Dashboard & Navigation

Post-Login Landing (Dashboard)

Primary Actions (cards/buttons):

- 1. Design by Types
- 2. Design Check
- 3. Critical & Permissible Stress-Strain Analysis
- 4. Multilayer Linear Elastic Analysis

Global Nav: Home | New Project | Projects | Reports | Guide

After selection the primary cards take the project details:

Project Name*	Four-Lane NH-65 Upgrade
Client / Concessionaire	ABC Infra Constructions Pvt. Ltd.
Project ID / Code	NH65-BBSR-2025-07
Highway / Road Name	National Highway-65
Chainage From (km)	42+500
Chainage To (km)	67+800
Total Length (km)	25.3
State / Region	Odisha, India
Type of Pavement	Text
Consultant / Designer	XYZ
Remarks / Notes	Widening and strengthening of existing 2-lane to 4-lane divided carriageway with provision for future 6-lane expansion.

Back and Next buttons at the bottom

If Design by Types is selected...

Design by Types (Selector)

Cards (exact labels):

- 1. Bituminous Surface Course with Granular Base and Sub-base
- 2. Bituminous Surface Course with CTSB, CTB and Granular Crack Relief Layer (CRL)
- 3. Bituminous Surface Course with CTSB, CTB and SAMI

- Bituminous Surface Course with CTSB and Emulsion/Foam Bitumen Stabilised RAP / Virgin Aggregate
- 5. Bituminous Surface Course with GSB, CTB and Granular Crack Relief Layer (CRL)
- 6. Bituminous Surface Course with CTSB and Granular Base Course
- 7. Bituminous Surface Course with Geogrids and/or Geocells in Base and/or Sub-base Course
- 8. Bituminous Surface Course with CTSB and Reinforced Granular Base Course

Card click → opens the corresponding Type Form (detailed below). Show Back and Next actions at the bottom of each Type Form; Next remains disabled until required fields are valid.

Common UI/UX Conventions (applies to all Type Forms)

Field types & validation

- Numeric input: reject non-numeric, allow decimals where relevant, enforce min constraints noted below.
- Dropdowns: show the specified fixed options.
- o Checkboxes: boolean (1 if checked, 0 if unchecked).
- Units: always show to the right of the field label (e.g., "(MPa)", "(%)", "(m)", "(Rs/Cumm)").
- o Errors: inline red helper text; disable **Next** when invalid.

"Calc" buttons

- Appear to the right of the associated field.
- o On click: open a context popup or apply rule-based default as specified.
- If a popup computes a final value, write back into the bound variable and close popup.
- Design Traffic computation popup (shared where specified)

Computation of Design Traffic CVPD Two-way After Construction Lane Distribution Factor (%) Vehicle Damage Factor Design Period (years) Annual Growth Rate of CVs (%)

o Inputs:

- CVPD two-way after construction → cvpd (numeric > 0)
- Lane Distribution Factor (%) → Idf (as percent; convert to fraction internally)

 Helper popup "Select Road Type for Lane Distribution Factor" (radio):

- Single Carriageway = 100%
- Intermediate Lane = 75%
- Two-lane Single Carriageway = 50%
- Four-lane Single Carriageway = 40%
- Dual Two-lane Carriageway = 75%
- Dual Three-lane Carriageway = 60%
- Dual Four-lane Carriageway = 45%
- Store ldf = selected_value / 100.
- Vehicle Damage Factor → vdf (numeric > 0). Provide an "Indicative
 VDF Calculation" helper popup

Initial (Two-Way) Traffic Volume in Terms of Commercial Vehicles Per Day	Terrain		
	Rolling/Plain	Hilly	
0-150	1.7	0.6	
150-1500	3.9	1.7	
More than 1500	5.0	2.8	

- Design Period (years) → ndp (numeric > 0)
- Annual Growth Rate of CVs (%) \rightarrow r/100 (enter %; store r = %/100, e.g., 5% \rightarrow 0.05)
- Compute & write back:
 - Design_Traffic = $365 * (((1 + r)^ndp) 1) * cvpd * Idf * vdf / r$
- o Show computed MSA and return it to the parent form's Design Traffic.
- Effective Subgrade CBR popup (where specified)

