

Outline

Top-down parsing

- Recursive-descent parsing
- LL(1) parsing
 - LL(1) parsing algorithm
 - First and follow sets
 - Constructing LL(1) parsing table
 - Error recovery

Laj non run

- Bottom-up parsing
 - Shift-reduce parsers
 - LR(0) parsing
 - LR(0) items
 - Finite automata of items
 - LR(0) parsing algorithm
 - LR(0) grammar
 - SLR(1) parsing
 - SLR(1) parsing algorithm
 - SLR(1) grammar
 - Parsing conflict

Introduction

- Parsing is a process that constructs a syntactic structure (i.e. parse tree) from the stream of tokens.
- We already learn how to describe the syntactic structure of a language using (context-free) grammar.
- So, a parser only need to do this?

Top-Down Parsing Bottom-Up Parsing

- A parse tree is created from root to leaves
- The traversal of parse trees is a preorder traversal
- Tracing leftmost derivation
- Two types:
 - Backtracking parser
 - Predictive parser

- A parse tree is created from leaves to root
- The traversal of parse trees is a reversal of postorder traversal
- Tracing rightmost derivation

Try different structures and

backtrack if it does not matched

the input

Guess the structure of the parse tree 'from the next input

Parse Trees and Derivations

Top-down Parsing

- What does a parser need to decide?
 - Which production rule is to be used at each point of time?
- How to guess?
- What is the guess based on?
 - What is the next token?
 - Reserved word if, open parentheses, etc.
 - What is the structure to be built?
 - If statement, expression, etc.

Top-down Parsing

- Why is it difficult?
 - Cannot decide until later
 - Next token: if Structure to be built: St
 - St → MatchedSt | UnmatchedSt
 - UnmatchedSt →
 - if (E) St| if (E) MatchedSt else UnmatchedSt
 - MatchedSt → if (E) MatchedSt else MatchedSt |...
 - Production with empty string
 - Next token: id Structure to be built: par
 - par \rightarrow parList | λ
 - parList → exp , parList | exp

Recursive-Descent

- Write one procedure for each set of productions with the same nonterminal in the LHS
- Each procedure recognizes a structure described by a nonterminal.
- A procedure calls other procedures if it need to recognize other structures.
- A procedure calls *match* procedure if it need to recognize a terminal.

```
Recursive-Descent: Example
E \to E \circ F \mid F \mid E := F \{ \circ F \}
O \to + \mid - \\ F \to (E) \mid id
For this grammar:

• We cannot decide where the first of the content of the content

    We cannot decide which

                                                                                                                                                                                                                                    rule to use for E, and
                                                                                                                                                                                                                       • If we choose E \rightarrow E O F,
                                                                                procedure E
     procedure F
                                                                                                                                                                                                                                    it leads to infinitely
                                                                                                             { E; O; F; }
                                                                                                                                                                                                                                   recursive loops.
     { switch token
                                            case (: match('(');
                                                                                                                                                                                            Rewrite the grammar
                                                                                                                                                                                                                   into EBNF
                                                                                           E;
                                                                                           match(')');
                                            case id: match(id);
                                                                                                                                                                                                    procedure E
                                            default: error;
                                                                                                                                                                                                     { F;
                                                                                                                                                                                                                   while (token=+ or token=-)
                                                                                                                                                                                                                                          O; F; }
```

Match procedure

```
procedure match(expTok)
{    if (token==expTok)
        then        getToken
        else        error
}
```

• The token is not consumed until **getToken** is executed.

Problems in Recursive-Descent

- Difficult to convert grammars into EBNF
- Cannot decide which production to use at each point
- Cannot decide when to use λ -production $A \rightarrow \lambda$

LL(1) Parsing

- LL(1)
 - Read input from (L) left to right
 - Simulate (L) leftmost derivation
 - 1 lookahead symbol
- Use stack to simulate leftmost derivation
 - Part of sentential form produced in the leftmost derivation is stored in the stack.
 - Top of stack is the leftmost nonterminal symbol in the fragment of sentential form.

Concept of LL(1) Parsing

- Simulate leftmost derivation of the input.
- Keep part of sentential form in the stack.
- If the symbol on the top of stack is a terminal, try to match it with the next input token and pop it out of stack.
- If the symbol on the top of stack is a nonterminal X, replace it with Y if we have a production rule X → Y.
 - Which production will be chosen, if there are both X → Y and X → Z ?

