ANalysis Of VAriance II

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- Let's continue our discussion of the ANOVA Model
- We will solve for the sum of squares for a basic model with two means
- See how software displays the results
- We will look at the Basic Test for ANOVA
 - F-test
- Based on the F-distribution
- Give an example of more that two means

2

Let's get started with a problem

- A study was done to examine at how Intrinsic versus Extrinsic Motivation influences Creativity
- Art for art's sake; money for God's sake!
- Students who were experienced in creative writing were randomly assigned to two groups
 - Intrinsic motivation motivation to be creative from within
 - Extrinsic motivation motivation based on external reasons
- Motivation was supplied by a survey mechanism they were asked to rank motivational questions in one of two areas
- Later they were asked to write a poem and it was judged by a panel of 12 judges on a 40 point scale
- Does the type of motivation influence creativity?

Let's look at the data

- What do you see?
- Somewhat normal distribution
- A few outliers, but not too bad
- The mean score was 17.855; the median is 18.70
- The CV is 29.335; a moderate amount of variability

3

Let's compare the means

- We have everything we need to conduct a test of the two means
 - Ho: $\mu_i \mu_e = 0$
 - Ha: μ_i μ_e ≠ 0

				Std Err		
Level	Number	Mean	Std Dev	Mean	Lower 95%	Upper 95%
EXTRINSIC		15.7391	5.25260	1.0952	13.468	18.011
INTRINSIC	24	19.8833	4.43951	0.9062	18.009	21.758

5

ANOVA Output for the same problem

- ANOVA output would typically give the means and variances of each group
- And then the ANOVA table, which is the breakdown of the Sums of Squares, and the Mean Squares (SS/df)

Mean Variance Observations Pooled Variance Hypothesized Mean Difference	19.88 19.71 24 23.56	15.74 27.59 23	Groups Extrinsic Intrinsic	23 24	Sum 362.000 477.200	15.739 19.883	27.590 19.709		
Observations Pooled Variance	24								
Pooled Variance		23	Intrinsic	24	477.200	10 883	10 700		
	23.56					10.000	19.709		
Hypothesized Mean Difference									
	0	_							
df	45		ANOVA						
t Stat	2.93		Source of Variation	SS	df	MS	F	P-value	F cri
P(T<=t) one-tail	0.00		Between Groups	201.708	1	201.708	8.561	0.005	4.05
t Critical one-tail	1.68		Within Groups	1060.288	45	23.562			
P(T<=t) two-tail	0.01						•		
t Critical two-tail	2.01		Total	1261.996	46				

Difference of Means Hypothesis Test

Ho: μ1-μ2=0

μι-με-σ

µ1-µ2≠0

• Test Statistic 2.93

Rejection Region 2.01

Ha:

• p-value .01

Conclusion: Reject

t-Test: Two-Sample Assuming Equal Variances

	Intrinsic	Extrinsic
Mean	19.88	15.74
Variance	19.71	27.59
Observations	24	23
Pooled Variance	23.56	
Hypothesized Mean Difference	0	
df	45	
t Stat	2.93	
P(T<=t) one-tail	0.00	
t Critical one-tail	1.68	
P(T<=t) two-tail	0.01	
t Critical two-tail	2.01	

6

How does ANOVA work?

- We decompose the Total Sum of Squares
 - Part due to Treatment or Between Factor Levels
 - Part due to Error or Within each Factor Level
- We compute the variability of the treatment means from the Grand Mean (the mean from the whole sample, i.e., all groups)
 - Sum of Squares for Treatments (SST)
 - Which measures Between Factor Level variation.
- And the variability within the treatment levels
 - Sum of Squares for Error (SSE)
- Which measures within each Factor Level variation

How does ANOVA work?

- We adjust SST and SSE to reflect a mean sum of squares divide by degrees of freedom
- Then we compare to see if the Mean Sum of Squares for Treatments (MST) is larger relative to the Mean Sum of Squares for Error (MSE)
- We do this by taking a ratio of the two sources of sums of squares

$$F^* = \frac{MST}{MSE}$$

9

П

How does ANOVA work?

- We ask, "Is there more variability across the means for the factor levels (or treatments), than collectively within each of the Factor Levels?"
- We look to see if there is more variability across factor levels (treatments),
 - with respect to a probability framework
 - using an F-distribution with specified degrees of freedom
- If yes, we will conclude that the factors influence the response variable – there are differences in the means between Factor Levels
- In the case of the single Factor, 2 levels, the result is identical to a difference of means test

Decomposing the Total Sums of Squares for a one-Factor Model

Let k = # treatments	k
The Grand Mean is	\overline{Y}
Each group mean is	\overline{y}_k
The sample size for each factor level	n _k
Degrees of Freedom	
Total Sum of Squares	n-I
Sum of Squares for Treatment	k-I
Sum of Squares for Error	n-k

