ТЕОРИЯ К КУРСУ «АНАЛИТИЧЕСКАЯ МЕХАНИКА II» ФОПФ

 За авторством:
 Хоружего К.

 Примака Е.

От: 10 февраля 2021 г.

Содержание

Устойчивость движения	2
15.1 Возмущенное движение	2
15.2 Функции Ляпунова	2

Устойчивость движения

15.1 Возмущенное движение

Пусть уравнение движение представлено в виде:

$$\frac{dy_i}{dt}Y_i(y_1, y_2, \dots, y_m, t) \ (i = 1, 2, \dots, m). \tag{15.1}$$

Рассмотрим частное движение — частное решение этой системы с начальными условиями

$$y_i^* = f_i(t)(i = 1, 2, \dots, m), \quad y_{i0} = f_i(t_0)(i = 1, 2, \dots, m).$$
 (15.2)

Нас будут интересовать движения системы при отклонении от начальных условий y_{i0} от значений $f_i(t_0)$.

Def 15.1. Движение системы, описываемое (15.2) называется невозмущенным движением. Все другие движения механической системы при тех же силах, что и движение (15.2) — возмущенные движения.

Def 15.2. Возмущениями назовём разности вида:

$$x_i = y_i - f_i(t) \ (i = 1, 2, \dots, m).$$
 (15.3)

Def 15.3. Теперь, произведя замену по формулам (15.3) в уравнениях (15.1) получим дифференциальные уравнения возмущенного движения:

$$\frac{dx_i}{dt} = X_i(x_1, x_2, \dots, x_m, t) \ (i = 1, 2, \dots, m).$$
(15.4)

Уравнения (15.4) имеют частное решение $x_i \equiv$ отвечающее невозмущенному движению.

Def 15.4. Движение называется *установившимся*, если $X_i \neq g(t)$, в противном же случае — *неустановившимся*. *ся.*

Def 15.5 (Устойчивость по Ляпунову). Невозмущенное движение называется *устойчивым* по отношению к переменным y_i , если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon)$: \forall возмущенных движений, для которых

$$|x_i(t_0)| < \delta, \ \forall t > t_0$$
 выполняется $|x_i(t)| < \varepsilon.$ (15.5)

Def 15.6 (Асимптотическая устойчивость). Невозмущенное движение называется *асимптотически устойчивым* по отношению к переменным y_i , если оно устойчиво и $\exists \delta$ – маленькие такие, что для возмущенных движений удовлетворяющим условиям (15.5) верно:

$$\lim_{t \to \infty} x_i(t) = 0 \ (i = 1, 2, \dots, m). \tag{15.6}$$

15.2 Функции Ляпунова

Для простоты будем изучать толко установившиеся движения. В уравнениях возмущенного движения (15.4) функции X_i будем считать непрерывными в области

$$|x_i| < H(=onst) \ (i = 1, 2, \dots, m),$$
 (15.7)

и такими, что уравнения (15.4) при начальных значениях x_{i0} из области (15.7) допускают единственное решение.

Def 15.7 (Функция Ляпунова). В области $|x_i| < h$, где h > 0 — достаточно малое число, будем рассматривать функции Ляпунова $V(x_1, x_2, \ldots, x_m)$, предполагая их непрерывно дифференцируемыми, однозначными и обращающимися в нуль в начале координат $x_1 = x_2 = \ldots = x_m = 0$.

Def 15.8. Производной dV/dt функции V в силу уравнений возмущенного движения (15.4) называется:

$$\frac{dV}{dt} = \sum_{i=1}^{m} \frac{\partial V}{\partial x^i} X_i.$$

Таким образом производная от функции Ляпунова также $g(x_1, x_2, \dots, x_m)$, будет непрерывной в той же облачи и обращаться в нуль в начале координат.

Def 15.9. $V(x_1, x_2, \ldots, x_m)$ назовём *определенно-положительной* в области $|x_i| < h$, если всюду в этой облачи, кроме начал координат верно: V > 0. Аналогично с определенной отрицательно. В обоих случаях функция V называется *знакоопределенной*.

Def 15.10. Если в области $x_i < h$ функция V может принимать значения только одного знака, но может обращаться в нуль не толко в начале координат, то она называется *знакопостоянной*.

Def 15.11. Наконец, если функция может принимать в области как значения большие нуля, так и меньшие, она называется *знакопеременной*.