

Matemática Discreta Lista 1

Prof. Americo Barbosa da Cunha Junior

americo@ime.uerj.br

ATENÇÃO: A solução de cada questão deve ser desenvolvida de maneira clara e objetiva. Não basta fazer contas, o raciocínio deve ser explicado através de um texto coerente. Em outras palavras, mais importante que encontrar a resposta correta é explicar como você chegou nessa resposta.

Exercício 1

Seja $U = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 15\}.$

Encontre o complementar, com relação ao universo U, dos seguintes conjuntos:

- $A = \{2, 4, 8, 10\}$
- $B = \{x \in U \mid \mathbf{x} \in \mathbf{impar}\}\$
- $C = \{x \in U \mid x \text{ \'e m\'ultiplo de 5}\}$
- $D = \{1, 5, 7, 11\}$

Exercício 2

Dados os conjuntos $A = \{1, 3, 5, 7, 9\}, B = \{1, 2, 3, 4, 5, 6\} \in C = \{5, 6, 7, 8, 9, 10\},$ determine:

 $\bullet \ A \cup B$

A \ B

 \bullet $C \setminus A$

 \bullet $A \cup C$

 \bullet $B \setminus A$

• $B \setminus C$

 \bullet $B \cup C$

 \bullet $A \setminus C$

 \bullet $C \setminus B$

Exercício 3

Considere $A = \{3, 5, 7, 9\}$, $B = \{2, 4, 6, 8, 9\}$ e $D = \{9\}$, subconjuntos do universo

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$$

Determine:

• $A \cup (B \cap D)$

• $(B \cap D) \cup D^c$

• $A^c \cup B^c$

- $\bullet \ (A \cup B) \cap (A \cup D)$
- $(A \cup B)^c$

• $B \setminus (A \setminus D)$

• $(A \cap B)^c$

• $A^c \cap B^c$

Exercício 4

Sejam P_1 , P_2 , Q_1 e Q_2 propriedades referentes a elementos de um conjunto universo U. Suponha que P_1 e P_2 esgotam todos os casos possíveis (ou seja, um elemento qualquer de U ou tem propriedade P_1 ou tem P_2). Suponha ainda que Q_1 e Q_2 sao incompatíveis (isto é, excluem-se mutualmente). Suponha, finalmente, que $P_1 \Longrightarrow Q_1$ e $P_2 \Longrightarrow Q_2$. Prove que valem as recíprocas: $Q_1 \Longrightarrow P_1$ e $Q_2 \Longrightarrow P_2$.

Exercício 5

Sejam X_1, X_2, Y_1 e Y_2 subconjuntos do conjunto universo U. Suponha que $X_1 \cup X_2 = U$ e $Y_1 \cap Y_2 = \phi$, que $X_1 \subset Y_1$ e que $X_2 \subset Y_2$. Prove que $X_1 = Y_1$ e $X_2 = Y_2$.

Exercício 6

Compare os dois últimos exercícios em termos de clareza e simplicidade dos enunciados. Mostre que qualquer um deles pode ser resolvido pelo outro.

Exercício 7

Ainda com relação aos exercícios anteriores, seria válido substituir as implicações $P_1 \Longrightarrow Q_1$ e $P_2 \Longrightarrow Q_2$ na hipótese por suas recíprocas $Q_1 \Longrightarrow P_1$ e $Q_2 \Longrightarrow P_2$?

Exercício 8

Escreva as implicações lógicas que correspondem a resoluca
o da equação $\sqrt{x} + 2 = x$, veja quais são reversíveis e explique o aparecimento de raízes estranhas. Faca o mesmo com a equação $\sqrt{x} + 3 = x$.

Exercício 9

Mostre que, para todo m > 0, a equação $\sqrt{x} + m = x$ tem exatamente uma raiz.

