UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 2 SEMESTRE - 2022

LICENCIATURA EN MATEMÁTICA APLICADA

LÓGICA

Catedrático: Paulo Mejía

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

Índice

1	Álgebra booleana	1
	1.1 Enfoque axiomático de álgebra booleana	8
2	Grafos	10

1. Álgebra booleana

Clase: 05/07/2022

Definición 1. Sea A un conjunto $y \operatorname{Rel}(A) \subseteq A \times A$ una relación binaria definida en A. La $\operatorname{Rel}(A)$ es de orden parcial:

- 1. Reflexiva: $(x, x) \in \text{Rel}(A), \forall x \in A$.
- 2. Antisimetría: $(x, y) \in \text{Rel}(A) \land (y, x) \in \text{Rel}(A) \implies x = y$.
- 3. Transitiva: $(x, y) \in \text{Rel}(A) \land (y, z) \in \text{Rel}(A) \implies (x, z) \in \text{Rel}(A), \forall x, y, z \in A$.

Ejemplo 1. En \mathbb{Z}^+ , se define $(a,b) \in \mathbb{Z}^+ \iff a|b$.

Solución. Propiedades:

- Reflexiva: Sea $a \in \mathbb{Z}^+$. Como $a = 1 \cdot a \implies a | a \implies (a, a) \in \operatorname{Rel}(\mathbb{Z}^+)$
- Antisimetría: Sea $a, b \in \mathbb{Z}^+$. Si $(a, b) \in \text{Rel}(A)$ y $(b, a) \in \text{Rel}(A) \implies a|b$ y $b|a \implies \exists c \text{ y } b = ca \text{ y } \exists d \in \mathbb{Z}^+ \ni a = db \implies b = (cd)b \implies cd = 1 \implies c = 1 \land d = 1 \implies b = ca = 1 \cdot a = a.$
- Transitividad: Sea $a, b, c \in \mathbb{Z}^+$. Si $(a, b) \in \text{Rel}(A)$ y $(b, c) \in \text{Rel}(A) \implies a|b \wedge b|c \implies \exists e \in \mathbb{Z}^+ \ni b = ea$ y $\exists f \in \mathbb{Z}^+$ y c = fb. $\implies c = fb = f(ea) = (fe)a \implies a|c$.

NOTA. (A, \leq) . Conjunto ordenado y relación de orden.

$$a \le b \iff (a, b) \in \operatorname{Rel}(A)$$

Ejemplo 2. Sea $(P(A), \subseteq)$.

- $A = \{1, 2\} \ y \ B = \{1, 2, 3\}$
- P(A) = $\{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ y P(B) = $\{\emptyset, \{1\}, \{3\}\{1,2\}, \{1,3\}, \{2,3\}, \{2,3\}, \{1,2,3\}\}$. Nótese que en el potencia de B, $\{1\} \not\subseteq \{2,3\}$.

NOTA. a y b de A se dicen comparables si $a \le b$ o $b \le a$ (es lo mismo que $(a,b) \in \text{Rel}(A) \lor (b,a) \in \text{Rel}(A)$).

Clase: 07/07/2022

Teorema 1. Si (A, \leq) y (B, \leq') son conjuntos parcialmente ordenados, $(A \times B, \leq'')$ es también una relación de orden parcial.

$$(a,b) \leq'' (c,d) \iff \underbrace{a \leq c}_{\in A} \wedge \underbrace{b \leq' d}_{\in B}$$

Demostración. • Reflexividad. Como \leq y \leq ' son reflexivas \implies $a \leq a \land b \leq$ $b', \forall a \in A, \forall b \in B \implies (a, b) \leq$ " (a, b).

- Antisimetría. Sea $(a,b) \leq''(c,d) \wedge (c,d) \leq''(a,b) \implies (a \leq \land b \leq' d) \wedge (c \leq a \wedge d \leq' b)$ por definición $\leq'' \implies (a \leq c \wedge c \leq a) \wedge (b \leq' d \wedge d \leq' b) \implies a = c \wedge b = d$ por ser $\leq y \leq'$ antisimétricas.
- Transitividad. Sea $(a,b) \leq''(c,d) \wedge (c,d) \leq''(e,f) \implies (a \leq c \wedge b \leq' d) \wedge (c \leq e \wedge d \leq' f)$ por definción $\leq'' \implies (a \leq c \wedge c \leq e) \leq (b \leq' d \wedge d \leq' f) \implies (a \leq e) \wedge (b \leq' f)$ por transitividad de $\leq y \leq'$. $\implies (a,b) \leq''(e,f)$.

