Number theory

Luka Horjak (luka1.horjak@gmail.com)

June 17, 2024

Contents Luka Horjak

Contents

In	troduction	3
1	Distribution of prime numbers	4
	1.1 Riemann zeta function	4
	1.2 Prime number theorem	6
2	Algebraic integers	11
	2.1 Gaussian integers	11
	2.2 Number fields and their rings of integers	13
	2.3 Trace, norm and discriminant	16
	2.4 Integral bases	19
	2.5 Integral bases of Cyclotomic fields	22
3	Dedekind domains	27
	3.1 Prime ideal factorisation	27
	3.2 Fractional ideals and the class group	30
	3.3 Chinese remainder theorem	31
4	Minkowski theory	32
	4.1 Lattices	32
	4.2 From ideals to lattices	34
	4.3 Finiteness of the class group	36
	4.4 Dirichlet's unit theorem	39
5	Decomposition of primes in extensions	41
	5.1 Prime ideals in extensions	41
	5.2 Quadratic fields, quadratic reciprocity and cyclotomic fields	46
6	Hilbert theory	51
	6.1 Decomposition of primes in Galois extensions	51
	6.2 Frobenius elements	55
	6.3 Chebotarev's density theorem	57
In	dex	58

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Number theory in the year 2023/24. The lecturer that year was gost. izr. prof. dr. rer. nat. Daniel Smertnig.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Distribution of prime numbers

They didn't have internet or Netflix, so it seemed more appealing to compute values of the ζ function.

– gost. izr. prof. dr. rer. nat. Daniel Smertnig

1.1 Riemann zeta function

Definition 1.1.1. The prime counting function is defined as

$$\pi(x) = |\{p \in \mathbb{P} \mid p \le x\}|.$$

Definition 1.1.2. Let $(a_n)_n \subseteq \mathbb{C}$ be a sequence. The infinite product

$$\prod_{n=1}^{\infty} a_n$$

converges absolutely if it converges normally as a product of constant functions.

Theorem 1.1.3. Let $\sigma > 1$ be a real number. For $s \in \mathbb{C}$ with $\text{Re}(s) \geq \sigma$, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1},$$

with both the product and sum converging uniformly and absolutely.¹

Proof. Note that

$$\sum_{n=1}^{\infty} \left| \frac{1}{n^s} \right| = \sum_{n=1}^{\infty} \frac{1}{n^{\mathrm{Re}(s)}} \le \sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}$$

is convergent, hence the given series converges as well. To prove the convergence of the product, first note that

$$\prod_{p \in \mathbb{P}} (1 - p^{-s})^{-1} = \prod_{p \in \mathbb{P}} \left(\sum_{k=0}^{\infty} p^{-sk} \right).$$

As

$$\left| \sum_{p \in \mathbb{P}} \left| \sum_{k=1}^{\infty} p^{-sk} \right| \le \sum_{p \in \mathbb{P}} \left(\sum_{k=1}^{\infty} (p^k)^{-\sigma} \right) \le \sum_{n=1}^{\infty} n^{-\sigma}$$

converges normally, so does the product. To prove equality, we can bound

$$\left| \prod_{\substack{p \in \mathbb{P} \\ n \le x}} \frac{1}{1 - p^{-s}} - \sum_{n=1}^{x} \frac{1}{n^{s}} \right| \le \sum_{n=x+1}^{\infty} \left| \frac{1}{n^{s}} \right| \le \sum_{n=x+1}^{\infty} \frac{1}{n^{\sigma}},$$

which converges to 0 as $x \to \infty$.

¹ See Complex analysis, section 3 for definition and properties of convergence for products.

Definition 1.1.4. The *Riemann zeta function* is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

for Re(s) > 1.

Lemma 1.1.5. If Re(s) > 1, then $\zeta(s) \neq 0$.

Proof. No term in the infinite product is equal to 0.

Proposition 1.1.6. The function $\zeta(s) - \frac{1}{s-1}$ has a holomorphic continuation to Re(s) > 0.

Proof. We can write

$$\zeta(s) - \frac{1}{s-1} = \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} x^{-s} dx$$
$$= \sum_{n=1}^{\infty} \left(n^{-s} - \int_{n}^{n+1} x^{-s} dx \right)$$
$$= \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(n^{-s} - x^{-s} \right) dx$$

as long as Re(s) > 1. Now, for $n \le x \le n + 1$, we can bound

$$\left| n^{-s} - x^{-s} \right| = \left| \int_{n}^{x} s u^{-s-1} du \right| \le \frac{|s|}{n^{\text{Re}(s)+1}}.$$

Let $L \subseteq \{z \in \mathbb{C} \mid \mathrm{Re}(z) > 0\}$ be a compact set. As

$$\left| \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(n^{-s} - x^{-s} \right) \, dx \right| \le \sum_{n=1}^{\infty} \frac{|s|}{n^{\text{Re}(s)+1}} \le \| \text{id} \|_{L} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{\sigma+1}}$$

for all $s \in L$, where $\sigma = \min_{L} |z|$, the series converges uniformly on compact sets.

Remark 1.1.6.1. The ζ function can be analytically extended to $\mathbb{C} \setminus \{1\}$ by

$$\zeta(1-s) = 2 \cdot (2\pi)^{-s} \cos\left(\frac{\pi}{2}s\right) \Gamma(s)\zeta(s).$$

It has a simple pole with residue 1 at 1.

Lemma 1.1.7. The equation $\overline{\zeta(\overline{s})} = \zeta(s)$ holds for all $s \in \mathbb{C} \setminus \{1\}$.

Proof. The function $\overline{\zeta(\overline{s})}$ is holomorphic. As it coincides with $\zeta(s)$ for $s \geq 1$, the functions are equal.

1.2 Prime number theorem

Proposition 1.2.1. The series

$$\sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s}$$

converges uniformly and absolutely for $Re(s) \ge \sigma > 1$.

Proof. We can bound

$$\left| \sum_{p \in \mathbb{P}} \left| \frac{\log(p)}{p^s} \right| \le \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^{\sigma}} \le \sum_{n=1}^{\infty} \frac{\log(p)}{n^{\varepsilon}} \cdot \frac{1}{n^{\sigma - \varepsilon}},$$

which clearly converges for $0 < \varepsilon < \sigma - 1$.

Definition 1.2.2. We define functions

$$\theta(x) = \sum_{\substack{p \in \mathbb{P} \\ p \le x}} \log(p)$$

and

$$\phi(s) = \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s}.$$

Remark 1.2.2.1. The function ϕ is holomorphic for Re(s) > 1.

Proposition 1.2.3. The function ϕ has a meromorphic continuation to $\text{Re}(s) > \frac{1}{2}$. It has simple poles at points s = 1 and zeros of $\zeta(s)$.

Proof. Calculate the logarithmic derivative of ζ as

$$\begin{split} -\frac{\zeta'(s)}{\zeta(s)} &= -\sum_{p \in \mathbb{P}} \frac{\left((1 - p^{-s})^{-1}\right)'}{(1 - p^{-s})^{-1}} \\ &= -\sum_{p \in \mathbb{P}} \frac{-(1 - p^{-s})^{-2} \cdot p^{-s} \log(p)}{(1 - p^{-s})^{-1}} \\ &= \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s - 1} \\ &= \phi(s) + \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s(p^s - 1)}. \end{split}$$

Similarly as in the proof of proposition 1.2.1, we can show that the above series converges locally uniformly and absolutely for $Re(s) > \frac{1}{2}$.

Theorem 1.2.4. If Re(s) = 1, then $\zeta(s) \neq 0$.

Proof. Let $\mu = \operatorname{ord}_{1+ib} \zeta \geq 0$. As $\zeta(\overline{z}) = \overline{\zeta(z)}$, we also have $\mu = \operatorname{ord}_{1-ib} \zeta$. Now denote $\theta = \operatorname{ord}_{1+2ib} \zeta = \operatorname{ord}_{1-2ib} \zeta$. As ϕ has a simple pole at 1, we have

$$\lim_{\varepsilon \to 0} \varepsilon \phi(1 + \varepsilon) = 1.$$

Similarly,

$$\lim_{\varepsilon \to 0} \varepsilon \phi (1 + \varepsilon \pm ib) = -\mu,$$

as the logarithmic derivative of ζ at b has residue $-\mu$, and

$$\lim_{\varepsilon \to 0} \varepsilon \phi (1 + \varepsilon \pm 2ib) = -\theta.$$

Now compute

$$f(\varepsilon) = \sum_{r=-2}^2 \binom{4}{2+r} \phi(1+\varepsilon+rib) = \sum_{p\in\mathbb{P}} \frac{\log(p)}{p^{1+\varepsilon}} \cdot \left(p^{\frac{ib}{2}} - p^{-\frac{ib}{2}}\right)^4 = \sum_{p\in\mathbb{P}} \frac{\log(p)}{p^{1+\varepsilon}} \cdot \left(2\operatorname{Re}\left(p^{\frac{ib}{2}}\right)\right)^4.$$

It follows that

$$0 \le \lim_{\varepsilon \to 0} \varepsilon \cdot f(\varepsilon) = 6 - 8\mu - 2\theta.$$

As $\theta \geq 0$, we have $\mu = 0$.

Corollary 1.2.4.1. The function ϕ is holomorphic for Re(s) = 1, except for a simple pole with residue 1 at 1. In particular, the function

$$g(z) = \frac{\phi(z+1)}{z+1} - \frac{1}{z}$$

is holomorphic for $Re(z) \geq 0$.

Proof. The proof is obvious and need not be mentioned.

Lemma 1.2.5. Let $x \ge 0$. Then $\theta(x) \le 4x$.

Proof. First let $n \in \mathbb{N}$ be an integer. Then

$$e^{\theta(2n)-\theta(n)} = \prod_{n$$

therefore $\theta(2n) - \theta(n) \le 2n \log(2)$. Now let $n = \lceil \frac{x}{2} \rceil$. Then

$$\theta(x) - \theta\left(\frac{x}{2}\right) \le \theta(2n) - \theta(n-1) \le \log(n) + 2n\log(2) \le 3n \le 2x$$

for all $x \ge 6$, but we can manually check that it holds for x < 6 as well. But then

$$\theta(x) = \sum_{n=0}^{\infty} \left(\theta\left(\frac{x}{2^n}\right) - \theta\left(\frac{x}{2^{n+1}}\right) \right) \le \sum_{n=0}^{\infty} \frac{2x}{2^n} = 4x.$$

Lemma 1.2.6. Let $h: \mathbb{R}_{\geq 0} \to \mathbb{C}$ be bounded and locally integrable. Then the following statements are true:

i) The Laplace transform

$$H(z) = \int_0^\infty h(t)e^{-zt} dt$$

of h is holomorphic for Re(z) > 0.

ii) The function

$$\int_0^T h(t)e^{-zt} dt$$

is holomorphic for all $z \in \mathbb{C}$.

Proof.

i) Analysis 2b, proposition 4.1.4.

Theorem 1.2.7. Let $h: \mathbb{R}_{\geq 0} \to \mathbb{C}$ be bounded and locally integrable. Suppose that its Laplace transform

$$H(z) = \int_0^\infty h(t)e^{-zt} dt$$

extends to a holomorphic function on $Re(z) \geq 0$. Then

$$H(0) = \int_0^\infty h(t) dt.$$

Proof. Define

$$H_T(z) = \int_0^T h(t)e^{-zt} dt$$

for T > 0. Fix some R > 0 and consider the region

$$\Omega = \{ z \in \Delta(R) \mid \operatorname{Re}(z) \ge -\delta \}.$$

By compactness of i[-R,R], we can pick a δ such that H is holomorphic on Ω . Now partition $\partial\Omega$ into sets $C_1 = \{z \in \partial\Omega \mid \operatorname{Re}(z) \geq 0\}$, $C_2 = \{z \in \partial\Omega \mid -\delta < \operatorname{Re}(z) < 0\}$ and $C_3 = \{z \in \partial\Omega \mid \operatorname{Re}(z) = -\delta\}$. Taking

$$I(z) = \frac{H(z) - H_T(z)}{z} e^{zT} \left(1 + \frac{z^2}{R^2} \right),$$

we can write

$$H(0) - H_T(0) = \frac{1}{2\pi i} \oint_{\partial \Omega} I(z) dz$$

using the Cauchy integral formula. Setting $B = \max\{|h(t)| \mid t \in \mathbb{R}_{\geq 0}\}$, we can bound

$$|H(z) - H_T(z)| \le \int_T^\infty |h(t)| \cdot \left| e^{-zt} \right| dt \le B \frac{e^{-\operatorname{Re}(z)T}}{\operatorname{Re}(z)},$$

hence

$$|I(z)| \le \frac{B}{\operatorname{Re}(z)} \cdot \left| 1 + \frac{z^2}{R^2} \right| \cdot \left| \frac{1}{z} \right| = \frac{B}{R \operatorname{Re}(z)} \cdot \left| \frac{z}{R} + \frac{R}{z} \right| = \frac{B}{R \operatorname{Re}(z)} \cdot 2 \operatorname{Re}\left(\frac{z}{R}\right) = \frac{2B}{R^2}$$

for $z \in C_1$. Integrating, we find that

$$\frac{1}{2\pi} \cdot \int\limits_{C_1} |I(z)| \ dz \le \frac{B}{R}.$$

Next, we bound the integral of H_T over $C_2 \cup C_3$. As H_T is holomorphic, we can write

$$\int_{C_2 \cup C_3} H_T(z) \, dz = \int_{-C_1} H_T(z) \, dz,$$

but as

$$|H_T(z)| \le \int_0^T |h(z)e^{-zt}| dt \le B \int_0^T e^{-\operatorname{Re}(z)t} dt = \frac{B}{\operatorname{Re}(z)} \cdot (1 - e^{-\operatorname{Re}(z)T}) \le B \frac{e^{-\operatorname{Re}(z)T}}{|\operatorname{Re}(z)|},$$

which is the same bound as above. As

$$\left| H(z) \cdot \left(1 + \frac{z^2}{R^2} \right) \cdot \frac{1}{z} \right| \le M$$

on $C_2 \cup C_3$ for some M > 0, we see that

$$\left| H(z) \cdot \left(1 + \frac{z^2}{R^2} \right) \cdot \frac{1}{z} \right| \cdot \left| e^{zT} \right|$$

converges to 0 as $T \to \infty$. By the dominated convergence theorem, the integral

$$\frac{1}{2\pi} \cdot \int_{C_0 \cup C_2} \left| H(z) \left(1 + \frac{z^2}{R^2} \right) \cdot \frac{1}{z} \right| \cdot \left| e^{zT} \right| dz$$

converges to 0 as well. Then

$$\lim_{T \to \infty} \sup |H(0) - H_T(0)| \le \frac{2B}{R},$$

which, by taking $R \to \infty$, implies

$$\lim_{T \to \infty} H_T(0) = H(0).$$

Lemma 1.2.8. For Re(z) > 0, we have

$$g(z) = \int_0^\infty \left(\theta\left(e^t\right)e^{-t} - 1\right)e^{-zt} dt,$$

where g is defined as in corollary 1.2.4.1.

Proof. Note that $\theta(e^t)e^{-t} - 1$ is bounded, hence the given Laplace transform exists. Let $(p_n)_n$ be the ascending sequence of prime numbers. Setting $p_0 = 1$, we have

$$\phi(s) = \sum_{p \in \mathbb{P}} \frac{\log(p)}{p^s} = \sum_{j=1}^{\infty} \frac{\theta(p_j) - \theta(p_{j-1})}{p_j^s} = \sum_{j=0}^{\infty} \theta(p_j) \cdot \left(\frac{1}{p_j^s} - \frac{1}{p_{j+1}^s}\right).$$

Using the definite integral of $\frac{1}{x^{s+1}}$, we can rewrite

$$\phi(s) = \sum_{j=0}^{\infty} \theta(p_j) s \int_{p_j}^{p_{j+1}} \frac{1}{x^{s+1}} dx = \sum_{j=0}^{\infty} s \int_{p_j}^{p_{j+1}} \frac{\theta(x)}{x^{s+1}} dx = s \int_{1}^{\infty} \frac{\theta(x)}{x^{s+1}} dx = s \int_{0}^{\infty} \theta(e^t) e^{-st} dt$$

for all Re(s) > 1. Hence

$$g(z) = \int_0^\infty \theta(e^t) e^{-(z+1)t} dt - \int_0^\infty e^{-zt} dt = \int_0^\infty \left(\theta\left(e^t\right) e^{-t} - 1\right) e^{-zt} dt. \qquad \Box$$

Theorem 1.2.9. The integral

$$\int_{1}^{\infty} \frac{\theta(x) - x}{r^2} dx$$

converges.

Proof. Using the substitution $x = e^t$, we find that

$$\int_{1}^{e^{T}} \frac{\theta(x) - x}{x^{2}} dx = \int_{0}^{T} \left(\theta\left(e^{t}\right) e^{-t} - 1\right) dt.$$

Applying theorem 1.2.7, the claim follows.

Theorem 1.2.10. We have $\theta(x) \sim x$, that is

$$\lim_{x \to \infty} \frac{\theta(x)}{x} = 1.$$

Proof. Suppose otherwise. We split two cases:

i) For some $\lambda > 1$, there exist arbitrarily large x such that $\theta(x) \geq \lambda x$. We can compute

$$\int_{x}^{\lambda x} \frac{\theta(t) - t}{t^2} dt \ge \int_{x}^{\lambda x} \frac{\lambda x - t}{t^2} dt = \int_{1}^{\lambda} \frac{\lambda x - xy}{x^2 y^2} x dy = \int_{1}^{\lambda} \frac{\lambda - y}{y^2} dy = c > 0.$$

This contradicts the previous theorem.

ii) For some $\lambda < 1$, there exist arbitrarily large x such that $\theta(x) \leq \lambda x$. As above, we can compute

$$\int_{\lambda x}^{x} \frac{\theta(t) - t}{t^2} dt \le \int_{\lambda x}^{x} \frac{\lambda x - t}{t^2} dt = \int_{\lambda}^{1} \frac{\lambda - y}{y^2} dy = c < 0.$$

This again contradicts the previous theorem.

Theorem 1.2.11 (Prime number theorem). The prime counting function is asymptotically equivalent to $\frac{x}{\log(x)}$.

Proof. Note that

$$\theta(x) \le \log(x) \cdot \pi(x)$$

and

$$\theta(x) \ge \sum_{\substack{p \in \mathbb{P} \\ x^{1-\varepsilon} \le p \le x}} \log(p) \ge (1-\varepsilon)\log(x) \cdot (\pi(x) - x^{1-\varepsilon}),$$

therefore

$$\frac{\theta(x)}{x} \le \frac{\pi(x)\log(x)}{x} \le \frac{\theta(x)}{(1-\varepsilon)x} + \frac{\log(x)}{x^{\varepsilon}}.$$

This implies

$$1 \le \limsup_{x \to \infty} \frac{\pi(x) \log(x)}{x} \le \frac{1}{1 - \varepsilon}$$

and

$$1 \le \liminf_{x \to \infty} \frac{\pi(x) \log(x)}{x} \le \frac{1}{1 - \varepsilon}.$$

March 8, 2024

2 Algebraic integers

This is usually attributed to Fermat, but it's not quite correct.

– gost. izr. prof. dr. rer. nat. Daniel Smertnig

2.1 Gaussian integers

Definition 2.1.1. A domain R is *Euclidean* if there is a function $\delta: R \setminus \{0\} \to \mathbb{N}_0$, such that for all $a \in R$ and $b \in R \setminus \{0\}$ we can write a = bq + r for $q, r \in R$, such that r = 0 or $\delta(r) < \delta(b)$.

Proposition 2.1.2. The Gaussian integers are an Euclidean domain.

Proof. Algebra 2, theorem 6.3.4.

Definition 2.1.3. A domain R is a unique factorisation domain if every $\alpha \in R$ is of the form

$$\alpha = \prod_{i=1}^{n} p_i$$

for irreducible elements in a unique way up to permutation and multiplication of factors by a unit element.

Remark 2.1.3.1. Principal ideal domains (and therefore $\mathbb{Z}[i]$) are unique factorisation domains.

Lemma 2.1.4. The function $N: \mathbb{Z}[i] \to \mathbb{N}_0$, given by $N(a+bi) = a^2 + b^2$, has the following properties:

- i) The equality $N(\alpha) = 0$ is equivalent to $\alpha = 0$.
- ii) For all $\alpha, \beta \in \mathbb{Z}[i]$ we have $N(\alpha\beta) = N(\alpha) \cdot N(\beta)$.
- iii) An element $\alpha \in \mathbb{Z}[i]$ is invertible if and only if $N(\alpha) = 1$.

Proof. The proof is obvious and need not be mentioned.

