Homework 6

(Due: March 7th 2025 at 8 pm)

1. For any matrix $A \in \mathbb{R}^{n \times n}$ show that

$$\dim(\text{span}\{A^k \mid k \ge 1\}) = \dim(\text{span}\{I, A, A^2, \dots, A^k, \dots\}) \le n.$$

Hint: Show that for any $k \geq 0$, A^k is a linear combination of I, \ldots, A^{n-1} .

- 2. Show that if A and B are similar, then not only the eigenvalues of the two matrices are the same, but also the algebraic and geometric multiplicity of them are the same for the two matrices.
- 3. A computational problem.
 - (a) Find the eigenvalues of the matrix:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

- (b) Show that A does not have an eigenvalue decomposition.
- (c) Provide the Jordan Decomposition of A.
- 4. Properties of symmetric matrices. Let $A = A' \in \mathbb{R}^{n \times n}$ and $B = B' \in \mathbb{R}^{n \times n}$. Prove or provide a counterexample to each of the following statements.
 - (a) If $A \succeq 0$, then $X'AX \succeq 0$ for every $X \in \mathbb{R}^{n \times k}$.
 - (b) If $A \succeq 0$ and $B \succeq 0$, then $\operatorname{trace}(AB) \geq 0$.
 - (c) If $A \succeq 0$, then $A + B \succeq B$.
 - (d) If $A \succeq B$, then $-B \succeq -A$.
 - (e) If $A \succeq I$, then $I \succeq A^{-1}$.
 - (f) If $A \succeq B \succ 0$, then $B^{-1} \succeq A^{-1} \succ 0$.
 - (g) If $A \succeq B \succeq 0$, then $A^2 \succeq B^2$.
- 5. Induced matrix norms. We define the induced p-norm of $A \in \mathbb{C}^{m \times n}$ for $p \in [1, \infty]$ as

$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}.$$

When p = 2, $||A||_2$ is called the *spectral norm* of the matrix. One can view such norms as the maximum attenuation of the corresponding linear mapping on the unit ball.

1

(a) Show that $||A||_p$ satisfies the axioms of matrix norms.

(b) Show that

$$||A||_1 = \max_j \sum_i |A_{ij}|.$$

(c) Show that

$$||A||_{\infty} = \max_{i} \sum_{j} |A_{ij}| = ||A^*||_{1}.$$

- 6. Properties of the spectral norm.
 - (a) Show that $||A^*A|| = ||A||^2$.
 - (b) Show that the spectral norm is unitarily invariant, namely, $\|UAV\| = \|A\|$ for any unitary matrices U and V.
 - (c) Show that

$$\left\| \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right\| = \max(\|A\|, \|B\|).$$