EET - INFO 403- 2h

Tout document et ordinateur personnel autorisés

Exercice 1:

Nous avons placé une sonde sur un réseau local sur lequel nous avons récupéré les trames Ethernet suivantes :

Trame 1

```
00 00 c0 d5 57 64 08 00 09 01 ca 7d 08 00 45 00 00 2e 00 14 00 00 1e 06 ce 33 c0 a8 26 d0 c1 37 25 d3 02 33 00 25 05 7f 3a 18 04 c8 9c 75 50 18 10 00 38 9f 00 00 53 59 53 54 0d 0a
```

Trame 2

```
08 00 09 01 ca 7d 00 00 c0 d5 57 64 08 00 45 10 00 61 b8 1a 00 00 3b 06 f8 e9 c1 37 25 d3 c0 a8 26 d0 00 25 02 33 04 c8 9c 75 05 7f 3a 1e 50 18 10 00 fd ae 00 00 32 31 35 20 55 4e 49 58 20 54 79 70 65 3a 20 4c 38 20 53 79 73 74 65 6d 20 56 2f 69 33 38 36 20 52 65 6c 65 61 73 65 20 33 2e 32 2c 20 56
```

Trame 3

```
00 00 c0 d5 57 64 08 00 09 01 ca 7d 08 00 45 00 00 30 00 15 00 00 1e 06 ce 30 c0 a8 26 d0 c1 37 25 d3 02 33 00 25 05 7f 3a 1e 04 c8 9c ae 50 18 10 00 1a 24 00 00 54 59 50 45 20 49 0d 0a
```

Remplir le tableau suivant

	Trame 1	Trame 2	Trame 3
Adresse Mac source			
Adresse Mac destination			
Adresse IP source			
Adresse IP destination			
TTL			
Y a t il fragmentation			
Taille datagramme IP			
Si TCP ; Port source en décimal			
Si TCP ; Port destination en décimal			
Si TCP ; Bits de code TCP			
Si TCP ; Numéro de sequence en héxadécimal			
Si TCP ; Numéro d'acquittement en héxadécimal			

Exercice 2:

Soit une enterprise qui dispose d'une adresse de classe B (149.10.10.).

Elle est composée de 3 directions. Au sein de la première direction, il y a 10 départements, au sein de la deuxième direction il y a 12 départements et au sein de la troisième direction, il y a 20 départements. Chaque département (quelque soit la direction) possède un maximum de 500 machines.

Remplir le tableau suivant :

	direction1	direction12	direction13
Adresse réseau			
Masque réseau			
Adr. Réseau 1er dpt			
Masque Rés. 1er dpt			
1er host du 1er dpt			
Dernier host du 1er dpt			
Adr diffusion du 1er dpt			

Adr. Réseau 2em dpt		
Masque Rés. 2em dpt		
1er host du 2em dpt		
Dernier host du 2em dpt		
Adr diffusion du 2em dpt		
Adr. Réseau dernier dpt		
Masque Rés. dernier dpt		
1er host du dernier dpt		
Dernier host du dernier dpt		
Adr diffusion du dernier dpt		

			ires	

Exercice 3:

Deux extremités de connexions transport A et B décident de faire un échange de paquets au niveau TCP.

A envoie 1340 octets et B envoie 1295 octets.

Etablir le diagramme temporal de niveau de transport de l'établissement de la connexion, de l'échange proprement dit et de la fermeture.

La taille de la fenêtre est de 1000 octets (entête comprise). La taille du segment est de 500 octets (entête comprise).

A initie la connexion mais B est le premier à envoyer les informations.

B perd son deuxième paquet mais à la deuxième tentative d'envoie, il réussit à arriver à destination.

A n'envoie son premier paquet qu'après la reception du deuxième paquet de B.

La demande de fermeture de la connexion se fera par B et arrive en A avant que A n'ait envoyé son dernier paquet.

Exercice 4:

1) Soit une machine ayant une interface réseau d'adresse MAC 02:39:71:56:3F:20.

Donner l'adresse IPv6 de applicable sur cette interface si le préfixe réseau est égal à 2001::542A?

2) Soit la representation binaire d'une adresse IPv6 comme suit:

- donnez la representation condense.
- De quelle type d'adresse IPv6 s'agit-il?

Exercice 5:

Soit une entreprise ayant une adresse réseau IPv4 de classe C (193.42.20.0).

Elle possède 5 sous réseaux (sr1, sr2, sr3, sr4, sr5) de 25 hosts par sous-réseau.

Proposez un plan d'adressage de l'ensemble (adresse par sous réseau, adresse de chaque interface des différents routeurs et les tables de routage de chaque routeur.

Les sous-réseaux sont disposés comme suit :