第四节 同步时序电路的设计

设计和分析互为反过程:在设计中,应根据具体逻辑问 题,设计出实现这一逻辑功能要求的电路,力求最简。追求 高性价比。

☆ 通过具体例题, 说明设计步骤

例1: 试设计一个 "111"序列检测器 串入X

, 当连接输入三个或三个以上"1"时

, 检测器输出为1, 否则为0

被检测的0,1信号以串行方式输入到检测器输入端。 当输入连续出现3个或3个以上1时,输出为1,否则为0。

根据已知条件:

设输入为X,并以串行方式输入

设输出为Y,并以串行方式输出

X: 1101 1110 0100 ☆连续3个1, 输出为1。

Y: 0000 0110 0000 ☆输入只要是0. 输出为0。

2、 确定原始状态图、状态转换表。

根据文字描述的设计要求,建立原始状态图,形成原始状态转换表。需要确定的三个问题:

☆确定系统的原始状态数,以字母表示。系统有几个状态,需要几级 触发器。

☆根据设计要求,确定每一个状态在现态条件下,状态转换方向,得 出原始状态图。

☆依据原始状态图,进行状态化简。

前两个问题的解决是相互联系的,目前尚无确定的步骤,常采用试凑法,因此应把注意力放在状态图的正确性,不必过分考虑多余状态。确保状态没有遗漏。

2、 确定原始状态图、状态转换表。

① 确定系统状态数 (确保状态没有遗漏)

设: So接收到0以后的状态

S1接收到1个1以后状态。

S2接收到2个1以后状态。

S3接收到3个或3个以上1以后的状态。

共用四个状态 So S1 S2 S3

② 确定每一个状态在规定条件下的转换方向 连续输入3个或3个以上1输出为1,否则为0 S₀是接收0以后状态,再接收0仍停留在S₀ 只要接收1个1,由S₀→S₁,S₁再接收0返回S₀。

连续接收2个1个1,状态转换 S_2 。若再接收0,返回 S_0 。

连续接收3个1个1,状态转换 S_3 。

连续接收3个以上1,停留在 S_3 若再接收0,返回 S_0

由原始状态图作出状态转换表:

状态转换表:以真值表的形式表示电路次态 / 输出,和现态 y^n 及输入X之间的关系。

现态 S_0 ,输入X为0,次态为 S_0 ,输出为0。

③ 状态化简

检查原始状态图、表中的状态是否有 多余状态, 即是否有等价状态。若有等价 状态,可以进行化简,得出最简的状态图、 表。

什么是等价状态:

若两个状态在相同的输入下, 有相同的 输出, 而且转换到相同的状态称为等价。

两个状态等价时:

对于任意的输入序列,均 能产生相同的输出序列, 即对

从状态转换表中发现:

y n	0	1
S ₀	S ₀ /0	S ₁ /0
S ₁	S ₀ /0	S ₂ /0
S ₂	S ₀ /0	S ₃ /1
S_3	S ₀ /0	S ₃ /1

$$y^{n+1}/Y$$

现态 y^n 为 S_2 时, $\exists X=0$,次态/输出均为 $S_0/0$, $\exists X=1$,次态/输出均为 $S_2/1$ 。

所以 S_2 、 S_3 成为等价,从 S_2 输入,输出关系影响完全一样。S3中去掉S3,即,凡出现S3的地方 都用S2代替,最后得到最简状态 转换图、和状态表。

最简状态转换图、和状态表。

y ⁿ	0	1
S_0	$S_0/0$	$S_1/0$
S_1	$S_0/0$	$S_2/0$
S_2	$S_0/0$	$S_2/1$

 v^{n+1}/Y

3、状态分配:

时序电路的状态是用触发器状态的不同组合来表示的,因此首先确定触发器的级数n,即用几个触发器。

(a) 选择触发器的级数的原则:

n个触发器共有 2^n 个状态组合,要获得M个状态组合,必须取 $2^{n-1} < M \le 2^n$

本例状态数为3, M=3, $\mathbb{D}^{21} < 3 \leq 2^2$

取n=2,表示用两级触发器

 $2^2 = 4$ 共有四种状态: 00, 01, 10, 11

(b) 如何对选定的二级触发器 4 种状态进行分配

☆ 最后的逻辑图最简

分配的原则是:

☆ 多余状态不产生死循环 (只用三种状态)

