1 1 1 1	Survived Polass Sex Age Siblings/Spouses Parents/Children Fare 1
SC P S A S P F C C	the 7 features are indicating a sum of informations about each passenger (does this passenger have siblings ? his gender & age ? and what about the fare (amount paid for this journey) ?d of course as for each data set there is a purpose , this one is for classification ML algorithms of the target will be a prediction to wheter the passenger will survive or not ###################################
TI	#get statistical measures data describe() Survived Pclass Age Siblings/Spouses Parents/Children Fare
Т	• using matplotlib plt.boxplot(data['Age']) plt.title("'Age box-plot"), fontsize=18, c='gray') plt.ylabel('Age values') Age box-plot 80 80 80 80 80 80 80 80 80 80 80 80 80
	• using seabom sns.boxplot(x=data['Age']) saxesSubplot:xlabel='Age'> 10 10 20 30 40 50 80 70 80 lata histogram
1 1	figure.suptitle('Age & Fare distribution') ax1.hist(x=data['Age'] , bins=20) ax2.hist(x=data['Age'] , bins=20) ax2.set_xlabel('Fare') Age & Fare distribution Age & Fare distribution Age & Fare distribution Age & Fare distribution
(#get the size of our data set data.shape (887, 7) #get informations data.info() **Calass 'pandas.core.frame.DataFrame' > **RangeIndex: 887 entries, 0 to 886 **Data columns (total 7 columns): # Column Non-Null Count Dtype 0 Survived 887 non-null int64 1 Pclass 887 non-null int64 1 Pclass 887 non-null object 3 Age 887 non-null object 4 Siblings/Spouses 887 non-null int64 5 Parents/Children 887 non-null int64 5 Parents/Children 887 non-null int64 6 Fare 887 non-null float64 6 Fare 887 non-null int64 6 Fare 887 non-null float64
ff m	#the number of persons for each gender data.groupby('Sex').count() Survived Pclass Age Siblings/Spouses Parents/Children Fare Sex female 314 314 314 314 314 314 314 314 male 573 573 573 573 573 573 #or data.Sex.value_counts() male 573 female 314 lame: Sex, dtype: int64 data.Sex.hist()
4 4 1	AxesSubplot:> male female ach measure has an insight from the above 3 cells we can notice that the majority of passengers are men
ca ge	that about the number of survived persons amoung each gender ? let's explore them data[data['Survived'] == 1].groupby('Sex').count() Survived Pclass Age Siblings/Spouses Parents/Children Fare Sex Temale 233 233 233 233 233 233 233 233 233 23
£ £ £	ord_enc = OrdinalEncoder() withis will encode the male as 1 & female as 0 data["Sex_encoded"] = ord_enc.fit_transform(data[["Sex"]]) data Survived Pclass Sex Se
88	### ### ### ### ### ### ### ### ### ##
88 88 10	# check for missing values data.isnull().sum() #No null values:) Survived 0 class 0 c
B C	siblings/Spouses 0 Parents/Children 0 Fare 0 Fare 0 Fare 0 Fare 0 Fare 0 Fare 1 Fare 2 Fare 2 Fare 2 Fare 2 Fare 2 Fare 3
	0.0 3.0 2.5 80 2.0 1.5 1.0 80 60 60 60 60 60 1.0 80 80 80 80 80 80 80 80 80 80 80 80 80
[] Y(Skewness #check for skewness (to decide whether a feature is (~) normaly ditributed or not) #to make skewed variables symmetric let's first extract just decimal features decimal_cols = decimals.index.tolist() decimal_cols ['Age', 'Fare', 'Sex_encoded'] ou may ask why skewed data can be harmful? check out this article to see more Skewed Data: A problem to your statistical model #as the sex encoded variable is not important in terms of skewness we will remove it from our transformation decimal_cols = dif[decimal_cols] decimal_cols = [index for index in decimal_cols if index]='Sex_encoded']
A F	#let's verify decimal_cols.dtypes Age float64 Fare float64 ttype: object #filter those who respond to our skew condition skew_limit = 0.75 # define a limit above which we will log transform skew_vals Age 0.447189 Fare 4.777671 Stype: float64 #filter # Show the skewed columns skew_cols = (skew_vals .to_frame()