- o Inputs:
 - Number of layers: integer 2–10.
 - For each layer i (top→bottom):
 "Layer i CBR (%)" (numeric > 0), "Thickness (mm)" (numeric > 0) —
 last layer shows "Thickness: Semi-infinite" (no input).
 Add third column: "Poisson's Ratio" (numeric 0–0.5 typical).
- o Button: **Compute effective CBR (%)** → write back to Effective_Subgrade_CBR.
- Defaulting Calcs based on Design_Traffic
 - Reliability % (Reliability): 80 if Design_Traffic < 20, else 90.
 - Avg. Annual Pavement Temp (Average_Annual_Pavement_Temp): default 35.
 - o Bitumen Type (VG_grade): VG30 if <20 MSA, else VG40.
 - Air Voids Va:
 - Types 1,4,6,7,8 \rightarrow **4.5%** if <20 MSA, else **3.5%**
 - Types 2,3,5 \rightarrow 3.5% in both cases
 - Effective Binder Vbe:
 - Types 1,4,6,7,8 \rightarrow **10.5%** if <20 MSA, else **11.5%**
 - Types 2,3,5 \rightarrow **11.5%** always
- **Costs & Widths defaults**: each Type lists "Set Defaults" checkbox. On check, prefill the shown cost/width values; allow edit after prefill.
- Footer: Back | Next (Next disabled until required fields valid).

Type Forms

Type 1 — Granular Base & Sub-base

Sections: Common Inputs, Costs & Widths, Footer

1. Bituminous Surface Course with **Granular Base and Sub-base**

Design Traffic (MSA)	Calc	BC Cost (Rs/Cumm)
Effective Subgrade CBR (%)	Calc	DBM Cost (Rs/Cumm)
Reliability (%)	Calc	WMM Cost (Rs/Cumm)
Avg. Annual Temperature (%)	Calc	GSB Cost (Rs/Cumm)
Bitumen Type Drop down	Calc	Width of BC & DBM (m)
Resilient Modulus of BC and DBM (MPa)	Calc	Width of WMM & GSB (m)
Air Voids Va (%)	Calc	
Effective Binder Content Vbe (%)	Calc	

Fields (with variables & min constraints):

• Design Traffic (MSA) → Design_Traffic (numeric > 0.1) + Calc (popup as above)

Back

• Effective Subgrade CBR (%) → Effective_Subgrade_CBR (numeric > 0.1) + Calc (popup for effective CBR)

Submit

- Reliability (%) → Reliability (dropdown: 80, 90) + Calc (auto-select rule above)
- Avg. Annual Temperature (°C) → Average_Annual_Pavement_Temp (dropdown: 20,25,30,35,40) + Calc (default 35)
- Bitumen Type → VG_grade (dropdown: VG10, VG30, VG40, Modified) + Calc (rule above)
- Resilient Modulus of BC & DBM (MPa) → BT_Mod (numeric > 100) + Calc (table-based;
 UI table to be plugged)

Mix type	A	Average Annual Pavement Temperature °C			nt
	20	25	30	35	40
BC and DBM for VG10 bitumen	2300	2000	1450	1000	800
BC and DBM for VG30 bitumen	3500	3000	2500	2000	1250
BC and DBM for VG40 bitumen	6000	5000	4000	3000	2000
BC with Modified Bitumen (IRC:SP:53)	5700	3800	2400	1600	1300

- Air Voids Va (%) → Va (numeric) + Calc (rule above)
- Effective Binder Content Vbe (%) → Vbe (numeric) + Calc (rule above)

Costs & Widths (with defaults checkbox):

BC_cost, DBM_cost, Base_cost (= WMM), Subbase_cost (= GSB), BC_DBM_width, Base_Subbase_width Defaults: BC=10000; DBM=9000; WMM=2500; GSB=2000; widths: BC&DBM=3.5 m; WMM&GSB=5 m.

Type 2 — CTSB + CTB + CRL

Common Inputs: same as Type 1.