Investigar orden lexicográfico.

Ejemplo 3. Un ejemplo random de diagrama de Hasse.

Definición 2. Sea (A, \leq) . Un elemento $c \in A$ es una cota superior de $a \wedge b$ si $a \leq c \wedge b \leq c$.

Definición 3. Sea (A, \leq) . Un elemento $c \in A$ es una cota inferior de a y b si $c \leq a \land c \leq b$.

Definición 4. Un retículo es un conjunto parcialmente ordenado en el que cada elemento tiene un ínfimo que es la mayor cota inferior y un supremo que es la menor cota superior.

NOTA. Notación para ínfimo y supremo.

- $\bullet \ a \lor b = \sup(a, b)$
- $a \wedge b = \inf(a, b)$
- Sistema algebraico (A, \vee, \wedge) .

Teorema 2. Para cualquier a y b en un retículo (A, \leq) ,

- $(a \le a \lor b)$
- $(a \land b \le a)$

Demostración. Por la simple definición.

Teorema 3. Para cualesquiera a,b,c y d en un retículo (A,\leq) , si $a\leq b$ y $c\leq d$ entonces $a\vee c\leq b\vee d$ y $a\wedge c\leq b\wedge d$.

Demostración. Sea $a, b, c, d \in A$. Supóngase que: $a \le b$ y $c \le d$. Además, se sabe que $b \le b \lor d$ y $d \le b \lor d$ por la definición de supremo de b y d.

$$c \le a \lor c \lor d \le b \lor d$$
.

$$\implies a < b < b \lor d \ y \ c < d < b \lor d.$$

Clase: 12/07/2022

Teorema 4. Para cualesquiera a,b,c y d es un retículo (A, \leq) , si $a \leq b$ y $c \leq d$ $\implies (a \lor c \leq b \lor d)$ y $a \land c \leq b$ y d.

Demostración. Sean $a,b,c,d \in A$. Supóngase que $a \leq b$ y $c \leq d$. Además, $b \leq b \vee d$ y $d \leq b \vee d$ por definición de supremo de b y d. Luego, $a \leq b \vee d$ y $c \leq b \vee d$ por transitividad de \leq . Pero $a \vee c \leq b \vee d$ por ser la menor cota superior de a y c.

NOTA. $a < b := a \le b \ y \ a \ne b$.

Teorema 5. La operaciones de \vee y \wedge son conmutativas.

Demostración. Por definición de cota superior y unicidad v.

Teorema 6. Las operaciones \vee $y \wedge$ son asociativas.

Demostración. A demostrar: $a \lor (b \lor c) = (a \lor b) \lor c, \forall a, b, c \in A$.

- 1. $olimits_c(a \lor b) \lor c \le a \lor (b \lor c)$? Sean $a, b, c, d \in A$. Entonces por la definición de cota superior de $a \lor b \lor c$: $a \le a \lor (b \lor c) \lor (b \lor c) \le a \lor (b \lor c)$. Luego $a \le a \lor (b \lor c) \lor (c \lor c) \lor (c$
- 2. $ilde{a} \lor (b \lor c) \le (a \lor b) \lor c$? Lo mismo que el anterior.

Por antisimetría de los dos resultados, $a \lor (b \lor c) = (a \lor b) \lor c$.

Teorema 7. $\forall a \in A, a \lor a = a \ y \ a \land a = a.$

Demostración. Sean $a \in A$, por definición de supremo, $a \le a \lor a$. Además, $a \le a$ por ser reflexiva. Entonces, $a \le a \lor a$ por ser el supremo de $a \lor a$. Por ser \le antisimetrica, $a \lor a = a$.

