	0.70	0.93	0.70
ResNet-18	0.5	0.97	0.72	0.88	3.47	0.92	0.67

CIFAR10 NNL

Model	Dropout	Baseline	Baseline+Mixup	MMCE	$\mathtt{MMCE} + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.19	0.16	0.22	0.18	0.19	0.17
DenseNet-121	0.2	0.23	0.17	0.21	0.29	0.22	0.17
ResNet-101	0.0	0.27	0.17	0.26	0.16	0.31	0.17
ResNet-101	0.5	0.28	0.18	0.24	0.30	0.28	0.18
WideResNet-28x10	0.0	0.15	0.14	0.15	0.11	0.14	0.12
WideResNet-28x10	0.3	0.22	0.23	0.17	0.44	0.21	0.19
ResNet-18	0.0	0.25	0.19	0.22	0.16	0.24	0.17
ResNet-18	0.5	0.26	0.19	0.21	0.88	0.25	0.16

${\rm CIFAR100}$

MODEL	Dropout	base	eline	$ Mixup (\gamma = 1) $		
		ACC	ECE	ACC	ECE	
Densenet-121	0	79.13	9.02	81.49	3.13	
Densenet-121	0.2	78.16	10.99	80.29	1.71	
ResNet-101	0	77.40	12.17	81.17	3.63	
ResNet-101	0.5	76.62	14.73	81.31	3.23	
WideResNet-28x10	0	79.79	5.06	82.34	1.42	
WideResNet-28x10	0.3	75.48	13.37	77.49	2.35	
ResNet-18	0	74.19	13.08	78.00	10.33	
ResNet-18	0.5	76.90	14.13	78.24	3.86	

CIFAR100 ARC loss

		ARC		ARC +Mixup							
MODEL	Dropout	Hyperparameters	ACC ECE	Hyperparameters	ACC ECE						
Densenet-121	0	$V_2 M = 1 \beta = 0.5$	79.12 8.55	V_1 $M=X$ $\beta=4.0$ $ARC(x_1,x_2)$	81.24 3.47						
Densenet-121	0.2	$V_1 M = 15 \beta = 0.5$	77.67 11.76	$V_1 M = 1 \beta = 8.0 \operatorname{ARC}(\tilde{x})$	79.73 2.33						
ResNet-101	0	$V_2 M = 1 \beta = 0.5$	77.82 12.66	$V_1 \ M = 15 \ \beta = 4.0 \ \mathrm{ARC}(\tilde{x})$	80.16 2.71						
ResNet-101	0.5	$V_1 M = 15 \beta = 0.5$	77.39 12.83	$V_1 M = 1 \beta = 8.0 ARC(\tilde{x})$	$79.93\ 3.83$						
WideResNet-28x10	0	$V_2 M = 1 \beta = 0.5$	80.77 4.73	$V_1 M = 15 \beta = 4.0 \operatorname{ARC}(\tilde{x})$	82.02 0.98						
WideResNet-28x10	0.3	$V_1 M = 15 \beta = 0.5$	75.51 13.23	$V_1 M = 1 \beta = 8.0 ARC(\tilde{x})$	$79.43\ 1.56$						
ResNet-18	0	$V_2 M = 1 \beta = 0.5$	74.30 13.30	$V_1 \ M = X \ \beta = 1.0 \ ARC(x_1, x_2)$	77.90 1.96						
ResNet-18	0.5	$V_1 M = 15 \beta = 0.5$	73.76 13.40	$V_1 \ M = 1 \ \beta = 8.0 \ \mathrm{ARC}(\tilde{x})$	78.32 2.50						

${\it CIFAR100}$ MMCE loss

		MMCE			MMCE +Mixup			
MODEL	Dropout	Hyperparameters	ACC	ECE	Hyperparameters	ACC	ECE	
Densenet-121	0	$\beta = 2.0$	73.02	6.41	$\beta = 0.4 \text{ MMCE}(x_1, x_2)$	77.13	9.40	
Densenet-121	0.2	$\beta = 2.0$	70.77	2.78	$ig eta=0.1 \; exttt{MMCE}(x_1,x_2)$	80.04	3.23	
ResNet-101	0	$\beta = 2.0$	73.14	2.53	$ig eta=0.4 \; exttt{MMCE}(x_1,x_2)$	76.08	4.10	
ResNet-101	0.5	$\beta = 2.0$	72.98	2.60	$ig eta=0.1 \; exttt{MMCE}(x_1,x_2)$	80.65	7.84	
WideResNet-28x10	0	$\beta = 2.0$	74.98	7.04	$ig eta=0.4 \; exttt{MMCE}(x_1,x_2)$	81.31	4.46	
WideResNet-28x10	0.3	$\beta = 2.0$	74.36	3.15	$ig eta=0.1 \; exttt{MMCE}(x_1,x_2)$	77.23	5.81	
ResNet-18	0	$\beta = 2.0$	70.77	2.38	$ig eta=0.4 \; exttt{MMCE}(x_1,x_2)$	77.20	4.48	
ResNet-18	0.5	$\beta = 2.0$	71.38	2.78	$ig eta=0.1 \; exttt{MMCE}(x_1,x_2)$	78.51	4.52	

