

Disclosure

- This is a very condensed and simplified version of **statistics**. It is not comprehensive, and is absolutely not a substitute for a one-year university course -we would be very rich otherwise-.
- You are strongly encouraged to do the included Exercises and review or even research some of the topics in order to reinforce the main ideas.

Ready?

What you should already know: Probability

- Axioms of Probability
- Marginal Probability
- Joint Probability
- Conditional Probability
- Bayes Rule
- Permutations and Combinations

What you should already know: Statistics

- Sampling
- Central Value
- Mean and Std deviation
- Types of Bias
- Correlation (actually explained last week!)
- Normal Distribution

What we will learn today: Statistics

- Correlation (actually explained last week!)
- Types of Distributions
- Central Limit Theorem
- Hypothesis Testing
- R // R^2

Correlation

- The correlation coefficient quantifies relationship between values.
- R = 0 means there is no relationship between the variables at all.
- 0 < R <= 1 means that there is a positive correlation
- -1 <= R < 0 means that there is a negative correlation
- 1 indicates that the two variables are moving in unison. They rise and fall together and have perfect correlation.

Correlation explained with cats

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

tylervigen.com

Worldwide non-commercial space launches

correlates with

Sociology doctorates awarded (US)

→ Sociology doctorates awarded (US) Worldwide non-commercial space launches

tylervigen.com

Per capita consumption of mozzarella cheese

correlates with

Civil engineering doctorates awarded

◆ Engineering doctorates Mozzarella cheese consumption

tylervigen.com

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

What is what?

RandR²

- Coefficient of Determination is the square of Coefficient of Correlation.
- R-squared is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable

R^2 vs Adjusted R^2

- Both R^2 and the adjusted R^2 give you an idea of how many data points fall within the line of the regression equation.
- However, the main difference is that R^2
 assumes that every single variable explains the
 variation in the dependent variable.
- The adjusted R^2 tells you the percentage of variation explained by only the independent variables that actually affect the dependent variable.

$$R^2 = 1 - \frac{SS_{residuals}}{SS_{total}}$$

Adjusted R² = 1 -
$$\frac{SS_{residuals}}{SS_{total}} \frac{(n-K)}{(n-1)}$$

R^2 vs Adjusted R^2

- In other words, the **adjusted R^2** penalized our choice of additional independent variables (or parameters) if that addition is not good enough.
- We could get too many variables to explain the weather, which would lead to a higher R^2. The adjusted
 fixes
- In order to choose which model is better, we can see how the **Adjusted R^2** is better:)
- **SS** = Sum of Squared residuals.

$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}}$$

Adjusted R² = 1 -
$$\frac{SS_{residuals}}{SS_{total}} (n - K)$$

$$(n - K)$$

- Bates Distribution.
- Bernoulli Distribution
- Beta Binomial Distribution
- Beta Distribution.
- Binomial Distribution.
- Bimodal Distribution.
- Bivariate Normal Distribution.
- Bradford Distribution
- Burr Distribution.
- Categorical Distribution

- Cauchy Distribution.
- Compound Probability Distribution
- Continuous Probability Distribution
- Cumulative Frequency Distribution
- Cumulative Distribution Function
- Degenerate Distribution.
- Dirichlet Distribution.
- Discrete Probability Distribution
- Empirical Distribution Function
- Erlang Distribution.

- Exponential Distribution.
- Extreme Value Distribution.
- F Distribution.
- Factorial Distribution
- Fat Tail Distribution.
- Fisk Distribution.
- Folded Normal / Half Normal Distribution.
- G-and-H Distribution.
- Generalized Error Distribution.

- Geometric Distribution.
- Gompertz Distribution.
- Heavy Tailed Distribution
- Hypergeometric Distribution.
- Inverse Gaussian Distribution.
- Inverse Normal
- J Shaped Distribution.
- Kent Distribution
- Kumaraswamy Distribution
- Laplace Distribution.

