Project No. 3 Simulation of a Finite M/M/1 Queue

ECE 642 Dr. Bijan Jabbari

Part I

In this project we simulate a finite M/M/1 queueing system using MATLAB. Consider the problem in Project 2 and assume the queue to have a maximum capacity of 20 packets (N=20). All other system parameters are as in that Project. That is, Poisson arrival and exponential service time, the link with a capacity of 155 Mbps, the length of packets exponentially distributed with mean packet size of 2325 bits. Simulate the system for the desired utilizations of $\rho=0.3,\,0.50,\,0.9$ and $\rho=.95$ and obtain Probability of blocking, expected delay, and expected waiting time vs. throughput. In the same graph plot the analytical results.

Part II

Consider the departure process of the above finite M/M/1 queueing system. For the utilizations of $\rho = 0.3, 0.50, 0.9$ and $\rho = .95$:

Find the pdf (i.e., the normalized histogram) of the inter-departure times (the time interval between the departure times). Find the mean value of inter-departure times and compare the pdf of inter-departure times with that of an exponential random variable with the same mean. Compare the two distributions and describe how close they are.