25. Nemzetközi Magyar Matematika Verseny

Budapest, 2016. március 11-15.

12. osztály

1. feladat: Az ABC szabályos háromszög köré írt körön a rövidebb AB íven kijelölünk egy M pontot. Bizonyítsa be, hogy $AB^2 \ge 3 \cdot AM \cdot MB$.

Olosz Ferenc (Szatmárnémeti)

1. megoldás: Használjuk az ábra jelöléseit.

Fejezzük ki AB^2 -et az ABM háromszögből a koszinusztétellel:

$$AB^2 = AM^2 + MB^2 - 2 \cdot AM \cdot MB \cdot \cos \mu,$$

ahol μ jelöli az AMBszöget.

Mivel az AMBC négyszög húrnégyszög, és az ACB szög 60 fokos, ezért $\mu=120^\circ$, és így $\cos\mu=-1/2$.

Innen $AB^2 = AM^2 + MB^2 + AM \cdot MB$.

A jobb oldalt átalakítjuk:

$$AB^{2} = AM^{2} + MB^{2} + AM \cdot MB = (AM - MB)^{2} + 3 \cdot AM \cdot MB.$$

Mivel $(AM-MB)^2 \geq 0$, innen a kívánt $AB^2 \geq 3 \cdot AM \cdot MB$ egyenlőtlenség adódik.

 $\frac{Megjegyz\acute{e}s: Az utols\'{o} r\'{e}sz helyettes\'{t}het\~{o} a n\'{e}gyzetes \'{e}s a m\'{e}rtani k\"{o}z\'{e}p k\"{o}z\"{o}tti \sqrt{\frac{AM^2+MB^2}{2}} \geq \sqrt{AM\cdot MB}$ egyenlőtlenségre történő hivatkozással is.

2. megoldás: Használjuk az előző megoldás ábráját. Legyen a körülírt kör sugara r, középpontja O, és fejezzük ki az AM, MB, AB szakaszok hosszát r és a $2\delta = AOM$, $2\varepsilon = MOB$, valamint AOB szögek segítségével.

Az AOB szög 120 fokos, és így $\delta + \varepsilon = 60^{\circ}$.

Az AOM, MOB és AOB egyenlő szárú háromszögekből

$$AM = 2r\sin\delta$$
, $MB = 2r\sin\varepsilon$, $AB = 2r\sin60^{\circ} = r\sqrt{3}$.

A bizonyítandó egyenlőtlenség ennek megfelelően

$$3r^2 \geq 3 \cdot 4 \cdot r^2 \sin \delta \cdot \sin \varepsilon, \quad \text{ azaz } \quad \frac{1}{4} \geq \sin \delta \cdot \sin \varepsilon.$$

Az ismert trigonometrikus összefüggés alapján

$$\sin\delta\cdot\sin\varepsilon = \frac{\cos(\delta-\varepsilon)-\cos(\delta+\varepsilon)}{2}.$$

A jobb oldalt tovább alakítva, majd felülről becsülve a bizonyítandó egyenlőtlenséget kapjuk:

$$\sin \delta \cdot \sin \varepsilon = \frac{\cos(\delta - \varepsilon) - \cos 60^{\circ}}{2} \le \frac{1 - \frac{1}{2}}{2} = \frac{1}{4}.$$

3. megoldás: Használjuk az ábra jelöléseit.

Hosszabbítsuk meg az MB szakaszt M-en túl MA hosszúsággal, így az A' pontot kapjuk. Mivel az AMB szög 120 fokos, ezért az AMA' szög 60 fokos, tehát AM = A'M miatt az AMA' háromszög szabályos, és így az AA'B szög is 60 fokos.

Ez azt jelenti, hogy A' rajta van az AB fölé írt (másik) 60° -os látóköríven.

Ez az ACB ív tükörképe, sugara tehát szintén r.

Ez utóbbi kör középpontját jelölje O', az O'M egyenes (illetve O'=M esetén, tetszőleges átmérő) messe ezt a kört az X és Y pontokban. Mivel az M ponton át húzott szelőkön a szelődarabok szorzata állandó, ezért

$$AM \cdot MB = A'M \cdot MB = XM \cdot MY = (r - d)(r + d) = r^2 - d^2 \le r^2,$$

ahol d az O' és M pontok távolsága.

Mivel $r^2 = AB^2/3$, az előző egyenlőtlenségből a kívánt $3 \cdot AM \cdot MB \le AB^2$ összefüggés adódik.

