Package 'BEND'

March 21, 2024

Title Bayesian Estimation of Nonlinear Data (BEND)

Version 1.0

Description Provides a set of models to estimate nonlinear longitudinal data using Bayesian estimation methods. These models include the: 1) Bayesian Piecewise Random Effects Model (Bayes_PREM()) which estimates a piecewise random effects (mixture) model for a given number of latent classes and a latent number of possible change-points in each class, and can incorporate class and outcome predictive covariates (see Lamm (2022) http://conservancy.umn.edu/handle/11299/252533> and Lock et al., (2018) doi:10.1007/s11336-017-9594-5>), 2) Bayesian Crossed Random Effects Model (Bayes_CREM()) which estimates a linear, quadratic, exponential, or piecewise crossed random effects models where individuals are changing groups over time (e.g., students and schools; see Rohloff et al., (2024) doi:10.1111/bmsp.12334), and 3) Bayesian Bivariate Piecewise Random Effects Model (Bayes_BPREM()) which estimates a bivariate piecewise random effects model to jointly model two related outcomes (e.g., reading and math achievement; see Peralta et al., (2022) doi:10.1037/met0000358).

Maintainer Corissa T. Rohloff <corissa.wurth@gmail.com>

R topics documented:

	Bayes_BPREM	2
	Bayes_CREM	4
	Bayes_PREM	7
	plot_BEND	
	results_bprem	13
	results_pcrem	13
	results_prem	14
	SimData_BPREM	14
	SimData_PCREM	15
	SimData_PREM	15
	summary.BPREM	16
	summary.CREM	16
	summary.PREM	17
Index		18

Bayes_BPREM

Bayesian Bivariate Piecewise Random Effects Model (BPREM)

Description

Estimates a Bayesian bivariate piecewise random effects models (BPREM) for longitudinal data with two interrelated outcomes. See Peralta et al. (2022) for more details.

Usage

```
Bayes_BPREM(
  data,
  id_var,
  time_var,
  y1_var,
  y2_var,
  iters_adapt = 5000,
  iters_burn_in = 1e+05,
  iters_sampling = 50000,
  thin = 15,
  save_full_chains = FALSE,
  save_conv_chains = FALSE,
  verbose = TRUE
)
```

Arguments

data

Data frame in long format, where each row describes a measurement occasion for a given individual. It is assumed that each individual has the same number of assigned timepoints (a.k.a., rows). There can be missingness in the outcomes (y1_var and y2_var), but there cannot be missingness in time (time_var).

id_var

Name of column that contains ids for individuals with repeated measures in a longitudinal dataset.

time_var Name of column that contains the time variable. This column cannot contain any missing values.

Name of column that contains the first outcome variable. Missing values should be denoted by NA.

y2_var Name of column that contains the second outcome variable. Missing values

should be denoted by NA.

iters_adapt (optional) Number of iterations for adaptation of jags model (default = 5000).

iters_burn_in (optional) Number of iterations for burn-in (default = 100000).

iters_sampling (optional) Number of iterations for posterior sampling (default = 50000).

thin (optional) Thinning interval for posterior sampling (default = 15).

save_full_chains

y1_var

Logical indicating whether the MCMC chains from rjags should be saved (default = FALSE). Note, this should not be used regularly as it will result in an object with a large file size.

save_conv_chains

Logical indicating whether the MCMC chains from rjags should be saved but only for the parameters monitored for convergence (default = FALSE). This would be useful for plotting traceplots for relevant model parameters to evaluate convergence behavior. Note, this should not be used regularly as it will result in

an object with a large file size.

verbose Logical controlling whether progress messages/bars are generated (default =

TRUE).

Details

For more information on the model equation and priors implemented in this function, see Peralta et al. (2022).

Value

A list (an object of class BPREM) with elements:

Convergence Potential scale reduction factor (PSRF) for each parameter (parameter_psrf),

 $Gelman\ multivariate\ scale\ reduction\ factor\ (\verb|multivariate_psrf|),\ and\ mean$

 $PSRF \ (\texttt{mean_psrf}) \ to \ assess \ model \ convergence.$

Model_Fit Deviance (deviance), effective number of parameters (pD), and Deviance infor-

mation criterion (dic) to assess model fit.

