Entropie et codage de source

$\mathbf{Q2}$

$$\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) = alog_2(\frac{a}{b}) + (1-a)log_2(\frac{1-a}{1-b})$$
 D'où $\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) - \mathcal{D}(\mathcal{B}(b)||\mathcal{B}(a)) = (a+b)\log_2\frac{a}{b} + (2-a-b)\log_2\frac{1-a}{1-b}$ Or pour $a = \frac{1}{4}$ et $b = \frac{1}{2}$, $\mathcal{D}(\mathcal{B}(a)||\mathcal{B}(b)) - \mathcal{D}(\mathcal{B}(b)||\mathcal{B}(a)) = \frac{3}{4}\log_2(2) + \frac{5}{4}\log_2(\frac{3}{2}) \neq 0$

Ainsi, dans le cas général, $\mathcal{D}(p||q) \neq \mathcal{D}(q||p)$

Q3a

La fonction $-\log_2$ est strictement convexe. Alors, d'après l'inégalité de Jensen, $\sum_{x \in E} p(x) (-\log_2 \big(\frac{q(x)}{p(x)} \big)) \geq -\log_2 \big(\sum_{x \in E} p(x) \frac{q(x)}{p(x)} \big) = -\log_2 (\sum_{x \in E} q(x)) = 0$

Ainsi $D(p||q) \ge 0$

La stricte convexité de $-\log_2$ permet de conclure qu'il y a égalité si et seulement si $\forall x \in E, \ p(x) = q(x),$ soit p = q.

Q3b

D'après Q3a,
$$\mathcal{I}(X,Y) = \mathcal{D}(p_{(X,Y)}||p_X \otimes p_Y) \geq 0$$

Avec égalité si et seulement si $p_{(X,Y)} = p_X \otimes p_Y \iff X$ et Y sont indépendants.

Q4a

$$\begin{split} \mathcal{H}(X,Y) &= -\sum_{x,y \in E} p_{X,Y}(x,y) \log_2 \left(p_{X,Y}(x,y) \right) \\ &= -\sum_{x \in E} \sum_{y \in E} p_X(x) p_{Y|X=x}(y) \log_2 p_X(x) + \log_2 p_{Y|X=x}(y) \\ &= \mathcal{H}(X) + \sum_{x \in E} p_X(x) (-\sum_{Y \in E} p_{Y|X=x}(y) \log_2 p_{Y|X=x}(y)) \\ &= \mathcal{H}(X) + \mathcal{H}(Y|X) \end{split}$$

Q4b

$$\begin{split} &\mathcal{I}(X,Y) = \sum_{(X,Y) \in E} p_{X,Y}(x,y) \log_2 \frac{p_{X,Y}x,y}{p_X(x)p_Y(y)} \\ &= \sum_{(X,Y) \in E} p_X(x) p_{Y|X=x}(y) \log_2 \left(p_{Y|X=x}(y) \right) - \sum_{(X,Y) \in E} p_Y(y) p_{X|Y=y}(x) \log_2 \left(p_Y(y) \right) \\ &= \mathcal{H}(Y) - \mathcal{H}(Y|X) \\ &= \mathcal{H}(X) - \mathcal{H}(X|Y) \text{ (par symétrie des rôles de X et Y)} \\ &= \mathcal{H}(Y) - \left(\mathcal{H}(X,Y) - \mathcal{H}(X) \right) \text{ (Q4a)} \\ &= \mathcal{H}(X) + \mathcal{H}(Y) - \mathcal{H}(X,Y) \end{split}$$

Q4c

D'après 4b,
$$\mathcal{H}(X,Y) = \mathcal{H}(X) - \mathcal{I}(X;Y)$$
 Or $\mathcal{I}(X;Y) \geq 0$
Ainsi, $\mathcal{H}(X,Y) \leq \mathcal{H}(X)$

Q5a

On utilise l'algorithme d'inversion de la fonction de répartition pour une loi discrète.

On utilise python pour déterminer un nombre a aléatoirement suivant la loi uniforme, entre 0 et 1, et on pose Y tel que :

$$Y = x_i \iff \sum_{j=1}^{i-1} p_j < a \le \sum_{j=1}^{i} p_{j+1}$$

On peut appliquer ce principe pour $X \leadsto \mathcal{B}(\frac{1}{3})$
Soit $a \leadsto \mathcal{U}([0;1])$ Notons aussi $x_0 = 1$ et $x_1 = 0$
Alors $\mathbb{P}(X = x_0) = \frac{2}{3} = \mathbb{P}(a < \frac{2}{3})$ et $\mathbb{P}(X = x_1) = \frac{1}{3} = \mathbb{P}(a > \frac{2}{3})$.

Q7a

$$\begin{split} \mathcal{D}(p_X||q) &= \sum_{x \in E} p_X(x) log_2(\frac{p_X(x)}{\frac{1}{c}d^{-l(x)}}) \geq 0 \\ &\quad \text{Alors } \sum_{x \in E} p_X(x) log_2(p_X(x)) \geq -\sum_{x \in E} p_X(x) l(x) log_2(d) + \sum_{x \in E} p_X(x) log_2(\frac{1}{c}) \\ &\iff -\mathcal{H}(X) \geq -log_2(d) \mathbb{E}(X) + log_2(\frac{1}{c}) \\ &\geq -log_2(d) \mathbb{E}(X) \text{ (car } c \leq 1) \\ &\quad \text{D'où } \frac{\mathcal{H}(x)}{log_2(d)} \leq \mathbb{E}[l(X)] \end{split}$$

Le cas d'égalité se déduit de celui de \mathcal{D} , et a lieu pour $p_X = q$, soit les $p_X(x)$ sont des puissances négatives de d.

Q7b

Soit p une loi de probabilité telle que qui s'écrit $p_X(x)=\frac{1}{c}d^{-n_x}$ avec $c=\sum_{x\in E}d^{-n_x}$.

Cas 1: $c \le 1$ Prenons $\forall x \in E, l_0(x) = n_x$ Cas 2: c > 1 Alors soit k tel que $\frac{c}{d^k} \le 1$ $p_X(x) = \frac{d^k}{c} d^{-n_x - k}$, avec $\sum_{x \in E} d^{-n_x - k} \le \frac{c}{d^k} \le 1$ Posons alors $\forall x \in E, l_0(x) = n_x + k$

Cette application vérifie l'inégalité de Kraft-McMillan, et vérifie le cas d'égalité de la question Q7a d'après les calculs précédents pour q définie à partir de la fonction l_0 .

Q7c

Q9a

Voici le tableau des occurences.

a	b	c	d	е	f				
2	3	1	2	2	1				
On choisit c et f									
a	b	d	е	cf					
2	3	2	2	2					
On choisit e et cf									
a	b	d	ecf						
2	3	2	4						
On	choi	sit a	et	$\overline{\mathrm{d}}$					
b	ad	e	cf						
3	4		1						
On	choi	sit b	et	ad					
bad		ecf							
7		4							

On n'a plus que deux éléments, et construisons donc l'arbre en remontant les étapes précédentes.

bad ecf

On décompose bad en b et ad

bad ecf

b ad

On décompose ad en a et d

bad ecf

On décompose ecf en e et cf

bad ecf
b ad e cf

On décompose cf en c et f

On en déduit le codage de Huffman :

a	b	c	d	e	f
010	00	110	011	10	111