GANNETT FLEMING CORDORY AND CARPENTER INC HARRISBURG PA F/G 13/13 NATIONAL DAM INSPECTION PROGRAM. LAKE-IN-THE-CLOUDS DAMA. (NDI 17-ETC(U) JUN 80 F FUTCHKO AD-AD87 937 UNCLASSIFIED i AD A 087937

DELAWARE RIVER BASIN
LEAVITT BRANCH OF BRODHEAD CREEK, PIKE COUNTY

LEVE

PENNSYLVANIA

LAKE-IN-THE-CLOUDS DAM

NDI ID NO. PA-00741 DER ID NO. 52-125

CHAR-MART, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

AUG 1 3 1980

Prepared by

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Consulting Engineers

Harrisburg, Pennsylvania 17105

For
DEPARTMENT OF THE ARMY
Baltimore District, Corps of Engineers

Baltimore, Maryland 21203

JUNEARORO

GANNETT FLEMING CORDDRY AND CARPENTER, INC

DACW31-80-C-0017

80 3 11

DELAWARE RIVER BASIN LEAVITT BRANCH OF BRODHEAD CREEK, PIKE COUNTY PENNSYLVANIA

LAKE-IN-THE-CLOUDS DAM

NDI ID No. PA-00741 DER ID No. 52-125

CHAR-MART, INC.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

Prepared by

GANNETT FLEMING CORDDRY AND CARPENTER, INC. Consulting Engineers P.O. Box 1963 Harrisburg, Pennsylvania 17105

For

DEPARTMENT OF THE ARMY Baltimore District, Corps of Engineerscession Baltimore, Maryland 21203

NTAG and t 1200 100

JUNE 1980

This document has been approved for public release and sale; im distribution is unlimited.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

DELAWARE RIVER BASIN

LEAVITT BRANCH OF BRODHEAD CREEK, PIKE COUNTY

PENNSYLVANIA

LAKE-IN-THE-CLOUDS DAM

NDI ID No. PA-00741 DER ID No. 52-125

CHAR-MART, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JUNE 1980

CONTENTS

			<u>Description</u>									Page
			Project Information									1
SECTION	2	-	Engineering Data	•	•		•	•	•	•	•	6
			Visual Inspection									8
SECTION	4	-	Operational Procedures	•	•	•	•	•	•	•		10
SECTION	5	-	Hydrology and Hydraulics				•	•	•	•	•	11
SECTION	6	_	Structural Stability .				•			•	•	15
			Assessment, Recommendation									
	·		Proposed Remedial Meas						•	•	•	17

APPENDICES

Appendix	<u>Title</u>
A	Checklist - Engineering Data.
В	Checklist - Visual Inspection.
Ċ	Photographs.
Ď	Hydrology and Hydraulics.
Ē	Plates.
F	Geology.

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITION

AND

RECOMMENDED ACTION

Name of Dam:

Lake-In-The-Clouds Dam NDI ID No. PA-00741

DER ID No. 52-125

Size:

Small (14 feet high; 468 acre-ft)

Hazard

Classification:

High

Owner:

Char-Mart, Inc.

Charles B. Ford, President

Canadensis, Pennsylvania 18325

State Located:

Pennsylvania

County Located:

Pike

Stream:

Leavitt Branch of Brodhead Creek

Date of Inspection: 15 April 1980

Based on criteria established for these studies, Lake-In-The-Clouds Dam is judged to be unsafe, nonemergency, because the spillway capacity is seriously inadequate. The recommended Spillway Design Flood (SDF) for the size and hazard classification of the dam varies between 1/2 the Probable Maximum Flood (PMF) and the PMF. Based on the criteria and the downstream conditions, the selected SDF is the PMF. Based on existing conditions, with the embankment above its design elevation, the spillway will pass about 35 percent of the PMF before overtopping of the dam occurs. Failure of the dam would cause the probable overtopping and failure of a high hazard dam that is downstream.

As a whole, the dam is judged to be in fair condition. No significant stability problems were observed at the embankment. The ability of the emergency drawdown facility to function is uncertain because it has not been operated recently. Maintenance at the dam is inadequate.