2. Bituminous Surface Course with CTSB,	CTB and Granular Crack Relief Layer (CRL)
Design Traffic (MSA)	
Effective Subgrade CBR (%)	BC Cost (Rs/Cumm)
Reliability (%) DD: 80 or 90 Calc	DBM Cost (Rs/Cumm)
Avg. Annual Temperature (%)	CRL Cost (Rs/Cumm)
Bitumen Type Drop down Calc	CTB Cost (Rs/Cumm)
Resilient Modulus of BC and DBM (MPa)	CTSB Cost (Rs/Cumm)
Air Voids Va (%)	Width of BC & DBM (m)
Effective Binder Content Vbe (%)	
Reliability Factor of CTB DD 1 or 2 Calc	Width of CTB & CTSB (m)
CRL Modulus (MPa)	
CTB Modulus (MPa)	
CTSB Modulus (MPa)	
CFD Check Enter Axle Load Spectrum Data	
Flexure Strength of CTB (MPa)	
Back	Submit

Type-specific:

- Reliability Factor for CTB (dropdown 1,2) → RF + Calc (select 2 if design traffic < 10 MSA, else 1)
- CRL Modulus (MPa) → CRL Modulus (numeric > 0) + Calc (Select: 450 MPa)
- CTB Modulus (MPa) → CTB_Mod (numeric > 0) + Calc (Select: 5000 MPa)
- CTSB Modulus (MPa) → CTSB_Mod (numeric > 0) + Calc (Select: 600 MPa)
- **CFD Check** (checkbox) → cfdchk (1 if checked, else 0)
 - If checked: enable "Enter Axle Load Spectrum Data" popup (Excel-style paste) for three matrices:
 - Single Axle Loads → SA_M
 - Tandem Axle Loads → TaA M
 - Tridem Axle Loads → TrA_M
 - Enable "Flexure Strength of CTB (MPa)" → FS_CTB (numeric > 0) + Calc (1.4 MPa)

Costs & Widths (defaults checkbox):

BC_cost, DBM_cost, CRL_cost, CTSB_cost, BC_DBM_width, Base_Subbase_width Defaults: BC=10000; DBM=9000; CRL=2500; CTB=3500; CTSB=2500; widths: BC&DBM=3.5 m; CTB&CTSB=5 m.

Type 3 - CTSB + CTB + SAMI

3. Bituminous Surface Cour	rse with CTSB, CTB and SAMI
3. Bituminous Surface Cour Design Traffic (MSA) Calc Effective Subgrade CBR (%) Calc Reliability (%) DD: 80 or 90 Calc Avg. Annual Temperature (%) DD Calc Bitumen Type Drop down Calc Resilient Modulus of BC and DBM (MPa) Calc Air Voids Va (%) Calc Effective Binder Content Vbe (%) Calc Reliability Factor of CTB DD 1 or 2 Calc	BC Cost (Rs/Cumm) DBM Cost (Rs/Cumm) SAMI Cost (Rs/Sqm) CTB Cost (Rs/Cumm) CTSB Cost (Rs/Cumm) Width of BC & DBM (m) Width of CTB & CTSB (m)
CTB Modulus (MPa) CTSB Modulus (MPa) CFD Check Enter Axle Load Spectrum Data Flexure Strength of CTB (MPa) Calc	Submit

As Type 2 with changes:

- Remove CRL Modulus field.
- Replace CRL Cost (Rs/Cumm) with SAMI Cost (Rs/Sqm) (SAMI_cost), default 100.
- Keep CFD, Axle Spectrum, FS_CTB behaviors identical to Type 2.

Type 4 — ETB + CTSB

Common Inputs as Type 1.

4. Bituminous Surface Cour			
Bitumen Stabilise	ed KAP / Virgin A	Aggregate	
Design Traffic (MSA)	Calc		
Effective Subgrade CBR (%)	Calc	BC Cost (Rs/Cumm)	
Reliability (%) DD: 80 or 90	Calc	DBM Cost (Rs/Cumm)	
Avg. Annual Temperature (%)	Calc	ETB Cost (Rs/Cumm)	
Bitumen Type Drop down	Calc	CTSB Cost (Rs/Cumm)	
Resilient Modulus of BC and DBM (MPa)	Calc	Width of BC & DBM (m)	
Air Voids Va (%)	Calc	. ,	
Effective Binder Content Vbe (%)	Calc	Width of ETB & CTSB (m)	
ETB Modulus (MPa)	Calc		
CTSB Modulus (MPa)	Calc		
Ва	ck Submit]	

Type-specific:

- ETB Modulus (MPa) → ETB_Mod (numeric > 0) + Calc (Select: 800 MPa)
- CTSB Modulus (MPa) → CTSB_Mod (numeric > 0) + Calc (Select: 600 MPa)

Costs & Widths (defaults checkbox):

BC_cost, DBM_cost, ETB_cost, CTSB_cost, BC_DBM_width, Base_Subbase_width Defaults: BC=10000; DBM=9000; ETB=4500; CTSB=2500; widths: BC&DBM=3.5 m; ETB&CTSB=5 m.

