

Document Title

Tier 2 Summary of the Analytical Methods and Validation for

Flupyradifurone (BYI 02960)

Data Requirements

Regulation (EC) No 1107/2009 Regulatory Directive 2003-01/Canada/PMRA OPPTS guidelines/US/EPA

Annex IIA Section 2, Point 4 Document M

According to OECD format guidance for industry data submissions on plant protection products and their active substances

Date

2012-06-07

Author(s)

Nuesslein, F.; Hellpointner, E.; Thomas, J.
Bayer CropScience

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

TABLE OF CONTENTS

		Page
IIA 4	Analytical Methods and Validation	4
IIA 4.1	Analytical standards and samples	4
IIA 4.1.1	Analytical standards for pure active substance	4
IIA 4.1.2	Samples of the active substance as manufactured	4
IIA 4.1.3	Analytical standards for relevant metabolites and other components	4
IIA 4.1.4	Samples of reference substances for relevant impurities	4
IIA 4.2	Methods for the analysis of the active substance as manufactured	4
IIA 4.2.1	Methods for the analysis of the active substance as manufactured	4
IIA 4.2.2	Applicability of existing CIPAC methods	9
IIA 4.2.3	Description of analytical methods for the determination of impurities	9
IIA 4.2.4	Description of analytical methods for the determination of additives	9
IIA 4.2.5	Enforcement analytical methodology	10
IIA 4.2.6	Inter-Laboratory analytical methodology validaton	10
IIA 4.2.7	Storage stability of working solutions in analytical methodology	10
IIA 4.3	Description of analytical methods for the determination of residues in plant and animal matrices	10
IIA 4.4	Description of methods for analysis of soil (parent and metabolites)	63
IIA 4.5	Description of methods of analysis of water (parent and metabolites)	66
IIA 4.6	Method for determining pesticides in sediment	69
IIA 4.7	Methods for analysis of air (parent and metabolites)	70
IIA 4.8	Methods for analysis of body fluid/tissues (parent and metabolites)	73
IIA 4.9	Other/special studies	74

IIA 4 Analytical Methods and Validation

IIA 4.1 Analytical standards and samples

IIA 4.1.1 Analytical standards for pure active substance

Analytical standards for pure active substance are available and can be provided on request.

IIA 4.1.2 Samples of the active substance as manufactured

Samples of the active substance as manufactured are available and can be provided on request.

IIA 4.1.3 Analytical standards for relevant metabolites and other components

If relevant, analytical standards for relevant metabolites and other components included in the residue definition are available and can be provided on request.

IIA 4.1.4 Samples of reference substances for relevant impurities

If relevant, samples of reference substances for relevant impurities are available and can be provided on request.

IIA 4.2 Methods for the analysis of the active substance as manufactured

IIA 4.2.1 Methods for the analysis of the active substance as manufactured

Report:	KIIA 4.2.1/01, zur Mühlen, U., Wagner, S.; 2011;
Title:	Flupyradifurone (BYI 02960) Determination of technical grade active substance HPLC -
	ISTD
Report No &	AM008809MP1
Document No	<u>M-407218-01-1</u>
Guidelines:	EC Directive 1107/2009; OPPTS 830.1800
GLP	Non-GLP

The active substance Flupyradifurone is determined in the technical material as manufactured by reversed-phase liquid chromatography (HPLC) using Diethylphthalate as internal standard (ISTD). The quantitative determination is performed with a specific UV detector (DAD detector) at 225 nm.

Report:	KIIA 4.2.1/02, Wagner, S.; 2011;
Title:	Validation of AM008809MP1 Flupyradifurone (BYI 02960) Determination of technical
	grade active substance HPLC - ISTD
Report No &	VB1-AM008809MP1
Document No	<u>M-409002-01-1</u>
Guidelines:	EC Directive 1107/2009; OPPTS 830.1800
GLP	GLP

The HPLC-method AM008809MP1for the determination of Flupyradifurone (BYI 02960) in technical grade active substance has been completely validated by checking the parameters linearity, precision, accuracy, specificity and interference.

Linearity	5 concentrations with double measurements; range 84.3 – 120.4%
	(corresponding to 84.3 mg/100 mL to 120.4 mg/100 mL);
	correlation coefficient r ² : 0.9999; regression equation and chromatograms are
	given in the report; the function is linear in the operating range.
Precision	5 synthetic samples with double measurements;
Repeatability	no outliers are reported, RSD: 0.30 %;
	acceptable according to the Horwitz equation.
Accuracy	5 synthetic samples with double measurements;
	mean recovery: 99.87 %; RSD: 0.23 %.
Specificity/Interference	Retention times and UV-spectra from reference substance, sample and
	spiked sample were compared. The UV-spectra show no spectral
	differences, the corresponding retention times are identical.
	Chromatograms of reference substances, sample and spiked sample were
	checked and found to be free of interfering compounds.

The HPLC-method AM008809MP1 for the determination of Flupyradifurone (BYI 02960) in technical grade active substance is found to be valid.

Linearity: results from the individual measurements

Excerpt of the GLP raw data of the validation (VB1-AM008809MP1), GLP raw data archived:

BYI 02960

No.	Name	Sample Type	Pos	Ret.Time min BYI 02960	Amount BYI 02960	Dil.Fac.	Amount Ref.	Area mAU*min BYI 02960	Faktor BYI 02960
				UV VIS 1				UV VIS 1	UV VIS 1
2	AZ 16895 Linearity 1	standard	11	9.05	1	1.0	1	19.27191	0.0111
3	AZ 16895 Linearity 1	standard	11	9.05	1	1.0	1	19.49370	0.0112
4	AZ 16895 Linearity 2	standard	12	9.05	1	1.0	1	21.86848	0.0111
5	AZ 16895 Linearity 2	standard	12	9.05	1	1.0	1	22.13324	0.0111
6	AZ 16895 Linearity 3	standard	13	9.05	1	1.0	1	23.10004	0.0111
7	AZ 16895 Linearity 3	standard	13	9.05	1	1.0	1	23.22262	0.0111
8	AZ 16895 Linearity 4	standard	14	9.05	1	1.0	1	26.30458	0.0111
9	AZ 16895 Linearity 4	standard	14	9.05	1	1.0	1	26.32761	0.0111
10	AZ 16895 Linearity 5	standard	15	9.05	1	1.0	1	27.79764	0.0111
11	AZ 16895 Linearity 5	standard	15	9.05	1	1.0	1	27.81411	0.0111
Average:									0.0111
RSD:									0.112%

Diethylphthalate

No.	Name	Sample Type	Pos	alate	Amount Diethylphthalate	Dil.Fac.	Amount Ref.	mAU*min Diethylphthalat e	е
				UV_VIS_1	UV_VIS_1				UV_VIS_1
2	AZ 16895 Linearity 1	standard	11	12.32	1	1.0	1	20.52711	1.0000
3	AZ 16895 Linearity 1	standard	- 11	12.32	1	1.0	1	20.73443	1.0000
4	AZ 16895 Linearity 2	standard	12	12.32	1	1.0	1	20.54462	1.0000
5	AZ 16895 Linearity 2	standard	12	12.32	1	1.0	1	20.78160	1.0000
6	AZ 16895 Linearity 3	standard	13	12.32	1	1.0	1	20.63230	1.0000
7	AZ 16895 Linearity 3	standard	13	12.32	1	1.0	1	20.72506	1.0000
8	AZ 16895 Linearity 4	standard	14	12.32	1	1.0	1	20.90123	1.0000
9	AZ 16895 Linearity 4	standard	14	12.32	1	1.0	1	20.90567	1.0000
10	AZ 16895 Linearity 5	standard	15	12.32	1	1.0	1	20.78953	1.0000
11	AZ 16895 Linearity 5	standard	15	12.32	1	1.0	1	20.78473	1.0000
verage									1,0000
RSD:									0.000%

Repeatability: results from the individual measurements

Excerpt of the GLP raw data of the validation (VB1-AM008809MP1), GLP raw data archived:

BYI 029	60									
No.	Name	Replicate ID	Type	Weight	Ret.Time	Area	Height	Amount	Average	Rel.Std.Dev.
			BYI 02960		min BYI 02960	mAU*min BYI 02960		g/kg BYI 02960	Amount	%
			UV_VIS_1		UV VIS 1	UV_VIS_1	UV VIS 1	UV VIS 1		
10	Precision 1		BMB	103.35	9.04	23.53196	379.549	980.3263		
11	Precision 1		BMB	103,35	9.04	23.58201	380.994	979.8183		
12	Precision 2		BMB	107.46	9.04	24.29565	391,924	973.1823		
13	Precision 2		BMB	107.46	9.04	24.41577	394.000	973.7105		
14	Precision 3		BMB	104.27	9.04	23.76318	383.612	980.0756		
15	Precision 3		BMB	104.27	9.04	23.86380	385.496	980.2377		
16	Precision 4		вмв	101.30	9.04	23.28641	376.035	980.8087		
17	Precision 4		BMB	101.30	9.04	23.28014	375.922	980.5606		
18	Precision 5		BMB	99.46	9.04	22.90803	370.260	980.6019		
19	Precision 5		BMB	99.46	9.04	22.77664	368.302	981.1460	979.0468	0.304

Diethyl	Diethylphthalate									
No.	Name	Replicate ID	Туре	Weight	Ret.Time	Area	Height	Amount	Average	Rel.Std.Dev.
			Diethylphthal ate		min Diethylphthalate	mAU*min Diethylphthalate	mAU Diethylphthalate	g/kg Diethylphthalate	Amount	%
			UV VIS 1		UV VIS 1	UV VIS 1	UV VIS 1	UV VIS 1		
10	Precision 1		вмв	103.35	12.32	20.88665	874.958	1.0000		
11	Precision 1		вмв	103.35	12.32	20.94192	876.475	1.0000		
12	Precision 2		вмв	107.46	12.32	20.89196	874.699	1.0000		
13	Precision 2		BMB	107.46	12.32	20.98386	878.466	1.0000		
14	Precision 3		вмв	104.27	12.32	20.91113	875.092	1.0000		
15	Precision 3		BMB	104.27	12.32	20.99619	879.093	1.0000		
16	Precision 4		BMB	101.30	12.32	21.07660	882.810	1.0000		
17	Precision 4		BMB	101.30	12.32	21.07625	882.952	1.0000		
18	Precision 5		BMB	99.46	12.32	21.12215	884.514	1.0000		
19	Precision 5		BMB	99.46	12.32	20.98937	879.087	1.0000	1.0000	0.000

Repeatability: Chromatogram of a sample blank (GLP raw data, archived)

IIA 4.2.2 Applicability of existing CIPAC methods

Up to now there is no CIPAC method available for the determination of BYI 02960 (Flupyradifurone) in technical grade active substance

IIA 4.2.3 Description of analytical methods for the determination of impurities

Refer to file of confidential information in Document JII.

IIA 4.2.4 Description of analytical methods for the determination of additives

Refer to file of confidential information in Document JII.

IIA 4.2.5 Enforcement analytical methodology

Not required for the methods for the analysis of the active substance as manufactured.

IIA 4.2.6 Inter-Laboratory analytical methodology validaton1

Not required for the methods for the analysis of the active substance as manufactured.

IIA 4.2.7 Storage stability of working solutions in analytical methodology

Not required for the methods for the analysis of the active substance as manufactured.

IIA 4.3 Description of analytical methods for the determination of residues in plant and animal matrices

General remark:

In this summary section (KIIA 4.3), the following name will be used for the metabolite BYI 02960-difluoroethyl-amino-furanone, which is relevant to the plant residue analytical methods:

<u>Name</u> <u>Metab. No.</u> <u>Standard "dossier name"</u>

DFEAF M34 BYI 02960-difluoroethyl-amino-furanone

Plant matrices:

For the determination of the relevant residues of BYI 02960 (common name: flupyradifurone) in <u>plant matrices</u>, three methods were developed.

Method <u>01330</u> was developed as an *enforcement method*. It determines BYI 02960 and its metabolite DFA by HPLC-MS/MS. Matrix-matched standards were used for quantification. The LOQs were generally 0.01 mg/kg and 0.02 mg/kg for BYI 02960 and DFA, respectively, except for hop matrices, for which the respective LOQs were 0.05 and 0.10 mg/kg. Results of an ILV demonstrated inter-laboratory reproducibility of the method.

The European multi-residue methods <u>DFG S 19</u> and <u>QuEChERS</u> are unsuitable for the enforcement of this compound because the determination of the metabolite DFA is not possible – none of the extraction processes described in either of the methods would allow appropriate extraction of this molecule.

Two internal-standard methods were used for *data collection*. Both allow the determination of BYI 02960 and three metabolites (DFA, DFEAF, 6-CNA) in plant matrices via HPLC-MS/MS. In the first, method <u>RARVP013</u> (a.k.a. method no. 01304), the LOQs in the primary study were generally 0.01 mg/kg for BYI 02960, DFEAF, and 6-CNA (all expressed in parent equivalents) and 0.02 mg/kg for DFA in crops high in acid and water content (e.g. oranges, tomatoes), or 0.05 mg/kg in dry and protein-rich matrices, fodder materials, and soybeans (such as dried bean seeds, wheat grain, wheat fodder, and soybean seeds). In the second method, <u>01212</u>, the LOQs for all analytes were the same as in 01304 except for DFA, for which the LOQ was 0.02 mg/kg in all matrix types.

Animal matrices:

For the determination of the relevant residues of BYI 02960 in <u>animal matrices</u>, two methods were developed.

Method <u>01214</u> was developed as an *enforcement method*. It determines BYI 02960 and its metabolite DFA by HPLC-MS/MS. For quantification, matrix-matched standards were used. The LOQs were 0.01 mg/kg and 0.02 mg/kg for BYI 02960 and DFA, respectively, in all matrices. Results of an ILV demonstrated inter-laboratory reproducibility of the method.

Method <u>RV-004-A11-04</u> was developed for *data collection* in the feeding studies. It allows the determination of BYI 02960 and three metabolites (DFA, BYI 02960-acetyl-AMCP, BYI 02960-OH) in animal matrices via HPLC-MS/MS. Internal standards were used for quantification. The LOQs were generally 0.01 mg/kg for BYI 02960, BYI 02960-acetyl-AMCP, BYI 02960-OH in all matrices (all expressed in parent equivalents), as well as for DFA in poultry tissues, and 0.02 mg/kg for DFA in bovine matrices.

TD 11 42 1	α	1 1	1 /1 1	CDI	71 00000	. 1 ,	1 ' 1	, •
Lable /L 4_1.	Summary of resid	lue analytica	il methode	tor RV	/ 1 1179611	in nlant ana	1 anımal	matrices
1 auto 7.5-1.	Summary of resid	iuc anaiviici	n memous	\mathbf{D}	1104/00	m biam am	ı amma	manicos

Matrix	Analyte	Method No.	Method principle	LOQ*	Reference
Plant	BYI 02960 DFA	01330 [†]	HPLC- MS/MS	BYI 02960: 0.01 or 0.05 mg/kg DFA: 0.02 or 0.10 mg/kg	IIA 4.3/01 IIA 4.3/02
Plant	BYI 02960 -DFEAF DFA 6-CNA**	RARVP 013 (01304)	HPLC- MS/MS	BYI 02960: 0.01 mg/kg -DFEAF: 0.01 mg/kg DFA: 0.02 or 0.05 mg/kg 6-CNA: 0.01 mg/kg**	IIA 4.3/03 IIA 4.3/04
Plant	BYI 02960 -DFEAF DFA 6-CNA**	01212	HPLC- MS/MS	BYI 02960: 0.01 mg/kg -DFEAF: 0.01 mg/kg DFA: 0.02 mg/kg 6-CNA: 0.01 mg/kg**	IIA 4.3/05
Animal	BYI 02960 DFA	01214 [†]	HPLC- MS/MS	BYI 02960: 0.01 mg/kg DFA: 0.02 mg/kg	IIA 4.3/06 IIA 4.3/07
Animal	BYI 02960 DFA -acetyl-AMCP -OH	(RV- 004- A11-04)	HPLC- MS/MS	BYI 02960: 0.01 mg/kg DFA: 0.01 or 0.02 mg/kg -acetyl-AMCP: 0.01 mg/kg -OH: 0.01 mg/kg	IIA 4.3/08 IIA 4.3/09

^{*} concentrations of all metabolites given as BYI 02960 equivalents

^{**} these methods are also capable of determining 6-CNA; however, as this compound is not part of any residue definitions, it will not be summarized further below.

[†] these methods are the proposed EU enforcement methods

Plant matrices

Report:	KIIA 4.3/01, Schulte, G., & Bauer, J.; 2012
Title:	Analytical method 01330 for the determination of residues of BYI 02960 and its metabolite
	difluoroacetic acid in/on plant matrix by HPLC-MS/MS - Enforcement method plant
Report No. &	Method no. 01330, report no. MR-011/096
Edition No.	<u>M-425848-01-1</u>
Guidelines:	– EU Council Directive 91/414/EEC amended by Commission Directive 96/68/EC
	– EU Guidance Document for residue analytical methods SANCO/825/00 rev. 7
GLP:	yes (certified laboratory)

Report:	KIIA 4.3/02, Konrad, S.; 2012
Title:	Independent lab validation of BCS method 01330 for the determination of residues of
	BYI 02960 and its metabolite difluoroacetic acid in/on plant matrices by HPLC-MS/MS
Report No. &	2011/0134/01
Edition No.	<u>M-427133-01-1</u>
Guidelines:	– EU Regulation (EC) No. 1107/2009
	– EU Guidance Document for residue analytical methods SANCO/825/00 rev. 8.1
	– EU Guidance Document for residue analytical methods SANCO/3029/99
	- OECD Guidance Document on pesticide residue analytical methods ENV/JM/Mono
	(2007)
	– US EPA Residue Chemistry Test Guideline OPPTS 860.1340, residue analytical methods
GLP:	yes (certified laboratory)

Principle of the method

Residue analytical method $\underline{01330}$ (Schulte & Bauer, 2012; KIIA 4.3/01) was developed as an EU enforcement method for the determination of the residues of BYI 02960 (parent compound), and its metabolite DFA in/on plant materials.

The residues were extracted twice from 5 g of plant material with acetonitrile/water (4/1, v/v) with 2.2 mL/L formic acid. The materials tested included lettuce (head), rape (seed), orange (fruit), wheat (grain), and hop (cone), representing a wide variety of crops/crop types as requested by EU guidance. After dilution, an aliquot of the raw extract was filtered for measurement. The solution was analyzed by HPLC-MS/MS; residues were quantified against matrix-matched standards.

Specificity

Apparent residues in control samples were below 30% of the LOQ. Two MRM transitions for quantitation and confirmation were monitored for BYI 02960 (m/z 289/126 or 90) in each matrix tested. Using this procedure, the HPLC-MS/MS method is highly specific, thus an additional confirmatory method based on another principle is not necessary. For DFA, no second MRM transition is available. Thus, a Hypercarb column was employed as a different separation system (as opposed to HILIC for the primary determination). The confirmatory methods were fully validated, hence the quantitation and confirmation methods can be used interchangeably if so desired.

Accuracy (recovery findings)

The accuracy of the method was assessed on the basis of the determined recovery rates. Samples were fortified with BYI 02960 at concentrations of 0.01 and 0.10 mg/kg (0.05 and 0.5 mg/kg in hops); DFA

was spiked at 0.02 and 0.20 mg/kg (0.10 and 1.0 mg/kg for hops), expressed in parent equivalents. Mean recoveries per fortification level for the primary method for both analytes and all matrices were in a range of 88-106%, with one exception at 62-65% (DFA, rape seed). Using the confirmatory conditions, mean values per fortification level were 70-108%, with one exception at 64% (DFA, rape seed, 0.02 mg/kg). In all three cases of lower recovery, the RSD was low (6.5-11.6%), so that these lower values were considered to be acceptable. The results are summarized below in tables 4.3-2 and 4.3-3.

Linearity

The correlation between the injected amount of substance and the detector response was linear for standards in matrix in the range from 0.125 to $500 \,\mu\text{g/L}$, using at least 5 different concentration levels, for both compounds. The correlation coefficients of the 1/x weighted linear regression were > 0.99 in both cases. Linearity was proven for the confirmatory method as well, over the same concentration range and, again, with correlation coefficients of > 0.99.

Limit of Quantification

The limit of quantitation (LOQ) for BYI 02960, defined as the lowest validated fortification level, was 0.01 mg/kg in all matrices tested, except hop cones, in which in was 0.05 mg/kg. For DFA, the LOQ was 0.02 mg/kg in all matrices except hops, where it was 0.10 mg/kg. The calculated limit of detection (LOD) was estimated to be at least 3 times lower than the respective LOQ, based on the linearity response data and matrix interference observed in control samples.

Repeatability (precision)

As a measure of the precision, the intra-laboratory repeatability (n=5) is given as the relative standard deviation (% RSD) for different sample materials at fortification levels at the respective LOQ and, in general, 10×LOQ. For BYI 02960, these levels were 0.01 and 0.10 mg/kg for most matrices, or between 0.05 and 0.50 mg/kg in hop cones. Relative standard deviations were 1.1-8.8% for the primary method (confirmatory: 1.8-9.9%).

Fortification levels for DFA were 0.02 and 0.20 mg/kg, except for hop matrices, where they were 0.10 and 1.0 mg/kg. RSDs were 1.7-11.6% for the primary method, and 2.1-9.4% for the confirmatory.

The results are summarized below in tables 4.3-2 and 4.3-3.

Reproducibility (ILV)

An independent laboratory validation was conducted for method 01330 and reported as 2011/0134/01 (Konrad, 2012; KIIA 4.3/02). Samples of lettuce head, orange fruit, and wheat grain were fortified with BYI 02960 parent compound and DFA at the nominal fortification levels of 0.01 and 0.10 mg/kg, i.e. the LOQ and the 10-fold LOQ. Two replicate specimens per plant material were kept untreated, serving as blank controls.

Analysis of samples was performed according to method 01330 (Schulte & Bauer, 2012; KIIA 4.3/01). Two MRM transitions were measured for BYI 02960 (as described above under "specificity"), one for quantification and the second for confirmation. For all matrices, for both

fortification levels, and for both MRM transitions monitored, the mean recoveries were between 75% and 103%, with relative standard deviations of < 10%. Only minor interfering signals in the blank control specimens were detected, resulting in a limit of detection (LOD) of 0.003 mg/kg for all plant materials.

