

In This Video

- What is a rotation?
- Some simple rotation representations
 - 3x3 orthogonal matrix
 - axis-angle ("exponential map")
 - Euler angles
 - Limitations

• Extra material: correct interpolation using the axis-angle representation

Orientations are Everywhere

- Euclidean transforms
 - Preserves distances
 - Preserves angles

Orientations are Everywhere

- In an articulated character, each joint is characterized by its degrees of freedom (dof)
 - Usually rotation about one, two or three axes

1 DOF: knee

2 DOF: wrist

3 DOF: arm

Most intuitive: orthonormal coordinate system

Orthonormality

$$\|\bar{x}\| = \|\bar{y}\| = \|\bar{z}\| = 1$$

$$\bar{x} \cdot \bar{y} = 0$$

$$\bar{x} \cdot \bar{z} = 0$$

$$\bar{y} \cdot \bar{z} = 0$$

Most intuitive: orthonormal coordinate system

Put axes as columns in 3x3 matrix:

$$\mathbf{M} = \begin{pmatrix} \vdots & \vdots & \vdots \\ \bar{x} & \bar{y} & \bar{z} \\ \vdots & \vdots & \vdots \end{pmatrix}$$

then orthogonality

Most intuitive: orthonormal coordinate system

Put axes as columns in 3x3 matrix:

$$\mathbf{M} = \begin{pmatrix} \vdots & \vdots & \vdots \\ \bar{x} & \bar{y} & \bar{z} \\ \vdots & \vdots & \vdots \end{pmatrix}$$

then orthogonality

$$\Leftrightarrow$$

$$\mathbf{M}^{\mathrm{T}}\mathbf{M} = \mathbf{I}$$
 Why?

• Most intuitive: orthonormal coordinate system

But also: Orientation is Rotation

Rotation is Orientation

- Euler's Rotation Theorem: All pairs of 3D orthogonal (Cartesian) coordinate systems that share a common origin are related through a rotation about some fixed axis.
 - In other words, you can orient any orthogonal coordinate frame with any other using a rotation.

Rotation is Orientation

- Euler's Rotation Theorem: All pairs of 3D orthogonal (Cartesian) coordinate systems that share a common origin are related through a rotation about some fixed axis.
 - In other words, you can orient any orthogonal coordinate frame with any other using a rotation.
- Consequence:
 Orientation is really the same as rotation
 - This is because you can get to any orientation from the identity transform using a rotation.

Plane Rotations

• How many degrees of freedom?

(origin really stays fixed)

2D (Plane) Rotations

• How many degrees of freedom?

1 DOF, just one rotation angle

3D Rotations

• How many degrees of freedom?

3D Rotations

- How many degrees of freedom?
- 3 degrees of freedom (!? 2D only had 1...)
 - direction of rotation (2D) and angle (1D)
 - Only have to care for angle $0 < \theta < \pi$
 - Why? When over π , negate axis, take angle 2π θ

3D Rotations

- How many degrees of freedom?
- 3 degrees of freedom
 - direction of rotation (2D) and angle (1D)
 - Only have to care for angle $0 < \theta < \pi$
 - Why? When over π , negate axis, take angle 2π θ

 Because orientations and rotations are basically the same, this means orientations are also 3D

What is a Rotation?

- Axis-angle view (as above):
 Rotation about an axis v by angle θ
 - Can encode rotation in a 3D vector ("rotation vector") $\mathbf{r} = \theta \mathbf{v}$, where θ is the angle and \mathbf{v} is a unit vector
 - Origin is identity, length of vector encodes angle
 - Points inside radius- π sphere are orientations
 - (Namedropping: "The exponential map")

What is a Rotation?

- Linear algebra view
 - Orthogonal matrix, $\mathbf{M}^{T}\mathbf{M} = \mathbf{I}$, $\det(\mathbf{M}) = 1$
 - Determinant condition rules out reflections
 - In other words, M has orthonormal columns and rows,
 i.e., the columns are basis vectors at right angles
 - Count the degrees of freedom!

What is a Rotation?

- Linear algebra view
 - Orthogonal matrix, $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{I}$, $\det(\mathbf{M}) = 1$
 - Determinant condition rules out reflections
 - In other words, M has orthonormal columns and rows,
 i.e., the columns are basis vectors at right angles
 - Overcomplete representation: M has more than 3 entries, meaning that not all matrices are proper rotations (well, duh)

Interpolating Orientations in 3D

- Critical for animation: Given rotation matrices M_i and time t_i , find M(t) such that $M(t_i)=M_i$
- Problem reduces to question:
 "How do you morph between two rotations?"

Interpolating Orientations in 3D

- Critical for animation: Given rotation matrices M_i and time t_i , find M(t) such that $M(t_i)=M_i$
- Problem reduces to question:
 "How do you morph between two rotations?"

First Try

- Interpolate each matrix entry independently
- Example: M_0 is identity and M_1 is 90 degrees around x-axis

Interpolate
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5 \end{bmatrix}$

• Is the result a rotation matrix?

First Try

- Interpolate each matrix entry independently
- Example: M_0 is identity and M_1 is 90 degrees around x-axis

Interpolate
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$) = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.5 & 0.5 \\ 0 & -0.5 & 0.5 \end{bmatrix}$

- Is the result a rotation matrix?
 - No, it does not preserve rigidity (angles and lengths) – what *does* it do?

(Both rotates and scales)

Are Rotations Simply Vectors Then?

- Axis-angle: Rotation about an axis (3 DOF)
- Can encode rotation in one 3D vector $\mathbf{r} = \theta \mathbf{v}$, where θ is the angle and \mathbf{v} is a unit vector
 - Origin is identity
- All good?

