Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM4556A

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
* PART NUMBER:NJM4556A
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (C) Bee Technologies Inc. 2007
.Subckt NJM4556A OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM4556A S
X U2
       +IN2 -IN2 V+ V- OUT2 NJM4556A S
.ends NJM4556A
.subckt NJM4556A_S 1 2 3 4 5
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 2.3021E6 -1E3 1E3 2E6 -2E6
 ga 6 0 11 12 1.7376E-3
 acm 0 6 10 99 53.425E-9
 iee 3 10 dc 90.461E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 575.52
 rc2 4 12 575.52
 re1 13 10 3.0491
 re2 14 10 3.0491
 ree 10 99 2.2109E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.2907E3
 vb 9 0 dc 0
    3 53 dc 4.7718
 ve 54 4 dc 4.7718
 vlim 7 8 dc 0
 vlp 91 0 dc 80
 vln 0 92 dc 80
.model dx D(ls=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=848.45)
.model gx2 PNP(ls=814.9854E-18 Bf=954.17)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+11	+11	0
-Vout(V)	-11	-11	0

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	0.5	0.5	0

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	3.000	2.995	-0.167

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	50.000	50.097	0.194
lbos (nA)	5.000	4.9555	-0.890

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	8.000	7.9995	-0.006
Av-dc(dB)	100.000	99.653	-0.347

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(96083.762/3.0611) = 89.935 dB

	Measurement	Simulation	%Error
CMRR(dB)	90	89.935	-0.072

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

