

Workshop 2: Aqwa Basics – Hydrodynamic Response

Introduction to Hydrodynamic Analysis with ANSYS Aqwa

ANSYS Release 19.2

Hydrodynamic Response (HR) Simulation

The goal of this workshop is to create a mooring system for a ship and run a series of static and dynamic response analyses

Open the Ship project previously created in Workshop 1

Adding the Static HR System

Drag and drop the Hydrodynamic Response to the WB Project Schematic while sharing the solution from Hydrodynamic Diffraction. This will become the static stability solution to be undertaken before running dynamic simulations

Adding a Dynamic HR System

A second HR system is added that will be for the time history dynamic analysis

Drag and drop the new HR system on the Solution cell of the existing HR system, and double click on the Setup cell. Note that we can re-name the systems by RMB clicking on the system header and selecting Rename

Solution

Results

Time History Response

Hvdrodynamic Diffraction

Solution

Results

Solution

Results

Static Response

Set up Static Stability Response System

In the project tree, under analysis setting of Hydrodynamic Response (B4) check that the analysis type is set as Stability Analysis (this is the default when the upstream system is a Hydrodynamic Diffraction analysis)

This will allow us to determine the starting position of the system to be used for the Time Domain analysis.

Rename this Analysis system to Static Stability by selecting the Hydrodynamic Response item in the tree and changing the Name in the Details panel.

Set up Time Response System

In the project tree, under analysis setting of Hydrodynamic response (C4), rename this Analysis system to Time Domain Response.

Note that the Computation Type of Time Response Analysis is the default when the upstream system is a Static Stability Analysis.

We will set the Analysis Type at a later stage

Add Fairlead Connection Points

Add four fairlead locations for the mooring system Select Geometry > ShipHull > Add > Connection Point Enter X,Y,Z coordinates in details panel as below (in global system!)

Add 3 other connection points (can use Duplicate as an alternative)

- Point 2 20.0, -14.2, 8.0
- Point 3 180.0, 16.0, 8.0
- Point 4 180.0, -16.0, 8.0

Rename Connection Points as Fairlead 1 through 4

January 18, 2019

Note the Nodal Motions Output is set to Yes by default. This allows relevant results to be reported at these points

Add Anchor Fixed Points

Add four anchor locations for the mooring system

Select Model > Geometry > Add > Fixed Point

Enter X,Y,Z coordinates in details panel as below

Repeat for other 3 fixed points

- Point 2 -1000,-1000,-500
- Point 3 1000,1000,-500
- Point 4 1000,-1000,-500

Rename Fixed Points as Anchor 1 through 4

Set Up Mooring Line Properties

We are going to use composite catenary lines for the mooring system. These are lines made up of one or more segments (or sections) with varying properties e.g. chain/wire/chain

Select Connections > Connection Data > Insert Connection Data > Catenary Section.

Note we can also define intermediate buoys and/or clump weights for catenary lines.

Mooring Line Properties

Provide data for Mass/Unit Length, Equivalent Cross Sectional Area, Stiffness, Maximum Tension and Equivalent Diameter as below.

Note we can also define bending stiffness, non-linear axial properties

Repeat for two additional sections (use the Duplicate function to save time)

Mooring Line Connections

To add a line select Connections > Insert Connection > Cable

Ensure mooring line is named Cable 1

Choose Non-Linear Catenary for Type and Fixed Point & Structure for Connectivity

Mooring Line Connections

We need to define end connection points and the segments along the line, plus some data defining the possible dZ range of the fairlead (will be explained in a later lecture).

Click on cell adjacent to Fixed Point and select Anchor 1 (Fixed) from drop down menu.

Click on cell adjacent to End Connection Point and select Fairlead 1 (ShipHull) from drop down menu.

