

SIMULACIÓN BASADA EN AGENTES

Enrique Canessa 1er Semestre 2022

- Ideas centrales del ANOVA:
 - Modelo es una combinación lineal de las fuentes de variación presentes en los resultados de un experimento
 - La variación puede atribuirse a:
 - Los diferentes niveles de los factores del experimento
 - Un error aleatorio no controlable
 - $Y = f(A, B, C, ..., AB, AC, ..., ABC, ...) + \varepsilon$

- Supuestos centrales del ANOVA:
 - Modelo es lineal, incluyendo el error
 - Para los test de hipótesis y significación:
 - Data pertenece a una distribución normal
 - Las muestras son iid (independientes, distribuidas idénticamente)
 - El error (ε) tiene media cero y sigue una distribución normal
 - La varianza del error es homocedástica (constante, no dependiendo de los niveles de los factores)

- Para plantear las ecuaciones de ANOVA, se reparametrizan las expresiones que hemos usado para calcular los efectos en función de las respuestas:
 - Esto NO implica un cambio sustancial a las técnicas vistas anteriormente
 - Permite aplicar ensayos de hipótesis y significación para establecer la significación estadística de los efectos
 - Significación estadística NO implica significación "práctica"

Partiendo de las expresiones para el cálculo de los efectos en un diseño 22

$$1 = \frac{1}{4} (y_{11} + y_{21} + y_{12} + y_{22})$$

$$A = \frac{1}{2} ((y_{21} + y_{22}) - (y_{11} + y_{12}))$$

$$B = \frac{1}{2} ((y_{12} + y_{22}) - (y_{11} + y_{21}))$$

$$AB = \frac{1}{2} ((y_{22} + y_{11}) - (y_{21} + y_{12}))$$

Se despejan los y's en función de los efectos A, B, C y AB. Para ello se calculan:

Desarrollando cada expresión llegamos a:

$$Y_{11} = 1 - \frac{1}{2} A - \frac{1}{2} B + \frac{1}{2} AB$$

$$Y_{21} = 1 + \frac{1}{2} A - \frac{1}{2} B - \frac{1}{2} AB$$

$$Y_{12} = 1 - \frac{1}{2} A + \frac{1}{2} B - \frac{1}{2} AB$$

$$Y_{22} = 1 + \frac{1}{2} A + \frac{1}{2} B + \frac{1}{2} AB$$

Lo que puede escribirse:

$$y_{11} = \mu + \alpha_1 + \beta_1 + \alpha \beta_{11}$$

$$y_{12} = \mu + \alpha_1 + \beta_2 + \alpha \beta_{12}$$

$$y_{21} = \mu + \alpha_2 + \beta_1 + \alpha \beta_{21}$$

$$y_{22} = \mu + \alpha_2 + \beta_2 + \alpha \beta_{22}$$

$$\begin{array}{l} y_{11} = \mu + \alpha_1 + \beta_1 + \alpha \beta_{11} \\ y_{12} = \mu + \alpha_1 + \beta_2 + \alpha \beta_{12} \\ y_{21} = \mu + \alpha_2 + \beta_1 + \alpha \beta_{21} \\ y_{22} = \mu + \alpha_2 + \beta_2 + \alpha \beta_{22} \end{array} \hspace{0.5cm} \begin{array}{l} Y_{11} = 1 - \frac{1}{2} A - \frac{1}{2} B + \frac{1}{2} AB \\ Y_{12} = 1 - \frac{1}{2} A + \frac{1}{2} B - \frac{1}{2} AB \\ Y_{21} = 1 + \frac{1}{2} A - \frac{1}{2} B - \frac{1}{2} AB \\ Y_{22} = 1 + \frac{1}{2} A + \frac{1}{2} B + \frac{1}{2} AB \end{array}$$

Al definir los siguientes términos:

$$\mu = 1$$
 $\alpha_1 = -\frac{1}{2} A$, $\alpha_2 = \frac{1}{2} A$
 $\beta_1 = -\frac{1}{2} B$, $\beta_2 = \frac{1}{2} B$
 $\alpha \beta_{11} = \frac{1}{2} AB$, $\alpha \beta_{12} = -\frac{1}{2} AB$, $\alpha \beta_{21} = -\frac{1}{2} AB$, $\alpha \beta_{22} = \frac{1}{2} AB$

$$\alpha\beta_{21}$$
 = $-\frac{1}{2}$ AB, $\alpha\beta_{22}$ = $\frac{1}{2}$ AB

En general, para el diseño 22:

$$y_{ij} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \mathcal{E}_{ij}$$
, $i = 1, 2, j = 1, 2$

con las condiciones adicionales:

$$\alpha_1 + \alpha_2 = 0$$
 $\beta_1 + \beta_2 = 0$, $\alpha\beta_{11} + \alpha\beta_{12} = 0$, $\alpha\beta_{21} + \alpha\beta_{22} = 0$, $\alpha\beta_{11} + \alpha\beta_{21} = 0$, $\alpha\beta_{12} + \alpha\beta_{22} = 0$

