Die spezifische Wärmekapazität

AUFGABE 1:
Steigt die Temperatur eines Körpers, so nimmt seine innere Energie zu. Dem Körper wird
also zugeführt. Wie viel Wärme muss einem Körper mit der Masse
zugeführt werden, damit er eine Temperaturänderung erfährt?
Je grösser die Masse desto
Je grösser die Temperaturänderung, umso Wärme braucht es: Q ΔT . Zusam-
menfassend ergibt sich folgender Zusammenhäng:
Q ~
Diese Proportionalität kann in eine Formel umgeschrieben werden:
Q =
Die spezifische Wärmekapazität ist eine Materialkonstante. Sie beschreibt also eine
Eigenschaft des Materials. Sie gibt an, wie viel nötig ist, um ein
des Materials um ein zu erwärmen.
AUFGABE 2: Sie wollen sich eine Tasse Tee (1,5 dl) kochen. Anfangs hat das Wasser eine Temperatur von 20 °C. Wie viel Wärme brauchen Sie zum Tee kochen?
AUFGABE 3: Ein Silberbarren von 12 kg Gewicht, fällt aus einer Höhe von 100 m auf eine unelastische Unterlage.
a) Welche Energie-Umwandlung spielt sich ab?
b) Wie gross ist die erzeugte Wärmemenge?
c) Welche Temperaturerhöhung würde der Barren erfahren, wenn man von jeder Wär- meabgabe an die Umgebung absähe?

AUFGABE 4: Sie wollen eine Flasche Weisswein kühlen. Der Wein hat Anfangs eine Temperatur von 23 °C, gekühlt ist er 8 °C kalt. Wie viel Wärme müssen Sie der Flasche (0,7 l, 10 % Alkohol, Gewicht des Glases 400 g) entziehen?

AUFGABE 5: Sie sind Zelten und wollen sich Nudeln kochen. Ihr Topf ist aus Aluminium (400 g) und Sie kochen zwei Liter Wasser für die Nudeln. Die Anfngstemperatur des Wassers ist 20 °C. Wie viel Gas brauchen Sie mindestens um die Nudeln zu kochen? Der Brennwert des Gases ist 39 MJ/kg.

Aluminium	896
Blei	129
Eisen	450
Gold	129
Kupfer	383
Messing	380
Nickel	448
Platin	133
Silber	235
Zink	385
Glas	ca. 800

Alkohol	2430
Eis (0°C)	2100
Wasser	4182

Spezifische Wärmekapazität in J/kgK.