2. feladat: Az ötös lottón 5 számot kell megjelölni az 1,2,...,90 számok közül. Peti egy olyan szelvénnyel játszik, amelyen az 5 megjelölt számban az 1,2,...,9 számjegyek mindegyike pontosan egyszer szerepel, és a 0 számjegy nem fordul elő. Petinek szól a barátja, hogy az aznapi sorsoláson ilyen 5 számot húztak ki, de magukról a kihúzott számokról nem tud semmit sem mondani. Mi a valószínűsége annak, hogy Petinek legalább 4 találata van?

Remeténé Orvos Viola (Debrecen)

Megoldás: Határozzuk meg az ilyen típusú húzások számát. Az öt kihúzott számból egy egyjegyű, a többi kétjegyű.

Ha az egyjegyű szám a 9-es, akkor a kétjegyűeket egymás után leírva egy 8 különböző számjegyből álló számsorozatot kapunk, ez 8!-féle lehet.

Ha az egyjegyű szám nem a 9-es, akkor 8-féle lehet, a 9-es pedig csak a kétjegyűek egyes helyiértékénél szerepelhet, vagyis 4 helyen, a maradék 7 számjegy 7!-féleképpen tehető le, ez összesen $8 \cdot 4 \cdot 7! = 4 \cdot 8!$ lehetőség.

Mivel a kétjegyű számok egymás közötti sorrendje nem számít, ezért a fent kapott két szám összegét 4!-sal osztani kell.

Innen a lehetséges húzások száma $\frac{8!+4\cdot 8!}{4!} = \frac{5\cdot 8!}{4!} (=8400)$, tehát $\frac{4!}{5\cdot 8!}$ annak a valószínűsége, hogy Petinek 5 találata van.

Ha Peti egyjegyű száma a 9-es, akkor 4 találat úgy lehetséges, hogy Peti egyik kétjegyű száma helyett annak "fordítottját" húzták ki (tehát a két számjegyet felcserélték), ez négyféleképpen valósulhat meg.

Emiatt ekkor a 4 találat 4-szer olyan valószínű, mint a telitalálat, vagyis a legalább 4 találat valószínűsége $\frac{5\cdot 4!}{5\cdot 8!} = \frac{1}{5\cdot 6\cdot 7\cdot 8} = \frac{1}{1680}$.

Ha Petinél valamelyik kétjegyű számban szerepel a 9-es, akkor 4 találat úgy lehetséges, hogy Peti valamelyik másik kétjegyű száma helyett annak "fordítottját" húzták ki (tehát a két számjegyet felcserélték), ez háromféleképpen valósulhat meg.

Emiatt ekkor a 4 találat 3-szor olyan valószínű, mint a telitalálat, vagyis a legalább 4 találat valószínűsége $\frac{4\cdot 4!}{5\cdot 8!} = \frac{1}{5\cdot 6\cdot 7\cdot 10} = \frac{1}{2100}$.

Megjegyzés: Ha a feladatot úgy értelmezzük, hogy anélkül kell megmondani a valószínűséget, hogy tudnánk, hol van Petinél a 9-es, akkor a teljes valószínűség tétele alapján az imént kiszámolt két valószínűség súlyozott átlagát kell vennünk aszerint, hogy a kétféle feltétel bekövetkezésének mi

a valószínűsége. A levezetés alapján ez az arány 1 : 4, tehát a kérdéses valószínűség $\frac{1}{5} \cdot \frac{5 \cdot 4!}{5 \cdot 8!} + \frac{4 \cdot 4!}{5 \cdot 8!} = \frac{1}{2000}$.

3. feladat: Igazolja, hogy $1992 \cdot 2012 \cdot 2016 \cdot 2022 \cdot 2042 + 5^6$ összetett szám.

Kovács Béla (Szatmárnémeti)

Megoldás: Írjuk át az összeg első tagját képező öttényezős szorzatot a következő alakba:

$$(2017 - 25)(2017 - 5)(2017 - 1)(2017 + 5)(2017 + 25).$$

A beszorzásokat elvégezve minden tag osztható lesz 2017-tel, kivéve a

$$(-25) \cdot (-5) \cdot (-1) \cdot 5 \cdot 25 = -5^6$$

tagot.

Ennek alapján az eredményhez 5^6 -t hozzáadva egy 2017-tel osztható (és 2017-nél nagyobb) számot kapunk, ami emiatt szükségképpen összetett.

4. feladat: Igazolja, hogy ha a P polinom minden együtthatója nemnegatív valós szám, akkor x>0 esetén $P(x)P(\frac{1}{x})\geq (P(1))^2$.

