1 Cálculo da raiz quadrada (+++)

Os Babilônios utilizavam um algoritmo para aproximar uma raiz quadrada de um número qualquer, da seguinte maneira:

Dado um número n, para calcular $r = \sqrt{n}$ assume-se uma aproximação inicial $r_0 = 1$ e calcula-se r_k para $k = 1, ..., \infty$ até que $r_k^2 \approx n$. O algoritmo deve realizar a aproximação enquanto $|n - r_k^2| > e$. O método babilônico é dado pela seguinte equação:

$$r_k = \frac{r_{k-1} + \frac{n}{r_{k-1}}}{2} \tag{1}$$

Entrada

O programa deve ler um número **double** n, cuja raiz quadrada deseja-se obter, e o erro e que deverá ser considerado pelo algoritmo.

Saída

A saída deve apresentar cada iteração do algoritmo, sendo cada linha composta pelo valor aproximado da raiz quadrada de *n* com 9 casas decimais, seguido do erro, também com 9 casas decimais.

Exemplo

Entrada			
2			
0.00001			
Saída			
r:	1.500000000,	err:	0.250000000
r:	1.416666667,	err:	0.006944444
r:	1.414215686,	err:	0.000006007