UNIVERSIDADE FEDERAL RURAL DO SEMIÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO

Introdução à Robótica Aula 02 – Locomoção

Professora: Danielle Casillo

Na aula de anterior

- Apresentação da disciplina
- Definições e Histórico
- O futuro da robótica
- De que é feito um Robô?
 - Componentes de um sistema robótico
- Conhecemos o kit didático EV06

Na aula de hoje

- Braços, pernas, rodas e esteiras: o que realmente os aciona?
 - Efetuadores e atuadores
 - Motores, servomotores e engrenagens
 - o Graus de liberdade
- Locomoção
 - Estabilidade
 - Movimentação e Marcha
 - o Rodas ou patas (pernas)?
 - Rodas e Direção
- Prática com motor

Braços, pernas, rodas e esteiras: o que realmente os aciona?

Inspirados nos corpos biológicos mas diferentes na forma de construção e funcionamento

Definições

"**Efetuador:** é um dispositivo do robô que exerce um efeito (impacto ou influência) sobre o ambiente."

Maja J. Maratic, 2014

 O controlador do robô envia comandos para que os efetuadores produzam o efeito desejado no ambiente, tendo em vista sua tarefa.

Definições

"Atuador: é um mecanismo que permite que o efetuador execute uma ação ou movimento."

Maja J. Maratic, 2014

 Esses mecanismos atuam nas rodas, esteiras, braços, garras e todos os outros efetuadores dos robôs.

Atuação passiva X ativa

o A ação de atuadores e efetuadores vai requerer alguma forma de energia para fornecer potência. Alguns projetistas utilizam **atuação passiva** (que utiliza a energia potencial da mecânica) do efetuador e da sua interação com o ambiente, ao invés do consumo externo (ativo) de energia.

esquilo planador

andarilho passivo

Tipos de atuadores

- Motores elétricos: os mais comuns, mais acessíveis e mais simples de usar na robótica, alimentados por corrente elétrica.
- Dispositivos hidráulicos: baseados em pressão de fluido;
 à medida que a pressão muda, o atuador se move.
- Dispositivos pneumáticos: baseados na pressão do ar;
 conforme a pressão muda, o atuador se move.
- Materiais fotorreativos: realizam o trabalho físico em resposta à quantidade de luz em torno deles.
- o Dentre outros

Motores

- Os atuadores mais comuns na robótica
- Adaptam-se bem às rodas de tração, por proporcionar movimentos de rotação
- Também são úteis para acionar outros tipos de efetuadores além de rodas

Motores de corrente continua – CC

 Comparados com outros tipos de atuadores, do motores CC são mais simples, baratos e fácies de usar e de encontrar.

 Os motores CC convertem energia elétrica em mecânica, utilizam imãs, bobinas e correte para gerar campos magnéticos cuja ação faz girar o eixo do motor. A energia magnética se torna cinética, produzindo o movimento.

Motores de corrente continua – CC

Qual rápido os motores giram?

- A maioria dos motores CC, quando livres de carga, tem velocidades entre 50 a 150 rotações por minuto (rps), produzem alta velocidade, mas com baixo torque, adequados para acionar coisas leves (ex. pás de um ventilador).
- A maioria dos robôs precisam carregar o peso de seu corpo, virar as rodas e levantar os manipuladores, isso requer mais torque e menos velocidade do que os motores CC disponíveis podem oferecer.

Tipos de Motores

Brushed

- Baixa torque, barato
- Comutador mecânico
 Comutador eletrônico
- 1886

Brushless

- tensão, baixo o Alta tensão, alto torque, caro
- o Uso comercial desde o Uso comercial a partir de 1962

BRUSHLESS MOTOR

Servomotores

São motores que podem girar o seu eixo para uma posição específica.

A operação do servomotor resume-se a deixar o eixo do motor na posição desejada. Esta posição está em algum lugar ao longo de 180 graus em qualquer direção a partir do ponto de referência.

