

6th list of exercises May  $16^{st}$ , 2024

Student: Jaider Torres

## **RA**: 241343

**Q3.** Sejam  $x=(x_1,\ldots,x_n)$  e  $y=(y_1,\ldots,y_n)$ . Note que  $f(x,y)=\langle x,y\rangle=\sum_{i\in[n]}x_iy_i$ . Assim,  $\frac{\partial f}{\partial x_i}=y_i$  e  $\frac{\partial f}{\partial y_i}=x_i$  para cada  $i\in[n]$ . Como as derivadas parciais da f existem e são contínuas (pois são constantes), então f é diferenciável em cada ponto de  $\mathbb{R}^{n^2}\cong\mathbb{R}^n\times\mathbb{R}^n$ . Agora,

$$df: \mathbb{R}^n \times \mathbb{R}^n \to \mathcal{M}_{1,2}(\mathbb{R})$$

envia  $p=(x,y)\in\mathbb{R}^n imes\mathbb{R}^n$  á

$$df_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

definida por

$$df_p(v, w) = \begin{pmatrix} x_1 & \cdots & x_n & y_1 & \cdots & y_n \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \\ w_1 \\ \vdots \\ w_n \end{pmatrix}$$
$$= \sum_{i \in [n]} x_i v_i + \sum_{i \in [n]} y_i w_i$$
$$= \langle x, v \rangle + \langle y, w \rangle.$$

Em geral, seja  $\Psi:\mathbb{R}^{m_1}\times\cdots\times\mathbb{R}^{m_k}\to\mathbb{R}$  uma aplicação k-linear. Como  $\mathbb{R}^{m_1}\times\cdots\times\mathbb{R}^{m_k}\cong\mathbb{R}^{\Sigma=\sum_{i=1}^k m_i}$ , seja  $\{e_{j_{m_i}}\}_{j=1}^{m_i}$  a base canônica de  $\mathbb{R}^{m_i}$  e denote  $\overline{e}_{j_{m_i}}\in\mathbb{R}^\Sigma$  o vetor de coordenadas desde  $\sum_{k=1}^{m_{i-1}} m_k+1$  até  $\sum_{k=1}^{m_i} m_k$  iguais a  $e_{j_{m_i}}$  e 0 nos demais. Fixe  $\overline{x}_1\in\mathbb{R}^{m_1},\ldots,\overline{x}_{i-1}\in\mathbb{R}^{m_{i-1}},\overline{x}_{i+1}\in\mathbb{R}^{m_{i+1}},\ldots,\overline{x}_k\in\mathbb{R}^{m_k}$  e seja  $h\in\mathbb{R}$ . Então

 $\Psi(\overline{x}_1,\ldots,\overline{x}_{i-1},\overline{x}_i+he_{j_{m_i}},\overline{x}_i,\ldots,\overline{x}_k)=\Psi(\overline{x}_1,\ldots,\overline{x}_{i-1},\overline{x}_i,\overline{x}_{i+1},\ldots,\overline{x}_k)+h\Psi(\overline{x}_1,\ldots,\overline{x}_{i-1},e_{j_{m_i}},\overline{x}_{i+1},\ldots,\overline{x}_k).$ 

Assim,

$$\begin{split} \frac{\partial \Psi}{\partial \overline{e}_{jm_i}}(\overline{x}_1,\ldots,\overline{x}_k) &= \lim_{h \to 0} \frac{\Psi((\overline{x}_1,\ldots,\overline{x}_k) + h\overline{e}_{jm_i}) - \Psi(\overline{x}_1,\ldots,\overline{x}_k)}{h} \\ &= \lim_{h \to 0} \frac{\Psi(\overline{x}_1,\ldots,\overline{x}_k) - h\Psi(\overline{x}_1,\ldots,e_{jm_i},\ldots,\overline{x}_k) - \Psi(\overline{x}_1,\ldots,\overline{x}_k)}{h} \\ &= \Psi(\overline{x}_1,\ldots,e_{jm_i},\ldots,\overline{x}_k). \end{split}$$

Logo, cada derivada parcial da  $\Psi$  existe e como  $\Psi$  é k-linear, elas são contínuas. Portanto,  $\Psi$  é diferenciável em  $\mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_k}$ .