Fitted_Values Vector giving the fitted value at each timepoint for each individual (same length

as long data).

Parameter_Estimates

Data frame with posterior mean and 95% credible intervals for each model pa-

rameter.

Run_Time Total run time for model fitting.

Full_MCMC_Chains

If save_full_chains=TRUE, raw MCMC chains from rjags.

Convergence_MCMC_Chains

If save_conv_chains=TRUE, raw MCMC chains from rjags but only for the parameters monitored for convergence.

4 Bayes_CREM

Author(s)

Corissa T. Rohloff, Yadira Peralta

References

Peralta, Y., Kohli, N., Lock, E. F., & Davison, M. L. (2022). Bayesian modeling of associations in bivariate piecewise linear mixed-effects models. Psychological Methods, 27(1), 44–64. https://doi.org/10.1037/met0000358

Examples

```
# load simulated data
data(SimData_BPREM)
# plot observed data
plot_BEND(data = SimData_BPREM,
          id_var = "id",
          time_var = "time",
          y_var = "y1",
          y2_var = "y2")
# fit Bayes_BPREM()
results_bprem <- Bayes_BPREM(data = SimData_BPREM,
                              id_var = "id",
                              time_var = "time",
                              y1_var = "y1",
                              y2_{var} = "y2")
# result summary
summary(results_bprem)
# plot fitted results
plot_BEND(data = SimData_BPREM,
          id_var = "id",
          time_var = "time",
          y_var = "y1",
          y2_var = "y2",
          results = results_bprem)
```

Bayes_CREM

Bayesian Crossed Random Effects Model (CREM)

Description

Estimates a Bayesian crossed random effects models (CREM) for longitudinal data with dynamic group membership. Four different choices for functional forms are provided: linear, quadratic, exponential, and piecewise. See Rohloff et al. (2024) for more details.

Usage

```
Bayes_CREM(
  data,
  ind_id_var,
  cross_id_var,
```

Bayes_CREM 5

```
time_var,
 y_var,
  form = "linear",
  fixed_effects = NULL,
  iters_adapt = 5000,
  iters_burn_in = 50000,
  iters_sampling = 50000,
  thin = 15,
  save_full_chains = FALSE,
  save_conv_chains = FALSE,
  verbose = TRUE
)
```

Arguments

data Data frame in long format, where each row describes a measurement occasion

for a given individual. It is assumed that each individual has the same number of assigned timepoints (a.k.a., rows). There can be missingness in the outcome

(y_var), but there cannot be missingness in time (time_var).

ind_id_var Name of column that contains ids for individuals with repeated measures in a

longitudinal dataset (e.g., students).

cross_id_var Name of column that contains ids for the crossed factor (e.g., teachers).

Name of column that contains the time variable. This column cannot contain time_var

any missing values.

Name of column that contains the outcome variable. Missing values should be y_var

denoted by NA.

Name of the functional form. Options include: 'linear' (default), 'quadratic', form

'exponential', 'piecewise'.

fixed_effects (optional) Starting values for the fixed effects parameters.

iters_adapt (optional) Number of iterations for adaptation of jags model (default = 5000).

(optional) Number of iterations for burn-in (default = 50000). iters_burn_in

iters_sampling (optional) Number of iterations for posterior sampling (default = 50000).

(optional) Thinning interval for posterior sampling (default = 15). thin

save_full_chains

Logical indicating whether the MCMC chains from rjags should be saved (default = FALSE). Note, this should not be used regularly as it will result in an object with a large file size.

save_conv_chains

Logical indicating whether the MCMC chains from rjags should be saved but only for the parameters monitored for convergence (default = FALSE). This would be useful for plotting traceplots for relevant model parameters to evaluate convergence behavior. Note, this should not be used regularly as it will result in an object with a large file size.

Logical controlling whether progress messages/bars are generated (default = TRUE).

verbose

6 Bayes_CREM

Details

For more information on the model equation and priors implemented in this function, see Rohloff et al. (2024).

Note, this function differs from the above reference by estimating the covariances between the random effects parameters. The variance-covariance matrices of the individual and group random effects have a scaled inverse-Wishart prior (see Peralta et al., 2022).

