Principle

Limitation & Motivation

Methodology

Developmen Work Flow

Simulati

Protocol Im

plementatio

Results

Future Work

Daisy Chain Communication Protocol for Shape-Shifting Displays

Network Protocol Implementation

Raoul Rubien rubienr@sbox.tugraz.at

Institute for Technical Informatics Graz University of Technology

5th August 2016

Principle

Limitation & Motivation

Methodolog

Work Flow

Simulat

plementatio

Results

Future Work

- Introduction
 - Principle
 - Limitation & Motivation
- 2 Methodology
 - Development Work Flow
 - Simulation
 - Protocol Implementation
- Results
- 4 Future Work

miroducti

Principle

Limitation & Motivation

Methodolog

Developmen Work Flow

Simulation

Protocol Implementation

Resul

Future Work

Particle network principle

- Particle Chains for Shape-Shifting Displays ¹
 - o network design
 - $\circ \ \mathsf{particle} \ \mathsf{development} \ \mathsf{board}$

Figure 1: network topology

Figure 2: development hardware

Limitation & Motivation

- No existent protocol for the given network topology allowing
 - scheduling of actuation commands,
 - network synchronization and
 - runtime drift compensation.

Conclusion

• Develop a lightweight network protocol tailored for the given structure.

muoducti

Principle

Limitation & Motivation

lethodolog

Development Work Flow

Simulation

Protocol Implementation

Results

Future Work

- 1 Introduction
 - Principle
 - Limitation & Motivation
- 2 Methodology
 - Development Work Flow
 - Simulation
 - Protocol Implementation
- Results
- 4 Future Work

Limitation &

Development Work Flow

Methodology

- daisy chain protocol development
 - Physical Layer runtime drift compensation
 - Data Link Layer
 - Network Layer time synchronization actuation scheduling
- simulation supported development process
 - automated testing

Project constraints

- use actuators for protocol communication
- single network communication entry point
- daisy chained network without global time awareness

Limitation &

Methodolog

Development Work Flow

Simulation

Protocol Implementation

Resul

Future Work

Development work flow - I

- How to guarantee good code quality?
- How to speed up development?

Solution

- simulate
 - verify result JUnit tests
 - o visualize result: signals, variables, pins, interrupts, ...
 - o inspect result read log

Figure 3: work flow

Limitation &

Methodolog

Development Work Flow

Simulation

Protocol Im-

piementation

Resul

Future Work

Development work flow - II

- IDE independent tool chain
 - o integrating multiple projects
 - \circ allows deployment to real MCU
 - o starts simulation

Figure 4: tool chain overview

Principle
Limitation &

Methodology

Developmen Work Flow

Simulation

plementation

Result

Future Work

Simulation

- framework simulates a whole network
- nodes are defined abstracted as platforms
- each platform is associated with a firmware
- firmware is compiled as usual for physical MCU ATmega16

Figure 5: simulator structure

Principle

Limitation & Motivation

Methodolog

Developmen Work Flow

Simulation

Protocol Im

Resul

Future Work

Simulating with Avrora²

- simulation result may also be used by other tools
 - o friction simulation
 - o network visualization

Figure 6: simulation trace

¹http://compilers.cs.ucla.edu/avrora

Principle
Limitation &

Methodolog

Developmen

C1............

Protocol Im-

plementation

Result

Future Work

Protocol implementation

- state machine
- permanently called

```
void main() {
    while(true) { process(); }
}
```


Figure 7: protocol process

Principle Limitation &

Protocol Implementation

Firmware sequence diagram

- reception, transmission and processing are independent
- may occur effectively concurrent

Figure 8: firmware sequence diagram, gray states are blocking

Principle

Limitation &

Protocol Im-

plementation

Encoding

- opted for Manchester coding
 - no clock wire needed
 - o can be exploited to calculate clock skew
 - simple to implement 1st event buffering 2nd decoding

Figure 9: Manchester coding: data = $clock \oplus manchester$

Principle
Limitation &

Methodolog

Developmer Work Flow

Protocol Im-

plementation

Result

Future Work

Reception implementation

- store timestamp of signal edge to circular buffer
 16bit timer-counter value
- decoder consumes from buffer and converts to bit
- interpreter interprets decoded buffer interpret-able

Figure 10: decoding sequence diagram

Principle

Motivation

Methodolog

Work Flow

Simulation

Protocol Implementation

Results

Future Wor

Actuation example

1st phase: neighbor discovery

2nd phase: address assignment

3rd phase: enumeration finished

4th phase: time synchronization

5nd phase: send "heat wires at specific time" command

6rd phase: execute command

Figure 11: network visualization

IIILIOGUCLIC

Principle

Limitation &

vietnodolog

Work Flow

Simulat

Protocol Im plementatio

Results

Future Work

- 1 Introdu
 - Principle
 - Limitation & Motivation
- 2 Methodology
 - Development Work Flow
 - Simulation
 - Protocol Implementation
- Results
- 4 Future Work

miroductio

Principle

Limitation &

Methodolog

Developmer Work Flow

Simulatio

plementation

Results

Future Work

Results

- An extend-able daisy chain network protocol that
- executes actuation commands at a given time synchronously, and
- a development **tool chain** that sustains:
 - o simulation,
 - debugging and
 - o JUnit testing.

Principle

Limitation &

ethodolog

Work Flow

Simulat

Protocol Implementatio

Results

Future Work

- Introduct
 - Principle
 - Limitation & Motivation
 - 2 Methodolog
 - Development Work Flow
 - Simulation
 - Protocol Implementation
- Results
- 4 Future Work

miroductic

Principle

Limitation &

Methodolog

Developmen Work Flow

Protocol Implementation

Result

Future Work

Future work

- Physical Layer
 - o considering partially implemented parity bit
- Network Layer
 - o fault detection, fault tolerance
- time compensation
 - o evaluate calibration accuracy
- remote programming
 - customize boot loader (firmware replication)
- forward/backward shaping of 1st row

Principle

Limitation &

Development

plementation

Future Work

Interactive video example: https://github.com/ProgrammableMatter