Plan d'étude et représentation graphique de $y = f(x) = \frac{x^3 + 1}{x}$

www.cafeplanck.com info@cafeplanck.com

Le domaine de définition de f

$$y = f(x) = \frac{x^3 + 1}{x} \Rightarrow D_f = {}^{\circ} - \{0\} = (-\frac{\infty}{2}, \frac{9}{3}) \cup (0, \frac{+\infty}{2})$$

Etudier la fonction au bornes de D_f

Etudier la fonction au bornes de I_1

A la borne gauche

$$\lim_{x \to -\infty} y = \lim_{x \to -\infty} \frac{x^3 + 1}{x} = \lim_{x \to -\infty} \frac{x^3}{x} = \lim_{x \to -\infty} x^2 = +\infty$$

Alors la courbe de f tend vers un infini au long de la droite Y = ax + b. On cherche a et b:

$$a = \lim_{x \to -\infty} \frac{y}{x} = \lim_{x \to -\infty} \frac{x^3 + 1}{x^2} = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$$

Alors la courbe de f a une branche parabolique au long de l'axe Oy.

A la borne droite

$$\lim_{x \to 0^{-}} y = \lim_{x \to 0^{-}} \frac{x^{3} + 1}{x} = \frac{(0 - \varepsilon)^{3} + 1}{0 - \varepsilon} = \frac{-\varepsilon^{3} + 1}{-\varepsilon} = \frac{1}{-\varepsilon} = -\infty$$

Alors la droite d'équation $\, X = 0 \,$ est une asymptote verticale pour la courbe de f .

Etudier la fonction au bornes de I_2

A la borne gauche

$$\lim_{x \to 0^+} y = \lim_{x \to 0^+} \frac{x^3 + 1}{x} = \frac{(0 + \varepsilon)^3 + 1}{0 + \varepsilon} = \frac{\varepsilon^3 + 1}{+\varepsilon} = \frac{1}{+\varepsilon} = +\infty$$

Alors la droite d'équation X = 0 est une asymptote verticale pour la courbe de f.

A la borne droite

$$\lim_{x \to +\infty} y = \lim_{x \to +\infty} \frac{x^3 + 1}{x} = \lim_{x \to +\infty} \frac{x^3}{x} = \lim_{x \to +\infty} x^2 = +\infty$$

Alors la courbe de f tend vers un infini au long de la droite Y = ax + b. On cherche a et b:

$$a = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{x^3 + 1}{x^2} = \lim_{x \to +\infty} \frac{x^3}{x^2} = \lim_{x \to +\infty} x = +\infty$$

Alors la courbe de f a une branche parabolique au long de l'axe Oy.

Le sens de variation de f

$$y' = f'(x) = \frac{2x^3 - 1}{x^2}$$

$$2x^3 - 1 = 0 \Rightarrow x = 0.79 \Rightarrow y = 1.89 \Rightarrow \begin{vmatrix} 0.79 \\ 1.89 \end{vmatrix}$$

$$x^2 = 0 \Rightarrow x = 0 \notin D_f$$

Convexité de f

$$y'' = f''(x) = \frac{2(x^3 + 1)}{x^3}$$

$$2(x^3 + 1) = 0 \Rightarrow x = -1 \Rightarrow y = 0 \Rightarrow \begin{vmatrix} -1 \\ 0 \end{vmatrix}$$

$$x^3 = 0 \Rightarrow x = 0 \notin D_f$$

$$m_{x=-1} = f'(-1) = -3$$

Le tableau de variation

х	-∞		- 1		0		0.79		+∞
<i>y'</i>		-	-3	_		_	0	+	
У"		+	0	_		+		+	
У	+∞	>	0 Inf	∞	+∞	<u>></u>	1.89 Min	2	+∞

La courbe