Otros modelos lineales que se pueden desarrollar de igual forma:

$$\begin{split} y_i &= \mu + \mathcal{E}_i, & i = 1, 2, \dots | \\ y_{ir} &= \mu + \alpha_i + \mathcal{E}_{ir}, & i = 1, 2, \dots | ; \ r = 1, 2, \dots | R \\ y_{ijr} &= \mu + \alpha_i + \beta_j + \mathcal{E}_{ijr}, & i = 1, 2, \dots | ; \ j = 1, 2, \dots | J; \ r = 1, 2, \dots | R \\ y_{ijr} &= \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \mathcal{E}_{ijr}, \ i = 1, 2, \dots | ; \ j = 1, 2, \dots | J; \ r = 1, 2, \dots | R \\ y_{ijkr} &= \mu + \alpha_i + \beta_j + \gamma_k + \alpha \beta_{ij} + \alpha \gamma_{ik} + \beta \gamma_{jk} + \alpha \beta \gamma_{ijk} + \mathcal{E}_{ijkr}, \\ i &= 1, 2, \dots | i; \ j = 1, 2, \dots | J; \ k = 1, \dots | K; \ r = 1, 2, \dots | R. \end{split}$$

Modelo: $y_{ir} = \mu + \alpha_i + \mathcal{E}_{ir}$, i = 1, 2, ..., I; r = 1, 2, ..., R

y_{ir} Respuesta individual correspondiente a la r-ésima réplica del nivel i-ésimo del factor, i = 1,2,,I; r = 1, 2,,R.								
Suma Promedio Recorrido de la suma o promedio								
$A_i = \sum_r y_{ir}$	$A_i = \sum_r y_{ir}$ Todas las réplicas del i-ésimo nivel del factor A.							
$T = \sum_{i} \sum_{r} y_{ir}$	T/IR	Todas las réplicas de todos los niveles del factor A.						

Variación Total:

Variación Residual (de \mathcal{E}):

$$SCT = \sum_{i} \sum_{r} \left(y_{ir} - \frac{T}{IR} \right)^{2}$$

$$SCR = \sum_{i} \sum_{r} \left(y_{ir} - \frac{A_{i}}{R} \right)^{2}$$

Variación atribuible al factor A:

$$SCA = R \sum_{i} \left(\frac{A_{i}}{R} - \frac{T}{IR} \right)^{2}$$

SCTotal = SCA + SCResidual

Fuente de Variación	Grados de Libertad (g.l.)
Factor A	I-1
Residuo	I(R-1)
Total	IR-1

g.l.Total = g.l. A + g.l. Residual

Cuadrados Medios y cuociente F:

$$CMA = SCA / (I - 1)$$

$$CMR = SCR / I(R - 1)$$

Fuente De Variación	Suma De Cuadrados	Grados De Libertad	Cuadrados Medios	Cuociente F
Factor A	SCA	I - 1	CMA = SCA / (I – 1)	CMA / CMR
Residuo	Residuo SCR		CMR = SCR / I(R - 1)	-
Total	SCT	IR - 1	-	-

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de Sample Models/Earth Science/Climate Change.
- Estudie la información del modelo
- Se desea ver el efecto del albedo sobre la temperatura cuando está en estado estacionario (*steady-state*)
- Para eso, se deja todo constante con valores por defecto y se establece el albedo en 0.2, 0.4, 0.6 y 0.8
- Se efectúan cinco réplicas por cada tratamiento

				Suma	Promedio					
	Factor	r = 1	r = 2	r = 3	r = 4	r = 5	A _i	A _i / R		
	Albedo		-	Temperatu	ıra					
1	A = 0.2	2.8	2.5	3.6	4.4	2.7	16.0	3.2		
2	A = 0.4	3.2	3.5	5.7	4.3	4.8	21.5	4.3		
3	A = 0.6	2.5	2.6	1.8	3.1	3.0	13.0	2.6		
4	A = 0.8	2.7	2.3	15.5	3.1					
		Total global T = 66.0								
		dio Globa	I T/IR =	3.3						

