Diseño y Validación de Algoritmos de Detección de Objetos para la Capa de Percepción del Sistema Avanzado de Asistencia para Conducción (ADAS) en Vehículos Autónomos

CRISTOFHER SOLÍS JIMÉNEZ

Problema detectado

- NICR trabaja en la validación de sistemas de transporte (convencional y autónomo).
- Estos sistemas ADAS se utilizan en Unidades de Control Electrónicas (ECU)
- Estas ECU son de uso limitado ya que les pertenecen a las empresas clientes.
- Se necesita un entorno en el cual se realicen pruebas de concepto para proyectos tanto internos como externos

Objetivo General

Diseñar un sistema de detección de objetos para la capa de percepción en un sistema de frenado automático de emergencia.

Entregable Final:

• Algoritmo completo de detección, rastreo y comunicación debidamente diseñado y validado

Objetivos Específicos

1. Investigar sobre los distintos métodos, en que se desarrolla la detección de objetos.

Entregable: Estudio realizado sobre las múltiples arquitecturas y estrategias de desarrollo de aplicaciones de detección de objetos en tiempo real.

2. Diseñar un sistema de visión artificial para un sistema ADAS.

Entregables: Guía de diseño para el programa de detección de objetos.

Indicador: El prototipo diseñado debe ser capaz de detectar objetos a través de video a 20 fotogramas por segundo

3. Diseñar una aplicación en software para los 3 mejores diseños obtenidos.

Entregable: Guía de diseño de los prototipos de software.

Indicador: Los algoritmos deben cumplir con una precisión al detectar objetos de al menos 90%

Objetivos Específicos

4. Integrar el sistema de visión junto con el sistema de control del simulador del sistema ADAS.

Indicador: El sistema debe tener una tasa de error en la comunicación entre 0 y 5%

5. Verificar el funcionamiento del sistema completo.

Indicador: Sistema completo funcional el cual tenga una capacidad de clasificación de al menos 90%.

Entregable: Documento con los resultados obtenidos de la verificación del sistema de visión.

Metodología de trabajo

División en subproblemas

Métricas definidas

Número de métrica	Número de necesidad	Métrica	Importancia	Unidades	Valor marginal	Valor Ideal
1	1, 4	Precisión al detectar objetos en ambientes sencillos [1]	5	Porcentaje	> 80	> 90
2	1,4	Precisión al detectar objetos en ambientes medianamente complejos [1]	5	Porcentaje	>70	>80
3	1,4	Precisión al detectar objetos en ambientes complejos [1]	4	Porcentaje	>30	>40
4	2	Tiempo de procesado de imágenes	5	ms	> 50	> 25
5	3	Clases distintas de objetos en que se puede clasificar	5	Cantidad	2	> 3
6	4	Precisión del rastreo	5	Porcentaje	> 70	> 90
7	5	Tiempo de procesamiento y envío de información a la capa de control	5	ms	> 30	< 30
8	6	Potencia utilizada por el SD	4	W	< 200	< 50
9	9	Precisión del sistema completo [1]	4	Porcentaje	90	100
11	11	Memoria RAM necesaria	3	GB	> 20	< 8

Referencia comercial para filtrar conceptos

Resultados de experimentos del modelo comercial Yolov5-ADAS en el conjunto de datos "KITTI" [2]

Referencia	Imagen Sencilla (%)	Imagen Moderada (%)	Imagen Compleja (%)	Promedio (%)	Tiempo de procesamiento promedio (s)
Automóvil	95.92	93.31	85.44	91.45	0.019
Ciclista	82.29	66.33	61.23	69.4	0.025
Peatón	71.49	54.07	47.82	56.96	0.050