Example of LL(1) Parsing

LL(1) Parsing Algorithm

```
Push the start symbol into the stack
WHILE stack is not empty ($ is not on top of stack) and the stream of tokens is not empty (the next input token is not $)
SWITCH (Top of stack, next token)

CASE (terminal a, a):
Pop stack; Get next token

CASE (nonterminal A, terminal a):
IF the parsing table entry M[A, a] is not empty THEN

Get A →X₁ X₂ ... Xₙ from the parsing table entry M[A, a] Pop stack;
Push Xₙ ... X₂ X₁ into stack in that order

ELSE Error

CASE ($,$): Accept

OTHER: Error
```

LL(1) Parsing Table

If the nonterminal N is on the top of stack and the next token is *t*, which production rule to use?

• Choose a rule $N \rightarrow X$ such that

- $X \Rightarrow^* tY$ or
- $X \Rightarrow^* \lambda$ and $S \Rightarrow^* WNtY$

เมื่อมแพนงเลือก เรเสามรถ

First Set

- Let X be λ or be in V or T.
- First(X) is the set of the first terminal in any sentential form derived from X.
 - If X is a terminal or λ , then First(X) ={X}.
 - If X is a nonterminal and $X \rightarrow X_1 X_2 \dots X_n$ is a rule, then
 - First(X_1) -{ λ } is a subset of First(X)
 - First(X_i)-{ λ } is a subset of First(X) if for all j < iFirst(X_i) contains { λ }
 - λ is in First(X) if for all $j \le n$ First(X_i)contains λ

san as as sing

Examples of First Set

```
st
                                                \rightarrow ifst | other
        \rightarrow exp addop term |
exp
                                      ifst
                                                \rightarrow if ( exp ) st elsepart
            term
                                      elsepart \rightarrow else st | \lambda
addop \rightarrow + | -
                                      exp \rightarrow 0 \mid 1
term \rightarrow term mulop factor |
            factor
                                      First(exp) = \{0,1\}
mulop \rightarrow
                                      First(elsepart) = {else, \lambda}
                                      First(ifst) = \{if\}
First(addop) = \{+, -\}
                                      First(st) = \{if, other\}
First(mulop) = \{*\}
First(factor) = {(, num}
First(term) = \{(, num)\}
First(exp) = \{(, num)\}
```

Algorithm for finding First(A)

```
A is a terminal or \lambda,
For all terminals a, First(a) = {a}
                                                                   then First(A) = \{A\}.
For all nonterminals A, First(A) := { }
                                                               If A is a nonterminal,
                                                                   then for each rule A
While there are changes to any First(A)
                                                                   \rightarrow X_1 X_2 \dots X_n, First(A)
    For each rule A \rightarrow X_1 X_2 ... X_n
                                                                   contains First(X_1) - {\lambda}.
         For each X_i in \{X_1, X_2, ..., X_n\}
                                                               If also for some i<n,
                                                                   First(X_1), First(X_2), ...,
              If for all j<i First(X_i) contains \lambda,
                                                                   and First(X_i) contain \lambda,
              Then
                                                                   then First(A) contains
                   add First(X_i)-{\lambda} to First(A)
                                                                   First(X_{i+1})-{\lambda}.
                                                               If First(X_1), First(X_2), ...,
         If \lambda is in First(X<sub>1</sub>), First(X<sub>2</sub>), ..., and
                                                                   and First(X_n) contain \lambda,
            First(X<sub>n</sub>)
                                                                   then First(A) also
          Then add \lambda to First(A)
                                                                   contains \lambda.
```

Finding First Set: An Example

exp \rightarrow term exp' exp' \rightarrow addop term exp' | λ addop \rightarrow + | term \rightarrow factor term' term' \rightarrow mulop factor term' | λ mulop \rightarrow * factor \rightarrow (exp) | num

	First				
	11130				
exp					
exp'	+ - λ				
addop	+ -				
term	(num				
term'	λ				
mulop	*				
factor	(num				

Follow Set

- Let \$ denote the end of input tokens
- If A is the start symbol, then \$ is in Follow(A).
- In there is a rule $B \to X A Y$, then First(Y) $\{\lambda\}$ is in Follow(A).

