TCSS 343 - Week 2 - Thursday

Jake McKenzie

January 30, 2019

Recurrences and Tracing

"To tell the truth is an act of love. To withhold the truth is an act of hate.

Or worse, apathy".

Gene Kim

"All claims of education notwithstanding, the pupil will accept only that which his mind craves".

Emma Goldman

"Power concedes nothing without a demand. It never did and it never will".

Frederick Douglass

```
0. The instructions for this problem are in the comments lines 1 through 4.
                  // Show each value of i, j and k for each line executed
                  // in the while loop (lines:11, 13, 15, 16, 18) and the
             2
             3
                  // final values of i, j and k for when a = -1, b = 1 and
                  // a = 1, and b = -1 and finally when a = 0 and b = 0.
                  #include <stdio.h>
                  int main(void) {
             Ö.
             7
                       int i = 1;
             8
                       int j = 0;
             3
                       int k = -1;
                       int a = 1;
            10
            11
                       int b = -1;
            12
                       while (i > j) {
            13
                           i = i + a - 2 * j;
            14
                          if (j >= k) {
            15
                               i = i + 2;
                               k = k - b + 2 * j;
            16
            17
            18
                           j++;
            19
                       3
            20
                  1
C
                                                        0
                                      2
```


1. Consider the following recurrence:
$$Z(n) = \begin{cases} \frac{1}{3}Z(\frac{n}{6}) + n, & n > 1 \end{cases} \tag{1}$$

Draw out a visualization of what this recurrences looks like as a tree.

$$\frac{n}{6} = \frac{n}{6} = \frac{n$$

2. How much work is done on level i?

- 3. How many recursive levels are there in the tree?
- B= B = 1 = | i = log n note this is recursive levels! not total levels tesse case there are logan +1 levels tolal
- 4. How much work is done at the leaf level?
 - 1. 3 109 amount of work at the botan level since i = loggn we must count our levels staring of

5. Construct a non-recursive expression equivalent to the recurrence. Your solution may use a summation.

6. Find the big- Θ bound for the recurrence.

$$n \sum_{i=0}^{\lfloor \log n-1 \rfloor} (\frac{1}{2})^i = n \left(\frac{(\frac{1}{2})^{\log n} - 1}{\frac{1}{2} - 1} \right)$$

$$n(m 2 - 23^{100}cn) + 3^{100}cn$$

$$2n - 23^{100}cn + 3^{100}cn$$

$$2n - 3^{100}cn$$

$$2n - 3^{100}cn$$

7. Consider the following recurrence:

$$A(n) = \begin{cases} 1, & \text{if } n = 1\\ 3A(\frac{n}{3}) + 3n^2, & n > 1 \end{cases}$$
 (3)

Draw out a visualization of what this recurrences looks like as a tree.

8. How much work is done on level i?

11. Construct a non-recursive expression equivalent to the recurrence. Your solution may use a summation.

12. Find the big- Θ bound for the recurrence.

13. Write an algorithm Brackets which takes a positive integer n that prints all combinations of well-formed brackets. For Brackets(3) the output would be ((()))(())(())(())(())(())