The degrees of freedome should add up

- SS_{Total} = SST + SSE
- Degrees of freedom
- n-1 = (k-1) + (n-k)
- e.g. n = 100 k=3
 - \bullet 100-1 = (3-1) + (100-3)
 - \bullet 99 = 2 + 97

Formulas for the Sums of **Squares**

- Total Sum of Squares (n-1 d.f.)
- If I divided by the degrees of freedom, I would have the sample variance

$$SS_{Total} = \sum_{i=1}^{n} (y_i - \overline{Y})^2$$

 Sum of Squares for Treatments (k-1 d.f.)

$$SST = \sum_{i=1}^{k} n_i (\overline{y}_i - \overline{Y})^2$$

 Dividing by the degrees of freedom gives the Mean Square for Treatment, MST = SST/(k-1)

$$SSE = \sum_{j=1}^{n_1} (y_{1j} - \overline{y}_1)^2 + \sum_{j=1}^{n_2} (y_{2j} - \overline{y}_1)^2 + \dots \sum_{j=1}^{n_k} (y_{kj} - \overline{y}_k)^2$$

- Sum of Squares for Error (n-k d.f.)
- Another way to calculate this is:
- $SSE = (n_1 1)s_1^2 + (n_2 1)s_2^2 + ...(n_k 1)s_k^2$
- Dividing by degrees of freedom gives the Mean Square Error, MSE
 - = SSE/(n-k)

13

Let's Work through the computations for the Creativity Example

$$SST = \sum_{i=1}^{k} n_i (\overline{y}_i - \overline{Y})^2$$

 $SST = 24(19.883-17.855)^2 + 23(15.739-17.855)^2$

 $SST = 24(1.854)^2 + 23(-2.116)^2$

SST = 82.495 + 102.981 = 201.688

MST = 201.688/1 = 201.688

$$SSE = (n_1 - 1)s_1^2 + (n_2 - 1)s_2^2$$

SSE = 23(19.709) + 22(27.590)

SSE = 453.307 + 606.980 = 1060.287

MSE = 1060.287/(47-2) = 23.562

-		
	Intrinsic	Extrinsic
Sample size	n ₁ =24	n ₂ =23
Mean	19.883	15.739
Variance	19.709	27.590
Deviation from Grand Mean	1.854	-2.116
Grand Mean	17.8	55
SS _{total}	1262.	010
Treatment Effect	19.883-15.7	39 = 4.144

14

16

 $SS_{total} = SST + SSE = 201.688 + 1060.287 = 1261.975$

JMP Output

Oneway Analysis of SCORE By TREATMENT

- Our values are similar except for rounding error
- **Oneway Anova** Summary of Fit

Juliuman, or the	
Rsquare	0.159833
Adj Rsquare	0.141162
Root Mean Square Error	4.854066
Mean of Response	17.85532
Observations (or Sum Wgts)	47

SST = 201.688

t Test

SSE = 1060.287

INTRINSIC-EX	TRINSIC			
Assuming equ				
Difference	4.14420	t Ratio	2.925876	
Std Err Dif	1.41640	DF	45	
Upper CL Dif	6.99697	Prob > t	0.0054*	
Lower CL Dif	1.29143	Prob > t	0.0027*	
Confidence	0.95	Prob < t	0.9973	-5

15

Analysis of Variance

		Sum of			
Source	DF	Squares	Mean Square	F Ratio	Prob > F
TREATMENT	1	201.7080	201.708	8.5608	0.0054*
Error	45	1060.2882	23.562		
C Total	46	1261 9962			

F-Test

An F* is the ratio of two variances

$$F^* = \frac{MST}{MSE}$$

- Between treatments
- Within treatments
- An F* = 1 mean equality of variances and that is the Null Hypothesis for our test

$$F^* = \frac{201.688}{23.562} = 8.556$$

F Distribution

- The F-distribution is a positively skewed distribution with two degrees of freedom – the numerator d.f. and the denominator d.f.
- We compare our F^* to a F distribution at a specified α , with v_1 and v_2 degrees of freedom
- v₁ represents the degrees of freedom for the numerator (k-1)
- v₂ represents the degrees of freedom for the denominator (n-k)
- The table will give the critical value to compare with α
- F-tests are always one-tailed tests

17

ANOVA Hypothesis Test for Creativity Data

• Ho: $\mu_1 = \mu_2$

Ha: Ha: At least two means are different

• Assumptions Equal variances, normal distribution

• Test Statistic F* = 8.5608 p = .0054

Rejection Region F_{.05, 1, 45} = 4.057

• Conclusion: F* > F.05, 1, 45

or p < .01

Reject Ho: $\mu_1 = \mu_2$

F-table of critical values for $\alpha = .05$

- For each level of (.10, .05, .01) there is a different F-table with
 - Degrees of freedom for the numerator and denominator
 - The numerator degrees of freedom have less options (k-1)
 - What would be the F critical value value for 2 and 18 d.f.?