For DFA, as described above under "specificity", one MRM transition was determined using two different HPLC conditions. For all matrices, for both fortification levels, and for both the primary and the confirmatory HPLC procedure, the mean recoveries were between 73 and 100%, with the exception of wheat grain at the 10×LOQ, where the value was 68%. This value was considered to be acceptable nevertheless, as the RSD was 7.2% and the overall recovery for wheat grain over both spike levels was 77%. RSDs were < 10% in all cases. Only minor interfering signals in the blank control specimens were detected, resulting in a limit of detection (LOD) of 0.003 mg/kg for all plant materials when using the primary method. (For the confirmatory method, the S/N ratio > 3 was not achieved.)

Method 01330 was shown to fulfil the reproducibility requirements as defined in international guidelines and therefore to be suitable for the enforcement of residue levels of BYI 02960 and its metabolite DFA in plant matrices. A summary of the independent laboratory validation results is given in tables 4.3-4 and 4.3-5.

Extraction efficiency

The extraction efficiency of the residue method for the determination of the relevant residues of BYI 02960 in plant matrices, consisting of the parent compound and its metabolite DFA, was assured by choosing the same extraction procedures as used in the plant metabolism studies (cf. chapter 6.2 of this dossier). Nevertheless, an extraction efficiency study was conducted using method 01304 (KIIA 4.3/03 and /04, cf. below). As the extraction procedures for method 01330 are the same as for 01304, the results of the study prove satisfactory extraction efficiency with method 01330.

Stability of analytes

BYI 02960 and DFA were shown to be stable in standard solutions for at least 6 months as a part of the study RARVP013 (method 01304, cf. KIIA 4.3/03). During the course of the validations for this method 01330, stability was shown in all tested matrix extracts for at least 7-8 days, when stored in the dark in a refrigerator at $4^{\circ}\text{C} \pm 3^{\circ}\text{C}$.

Standard EU multi-residue methods, e.g. DFG S 19 or QuEChERS

The EU requires that a major multi-residue method, usually DFG S 19 and/or QuEChERS, be evaluated as to whether it can be used for monitoring purposes. When considering the proposed enforcement residue definition for BYI 02960, consisting of the sum of two components – parent compound and the metabolite DFA – it is evident that the small, polar molecule DFA cannot be sufficiently extracted via any of the recommended extraction systems in the two multimethods. Thus, a specific method is presented here for enforcement purposes.

Conclusion

As DFA cannot be determined by DFG multi-residue method S 19 or by the QuEChERS procedure, a specific method, such as 01330, is suitable to determine the proposed enforcement residue definition for BYI 02960.

Method 01330 meets all necessary performance requirements to determine residues of BYI 02960 and its metabolite DFA in plant materials, with an LOQ of 0.01 mg/kg for BYI 02960 (0.05 in hops), and of 0.02 mg/kg for DFA (0.10 in hops). Results of an ILV showed that method 01330 fulfills the reproducibility requirements and is, therefore, applicable as an enforcement method.

<u>Table 4.3-2</u>: Recovery results from the method validation of method 01330 (enforcement method) – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

Sample material	FL*		Indivi	dual v	alues		Mean value	RSD	LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
QUANTIFICATION	MRM (289/.	126)							
lettuce / head	0.01	102	84	94	105	102	97	8.8	0.01
	0.10	92	99	88	97	99	95	5.1	
		Overall	recove	ry (n =	10)	96	6.9		
rape / seed	0.01	99	98	97	92	91	95	3.8	0.01
	0.10	96	98	92	92	94	94	2.8	
		Overall	recove	ry (n =	5)		95	3.2	
orange / fruit	0.01	96	97	97	97	88	95	4.1	0.01
	0.10	100	106	103	99	104	102	2.8	1
		Overall	recove	ry (n =	10)		99	5.1	
wheat / grain	0.01	100	104	106	104	109	105	3.1	0.01
	0.10	109	104	105	105	105	106	1.8	
		Overall	recove	ry (n =	10)		105	2.5	
hop / cone	0.01	86 ¹	89	94	90	91	91	2.4	0.05
	0.10	92	94	94	92	93	93	1.1	
		Overall	recove	ry (n =	10)		92	2.0	
CONFIRMATORY M	IRM (289/90	9)							
lettuce / head	0.01	103	85	95	107	104	99	9.0	0.01
	0.10	91	97	87	96	98	94	5.0	
		Overall	recove	ry (n =	10)		96	7.5	
rape / seed	0.01	100	99	97	93	91	96	4.0	0.01
-	0.10	94	97	89	91	91	92	3.4	
		Overall	recove	rv (n =	5)		94	4.1	1
orange / fruit	0.01	97	97	97	96	91	96	2.7	0.01
	0.10	98	105	102	98	104	101	3.2	
		Overall	recove	rv (n =	10)		99	4.2	1
wheat / grain	0.01	100	101	107	104	108	104	3.4	0.01
	0.10	105	100	101	102	102	102	1.8	1
		Overall		ry (n =			103	2.8	1
hop / cone	0.01	84 ¹	88	94	88	88	90	3.4	0.05
	0.10	88	92	91	89	91	90	1.8	
		Overall	recove	ry (n =	10)		90	2.5	

^{*} fortified compound BYI 02960 *Footnotes:*

<u>Table 4.3-3</u>: Recovery results from the method validation of method 01330 (enforcement method) – Recoveries and relative standard deviations (RSDs) for **DFA**

Sample material	FL* [mg/kg]		Indivi	dual va	alues	Mean value [%]	RSD [%]	LOQ [mg/kg]	
HILLC COLUMN ([/0]			[/0]	[/0]	[mg/kg]
HILIC COLUMN (I		100	0.0	0.0	00	104	0.4	10.7	0.02
lettuce / head	0.02	100	80	88	99	104	94	10.5	0.02
	0.20	91	100	88	99	101	96	6.1	-
		Overall		• \			95	8.1	
rape / seed	0.02	68	71	61	64	62	65 ¹	6.5	0.02
	0.20	63	74	61	56	57	621	11.6	<u> </u>
		Overall					64 ¹	9.1	
orange / fruit	0.02	101	103	104	94	84	97	8.6	0.02
	0.20	99	97	95	97	99	97	1.7	
		Overall	recove	ry(n =	10)		97	5.8	
wheat / grain	0.02	104	89	92	83	86	91	8.9	0.02
	0.20	96	87	88	82	87	88	5.7	
		Overall	recove	ry(n =	10)		89	<i>7.3</i>	
hop / cone	0.10	97	96	105	101	105	101	4.2	0.10
	1.0	105	102	105	97	102	102	3.2	
		Overall	recove	ry(n =	10)		102	3.6	
Hypercarb colu	MN (CONFIR	MATORY)							
lettuce / head	0.02	100	78	88	94	96	91	9.4	0.02
	0.20	94	101	90	100	100	97	4.9	
		Overall	recove	rv (n =	10)		94	7.7	1
rape / seed	0.02	73	74	66	68	68	70	5.0	0.02
1	0.20	67	71	60	60	61	64 ¹	7.8	
		Overall	recove	rv (n =			671	7.7	
orange / fruit	0.02	101	99	101	97	89	97	5.1	0.02
orunge / rrun	0.20	103	100	101	98	103	101	2.1	1 0.02
	0.20	Overall				100	99	4.1	
wheat / grain	0.02	86	90	90	84	86	87	3.1	0.02
,, mout / Bruin	0.20	92	92	93	87	92	91	2.6	0.02
	0.20	Overall	-				89	3.6	-
hop / cone	0.10	113	110	113	100	103	108	5.5	0.10
p / •••••	1.0	97	94	96	101	102	98	3.5	0.10
	1.0	Overall	_			102	103	6. 7	-
		Siciali		. 9 (11	10)		105	J• /	1

^{*} fortified compound DFA

determined as DFA

expressed as BYI 02960

Footnotes:
1: mean recoveries were below 70%; this was accepted due to the RSD of < 20%

<u>Table 4.3-4:</u> Recovery results from **independent laboratory validation** of method 01330 – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

Sample material	FL		Indivi	dual v	alues	Mean value		LOQ	
	[mg/kg]			[%]		[%]	[%]	[mg/kg]	
QUANTIFICATION .	MRM (289/1	126)							
lettuce / head	0.01	89	91	90	92	89	90	1.4	0.01
	0.1	89	91	91	94	92	91	2.0	
		Overall	recove	ry (n =	: 10)		91	1.8	
wheat / grain	0.01	77	84	92	89	86	86	6.7	0.01
	0.1	80	92	95	95	92	91	6.8	
		Overall	recove	ry (n =	: 10)		88	7 .0	
orange / fruit	0.01	89	92	96	93	92	92	3.0	0.01
	0.1	96	101	100	102	98	99	2.4	
		Overall	recove	ry (n =	: 10)		96	4.5	
CONFIRMATORY M	IRM (289/90	7)							
lettuce / head	0.01	94	88	93	93	90	92	2.5	0.01
	0.1	95	95	92	96	94	94	1.5	
		Overall	recove	ry (n =	: 10)		93	2.5	
wheat / grain	0.01	67	74	75	81	76	75	7.0	0.01
	0.1	84	95	98	98	93	93	6.3	
		Overall	recove	ry (n =	: 10)	84	13.4		
orange / fruit	0.01	94	92	103	100	101	98	4.5	0.01
	0.1	99	104	104	104	102	103	1.9	
		Overall	recove	ry (n =	: 10)		100	4.0	

^{*} fortified compound BYI 02960

determined as BYI 02960

expressed as BYI 02960

<u>Table 4.3-5:</u> Recovery results from **independent laboratory validation** of method 01330 – Recoveries and relative standard deviations (RSDs) for **DFA**

Sample material	FL [mg/kg]		Indivi	idual va [%]	alues	Mean value [%]	RSD [%]	LOQ [mg/kg]	
HILIC COLUMN (I	PRIMARY)								
lettuce / head	0.01	95	92	93	97	93	94	2.1	0.01
	0.1	100	100	96	97	99	99	1.8	
		Overall	recove	ry (n =	10)		96	3.2	
wheat / grain	0.01	85	86	86	87	89	87	2.1	0.01
	0.1	71	70	72	65	60	68	7.2	
		Overall	recove	ery (n =	<i>10)</i>		77	13.7	
orange / fruit	0.01	87	88	106	91	94	93	8.3	0.01
	0.1	103	99	103	98	98	100	2.5	
		Overall	recove	ery (n =	<i>10)</i>		97	6.8	
Hypercarb colu	MN (CONFIR	MATORY)							
lettuce / head	0.01	79	78	81	72	80	78	4.3	0.01
	0.1	88	88	84	91	89	88	2.9	
		Overall	recove	ery (n =	<i>10)</i>		83	7.1	
wheat / grain	0.01	88	84	86	98	93	90	6.2	0.01
	0.1	74	72	71	76	71	73	2.7	
		Overall	recove	ry(n =	10)		81	12.1	
orange / fruit	0.01	89	96	81	92	87	89	6.4	0.01
	0.1	91	88	86	91	86	88	2.8	
		Overall	recove	ery (n =	<i>10)</i>		89	4. 7	

^{*} fortified compound DFA

determined as DFA

Report:	KIIA 4.3/03, Li, Y., & Schoening, R.; 2012
Title:	Amendment No. 1 - Validation of Bayer CropScience method RV-001-P10-02 - An
	analytical method for the determination of residues of BYI 02960, 6-chloronicotinic acid,
	difluoroacetic acid, and difluoroethyl-amino-furanone in plant matrices using LC/MS/MS
Report No. &	RARVP013 (BCS EU method no. 01304, BCS US method no. RV-001-P10-02)
Edition No.	<u>M-415504-02-1</u>
Guidelines:	- OPPTS 860.1340 - Crop Field Trials
	– PMRA DACO 7.2.2 Residue Analytical Method
	– EU Guidance document for residue analytical methods SANCO/825/00 rev. 7
GLP:	yes (certified laboratory)

Report:	KIIA 4.3/04, Justus, K.; 2011
Title:	Extraction efficiency testing of the residue analytical method RV-001-P10-02 for the
	determination of BYI 02960, 6-chloronicotinic acid, difluoroacetic acid and difluoroethyl-
	amino-furanone in plant matrices using aged radioactive residues
Report No. &	MEF-11/793
Edition No.	<u>M-419323-01-1</u>
Guidelines:	– US EPA OPPTS 860.1340
GLP:	yes (certified laboratory)

Principle of the method

Residue analytical method <u>01304</u> (Li & Schoening, 2012; KIIA 4.3/03) was developed as a *data collection method* and a NAFTA enforcement method for the determination of the residues of BYI 02960 (parent compound), and its metabolites DFA, DFEAF, and 6-CNA in/on plant materials. The method validation is reported in study report RARVP013, which also contains the full method description, RV-001-P10-02. (As 6-CNA is not of relevance for this submission, further details relevant to this compound will not be discussed below. For more details on 6-CNA, please see the report.)

The residues were extracted twice from 5 g of plant material with acetonitrile/water (4/1, v/v) with 2.2 mL/L formic acid. The materials tested included bean (dry seed), wheat (grain & forage), orange (fruit), tomato (fruit), and soybean (seed), representing a wide variety of crops/crop types as requested by international guidance. (For further crops of relevance in the EU, additional materials were tested subsequent to this study; they and their source studies are also described below.) Aliquots of the extracts are purified through a C-18 solid-phase extraction column, then amended with a mixture of stable, isotopically labelled internal standards. The final solution was analyzed by HPLC-MS/MS.

Specificity

Although this method is used only for data collection in Europe, two MRM transitions for quantitation and confirmation were monitored for BYI 02960 (m/z 289/126 or 90) and DFEAF (m/z 162/94 or 98) in each matrix tested. An HPLC-MS/MS method is highly specific, but the confirmatory ions were tested, and, due to repeatability issues with BYI 02960 at the LOQ in some matrices, a second column system (Gemini C18, instead of HILIC as used in the primary method) was employed for confirmatory purposes with that compound.

For DFA, no second MRM transition is available. Thus, a Restek Allure Organic Acids HPLC column was employed as a different separation system (as opposed to HILIC for the primary

determination). The confirmatory methods were fully validated; hence the quantitation and confirmation methods can be used interchangeably if so desired.

Accuracy (recovery findings)

The accuracy of the method was assessed on the basis of the determined recovery rates. Samples were fortified with BYI 02960 at concentrations of 0.01 and 1.0 mg/kg, DFEAF at concentrations of 0.01, 0.013, and 1.3 mg/kg, and DFA at 0.05 and 1.0 mg/kg (for orange and tomato fruit samples, at 0.02 mg/kg as well). Metabolite levels were expressed in parent equivalents. Mean recoveries per fortification level for BYI 02960, DFEAF, and DFA for all matrices were in a range of 75-110%, using the primary conditions.

Confirmatory procedures for BYI 02960 and DFEAF called for the use of the same chromatographic system, but using a second MRM transition. For these two compounds, mean recoveries ranged from 81-107% – i.e. were in the acceptable range (70-110%) – for all matrices. However, as the repeatability was not within specification (relative standard deviation [RSDs] > 20%) for BYI 02960 in two matrices (orange fruit and wheat grain, at the LOQ), a second confirmatory method was developed, utilizing a different column system (Gemini C18, instead of HILIC as used in the primary method). Using this system, using both MRM transitions, mean recovery rates ranged from 85-104% in all matrices, always with acceptable RSD values.

For DFA, the confirmatory procedure is based on chromatography via an alternative column (Restek Allure Organic Acids, instead of HILIC as used in the primary method). Mean recovery values ranged from 77-105%, with a single exception: For tomato fruit, the mean recovery at the 50×LOQ was 111%. This value was considered to be acceptable, based on the fact that it was very close to 110%, the RSD was very low (1.0%), and the overall recovery over both fortification levels was in the acceptable range.

In addition to the matrices included in the report 01304 itself, for further crops of importance in the EU, additional materials were tested as required within the residue studies themselves; the ones of relevance to this dossier are described here. In those studies, limited validation sets were prepared for various matrices related to lettuce (head, washings), cereals (barley straw), hops (beer, brewer's yeast, draff), and sugar beet (root ["body"] and tops ["leaf"]). In addition, full validations were conducted for hop cones (both green and dried). Mean recovery values per fortification level in all matrices were 80-109%.

The results, including information on the source studies of the additional validations, are summarized below in tables 4.3-6 to 4.3-8.

Linearity

The correlation between the injected amount of substance and the detector response was linear for standards in solvent and in matrix and with/without ISTD in the range from 0.25 to 312.5 ng/L, using at least 5 different concentration levels, for all compounds. The correlation coefficients of the 1/x weighted linear regression were > 0.99 in all cases.

Limit of Quantification

The limit of quantitation (LOQ) for BYI 02960 and DFEAF, defined as the lowest validated fortification level, was 0.01 mg/kg in all matrices tested. All metabolite levels are expressed in parent equivalents. For DFA, the LOQ was 0.02 mg/kg in crop matrices high in acid and water content (e.g. oranges, tomatoes) or 0.05 mg/kg in dry/protein-rich matrices, fodder materials, and soybeans.

The calculated limit of detection (LOD) was calculated based on a statistical approach for each matrix and each compound MRM transition. Considering all sample materials and both compounds other than DFA, the LOD ranged from 0.0015-0.0065 mg/kg; for DFA, it was from 0.0048-0.0153 mg/kg.

Repeatability (precision)

As a measure of the precision, the intra-laboratory repeatability (n=5) is given as the relative standard deviation (% RSD) for different sample materials at fortification levels at the respective LOQ and at a higher level, 20×LOQ to 50×LOQ. For the primary determinations of BYI 02960, DFEAF, and DFA, RSDs were 0.8-16.5% for all matrices in the main method validation as presented in the method report itself. For the confirmatory procedures for DFEAF and DFA, the RSDs were 1.0-17.9%. As stated above (cf. "Accuracy"), based on some unacceptably high RSDs for the confirmatory validations with BYI 02960 (orange fruit, LOQ, 37.3%; wheat grain, LOQ, 34.9%), a second confirmatory procedure was developed. The repeatability of the new system was satisfactory, yielding RSDs of 1.8-16.9%.

For the additional crop matrices validated separately (as described above, cf. "Accuracy"), RSDs for all analytes at all fortification levels (generally LOQ and 10×LOQ) were 1.1-14.7%.

The results are summarized below in tables 4.3-6 to 4.3-8.

Reproducibility (ILV)

Since this method is a data collection method, no independent validation is required.

Extraction efficiency

The extraction efficiency of the residue method for the determination of the relevant residues of BYI 02960 in plant matrices, consisting of the parent compound and its metabolites DFEAF and DFA, was assured by choosing the same extraction procedures as used in the plant metabolism studies.

Nevertheless an extraction efficiency study was conducted (Justus, 2011; KIIA 4.3/04). Aged radioactive residues in samples from plant metabolism and confined rotational crop studies (cf. chapter 6 of this dossier) were analyzed using method 01304 (Li & Schoening, 2012; KIIA 4.3/03), and the recoveries of the extracted residues were then compared to those in the respective metabolism studies. The sample materials were tomato fruit, cotton seed, potato tuber, and wheat straw. The contribution of the metabolite DFA to the extraction efficiency was determined based on tomato fruit samples originating from the metabolism study with the [ethyl-1-¹⁴C]-label – the only plant metabolism study conducted with this label – which metabolises to ¹⁴C-DFA.

Plant material from metabolism studies was extracted according to the residue analytical method. The total radioactivity in this extract was determined by Liquid Scintillation Counting and recalculated into mg parent equivalents using the specific radioactivity of the BYI 02960 originally used in the plant metabolism study. In addition, the same extract was analysed by HPLC using ¹⁴C radiodetection, yielding the peak area of an analyte, relative to the total peak area of the whole chromatogram. This relative peak area was multiplied by the mg parent equivalents of the total extract to yield the mg parent equivalents represented by the respective peak. The identity of the peak was obtained by comparing the chromatograms with those of the plant metabolism study, which were obtained under the same chromatographic conditions. For confirmatory purposes, HPLC co-chromatography with a DFEAF reference standard was also conducted.

Relative amounts of the analytes relevant to the residue definition – BYI 02960, DFA, and DFEAF – were then compared between the original metabolism study extracts and those made using method 01304. The extraction efficiency values in tomato, cotton, potato, and wheat matrices were 100.7%, 160.2%, 104.0%, and 88.4%, respectively. The high value of 160% for cotton seeds may be due to losses of radioactivity observed during extraction and purification steps in the cotton metabolism study, but not observed in the extraction efficiency study.

In order to evaluate the storage stability in the samples used, comparison of the metabolic profiles recorded during this study with those from the original studies showed no significant changes, confirming that the results were not influenced by degradation of the representative components over the periods of sample storage subsequent to the original metabolism studies.

These results clearly demonstrate that residue method 01304 is suitable for the extraction and quantification of the total residues of BYI 02960, consisting of parent compound, DFA, and DFEAF, from plant matrices. This conclusion applies for other methods based on the same extraction procedures as well (i.e. all other methods presented under chapter point 4.3; cf. KIIA 4.3/01, /05, /06, and /08). (In addition to the components of the total residue, the method includes the determination of a fourth analyte, 6-CNA. This was also tested for extraction efficiency, but as it is not part of the residue definition in plants, it will not be discussed further here; please refer to the report.)

A summary of the extraction efficiency results is given in table 4.3-9.

Stability of analytes

In this validation study, the stability of BYI 02960, DFEAF, and DFA was tested in standard solutions (calibrations standards, spiking solutions, and internal standard solutions). All were shown to be stable in standard solutions for at least 6 months at temperatures of $4^{\circ}\text{C} \pm 3^{\circ}\text{C}$.

Also, during the course of the validations for this method 01304, the stability of BYI 02960, DFEAF, and DFA was tested in sample extracts, both before clean-up and in the final extracts for measurement. Stability was shown for all three compounds in all tested matrix extracts for approx. 20 days, when stored in the dark in a refrigerator at $4^{\circ}\text{C} \pm 3^{\circ}\text{C}$.

Conclusion

Method 01304 meets all necessary performance requirements to determine residues of BYI 02960 and its metabolites DFEAF and DFA in plant materials, with an LOQ of 0.01 mg/kg for BYI 02960 and DFEAF, and of 0.02 or 0.05 mg/kg for DFA, all expressed in parent compound equivalents. The method is valid as data collection method.