The composition of the line is now defined

- Section allocation
- Line length

Sections are defined from the *anchor* location up to the *fairlead*

Section 1 type should be set to Catenary Section 1, length 400 m

Repeat for sections 2 and 3 as shown

Finally set the dZ Ranges under Cable Properties to 10m

Set up the remaining 3 mooring lines with identical properties but different connection points

Use the Duplicate option to reduce data repetition

Project

Model (A3, B3, C3)

⊡..... Connections

⊕ ShipHull
Anchor 1

Note that as you construct the line configuration the line properties are reported in a window called Catenary Cable Definition Data

The Joint 1-2 etc refers to connection data such as clump weights or buoys

	Section 1	Joint 1-2	Section 2	Joint 2-3	Section 3
Туре	Catenary Section 1	None	Catenary Section 2	None	Catenary Section 3
Section Length (m)	400	-	500	-	700
Mass / Unit Length (kg/m)	150	-	120	-	170
Equivalent CSA (m²)	0.01	-	0.01	-	0.01
Stiffness, EA (N)	600000000	-	900000000	-	600000000
Maximum Tension (N)	7500000	-	7500000	-	7500000
Bending Stiffness, EI (N.m²)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k1 (N)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k2 (N)	0.0	-	0.0	-	0.0
Axial Stiffness Coefficient k3 (N)	0.0	-	0.0	-	0.0
Added Mass Coefficient	1	-	1	-	1
Transverse Drag Coefficient	1	-	1	-	1
Equivalent Diameter (m)	0.1	-	0.1	-	0.1
Longitudinal Drag Coefficient	0.025	-	0.025	-	0.025
Structural Mass (kg)	-	-	-	-	-
Displaced Mass of Water (kg)	-	-	-	-	-
Added Mass (kg)	-	-	-	-	-
Coefficient of Drag * Area (m²)	-	-	-	-	-

Select Connections in the Outline to see the final mooring configuration

January 18, 2019

Stability Analysis Options

Utilize all default settings.

Note that the initial position utilizes the definition based upon the defined geometry. If required this can be overridden by inserting a Starting Position under the Static Stability entry in the Outline. For this exercise leave the Starting Position as Based on Geometry.

De	Details						
▣	Details of Analysis Settings						
П	Name	Analysis Settings					
П	Computation Type	Stability Analysis					
П	Parallel Processing	Program Controlled					
П	Use Cable Dynamics	Yes					
⊟	Equilibrium Specific Options						
П	Output Global Stiffness Matrix	Yes					
П	Require Convergence for Subse	Yes					
П	Starting Position	Based on Geometry					
⊟	Iteration and Convergence L	imits					
П	Maximum Number of Iterations	500					
П	Movement Limitations per Iterati	Program Controlled					
П	Maximum Error in Equilibrium Po	Program Controlled					
⊟	Common Analysis Options						
П	Use Linear Stiffness Matrix to C	No					
П	Apply Drift Force with Multi-Dire	No					
⊟	Output File Options						
П	Axis System for Joint Reactions	Fixed Reference Axes					
	Data List	Yes					
	Element Properties	No					

Time Response Simulation Options

Go to Time Response > Analysis Settings

Set Analysis Type to Regular Wave Response

Set Use Cable Dynamics to Yes

Set Convolution to Yes

Set Duration to 180 seconds

Define the Environment

RMB on Time Domain Response > Insert > Regular Wave

Set Wave Type to Airy Wave Theory

Set Direction to 90 degrees

Set Amplitude to 1 m

Set Period to 10 s

Run the analysis by RMB clicking on Solution and Solve

NOTE: Solving the Time Response analysis will automatically solve the upstream stability analysis to compute the correct starting condition.

Check the Solution

Go to Static Stability, RMB click on Solution then Insert Result >Structure Position >Actual Response.

Scope the result to Global X, Y, Z motions.

Following the same process insert Whole Cable Forces, Tension.

Evaluate all results

Check the Stability Solution

As you can see, the equilibrium position can be quite far away from the geometry position.

IMPORTANT:

The Stability analysis in an important step of a dynamic analysis and becomes a MUST when a Frequency statistical analysis is undertaken!!!

January 18, 2019

Check the Time Response Solution

Under the Time Response Analysis Solution add a graph item - Insert Result > Structure Position > Actual Response

Select Global Z

Evaluate All Results

D	etails	9				
▣	Details of Structure Position, Actu	ual Response				
L	Name	Structure Position, Actual Response				
L	Presentation Method	Line				
L	Axes Selection	Distance/Rotation vs Time				
⊫	Line A	<u>'</u>				
L	Structure	ShipHull				
L	Туре	Structure Position				
L	SubType	Actual Response				
L	Component	Global Z				
L	Reference Point	Center of Gravity (ShipHull)				
L	Motion Relative To	Origin of Fixed Reference Axes (FRA)				
L	Abscissa Position of Minimum	0.0 s				
L	Abscissa Position of Maximum	0.0 s				
L	Minimum Value	0.0 m				
	Maximum Value	0.0 m				
⊫	Line B					
	Structure	Undefined				

