AIT Blog

Two Modest Lemmas

Samuel Epstein*

October 27, 2022

This blog post contains two small lemmas that might be of independent interest. In general, the blog posting will slow down as I intend to write a survey over the material covered. I still intend to post blogs of papers of interest, but with a slower rate. As of today, the survey will contain the following contents.

- 1. Outliers in strings, sequences, and general spaces
- 2. Machine Learning and AIT
- 3. Clusters
- 4. Sets Have Simple Members Theorem
- 5. Resource Bounded EL Theorems
- 6. Derandomization (resourse free and resourse bounded) in particular its connection with Classical Information Theory and also parameterized instances
- 7. Quantum Information Theory, Many Worlds Theory

Computable Probability

In my October 11th blog post, I demonstrated the utility of so-called left-total machines. In this section, we show how to make an semi-computable semi-measure, \mathbf{m} , computable by using left-total machines. This enables a greater range of flexibility in proving results when \mathbf{m} is computable, as shown in my September 28th blog post. Let \mathbf{K} be the prefix-free Kolmogorov complexity. Let $\mathbf{I}(a;\mathcal{H}) = \mathbf{K}(a) - \mathbf{K}(a|\mathcal{H})$, where \mathcal{H} is the halting sequence.

^{*}JP Theory Group. samepst@jptheorygroup.org

Definition 1 For $D \subseteq \{0,1\}^*$, $\overline{\mathbf{m}}(D) = \min\{\mathbf{m}(P)P(D) : probability P \text{ is total computable}\}.$

Lemma 1 $-\log \overline{\mathbf{m}}(D) < ^{\log} -\log \mathbf{m}(D) + \mathbf{I}(D; \mathcal{H}).$

Proof. Let $(p0)^- = (p1)^- = p$. We define the following computable semi-measure, with $\mathbf{m}_b(x) = \sum \{2^{-\|p\|} : U(p) = x, p \lhd b \text{ or } p \supseteq b\}$. If b and b^- are total then $\mathbf{m}_b(x) \leq \mathbf{m}_{b^-}(x)$. Let $s = \lceil -\log \mathbf{m}(D) \rceil + 1$. Let b be the shortest total string such that $\mathbf{m}_b(D) \geq 2^{-s}$. Thus b^- is not total. Thus $-\log \overline{\mathbf{m}}(D) <^+ -\log \mathbf{m}(\mathbf{m}_b)\mathbf{m}_b(D) <^+ s + \mathbf{K}(b)$. We show that $\mathbf{K}(b) <^{\log} \mathbf{I}(D;\mathcal{H}) + \mathbf{K}(s)$. From Lemma 2 in [Eps22], we have that $\mathbf{I}(f(a);\mathcal{H}) <^+ \mathbf{I}(a;\mathcal{H}) + \mathbf{K}(f)$ and so $\mathbf{I}(b;\mathcal{H}) <^+ \mathbf{I}(D;\mathcal{H}) + \mathbf{K}(b|D)$. Now since b is total and b^- is not, b^- is a prefix of border, the binary expansion of Chaitin's Omega, and thus b is random. Furthermore b is simple relative to the halting sequence, with $\mathbf{K}(b|\mathcal{H}) <^+ \mathbf{K}(\|b\|)$. Thus $\mathbf{K}(b) <^{\log} \mathbf{I}(b;\mathcal{H})$. Now we prove that $\mathbf{K}(b|D) <^+ \mathbf{K}(\|b\|) + \mathbf{K}(s)$. There is an algorithm that can enumerate total strings of length $\|b\|$ and return the first string c such that $\mathbf{m}_c(D) \geq 2^{-s-1}$. This string is indeed b, as shown in Figure 1.

Mutual Information with the Halting Sequence

The following lemma presents a non intuitive inequality about the mutual information with the halting sequence.

Lemma 2 $\mathbf{I}(x; \mathcal{H}/y) < \log \mathbf{I}(\langle x, y \rangle; \mathcal{H}).$

Proof.

$$\mathbf{I}(x; \mathcal{H}/y) = \mathbf{K}(x/y) - \mathbf{K}(x/y, \mathcal{H})$$

$$<^{+} \mathbf{K}(x, y) - \mathbf{K}(y) + \mathbf{K}(\mathbf{K}(y)/y) - \mathbf{K}(x/y, \mathcal{H}).$$

Due to Theorem 3.3.1 in [G21], $\mathbf{K}(\mathbf{K}(y)/y) <^{\log} \mathbf{I}(y; \mathcal{H})$, so

$$\begin{split} \mathbf{I}(x;\mathcal{H}/y) &< \mathbf{K}(x.y) - \mathbf{K}(y) + \mathbf{I}(y;\mathcal{H}) - \mathbf{K}(x/y,\mathcal{H}) + O(\log \mathbf{I}(y;\mathcal{H})) \\ &< \mathbf{K}(x,y) - \mathbf{K}(y/\mathcal{H}) - \mathbf{K}(x/y,\mathcal{H}) + O(\log \mathbf{I}(y;\mathcal{H})) \\ &< \mathbf{K}(x,y) - \mathbf{K}(x,y/\mathcal{H}) + O(\log \mathbf{I}(y;\mathcal{H})) \\ &<^{\log} \mathbf{I}(\langle x,y\rangle;\mathcal{H}). \end{split}$$

The last inequality is due Lemma 2 in [Eps22], which states that $\mathbf{I}(y;\mathcal{H}) <^+ \mathbf{I}(\langle x,y\rangle;\mathcal{H})$.

References

[Eps22] S. Epstein. The outlier theorem revisited. CoRR, abs/2203.08733, 2022.

[G21] Peter Gács. Lecture notes on descriptional complexity and randomness. CoRR, abs/2105.04704, 2021.

Figure 1: The above diagram represents the domain of the universal left-total Turing machine U with 0s branching to the left and 1s branching to the right. It shows all the total strings of length ||b||, including b. The large diagonal line is the border sequence, B. A string c is marked green if $\mathbf{m}_c(D) \geq 2^{-s-1}$. By definition, b is a shortest green string. If x is green and total, and $x \triangleleft y$, and y is total, then y is green, since $\mathbf{bb}(x) \leq \mathbf{bb}(y)$. Furthermore, if x is green and total and x^- is total, then x^- is green, as $\mathbf{bb}(x) \leq \mathbf{bb}(x^-)$. It cannot be that there is a green $x \triangleleft b$ with ||x|| = ||b||. Otherwise, x^- is total, and thus, it is green, causing a contradiction because it is shorter than b. This is shown in part (1). Furthermore, there cannot be a green y, with $b \triangleleft y$ and ||y|| = ||b||. Otherwise, b^- is total and thus green, contradicting the definition of b. This is shown in part (2). Thus, b is unique, and since b^- is not total, b^- is a prefix of the border, as shown in part (3). Thus, an algorithm returning a green string of length ||b|| will return b.