O ângulo do giro é especificado por um sinal eletrônico. Quando o pulso chega, o eixo do motor gira. O padrão alto e baixo dos pulsos produz um padrão de ondas, chamado **forma de onda**

Características dos motores

Velocidade / Torque / Potência

- Velocidade
 - Rotacional ou angular (ω)
 - Radianos/segundo (rad/s)
 - Revoluções/segundo (rps)
 - Revoluções/minuto (rpm)
 - Proporcional à tensão utilizada

Velocidade X Torque

Torque

- Força de rotação que o motor pode exercer
- Proporcional à corrente utilizada
- Está diretamente relacionada à distância do eixo

Uma combinação de **engrenagens** diferentes **pode** ser usada para alterar a força e o torque de saída dos motores.

- A força gerada na borda de uma engrenagem é a razão entre o torque e o raio da engrenagem.
- Ao combinar engrenagens de raios diferentes,
 pode-se manipular a quantidade de força e torque que é gerada.

Se a engrenagem de saída é maior do que a engrenagem de entrada, o **torque aumenta**. Se a engrenagem de saída é menor do que a engrenagem de entrada, o **torque diminui**.

O torque não é a única coisa que muda quando as engrenagens são combinadas:
 há também uma mudança correspondente na

velocidade.

Se a circunferência da roda dentada de entrada é o dobro daquela da engrenagem de saída, então a engrenagem de saída deve virar duas vezes para cada rotação da engrenagem de entrada, a fim de acompanha-la, uma vez que as duas estão fisicamente ligadas por meio de seus dentes.

- Se a engrenagem de saída é maior do que a engrenagem de entrada, a velocidade diminui.
- Se a engrenagem de saída é menor do que a engrenagem de entrada, a velocidade aumenta.
- Quando uma engrenagem pequena aciona uma engrenagem maior, o torque é aumentado e a velocidade é reduzida.
- Quando uma engrenagem grande impulsiona uma engrenagem menor, o torque diminui e a velocidade aumenta.

- Folga: Qualquer espaço entre as engrenagens, faz a engrenagem se mover frouxamente para frente e para trás entre os dentes, sem girar.
- A Folga acrescenta erro no posicionamento do mecanismo de engrenagem

- As engrenagens podem ser organizadas em série ou "agrupadas" a fim de multiplicar seu efeito.
 - Ex: duas engrenagens 3:1 em série resultam em uma redução de 9:1

É qualquer um dos números mínimos de coordenadas necessárias para especificar completamente o movimento de um sistema mecânico

No nosso mundo plano, 2D, um corpo pode transladar ao longo de 2 dos 3 GDL translacionais, mas não no terceiro, uma vez que esta é a dimensão vertical

- O número de articulações em um braço robótico está geralmente associado ao número de graus de liberdade.
- Quando o movimento relativo ocorre em um único eixo, a articulação tem 1 grau de liberdade.
- Quando o movimento se dá em mais de um eixo, a articulação apresenta dois ou mais graus de liberdade.
- A maioria dos robôs tem entre quatro a seis graus de liberdade.
- A título comparativo, um ser humano tem sete graus de liberdade do ombro até o pulso.

O braço humano, não incluindo a mão, tem 7 GDL: 3 no ombro (para cima e para baixo, lado a lado e rotação sobre o eixo do braço), I no cotovelo (abrir e fechar) e 3 no punho (para cima e para baixo, lado a lado e a rotação)

Um carro tem 3 GDL: posição (x, y) e orientação (teta)

Um corpo livre no espaço 3D tem um total de 6 GDL. Três deles são os GDL de translação, mover-se sem girar (x, y, z). Os outros três são os GDL de rotação que são rolagem, (roll) arfagem (pitch) e guinada (yaw).

- o Para que um robô possa posicionar uma ferramenta no espaço, ele precisa de 6 GDL, 3 para definir a posição e 3 ângulos de rotação para orientação.
- Robôs com mais de 6 GDL são denominados redundantes.
- Robôs com menos de 6 GLD são denominados limitados.

LOCOMOÇÃO

Mova-se!

Mova-se!