- $-\theta \mathbf{v}, (\theta + n2\pi)\mathbf{v}, (2\pi \theta)(-\mathbf{v})$?
- $n2\pi v$, in particular $r = 2\pi v$?

Are Rotations Simply Vectors Then?

- Let's think about
 - $-\theta \mathbf{v}, (\theta + n2\mathbf{\pi})\mathbf{v}, (2\mathbf{\pi} \theta)(-\mathbf{v})$?
 - $n2\pi v$, in particular $r = 2\pi v$?
 - There are infinitely many 3D axis-angle vectors that correspond to the same rotation.
 - E.g., the whole ball $|\mathbf{r}| = 2\pi$ is the identity.
 - Things are relatively OK if we stay within the sphere of radius π .

Another Try: Rotation Angles

- "Euler angles" are sequential rotations about a single coordinate (e.g.) in the sequence Z-Y-Z
 - Corresponds to a gimbal
 - Such a sequence of 3 can get you to any orientation
- Can also use a sequence of rotations around X-Y-
 - Roll, pitch and yaw(perfect for flight simulation)

Another Try: Rotation Angles

• Problems:

- Bad interpolation
- Gimbal lock

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf

Gimbal Lock

- Two or more axis align resulting in a loss of rotation degrees of freedom.
 - http://en.wikipedia.org/wiki/Euler_angles
 - http://en.wikipedia.org/wiki/Gimbal lock

(See Great 3Blue1Brown video)

Fundamental Problem

- The space of rotations ("the rotation group") is not Euclidean
 - Increasing rotation angle ends up where you started
 - (Buzzword: "The topology of the rotation group is that of the projective space RP3")

Fundamental Problem

- Even though the space is 3D, rotations cannot be represented in R³ without kinks or multiple-valuedness
 - Euler angles are really really nasty
 (gimbal lock, interpolation, no easy composition)
 - Axis-angle is multiple-valued, doesn't interpolate nicely without special considerations, cannot be easily composed
 - 3x3 matrices are redundant and don't interpolate nicely, but can be composed easily (matrix multiplication)

What to Do About It?

• Next video: quaternions!

Extra: Correct Interpolation Using Axis-Angle

Problem reduces to question:
"How do you morph between two rotations?"

35

Desirable Properties for Interpolation

- Remember Euler's theorem:
 All orientations A, B are related by a rotation R around an axis v by an angle θ: B = AR.
 - $-\mathbf{R}$ can be represented as $\mathbf{r} = \theta \mathbf{v}$

• Interpolated orientation should rotate around v with constant speed, starting from zero angle.

Recipe for Axis-Angle Interpolation

- Axis-angle interpolation how-to:
 - Compute \mathbf{R} as $\mathbf{A}^{-1}\mathbf{B}$ (then, clearly: $\mathbf{B}=\mathbf{A}\mathbf{R}$)
 - Get axis-angle representation from **R** (how to: soon)
 - Interpolate linearly between zero and r to yield r(t),
 i.e., r(t) = tr
 - Convert $\mathbf{r}(t)$ back to matrix $\mathbf{R}(t)$
 - Get final orientation by computing AR(t)

Interpolation Using Axis-Angle

- This works because the interpolated rotation vector starts at zero (identity) and always points to the same direction: $\mathbf{r}(t) = t\mathbf{r}$, with t a scalar
 - equivalently, the axis stays fixed and the angle changes linearly
 - that is, in the local coordinate system of A, the rotation axis direction stays fixed, only angle changes.
- However if you represent them as vectors rA and rB using axis-angle, and interpolate the corresponding 3D vectors linearly, this does NOT yield the correct result.

Interpolation Using Axis-Angle

- Careful: if you represent rotations **A** and **B** as rotation vectors **r**a and **r**b and interpolate them linearly, you do **not** get the correct result.
 - It interpolates the orientations, but not at unit speed.
 - (Why not? It's kind of deep. Let's not go there.)

 What our recipe does instead: axis-angle interpolation of the relative rotation between A and B

Axis-angle to Matrix

• Given unit axis v, angle θ , compute rotation matrix R This matrix

$$m{v}_+ = egin{pmatrix} 0 & -v_3 & v_2 \ v_3 & 0 & -v_1 \ -v_2 & v_1 & 0 \end{pmatrix}$$
 This matrix corresponds to cross product with $m{v}$.

$$\boldsymbol{R} = \boldsymbol{I} \cos \theta + (1 - \cos \theta) \boldsymbol{v} \boldsymbol{v}^{\mathrm{T}} - \boldsymbol{v}_{+} \sin \theta$$

If represented as $\mathbf{r} = \theta \mathbf{v}$, must normalize and compute length first, and watch out for zeros

with **v**.

Matrix to Axis-Angle

• Given rotation matrix \mathbf{R} , compute axis \mathbf{v} and angle θ

$$\theta = \cos^{-1}((R_{11} + R_{22} + R_{33} - 1)/2)$$

$$v_1 = (R_{32} - R_{23})/(2\sin\theta)$$

$$v_2 = (R_{13} - R_{31})/(2\sin\theta)$$

$$v_3 = (R_{21} - R_{12})/(2\sin\theta)$$

Recap

- You can't identify orientations/rotations with 3D points and have all of
 - Nice interpolation
 - Smoothness (no gimbal lock)
 - Simple composition of rotations
 - No complicated multiple-valuedness

- You can, however, interpolate relative changes in orientation using the axis-angle representation.)
- Next up: Quaternions, a 4D construction that does exactly what we want