Machine Learning Techniques

(機器學習技法)

Lecture 1: Linear Support Vector Machine

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Course History

NTU Version

- 15-17 weeks (2+ hours)
- highly-praised with English and blackboard teaching

Coursera Version

- 8 weeks of 'foundations' (previous course) + 8 weeks of 'techniques' (this course)
- Mandarin teaching to reach more audience in need
- slides teaching improved with Coursera's quiz and homework mechanisms

goal: try making Coursera version even better than NTU version

Course Design

from Foundations to Techniques

- mixture of philosophical illustrations, key theory, core algorithms, usage in practice, and hopefully jokes:-)
- three major techniques surrounding feature transforms:
 - Embedding Numerous Features: how to exploit and regularize numerous features?
 - —inspires Support Vector Machine (SVM) model
 - Combining Predictive Features: how to construct and blend predictive features?
 - —inspires Adaptive Boosting (AdaBoost) model
 - Distilling Implicit Features: how to identify and learn implicit features?
 - —inspires Deep Learning model

allows students to use ML professionally

Which of the following description of this course is true?

- 1 the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- 3 the course will be 16 weeks long
- 4 the course will focus on three major techniques

Which of the following description of this course is true?

- 1 the course will be taught in Taiwanese
- 2 the course will tell me the techniques that create the android Lieutenant Commander Data in Star Trek
- the course will be 16 weeks long
- 4 the course will focus on three major techniques

Reference Answer: 4

- no, my Taiwanese is unfortunately not good enough for teaching (yet)
- 2 no, although what we teach may serve as building blocks
- 3 no, unless you have also joined the previous course
- 4 yes, let's get started!

Roadmap

1 Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

- Course Introduction
- Large-Margin Separating Hyperplane
- Standard Large-Margin Problem
- Support Vector Machine
- Reasons behind Large-Margin Hyperplane
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Linear Classification Revisited

 $h(\mathbf{x}) = sign(\mathbf{s})$

(linear separable)

Note回憶:如果某個向量與線之法向量內積為正,代表此兩向量的投影方向是同方向,也就是指向法向量的那一邊;

plausible err = OFP内積為負代表是指反法向量的那一邊

(small flipping noise) minimize specially

linear (hyperplane) classifiers: $h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x})$

Which Line Is Best?

- PLA? depending on randomness
- VC bound? whichever you like!

$$E_{\text{out}}(\mathbf{w}) \leq \underbrace{E_{\text{in}}(\mathbf{w})}_{0} + \underbrace{\Omega(\mathcal{H})}_{d_{\text{VC}} = d+1}$$

You? rightmost one, possibly :-)

Why Rightmost Hyperplane? 想要找一條可以長得最「胖」的線

informal argument

if (Gaussian-like) noise on future $\mathbf{x} \approx \mathbf{x}_n$:

 \mathbf{x}_n further from hyperplane

⇔ tolerate more noise

distance to closest \mathbf{x}_n

⇔ amount of noise tolerance

⇔ robustness of hyperplane

rightmost one: more robust because of larger distance to closest \mathbf{x}_n

Fat Hyperplane

- robust separating hyperplane: fat
 —far from both sides of examples
- robustness ≡ fatness: distance to closest x_n

goal: find fattest separating hyperplane

Large-Margin Separating Hyperplane

max fatness(w)

subject to

w classifies every (\mathbf{x}_n, y_n) correctly

 $\frac{\mathsf{fatness}(\mathbf{w}) = \min_{n=1,\dots,N} \mathsf{distance}(\mathbf{x}_n, \mathbf{w})}{\mathsf{distance}(\mathbf{x}_n, \mathbf{w})}$

- fatness: formally called margin
- correctness: $y_n = \text{sign}(\mathbf{w}^T \mathbf{x}_n)$ W^T跟X_n同號就代表兩個相乘>0

goal: find largest-margin separating hyperplane

Large-Margin Separating Hyperplane


```
max margin(w)
subject to every y_n \mathbf{w}^T \mathbf{x}_n > 0
margin(w) = min distance(\mathbf{x}_n, w)
```

- fatness: formally called margin
- correctness: $y_n = sign(\mathbf{w}^T \mathbf{x}_n)$

goal: find largest-margin separating hyperplane

Consider two examples $(\mathbf{v},+1)$ and $(-\mathbf{v},-1)$ where $\mathbf{v} \in \mathbb{R}^2$ (without padding the $v_0=1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v}=(3,2)$.