Exercício 10

Expressões tais como "para todo" e "qualquer que seja" são chamadas quantificadores e aparecem em sentenças dos tipos:

- (1) "Para todo x, é satisfeita a condição P(x)";
- (2) "Existe algum x que satisfaz a condição P(x)".
- a) Sendo A o conjunto de objetos x (de um certo conjunto universo U) que satisfazem a condicao P(x), escreva as sentenças (1) e (2) acima, usando a linguagem dos conjuntos.
 - b) Quais as negações de (1) e (2)?
 - c) Para cada sentença abaixo diga se ela e verdadeira ou falsa e forme sua negação:
 - Existe um real x tal que $x^2 = -1$
 - Para todo número inteiro n, vale $n^2 > n$
 - Para todo número real x, tem-se x > 1 ou $x^2 < 1$
 - Para todo número real x existe um número natural n tal que n > x
 - Existe um número natural n tal que, para todo número real x, tem se n > x

Exercício 11

Considere os conjuntos abaixo:

- F = conjunto de todos os filósofos
- M = conjunto de todos os matemáticos
- C = conjunto de todos os cientístas
- P = conjunto de todos os professores
- a) Exprima cada uma das afirmativas abaixo usando a linguagem de conjuntos:
- 1. Todos os matematícos são cientístas
- 2. Alguns matemáticos são professores
- 3. Alguns cientístas são filósofos
- 4. Todos os filósofos são cientístas ou professores
- 5. Nem todo professor é cientísta
- b) Faca o mesmo com as afirmativas abaixo:
- 6. Alguns matemáticos são filósofos
- 7. Nem todo filósofo é cientísta
- 8. Alguns filósofos são professores
- 9. Se um filósofo não é matemático, ele é professor
- 10. Alguns filósofos são matemáticos
- c) Tomando as 5 primeiras afirmativas como hipóteses, verifique quais das afirmativas (6ª em diante), são necessariamente verdadeiras.

Exercício 12

Sejam A, B e C conjuntos. Determine uma condição necessária e suficiente para que se tenha $A \cup (B \cap C) = (A \cup B) \cap C$.

Exercício 13

Prove que se um quadrado perfeito é par então sua raiz quadrada é par e que se um quadrado perfeito é ímpar então sua raiz quadrada é ímpar.

Exercício 14

Prove o teorema de Cantor: se A é um conjunto e P(A) é o conjunto das partes de A, não existe uma funçao $f:A\to P(A)$ que seja sobrejetiva.

Sugestão: Suponha que exista uma tal funcão f e considere $X = \{x \in A : x \notin f(x)\}$.

Gabarito da Lista 1

ATENÇÃO: As repostas e soluções apresentadas a seguir são para auxiliar na resolução desta lista, mas não estão isentas de possíveis erros de digitação ou mesmo de desenvolvimento. Use o gabarito com cautela, exercitando sempre o seu senso crítico. Se encontrar algum erro, por favor, reporte ao professor.

Resposta do Exercício 1

- $A^c = \{1, 5, 7, 11, 13, 15\}$
- $B^c = \{2, 4, 8, 10\}$
- $C^c = \{1, 2, 4, 7, 8, 11, 13\}$
- $D^c = \{2, 4, 8, 10, 13, 15\}$

Resposta do Exercício 2

- $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$ $A \setminus B = \{7, 9\}$

- $C \setminus A = \{6, 8, 10\}$
- $A \cup C = \{1, 3, 5, 6, 7, 8, 9, 10\}$ $B \setminus A = \{2, 4, 6\}$
- $B \setminus C = \{1, 2, 3, 4\}$

- $B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $A \setminus C = \{1, 3\}$

• $C \setminus B = \{7, 8, 9, 10\}$

Resposta do Exercício 3

- $\bullet \ \ A \cup (B \cap D) = A \\ \bullet \ \ (B \cap D) \cup D^c = U \\ \bullet \ \ A^c \cup B^c = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- $(A \cup B) \cap (A \cup D) = A$
- $(A \cup B)^c = \{1\}$
- $B \setminus (A \setminus D) = B$
- $(A \cap B)^c = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $A^c \cap B^c = \{1\}$

As soluções dos demais exercícios estão disponíveis na referência [2].

Créditos pelos Exercícios: Os exercícios 1 até 3 foram adaptados das listas do Prof. Augusto Cesar de Castro Barbosa (UERJ). Os demais exercícios foram extraídos na integra da referência [1].

Referências

- [1] E. L. Lima, P. C. P. Carvalho, E. Wagner e A. C. Morgado, A Matemática do Ensino Médio, Volume 1, SBM, 11^a edição, 2016
- [2] E. L. Lima, P. C. P. Carvalho, E. Wagner e A. C. Morgado, A Matemática do Ensino Médio, Volume 4, SBM, 2^a edição, 2016