(광양시) 전기자동차 충전소 최적입지선정

2020. 10. 31

조수경

분석 개요

분석 목적

- 광양시는 전기차 수요 증가1)로 인한 전기차 충전소 추가 설치가 필요하며, 적극적인 지원 사업 1)을 하고 있음
- 광양시 지역특성을 반영한 객관적인 최적의 충전소 입지선정지수 개발 및 이를 통한 충전소 최적화 모델 구축

분석 프로세스

Exploratory Data Analysis

- 제공받은 데이터 중 **광양시 지역** 특성 파악이 가능한 요소 선택
- ✓ 01.충전기설치현황, 03.자동차 등록현황, 06.전기자동차 보급현황, 08. 격자 별 인구 현황, 11.시간대별 추정 교통량, 12.혼잡빈도강도, 13.혼잡시간강도, 10.상세 도로망, 14.광양시 소유지정보, 20. 행정경계

충전소 입지선정지수 개발

- 광양시 지역특성 요소 추출
 - ✓ (정규화) 인구, 7시 교통량, 15시 교통량, 혼잡빈도강도, 혼잡시간강도
- 기존 급속/ 완속 충전소 위치와 광양시 지역특성간 **연관성 분석**
 - ✓ 선형회귀분석
- 연관성 분석 바탕 충전소 입지선정
 지수 도출

최적화 문제 정의 및 해결

- 최적화 모델 선정
- ✓ Maximal Covering Location Problem 3)
- ✓ 목적함수: 입지선정지수를 최대화하는 충전소 위치 선정
- 최적화 모델 solver
- ✓ 오픈소스 solver인 Coin-OR-CBC
- 최적 입지 도출

분석 결과

충전소 입지선정지수 정의

- 급속 충전소 입지선정지수: FS_w
- 완속 충전소 입지선정지수: SS_w

급속/ 완속 충전소 최적화 위치 도출

- 최적의 충전소 각 20개 도출
- 위치 위도 경도 csv 결과물 생성

- 1) 별첨1 광양시 전기자동차 등록대수는 2017년에 비해 연평균 19.3% 증가함 (데이터: 06.전기차보급현황(연도별,읍면동별))
- 2) 출처: http://www.newspim.com/news/view/20200519000760
- 3) Church, Richard, and Charles ReVelle. "The maximal covering location problem." Papers of the Regional Science Association. Vol. 32. No. 1. Springer-Verlag, 1974.

분석 및 결과

인구 분포 분석

☑ 데이터

• 08. 격자별인구현황(100X100)

☑ 시각화

- 인구수에 따라 색이 다르게 시각화
 - 초록색: 인구가 많음, 검정색: 적음

- 100X100 그리드의 중심을 **기준 Point**로 정의
 - 기준 Point는 추후 예비 후보지, 입지선정지수 할당의 기준이 됨
- 중마동에 인구가 가장 많이 분포하며 이는 주거지
 역으로 기대
- 완속 충전소는 충전 속도가 급속 충전소보다 느린
 만큼 주거지역에 설치 하는 것이 효과적이라 판단
- 완속충전소는 인구를 고려한 중마동 일대에 설치 하는 것이 효과적이라 기대

자동차 등록대수 분석

☑ 데이터

• 03. 자동차등록현황 (100X100)

☑ 시각화

- 차량등록 수에 따라 색이 다르게 시각화
 - 초록색: 차량이 많이 등록됨, 검정색: 적음

- 중마동과 금호동에 자동차 등록이 많이 됨
- 자동차 등록 위치는 세대 위치와 비슷하므로 자동
 차 등록대수가 많은 곳에 완속충전소를 세우는 것이 효과적일것으로 판단
- 중마동과 금호동에 완속충전소를 설치하는 것이 효과적일 것으로 기대

전기 자동차 등록대수 분석

☑ 데이터

- 06. 전기차보급현황(연도별, 읍면동별)
- 20. 광양시 행정경계(읍면동)

☑ 분석 방법

- 06. 데이터에서 전기차 보급현황을 연도별로 정리
- 06. 데이터에서 연도별로 총 합을 계산, CAGR 도출
- 20.데이터의 geometry와 06. 데이터를 결합

- 2020년에는 광양읍, 중마동에 가장 많이 전기자동차가 등록 되었으므로 해당 지역에 충전소를 설치하는 것이 효과적일 것으로 기대
- 전기자동차 등록대수는 연 평균 19.30% 증가 해 왔으며, 이
 는 추후 더 많은 충전소 설치가 필요함을 시사

