GSV2011 Application Guide

2020-4-25 GSCOOLINK Holy Harly

(This page is intentionally left blank)

CONTENTS

1.	UDP Mode Description	5
	1.1 Design Purpose	5
	1.2 HDMI to Parallel Bus Pin Mapping	5
	1.3 Packet Information mapping	6
	1.4 HDMI to LVDS in UDP mode	. 7
	1.5 HDMI to TTL in UDP mode	11
	1.6 HDMI to LVDS in UDP deep-color decoding mode	16
	1.7 UDP in 1.2Gbps Fixed Rate mode	18
2. P	Parallel Pin Characteristic Description	
	2.1 TTL Tx Characteristic	
	2.2 TTL Rx Characteristic	19
	2.3 TTL Layout Recommendation	19
	2.4 LVDS Tx Characteristic	19
	2.5 LVDS Rx Characteristic	
3. F	Power Consumption Description	21
4. S	Software Development Questions	22
	4.1 How to set specific parallel bus setting in software?	
	4.1.1 An example of GSV2011 LVDS VESA mode application	
	4.2 How to set Tx parallel bus setting in software?	24
	4.3 How to set Rx parallel bus setting in software?	
	4.4 How to tune Parallel bus timing in software?	
	4.4.1 TTL Tx Register Control	
	4.4.2 TTL Rx Register Control	
	4.4.3 LVDS Tx Register Control	
	4.4.4 LVDS Rx Register Control	
	4.4.5 Lane Tx/Rx Skew Control	
	4.5 How to tweak pin connection order in detail?	
	4.5.1 Rx Pin order control registers	
	4.5.2 Tx Pin order control registers	
	4.6 How to guarantee TTL input timing stable?	30
	4.7 Why does Apple TV 4K60 420 not work under Dual Pixel UDP mode?	
	4.8 How to set Parallel bus input timing parameter of embedded sync timing?	
	4.9 How to loose LVDS/TTL input clock lock detection threshold?	
	4.9 Why does LPCM work but compressed audio fail in GSV2011 cascading?	
	4.10 Why does 480i60/576i50 fail in ParallelPort->HDMI connection?	
	4.11 How to set deep color in ParallelPort->HDMI connection?	
	4.12 How to pull-up/down ParallelPort pins in bootup?	
	4.13 How to mute ParallelTxPort output clock when HDMI input is not plugged?	
	4.14 How to change color depth in Parallel->HDMI?	34
	4.15 How to extend PLL/timing compliance in Parallel->HDMI?	
	4.16 How to lower chip temperature in full power application?	35

5. Pin Mapping
5.2 What is the pin mapping of VESA/JEIDA LVDS mode?
6. Embedded Sync Timing
6.1 Dual pixel SAV/EAV mapping
6.1.2 YCbCr 422 mode
6.2 SAV/EAV code value
7.1 How to configure the code into source or sink version?
7.2 How to configure the parametous mode:
76/
· O'
. 5
Win vision contide.
4

1. UDP Mode Description

1.1 Design Purpose

The purpose of GSV2011 UDP mode is to transmit lossless HDMI video/audio content between HDMI interface and a uniform minimized parallel interface. GSV2011 can support all the video/audio formats within HDMI 2.0b definition in UDP mode. GSV2011 supports TTL/LVDS as input/output in UDP mode for HDMI 2.0b timings. In the HDMI to Parallel bus UDP application mode, HDMI input's HDCP1.4/2.3 encryption will be decrypted by GSV2011. Then its raw Video/Audio/Control Packets are time division multiplexed to a group of pairs of parallel bus. A pair of dedicated clock pins are used for LVDS transaction between GSV2011 and external chip. A single pin clock is used for TTL transaction between GSV2011 and external chip.

1.2 HDMI to Parallel Bus Pin Mapping

For parallel bus, A 36-bit logical data bus and 1 separate DE pin is mapped from/to the HDMI interface. The allocation of the bits are listed below.

Name	Description	Bit Map[35:0]	Category
video_de	Video Data Enable	Separate Pin	
video_data[35:0]	Valid Video Pixel Data	BUS[35:0]	Valid When video_de=1
hdmi_ctl[2:0]	Includes: pkt_lgb/ pkt_tgb/ pkt_pre/ video/ lgb/ video_pre	BUS [23:21]	
VS	Vertical Sync	BUS [19]	X7 1' 1 XX71
hs	Horizontal Sync	BUS [18]	Valid When
pkt_de	Packet Data Enable	BUS [17]	video_de=0
pkt_data[8]	Packet Data	BUS [16]	
pkt_data[7:0]	Packet Data	BUS [11:4]	

For parallel bus, when DE = 1, 36 bits are fully occupied by active video data. When DE = 0, BUS [35:24], BUS [20], BUS [15:12] and BUS [3:0] are 0s, the rest bits are the valid control signals and audio data.

The mapping between HDMI_CTL and pkt_lgb/ pkt_tgb/ pkt_preamble/ video/ lgb/ video_preamble are listed below:

hdmi_ctl[2:0]	Controls
1	pkt_lgb
2	pkt_tgb
3	pkt_preamble
4	video_lgb
5	video_preamble

The parallel bus clock has the capability to be set in SDR/DDR mode according to the external receiver's capability.

If external transmitter needs to send UDP mode parallel bus to GSV2011 for HDMI transmission. It should strictly follow HDMI specification on all the signals listed in the above table. GSV2011 TX digital core will build the HDMI output stream with the raw information from parallel bus, HDCP 1.4/2.3 encryption could to enabled by GSV2011 on the HDMI TX port as well.

The detailed example mapping is given in below picture. In the picture, each channel is shown as 12-bit, but in current UDP application, each channel is mapped using higher 8-bit (lower 4-bit is ignored).

1.3 Packet Information mapping

UDP Packet information is provided on BCH level.

Following HDMI 1.4b specification Figure 5-3, packet data is allocated on 9 positions on Channel 0/1/2. Data Island Period active bits are:

-	
Ī	TMDS Channel 0 D[2] = Packet Header
Ī	TMDS Channel 1 D[3:0]
ſ	TMDS Channel 2 D[3:0]

The channel and BCH block mapping is shown in Figure 5-4 of HDMI 1.4b specification.

Channel 0 D2	BCH block 4 (Packet Header)
Channel 1 D0 and Channel 2 D0	BCH block 0
Channel 1 D1 and Channel 2 D1	BCH block 1
Channel 1 D2 and Channel 2 D2	BCH block 2
Channel 1 D3 and Channel 2 D3	BCH block 3

And the 9-bit UDP pkt_data is mapped with Figure 5-3/5-4 with following table.

Pkt_data	TMDS Channel	D	Figure 5-4 Designation	BCH block
PKT[8]	2	D[3]	C3	3
PKT[7]	2	D[2]	C2	2
PKT[6]	2	D[1]	C1	1
PKT[5]	2	D[0]	C0	0
PKT[4]	1	D[3]	В3	3
PKT[3]	1	D[2]	B2	2
PKT[2]	1	D[1]	B1	1
PKT[1]	1	D[0]	В0	0
PKT[0]	0	D[2]	A2	4

1.4 HDMI to LVDS in UDP mode

In this HDMI to LVDS UDP application mode, HDMI input's raw Video/Audio/Control Packets are time division multiplexed to a group of 9 pairs of LVDS differential pins in

single pixel mode or 12 pairs of LVDS differential pins in dual pixel mode. An extra pair of LVDS differential pins is dedicated to transmit DE signal.

Single pixel LVDS x4 mode is used for <=300MHz pixel clock timing (4K30Hz 12-bit in maximum bandwidth), refer to Table 25 LVDS 4x Single Pixel YCbCr/RGB 4:4:4 Pin Mapping in <GSV2011 datasheet> for the 9 pairs of pins. The maximum LVDS data lane frequency is 1.2Gbps in this mode.

Dual pixel LVDS x4 mode should be used for >300MHz pixel clock timing (4K60Hz 8-bit in maximum bandwidth), please refer to Table 27 LVDS 4x Dual Pixel YCbCr/RGB 4:4:4 Pin Mapping in <GSV2011 datasheet> for the 12 pairs of pins. The maximum LVDS data lane frequency is 1.2Gbps in this mode.

By default, the external receiver should receive these pairs of LVDS differential pairs of data and a pair of input LVDS clock. The external receiver should use the given LVDS clock to generate its own sampling clock, then utilizes the pair of DE to decode the rest pairs of data into Video/Audio/Control Packets.

The decoding of DE is critical for separating active video pixel data and other valid packets. When DE = 1, video data is present on the differential pairs. When DE = 0, audio/control packets are present. The DE pin behavior follows the active pixel data enable definition of video timings defined by CEA/VESA.

Typical LVDS UDP mode pin mapping diagrams are shown below.

UDP mode Single Pixel 4x LVDS pin mapping demo (RGB 8-bit, 1080p@60Hz)

				_						-			_				_						
	video_de	0	0	0	0	0	0		0	0	0	1	1	 1	1	0	0	0	0	0	0	0	0
23	UDP[5].Phase1											P0_R[7]	P1_R[7]	 P1078_R[7]	P1079_R[7]						\Box		
22	UDP[5].Phase2											P0_R[6]	P1_R[6]	 P1078_R[6]	P1079_R[6]								
21	UDP[5].Phase3											P0_R[5]	P1_R[5]	 P1078_R[5]	P1079_R[5]						\perp		
20	UDP[5].Phase4											P0_R[4]	P1_R[4]	 P1078_R[4]	P1079_R[4]						\perp		
19	UDP[4].Phase1											P0_R[3]	P1_R[3]	 P1078_R[3]	P1079_R[3]						\perp	\perp	
18	UDP[4].Phase2											P0_R[2]	P1_R[2]	 P1078_R[2]	P1079_R[2]								
17	UDP[4].Phase3											P0_R[1]	P1_R[1]	 P1078_R[1]	P1079_R[1]								
16	UDP[4].Phase4								. !			P0_R[0]	P1_R[0]	 P1078_R[0]	P1079_R[0]								
15	UDP[3].Phase1		0	0				0	- 1	1	1	P0_G[7]	P1_G[7]	 P1078_G[7]	P1079_G[7]								
14	UDP[3].Phase2		1	0				1	- 1	0	0	P0_G[6]	P1_G[6]	 P1078_G[6]	P1079_G[6]								
13	UDP[3].Phase3		1	1		Z		0		1	0	P0_G[5]	P1_G[5]	 P1078_G[5]	P1079_G[5]								
12	UDP[3].Phase4											P0_G[4]	P1_G[4]	 P1078_G[4]	P1079_G[4]								
11	UDP[2].Phase1											P0_G[3]	P1_G[3]	 P1078_G[3]	P1079_G[3]		1		1		\Box		
10	UDP[2].Phase2											P0_G[2]	P1_G[2]	 P1078_G[2]	P1079_G[2]						1		1
9	UDP[2].Phase3		_		1		1					P0_G[1]	P1_G[1]	 P1078_G[1]	P1079_G[1]								
8	UDP[2].Phase4		₹.		PKT[8]		PKT[8]					P0_G[0]	P1_G[0]	P1078_G[0]	P1079_G[0]								
7	UDP[1].Phase1				PKT[7]		PKT[7]					P0_B[7]	P1_B[7]	P1078_B[7]	P1079_B[7]						\Box		
6	UDP[1].Phase2	L.		/	PKT[6]		PKT[6]					P0_B[6]	P1_B[6]	 P1078_B[6]	P1079_B[6]								
5	UDP[1].Phase3				PKT[5]		PKT[5]					P0_B[5]	P1_B[5]	 P1078_B[5]	P1079_B[5]								
4	UDP[1].Phase4				PKT[4]		PKT[4]		- 1			P0_B[4]	P1_B[4]	 P1078_B[4]	P1079_B[4]								
3	UDP[0].Phase1	.			PKT[3]		PKT[3]		- 1			P0_B[3]	P1_B[3]	 P1078_B[3]	P1079_B[3]								
2	UDP[0].Phase2				PKT[2]		PKT[2]		- 1			P0_B[2]	P1_B[2]	 P1078_B[2]	P1079_B[2]								
1	UDP[0].Phase3				PKT[1]		PKT[1]					P0_B[1]	P1_B[1]	 P1078_B[1]	P1079_B[1]								
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_B[0]	P1_B[0]	 P1078_B[0]	P1079_B[0]								

Hsync
Audio/Packet/InfoFrame
Video
Packet Data Enable

UDP mode Single Pixel 4x LVDS pin mapping demo (YCbCr444 8-bit, 1080p@60Hz)

	video_de	0	0	0	0	0	0		0	0	0	1	1	 1	1	0	0	0	0	0	0	0	0
23	UDP[5].Phase1											P0_Cr[7]	P1_Cr[7]	 P1078_Cr[7]	P1079_Cr[7]		\Box					\Box	
22	UDP[5].Phase2											P0_Cr[6]	P1_Cr[6]	 P1078_Cr[6]	P1079_Cr[6]								
21	UDP[5].Phase3											P0_Cr[5]	P1_Cr[5]	 P1078_Cr[5]	P1079_Cr[5]								
20	UDP[5].Phase4											P0_Cr[4]	P1_Cr[4]	 P1078_Cr[4]	P1079_Cr[4]								
19	UDP[4].Phase1											P0_Cr[3]	P1_Cr[3]	 P1078_Cr[3]	P1079_Cr[3]								
18	UDP[4].Phase2											P0_Cr[2]	P1_Cr[2]	 P1078_Cr[2]	P1079_Cr[2]								
17	UDP[4].Phase3											P0_Cr[1]	P1_Cr[1]	 P1078_Cr[1]	P1079_Cr[1]		\Box						
16	UDP[4].Phase4											P0_Cr[0]	P1_Cr[0]		P1079_Cr[0]		Ш						
15	UDP[3].Phase1		0	0				0		1	1	P0_Y[7]	P1_Y[7]	 P1078_Y[7]	P1079_Y[7]		Ш						
14	UDP[3].Phase2		1	0				1		0	0		P1_Y[6]		P1079_Y[6]		Ш						
13	UDP[3].Phase3		1	1				0		1	0	P0_Y[5]	P1_Y[5]		P1079_Y[5]		Ш						
12	UDP[3].Phase4												P1_Y[4]		P1079_Y[4]		Ш						
11	UDP[2].Phase1											P0_Y[3]	P1_Y[3]	 P1078_Y[3]	P1079_Y[3]		1		1				
10	UDP[2].Phase2											P0_Y[2]	P1_Y[2]	 P1078_Y[2]	P1079_Y[2]		Ш				1	<u>. </u>	1
9	UDP[2].Phase3				1		1					P0_Y[1]	P1_Y[1]	 P1078_Y[1]	P1079_Y[1]		Ш						>
8	UDP[2].Phase4				PKT[8]		PKT[8]					P0_Y[0]	P1_Y[0]	 P1078_Y[0]	P1079_Y[0]		Ш		4				
7	UDP[1].Phase1				PKT[7]		PKT[7]					P0_Cb[7]	P1_Cb[7]	 P1078_Cb[7]	P1079_Cb[7]		Ш						
6	UDP[1].Phase2				PKT[6]		PKT[6]					P0_Cb[6]	P1_Cb[6]	 P1078_Cb[6]	P1079_Cb[6]								
5	UDP[1].Phase3				PKT[5]		PKT[5]					P0_Cb[5]	P1_Cb[5]	 P1078_Cb[5]	P1079_Cb[5]								
4	UDP[1].Phase4				PKT[4]		PKT[4]					P0_Cb[4]	P1_Cb[4]	 P1078_Cb[4]	P1079_Cb[4]		M		•				
3	UDP[0].Phase1				PKT[3]		PKT[3]					P0_Cb[3]	P1_Cb[3]	 P1078_Cb[3]	P1079_Cb[3]								
2	UDP[0].Phase2				PKT[2]		PKT[2]					P0_Cb[2]	P1_Cb[2]	 P1078_Cb[2]	P1079_Cb[2]								
1	UDP[0].Phase3				PKT[1]		PKT[1]					P0_Cb[1]	P1_Cb[1]	 P1078_Cb[1]	P1079_Cb[1]		\Box						_]
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_Cb[0]	P1_Cb[0]	 P1078_Cb[0]	P1079_Cb[0]								