Teorema 8. $\forall a, b \in A, a \lor (a \land b) = a \ y \ a \land (a \lor b) = a.$

Definición 5 (14). Un retículo distributivo si la operación \wedge se distribuye respecto de la operación \vee y la operación \vee se distribuye respecto de \wedge .

$$\forall a, b, c \in A, (a \land (b \lor c)) = (a \land b) \lor (a \land c)$$

Teorema 9. Si la operación \land es distributiva respecto a la operación \lor en un retículo, entonces la operación \lor es distributiva respecto a la operación \land y viceversa.

 $\textbf{\textit{Demostración.}} \ \ \text{Si} \ \ a \wedge (b \vee c) = (a \vee b) \vee (a \wedge c) \implies a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$ Sean $a,b,c,d \in A,$

Por hipótesis:

$$(a \vee b) \wedge (a \vee c) = [(a \vee b) \wedge b] \vee [(a \vee b) \wedge c]$$

Por conmutatividad de \wedge :

$$= a \wedge (a \wedge b)] \vee [c \wedge (a \vee b)]$$

Por teorema de absorción

$$= a \vee [c \wedge (a \vee b)]$$

Por hipóteses:

$$= a \vee [(c \wedge a) \vee (c \wedge b)]$$

Por conmutatividad de \wedge

$$= a \vee [(a \wedge c) \vee (b \wedge c)]$$

Por ser \vee asociativo:

$$= [a \vee (a \vee c)] \vee (b \wedge c)$$

Por teorema 8 de absorción:

$$= a \vee [b \wedge c]$$

Clase: 19/07/2022

Teorema 10. Sea (A, \leq) retículo con cota superior universal 1 y cota inferior universal 0. $\forall a \in A$,

$$a \lor 1 = 1$$

$$a \lor 0 = a$$

$$a \wedge 1 = a$$

$$a \wedge 0 = 0$$

Definición 6 (17). Sea (A, \leq) retículo con 0 y 1. $\forall a \in A$, un elemento b es complemento de a si cumple:

$$a \lor b = 1$$
 y $a \land b = 0$

Definición 7 (18). Un retículo se dice que es complementado si cada elemento en él tiene complemento.

Teorema 11. En un retículo distributivo, si un elemento tiene complemento.

Demostración. Sea $a, b, c \in A$, donde b y c son complementos de a. Es decir $a \lor b = 1$ y $a \land b = 0$; $a \lor c = 1$ y $a \land c = 0$.

$$b = b \wedge 1 \qquad \qquad \text{(por teorema 10)}$$

$$= b \wedge (a \vee c) \qquad \qquad \text{(por ser c complemento de a)}$$

$$= (b \wedge a) \vee (b \wedge c) \qquad \qquad \text{(por distributividad de \wedge respecto a \vee)}$$

$$= (a \wedge b) \vee (c \wedge b) \qquad \qquad \text{(por commutatividad de \wedge)}$$

$$= 0 \vee (c \wedge b) \qquad \qquad \text{(por ser b complemento de a)}$$

$$= (a \wedge c) \vee (c \wedge b) \qquad \qquad \text{(por ser c complemento de a)}$$

$$= (c \wedge a) \vee (c \wedge b) \qquad \qquad \text{(por commutatividad de \wedge)}$$

$$= c \wedge (a \vee b) \qquad \qquad \text{(por distributividad de \wedge resoecti de \vee)}$$

$$= c \wedge 1 \qquad \qquad \text{(por ser b complemento de a)}$$

$$= c \qquad \qquad \text{(por teorema 10)}$$

Definición 8 (19). Un retículo complementado y distribuido es un retículo booleano.

NOTA. $(A, \vee, \wedge, -)$ es llamada álgebra booleana.

Ejemplo 4. $(P(S), \subseteq)$ es un álgebra booleana.

Teorema 12. (Leyes de De Morgan). $\forall a, b \in A$, donde $(A, \vee, \wedge, -)$ es un álgebra booleana, se tiene:

1.
$$\overline{a \vee b} = \bar{a} \vee \bar{b}$$

2.
$$\overline{a \wedge b} = \overline{a} \vee \overline{b}$$

Lema 13. En un retículo distribuido, si $b \wedge \bar{c} = 0 \implies b \leq c$.

