# Bayesian Methods for Parkinson's disease prediction

By Matthew Ranftle and Alex Oser

### Introduction

- Approximately 90% of patients diagnosed with Parkinson's disease exhibit some form of vocal impairment
- Evidence suggests that vocal impairment may be one of the earliest indicators for the onset of the disorder
- Using voice measurement to detect and track the progression of symptoms of Parkinson's has been a key focus for researchers
- However computational analysis of this data is novel

# PARKINSON'S DISEASE

Parkinson's disease is the result of lack of dopamine production in the brain. SYMPTOMS MAY INCLUDE:











movement



handwriting

### MOST COMPREHENSIVE CARE AVAILABLE IN THE REGION:

Specially trained clinicians















Over 1.000

electrode implantations performed



Deep Brain Stimulation

Highly effective in properly selected patients, DBS is a surgery that provides patients with relief from many Parkinson's disease symptoms through electrical stimulation.

froedtert.com/movement

50%

reduction in medications after DBS

# The Parkinsons Telemonitoring Dataset

- Approximately 200 voice samples from 42 participants
- Training-Test Split 32/10
- 16 interesting features for each sample
- Our aim is to predict the unified Parkinson's disease rating scale (UPDRS)
  which is a standard rating scale used to follow the longitudinal course of
  Parkinson's disease.
- Total UPDRS and Motor UPDRS
  - o Part I: evaluation of mentation, behavior, and mood
  - Part II: self-evaluation of the activities of daily life (ADLs) including speech, swallowing, handwriting, dressing, hygiene, falling, salivating, turning in bed, walking, and cutting food
  - Part III: clinician-scored monitored motor evaluation
  - Part IV: complications of therapy
  - Part V: <u>Hoehn and Yahr</u> staging of severity of Parkinson's disease
  - Part VI: Schwab and England ADL scale



| Jitter(%) Jitter(Abs) Jitter:RAP Jitter:PPQ5 Jitter:DDP                 | Several measures of variation in fundamental frequency          |
|-------------------------------------------------------------------------|-----------------------------------------------------------------|
| Shimmer Shimmer(dB) Shimmer:APQ3 Shimmer:APQ5 Shimmer:APQ11 Shimmer:DDA | Several measures of variation in amplitude                      |
| NHR<br>HNR                                                              | Two measures of ratio of noise to tonal components in the voice |
| RPDE                                                                    | A nonlinear dynamical complexity measure                        |
| DFA                                                                     | Signal fractal scaling exponent                                 |
| PPE                                                                     | A nonlinear measure of fundamental frequency variation          |

# MSE with off the shelf methods

Linear Regression

Total UPDRS: 235.68

o Motor UPDRS: 96.15

Exponential Linear Regression

Total UPDRS: 1116.1

o Motor UPDRS: 607.56

Decision Tree Regression

Total UPDRS: 714.16

Motor UPDRS: 370.29

Bayesian Ridge Regression

o Total UPDRS: 174.4

Motor UPDRS: 97.76



### Can we do better?

- Gaussian Process Regression
  - Kernel Choice
    - RBF
    - Matern
    - Linear
    - Polynomial
    - Rational Quadratic
  - Hyperparameter Optimization
    - Scaled Conjugate Gradients
    - Tsybakov Noise Condition
    - Limited-memory BFGS
  - Dealing with large amounts of data. Sparse GPs?
- Gaussian Process Classification

# **GP** Regression

- RBF kernel
  - Limited-memory BFGS: 158.45
  - Tsybakov Noise Condition: 142.71
- Linear Kernel
  - o Limited-memory BFGS: 164.70
  - Tsybakov Noise Condition: 181.53
- Matern Kernel
  - Limited-memory BFGS: 143.26
  - Tsybakov Noise Condition:147.10
- Polynomial Kernel
  - Limited-memory BFGS: 181.20
  - Tsybakov Noise Condition: 162.05

### Rational Quadratic Kernel

- Limited-memory BFGS: 187.90
- Tsybakov Noise Condition: 160.95



# **Kernel Combinations**

- - 0 167.33
- RBF + Matern
  - 127.39
- Linear + Matern
  - 160.37
- Poly + Matern
  - 182.50

- RatQuad + Matern RBF + Matern + RatQuad
  - 186.43
  - Matern + (RBF\*Linear)
    - 146.16
  - Matern + (Linear\*RatQuad)
    - 169.29
  - Matern + (RBF\*Poly)
    - 161.71

- Matern+RatQuad + (RBF\*Linear)
  - 107.34
- Matern + Linear + (RBF\*RatQuad)
  - 204.08

# Gaussian Regression Classification

- Use binary classification to predict whether or not the patient has PD
- Uses a Gaussian likelihood function
- If probability of PD is greater than 0.50 classify as positive
- Naive Bayes
  - 72% correct
- Kernels used
  - o RBF: 66% correct
  - Matern: 62% correct
  - RatQuad: 68% correct
  - Others kernels did not work well.

# Conclusions and Future Work

- Choosing a kernel is hard!
- Best MSE = 107.34
- Gaussian Process Regression achieves better results than other forms of regression.
- Gaussian Classification ~70% at best.
- We still think we can do better
  - Bayesian Neural Networks
  - Bayesian SVM

## References

Little MA, McSharry PE, Hunter EJ, Ramig LO (2009), 'Suitability of dysphonia measurements for telemonitoring of Parkinson's disease', IEEE Transactions on Biomedical Engineering, 56(4):1015-1022

Little MA, McSharry PE, Roberts SJ, Costello DAE, Moroz IM. 'Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection', BioMedical Engineering OnLine 2007, 6:23 (26 June 2007)

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring