

PENDAHULUAN

TTI3J3 Sistem KOMUNIKASI II

LINDA MEYLANI

IDENTITAS MK

NAMA MATA KULIAH : SISTEM KOMUKASI II

• KODE MATA KULIAH : TTI3J3

• SKS : 3

PROGRAM STUDI : \$1 TEKNIK TELEKOMUNIKASI

• FAKULTAS : FTE

CAPAIAN PEMBELAJARAN - PROGRAM LEARNING OUTCOMES (PLO)

• PLO 2:

Memiliki kemampuan menerapkan pengetahuan matematika, ilmu pengetahuan alam, teknologi informasi dan keteknikan untuk mendapatkan pemahaman menyeluruh tentang prinsip-prinsip keteknik telekomunikasian.

• PLO 5:

Memiliki kemampuan mengidentifikasi, merumuskan, menganalisis dan menyelesaikan permasalahan teknik telekomunikasi.

CAPAIAN PEMBELAJARAN MK-COURSE LEARNING OUTCOMES (PLO)

• CLO 1:

Mahasiswa mengetahui dan memahami diagram blok sistem komunikasi digital, random process, signal space analysis, maximum likelihood detection, optimum detection dan equalizer

• CLO 2:

Mahasiswa mengetahui dan memahami modulasi digital

• CLO 3:

Mahasiswa mengetahui dan memahami teori informasi dan channel coding

• CLO 4:

Mahasiswa mengetahui dan memahami spread spectrum dan multiple access

PROFIL MK

Mata kuliah yang memberikan wawasan mengenai Sistem Komunikasi Digital yang meliputi random process, signal space analysis, maximum likelihood detection, optimum detection, equalizer, modulasi digital, teori informasi, channel coding, spread spectrum dan multiple access.

SILABUS

Materi Sebelum UTS

- Pendahuluan
- Random Process
- Signal Space Analysis
- Maximum Likelihood Detection, Optimum Detection dan Equalizer
- Modulasi digital M-PSK serta kinerjanya
- Modulasi digital QAM serta kinerjanya
- Modulasi digital M-ASK dan M-FSK serta kinerjanya

Materi Setelah UTS

- Dasar Teori Informasi
- Channel coding: Linear Block Code
- Channel Coding: Cyclic Code
- Channel Coding: Convolutional Code
- Spread Spectrum
- Multiple Access

REFERENSI

Bernard Sklar, "Digital communications: Fundamentals and Applications", Prentice Hall, 2001.

Simon Haykin, "Digital Communication Systems", 2014

Ali Grami, "Introduction to Digital Communications", 2016

John G. Proakis and Masoud Salehi, "Communication Systems Engineering", 2002.

KOMPONEN PENILAIAN

• UAS: 35%

• UTS: 35%

• Tugas/Quis/PR/dll: 30%

Apa yang dimaksud dengan sistem komunikasi analog?

Apa yang dimaksud dengan sistem komunikasi digital?

KELEBIHAN SISKOM DIGITAL DIBANDINGKAN SISKOM ANALOG

- Sistem komunikasi digital tidak rentan terhadap derau.
- Lebih mudah mengintegrasikan berbagai layanan data, voice, music, dan video.

DIAGRAM BLOK SISTEM KOMUNIKASI DIGITAL

KANAL KOMUNIKASI

- Pada sistem Telekomunikasi & jaringan komputer, kanal komunikasi lebih diartikan pada media fisik transmisi, seperti kawat atau merupakan logical connection pada media multiplex seperti kanal
- Kanal digunakan sebagai media untuk membawa sinyal informasi. Kapasitas kanal diukur dalam bandwidth (dalam Hz) atau data rate (dalam bits per second /bps)
- Pada teori informasi, kanal lebih diartikan pada model kanal secara teoritis dengan karakteristik errornya.