<u>Table 4.3-6</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

(Recoveries as documented in the method report unless noted otherwise)

PRIMARY METHOD: HILIC COLUMN, MRM 289/126	Sample material	FL		Indivi	dual v	alues		Mean value		RSD	LOQ
Dean / dried bean		[mg/kg]			[%]			[%]	[%]	[%]	[mg/kg]
Meat / forage	PRIMARY METHOD	: HILIC coi	LUMN, MR	M 289/	/126						
Meat / forage	bean / dried bean	0.01	92	88	94	85	91	93	8.1	8.6	0.01
Wheat / forage Overall recovery (n = 11) 100 13.4 wheat / forage 0.01 102 104 99 92 86 97 7.5 7.7 0.01 Overall recovery (n = 10) 96 6.6 6.6 Overall recovery (n = 10) 98 99 9.9 9.9 9.9 9.9 9.0 0.01 0.01 104 105 89 109 100 8.4 8.5 0.01 8.7 106 101 98 109 100 8.4 8.5 0.01 8.7 106 10 9.0 10.0 8.7 10.0 10 10 10 10 10 10 8.7 10.0 8.7 10 10 8.7 10 10 8.7 10 10 10 8.8 8.6 102 103 108 9.7 9.8 10.0 10 10 8.8 8.9 9.9 9.0 10.1 10											
wheat / forage 0.01 102 104 99 92 86 97 7.5 7.7 0.01 Overall recovery (n = 10) 96 6.0 6.6 6.0 6.6 6.0 6.6 6.0 6.6 6.0 6.0 6.6 6.0 6.0 6.0 6.6 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5		1.0					104		14.6		
1.0											
Overall recovery (n = 10) 96 6.6 orange / fruit 0.01 104 105 89 109 88 99 9.9 9.9 0.01 1.0 87 106 101 98 109 100 8.4 8.5 Overall recovery (n = 10) 100 8.4 8.5 Overall recovery (n = 10) 91 11.3 13.1 0.01 Overall recovery (n = 10) 91 11.2.6 11.2.6 11.2.6 Overall recovery (n = 10) 91 11.2.6 11.0 10.0 88 86 102 103 108 97 9.8 9.9 0.01 Overall recovery (n = 15) 94 9.7 9.7 9.7 9.7 9.7 9.7 10.0 10.0 85 89 87 74 87 9.4 10.7 0.01 10.0 85 89 87 74 87 9.4 10.7 0.01 11.6 10.0	wheat / forage			104			86				0.01
orange / fruit 0.01 104 105 89 109 88 99 9.9 9.9 0.01 1.0 87 106 101 98 109 100 8.4 8.5 Overall recovery (n = 10) 100 8.4 8.5 1.0 101 103 94 74 99 94 11.9 12.5 Overall recovery (n = 10) 91 12.6 12.6 10mato / fruit 0.01 94 82 99 105 105 97 9.8 9.9 10mato / fruit 0.01 94 82 99 105 105 97 9.8 9.9 10mato / fruit 0.01 94 82 99 105 105 97 9.8 9.9 10mato / fruit 0.01 94 82 99 105 105 97 9.8 10.0 10mato / fruit 0.01 98 86 102 103		1.0					99		5.5	6.0	
1.0			Overall			10)					
Soybean Seed 0.01	orange / fruit	0.01			89		88	99			0.01
soybean / seed 0.01 83 92 105 75 83 87 11.3 13.1 0.01 Lower life covery (n = 10) 91 12.5 Coverall recovery (n = 10) 91 12.6 tomato / fruit 0.01 94 82 99 105 105 97 9.8 9.9 0.01 0.1 88 86 102 103 108 97 9.8 10.0 10.0 85 89 87 74 87 9.4 10.7 0.01 10.0 85 89 87 74 87 9.4 10.7 0.01 10.0 93 92 98 81 73 88 10.0 11.6 10.0 10.0 93 92 98 81 73 88 10.0 11.6 10.5 10.0 11.6 10.0 11.6 10.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <td></td> <td>1.0</td> <td>87</td> <td>106</td> <td>101</td> <td>98</td> <td>109</td> <td>100</td> <td>8.4</td> <td>8.5</td> <td></td>		1.0	87	106	101	98	109	100	8.4	8.5	
1.0			Overall	recove	ry (n =	10)		100		8. 7	
tomato / fruit	soybean / seed	0.01	83	92			83		11.3	13.1	0.01
tomato / fruit		1.0	101	103	94	74	99	94	11.9	12.5	
0.1			Overall	recove	ry (n =	10)				12.6	
Note 1.0	tomato / fruit					105				9.9	0.01
Wheat /grain Overall recovery (n = 15) 94 9.7 wheat /grain 0.01 100 85 89 87 74 87 9.4 10.7 0.01 1.0 93 92 98 81 73 88 10.0 11.6 0.01 Overall recovery (n = 10) 87 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.0 <							108				
wheat/grain 0.01 100 85 89 87 74 87 9.4 10.7 0.01 Overall recovery (n = 10) 87 10.5 10.5 lettuce / head¹ 0.01 92 97 107 99 7.7 0.01 0.1 90 92 93 92 1.7 6.5 0.01 lettuce / washings² 0.01 99 102 106 109 117 107 6.5 0.01 washings² 0.5 95 97 111 101 8.6 0.01 barley / straw³ 0.01 104 106 108 111 107 2.5 0.01 barley / straw³ 0.01 105 107 111 108 2.8 0.01 barley / straw³ 0.01 104 106 108 111 107 2.5 0.01 barley / straw³ 0.01 105 107 111 108 2.8 3.0<		1.0	87	91	81	85	96		5.8		
Second S			Overall	recove	ry (n =						
Coverall recovery (n = 10) 87 10.5 lettuce / head¹	wheat /grain	0.01			89	87		87		10.7	0.01
lettuce / head		1.0	93	92	98	81	73	88	10.0	11.6	
Description of the image of t			Overall	recove	ry (n =	10)					
Continue	lettuce / head1	0.01			107			99		7.7	0.01
lettuce		0.1	90	92	93			92		1.7	
washings² 0.5 95 97 111 101 8.6 Overall recovery (n = 8) 105 barley / straw³ 0.01 104 106 108 111 107 2.5 0.01 Overall recovery (n = 8) 107 107 2.4 2.4 hops / green cone4 0.1 89 89 91 94 95 92 3.0 0.1 Overall recovery (n = 10) 91 4.6 hops / kiln-dried cone4 0.1 102 103 104 105 106 104 1.5 0.1 cone4 1.0 107 108 111 114 115 111 3.2 Overall recovery (n = 10) 108 4.2 hops / beer4 0.01 95 100 110 114 115 107 8.3 0.01 hops / beer4 0.01 105 112 116 111 5.0			Overall	recove	ry (n =	6)		95		6.6	
Dearly Straw Overall recovery (n = 8) 105 7.3		0.01			106	109	117	107		6.5	0.01
barley / straw ³	washings ²	0.5	95	97	111			101		8.6	
0.1 105 107 111 108 2.8			Overall	recove	ry (n =	8)		105		7.3	
Overall recovery (n = 8) 107 hops / green cone ⁴ 0.1 89 89 91 94 95 92 3.0 0.1 Overall recovery (n = 10) 91 4.6 hops / kiln-dried cone ⁴ 0.1 102 103 104 105 106 104 1.5 0.1 cone ⁴ 1.0 107 108 111 114 115 111 3.2 hops / beer ⁴ 0.01 95 100 110 114 115 107 8.3 0.01 0.1 105 112 116 111 5.0 5.0	barley / straw ³	0.01	104	106	106	108	111	107		2.5	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1	105	107	111			108		2.8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Overall	recove	ry (n =	· <i>8)</i>		107		2.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1	89				95	92			0.1
hops / kiln-dried cone ⁴ 0.1 102 103 104 105 106 104 1.5 0.1 Overall recovery (n = 10) 108 4.2 hops / beer ⁴ 0.01 95 100 110 114 115 107 8.3 0.01 0.1 105 112 116 111 5.0 5.0	cone ⁴	1.0	85	86	87	92	98	90		6.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Overall	recove	ry (n =	10)		91			
cone ⁴ 1.0 107 108 111 114 115 111 3.2 Overall recovery (n = 10) 108 4.2 hops / beer ⁴ 0.01 95 100 110 114 115 107 8.3 0.01 0.1 105 112 116 111 5.0			102	103		105		104		1.5	0.1
hops / beer ⁴ 0.01 95 100 110 114 115 107 8.3 0.01 0.1 105 112 116 111 5.0	cone ⁴	1.0	107	108	111	114	115	111		3.2	
hops / beer ⁴ 0.01 95 100 110 114 115 107 8.3 0.01 0.1 105 112 116 111 5.0			Overall	recove	ry (n =	10)					
	hops / beer ⁴	0.01	95	100			115	107			0.01
Overall recovery $(n-9)$ 109 7.1		0.1									
			Overall	recove	ry(n =	8)		108		7.1	

fortified compound BYI 02960 * as shown in report RARVP013 determined as BYI 02960

expressed as BYI 02960

Footnotes:

- 1: this crop/matrix was validated as part of study 10-2213 (KIIA 6.3.1/03)
- 2: this crop/matrix was validated as part of study 10-3223 (KIIA 6.5.4/01)
- 3: this crop/matrix was validated as part of study 10-2237 (to be submitted later; data available on request)
- 4: this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

Continued on next page...

<u>Table 4.3-6 (cont'd)</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **BYI 02960** (Recoveries as documented in the method report unless noted otherwise)

PRIMARY METHOD, HI hops / brewer's yeast ⁴ hops / draff ⁴ sugar beet / body ⁵ sugar beet / leaf 0	0.1 1.0 0.1 1.0 0.01 0.5	JMN MRM 98 77 Overall 84 101 Overall 89 92	109 99 recove 94 102 recove	111 102	111	113	[%] 108 93	[%]	5.5	[mg/kg] 0.1												
hops / brewer's yeast ⁴ hops / draff ⁴ sugar beet / body ⁵ sugar beet / leaf 0	0.1 1.0 0.1 1.0 0.01 0.5	98 77 Overall 84 101 Overall 89	109 99 recove 94 102 recove	111 102 ry (n = 96	111 8)	113			5.5	0.1												
hops / draff ⁴ sugar beet / body ⁵ sugar beet / leaf 0	0.1 1.0 0.01 0.01 0.5	77	99 recove 94 102 recove	102 ry (n = 96	8)	113			hops / brewer's 0.1 98 109 111 111 113 108 5.5 0.1													
hops / draff ⁴ sugar beet / body ⁵ sugar beet / leaf 0	0.1 1.0 0.01 0.5	Overall 84 101 Overall 89	recove 94 102 recove	<u>ry (n =</u> 96			0.2			4												
sugar beet / body ⁵ 0 sugar beet / leaf 0	0.01 0.5	84 101 Overall 89	94 102 recove	96					14.7													
sugar beet / body ⁵ 0 sugar beet / leaf 0	0.01 0.5	101 Overall 89	102 recove		105		103		11.5													
sugar beet / body ⁵ 0 sugar beet / leaf 0	0.01	Overall 89	recove	105	103	108	97		9.8	0.1												
sugar beet / leaf 0	0.5	89					103		2.0													
sugar beet / leaf 0	0.5			• .			99		7.8													
sugar beet / leaf 0		വാ	97	98	99	100	97		4.5	0.01												
	0.01		94	95			94		1.6													
		Overall		• \	8)		96		3.9													
with root collar ³	0.01	90	94	94			93		2.5	0.01												
	0.5	93	97	97			96		2.4													
		Overall	recove	ry (n =	6)		94		2.8													
HILIC, CONFIRMATOR							_		T													
bean / dried bean 0	0.01	89 104	80	98	109	87	95	10.9	11.7	0.01												
	1.0	104	103	110	137	112	113	14.2	12.6													
		Overall	recove	rv (n =	11)		103		14.8													
wheat / forage 0	0.01	82	95	80	85	108	90	11.6	12.9	0.01												
	1.0	96	108	100	97	96	99	4.9	5.1													
		Overall	recove	rv (n =	10)		95		10.3													
orange / fruit 0	0.01	79	81	137	47	91		32.21	37.3	0.01												
	1.0	83	99	90	95	103	94	7.6	8.3													
		Overall	recove	ry (n =	10)		91		24.9													
soybean / seed 0	0.01	113	120	99	117	87	107	13.9	12.9	0.01												
	1.0	104	111	95	103	90	101	8.1	8.2													
		Overall	recove	ry (n =	10)		104		10.9													
tomato / fruit 0	0.01	81	92	73	119	103	93	18.2	19.4	0.01												
	0.1	95	95	97	120	112	104	11.4	11.1													
	1.0	107	108	96	111	105	105	5.6	5.4													
		Overall		•			101		12.9													
	0.01	65	116	157	89	84		35.6	34.9^{6}	0.01												
	1.0	97	119	97	82	76	94	16.7	17.7													
		Overall					98		<i>27.1</i> ⁶													
2ND CONFIRMATORY M	METHOD,	GEMINI CO	OLUMN,	MRM	289/120	5																
bean / dried bean 0	0.01	100	106	97	100	102	96	5.0	5.3	0.01												
		95	95	91	93	91																
<u> </u>		90							<u> </u>													
	1.0	92	99	114	113	97	103	9.7	9.6													
		Overall		• \			98		7.5													
	0.01	95	94	87	94	94	93	3.1	3.5	0.01												
	1.0	86	95	86	85	81	87	5.3	5.9													
		Overall	rocovo	m, (n –	10)		90	ı	5.8	1												

fortified compound BYI 02960

Footnotes:

determined as BYI 02960

expressed as BYI 02960

^{*} as shown in report RARVP013

^{4:} this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

^{5:} this crop/matrix was validated as part of study 10-2240 (to be submitted later; data available on request)

^{6:} as the precision of this procedure was insufficient, an additional "2nd confirmatory procedure" was developed and validated

<u>Table 4.3-6 (cont'd)</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **BYI 02960** (Recoveries as documented in the method report unless noted otherwise)

Sample material	FL [mg/kg]		Indivi	idual va [%]	alues		Mean value [%]	SD* [%]	RSD [%]	LOQ [mg/kg]
2ND CONFIRMATO	RY METHOD,	GEMINI C	OLUMN	, MRM	289/120	(cont	'd)			
orange / fruit	0.01	103	91	91	96	98	96	4.9	5.3	0.01
_	1.0	97	98	96	91	95	96	2.6	2.8	
		Overall	recove	ry (n =	10)		96		4.0	
soybean / seed	0.01	101	98	106	110	98	102	5.2	5.1	0.01
	1.0	90	92	96	96	90	93	2.8	3.3	
		Overall	recove	ery (n =	10)		98		6. 7	
tomato / fruit	0.01	97	96	88	114	79		13.0	13.7	0.01
	1.0	87	96	104	94	94	95	6.3	6.4	
		Overall					95		10.1	
wheat / grain	0.01	86	91	101	87	94	92	5.9	6.6	0.01
	1.0	93	95	99	95	83	93	5.8	6.5	
		Overall	recove	ery (n =	10)		92		6.2	
2ND CONFIRMATO	RY METHOD,	GEMINI C	OLUMN	, MRM	289/90					
bean / dried bean	0.01	95	103	96	103	108	96	6.6	6.8	0.01
		88	101	95	88	94				
		90								
	1.0	93	98	115	114	97		10.4	10.0	
		Overall		ery (n =	16)		99		8.4	
wheat / forage	0.01	95	88	100	90	97	94	4.9	5.3	0.01
	1.0	83	93	85	86	80	85	4.9	5.7	
		Overall	recove	ery (n =	10)		90		7.2	
orange / fruit	0.01	102	103	93	87	96	96	6.7	6.2	0.01
	1.0	92	98	94	93	95	95	2.4	2.4	
		Overall	recove	ry (n =	10)		96		4.6	
soybean / seed	0.01	94	98	93	90	90	93	3.4	3.6	0.01
	1.0	92	90	91	94	90	92	1.8	1.8	
		Overall	recove	ry (n =	10)		92		2.8	
tomato / fruit	0.01	100	92	82	117	77	93	15.7	16.9	0.01
	1.0	86	91	97	92	96	92	4.5	4.8	
		Overall	recove	ery (n =			93		11.8	
wheat / grain	0.01	105	90	102	82	101	96	9.6	10.1	0.01
	1.0	94	96	98	94	84	93	5.6	5.8	
		Overall	recove	$ery(\overline{n} =$	10)		95		8.0	

fortified compound BYI 02960 * as shown in report RARVP013 determined as BYI 02960

expressed as BYI 02960

<u>Table 4.3.-7</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **DFEAF**(Recoveries as documented in the method report unless noted otherwise)

Sample material	FL [mg/kg]		Indivi	idual va	alues		Mean value	SD* [%]	RSD [%]	LOQ [mg/kg]
PRIMARY ION TRAN	ISITION, MR	M 162/94								<u> </u>
bean / dried bean	0.01	88	82	85	87	79	84	3.9	4.4	0.01
	0.013	110 87	96	88	102	94	96	8.8	9.1	
	1.3	90	95	135	118	110	109	18.1	16.5	
		Overall	recove	ry (n =	16)		97		15.5	
wheat / forage	0.01	120	94	83	91	86	95	14.6	15.5	0.01
	0.013	93	103	91	99	94	96	4.7	5.1	
	1.3	82	95	91	84	100	90	7.8	8.3	
		Overall	recove	ery (n =	<i>15)</i>		94		10.2	
orange / fruit	0.01	99	96	119	125	113	110	12.5	11.4	0.01
	0.013	89	99	82	98	95	93	7.3	7.7	
	1.3	93	104	103	94	106	100	6.0	6.0	
		Overall	recove	ry (n =	<i>15)</i>		101		11.2	
soybean / seed	0.01	94	103	89	89	96	94	5.9	6.2	0.01
-	0.013	93	81	106	112	105	99	12.5	12.5	
	1.3	94	98	91	103	94	96	4.8	4.8	
		Overall	recove	ery (n =	<i>15)</i>		97		8.3	
tomato / fruit	0.01	96	136	100	94	104	106	17.4	16.2	0.01
	0.013	85	94	90	105	78	90	10.1	11.2	
	0.13	89	98	107	90	99	97	7.3	7.6	
	1.3	95	97	94	95	96	96	1.2	1.2	
		Overall		• 1			97		11.7	
wheat /grain	0.01	97	79	106	97	116	99	13.4	13.8	0.01
	0.013	102	96	113	94	118	105	10.4	10.1	
	1.3	94	104	109	91	93	98	7.8	8.0	
		Overall	recove	ery (n =	<i>15)</i>		101		10.5	
lettuce / head1	0.01	83	86	90			86		4.1	0.01
	0.1	97	97	99			98		1.2	
		Overall	recove	ery (n =	<i>6)</i>		92		7.2	
lettuce /	0.01	95	99	100	100	107	100		4.3	0.01
washings ²	0.5	86	88	96			90		5.9	
		Overall	recove	ery (n =	8)		96		7.1	
barley / straw ³	0.01	95	101	102	106	107	102		4.7	0.01
	0.1	93	94	107			98		8.0	
		Overall	recove	ery (n =	8)		101		5.9	
hops / green	0.1	68	73	79	85	96	80		13.6	0.1
cone ⁴	1.0	76	77	78	84	91	81		7.8	
		Overall		_	10)	-	81		10.4	
hops / kiln-dried	0.1	89	106	107	107	108	103		7.8	0.1
cone ⁴	1.0	108	109	110	112	114	111		2.2	
		Overall			10)		107		6.3	
hops / beer ⁴	0.01	92	94	102	111	115	103		9.9	0.01
	0.1	102	107	112			107		4.7	
		Overall	recove	ery (n =	8)		104		8.0	

fortified compound DFEAF

* as shown in report RARVP013

determined as DFEAF

expressed as BYI 02960

Continued on next page...