Type 5 — GSB + CTB + CRL

5. Bituminous Surface Course with GSB , C	CTB and Granular Crack Relief Layer (CRL)
Design Traffic (MSA)	
Effective Subgrade CBR (%)	BC Cost (Rs/Cumm)
Reliability (%) DD: 80 or 90 Calc	DBM Cost (Rs/Cumm)
Avg. Annual Temperature (%)	CRL Cost (Rs/Cumm)
Bitumen Type Drop down Calc	CTB Cost (Rs/Cumm)
Resilient Modulus of BC and DBM (MPa)	GSB Cost (Rs/Cumm)
Air Voids Va (%)	Width of BC & DBM (m)
Effective Binder Content Vbe (%)	Width of CTB & GSB (m)
Reliability Factor of CTB DD 1 or 2 Calc	Widdi of of b & oob (iii)
CRL Modulus (MPa)	
CTB Modulus (MPa)	
CFD Check Enter Axle Load Spectrum Data	
Flexure Strength of CTB (MPa)	
Back	Submit

As Type 2 with changes:

- Remove CTSB Modulus field.
- Replace CTSB Cost (Rs/Cumm) with GSB Cost (Rs/Cumm) (default 2000).
- Replace "CTSB" with "GSB" wherever applicable.
- Width label: Width of CTB & GSB (m).

Type 6 — CTSB + Granular Base

6. Bituminous Surface Course w	
Design Traffic (MSA) Effective Subgrade CBR (%) Reliability (%) Avg. Annual Temperature (%) Bitumen Type Drop down Calc Resilient Modulus of BC and DBM (MPa) Air Voids Va (%) Effective Binder Content Vbe (%) GSB Modulus (MPa) CTSB Modulus (MPa) Calc Calc	BC Cost (Rs/Cumm) DBM Cost (Rs/Cumm) ETB Cost (Rs/Cumm) CTSB Cost (Rs/Cumm) Width of BC & DBM (m) Width of GSB & CTSB (m)
Back	Submit

- ---

Common Inputs as Type 4, with:

 Replace ETB Modulus with WMM Modulus (MPa) → WMM_Mod (numeric > 0) + Calc (450 MPa)

Costs & Widths (defaults checkbox):

BC_cost, DBM_cost, WMM_cost, CTSB_cost, BC_DBM_width, Base_Subbase_width
Defaults: BC=10000; DBM=9000; WMM=2500; CTSB=2500; widths: BC&DBM=3.5 m;
WMM&CTSB=5 m.

Type 7 — Reinforced WMM/GSB

7. Bituminous S	Surface Coul	rse wit	_	rids and/o Course	r Geocells in Base and/o	r Sub-
			Dase	Course		
Design Traffic (MSA)			Calc		BC Cost (Rs/Cumm)	
Effective Subgrade CBR	(%)		Calc		DBM Cost (Rs/Cumm)	
Reliability (%)	DD: 8	0 or 90	Calc		WMM Cost (Rs/Cumm)	
Avg. Annual Temperature	∍ (%)	DD	Calc		GSB Cost (Rs/Cumm)	
Bitumen Type	Drop do	wn	Calc		WMM Reinforcement Cost (Rs/Sqm)	
Resilient Modulus of BC	and DBM (MPa)		Calc		GSB Reinforcement Cost (Rs/Sqm)	
Air Voids Va (%)	Ţ		Calc		Width of BC & DBM (m)	
Effective Binder Content	<u>Vbe</u> (%)		Calc		Width of WMM & GSB (m)	
Design Approach	O LCR	0	MIF			
Reinforced WMM	1					
Reinforced GSB	1					
		Е	Back	Submit	1	

11

Common Inputs as Type 1. Reinforcement table & toggles:

