O'ZBEKISTON RESPUBLIKASI O'RTA VA OLIY TA'LIM VAZIRLIGI

BUXORO DAVLAT UNIVERSITETI TABIIY FANLAR FAKUL'TETI

O'simliklarni oziqlanishi va o'g'itlar

fanidan laboratoriya mashg'ulotlarni

USLUBIY QO'LLANMA

Ushbu qo'llanma Oliy ta'lim muassasalarining 5141000 — Tuproqashunoslik, 5620100 — Agrokimyo va agrotuproqshunoslik, 5410200-Agronomiya, 5410300 — O'simliklar himoyasi va karantini, 5410200 — Kasbiy ta'lim (Agronomiya) ta'lim yonalishlarining 2017-2018 o'quv yili namunaviy o'quv rejalari acocida labaratoriya ishlarini bajarish ushun mavzulari, test va yakuniy nazorat savollari tavsiya etiladi.

TUZUVCHILAR;

M.HAMIDOV - Tuproqshunoslik va geografiya kafrdrasi dosenti S.S XAYRIEV - Tuproqshunoslik va geografiya kafrdrasi dosenti

TAQRIZCHILAR:

H.T.Ortikova - Tuproqshunoslik va geografiya kafrdrasi dosenti E.D.Niyozov - kimyo kafedrasi dosenti

O'simliklarni oziqlanishi va o'g'itlar fanidan laboratoriya mashg'ulotlarida o'tiladigan mavzular nomi, mazmuni va hajmi.

№	
	Mashg'ulot mavzularining nomlanishi
	I. O'simliklar tahlili
1	Kirish. Laboratoriyada ishlaganda asosiy xavfsizlik texnikasi. Eritmalar. O'simlik namunasini olish va analizga tayyorlash
2	O'simlik tarkibidagi quruq modda, gigroskopik namligini va «xom kul» chiqishini aniqlash
3	O'simlik tarkibidagi moyni «quruq qoldiq» usulida aniqlash
4	O'simliklarda nitratli azot mikdorini disulfofenol kislotasi yordamida aniqlash.
5	K. Ginzburg usulida o'simlik kuli hosil qilish va undan azot, fosfor va kaliyni aniqlash
6	O'simlik tarkibidagi oqsil azotini Barnshteyn usulida aniqlash
	II. Tuproq tahlili
7	Daladan tuproq namunasini olish uni tahlilga tayyorlash. Tuproq suvli so'rimidan quruq qoldiqni aniqlash. Tuproq (pH) ni N.I. Alyamovskiy usulida aniqlash. Tuproq ishqoriyligini aniqlash.
8	Tuproq tarkibidagi nitratli azot miqdorini Granvald-Lyaju usulida aniqlash.
9	Singdirilgan ammoniy shaklidagi azotni Nessler reaktivida aniqlash.
10	Karbonatli tuproqlar tarkibidagi harakatchan fosfor va almashinuvchan kaliyni B.P. Machigin usulida aniqlash.
11	Tuproqdagi yalpi N, P, K miqdorini (bir namunadan) aniqlash.
	III. O'g'it tahlili
12	Mineral o'g'itlarni sifat reaksiyalari yordamida turini aniqlash.
13	Selitra tarkibidagi azotni ishqoriy muhitdagi aralashmadan Devard usulida aniqlash.
14	Go'ng tarkibidagi N, P, K mikdorini aniqlash
Jami	

MAVZU – 1

KIRISh. O'SIMLIKLARNI OZIQLANISHI VA O'G'ITLAR LABORATORIYASIDA IShLAGANDA ASOSIY XAVFSIZLIK TEXNIKASI. ERITMALAR. O'SIMLIK NAMUNASI OLISh VA ANALIZGA TAYYORLASh

<u>Mashg'ulotning maqsadi.</u> O'simliklarni oziqlanishi va o'g'itlar amaliy va laboratoriya mashg'ulotlari fanining asosiy maqsadi agrokimyoviy tekshirishlar uslublarini o'rgatishdan iborat.

Talaba amaliy darslarda fanning ahamiyati, uning boshqa fanlar bilan munosabati va qishloq xo'jaligidagi mohiyatini o'rganadi. Mashg'ulotda laboratoriya tahlillari o'tkazish vaqtida havfsizlik texnikasiga rioya qilish, elektr asboblaridan foydalanish, kimyoviy moddalar bilan ishlash va turli maqsaddagi tahlillar uchun namuna olish qoidalarini o'rganadi.

O'SIMLIKLARNI OZIQLANISHI VA O'G'ITLAR FANINING ASOSIY VAZIFALARI

- 1.Tuproq tahlili orqali shu tuproqda meliorativ tadbir o'tkazish kerak yoki yo'qligini aniqlash.
- 2.O'simlikni sifat va kimyoviy jihatdan tahlil qilib kimyoviy tarkibini o'rganish.
- 3.Qishloq xo'jalik ekinlarining qay darajada oziq elementlariga talabini aniqlash.
- 4.O'simliklarni biologik, xo'jalik hususiyatlariga qarab o'sish davrining barcha fazalarida yetarlicha oziqa elementlari bilan ta'minlash.
 - 5.O'g'it tarkibini va xususiyatlarini o'rganish.
- 6.Olingan tekshirish natijalari asosida, o'g'itning xususiyatlarini bilgan holda ma'lum tuproq iqlim sharoiti va rejalashtirilgan hosil uchun o'simlik turiga qarab maqbul o'g'it me'yorini belgilash va oziqlantirishni deffensiallash vazifasini bajaradi.

1.AGROKIMYO LABORATORIYASIDA IShLAGANDA ASOSIY XAVFSIZLIK QOIDALARI

- 1. Ushbu instruksiya bilan tanishmasdan turib talabalar, aspirantlar va ilmiy xodimlarga laboratoriyada ishlashga ruxsat berish qat'iy ta'qiqlanadi. Xodimlarning instruktajdan o'tganligi xavfsizlik texnikasi laboratoriya jurnaliga imzo qo'yish bilan qayd qilinadi. Laboratoriya rahbari bu javobgarlikni o'z zimmasiga oladi.
- 2. Laboratoriyada ish bajarish vaqtida tozalik, tartib va xavfsizlik texnikasi qoidalariga rioya qiling. Chunki tartibsizlik, shoshqaloqlik yoki ishdagi palapartishlik ko'pincha oqibati og'ir bo'lgan baxtsiz hodisalarga olib keladi.
- 3. Laboratoriyada suv ichish, ovqatlanish va chekish qat'iyan ma'n qilinadi.
- 4. O'qituvchi bilan ish rejasini kelishib olmasdan talabalarni ishga kirishishi ma'n qilinadi.

- 5. Hamma kimyoviy reaktivlarni faqat maxsus moslashgan etiketkalangan idishlarda saqlash kerak. Qattiq yoki suyuq bo'lishidan qat'iy nazar bir soat ham etiketkasiz yoki yozuvsiz saqlanishi mumkin emas.
- 6. Gaz, suv va elektr asboblarni ishlatish tugashi bilan tezlikda foydalanilgan jo'mraklarini yoping, elektr asboblarini o'chiring. Laboratoriyadan chiqa turib kimyoviy jarayonlarni tugaganligini stollarda, mo'rili shkafda, keyin tashqaridagi elektr tokini, gaz va suv o'chirilganligini tekshirib ko'ring.
- 7. Xavfsizlik qoidalarini buzgan shaxslar ma'muriyat tomonidan javobgarlikka tortiladi.

KISLOTA VA QAYNOQ MODDALAR BILAN IShLASh QOIDALARI

- 1. Sulfat kislotani suyultirish suvga kislotani quyish yo'li bilan o'tkaziladi. Bu ish faqat issiqqa chidamli va chinni idishlarda olib boriladi. Chunki bunda ancha miqdorda issiqlik ajralib chiqadi.
- 2. Kuchli nitrat, sulfat va xlorid kislotalarini bir idishdan ikkinchisiga quyish faqat ishlayotgan mo'rili shkafda bajarilishi kerak. Shkaf eshiklari imkoni boricha yopilgan bo'lishi kerak.
- 3. Kuchli kislotalar bilan ishlashda himoya ko'zoynaklarini taqish kerak. Tutun chiqib turadigan nitrat kislota hamda olium bilan ishlaganda ko'zoynaklardan tashqari uzun rezina fartuk (etak, peshband) taqib olish kerak.
- 4. Etil spirti, efir, benzol, asetonsirka, etil efiri, ayniqsa uglerod sulfidi, nitrol efir va boshqa yoqilg'i va oson yonuvchi suyuqliklar (OYOS) bilan ishlashda ochiq olov, ochiq alanga, kuchli qizdirilgan yuza yaqinida (misol uchun elektr plitkada) qizdirish o'kazish qat'iyan ta'qiqlanadi.

KUYISh VA ZAHARLANISh HOLLARIDA LABORATORIYADA KO'RSATILADIGAN BIRINChI YORDAM

- 1. Termik kuyishda tezlik bilan kuygan joy bir necha marta taninning spirtli eritmasi bilan ho'llanishi kerak (kaliy permanganat yoki etil spirti bilan ham namlash mumkin) va kuyishga qarshi bo'lgan maz (moy), sulfidin emulsiyasi (qorishmasi) surtiladi.
- 2. Kislotalardan kuyganda oldin kuygan joy yaxshilab suv bilan, keyin natriy bikarbonat eritmasi bilan yuviladi.
- 3. O'yuvchi ishqorlar bilan kuyganda, kuygan joyni yaxshilab suv bilan, keyin suyultirilgan sirka kislotasi bilan yuviladi. Ishqorlar va ammiak eritmasini ko'zga tushishi ayniqsa havfli, qattiq ishqorlarni maydalashda albatta ko'zoynak taqish kerak.
- 4. Xlor yoki brom bug'lari yutilgan xollarda spirt bug'lari bilan nafas olish kerak. Keyin esa toza, ochiq xavoga chiqish kerak.
- 5. Laboratoriyada ishlaganda asosiy e'tiborni ko'zni himoya qilishga qaratish kerak. Ko'zga har hil kimyoviy reaktivlar tushgan hollarda tezlikda og'riqqa e'tibor bermagan xolda, ko'zni 3-5 minut davomida ko'p miqdordagi suv bilan yuvish

kerak. Keyin agar ko'zga tushgan modda kislotalar reagent bo'lsa bor kislotasi eritmasi bilan yuvish kerak. Birinchi yordamni bunday tadbirlaridan keyin vrachga murojaat qilish kerak.

2. NAMUNA OLISH VA UNI TAHLILGA TAYYORLASH.

Laboratoriyada tekshiriladigan barcha tahlillar uchun atigi 100-150 gr miqdordagi analitik namunadan foydalaniladi. Shu hosil qilingan kam miqdordagi namuna ko'p miqdordagi maydon yoki yig'ishtirilgan hosil to'plamini o'zida harakterlay olishi kerak.

Shuning uchun namuna maxsus ishlab chiqilgan qoida, standart asosida olinadi. O'simlik turi va ekilish sxemasiga qarab namuna olinadi. Olinadigan namuna tahlil maqsadiga qarab ham olinadi. Boshlang'ich namuna miqdori qanchalik ko'p bo'lsa tajribaning aniqligi shunchalik yuqori bo'ladi.

Donli ekinlardan boshlang'ich namuna 0,25 m maydonchaning to'rt tomonidan dioganal bo'ylab ikki qo'shni qatordagi o'simlik hammasi ildizi bilan sug'urib olinadi. Olinadigan o'simlik o'rtacha bo'lishi shart. Kartoshka, kungaboqar, makkajo'xori, silosbop ekinlardan o'rtacha namuna olishda paykalning dioganali bo'ylab 10 tadan tipik o'simlik, qand lavlagidan 20-40 tadan o'simlik tanlanadi.

Boshlang'ich namunalar to'planib doni, poxoli, ildizi alohida aralashtirilib o'rtacha namuna hosil qilinadi. Silos, senaj uyumlarining o'rta qismidan bir marta namuna olinadi. Avtomashina, vagon yoki omborxonalarda o'simlik saqlanayotgan bo'lsa, bunda maxsus shup yordamida turli qatlamlaridan namuna olish zarur.

Olingan boshlang'ich namunalar laboratoriya jurnaliga yozilib etiketka, variant raqami yozilishi shart. Boshlang'ich namuna yaxshilab aralashtirilib, ma'lum vaqtda kvadrat yuzaga to'kilib, dioganal buyicha 4 bo'lakka bo'linadi va 0,5-1,0 kg miqdorda o'rtacha namuna hosil qilinadi,o'rtacha namuna laboratoriyada quritilib begona jinslardan tozalanib, maxsus moslama bilan maydalanib, 1 mm li elakdan o'tkazilib, elanib, aralashtirib 100-150 gr miqdorda paketga solinadi, etiketka yozilib analitik namuna hosil qilinadi. Analitik namuna tahlil uchun foydalaniladi.

Dukkakli don, don va moyli ekinlar urug'idan boshlang'ich o'rtacha namuna 150-250 gr olinadi. 15-18 soat davomida 70-80°C da quritilib maydalaniladi. Maydalash qalin devorli kosada yoki kofe yanchgich yoki laboratoriya tegirmoni yordamida bajariladi, elak bilan elanadi.

1-rasm. Dioganal usulida quruq o'simlik namunasini olish

Boshlang'ich o'rtacha namuna meva va sabzavotlardan ekin turiga qarab olinadi. Misol uchun: ildizmeva, pomidor, bodring, qalampir, olma, nok, uzum, danakli mevalarning ustki po'sti tozalanmasdan tahlil uchun olinadi. Poliz ekinlarining po'sti tozalanib tashlanadi. Karam boshining 1/4 qismi kesib analiz qilinadi. Qovun, tarvuzni yerga tegib turgan tomoni hisobga olinib, teng ikkiga uzunasiga bo'linadi, bir qismi analizga olinadi. Olingan o'rtacha suvli namuna kosachada ezilib usti doka bilan yopiladi. 10 minutdan so'ng shamollatgichli termostatda namligi aniqlash uchun quritiladi.

Olinishi va ishlatish maqsadlariga ko'ra namunalar quyidagi turlarga bo'linadi:

- 1.Individual
- 2.O'rtacha
- 3.Laboratoriya
- 4. Analitik

REAKTIVLAR.

Agrokimyoviy laboratoriyalarda ishlash uchun albatta turli kimyoviy reaktivlar zarur bo'ladi.

Ishlatilishiga ko'ra reaktivlar ikki guruhga bo'linadi:

- -umumiy ishlatish uchun;
- -maxsus reaktivlar.

Umumiy ishlatish uchun reaktivlar har bir laboratoriyalarda mavjud bo'lib, ularga kislota (sulfat, xlorid, azot kislotalari), ishqorlar(natriy va kaliy, ammoniy eritmalari), kalsiy va bariy oksidlari,bir qator anorganik tuzlar, indikatorlar (fenolftalein, metil qizil va h.k), misol bo'ladi.

Maxsus reaktivlar faqat ayrim tahlillarda foydalanish uchun zarur.

Tozalik darajasiga ko'ra reaktivlar quyidagi guruhlarga bo'linadi:

- -kimyoviy toza (x.ch.)
- -tahlil uchun toza (ch.d.a.)
- -toza (ch.)

Bundan tashqari reaktivlar turli kondisiyali bo'lishi mumkin:

- -texnik (tex.)
- -tozalangan (ochiщ.)
- -o'ta toza (os.ch.)
- -yuqori darajada toza (v.och.)
- -spektral toza (sp.ch.)

Laborotoriyada ishlaganda ushbu reaktivlarning asosiy xossa va

xususiyatlarini bilish zarur. Reaktivlarning besamar ishlatilishini oldini olish uchun eritmalarni tayyorlash va ularni saqlash qoidalariga amal qilish lozim.

ERITMALAR.

Eritmalar ikki va undan ortiq komponentdan iborat bir jinsli gomogen sistemalardir. Eritmani tashkil etuvchi komponentga bogʻliq ravishda gazsimon, qattiq va suyuq turlarga boʻlinadi. Agrokimyoviy tahlillarda asosan suyuq eritmalardan foydalaniladi.

Suvli eritmalar undagi moddaning miqdoriga ko'ra to'yingan va to'yinmagan, tayyorlanish aniqligiga ko'ra esa aniq va chamali guruhlarga bo'linadi.

Chamalangan, ya'ni aniqlashtirilgan eritmalar tarkibidagi moddalarning konsentrasiyasi foiz, molyar, molyal, normal konsentrasiyalar va titrlarda o'lchanadi.

<u>Foizli eritmalar</u> – eritma 100 hissasida ma'lum miqdor (massa yoki hajm oʻlchovi) da modda saqlaydi.

<u>Molyar konsentrasiyali eritma</u> – 11 da moddaning erigan gramm-mol miqdoriga teng bo'lgan eritmadir.

<u>Molyal konsentrasiyali eritma</u> – hajmi 11 emas balki 1kg qilib olinadi va hisob kitoblar xuddi molyar konsentrasiya kabi o'tkaziladi.

<u>Normal eritmalar</u> - 11 hajmda moddaning 1 gr/ekv miqdorini saqlovchi eritmalardir.

<u>Titrlangan eritmalar</u> - o'ta aniq molyar va normal eritmalar bo'lib, tahlillar uchun asosiy eritmalar hisoblanadi.

IDIShLARGA YOZISh.

Laboratoriyada ishlash davomida anglashilmovchilik yuz berishini oldini olish uchun idishlarga raqam qo'yilib boriladi. Shisha idishlar stakan va kolbalarning maxsus joylariga qalamda raqamlar qo'yiladi. Yuqori haroratda qo'llaniladigan idishlar(tigel) temir(III) xlor eritmasi bilan raqamlanadi. Agar idishlar ilgari raqamlangan bo'lsa qayta raqamlash shart emas.

O'LChOV KOLBASINI TEKSHIRISH.

O'lchov kolba xromli aralashma, distillangan suv bilan yaxshilab yuviladi va termostatda quritiladi, shundan so'ng analitik tarozida tortib, belgisigacha distillangan suv quyiladi. Kolbadagi suv xona temperaturasiga moslanguncha ushlab turiladi va yana tarozida tortiladi. Buning farqi–20° temperaturada 100 ml hajmdagi distillangan suvning massasi 99,716 g bo'lsa, 50 ml li kolbada 48,958 g bo'ladi.

Agar 20° haroratda suvning massasi R bo'lsa, hajmi x bo'ladi:

$$100*R$$
 $100(99,716-R)$ x ------ ml, tuzatmasi = — ml bo'ladi. $99,716$ $99,716$

Eslatma: Jadvalda suvning havoli joydagi massasi va hajmi berilgan. Agar bo'shliq (havosiz joyda) bo'lsa, uning massasiga 0,00106 qo'shilib, hajmidan 0,00106 ayriladi.

1-jadval

Ammiak va kislotalarning foizli eritmalarini tayyorlash uchun ulardan kerak bo'ladigan boshlang'ich miqdori.

(foizli eritmaning 1 litrga ml hisobida)

Dastlabki modda	15°C dastlabki moddaning solishtirma massasi	Dastlabki moddaning massa foizi	25%	20%	10%	5%	2%	1%
HC1	1.19	37.23	634.8	496.8	236.4	115.2	45.5	22.6
H ₂ SO ₄	1.84	95.6	167.7	129.9	60.6	29.3	11.5	5.6
HNO ₃	1.40	65.5	313.0	243.6	115.0	56.0	22	10.8
CH ₃ COOH	1.05	99.5	247.8	196.7	97.1	48.2	19.2	9.5
NH ₄ OH	0.91	25.0	1000.0	814.0	422.0	215.4	87.2	43.7

2-jadval

Suvning massasi va hajmining haroratga qarab o'zgarishi.

Harorat, C ^o	1ml suvning massasi, g	1g suvning hajmi, ml	Harorat, C ^o	1ml suvning	1g suvning hajmi, ml
				massasi, g	
10	0,9987	1,0013	18	0,9976	1,0024
11	0,9986	1,0014	19	0,9974	1,0026
12	0,9984	1,0015	20	0,9972	1,0026
13	0,9983	1,0017	21	0,9970	1,0030
14	0,9982	1,0018	22	0,9967	1,0033
15	0,9981	1,0019	23	0,9965	1,0035
16	0,9979	1,0021	24	0,9963	1,0037
17	0,9977	1,0023	25	0,9960	1,0040

IDIShLARNI YUVISh.

Tajribaning aniqligi qo'llaniladigan idishlarning tozaligiga ham bog'liq. Idishlar yangi bo'lsa ular bug'da yoki distillangan suvda yuvilib, termostatda quritiladi. Agar ular toza bo'lmasa, dastlab vodoprovod suvida, so'ngra distillangan suvda yuviladi, tozalanmasa xromli aralashma bilan yuvish shart (xromli aralashma tayyorlash uchun 10% li K₂Cr₂O₇ konsentrlangan H₂SO₄ solingan chinni kosachada suv hammomida eritiladi). Asbob xromli aralashma bilan yuvib bo'lingach, 2-3 marta issiq suv so'ngra distillangan suv bilan chayiladi.

Agar idishlarda yog' yuqi yoki mineral moddalarning qoldig'i bo'lsa, bunday idishlar 30–40% li ishqor, sovun yoki poroshok eritmasida yaxshilab yuviladi va 2-3 marta issiq suv bilan yuvilib, distillangan suv bilan 1-2 marta chayiladi. Termostatda quritiladi.

Agar idishda kaliy permanganat dog'lari bo'lsa, bunday idishlar temir sulfat yoki oksalat kislota bilan yuvilib, issiq suv va distillangan suv bilan chayiladi.

3-rasm. Tarozi turlari

4-rasm. Eksikator.

MARUZA - 2

O'simlik tarkibidagi quruq modda, gigroskopik namligini va «xom kul» chiqishini aniqlash

Gigroskopik namlikni aniqlash.

Taxlilning mohiyti. Odatda, agrokimyoviy taxlil natijalari mutloq quruq moddaga nisbatan aniqlanadi, qaysiki, o'simlik namunasi tarkibidagi gigroskopik namlikni aniqlashni taqozo etadi. Taxlil namunani qizdirish asosida tarkibidagi gigroskopik suvni yoqotish va quruq moddani tarozida tortishga asoslangan.

Ishning borishi. Diametnadiri 3,5-5,0 sm bo'lgan shisha byukslar olinadi *va* ularning stakan shilifi hamda qopqog'iga bir xil raqanlar qo'yiladi. Qopg'og'i ochiq holda termostatda 30-40 daqiqa quritiladi va massasi aniqlanadi.

2-4 g atrofida o'simlik namunasi byukslarga solinadi va analitik tarozida massasi aniqlanadi. Qopg'og'ini ochib, termostatga qo'yiladi va 100-105° S haroratda 6 soay quritiladi, so'ngra qisqich yordamida termostatdan olinadi,

eksikatorda quritiladi, tarozida tortiladi.

Byukslar shu harorattda yana 1,5-2,0 soat quritiladi va massasi aniqlanadi. Massalar orasidagi farq sezilar-sezilmas bo'lsa, uchunchi marta takrorlashga hojat qolmaudi. Ayrim mualliflar 17-18 coat davomida 85-90° S da, so'ngra 1 soat davomida 105° S da quritib, bir marta tortishni tavsiy qiladilar.