1: this crop/matrix was validated as part of study 10-2213 (KIIA 6.3.1/03) 2: this crop/matrix was validated as part of study 10-3223 (KIIA 6.5.4/01)

- 3: this crop/matrix was validated as part of study 10-2237 (to be submitted later; data available on request) 4: this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

<u>Table 4.3-7 (cont'd)</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **DFEAF**(Recoveries as documented in the method report unless noted otherwise)

Sample material	FL		Indivi	dual v	alues		Mean value	SD*	RSD	LOQ
	[mg/kg]			[%]			[%]	[%]	[%]	[mg/kg]
PRIMARY ION TRAN	SITION, MR.	M 162/94	(cont'a	!)						
hops / brewers	0.1	97	107	107	110	113	106		5.2	0.1
yeast ⁴	1.0	85	99	109			98		12.3	
		Overall	recove	ry (n =	8)		103		8.6	
hops / draff ⁴	0.1	103	105	105	105	109	105		2.1	0.1
	1.0	100	104	107			104		3.4	
		Overall		ry (n =			105		2.5	
sugar beet / body ⁵	0.01	91	92	93	94	96	93		2.1	0.01
	0.50	95	101	110			102		7.4	
		Overall			8)		97		6.5	
sugar beet / leaf	0.01	83	89	94			89		6.2	0.01
with root collar ⁵	0.5	91	108	111			103		10.4	
		Overall		ry (n =	6)		96		11.6	
CONFIRMATORY IC										
bean / dried bean	0.01	78	74	100	74	79	81	10.5	13.4	0.01
	0.013	119 96	107	88	93	104	101	11.1	11.1	
	1.3	101	97	109	108	92	101	7.3	7.1	
		Overall	recove	ry (n =	16)		95		14.2	
wheat / forage	0.01	116	90	103	92	101	100	10.6	10.3	0.01
	0.013	86	95	82	87	92	88	5.1	5.8	
	1.3	89	92	92	90	110	94	8.7	9.2	
		Overall	recove	ry (n =	15)		94		9.8	
orange / fruit	0.01	98	105	88	98	106	99	7.2	7.3	0.01
	0.013	94	83	90	92	91	90	4.4	4.6	
	1.3	91	99	98	97	94	96	3.1	3.4	
		Overall	recove	ry (n =	15)		95		6.5	
soybean / seed	0.01	89	87	78	75	75	81	6.7	8.3	0.01
	0.013	92	97	89	96	94	94	3.5	3.4	
	1.3	90	93	87	86	91	89	3.0	3.2	
		Overall	recove	ry (n =	15)		88		7.9	
tomato / fruit	0.01	97	104	74	114	94	96	14.9	15.3	0.01
	0.013	98	100	91	106	78	95	10.5	11.3	
	0.13	103	104	104	108	92	102	6.0	5.9	
	1.3	90	91	89	95	93	92	2.0	2.6	
		Overall					96		10.1	
wheat /grain	0.01	101	86	95	93	84	92	7.1	7.5	0.01
	0.013	116	80	106	84	80	93	16.8	17.9	
	1.3	93	107	107	114	90	102	10.3	10.0	
		Overall	recove	ry (n =	15)		96		12.6	

fortified compound DFEAF

determined as DFEAF

expressed as BYI 02960

Footnotes:

^{*} as shown in report RARVP013

^{4:} this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

^{5:} this crop/matrix was validated as part of study 10-2240 (to be submitted later; data available on request)

<u>Table 4.3-8</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **DFA**

(Recoveries as documented in the method report unless noted otherwise)

Sample material	FL [mg/kg]		Indivi	dual v	alues		Mean value [%]	SD* [%]	RSD [%]	LOQ [mg/kg]
PRIMARY METHOD	, HILIC COI	LUMN								
bean / dried bean	0.05	73 73	73	73	76	80	75	2.9	3.9	0.05
	1.0	88	91	117	184**	91	97	13.6**	12.6**	
	1.0	Overal					84	10.0	16.8	
wheat / forage	0.05	92	90	85	92	87	89	3.2	3.5	0.05
	1.0	96	100	99	97	103	99	2.6	2.8	
		Overall	recove	ry (n =	: 10)		94		6.2	
orange / fruit	0.02	101	111	96	108	101	104	6.4	5.8	0.02
	0.05	94	100	90	97	87	93	5.2	5.6	
	1.0	99	101	100	100	101	100	1.0	0.8	
		Overall	recove	ry (n =	: 15)		99		6.1	
soybean / seed	0.05	79	77	76	76	71	76	2.8	3.9	0.05
,	1.0	78	73	75	76	77	76	2.1	2.5	
		Overall	recove	ry (n =	: 10)		76		3.1	
tomato / fruit	0.02	98	100	108	107	97	102	4.9	5.0	0.02
	0.05	91	87	87	103	81	90	8.2	9.1	
	0.1	90	99	103	99	96	97	4.8	5.0	
	1.0	95	93	91	99	96	95	3.0	3.2	
		Overall		• 1			96		7.1	
wheat /grain	0.05	86	86	89	87	96	89	4.4	4.7	0.05
	1.0	94	92	90	91	85	90	3.2	3.7	
		Overall		-	: 10)		90		4.1	
lettuce / head1	0.05	90	94	98			94		4.3	(0.02)
	0.5	90	91	92			91		1.1	
		Overall		ry (n =			93		3.3	
lettuce / head ²	0.02	90	93	94	95	97	98		10.2	0.02
		112 93	112 95	116	86	89				
		/ 0		(. 12)		98		10.2	
lettuce /	0.02	Overall 95	<u>recove</u> 96	97	97	103	98		3.2	0.02
washings ³	0.02	93	96	97	91	103	98		3.2	0.02
washings	0.3	Overall			- 0)		94 96		3.5	-
barley / straw ⁴	0.05	103	104	106	107	110	106		2.6	0.05
ouricy / suaw	0.03	98	101	101	107	110	100		1.7	0.03
	0.50	Overall			: 8)		104		3.7	†
hops / green	0.2	91	92	95	99	100	95		4.2	0.2
cone ⁵	1.0	76	79	83	84	94	83		8.2	1
		Overall					89		9.3	1
fortified compound DFA					ned as DF	<u> </u>			ı	BVI 02960

fortified compound DFA

determined as DFA

expressed as BYI 02960

<u>Footnotes</u>:

- 1: this crop/matrix was validated as part of study 10-2213 (KIIA 6.3.1/03)
- 2: recoveries from studies 10-2212, 10-2213, 10-2223, 10-2503 (KIIA 6.3.1/05, /03, /01; and KIIA 6.6.3/01)
- 3: this crop/matrix was validated as part of study 10-3223 (KIIA 6.5.4/01)
- 4: this crop/matrix was validated as part of study 10-2237 (to be submitted later; data available on request)
- 5: this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

^{*} as shown in report RARVP013

^{**} The sample was contaminated with DFA, is an outlier and is excluded. If the outlier is included, the average recovery is 114%, the SD is 40.8%, the RSD 35.7%, and the overall mean is 93%.

<u>Table 4.3-8 (cont'd)</u>: Recovery results from method validation of method 01304 – Recoveries and relative standard deviations (RSDs) for **DFA**(Recoveries as documented in the method report unless noted otherwise)

Note	Sample material	FL	Indi	vidual v	alues		Mean value		RSD	LOQ
hops / kiln-dried cone		[mg/kg]		[%]			[%]	[%]	[%]	[mg/kg]
Cone							1		1	I
Now Now										0.2
hops / beer S 0.02 0.3 100 110 110 113 105 109 108 110 110 110 110 110 110 10	cone ³	1.0				110				
Nosy Document Nosy No				• \						
hops / brewers yeat 0.2 99 107 109 115 116 109 14.1	hops / beer ⁵				110	113				0.02
Nose		0.2								
Nobe				• \						
Note					115	116				0.2
Nops draft	yeast ⁵	1.0								
Sugar beet / body 0.02 89 90 92 93 97 99 97 97 97 97 97				• \						
Sugar beet / body 0.02 89 90 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 97 92 93 94 95 94 95 97 97 97 97 97 97 97	hops / draff ⁵				109	111				0.2
sugar beet / body ⁶ 0.02 89 90 92 93 97 92 43 43 43 43 43 43 80 43 80 77 74 80 80 77 74 80 80 77 73 43 39 43 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90		1.0							2.6	
Sugar beet leaf with root collar 0.05 93 94 95 94 95 95 96 97 80 80 1.1 0.05			Overall reco	very (n =	· <i>8)</i>		103			
Sugar beet / leaf with root collar6 0.05 93 94 95 94 95 96 1.1 0.05 0.5 83 88 92 88 88 92 97 97 97 97 97 97 97	sugar beet / body ⁶	0.02		92	93	97	92		3.4	0.02
sugar beet / leaf with root collar6 0.05 93 94 95 94 1.1 0.05 Overall recovery (n = 6) 91 5.0 CONFIRMATORY METHOD, RESTEK ALLURE ORGANIC ACIDS COLUMN bean / dried bean / dried bean / forage 0.05 74 80 77 74 80 77 3.1 3.9 0.05 1.0 79 77 80 84 75 79 3.7 4.3 Overall recovery (n = 10) 78 4.1 wheat / forage 0.05 107 100 102 98 102 102 3.2 3.3 0.05 1.0 106 106 105 101 105 105 2.0 2.0 Overall recovery (n = 10) 103 94 101 10.9 10.7 0.02 Overall recovery (n = 10) 101 1.9 2.0 101 101 100 101 1.9 2.0 Soybean / seed 0.05		0.5	76 82	82			80		4.3	
with root collar ⁶ 0.5 83 88 5.1 5.0 CONFIRMATORY METHOD, RESTEK ALLURE ORGANIC ACIDS COLUMN bean / dried bean 0.05 74 80 77 74 80 77 3.1 3.9 0.05 Interpretation of the property of the pr			Overall reco	very (n =	8)		88		8.0	
Downward Property Property	sugar beet / leaf	0.05	93 94	95	•		94		1.1	0.05
CONFIRMATORY METHOD, RESTEK ALLURE ORGANIC ACIDS COLUMN bean / dried bean 0.05 74 80 77 74 80 77 3.1 3.9 0.05 1.0 79 77 80 84 75 79 3.7 4.3 Wheat / forage 0.05 107 100 102 98 102 102 3.2 3.3 0.05 Overall recovery (n = 10) 103 2.0	with root collar6	0.5	83 88	92			88		5.1	
bean / dried bean 0.05			Overall reco	very (n =	6)		91		5.0	
1.0	CONFIRMATORY M	ETHOD, RES	TEK ALLURE O	RGANIC A	CIDS CO.	LUMN			•	•
1.0	bean / dried bean	0.05	74 80	77	74	80	77	3.1	3.9	0.05
wheat / forage 0.05 107 100 102 98 102 102 3.2 3.3 0.05 Overall recovery (n = 10) 103 2.0 2.0 0 orange / fruit 0.02 92 119 98 103 94 101 10.9 10.7 0.02 1.0 105 101 101 100 100 101 1.9 2.0 Overall recovery (n = 10) 101 1.9 2.0 1.0 85 88 81 80 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 1.0 85 88 81 80 88 84 3.6 4.5 1.0 113 112 111 110 111 111 0.9 1.0 1.0 113 112 111 110 111 111 0.0 10.0		1.0	79 77	80	84	75	79	3.7	4.3	
wheat / forage 0.05 107 100 102 98 102 102 3.2 3.3 0.05 Overall recovery (n = 10) 103 2.0 2.0 0 orange / fruit 0.02 92 119 98 103 94 101 10.9 10.7 0.02 1.0 105 101 101 100 100 101 1.9 2.0 Overall recovery (n = 10) 101 1.9 2.0 1.0 85 88 81 80 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 1.0 85 88 81 80 88 84 3.6 4.5 1.0 113 112 111 110 111 111 0.9 1.0 1.0 113 112 111 110 111 111 0.0 10.0			Overall reco	verv (n =	: 10)		78		4.1	
1.0	wheat / forage	0.05		• \		102	102	3.2	3.3	0.05
Overall recovery (n = 10) 103 2.9 orange / fruit 0.02 92 119 98 103 94 101 10.9 10.7 0.02 1.0 105 101 101 100 100 100 101 1.9 2.0 2.0 Overall recovery (n = 10) 101 7.2 soybean / seed 0.05 83 78 95 83 84 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 Overall recovery (n = 10) 85 5.8 1.0 113 112 111 110 111 111 0.9 1.0 Overall recovery (n = 10) Wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4					101					
orange / fruit 0.02 92 119 98 103 94 101 10.9 10.7 0.02 Overall recovery (n = 10) 101 1.9 2.0 Overall recovery (n = 10) 101 1.9 2.0 1.0 85 83 78 95 83 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 Overall recovery (n = 10) 85 5.8 tomato / fruit 0.02 102 96 100 98 118 103 8.6 8.5 0.02 1.0 113 112 111 110 111 111 0.9 1.0 Overall recovery (n = 10) 107 7.0 Wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85			Overall reco	verv (n =	: 10)		103			
1.0	orange / fruit	0.02				94		10.9		0.02
Overall recovery (n = 10) 101 7.2 soybean / seed 0.05 83 78 95 83 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 Overall recovery (n = 10) 85 5.8 1.0 113 112 111 110 111 111 0.9 1.0 Overall recovery (n = 10) 107 7.0 wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4		1.0	105 101	101	100	100	101			
soybean / seed 0.05 83 78 95 83 84 84 6.5 7.4 0.05 1.0 85 88 81 80 88 84 3.6 4.5 Overall recovery (n = 10) 85 5.8 1.0 113 112 111 110 111 111 0.9 1.0 Overall recovery (n = 10) 107 7.0 wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4										
1.0	soybean / seed	0.05				84		6.5		0.05
tomato / fruit 0.02 102 96 100 98 118 103 8.6 8.5 0.02		1.0	85 88	81	80	88	84		4.5	1
tomato / fruit 0.02 102 96 100 98 118 103 8.6 8.5 0.02 1.0 113 112 111 110 111 111 0.9 1.0 1.0 Overall recovery (n = 10) 107 7.0 wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4										
1.0	tomato / fruit	0.02				118		8.6		0.02
Overall recovery (n = 10) 107 7.0 wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4					110					
wheat / grain 0.05 91 96 78 84 89 87 6.7 7.9 0.05 1.0 90 97 85 95 88 91 4.9 5.4										1
1.0 90 97 85 95 88 91 4.9 5.4	wheat / grain	0.05				89		6.7		0.05
	5									1
			Overall reco				89		6.6	1

fortified compound DFA

determined as DFA

expressed as BYI 02960

* as shown in report RARVP013

Footnotes

^{5:} this crop/matrix was validated as part of studies 10-2225 (KIIA 6.3.2/01) / 10-3407 (KIIA 6.5.4/02)

^{6:} this crop/matrix was validated as part of study 10-2240 (to be submitted later; data available on request)

<u>Table 4.3-9</u>: Recovery results of **extraction efficiency testing** of method 01304 – Recoveries from representative matrices taken from the plant metabolism studies

Crop and	Values determined in/with									
matrix	M	etabolism stu	dies	Method 01304						
	TRR*	Components of TTR**	TTR/TRR	TRR*	Components of TTR**	TTR/TRR	Extraction efficiency [†]			
	[mg/kg]	[mg/kg]	[%]	[mg/kg]	[mg/kg]	[%]	[%]			
tomato fruit ¹	0.201	0.198	98.8	0.191	0.190	99.5	100.7			
cotton seed ²	0.068	0.016	23.4	0.068	0.026	37.5	160.2			
potato tuber ³	0.171	0.102	59.8	0.191	0.119	62.2	104.0			
wheat grain ⁴	6.290	2.833	45.1	6.139	2.448	39.9	88.4			

- * TRR = total radioactive residues
- ** TTR = total toxic residue, i.e. the total residue of BYI 02960, comprising parent compound, DFA, and DFEAF
- † Extr. efficiency = ratio of (TTR extracted with method 01304) \div (TTR extracted in metabolism study)
- 1: metabolism study reported under no. MEF-11/498 (KIIA 6.2.1/03)
- 2: metabolism study reported under no. MEF-11/393 (KIIA 6.2.1/09)
- 3: metabolism study reported under no. MEF-10/769 (KIIA 6.2.1/04)
- 4: metabolism study reported under no. MEF-11/365 (KIIA 6.6.2/01)

Report:	KIIA 4.3/05, Rosati, D.; 2012
Title:	Analytical method No. 01212 for the determination of residues of BYI 02960 and its
	metabolites BCS-AA56716 (DFA), AE F161089 (6CNA) and BCS-CC98193 (furanone)
	in/on plant materials by HPLC-MS/MS.
Report No. &	Method no. 01212, report no. MR-10/174
Edition No.	<u>M-428017-01-1</u>
Guidelines:	– EU Council Directive 91/414/EEC amended by Commission Directive 96/68/EC
	– EU Guidance Document for residue analytical methods SANCO/3029/99
	- OPPTS 860.1340 - Residue analytical methods
GLP:	yes (certified laboratory)

Principle of the method

Residue analytical method <u>01212</u> (Rosati, 2012; KIIA 4.3/05) was developed as a *data collection method* for the determination of the residues of BYI 02960 (parent compound), and its metabolites DFA, DFEAF, and 6-CNA in/on plant materials. (As 6-CNA is not of relevance for this submission, further details relevant to this compound will not be discussed below. For more details on 6-CNA, please see the report.)

The residues were extracted twice from 5 g of plant material with acetonitrile/water (4/1, v/v) with 2.2 mL/L formic acid. The materials tested included bean (dry seed), barley (grain), grape (bunch), tomato (fruit), and rape (seed), representing a wide variety of crops/crop types as requested by international guidance. (For further crops of relevance in the EU, additional materials were tested subsequent to this study; they and their source studies are also described below.) Aliquots of the extracts are purified over a cationic resin (AG-50W-X8), then amended with a mixture of stable, isotopically labelled internal standards. The final solution was analyzed by HPLC-MS/MS.

Specificity

Apparent residues in control samples were below 30% of the LOQ, except for DFA in tomato fruit, for which a mean value of 32% was determined. Thus, recovery determinations conducted at the LOQ in this matrix were corrected for the interference.

As this is a data collection method, only one MRM transition was monitored for BYI 02960 (m/z 289/126), DFEAF (m/z 162/94), and DFA (m/z 95/51) in each matrix tested. Nevertheless, the HPLC-MS/MS method is highly specific and fully satisfactory for data collection.

Accuracy (recovery findings)

The accuracy of the method was assessed on the basis of the determined recovery rates. Samples were fortified with BYI 02960 and DFEAF at concentrations of 0.01 and 0.10 mg/kg; DFA was spiked at 0.02 and 0.20 mg/kg. (Metabolites were expressed in parent equivalents.) Mean recoveries per fortification level for BYI 02960, DFEAF, and DFA for all matrices were in a range of 70-110%, with three exceptions: In two cases, mean DFEAF recoveries were outside of this range (tomato fruit, LOQ, 111%; and barley grain, LOQ, 114%), and in another, mean DFA values were higher (tomato fruit, LOQ, 111%). These values were nevertheless considered to be acceptable, based on the fact that they were very close to 110% and, in all cases, the RSD was satisfactory (8.3-13.1%).

In addition to the matrices included in the report 01212 itself, for further crops of relevance in the EU, additional materials were tested as required within the residue studies themselves; the ones of relevance to this dossier are described here. In studies 11-2070 and 11-2958 (cf. KIIA 6.3.1/06 and KIIA 10.3.3/02), limited validation sets were prepared for the matrices lettuce head and barley green material, respectively. Mean recovery values in both matrices per fortification level were 82-108%, with one exception at 117% (DFA, green material, 0.02 mg/kg), which, however, was considered to be acceptable due to the very low RSD (3.3%).

The results are summarized below in tables 4.3-10 to 4.3-12.

<u>Linearity</u>

The correlation between the injected amount of substance and the detector response was linear for standards in solvent and in matrix and with/without ISTD in the range from 0.05 to 50 μ g/L for BYI 02960 and DFEAF and from 0.15 to 0.50 μ g/L for DFA, using more than 5 different concentration levels. The correlation coefficients of the 1/x weighted linear regression were > 0.99 in all cases.

Limit of Quantification

The limit of quantitation (LOQ) for BYI 02960 and DFEAF, defined as the lowest validated fortification level, was 0.01 mg/kg in all matrices tested. (All metabolite values are expressed in parent equivalents.) For DFA, the LOQ was 0.02 mg/kg in all matrices. The calculated limit of detection (LOD) was calculated based on a statistical approach for each matrix and each compound MRM transition. Considering all sample materials and all compounds except DFA, the LOD ranged from 0.0022-0.0010 mg/kg; for DFA, it was from 0.0043-0.0171 mg/kg.

Repeatability (precision)

As a measure of the precision, the intra-laboratory repeatability (n=5) is given as the relative standard deviation (% RSD) for different sample materials at fortification levels at the respective LOQ and, in general, 10×LOQ. For BYI 02960, DFEAF, and DFA, RSDs were 0.7-14.5% for all matrices in the main method validation, as presented in the method report itself. For the additional crop matrices validated separately (as described above, cf. "Accuracy"), RSDs for all analytes were 1.5-18.6%.

The results are summarized below in tables 4.3-10 to 4.3-12.

Reproducibility (ILV)

Since this method is a data collection method, no independent validation is required.

Extraction efficiency

The extraction efficiency of the residue method for the determination of the relevant residues of BYI 02960 in plant matrices, consisting of the parent compound and its metabolite DFA, was assured by choosing the same extraction procedures as used in the plant metabolism studies (cf. chapter 6.1 of this dossier). Nevertheless, an extraction efficiency study was conducted using method 01304 (KIIA 4.3/03 and /04, cf. above). As the extraction procedures for method 01212 are the same as for 01304, the results of the study prove satisfactory extraction efficiency with method 01212.

Stability of analytes

BYI 02960 and DFA were shown to be stable in standard solutions for at least 2 months. During the course of the validations for this method 01212, stability was not tested in matrix extracts. Thus, sample extracts analysed, using this method, were measured within 24 hours of their preparation.

Conclusion

Method 01212 meets all necessary performance requirements to determine residues of BYI 02960 and its metabolites DFEAF and DFA in plant materials, with an LOQ of 0.01 mg/kg for BYI 02960 and DFEAF, and of 0.02 mg/kg for DFA, all expressed in parent compound equivalents. The method is valid as data collection method.