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Single Pixel 4x LVDS pin mapping demo (YCbCr422 8-bit, 1080p@60Hz)

			_						•				7	,					•					_
	video_de	0	0	0	0	0	0		0	0	0	1	1		1	1	0	0	0	0	0	0	0	0
23	UDP[5].Phase1								4			P0_Cb[11]	P0_Cr[11]		P1078_Cb[11]	P1078_Cr[11]								
22	UDP[5].Phase2								ď			P0_Cb[10]	P0_Cr[10]		P1078_Cb[10]	P1078_Cr[10]								
21	UDP[5].Phase3								1	ø		P0_Cb[9]	P0_Cr[9]		P1078_Cb[9]	P1078_Cr[9]								
20	UDP[5].Phase4							\searrow				P0_Cb[8]	P0_Cr[8]		P1078_Cb[8]	P1078_Cr[8]								
19	UDP[4].Phase1						· ·					P0_Cb[7]	P0_Cr[7]		P1078_Cb[7]	P1078_Cr[7]								
18	UDP[4].Phase2								·.			P0_Cb[6]	P0_Cr[6]		P1078_Cb[6]	P1078_Cr[6]							\Box	
17	UDP[4].Phase3											P0_Cb[5]	P0_Cr[5]		P1078_Cb[5]	P1078_Cr[5]							\Box	
16	UDP[4].Phase4											P0_Cb[4]	P0_Cr[4]		P1078_Cb[4]	P1078_Cr[4]								
15	UDP[3].Phase1		0	0			· · · · ·	0		1	1	P0_Y[11]	P1_Y[11]			P1079_Y[11]					_	_	\perp	_
14	UDP[3].Phase2		1	0				1		0	0	P0_Y[10]	P1_Y[10]		P1078_Y[10]	P1079_Y[10]					_	_	\Box	_
13	UDP[3].Phase3		1	1				0		1	0	P0_Y[9]	P1_Y[9]		P1078_Y[9]	P1079_Y[9]							\Box	
12	UDP[3].Phase4											P0_Y[8]	P1_Y[8]		P1078_Y[8]	P1079_Y[8]						_		_
11	UDP[2].Phase1			L								P0_Y[7]	P1_Y[7]		P1078_Y[7]	P1079_Y[7]		1		1		_		
10	UDP[2].Phase2		L									P0_Y[6]	P1_Y[6]		P1078_Y[6]	P1079_Y[6]					_	1		1
9	UDP[2].Phase3				1		1					P0_Y[5]	P1_Y[5]		P1078_Y[5]	P1079_Y[5]					_	_	_	_
8	UDP[2].Phase4				PKT[8]		PKT[8]					P0_Y[4]	P1_Y[4]		P1078_Y[4]	P1079_Y[4]					_	_	_	_
7	UDP[1].Phase1				PKT[7]		PKT[7]					P0_Cb[3]	P0_Cr[3]		P1078_Cb[3]						_	_	_	_
6	UDP[1].Phase2				PKT[6]		PKT[6]					P0_Cb[2]	P0_Cr[2]		P1078_Cb[2]						_	_	\dashv	_
5	UDP[1].Phase3				PKT[5]		PKT[5]					P0_Cb[1]	P0_Cr[1]		P1078_Cb[1]						_	4	\dashv	_
4	UDP[1].Phase4				PKT[4]		PKT[4]					P0_Cb[0]	P0_Cr[0]		P1078_Cb[0]						_	_	_	_
3	UDP[0].Phase1				PKT[3]		PKT[3]					P0_Y[3]	P1_Y[3]		P1078_Y[3]	P1079_Y[3]					_	_	_	_
2	UDP[0].Phase2				PKT[2]		PKT[2]					P0_Y[2]	P1_Y[2]		P1078_Y[2]	P1079_Y[2]					_	_	_	_
1	UDP[0].Phase3		_	_	PKT[1]		PKT[1]					P0_Y[1]	P1_Y[1]		P1078_Y[1]	P1079_Y[1]					_	4	_	_
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_Y[0]	P1_Y[0]		P1078_Y[0]	P1079_Y[0]							\Box	

Vsync
Hsync
Audio/Packet/InfoFrame
Video
Packet Data Enable

UDP mode Single Pixel 4x LVDS pin mapping demo (YCbCr420 8-bit, 1080p@60Hz)

	video_de	0	0	0	0	0	0		0	0	0	1	1	 1	1	0	0	0	0	0	0	0	0
23	UDP[5].Phase1											P1_Y[7]	P3_Y[7]	 P1077_Y[7]	P1079_Y[7]						\Box		
22	UDP[5].Phase2											P1_Y[6]	P3_Y[6]	 P1077_Y[6]	P1079_Y[6]						\Box		
21	UDP[5].Phase3											P1_Y[5]	P3_Y[5]	 P1077_Y[5]	P1079_Y[5]						\Box		
20	UDP[5].Phase4											P1_Y[4]	P3_Y[4]	 P1077_Y[4]	P1079_Y[4]		Ш	ш			\Box	\perp	
19	UDP[4].Phase1											P1_Y[3]	P3_Y[3]	 P1077_Y[3]	P1079_Y[3]						\Box		
18	UDP[4].Phase2											P1_Y[2]	P3_Y[2]	 P1077_Y[2]	P1079_Y[2]		Ш	ш			\perp	\perp	
17	UDP[4].Phase3											P1_Y[1]	P3_Y[1]	 P1077_Y[1]	P1079_Y[1]		Ш	ш			\perp	\perp	
16	UDP[4].Phase4											P1_Y[0]	P3_Y[0]	 P1077_Y[0]	P1079_Y[0]			\Box					
15	UDP[3].Phase1		0	0				0		1	1	P0_Y[7]	P2_Y[7]	 P1076_Y[7]	P1078_Y[7]			\Box					
14	UDP[3].Phase2		1	0				1		0	0	P0_Y[6]	P2_Y[6]	P1076_Y[6]	P1078_Y[6]			\Box					
13	UDP[3].Phase3		1	1				0		1	0	P0_Y[5]	P2_Y[5]	P1076_Y[5]	P1078_Y[5]			\Box					
12	UDP[3].Phase4											P0_Y[4]	P2_Y[4]	P1076_Y[4]	P1078_Y[4]			\Box					
11	UDP[2].Phase1											P0_Y[3]	P2_Y[3]	 P1076_Y[3]	P1078_Y[3]		1		1				
10	UDP[2].Phase2											P0_Y[2]	P2_Y[2]	 P1076_Y[2]	P1078_Y[2]						1	<u></u>	1
9	UDP[2].Phase3				1		1					P0_Y[1]	P2_Y[1]	 P1076_Y[1]	P1078_Y[1]								
8	UDP[2].Phase4				PKT[8]		PKT[8]					P0_Y[0]	P2_Y[0]	 P1076_Y[0]	P1078_Y[0]			\Box	_				
7	UDP[1].Phase1				PKT[7]		PKT[7]					P0_Cb[7]	P2_Cb[7]	 P1076_Cb[7]	P1078_Cb[7]		Ш	ш					
6	UDP[1].Phase2				PKT[6]		PKT[6]					P0_Cb[6]	P2_Cb[6]	 P1076_Cb[6]	P1078_Cb[6]						,		
5	UDP[1].Phase3				PKT[5]		PKT[5]					P0_Cb[5]	P2_Cb[5]	 P1076_Cb[5]	P1078_Cb[5]								
4	UDP[1].Phase4				PKT[4]		PKT[4]					P0_Cb[4]	P2_Cb[4]	 P1076_Cb[4]	P1078_Cb[4]				•		\perp	\perp	
3	UDP[0].Phase1				PKT[3]		PKT[3]					P0_Cb[3]	P2_Cb[3]	 P1076_Cb[3]	P1078_Cb[3]						\perp	\perp	
2	UDP[0].Phase2				PKT[2]		PKT[2]					P0_Cb[2]	P2_Cb[2]	 P1076_Cb[2]	P1078_Cb[2]		Ш				\perp	\perp	
1	UDP[0].Phase3				PKT[1]		PKT[1]					P0_Cb[1]	P2_Cb[1]	 P1076_Cb[1]	P1078_Cb[1]		\Box	\Box			\perp	\Box	
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_Cb[0]	P2_Cb[0]	 P1076_Cb[0]	P1078_Cb[0]		Ш	\Box			\Box	\Box	

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Single Pixel 4x LVDS pin mapping demo (YCbCr444 12-bit deep color, 1080p@60Hz)

						`								1		- T									
	video_de	0	0	0	0	0	0		0	0	0	1		1	1	 1	1	1	0	0	0	0 (0 0	0	0
23	UDP[5].Phase1											P0_Cr[7]	P1_Cr[3]	P1_Cr[11]	 P1078_Cr[7]	P1079_Cr[3]	P1079_Cr[11]							Ш
22	UDP[5].Phase2											P0_Cr[[6]	P1_Cr[2]	P1_Cr[10]	 P1078_Cr[6]	P1079_Cr[2]	P1079_Cr[10]							
21	UDP[5].Phase3											P0_Cr[[5]	P1_Cr[1]	P1_Cr[9]	 P1078_Cr[5]	P1079_Cr[1]	P1079_Cr[9]		Ш					Ш
20	UDP[5].Phase4											P0_Cr[4]	P1_Cr[0]	P1_Cr[8]	 P1078_Cr[4]	P1079_Cr[0]	P1079_Cr[8]		Ш				\perp	Ш
19	UDP[4].Phase1					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						P0_Cr[3]	P0_Cr[11]	P1_Cr[7]	 P1078_Cr[3]	P1078_Cr[11]	P1079_Cr[7]		Ш				\perp	Ш
18	UDP[4].Phase2											P0_Cr[2]	P0_Cr[10]	P1_Cr[6]	 P1078_Cr[2]	P1078_Cr[10]	P1079_Cr[6]		Ш				\perp	Ш
17	UDP[4].Phase3											P0_Cr[1]	P0_Cr[9]	P1_Cr[5]	 P1078_Cr[1]	P1078_Cr[9]	P1079_Cr[5]		Ш				\perp	Ш
16	UDP[4].Phase4											P0_Cr[[0]	P0_Cr[8]	P1_Cr[4]	 P1078_Cr[0]	P1078_Cr[8]	P1079_Cr[4]		Ш				\perp	Ш
15	UDP[3].Phase1		0	0				0		1	1	P0_Y[7]	P1_Y[3]	P1_Y[11]	 P1078_Y[7]	P1079_Y[3]	P1079_Y[11]		ш				\perp	Ш
14	UDP[3].Phase2		1	0				1		0	0	P0_Y[6]	P1_Y[2]	P1_Y[10]	 P1078_Y[6]	P1079_Y[2]	P1079_Y[10]		ш				Ш	Ш
13	UDP[3].Phase3		1	1				0		1	0	P0_Y[5]	P1_Y[1]	P1_Y[9]	 P1078_Y[5]	P1079_Y[1]	P1079_Y[9]		ш				Ш	Ш
12	UDP[3].Phase4	۵.										P0_Y[4	4]	P1_Y[0]	P1_Y[8]	 P1078_Y[4]	P1079_Y[0]	P1079_Y[8]		Ш				\perp	Ш
11	UDP[2].Phase1											P0_Y[3	3]	P0_Y[11]	P1_Y[7]	 P1078_Y[3]	P1078_Y[11]	P1079_Y[7]		1		1		Ш	Ш
10	UDP[2].Phase2											P0_Y[2]	P0_Y[10]	P1_Y[6]	 P1078_Y[2]	P1078_Y[10]	P1079_Y[6]		ш			1		1
9	UDP[2].Phase3				1		1					P0_Y[:	1]	P0_Y[9]	P1_Y[5]	 P1078_Y[1]	P1078_Y[9]	P1079_Y[5]		ш				Ш	Ш
8	UDP[2].Phase4	<u></u>			PKT[8]		PKT[8]					P0_Y[0]	P0_Y[8]	P1_Y[4]	 P1078_Y[0]	P1078_Y[8]	P1079_Y[4]		ш				Ш	Ш
7	UDP[1].Phase1				PKT[7]		PKT[7]					P0_Cb[[7]	P1_Cb[3]	P1_Cb[11]	 P1078_Cb[7]	P1079_Cb[3]	P1079_Cb[11]		ш				Ш	Ш
6	UDP[1].Phase2				PKT[6]		PKT[6]					P0_Cb[[6]	P1_Cb[2]	P1_Cb[10]	 P1078_Cb[6]	P1079_Cb[2]	P1079_Cb[10]		ш				Ш	Ш
5	UDP[1].Phase3				PKT[5]		PKT[5]					P0_Cb[[5]	P1_Cb[1]	P1_Cb[9]	 P1078_Cb[5]	P1079_Cb[1]	P1079_Cb[9]		ш				Ш	Ш
4	UDP[1].Phase4				PKT[4]		PKT[4]					P0_Cb[[4]	P1_Cb[0]	P1_Cb[8]	 P1078_Cb[4]	P1079_Cb[0]	P1079_Cb[8]		ш				Ш	Ш
3	UDP[0].Phase1				PKT[3]		PKT[3]					P0_Cb[[3]	P0_Cb[11]	P1_Cb[7]	 P1078_Cb[3]	P1078_Cb[11]	P1079_Cb[7]		ш				Ш	Ш
2	UDP[0].Phase2				PKT[2]		PKT[2]					P0_Cb[[2]	P0_Cb[10]	P1_Cb[6]	 P1078_Cb[2]	P1078_Cb[10]	P1079_Cb[6]		ш				Ш	Ш
1	UDP[0].Phase3				PKT[1]		PKT[1]					P0_Cb[[1]	P0_Cb[9]	P1_Cb[5]	 P1078_Cb[1]	P1078_Cb[9]	P1079_Cb[5]		Ш	$_{\perp}$	\perp		L	Ш
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_Cb[[0]	P0_Cb[8]	P1_Cb[4]	 P1078_Cb[0]	P1078_Cb[8]	P1079_Cb[4]		Ш	\perp	\perp		上	Ш