The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:

- (1) Cut the top stoplog to be flush with the spillway weir crest.
- (2) Perform additional studies to more accurately ascertain the spillway capacity required for Lake-In-The-Clouds Dam as well as the nature and extent of measures required to provide adequate spillway capacity. Take appropriate action as required.
- (3) Provide whatever measures are necessary to make the outlet works operational. Once operational, it should be maintained and operated on a regular basis.
- (4) Remove trees and brush growing on or near the embankment.
- (5) Design and construct repairs for the spalled concrete at the spillway approach walls and outlet works intake structure.
- (6) Design and construct erosion protection for the upstream slope of the embankment.
- (7) As part of the maintenance program recommended below, fill burrowing animal holes, cut brush on the upstream slope, and prevent unauthorized changes at the embankment.
- All investigations, studies, designs, and inspection of construction should be performed by a professional engineer experienced in the design and construction of dams. Tree removal should also be guided by a professional engineer.

In addition, the Owner should institute the following operational and maintenance procedures:

- (1) Develop a detailed emergency operation and warning system for Lake-In-The-Clouds Dam.
- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of Lake-In-The-Clouds Dam. Have sufficient personnel available to clear any debris that might collect at the spillway bridge.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.
- (4) Institute an inspection program at the dam such that the dam is inspected frequently. As presently required by the Commonwealth, the inspection program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.
- (5) Institute a maintenance program such that all features of the dam are properly maintained.

In addition, it is recommended that the Commonwealth require the Owner of the unnamed dam, which is upstream of Lake-In-The-Clouds Dam, to provide an adequate spillway capacity for the unnamed dam.

LAKE-IN-THE-CLOUDS DAM

Submitted by:

GANNETT FLEMING CORDDRY AND CARPENTER, INC.

Project Manager, Dam Section

Date: 27 June 1980

Approved by:

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT, CORPS OF ENGINEERS

Colonel, Corps of Engineers District Engineer

Date: 14- Tuly 1980

DELAWARE RIVER BASIN

LEAVITT BRANCH OF BRODHEAD CREEK, PIKE COUNTY

PENNSYLVANIA

LAKE-IN-THE-CLOUDS DAM

NDI ID No. PA-00741 DER ID No. 52-125

CHAR-MART, INC.

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

JUNE 1980

SECTION 1

PROJECT INFORMATION

1.1 General.

- a. Authority. The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Lake-In-The-Clouds Dam is a homogeneous earthfill embankment with a concrete cutoff wall. The embankment is 510 feet long and 14 feet high. The cutoff wall is founded in a cutoff trench and rises to about 1 foot above the natural ground surface at the site.

The spillway is located near the right abutment of the dam. It is a concrete gravity weir with a rounded crest. Its crest is 32 feet long and 4.0 feet below the design top elevation of the dam. A timber plank bridge supported by steel I-beams spans the spillway. A stoplog slot with wooden stoplogs is provided in the middle of the weir.

The outlet works is located in the center of the embankment. It consists of a concrete intake structure with a 24-inch sluice gate, a 24-inch diameter cast-iron pipe, and an endwall. The various features of the dam are shown on the Photographs in Appendix C and on the Plates in Appendix E. A description of the geology is included in Appendix F.

- b. Location. Lake-In-The-Clouds Dam is located on the Leavitt Branch of Brodhead Creek in Green Township, Pike County, Pennsylvania, approximately 4 miles north of Canadensis. Lake-In-The-Clouds Dam is shown on USGS Quadrangle, Buck Hill Falls, Pennsylvania, at latitude N 41° 14' 45" and longitude W 75° 16' 05". A location map is shown on Plate E-1.
- c. <u>Size Classification</u>. Small (14 feet high, 468 acre-feet).
- d. <u>Hazard Classification</u>. High hazard. Downstream conditions indicate that a high hazard classification is warranted for Lake-In-The-Clouds Dam (Paragraphs 3.1e and 5.1c (5)).
- e. Ownership. Char-Mart, Inc., Charles B. Ford, President, Canadensis, Pennsylvania 18325.
 - f. Purpose of Dam. Recreation.
- g. Design and Construction History.
 Lake-In-The-Clouds Dam was originally designed by the Lake-In-The-Clouds Club in 1950. The Commonwealth reviewed the plans and made many comments concerning them. In response, the club revised the drawings in the same year, but the Commonwealth still had objections. In early 1951, the club submitted yet another set of plans to incorporate the comments. A permit for construction was issued in March 1951. The club then decided to change the design of the dam and retained Edward C. Hess, engineer of Stroudsburg, Pennsylvania.

