

Predicting the Competitive Tier of Pokemon

Complex Random Forest and Feature Engineering Techniques, Giving New Tools to Gamers in the Age of Data Science

-Data Science growing in the video game industry

-Pokemon convenient for machine learning, lots of static data, turn-based, lots of

untapped potential

Conclusion

The gaming industry has been growing exponentially. The number of active users tends to increase every minute and so does the overall income of the companies developing games. The inner infrastructure of the games gets even more complex providing more opportunities for players. An entirely new world and realities are created for the users. Top level visualization and design techniques, the latest visual effects, graphic elements and augmented reality effects provide customers with a high level of satisfaction.

Data science has entered various industries and improved the principles of their functioning forever. It has brought various businesses to a qualitatively new level of their development. The industry of gaming is no exception here. Moreover, data science techniques and methodologies have become integral parts of games development, design, operation, and many other stages of their functioning.

								100			
4	Abomasnow	Grass Ise	Snow Warning	Soundproof	Untiered	90	Atk 92	Def 75	SpA 92	SpD 85	Spe 60
*	Abra	Psychic	Inner Focus Synchronize	Magic Guard	LC	HP 25	Atk 20		SpA 105	SpD 55	Spe 90
95	Absol	Dark	Justified Super Luck	Pressure	PU	HP 65	Atk 130	Def 60	SpA 75	SpD 60	Spe 75
@ e	Accelgor	Bug	Hydration Unburden	Sticky Hold	Untiered	HP 80	Atk 70		SpA 100	SpD 60	Spe 145
	Aegislash	Steel Ghost	Stance Change		UU	HP 60				SpD 140	
1	Aegislash-Blade	Steel Ghost	Stance Change		UU	HP 60	Atk 140		SpA 140	SpD 50	Spe 60
*	Aerodactyl	Rock Flying	Pressure Unnerve	Rock Head	NU	HP 80	Atk 105	Def 65	SpA 60	SpD 75	Spe 130
***	Aggron	Steel Rock	Heavy Metal Sturdy	Rock Head	PU	HP 70	Atk 110	Def 180	SpA 60	SpD 60	Spe 50
	Alakazam	Psychic	Inner Focus Synchronize	Magic Guard	UUBL	HP 55	Atk 50		SpA 135	SpD 95	Spe 120
	Alcremie	Fairy	Aroma Veil	Sweet Veil	Untiered	HP 65	Atk 60		SpA 110	SpD 121	
	Alcremie-Gmax	Fairy	Aroma Veil	Sweet Veil	AG	HP 65	Atk 60		SpA 110	SpD 121	
•	Altaria	Dragon Flying	Cloud Nine	Natural Cure	Untiered	HP 75	Atk 70	Def 90		SpD 105	
8	Amaura	Rock Iss	Refrigerate	Snow Warning	LC	HP 77	Atk 59	Def 50	SpA 67	SpD 63	Spe 46
8	Amoonguss	Grass Poison	Effect Spore	Regenerator	UU	HP 114	Atk 85	Def 70	SpA 85	SpD 80	Spe 30
100	Anorith	Rock Bug	Battle Armor	Swift Swim	LC	HP 45	Atk 95	Def 50	SpA 40	SpD 50	Spe 75
	Appletun	Grass Dragon	Gluttony Thick Fat	Ripen	Untiered	HP 110	Atk 85		SpA 100	SpD 80	Spe 30
*	Appletun-Gmax	Grass Dragon	Gluttony Thick Fat	Ripen	AG	HP 110	Atk 85		SpA 100	SpD 80	Spe 30
8	Applin	Grass Dragon	Bulletproof Ripen	Gluttony	LC	HP 40	Atk 40	Def 80	SpA 40	SpD 40	Spe 20
80	Araquanid	Water Bug	Water Absorb	Water Bubble	NU	HP 68	Atk 70	Def 92		SpD 132	
9	Arcanine	Fire	Flash Fire Justified	Intimidate	NU	HP 90	Atk 110		SpA 100	SpD 80	Spe 95
8	Archen	Rock Flying	Defeatist		LC	HP 55	Atk 112		SpA 74		Spe 70
OF S	Archeops	Rock Flying	Defeatist		PU	нр 75	Atk 140			SpD 65	Spe 110
2	Arctovish	Water Ise	Ice Body Water Absorb	Slush Rush	NUBL	HP 90	Atk 90	Def 100	SpA 80	SpD 90	Spe 55

Lots of fatalistic, and not very useful, analysis

Lessons Learned from Analyzing Competitive Pokemon

06 Sep 2018

Ultimately, this problem ended up being unsuitable for machine learning. Essentially, the feature space was too large and the interactions between the features were too complex for a model to learn given the small training set. In other words, there are many examples of Pokemon that are in their particular tier because of some unique combination of their type, ability, moves, and stats that are quite different from other Pokemon in that tier. You can read an in depth breakdown of this in the full notebook.