MODEL KANAL DIGITAL

- Model kanal ini akan mempengaruhi performansi kanal seperti bit rate, latency/delay, delay jitter dsb. Contoh model kanal digital:
 - <u>Binary symmetric channel</u> (BSC), merupakan kanal DMC dengan probabilitas bit error tertentu.
 - Binary bursty bit error channel model, merupakan kanal dengan memory
 - <u>Binary erasure channel</u> (BEC), merupakan kanal diskrit dengan probabilitas deteksi bit error
 - <u>Packet erasure channel</u>, dimana paket yang hilang ditentukan dari probabilitas packet loss atau packet error rate.

MODEL KANAL ANALOG

- Pada kanal analog, sinyal yang ditransmisikan dimodelkan berupa sinyal analog. Model sinyal ini akan mempengaruhi performansi sistem.
 - Noise model, contoh <u>Additive white Gaussian noise</u> (AWGN) channel, <u>Phase noise</u> model
 - <u>Interference</u> model, contoh <u>cross-talk</u> (<u>co-channel</u> <u>interference</u>) and <u>intersymbol interference</u> (ISI)
 - <u>Distortion</u> model, contoh non-linear channel model yang mengakibatkan <u>intermodulation distortion</u> (IMD)
 - <u>Frequency response</u> model, termasuk <u>attenuation</u> and <u>phase-shift</u>
 - Group delay model
 - Radio frequency propagation model, contoh: Log-distance path loss model, Fading model, (Rayleigh fading, Ricean fading, log-normal shadow fading and frequency selective (dispersive) fading), Doppler shift model, Ray tracing models, Mobility models, yang akan menyebabkan a timevariant system

SOURCE CODING

• Source coding bertujuan untuk kompresi data.

• Metode kompresi data:

• Lossless: shannon-fano, huffman, arithmatic, dsb

Lossy : MPEG2, dsb

• Aplikasi:

• Audio :LPC, CELP, ACELP, ADPCM, dsb

• Image : RLE, wavelet, zte, spiht, dll

 Video : dct

CHANNEL CODING

- Channel coding bertujuan untuk koreksi error:
- Jenis channel coding:
 - LinearBlock coding:
 - Cyclic code
 - Reed solomon code: CD, DVD, xDSL
 - Convolutional coding: voiceband modem, GSM, satelit, militer

APLIKASI TEKNOLOGI

Format Modulasi

- MSK, GMSK -
- BPSK -
- QPSK, ¹/4 DQPSK -
- OQPSK
- FSK, GFSK
- 8, 16 VSB
- 8PSK
- 16 QAM
- 32 QAM
- 64 QAM
- 256 QAM

Application

GSM, CDPD

Deep space telemetry, cable modems

Satellite, CDMA, NADC, TETRA, PHS, PDC, LMDS, DVB-S, cable (returnpath), cable modems, FTS

CDMA, satellite

DECT, paging, RAM mobile data, AMPS, CT2, ERMES, land mobile, public safety

North American digital TV (ATV), broadcast, cable

Satellite, aircraft, telemetry pilots for monitoring broadband video systems

Microwave digital radio, modems, DVB-C, DVB-T

Terrestrial microwave, DVB-T

DVB-C, modems, broadband set top boxes, MMDS

Modems, DVB-C (Europe), Digital Video (US)

PERKEMBANGAN TEKNOLOGI KOMUNIKASI

- Sistem Komunikasi Seluler: 1G, 2G, 3G, 4G, 5G
- Sistem Komunikasi Optik
- Sistem Komunikasi Satelit
- Sistem Komunikasi Radio
- DII

SINYAL

- S(t) = A cos (2 p f t + f)
- S(t) bisa merepresentasikan:
- Tegangan satuannya **volt**
- Arus satuannya ampere
- Frekuensi $\dot{f} = \frac{1}{T}$

PARAMETER PENTING

• Energi sinyal

$$E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt$$

Daya sinyal

$$P_{s} = \frac{E_{s}}{T} = \frac{1}{T} \int_{-\infty}^{\infty} |s(t)|^{2} dt$$

KINERJA SISTEM KOMUNIKASI DIGITAL

• Performansi:

SNR (Eb/No), BER (Pe)

Efisiensi:

Bandwidth vs Daya

Security

TERIMA KASIH