课后作业 (Assignments)

- 一、 阅读教材 2.5 节, 求解如下问题 (Problems)
- 1. 总结谓词公式推理过程.
- 2. 教材第二章习题: 题 14, 题 15 (5, 6).
- 3. Consider the following problem. We know that horses are faster than dogs and that there is a greyhound that is faster than every rabbit. We know that Harry is a horse and that Ralph is a rabbit. Our job is to derive the fact that Harry is faster than Ralph.

Problem translated in FOPL:

```
\forall x \ \forall y \ ((Horse(x) \land Dog(y)) \rightarrow Faster(x,y))
```

 $\exists y (Greyhound(y) \land (\forall z Rabbit(z) \rightarrow Faster(y,z)))$

Horse(Harry)

Rabbit(Ralph)

Added axioms to represent commonsense knowledge:

```
\forall y (Greyhound(y) \rightarrow Dog(y))
```

 $\forall x \ \forall y \ \forall z \ ((Faster(x,y) \land Faster(y,z)) \rightarrow Faster(x,z))$

Derive the following fact:

Faster(Harry, Ralph)

Proving using Proof Theory and a set of inference rules

1. $\forall x \forall y \text{ Horse}(x) \land \text{Dog}(y) \longrightarrow \text{Faster}(x,y)$

Premise

2. $\exists y \; Greyhound(y) \land (\forall z \; Rabbit(z) \longrightarrow Faster(y,z))$

Premise

3.	\forall y Greyhound(y) \longrightarrow Dog(y)	Premise
4.	$\forall x \forall y \forall z \; Faster(x,y) \land Faster(y,z) \longrightarrow Faster(x,z)$	Premise
5.	Horse(Harry)	Premise
6.	Rabbit(Ralph)	Premise
7.	$Greyhound(Greg) \wedge (\forall z \ Rabbit(z) \longrightarrow Faster(Greg, z))$	ES (2)
8.	Greyhound(Greg)	T,I (7)
9.	\forall z Rabbit(z) \longrightarrow Faster(Greg,z))	T,I (7)
10.	$Rabbit(Ralph) \longrightarrow Faster(Greg,Ralph)$	US (9)
11.	Faster(Greg,Ralph)	T,I (6),(10)
12.	$Greyhound(Greg) \longrightarrow Dog(Greg)$	US (3)
13.	Dog(Greg)	T,I (12), (8)
14.	$Horse(Harry) \land Dog(Greg) \longrightarrow Faster(Harry, Greg)$	US (1)
15.	$Horse(Harry) \land Dog(Greg)$	T,I (5), (13)
16.	Faster(Harry, Greg)	T,I (14), (15)
17.	${\sf Faster}({\sf Harry},{\sf Greg}) \land {\sf Faster}({\sf Greg},{\sf Ralph}) {\:\longrightarrow\:} {\sf Faster}({\sf Harry},{\sf Ralph})$	US (4)
18.	Faster(Harry, Greg) ∧ Faster(Greg, Ralph)	T,I (11), (16)
19.	Faster(Harry,Ralph)	T,I (17), (19)

Using Resolution to determine logical entailment

_	_	
1.	{¬Horse(x),¬Dog(y),Faster(x,y)}	Premise
2.	{Greyhound(gary)}	Premise
3.	{¬Rabbit(z),Faster(gary,z)}	Premise
4.	${\neg Greyhound(y), Dog(y)}$	Premise
5.	{¬Faster(x,y), ¬Faster(y,z),Faster(x,z)}	Premise
6.	{Horse(harry)}	Premise
7.	{Rabbit(ralph)}	Premise
8.	{¬Faster(harry, ralph)}	Negated Goal
9.	{Dog(gary)}	2, 4
10	. {¬Dog(y), Faster(harry, y)}	6, 1
11.	. {Faster(harry, gary)}	9, 10
12.	. {Faster(gary, ralph)}	7, 3
13.	. {¬Faster(gary, z), Faster(harry, z)}	11, 5
14.	. {Faster(harry, ralph)}	12, 13
15	. {}	14, 8