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Dual Pixel 4x LVDS pin mapping demo (RGB 8-bit deep color, 1080p@60Hz)

	video_de	0	0	0	0	0	0		0	٥	0	1	1		1 1	1	0	0	0	0	0	0	0 (0
47	UDP[11].Phase1	U	U	U	U	U	U	\vdash	U	U	U	P1_R[7]	P3_R[7]		P1077_R[7]	P1079_R[7]	۳	U		·	-	-	<u>U (</u>	4
46	UDP[11].Phase2		\vdash	\vdash				\vdash		\vdash	\vdash	P1_R[6]			P1077_R[7]	P1079_R[7]		\vdash	ш	\vdash	\dashv	+	+	\dashv
45	UDP[11].Phase3		\vdash	\vdash				\vdash		\vdash	\vdash	P1_R[5]	P3_R[5]		P1077_R[0]	P1079_R[5]		\vdash	ш	\vdash	\dashv	+	+	\dashv
44	UDP[11].Phase4		\vdash	\vdash				\vdash		\vdash	\vdash	P1_R[4]	P3_R[4]		P1077_R[3]	P1079_R[3]		\vdash	ш	\vdash	\dashv	+	+	\dashv
43	UDP[10].Phase1		\vdash	\vdash				\vdash		\vdash	\vdash	P1_R[3]	P3_R[3]		P1077_R[4]	P1079_R[4]		\vdash	ш	\vdash	\dashv	+	+	\dashv
42	UDP[10].Phase2		\vdash	\vdash				\vdash		\vdash	\vdash	P1 R[2]	P3_R[2]		P1077_R[3]	P1079_R[3]		\vdash	М	\Box	\dashv	\pm	+	\dashv
41	UDP[10].Phase3		\vdash	\vdash				\vdash			\vdash	P1_R[1]	P3_R[1]		P1077_R[2]	P1079_R[2]			ш	\vdash	\dashv	+	+	\dashv
40	UDP[10].Phase4		\vdash					\vdash			\vdash	P1_R[0]			P1077_R[1]	P1079_R[1]			ш	\vdash	\dashv	+	+	\dashv
39	UDP[9].Phase1		0	0				0		1	1	P1 G[7]	P3_G[7]		P1077_K[0]	P1079_G[7]			т	\vdash	\dashv	\pm	+	\dashv
38	UDP[9].Phase2			0				1		0		P1_G[6]			P1077_G[6]	P1079_G[6]			т	\vdash	\dashv	\pm		
37	UDP[9].Phase3			1				0		1	0	P1_G[5]			P1077_G[5]	P1079_G[5]			М	H	\dashv	_	+	7/\
36	UDP[9].Phase4		1					U		1	0		P3_G[4]		P1077_G[3]	P1079_G[3]			Н	\vdash	\dashv	4	_	4
35	UDP[8].Phase1		\vdash	\vdash						\vdash	\vdash	P1_G[3]	P3_G[3]		P1077_G[3]	P1079_G[4]		1		1	\exists			\dashv
34	UDP[8].Phase2		\vdash	\vdash				\vdash		\vdash	\vdash	P1_G[3]			P1077_G[3]	P1079_G[3]		1		1	П	7		1
33	UDP[8].Phase3		\vdash	\vdash	1		1	\vdash		\vdash	\vdash		P3_G[1]		P1077_G[2]	P1079_G[2]		\vdash	ш		V	-		-
32	UDP[8].Phase4		\vdash	\vdash	PKT[8]		PKT[8]			\vdash	\vdash	P1_G[0]			P1077_G[1]	P1079_G[0]		\vdash				-	+	\dashv
31	UDP[7].Phase1		\vdash	\vdash	PKT[7]		PKT[7]	\vdash		\vdash	\vdash	P1_B[7]	P3_B[7]		P1077_B[7]	P1079_B[7]			\vdash			+	+	\dashv
30	UDP[7].Phase2		\vdash	\vdash	PKT[6]		PKT[6]	\vdash		\vdash	\vdash	P1_B[7]	P3_B[6]		P1077_B[7]	P1079_B[7] P1079_B[6]					\dashv	+	+	\dashv
29	UDP[7].Phase3		\vdash	\vdash	PKT[5]		PKT[5]	\vdash		\vdash	\vdash	P1_B[5]	P3_B[5]		P1077_B[0] P1077_B[5]	P1079_B[0] P1079_B[5]		-	\vdash		\dashv	+	+	\dashv
28	UDP[7].Phase4		\vdash	\vdash				\vdash		\vdash	\vdash		P3_B[4]		P1077_B[3] P1077_B[4]	P1079_B[3] P1079_B[4]				\vdash	\dashv	+	+	\dashv
28	UDP[6].Phase1		\vdash	\vdash	PKT[4] PKT[3]		PKT[4] PKT[3]	\vdash		\vdash	\vdash	P1_B[4] P1_B[3]	P3_B[4]		P1077_B[4] P1077_B[3]	P1079_B[4] P1079_B[3]		\vdash	\vdash	\vdash	\dashv	+	+	\dashv
26			\vdash	\vdash				\vdash			\vdash								\vdash	\vdash	\dashv	+	+	\dashv
	UDP[6].Phase2		⊢	\vdash	PKT[2]		PKT[2]	\vdash		\vdash	\vdash	P1_B[2]	P3_B[2]		P1077_B[2]	P1079_B[2]		\vdash	\vdash	\vdash	+	+	+	-
25	UDP[6].Phase3		\vdash	\vdash	PKT[1]		PKT[1]	\vdash		\vdash	\vdash	P1_B[1]			P1077_B[1]	P1079_B[1]			\vdash	\vdash	\dashv	+	+	-
24	UDP[6].Phase4		⊢	\vdash	PKT[0]		PKT[0]			\vdash	\vdash	P1_B[0]	P3_B[0]		P1077_B[0]				\vdash	\vdash	\dashv	+	+	-
23	UDP[5].Phase1		\vdash									P0_R[7]	P2_R[7]		P1076_R[7]	P1078_R[7]			⊢-'	\vdash	\dashv	+	+	\dashv
22	UDP[5].Phase2		\vdash									P0_R[6]			P1076_R[6]	P1078_R[6]			⊢-'	\vdash	\dashv	+	+	-
21	UDP[5].Phase3		\vdash	\vdash							\vdash	P0_R[5]	P2_R[5]		P1076_R[5]	P1078_R[5]			⊢-'	\vdash	\dashv	+	+	-
20	UDP[5].Phase4		\vdash	\vdash		\vdash		\vdash		\vdash	⊢	P0_R[4]	P2_R[4]		P1076_R[4]	P1078_R[4]		\vdash	\vdash	\vdash	\dashv	\rightarrow	+	\dashv
19	UDP[4].Phase1		⊢					_		_	⊢	P0_R[3]	P2_R[3]		P1076_R[3]	P1078_R[3]			—'	\vdash	\dashv	\rightarrow	+	\dashv
18	UDP[4].Phase2		⊢	\vdash				_		⊢	⊢	P0_R[2]	P2_R[2]	-	P1076_R[2]	P1078_R[2]			—'	\vdash	\dashv	\rightarrow	+	\dashv
17	UDP[4].Phase3		⊢	\vdash		\vdash		⊢		⊢	⊢	P0_R[1]	P2_R[1]	-47	P1076_R[1]	P1078_R[1]		\vdash	—'	\vdash	\dashv	\rightarrow	+	\dashv
16	UDP[4].Phase4					\vdash		_				P0_R[0]			P1076_R[0]	P1078_R[0]		\vdash	—'	\vdash	\dashv	\rightarrow	+	\dashv
15	UDP[3].Phase1			0		\vdash		0		1	1		P2_G[7]		P1076_G[7]	P1078_G[7]		\vdash	—'	\vdash	\dashv	\rightarrow	+	\dashv
14	UDP[3].Phase2			0		\vdash		1		0		P0_G[6]			P1076_G[6]	P1078_G[6]		\vdash	—'	\vdash	\dashv	+	+	\dashv
13	UDP[3].Phase3		1	1		\vdash		0		1	0		P2_G[5]		P1076_G[5]			\vdash	ሥ	\vdash	\dashv	\rightarrow	+	4
12	UDP[3].Phase4		⊢	\vdash				_		_	⊢		P2_G[4]		P1076_G[4]						\dashv	\rightarrow	+	-
11	UDP[2].Phase1		⊢	\vdash				_			H		P2_G[3]		P1076_G[3]	P1078_G[3]		1		1	\dashv		_	
10	UDP[2].Phase2		┢							-	Н	P0_G[2]			P1076_G[2]				⊢-'	\vdash	\dashv	1		1
9	UDP[2].Phase3 1 1 P0_G[1] P2_G[1] P1076_G[1] P1078_G[1]													4										
8	UDP[2].Phase4		⊢		PKT[8]		PKT[8]	+				P0_G[0]			P1076_G[0]				⊢-'	\vdash	\dashv	\rightarrow	+	4
7	UDP[1].Phase1		⊢		PKT[7]		PKT[7]					P0_B[7]	P2_B[7]		P1076_B[7]	P1078_B[7]			⊢-'	\vdash	\dashv	\rightarrow	+	4
6	UDP[1].Phase2		┞		PKT[6]		PKT[6]	_			_	P0_B[6]	P2_B[6]		P1076_B[6]	P1078_B[6]			—'	\vdash	\dashv	\rightarrow	+	4
5	UDP[1].Phase3		₽		PKT[5]		PKT[5]			_	_	P0_B[5]	P2_B[5]		P1076_B[5]	P1078_B[5]			—'	\vdash	\dashv	\rightarrow	+	4
4	UDP[1].Phase4		_		PKT[4]		PKT[4]			_	_	P0_B[4]	P2_B[4]		P1076_B[4]	P1078_B[4]			└	\sqcup	_	\dashv	_	_
3	UDP[0].Phase1		_	\vdash	PKT[3]		PKT[3]			_	_	P0_B[3]	P2_B[3]		P1076_B[3]	P1078_B[3]		\vdash	<u>—</u> '	\sqcup		\dashv	+	4
2	UDP[0].Phase2		_	\vdash	PKT[2]		PKT[2]			_	_	P0_B[2]	P2_B[2]		P1076_B[2]	P1078_B[2]			\vdash	\sqcup	_	\dashv	+	4
1	UDP[0].Phase3		_		PKT[1]		PKT[1]	_		_	_	P0_B[1]			P1076_B[1]				<u>—</u> '	\sqcup	\dashv	\rightarrow		_
0	UDP[0].Phase4				PKT[0]		PKT[0]					P0_B[0]	P2_B[0]		P1076_B[0]	P1078_B[0]			ш	Ш	$_{\perp}$	丄	Ш.	
						1																		
															Vsync									
															Hsync									
															Audio/Packet/	InfoFrame								
														Video										
														Packet Data Enable										

1.5 HDMI to TTL in UDP mode

In this HDMI to TTL UDP application mode, HDMI input's raw Video/Audio/Control Packets are time division multiplexed to a group of 36 TTL pins in single pixel mode or 48 TTL pins in dual pixel mode. An extra TTL pin is dedicated to transmit DE signal. Single pixel TTL mode is used for <=300MHz pixel clock timing (4K30Hz 12-bit in maximum bandwidth), refer to Table 14 Single Pixel Mode YCbCr/RGB 4:4:4 Pin Mapping in <GSV2011 datasheet> for the 36 TTL pins. The maximum TTL data lane frequency is 300MHz in this mode.

Dual pixel TTL mode should be used for >300MHz pixel clock timing (4K60Hz 8-bit in maximum bandwidth), please refer to Table 17 Dual Pixel Mode YCbCr/RGB 4:4:4 Pin Mapping in <GSV2011 datasheet> for the 48 TTL pins. The maximum TTL data lane frequency is 300MHz in this mode.

By default, the external receiver should receive these pins of TTL data and a pin of input TTL clock. The external receiver should use the given TTL clock to generate its own sampling clock, then utilizes the pin of DE to decode the rest pins of data into Video/Audio/Control Packets.

The decoding of DE is critical for separating active video pixel data and other valid packets. When DE = 1, video data is present on the pins. When DE = 0, audio/control packets are present. The DE pin behavior follows the active pixel data enable definition of video timings defined by CEA/VESA.

It should be noted that Leading Guard Band and Trailing Guard Band both can be multiple cycls.

In the 3 bytes configuration (refer to Section4.1), the 24-bit UDP TTL pins can be modified with Mode CFG2(Byte 1)[5:4] = i2c_tx_par_sub_mode. When i2c_tx_par_sub_mode = 01, the lower 24-bits TTL pins will be used. All following pin mapping diagram uses this mode. When i2c_tx_par_sub_mode = 00, TTL[35:28], TTL[23:16], TTL[11:4] will be used for 24-bit UDP TTL pins.

Typical TTL UDP mode pin mapping diagrams are shown below.

UDP mode Single Pixel TTL pin mapping demo (RGB 8-bit, 1080p@60Hz)

Hsync

Video

Audio/Packet/InfoFrame

Packet Data Enable

UDP mode Single Pixel TTL pin mapping demo (YCbCr444 8-bit, 1080p@60Hz)

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Single Pixel TTL pin mapping demo (YCbCr422 8-bit, 1080p@60Hz)

Video de 0 0 0 0 0 0 0 0 0	-1	-	Τ.	_		_	_		_	_	_						_	_	_		_		$\overline{}$	_
UDP[22]		0	0	0	0	0	0		0	0	0	1	1	 1	1		0	0	0	0	0	0	0	0
UDP[21]			₩	_							_							Ш		Ш	_	\dashv	—	_
UDP[20]			╄	_							_			 		_		Ш		Ш	_	_	\dashv	_
UDP[19]			╄											 P1078_Cb[9]				Ш		Ш	_	_		
UDP[18]	UDP[20]		_									P0_Cb[8]	P0_Cr[8]	 P1078_Cb[8]	P1078_0	Cr[8]								
UDP[17]	UDP[19]											P0_Cb[7]	P0_Cr[7]	 P1078_Cb[7]	P1078_0	Cr[7]								
UDP[15]	UDP[18]											P0_Cb[6]	P0_Cr[6]	 P1078_Cb[6]	P1078_0	Cr[6]								
UDP[15]	UDP[17]											P0_Cb[5]	P0_Cr[5]	 P1078_Cb[5]	P1078_0	Cr[5]								
UDP[14]	UDP[16]											P0_Cb[4]	P0_Cr[4]	 P1078_Cb[4]	P1078_0	Cr[4]								
UDP[13]	UDP[15]		0	0				0		1	1	P0_Y[11]	P1_Y[11]	 P1078_Y[11]	P1079_Y	([11])								
UDP[12]	UDP[14]		1	0				1		0	0	P0_Y[10]	P1_Y[10]	 P1078_Y[10]	P1079_Y	([10]								
UDP[11]	UDP[13]		1	1				0		1	0	P0_Y[9]	P1_Y[9]	 P1078_Y[9]	P1079_	Y[9]								
UDP[10]	UDP[12]											P0_Y[8]	P1_Y[8]	 P1078_Y[8]	P1079_	Y[8]								
UDP[9] 1 1 P0_Y[5] P1_Y[5] P1078_Y[5] P1079_Y[5]	UDP[11]											P0_Y[7]	P1_Y[7]	 P1078_Y[7]	P1079_	Y[7]		1		1		\Box		
UDP[8] PKT[8] PKT[8] PO_Y[4] P1_Y[4] P1078_Y[4] P1079_Y[4] P1078_Y[4] P1079_Y[4] P1078_Y[4] P1079_Y[4] P1078_Y[4] P1078_Y[4] <	UDP[10]											P0_Y[6]	P1_Y[6]	 P1078_Y[6]	P1079_	Y[6]						1		1
UDP[7] PKT[7] PKT[7] P0_cb[3] P0_cr[3] P1078_cb[3] P1078_cr[3] UDP[6] PKT[6] P0_cb[2] P0_cr[2] P1078_cb[2] P1078_cr[2] UDP[5] PKT[5] P0_cb[1] P0_cr[1] P1078_cb[1] P1078_cr[1] UDP[4] PKT[4] P0_cb[1] P0_cr[0] P1078_cb[0] P1078_cr[0] UDP[3] PKT[4] P0_v[3] P1_v[3] P1078_cb[0] P1078_cr[0] UDP[3] PKT[4] P0_v[3] P1_v[3] P1078_cr[0] UDP[2] PKT[2] P0_v[3] P1_v[2] P1078_v[2] P1079_v[3] UDP[1] PKT[1] P0_v[1] P1_v[1] P1078_v[1] P1079_v[1]	UDP[9]				1		1					P0_Y[5]	P1_Y[5]	 P1078_Y[5]	P1079_	Y[5]								
UDP[6] PKT[6] PKT[6] P0 Cb[2] P0 Cr[2] P1078 Cb[2] P1078 Cr[2] UDP[5] PKT[5] PKT[5] P0 Cb[1] P0 Cr[1] P1078 Cb[1] P1079 Cb[1] P1078 Cb[1] P1079 Cb[1	UDP[8]				PKT[8]		PKT[8]					P0_Y[4]	P1_Y[4]	 P1078_Y[4]	P1079_	Y[4]								
UDP[5] PKT[5] PO_Cb[1] PO_Cr[1] P1078_Cb[1] P1078_Cr[1] P1078_Cr[1] P1078_Cr[1] P1078_Cr[0] P1	UDP[7]				PKT[7]		PKT[7]					P0_Cb[3]	P0_Cr[3]	 P1078_Cb[3]	P1078_0	Cr[3]				_	U		П	
UDP[4] PKT[4] PKT[4] P0_cb[0] P0_cr[0] P1078_cb[0] P1078_cr[0] UDP[3] PKT[3] P0_Y[3] P1_Y[3] P1078_Y[3] P1079_Y[3] UDP[2] PKT[2] P0_Y[2] P1_Y[2] P1078_Y[2] P1079_Y[2] UDP[1] PKT[1] P0_Y[1] P1_Y[1] P1078_Y[1] P1079_Y[1]	UDP[6]				PKT[6]		PKT[6]					P0_Cb[2]	P0_Cr[2]	 P1078_Cb[2]	P1078_0	Cr[2]								
UDP[3] PKT[3] PO_Y[3] P1_Y[3] P1078_Y[3] P1079_Y[3] UDP[2] PKT[2] PO_Y[2] P1_Y[2] P1078_Y[2] P1079_Y[2] UDP[1] PKT[1] PO_Y[1] P1_Y[1] P1078_Y[1] P1079_Y[1]	UDP[5]				PKT[5]		PKT[5]					P0 Cb[1]	P0 Cr[1]	 P1078 Cb[1]	P1078 (Cr[1]							П	
UDP[2] PKT[2] PO_Y[2] P1_Y[2] P1078_Y[2] P1079_Y[2] P1078_Y[1] P1078_Y[1] P1078_Y[1] P1078_Y[1] P1079_Y[1] P1078_Y[1]	UDP[4]				PKT[4]		PKT[4]					P0_Cb[0]	P0_Cr[0]	 P1078_Cb[0]	P1078_0	Cr[0]						Т	П	
UDP[2] PKT[2] PO_Y[2] P1_Y[2] P1078_Y[2] P1079_Y[2] UDP[1] PKT[1] PO_Y[1] P1_Y[1] P1078_Y[1] P1079_Y[1] P1078_Y[1] P1079_Y[1] P1078_Y[1] P1078_Y[1] P1078_Y[1] P1078_Y[1]	UDP[3]				PKT[3]		PKT[3]					P0_Y[3]	P1_Y[3]	 P1078_Y[3]	P1079_	Y[3]						Т	П	
UDP[1] PKT[1] PKT[1] P0_Y[1] P1_Y[1] P1078_Y[1] P1079_Y[1]	UDP[2]						PKT[2]					P0_Y[2]	P1_Y[2]	 P1078_Y[2]		Y[2]						Т	П	
	UDP[1]				PKT[1]								P1_Y[1]	 P1078_Y[1]	P1079	Y[1]						\neg	\neg	
																Y[0]					一	ヿ	╛	\neg