Defina  $\det: \underbrace{\mathbb{R}^n \times \cdots \mathbb{R}^n}_{n-\text{vezes}} \to \times \mathbb{R}$  por

$$(\overline{v}_1, \dots, \overline{v}_n) \mapsto \sum_{\sigma \in S_n} sng(\sigma) \prod_{i \in [n]} v_{i\sigma(i)}.$$

Denote  $\overline{e}_{ij} \in \mathbb{R}^n \times \cdots \times \mathbb{R}^n$  o elemento com 1 na posição (i,j) e 0 nos demais. Seja  $\{e_{ij}\}_{i=1}^n$  base para a j-ésima componente do  $\mathbb{R}^n \times \cdots \times \mathbb{R}^n$ . Como det é n-linear, temos que

$$\frac{\partial \det}{\partial \overline{e}_{ij}}(\overline{v}_1, \dots, \overline{v}_n) = \lim_{h \to 0} \frac{\det((\overline{v}_1, \dots, \overline{v}_n) - h\overline{e}_{ij}) - \det(\overline{v}_1, \dots, \overline{v}_n)}{h} \\
= \frac{\det(\overline{v}_1, \dots, \overline{v}_i + he_{ij}, \dots, \overline{v}_n) - \det(\overline{v}_1, \dots, \overline{v}_n)}{h} \\
= \frac{\det(\overline{v}_1, \dots, \overline{v}_i, \dots, \overline{v}_n) + h\det(\overline{v}_1, \dots, e_{ij}, \dots, \overline{v}_n) - \det(\overline{v}_1, \dots, \overline{v}_n)}{h} \\
= \det(\overline{v}_1, \dots, e_{ij}, \dots, \overline{v}_n),$$

i.e.,

$$\frac{\partial det}{\partial x_{ij}}(\overline{v}_1, \dots, \overline{v}_n) = det \begin{pmatrix} v_{11} & \cdots & 0 & \cdots & v_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ v_{i1} & \cdots & 1_{(i,j)} & \cdots & v_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ v_{n1} & \cdots & 0 & \cdots & v_{nn} \end{pmatrix}$$

$$= (-1)^{i+j} C_{ij}$$

$$= Adj(\overline{v}_1, \dots, \overline{v}_n)_{i,j}^T,$$

onde  $C_{i,j}$  é o cofator i,j da matriz definida por  $(\overline{v}_1,\ldots,\overline{v}_n)\in\mathbb{R}^n\times\cdots\times\mathbb{R}^n$ . Como as derivadas parciais da função det existem e são funções polinomiais, elas são contínuas e portanto a função det é diferenciável. Além disso,

$$d \ det : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathcal{M}_{1,n^2}(\mathbb{R})$$

definida por

$$\overline{v} = (\overline{v}_1, \dots, \overline{v}_n) \mapsto d \det_{(\overline{v}_1, \dots, \overline{v}_n)} : \mathbb{R}^n \times \dots \times \mathbb{R}^n \to \mathbb{R}$$

$$\overline{x} = (\overline{x}_1, \dots, \overline{x}_n) \mapsto \left(\frac{\partial \det}{\partial x_{11}}(\overline{v}) \dots \frac{\partial \det}{\partial x_{nn}}(\overline{v})\right) \overline{x}$$

$$= \sum_{i,j \in [n]} Adj(\overline{v})_{ij}^{\mathbf{T}} x_{ij}$$

$$= \sum_{j \in [n]} \left(\sum_{i \in [n]} Adj(\overline{v})_{ij}^{\mathbf{T}} x_{ij}\right)$$

$$= Tr \left(\left(\frac{\partial \det}{\partial x_{ij}}\right)_{i,j \in [n]}^{\mathbf{T}} \overline{x}\right),$$

a chamada formula de Jacobi.

