Modelagem e Simulação

Segundo Trabalho

Arthur do Prado Labaki - 11821BCC017

08-10, 2022

GBC065

Resolução do item 1)

O número máximo de clientes possíveis no sistema é um, com isso, os estados discretos alcançáveis pelo sistema é dois, sendo 'S0' sem nenhum cliente no sistema e 'S1' com um único cliente.

Começando no estado S0, chegar 0 ou 1 cliente está relacionada a variável aleatória Yn, sendo P(Yn=0)=0.4 continuando em S0 (0 clientes) ou P(Yn=1)=0.6 que vai para o estado S1 (1 cliente).

Em S1, terminar o atendimento de 0 ou um cliente está relacionada com a variável aleatória Xn, sendo P(Xn=0)=0.5, continuando em S1 ou P(Xn=1)=0.5, voltando para o estado S0.

Grafo das Transições

0.4 S0 0.6 S1 0.5

Matriz Estocástica

	S0	S1
S0	0.4	0.6
S1	0.5	0.5

Resolução do item 2)

Os vértices do grafo representa cada um dos jogadores, totalizando 5 estados de P1 até P5, e também é suposto que o jogo comece no jogador 1 (P1).

Ao jogar o dado, se cair um número impar (1, 3 ou 5 com probabilidade de 1/2 ou 0.5), o dado é passado para a pessoa da esquerda (no caso de P1 é o P2).

Se o dado cair nos números 2 ou 4 (com probabilidade de 1/3 ou 0.333), o dado é entregue para a pessoa da direita (no caso de P1 é P5).

Por fim, se cair no número 6 (probabilidade de 1/6 ou 0.667), o jogador mantém o dado. Todos os jogadores seguem as mesmas regras, continuando o jogo.

Grafo das Transições

Matriz Estocástica

	P1	P2	Р3	P4	P5
P1	1/6	1/2	0	0	1/3
P2	1/3	1/6	1/2	0	0
P3	0	1/3	1/6	1/2	0
P4	0	0	1/3	1/6	1/2
P5	1/2	0	0	1/3	1/6