George Stein, Ph.D.

Machine Learning Researcher

×	george.f.stein@gmail.com
	georgestein.github.io
	georgestein
in	george-stein

SUMMARY

5+ years experience adapting and advancing deep learning techniques to solve applied problems at scale. 10+ years in high-performance computing, data analysis, and visualization. Highly adept at extracting insights from large datasets.

PROFESSIONAL EXPERIENCE

Lawrence Berkeley National Laboratory

Berkeley, CA

Sept. 2019–Present

- Postdoctoral Scholar, Machine Learning
 - Compiled a dataset of 100 million galaxy images and utilized multi-node GPU-accelerated systems to develop and train convolutional neural networks. | *PyTorch*
 - Implemented self-supervised learning to utilize unlabelled data and increase the efficiency of human labeling efforts by over 160%.
 - Created and deployed an image retrieval web app built upon 50 million image embeddings. | Streamlit
 - Principal investigator of data science proposal awarded 12k NVIDIA DGX A100 node-hours and 200TB storage.

University of California, Berkeley

Berkeley, CA

Postdoctoral Scholar, Machine Learning

Sept. 2019–Present

- Designed a new anomaly detection method and applied it to win a blind anomaly detection challenge by detecting and characterizing an anomaly occurring in only 0.08% of 1 million events.
- Built a neural network emulator to replace a costly calculation, achieving 10,000x speed-up. | JAX
- Developed a deep generative model for high-dimensional time series data and performed probabilistic data reconstruction to improve the constraints on parameters of interest. | *TensorFlow*

Canadian Institute for Theoretical Astrophysics

Toronto, ON

Graduate Researcher, High Performance Computing

Sept. 2014-Aug. 2019

• Constructed a pipeline for generating simulated observations of our universe on high performance computing systems, achieving 100x speed-up from previous methods, adopted by numerous forward modeling pipelines. | Fortran

SELECTED INDEPENDENT PROJECTS

Segmentation of Satellite Imagery

Nov. 2021-March 2022

- Trained an ensemble of segmentation models to identify cloud cover in satellite imagery as part of a popular data science competition, finishing in the top 3% of 850 participants. | *Pytorch-Lightning*
- Leveraged public APIs to increase public dataset size 10-fold, and designed a custom set of physically motivated augmentations that nearly eliminated overfitting.

ML-in-cosmology

Dec. 2018-Present

• Curator of a comprehensive archive of ML applications to the study of cosmology, with over 250 stars on GitHub.

EDUCATION

University of Toronto

Toronto, ON

Ph.D., Astrophysics

Sept. 2014–Aug. 2019

University of British Columbia

Vancouver, BC

B.Sc. (Honours), Physics and Astronomy, with distinction

Sept. 2010-May 2014

SKILLS

Programming Languages: Python (advanced), Fortran (experienced).

Frameworks/Packages: Proficient in PyTorch, TensorFlow, PyTorch-Lightning, Scikit-Learn, NumPy, Pandas, Jupyter Notebook, Git, Bash, and Streamlit. Familiar with JAX, SQL, CSS, HTML, TensorFlow Probability, Pyro, and NumPyro.

Machine Learning Experience: Computer Vision, Convolutional Neural Networks, Self-supervised learning, Generative modeling, Density estimation, MCMC sampling, Dimensionality reduction & Clustering (Autoencoders, TSNE, UMAP, k-NN), etc.

PUBLICATIONS

 $Lead\ author\ of\ 7\ publications\ in\ machine\ learning\ and\ cosmology.\ Presented\ research\ at\ 50+\ venues.$

Full publication list and additional projects available at georgestein.github.io