F	<pre>.rename(columns=(0:'skew')) .query('abs(skew) > {}'.format(skew_limit))) skew_cols </pre>
	#apply log transform to the skewed feature #warning: the log1p function is defined as log(1+x) data[skew_cols.index] = data[skew_cols.index].apply(np.log1p) #see the difference pd.DataFrame({ 'before log': df['Fare'], 'after log': data['Fare'] }).head(10) before log after log
	1 71.2833 4.280593 2 7.9250 2.188856 3 53.1000 3.990834 4 8.0500 2.202765 5 8.4583 2.246893 6 51.8625 3.967694 7 21.0750 3.094446 8 11.1333 2.495954
	fig. suptitle('skemess reduction' , fontsize = 18 , c ='gray' , fontweight = 'bold') # Create a histogram on the "ax before" subplot decimal_cols['Fare'].hist(ax=ax_before) # Apply a log transformation (numpy syntax) to this column data['Fare'].hist(ax=ax_after) # Formatting of titles etc. for each subplot ax_before.set(title='Fare before log transformation', ylabel='frequency', xlabel='lage') ax_after.set(title='Fare after log transformation'), Text(0.5, 1.8, 'Fare after log transformation'), Text(0.9.5, 'Irequency'), Text(0.5, 0. 'log(fare)')] **Skewness reduction** Fare before log transformation** Fare before log transformation Fare before log transformation Formatting of titles etc. for each subplot ax_before.set(title='Fare after log transformation', ylabel='frequency', xlabel='log(fare)') **Text(0.5, 1.8, 'Fare after log transformation'), Text(0.5, 0.5, 'Irequency'), Text(0.5, 0.6, 'log(fare)')] **Skewness reduction** Fare before log transformation** Fare before log transformation** **Double log transformation
	theck for outliers #from the above plots we can notice that some outliers exist at ~0 value (for the top-right plot) #this is of course due to original data(raw data) #let's handle it before moving further #let's check for them and remove them (our handling for this situation) (note that there are other methods to deal with outliers) indexes = data[data['Fare']==0].index.tolist() data.drop(indexes , inplace=True , axis = 0) #verify data['Fare'].hist() #now it's ok *AxesSubplot:> #AxesSubplot:>
1	**Statisticians would say that you accept that the distribution is normal (more specifically: fail to reject the null hypothesis that it is normal) if p > 0.05. **Import normality test model from scipy.stats.mstats import normaltest ##################################
** ** de	NormaltestResult(statistic=899.3332238340862, pvalue=5.155511361775634e-196) As we can notice the p-value is extremely low so we can say that the null hypothesis can be rejected(alpha value in general=5%) ###Ifter log transformation & outliers removing normaltest(data['Fare']) NormaltestResult(statistic=99.92690115361523, pvalue=2.000548652243953e-22) **Our p-value after transformation is reduced but still rejects the (HO): null hypothesis **In our previous code, we deleted outiers as a sample approach knowing that we can handle outliers using other approaches, but in many times they can be useful and informative especial ealing with non-error outliers, also called interesting or random outliers **Let's apply the normality test to the log transformed data before dealing with outliers ###################################
a V	Normaltest(testing_column) Inp.subtract(normaltest(testing_column)[1] ,normaltest(data['Fare'])[1]) S. 6288403288521947e-09 Its we can notice , our data with outliers is more to normal distribution than data without outliers What are the other approaches that we can opt in order to handle outliers ? In order to answer this question I highly recommend this article for you: Detecting and Treating Outliers It is mail Ouahbi , please contact me for personal usage Thank you