Lemma 2.1.5. Let $p \in \mathbb{P}$ be a prime. Then -1 is a quadratic residue modulo p if and only if p = 2 or $p \equiv 1 \pmod{4}$.

Proof. If $p \equiv 1 \pmod{4}$, we can write $-1 \equiv \left(e^{\frac{p-1}{4}}\right)^2 \pmod{p}$, where e is a primitive root modulo p. If $p \equiv 3 \pmod{4}$ and $p \mid c^2 + 1$, then

$$1 \equiv (c^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} = -1,$$

a clear contradiction.

Theorem 2.1.6 (Fermat). Let p be an odd prime. Then p can be written as a sum of two squares if and only if $p \equiv 1 \pmod{4}$.

Proof. It is clear that primes $p \equiv 3 \pmod 4$ cannot be written in such a way. Now suppose that $p \equiv 1 \pmod 4$ and take $b \in \mathbb{N}$ such that $b^2 \equiv -1 \pmod p$. Now note that $p \mid (b-i)(b+i)$, but p clearly can't divide either factor. It follows that p is not a prime element, hence we can factor it as $p = \alpha\beta$.

Now, note that $p^2 = N(p) = N(\alpha) \cdot N(\beta)$, but as α and β are not invertible, we have $N(\alpha) = p$, which gives us a representation of p as a sum of two squares.

Proposition 2.1.7. Up to associativity, the prime elements of $\mathbb{Z}[i]$ are the following:

- i) 1 + i,
- ii) a + bi, where $a^2 + b^2 = p \in \mathbb{P}$ with $p \equiv 1 \pmod{4}$ and 0 < |b| < a,
- iii) $p \in \mathbb{P}$ with $p \equiv 3 \pmod{4}$.

Proof. It is clear that 1+i is a prime element. Elements of the second form are prime since their norm is a prime number. For the last one, if $p = \alpha \beta$ for non-invertible α and β , then $N(\alpha) = N(\beta) = p$, which is of course impossible. Clearly, they are not associated.

Suppose now that $p \in \mathbb{Z}[i]$ is a prime element. Then $N(p) = p\overline{p}$, which can be factored in integers. But then p divides some prime number $q \in \mathbb{P}$. It follows that $N(p) \mid q^2$, but as q^2 can be factored by the above prime elements, p is of such form.

Theorem 2.1.8. Let $n \in \mathbb{N}$. Then there exist integers a and b such that $n = a^2 + b^2$ if and only if $2 \mid \nu_p(n)$ for all prime numbers $p \equiv 3 \pmod{4}$.

Proof. It is clear that all such numbers can be written as a sum of two squares, as the property is multiplicative.² For the converse, suppose that $n = a^2 + b^2$ and take any prime number $p \in \mathbb{P}$ such that $p \equiv 3 \pmod{4}$ and $p \mid n$. Then, if b is invertible in \mathbb{Z}_p , we can write

$$p \left| \left(\frac{a}{b} \right)^2 + 1 \right|,$$

which is impossible. It follows that $p \mid a, b$. The theorem is now proven by infinite descent.

Remark 2.1.8.1. This theorem can also be proven by factoring $\alpha = a + bi$.

Remark 2.1.8.2. A positive integer n can be written as a sum of 3 squares if and only if it is not of the form $n = 4^a \cdot (8k + 7)$.

Proposition 2.1.9. Let $\alpha \in \mathbb{Q}(i)$. Then $\alpha \in \mathbb{Z}[i]$ if and only if there exist some $c, d \in \mathbb{Z}$ such that α is a root of the polynomial $P(x) = x^2 + cx + d$.

Proof. We see that $P(\alpha) = 0$ and $\alpha \notin \mathbb{Q}$ is equivalent to $P(x) = (x - \alpha)(x - \overline{\alpha})$. Of course, if $\alpha \in \mathbb{Q}$, we must have $\alpha \in \mathbb{Z}$ by the properties of rational roots of integer polynomials. Otherwise, for $\alpha = a + bi$, the condition is equivalent to $2a \in \mathbb{Z}$ and $a^2 + b^2 \in \mathbb{Z}$, which is only possible if both $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.

 $⁽a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2$.

2.2 Number fields and their rings of integers

Definition 2.2.1. A number field is a subfield of \mathbb{C} such that $[K : \mathbb{Q}] < \infty$. Elements of K are called *algebraic numbers*.

Definition 2.2.2. A field extension K/\mathbb{Q} is algebraic if every element $\alpha \in K$ is a root of a polynomial $f \in \mathbb{Q}[x]$. We denote the minimal polynomial of α by m_{α} . Furthermore, set $\deg(\alpha) = \deg(m_{\alpha})$.

Theorem 2.2.3 (Primitive element theorem). Let K be a number field. Then there exists some element $\alpha \in K$ such that $K = \mathbb{Q}(\alpha)$.

Proof. Algebra 3, theorem 1.1.7.

Proposition 2.2.4. Let K be a number field. Then K/\mathbb{Q} is a separable extension.

Proof. Suppose otherwise. Then $gcd(m_{\alpha}, m'_{\alpha})$ is a polynomial of lower degree with α as a root.

Remark 2.2.4.1. The roots of m_{α} are called the *algebraic conjugates* of α .

Corollary 2.2.4.2. There are exactly $deg(\alpha)$ embeddings $\mathbb{Q}(\alpha) \hookrightarrow \mathbb{C}$.

Definition 2.2.5. A complex number α is an algebraic integer if there exists a monic polynomial $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Lemma 2.2.6. Let $f \in \mathbb{Z}[x]$ be monic and suppose that f = gh for monic polynomials $g, h \in \mathbb{Q}[x]$. Then $g, h \in \mathbb{Z}[x]$.

Proof. Let $d, e \in \mathbb{N}$ be minimal integers such that $dg, eh \in \mathbb{Z}[x]$. Note that the coefficients of dg (and similarly eh) are coprime. Suppose that $p \mid de$ for some $p \in \mathbb{P}$. It follows that $p \mid def = dgeh$. In particular, the ring $\mathbb{Z}[x]/p\mathbb{Z}[x]$ has a zero divisor, which is impossible, as $\mathbb{Z}[x]/p\mathbb{Z}[x] \cong \mathbb{Z}_p[x]$ is an integral domain.

Lemma 2.2.7. A complex number α is an algebraic integer if and only if m_{α} has integer coefficients.

Proof. The proof is obvious and need not be mentioned.

Proposition 2.2.8. Let K be a number field and $\alpha \in K$. Then the following statements are equivalent:

- i) The number α is an algebraic integer.
- ii) The group $(\mathbb{Z}[\alpha], +)$ is finitely generated.
- iii) There exists a subring $R \subseteq K$ such that $\alpha \in R$ and the group (R, +) is finitely generated.
- iv) There exists a finitely generated subgroup $(A, +) \subseteq (K, +)$ such that $A \neq 0$ and $\alpha A \subseteq A$.

³ In other words, K/\mathbb{Q} is simple.

Proof. Note that we only need to prove that the last statement implies the first one. Write $A = \langle \beta_i \mid i \leq n \rangle$. We can therefore write

$$\alpha\beta = C\beta$$
,

where

$$\beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

and C is some matrix with integer coefficients. In particular, α is an eigenvalue of C, which means it is a root of $\det(C-I\alpha)$, which is a polynomial with integer coefficients. \square

Corollary 2.2.8.1. Let K be a number field. Then

$$\mathcal{O}_K = \{ \alpha \in K \mid \alpha \text{ is an algebraic integer} \}$$

is a subring of K.

Proof. Suppose that $\alpha, \beta \in \mathcal{O}_K$, that is, $\mathbb{Z}[\alpha]$ and $\mathbb{Z}[\beta]$ are finitely generated. Then $\mathbb{Z}[\alpha, \beta]$ is finitely generated as well. As both $\alpha + \beta$ and $\alpha \cdot \beta$ are elements of this subring, both are elements of \mathcal{O}_K .

Definition 2.2.9. With the notation of the above corollary, we call \mathcal{O}_K the *ring of integers* in K.

Proposition 2.2.10. Let $K = \mathbb{Q}(\sqrt{d})$, where $d \in \mathbb{Z}$ is a square-free integer.

- i) If $d \equiv 2 \pmod{4}$ or $d \equiv 3 \pmod{4}$, then $\mathcal{O}_K = \mathbb{Z}\left[\sqrt{d}\right]$.
- ii) If $d \equiv 1 \pmod{4}$, then $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

Proof. Let $\alpha = \frac{a+b\sqrt{d}}{2}$ for $a, b \in \mathbb{Q}$. Clearly, $\mathbb{Q} \cap \mathcal{O}_K = \mathbb{Z}$. Suppose therefore that $b \neq 0$ and set $\alpha' = \frac{a-b\sqrt{d}}{2}$ and note that

$$m_{\alpha} = (x - \alpha) \cdot (x + \alpha) = x^2 - ax + \frac{a^2 - db^2}{4}.$$

It follows that $\alpha \in \mathcal{O}_K$ if and only if $a \in \mathbb{Z}$ and $a^2 - db^2 \in 4\mathbb{Z}$. in particular, $db^2 \in \mathbb{Z}$ and hence $b \in \mathbb{Z}$, as d is square-free.

- i) Considering $a^2 db^2 \mod 4$, we see that both a and b must be even, which gives $\alpha \in \mathbb{Z}\left[\sqrt{d}\right]$.
- ii) The same equation modulo 4 now gives us $a \equiv b \pmod{2}$. A direct calculation now shows that $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.

Remark 2.2.10.1. All quadratic number fields are of this form.

Definition 2.2.11. Let ω_n be a primitive *n*-th root of unity. The *n*-th cyclotomic field is the field $\mathbb{Q}(\omega_n)$. We denote by $\mu_n(\mathbb{C})$ the *n*-th roots of unity and by $\mu_n^*(\mathbb{C})$ the primitive ones.

Remark 2.2.11.1. For odd n, we have $\mathbb{Q}(\omega_n) = \mathbb{Q}(\omega_{2n})$.

Proposition 2.2.12. Let $\omega \in \mu_n^*(\mathbb{C})$. If $k \in \mathbb{N}$ is coprime with n, then ω and ω^k are algebraic conjugates.

Proof. As algebraic conjugation is an equivalence relation, it suffices to prove the proposition for $k = p \in \mathbb{P}$. Let $f = x^n - 1$ and write $f = gm_{\omega}$. Suppose that $g(\omega^p) = 0$. Then ω is a root of $g(x^p)$, therefore it is divisible by m_{ω} in $\mathbb{Z}[x]$. Let \overline{g} be the projection of g in $\mathbb{Z}[x]/p\mathbb{Z}[x] \cong \mathbb{Z}_p[x]$. As $\overline{g}(x^p) = \overline{g}(x)^p$, we find that $\overline{m}_{\alpha} \mid \overline{g}(x)^p$. In particular, \overline{m}_{α} and \overline{g} share a common factor $\overline{h} \in \mathbb{Z}_p[x]$. But then $\overline{f} = \overline{g} \cdot \overline{m}_{\alpha}$ is divisible by \overline{h}^2 , therefore \overline{f} and \overline{f}' share a common factor. As $p \nmid n$, $\overline{f}' = n \cdot X^{n-1} \neq 0$, which is clearly coprime to \overline{f} . \square

Definition 2.2.13. The *n*-th cyclotomic polynomial is the polynomial

$$\Phi_n = \prod_{\omega \in \mu_n^*(\mathbb{C})} (x - \omega).$$

Remark 2.2.13.1. The polynomial Φ_n is irreducible by the previous proposition. We have deg $\Phi_n = \varphi(n)$.

Proposition 2.2.14. Let $\omega \in \mu_n^*(\mathbb{C})$. Then $[\mathbb{Q}(\omega) : \mathbb{Q}] = \varphi(n)$. Furthermore, the map $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})$ given by $i \mapsto (\omega \mapsto \omega^i)$ is an isomorphism. In particular, $\mathbb{Q}(\omega)/\mathbb{Q}$ is Galois.

Proof. Note that $[\mathbb{Q}(\omega):\mathbb{Q}] = \deg \Phi_n = \varphi(n)$. The described map is obviously a bijective homomorphism.

Corollary 2.2.14.1. Let $\omega \in \mu_n^*(\mathbb{C})$ Then the roots of unity in $\mathbb{Q}(\omega)$ are precisely $\mu_n(\mathbb{C})$ is n is even and $\mu_{2n}(\mathbb{C})$ if n is odd.

Proof. It is enough to consider even n. Suppose that $\lambda \in \mathbb{Q}(\omega)$ is a primitive k-th root of unity for $k \nmid n$. We can assume that $\gcd(k,n) = 1$ by replacing λ with $\lambda^{\gcd(k,n)}$. We now claim that $\lambda \omega$ is a primitive kn-th root of unity. Indeed, if $(\lambda \omega)^m = 1$, then $\omega^{km} = 1$ and $\lambda^{nm} = 1$, hence $n \mid km$ and $k \mid nm$. As k and n were chosen to be coprime, we find that $nk \mid m$. It follows that $\mathbb{Q} \subseteq \mathbb{Q}(\omega_{kn}) \subseteq \mathbb{Q}(\omega)$, which is impossible by considering the degrees over \mathbb{Q} , as $\varphi(kn) \mid \varphi(n)$ implies $k \in \{1, 2\}$.

Corollary 2.2.14.2. There is a bijection between $2\mathbb{N}$ and cyclotomic fields, given by $m \mapsto \mathbb{Q}\left(e^{\frac{2\pi i}{m}}\right)$.

Algebraic integers

Luka Horjak

2.3 Trace, norm and discriminant

Definition 2.3.1. Let $\mathbb{Q} \subseteq K \subseteq L$ be number fields. We define

$$\operatorname{Hom}_K(L,\mathbb{C}) = \{ \sigma \colon L \to \mathbb{C} \mid \sigma|_K = \operatorname{id} \}.$$

Remark 2.3.1.1. Every $\varphi \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$ has precisely [L:K] distinct extensions in $\operatorname{Hom}_{\mathbb{Q}}(L,\mathbb{C})$.

Definition 2.3.2. Let $K \subseteq L$ be number fields, $\operatorname{Hom}_K(L,\mathbb{C}) = \{\sigma_i \mid i \leq n\}$ and $\alpha \in L$. The *relative trace* and *relative norm* of α are defined as

$$T_K^L(\alpha) = \sum_{i=1}^n \sigma_i(\alpha)$$
 and $N_K^L(\alpha) = \prod_{i=1}^n \sigma_i(\alpha)$.

If $K = \mathbb{Q}$, we omit the subscript.

Proposition 2.3.3. The trace is a linear map and the norm is multiplicative.

Proof. The proof is obvious and need not be mentioned.

Proposition 2.3.4. Let $K \subseteq L$ be a number field with [L:K] = n. Let $\alpha \in L$ and set

$$f = x^d + \sum_{k=0}^{d-1} a_k x^k$$

to be the minimal polynomial of α . Then $T(\alpha) = -\frac{n}{d}a_{d-1}$ and $N(\alpha) = (-1)^n a_0^{\frac{n}{d}}$. In particular, $N(\alpha), T(\alpha) \in K$.

Proof. Let $K' = K(\alpha) \subseteq L$. Then [K' : K] = d and $n = d \cdot [L : K']$. We can factor f as

$$f = \prod_{\sigma \in \operatorname{Hom}_{K}(K', \mathbb{C})} (x - \sigma(a)).$$

As each $\sigma \in \operatorname{Hom}_K(K', \mathbb{C})$ extends to exactly $\frac{n}{d}$ elements of $\operatorname{Hom}_K(L, \mathbb{C})$, the proposition follows from Vieta's formulae.

Remark 2.3.4.1. If $\alpha \in \mathcal{O}_L$, then $N(\alpha), T(\alpha) \in \mathcal{O}_K$.

Lemma 2.3.5. Let $K \subseteq L \subseteq M$ be number fields. Then

$$N_K^M = N_K^L \circ N_L^M \quad \text{and} \quad T_K^M = T_K^L \circ T_L^M.$$

Proof. Take an element $\alpha \in M$. We now define an equivalence relation on $\operatorname{Hom}_K(M,\mathbb{C})$ as $\sigma \sim \sigma' \iff \sigma|_L = \sigma'|_L$. Note that there are precisely m = [L:K] equivalence classes. Let $\sigma_i \in \operatorname{Hom}_K(M,\mathbb{C})$ be the representatives of the equivalence classes. Now denote $G_i = \operatorname{Hom}_{\sigma_i(L)}(\sigma_i(M),\mathbb{C})$ and compute

$$T_K^M(\alpha) = \sum_{i=1}^m \left(\sum_{\sigma \sim \sigma_i} \sigma(\alpha) \right) = \sum_{i=1}^m \left(\sum_{\sigma \in G_i} \sigma(\sigma_i(\alpha)) \right) = \sum_{i=1}^m T_{\sigma_i(L)}^{\sigma_i(M)} \left(\sigma_i(\alpha) \right).$$

Now note that $\sigma_i\left(T_L^M(\alpha)\right) = T_{\sigma_i(L)}^{\sigma_i(M)}\left(\sigma_i(\alpha)\right)$, hence

$$T_K^M(\alpha) = \sum_{i=1}^m \sigma_i \left(T_L^M(\alpha) \right) = T_K^L \circ T_L^M(\alpha).$$

The proof for the norm is analogous.

Remark 2.3.5.1. For $K \subseteq L$ and $\alpha \in L$, the map $\varphi_a \colon L \to L$ given by $x \mapsto \alpha x$ is K-linear. The norm and trace of α coincide with the determinant and trace of this map.

Lemma 2.3.6. Let $\alpha \in \mathcal{O}_K$. Then α is invertible if and only if $N_{\mathbb{O}}^K(\alpha) = \pm 1$.

Proof. If α is invertible, then clearly $N_{\mathbb{Q}}^K(\alpha) = \pm 1$, as the norm is multiplicative. Now suppose that $N_{\mathbb{Q}}^K(\alpha) = \pm 1$ and let $d = \deg m_{\alpha}$ be the degree of the minimal polynomial

$$m_{\alpha} = x^d + \sum_{k=0}^{d-1} a_k x^k$$

of α . By our assumption, $a_0 = \pm 1$, therefore

$$1 = \pm \alpha \cdot \sum_{k=1}^{d} a_k x^{k-1}.$$

Remark 2.3.6.1. If $N_{\mathbb{Q}}^{K}(\alpha) \in \mathbb{P}$, then α is irreducible.

Definition 2.3.7. Let K be a number field. Suppose that $[K : \mathbb{Q}] = n$ and denote $\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C}) = \{\sigma_i \mid i \leq n\}$. The *discriminant* of $(\alpha_1,\ldots,\alpha_n)$ is defined as

$$\operatorname{disc}(\alpha_1,\ldots,\alpha_n) = \det \left[\sigma_i(\alpha_j)\right]_{i,j\leq n}^2.$$

Proposition 2.3.8. The following statements hold:

- i) For any $\alpha_i \in K$ we have $\operatorname{disc}(\alpha_1, \dots, \alpha_n) = \operatorname{det}\left[T_{\mathbb{Q}}^K(\alpha_i \alpha_j)\right]_{i,j}$.
- ii) For any $\alpha_i \in K$ we have $\operatorname{disc}(\alpha_1, \dots, \alpha_n) \in \mathbb{Q}$. If $\alpha_i \in \mathcal{O}_K$, then the discriminant is an integer.
- iii) If $\beta = A\alpha$ for some matrix $A \in M_n(\mathbb{Q})$, then

$$\operatorname{disc}(\beta_1,\ldots,\beta_n)=\operatorname{det}(A)^2\cdot\operatorname{disc}(\alpha_1,\ldots,\alpha_n).$$

Proof.

i) Let
$$C = \left[\sigma_i(\alpha_j)\right]_{i,j}$$
. Then

$$\operatorname{disc}(\alpha_1,\ldots,\alpha_n) = \det(C)^2 = \det(C^\top C).$$

Now note that

$$(C^{\top}C)_{i,j} = \sum_{k=1}^{n} \sigma_k(\alpha_i)\sigma_k(\alpha_j) = T_{\mathbb{Q}}^K(\alpha_i\alpha_j).$$

ii) Follows from the previous statement.

iii) Let
$$A = \left[a_{i,j}\right]_{i,j}$$
. Then

$$\sigma_i(\beta_j) = \sum_{k=1}^n a_{j,k} \sigma_i(a_k),$$

hence

$$\left[\sigma_i(\beta_j)\right]_{i,j} = \left[\sigma_i(\alpha_j)\right]_{i,j} \cdot A^\top.$$

Proposition 2.3.9. Let $K = \mathbb{Q}(\alpha)$ and $n = [K : \mathbb{Q}]$. Denote by $\alpha_1, \ldots, \alpha_n$ the algebraic conjugates of α . Then

$$\operatorname{disc}\left(1,\alpha,\ldots,\alpha^{n-1}\right) = \prod_{i \neq j} (\alpha_j - \alpha_i)^2 = (-1)^{\frac{n(n-1)}{2}} \cdot N_{\mathbb{Q}}^K(f'(\alpha)),$$

where f is the minimal polynomial of α over \mathbb{Q} .