CIFAR100 MCE (%)

		,	711 1111111111111111111111111111111111	')			
Model	Dropout	Baseline	${\bf Baseline+Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	3.98	0.60	0.87	2.35	3.55	0.64
DenseNet-121	0.2	4.72	0.43	0.50	0.76	4.89	0.38
ResNet-101	0.0	5.33	0.57	0.47	0.69	5.79	0.69
ResNet-101	0.5	7.42	0.52	0.50	3.16	5.70	0.82
WideResNet-28x10	0.0	2.36	0.46	1.18	0.70	2.25	0.31
WideResNet-28x10	0.3	5.96	0.37	0.54	0.65	6.27	0.20
ResNet-18	0.0	4.97	1.47	0.40	0.53	5.07	0.47
ResNet-18	0.5	6.88	0.92	0.41	0.63	4.71	0.78

${\rm CIFAR100~BS}\times 100$

Model	Dropout	Baseline	${\bf Baseline+Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathbf{Mixup}$	ARC	$\mathtt{ARC} + \mathrm{Mixup}$
DenseNet-121	0.0	0.31	0.26	0.38	0.36	0.31	0.27
DenseNet-121	0.2	0.33	0.28	0.40	0.28	0.34	0.29
ResNet-101	0.0	0.35	0.27	0.37	0.33	0.35	0.29
ResNet-101	0.5	0.37	0.27	0.37	0.29	0.35	0.29
WideResNet-28x10	0.0	0.29	0.26	0.36	0.28	0.28	0.26
WideResNet-28x10	0.3	0.37	0.33	0.35	0.33	0.38	0.30
ResNet-18	0.0	0.39	0.33	0.40	0.32	0.39	0.31
ResNet-18	0.5	0.38	0.31	0.39	0.31	0.39	0.30

CIFAR100 (NNL)

Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.87	0.72	0.98	0.98	0.86	0.74
DenseNet-121	0.2	0.98	0.73	1.02	0.74	1.00	0.76
ResNet-101	0.0	1.07	0.73	0.95	0.94	1.11	0.80
ResNet-101	0.5	1.25	0.75	0.96	0.79	1.10	0.78
WideResNet-28x10	0.0	0.81	0.70	0.92	0.74	0.79	0.72
WideResNet-28x10	0.3	1.17	0.92	0.90	0.96	1.16	0.84
ResNet-18	0.0	1.20	0.93	1.06	0.87	1.20	0.88
ResNet-18	0.5	1.26	0.86	1.05	0.87	1.20	0.86

SVHN

MODEL	DEL Dropout baseline		line	Mixup		
WODLL	Diopout	Dasc		$(\gamma =$	= 0.6)	
		ACC	ECE	ACC	ECE	
Densenet-121	0	96.63	2.31	96.79	6.65	
Densenet-121	0.2	96.59	2.60	96.75	1.52	
ResNet-101	0	96.27	2.30	96.68	2.30	
ResNet-101	0.5	96.20	2.33	96.39	4.78	
WideResNet-16x8	0	96.64	0.62	96.97	4.91	
WideResNet-16x8	0.3	97.07	0.50	96.38	12.72	
ResNet-18	0	95.73	2.16	95.65	3.95	
ResNet-18	0.5	95.47	2.33	95.66	3.18	