Gigroskopik namlik quyidagi formula asosida hisoblanadi:

$$\Gamma = (a-B) \cdot 100/B-A$$
; bu erda:

a va в — byuks va namunaning quritishgacha va quritishdan keying massalari, g; A — quruq byuksning massasi, g.

Material va asbob-jihozlar: analitik tarozi, termostat, eksikator, qisqich, 3,5-5,0 sm diametrli shisha byukslar, steklograf, xona haroratida quritilgan o'simlik namunalari.

Quruq modda miqdorini aniqlash

Taxlilning mohiyti. O'simlik maxsulotlari tarkibidagi quruq modda miqdorini aniqlash muhim ahamiyatga ega. Quruq modda miqdorini aniqlash uchun og'irligi ma'lum bolgan yangi o'simlik materiali 100-105⁰ S haroratda, massasi o'zgarmay qolguncha quritiladi va qayta tortiladi.

Ishning borishi. Toza quruq byuksga 10 *g* chamasi toza kvars qum va uchi to'mtoq shisha tayoqcha solinadi. Byuks qopqog'I ochiq holda (ichidagilari bilan birga), yermostatda 100-105° S haroratda 30-40 daqiqa quritiladi va ekcikatorda covutilgach, texnik torozida 0,01 g aniqlikda tortiladitay.

Byuksni quritish jarayonida quruq moddasi aniqlanadigan maxsulotning namunasi tayyorlanadi. Kartoshka tuganaklari, karambosh va sabzavotlar o'q chizig'I bo'ylab ikkiga bo'linadi va bir bo'lagi yana ikkiga bo'linadi handa uning bir bo'lagi myda bo'lakchalarga ajratiladi.niqlanadigan maxsulotning namunasi tayyorlana,di. Kartoshka tuganaklari, karambosh va sabzavotlar o'q chizig'i bo'ylab ikkiga bo'linadi va bir bo'lagi yana ikkiga bo'limadi hamda uning bir bo'lagi mayda bo'lakchakrga ajratiladi.

Olma, nok, behi kabilarning urug'lari va urug' joylari, olcha, gilos va olixo'ri kabilarning danaklari, shuningdek, barcha meva va sabzavotlarning po'sti va pardasi olib tashlanadi. Maydalangan maxsulotdan kerakli miqdorda olib (olinadigan miqdor maxsulotning barcha qisimlarini o'z ichiga olishi kerak), qaychi, qirg'ich yoki gomogenizatorda maydalanadi va taxtacha ustiga yoyiladi. Undan taxminan 5-6 g namuna olib, byuksga solinadi va shisha tayoqcha yordamida qum bilan aralashtiriladi hamda og'irligi shu tarozining o'zida aniqlanadi. Termoctatda, qopqog'ini ochib, 100-1050 S haroratda 6 soat quritiladi vaqti-vaqti bilan byuksdagi aralashma shisha tayoqcha bilan aralashtirib turiladi. Byuksning qolpog'I yopiladi, eksikatorda sovitiladi va tarozida tortiladi. Byukslar shu taxlit yna 1 soat quritiladi va tortiladi. Massalar orasidagi farq 0,02 g dan ortiq bo'lsa, yna 0,5 soat quritiladi.

Quruq modda miqdori quyudagi formula asosida hisoblanadi:

$$X = (c-a/B-a) \cdot 100$$
; bu yerda:

- a idishning massasi, g
- B namuna solingan idishning boshlang'ich massasi, g,

Olingan natijalarni qayd etish jadvali

Sana	Namuna turi va	Byuksning raqami	Idishning (tayoqcha va qum bilan)	Yngi material solingan idishning	Namuna bilan quritilgan idishning	Quriq modda miqdori,%
	raqami	-	Onan)	massa, g	Idisiiiiig	miquori,%

Material va asbob-jixozlar: yngi o'simlik namunalari, pichoq, qirg'ich, gomogenizator, taxtacha, byukslar, kalta shisha tayoqchalar, toza kvars qum, termostat, eksikator, texno-analitik tarozi.

MAVZU - 3

O'SIMLIK TARKIBIDAGI MOYNI ANIQLASh.

Mashg'ulotning maqsadi: O'simlik tarkibidagi moyni Sokslet apparatida quruq qoldiq usulida aniqlashdan iborat.

Kerakli jihoz, reaktiv va asbob uskunalar: O'simlik namunalari, yog'sizlantirilgan filtr qog'oz, Sokslet yoki Yeremenko apparati, etil efiri

Adabiyotlar: 8,9,10,11,13

Moylar tirik organizmlarda muhim ahamiyatga ega bo'lgan biologik birikma hisoblanadi. Tabiatiga ko'ra moylar uch atomli spirt C₃H₅(OH)₃ gliserinning moy kislotalari bilan hosil qilgan murakkab efirlaridir.

O'simliklarning vegetativ massasida o'rta hisobda 0,1-0,5%, urug'larida esa 2-60 % moy to'planishi mumkin. Moy olish uchun ekinlardan O'zbekistonda kunjut, zig'ir, mahsar, g'o'za yetishtiriladi. Ushbu ekinlar tarkibida va ayniqsa urug'ida moyni aniqlash muhim.

<u>Uslubning mohiyati</u> Moy va moysimon moddalar etil efiri, xloroform, benzin, benzol va boshqa organik erituvchilarda eriydi. Quruq qoldiq usulida moyni aniqlash uning etil efirida erib, namuna yogʻsizlanishiga va uning massasi kamayishini tortib aniqlashga asoslangan. Quruq qoldiq usulida moy aniqlanganda etil efirida moy kislotalaridan tashqari fosforidlar, mumlar va shunga oʻxshash boshqa organik moddalar ham eriydi. Shuning uchun bu usulda aniqlangan moy «xom moy» deb ataladi.

Quruq qoldiq usulida «xom moy» Sokslet yoki Yeremenko apparatida aniqlanadi. Apparat uch qismdan:

1. Efir solinadigan ekstraksion kolba

- 2. Ekstraktor
- 3. Sovutgichdan iborat.

<u>Ishni bajarish tartibi</u>. Yogʻsizlantirilgan filtr qogʻozdan yasalgan paket massasi oʻlchanadi. Paketga tajriba oʻtkazayotgan talaba oʻz nasabini va olingan namuna nomini oddiy qalamda yozib qoʻyadi. Paketga 1gr oʻsimlik namunasi tortib olinadi. Soʻng paket Sokslet apparati ekstraktoriga solinib, apparat ishga tushiriladi. Ekstraksiyalash ekstraktor efir bilan toʻlib, sifon orqali qaytib tushish sikli 8-12 marta qaytarilgach tugatiladi. Paket olinib ochiq havoda yoki moʻrili shkafda efir hidi yoʻqolguncha shamollatiladi va 105°C haroratda 1,5 soat quritiladi. Eksikatorda sovutilib massasi aniqlanadi.

Natijani hisoblash:

Hisob-kitobda quyidagilardan foydalaniladi.

a - paketning massasi, g;

b - paketning namuna bilan massasi, g;

v= b-a - namuna massasi, g;

d - paket bilan namunaning yog'sizlantirishdan keyingi massasi, g;

b-d =ye - moyning massasi, g;

Moyning % miqdori quyidagi formula bilan topiladi.

Nazorat savollari

- 1. Moyni tirik organizmlardagi ahamiyati va tarkibi.
- 2. O'simliklar tarkibida moyni miqdori.
- 3. Moyni aniqlash qaysi uslubga asoslangan
- 4. Yeramenko va Sokslet apparatining tuzilishi va ishlash tartibini aytib bering.

MAVZU-4

O'SIMLIKLARDA NITRATLI AZOT MIQDORINI DISULFOFENOL KISLOTASI YORDAMIDA ANIQLASh.

Mashg'ulotning maqsadi: O'simliklar tarkibidagi nitrat azotini disulfofenol kislotasi yordamida aniqlashdan iborat

Kerakli jihoz, reaktiv va asbob uskunalar: O'simlik namunalari, 100, 250 ml ulchov kolbalari, disulfofenol kislotasi, Disulfofenol kislotasi 30 gr fenol, 200 ml sulfat kislota (zichligi 1,84) 500 ml li kolbaga solinib og'zi teskari sovutgichli shisha qopqoq bilan yopilib suv hammomida 6 soat qizdiriladi, 10% li NaOH, KNO₃ ning namuna eritmasi. 0,1631 gr KNO₃ suvda eritilib hajmi 1 l ga yetkaziladi.

Adabiyotlar: 8,9,10,11,13

O'simliklar mineral oziqlanishda azotni asosan nitrat va ammoniy ionlari shaklida o'zlashtiradi. Nitrat ioni shaklida o'zlashtirilgan azot o'simlik tarkibida kechadigan fiziologik jarayonlar ta'sirida ammiakgacha qaytariladi. Ammiak o'z navbatida oqsil hosil bo'lish jarayoni va organik moddalarga sarflanadi.

O'simliklar tarkibida tashqi oziq muhiti yetarli darajada qulay bo'lganda o'simlikda nitratlar kam to'planadi. Ammo azotli o'g'itlar noto'g'ri, oshirilgan me'yorda qo'llanilishi qishloq xo'jalik mahsulotlarining tarkibida nitrat ko'p to'planishiga olib keladi. Nitratlar ayniqsa nitritlarning tashqi muhitdan oshiqcha o'zlashtirilishi o'simlikda nitrozoaminlar hosil bo'lishiga olib kelishi mumkin. Nitrozoaminlar kanserogen modda hisoblanib, organizmlar uchun xavfli hisoblanadi.

Hozirgi paytda ayrim toksik moddalar, nitratlar uchun organizm uchun xavfli bo'lmagan cheklangan miqdori yangi gigiyenik me'yori ishlab chiqilgan.

Nitrozoaminlar turli muhitlarda nitritlar va ikkilamchi ionlardan sintezlanishi mumkin va ular biologik obyektlar uchun supermutagenlar hisoblanadi.

Mineral o'g'itlar, ayniqsa azotli o'g'itlar qo'llashning oshishi mahsulot tarkibida nitratlar miqdorini aniqlab, sifatini baholashda juda muhim ekanligini ko'rsatmoqda.

4-jadval
O'simlik mahsulotlari tarkibida nitratlarning cheklangan miqdori,
1kg mahsulotda mg hisobida.

		Cheklangan miqdori, mg-kg NO-3		
T/R	Mahsulot turi	Ochiq maydon	Himoyalangan maydon	
1.	Kartoshka	250	-	
2.	Oqbosh karam ertagi	900	-	
	Kechki	500	-	
3.	Sabzi ertagi	400	-	
	Kechki	250	-	
4.	Pomidor	150	300	
5.	Bodring	150	400	
6.	Osh lavlagi	400	-	
7.	Bosh piyoz	80	-	
8.	Ko'k piyoz	600	600	
9.	Qovun	90	-	
10.	Tarvuz	60	-	
11.	Chuchuk qalampir	100	400	
12.	Qovoqcha	400	400	
13.	Xo'raki uzum navlari	60	-	
14	Olma	60	-	
15	Nok	60	-	

T/r	Oziqa turi	NO ₃ -	NO ₂ -
1.	Xashaki lavlagi	800	10
2.	Silos, senaj	200	10
3.	Parranda uchun omuxta yem	200	5
4.	Qoramollar uchun omuxta yem	500	10
5.	Yashil oziqa	200	10
6.	Pichan, somon	500	10
7.	Oziqa donlar	300	10

<u>Uslubning mohiyati</u> Nitratlarning disulfofenol kislotasida aniqlash uning nitrat bilan ishqoriy muhitda sariq rangli birikma hosil qilishga asoslangan.

$$\begin{split} &C_6H_3(HSO_3)_2OH+3HNO_3=C_6H_2(NO_2)_3OH+2H_2SO_4+H_2\\ &disulfofenol\ kislotasi\\ &C_6H_2(NO_2)_3OH\ +NH_3=C_6H_2(NO_2)_3ONH\\ &sariq\ rangli\ nitrofenol\ birikma \end{split}$$

Eritma rangi intensivligi mahsulotdagi nitratlar miqdoriga bog'liq. Bu uslub eng ko'p tarqalgan, aniqligi yuqori hisoblanadi, ammo ko'p mehnat talab qiladi.

Ishni bajarish tartibi. o'simlik namunasi qirg'ichda yoki pichoqda maydalanib 5-10gr tortib olinadi. Gomogenizatorda, agar u bo'lmasa hovonchada 25-50 ml distillangan suv bilan birgalikda maydalanib sig'imi 200 ml li kolbaga o'tkaziladi. Belgisigacha suv qo'shilib aralashtiriladi. So'ng sig'imi 100 yoki 200 ml li kolbaga filtrlanadi. Kolba belgisigacha distillangan suv bilan to'ldiriladi. Pipetka yordamida filtratdan 50 ml so'rim olinib chinni kosachaga solinadi va suv hammomida quriguncha bug'latiladi. Chinni kosacha sovutilib, quruq qoldiq ustidan 1 ml disulfofenol kislotasi tomizilib, shisha tayoqchasi yordamida qoldiq to'liq eritiladi. 10 minut o'tgach 10 ml distillangan suv quyiladi va 10%li o'yuvchi ishqor (NaOH) bilan sariq rangga o'tguncha neytrallanadi.

So'ng aralashma 100 ml li o'lchov kolbasiga o'tkaziladi, chinni kosacha chayilib, chayindi ham kolbaga solinadi va belgisigacha distillangan suv bilan to'ldiriladi. Kolba aralashtirilib kalorometrda tekshiriladi. Nitratlar miqdori kalibrlangan grafikdan topiladi.

Kalibrlangan grafik tuzish uchun 1 ml da 0,01gr NO₃ saqlovchi namuna eritmasidan 1,5,10,15,20,25,30,40,50 ml olinib chinni kosachada suv hammomida bugʻatiladi. Bu kosachalarda tegishlicha 0,01; 0,05; 0,1; 0,15; 0,20; 0,25; 0,30; 0,40; 0,50; mg NO₃ boʻladi. Barcha jarayonlar tekshirilayotgan namunalar kabi bajariladi. Kalorometrdan oʻtkazilib, kalibrlangan grafik tuziladi.

Natijani hisoblash: Natija quyidagi formula bilan aniqlanadi.

$$X = \frac{a*V*1000}{N*V_1}$$

bu yerda:

- X NO₃ miqdori mg-kg mahsulotda
- a NO₃ ning kalibrlangan grafikdagi miqdori mg-100 ml da
- V so'rimning umumiy miqdori, ml
- V₁ bug'latish uchun olingan so'rim miqdori, ml
- N namuna massasi, g

Eritmadan 100 ml 1 l o'lchov kolbasiga quyiladi va belgisigacha suv bilan to'lg'aziladi. Bu eritmani 1 ml da 0,01 mg NO₃ saqlaydi.

Nazorat savollari:

- 1. O'simliklar tarkibidagi nitrat azotini miqdori
- 2. Nitratlarning cheklangan miqdori (PDK)
- 3. Nitritlarning cheklangan miqdori.

MAVZU-5

K. GINZBURG USULIDA O'SIMLIK KULI HOSIL QILISH VA UNDAN AZOT, FOSFOR, KALIYNI ANIQLASH.

Mashg'ulotning maqsadi: K. Ginzburg usulida O'simlik kuli hosil qilish va undan azot, fosfor, kaliyni aniqlashdan iborat

Kerakli jihoz, reaktiv va asbob uskunalar: Kul hosil qilish uchun:

1. Konsentrlangan sulfat kislota sol. massa 1,84 va 57% li HClO₄ 1:10 nisbatdagi aralashmasi tajriba oldidan tayyorlanadi.

Azotni aniqlash uchun:

- 1. 50% li o'yuvchi ishqor eritmasi 500 g NaOH 11 suvda eritiladi
- 2. 0.02n sulfat kislota
- 3. 0,02n o'yuvchi ishqor, fiksanaldan tayyorlanadi.
- 4. metil qizil indikatori
- 5. fenolftalein yoki lakmus qog'ozi.

Fosforni aniqlash uchun:

- 1. Suyultirilgan sulfat kislota, zichligi 1,84 bo'lgan konsentrlangan sulfat 10 ml kislota 700 ml suvda 150 ml hisobida eritilib 11 hajmga yetkaziladi.
- 2. Kislotali muhitdagi ammoniy molibdati 20 gr ammoniy molibdat tuzi distillangan suvda eritilib, hajmi 11 ga yetkaziladi
- 3. Qalay xlorid eritmasi 2 gr qalay xlorid 30-40 ml konsentrlangan vodorid xloridda suv hammomida quriguncha qizdiriladi. Qoldiq 10 ml suyultirilgan sulfat kislota bilan eritiladi. Bu 20%li qalay xlorid eritmasi 1-2 oy saqlanadi. 1%li eritma tayyorlash uchun 1 ml 20% kalay xlorid eritmasi 5 ml suyultirilgan sulfat kislota bilan qo'shilib, 20 ml hajmga distillangan suv bilan yetkaziladi.
- 4. 0.1%li beta-dinitrofenolning suvdagi eritmasi
- 5. 0,1%li fenolftaleinning spirtli eritmasi
- 6. 10%li NaOH
- 7. 10% li HCl

Adabiyotlar: 8,9,10,11,13

O'simliklar oziqlanishida eng muhim ahamiyat kasb etuvchi elementlarga azot, fosfor va kaliy kiradi. Ularning o'simlikdagi miqdorini aniqlash, o'simliklar tomonidan olib chiqilishini o'rganish, fazalar bo'yicha ularga bo'lgan talabni hisobga olgan holda mineral o'g'itlar qullash tadbirlarini ishlab chiqish maqsadga muvofiq hisoblanadi. Bu maqsadda o'simlik namunalari ho'l usulda kuydirishning afzalligi shundaki, bunda ayrim elementlar, jumladan fosfor, kaliy, oltingugurt yo'qolishini oldi olinadi.

<u>Uslubning mohiyati</u> K.Ginzburg usulida kul hosil qilish o'simlik organik moddalarining 10:1 nisbatda olingan sulfat va xlorid kislotalari aralashmasida gidrolizlanib, oksidlanishiga asoslangan.

<u>Ishni bajarish tartibi.</u> Maydalangan o'simlik namunasidan 0,2 gr (aniqligi 0,0002 gr) analitik tarozida tortib olinadi. 50- 100 ml hajmli Kyeldal kolbasiga solinadi. Kolbaga 5,5 ml konsentrlangan sulfat va xlorid kislota aralashmasidan quyiladi. Aralashma 10:1 nisbatda tajriba oldidan tayyorlanadi. Kolba 30-60 minut sovuq joyda saqlanadi. Dastlab 5-7 minut qo'ng'ir bo'tqasimon massa hosil bo'lguncha past olovda qizdiriladi. So'ngra olov kuchaytirilib rangsizlanguncha qizdirish davom ettiriladi. Qizdirish davomida kolba chayqatilib turiladi. Odatda aralashma 15-25 minutda rangsizlanadi. Agar shu vaqt davomida eritma rangsizlanmasa 1-2 tomchi xlorid kislota tomizilib, qizdirish davom ettiriladi. Rangsizlangan, sovutilgan eritma 100 ml li o'lchov kolbasiga quyiladi. Kyeldal kolbasi bir necha marta distillangan suv bilan chayilib kolbaga quyiladi va belgisigacha distillangan suv bilan to'ldiriladi. Shu kolbadagi eritmadan azot, fosfor, kaliy aniqlanadi.

<u>Azotni aniqlash.</u> Azotni aniqlash mikrokeldal apparatida ammiakni haydash va yigʻgich kolbada 0,02n sulfat kislota bilan biriktirib olish va uni titrlashga asoslangan.

Azotni mikrokyel'dal appparatida aniqlash uchun sig'imi 250 ml bo'lgan konussimon kolbaga 0,02n sulfat kislotadan 20-25 ml solib unga 3-4 tomchi metil qizili tomiziladi. Yig'gich kolba kyeldal apparati tagiga qo'yiladi. Tekshirilayotgan eritmadan 25 ml pipetka bilan o'lchab olib haydov kolbasiga solinadi, ustidan 3-5 ml distillangan suv quyiladi. Suv bilan 1 tomchi fenolftalein eritmasi tomiziladi. Ustidan 5-7 ml 50%li NaOH eritmasi qo'shiladi va ammiak haydaladi. Reaksiya nihoyasiga yetganligi lakmus qog'ozi yoki Nessler reaktivi yordamida tekshirilib ko'riladi. Sovutgichdan tushayotgan tomchi qizil lakmus qog'ozni ko'kartirmasa, yoki bir necha tomchi oqib tushayotgan suyuqlikka bir tomchi Nessler reaktivi tomizilganda sariq rangga o'tmasa reaksiya tugaganligidan dalolat beradi. Tajriba oxirida yig'gich kolbadagi eritma 0,02n ishqor eritmasi bilan sariq rangga o'tguncha titrlanadi.

Natijalarni hisoblash:

Natija quyidagi formula bilan hisoblanadi.

bu yerda:

X = azotning miqdori

a = yig'gich kolbadagi 0,02n sulfat kislota miqdori, ml

 $T_1 = 0.02n H_2SO_4$ eritmasi tuzatish koeffisiyenti

b = titrlashga sarflangan 0,02n NaOH miqdori, ml

 $T_2 = 0.02$ n NaOH eritmasi tuzatish koeffisiyenti

 $0,0028 = 1 \text{ ml } 0,02 \text{n } \text{H}_2\text{SO}_4$ biriktirib oladigan azot miqdori, g

V = eritmaning umumiy hajmi, 100 ml

V₁= haydash uchun olingan eritma hajmi, ml

N = analiz uchun olingan namuna massasi, g

<u>Fosforni aniqlash.</u> o'simlik namunasi tarkibidagi umumiy fosfor Malyugina – Xrenova usuli buyicha aniqlanadi. Bu usul fosforni kislotali muhitda ammoniy molibdat bilan qalay xlorid katalizatorligida havo rangli kompleks birikma hosil qilishiga asoslangan.

Ishni bajarish tartibi. Fosforni aniqlash uchun 100 ml li o'lchov kolbasidagi eritmadan 20 ml olib, ikkinchi 100 ml li o'lchov kolbasiga quyiladi va belgisigacha distillangan suv bilan to'ldiriladi. Aralashtirilib 10 ml eritma uchinchi 100 ml li pipetka yordamida quyiladi va 20-30 ml distillangan suv bilan suyultiriladi. Ustidan 5 tomchi betadinitrifenol eritmasi qo'shib, och sarg'ish rangga o'tguncha 10%li ishqor (NaOH) eritmasi bilan neytrallanadi. Ishqoriy muhit neytrallanishi uchun 1-2 tomchi HCl ning 10% li eritmasidan tomiziladi. Bunda sariq rang yo'qoladi. So'ng 10 ml suyultirilgan H₂SO₄ (2,0ml) kislotali muhitdagi ammoniy molibdat eritmasi va 20 ml distillangan suv solib chayqatiladi. 0,5 ml qalay xlorid eritmasi qo'shilib kolba belgisigacha suv quyib 10-15 minutdan so'ng kolorimetrlanadi. Truoga-Meyer uslubi buyicha bajarilganda rangsizlantirilgan eritmaga 4 ml molibden reaktivi va 3-6 tomchi 2,5 % li qalay xlorid eritmasi qo'shiladi. Kalorimetrlashda to'lqin uzunligi 740 nm, qizil yorug'lik filtridan foydalaniladi. Kolorimetrning sezgirlik darajasi 3 ga teng bo'lishi lozim.