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Single Pixel TTL pin mapping demo (YCbCr420 8-bit, 1080p@60Hz)

		U				-			1.1		,										
video_de 0	0	0 0	0	0		0	0	0	1	1		1	1	0	0	0	0	0	0	0	0
UDP[23]									P1_Y[7]	P3_Y[7]		P1077_Y[7]	P1079_Y[7]								
UDP[22]									P1_Y[6]	P3_Y[6]		P1077_Y[6]	P1079_Y[6]								
UDP[21]									P1_Y[5]	P3_Y[5]		P1077_Y[5]	P1079_Y[5]								
UDP[20]									P1_Y[4]	P3_Y[4]		P1077_Y[4]	P1079_Y[4]								
UDP[19]							•		P1_Y[3]	P3_Y[3]		P1077_Y[3]	P1079_Y[3]								
UDP[18]									P1_Y[2]	P3_Y[2]		P1077_Y[2]	P1079_Y[2]								
UDP[17]						$\mathcal{L}_{\mathcal{C}}$			P1_Y[1]	P3_Y[1]		P1077_Y[1]	P1079_Y[1]								
UDP[16]									P1_Y[0]	P3_Y[0]		P1077_Y[0]	P1079_Y[0]								
UDP[15]	0	0			0		1	1	P0_Y[7]	P2_Y[7]		P1076_Y[7]	P1078_Y[7]								
UDP[14]	1	0			1		0	0	P0_Y[6]	P2_Y[6]		P1076_Y[6]	P1078_Y[6]								
UDP[13]	1	1			0	.	1	0	P0_Y[5]	P2_Y[5]		P1076_Y[5]	P1078_Y[5]								
UDP[12]									P0_Y[4]	P2_Y[4]		P1076_Y[4]	P1078_Y[4]								
UDP[11]									P0_Y[3]	P2_Y[3]		P1076_Y[3]	P1078_Y[3]		1		1				
UDP[10]									P0_Y[2]	P2_Y[2]		P1076_Y[2]	P1078_Y[2]						1		1
UDP[9]		1		1					P0_Y[1]	P2_Y[1]		P1076_Y[1]	P1078_Y[1]								
UDP[8]		PKT[8]		PKT[8]					P0_Y[0]	P2_Y[0]		P1076_Y[0]	P1078_Y[0]								
UDP[7]		PKT[7]		PKT[7]					P0_Cb[7]	P2_Cb[7]		P1076_Cb[7]	P1078_Cb[7]								
UDP[6]		PKT[6]		PKT[6]					P0_Cb[6]	P2_Cb[6]		P1076_Cb[6]	P1078_Cb[6]								
UDP[5]		PKT[5]		PKT[5]					P0_Cb[5]	P2_Cb[5]		P1076_Cb[5]	P1078_Cb[5]				Ш				
UDP[4]		PKT[4]		PKT[4]					P0_Cb[4]	P2_Cb[4]		P1076_Cb[4]	P1078_Cb[4]								
UDP[3]		PKT[3]		PKT[3]					P0_Cb[3]	P2_Cb[3]		P1076_Cb[3]	P1078_Cb[3]				Ш				
UDP[2]		PKT[2]		PKT[2]			Ш		P0_Cb[2]	P2_Cb[2]		P1076_Cb[2]	P1078_Cb[2]				Ш		\Box		
UDP[1]		PKT[1]		PKT[1]					P0_Cb[1]	P2_Cb[1]		P1076_Cb[1]	P1078_Cb[1]								
UDP[0]		PKT[0]		PKT[0]					P0_Cb[0]	P2_Cb[0]		P1076_Cb[0]	P1078_Cb[0]								

Vsync
Hsync
Audio/Packet/InfoFrame
Video
Packet Data Enable

UDP mode Single Pixel TTL pin mapping demo (YCbCr444 12-bit deep color, 1080p@60Hz)

Vsync Hsync Audio/Packet/InfoFrame Video Packet Data Enable

UDP mode Dual Pixel TTL pin mapping demo (RGB 8-bit deep color, 1080p@60Hz)

1.6 HDMI to LVDS in UDP deep-color decoding mode

UDP application in Section 1.4 and 1.5 will not decode deep-color to generate 30/36-bit bus width for LVDS/TTL interface. If deep-color decoding is needed for GSV2011 to LVDS/TTL conversion, an extra UDP deep-color decoding mode can be supported. The limitation of this mode:

- 1, Maximum supported timing frequency is limited to 4K30.
- 2, Only support HDMI Rx->LVDS/TTL Tx support. No LVDS/TTL Rx-> HDMI Tx support.

A 36-bit parallel bus is mapped for TTL. If using LVDS 4x mode, a 9-lane parallel bus is mapped for LVDS.

UDP mode Single Pixel 4x LVDS deep-color decoding pin mapping demo (YCbCr444 12-bit deep color, 1080p@60Hz)

	.1 .		_		` _	_		_			_			1		,	_							$\overline{}$
	video_de	0	0	0	0	0	0	0	0	0	0	1	1		1	1	0	0	0	0	0	0 (0 (0
35	UDP[5].Phase1	_		0	0		0	0	Ш	\rightarrow			P1_R[11]			P1079_R[11]			\rightarrow	\vdash	\rightarrow	+	+	_
34	UDP[5].Phase2			0	1		1	1	Ш	\perp			P1_R[10]			P1079_R[10]			\square	\sqcup	_	_	\dashv	_
33	UDP[5].Phase3	_		1	0		0	1	Ш	\perp		P0_R[9]	P1_R[9]			P1079_R[9]					_	_		
32	UDP[5].Phase4								Ш	\perp		P0_R[8]	P1_R[8]			P1079_R[8]		1		1	_		1	4
31	UDP[4].Phase1											P0_R[7]	P1_R[7]		P1078_R[7]	P1079_R[7]			ш	Ш		1 .		1
30	UDP[4].Phase2			1	1		1	1				P0_R[6]	P1_R[6]			P1079_R[6]								
29	UDP[4].Phase3			PKT[17]	PKT[17]		PKT[17]	PKT[17]				P0_R[5]	P1_R[5]		P1078_R[5]	P1079_R[5]								
28	UDP[4].Phase4			PKT[8]	PKT[8]		PKT[8]	PKT[8]				P0_R[4]	P1_R[4]		P1078_R[4]	P1079_R[4]					\overline{A}	1	\top	٦
27	UDP[7].Phase3											P0_R[3]	P1_R[3]		P1078 R[3]	P1079_R[3]			1				Т	٦.
26	UDP[7].Phase4											P0_R[2]	P1_R[2]		P1078 R[2]	P1079 R[2]		4			\neg	Т	Т	٦
25	UDP[8].Phase1								П			P0_R[1]	P1_R[1]		P1078_R[1]		1				_	十	\top	7
24	UDP[8].Phase2								П			P0_R[0]	P1_R[0]			P1079_R[0]					\neg	\top	\top	7
23	UDP[3].Phase1			PKT[16]	PKT[16]		PKT[16]	PKT[16]					P1_G[11]			P1079 G[11]				\Box	\neg	\pm	\top	_
22	UDP[3].Phase2				PKT[15]		PKT[15]	PKT[15]					P1_G[10]			P1079_G[10]		1	\neg	\vdash	\pm	+	\pm	_
21	UDP[3].Phase3				PKT[14]		PKT[14]	PKT[14]		\vdash			P1_G[1]			P1079_G[9]		Н	\neg	\vdash	\pm	+	+	\dashv
20	UDP[3].Phase4				PKT[13]		PKT[13]					P0_G[8]				P1079 G[8]		Н	\neg	\vdash	\dashv	+	+	\dashv
19	UDP[2].Phase1		\vdash		PKT[13]		PKT[12]	PKT[12]		\vdash		P0 G[7]	P1 G[7]			P1079_G[7]		Н	\dashv	\vdash	+	+	+	\dashv
18	UDP[2].Phase2				PKT[11]		PKT[11]	PKT[11]		\rightarrow		P0_G[6]				P1079_G[6]		-	-	\vdash	+	+	+	\dashv
17	UDP[2].Phase3				PKT[11]		PKT[10]	PKT[10]		-	_	P0_G[5]				P1079_G[5]		-	\rightarrow	\vdash	+	+	+	-
16	UDP[2].Phase3		\vdash	PKT[10]	PKT[10]		PKT[10]	PKT[10]		\vdash		P0_G[3]				P1079_G[3]		Н	\rightarrow	\vdash	+	+	+	\dashv
				PKI[9]	PKI[9]		PKI[9]	PKI[9]		\vdash	_				P1078_G[4]			-	\rightarrow	\vdash	+	+	+	-
15	UDP[6].Phase1									\rightarrow	_	P0_G[3]				P1079_G[3]		-	\rightarrow	\vdash	+	+	+	-
14	UDP[6].Phase2									\rightarrow	_	P0_G[2]	P1_G[2]			P1079_G[2]		-	\dashv	\vdash	+	+	+	-
13	UDP[8].Phase3											P0_G[1]	P1_G[1]			P1079_G[1]			_	\vdash	-	+	+	4
12	UDP[8].Phase4									\vdash			P1_G[0]			P1079_G[0]			\rightarrow	\vdash	+	+	+	4
11	UDP[1].Phase1			PKT[7]	PKT[7]		PKT[7]	PKT[7]		\rightarrow			P1_B[11]			P1079_B[11]			\rightarrow	\vdash	\rightarrow	+	+	4
10	UDP[1].Phase2			PKT[6]	PKT[6]		PKT[6]	PKT[6]		\perp			P1_B[10]	-		P1079_B[10]			\square	\sqcup	_	_	\dashv	
9	UDP[1].Phase3			PKT[5]	PKT[5]		PKT[5]	PKT[5]		\perp			P1_B[9]	<u> </u>		P1079_B[9]			\square	\sqcup	_	_	\dashv	_
8	UDP[1].Phase4			PKT[4]	PKT[4]		PKT[4]	PKT[4]		\perp			P1_B[8]			P1079_B[8]				\sqcup	_	_	\rightarrow	_
7	UDP[0].Phase1			PKT[3]	PKT[3]		PKT[3]	PKT[3]				P0_B[7]	P1_B[7]		P1078_B[7]	P1079_B[7]			\square	Ш	_	_	\dashv	_
6	UDP[0].Phase2			PKT[2]	PKT[2]		PKT[2]	PKT[2]				P0_B[6]				P1079_B[6]			Ш				\perp	
5	UDP[0].Phase3			PKT[1]	PKT[1]		PKT[1]	PKT[1]				P0_B[5]	P1_B[5]			P1079_B[5]			لــــا				丄	
4	UDP[0].Phase4			PKT[0]	PKT[0]		PKT[0]	PKT[0]			\mathbb{Z}	P0_B[4]	P1_B[4]		P1078_B[4]	P1079_B[4]								
3	UDP[6].Phase3											P0_B[3]	P1_B[3]		P1078_B[3]	P1079_B[3]			П	П	П	Т	Т	٦
2	UDP[6].Phase4											P0_B[2]	P1_B[2]		P1078_B[2]	P1079_B[2]			П	П	Т	Т	Т	7
1	UDP[7].Phase1								7.			P0_B[1]	P1_B[1]			P1079_B[1]			П	П	\neg	Т	Т	٦.
0	UDP[7].Phase2											P0_B[0]	P1_B[0]			P1079_B[0]			\neg	П	丁	\top	\top	7
							X								Vsync Hsync Audio/Packet/ Video									
															Packet Data E Packet Index									

As every HDMI defined packet/infoframe will be sent via a 18-bit x 16-cycle format. Using TTL/LVDS deep-color decoding UDP mode, the packet_data_enable will always maintain 16 valid cycles for every single packet/infoframe. The packet_data_enable might contain invalid cycles during the 16 valid cycles.

A Packet index is used to indicate/assist the packet start and packet end.

