martedì 3 ottobre 2017 11:03 PROBLEM SOLVING SU ARRAY LO GUARDATE ANCHE GLI APPUNTO DI BARBUTI (conso A) DEC 2/10 int member (int a[], int dim, int x) { ; 0=1 Tmi int Trov=10 = 0; while (i c dim ld !TroveTo) { VALIABILE if (a(i) == x) Trovelo =1; USATA IN 9UESTO 3 (++; 000 MIEHE DELLA 11 F (A C " neturn Troveto; 3 RISPONDE A QUESTA DOMANDA: $\exists i \in [0, dim) . a[i] == \times$ ESISTE UN MOICE I COMPREJO TRA G E Dim (QJEST / UCTAMO ESCLUSO) TALE CLE a[i] E U CUALE A X! [O, dim) RAPPRESENTA C'INTERVACLO 9 CHE COMPRESOE , VOLOR, Compreso Escluso DA O A dim

martedi 3 ottobre 2017 11:21		
	i ∈ [o, dim). a[i) < 0	ESISTE UN ECENTINO?
- 3:	€ [o, sim), a[i] >, 2==0	ESISTE UN NUMERO PARI ?
	c (o, dim-1). a (i) =-a [i+1]	ESISTONO DUE ELEMENTI CONSECUTION USUALI?
	Ji E [O, dim). Pa-Proposition	PRIEM DECCELEMENTO

martedì 3 ottobre 2017 11:26 RiCERCA	01 JU NAMENO MECATINO
	Di∈ To, dim) - a [i] < 0
	megativo (int a[), int dim) { int i=0;
	int i=0; int Tracto=0; while (ixdim ld! traveta) {
	if (a[i) <0) Travato=2;
}	neturn Trovato;

martedì 3 ottobre 2017 11:31 CONSIDE RIAMO OM QUESTI Sono Tuni - ti∈ [o, dim). a[i) < 0 MEGATIVI - Vie [0,0im). a [i] / 2 == 0 ition ones PAKi 7 - \tie [0, dim-1) . a(i) == a[i+1] SONO TUTI USUALi 7 ti∈[1, dim) . a[i] == a[o] TIPICA SOLUZIONE SBAGLIATA int tutipani (int at) int dim) { int pari= 0. for (int i=0 i < dim; i++) { if (a(i) /2 ==0) pari = 1; geton pai; pari (8) // a 12/4/6/5 OK

				-				6.
FATO								0 k
		\\ a		5 (7)	4)	P	ai de	$\mathcal{N}_{\mathcal{A}}$
LE Simu Su	(, 2, , ,)		0 M		9			7 9
> (m)	CARCA	, ,) /						<u>'</u> _/
50	(ACI)	A						No
DEI	VOST	RICHMAN	1)					
	Pro	C MM por	1 ' 1					

martedì 3 ottobre	
	SONO TUTTI PARI
	SE E SOLO SE
	NESSUNO É DISPARI
	la TERIMINI COSICI;
	$\forall i \in (0, \delta in)$. $a(i) 7.2 == 6$ VERA
	SE E SOCO SE
	∃i ∈ [o, δim), α[i] ½2==1 FALSA
	QUESTO LO SAPPIAMO FARE, SOLO CHE DEVO
	DALE IL RISULTATO CONTRARIO (FALSO)

```
martedì 3 ottobre 2017
      int Tuttipani (int al), int dim) {
          ; 0 = i T_ni
           int Troucto = 0;
          while (ich 46 !Trovas) }
              if (a[i] / 2==1) TroucTo = 1;
          } ++;
          return ! Trovato;
      3
      ALTRO MODO EQUIVALENTE :
       int Tuttipani (int aC), int din) {
          int i =0
                                     NIN CE. 15
          int ok = 1;
          while (i < dim ld ok) {
              if (a(i) 7.2==1) OK=0;
          neturn OK;
```


	martedì 3	ottobre	2017	1	1:57																										
														_																	
				ìc										i											{						
														2											n			- ~ 6	7		
														. ဝ														ر	SAF	SILE A QUES	
)	(a	Ci	J	1,	2 =	= = (>)		C	Or	7	÷ +	· +	j			ľ	0 P	ت 0	
						_	} }			00		C	.~	~_7	ď												`	ر ر	م م م	TATO)/E"
				}	1			-					- 0																		
						a			<u> </u>	5	12	\ \	7						C		_	_)	<u></u>)	_/				
										л Р										-0/	~ \	р		\hookrightarrow	_	,	Ŋ	2			
								/	,	/	/	1																			

martedì 3 ottobre 2017 12:29 -D RICERCA DEL MINIMO ELEMENTIO SCRIVENE UND FUNDIONE CHE RESTITUISCE U Y JALONE X TALE CHE $\exists i \in [0, \delta im). (a[i] == \times \wedge \forall J \in [0, \delta im). \times \tau = a[j])$ X É PRESENTE E X É MINORE O USUALE DI TUT QUI ELEMENT PARTIAMO SCRIVENDO UNA FUNZIONE CHE CALCOLA ₩ J € [0,0im). × <= a[] CORNISPONDE A VENIFACNE 75 E (0,0m). X > a (5) E FALSO int minone dituti (int a(), int dim, intx) { int izo; inT OK = 1; whee (iedim de ox) { if (x>a[i]) ok=0; neTunm ok;

martedì 3 ottobre 2017 12:37 ORA CLE NO LA FUNTIUNE MILLIBERIA VENIFICARE ∃i ∈ [o, dim). (a[i]==× 1 +5∈(o, dim). ×<=a[+)) CORNISPOSOE A FARE ∃i ∈ (o, δim) - (a[i]==× n minaed; TuTTi (a, δim, a[i])) DEVE RESTITUIRE int minim (int al), int din) int 1=0; int traveto = 0; int min; while (i ~ dim fl ! Trovato) } if (minoreditutti (a, dim, ali)) { 3 Troucto = 1; min = a[i]; neturn min; POSSIAMO RISOLVERE PROBLEMI COMPLESSI COMPONENDO (MODULARMENTE) BOCUZIONI DI

m	artedì 3 ottobre 2017 12:49						
	(LA L (DN)	りくりっ	Suc Pr	のりくモハ	<u>~</u>	ineroo	
	Couto	Che	P0550 -	TROVA	مد س	a Solut	
	P1U-	FURB	a Che	s ì	"PORTA	DIEIND "	NELLO
	SCANDIO	(E)	L'ARRAY	۱۲	UACORE	minimo	otales !
	Fino	<u> </u>	QUEC M	swe m	>		
			minimo				
			int mi	n =	a [0]	, , , , , , , , , , , , , , , , , , ,	7
	_		for (in	T i = >	1; 1 < 81/	m; i++) {	O C M MO C C A
	mim		if (م[ز] ح	mim)		CEE ESISTA ALMEND
	RAPPRESENTA						U ~
	Wining Cl	La.:		7111	$m = \alpha(c)$	J /	ELEMENTO
	40, 1200T		3				(dim >0)
	FILO A	Q VEC	netuan	:			
	~6~E~	7 7	1121000	mi	~ ,		
		5					