Tajriba natijasini hisoblash uchun standart eritmalar shkalasi tayyorlanadi va optik zichligi aniqlangandan so'ng kalibrlangan grafik tuziladi. Buning uchun sig'imi 100 ml li o'lchov kolbasi 1 dan 10 gacha raqam bilan belgilanadi. №1 kolbaga 5 ml; №2 10 ml; №3 kolbaga-15 ml; №4-20 ml; №5-25 ml; №6 30 ml; №7 35 ml; №8-40 ml; №9-45 ml; №10-50 ml standart eritma solinadi. 1 ml standart eritma 0,002 mg P₂O₅ saqlashi e'tiborga olinsa, kolbalarda tegishlicha 0,01; 0,02; 0,03; 0,04; 0,05; 0,06; 0,07; 0,08; 0,09; 0,1 mg P2O5 bo'ladi. Har bir kolbaga 60-70 ml gacha suv, so'ng 10 ml suyultirilgan sulfat kislota 10 ml kislotali muhitdagi ammoniy molibdat eritmasi hamda 0,5 ml qalay xlorid eritmasi qo'shiladi va belgisigacha suv quyilib kalorimetrlanadi. Eritmalarning optik zichligi o'lchangach, millimetrli qog'ozda kalibrlangan chiziq chiziladi.

100 ml eritmada mg xisobida P₂O₅ miqdori

100 ml tekshirilayotgan eritma tarkibidagi P2O5 ning mg dagi miqdori kalibrlangan grafikdan topiladi. o'simlik tarkibidagi umumiy fosfor miqdori ushbu formula bilan aniqlanadi.

$$\begin{array}{l}
 a * V_2 * V_4 * 100 \\
 X = ------ \\
 H * V_1 * 1000
 \end{array}$$

bu yerda:

X = P2O5 migdori, %;

a = P2O5 ning kalibrlangan grafikdagi miqdori, mg-100 ml da

 V_1 = kul hosil qilingan kolbadagi eritma hajmi, 100ml

 $V_2 =$ suyultirish uchun olingan eritma hajmi, 20 ml

 V_3 = suyultirilgan eritmaning umumiy hajmi, 100 ml

V₄ = suyultirilgan eritmadan olingan eritma hajmi, 10 ml

7-rasm. Fotoelektrokolorimetr KFK-2.

<u>Kaliyni aniqlash.</u> Kaliy yolqinli fotometrda aniqlanadi. Bu usul kaliy atomlari elektron qavatlarining asitilen yoki propan-butan alangasida yorug'lik nuri sochishini o'lchashga asoslangan.

<u>Ishni bajarish tartibi</u>. Kaliyni aniqlash uchun sig'imi 100 ml li o'lchov kolbasidagi eritmadan 15 ml olinib penisillin shishasiga solinadi va yolqinli fotometrdan o'tkaziladi. Fotometr ko'rsatgichi yozib olinadi.

Kaliy miqdorini o'lchash uchun kalibrlangan egri chiziq chiziladi. Buning uchun 11 hajmli kolbada 1,5826 KCl eritilib, belgisigacha distillangan suv bilan to'ldiriladi. Bu eritmaning 1ml 1mg K₂O saqlaydi.1 dan 10 gacha belgilangan 100

ml li o'lchov kolbasiga 0; 0,1; 0,5; 1,0; 1,5;2,0; 4,0; 6,0; 8,0; 10,0 ml standart eritma solinadi. Belgisigacha distillangan suv bilan to'ldiriladi. Fotometrdan o'tkazilib kalibrlangan grafik tuziladi.

Natija quyidagi formula yordamida aniqlanadi.

$$x = \frac{a * V_1 * V_2 * 100}{H * V_3 * 1000}$$

bu yerda:

X - K₂O miqdori, g;

a - kalibrlangan grafikdagi K₂O miqdori, mg100 ml

V₁ - eritmaning umumiy hajmi, ml

V₂ - eritmaning hajmi, ml

V₃ - suyultirilgan eritma hajmi, ml

H - namuna massasi, g

1000 - 1 ml dagi K₂O miqdori

100 - foizga o'tkazish koeffisiyenti

Nazorat savollari

- 1. K. Ginzburg usuli nimaga asoslangan
- 2. O'simlik kuli qanday hosil qilinadi
- 3. Azot, fosfor va kaliyni aniqlashning asoiy maqsadi

MAVZU - 6

O'SIMLIK TARKIBIDAGI OQSIL AZOTINI BARNShTEYN BO'YIChA ANIQLASh.

Mashg'ulotning maqsadi: O'simlik tarkibidagi oqsil azotini barnshteyn bo'yicha aniqlashdan iborat

Kerakli jihoz, reaktiv va asbob uskunalar: 1. 6,0% mis kuporosi. 60 gr CuSO₄.5H₂O 1 l suvda eritiladi

- 2. 1,25% li NaOH. 12, 5 gramm natriy gidrookisdi 1 l suvda eritiladi
- 3. Konsentrlangan sulfat kislota s ol. massa 1,84
- 4. Selen
- 5. 2% lik H₃BO₃. 20 g H₃BO₃ qaynoq suvda eritilib 1 l ga yetkaziladi
- 6. 10% BaCl₂
- 7. Groaka indikatori: 0,2 metil qizili va 0,1 metil ko'ki spirtli eritmalarda bir xil hajmda olinib tayyorlanadi
- 8. 40% li NaOH. 400 g NaOH 1 l suvda eritiladi
- 0,01 n yoki 0,02 n sulfat kislotasi va natriy gidrooksidlari fiksanaldan tayyorlanadi.

Adabiyotlar: 8,9,10,11,13

Ko'pchilik qishloq ho'jalik ekinlari va mahsulotlarining oziqlik ahamiyati

ularning tarkibidagi oqsil miqdori bilan uzviy bog'liq. Donli ekinlar tarkibida 7-28%, dukkakli ekinlarda 20-35% oqsil bo'ladi. Moyli ekinlar urug'ida esa oqsil miqdori eng kam miqdorda uchraydi. O'simliklar tarkibidagi azotning asosiy qismi oqsilga to'g'ri keladi. O'simlik oqsilida azot ulushi turli ekinlarda turlicha bo'lib, 14,7 – 19,5% oraliqda o'zgarib boradi.

Shu tufayli o'simlik tarkibidagi oqsil miqdorini aniqlash seleksiya ishlarida navlarni tasviflash, chorva mollari rasionini belgilash, mineral o'g'itlarni mahsulot sifatida ta'sirini belgilashda muhim ahamiyat kasb etadi.

Ko'pchilik hollarda «Xom protein» miqdori aniqlanadi. Bu holda oqsilni cho'kmaga tushirishga hojat qolmaydi. Ammo bunda olingan natijalar oqsil miqdorini to'g'ri aks ettirmaydi.

<u>Uslubning mohiyati</u> Oqsil azotini aniqlash uslubi oqsillarni umumiy mahsulot tarkibidan ajratib olib konsentrallangan sulfat kislotasida kuydirish, hosil bo'lgan (NH₄)₂SO₄ni kyel'dal apparatida haydash va aniqlangan azot miqdorini oqsilga hisoblashga asoslangan. Namuna tarkibida oqsillar mis sulfatning asosli tuzi CuSO₄ Cu(OH)₂ orqali cho'kmaga tushiriladi.

<u>Ishni bajarish tartibi.</u> Maydalangan, xona sharoitida quritilgan o'simlik namunasi (urug' – 0,5 gr, somon, poxol, poya – 1 gr) analalitik tarozida tortib olinadi. Quritilmagan o'simlik namunasi tarkibida 20–40 mg azot bo'lishini mo'ljallab olinadi. Bunda namuna massasi 4–6 grammni tashkil etish zarur. Olingan namuna sig'imi 150–200 ml bo'lgan kimyoviy stakanga solinadi.

Bir vaqtning o'zida shisha byuksga 3–5 gramm namuna gigroskopik namlikni aniqlash uchun o'lchab olinadi.

Stakandagi namuna ustiga 50 ml distillangan suv solib qaynaguncha qizdiriladi. Agar namuna kraxmalga boy o'simlikdan olinsa qizdirish suv hammomida 40–50°C haroratida 10 minut saqlash bilan almashtiriladi. Sovutmasdan turib 25 ml mis kuporosi – (CuSO₄) eritmasidan qo'shiladi. So'ngra shisha tayoqcha bilan aralashtirib turgan holda porsiya – porsiyaga ajratib 25 ml o'yuvchi ishqor (NaOH) quyiladi. Bunda oqsillarni biriktirib cho'kmaga tushiruvchi mis sulfatning asosiy tuzi CuSO₄(OH)₂ hosil bo'ladi. Hosil bo'lgan aralashma 1–1,5 soat tinch qoldiriladi. Bu paytda filtrlash uchun tayyorgarlik ko'riladi.

Sig'imi 250–300 ml bo'lgan konussimon kolbaga voronka o'rnatilib, qalin filtr qog'ozdan tayyorlangan burmali filtr joylashtiriladi. Filtr voronka qirrasidan 0,5–1 sm pastroq bo'lishi lozim. So'ng cho'kma ustidagi tiniq suyuqlik shisha tayoqcha orqali filtrga quyiladi. Cho'kma qaynoq distillangan suv bilan o'tayotgan filtratda sulfat kislota ionlari qolmaguncha yuviladi. (Bir necha tomchi filtrga BaCl₂ eritmasidan bir tomchi qo'shilganda loyqasimon cho'kma hosil bo'lmasligi lozim). Cho'kma ustida suyuqlik qolmagach filtr voronka bilan birgalikda quritish shkafida 50–60°C haroratda bir ikki soat davomida, ya'ni filtr voronkadan yengil olinguncha quritiladi.

Quritilgan filtr cho'kmasi bilan birgalikda shar shaklida o'ralib, 250–500 ml li kyel'dal kolbasiga solinadi, 10–15 ml konsentrlangan sulfat kislota va 0,1 n selen katalizatori qo'shilib, kolba chayqatiladi. Bunda cho'kma va filtr sulfat kislota bilan namlanishiga erishish zarur. Aralashma 5–6 soat tinch qoldiriladi. So'ng 1–2 ml

30% H₂O₂ qo'shiladi, mo'rili shkafda sekin qaynatiladi. Qaynatish eritma tiniq rangsizlanguncha davom ettiriladi.

Rangsizlangan eritma ustiga sovutilgandan so'ng 3–5 ml distillangan suv quyiladi va sovutiladi. Sovutilgan eritma 100 ml li o'lchov kolbasiga bir necha marta distillangan suv bilan chayib o'tkaziladi va belgisigacha yetkaziladi.

Ammiakni xaydash kyel'dal mikroapparatida amalga oshiriladi. Apparat bug' hosil kilish kolbasi kyel'dal kolbasi jo'mrakli voronka, sovutgich, yig'gich kolba, ishlatib bo'lingan aralashmani chiqarish idishi va qisqichlardan iborat. (8-rasm).

Apparat ishga tushirilishidan oldin yigʻgich kolbaga (200–250 ml li stakan yoki konussimon kolba) 10–15 ml 4% li bor kislotasi quyilib 3-5 tomchi kombinirlashgan Groaka indikatori tomiziladi. Yigʻgich kolba sovutgich tagiga oʻrnatiladi. Bunda sovutgich naychasi bor kislotasiga botib turishi lozim. Soʻng distillash kolbasiga tekshirilishi lozim boʻlgan (№1 raqamli kolba) kolbadan 10–20 ml li eritma quyiladi. Bunda bugʻ hosil qilish kolbasi qisqichi yopiq turishi kerak. Voronka 3-5 distillangan suv bilan yuvilib 20–30 ml 40% li oʻyuvchi ishqor qoʻshiladi (NaOH yoki KOH) hamda voronka distillangan suv bilan chayiladi. Joʻmrak yopilib voronkaga 5–10 distillangan suv quyiladi. Bugʻ hosil qilish kolbasi ishga tushirilib ammiak haydaladi.

Distilliyasiya kolbasidagi aralashma qaynay boshlashidan 5–6 minut o'tgach yig'gich kolbadagi bor kislotasi rangi siyoh rangdan to'q yashil rangga o'tgandan so'ng kolba sovutgich naydan 2–3 sm pastga tushiriladi. So'ng haydash yana 2–3 minut dayom ettiriladi.

Tahlil tugatilgandan so'ng yig'gich kolbasidagi eritma 0,01 normal sulfat kislota ishtirokida to'q yashil rangdan och pushti rangga o'tguncha titrlanadi.

Natija quyidagi formula orqali hisoblanadi.

$$X=$$
 $\underbrace{(a*T_1-b*T_2)*0,0014*V*K}_{H*V_1}$

bu yerda:

X – oqsil miqdori, %

a - titrlashga sarflangan 0,01 n H₂SO₄ miqdori, ml

b – nazoratdagi yigʻgich kolbasini titrlashga sarflangan 0,01 n H₂SO₄ miqdori, ml

T₁-T₂- tegishli kislotalar titriga tuzatishlar

 $0,0014-1~\mathrm{ml}~0,01~\mathrm{n}$ sulfat kislotasi biriktirib olishi mumkin bo'lgan azot miqdori,

g

V – eritmani umumiy miqdori, 100 ml

V₁ – haydash uchun olingan eritma miqdori, ml

N – namuna massasi, g

K – azotni oqsilga aylantirish koeffisiyenti:

O'simlik vegetativ massasi uchun o'rtacha 6,25

Makkajo'xori uchun - 6,0

Bug'doy, arpa uchun -5.7

G'o'za, zig'ir, kungaboqar uchun – 5,30

Sholi uchun – 5,95 Yeryong'oq uchun – 5,46 100% ga aylantirish

Aksariyat agrokimyoviy laboratoriyalarda oqsil azotini aniqlashda ke'l'dal makromodifikasiyasi qo'llaniladi va yig'gich kolbaga 0,01n H₂SO₄ olinib, metil qizil indikatori ishtirokida sariq rangga o'tguncha 0,01 n NaOH bilan titrlanadi.

Natija quyidagi formula bilan aniqlanadi:

$$\begin{array}{c} (a*T_1\text{-}b*T_2)*0,0014 \\ X = & ----*100*K \\ H \end{array}$$

bu yerda:

X – oqsil miqdori, %

a – yig'gich kolbadagi 0,01 n H₂SO₄ miqdori, ml

B – titrlashga sarflangan 0,01 n NaOH miqdori, ml

 T_1 - T_2 – tegishli kislotalar titrga tuzatish koeffisiyenti

K – azotni oqsilga aylantirish koeffisiyenti

H – namuna massasi, g

Absolyut quruq modda holiga o'tkazish uchun natija ------ ga ko'paytiriladi. (100*y)

Bu yerda: y – gigroskopik namlik miqdori

Yig'gich kolbaga 0,02 normal sulfat kislota olinsa, 0,02 normal ishqor bilan titrlanadi.

Nazorat savollari

- 1. Makro va mikrokyel'dal apparatining tuzilishini aytib bering.
- 2. Osimliklar tarkibidagi oqsil azoti miqdori.
- 3. O'simlik namunasini kaysi yul bilan quydiriladi

MAVZU-7

DALADAN TUPROQ NAMUNASINI OLISH UNI TAHLILGA TAYYORLASH. TUPROQ SUVLI SO'RIMIDAN QURUQ QOLDIQNI ANIQLASH. TUPROQ (pH) NI N.I. ALYAMOVSKIY USULIDA ANIQLASH. TUPROQ ISHQORIYLIGINI ANIQLASH.

Tuproq namunalarini olish

Mashg'ulotning maqsadi. Agrokimyoviy tajribalar olib borishni, vegetasion (maxsus idishlarda), laboratoriya va dala tajribalari qo'yishni o'rganish. Laboratoriya ishlarida tuproq tarkibi, undagi oziq elementlari, tuproq eritmasining reaksiyasini (ishqoriylik yoki kislotalik) aniqlash uchun daladan tuproq namunalarini olishni o'rganishdan iborat.

Kerakli jihoz, reaktiv va asbob uskunalar: Tuproq namunalari, distillangan suv, tarozi, filtr qog'oz, chinni piyola

Adabiyotlar: 8,9,10,11,13

Ishni bajarish tartibi. Qishloq ekinlari ekiladigan maydonlarga agrokimyoviy baho berish uchun tuproq namunalari ma'lum bir daladan olinadi. Almashlab ekish dalalarida bitta aralashtirilgan namuna3-5 gektardan, tuproq unumdorligi kam farqlanadigan cho'l zonalarida 8-10 gektardan olinadi. Poliz sabzavot almashlab ekiladigan dalalardan namuna 1-2 gektardan olinadi.

Qator oralariga ishlov beriladigan ekin dalalaridan namuna olishda uning bir qismi jo'yaklar yonidan va tepasidan, ikkinchi qismi esa jo'yak tepasidan olinadi. Tuproq namunalarini dalaga o'g'it berilgandan keyin, uchastkaning atroflaridan, go'ng yoki o'g'itlar to'plangan joylardan olish tavsiya etilmaydi.

Tuproq namunasi uning genetik qatlamiga ko'ra olinadi. Tuproqqa asosiy tavsif berish uchun namuna (bahorda, yozda, kuzda) olinadi.

Tuproqning asosiy kimyoviy xossalari o'zgarishini o'rganishda (almashlab ekish dalalarida, o'g'itlarning ta'sirini va meliorativ holatini aniqlashda) olinadigan namuna yerning haydov va pastki qatlamidan 0-5, 5-25 va 25-30 sm chuqurlikdan olinadi.

Sug'oriladidigan yerlarga solingan o'g'it tuproq qatlamlarida bir xil tarqalmaydi, shuning uchun olinadigan namuna ekin qator orasidan yaxlit olinishi kerak. Buning uchun qator orasining ko'ndalang tomonidan 10 sm kenglikda 30 sm chukurlikda chuqurcha qaziladi. Undan chiqqan tuproqning hammasi olinadi.

Namuna olishda har xil burg'ulardan foydalaniladi. Olingan namunalar maxsus xaltalarga yoki qutilarga solinib unga etiketka yoziladi. Etiketkada namuna olingan joy (viloyat, tuman, xo'jalik, dala kontur raqami), qaysi qatlamdan qachon va kim tomonidan olinganligi yoziladi.

Tuproq namunasini tekshirishga tayyorlash ko'zda tutilgan tajribaning maqsadiga bog'liq. Masalan, tuproq tarkibidagi nitrat va ammoniy holidagi azot aniqlanishi kerak bo'lsa, tuprok qurib qolmasdan tezda analiz qilinishi kerak, agar namuna qurib qolsa, tuproq tarkibidagi ammiak oksidlanib, nitratlarga aylanib ketishi mumkin.

Boshqa turdagi tajribalar uchun tuproq salqin joyda quritilib maydalanadi (bunda tosh va ildiz qoldiqlari olib tashlanadi) va tuproq teshikchalari 1 mm bo'lgan elakdan o'tkaziladi.

Bir joydan olingan tuproq namunasi individual namuna deyiladi. Hamma individual namunalarni qo'shishdan hosil bo'lgan namuna umumiy namuna deb ataladi. O'rtacha namuna olish uchun umumiy namuna toza qog'oz yoki karton ustiga yoyilib krest usulida to'rt bo'lakka bo'linadi va shu bo'laklardan ikkitasi

qoldiriladi. Qolgan ikki bo'lagi esa tashlanadi. Bunday operasiya bir necha marta davom etkaziladi va laboratoriyaga 300-400 gr tuproq olib kelinadi. Laboratoriyada tuproq ildiz, tosh va va boshqa qoldiqlardan yaxshilab tozalanib, maydalanadi va elakdan o'tkaziladi. Shundan so'ng namuna paketlarga solinadi. Bu namuna laboratoriya namunasi deyiladi. Har bir analiz uchun olingan namuna analitik namuna deyiladi.

Tuproq namunasi suv va ammiak parlari yo'q joylarda quritilishi kerak. Namlikni ammoniy va nitrat holidagi azotni aniqlaganda tuproq namunalari olib kelingandan keyin birdan analiz qilish kerak.

Tuproq suvli so'rimida oson eruvchan mineral birikmalar va qisman organik birikmalar bo'ladi. Suvli so'rimdan tuproq pH muhiti nitratlar, nitritlar, kalsiy, kaliy, organik moddalar miqdorini o'zgarib borishini aniqlashda foydalanish mumkin.

Suvli so'rimdan sho'rlangan tuproqlarda tuzlar miqdori Cl⁻, SO₄²⁻, HCO₃-konsentrasiyasini aniqlash mumkin.

MAVZU – 8 «TUPROQ TARKIBIDAGI NITRAT AZOTI MIQDORINI GRANVALD-LYaJU USULI BO'YIChA ANIQLASh».

Mashg'ulotning maqsadi: Tuproq tarkibidagi nitrat shaklidagi azotni Granvald – Lyaju usulida aniqlashdan iborat.

Kerakli jihozlar, reaktivlar va asbob uskunalar: tuproq namunalari, ulchov kolbalari, chinni piyola, suv hammomi, Alyuminiyli achchiqtosh MgAl(SO₄)₃*12H₂O, disulfofenol kislota, NaOHning 10 % li eritmasi, lakmus qog'oz.

Adabiyotlar:6,7,8,9,11

Tuproq tarkibidagi nitratlar, asosan tuproqda organik birikmalarning chirishi (mikroorganizmlar yordamida) yoki yerga solingan mineral o'g'itlarga bog'liq.

Tuproq tarkibidagi nitratlar suvda yaxshi eriydi, tuproqning singdirish kompleksiga kirmaydi, ya'ni tuproqqa singmaydi. Nitratlar eruvchan bo'lgani uchun tuproqning pastki qatlamiga ko'tarilishi mumkin.

<u>Uslubning mohiyati:</u> Tuproq tarkibidagi nitratlar kolorimetr yordamida Granvald-Lyaju usuli bilan aniqlanadi. Bu usul ishqoriy muhitda disulfofenol kislota ta'sir ettirish yoʻli bilan suyuqlikni choʻkmaga tushirishga asoslangan. Buning uchun ma'lum miqdorda suvli soʻrim tayyorlanib, soʻngra u bugʻlatiladi. Qolgan quruq qoldiqqa disulfofenol kislotasi ta'sir ettiriladi. Natijada nitratlar bilan disulfofenol trinitrofenolga aylanadi. Bunda quyidagicha reaksiya boradi:

$$C_6H_3(HSO_3)_2OH + 3HNO_3 = C_6H_2(OH)(NO_2)_3 + 2H_2SO_4 + H_2O$$

Keyinchalik trinitrofenol ishqoriy muhitda asta-sekin sariq tusga kiradi.

 $C_6H_2(OH)(NO_2)_3 + NH_3 = C_6H_2(NO_2)_3ONH_4$

sariq nitro birikma

Eritmaning rangi qancha ko'p sarg'aysa nitrat miqdori shuncha ko'p bo'ladi.