- 1 $x_1 = 0$
- 2 $x_2 = 0$

Consider two examples $(\mathbf{v},+1)$ and $(-\mathbf{v},-1)$ where $\mathbf{v}\in\mathbb{R}^2$ (without padding the $v_0=1$). Which of the following hyperplane is the largest-margin separating one for the two examples? You are highly encouraged to visualize by considering, for instance, $\mathbf{v}=(3,2)$.

- $x_1 = 0$
- $2 x_2 = 0$
- $4 v_2 x_1 + v_1 x_2 = 0$

Reference Answer: (3)

Here the largest-margin separating hyperplane (line) must be a perpendicular bisector of the line segment between \mathbf{v} and $-\mathbf{v}$. Hence \mathbf{v} is a normal vector of the largest-margin line. The result can be extended to the more general case of $\mathbf{v} \in \mathbb{R}^d$.

V剛好就是那條最 胖的線的法向量!

Distance to Hyperplane: Preliminary 初步想法

$$\max_{\mathbf{w}} \quad \text{margin}(\mathbf{w})$$
subject to
$$\text{every } y_n \mathbf{w}^T \mathbf{x}_n > 0$$

$$\text{margin}(\mathbf{w}) = \min_{n=1,...,N} \frac{\text{distance}(\mathbf{x}_n, \mathbf{w})}{\text{distance}(\mathbf{x}_n, \mathbf{w})}$$

'shorten' x and w

distance needs w_0 and (w_1, \dots, w_d) differently (to be derived)

b在這邊就是之前墊高的向量,當作截距項

$$\begin{bmatrix} | \\ \mathbf{w} \\ | \end{bmatrix} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix} \quad ; \quad \begin{bmatrix} | \\ \mathbf{x} \\ | \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

為了推導距離公式,我們這邊不把x向量墊高、改用原本拆開的方式

for this part: $h(\mathbf{x}) = \frac{\operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)}{\mathbf{x} + \mathbf{y}}$

Distance to Hyperplane

want: distance($\mathbf{x}, \mathbf{b}, \mathbf{w}$), with hyperplane $\mathbf{w}^T \mathbf{x}' + \mathbf{b} = 0$

先考慮在超平面上的兩個點x', x'': consider x', x'' on hyperplane

$$\mathbf{1} \ \mathbf{w}^T \mathbf{x}' = -b, \ \mathbf{w}^T \mathbf{x}'' = -b$$

2 w l hyperplane: w其實就是這個超平面的法向量

$$\begin{pmatrix}
\mathbf{w}^T & (\mathbf{x}'' - \mathbf{x}') \\
\text{vector on hyperplane}
\end{pmatrix} = 0$$

所以距離就可以看成是x到x'上對法向量w的投影

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \left| \frac{\mathbf{w}^T}{\|\mathbf{w}\|} (\mathbf{x} - \mathbf{x}') \right| \stackrel{\text{(1)}}{=} \frac{1}{\|\mathbf{w}\|} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

線性代數:a向量在b向量上的投影長度,就是ab內積後除以b的長度(可由內積定義推導)

Distance to **Separating** Hyperplane

$$distance(\mathbf{x}, \mathbf{b}, \mathbf{w}) = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x} + \mathbf{b}|$$

separating hyperplane: for every n

$$y_n(\mathbf{w}^T\mathbf{x}_n+\mathbf{b})>0$$

distance to separating hyperplane:

distance(
$$\mathbf{x}_n, \mathbf{b}, \mathbf{w}$$
) = $\frac{1}{\|\mathbf{w}\|} \frac{y_n \times \mathbb{E}_{+1}$ 就是-1,所以沒差

因為完美分隔線滿足上述yn(w^Txn+b)>0,所以這裡就可以把絕對值給脫掉!

max
$$\underset{b,\mathbf{w}}{\text{margin}}(b,\mathbf{w})$$

subject to $\text{every } y_n(\mathbf{w}^T\mathbf{x}_n+b)>0$
 $\text{margin}(b,\mathbf{w})=\min_{n=1,\dots,N}\frac{1}{||\mathbf{w}||}y_n(\mathbf{w}^T\mathbf{x}_n+b)$

$$\max_{\substack{b,\mathbf{w}\\b}} \quad \operatorname{margin}(\mathbf{b},\mathbf{w})$$
 subject to
$$\operatorname{every} y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 0$$

$$\operatorname{margin}(\mathbf{b},\mathbf{w}) = \min_{n=1,\dots,N} \frac{1}{\|\mathbf{w}\|} y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b})$$

