

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
••••••
 •••••

		$(-x)e^{-2x} dx.$					
•••••							
		•••••	•••••	•••••	•••••	•••••	•••••
			•••••				
•••••	•••••	•••••	•••••	•••••	••••••	•••••	
•••••	•••••	••••••	•••••	••••••	••••••	•••••	•••••
		•••••	•••••			•••••	
		•••••	•••••		•••••	•••••	•••••
•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
			•••••				
	•••••	••••••			•	•	
							•••••
		••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••••••••	••••••	••••••		••••••	••••••	•••••
•••••		••••••	•••••		••••••	•••••	•••••
		•••••				•••••	

3 ((a)	Show	that	the	equation

(b)

	$\ln(1 + e^{-x}) + 2x = 0$	
can be expressed as a quadratic	equation in e^x .	[2]
		•••••
		•••••
		•••••
	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place	
		ces.
Hence solve the equation ln(1 +		ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]
Hence solve the equation ln(1 +	$(e^{-x}) + 2x = 0$, giving your answer correct to 3 decimal place.	ces. [4]

4

Find $\frac{dy}{dx}$.	[3]
The tangent to the curve at the point where $x = 2$ meets the y-axis at the $(0, p)$.	he point with coordinates
Find p .	[3]
	The tangent to the curve at the point where $x=2$ meets the y-axis at t $(0, p)$.

5	By first	expressing	the ed	quation
_	— , 1115	Chiprobolling		quettor

$\tan \theta \tan(\theta + 45^\circ) = 2 \cot 2\theta$	
as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.	[6]

6	(a)	By sketching a suitable pair of graphs, show that the equation $x^5 = 2 + x$ has exactly one root.	real
	(b)	Show that if a sequence of values given by the iterative formula	
		$x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$	
		converges, then it converges to the root of the equation in part (a).	[2]
			•••••
			•••••
			•••••

(c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

Let 1	$f(x) = \frac{2}{(2x-1)(2x+1)}.$	
	Express $f(x)$ in partial fractions.	
(b)	Using your answer to part (a), show that $ (f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}. $	
(b)	Using your answer to part (a), show that $ (f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}. $	
(b)		
(b)		
(b)		
(b)		
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
(b)	$\left(f(x)\right)^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	

Hence show that $\int_{1}^{2} (f(x))^{2} dx = \frac{2}{5} + \frac{1}{2} \ln(\frac{5}{9}).$	

8	Relative to the origin O, the points	A, B and D have pos	ition v	ectors given by
	$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k},$	$\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$	and	$\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}.$

A fourth point C is such that ABCD is a parallelogram.

[:	s not a rhombus.	nat the paraneto,	c and verify	sition vector of	ring the po
					•••••
		•••••			•••••
					•••••
		•••••			

		•••••			•••••		•••••
				•••••			
				•••••	••••••	•••••	
Find the are	a of the para	llelogram co	orrect to 3 sig	nificant figur	es.		
Find the are	a of the para	llelogram co	orrect to 3 sig	nificant figur	es.		
Find the are	a of the para	llelogram co	orrect to 3 sig	nificant figur	es.		
				nificant figur			

9	(a)	The complex numbers u and w are such that
	()	T

Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact.	[5]
	•••••
	•••••
	••••••
	••••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	••••••

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

10

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where B is a positive constant.	[4]
	••••

•	
• •	
• •	
_	
•	
• •	
• •	
• •	
•	
• •	
_	
•	
• •	
•	
• •	
• •	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.