Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

25 Giugno 2020 - 9:00 ESAME ONLINE

2.	Sia	assegnata	la	funzione
----	-----	-----------	----	----------

$$f(x) = x - \sqrt{x - 1}, \qquad x \in [1, 3].$$

a) Scrivere il proprio codice Matlab per determinare il polinomio $p(x)$	di grac	lo 3, in
	forma di Newton, che interpola la funzione $f(x)$ su nodi equispaziat	i.	

Punti: 5

b) Disegnare in una stessa figura i punti di interpolazione, il grafico di f e del polinomio di interpolazione p ottenuto al punto a).

Punti: 2

c) Scrivere il proprio codice Matlab per calcolare con la formula di Simpson composita su N sottointervalli equispaziati, i valori approssimati \tilde{I}_1 e \tilde{I}_2 degli integrali

$$I_1 = \int_1^3 f(x) dx$$
 e $I_2 = \int_1^3 p(x) dx$.

Punti: 5

d) Utilizzando la tecnica del raddoppio degli intervalli, scrivere la function simptol1 per stimare il numero N di sottointervalli equispaziati che servono per approssimare con la formula di Simpson composita i due integrali (il cui valore esatto è rispettivamente $I_1=2.114381916835873$ e $I_2=2.168048769926493$) nel rispetto della tolleranza 10^{-5} . Quanto vale N nei due casi? Quanto valgono $|\tilde{I}_1-I_1|$ e $|\tilde{I}_2-I_2|$? Motivare i risultati ottenuti.

Punti: 4

Totale: 16