<u>Table 4.3-10</u>: Recovery results from method validation of method 01212 – Recoveries and relative standard deviations (RSDs) for **BYI 02960**(Recoveries as documented in the method report unless noted otherwise)

Sample material	FL*		Indivi	dual v	alues	Mean value	RSD	LOQ	
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
tomato /	0.01	94	105	95	102	125	104	12.0	0.01
fruit	0.10	118	113	99	102	111	109	7.3	
		Overall	recove	ry (n =	: 10)		106	9.5	
grape /	0.01	107	105	98	97	97	101	4.8	0.01
bunch of grapes	0.10	110	101	107	113	100	106	5.3	
		Overall	recove	ry (n =	: 5)		104	5.5	
kidney bean /	0.01	104	117	110	96	98	105	8.2	0.01
dry seed	0.10	110	114	118	95	114	110	8.1	
		Overall	recove	ry (n =	: 10)		108	<i>8.1</i>	
barley / grain	0.01	94	85	109	96	121	101	13.9	0.01
	0.10	95	104	95	98	99	98	3.8	
		Overall	recove	ry (n =	: 10)	100	9.9		
barley / green	0.01	87	109	127			108	18.6	0.01
material ¹	0.10	96	105	113			105	8.1	
		Overall	recove	ry (n =	· <i>6)</i>		106	13.1	
summer rape /	0.01	102	108	104	112	88	103	8.9	0.01
seed	0.10	107	97	98	97	104	101	4.6	
		Overall	recove	ry (n =	: 10)	102	6.8		
lettuce / head ²	0.01	91	98	105			98	7.1	0.01
	0.10	98	103	107		103	4.4		
		Overall	recove	ry (n =	6)		100	5.8	

^{*} fortified compound BYI 02960

determined as BYI 02960

expressed as BYI 02960

Footnotes:
1: this crop matrix was validated as part of study 11-2958 (KIIA 10.3.3/02)
2: this crop matrix was validated as part of study 11-2070 (KIIA 6.3.1/06)

Recovery results from method validation of method 01212 - Recoveries and relative <u>Table 4.3-11</u>: standard deviations (RSDs) for DFA (Recoveries as documented in the method report unless noted otherwise)

Sample material	FL*	Ind	ividual v	alues	Mean value	RSD	LOQ	
_	[mg/kg]		[%]			[%]	[%]	[mg/kg]
tomato /	0.02^{1}	98 12	7 93	119	116	111	13.1	0.02
fruit		(130) (15	9) (125)	(151)	(148)			
	0.20	109 10	3 104	107	106	106	2.3	
		Overall reco	very (n =	= 10)		108	9.3	
grape /	0.02	100 10	4 96	104	99	101	3.4	0.02
bunch of grapes	0.20	104 99	97	102	101	101	2.7	
		Overall reco	very (n =	= 5)		101	2.9	
kidney bean /	0.02	88 83	103	96	88	92	8.6	0.02
dry seed	0.20	95 95	96	94	95	95	0.7	
		Overall reco	very (n =	= 10)		93	6.0	1
barley / grain	0.02	98 92	2 100	90	110	98	8.0	0.02
	0.20	76 90	85	82	89	84	6.7	
		Overall reco	very (n =	= 10)	91	10.6		
barley / green	0.02	113 11	8 120			117	3.1	0.02
material ²	0.20	100 10	2 103			102	1.5	
		Overall reco	very (n =	= <i>6)</i>		109	8.0	
summer rape /	0.02	68 70	71	84	77	74	8.8	0.02
seed	0.20	71 68	69	71	69	70	1.9	
		Overall reco	very (n =	<i>= 10)</i>		72	7 .0	
lettuce / head ³	0.02	76 82	88			82	7.3	0.02
	0.20	90 91	101			94	6.5]
		Overall reco	very (n =	= 6)		88	9. 7	

determined as DFA * fortified compound DFA expressed as BYI 02960 Footnotes:

- 1: values in () are the uncorrected values (corrections done with mean control sample at 32% of the LOQ)
- 2: this crop matrix was validated as part of study 11-2958 (KIIA 10.3.3/02) 3: this crop matrix was validated as part of study 11-2070 (KIIA 6.3.1/06)

Recovery results from method validation of method 01212 - Recoveries and relative <u>Table 4.3-12</u>: standard deviations (RSDs) for DFEAF

(Recoveries as documented in the method report unless noted otherwise)

Sample material	FL*		Indivi	dual v	alues	Mean value	RSD	LOQ	
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
tomato /	0.01	109	120	119	111	97	111	8.3	0.01
fruit	0.10	102	90	102	101	106	100	6.0	
		Overall	recove	ry (n =	: 10)		106	8.9	
grape /	0.01	113	98	98	97	99	101	6.7	0.01
bunch of grapes	0.10	96	105	113	105	103	104	5.8	
		Overall	recove	ry (n =	: 5)		103	6.1	
kidney bean /	0.01	89	105	88	100	111	99	10.2	0.01
dry seed	0.10	110	116	122	94	110	110	9.4	
		Overall	recove	ry (n =	: 10)		105	11.0	
barley / grain	0.01	104	109	106	116	133	114	10.4	0.01
	0.10	87	96	97	93	104	95	6.5	
		Overall	recove	ry (n =	: 10)		105	12.5	
barley / green	0.01	92	111	121			108	13.6	0.01
material ¹	0.10	101	106	118			108	8.1	
		Overall	recove	ry (n =	· <i>6)</i>		108	10.0	
summer rape /	0.01	86	109	92	103	75	93	14.5	0.01
seed	0.10	109	112	99	108	103	106	4.9	
		Overall		ry (n =	: 10)		100	11.9	
lettuce / head ²	0.01	92	97	102			97	5.2	0.01
	0.10	94	95	98			96	2.2	
		Overall	recove	ry (n =	· <i>6)</i>		96	3.6	

^{*} fortified compound DFEAF

determined as DFEAF

expressed as BYI 02960

- 1: this crop matrix was validated as part of study 11-2958 (KIIA 10.3.3/02) 2: this crop matrix was validated as part of study 11-2070 (KIIA 6.3.1/06)

Animal matrices

Report:	KIIA 4.3/06, Schulte, G., & Bauer, J.; 2012
Title:	Analytical method 01214 for the determination of residues of BYI 02960 and its metabolite
	difluoroacetic acid in/on animal matrices by HPLC-MS/MS - Enforcement method animal
Report No. &	Method no. 01214, report no.: MR-011/144
Edition No.	<u>M-425837-01-1</u>
Guidelines:	– EU Council Directive 91/414/EEC amended by Commission Directive 96/68/EC
	– EU Guidance document for residue analytical methods SANCO/825/00 rev. 7
GLP:	yes (certified laboratory)

Report:	KIIA 4.3/07, Konrad, S.; 2012
Title:	Independent lab validation of BCS method 01214 for the determination of residues of
	BYI 02960 and its metabolite difluoroacetic acid in/on animal matrices by HPLC-MS/MS
Report No. &	2011/0164/01
Edition No.	<u>M-427160-01-1</u>
Guidelines:	– EU Regulation (EC) No. 1107/2009
	– EU Guidance Document for residue analytical methods SANCO/825/00 rev. 8.1
	– EU Guidance Document for residue analytical methods SANCO/3029/99
	- OECD Guidance Document on pesticide residue analytical methods ENV/JM/Mono
	(2007)
	– US EPA Residue Chemistry Test Guideline OPPTS 860.1340, residue analytical methods
GLP:	yes (certified laboratory)

Principle of the method

Residue analytical method <u>01214</u> (Schulte & Bauer, 2012; KIIA 4.3/06) was developed as an EU *enforcement method* for the determination of the residues of BYI 02960 (parent compound), and its metabolite DFA in animal matrices.

The residues were extracted twice from 5 g of animal-based material with acetonitrile/water (4/1, v/v), with the addition of n-heptane in the cases of fat and milk. The materials tested included bovine muscle, liver, kidney, and milk; and chicken fat and egg, representing the variety of matrix types requested by EU guidance. After the addition of formic acid and dilution, an aliquot of the raw extract was filtered for measurement. The solution was analyzed by HPLC-MS/MS; residues were quantified against matrix-matched standards.

Specificity

Apparent residues in control samples were below 30% of the LOQ. Two MRM transitions for quantitation and confirmation were monitored for BYI 02960 (m/z 289/126 or 90) in each matrix tested. Using this procedure, the HPLC-MS/MS method is highly specific, thus an additional confirmatory method based on another principle is not necessary. For DFA, no second MRM transition is available. Thus, a Hypercarb column was employed as a different separation system (as opposed to HILIC for the primary determination). The confirmatory methods were fully validated, hence the quantitation and confirmation methods can be used interchangeably if so desired.

Accuracy (recovery findings)

The accuracy of the method was assessed on the basis of the determined recovery rates. Samples were fortified with BYI 02960 at concentrations of 0.01 and 0.10 mg/kg; DFA was spiked at 0.02 and

0.20 mg/kg, expressed in parent equivalents. Mean recoveries per fortification level for the primary method for both analytes and all matrices were in a range of 90-108%, with one exception at 112% (BYI 02960, muscle, 0.01 mg/kg). Using the confirmatory conditions, mean values per fortification level were 91-108% in all matrices except for BYI 02960, muscle, at 0.01 mg/kg (112%). In both cases of higher recovery, the RSD was low (6.7 and 7.2%), so that these higher values were considered to be acceptable. The results are summarized below in tables 4.3-13 and 4.3-14.

Linearity

The correlation between the injected amount of substance and the detector response was linear for standards in matrix in the range from 0.125 to $100 \,\mu\text{g/L}$, using at least 5 different concentration levels for both compounds. The correlation coefficients of the 1/x weighted linear regression were > 0.99 in both cases. Linearity was proven for the confirmatory method as well, over the same concentration range and, again, with correlation coefficients of > 0.99.

Limit of Quantification

The limit of quantitation (LOQ) for BYI 02960, defined as the lowest validated fortification level, was 0.01 mg/kg in all matrices tested. For DFA, the LOQ was 0.02 mg/kg. The calculated limit of detection (LOD) was estimated to be at least 3 times lower than the respective LOQ, based on the linearity response data and matrix interference observed in control samples.

Repeatability (precision)

As a measure of the precision, the intra-laboratory repeatability (n=5) is given as the relative standard deviation (% RSD) for different sample materials at fortification levels at the respective LOQ and, in general, 10×LOQ. For BYI 02960, these levels were 0.01 and 0.10 mg/kg. Relative standard deviations were 1.1-12.6% for the primary method (confirmatory: 1.5-13.6%).

Fortification levels for DFA were 0.02 and 0.20 mg/kg; RSDs were 0.9-13.3% for the primary method, and 1.5-13.6% for the confirmatory.

The results are summarized below in tables 4.3-13 and 4.3-14.

Reproducibility (ILV)

An independent laboratory validation was performed for method 01214 and reported as 2011/0164/01 (Konrad, 2012; KIIA 4.3/07). Samples of all matrices covered by the main method itself were fortified with BYI 02960 parent compound at the nominal fortification levels of 0.01 and 0.10 mg/kg, i.e. the LOQ and the 10-fold LOQ; and with DFA at 0.02 and 0.20 mg/kg. Two replicate specimens per animal material were kept untreated, serving as blank controls.

Analysis of samples was performed according to method 01214 (Schulte & Bauer, 2012; KIIA 4.3/06). Two MRM transitions were measured for BYI 02960 (as described above under "specificity"), one for quantification and the second for confirmation. For all matrices, for both fortification levels, and for both MRM transitions monitored, the mean recoveries were between 87% and 101%, with relative standard deviations of < 15%. Only minor interfering signals in the blank

control specimens were detected, resulting in a limit of detection (LOD) of 0.003 mg/kg for all animal materials.

For DFA, as described above under "specificity", one MRM transition was determined using two different HPLC conditions. For all matrices, for both fortification levels, and for both the primary and the confirmatory HPLC procedure, the mean recoveries were between 73 and 99%. RSDs were < 15% in all cases. Only minor interfering signals in the blank control specimens were detected, resulting in a limit of detection (LOD) of 0.006 mg/kg for all tested animal matrices.

Method 01214 was shown to fulfil the reproducibility requirements as defined in international guidelines and therefore to be suitable for the enforcement of residue levels of BYI 02960 and its metabolite DFA in animal matrices. A summary of the independent laboratory validation results is given in tables 4.3-15 and 4.3-16.

Extraction efficiency

The extraction efficiency of the residue method for the determination of the relevant residues of BYI 02960 in plant matrices, consisting of the parent compound and its metabolite DFA, was assured by choosing the same extraction procedures as used in the plant metabolism studies (cf. chapter 6.1 of this dossier).

Stability of analytes

BYI 02960 and DFA were shown to be stable in standard solutions for at least 6 months as a part of the study RARVP013 (method 01304, cf. reference IIA 4.3/03). During the course of the validations for this method 01214, stability was shown in all tested matrix extracts for at least 6-8 days, when stored in the dark in a refrigerator at $4^{\circ}\text{C} \pm 3^{\circ}\text{C}$.

Standard EU multi-residue methods, e.g. DFG S 19 or QuEChERS

The EU requires that a major multi-residue method, usually DFG S 19 and/or QuEChERS, be evaluated as to whether it can be used for monitoring purposes. When considering the proposed enforcement residue definition for BYI 02960, consisting of the sum of two components – parent compound and the metabolite DFA – it is evident that the small, polar molecule DFA cannot be sufficiently extracted via any of the recommended extraction systems in the two multimethods. Thus, a specific method is presented here for enforcement purposes.

Conclusion

As DFA cannot be determined by DFG multi-residue method S 19 or by the QuEChERS procedure, a specific method, such as 01214, is valid for the determination of the proposed enforcement residue definition for BYI 02960.

Method 01214 meets all necessary performance requirements to determine residues of BYI 02960 and its metabolite DFA in animal matrices, with LOQs of 0.01 mg/kg for BYI 02960 and 0.02 mg/kg for DFA. Results of an ILV showed that method 01214 fulfils the reproducibility requirements and is, therefore, applicable as an enforcement method.

<u>Table 4.3-13</u>: Recovery results from the method validation of method 01214 (enforcement method) – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

Sample material	FL*		Indivi	dual v	alues		Mean value	RSD	LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
PRIMARY TRANSITI	ON (289/12	6)							
bovine muscle	0.01	111	100	116	119	116	112 ¹	6.7	0.01
	0.10	105	105	110	106	112	108	3.0	
		Overall	recove	ry (n =	10)		110	5.5	
bovine liver	0.01	100	104	107	106	77	99	12.6	0.01
	0.10	99	100	101	100	96	99	1.9	
		Overall	recove	ry (n =	5)		99	8.5	
bovine kidney	0.01	100	105	104	104	105	104	2.0	0.01
	0.10	83	95	99	102	93	94	7.7	
		Overall	recove	ry (n =	10)		99	7.1	
chicken fat	0.01	101	106	113	110	106	107	4.2	0.01
	0.10	106	110	114	103	103	107	4.4	
		Overall	recove	ry (n =	10)		107	4.1	
bovine milk	0.01	103	109	103	103	104	104	2.5	0.01
	0.10	102	106	93	109	104	103	5.9	
		Overall	recove	ry(n =			104	4.3	
chicken egg	0.01	97	96	97	97	99	97	1.1	0.01
	0.10	92	84	91	102	98	93	7.4	
		Overall	recove	ry (n =	10)		95	5.3	
CONFIRMATORY T	RANSITION (2								
bovine muscle	0.01	112	98	119	114	115	112 ¹	7.2	0.01
	0.10	106	105	106	105	112	107	2.8	
		Overall	recove	ry (n =	<i>10)</i>		109	5. 7	
bovine liver	0.01	105	101	108	106	76	99	13.3	0.01
	0.10	101	100	104	97	96	100	3.2	
		Overall	recove	ry (n =	5)		99	9.1	
bovine kidney	0.01	104	104	105	106	104	105	0.9	0.01
	0.10	82	96	96	100	92	93	7.4	
		Overall	recove	ry (n =	<i>10)</i>		99	<i>7.7</i>	
chicken fat	0.01	104	105	109	103	105	105	2.2	0.01
	0.10	108	109	111	102	103	107	3.7	
		Overall		ry (n =	<i>10)</i>		106	2.9	
bovine milk	0.01	102	106	109	103	99	104	3.7	0.01
	0.10	101	108	93	109	104	103	6.3	
		Overall					103	4.9	
chicken egg	0.01	96	93	95	93	104	96	4.7	0.01
	0.10	93	87	92	102	100	95	6.5	
		Overall	recove	ry (n =	10)		96	5.4	

^{*} fortified compound BYI 02960

determined as BYI 02960

expressed as BYI 02960

Footnotes:
1: accepted as RSD was < 20%

<u>Table 4.3-14</u>: Recovery results from the method validation of method 01214 (enforcement method) – Recoveries and relative standard deviations (RSDs) for **DFA**

Sample material	FL*		Indivi	idual va	alues		Mean value		LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
PRIMARY METHOD	(HILIC CO.	LUMN)							
bovine muscle	0.02	106	106	105	107	104	106	1.1	0.02
	0.20	97	101	100	98	105	100	3.1	
		Overall	recove	ery (n =	10)		103	3.5	
bovine liver	0.02	97	99	105	102	72	95	13.9	0.02
	0.20	105	102	104	100	93	101	4.7	
		Overall		ery (n =			98	10.1	
bovine kidney	0.02	107	103	106	108	106	106	1.8	0.02
	0.20	94	96	100	101	96	97	3.0	
		Overall	recove	ry (n =	10)		102	5.0	
chicken fat	0.02	99	106	107	106	106	105	3.1	0.02
	0.20	103	104	111	101	103	104	3.7	
		Overall	recove	ry (n =	10)		105	3.2	
bovine milk	0.02	110	108	107	101	109	107	3.3	0.02
	0.20	103	108	92	105	102	102	5.9	
		Overall	recove	ry (n =	10)		105	5.1	
chicken egg	0.02	90	94	90	89	98	92	4.1	0.02
	0.20	90	81	84	94	99	90	8.1	
		Overall	recove	ery (n =	10)		91	6.2	
CONFIRMATORY M	ETHOD (HYI	PERCARB C	COLUM	V)					
bovine muscle	0.02	109	105	107	107	112	108	2.1	0.02
	0.20	103	105	105	103	107	105	1.6	1
		Overall	recove	ry (n =	10)		106	2.4	
bovine liver	0.02	98	103	102	99	72	95	13.6	0.02
	0.20	92	90	94	91	88	91	2.5	
		Overall	recove	ry (n =	5)		93	9.6	
bovine kidney	0.02	100	102	97	104	96	100	3.4	0.02
•	0.20	88	90	960	102	96	94	5.9	
		Overall	recove	ry (n =	10)		97	5.3	
chicken fat	0.02	105	105	109	107	106	106	1.6	0.02
	0.20	100	105	105	99	101	102	2.8	
		Overall	recove	ry (n =	10)		104	3.1	
bovine milk	0.02	104	105	103	101	104	103	1.5	0.02
	0.20	103	104	93	103	103	101	4.5	
		Overall	recove	ry (n =	10)		102	3.4	
chicken egg	0.02	100	101	102	98	100	100	1.5	0.02
	0.20	94	86	93	97	98	94	5.0	
		Overall	recove	ry (n =	10)		97	4.9	

^{*} fortified compound DFA

<u>Table 4.3-15</u>: Recovery results from **independent laboratory validation** of method 01214 – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

Sample material	FL*		Indivi	dual v	alues		Mean value		LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
PRIMARY TRANSITI	ON (289/126	5)							
chicken egg	0.01	94	109	105	93	91	98	8.3	0.01
	0.1	90	84	84	88	87	87	3.1	
		Overall	recove	ry (n =	: 10)		93	9.1	
bovine milk	0.01	99	100	100	101	98	100	1.0	0.01
	0.1	97	91	94	96	95	95	2.2	
		Overall	recove	ry (n =	: 10)		9 7	3.2	
bovine kidney	0.01	92	94	94	93	93	93	0.8	0.01
	0.1	88	89	92	91	92	90	1.9	
		Overall	recove	ry (n =	: 10)		92	2.2	
bovine fat	0.01	98	90	96	100	96	96	4.2	0.01
	0.1	93	89	90	95	97	93	3.6	
		Overall	recove	ry (n =	: 10)		94	4.2	
bovine muscle	0.01	95	97	97	98	93	96	2.3	0.01
	0.1	90	96	94	96	95	94	2.5	
		Overall	recove	ry (n =	: 10)		95	2.4	
bovine liver	0.01	97	98	98	98	100	98	0.9	0.01
	0.1	96	97	99	101	98	98	1.8	
		Overall	recove	ry (n =	: 10)		98	1.4	
CONFIRMATORY TH	RANSITION (2	89/90)							•
chicken egg	0.01	96	111	108	93	90	99	9.4	0.01
	0.1	92	89	89	89	91	90	1.7	1
		Overall	recove	rv (n =	: 10)		95	8.4	
bovine milk	0.01	101	97	101	102	96	99	2.8	0.01
	0.1	100	94	95	97	97	97	2.3	
		Overall	recove	ry (n =	: 10)		98	2.8	
bovine kidney	0.01	93	94	95	96	98	95	2.2	0.01
j	0.1	90	94	97	94	94	94	2.5	
		Overall	recove	rv (n =	: 10)		94	2.4	1
bovine fat	0.01	100	93	98	98	95	97	2.6	
	0.1	97	92	92	97	99	95	3.5	0.01
		Overall			: 10)		96	3.0	
bovine muscle	0.01	96	95	95	97	88	94	3.9	
	0.1	92	98	96	98	96	96	2.6	0.01
		Overall					95	3.3	1
bovine liver	0.01	100	101	95	98	97	98	2.5	
	0.1	96	99	98	102	101	99	2.6	0.01
-	**-	Overall				-01	99	2.4	1

^{*} fortified compound BYI 02960

<u>Table 4.3-16</u>: Recovery results from **independent laboratory validation** of method 01214 – Recoveries and relative standard deviations (RSDs) for **difluoroacetic acid**

Sample material	FL*		Indivi	dual v	alues		Mean value		LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
PRIMARY METHOD	(HILIC COL	LUMN)							
chicken egg	0.02	105	96	103	92	95	98	5.7	0.02
	0.2	90	102	93	91	93	94	5.0	
		Overall	recove	ry (n =	: 10)		96	5.6	
bovine milk	0.02	100	102	99	107	97	101	3.7	0.02
	0.2	97	96	94	98	96	96	1.6	
		Overall	recove	ry (n =	: 10)		99	3.8	
bovine kidney	0.02	93	102	98	106	102	100	4.9	0.02
	0.2	89	94	93	92	92	92	2.2	
		Overall	recove	ry (n =	: 10)		96	5.8	
bovine fat	0.02	100	100	90	100	95	97	4.4	
	0.2	91	86	96	92	90	91	4.1	0.02
		Overall	recove	ry (n =	: 10)		94	5.2	1
bovine muscle	0.02	95	98	100	100	99	98	2.1	
	0.2	83	91	88	86	87	87	3.4	0.02
		Overall	recove	ry (n =	: 10)		93	6.8	
bovine liver	0.02	89	79	88	83	105	89	11.1	
	0.2	101	94	96	99	96	97	2.8	0.02
		Overall	recove	ry (n =	: 10)		98	8. 7	
CONFIRMATORY M	ETHOD (HYF	PERCARB C	OLUMN	7)					
chicken egg	0.02	80	80	83	78	78	80	2.3	0.02
	0.2	81	96	82	84	82	85	7.2	1
		Overall	recove	ry (n =	: 10)		82	6.2	
bovine milk	0.02	76	79	77	85	75	78	5.0	0.02
	0.2	85	83	83	85	86	84	1.6	
		Overall	recove	rv (n =	: 10)		81	5.2	
bovine kidney	0.02	71	72	72	79	75	74	4.4	0.02
j	0.2	76	78	78	78	76	77	1.4	
		Overall	recove	rv (n =	: 10)		76	3.9	
bovine fat	0.02	73	74	75	75	76	75	1.5	
	0.2	87	88	94	91	85	89	3.6	0.02
		Overall		rv (n =	: 10)		82	9.7	
bovine muscle	0.02	73	72	74	72	73	73	1.3	
	0.2	79	83	84	88	85	84	3.8	0.02
		Overall					78	8.0	
bovine liver	0.02	78	72	73	77	96	79	12.3	
	0.2	89	86	92	92	90	90	2.8	0.02
-		Overall					84	10.3	1

^{*} fortified compound DFA

Report:	KIIA 4.3/08, Moore, S.M., & Harbin, A.M.; 2012
Title:	BYI 02960 – Magnitude of the residue in dairy cows
Report No. &	RARVP050 (includes BCS US method no. RV-004-A11-04)
Edition No.	<u>M-428416-01-1</u>
Guidelines:	- OPPTS 860.1480 - Meat/milk/poultry/eggs
	– OECD Guideline 505
	– APVMA Residue Guideline No. 23
	– DACO 7.5 – Meat/milk/poultry/eggs
GLP:	yes (certified laboratory)

Report:	KIIA 4.3/09, Wade, J.M., & Netzband, D.J.; 2012
Title:	BYI 02960 – Magnitude of the residue in laying hens
Report No. &	RARVP0041 (includes BCS US method no. RV-004-A11-04)
Edition No.	<u>M-428933-01-1</u>
Guidelines:	- OPPTS 860.1480 - Meat/milk/poultry/eggs
	– OECD Guideline 505
	– APVMA Residue Guideline No. 23
	– DACO 7.5 – Meat/milk/poultry/eggs
	- OPPTS 860.1340 - Residue Analytical Method
GLP:	yes (certified laboratory)

Principle of the method

A residue analytical method, RV-004-A11-04, was developed as a *data collection method* for the determination of the residues of BYI 02960 (parent compound), and its metabolites BYI 02960-acetyl-AMCP, and BYI 02960-OH in/on animal matrices. The method validation is reported in feeding study reports RARVP050 (cattle; Moore & Harbin, 2012; KIIA 4.3/08) and RARVP041 (poultry; Wade & Netzband, 2012; KIIA 4.3/09), both of which also contain the full method description in a report appendix.