Calificación y filtrado de conceptos

	Conceptos						
Criterios de selección	Yolov5 - ADAS	Α	В	С	D	Е	F
Precisión en imágenes sencillas	0	0	+	+	+	-	+
Precisión en imágenes moderadamente complejas	0	+	+	+	0	-	+
Precisión en imágenes considerablemente complejas	0	-	0	0	-	-	0
Tiempo de detección promedio	0	+	-	+	-	+	-
Precisión del rastreo	0	+	+	-	+	-	+
Precisión en la distancia estimada entre SD y objeto detectado	0	+	+	-	-	-	+
Efectividad de comunicación	0	+	+	+	0	0	+
Suma +	0	5	5	4	2	1	5
Suma 0	0	1	1	1	2	1	1
Suma -	0	1	1	2	3	5	1
Evaluación neta	0	4	4	2	-1	-4	4
Lugar	Ref	1	1	2	3	4	1
¿Continuar?		Sí	Sí	No	No	No	Sí

Propuesta de Diseño

Propuesta de diseño: Seleccionar arquitecturas

Yolov8 y SSD-NAS lideran las arquitecturas de una etapa

F-RCNN lidera la arquitectura de dos etapas

Propuesta de Diseño: Entrenamiento del modelo

3 Arquitecturas distintas. Un solo dataset: KITTI

	/	4 \ /	_
\sim	llicion	1 · VA	101/2
301	lución	T. 10	IUVO

Épocas	Tasa de aprendizaje	Tamaño del lote de entrenamiento	Modelo base
64	0.001	4	Yolov8-n
128	0.01	8	Yolov8-s
256	0.1	16	Yolov8-l

Solución 2: Detectron2

Épocas	Tasa de aprendizaje	Tamaño del lote de entrenamiento	Modelo base
512	0.001	4	R-50-C4
1024	0.01	8	HRNetV2p- W48
2048	0.1	16	fasterrcnn_x_ 101

Solución 3: SSD-NAS

Épocas	Tasa de aprendizaje	Tamaño del lote de entrenamiento	Modelo base
32	0.001	4	SSD NASNet
64	0.01	8	SSD ResNet
128	0.1	16	SSD512

Propuesta de Diseño: Diseño de rastreo de objetos

Propuesta de Diseño: Generación de entorno virtual para validación

Se generaron 3 escenarios virtuales distintos en la aplicación NI Monodrive para poner a prueba el comportamiento del algoritmo, estos se encuentran en la sección "Escenarios_de_Simulación"

Propuesta de Diseño: Optimizaciones

Contraste

Ruido

Exposición

Saturación

Prueba de validación 1

■Precisión para detectar objetos en imágenes del dataset KITTI

Solución	Automóviles (%)	Peatones (%)	Ciclistas (%)
Métricas referencia [1]	90	80	90
Yolov8	94	87	96
Detectron2	96	87	94
SSD-NAS	84	74	86

Resultados prueba de validación 2

■Precisión para la detección en imágenes en distintos ambientes

Solución	Referencia	Imagen Sencilla (%)	Imagen Moderada (%)	Imagen Compleja (%)	Promedio
YOLOv8	Automóvil	99.63	94.93	84.82	93.13
	Ciclista	94.24	81.26	63.14	74.54
	Peatón	90.02	69.86	61.32	73.73
Detectron2	Automóvil	97.34	94.15	87.13	92.87
	Ciclista	94.95	84.68	72.16	83.93
	Peatón	88.31	79.26	60.87	76.15
SSD NAS	Automóvil	95.90	95.31	81.95	91.05
	Ciclista	85.84	69.64	65.11	73.53
	Peatón	72.65	57.91	51.92	60.83

Resultados para prueba de validación 3

■Velocidad de procesamiento y comunicación

Solución	Escenario	Tiempo promedio (ms)	Tiempo máximo en los experimentos (ms)	Método de Comunicación	¿Es una solución viable?
1. (YOLOv8)	1	96.1353	131.2845	UDP	No
	2	89.2329	121.9422		
	3	98.5976	131.1523		
1. (YOLOv8)	1	19.4654	32.5150	TCP/IP	Sí
	2	19.6702	26.1049		
	3	15.4049	19.0020		
2. (Detectron2)	1	119.5725	314.6020	TCP/IP	No
	2	118.7578	304.8083		
	3	122.0785	307.8356		
3. (SSD-NAS)	1	7.5770	11.0017	TCP/IP	Sí
	2	7.5616	12.0012		
	3	7.6782	11.0035		

