Pijkstra's shortest path algorithm: (只能用在非負權圖) (国定一點,而那點到所有點的最短距離)

定義:最短距離函數

假設 G=(V,E) 為一個加權圖

/· Yx, y ∈ V, P= (x, V, , V2, ..., Vn, y) 為一條從x到y 的路徑,定義P為個長度(length),為wt(x, V,)+ wt(V1, V2)+wt(V2, V3)+...+wt(Vn1, Vn)+wt(Vn, y)。

定義最短距離函數(the shortest distance function) d, d: VXV—> R+U{0,∞}

解釋·「VXV指工個黑

2 RTU {0,00 指正實數且包含 0 和無限大。

$$d(a,a) = 0$$

 $d(a,g) = \infty$
 $d(a,b) = 3$
 $d(a,C) = 6$
 $d(h, I) = 8$

Pseudo code:

Algorithm : Dijkstra's algorithm

Input: A connected, weighted graph G = (V, E) in which all weights are positive with source vertex a.

Dutput: The distance D[V] from a to V.

- 1. S:= {a}
- 2, D[a] = 0

6.

- 3. for each VEV- {a} do
- 4、 D[v]:= w+(a,v) //指a到V的一個邊的距離, // 不相鄰為 ~。
- 5. while |S| + |V| do

/* Choose a vertex w in V-S such that D[w] is minimum, then add w to S. If not, skip it */

for each VEV-S do

7. DEV]:= min (DEV], DEW]+wt(W,V))

例題:

利用 Dijkstra's algorithm 求 a到各點的最短距離:

Ars.

利用 Dynamic programming 方式 表格解,距離右下解標示上個(由左至右,由上面下填表)點。

5\17	b	C	d	e	
<u> 510</u> {a}	10a	∞_{a}	30a	1009	d(a,b) = 10
$\{a,b\}$	4				d(a,d) = 30
{a.b.d}	X	(50d)	X	90d	d(a,c) = 50
{a,b,d,c}	X	×	X	(boc)	d(a,e) = 60

得出最小生成樹為