Kekeňák Szilvia (Kassa)

Megoldás: Legyen $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, ahol $a_k \ge 0$ minden k-ra. Ekkor

$$P(x)P\left(\frac{1}{x}\right) = \sum_{k=0}^{n} a_k x^k \cdot \sum_{\ell=0}^{n} \frac{a_\ell}{x^\ell}.$$

A szorzás elvégzése során $a_k a_\ell x^{k-\ell}$ alakú tagok keletkeznek, ahol $k,\ell=0,\ldots,n$. Ha $k=\ell$, akkor ebből a_k^2 adódik, különben pedig a k,ℓ indexek cseréjével párba állíthatunk tagokat. Így

$$P(x)P\left(\frac{1}{x}\right) = \sum_{k=0}^n a_k^2 + \sum_{0 \le \ell < k \le n} a_k a_\ell \left(x^{k-\ell} + \frac{1}{x^{k-\ell}}\right).$$

A számtani és mértani közepek közötti egyenlőtlenség alapján pozitív x-ekre

$$x^{k-\ell} + \frac{1}{x^{k-\ell}} \ge 2\sqrt{x^{k-\ell} \cdot \frac{1}{x^{k-\ell}}} = 2.$$

Ebből az együthatók nemnegativitásának felhasználásával kapjuk, hogy x > 0 esetén

$$P(x)P\left(\frac{1}{x}\right) \ge \sum_{k=0}^{n} a_k^2 + 2 \cdot \sum_{0 \le \ell < k \le n} a_k a_\ell = \left(\sum_{k=0}^{n} a_k\right)^2 = (P(1))^2.$$

Megjegyzés: A számtani és mértani közepek egyenlőtlenségére való hivatkozás helyettesíthető azzal, hogy egy pozitív szám és reciprokának összege legalább 2.

5. feladat: Egy konvex négyszög oldalainak és átlóinak hossza racionális szám. Mutassa meg, hogy az átlókat a metszéspontjuk racionális hosszúságú szakaszokra osztja.

Tóth Sándor (Kisvárda)

Megoldás: Az ábra jelöléseit használjuk: az ABCD négyszögben az átlók metszéspontja M, az ABM, CBM, CBA és AMB szögek rendre β_1 , β_2 , β , illetve ε . Az AM szakaszról látjuk be, hogy a hossza racionális szám, a többi ugyanígy igazolható.

Mivel AC = AM + MC hossza racionális, elég az AM/MC arányról megmutatni, hogy racionális. Az ABM és CBM háromszögekre felírjuk a szinusztételt:

$$\frac{AM}{AB} = \frac{\sin\beta_1}{\sin\varepsilon}; \qquad \frac{MC}{BC} = \frac{\sin\beta_2}{\sin(180^\circ - \varepsilon)}.$$

A két egyenlőséget elosztva, rendezve, és felhasználva, hogy $\sin \varepsilon = \sin(180^\circ - \varepsilon)$, kapjuk, hogy

$$\frac{AM}{MC} = \frac{AB}{BC} \cdot \frac{\sin \beta_1}{\sin \beta_2}.$$

Mivel $\frac{AB}{BC}$ racionális, ezért elég igazolni, hogy $\frac{\sin\beta_1}{\sin\beta_2}$ racionális.

Az ABC, ABD és BCD racionális oldalú háromszögekre felírva a koszinusztételt kapjuk, hogy $\cos \beta_1 \cos \beta_1$ és $\cos \beta_2$ is racionális.

Felhasználva, hogy $\cos\beta = \cos(\beta_1 + \beta_2) = \cos\beta_1\cos\beta_2 - \sin\beta_1\sin\beta_2$, innen adódik, hogy $\sin\beta_1\sin\beta_2$ is racionális.

Továbbá $\sin^2 \beta_2 = 1 - \cos^2 \beta_2$ is racionális.

Ezért $\frac{\sin\beta_1}{\sin\beta_2} = \frac{\sin\beta_1\sin\beta_2}{\sin^2\beta_2}$ is racionális, és ezt kellett bizonyítani.

6. feladat: Oldja meg az $x^3 + 2 = 5\sqrt[3]{5x - 2}$ egyenletet a valós számok halmazán.