Ish tartibi: Tuproq tarkibidagi nitratni aniqlash uchun suvli so'rim tayyorlanadi. Buning uchun (tuproq bilan suv 1:5 nisbatda olinadi) 1 ml suv elakdan o'tkazilgan tuproqdan 30 gr ni tarozida tortib olib konussimon kolbaga solinadi. Unga juda oz miqdorda alyuminiyli achchiqtosh qo'shiladi va ustiga 150 ml suv solib besh minut qaynatib keyin filtrlanadi. Filtratdan 10 ml o'lchab olib, chinni kosachaga qo'yiladi. Chinni kosachada suv hammomiga qo'yib filtrat bug'latiladi chinni kosacha sovutiladi, kosachaga 18 - 20 tomchi disulfofenol kislota tomiziladi. Uning ustiga 15 ml suv qo'yiladi va aralashmaning rangi sariq tusga kirgunga qadar (yoki eritmaga tegizilgan qizil lakmus ko'karguncha) oz-ozdan ishqor tomiziladi. Shundan so'ng aralashma 100 ml li o'lchov kolbaga solib kolbaning belgisigacha suv qo'yiladi. Kolba yaxshilab aralashtiriladi va kalorimetr yordamida tekshiriladi. Agar aralashma to'q sariq rangda bo'lsa, uni suyultirib so'ngra kolorimetrdan o'tkazish kerak.

Tajriba natijasi quyidagicha hisoblanadi:

x – NO₃ miqdori, mg/kg tuproqda;

a – NO₃ miqdori, egri chiziqdagi ko'rsatkich; mg/100 ml da.

1 gektar yerdagi nitrat miqdorini hisoblash uchun analizdan chiqqan sonni 4000000 ga ko'paytirib (1 ga yerning haydov qatlami tuproqning massasi) so'ngra 1000000 ga bo'linadi (mg ni kg aylantirish uchun)

Ma'lumki, 1 ga yerning sathi S=10000 m², o'rtacha haydov qatlami 0-30 sm olinadi, 1 m³ tuproqning solishtirma massasi 1,200 kg ga teng, bularning hammasini bir-biriga ko'paytirib chiqqan 3600 tonna yoki 3600000 kg ni yaxlitlab, 4000000 kg hosil qilinadi.

Nazorat savollari

- 1. Tuproq tarkibidagi nitrat azoti haqida tushuncha.
- 2. Nitrat azotini aniqlash uslubi nimaga asoslangan
- 3. Nitratlarning tuproqdagi tarqalish gradasiyasi (kam, o'rtacha, yuqori)
- 4. Tuproq tarkibida 22 mg/kg nitrat bo'lsa 1 ga maydondagi miqdori

MAVZU - 9

«SINGDIRILGAN AMMONIY ShAKLIDAGI AZOTNI NESSLER REAKTIVIDA ANIQLASh»

Mashg'ulotning maqsadi: Nessler reaktivi yordamida singdirilgan ammoniy shaklidagi azotni aniqlashdan iborat.

Kerakli jihozlar, reaktivlar va asbob uskunalar: Tuproq namunalari, chinni piyola, tarozi, ulchov kolbalari KCl ning 1% li eritmasi, Segnet tuzining 50% li

eritmasi, Nessler reaktivi

Adabiyotlar:5,6,8,9,11,12

Tuproq tarkibidagi ammiak organik moddalarning chirishi natijasida hosil bo'ladi va u tuproqqa singib boradi. Bu singdirilgan ammiak kaliy xlorid tuzi bilan ajratiladi. Ajratilgan ekstraktdagi ammiak kolorimetr usulida Nessler reaktivi bilan aniqlanadi:

$$2HgK_2I_4+3KOH+NH_3\rightarrow NH_2IHg_2O+7KI+2H_2O$$

<u>Ish tartibi.</u> 10 gr tuproqni tarozida tortib olib, 150 ml li konussimon kolbaga solinadi, uning ustiga 1% li KCl eritmasidan 100 ml quyib 5 minut aralashtiriladi va 18-20 soat tinch qoldiriladi. Shundan so'ng chayqatiladi va filtrlanadi. Filtratdan pipetka yordamida 5-10-20 ml yoki 40 ml o'lchab olib, 100 ml li o'lchov kolbasiga solinadi, unga 2 ml segnet tuzi eritmasidan quyiladi (segnet tuzi qo'shilmasa eritmadagi kalsiy va magniy tuzlari cho'kmaga tushishi mumkin), unga o'lchov kolbaning 3/4 qismigacha suv va 2 ml Nessler reaktivi qo'shiladi, o'lchov kolbasining belgisigacha suv to'ldiriladi, kolba bir oz chayqatiladi va kolorimetr orqali ko'riladi.

Natijani hisoblash:

bunda:

X - namunadagi NH₄ miqdori, mg/kg tuproqda;

a - NH₄ miqdori, kalibrlangan egri chiziq bo'yicha, mg/100 ml da

Bir gektardagi NH₄ miqdorini hisoblash uchun (bir gektardagi tuproq haydov qatlamining massasi) 4000000 ga ko'paytirilib, 10000000 ga bo'linadi (mg ni kg ga aylantirish uchun).

Ma'lumki, bir ga yerning sathi S = 10000 m², o'rtacha haydov qatlami 0-30 sm olinadi, 1 m³ tuproqning solishtirma massasi- 1,200 kg ga teng, bularning hammasini bir-biriga ko'paytirib chiqqan 3600 tonna yoki 3600000 kg ni yaxlitlab, 4000000 kg hosil qilinadi.

Nazorat savollari

- 1. Tuproq tarkibidagi ammoniy shaklidagi azotni miqdori
- 2. Azotli o'g'itlar qo'llashning ammoniy azotni miqdoriga ta'siri
- **3.**Tuproq tarkibidagi ammoniy azot 20 mg/kg bo'lsa, 1 ga maydonda qancha bo'ladi.

MAVZU - 10

KARBONATLI TUPROQLAR TARKIBIDAGI HARAKATCHAN FOSFORNI VA ALMASHINUVCHI KALIYNI B. P. MACHIGIN USULIDA ANIQLASH.

Mashg'ulotning maqsadi: Machigin usuli bo'yicha karbonatli sho'rlangan tuproqlar tarkibidaga harakatchan fosfor va almashinuvchi kaliyni aniqlashdan iborat.

Kerakli jihozlar, reaktivlar va asbob uskunalar: tuproq namunasi, distillangan suv, filtr qog'oz, ammoniy karbonat eritmasi, qalay xlorid

Adabiyotlar:4,6,8,10,11,12

<u>Uslubning mohiyati:</u> Bu usul asosan harakatchan fosforli birikmani 1% li ammoniy karbonat eritmasi yordamida ajratib olishga asoslangan. Aniqlash ma'lum darajada fosfat kislotaning molibden angidrid va qalay xlorid bilan havo rangli murakkab birikma (MoO₂*4MoO₃)₂ *H₃RO₄*4N₂O hosil qilishga asoslangan.

<u>Ish tartibi</u>. Texnik tarozida tortilgan 5 gr tuproq (1mm li elakdan o'tkazilgan) 200-250 ml li konussimon kolbaga solinadi. Ustiga 1% li ammoniy karbonat (NN₄)₂SO₃ eritmasidan 100 ml quyiladi. Kolba 5 minut chayqatiladi va 18-20 soat tinch qoldiriladi. So'ngra filtrlanadi va filtratdan 10 yoki 20 ml olib kolbaga o'tkaziladi(100 ml li o'lchov kolbaga), unga 2 tomchi betadinitrofenol tomiziladi; ustidan 10% li sulfat kislotadan kuchsiz och sariq rangga o'tguncha quyiladi va 2 ml molibden reaktividan quyib, o'lchov kolbasining belgisigacha suv to'ldiriladi, hamda qalay xlorid eritmasidan 0,5 ml tomiziladi. 5 minutdan so'ng aralashma qizil rangli svetofiltr orqali kalorimetrlanadi.

Agarda filtrat rangli bo'lsa, filtratdan 10-20 ml olib 100 ml li o'lchov kolbaga o'tkaziladi, unga 2 ml 15:100 nisbatdagi sulfat kislota quyiladi va 4 ml 0,5n kaliy permanganat eritmasidan solinadi, so'ng suyuqlik 2-3 minut qaynatiladi. Organik modda yuqori haroratda kislotali muhitda kaliy permanganat ta'sirida parchalanadi (kislorod ajralib chiqib, eritma rangsizlanadi):

$$2KMnO_4 = K_2O + 2MnO + 5O$$

Ortiqcha kaliy permanganatni neytrallash maqsadida qaynoq eritmaga glyukozaning 10% li eritmasidan 1 ml quyiladi. So'ngra aralashma sovutiladi. Sulfat kislotani neytrallashda sovutilgan eritmaga 3 tomchi indikator betadinitrofenol tomiziladi, so'ngra och sariq rang hosil bo'lguncha sodaning 10% li eritmasidan qo'shiladi. Keyin unga 2ml molibden reaktivi qo'shib, o'lchov kolbasining belgisigacha suv to'ldiriladi hamda qalay xlorid eritmasidan 0,5 ml tomiziladi, aralashma havo rangga bo'yaladi. Aralashma kalorimetrda tekshiriladi.

Natija quyidagicha hisoblanadi:

a * umumiy so'rim xajmi * 1000 mg/kg

X= -----;
analiz uchun olingan so'rim * olingan tuproq massasi

bu yerda:

 $X - P_2O_5$ mg/kg tuproqda;

a - kalibrlangan egri chiziqdagi P_2O_5 miqdori, mg/100 ml eritmada.

<u>Almashinuvchan kaliyni aniqlash.</u> Fosforni aniqlashda tayyorlangan filtratdan 5-10 ml olib, 50 ml li stakanga solamiz va alangali fotometrdan o'tkazamiz.

Nazorat savollari

- 1. Karbonatli tuproqlar haqida tushuncha bering.
- 2. Machigin B.P. usulining asosiy mohiyatini ta'riflang
- 3. Almashinuvchan kaliyni aniqlash yo'llari
- 4. Fosfor va kaliyni foydalanish koeffisiyenti

MAVZU - 11

TUPROQDAGI YaLPI N, P, K MIQDORINI (BIR NAMUNADAN) ANIQLASh.

Mashg'ulotning maqsadi: Bir namunadan yalpi azot, fosfor va kaliyni aniqlashdan iborat.

Kerakli jihozlar, reaktivlar va asbob uskunalar: Tuproq namunasi, filtr qog'oz, elektr plitka, ulchov kolbalari, 10 qism H₂SO₄ (solishtirma massasi 1,84) va 1 qism (60%) xlorid kislotalar aralashmasi; 50% NaOH eritmasi; Nessler reaktivi; Segnet tuzi; 10% li ammiak eritmasi; Molibden reaktivi; Qalay (II) - xlorid eritmasi

Adabiyotlar: 2,4,8,9,10,11

Ishni bajarish tartibi: 0,25 mm li elakchadan o'tkazilgan tuproq namunasidan tarozida 2 gr tortib olib, 250 ml hajmli konussimon kolbaga solinadi va unga 5 ml sulfat va xlorid kislota aralashmasidan quyiladi. Taxminan 30 minutdan so'ng kolbaning og'ziga voronka qo'yib, kolba elektr plitkada ichidagi aralashma oqargunicha qaynatiladi (qizdirish mo'rili shkafda olib boriladi). Agar aralashmaning rangi o'zgarmasa unga 3 tomchi xlorid kislota tomizib, yana qaynatiladi. Shundan so'ng kolba sovutiladi va unga 30-40 ml suv quyiladi. So'ngra kolbadagi aralashma 100 ml li o'lchov kolbaga quyilib, uning belgisigacha suv to'ldiriladi, hosil bo'lgan aralashma filtrlanadi. Filtratdan azot, fosfor va kaliy aniqlanadi.

Azotni aniqlash. Filtratdan 2-3 ml olib, 50 ml li o'lchov kolbasiga solinadi va uning ustiga 2 ml segnet tuzi eritmasidan qo'shiladi(Segnet tuzi qo'shishdan maqsad keyinchalik Nessler reaktivi qo'shganda cho'kma tushmasligidir). Taxminan 10 minutdan keyin o'lchov kolbasiga 35-40 ml suv qo'yiladi va 5 % li NaON bilan eritma neytral holatga keltiriladi. (Lakmus qog'oz bilan sinalganda ko'k lakmus qizarishi kerak). Neytrallashda ishqorni ortiq qo'shib yubormaslik kerak, chunki kuchli ishqoriy muhit suyuqlikni xiralashtiradi. So'ngra aralashmaga 2 ml Nessler reaktivi qo'shiladi, bunda ammoniy tuzlari merkurammoniy yodid hosil qilib sariq rang beradi:

$$2HgK_2I_4 + 3KOH + NH_4 = NH_2IHg_2O + 7KI + 2H_2O$$

Hosil bo'lgan aralashma yaxshilab aralashtiriladi va o'lchov kolbasining belgisigacha suv qo'yib svetofiltr - N₄ da kolometrlanadi.

 $X = N - NH_4$ mg/kg hisobida a - egri chiziqdagi ammoniy miqdori, mg

Fosforni aniqlash. Filtratdan 10 ml olib, 100 ml hajmli o'lchov kolbasiga quyiladi va uning ustiga 40 - 50 ml suv solinadi, aralashma och pushti rangga kirguncha 10 % li ammiak eritmasi bilan neytrallanadi (fenolftalein yordamida ko'riladi). o'lchov kolbasining belgisigacha suv to'ldiriladi.

Neytrallangan eritmadan pipetka yordamida 10 ml o'lchab olib, 50 ml hajmli o'lchov kolbasiga solinadi. Unga 20-25 ml suv quyiladi va molibden suyuqligidan 2 ml qo'shib, o'lchov kolbasining belgisigacha suv to'ldiriladi, 0,5 ml qalay xlorid solib, yaxshilab aralashtiriladi.

Eritma xavo rangga bo'yaladi. Aralashmaning tarkibi quyidagicha:

$$(MoO_2 * 4MoO_3)_2 * H_3PO_4 * H_2O$$

Besh minutdan so'ng eritma kolorimetrda tekshiriladi. (Svetofiltr 7).

Kaliyni aniqlash. Filtratdan 5-10 ml olib, 50 ml hajmli stakanga quyiladi va kaliy alangali fotometrda aniqlanadi.

Tajriba natijasi quyidagicha hisoblanadi:

- x K₂O miqdori, mg/kg;
- a egri chiziqdagi K₂O, mg hisobida.

(Tayyorlanadigan standart suyuqlik 1 l hisobida tayyorlangan bo'lgani uchun hisoblashda tuproq massasi 2 gr emas, 20 gr olinadi).

Nazorat savollari

- 1. Tuproq tarkibidagi azotning umumiy miqdori haqida tushuncha
- 2. Tuproq tarkibidagi fosforning umumiy miqdori haqida tushuncha
- 3. Tuproq tarkibidagi kaliyning umumiy miqdori haqida tushuncha
- 4. Azot, fosfor va kaliyni aniqlash usullari haqida nima bilasiz

MAVZU – 12

MINERAL O'G'ITLARNI SIFAT REAKSIYALARI YORDAMIDA ANIQLASh.

Mashg'ulotning maqsadi: Sifat reaksiyasi yordamida mineral o'g'itlarni aniqlashdan iborat.

Kerakli jihozlar, reaktivlar va asbob uskunalar: O'g'it namunalari, probirkalar, distillangan suv, Turli o'g'itlardan namunalar, distillangan suv, bariy xlorid 2-5% li eritmasi, ishqor eritmasi 8-10% li, xlorid kislota 1% li eritmasi yoki 1:10 nisatdagi sirka essensiyasi, Ko'mir cho'g'i, kumush nitrat 1-2% li eritmasi.

Adabiyotlar:5,6,8,9,11,12,

Xo'jaliklarda mineral o'g'itlarni noto'g'ri saqlash oqibatida ularning tarkibi o'zgarishi hollari ham uchraydi. Shuning uchun ularni qo'llashdan oldin sifatini tekshirib, so'ng me'yorini belgilash kerak.

Sifat reaksiyasini aniqlash uchun probirka (biror kichkina shisha idishcha) suv (distillangan) va ko'mir cho'g'i zarur.

Bulardan tashqari *BaCl₂*, *NaOH*, *AgNO₃* reaktivlari ham kerak bo'ladi. Agar o'g'it tarkibida Cl bo'lsa, kumush nitrat bilan reaksiyaga kirishadi oq cho'kma hosil bo'ladi.

$$KCl+AgNO_3 = KNO_3+AgCl$$

Kumush nitrat fosforli o'g'itlar bilan reaksiyaga kirishganda sariq cho'kma hosil bo'ladi:

$$K_3PO_4+3AgNO_3 = Ag_3PO_4 + 3KNO_3$$

o'g'it tarkibida SO₄ bo'lsa, u BaCl₂ bilan reaksiyaga kirishib, sutsimon cho'kma hosil qiladi:

$$(NH_4)_2SO_4+BaCl_2=BaSO_4+2NH_4Cl$$

o'g'it tarkibida ammiak bo'lsa, u ishqor bilan reaksiyaga kirishib, ammiak ajratib chiqaradi(albatta, probirkani chayqatish kerak).

$$NH_4NO_3+NaOH=NaNO_3+(NH_4)OH \rightarrow NH_3+H_2O$$

Tajribani boshlashdan oldin paketdagi o'g'itning yarmisini yoki taxminan 0,5-1,0 grammini probirkaga solib, ustiga 6-8 ml distillangan suv quyiladi.

Probirkani yaxshilab chayqatib o'g'itning erish darajasi aniqlanadi. Odatda o'g'itlar suvda yaxshi eriydigan, qisman eriydigan va erimaydigan bo'ladi. Agar o'g'it suvda erisa hosil bo'lgan eritma uchta probirkaga bo'lib quyiladi va ularning har qaysisiga 2-3 tomchidan BaCl₂, va AgNO₃ eritmalaridan ta'sir ettiriladi. Suvda eriydigan o'g'itlarning quruq donasi, yuqorida qayd etilganidek, ko'mir cho'g'ida tekshiriladi. Masalan, selitra cho'g'da portlaganga o'xshab yonadi, ammiakli o'g'itlar esa bo'linib tutun chiqaradi va ammiak hidini beradi. Kaliyli o'g'itlar esa sachraydi. (qanday o'zgarish bo'lsa daftarga yoziladi).

Agar o'g'it suvda erimasa, u holda eritma bir oz tindirilgach, undan 3-4ml olib, ikkinchi probirkaga solinadi va unga kumush nitrat (AgNO₃) ta'sir ettiriladi. Suvda erimaydigan o'g'itlar ko'mir cho'g'i yordamida tekshirilmaydi.

SUVDA ERIYDIGAN O'G'ITLARNI ANIQLASh.

Tekshirilayotgan o'g'it namunasidan uchta probirkaga olib, ularni har qaysisiga alohida-alohida *BaCl₂*, *AgNO₃* va *NaON* ta'sir ettirilganda hyech qanday

o'zgarish bo'lmasdan, faqat ishqor ta'sir ettirilganda probirkada ammiak hidini bersa, bu o'g'it ammiakli selitra (NH_4NO_3) bo'ladi.

Bu o'g'it namunasi uchta reaktivda o'zgarish bermasa kaliy yoki natriyli selitra (*KNO*₃) bo'ladi. Agar ko'mir cho'g'ida binafsha rang bo'lsa, kaliyli selitra (*KNO*₃) bo'ladi. Agar ko'mir cho'g'ida sariq alanga bersa natriyli selitra (*NaNO*₃) bo'ladi.

Ko'mir cho'g'ida o'g'it donalari bo'linib, sachramasdan ammiak hidini berishi mumkin yoki probirkadagi eritmaga ishqor (*NaOH*) ta'sir ettirilganda ammiak hidi hosil bo'lsa, ammiakli o'g'it bo'ladi.

*AgNO*³ qo'shilgan probirkada oq cho'kma, *BaCl*² qo'shilgan probirkada esa loyqa hosil bo'lsa, bu o'g'it ammoniy xlorid bo'ladi.

*AgNO*³ qo'shilgan probirkada loyqa hosil bo'lib, *BaCl*² qo'shilgan probirkada sutsimon oq cho'kma hosil bo'lsa, ammoniy sulfat o'g'it bo'ladi.

 $AgNO_3$ qo'shilgan probirkada sariq cho'kma hamda $BaCl_2$ qo'shilgan probirkada oq cho'kma hosil bo'lsa ammofos $(NH_4)HPO_4$ o'g'itlari bo'ladi. Bu o'g'it suvda sekin eriydigan bo'lgani uchun uni suvda tekshirilayotganda ko'proq chayqatish kerak bo'ladi.

NaOH qo'shilgan probirkada ammiak hidi bo'lmasa, bu probirkada o'g'it mochevina $[CO(NH_2)_2]$ bo'ladi.

Ko'mir cho'g'ida donalari bo'linib sachraydi va tutun chiqarmaydi. Bunday o'g'itlar kaliyli o'g'itlarda hisoblanadi.

Agar o'g'it har-hil rangda bo'lsa silvinit o'g'iti bo'ladi. (mKCI * nNaCl)

Agar o'g'itning ko'rinishi osh tuziga o'xshash hamda unga ayrim rangli kristallar aralashgan bo'lsa, kaliy tuzi o'g'iti bo'ladi. Uning formulasi *mKCI* * *nNaCl*.

 $AgNO_3$ qo'shilgan probirkada hyech qanday o'zgarish bo'lmasdan, faqat $BaCl_2$ ta'sir ettirilgan probirkada sutga o'xshash oq cho'kma hosil bo'lsa, bunday o'g'it kaliy sulfat bo'ladi. (K_2SO_4)

SUVDA ERIMAYDIGAN O'G'ITLARNI ANIQLASh.

Agar o'g'it suvda erimasa, u bir oz tindirilgach, undan 3-5 ml olib, ikkinchi probirkaga qo'yiladi va faqat $AgNO_3$ ta'sir ettiriladi.

Agar $AgNO_3$ ta'sir ettirilganda tezda sariq hosil bo'lsa, superfosfat o'g'iti bo'ladi $Ca(H_2PO_4)_2$.

Agar $AgNO_3$ ta'sir ettirilganda probirkaning pastki qismida sekin-asta sariq rang hosil bo'lsa, presipitat o'g'iti bo'ladi. $CaHPO_4*2N_2O$.

Agar $AgNO_3$ ta'sir ettirilganda probirkaning pastki qismida sekin-asta sariq rang hosil bo'lsa, prepitat o'g'iti bo'ladi. $CaHPO_4*2N_2O$

Agar $AgNO_3$ ta'sir ettirilganda ammiak hidi paydo bo'lsa, tomasshlak o'g'iti bo'ladi. $(Ca_4P_2O_9)$.

Agar $AgNO_3$ ta'sir ettirilganda ammiak hidi paydo bo'lmasa, kalsiy sianamidi $(CaCN_2)$ bo'ladi.

O'g'itlarning o'ziga xos xarakterli reaksiyalarini yozish uchun quyidagi jadvaldan foydalanish mumkin:

№	o'g'itning	Suvda	ko'mir	Rea	aktivl	ar	o'g'itning	o'g'itning
	tashqi	eruv-	cho'g'i	Н	7	\mathcal{I}_3	formulasi	nomi
	ko'rinishi va	chanligi	da	NaOH	BaCl_2	$AgNO_3$		
	rangi			Ž	B	Ag		
1.	Oq donador	eriydi	bor				NH ₄ NO ₃	Ammiakli
	1	J						selitra
2.								
3.								
4.								

MUHIM MINERAL O'G'ITLARNI ANIQLASh.

