ASSIGNMENT 5

Import the required libraries

```
In [ ]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
```

Load the dataset

```
In [ ]: | df= pd.read_csv('Social_Network_Ads.csv')
In [ ]: df.shape
Out[5]: (400, 5)
In [ ]:
         df.head()
Out[6]:
              User ID Gender Age EstimatedSalary Purchased
          0 15624510
                        Male
                                           19000
                                                         0
          1 15810944
                        Male
                               35
                                           20000
                                                         0
          2 15668575 Female
                               26
                                           43000
                                                         0
          3 15603246 Female
                               27
                                           57000
                                                         0
```

Drop the column User ID

Male

19

4 15804002

```
In [ ]: df.drop(['User ID'],axis=1,inplace=True)
```

76000

0

In []: | df.head()

Out[8]:		Gender	Age	EstimatedSalary	Purchased
	0	Male	19	19000	0
	1	Male	35	20000	0
	2	Female	26	43000	0
	3	Female	27	57000	0

19

```
In [ ]: df.Purchased.value_counts()
```

0

76000

Out[9]: 0 257 1 143

Name: Purchased, dtype: int64

Male

```
In [ ]: df.Gender.value_counts()
```

Out[10]: Female 204 Male 196

Name: Gender, dtype: int64

In []: df.dtypes

Out[11]: Gender object

Age int64
EstimatedSalary int64
Purchased int64

dtype: object

Data Preprocessing

In []: |df.isnull().sum()

Out[12]: Gender 0

Age 0
EstimatedSalary 0
Purchased 0

dtype: int64

In []: df.describe()

Out[13]:

	Age	EstimatedSalary	Purchased
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

Out[14]: <function matplotlib.pyplot.show>


```
In [ ]: M2 = pd.crosstab(df.Gender, df.Purchased, normalize='index')
    print(M2)
    M2.plot.bar(figsize=(6,4),stacked=True)
    plt.legend(title='Gender vs Purchased', loc='upper right')
    plt.show()
```

Purchased 0 1 Gender Female 0.622549 0.377451 Male 0.663265 0.336735

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc4def4b650>

Type *Markdown* and LaTeX: α^2

Get Input Variable into X and Outcome variable into Y

```
In [ ]: X=df.drop(['Gender','Purchased'],axis=1)
Y= df['Purchased']
X.head()
```

Out[17]:		Age	EstimatedSalary
	0	19	19000
	1	35	20000
	2	26	43000
	3	27	57000
	4	19	76000

Split the data into Train set and Test set

```
In [ ]: from sklearn.model_selection import train_test_split
# Shuffle and split the data into training and testing subsets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, rar
# Success
print("Training and testing split was successful.")
```

Training and testing split was successful.

Build the model

```
In [ ]: from sklearn.linear_model import LogisticRegression
    basemodel= LogisticRegression()
    basemodel.fit(X_train,y_train)
    print("Training accuracy:", basemodel.score(X_train,y_train)*100)
```

Training accuracy: 64.0625

Make predictions on test data

```
In [ ]: y_predict= basemodel.predict(X_test)
print("Testing accuracy:", basemodel.score(X_test,y_test)*100)
```

Testing accuracy: 65.0

Normalize the data using Min Max Normalization or any other technique

```
In [ ]: from sklearn.preprocessing import MinMaxScaler
    scaler=MinMaxScaler()
```

```
In [ ]: X=df[['Age','EstimatedSalary']]
    X_scaled= scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, Y, test_size=0)
print("Training and testing split was successful.")
```

Training and testing split was successful.

```
In [ ]: model= LogisticRegression()
    model.fit(X_train,y_train)
    y_predict= model.predict(X_test)
    print("Training accuracy:", model.score(X_train,y_train)*100)
    print("Testing accuracy:", model.score(X_test,y_test)*100)
```

Training accuracy: 80.9375 Testing accuracy: 87.5

Measure the performance of the model

- 1. Measure the accuracy
- 2. Measure the perormance using Precision, Recall, Fscore, Support etc.

```
In [ ]: from sklearn.metrics import accuracy_score
    Acc=accuracy_score(y_test,y_predict)
    print(Acc)
```

0.875

```
In [ ]: from sklearn.metrics import confusion_matrix
cm= confusion_matrix(y_test,y_predict)
print(cm)
```

[[51 1] [9 19]]

In []: from sklearn.metrics import precision_recall_fscore_support
 prf= precision_recall_fscore_support(y_test,y_predict)
 print('precision:',prf[0])
 print('Recall:',prf[1])
 print('fscore:',prf[2])
 print('support:',prf[3])

precision: [0.85 0.95]

Recall: [0.98076923 0.67857143] fscore: [0.91071429 0.79166667]

support: [52 28]

support	f1-score	recall	precision	
52	0.91	0.98	0.85	0
28	0.79	0.68	0.95	1
80	0.88			accuracy
80	0.85	0.83	0.90	macro avg
80	0.87	0.88	0.89	weighted avg