SVHN ARC loss

5 V 111 Meo 1000											
		ARC			ARC +Mixup						
MODEL	Dropout	Hyperparameters	ACC E	ECE	Hyperparameters	ACC	ECE				
Densenet-121	0				$V_1 M = 15 \beta = 16 ARC(x_1, x_2)$	96.82	2.20				
Densenet-121	0.2	$V_1 M = 1 \beta = 1.0$	$96.56\ 2$	2.20	$\mathtt{V}_1\ M = \mathtt{X}\ \beta = 1\ \mathtt{ARC}(x_1, x_2)$	96.62	0.84				
ResNet-101	0	$V_1 M = 1 \beta = 1.0$	$96.27\ 2$	2.32	$V_1 M = 15 \beta = 16 ARC(x_1, x_2)$	96.23	2.05				
ResNet-101	0.5	$V_1 M = 1 \beta = 1.0$	95.962	2.56	$\mathtt{V}_1\ M = \mathtt{X}\ \beta = 1\ \mathtt{ARC}(x_1, x_2)$	96.67	1.49				
WideResNet-16x8	0	$ V_1 M = 1 \beta = 1.0$	96.60 0	0.61	$V_1 \ M = 1 \ \beta = 20 \ ARC(x_1, x_2)$	96.55	0.82				
WideResNet-16x8	0.3	$ V_1 M = 1 \beta = 1.0$	97.080	0.37	$V_1 M = X \beta = 1 \operatorname{ARC}(x_1, x_2)$	94.74	6.75				
ResNet-18	0	$ V_1 M = 1 \beta = 1.0$	$95.52\ 2$	2.35	$V_1 M = 15 \beta = 16 ARC(x_1, x_2)$	95.50	1.80				
ResNet-18	0.5	$V_1 M = 1 \beta = 1.0$	$95.44\ 2$	2.35	$\mathtt{V}_1\ M = \mathtt{X}\ \beta = 1\ \mathtt{ARC}(x_1, x_2)$	95.06	1.41				

SVHN MMCE loss

		MMCE			MMCE +Mixup			
MODEL	Dropout	Hyperparameters	ACC	ECE	Hyperparameters	ACC	ECE	
Densenet-121	0	$\beta = 0.1$	96.65	1.76	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	96.01	4.43	
Densenet-121	0.2	$\beta = 0.1$	96.58	2.29	$ig eta=0.2 \; exttt{MMCE}(x_1,x_2)$	96.46	5.15	
ResNet-101	0	$\beta = 0.1$	96.10	2.36	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	96.73	3.05	
ResNet-101	0.5	$\beta = 0.1$	96.38	2.15	$ig eta=0.2 \; exttt{MMCE}(x_1,x_2)$	96.79	1.71	
WideResNet-16x8	0	$\beta = 0.1$	96.65	0.49	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	96.85	2.06	
WideResNet-16x8	0.3	$\beta = 0.1$	96.90	0.49	$\beta = 0.2 \text{ MMCE}(x_1, x_2)$	97.17	3.69	
ResNet-18	0	$\beta = 0.1$	95.45	2.37	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	96.45	1.75	
ResNet-18	0.5	$\beta = 0.1$	95.49	2.33	$\beta = 0.2 \text{ MMCE}(x_1, x_2)$	96.24	0.85	

SVHN MCE (%)

			D V 111 V 110L (70)				
Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	6.66	4.23	1.07	2.41	1.54	1.75
DenseNet-121	0.2	1.91	0.83	1.52	1.37	1.48	0.27
ResNet-101	0.0	1.56	1.58	1.48	2.42	1.52	1.47
ResNet-101	0.5	1.55	3.63	1.46	1.10	1.58	1.03
WideResNet-16x8	0.0	0.31	2.55	0.25	1.18	0.32	0.44
WideResNet-16x8	0.3	0.18	3.24	0.34	1.36	0.17	1.35
ResNet-18	0.0	1.33	3.41	1.39	1.44	1.34	1.52
ResNet-18	0.5	1.35	2.58	1.43	0.42	1.36	1.08

$\mathrm{SVHN}\;\mathrm{BS}\times 100$

Model	dropout	Baseline	${\bf Baseline+Mixup}$	MMCE M	MCE +Mixup	ARC	ARC +Mixup
DenseNet-121	0.0	0.59	0.57	0.55	0.70	0.57	0.51
DenseNet-121	0.2	0.60	0.55	0.59	0.76	0.59	0.57
ResNet-101	0.0	0.64	0.55	0.65	0.54	0.63	0.59
ResNet-101	0.5	0.64	0.60	0.61	0.53	0.67	0.52
WideResNet-16x8	0.0	0.54	0.53	0.53	0.51	0.55	0.54
WideResNet-16x8	0.3	0.48	0.85	0.49	0.50	0.47	0.90
ResNet-18	0.0	0.70	0.70	0.74	0.57	0.72	0.68
ResNet-18	0.5	0.73	0.66	0.73	0.59	0.73	0.77

