Chapter 14

$$(Q^*) = \sqrt{\frac{2DS}{H}}$$
 $POQ interval = \frac{Q^*}{Average demand per week}$

Chapter 15

$$Average\ Completion\ Time = \frac{sum\ of\ total\ flow\ time}{number\ of\ jobs}$$

$$Utilization = \frac{total\ job\ work\ (processing)time}{sum\ of\ total\ flow\ time}$$

$$Average \ \textit{Number of Jobs in The System} = \frac{\textit{sum of total flow ime}}{\textit{total job work (processing)time}}$$

$$Average\ Job\ Lateness = \frac{total\ late\ days}{number\ of\ jobs}$$

 $Job\ Lateness = Max\{0, yesterday + flow\ time - due\ date\}$

$$CR = \frac{due \ date - today's \ date}{work \ (lead) \ time \ remaining}$$

Chapter 12

$$Q^* = \sqrt{\frac{2DS}{H}}$$

Expected Number of orders = $\frac{D}{Q^*}$

Expected Time Between Orders = $\frac{\text{\# of working days}}{N}$

$$ROP = D * L + SS$$

$$TC = \frac{D}{Q}S + \frac{Q}{2}H + PD$$

$$Q_P^* = \sqrt{\frac{2DS}{H[1 - (d/p)]}}$$

Number of Production Runs = $\frac{D}{Q_{*}^{*}}$

Time Between Runs = $\frac{\text{Number of working days}}{\text{Number of Production Runs}}$

$$MAX inventory = Q \left[1 - \left(\frac{d}{n}\right)\right]$$

$$MAX \ inventory = \ Q \ [1 - (\frac{d}{p})] \qquad \qquad TC = \frac{D}{Q}S + \frac{Q}{2} \left[1 - \left(\frac{d}{p}\right)\right] \ H + PD$$

$$Q^* = \sqrt{\frac{2DS}{IP}}$$

$$TC = \frac{D}{Q}S + \frac{Q}{2}H + PD$$

Probabilistic models

$$ROP = d * L + ss$$

ROP for unknown demand = Expected demand during lead time + $Z\sigma_{dLT}$

ROP for variable demand and constaint lead time = (Average daily demand * Lead time) + $Z\sigma_{dLT}$

$$\sigma_{dLT} = \sigma_d \sqrt{Lead\ time}$$

ROP for variable lead time and constatnt demand

= (Daily demand * Average lead time) +
$$Z$$
 * Daily demand * σ_{LT}

ROP for both variable demand and lead time = (Average daily demand * Average lead time) + $Z * \sigma_{dLT}$

$$\sigma_{dLT} = \sqrt{(Average\ lead\ time*\sigma_d^2) + (Average\ daily\ demand)^2*\sigma_{LT}^2}$$

$$C_s = Unit Price - Unit cost$$

 $C_o = Unit\ Cost - Salvage\ Value$

Service Level =
$$\frac{C_s}{C_s + C_o}$$

Optimal Quantity = $\mu + Z\sigma$

Chapter 17

$$R_s = R_1 * R_2 * ... * R_n$$

$$FR(\%) = \frac{number\ of\ failures}{number\ of\ units\ tested} * 100\%$$

$$FR(N) = \frac{number\ of\ failures}{number\ of\ units\ hours\ of\ operation\ time}$$

$$MTBF = \frac{1}{FR(N)}$$

 $R_s = probability \ of \ first \ component \ working + [probability \ of \ second \ component \ working]$

* probability of needing second component

Tables of the Normal Distribution

Park Bridge Constant										
Probability Content from -oo to Z										
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1		0.5438								
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8		0.7910								
0.9		0.8186								
1.0		0.8438								
1.1		0.8665								
1.2		0.8869								
1.3		0.9049								
1.4		0.9207								
1.5		0.9345								
1.6		0.9463								
1.7		0.9564								
1.8		0.9649								
1.9		0.9719								
2.0		0.9778								
2.1		0.9826								
2.2		0.9864								
2.3		0.9896								
2.4		0.9920								
2.5		0.9940								
2.6		0.9955								
2.7		0.9966								
2.8		0.9975								
2.9		0.9982								
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990