Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

f([], 0). f([H|T],S):-**f(T,S1)**,S1<H,!,S is H. f([_|T],S):-**f(T,S1)**,S is S1.

Rescrieți această definiție pentru a evita apelul recursiv <u>f(T,S)</u> în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Dându-se o listă formată din numere întregi, să se genereze lista submulţimilor cu **k** elemente în progresie aritmetică. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[1,5,2,9,3] și k=3 \Rightarrow [[1,2,3],[1,5,9],[1,3,5]] (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcție LISP care să aibă ca rezultat lista inițială din care au fost eliminați toți atomii numerici multipli de 3. Se va folosi o funcție MAP.
<u>Exemplu</u>
a) dacă lista este (1 (2 A (3 A)) (6)) => (1 (2 A (A)) NIL)
b) dacă lista este (1 (2 (C))) => (1 (2 (C)))