Queensland University of Technology

Geometric interpretation of the general POE model for a serial-link robot via conversion into D-H parameterization

Liao Wu
University of New South Wales
Sydney, Australia

Ross Crawford & Jonathan Roberts
Queensland University of Technology
Brisbane, Australia

DH actual =

Key Findings

- 1. The general D-H model and the general POE (Product of Exponentials) formula (general means covering the type of helical joints) are interconvertible automatically.
- 2. The maximum number of identifiable parameters in a general model is 5h+4r+2t+n+6 where h, r, t, and n stand for the number of helical, revolute, prismatic, and general joints.
- 3. The identifiability of the base frame and the tool frame in the D-H model is restricted rather than the arbitrary 6 parameters as assumed previously.
- 4. Matlab implementation of the interconversion between the two models can be found at https://github.com/drliaowu/GeneralPOE2DH

Motivation

- 1. The POE model has been proved as more effective for the calibration of serial-link robots than the D-H model.
- 2. However, the D-H model is more widely used with a long history and many algorithms and libraries developed based on it.
- 3. If the two models are interconvertible automatically, it will be very convenient to take advantage of both models.

General D-H Model

Fig. 1. D-H parameters for an n-joint serial-link robot with an arbitrarily located base frame and tool frame.

The forward kinematics with D-H parameters:

Joint i-1 Joint i Parameters for i-1 H_i θ_i , d_i+q_i , α_i , a_i , a_i

General POE Model

Fig. 3. A general POE model for an n-DOF serial-link robot.

Three equivalent expressions:

1. The *base* POE formula:

$$\mathbf{H} = e^{\hat{\mathbf{\xi}}_1(q_1 + \Delta q_1)} e^{\hat{\mathbf{\xi}}_2(q_2 + \Delta q_2)} \cdots e^{\hat{\mathbf{\xi}}_n(q_n + \Delta q_n)} e^{\hat{\mathbf{\xi}}_T}$$

2. The *tool* POE formula:

$$\boldsymbol{H} = e^{\hat{\boldsymbol{\xi}}_T} e^{\hat{\boldsymbol{\xi}}_1^T (q_1 + \Delta q_1)} e^{\hat{\boldsymbol{\xi}}_2^T (q_2 + \Delta q_2)} \cdots e^{\hat{\boldsymbol{\xi}}_n^T (q_n + \Delta q_n)}$$

3. The *local* POE formula:

$$\boldsymbol{H} = \boldsymbol{H}_{1} e^{\hat{\boldsymbol{\xi}}_{1}^{H_{1}}(q_{1} + \Delta q_{1})} \boldsymbol{H}_{2} e^{\hat{\boldsymbol{\xi}}_{2}^{H_{2}}(q_{2} + \Delta q_{2})} \cdots \boldsymbol{H}_{n} e^{\hat{\boldsymbol{\xi}}_{n}^{H_{n}}(q_{n} + \Delta q_{n})} \boldsymbol{H}_{n+1}$$

Conversion

Lemma 1. For a helical joint, the exponential $e^{\bar{\xi}q}$ can be converted into the form of $\mathbf{H}R_Z(q)T_Z(hq)\mathbf{H}^{-1}$, where $h = \bar{\boldsymbol{\omega}}^T \boldsymbol{v}$ and $\mathbf{H} = R_Z(\theta)T_Z(d)R_X(\alpha)T_X(a)$.

Lemma 2. For a revolute joint, the exponential $e^{\hat{\xi}q}$ can be converted into the form of $\mathbf{H}R_Z(q)\mathbf{H}^{-1}$, where $\mathbf{H} = R_Z(\theta)T_Z(d)R_X(\alpha)T_X(a)$.

Lemma 3. For a prismatic joint, the exponential $e^{\xi q}$ can be converted into the form of $HT_Z(q)H^{-1}$, where $H = R_Z(\theta)T_Z(d)R_X(\alpha)T_X(a)$.

Lemma 4. For an arbitrary twist $\hat{\boldsymbol{\xi}}$, the exponential $e^{\boldsymbol{\xi}}$ can be decomposed into a product $e^{\hat{\boldsymbol{\xi}}} = \boldsymbol{H}_1 \boldsymbol{H}_2$, where $\boldsymbol{H}_1 = R_Z(\theta_1)T_Z(d_1)R_X(\alpha_1)T_X(a_1)$ and $\boldsymbol{H}_2 = R_Z(\theta_2)T_Z(d_2)$.

Matlab Implementation

0.0447 0 0 1.0000 -1.5508 0.0092 0 1.0000 0.1790 0.5114 0.0797 1.0000 1.5716 153.3035 -0.0000 1.0000 1.5837 1.8365 0.0000 1.0000 1.6017 3.1761 2.8740 1.0000 3.0556 -0.7202 NaN NaN

q bar actual =

Inferences

1. For an inaccurate n-link robot, the identifiability of the kinematic parameters can be given as

$$C_3 = \underbrace{5h + 4r + 2t}_{\bar{\xi}_i} + \underbrace{n}_{\bar{q}_i} + \underbrace{6}_{\xi_T}$$

When excluding helical motion and error of joint position reading, it degrades to the widely agreed expression

$$C_2 = 4r + 2t + 6.$$

- 2. The identifiability of the base frame and the tool frame in the D-H model is restricted rather than the arbitrary 6 parameters as assumed previously.
 - Specifically in the shown case, the identifiable six parameters are the four with the base and the two with the tool.
- 3. Small variation of the robot structure may not cause large variation of POE parameters, but could result in drastic change in D-H model. Therefore, when calibration is needed and the D-H model has to be taken for some reason, a possible approach could be