Algorithm for Finding Follow(A)

```
Follow(S) = \{\$\}
                                                          If A is the start
                                                              symbol, then $ is
FOR each A in V-{S}
                                                              in Follow(A).
   Follow(A)={}
                                                          If there is a rule A \rightarrow
WHILE change is made to some Follow sets
                                                              Y X Z, then
   FOR each production A \rightarrow X_1 X_2 ... X_n,
                                                              First(Z) - \{\lambda\} is in
         FOR each nonterminal X<sub>i</sub>
                                                              Follow(X).
               Add First(X_{i+1} X_{i+2}...X_n)-\{\lambda\}
                                                          If there is production
               into Follow(X<sub>i</sub>).
                                                              B \rightarrow X A Y and \lambda
                                                              is in First(Y), then
                (NOTE: If i=n, X_{i+1} X_{i+2}...X_n = \lambda)
                                                              Follow(A) contains
         IF \lambda is in First(X_{i+1} X_{i+2} ... X_n) THEN
                                                              Follow(B).
               Add Follow(A) to Follow(X<sub>i</sub>)
```

tart symbol (\$) follow กก่างและสังกับ และสังกับ สมาเมีย (มา โดย ทักว ปนและกอง Finding Follow Set: An Example กลา

exp \rightarrow term exp' exp' \rightarrow addop term exp' | λ addop \rightarrow + | term \rightarrow factor term' term' \rightarrow mulop factor term' mulop \rightarrow * factor \rightarrow (exp) | num

	First	Follow
ехр	(huh	n \$)
exp'	+ - 1	 \$
addop	+ -	(hun
term	(.nur	1 - 4
term'	* A	+ -\$7
mulop	*	1 num
factor	(NU	ー・ - ま)

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production $A \to X$ FOR each token a in First(X) $A \to X$ is in M(A, a) IF λ is in First(X) THEN FOR each element a in Follow(A)

Add $A \rightarrow X$ to M(A, a)

Example: Constructing LL(1) Parsing Table

1 exp \rightarrow term exp' 2 exp' \rightarrow addop term exp' 3 exp' $\rightarrow \lambda$ 4 addop \rightarrow + 5 addop \rightarrow -6 term \rightarrow factor term' 7 term' \rightarrow mulop factor term' 8 term' $\rightarrow \lambda$ 9 mulop \rightarrow * 10 factor \rightarrow (exp) 11 factor \rightarrow num

cap' 527 34

LL(1) Grammar

• A grammar is an LL(1) grammar if its LL(1) parsing table has at most one production in each table entry.

LL(1) Parsing Table for non-LL(1) Grammar

1 exp \rightarrow exp addop term

 $2 \exp \rightarrow \text{term}$

3 term → term mulop factor

4 term \rightarrow factor

5 factor \rightarrow (exp)

6 factor \rightarrow num

7 addop \rightarrow +

8 addop \rightarrow -

9 mulop \rightarrow *

First(exp) = { (, num }
First(term) = { (, num }
First(factor) = { (, num }
$First(addop) = \{ +, - \}$
First(mulop) = { * }

ולמחחשו משש	Man Mys Granna

	(/)	+	•	*	num	\$
exp	1,2					1,2	
term	3,4					3,4	
factor	5					6	
addop			7	8			
mulop					9		

Causes of Non-LL(1) Grammar

- What causes grammar being non-LL(1)?
 - Left-recursion Myll
 - Left factor

Left Recursion

- Immediate left recursion
 - A \rightarrow A X | Y $A=YX^*$ A \rightarrow Y A', A' \rightarrow X A'| λ
 - $| Y_1 | Y_2 | \dots | Y_m$

 $A = \{Y_1, Y_2, ..., Y_m\} \{X_1, X_2, ..., X_n\}^*$

- General left recursion
 - A => X =>* A Y

- Can be removed very easily
- $A \rightarrow A X_1 \mid A X_2 \mid ... \mid A X_n$ $A \rightarrow Y_1 A' \mid Y_2 A' \mid ... \mid Y_m A'$, $A' \rightarrow X_1 A' | X_2 A' | ... | X_n A' | \lambda$
 - Can be removed when there is no empty-string production and no cycle in the grammar

Removal of Immediate Left Recursion

```
exp → exp + term | exp - term | term
term → term * factor | factor
factor → ( exp ) | num
• Remove left recursion
exp → term exp' | exp = term (± term)*
exp' → + term exp' | - term exp' | \lambda
term → factor term' | term = factor (* factor)*
term' → * factor term' | \lambda
factor → ( exp ) | num
```

General Left Recursion

- Bad News!
 - Can only be removed when there is no emptystring production and no cycle in the grammar.
- Good News!!!!
 - Never seen in grammars of any programming languages

Left Factoring

- Left factor causes non-LL(1)
 - Given A → X Y | X Z. Both A → X Y and A → X Z can be chosen when A is on top of stack and a token in First(X) is the next token.

