Random Variables and Probability Models

Ryan Miller

Introduction

- ▶ Video #1
 - Introduction to random variables (discrete random variables)
- ▶ Video #2
 - Continuous random variables
- ► Video #3
 - When to use the Normal model

- ► We've been studying *probability* to understand the possible *outcomes* of a *random process*
 - Two important random processes are sampling from a population, and assigning treatment/control groups

- ▶ We've been studying probability to understand the possible outcomes of a random process
 - Two important random processes are sampling from a population, and assigning treatment/control groups
- Statisticians use a random variable to represent the unknown numeric outcome of a random process
 - Like any variable, you can think of a random variable, such as X, as a written placeholder for an unknown numerical value

- Consider the random process of flipping a fair coin
 - Because random variables must involve a numeric outcome, we can use the value "1" to represent the outcome "heads" and "0" to represent the outcome "tails"

- ► Consider the random process of flipping a fair coin
 - ▶ Because random variables must involve a numeric outcome, we can use the value "1" to represent the outcome "heads" and "0" to represent the outcome "tails"
 - ► We could've also mapped tails to 1 and heads to 0 without any consequence (so long as we keep track of what is what)

- Consider the random process of flipping a fair coin
 - Because random variables must involve a numeric outcome, we can use the value "1" to represent the outcome "heads" and "0" to represent the outcome "tails"
 - We could've also mapped tails to 1 and heads to 0 without any consequence (so long as we keep track of what is what)
- ▶ We can now define X as a random variable
 - X = 1 if "heads" is observed, and X = 0 if "tails" is observed

▶ After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)

- ▶ After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- ▶ We can use a random variable *X* to denote the number of total points the team earns from a touchdown
 - Recognize X represents a numeric outcome that is unknowable in advance

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- We can use a random variable X to denote the number of total points the team earns from a touchdown
 - Recognize X represents a numeric outcome that is unknowable in advance
- ► Since a rule change in 2015, 9.6% of touchdowns were accompanied by zero additional points, 86.5% resulted in one additional point, and 3.9% resulted in two additional points

- After each touchdown in the National Football League (NFL), the scoring team gets to choose between a 1-pt and 2-pt attempt to earn additional points (on top of the 6 given for scoring a touchdown)
- ▶ We can use a random variable X to denote the number of total points the team earns from a touchdown
 - Recognize X represents a numeric outcome that is unknowable in advance
- Since a rule change in 2015, 9.6% of touchdowns were accompanied by zero additional points, 86.5% resulted in one additional point, and 3.9% resulted in two additional points
 - Based upon these data, we might consider following probability **model** for X:

Χ	6	7	8
P(X = x)	0.096	0.865	0.039

Probability models are useful because they help us understand a few key aspects of a random process:

- 1) **Expected Value**, or the "average" numeric outcome
- 2) Variance, or the total amount that the numeric outcomes vary from their expected value
- 3) Standard Deviation, or the "average" amount that numeric outcomes vary from their expected value

Expected Value

- ▶ The **expected value** of a random variable is denoted E(X)
- ▶ It describes the *expected result*, which is the sum of each possible outcome weighted by its probability

Χ	6	7	8
P(X = x)	0.096	0.865	0.039

For a randomly chosen NFL touchdown, E(X) = 6 * 0.096 + 7 * 0.865 + 8 * 0.039 = 6.94 points

Variance

To see how much each possible outcome (6, 7, or 8 pts) varies from the expected outcome (6.94 pts) we can calculate their *squared* deviations

Points	6	7	8
Deviation	(6-6.94)^2	(7-6.94)^2	(8-6.94)^2

If we add these squared deviations, weighted by their probabilities, we get **variance**:

$$\mathsf{Var}(X) = 0.096*(6-6.94)^2 + 0.865*(7-6.94)^2 + 0.039*(8-6.94)^2 = 0.13$$

Variance

To see how much each possible outcome (6, 7, or 8 pts) varies from the expected outcome (6.94 pts) we can calculate their *squared* deviations

Points	6	7	8
Deviation	(6-6.94)^2	(7-6.94)^2	(8-6.94)^2

If we add these squared deviations, weighted by their probabilities, we get **variance**:

$$\mathsf{Var}(X) = 0.096*(6-6.94)^2 + 0.865*(7-6.94)^2 + 0.039*(8-6.94)^2 = 0.13$$

Standard Deviation

Taking the square-root of the variance, we have the **standard** deviation, or the average deviation of outcomes from the expected value:

$$SD(X) = \sqrt{Var(X)} = \sqrt{0.13} = 0.36$$

So, we expect the average deviation (from the expected value of 6.94) of a touchdown to be 0.36 pts (not much variation)

