Q - 1.6

Основные модели сплошных сред. Идеальная и ньютоновская вязкая среда, несжимаемая жидкость и совершенный сжимаемый газ.

1. Общий вид уравнений сплошной среды.

Основное уравнение, характеризующее сплошную среду — это уравнение неразрывности (по существу это просто закон сохранения):

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0.$$

Следующее уравнение — уравнение движения:

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot P + \rho f,$$

где f внешние силы, а P тензор напряжений (определяемый тем, что сила, действующая на единичную площадку с нормалью \mathbf{n} равна $P \cdot \mathbf{n}$). Выражая полную производную по времени $\frac{d\mathbf{v}}{dt}$ через частные, уравнение принимает вид:

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = \nabla \cdot P + \rho f,$$

2. Состояние равновесия текучей среды.

Текучей средой называется среда, которая начнает двигаться при любом касательном напряжении. Таким образом, если текучая среда находится в равновесии, то касательные напряжения отсутствуют, т. е. тензор P "сферический" — $P = -p \cdot \mathrm{Id}$. Число p называется давлением. С учетом сказанного уравнение движения дает уравнение равновесия Эйлера:

$$\nabla p = \rho f$$
.

Пример. Рассмотрим жидкость, находящуюся в равновесии под действие графитационных сил. В этом случае $f=-\nabla \varphi$, где φ — гравитационный потенциал. Пользуясь тем, что $\nabla^2 \varphi = 4\pi G \rho$ получаем

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p\right) = -4\pi G \rho.$$

3. Динамика идеальной среды.

Среда называется идеальной, если в ней отсутствуют касательные напряжения, в этом случае будем считать, что $P=-p\cdot \mathrm{Id}.$ В этом случае уравнение движения принимает вид

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \rho f.$$

Уравнение переноса вихря скорости. Воспользуемся очевидной формулой:

$$\frac{1}{2}\nabla \mathbf{v}^2 = \mathbf{v} \times (\nabla \times \mathbf{v}) + (\mathbf{v} \cdot \nabla)\mathbf{v}.$$
 (1)

Векторное поле $\omega := \nabla \times \mathbf{v}$ называется вихрем скорости.

Будем считать, что течение баротропное, т. е. плотность зависит только от давления. Определим потенциал давления

$$\mathcal{P} = \int_{p_0}^{p} \frac{dp}{\rho(p)}.$$

Ясно, что $\nabla \mathcal{P} = \frac{1}{\rho} \nabla p$. Предположим также, что сила f потенциальная: $f = -\nabla \Pi$.

Выражая из (1) $(\mathbf{v} \cdot \nabla)\mathbf{v}$ и подставляя в уравнение движения, получаем:

$$\frac{\partial \mathbf{v}}{\partial t} + \omega \times \mathbf{v} = -\nabla \underbrace{\left(\frac{\mathbf{v}^2}{2} + \mathcal{P} + \Pi\right)}_{\mathcal{B}}.$$
 (2)

Применяя **rot** к обеим частя равенства, учитывая что $\frac{\partial \omega}{\partial t} = \nabla \times \frac{\partial \mathbf{v}}{\partial t}$, $\nabla \times \nabla B = 0$, а также

$$\nabla \times (\omega \times \mathbf{v}) = (\mathbf{v} \cdot \nabla)\omega - (\omega \cdot \nabla)\mathbf{v} + \omega(\nabla \cdot \mathbf{v}) - \mathbf{v}(\nabla \cdot \omega),$$

где $\nabla \cdot \omega = \nabla \cdot (\nabla \times \mathbf{v}) = 0$ получаем

$$\frac{\partial \omega}{\partial t} + (\mathbf{v} \cdot \nabla)\omega = (\omega \cdot \nabla)\mathbf{v} - \omega(\nabla \cdot \mathbf{v})$$

или

$$\frac{d\omega}{dt} = (\omega \cdot \nabla)\mathbf{v} - \omega(\nabla \cdot \mathbf{v}).$$

Это и есть уравнение переноса вихря, в частности если $\omega=0$ то и $\frac{d\omega}{dt}=0$. Другими словами в идеальной среде при баротропном течении под действием потенциальной силы не происходит зарождение вихря.

Несжимаемая жидкость. Парадокс Даламбера. Несжимаемость жидкости означает, что $\rho=$ const. Уравнение неразрывности в этом случае сильно упрощается:

$$\nabla \cdot \mathbf{v} = 0.$$

Парадокс Даламбера заключается в том, что в неограниченной идеальной несжимаемой среде при безвихревом стационарном течении суммарная сила F, действующая на погруженное тело равна 0.