"Locomoção refere-se à maneira como um corpo se desloca de um lugar para o outro"

Maja J. Maratic, 2014

- Muitos tipos de efetuadores e atuadores podem ser usados para mover um robô livremente:
 - Pernas (para caminhar, engatinhar, escalar, saltar, pular, ...)
 - Rodas (para girar)
 - braços (para balançar, engatinhar, escalar, ...)
 - Asas (para voar)
 - Nadadeiras (para nadar)

Locomoção

o Bioinspiradas

Type of motion		Resistance to motion	Basic kinematics of motion
Flow in a Channel		Hydrodynamic forces	Eddies Thinning
Crawl		Friction forces	Longitudinal vibration
Sliding	AN JO	Friction forces	Transverse vibration
Running		Loss of kinetic energy	Periodic bouncing on a spring
Walking	A	Loss of kinetic energy	Rolling of a polygon (see figure 2.2)

Locomoção

- A locomoção com pernas é um problema robótico difícil, em comparação com a locomoção por rodas, pois:
 - É necessário um número maior de graus de liberdade, e quanto mais GDL tem um robô, mais complicado é controla-lo
 - O desafio da estabilidade, pois é mais difícil permanecer estável sobre pernas do que sobre rodas

Estabilidade

- A maioria dos robôs precisam ser estáveis, ou seja, para fazer o seu trabalho, não deve balançar, inclinar-se, nem cair facilmente.
- Em particular, existem dois tipos de estabilidade: estática e dinâmica
 - Um robô estaticamente estável pode ficar parado sem cair; ele <u>pode ser estático e estável</u>
 - Na estabilidade dinâmica, <u>o corpo deve ativamente</u> <u>equilibrar-se ou mover-se para manter-se estável</u>, por isso é chamado dinamicamente estável

Estabilidade

 Para estar estável, o robô precisa estar dentro da área formada pelos pontos de apoio no chão, isso se dá pela projeção do Centro de

Gravidade (CG)

 A área coberta pelos pontos de apoio no chão é chamada polígono de apoio

Estabilidade

O que acontece quando um robô estaticamente estável levanta uma perna e tenta se mover? Será que seu CG permanece dentro do polígono de apoio?

 Vai depender da geometria do corpo do robô e do número de pernas que ficam no chão

 Se o robô pode andar enquanto permanece equilibrado em todos os momentos, chamamos isso de caminhada estaticamente estável

Movimentação e Marcha

- Marcha é o modo particular de um robô se mover,
 incluindo a ordem com a qual levanta e abaixa as pernas e coloca os pés sobre o chão.
- A marcha desejável de um robô tem as seguintes
 propriedades:
 - Estabilidade: o robô não cai;
 - Velocidade: o robô pode ser mover rapidamente;
 - Eficiência energética: pouca quant. de energia para mover-se
 - Robustez: recuperar a marcha de alguns tipos de falhas;
 - Simplicidade: o controlador que gera a marcha é simples.

Movimentação e Marcha

- O número de pernas é importante. A caminhada
 com duas pernas é difícil e lenta.
- A caminha começa a ficar mais fácil com quatro pernas e muito mais fácil com seis ou mais pernas.
- As seis pernas permitem múltiplas formas de marchas estáveis, tanto estática quanto dinamicamente.

Movimentação e Marcha

- A marcha trípode é uma marcha estaticamente estável na qual, como o próprio nome indica, três pernas ficam no chão, formando um tripé, enquanto as outras três estão elevadas e em movimento.
- Nessa marcha, a perna do meio de um lado e as duas pernas não adjacentes do outro lado do corpo levantam-se e movem-se para frente ao mesmo tempo, enquanto as outras três pernas permanecem no solo e mantêm o robô estaticamente estável.

Rodas ou patas (pernas)?

- Rodas são mecanicamente mais simples e eficientes em superfícies planas e compactas (duras)
- Patas são mais eficientes em terrenos adversos
- As vezes a combinação de ambas pode ser vantajosa...

Patas / Pernas

Vantagens:

- Adaptação e capacidade de manobra em terrenos não planos;
- Superação de obstáculos como buracos, pedras, ... Desde que o comprimento de suas patas seja grande o suficiente;
- Potencial para manipular objetos do ambiente utilizando as patas.

Desvantagens:

- Potência necessária para sustentar parte do peso total do robô,
 para levantá-lo e abaixá-lo;
- Grande complexidade para permitir os graus de liberdade necessários para gerar manobras difíceis.