係數的放縮不影響我們對這個分隔平面的表示方式

- $\mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$ same as $3\mathbf{w}^T \mathbf{x} + 3\mathbf{b} = 0$: scaling does not matter
- special scaling: only consider separating (b, w) such that

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = \mathbf{1} \Longrightarrow \mathsf{margin}(\mathbf{b}, \mathbf{w}) = \frac{1}{\|\mathbf{w}\|}$$

假設我們要找的是 wTx + b = 0 這個超平面,我們對這個超

Linear Support Vector Machine

Standard Large-Margin Hyperplane Problem 再簡化問題一次!因為最大化問題裡又有一個最小化的限制條件,想要將其放鬆!

$$\min_{n=1}^{\infty} y_n(\mathbf{w})$$

subject to $\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$

比較鬆的條件

necessary constraints: $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1$ for all n

original constraint: $\min_{n=1,...,N} y_n(\mathbf{w}^T \mathbf{x}_n + \mathbf{b}) = \mathbf{1}^{\text{Lingshift}}$ want: optimal (b, w) here (inside)

if optimal (b, \mathbf{w}) outside, e.g. $y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) > 1.126$ for all n —can scale (b, \mathbf{w}) to "more optimal" $(\frac{b}{1.126}, \frac{\mathbf{w}}{1.126})$ (contradiction!)

足,可是會使得scale後的解更optimal(contradict to the original optimal solution) final change: max ⇒ min, remove √ , add ½

後面會講為什麼要加1/2這個scale

min b.w

$$\frac{1}{2}\mathbf{W}^{T}\mathbf{W}$$

透過不等式把原先限制式中的min拿掉

subject to

$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \geq 1$$
 for all n

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- the hyperplane is a separating one for the three examples
- 2 the distance from the hyperplane to \mathbf{x}_1 is 2
- **3** the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- $oldsymbol{4}$ the example that is closest to the hyperplane is $oldsymbol{x}_3$

Consider three examples $(\mathbf{x}_1, +1)$, $(\mathbf{x}_2, +1)$, $(\mathbf{x}_3, -1)$, where $\mathbf{x}_1 = (3,0)$, $\mathbf{x}_2 = (0,4)$, $\mathbf{x}_3 = (0,0)$. In addition, consider a hyperplane $x_1 + x_2 = 1$. Which of the following is not true?

- 1 the hyperplane is a separating one for the three examples
- 3 the distance from the hyperplane to \mathbf{x}_3 is $\frac{1}{\sqrt{2}}$
- $oldsymbol{4}$ the example that is closest to the hyperplane is $oldsymbol{x}_3$

Reference Answer: 2

The distance from the hyperplane to \mathbf{x}_1 is $\frac{1}{\sqrt{2}}(3+0-1)=\sqrt{2}.$

Solving a Particular Standard Problem 要找最胖的那條線之標準問題:

$$\min_{\substack{b,\mathbf{w}\\}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

subject to
$$y_n(\mathbf{w}^T\mathbf{x}_n + \mathbf{b}) \ge 1 \text{ for all } n$$

每一组的點都對應

- $\left\{ \begin{array}{ccc} (i) & \& & (iii) & \Longrightarrow & w_1 \geq +1 \\ (ii) & \& & (iii) & \Longrightarrow & w_2 \leq -1 \end{array} \right\} \stackrel{\mathbb{W}^{\wedge} T * \mathbb{W} = \mathbb{W}^{1 \wedge 2} + \mathbb{W}^{2 \wedge 2} >= 2}{\Longrightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w}} \geq 1$
- $(w_1 = 1, w_2 = -1, b = -1)$ at **lower bound** and satisfies (i) (iv)

X1 - X2 -1 = 0 這條線是解 (W1x1-W2x2+b=0)

這裡的g_SVM就是那條可以長到最胖的 ,也就是我們所稱的"支撑向量機"

$$g_{SVM}(\mathbf{x}) = sign(x_1 - x_2 - 1)$$
: SVM? :-)

Support Vector Machine (SVM)

optimal solution:
$$(w_1 = 1, w_2 = -1, b = -1)$$

margin (b, \mathbf{w}) $= \frac{1}{\|\mathbf{w}\|} = \frac{1}{\sqrt{2}}$

- examples on boundary: 'locates' fattest hyperplane other examples: not needed
- call boundary example support vector (candidate)