Value

A list (an object of class CREM) with elements:

Convergence Potential scale reduction factor (PSRF) for each parameter (parameter_psrf),

Gelman multivariate scale reduction factor (multivariate_psrf), and mean

PSRF (mean_psrf) to assess model convergence.

Model_Fit Deviance (deviance), effective number of parameters (pD), and Deviance infor-

mation criterion (dic) to assess model fit.

Fitted_Values Vector giving the fitted value at each timepoint for each individual (same length

as long data).

Functional_Form

Functional form fitted.

Parameter_Estimates

Data frame with posterior mean and 95% credible intervals for each model pa-

rameter.

Run_Time Total run time for model fitting.

Full_MCMC_Chains

If save_full_chains=TRUE, raw MCMC chains from rjags.

Convergence_MCMC_Chains

If save_conv_chains=TRUE, raw MCMC chains from rjags but only for the pa-

rameters monitored for convergence.

Author(s)

Corissa T. Rohloff

References

Peralta, Y., Kohli, N., Lock, E. F., & Davison, M. L. (2022). Bayesian modeling of associations in bivariate piecewise linear mixed-effects models. Psychological Methods, 27(1), 44–64. https://doi.org/10.1037/met0000358

Rohloff, C. T., Kohli, N., & Lock, E. F. (2024). Identifiability and estimability of Bayesian linear and nonlinear crossed random effects models. British Journal of Mathematical and Statistical Psychology. https://doi.org/10.1111/bmsp.12334

```
time_var = "time",
          y_var = "y")
# fit Bayes_CREM()
results_pcrem <- Bayes_CREM(data = SimData_PCREM,</pre>
                             ind_id_var = "id",
                             cross_id_var = "teacherid",
                             time_var = "time",
                             y_var = "y",
                             form="piecewise")
# result summary
summary(results_pcrem)
# plot fitted results
plot_BEND(data = SimData_PCREM,
          id_var = "id",
          time_var = "time",
          y_var = "y",
          results = results_pcrem)
```

Bayes_PREM

Bayesian Piecewise Random Effects Model (PREM) + Extensions

Description

Estimates a Bayesian piecewise random effects model (PREM), with some useful extensions. There are three model options included in this function:

- PREM estimates a Bayesian piecewise random effects model with a latent number of change-points (default). Allows the inclusion of outcome-predictive covariates (CI-PREM).
- PREMM estimates a piecewise random effects mixture model for a given number of latent classes and a latent number of possible changepoints in each class.
- CI-PREMM estimates a covariate influenced piecewise random effects mixture model for a given number of latent classes and a latent number of possible changepoints in each class. Allows the inclusion of outcome- and/or class-predictive covariates. See Lock et al. (2018) and Lamm (2022) for more details.

Usage

```
Bayes_PREM(
  data,
  id_var,
  time_var,
  y_var,
  n_class = 1,
  max_cp = 2,
  class_predictive_vars = NULL,
  outcome_predictive_vars = NULL,
  scale_prior = "uniform",
  alpha = 1,
  cp_prior = "binomial",
  binom_prob = 0.5,
```

```
iters_adapt = 1000,
iters_burn_in = 20000,
iters_sampling = 30000,
thin = 15,
save_full_chains = FALSE,
save_conv_chains = FALSE,
verbose = TRUE
)
```

Arguments

Data frame in long format, where each row describes a measurement occasion for a given individual. It is assumed that each individual has the same number of assigned timepoints (a.k.a., rows). There can be missingness in the outcome (y_var), but there cannot be missingness in time (time_var).

id_var Name of column that contains ids for individuals with repeated measures in a longitudinal dataset.

time_var Name of column that contains the time variable. This column cannot contain any missing values.

y_var Name of column that contains the outcome variable. Missing values should be

denoted by NA.

n_class Number of latent classes (default = 1). Note, CI-PREMM only allows for two classes.

 max_cp Maximum number of changepoints in each latent class (default = 2).

class_predictive_vars

Name(s) of column(s) that contain class-predictive covariates (time-invariant only). Give a vector of names if multiple covariates. Note, there cannot be any missingness in the covariates.

