1

2

3

4

5

6

7

1

2

1

2

3

4

1 1\A method of evaluating the performance of a hybrid analog-digital integrated circuit having 2 an analog unit, a digital unit, and a substrate on which the units are located, comprising: 3 identifying a broadband power source that represents noise characteristics of the digital unit; 4 and 5 simulating performance of the integrated circuit by evaluating performance of a lumped circuit 6 in which the source couples to a lumped element representing the substrate and the substrate couples 7 to a lumped element representing the analog unit. 1 2. The method of claim 1, wherein the identifying includes evaluating one or more 2 characteristics of the power source based on a behavioral simulation model for the digital unit. 1 3. The method of claim 1, further comprising: 2 repeating the identifying and simulating for another digital unit; and 3 selecting one of the two digital units based on the simulating showing that the integrated 4 circuit has a better performance with the one of the units. 1 4. The method of claim 1, further comprising: 2 repeating the simulating for a lumped element representing another substrate; and 3 selecting a better one of the two substrates based on the performances determined by the acts 4 of simulating.

5. A program storage medium encoding a computer executable program of instructions for evaluating the performance of a hybrid analog-digital integrated circuit having an analog unit, a digital unit, and a substrate on which the units are located, the instructions to cause the computer to:

identify a broadband power source that represents noise characteristics of the digital unit; and simulate performance of the integrated circuit by evaluating performance of a lumped circuit in which the source couples to a lumped element representing the substrate and the substrate couples to a lumped element representing the analog unit.

- 6. The medium of claim 5, wherein the instruction to identify evaluates one or more characteristics of the power source based on a behavioral simulation model for the digital unit.
 - 7. The medium of claim 5, wherein the instructions further cause the computer to: repeat the identifying and simulating for another digital unit; and select one of the two digital units based on the simulating showing that the integrated circuit has a better performance with the one of the units.

1

2

3

1

2

1

2

3

1

2

1

2

1 2

1 2

1	6. The medium of claim 5, wherein the instructions further cause the computer to:
2	repeat the simulating for a lumped element representing another substrate; and
3	select a better one of the two substrates based on the performances determined by the
4 \	acts of simulating.
1	A method comprising:
2	identifying a candidate integrated circuit that comprises a candidate digital circuit;
3	determining a power coefficient, S_0 , of said candidate digital circuit;
4	predicting a power spectral density, $S(\omega)$, of said candidate digital circuit based on said
5	power coefficient, S_0 , of said candidate digital circuit; and
6	fabricating said candidate integrated circuit when said power spectral density, $S(\omega)$, of said
7	candidate digital circuit achieves a design goal for said candidate integrated circuit.

- 10. The method of claim 9 further comprising determining a mean bit rate, $\overline{\nu}$, of said candidate digital circuit, wherein said power spectral density, $S(\omega)$, of said candidate digital circuit is based on said power coefficient, S_0 , and on said mean bit rate, $\overline{\nu}$.
- 11. The method of claim 9 wherein said candidate integrated circuit further comprises a candidate analog circuit.
- 12. The method of claim 11 further comprising evaluating a lumped circuit in which a noise source based on $S(\omega)$ is coupled to a multi-port network that represents a candidate substrate which is coupled to a multi-port network that represents said candidate analog circuit.
- 13. The method of claim 9 wherein said candidate integrated circuit comprises a plurality of candidate digital circuits.
- 14. The method of claim 9 wherein said power coefficient, S_0 , is based on the number of switching devices composing said candidate digital circuit.
- 15. The method of claim 9 wherein said power coefficient, S_0 , is based on the clock rate of said candidate digital circuit.
- 16. The method of claim 9 wherein said power coefficient, S_0 , is based on a plurality of voltage levels of said candidate digital circuit.

2

1

2

3

1

2

1

2

1

1 2 candidate analog circuit.

1	17. The method of claim 9 wherein said power coefficient, S_0 , is based on an activity factor of
2	said candidate digital circuit.
3	18. A method comprising:
4	identifying a candidate integrated circuit that comprises a candidate digital circuit;
5	determining a mean bit rate, $\overline{\nu}$, of said candidate digital circuit;
6	predicting a power spectral density, $S(\omega)$, of said candidate digital circuit based on said mean
7	bit rate, \overline{v} , of said candidate digital circuit; and
8	fabricating said candidate integrated circuit when said power spectral density, $S(\omega)$, of said
9	candidate digital circuit achieves a design goal for said candidate integrated circuit.
1	19. The method of claim 18 further comprising determining a power coefficient, S_0 , of said
2	candidate digital circuit, wherein said power spectral density, $S(\omega)$, of said candidate digital circuit is
3	based on said power coefficient, S_0 , and on said mean bit rate, $\stackrel{-}{\nu}$.
1	20. The method of claim 18 wherein said candidate integrated circuit further comprises a

- 21. The method of claim 20 further comprising evaluating a lumped circuit in which a noise source based on $S(\omega)$ is coupled to a multi-port network that represents a candidate substrate which is coupled to a multi-port network that represents said candidate analog circuit.
- 22. The method of claim 18 wherein said candidate integrated circuit comprises a plurality of candidate digital circuits.
- 23. The method of claim 18 wherein said mean bit rate, $\bar{\nu}$, is based on the number of switching devices composing said candidate digital circuit.
- 24. The method of claim 18 wherein said mean bit rate, $\bar{\nu}$, is based on the clock rate of said candidate digital circuit.
- 25. The method of claim 18, wherein said mean bit rate, $\bar{\nu}$, is based on a plurality of voltage levels of said candidate digital circuit.

- 1 26. The method of claim 18 wherein said mean bit rate, $\overline{\nu}$, is based on an activity factor of
- 2 said candidate digital circuit.