Advanced Microeconomics II Static Games of Imperfect Information

Brett Graham

Wang Yanan Institute for Studies in Economics Xiamen University, China

April 1, 2015

Games with Incomplete Information

Players don't always have full information about the other player's payoffs.

- Industrial Organization
 - Existing firm's may not know an new entrant's costs.
 - ▶ Existing firm's may have better information about market demand.
- Labour
 - ▶ Employers do not observe potential employee's ability perfectly.
- Auctions
 - Bidders don't know other bidders value.

How to model?

Bayesian Games

Simplest version: Players choose actions simultaneously.

- Uncertainty is over other player's characteristics and his action.
- These are games of incomplete information.
- Translate into a game of imperfect information.
 - Introduce the "chance" player.
- Such games are known as Bayesian games.

Battle of the Sexes Example

- θ , the probability that W thinks H prefers F to M.
- 1θ , the probability that W thinks H prefers M to F.

Chance

- Chance acts first.
- Chance draws a "type" for each player.
- A player's type contains all that player's private information.
- Draws come from a common probability distribution.
- Player's update information about other's type using Bayes rule.
 - ▶ If each player's type is independent then this is irrelevant.

Bayesian Game

Definition

A Bayesian game consists of

- a finite set N (the set of players)
- ullet a finite set Ω (the set of states)

and for each player $i \in N$

- a set A_i (the set of actions available to player i)
- a finite set T_i (the set of signals that may be observed by player i) and a function $\tau_i : \Omega \to T_i$ (the signal function of player i)
- a probability measure p_i on Ω (the prior belief of player i) for which $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in \mathcal{T}_i$
- a preference relation \succeq_i on the set of probability measures over $A \times \Omega$ (the preference relation of player i), where $A = \times_{j \in N} A_j$.

Normal Form Representation of a Static Bayesian Game

Definition

The normal-form representation of a Bayesian game is $\{N, (A_i)_{i=1}^n, (T_i)_{i=1}^n, (p_i)_{i=1}^n, (u_i)_{i=1}^n\}$. For each player $i \in N$

- A_i , actions of player i $(A = \times_{j \in N} A_j)$;
- T_i , types of player i ($T = \times_{j \in N} T_j$);
- $p_i \in \Delta T$ for which $p_i(t) \ge 0$ for all $t \in T$, prior belief of player i;
- $u_i: A \times T \to R$, utility of player *i* over outcomes and types.

Standard assumptions

• Lotteries over $A \times T$ are evaluated using expected utility:

$$U_i(lpha) = \sum_{(a,t) \in A \times T} lpha(a,t) u_i(a,t) ext{ for each } lpha \in \Delta(A \times T).$$

Common prior over T; (Harsanyi doctrine)

$$p_i(t) = p(t)$$
 for each $i \in N$.

Bayesian Cournot Game

- Firm 1 has cost $C_1(q_1) = c_1 q_1$.
- Firm 2's cost is unknown by Firm 1. Firm 1 only knows the probability of Firm 2's cost function.

$$C_2(q_2) = egin{cases} c_H q_2, & ext{with probability } heta, \ c_L q_2, & ext{with probability } 1 - heta. \end{cases}$$

- Market demand: $P = a q_1 q_2$
- Profit: $\pi_i = q_i(a q_1 q_2 c_i), i = 1, 2$

Nash Equilibrium of a Bayesian Game

Definition

A strategy in a Bayesian game for player i is a function $S_i: T_i \to \Delta(A_i)$