Fuente De Variación	Suma De Cuadrados	Grados De Libertad	Cuadrados Medios	Cuociente F
Factor A	7.7	3	2.567	4.43
Residuo	9.26	16	0.580	-
Total	16.98	19	_	_

F(3,16) = 3.24 (valor crítico de F para un $\alpha = 0.05$)

 $F\alpha$ = valor crítico de F para tener una probabilidad de cometer error Tipo I igual a α

Error Tipo I : Declarar que una variable es distinta de cero, dado que NO lo es (declarar que un efecto existe, dado que no existe)

Lo típico es usar $\alpha = 0.05$

Valor observado de significancia (p) = cuál es la probabilidad de cometer error Tipo I

 $F_{0.05}$ (3,16) = 3.24

 $F_{\text{obtenido}} = 4.43$

 $F_{\text{obtenido}} > F_{0.05}$

Conclusión: efecto A es estadísticamente significativo

O alternativamente

p = 0.02 < 0.05 (donde podemos obtener p desde Excel: DISTR.F.CD(4.43,3,16)

Tabla F para $\alpha = 0.05$

									Grados	libert	ad del	nume	rador							
		1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	8
	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	###
	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
or	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
denominador	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
mi	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
lend	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
delc	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
libertad	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
Grados de	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
rad	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
g	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
,	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
,	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
,	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
	120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
	8	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

Modelo:

$$y_{ijr} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \mathcal{E}_{ijr}$$
, $i = 1, 2, ..., I; j = 1, 2, ..., J; r = 1, 2, ..., R$

y _{ijr} Respuesta individual correspondiente a la r-ésima réplica del nivel i-ésimo del factor A y del nivel j-ésimo del factor B								
Suma	Promedio	Recorrido de la Suma o Promedio						
$A_i = \sum_{j} \sum_{r} y_{ijr}$	A_i / JR	Todas las réplicas de todos los niveles del factor B, del i-ésimo nivel del factor A.						
$B_j = \sum_{i} \sum_{r} y_{ijr}$	$m{B}_{j}\left/ m{IR} ight.$	Todas las réplicas de todos los niveles del factor A, del j-ésimo nivel del factor B.						
$AB_{ij} = \sum_{r} y_{ijr}$	$oxed{AB_{ij}ig/R}$	Todas las réplicas del i-ésimo nivel del factor A, del j-ésimo nivel del factor B.						
$T = \sum_{j} \sum_{i} \sum_{r} y_{ijr}$	T/IJR	Todas las réplicas de todos los niveles de los dos factores.						

Variación Total:

Variación atribuible a la interacción AB:

$$SCT = \sum \sum \sum \left(y_{ijr} - \frac{T}{IJR} \right)^2 SCAB$$

$$SCT = \sum \sum \sum \left(y_{ijr} - \frac{T}{IJR} \right)^{2} \quad SCAB = R \sum_{i} \sum_{j} \left(\frac{AB_{ij}}{R} - \frac{A_{i}}{JR} - \frac{B_{j}}{IR} + \frac{T}{IJR} \right)^{2}$$

Variación atribuible a factores A y B:

Variación Residual (de \mathcal{E}):

$$SCA = JR \sum_{i} \left(\frac{A_i}{JR} - \frac{T}{IJR} \right)^2$$

$$SCA = JR \sum_{i} \left(\frac{A_{i}}{JR} - \frac{T}{IJR} \right)^{2}$$

$$SCR = \sum_{i} \sum_{j} \sum_{r} \left(y_{ijr} - \frac{AB_{ij}}{R} \right)^{2}$$

$$SCB = IR\sum_{j} \left(\frac{B_{j}}{IR} - \frac{T}{IJR}\right)^{2}$$
 $SCT = SCA + SCB + SCAB + SCR$

$$SCT = SCA + SCB + SCAB + SCR$$

Fuente De Variación	Grados De Libertad (g.l.)
Factor A	I - 1
Factor B	J - 1
Interacción AB	(I - 1)(J - 1) = IJ - I - J + 1.
Residuo	IJ(R - 1) = IJR - IJ
Total	IJR - 1

g.l. Total = g.l. A + g.l. B + g.l. AB + g.l. Residuo

Fuente De Variación	Suma De Cuadrados	Grados De Libertad	Cuadrados Medios	Cuociente F
Factor A	SCA	I - 1	CMA = SCA/(I-1)	CMA / CMR
Factor B	SCB	J - 1	CMB = SCB/(J-1)	CMB / CMR
Interacción AB	SCAB	(I - 1)(J - 1)	CMAB = SCAB/(I-1)(J- 1)	CMAB / CMR
Residuo	SCR	IJ(R - 1)	CMR = SCR/IJ(R-1)	-
Total	SCT	IJR - 1	-	-

