ANÁLISIS DE FLUJO DE INFORMACIÓN EN APLICACIONES ANDROID

Lina Marcela Jiménez Becerra

UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE INGENIERÍA DE SISTEMAS Y COMPUTACIÓN

Junio 9, 2015

Manipulación de información del usuario

- El desarrollador Android no tiene cómo definir políticas de seguridad para regular el flujo de información de sus aplicaciones.
- Complejidad para prevenir fugas de información del usuario.

Manipulación de información del usuario

- El desarrollador Android no tiene cómo definir políticas de seguridad para regular el flujo de información de sus aplicaciones.
- Complejidad para prevenir fugas de información del usuario.

Reporte McAffe

- Aplicaciones Android invasivas de la privacidad del usuario.
- No toda aplicación invasiva contiene malware.
- De las aplicaciones que más vulneran la privacidad del usuario 35 % contienen malware.

Limitaciones de la API

- Políticas de control de acceso de la API.
- Regular el acceso a recursos protegidos.
- No hacen seguimiento al flujo de información.

Propuestas existentes

- Análisis estático y análisis dinámico.
- Análisis dinámico: actuales caminos de ejecución.
- Análisis estático: es posible incluir todos los caminos de ejecución.

Propuestas existentes

Data-Flow con técnicas de análisis tainting.

- Se hace seguimiento a los datos marcados.
- No incluye todos los posibles caminos de ejecución.
- Ejemplo: FlowDroid

Propuestas existentes

Flujo de información con técnicas Program Dependence Graphs(PDG).

- Los PDG proveen una representación del programa que se analiza.
- Análisis de flujos de información del programa de principio a fin.
- Incluye todos los posibles caminos de ejecución.
- Ejemplo: Joana.

Propuestas existentes

Enfoque de las propuestas existentes:

- Identificar fugas de información en aplicativos ya implementados.
- FlowDroid: no incluye todos los posibles caminos de ejecución.
- Joana: no permite definir las políticas de seguridad a evaluar.

Propuesta de solución

El desarrollador requiere

- Definir políticas de seguridad desde la implementación de sus aplicativos.
- Una herramienta que verifique las políticas definidas.
- Garantizarle al usuario que la aplicación respeta determinadas políticas de seguridad.

Propuesta de solución

Propuesta

Proveer una herramienta de análisis de flujo de información mediante el sistema de anotaciones de Jif.

Herramienta de Análisis Estático

Características de Jif

- Lenguaje tipado de seguridad.
- Extensiones de seguridad al lenguaje java.
- Restricciones para uso de la información.
- Análisis de flujo de información mediante chequeo de etiquetas.

Características sobresalientes de Jif

- Anotar propiedades de seguridad.
- Verificar las propiedades de seguridad.
- Cubrir todas las posibles ramas de ejecución en el análisis.
- Diseñado para aplicativos Java.

Flujos: explicitos - implícitos

```
int x,y;
x = 1;
y = 4 + x;
```

```
void foo(a){
int x;
if(a > 10)
x = 1;
else
x = 2;
printf(x);
}
```



```
getDeviceld
getSimSerialNumber
getLatitude
getSubscriberld
EditText

Politica de
Seguridad:
Confidencialidad

Mensajes de texto
Mensajes Log
Sinks
```

```
String imei = getDeviceld();
sendTextMessage(imei);
```

```
getDeviceId
getSimSerialNumber
getLatitude
getLongitude
getSubscriberId
EditText
Sources

Sinks
```

```
String imei = getDeviceld();
sendTextMessage(imei);
```

```
String passwd = EditText.getText();
boolean passwdOk = false;
if (passwd.equals("superSecure"))
passwdOk = true;
if (passwdOk)
Log.i("INFO","Password_correcto");
else
Log.i("INFO","Password_incorrecto");
```

Anotaciones Propuestas

Flujos de información entre: información con nivel de seguridad alto(sources) e información con nivel de seguridad bajo(sinks).

Autoridad y Labels de Anotación

Autoridad Máxima

Nivel de Seguridad Alto:

Sólo el principal *Alice* dueño de la política podrá leer la información.

Nivel de Seguridad Bajo:

No se define un principal, todos pueden leer la información.

Controlar canales

- Mensajes de texto (SmsManager)
- Mensajes log (Log)

Controlar canales

- Mensajes de texto (SmsManager)
- Mensajes log (Log)

Clases adicionales requeridas

- Clases para los sources (TelephonyManager)
- Clases para métodos de sobresscritura (Activity)

Controlar canales

```
sendTextMessage{Alice:} (
String{Alice:} destinationAddress,
String{Alice:} sourceAddress,
String{} text,
PendingIntent{Alice:} sentIntent,
PendingIntent{Alice:} deliveryIntent
){}
```


Anotación de aplicativos a analizar

Generador de Anotaciones

- Objetivo de la anotación
- Elementos a anotar

Evaluación

- Conjunto de evaluación.
- DroidBench benchmark.

Evaluación

- Conjunto de evaluación.
- DroidBench benchmark.

	FlowDroid	JoDroid	Prototipo
Precisión	78,57 %	78,57 %	73,68 %
Recall	78,57	78,57 %	100 %
Detección Flujos Implícitos	No	Si	Si

Cuadro comparativo

Item	Prototipo vs FlowDroid				Prototipo vs JoDroid			
	ventaja	desvent	similit	diff	ventaja	desvent	similit	diff
Menor Precisión		√				√		
Mayor Recall	✓				√			
Menor costo en desempeño					√			
Bajo costo en desempeño			√					
Detección de flujos implíci-	✓						✓	
tos								
No detección automática		√					√	
de sources y sinks								
No soporte para Análisis in-		✓					✓	
terApp								
Tipo de análisis(flujo de infor-				√				
mación; flujo de datos)								
Tipo de análisis IFC							✓	
Técnica de análisis: PDG,								√
slicing								

 Herramienta de análisis mediante el sistema de anotaciones de Jif.

- Herramienta de análisis mediante el sistema de anotaciones de Jif.
- Análisis de flujos implícitos.

- Herramienta de análisis mediante el sistema de anotaciones de Jif.
- Análisis de flujos implícitos.
- Desempeño y completitud en el análisis.

- Herramienta de análisis mediante el sistema de anotaciones de Jif.
- Análisis de flujos implícitos.
- Desempeño y completitud en el análisis.
- Retos para el análisis de aplicaciones Android mediante el sistema de anotaciones de Jif.

Trabajo Futuro

- Extensiones al esquema de anotación.
- Análisis de políticas de integridad.
- Mecanismos adicionales: declasificación y endorsement.

Descripción del Problema Propuesta Resultados de evaluación Conclusiones Trabajo Futuro

Preguntas