

Advanced Molecular Detection Southeast Region Bioinformatics

AMD Southeast Region Genomic Epidemiology Training Gen Epi Tools 3/18/2024

Genomic Epidemiology Visualization Tools

IQ-Tree NextStrain MicrobeTrace Microreact CZ Gen Epi

General Recommendations

- Creates trees by Maximum Likelihood method
 - Popular method
 - Can be slower than other Maximum Parsimony
 - Faster than RAxML and PhyML
 - Looks for the highest probability of relationship between samples
 - Estimates unknown parameters of a probability model
 - Parameters like rate of transmission, rate of mutation, tree construction
- Included in the Cecret Pipeline (for SARS-CoV-2)

- Open-Source
- Requires access to command line
 - Like AWS or a Linux environment
- Documentation at http://www.iqtree.org/
 - Beginner's Tutorial http://www.iqtree.org/doc/Tuto rial
- Not visually appealing so we output to ggtree2 in R


```
NOTE: Tree is UNROOTED although outgroup taxon 'LngfishAu' is drawn at root
```

IQ-Tree Beginner's Tutorial

- You can use your own files or copy the small files provided
 - If you use your own files they need to be aligned (I suggest MAFFT)
 - If you do not have access to a Linux environment you can use a Jupyter Notebook.
 - https://jupyter.org/tryjupyter/notebooks/?path=notebooks/Intro.ipynb
 - Note: don't use PHI in the online version

IQ-Tree

```
O Untitled1* ×
                                                        Run 😘 🕜 🕔 📑 Source 🔻 🖹
Source on Save Q / -
     library(readr)
     SNPs_boot <- read_csv("path/to/SNPs_boot.treefile")
     View(SNPs_boot)
     library(ggtree)
     library(ggplot2)
     library(tidyverse)
     #Read in tree file with ggtree"
     tree <- read.tree("path/to/SNPs_boot.treefile")
 11
 12
     ggtree(tree, right=TRUE) + geom_treescale() + geom_tiplab(size=6)
 13
     #Save plot as image
 14
     ggsave("SNPs_boot_tree tiff", width = 85, height = 25, units = "cm")
      (Top Level) $
                                                                               R Script #
```

If you have a Newick (tree) file and want to change the branch length to time, use the following code

iqtree -s ALN_FILE --date DATE_FILE -te TREE_FILE

- Pulls sample data from GISAID (worldwide repository for Covid and Flu data) to create worldwide phylogenetic trees
- Available for Influenza, Covid, MPox, Ebola, Enterovirus D68, Measels, Mumps, RSV, TB, West Nile, and Zika
- Options to create trees of various sized data sets and regions
 - Color coding options
 - Tree layout options
 - Many customization choices!
- Web-based, no advanced computing required (nextstrain.org)

Nextstrain

- Using Augur and Auspice, you can create local builds (tree and everything that goes with it) using your own computing resources
 - Private
 - Can incorporate PHI/PII
 - Can incorporate additional metadata
- Local builds require open-source access and a very large amount of computing resources (larger than would normally be available)
 - Subsampling reduces the computing resources required
- Produces a shareable .JSON file

- With Auspice you can compare different trees directly
- Figure right, compares
 HA and NA mutation in
 H3N2 in the same flu
 season

- Function within NextStrain
 - Available web-based or in CLI (docker container)
 - Web-Based: clades.nextstrain.org
 - CLI: https://github.com/nextstrain/nextclade
 - Start with web-based, very user friendly
 - CLI allows for more advanced options
- Web-based runs on your computer but requires access to the internet
- Built to be quicker than NextStrain, great for small data sets
- Limitation: Samples are placed one by one on a phylogenetic tree, no internal nodes (last common ancestor) will be detected

- Takes .fasta from raw, through alignment, calls mutations, and determines clade
- Results available as table and phylogenetic tree

▲ Powered by Vercel

MicrobeTrace ***

- Web-browser based, but runs locally on your computer
 - Can turn internet off and it will still run, the data stays on your computer
- Creates a network (web) of cases using a combination of pathogen sequences and epi metadata
- Can help identify pathogen and transmission hotspots
- Originally made for HIV transmission but has been used for other diseases
- https://microbetrace.cdc.gov/MicrobeTrace/
- Tends to be buggy

MicrobeTrace

Campbell EM, Boyles A, Shankar A, Kim J, Knyazev S, et al. (2021) MicrobeTrace: Retooling molecular epidemiology for rapid public health response. PLOS Computational Biology 17(9):

e1009300. https://doi.org/10.1371/journal.pcbi.1009300

Common Data Types and Combinations

- DNA Only (.fasta)
- Edge List Only (.csv)
- Distance Matrix from Genetic Data (.csv)
- DNA and Node Attribute Table (.fasta and .csv)
- Edge List and Node Attribute Table (.csv)
- Tree File (.nwk)

Advanced Molecular Detection Southeast Region Bioinformatics (Data is linked on the ID column)

Microreact **

- Web-based application for the interactive visualization of genetic clustering (via trees), geographic maps, and time
- Additional metadata can be attached as a table
- A few states have a desktop version of Microreact so that PHI can be included in visualizations, crazy expensive
 - Florida has funding to purchase
- Has wide customization options to fit a variety of needs

Microreact -

- Web-based and open source application
 - There is a waitlist to join, still usually quick acceptance
 - Only for SAR—CoV-2 and Mpox
- Combines NCBI Virus, NextStrain, NextClade, Pangolin, and UShER into one pipeline
- Not extensively used
- Does have a good library of Gen Epi learning resources
 - https://help.czgenepi.org/hc/en-us/categories/6217716150804-Genomic-Epidemiology-Learning-Center

Feature	UShER	Nextstrain
Phylogenetic placement approach	/	
Ultrafast (done within minutes)		
Provides placement confidence metrics	/	
Focuses on subtrees with closely related samples	/	
Phylogenetic tree building (from scratch)		/
Takes up to 12 hours		/
Tree displays samples of interest and contextual data		✓
Tree displays samples over time		/
Tree can be viewed in Nextstrain (interactive visualization program)	/	✓
Nextstrain visualization incorporates genetic, temporal, and spatial data		/

https://help.czgenepi.org/hc/en-us/sections/5686512995988-Get-Started

Upload consensus genomes

Easily upload sample data into a secure, cloud-based platform.

Lineage assignments

Automated assignment of virus lineages through Pangolin or Nextclade as soon as you upload data.

Select samples for tree builds

Point-and-click, no-code interface allows you to sort, filter, search, and select samples to build phylogenetic trees.

Generate phylogenetic trees

Generate Nextstrain trees and run phylogenetic placements with UShER with a few clicks.

Overlay metadata on your trees

Explore interactive trees using Nextstrain and overlay metadata for a comprehensive view of where and how transmission is occurring.

General Recommendations

- 1. Use large graphs
- 2. Consider color blind-friendly color palettes
- 3. Don't be afraid to ask your bioinformaticians for help

Advanced Molecular Detection Southeast Region Bioinformatics

Questions?

Bphl-sebioinformatics@flhealth.gov

TBD

Lead Bioinformatician & Supervisor TBD@flhealth.gov

Molly Mitchell, PhD

Bioinformatician
Molly.Mitchell@flhealth.gov

Lakshmi Thsaliki, MS

Bioinformatician Lakshmi.Thsaliki@flhealth.gov

Sam Marcellus, MPH

Bioinformatician
Samantha.marcellus@flhealth.gov