Mineral o'g'itlar kristall va amorf hollarda bo'ladi.

Kristall holatdagi o'g'itlar suvda yaxshi eruvchan, amorf o'g'itlar esa kam eriydigan yoki erimaydigan bo'ladi.

Kristall holatdagi o'g'itlarga hamma azotli (kalsiy sianamiddan tashqari) kaliyli o'g'itlar (toshko'mir kuli va kalimagdan tashqari) hisoblanadi. Murakkab o'g'it ammofos ham kristall holatdagi o'g'itlarga kiradi.

Fosforli va ohakli o'g'itlar hamda kalsiy sianomid va kalimag o'g'itlari amorf holatdagi o'g'itlar jumlasiga kiradi.

Shunday qilib, o'g'itlar eruvchanligiga ko'ra ikki gruppaga, ya'ni kristall holatdagi azotli va kaliyli o'g'itlar, amorf holatdagi fosforli va ohakli o'g'itlarga bo'linadi.

Azotli o'g'itlardan ammiakli selitra (*NH*₄*NO*₃). Uning tarkibidagi azot ammoniy va nitrat holida bo'ladi. Hozirgi vaqtda bu o'g'it maydonda donador shaklda chiqarilmoqda. Bu o'g'itdan tashqari natriy (*NaNO*₃) va kaliy (*KNO*₃) selitrasi ishlatiladi, kaliyli selitra murakkab o'g'it hisoblanadi. Bu o'g'itlarni faqat ko'mir cho'g'ida ajratish mumkin. Bunda sariq alanga bersa *NaNO*₃ va binafsha alanga bersa *KNO*₃ o'g'itlari bo'ladi. *NH*₄*NO*₃ ishqor eritmasi tomizilganda ammiak hidi ajraladi.

Bunda quyidagicha reaksiya boradi:

 $NH_4NO_3+NaOH=NaNO_3+NH_4OH - \rightarrow H_2O \rightarrow NH_3$ $NH_4OH \rightarrow H_2O \rightarrow NH_3$

Natriy va kaliyli selitrada bunday bo'lmaydi, ya'ni ammiak hidi ajralmaydi. Ammoniy sulfat $(NH_4)_2SO_4$ ko'mir cho'g'ida suyuqlanadi va oq tutun hosil qilib, ammiak ajratib chiqaradi:

 $(NH_4)_2SO_4+2NaOH = Na_2SO_4+2NH_4OH$ $2NH_4OH \rightarrow 2NH_3+2H_2O$ Ammoniy sulfatni ammiakli selitradan ajratish uchun eritmaga 2-3 tomchi VaCl (bariy xlorid) eritmasi tomizilsa, oq cho'kma hosil bo'ladi.

$$(NH_4)_2SO_4+BaCl_2=BaSO_4+2NH_4Cl$$

Hosil bo'lgan oq cho'kma sirka yoki xlorid kislota ta'sirida erimasa ammoniy sulfat o'g'iti bo'ladi.

Mochevina $CO(NH_2)_2$ keng tarqalgan azotli o'g'itdir. Bu o'g'it ko'mir cho'g'ida ammiak hidini beradi, ishqor ta'sirida esa ammiak hidini bermaydi.

MDH va oʻzbekistondagi asosiy kaliyli oʻgʻitlar quyidagilar: kaliy xlorid (KCl), 40% li kaliy tuzi - KSl+mKC+nNaCl, silvinit - mKCl + nNaCl, kaliy sulfat - K₂SO₄ va boshqalar. Kaliyli oʻgʻitlarning hammasi koʻmir choʻgʻida parchalanib, sachraydi. Ularni shu xususiyatiga koʻra azotli oʻgʻitlardan farq qilish mumkin.

40% li kaliy tuzi oq va qizg'ish pushti kristallardan iborat.

Kaliy xlorid odatda mayda oq kristall yoki donador holatda bo'ladi.

Agar kaliyli o'g'it tarkibida xlor bo'lsa, bunday o'g'itga kumush nitrat eritmasidan 2-3 tomchi tomizilganda oq cho'kma hosil bo'ladi:

$$KCl+AgNO_3 = KNO_3+AgCl$$

Kaliy sulfat oq yoki sarg'ish tusli kukun. Kaliy sulfat suvda eritilib, unga 2-3 tomchi bariy xlorid eritmasi (BaCl₂) tomizilganda oq cho'kma hosil bo'ladi.

$$K_2SO_4+BaCl_2=BaSO_4+2KCl+K_2SO_4+BaCl_2$$

Bariy sulfat sirka va kuchsiz xlorid kislotalarda erimaydi. Kaliy sulfat va ammoniy sulfat bariy xloridda bir xilda oq cho'kma hosil qiladi. Bularning farqini bilish uchun eritmaga 2-3 tomchi ishqor eritmasidan tomizilsa ammoniy sulfat ammiak hidi keladi, kaliy sulfatdan esa ammiak hidi kelmaydi.

Kainit, kalimag va kalimagneziya o'g'itlarni ham bariy xlorid ta'sirida oq cho'kma hosil qilsa, kumush nitratda hyech qanday o'zgarish bo'lmaydi.

Ammofos o'yuvchi natriy yoki o'yuvchi kaliy ta'sirida ammiak hidini, kumush nitrat ta'sirida esa sariq rang hosil qiladi.

Odatda azotli va kaliyli o'gitlar aniqlab bo'lingach, fosforli hamda ohakli o'g'itlar aniqlanadi. Buning uchun sinalayotgan o'g'itdan tarozida 0,5-1,5 g tortib olib, unga 3-4 tomchi sirka yoki xlorid kislota eritmasidan tomiziladi. Bu reaksiyani chinni likopchada yoki temir qoshiqlarda bajarish mumkin. Agar sinalayotgan o'g'itga sirka yoki xlorid kislota eritmasidan tomizilganda o'g'it qaynasa, u ohakli yoki tomasshlak o'g'iti bo'ladi, chunki uning tarkibida tarkibida ohak ko'p bo'lganli uchun u qaynaydi. Fosforli o'g'itlarning qolganlari esa sirka yoki xlorid kislota eritmasi ta'sirida qaynamaydi, ular faqat kumush nitrat ta'sirida sariq rang hosil qiladi.

Fosforit uni - qoramtir sarg'ish tusli, hidsiz, mayda og'ir kukun. Presipitat - oq tusli hidsiz o'g'it. Superfosfat - oqish yoki sariq tusli, o'ziga xos hidli fosforli o'g'it. o'g'itni probirkada eritib, bir oz tingandan keyin ko'k lakmus qog'ozini tekkizilsa, u qizaradi.

Suyak uni - och sariq tusli bo'lib, tarkibida fosfor va qisman azot bordir.

Kalsiy sianamid - qora tusli kukun, suvda erimaydi. Kalsiy sianamidning suvli eritmasiga qizil lakmus qogʻoz tushirilsa, eritmaning muhiti ishqoriy boʻlgani uchun qizil lakmus qogʻoz koʻkaradi. Bu oʻgʻit koʻpincha defoliant sifatida ya'ni gʻoʻzaning bargini toʻkish uchun ham ishlatiladi.

7-jadval Turli oʻgʻitlar 1m³ hajm massasi va 1 tonna hajmi.

No॒	o'g'itlar	1m³massasi (t)	1 tonnasi hajmi,
			(m^3)
1.	Oddiy superfosfat	1,1	0,9
2.	Presipitat	0,8	1,2
3.	Ammoniy sulfati	0,8	1,2
4.	Ammiakli selitra	0,8	1,2
5.	Kaliy sulfati	1,3	0,8
6.	Kaliy xloridi	0,95	1,1
7.	Yangi mol go'ngi	0,4-0,7	1,4
8.	Chirigan ot va mol go'ngi	0,9-1,0	1,0
9.	Yarim chirigan ot va mol go'ngi	0,7-0,8	-
10.	Go'ng shaltog'i	1,0	1,0
11.	Gips	0,75	1,3
12.	Maydalangan ohak	1,7	0,6

MINERAL O'G'ITLAR ANIQLAGICHI

1. a) O'g'it suvda yaxshi eriydi yoki deyarli to'liq eriydi 2
b) O'g'it suvda yaxshi erimaydi12
2. a) O'g'itning suvli eritmasidan ishqor ta'sirida ammiak (NH ₃) ajraladi3
b) O'g'it eritmasidan ishqor ta'sirida ammiak ajramaydi 6
3. a) O'g'itning suvli eritmasi kumush nitrat (AgNO ₃) bilan oq cho'kma hosil qiladi4
b) Oq cho'kma hosil qilmaydi yoki oq rangli loyqa hosil qiladi 5
4. a) Cho'kma oq rangda – o'g'it quruq, rangli oq yoki sariqsimon bo'lsa,
AMMONIY XLORID (NH ₄ CI)
b) Cho'kma sariq rangdaAMMOFOS (NH4H2PO4), DIAMMOFOS ((NH4)2HPO4
5. a) O'g'it eritmasiga bariy xlorid (BaC12) ta'sir ettirilganda oq cho'kma hosil bo'ladi – o'g'it
quruq,ko'mir cho'g'ida ammiak ajraladi AMMONIY SULFAT (NN4)2SO4
b) O'g'it eritmasiga bariy xlorid ta'sir ettirilganda cho'kma hosil bo'lmaydi. Kumir cho'g'ida
qaynaydi va ammiak ajraladi AMMIAKLI SELITRA (NH4NO3)
6. a) O'g'it eritmasiga kumush nitrat (AgNO ₃) ta'sir ettirilganda oq cho'kma hosil bo'ladi7
b) Cho'kma hosil bo'lmaydi, loyqa hosil bo'lishi mumkin 8
7. a)O'git quruq, mayda kristalsimon oq yoki apel'sin rangdagi aralashmaKALIY
XLORID (KSl)
b) O'g'it ok yoki kristall kirmiziKALIY TUZI.

IZOH: Tekshirilayotgan o'g'it namunasi aniqlagich bo'yicha to'g'ri aniqlanmasa, demak siz xatolikka yo'l qo'ydingiz. Tahlil kaytadan qilinish kerak.

Nazorat savollari

- 1. Mineral o'g'itlar haqida tushuncha
- 2. Sifat reaksiyasi haqida tushuncha bering
- 3. Azotli o'g'itlarni aniqlashni usullari
- 4. fosforli o'g'itlarni aniqlash usullari
- 5. Kaliyli o'g'itlarni aniqlash usullari
- 6. Murakkab o'g'itlarning aniqlash usullari

MAVZU – 13 SELITRA TARKIBIDAGI AZOTNI ISHQORIY MUHITDAGI ARALASHMADAN DEVARD USULIDA ANIQLASH.

<u>Tajribaning maqsadi.</u> O'g'it tarkibidagi azotni aniqlashdan maqsad, birinchidan o'g'itning me'yorini belgilash, ikkinchidan o'g'itni saqlashda uning tarkibidagi azotning o'zgarishini kuzatishdan iborat.

Kerakli asbob uskunalar, reaktivlar: Devard aralashmasi, 0,2n o'yuvchi natriy eritmasi, 30-40% li o'yuvchi natriy eritmasi, sulfat kislota eritmasi, indikatorlar

Adabiyotlar: 5,6,8,9,10,11,12

Tajribada nitrat ammiakkacha qaytariladi. Buning reaksiyasini, albatta, Devard aralashmasi yoki qotishmasi (mis, rux va alyuminiy) bilan ishqoriy muhitda olib boriladi. So'ngra Kyeldal apparatida ammiak haydash yo'li bilan aniqlanadi. Bunda yig'gich kolbadagi sulfat kislota bilan reaksiyaga kirishgan ammiak miqdori bilan azot aniqlanadi.

Nitratning ammiakkacha qaytarilish reaksiyasi quyidagicha:

 $Zn +2NaOH = Zn (ONa)_2 + H_2$ $2Al+6NaOH = 2Al (OH_2)_3 +3H_2$ $NaNO_3 +4H_2 = NH_3+NaOH=2H_2O$

yoki umumiy holda quyidagicha yoziladi:

 $NaNO_3+4Zn+7NaOH=NH_3+7Zn(ONa)_2+2H_2O$

Reaksiyada ajralib chiqqan ammiak yigʻgich kolbadagi sulfat kislota bilan quyidagicha reaksiyaga kirishadi:

$$2NH_3+H_2SO_4 = (NH_4)_2SO_4$$

Bunda 2g-atom 1g-mol N_2SO_4 yoki 2 g-ekv N_2SO_4 to'g'ri keladi. 1g-atom N_2 1g-ekv H_2SO_4 ni biriktiradi 14 g N_2 taxminan 1000 ml 1n H_2SO_4 ni biriktiradi 0,014 N_2 1 ml 1n H_2SO_4 ni biriktiradi 0,28 N_2 1 ml 0.2n H_2SO_4 ni biriktiradi.

<u>Ishni tartibi</u>. Maydalangan o'g'itdan o'rtacha namuna olinadi. Agar olingan o'g'it namunasi KNO₃ va NaNO₃ bo'lsa 4 g yoki NH₄NO₃ bo'lsa 2 g tarozida tortib olib, 250 ml hajmli o'lchov kolbasiga solinadi. Kolbaning yarmisigacha (yoki 100-150 ml) distillangan suv quyib, o'g'it eriguncha chayqatiladi. So'ng kolbaning belgisigacha suv to'ldiriladi. Bunda agar hosil bo'lgan aralashma loyqa bo'lsa u filtrlanadi. Filtratdan pipetka bilan 25 ml olib, Kyel'dal kolbasiga solinadi va uning ustiga 25-30 ml distillangan suv quyiladi.

Yigʻgich kolbaga eritma tayyorlash uchun 250-300 ml sigʻimli konussimon kolba olib, byuretkadan 100 ml 0,2n sulfat kislota (N₂SO₄) solinadi, ustiga 3-5 tomchi indikator, metil qizili yoki metilqirmizi eritmasidan quyiladi, hamda kolba apparatga tutashtiriladi. Soʻngra oʻgʻitli eritmaga solingan kolbaga silindr orqali 25 ml (30-40%) ishqor eritmasidan qoʻyib, uning ustiga 2- 2,5 g Devard aralashmasidan solinadi va kolbaning ogʻzi tezda yaxshilab berikitiladi (apparatga birlashtiriladi). Soʻngra bugʻ hosil qiluvchi kolba ulanadi.

Apparatda haydash prosessi ammiak tamom bo'lguncha davom etadi. (haydash prosessi nihoyasiga yetgan-yetmaganligi lakmus qog'oz yordamida tekshirib turiladi). So'ngra yig'gich kolbadagi pushti rangli eritma to'q sariq rangga o'tguncha 0,2 n NaOH eritmasi bilan titrlanadi.

O'g'it tarkibidagi azot miqdori quyidagi formulaga ko'ra hisoblanadi

Bunda:

x - o'g'it tarkibidagi azot miqdori, foiz hisobida;

a - yig'gich kolbadagi 0,2n H₂SO₄ miqdori, ml hisobida;

f₁- va f₂- kislota va ishqor tuzatmasi

0,0028 g 1 ml 0,2n N₂SO₄ ga to'g'ri keladigan azot miqdori;

100 – foizga aylantirish ko'paytmasi;

N - 25 ml eritmadagi o'g'itning massasi, bunda:

Nazorat savollari

- 1. Selitra tarkibidagi azotning miqdori
- 2. Ishqoriy muhit aralashmasi va Devard usuli haqida tushuncha bering
- 3. O'simliklar oziqlanishida selitraning ahamiyati

MAVZU - 14 GO'NG TARKIBIDAGI N,P,K MIQDORINI ANIQLASh.

<u>Tajribaning maqsadi.</u> Go'ng, go'ng sharbati, xo'jalik va sanoat chiqindilari, qushlar chiqindisi, ipak qurti chiqindisi kul va shunga o'xshashlar organik o'g'itlardir. Organik o'g'itlar tarkibida azot, fosfor, kaliy, mikro-elementlar va suv bo'ladi hamda ular har hil nisbatda uchraydi. Organik o'g'itlar tuproqning biologik faoliyatini tezlashtiradi, tuproq strukturasini yaxshilaydi, tuproqdagi oziq elementlarni o'simlik o'zlashtirishini yaxshilaydi. Shuning uchun organik o'g'itlardan to'g'ri foydalanish, ularni saqlash yo'llarini o'rganish va ular tarkibidagi oziq elementlarni aniqlash katta ahamiyatga ega.

Kerakli reaktivlar, asbob uskunalar va jixozlar: Fenolsulfat kislota, ruh qirindisi yoki kukuni, simob metali, selen (yoki SiO₄ * 5N2O), fenolftalein, o'yuvchi natriyning 30% li eritmasi, sulfat kislotaning 0,1n eritmasi, indikator- kongo qizil yoki metil qizil yoki metiloranj, Nessler reaktivi, o'yuvchi natriyning 0,1n eritmasi, distillangan suv.

Texnik tarozi va uning toshlari, go'ng, filtir va lakmus qog'oz, Kyeldal kolbasi va konussimon kolbalar (250-300 ml), chinni kosacha yoki shisha yoki pergament qog'oz, silindr, byuretka.

GO'NG TARKIBIDAGI UMUMIY AZOTNI IODLBAUER BO'YIChA ANIQLASh.

<u>Tajribaning mohiyati</u>. Azot konsentrlangan sulfat kislota qo'shib qizdirilganda (katalizator simob, selen va boshqalar ishtirokida) butunlay ammiakka aylanadi. So'ngra sulfat kislota bilan reaksiyaga kirishib ammoniy sulfat hosil qiladi.

$$SN_2NH_2COOH + 3H_2SO_4 = 2CO_2 + NH_3 + 4H_2O + 3SO_2$$

 $2NH_3 + H_2SO_4 = (NH_4)_2SO_4$

Ish tartibi. Tekshiriladigan go'ng dastlab maydalanadi. So'ngra chinni kosachada yoki shisha ustida yoki pergament qog'ozcha (moy va nam o'tkazmaydigan yupqa qog'oz) qo'yib 10 g tortib olinadi. Tarozida tortilgan go'ngni filtr qog'ozga o'rab, 200-500 ml hajmli Kyeldal kolbasiga solinadi. Kolbaga pipetka yoki silindr orkali 30 ml fenolsulfat kislota quyiladi. Bunda kolba qiziydi shuning uchun uni bir oz sovutish kerak. Kolba chayqatiladi va unga 2-3 g rux kukunidan solib avval sekinroq, keyin esa kuchli qizdiriladi. Agar eritma qizarsa unga katalizatorlardan 2-3 tomchi simob yoki 0,1g selen yoki 0,5g SiSO₄*5N₂O solib yana 30-35 minut qizdiriladi So'ng kolba sovutiladi. Unga 100 mg ga yaqin distillangan suv quyiladi va ammiakni ajratish uchun Kyeldal apparatiga quyiladi. Kolba bir necha marta distillangan suv bilan yuviladi, kolbadagi aralashmaning miqdori 300 ml gacha bo'lishi kerak. Buning ustiga 2-3 tomchi fenolftalein va yana 120 ml o'yuvchi natriyning 30% li eritmasidan quyiladi. Bu eritmani qo'shishdan maqsad kolbada ishqoriy muhit hosil qilishdir. Aralashmaga 1-2 g ruh qirindisi solinadi. Bunda aralashma tarkibidagi simob amid birikmalarini parchalaydi. Agar katalizator sifatida selen yoki CuSO₄*5H₂O ishlatilgan bo'lsa, rux qirindisi ishlatish ortiqchadir.

$$(NH_4)_2SO_4 + 2Hg = (NH_2Hg)_2SO_4 + 2H_2O$$

 $Zn + H_2SO_4 = ZnSO_4 + H_2O$
 $(NH_2Hg)_2SO_4 + 2H_2 = (NH_4)_2SO_4 + 2Hg$

Tayyorlangan eritmani yigʻish uchun asbob tayyorlanadi. Buning uchun 250-300 ml hajmda konussimon kolbaga 25 ml 0,1n N₂SO₄ eritmasidan va 2-3 tomchi indikatordan solinadi. Bu eritma tayyor boʻlgandan soʻng Kyeldal apparatida ammiak haydala boshlaydi. Haydash dastlab kuchsiz aylanganda amalga oshiriladi keyinroq esa qaynatiladi. Bunda kolbadagi eritmaning hajmi 2/3 qismi qolguncha yoki 3 soat davomida qaynatiladi. Aralashmaning toʻliq haydalgannini bilish uchun Kyeldal apparatida tushayotgan eritmadan 1-1,5 ml olib, unga Nessler reaktivi ta'sir ettiriladi, bunda sariq rang hosil boʻlmasa eritma toʻliq haydalgan boʻladi. Nesseler reaktividan tashqari qizil lakmus qogʻozdan foydalanish mumkin, bunda qizil lakmus gʻogʻoz koʻkarmasligi kerak. Haydalgandan keyin kolbada qolgan sulfat kislota 0,1n oʻyuvchi natriy eritmasi bilan titrlanadi. Titrlash vaqtida indikatorga qarab eritmaning rangi oʻzgaradi. Masalan metil qizili boʻlsa, qizilidan tashqari tilla ranggacha metiloranj boʻlsa koʻkdan qizilgacha oʻzgarishi mumkin.

$$(NH_4)_2SO_4 + 2NaOH = Na_2SO_4 + 2NH_3 + N_2O$$

 $2NH_4 + H_2SO_4 = (NH_4)_2SO_4$

Go'ng tarkibidagi umumiy azot miqdori quyidagi formula asosida hisoblanadi:

bunda:

a- 0,1n N₂SO₄ miqdori, ml hisobida

T₁- 0,1n N₂SO4 tuzatmasi

b- titrlash uchun sarflangan 0,1n NaOH miqdori, ml.

T₂ - 0,1n NaOH tuzatmasi

N - go'ngning massasi, g

100- foizga aylantirish ko'paytmasi

0,1 n N₂SO₄ ning xar bir millilitridagi bog'langan ammiak 0,0014 g azotga to'g'ri keladi.

GO'NG TARKIBIDAGI UMUMIY FOSFORNI ANIQLASh.

<u>Tajribaning mohiyati.</u> Tekshirish uchun oldindan tortib olingan go'ng quruq yoki ho'l usulda kuydiriladi. Natijada bu eritmalar kolorimetr yoki hajmiy usullarda tekshiriladi. Go'ng tarkibidagi fosforni quruq yoki ho'l kuydirish usullari o'simlik tarkibidagi fosforni aniqlash mavzusida yozilgan.

<u>Go'ng tarkibidagi namlikni aniqlash.</u> Buning uchun tarozida 3-5 g go'ng tortib olib, alyumin yoki shisha stakanchaga solinadi va termostatda 100-105°S haroratda 3-4 soat davomida massasi o'zgarmaguncha quritilib tortiladi. Namlikni esa quyidagi formula yordamida hisoblash mumkin.

bunda:

a- go'ngning qurimasdan oldingi massasi, g hisobida b- go'ngning qurigandan keyingi massasi, g hisobida 100- foizga aylantirish ko'paytmasi.

<u>Go'ngni analizga tayyorlash.</u> Buning uchun oldindan yaxshilab aralashtirilgan va maydalangan go'ng olinadi. Go'ng quruq bo'lsa 2g yoki ho'l bo'lsa 5g olib toza, quruq probirkaga solinadi va tarozida tortiladi. Tortilgan go'ng 500 ml hajmli Kyeldal kolbasiga solinadi. Probirkani qaytadan tortib, go'ngning aniq massasi aniqlanadi.