	Packet_index	Description
1	1	Packet start, this cycle contains the 1 st packet_data_enable data,
	1	next cycle is started with Packet_index = 2
3		Packet content, packet_data_enable = 1 means valid packet data.
	2	A total of 16 packet_data_enable cycles will be within
		packet_index = $1/2/3$ cycles.
	2	Packet end, the 1 st packet_index = 3 cycle will have
	3	packet_data_enable = 1 for indicating the last valid cycle
	others	invalid

		_	_											
	video_de	0	0	0	0	0	0	0	0	0	0	0	0	0
35	UDP[8].Phase1			0	0	0	0	0	0	0	0	0		
34	UDP[8].Phase2			0	1	1	1	1	1	1	1	1		
33	UDP[8].Phase3			1	0	0	0	0	0	0	1	1		
30	UDP[7].Phase2			1	1	0	1		1		1	0		
29	UDP[7].Phase3			PKT[18*0+17]	PKT[18*1+17]		PKT[18*2+17]		PKT[18*N+17]		PKT[18*15+17]			
28	UDP[7].Phase4			PKT[18*0+8]	PKT[18*1+8]		PKT[18*2+8]		PKT[18*N+8]		PKT[18*15+8]			
23	UDP[5].Phase1			PKT[18*0+16]	PKT[18*1+16]		PKT[18*2+16]		PKT[18*N+16]		PKT[18*15+16]			
22	UDP[5].Phase2			PKT[18*0+15]	PKT[18*1+15]		PKT[18*2+15]		PKT[18*N+15]		PKT[18*15+15]			
21	UDP[5].Phase3			PKT[18*0+14]	PKT[18*1+14]		PKT[18*2+14]		PKT[18*N+14]		PKT[18*15+14]			
20	UDP[5].Phase4			PKT[18*0+13]	PKT[18*1+13]		PKT[18*2+13]		PKT[18*N+13]		PKT[18*15+13]			
19	UDP[4].Phase1			PKT[18*0+12]	PKT[18*1+12]		PKT[18*2+12]		PKT[18*N+12]		PKT[18*15+12]			
18	UDP[4].Phase2			PKT[18*0+11]	PKT[18*1+11]		PKT[18*2+11]		PKT[18*N+11]		PKT[18*15+11]			
17	UDP[4].Phase3			PKT[18*0+10]	PKT[18*1+10]		PKT[18*2+10]		PKT[18*N+10]		PKT[18*15+10]			
16	UDP[4].Phase4			PKT[18*0+9]	PKT[18*1+9]		PKT[18*2+9]		PKT[18*N+9]		PKT[18*15+9]			
11	UDP[2].Phase1			PKT[18*0+7]	PKT[18*1+7]		PKT[18*2+7]		PKT[18*N+7]		PKT[18*15+7]			
10	UDP[2].Phase2			PKT[18*0+6]	PKT[18*1+6]		PKT[18*2+6]		PKT[18*N+6]		PKT[18*15+6]			
9	UDP[2].Phase3			PKT[18*0+5]	PKT[18*1+5]		PKT[18*2+5]		PKT[18*N+5]		PKT[18*15+5]			
8	UDP[2].Phase4			PKT[18*0+4]	PKT[18*1+4]		PKT[18*2+4]		PKT[18*N+4]		PKT[18*15+4]		П	
7	UDP[1].Phase1			PKT[18*0+3]	PKT[18*1+3]		PKT[18*2+3]		PKT[18*N+3]		PKT[18*15+3]			
6	UDP[1].Phase2			PKT[18*0+2]	PKT[18*1+2]		PKT[18*2+2]		PKT[18*N+2]		PKT[18*15+2]			
5	UDP[1].Phase3			PKT[18*0+1]	PKT[18*1+1]		PKT[18*2+1]		PKT[18*N+1]		PKT[18*15+1]			
4	UDP[1].Phase4			PKT[18*0+0]	PKT[18*1+0]		PKT[18*2+0]		PKT[18*N+0]		PKT[18*15+0]			
			_											

Following steps are required for UDP mode Single Pixel 4x LVDS deep-color decoding mode.

1, set "0x04,0x03,0xA2" configuration for single pixel UDP 12-bit configuration in ParallelConfigTable[] of av_common.c file.

```
2, edit following red code into AvUapiCheckLogicVideoTx() of gsv2k11.c file.
```

1.7 UDP in 1.2Gbps Fixed Rate mode

To relieve the clock design complexity on the receiving circuit in FPGA, there is a fixed 1.2Gbps data rate mode in GSV2011 UDP application. LVDS data rate is fixed to 1.2Gbps regardless of input timing. LVDS clock can be separately configured according to Section 4.1.

Packet_data_enable and video_de will be discrete in 1.2Gbps fixed lane rate mode, and these signals are indicator of the valid packet/video stream data. Valid phase of UDP data is indicated by the separate HS differential pair.

2. Parallel Pin Characteristic Description

2.1 TTL Tx Characteristic

GSV2011 Tx TTL parallel bus supports slew rate manual control and drive strength manual control. A total 16 steps with 50ps/step manual control is supported by groups. A 0 degree and 90 degree phase relationship between clock and all data TTL pins are supported. To have a better clock receiving performance, DDR mode is recommended to lower the clock frequency by 1/2.

2.2 TTL Rx Characteristic

GSV2011 Rx TTL parallel bus supports 0 degree and 90 degree phase relationship between clock and all data TTL pins.

2.3 TTL Layout Recommendation

TTL pins should have 50 ohm single-ended resistance, 2~3w between TTL pins, the total mismatch should be < 200mil. For GSV2011 GND, it is recommended to have TTL GND and HDMI Rx/Tx GND separated, more decaps around HDMI ports will greatly help relieve TTL SSN impact on HDMI input.

2.4 LVDS Tx Characteristic

GSV2011 Tx LVDS parallel bus supports slew rate manual control, termination manual control, pre-emphasis control, common mode voltage control and drive strength manual control.

A total 16 steps with 50ps/step manual control is supported per differential pair.

A 0 degree and 90 degree phase relationship between clock and all data differential pairs are supported. To have a better clock receiving performance, DDR mode is recommended to lower the clock frequency by 1/2.

There is a limited +/- 50ps phase uncertainty between LVDS clock and each LVDS data pair. When calculating and determining timing constraints for LVDS Rx side (in FPGA), PCB inter-pair trace length difference of LVDS should also be included in the total phase difference by 6mil->1ps relationship.

2.5 LVDS Rx Characteristic

For LVDS Rx, in typical application, clock input RMS jitter is 10ps. GSV2011 can tolerate \pm -200ps data/clock uncertainty for receiving LVDS input data.

3. Power Consumption Description

The estimated highest power of 4K60 444 is given below.

<u> </u>	<u> </u>			
	4k60 444 HDMI IN, HDMI OUT and LVDS OUT Current (mA)	4k60 444 HDMI IN, HDMI OUT and LVDS OUT Power (mW)	4k60 444 LVDS IN, HDMI OUT Current (mA)	4k60 444 LVDS IN, HDMI OUT Power (mV)
TX_AVDD 1.2V	90	108	90	108
RX_AVDD 1.2V	220	264	0	0
DVDD 1.2V	305	366	280	336
MPLL 1.2V	20	24	20	24
LVDS 1.2V	30	36	30	36
1.2V Total	665	798	420	504
TX_TVDD 3.3V	50	165	50 🦽	165
RX_TVDD 3.3V	100	330	0	0
MPLL 3.3V	25	82.5	25	82.5
PAR_TVDD 3.3V	250	825	16	52.8
3.3V Total	425	1402.5	91	300.3
Total	1090	2200.5	511	804.3
·	·			·

The estimated highest power of 4K30 444 is given below.

	4k30 444 HDMI IN, HDMI OUT and LVDS OUT Current (mA)	4k30 444 HDMI IN, HDMI OUT and LVDS OUT Power (mW)	4k30 444 LVDS IN, HDMI OUT Current (mA)	4k30 444 LVDS IN, HDMI OUT Power (mV)
TX_AVDD 1.2V	75	90	75	90
RX_AVDD 1.2V	200	240	0	0
DVDD 1.2V	195	234	175	210
MPLL 1.2V	20	24	20	24
LVDS 1.2V	30	36	30	36
1.2V Total	520	624	300	360
TX_TVDD 3.3V	50	165	50	165
RX_TVDD 3.3V	100	330	0	0
MPLL 3.3V	25	82.5	25	82.5
3.3V Total	175	577.5	75	247.5
PAR_TVDD 2.5V 6+4 bit	150	375	10	25
Total	845	1576.5	385	632.5

4. Software Development Questions

Please refer to <GSV software User Guide> for general GSV software integration questions. The following questions are GSV2011 parallel bus related and not related to other chips.

4.1 How to set specific parallel bus setting in software?

In *apps/av_common.c* file, there is a table called *ParallelConfigTable[]* which lists commonly supported parallel bus settings.

The table looks like below:

Each parallel bus setting is listed in 3 bytes of each line. The index = 0 (first line, 3 bytes of 0x00,0x00,0x00) are the default setting to disable the parallel bus. Since index = 1 (second line, 3 bytes of 0x04,0x03,0x82), the index number is used for valid parallel bus setting.

<u> </u>								
	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Mode CFG 2	N/A	f_div2_en: Only work when x1/x2/x3 mode	i2c_tx_par_multi 00: 1 pixel per 01: 2 pixels per 10: 4 pixels per 11: Resverd	clk clk	N/A	i2c_tx_par_clk_ratio Ratio of SDR VCLK/P: 000/001: 1 clk 1 pio 010: 2 clk 1 pixel = 011: 3 clk 1 pixel = 111: 7 clk 1 pixel =	ixel DIV CLK xel = 1x = 2x = 3x	
Mode CEG 1	nel_en: 0: Disable	nel_sel: 0: VESA	i2c_tx_par_sub_mo 00: Mode A 01: Mode B 10: Mode C 11: Mode D	de[1:0]:	N/A	/CrYCb 4:4:4 /CrYCb 4:2:0	i2c_tx_par_bit_ 00: 6 bits 01: 8 bits 10:10 bits 11:12 bits	width[1:0]:
Mode CFG 0	_lvds_sel: 0: TTL 1: LVDS	[6]:i2c_tx_par_ [5]:i2c_tx_par_ [4]:i2c_tx_par_ bit[6:4]: 1XX: HIS mode 01X: UDP mode 001: ITU Embedo 000: Separate S	udp_mode_en _sync_mode ded Syncs			0: Normal	k_divn_en: 0: div 1	i2c_tx_par_vcl k_ddr_en: 0: SDR 1: DDR

To add a dedicated parallel bus setting, refer to <GSV2011 datasheet>. In Section 4.1 and Section 4.2, there are multiple settings regarding Mode CFG 2/1/0. The 3 bytes of each

line in *ParallelConfigTable[]*, directly mapped from Mode CFG 2/1/0. The Pin mapping tables in datasheet have already given example settings for common used parallel bus configuration.

Software designer can feel free to add more 3-byte settings into the *ParallelConfigTable[]* table.

At any position in the code (usually during the *GsvMain()* of *av_main.c)*, set the ParallelBusPort setting to accommodate the setting in *ParallelConfigTable[]*.

For example, to set Parallel bus output, set like below in av_main.c:

AvApiAddPort(&devices[0],&gsv2k11Ports[2],32,LogicVideoTx); // add LogicVideoTxPort uint8 CommonBusConfig = Index_Number_in_ParallelConfigTable; // Set Index gsv2k11Ports[2].content.lvtx->Config = CommonBusConfig; // Set Parallel Port config as index gsv2k11Ports[2].content.lvtx->Update = 1; // Update = 1 to update Parallel Port config into chip

For example, to set Parallel bus input, set like below in av_main.c:

AvApiAddPort(&devices[0],&gsv2k11Ports[7],30,LogicVideoRx); // add LogicVideoRxPort

uint8 CommonBusConfig = Index_Number_in_ParallelConfigTable; // Set Index

gsv2k11Ports[7].content.lvtx->Config = CommonBusConfig; // Set Parallel Port config as index

gsv2k11Ports[7].content.lvtx->Update = 1; // Update = 1 to update Parallel Port config into chip

The output pin clock frequency relationship is given below.

4.1.1 An example of GSV2011 LVDS VESA mode application

1, confirm the current single pixel VESA mode has been added into apps/av_common.c. const uint8 ParallelConfigTable[] = {

2, choose the new setting in apps/av_main.c file.

```
/* 3.4.5 Video Parallel Bus Input */

/* CommonBusConfig = 0 to disable, CommonBusConfig = 1~64 for feature setting */
uint8 CommonBusConfig = 11; // LVDS VESA configuration, 8-bit

LvdsTxPort.content.lvtx->Config = CommonBusConfig;
```

3, set color space in apps/av_main.c file.

```
LogicVideoTxPort->content.video->Y = AV\_Y2Y1Y0\_RGB;

LogicVideoTxPort->content.video->InCs = AV\_CS\_RGB;
```

4, Add following settings into *Gsv2k11InitTable[]* of *gsv2k11_table.h* if only if VESA clock phase adjustment is needed.

```
0x14,0x80,0x87, // manual control clock output with 7x clock ratio
0x14,0x81,0x1E, // set the clock phase to 00_1111_0, default is 1111_000
0x14,0x69,0x0B, // set HS to copy CLK output for dual pixel VESA/JEIDA output
```

5, In *Gsv2k11ParTxTable[]* of *gsv2k11_table.h*, if dual pixel VESA/JEIDA output is required, modification should be applied to PAR.0x69 as well.

```
0x66,0x00, // Tx Par Pll Setting
0x69,<mark>0x0B</mark>, // Tx Par Pll Setting, modified from 0x09
```

4.2 How to set Tx parallel bus setting in software?

There are several setting for constraining Tx parallel bus's color space and timing.

 $LogicVideoTxPort->content.video->Y = Desired_Color_Space;$

Desired_Color_Space	Description
AV_Y2Y1Y0_INVALID	Parallel Port output color space matches HDMI Rx input
AV_121110_INVALID	color space, no internal color space conversion
	Parallel Port output color space is RGB. Because of chip
AV_Y2Y1Y0_RGB	limitation, if HDMI Rx is YCbCr 420, Parallel Port output
	color space will be AV_Y2Y1Y0_YCBCR_444 instead.
AV_Y2Y1Y0_YCBCR_422	Parallel Port output color space is YCbCr 422. Default color
AV_121110_1CBCR_422	space setting for BT656 and BT1120.
AV_Y2Y1Y0_YCBCR_444	Parallel Port output color space is YCbCr 444.
Av_121110_1CBCR_444	Recommended default setting.
AV_Y2Y1Y0_YCBCR_420	Parallel Port output color space is YCbCr 420.

LogicVideoTxPort->content.video->InCs = Desired_Color_Range;

	= = 0 /
Desired_Color_Range	Description
AV_CS_AUTO	Parallel Port output color range matches HDMI Rx input
Av_CS_AUTO	color range, no internal processing.
AV_CS_RGB	Parallel Port output color range is full range RGB.
AV_CS_YUV_601	Parallel Port output color range is full range BT601 YUV.
AV_CS_YUV_709	Parallel Port output color range is full range BT709 YUV.
AV_CS_LIM_RGB	Parallel Port output color range is limited range RGB.
AV_CS_LIM_YUV_601	Parallel Port output color range is limited range BT601 YUV.
AV_CS_LIM_YUV_709	Parallel Port output color range is limited range BT709 YUV.

<u>LogicVideoTxPort->content.video->info.TmdsFreq = Desired_Maxinum_Pixel_Clock</u>;

Desired_Maxinum_Pixel_ Clock	Description
0	Default setting, maximum pixel clock is 600MHz for full HDMI 2.0 timings as HDMI Rx input.
600	Default setting, maximum pixel clock is 600MHz for full HDMI 2.0 timings as HDMI Rx input.
300	4K50/60 will be down-scaled to 1080p50/60.
150	All 4K timings will be downscaled to 2K. 1080p is maximum supported timing.

4.3 How to set Rx parallel bus setting in software?

LogicVideoRxPort->content.video->InCs = Desired_Color_Range;

Desired_Color_Range	Description
AV_CS_RGB	Parallel Port input color range is full range RGB.
AV_CS_YUV_601	Parallel Port input color range is full range BT601 YUV.
AV_CS_YUV_709	Parallel Port input color range is full range BT709 YUV.
AV_CS_LIM_RGB	Parallel Port input color range is limited range RGB.
AV_CS_LIM_YUV_601	Parallel Port input color range is limited range BT601 YUV.
AV_CS_LIM_YUV_709	Parallel Port input color range is limited range BT709 YUV.
AV_CS_SYCC_601	Parallel Port input color range is Full range SYCC 601
AV_CS_ADOBE_YCC_601	Parallel Port input color range is Full range Adobe YCC
AV_CS_ADOBE_ICC_001	601
AV_CS_ADOBE_RGB	Parallel Port input color range is Full range Adobe RGB
AV_CS_YCC_601	Parallel Port input color range is Full range YCC 601
AV_CS_YCC_709	Parallel Port input color range is Full range YCC 709
AV_CS_BT2020_YCC	Parallel Port input color range is Full range BT2020 YCC
AV_CS_BT2020_RGB	Parallel Port input color range is Full range BT2020 RGB
AV_CS_LIM_YCC_601	Parallel Port input color range is Limited range YCC 601
AV_CS_LIM_YCC_709	Parallel Port input color range is Limited range YCC 709
AV_CS_LIM_SYCC_601	Parallel Port input color range is Limited range SYCC 601
AV_CS_LIM_ADOBE_YCC	Parallel Port input color range is Limited Range Adobe

_601	YCC 601
AV_CS_LIM_ADOBE_RGB	Parallel Port input color range is Limited range Adobe RGB
AV_CS_LIM_BT2020_YCC	Parallel Port input color range is Limited Range BT2020 YCC
AV_CS_LIM_BT2020_RGB	Parallel Port input color range is Limited range BT2020 RGB.

