Homework 7 David Yang

Chapter 9 (The Fundamental Group) and Chapter 10 (Separation Theorems in the Plane) Problems.

Section 60 (Fundamental Groups of Some Surfaces), 60.2

Let X be the quotient space obtained from B^2 by identifying each point x of S^1 with its antipode -x. Show that X is homeomorphic to the projective plane P^2 .

Solution. ¹ Let π represent the quotient map from B^2 to X defined by identifying each point x of S^1 with its antipode. Consider the projection of the upper hemisphere of S^2 onto B^2 , a homemomorphism. Let h represent the inverse of this projection; h is a homeomorphism from B^2 to S^2 mapping the unit disk to the upper hemisphere. Finally, let p represent the canonical quotient map from S^2 to P^2 , defined by identifying each point of S^2 with its antipode.

Note that by construction, $p \circ h \colon B^2 \to P^2$ is a map that is constant on each set $\pi^{-1}(\{x\})$ for each $x \in X$: if $x \in S^1$, then $\pi^{-1}(\{x\}) = \{x, -x\}$ which is mapped to one point by $p \circ h$. On the other hand, if $x \notin S^1$, then $\pi^{-1}(x)$ is a one-point set, and is consequently mapped to a constant by $p \circ h$. Since π is a quotient map from B^2 to X, we know by Theorem 22.2 that $p \circ h$ induces a map $f \colon X \to P^2$ such that $f \circ \pi = p \circ h$. It remains to show that f is a homeomorphism.

Note that $X = \{(p \circ h)^{-1}(\{z\}) \mid z \in P^2\}$. We show containment in both directions. Suppose that $x \in X$. Then $x \in \{(p \circ h)^{-1}(\{z\}) \mid z \in P^2\}$ as $(p \circ h)^{-1}((p \circ h)(x)) = x$, where $(p \circ h)(x)$ is a singular point in P^2 . On the other hand, suppose that $y \in \{(p \circ h)^{-1}(\{z\}) \mid z \in P^2\}$. Then $y = \pi(y) \in X$. It follows that $X = \{(p \circ h)^{-1}(\{z\}) \mid z \in P^2\}$.

We also claim that $p \circ h$ is a quotient map. Note that p and h are both continuous maps, and so their composition is continuous. p is a quotient map from S^2 to P^2 , so it is surjective. Also, h is a homeomorphism from the unit disk to the upper hemisphere, so it is by definition a bijection, and in turn, is surjective. The composition of two surjective maps p and h must be surjective, so $p \circ h$ is also surjective. Finally, p is a quotient map so both p and p^{-1} map open sets to open sets. Furthermore, h is a homeomorphism so both p and p^{-1} are continuous, and map open sets to open sets. Thus, it follows that a subset p of p is open if and only if $p \circ h$ is open in $p \circ h$ is a quotient map from $p \circ h$ is also both continuous and surjective, it follows by definition that $p \circ h$ is a quotient map from $p \circ h$ to $p \circ h$ is a quotient map

Thus, by Corollary 22.3, since $p \circ h$ is a quotient map (and so it is both surjective and continuous), the induced continuous map $f: X \to P^2$ is a homeomorphism. Thus, X is homeomorphic to P^2 , as desired.

¹constructed with Hillary's help.

Let C_1 and C_2 be disjoint simple closed curves in S^2 .

a) Show that $S^2 - C_1 - C_2$ has precisely three components. [Hint: If W_1 is the component of $S^2 - C_1$ disjoint from C_2 , and if W_2 is the component of $S^2 - C_2$ disjoint from C_1 , show that $\overline{W}_1 \cup \overline{W}_2$ does not separate S^2 .]

Solution. ² By the Jordan Curve Theorem, C_1 separates S^2 into two components, which we will denote as W_1 and V_1 . Similarly, by the Jordan Curve Theorem, C_2 separates S^2 into two components, which we will denote as W_2 and V_2 . Furthermore, define W_1 and W_2 to be the components matching the hint: W_1 is the component of $S^2 - C_1$ disjoint from C_2 and C_3 is the component of C_3 and C_4 disjoint from C_4 .

Note that since C_1 and C_2 are disjoint, it follows that $W_1 \subset V_2$ and $W_2 \subset V_1$, with $W_1 \cap W_2 = \emptyset$. Consequently, W_1 and W_2 are two components of $S^2 - C_1 - C_2$. Note that by construction, $V_1 = S^2 - \overline{W}_1$, and $V_2 = S^2 - \overline{W}_2$. Furthermore, C_1 and C_2 are disjoint, so $\overline{W}_1 \cap \overline{W}_2 = \emptyset$, and $S^2 - (\overline{W}_1 \cap \overline{W}_2) = S^2$ is simply connected. Finally, neither \overline{W}_1 nor \overline{W}_2 separate S^2 , so by Theorem 63.3 (the general nonseparation theorem), $\overline{W}_1 \cup \overline{W}_2$ does not separate S^2 . Thus, the third component of $S^2 - C_1 - C_2$ is precisely $\overline{W}_1 \cup \overline{W}_2 = V_1 \cap V_2$.

We conclude that $S^2 - C_1 - C_2$ has three components: W_1, W_2 , and $V_1 \cap V_2$.

b) Show that these three components have boundaries C_1 and C_2 and $C_1 \cup C_2$, respectively.

Solution. ³ By construction, the boundaries of W_1 and W_2 , two of the components of $S^2 - C_1 - C_2$, are C_1 and C_2 , respectively. It remains to show that the boundary of $V_1 \cap V_2$ is $C_1 \cup C_2$. Since $V_1 = S^2 - \overline{W}_1$, and $V_2 = S^2 - \overline{W}_2$, we have that

$$\overline{V}_{1} \cap \overline{V}_{2} - V_{1} \cap V_{2} = ((S^{2} - W_{1}) \cap (S^{2} - W_{2})) - ((S^{2} - \overline{W}_{1}) \cap (S^{2} - \overline{W}_{2}))
= (\overline{W}_{1} \cup \overline{W}_{2}) - (W_{1} \cup W_{2})
= (\overline{W}_{1} - W_{1}) \cup (\overline{W}_{2} - W_{2})
= C_{1} \cup C_{2}.$$

Thus, the boundary of $V_1 \cap V_2$ is by definition $C_1 \cup C_2$, as desired.

²constructed with Hillary's help.

³constructed with Hillary's help.