Sprawozdanie 9.

Aproksymacja wielomianowa

Mirosław Kołodziej

06.05.2021

1. Wstęp teoretyczny

1.1 Aproksymacja liniowa

Aproksymacja liniowa funkcji to przybliżenie jej za pomocą funkcji liniowej. Polega ona na wyznaczeniu współczynników $a_0, a_1, a_2, \ldots, a_m$ funkcji aproksymującej:

$$F(x) = a_0 \varphi_0(x) + a_1 \varphi_1(x) + ... + a_m \varphi_m(x),$$

gdzie $\varphi_i(x)$ to funkcje bazowe m+1 wymiarowej podprzestrzeni liniowej $X_{m+1}, X_{m+1} \in X$. Funkcja F(x) powinna spełniać warunek:

$$||f(x) - F(x)|| = minimum$$

Aproksymacja pozwala na odpowiedni dobór podprzestrzeni w zależności od rodzaju problemu:

podprzestrzeń funkcji trygonometrycznych z bazą:

$$1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(kx), \cos(kx),$$

podprzestrzeń wielomianów stopnia m z bazą:

$$1, x, x^2, ..., x^m$$

 podprzestrzeń funkcji o własnościach ściśle związanych z własnościami rozważanego problemu:

$$\exp(a_0 + a_1 x + a_2 x^2).$$

1.2 Aproksymacja średniokwadratowa

Aproksymacja średniokwadratowa to aproksymacja, której celem jest minimalizacja błędu na przedziale [a,b]. Istotność błędu w poszczególnych punktach mierzymy za pomocą funkcji wagowej w(x). Dla funkcji ciągłej f(x) określonej na wspomnianym wcześniej przedziale poszukujemy minimum wartości poniższej całki:

$$||F(x) - f(x)|| = \int_{a}^{b} w(x)[F(x) - f(x)]^{2} dx,$$

lub sumy w przypadku, gdy funkcja jest określona na dyskretnym zbiorze n+1 punktów (inaczej nazywany metodą największych kwadratów):

$$||F(x) - f(x)|| = \sum_{i=0}^{n} w(x_i)[F(x_i) - f(x_i)]^2, \quad w(x_i) \ge 0, i = 0, 1, 2, ..., n$$

1.3 Aproksymacja średniokwadratowa w bazie jednomianów

W przypadku **aproksymacja średniokwadratowa w bazie jednomianów** warunek minimum przyjmuje postać:

$$\sum_{i=0}^{n} \left[f(x_j) - \sum_{i=0}^{m} a_i x_j^i \right] x_j^k = 0, \qquad k = 0, 1, 2, ..., m-1,$$

zaś po zmianie kolejności sumowania:

$$\sum_{i=0}^{m} a_i \left(\sum_{j=0}^{n} x_j^{i+k} \right) = \sum_{j=0}^{n} f(x_j) x_j^k$$

i wprowadzeniu poniższych oznaczeń:

$$g_{ik} = \sum_{j=0}^{n} x_j^{i+k}, \qquad \rho_k = \sum_{j=0}^{n} f(x_j) x_j^k$$

otrzymujemy układ normalny:

$$\sum_{i=0}^{m} a_i g_{ik} = \rho_k \ \Rightarrow \ G^T \alpha = \rho.$$

2. Problem

Celem naszych zajęć laboratoryjnych była aproksymacja funkcji typu:

$$g(x) = \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right) = \exp(a_0 + a_1x + a_2x^2),$$

gdzie $a_0=-\frac{x_0^2}{2\sigma^2}$, $a_1=\frac{x_0}{\sigma^2}$, $a_2=-\frac{1}{2\sigma^2}$, $x_0=2$, $\sigma=4$. Po zlogarytmizowaniu funkcji otrzymujemy zależność wielomianową:

$$f(x) = ln(g(x)) = a_0 + a_1x + a_2x^2$$
.

Aproksymowaliśmy ją w bazie jednomianów. Wybraliśmy 4-elementową bazę $\{\varphi_i\}=\{1,x,x^2,x^3\}$ i poszukiwaliśmy kombinacji liniowej:

$$F(x) = \sum_{i=0}^{m=3} b_i x^i = b_0 + b_1 x + b_2 x^2 + b_3 x^3$$

w celu utworzenia funkcji G(x), która jest przybliżeniem funkcji g(x):

$$g(x) \approx G(x) = \exp(F(x)) = \exp(b_0 + b_1 x + b_2 x^2 + b_3 x^3)$$

Współczynniki b_0 , b_1 , b_2 , b_3 wyznaczamy za pomocą wzorów wymienionych we wstępie teoretycznym. Węzły i elementy bazy numerujemy zaczynając od 0 ze względu na to, że korzystamy z

biblioteki GSL. Elementy bazy jednomianów indeksujemy $k=0,1,\ldots,m-1$, a węzły aproksymacji x_j za pomocą $j=0,1,\ldots,N-1$. Po uproszczeniach i przyjęciu warunków oraz oznaczeń zadania otrzymaliśmy:

$$G^Tb=r$$
.

Ponieważ macierz G jest symetryczna ($G^T = G$), równanie ma postać:

$$Gb = r$$
.

Do rozwiązaniu układu równań skorzystaliśmy z funkcji:

Jako wynik otrzymaliśmy współczynniki b_i . Aproksymację wykonaliśmy dla n=11 równoodległych węzłów na przedziale $x\in [-3\sigma+x_0,3\sigma+x_0]$.

Kolejnym krokiem była aproksymacja funkcji:

$$g_2(x) = g(x)(1 + \delta(x)),$$

gdzie:

$$\delta(x) = \alpha \cdot (U - 0.5), \qquad U = \frac{rand()}{RAND_{MAX} + 1.0}.$$

Za α przyjęliśmy wartość 0.5, a U jest liczbą pseudolosową z przedziału [0,1]. Aproksymację wykonaliśmy dla liczby węzłów n=11,101 na przedziałe $x\in [-3\sigma+x_0,3\sigma+x_0]$.

3. Wyniki

3.1 Wykres aproksymacji funkcji g(x) dla parametru N=11

3.2 Współczynniki a_i oraz b_i dla funkcji g(x)

	Dokładna wartość		Przybliżona wartość
a_0	-0.125	b_0	-0.125
a_1	0.125	b_1	0.125
a_2	-0.03125	b_2	-0.03125
		\overline{b}_3	$3.0227 \cdot 10^{-16}$

3.3 Wykres aproksymacji funkcji $g_2(x)$ dla parametrów $\alpha=0.5$ i N=11

3.4 Wykres aproksymacji funkcji $g_2(x)$ dla parametrów lpha=0.5 i N=101

3.5 Współczynniki a_i oraz b_i dla funkcji $g_2(x)$

	Dokładna wartość		Przybliżona wartość,	Przybliżona wartość,
			N = 11	N = 101
a_0	-0.125	b_0	-0.190275	-0.0981122
a_1	0.125	b_1	0.122213	0.133227
a_2	-0.03125	b_2	-0.0302972	-0.0313183
		b_3	$-8.57348 \cdot 10^{-6}$	$-6.71604 \cdot 10^{-5}$

4. Wnioski

Wykonaliśmy aproksymację funkcji g(x). Jak możemy zauważyć na uzyskanych wykresach, metoda aproksymacji wielomianowej daje możliwość uzyskania dokładnego przybliżenia funkcji. Aproksymacja redukuje również szumy, z tego powodu nie uzyskaliśmy dużych odchyleń od początkowego wykresu. Również wyznaczone przez aproksymację współczynniki są bliskie dokładnej wartości.