- Lévy Distribution.
- Lindley Distribution.
- Lognormal Distribution.
- Lomax Distribution.
- Long Tail Distribution.
- Marginal Distribution
- Mixture Distribution
- Multimodal Distribution.
- Multinomial Distribution.
- Multivariate Normal Distribution.

- Nakagami Distribution.
- Negative Binomial Distribution
- Normal Distribution.
- Open Ended Distribution
- Pareto Distribution.
- Pearson Distribution.
- PERT Distribution.
- Poisson Distribution.
- Power Law Distribution
- Rayleigh Distribution.

- Reciprocal Distribution.
- Relative Frequency Distribution
- Rician Distribution.
- Skewed Distribution
- Stable Distribution
- Symmetric Distribution
- T Distribution.
- Trapezoidal Distribution.
- Triangular Distribution.
- Truncated Normal Distribution.

- Tukey Lambda Distribution.
- Tweedie Distribution.
- Uniform Distribution.
- Unimodal Distribution.
- U-Shaped Distribution.
- Von Mises Distribution.
- Wallenius Distribution.
- Waring Distribution.
- Weibull Distribution.
- Wishart Distribution.
- Yule-Simon Distribution
- Zeta Distribution.

Know by heart ONE DISTRIBUTION (The Normal one)

Usage:

Everything

Parameters

- Mean (mu)
- Variance (sigma)

Formula

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \text{Mean}$$

 $\sigma =$ Standard Deviation

$$\pi \approx 3.14159\cdots$$

$$e \approx 2.71828 \cdots$$

How to learn a new distribution: Bionmial

Usage: Discrete Outcomes (A or B)
Parameters

- p
- 0

Formula

$$P(X) = \frac{n!}{(n-X)! |X|} \cdot (p)^X \cdot (q)^{n-X}$$

How to learn a new distribution: t-Student

Usage: Small Sample Size

Parameters

- v = variance
- mu (normally 0)

Formula

Probability density function [edit]

Student's t-distribution has the probability density function given by

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}},$$

where u is the number of degrees of freedom and Γ is the gamma function. This may also be written as

$$f(t) = rac{1}{\sqrt{
u}\,\mathrm{B}(rac{1}{2},rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}}$$

Family of Distributions

- Discrete Distributions
- Continuous Distributions
- Mixed (D+C) Distributions
- Joint Distributions (product of Distr)
- Non-numeric Distributions

You will have to learn on the job...

Central Limit Theorem

- It establishes that, in some situations, when independent random variables are added, their properly normalized sum tends toward a normal distribution.
- This happens even if the original variables themselves are not normally distributed.
- The theorem is a key concept in probability theory because it implies that probabilistic and statistical methods that work for normal distributions can be applicable to many problems involving other types of distributions

Central Limit Theorem (Video)

The Normal Distribution...

Clearly Explained!!!!!

Sampling from a Statistical Distribution...

...Clearly Explained!!!

Hypothesis Testing

• A hypothesis test is a **technique** for using data to **validate or invalidate a claim about a population**. For example, a politician may claim that 80% of the people agree that volcanic bread is the best bread— is that really

- The most common tested elements are:
 - o The population mean
 - o The population proportion
 - o The difference in two population means or proportions (Is it true that the russians drink more vodka than their European counterparts? → Be careful w/ sample size

p - value

- When you perform a hypothesis test in statistics, a p-value helps you determine the significance of your results.
- The alternative hypothesis is the one you would believe if the null hypothesis is concluded to be untrue.
- A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis.
- A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so you fail to reject the null hypothesis.
- Everything else is marginal. People report it to try to trick you into thinking they passed

Set of possible results

Summary

p < 0.05 → statistically
 significant difference
 p > 0.05 → no statistically
 significant difference

Hypothesis Testing

p-values...

 $H_a: \mu \neq 8.0$

Breath in

- Everything that you have done in life has prepared you to get to this exact point you are right now.
- Want to go from point a to point a+1?

Exercise time!

- Confidence interval notebook tutorial
- Hypothesis testing notebook tutorial
- Hypothesis testing implementation from towards data science

