Introduction

Area of a Circle

Area of a circle is πr_2 , where π =22/7 or \approx 3.14 (can be used interchangeably for problem-solving purposes)and r is the radius of the circle.

 π is the ratio of the circumference of a circle to its diameter.

Circumference of a circle

The perimeter of a circle is the distance covered by going around its boundary once. The perimeter of a circle has a special name: Clrcumference, which is π times the diameter which is given by the formula $2\pi r$

The segment of a circle

A circular segment is a region of a circle which is "cut off" from the rest of the circle by a secant or a chord

A sector of a circle

A circle sector/ sector of a circle is defined as the region of a circle enclosed by an arc and two radii. The smaller area is called the minor sector and the larger area is called the major sector.

The angle of a Sector

The angle of a sector is that angle which is enclosed between the two radii of the sector.

Length of an arc of a sector

The length of the arc of a sector can be found by using the expression for the circumference of a circle and the angle of the sector, using the following formula:

$$L = (\theta/360^{\circ}) \times 2\pi r$$

where θ is the angle of sector and r is the radius of the circle.

Area of a Sector of a Circle

Area of a sector is given by

(θ/360°)×πr₂

where $\angle \theta$ is the angle of this sector(minor sector in the following case) and r is its radius

Area of a sector

Area of a Triangle

Area of a triangle is,

Area=(1/2)×base×height

If the triangle is an equilateral then

Area= $\sqrt{3}/4 \times a_2$ where a is the side of the triangle.

Area of a Segment of a Circle

Area of the segment

Area of segment APB (highlighted in yellow)

= (Area of sector OAPB) – (Area of triangle AOB)

$$=[(2\%/360^\circ)\times\pi r_2] - [(1/2)\times AB\times OM]$$

[To find the area of triangle AOB, use trigonometric ratios to find OM (height) and AB (base)]

Also, Area of segment APB can be calculated directly if the angle of the sector is known using the following formula.

=
$$[(\theta/360^\circ)\times\pi r_2]$$
 - $[r_2\times\sin\theta/2\times\cos\theta/2]$

where θ is the angle of the sector and r is the radius of the circle

Visualisations

Areas of different plane figures

- Area of a square (side I) =I2
- Area of a rectangle =l×b, where I and b are the length and breadth of the rectangle
- Area of a parallelogram =b×h, where b is the base and h is perpendicular height.

parallelogram

Area of a trapezium = $[(a+b)\times h]/2$,

where

a & b are the parallel sides length

h is the trapezium height

Area of a rhombus =pq/2, where p & q are the diagonals

Areas of Combination of Plane figures

For example: Find the area of the shaded part in the following figure: Given the ABCD is a square of side 28cm and has four equal circles enclosed within.

Area of the shaded region

Looking at the figure we can visualise that the required shaded area = $A(\text{square ABCD}) - 4 \times A(\text{Circle})$.

Also, the diameter of each circle is 14 cm.

 $=(l_2)-4\times(\pi r_2)$

 $=(282)-[4\times(\pi\times49)]$

=784-[4×227×49]

=784-616

=168cm₂