Proof. Order α_i such that $\alpha = \alpha_1$ and $\sigma_i(\alpha) = \alpha_i$. The first equality is now clear from the Vandermonde determinant. Now note that

$$f' = \sum_{i=1}^{n} \prod_{j \neq i} (x - \alpha_j),$$

therefore

$$f'(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j).$$

A straightforward calculation now shows that

$$N_{\mathbb{Q}}^{K}(f'(\alpha)) = \prod_{i=1}^{n} \sigma_{i}(f'(\alpha)) = \prod_{i=1}^{n} f'(\alpha_{i}) = \prod_{i=1}^{n} \prod_{j \neq i} (\alpha_{i} - \alpha_{j}) = (-1)^{\frac{n(n-1)}{2}} \cdot \prod_{i \neq j} (\alpha_{j} - \alpha_{i})^{2}. \quad \Box$$

Theorem 2.3.10. Let K be a number field with $n = [K : \mathbb{Q}]$. Elements $\alpha_1, \ldots, \alpha_n \in K$ form a \mathbb{Q} -basis of K if and only if

$$\operatorname{disc}(\alpha_1,\ldots,\alpha_n)\neq 0.$$

Proof. Let $K = \mathbb{Q}(\beta)$. Then $(1, \beta, \dots, \beta^{n-1})$ form a basis of K, so we can write $\alpha = A\beta$ for some matrix $A \in M_n(\mathbb{Q})$. As we have

$$\operatorname{disc}(\alpha_1, \dots, \alpha_n) = \det(A)^2 \cdot \operatorname{disc}(\beta_1, \dots, \beta_n)$$

and $\operatorname{disc}(\beta_1,\ldots,\beta_n)\neq 0$, the conclusion follows.

2.4 Integral bases

Proposition 2.4.1. Let K be a number field. Then

$$K = \left\{ \frac{\alpha}{d} \mid d \in \mathbb{N} \land \alpha \in \mathcal{O}_K \right\}.$$

Proof. Take $\beta \in K$ and let

$$f = \sum_{k=0}^{n} a_k x^k \in \mathbb{Z}[x]$$

be a polynomial with $f(\beta) = 0$. Then, multiplying by a_n^{n-1} , we find a monic polynomial with $a_n\beta$ as a root, hence $a_n\beta \in \mathcal{O}_K$.

Definition 2.4.2. Let K be a number field. An *integral basis* of \mathcal{O}_K is a \mathbb{Z} -module basis of \mathcal{O}_K .

Theorem 2.4.3 (Structure).

- i) If M is a finitely generated \mathbb{Z} -module, then $M=F\oplus T$ where F is a finitely generated free \mathbb{Z} -module and T is finite.
- ii) Let F be a finitely generated free \mathbb{Z} -module of rank n. If $G \subseteq F$ is a submodule, then G is also finitely generated and free as a \mathbb{Z} -module with rank at most n. Furthermore, there exists a basis (b_1, \ldots, b_n) of F and $d_1, \ldots, d_m \in \mathbb{N}$ with $d_i \mid d_{i+1}$ such that (d_1b_1, \ldots, d_mb_m) is a basis of G.
- iii) Let T be a finite abelian group. Then

$$T = \bigoplus_{i=1}^r \mathbb{Z}_{n_i}.$$

Furthermore, we can choose n_i such that $n_i \mid n_{i+1}$ – such choice of n_i is unique.

Lemma 2.4.4. Suppose that $(\alpha_1, \ldots, \alpha_n)$ is a \mathbb{Q} -basis of K, contained in \mathcal{O}_K , and denote $d = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$. Then

$$\mathcal{O}_K \subseteq \frac{1}{d} \bigoplus_{i=1}^n \mathbb{Z} \alpha_i.$$

Proof. Let $\beta \in \mathcal{O}_K$ and write

$$\beta = \sum_{i=1}^{n} x_i \alpha_i.$$

Now compute

$$T_{\mathbb{Q}}^{K}(\alpha_{i}\beta) = T_{\mathbb{Q}}^{K}\left(\sum_{j=1}^{n} x_{j}\alpha_{i}\alpha_{j}\right) = \sum_{j=1}^{n} x_{j}T_{\mathbb{Q}}^{K}(\alpha_{i}\alpha_{j}),$$

hence

$$b = \begin{bmatrix} T(\alpha_1 \beta) \\ \vdots \\ T(\alpha_n \beta) \end{bmatrix} = \underbrace{\left[T_{\mathbb{Q}}^K(\alpha_i \alpha_j) \right]_{i,j}}_{C} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

As $\det C = d \neq 0$, we can write $x = C^{-1}b$. As $\det C \cdot C^{-1} \in M_n(\mathbb{Z})$, the conclusion follows.

Theorem 2.4.5. The set \mathcal{O}_K is a free \mathbb{Z} -module of rank $n = [K : \mathbb{Q}]$. If $I \triangleleft \mathcal{O}_K$ is a non-zero ideal, then I is a finitely generated free \mathbb{Z} -module of rank n. In particular, \mathcal{O}_K is a noetherian ring.

Proof. Let $(\alpha_1, \ldots, \alpha_n)$ be a \mathbb{Q} -basis of K contained in \mathcal{O}_K and set $d = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$. Then

$$\bigoplus_{i=1}^n \mathbb{Z}\alpha_i \subseteq \mathcal{O}_K \subseteq \bigoplus_{i=1}^n \mathbb{Z}\frac{\alpha_i}{d}.$$

By the structure theorem, \mathcal{O} is finitely generated. As it contains a submodule of rank n, it itself has rank n.

Let $I \triangleleft \mathcal{O}_K$ be a non-zero ideal and $\gamma \in I \setminus \{0\}$. As $\gamma \mathcal{O}_K \subseteq I \subseteq \mathcal{O}_K$, we can apply the same argument as above.

Remark 2.4.5.1. If $(\alpha_1, \ldots, \alpha_n)$ and $(\beta_1, \ldots, \beta_n)$ are two \mathbb{Z} -basis of I, then clearly $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{disc}(\beta_1, \ldots, \beta_n)$. We can therefore define $\operatorname{disc}(I) = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$.

Remark 2.4.5.2. If $J \subseteq I$ are both finitely generated free \mathbb{Z} -modules, each containing a \mathbb{Q} -basis of K, then

$$\operatorname{disc}(J) = \left| I / J \right|^2 \cdot \operatorname{disc}(I)$$

by the structure theorem.

Theorem 2.4.6. Let K be a number field and let $I \subseteq \mathcal{O}_K$ be a finitely generated free \mathbb{Z} -module containing a \mathbb{Q} -basis $(\alpha_1, \ldots, \alpha_n)$ of K. Set $d = |\operatorname{disc}(\alpha_1, \ldots, \alpha_n)|$ and write $d = d_0^2 d_1$ with d_1 being square-free. For $1 \le i \le n$, choose $c_{i,j} \in \mathbb{Z}$ and $c_{i,i} \in \mathbb{N}$ such that

$$\beta_i = \frac{1}{d_0} \sum_{j=1}^i c_{i,j} \alpha_j \in I$$

and $c_{i,i}$ are minimal. Then $(\beta_1, \ldots, \beta_n)$ is a \mathbb{Z} -basis of I.

Proof. Write

$$J = \bigoplus_{i=1}^{n} \mathbb{Z}\alpha_i \subseteq I \subseteq \mathcal{O}_K.$$

Note that disc(I) and disc(J) are both integers and

$$d_0^2 \cdot d_1 = d = \operatorname{disc}(J) = [I : J]^2 \cdot \operatorname{disc}(I),$$

and as d_1 is square-free, it follows that $[I:J] \mid d_0$, therefore $d_0I \subseteq J$. Note that $(\beta_1, \ldots, \beta_n)$ are \mathbb{Q} -linearly independent and $\langle \beta_i \mid i \leq n \rangle_{\mathbb{Z}} \subseteq I$. It therefore suffices to show that $I \subseteq \langle \beta_i \mid i \leq n \rangle_{\mathbb{Z}}$. Suppose otherwise, and let $\gamma \in I \setminus \langle \beta_i \mid i \leq n \rangle_{\mathbb{Z}}$. As $\gamma \in \frac{1}{d_0}J$, we can write

$$\gamma = \frac{1}{d_0} \sum_{i=1}^{s} x_i \alpha_i$$

with $x_i \in \mathbb{Z}$ and $x_s \neq 0$. Choose γ such that s is minimal, and among those, the one with minimal $|x_s|$. Assume further that $x_s > 0$. But then, as $x_s \geq c_{s,s}$ by choice of β_s , we find that $x_s - \beta_s \in \langle \beta_i | i \leq n \rangle_{\mathbb{Z}}$ by minimality, which is a contradiction.

Corollary 2.4.6.1. The ring \mathcal{O}_K has an integral basis of the form $\{\alpha_i \mid i \leq n\}$ with $\alpha_1 = 1$.

Proof. Apply the previous theorem to a \mathbb{Q} -basis of \mathcal{O}_K of the form $(1, \alpha'_2, \ldots, \alpha'_n)$.

Remark 2.4.6.2. If $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ are elements such that $\operatorname{disc}(\alpha_1, \ldots, \alpha_n)$ is square-free, they form an integral basis.

Definition 2.4.7. Let K be a number field and $(\alpha_1, \ldots, \alpha_n)$ an integral basis of \mathcal{O}_K . We then define

$$\operatorname{disc}(K) = \operatorname{disc}(\mathcal{O}_K) = \operatorname{disc}(\alpha_1, \dots, \alpha_n) \in \mathbb{Z}.$$

Remark 2.4.7.1. If d is square-free and $K = \mathbb{Q}(\sqrt{d})$, then

$$\operatorname{disc}(K) = \begin{cases} d, & d \equiv 1 \pmod{4}, \\ 4d, & d \equiv 2, 3 \pmod{4}. \end{cases}$$

2.5 Integral bases of Cyclotomic fields

Lemma 2.5.1. Suppose that $n = p^e$ with $p \in \mathbb{P}$ and $e \geq 1$. Choose $\zeta \in \mu_n^*(\mathbb{C})$ and set $K = \mathbb{Q}(\zeta)$.

i) We have

$$N^{K}(1-\zeta) = \prod_{p \nmid j} (1-\zeta^{j}) = p.$$

If $n \neq 2$, then $N^K(1-\zeta) = N^K(\zeta-1)$

ii) We have

$$(1-\zeta)^{\varphi(n)} \mid p$$

in $\mathbb{Z}[\zeta]$.

Proof.

i) Recall that

$$\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C}) = \left\{ \zeta \mapsto \zeta^j \mid p \nmid j \right\}.$$

It follows that

$$N^K(1-\zeta) = \prod_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})} (1-\sigma(\zeta)) = \prod_{p \nmid j} (1-\zeta^j).$$

If $n \neq 2$, then $\varphi(n)$ is even and $N^K(1-\zeta) = N^K(\zeta-1)$ follows. Now note that

$$\Phi_{p^e}(x) = \frac{x^{p^e} - 1}{x^{p^{e-1}} - 1} = \sum_{j=0}^{p-1} x^{jp^{e-1}} = \prod_{p \nmid j} (x - \zeta^j).$$

Evaluating the expression at x = 1, we get $N^K(1 - \zeta) = p$.

ii) Note first that $1 - \zeta \mid 1 - \zeta^j$ for all $j \in \mathbb{N}$. But then

$$(1-\zeta)^{\varphi(n)} \left| \prod_{p\nmid j} (1-\zeta^j) = p. \right| \Box$$

Lemma 2.5.2. If $\zeta \in \mu_p^*(\mathbb{C})$ for $p \in \mathbb{P}$, then

$$\operatorname{disc}(1,\zeta,\ldots,\zeta^{p-2}) = \begin{cases} p^{p-2}, & p \equiv 1,2 \pmod{4}, \\ -p^{p-2}, & p \equiv 3 \pmod{4}. \end{cases}$$

Proof. Without loss of generality assume $p \neq 2$. Then

$$m_{\zeta} = \Phi_p = \frac{x^p - 1}{x - 1} = \sum_{j=0}^{p-1} x^j.$$

By proposition 2.3.9, it holds that

$$\operatorname{disc}(1,\zeta,\ldots,\zeta^{p-2}) = (-1)^{\frac{(p-1)(p-2)}{2}} \cdot N^K(\Phi'_p(\zeta)).$$

As

$$\Phi_p + (x-1)\Phi_p' = p \cdot x^{p-1},$$

we get

$$\Phi_p'(\zeta) = \frac{p \cdot \zeta^{p-1}}{\zeta - 1},$$

therefore

$$N(\Phi_p'(\zeta)) = \frac{N(p) \cdot N(\zeta^{-1})}{N(\zeta - 1)} = \frac{p^{p-1} \cdot 1}{p} = p^{p-2}.$$

Lemma 2.5.3. Let $n \in \mathbb{N}$ and $\zeta \in \mu_n^*(\mathbb{C})$. Then

$$\operatorname{disc}\left(1,\zeta,\ldots,\zeta^{\varphi(n)-1}\right)\mid n^{\varphi(n)}$$
.

Proof. Write

$$x^n - 1 = \Phi_n(x) \cdot g(x)$$

for $g \in \mathbb{Z}[x]$. Then $nx^{n-1} = \Phi'_n(x) \cdot g(x) + \Phi_n(x) \cdot g'(x)$, therefore

$$n\zeta^{n-1} = \Phi'_n(\zeta) \cdot g(\zeta).$$

Taking the norm, we get

$$n^{\varphi(n)} \cdot N(\zeta^{n-1}) = N(\Phi'_n(\zeta)) \cdot N(g(\zeta)),$$

but as $N(g(\zeta)) \in \mathbb{Z}$ and $N(\zeta^{n-1}) = \pm 1$, the conclusion follows.

Theorem 2.5.4. Let $n = p^e$ for $p \in \mathbb{P}$ and $e \geq 1$. Choose $\zeta \in \mu_n^*(\mathbb{C})$ and set $K = \mathbb{Q}(\zeta)$. Then

$$\mathcal{O}_K = \mathbb{Z}[\zeta] = \bigoplus_{j=0}^{\varphi(n)-1} \mathbb{Z}\zeta^j.$$

Proof. Let $m = [K : \mathbb{Q}] = \varphi(n)$. By the previous lemma, we have

$$\operatorname{disc}(1,\zeta,\ldots,\zeta^{m-1}) = \pm p^t$$

for some $t \geq 0$. By lemma 2.4.4, we see that

$$\mathcal{O}_K \subseteq \frac{1}{p^t} \cdot \left\langle (1-\zeta)^j \mid j \le m-1 \right\rangle_{\mathbb{Z}},$$

as $\mathbb{Z}[\zeta] = \mathbb{Z}[1-\zeta]$. Suppose that $\mathbb{Z}[1-\zeta] \subset \mathcal{O}_K$. Then there exists some

$$\alpha = \frac{1}{p} \cdot \sum_{j=i}^{m-1} a_j (1 - \zeta)^j \in \mathcal{O}_K \setminus \mathbb{Z}[1 - \zeta]$$

with $0 \le i \le m-1$ and $a_j \in \mathbb{Z}$ with $p \nmid a_i$. By lemma 2.5.1, we get $(1-\zeta)^{i+1} \mid p$, therefore

$$\frac{p\alpha}{(1-\zeta)^{i+1}} = \frac{a_i}{1-\zeta} + \sum_{j=i+1}^{m-1} a_j (1-\zeta)^{j-i-1},$$

and so $1 - \zeta \mid a_i$. But then $\pm p = N(1 - \zeta) \mid N(a_i)$, which is impossible as we have $N(a_i) = a_i^m$.

Lemma 2.5.5. Let K and L be number fields with $m = [K : \mathbb{Q}]$ and $n = [L : \mathbb{Q}]$. Assume that $[KL : \mathbb{Q}] = mn$. Then for every pair $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$ and $\varphi \in \operatorname{Hom}_{\mathbb{Q}}(L, \mathbb{C})$ there exists a unique $\psi \in \operatorname{Hom}_{\mathbb{Q}}(KL, \mathbb{C})$ such that $\psi|_{K} = \sigma$ and $\psi|_{L} = \varphi$.

Proof. Note that every $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$ extends to $\psi \in \operatorname{Hom}_{\mathbb{Q}}(KL,\mathbb{C})$ in [KL:K]=n distinct ways. The n maps $\psi|_L$ are then clearly distinct, hence one of them is equal to φ . Uniqueness is obvious.

Theorem 2.5.6. Let K and L be number fields with $m = [K : \mathbb{Q}]$ and $n = [L : \mathbb{Q}]$. Suppose that $(\alpha_1, \ldots, \alpha_m)$ and $(\beta_1, \ldots, \beta_n)$ are integral basis of \mathcal{O}_K and \mathcal{O}_L respectively. If $[KL : \mathbb{Q}] = mn$ and $\gcd(\operatorname{disc}(K), \operatorname{disc}(L)) = 1$, then

$$(\alpha_i \beta_i \mid i \leq m \land j \leq n)$$

is an integral basis for \mathcal{O}_{KL} . Furthermore,

$$\operatorname{disc}(KL) = \operatorname{disc}(K)^n \cdot \operatorname{disc}(L)^m$$
.

Proof. Let $\gamma \in \mathcal{O}_{KL}$ and write

$$\gamma = \sum_{i,j} c_{i,j} \alpha_i \beta_j$$

with $c_{i,j} \in \mathbb{Q}$. This representation is unique, as $\{\alpha_i \beta_j \mid i \leq m \land j \leq n\}$ is a \mathbb{Q} -basis of \mathcal{O}_{KL} . Now write

$$\xi_j = \sum_{i=1}^m c_{i,j} \alpha_i \in K.$$

That gives us

$$\gamma = \sum_{j=1}^{n} \beta_j \xi_j.$$

Let $\operatorname{Hom}_K(KL,\mathbb{C}) = \{\varphi_i \mid i \leq n\}$. Applying φ_i to the above equation, we get

$$b = \begin{bmatrix} \varphi_1(\gamma) \\ \varphi_2(\gamma) \\ \vdots \\ \varphi_n(\gamma) \end{bmatrix} = \underbrace{\begin{bmatrix} \varphi_1(\beta_1) & \varphi_1(\beta_2) & \dots & \varphi_1(\beta_n) \\ \varphi_2(\beta_1) & \varphi_2(\beta_2) & \dots & \varphi_2(\beta_n) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_n(\beta_1) & \varphi_n(\beta_2) & \dots & \varphi_n(\beta_n) \end{bmatrix}}_{B} \cdot \begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{bmatrix}.$$

Let $d = \operatorname{disc}(L) = \det(B)^2$. Then

$$d\xi = dB^{-1}b = d \cdot \frac{\operatorname{adj}(B)}{\det(B)} \cdot b = \det(B) \cdot \operatorname{adj}(B) \cdot b.$$

It follows that $d\xi_j$ are algebraic integers, therefore $d \cdot c_{i,j} \in \mathbb{Z}$ for all i and j. By symmetry, the same holds for $d' = \operatorname{disc}(K)$. As $\gcd(d, d') = 1$, we get $c_{i,j} \in \mathbb{Z}$.