Identifying Legendary Pokémon using The Random Forest Algorithm

Unfortunately, there is no explicit criteria which defines these Pokémon.

The only way to identify a Legendary Pokémon is through statements from official media, such as the game or anime.

Why might an accurate model of pokemon tiers be useful?

-game design, game quality, development time, design of generations

-feature importances: recommendations for players, powering products for

gamers, design of single pokemon

Results!: Scores

h2o.ai distributed random forest was best, with two stages

-training score: weighted balanced f-score is 0.887, f-scores of 7 classes range from 0.956 to 0.776

-test score: weighted balanced f-score is 0.776, f-scores of 7 classes range from 0.941 to 0.556 (and the lowest scoring classes tend to be quite small)

0.7761367825626139

Precision: Recall: F-Score: Support:

Benchmark Scores:

0.48060193774479487

Okay, so our classifier isn't doing great - it averages around 50% accuracy. Let's take a look into what sort of cases it's missing.

```
tiers_comp = ["LC+NFE", "Untiered+PU+NU+RU", "UU+OU+Uber+AG"]
```

0.7746753246753246

As expected, our accuracy drastically increases when we reduce the cardinality of tiers, reaching an average of around 70%. This is unfortunately still quite low. Furthermore, we haven't really improved anything, we're simply making the problem easier for the classifier.

More Benchmark Scores:

Competitive Pokemon Usage Tier Classification

Devin Navas Fordham University dnavas l@fordham.edu Dylan Donohue Fordham University ddonohue7@fordham.edu

TABLE IV. PRECISION OF CLASSIFICATIONS-TEST SET WITHOUT UNDERSAMPLING

	Algorithm								
Usage Tier	J48	Lazy IBk	Logistic Regression						
Ubers	.909	1.00	.900						
OU	.731	1.00	.478						
UUBL	.500	1.00	0.00						
UU	.763	1.00	.387						
RUBL	0.00	1.00	0.00						
RU	.941	1.00	.438						
NUBL	.500	1.00	0.00						
NU	.840	1.00	.375						
PU	.796	1.00	.475						

	Algorithm									
Methods	J48	Lazy IBk	Logistic Regression							
Cross Validation without Undersampling	32.32	29.60	32.65							
Cross Validation with Undersampling	26.00	27.00	29.50							
Test Set without Undersampling	78.85	100.0	47.40							
Test Set with Undersampling	64.00	78.28	47.42							

Robert Stahlbock · Gary M. Weiss Mahmoud Abou-Nasr · Cheng-Ying Yang Hamid R. Arabnia Leonidas Deligiannidis *Editors*

Advances in Data Science and Information Engineering

Proceedings from ICDATA 2020 and IKE 2020

More Results!: Feature Importances

What To Do With This Model?

Exactly what I mentioned earlier:

- -game design, game quality, development time, design of generations
- -feature importances: recommendations for players, powering products for gamers, design of single pokemon

THE ALL-IN-ONE COMPANION FOR EVERY GAMER

Mobalytics is your personal gaming assistant that will help you master your favorite games

DOWNLOAD DESKTOP APP

Approach |

The 6v6 metagame

& Mekkah · (1) Oct 12, 2010

ZU	335		
PU	153		
OU	57		
Uber	56		
RU	51		
UU	45		
NU	41		
Name:	Change,	dtype:	int64

There are several clauses that apply to most office

Species Clause

A player cannot have two Pokemon with th

- · For example, using a team with two Koffing wo
- Using different formes on the same team, such Pokédex number (#479).

Sleep Clause

If a player has already put a Pokemon on to sleep.

Evasion Clause

A Pokemon may not have either Double Te

OHKO Clause

A Pokemon may not have the moves Fissu

Moody Clause

A team cannot have a Pokemon with the a

Endless Battle Clause

Players cannot intentionally prevent an opp

Web Scraping

SCRAPING DATA FROM A JAVASCRIPT WEBPAGE WITH PYTHON

```
<!doctype html>
<html>
  <head>
    <title></title>
    <base href="/dex/">
    <link rel="stylesheet" href="media/build/dex.css.v.cuEUhCNveq-")</pre>
    <script src="https://hb.vntsm.com/v3/live/ad-manager.min.js"</pre>
    <meta name="viewport" content="width=device-width, initial-scal</pre>
    <meta name="fragment" content="!">
        <script type="text/javascript">
            dexSettings = {"injectRpcs":[["[\"dex\",\"dump-gens\"]
        </script>
    </head>
  <body tabindex="-1" class="theme--light">
    <div id="rich-media-placement"></div>
    <div id="container"></div>
    <div id="loading">
        <div class="spinner">
            <div class="spinner-img"><img src="media/images/loading">
            <div class="spinner-text">Loading...</div>
        </div>
    </div>
```

