Artificial Intelligence Techniques *in*Manufacturing

Machine Learning: State of the Art

Data	Type	Examples
Inhomogeneous Data	Gradient Boosting Machine	XGBoostCatBoostLightGBM
Homogeneous Data	Artificial Neural Network	 Deep Neural Network Convolutional Neural Network Long Short-Term Memory Neural Network Transformer Network

Artificial Neural Network

How do we fit a line to this data?

$$y = f(x)$$

 $y = a_0 + a_1 x + a_2 x^2 + \cdots$

Universal Approximator

Artificial Neural Network

Artificial Neural Network

Connection to Biological Neural Networks

This connection is not relevant nowadays.

Architecture

Hidden Node

Compared with Perceptron

Input Node

Output Node

Input Layer Output Layer $x \longrightarrow \sum_{i=1}^{\infty} x^{in} \phi \longrightarrow \sum_{i=1}^{\infty} x^{out} \phi$

 $z^{in} = x \mid \phi^{out} = z^{in}$

$$\hat{y} = w^{out}x + b^{out}$$

 $z^{out} = w^{out}\phi^{out} + b^{out}$

 $\hat{y} = z^{out}$

#Parameters: 2

Input Layer

Hidden Layer

Output Layer

$$z^{in} = x$$

$$\phi^{h1} = z^{in}$$

$$z^{h1} = w^{h1}\phi^{h1} + b^{h1}$$

$$\phi^{out} = \frac{1}{1 + e^{-z^{h1}}}$$

Sigmoid Function

$$z^{out} = w^{out}\phi^{out} + b^{out}$$

$$\hat{y} = z^{out}$$

Input Layer

Hidden Layer

Output Layer

$$\hat{y} = w^{out} \left[\frac{1}{1 + e^{-(w^{h_1}x + b^{h_1})}} \right] + b^{out}$$

#Parameters: 4

$$\hat{y} = \sum_{i=1}^{10} \left[w_i^{out} \frac{1}{1 + e^{-(w_i^{h_1} x + b_i^{h_1})}} \right] + b^{out}$$

#Parameters: 31

128

Parameters

4160

Parameters

65

Parameters

#Parameters: 4,353

Deep Neural Network

#Parameters: 110,081

Prediction

- Network
 - 2 hidden layers
 - Sigmoid activation
- ullet Initialized weights and biases ullet
- Observation

•
$$x = 1$$

•
$$y = 10$$

Variable	Init Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

Hidden Layer 2

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$z^{in} = x$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$\phi^{h1} = z^{in}$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$z^{in} = w^{h1}\phi^{h1} + b^{h1}$$

$$z^{in} = 1 \times 1 + 0 = 1$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$\phi^{h2} = \frac{1}{1 + e^{-z^{in}}} \qquad \phi^{h2} = \frac{1}{1 + e^{-1}} = 0.731$$

$$\phi^{h2} = \frac{1}{1 + e^{-1}} = 0.731$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$z_1^{h2} = w_1^{h2} \phi^{h2} + b_1^{h2}$$

$$z_1^{h2} = 2 \times 0.731 + 0 = 1.462$$

$$z_2^{h2} = w_2^{h2} \phi^{h2} + b_2^{h2}$$

$$z_2^{h2} = 3 \times 0.731 + 0 = 2.193$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$\phi_1^{out} = \frac{1}{1 + e^{-z_1^{h2}}}$$

$$\phi_2^{out} = \frac{1}{1 + e^{-z_2^{h2}}}$$

VariableInit. Val
$$w^{h1}$$
1 w_1^{h2} 2 w_2^{h2} 3 w_1^{out} 4 w_2^{out} 5All biases0

$$z^{out} = w_1^{out} \phi_1^{out} + w_2^{out} \phi_2^{out} + b^{out}$$

Variable	Init. Val
w^{h1}	1
w_1^{h2}	2
W_2^{h2}	3
w_1^{out}	4
w_2^{out}	5
All biases	0

$$\hat{y} = z^{out}$$

- Quantify how "bad" our model is.
- Mean Square Error (MSE)

•
$$L = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

• In our example

•
$$L = (10 - 7.745)^2 = 5.082$$

Parameter Update

- Backpropagation
 - Base on chain rule
- Computational graph
 - Compute input gradient signal at each node.
 - Send the gradient signal backward.

Computational Graph

$$g^{out} = g^{in} \frac{\partial a^{out}}{\partial a^{in}}$$

Computational Graph

Computational Graph

$$g^{out} = g_1^{in} \frac{\partial a_1^{out}}{\partial a^{in}} + g_2^{in} \frac{\partial a_2^{out}}{\partial a^{in}}$$

Add another "L" node with gradient input of 1.

