Tutorial 1 Revision on vector calculus and line integral

Differentiation

- 1. Find the first and second derivatives of $r = <3\cos 2t, 3\sin 2t, 4t >$.
- 2. Find the first partial derivatives of $v_1 = \langle e^x \cos y, e^x \sin y \rangle$ and $v_2 = \langle \cos x \cosh y, -\sin x \sinh y \rangle$.

Gradient

Find the gradient of the following functions *f*:

1.
$$f = (x - 1)(4y - 2)$$

2.
$$f = 2x^2 + 5y^2$$

3.
$$f = \frac{x}{y}$$

4.
$$f = (x-2)^2 + (2y+4)^2$$

5.
$$f = x^5 + y^5$$

6.
$$f = \frac{x^2 + y^2}{x^2 - y^2}$$

Velocity fields

Given the velocity potential f of a flow, find the velocity $v = \nabla f$ of the field and its value v(P) at P.

1.
$$f = x^2 - 6x - y^2$$
, $P: (-1.5)$

2.
$$f = \cos x \cosh y$$
, $P: (\pi/2, \ln 2)$

3.
$$f = x \left(1 + \frac{1}{x^2 + y^2}\right), P: (1,1)$$

4.
$$f = e^x \cos y$$
, $P: (1, \pi/2)$

Divergence

Find divv and its value at P.

1.
$$v = \langle 2x^2, -3y^2, 8z^2 \rangle, P: \left(3, \frac{1}{2}, 0\right)$$

2.
$$v = <0$$
, $\sin(x^2yz)$, $\cos(xy^2z) > P:(1,\frac{1}{2},-\pi)$

3.
$$v = \frac{\langle x, y \rangle}{x^2 - y^2}, x \neq y$$

4.
$$v = \langle v_1(y, z), v_2(z, x), v_3(x, y) \rangle, P: (3, 1, -1)$$

5.
$$v = \langle x^2yz, xy^2z, xyz^2 \rangle, P: (-1,3,-2)$$

6.
$$v = \frac{\langle -x, -y, -z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

Curl

Find curl v for v given with respect to right-handed Cartesian coordinates. Show the details of your work.

1.
$$\mathbf{v} = <4y^2$$
, $3x^2$, $0>$

2.
$$v = xyz < x^2$$
, y^2 , $z^2 >$

3.
$$v = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

4.
$$v = <0.0, e^{-x} \sin y >$$

5.
$$v = \langle e^{-z^2}, e^{-x^2}, e^{-y^2} \rangle$$

Parametric representations

What curves are represented by the following? Sketch them. (page 390, Q1-4, 8)

1.
$$< 2 + 4\cos t$$
, $2\sin t$, $0 >$

2.
$$< a + t, b + 3t, c - 5t >$$

3.
$$< 0$$
, t , $2t^3 >$

4.
$$< -2$$
, $2 + 5\cos t$, $-1 + 5\sin t >$

5.
$$< \cosh t$$
, $\sinh t$, $2 >$

Find a parametric representation (page 390, Q11, 12, 15, 17-19)

- 1. Circle in the plane z = 2 with center (1,-1) and passing through the origin.
- 2. Circle in the yz-plane with center (4,0) and passing through (0,3).
- 3. Straight line y = 2x 1, z = 3x.
- 4. Ellipse $\frac{1}{3}x^2 + y^2 = 1$, z = y.
- 5. Helix $x^2 + y^2 = 25$, $z = 2 \arctan \frac{y}{x}$.
- 6. Hyperbola $x^2 y^2 = 1$, z = -2.

Line integral – work

The line integral $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ of the vector field \mathbf{F} along the curve C gives the work done by the field on an object moving along the curve through the field. Calculate $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ for the given data. If \mathbf{F} is a force, this gives the work done by the force in the displacement along C. Show the details.

- 1. $\mathbf{F} = \langle y^2, -x^2 \rangle$, $C: y = 4x^2$ from (0,0) to (1,4).
- 2. F as in question 1, C from (0,0) straight to (1,4). Compare the results.
- 3. $\mathbf{F} = \langle xy, x^2y^2 \rangle$, C from (2,0) straight to (0,2).
- 4. \mathbf{F} as in question 3, C is the quarter-circle from (2,0) to (0,2) with center (0,0).

Line integral - work done by an airplane

Consider a vector field $\mathbf{F} = \langle \frac{x}{2}, \sin x \rangle$ which is defined on the plane. Suppose that t is the time, \mathbf{F} is a force field, say the wind, and an airplane is moving over the curve $C: \mathbf{r}(t) = \langle t, \sin t \rangle$ from the initial point (0,0) to the terminal point $(2, \sin 2)$. See the figure blow. Calculate the work done by the wind on this airplane along the path C.

Line integral

- 1. Calculate the line integral for the vector field $\mathbf{F} = \langle xy, y^2 \rangle$ over the segment joining the points from O: (0,0) to P: (1,1).
- 2. Determine the line integral of $F = \langle x^2, xy \rangle$ along the parabola $x = y^2$ between the points (1,-1) and (1,1).
- 3. Determine the line integral for $G = <-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2}>$ over the circle in the plane with center (0,0) and radius 3 from the point (3,0) to the point $(\frac{3\sqrt{3}}{2},\frac{3}{2})$. Hint: Use the polar coordinate system.
- 4. Calculate the work done by $F = \langle x, y^2 \rangle$ on a particle moving from (0,0) to (1,1) and then to (1,0) along the straight line segments joining the points.