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de *Earth Science*.
- Estudie la información del modelo
- Se desea ver el efecto del albedo y de cuánta energía solar entra a la Tierra (sun-brightness) sobre la temperatura cuando está en estado estacionario (steady-state)
- Para eso, se deja todo constante con valores por defecto y se establece el *sun-brightness* en 1, 2 y 3; y el albedo en 0.6 y 0.8
- Se efectúan cuatro réplicas por cada tratamiento

	FACT	OR B	SUMAS			PROMEDIOS		
FACTOR	j = 1	j = 2						
A	OBSERVA	ACIONES	AB _{i1}	AB_{i2}	A_{i}	AB _{i1} / R	AB_{i2}/R	A _i / JR
	33	38						
i = 1	32	31						
'-'	29	29						
	27	34	121	132	253	30.25	33.00	31.62
	26	29						
i = 2	24	27						
1-2	25	30						
	29	29	104	115	219	26.00	28.75	27.38
	29	34						
i = 3	36	34						
1 - 3	30	39						
	27	29	122	136	258	30.50	34.00	32.25
B _j	347	383						
B _j / IR	28.92	31.92	Valores Globales: T = 730 T / IJR = 30.42					

Fuente De Variación	Suma De Cuadrados	Grados de Libertad	Cuadrados Medios	Cuociente F
Factor A	112.6	2	56.3	5.57 *
Factor B	54.0	1	54.0	5.35 *
Interacción AB	0.8	2	0.4	0.04
Residuo	182.5	18	10.1	-
Total	349.8	23	-	-

F(2, 18) = 3.55 F(1, 18) = 4.41

- Una pregunta importante que surge al diseñar un experimento es cuantas réplicas debemos efectuar
- Esta es una pregunta difícil de contestar y tiene dos respuestas:
 - Empírica/práctica: se ha mostrado que usar 5 réplicas permite detectar los efectos principales más importantes de factores.
 En ningún caso deberíamos usar más de 20 réplicas.
 - Matemática: se basa en calcular el "poder estadístico" del análisis ANOVA usando el estadístico F.

Poder estadístico de F

- Se define como la probabilidad de declarar una diferencia (en un ensayo de hipótesis y significación) como significativa si esa diferencia realmente existe. Luego, Poder = 1β , donde β es la probabilidad cometer un error del Tipo II (declarar que una diferencia no existe dado que realmente existe).
- El poder de F se basa en los siguientes parámetros:
 - α = probabilidad cometer error Tipo I (declarar que diferencia existe, dado que realmente no existe)
 - Grados de libertad de F: t-1 y t(r-1), donde t = nro. de niveles de un factor y r = nro. de réplicas
 - El parámetro de no-centralidad de F (λ)

Ho: $\mu_1 = \mu_2$

$$H_A$$
: $\mu_1 \neq \mu_2$

• Tabla

- $-\alpha = 0.05$
- $-1-\beta = 0.7, 0.8 \circ 0.9$
- t = número de niveles de un factor (el g.l. + 1 del factor o término correspondiente en F del ANOVA)
- r = número réplicas
- $-\Delta^*$ = diferencia mínima detectable que se desea poder descubrir al aplicar un factor expresada en desviaciones estándares del error: $\tau \tau$

$$\Delta^* = \frac{\mathcal{T}_{\text{max}} - \mathcal{T}_{\text{min}}}{\mathcal{O}_{error}}$$

Estimación de la Δ*

- $-\tau_{max}$ = efecto más grande al aplicar un cierto nivel de un cierto factor (o del término a considerar)
- $-\tau_{min}$ = efecto más pequeño al aplicar un cierto nivel del <u>mismo</u> factor anterior (o del <u>mismo</u> término a considerar)
- $σ_{error}$ = error residual (aproximado por el \sqrt{CMR} de un ANOVA, o gruesamente por la d.s. de todos los datos)
- Se puede usar datos anteriores o bien realizar un pequeño experimento (con una pequeña cantidad de réplicas) y con los resultados aproximar Δ^*

$$\Delta^* = \frac{\mathcal{T}_{\text{max}} - \mathcal{T}_{\text{min}}}{\mathcal{O}_{error}}$$