$$A \rightarrow X Y \mid X Z$$
 can be left-factored as

$$A \rightarrow X A'$$
 and $A' \rightarrow Y \mid Z$

Example of Left Factor

```
ifSt → if ( exp ) st else st | if ( exp ) st
    can be left-factored as
ifSt → if ( exp ) st elsePart
elsePart → else st | λ

seq → st ; seq | st
    can be left-factored as
seq → st seq'
seq' → ; seq | λ
```

Outline

- Top-down parsing
 - Recursive-descent parsing
 - LL(1) parsing
 - LL(1) parsing algorithm
 - First and follow sets
 - Constructing LL(1) parsing table
 - Error recovery

- Bottom-up parsing
 - Shift-reduce parsers
 - LR(0) parsing
 - LR(0) items
 - Finite automata of items
 - LR(0) parsing algorithm
 - LR(0) grammar
 - SLR(1) parsing
 - SLR(1) parsing algorithm
 - SLR(1) grammar
 - Parsing conflict

Bottom-up Parsing

- Use explicit stack to perform a parse
- Simulate rightmost derivation (R) from left
 (L) to right, thus called LR parsing
- More powerful than top-down parsing
 - Left recursion does not cause problem
- Two actions
 - Shift: take next input token into the stack
 - Reduce: replace a string B on top of stack by a nonterminal A, given a production A → B

Example of Shift-reduce Parsing

```
Grammar
     S^{\prime} \to S
                                                            Reverse of
     S \rightarrow (S)S \mid \lambda
                                                             rightmost derivation
Parsing actions
                                                             from left to right
Stack Input
                               Action
                                                                    \Rightarrow (())
               (())$
                                                                     \Rightarrow (())
                                                                     \Rightarrow (())
                                                                     \Rightarrow ((S))
$((S)
                                                                     \Rightarrow ((S))
$((S)S
                                                                     \Rightarrow ((S)S)
$ ( S
                                                                     \Rightarrow (S)
$(S)
                                                                     \Rightarrow (S)
$ (S)S
                                                                     \Rightarrow (S)S
$ S
                                                          10 S'
                                                                     \Rightarrow S
```

Example of Shift-reduce Parsing

```
Grammar
     S^{\prime} \to S
     S \rightarrow (S)S \mid \lambda
Parsing actions
Stack Input
                                    Action
                                    shift
                                                                                                            handle
                                                                                \Rightarrow (())
                                    shift
                                                                                \Rightarrow (())
                                    reduce S \rightarrow \lambda
                                                                                \Rightarrow (())
                                    shift
                                                                                 \Rightarrow ((S))
                                    reduce S \rightarrow \lambda
                                    reduce S \rightarrow (S) S
                                                                                \Rightarrow ((S)S)
                                    shift
                                                                                 \Rightarrow (S)
                                    reduce S \rightarrow \lambda
                                                                                 \Rightarrow (S)
$(S)S
                                    reduce S \rightarrow (S) S
                                                                                 \Rightarrow (S)S
$ S
                                    accept
                                                                    10 S'
                                                                                 \Rightarrow S
             Viable prefix
```

Terminologies

- Right sentential form
 - sentential form in a rightmost derivation
- Viable prefix
 - sequence of symbols on the parsing stack
- Handle
 - right sentential form +
 position where reduction can
 be performed + production
 used for reduction
- LR(0) item
 - production with distinguished position in its RHS

- Right sentential form
 - (S)S
 - ((S)S)
- Viable prefix
 - (S)S,(S),(S,(
 - ((S)S,((S),((S,((,(
- Handle
 - (S) S. with $S \rightarrow \lambda$
 - (S) S. with $S \rightarrow \lambda$
 - ((S)S.) with $S \rightarrow (S)S$
- LR(0) item
 - $S \rightarrow (S) S$.
 - $S \rightarrow (S).S$
 - $S \rightarrow (S.)S$
 - $S \rightarrow (.S)S$
 - $S \rightarrow \dot{S} (S) S$

Shift-reduce parsers

- There are two possible actions:
 - shift and reduce
- Parsing is completed when
 - the input stream is empty and
 - the stack contains only the start symbol
- The grammar must be *augmented*
 - a new start symbol S' is added
 - a production S' → S is added
 - To make sure that parsing is finished when S' is on top of stack because S' never appears on the RHS of any production.

