Knot Traces and Sliceness

Isaac M. Craig

Bryn Mawr College

MAA EPaDel Section Meeting 25 March 2019

Framed Knots

A framed knot $K \subset S^3$ is a knot decorated with an integer n, called the framing.

Framed Knots

A framed knot $K \subset S^3$ is a knot decorated with an integer n, called the framing.

A 0-framed knot (left) with the 0-framed push-off (right).

The framing induces a push-off K' with linking number ${\rm lk}(K,K')=n.$

We want to use framed knots to build a 4-manifold by (essentially) attaching a disk to a knot in $S^3=\partial B^4$. To visualize this, pretend we're down a dimension:

^{*}Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

To a framed knot $K \subset S^3 = \partial B^4$, we associate a 4-manifold* X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

^{*}Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold* X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

3 / 8

Isaac M. Craig (BMC) Knot Traces and Sliceness King's College

^{*}Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

To a framed knot $K\subset S^3=\partial B^4$, we associate a 4-manifold* X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

Isaac M. Craig (BMC) Knot Traces and Sliceness King's College

^{*}Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

To a framed knot $K \subset S^3 = \partial B^4$, we associate a 4-manifold* X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

The associated 4-manifold to an n-framed knot K is called the n-trace of K.

Isaac M. Craig (BMC) Knot Traces and Sliceness King's College

^{*} Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

To a framed knot $K \subset S^3 = \partial B^4$, we associate a 4-manifold* X(K) by attaching a framed 2-handle to B^4 along K according to its framing:

The associated 4-manifold to an n-framed knot K is called the n-trace of K.

Question. Do properties of K correspond to properties of X(K), and conversely?

Isaac M. Craig (BMC) Knot Traces and Sliceness King's College

 $^{^*}$ Recall, an n-manifold is a sufficiently nice topological space that locally looks n-dimensional.

A knot $K \subset S^3 = \partial B^4$ is slice if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

A knot $K \subset S^3 = \partial B^4$ is slice if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

A knot $K \subset S^3 = \partial B^4$ is slice if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

A knot $K \subset S^3 = \partial B^4$ is **slice** if it bounds a smoothly embedded disk $D^2 \hookrightarrow B^4$.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo 2018) The Conway knot is not slice.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo 2018) The Conway knot C is not slice.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo 2018) The Conway knot ${\cal C}$ is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo 2018) The Conway knot C is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Theorem. Let K and K' be knots with diffeomorphic traces $X(K) \cong X(K')$. Then K is slice if and only if K' is slice.

Theorem. (Piccirillo 2018) The Conway knot ${\cal C}$ is not slice.

Proof Technique. Construct knot C' with $X(C) \cong X(C')$. Show C' is not slice.

Remark. The construction of C^\prime is known to work for unknotting $\#\ 1$ knots.

Knot Traces of Knots with Unknotting Number 1

A knot K with (positive) unknotting number 1 has a diagram:

King's College

Knot Traces of Knots with Unknotting Number 1

A knot K with (positive) unknotting number 1 has a diagram:

The associated knot K' then has the form:

Bibliography I

Lisa Piccirillo, Shake genus and slice genus, arXiv:1803.09834,, to appear in G&T (2018).