Let now $\operatorname{Hom}_L(KL,\mathbb{C}) = \{\sigma_j \mid j \leq m\}$ and denote by $\psi_{i,j}$ the element of $\operatorname{Hom}_Q(KL,\mathbb{C})$ with $\psi_{i,j}|_K = \sigma_i$ and $\psi_{i,j}|_L = \varphi_j$. Denote by A the $(mn) \times (mn)$ matrix with

$$A = \begin{bmatrix} \psi_{i,j}(\alpha_s \beta_t) \end{bmatrix}_{\substack{i,s \leq m \\ j,t \leq n}} = \begin{bmatrix} B & 0 & \dots & 0 \\ 0 & B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & B \end{bmatrix} \cdot \begin{bmatrix} \sigma_1(\alpha_1)I_n & \sigma_1(\alpha_2)I_n & \dots & \sigma_1(\alpha_m)I_n \\ \sigma_2(\alpha_1)I_n & \sigma_2(\alpha_2)I_n & \dots & \sigma_2(\alpha_m)I_n \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_m(\alpha_1)I_n & \sigma_m(\alpha_2)I_n & \dots & \sigma_m(\alpha_m)I_n \end{bmatrix}.$$

Reindexing, we find that

$$\det\begin{bmatrix} \sigma_1(\alpha_1)I_n & \sigma_1(\alpha_2)I_n & \dots & \sigma_1(\alpha_m)I_n \\ \sigma_2(\alpha_1)I_n & \sigma_2(\alpha_2)I_n & \dots & \sigma_2(\alpha_m)I_n \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_m(\alpha_1)I_n & \sigma_m(\alpha_2)I_n & \dots & \sigma_m(\alpha_m)I_n \end{bmatrix} = \det\begin{bmatrix} C & 0 & \dots & 0 \\ 0 & C & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C \end{bmatrix},$$

where

$$C = \begin{bmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \dots & \sigma_1(\alpha_m) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \dots & \sigma_2(\alpha_m) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \dots & \sigma_1(\alpha_m) \end{bmatrix}.$$

It follows that

$$\operatorname{disc}(KL) = \det(A)^2 = (\det(B)^m \cdot \det(C)^n)^2 = \operatorname{disc}(L)^m \cdot \operatorname{disc}(K)^n.$$

Theorem 2.5.7. Let $n \geq 1$ and $\zeta \in \mu_n^*(\mathbb{C})$. Denote $K = \mathbb{Q}(\zeta)$. Then $(1, \zeta, \dots, \zeta^{\varphi(n)-1})$ is an integral basis of \mathcal{O}_K .

Proof. We prove the theorem by induction on the number of distinct prime factors of n. The claim clearly holds for n=1 and prime powers by theorem 2.5.4. Now write n=st for s,t < n with $\gcd(s,t) = 1$. Choose $\zeta_s \in \mu_s^*(\mathbb{C})$ and $\zeta_t \in \mu_t^*(\mathbb{C})$. By the proof of corollary 2.2.14.1, $\zeta_s \cdot \zeta_t$ is a primitive st-th root of unity, therefore $\mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_s)\mathbb{Q}(\zeta_t)$. We therefore get

$$[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \varphi(n) = \varphi(s) \cdot \varphi(t) = [\mathbb{Q}(\zeta_s):\mathbb{Q}] \cdot [\mathbb{Q}(\zeta_t):\mathbb{Q}].$$

By the induction hypothesis,

$$\operatorname{disc}(\mathbb{Q}(\zeta_s)) = \operatorname{disc}(\mathbb{Z}[\zeta_s]) \mid s^{\varphi(s)}$$

and similarly for t. In particular, $gcd(disc(\mathbb{Q}(\zeta_s),\mathbb{Q}(\zeta_t))) = 1$, therefore

$$\mathcal{O}_K = \mathbb{Z}[\zeta_s, \zeta_t] = \mathbb{Z}[\zeta_n]$$

by the previous theorem.

Remark 2.5.7.1. We can in fact show that

$$\operatorname{disc}(K) = (-1)^{\frac{\varphi(n)}{2}} \cdot n^{\varphi(n)} \cdot \prod_{\substack{p \in \mathbb{P} \\ p \mid n}} p^{-\frac{\varphi(n)}{p-1}}.$$

Theorem 2.5.8 (Stickelberger). Let K be a number field. Then $\operatorname{disc}(K) \equiv 0, 1 \pmod{4}$.

Proof. Let L be the Galois closure of K, that is the smallest field L containing K such that $\operatorname{Hom}_{\mathbb{Q}}(L,\mathbb{C}) = \operatorname{Gal}(L/\mathbb{Q})$. Denote $n = [K : \mathbb{Q}]$ and choose $\{\sigma_i \mid i \leq n\} \subseteq \operatorname{Gal}(L/\mathbb{Q})$ to be extensions of elements of $\operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$. Furthermore, let $(\alpha_1,\ldots,\alpha_n)$ be an integral basis of \mathcal{O}_K . Denote

$$C = \begin{bmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \dots & \sigma_1(\alpha_n) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \dots & \sigma_2(\alpha_n) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n(\alpha_1) & \sigma_n(\alpha_2) & \dots & \sigma_n(\alpha_n) \end{bmatrix}.$$

Then $\operatorname{disc}(K) = \det(C)^2$. Write

$$P = \sum_{\substack{\pi \in S_n \\ \operatorname{sgn}(\pi) = 1}} \prod_{i=1}^n \sigma_{\pi(i)}(\alpha_i) \quad \text{and} \quad N = \sum_{\substack{\pi \in S_n \\ \operatorname{sgn}(\pi) = -1}} \prod_{i=1}^n \sigma_{\pi(i)}(\alpha_i).$$

As det(C) = P - N, we get

$$\operatorname{disc}(K) = (P - N)^2 = (P + N)^2 - 4PN.$$

It is clear that both P+N and PN are elements of \mathcal{O}_L . For all $\varphi \in \operatorname{Gal}(L/\mathbb{Q})$ we have $\varphi \circ \sigma_i|_K \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$, therefore there exists a permutation $\tau \in S_n$ such that $\varphi \circ \sigma_i|_K = \sigma_{\tau(i)}|_K$ for all i. As $\operatorname{sgn}(\tau \circ \pi) = \operatorname{sgn}(\tau) \cdot \operatorname{sgn}(\pi)$, we get

$$\varphi(P) = \sum_{\substack{\pi \in S_n \\ \operatorname{sgn}(\pi) = 1}} \prod_{i=1}^n \varphi(\sigma_{\pi(i)}(\alpha_i)) = \sum_{\substack{\pi \in S_n \\ \operatorname{sgn}(\pi) = \operatorname{sgn}(\tau)}} \prod_{i=1}^n \sigma_{\pi(i)}(\alpha_i) = \begin{cases} P, & \operatorname{sgn}(\tau) = 1, \\ N, & \operatorname{sgn}(\tau) = -1. \end{cases}$$

We get a similar condition on $\varphi(N)$. It follows that $\varphi(P+N) = P+N$ and $\varphi(P\cdot N) = P\cdot N$. Therefore P+N and $P\cdot N$ are both integers and hence

$$\operatorname{disc}(K) \equiv (P+N)^2 \equiv 0, 1 \pmod{4}.$$

Remark 2.5.8.1. The Galois closure L of K if given by

$$L = \prod_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})} \sigma(K).$$

Dedekind domains Luka Horjak

3 Dedekind domains

Sorry if you're TEXing this now.

– gost. izr. prof. dr. rer. nat. Daniel
Smertnig

3.1 Prime ideal factorisation

Definition 3.1.1. Let D and D' be domains with $D \subseteq D'$ and let K be the quotient field of D. An element $\alpha' \in D'$ is *integral* over D if there exists a monic polynomial $f \in D[x]$ such that $f(\alpha) = 0$. The domain D is *integrally closed* if

$$D = \{ \alpha \in K \mid \alpha \text{ is integral over } D \}.$$

Lemma 3.1.2. Let K be a number field and $\mathfrak{a} \triangleleft \mathcal{O}_K$ a non-zero ideal. Then $|\mathcal{O}_K/\mathfrak{a}| < \infty$. Furthermore, if $\mathfrak{p} \triangleleft \mathcal{O}_K$ is a non-zero prime ideal, then $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some prime number p. The ring $\mathcal{O}_K/\mathfrak{p}$ is a finite field extension of \mathbb{Z}_p .

Proof. Let $\alpha \in \mathfrak{a}$ be a non-zero element. As α is an algebraic integer, we can write

$$\alpha^m + \sum_{j=0}^{m-1} a_j \alpha^j = 0$$

for integers a_j , where we assume $a_0 \neq 0$. But then we must have $a_0 \in \mathfrak{a}$, therefore $a_0 \mathcal{O}_K \subseteq \mathfrak{a}$. Hence $\mathcal{O}_K/\mathfrak{a}$ is a quotient of $\mathcal{O}_K/a_0 \mathcal{O}_K$. By the structure theorem the quotient is finite, as the above free abelian groups both have the same rank.

Now let \mathfrak{p} be a prime ideal. Note that $\mathcal{O}_K/\mathfrak{p}$ is a finite domain and therefore a field. Note that $a_0 \in \mathfrak{p} \cap \mathbb{Z} \setminus \{0\}$, therefore the intersection $\mathfrak{p} \cap \mathbb{Z}$ is non-trivial. In particular, it is a prime ideal of \mathbb{Z} and hence $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some prime number p. As the kernel of the map $\mathbb{Z} \to \mathcal{O}_K/\mathfrak{p}$ is $p\mathbb{Z}$, it induces an injective map $\mathbb{Z}_p \to \mathcal{O}_K/\mathfrak{p}$.

Theorem 3.1.3. Let K be a number field. Then \mathcal{O}_K is a noetherian integrally closed domain and every non-zero prime ideal of \mathcal{O}_K is maximal.

Proof. We already know that \mathcal{O}_K is noetherian. Let $\alpha \in K$ be integral over \mathcal{O}_K . It follows that $\mathcal{O}_K[\alpha]$ is a finitely-generated \mathcal{O}_K -module and hence a finitely-generated \mathbb{Z} -module. This implies that α is an algebraic integer.

If \mathfrak{p} is a non-zero prime ideal, then $\mathcal{O}_K/\mathfrak{p}$ is a field and hence \mathfrak{p} is maximal.

Definition 3.1.4. A *Dedekind domain* is a noetherian integrally closed domain in which every non-zero prime ideal is maximal.

Definition 3.1.5. Let D be a domain and K its quotient field.

- i) A fractional ideal of D is a D-submodule of K that is of the form $c^{-1}I$ for some $c \in D \setminus \{0\}$ and $0 \neq I \triangleleft D$.
- ii) A fractional ideal I is invertible if there exists a fractional ideal I such that IJ = D.

Dedekind domains

Luka Horjak

Remark 3.1.5.1. For a fractional ideal I, we write

$$I^{-1} = \{ x \in K \mid xI \subseteq D \} .$$

If I is invertible, then I^{-1} is its unique inverse.

Lemma 3.1.6. Let D be a Dedekind domain that is not a field. For every non-zero ideal $I \triangleleft D$ there exists an integer $r \ge 0$ and non-zero prime ideals $P_i \triangleleft D$ such that

$$\prod_{i=1}^r P_i \subseteq I.$$

Proof. Let Ω be the set of ideals I for which the above does not hold. Suppose that $\Omega \neq \emptyset$. As D is noetherian, there exists a maximal ideal $I \in \Omega$, which clearly cannot be a prime ideal. Also note that $I \neq D$. It follows that there exist $a, b \in D \setminus I$ such that $ab \in I$. But then both aD + I and bD + I are not in Ω by maximality of I. Now we can just take the product of their respective prime ideals, which gives a contradiction.

Lemma 3.1.7. Let D be a Dedekind domain that is not a field and $P \triangleleft D$ be a non-zero prime ideal. For every non-zero ideal $I \triangleleft D$ we have $I \subset IP^{-1}$.

Proof. Consider first the case I = D. Let $a \in P \setminus \{0\}$ and write

$$\prod_{i=1}^{r} P_i \subseteq aD \subseteq P,$$

where r is minimal. As P is a prime ideal, we must have $P_i \subseteq P$ for some i – without loss of generality let this be P_1 . As prime ideals are maximal, we must hence have $P_1 = P$. By minimality of r, we must have

$$\prod_{i=2}^{r} P_i \not\subseteq aD,$$

hence it has an element b such that $b \notin aD$ but $bP \subseteq aD$. But then $\frac{b}{a} \in P^{-1} \setminus D$, as required.

Now consider the general case. Note that, as D is noetherian, the ideal I is finitely generated – write $I = \langle a_i \mid i \leq m \rangle_D$. Suppose that $I = IP^{-1}$ and let $x \in P^{-1}$.

Choose $c_{i,j}$ such that

$$xa = x \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \underbrace{\begin{bmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,m} \\ c_{2,1} & c_{2,2} & \dots & c_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m,1} & c_{m,2} & \dots & c_{m,m} \end{bmatrix}}_{C} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}.$$

But then xa = Ca, therefore $\det(xI_m - C) = 0$. Expanding the determinant, we get a monic polynomial with x as a root, therefore x is integral over D and hence $x \in D$. It follows that $P^{-1} \subseteq D$, which we have already shown cannot happen.

Dedekind domains

Luka Horjak

Theorem 3.1.8. If D is a Dedekind domain, then every non-zero ideal is a product of prime ideals. Such a representation is unique up to the order of factors.

Proof. If D is a field, its only ideals are 0 and D itself, which clearly factors.

Let Ω be the set of all non-zero ideals of D that cannot be factored as a product of prime ideals. As D is noetherian, there exists a maximal element $I \in \Omega$. Note that $I \neq D$. Let P be a maximal ideal of D containing I. Then $I \subset IP^{-1}$ and $P \subset PP^{-1}subseteqD$, but as P is maximal, we actually have $PP^{-1} = D$. By maximality of P, we can factor

$$IP^{-1} = \prod_{r=2}^{m} P_i,$$

but then

$$I = IPP^{-1} = P \cdot \prod_{r=2}^{m} P_i.$$

Next, we show that this factorisation is unique. Suppose otherwise that

$$\prod_{i=1}^{r} P_i = \prod_{i=1}^{s} Q_i$$

for prime ideals P_i and Q_i . But this implies that $Q_i \subseteq P_1$ for some i, as P_1 is prime. Without loss of generality let $Q_1 \subseteq P_1$. As Q_1 is maximal, we must have $Q_1 = P_1$. Multiplying by P_1^{-1} and using the fact that $P_1P_1^{-1} = D$, we get uniqueness by induction.

Corollary 3.1.8.1. If D is a Dedekind domain, then every fractional ideal is invertible.

Proof. Let I be a fractional ideal. Let $c \in D^*$ be an element such that $cI \triangleleft D$. We can therefore factor cI as a product of prime ideals P_i . But all of there are invertible and so

$$I \cdot c \prod_{i=1}^{r} P_i^{-1} = D.$$

Dedekind domains Luka Horjak

3.2 Fractional ideals and the class group

Definition 3.2.1. Let D be a Dedekind domain and $P \triangleleft D$ be a non-zero prime ideal. The P-adic valuation $\nu_P(I)$ of a non-zero ideal $I \triangleleft D$ is the exponent of P in the factorization of I.

Remark 3.2.1.1. We denote the prime ideals of D by $\mathcal{P}(D)$. The monoid of all non-zero ideals is denoted by $\mathcal{I}(D)^{\bullet}$, while the monoid of fractional ideals is denoted by $\mathcal{F}(D)$.

Theorem 3.2.2. There is a group isomorphism $\mathcal{F}(D) \to \mathbb{Z}^{\mathcal{P}(D)}$, $I \mapsto (\nu_P(I))_{P \in \mathcal{P}(D)}$, that restricts to a monoid isomorphism $\mathcal{I}(D)^{\bullet} \to \mathbb{N}_0^{\mathcal{P}(D)}$.

Definition 3.2.3. Let D be a Dedekind domain. Let $\mathcal{H}(D)$ be all the non-zero principal ideals of D. The abelian group $\mathcal{C}(D) = \mathcal{F}(D) / \mathcal{H}(D)$ is the class group of D.

Remark 3.2.3.1. The sequence

$$1 \longrightarrow D^* \longrightarrow K^* \longrightarrow \mathcal{F}(D) \longrightarrow \mathcal{C}(D) \longrightarrow 1$$

is exact.

Theorem 3.2.4. Let *D* be a Dedekind domain. The following statements are equivalent.

- i) The domain D is a unique factorisation domain.
- ii) The class group C(D) is trivial.
- iii) The domain D is a principal ideal domain.

Proof. Note that we only need to prove that the class group of a unique factorisation domain is trivial. It therefore suffices to show that every prime ideal $P \subseteq D$ is principal. Let $a \in P \setminus \{0\}$ and write

$$a = \prod_{i=1}^{r} p_i$$

for prime elements p_i of D. It follows that $p_i \in P$ for some i. But then $p_i D \subseteq P$ is also a prime ideal, which must be equal to P by maximality. \square

Proposition 3.2.5. Every principal ideal domain is a Dedekind domain.

Proof. As every ideal of D is generated by one element, it is a noetherian ring.

Let K be the quotient field of D. Suppose that $f\left(\frac{a}{b}\right) = 0$ for a monic polynomial f and $\frac{a}{b} \in K$. Since D is a unique factorisation domain, we can further assume that a and b have no non-trivial common factor. As

$$0 = b^m f\left(\frac{a}{b}\right),\,$$

we can deduce that $b \mid a^m$ in D. This immediately shows that b is a unit and therefore $\frac{a}{b} \in D$, which means that D is integrally closed.

Now let $P \triangleleft D$ be a non-zero prime ideal, contained in a maximal ideal M. It is clear that P = (p) and M = (q) for some prime elements $p, q \in D$. But this implies $q \mid p$ and hence (p) = (q), therefore P = M is maximal.

Dedekind domains

Luka Horjak

3.3 Chinese remainder theorem

Theorem 3.3.1 (Chinese remainder theorem). Let R be a ring and let $I_1, \ldots, I_m \triangleleft R$ be ideals that are pairwise comaximal.⁴ Then the map

$$R/\bigcap_{i=1}^m I_i \to \prod_{i=1}^m R/I_i$$
,

given by

$$r + \bigcap_{i=1}^{m} I_i \mapsto (r + I_1, \dots, r + I_m),$$

is an isomorphism of R-algebras.

Proof. It suffices to show that the above homomorphism is surjective. Let $a_1, \ldots, a_m \in R$. For all i, j there exist elements $x_{i,j} \in I_i$ and $y_{i,j} \in I_j$ such that $x_{i,j} + y_{i,j} = 1$. Setting

$$z_i = \prod_{j \neq i} y_{i,j},$$

it is clear that $z_i \equiv \delta_{i,j} \pmod{I_j}$. But then

$$\varphi\left(\sum_{i=1}^{m} z_i a_i\right) = (a_1 + I_1, \dots, a_m + I_m). \qquad \Box$$

Corollary 3.3.1.1. Let D be a Dedekind domain, $P_1, \ldots, P_m \triangleleft D$ be pairwise distinct prime ideals, and $e_1, \ldots, e_m \in \mathbb{N}_0$. If $a_1, \ldots, a_m \in D$, then there exists an element $a \in D$ such that for all $i \leq m$ we have

$$a \equiv a_i \pmod{P_i^{e_i}}$$
.

Proof. The proof is obvious and need not be mentioned.

Corollary 3.3.1.2. Let D be a Dedekind domain, $P_1, \ldots, P_m \triangleleft D$ be pairwise distinct prime ideals, and $e_1, \ldots, e_m \in \mathbb{Z}$. Then there exists an element $x \in K^*$ with $v_{P_i}(x) = e_i$ for all $i \leq m$ and $v_P(x) \geq 0$ for all non-zero primes $P \neq P_i$.

Proof. The case where $e_i \geq 0$ for all i follows from the previous corollary. Construct an element $b \in D$ such that $\nu_{P_i}(b) = \max(0, -e_i)$ for all i. Then, construct an element $a \in D$ such that $\nu_{P_i}(a) = \max(0, e_i)$ for all i and $\nu_Q(a) \geq \nu_Q(b)$ for all other prime ideals Q. Then $\frac{a}{b}$ is one such element.

Theorem 3.3.2. Let D be a Dedekind domain and let $I \triangleleft D$ be a non-zero ideal. If $a \in I$ is a non-zero element, then there exists some $b \in I$ such that I = (a, b).

Proof. Consider all prime ideals P_i with $\nu_{P_i}(aD) > 0$. Note that $\nu_{P_i}(aD) \geq \nu_{P_i}(I)$. Choose an element b such that $\nu_{P_i}(b) = \nu_{P_i}(I)$ for all I. It is clear that

$$\nu_P(I) = \min(\nu_P(aD), \nu_P(bD)) = \nu_P(aD + bD)$$

holds, hence I = (a, b).

⁴ That is, $I_i + I_j = R$ for all $i \neq j$.

4 Minkowski theory

We'll skip this so we don't have to do any actual integrals, so if you're bored

– gost. izr. prof. dr. rer. nat. Daniel

Smertnig

4.1 Lattices

Definition 4.1.1. Let V be an \mathbb{R} -vector space of dimension n. A lattice is a subgroup

$$\Gamma = \sum_{i=1}^{m} \mathbb{Z}v_i \subseteq V,$$

where v_i are \mathbb{R} -linearly independent vectors. The tuple (v_1, \ldots, v_m) is called the *basis* of the lattice. The lattice is *complete* if m = n. The set

$$F = \left\{ \sum_{i=1}^{m} x_i v_i \mid \forall i \le m \colon x_i \in [0, 1) \right\}$$

is the fundamental domain of the basis (v_1, \ldots, v_m) .