SVHN NNL

Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.17	0.18	0.15	0.20	0.16	0.14
DenseNet-121	0.2	0.20	0.15	0.18	0.21	0.17	0.15
ResNet-101	0.0	0.18	0.15	0.19	0.15	0.18	0.15
ResNet-101	0.5	0.18	0.18	0.18	0.14	0.19	0.14
WideResNet-16x8	0.0	0.13	0.16	0.13	0.13	0.14	0.14
WideResNet-16x8	0.3	0.12	0.26	0.13	0.14	0.12	0.23
ResNet-18	0.0	0.19	0.20	0.21	0.15	0.20	0.17
ResNet-18	0.5	0.20	0.18	0.20	0.15	0.20	0.19

MODEL	Dropout	baseline		ropout baseline			xup (0.4)
		ACC	ECE	ACC	ECE		
Densenet-121	0	78.72	2.17	79.96	15.97		
Densenet-121	0.2	79.74	1.62	80.91	14.11		
ResNet-101	0	79.84	2.51	80.88	11.83		
ResNet-101	0.5	80.31	4.34	82.09	10.14		
ResNet-50	0	78.50	1.94	79.53	15.05		
ResNet-50	0.5	79.44	2.64	80.55	13.10		
ResNet-18	0	74.42	2.15	75.56	16.74		
ResNet-18	0.5	77.13	1.77	77.60	16.90		

BIRDS

		ARC		ARC +Mixup							
MODEL		Hyperparameters		0 1 1	ACC I	ECE					
Densenet-121	0	$V_1 M = 15 \beta = 0.5$	78.81 2.14	${\tt V}_1\ M={\tt X}\ eta=30\ {\tt ARC}(ilde{x})$	79.01 1	1.60					
Densenet-121	0.2	$ V_1 M = 15 \beta = 0.5$	79.76 2.11	$ \mathbf{V}_2 M=15$ $\beta=20$ ARC $(ilde{x})$	81.00 9	9.80					
ResNet-101	0	$ V_1 M = 15 \beta = 0.5$	79.67 3.12	${\tt V}_1\ M={\tt X}\ eta=30\ {\tt ARC}(ilde{x})$	81.48 4	4.18					
ResNet-101	0.5	$ V_1 M = 15 \beta = 0.5$	80.32 4.44	$V_2 M = 15 \beta = 20 \operatorname{ARC}(\tilde{x})$	82.45 1	1.28					
ResNet-50	0	$ V_1 M = 15 \beta = 0.5$	78.46 2.05	$V_1 \ M = X \ \beta = 30 \ ARC(\tilde{x})$	79.41 4	4.50					
ResNet-50	0.5	$ V_1 M = 15 \beta = 0.5$	79.62 3.04	$V_2 M = 15 \beta = 20 \operatorname{ARC}(\tilde{x})$	81.08 1	1.60					
ResNet-18	0	$ V_1 M = 15 \beta = 0.5$	74.34 2.67	$V _{\mathbf{V}_1}\;M=\mathbf{X}\;eta=30\;\mathrm{ARC}(ilde{x})$	75.41 3	3.11					
ResNet-18	0.5	$ V_1 M = 15 \beta = 0.5$	77.22 2.05	$V_2 M = 15 \beta = 20 \operatorname{ARC}(\tilde{x})$	78.08 3	3.50					

BIRDS

		MMCE			MMCE +Mixup			
MODEL	Dropout	Hyperparameters	ACC	ECE	Hyperparameters	ACC	ECE	
Densenet-121	0	$\beta = 0.5$			$\beta = 0.3 \text{ MMCE}(x_1, x_2)$			
Densenet-121	0.2	$\beta = 0.5$	79.98	1.83	$\beta = 0.5 \text{ MMCE}(x_1, x_2)$	81.41	11.35	
ResNet-101	0	$\beta = 0.5$	80.00	2.18	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	81.81	10.41	
ResNet-101	0.5	$\beta = 0.5$	80.64	3.28	$\beta = 0.5 \text{ MMCE}(x_1, x_2)$	82.41	10.93	
ResNet-50	0	$\beta = 0.5$	78.88	1.71	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	80.15	11.97	
ResNet-50	0.5	$\beta = 0.5$	79.63	1.91	$\beta = 0.5 \text{ MMCE}(x_1, x_2)$	80.83	12.95	
ResNet-18	0	$\beta = 0.5$	74.41	1.45	$\beta = 0.3 \text{ MMCE}(x_1, x_2)$	75.27	14.92	
ResNet-18	0.5	$\beta = 0.5$	77.13	1.53	$\beta = 0.5 \text{ MMCE}(x_1, x_2)$	77.36	14.35	