如果状态选择不合适, 出现死循环, 就要修改设计。

本例选: $S_0 = 00$, $S_1 = 01$, $S_2 = 10$ 。代入状态化简后状态转 换图、表。将字母形式变换为代码形式,得出代码形式的状态 转换图(表)。

给逻辑变量赋值以后的代码形式状态转图、表。

X Q_2Q_1	0	1
00	00/0	01/0
01	00/0	10/0
10	00/0	10/1

$$Q_2^{n+1}, Q_1^{n+1}/Y$$

4、选择触发器类型 利用特征方程求JK触发器的激励方程

$$Q_{2}^{n+1}Q_{1}^{n+1}/Y$$
 X
 $Q_{2}Q_{1}$
 0
 1
 00
 $00/0$
 $01/0$
 01
 $00/0$
 $10/0$
 10
 10
 10

Q_2	Q_1	01	11	10							
^X 0	0	0	X	0							
1	0	1	X	1							
Q_2^{n+1}											

01 11 10

 Q_2Q_1

$$Q_2^{n+1} = XQ_1 + XQ_2 = XQ_1(Q_2 + \overline{Q}_2) + XQ_2$$

$$= XQ_1\overline{Q}_2 + XQ_2$$

$$Q_1^{n+1} = X\overline{Q}_2\overline{Q}_1 = X\overline{Q}_2\overline{Q}_1 + \overline{1}Q_1$$

$$J_2 = XQ_1 \quad J_1 = X\overline{Q_2}$$

$$K_2 = \overline{X}$$

$$K_1 = 1$$

$$Y = XQ_2$$

4、选择触发器类型

☆ 用同样的方法也可以求D、T、RS触发器的激励输入。

$$RS: \stackrel{R_2=\overline{X}}{S_2=XQ_1}, \stackrel{R_1=Q_1}{S_1=XQ_2}\overline{Q_1},$$
输出 $Y=XQ_2$
 $D: \stackrel{D_2=X}{D_1=XQ_2}\overline{Q_1}\overline{Q_2},$ 输出 $Y=XQ_2$
 $T: \stackrel{T_2=XQ_1+\overline{X}Q_2}{T_1=XQ_2+Q_1},$ 输出 $Y=XQ_2$

比较四种触发器的激励输入,可以看出采用JK 触发器设计的111检测电路最简单。

5、检查偏离状态

检查是否有孤立状态(死循环)即:是否具有自启 动能力,这一步实际上已经变为时序电路的分析: (未

指定状态Q₂Q₁=11)

 $J_2 = XQ_1$ $J_1 = XQ_2$

由已知激励函数求次态:

 $K_2 = \overline{X}$ $K_1 = 1$ $Y = XQ_2$

00,01是指定状 态,所以 $S_3 = 11$ 为非 孤立状态, 电路不存 在死循环, 因而是具 有自启动能力的三个 "1" 检测器。

X	Q_2	Q_1	J_2	K_2	J_1	K_1	Q_2^{n+1}	Q_1^{n+1}	Y
0	1	1	0	1	0	1	0	0	0
1	1	1	1	0	0	1	1	0	1

从分析中可知:当现态 $Q_2Q_1 = 11$ 时:

输入
$$X = 0$$
 次态 $Q_2^{n+1}Q_1^{n+1} = 00$

输入
$$X = 1$$
 次态 $Q_2^{n+1}Q_1^{n+1} = 10$

6、画出完全状态转换图

1/1

两个触发器共有四种完全状态 . 只用了其中三个状态, 由于 干扰等原因使触发器进入未指 定状态11, 在输入X的作用下电 路状态自动进入主循环, 所以 叫做具有自启动特性。

7、画出逻辑电路图

采用JK触发器和与非门实现

例2:用JK触发器设计BCD8421码二 - 十进制加法计数器

解:文字命题已明确告诉有十个状态,且逢十进一

(1) 建立状态转换图 (表)

