Université de Montpellier - Faculté des Sciences

Année Universitaire 2023-2024

HAX506X - Théorie des probabilités

Examen terminal - 15/01/2024

Durée : 2h.

Les documents et appareils électroniques ne sont pas autorisés.

Dans tout l'examen, on se place sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercice 1 - Questions de cours

- 1. Soit $(A_n)_{n\in\mathbb{N}}$ une suite d'événements de \mathcal{F} . Donner la définition de $\limsup_{n\to\infty} A_n$.
- 2. Énoncer le lemme de Borel-Cantelli (les deux implications).
- 3. Énoncer la caractérisation de la convergence en loi via les fonctions de répartition.

EXERCICE 2

- 1. Calculer la fonction caractéristique d'une variable aléatoire
 - (a) de loi de Bernoulli,
 - (b) de loi binomiale,
 - (c) de loi de Poisson.
- 2. On considère une suite X_1, \ldots, X_n de variables aléatoires indépendantes et identiquement distribuées de loi de Bernoulli de paramètre $p \in [0,1]$ et on pose $S_n = X_1 + \cdots + X_n$. Déterminer la fonction caractéristique de S_n puis en déduire la loi de S_n .
- 3. Quelle est la limite au sens presque sûr de la suite $(S_n/n)_{n\geq 1}$? Justifier.
- 4. Soit $f:[0,1] \to \mathbb{R}$ une fonction continue. À l'aide des questions précédentes, déterminer la limite quand $n \to \infty$ de

$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} f\left(\frac{k}{n}\right).$$

Indication : on pourra remarquer que la quantité à étudier correspond à l'espérance d'une certaine variable aléatoire.

5. (**Bonus**) Déterminer la limite quand $n \to \infty$ de

$$\sum_{k=0}^{\infty} \frac{e^{-n} n^k}{k!} f\left(\frac{k}{n}\right).$$

où $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue bornée. On répètera la démarche des questions 2. à 4.

EXERCICE 3 Soit $(U_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de loi uniforme sur [0,1]. Pour tout $n\geq 1$, on pose $M_n=\max(U_1,\ldots,U_n)$.

- 1. Soit $n \geq 1$. Calculer $\mathbb{P}(M_n \leq t)$ pour tout $t \in \mathbb{R}$. En déduire la densité f_{M_n} de la variable aléatoire M_n .
- 2. Montrer que $(M_n)_{n\geq 1}$ converge en probabilité vers 1.
- 3. On souhaite établir la convergence presque sûre de $(M_n)_{n\geq 1}$ vers 1.
 - (a) Pour $k \geq 1$ fixé, montrer que la série $\sum_{n \geq 1} \mathbb{P}(|M_n 1| \geq 1/k)$ converge.
 - (b) En déduire que

$$\mathbb{P}(\forall N \ge 1, \exists n \ge N : |M_n - 1| \ge 1/k) = 0.$$

- (c) Montrer alors que $(M_n)_{n\geq 1}$ converge presque sûrement vers 1.
- 4. On souhaite à présent étudier la convergence en loi de la suite de variables aléatoires $(n(1-M_n))_{n>1}$.
 - (a) Soit $n \geq 1$ et $t \in \mathbb{R}$. Déterminer la fonction de répartition de la variable aléatoire $n(1-M_n)$.
 - (b) En déduire que $(n(1-M_n))_{n\geq 1}$ converge en loi vers une variable aléatoire à déterminer.