Lecture 28

Dynamic Linear Model: Part 1

Arnab Hazra

▶ The response variable Research can take values only zero or one. Suppose, they are denoted by Z_i , i = 1, ..., 400. Also, suppose, for the new student, it is denoted by Z_0 .

	GRE	TOEFL	Research
1	337	118	1
2	324	107	1
3	316	104	1
4	322	110	1
5	314	103	0
6	330	115	1

◆□ → ◆□ → ◆ = → ◆ = → へ ○ へ ○

- ► The predicted response should also be either zero or one. Other values are meaningless.
- Instead of the value of the response, it is rather more meaningful to quantify $\Pr(Z_0 = 0 | X_0 = 110)$ or $\Pr(Z_0 = 1 | X_0 = 110)$.
- ► Thus, the most reasonable approach for quantifying the linear relationship between Z_i 's and X_i 's would be to choose

$$Pr(Z_0 = 1 | X_0 = 110) = \eta(\beta_0 + \beta_1 X_i),$$

where $\eta: \mathbb{R} \to [0, 1]$ and monotone.

- We call the regression model to be logistic if $\eta(\cdot)$ is a inverse-logit link, and probit if $\eta(\cdot)$ is a inverse-probit link. The functions are defined as follows.
 - Logistic regression: $\eta(x) = \exp[x]/(1 + \exp[x])$

Probit regression: $\eta(x) = \Phi(x)$, where $\Phi(\cdot)$ denotes the standard normal CDF

Hierarchical structure of probit regressions

Suppose, $W|X = x \sim \text{Normal}(\beta_0 + \beta_1 x, 1)$, and Y = 1 if W > 0, Y = 0 if W < 0. Show that there exists a inverse-probit link between X and Y, that is, $\Pr(Y = 1|X = x) = \Phi(\beta_0 + \beta_1 x)$.

$$Pr(Y = 1|X = x)$$
= $Pr(W > 0|X = x)$
= $1 - Pr(W \le 0|X = x)$
= $1 - Pr(W - \beta_0 - \beta_1 x \le -\beta_0 - \beta_1 x | X = x)$
= $1 - \Phi(-\beta_0 - \beta_1 x)$
= $\Phi(\beta_0 + \beta_1 x)$

Motivation of hierarchical models

- Now suppose we have a time series of binary observations $Y_t \in \{0, 1\}$.
- ▶ It is difficult to define a joint distribution of $(Y_1, \ldots, Y_T)'$.
- ▶ Suppose $X_1, ..., X_T$ are covariate values.
- ► However we have seen

$$\pi(Y_1, \dots, Y_T)$$

$$= \int \dots \int \pi(Y_1, \dots, Y_T, W_1, \dots, W_T) dW_1 \dots dW_T$$

$$= \int \dots \int \pi(Y_1, \dots, Y_T | W_1, \dots, W_T) \pi(W_1, \dots, W_T) dW_1 \dots dW_T$$

$$= \int \dots \int \left\{ \prod_{t=1}^T \pi(Y_t | W_t) \right\} \pi(W_1, \dots, W_T) dW_1 \dots dW_T$$

$$\neq \prod_{t=1}^T \pi(Y_t)$$

Motivation of hierarchical models (contd.)

- ▶ Suppose, $W_t | X_t = x_t \sim \text{Normal}(\beta_0 + \beta_1 x_t, 1)$, and $Y_t = 1$ if $W_t > 0$, $Y_t = 0$ if $W_t < 0$. Then $\Pr(Y_t = 1 | X_t = x_t) = \Phi(\beta_0 + \beta_1 x_t)$.
- Now we can choose a time series model for W_t . For example, we can choose an AR(1) model for W_t .
- In that case, we define $W_t^* = W_t \beta_0 + \beta_1 x_t$, and then $W_1 \sim \mathcal{N}(0,1)$ and $W_t^* | W_{t-1}^* \sim \mathcal{N}(\rho W_{t-1}^*, 1 \rho^2)$. Note that $W_t^* \sim \mathcal{N}(0,1)$ for all t.
- We can choose a more general model like ARMA(p, q) but the marginal needs to be standard normal.

DLM: State equation

▶ DLM in its basic form, employs an order one, *p*-dimensional vector autoregression as the state equation,

$$\mathbf{X}_t = \mathbf{\Phi} \mathbf{X}_{t-1} + \mathbf{W}_t,$$

where $\boldsymbol{W}_t \stackrel{\textit{IID}}{\sim} \mathcal{N}_{\boldsymbol{p}}(\boldsymbol{0}, \boldsymbol{Q})$.

- In the DLM, we assume the process starts with a normal vector X_0 , such that $X_0 \sim \mathcal{N}_p(\mu_0, \Sigma_0)$.
- ► Here *p* is called state dimension.

DLM: Observation equation

We do not observe the state vector \mathbf{X}_t directly, but only a linear transformed version of it with noise added, say $\mathbf{Y}_t = \mathbf{A}_t \mathbf{X}_t + \mathbf{V}_t$, where \mathbf{A}_t is a $q \times p$ measurement or observation matrix; this equation is called the observation equation.

The observed data vector, \mathbf{Y}_t , is q-dimensional, which can be larger than or smaller than p, the state dimension. The additive observation noise is $\mathbf{V}_t \stackrel{\textit{IID}}{\sim} \mathcal{N}_q(\mathbf{0}, \mathbf{R})$.

Thank you!