Check the Time Response Solution

Under the Time Response Solution add a second graph item - Insert Result > Cable Forces > Whole Cable Forces

Select Tension for Cables 1 and 4

Evaluate All Results

Details	ı						
Details of Cable Forces, Whole Cable Forces							
Name	Cable Forces, Whole Cable Forces						
Presentation Method	Line						
Axes Selection	Force/Moment vs Time						
Export CSV File	Select CSV File						
Line A							
Structure	ShipHull						
Туре	Cable Forces						
SubType	Whole Cable Forces						
Component	Tension						
Connection	Cable 1						
Abscissa Position of Minimum	172.7 s						
Abscissa Position of Maximum	15.8 s						
Minimum Value	1090140.625 N						
Maximum Value	1327067.375 N						
Line B							
Structure	ShipHull						
Туре	Cable Forces						
SubType	Whole Cable Forces						
Component	Tension						
Connection	Cable 4						
Abscissa Position of Minimum	21.2 s						
Abscissa Position of Maximum	178.8 s						
Minimum Value	1199565.5 N						
Maximum Value	1511682.625 N						
Line C							
Structure	Undefined						

Irregular Wave Simulation

RMB Regular Wave and Suppress

Under Time Domain Response in the Analysis Settings panel change the analysis type to Irregular Wave Response

Set Irregular Wave Characteristics

When simulating an irregular wave the stability analysis takes account of the mean drift forces to calculate the starting position to be used in time and frequency domain analysis.

RMB on Static Stability and insert a Pierson-Moskowitz Wave Spectra

Set Irregular Wave Characteristics

Set Direction to 90 degrees

Set Seed Definition to Manual Definition and Seed to 10001 (this is used to generate the random phase relationships of the wave components)

Leave Start and Finish Frequency Definition as program Controlled (they will depend upon the Significant Wave Height and Zero Crossing Period defined below)

Set Significant Wave Height to 2.5 m

Set Zero Crossing Period to 10 s

Add Global X and Global Y to the existing Structure Position > Actual Response graph

Propagate Ocean Environment

RMB on the Irregular Wave 1 and then Propagate.

This command will automatically propagate the selected environmental condition to a downstream analysis.

NOTE: this command creates a link between each of the generated environments, adjustments to the first definition will be propagated to any linked system.

If needed the user can break the link with a simple click. Time Domain Response (C4)

√M Analysis Settings √ Regular Wave 1

Break Link

Set Analysis Settings and Solve

Set Duration to 1200 s

Run the analysis by clicking on Solution and Solve

After solving review the results

Details		ф
Details	s of Analysis Settings	
Name		Analysis Settings
Comput	tation Type	Time Response Analysis
Parallel	Processing	Program Controlled
Use Ca	able Dynamics	Yes
Time F	Response Specific Opt	ions
Analysi	s Type	Irregular Wave Response
Star	t Time	0.0 s
Time	e Step	0.1 s
Dun	ation	1200 s
Numbe	r of Steps	12001
Finish 1	Time	1200 s
Starting	Position	Determined by Upstream System
X-Posit	ion for Wave Surface Ele	0.0 m
Y-Posit	ion for Wave Surface Ele	0.0 m
Comm	on Analysis Options	
Convol	ution	Yes
Call Ro	utine "user_force"	No
Use Lin	near Starting Conditions	No
Use Lin	near Stiffness Matrix to C	No
Accoun	nt for Current Phase Shift	Yes
Use Wi	heeler Stretching	Yes
Outpu	t File Options	
Axis Sy	stem for Joint Reactions	Fixed Reference Axes
Data Lis	st	Yes
Elemen	t Properties	No

Nodal Results

The reference point for nodal results, such as position, velocity and acceleration, defaults to the center of gravity for the structure.

It is possible to also report results at other points defined as a connection point. Note that the connection point does not have to be associated with Connections data, it can be defined just to allow nodal results information.