outcome_predictive_vars

Name(s) of column(s) that contain outcome-predictive covariates (time-varying or -invariant). Give a vector of names if multiple covariates. Note, there cannot be any missingness in the covariates.

scale_prior Prior for the scale parameter for the hierarchical random effects. Options include: 'uniform' (scaled uniform prior; default) or 'hc' (scaled half-cauchy

prior).

alpha Concentration parameter for Dirichlet prior for latent classes (default = 1). This

can be a vector of values corresponding to the number of classes (specified by

n_class). Note, this is not used for CI-PGMM.

cp_prior Prior for the number of changepoints in each class. Options include: 'binomial'

(default) or 'uniform'.

binom_prob Probability for binomial prior, if specified (default = 0.5).

iters_adapt (optional) Number of iterations for adaptation of jags model (default = 1000).

iters_burn_in (optional) Number of iterations for burn-in (default = 20000).

iters_sampling (optional) Number of iterations for posterior sampling (default = 30000).

thin (optional) Thinning interval for posterior sampling (default = 15).

save_full_chains

Logical indicating whether the MCMC chains from rjags should be saved (default = FALSE). Note, this should not be used regularly as it will result in an object with a large file size.

save_conv_chains

Logical indicating whether the MCMC chains from rjags should be saved but only for the parameters monitored for convergence (default = FALSE). This would be useful for plotting traceplots for relevant model parameters to evaluate convergence behavior. Note, this should not be used regularly as it will result in an object with a large file size.

verbose

Logical controlling whether progress messages/bars are generated (default = TRUE).

Details

For more information on the model equation and priors implemented in this function, see Lamm et al. (2022; CI-PREMM) and Lock et al. (2018; PREMM).

Value

A list (an object of class PREM) with elements:

Convergence Potential scale reduction factor (PSRF) for each parameter (parameter_psrf),

Gelman multivariate scale reduction factor (multivariate_psrf), and mean

PSRF (mean_psrf) to assess model convergence.

Model_Fit Deviance (deviance), effective number of parameters (pD), and Deviance infor-

mation criterion (dic) to assess model fit.

Fitted_Values Vector giving the fitted value at each timepoint for each individual (same length

as long data).

Parameter_Estimates

Data frame with posterior mean and 95% credible intervals for each model pa-

rameter.

Run_Time Total run time for model fitting.

Full_MCMC_Chains

If save_full_chains=TRUE, raw MCMC chains from rjags.

Convergence_MCMC_Chains

If save_conv_chains=TRUE, raw MCMC chains from rjags but only for the parameters monitored for convergence.

Class_Information contains a list with elements:

class_membership

Vector of length n with class membership assignments for each individual.

individ_class_probability

nxC matrix with each individual's probabilities of belonging to each class conditional on their class-predictive covariates (when applicable) and growth curve.

 $unconditional_class_probability$

This output will differ based on which model was fit. For a PREM or CI-PREM, this will equal 1 as there is only one class. For a PREMM or CI-PREMM with only outcome-predictive covariates, this will be a vector of length C denoting the population probability of belonging to each class. For a CI-PREMM with class-predictive covariates, this will be a vector of length n denoting the probability of each individual belonging to the non-reference class (Class 2) based on their class-predictive covariates only.

Author(s)

Corissa T. Rohloff, Rik Lamm, Eric F. Lock

References

Lamm, R. (2022). Incorporation of covariates in Bayesian piecewise growth mixture models. https://hdl.handle.net/11299/252533

Lock, E. F., Kohli, N., & Bose, M. (2018). Detecting multiple random changepoints in Bayesian piecewise growth mixture models. Psychometrika, 83(3), 733–750. https://doi.org/10.1007/s11336-017-9594-5

```
# load simulated data
data(SimData_PREM)
# plot observed data
plot_BEND(data = SimData_PREM,
       id_var = "id",
        time_var = "time",
        y_var = "y")
# fit Bayes_PREM()
results_prem <- Bayes_PREM(data = SimData_PREM,</pre>
                     id_var = "id",
                     time_var = "time",
                     y_var = "y")
# result summary
summary(results_prem)
# plot fitted results
plot_BEND(data = SimData_PREM,
       id_var = "id",
        time_var = "time",
        y_var = "y",
        results = results_prem)
# CI-PREM -----
# fit Bayes_PREM()
results_ciprem <- Bayes_PREM(data = SimData_PREM,</pre>
                       id_var = "id",
                       time_var = "time",
                       y_var = "y",
                       outcome_predictive_vars = "outcome_pred_1")
# result summary
summary(results_ciprem)
# plot fitted results
plot_BEND(data = SimData_PREM,
        id_var = "id",
       time_var = "time",
       y_var = "y",
        results = results_ciprem)
# PREMM ------
# fit Bayes_PREM()
results_premm <- Bayes_PREM(data = SimData_PREM,</pre>
```

