Ch5. 확률표본과 표본분포 Appendix

• \overline{X} 의 성질 : $E[\overline{X}] = \mu$, $V[\overline{X}] = \frac{\sigma^2}{n}$

 X_1, X_2, \dots, X_n 은 모평균이 μ 이고, 모분산이 σ^2 인 모집단으로부터의 확률표본이라고 가정함.

- \rightarrow 각 X_i 에 대해 $E[X_i] = \mu$, $V[X_i] = \sigma^2$ 임.
- $\rightarrow X_1, X_2, ..., X_n$ 은 서로 독립임.

$$E[\bar{X}] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \left(\frac{1}{n}\right) E\left[\sum_{i=1}^{n} X_i\right] = \left(\frac{1}{n}\right) \sum_{i=1}^{n} E[X_i] = \left(\frac{1}{n}\right) n\mu = \mu$$

$$V[\bar{X}] = V\left[\frac{\sum_{i=1}^n X_i}{n}\right] = \left(\frac{1}{n^2}\right)V[\sum_{i=1}^n X_i] = \left(\frac{1}{n^2}\right)\sum_{i=1}^n V[X_i] = \left(\frac{1}{n^2}\right)n\sigma^2 = \frac{\sigma^2}{n}$$

• S^2 의 성질 : $E[S^2] = \sigma^2$

 X_1, X_2, \dots, X_n 은 모평균이 μ 이고, 모분산이 σ^2 인 모집단으로부터의 확률표본이라고 가정함.

구 각 X_i 에 대해 $E[X_i]=\mu,\ V[X_i]=\sigma^2$ 임. \checkmark $\to X_1,X_2,\ldots,X_n$ 은 서로 독립임.

 \overline{X} 의 \overline{X} \longrightarrow X_1, X_2, \dots, X_n 에 대한 표본평균 \overline{X} \to $E[\overline{X}] = \mu$, $V[\overline{X}] = \frac{\sigma^2}{n}$ 를 만족함. \checkmark

 X_1, X_2, \dots, X_n 에 대한 표본분산 $S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$ 의 기대값은 아래와 같이 도출됨.

$$\begin{split} &E[S^2] \\ &= E\left[\left(\frac{1}{n-1} \right) \sum_{i=1}^n (X_i - \bar{X})^2 \right] \\ &= \left(\frac{1}{n-1} \right) \cdot E\left[\sum_{i=1}^n (X_i - \bar{X})^2 \right] \\ &= \left(\frac{1}{n-1} \right) \cdot E\left[\sum_{i=1}^n X_i^2 - n\bar{X}^2 \right] \\ &= \left(\frac{1}{n-1} \right) \cdot \left(E\left[\sum_{i=1}^n X_i^2 \right] - E\left[n\bar{X}^2 \right] \right) \\ &= \left(\frac{1}{n-1} \right) \cdot \left(\left(\sum_{i=1}^n E\left[X_i^2 \right] \right) - n \cdot E\left[\bar{X}^2 \right] \right) \leftarrow (a) \end{split}$$

 $E[O^2] = V[O] + E[O]^2$

(a)에서, $E[X_i^2]$ 과 $E[\bar{X}^2]$ 는 아래와 같이 표현될 수 있음.

①
$$E[X_i^2] = V[X_i] + E[X_i]^2 = \underline{\sigma^2 + \mu^2}$$

①
$$E[X_i^2] = V[X_i] + E[X_i]^2 = \frac{\sigma^2 + \mu^2}{n}$$

② $E[\bar{X}^2] = V[\bar{X}] + E[\bar{X}]^2 = \frac{\sigma^2}{n} + \mu^2$

$$E[S^{2}]$$

$$= \left(\frac{1}{n-1}\right) \cdot \left(\left(\sum_{i=1}^{n} E[X_{i}^{2}]\right) - n \cdot E[\bar{X}^{2}]\right)$$

$$= \left(\frac{1}{n-1}\right) \cdot \left(n(\sigma^{2} + \mu^{2}) - n \cdot \left(\frac{\sigma^{2}}{n} + \mu^{2}\right)\right)$$

$$= \left(\frac{1}{n-1}\right) \cdot \left(n-1\right)\sigma^{2}.$$

$$\sigma^{2}$$

S^2 의 표본분포

 X_1, X_2, \ldots, X_n 이 모평균이 μ 이고, 모분산이 σ^2 인 정규분포 $N[\mu, \sigma^2]$ 로부터의 확률 표본이라면, $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2[n-1]$ 을 만족함.