LR(0) parsing

- Keep track of what is left to be done in the parsing process by using finite automata of items
 - An item $A \rightarrow w$. B y means:
 - A → w B y might be used for the reduction in the future,
 - at the time, we know we already construct w in the parsing process,
 - if B is constructed next, we get the new item $A \rightarrow w B \cdot Y$

LR(0) items

- LR(0) item
 - production with a distinguished position in the RHS
- Initial Item
 - Item with the distinguished position on the leftmost of the production
- Complete Item
 - Item with the distinguished position on the rightmost of the production
- Closure Item of x
 - Item x together with items which can be reached from x via λ -transition
- Kernel Item
 - Original item, not including closure items

Finite automata of items

Grammar:

 $\mathsf{S}'\to\mathsf{S}$

 $S \rightarrow (S)S$

 $S \rightarrow \lambda$

Items:

 $S' \rightarrow .S$

 $S' \rightarrow S$.

 $S \rightarrow .(S)S$

 $S \rightarrow (.S)S$

 $S \rightarrow (S.)S$

 $S \rightarrow (S).S$

 $S \rightarrow (S)S$.

 $\mathsf{S} o$,

42

DFA of LR(0) Items

LR(0) parsing algorithm

Item in state	token	Action
A-> x.By where B is terminal	В	shift B and push state s
		containing A -> xB.y
A-> x.By where B is terminal	not B	error
A -> x.	-	reduce with A -> x (i.e. pop x,
		backup to the state s on top of
		stack) and push A with new
		state d(s,A)
S' -> S.	none	accept
S' -> S.	any	error

LR(0) Parsing Table

State	Action	Rule	(a)	Α
0	shift		3	2		1
1	reduce	A' -> A				
2	reduce	A -> a				
3	shift		3	2		4
4	shift				5	
5	reduce	A -> (A)				

Example of LR(0) Parsing

	State	Action	Rule	(а)	Α
	0	shift		3	2		1
	1	reduce	A' -> A				
	2	reduce	A -> a				
	3	shift		3	2		4
	4	shift				5	
	5	reduce	A -> (A)				
Input		Action					
((a))s	•	shift					
/ - \ \ 4		- I. * C.					

		I Luucc
Stack	Input	Action
\$0	((a))\$	shift
\$0(3	(a))\$	shift
\$0(3(3	a)) \$	shift
\$0(3(3a2))\$	reduce
\$0(3(3A4))\$	shift
\$0(3(3A4)5) \$	reduce
\$0(3A4) \$	shift
\$0(3A4)5	\$	reduce
\$0A1	\$	accept

Non-LR(0)Grammar

- Conflict
 - Shift-reduce conflict
 - A state contains a complete item A → x. and a shift item A → x.By
 - Reduce-reduce conflict
 - A state contains more than one complete items.
- A grammar is a LR(0) grammar if there is no conflict in the grammar.

SLR(1) parsing

- Simple LR with 1 lookahead symbol
- Examine the next token before deciding to shift or reduce
 - If the next token is the token expected in an item, then it can be shifted into the stack.
 - If a complete item A → x. is constructed and the next token is in Follow(A), then reduction can be done using A → x.
 - Otherwise, error occurs.
- Can avoid conflict

SLR(1) parsing algorithm

Item in state	token	Action
A-> x.By (B is terminal)	В	shift B and push state s containing
		A -> xB.y
A-> x.By (B is terminal)	not B	error
A -> x.	in	reduce with A -> x (i.e. pop x,
	Follow(A)	backup to the state s on top of
		stack) and push A with new state
		d(s,A)
A -> x.	not in	error
	Follow(A)	
S' -> S.	none	accept
S' -> S.	any	error

SLR(1) grammar

- Conflict
 - Shift-reduce conflict
 - A state contains a shift item A → x.Wy such that W is a terminal and a complete item B → z. such that W is in Follow(B).
 - Reduce-reduce conflict
 - A state contains more than one complete item with some common Follow set.
- A grammar is an SLR(1) grammar if there is no conflict in the grammar.

SLR(1) Parsing Table

State	(a)	\$	Α
0	S3	S2			1
1				AC	
2			R2		
3	S3	S2			4
4			S5		
5			R1		

SLR(1) Grammar not LR(0)

$$S \rightarrow (S)S \mid \lambda$$

State	()	\$	S
0	S2	R2	R2	1
1			AC	
2	S2	R2	R2	3
3		S4		
4	S2	R2	R2	5
5		R1	R1	

Disambiguating Rules for Parsing Conflict

- Shift-reduce conflict
 - Prefer shift over reduce
 - In case of nested if statements, preferring shift over reduce implies most closely nested rule for dangling else
- Reduce-reduce conflict
 - Error in design

Dangling Else

End