LogicVideoRxPort->content.video->Y = Desired_Color_Space;

- 3· · · · · · · · · · · · · · · · · · ·		
Desired_Color_Space	Description	
AV_Y2Y1Y0_RGB	Parallel Port input color space is RGB.	
AV_Y2Y1Y0_YCBCR_422	Parallel Port input color space is YCbCr 422. Default color space setting for BT656 and BT1120.	
AV_Y2Y1Y0_YCBCR_444	Parallel Port input color space is YCbCr 444. Recommended default setting.	
AV_Y2Y1Y0_YCBCR_420	Parallel Port input color space is YCbCr 420.	

 $Logic Video Rx Port-> content. video-> timing. Vic = Desired_Vic;$

LogicVideoRxPort->content.lvrx->Update = 1;

If input timing is embedde sync, a separate $Desired_Vic$ needs to be set externally. Then use Update = 1 to update the value into the chip.

LogicVideoRxPort->content.video->AvailableVideoPackets = AV_BIT_AV_INFO_FRAME; LogicVideoRxPort->content.video->Cd = AV_CD_24;

Set the desired HDMI output color depth. Enable AVI Infoframe for HDMI output.

4.4 How to tune Parallel bus timing in software?

The registers' value could be modified into the default value in *Gsv2k11ParTxTable[]* and *Gsv2k11ParRxTable[]* of *gsv2k11_table.h*.

4.4.1 TTL Tx Register Control

TTL Tx related registers are shown below.

Register Name	Register Description	Default Value	Tweak Value
PAR.0xE7[4:3]	$TTL \ Drive \ Strength$ $00 = 2mA$ $10 = 4mA$ $01 = 8mA$ $11 = 12mA$	11 = 12mA, maximum current	10 = 4mA
PAR.0xE7[6]	TTL Drive Slew Rate 0 = Slow Slew 1 = Fast Slew	1 = Fast Slew	0 = Slow Slew
PAR.0xE2[2]	Output clock phase selection	0 = Clock/Data 0	1 = Clock/Data 90

	0 = Clock/Data 0 degree	degree	degree
	1 = Clock/Data 90 degree		
PAR.0xC8[3:0]	Parallel bus clock phase control, 40ps/step 0000 = 0 delay (minimum delay) 1111 = maximum delay	0000 = no delay based on PAR.0xE2[2]	xxxx = extra delay based on PAR.0xE2[2]

4.4.2 TTL Rx Register Control

TTL Rx related registers are shown below.

Register Name	Register Description	Default Value	Twe <mark>a</mark> k Value
PAR.0xE5[1]	Input clock phase selection 0 = Clock/Data 0 degree 1 = Clock/Data 90 degree	0 = Clock/Data 0 degree	1 = Clock/Data 90 degree
PAR.0xE1[3:0]	Input clock forward delay with 40p/unit PAR.0xE1[7:4]=0 when [3:0] != 0	0x0B = 440 ps forward delay	xxxx
PAR.0xE1[7:4]	Input clock backward delay with 40p/unit PAR.0xE1[3:0]=0 when [7:4] != 0	0 = no backward delay	xxxx

4.4.3 LVDS Tx Register Control

LVDS Tx related registers are shown below.

Register Name	Register Description	Default Value	Tweak Value
PAR.0xC6[6:4]	LVDS Termination Code, TxTerm 001 = 700 ohm, 010 = 330 ohm 011 = 190 ohm, 100 = 130 ohm 101 = 100 ohm, 110 = 90 ohm 111 = 75 ohm, 000 = term off	011 = 190 ohm	000 = TxTerm disabled
PAR.0xC6[3:0]	LVDS Drive Swing, 0.5mA per step, 1001 = default value	1011	xxxx
PAR.0xC4[0]	Output Pre-Emphasis powerdown $0 = Pre$ -Emphasis Enabled $1 = Pre$ -Emphasis Disabled	0 = PE enabled	1 = PE disabled
PAR.0xC3[7:4]	Output Pre-Emphasis slew rate 1000 = slow, 0001 = fast, 0000 = open	0001 = fast	xxxx = slow
PAR.0xC5[7:4]	LVDS slew rate control 1000 = slow, 0001 = fast, 0000 = open	0001 = fast	xxxx = slow
PAR.0xC5[3:0]	LVDS output common voltage setting, 1001 for 1.25V, 50mV/step	1001	xxxx
PAR.0xE2[2]	Output clock phase selection 0 = Clock/Data 0 degree 1 = Clock/Data 90 degree	0 = Clock/Data 0 degree	1 = Clock/Data 90 degree
PAR.0xC8[3:0]	Parallel bus clock phase control, 40ps/step	0000 = no delay based on	xxxx = extra delay based on

$0000 = 0 \ delay (minimum \ delay)$	PAR.0xE2[2]	PAR.0xE2[2]
$1111 = maximum \ delay$		

With typical Tx term's 100ohm by LVDS specification setting, the LVDS output swing can be calculated below.

LVDS Output Swing = LVDS Drive Swing * 0.5mA * (RxTerm || TxTerm)

4.4.4 LVDS Rx Register Control

LVDS Rx related registers are shown below.

Register Name	Register Description	Default Value	Tweak Value
PAR.0xE5[1]	Input clock phase selection 0 = Clock/Data 0 degree 1 = Clock/Data 90 degree	0 = Clock/Data 0 degree	1 = Clock/Data 90 degree
PAR.0xE1[3:0]	Input clock forward delay	$0x0B = 440 \ ps$	xxxx
	with 40p/unit	forward delay	
	PAR.0xE1[7:4]=0 when $[3:0] != 0$	CO	
PAR.0xE1[7:4]	Input clock backward delay	$0 = no \ backward$	xxxx
	with 40p/unit	delay	
	PAR.0xE1[3:0]=0 when $[7:4] != 0$		

4.4.5 Lane Tx/Rx Skew Control

With manual control bit enabled, 4-bit skew value can be separated set per group. For Parallel bus Rx, input deskew is also using the same scheme and registers. But when data bits are in auto deskew mode, DE/VS/HS must be set to manual mode with fixed setting. Or else, Parallel bus input timing will not be stable due to shifting timing signal.

Register Name	Register Description	Default Value	Tweak Value
PAR.0xC9[3:0] PAR.0xCA[7:0]	LVDS 0~11/TTL 0~11,24~35 skew manual control	All 1 = Manual	All 0 =Auto
PAR.0xD1[7]	LVDS DE /TTL DE&23 skew manual control	1 = Manual	0 =Auto
PAR.0xD2[7]	LVDS HS /TTL HS&13 skew manual control	1 = Manual	0 =Auto
PAR.0xD3[7]	LVDS VS /TTL VS&12 skew manual control	1 = Manual	0 =Auto
PAR.0xD4[7]	TTL 14~17 skew manual control	1 = Manual	0 = Auto
PAR.0xD5[7]	TTL 18~21 skew manual control	1 = Manual	0 = Auto
PAR.0xD6[7]	TTL 36~39 skew manual control	1 = Manual	0 =Auto
PAR.0xD7[7]	TTL 40~43 skew manual control	1 = Manual	0 =Auto
PAR.0xD8[7]	TTL 44~47 skew manual control	1 = Manual	0 =Auto
PAR.0xCB[3:0]	LVDS 0/TTL 0~1, 40ps/step skew	0001	xxxx
PAR.0xCB[7:4]	LVDS 1/TTL 2~3, 40ps/step skew	0001	xxxx
PAR.0xCC[3:0]	LVDS 2/TTL 4~5, 40ps/step skew	0001	xxxx
<i>PAR.0xCC</i> [7:4]	LVDS 3/TTL 6~7, 40ps/step skew	0001	xxxx
PAR.0xCD[3:0]	LVDS 4/TTL 8~9, 40ps/step skew	0001	xxxx
PAR.0xCD[7:4]	LVDS 5/TTL 10~11, 40ps/step skew	0001	xxxx
PAR.0xCE[3:0]	LVDS 6/TTL 24~25, 40ps/step skew	0001	xxxx
<i>PAR.0xCE</i> [7:4]	LVDS 7/TTL 26~27, 40ps/step skew	0001	xxxx

PAR.0xCF[3:0] LVDS 8/TTL 28~29, 40ps/step skew 0001 xxxx PAR.0xCF[7:4] LVDS 9/TTL 30~31, 40ps/step skew 0001 xxxx PAR.0xD0[3:0] LVDS 10/TTL 32~33, 40ps/step skew 0001 xxxx PAR.0xD0[7:4] LVDS 11/TTL 34~35, 40ps/step skew 0001 xxxx PAR.0xD1[3:0] LVDS DE/TTL DE,23, 40ps/step skew 0001 xxxx PAR.0xD2[3:0] LVDS HS/TTL HS,13, 40ps/step skew 0001 xxxx PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxx PAR.0xD8[3:0] TTL 44~47, 40ps/step skew 0001 xxxx				
PAR.0xD0[3:0] LVDS 10/TTL 32~33, 40ps/step skew 0001 xxxx PAR.0xD0[7:4] LVDS 11/TTL 34~35, 40ps/step skew 0001 xxxx PAR.0xD1[3:0] LVDS DE/TTL DE,23, 40ps/step skew 0001 xxxx PAR.0xD2[3:0] LVDS HS/TTL HS,13, 40ps/step skew 0001 xxxx PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxx	<i>PAR.0xCF[3:0]</i>	LVDS 8/TTL 28~29, 40ps/step skew	0001	xxxx
PAR.0xD0[7:4] LVDS 11/TTL 34~35, 40ps/step skew 0001 xxxx PAR.0xD1[3:0] LVDS DE/TTL DE,23, 40ps/step skew 0001 xxxx PAR.0xD2[3:0] LVDS HS/TTL HS,13, 40ps/step skew 0001 xxxx PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxx	<i>PAR.0xCF</i> [7:4]	LVDS 9/TTL 30~31, 40ps/step skew	0001	xxxx
PAR.0xD1[3:0] LVDS DE/TTL DE,23, 40ps/step skew 0001 xxxxx PAR.0xD2[3:0] LVDS HS/TTL HS,13, 40ps/step skew 0001 xxxxx PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxxx	PAR.0xD0[3:0]	LVDS 10/TTL 32~33, 40ps/step skew	0001	xxxx
PAR.0xD2[3:0] LVDS HS/TTL HS,13, 40ps/step skew 0001 xxxxx PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxxx	PAR.0xD0[7:4]	LVDS 11/TTL 34~35, 40ps/step skew	0001	xxxx
PAR.0xD3[3:0] LVDS VS/TTL VS,12, 40ps/step skew 0001 xxxxx PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxxx	PAR.0xD1[3:0]	LVDS DE/TTL DE,23, 40ps/step skew	0001	xxxx
PAR.0xD4[3:0] TTL 14~17, 40ps/step skew 0001 xxxxx PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxxx	PAR.0xD2[3:0]	LVDS HS/TTL HS,13, 40ps/step skew	0001	xxxx
PAR.0xD5[3:0] TTL 18~21, 40ps/step skew 0001 xxxx PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxx	PAR.0xD3[3:0]	LVDS VS/TTL VS,12, 40ps/step skew	0001	xxxx
PAR.0xD6[3:0] TTL 36~39, 40ps/step skew 0001 xxxx PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxxx	PAR.0xD4[3:0]	TTL 14~17, 40ps/step skew	0001	xxxx
PAR.0xD7[3:0] TTL 40~43, 40ps/step skew 0001 xxxx	PAR.0xD5[3:0]	TTL 18~21, 40ps/step skew	0001	xxxx
	PAR.0xD6[3:0]	TTL 36~39, 40ps/step skew	0001	xxxx
PAR.0xD8[3:0] TTL 44~47, 40ns/step skew 0001 xxxx	PAR.0xD7[3:0]	TTL 40~43, 40ps/step skew	0001	xxxx
Tilden z elevel	PAR.0xD8[3:0]	TTL 44~47, 40ps/step skew	0001	xxxx

4.5 How to tweak pin connection order in detail?

4.5.1 Rx Pin order control registers

Rx related registers are shown below.

	are shown below.	<u> </u>	
Register Name	Register Description	Default Value	Tweak Value
PAR.0x25[6:4]	Bit Endian Swap Bit[4] 0 = Channel 0 [11:0]MSB->LSB Bit[4] 1 = Channel 0 [11:0]LSB->MSB Bit[5] 0 = Channel 1 [11:0]MSB->LSB Bit[5] 1 = Channel 1 [11:0]LSB->MSB Bit[6] 0 = Channel 2 [11:0]MSB->LSB Bit[6] 1 = Channel 2 [11:0]LSB->MSB	000 = MSB-> LSB	111 = LSB->MSB
PAR.0x25[3]	In dual pixel mode, swap the order of higher bit and lower bit $0 = Default$ $I = Swap$	0 = default	1 = swap
PAR.0x25[2:0]	Channel Order Swap 000 = CH2/CH1/CH0 001 = CH2/CH0/CH1 010 = CH1/CH2/CH0 011 = CH1/CH0/CH2 100 = CH0/CH2/CH1 101/110/111 = CH0/CH1/CH2	000 = default	xxx = different order
PAR.0x26[1]	0 = Disable Pin offset (default) 1 = Enable Pin offset In LVDS Mode, when PIN Offset enabled, LVDS6~11 will be used, LVDS 0~5 will not be used. In TTL Mode, when PIN Offset enabled, TTL 24~47 will be used, TTL 0~23 will not be used.	0 = default	1 = enable pin offset

4.5.2 Tx Pin order control registers

Tx related registers are shown below.

Register Name	Register Description	Default Value	Tweak Value
PAR.0x65[6:4]	Bit Endian Swap Bit[4] 0 = Channel 0 [11:0]MSB->LSB Bit[4] 1 = Channel 0 [11:0]LSB->MSB Bit[5] 0 = Channel 1 [11:0]MSB->LSB Bit[5] 1 = Channel 1 [11:0]LSB->MSB Bit[6] 0 = Channel 2 [11:0]MSB->LSB Bit[6] 1 = Channel 2 [11:0]LSB->MSB	000 = MSB- >LSB	111 = LSB->MSB
PAR.0x65[3]	In dual pixel mode, swap the order of higher bits and lower bits, often referred as even/odd pixel swap $0 = Default$ $1 = Swap$	0 = default	1 = swap
PAR.0x65[2:0]	Channel Order Swap 000 = CH2/CH1/CH0 001 = CH2/CH0/CH1 010 = CH1/CH2/CH0 011 = CH1/CH0/CH2 100 = CH0/CH2/CH1 101/110/111 = CH0/CH1/CH2	000 = default	xxx = different order
PAR.0x66[1]	0 = Disable Pin offset (default) 1 = Enable Pin offset In LVDS Mode, when PIN Offset enabled, LVDS6~11 will be used, LVDS 0~5 will not be used. In TTL Mode, when PIN Offset enabled, TTL 24~47 will be used, TTL 0~23 will not be used.	0 = default	1 = enable pin offset
PAR.0x68[2:0]	2 = Default Cb/Cr 444->422 order 4 = Swapp <mark>e</mark> d Cr/Cb 444->422 order	2 = default Cb/Cr order	4 = swapped Cr/Cb order

For example, if Y/C is required to swap order to C/Y, add following code into Gsv2k11InitTable[] of gsv2k11_tables.h file. 0x14,0x65,0x01, // Y/C swap of 4:2:2 output

4.6 How to guarantee TTL input timing stable?

There is an internal CRC check module for checking parallel bus input timing pixel data's CRC value. With fixed pattern as the parallel bus input, the CRC value should be a fixed value.

