EXCEL COLLEGE OF ENGINEERING(AUTONOMOUS)

Mambakkam - Medavakkam Main Rd, Ponmar, Chennai, Tamil
Nadu 600127

<u>DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING.</u> WEB

PHISHING DETECTION (ASSIGNMENT 3)

DATE: 06-11-2022

PROBLEM: TO PERFORM ABALONE AGE PREDICTION

NAME: Ningombam Chingkheinganba

OUTPUT:

SCREENSHOTS:

1.Download the dataset

2. Load the dataset into the tool

In [1]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np

In [2]: data=pd.read_csv("abalone.csv")
 data.head()

Out[2]: Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings 0.365 0.095 0.5140 0.2245 0.1010 0.150 0.265 0.090 0.2255 0.0995 0.0485 **2** F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.210 9 0.365 0.125 0.5160 0.2155 0.155 3 M 0.440 0.1140 4 I 0.330 0.255 0.080 0.2050 0.0895

We have to add the "Age" column using "Rings" data. We just have to add '1.5' to the ring data

```
In [3]: Age=1.5+data.Rings
    data["Age"]=Age
    data=data.rename(columns = {'Whole weight':'Whole_weight', 'Shucked weight': 'Shucked_weight', 'Viscera_weight', 'Shell_weight': 'Shell_weight'})
Out[3]:
              Sex Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age
                               0.365 0.095
                                                                                     0.1010
                                                                                                   0.150 16.5
                                                    0.2255
                                                                     0.0995
                                                                                     0.0485
                                                                                                         8.5
                M
                     0.350
                               0.265
                                       0.090
                                                                                                   0.070
                     0.530
                               0.420
                                       0.135
                                                    0.6770
                                                                     0.2565
                                                                                     0.1415
                                                                                                   0.210 10.5
                     0.440
                               0.365
                                       0.125
                                                                     0.2155
                                                                                     0.1140
                                                                                                   0.155 11.5
                                                                     0.0895
                                                                                                   0.055 8.5
                 0.330
                               0.255 0.080
                                                    0.2050
                                                                                     0.0395
```

3. Perform Below Visualizations

Univariate Analysis

```
In [7]: sns.displot(data["Age"], color='red')
Out[7]: <seaborn.axisgrid.FacetGrid at 0x204e94d81f0>
```



```
In [8]: sns.histplot(y=data.Age,color='blue')
Out[8]: <AxesSubplot:xlabel='Count', ylabel='Age'>

30
25
20
```



```
In [9]: sns.histplot(x=data.Age,color='yellow')
Out[9]: <AxesSubplot:xlabel='Age', ylabel='Count'>
```


In [10]: sns.boxplot(x=data.Age,color='green')

Out[10]: <AxesSubplot:xlabel='Age'>

In [11]: sns.countplot(x=data.Age)

Out[11]: <AxesSubplot:xlabel='Age', ylabel='count'>

Bi-Variate Analysis

In [12]: sns.barplot(x=data.Height,y=data.Age)

Out[12]: <AxesSubplot:xlabel='Height', ylabel='Age'>

In [13]: sns.lineplot(x=data.Age,y=data.Height, color='orange')

Out[13]: <AxesSubplot:xlabel='Age', ylabel='Height'>

In [14]: sns.scatterplot(x=data.Age,y=data.Height,color='black')

Out[14]: <AxesSubplot:xlabel='Age', ylabel='Height'>

In [15]: sns.pointplot(x=data.Age, y=data.Height, color="pink")

Out[15]: <AxesSubplot:xlabel='Age', ylabel='Height'>

In [16]: sns.regplot(x=data.Age,y=data.Height,color='red')

Out[16]: <AxesSubplot:xlabel='Age', ylabel='Height'>

Multi-Variate Analysis

4. Perform descriptive statistics on the dataset

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	M	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
max	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them \P

data.isnull().su	ım()
Sex	0
Length	0
Diameter	0
Height	0
Whole_weight	0
Shucked_weight	0
Viscera_weight	0
Shell_weight	0
Age	0
dtype: int64	

6. Find the outliers and replace them outliers

```
In [20]: outliers=data.quantile(q=(0.25,0.75))
    outliers
```

Out[20]:

	Length	Diameter	Height	whole_weight	Snucked_weight	viscera_weight	Shell_weight	Age
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	9.5
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	12.5

```
In [21]: a = data.Age.quantile(0.25)
b = data.Age.quantile(0.75)
c = b - a
lower_limit = a - 1.5 * c
data.median(numeric_only=True)
```

Out[21]: Length 0.5450 Diameter 0.4250 Height 0.1400 Whole_weight 0.7995 Shucked_weight 0.3360 Viscera_weight 0.2340 Shell_weight 0.2340 Age dtype: float64

```
In [22]: data['Age'] = np.where(data['Age'] < lower_limit, 7, data['Age'])
sns.boxplot(x=data.Age,showfliers = False)</pre>
```

Out[22]: <AxesSubplot:xlabel='Age'>

7. Check for Categorical columns and perform encoding

In [23]: data.head()

