1

1

3

1

09	9b	An oil rig, S, is 3 km offshore. A power station, P, is on the shore. A cable is to be				
		laid from P to S. It costs \$1000 per kilometres to lay the cable along the shore and				
		\$2600 per kilometre to lay the cable underwater from the shore to S. The point R is				
		the point on the shore closest to S , and the distance PR is 5 km. The point Q is on				
		the shore, at a distance of x km from R , as shown in the diagram.				

(i) Find the total cost of laying the cable in a straight line from *P* to *R* and then in a straight line from *R* to *S*.

- (ii) Find the cost of laying the cable in a straight line from P to S.
- (iii) Let C be the total cost of laying the cable in a straight line from C to C, and then in a straight line from C to C. Show that $C = 1000(5 - x + 2.6\sqrt{x^2 + 9})$.
- (iv) Find the minimum cost of laying the cable.
- (v) New technology means that the cost of laying the cable underwater can be reduced to \$1100 per kilometre. Determine the path for laying the cable in order to minimise the cost in this case.

(i)
$$Cost = 5 \times 1000 + 3 \times 2600$$

= 12 800

∴ the cost is \$12 800

(ii)
$$PS = \sqrt{5^2 + 3^2}$$
, by Pythag.
 $= \sqrt{34}$
 $Cost = \sqrt{34} \times 2600$
 $= 15 \ 160.47493 \dots$
 $= 15 \ 160.47$
 \therefore the cost is \$15 \ 160.47

(iii) Length of PQ = (5 - x) km

Cost of
$$PQ$$
 cable = $1000(5 - x)$
Length of $QS = \sqrt{x^2 + 3^2}$, by Pythag.
= $\sqrt{x^2 + 9}$ km

Cost of QS cable =
$$2600 \sqrt{x^2 + 9}$$

 $C = 1000(5 - x) + 2600 \sqrt{x^2 + 9}$

$$= 1000(5 - x + 2.6\sqrt{x^2 + 9})$$

(iv) C =
$$1000(5 - x + 2.6(x^2 + 9)^{\frac{1}{2}})$$

C' = $1000(-1 + 2.6.\frac{1}{2}(x^2 + 9)^{-\frac{1}{2}}.2x)$
= $1000(-1 + \frac{2.6x}{\sqrt{x^2 + 9}}) = 0$
 $\frac{2.6x}{\sqrt{x^2 + 9}} = 1$

$$2.6x = \sqrt{x^2 + 9}$$

$$6.76x^2 = x^2 + 9$$

$$5.76x^2 = 9$$

$$x^2 = \frac{9}{5.76}$$

$$x = \frac{5}{4}$$

Check for minimum:

X	1.2	1.25	1.3
C'	ı	0	+

Subs x = 1.25 in C:

$$C = 1000(5 - 1.25) + 2600\sqrt{1.25^2 + 9}$$

= 12 200

: the minimum cost is \$12 200

(iv)
$$C' = 1000(-1 + \frac{1.1x}{\sqrt{x^2 + 9}}) = 0$$

$$\frac{1.1x}{\sqrt{x^2 + 9}} = 1$$

$$1.1x = \sqrt{x^2 + 9}$$

$$1.21x^2 = x^2 + 9$$

$$0.21x^2 = 9$$

$$x^2 = \frac{9}{0.21}$$

$$x = 6.55$$

But 0 < x < 5, so minimum at x = 5.

: minimum cost when cable from P to S.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

HSC Worked Solutions projectmaths.com.au

Board of Studies: Notes from the Marking Centre

(i) The most common errors in this part were: using the cost of \$1000 for both the shore and underwater component of the cost; using \$1000 for the underwater component and \$2600 for the shore component; and not adding together the two components of the cost.

- (ii) Most candidates calculated the distance QS using Pythagoras' Theorem, although some successfully used the cosine rule. The most common errors in this part were arithmetic errors, for example $\sqrt{5^2 + 3^2} = \sqrt{36} = 6$, and using \$1000 as the cost.
- (iii) Better responses to this part derived the expression for C in a logical sequence, explaining each step. The most common error in this part was to begin with the given result merely expanded without any explanations.
- (iv) Common errors in this part included: incorrect use of the chain rule; algebraic errors, including simplifying $\sqrt{x^2 + 9}$ to x + 3; not testing the nature of the stationary point at all; not finding the second derivative correctly if using the second derivative test; and, if using the first derivative test, just writing _/ in the table without testing any values.
- (v) Better responses to this part substituted 1.1 for 2.6 in their working for part (iv). Common errors included: not using calculus at all but rather calculating C(0), C(5) and $C(\frac{5}{4})$ for the revised expression for the cost C and taking the smallest of these; successfully calculating that the new minimum occurs at $x = \frac{30}{\sqrt{21}}$ and claiming this to be the new path; or being confused that the new minimum occurred at a value greater than 5 and crossing out work thinking it to be incorrect.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/