<u>Kuydirish.</u> Kyel'dal kolbasi ichidagi aralashmasi bilan mo'rili shkafka quyiladi, unga konsentrlangan sulfat va nitrat kislota, aralashmasidan 20-25 ml quyiladi. Kolbadan qora tutun chiqa boshlashi azot oksidining ajralib chiqishidan dalolat beradi. Bunday xolatda kolba qattiq qaynamasligi uchun asbest to'rdan foydalanish kerak. Kolbani qattiq qaynatmaslik zarur. Unga vaqt-vaqti bilan 1-1,5 ml dan konsentrlangan nitrat kislota quyib turiladi. Bundan maqsad nitrat kislota havoda tezda uchib ketadi. Agar kuydirish vaqtida faqat sulfat kislota bo'lsa,

go'ngning usti qorayib, kuydirish muddati sekinlashadi. Har safar nitrat kislota kuyishda kolba bir oz sovutiladi. Kolbadagi eritma rangsizlangach kuydirish nihoyasiga yetgan bo'ladi. Shundan so'ng kolbadagi aralashma sovutiladi, uning ustiga 100 ml distillangan suv quyib qaynatiladi. Bu vaqtda eritmada qolgan nitrat kislota havoga uchib ketadi. Eritma qaynagandan so'ng kolbadagi aralashma sovutiladi, uning ustiga 100 ml distillangan suv quyib qaynatiladi. Bu vaqtdagi eritmada qolgan nitrat kislota havoga uchib ketadi. Eritma qaynagandan so'ng filtrlanadi. Filtrlanganda eritmaga silikat kislota, gips, qum va boshqa elementlardan tozalanadi. Kolba tagida qolgan cho'kma esa qaynoq distillangan suv bilan bir necha marta yuviladi. Hosil bo'lgan eritmaning hammasi 250 ml li o'lchov kolbasiga solinadi va kolbaning belgisigacha distillangan suv quyiladi. Eritmani aralashtirib, uning yarmisidan kaliyni aniqlashda foydalanish mumkin.

Eritmani analiz qilishdan oldin 10 marta suyultirish kerak, buning uchun tayyorlangan aralashmadan 25 ml olib, 250 ml hajmli o'lchov kolbasiga solinadi va kolbaning beligisigacha distillangan suv quyiladi. Bu tayerlangan eritmadan 20 ml olib, 50 yoki 100 ml hajmli o'lchov kolbasiga solinadi. Uning ustiga 2 ml molibden reaktivi va 8-10 tomchi kaliy eritmasidan qo'shiladi hamda kalorimetrlanadi.

Go'ng tarkibidagi umumiy fosfor miqdorini Betchera-Vagner va Shefer usullarida ham aniqlash mumkin. Buning uchun suyultirilmagan eritmadan Shefer usullari asosida bajariladi.

GO'NG TARKIBIDAGI UMUMIY KALIYNI ANIQLASh.

Tajribaning mohiyati go'ng tarkibidagi umumiy fosforni aniqlashdagi kuydirishga o'xshashdir. Bunda kaliy, natriy, kobalt ishtirok etadi. Ya'ni 1 ml 0,2n kalsiy permanganatga 0,711 ml kaliy yoki 0,856 ml K₂O to'g'ri keladi.

<u>Ish tartibi.</u> Go'ng tarkibidagi umumiy fosfor aniqlanadigan eritmadan 100 ml ni chinni kosacha solib, qurigunicha suv hammomida bug'latiladi. Qurigandan so'ng 3-4 ml 10% li sirka kislota eritiladi va kulsizlantirilgan filtr orqali filtrlanadi. Chayindi eritma 10 ml qolgunicha suv hammomida bug'latiladi. So'ngra buning ustiga tomchilatib 10 ml natriy kolbaltning eritmasidan quyiladi.

Analizning davomi, hisoblash, kerakli reaktiv va asboblar kaliyli o'g'itlar tarkibidagi kaliyni kobaltni nitrat usulida aniqlashga qarab ishlanadi.

Mahalliy o'g'itlar.(%)

8-jadval

O'g'it uri	Namlik,(%)	N	P_2O_5	K ₂ O	SaO
Somon to'shamali go'ng:					
yarim chirigan aralash	75,0	0,50	0,25	0,60	0,35
ot go'ngi	71,3	0,58	0,28	0,63	0,21
qoramol go'ngi	77,3	0,45	0,23	0,50	0,40
qo'y qiyi	64,6	0,83	0,23	0,67	0,33
cho'chqa go'ngi	72,4	0,45	0,19	0,60	0,18
Qushlar axlati:					
kaptarlar	52		1,7-2,2	1,0-2,2	-

tovuqlar	56	1,2-	1,5-2,0	0,8-1,0	-
o'rdaklar	57	2,4	1,5	0,4	-
g'ozlar	82	0,7-	0,5	1,1	
Go'ng shaltog'i:		1,9			
otxonalardan	-	0,8	0,08	0,58	-
fermalardan	-	0,6	0,12	0,38	
cho'chqa xonalardan	-		0,06	0,36	
Kul:		0,39			
bug'doy somoni	-	0,26	6,40	13,6	5,9
javdar somoni	-	0,31	4,7	16,2	8,5
go'ng kuli	-		5,0	11,0	9,0
		-			
		-			
		-			

Nazorat savollari

- 1. Go'ng tarkibidagi azotni aniqlash
- 2. Go'ng tarkibidagi fosforni aniqlash
- 3. Go'ng tarkibidagi kaliyni aniqlash
- 4. Go'ngning tuproq unumdorligiga va o'simliklar oziqlanishiga ta'siri

FOYDALANILGAN ADABIYOTLAR

- 1. B.S. Musayev. Agrokimyo. Toshkent. 2001.y.
- 2. Agrokimyo (akad. B.A. Yagodin taxriri ostida) M. 1987.y
- 3. Agroximicheskiye metodы issledovaniya pochv Izd. "Nauka". Moskva, 1975 g.
- 4. Boboxo'jayev I. Uzoqov P. Tuproqning tarkibi, xossalari va analizi. T. "Mehnat" 1990 y.
- 5. Voskresenskiy P.I. Texnika laborotorпых rabot. Izd. "Ximiya". Moskva. 1970 g.
- 6. Miraxmedov H. va Miryunusov M. Tuproqshunoslikdan amaliy mashg'ulotlar. T. o'qituvchi. 1976 y.
- 7. Niyozaliyev I.N., Otabekov N.A., Kon V.M., Toirov T.Z., B.B. Rajabov. Agroximiyadan amaliy mashg'ulotlar. T. "Mehnat". 1989 y.
- 8. Peterburgskiy A.V. Praktikum po agronomicheskoy ximii. M. "Kolos" 1968 g.
- 9. Praktikum po agroximii. A.S. Radov tahriri ostida. M. "Kolos" 1971 g.
- 10. Praktikum po agroximii. B.A. Yagodin tahriri ostida. M. "Agropromizdat" 1987 g.

ILOVA

5141000 — Tuproqashunoslik, 5620100 — Agrokimyo va agrotuproqshunoslik, 5410200—Agronomiya, 5410300 — O'simliklar himoyasi va karantini, 5410200 — Kasbiy ta'lim (Agronomiya) ta'lim yonalishlarining 2017-2018 o'quv yili namunaviy o'quv rejalari acocida labaratoriya ishlarini bajarish ushun mavzulari, test va yakuniy nazorat savollari tavsiya etiladi.

«O'simliklarni oziqlanishi va o'g;itlar» fanidan yakuniy nazorat savollari

- 1. Agrokimyo dehqonchilikni kimyolashtirish va Agrokimyoviy xizmatni to'g'ri tashkil etishning ilmiy asosi sifatida. O'simlik-tuproq-o'g'itning biologik va kimyoviy xususiyatlari, o'zaro ta'siri. O'simliklarning oziqa moddalarga talabi. Jaxonda, MDX da va O'zbekistonda mineral o'g'itlar ishlab chiqarishning hozirgi ahvoli.
- 2. Tuproq azoti, uning asosiy shakllari va o'zgarishi. Tuproqdagi azot umumiy miqdori. Mineral va organik azot. Ammonifikasiya, nitrifikasiya, denitrifikasiya, immobilizasiya. Biologik azot. Tuganak va erkin yashovchi azot to'plovchi bakteriyalar
- 3. Go'ng. Go'ngning tuproq unumdorligi va o'simlik hosildorligini oshirishdagi roli, Go'ng turlari. To'shamali go'ng. Tarkibi, olinishi, saqlash usullari, saqlashda organik modda, azot yo'qolishi oldini olish choralari. Kuzgi shudgor bilan, oziqlantirishda va "sharbat" usulida qo'llash
- 4. Tuproqning biologik singdirish qobiliyati. Tuproq mikroorganizmlari. Azotni tuproqda singdirilishida mikroorganizmlar ahamiyati. Biologik singdirishning ijobiy ta'siri va undan samarali foydalanish yoʻllari
- 5. Murakkab-aralash o'g'itlar, olinishi xossalari qo'llanilishi. Murakkab aralash o'g'itlar turlari. Sulfatli, sulfat kislotali, fosforli nitrofoska. Nitroammofos-ammofos asosida olingan murakkab aralash o'g'it. Karboammofos va karboammofoska, oziqa moddalarining nisbati va miqdori.
- 6. Agrokimyo fani va uslublari. Agrokimyo fani haqida D.N.Pryanishnikov, V.A.Mineyev ta'riflari. Agrokimyo fani asosiy vazifasi. Agrokimyo fanining uslublari. Biologik uslublar, kimyoviy uslublar.
- 7. Amidli azotli o'g'itlarning tuproqda o'zgarishi. Amidli o'g'itlar turlari. Mochevinaning tuppokda o'zgarishi. Ureaza fermenti ahamiyati. Nitrifikasiya jarayoni kechishi. Ureaza va nitrifikasiya jarayonini susaytirish
- 8. To'shamasiz Go'ng olinishi, tarkibi, xossalari, yarim suyuq va suyuq go'ng. To'shamasiz go'ng tarkibi. To'shamasiz go'ngni saqlash. Saqlash davomida oziqa moddalari yo'qolishi. To'shamasiz go'ng qo'llash usullari. Asosiy o'g'itlash va oziqlantirish
- 9. O'g'it qo'llashning ekologik muammolari. O'g'it hosildorlikni oshiruvchi muhim faktor. O'g'it tarkibidagi ballast moddalar: gips, ftor va h.k. Moddalarning tuproq, suv, sizot suvlar qishloq xo'jalik mahsulotlari tarkibida cheklangan miqdori (PDK) Tuproq grunt suvlari, qishloq xo'jalikmahsulotlarining ifloslanishi oldini olish, ekologik sof mahsulot ishlab chiqarish
- 10. Tuproq muhiti reaksiyasi-rNning O'simlik uchun ahamiyati.Tuproq muhiti reaksiyasi rN haqida tushuncha. Bo'z tuproqlarda muhit reaksiyasi. Aktual Potensial, almashuvchan, gidrolitik kislotalik. Tuproqning asoslar bilan tuyinish

darajasi. Oxak solish. Har xil o'simliklarning neytral, kislotali va ishqorli rN muhitiga munosabati

- 11. Tuproq singdirish kompleksi, tarkibi va to'zilishi. Singdirish kompleksining K.K.Gedroys bergan ta'rifi. Tuproq kolloidlari. Organik mineral va organomineral kolloidlar. Kolloid zarralar turlapi, to'zilishi va zaryadining tuproq muhitiga bog'liqligi
- 12. Suvda eruvchan fosforli o'g'itlar. Fosforli o'g'itlar ishlab chiqarish uchun asosiy xom ashyo. Fosforli o'g'itlar klassifikasiyasi. Superfosfat, olinishi, tarkibi, xossalari. Qo'sh superfosfat. Superfosfatni qo'llash usullari, me'yorlari va muddatlari. Ammoniylashtirilgan superfosfat va uni xossalari
- 13. Kompleks o'g'itlar va ularni qo'llash istiqbollari. Klassifikasiya. Murakkab o'g'itlar, murakkab aralash va aralash o'g'itlar. Ularning afzalliklari. Ammofos misolida murakkab o'g'itlarga tavsif bering
- 14. Tuproq singdirish qobiliyati va uning o'simlik oziqlanishidagi ahamiyati. Tuproq singdirish qobiliyati haqida tushuncha K.K.Gedroys ishlari. Biologik, mexanik, fizik, fizik-kimyoviy va kimyoviy singdirish qobiliyatlari,
- 15. Ammoniyli o'g'itlar. Ammoniyli o'g'itlar turlari, qattiq va suyuq mmoniyli o'g'itlar TKSga ammoniyning singdirilishi. Tuproq nitrifikasiya jarayonini va uni susaytiruvchi moddalar (ingibitorlar, ATG, KMP boshqalar)
- 16. O'simliklar tarkibida oziqa moddalar miqdori nisbati va tuproqdan olib chiqilishi. O'simliklar uchun kerakli va shartli kerakli elementlar haqida tushuncha. O'simliklarning elementlarni o'zlashtirishi. Xo'jalik, biologik, qoldiq olib chiqish. Olib chiqilgan elementlarning o'simlik hosili tarkibidagi nisbati.
- 17. Suyuq azotli o'g'itlar. Suyuq azotli o'g'itlar turlari. Suvsiz ammiak, ammiakli suvning olinishi, xossalari tarkibi, saqlashning o'ziga xos jihatlari. Suyuq azotli o'g'itlarni tuproqka qo'llash usullari, qo'llash chuko'rligining azot yo'qolishi miqdoriga bog'liqligi. Azotning tuproqda o'zgarishi.
- 18. Bo'z tuproqning agrokimyoviy tavsifi. Och tusli, tipik to'q tusli bo'z tuproqlar. O'tloq- bo'z va o'tloq tuproqlar chirindi umumiy va harakatchan oziqa moddalari miqdori. Tuproqlar singdirish sig'imi, singdirilgan kationlar tarkibi
- 19. Aralash o'g'itlar va ularga qo'yiladigan talablar. Aralash o'g'itlar olishning ikki yo'nalishi haqida. Aralashtiruvchi o'g'itlarning fizik-kimyoviy xususiyatlariga qo'yiladigan talablarning aralashtirish hajmi, tayyorlash uslubi va vaqtiga bog'liqligi. Ilgaridan va bevosita qo'llash oldidan tayyorlash. Mutlaqo aralashtirish mumkin bo'lmagan o'g'itlar
- 20. O'simliklar tomonidan o'zlashtiriladigan oziqa moddalari shakllari. NO₃ va NH₄ asosiy shakldagi azot elementi. N₂RO₄, NRO₄, RO₄, -RO₄ shakldagi fosforli birikmalarni o'zlashtiruvchi ekinlar.
- 21. Ammiakli-nitratli azotli o'g'it. Olinishi, xossalari, tarkibi fizik xossasini yaxshilash yo'llari. Sifatiga qo'yiladigan talablar. Tuproqda o'zgarishi, qo'llash usullari, muddatlari, me'yorlari.
- 22. Organik va mineral o'g'itlarning o'simliklar hosildorligini oshirish qishloq xo'jalik intensivlashtirishdagi roli. O'g'itlar-o'simliklar hosildorligini oshiruvchi omil ekanligi. Mineral o'g'itlarga bo'lgan talab (dunyoda, MDHda va O'zbekiston

misolida)

- 23. O'simliklar tomonidan kaliy o'zlashtirish denamikasi. Kaliyning o'simlikdagi shakli. Xujayradagi kaliy miqdori. Kaliyning o'simlikdagi bajaradigan funksiyasi. g'o'za, bug'doy o'simliklari o'sish va rivojlanish fazalari bo'yicha (shonalash, gullash va x.k) kaliyni o'zlashtirish.
- 24. Tuppok tapkibi, uning o'simlik oziqlanishidagi ahamiyati. Tuppoqning tapkibi haqida tushuncha, tuproq havosi. Tuproq eritmasi va qattiq qismining oziqlanishidagi ahamiyati. Tuproq qattiq qismining o'rtacha kimyoviy tarkibi. Tuproq mineral va organik qismi haqida tushuncha.
- 25. O'simliklar uchun azotning ahamiyati, azot yetishmasligi belgilari. Azotning asosiy manbalari. Azotning O'simlikda o'zgarishi. Aminlanish, qayta aminlanish jarayoni. Nitratlar reduksiyasi. O'simliklarda azot bajaradigan funksiyalar. Azot yetishmaslik belgilari. Ortiqcha berilganda o'simlikdagi o'zgarishlar.
- 26. Ammofos va diammofos asosida olinadigan murakkab aralash o'g'itlarning xossalari, tarkibi, xususiyatlari. Ammofos va diammofos, ammofoska va diammofoska o'g'itlarini qo'llash.
- 27. Fizik-kimyoviy yoki almashinuvchan tuproq singdirish qobiliyati. Fizik-kimyoviy singdirish mexanizmi, uning ekvivalent miqdorda boshqa kation siqib chiqarilishi bilan birga borishi. Fizik-kimyoviy singdirilgan kationlarning o'simlik tomonidan yengil o'zlashtirilishi.
- 28. O'simliklar uchun fosforning ahamiyati. Fosforli birikmalarni fiziologik roli. ATF-energiya manbai. O'simlikda fosfor reutilizasiyasi. (ilgari ishlatilgan fosforni qaytadan ishlatilishi). O'simlik uchun fosfor manbai. Fosfor yetishmasligi belgilari. Uning oldini olish.
- 29. Kaliyli o'g'itlar olinishi, xossalari, qo'llanilishi. Asosiy kaliy saqlovchi minerallar. Kaliyli o'g'itlar ishlab chiqarish usullari galurgik, flotasion,. konsentrlashgan va xom kaliy tuzlari. Kaliyning tuproqda o'zgarishi va kaliyli o'g'itlar qo'llash.
- 30. Tuproq singdirish sig'imi, singdirilgan kationlar tarkibi. Tuproq singdirish haqida tushuncha, uning birligi, Singdirish sig'imiga zarrachalar diametri, mineralogik tarkib, chirindi miqdori, tuproq muhiti reaksiyasi rN ta'siri. Bo'z tuproqlar singdirish sig'imi, singdirilgan asoslar tarkibi haqida.
- 31. O'g'it qo'llash usullari, uslublari, muddatlari, texnikasi. Asosiy, qator orasiga va oziqlantirishda o'g'itlar qo'llash uslublari. Kuzda, bahorda yozda qo'llash muddatlari. Sochma, lokal, lenta, usulida o'g'it qo'llash usullari. texnikalari.
- 32. Agrokimyoviy xaritanoma. Agrokimyoviy ko'rsatkichlardan o'g'itlarni to'g'ri qo'llashda foydalanish. Agrokimyoviy katrogrammalar haqida tushuncha. Harakatchan fosfor va almashinuvchan kaliy bo'yicha tuproq guruhlanishi. Tuproq ta'minlanish darajasiga ko'ra o'g'it me'yoriga tuzatish kiritish koeffisiyentlari.
- 33. Makro va mikroelementlar, ularning o'simlikdagi miqdori. Makroelement va mikroelement haqida tushuncha. O'simlik uchun kerakli va shartli kerakli elementlar. O'simlikda azot, fosfor, kaliy miqdori. Mikroelementlar (V, Mp, MO,

- Zp, Su, So) ning o'simlikdagi miqdori. Makro va mikroelementlarni o'simlik uchun ahamiyati haqida qisqacha tushuncha.
- 34. Ko'kat o'g'itlarning tuproq unumdorligini oshirishdagi foydalanilishi. Ko'kat o'g'it to'g'risida tushuncha, Ko'kat o'g'it sifatida foydalaniladigan o'simliklar. Siderasiya. Dukkakli sideratlar. Siderasiyaning tuproq unumdorligini oshirishdagi ahamiyati.
- 35.Tuproq fizik singdirish qobiliyati. Fizik singdirish haqida tushuncha. Fizik singdirishning tuproq zarrachalari umumiy yuzasiga bogʻliqligi. Ijobiy molekulyar adsorbsiya, salbiy molekulyar adsorbsiya. Ularning oʻgʻit qoʻllashdagi oʻsimliklar oziqlanishidagi ahamiyati.
- 36. Agrokimyoviy xizmatni tashkil etish. Loyixa qidiruv Agrokimyoviy laboratoriyalar faoliyati. Bozor iqtisodiyoti sharoitida Agrokimyo-servis xizmatini tashkil etish. Tuproq kartasi tuzish, katrogrammalar tashkil etish namuna olish. Laboratoriyada turli oziqa moddalar tahlili. Ulapni xaritaga kiritish. Oʻgʻitlash tizimi uchun tavsiya berish.
- 37. Tuproq singdirish qobiliyati. O'g'it qo'llashda almashinuvchan singdirish qobiliyatini ahamiyati. Turlari. Fizik-kimyoviy yeki almashinuvchan singdirish manfiy zaryadlangan kolloid zarralarning eritmasidan turli kationlarni singdirish Tuproq singdirish kompleksida ketadigan jarayonlar. Fizik-kimyoviy singdirishning tuproq xossalari va O'simlik oziqlanishidagi ahamiyati.
- 38. Tashqi muhitning o'simlikka oziqa moddalari o'tishiga ta'siri. Tashqi muhit faktorlari turlari haqida tushuncha. Oziq eritmasi konsentrasiyasi. Ildizning eritmadan oziqa o'zlashtirish xususiyatlari. Turli o'suv davrida o'simliklarning tuproq eritmasi konsentrasiyasiga munosabati.
- 39. Sapropel chuchuk suv havzalari loyqasini o'g'it sifatidagi ahamiyati. Sapropel -loyqa paydo bo'lishi, tarkibi tashqi ko'rinishi xossalari. Sapropeldan o'g'it tayyorlash texnologiyasi. O'g'it sifatida qo'llash xususiyatlari. sinergizmi. Ionlar antogonizmi. Ionlar reutilizasiyasi.
- 40. Tuproq kimyoviy singdirish qobiliyati. Uning o'g'it va tuproq o'zaro ta'siridagi roli. Tuproq kimyoviy singdirishi reaksiyalari. Bir va ikki valentli anionlarning kimyoviy singdirilish mexanizmlari. Qora va bo'z kislotali tuproqlarda fosfor singdirilishi.
- 41. Nitratli azotli o'g'itlar ularni qo'llash xususiyatlari. Natriyli selitra olinishi, tarkibi, xossalari, qo'llanilishi. Kalsiyli selitra olinishi, tarkibi, xossalari,
- 42. Tuproq unumdorligi haqida tushuncha. O'g'itlarning tuproq unumdorligini oshirishdagi ahamiyati. Unumdorlik turlari. Unumdorligini oshirishda bilvosita va bevosita ta'sir ko'rsatuvchi vositalar. Mineral, organik va ko'kat o'g'itlar-tuproq unumdorligini oshiruvchi asosiy omillardan biridir.
- 43. Tuproq biologik singdirish qobiliyati. Biologik singdirish qobiliyati haqida tushuncha. Rizosfera mikroorganizmlari. Azotli birikmalar o'zgarishida mikroorganizmlar roli. Biologik singdirish qobiliyatiga ta'sir ko'rsatuvchi omillar.
- 44. Superfosfat, qo'shsuperfosfat olinishi, xossalari, tarkibi, qo'llanilishi. Fosfor xom ashyosi: appatit, fosforit. Superfosfat olish texnologiyasi. Kukunsimon, donador, konsentrlashgan superfosfat: olinishi, tarkibi, xossalari. Erkin kislotalikni yo'qotish.

