Servo Project Proposal

Assignment Specifications

- Main goal is to provide a SCOMP peripheral for a servo and a user friendly API
- Base feature:
 - Controllable servo pulse generator that generates safe pulses between 0.5 and 2.5 ms.
- Advanced features:
 - Precision within 1 degree controlled by 90 kHz clock
 - Various speed modes
 - Practical Oscillating Tower fan application with angle and speed control

Goal of Project

- 2 ways to interact with servo
 - Constant rotation (input speed)
 - Input degree/position
- Demonstration
 - Use a small fan (Oscillating Tower Fan)
 - Manipulate using DE10 switches and buttons to demonstrate modes and precision

Technical Approach

- We decided to go with 3 ways of interaction to give the user a variety of options
- Constant Rotation mode
 - There will be a constant rotation mode with configurable speed
 - This mode can show off the servos full range of motion to an unfamiliar user
- Degree Rotation Mode
 - Allow for degree precision input and rotation of servo
- Interaction through assembly code
 - This method allows the user to write more complex custom sequences of movement for the servo

Technical Approach -Hardware

- Use 90Khz to increase number of discrete positions
- Changes of 10 microseconds or fewer of high time are negligible
- Mode packed into the LSB

Old 10kHz clock had 20 possible positions

Implemented 90kHz clock has 180 possible positions

Technical Approach - API

- Inputting a position as a degree through code is the only way to interact through code
 - This is because any additional functionality can easily be written as assembly routines
- For the demo we plan on having 5 functions
 - Degree Turn
 - Given a degree the servo will turn to that degree
 - Radian Turn
 - Given a angle in radians, servo will turn to that degree
 - SetZero
 - The servo will move to the 0 degree position
 - SetMax
 - The servo will move to the max (180) degree position
 - o msTurn
 - The servo will turn to the pulse inputted
 - Bounce
 - The servo will go back and forth from min to max input degree position

Technical Approach - API cont.

- When implementing degree turn using the 90kHz clock, we noticed that the servo specifications were off:
 - A 0.5ms pulse would generate 0 degrees, while a 2.5ms pulse would generate around 200 degrees instead of 180 degrees
- To solve this, we have implemented a scale factor within the ASM API to scale inputs by 8/9 to correct the overshoot.
- By doing so, the user can adjust the scale factor as need for their individual servo's discrepancies:
 - We have met the manufacturers specifications while also allowing for case by case user tuning

Technical Approach - Application

- Will rotate a small fan to different positions
 - DE10 switches control position in position mode and speed in constant rotation mode
 - Pushbutton will control state
- Fans need to be adjusted to cool their target
- Sometimes need constant motion to cool a large area
- Demonstrates precision movements and modes

Time management

Color Key

- Harsh
- Matthew
- Gabe
 - ·Ariel

Conclusion

- We will present you, the customer, with an easy to program, versatile, and precise peripheral/API interface to control a PWM Servo Motor that could have the following applications:
 - Precision electronics:
 - Robotics applications
 - Pressure valve controller
 - Oscillation
 - Lawn sprinkler
 - Fan control