- Design approach selector: MIF or LCR → Rtype (1=MIF, 2=LCR)
- Checkboxes:
 - Reinforced WMM → is_wmm_r (1 if checked)
 - Reinforced GSB → is_gsb_r (1 if checked)
- Numeric fields (enable based on checks):
 - o R_Base (≥1) used if is_wmm_r=1; else default 1
 - o R_Subbase (≥1) used if is_gsb_r=1; else default 1

Costs & Widths (defaults checkbox):

BC_cost, DBM_cost, Base_cost(WMM), Subbase_cost(GSB), wmm_r_cost (Rs/Sqm if is_wmm_r=1), gsb_r_cost (Rs/Sqm if is_gsb_r=1), BC_DBM_width, Base_Subbase_width
Defaults: BC=10000; DBM=9000; WMM=2500; GSB=2000; WMM Reinforcement=80; GSB
Reinforcement=80; widths: BC&DBM=3.5 m; WMM&GSB=5 m.ß

Type 8 — CTSB + Reinforced Granular Base

8. Bituminous Surface Co	ourse with CTSE	3 and Reinforced Granular Base Co	ourse
Design Traffic (MSA)	Calc	BC Cost (Rs/Cumm)	
Effective Subgrade CBR (%)	Calc	DBM Cost (Rs/Cumm)	
Reliability (%)	80 or 90 Calc	WMM Cost (Rs/Cumm)	
Avg. Annual Temperature (%)	DD Calc	CTSB Cost (Rs/Cumm)	
Bitumen Type Drop d	lown	WMM Reinforcement Cost (Rs/Sqm)	
Resilient Modulus of BC and DBM (MPa)	Calc	Width of BC & DBM (m)	
Air Voids Va (%)	Calc	Width of WMM & CTSB (m)	
Effective Binder Content Vbe (%)	Calc		
WMM Modulus (MPa)	Calc		
CTSB Modulus (MPa)	Calc		
Design Approach 🔘 LCR			
Reinforced WMM 1			
	Back	Submit	

- 1- 1

Common Inputs as Type 1.

Design approach: MIF/LCR \rightarrow Rtype (1/2)

Fixed selections:

- is_wmm_r = 1, is_gsb_r = 0
- R_Base (≥1) user-entered; R_Subbase = 1

Costs & Widths (defaults checkbox):

BC_cost, DBM_cost, Base_cost(WMM), Subbase_cost(GSB), wmm_r_cost (Rs/Sqm), BC_DBM_width, Base_Subbase_width

Defaults: BC=10000; DBM=9000; WMM=2500; GSB=2000; WMM Reinforcement=80; widths: BC&DBM=3.5 m; WMM&GSB=5 m.

After clicking submit, \rightarrow Get the inputs reviewed from the user by disabling the input fields.

Display the results in the following format for all types:

Edit → will connect this page to design adequacy check

Design Adequacy Check

Editable grid with rows: Bituminous, Interlayer, Base, Subbase, Subgrade.

Columns: Material (DD as listed), Thickness (mm), Poisson's Ratio, Modulus (MPa), Distress Criteria (checkboxes where applicable), Width (m), Cost (Rs/Cumm *or* Rs/Sqm per special case).

Special rules:

- 1. If **SAMI** chosen in Interlayer → show label "SAMI Cost (Rs/Sqm)" (cost unit switch); disable modulus/thickness when required.
- 2. Enable CTB Fatigue checkboxes **only** when Base/Subbase material is **CTB** or "Other" (as appropriate).
- 3. If CTB Fatigue (Austroads) is checked, show above-table field: Reliability Factor for CTB (RF, dropdown 1/2) with Calc (2 if <10 MSA, else 1).
- 4. If CTB Fatigue (AASHTO) is checked, show above-table:
 - FS of CTB Material (MPa) → FS_CTB (numeric >0)
 - o Enter Axle Load Spectrum Data (popup for SA M, TaA M, TrA M)
- 5. If Reinforced WMM or Reinforced GSB selected, show inline design approach (MIF/LCR) selector and value input (≥1), writing to R_Base/R_Subbase.

Calc buttons in "Modulus" column:

• **Bituminous layer**: Open table popup to pick modulus for BC/DBM/Modified/Other.

