WORKSHEET 1

Problem A: Let (X, d) be a metric space. Recall that a set U is said to be open if for all $x \in U$ there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset U$.

- (1) Show that the open sets according to this definition define a topology on X.
- (2) Show that a sequence (x_n) in X converges to x_{∞} in this topology if and only if for all $\epsilon > 0$ there exists an N > 0 such that if n > N then

$$d(x_n, x_\infty) < \epsilon.$$

(3) Show that for all $x \in X$ and all r > 0, the "open ball"

$$B_r(x) = \{ y \in X : d(x, y) < r \}$$

is in fact an open set by the definition above.

(4) Show that for all $x \in X$ and all r > 0, the "closed ball"

$$\{y \in X : d(x,y) \le r\}$$

is in fact a closed set by the definition above.

(5) Give an example of a metric space (X,d), a point x, and an r > 0 such that

$$\{y \in X: d(x,y) \leq r\}$$

is not the closure of $B_r(x)$.

Problem B: Recall that a metric space is called complete if every Cauchy sequence converges.

The Baire Category Theorem states the following:

Theorem 1. Let (X, d) be a complete metric space, and let $(U_n)_{n=1}^{\infty}$ be a sequence of open dense sets in X. Then

$$\bigcap_{n=1}^{\infty} U_n$$

is dense in X.

- (1) Show that this is false without the assumption of completeness by considering the rationals with the usual metric.
- (2) Prove the Baire Category Theorem as follows.
 - (a) Show that it suffices to show that for all $x_0 \in X$ and $r_0 > 0$ the intersection contains a point of the ball $B_{r_0}(x_0)$.
 - (b) With r_i, x_i already having been defined, show that you can pick $x_{i+1} \in X, 0 < r_{i+1} < r_i/2$ so that

$$\overline{B_{r_{i+1}}(x_{i+1})} \subset B_{r_i}(x_i) \cap U_{i+1}.$$

- (c) Show that the sequence (x_i) is a Cauchy sequence.
- (d) Show that the limit of (x_i) is a point of $\bigcap_{n=1}^{\infty} U_n$ contained in $B_{r_0}(x_0)$.

Problem C: Suppose that (X, d) is a (non-empty) complete metric space in which every point is a limit point. Use the Baire Category Theorem to show X is uncountable.