plot_BEND 11

```
id_var = "id",
                         time_var = "time",
                         y_var = "y",
                         n_{class} = 2)
# result summary
summary(results_premm)
# plot fitted results
plot_BEND(data = SimData_PREM,
        id_var = "id",
         time_var = "time",
        y_var = "y",
         results = results_premm)
# fit Bayes_PREM()
results_cipremm <- Bayes_PREM(data = SimData_PREM,</pre>
                           id_var = "id",
                           time_var = "time",
                           y_var = "y",
                           n_{class} = 2,
                           class_predictive_vars = c("class_pred_1", "class_pred_2"),
                           outcome_predictive_vars = "outcome_pred_1")
# result summary
summary(results_cipremm)
# plot fitted results
plot_BEND(data = SimData_PREM,
         id_var = "id",
         time_var = "time",
         y_var = "y",
         results = results_cipremm)
```

plot_BEND

Plot a BEND Model (PREM, CREM, BPREM)

Description

Generates a "spaghetti plot" of observed longitudinal trajectories for each individual. If the results from a BEND function are supplied, the trajectory defined by the mean parameters is shown in bold. If fitting a mixture (PREMM or CI-PREMM) or bivariate model (BPREM), the mean trajectories for classes or outcomes will be distinguished by color.

Usage

```
plot_BEND(
  data,
  id_var,
  time_var,
  y_var,
  y2_var = NULL,
  results = NULL,
  xlab = "X",
```

plot_BEND

```
ylab = "Y",
colors = NULL,
mean_colors = NULL,
legend_pos = "topright",
...
)
```

Arguments

data	Data frame in long format, where each row describes a measurement occasion for a given individual. It is assumed that each individual has the same number of assigned timepoints (a.k.a., rows).
id_var	Name of column that contains ids for individuals with repeated measures in a longitudinal dataset.
time_var	Name of column that contains the time variable.
y_var	Name of column that contains the outcome variable.
y2_var	(for BPREM only) Name of column that contains the second outcome variable.
results	The output of BEND model to the data. If results=NULL, only a spaghetti plot of the data will be generated.
xlab	X-axis label for the generated plot.
ylab	Y-axis label for the generated plot.
colors	Colors for each class (PREMM or CI-PREMM) or outcome (BPREM). By default, up to 5 colors are provided in the following order: "blue" (class 1 and outcome 1), "red" (class 2 and outcome 2), "green" (class 3), "gold" (class 4), "gray" (class 5).
mean_colors	Colors for the trajectory defined by the mean parameters for each class (PREMM or CI-PREMM) or outcome (BPREM). By default, up to 5 colors are provided in the following order: "darkblue" (class 1 and outcome 1), "darkred" (class 2 and outcome 2), "darkgreen" (class 3), "gold4" (class 4), "darkgray" (class 5).
legend_pos	(optional) Option to change legend position (default = "topright").
	(optional) Other parameters to pass to the plot() function.

Value

No return value, called to generate plot.

Author(s)

Corissa T. Rohloff

results_bprem 13

results_bprem

Fitted results for a BPREM

Description

Simulated data for a bivariate piecewise random effects model (BPREM) using $SimData_BPREM$. Included to demonstrate the use of summary.BPREM().

Usage

```
data(results_bprem)
```

Format

A list (an object of class BPREM) with fitted model results.

results_pcrem

Fitted results for a PCREM

Description

Simulated data for a piecewise crossed random effects model (PCREM) using SimData_CREM. Included to demonstrate the use of summary.CREM().

