15.
$$-7x + 5y = 2$$
 $5x = 10$

16.
$$ax + by = c$$

 $ax - by = c$

17.
$$ax + by = c$$

 $bx + ay = c$

18.
$$ax - by = c$$

 $bx + ay = d$

- **19.** Encuentre las condiciones sobre *a* y *b* tales que el sistema en el problema 16 tenga una solución única.
- **20.** Encuentre las condiciones sobre *a*, *b* y *c* tales que el sistema en el problema 17 tenga un número infinito de soluciones.
- **21.** Encuentre las condiciones sobre *a*, *b*, *c* y *d* tales que el sistema en el problema 18 no tenga solución
- 22. Considere al sistema de ecuaciones ax + y = 3 ¿Para qué valores de a el sistema tiene solución única? ¿Para qué valores de a el sistema no tiene solución? ¿Para qué valores de a el sistema tiene un número infinito de soluciones?

En los problemas 23 a 28 encuentre el punto de intersección (si hay uno) de las dos rectas.

23.
$$-4x + 2y = 1$$
; $4x - 2y = 1$

24.
$$-4x + 2y = -1$$
; $4x - 2y = 1$

25.
$$-7x - 3y = -1$$
; $49x - 21y = -7$

26.
$$-2y - 3x = 7$$
; $-9y + 5y = -2$

27.
$$\pi x + y = 0$$
; $\sqrt{2}x - 5y = -1$

28.
$$\sqrt{3}x - \sqrt{5}y = 1$$
; $\sqrt{5}x - \sqrt{3}y = 0$

Sea L una recta y L_{\perp} la recta perpendicular L que pasa a través de un punto P. La **distancia** de la recta L al punto P se define como la distancia* entre P y el punto de intersección de L y L_{\perp} (vea figura 1.2).

Figura 1.3Distancia de la recta *L* al punto *P*.

En los problemas 29 a 34 encuentre la distancia entre la recta dada y el punto.

29.
$$x + 3y = -4$$
; (2, -3)

30.
$$-5x + 6y = 2$$
; (1, 3)

31.
$$2x - 4y = -42$$
; $(7, -21)$

32.
$$7x + 5y = 6$$
; $(0, 0)$

33.
$$3x + 7y = 0$$
; $(-2, -8)$

34.
$$11x - 12y = 5$$
; (0, 4)

- 35. Encuentre la distancia entre intersección de las rectas 2m + 3n = 2 y -4m 2n = 1 con la recta 3m = -2n.
- * Recuerde que si (x_1, y_1) y (x_2, y_2) son dos puntos en el plano xy, entonces la distancia d entre ellos está dada por $d = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$.