## Q4. Note que

$$\left| \frac{\partial f}{\partial x_i}(x) \right| = \lim_{h \to 0} \frac{|f(x + he_i) - f(x)|}{h}$$

$$\leq \lim_{h \to 0} \frac{c||x + he_i - x||}{h}$$

Assim,

$$|df_x(v)| = |\langle \nabla f_x, v \rangle|$$

$$= \left| \sum_{i \in [n]} \frac{\partial f}{\partial x_i}(x) v_i \right|$$

$$\leq \sum_{i \in [n]} \left| \frac{\partial f}{\partial x_i}(x) v_i \right|$$

$$= \sum_{i \in [n]} \left| \frac{\partial f}{\partial x_i}(x) \right| |v_i|$$

$$\leq c \sum_{i \in [n]} |v_i|$$

$$= c ||v||_S,$$

para  $v, x \in U$ .

**Q5.** Sejam  $f_1:[0,b]\to\mathbb{R}$  definida por  $f_1(s)=\int_0^s\left(\int_y^bf(x,y)dy\right)dx$  e  $f_2:[0,b]\to\mathbb{R}$  definida por  $f_2(s)=\int_0^s\left(\int_y^sf(x,y)dx\right)dy$ . Como f é contínua, ela é integrável e assim  $f_i$  é diferenciável para i=1,2. Note que  $f_1(0)=f_2(0)=0$ . Queremos provar  $f_1(b)=f_2(b)$ .

Temos que  $\frac{df_1}{ds}(s)=\frac{d}{ds}\left(\int_0^s\left(\int_0^x f(x,y)dy\right)dx\right)$ . Seja  $u_1(x)=\int_0^x f(x,y)dy$ . Pelo teorema fundamental do calculo temos

$$\frac{d}{ds} \left( \int_0^s u_1(x) dx \right) = u_1(s)$$
$$= \int_0^s f(s, y) dy.$$

Agora, seja  $u_2(s,y)=\int_y^s f(x,y)dx$ . Então  $f_2$  pode se escrever como

$$f_2(s) = \int_0^s u_2(s, y) dy.$$

Usando a regra de Leibniz e o teorema de Schwarz temos que

$$\frac{df_2}{ds}(s) = \frac{d}{ds} \left( \int_{s=0}^{g(s)=s} u_2(s,y) dy \right)$$

$$= \int_{s=0}^{g(s)=s} \frac{\partial u_2}{\partial s}(s,y) dy + \frac{\partial g}{\partial s}(s) u_2(s,g(s))$$

$$= \int_{s=0}^{g(s)=s} \frac{\partial u_2}{\partial s}(s,y) dy + \frac{\partial g}{\partial s}(s) u_2(s,g(s))$$

$$= \int_0^s \frac{\partial u_2}{\partial s}(s,y) dy + 1 \cdot u_2(s,g(s)).$$

Como  $\frac{\partial u_2}{\partial s}(s,y)=\frac{d}{ds}\int_y^s f(x,y)dx=f(s,y)$  e  $u_2(s,g(s))=u_2(s,s)=\int_s^s f(x,s)dx=0$  para cada  $s\in[0,b]$ , então

$$\frac{df_2}{ds}(s) = \int_0^s f(s, y) dy$$

Assim,  $f_1'(s)=f_2'(s)$  para cada  $s\in[0,b]$ . Usando o teorema fundamental do calculo novamente, temos

$$f_1(b) = f_1(0) + \int_0^b f_1'(s)ds$$
  
=  $f_2(0) + \int_0^b f_2'(s)ds$   
=  $f_2(b)$ ,

i.e.,

$$\int_0^b \left( \int_0^x f(x,y) dy \right) dx = \int_0^b \left( \int_y^b f(x,y) dx \right) dy.$$

Por ultimo, seja  $g:[0,b] o\mathbb{R}$  contínua. Usando o que acabamos de provar, temos que

$$\int_0^t \left( \int_0^x g(y) dy \right) dx = \int_0^t \left( \int_y^t g(y) dx \right) dy$$
$$= \int_0^t g(y) x |_y^t dy$$
$$= \int_0^t g(y) (t - y) dy,$$

onde g(y) = f(x, y) e t = b.