Proposition 4.1.2. Let V be an n-dimensional \mathbb{R} -vector space and $\Gamma \subseteq V$ be a subgroup. Then the following statements are equivalent:

- i) The set Γ is a lattice.
- ii) The point 0 is not an accumulation point of Γ .
- iii) The set Γ is discrete.

Proof. Suppose that Γ is a lattice. Extend its basis (v_1,\ldots,v_m) to a basis of \mathbb{R}^n . Then

$$\left\{ \sum_{i=1}^{n} x_i v_i \mid \forall i \colon x_i \in (-1,1) \right\}$$

contains no points of Γ other than 0.

If 0 is not an accumulation point of Γ , the set is clearly discrete, as accumulation points are translation invariant.

Now suppose that Γ is discrete and let $W = \mathbb{R}\Gamma$. Choose a basis $(w_1, \ldots, w_m) \subseteq \Gamma$ for W. The set

$$\Gamma_0 = \bigoplus_{i=1}^m w_i \mathbb{Z} \subseteq \Gamma$$

is therefore a complete lattice in W. The fundamental domain F_0 of Γ_0 is a set of representatives for W/Γ_0 . But then there exists a set $R \subseteq F_0$ of representatives of Γ/Γ_0 , which is both bounded and discrete, and therefore finite. For $d = [\Gamma : \Gamma_0]$ we then have $\Gamma \subseteq \frac{1}{d}\Gamma_0$, which must then be a free abelian group of rank m by the structure theorem. Since it spans W, its generators must be \mathbb{R} -linearly independent. \square

Lemma 4.1.3. A lattice $\Gamma \subseteq V$ is complete if and only if V/Γ has a bounded system of representatives.

Proof. If Γ is complete, then any fundamental domain gives us a bounded system of representatives.

Suppose now that $\Gamma \subseteq V$ is a lattice and B a bounded set with

$$V = \bigcup_{\gamma \in \Gamma} (\gamma + B).$$

Let $W = \text{Lin}(\Gamma)$. As it is a finite-dimensional subspace in V, it is a closed subspace. Take an arbitrary $v \in V$. We can write $n \cdot v = \gamma_n + \beta_n$ for some $\gamma_n \in \Gamma$ and $\beta_n \in B$. It follows that

$$v = \lim_{n \to \infty} \frac{1}{n} \cdot (\gamma_n + \beta_n) = \lim_{n \to \infty} \frac{1}{n} \cdot \gamma_n \in W.$$

Definition 4.1.4. Let $\Gamma \subseteq \mathbb{R}^n$ be a complete lattice with fundamental domain F. We define its *volume* as

$$vol(\Gamma) = vol(F)$$
.

Theorem 4.1.5 (Minkowski). Let $\Gamma \subseteq \mathbb{R}^n$ be a complete lattice and $X \subseteq \mathbb{R}^n$ a set with the following properties:

- i) It is symmetric around 0.
- ii) It is convex.
- iii) We have $vol(X) > 2^n vol(\Gamma)$.

Then X contains a non-zero point of Γ .

Proof. Suppose that the family $\left\{\frac{1}{2}X + \gamma\right\}_{\gamma \in \Gamma}$ is pairwise disjoint. We can write

$$\mathbb{R}^n = \bigcup_{\gamma \in \Gamma} (\gamma + F),$$

where F is the fundamental domain of Γ . It follows that

$$\frac{1}{2}X = \bigcup_{\gamma \in \Gamma} \left(\frac{1}{2}X \cap (\gamma + F) \right),$$

therefore

$$\frac{1}{2^n}\operatorname{vol}(X) = \sum_{\gamma \in \Gamma}\operatorname{vol}\left(\frac{1}{2}X \cap (\gamma + F)\right) = \sum_{\gamma \in \Gamma}\operatorname{vol}\left(\left(\frac{1}{2}X - \gamma\right) \cap F\right) \le \operatorname{vol}(F),$$

which is a contradiction.

We can now write

$$\gamma_1 + \frac{1}{2}x_1 = \gamma_2 + \frac{1}{2}x_2$$

for some distinct $\gamma_i \in \Gamma$ and $x_i \in X$. It is clear that the point $\frac{1}{2}(x_1 - x_2) \neq 0$ is in both X and Γ .

4.2 From ideals to lattices

Definition 4.2.1. Let K be a number field of degree n. An embedding $\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})$ is called a *real embedding* if $\sigma(K) \subseteq \mathbb{R}$. Otherwise, it is called a *complex embedding*.

Remark 4.2.1.1. A conjugate of a complex embedding is again a complex embedding. We denote by r the number of real embeddings and by $s = \frac{n-r}{2}$ the number of pairs of conjugated complex embeddings.

Remark 4.2.1.2. Henceforth we assume the notation that $\sigma_1, \ldots, \sigma_r$ are real embeddings and $\sigma_{r+i} = \overline{\sigma}_{r+i+s}$.

Remark 4.2.1.3. We can embed $j: K \to \mathbb{R}^n$ as

$$j(\alpha) = (\sigma_1(\alpha), \dots, \sigma_r(\alpha), \operatorname{Re} \sigma_{r+1}(\alpha), \dots, \operatorname{Re} \sigma_{r+s}(\alpha), \operatorname{Im} \sigma_{r+1}(\alpha), \dots, \operatorname{Im} \sigma_{r+s}(\alpha))$$

Proposition 4.2.2. Let $\mathfrak{a} \subseteq K$ be a fractional ideal. Then $j(\mathfrak{a})$ is a complete lattice with

$$\operatorname{vol}(j(\mathfrak{a})) = 2^{-s} \sqrt{|\operatorname{disc}(\mathfrak{a})|}.$$

Proof. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Z} -basis of \mathfrak{a} . Then

$$\operatorname{disc}(\mathfrak{a}) = \det \left[\sigma_k(\alpha_\ell) \right]_{k,\ell \le n}^2.$$

Note that

$$\begin{bmatrix} \operatorname{Re} \sigma_{r+\ell}(\alpha) \\ \operatorname{Im} \sigma_{r+\ell}(\alpha) \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2i} & -\frac{1}{2i} \end{bmatrix} \cdot \begin{bmatrix} \sigma_{r+\ell}(\alpha) \\ \sigma_{r+\ell+s}(\alpha) \end{bmatrix}.$$

It follows that

$$j(\alpha) = \underbrace{\begin{bmatrix} I_r & 0 & 0 \\ 0 & \frac{1}{2}I_s & \frac{1}{2}I_s \\ 0 & \frac{1}{2i}I_s & -\frac{1}{2i}I_s \end{bmatrix}}_{C} \cdot \begin{bmatrix} \sigma_1(\alpha) \\ \sigma_2(\alpha) \\ \vdots \\ \sigma_n(\alpha) \end{bmatrix}.$$

As $\det(C) = \frac{1}{2^s} \cdot \left(-\frac{1}{i}\right)^s$, we get $|\det(C)| = \frac{1}{2^s}$. Finally, we get

$$\operatorname{vol}(j(\mathfrak{a})) = \left| \det (j(\alpha_1), j(\alpha_2), \dots, j(\alpha_n)) \right| = \left| \det C \right| \cdot \left| \det \left[\sigma_k(\alpha_\ell) \right]_{k,\ell \le n} \right| = 2^{-s} \cdot \sqrt{\left| \operatorname{disc}(\mathfrak{a}) \right|}.$$

Theorem 4.2.3. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_K . For $i \leq r + s$ let $c_i > 0$ be real numbers such that

$$\prod_{i=1}^{r} c_{i} \prod_{i=1}^{s} c_{i+r}^{2} > \left(\frac{2}{\pi}\right)^{s} \sqrt{|\operatorname{disc}(\mathfrak{a})|}.$$

Then there exists a non-zero $\alpha \in \mathfrak{a}$ such that $|\sigma_i(\alpha)| < c_i$ for all $i \leq n$.

Proof. Let

$$X = \left\{ x \in \mathbb{R}^n \mid \forall i \le r \colon |x_i| < c_i \land \forall i \le s \colon x_{r+i}^2 + x_{r+s+i}^2 < c_{r+i}^2 \right\}.$$

We can then calculate

$$vol(X) = \prod_{i=1}^{r} (2c_i) \cdot \prod_{i=1}^{s} \left(c_{r+i}^2 \cdot \pi \right) = 2^r \cdot \pi^s \cdot \prod_{i=1}^{r} c_i \prod_{i=1}^{s} c_{i+r}^2 > 2^{r+s} \cdot \sqrt{|\operatorname{disc}(\mathfrak{a})|} = 2^n \cdot vol(j(\mathfrak{a})).$$

The set $j(\mathfrak{a}) \cap X$ therefore contains a non-zero element. Its preimage is the sought element.

Theorem 4.2.4 (Minkowski). Let \mathfrak{a} be a fractional ideal of \mathcal{O}_K . Then there exists a non-zero $\alpha \in \mathfrak{a}$ such that

$$|N^K(\alpha)| \le \frac{n!}{n^n} \cdot \left(\frac{4}{\pi}\right)^s \sqrt{|\operatorname{disc}(\mathfrak{a})|}.$$

Proof. Choose a real c > 0 such that

$$c^n > n! \cdot \left(\frac{4}{\pi}\right)^s \sqrt{|\operatorname{disc}(\mathfrak{a})|}$$

and let

$$Y = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^r |x_i| + 2\sum_{i=1}^s \sqrt{x_{r+i}^2 + x_{r+s+i}^2} < c \right\}.$$

Someone who actually knows how to integrate can show that

$$\operatorname{vol}(Y) = 2^r \cdot \left(\frac{\pi}{2}\right)^s \cdot \frac{c^n}{n!} = 2r + s \cdot \left(\frac{\pi}{4}\right)^s \cdot \frac{c^n}{n!} > 2^{r+s} \cdot \sqrt{|\operatorname{disc}(\mathfrak{a})|} = 2^n \operatorname{vol}(j(\mathfrak{a})).$$

It follows that $Y \cap j(\mathfrak{a})$ contains a non-zero element. Equivalently, there exists some non-zero $\alpha \in \mathfrak{a}$ such that $j(\alpha) \in Y$.

Now note that

$$\sqrt[n]{N^K(\alpha)} = \prod_{i=1}^r |\sigma_i(\alpha)|^{\frac{1}{n}} \cdot \prod_{i=1}^s \sqrt{\left(\operatorname{Re}\sigma_{r+i}(\alpha)\right)^2 + \left(\operatorname{Im}\sigma_{r+i}(\alpha)\right)^2}^{\frac{2}{n}}$$

$$\leq \frac{1}{n} \cdot \left(\sum_{i=1}^r |\sigma_i(\alpha)| + 2\sum_{i=1}^s \sqrt{\left(\operatorname{Re}\sigma_{r+i}(\alpha)\right)^2 + \left(\operatorname{Im}\sigma_{r+i}(\alpha)\right)^2}\right)$$

$$< \frac{c}{n}.$$

But then

$$\left| N^K(\alpha) \right| < \frac{c^n}{n^n} \le \frac{n!}{n^n} \left(\frac{4}{\pi} \right)^s \sqrt{\left| \operatorname{disc}(\mathfrak{a}) \right|} + \varepsilon$$

for some $\varepsilon > 0$. Note that the set $|N^K(\mathfrak{a})|$ is discrete – taking c small enough we therefore get

$$\left| N^K(\alpha) \right| \le \frac{n!}{n^n} \left(\frac{4}{\pi} \right)^s \sqrt{|\operatorname{disc}(\mathfrak{a})|}.$$

4.3 Finiteness of the class group

Definition 4.3.1. Let $\mathfrak{a} \triangleleft \mathcal{O}_K$ be a non-zero ideal. We define the *norm* of \mathfrak{a} as

$$N(\mathfrak{a}) = \left| \mathcal{O}_K / \mathfrak{a} \right|.$$

Proposition 4.3.2. Let K be a number field.

- i) If $\mathfrak{a}, \mathfrak{b} \triangleleft \mathcal{O}_K$ are non-zero ideals, then $N(\mathfrak{ab}) = N(\mathfrak{a}) \cdot N(\mathfrak{b})$.
- ii) If $\mathfrak{a} = (\alpha)$ for a non-zero $\alpha \in \mathcal{O}_K$, then $N(\mathfrak{a}) = |N^K(\alpha)|$.

Proof.

i) If \mathfrak{a} and \mathfrak{b} are coprime, the conclusion follows from the Chinese remainder theorem. It therefore suffices to consider the case where \mathfrak{a} and \mathfrak{b} are both powers of the same non-zero prime ideal \mathfrak{p} , that is, $N(\mathfrak{p}^{e+1}) = N(\mathfrak{p}^e) \cdot N(\mathfrak{p})$ for $e \geq 0$.

We will show that $\mathcal{O}_K/\mathfrak{p} \cong \mathfrak{p}^e/\mathfrak{p}^{e+1}$. Take $a \in \mathfrak{p}^e \setminus \mathfrak{p}^{e+1}$ and consider the homomorphism $\varphi \colon \mathcal{O}_K \to \mathfrak{p}^e/\mathfrak{p}^{e+1}$, given by $\varphi(x) = ax + p^{e+1}$. This induces a homomorphism $\mathcal{O}_K/\mathfrak{p} \to \mathfrak{p}^e/\mathfrak{p}^{e+1}$, which means that $\mathfrak{p}^e/\mathfrak{p}^{e+1}$ is a $\mathcal{O}_K/\mathfrak{p}$ -vector space. If the above rings were not isomorphic, its dimension would be at least 2, therefore it would have a non-trivial subspace of the form $\mathfrak{b}/\mathfrak{p}^{e+1}$ for an ideal $\mathfrak{b} \triangleleft \mathcal{O}_K$. But then $\mathfrak{p}^{e+1} \subset \mathfrak{b} \subset \mathfrak{p}^e$, which implies $\mathfrak{p} \subset \mathfrak{p}^{-e}\mathfrak{b} \subset \mathcal{O}_K$, which contradicts \mathfrak{p} being a maximal ideal.

ii) Let β_1, \ldots, β_n be a \mathbb{Z} -basis of \mathcal{O}_K . Then $\alpha\beta_1, \ldots, \alpha\beta_n$ is a \mathbb{Z} -basis of (α) . We therefore have

$$\operatorname{disc}(\mathfrak{a}) = [\mathcal{O}_K : \mathfrak{a}]^2 \cdot \operatorname{disc}(\mathcal{O}_K).$$

It therefore suffices to show that

$$\operatorname{disc}(\mathfrak{a}) = N^K(\alpha)^2 \cdot \operatorname{disc}(\mathcal{O}_K).$$

Indeed, we have

$$\operatorname{disc}(\mathfrak{a}) = \det \left[\sigma_k(\alpha \beta_\ell) \right]_{k,\ell \le n}^2$$

$$= \det \left[\sigma_k(\alpha) \sigma_k(\beta_\ell) \right]_{k,\ell \le n}^2$$

$$= \prod_{k=1}^n \sigma_k(\alpha) \cdot \det \left[\sigma_k(\beta_\ell) \right]_{k,\ell \le n}^2$$

$$= N^K(\alpha)^2 \cdot \operatorname{disc}(\mathcal{O}_K).$$

Remark 4.3.2.1. The norm multiplicatively extends to a map $\mathcal{F}(\mathcal{O}_K) \to \mathbb{Q}^*$.

Theorem 4.3.3. The class group of \mathcal{O}_K is finite. Furthermore, every ideal class contains a representative \mathfrak{a} with

$$N(\mathfrak{a}) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|\mathrm{disc}(K)|}.$$

Proof. We claim that for every M > 0 there exist only finitely many non-zero ideals $\mathfrak{a} \triangleleft \mathcal{O}_K$ with $N(\mathfrak{a}) \leq M$. Indeed, suppose that $|\mathcal{O}_K/\mathfrak{a}| \leq M$. Then $M! \cdot \mathcal{O}_K/\mathfrak{a} = 0$, therefore

$$M! \cdot \mathcal{O}_K \subseteq \mathfrak{a} \subseteq \mathcal{O}_K$$
.

But as $\mathcal{O}_K/M!\mathcal{O}_K$ is finite, there are only finitely many possible \mathfrak{a} satisfying the above condition.

It now suffices to show the above bound. Let $\mathfrak{a}_0 \triangleleft \mathcal{O}_K$ be a representative of an ideal class and let $\mathfrak{b} = \alpha \mathfrak{a}_0^{-1}$ be an ideal. By Minkowski's theorem, there exists an element $\beta \in \mathfrak{b}$ with

$$|N^K(\beta)| \leq \frac{n!}{n^n} \cdot \left(\frac{4}{\pi}\right)^s \cdot \sqrt{|\mathrm{disc}(\mathfrak{b})|}.$$

As $\operatorname{disc}(\mathfrak{b}) = \operatorname{disc}(K) \cdot N(\mathfrak{b})^2$, we get

$$N\left(\beta\mathfrak{b}^{-1}\right) = \left|N^K(\beta)\right| \cdot N(\mathfrak{b})^{-1} \le \frac{n!}{n^n} \cdot \left(\frac{4}{\pi}\right)^2 \cdot \sqrt{|\mathrm{disc}(K)|}.$$

But since $[\beta \mathfrak{b}^{-1}] = [\mathfrak{a}_0]$, this ideal satisfies our conditions.

Definition 4.3.4. The *class number* of \mathcal{O}_K is defined as the size of its class group, that is $h_K = |\mathcal{C}(\mathcal{O}_K)|$.

Theorem 4.3.5 (Minkowski). If $n = [K : \mathbb{Q}] \ge 2$, then

$$|\operatorname{disc}(K)| \ge \left(\frac{\pi^s n^n}{4^s n!}\right)^2 > 1.$$

Furthermore, the lower bound diverges as $n \to \infty$.

Proof. By Minkowski's theorem, there exists an element $\alpha \in \mathcal{O}_K$ with

$$|N^K(\alpha)| \leq \frac{n!}{n^n} \cdot \left(\frac{4}{\pi}\right)^s \cdot \sqrt{|\mathrm{disc}(K)|}.$$

Since $|N^K(\alpha)| \ge 1$, we get

$$|\mathrm{disc}(K)| \geq \left(\frac{n^n}{n!}\right)^2 \cdot \left(\frac{\pi}{4}\right)^{2s} \geq \left(\frac{n^n}{n!}\right)^2 \cdot \left(\frac{\pi}{4}\right)^n = f(n).$$

Since $f(2) = \frac{\pi^2}{4} > 2$ and

$$\frac{f(n+1)}{f(n)} = \frac{\pi}{4} \cdot \left(\frac{n+1}{n}\right)^{2n} \ge \frac{3\pi}{4} > 1$$

by Bernoulli's inequality, the lower bound indeed diverges and is greater than 1. \Box

Theorem 4.3.6 (Hermite). For all $D \ge 0$ there exist only finitely many number fields K with $|\operatorname{disc}(K)| \le D$.

Proof. By Minkowski's theorem, it suffices to show that there exist only finitely many number fields K with $\operatorname{disc}(K) = d$ and $[K : \mathbb{Q}] = n$. This is clear for n = 1, hence assume n > 1.

First note that there exists some $\alpha \in \mathcal{O}_K \setminus \{0\}$ such that $|\sigma_1(\alpha)| < \sqrt{d} + 1$ and $|\sigma_i(\alpha)| < 1$ for $i \geq 2$ by theorem 4.2.3. But then all conjugates of α are bounded in terms of d, hence so are the coefficients of its minimal polynomial. Therefore there are only finitely many such α for fixed n.

Next, we show that $K = \mathbb{Q}(\alpha)$, which shows that there are only finitely many such number fields. We split two cases.

i) Suppose that r > 0. Then

$$|\sigma_1(\alpha)| = |N^K(\alpha)| \cdot \prod_{i=2}^n |\sigma_i(\alpha)|^{-1} > |N^K(\alpha)| \ge 1.$$

Now consider $\sigma_1|_{\mathbb{Q}(\alpha)} \in \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(\alpha), \mathbb{C})$. It has exactly $[K : \mathbb{Q}(\alpha)]$ extensions to an element of $\operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})$. Since $|\tilde{\sigma}_1(\alpha)| = |\sigma_1(\alpha)| > 1$, we must have $\tilde{\sigma}_1 = \sigma_1$ and so $[K : \mathbb{Q}(\alpha)] = 1$.

ii) Now suppose that r = 0. Modifying the proof of theorem 4.2.3, we can further take $|\operatorname{Re} \sigma_1(\alpha)| < 1$ and $|\operatorname{Im} \sigma_1(\alpha)| < C\sqrt{d}$ for some constant C. Then

$$\left|\sigma_1(\alpha)\right|^2 = \left|N^K(\alpha)\right| \cdot \prod_{i=2}^n \left|\sigma_i(\alpha)\right|^{-2} > \left|N^K(\alpha)\right| \ge 1.$$

Again consider $\sigma_1|_{\mathbb{Q}(\alpha)} \in \operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(\alpha), \mathbb{C})$. As above, we see that every extension satisfies $|\tilde{\sigma}_1(\alpha)| = |\sigma_1(\alpha)| > 1$, therefore $\tilde{\sigma}_1 \in \{\sigma_1, \overline{\sigma}_1\}$. Since they differ in α by our modified assumptions, only one extends $\sigma_1|_{\mathbb{Q}(\alpha)}$ and so $[K:\mathbb{Q}(\alpha)] = 1$.

