统计信号处理参数估计仿真大作业

赵丰

2018年5月3日

1 离散情形下的仿真

1.1 模型

设观测模型为 $z = C\theta + n$, 其中 θ 与 n 相互独立均服从高斯分布。且已知 θ 和 n 的均值为: $\mathbb{E}[\theta] = \mu_{\theta}, \mathbb{E}[n] = 0$, 协方差矩阵为 $V_{\theta}, V_{n} = R_{n}$ 从而可求出 z 的均值和方差: $\mu_{z} = C\mu_{\theta}, V_{z} = CV_{\theta}C^{T} + V_{n}$.

1.2 估值方法

我们使用以下三种方法对模型参数 θ 进行**无偏**估值:

- 1. Bayes 后验平均: $\hat{\theta}_{ms} = \mathbb{E}_{p(\theta|z)}[\theta] = \mu_{\theta} + \mathbf{V}_{\theta}C^T\mathbf{V}_{z}^{-1}(z \mu_{z})$ 估值是 z 的线性函数,所以在这种情况下 Bayes 后验平均也是 MAP 估值 $\hat{\theta}_{map}$,也是线性最小均方估值 $\hat{\theta}_{lms}$ 。
- 2. 最大似然估值: 假定 θ 的先验信息未知,仅利用 C 和 \mathbf{V}_z 的信息。 $\hat{\theta}_{\mathrm{ML}} = (C^T \mathbf{V}_n^{-1} C)^{-1} C^T \mathbf{V}_n^{-1} z$
- 3. 最小二乘估值: 进一步假定对方差的统计信息也未知,仅利用 C 和观测数据,我们有 $\hat{\theta}_{LS} = (C^TC)^{-1}C^Tz$

1.3 估值误差

对于上一小节给出的三种估值方法,我们简单分析一下它们各自的理 论误差:

1. 根据线性最小均方估值的理论误差公式: $\operatorname{Var}[\hat{\boldsymbol{\theta}}_{lms}] = \mathbf{V}_{\boldsymbol{\theta}} - \mathbf{V}_{\boldsymbol{\theta}} \mathbf{C}^T \mathbf{V}_{\boldsymbol{z}}^{-1} \mathbf{C} \mathbf{V}_{\boldsymbol{\theta}}$

- 2. 最大似然法估值的方差矩阵是 $\operatorname{Var}[\hat{\boldsymbol{\theta}}_{\mathrm{ML}}] = (\boldsymbol{C}^T \mathbf{V}_n^{-1} \boldsymbol{C})^{-1}$
- 3. 最小二乘法的方差矩阵是 $Var[\hat{\boldsymbol{\theta}}_{LS}] = (\boldsymbol{C}^T \boldsymbol{C})^{-1} \boldsymbol{C}^T \mathbf{V}_n \boldsymbol{C} (\boldsymbol{C}^T \boldsymbol{C})$

理论结果表明: $Var[\hat{\boldsymbol{\theta}}_{lms}] \leq Var[\hat{\boldsymbol{\theta}}_{ML}] \leq Var[\hat{\boldsymbol{\theta}}_{LS}]$

1.4 实验

我们取参数 θ 和 z 为 2 维进行实验,探究不同信噪比条件下不同估值 方法的理论误差和 C-R 界的差距。

$$\boldsymbol{C} = \begin{bmatrix} 0.5 & 0.5 \\ 0.7 & -0.3 \end{bmatrix}, \boldsymbol{\mathbf{V}_n} = \sigma^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \boldsymbol{\mathbb{E}}[\boldsymbol{\theta}] = \begin{bmatrix} 1 & 1 \end{bmatrix}, \boldsymbol{\mathbf{V}_{\theta}} = \begin{bmatrix} 0.1 & 0.03 \\ 0.03 & 0.05 \end{bmatrix}$$