那些座落於邊界上的點,支撐了整個margin,所以稱他們為之稱向量。

support vector machine (SVM):
 learn fattest hyperplanes
(with help of support vectors)

Solving General SVM

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 \text{ for all } n$

- not easy manually, of course :-)
- gradient descent? not easy with constraints
- luckily:
 - (convex) quadratic objective function of (b, w)
 - linear constraints of (b, w)

—quadratic programming 二次規劃(線性規劃的進階版)

quadratic programming (QP):
 'easy' optimization problem

Quadratic Programming

optimal
$$(b, \mathbf{w}) = ?$$

$$\min_{b, \mathbf{w}} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w}$$
subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$, for $n = 1, 2, \dots, N$

optimal
$$\mathbf{u} \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathbf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

$$\text{subject to} \quad \mathbf{a}_m^T \mathbf{u} \geq c_m,$$

$$\mathsf{min}_{\mathbf{u}} \quad \mathbf{u} = \mathbf{u}^T \mathbf{Q} \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

$$\mathsf{subject to} \quad \mathbf{a}_m^T \mathbf{u} \leq c_m,$$

$$\mathsf{month of } \mathbf{u} = \mathbf{u}$$

因為objective function裡面我們只注重w向量

objective function:
$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$$
; $\mathbf{Q} = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}$; $\mathbf{p} = \mathbf{0}_{d+1}$ constraints: $\mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$; $\mathbf{c}_n = 1$; $M = N$

SVM with general QP solver: easy if you've read the manual :-)

SVM with QP Solver

Linear Hard-Margin SVM Algorithm

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_d^T \\ \mathbf{0}_d & \mathbf{I}_d \end{bmatrix}; \mathbf{p} = \mathbf{0}_{d+1}; \mathbf{a}_n^T = \mathbf{y}_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \& \mathbf{w}$ as g_{SVM}
 - hard-margin: nothing violate 'fat boundary'
 - linear: \mathbf{x}_n

$$z_n = \Phi(x_n)$$
—remember? :-)

2 $\mathbf{a}_1^T = [1,0,0]$, $\mathbf{a}_2^T = [1,-2,-2]$, $\mathbf{a}_3^T = [-1,2,0]$

Fun Time

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , Q, \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

, $\mathbf{a}_{4}^{T} = [-1, 3, 0]$

1
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, 2, 2]$, $\mathbf{a}_3^T = [-1, 2, 0]$, $\mathbf{a}_4^T = [-1, 3, 0]$

3
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,2,2]$, $\mathbf{a}_3^T = [1,2,0]$, $\mathbf{a}_4^T = [1,3,0]$

4
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, -2, -2]$, $\mathbf{a}_3^T = [1, 2, 0]$, $\mathbf{a}_4^T = [1, 3, 0]$

Consider two negative examples with $\mathbf{x}_1 = (0,0)$ and $\mathbf{x}_2 = (2,2)$; two positive examples with $\mathbf{x}_3 = (2,0)$ and $\mathbf{x}_4 = (3,0)$, as shown on page 17 of the slides. Define \mathbf{u} , \mathbf{Q} , \mathbf{p} , c_n as those listed on page 20 of the slides. What are \mathbf{a}_n^T that need to be fed into the QP solver?

1
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, 2, 2]$, $\mathbf{a}_3^T = [-1, 2, 0]$

$$\mathbf{a}_{2}^{T} = [-1, 2, 2]$$

$$\mathbf{a}_{3}^{T} = [-1, 2, 0]$$

,
$$\mathbf{a}_4^T = [-1, 3, 0]$$

, $\mathbf{a}_4^T = [-1, 3, 0]$

2
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,-2,-2]$, $\mathbf{a}_3^T = [-1,2,0]$

3
$$\mathbf{a}_1^T = [1,0,0]$$
 , $\mathbf{a}_2^T = [1,2,2]$, $\mathbf{a}_3^T = [1,2,0]$

,
$$\mathbf{a}_4^T = [1, 3, 0]$$

4
$$\mathbf{a}_1^T = [-1, 0, 0]$$

4
$$\mathbf{a}_1^T = [-1, 0, 0]$$
 , $\mathbf{a}_2^T = [-1, -2, -2]$, $\mathbf{a}_3^T = [1, 2, 0]$

,
$$\mathbf{a}_4^T = [1, 3, 0]$$

Reference Answer: (4)

We need
$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{x}_n^T \end{bmatrix}$$
.

