Algoritmos Genéticos

Prof. Roberto Ribeiro Rocha

Introdução – Algoritmos Genéticos

- Paradigma de raciocínio evolucionista da IA
- Utiliza a metáfora da natureza → Darwin (1859)
- Técnica de busca baseada no processo biológico de evolução natural dos indivíduos
- Usa os conceitos da genética para melhorar elementos

A natureza incentiva os indivíduos mais fortes em detrimento dos mais fracos.

Introdução

- Abordagem geral:
 - cria-se sucessivas populações de indivíduos
 - submete os indivíduos aos operadores genéticos:
 - seleção, recombinação (crossover) e mutação.
- Um AG pode ser considerado uma técnica heurística de otimização global
 - a busca explora todo o espaço de solução
 - não fica facilmente preso em mínimos (ou máximos) locais

Mínimo local / global

- Busca do menor valor
- Uma função f(x,y,z,...) muito complexa e conhecida
 - Porém sua curva não é conhecida
- Seu domínio é muito grande (mesmo!)
- Mínimo Local: pontos baixos em relação a seus pontos vizinhos

Mínimo local / global

- A curva está cheia de valores mínimos locais
- Mínimo Global: melhor (menor) solução na curva inteira

- Lembrando: conhecemos a função mas não a curva
 - Uma busca sequencial se torna inviável
 - Um valor mínimo local pode ser uma solução ruim.

Heurística de busca - 1ª versão

- 1) Parta de um ponto qualquer (aleatório) na curva;
- Evoluir o ponto para uma posição vizinha com menor valor.

Heurística de busca - 1ª versão

- Principal Problema:
 - muito chance de se encontrar um mínimo local → resultado não adequado.
- Melhoria da estratégia:
 - utilizar vários valores iniciais, para procurar diferentes "vales" na curva
 - aumentar as chances de encontrar o mínimo global

Heurística de busca - 2ª versão

- 1) Inicializar: partir de vários pontos aleatórios;
- **2) Melhorar:** para cada ponto, mover ele para a posição melhor, que tiver menor valor;
- 3) Eliminar: excluir o ponto de maior valor;
- 4) Tentar: criar um novo ponto aleatório;
- **5) Repetir** os passos 2, 3 e 4 até atingir um critério de parada;
- **6) Obter a solução:** escolher ponto de menor valor entre os que restaram.

Heurística de busca - 2ª versão

- Algumas perguntas ainda ficam pendentes sobre este algoritmo:
 - Quantos pontos utilizar?
 - Quantas vezes deve repetir o loop?
 - E se o ponto excluído tiver características que ajudam a chegar à solução mais rapidamente?
 - O ponto escolhido no final é bom o suficiente?

Vantagens do Algoritmo Genético

- Processamento paralelo na avaliação dos indivíduos
- Global: menor chance de ficar preso em mínimos locais
- Não é totalmente aleatória apesar de possui componentes aleatórios
 - certos passos decidem a escolha dos indivíduos
 - as iterações futuras usam informações da população atual (que não é mais aleatória)
- Não afetada por descontinuidades (nas funções)
- Atua em funções discretas e contínuas.

Esquema geral de um Algoritmo Genético

Elementos de um AG

- 1) Criação da geração inicial: cria um conjunto de indivíduos aleatórios.
- 2) Avaliação: função que avalia os indivíduos
- atribui um score (fitness, aptição) para cada indivíduo.

Elementos de um AG

- 3) Critério de parada: define se o algoritmo continua ou interrompe
 - número de gerações ou qualidade da solução.
- 4) Seleção: escolhe os indivíduos para a reprodução.

Criar a população inicial

Alcançou
o critério de parada?

Obter o melho indivíduos

Selecionar os indivíduos

Fazer o cruzamento

Fazer a mutação

Elementos de um AG

- **6) Mutação:** operador genético de mutação nos indivíduos "filhos".
- 7) Descartar a população: substitui a população anterior pela população nova.

8) Resultado: obtenção do melhor indivíduo (fitness) da

população.

Representação computacional do Indivíduo

- Indivíduo
 - possui todos os dados que compõem uma solução
- Todos os passos do AG trabalha com uma estrutura de dados específica e bem definida.
- Cada solução possui diferentes tipos de dados
- Vejamos alguns exemplos...

