1 Efficient Frontier

Let a portfolio of N assets be π , whose expected return is μ and the co-variance is Σ .

1.1 Efficient Frontier with 3 Assets

According to the paper, the expected return of the portfolio, $E = \sum_{i=1}^{N} \pi_i \mu_i = \boldsymbol{\pi}^t \boldsymbol{\mu}$. The risk is analogous to the variance of the returns, i.e. $V = \sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_{ij} \pi_i \pi_j = \boldsymbol{\pi}^t \boldsymbol{\Sigma} \boldsymbol{\pi}$.

Given $\mu = m$ and $\Sigma = C$ for a 3 assets, we can generate 100 random portfolios, where each portfolio $\pi = (\pi_1 \pi_2 \pi_3)^t$ s.t. $\mathbf{1}^t \pi = 1$ by y=randn(3,1); y=y/norm(y,1). Then we can calculate E - V for each of the portfolios by $E=y^+*m$; $V=\text{sqrt}(y^+*C*y)$.

Figure 1: Efficient Portfolio

Finally I make the scatter plot and on the same figure I plot the efficient frontier using estimateFrontier function. As expected all the random portfolios were on the correct one side of the frontier.

1.2 Efficient Frontier with 2 Assets

To prepare three 2 asset porfolios, we remove the data points that are not necessary, i.e. that has the third asset. First I plotted random returns generated by the 2 asset mean and variance using mvnrnd. As can be noticed from Figure 2, asset 2 and 3 are almost uncorrelated, asset 1 and 2 are negatively correlated, asset 1 and 3 are positively correlated.

Figure 2: Distribution of 2 Asset Returns

As done previously with all three assets, I generate 100 random portfolios for each of the three 2 asset combinations and plot the E-V scatters along with the efficient frontiers.

Notice that in case of 2 asset portfolios, every portfolio construction is efficient and the frontier has a bend, i.e. risk increases for the lowest returns.

Figure 3: Efficient Frontier for 2 Asset Portfolios

1.3 Use of linprog in NaiveMV

In order to calculate the efficient frontier, we need two extreme points - maximum return for a portfolio regardless of the risk and minimum risk regardless of the return. For the first case, we have $E = \max_w(\pi^t \mu)$ s.t. $\mathbf{1}^t \pi = 1$ which gives the portfolio that maximises the return regardless of the risk. We can then calculate E - V for this portfolio, thus giving us the top corner of the E - V graphs here. This is a linear equation of π . Matlab's linprog function can solve linear equation can solve such equations of the following form -

$$\min_{x}(f^{t}x)s.t.\begin{cases} A.x \leq b \\ A_{eq}.x = b_{eq} \\ lb \leq x \leq ub \end{cases}$$
 f=-ERet; A=[]; b=[]; Aeq=ones(1,N); beq=1; lb=0; ub=1

However, to calculate the portfolio that minimises the risk we need to solve a quadratic equation of π , $mim(\pi^t\Sigma\pi)$ s.t. $\mathbf{1}^t\pi=1$. In this case we use the quadprog function. Finally, we choose N expected returns between the two extreme points and calculate the portfolio that minimises the risk while achieving the chosen expected returns. Thus the efficient portfolio is created.

1.4 Efficient Frontier: NaiveMV vs CVX