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de Sample Models/Earth Science/Climate Change.
- Estudie la información del modelo
- Se desea ver el efecto del albedo sobre la temperatura cuando está en estado estacionario (steady-state)
- Para eso, se deja todo constante con valores por defecto y se establece el albedo en 0.2, 0.4, 0.6 y 0.8
- Se efectúan cinco réplicas por cada tratamiento

				Suma	Promedio			
	Factor	r = 1	r = 2	r = 3	r = 4	r = 5	A _i	A _i / R
	Albedo		-	Temperatu	ıra			
1	A = 0.2	2.8	2.5	3.6	4.4	2.7	16.0	3.2
2	A = 0.4	3.2	3.5	5.7	4.3	4.8	21.5	$4.3 \tau_{\text{max}} (A_2)$
3	A = 0.6	2.5	2.6	1.8	3.1	3.0	13.0	2.6 τ _{min} (A ₃)
4	A = 0.8	2.7	2.3	3.8	3.7	3.0	15.5	3.1
	•	T = 66	5.0					
					Prome	dio Globa	I T/IR =	3.3

Fuente De Variación	Suma De Cuadrados	Grados De Libertad	Cuadrados Medios	Cuociente F
Factor A	7.7	3	2.567	4.43
Residuo	9.26	16	0.580	-
Total	16.98	19	-	_

F(3,16) = 3.24

	<u>t = 4</u>			
	1- β			
r	.7	.8	.9	
2	4.872	5.504	6.395	
3	3.094	3.460	3.967	
4	2.468	2.754	3.148	
5	2.119	2.362	2.698	
6	1.888	2.104	2.401	

t = 4 niveles $\tau_{\text{max}}(A_2) = 4.30$ $\tau_{\text{min}}(A_3) = 2.60$ $\sigma_{\text{error}} = \sqrt{0.58} =$

$$\Delta$$
* = 1.70 / 0.76 = 2.24

$$1-\beta = 0.8$$

0.76

Luego:

$$r = 6$$

Cambio climático (Climate Change)

- Abra el modelo que está en la carpeta de *Earth Science*.
- Estudie la información del modelo
- Se desea ver el efecto del albedo y de cuánta energía solar entra a la Tierra (sun-brightness) sobre la temperatura cuando está en estado estacionario (steady-state)
- Para eso, se deja todo constante con valores por defecto y se establece el *sun-brightness* en 1, 2 y 3; y el albedo en 0.6 y 0.8
- Se efectúan cuatro réplicas por cada tratamiento

	FACTOR B		SUMAS		PROMEDIOS		S	
FACTOR	j = 1	j = 2						
A	OBSERVA	ACIONES	AB _{i1}	AB_{i2}	A_{i}	AB _{i1} / R	AB _{i2} /R	A _i / JR
	33	38						
i = 1	32	31						
'-'	29	29						
	27	34	121	132	253	30.25	33.00	31.62
	26	29						
i = 2	24	27						
	25	30						$\tau_{min}(A_2)$
	29	29	104	115	219	26.00	28.75	27.38
	29	34						
i = 3	36	34						
1 – 3	30	39						$\tau_{max}\left(A_{3}\right)$
	27	29	122	136	258	30.50	34.00	32.25
B _j	347	383	Valores Globales: T = 730 T / IJR = 30.42					
B _j / IR	28.92	31.92						2

Fuente De Variación	Suma De Cuadrados	Grados de Libertad	Cuadrados Medios	Cuociente F
Factor A	112.6	2	56.3	5.57 *
Factor B	54.0	1	54.0	5.35 *
Interacción AB	0.8	2	0.4	0.04
Residuo	182.5	18	10.1	-
Total	349.8	23	-	-

$$F(2, 18) = 3.55$$
 $F(1, 18) = 4.41$

	<u>t = 3</u>						
		1- β					
r	.7	.8	.9				
2	4.883	5.570	6.548				
3	2.957	3.325	3.838				
4	2.335	2.618	3.010				
5	1.997	2.236	2.568				
6	1.775	1.987	2.280				
7	1.615	1.808	1.915				
8	1.492	1.670	1.788				

t = 3 niveles

$$\tau_{\text{max}}(A_3) = 32.25$$

$$\tau_{min}(A_2) = 27.38$$

$$\sigma_{error} = \sqrt{10.1} =$$

$$\Delta$$
* = 4.87 / 3.18 = 1.531

$$1-\beta = 0.7$$

Luego:

$$r = 8$$

	FACTOR B		SUMAS		PROMEDIOS			
FACTOR	j = 1	j = 2						
A	OBSERVA	ACIONES	AB _{i1}	AB_{i2}	A_{i}	AB _{i1} / R	AB_{i2}/R	A _i /JR
	33	38						
i = 1	32	31						
'-'	29	29						
	27	34	121	132	253	30.25	33.00	31.62
	26	29						
i = 2	24	27						
1-2	25	30				τ_{min} (AB ₂	₁)	
	29	29	104	115	219	26.00	28.75	27.38
	29	34						
i = 3	36	34						
1 – 3	30	39					τ_{max} (AB	32)
	27	29	122	136	258	30.50	34.00	32.25
B _j	347	383						
B _j / IR	28.92	31.92	Valores Globales: T = 730 T / IJR = 30.42				2	

	<u>t = 6</u> 1- β						
r	.7	.8	.9				
2	4.922	5.505	6.317				
3	3.283	3.647	4.149				
4	2.650	2.940	3.337				
5	2.287	2.535	2.876				
6	2.042	2.264	2.567				
7	1.863	2.065	2.341				

t = 6 niveles

$$\tau_{\text{max}}(AB_{32}) = 34.0$$

$$\tau_{min}$$
 (A₂₁) = 26.0

$$\sigma_{\rm error} = \sqrt{10.1} = 3.18$$

$$\Delta$$
* = 8.0 / 3.18 =

$$1-\beta = 0.9$$

Luego:

$$r = 7$$

ANOVA: estadístico t de student (t-stat)

- Se puede demostrar que al hacer el ANOVA de <u>un</u> factor, comparando dos medias, el estadístico F es equivalente al estadístico t de student.
- Es más fácil calcular el estadístico t y su valor observado de significancia (p).
- Por ejemplo, en planilla Excel con función PRUEBA.TN

						Promedio	S.D.
A = 0.2	2.8	2.5	3.6	4.4	2.7	3.20	0.79
A = 0.4	3.2	3.5	5.7	4.3	4.8	4.30	1.01
A = 0.6	2.5	2.6	1.8	3.1	3	2.60	0.51
A = 0.8	2.7	2.3	3.8	3.7	3	3.10	0.64

		diferencia	p-val t-stat
A = 0.2	3.20	-1.10	0.091
A = 0.4	4.30		

		diferencia	p-val t-stat
A = 0.4	4.30	1.70	0.010
A = 0.6	2.60		

ANOVA: uso de SPSS

<u>FACTORES</u> <u>NIVELES</u>

A: Avg. Coupling tendency a1: 3

a2: 7

B : Avg. Commitment b1 : 50 semanas

b2:100 semanas

C : Avg. Condom use c1 : 0

c2:5

(Sample Models/Biology/AIDS)

RESPUESTA: porcentaje de personas infectadas con SIDA

REPLICAS: Hay tres réplicas (corridas) por cada combinación de tratamientos

Archivo Entrada

todasrep	facta_2	factb_2	factc_2	
64,10	1,00	1,00	1,00	
59,10	2,00	1,00	1,00	
66,90	1,00	2,00	1,00	
66,80	2,00	2,00	1,00	
70,60	1,00	1,00	2,00	
72,30	2,00	1,00	2,00	
67,60	1,00	2,00	2,00	
74,90	2,00	2,00	2,00	
63,90	1,00	1,00	1,00	
62,10	2,00	1,00	1,00	
68,40	1,00	2,00	1,00	
67,60	2,00	2,00	1,00	
69,70	1,00	1,00	2,00	
68,90	2,00	1,00	2,00	
67,80	1,00	2,00	2,00	
74,20	2,00	2,00	2,00	
61,60	1,00	1,00	1,00	
59,70	2,00	1,00	1,00	
61,20	1,00	2,00	1,00	
64,20	2,00	2,00	1,00	
70,30	1,00	1,00	2,00	
69,10	2,00	1,00	2,00	
69,80	1,00	2,00	2,00	
75,00	2,00	2,00	2,00	