Definition

A Nash equilibrium of a Bayesian game $\{N, (A_i)_{i=1}^n, (T_i)_{i=1}^n, p, (u_i)_{i=1}^n\}$ is a vector of strategies, (s_1^*, \ldots, s_n^*) , where $\forall i$ and $\forall t_i \in T_i$, $s_i^*(t_i)$ solves

$$\max_{s_i \in \Delta(A_i)} \sum_{t_{-i} \in \mathcal{T}_{-i}} p_i(t_{-i}|t_i) u_i(s_1^*(t_1), \dots, s_{i-1}^*(t_{i-1}), s_i, s_{i+1}^*(t_{i+1}), \dots, s_n^*(t_n), t)$$

where
$$p_i(t_{-i}|t_i) = \frac{p(t_i,t_{-i})}{p(t_i)} = \frac{p(t_i,t_{-i})}{\sum_{t_{-i} \in \mathcal{T}_{-i}} p(t_i,t_{-i})}$$

Bayesian Cournot Game Example

$$c_{2}: \max_{q_{2}^{j}} (P(q_{1}, q_{2}) - c_{j}) q_{2}^{j} \Rightarrow q_{2}^{j*} = \frac{a - q_{1}^{*} - c_{j}}{2}; j \in \{L, H\}.$$

$$c_{1}: \max_{q_{1}} \theta(a - q_{2}^{H} - q_{1} - c_{1}) q_{1} + (1 - \theta)(a - q_{2}^{L} - q_{1} - c_{1}) q_{1}$$

$$\Rightarrow q_{1}^{*} = \frac{a - \theta q_{2}^{H*} - (1 - \theta) q_{2}^{L*} - c_{1}}{2}.$$
Thus
$$q_{2}^{H*} = \frac{a - 2c_{H} + c_{1}}{3} + \frac{(1 - \theta)(c_{H} - c_{L})}{6},$$

$$q_{2}^{L*} = \frac{a - 2c_{L} + c_{1}}{3} - \frac{\theta(c_{H} - c_{L})}{6},$$

$$q_{1}^{*} = \frac{a - 2c_{1} + \theta c_{H} + (1 - \theta)c_{L}}{3}.$$

With complete information the NE is $(q_1, q_2) = (\frac{a+c_2-2c_1}{3}, \frac{a+c_1-2c_2}{3})$.

Bayesian Battle of the Sexes

- $t_W \sim U[0,x]$
- $t_H \sim U[0,x]$
 - $t_W \perp t_H$

Look for a BNE where W plays M iff $t_W \ge w$, P_2 plays F iff $t_H \ge h$.

- For W, M is optimal if $\frac{h}{x}(2+t_W) \ge \frac{x-h}{x} \times 1 \Rightarrow t_W \ge \frac{x}{h} 3 = w$
- For H, F is optimal if $\frac{w}{x}(2+t_H) \ge \frac{x-w}{x} \times 1 \Rightarrow t_H \ge \frac{x}{w} 3 = h$
- Thus $w = h \Rightarrow w^2 + 3w x = 0 \Rightarrow w = h = \frac{-3 + \sqrt{9 + 4x}}{2}$
- W plays M with probability $\frac{x-w}{x} = 1 \frac{-3+\sqrt{9+4x}}{2x}$,
- $\bullet \lim_{x \to 0} \frac{x w}{x} = \frac{2}{3}$

Mixed Strategy Interpretation

- Let $G = \{N, (A_i), (u_i)\}$ be a finite strategic game.
- For each $i \in N$ and $a \in A$ let $\epsilon_i(a)$ be a random variable with range [-1,1] where $\epsilon_i = (\epsilon_i(a))_{a \in A}$ has a continuously differentiable density function and an absolutely continuous distribution function.
 - ▶ Denote f_i as the distribution of ϵ_i .
 - ▶ Denote $\epsilon = (\epsilon_i)_{i \in N}$
- Let $G(\epsilon) = \{N, (A_i)_{i=1}^n, (T_i)_{i=1}^n, p, (u_i)_{i=1}^n\}$ be the Bayesian game in which
 - $T_i = [-1, 1]^{|A|}$
 - ▶ $p(t) = \times_{i \in N} f_i(t_i)$ ($(\epsilon_i)_{i \in N}$ are independent)
 - $u_i(a,\epsilon) = u_i(a) + \epsilon_i(a)$

Purification

Proposition (Harsanyi, 1973, Theorems 2 and 7)

For almost any game G and any collection ϵ of random variables satisfying the conditions above, almost any mixed strategy Nash equilibrium of G is the mixed strategy profile associated with the limit, as the size γ of the perturbation vanishes, of a sequence of pure strategy equilibria of the Bayesian games $G(\gamma \epsilon)$ in each of which the action chosen by each type is strictly optimal.