The residues were extracted twice from 2 g of animal material by diluting liquid matrices (milk, whey, cream, urine) or blending tissue matrices with acetonitrile/water (4/1, v/v) with 2.2 mL/L formic acid. The materials tested included all standard materials (muscle, liver, kidney, fat, eggs, milk), representing the variety of matrix types as requested by international guidance, plus bovine urine and poultry excreta. Aliquots of the extracts are purified through a C-18 solid-phase extraction column, then amended with a mixture of stable, isotopically labelled internal standards. The final solution was analyzed by HPLC-MS/MS.

Specificity

Apparent residues in control samples were generally below 30% of the LOQ, except in a few isolated cases. Recovery determinations conducted with the affected control samples were corrected for the interference.

As this is a data collection method, only one MRM transition was required. Nevertheless, two were monitored for BYI 02960 (m/z 289/126 or 90), BYI 02960-acetyl-AMCP (m/z 185/107 or 143), and BYI 02960-OH (m/z 305/126 or 90) in each matrix tested. Generally, the HPLC-MS/MS method is highly specific and fully satisfactory for data collection.

Nevertheless, additional confirmatory procedures were developed for parent BYI 02960 and BYI 02960-OH, as pre-testing showed that the confirmatory ion's sensitivity might be too low in some matrices. Thus, a Gemini C-18 column was employed (as opposed to HILIC in the primary method). However, as all validation experiments were successful using HILIC, these alternative confirmatory procedures were not validated further.

For DFA, only one MRM transition was available (m/z 95/51), so an alternative chromatographic system was chosen for confirmation (Restek Organic Acids column as opposed to HILIC).

Accuracy (recovery findings)

The accuracy of the method was assessed on the basis of the determined recovery rates. Samples were fortified with BYI 02960, BYI 02960-acetyl-AMCP, and BYI 02960-OH at concentrations of 0.01 mg/kg in all matrices as well as 4.0 mg/kg in poultry matrices and 0.10 mg/kg and various other levels in bovine matrices. Metabolite levels were expressed in parent equivalents.

Mean recoveries per fortification level for BYI 02960 parent ranged from 89-110% for all matrices. For DFA, the values were in the range from 71-119%. All were in acceptable ranges. For the remaining two compounds, most mean recoveries were also within the range of 70-110%. Values of 88-109% were determined for BYI 02960-acetyl-AMCP, except for in 4 cases: in poultry muscle at 0.01 mg/kg, bovine cream at 0.10 and 1.0 mg/kg, and in bovine uring at 0.01 mg/kg, mean recoveries were 111, 112, 113, and 111%, respectively. However, in all of these cases, the relative standard deviations were acceptable (1.5-11.7%), the overall recoveries were as well, and the deviations from the "norm" were only minimal, so these were considered to be acceptable values as well.

For BYI 02960-OH, mean recoveries per fortification level ranged from 88-110% in all matrices except five: poultry fat at 4.0 mg/kg; bovine cream at 0.01, 0.10, and 1.0 mg/kg; and bovine urine at 0.10 mg/kg, for which mean recoveries of 116, 114, 111, 113, and 112% were determined, respectively. Again, relative standard deviations were very low (1.0-4.9%) and the deviations from the "norm" were less than 10%, so these values were considered to be acceptable.

The results discussed above are for the primary methods and are summarized below in tables 4.3-17a to 4.3-20a. (Further details of the confirmatory methods can be taken from tables 4.3-17b to 4.3-20b.)

<u>Linearity</u>

The correlation between the injected amount of substance and the detector response was linear in the range from 0.5 to 250 ng/mL, using at least 5 different concentration levels, for all compounds. The correlation coefficients of the 1/x weighted linear regression were > 0.99 in all cases.

Limit of Quantification

The limit of quantitation (LOQ) for BYI 02960, BYI 02960-acetyl-AMCP, and BYI 02960-OH, defined as the lowest validated fortification level, was 0.01 mg/kg in all matrices tested. For DFA, the LOQ was 0.01 mg/kg in all poultry matrices and 0.02 mg/kg in bovine matrices, except whey, where it was 0.05 mg/kg.

The calculated limit of detection (LOD) was calculated based on a statistical approach for each matrix and each compound (primary method). Considering all sample materials and all compounds except DFA, the LOD ranged from 0.0005-0.005 mg/kg; for DFA, it was from 0.002-0.006 mg/kg.

Repeatability (precision)

As a measure of the precision, the intra-laboratory repeatability (n=5) is given as the relative standard deviation (% RSD) for different sample materials at fortification levels at the respective LOQ and at a higher level, in general, 10×LOQ. During the validation of the methods for animal matrices, the similarity of many matrices (e.g. poultry and bovine fat; poultry and bovine muscle; liver and kidney; etc.) was considered when preparing the validation sets. Thus, although validation sets included 5-17 repetitions at the respective LOQ (0.01 mg/kg for BYI 02960, BYI 02960-acetyl-AMCP, and BYI 02960-OH, and for DFA in poultry matrices, and 0.02 mg/kg for DFA in bovine matrices), multiple higher fortification levels were used, but generally only as limited validation sets, i.e. n=3.

For all analytes and all matrices, over all validation sets, relative standard deviations (RSDs) ranged between 0-15.9%. All values were in the acceptable range.

The results discussed above are for the primary methods and are summarized below in tables 4.3-17a to 4.3-20a. (Further details of the confirmatory methods can be taken from tables 4.3-17b to 4.3-20b.)

Reproducibility (ILV)

Since this method is a data collection method, no independent validation is required.

Extraction efficiency

The extraction efficiency of the residue method for the determination of the relevant residues of BYI 02960 in animal matrices, consisting of the parent compound and its metabolites DFA, BYI 02960-acetyl-AMCP, and BYI 02960-OH, was assured by choosing the same extraction procedures as used in the plant metabolism studies, except that formic acid (2.2 mL/L) was added to the extraction solution.

Nevertheless an extraction efficiency examination was conducted as part of the poultry (Wade & Netzband, 2012; KIIA 4.3/09) and cattle (Moore & Harbin, 2012; IIA 4.3/08) feeding studies. Aged residues in respective samples were analyzed using procedures described in method RV-004-A11-04 and, in parallel, using the procedures described in the metabolism studies (cf. chapter 6.1 of this dossier). The sample materials were eggs, fat, liver, and muscle in the poultry report, and kidney and milk in the ruminant report.

Following addition of appropriate isotopically labelled internal standards and clean-up on a C-18 Bond Elut column, the samples were analyzed by HPLC-MS/MS. The animal residue method RV-004-A11-04 was able to extract and measure relevant aged residues from all tested matrices, with extraction efficiency ranging from 81-91% for the poultry matrices and 90 and 105% for cattle kidney and milk, and thus, within the respective guideline values (70-120%).

Stability of analytes

BYI 02960, DFA, BYI 02960-acetyl-AMCP and BYI 02960-OH were shown to be stable in standard solutions for at least 163 days as a part of the study RARVP050 (Moore & Harbin, 2012; KIIA 4.3/08). During the course of the validations in that study, stability was shown in all tested matrix extracts (milk, liver, kidney, muscle, fat, urine, cream, whey) for at least 4-8 days, when stored in the dark in a refrigerator at $4^{\circ}\text{C} \pm 3^{\circ}\text{C}$. In the case of the chicken study (Wade & Netzband, 2012; KIIA 4.3/09), all extracts were analyzed within 4 days of sample extraction; acceptable concurrent recoveries were generated with each set of samples, thus ensuring sample stability over the given period of storage.

Conclusion

Method RV-004-A11-04 meets all necessary performance requirements to determine residues of BYI 02960 and its metabolites DFA, BYI 02960-acetyl-AMCP, and BYI 02960-OH in animal materials, with an LOQ of 0.01 mg/kg for all analytes in all matrices except for 0.02 mg/kg for DFA in bovine matrices (0.05 mg/kg for whey).

<u>Table 4.3-17a</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960 - primary transition (289/126)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indiv	dual va	lues		Mean value [%]	RSD [%]	LOQ [mg/kg]
	[mg/kg]	113	115	118	103	109	[/0]	[/0]	[mg/kg]
		94	98	87	84	77			
noultry aga	0.01	93	98 76	115	94	84	96	14.2	0.01
poultry egg		93 94	84	113	24	04			0.01
	4.0	100	81	95			92	10.7	1
	4.0				(n=20)))	96	13.7	+
		87	88	77	$\frac{(n-20)}{85}$	95	70	13.7	
	0.01	103	96	94	88	93	91	10.1	
poultry fat	0.01	75	105	24	88	93	91	10.1	0.01
	4.0	110	103	106			107	2.9	1
	4.0				(n = 15	')	94	11.3	+
		93	104	121	$\frac{(n=15)}{114}$	102	94	11.3	
	0.01	93 114	90	94	114	95	101	11 /	
poultry liver	0.01		90 92	94	110	93	101	11.4	0.01
	4.0	84		100			104	(1	-
	4.0	112	102	100	(1/	_	104	6.1	-
					$\frac{n}{(n-15)}$		102	10.4	
	0.01	117	106	115	119	96	105	10.5	
poultry muscle	0.01	119	82	81	116	94	105	13.5	0.01
1 ,	4.0	115	98	110			100	0.1	1
	4.0	108	112	110			109	2.1	_
					(n=15)		106	12.1	
poultry excreta	0.01	87 109	110 88	104 111	91	112	102	10.8	0.01
	14.0	98	96	93			95	2.6]
		Ove	erall re	covery	(n = 11))	100	9.6	
	0.01	109 107	109 102	108	110	108	108	2.5	
	0.025	107							1
bovine milk	0.05	100	102	97	105	105	102	3.4	0.01
oovine mink	0.10	103	109	104	100	100	105	3.1	0.01
	0.25	103	107	104			103		-
	2.0	100	102	103			102	1.5	
	2.0				(n=20)	1)	105	3.5	+
		109	112	107	$\frac{(n-20)}{118}$	105	103	3.3	
	0.01	110	106	107	110	103	110	4.0	
bovine cream	0.10			112			110	20	0.01
	0.10	109	107	113			110	2.8	-
	1.0	111	109	111	/ 12		110	1.0	4
					(n = 13)		110	3.1	
	0.01	98 101	99 104	100	98	105	101	2.8	
bovine whey	0.025	104 102	106 106	102	102	101	103	2.0	0.01
oovine whey	0.10	101	102	102			102	0.6	0.01
-	0.10	101	103	104			104	1.0	1
<u> </u>		103		104			104		1
	1.0		100		(n = 22	1		2.0	-
		U ve	erall re	covery	(n=23)	<u> </u>	102	2.3	l .

^{*} fortified compound BYI 02960

<u>Table 4.3-17a (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960

– **primary** transition (289/126) (Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		Indivi	idual va	alues		Mean value	RSD	LOQ
1	[mg/kg]			[%]			[%]	[%]	[mg/kg]
	0.01	104 106	101 103	105	96	107	103	3.6	
bovine fat	0.05	93	100				97		0.01
	0.1	97	100	101			99	2.1	
	1.5	92	95	99			95	3.7	
		Ove	erall re	covery	n = 15)	100	4.6	
	0.01	98	99	95	91	94	06	2.9	
	0.01	98	95				96	2.9	
bovine kidney	0.05	93	87	98			93	5.9	0.01
	0.10	96	96	94			95	1.2	1
	6.0	90	92	97			93	3.9	1
		Ove	erall re	covery	(n=16))	95	3.5	1
	0.01	98	90	89	93	91	90	5.3	
	0.01	85	84				90	3.3	
bovine liver	0.05	96	98	96			97	1.2	0.01
	0.10	87	88	91			89	2.3	1
	4.0	90	93	91			91	1.7	1
		Ove	erall re	covery	(n=16))	91	4.7	1
	0.01	92	97	92	100	96	96	3.5	
	0.01	98	100				90	3.3	
bovine muscle	0.05	95	99				97		0.01
	0.10	93	98	93			95	3.0	
	2.0	92	90	89			90	1.7	
		Ove	erall re	covery	(n=15))	95	3.8	
	0.01	102	104	103	103	104	103	1.0	
havina urina	0.01	103	101				103	1.0	0.01
bovine urine	0.10	102	102	102			102	0.0	0.01
	40.0	109	103	104			105	3.1	
		Ove	erall re	covery	n = 13)	103	1.9	

^{*} fortified compound BYI 02960

<u>Table 4.3-17b</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for **BYI 02960**

- confirmatory transition (289/90)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		Indivi	dual va	lues		Mean value		LOQ
Sumpre material	[mg/kg]			[%]			[%]	[%]	[mg/kg]
bovine milk	0.01	100 112	110 99	106	107	109	106	4.7	0.01
	0.10	105	108	104			106	2.0	
		Ove	erall re	covery	(n = 10))	106	3.9	
	0.01	106 112	117 113	104	123	105	111 ¹	6.3	
bovine cream	0.10	104	111	112			109	4.0	0.01
	1.0	115	108	111			1111	3.2	
	1.0				(n = 13)	')	111 ¹	5.0	
bovine whey	0.01	112 107	112 106	102	104	111	108	3.7	0.01
bovine whey	0.10	103	99	100			101	2.1	0.01
	0.10				(n = 10)))	106	4.6	-
		99	115	109	108	101			
bovine fat	0.01	113	101	10)	100	101	107	5.9	0.01
oovine iai	0.10	96	100	103			100	3.5	0.01
	0.10				(n = 10)	1)	105	6.1	_
		98	93	93	103	92			
bovine kidney	0.01	94	98	75	103	72	96	4.1	0.01
oovine maney	0.10	96	92	95			94	2.2	0.01
	0.10				(n = 10))	95	3.6	
	0.01	91	98	93	98	85			
bovine liver	0.01	89	87			-	92	5.6	0.01
	0.10	90	88	90			89	1.3	
		Ove		coverv	(n=10))	91	4.8	
bovine muscle	0.01	104 101	105 105	105	100	112	105	3.7	0.01
bovine masere	0.10	92	97	91			93	3.4	0.01
	0.10				(n = 10))	101	6.4	
poultry egg	0.01	96 85	102 80	80	87	94	89	9.4	0.01
pountry egg	4.0	95	73	92			87	13.8	0.01
	1.0				(n = 10)))	88	10.1	
		74	75	99	94	130			
poultry fat	0.01	73	128	,,,	, .	150	96	25.6^2	0.01
Positif int	4.0	106	103	103			104	1.7	
					(n = 10))	99	20.8 ²	
poultry liver	0.01	107 109	117 111	74	95	120	105	15.0	0.01
poultry fiver	4.0	108	96	99			101	6.2	
					(n = 10))	104	12.8	1
* fortified compound B	VI 02070			•	as BYL0			,	expressed as

^{*} fortified compound BYI 02960

determined as BYI 02960

expressed as BYI 02960

Footnotes:

Continued on next page...

^{1:} accepted as RSD was < 20%

^{2:} accepted, as this is a data collection method and only the primary method was used in the study

<u>Table 4.3-17b (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960

- **confirmatory** transition (289/90)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indivi	idual va [%]	ılues	Mean value [%]	RSD [%]	LOQ [mg/kg]	
poultry muscle	0.01	117 106	123 104	113	81	98	106	13.1	0.01
	4.0	107	102	104			104	2.4	
		Ove	erall re	ecovery	(n = 10))	106	10.8	
poultry excreta	0.01	119 104	110 109	102	112	98	108	6.5	0.01
	14.0	96	94	89			93	3.9	
		Ov.	erall re	covery	(n = 10))	103	9.0	

^{*} fortified compound BYI 02960

determined as BYI 02960

expressed as BYI 02960

<u>Table 4.3-18a</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-acetyl-AMCP - **primary** transition (185/107)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indivi	dual va	lues		Mean value [%]	RSD [%]	LOQ [mg/kg]
	1 8 81	84	97	89	120	92	[]	L: ·J	1 8 81
	0.01	103	100 89	76 99	86 104	100	93	12.7	0.01
poultry egg		70 90	89	99	104	91			0.01
	4.0	93	81	90			88	7.1	1
					(n = 19))	92	12.1	
		119	81	96	85	99			
poultry fat	0.01	77	100	92	95	107	94	12.2	0.01
pountry fut	4.0	95	87	100			100	1.4	0.01
	4.0	109	111	108	/ 15	`	109	1.4	_
					(n = 15)		97	12.2	
	0.01	108 116	112 96	116 114	117 115	96 89	106	10.0	
poultry liver	0.01	96	90 94	114	113	09	100	10.0	0.01
	4.0	115	100	99			105	8.6	1
	1.0				(n = 15))	106	9.5	
		114	116	117	135	103			
	0.01	119	118	116	110	101	111^{1}	11.7	0.01
poultry muscle		92	88						0.01
	4.0	108	107	101			105	3.6	
					(n=15)		110	10.7	
poultry excreta	0.01	112 108	106 109	98 109	101	99	105	5.0	0.01
	14.0	98	91	91			93	4.3	
					(n=11)		102	7.2	
	0.01	103 106	105 101	104	104	109	105	2.4	
	0.025	112							
bovine milk	0.05	103	102	103	109	107	105	2.9	0.01
	0.10	108	112	107			109	2.4	
	0.25	103							
	2.0	98	99	99			99	0.6	
					(n=20)		105	3.9	
havina araam	0.01	106 98	108 93	102	113	93	102	7.5	0.01
bovine cream	0.10	111	111	114			112 ¹	1.5	0.01
	1.0	114	109	115			113 ¹	2.9	
					(n=13)		107	7.3	
bovine whey	0.01	99 103	100 106	102	103	104	102	2.3	0.01
•	0.10	102	102	103			102	0.6	
	_	Ove	erall re	covery	(n = 10))	102	1.9	

^{*} fortified compound BYI 02960-acetyl-AMCP

determined as BYI 02960-acetyl-AMCP

expressed as BYI 02960

Footnotes:

1: accepted as RSD was < 20%

<u>Table 4.3-18a (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-acetyl-AMCP – **primary** transition (185/107) (Recoveries documented in the feeding study reports RARVP050 and

RARVP041)

Sample material	FL*		Indiv	idual va	alues		Mean value	RSD	LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
	0.01	94 97	97 96	100	98	99	97	2.0	
bovine fat	0.05	97	98				98		0.01
	0.1	96	98	101			98	2.6	
	1.5	101	102	106			103	2.6	1
		Ove	erall re	ecovery	(n=15))	99	3.0	1
	0.01	102	103	105	99	99	100	2.0	
	0.01	99	96				100	3.0	
bovine kidney	0.05	100	94	90			95	5.3	0.01
	0.10	98	99	97			98	1.0	
	6.0	91	93	95			93	2.2	1
		Ove	erall re	ecovery	(n=16))	98	4.3	1
	0.01	99	85	104	93	98	92	9.5	
	0.01	86	80				92	9.3	
bovine liver	0.05	103	109	95			102	6.9	0.01
	0.10	93	92	98			94	3.4	
	4.0	93	94	94			94	0.6	
		Ove	erall re	ecovery	(n=16))	95	<i>7.7</i>	
	0.01	89	101	92	98	98	97	4.7	
		101	99					т./	
bovine muscle	0.05	95	103				99		0.01
	0.10	93	103	91			96	6.7	
	2.0	96	96	95			96	0.6	
				ecovery	(n=15)		97	4.5	
	0.01	112	119	106	109	113	111 ¹	3.6	
bovine urine		111	110						0.01
bovine urine	0.10	108	109	107			108	0.9	0.01
	40.0	109	105	107			107	1.9	
		Ove	erall re	ecovery	(n=13))	110	3.3	

^{*} fortified compound BYI 02960-acetyl-AMCP

determined as BYI 02960-acetyl-AMCP

expressed as BYI 02960

Footnotes:

^{1:} accepted as RSD was < 20%

<u>Table 4.3-18b</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-acetyl-AMCP - **confirmatory** transition (185/143) (Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indivi	dual va	lues		Mean value [%]	RSD [%]	LOQ [mg/kg]
	0.01	106	107	103	102	105	105	1.7	
bovine milk		105	106	110					0.01
	0.10	110	111		(n = 10)	1	110 107	0.5 2.8	
		106	112	101	114	110	107		
	0.01	112	99	101	114	110	108	5.4	
bovine cream	0.10	112	110	113			112 ¹	1.4	0.01
	1.0	112	108	112			111^{1}	2.1	
		Ove	erall re	covery	(n=13))	109	4.3	
bovine whey	0.01	102 100	103 101	105	99	101	102	2.0	0.01
•	0.10	102	102	102			102	0.0	
					(n = 10))	102	1.6	
bovine fat	0.01	93 100	94 95	98	93	100	96	3.3	0.01
	0.10	98	99	99			99	0.6	
					(n = 10))	97	2.9	
bovine kidney	0.01	103 104	106 92	97	94	99	99	5.3	0.01
,	0.10	95	97	96			96	1.0	
		Ove	erall re	covery	(n = 10))	98	4.7	
bovine liver	0.01	101 85	96 82	93	92	95	92	7.1	0.01
bovine nver	0.10	95	96	93			95	1.6	0.01
	0.10				(n = 10))	93	6.0	
bovine muscle	0.01	90 103	88 102	94	96	91	95	6.2	0.01
bovine musere	0.10	91	102	92			95	6.4	0.01
	0.10				(n=10))	95	5.9	
poultry egg	0.01	90 75	97 75	93	99	92	89	11.1	0.01
Pount) 188	4.0	97	85	86			89	7.5	0.01
		Ove			(n = 10))	89	9.7	1
poultry fat	0.01	105 84	82 108	91	86	114	96	13.6	0.01
	4.0	111	109	106			109	2.3]
					(n = 10)		100	12.4	
poultry liver	0.01	91 120	120 113	96	119	115	111 ¹	10.9	0.01
	4.0	91	85	82		•	86	5.3	
		Ove	erall re	covery	(n = 10))	103	15.1	

