Series Temporales y Predicción Práctica 3A

Suavización exponencial de Holt Winters y otros usos de las medias móviles

1. El suavizado Exponencial (Holt-Winters)

Ajuste del modelo

El método de Winters emplea un componente de media, un componente de tendencia y un componente estacional en cada período para generar un modelo robusto que devuelve pronósticos a corto plazo fuera de la muestra.

Utiliza tres parámetros de suavización para actualizar los componentes en cada período.

Los valores para los componentes de nivel y de tendencia se obtienen de una regresión lineal sobre el tiempo. Para el componente estacional se obtienen de una regresión de variables simulada utilizando datos sin tendencia.

Fórmula

Multiplicativo		Aditivo	
Fórmula		Fórmula	
El modelo multiplicativo es:		El modelo aditivo es:	
• $L_t = \alpha(Y_t / S_{t-p}) + (1 - \alpha) [L_{t-1} + T_{t-1}]$ • $T_t = y [L_t - L_{t-1}] + (1 - y) T_{t-1}$ • $S_t = \delta(Y_t / L_t) + (1 - \delta) S_{t-p}$ • $\hat{Y}_t = (L_{t-1} + T_{t-1}) S_{t-p}$		• $L_t = \alpha (Y_t - S_{t-p}) + (1 - \alpha) [L_{t-1} + T_{t-1}]$ • $T_t = \gamma [L_t - L_{t-1}] + (1 - \gamma) T_{t-1}$ • $S_t = \delta (Y_t - L_t) + (1 - \delta) S_{t-p}$ • $\hat{Y}_t = L_{t-1} + T_{t-1} + S_{t-p}$	
Notación		Notación	
Término	Description	Término	Description
$L_{\bar{t}}$	el nivel en el tiempo t , α es la ponderación para el nivel	L_t	el nivel en el tiempo t , α es la ponderación para el nivel
T_{r}	la tendencia en el tiempo t	T_t	la tendencia en el tiempo t;
v	la ponderación para la tendencia	Y	la ponderación para la tendencia
S _t	el componente estacional en el tiempo t	S_t	el componente estacional en el tiempo $\it t$
		δ	la ponderación para el componente estacional
δ	la ponderación para el componente estacional	p	período estacional
p	período estacional	Y_t	el valor de los datos en el tiempo t
Y_{t}	el valor de los datos en el tiempo t	Ŷ,	el valor ajustado, o el pronóstico de un período adelante, en el tiempo
Ŷ	el valor ajustado, o el pronóstico de un período adelante, en el tiempo t	r.t	er raist ajastados o er pronostato de un periodo dideidrite, en el tiempo

Ejemplo

En el siguiente enlace se puede ver un ejemplo visual de cómo calcular pronósticos con el método de suavizado exponencial de Holt Winters con R: https://rpubs.com/Maugnetic/282626

Práctica 1.1

Recordemos la serie ausbeer visto en la práctica 2:

```
library(fpp)
data(ausbeer)
plot.ts(ausbeer)
```


Se pide:

i. Ejecutad el siguiente código R para obtener el pronóstico de modelo de suavizado exponencial de Holt-Winters para los 5 periodos siguientes fuera de la muestra.

hw.beer=HoltWinters(ausbeer, alpha = NULL, beta = NULL, gamma = NULL, seasonal = "additive") p.beer=predict(hw.beer, n.ahead = 5, prediction.interval = TRUE,level = 0.95) plot(hw.beer,p.beer)

- Dad los valores de pronóstico obtenidos para los 5 periodos y su intervalo de confianza al 95%.
- iii. Dad la ecuación de Holt-Winters con los valores numéricos que te calcula R.

2. Otros usos de las medias móviles

En finanzas, el análisis técnico consiste en producir diversas descripciones de las series de precios de los activos financieros, P_t , t = 0, 1, ...

Una estrategia para compra o vender es la siguiente:

- 1. Se ajusta a la serie de precios de cierre un promedio móvil de corto plazo $MA(n)_t$ (ventana de tamaño n)
- 2. Se ajusta la serie a largo plazo $MA(m)_t$, con una ventana de tamaño m > n,
- 3. Se calcula el proceso $X_t = MA(n)_t MA(m)_t$.
- 4. Si en un instante *t*i cambia de signo, se procede así:
 - Si $X_{t_{i-1}} < 0$ y $X_{t_i} > 0$, comprar en el instante $t_i + 1$ al precio de apertura del día siguiente.
 - $X_{t_{i-1}} < 0$ y $X_{t_i} > 0$, vender.

Práctica 1.2

Realizad el gráfico de la serie de los precios de Apple desde enero de 2020 a hoy 6 de octubre de 2020 y sus medias móviles de orden 20 y 50.

Se pide:

- i. ¿El último cruce de las dos medias móviles que observas en el gráfico indicaba comprar o vender acciones?
- ii. ¿Creéis que en los próximos días se intuye algún cambio de posición de inversión en la compra-venta de acciones? ¿Cuál? Razonad vuestra respuesta.
- iii. Dad las bandas de Bollinger y describid lo que observáis con lo aprendido en el siguiente enlace: https://www.youtube.com/watch?v=yyRRgL8zjsw&feature=emb_logo

Podéis ayudaros con el siguiente código R.

```
##Technical analysis with quantmod
library(quantmod)
getSymbols("AAPL")
adj=AAPL$AAPL.Adjusted["2017-01-11::2018-09-20"]
plot.ts(adj,type="1",lwd=2)
lines(ma(adj, order = 50, centre = T),col="orchid")
lines(ma(adj, order = 20, centre = T),col="gold")

### Un grafico mas profesional:
chartSeries(AAPL, subset="2017-01-11::2018-09-20",
theme=chartTheme('white',up.col='green',dn.col='red'),
TA=c(addBBands(n=20,sd=2),addSMA(n=50,col="blue")))
```

Referencia: Computational Finance, A. Arratia, http://computationalfinance.lsi.upc. edu/, RLab 6.1.