Mix type	Average Annual Pavement Temperature °C			nt	
	20	25	30	35	40
BC and DBM for VG10 bitumen	2300	2000	1450	1000	800
BC and DBM for VG30 bitumen	3500	3000	2500	2000	1250
BC and DBM for VG40 bitumen	6000	5000	4000	3000	2000
BC with Modified Bitumen (IRC:SP:53)	5700	3800	2400	1600	1300
BM with VG10 bitumen	500 MPa at 35°C				
BM with VG30 bitumen	700 MPa at 35°C				
RAP treated with 4 per cent bitumen emulsion/ foamed bitumen with 2-2.5 per cent residual bitumen and 1.0 per cent cementitious material.					

- Interlayer: If AIL selected → set 450 MPa; SAMI/Other/None disabled.
- Base/Subbase: Enabled only when (i) Base/Subbase materials are selected, (ii) Base/Subbase thickness entered, and (iii) Subgrade Modulus present.

Base/Subbase modulus rules (summary):

Layer	Material	Thickness (mm)	Poisson's Ratio	Modulus (MPa)	Distress Criteria	Width (m)	Cost (Rs./Cumm)
Bitumino us	DD: 1. BC 2. BC + DBM 3. Modified Mix 4. Other	Numeric(> 0);	Numeric(> 0);	Numeric(> 0);	CB: Bituminou s Fatigue;	Numeric(> 0);	Numeric(> 0);
Interlaye r	DD: 1. AlL 2. SAMI 3. Other 4. None	Numeric (>0) only for AIL otherwise Disable	Numeric (>0) only for AIL otherwise Disable	Numeric (>0) only for AIL otherwise Disable	-	Numeric (>=0) for AIL and SAMI; Disable for None	Numeric (>=0) for AIL and SAMI; Disable for None
Base	DD: 1. WMM 2. CTB 3. ETB 4. Reinforc ed WMM 5. Other 6. None	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None	CB: CTB Fatigue (AUSTROA DS) CB: CTB Fatigue (AASHTO)	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None
Subbase	DD: 1. GSB 2. CTSB 3.	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None	-	Numeric(> 0); Disable if None	Numeric(> 0); Disable if None

	Reinforc ed GSB 4. Other 5. None						
Subgrad e	DD: 1. Compact ed Subgrad e 2. Stabilize d Subgrad e 3. Other	Numeric(> 0); Disable if Compacte d Subgrade Note: Only for cost computati on	Numeric(> 0);	Numeric(> 0);	CB: Subgrade Rutting	Numeric(> =0); Disable if Compacted Subgrade	Numeric(> =0); Disable if Compacted Subgrade

 Use the matrix provided in your spec for Types and combinations (WMM/CTB/ETB/Reinforced WMM vs GSB/CTSB/Reinforced GSB)

Typ e	Base	Subbas e	Base CalC	Subbase Calc
1	WMM	GSB	= 0.2 * Sub_Mod* (thk_base + thk_subbase)^0.45	= 0.2 * Sub_Mod* (thk_base + thk_subbase)^0.45
	WMM	CTSB	Natural Gravel – 300 Crushed Rock – 350	600
	WMM	Reinforc ed GSB	Base_Mod = 0.2*(Base_Thk).^0.45.* Subbase_1;	Subbase_1 = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod; if MIF SB_Mod = MIF_v* Subbase_1 if LCR SB_Mod = 10^((0.839 + LCR_v *a3)/0.227)/145.038;
				a3 = 0.227*(log10(Subbase_1 *145.038)) - 0.839
	СТВ	GSB	5000	SB_Mod = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod;
	СТВ	CTSB	5000	600
	СТВ	Reinforc ed GSB	5000	Subbase_1 = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod; if MIF SB_Mod = MIF_v* Subbase_1
				if LCR

