Preliminaries

Tax Policy Research Unit and World Bank Overlapping Generations Model Training Day 1: (Evans)

Jason DeBacker ¹ Richard W. Evans ²

¹University of South Carolina, Department of Economics and Open Research Group, Inc.

²University of Chicago, Open Source Economics Laboratory, M.A. Program in Computational Social Science, and Open Research Group, Inc.

August 5, 2019 Tax Policy Research Unit and World Bank

Before we begin

- Me: Richard W. Evans, University of Chicago
- You:
- Training repository: https://github.com/OpenRG/WB-India-2019
- Git installed
- GitHub accounts
- Anaconda distribution Python installed
- Jupyter notebooks

Past year and going forward

In the past 14 months:

- DeBacker and Evans: Simple OG model theory and computation
- Holmer and Frailer: Microsimulation model development

Input/Output

Kallen: Business microsimulation model development

Going forward TPRU will:

- · Calibrate full OG model to India
 - partially in next 3 weeks
- Develop and integrate microsimulation models
 - Already have some models working
 - Will take significant effort to integrate with other models
- Staff gain full mastery of modeling and collaborative process
 - This step will take the longest
 - TPRU has opportunity to lead state orgs

Schedule, Week 1

Day	9-11am (Evans)	4-6pm (DeBacker)
M, Aug 5	Git and GitHub basic,	Numpy, broadcasting,
	intro to Python, IDE's	indexing, pandas,
	and Python workflows,	visualization
	data types, input/output	
W, Aug 7	Object oriented	Optimization
	programming, functions,	(unconstrained,
	docstrings	constrained)
F, Aug 9	3-period lived agent	3-period lived agent
	OG model: theory	OG model: computation

Schedule, Week 2

Day	Topic	
M, Aug 19	Theory and components/modules of OG-USA, down-	
	loading the model, installing packages, setting a policy	
T, Aug 20	Estimation of tax functions from India micro-	
	simulation model, Calibrating lifetime earnings profiles	
W, Aug 21	Calibrating demographics, Calibrating bequests and	
	transfers	
Th, Aug 22	Calibrating labor supply and wealth distribution,	
	calibrating open economy, government closure rule	
F, Aug 23	Ways to run the model, how to change the model,	
	questions/exercises	

Short-run goals

Week 1 (Up to speed)

- Everybody understands Git and GitHub
- Everybody knows how to code in Python
- · Everybody has a similar coding workflow
- Intro to OG models

Week 2 (Learn full OG model and some calibration)

- How to run big OG model
- Tax and earnings
- Demographics, bequests, transfers
- · Calibrating to labor and wealth
- Open economy and gov't debt assumptions

Long-run goals

Medium-term

- Get OG-India calibrated and forecasting
- Integrate household tax microsimulation model

Long-term

- Multiple microsimulation models integrated
- TPRU staff lead core development
- TPRU staff manage collaborative workflow
- TPRU staff train all new collaborators

Opportunity

Most other countries have legacy systems the prevent them from fully adopting modern modeling architecture in state organizations. India has opportunity to lead here.

Slide

Tutorials Git and GitHub PDF

Go through Git and GitHub tutorial.

- Rick posts an issue to the repo
- Do a fork, clone, commit, branch, PR of some change in the repository

Using GitHub repositories

Using GitHub repositories

Git workflow diagram

Collaborative workflow

- GitHub workflow (fork, branch pull request, issues, comments)
- Favorite recent threads
 - Issue #435 "Haircut to the government interest rate"
 - Issue #434 "Large open economy option"
- You can look at Issues to find places to contribute
- You can submit issues

Essential to large scale collaboration...

Unit testing and continuous integration testing allow project participation to scale.

GitHub issues and PR comments

GitHub issues and PR comments

rickecon commented on Jan 8 • edited -

@jdebacker, @kerkphil. OK, I agree that it is the best to set up a perfectly competitive mutual fund industry that takes savings from households and lends it to firms and government. And we can easily set the production function as CES, and just calibrate it to be Cobb-Douglas initially.

But I think that the interest rate wedge between the government borrowing rate r (q,t) and the private rental rate r_t rule should have the following form that includes an indicator function.

$$r_{g,t} = \begin{cases} (1 - \tau_d)r_t - \mu_d & \text{if} \quad r_t \ge \frac{\mu_d}{1 - \tau_d} \\ 0 & \text{if} \quad r_t \in \left[0, \frac{\mu_d}{1 - \tau_d}\right) \\ r_t & \text{if} \quad r_t < 0 \end{cases}$$

This is because I think it makes sense for the wedge to exist only when the private rate is positive (the bottom case). And I don't think it makes sense for the government rate to be negative if the private rate is not negative (middle case). The picture of this interest rate wedge is below. Let me know what you think

GitHub issues and PR comments

Python introduction

Go through the following sections of ACME Python Intro

- Running Python
- iPython
- Python Basics
- Data types
- Control flow tools

Exercises

Do problem 1, 2, 3, 4, 6

Python workflows

Python scripts in text editor + execute from terminal

- Visual Studio Code, Atom, Sublime Text, Vim
- Positive: Most flexible, minimum dependency compatibility issues
- Negative: A little bit cumbersome

Jupyter notebooks

- Positive: Great for teaching, tutorial, testing
- Negative: Not great for implementation

Python IDE (integrated development environment)

- PyCharm (not free)
- Spyder (free with Anaconda)
- Positive: Easy to use, similar to MATLAB
- Negative: Has some dependency/compatibility issues

Python input/output

Tutorials Notebook

Go through Reading data into Python notebook.