Remark 4.3.6.1. A *Pisot number* is a real algebraic integer $\alpha > 1$ whose all conjugates have absolute value less than 1.

4.4 Dirichlet's unit theorem

Definition 4.4.1. Let K be a number field. We denote the set of all roots of unity in K by $\mu(K)$.

Definition 4.4.2. We define a map $\lambda \colon \mathcal{O}_K^* \to \mathbb{R}^{r+s}$ as

$$\lambda(\alpha) = (\log |\sigma_1(\alpha)|, \dots, \log |\sigma_r(\alpha)|, 2\log |\sigma_{r+1}(\alpha)|, \dots, 2\log |\sigma_{r+s}(\alpha)|).$$

Remark 4.4.2.1. Note that $\lambda \colon (\mathcal{O}_K^*, \cdot) \to (\mathbb{R}, +)$ is a group homomorphism.

Lemma 4.4.3. The set $\lambda(\mathcal{O}_K^*)$ is a lattice in the hyperplane

$$H = \left\{ x \in \mathbb{R}^{r+s} \mid \sum_{i=1}^{r+s} x_i = 0 \right\}.$$

Proof. It clearly suffices to show that $\lambda(\mathcal{O}_K^*)$ is discrete. That is, there exists a neighbourhood of 0 containing only finitely many points in this set.

Let $B = [-C, C]^{r+s}$. Clearly, $j(\lambda^{-1}(B))$ is bounded. Since $j(\mathcal{O}_K)$ is a lattice, $\lambda^{-1}(B)$ is finite and hence so is $B \cap \lambda(\mathcal{O}_K^*)$.

Lemma 4.4.4. We have ker $\lambda = \mu(K)$, which is a finite cyclic group.

Proof. First note that if $\zeta \in \mu(K)$, then clearly $|\sigma_i(\zeta)| = 1$ and so $\lambda(\zeta) = 0$. As $\lambda(\ker(\lambda))$ is trivially bounded, the proof of the previous lemma shows that $\ker \lambda$ is finite. This means that every element of $\ker \lambda$ has finite order and is therefore a root of unity. As every finite multiplicative subgroup of a field is cyclic, the conclusion follows.

Proposition 4.4.5. We have $\mathcal{O}_K^* \cong \mu(K) \times \mathbb{Z}^t$ for some $t \leq r + s - 1$.

Proof. The short exact sequence

$$1 \longrightarrow \mu(K) \hookrightarrow \mathcal{O}_K^* \xrightarrow{\lambda} \mathbb{Z}^t \longrightarrow 0$$

is exact and therefore splits.

Lemma 4.4.6. Let $M \geq 0$. Up to associativity, there exist only finitely many elements $\alpha \in \mathcal{O}_K$ with $|N^K(\alpha)| < M$.

Proof. The condition is equivalent to $N((\alpha)) < M$, but there are only finitely many such ideals.

Theorem 4.4.7 (Dirichlet's unit theorem). Let K be a number field. Then $\mu(K)$ is a finite cyclic group and $\mathcal{O}_K^* \cong \mu(K) \times \mathbb{Z}^{r+s-1}$.

Proof. We already know that $\mathcal{O}_K^* \cong \mu(K) \times \mathbb{Z}^t$ and that $\mu(K)$ is cyclic. It is therefore enough to show that t = r + s - 1. To do so, we will show that $\lambda(\mathcal{O}_K^*) \subseteq H$ is a complete lattice. Equivalently, we need to show that $H/\lambda(\mathcal{O}_K^*)$ has a bounded system of representatives.

Set $g(x) = (|\sigma_1(x)|, \dots, |\sigma_{r+s}(x)|)$ and $l(x) = (\log x_1, \dots, \log x_r, 2 \log x_{r+1}, \dots, 2 \log x_{r+s})$, so that $\lambda = l \circ g$. Furthermore, let

$$||x|| = \prod_{i=1}^{r} x_i \cdot \prod_{i=1}^{s} x_{r+i}^2.$$

Then ||g(x)|| = 1 for all $x \in \mathcal{O}_K^*$. Finally, set $S = l^{-1}(H)$.

We claim that there exists a bounded set $T \subseteq S$ such that

$$S = \bigcup_{\varepsilon \in \mathcal{O}_K^*} g(\varepsilon) T.$$

To see this, choose $c \in (\mathbb{R}^+)^{r+s}$ such that

$$||c|| > \left(\frac{2}{\pi}\right)^s \cdot \sqrt{|\operatorname{disc}(K)|}$$

and set

$$X = \left\{ x \in \left(\mathbb{R}^+ \right)^{r+s} \mid \forall i \colon x_i < c_i \right\}.$$

Note that, for any $y \in S$, we have $||cy^{-1}|| = ||c||$. By theorem 4.2.3 there exists a non-zero element $\alpha \in \mathcal{O}_K$ with $g(\alpha) \in yX$. This element also satisfies $|N^K(\alpha)| \leq ||c||$. There are only finitely many such elements up to associativity – denote them by $\alpha_1, \ldots, \alpha_m$.

We claim that

$$T = S \cap \bigcup_{i=1}^{m} g(\alpha_i)^{-1} X$$

satisfies the conditions. Indeed, it is clearly bounded. For any $y \in S$, and set $g(\alpha) = y^{-1}x$ for some $\alpha \in \mathcal{O}_K$ and $x \in X$, where $|N^K(\alpha)| \leq ||c||$. This means that $\varepsilon = \alpha^{-1} \cdot \alpha_i \in \mathcal{O}_K^*$ for some $i \leq m$. Hence

$$y = g(\alpha)^{-1}x = g\left(\alpha_i \cdot \varepsilon^{-1}\right)^{-1}x = g(\varepsilon) \cdot g(\alpha_i)^{-1}x \in g(\varepsilon)T,$$

as required.

For each $x \in T$, we now have that x_i are bounded from above. But as ||x|| = 1, they are also bounded from below. The set l(T) is therefore bounded, but as

$$H = l(S) = \bigcup_{\varepsilon \in \mathcal{O}_K^*} l(g(\varepsilon)T) = \bigcup_{\varepsilon \in \mathcal{O}_K^*} \left(\lambda(\varepsilon) + l(T)\right),$$

the set l(T) is a bounded set of representatives for $H/\lambda(\mathcal{O}_K^*)$.

5 Decomposition of primes in extensions

The even case is a bit more odd.

– gost. izr. prof. dr. rer. nat. Daniel
Smertnig

5.1 Prime ideals in extensions

Lemma 5.1.1. Let $K \subseteq L$ be number fields, $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$. Then

$$\mathfrak{P} \mid \mathfrak{p}\mathcal{O}_L \iff \mathfrak{p} \subseteq \mathfrak{P} \iff \mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}.$$

Proof. Suppose first that $\mathfrak{P} \mid \mathfrak{p}\mathcal{O}_L$. Then we have $\mathfrak{p} \subseteq \mathfrak{p}\mathcal{O}_L \subseteq \mathfrak{P}$.

Now suppose that $\mathfrak{p} \subseteq \mathfrak{P}$. Then as $\mathfrak{p} \subseteq \mathfrak{P} \cap \mathcal{O}_K$ is a maximal ideal, it must be equal to this intersection.

Finally, suppose that the last condition holds. Then

$$\mathfrak{p}\mathcal{O}_L = (\mathfrak{P} \cap \mathcal{O}_K) \mathcal{O}_L \subseteq \mathfrak{P}\mathcal{O}_L = \mathfrak{P}.$$

Definition 5.1.2. If any of the above conditions hold, we say that \mathfrak{P} lies over \mathfrak{p} . Similarly, \mathfrak{p} lies under \mathfrak{P} .

Lemma 5.1.3. Every $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ lies over a unique $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$.

Proof. Uniqueness follows from the previous lemma, therefore we only need to show that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$ is a prime ideal. To see that it is non-empty, apply lemma 3.1.2. Now it is clear that it is a prime ideal by definition.

Remark 5.1.3.1. By lemma 3.1.2, the quotient $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ is finite, therefore each prime ideals lies under at most finitely many prime ideals.

Remark 5.1.3.2. The ring homomorphism $\mathcal{O}_K \hookrightarrow \mathcal{O}_L \to \mathcal{O}_L/\mathfrak{P}$ induces a field embedding $\mathcal{O}_K/\mathfrak{p} \to \mathcal{O}_L/\mathfrak{P}$.

Definition 5.1.4. Let $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ and $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$.

- i) The quotient $\mathcal{O}_L/\mathfrak{P}$ is the residue field of \mathfrak{P} .
- ii) The number $[\mathcal{O}_L/\mathfrak{P}:\mathcal{O}_K/\mathfrak{p}]$ is the *inertia degree*, which we denote by $f=f(\mathfrak{P}\mid\mathfrak{p})$.
- iii) The multiplicity $\nu_{\mathfrak{P}}(\mathfrak{p}\mathcal{O}_L)$ of \mathfrak{P} in $\mathfrak{p}\mathcal{O}_L$ is the ramification index of \mathfrak{P} , which we denote by $e = e(\mathfrak{P} \mid \mathfrak{p})$.

Theorem 5.1.5. Let n = [L : K], where $K \subseteq L$ are number fields. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P}_1, \ldots, \mathfrak{P}_r \in \mathcal{P}(\mathcal{O}_L)$ be the distinct prime ideals over \mathfrak{p} . Denote by $e_i = e(\mathfrak{P}_i \mid \mathfrak{p})$ and $f_i = f(\mathfrak{P}_i \mid \mathfrak{p})$. Then

$$\sum_{i=1}^{r} e_i f_i = n.$$

Proof. Let $\kappa = \mathcal{O}_K/\mathfrak{p}$. Let $\alpha_1, \ldots, \alpha_m \in \mathcal{O}_L$ be such that $\overline{\alpha}_1, \ldots, \overline{\alpha}_m \in \mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ is a κ -basis.

Suppose that

$$\sum_{i=1}^{m} c_i \alpha_i = 0$$

where $c_i \in K$ are not all equal to 0. By clearing denominators, we can take $c_i \in \mathcal{O}_K$. Denote

$$0 \neq \mathfrak{c} = \langle c_1, \dots, c_m \rangle_{\mathcal{O}_K} \triangleleft \mathcal{O}_K$$

and let $d \in \mathfrak{c}^{-1} \setminus \mathfrak{c}^{-1}\mathfrak{p}$. Then

$$\sum_{i=1}^{m} dc_i \alpha_i = 0$$

and all dc_i are elements of \mathcal{O}_K , but $dc_i \notin \mathfrak{p}$ for some index i. It follows that

$$\sum_{i=1}^{r} \overline{dc_i} \overline{\alpha}_i = 0,$$

which is a contradiction.

Now let $M = \langle \alpha_1, \dots, \alpha_m \rangle_{\mathcal{O}_K}$ and write $N = \mathcal{O}_L/M$ as a \mathcal{O}_K -module. Note that, by the choice of α_i , $\mathcal{O}_L = M + \mathfrak{p}\mathcal{O}_L$ holds. We can check that $N = \mathfrak{p}N$.

As \mathcal{O}_L is a finitely generated \mathbb{Z} -module, it is finitely generated as a \mathcal{O}_K -module. Denote $N = \langle \beta_1, \dots, \beta_s \rangle_{\mathcal{O}_K}$. Note that we can write

$$\beta_i = \sum_{j=1}^s c_{i,j} \beta_j$$

for $c_{i,j} \in \mathfrak{p}$. Let $C = \left[c_{i,j}\right]_{i,j}$. It follows that $(C - I)\beta = 0$. By construction we have $d = \det(C - I) = (-1)^s \pmod{\mathfrak{p}}$, hence

$$d\beta = \operatorname{adj}(C - I) \cdot (C - I)\beta = 0$$

and so $d\beta_i = 0$ for all i. By definition, it follows that dN = 0, therefore $d\mathcal{O}_L \subseteq M$. But then

$$L = dL = d \langle \mathcal{O}_L \rangle_K \subseteq \langle M \rangle_K = \langle \alpha_1, \dots, \alpha_m \rangle_K,$$

therefore $\{\alpha_i \mid i \leq m\}$ is a K-basis of L.

In particular, $\dim_{\kappa} \mathcal{O}_{L}/\mathfrak{p}\mathcal{O}_{L} = \dim_{K} L = n$. But then

$$N(\mathfrak{p}\mathcal{O}_L) = \left| \mathcal{O}_L \middle/ \mathfrak{p}\mathcal{O}_L \right| = \left| \kappa \right|^n = N(\mathfrak{p})^n,$$

and

$$N(\mathfrak{p}\mathcal{O}_L) = \prod_{i=1}^r N(\mathfrak{P}_i)^{e_i} = \prod_{i=1}^r N(\mathfrak{p})^{e_i f_i}.$$

Definition 5.1.6. The *conductor* of $\mathcal{O}_K[\alpha]$ in \mathcal{O}_L is the set

$$\mathfrak{f} = \{ \beta \in \mathcal{O}_L \mid \beta \mathcal{O}_L \subseteq \mathcal{O}_K[\alpha] \}.$$

Remark 5.1.6.1. The conductor is the largest common ideal of \mathcal{O}_L and $\mathcal{O}_K[\alpha]$.

Lemma 5.1.7. If $\alpha \in \mathcal{O}_L$, then the minimal polynomial g of α over K has coefficients in \mathcal{O}_K .

Proof. Denote $n = [K(\alpha) : K]$ and let $\operatorname{Hom}_K(K(\alpha), \mathbb{C}) = \{\sigma_i \mid i \leq n\}$. Then $\sigma_i(\alpha)$ are algebraic conjugates of α and therefore algebraic integers. It follows that the coefficients of g are algebraic integers as well by Vieta's formulae. As they are contained in K by definition, the coefficients are elements of \mathcal{O}_K .

Theorem 5.1.8 (Dedekind-Kummer). Let $\alpha \in \mathcal{O}_L$ be an element such that $L = K(\alpha)$ and let \mathfrak{f} be the conductor of $\mathcal{O} = \mathcal{O}_K[\alpha]$ in \mathcal{O}_L . Let $g \in \mathcal{O}_K[x]$ be the minimal polynomial of α over K and let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ be coprime to $\mathfrak{f} \cap \mathcal{O}_K$. Suppose that monic polynomials $g_1, \ldots, g_r \in \mathcal{O}_K[x]$ and integers $e_1, \ldots, e_r \in \mathbb{N}$ are such that

$$\overline{g} = \prod_{i=1}^{r} \overline{g}_i^{e_i}$$

is the prime factorisation of \overline{g} in $\mathcal{O}_K/\mathfrak{p}[x]$. Finally, for $i \leq r$, let $\mathfrak{P}_i = \mathfrak{p}\mathcal{O}_L + g_i(\alpha)\mathcal{O}_L$. Then \mathfrak{P}_i are the prime ideals of \mathcal{O}_L lying over \mathfrak{p} , $e_i = e(\mathfrak{P}_i \mid \mathfrak{p})$ and $\deg g_i = f(\mathfrak{P}_i \mid \mathfrak{p})$.

Proof. Denote $\kappa = \mathcal{O}_K/\mathfrak{p}$. Consider the homomorphism $\varphi \colon \mathcal{O} \hookrightarrow \mathcal{O}_L \to \mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$. By assumption, we have $\mathfrak{p} + (\mathfrak{f} \cap \mathcal{O}_K) = \mathcal{O}_K$, therefore $\mathfrak{p}\mathcal{O}_L + \mathfrak{f} = \mathcal{O}_L$. Since $\mathfrak{f} \subseteq \mathcal{O}$, φ is surjective. Note that $\ker \varphi = \mathcal{O} \cap \mathfrak{p}\mathcal{O}_L$. As $\mathfrak{p}\mathcal{O} + \mathfrak{f} = \mathcal{O}$, we have

$$\ker \varphi = \mathfrak{p}\mathcal{O}_L \cap \mathcal{O} = (\mathfrak{p}\mathcal{O} + \mathfrak{f}) (\mathfrak{p}\mathcal{O}_L \cap \mathcal{O}) \subseteq \mathfrak{p}\mathcal{O},$$

therefore $\ker \varphi = \mathfrak{p}\mathcal{O}$ and so

$$\mathcal{O}_L /_{\mathfrak{p}\mathcal{O}_L} \cong \mathcal{O} /_{\mathfrak{p}\mathcal{O}}$$
 .

But as

$$\mathcal{O}/\mathfrak{p}_{\mathcal{O}} \cong \mathcal{O}_{K}[x]/(\mathfrak{p},g) \cong \mathcal{O}_{K}/\mathfrak{p}[x]/(g)$$
,

we in fact have

$$\mathcal{O}_L/\mathfrak{p}_{\mathcal{O}_L} \cong \kappa[x]/(\overline{q})$$
.

By the Chinese remainder theorem, we can further write

$$R = \kappa[x]/(\overline{g}) \cong \prod_{i=1}^r \kappa[x]/(\overline{g}_i^{e_i})$$

The ideals of each component are precisely (\overline{g}_i^j) for some $j \leq e_i$, therefore R has precisely r maximal ideals. Denote them by \mathfrak{m}_i . Note that

$$\dim_{\kappa} R/\mathfrak{m}_i = \dim_{\kappa} \kappa[x]/(\overline{q}_i) = \deg(g_i)$$

and

$$\bigcap_{i=1}^r \mathfrak{m}_i^{e_i} = \{0\}.$$

Let now $\overline{\mathfrak{P}}_i$ be the preimages of \mathfrak{m}_i under the above ring isomorphism – it therefore has the same properties as described above. Furthermore, \mathfrak{P}_i are precisely the preimages of $\overline{\mathfrak{P}}_i$ under the homomorphism $\mathcal{O}_L \to \mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$. They are the maximal ideals containing $\mathfrak{p}\mathcal{O}_L$ and

$$f(\mathfrak{P}_i \mid \mathfrak{p}) = \left[\mathcal{O}_L / \mathfrak{P}_i : \kappa \right] = \deg(\overline{g}_i) = f_i.$$

We can easily check that $\mathfrak{P}_i^{e_i}$ are the preimages of $\overline{\mathfrak{P}}_i$, therefore

$$\prod_{i=1}^r \mathfrak{P}_i^{e_i} = \cap_{i=1}^r \mathfrak{P}_i^{e_i} \subseteq \mathfrak{p}\mathcal{O}_L.$$

We can therefore write

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^r \mathfrak{P}_i^{m_i},$$

but as

$$n = \sum_{i=1}^{r} m_i f_i \le \sum_{i=1}^{r} e_i f_i = \deg g = n,$$

we in fact have $m_i = e_i$.

Definition 5.1.9. Let $K \subseteq L$ be number fields with n = [L : K]. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ be such that

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^r \mathfrak{P}^{e_i}$$

is a factorisation in \mathcal{O}_L . Denote $f_i = f(\mathfrak{P} \mid \mathfrak{p})$ and $e_i = e(\mathfrak{P}_i \mid \mathfrak{p})$.

- i) The ideal \mathfrak{p} is completely split⁵ if r = n.
- ii) The ideal \mathfrak{p} is non-split if r=1.
- iii) The ideal \mathfrak{p} is inert if $\mathfrak{p}\mathcal{O}_L$ is a prime ideal (equivalently, $r=e_1=1$ and $f_1=n$).
- iv) The ideal \mathfrak{P}_i is unramified over K if $e_i = 1$ and ramified if $e_i > 1$.
- v) The ideal \mathfrak{P}_i is totally ramified over K if $e_i > 1$ and $f_i = 1$.
- vi) The ideal \mathfrak{p} is unramified in L if all \mathfrak{P}_i are unramified and ramified otherwise.

Remark 5.1.9.1. The elements of Gal(L/K) permute prime ideals lying over \mathfrak{p} .

Theorem 5.1.10. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and let $p \in \mathbb{P}$ be such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. If \mathfrak{p} is ramified in L, then $p \mid \mathrm{disc}(L)$. In particular, only finitely many primes of \mathcal{O}_K ramify in L.