Bíró Béla (Sepsiszentgyörgy)

1. megoldás: Vezessük be az $y = \sqrt[3]{5x-2}$ segédismeretlent. Ekkor egyrészt $y^3 + 2 = 5x$, másrészt pedig a feladatban szereplő egyenlet az $x^3 + 2 = 5y$ alakot ölti, vagyis az alábbi egyenletrendszerhez jutunk:

$$\begin{cases} x^3 + 2 = 5y, \\ y^3 + 2 = 5x. \end{cases}$$

Az iménti két egyenletet egymásból kivonva $x^3 - y^3 = 5(y - x)$ adódik, amit az $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ nevezetes azonosság segítségével alakíthatunk tovább:

$$(x-y)(x^2 + xy + y^2 + 5) = 0.$$

Itt a szorzat második tényezője nem lehet 0, hiszen

$$x^{2} + xy + y^{2} + 5 = \left(x + \frac{1}{2}y\right)^{2} + \frac{3}{4}y^{2} + 5 > 0,$$

ezért szükségképpen x = y.

Az eredeti egyenletnek tehát csak olyan x megoldásai lehetnek, amelyekre $x=\sqrt[3]{5x-2}$, azaz $x^3-5x+2=0$, és mivel ebben az esetben $x^3+2=5x=5\sqrt[3]{x-2}$, ezért pontosan az ilyen tulajdonságú x-ek a megoldásai. (Ezt a pontot akkor is megkapja a versenyző, ha a megoldás végén ellenőriz.)

Az $x^3 - 5x + 2 = 0$ egyenletnek az x = 2 gyöke.

Ennek ismeretében

$$0 = x^3 - 5x + 2 = (x - 2)(x^2 + 2x - 1),$$

ahonnan három valós gyököt kapunk: $2, -1 + \sqrt{2}$ és $-1 - \sqrt{2}$.

Megjegyzés: Az $x^3 - y^3 = 5(y - x)$ egyenletet átrendezhetjük $x^3 + 5x = y^3 + 5y$ alakba is, és ekkor a $g(x) = x^3 + 5x$ függvény bevezetésével arról van szó, hogy g(x) = g(y). Mivel g két szigorúan monoton növő függvény összege, ezért maga is szigorúan monoton növő (ezt abból is láthatjuk, hogy $g'(x) = 3x^2 + 5 > 0$), így szükségképpen x = y.

- A 6. feladat kitűzésénél a gyökjel alatt az x mellől lemaradt az 5-ös szorzó. Tehát a bizottság szándéka szerint az $x^3+2=5\sqrt[3]{5x-2}$ egyenlet megoldása lett volna a cél, a kötetben leírt megoldások is erre vonatkoznak. Sajnos, az így hibásan kitűzött feladat gyökeinek a megkeresésére nem is tudunk egzakt módszert. Ezt figyelembe véve a javítás az alábbi pontozást követte: Az egyenlet két oldalán szereplő függvények helyes grafikonja: 2–2 pont; ennek alapján csak egy gyök van: 2 pont; ez -3 és -2 közé esik: 3 pont (+1 pont)=10 pont. Másik lehetőség: Az $y=\sqrt[3]{x-2}$ segédismeretlen bevezetésével az $f(x)=x^3+2$ és f^{-1} függvények kapcsolatának felírása: 3 pont; csak egy gyök létezik 3 pont; ez -3 és -2 közé esik: 3 pont (+1 pont)=10 pont.
- **2. megoldás:** Vezessük be az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^3 + 2)/5$ függvényt. Az x^3 függvény szigorúan monoton növekedő, ezért f is az, tehát injektív. Az $y = (x^3 + 2)/5$ egyenletből x-et kifejezve nyerjük, hogy $f^{-1}(y) = \sqrt[3]{5y-2}$.

Ebből következően a feladat egyenlete $f(x) = f^{-1}(x)$ alakba írható, ami egyenértékű azzal, hogy f(f(x)) = x.

Ennek pontosan azon x_0 számok a megoldásai, amelyekre $f(x_0) = x_0$. Ha ugyanis $f(x_0) < x_0$ lenne, akkor f szigorú monoton növekedése folytán $f(f(x_0)) = x_0 < f(x_0)$, ami ellentmondás. Hasonlóan nem lehetséges $f(x_0) > x_0$ sem.

Az eredeti egyenletnek tehát pontosan olyan x megoldásai lehetnek, amelyekre $(x^3 + 2)/5 = x$. Innen az előző részhez hasonlóan fejezhetjük be a megoldást.

Megjegyzés. Lényeges, hogy f szigorúan monoton $n\"{o}veked\~{o}$, mert csökkenő esetben általában nem igaz, hogy az $f(x) = f^{-1}(x)$ egyenletnek csak olyan megoldásai lennének, amelyekre f(x) = x