Closing Remarks (Discrete Random Variables)

➤ The examples we've seen so far involve discrete random variables, or those where only a finite set of numeric outcomes are possible

Closing Remarks (Discrete Random Variables)

- ► The examples we've seen so far involve discrete random variables, or those where only a finite set of numeric outcomes are possible
 - For discrete random variables, we can define a probability model using a table
 - ► The information in this table can help us calculate the random variable's expected value and standard deviation better understand the underlying random process

Closing Remarks (Discrete Random Variables)

- ► The examples we've seen so far involve discrete random variables, or those where only a finite set of numeric outcomes are possible
 - For discrete random variables, we can define a probability model using a table
 - The information in this table can help us calculate the random variable's expected value and standard deviation better understand the underlying random process
- Next we'll look at continuous random variables, or those with infinitely many possible outcomes
 - As you'd expect, we'll need to introduce more sophisticated probability models to help us understand these variables

Continuous Random Variables

- Consider randomly sampling an adult male residing in the United States and let the random variable X denote their height (in inches)
 - ► Recognize that *X* could potentially take on infinitely many values (70.0 in, 70.01 in, 70.001 in, etc.)
- ► Although the probability of any individual value of *X* is exactly zero (technically speaking), not heights are equally likely
 - We need a continuous probability model to map the possible outcomes of X to probabilities

The Normal Model

► The **Normal distribution** is perhaps the most widely used probability model for continuous random variables

The Normal Model (cont)

- ▶ Under a *continuous probability model*, the probability of any single value of *X* is zero (as there are infinitely many possible values)
 - Thus, probabilities only make sense for intervals, for example we can represent P(X > 72) using the *shaded area* shown below:

The Normal Model (cont)

▶ The Normal probability model is defined by the curve:

$$f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X-\mu)^2}{2\sigma^2}}$$

- \triangleright The parameter μ is a constant that defines the expected value of the bell-curve
- \blacktriangleright The parameter σ is a constant that defines the standard deviation of the bell-curve (how tall or flat it appears)

The Normal Model (cont)

▶ The Normal probability model is defined by the curve:

$$f(X) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X-\mu)^2}{2\sigma^2}}$$

- \blacktriangleright The parameter μ is a constant that defines the expected value of the bell-curve
- \blacktriangleright The parameter σ is a constant that defines the standard deviation of the bell-curve (how tall or flat it appears)
- ▶ There infinitely many different Normal curves, one for each combination of μ and σ
 - We will use the notation: $N(\mu, \sigma)$, for example N(70, 2.5)might apply to our height example

Standardization

- Historically, statisticians wanted to avoid the possibility of infinitely many different probability models
 - ► This led them to **standardize** their data onto uniform, unitless scale

Standardization

- Historically, statisticians wanted to avoid the possibility of infinitely many different probability models
 - This led them to standardize their data onto uniform, unitless scale
- ► Z-scores are perhaps the most common form of standardization
 - \blacktriangleright Consider a random variable X and a Normal model defined by μ and σ
 - Under this model, the Z-score of X is calculated:

$$Z = \frac{X - \mu}{\sigma}$$

Z-scores

► A Z-score can be interpreted as how many standard deviations an observed outcome is above or below its expected value

Z-scores

- ▶ A Z-score can be interpreted as how many standard deviations an observed outcome is above or below its expected value
- For example, suppose X is a random variable from a $N(\mu = 70, \sigma = 2.5)$ distribution and we observe x = 72
 - ► This outcome leads to the Z-score: z = (72 70)/2.5 = 0.8
 - Therefore, a height of 72 inches is 0.8 standard deviations above what is expected (at least according to this probability model)

The Standard Normal Distribution

Standardization enables us to use the Standard Normal distribution as a probability model in a wide variety of settings

The Standard Normal Distribution

- Standardization enables us to use the Standard Normal distribution as a probability model in a wide variety of settings
- For example, suppose adult male heights follow a Normal distribution centered at 70 inches with a standard deviation of 2.5 inches
 - ▶ This means, $X \sim N(70, 2.5)$
 - After standardization, $Z = \frac{X-70}{2.5} \sim N(0,1)$

The Standard Normal Distribution

Example

Let X denote the height of a randomly chosen adult male, and assume the probability model $X \sim N(70, 2.5)$

- 1) Find the probability that this male's height is between 5'10 and 6'0 directly from the given Normal probability model
- 2) Find this same probability using *Z*-scores and the Standard Normal distribution

For each of these tasks, we'll utilize a new StatKey menu: StatKey Normal Curve

Example (solution)

Using Statkey:

