DECLARATION

We hereby declare that all the work presented in the dissertation entitled "Intrusion Detection System" in the partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science, Maharaja Surajmal Institute of Technology, affiliated to Guru Gobind Singh Indraprastha University Delhi is an authentic record of our own work carried out under the guidance of Ms. Gunjan Beniwal

Amit Sharma (00713102713) Atif Ahmed (00496307214) Nishant Kumar (00396307214)

Date:

CERTIFICATE

This is to certify that the project entitled Hardware Based Intrusion Detection System is a bonafide work carried out by Amit Sharma, Atif Ahmed and Nishant Kumar under my guidance and supervision and submitted in partial fulfilment of B.Tech degree in Computer Science Engineering of Guru Gobind Singh Indraprastha University, Delhi. The work embodied in this project has not been submitted for any other degree or diploma.

Ms. Gunjan Beniwal

Mr.Naveen Dahiya

(Project Guide)

(Head of Department)

Date:

ACKNOWLEDGEMENT

We would like to express our great gratitude towards our supervisor, **Ms. Gunjan Beniwal** who has given us support and suggestions. Without her help we could not have presented this dissertation up to the present standard. We also take this opportunity to give thanks to all others who gave us support for the project or in other aspects of our study at Maharaja Surajmal Institute of Technology.

Amit Sharma (00713102713) Atif Ahmed (00496307214) Nishant Kumar (00396307214)

Date:

ABSTRACT

Intrusion-detection systems aim at detecting attacks against computer systems and networks or, in general, against information systems. Indeed, it is difficult to provide provably secure information systems and to maintain them in such a secure state during their lifetime and utilization. Sometimes, legacy or operational constraints do not even allow the definition of a fully secure information system. Therefore, intrusion detection systems have the task of monitoring the usage of such systems to detect any apparition of insecure states. They detect attempts and active misuse either by legitimate users of the information systems or by external parties to abuse their privileges or exploit security vulnerabilities.

Intrusion detection based upon computational intelligence is currently attracting considerable interest from the research community. Characteristics of computational intelligence (CI) systems, such as adaptation, fault tolerance, high computational speed and error resilience in the face of noisy information fit the requirements of building a good intrusion detection model. Here we want to provide an overview of the research progress in applying CI methods, such as fuzzy logic and genetic algorithm to the problem of intrusion detection. The scope of this review will be on core methods of CI, fuzzy systems, evolutionary, Genetic algorithm, and soft computing.

List of Figures

Figure Name		Page
Fig 1.1	An NIDS Device	2
Fig 1.2	Intrusion Detection System	3
Fig 1.3	NIDS	4
Fig 1.4	Basic IDS Architecture	7
Fig 1.5	Functions of IDS	7
Fig 1.6	IDS Life Cycle	8
Fig 2.1	Unauthorised use of Computer Systems	13
Fig 3.1	System Architecture	16
Fig 3.2	Raspbian Logo	17
Fig 3.3	Snort Logo	18
Fig 3.4	Components of Snort	19
Fig 3.5	Django Framework	20
Fig 3.6	Raspberry Pi Model	21
Fig 4.1	Use Case Diagram	24
Fig 4.2	Data Flow Diagram	26
Fig 4.3	E-R Diagram	27
Fig 4.4	Installing Raspbian OS	28
Fig 4.5	Setting up Pi	28
Fig 4.6	Installing & configuring DHCP Server	30
Fig 4.7	Configuring HostAPD	32
Fig 4.8	Installing Snort	34
Fig 4.9	Starting Snort	34
Fig 4.10	Nmap used to scan port to attempt an intrusion	35
Fig 4.11	Nmap help Contents	35
Fig 4.12	Manually Selecting Snort Rules	36
Fig 4.13	GUI based admin panel	37
Fig 5.1	System Topology	38
Fig 5.2	Testing Using nmap	39
Fig 7.1	Pinging to Raspberry Pi	43
Fig 7.2	Alert on Snort Generated	43
Fig 6.3	Scanning available ports using ZenMap	44

Fig 1.1	An NIDS Device	2
Fig 7.4	Snort alerting about the activity	44
Fig 7.5	GUI for above System	45
Fig 7.6	Network Setup	45
Fig 7.7	Wireless Setup	46
Fig 7.8	Selecting Snort Rules	46
Fig 7.9	MAC Filtering	47
Fig 7.10	Web Content Filtering	47

CONTENTS

Title	e P	age
-------	-----	-----

Declaration		i
Ce	ertificate	ii
Acknowledgement Abstract		iii iv
1.	INTRODUCTION	1-12
	1.1. WHAT IS AN INTRUSION?	2
	1.2. WHO IS AN INTRUDER?	2
	1.3. WHAT IS AN IDS?	2
	1.4. TYPES OF IDS	3
	1.5. IDS vs FIREWALL	5
	1.6. WHY USE IDS?	6
	1.7. FUNCTIONS OF IDS	7
	1.8. IDS LIFE CYCLE	8
	1.9. INTRUSION DETECTION IN IDS	9
	1.10. IDS CHALLENGES TODAY	10
2.	NEED FOR IDS	13-15
	2.1. MOTIVATION FOR INTRUSION DETECTION SYSTEM	13
	2.2. WHO ARE ATTACKED?	13
	2.3. HOW ARE THEY ATTACKED?	14
3.	REQUIREMENT ANALYSIS	16-23
	3.1. ARCHITECTURE	16
	3.2. SOFTWARE REQUIREMENTS	16
	3.3. HARDWARE REQUIREMENTS	21
	3.4. PRACTICALITY OF HARDWARE	22
4.	SYSTEM DESIGN	24-37
	4.1. USE CASE DIAGRAM	24
	4.2. DATA FLOW DIAGRAM	26

	4.3. E-R DIAGRAM	27
	4.4. IMPLEMENTATION	
5.	TESTING	
	5.1. TESTING	38
	5.2. RESULT	40
6.	CONCLUSION & FUTURE SCOPE	41
7.	REFERENCES	42
8.	APPENDEX	43
	SCREEN SHOTS	43-47
	SOURCE CODE	48-64