Usage

```
data(results_pcrem)
```

Format

A list (an object of class CREM) with fitted model results.

14 SimData_BPREM

 $results_prem$

Fitted results for a PREM

Description

Fitted results for a piecewise random effects model (PREM) using SimData_PREM. Included to demonstrate the use of plot_BEND() and summary.PREM().

Usage

```
data(results_prem)
```

Format

A list (an object of class PREM) with fitted model results.

SimData_BPREM

Simulated data for a BPREM

Description

Simulated data for a bivariate piecewise random effects model (BPREM) with 7 timepoints collected on 30 individuals.

Usage

```
data(SimData_BPREM)
```

Format

A data frame with 210 rows and 4 variables.

Details

- id ID for each individual.
- time Timepoints for each individual.
- y1 Outcome 1.
- y2 Outcome 2.

SimData_PCREM 15

 $SimData_PCREM$

Simulated data for a PCREM

Description

Simulated data for a piecewise crossed random effects model (PCREM) with 7 timepoints collected on 30 individuals.

Usage

```
data(SimData_PCREM)
```

Format

A data frame with 210 rows and 4 variables.

Details

- id ID for each individual.
- teacherid ID for each teacher.
- time Timepoints for each individual.
- · y Outcome.

SimData_PREM

Simulated data for a PREM + Extensions

Description

Simulated data for a piecewise random effects model (PREM) and useful extensions (CI-PREM, PREMM, CI-PREMM) with 18 timepoints collected on 30 individuals.

Usage

```
data(SimData_PREM)
```

Format

A data frame with 540 rows and 6 variables.

Details

- id ID for each individual.
- time Timepoints for each individual.
- y Outcome.
- class_pred_1 First class predictive covariate (time-invariant).
- class_pred_2 Second class predictive covariate (time-invariant).
- outcome_pred_1 Outcome predictive covariate (time-varying).

16 summary.CREM

summary.BPREM

Summarize the results of a bivariate piecewise random effects model (BPREM)

Description

Provides a summary of a BPREM model, as returned by Bayes_BPREM().

Usage

```
## S3 method for class 'BPREM'
summary(object, ...)
```

Arguments

```
object An object of class "BPREM" (returned by Bayes_BPREM(...)).
... Additional arguments.
```

Value

Prints estimates for key parameters in the BPREM. Also returns a list of these values.

Author(s)

Corissa T. Rohloff

Examples

```
# load fitted model results
data(results_bprem)
# result summary
summary(results_bprem)
```

summary.CREM

Summarize the results of a crossed random effects model (CREM)

Description

Provides a summary of a CREM model, as returned by Bayes_CREM().

Usage

```
## S3 method for class 'CREM'
summary(object, ...)
```

Arguments

```
object An object of class "CREM" (returned by Bayes_CREM(...)).
... Additional arguments.
```

summary.PREM 17

Value

Prints estimates for key parameters in the CREM. Also returns a list of these values.

Author(s)

Corissa T. Rohloff

Examples

```
# load fitted model results
data(results_pcrem)
# result summary
summary(results_pcrem)
```

summary.PREM

Summarize the results of a piecewise random effects model (PREM)

Description

Provides a summary of a PREM model, as returned by Bayes_PREM().

Usage

```
## S3 method for class 'PREM'
summary(object, ...)
```

Arguments

```
object An object of class "PREM" (returned by Bayes_PREM(...)).
... Additional arguments.
```

Value

Prints estimates for key parameters in the PREM. Also returns a list of these values.

Author(s)

```
Corissa T. Rohloff
```

```
# load fitted model results
data(results_prem)
# result summary
summary(results_prem)
```

Index

```
* datasets
    results_bprem, 13
    results_pcrem, 13
    results_prem, 14
    SimData_BPREM, 14
    {\tt SimData\_PCREM},\, {\color{red}15}
    SimData_PREM, 15
Bayes_BPREM, 2
Bayes_CREM, 4
Bayes_PREM, 7
plot_BEND, 11
results_bprem, 13
results_pcrem, 13
results_prem, 14
SimData_BPREM, 14
SimData_PCREM, 15
SimData_PREM, 15
summary.BPREM, 16
summary.CREM, 16
summary.PREM, 17
```