

Automated and Early Detection of Disease Outbreaks

Kasper Schou Telkamp

Supervisors: Jan Kloppenborg Møller, Lasse Engbo Christiansen

Master Thesis Project

Spring, 2023

Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

Introduction

About me

- MSc Eng., Quantitative Biology and Disease Modelling @ DTU
- Wife and three kids @ Vedbæk
- Passionate about e-Sports, particularly Counter Strike

Motivation

- Establishment of the Danish Microbiology Database (MiBa) by Statens Serum Institut (SSI) in 2010
- Great opportunity for data analysis
- No fully automated procedures in place at SSI

Algorithms for prospective disease outbreak detection

State-of-the-art algorithms

State-of-the-art algorithms for aberration detection is presented in Salmon, Schumacher, and Höhle 2016 and implemented in the R package **surveillance**. The R package includes the method introduced by Farrington et al. 1996 together with the subsequently improved method proposed by Noufaily et al. 2013.

Algorithms for prospective disease outbreak detection

Novel algorithm

The novel algorithm utilizes a generalized mixed effects model or a hierarchical mixed effects model as a modeling framework to model the count case observations y and assess the unobserved random effects u. These random effects are used directly to characterize an outbreak.

Formulation of hierarchical models

Poisson Normal

$$m{Y}|m{u} \sim \mathrm{Pois}\left(m{\lambda} \exp(m{u})
ight) \ m{u} \sim \mathrm{N}(m{0}, I\sigma^2)$$

Poisson Gamma

$$m{Y}|m{u} \sim ext{Pois}(m{\lambda}m{u}) \ m{u} \sim ext{G}(\mathbf{1}/\phi,\phi)$$

Formulation of hierarchical models

Poisson Normal

$$m{Y}|m{u} \sim ext{Pois}\left(m{\lambda} \exp(m{u})
ight) \ m{u} \sim ext{N}(m{0}, I\sigma^2)$$

Poisson Gamma

$$m{Y}|m{u} \sim ext{Pois}(m{\lambda}m{u}) \ m{u} \sim ext{G}(\mathbf{1}/\phi,\phi)$$

$$Y \sim NB \left(1/\phi, 1/(\lambda \phi + 1) \right)$$

Step 1: Modeling framework

- Assume a hierarchical Poisson Normal or Poisson Gamma model to reference data using a log link
- Incorporate covariates by supplying a model formula on the form

$$\log(\lambda_{it}) = \boldsymbol{x}_{it}\boldsymbol{\beta} + \log(n_{it}), \quad i = 1, \dots, m, \quad t = 1, \dots, T$$
(1)

ullet Account for structural changes in the time series using a rolling window of width k

Step 2: Inference of random effects

- ullet Infer one-step ahead random effects u_{it_1} for each group using the fitted model
- ullet Define outbreak detection threshold U_{t_0} as a quantile of the second stage model's random effects distribution
- Use either a Gaussian or Gamma distribution with respective plug-in estimates

Step 3: Parameter estimations and outbreak detection

- ullet Compare inferred random effects u_{it_1} to an threshold U_{t_0}
- ullet Raise and alarm if the inferred random effect exceeds the threshold, i.e. $u_{it_1} > U_{t_0}$
- Omit outbreak related observations from future parameter estimation

Shiga toxin (verotoxin)-producing *Escherichia coli* (STEC)

Figure: A stacked bar graph illustrating the number of monthly STEC cases observed in the period from 2008 to 2022 for the six age groups.

Constant model

$$\log(\lambda_{it}) = \beta(ageGroup_i) + \log(n_{it}) \tag{2}$$

- \bullet λ_{it} is the outbreak intensity at time t for age group i
- ullet $eta(ageGroup_i)$ is the fixed effect specific to age group i
- ullet $\log(n_{it})$ acts as an offset, accounting for the population size at time t for age group i

Trend model

$$\log(\lambda_{it}) = \beta(ageGroup_i) + \beta_{trend}t + \log(n_{it})$$
(3)

- In addition to constant model, includes a trend component
- \bullet β_{trend} quantifies the rate of change in the outbreak intensity over time

Seasonality model

$$\log(\lambda_{it}) = \beta(ageGroup_i) + \sin\left(\frac{2\pi \cdot \tau_t}{12}\right)\beta_{\sin} + \cos\left(2\frac{\pi \cdot \tau_t}{12}\right)\beta_{\cos} + \log(n_{it}) \tag{4}$$

- In addition to constant model, incorporates an annual seasonality pattern
- τ_t represents the time period t within a year (1-12)
- ullet eta_{\sin} and eta_{\cos} capture the effect of the seasonal pattern

DTU

Combined trend and seasonality model

$$\log(\lambda_{it}) = \beta(ageGroup_i) + \beta_{trend}t + \sin\left(\frac{2\pi \cdot \tau_t}{12}\right)\beta_{\sin} + \cos\left(\frac{2\pi \cdot \tau_t}{12}\right)\beta_{\cos} + \log(n_{it}) \quad (5)$$

- Builds upon previous models, combining trend and seasonality components
- \bullet Includes both $\beta_{trend},~\beta_{\sin},$ and β_{\cos} parameters

