Ideally, the programming language best suited for the task at hand will be selected. There exist a lot of different approaches for each of those tasks. Programming languages are essential for software development. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. One approach popular for requirements analysis is Use Case analysis. Computer programmers are those who write computer software. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. It is very difficult to determine what are the most popular modern programming languages. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. There exist a lot of different approaches for each of those tasks. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Different programming languages support different styles of programming (called programming paradigms).