Out[23]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

In [24]: from sklearn.preprocessing import LabelEncoder

lab = LabelEncoder()
data.Sex = lab.fit_transform(data.Sex)
data.head()

Out[24]:

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	85

8. Split the data into dependent and independent variables

```
In [25]: y = data["Sex"]
        y.head()
Out[25]: 0
             0
         Name: Sex, dtype: int32
In [26]: x=data.drop(columns=["Sex"],axis=1)
Out[26]:
           Length Diameter Height Whole_weight Shucked_weight Viscera_weight Shell_weight Age
                    0.365 0.095
         1 0.350
                    0.265 0.090
                                     0.2255
                                                  0.0995
                                                               0.0485
                                                                           0.070 8.5
                                                0.2565
                                  0.6770
                                                               0.1415
         2 0.530 0.420 0.135
                                                                          0.210 10.5
         3 0.440 0.365 0.125
                                     0.5160
                                                   0.2155
                                                               0.1140
                                                                           0.155 11.5
         4 0.330 0.255 0.080 0.2050
                                                               0.0395 0.055 8.5
```

9. Scale the independent variables

```
In [27]: from sklearn.preprocessing import scale
         X_Scaled = pd.DataFrame(scale(x), columns=x.columns)
         x_Scaled.head()
Out[27]:
              Length Diameter
                               Height Whole_weight Shucked_weight Viscera_weight Shell_weight
         0 -0.574558 -0.432149 -1.064424 -0.641898 -0.607685 -0.726212 -0.638217 1.577830
          1 -1.448986 -1.439929 -1.183978
                                       -1.230277
                                                       -1.170910
                                                                 -1.205221
                                                                               -1.212987 -0.919022
         2 0.050033 0.122130 -0.107991 -0.309469
                                                       -0.463500
                                                                    -0.356690
                                                                               -0.207139 -0.294809
          3 -0.699476 -0.432149 -0.347099
                                         -0.637819
                                                       -0.648238
                                                                     -0.607600
                                                                               -0.602294 0.017298
                                                       -1.215968 -1.287337
          4 -1.615544 -1.540707 -1.423087 -1.272086
                                                                               -1.320757 -0.919022
```

10. Split the data into training and testing

Name: Sex, dtype: int32

```
In [28]: from sklearn.model_selection import train_test_split
         X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_Scaled, y, test_size=0.2, random_state=0)
In [29]: X_Train.shape,X_Test.shape
Out[29]: ((3341, 8), (836, 8))
In [30]: Y_Train.shape,Y_Test.shape
Out[30]: ((3341,), (836,))
In [31]: X_Train.head()
Out[31]:
                                 Height Whole_weight Shucked_weight Viscera_weight Shell_weight
                Length Diameter
         3141 -2.864726 -2.750043 -1.423087 -1.622870 -1.553902 -1.583867 -1.644065 -1.543234
                                                         -1.551650
                                                                      -1.565619
         3521 -2.573250 -2.598876 -2.020857
                                           -1.606554
                                                                                 -1.626104 -1.387181
          883 1.132658 1.230689 0.728888 1.145672 1.041436 0.286552 1.538726 1.577830
         3627 1.590691 1.180300 1.446213
                                            2.164373
                                                          2.661269
                                                                      2.330326
                                                                                 1.377072 0.017298
         2106 0.591345 0.474853 0.370226 0.432887 0.255175 0.272866 0.906479 1.265723
In [32]: X_Test.head()
Out[32]:
                Length Diameter
                                 Height Whole_weight Shucked_weight Viscera_weight Shell_weight
          668 0.216591 0.172519 0.370226 0.181016 -0.368878 0.569396 0.690940 0.953617
          1580 -0.199803 -0.079426 -0.466653
                                           -0.433875
                                                         -0.443224
                                                                     -0.343004
                                                                                -0.325685 -0.606915
         3784 0.799543 0.726798 0.370226 0.870348 0.755318 1.764639 0.565209 0.329404
          463 -2.531611 -2.447709 -2.020857
                                           -1.579022
                                                         -1.522362
                                                                      -1.538247
                                                                                 -1.572219 -1.543234
         2615 1.007740 0.928354 0.848442 1.390405 1.415417
                                                                     1.778325 0.996287 0.641511
In [33]: Y_Train.head()
Out[33]: 3141
         3521
         3627
```

```
In [35]: from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10,criterion='entropy')

In [36]: model.fit(x_Train,Y_Train)

Out[36]: RandomForestClassifier(criterion='entropy', n_estimators=10)

In [37]: y_predict = model.predict(x_Test)
```

In [38]: y_predict_train = model.predict(X_Train)

12. Train the Model

13.Test the Model

```
In [41]: print('Testing accuracy: ',accuracy_score(Y_Test,y_predict))
Testing accuracy: 0.5526315789473685
```

14. Measure the performance using Metrics

```
In [43]: print(classification_report(Y_Test,y_predict))

precision recall f1-score support
```

0	0.42	0.46	0.44	249
1	0.74	0.77	0.76	291
2	0.47	0.41	0.44	296
accuracy			0.55	836
macro avg	0.54	0.55	0.55	836
weighted avg	0.55	0.55	0.55	836

*******THANKING

YOU*********************

