新疆大学 2020—2021 学年度第二学期期末考试

《概率论与数理统计》试卷 A

	姓名:	学号:			
	学院:	班纫	₫:		
				2021 年	6月
	下列问题可设 A. 新生 B. 在区	大题共5小题,每题2分 为离散型随机变量的是 儿的身高和体重 间(0,5)内任取2个数,	,这两个数的差	[1
2.	D. 两人假设样本 X_1,X σ^2 的无偏估计		会面,他们的会面时体 $N(\mu,\sigma^2)$,期望 μ 未完	刻	量中关于
		$(\overline{X})^2$ B. $\frac{1}{n-1}\sum_{i=1}^n (\mu)^2$ D. $\frac{1}{n-1}\sum_{i=1}^n (\mu)^2$			
3.	A. $n\overline{X} \sim N(0)$	n为取自 $N(0,1)$ 的样本, n , n B. n	$^2 \sim \chi^2(n)$	方差为S ² ,则【	1
1.	A. $cov(X,Y)$	(X, Y) 的相关系数 ρ_{XY} ==0 B. X ,	Y相互独立	价的是【	1
5.	可以作为随机	D(X)D(Y) D. X L变量 X 的概率密度函数 1/3,x ∈ [0,1] 2/9, x ∈ [3,6] B. f(0. 其他	(的是	ι	1

C.
$$f(x) = \begin{cases} 1 - 5e^{-5x}, x \in (0, +\infty) \\ 0, & \not\equiv \ell \end{cases}$$
 D. $f(x) = \frac{1}{2\pi\sigma}e^{-\frac{x^2}{2\sigma}}$

二、填空题(本大题共 10 空, 每空 2 分, 共 20 分)

- 6. 设 A、B、C 为 3 个随机事件,则 A,B,C 至少有一个发生表示为,若 P(A) = P(B) = 0.25, P(C) = 1/3, P(AB) = P(BC) = 0, P(AC) = 1/12, 则 A, B, C 至少有一个事件发生的概率为
- 设随机变量 X 服从指数分布,概率密度函数 $f(x) = \begin{cases} \theta e^{-\theta x}, & x > 0, \\ 0, & \mu d \end{cases}$,则随机变量 X
- 分布函数为_____。
- 10. 在假设检验中,容易出现两类错误, $P\{ \pm \mathcal{L} H_0 | H_0 \to \underline{\mu} \} = \alpha$ 概率。
- 11. 在正态总体期望 μ 已知,方差未知时,n 个简单随机样本,统计量 $\frac{\bar{X}-\mu}{c/\sqrt{n}}$ 服从_____ 分布。
- 12. 在掷骰子游戏中,假设骰子密度均匀,外形规则,连续掷骰子3次,这3次点数都 大于3的概率是。

三、计算题(本大题共3小题, 每题10分, 共30分)

- 13. 有朋自远方来,不亦乐乎。甲乙两人相约在甲所在地见面,假设乙前往目的地的交 通有火车,飞机,汽车三种方式,其乘坐的概率分别为0.3,0.5,0.2,假设这三 种交通方式晚点的概率分别为 0.05, 0.01, 0.1。
- 求:1) 乙前往目的地晚点的概率: (6分)
 - 2) 现假设乙已经晚点,未在约定时间见面,乙乘火车的概率是多少? (4分)
- 14. 设离散型随机变量分布律为 $P\{X = k\} = \frac{1}{2^k}, k = 1,2,3,\dots$
- 求(1) X 为偶数的概率: (6分)
 - (2) 计算 X 的区间概率 $P\{2 < X <= 5\}$ 。(4 分)
- 15. 设二维随机向量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 1/4, & x \in [0,2], y \in [0,2], \\ 0, & \not\equiv \ell. \end{cases}$$

- 求 (1) X, Y 的边缘密度 $f_X(x)$, $f_Y(y)$, 并判断 X 与 Y 是否相互独立。 (6分)
 - (2) 求随机变量函数 Z=X+Y 的概率密度函数。(4分)

四、统计题(本大题共3小题, 每题10分, 共30分)

16. 设总体 X 服从泊松分布 $X_1, X_2, \cdots X_n$,为简单随机样本,其样本观测值为 $x_1, x_2, \cdots x_n$ 。

- (1)(8分)试求泊松分布未知参数 λ 的最大似然估计。 $(其中<math>\lambda>0)$
- (2)(2分)请问你所得到得最大似然估计值是否满足无偏性?
- 17. 从一批滚珠中抽样 5 个,测得其直径样本均值和方差为: $\bar{x} = 14.95$,

 $s^2 = 0.2062$ 。若直径 $X \sim N(\mu, \sigma^2)$, 求 μ 的置信度为 0.95 的置信区间。

(注: $\Phi(1.96) = 0.975$, $\Phi(1.65) = 0.95$, $t_{0.025}(4) = 2.7764$, $t_{0.025}(5) = 2.5706$,保留四位小数)

18. 某工厂对某项工艺进行了技术革新,从革新后的产品中随机抽取 26 件,测得其零件的厚度,计算得样本方差为 s^2 =0.00066 (mm^2)。设零件厚度服从正态分布 $N(\mu,\sigma^2)$,已知革新前零件的厚度 σ^2 = 0.0012,问这批产品厚度的方差较以往有无显著性变化?(显著性水平 α = 0.05保留三位小数)

(注: $\chi^2_{0.025}(25) = 37.652, \chi^2_{0.025}(26) = 38.885, \chi^2_{0.975}(25) = 13.120, \chi^2_{0.975}(26) = 13.844.$)

五、应用题(本大题共1小题,共10分)

19. 现有一本 20 万字的长篇小说需进行排版。假定(1)每个字是否被错排是相互独立的; (2)每个字被错排的概率为 $p = 1 \times 10^{-5}$ 。

试求这本小说出版后发现有5个以上错字的概率。

(注: $\Phi(3.5) = 0.9998$, $\Phi(2.12) = 0.9830$, $\Phi(1.5) = 0.9332$)