Estrutura do Indivíduo - exemplos

- 8 rainhas (uma não pode atacar a outra no tabuleiro)
- Indivíduo:
 - vetor com oito posições.
 - a posição no vetor é a coluna e o valor é a linha.

Estrutura do Indivíduo - exemplos

- Equação do 40 grau: $ax^4 + bx^3 + cx^2 + dx + e = 0$
- Indivíduo:
 - um número real indicando o valor de x (solução)
 - ou representação binária de 15 bits
 - 10 bits para a parte inteira e
 - 5 bits para a parte fracionária.
 - Exemplo: x = 9,375
 - Parte inteira: 000001001
 - Parte fracionária: 01100

0000001001 01100

Estrutura do Indivíduo - exemplos

- Caixeiro viajante
- Indivíduo:
 - sequência de cidades que uma pessoa deve percorrer cujo percurso seja o mais curto possível

Voltando aos passos do algoritmo...

(1) Criação da população inicial

- População inicial
 - conjunto de indivíduos criados contendo valores aleatórios.
- Deve-se seguir as regras e restrições específicas para cada problema
- Exemplos:
 - No problema das 8 rainhas
 - Equação do 4o grau com representação binária
 - Caixeiro viajante
- A quantidade de indivíduos da população é um parâmetro

(2) Avaliação dos indivíduos

- Analisa o indivíduo e atribui um valor (fitness ou aptidão)
- É feito através de um cálculo (claro e objetivo) específico
 - grande dependência da estrutura interna do indivíduo
- O fitness pode possuir significado positivo ou negativo
 - faz parte da análise do problema e da estrutura de dados do indivíduo.

(2) Avaliação dos indivíduos - exemplos

- 8 rainhas
 - contabiliza a quantidade de conflitos que ocorrem no tabuleiro
- Equação do 4o grau
 - aplica o valor do indivíduo na equação e obtém o resultado da própria equação
- Caixeiro viajante
 - soma das distâncias entre as cidades na ordem que está definida no indivíduo.

(3) Critérios de parada

- Número máximo de épocas (iterações)
 - Quantidade de vezes que todo o processo foi realizado
- Qualidade do indivíduo
 - O melhor indivíduo atingiu um certo nível de resultado
- Outros...

(4) Métodos de Seleção

- Ponto importante no direcionamento para soluções boas
- Indivíduos melhores tem maior probabilidade de terem filhos
- Normalmente a seleção escolhe 2 indivíduos para serem os pais para o próximo passo do AG.
- Dois métodos que veremos na aula
 - Método da Roleta
 - Método de Torneio

(4.1) Método da Roleta

- Aloca os indivíduos em uma roleta
- O indivíduo ocupa uma faixa correspondente a seu fitness.
- O indivíduo escolhido é indicado por ponto aleatório

Indivíduo	Fitness
I 1	36
12	30
13	18
13	12
15	12
16	6

(4.2) Método de Torneio

- Consiste de dois passos principais:
- 1) Escolher aleatoriamente dois indivíduos
- 2) Comparar o fitness dos indivíduos
 - O indivíduo com melhor fitness é o escolhido final.

(5) Cruzamento (Crossover)

- Opera sobre cada par selecionado
- Escolhe aleatoriamente um ponto de cruzamento dentro do indivíduo
- Cria dois indivíduos novos (filhos)
- Copia as informações dos pais para os filhos
 - O filho 1 fica com a primeira parte do pai 1 e a segunda parte do pai 2
 - O filho 2 fica com a segunda parte do pai 1 e a primeira parte do pai 2

(5) Cruzamento (*Crossover*) - Exemplo

- Os pais pB e pA gerando filhos fA e fB
- Os pais pB e pC gerando filhos fC e fD

(6) Mutação

- Cada posição está sujeita à mutação aleatória com uma pequena probabilidade independente.
- Objetivos:
 - fazer o indivíduo explorar zonas desconhecidas
 - A busca não fica presa em mínimos locais.

Restrições dos indivíduos

- A estrutura do indivíduo e a natureza do problema impõem restrições que o algoritmo deve seguir:
 - Criação da população inicial
 - Seleção
 - Cruzamento
- Exemplos:
 - 8 rainhas: regras e restrições relacionadas com o vetor
 - caixeiro viajante: sequência única de cidades que estão conectadas

Obrigado.

• Próximo conteúdo: Redes Neurais Artificiais