Resultados para la prueba de validación 4

■Precisión en el rastreo

Solución	Escenario	Fotogramas con objetos conocidos	Fotogramas con objetos detectados	Porcentaje de error (%)	¿El rastreo falla?*
1. (YOLOv8)	1	100	99	1	No
	2	60	60	0	No
	3	150	150	0	No
2. (Detectron2)	1	100	97	3	No
	2	60	58	3.33	No
	3	150	148	1.33	No
3. (SSD-NAS)	1	100	98	2	No
	2	60	55	6.67	Sí
	3	150	147	2	Sí

²¹

Solución	Velocidad (km/h)	Porcentaje de error promedio (%)	Valor de error máximo
1. Yolov8	10	2.0328	4.8585
	25	2.4590	4.8532
	50	2.2664	4.9043
2. Detectron2	10	2.0475	4.4047
	25	1.8244	3.9428
	50	2.5571	4.8483
3. SSD-NAS	10	2.1246	3.9742
	25	2.5126	5.6332
	50	2.9114	5.3478

Prueba de validación 5

§Precisión en estimación de distancias §< 5% según EURO-NCAP

Conclusiones

- ➤ Únicamente los prototipos realizados con las arquitecturas de Yolov8 y Detectron2 cumplen con los estándares de precisión tanto general como en distintos entornos.
- ➤ De los tres prototipos, los que utilizan Yolov8 y SSD-NAS son capaces de sobrepasar la métrica de 50ms de tiempo de procesamiento
- La comunicación por TCP/IP es eficaz, aumenta el tiempo de procesamiento en un 14.6%
- Se diseñó e implementó un sistema de rastreo compatible con los 3 prototipos, posee error menor al 5% en las soluciones de Yolov8 y Detectron2
- La aproximación de distancias a varias velocidades no excede el 5% de error para los prototipos que utilizan Yolov8 y Detectron2
- Se validaron y compararon las tres propuestas en diferentes métricas, obteniendo un concepto ganador: Yolov8

Mayor poder computacional

Explorar técnicas de optimización más robustas-modernas (pero a un mayor costo computacional) para mejorar el proceso de entrenamiento

Valorar alternativas al método de comunicación para minimizar el impacto en el tiempo de procesamiento

Explorar potenciales optimizaciones al modelo actual al hacer un análisis tipo *benchmark* con otros API's como Caffe, o MobileNet, entre otros.

Recomendaciones

Beneficios Generados a la Empresa

Problema	Actualmente	Beneficio del proyecto
Tiempo de adaptación de nuevos	Alrededor de un mes con las capacitaciones	Se reduce el tiempo de adaptación en un
empleados a las aplicaciones de ADAS	existentes.	50%.
Realizar demostraciones de aplicaciones	Actualmente se realizan entre 0 y 1	Se puede aumentar el nivel de
generadas en NICR	demostración de funcionamiento por mes	demostraciones exponencialmente, se
	debido a la falta de hardware especializado.	asegura mínimo 2 demostraciones de
		funcionamiento por mes.
Capacidad de desarrollar y validar	No hay desarrollo de aplicaciones de ADAS	Se podrán generar aplicaciones para
aplicaciones diseñadas internamente	100% propias de NICR, todas dependen de	sistemas ADAS que pertenecen 100% a
	insumos de empresas ajenas.	NICR. Se asegura el desarrollo de mínimo
		una aplicación por año.
Tiempo de desarrollo para ECU propias	Se estimó un periodo de 2 años para	Se ahorra hasta un 50% del tiempo de
de NICR	confeccionar ECU propias de NICR.	desarrollo considerado para ECU
		especializadas en frenado automático de
		emergencia, además de generar una base
		para cualquier otro tipo de aplicación ADAS
		que se desee.

Referencias

[1] Fritsch, J., Kuehnl, T., & Geiger, A. (2013, October). A new performance measure and evaluation benchmark for road detection algorithms. In Proceedings of the 2013 IEEE 16th International Conference on Intelligent Transportation Systems (pp. 1963-1968). IEEE.

[2] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite," in Conference on Computer Vision and Pattern Recognition (CVPR), 2012.