Insert a new Structure Position > Actual Response in the Time Domain Response analysis Solution, set the results selection as shown. Evaluate All Results. e A: Structure Position, Actual Response - Global Y (ShipHull - Center of Gravity relative to Origin of Fixed Reference Axes (FRA)) (m

Details	
Details of Structure Position	, Actual Response
Name	Structure Position, Actual Response
Presentation Method	Line
Axes Selection	Distance/Rotation vs Time
Export CSV File	Select CSV File
Line A	
Structure	ShipHull
Туре	Structure Position
SubType	Actual Response
Component	Global Y
Reference Point	Center of Gravity (ShipHull)
Motion Relative To	Origin of Fixed Reference Axes (FRA)
Abscissa Position of Minimum	534.6 s
Abscissa Position of Maximum	1183.3 s
Minimum Value	5.585 m
Maximum Value	21.145 m
Line B	
Structure	ShipHull
Туре	Structure Position
SubType	Actual Response
Component	Global Y
Reference Point	Fairlead 1
Motion Relative To	Origin of Fixed Reference Axes (FRA)
Abscissa Position of Minimum	534.5 s
Abscissa Position of Maximum	1183.2 s
Minimum Value	19.302 m
Maximum Value	34.429 m

Modal Analysis

We can also check the natural modes for the floating system, including the effects of any external connections

Under the Static Stability Solution Insert Result > Natural Modes, then select **Evaluate All Results**

Natural Modes

As Natural Modes depend on frequency-dependent Added Mass and Damping, a direct calculation of the eigenvalues and the eigenmodes of a single matrix is not possible. Aqwa scans a range of input frequencies and solves the eigenvalue problem based on Added Mass and Damping values for the current scanning frequency until the input frequency equals the response frequency.

The Mode Match Indicator graphically shows the difference between the scanning frequency and the response frequency. The local minimums correspond to the natural frequencies of the system.

Natural Modes

Natural Modes

Found 6 modes

Information related to a given mode is reported, together with the level of critical damping associated with that mode. The associated modal amplitudes provide an indicator of the modal direction, and can be animated by clicking on the Animate button. The primary mode is in sway.

Mode 1 of 6 Modes found Stable Frequency: 0.01250 rad/s Scroll back to graph Damping: 4.36550 % of Critical Damping Animate Structure: ShipHull Amplitudes X: 0.27280 m Y: 9.98612 m 0.00028 m RX: 0.25728° RY: 0.00190° RZ: 0.36996° Phases X: -11.14154° Y: 0.0000° Z: -177.21461° RX: 2.23812° RY: 1.51425° 3.42615°

Frequency Domain Analysis

Go back to the WB project page and add a new Hydrodynamic Response analysis system downstream of the Stability (Static Response) system.

Frequency Domain Analysis Setting

In Aqwa rename the new Hydrodynamic Response to Spectral Response.

Go to Analysis Settings Panel and set the following analysis options:

Computation Type: Frequency Statistical Analysis

Analysis Type: Wave and Drift Frequencies

Note that the panel is showing an error (red highlight) for the Spectrum Sub-Direction of Output for RAOs. This is because at this point we do not have a wave spectrum defined.

Frequency Domain Environment definition

From the Static Stability analysis propagate the Irregular Wave 1.

RMB click on the Spectral Response and solve the model.

January 18, 2019

Frequency Domain Results

RMB click on Solution (D5) and Insert Result > Frequency Domain Statistics

Specify the required results:

Motions

Cable Forces for cables 1 and 4

Results are automatically updated

Frequency Domain Results

Frequency Domain Statistic Results

п_		ame:	CIL		
P 3	PT IN	ame.	- N	mH	

Motions: at Center of Gravity, in Local Structure Axes

Position	X:	0.60373 m	Y:	17.02285 m Z:	1.30412 m RX:	0.59084°	RY:	0.08046° RZ:	0.72341°
Velocity	X:	0.01141 m/s	Y:	0.50304 m/s Z:	0.71186 m/s RX:	0.23654 °/s	RY:	0.06089 °/s RZ:	0.01459 °/s
Acceleration	X:	0.00597 m/s ²	Y:	0.26426 m/s ² Z:	0.43230 m/s ² RX:	0.17819 °/s²	RY:	0.04804 °/s2 RZ:	0.00414 °/s²

Cable Tensions:

Cable 1	Fairlead 1 (ShipHull):	80688.65625 N	Anchor 1 (Fixed):	63596.10547 N
Cable 4	Fairlead 4 (ShipHull):	97212.17188 N	Anchor 4 (Fixed):	80769.79688 N

