Autómatas en dos direcciones

Clase 10

IIC 2223

Prof. Cristian Riveros

¿cuánto se parece un autómata a un algoritmo?

¿cuáles son las diferencias?

- 1. Memoria.
- 2. "Movimiento" de la máquina.

En esta clase, veremos como extender autómatas con 2.

Outline

2DFA

2DFA vs DFA

Outline

2DFA

2DFA vs DFA

Definición

Un autómata finito determinista en 2 direcciones (2DFA) es una estructura:

$$\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_f)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- \blacksquare \vdash y \dashv son las marcas (simbolos) iniciales y finales.
- $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow Q \times \{\leftarrow, \rightarrow\}$ es la función parcial de transición.
- q₀ es el estado inicial.
- q_f es el estado final.

Ejemplo

Configuración de un 2DFA

Sea:

- Un 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_f)$.
- Una palabra $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Defina $a_0 = \vdash y \ a_{n+1} = \dashv tal$ que el input se define como:

$$a_0 a_1 \dots a_n a_{n+1} = \vdash \cdot w \cdot \dashv$$

Una configuración de A sobre w viene dado por un par:

$$(q,i) \in Q \times \{0,\ldots,n+1\}$$

- q es el estado actual del autómata.
- *i* es la **posición actual** de la cabeza lectora.

Configuración de un 2DFA

Sea:

- Un 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_f)$.
- Una palabra $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Se define la relación de siguiente configuración $\stackrel{\mathcal{A}}{\longmapsto}$ de \mathcal{A} sobre w como:

$$(p,i) \stackrel{\mathcal{A}}{\longmapsto} (q,j)$$

tal que:

- Si $\delta(p, a_i) = (q, \rightarrow)$, entonces $(p, i) \stackrel{\mathcal{A}}{\longmapsto} (q, i + 1)$.
- Si $\delta(p, a_i) = (q, \leftarrow)$, entonces $(p, i) \stackrel{\mathcal{A}}{\longmapsto} (q, i 1)$.

¿cómo ejecuto mi 2DFA?

Sea:

- Un 2DFA $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_f)$.
- El input $w = a_1 a_2 \dots a_n \in \Sigma^*$.

Una ejecución (o run) ρ de $\mathcal A$ sobre w es una secuencia de configuraciones:

$$\rho:(p_0,i_0)\to(p_1,i_1)\to\ldots\to(p_m,i_m)$$

- $p_0 = q_0 \text{ y } i_0 = 0.$
- $\bullet (p_j,i_j) \stackrel{\mathcal{A}}{\longmapsto} (p_{j+1},i_{j+1}) \quad \forall \ j \in [0,m-1]$

Una ejecución ρ de \mathcal{A} sobre w es de aceptación si:

$$p_m = q_f$$
 y $i_m = n + 1$

Lenguaje aceptado por un 2DFA

Sea un autómata $\mathcal{A} = (Q, \Sigma, \vdash, \dashv, \delta, q_0, q_f)$ y $w \in \Sigma^*$.

Definiciones

- **A** acepta w si hay una ejecución de \mathcal{A} sobre w que es de aceptación.
- El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Un 2DFA puede parar por error o NO parar nunca!

¿cuál es la ejecución de este autómata?

Ejemplo

Outline

2DFA

2DFA vs DFA

2DFA vs lenguajes regulares

Para todo lenguaje regular L existe un 2DFA A:

$$L = \mathcal{L}(\mathcal{A})$$

En otras palabras, DFA \subseteq 2DFA.

¿són los 2DFA mas poderosos que los DFA?

Demostraremos que NO!

"Cada vez que ${\cal A}$ cruce de w a u en el estado p,

 ${\cal A}$ cruzará de regreso en el estado q."

jeste comportamiento solo depende de u y no de w!

Para cada $u \in \Sigma^*$ definimos la función $T_u : Q \cup \{\bullet\} \to Q \cup \{\bot\}$ tal que:

- $T_u(p) = q$ ssi desde (p, |u|) cruza en la config. (q, |u| + 1).
- $T_u(p) = \bot$ ssi desde (p, |u|) nunca cruza de u.
- $T_u(\bullet) = q$ ssi desde $(q_0, 0)$ cruza por 1era vez con (q, |u| + 1).
- $T_u(\bullet) = \bot$ ssi desde $(q_0, 0)$ nunca cruza de u.

Suponga ahora que tenemos una palabra v tal que:

$$T_v = T_u$$

Entonces, v es **indistinguible** de u según $\mathcal A$

En otras palabras, $u \cdot w \in \mathcal{L}(\mathcal{A}) \iff v \cdot w \in \mathcal{L}(\mathcal{A})$ para todo $w \in \Sigma^*$.

Recordatorio: Teorema de Myhill-Nerode

Sea $L \subseteq \Sigma^*$ cualquier lenguaje.

Definición (Relación de Myhill-Nerode)

Una relación de equivalencia \equiv en Σ^* es de Myhill-Nerode para L si:

1. ≡ es una congruencia por la derecha:

$$u \equiv v$$
 entonces $u \cdot w \equiv v \cdot w$ $\forall w \in \Sigma^*$

2. \equiv refina L.

$$u \equiv v$$
 entonces $(u \in L \iff v \in L)$

3. El número de clases de equivalencia de \equiv es finita.

Recordatorio: Teorema de Myhill-Nerode

Definición

Dado un lenguaje $L \subseteq \Sigma^*$, se define la relación de equivalencia \equiv_L como:

$$u \equiv_L v$$
 si, y solo si, $(u \cdot w \in L \Leftrightarrow v \cdot w \in L)$ $\forall w \in \Sigma^*$

Teorema de Myhill-Nerode

Sea $L \subseteq \Sigma^*$. Las siguientes propiedades son equivalentes:

- 1. L es regular.
- 2. existe una relación de Myhill-Nerode para L.
- 3. la relación \equiv_L tiene una cantidad **finita** de clases de equivalencia.

1. La relación $\equiv_{\mathcal{T}}$ entre palabras en Σ^* tal que:

$$u \equiv_T v$$
 si, y solo si, $T_u = T_v$

es una relación de equivalencia.

¿por qué?

- 2. \equiv_T es una congruencia por la derecha. $(u \equiv_T v \Rightarrow \forall w. \ u \cdot w \equiv_T v \cdot w)$ ¿por qué?
- 3. $\equiv_{\mathcal{T}}$ refina a $\mathcal{L}(\mathcal{A})$. $(u \equiv_{\mathcal{T}} v \Rightarrow (u \in L \Leftrightarrow v \in L))$ ¿por qué?
- 4. La relación \equiv_T tiene una cantidad finita de clases de equivalencia.

$$T: Q \cup \{\bullet\} \to Q \cup \{\bot\}$$

¿cuántas funciones T existen?

 $\equiv_{\mathcal{L}(\mathcal{A})}$ tiene una cantidad finita de clases de equivalencia.

2DFA aceptan solo lenguajes regulares

Teorema

Para todo 2DFA \mathcal{A} existe un DFA \mathcal{A}' tal que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$$

Por lo tanto, $2DFA \equiv DFA$.

¿cómo construimos el DFA?

- Usando el Teorema de Myhill-Nerode.
- **Construyendolo** a partir de las funciones T_u .

Ejercicio