Proposition (Harsanyi, 1973, Theorem 5)

The limit, as the size γ of the perturbation vanishes, of any convergent sequence of pure strategy equilibria of the Bayesian games $G(\gamma \epsilon)$ in each of which the action chosen by each type is strictly optimal is associated with a mixed strategy equilibrium of G.

First-Price Sealed-Bid Auction

- Two bidders.
- Bidder *i* has valuation v_i for the good, values are independent, $v \sim U[0,1]$.
- Each bidders set of actions is the set of possible bids (nonnegative numbers).
- The bidder whose bid is the highest gets the good. If there is a tie, the winner is decided by coin flip.
- Strategy is a function of value, $b_i(v_i)$.

First-Price Sealed-Bid Auction

 $b_i(v_i)$ solves

$$\max_{b_i} (v_i - b_i) \text{Prob}\{b_i > b_j(v_j)\} + \frac{1}{2} (v_i - b_i) \text{Prob}\{b_i = b_j(v_j)\}$$

Let's look for a linear equilibrium.

- Assume $b_i(v_i) = a_i + c_i v_i$
- $\mathsf{Prob}\{b_i > a_j + c_j v_j)\} = \mathsf{Prob}\{v_j < \frac{b_i a_j}{c_j}\} = \frac{b_i a_j}{c_j}$
- Since Prob $\{b_i = b_j(v_j)\} = 0$, then $\max_{b_i} (v_i b_i) \frac{b_i a_j}{c_j}$
- F.O.C \Rightarrow $b_i = \frac{v_i + a_j}{2} \Rightarrow a_i = \frac{a_j}{2}, c_i = \frac{1}{2}$
- ullet Similarly, we get $a_j=rac{a_i}{2}$ and $c_j=rac{1}{2}$
- Hence, $b_i(v_i) = \frac{v_i}{2}$

First-Price Sealed-Bid Auction Cont.

Proposition

If the players' strategies are symmetric, strictly increasing and differentiable, there exists a unique Bayesian Nash equilibrium.

- Players i and j adopt $b(\cdot)$, $b(\cdot)$ is strictly increasing and differentiable
- Given value v_i , player i's optimal bid b_i solves

$$\max_{b_i}(v_i - b_i) \mathsf{Prob}\{b_i > b(v_j)\}$$

- Let $b^{-1}(\cdot)$ denote the inverse function of $b(\cdot)$, $Prob\{b_i > b(v_j)\} = Prob\{b^{-1}(b_i) > v_j\} = b^{-1}(b_i)$ $\frac{\partial u_i(b_i, v_i)}{\partial b_i} = -b^{-1}(b_i) + (v_i b_i)\frac{\partial}{\partial b_i}b^{-1}(b_i) = 0$
- Equilibrium requires that $b_i = b(v_i)$:

$$-b^{-1}(b(v_i)) + (v_i - b(v_i))\frac{\partial}{\partial b_i}b^{-1}(b(v_i)) = 0$$

First-Price Sealed-Bid Auction Cont.

$$-b^{-1}(b(v_i)) + (v_i - b(v_i))\frac{\partial}{\partial b_i}b^{-1}(b(v_i)) = 0$$
$$-v_i + (v_i - b(v_i))\frac{1}{b'(v_i)} = 0 \Rightarrow b'(v_i)v_i + b(v_i) = v_i$$

Integrating both sides of the equation, we get

$$b(v_i)v_i = \frac{1}{2}v_i^2 + k$$
, where k is a constant

- No player bid more than her valuation, $b(v_i) \leq v_i$
- $b(0) \le 0 \Rightarrow b(0) = 0 = \frac{1}{2}0^2 + k \Rightarrow k = 0$
- $b(v_i) = v_i/2$

