Zusammenfassung zur Vorlesung Gruppentheorie in der Physik I

Yanick Sebastian Kind yanick.kind@udo.edu

03.03.2023

Inhaltsverzeichnis

1	Erg	Ergänzen							
2	Abs	Abstrakte Gruppentheorie							
	2.1	Definition: Gruppe	3						
		2.1.1 endliche Gruppe	3						
	2.2	Multiplikationstabelle	3						
		2.2.1 Rearrangement Theorem	4						
	2.3	Zyklische Gruppe	4						
	2.4	Untergruppen und Nebenklassen	4						
		2.4.1 Satz: Disjunkheit oder Gleichheit	4						
		2.4.2 Satz: Index einer Untergruppe	4						
	2.5	Konjugierte Elemente und Klassen	4						

List of Theorems

1 Ergänzen

- Iso/Homomorphismus
- Permutationsgruppe

2 Abstrakte Gruppentheorie

2.1 Definition: Gruppe

Eine Menge $\mathcal{G} = \{A_2, A_3, ...\}$ bildet eine Gruppe, wenn mit einer Gruppenverknüpfung * folgende vier Eigenschaften erfüllt sind:

- 1. **Abgeschlossenheit**: Mit $A_i, A_j \in \mathcal{G}$ folgt $A_i * A_j = A_k \in \mathcal{G}$, d.h. die Verknüpfung zweier Elemente ergibt wieder ein Element der Gruppe.
- 2. Assoziativität: Es gilt mit $A_i, A_j, A_k \in \mathcal{G}$, dass $(A_i * A_j) * A_k = A_i * (A_j * A_k)$.
- 3. Neutrale Element: Es exestiert ein eindeutiges Element $E \in \mathcal{G}$ mit $E * A_i = A_i * E = A_i$.
- 4. **Inverse Element**: Zu jedem Element $A_i \in \mathcal{G}$ exestiert ein eindeutiges inverses Element A_i^{-1} , so dass $A_i^{-1} * A_i = A_i * A_i^{-1} = E$ gilt.

2.1.1 endliche Gruppe

Eine Gruppe mit einer endlichen Anzahl an Elementen heißt endliche Gruppe. Eine Gruppe $\mathcal{G} = \{E, A_2, \dots, A_h\}$ ist eine endliche Gruppe der Ordnung h. Man schreibt auch $|\mathcal{G}| = h$

2.2 Multiplikationstabelle

Die Multiplikationstabelle gibt einfach an, welche Verknüpfungen welches Gruppenelement ergeben. Bsp. Symmetrische Gruppe S_3 :

	$\mid e \mid$	a	a^2	b	c	d
e	e	a	$ \begin{array}{c} a^2 \\ e \\ a \\ c \\ d \\ b \end{array} $	b	c	d
a	a	a^2	e	c	d	b
a^2	a^2	e	a	d	b	c
b	b	d	c	e	a^2	a
c	c	b	d	a	e	a^2
d	d	c	b	a^2	a	e

¹Im Folgenden wird das Symbol der Verknüpfung und die Angabe, dass ein Element einer Gruppe ist, weggelassen, sofern es eindeutig ist.

2.2.1 Rearrangement Theorem

Sallop gesagt: In jeder Zeile und Spalte einer Multiplikationstabelle kann ein Gruppenelemnt nur einmal auftreten.

Mathematisch: In der Sequenz $EA_k, A_2A_k, \cdots, A_hA_k$ kommt jedes Element A_i nur einmal vor.

2.3 Zyklische Gruppe

Bei einer zyklischen Gruppe kann jedes Element durch mehrfacher Multiplikation eines Elements reproduziert werden, so dass sich jede zyklische Gruppe \mathcal{G} als

$$G = \{X, X^2, \dots, X^n = E\}$$

schreiben lässt, wobei die Ordnung die Periode der zyklischen Gruppe ist (Bsp.: Translationsgruppe eines Kirstalls)

2.4 Untergruppen und Nebenklassen

Sei $\mathcal{S} = \{E, S_2, \dots, S_g\}$ eine Untergruppe der Ordnung g der Gruppe \mathcal{G} der Ordnung h, dann ist

$$SX = \{EX, S_2X, \dots, S_aX\}$$

eine rechte Nebenklasse von S (linke Nebenklasse analog). Wäre $X \in S$, dann wäre XS wieder S selbst und damit enthält eine Nebenklasse kein einziges Element der Untergruppe.

2.4.1 Satz: Disjunkheit oder Gleichheit

Zwei (linke oder rechte) Nebenklassen XS, YS einer Untergruppe S sind entweder disjunkt oder gleich.

2.4.2 Satz: Index einer Untergruppe

Die Ordnung einer Untergruppe S von G, wobei |S| = g, G = h gilt, muss ein ganzzahliger Teiler von h sein, so dass

$$\frac{h}{a} = l \in \mathbb{Z}$$

gilt. Dabei wird l der Index der Untergruppe S in G genannt.

2.5 Konjugierte Elemente und Klassen

Zwei Elemente A, B sind zueinander konjugiert, wenn

$$B = XAX^{-1}$$

gilt. Damit folgt, dass wenn C und B zu A konjugiert sind, dass auch B und C zueinander konjugiert sind.