F-Distribution Tables

This table is best for regression & ANOVA tests were d.f.numerator tend to be small

	Alp	oha is:		0.05										
						Degrees o	f Freedor	n Numera	tor					
	d.f		1	2	3	4	- 5	6	7	8	9	10	11	12
		1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.91
		2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41
		3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74
D		4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91
е		5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68
g		6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00
r		7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57
е		8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.28
е		9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.07
s		10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91
		11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79
0		12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69
f		13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60
		14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53
F		15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48
r		16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42
е		17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38
е	VI.	/18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34
d	V	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31
0		20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28

18

Let's revisit the Output

- · Excel's output includes
 - Means and Variance
 - ANOVA Table

JMP gives more

Anova: Single Factor

SUMMARY				
Groups	Count	Sum	Average	Variance
Extrinsic	23	362.000	15.739	27.590
Intrinsic	24	477.200	19.883	19.709

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	201.708	1	201.708	8.561	0.005	4.057
Within Groups	1060.288	45	23.562			
Total	1261 996	46				

20

A note about a Difference of Means Test and the ANOVA Test

- t* from difference of means test = 2.926
- F* = 8.561
- In case of comparing just two means, if you square t*, it roughly equals F*
- The two tests (t-test and F-test for ANOVA) result in the same conclusion
- The advantage of ANOVA is that you can compare and make inferences on more than two means

21

Calculations

- The Variances are very similar no problem with the assumptions
- SST = $8(7.00-8.25)^2 + 8(9.00-8.25)^2 + 8(8.00-8.25)^2 + 8(9.00-8.25)^2$
- SST= 22.00
- MST = 22.00/(4-1) = 7.33
- SSE = (8-1)7.34 + (8-1)8.42 + (8-1)7.63 + (8-1)5.02
 - SSE=198.87
 - MSE = 198.87/(32-4) = 7.10
- F* = 7.33/7.10 = 1.03

More than two means: Coupon Example

- A greeting company wanted to use a coupon offer to increase sales
- They developed four different coupon designs, and used each design with a number of customers
- They took a sample of 8 customers for each design and noted their purchase amount as a result of the coupon
- Did the coupons have different effects on sales?

Customer	Design1	Design 2	Design 3	Design 4
1	\$4.10	\$6.90	\$4.60	\$12.50
2	\$5.90	\$9.10	\$11.40	\$7.50
3	\$10.45	\$13.00	\$6.15	\$6.25
4	\$11.55	\$7.90	\$7.85	\$8.75
5	\$5.25	\$9.10	\$4.30	\$11.15
6	\$7.75	\$13.40	\$8.70	\$10.25
7	\$4.78	\$7.60	\$10.20	\$6.40
8	\$6.22	\$5.00	\$10.80	\$9.20
Mean	\$7.00	\$9.00	\$8.00	\$9.00
Variance	\$7.34	\$8.42	\$7.63	\$5.02
GRAND MI	EAN	\$8.25		

Experimental Design

- I Factor: Coupon Design
- 4 Treatments
- 8 replications per treatment
- **Experimental Unit: Person**
- **Measurement Unit: Person**
- Total Sample Size: 32

22

But we can use the output from Excel or JMP

- Excel gives the means and Variance
 - F* = 1.032

Anova: Single Factor

- Critical Value = 2.947
- p-value = .3933
- p-value = .5955
- JMP gives more
- Box plot shows us the differences are small relative to the spread

We cannot reject Ho:

SUMMARY										
Groups	Count		Sum	Average	Variance					
Design 1		8	56	7.000	7.341					
Design 2		8	72	9.000	8.423					
Design 3		8	64	8.000	7.632					
Design 4		8	72	9.000	5.016					

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	22	3	7.333	1.032	0.393	2.947
Within Groups	198.8818	28	7.103			
Total	220.8818	31				

24

ANOVA Hypothesis Test for Greeting Card Data

• Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

Ha: At least two means are different

• Test Statistic F* = 1.032 p = .393

Rejection Region F_{.05, 3, 28} = 2.947

• Conclusion: F* > F.05, 3, 28

or p = .393

Cannot Reject Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

25

Summary

- We now know the components of the ANOVA table
- And how to do an F-test for the difference of the means for the treatment levels
- There still is more terms to learn R-square
- And the strategy of what to do next should we find significant differences in the means
- And we will explore a few other models two factors and a block design

27

Using Excel to do an ANOVA

- Arrange data in columns each factor level is a column
- It is a good idea to label the columns
- Use: Tools, Data Analysis, ANOVA: Single Factor
- Identify
 - the input range of columns
 - Alpha for the test
- Whether labels are present
- Output range
- I would also suggest using Data Descriptive on each column to get Factor Level statistics
- On the total sample to get the Grand Mean