Proof. Note that if \mathfrak{p} is ramified in L, then $p\mathbb{Z}$ is also ramified in L. Since the set $\{\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K) \mid \mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}\}$ is finite for a fixed prime p, it suffices to consider $K = \mathbb{Q}$.

Let now $p \in \mathbb{P}$ be a prime number and $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_L)$ be a prime ideal with $p\mathbb{Z} \subseteq \mathfrak{p}$. Set $e = e(\mathfrak{p} \mid p\mathbb{Z}) > 1$. Write $p\mathcal{O}_L = \mathfrak{pa}$ for an ideal $\mathfrak{a} \triangleleft \mathcal{O}_L$ and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_r \in \mathcal{P}(\mathcal{O}_L)$ be the prime ideals lying over $p\mathcal{O}_L$. Since e > 1, we have

$$\mathfrak{a}\subseteq \bigcap_{i=1}^r \mathfrak{p}_i.$$

Let $\alpha_1, \ldots, \alpha_n$ be an integral basis of \mathcal{O}_L and choose an element $\alpha \in \mathfrak{a} \setminus p\mathcal{O}_L$. We can write

$$\alpha = \sum_{i=1}^{n} c_i \alpha_i,$$

⁵ Also totally split.

where $p \nmid c_i$ for some i. Without loss of generality let i = 1. Consider now

$$A = \langle \alpha, \alpha_2, \dots, \alpha_n \rangle_{\mathbb{Z}} = \langle c_1 \alpha_1, \alpha_2, \dots, \alpha_n \rangle_{\mathbb{Z}} \subseteq \mathcal{O}_L.$$

As

$$\operatorname{disc}(\alpha, \alpha_2, \dots, \alpha_n) = |\mathcal{O}_L : A|^2 \cdot \operatorname{disc}(\mathcal{O}_L) = c_1^2 \cdot \operatorname{disc}(\mathcal{O}_L),$$

it suffices to show that $p \mid d = \operatorname{disc}(\alpha, \alpha_2, \dots, \alpha_n)$.

Let N/L be a finite extension such that N/\mathbb{Q} is Galois. Now we can extend the $n = [L : \mathbb{Q}]$ embeddings of L into \mathbb{C} to automorphisms $\sigma_i \in \text{Gal}(N/\mathbb{Q})$. For any $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_N)$ lying over $p\mathbb{Z}$, the ideal $\mathfrak{P} \cap \mathcal{O}_L$ is a prime ideal of \mathcal{O}_L lying over $p\mathbb{Z}$, hence $\alpha \in \mathfrak{P} \cap \mathcal{O}_L$. In particular, α is contained in every prime ideal of \mathcal{O}_N lying over $p\mathbb{Z}$.

Fix a prime ideal $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_N)$ lying over $p\mathbb{Z}$. For any $\sigma \in \operatorname{Gal}(N/\mathbb{Q})$, the set $\sigma^{-1}(\mathfrak{P})$ is another such prime ideal, meaning $\alpha \in \sigma(\mathfrak{P})$. By the definition of the discriminant, we get $d \in \mathfrak{P} \cap \mathbb{Z} = p\mathbb{Z}$, hence $p \mid d$.

5.2 Quadratic fields, quadratic reciprocity and cyclotomic fields

Theorem 5.2.1. Let $K = \mathbb{Q}(\sqrt{d})$, where $d \neq 1$ is a square-free integer.

- i) Let p be an odd prime. The prime factorisation of $p\mathcal{O}_K$ is of the following form:
 - (a) If $p \nmid d$ and $d \equiv b^2 \pmod{p}$, then $p\mathcal{O}_K = (p, \sqrt{d} + b)(p, \sqrt{d} b)$.
 - (b) If d is a non-square modulo p, then $p\mathcal{O}_K$ is a prime ideal.
 - (c) If $p \mid d$, then $p\mathcal{O}_K = (p, \sqrt{d})^2$.
- ii) The prime factorisation of $2\mathcal{O}_K$ is of the following form:
 - (a) If $2 \mid d$, then $2\mathcal{O}_K = \left(2, \sqrt{d}\right)^2$.
 - (b) If $d \equiv 3 \pmod{4}$, then $2\mathcal{O}_K = (2, 1 + \sqrt{d})^2$.
 - (c) If $d \equiv 1 \pmod{8}$, then $2\mathcal{O}_K = \left(2, \frac{1+\sqrt{d}}{2}\right) \left(2, \frac{1-\sqrt{d}}{2}\right)$.
 - (d) If $d \equiv 5 \pmod{8}$, then $2\mathcal{O}_K$ is a prime ideal.

Proof.

- i) Note that $\mathfrak{f} \cap \mathbb{Z} \in \{\mathbb{Z}, 2\mathbb{Z}\}$, which is coprime to $p\mathbb{Z}$.
 - (a) We can factor

$$x^2 - \overline{d} = (x - \overline{b})(x + \overline{b}) \in \mathbb{F}_p[x].$$

As p is odd, the factors are distinct. The conclusion follows from theorem 5.1.8.

- (b) Note that $x^2 \overline{d}$ is irreducible in $\mathbb{F}_p[x]$ and apply theorem 5.1.8.
- (c) The polynomial x^2 factors trivially, so we can again apply theorem 5.1.8.

ii)

- (a) Note that $\mathcal{O}_K = \mathbb{Z}\left[\sqrt{d}\right]$ and $\mathfrak{f} = \mathcal{O}_K$. We can therefore again apply theorem 5.1.8 with the trivial factorisation.
- (b) Same as the previous case.
- (c) Now $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. The minimal polynomial is therefore given by

$$g(x) = x^2 - x + \frac{1 - d}{4}.$$

Since $d \equiv 1 \pmod{8}$, we have $\overline{g}(x) = x(x-1) \in \mathbb{F}_2[x]$. Now apply theorem 5.1.8.

(d) Same as the previous case, but now $\overline{g}(x) = x^2 + x + \overline{1}$ is irreducible. \square

Definition 5.2.2. Let p be a prime number. An integer a is a quadratic residue modulo p if $a \equiv b^2 \pmod{p}$ for some integer b. We define the Legendre symbol as

Remark 5.2.2.1. For $p \neq 2$, then $(\mathbb{F}_p^*)^2$ is the unique subgroup of index 2 of \mathbb{F}_p^* . From this we deduce that

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right).$$

In particular, $\left(\frac{\cdot}{p}\right): \mathbb{F}_p^* \to S^0$ is a group homomorphism with kernel $\left(\mathbb{F}_p^*\right)^2$.

Lemma 5.2.3. Let p be an odd prime and $a \in \mathbb{Z}$. Then

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Proof. The group \mathbb{F}_p^* is cyclic with order p-1, and the generator maps to -1 under both homomorphisms.

Theorem 5.2.4 (Quadratic reciprocity law). Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Proof. Let $\zeta \in \mu_p^*(\mathbb{C})$. The following calculations are all done in $\mathbb{Z}[\zeta]$.

Define the Gauss sum

$$\tau = \sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right) \zeta^a = \sum_{j=1}^{n-1} \left(\frac{j}{p}\right) \zeta^j.$$

Let c be a quadratic non-residue modulo p. Then

$$-\sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right) = \left(\frac{c}{p}\right) \cdot \sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right) = \sum_{a \in \mathbb{F}_p^*} \left(\frac{ac}{p}\right) = \sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right),$$

therefore

$$\sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p} \right) = 0.$$

Also, recall that

$$\sum_{a \in \mathbb{F}_p^*} \zeta^{ab} = -1$$

for all $b \in \mathbb{F}_p^*$, as ζ^b is also a primitive root of unity. As $\left(\frac{a}{p}\right) = \left(\frac{a^{-1}}{p}\right)$, we find that

$$\tau^{2} = \sum_{a,b \in \mathbb{F}_{p}^{*}} \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \zeta^{a+b}$$

$$= \left(\frac{-1}{p}\right) \cdot \sum_{a,b \in \mathbb{F}_{p}^{*}} \left(\frac{ab^{-1}}{p}\right) \zeta^{a-b}$$

$$= \left(\frac{-1}{p}\right) \cdot \sum_{b,c \in \mathbb{F}_{p}^{*}} \left(\frac{c}{p}\right) \zeta^{cb-b}$$

$$= \left(\frac{-1}{p}\right) \cdot \left(\sum_{b \in \mathbb{F}_{p}^{*}} 1 + \sum_{\substack{c \in \mathbb{F}_{p}^{*} \\ c \neq 1}} \left(\frac{c}{p}\right) \cdot \sum_{b \in \mathbb{F}_{p}^{*}} \zeta^{b(c-1)}\right)$$

As $c-1 \neq 0$ in the innermost sum, we can further compute

$$\tau^{2} = \left(\frac{-1}{p}\right) \cdot \left(p - 1 - \sum_{\substack{c \in \mathbb{F}_{p}^{*} \\ c \neq 1}} \left(\frac{c}{p}\right)\right)$$
$$= p \cdot \left(\frac{-1}{p}\right).$$

In $\mathbb{Z}_q[\zeta]$ we can now compute

$$\tau^{q} = \tau \cdot \left((-1)^{\frac{p-1}{2}} \cdot p \right)^{\frac{q-1}{2}} = \tau \cdot (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \cdot \left(\frac{p}{q} \right)$$

and

$$\tau^q = \sum_{a \in \mathbb{F}_p^*} \left(\frac{a}{p}\right) \zeta^{aq} = \left(\frac{q}{p}\right) \cdot \sum_{a \in \mathbb{F}_p^*} \left(\frac{aq}{p}\right) \zeta^{aq} = \left(\frac{q}{p}\right) \tau.$$

Equating and multiplying by τ , we get

$$\left(\frac{-1}{p}\right)p\cdot (-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}}\cdot \left(\frac{p}{q}\right) = \tau^2\cdot (-1)^{\frac{p-1}{2}\cdot \frac{q-1}{2}}\cdot \left(\frac{p}{q}\right) = \tau^2\cdot \left(\frac{q}{p}\right) = \left(\frac{-1}{p}\right)\cdot p\cdot \left(\frac{q}{p}\right).$$

As p is invertible in $\mathbb{Z}_q[\zeta]$, we get the sought equality.

Proposition 5.2.5. If p is an odd prime, then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

Proof. Note that, in $\mathbb{Z}_p[i]$, we have

$$1 + i \cdot (-1)^{\frac{p-1}{2}} = 1 + i^p = (1+i)^p = (1+i) \cdot 2^{\frac{p-1}{2}} \cdot i^{\frac{p-1}{2}} = \left(\frac{2}{p}\right) \cdot (1+i) \cdot i^{\frac{p-1}{2}}.$$

If $p \equiv 1 \pmod{4}$, we multiply the above equation by $\frac{1-i}{2}$ to get

$$1 = \left(\frac{2}{p}\right) \cdot (-1)^{\frac{p-1}{4}}$$

in $\mathbb{Z}_p[i]$. Similarly, if $p \equiv 3 \pmod{4}$, multiply the equation by $\frac{1+i}{2}$ instead to get

$$1 = \left(\frac{2}{p}\right) \cdot i \cdot i^{\frac{p-1}{2}} = \left(\frac{2}{p}\right) \cdot (-1)^{\frac{p+1}{4}}.$$

Proposition 5.2.6. Let p be a prime number and $k, m \in \mathbb{N}$ be integers such that $p \nmid m$. Let

$$f = \operatorname{ord}_{\mathbb{Z}_m^*}(\overline{p}) = \min \{ \ell \in \mathbb{N} \mid p^{\ell} \equiv 1 \pmod{m} \}.$$

i) If $\zeta \in \mathbb{F}_{p^k}$ is a primitive *m*-th root of unity and $g \in \mathbb{F}_p[x]$ is the minimal polynomial of ζ , then

$$\mathbb{F}_p(\zeta) \cong \mathbb{F}_p[x]/(q) \cong \mathbb{F}_{p^f}.$$

In particular, $\deg g = f$.

ii) If $\Phi_m \in \mathbb{Z}[x]$ is the m-th cyclotomic polynomial, then

$$\overline{\Phi} = \prod_{i=1}^r \overline{g}_i \in \mathbb{F}_p[x]$$

for pairwise distinct monic irreducible polynomials $\overline{g}_i \in \mathbb{F}_p[x]$ with deg $(\overline{g}_i) = f$ for all i.

Proof.

i) Note that

$$\mathbb{F}_p(\zeta) \cong \mathbb{F}_p[x]/(g)$$

is a finite field, therefore $\mathbb{F}_p(\zeta) \cong \mathbb{F}_{p^k}$ for some $k \geq 1$. Note that $\mathbb{F}_{p^k}^*$ contains a primitive m-th root of unity if and only if $p^k \equiv 1 \pmod{m}$. By choice of f, we have $f \mid k$ and therefore

 $\mathbb{F}_{p^f} = \left\{ x \in \mathbb{F}_{p^k} \mid x^{p^f} = x \right\}.$

By definition of f, it contains all m-th roots of unity of \mathbb{F}_{p^k} , hence $\mathbb{F}_p(\zeta) \subseteq \mathbb{F}_{p^f}$. It follows that k = f.

ii) Recall that

$$x^m - 1 = \prod_{\ell \mid m} \Phi_\ell.$$

In particular, every m-th root of unity of \mathbb{F}_{p^f} is a root of some cyclotomic polynomial $\overline{\Phi}_{\ell} \in \mathbb{F}_p[x]$ with $\ell \mid m$. As \mathbb{F}_{p^f} contains precisely $\underline{\varphi}(\ell)$ primitive ℓ -th roots of unity, they are exactly the roots of $\overline{\Phi}_{\ell}$. In particular, $\overline{\Phi}_m$ has no repeated roots in \mathbb{F}_{p^f} . We can therefore factor

$$\overline{\Phi}_m = \prod_{i=1}^r \overline{g}_i,$$

where each \overline{g}_i is a minimal polynomial of some primitive *m*-th root of unity. In particular, deg $(\overline{g}_i) = f$.

Theorem 5.2.7. Let n be a natural number and $\zeta \in \mu_n^*(\mathbb{C})$. Denote $K = \mathbb{Q}(\zeta)$ and let $p \in \mathbb{P}$. Let $v = \nu_p(n)$ and denote $m = \frac{n}{n^v}$ and

$$f=\operatorname{ord}_{\mathbb{Z}_m^*}\left(\overline{p}\right)=\min\left\{\ell\in\mathbb{N}\ \middle|\ p^\ell\equiv 1\pmod m\right\}.$$

Then $p\mathcal{O}_K = (\mathfrak{p}_1 \cdots \mathfrak{p}_r)^{\varphi(p^v)}$ with distinct \mathfrak{p}_i and $f(\mathfrak{p}_i \mid p) = f$.

Proof. As the conductor is trivial, we can apply the Dedekind-Kummer theorem to all $p \in \mathbb{P}$. The minimal polynomial of ζ is of course Φ_n . Recall that

$$\mu_n^*(\mathbb{C}) = \left\{ \xi \cdot \omega \mid \xi \in \mu_{p^v}^*(\mathbb{C}) \wedge \omega \in \mu_m^*(\mathbb{C}) \right\}.$$

For such ξ we have

$$(\xi - 1)^{p^v} \equiv \xi^{p^v} - 1 \equiv 0 \pmod{\mathfrak{p}}$$

for all $\mathfrak{p} \mid p\mathcal{O}_K$, therefore $\xi \equiv 1 \pmod{\mathfrak{p}}$. We can therefore factor

$$\Phi_n = \prod_{\substack{\xi \in \mu_{p^v}^*(\mathbb{C}) \\ \omega \in \mu_m^*(\mathbb{C})}} (x - \xi \omega) \equiv \prod_{\omega \in \mu_m^*(\mathbb{C})} (x - \omega)^{\varphi(p^v)} \equiv \Phi_m^{\varphi(p^v)} \pmod{\mathfrak{p}}.$$

But then $\Phi_n = \Phi_m^{\varphi(p^v)}$ in $\mathbb{F}_p[x]$, hence

$$\overline{\Phi}_n = \prod_{i=1}^r \overline{g}_i^{\varphi(p^v)}$$

by the previous proposition. Furthermore, \overline{g}_i are monic, irreducible and distinct with $\deg{(\overline{g}_i)}=f$.

Corollary 5.2.7.1. A prime $p \neq 2$ is completely split if and only if $p \equiv 1 \pmod{n}$.

Corollary 5.2.7.2. A prime number $p \in \mathbb{P}$ is ramified if and only if $p \mid n$, except if $p = 2 = \gcd(n, 4)$.

6 Hilbert theory

The rest of this theorem becomes a sudoku with these numbers.

– gost. izr. prof. dr. rer. nat. Daniel Smertnig

6.1 Decomposition of primes in Galois extensions

Proposition 6.1.1. Let $p \in \mathbb{P}$ and $n \geq 1$.

- i) The map $\varphi \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$, given by $x \mapsto x^p$, is a field automorphism.⁶
- ii) The group $\operatorname{Gal}\left(\mathbb{F}_{p^n}/\mathbb{F}_p\right)$ is generated by φ , which is of order n.
- iii) We have $m \mid n$ if and only if we can embed \mathbb{F}_{p^m} into \mathbb{F}_{p^n} .
- iv) Every extension $\mathbb{F}_{p^n}/\mathbb{F}_{p^m}$ is a cyclic Galois group generated by φ^m .

Proof.

- i) Note that $(x+y)^p = x^p + y^p$, therefore φ is additive and injective.
- ii) Recall that $\left|\operatorname{Gal}\left(\mathbb{F}_{p^n}/\mathbb{F}_p\right)\right| \leq n$, hence we only need to show that φ is of order n, which is clear by considering the generator of $\mathbb{F}_{p^n}^*$.
- iii) By the Galois correspondence, the subfields of \mathbb{F}_{p^n} are precisely $\mathbb{F}_{p^n}^{\langle \varphi^d \rangle}$ for $d \mid n$.
- iv) Note that $\mathbb{F}_{p^m} = \mathbb{F}_{p^n}^{\langle \varphi^m \rangle}$, hence $\mathbb{F}_{p^n} / \mathbb{F}_{p^m}$ is Galois with $\operatorname{Gal}\left(\mathbb{F}_{p^n} / \mathbb{F}_{p^m}\right) = \langle \varphi^m \rangle$.

Lemma 6.1.2. Let $K \subseteq L$ be number fields and suppose that L/K is Galois. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$. Then $G = \operatorname{Gal}(L/K)$ acts transitively on $\{\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L \mid \mathfrak{P} \mid \mathfrak{p}\}.$

Proof. Suppose that $\mathfrak{P} \cap \mathcal{O}_K = \mathfrak{P}' \cap \mathcal{O}_K = \mathfrak{p}$ and that \mathfrak{P}' is not in the orbit of \mathfrak{P} . In particular, \mathfrak{P}' is comaximal to each $\sigma(\mathfrak{P})$. By the Chinese remainder theorem, there exists some $\alpha \in \mathcal{O}_L$ such that $\alpha \equiv 0 \pmod{\mathfrak{P}'}$ and $\alpha \equiv 1 \pmod{\sigma(\mathfrak{P})}$ for all $\sigma \in G$. But then

$$N_K^L(\alpha) = \prod_{\sigma \in G} \sigma(\alpha) \in \mathfrak{P}' \cap \mathcal{O}_K = \mathfrak{p}$$

and $\sigma(\alpha) \notin \mathfrak{P}$ for all σ . As \mathfrak{P} is prime, it follows that $N_K^L(\alpha) \notin \mathfrak{P}$, which is a contradiction.

Proposition 6.1.3. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$. Furthermore, let \mathfrak{P} and \mathfrak{P}' be prime ideals of \mathcal{O}_L with $\mathfrak{P}, \mathfrak{P}' \mid \mathfrak{p}$.

- i) We have $e(\mathfrak{P} \mid \mathfrak{p}) = e(\mathfrak{P}' \mid \mathfrak{p})$.
- ii) We have $\mathcal{O}_L/\mathfrak{P} \cong \mathcal{O}_L/\mathfrak{P}'$ as $\mathcal{O}_K/\mathfrak{p}$ -algebras. In particular, $f(\mathfrak{P} \mid \mathfrak{p}) = f(\mathfrak{P}' \mid \mathfrak{p})$.

⁶ This is the Frobenius automorphism.

Proof.

i) Let

$$\mathfrak{p}\mathcal{O}_L = \prod_{i=1}^r \mathfrak{P}_i^{e_i}$$

and denote $\mathfrak{P} = \mathfrak{P}_1$. Let σ be an automorphism such that $\sigma(\mathfrak{P}) = \mathfrak{P}'$. Then

$$\mathfrak{p}\mathcal{O}_L = \sigma(\mathfrak{p}\mathcal{O}_L) = \mathfrak{P}_i^{e_1} \prod_{i=2}^r \sigma(\mathfrak{P}_i)^{e_i}.$$

ii) Note that σ induces a homomorphism $\mathcal{O}_L \to \mathcal{O}_L / \sigma(\mathfrak{P})$ by $\alpha \mapsto \sigma(\alpha) + \sigma(\mathfrak{P})$. As its kernel is \mathfrak{P} , we get $\mathcal{O}_L/\mathfrak{P} \cong \mathcal{O}_L/\mathfrak{P}'$.