Data Cleaning

http://jsonviewer.stack.hu

Online JSON Viewer

JSON Viewer - Convert JSON Strings to a Friendly Readable Format.

```
strategies dict = {}
strategydexcopy = strategydex df.copy()
for pokemon in pokemon df.index:
    pokemon access = pokemon.replace("'", "").replace
   dex_entry = strategydexcopy.loc[strategydexcopy['
   format list = []
   for competitive format in dex entry['strategies']
       format dict = {}
        current format = competitive format['format']
       if current_format in acceptable_formats:
           moveset list = []
            for moveset in competitive format['movese
                moveset dict = {}
                moveset name = moveset['name']
                move list = []
                for move in moveset['moveslots']:
                    for entry in move:
                        move list.append(entry['move'
                moveset dict[moveset_name] = move_lis
                moveset list.append(moveset dict)
            format dict[current format] = moveset lis
            format list.append(format dict)
    strategies dict[pokemon] = format list
```

```
https://regex101.com :
regex101: build, test, and debug regex
```

Regular expression tester with syntax highlighting, explanation, cheat sheet for PHP/PCRE, Python, GO, JavaScript, Java. Features a regex quiz & library.

```
ed data/PokemonData2021.csv", encoding="utf8") as infile:
.str.replace('.+?<\/p>', '', regex=True)
.str.replace('<section>.+?<\/section>', '', regex=True)
.str.replace('<h1>.+?<\/h1>', '', regex=True)
.str.replace('\\\n', '', regex=True)
.str.replace("\'", '\"')
.str.replace('King\"s', "King\'s")
.str.replace('Maki\"s', "Maki\'s")
.str.replace('Land\"s', "Land\'s")
.str.replace('Dragon\"s', "Dragon\'s")
.str.replace('Sirfetch\"d', "Sirfetch\'d")
.str.replace('Farfetch\"d', "Farfetch\'d")
.str.replace('Nature\"s', "Nature\'s")
.str.replace('Forest\"s', "Forest\'s")
.str.replace('drampa\"s', "drampa\'s")
.str.replace('False', '\"\"')
.str.replace('True', '\"\"')
.str.replace('None', '\"\"')
.str.replace('\"\"\s', '\"', regex=True)
.str.replace('.+?<\/ul', '', regex=True)</pre>
.str.replace('Swipe', 'False Swipe') #newline
.str.replace('Surrender', 'False Surrender') #newline
.apply(json.loads)
```

Big Problem!!!

738 rows x 14 columns

738 rows x 18 columns

738 rows x 242 columns

738 rows x 644 columns

14 + 18 + 242 + 644 = **918!!!**

degrees of freedom = number of independent values – number of statistics

... models cannot be used "out of the box", since the standard fitting algorithms all require p<n; in fact the usual rule of thumb is that there be five or ten times as many samples as variables.

Resistance Index = Resists + 2(Strong Resists) + 4(Immune) - Weaknesses - 2(Strong Weaknesses)