ANOVA: uso de SPSS

ANOVA: uso de SPSS

Salida Anova

Descriptive Statistics

Between-Subjects Factors

		N
facta_2	1,00	12
	2,00	12
factb_2	1,00	12
	2,00	12
factc_2	1,00	12
	2,00	12

Dependent Variable:todasrep

facta_2	factb_2	factc_2	Mean	Std. Deviation	N
1,00	1,00	1,00	63,2000	1,38924	3
		2,00	70,2000	,45826	3
		Total	66,7000	3,94411	6
	2,00	1,00	65,5000	3,79868	3
		2,00	68,4000	1,21655	3
		Total	66,9500	2,98111	6
	Total	1,00	64,3500	2,85149	6
		2,00	69,3000	1,28374	6
		Total	66,8250	3,33579	12
2,00	1,00	1,00	60,3000	1,58745	3
		2,00	70,1000	1,90788	3
		Total	65,2000	5,59249	6
	2,00	1,00	66,2000	1,77764	3
		2,00	74,7000	,43589	3
		Total	70,4500	4,79740	6
	Total	1,00	63,2500	3,56581	6
		2,00	72,4000	2,80713	6
		Total	67,8250	5,67404	12
Total	1,00	1,00	61,7500	2,07437	6
		2,00	70,1500	1,24218	6
		Total	65,9500	4,67984	12
	2,00	1,00	65,8500	2,68011	6
		2,00	71,5500	3,54612	6
		Total	68,7000	4,22396	12
	Total	1,00	63,8000	3,13137	12
		2,00	70,8500	2,63663	12
		Total	67,3250	4,58042	24

Salida Anova

Tests of Between-Subjects Effects

Dependent Variable:todasrep

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	427,425ª	7	61,061	17,724	,000
Intercept	108783,735	1	108783,735	31577,282	,000
facta_2	6,000	1	6,000	1,742	,206
factb_2	45,375	1	45,375	13,171	,002
factc_2	298,215	1	298,215	86,565	,000
facta_2 * factb_2	37,500	1	37,500	10,885	,005
facta_2 * factc_2	26,460	1	26,460	7,681	,014
factb_2 * factc_2	10,935	1	10,935	3,174	,094
facta_2 * factb_2 * factc_2	2,940	1	2,940	,853	,369
Error	55,120	16	3,445		
Total	109266,280	24			
Corrected Total	482,545	23			

a. R Squared = ,886 (Adjusted R Squared = ,836)

Test no paramétrico

- Recordemos que en un ANOVA (y una prueba t-stat) hacemos algunas suposiciones:
 - Data pertenece a una distribución normal
 - Las muestras son iid (independientes, distribuidas idénticamente)
 - El error (ε) tiene media cero y sigue una distribución normal
 - La varianza del error es homocedástica (constante, no dependiendo de los niveles de los factores)
- ¿Qué pasa si dichas suposiciones no se pueden hacer o no se cumplen?
- Hacemos una prueba estadística no paramétrica
- Existen muchas: Mann-Whitney, Kolmogorov-Smirnov, Wilcoxon Rank, Kruskal-Wallis, etc.
- Usaremos el paquete estadístico SPSS

Test no paramétrico: uso de SPSS

<u>FACTORES</u> <u>NIVELES</u>

A: Albedo a1: 0.2

a2: 0.8

RESPUESTA: temperatura en estado estable

REPLICAS: Hay doce réplicas por cada combinación de tratamientos.

(Sample Models/Earth Science/Climate Change)

Archivo Entrada

albedo	Temp	
1,00	22,00	
1,00	24,00	
1,00	21,00	
1,00	20,00	
1,00	26,00	
1,00	22,00	
1,00	24,00	
1,00	23,00	
1,00	22,00	
1,00	21,00	
1,00	20,00	
1,00	20,00	
2,00	21,00	
2,00	23,00	
2,00	24,00	
2,00	25,00	
2,00	25,00	
2,00	26,00	
2,00	27,00	
2,00	22,00	
2,00	24,00	
2,00	23,00	
2,00	27,00	
2,00	27,00	

Test no paramétrico: uso de SPSS

Test no paramétrico: uso de SPSS

Test no paramétrico: Salidas

Descriptive Statistics

	N	Mean	Std. Deviation	Minimum	Maximum
Temp	24	23,2917	2,27423	20,00	27,00
albedo	24	1,5000	,51075	1,00	2,00

Ranks

	albedo	Z	Mean Rank	Sum of Ranks
Temp	1,00	12	8,75	105,00
	2,00	12	16,25	195,00
	Total	24		

Test Statistics^b

	Temp
Mann-Whitney U	27,000
Wilcoxon W	105,000
Z	-2,620
Asymp. Sig. (2-tailed)	,009
Exact Sig. [2*(1-tailed Sig.)]	,008ª

a. Not corrected for ties.