- 45. Ammiakatlar olinishi, xossalari, qo'llanilishi. Ammiakat mochevina, ammiakli selitraning suvli ammiakdagi eritmasi. Olish texnologiyasi. Fizik xossalari, tarkibi, qo'llash
- 46. Azotli birikmalarning o'simlikda o'zgarishi. Aminlanish. Nitratlar reduksiyasi. qayta aminlanish. Dezaminlashish. Azotli birikmalar o'zgarishini o'rganishda D.N.Pryanishnikov ishlari.
- 47. Xlor saqlovchi kaliyli o'g'itlar. Kaliy saqlovchi minerallar. Xlor saqlovchi o'g'itlar: kaliy xlorid, xlor-kaliy elektrolit, olinishi, xossalari, tarkibi, tuproqda o'zgarishi. Xlorga sezgir o'simliklar. Xlorli shurlanish sharoitida qo'llash jihatlari.
- 48. Fizik-kimyoviy singdirilishning asosiy qonuniyatlari. Kationlar almashuvi reaksiyasi qaytar jarayon. Kationlar almashuvi tezligi. Turli kationlar singish tezligi va energiyasi. Kationlar singish kattaligiga ko'ra kationlar qatori. Fizik-kimyoviy singdirilishning ahamiyati.
- 49. Aralash o'g'itlar, ularni qo'llash. Aralash o'g'it tayyorlashning ikki yo'nalishi. Aralash o'g'itga qo'yiladigan talablar. Avvaldan va qo'llash oldidan tayyorlash. o'g'itlarni aralashtirish mumkinligi. Aralash o'g'itni qo'llash jihatlari.
- 50. Go'ng sharbati, olinishi. Go'ng sharbati miqdorini saqlash usuliga bog'liqligi. Go'ng sharbati tarkibi. Undan azot yo'qolishi oldini olish. Go'ng sharbatini ishlatish asosiy o'g'it, oziqlantirish, kompostlarga qo'shish.
- 51. Qishloq xo'jalik ekinlari hosildorligini oshirishdagi ahamiyati. Oziqa moddalar olib chiqishi. Oziqa elementlari balansi. O'g'it qo'llash iktisodiy samaradorligini oshirish yo'llari, maqbul, o'g'it turi, me'yori, mineral o'g'it va organik o'g'itlarni birga qo'llash, Agrokimyoviy kartogrammadan foydalanish.
- 52. Oziqa eritmalari, O'simliklarni oziqa eritmasida o'stirish. Gidroponika. Oziqa eritmalariga talablar. Gidroponika o'stirish muhiti va eritmalari.
- 53. To'shamali va to'shamasiz go'ngni saqlash usullari. To'shamali go'ngni hayvonlar tagida saqlash, zich, yarim zich, zichlanmasdan saqlash. To'shamasiz go'ngni saqlashning 2 usuli.. Saqlash davomida oziqa moddalari yo'qolishini oldini olish choralari.
- 54. Suyuq kompleks va suspenziyalashtirilgan o'g'itlar. Suyuq kompleks o'g'it olish sxemasi. Termik va ekstraksion fosfor kislotalari. 10-34-0, 8-24-0, 11-37-0 bazis 12-40-0 suspenziyalashgan o'g'it bazis eritmasi. Suyuq kompleks o'g'itlar afzalliklari, ishlatilishi, qo'llash texnikasi.
- 55. O'simliklar turli o'suv davrlarida oziqlanish sharoitlariga munosabati. oziqlanishning davriyligi. Oziqlanish kritik, maksimal davrlari. Asosiy qishloq xo'jalik ekinlari (g'o'za, bug'doy, kartoshka)ning azot, fosfor va kaliyga munosabati
- 56. Tuproqda fosfor shakllari, fosforli birikmalarning tuproqda o'zgarishi, fosfatlardan foydalanish koeffisentini oshirish yo'llari. Tuproqdagi umumiy zahirasi. Mineral va organik fosfor. Oson o'zlashtiriluvchan, suvda eruvchan, harakatchan, kislotada eruvchan fosfor birikmalari, ularning o'g'itdan foydalanish koeffisentini oshirishdagi roli.
- 57. Xlorsiz kaliyli o'g'itlar. Kaliy sulfati, kalimagneziya, kalimagneziyali konsentrat sement changi, potash, olinishi, xossalari, tarkibi, qo'llash me'yorlari, usullari, muddatlari, tuproqda o'zgarishi.

- 58. Tuproq tarkibi uning o'simlik oziqlanishidagi ahamiyati. Tuproq xavosi, eritmasi, qattiq fazasi tarkibi, o'simlik oziqlanishidagi ahamiyati eritma tarkibidagi anionlar va kationlar. Tuproq qattiq fazasi mineral va organik faza.
- 59. O'g'it qo'llash usullari, uslublari, muddatlari ularni agrokimyoviy jihatdan baholash. Asosiy (ekishdan oldin, kuzda, ekish oldidan) ekish bilan birga, oziqlantirishda o'g'it qo'llash. Yoppasiga, bir joyga (uyalab, qatorlab, lokal) kultivator bilan, boronalashda, kuzgi shudgorda o'g'it qo'llash.
- 60. Fiziologik nordon, ishqoriy, neytral azotli o'g'itlar.Ularning turlari, olinishi xossalari. Ushbu o'g'itlarni qo'llash sharoitlari.
- 61. Yorug'lik, issiqlik va muhit reaksiyasining o'simliklar oziqlanishiga ta'siri.. Asosiy ekinlar uchun minimum, optimum, maksimum harorat. Fotosintez faolligi rN muhitining oziqlanishiga ta'siri. Ishqoriy muhitda, kislotali muhitda yaxshi o'zlashtiriluvchi oziqa moddalari.
- 62. Tuzlarning fiziologik reaksiyasi. Fiziologik nordon, ishqoriy va neytral tuzlar. O'g'itlarning nordonlik, ishqoriyli xususiyatlari. Ushbu xossalarning o'simlik oziqlanishidagi ahamiyati.
- 63. Moddalarning cheklangan miqdori haqida tushuncha (PDK). Sabzavot ekinlari, poliz va yem-xashak ekinlari tarkibida nitratlar va ogʻir metallarning cheklangan miqdori. nitratlar, ogʻir va radioaktiv moddalar bilan ifloslanishi yoʻllari, ularning oldini olish.
- 64. Tuproq mikroorganizmlarining o'simliklar mineral oziqlanishiga ta'siri. avtotrof va geterotrof mikroorganizmlar. Nitrifikasiya. Denitrifikasiya. Ammonifikasiya. Tuganak va erkin yashovchi azot to'plovchi bakteriyalar.
- 65. Ammiakli selitraning ishlatilishi. Olinishi, xossalari, tarkibi, o'g'itga qo'yiladigan talablar. Tuproqda o'zgarishi. Qo'llash usullari va muddatlari.
- 66. Ko'kat o'g'itlar. Ahamiyati, afzalligi va kamchiligi. Ko'kat o'g'itlar yetishtirish. Ko'kat o'g'it shakllari. Dukkakli sideratlar, yetishtirishning jihatlari, qo'llash samaradorligi.
- 67. Suyuq kompleks o'g'itlar qo'llash istiqbollari, assortimenti. Suyuq kompleks o'g'itlar olishning prinsipial sxemasi. Ularning asosiy afzalliklari, kamchiliklari. Suyuq kompleks o'g'itlarning ortofosfor va polifosfor kislotasi asosida olinishiga tavsif bering.
- 68. Azotning dehqonchilikda aylanishi. Azotning tuproqqa tushish manbalari. Tuproqdan yoʻqolishi (yuvilish, denitrifikasiya, eroziya). Oʻsimliklar oʻzlashtirishi. Biologik azot. tuproqda azot miqdorini oshirish yoʻllari.
- 69. Ammoniy sulfati. Olinishi, tarkibi, xossalari. Sintetik va koksoximik ammoniy sulfati farqi. Tuproqdagi o'zgarishi, qo'llanilishi.
- 70. Tuproq organik qismi azot va boshqa oziqa moddalari manbai. Tuproq organik moddalari guruhlari. O'simlik qoldiqlari, ildizlari, tuproq organizmlar qoldig'i. Gumus moddasi. Gumin va fulvo kislotalapi guminlar, ularni roli.
- 71. Tuproq muhiti reaksiyasining o'simlik oziqlanishiga ta'siri. Bo'z tuproqlar muhiti reaksiyasi. Unga bo'lgan o'simliklar munosabati. Turli muhit reaksiyasida ekinlar yetishtirish.
 - 72. Mochevina amid shakldagi azotli o'g'itning olinishi, xossalari, biuret va

uning miqdori, mochevinaning tuproqda o'zgarishi, ureaza aktivligi, nitrifikasiya. Mochevinaning qo'llanilishi.

- 73. Kompost mahalliy o'g'itlar qo'llashning samarali usuli. Kompost haqida tushuncha, tayyorlash texnologiyasi, turlari, qo'llash usullari, me'yorlari. Opganik, opgano-minepal kompostlap.
- 74. Tuproq eritmasi haqida tushuncha. Tuproq tarkibi. Eritma tarkibidagi anionlar va kationlar. Suvda eruvchan organik moddalar va gazlar. Eritmada makro va mikro elementlar nisbati, ionlar sinergizmi va antogonizmi.
- 75. Suyuq azotli o'g'itlar. Suyuq azotli o'g'itlar turlari. Fizikaviy xossalari, tashish va saqlash. Suyuq azotli o'g'itlarni qo'llash jihatlari
- 76. Ko'kat o'g'itlar: Ko'kat o'g'itlarni o'simliklar hosildorligi va tuproq unumdorligiga ta'siri. Ko'kat o'g'it yetishtirish texnologiyasi, qo'llash usullari. Sidepasiya va uning tuplapi.
- 77. Mineral o'g'itlar: Mineral o'g'itlar klassifikasiyasi: olinishiga ko'ra, tabiati va kelib chiqishiga ko'ra. Mineral o'g'itlar sifatiga qo'yiladigan talablar. Saqlash davomida bilish zarur bo'lgan ko'rsatkichlar.
- 78. Turli ekinlar hosili bilan olib chiqiladigan oziqa moddalar haqida tushuncha. O'simliklarning azot, fosfor va kaliyga talabi. Oziqlanishning kritik va maksimal davri. 10 s mahsulot bilan olib chiqiladigan oziqa moddalari miqdori (g'o'za, bug'doy, kartoshka misolida).
- 79. Kaliy sulfat va kalimagneziya o'g'iti, ulardan foydalanish. Kaliyli o'g'itlar guruhlari. Kalsiy sulfati. Kalimagneziya, kalimagneziyali konsentrat olinishi, xossalari tarkibi. Kaliy sulfati va kaliy magneziyani ishlatilishi.
- 80. Bo'z tuproqlar agrokimyoviy tavsifi. Och tusli, tipik, to'q tusli bo'z tuproqlarda chirindi, azot, fosfor va kaliy miqdori. Harakatchan oziqa moddalari, singdirish sig'imi, singdirilgan asoslar tuproq muhiti reaksiyasi.
- 81. To'shamali go'ng qo'llanilishi. To'shamali go'ng olinishi. Saqlash usullari, tarkibi.. Turli chirish darajasi. Qo'llash usullari.
- 82. O'suv davri mobaynida o'simliklar kimyoviy tarkibini o'zgarishi. O'simlik kimyoviy tarkibi. O'suv davrida azot, fosfor va kaliy o'zgarishi. Biologik olib chiqish. Xo'jalik olib chiqish. Qoldiq o'zlashtirilishi.
- 83. O'simlik uchun azot manbai. Tuproqdagi umumiy azot. Organik va mineral azot. organik moddaning parchalanishi. Ammonifikasiya. Nitrifikasiya. Biologik azot.
- 84. Ammoniy va kaliy polifosfati. Olinishi, tarkibi, xossalari. Polifosfatlarning tuproqda gidrolizi. Polifosfat tipidagi o'g'itlar fosfat komponenti o'zgarishi. Polifosfatlarni qo'llash istikbollari.
- 85. To'shamali go'ngni saqlash usullari. Go'ngni xayvonlar tagida saqlash. Zich saqlash, yarim zich va g'ovak saqlash usullari. Turli usullarda saqlanganda oziqa moddalari yo'qolishi.
- 86. Kompleks o'g'itlar klassifikasiyasi. Asosiy vakillari, olinishi, tarkibi, xossalari, qo'llash istikbollari.
- 87. Go'ng qo'llash. Go'ng va mineral o'g'itdan foydalanish koeffisenti. Go'ngni asosiy o'g'itlashda qo'llash. Go'ng bilan oziqlantirish. Go'ng va mineral o'g'itdan o'simlik tomonidan birinchi va keyingi yillarda o'zlashtirilishi. Foydalanish

koeffisentini oshirish.

- 88. Kaliy xlorid konsentrlangan o'g'it. Kaliy xom-ashelari. Silvinitdan kaliy xlor olinishi: flotasion, galurik usul. KSl tarkibi, xossalari, qo'llanilishi.
- 89. Azotli o'g'itlar samaradorligini oshirish yo'llari. Azotdan besamar foydalanish. Tuproqda azot o'zgarishi va yo'qolishi. Eroziya, denitrifikasiya. Yuvilish. Nitrifikasiya jarayonini susaytiruvchi moddalar. Bu soxada O'zbekiston olimlari bajargan ilmiy ishlar.
- 90. Tashqi muhit sharoitining o'simlik oziqlanishiga ta'siri. Eritma konsentrasiyasi. Oziqa eritmasida makro va mikroelementlar nisbati. Sinergizm va antogonizm, namlik, aerasiya, issiklik, yorug'lik tuproq muhiti reaksiyasi.
- 91. Ammoniyli azotli o'g'itlar. Ammoniy sulfat, ammoniy xlor, ammoniy karbonat, olinishi, tarkibi, xossalari, tuproq bilan o'zaro ta'siri, qo'llanilishi.
- 92. Dehqonchilikda fosfor aylanishi. Tuproqdagi fosfor miqdori va shakllari. Tuproqka fosfor tushish manbalari, oʻzlashtirilmaydigan shaklga oʻtishi, uning oldini olish choralari.
- 93. O'g'itlarning tuproq unumdorligini oshirish va madaniylashtirishdagi roli. Tuproq unumdorligi, madaniylashtirilganligi haqida tushuncha. Mineral o'g'itlarning ta'siri. Organik o'g'itlar ta'siri. Mineral va organik o'g'itlarni birga qo'llash.
- 94. O'simlik uchun fosfor manbalari. N₂RO₄, NRO₄, RO₄ o'zlashtirilish darajalari. RO₄ -o'zlashtiruvchi ekinlar xususiyati. Organik fosfor, shakllari, o'zlashtirilish darajasi.
- 95. Ammiakli selitra. Olinishi, tarkibi, xossalari. Uning tuproq zarrachalari bilan o'zaro ta'siri. Ammiakli selitrani qo'llanilishi.
- 96. Fosfatlarning tuproqda kimyoviy singdirilishi. Singdirilish mohiyati. Korbanatli tuproqlarda, kislotalik tuproqlarda singdirilish. Kimyoviy singdirilishni kamaytirish yo'llari.
- 97. O'simliklar uchun azotning ahamiyati. O'simlikda azotli birikmalar o'zgarishi. Aminlashish. Dezaminlanish. Qayta aminlanish. Aminokislota va oqsil sintezi. Turli organlarda azot miqdori.
- 98. Xom kaliy tuzlari. Kaliyli o'g'it olish uchun xom ashyo. Kaliyli o'g'itlar klassifikasiyasi. Silvinit, kainit, karnallit, olinishi, xossalari, tarkibi, qo'llanilishi, tuproqda o'zgarishi.
- 99. Kompostlar mahalliy o'g'itlar olishning samarali usuli. Kompost komponentlari, tayyorlanishi. Kompost turlari, qo'llanilishi.
- 100. Ammoniyli va nitratli o'g'itlarning qiyosiy tavsifi. O'g'itlar klassifikasiyasi, tarkibi. Fiziologik reaksiyasi. Tuproqda o'zgarishi. Nitratlar to'planishi. Ammiakli zaharlanish. Ammoniyli va nitratli o'g'i

Test savollari

1. Quruq qoldiq usulida moyni aniqlashda qaysi apparatlardan foydalaniladi?

Yeremenko va Sokslet apparatlaridan Mufel pechi va gorelkadan Quritish shkafidan Fotoelektrokolorimetrda

2. Oqsil azotini Barnshteyn usulida aniqlashda qabul qilish kolbasiga kuyiladigan reaktiv va eritmani belgilang. 10-15 ml 4% bor kislotasi va Groaka indikatori 20-30 ml 40% va NaOH fenolftalein 30-45 ml kons H₂SO₄ va selen

3. Suvli so'rim tayyorlash uchun tuproq va suvning nisbati qancha bo'lishi kerak?

1:5 2:1 10:1 1:1

4. Kim birinchi bo'lib o'simliklarni laboratoriya sharoitida mineral oziqlar yordamida o'stirish mumkin ekanligini isbotlab berdi.

Knop va Saks.

Bussengo va Saks.

Libix va Gelrigel.

Knop va Libix.

6. Boshokli don urug'idagi oqsil moddasining miqdorini ko'rsating.

7-20 15-30 20-30 3-7

7. Dukkakli ekinlar sifati qaysi modda bilan baholanadi.

Oqsil miqdori bilan

Aminokislotalarni to'planish kattaligi bilan

Yog' miqdori bilan

Uglevodlar miqdori bilan

8. Soya urug'ida yog'ning o'rtacha miqdori qancha %.

25. 10. 50. 30.

9. Oqsil nimalardan tuzilgan.

20 aminokislota va 2 amiddan

20ta aminokislotadan

16 aminokislota va 2 amiddan

22 aminokislotadan

10. Monosaxaridlarga qaysi uglevodlar kiradi.

Glyukoza fruktoza Glyukoza klechatka Fruktoza kletchatka Kraxmal gemosellyuloza

11. Oanday elementlar makroelementlar deb ataladi.

O'simlik organizmlarda miqdori butun sonli foizda bo'lgan elementlarga aytiladi

O'simliklarda miqdori 0,01 dan to butun sonli foizgacha bo'lgan elementlarga aytiladi

O'simlik organizmlarda miqdori 0,00001 dan 0,001 foizgacha bo'lgan elementlarga aytiladi

O'simlik organizmlarda miqdori 0,000001 dan 0,00000001 foizgacha bo'lgan elementlarga aytiladi

12. Qaysi ekinlar Rizobium avlodidan bo'lgan mikroorganizmlar bilan simbiozda yashaydi.

Dukkakli ekinlar

Tomat ekinlar

Tropik ekinlar

Qovoqdoshlar

13. O'simliklar azotni qaysi shaklda o'zlashtiradi.

NH₄ NO₃ N₂ NN₃ K₂O NO₂ NH₄ K₂O NO₂ NH₂ RO₄ NO₃

14. Tuproqning qaysi qismida ionlar antagonizmi kuchli yuzaga keladi.

Tuproq eritmasida

Tuproqning qattiq fazasida

Tuproqning havo qismida

Tuproq mineral qismida

15. Havo haroratining necha gradusdan past bo'lish ekinlarga mineral elementlarni o'zlashtirilishiga asosiy qishloq xo'jalik ekinlariga calbiy ta'sir qiladi.

10

5

8 20

16. Tipik bo'z tuproqlar haydov qatlamidagi chirindi miqdorini ko'rsating?

1.5-2

8-1.2

2-4

0.2-0.4

17. Bo'z tuproqlarda qaysi kationlar [TSK] da eng ko'p singdirilgan

Sa. Md

Al. Fe

Na, K

Na, Mg

18. Tuprog kimyoviy singdirish qobiliyati nima?

Bu qobiliyat tuproqda ayrim eruvchan tuzlar o'rtasidagi o'zaro kimyoviy reaksiyalar natijasida erimaydigan yoki qiyin eriydigan birikmalarning hosil bo'lishi bilan bog'liq

Tuproqning eritmadan har xil moddalarning ion va molekulalarini yutish va ularni ushlab turish qobiliyati

O'simlik ildizi va mikroorganizmlar tomonidan elementlarni tuproq eritmasidan yutilishi

Tuproqning har qanday g'ovak jism kabi suvdagi muallaq va u orqali filtrlanayetgan mayda qattiq zarrachalarni ushlab qolish qobiliyati

19. O'g'itning fiziologik ishqorligi nima?

O'simlikka asosan anionlarni o'zlashtirilishi hisobiga o'g'itning muhit reaksiyasi ishqoriyligini oshirish xususiyati

O'g'it tarkibidan kationlarni o'zlashtirilishi hisobiga o'g'itning muhit reaksiyasi kislotaligini oshirish xususiyati

Mineral o'g'it tarkibidagi erkin kislota miqdori

O'g'it tarkibidagi fosforning oksidlangan birikmalari miqdori

20. 1 tonna qoramol go'ngida necha kg azot bor

 $4.5 - \hat{5}$

1.9-2.8

4-7.0

7-9

21. Qoramolning to'shamali go'ngni namligi qancha (%)

75

100 gacha

95 dan yukori

10-15

22. Qaysi ekinlar siderat sifatida o'stiriladi

Shabdar, bersim, raps, xantal, perko

Arpa, lavlagi, javdar, kanop,

Beda, tamaki, tariq, batat

Makkajo'xori, kartoshka, kungaboqar, zig'ir

23. Amidli azotli o'g'itlar

Karbamid, kalsiy sianamid

Natriyli selitra, kalsiyli selitra

Kaliy sulfat, ugleammiakatlar

Ammiakli selitra, ohakli-ammiakli selitra, kaliy nitrat

24. Ammoniy sulfat tarkibidagi ta'sir etuvchi modda miqdori

20-21

45-46

46

42-50

25. Suvsiz ammiak tarkibidagi ta'sir etuvchi modda mikdori

82.2

13-15

28-35

26. Fiziologik neytral o'g'itlar.

Kaliy nitrat, ammoniy nitrat

Kaliy sulfat, ammoniy sulfat, ammoniy xlor, kaliy xlor suyuq ammiak

Kalsiy nitrat, natriy nitrat, kalsiy sianamid, kaliy karbonat

Presipitat, marten fosfatshlagi, ftorsizlantirilgan fosfat, fosfarit uni

27. Ammoniyli azotli o'g'itlar

Ammoniy sulfat, ugleammiakatlar, suvsiz ammiak, ammiakli suv

Natriyli selitra, kaliy sulfat

Ammiakli selitra, ohakli-ammiakli selitra

Karbamid, kalsiy sianamid

28. Ammafosning kimyoviy formulasi

 $NH_4H_2PO_4$

Ca₃PO₄

NaN₀₃

 $KN0_3$

29. Marganes sulfatning kimyoviy formulasi

 $MnS0_4 * 4H_20$

 $Si_5O_4 * 5N_2O$

 $(NH_4)_6Mo_7O_{24}*4H_2O$

 MoR_2O_5

30. R ni o'zlashtirish ketma-ketligi

 $N_2R0_{4^{--}} > NR0_{4^{--}} > R0_4$

 $K_2O--- > NR0_4-- > N_2R0_4$

 $NR0_{4}\text{--}>NO_{Z}\text{---}>N_{2}R0_{4}$

 $R0_{4}$ --- > N_2R0_{4} - > CaN_2R0_4

31. Qo'sh superfosfatning ximiyaviy formulasi

 $Sa(N_2R0_4)*N_20$

 $Sa(N_2R0_4)*H_20*2CaS0_4 + NH_4NO_3$

 SaN_2RO_4

 $NH_4H_2PO_4$

32. Kaliy xloridning kimyoviy formulasi

KS1

CaS12 +NaCI * KS1

 $KN0_3$

 $K_{2}S0_{4}*MgS0_{4}*6N_{2}0$

33. To'shamali go'ngni saklash usullari.

Issiq, yarim issiq, sovuq,

Issiq, iliq

Sovuq, muz

Yarim issiq, sovuq, qizdirib

34. To'shamasiz go'ng turlari.

Suyuq, yarim suyuq, go'ng oqovasi

Suyuq, qattiq

Yarim suyuq, yarim qattiq

Go'ng okovasi, qattiq, yumshoq

35. Kompleks o'g'itlarni ko'rsating

Murakkab, murakkab – aralash va aralashtirilgan

Murakkab, oddiy

Oddiy va murakkab – aralash

Aralashtirilgan, oddiy

36. Fosforli o'g'itlar ishlab chiqarish uchun xom ashyo qaysi.

Appatit va fosforit

Silvinit

Kainit va karnalit

Azot kislotasi

37. O'simlik tarkibidagi moyni aniqlash usulini belgilang.

Quruq qoldiq usulida

Presslash orqali

Kuritish shkafida

Mufel pechida

38. O'simlik oqsili tarkibidagi azotning ulushini belgilang.

14,7-19,5%

23-25%

70-75%

90-95%

39. O'simlikdagi shakar miqdorini aniqlashning Bertran uslubi nimaga asoslangan?

Monosaxaridlar aldegid va keton guruhlari Fellin suyuqligidan misni kaytarishga asoslangan

Monosaxarid, klechatka va polisaxaridlarning suvda erishiga asoslangan

Fotoelektrokolorimetrda aniqlashga asoslangan

Saxarozaning xlorid kislotada parchalanib monosaxarid hosil qilishiga asoslangan

40. Tuproq ishqoriyligini aniqlashda qaysi usul ko'llaniladi?

Titrlash

Kolorimetriya

Fotometriya

Xromotografiya

41. Tuproq singdirish qobiliyati hakidagi teoriyani kim yaratdi.

Gedroys.