	ADM_DR_NM	2017	2018	2019	2020	Α
0	광양읍	17	1	44	40	
1	중마동	17	8	27	26	
2	금호동	5	0	9	9	
3	광영동	3	0	6	3	
4	옥룡면	3	0	3	5	
5	옥곡면	3	0	2	3	
6	진월면	1	0	2	2	
7	진상면	1	0	2	2	
8	봉강면	0	0	4	0	
9	골약동	2	1	1	0	
10	태인동	1	0	0	0	
11	다압면 광양시 전	0 기자동	0 차 등록	0 루대수	0	

교통량 분석 (1)

☑ 데이터

- 10. 상세도로망
- 11. 평일 일별 시간대별 추정교통량

☑ 시각화

- 붉은색: 좁은 길, 노란색: 넓은 도로
- 선의 굵기: 혼잡 빈도

☑ 분석 방법

- 전기자동차는 승용차만을 고려한다고 가정
- 교통량: 07시 (주거시간) 의 승용차 교통량

☑ 시사점

• 7시에 교통량이 많은 곳은 주거지역으로 간주하였으며, 중마동, 마동은 주거지역일 것으로 기대

교통량 분석 (2)

☑ 데이터

- 10. 상세도로망
- 11. 평일_일별_시간대별_추정교통량

☑ 시각화

- 붉은색: 좁은 길, 노란색: 넓은 도로
- 선의 굵기: 혼잡 빈도

☑ 분석 방법

- 전기자동차는 승용차만을 고려한다고 가정
- 교통량: 15시 (업무시간)의 승용차 교통량

- 15시에 교통량이 많은 곳은 상업지역 혹은 차량이 가장 많이 지나는 중심 도로 간주하였으며, 광양읍 은 업무 중심 지역일 것으로 기대
- 급속 충전소는 업무지역 설치가 효과적이라 판단

혼잡빈도강도 분석

☑ 데이터

- 10. 상세도로망
- 12. 평일_전일_혼잡빈도강도

☑ 시각화

- 붉은색: 좁은 길, 노란색: 넓은 도로
- 선의 굵기: 혼잡 빈도

☑ 분석 방법

- 혼잡빈도강도합: 양방향의 혼잡빈도강도 합
- 정규화도로폭: width변수를 이용하여 정규화

☑ 시사점

• 태인동, 진월면, 광양읍, 중마동에 차량 흐름이 많음

혼잡시간강도 분석

☑ 데이터

- 10. 상세도로망
- 13. 평일_전일_혼잡시간강도

☑ 시각화

- 붉은색: 좁은 길, 노란색: 넓은 도로
- 선의 굵기: 혼잡 시간

☑ 분석 방법

- 혼잡시간강도합: 양방향의 혼잡시간강도
- 정규화도로폭: width변수를 이용하여 정규화

☑ 시사점

• 태인동, 중마동, 광양읍에 차량 흐름이 많음

급속충전소 설치가능 장소

☑ 데이터

• 14. 소유지정보

☑ 분석 방법

- 급속충전소 설치 가능 장소 필터링
 - 소유구분 코드: 국유지, 시/군 선택
 - 지목코드: 임야, 염전, 도로, 철도 용지, 제방, 하 천 제외
- 설치가능장소에 포함되는 **기준 point** 추출

지역특성 요소 추출 (1)

☑ 기준 Point 생성

- 08. 격자별인구현황(100X100) 기준으로 central point 계산, 기준 Point 생성
- 기준 Point 마다 인구 현황 할당

지역특성 요소 추출 (2)

☑ LineString 관련 요소, 기준 Point에 할당

- LineString 정보에 buffer를 적용, 도로 근방 약 50 m에 포함되는 기준 point에 LineString 정보 할당
- 할당된 정보: 02시 교통량, 15시 교통량, 혼잡빈도강도, 혼잡시간강도

지역특성 요소 추출 (3)

☑ Polygon 관련 요소, 기준 Point에 할당

- Polygon 정보에 포함되는 기준 point에 Polygon 정보 할당
- 할당된 정보: 개발가능 유무, 자동차 등록대수, 전기자동차 등록대수, 급속/완속 충전소 cover 유무,
 - 기존 설치된 급속/완속 충전소의 위치를 확인, 근방 300m는 cover 가능하다고 가정
 - 기존 충전소가 cover가능 한 곳에는 후보지에서 제외