Lema 14. Sea $(A, \vee, \wedge, -)$ una álgebra booleana finita. Sea $b \in A$ con $b \neq 0$ $y \ a_1, a_2, \cdots, a_k$ átomos de A tales que $a_i \leq b$ para $i = 1, \cdots, k \implies b = a_1 \vee a_2 \vee \cdots \vee a_k$.

Lema 15. Sea $(A, \vee, \wedge, -)$ una álgebra booleana finita. Sea $b \in A$ con $b \neq 0$ $y \ a_1, a_2, \cdots, a_k$ átomos de \wedge tales que $a_i \leq b$ para $i = 1, \cdots, k \implies b = a_1 \vee a_2 \vee \cdots \vee a_k$ es la única forma de representar b como disyunción de átomos.

Teorema 16. Sea $(A, \vee, \wedge, -)$ un álgebra booleana finita y S es el conjunto de átomos. Entonces, $(A, \vee, \wedge, -)$ es isomorfa al sistema algebraico definido por el retículo $(P(S) \subseteq)$, $(P(S), \cup, \cap, -)$

Hasta aquí el corto. GG ez.

Clase: 19/07/2022

1.1. Enfoque axiomático de álgebra booleana

Definición 9. Sea B no vacío que contiene Z elementos especiales 0 (el cero como elemento neutro) y 1 (el uno o elemento unidad), sobre el cual se define, las operaciones binarias $+, \cdot$ y una operación unaria -. Entonces, $(B, +, \cdot, -, 0, 1)$ es un álgebra booleana.

- Leyes conmutativas:
 - $\forall x, y \in , x + y = y + v$
 - $\forall x, y \in B, x \cdot y = y \cdot x$
- Leyes distributivas
 - $\forall x, y \in B, x(y+z) = (x \cdot y) + (x \cdot z)$
 - $\forall x, y \in B, x + (y \cdot z) = (x + y)(x + z)$
- Leyes de identidad.
 - $\forall x \in B, x + 0 = x$
 - $\forall x \in B, x \cdot 1 = 0$
- Leyes de inversos.

Teorema 17. Teorema 17.

Demostración. Sea $x \in B$,

$$x=x+0$$
 ley de identidad $x=x+(x\cdot \overline{x})$ ley de inversos $x=(x+x)(x+\overline{x})$ ley distributiva respecto a $x=(x+x)\cdot 1$ ley de inversos $x=(x+x)$ ley de identidad

Teorema 18 (Principio de dualidad). Si s es un teorema relativo a un álgebra booleana y s puede demostrarse a partir de los axiomas de la definición del álgebra booleana y de otras propiedades obtenidas a partir de estos mismos axiomas, entonces también es teorema.

Teorema 19. Dado B un álgebra booleana, si $x, y \in B$, entonces:

1. Ley de dominancia.

a)
$$x \cdot 0 = 0$$

b)
$$x + 1 = 1$$

2. Ley de absorción.

a)
$$x \cdot (x+y) = x$$

b)
$$x + (x \cdot y) = x$$

3. Ley de cancelación.

a)
$$(x \cdot y = x \cdot z)$$
 y $(\overline{x} \cdot y) = \overline{x} \cdot z$ entonces $y = z$.

- 4. Ley de asociatividad.
- 5. Unicidad de inversos.

Definición 10 (24). asd

Teorema 20. La relación \leq es una relación de orden parcial.

Demostración. • Sea $x \in B$ como $x \cdot x = x$ por teorema 17, entonces $x \le x$ por definición 24.

- Sea $x, y \in B$ supóngase $x \le y$ y $y \le x$, entonces: $x \cdot y = x$ y $y \cdot x = y$ por def. 24. Luego, $x = x \cdot y = y \cdot x = y$ por ley de conmutatividad.
- Sea $x, y, z \in B$. Supóngase $x \le y$ y $y \le z$. Entonces, $x \cdot y = \underline{x}$ y $y \cdot z = y$. Luego, $x \cdot z = (x \cdot y) \cdot z = x \cdot (y \cdot z) = x \cdot y = x$ por asociatividad del \cdot y igualdades anteriores con lo cual $x \le z$ por definición 24.

Clase: 2/08/2022

2. Grafos

10