Why Large-Margin Hyperplane?

為什麼SVM(長得胖胖的線)會做得好?有沒有理論上的保證?

 $\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$
subject to $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1 \text{ for all } n$

	minimize	constraint
regularization	<i>E</i> in	$\mathbf{w}^T \mathbf{w} \leq C$
SVM	$\mathbf{w}^T \mathbf{w}$	$E_{\rm in}=0$ [and more]

SVM (large-margin hyperplane): 'weight-decay regularization' within $E_{in} = 0$

到頭來,SVM也是一種regularization

Large-Margin Restricts Dichotomies

consider 'large-margin algorithm' \mathcal{A}_{ρ} :

either returns g with margin(g) $\geq \rho$ (if exists), or 0 otherwise

\mathcal{A}_0 : like PLA \Longrightarrow shatter 'general' 3 inputs

$A_{1.126}$: more strict than SVM \Longrightarrow cannot shatter any 3 inputs

我要找出 比1.126還 要胖的線

fewer dichotomies ⇒ smaller 'VC dim.' ⇒ better generalization

VC Dimension of Large-Margin Algorithm

fewer dichotomies \Longrightarrow smaller 'VC dim.' considers $d_{\text{VC}}(\mathcal{A}_{\rho})$ [data-dependent, need more than VC] instead of $d_{\text{VC}}(\mathcal{H})$ [data-independent, covered by VC]

$d_{ extsf{vc}}(\mathcal{A}_{ ho})$ when \mathcal{X} = unit circle in \mathbb{R}^2

- ho=0: just perceptrons ($d_{
 m VC}=3$)
- $\rho > \frac{\sqrt{3}}{2}$: cannot shatter any 3 inputs $(d_{VC} < 3)$
 - —some inputs must be of **distance** $\leq \sqrt{3}$

因為單位原上相異的三點,至少有兩點的距離會小於根號三(正三角形的關係),所以這種總沒有可能

generally, when \mathcal{X} in radius-R hyperball:

$$d_{VC}(A_{\rho}) \leq \min\left(\frac{R^2}{\rho^2}, d\right) + 1 \leq \underbrace{d+1}$$

 ${\mathcal G}_{
m VC}({
m p})$ 怎個式子告訴我們,透過對線胖瘦的設定,我們可以把 ${
m VC}({
m p})$

Benefits of Large-Margin Hyperplanes

	large-margin hyperplanes	hyperplanes	hyperplanes + feature transform Φ
#	even fewer	not many	many
boundary	simple	simple	sophisticated

- not many good, for d_{VC} and generalization
- sophisticated good, for possibly better E_{in}

a new possibility: non-linear SVM		
large-margin		
	hyperplanes	
	+ numerous feature transform Φ	
#	not many	
boundary	sophisticated	

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho = \frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z} = \mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\| \leq 1$. What is the upper bound of $d_{VC}(\mathcal{A}_{\rho})$ when calculated by

- $\min\left(\frac{R^2}{\rho^2},d\right)+1$?
 - **1** 5
 - **2** 17
 - **3** 1126
 - 4 1127

Consider running the 'large-margin algorithm' \mathcal{A}_{ρ} with $\rho=\frac{1}{4}$ on a \mathcal{Z} -space such that $\mathbf{z}=\mathbf{\Phi}(\mathbf{x})$ is of 1126 dimensions (excluding z_0) and $\|\mathbf{z}\|\leq 1$. What is the upper bound of $d_{\text{VC}}(\mathcal{A}_{\rho})$ when calculated by $\min\left(\frac{R^2}{\rho^2},d\right)+1$?

- **①** 5
- **2** 17
- 3 1126
- 4 1127

Reference Answer: (2)

By the description, d = 1126 and R = 1. So the upper bound is simply 17.

Summary

① Embedding Numerous Features: Kernel Models 泛指所有使用kernal方法轉換non-linear的model

Lecture 1: Linear Support Vector Machine

- Course Introduction
 - from foundations to techniques
- Large-Margin Separating Hyperplane intuitively more robust against noise
- Standard Large-Margin Problem

minimize 'length of w' at special separating scale

- Support Vector Machine
 - 'easy' via quadratic programming
- Reasons behind Large-Margin Hyperplane fewer dichotomies and better generalization
- next: solving non-linear Support Vector Machine
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models