^{*} fortified compound BYI 02960-acetyl-AMCP

determined as BYI 02960-acetyl-AMCP

expressed as BYI 02960

^{1:} accepted as RSD was < 20%

<u>Table 4.3-18b (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-acetyl-AMCP - **confirmatory** transition (185/143)

> (Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]	Individual values [%]					Mean value [%]	RSD [%]	LOQ [mg/kg]
poultry muscle	0.01	113 114	111 119	104	115	98	111 ¹	6.5	0.01
. ,	4.0	102	110	100			104	5.1	
		O v	erall re	covery	(n = 10))	109	6.6	
poultry excreta	0.01	90 104	97 107	96	75	92	94	11.1	0.01
	14.0	96	91	94			94	2.7	
		Overall recovery (n = 10)					94	9.2	

^{*} fortified compound BYI 02960-acetyl-AMCP

determined as BYI 02960-acetyl-AMCP

expressed as BYI 02960

Footnotes:

^{1:} accepted as RSD was < 20%

<u>Table 4.3-19a</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for **DFA** – **primary** method (HILIC column)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		Indivi	dual va [%]	lues		Mean value [%]	RSD [%]	LOQ
	[mg/kg]	100	110		7 0	0.5	[70]	[70]	[mg/kg]
poultry egg	0.01	100 74 77	112 81 70	109 76 83	78 78 73	87 68 79	82	15.9	0.01
	4.0	76	71	71			72	2.7	-
	4.0	75	70	71	(20	`	72	3.7	_
					(n=20)		80	15.6	
poultry fat	0.01	97 80 75	91 88 74	94 96	97 83	84 85	87	9.4	0.01
	4.0	100	96	92			96	4.2	
	1.0				(n=15))	89	9.3	
		75	90	83	97	89	0)	7.0	
poultry liver	0.01	93 78	81 82	103	84	77	86	9.9	0.01
	4.0	91	85	82			86	5.3	1
					(n = 15))	86	9.0	1
		91	95	101	85	82	00	7.0	
poultry muscle	0.01	92 86	88 104	118	98	87	95	10.8	0.01
	4.0	86	83	80			83	3.6	
	1.0				(n=15))	92	11.0	
poultry excreta	0.01	118 121	110 99	103 92	114	112	109	9.1	0.01
pourtry exercia	14.0	86	86	88			87	1.3	0.01
	11.0				(n = 11))	103	12.8	
	0.02	85 76	88 84	80	88	92	85	6.3	
bovine milk	0.05	81 93	77 93	78	89	91	86	8.5	0.02
	0.20	91	92	94			92	1.7	1
	0.40	85	85	93			88	5.3	1
					(n = 19))	87	6. 7	1
bovine cream	0.02	103 103	95 96	89	93	85	95	7.1	0.02
	0.20	101	102	106			103	2.6	1
					(n = 10))	97	7.0	1
bovine whey	0.05	96 96	94 89	95	95	87	93	3.9	0.02
	0.50	102	94	99			98	4.1	1
	-				(n = 10)		95	4.6	-1

^{*} fortified compound DFA

determined as DFA

expressed as BYI 02960

<u>Table 4.3-19a (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for DFA

- **primary** method (HILIC column) (Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		Indiv	dual va	lues		Mean value	RSD	LOQ
Sumple material	[mg/kg]			[%]			[%]	[%]	[mg/kg]
	0.02	81	96	88	95	92	89	6.0	
bovine fat	0.02	86	87				0,7	0.0	0.02
bovine iai	0.05	89	93				91		0.02
	0.60	88	89	90			89	1.1	
		Ove	erall re	covery	(n = 12))	90	4.6	
	0.02	74	73	74	79	66	72	6.7	
havina kidnav	0.02	69	66				12	0.7	0.02
bovine kidney	0.05	69	72				71		0.02
	0.80	84	79	84			82	3.5	
		Ove	erall re	covery	(n=12))	74	8.5]
	0.02	87	75	97	68	73	79	12.7	
bovine liver	0.02	73	82				19	12.7	0.02
boville livel	0.05	64	72				68 ¹		0.02
	0.60	79	80	89			83	6.7	
		Ove	erall re	covery	(n=12))	78	12.0	
	0.02	66	71	76	76	77	74	5.7	
bovine muscle	0.02	78	73				/4	3.7	0.02
bovine muscie	0.05	71	78	70			73	6.0	0.02
	0.50	67	65	73			68 ¹	6.1	
		Ove	erall re	covery	(n=13))	72	6.2]
	0.02	78	85	67	73	79	75	8.0	
1	0.02	70	76				73	8.0	0.02
bovine urine	0.20	92	91	92			92	0.6	0.02
	5.0	106	102	101			103	2.6	
		Ove	erall re	covery	(n=13))	86	15.0	

^{*} fortified compound DFA

determined as DFA

expressed as BYI 02960

Footnotes:
1: accepted as RSD was < 20%

<u>Table 4.3-19b</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for **DFA**

- confirmatory method (RESTEK organic acids column)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indiv	idual va [%]	lues		Mean value [%]	RSD [%]	LOQ [mg/kg]			
bovine milk	0.02	84 95	88 94	78	94	94	90	7.3	0.02			
	0.20	88	88	91			89	1.9	- 0.02			
		Ove	erall re	ecovery	(n = 10)))	89	6.0				
bovine cream	0.02	90 84	92 90	83	87	78	86	5.7	0.02			
	0.20	98	97	98			98	0.6				
		Ove	erall re	covery	(n = 10)))	90	7.6	1			
bovine whey	0.05	93 93	94 89	85	92	97	92	4.2	0.02			
	0.50	93	97	99			96	3.2				
		Ove	erall re	ecovery	(n = 10)))	93	4.4	1			
bovine fat	0.02	87 89	89 89	96	95	100	92	5.3	0.02			
	0.60	85	90	87			87	2.5	1			
		Ove	erall re	ecovery	(n = 10)))	89	6.9				
bovine kidney	0.02	89 79	86 84	83	78	76	82	5.7	0.02			
,	0.80	82	85	81			83	2.5				
		Ove	erall re	ecovery	(n = 10)))	82	4.8				
bovine liver	0.02	76 76	72 77	75	70	70	74	4.0	0.02			
	0.60	79	76	86			80	6.4	1			
		Ove	erall re	covery	(n = 10)))	76	6.2	1			
bovine muscle	0.02	63 73	61 65	66	62	69	66¹	6.5	0.02			
	0.50	71	67	73			70	4.3				
		Ove	erall re	ecovery	(n = 10)))	67	6.6				
poultry egg	0.01	101 83	90 74	88	82	98	88	10.7	0.01			
1 7 00	4.0	77	67	70			71	7.2	1			
		Ove	erall re	ecovery	(n = 10)))	83	13.7	1			
poultry fat	0.01	72 82	72 90	84	86	83	81	8.4	0.01			
	4.0	95	91	94			93	2.2				
		Ove	erall re	covery	(n = 10)))	85	9.6				
poultry liver	0.01	83 94	102 89	105	93	94	94	7.9	0.01			
- •	4.0	95	90	84			90	6.1				
		Ove	erall re	ecovery	(n = 10)))	93	7.5				

^{*} fortified compound DFA

determined as DFA

expressed as BYI 02960

Footnotes:

1: accepted as RSD was < 20%

<u>Table 4.3-19b (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for DFA

- **confirmatory** method (RESTEK organic acids column)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]	Individual values [%]					Mean value [%]	RSD [%]	LOQ [mg/kg]
poultry muscle	0.01	104 79	117 86	100	90	112	98	14.2	0.01
	4.0	80	81	81			81	0.7	
		Ove	rall re	covery	(n = 10))	93	15.3	
poultry excreta	0.01	118 121	110 99	103	114	112	111 ¹	7.1	0.01
	14.0	89	89	88			89	0.7	
		Ove	rall ro	COVORY	(n = 10)	104	12.0		

^{*} fortified compound DFA

determined as DFA

expressed as BYI 02960

Footnotes:

1: accepted as RSD was < 20%

<u>Table 4.3-20a</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-OH - **primary** transition (305/126)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		Indivi	dual va	lues		Mean value	RSD	LOQ
	[mg/kg]			[%]			[%]	[%]	[mg/kg]
		102	109	101	89	99			
1,	0.01	90	96	83	90	72	94	12.0	0.01
poultry egg		95 06	89	113	107	73			0.01
	4.0	96 102	99 89	96			06	6.8	
	4.0				(n=20))	96 95	11.2	-
		95	106	100	$\frac{(n-20)}{87}$	100	73	11.2	
	0.01	88	90	93	87	86	94	7.3	
poultry fat	0.01	90	102	, ,	0,		, .	,	0.01
	4.0	117	113	118			116 ¹	2.3	
		Ove	erall re	covery	(n = 15))	98	11.3	
		84	85	120	83	74			
poultry liver	0.01	88	89	97	101	72	88	15.6	0.01
poultry fiver		91	71						0.01
	4.0	108	106	107			107	0.9	
					(n=15)		92	15.8	
	0.01	100	112	114	97	105	106	10.5	
poultry muscle	0.01	93	120	119	111	107	106	10.7	0.01
-	4.0	107 108	81 112	110			110	1.0	-
	4.0				(n = 15	`	110	1.8	
		102	<u>104</u>	100	$\frac{(n=15)}{110}$	102	106	9.6	
poultry excreta	0.01	102	104	91	110	102	102	5.3	0.01
pourtry exercia	14.0	97	99	91			95	4.4	0.01
	11.0				(n = 11))	100	5.7	
	0.01	115	110	111	105	113			
	0.01	110	108				110	2.9	
	0.025	106							1
bovine milk	0.05	101	104	100	106	106	103	2.7	0.01
	0.10	110	108	105			108	2.3	
	0.25	105							
	2.0	101	105	101			102	2.3	
		Ove	rall re	covery	(n=20))	102	3.9	
	0.01	116	115	113	124	107	114 ¹	4.9	
bovine cream	0.01	109	111					4.9	0.01
bovine cream	0.10	110	111	113			111 ¹	1.4	0.01
	1.0	114	111	114			113 ¹	1.5	
					(n=13)		112 ¹	3. 7	
	0.01	104 100	104 103	104	104	102	103	1.5	
bovine whey	0.025	107 108	112 107	104	109	107	108	2.3	0.01
	0.10	101	100	102			101	1.0	
	0.10	106	112	107			108	3.0	
	0.20				(n=20)	١	105	3.3	1

^{*} fortified compound BYI 02960-OH

determined as BYI 02960-OH

expressed as BYI 02960

<u>Table 4.3-20a (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-OH

– **primary** transition (305/126) (Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]		Indivi	idual va [%]	alues		Mean value [%]	RSD [%]	LOQ [mg/kg]
	[mg/kg]	106	107		101	100	[/0]	[/0]	[IIIg/Kg]
	0.01	106 107	107 105	109	101	108	106	2.5	
bovine fat	0.05	98	105				102		0.01
	0.1	97	101	106			101	4.4	1
	1.5	94	97	98			96	2.2	1
		Ove	erall re	covery	(n=15))	103	4.7	
	0.01	101	90	99	94	90	97	5.8	
	0.01	105	98				97	3.8	
bovine kidney	0.05	97	93	95			95	2.1	0.01
-	0.10	98	98	98			98	0.0	
	6.0	95	94	100			96	3.3	
		Ove	erall re	ecovery	(n=16))	97	4.1	1
	0.01	93	88	88	90	95	90	3.2	
		90	87						
bovine liver	0.05	98	100	93			97	3.7	0.01
	0.10	91	91	92			91	0.6	
	4.0	97	98	95			97	1.6	
		Ove	erall re	ecovery	(n = 16))	93	4.3	
	0.01	93 101	100 99	106	95	101	99	4.3	
1 1 .	0.05						107		0.01
bovine muscle	0.05	117	96	0.4			107	2.7	0.01
	0.10	96	101	94			97	3.7	-
	2.0	92	92	92	/ 1=	`	92	0.0	-
					(n=15)		98	6.8	
	0.01	109 113	116 112	110	108	113	1121	2.5	
bovine urine	0.10	107	105	105			106	1.1	0.01
	40.0	110	106	105			107	2.5	1
					(n = 13))	109	3.3	1

^{*} fortified compound BYI 02960-OH

determined as BYI 02960-OH

expressed as BYI 02960

Footnotes:

^{1:} accepted as RSD was < 20%

<u>Table 4.3-20b</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for **BYI 02960-OH** – **confirmatory** transition (305/90)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL*		ual values		Mean value	RSD	LOQ
	[mg/kg]		[%]		[%]	[%]	[mg/kg]
la acciona consilla	0.01		102 108	3 110	106	5.1	0.01
bovine milk	0.10		102		107	1.2	0.01
	0.10			10)		4.3	_
		Overall rec			106	4.7	
	0.01	121 111 119 110	111 120) 108	114^{1}	4.8	
bovine cream	0.10		114		111 ¹	2.1	0.01
	1.0		110		110	3.2	1
		Overall rec		13)	113 ¹	4.1	
	0.01		119 95				
bovine whey	0.01	133 123	11))0	120	116¹	11.3	0.01
-	0.10	118 111	116		115 ¹	3.1	1
		Overall rec	overy (n =	10)	116 ¹	9.4	
1	0.01	111 96	101 102		101	5.7	0.01
bovine fat	0.10	106 99	102		101	2.4	0.01
	0.10		103	40)	101	3.4	4
		Overall rec			101	5.0	
bovine kidney	0.01	93 92	93 97	92	92	4.6	
		83 92	100				0.01
	0.10		100		100	0.6	
		Overall rec			94	5.7	
	0.01	91 92	92 97	93	92	3.9	0.01
bovine liver		85 93	0.2		0.2		0.01
	0.10	88 94	93	7 0)	92	3.5	4
		Overall rec			92	3.6	
bovine muscle	0.01	78 81 89 102	94 104	4 89	91	10.8	0.01
bovine masere	0.10	95 107	92		98	8.1	0.01
	0.10	Overall rec		10)	93	10.2	=
		94 101	96 98		73		
poultry egg	0.01	80 83	90 90	//	90	10.7	0.01
poultry egg	4.0	95 80	84		86	9.0	0.01
	4.0	Overall rec		10)	89	9.9	_
			100 91		07	7.7	
poultry fat	0.01	97 111	100 71	70	97	14.7	0.01
	4.0	109 106	105		107	2.0	
		Overall rec	overy (n =	10)	100	12.6	1
noultry liver	0.01		115 93		99	17.2	0.01
poultry liver	4.0	100 102	97		100	2.5	0.01
	4.0			10)	99	14.1	-
	VI 02060 OH	Overall rec	overy (n = pined as BVI (99	14.1	evnressed as B

^{*} fortified compound BYI 02960-OH

determined as BYI 02960-OH

expressed as BYI 02960

Footnotes:

1: accepted as RSD was < 20%

<u>Table 4.3-20b (cont'd)</u>: Recovery results from method validation of method RARVP040 – Recoveries and relative standard deviations (RSDs) for BYI 02960-OH

- **confirmatory** transition (305/90)

(Recoveries documented in the feeding study reports RARVP050 and RARVP041)

Sample material	FL* [mg/kg]	Individual values [%]					Mean value [%]	RSD [%]	LOQ [mg/kg]
poultry muscle	0.01	72 92	105 97	104	79	89	91	13.5	0.01
	4.0	104	109	103			105	3.1	
		Ove	erall re	ecovery	n = 10)	95	12.9	
poultry excreta	0.01	111 76	96 90	99	109	74	94	15.6	0.01
	14.0	84	92	89			88	4.6	
		Ov	erall re	ecovery	n = 10	92	13.4		

^{*} fortified compound BYI 02960-OH

determined as BYI 02960-OH

expressed as BYI 02960

ΠA	4.4	1	Description of	methods	for ana	lysis of	soil ((parent and	l metabolites)	
----	-----	---	----------------	---------	---------	----------	--------	-------------	----------------	--

Report:	KIIA 4.4/01, Brumhard, B., Reineke, A.; 2009
Title:	Analytical Method 01074 for the Determination of BYI 02960 in Soil using LC/MS/MS
Report No &	MR-07/337
Document No:	<u>M-337752-01-1</u>
Guidelines:	EC Guidance Document on Residue Analytical Methods, SANCO/825/00 rev.7
	of March 17, 2004; OPPTS 860.1340
GLP:	GLP

Report MR-07/337 provides a method description and validation data for the method 01074 that was developed for determination of BYI 02960 in soils by HPLC-MS/MS using two MRM transitions. The method is the recommended enforcement method for monitoring of BYI08330 residues in soil.

Principle of the Method:

Soil samples of 20 g are extracted in a microwave extractor with 40 mL of a mixture of acetonitrile (1:4; v/v). Then a subsample is centrifuged to remove fine particles of the soil. An aliquot of the sample solution was injected into the high performance liquid chromatograph and subjected to reversed phase chromatography coupled with tandem mass spectrometry (MS/MS) with electrospray ionisation. The MS/MS instrument was operated in the Multiple Reaction Monitoring mode (MRM). The pseudomolecular ions of the analytes ([M+H]+) were selected by the first quadrupole. These precursor ions were impulsed with nitrogen in the collision cell (second quadrupole) and the resulting fragment ions (product ions) were separated according to their m/z ratio in the third quadrupole. Two of these product ions per analyte were selected: one product ion (MRM-transition) serving for quantitation and the second for confirmation. The first MRM transition of BYI 02960 is the quantification ion with the mass 126 [m/z 126] and the second MRM transition is the confirmatory ion with the mass 99 [m/z 99].

The method was validated using a silt soil (Höfchen) and a sandy loam soil (Laacher Hof). Two different soils were used in order to assess a possible influence of different soil characteristics.

Variations in equipment or sample characteristics and/or deterioration of system performance may require slight modifications in the chromatographic or detector conditions listed in order to obtain adequate chromatographic peak shapes or sensitivity. Instrument parameters and mobile phase may be adjusted to improve separation from unexpected interfering peaks. Therefore, the given LC/MS/MS parameters listed (see following table) may require adaptation.

The detection by MS/MS was performed on a triple-quadrupole tandem mass spectrometer, equipped with a Turbo IonSpray (ESI) interface operated in positive ion mode and multiple reaction monitoring (MRM). Optimal collisionally-activated dissociation (CAD) conditions for fragmentation of the pseudomolecular ions of the analyte was applied with nitrogen as the collision gas.

For calculation of the concentrations, calibration curves were used. These curves were calculated automatically after each sequence run with the Applied Biosystem quantitation software Analyst (Version 1.4.1) using linear regression. Further calculations were performed using the software EXCEL 2003 (Office 2003®).

HPLC System	API 3000 or equivalent								
Injector	PAL, CTC Analy	tics or equivalent							
HPLC Column	Luna 2.5 µm, C18 (2), length 50 mm, i.d. 2 mm, Phenomenex or equivalent								
Injection Volume		10 μL or as needed for the sensitivity							
		Water (0.9 L), me		rmic acid (0.12	mL), ammo	nium			
		formiate (10 mMo Water (0.1L) / me		ormic acid (0.12	mI)/amm	onium			
		formiate (10 mM		orinic acid (0.12	iiiL) / aiiiiii	Omum			
IIDI C Mada d		Methanol (1 L) /a		te (10 mMol)					
HPLC Method	Oven Temperatur								
	Flow rate (column								
	Flow rate (into M	S): 0.4 mL/min							
	Gradient: Time [min]	A [%, v/v]	B [%, v/v] Into M	IS I Ir	nto Waste			
	0.00	80	20	Iso pun		Bin pump			
	2.00								
	2.10	5.0	95	Bin pur	-	so pump			
	4.00	5.0	95	Bin pur	-	so pump			
	4.10	80	20		-				
				Bin pur	-	so pump			
	7.50	80	20	Iso pun	np E	Bin pump			
	7.50	Stop time			1.77.2000				
	Triple Quadrupole		•						
Detector	IonSpray (ESI), g	•			•				
	detector (MS/MS)), Windows XP, A	Analyst 1.4.1 softv	ware versions or	any equiva	lent HPLC-			
	MS/MS System				1				
		Precursor Ion	Product Ion	Dwell Time	Collision				
		Q1 Mass	Q3 Mass	(msec)	Energy	Polarity			
MS/MS operating	BYI 02960	(amu)	(amu)	1	(eV)				
parameters	Quantification	289	126	250	35	positive			
	BYI 02960	•	0 -			 			
	Confirmatory	289	99	250	71	positive			
Retention time	BYI 02960: appro	ox. 2.0 min							

Note: Different MS/MS-instruments may result in different MRM transitions or signal intensity.

Selectivity: The high selectivity of the method resulted from the HPLC separation in combination with MS/MS detection. Two MRM transitions were monitored for BYI 02960 (m/z 289 \rightarrow 126 for quantitation and m/z 289 \rightarrow 99 for confirmation). No signals / peaks interfering with the detection of the analyte were observed in extracts of untreated blank control specimens.

Linearity: For both mass transitions (m/z 289 \rightarrow 126 and m/z 289 \rightarrow 99) of BYI 02960 the correlation between the injected amount of substance and the detector response was linear for standards in matrix (both soil matrices: Höfchen and Laacher Hof) (1.0 μ g/L to 100 μ g/L) corresponding to a concentration in soil of 2 to 200 μ g/kg. The correlation coefficients of the 1/x weighted linear regression ranged from 0.9960 to 0.9973.

Untreated Control Samples: Apparent residues in control samples were below $0.3 \times LOQ$ (1.5 $\mu g/kg$) for BYI 02960.

Recovery Rates (Accuracy) and Precision (Repeatability): Recovery rates were determined at fortification levels of 5 μ g/kg (= LOQ level), and 50 μ g/kg. The lowest fortification level experimentally providing a mean recovery between 70 and 110% with a relative standard deviation of \leq 20% per definition is the Limit of Quantitation (LOQ), provided that the blank values were below 30% of this level. Results are presented in the following tables.

As a measure for the precision of the method, the intra-laboratory repeatability (n = 5) is given as relative standard deviation (% RSD) for all sample materials at fortification levels of 5 and 50 μ g/kg. The RSD of the repeatability tests at each recovery set ranged from 1.3 to 3.8 for the quantifier mass transition and from 1.5 to 3.3 % for the confirmatory mass transition.