Definition 6.1.4. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be such that $\mathfrak{P} \mid \mathfrak{p}$. Then

$$D(\mathfrak{P}) = \{ \sigma \in G \mid \sigma(\mathfrak{P}) = \mathfrak{P} \}$$

is the decomposition group of \mathfrak{P} . The fixed field $L^{D(\mathfrak{P})}$ is the decomposition field of \mathfrak{P} .

Remark 6.1.4.1. As G acts transitively, we have $[G:D(\mathfrak{P})]=r=[L^{D(\mathfrak{P})}:K]$. In particular, \mathfrak{p} is non-split if and only if $L^{D(\mathfrak{P})}=K$ and is completely split if and only if $L^{D(\mathfrak{P})}=L$.

Remark 6.1.4.2. Every $\sigma \in D(\mathfrak{P})$ induces an automorphism $\overline{\sigma}$ of $\mathcal{O}_L/\mathfrak{P}$ by $\alpha + \mathfrak{P} \mapsto \sigma(\alpha) + \mathfrak{P}$.

Remark 6.1.4.3. Denote $\kappa(\mathfrak{P}) = \mathcal{O}_L/\mathfrak{P}$ and $\kappa(\mathfrak{p}) = \mathcal{O}_K/\mathfrak{p}$. Then $\overline{\sigma} \in \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right)$. Furthermore, $\sigma \mapsto \overline{\sigma}$ is a group homomorphism.

Proposition 6.1.5. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be such that $\mathfrak{P} \mid \mathfrak{p}$. Then the monomorphism $D(\mathfrak{P}) \to \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right)$ is surjective.

Proof. Let $\alpha \in \mathcal{O}_L$ be such that $\overline{\alpha} \in \kappa(\mathcal{P})$ is a primitive element of the field extension $\kappa(\mathfrak{P})/\kappa(\mathfrak{p})$. Let $\overline{g} \in \kappa(\mathfrak{p})[x]$ and $h \in \mathcal{O}_K[x]$ be the minimal polynomials of $\overline{\alpha}$. It follows that $\overline{g} \mid \overline{h}$.

As L/K is Galois, the polynomial h splits into linear factors, that is

$$h = \prod_{\tau \in \operatorname{Hom}_{K}(K(\alpha), \mathbb{C})} (x - \tau(\alpha)),$$

and each τ extends to some $\sigma_i \in \operatorname{Hom}_K(L,\mathbb{C}) = G$.

Let $\tau \in \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right)$. Then $\overline{g}\left(\tau r \overline{\alpha}\right) = \tau\left(\overline{g}\left(\overline{\alpha}\right)\right) = 0$, hence $\tau\left(\overline{\alpha}\right)$ is a root of \overline{g} and \overline{h} . Hence $\tau\left(\overline{\alpha}\right) = \overline{\sigma_i(\alpha)}$ for some i and therefore $\tau = \overline{\sigma}_i$.

Definition 6.1.6. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be such that $\mathfrak{P} \mid \mathfrak{p}$. The group

$$I(\mathfrak{P}) = \ker \left(D(\mathfrak{P}) \to \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right) \right) = \{ \sigma \in G \mid \forall \alpha \in \mathcal{O}_L \colon \sigma(\alpha) - \alpha \in \mathfrak{P} \}$$

is the inertia group of \mathfrak{P} and the fixed field $L^{I(\mathfrak{P})}$ is the inertia field of \mathfrak{P} .

Theorem 6.1.7. Let $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ and $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be such that $\mathfrak{P} \mid \mathfrak{p}$. Denote as usual $f = f(\mathfrak{P} \mid \mathfrak{p})$ and $e = e(\mathfrak{P} \mid \mathfrak{p})$ and let $r = |\{\mathfrak{P}' \in \mathcal{P}(\mathcal{O}_L) \mid \mathfrak{P}' \mid \mathfrak{p}\}|$. Finally, let

$$\mathfrak{P}_I = \mathfrak{P} \cap L^{I(\mathfrak{P})}$$
 and $\mathfrak{P}_D = \mathfrak{P} \cap L^{D(\mathfrak{P})}$.

i) The extension $L^{I(\mathfrak{P})}/L^{D(\mathfrak{P})}$ is Galois with

$$\operatorname{Gal}\left(L^{I(\mathfrak{P})}/L^{D(\mathfrak{P})}\right) \cong \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right).$$

Furthermore,

$$|I(\mathfrak{P})| = \left[L:L^{I(\mathfrak{P})}\right] = e \quad \text{and} \quad |D(\mathfrak{P}):I(\mathfrak{P})| = \left[L^{I(\mathfrak{P})}:L^{D(\mathfrak{P})}\right] = f.$$

- ii) We have $e(\mathfrak{P}_D \mid \mathfrak{p}) = f(\mathfrak{P}_D \mid \mathfrak{p}) = 1$.
- iii) We have $e(\mathfrak{P}_I \mid \mathfrak{P}_D) = 1$ and $f(\mathfrak{P}_I \mid \mathfrak{P}_D) = f$.
- iv) We have $e(\mathfrak{P} \mid \mathfrak{P}_I) = e$ and $f(\mathfrak{P} \mid \mathfrak{P}_I) = 1$.

Proof.

i) By construction, $L/L^{D(\mathfrak{P})}$ is Galois with $\operatorname{Gal}(L/L^{D(\mathfrak{P})}) = D(\mathfrak{P})$. As $I(\mathfrak{P}) \triangleleft D(\mathfrak{P})$, the extension in question is indeed Galois and

$$\operatorname{Gal}\left(L^{I(\mathfrak{P})}/L^{D(\mathfrak{P})}\right) \cong D(\mathfrak{P})/I(\mathfrak{P}) \cong \operatorname{Gal}\left(\kappa(\mathfrak{P})/\kappa(\mathfrak{p})\right).$$

Recall that [L:K] = n = ref. As $|G:D(\mathfrak{P})| = r$, we conclude $[L:L^{D(\mathfrak{P})}] = ef$. But then

$$|D(\mathfrak{P}): I(\mathfrak{P})| = \left| \operatorname{Gal} \left(\kappa(\mathfrak{P}) / \kappa(\mathfrak{p}) \right) \right| = f$$

and so $|I(\mathfrak{P})| = e$.

ii) First note that

$$e = e(\mathfrak{P} \mid \mathfrak{P}_I) \cdot e(\mathfrak{P}_I \mid \mathfrak{P}_D) \cdot e(\mathfrak{P}_D \mid \mathfrak{p}) \quad \text{and} \quad f = f(\mathfrak{P} \mid \mathfrak{P}_I) \cdot f(\mathfrak{P}_I \mid \mathfrak{P}_D) \cdot f(\mathfrak{P}_D \mid \mathfrak{p}).$$

By construction, $\operatorname{Gal}(L/L^{D(\mathfrak{P})})$ fixes \mathcal{P} , but also acts transitively on prime ideals lying over \mathfrak{P} . It follows that \mathfrak{P}_D is non-split in L. We deduce that

$$ef = [L : L^{D(\mathfrak{P})}] = e(\mathfrak{P} \mid \mathfrak{P}_D) \cdot f(\mathfrak{P} \mid \mathfrak{P}_D),$$

therefore $e(\mathfrak{P}_D \mid \mathfrak{p}) = f(\mathfrak{P}_D \mid \mathfrak{p}) = 1$.

iii) The inertia group of \mathfrak{P} in $L/L^{D(\mathfrak{P})}$ is $I(\mathfrak{P})$. But then

$$f(\mathfrak{P}_I \mid \mathfrak{P}_D) = \left| \operatorname{Gal} \left(\kappa(\mathfrak{P}) / \kappa(\mathfrak{p}) \right) \right| = |D(\mathfrak{P}) : I(\mathfrak{P})| = f.$$

This also shows that $e(\mathfrak{P}_I \mid \mathfrak{P}_D) = 1$.

iv) Evident from the previous two statements.

Hilbert theory

Luka Horjak

Lemma 6.1.8. Let p be an odd prime and $\zeta \in \mu_p^*(\mathbb{C})$. Then the unique quadratic subfield of $\mathbb{Q}(\zeta)$ is $\mathbb{Q}(\sqrt{p^*})$, where $p^* = (-1)^{\frac{p-1}{2}}p$.

Proof. The extension $\mathbb{Q}(\zeta)/\mathbb{Q}$ is Galois with cyclic Galois group isomorphic to \mathbb{Z}_{p-1} . It therefore has a unique subgroup of index 2, which gives us the sought after field. Denote it by $K = \mathbb{Q}\left(\sqrt{d}\right)$. As p is the only ramified prime in $\mathbb{Q}(\zeta)/\mathbb{Q}$, it is also ramified in K. It follows that p is the only prime number dividing d, but also note that $2 \nmid p$, as 2 is unramified. That also implies $d \equiv 1 \pmod{4}$, therefore $d = (-1)^{\frac{p-1}{2}}p$, as required. \square

Theorem 6.1.9. Let p be an odd prime, $\zeta \in \mu_p^*(\mathbb{C})$ and $p^* = (-1)^{\frac{p-1}{2}}p$. Then $q \in \mathbb{P}$ splits in $\mathbb{Q}(\sqrt{p^*})$ if and only if q lies under an even number of prime ideals in $\mathbb{Q}(\zeta)$.

Proof. Let $K = \mathbb{Q}(\sqrt{p^*})$ and $L = \mathbb{Q}(\zeta)$. Suppose first that q splits, that is $q\mathcal{O}_K = \mathfrak{q}_1\mathfrak{q}_2$, where $\mathfrak{q}_1 \neq \mathfrak{q}_2 \in \mathcal{P}(\mathcal{O}_K)$. Choose an automorphism $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ such that $\sigma(\mathfrak{q}_1) = \mathfrak{q}_2$. Then σ induces a bijection

$$\{\mathfrak{Q} \in \mathcal{P}(\mathcal{O}_L) \mid \mathfrak{Q} \mid \mathfrak{q}_1\} \rightarrow \{\mathfrak{Q} \in \mathcal{P}(\mathcal{O}_L) \mid \mathfrak{Q} \mid \mathfrak{q}_2\},$$

therefore the cardinality of the set $\{\mathfrak{Q} \in \mathcal{P}(\mathcal{O}_L) \mid \mathfrak{Q} \mid q\}$ is even.

Let $\mathfrak{Q} \in \mathcal{P}(\mathcal{O}_L)$ be such that $\mathfrak{Q} \mid q$ and suppose that the cardinality r of the set $\{\mathfrak{Q}' \in \mathcal{P}(\mathcal{O}_L) \mid \mathfrak{Q}' \mid q\}$ is even. Then

$$r = \left| \operatorname{Gal} \left(L / \mathbb{Q} \right) : D(\mathfrak{Q}) \right|$$

is even, therefore

$$\left[L^{D(\mathfrak{Q})}:\mathbb{Q}\right]$$

is even and therefore contains the unique quadratic subfield K of L. By theorem 6.1.7, we have

$$e\left(\mathfrak{Q}\cap L^{D(\mathfrak{Q})}\ \middle|\ q\right)=f\left(\mathfrak{Q}\cap L^{D(\mathfrak{Q})}\ \middle|\ q\right)=1$$

and therefore $e(\mathfrak{q}_i \mid \mathfrak{q}) = f(\mathfrak{q}_i \mid \mathfrak{q}) = 1$, hence q splits.

Theorem 6.1.10 (Quadratic reciprocity law). Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Proof. As before, let $p^* = (-1)^{\frac{p-1}{2}}p$ and $K = \mathbb{Q}(\sqrt{p^*})$. Then

$$\left(\frac{p^*}{q}\right) = \left(\frac{-1}{q}\right)^{\frac{p-1}{2}} \cdot \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \cdot \left(\frac{p}{q}\right).$$

Note that $\left(\frac{p^*}{q}\right) = 1$ is equivalent to q splitting in K, which is in turn equivalent to q lying under an even number of prime ideals in $\mathbb{Q}(\zeta)$.

Denote $f = \operatorname{ord}_{\mathbb{Z}_n^*}(\overline{q})$. Then q lies under precisely

$$\frac{[\mathbb{Q}(\zeta):\mathbb{Q}]}{f} = \frac{\varphi(p)}{f} = \frac{p-1}{f}$$

prime ideals. The number $\frac{p-1}{f}$ is even if and only if $f \mid \frac{p-1}{2}$, which is equivalent to $\left(\frac{q}{p}\right) \equiv q^{\frac{p-1}{2}} \equiv 1 \pmod{p}$.

6.2 Frobenius elements

Definition 6.2.1. Let $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be unramified. The *Frobenius element* of \mathfrak{P} , denoted by

 $\left(\frac{L/K}{\mathfrak{P}}\right) \in \operatorname{Gal}\left(L/K\right)$

is the unique automorphism of L/K that maps to the Frobenius automorphism of $\kappa(\mathfrak{P})/\kappa(\mathfrak{p})$. In other words, $\sigma = \left(\frac{L/K}{\mathfrak{P}}\right)$ is the unique automorphism such that $\sigma(\alpha) - \alpha^q \in \mathfrak{P}$ for $q = N(\mathfrak{p})$.

Lemma 6.2.2. Let $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be unramified. Then ord $\left(\left(\frac{L/K}{\mathfrak{P}}\right)\right) = f(\mathfrak{P} \mid \mathfrak{p})$.

Proof. The proof is obvious and need not be mentioned.

Lemma 6.2.3. Let $\tau \in \text{Gal}(L/K)$, $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ and $\mathfrak{P}' = \tau(\mathfrak{P})$. Then

$$\left(\frac{L/K}{\mathfrak{P}'}\right) = \tau \left(\frac{L/K}{\mathfrak{P}}\right) \tau^{-1}.$$

Proof. By definition, we have $\sigma \in D(\mathfrak{P})$, therefore $\tau \sigma \tau^{-1} \in D(\mathfrak{P}')$. But then

$$\sigma\left(\tau^{-1}(\alpha)\right) - \tau^{-1}(\alpha)^q \in \mathfrak{P}$$

for all $\alpha \in \mathcal{O}_L$, which implies

$$\tau\left(\sigma\left(\tau^{-1}(\alpha)\right)\right) - \alpha^q \in \mathfrak{P}'.$$

Remark 6.2.3.1. If the Galois group is abelian, this defines a unique Frobenius element for each $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$.

Lemma 6.2.4. Let $K \subseteq M \subseteq L$ be number fields such that L/K is abelian.⁷ For unramified (in L) $\mathfrak{p} \in \mathcal{P}(\mathcal{O}_K)$ we have

$$\left. \left(\frac{L/K}{\mathfrak{p}} \right) \right|_{M} = \left(\frac{M/K}{\mathfrak{p}} \right).$$

Proof. Let $\mathfrak{P} \in \mathcal{P}(\mathcal{O}_L)$ be a prime ideal such that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$. Denote $q = |\mathcal{O}_K/\mathfrak{p}|$ and $\sigma = \left(\frac{L/K}{\mathfrak{p}}\right)$. Since M/K is Galois, we have that $\sigma|_M \in \operatorname{Gal}(M/K)$. It follows that

$$\sigma(\alpha) - \alpha^q \in \mathcal{O}_M \cap \mathfrak{P}.$$

Theorem 6.2.5 (Quadratic reciprocity law). Let p and q be distinct odd primes. Then

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

⁷ That is, it is Galois with abelian Galois group.

Proof. As before, we will prove that $\binom{p^*}{q} = \binom{q}{p}$. Let $\zeta \in \mu_p^*(\mathbb{C})$ and denote $L = \mathbb{Q}(\zeta)$ and $K = \mathbb{Q}(\sqrt{p^*})$. Since L/\mathbb{Q} is abelian, we have

$$\left. \left(\frac{L/\mathbb{Q}}{q} \right) \right|_{K} = \left(\frac{K/\mathbb{Q}}{q} \right) = \left(\frac{p^{*}}{q} \right)$$

as an element of $\operatorname{Gal}\left(K/\mathbb{Q}\right)\cong S^{0}$. But by definition, $\left(\frac{L/\mathbb{Q}}{q}\right)(\zeta)=\zeta^{q}$. The map

$$\mathbb{Z}_p^* \cong \operatorname{Gal}\left(L/\mathbb{Q}\right) \to \operatorname{Gal}\left(K/\mathbb{Q}\right) \cong S^0$$

induced by the restriction has kernel $\left(\mathbb{Z}_p^*\right)^2$, as it is the only subgroup of index 2. Thus the element $\left(\frac{L/\mathbb{Q}}{q}\right)\Big|_K$ is trivial if and only if q is a square modulo p, hence

$$\left. \left(\frac{L/\mathbb{Q}}{q} \right) \right|_{K} = \left(\frac{q}{p} \right). \qquad \Box$$

6.3 Chebotarev's density theorem

Definition 6.3.1. Let K be a number field and $S \subseteq \mathcal{P}(\mathcal{O}_K)$. We say that S has natural density $\delta \in [0,1]$ if

 $\lim_{M \to \infty} \frac{|\{ \mathfrak{p} \in S \mid N(\mathfrak{p}) \leq M \}|}{|\{ \mathfrak{p} \in \mathcal{P}(\mathcal{O}_K \mid N(\mathfrak{p}) \leq M \}|} = \delta.$

Theorem 6.3.2 (Chebotarev). Let K and L be number fields with L/K being Galois and denote G = Gal(L/K). Furthermore, let $C \subseteq G$ be a conjugacy class. Then

$$\left\{ \mathfrak{p} \in \mathcal{P}(\mathcal{O}_K) \mid \left(\frac{L/K}{\mathfrak{p}}\right) = C \right\}$$

has density $\frac{|C|}{|G|}$.

Corollary 6.3.2.1. In a quadratic number field, half of the prime numbers split and half are inert (asymptotically).

Corollary 6.3.2.2. The completely split primes have density $\frac{1}{[L:K]}$.

Corollary 6.3.2.3. Every class in $\mathcal{C}(\mathcal{O}_K)$ contains infinitely many prime ideals.

Theorem 6.3.3 (Dirichlet). Let $a, b \in \mathbb{N}$ be coprime. Then there are infinitely many prime numbers of the form a + bn for $n \in \mathbb{N}$. Furthermore, their density is equal to $\frac{1}{\wp(b)}$.

Proof. Let $K = \mathbb{Q}(\zeta)$, where $\zeta \in \mu_b^*(\mathbb{C})$. Then $\operatorname{Gal}(K/\mathbb{Q}) \cong \mathbb{Z}_b^*$. Note that $\left(\frac{K/\mathbb{Q}}{p}\right) = p + b\mathbb{Z}$ for $p \nmid b$. Such primes have density $\frac{1}{|\operatorname{Gal}(K/\mathbb{Q})|} = \frac{1}{\varphi(b)}$.

Index

A absolute convergence, 4	integral element, 27 integrally closed domain, 27
algebraic conjugate, 13 field extension, 13 integer, 13 number, 13	L lattice, 32 Legendre symbol, 46 lies over, under, 41
B basis, 32	M Minkowski's theorem, 33, 35, 37
C Chebotarev's theorem, 57 Chinese remainder theorem, 31 class group, 30 class number, 37	N natural density, 57 non-split, 44 norm, 16, 36 number field, 13
complete lattice, 32 completely split, 44 conductor, 42 cyclitomic field, 14 cyclotomic polynomial, 15 D	P P-adic valuation, 30 Pisot number, 38 prime counting function, 4 prime number theorem, 10 primitive element theorem, 13
decomposition group, field, 52 Dedekind domain, 27 Dedekind-Kummer theorem, 43 degree, 13	Q Quadratic reciprocity law, 47, 54, 55 quadratic residue, 46
Dirichlet's theorem, 57 Dirichlet's unit theorem, 39 discriminant, 17	R ramification index, 41 ramified, unramified, 44
E Euclidean domain, 11 F	real, complex embedding, 34 residue field, 41 Riemann zeta function, 5 ring of integers, 14
Fermat's theorem, 11 fractional ideal, 27 Frobenius automorphism, 51	root of unity, 14 S Stickelberger's discriminant theorem, 26
Frobenius element, 55 fundamental domain, 32	structure theorem, 19 T
H Hermite's theorem, 37	trace, 16 U
I inert, 44	unique factorisation domain, 11
inertia degree, 41 inertia group, field, 52 integral basis, 19	V volume, 33