Patas / Pernas

Quantas empregar?

- Observar sistemas similares na natureza:
 - 2 patas: excepcional capacidade de manobra tem como custo um sistema de controle motor ativo muito complexo para manter o equilíbrio.
 - 4 patas: garantem o equilíbrio estático (centro de gravidade permanece interno em contato com o solo).
 - 6 patas: garantem o galope com número estável de tripés no solo a todo instante

Patas / Pernas

• Quantas empregar?

- Insetos e aranhas: andam desde o nascimento. O equilíbrio é simples.
- Mamíferos quadrúpedes: não atingem o equilíbrio durante a locomoção mas, são capazes de se manter facilmente sob 4 patas. Alguns em poucos minutos aprendem a andar sem cair após o
 nascimento...
- Seres humanos: bebês precisam de meses para aprenderem a andar e mais de um ano para correr e ficar em uma perna só sem caírem.

- As rodas são os efetuadores de locomoção preferidos da robótica.
- A maioria dos robôs móveis simples tem duas ou quatro rodas.

- Ter múltiplas rodas significa que existem múltiplas formas com as quais as rodas podem ser controladas.
- A habilidade de tracionar as rodas de forma individual e independente, por meio de motores separados é chamada tração diferencial.
- Se o robô for capaz de orientar as rodas de forma independente é chamado de direção diferencial.

- Na locomoção de um robô, podemos nos preocupar com:
 - Levar o robô para um determinado local;
 - o Fazer o robô seguir um caminho em particular (tragetória).

Chegar a um destino não é o mesmo que seguir um caminho específico

Planejar uma trajetória é um processo computacionalmente complexo que envolve buscar todas as trajetórias possíveis a fim de encontrar a trajetória ótima

- Características de robôs com rodas:
 - Estabilidade garantida com 3 rodas
 - CG do robô posicionado dentro do triângulo formado pelos pontos de contato
 - Com 4 ou mais rodas a estabilidade é melhorada
 - Necessita de um sistema flexível de suspensão
 - Rodas de grande diâmetro permitem superar obstáculos "altos"
 - Mas, exigem um torque maior / redutores

- Sistema Holonômico ou Não-Holonômico?
 - Sistema Holonômico: Todos os GDL do robô no ambiente são controláveis, ou seja nº de GDL é igual ao nº de GDL controláveis.
 - Sistema Não-Holonômico: O nº de GDL do robô no ambiente é superior ao nº de GDL controláveis.
 - Sistema Redundante: o nº de GDL controláveis é maior que o nº de GDL do robô no ambiente.

- Exemplos de Sistema Holonômico / Não-Holonômico
 - Sistema Holonômico:
 - Ex: um mecanismo 4 barras, biela-manivela, etc
 - Sistema Não-Holonômico:
 - Ex: um carro tem 3 GDL (x, y, θ), mas o motorista atua apenas no ângulo de esterçamento e na velocidade de movimentação (para frente/ré; rápida/lenta)
 - Sistema Redundante:
 - Ex: Braço humano tem 7 GDL, mas no espaço apenas 6 GDL são necessários

- Tipos de Rodas: Padrão e Pivotada
 - o Têm um eixo primário de rotação
 - Direcionais

 Para alterar a direção de movimento é necessário alterar a direção do eixo

- Tipos de Rodas: Suecas (Omnidirecionais)
 - Também chamadas de Mecanum-Wheel ou Omni-Wheel
 - É acionada como uma roda normal, mas tem pouca resistência ao movimento em outras direções
 - Pequenos roletes passivos são posicionados ao longo da circunferência da roda
 - Apenas o eixo principal da roda atua como uma junta ativa (motora)

- Tipos de Rodas: Suecas (Omnidirecionais)
 - A rotação da roda é realizada sobre o eixo principal, mas a roda pode mover-se com pouco atrito em diversas direções

Tipos de Rodas: Esféricas

 Menos orientadas a direcionalidade que a roda tradicional

- Omni-directional
 - Pode gerar potência ativa em qualquer direção
- Exemplos:
 - Mouse (não-ativa)
 - Robô Ballbot 2006

Arranjo	Descrição	Exemplos
	1 única roda esférica motora	
	Roda esterçante na frente e roda motora atrás, ou vice-versa	
	2 rodas motoras lado-a-lado com o CG sob o eixo delas.	