**Q6.** Seja  $U\in au_{\mathbb{R}^n}$  e  $f\in \mathcal{C}^2(U)$  e  $T\in O_n(\mathbb{R})$  uma transformação ortogonal. Note que, por definição, temos que

$$df:\mathbb{R}^n\to\mathcal{M}_{1,m}(\mathbb{R})$$

é definida como

$$df(x) = df_x : \mathbb{R}^n \to \mathbb{R}$$

$$(v_1, \dots, v_n) \mapsto df_x(v)$$

$$= \sum_{i \in [n]} \frac{\partial f}{\partial x_i}(x) v_i$$

$$= \left\langle \left( \frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x) \right), v \right\rangle.$$

Denotando  $\nabla f_x = \left( \frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x) \right) \in \mathbb{R}^n$ , temos que  $\nabla f_x$  é a única função tal que

$$\langle v, \nabla f_x \rangle = df_x(v),$$

para cada  $x,v\in U$ . e assim é possível considerar  $\nabla f:\mathbb{R}^n\to\mathbb{R}^n$  como a aplicação que envia  $x\mapsto \nabla f_x$ . Desta forma, temos que

$$d[\nabla f]: \mathbb{R}^n \to \mathcal{M}_{n,n}(\mathbb{R})$$
$$x \mapsto d[\nabla f]_x = Jac[\nabla f]_x = Hess(f)_x^T,$$

pois  $f \in \mathcal{C}^2(U)$ .

Então

$$\begin{split} \langle v, \nabla [f \circ T]_x \rangle &= d[f \circ T]_x(v) \\ &= df_{T(x)}(dT_x(v)) \leftarrow \text{ usando a regra da cadeia} \\ &= df_{T(x)}(T(v)) \leftarrow \text{ a diferencial de uma aplicação linear é sua matriz associada e portanto ela mesma} \\ &= \langle T(v), \nabla f_{T(x)} \rangle \\ &= \langle v, T^{-1}(\nabla f_{T(x)}) \rangle, \leftarrow \text{ Já que } T \text{ é ortogonal} \end{split}$$

i.e.,

$$\langle v, \nabla [f \circ T]_x \rangle = \langle v, T^{-1}(\nabla f_{T(x)}) \rangle.$$

Assim, temos que  $\nabla [f \circ T]_x = T^{-1} \circ (\nabla f) \circ T$ . Logo,

$$\Delta[f \circ T](x) = Tr \ d[T^{-1} \circ (\nabla f) \circ T]_x$$

$$= Tr \ dT^{-1}_{[(\nabla f) \circ T](x)} \cdot d[\nabla f]_{T(x)} \cdot dT_x$$

$$= Tr \ T^{-1} \cdot d[\nabla f]_{T(x)} \cdot T$$

$$= Tr \ d[\nabla f]_{T(x)} \cdot T^{-1} \cdot T$$

$$= Tr \ d[\nabla f]_{T(x)} \cdot Id_n$$

$$= Tr \ d[\nabla f]_{T(x)}$$

$$= Tr \ Hess(f)_{T(x)}^T$$

$$= Tr \ Hess(f)_{T(x)}$$

$$= [\Delta f] \circ T(x).$$

**Q8.** Seja  $f \in \mathcal{C}^k(\mathbb{R}^n)$  positivamente homogênea de grau  $k \in \mathbb{Z}^+$ . Vamos provar primeiro que  $\frac{\partial^j f}{\partial x_{i_1} \dots \partial x_{i_j}}$  são funções k-j homogêneas para cada  $j \in [k]$  e  $i_1, \dots, i_j \in [n]$ . Como  $f(tx) = t^k f(x)$ , pela regra da cadeia temos que

$$\frac{\partial f}{\partial x_i}(tx)t = t^k \frac{\partial f}{\partial x_i}(x)$$

