Architecture des microprocesseurs RISC-V(RV32I)

control de flot : sauts et branchements

Michel Agoyan

Marc Lacruche
Simon Pontie
Olivier Potin
Come Allart
Raphaël Comps

: michel agoyan@st.com
marc.lacruche@st.com
simon.pontie@cea.fr
come.allart@emse.fr
rcomps@emse.fr

Architecture µP: RV32I saut et branchements

* RISC-V (RV32I) format des instructions

	31 25	24 20	1915	1412	11 7	6 0
R	func7 rs2		rsl	funct3	rd	0110011
Ι	imm[11:0]		rsl	funct3	rd	0010011
S	Imm[11:5] rs2		rsl	funct3	imm[4:0]	0100011
SB	imm[12] imm[10:5]	rs2	rsl	funct3	imm[4:1] imm[1]	1100111
U		[mm[31:12]	rd	0110111		
UJ	imm[20] in	nm[10:1]	rd	1101111		

RV32I Sauts et Branchements Architecture monocycle

Logique de contrôle du data-path Pour les instructions de branchement BXXX Rs1,Rs2,offset de format SB * On ajoute à la logique du « control path » : Le décodage d'instructions de type SB qui va permettre de : générer le signal de pilotage « pc_next_sel_i» en fonction Imm_gen_sel_o[1:0 alu_src1_ alu_src2_ alu_lt_i des bits de statut de l'ALU mem_we_ wb_sel_i[1:0 * D'appliquer le traitement adéquat sur la valeur immédiate Control_Path De choisir la bonne opération pour l'ALU (SUB..)

logique de contrôle du data-path Pour les instructions de saut JAL Rd,Imm de de format UJ

reg_write_ Imm_gen_sel_o[r:o alu_srci_ alu_lt_i mem_we_ wb_sel_i[1:0 Control_Path

- On ajoute à la logique du « control path » :
- * Le décodage d'instructions de type UJ qui va permettre de :
 - « générer le signal de pilotage « pc_next_sel_i»
 - D'appliquer le traitement adéquat sur la valeur immédiate
- « De sectionner l'entrée du multiplexeur pour le WB

RV32I Sauts et Branchements Architecture pipeline

- pipeline : dépendance de contrôle

 En cas de rupture du flot d'exécution par une instruction de saut ou de branchement comment est calculée l'adresse de destination (architecture de type pipeline RV32I) ?
- * JAL saut à PC + immédiate
- * JALR saut indirect à Rs1+ immédiate
- * Bxxx si (Rs1 cond Rs2) branchement à PC+Imm

instruction	Étage pipeline pour le calcul de décision	Etage pipeline de calcul d'adresse de destination
JAL	Decode	Decode
JALR	Decode	Execution
Bxxx	Execution	Decode

		WB	7	IEM	N	EX	1	ID		F	I1
			c8	c7	с6	c5	C4	с3	C2	CI	
						WBI	МЕМт	EXI	IDı	IFi	Iı
					WB2	MEM 2		ID2	IF2		I2=JAL
Iı	100			NOP	NOP	NOP	NOP	IF3			I3
			WB5	MEM_5	EX5	ID5	IF5				I5
JAL 1	104		MEM6	EX6	ID6	IF6					I6
13	108		c8	c7	c6	C5	C4	c3	C2	CI	
I4	юС		I9	18	I ₇	16	14	I ₃	I ₂	Ιı	IF
I ₅	IIO		18	I ₇	16	14	NOP	I2	II		ID
-	110		I ₇	I6	14	NOP	I 2	Iı			EX
16	114		16	I4	NOP	I2	Iı				MEM
			I4	NOP	I2	II					WB

RV32I Sauts et Branchements Architecture pipeline Optimisation Prédiction de branchement (Branch Prediction) Table d'adresses de destination (Branch Target Buffer)

pipeline dépendance de contrôle : optimis	ation MIPS I
 Les branchements avec test sont utilisés pour les boucles ⇒Impact important sur CPI 	
 Idée ⇒ Ne pas détruire l'instruction qui suit l'instruction de saut ou de branchement = 	LHI R1,0
« délai slot »	ORI,R1,#1000
* Pas forcément une bonne idée du point de	 DNIO7
vue abstraction : la microarchitecture a un impact sur l'ISA et sur les couches	BNQZ
supérieures :	ADD R1,R1,#-1
superieures.	
 l'évolution de la microarchitecture (nombre d'étages par exemple du pipeline) devient difficile 	
15	

Prédiction de branchem "Branch Target	, , ,
On associe à la B1H ("Branch Target History") un BTB ("Branch Target Buffer") Dans l'étage de "Fetch" on charge l'instruction issue du mécanisme de prédiction	BHT (sk entry) BTB (s
Dans tous les cas on met à jour BHT et BTB	Add largeted address