The detailed CRC check process is shown below. The registers are located inside VSP map (0x12 by default).

Register Name	Register Description	Default Value	Tweak Value
VSP.0xC1[1]	Writeable, CRC check enable $0 = D$ isable, reset error count $1 = E$ nable, start error count	0 = Disable	1 = Enable

VSP.0xD2[7:0]	Writable, 16-bit golden CRC value	0 = default	The CRC value to
VSP.0xD3[7:0]	for frame check comparison	0 – аезаші	compare
VSP.0xD4[7:0]	Read ONLY, 16-bit CRC value of	0 - default	
VSP.0xD5[7:0]	current parallel input timing frame	0 = default	
VSP.0xD6[7:0]	Read ONLY, Total Error frame		
VSP.0xD7[7:0]	count, comparing between frame	0 = default	
VSP.0xD8[7:0]	CRC and golden CRC value		
VSP.0xBA[7:0]	Read ONLY, Total checked frame		
VSP.0xBB[7:0]	count since CRC check enabled,	0 = default	
VSP.0xBC[7:0]	reset to 0 when CRC check disabled		

To use CRC module, follow below steps:

- Step 1, wait until ParallelRxPort->content..rx->IsInputStable.
- Step 2, disable CRC check enable register(VSP.0xC1[1]), read 16-bit CRC value of current frame (VSP.0xD4~0xD5).
- Step 3, fill the 16-bit value into golden CRC value registers (VSP.0xD2~0xD3)
- Step 4, enable CRC check enable register

compatibility.

- Step 5, Read total checked frame and error frame to get result.
- Step 6, when timing unlock, return to Step 1.

4.7 Why does Apple TV 4K60 420 not work under Dual Pixel UDP mode?

For Dual Pixel UDP mode, the DE must match even valid DE pixels. If there are odd valid DE pixels, the last odd pixel will be missing from the Dual Pixel UDP DE valid signal. So in this means, using Single Pixel UDP mode is the best way to match this kind of timing. We noticed that Apple TV 4K60 420 will have this issue when using Dual Pixel UDP mode. So Dual Pixel UDP mode is only recommended for 4K60 444 timing. For all lower pixel frequency timing, Single Pixel UDP mode is preferred for better

4.8 How to set Parallel bus input timing parameter of embedded sync timing?

When using embedded sync timing (no separate Hsync/Vsync), software designer would need to set timing information to match the parallel bus video stream.

1, If the parallel bus input timing is formal CEA timing (including all CEA interlaced timings), designer only needs to set its CEA Vic and clear rest detailed timing information.

For example, for 4K@60 RGB, set the following information. ParallelInputPort.content.video->timing.Vic = 0x61; // 0x61 = 4K60 Vic ParallelInputPort.content.video->timing.HPolarity = 0;

```
ParallelInputPort.content.video->timing.HActive = 0;
ParallelInputPort.content.video->timing.HTotal = 0;
ParallelInputPort.content.video->timing.HBack = 0;
ParallelInputPort.content.video->timing.HSync = 0;
ParallelInputPort.content.video->timing.VPolarity = 0;
ParallelInputPort.content.video->timing.VActive = 0;
ParallelInputPort.content.video->timing.VTotal = 0;
ParallelInputPort.content.video->timing.VBack = 0;
ParallelInputPort.content.video->timing.VSync = 0;
```

2, If the parallel bus input timing is in YCbCr 420 format, or does not have a formal Vic (including all VESA timings), designer needs to set its detailed timing information. If internal processing (420-444/downscaler) is required, Vic must also be set correctly. For example, for 4K@60 YCbCr420, set the following information.

```
ParallelInputPort.content.video->timing.Vic
                                                = 0x61; // Vic must be set correctly if it exists
ParallelInputPort.content.video->timing.HPolarity = 1;
ParallelInputPort.content.video->timing.HActive = 3840/2; // horizontal pixel is in half for 420
ParallelInputPort.content.video->timing.HTotal
                                                 = 4400/2; // horizontal pixel is in half for 420
ParallelInputPort.content.video->timing.HBack
                                                  = 296/2; // horizontal pixel is in half for 420
ParallelInputPort.content.video->timing.HSync
                                                  = 88/2; // horizontal pixel is in half for 420
ParallelInputPort.content.video->timing.VPolarity = 1;
ParallelInputPort.content.video->timing.VActive = 2160;
ParallelInputPort.content.video->timing.VTotal
                                                 = 2250;
                                                  = 72;
ParallelInputPort.content.video->timing.VBack
ParallelInputPort.content.video->timing.VSync
                                                 = 10;
```

4.9 How to loose LVDS/TTL input clock lock detection threshold?

When LVDS/TTL input is fed to GSV2011, it is possible that input LVDS/TTL clock has a larger jitter range than GSV2011 Rx setting. In this means, allowing a larger range of jitter tolerance threshold is required.

Add following code into *Gsv2k11InitTable[]* of *gsv2k11_tables.h*. By default, the *value* is 0x05 as threshold. Enlarging the value would make the input clock more tolerable. For example, setting the *value* to 0x0A would enlarge the threshold. 0x06,0x85,value, // default is 0x05

4.9 Why does LPCM work but compressed audio fail in GSV2011 cascading?

Current source code is for I2S audio codec inter-connection. When HDMI input is compressed audio, source code has intentionally muted the TMDS output. To enable compressed audio output, modify code as below.

4.10 Why does 480i60/576i50 fail in ParallelPort->HDMI connection?

480i@60Hz and 576i@50Hz needs pixel repetition for HDMI output. So an extra configuration for the following registers are needed for these timings. HdmiTxPort->content.video->ClockMultiplyFactor = 1; // extra pixel repetition, default = 0 HdmiTxPort->content.video->PixelRepeatValue = 1; // extra pixel repetition, default = 0

For normal timings above 480i@60Hz and 576i@50Hz, use the following setting. HdmiTxPort->content.video->ClockMultiplyFactor = 0; // extra pixel repetition, default = 0 HdmiTxPort->content.video->PixelRepeatValue = 0; // extra pixel repetition, default = 0

4.11 How to set deep color in ParallelPort->HDMI connection?

Set color depth with General Control Packet enabled in ParallelRxPort->content.video->AvailableVideoPackets.

For example:

```
When HDMI Tx Port is not streaming at configuration time, add the following code. 

ParallelRxPort.content.video->timing.Vic = 0x10; /* 1080p60 */
ParallelRxPort.content.video->AvailableVideoPackets = AV_BIT_GC_PACKET /
AV_BIT_AV_INFO_FRAME; // enable color depth control
ParallelRxPort.content.video->Cd = AV_CD_36; // 12-bit color depth
```

When HDMI Tx Port is already streaming at configuration time, add the following code. ParallelRxPort.content.video->timing.Vic = 0x10; /* 1080p60 */
ParallelRxPort.content.video->AvailableVideoPackets = AV_BIT_GC_PACKET /
AV_BIT_AV_INFO_FRAME; // enable color depth control

4.12 How to pull-up/down ParallelPort pins in bootup?

In system bootup, the parallel pins might be needed to pull-up/down to avoid impact on the far-end device's boot up sequence. GSV2011's LVDS/TTL pins are default to be tristated. If desired, an internal pull-up/down resistor can be implemented.

Register Name	Register Description	Default Value	Tweak Value
PAR.0xE7[2:1]	LVDS/TTL Pin Drive State $00 = Hi\text{-}Z$ state $01 = Pull\text{-}down \sim 100k$ ohm $10 = Pull\text{-}up \sim 100k$ ohm to $VDD1833$ $11 = Reserved$	00 = Hi-Z state	10 = Pull-Up 01 = Pull-Down

4.13 How to mute ParallelTxPort output clock when HDMI input is not plugged?

ParallelTxPort->content.lvtx->Config is used to define the Parallel Port output stability. Designer can wait until (*HdmiRxPort->content.rx->IsInputStable* == 1) to enable the ParallelPort output configuration.

ParallelTxPort->content.lvtx->Config = xx; // xx is a non-zero configuration value ParallelTxPort ->content.lvtx->Update = 1;

When (*HdmiRxPort->content.rx->IsInputStable* == 0), if *ParallelTxPort->content.lvtx->Config* is not 0, reset the configuration to completely shut down ParallelTxPort output clock. *ParallelTxPort ->content.lvtx->Config* = 0; // reset the ParallelTxPort *ParallelTxPort ->content.lvtx->Update* = 1;

4.14 How to change color depth in Parallel->HDMI?

In AvUapiTxSetHdmiDeepColor(), add extra setting for dedicated color depth.

value = desired_color_depth; /* 5 = 10-bit, 6 = 12-bit, 7 = 16-bit */

if(value != 4)

Gsv2k11AvUapiTxEnableInfoFrames(port, AV_BIT_GC_PACKET, 1);

/* DVI protection */

if(port->content.tx->HdmiMode == 0)

value = 4;

GSV2K11_TXDIG_set_TX_GC_CD(port, value);

```
return ret;
```

4.15 How to extend PLL/timing compliance in Parallel->HDMI?

Add following code into Gsv2k11InitTable[] of gsv2k11_tables.h file will greatly help on the input clock SSC and timing drift tolerance.

0x02,0x83,0x70, 0x02,0xB3,0x70,

0x14,0x19,0xFF, 0x14,0x1B,0xFF,

4.16 How to lower chip temperature in full power application?

By default GSV2011 software, chip's LVDS/TTL drive strength is set to higher value for better compatibility. For chips' interconnection on the same board (especially with FPGA), a lower drive strength would reduce power and temperature drastically. For example, if LVDS is used for GSV2011->FPGA application, do the following edit. In Gsv2k11ParTxTable[] of gsv2k11_tables.h file, change the following setting. For example, change "0xC6,0x3B," to "0xC6,0x04". This will disable the internal termination (which consumes power on LVDS) and lower the LVDS current to 2mA (which consumes less power).

5. Pin Mapping

5.1 What is the pin mapping of YCbCr 420 mode?

A perfect example of YCbCr 420 8-bit layout is shown in HDMI 2.0b specification Section 7.1. As shown in HDMI 2.0 specification, YCbCr 420 3 channels' TMDS layout is mirrored to YCbCr 444's 3 channels, by placing odd Pixel Y onto Channel 2. The example of 444<->420 channel mapping of HDMI 2.0b specification is shown below.

Table 7-2: Mapping Two 8-bit per component 4:2:0 Pixels to one 24-bit 4:4:4 Pixel prior to Deep Color Packing

			F	irst eight 4:2:0 P	Pixels on each Line	e
		Equivalent 4:4:4 Pixel	4:2:0, Pixel 0/1	4:2:0, Pixel 2/3	4:2:0, Pixel 4/5	4:2:0, Pixel 6/7
	Channel 0	Св[7:0]	CB00[7:0]	CB02[7:0]	CB04[7:0]	CB ₀₆ [7:0]
Line 0	Channel 1	Y[7:0]	Y ₀₀ [7:0]	Y ₀₂ [7:0]	Y ₀₄ [7:0]	Y ₀₆ [7:0]
	Channel 2	Cr[7:0]	Y ₀₁ [7:0]	Y ₀₃ [7:0]	Y ₀₅ [7:0]	Y ₀₇ [7:0]
	Channel 0	Св[7:0]	CR ₀₀ [7:0]	CR02[7:0]	CR ₀₄ [7:0]	CR06[7:0]
Line 1	Channel 1	Y[7:0]	Y ₁₀ [7:0]	Y ₁₂ [7:0]	Y ₁₄ [7:0]	Y ₁₆ [7:0]
	Channel 2	Cr[7:0]	Y ₁₁ [7:0]	Y ₁₃ [7:0]	Y ₁₅ [7:0]	Y ₁₇ [7:0]
	Channel 0	Св[7:0]	CB ₂₀ [7:0]	CB ₂₂ [7:0]	CB ₂₄ [7:0]	CB ₂₆ [7:0]
Line 2	Channel 1	Y[7:0]	Y ₂₀ [7:0]	Y ₂₂ [7:0]	Y ₂₄ [7:0]	Y ₂₆ [7:0]
	Channel 2	Cr[7:0]	Y ₂₁ [7:0]	Y ₂₃ [7:0]	Y ₂₅ [7:0]	Y ₂₇ [7:0]
	Channel 0	Св[7:0]	CR20[7:0]	CR22[7:0]	CR24[7:0]	CR ₂₆ [7:0]
Line 3	Channel 1	Y[7:0]	Y ₃₀ [7:0]	Y ₃₂ [7:0]	Y ₃₄ [7:0]	Y ₃₆ [7:0]
1	Channel 2	Cr[7:0]	Y ₃₁ [7:0]	Y ₃₃ [7:0]	Y ₃₅ [7:0]	Y ₃₇ [7:0]

Table 7-4: Mapping Two 12-bit per component 4:2:0 Pixels to one 36-bit 4:4:4 Pixel prior to Deep Color Packing

				First eight 4:2:0 P	ixels on each Line	•
		Equivalent 4:4:4 Pixel	4:2:0, Pixel 0/1	4:2:0, Pixel 2/3	4:2:0, Pixel 4/5	4:2:0, Pixel 6/7
	Channel 0	CB[11:0]	CB00[11:0]	CB ₀₂ [11:0]	CB04[11:0]	CB ₀₆ [11:0]
Line 0	Channel 1	Y[11:0]	Y ₀₀ [11:0]	Y ₀₂ [11:0]	Y ₀₄ [11:0]	Y ₀₆ [11:0]
	Channel 2	CR[11:0]	Y ₀₁ [11:0]	Y ₀₃ [11:0]	Y ₀₅ [11:0]	Y ₀₇ [11:0]
	Channel 0	Св[11:0]	CR00[11:0]	CR ₀₂ [11:0]	CR04[11:0]	CR06[11:0]
Line 1	Channel 1	Y[11:0]	Y ₁₀ [11:0]	Y ₁₂ [11:0]	Y ₁₄ [11:0]	Y ₁₆ [11:0]
	Channel 2	CR[11:0]	Y ₁₁ [11:0]	Y ₁₃ [11:0]	Y ₁₅ [11:0]	Y ₁₇ [11:0]
	Channel 0	Св[11:0]	CB ₂₀ [11:0]	CB ₂₂ [11:0]	CB24[11:0]	CB ₂₆ [11:0]
Line 2	Channel 1	Y[11:0]	Y ₂₀ [11:0]	Y ₂₂ [11:0]	Y ₂₄ [11:0]	Y ₂₆ [11:0]
•	Channel 2	Cr[11:0]	Y ₂₁ [11:0]	Y ₂₃ [11:0]	Y ₂₅ [11:0]	Y ₂₇ [11:0]
	Channel 0	Св[11:0]	CR ₂₀ [11:0]	CR ₂₂ [11:0]	CR ₂₄ [11:0]	CR ₂₆ [11:0]
Line 3	Channel 1	Y[11:0]	Y ₃₀ [11:0]	Y ₃₂ [11:0]	Y ₃₄ [11:0]	Y ₃₆ [11:0]
	Channel 2	Cr[11:0]	Y ₃₁ [11:0]	Y ₃₃ [11:0]	Y ₃₅ [11:0]	Y ₃₇ [11:0]

From the perspective of TMDS channel mapping, the GSV2011 LVDS/TTL pin layout of YCbCr 444 is the same for YCbCr 420. In GSV2011 datasheet, YCbCr 444 pin mapping is given. Here an example of 4x LVDS YCbCr 420 pin mapping is shown to demonstrate the YCbCr 420 pin mapping for 8-bit/10-bit/12-bit.

