Lecture 14. Nonparametric GLMs (cont.)

Nan Ye

School of Mathematics and Physics University of Queensland

Recall: Nonparametric Models

Parametric models

- Fixed structure and number of parameters.
- Represent a fixed class of functions.

Nonparametric models

- Flexible structure where the number of parameters usually grow as more data becomes available.
- The class of functions represented depends on the data.
- Not models without parameters, but nonparametric in the sense that they do not have fixed structures and numbers of parameters as in parametric models.

This Lecture

- Smoothing splines
- Generalized additive models

Smoothing Splines

If we fit a degree 8 polynomial on these 9 points, will the polynomial be a good fit?

No...

Runge phenomenon: polynomial fits can be very unstable.

Trade-off between smoothness and quality of fit

- We want to find a curve f(x) that fits data well, and is sufficiently smooth at the same time.
- This can be formulated as finding f to minimize

$$R(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda J(f),$$

where J(f) is a measure of the roughness of f, and $\lambda > 0$ is a parameter controlling the tradeoff between the smoothness and the quality of fit.

• J(f) is also called a regularizer.

Measuring roughness

- For a quadratic function $f(x) = cx^2$, large f''(x) indicates that the curve is very wiggly.
- In general, for any function f, if f''(x) is usually large, then f looks very wiggly.
- We can use

$$J(f) = \int_a^b f''(x)^2 dx$$

as a measure for overall roughness of f over [a, b].

Smoothing splines

- Assume that $a < \min_i x_i$, and $b > \max_i x_i$.
- Consider the problem of finding a function f minimizing

$$R(f) = \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int_{a}^{b} f''(x)^2 dx.$$

- When $\lambda = 0$, f can be any function passing through the data.
- When $\lambda = \infty$, f is the OLS fit.
- When $0 < \lambda < \infty$, f is a natural cubic spline with knots at the unique x_i values.

Revisiting the example

A smoothing spline can fit the data well and is smooth!

A basis for natural cubic spline

- Recall: natural splines are linear at two ends.
- Assume that the knots are t_1, \ldots, t_m .
- A natural cubic spline is a linear combination of the following m basis functions

$$n_1(x) = 1$$
, $n_2(x) = x$,
 $n_{2+i}(x) = d_i(x) - d_{m-1}(x)$, $i = 1, ..., m-2$,

where
$$d_i(x) = \frac{(x-t_i)_+^3 - (x-t_m)_+^3}{t_m-t_i}$$
.

Fitting a smoothing spline

- Training data: $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbf{R} \times \mathbf{R}$.
- An smoothing spline is fitted by minimizing

$$\hat{\beta} = \sum_{i=1}^{n} (\beta^{\top} \mathbf{z}_i - y_i)^2 + \lambda \beta^{\top} \Omega \beta,$$

where $\mathbf{z}_i = (n_1(x_i), \dots, n_n(x_i))$, n_i 's use x_i 's as the knots, and $\Omega_{ij} = \int n_i''(x)n_i''(x)dx$.

The fitted spline is

$$f(x) = \sum_{i} \hat{\beta}_{i} n_{i}(x).$$

Matrix form

- Let **Z** be the $n \times n$ matrix with \mathbf{z}_i as the *i*-th row.
- Then $\hat{\beta}$ can be written as

$$\hat{eta} = (\mathbf{Z}^{ op}\mathbf{Z} + \lambda\Omega)^{-1}\mathbf{Z}^{ op}\mathbf{y}.$$

We thus have

$$\hat{\mathbf{y}} = \mathbf{Z}\hat{\beta} = S_{\lambda}\mathbf{y},$$

where S_{λ} is the smoother matrix

$$S_{\lambda} = \mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z} + \lambda\Omega)^{-1}\mathbf{Z}^{\top}.$$

Effective degree of freedom

The effective degree of freedom of a smoothing spline is

$$\mathsf{df}_{\lambda} = \mathsf{trace}(S_{\lambda}),$$

where the trace of a matrix is the sum of its diagonal elements.

 The effective degree of freedom can be considered as a generalization of the concept of the number of free parameters.

Selection of smoothing parameters

- The effective degree of freedom df_{λ} provides an intuitive way to manually specify the smoothing parameter λ .
- There are various procedures used for automatically determining the λ values, such as cross-validation, generalized cross validation.

Smoothing splines in R

```
> fit.spline.df <- smooth.spline(cars$speed, cars$dist, df=9)</pre>
Smoothing Parameter spar= 0.3858413 lambda= 0.0001576001 (11
    iterations)
Equivalent Degrees of Freedom (Df): 8.998755
Penalized Criterion (RSS): 2054.319
GCV: 262.3012
> fit.spline.gcv <- smooth.spline(cars$speed, cars$dist)</pre>
Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11
    iterations)
Equivalent Degrees of Freedom (Df): 2.635278
Penalized Criterion (RSS): 4187.776
GCV: 244.1044
```

• By default, the smoothing parameter λ is determined using generalized cross validation.

Generalized Additive Models

- Smoothing spline is a nonparametric analogue of OLS.
- We can extend the approach to GLM.

Idea

- Replace the linear predictor by $\beta_0 + h_1(x_1) + \ldots + h_d(x_d)$.
- Maximize roughness penalized log-likelihood instead of log-likelihood.

Generalized additive model (GAM)

• Recall: A GLM has the following structure

(systematic)
$$\mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}),$$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

• A generalized additive model has the following structure

(systematic)
$$\mathbb{E}(Y \mid \mathbf{x}) = \beta_0 + \sum_i h_i(x_i)$$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

This defines a conditional probability model

$$p(y \mid \mathbf{x}, \beta_0, h_1, \ldots, h_d)$$

Roughness penalty approach for GAM

• We want to choose $\beta_0, h_1, \ldots, h_d$ to maximize

$$\sum_{i} \ln p(y_i \mid \mathbf{x}_i, \beta_0, h_1, \dots, h_d) - \sum_{j} \lambda_j \int h_j''(x_j)^2 dx_j.$$

- Again, if each $\lambda_j > 0$, then each h_j must be a natural cubic spline with knots at the unique values of x_j .
- This reduces the problem to a finite-dimensional parametric regression problem.

Remarks

- Higher order derivatives may be used in the regularizer (smoothness penalty).
- We can also use regression splines instead of smoothing splines to represent h_i 's.
- h_i 's may use a mix of different representations. e.g. $h_1(x_1) = x_1$, $h_2(x_2)$ a regression spline, $h_3(x_3)$ a smoothing spline...

What You Need to Know

- Smoothing splines
 - The roughness penalty approach
 - Natural cubic splines as smoothing splines
 - Smoothing parameter and effective degree of freedom
- Generalized additive model
 - GAM as a generalization of GLM
 - Roughness penalty approach for GAM