A Double Auction

- One good is owned by the seller.
- The buyer's valuation for the good is v_b , the seller's is v_s . These valuations are private information and are drawn from independent uniform distribution on [0,1].
- The seller names an asking price p_s
- ullet The buyer simultaneously names an offer price p_b
- If $p_b \ge p_s$, then trade occurs at price $p = \frac{p_b + p_s}{2}$; if $p_b < p_s$, then no trade occurs.
- If there is no trade, both players' utilities are 0; if the buyer gets the good for price p, the buyer's utility is $v_b p$ and the seller's utility is $p v_s$.

A Double Auction: Equilibrium Definition

A pair of strategies $\{p_b(v_b), p_s(v_s)\}$ is a Bayesian Nash equilibrium if:

• for each $v_b \in [0,1]$, $p_b(v_b)$ solves

$$\max_{p_b} \left[v_b - \frac{p_b + \mathsf{E}[p_s(v_s)|p_b \ge p_s(v_s)]}{2} \right] \mathsf{Prob}\{p_b \ge p_s(v_s)\}. \tag{1}$$

• for each $v_s \in [0,1]$, $p_s(v_s)$ solves

$$\max_{p_s} \left[\frac{p_s + \mathsf{E}[p_b(v_b)|p_b(v_b) \ge p_s]}{2} - v_s \right] \mathsf{Prob}\{p_b(v_b) \ge p_s\}. \tag{2}$$

Assume a linear Bayesian Nash equilibrium of the double auction,

$$p_s(v_s) = a_s + c_s v_s$$
 $p_s(v_s) \sim U[a_s, a_s + c_s]$ $p_b(v_b) = a_b + c_b v_b$ $p_b(v_b) \sim U[a_b, a_b + c_b]$

A Double Auction: Analysis

• Equation (26) becomes

$$\max_{p_b} \left[v_b - \frac{1}{2} \left(p_b + \frac{a_{\mathrm{S}} + p_b}{2} \right) \right] \left(\frac{p_b - a_{\mathrm{S}}}{c_{\mathrm{S}}} \right).$$

• Equation (2) becomes

$$\max_{p_s} \left[\frac{1}{2} \left(p_s + \frac{p_s + a_b + c_b}{2} \right) - v_s \right] \left(\frac{a_b + c_b - p_s}{c_b} \right).$$

First-order conditions:

$$p_b = \frac{2}{3}v_b + \frac{1}{3}a_s; p_s = \frac{2}{3}v_s + \frac{1}{3}(a_b + c_b).$$

• Hence $p_b(v_b) = \frac{2}{3}v_b + \frac{1}{12}$, $p_s(v_s) = \frac{2}{3}v_s + \frac{1}{4}$.

A Double Auction: Equilibrium

Trade occurs if and only if $p_b \geq p_s$. Thus, trade occurs in the linear equilibrium if and only if $v_b \geq v_s + \frac{1}{4}$. The equilibrium misses some valuable trades.

The Revelation Principle

- How can I maximize revenue ?
- What mechanism works best ?
 - Entry fee
 - Reserve price

Use the Revelation Principle to simplify this problem

- Bidders can restrict attention to the following class of games, direct mechanisms
 - The bidders simultaneously make claims (possibly dishonest) about their types (each player's only action).
 - Given the bidders' claims (τ_1, \ldots, τ_n) , bidder i pays $x_i(\tau_1, \ldots, \tau_n)$ and receives the good with probability $q_i(\tau_1, \ldots, \tau_n) \geq 0$, where $\sum_{i=1}^n q_i(\tau_1, \ldots, \tau_n) \leq 1$.