Arranjo	Descrição	Exemplos
	2 rodas motoras centradas em acionamento diferencial e um terceiro ponto de apoio	
	2 rodas motoras na traseira em acionamento diferencial e um terceiro ponto de apoio	
	Roda esterçante na frente e 2 rodas motoras conectadas atrás ou vice-versa	

Arranjo	Descrição	Exemplos
	Roda esterçante motora na frente e 2 rodas livres atrás, ou vice-versa	
	3 rodas suecas ou esféricas motoras arranjadas em forma triangular.	v_3 v_2 v_3 v_4 v_4 v_4 v_5
	3 rodas motorizadas e esterçáveis síncronas	

	Arranjo	Descrição	Exemplos
	T	2 rodas motoras traseiras e 2 rodas Esterçáveis dianteiras (ângulo de esterçamento diferente)	Carro de tração traseira
		2 rodas motoras e esterçáveis dianteiras e rodas livres traseiras	
K	T	4 rodas motoras e esterçantes	

Arranjo	Descrição	Exemplos
	4 rodas pivotadas motoras e esterçáveis	$ \begin{array}{c c} R_1 & E_1 \\ \hline F_1 & I_2 \\ \hline F_2 & I_3 \end{array} $ $ \begin{array}{c c} P_1 & I_2 \\ \hline F_2 & I_3 \end{array} $
	6 rodas motoras sendo 1 em cada canto esterçável	
0+0	2 rodas motoras e esterçáveis na linha de centro e 1 roda omni-direcinal em cada canto	

Acionamento Diferencial

- o 2 rodas posicionadas em um eixo de rotação comum
- Cada roda é controlada independentemente
- o O valor das velocidades de cada roda define o movimento do robô (velocidade e direção)

Em frente

Giro à Dir. Giro à Esq. Para trás

Curva à Esq. Curva à Dir.

Acionamento Síncrono

- Todas as rodas são acionadas de modo síncrono por um motor
 - Define a velocidade do robô

 Todas as rodas são esterçadas de modo síncrono por outro motor

Define a orientação do robô

Acionamento Omni-Direcional

- Vai depender do número de rodas
 - Com uma única roda, foge ao padrão dos robôs com rodas, pois não busca o equilíbrio estático.

- Acionamento para qualquer tipo de terreno
 - Adaptação passiva às irregularidades do terreno
 - 6 rodas: 1 à frente do robô com uma suspensão,
 4 nas laterais e 1 fixa na traseira
 - Configuração estável em terreno irregular

Acionamentos Alternativos no solo

- Robôs cobra / salamandra
- Robôs escaladores
- Robôs saltadores
- o Robôs Mistos...

Acionamentos Alternativos fora do solo

- Espaço
- Aquáticos
 - Hélices
 - Jatos

- Asa rotativa
- Asa fixa
- o Jato
- Balões

INTERVALO 15 MIN.

Exercício

Antes, vamos instalar o software de programação do
 EV06 – Kazi Code

Acesse: http://kazi.ai/EdownloadSoftware.html

Exercício

Montagem com motor grande

1. Separe as peças:

2. Monte as hastes:

3. Encaixe no controlador

4. Encaixe os pinos para segurar no motor

5. Pegue o motor e encaixe os pinos azul e amarelo

6. Encaixe os pinos do motor na haste

7. Monte o pino de giro do motor

8. Encaixe no motor

9. Conecte no cabo de comunicação na porta A do controlador

Girando um motor

10. Vamos programar

Girando um motor

- No controlador EV06 -> configuração -> wifi
- No software KaziCode -> Connect to RCU by wifi
 - Copie os códigos Paring Code e IP que estão no EV06
 para o software e clique em Connect
 - o Pronto!

Girando um motor

Em Exemplos -> Motor Test

```
controller
         task1 ▼
           seconds
 set motor M1 ▼ speed
           seconds
 set motor M1 ▼ speed
           seconds
 set motor M1 ▼ speed
           seconds
 set motor M1 ▼
```


Feliz Natal