利用二维正态分布产生1000个观测,得到三种估值方法的实验结果如表1所 示。

表 1: 离散估值实验结果						
SNR		bayes	ml	ls		
8.75E+00	mean error	1.71E-02	1.92E-02	1.92E-02		
	theoretical variance	2.88E-02	4.32E-02	4.32E-02		
	experimental variance	2.85E-02	4.33E-02	4.33E-02		
-1.12E+01	mean error	3.68E-03	6.51E-02	6.51E-02		
	theoretical variance	1.41E-01	4.32E+00	4.32E+00		
	experimental variance	1.46E-01	4.27E + 00	4.27E + 00		
-3.12E+01	mean error	3.83E-04	5.54E-01	5.54E-01		
	theoretical variance	1.50E-01	4.32E + 02	4.32E+02		
	experimental variance	1.58E-01	4.17E + 02	4.17E + 02		

从上表可以看到:

- 1. 当信噪比较高时,三种估值方法的误差在同一数量级,实验均值接近 零;
- 2. 当信噪比比较低时, Bayes 后验估值由于利用了先验信息, 估值方差 趋近于 $\mathbf{V}_{\theta} = 0.15$, 估值仍较为准确, 但其他两种方法虽然理论上是 无偏的,但由于方差较大,对于 1000 次观测无法准确估计 μ_{θ} 。
- 3. $Var[\hat{\boldsymbol{\theta}}_{ML}] = Var[\hat{\boldsymbol{\theta}}_{LS}]$, 这是因为 C 是可逆的方阵。

2 连续情形下的仿真

2.1 模型

设观测信号 $z(t)=Ag(\omega t+\theta)+n(t), 0\leq t\leq T, A$ 是未知的非随机参量 (信号幅度的估值),n(t) 是谱密度为 $\frac{N_0}{2}$ 的高斯白噪声。采用最大似然法进行估值,有

$$\hat{A}_{\rm ML} = \frac{\int_0^T z(t)s(t)dt}{\int_0^T s^2(t)dt}$$
 (1)

其中 $s(t) = g(\omega t + \theta)$ 。

2.2 估值误差

信号幅度的估值式(1)是有效估值,方差为 $N_0/\left(2\int_0^T s^2(t)dt\right)$ 。

2.3 实验

设 $T = [0, 2\pi]$ 。我们分别取正弦波、方波和三角波作为信道的输入信号,待估计的信号幅值为 A = 1.5。 $g(\omega t + \theta)$,周期为 2π ,

$$g_{\text{sine}}(t) = \sin(t); g_{\text{square}}(t) = \begin{cases} 1 & 0 \le t < \pi \\ -1 & \pi \le t < 2\pi \end{cases}; g_{\text{sawtooth}}(t) = \frac{t}{\pi} - 1$$

对信号采用等间隔采样(采样点个数为 1000),在每个采样点附加方差为 $N_0/2\Delta t$ 的噪声,其中 Δt 是采样间隔。之所以采用采样间隔修正,是因为 计算机不能产生连续域的 Δ 函数,直接用离散采样的方法,如果每个采样 点高斯噪声的方差相同,那么根据大数定律 $A_{\rm ML}$ 的方差趋近于零,与 C-R 界非零矛盾。

仿真实验表明噪声方差取为方差为 $N_0/2\Delta t$ 使得表 2的结果与观测采样点数无关(实验次数足够多,比如 200 次):

从表 2可以看到:

- 1. 当信噪比较高时,估值方差较小,实验均值接近零;
- 2. 估值方差只和信号能量有关,和信号波形无关,我们通过仿真可以验证这一点。

表 2: 连续估值实验结果

	SNR	bias	var(t)	var(ep)
sine	1.80E+01	-2.45E-05	1.37E-02	1.59E-02
sawtooth	1.62E + 01	1.59E-02	2.39E-02	2.38E-02
square	2.10E + 01	-4.63E-03	8.47E-03	7.96E-03
sine	1.50E + 01	1.15E-02	3.00E-02	3.19E-02
sawtooth	1.32E + 01	-1.28E-03	4.53E-02	4.76E-02
square	1.80E + 01	-5.37E-03	1.48E-02	1.59E-02
sine	-3.36E+00	-2.77E-02	1.76E + 00	2.17E+00
sawtooth	-5.10E+00	2.61E-02	3.21E + 00	3.24E + 00
square	-3.43E-01	-3.01E-02	1.21E+00	1.08E+00