			SB_Mod = 10^((0.839 + LCR_v *a3)/0.227)/145.038;
			a3 = 0.227*(log10(Subbase_1 *145.038)) - 0.839
ETB	GSB	800	SB_Mod = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod;
ETB	CTSB	800	600
ЕТВ	Reinforc ed GSB	800	Subbase_1 = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod;
			<pre>if MIF SB_Mod = MIF_v* Subbase_1 if LCR</pre>
			SB_Mod = 10^((0.839 + LCR_v *a3)/0.227)/145.038;
			a3 = 0.227*(log10(Subbase_1 *145.038)) - 0.839
Reinforc ed WMM	GSB	B_Mod = 0.2*(Base_Thk).^0.45.* SB_Mod;	SB_Mod = 0.2*(Subbase_Thk).^0.45.*Subgrad e_Mod;
		If MIF Base_Mod = B_Mod*MIF_V;	
		If LCR Base_Mod = (10^((0.977 + LCR_v*a2)/0.249))/145.038;	
		a2 = 0.249*(log10(Base_Mod*145.0 38)) - 0.977;	
Reinforc ed WMM	CTSB	nE=2; ThicknessE = Subbase_Thk; EE = [SB_Mod Subgrade_Mod]; vE=[0.35 0.35]; EMr =	SB_Mod = 600
		AIO_EffectiveMr(nE,ThicknessE, EE,vE);	
		B_Mod = min(350,0.2*(Base_Thk).^0.45. *EMr);	
		If MIF Base_Mod = B_Mod*MIF_V;	

		If LCR Base_Mod = (10^((0.977 + LCR_v*a2)/0.249))/145.038; a2 = 0.249*(log10(Base_Mod*145.0 38)) - 0.977;	
Reinfor ed WMM	Reinforc ed GSB	B_Mod = 0.2*(Base_Thk).^0.45.* Subbase_1; If MIF Base_Mod = B_Mod*MIF_V; If LCR Base_Mod = (10^((0.977 + LCR_v*a2)/0.249))/145.038; a2 = 0.249*(log10(Base_Mod*145.0 38)) - 0.977;	Subbase_1 = 0.2*(Subbase_Thk + Base_Thk).^0.45.*Subgrade_Mod; if MIF SB_Mod = MIF_v* Subbase_1 if LCR SB_Mod = 10^((0.839 + LCR_v * a3)/0.227)/145.038; a3 = 0.227*(log10(Subbase_1 * 145.038)) - 0.839

Subgrade modulus (Calc):

- Given e_cbr (%):
 - If $e_{cbr} \le 5 \Rightarrow Subgrade_{mod} = 10 * e_{cbr}$
 - Else \rightarrow Subgrade_Mod = 17.6 * e_cbr^0.76

Minimum thickness alerts:

- **Bituminous:** BC min 30 mm (max 50 for BC alone); BC+DBM total ≥ 80 mm; Modified Mix as per internal rule.
- Interlayer: AIL min 100 mm.
- Base: WMM ≥150 mm; CTB ≥100 mm; ETB ≥100 mm; Reinforced WMM ≥150 mm.
- **Subbase:** GSB ≥150 mm; CTSB ≥200 mm; Reinforced GSB ≥150 mm.

Compare Design Options

Design Option 1 Design Option 2 Design Option 3 Design Option 4 Design Option 4 Design Option 3 Design Option 4 Design Option 4 Design Option 3 Design Option 4 Design Option 4 Design Option 3 Design Option 4 Design Option 4 Design Option 4 Design Option 3 Design Option 4 Design

Compare

Critical & Permissible Stress-Strain

1) Permissible Strain Analysis (inputs) (Same as common inputs)

- Reuse the **Design Traffic** popup logic & fields → Design_Traffic.
- Effective Subgrade CBR popup (multi-layer CBR with v for each layer) →
 Effective_Subgrade_CBR. Code → Effective_CBR_Calc
- Reliability (Reliability) with Calc rule (80/90).
- Avg. Annual Temperature (Average_Annual_Pavement_Temp) with default 35.
- **Bitumen Type** (VG_grade) with Calc rule (VG30/VG40).
- Resilient Modulus of BC & DBM (BT_Mod) with Calc table.
- Air Voids (Va) / Effective Binder (Vbe) rules as above.
- Base CTB (checkbox): when checked, enable:
 - RF (1/2 with Calc rule <10 MSA \rightarrow 2; else 1)
 - CTB_Mod (default 5000 MPa)

Computation (back-end via Permissible_strain_analysis.m):

- Outputs:
 - o Permissible Horizontal Strain @ bottom of Bituminous (με)
 - o Permissible Horizontal Strain @ bottom of Base (με)
 - Permissible Vertical Strain @ top of Subgrade (με)
 - o Permissible Cumulative Damage Factor