Пусть скорость жидкости не бесконечности равна \mathbf{v}_{∞} , обозначим $\delta \mathbf{v} := \mathbf{v} - \mathbf{v}_{\infty}$. Ясно что $\nabla \cdot \delta \mathbf{v} = 0$. Так как по предположению $\nabla \times \mathbf{v} = 0$, то и $\nabla \times \delta \mathbf{v} = 0$, следовательно $\delta \mathbf{v} = \nabla \delta \varphi$ и $\nabla^2 \delta \varphi = 0$. Поскольку $\delta \mathbf{v} = 0$

0 на бесконечности, то можно считать, что и $\delta \varphi = 0$ на бесконечности и применить к нему мультипольное разложение:

$$\delta \varphi = \sum_{k=0}^{\infty} \frac{S_k(\psi, \gamma)}{r^{k+1}},$$

где $S_k(\psi,\gamma)$ — ряды из сферических гармоник, в частности $S_0(\psi,\gamma)=S_0=const.$ Применяя уравнение $\nabla\cdot\delta\mathbf{v}=0$ для сферы большого радиуса, находим что $S_0=0$.

Рассмотрим Лагранжев объем W в виде шара большого радиуса R, содержащего наше тело. Общая сила, действующая на этот объем:

$$\frac{d}{dt} \int_{W} \rho \mathbf{v} dW = -F - \int_{\partial W} p \mathbf{dS}.$$

Переписав левую часть в виде

$$\frac{d}{dt} \int_{W} \rho \mathbf{v} dW = \frac{\partial}{\partial t} \int_{W} \rho \mathbf{v} dW + \int_{\partial W} \rho \mathbf{v} (\mathbf{v} \cdot \mathbf{dS}),$$

и учитывая, что первое слагаемое равно 0 получаем

$$F = -\int_{\partial W} \rho \mathbf{v} (\mathbf{v} \cdot \mathbf{dS}) - \int_{\partial W} p \mathbf{dS}.$$

Воспользуемся теперь уравнением (2), в нашей ситуации оно упрощается:

$$\nabla \left(\frac{\rho \mathbf{v}^2}{2} + p \right) = 0,$$

другими словами $p = C - \frac{\rho \mathbf{v}^2}{2},$ где C некоторая константа. Подставляя это в выражение для F получаем

$$F = -\int_{\partial W} \rho \mathbf{v}(\mathbf{v} \cdot \mathbf{dS}) + \int_{\partial W} \frac{\rho \mathbf{v}^2}{2} \mathbf{dS} =$$

$$\frac{\rho}{2} \int_{\partial W} (\mathbf{v}_{\infty}^2 + 2\mathbf{v}_{\infty} \cdot \delta \mathbf{v} + (\delta \mathbf{v})^2) \mathbf{dS} - \rho \mathbf{v}_{\infty} \int_{\partial W} \mathbf{v} \cdot \mathbf{dS} - \rho \int_{\partial W} \delta \mathbf{v}(\mathbf{v} \cdot \mathbf{dS}).$$

Слагаемые, содержащие $\delta \mathbf{v}$ стремятся к 0 с ростом R, так как $S_0=0$, остальные слагаемые просто равны 0.

4. Ньютоновская вязкая среда.

Ньютоновская среда характеризуется тем, что касательная напряженность пропорциональна градиенту скорости: $au=\mu \frac{du}{dx}$. Коэффициент μ называется

динамической вязкостью. В изотропной среде тензор напряженности имеет вид $P = 2\mu S + b \cdot \mathrm{Id}$, где $S = \mathrm{Sym}(\nabla \mathbf{v})$, а b зависит только от $\mathrm{Tr}(S)$.

 ${
m Tr}(P)=2\mu{
m Tr}(S)+3b=2\mu
abla\cdot{f v}+3b$, откуда получаем $b=\frac{1}{3}(P_{11}+P_{22}+P_{33})-\frac{2}{3}\mu
abla\cdot{f v}\cdot{f v}$. Варажение $p:=-\frac{1}{3}(P_{11}+P_{22}+P_{33})$ называется давлением. Таким образом,

 $P = 2\mu S + (-p - \frac{2}{3}\mu\nabla\cdot\mathbf{v})\cdot\text{Id}.$

Для несжимаемой жидкости: $P = 2\mu S - p \cdot \mathrm{Id}$.

Уравнение Навье-Стокса. Подставим варажение для тензора напряженности в уравнение движения в предположении несжимаемости жидкости:

$$\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot (-p \cdot \mathrm{Id} + 2\mu S) + \rho f = -\nabla p + 2\mu \nabla \cdot S + \rho f,$$

где

$$\nabla \cdot S = \sum_{j} \sum_{i} \frac{\partial}{\partial x_{i}} \frac{1}{2} \left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}} \right) \mathbf{e}_{j} = \frac{1}{2} \nabla (\nabla \cdot \mathbf{v}) + \frac{1}{2} \nabla^{2} \mathbf{v} = \frac{1}{2} \nabla^{2} \mathbf{v}.$$

Окончательно получаем уравнение Навье-Стокса в следующей форме:

$$\rho \frac{d\mathbf{v}}{dt} = -\nabla p + \mu \nabla^2 \mathbf{v} + \rho f.$$

Список литературы

[LL] Л. Д. Ландау, Е. М. Лифшиц. Том 6. Гидродинамика. 1986.