		Defending type																
×	NORMAL	FIGHT	FLVING	POISON	GROUND	ROCK	BUG	GHOST	STEEL	FIRE	HATER	GRASS	ELECTR	PSVCHC	102	DRAGON	DARK	FAIR
NORHAL	1×	1×	1×	1×	1×	1/2×	1×	0×	1/2×	1×	1×	1×	1×	1×	1×	1×	1×	1×
FIGHT	2×	1×	1/2×	1/2×	1×	2×	1/2×	0×	2×	1×	1×	1×	1×	1/2×	2×	1×	2×	1/2×
FLVING	1×	2×	1×	1×	1×	1/2×	2×	1×	1/2×	1×	1×	2×	1/2×	1×	1×	1×	1×	1×
POISON	1×	1×	1×	3 <u>6</u> ×	1/2×	1/2×	1×	1/2×	0×	1×	1×	2×	1×	1×	1×	1×	1×	2×
SROUND	1×	1×	0×	2×	1×	2×	1/2×	1×	2×	2×	1×	1/2×	2×	1×	1×	1×	1×	1>
ROCK	1×	1/2×	2×	1×	1/2×	1×	2x	1×	1/2×	2x	1×	1×	1×	1×	2×	1×	1×	1>
BUG	1×	1/2×	1/2×	1/2×	1×	1×	1×	1/2×	1/2×	16×	1×	2×	1×	2×	1×	1×	2x	1/2
GHOST	0×	1×	1×	1×	1×	1×	1×	2×	1×	1×	1×	1×	1×	2x	1×	1×	16×	12
STEEL	1×	1×	1×	1×	1×	2x	1×	1×	1/2×	16×	1/2×	1×	1/2×	1×	2x	1×	1×	2
FIRE	1×	1×	1×	1×	1×	1/2×	2×	1×	2×	1/2×	1/2×	2×	1×	1×	2×	1/2×	1×	1:
HATER	1×	1×	1×	1×	2×	2×	1×	1×	1×	2×	1/2×	1/2×	1×	1×	1×	1/2×	1×	1:
GRASS	1×	1×	1/2×	1/2×	2×	2x	1/2×	1×	1/2×	1/2×	2×	1/2×	1×	1×	1×	1/2×	1×	1
ELECTR	8 1×	1×	2×	1×	0×	1×	1×	1×	1×	1×	2×	1/2×	16×	1×	1×	1/2×	1×	1:
PSVCHC	1×	2×	1×	2×	1×	1×	1×	1×	1/2×	1×	1×	1×	1×	1/2×	1×	1×	0×	1:
102	1×	1×	2×	1×	2×	1×	1×	1×	1/2×	16×	1/2×	2×	1×	1×	1/2×	2×	1×	1:
DRAGON	1×	1×	1×	1×	1×	1×	1×	1×	1/2×	1×	1×	1×	1×	1×	1×	2×	1×	0:
DARK	1×	1/2×	1×	1×	1×	1×	1×	2×	1×	1×	1×	1×	1×	2×	1×	1×	1/2×	1/2
FAIRV	1×	2×	1×	1/2×	1×	1×	1×	1×	1/2×	16×	1×	1×	1×	1×	1×	2×	2x	1:

Roles in Competitive Pokemon

- -single out important moves and abilities
- -allow for surprising niches, in spite of things like weak stats, etc.
- -model could miss this easily without features

"C-index": Competitiveness Index for Moves and Abilities

738 rows x 242 columns

738 rows x 644 columns

TF-IDF (term frequency-inverse document frequency) is a statistical measure that evaluates how relevant a word is to a document in a collection of documents. This is done by multiplying two metrics: how many times a word appears in a document, and the inverse document frequency of the word across a set of documents. May 10, 2019

More About the Cindex

```
In [96]:
                                                                 Out[96]:
                                                                            2.0
Aggregate Feature: Physical Cutoff
Aggregate Feature: Physical Coverage
Aggregate Feature: Special Cutoff
Aggregate Feature: Special Coverage
Aggregate Feature: Miscellaneous Status
sical Cutoff 5', 'Physical Cutoff 6']].corrwith(pokemon data['format codes'])
Physical Cutoff 1
                      0.270197
Physical Cutoff 2
                      0.284223
Physical Cutoff 3
                      0.324136
Physical Cutoff 4
                      0.325190
Physical Cutoff 5
                      0.300717
Physical Cutoff 6
                      0.276238
dtype: float64
```


Unique Powerful Moves Feature

Now we need to make a feature indicating wh moves with cindex 100 and n_learnset 1 or 2

Clusters: Shrinking the Decision Space

Models We Tried

- -Logistic Regression, Decision Tree: Far lower accuracy on the train and test sets
- -KNN: performed almost as well as Random Forest (similar to clustering)
- -KNN only gives predictions, not feature importances or coefficients

Are categorical variables getting lost in your random forests?

(1) less than 1 minute read

I've been one-hot encoding categorical variables for as long as I have been using sci-kit learn. It turns out that you can lose a lot of predictive power this way, and that alternatives do exist.

Decision tree models can handle categorical variables without one-hot encoding them. However, popular implementations of decision trees (and random forests) differ as to whether they honor this fact. We show that one-hot encoding can seriously degrade tree-model performance. Our primary comparison is between H2O (which honors categorical variables) and scikit-learn (which requires them to be one-hot encoded).

Docs » Algorithms » Distributed Random Forest (DRF)

Distributed Random Forest (DRF)

C Edit

Our most important feature (proven by feature importances) was clustering, which is categorical, so it may have been essential that h2o could properly assign importance to it!

Improved ability to train on categorical variables (using the nbins_cats parameter)

Two-Stage Modeling!

significantly improved accuracy, and especially helped with overfitting

ZU	335		
PU	153		
OU	57		
Uber	56		
RU	51		
UU	45		
NU	41		
Name:	Change,	dtype:	int64

- -model for the higher 6 classes has more balanced feature importances
- -also tried three-stage, due to size of PU, but this did not improve accuracy on training or test data

Future Ideas!

Machine Learning

Classification

Output

Input

Feature extraction

Deep Learning

Input

Feature extraction + Classification

Output