BIRDS MCE (%)

Model	Dropout	Baseline	Baseline+Mixup	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.39	1.61	0.38	1.09	0.35	1.20
DenseNet-121	0.2	0.52	1.41	0.48	1.06	0.67	1.07
ResNet-101	0.0	0.60	1.44	0.35	1.10	0.69	0.67
ResNet-101	0.5	1.01	1.12	0.99	1.05	1.17	0.34
ResNet-50	0.0	0.46	1.49	0.34	1.21	0.62	0.66
ResNet-50	0.5	0.95	1.31	0.60	1.33	1.00	0.29
ResNet-18	0.0	0.37	1.76	0.25	1.57	0.41	0.41
ResNet-18	0.5	0.36	1.77	0.27	1.43	0.31	0.59

BIRDS $\mathtt{BS} \times 100$

Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.17	0.18	0.16	0.17	0.17	0.16
DenseNet-121	0.2	0.16	0.17	0.16	0.16	0.16	0.15
ResNet-101	0.0	0.16	0.16	0.16	0.15	0.16	0.14
ResNet-101	0.5	0.16	0.15	0.16	0.15	0.16	0.13
ResNet-50	0.0	0.17	0.18	0.17	0.17	0.17	0.15
ResNet-50	0.5	0.16	0.17	0.16	0.16	0.16	0.14
ResNet-18	0.0	0.19	0.21	0.19	0.20	0.19	0.17
ResNet-18	0.5	0.18	0.19	0.17	0.19	0.18	0.15

BIRDS NNL

Model	Dropout	Baseline	Baseline+Mixup	MMCE	MMCE +Mixup	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	1.03	1.14	1.01	1.06	1.03	0.91
DenseNet-121	0.2	0.99	1.06	0.98	1.01	1.00	0.82
ResNet-101	0.0	1.00	1.03	0.98	0.98	1.00	0.75
ResNet-101	0.5	0.98	0.97	0.97	0.96	0.99	0.69
ResNet-50	0.0	1.04	1.13	1.02	1.06	1.05	0.84
ResNet-50	0.5	1.02	1.05	1.00	1.04	1.02	0.75
ResNet-18	0.0	1.17	1.29	1.15	1.27	1.17	0.96
ResNet-18	0.5	1.06	1.18	1.04	1.16	1.08	0.82

MODEL	Dropout	baseline		Mixup		
MODEL	Dropout	Dase	ше	$(\gamma =$	0.4)	
		ACC	ECE	ACC	ECE	
Densenet-121	0	88.24	4.04	88.12	20.00	
Densenet-121	0.2	89.13	2.57	89.45	18.10	
ResNet-101	0	87.45	1.67	87.75	17.34	
ResNet-101	0.5	88.02	2.12	88.93	14.42	
ResNet-50	0	85.98	1.68	86.35	19.90	
ResNet-50	0.5	87.07	1.75	87.54	16.65	
ResNet-18	0	82.73	1.71	81.72	19.60	
ResNet-18	0.5	85.26	0.98	83.52	19.07	

CARS

CAID										
		ARC			ARC +Mixup					
MODEL	Dropout	Hyperparameters	ACC	ECE	Hyperparameters	ACC	ECE			
Densenet-121	0	$V_1 M = 15 \beta = 10$	89.06	2.62	$\mathtt{V}_2\ M = \mathtt{X}\ \beta = 46\ \mathtt{ARC}(x_1, x_2)$	90.14	2.56			
Densenet-121	0.2	$V_2 M = 1 \beta = 10$	90.09	1.92	$\mathbf{V}_2\ M = \mathbf{X}\ \beta = 28\ \mathrm{ARC}(x_1, x_2)$	91.13	2.40			
ResNet-101	0	$ V_1 M = 15 \beta = 10$	88.39	2.90	$V_1 M = X \beta = 46 \operatorname{ARC}(x_1, x_2)$	90.30	2.13			
ResNet-101	0.5	$V_2 M = 1 \beta = 10$	89.11	4.15	$\mathbf{V}_2\ M = \mathbf{X}\ \beta = 28\ \mathtt{ARC}(x_1, x_2)$	90.97	2.87			
ResNet-50	0	$ V_1 M = 15 \beta = 10$	87.61	2.57	$V_2 M = X \beta = 46 ARC(x_1, x_2)$	89.77	3.78			
ResNet-50	0.5	$V_2 M = 1 \beta = 10$	88.02	3.71	$\mathbf{V}_2\ M = \mathbf{X}\ \beta = 28\ \mathtt{ARC}(x_1, x_2)$	90.11	3.84			
ResNet-18	0	$ V_1 M = 15 \beta = 10$	84.79	2.40	$V_2 M = X \beta = 46 ARC(x_1, x_2)$	86.15	2.73			
ResNet-18	0.5	$ \mathbf{V}_2 M = 1 \beta = 10$	85.18	1.84	$V_2 M = X \beta = 28 ARC(x_1, x_2)$	88.45	2.38			