도출 방법

- ☑ 가정
 - 기존 충전소는 제시한 지역특성요소를 반영하여 설치 하였음
 - 충전소는 제시한 지역특성요소만을 고려함
- ☑ (광양시 지역특성 요소 추출) 지역특성요소를 정규화 하여 최종 데이터로 정제
 - 정규화 방법: 요소 값/ 요소의 최대값
 - 지역특성 요소

(정규화) 인구 현황 07시 교통량 15시 교통량 혼잡빈도강도 혼잡시간강도 자동차 등록대수 전기자동차 등록대수

- ☑ (상관관계 분석) 선형회귀분석 (Linear regression)을 이용하여 지역특성과 기존 충전소 관계 분석
 - 선형회귀분석: 종속 변수 (Y)와 한 개 이상의 독립 변수 (X)와의 선형 상관 관계를 모델링
 - 특징: 종속변수와 독립변수는 인과관계가 아닌 상관관계이다.
- ☑ (입지선정지수 도출) 선형회귀분석 결과를 가중치로 급속/ 완속 최종 지수 도출

상관관계 분석

☑ 선형회귀분석 (Linear regression)

Formulation

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_i X_i$$

- Y_i 를 설명하는 X_i 와의 상관관계인 β_i 를 선형 회귀로 학습
- X = 인구 현황, 07시 교통량, 15시 교통량, 혼잡빈도강도, 혼잡시간강도, 자동차 등록대수, 전기자동차 등록대수
- Y = 각 기준 point의 급속/완속 충전소 cover 유무

☑ 결과

(정규화)	급속 충전소	완속 충전소
인구 현황	0.041	1.23
07시 교통량	-0.008	0.078
15시 교통량	0.103	0.01
혼잡빈도강도	0.73	-0.09
혼잡시간강도	-0.32	0.74
자동차 등록대수	0.045	0.21
전기자동차 등록대수	0.008	0.0066
Intersept	-0.0002	0.0066

입지선정지수

☑ 선형회귀분석 시사점

• 기존 급속충전소는 혼잡빈도강도가 높은 곳에, 완속 충전소는 인구 현황이 높은 곳에 설치되어 있으며, 이는 상식적으로 유의미한 결과라 생각됨

☑ 입지선정지수

- 데이터를 기반하여 지역특성을 충전소에 맞게 적절한 가중치 부여하여 객관성 부여
- 급속/ 완속 입지선정 지수 = 정규화된 지역특성 X 급속/ 완속 선형회귀 coefficient 결과
 - 급속충전소 입지선정지수: w_FS, 완속충전소 입지선정지수: w_SS

최적화 문제 정의

■ Maximal Covering Location Problem (MCLP)

- MCLP는 최대지역커버문제로 Mixed Integer Linear Programming 문제
- 설비가 cover하는 수요 (covered demand)의 합을 최대화 하면서 K개 설비를 세울 위치를 선정하는 문제
- 가정
 - 설비의 위치가 수요 발생 지점으로부터 일정 거리 Residual 이내에 수요를 커버함.
 - 이때 거리 Residual은 커버리지 거리(covered distance) 라고 함
 - cover되지 못 한 수요는 서비스를 받지 못하는 수요가 아니라 서비스를 받긴 하지만 서비스 받는 설비로 부터의 거리가 커버리지 밖에 있어 만족할 만한 서비스 수준을 제공받지 못하는 수요를 의미

최적화 문제 정의

✓ Maximal Covering Location Problem (MCLP)

• Formulation 적용

Formulation $\max \sum_{i \in I} w_i y_i \dots (1)$ s.t. $y_i \leq \sum_{j \in N_i} x_j \qquad for \quad all \quad i \in I \dots (2)$ $\sum_{j \in J} x_j = K \dots (3)$ $x_j, y_i \in \{0, 1\} \qquad for \quad all \quad i \in I, j \in J$

Mathematical statement

- i : 수요 포인트 index
- j : 설비 후보지역 index
- -1: 수요 포인트 집합
- J: 설비 후보지역 집합
- K: 총 설치해야 하는 설비 개수
- -x:설비 후보 지역 중 위치 j에 설비가 설치되면 1, 그렇지 않으면 0
- y : 적어도 하나의 설비로 그 포인트가 커버가 되면 1, 그렇지 않으면 0
- -w: 입지선정지수

Describe

- -(1): 목적함수, 가중치 w인 수요 포인트를 최대한 많이 커버하게 해라
- -(2) : 수요포인트 i는 설비 후보 지역이 커버하는 거리안에서 적어도
- 하나 이상의 설비로 부터 커버가 된다.
- -(3) : 총 설치할 설비는 K개 이다.