The Revelation Principle

- We can restrict attention to those direct mechanisms in which it is a Bayesian Nash equilibrium for each bidder to tell the truth.
- Find $\{x_1(\tau_1,\ldots,\tau_n),\ldots,x_n(\tau_1,\ldots,\tau_n)\}$ and probability functions $\{q_1(\tau_1,\ldots,\tau_n),\ldots,q_n(\tau_1,\ldots,\tau_n)\}$ for which $\tau_i(t_i)=t_i$ is an equilibrium strategy for each player.
- A direct mechanism in which truth-telling is a Bayesian Nash Equilibrium is called incentive-compatible.

The Revelation Principle

Proposition

The Revelation Principle For any Bayesian Nash equilibrium of any Bayesian game one can construct an incentive-compatible direct mechanism in which player's receive the same equilibrium payoffs.

- When bidders have independent, private values, Myerson (1981) determines which direct mechanisms have a truth-telling equilibrium, and which of these equilibria maximizes revenue.
- The Revelation Principle guarantees that no other mechanism has a Bayesian Nash equilibrium that generates higher revenue.
- Symmetric Bayesian Nash equilibrium we study is equivalent to this payoff-maximizing truth-telling equilibrium.

The Revelation Principle: Proof

- Consider a static Bayesian game $G = \{(A_i)_{i=1}^n, (T_i)_{i=1}^n, (p_i)_{i=1}^n, (u_i)_{i=1}^n\}.$
- Consider a Bayesian Nash equilibrium $s^* = (s_1^*, \dots, s_n^*)$ of this game.
- ullet We will construct a direct mechanism with a truth-telling equilibrium that represents s^* .
- Redefine action spaces, $\tilde{A}_i = T_i$, and payoffs, $\tilde{u}_i(\tau, t) = u_i[s^*(\tau), t]$.
- If other players tell the truth, then player i chooses τ_i such that

$$\max_{\tau_i \in T_i} u_i[s_1^*(t_1), \dots, s_{i-1}^*(t_{i-1}), s_i^*(\tau_i), s_{i+1}^*(t_{i+1}), \dots, s_n^*(t_n), t].$$

• We know that $s_i^*(t_i)$ solves

$$\max_{a_i \in A_i} u_i[s_1^*(t_1), \dots, s_{i-1}^*(t_{i-1}), a_i, s_{i+1}^*(t_{i+1}), \dots, s_n^*(t_n), t].$$

• Hence, $\tau_i(t_i) = t_i$ (truth-telling) is an equilibrium.

A Double Auction: Revelation Principle

What is the equivalent incentive-compatible direct mechanism to the Double Auction equilibrium we found.

• Players announce types $(au_i \in [0,1])$

$$u_b(au,t) = egin{cases} v_b - rac{(au_b + au_s)}{3} - rac{1}{6} & ext{if } au_b \geq au_s + 1/4 \ 0 & ext{otherwise.} \end{cases}$$
 $u_s(au,t) = egin{cases} rac{(au_b + au_s)}{3} + rac{1}{6} - au_s & ext{if } au_b \geq au_s + 1/4 \ 0 & ext{otherwise.} \end{cases}$

- Is truth-telling an equilibrium?
- For each $v_b \in [0,1]$, v_b solves

$$\max_{\tau_b} \left[v_b - \frac{\tau_b + \mathsf{E}[v_s|\tau_b \geq v_s + 1/4]}{3} - \frac{1}{6} \right] \mathsf{Pr}\{\tau_b \geq v_s\}.$$

Double Auction Efficiency

- This equilibrium yields higher expected gains for the players than any other Bayesian equilibrium. (Myerson and Sattherthwaite 1983)
- The result is much more general:
 - Add individual rationality
 - ▶ Let $v_b \sim F_b[x_b, y_b]$, $v_s \sim F_s[x_s, y_s]$; F_b and F_s are continuous;
 - $y_b > x_s$ (some trades are efficient)
 - $y_s > x_b$ (some trades are inefficient)
 - ► There is no bargaining game that has a Bayesian Nash equilibrium in which trade occurs if and only if it is efficient.