- 11.1 对一个作简谐振动的物体,下面哪种说法是正确的?
  - (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值。
- (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零。
- (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零。
- (D) 物体处在负方向的端点时,速度最大,加速度为零。
- 11.2 如图所示质点的谐振动曲线所对应的振动方程



- (B)  $X=2\cos(\pi t/4+5\pi/4)$  (m)
- (C)  $X=2\cos(\pi t \pi/4)$  (m)
- (D)  $X=2\cos(3 \pi t/4 \pi/4)$  (m)



11.3 已知一质点沿 y 轴作简谐振动, 其振动方程为  $y = A\cos(\omega t + 3\pi/4)$ , 与之对应的振动曲线是



11.4 一质点作谐振动,周期为 T,它山平衡位置沿 X 正方向运动到离最大位移一半处所需要的最短时间为

- (A) T/4
- (B) T/6
- (C) T/8
- (D) T/12

11.5 劲度为 k 的轻弹簧截成三等份, 取出其中两根, 将它们并联在一起, 下面挂一质量为 m 的物体, 则振动系统的频率为

(A)  $\sqrt{k/m}/2\pi$ 

(B)  $\sqrt{6k/m}/2\pi$ 

(C)  $\sqrt{3k/m}/2\pi$ 

(D)  $\sqrt{k/3m}/2\pi$ 

11.6 一弹簧振子作简谐振动,总能量为  $E_1$ ,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量  $E_2$  变为

- (A)  $E_1/4$ .
- (B)  $E_1/2$ .
- (C)  $2E_1$ .
- (D)  $4E_1$ .

11.7 两个不同的轻质弹簧分别挂上质量相同的物体 1 和 2, 若它们的振幅之比  $A_2/A_1=2$ , 周期之比  $T_2/T_1=2$ , 则它们的总振动能量之比  $E_2/E_1$  是

| 拍的频率是                                       | $(\mathbf{R}) \mathbf{v}_1 - \mathbf{v}_2$ | (C)( $v_1+v_2$ )/2                | $(D)(y_1-y_2)/2$                                       |
|---------------------------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------------------|
| (11) 11 + 12                                | (B) $v_1 - v_2$                            | (C)(V1+V2)/2                      | $(D)(\sqrt{1}-\sqrt{2})/2$                             |
| 011.1 一质点作语<br>到平衡位置所需:<br>(A) π/5, 0.0375s | 要的时间分别为                                    | J:                                | 5) cm, 则 t=2 秒时的周相及质点第一》                               |
| 011.2 一弾簧振于<br>T <sub>0</sub> 之间的关系是        |                                            | ,若将弾簧剪去一                          | ·半, 则此弹簧振子振动周期 T 和原有周                                  |
| (A) $T = \sqrt{2}T_0$ (                     | $(B) T_0 = \sqrt{2}T$                      |                                   |                                                        |
|                                             |                                            |                                   |                                                        |
| (A) 周期、速度:                                  | 最大值和加速度                                    |                                   | 速度最大值、加速度最大值的改变情况。<br>音。                               |
| 011.4 有两个同方振幅和初周相分                          |                                            | 别为 X <sub>1</sub> =4cos(3t+ 3     | τ/4)cm, X <sub>2</sub> =3cos(3t-3 π/4)cm, 则合振云         |
| (A) 1cm, $\pi/4$                            | (B) 1cm, $-3 \pi$                          | : /4                              |                                                        |
|                                             | <b></b><br><b> </b>                        | 为 X=4cos(3t+ π /                  | 的谐振动,已知其中一个分振动的方程 $3$ )cm,则另一个分振动的振幅为 $A_2$ 和 $\delta$ |
|                                             |                                            |                                   |                                                        |
|                                             |                                            | 谐振动, 它们的振<br>3), 其合成运动的           | 动方程分别为 $X_1$ = $A\cos(\omega t + \pi/3)$ , $X_2$ 运动方程为 |
| (A) $\sqrt{3}A\cos(\omega t)$               | $(3 + \frac{\pi}{2})$ (B) $\sqrt{3}$       | $A\cos(\omega t + \frac{\pi}{6})$ |                                                        |

(A) 1 (B) 1/4 (C) 4/1 (D) 2/1.

为 π/3,第一个振动的振幅为 A<sub>1</sub>=10cm,则第一振动与第二振动的周相差为

(A)  $x_2 = A\cos(\omega t + \alpha + \pi/2)$ . (B)  $x_2 = A\cos(\omega t + \alpha - \pi/2)$ . (C)  $x_2 = A\cos(\omega t + \alpha - 3\pi/2)$ . (D)  $x_2 = A\cos(\omega t + \alpha + \pi)$ .

点正在最大正位移处. 则第二个质点的振动方程为

(A) 0

11.8 两个同方向同频率的谐振动, 其合振幅为 20cm, 合振动周相与第一个振动的周相差

11.9 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为  $x_1$  =  $A\cos(\omega t + \alpha)$ . 当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质

11.10 频率为 $v_1$  和 $v_2$  的两个音叉同时振动时,可以听到拍音,可以听到拍音,若 $v_1 > v_2$ ,则

(B)  $\pi/2$  (C)  $\pi/3$  (D)  $\pi/4$ 

011.7 一弹簧振子作简谐振动,振幅为 A,周期为 T,其运动方程用余弦函数表示. 若 t=0时,振子在  $\sqrt{2}A/2$  向正方向运动,则初相为

- (A)  $\pi/4$  (B)  $7\pi/4$
- 011.8 质量 M=1.2 kg 的物体,挂在一个轻弹簧上振动。用秒表测得此系统在 45 s 内振动了 90 次.若在此弹簧上再加挂质量 m=0.6 kg 的物体,而弹簧所受的力未超过弹性限度.则该系统新的振动周期为
- (A) 0.61s (B) 0.87s
- 011.9. 一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点. 已知周期为T,振幅为A. 若 t=0 时质点过x=0 处且朝x 轴正方向运动,则振动方程为

(A) 
$$A\cos(\frac{2\pi t}{T} - \frac{\pi}{2})$$
 (B)  $A\cos(\frac{2\pi t}{T} + \frac{\pi}{2})$ 

011.10 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的多少?(设平衡位置处势能为零). 当这物块在平衡位置时,弹簧的长度比原长长 $\Delta I$ ,这一振动系统的周期为

(A) 
$$3/4$$
 倍, $2\pi\sqrt{\frac{\Delta l}{g}}$  (B)  $1/4$  倍, $2\pi\sqrt{\frac{\Delta l}{g}}$