- 1) On the N(70,2.5) curve, the area to the left of 70 inches (5'10) is 0.5, while the area to the left of 72 inches (6'0) is 0.788; thus, there is a 28% probability of a random adult male being between 5'10 and 6'0 under this model
- 2) To use the Standard Normal model, we'd the same thing, but with the preliminary step of calculating Z-scores. The Z-score for 70 inches is 0, while the Z-score for 72 increases is 0.8. On the Standard Normal curve, the area to the left of 0 is 0.5, while the area to the left of 0.8 is 0.788; again we find a 28% probability that a random adult male is between 5'10 and 6'0 under this model

Closing Remarks (Continuous Random Variables)

- Continuous random variables require a continuous probability model
 - ► The *Normal distribution* is a widely used probability model for these variables

Closing Remarks (Continuous Random Variables)

- Continuous random variables require a continuous probability model
 - The Normal distribution is a widely used probability model for these variables
- The Normal curve is defined by two parameters
 - The parameter μ, a constant that defines the expected value of the bell-curve
 - The parameter σ , a constant that defines the *standard deviation* of the bell-curve

Closing Remarks (Continuous Random Variables)

- Continuous random variables require a continuous probability model
 - ► The Normal distribution is a widely used probability model for these variables
- The Normal curve is defined by two parameters
 - \triangleright The parameter μ , a constant that defines the expected value of the bell-curve
 - \triangleright The parameter σ , a constant that defines the standard deviation of the bell-curve
- Standardization (ie: calculating Z-scores) allows us to work with a single Normal distribution (rather than needing to worry about infinitely many combinations of μ and σ)

How Accurate is the Normal Model?

- ▶ In this example, we'll look at the sale prices of all homes in lowa City, IA between 2005-2008
 - ► The mean sale price was \$180.1k, and the standard deviation was \$90.65k

- ► Let *X* be a random variable denoting the sale price of a randomly selected home
- ▶ Because X is a continuous random variable, it seems reasonable to take the mean and standard deviation in our dataset and use N(180.1, 90.65) as a probability model for X
 - ▶ How would you use this model to estimate $P(X \ge $400k)$?

 Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076

- Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076
 - We also could standardize \$400k into a Z-score of z = 400 180.190.65 = 2.426 and use the Standard Normal distribution to arrive at the same estimated probability

- Using StatKey, we could directly input our mean and standard deviation then calculate this right-tail probability to be 0.0076
 - We also could standardize \$400k into a Z-score of z = 400 180.190.65 = 2.426 and use the Standard Normal distribution to arrive at the same estimated probability
- ► However, both calculations assume the Normal model is a perfect representation of these data (or the population represented by them)
 - ▶ Is that an appropriate assumption?

Example

- ► The *empirical probability* of a randomly selected home selling for more than \$400*k* is 0.0283 (22 of 777 homes)
 - ► This discrepancy might not seem like much, but this is 3.7 times larger than what the Normal model suggested! (0.0076)

Example

- ► The *empirical probability* of a randomly selected home selling for more than \$400*k* is 0.0283 (22 of 777 homes)
 - ► This discrepancy might not seem like much, but this is 3.7 times larger than what the Normal model suggested! (0.0076)

► In this application, the distribution of the data doesn't match the *shape* of the normal curve

- ► In this application, the distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we *center* and *scale* our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data

- ► In this application, the distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we *center* and *scale* our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data
- As an aside, notice these data contain n = 777 cases
 - ► A common misconception is that larger amounts of data tend to be normally distributed (they don't)

- ► In this application, the distribution of the data doesn't match the *shape* of the normal curve
 - That is, even if we *center* and *scale* our normal model appropriately (ie: good choices of μ and σ), the model is incapable of representing the underlying distribution of these data
- As an aside, notice these data contain n = 777 cases
 - ► A common misconception is that larger amounts of data tend to be normally distributed (they don't)
- ► That said, more data will improve the Normality of a special random variable, the *sample average*

Conclusion

- ► The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ

Conclusion

- ► The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ
 - \blacktriangleright Variables with skewed distributions cannot be appropriately modeled by the normal curve, even when using reasonable values of μ and σ

Conclusion

- The Normal distribution provides a useful probability model for many, but not all, continuous random variables
 - Proper application of the Normal model requires the specification the bell-curve's center, μ , and it's spread, σ
 - Variables with skewed distributions cannot be appropriately modeled by the normal curve, even when using reasonable values of μ and σ
- In general, having more data does not make a random variable more normally distributed
 - However, for the sample average (rather than the data-points themselves), having more data does have an important impact
 - We'll explore the distribution of sample averages next week