令So为初始状态,输入一个计数脉冲进S1,再输入一个CP进S2,…。当输入9个CP计数器计满值,第十个CP输入计数器返回初始So,并输出一个进位脉冲信号

(2) 状态分配

由于计数M=10, 2³<10<2⁴ 所以n=4 (4个触发器) 2⁴=16代码形式, 取前十种赋值S₀~S₉。

 \Rightarrow : S₀=0000, ---, S₉=1001_o

(3) 选择触发器类型,求激励函数及电路输出

Q_4	Q_3	Q_2	Q_1	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z	$\mathcal{Q}_{\scriptscriptstyle{4}}^{\scriptscriptstyle{n+1}} \mathcal{Q}_{\scriptscriptstyle{4}} \mathcal{Q}_{\scriptscriptstyle{3}}$
0	0	0	0	0	0	0	1	0	Q_2Q_1 00 01 11 10
0	0	0	1	0	0	1	0	0	00 × 1
0	0	1	0	0	0	1	1	0	01 ×
0	0	1	1	0	1	0	0	0	11 1 × ×
0	1	0	0	0	1	0	1	0	$10 \times \times$
0	1	0	1	0	1	1	0	0	
0	1	1	0	0	1	1	1	0	$Q_2^{n+1}Q_4Q_3$
0	1	1	1	1	0	0	0	0	Q_2Q_1 00 01 11 10
1	0	0	0	1	0	0	1	0	00 ×
1	0	0	1	0	0	0	0	1	01 1 ×
Z	Q_4Q_3								11 × ×

$Q_4^{n+1}Q_4$	Q_3				$Q_3^{n+1}Q_4$	${f Q}_3$			
Q_2Q_1	<u>00</u>	01	11	10	Q_2Q_1	00	01	11	10
00			×	1	00		1	×	
01			×		01		1	×	
11		1	X	×	11	1		×	X
10			×	X	10		1	X	×

$Q_1^{n+1}Q_4Q_3$												
Q_2Q_1	<u>0</u> 0	01	11	10								
00	1	1	×	1								
01			×									
11			×	×								
10	1	1	X	X								

Q_2Q_1	Ŏ0	01	11	10
00			×	
01			×	1
11			×	×
10			×	×

$$\mathbf{Q}_{4}^{n+1} = \overline{\mathbf{Q}}_{1} \mathbf{Q}_{4} + \mathbf{Q}_{3} \mathbf{Q}_{2} \mathbf{Q}_{1}
\mathbf{Q}_{3}^{n+1} = \mathbf{Q}_{2} \mathbf{Q}_{1} \overline{\mathbf{Q}}_{3} + \overline{\mathbf{Q}}_{1} \mathbf{Q}_{3} + \overline{\mathbf{Q}}_{2} \mathbf{Q}_{3}
\mathbf{Q}_{2}^{n+1} = \overline{\mathbf{Q}}_{4} \mathbf{Q}_{1} \overline{\mathbf{Q}}_{2} + \overline{\mathbf{Q}}_{1} \mathbf{Q}_{2}$$

$$\mathbf{Q}_1^{n+1} = \overline{\mathbf{Q}}_1$$

$$Z = Q_4 Q_1$$

(4) 检验是否有自启动能力

根据已求出的触发器激励函数,及输出Z,列出偏离状态 1010~1111的状态真值表,分析偏离状态能否自动进入主循环。如 能自动进入主循环,说明电路具有自启动能力。否则要修改设计。

(变设计为分析)

偏离状态为 $1010 \rightarrow 1111$,根据已求出的触发器激励 $J_2 = Q_4 Q_1$

函数和Z,列出偏离状态转换真值表:

Q_4	Q_3	Q_2	Q_1	$J_{\scriptscriptstyle 4}$	K_4	J_3	K_3	J_2	K_2	J_1	K_1	Q_4^{n+1}	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+}	Z
1	0	1	0 -	0	0	0	0	0	ф	1	1	1	0	1	1	0
1	0	1	1-	0	1	1	1	0	1	1	+	0	1	0	0	1
1	1	0	0-	0	0	0	0	0	0	1	+	1	1	0	1	0
1	1	0	1-	0	1	0	0	0	1	1	4	0	1	0	0	1
1	1	1	0 -	0	0	0	0	0	0	1	1	1	1	1	1	0
1	1	1	1-	1	1	1	1	0	1	1	1	0	0	0	0	1

结论:是具有自启动能力二-十进制计数器。

$$J_2 = \overline{Q_4}Q_1$$

 $J_1 = K_1 = 1$

$$K_2 = Q_1$$

$$J_3 = K_3 = Q_2 Q_1$$

$$J_4 = Q_3 Q_2 Q_1$$

$$K_4 = Q_1$$

$$Z = Q_4 Q_1$$

检查结果:偏离 状态都可以进入 主循环。

$$1010 {\longrightarrow} 1011 {\longrightarrow} \textcolor{red}{\bullet} \textcolor{blue}{0100}$$

$$1100 \rightarrow 1101 \rightarrow 0100$$

$$1110 \rightarrow 1111 \rightarrow 0000$$

(6) 画出逻辑电路图

(%)

