# Лекция 6

# Реконструкция типов в просто типизированном лямбда-исчислении, комбинаторы

# 1 Лекция 6

# Реконструкция типов в просто типизированном лямбдаисчислении, комбинаторы

## 1.1 Алгоритм вывода типов

Пусть есть: ?|-A:?, хотим найти пару  $\langle$  контекст, тип $\rangle$  **Алгоритм:** 

- 1. Рекурсия по структуре формулы Построить по формуле A пару  $\langle E, \tau \rangle$ , где E-набор уравнений,  $\tau$ -тип A
- 2. Решение уравнения, получения подстановки S и из решения E и  $S(\tau)$  получение ответа

Т.е. необохимо свести вывод типа к алгоритму унификации.

#### Пункт 1.1. Рассмотрим 3 случая

**Обозначение**  $\rightarrow$  – алгебраический тип

- 1.  $A \equiv x \implies \langle \{\}, \alpha_A \rangle$ , где  $\{\}$ -пустой конекст,  $\alpha_A$ -новая переменная нигде не встречавшаяся до этого в формуле
- 2.  $A \equiv P Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \rightarrow (\tau_Q \alpha_A)\}, \alpha_A \rangle$ , где  $\alpha_A$ -новая переменная
- 3.  $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \to \tau_P \rangle$

#### Пункт 1.2. Алгоритм унификации

Рассмотрим E—набор уравнений, запишем все уравнения в алгебраическом виде т.е.  $\alpha \to \beta \Leftrightarrow \to \alpha \beta$ , затем применяем алгоритм унификации.

**Лемма 1.1.** Рассмотрим терм M и пару  $\langle E_M, \tau_M \rangle$ , Если  $\Gamma | -M : \rho$ , то существует:

1. S—решение  $E_M$  тогда  $\Gamma = \{S(\alpha_x) \,|\, x \in FV(M)\}$ , FV—множество свободных переменных в терме M,  $\alpha_x$ — переменная полученная при разборе терма M  $\rho = S(\tau_M)$ 

2. Если S- решение  $E_M$ , то  $\Gamma | -M : \rho$ ,

Доказательство. индукция по структуре терма M

 $\langle \Gamma, \rho \rangle$ —основная пара для терма M, если

- 1.  $\Gamma | -M : \tau$
- 2. Если  $\Gamma'|-M:\tau'$ , то сущесвтует  $S:S(\Gamma)\subset\Gamma'$

#### Пример.

Рассмотрим терм:  $\lambda f \lambda x. f(f(x))$ , построим и пронумеруем его дерево разбора:



1. 
$$E_1 = \langle \{\}, \alpha_x \rangle$$

2. 
$$E_2 = \langle \{\}, \alpha_f \rangle$$

3. 
$$E_3 = \langle \{\}, \alpha_f \rangle$$

4. 
$$E_4 = \langle \{\alpha_f = \rightarrow (\alpha_x \, \alpha_1)\}, \alpha_1 \rangle$$

5. 
$$E_5 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{array} \right\}, \, \alpha_2 \right\rangle$$

6. 
$$E_6 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{array} \right\}, \, \alpha_x \to \alpha_2 \right\rangle$$

7. 
$$E_7 = \left\langle \left\{ \begin{array}{l} \alpha_f = \to (\alpha_x \alpha_1) \\ \alpha_f = \to (\alpha_1 \alpha_2) \end{array} \right\}, \ \alpha_f \to (\alpha_x \to \alpha_2) \right\rangle$$

$$E = \left\{ egin{aligned} & lpha_f = 
ightarrow \left(lpha_x \, lpha_1
ight) \ & lpha_f = 
ightarrow \left(lpha_1 \, lpha_2
ight) 
ight\}, \ 
m pешим \ полученную \ систему: \end{aligned}$$

1. Решим сисетму:

(a) 
$$\begin{cases} \alpha_f = \to (\alpha_x \, \alpha_1) \\ \alpha_f = \to (\alpha_1 \, \alpha_2) \end{cases}$$
 (b) 
$$\begin{cases} \to (\alpha_1 \, \alpha_2) = \to (\alpha_x \, \alpha_1) \end{cases}$$

(c) 
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_1 \end{cases}$$

(d) 
$$\begin{cases} \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

2. Получим

$$S = \begin{cases} \alpha_f = \rightarrow (\alpha_x \, \alpha_1) \\ \alpha_1 = \alpha_x \\ \alpha_2 = \alpha_x \end{cases}$$

- 3.  $\Gamma = \{\}$ , так как в заданной формуле нет свободных переменных
- 4. тип терма  $\lambda f \lambda x. f(f(x))$  является результат подстановки  $S(\to \alpha_f (\alpha_x \to \alpha_2))$ , получаем  $\tau = (\alpha_x \to \alpha_x) \to (\alpha_x \to \alpha_x)$

## 1.2 Сильная и слабая нормализации

**Определение 1.1.** Если существует последовательность редукций, приводящая терм M в нормальную форму, то M—слабо нормализуем. (Т.е. при редуцировании терма M мы можем не прийти в н.ф.)

**Определение 1.2.** Если не существует бесконечной последовательности редукций терма M, то терм M- сильно нормализуем.

#### Утверждение 1.1.

1.  $KI\Omega$ — слабо нормализуема

#### Пример.

Перепишем  $KI\Omega$  как  $((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. xx)(\lambda x. xx)))$ , очевидно, что этот терм можно средуцировать двумя разными способами:

(а) Сначала редуцируем красную скобку

i. 
$$((\lambda x \lambda y. x)(\lambda x. x))(((\lambda x. x x)(\lambda x. x x)))$$

ii. 
$$((\lambda y.(\lambda x. x)))(((\lambda x. x x)(\lambda x. x x)))$$

iii.  $(\lambda x. x)$ 

Видно, что в этом случае количество шагов конечно.

- (b) Редуцируем синюю скобку. Очевидно, что комбинатор  $\Omega$  не имеет нормальной формы  $\to$  в этом случае терм  $KI\Omega$  никогда не закончится.
- 2.  $\Omega$  не нормализуема
- 3. II— сильно нормализуема

Лемма 1.2. Сильная нормализация влечет слабую.

## 1.3 Выразимость комбинаторов

**Утверждение 1.2.** Любое  $\lambda$  выражение можно записать с помощью комбинаторов S и K, где

$$S = \lambda x \lambda y \lambda z.(x z)(y z) : (a \to b \to c) \to (a \to b) \to a \to c$$
  
$$K = \lambda x \lambda y.x : a \to b \to a$$

**Утверждение 1.3.** Комбинаторы S и K являются аксиомами в ИИВ

**Утверждение 1.4.** Соотношение комбинаторов с  $\lambda$  исчислением:

- 1. T(x) = x
- 2. T(P Q) = T(P)T(Q)
- 3.  $T(\lambda x.P) = K(T(P)), x \notin FV(P)$
- 4.  $T(\lambda x.x) = I$
- 5.  $T(\lambda x \lambda y.P) = T(\lambda x.T(\lambda y.P))$
- 6.  $T(\lambda x.P Q) = S T(\lambda x.P)T(\lambda x.Q)$

**Утверждение 1.5.** Связь комбинаторов с ИИВ

Утверждение 1.6. Альтернативный базис:

- 1.  $B = \lambda x \lambda y \lambda z \cdot x(yz) : (a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$
- 2.  $C = \lambda x \lambda y \lambda z \cdot ((x z)y) : (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c$
- 3.  $W = \lambda x \lambda y.((x y)y) : (a \rightarrow a \rightarrow b) \rightarrow a \rightarrow b$