

множестве из n элементов) обозначают через C_n^m .

Вычислив число размещений из n по m, можно получить, что

$$A_n^m = C_n^m P_m, (4)$$

откуда

$$C_n^m = \frac{n!}{m!(n-m)!} \cdot V$$
 (5)

Эту формулу записывают также в виде

$$C_n^m = \frac{n(n-1)(n-2)...(n-m+1)}{1 \cdot 2 \cdot ... \cdot m}$$
 (6)

Для любых n и m ($0 \le m \le n$) верно равенство

$$C_n^m = C_n^{n-m} \,. \tag{7}$$

Действительно,

$$C_n^m = \frac{n!}{m!(n-m)!} = \frac{n!}{(n-m)!(n-(n-m))!} = C_n^{n-m}.$$

	AM 3	Pm	C ₃ ^m	
h-1	هر هر د الله على على على على على الله		=3,42,43 C3=3	g
	ر مع المعاردة المعار	(a ₁ ,a ₂)	مررمي ميراهع عامره	A3=6, P3=2, C3=3
ME3	(41,42,43) (41,43,43)			
	(a, a, a, a, (a)	\ _j—	(a1191)43	4 3=6
	$(a_3;a_1;a_2)$	7		P = 6

Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество заданного n-элементного множества.

Например, из множества $\{a, b, c, d\}$ можно составить следующие сочетания без повторений из трех элементов: $\{a, b, c\}$, $\{a, b, d\}$, $\{a, c, d\}$, $\{b, c, d\}$.

V

Количество сочетаний без повторений из n элементов по k элементов обозначается символом C_n^k (читается: «Число сочетаний из n по k» или «це из n по k», C — первая буква французского слова combination — сочетание). Как видим, $C_4^3 = 4$.

 Выясним, сколько всего можно составить сочетаний без повторений из п элементов по k. Для этого используем известные нам формулы числа размещений и перестановок.

Составление размещения без повторений из n элементов по k проведем в два этапа. Сначала выберем k разных элементов из заданного n-элементного множества, не учитывая порядок выбора этих элементов (то есть выберем k-элементное подмножество из n-элементного множества — сочетание без повторений из n-элементов по k). По нашему обозначению это можно сделать C_n^k способами. После этого полученное множество из k разных элементов упорядочим. Его можно упорядочить $P_k = k!$ способами. Получим размещения без повторений из n элементов по k. Следовательно, количество размещений без повторений из n элементов по k в k! раз больше числа сочетаний без повторений из n элементов

по k. То есть $A_n^k = C_n^k \cdot k!$. Отсюда $C_n^k = \frac{A_n^k}{k!}$. Учитывая, что по формуле (2)

$$A_n^k = \frac{n!}{(n-k)!}$$
, получаем:

$$C_n^k = \frac{n!}{k!(n-k)!} \quad \bigcirc$$
 (3)

Например, $C_4^3 = \frac{4!}{3!(4-3)!} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 1} = 4$, что совпадает со значением, полу-

Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в таблице 21

• 1) Поскольку
$$C_n^{n-k} = \frac{n!}{(n-k)! \cdot (n-(n-k))!} = \frac{n!}{(n-k)! \cdot k!} = C_n^k$$
, то

ченным выше.

Для того чтобы формулу (4) можно было использовать и при k=n, договорились считать, что $C_n^0=1$. Тогда по формуле (4) $C_n^n=C_n^0=1$.

Вычисление числа сочетаний без повторений с помощью треугольника Паскаля. Для вычисления числа сочетаний без повторений можно применять формулу (3): $C_n^k = \frac{n!}{k!(n-k)!}$, а можно последовательно вычислять соответствующие значения, пользуясь таким свойством:

$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}.$$
 (6)

BUHOM HOLOTOHA.

+ (apc + apq + acq + pcq)x + apcq $(x+a)(x+p)(x+c)(x+q) = x_{4} + (a+p+c)x_{5} + (ap+ac+pc)x + apc$ $(x+a)(x+p)(x+c)(x+q) = x_{7} + (a+p+c)x_{5} + (ap+ac+pc)x + apc$ $(x+a)(x+p)(x+c)(x+q) = x_{7} + (a+p+c)x_{5} + (ap+ac+pc)x + apc$ $(x+a)(x+p)(x+c)(x+q) = x_{7} + (a+p+c)x_{5} + (ap+ac+pc)x + apc$

$$= x^{N} + 5^{1} x^{N-\frac{1}{4}} 5^{x} x^{N-\frac{1}{4}} + \dots + 5^{N-1} x + 5^{N}$$

$$= x^{N} + 5^{1} x^{N-\frac{1}{4}} 5^{x} x^{N-\frac{1}{4}} + \dots + 5^{N-1} x + 5^{N}$$
(**)

The $S_1 = a_1 + a_2 + a_3 + ... + a_n - web-to chosenty Cn.$ $S_2 = a_1 a_2 + a_1 a_3 + ... + a_{n-1} a_n + a_{n-1} a_n - C_n$

$$S_{3} = \alpha_{1}\alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{3}\alpha_{1} + ... + \alpha_{1} \cdot 2^{\alpha_{1}} \cdot 1^{\alpha_{1}} \cdot 1^{\alpha_{$$

$$= C_{n}^{0} \times^{N} + C_{n}^{1} \alpha \times^{N-1} + C_{n}^{1} \alpha^{1} \times^{N-2} + C_{n}^{1} \alpha^{1} \times^{1} + C_{n}^{1$$

Бином Ньютона. Формулу

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n, (1)$$

справедливую при любом натуральном n, называют формулой бинома Hьютона или биномом Hьютона. Коэффициенты C_n^k в формуле (1) называют биномальными коэффициентами: (k+1)-е слагаемое суммы (1) считается k-м членом разложения и обозначается через T_k :

$$T_k = C_n^k a^{n-k} b^k, k = 0, 1, \dots n.$$
 (2)

D-K TTackana

$$N=0$$
 $N=1$
 $N=2$
 $N=3$
 $N=4$
 $N=5$
 $N=6$
 $N=6$
 $N=6$
 $N=6$
 $N=6$
 $N=7$
 $N=7$

