Chapter 3 Finite Markov Decision Processes

MDP

- A classical formalization of sequential decision making
- Actions influence not just immediate rewards, but also subsequent situations, or states, and through those future rewards.

3.1 The Agent–Environment Interface

- Agent
 - The learner and decision maker
- Environment
 - The thing it interacts with, comprising everything outside the agent

- Time step
 - t = 0, 1, 2, ...
- States
 - S: set of all states
 - $S_t \in S$
- Actions
 - $\mathcal{A}(s)$: set of all actions for state s
 - $A_t \in \mathcal{A}(s)$
- Rewards
 - \mathcal{R} : set of all rewards
 - $R_{t+1} \in \mathcal{R}$
- Trajectory
 - S_0 , A_0 , R_1 , S_1 , A_1 , R_2 , ...

Figure 3.1: The agent–environment interaction in a Markov decision process.

The dynamics of the MDP

$$p(s',r\mid s,a)=\Pr\{S_t=s',R_t=r\mid S_{t-1}=s,A_{t-1}=a\}$$
 for all $s',s\in\mathcal{S},\ r\in\mathcal{R},\ \text{and}\ a\in\mathcal{A}(s).$

$$\sum_{s'} \sum_{r} p(s', r \mid s, a) = 1$$

$$p(s' \mid s, a) = \Pr\{S_t = s' \mid S_{t-1} = s, A_{t-1} = a\}$$

$$r(s, a) = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a]$$

$$r(s, a, s') = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s']$$

3.2 Goals and Rewards

- Goal
 - To maximize the total amount of reward

3.3 Returns and Episodes

- Return
 - $G_t = R_{t+1} + R_{t+2} + \cdots + R_T$ where T is a final time step
- Episode
 - The agent-environment interactions breaks naturally with final time step
- Episodic task
 - Task with episode
- Continuing task
 - The agent–environment interaction does not break naturally
- Discounted return
 - $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} R_{t+k+1}$
 - Discounted rate γ , $0 \le \gamma \le 1$

3.4 Unified Notation for Episodic and Continuing Tasks

3.5 Policies and Value Functions

- Policy π
 - Probabilities of selecting an action
 - $\pi(a|s) = \Pr\{A_t = a \mid S_t = s\}$

3.5 Policies and Value Functions

- The state-value function v_{π} for policy π
 - The value function of a state s under a policy π
 - the expected return when starting in s
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k G_{t+k+1} \mid S_t = s]$
- The action-value function q_{π} for policy π
 - the value of an action a in state s under a policy π
 - $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k G_{t+k+1} \mid S_t = s, A_t = a]$

• Bellman equation for v_{π}

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Proof

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma \mathbb{E}[G_{t+1} \mid S_{t+1} = s']] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_{\pi}(s')] \end{aligned}$$

Example 3.5: Gridworld

- The cells of the grid correspond to the states of the environment
- At each cell, four actions are possible: north, south, east, and west
 - Actions cause the agent to move one cell in the respective direction
 - Actions that would take the agent off the grid leave its location unchanged, but also result in a reward of -1
 - Other actions result in a reward of 0, except those that move the agent out of the special states A and B
 - From state A, all four actions yield a reward of ± 10 and take the agent to A'
 - From state B, all actions yield a reward of +5 and take the agent to B'
- The agent selects all four actions with equal probability
- $\gamma = 0.9$

	3.3	8.8	4.4	5.3	1.5
	1.5	3.0	2.3	1.9	0.5
	0.1	0.7	0.7	0.4	-0.4
	-1.0	-0.4	-0.4	-0.6	-1.2
	-1.9	-1.3	-1.2	-1.4	-2.0

$$v_{\pi}((1,1)) = \frac{1}{4} \left(-1 + \gamma v_{\pi}((1,1)) \right) + \frac{1}{4} \left(0 + \gamma v_{\pi}((1,2)) \right) + \frac{1}{4} \left(-1 + \gamma v_{\pi}((1,1)) \right) + \frac{1}{4} \left(0 + \gamma v_{\pi}((2,1)) \right)$$

$$= -\frac{1}{2} + \frac{1}{2} \gamma v_{\pi}((1,1)) + \frac{1}{4} \gamma \left(v_{\pi}((1,2)) + v_{\pi}((2,1)) \right)$$

$$0.55 v_{\pi}((1,1)) = -0.5 + 0.225(8.8 + 1.5)$$

$$v_{\pi}((1,1)) = 3.3$$

3.6 Optimal Policies and Optimal Value Functions

- Optimal policy
 - One policy that is better than or equal to all other policies
 - $v_{\pi_*}(s) \ge v_{\pi}(s)$ for all policy π
- Optimal state-value function v_{st}

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• Optimal action-value function q_*

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Figure 3.4: Backup diagrams for v_* and q_*

Example 3.8: Solving the Gridworld

Figure 3.5: Optimal solutions to the gridworld example.

3.7 Optimality and Approximation

- Optimal policies can be generated only with extreme computational cost
- It is an ideal that agents can only approximate