b. Grouping Variable: albedo

(Sample Models/Biology/AIDS)

Analizador comportamiento

BehaviorSpace	e results (NetLo	ogo 5.3.1)				1	
AIDS.nlogo							
experiment							
10/16/2019 15	:41:26:568 -0300	0					
min-pxcor	max-pxcor	min-pycor	max-pycor				
-12	12	-12	12			1	
[run number]	initial-people	average-coupling-tendency	average-condom-use	average-test-frequency	average-commitment	[step]	%infected
1	300	5	0	0	50	3000	80.3333333
2	300	5	0	0	50	3000	80.6666667
3	300	5	0	0	50	3000	78
4	300	5	0	0	50	3000	80
5	300	5	0	0	50	3000	81
6	300	5	0	0	50	3000	87
7	300	5	0	0	50	3000	76.3333333
8	300	5	0	0	50	3000	75.6666667
9	300	5	0	0	50	3000	82.3333333
10	300	5	0	0	50	3000	78

Notar el orden de factores: influye en el orden en que salen en el archivo de salida:

ACT: varía más lento

AC: varía lento

ACU: varía rápido

2 ³	ACU	AC	ACT
1	0	50	3
2	5	50	3
3	0	100	3
4	5	100	3
5	0	50	7
6	5	50	7
7	0	100	7
8	5	100	7

BehaviorSpace	e results (NetLogo 5.3.1)				
AIDS.nlogo					
experiment_2					
10/14/2019 11	:26:09:910 -0300				
min-pxcor	max-pxcor	min-pycor	max-pycor		
-12	12	-12	12		
[run number]	average-coupling-tendency	average-commitment	average-condom-use	[step]	%infected
1	3	50	0	3000	56.66666667
2	3	50	0	3000	47.66666667
3	3	50	5	3000	67.33333333
4	3	50	5	3000	52.66666667
5	3	100	0	3000	6.333333333
6	3	100	0	3000	7.333333333
7	3	100	5	3000	8.333333333
8	3	100	5	3000	9.666666667
9	7	50	0	3000	82.33333333
10	7	50	0	3000	85
11	7	50	5	3000	87.33333333
12	7	50	5	3000	87
13	7	100	0	3000	27.66666667
14	7	100	0	3000	20.66666667
15	7	100	5	3000	19.66666667
16	7	100	5	3000	28

(Sample Models/Biology/AIDS)

Produce una "serie de tiempo"

BehaviorSpace	results (NetLo	go 5.3.1)					
AIDS.nlogo							
experiment							
10/16/2019 15:	50:17:575 -0300						
min-pxcor	max-pxcor	min-pycor	max-pycor				
-12	12	-12	12				
[run number]	initial-people	average-coupling-tendency	average-condom-use	average-test-frequency	average-commitment	[step]	%infected
1	300	5	0	0	50	0	2.666666667
1	300	5	0	0	50	1	2.666666667
1	300	5	0	0	50	2	2.666666667
1	300	5	0	0	50	3	3.666666667
1	300	5	0	0	50	4	3.666666667
1	300	5	0	0	50	5	3.666666667
1	300	5	0	0	50	6	3.666666667
1	300	5	0	0	50	7	3.666666667
1	300	5	0	0	50	8	3.666666667
1	300	5	0	0	50	9	3.666666667
1	300	5	0	0	50	10	3.666666667
1	300	5	0	0	50	11	4
1	300	5	0	0	50	12	4
1	300			0	50	13	4
1	300	5	0	0	50	14	4
1	300	5	0	0	50	2994	82
1	300	5	0	0	50	2995	82
1	300	5	0	0	50	2996	82
1	300	5	0	0	50	2997	82
1	300	5	0	0	50	2998	82
1	300	5	0	0	50	2999	82
1	300	5	0	0	50	3000	82

Ejercicio

Entregable:

- 1. Use el modelo seleccionado para la tarea anterior
- 2. Reproduzca los ANOVA vistos para el Diseño 2³, incluyendo confeccionar Tabla de respuestas, e <u>interprete</u> el ANOVA y Tabla de respuestas
- 3. Determine la cantidad de réplicas necesarias y vea si es conveniente/práctico hacer más réplicas
- 4. Elabore una presentación de 20 minutos y venga preparado para exponer
- 5. TODOS los miembros de los grupos deben poder exponer: se seleccionará aleatoriamente al expositor/es
- 6. Entregue una copia impresa de la presentación, con un tamaño adecuado para que pueda ser leída (2 diapositivas por página, por ambas caras)