para cada  $x\in\mathbb{R}^n$ ,  $t\in\mathbb{R}^+$  e  $i\in[n]$ . Por indução, suponha que esto es certo para funções positivamente homogêneas de grau k-1, onde  $k\geq 2$ . Como  $f\in\mathcal{C}^k(\mathbb{R}^n)$ ,  $\frac{\partial f}{\partial x_i}\in\mathcal{C}^{k-1}(\mathbb{R}^n)$  são positivamente homogêneas de grau k-1, para cada  $i\in[n]$ . Assim, pela hipótese de indução, para  $i\in[n]$ , temos que

$$\frac{\partial^j \left( \frac{\partial f}{\partial x_i} \right)}{\partial x_{i_1} \dots \partial x_{i_j}} (tx) = t^{k-1-j} \frac{\partial^j \left( \frac{\partial f}{\partial x_i} \right)}{\partial x_{i_1} \dots \partial x_{i_j}} (x),$$

para cada  $i_1,\ldots,i_j\in[n]$  e  $j\in[k-1]$ . Portanto,

$$\frac{\partial^{j+1} f}{\partial x_{i_1} \dots \partial x_{i_j} \partial x_i}(tx) = t^{k-1-j} \frac{\partial^{j+1} f}{\partial x_{i_1} \dots \partial x_{i_j} \partial x_i},$$

para cada  $j+1=2,\ldots,k$  e  $i_1,\ldots,i_j,i\in[n]$ . Logo, f satisfaz

$$d^{j} f_{tx}(v_{1}, \dots, v_{j}) = t^{k-j} d^{j} f_{x}(v_{1}, \dots, v_{j}),$$

para cada  $j \in [k]$ , onde avaliamos a diferencial da f em j vetores pois  $d^j f: \mathbb{R}^n \to \mathcal{L}(\underbrace{\mathbb{R}^n \otimes_{\mathbb{R}} \cdots \otimes_{\mathbb{R}} \mathbb{R}^n}_{j-\text{vezes}}, \mathbb{R})$ ,

i.e., una aplicação que envia um vetor de  $\mathbb{R}^n$  em uma forma j-linear.

Logo,  $d^k f_{tx}(v_1,\ldots,v_k)=d^k f_x(v_1,\ldots,v_k)$  para cada  $t\in\mathbb{R}^+$  e  $x\in\mathbb{R}^n$ . Em particular,  $d^k f_x=d_k f_0$  para cada  $x\in\mathbb{R}^n$ . Assim, já que

$$\frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}(x) = \frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}(0)$$

para cada  $x\in\mathbb{R}^n$  e  $1_i,\ldots,i_k\in[n]$ , temos que todas as derivadas parciais de ordem k da f são constantes. Logo,  $f\in\mathcal{C}^\infty(\mathbb{R}^n)$  e  $d^jf_x=0$  para cada  $j\geq k+1$  e  $x\in\mathbb{R}^n$ .

Agora, seja  $\varphi(t)=f(tx)=t^kf(x)$ . Temos que  $\varphi^{(j)}(t)=0$  para cada  $j\geq k+1$ ,  $\varphi^{(j)}(t)=\frac{k!}{(k-j)!}t^{k-i}f(x)$  para  $j\in [k]$  e  $\varphi^{(j)}=d^jf_{tx}x^j$ . Quando  $j\in [k-1]$ , temos que  $\frac{k!}{(k-j)!}t^{k-i}f(x)=d^jf_{tx}x^j$  e assim  $d^jf_0x^j=0$ . Agora, quando j=k, temos que  $d^jf_0x^j=k!f(x)$ . Portanto,  $d^jf(0)x^j=0$  quando  $j\neq k$  e  $d^jf_0x^j=k!f(x)$  quando j=k.

Então,  $f(x)=rac{1}{k!}d^kf_0x^k$  para cada  $x\in\mathbb{R}^n$ , i.e., f é uma forma k-linear.