DTU Compute

Estimated one-step ahead random effects

- A rolling window of width k=36 months is employed
- The combined model minimizes the logarithmic score
- Upper bound U_{t_0} is based on the 90% quantile of the random effects distribution
- If the one-step ahead random effects u_{it_1} exceeds U_{t_0} an alarm is raised
- 30 alarms are generated using the Poisson
- A great number of alarms are generated in the

Case study

Estimated one-step ahead random effects

- A rolling window of width k = 36 months is
- The combined model minimizes the logarithmic
- Upper bound U_{t_0} is based on the 90% quantile of
- If the one-step ahead random effects u_{it_1} exceeds
- 30 alarms are generated using the Poisson Normal framework, while 31 alarms are generated using the Poisson Gamma framework.
- A great number of alarms are generated in the period from March 2021 to March 2022

Performance of statistical outbreak detection algorithms

DTU

Baseline data

Simulated baseline data is generated according to a Negative Binomial distribution with mean μ and a variance parameter $\phi\mu$. The equation for the mean $\mu(t)$ is given as:

$$\mu(t) = \exp\left(\theta + \beta_t + \sum_{j=1}^m \left(\gamma_1 \cos\left(\frac{2\pi jt}{52}\right) + \gamma_2 \sin\left(\frac{2\pi jt}{52}\right)\right)\right)$$
 (6)

Refer to Table 6.1 in the thesis to see the 28 different scenarios

Simulation study

Outbreaks

DTU

• Four outbreaks during baseline weeks (313-575), one outbreak during current weeks (576-624)

- Random constant value k is chosen
- ullet Outbreak size v is generated from a Poisson distribution with mean equal to k times the standard deviation from the baseline data
- ullet The v outbreak cases are distributed randomly in time according to a discretized log-normal distribution represented as $Z \sim \lfloor \mathrm{LN}(0, 0.5^2) \rfloor$

Figure: Plots of one randomly chosen realization for scenario 8, 12, 13, and 20.

DTU

False Positive Rates

Simulation study

Probability an outbreak is detected

Other relevant diseases

Campylobacter

Figure: Disability adjusted life years (DALY) at the population level and at individual level. Reprinted from Pires et al. 2020.

Campylobacter

LIVE DEMONSTRATION

Summary

Summary

- Easy incorporation of covariates
- Estimates are consistent across the two modeling frameworks
- Positively identified outbreaks coinciding with well-documented outbreaks
- Effectively control the number of "false alarms"
- Great potential in utilizing MiBa-based surveillance

DTU

References

- Farrington, C. P. et al. (1996). "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease". In: *Journal of the Royal Statistical Society. Series A (Statistics in Society)* 159.3, pp. 547–563. ISSN: 09641998, 1467985X. URL: http://www.jstor.org/stable/2983331 (visited on 01/27/2023).
- Noufaily, Angela et al. (2013). "An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems". en. In: *Online Journal of Public Health Informatics* 32.7, pp. 1206–1222.
- Pires, Sara Monteiro et al. (2020). "Burden of Disease Estimates of Seven Pathogens Commonly Transmitted Through Foods in Denmark, 2017". English. In: Foodborne Pathogens and Disease 17.5. ISSN: 1535-3141. DOI: 10.1089/fpd.2019.2705.
- Salmon, Maëlle, Dirk Schumacher, and Michael Höhle (2016). "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance". In: *Journal of Statistical Software* 70.10, pp. 1–35. DOI: 10.18637/jss.v070.i10. URL: https://www.jstatsoft.org/index.php/jss/article/view/v070i10.

Probability function for *Y*

$$P[Y = y] = g_{Y}(y; \boldsymbol{\beta}, \phi)$$

$$= \frac{\lambda^{y}}{y!\Gamma(1/\phi)\phi^{1/\phi}} \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$

$$= \frac{\Gamma(y+1/\phi)}{\Gamma(1/\phi)y!} \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^{y}$$

$$= \left(\frac{y+1/\phi-1}{y}\right) \frac{1}{(\lambda\phi+1)^{1/\phi}} \left(\frac{\lambda\phi}{\lambda\phi+1}\right)^{y}, \quad \text{for } y = 0, 1, 2, \dots$$

$$(7)$$

where the following convention is used

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB(1/\phi, 1/(\lambda \phi + 1))$

The probability function for the conditional distribution of Y for given u

$$f_{Y|u}(y; u, \beta) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(9)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\phi) = \frac{1}{\phi\Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi)$$
 (10)

Given (9) and (10), the probability function for the marginal distribution of Y is determined from

$$g_Y(y;\beta,\phi) = \int_{u=0}^{\infty} f_{Y|u}(y;u,\beta) f_u(u;\phi) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^y}{y!} \exp(-\lambda u) \frac{1}{\phi \Gamma(1/\phi)} \left(\frac{u}{\phi}\right)^{1/\phi - 1} \exp(-u/\phi) du$$

$$= \frac{\lambda^y}{y! \Gamma(1/\phi) \phi^{1/\phi}} \int_{u=0}^{\infty} u^{y+1/\phi - 1} \exp\left(-u(\lambda \phi + 1)/\phi\right) du$$
(11)

Proof

In (11) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\phi,\phi/(\lambda\phi+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\phi-1} \exp\left(-u/(\phi/(\lambda\phi+1))\right) du = \frac{\phi^{y+1/\phi}\Gamma(y+1/\phi)}{(\lambda\phi+1)^{y+1/\phi}}$$
(12)

and then (7) follows