CARS

		MMCE			MMCE +Mixup				
MODEL	Dropout	Hyperparameters	ACC	ECE	Hyperparameters ACC ECE				
Densenet-121	0	$\beta = 0.5$	88.29	3.96	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 88.47 11.56$				
Densenet-121	0.2	$\beta = 0.5$	89.40	2.70	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 88.43 12.64$				
ResNet-101	0	$\beta = 0.5$	87.15	1.41	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 87.23 13.82$				
ResNet-101	0.5	$\beta = 0.5$	88.15	2.04	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 87.24 12.34$				
ResNet-50	0	$\beta = 0.5$	86.26	1.90	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 86.20 14.25$				
ResNet-50	0.5	$\beta = 0.5$	87.18	1.50	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 86.18 12.62$				
ResNet-18	0	$\beta = 0.5$	82.98	2.19	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 81.30 13.94$				
ResNet-18	0.5	$\beta = 0.5$	85.28	2.12	$\beta = 2.0 \text{ MMCE}(x_1, x_2) 83.22 13.37$				

CARS MCE (%)

Model	Dropout	Baseline	Baseline+Mixup	MMCE	MMCE +Mixup	ARC	ARC +Mixup
DenseNet-121	0.0	0.58	1.98	0.52	1.12	0.82	0.91
DenseNet-121	0.2	0.42	1.84	0.35	1.14	1.21	1.64
ResNet-101	0.0	0.75	1.69	0.81	1.35	1.72	1.45
ResNet-101	0.5	1.08	1.45	1.29	1.23	2.15	1.87
ResNet-50	0.0	0.39	1.98	0.34	1.30	1.42	2.46
ResNet-50	0.5	0.71	1.61	0.73	1.18	1.74	2.50
ResNet-18	0.0	0.32	2.13	0.35	1.62	1.24	1.22
ResNet-18	0.5	0.23	1.79	0.33	1.32	0.27	1.54

$\mathrm{CARS}\;\mathrm{BS}\times 100$

Model	Dropout	Baseline	${\bf Baseline + Mixup}$	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathtt{Mixup}$
DenseNet-121	0.0	0.097	0.125	0.096	0.105	0.091	0.078
DenseNet-121	0.2	0.089	0.110	0.087	0.105	0.080	0.069
ResNet-101	0.0	0.099	0.119	0.099	0.115	0.091	0.074
ResNet-101	0.5	0.093	0.105	0.092	0.112	0.089	0.071
ResNet-50	0.0	0.108	0.136	0.106	0.124	0.097	0.080
ResNet-50	0.5	0.100	0.120	0.099	0.120	0.094	0.079
ResNet-18	0.0	0.130	0.166	0.130	0.157	0.117	0.107
ResNet-18	0.5	0.109	0.150	0.109	0.140	0.112	0.087

CARS NNL

Model	dropout	Baseline	Baseline+Mixup	MMCE	$\mathtt{MMCE}\ + \mathrm{Mixup}$	ARC	$\mathtt{ARC}\ + \mathrm{Mixup}$
DenseNet-121	0.0	0.49	0.70	0.49	0.59	0.47	0.42
DenseNet-121	0.2	0.45	0.61	0.44	0.59	0.42	0.38
ResNet-101	0.0	0.50	0.66	0.50	0.63	0.49	0.38
ResNet-101	0.5	0.48	0.58	0.48	0.60	0.49	0.41
ResNet-50	0.0	0.54	0.75	0.53	0.68	0.51	0.45
ResNet-50	0.5	0.50	0.65	0.50	0.64	0.50	0.46
ResNet-18	0.0	0.66	0.91	0.66	0.86	0.61	0.58
ResNet-18	0.5	0.54	0.80	0.54	0.75	0.56	0.45