**Q9.** Seja  $\psi: U \times \mathbb{R} \to \mathbb{R}$  definida por  $\psi(x,y) = g(x) - \int_0^y (t^2 - 1) dt$ . Note que

$$\psi(x, f(x)) = g(x) - \int_0^{f(x)} (t^2 + 1)dt$$
  
= 0

Agora,  $\frac{\partial \psi(x,y)}{\partial y} = -(y^2+1) \neq 0$  para cada  $y \in \mathbb{R}$ . Em particular,  $\frac{\partial \psi(x,f(x))}{\partial y} = -(f(x)^2+1) \neq 0$ . Assim, tomando y = f(x) e p = (x,y), pelo teorema da função implícita, existem vizinhanças  $N(x) \subset U$  e  $N(y) = (y-\delta,y+\delta)$  e uma função  $\eta_p:N(x_0)\to N(y)$  de classe  $\mathcal{C}^k$  tal que  $\psi^{-1}(0)\big|_{N(x_0)\times N(y)} = graph(\eta_p)$ , i.e.,

$$g(x) = \int_{0}^{\eta_p(x)} (t^2 + 1)dt,$$

implicando isso que  $\eta_{p_0}(x)=f|_{N(p)}(x)$ , onde  $N(p)=N(x)\times N(y)$ . Portanto, se  $g\in\mathcal{C}^\infty(U)$  então  $f\in\mathcal{C}^\infty(U)$ .

**Q10.** Seja  $x_0[0,1]$  fixo. Considere  $h:[1,2]\to\mathbb{R}$  definida por  $h(x)=\int_{x_0}^x f(t)dt$ . Como f é positiva e contínua, h é crescente, pois  $h(x)\leq h(y)$  sempre que  $x\leq y$ , e de classe  $\mathcal{C}^1$ .

Assim, se  $x_0 \in (0,1)$  então  $h(1) < \int_1^2 f(x) dx = 1 < h(2)$ . Logo, o teorema do valor intermediário implica a existência de  $y_0 \in (1,2)$  tal que

$$h(y_0) = \int_{x_0}^{y_0} f(t)dt = \int_1^2 f(t)dt = 1.$$

Seja  $F:(0,1)\times(1,2)\to\mathbb{R}$  definida por  $F(x,y)=\int_x^y f(t)dt$ . Como a f é contínua, as derivadas parciais da f são contínua e F de classe  $\mathcal{C}^1$ . Note que  $\frac{\partial F}{\partial y}(x,y)=\frac{\partial}{\partial y}\int_x^y f(t)dt=f(y)>0$  e para cada  $x_0\in(0,1)$  existe  $y_0\in(1,2)$  tal que  $F(x_0,y_0)=1$  pela observação anterior.

Como  $\frac{\partial F}{\partial y}$  é não em lugar nenhum, o teorema da função implícita implica a existência de  $\zeta:I\subset [0,1]\to J\subset [1,2]$  de classe  $\mathcal{C}^1$  tal que  $x_0\in I$ ,  $y_0\in J$  e para cada  $x\in I$ ,  $F(x,\zeta(x))=1$ . Além disso, como

$$\zeta'(s) = -\left(\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}(s, \zeta(s))\right) = -\left(\frac{-f(s)}{f(\zeta(s))}\right) > 0,\tag{1}$$

o teorema da função inversa exitem  $I'\subseteq I$ ,  $J'\subset J$  tal que  $\zeta$  é uma bijeção entre I' e J', e portanto para cada  $x\in I'$  existe um único  $\zeta(x)\in J'$  tal que  $F(x,\zeta(x))=1$ . Como h é estritamente crescente quando  $x_0\in(0,1)$ , é possível estender  $\zeta$  a (0,1) de forma única.

Desta forma, defina  $g:[0,1] 
ightarrow \mathbb{R}$  por

$$g(x) = \begin{cases} \zeta(x) & \text{se } x \in (0,1) \\ 1 & \text{se } x = 0 \\ 2 & \text{se } x = 1. \end{cases}$$

Para que g seja de classe  $\mathcal{C}^1$ , temos que provar que g é continua e diferenciável em x=0,1.

