Deep Residual Learning for Image Recognition (ResNet)

Journal club presentation

Christophe Ecabert

LTS5, EPFL

March 23rd, 2017

Reference

He et al. Deep Residual Learning for Image Recognition Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016.

Recap

- ► Dropout
 - ▶ Learn better feature representation
 - ► Longer training time
- ▶ AlexNet
 - ▶ Depth matter
- ▶ GoogLeNet
 - ► *Inception* cell (Network in network)
 - ▶ 1x1 convolution for dimension reduction / adaptation
- ▶ Batch normalization
 - ► Accelerate training
 - ▶ Less sensitive to initialization
 - ▶ Improve regularization

Recap On Architecture

Figure 1: AlexNet (8 layers), VGG19 (19 layers), GoogLeNet (22 layers)

Exploding / Vanishing signals

► Single layer model

$$\mathbf{x}_l = f(\mathbf{y}_{l-1})$$

$$\mathbf{y}_l = \mathbf{W}_l \mathbf{x}_l + \mathbf{b}_l$$

▶ Single layer with ReLU activation function

$$Var[y_l] = \frac{1}{2}n_l Var[w_l] Var[y_{l-1}]$$

 \blacktriangleright With L layers

$$Var[y_l] = Var[y_1] \left(\prod_{l=2}^{L} \frac{1}{2} n_l Var[w_l] \right)$$

He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification (2015)

Initialization

► Weight distribution requirements

$$\frac{1}{2}n_l Var[w_l] = 1, \quad \forall l$$

Therefore weight are initialized with zero mean gaussian noise with a standard deviation of $\sigma_l = \sqrt{2/n_l}$ and $\mathbf{b}_l = 0$. For the first layer, $n_1 Var[w_1] = 1$ should hold as well.

Figure 2: The convergence of a 22-layer and 30-layer model with ReLU.

Learning Better Network - Stacking layers

- ▶ Adding layers exposes a degradation problem, the accuracy decreases as the depth increases.
- ▶ Such degradation is not caused by overfitting.
- ► Considering the following experiment :
 - Train two networks, one shallow (18 layers) and one deep (34 layers).

Figure 3: Experimental setup

Degradation problem

- Issues
 - ► Richer solution space
 - ▶ Solver can not find the solution when going deeper
- ▶ The deeper network should, in the worst case, have same performance as the shallow one since it exists a solution where the extra layers are identities (*i.e.* same as shallow network).

Figure 4: Training on ImageNet

Deep Residual Network

▶ Plain vs Residuel Network

Figure 5: Mapping lerning : Plain vs Residual

- ▶ Design motivation
 - ▶ All 3x3 convolution or paired with 1x1.
 - Feature maps size halfed, number of filter doubled (preserves time complexity).
 - No max-pooling, play with filter stride.
 - ► End with global average pooling layer + single fully connected.

Training

Figure 6: Residual Architecture

Figure 7: Training on ImageNet

Going Even Deeper

Figure 8: Deeper residual function \mathcal{F} for ImageNet

ResNet Architecture

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
conv2_x	56×56	3×3 max pool, stride 2					
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	\[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10^{9}	3.8×10 ⁹	7.6×10 ⁹	11.3×10 ⁹	

Figure 9: Deeper Architecture

Smooth Propagation Forward / Backward

▶ Plain network, multiplicative process.

$$x_L = \prod_{i=l}^{L-1} W_i x_l$$

► Residual network, cumulative process.

$$x_L = x_l + \sum_{i=1}^{L-1} F(x_i)$$

► Training process

- ▶ Data augmentation (random crop, scale augmentation, ...)
- ▶ Per-pixel mean subtraction
- Color augmentation (PCA on RGB, add multipules of principal components)
- Batch Normalization after each convolution and before activation function
- Weights initialization with proper standard deviation accroding to ReLU.
- ▶ Train from scratch with standard SGD.

Table 1: Error rate of single-model on the ImageNet validation set.

Method	Top 5% error
VGG (ILSVRC14)	8.43
GoogLeNet (ILSVRC14)	7.89
VGG(v5)	7.1
BN-Inception	5.81
ResNet-50	5.25
ResNet-101	4.60
ResNet-152	4.49

Table 2: Error rate of ensembles on the ImageNet test set.

Method	Top 5% error
VGG (ILSVRC14)	7.32
GoogLeNet (ILSVRC14)	6.66
VGG(v5)	6.80
BN-Inception	4.82
ResNet (ILSVRC15)	3.57

Figure 10: Results on ImageNet

Conclusions

- ▶ Residual architecture
 - ► Even with very deep structure, it has smaller complexity than plain network (i.e. VGG)
 - ▶ Features of any layers are additive outcomes
 - ► Enables smooth forward/backward propagation
 - Greatly eases the optimization of the model

