Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Material based on the book Probabilistic Robotics (Thrun, Burgard, Fox) [PR]; Chapter 4.3, 8.3

Part of the material is based on lectures from Cyrill Stachniss

Summary

- Introduction to Particle Filters
- Particle Filter [Chapter 4.3]
- Monte Carlo Localization [Chapter 8.3]

Intro to particle filters and Monte Carlo Localization

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization ♦ Monte Carlo Localization: based on particle filters, non parametric

Key ideas for particle filters

- ♦ Goal: represent arbitrary distributions
- \diamondsuit Use samples to represent the distribution

Weighted samples

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization ♦ Can reduce number of samples by using weights

Sample based representation of a generic function, source [PR]

♦ Set of weighted samples

$$\mathcal{X} = \{\langle x^{[j]}, \omega^{[j]} \rangle\}_{j=1,\dots,M}$$

 \diamondsuit Samples represent the posterior

$$P(x) = \sum_{j=1}^{M} \omega^{[j]} \delta_{x^{[j]}}(x)$$

Generating samples

- Key point: we can efficiently sample from some distributions
 - Uniform U(a, b): use pseudo-random generator $x \leftarrow rand(a, b)$ Gaussian $\mathcal{N}(0, \sigma)$: $x = \frac{1}{2} \sum_{i=1}^{12} rand(-\sigma, \sigma)$

Samples drawn from a Gaussian distribution, source [PR]

- \Diamond Goal: generate samples from a target distribution f
- \diamondsuit we can use a different distribution g called **proposal**
- ♦ account for difference between the two distributions by using weights
 - $\omega = \omega = \frac{f(x)}{g(x)}$
- \Diamond pre-condition: $f(x) > 0 \rightarrow g(x) > 0$

Importance Sampling: Visual example

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Visual example of importance sampling, source $\left[\mathsf{PR} \right]$

Particle Filter for Dynamic State Estimation

- ♦ Recursive Bayes Filter
- ♦ Non-parametric approach
 - Models the distribution by samples
- **♦ Key Ideas**
 - Prediction: drawing samples from the proposal
 - Correction: weighting by the ration between target and proposal
- ♦ The more samples the better the estimate

♦ 1. Sample particles using proposal distribution

$$x_t^{[j]} \sim proposal(x_t|\dots)$$

♦ 2. Compute the importance weights

$$\omega_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})}$$

 \diamondsuit 3. Resampling: draw sample *i* with probability $\omega_t^{[i]}$ and repeat *M* times

Particle Filter Algorithm, pseudo-code

```
Algorithm Particle_filter(\mathcal{X}_{t-1}, u_t, z_t):
                     \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset
3:
                     for m=1 to M do
                           sample x_{t}^{[m]} \sim p(x_{t} \mid u_{t}, x_{t-1}^{[m]})
4:
                           w_{t}^{[m]} = p(z_{t} \mid x_{t}^{[m]})
5:
                           \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle
6:
7:
                     endfor
8:
                     for m=1 to M do
                           draw i with probability \propto w_{\star}^{[i]}
9:
                           add x_t^{[i]} to \mathcal{X}_t
10:
11:
                     endfor
12:
                     return \mathcal{X}_t
```

Monte Carlo Localization, overview

Monte Carlo Localization in office environment

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Evolution of particles while robot moves in the environment, source $\left[\mathsf{PR}\right]$

- ♦ Each particle is a pose hypothesis
- ♦ Proposal is motion model

$$x_t^{[m]} \sim P(x_t | u_t, x_{t-1}^{[m]})$$

♦ Correction performed through observation model

$$\omega_t^{[m]} = \frac{target}{proposal} \propto P(z_t|x_t^{[m]}, m)$$

MCL: correction

MCL: correction

MCL: Prediction and Resampling

MCL: Prediction and Resampling

MCL: Second Correction

MCL: Second Correction

MCL: Second Prediction and Resampling

MCL: Second Prediction and Resampling

MCL in Action

Resampling

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

- ♦ Goal: Maintain informative particles, avoid wasting memory
- ♦ Informally: replace unlikely samples by more likely ones
- ♦ Survival of the fittest
- ♦ "Trick" to avoid that many samples cover unlikely states (waste of memory)
- \diamondsuit Draw sample i with probability $\omega_t^{[i]}$

Need to resample to focus on more likely area, source [PR]

Resampling

Roulette wheel, binary search $(O(n \log n))$, source [PR] slides

Stochastic universal sampling, systematic resampling, linear time (O(n)), low variance, source [PR] slides

Issues with roulette sampling

- ♦ Roulette wheel is easy to understand and implement but is sub-optimal
- ♦ Can lead to bad estimate (high variance) in specific situations
- \Diamond What happens to roulette sampling if all samples have same weight ?

Low variance resampling

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

 \diamondsuit 1. Draw a random number between 0 and $1/M \diamondsuit$ 2. Pick M-1 particles at distance 1/M

Low variance resampling, pseudocode

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Efficient implementation of the low variance sampling procedure, source [PR]

```
Algorithm Low_variance_sampler(\mathcal{X}_t, \mathcal{W}_t):
                  \bar{\mathcal{X}}_t = \emptyset
                  r = \operatorname{rand}(0; M^{-1})
                  c = w_{\star}^{[1]}
5:
                 i = 1
6:
                  for m = 1 to M do
                       u = r + (m-1) \cdot M^{-1}
8:
                       while u > c
9:
                            i = i + 1
                            c = c + w_{\star}^{[i]}
10:
11:
                       endwhile
                       add x_t^{[i]} to \bar{\mathcal{X}}_t
12:
13:
                  endfor
14:
                  return \bar{\mathcal{X}}_t
```

Low variance resampling, features

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

- \Diamond Faster than roulette wheel: O(M) vs. $O(M \log M)$
- ♦ Most important: performs resampling that keeps the samples in case of same weights

Always use low variance resampling!

Use of MCL for mobile robot localization

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

 \Diamond Rhino, Minerva, Albert (\approx 1998)

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Initialization

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Observation

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Resampling and motion update

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Observation

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Weight update

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Resampling

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Motion update

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Observation

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Weight update

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Resampling

Courtesy of Burgard, Fox, Thrun

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Motion update

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Observation

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Weight update

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Resampling

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

Motion update

MCL in ICE Lab

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

PF for localization

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

♦ Cons

- Problematic in high dimensional spaces
- problematic in situation with high uncertainty
- Particle depletion problem

♦ Pros

- Handle directly non Gaussian distributions
- Handle well data association ambiguities
- Can easily incorporate different sensing modalities
- Robust
- Easy to implement

Variants

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

- ♦ Real-time particle filters
 - Deal with data acquired at different frame rates
- ♦ Delayed state particle filters
 - Deal with delays in sensor data streams
- ♦ Rao-Blackwellized Particle Filters
 - Deal with high dimensional state spaces

Summary

Mobile Robotics, Localization: Particle Filters and Monte Carlo Localization

- ♦ Particle Filters: non-parametric recursive Bayes filters
- ♦ Belief is represented by a set of weighted samples
- ♦ Use proposal (motion model) to draw samples
- ♦ Use weight to correct (observation model)
- ♦ Particle filter for localization: Monte Carlo Localization
- ♦ Key point: design appropriate motion and observation models
- \diamondsuit MCL is the gold standard for indoor mobile robot localization