1.
$$\binom{x_i-\mu}{\sigma}\sim N[0,1]$$
, $i=1,2,\ldots,n$ 이고 $\binom{x_i-\mu}{\sigma}$ 는 서로 독립임.

$$\rightarrow A = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2[n]$$

2.
$$\bar{X}\left(=\frac{\sum_{i=1}^{n} X_i}{n}\right)$$
의 표본분포 : $\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right) \sim N[0,1]$.

$$\rightarrow B = \left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2[1]$$

3.
$$A = B + C$$
, $(C = \frac{(n-1)S^2}{\sigma^2})$

$$A = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2$$

$$= \sum_{i=1}^{n} \left(\frac{(X_i - \bar{X}) + (\bar{X} - \mu)}{\sigma} \right)^2$$

$$= \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + \sum_{i=1}^{n} \left(\frac{\bar{X} - \mu}{\sigma}\right)^2 + 2 \cdot \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{\sigma}\right) \left(\frac{\bar{X} - \mu}{\sigma}\right)$$

$$= \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2 + n \cdot \left(\frac{\bar{X} - \mu}{\sigma}\right)^2 \left(\because \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right) \left(\frac{\bar{X} - \mu}{\sigma}\right) = \frac{(\bar{X} - \mu)}{\sigma^2} \left(\sum_{i=1}^n (X_i - \bar{X})\right) = 0\right)$$

$$= \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sigma^2} + \left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\right)^2$$
$$= \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\right)^2$$
$$= C + B$$

- 4. 정규 모집단에서 추출된 확률표본의 표본평균 $\bar{X}\left(=rac{\sum_{i=1}^{n}X_{i}}{n}
 ight)$ 과 표본분산 $S^{2}\left(=rac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{n-1}
 ight)$ 은 서로 독립 (by Basu의 정리).
 - ightarrow $B\left(=\left(rac{ar{X}-\mu}{\sigma/\sqrt{n}}
 ight)^2
 ight)$ 와 $C\left(rac{(n-1)S^2}{\sigma^2}
 ight)$ 도 서로 독립임.
- 5. $A(=B+C)\sim \chi^2[n], B\sim \chi^2[1]$ 이고, B와 C 는 서로 독립이므로, χ^2 분포의 가 법성에 의해 $C=\frac{(n-1)S^2}{\sigma^2}\sim \chi^2[n-1]$ 임..
- \dot{X} 의 표본분포 (모집단이 정규이고 모분산 σ^2 을 모르는 경우)

 X_1,X_2,\dots,X_n 이 모평균이 μ 이고, 모분산이 σ^2 인 정규분포 $N[\mu,\sigma^2]$ 로부터의 확률 표본이라면, $\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t[n-1]$ 을 만족함.

- 1. $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ 의 표본분포: $A = \left(\frac{\bar{X} \mu}{\sigma / \sqrt{n}}\right) \sim N[0, 1]$
- 2. $S^2 = \frac{\sum_{i=1}^{n} (X_i \bar{X})^2}{n-1}$ 의 표본분포 : $B = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2[n-1]$
- 3. \bar{X} 와 S^2 은 서로 독립이므로 (by Basu의 정리), $A=\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right)$ 와 $B=\frac{(n-1)S^2}{\sigma^2}$ 도 서로 독립임.
 - ightarrow t-분포의 정의에 의해, $rac{ar{X}-\mu}{S/\sqrt{n}} \sim t[n-1]$ 가 됨.

$$\frac{A}{\sqrt{\frac{B}{d.f.(B)}}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{\left(\frac{(n-1)S^2}{\sigma^2}\right)}{(n-1)}}} = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t[n-1]$$