						Single Pi	xel Mode					
Mode Index		1	9		20			21				
Mode CFG 2		0x04				0x	:04			0x	04	
Mode CFG 1	0x01					0x	:02			0x	03	
Mode CFG 0												
Color Space						YCbCr	4:2:0					
Tag		8-	Bit			10-	-Bit			12-	Bit	
SDR Clock Ratio		4	:X			4	:Х		4x			
DDR Clock Ratio		2	!x		2 x				2x			
PIN NAME	BIT 3	BIT 2	BIT 1	BIT 0	BIT 3	BIT 2	BIT 1	BIT 0	BIT 3	BIT 2	BIT 1	BIT 0
V11	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z 🚺	Z
V10	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
V9	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
V8	Z	Z	Z	Z	Z	Z	Z	Z	Yodd[1]	Yodd[0]	Yeven[1]	Yeven[0]
V7	Z	Z	Z	Z	Z	Z	Yodd[1]	Yodd[0]	Cb/Cr[1]	Cb/Cr[0]	Yodd [3]	Yodd[2]
V6	Z	Z	Z	Z	Yeven[1]	Yeven[0]	Cb/Cr[1]	Cb/Cr[0]	Yeven[3]	Yeven[2]	Cb/Cr[3]	Cb/Cr[2]
V5	Yodd[7]	Yodd[6]	Yodd[5]	Yodd[4]	Yodd[9]	Yodd[8]	Yodd[7]	Yodd[6]	Yodd[11]	Yada[10]	Yodd[9]	Yodd[8]
V4	Yodd[3]	Yodd[2]	Yodd[1]	Yodd[0]	Yodd[5]	Yodd[4]	Yodd[3]	Yodd[2]	Yodd[7]	Yodd[6]	Yodd [5]	Yodd[4]
V3	Yeven[7]	Yeven[6]	Yeven[5]	Yeven[4]	Yeven[9]	Yeven[8]	Yeven[7]	Yeven[6]	Yeven[11]	Yeven[10]	Yeven[9]	Yeven[8]
V2	Yeven[3]	Yeven[2]	Yeven[1]	Yeven[0]	Yeven[5]	Yeven[4]	Yeven[3]	Yeven[2]	Yeven[7]	Yeven[6]	Yeven[5]	Yeven[4]
V1	Cb/Cr[7]		Cb/Cr[5]			Cb/Cr[8]				Cb/Cr[10]		Cb/Cr[8]
V0	Cb/Cr[3] Cb/Cr[2] Cb/Cr[1] Cb/Cr[0]				[3] Cb/Cr[2] Cb/Cr[1] Cb/Cr[0] Cb/Cr[5] Cb/Cr[4] Cb/Cr[3] Cb/Cr[2]			Cb/Cr[2]	Cb/Cr[7]	Cb/Cr[6]	Cb/Cr[5]	Cb/Cr[4]
VS		V	'S		VS			VS				
HS	HS				HS			HS				
DE		D	E			Γ	Œ		•	D	E	

5.2 What is the pin mapping of VESA/JEIDA LVDS mode?

Mode Index		Single Pixel(31~36) Dual Pixel(44~49)														
Mode CFG 2					C		0x	:07								
Mode CFG 1	VE	SA Singl	e Pixel 6	8/10/12b	oits -> 0x	80/81/82	/83	JED	IA Single	Pixel 6/	8/10/12b	its -> 0x0	C0/C1/C	2/C3		
Mode CFG 0																
Color Space							R	GB								
Standard				VESA							JEIDA					
PIN NAME	BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6	BIT 0	BIT 1	BIT 2	BIT 3	BIT 4	BIT 5	BIT 6		
HS	CK H	CK H	CK H	CK H	CK L	CK L	CK L	CK H	CK H	CK H	CK H	CK L	CK L	CK L		Г
V10	N/A	B9	B8	G9	G8	R9	R8	N/A	B1	B0	G1	G0	R1	R0		l
V9	N/A	B7_	B6	G7	G6	R7	R6	N/A	B3	B2	G3	G2	R3	R2		ı
V8	DE	VS	HS	B5	B4	B3	B2	DE	VS	HS	B9	B8	B7	B6		ı
V7	B1	B0	G5	G4	G3	G2	G1	B5	B4	G9	G8	G7	G6	G5		5
V6	€ 0	R5	R4	R3	R2	R1	R0	G4	R9	R8	R7	R6	R5	R4		9
CLK	CK H	CK H	CK H	CK H	CK L	CK L	CK L	CK H	CK H	CK H	CK H	CK L	CK L	CK L		À
V4	N/A	▶ B9	B8	G9	G8	R9	R8	N/A	B1	B0	G1	G0	R1	R0	S	9
V3	N/A	B7	B6	G7	G6	R7	R6	N/A	B3	B2	G3	G2	R3	R2	Single	I
V2	DE	VS	HS	B5	B4	B3	B2	DE	VS	HS	B9	B8	B7	B6	- 70	ı
V1	B1	B0	G5	G4	G3	G2	G1	B5	B4	G9	G8	G7	G6	G5	ixe	ı
V0	G0	R5	R4	R3	R2	R1	R0	G4	R9	R8	R7	R6	R5	R4		ı

In single pixel mode, CLK should be used as VESA/JEIDA input/output clock. In dual pixel mode, CLK/HS share the same output timing of VESA/JEIDA clock. By default, CLK High and Low should strictly follow the declared phase of VESA/JEIDA specification.

If different clock phase is required for the monitor's input timing, use following registers to modify the phase.

GSV2011 supports any CLK phase and duty cycle adjustment of the 7 phases of the clock.

Register Name	Register Description	Default Value	Tweak Value
PAR.0x80[7]	Writeable, manual clock phase enable 0 = Disable	0 = Disable	1 = Enable
	1 = Enable, enable manual clock		
PAR.0x81[6:0]	Writable, 7-bit clock phase setting	0 = default	Desired phase
	1111_000 as default phase	o acjann	value
	Writeable, HS mirrors CLK enable		1 = HS/CLK
PAR.0x69[1]	0 = Disable	0 = default	shares the same
	1 = Enable, HS mirrors CLK		outp <mark>ut phase</mark>

For example, to push a 1-bit phase delay, the PAR.0x81 is supposed to set 0x3C (011_1100). To push a 2-bit phase delay, the PAR.0x81 is supposed to set 0x1E (001_1110). To push a 6-bit phase delay, PAR.0x81 is supposed to set 0x79 (111_1001).

Refer to Section 4.1.1 for example configuration.

5.3 Can GSV2011 TTL do x2~x4 pin mapping like LVDS mode?

GSV2011 TTL can do pin overlapping with x2/x3/x4 like LVDS pin mapping. The limitation is that TTL maximum single pin frequency cannot exceed 300Mbps.

Here is the step for TTL x2~x4 pin mapping software control method.

Step 1, Find corresponding LVDS pin mapping 3-byte configuration. And replace it with TTL by setting 3rd_byte[7] to 0.

For example, 0x42, 0x11, 0x00, 11: TTL x2 12-bit, SDR mode, separate sync

Step 2, Modify the setting for TTL x2~x4 in Gsv2k11ParTxTable[] of gsv2k11_tables.h file.

Replace "0x66,0x00," by "0x66,0x04,".

6. Embedded Sync Timing

6.1 Dual pixel SAV/EAV mapping

When using SAV/EAV to embed in dual pixel mode, the SAV/EAV layout has 2 different formats: YCbCr 422 and non-YCbCr 422 mode.

6.1.1 Non-YCbCr 422 mode

Non-YCbCr 422 mode means data is in YCbCr 444/ YCbCr 420/ RGB color space. In dual pixel mode, non-YCbCr 422 parallel bus only supports this 'same SAV/EAV layout on 3 channels' mode. Using dual pixel mode, each channel only can support 8-bit data width, and SAV/EAV code is in on the higher 8-bit of the 12-bit channel data. An example of TTL dual pixel non-YCbCr 422 parallel bus layout is shown below. If the parallel bus is using LVDS, the synchronization code will be packed according to data/clock ratio in the same format.

		1 1						
video_de -				Ш	_			
_								
Ch2: Cr[11:0]	FFF 000	000 800	video_active_data	FFF	000	000	9D0	
Ch1: Y [11:0]	FFF 000	000 800	0	FFF	000	000	9D0	
Ch0: Cb[11:0]	FFF 000	000 800		FFF	000	000	9D0	
X	1							
			٧ ٦					
			<u> </u>					
TTL pin 47	∞ 0	∞,		α			0,	
TTL PIN 40	, P00	h80		noo	5	130	Fon	
TTL pin 39	ος.	œ.		α	0	0	o,	
	, P00	, P80		noo	5	10	, FOD	
TTL PIN 32							\rightarrow	
TTL pin 31	8' h00	8, P		0 1100			s' han	
TTL PIN 24	8	h80		>	5	90	5	
TTL pin 23	∞,	οć		0			o,	
TTL PIN 16	hFF	h00		1		9	50	
TTL pin 15	00	∞,		o	0		o,	
	HFF	8' h00		P			500	
TTL PIN 8				-	_			_
TTL pin 7	8, P	ο ₀		o n	0,		e,	
TTL PIN 0	HFF	h00		PF	3	3	100	

6.1.2 YCbCr 422 mode

In YCbCr 422 mode, the SAV/EAV follows the Y-C layout style. An example of TTL dual pixel YCbCr 422 parallel bus layout is shown below. If the parallel bus is using LVDS, the synchronization code will be packed according to data/clock ratio in the same format.

6.2 SAV/EAV code value

SAV/EAV code could vary for blanking lines and active lines. SAV/EAV code also varies for interlaced timing as below table.

Video format	field	period	Sav/eav	1 st word	2 nd word	3 rd word	4 th word	8bits	10bits	12bits
		V blanking	Start sync code(SAV)				AB0h	ABh	2ACh	AB0h
Progressive	Sama	Same line End sync code(EAV) Active line Start sync code(SAV) FFFh 000h 000h	000h	B60h	B6h	2D8h	B60h			
Video Format	Same		Start sync code(SAV)	11111	OOOII	OOOII	800h	80h	200h	800h
		Active fille	End sync code(EAV)				9D0h	9Dh	274h	9D0h
		V blanking Start sync code(SAV) line End sync code(EAV) FFFh 000h		000h 000h	AB0h	ABh	2ACh	AB0h		
	Eigld-0		000h		B60h	B6h	2D8h	B60h		
		Active line	Start sync code(SAV)	FFFII	OOOII	OOOII	800h	80h	200h	800h
Interlaced		Active fille	End sync code(EAV)				9D0h	9Dh	274h	9D0h
Video Format		V blanking	Start sync code(SAV)				EC0h	ECh	3B0h	EC0h
	Field=1	line	End sync code(EAV)	FFFh	000h	000h	F10h	F1h	3C4h	F10h
	1.1010-1	Active line	Start sync code(SAV)	FFFN	ooon	OOOn	C70h	C7h	31Ch	C70h
			End sync code(EAV)				DA0h	DAh	368h	DA0h

To avoid the conflict of active data and SAV/EAV, 000h and FFFh in the active data could be automatically replaced. A register *i2c_tx_itu_eliminate_ff_mode* is used to control the conflict solution.

	i2c_tx_itu_eliminate_ff_mode (PAR.0x71[3])	When active data = 000h	When active data = FFFh
	= 1	010h	FEFh
\\	=0 (default)	010h	{FEh, orginal_data[3:0]}

An extra configuration of default setting for SAV/EAV duplication is needed. If YC is overlapped on the same pins with x2 mode, a single bit SAV/EAV for each value is needed use below setting.

0x14,0x30,0x08, //Rx Av Split Code = 1 to place on 2 channels 0x14,0x71,0x84, //Tx Av Split Code = 1 to place on 2 channels

If splitted Y/C bits are implemented on interface, SAV/EAV for each value is needed use below setting.

0x14,0x30,0x00, // Rx Av Split Code = 0 to place on 1 channel 0x14,0x71,0x80, // Tx Av Split Code = 0 to place on 1 channel

An example of YCbCr 4:2:2 10-bit SAV/EAV code and pixel data relationship is given below.

Lane Name		S	AV		Pixel 0					Pixel N				EAV			
	3FFh	000h	000h	200h										3FFh	000h	000h	274h
V11	1' b1	1'b0	1'b0	1' b1	Сьо[9]	Y0[9]	Cr0[9]	Y1[9]		CbN [9]	YN-1[9]	CbN [9]	YN [9]	1' b1	1'b0	1'b0	1'b1
V10	1'b1	1'b0	1'b0	1'b0	Сьо[8]	Y0[8]	Cr0[8]	Y1[8]		CbN[8]	YN-1[8]	CbN[8]	YN[8]	1' b1	1'b0	1' b0	1'b0
V9	1' b1	1'b0	1'b0	1'b0	Cb0[7]	Y0[7]	Cr0[7]	Y1[7]		CbN [7]	YN-1[7]	CbN [7]	YN [7]	1' b1	1'b0	1 b0	1'b0
V8	1'b1	1'b0	1'b0	1'b0	Cb0[6]	Y0[6]	Cr0[6]	Y1[6]		CbN [6]	YN-1[6]	CbN[6]	YN [6]	1' b1	1'b0	1' b0	1'b1
V7	1' b1	1'b0	1'b0	1'b0	Cb0[5]	Y0[5]	Cr0[5]	Y1[5]	•••	CbN [5]	YN-1[5]	CbN [5]	YN [5]	1' b1	1'b0	1'b0	1'b1
V6	1'b1	1'b0	1'b0	1'b0	Cb0[4]	Y0[4]	Cr0[4]	Y1[4]		CbN [4]	YN-1[4]	CbN[4]	YN[4]	1' b1	1'b0	1'b0	1'b1
₹5	1'b1	1'b0	1'b0	1'b0	Сь0[3]	A0[3]	Cr0[3]	Y1[3]		CbN[3]	YN-1[3]	CbN[3]	YN[3]	1' b1	1'b0	1'b0	1'b0
V4	1'b1	1'b0	1'b0	1'b0	Сь0[2]	Y0[2]	Cr0[2]	Y1[2]		CbN[2]	YN-1[2]	CbN[2]	YN[2]	1' b1	1'b0	1'b0	1'b1
₹3	1' b1	1'b0	1'b0	1'b0	Cb0[1]	Y0[1]	Cr0[1]	Y1[1]		CbN[1]	YN-1[1]	CbN[1]	YN[1]	1' b1	1'b0	1'b0	1'b0
₹2	1'b1	1'b0	1'b0	1'b0	Сь0[0]	Y0[0]	Cr0[0]	Y1[0]		CbN[0]	YN-1[0]	CbN[0]	YN[0]	1' b1	1'b0	1'b0	1'b0
CLK (DDR)	Н	L	H	L	H	L	H	L		Н	L	H	L	■ H	L	H	L
CLK(SDR)	HL.	HL.	HL.	HL	HL.	HL.	HL.	HL		HL.	HL.	HL.	HL.	HL.	HL.	HL.	HL.

7. GSV2011 Demo Board code

7.1 How to configure the code into source or sink version?

In apps/av_event_handler.c file, there is a variable called *LogicOutputSel*; When setting *LogicOutputSel* to 1, the code is configured to source side (HDMI Rx>Parallel Out + HDMI Tx).

When setting *LogicOutputSel* to 0, the code is configured to sink side (Parallel In->HDMI Tx).

7.2 How to configure the parallel bus mode?

By default, GSV2011 demo board uses LVDS UDP dual pixel mode for demonstration. If other modes are required for performance comparison, it is recommended to modify mode configuration *CommonBusConfig* by detailed description from Section 4.1.