Seja  $(x_n)_{n\in\mathbb{N}}\subset [0,1]$  tal que  $x_n\to 0$ . Já que para qualquer  $c\in (1,2)$  temos que  $\int_0^c f(t)dt>1$  e para 1< d< c temos que  $\int_0^d f(t)dt<\int_0^c f(t)dt$ , dado  $\varepsilon\in\mathbb{R}^+$  existe  $N\in\mathbb{N}$  tal que

$$\left| \int_{x_0}^{\zeta(x)} f(t)dt - 1 \right| = |g(x_n) - 1| < \varepsilon$$

quando  $n \geq N$ . Portanto, g é continua em x=0. É provado de forma análoga que g é contínua em x=1.

Agora, como antes, pelo teorema da função implícita temos que

$$g'(x) = \frac{f(x)}{f(g(x))} = \frac{f(x)}{f(\zeta(x))}$$

e como f é uma função contínua não em lugar nenhum e g é contínua em (0,1), g' é uma função contínua em (0,1). Então, para x=0 temos que, como g é contínua em [0,1] e diferenciável em (0,1),  $g'_d(0)$  (derivada lateral direita) existe e  $g'_d(0) = \lim_{x \to 0^+} g'(x) = \lim_{x \to 0^+} \frac{f(x)}{f(g(x))} = \frac{f(0)}{f(1)}$ . O mesmo argumento nos diz que  $g'_e(1)$  (derivada lateral esquerda) existe e  $g'_e(1) = \frac{f(1)}{f(2)}$ .

Portanto, g assim definida é de classe  $C^1$ .

**Q11.** Teorema do Multiplicador de Lagrange. Sejam  $f, \varphi: U\tau_{\mathbb{R}^n} \to \mathbb{R}$  funções de classe  $\mathcal{C}^k(U)$   $(k \geq 1)$ ,  $c \in \mathbb{R}$  um valor regular da função  $\varphi$  e considere a hipersuperficie  $M = f^{-1}(c) \subseteq U$  de classe  $\mathcal{C}^k$ . Então  $p \in M$  é ponto critico de  $f|_M$  se, e somente se, existe  $\lambda \in \mathbb{R}$  tal que  $\nabla f_p = \lambda \nabla \varphi_p$ .

Seja  $\mathbf{0} \neq y \in \mathbb{R}^n$  fixo e  $f,g:\mathbb{R}^n \to \mathbb{R}$  definidas como

$$f(x) = \langle y, x \rangle$$
 e  $g(x) = ||x||_p^p - 1$ .

Note que  $\frac{\partial f}{\partial x_i} = y_i$  e  $\frac{\partial g}{\partial x_i} = p|x_i|^{p-2}x_i$  para cada  $i \in [n]$ . Logo,  $f \in \mathcal{C}^{\infty}(\mathbb{R}^n)$  e  $g \in \mathcal{C}^1(\mathbb{R}^n)$ . Além disso,  $\nabla f_x = y$  e  $\nabla g_x = p(|x_1|^{p-2}x_1,\ldots,|x_n|^{p-2}x_n)$ .

Denote  $\mathbb{S}_p=\{x\in\mathbb{R}^n:g(x)=0\}$  a esfera unitária na p-norma no  $\mathbb{R}^n.$  Como  $\mathbb{S}_p$  é compacta,  $f|_{\mathbb{S}_p}$  alcança o valor máximo em um ponto  $\overline{x}\in\mathbb{S}_p$ , i.e.,  $f|_{\mathbb{S}_p}(\overline{x})\geq f|_{\mathbb{S}_p}(x)$  para cada  $x\in\mathbb{S}_p.$  Além disso,  $\nabla g_{\overline{x}}\neq 0$  pois

$$dg_{\overline{x}}(\overline{x}) = \langle \nabla g_{\overline{x}}, \overline{x} \rangle$$

$$= \sum_{i \in [n]} p|x_i|^{p-2} x_i x_i$$

$$= \sum_{i \in [n]} p|x_i|^{p-2} |x_i|^2$$

$$= p||x||_p^p$$

$$= n > 1$$

Logo, pelo teorema de Multiplicador de Lagrange, temos que existe  $\lambda \in \mathbb{R}$  tal que  $\nabla f_{\overline{x}} = \lambda \nabla g_{\overline{x}}$ , i.e.,  $y_i = \lambda p |x_i|^{p-2} x_i$ (\*) para cada  $i \in [n]$ . Multiplicando por  $\overline{x}_i$  obtemos  $\overline{x}_i y_i = \lambda p |\overline{x}_i|^p$  e assim

$$f(\overline{x}) = \sum_{i \in [n]} \overline{x}_i y_i = \langle \overline{x}, y \rangle = \lambda p ||x||_p^p = \lambda p.$$

