Nondeterministiske automater

NFA'er: som FA'er men

- der er ikke altid præcis én udgående transition pr. alfabetsymbol for hver tilstand
- automaten accepterer en streng, hvis det er muligt at gætte en vej til accept

Eksempel

- Hvordan laver man en automat, der svarer til det regulære udtryk (11 + 110)*0 ?
- Det er ikke trivielt med FA'er...
- En nondeterministisk automat:

Formel definition af NFA

En nondeterministisk endelig automat (NFA) er et 5-tupel (Q, Σ , q_0 , A, δ) hvor

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- A⊆Q er accepttilstande
- $\delta: Q \times \Sigma \to 2^Q$ er en transitionsfunktion

Eksempel

Denne grafiske repræsentation af en automat:

• svarer til 5-tuplet (Q, Σ , q_0 , A, δ) hvor

•
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\forall \Sigma = \{0,1\}$$

•
$$A = \{q_4\}$$

 $\forall \delta: Q \times \Sigma \rightarrow 2^Q \text{ er denne funktion:}$

/		
	0	1
q_0	$\{q_4\}$	$\{q_1, q_2\}$
q_1	Ø	$\{q_0^{}\}$
q_2	Ø	$\{q_{3}\}$
q_3	$\{q_{0}\}$	Ø
q_4	Ø	Ø

Sproget af en NFA

• Givet en NFA $M=(Q, \Sigma, q_0, A, \delta)$, definer den udvidede transitionsfunktion $\delta^*: Q \times \Sigma^* \to \mathbf{2}^Q$ ved

$$\delta^*(q, x) = \begin{cases} \{q\} & \text{hvis } x = \Lambda \\ \bigcup_{r \in \delta^*(q, y)} \delta(r, a) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \end{cases}$$

- $x \in \Sigma^*$ accepteres af M hvis og kun hvis $\delta^*(q_0, x) \cap A \neq \emptyset$
- Definer $L(M) = \{ x \in \Sigma^* \mid x \text{ accepteres af } M \}$

Quiz!

Bliver strengen 110110 accepteret af denne automat?

Ja, der eksisterer en sti til accept:

$$q_0 \xrightarrow{1} q_2 \xrightarrow{1} q_3 \xrightarrow{0} q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_4$$

Vi kan systematisk lede efter en sådan sti:

$$\{q_0\} \leftrightarrow \{q_1, q_2\} \leftrightarrow \{q_0, q_3\} \rightarrow \{q_4, q_0\} \rightarrow$$

$$\{q_1, q_2\} \xrightarrow{1} \{q_0, q_3\} \xrightarrow{q} \{q_4, q_0\}$$

NFA'er er ofte mindre end FA'er

Lad $L_{42} = \{ x \in \{0,1\}^* \mid |x| \ge 42 \text{ og det } 42. \text{ symbol}$ fra højre i x er et 1 }

 Sidste uge: En FA der genkender L₄₂ har mindst 2⁴² tilstande

■ En NFA der genkender *L*₄₂ med 43 tilstande:

Enhver FA kan oversættes til en NFA

- Med den grafiske repræsentation er det trivielt
- Med de formelle definitioner:

Givet en FA
$$M=(Q, \Sigma, q_0, A, \delta_M)$$
, definer en NFA $N=(Q, \Sigma, q_0, A, \delta_N)$ hvor
$$\delta_N(q, a) = \{ \delta_M(q, a) \} \text{ for alle } q \in Q \text{ og } a \in \Sigma$$

Bevis for at L(N) = L(M): induktion...

Enhver NFA kan oversættes til en FA

Eksempel:

Delmængdekonstruktionen (determinisering)

Givet en NFA $M=(Q, \Sigma, q_0, A, \delta)$, definer en FA $M_1=(Q_1, \Sigma, q_1, A_1, \delta_1)$ ved

•
$$Q_1 = 2^Q$$

$$q_1 = \{q_0\}$$

 $A_1 = \{ q \in Q_1 \mid q \cap A \neq \emptyset \}$

•
$$\delta_1(q, a) = \Theta^q \delta(r, a)$$

Der gælder nu: $L(M_1) = L(M)$

hver tilstand i FA'en er en **mængde** af tilstande fra NFA'en

Bevis for korrekthed af determinisering

- Pr. definition af $L(\cdot)$ for NFA'er og FA'er:
 - $L(M) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \cap A \neq \emptyset \}$
 - $L(M_1) = \{ x \in \Sigma^* \mid \delta_1^*(q_1, x) \in A_1 \}$
- Lemma:

$$\forall x \in \Sigma^* : \delta_1^*(q_1, x) = \delta^*(q_0, x)$$

Bevis: induktion i strukturen af x...

lemma

def. af A_1

- $\delta_1^*(q_1, x) \in A_1 \Leftrightarrow \delta^*(q_0, x) \in A_1 \Leftrightarrow \delta^*(q_0, x) \cap A \neq \emptyset$
- dvs. $L(M_1) = L(M)$

Nøjes med opnåelige tilstande

- Delmængdekonstruktionen bruger $Q_1 = 2^Q$
- Som ved produktkonstruktionen:
 I praksis er hele tilstandsrummet sjældent nødvendigt

 Som sidste seminar:
 Kun tilstande, der er opnåelige fra starttilstanden er relevante for sproget .

NFA'er med A-transitioner

- For nemt at kunne oversætte regulære udtryk til automater generaliserer vi automaterne yderligere
- En Λ-transition er en transition, der ikke læser et symbol fra input-strengen
- Eksempel på en NFA-Λ:

- Automaten "bestemmer selv" om den vil følge
 Λ-transitionen
- Eksempel: strengen 011 accepteres

Formel definition at NFA-A

En nondeterministisk endelig automat $med \Lambda$ -transitioner (NFA- Λ) er et 5-tupel (Q, Σ , q_0 , A, δ) hvor

- Q er en endelig mængde af tilstande
- Σ er et alfabet
- $q_0 \in Q$ er en starttilstand
- A⊆Q er accepttilstande
- δ : $Q \times (\Sigma \cup \{\Lambda\}) \rightarrow 2^Q$ er en transitionsfunktion

A-lukning af en tilstandsmængde

Hvor kan man komme til ved kun at bruge Λ-transitioner?

- Givet en mængde $S \subseteq Q$, definer Λ -lukningen $\Lambda(S)$ som den mindste mængde der opfylder flg.:
 - $S \subseteq \Lambda(S)$ $\forall \forall q \in \Lambda(S) : \delta(q, \Lambda) \subseteq \Lambda(S)$

Sproget af en NFA-A

• Givet en NFA- Λ $M=(Q, \Sigma, q_0, A, \delta)$, definer den udvidede transitionsfunktion $\delta^*: Q \times \Sigma^* \to 2^Q$ ved

$$\delta^*(q, x) = \begin{cases} \Lambda(\{q\}) & \text{hvis } x = \Lambda \\ \Lambda(\bigcup \delta(r, a)) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \\ r \in \delta^*(q, y) & \text{hvis } x = ya \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma \end{cases}$$

- $x \in \Sigma^*$ accepteres af M hvis og kun hvis $\delta^*(q_0, x) \cap A \neq \emptyset$
- Definer $L(M) = \{ x \in \Sigma^* \mid x \text{ accepteres af } M \}$