1. Permissible Strain Analysis

Design Traffic (MSA)	Calc	
Effective Subgrade CBR (%)	Calc	
Reliability (%) DD: 80 or 90	Calc	
Avg. Annual Temperature (%)	Calc	
Bitumen Type Drop down	Calc	
Resilient Modulus of BC and DBM (MPa)	Calc Base - CTB	
Air Voids Va (%)	Calc Reliability Factor of CTB	DD 1 or 2 Cald
Effective Binder Content Vbe (%)	Calc CTB Modulus (MPa)	Cal
	_	
Permissible Horizontal Strain at bottom of Bitum	inous Layer (με)	
Permissible Horizontal Strain at bottom of Base L	ayer (με)	
Permissible Vertical Strain (με) at top of Subgrade	e (με)	
Permissible Cumulative Damage Factor	1	

2) Critical & Permissible (combined) Analysis (inputs)

- Dropdown: Number of Pavement Layers including Subgrade (1–10).
- Dynamic rows for each layer i:
 - E_i Modulus (MPa), v_i Poisson's Ratio, t_i Thickness (mm) no thickness for last (bottom) layer.
- Interface positions:
 - Total thickness Bituminous (mm)
 - Total crust Surface→Base (mm)
 - Total crust above Subgrade (mm)
 (All three must coincide with actual layer interfaces; validate.)
- CFD Check (checkbox) → cfdchk (enables Axle Spectrum + FS_CTB as in Type 2/3).
- Axle Spectrum popup: SA_M, TaA_M, TrA_M (Excel-style paste).
- FS_CTB (MPa) + Calc (1.4 MPa).

Computation (via critical_stress_strain_analysis.m):

• Critical (maximum) strains:

Maximum Horizontal Strain at bottom of

Maximum Horizontal Strain at bottom of

Maximum Vertical Strain ($\mu\epsilon$) at top of

Bituminous Layer (με)

Cumulative Damage Factor

Base Layer (με)

Subgrade (µɛ)

- Horizontal @ bottom of Bituminous (με)
- Horizontal @ bottom of Base (με)
- Vertical @ top of Subgrade (με)
- o Cumulative Damage Factor
- Also show Permissible values from "Permissible" page side-by-side.
- Conditional formatting: if Critical > Permissible, cell = red; else green.

2. Critical and Permissible Stress-strain Analysis

Number of Pavement Layers including Subgrade Layer 1 Modulus (MPa) Poisson Ration Thickness mm Layer 2 Modulus (MPa) Thickness mm Poisson Ration Layer 2 Modulus (MPa) Poisson Ration CFD Check Total thickness of Bituminous Layer (mm) Enter Axle Load Spectrum Data Total thickness of crust from Surface to Base (mm) Flexure Strength of CTB (MPa) Total thickness of crust above Subgrade (mm)

Permissible Horizontal Strain at bottom of	
Base Layer (με)	
Permissible Vertical Strain (με) at top of Subgrade (με)	
cassiado (po)	
Permissible Cumulative Damage Factor	1

Permissible Horizontal Strain at bottom of

Bituminous Layer (με)

Multilayer Linear Elastic Analysis

Inputs

- Number of Pavement Layers including Subgrade (1-10)
- For each layer i (top→bottom): E_i (MPa), v_i, t_i (except last)
- Wheel Load (N), Tire Pressure (MPa)
- Wheel-set: Single=1, Dual=2
- Number of Analysis Points: 1-5
 - o Point k: Depth (mm), Radius (mm)

Submit → run solver and display **table**:

Point Depth (mm) Radius (mm) Sigma z Sigma t Sigma r Tau xz w (defl) εz εt εr

(Units for stresses consistent with solver output; show με for strains where appropriate.)

Multilayer Linear Elastic Analysis Number of Pavement Layers including Subgrade Modulus (MPa) Layer 1 Poisson Ration Thickness mm Modulus (MPa) Layer 2 Poisson Ration Thickness mm Modulus (MPa) Layer 2 Poisson Ration Number of Analysis Points Wheel Load (N) Point 1 Depth (mm) Radius (mm) Tire Pressure (MPa) Single Point 2 Depth (mm) Radius (mm) Wheel-set

Point	Depth	Radius	Sigma z	Sigma t	Sigma r	Tao_xz	w	ez.	et	er
1										
1										
2										
2										

Submit