Казахская головная архитектурно-строительная академия АКТИВНЫЙ РАЗДАТОЧНЫЙ МАТЕРИАЛ

Дисциплина: «Архитектурная графика»	Факультет архитектуры
3 - кредита	второй семестр 2021-22 учебный год
Практическое занятие 3-4. Выполнение	Ассистент профессора
макетов объемных тел. Подготовка эскиза. Составление	Онищенко Юлия Владимировна
рациональной выкройки, вычерчивание основы,	
подготовка элементов, склеивание макета.	
<u>Упражнение 2</u> – «Конструирование объемной	
формы (платоновы тела, купола, оболочки)». Материал	
– бумага – 2 часа.	

Краткое содержание занятия

Многогранник - сложная фигура состоящая из множества граней.

Многогранник - (определение) геометрическое тело, ограниченное со всех сторон плоскими многоугольниками - гранями.

Стороны граней называются ребрами, а концы ребер - вершинами. По числу граней различают 4-гранники, 5-гранники и т.д. Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости каждой его грани.

Многогранник называется правильным, если его грани правильные многоугольники (т.е. такие, у которых все стороны и углы равны) и все многогранные углы при вершинах равны.

Многогранник в трехмерном пространстве (понятие многогранника) - совокупность конечного числа плоских многоугольников такая, что

- 1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);
- 2) от любого из многоугольников, составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого в свою очередь к смежному с ним, и т.д. Эти многоугольники называются гранями, их стороны ребрами, а их вершины вершинами многогранника.

Многогранники можно выделить в следующие группы:

- 1. Правильные многогранники (Платоновы тела)
- 2. Выпуклые однородные многогранники (Архимедовы тела)
- 3. Звёздчатые формы и соединения
- 4. Невыпуклые однородные многогранники (усечённые многогранники)
- 5. Призмы

Тетраэдр

Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, «хедра» - означает грань (тетраэдр – четырехгранник). Тетраэдр имеет следующие характеристики:

Тип грани – правильный треугольник;

Число сторон у грани – 3;

Общее число граней – 4;

Число рёбер примыкающих к вершине – 3;

Общее число вершин – 4;

Общее число рёбер – 6:

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Октаэдр

Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, «хедра» - означает грань (октаэдр – восьмигранник).

Октаэдр имеет следующие характеристики:

```
Тип грани – правильный треугольник;
```

Число сторон у грани – 3;

Общее число граней – 8;

Число рёбер примыкающих к вершине – 4;

Общее число вершин – 6;

Общее число рёбер – 12;

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Гексаэдр

(более привычное название - куб)

Древние греки дали многограннику имя по числу граней. «Гексо» означает шесть, «хедра» - означает грань (Гексаэдр – шестигранник).

Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел.

Гексаэдр имеет следующие характеристики:

Число сторон у грани – 4;

Общее число граней – 6;

Число рёбер примыкающих κ вершине — 3;

Общее число вершин – 8;

Общее число рёбер – 12;

Додекаэдр

Древние греки дали многограннику имя по числу граней. «Додека» означает двенадцать, «хедра» - означает грань (додекаэдр – двенадцатигранник).

Додекаэдр имеет следующие характеристики:

Тип грани – правильный пятиугольник;

Число сторон у грани -5;

Общее число граней – 12;

Число рёбер примыкающих к вершине – 3;

Общее число вершин – 20;

Обшее число рёбер – 30:

Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Икосаэдр

Древние греки дали многограннику имя по числу граней. «Икоси» означает двадцать, «хедра» - означает грань (Икосаэдр – двадцатигранник).