Agora, se  $\hat{y} = \frac{y}{\|y\|_p}$  então  $\hat{y} \in \mathbb{S}_p$  e

$$\begin{split} \lambda p &= \langle y, \overline{x} \rangle \\ &\geq \langle y, \hat{y} \rangle \\ &= \frac{1}{\|y\|_p} \langle y, y \rangle \\ &= \frac{\|y\|_2^2}{\|y\|_p} > 0. \end{split}$$

Isso implica  $\lambda > 0$ .

Como  $\frac{1}{p}+\frac{1}{q}=1$ , ou p=(p-1)q, considerando a q-ésima potencia do valor absoluto de (\*) temos que

$$|y_i|^q = (\lambda p)^q (|\overline{x}_i|^{p-2} |\overline{x}_i|)$$
  
=  $(\lambda p)^q |\overline{x}_i|^{(p-1)q}$ .

Isto nos leva a

$$\sum_{i \in [n]} |y_i|^q = ||y||_q^q$$

$$= (\lambda p)^q \sum_{i \in [n]} |\overline{x}_i|^{(p-1)q}$$

$$= (\lambda p)^q ||\overline{x}||_p^p$$

$$(\lambda p)^q,$$

 $<sup>^{1}\</sup>mathsf{Como}\ \tfrac{d}{dx}|x|=\tfrac{x}{|x|}\ \mathsf{e}\ \tfrac{d}{dx}g(x)^{p}=pg(x)^{p-1}g'(x), \ \mathsf{temos}\ \mathsf{que}\ \tfrac{d}{dx}|g(x)|^{p}=p|g(x)|^{p-1}\tfrac{g(x)}{|g(x)|}g'(x)\ \mathsf{pela}\ \mathsf{regra}\ \mathsf{da}\ \mathsf{cadeia}.$ 

i.e.

$$\|y\|_q = \lambda p,$$

o que implica  $f(\overline{x}) = \|y\|_q.$ 

Assim, se  $\hat{x}\in\mathbb{S}_p$  então  $\langle\hat{x},y\rangle=f(\hat{x})\leq f(\overline{x})=\|y\|_q$  (\*\*).

Para  $\mathbf{0} \neq x \in \mathbb{R}^n$  qualquer, seja  $\hat{x} = \frac{x}{\|x\|_p} \in \mathbb{S}_p$ . Pela mesma consideração que acabamos de fazer temos que  $\langle x,y \rangle \leq \|y\|_q \|x\|_p$ , i.e.,  $\langle x,y \rangle = \|x\|_p \langle \hat{x},y \rangle \leq \|x\|_p \|y\|_q$ .

Finalmente, note que  $f(-\overline{x}) = -\langle y, \overline{x} \rangle = -\langle p = -f(\overline{x}) \text{ e como } f(\overline{x}) \geq f(x) \text{ para cada } x \in \mathbb{S}_p$ , então  $f(-\overline{x}) \leq f(x)$  para cada  $x \in \mathbb{S}_p$ . Portanto,  $-\overline{x} \in \mathbb{S}_p$  é mínimo de  $f|_{\mathbb{S}_p}$ . Assim, para  $\mathbf{0} \neq x \in \mathbb{R}^n$  qualquer,  $\hat{x} = \frac{x}{\|x\|_p}$  é tal que  $\langle \hat{x}, y \rangle = \frac{1}{\|x\|_p} \langle x, y \rangle \geq -\langle \overline{x}, y \rangle = -f(\overline{x}) = -\|y\|_q$ , i.e.,  $-\|x\|_p \|y\|_q \leq \langle x, y \rangle$ .

Portanto,  $|\langle x,y\rangle| \leq \|x\|_p \|y\|_q$ .