- 급속 충전소
 - 설치 가능한 **기준point**만 추출하여 y에 부여
 - K= 20, 커버리지 거리: 500m, 후보 장소: 급속 충전소 입지선정지수가 가장 높은 5000개 point
- 완속 충전소
 - 모든 **기준point**를 y에 부여
 - K= 20, 커버리지 거리: 500m, 후보 장소: 완속 충전소 입지선정지수가 가장 높은 5000개 point

최적화 결과

☑ 급속 충전소

	lon	lat
0	127.589285	34.974015
1	127.579430	34.978530
2	127.600231	34.965890
3	127.583797	34.963197
4	127.590392	34.983933
5	127.611181	34.963175
6	127.611129	34.924400
7	127.599150	34.978516
8	127.594718	34.935235
9	127.593649	34.957780
10	127.630906	34.968566
11	127.604600	34.955967
12	127.603486	34.941540
13	127.575027	34.955989
14	127.581568	34.925325
15	127.582678	34.939753
16	127.584880	34.951474
17	127.560793	34.962309
18	127.594737	34.951467
19	127.692171	34.934218

- 기존 급속 충전소가 커버하고 있는 곳은 제외됨
- 주로 혼잡빈도강도가 높은 업무지역인 광양읍 위주로 추천

최적화 결과

☑ 완속 충전소

- 기존 완속 충전소 위치 위주로 추천하였으나 이는 기존 충전소가 현재 수요를 충족시키지 못하고 있음을 의미함
- 주로 인구 현황이 높은 주거 지역인 중마동 위주로 추천

결론

결과 유의성

☑ 급속 충전소와 완속 충전소의 최적와 위치는 상식적인 위치와 유사함

• 급속 충전소는 업무 지역 위주로, 완속 충전소는 주거단지 위주로 할당됨

데이터 활용성

☑ 주어진 데이터 중 충전소 입지선정과 관련된 풍부한 자료를 이용함

- 인구 현황, 교통량, 혼잡빈도강도, 혼잡시간강도, 자동차 등록대수, 전기자동차 등록대수 등을 활용
- 급속충전소의 경우 사유지 제외 뿐만 아니라 하천, 염전 등 사용할 수 없는 지형도 필터링하여 현실적

분석 창의성

☑ 충전소 설치를 위한 입지선정지수를 개발하고, 이를 활용한 최적화 문제를 세움

• 입지선정지수를 만들기 위해 선형회귀 분석을 사용하였으며, 이는 데이터 기반의 객관적인 지표

공공 활용성

☑ 모든 패키지는 오픈소스를 사용함

• Mixed Integer Programming을 풀기 위한 solver는 COIN-OR CBC로, 오픈소스 solver 중 가장 성능이 뛰어남

경제성

☑ 추가 충전소를 세울 때에 기존 모델을 그대로 사용할 수 있음

• 추후 충전소를 세울 때 별도의 분석 없이 K개수만 바꿔줌으로써 최적화된 후보지 도출 가능

발전 방향

- ☑ 분석 용이성을 위해 100X100 polygon 형태가 아닌 point로도 데이터 수집을 제안
- ☑ 현재 제안한 모델은 임의로 cover 가능한 거리를 가정하였으나 이를 실제 수요에 맞게 고도화 할 수 있음
- ☑ 추가적으로 다양한 정보를 입지선점지수에 반영한다면 최적화된 결론을 도출이 기대됨
 - 기존 전기 충전소 사용 로그, 전기 자세한 자동차 등록 위치 등

첨부1.

☑ 광양시 전기자동차 등록 대수 증가

- 광양시 전기자동차 등록대수는 2017년에 비해 연평균 19.3% 증가함
- 지속적인 성장세에 따라 충전소 추가 수요 기대

분석 소요 시간

☑ 분석 소요 시간

- 분석에는 총 1일 5시간 씩 20일 소요
- 제출 코드의 running time은 약 1시간 가량 소요됨
 - Part1: EDA (약 15분)
 - 제공받은 데이터 분석
 - 시각화 렌더링이 시간이 다소 소요
 - Part2: Optimization (약 45분)
 - 최적화에 필요한 데이터로 가공
 - Point마다 값 부여에 시간 다소 소요

감사합니다.