Икосаэдр имеет следующие характеристики:

Тип грани – правильный треугольник;

Число сторон у грани – 3;

Общее число граней – 20;

Число рёбер примыкающих к вершине -5;

Общее число вершин – 12;

Общее число рёбер – 30;

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Задание на СРО: разработка выкроек макетов объемных тел [6, с.12-18;7, с.11-27; 8, с.40-62]

Задание на СРОП: завершение упражнения «Конструирование объемной формы» [6, с.12-18;7, с.11-27; 8, с.40-62]

Контрольные вопросы:

- 1. Дайте определение многограннику
- 2. Назовите правильные многогранники

Тестовые задания на экзамен

\$\$\$Разрывание и разрезание это-

- \$ приемы работы с бумагой в макетировании
- \$ виды архитектурной отмывки
- \$ разновидности архитектурной линейной графики
- \$ основные приемы композиции

\$\$\$Сгибание и гофрирование это -

- \$ приемы работы с бумагой в макетировании
- \$ виды архитектурной отмывки
- \$ разновидности архитектурной линейной графики
- \$ основные приемы композиции

\$\$\$Сминание и скручивание это -

- \$ приемы работы с бумагой в макетировании
- \$ виды архитектурной отмывки
- \$ разновидности архитектурной линейной графики
- \$ основные приемы композиции

\$\$\$Способ склеивания макетов «в стык»

\$склеиваемые грани слегка сплющивают лезвием ножа, затем соединяют друг с другом с помощью клея

\$ склеиваемые грани соединяют друг с другом с помощью дополнительных припусков

\$ с помощью наклонных полных и неполных членений

\$ с помощью чертежных инструментов

\$\$\$Способ склеивания макетов с припусками для склеивания

\$ склеиваемые грани соединяют друг с другом с помощью дополнительных припусков

\$ склеиваемые грани слегка сплющивают лезвием ножа, затем соединяют друг с другом с помощью клея

\$ с помощью наклонных полных и неполных членений

\$ с помощью чертежных инструментов

\$\$\$Прежде, чем клеить макет геометрического тела необходимо выполнить

\$выкройку-развертку

\$ цветовую модель

\$ рабочий макет

\$ наброски, зарисовки

\$\$\$ Объемная форма это -

\$ модель, развитая по трем координатам (ширина, длинна и высота)

\$ чертеж на бумаге

\$ модель, развитая по двум координатам (ширина, длинна)

\$ модель, развитая по одной из трех координат

Глоссарий

$N_{\underline{0}}$	Русский	Казахский	Английский
1	Развертка	Жайма	Involute
2	Выкройка	Үлгі	Pattern
3	Макет	Макет	Layout
4	Многогранник	Көп қырлы	Polyhedron
5	Купол	Күмбез	Dome
6	Оболочка	Қабық	Shell
7	Резак	Кескіш	Cutter
8	Карандаш	Қарындаш	Pencil
9	Линейка	Сызғыш	Ruler

Список литературы

Основная литература

- 1. Баязитов Р.И., Игнатьева Н.В. Серия упражнений для приобретения начальных навыков макетирования (методические указания). Алматы, КазГАСА, 2011.
- 2. Баязитов Р.И., Объемно-пространственная и фронтальная композиция в макетировании (методические указания). Алматы: КазГАСА, 2012.
- 3. Стасюк Н.Г., Киселева Т.Ю., Орлова И.Г. Макетирование. Учебное пособие. М., 2010.
- 4. Рочегова Е.В., Барчугова Е.В. Основы архитектурной композиции. Курс виртуального моделирования. Издательский центр «Академия», 2010.

- 5. Баязитов Р.И., Изготовление макета индивидуального жилого дома (методические указания). Алматы: КазГАСА, 2009.
- 6. Абдрасилова Г.С. Макетирование. Методические указания. –Алматы: КазГАСА, 2000 26с.
- 7. Калмыкова Н.В. Максимова И.А. Макетирование. Учебное пособие. М., 2003

Дополнительная литература

- 1. Устин В.Б. Учебник дизайна. Композиция, методика, практика. М.Издательство «Астрель», 2009.
- 2. Абдрасилова Г.С. Сызықты сәулеттік графикадан жаттығулар. Метод. указания по дисциплине «Архитектурная графика и макетирование» (на каз. яз.) Алматы: КазГАСА, 2002.
- 3. Абдрасилова Г.С., Малыгина Т.С. Моделирование объемных форм в макетировании. Метод. указания по дисциплине «Архитектурная графика и макетирование».— Алматы: КазГАСА, 2001.