$$g^{in} = \frac{\partial L}{\partial L} \neq 1$$

$$\left(\frac{\partial L}{\partial \hat{y}} = 2(\hat{y} - y) = -4.508\right)$$

$$g^{out} = g^{in} \frac{\partial L}{\partial \hat{y}} = -4.508$$

$$g^{in} = -4.508$$

$$\frac{\partial \hat{y}}{\partial z^{out}} = 1$$

$$g^{out} = g^{in} \frac{\partial \hat{y}}{\partial z^{out}} = -4.508$$

$$z^{out} = w_1^{out} \phi_1^{out} + w_2^{out} \phi_2^{out} + b^{out}$$

$$g^{in} = -4.508$$

$$z^{out} = w_1^{out} \phi_1^{out} + w_2^{out} \phi_2^{out} + b^{out}$$

$$g^{in} = -4.508$$

$$\frac{\partial z^{out}}{\partial \phi_1^{out}} = w_1^{out} = 4$$

$$\frac{\partial z^{out}}{\partial \phi_2^{out}} = w_2^{out} = 5$$

$$\frac{\partial z^{out}}{\partial w_1^{out}} = \phi_1^{out} = 0.811$$

$$\frac{\partial z^{out}}{\partial w_2^{out}} = \phi_2^{out} = 0.899$$

$$\frac{\partial z^{out}}{\partial b^{out}} = 1$$

$$z^{out} = w_1^{out} \phi_1^{out} + w_2^{out} \phi_2^{out} + b^{out}$$

$$g^{in} = -4.508$$

$$\frac{\partial z^{out}}{\partial \phi_1^{out}} = w_1^{out} = 4$$

$$\frac{\partial z^{out}}{\partial \phi_2^{out}} = w_2^{out} = 5$$

$$\frac{\partial z^{out}}{\partial w_1^{out}} = \phi_1^{out} = 0.811$$

$$\frac{\partial z^{out}}{\partial w_2^{out}} = \phi_2^{out} = 0.899$$

$$\frac{\partial z^{out}}{\partial b^{out}} = 1$$

$$z^{out} = w_1^{out} \phi_1^{out} + w_2^{out} \phi_2^{out} + b^{out}$$

$$g^{in} = -4.508$$

$$\frac{\partial z^{out}}{\partial \phi_1^{out}} = w_1^{out} = 4$$

$$\frac{\partial z^{out}}{\partial \phi_2^{out}} = w_2^{out} = 5$$

$$\frac{\partial z^{out}}{\partial w_1^{out}} = \phi_1^{out} = 0.811$$

$$\frac{\partial z^{out}}{\partial w_2^{out}} = \phi_2^{out} = 0.899$$

$$\frac{\partial z^{out}}{\partial b^{out}} = 1$$

$$g_{w1}^{out} = g^{in} \frac{\partial z^{out}}{\partial w_1^{out}} = -4.508 \times 0.811 = -3.656$$

$$g_{w2}^{out} = g^{in} \frac{\partial z^{out}}{\partial w_2^{out}} = -4.508 \times 0.899 = -4.053$$

$$g_b^{out} = g^{in} \frac{\partial z^{out}}{\partial b^{out}} = -4.508 \times 1 = -4.508$$

Update Parameters

$$w^{new} = w^{old} - (\eta \times g)$$
Learning Rate
$$(0.1)$$

Variable	Init Val	$oldsymbol{\eta} imes oldsymbol{g}$	Updated Val
w_1^{out}	4	-0.366	4.366
w_2^{out}	5	-0.405	5.405
b^{out}	0	-0.451	0.451

Chain Rule

$$g = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{out}} \frac{\partial z^{out}}{\partial w_1^{out}} = \frac{\partial L}{\partial w_1^{out}}$$

Chain Rule

$$g = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{out}} = \frac{\partial L}{\partial w_1^{out}} = \frac{\partial L}{\partial w_1^{out}}$$

Previously

$$w^{new} = w^{old} - (\eta \times g)$$

Formally

$$w^{new} = w^{old} - \eta \frac{\partial L}{\partial w_1^{out}}$$

Gradient Descent

Updated Values

Variable	Init Val	Updated Val
w^{h1}	1	1.122
b^{h1}	0	0.228
w_1^{h2}	2	2.201
b_1^{h2}	0	0.275
W_2^{h2}	3	3.148
b_2^{h2}	0	0.203
w_1^{out}	4	4.366
w_2^{out}	5	5.405
bout	0	0.451

Updated Prediction/Loss

Observed: x = 1, y = 10

Variable	Before	After
ŷ	7.745	9.798
L	5.082	0.352

Multiple Inputs and Outputs

Activation Functions

$$f(x) = \frac{\left(e^x - e^{-x}\right)}{\left(e^x + e^{-x}\right)}$$

ReLU 10 8 6 4 -10 -5 10 0 5 V7 Labs

$$f(x) = max(0, x)$$

Leaky ReLU

$$f(x) = max(0.1x, x)$$

Optimizer

- Stochastic gradient descent (SGD)
 - Estimate the actual gradient (calculated from the entire data set) by a value from subset of data (batch).
- Adaptive moment estimation (ADAM)
 - Stochastic gradient descent with adaptive learning rate optimization algorithm

Classification

- Output nodes equal to number of class.
 - One-hot encoding
- Use *softmax* function to calculate probability of each class.

•
$$p_j = softmax(\hat{y}_1, \hat{y}_2, ..., \hat{y}_C) = \frac{e^{\hat{y}_j}}{\Sigma_{k=1}^C e^{\hat{y}_k}}$$

- Loss function

 Categorical cross entropy (CCE)
 - $CCE = -\frac{1}{N} \Sigma_{i=1}^N \Sigma_{k=1}^C \chi_{y_k \in C_k} \ln(p_k)$

CCE Example

$$y_1 = [0, 1, 0]$$
 $y_2 = [0, 0, 1]$
 $p_1 = [0.05, 0.95, 0]$ $p_2 = [0.1, 0.8, 0.1]$
 $CCE = -\frac{1}{2}(\ln 0.95 + \ln 0.1) = 1.177$

Loss function

We will use this one

Regression

- Output layer
 - No "softmax"
- Loss

Mean squared error

- Mean absolute (percentage) error
- Scale both X and y data
 - Scaling X: more stable model (small weights)
 - Scaling y: matching output of activation function / smaller gradient