Data Communication

Problem list

Chapter 8

- **P8-1.** A path in a digital circuit-switched network has a data rate of 1 Mbps. The exchange of 1000 bits is required for the setup and teardown phases. The distance between two parties is 5000 km. Answer the following questions if the propagation speed is 2×10^8 m:
 - **a.** What is the total delay if 1000 bits of data are exchanged during the data-transfer phase?
 - **b.** What is the total delay if 100,000 bits of data are exchanged during the data-transfer phase?
 - **c.** What is the total delay if 1,000,000 bits of data are exchanged during the data-transfer phase?
 - **d.** Find the delay per 1000 bits of data for each of the above cases and compare them. What can you infer?
- **P8-2.** Five equal-size datagrams belonging to the same message leave for the destination one after another. However, they travel through different paths as shown in Table 8.1.

Table 8.1 *P8-2*

Datagram	Path Length	Visited Switches
1	3200 km	1, 3, 5
2	11,700 km	1, 2, 5
3	12,200 km	1, 2, 3, 5
4	10,200 km	1, 4, 5
5	10,700 km	1, 4, 3, 5

We assume that the delay for each switch (including waiting and processing) is 3, 10, 20, 7, and 20 ms respectively. Assuming that the propagation speed is 2×10^8 m, find the order the datagrams arrive at the destination and the delay for each. Ignore any other delays in transmission.

P8-3. Transmission of information in any network involves end-to-end addressing and sometimes local addressing (such as VCI). Table 8.2 shows the types of networks and the addressing mechanism used in each of them.

Table 8.2 *P8-3*

Network	Setup	Data Transfer	Teardown
Circuit-switched	End-to-end		End-to-end
Datagram		End-to-end	
Virtual-circuit	End-to-end	Local	End-to-end

Answer the following questions:

- **a.** Why does a circuit-switched network need end-to-end addressing during the setup and teardown phases? Why are no addresses needed during the data transfer phase for this type of network?
- **b.** Why does a datagram network need only end-to-end addressing during the data transfer phase, but no addressing during the setup and teardown phases?
- c. Why does a virtual-circuit network need addresses during all three phases?

P8-7. Figure 8.27 shows a switch (router) in a datagram network.

Figure 8.27 Problem P8-7

Destination address	Output port					_
1233	3					
1456	2				<)
3255	1	1				,
4470	4					
7176	2		2		3	
8766	3		2	I	3	
9144	2					

Find the output port for packets with the following destination addresses:

a. Packet 1: 7176

c. Packet 3: 8766

b. Packet 2: 1233

d. Packet 4: 9144

P8-8. Figure 8.28 shows a switch in a virtual-circuit network.

Figure 8.28 Problem P8-8

Inco	Incoming		Outgoing		
Port	VCI	Port	VCI		
1	14	3	22		
2	71	4	41		
2	92	1	45		
3	58	2	43		
3	78	2	70		
4	56	3	11		

Find the output port and the output VCI for packets with the following input port and input VCI addresses:

- a. Packet 1: 3, 78
- c. Packet 3: 4, 56

- **b.** Packet 2: 2, 92
- d. Packet 4: 2, 71

P8-13. Repeat Problem 8-12 if we use 6 crossbars at the middle stage.

- **P8-12.** We need a three-stage space-division switch with N = 100. We use 10 crossbars at the first and third stages and 4 crossbars at the middle stage.
 - a. Draw the configuration diagram.
 - **b.** Calculate the total number of crosspoints.
 - **c.** Find the possible number of simultaneous connections.
 - **d.** Find the possible number of simultaneous connections if we use a single crossbar (100×100) .
 - e. Find the blocking factor, the ratio of the number of connections in part c and in part d.

Chapter 9

- P9-6. Assume Alice is travelling from 2020 Main Street in Los Angeles to 1432 American Boulevard in Chicago. If she is travelling by air from Los Angeles Airport to Chicago Airport,
 - **a.** find the end-to-end addresses in this scenario.
 - **b.** find the link-layer addresses in this scenario.

- P9-7. In the previous problem, assume Alice cannot find a direct flight from the Los Angeles to the Chicago. If she needs to change flights in Denver,
 - a. find the end-to-end addresses in this scenario.
 - **b.** find the link-layer addresses in this scenario.
 - P9-6. Assume Alice is travelling from 2020 Main Street in Los Angeles to 1432 American Boulevard in Chicago. If she is travelling by air from Los Angeles Airport to Chicago Airport,
 - a. find the end-to-end addresses in this scenario.
 - **b.** find the link-layer addresses in this scenario.
- **P9-15.** Figure 9.7 shows a system as either a host or a router. What would be the actual entity (host or router) of system A and B in each of the following cases:
 - **a.** If the link is the first one in the path?
 - **b.** If the link is the middle one in the path?
 - **c.** If the link is the last one in the path?
 - **d.** If there is only one link in the path (local communication)?

Chapter 11

- P11-7. Redraw Figure 11.12 using the following scenario:
 - a. The first frame is sent and acknowledged.
 - **b.** The second frame is sent and acknowledged, but the acknowledgment is lost.
 - **c.** The second frame is resent, but it is timed-out.
 - d. The second frame is resent and acknowledged.

P11-8. Redraw Figure 11.2 using the following scenario:

- **a.** Frame 0 is sent, but lost.
- **b.** Frame 0 is resent and acknowledged.
- c. Frame 1 is sent and acknowledged, but the acknowledgment is lost.
- d. Frame 1 is resent and acknowledged.
- 문제 수정 : Redraw Figure 11.2 → Redraw Figure 11.13

P11-10. In Figure 11.11, show what happens in each of the following cases:

- **a.** The receiver is in the ready state and a packet comes from the network layer.
- **b.** The receiver is in the ready state and a corrupted frame arrives.
- c. The receiver is in the ready state and an acknowledgment arrives.

