Экстракция кода из Agda в Haskell

Шабалин Александр

научный руководитель доц. Москвин Д. Н.

Академический университет 2014 г.

Формальная верификация

- Необходимо уметь убеждаться, что написанная программа решает поставленную задачу.
- Тестирование не может показать, что программа верна для всех случаев (если, конечно, нельзя сделать полный перебор).
- Формальная верификация позволяет сравнить программу с формальной математической моделью и доказать их эквивалентность на всех входных данных.

Agda

- Один из способов формально верифицировать строить формулы достаточно мощной логики над элементами программы и проверять их на этапе компиляции.
- Agda функциональный язык программирования, который позволяет строить формулы на языке предикативной конструктивной логики.

Использование верифицированного кода

Написание верифицированного алгоритма недостаточно — необходимо еще использовать этот код из «реальных» приложений. Подходы:

- 1. Использовать Agda для написания приложений целиком.
 - + Можно верифицировать больше кода.
 - Не Тьюринг-полный язык.
- 2. По коду на Agda генерировать код на другом языке
 - + Удобнее писать «реальный» код.
 - Необходимо поддерживать корректность кода при трансляции.

Второй пункт называется «экстракция программ» и используется в системе Coq.

Постановка задачи

Задача

По коду на Agda получить код на Haskell, который можно использовать из программы на Haskell, не нарушая внутренние инварианты, поддерживаемые Agda.

Целевым языком выбран Haskell по нескольким причинам:

- ▶ Уже есть транслятор: MAlonzo компилирует Agda через трансляцию в Haskell
- Языки синтаксически похожи
- ▶ Типы в Haskell подмножество типов в Agda

Ограничение выставляемого интерфейса

Поскольку на Agda можно потребовать от аргументов функций свойств, не представимых в Haskell, то необходимо уметь запрещать давать прямой доступ к ним. Иначе, можно будет передать неправильный (с точки зрения Agda) аргумент, который пройдет проверку типов на стороне Haskell, и получить падение программы на этапе исполнения.

Существующие решения

- Coq 8.4pl3 Экстракция программ¹. Генерируется код, из которого стираются все доказательства. Но это значит, что некоторые функции, требовавшие инварианты на этапе компиляции, теперь будут их требовать на этапе исполнения.
- Agda 2.3.2.2 Компилятор MAlonzo². Фокусируется на генерировании исполняемых файлов через трансляцию в Haskell. Генерирует имена вида буква+число, теряет всю информацию о типах (кроме арности функций).
 - Agda 2.3.4 Появилась возможность давать пользовательские имена функциям и генерировать для них разумные типы.

¹P. Letouzey. A New Extraction for Coq. 2002

²http://thread.gmane.org/gmane.comp.lang.agda/62 = = > = > = > 0 0 0

Цели и задачи

Цель работы

Разработать механизм для MAlonzo, генерирующий интерфейс на Haskell к коду на Agda, использование которого не позволит нарушить инварианты, поддерживаемые Agda.

Задачи:

- 1. Разобраться с принципом кодогенерации в MAlonzo.
- 2. Разработать способ генерировать интерфейс из выделенных функций и типов данных и на этапе компиляции проверять, что он не нарушает инварианты.
- 3. Доказать корректность выполняемых трансформаций.
- 4. Реализовать и протестировать.

Обзор реализации

- Выставляемый интерфейс представляет собой обертки над кодом, сгенерированным MAlonzo, которые имеют типы, поддерживающие те же инварианты, что требует код на Agda.
- ▶ Язык Agda расширен прагмой {-# EXPORT AgdaName HaskellName #-}, которой передается имя из Agda и желаемое имя в Haskell. Если сущность AgdaName представима в Haskell и HaskellName — разрешенное имя для этой сущности, то во время компиляции генерируется соответствующая обертка.
- ▶ Для модуля AgdaModuleName код интерфейса помещается в модуль MAlonzo.Export.AgdaModuleName, чтобы отделить код, сгенерированный MAlonzo (находящийся в MAlonzo.Code.AgdaModuleName) от безопасного интерфейса.

Подробности реализации

Тип данных и все его конструкторы выразимы

Можно полностью задать этот тип на Haskell и использовать его конструкторы для создания экземпляра и для сопоставления с образцом (pattern matching).

Для реализации нужно

- ▶ либо подменить этим типом тип, генерируемый MAlonzo,
- либо ввести биекцию между этими двумя типами, которая будет использоваться при генерации оберток функций.

Подробности реализации

Тип данных выразим, но хотя бы один конструктор не выразим

Тип необходимо сделать абстрактным для внешнего кода. Ограничиваться генерированием только представимых конструкторов нельзя — множество термов, имеющих данный тип будет отличаться между Agda и Haskell.

Для реализации абстрактные типы очень удобны: достаточно сделать newtype обертку над типом, генерируемым MAlonzo, что позволяет использовать unsafeCoerce для трансформации между ними.

Подробности реализации Функции

Способ реализации параметрического полиморфизма отличается в Agda и в Haskell.

TODO: Agda needs a type parameter passed into a term. And MAlonzo generates exactly TODO: that. So a programmer would have to manually pass and skip () when calling TODO: this function. TODO: Therefore, it was decided to use wrappers that would do that automatically.

Выводы

Таким образом, разработан способ генерировать безопасный интерфейс на Haskell к коду на Agda и доказана его корректность.

EXTRA - Выполняемые трансляции

Объявления типов

EXTRA - Выполняемые трансляции

Типы функций

EXTRA - Выполняемые трансляции

Термы функций

EXTRA - Agda 2.3.4 COMPILED_EXPORT

TODO: What does it generate?

EXTRA - Что дальше

TODO: Extracting data with constructors TODO: Typeclasses and instances TODO: More dependent type emulation

EXTRA - data in newtype type parameter

TODO: trouble with exported as data as a type parameter to exported with newtype