Recoveries for BYI 02960 Quantifier Mass Transition (m/z 126) RSD: Relative Standard Deviation

Fortification [µg/kg]	Soil		Single values [%]					RSD [%]
5.0	Höfchen	94	92	92	1.3			
5.0	Laacher Hof	102	100	99	97	96	99	2.3
			Mear	of all 5.0	μg/kg sin	gle values	95	4.1
50.0	Höfchen	90	88	85	85	85	86	2.5
50.0	Laacher Hof	100	94	93	94	91	94	3.8
			Mean	of all 50.0	μg/kg sin	gle values	90	5.6
	Mean of all Höfchen samples					89	3.8	
			Mean of all Laacher Hof samples					3.7
					Ove	erall mean	93	5.5

Recoveries for BYI 02960 Confirmatory Mass Transition (m/z 99) RSD: Relative Standard Deviation

Fortification [µg/kg]	Soil		Single values [%]					RSD [%]
5.0	Höfchen	93 93 91 94 91					92	1.5
5.0	Laacher Hof	100	99	98	101	94	98	2.8
			Mear	n of all 5.0	μg/kg sin	gle values	95	4.0
50.0	Höfchen	91	91 90 88 87 87					1.9
50.0	Laacher Hof	98	95	92	94	90	94	3.3
			Mean	of all 50.0	μg/kg sin	gle values	91	4.0
				Mean of	all Höfche	n samples	90	2.7
			Mean of all Laacher Hof samples					3.9
					Ove	rall mean	93	4.5

Limit of quantification (LOQ): The target limit of quantitation of the method is 5 μ g/kg for BYI 02960. The target limit of detection of the method is 1.5 μ g/kg for BYI 02960.

Remarks: The target LOQ is defined as the lowest fortification level experimentally providing a mean recovery between 70 and 110% with a relative standard deviation of \leq 20%, provided that the blank values were below 30% of this level. The target LOD is defined as the lowest value of a compound showing a signal, which significantly differs from the blank values. In this particular case, the LOD was deduced from the measurements/chromatograms of the standard solution 0.75 μ g/L corresponding to 1.5 μ g/kg of BYI 02960. It could be shown that the chromatographic peaks of a solution representing 1.5 μ g/kg of BYI 02960, were clearly detectable.

Conclusions:

The method 01074 (report MR-07/337) was developed for determination of BYI 02960 in soil with target limit of quantitation of 5 μ g/kg for BYI 02960. All method validation data are in compliance with the guideline requirements for residue data generation and enforcement. Thus, the method is the recommended enforcement method for monitoring of BYI 02960 residues in soil

IIA 4.5 Description of methods of analysis of water (parent and metabolites)

Report:	KIIA 4.5/01, Fargeix, G., Rosati, D.; 2012
Title:	Analytical Method N°01213 for the Determination of Residues of BYI 02960 in Drinking
	and Surface Water by HPLC-MS/MS
Report No &	MR-12/022
Document No:	<u>M-428019-01-1</u>
Guidelines:	EC Guidance Document on Residue Analytical Methods, SANCO/825/00 rev. 8
	of June 30, 2010
	US EPA Residue Chemistry Test Guideline OPPTS 860.1340
GLP:	GLP

Report MR-12/022 provides a method description and validation data for the method N 01213 that was developed for determination of BYI 02960 in drinking and surface water by HPLC-MS/MS using two MRM transitions.

The method is the recommended enforcement method for monitoring of BYI08330 residues in drinking and surface water.

Principle of the Method:

BYI 02960 is determined by direct injection of filtered aliquot of sample into the high performance liquid chromatograph and subjected to reversed phase chromatography coupled with tandem mass spectrometry (MS/MS) with electrospray ionization, using positive ion mode without further clean-up. Concentrations are quantified using external matrix-matched standard solutions or standards in solvent: it is advised to quantify against matrix matched standards.

The MS/MS instrument is operated in the Multiple Reaction Monitoring mode (MRM). The pseudomolecular ions of the analytes ([M+H]⁺ or any adducts) were selected by the first quadrupole. These precursor ions were impulsed with nitrogen in the collision cell (second quadrupole), and the resulting fragment (product ions) are separated according to their m/z ratio in the third quadrupole. Two of these product ions per analyte were selected: one product ion (MRM-transition) for quantitation and the second for confirmation. The first MRM transition of BYI 02960 is the quantification ion with the mass 126 [m/z 126] and the second MRM transition is the confirmatory ion with the mass 90 [m/z 90].

Variations in equipment or sample characteristics and/or deterioration of system performance may require slight modifications in the chromatographic or detector conditions listed in order to obtain adequate chromatographic peak shapes or sensitivity. Instrument parameters and mobile phase may be adjusted to improve separation from unexpected interfering peaks. Therefore, the given LC/MS/MS parameters listed (see following table) may require adaptation. Before running a batch of analyses, it is necessary to sufficiently equilibrate the LC column for the analysis of this compound. It is advised to inject 5 calibration points for equilibrium time.

HPLC System	Agilent 1100 or ed	quivalent							
Injector	HTC PAL, CTC A	HTC PAL, CTC Analytics or equivalent							
HPLC Column	Ascentis Express C18 : 2.7 μm (supelco), ,50 x 2.1 mm or equivalent Phenomenex C18 ODS 4 x 2.0mm pre-column or equivalent								
Injection Volume	100 μL or as need	100 μL or as needed for the sensitivity							
HPLC Method	Binary Pump 2 - G	Binary Pump 2 - Channel A : H ₂ O/MeOH/HCOOH (900/100/0.12 v/v/v) +10 mM ammonium formiate Binary Pump 2 - Channel B : H ₂ O/MeOH/HCOOH (100/900/0.12 v/v/v) +10 mM ammonium formiate Oven Temperature: at room temperature							
	Gradient: Time [min] Flow [μ L/min] Channel A Channel [%, v/v] [%, v/v]								
		0.00	500	95		5			
		1.00	500	95		5			
		3.00	500	5		95			
		4.00	500	5		95			
		4.10	500	95		5			
		5.50	500	95		5			
Detector	Triple Quadrupole Analyst 1.4.1 soft				•	XP,			
Interface	Turbo IonSpray (I Gas Temperature:	, 1		vity					
Scan Type	MRM (Multiple R	Reaction Monitori	ng)						
MS/MS operation		Precursor Ion Q1 Mass (amu)	Product Ion Q3 Mass (amu)	Dwell Time (msec)	Collision Energy (eV)	Cell Exit Potential CXP (V)			
MS/MS operating parameters	BYI 02960 Quantification	289.1	126.0	150	30	6			
	BYI 02960 Confirmatory	289.1	90.0.	150	60	6			
Retention time	BYI 02960: appro	x. 3.5 min							

Note: Different MS/MS-instruments may result in different MRM transitions or signal intensity.

The analytical method was validated for surface water. A validation for drinking water was not necessary because the limit of quantitation for surface water is below the drinking water limit (i.e. $<0.1~\mu g/L$). For method validation surface water from the river Rhine sampled at Leverkusen-Hitdorf was used. Characteristics of the test system are listed in following table.

Characteristics of Surface Water from River Rhine, Sampled on 2007-07-29 at LEV-Hitdorf (GER)

Parameter	Value
Total organic carbon (TOC)	2 mg/L
Dissolved organic carbon (DOC)	2 mg/L
Conductivity	448 μS/cm
рН	7.3
Water hardness	9.9 °dH
Dry residue after filtration	290 mg/L

Selectivity/Specificity: The high selectivity of the method resulted from the HPLC separation in combination with MS/MS detection. Two MRM transitions were monitored for BYI 02960 (m/z 289 \rightarrow 126 for quantitation and m/z 289 \rightarrow 90 for confirmation). Therefore, the HPLC-MS/MS method is highly specific and an additional confirmatory method is not necessary. No signals / peaks interfering with the detection of the analyte were observed in extracts of untreated control samples. Apparent concentrations in control samples were below $0.3 \times \text{LOQ}$.

Linearity: The correlation between the injected amount of substance and the detector response was linear (1/x weighted) for aqueous standard solutions ranging from 0.01 to 20 μ g/L. The correlation coefficients were > 0.9998 for both MRM transitions.

Limit of Quantification (LOQ) and Limit of Detection (LOD): The LOQ for BYI 02960 is 0.05 μ g/L (rounded value) in surface water, and the LOD is 0.02 μ g/L.

Repeatability (Precision): As a measure for the precision of the method, the intra-laboratory repeatability is given as relative standard deviation (% RSD) for surface water samples at fortification levels of 0.05 μ g/L and 0.5 μ g/L. The relative standard deviation for the peak area of the quantification MRM was 5.2% (0.05 μ g/L) and 2.5% (0.5 μ g/L).

Recovery Rates (Accuracy): Because of the direct measurement of fortified samples without separate extraction and clean-up steps it is not possible to determine recovery rates in a classical way and therefore, an estimate of the accuracy of the analytical technique was made by an assessment of the linearity of matrix calibration and by determination of the repeatability of sample analysis.

However, for additional demonstration of the reliability of the method, the validation samples were evaluated like recovery rates. Mean recoveries for each fortification level and the overall mean recoveries were within the 70 - 110% range for both MRM transitions. The results are shown in the following tables. All method validation data are in compliance with the guideline requirements for enforcement methods

Recoveries for BYI 02960 Quantifier Mass Transition (m/z 126); RSD = Relative Standard Deviation

Fortification [µg/L]	Matrix (measured by)		Single values [%]					RSD [%]
0.05	Surface Water	82	88	87	80	79	83	4.7
0.5	(matrix matched	84	88	86	84	89	86	5.7
Mean	standards)			ľ	Mean sing	le values	85	4.1
0.05	Suufaaa Watan	76	82	81	75	74	78	4.7
0.5	Surface Water (solvent standards)	81	84	83	73	77	80	5.7
Mean	(SULVEIL STAILUALUS)			ľ	Mean sing	le values	79	5.1

Recoveries for BYI 02960 Confirmatory Mass Transition (m/z 90); RSD = Relative Standard Deviation

Fortification [µg/L]	Matrix (measured by)	Single values [%]					Mean [%]	RSD [%]
0.05	Surface Water	94	94	94	90	90	92	2.4
0.5	(matrix matched	81	82	79	84	84	82	2.6
Mean	standards)			ľ	Mean sing	le values	87	6.7
0.05	Coorfe on Water	78	78	78	74	74	76	2.9
0.5	Surface Water (solvent standards)	77	78	74	72	72	75	3.7
Mean	(solvent standards)			ľ	Mean sing	le values	76	3.4

Matrix Effects: The MS/MS detection of BYI 02960 was slightly affected by the matrix. Even if the results meet all guideline criteria on method validation, the method users are advice to use matrix matched standards because the recovery results are slightly closer to 100%, then.

Storage Stability of the Analyte: The analyte was stable in aqueous solution when stored in a freezer at $T \le -18$ °C for a period of 3 days.

Conclusions: All method validation data are in compliance with the guideline requirements for residue data generation and enforcement. Thus, the method is the recommended enforcement method for monitoring of BYI 02960 residues in drinking and surface water at $0.05 \,\mu g/L$.

IIA 4.6 Method for determining pesticides in sediment

Methods for analysis of sediments are not a specific data requirement according to European Regulation 1107/2009. Hence data/documents do not need to be submitted. However, in case residues of BYI 02960 must be determined in sediments, it is suggested to use and if necessary adapt the method developed for the determination of residues in soil (see report KIIA 4.4/01).

IIA 4.7 Methods for analysis of air (parent and metabolites)

Report:	KIIA 4.7/01, Heinz, N.; 2011
Title:	BYI 02960: Analytical Method for Determination in Air
Report No &	P 2419 G
Document No:	<u>M-420657-01-1</u>
Guidelines:	EC Guidance document on residue analytical methods, SANCO/825/00 rev. 8.1,
	16/11/2010
GLP:	GLP

Report P 2419 G provides a method description and validation data for the method that was developed for determination of BYI 02960 in air by HPLC-MS/MS using two parent-daughter ion transitions. The method achieves a limit of quantification (LOQ) of 7 μ g/m³. Method validation for the determination of BYI 02960 in warm (approx. 35 °C), humid air (relative humidity approx. 92 %) was performed at the LOQ and at 10-fold LOQ at approx. 70 μ g/m³.

Principle of the Method:

Air sampling uses adsorption tubes, e.g. flame sealed glass tubes (OD: 8 mm, L: 100 mm) filled with two layers (front layer A: 100 mg, mesh size 20 and rear layer B: 50 mg, mesh size 40) of porous polymer (XAD: ORBOTM-44, Supelco Cat. No. 20260-U), held in place by three glass wool plugs. Particles and aerosols are trapped by filtration or impact onto the adsorbent material. Both ends of sealed cartridges were opened and the fortification solution (10 μ L) was dosed directly onto the front layer XAD adsorbent material (layer A, 100 mg adsorption material). The solvent was allowed to evaporate.

The sampling cartridges (including two blank control cartridges) were placed on a SPE station with the fortified layer A at the upper end. A laboratory air pump was attached to the pressure gauge of the station with a tube providing an air flow of 0.83 L/min. The SPE station was placed in a chamber where the air could be heated with a hot air fan. For air sampling under warm and humid conditions, warm air (heated by the fan in the partially closed cabinet) was passed over warm water before diverting the humidified air flow over the sampling cartridges. The water load of the air was calculated from the water loss in the round bottomed flask. The total relative humidity of the air passing through the sampling cartridges was obtained as the sum of the original humidity measured with a humidity sensor at the air inlet, plus the humidity added by evaporation.

After sampling of air (6 hours, i.e. a total air sampling volume of approx. 0.3 m^3), the cartridges were sealed with the provided plastic plugs. If not analyzed immediately, the cartridges may be stored at freezer temperature for up to 5 days. Storage stability was demonstrated as part of this study by storing two fortified cartridges (at LOQ level) for 5 days in a freezer at approx. -20°C . All solutions were stored in a refrigerator (at approximately ≤ 8 °C) when not in use.

The adsorbent is extracted three times with approx. 3 mL of acetonitrile. The extracts are combined and the volume is adjusted to 10 mL. Then a 100- μ L or 50- μ L aliquot of the raw extract is further diluted into water with 0.1% formic acid resulting in a final volume of 1.0 mL.

The analyte is determined by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), monitoring two parent-daughter ion transitions. The pseudomolecular ions of the analytes ([M+H]⁺) were selected by the first quadrupole. These precursor ions were impulsed with nitrogen in the collision cell (second quadrupole) and the resulting fragment ions (product ions) were separated according to their m/z ratio in the third quadrupole. Two of these product ions per analyte were

selected: one product ion (MRM-transition) serving for quantitation and the second for confirmation. The first MRM transition of BYI 02960 is the quantification ion with the mass 126 [m/z 126] and the second MRM transition is the confirmatory ion with the mass 99 [m/z 99]. These parameters are given only as guidance and were established for the specimens of the present study, using the mentioned apparatus and analytical column.

HPLC System/ Detector	Agilent 1100 Series HPLC system (vacuum solvent degasser, binary HPLC pump, column oven), and CTC Analytics HTC-Pal autosampler. Applied Biosystems MDS Sciex API 3000 triple quadrupole LC-MS/MS system with Turbolonspray ESI source. Analyst 1.4.2 Instrument control and data acquisition software, or equivalent Supelco Ascentis Express C18, 50 mm length x 2.1 mm i.d.; 2.7 micron particle size							
HPLC Column	Supelco Ascenti with pre-column						n particl	le size
Injection Volume	50 μL		<u> </u>	, , , ,	1	-		
Mobile Phase	A –0.1 % formic	acid in wa	ter with 10 m	mol ammoniu	m formi	ate		
	B –0.1 % formic	acid in me	thanol with 10	0 mmol ammo	onium fo	rmiate		
HPLC Method	Oven Temperatu Flow rate (colun Gradient:	nn): 0.6 mL			1			
	Time [mi	n]	A [%	, v/v]		В[%, v/v]	
	0.0		90				10	
	1.0		90				10	
	2.0		10				90	
	3.0		10				90	
	3.1		90				10	
7	5.0		90				10	
Interface	TurboIonSp	oray						
Polarity	Positive							
Scan Type	MRM							
Resolution	Q1 – unit, Q3 –	unıt						
Curtain gas (CUR)	9							
Collision gas (CAD)	2.0							
Temperature (TEM)	480 °C							
Nebulizer Gas (NEB):	12							
IonSpray Voltage (IS):	4500 V							
	Compound	Q1 Mass (amu)	Q2 Mass (amu)	Dwell Time (msec)	DP, V	FP, V	CE, V	CXP, V
MS/MS operating parameters	BYI 02960 Quantification	290	126	500	61	270	29	8
	BYI 02960 Confirmatory	290	99	500	61	270	67	18
Retention time	BYI 02960 appr	ox. 3.2 min	•				·	

Note: Different MS/MS-instruments may result in different MRM transitions or signal intensity.

Repeatability of HPLC-MS/MS determination was demonstrated by duplicate injection of selected fortified specimen extracts.

Linear LC-MS/MS calibration functions were established by injecting standard solutions (50 μ L) and using both, the 126 m/z and the 99 m/z daughter ion peak areas for separate quantification/confirmation. Calibration levels ranged from, e.g. 2.0 ng to 200 ng/mL. The concentration of BYI 02960 in the extracts from the control and recovery specimens was evaluated by external calibration, employing the LC/MS software.

Extraction efficiency was examined by fortifying the analyte (duplicates fortified at 2 μ g) onto adsorbent portions of sampling cartridges. Subsequently the analyte was extracted as described above and analysed by LC-MS/MS. After sampling (approximately 6 hours) the XAD layer A was analysed for recovery. For all cartridges fortified at the higher level the rear layer B was analysed for breakthrough determination.

Storage stability of adsorbed BYI 02960 was examined by fortifying the analyte onto adsorbent layers of sampling cartridges (duplicates fortified at 2 μ g). The solvent was allowed to evaporate. The cartridges were sealed and stored for a 5-day period at freezer temperature (approximately -19 to -23 °C). After storage the adsorbent layers A and B were extracted combined as described above and analysed by LC-MS/MS.

The analytical method was validated for the determination of BYI 02960 in warm (approx. 35 °C), humid air (relative humidity approx. 92%). For method validation, adsorption tubes were fortified with BYI 02960 using a syringe. Exactly 10 μ L of the 0.20 μ g/ μ L fortification solution (2.0 μ g fortified at LOQ) or 10 μ L of the 2.0 μ g/ μ L stock solution (20 μ g fortified at 10xLOQ) were dosed onto the adsorption material layer A. Five replicates were analysed per fortification level.

Selectivity: HPLC-MS/MS, monitoring two parent to daughter ion transitions, for BYI 02960 (m/z $289 \rightarrow 126$ for quantitation and m/z $289 \rightarrow 99$ for confirmation), is considered to be highly selective, thus not requiring further confirmation of detected residues. It does not result in mass spectra when applying full scan mass spectrometry, but in daughter fragment ion chromatograms which are highly selective, and, with a chromatographic peak present at the correct HPLC retention time, which is considered highly selective for results \geq LOQ.

Linearity and Sensitivity: For both mass transitions (m/z 289 \rightarrow 126 and m/z 289 \rightarrow 99) of BYI 02960 the correlation between the injected amount of substance and the detector response was linear for standards in matrix (levels of calibration ranged from 2.0 to 200 ng/mL). The correlation coefficients of the 1/x weighted linear regression were > 0.999.

Based on the detectability of 2.0 ng/mL BYI 02960 in the final extracts, assuming a theoretical final volume of 100 mL and an air sample volume of approx. 0.3 m³, the limit of detection (LOD) is estimated to be $<0.7 \mu g/m^3$.

Untreated Control Samples: The chromatograms of the control specimens showed no signals ($<0.7 \,\mu g/m^3$) at the retention time of BYI 02960.

Retention Efficiency (Recovery) and Precision (Repeatability): The results of five replicates per fortification level showed that the average recoveries for the analyte fortification levels and MS/MS transitions after air sampling ranged between 107 to 109%, the relative standard deviations were always \leq 2%. No breakthrough into the back layer of the adsorption tubes was observed (resp. values were < 1%). The results of validation are summarised below. Extraction efficiency was demonstrated with average recoveries of 103 and 105%, the recoveries from storage stability tests were in the range of 101 to 105%.

Recovery Results: Extraction Efficiency and Storage Stability

	Fortified	290 m/z>	126 m/z	290 m/z>	99 m/z	
Specimen Type	BYI 02960		Mean *		Mean *	
	μg	Recovery	Mean "	Recovery	Mean "	
Extraction Efficiency	2.0	101%	105%	99%	103%	
Extraction Efficiency	2.0	109%	10576	108%	103 76	
Stability of Extracts Refrigerated	2.0	105%	105%	105%	104%	
for 6 days at < 8 °C	2.0	105%	10370	103%	104 70	
Storage Stability of Adsorbed BYI 02960 for	2.0	100%	101%	100%	101	
5 days at Freezer Temperature: -19 to -23 °C	2.0	103%	10170	102%	101	

^{*:} each two specimens included in calculation

Recovery Results: Retention Recoveries

	Fortified	Average	290 m/z>	> 126 m/z	290 m/z>	99 m/z
Specimen Type	BYI 02960	$\mathbf{C}_{\mathbf{Air}}$	Average	Mean*	Average	Mean*
	μg	$\mu g / m^3$	Recovery	(RSD)	Recovery	(RSD)
Warm Humid Air	2.0	6.7 (at LOQ)	109% 109% 110% 110% 110%	109% (0.3%)	106% 107% 109% 109% 109%	108% (1%)
(temp. 35 °C, relative humidity 92%)	20	67 (at 10xLOQ)	107% 105% 110% 107% 104%	107% (2%)	108% 105% 109% 106%	107%

^{*:} each five specimens included in calculation

Average CAir: Average fortified concentration of BYI 02960 in air.

Limit of quantification (LOQ): The method achieves a limit of quantification (LOQ) of 7 μ g BYI 02960/m³ air. Based on the detectability of 2.0 ng BYI 02960/mL and assuming a theoretical final volume of 100 mL and an air sample volume of approx. 0.3 m³, the limit of detection (LOD) in the final extracts is estimated to be <0.7 μ g/m³.

Conclusions:

The LC-MS/MS based analytical method (report no. P 2419 G) was developed for determination of BYI 02960 in air with target limit of quantitation of 7 μg BYI 02960/m³. All method validation data were in compliance with the guideline requirements for residue data generation and enforcement. Thus, the method is the recommended enforcement method for monitoring of BYI 02960 residues in air.

IIA 4.8 Methods for analysis of body fluid/tissues (parent and metabolites)

A method of analysis for body fluids and tissues is not required, since the active substance is of low acute toxicity (GHS category 4). Please refer to KIIA, sect. 3, point 5.2.

IIA 4.9 Other/special studies

No other or special studies have been conducted.