Sabinin.

Pryanishnikov.

Lomonosov.

42. Boshoqli don urug'idagi kul moddasining miqdorini ko'rsating.

3.5-5.0

1.5 - 35

2 - 5

5.0 - 8.0

43. Azot moddasini asosiy qismini o'simliklar qayerdan oladi.

Tuproq qattiq fazasi va eritmasidan

Tuproq qattiq qismidan, tuproq havosidan

Tuproq eritmasidan, atmosferadan

Atmosferadan

44. Kunjut urug'ida yog'ning o'rtacha miqdori qancha %.

45-50.

10-15.

15-20.

5-10.

45. Nonni sifatli pishirishda qaysi modda miqdori ahamiyatli

Quruq kleykovina miqdori

Oqsil miqdori va qand

Qand miqdori va uglevodlar

Yog' miqdori

46 Disaxaridlarni ko'rsating.

Saxaroza

Glyukoza, polisaxarid

Fruktoza, glyukoza

Mamtoza, laktoza

47. Faqat eng kerakli mikroelementlar vakili bo'lgan gruppani ko'rsating.

B Mn Zn Cu Mo Co

B Mn P Zn Cu

B H Zn Mo So

B C Mn Zn So Mo

48. Oziq moddalar tuproqdan o'simlikka asosan qaysi ko'rinishda o'tadi.

Ionlar ko'rinishida

Molekula ko'rinishida (shaklida)

Komplekslar ko'rinishida

Kation va musbat ko'rinishida

49. O'simlikka qaysi elementlar kationlar holatida o'tadi.

Ca K Mg Cu Fe Zn

B Mo K Mg C NO3

Mp Sa K Mg B Cu C1

C S1 K B Mo Si PO₄

50. Ionlar antagonizmi nima.

Qandaydir bir ionning ikkinchi bir ionni ildiz xo'jayrasiga ortiqcha kirishiga qarshilik qiladi

Bir ionning yutilishi boshqa ionlarning yutilishini yaxshilanishiga olib keladi.

Ionlarning navbat bilan yutilishi

Tuproq eritmasidan bir ionni boshqa ion bilan siqib chiqarilishi.

51. Dehqonchilikda go'ngni ahamiyati.

Dehqonchilikdagi moddalar almashinuvini boshqarishda chirindini saklash va oshirish tuproq biologik aktivligini va fizik xususiyatini yaxshilaydi.

Tuproq ishqoriyligini oshiradi va buferligini oshiradi.

Ishqorlikni neytrallaydi singdirilgan kationlarni tarkibiga ta'sir qiladi

Kislotalikni oshiradi va singdirilgan kationlar tarkibini o'zgartiradi.

52. Bo'z tuproqlarda muhit reaksiyasi rN qanday.

7.2-8

5.2-6

5.2-7,6

8.2-9

53. Tuproq singdirish qobiliyati nima?

Tuproqning eritmadan har xil moddalarning ion molekulalarini yutish va ularni ushlab turish qobiliyati

O'simlik ildizi va mikroorganizmlar tomonidan elementlarni tuproq eritmasidan yutilishi

Tuproqning har qanday g'ovak jism kabi suvdagi muallaq va shu orqali filtrlanayotgan mayda qattiq zarrachalarni ushlab qolish qobiliyati

Har xil moddalarning bir butun molekulalarini tuproq zarrachalari manfiy adsorbsiyalanishi

54. O'g'it ta'sir etuvchi moddasi nima

O'simlikka o'zlashtiriladigan oziq elementni o'g'itga hisoblaydigan oziq modda miqdori

O'g'it tarkibidagi asosiy oziq elementi

O'g'itdan o'simlikka o'zlashtiriladigan ion

Mineral o'g'it tarkibidagi erkin kislota miqdori

55. Qoramoldan yaqinda olingan go'ngda necha % azot bor

0.45-0.50

64-77

21-25

19-28

56. 1 tonna qoramol go'ngida necha kg fosfor bor

1.9 - 2.8

4.5-5

5-7.0

7-9

57. Kator orasi ishlanadigan ekinlarga kuzda go'ng qanday optimal chuqurlikda beriladi (sm)

25-30

5-7

12-14

20-22

58. Dukkakli sideratlar

Shabdar, bersim, kuzgi vika, kuzgi nuxat

Raps, javdar, perko, xantal, kungboqar

Moyli turp, xashaki, bryukva, lavlagi

Bug'doy, arpa, suli, soya

59. Natriyli selitra tarkibidagi tasir etuvchi modda miqdori %

15-16

46

90-91

40-45

60. Ammoniy xlor tarkibidagi ta'sir etuvchi modda miqdori

24-25

45-46

46

2,0-2,1

61. Azotobakterin nima

Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it ular tuproqda erkin yashaydi

Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it ular dukkakli ekinlar bilan simbioz hayot

```
kechiradi
```

Tarkibida sporali bakteriyalari bor bakterial o'g'it ular fosforli organik birikmalarni parchalaydi Chirindini parchalovchi mikroorganizmlar majmuidan iborat bakterial o'g'it

62. Fiziologik ishqorli o'g'itlar

Kalsiy nitrat, natriy nitrat, kalsiy sianamid, kaliy karbonat

Kaliy sulfat, ammoniy sulfat, ammoniy xlor

Kaliy xlor, ammoniy nitrat, oxak ,ammiakli selitra

Suyuq ammiak, suvli ammiak, ammiakli selitra

63. Ammiakli-nitratli azotli o'g'itlar

Ammiakli selitra, oxakli-ammiakli selitra, sulfat-nitrat ammoniy

Natriyli selitra, kaliy sulfat

Ammoniy sulfat, ugleammiakatlar

Karbamid, kalsiy sianamid

64. Kaliy selitraning formulasi

KN0₃

 NH_4NO_3

 $(NH_2)_2HP0_4$

 $NH_4H_2PO_4$

65. Mis sulfat mikroo'g'itining formulasi

CuS0₄ * 5H₂0

 $MnSO_4 * 4H_2O$

 $(NH_4)_6Mo_7O_{24}*4H_2O$

 MoP_2O_5

66. Fosfor o'g'iti tasir etuvchi moddasi

 P_2O_5

NO₇

 NH_4

D

67. Ammofosning ximiyaviy formulasi

 $NH_4H_2PO_4$

 $Ca(H_2PO_4)*H_2O*_2CaSO_4$

 $Ca(H_2PO_4)*H_2O$

CaHP04*2H20

68. Kaliyli o'g'itlar olish usullarini ko'rsating.

Galurgik, Flotasion, Gidrosiklon

Galurgik

Flotasion

Gidrosiklik

69. Harakatchan fosfor miqdori juda kam bo'lgan tuproqlar guruhini aniqlang (P2O5, mg/kg).

0 - 15

16 - 30

31 - 45

46 - 60

70. Harakatchan fosfor miqdori kam bo'lgan tuproqlar guruhini aniqlang (P2O5, mg/kg).

16 - 30

0 - 15

31 - 45

46 - 60

71. Harakatchan fosfor miqdori o'rtacha bo'lgan tuproqlar guruhini aniqlang (P2O5, mg/kg).

31 - 45

0 - 15

16 - 30

46 - 60

72. Harakatchan fosfor miqdori yukori bo'lgan tuproqlar guruhini aniqlang (P2O5, mg/kg).

46 - 60

0 - 15

16 - 30

31 - 45

73. "Xom kul"ni aniqlashda mufel pechi haroratini belgilang.

500-525 °S

 $60-80^{\circ}S$

 $100\text{-}105\,^{\mathrm{o}}\mathrm{S}$

1000°S

74. O'simliklarda nitrat azotini aniqlash usullarini belgilang.

Grandval – Lyaju, ionometrik, sulfanil kislotasi yordamida

Tyurin usulida

Kachinskiy

Shmuk

75. Oqsil azotini aniqlashda ammiak qaysi apparatda aniqlanadi.

Kyeldal apparatida

Sokslet apparatida

Yeremenko apparatida

Fotometrda

76. Tuproq muhiti reaksiyasini aniqlash usullarini belgilang.

N.I. Alyamovskiy usulida, Mixaelis asbobida, potensiometrik usulida

Grandval – Lyaju, ionometrik,

Sulfanil kislotasi yordamida,

Tyurin usulida

Kachinskiy, shmuk

77. Asosiy qishloq xo'jalik ekinlarining vegetativ organlaridagi suv miqdorini ko'rsating.

70-95 %.

40-45 %.

30-50 %.

50-65 %.

78. Qand lavlagi sifati qaysi modda bilan baholanadi.

Saxarozani miqdori bilan

Fruktozani miqdori bilan

Glyukoza miqdori bilan

Proteinni miqdori bilan

79. Aminokislotalarda azot qaysi shaklda bo'ladi.

Aminogruppa shaklida

Nitrat shaklida

Ammoniy shaklida

Amid shaklida

80. Kungaboqar urug'ida yog'ning o'rtacha miqdori qancha %.

24-50.

10-15.

15-20.

5,0-6,0.

81. O'simliklarda uglevodlar qaysi moddalar holida uchraydi.

Qandlar polisaxaridlar

Monosaxaridlar, klechatka

Oandlar, fruktoza

Polisaxaridlar, glyukoza

82. Polisaxaridlarni ko'rsating.

Kraxmal kletchatka lektin moddasi

Glyukoza fruktoza

Saxaroza

Maltoza

83. Qaysi ekinlar Rizobium avlodidan bo'lgan mikroorganizmlar bilan simbiozda yashaydi.

Dukkakli ekinlar

Tropik ekinlar

Qovoqdoshlar

Donli ekinlar

84. Pinositoz deganda nimani tushunasiz.

Xo'jayraning suyuqlik tomchilarini yutishi

Xo'jayraning anionlarni yutishi

Xo'jayraning kationlar yutishi

Xo'jayrani qattiq zarrachalarni yutishi

85. Tuproqni qaysi qismlarida o'simlik uchun kerak bo'lgan oziq moddalar bo'ladi.

Tuproq eritmasida havosida va qattiq qismida (mineral va organik qismida)

Tuproq eritmasida

Qattiq mineral fazasida

Gaz fazasida

86. Ionlar sinergizmi nima.

Ionlarning navbat bilan yutilishi bir ionning yutilishi boshqa bir ionning yaxshi yuilishiga olib kelishi Har bir ion boshqa ionning ildiz xo'jayrasiga ortiqcha kirishiga o'zaro qarshilik qiladi

Tuproq eritmasidan bir ionni ikkinchi bir ion bilan surib chiqarilishi

Ionlarning yashash uchun ko'rashi

87. Bo'z tuproglar haydov qatlamidagi chirindi miqdorini ko'rsating.

1-3

4-12

40-50

20-60

88. Tuproq qaysi fazalardan tashkil topgan.

Qattiq suyuq va gaz fazalardan

Qattiq va gaz fazalardan organik va mineral qismlardan

Suyuq faza xamda organik va mineral qismlardan

Mineral va organik fazalardan xamda tuproq eritmasidan

89. Tuproq biologik singdirish qobiliyati nima?

O'simlik ildizi va mikroorganizmlar tomonidan elementlarni tuproq eritmasidan yutilishi

Tuproqning eritmadan har xil moddalar ion va molekulalarini yutish va ularni ushlab to'rish qobiliyati

Tuproqning har qanday g'ovak jism kabi suvdagi muaalak va u orqali filtrlanayotgan mayda qattiq zarrachalarni ushlab qolish qobiliyati

Har xil moddalarning bir butun molekulalarini tuproq zarrachalari bilan musbat yoki manfiy adsorbsiyalanishi

90. O'g'itning fiziologik kislotaligi nima

O'g'it tarkibidan kationlarni o'zlashtirilishi hisobiga o'g'itning muhit reaksiyasi kislotaligini oshirish xususiyati

Mineral o'g'it tarkibidagi erkin kislota miqdori

Nitrifikasiya hisobiga o'g'itning muhit reaksiyasi kislotaligini oshirish xususiyati

O'simlikka asosan anionlarni o'zlashtirilishi hisobiga o'g'itning muhit reaksiyasi ishqoriyligini oshirish xususiyati

91. Qoramoldan yaqinda olingan go'ngda necha % fosfor bor

0.19-0.28

64-77

21-25

45-83

92. 1 tonna qoramol go'ngida necha kg kaliy bor

5-7.0

45-50

19-28

7-9

93. Donli ekinlarga kuzda go'ng qanday optimal chukurlikda beriladi (sm)

20-22

5-7

12-14

3-4

94. Nitragin nima?

Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it, ular dukkakli ekinlar bilan simbioz xayot kechiradi

Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it, ular tuproqda erkin yashaydi

Tarkibida sporali bakteriyalari bor bakterial o'g'it, ular fosforli organik birikmalarni parchalaydi.

Tarkibida kaliy to'plovchi bekteriyalar bor o'g'it, ular kaliyli organik

birikmalarni parchalaydi.

95. Mochevina tarkibidagi ta'sir etuvchi modda miqdori %

46

15-16

20-21

24-25

96. Ammiakli selitra tarkibidagi ta'sir etuvchi modda miqdori

```
13-15
46
20-21
```

97. Fosforobakterin nima

Tarkibida sporali bakteriyalari bor bakterial o'g'it ular fosforli organik birikmalarni parchalaydi Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it ular dukkakli ekinlar bilan simbioz xayot kechiradi Tarkibida azot to'plovchi bakteriyalari bor bakterial o'g'it ular turoqda erkin yashaydi

Chirindini parchalovchi mikroorganizmlar majmuidan iborat bakterial o'g'it

98. Nitratli azotli o'g'itlar

Natriy nitrat, kalsiy nitrat

Ammoniy sulfat, ugleammiakat

Ammiakli selitra, oxakli-ammiakli selitra, sulfat-nitrat ammoniy

Karbamid, kalsiy sianamid

99. Kaliy magneziyaning kimyoviy formulasi

K₂S0₄ * MgS0₄ * 6H₂0 KS1 KCI +NaCI * KCL KCI * NaCI

100. Ammoniy nitrat o'g'itining formulasi

 $\begin{array}{l} NH_4N0_3 \\ NH_4N0_3 + CHP0_4 * 2H_20 + Sa(N_2R0_4)_2 * 2N_20 \\ (NH_2)_2HP0_4 \\ NH_4H_2P0_4 \end{array}$

101. Bor kislotasini kimyoviy formulasini ko'rsating

 $\begin{array}{l} N_Z V O_Z \\ Si_5 O_4 * 5 N_2 0 \\ MnS O_4 * 4 H_2 0 \\ (NH_4)_6 Mo_7 O_{24} * 4 H_2 0 \end{array}$

102. Superfosfat formulasi

Sa(N₂R0₄)*H₂0*2CaS0₄ Sa(N₂R0₄)*N₂0 SaNR0₄*2N₂0 NH₄H₂P0₄

103. Kaliy sulfatning kimyoviy formulasi

K₂S0₄ KCl* MgS0₄ * 6H₂0 KS1 K₂SO₇

104. Harakatchan fosfor miqdori juda yukori bo'lgan tuproqlar guruhini aniqlang (P2O5, mg/kg).

105. Almashuvchan kaliy miqdoriga ko'ra juda kam ta'minlangan tuproq guruhini aniqlang. (mg/kg K₂O).

 $\begin{array}{c} 0 - 100 \\ 101 - 200 \\ 201 - 300 \\ 301 - 400 \end{array}$

ILOVA
Asosiy qishloq xo'jalik ekinlari uchun muqobil tuproq reaksiyasi (pH)

Ekinlar	Tuproq reaksiyasi (pH)	Ekinlar	Tuproq reaksiyasi (pH)
Suli	5,0 - 7,7	Kartoshka	5,0 – 5,5
Kuzgi javdar	5,5 – 7,5	Qand lavlagi	7,0 – 7,5
Bahori bug'doy	6,0 - 7,5	Beda	7,0 – 8,0
Kuzgi bug'doy	6,3 – 7,6	Sebarga	6,0 - 7,0
Arpa	6,8 – 7,5	Donnik	6,5 - <
Makka-jo'xori	6,0 - 7,0	Lyupin	4,5 – 6,0
Tariq	5,5 – 7,5	Timofeyevka	5,6 - <
Grechixa	4,7 – 7,5	Karam	6,7 – 7,4
Gorox	6,0 - 7,0	Xo'raki lavlagi	6,8 – 7,5
Soya	6,5 – 7,1	Pomidor	6,3 – 6,7
Gorchisa	7,0	Rediska, sholg'om	5,5 - <
Zig'ir	5,9 - 6,5	Sabzi	5,5 - 7,0
Kungaboqar	6,0 - 6,8	Bodring	6,0 - 7,9
Nasha	7,1 – 7,4	Salat	6,0 - 7,0
Choy	4,8 - 6,2	G'o'za	6,5 - 9,0

Mineral o'g'itlarning sifat reaksiyasi yordamida turini aniqlash

МАЪЛУМОТНОМА

Хамидов Махмуд

2016 йил 5 апрелдан:

Бухоро давлат университети Табиий фанлар факультети Тупрокшунослик ва география кафедраси доценти вазифасини бажарувчи

Туғилган йили: Туғилган жойи:

08.05.1949 Бухоро вилояти, Гиждувон тумани

Миллати: Партиявийлиги:

ўзбек йўқ

Маълумоти: Тамомлаган:

олий 1972 й. Тошкент қишлоқ хўжалик

институти

(хозирги ТошДАУ) кундузги

Маълумоти бўйича мутахассислиги: олим аграном агрохимик - тупрокшунос

Илмий даражаси: Илмий унвони:

кишлоқ хўжалик фанлари номзоди катта идмий ходим (доцент)

Кайси чет тилларини билади:

рус, ингилиз тиллари

Давлат мукофотлари билан такдирланганми (қанақа):

йўқ

Халқ депутатлари республика, вилоят, шахар ва туман кенгаши депутатими ёки бошқа

сайланадиган органларнинг аъзосими (тўлиқ кўрсатилиши лозим): йўқ

МЕХНАТ ФАОЛИЯТИ

1962-1967 йй. - Бухоро вилояти Гиждувон тумани жамоа хўжалиги аъзоси

1967-1972 йй. - Тошкент қишлоқ хўжалик институти талабаси

1972-1993 йй. – Тошкент ш. Ўзбекистон ФА қарашли Ўсимлик моддалари кимёси илмий текшириш институти катта лаборанти, кичик ва катта илмий ходими

1993-1995 йй. – Бухоро давлат университети Агрокимё ва тупрокшунослик кафедраси доценти

1995-2005 йй. - Бухоро давлат университети Табиёт ва Аграр факультети Агрономия кафедраси мудири

2005-2011 йй. - Бухоро давлат университети Табиёт ва Аграр факультети декани ўкув ишлари бўйича ўринбосари

01.09.2011- 05.04. 2016 йилларда нафақада – пенционер.

05.04.2016 й. - Бухоро давлат университети Табиий фанлар факультети Тупроқшунослик ва география кафедраси доценти вазифасини бажарувчи

02.09.2016 й. - Бухоро давлат университети Табиий фанлар факультети декани ўкув ишлари бўйича ўринбосари, dosent.

Mundaraja

1.	Kirish. Laboratoriyada ishlaganda asosiy xavfsizlik texnikasi. Eritmalar.
	O'simlik namunasini olish va analizga tayyorlash
2.	O'simlik tarkibidagi quruq modda, gigroskopik namligini va «xom kul»
	chiqishini aniqlash
3.	O'simlik tarkibidagi moyni «quruq qoldiq» usulida aniqlash
4.	O'simliklarda nitratli azot mikdorini disulfofenol kislotasi yordamida
	aniqlash.
5.	K. Ĝinzburg usulida o'simlik kuli hosil qilish va undan azot, fosfor va
	kaliyni aniqlash
6.	O'simlik tarkibidagi oqsil azotini Barnshteyn usulida aniqlash
7.	Daladan tuproq namunasini olish uni tahlilga tayyorlash. Tuproq suvli
	so'rimidan quruq qoldiqni aniqlash. Tuproq (pH) ni N.I. Alyamovskiy
	usulida aniqlash. Tuproq ishqoriyligini aniqlash
8.	Tuproq tarkibidagi nitratli azot miqdorini Granvald-Lyaju usulida aniqlash.
9.	Singdirilgan ammoniy shaklidagi azotni Nessler reaktivida aniqlash
10	.Karbonatli tuproqlar tarkibidagi harakatchan fosfor va almashinuvchan
	kaliyni B.P. Machigin usulida aniqlash
11	.Tuproqdagi yalpi N, P, K miqdorini (bir namunadan) aniqlash
12	.Mineral o'g'itlarni sifat reaksiyalari yordamida turini aniqlash
13	.Selitra tarkibidagi azotni ishqoriy muhitdagi aralashmadan Devard usulida aniqlash
14	.Go'ng tarkibidagi N, P, K mikdorini aniqlash