1 Attention

Motivation: One of the core mechanisms inside of current LLMs.

Warning: Convolution takes in a single node, while attention takes in all nodes.

1.1 Transformer

Notes:

Figure 1

- Transformer Layer:
 - Attention mechanism (multi-headed)
 - Positional encodings
- \bullet With massive unsupervised datasets:
 - Masked self-supervised training
 - Contrastive training

1.1.1 Transformer Layer

Summary:

Figure 2

Component	Description
Positional encoding	Learn to map integer positions into a vectorized representation.
	$PE_{(pos,i)} = \begin{cases} \sin\left(\frac{pos}{10000\frac{i}{d_{model}}}\right) & \text{if } i \text{ is even} \\ \cos\left(\frac{pos}{10000\frac{i-1}{d_{model}}}\right) & \text{if } i \text{ is odd} \end{cases}$
Multi-Head Attention	Computes attention scores for each token in the sequence.
LayerNorm	Stabilizes activations and accelerates training.
Residual Connection	Preserve information and enable deeper networks.
FFN/MLP	Increases the expressive power of the learned representation, often using GELU activations.

Attention Mechanism

Process:

- 1. **Inputs:** Tokens tensor, Mask
 - Tokens: Inputs for Transformer/Attention Layers, which is a numerical representation of pieces of data.
 - Mask: A binary matrix that indicates which tokens to give attention to.
- 2. Preprocessing: Linear maps Tokens into Queries, Keys, and Values.
 - $Q = \text{Tokens} \cdot W_Q$: Represents the current token's context.
 - $K = \text{Tokens} \cdot W_K$: Represents the context of all tokens.
 - $V = \text{Tokens} \cdot W_V$: Represents the information to be passed on.
- 3. Attention scores: Scores = $\frac{QK^T}{\sqrt{d_k}}$ · Mask
 - $\operatorname{score}_{ij} = \frac{(q_i \cdot k_j)m_{ij}}{\sqrt{d_k}}$
- 4. Attention Normalization: Attention Weights = softmax(scores)
- $\operatorname{score}_{ij}^{\operatorname{normalized}} = \frac{\exp(\operatorname{score}_{ij})}{\sum_{k=1}^{n} \exp(\operatorname{score}_{ik})}$ 5. Value update: New Values = Attention Weights · V
- - $v_i^{\text{new}} = \sum_{j=1}^n \text{score}_{ij}^{\text{normalized}} v_j$
- 6. **Post Processing:** Apply LayerNorm, Residual connections, and a FFN.
- 7. Outputs: Updated tokens tensor

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k} \cdot \operatorname{Mask}}\right)V \tag{1}$$

Self-Attention vs. Cross-Attention

Notes:

Multi-Head Attention

Notes:

Transformers 1.3

Notes:

1.3.1 Transformer Block

Notes:

Transformers are GNNs

Summary: Transformers are a special case of GNN

Examples 1.4

Tokens 1.4.1

Example:

1.4.2 Positional Encoding

2 LLMs

Notes:

- \bullet Transformers on large text-like datasets.
- \bullet Transformers on "tokens" (discretized data)
- Foundational models

2.1 Transformers & LLMs

Summary:

- 2.1.1 Inputs: Tolenizing Text & Embedding Layers
- 2.1.2 Outputs: Auto-Regressive Decoding of Tokens
- 2.1.3 Sizes of Text Datasets for LLMs
- 2.1.4 Text to Text Tasks
- 2.1.5 Transformers and Masking: Encoders and Decoders
- 2.1.6 Masking Language Modelling (Self-Supervised)

2.2 Scaling LLMs

Motivation:

2.2.1 Techniques

Summary: Table format

${\bf 2.2.2}\quad {\bf High\text{-}Level\ Impacts}$

Summary:

3 Transformers