everything so far has been Y= F(X)

what if we have something like

X2 Y+Y-X2 +1=0

there isn't a may to express

Y explicitly in ferms of X.

This is an implicit equation

this can easily be made an explicate

 $Y = \frac{X_2 + 1}{X_2 + 1}$

what if We have something more complicated? eg

hav to find an explict equation

hon'de we take the derivative? De implicit defterentiation

 \mathbb{E}^{X} $Y^{2}=X$

differentiate both sides (take det)

 $\frac{J}{Jx} \left[Y^2 \right] = \frac{J}{Jx} \left[x \right]$

but ne know that Y=f(X) so

 $\frac{\partial}{\partial x} \left[\left(f(x) \right)^2 \right] = \frac{\partial}{\partial x} \left[x \right]$

 $Z\left(f(x)\right)f'(x) = 1$

 $ZY \frac{JY}{dX} = 1$

Solve for dy/dx

 $\frac{\partial Y}{\partial x} = \frac{\partial Y}{\partial x}$

Steps
1) differentiate both sides with respect to

2) solve for dydx

tind of Y3-Y+2X3-X=8

1P3

$$\frac{\partial}{\partial x} \left[Y^{3} - Y + 2X^{3} - X \right] = \frac{\partial}{\partial x} \left[X^{3} \right] - \frac{\partial}{\partial x} \left[X^{3} \right] + \frac{\partial}{\partial x} \left[X^{3} \right] - \frac{\partial}{\partial x}$$

$$\frac{\partial}{\partial x} \left[x^2 + 4^2 \right] = \frac{\partial}{\partial x} \left[47 \right]$$

$$\frac{\partial}{\partial x} \left[x^2 \right] + \frac{\partial}{\partial x} \left[y^2 \right] = 0$$

$$ZY \frac{\partial Y}{\partial x} = -ZX$$

$$\frac{\partial Y}{\partial x} = \frac{-2x}{2Y} = \frac{-x}{Y}$$

$$\frac{\partial Y}{\partial X}\Big|_{(1,\sqrt{3})} = -\frac{X}{(1)} = -\frac{(1)}{(\sqrt{3})} = -\frac{1}{\sqrt{3}}$$

means: evaluate the dominative dydx at the point (a,b)

#10

X = distance tanker > port

what to find
$$\frac{\partial z}{\partial t}$$

$$\frac{\partial [Z^2]}{\partial t} = \frac{\partial [X^2 + Y^2]}{\partial t}$$

$$27\frac{Jz}{Jt} = 2x\frac{Jx}{Jt} + 2y\frac{Jy}{Jt}$$

$$\frac{Z}{J+} = \chi \frac{Jx}{Jt} + \frac{1}{Jt} \frac{JY}{Jt}$$

$$2^2 = (30)^2 + (40)^2 = 2500$$
 $2 = 250$

$$50\frac{\partial^2}{\partial t} = (30)(20) + (40)(30) \Rightarrow \frac{\partial^2}{\partial t} = 36$$

	×				
£					
	# ·			,	
*					
					u u
				8	
				A.	a v
					E
				ă.	
				93.0	
			B 1		
				a	
		3- =			
(4 8					
	N.			3	
8			e "		
			¥		
	•	¥		- 	
	, K				
				<u>į</u>	T (m)
	100				
	9				
					iyi
		ee5	v .		
		i di si			