Mr. Hess revised much of the plans and submitted them to the Commonwealth in August 1951. The revisions were reviewed by the Commonwealth and approved in September 1951. Construction started in the late summer of 1952. The contractor was J. J. Boehm. In September 1952, a revised plan was submitted to allow for a desired 2 foot increase in the height of the dam. The Commonwealth approved this in October 1952. The dam was completed in November 1952. The bridge across the spillway was constructed at an unknown date. The dam has changed ownership several times. The present Owner acquired the dam in 1974.

h. Normal Operational Procedure. The pool is maintained at the spillway crest level with excess inflow discharging over the spillway. The emergency drawdown facilities are not normally used. Spillway discharge flows downstream in the Leavitt Branch of Brodhead Creek.

1.3 Pertinent Data.

a.	<u>Drainage Area</u> . (square miles)	2.1
b.	Discharge at Damsite. (cfs.) Maximum known flood at damsite Outlet works at maximum pool elevation	Unknown 50
	Spillway capacity Design conditions Existing conditions	870 1,039
c.	Elevation. (feet above msl.) Top of dam Design conditions Existing conditions Maximum pool Design conditions Existing conditions Normal pool (spillway crest) Upstream invert outlet works Downstream invert outlet works Streambed at toe of dam	1834.0 1834.5 1834.5 1830.0 1820.5 1819.5
d.	Reservoir Length. (miles) Normal pool Maximum pool (design)	0.64 0.70

e.	Storage. (acre-feet) Normal pool Maximum pool (design) Maximum pool (existing) Reservoir Surface. (acres) Normal pool Maximum pool (design) Maximum pool (existing)	228 434 468 44.3 65.3 71.7
g.	Dam. Type	Homogeneous earthfill with concrete cutoff wall.
	Length (feet)	510
	Height (feet)	14
	Topwidth (feet) Design Existing	18 14
	Sides Slopes Upstream	
	Design Existing Downstream	1V on 2H 1V on 2.9H
	Design Existing	1V on 2H 1V on 2.6H
	Zoning	Cutoff wall.
	Cut-off	Cutoff wall founded in cutoff trench.
	Grout Curtain	None.
h.	Diversion and Regulating Tunnel.	None.
i.	Spillway. Type	Broad-crested concrete gravity weir with rounded crest.

i. Spillway. (cont'd.)
Length of Weir (feet)

32.0

Crest Elevation

1830.0

Upstream Channel

Reservoir.

Downstream Channel

Grouted stone

apron.

j. Regulating Outlets. Type

One 24-inch dia. CMP encased in

concrete.

Length (feet)

55

Closure

24-inch sluice gate in intake

structure.

Access

By boat to intake structure.

SECTION 2

ENGINEERING DATA

2.1 Design.

- a. <u>Data Available</u>. The only design data available for the dam as constructed is one design drawing. It is shown on Plate E-2 in Appendix E. Specifications are available, but they are undated; it is uncertain whether or not they applied to the dam as constructed.
- b. Design Features. The project is described in Paragraph 1.2a. The various features of the dam are shown on the Photographs in Appendix C and on the Plates in Appendix E.
- c. <u>Design Considerations</u>. There are insufficient data to assess the design.

2.2 Construction.

- a. <u>Data Available</u>. The only construction data available for review are reports of inspections by the Commonwealth and an "as-built" drawing. The construction inspection reports indicate that the foundation of the cutoff wall to the right of the spillway is rock and that some of the remainder of the cutoff wall is founded on "heavy clay." The inspectors seemed satisfied that the construction was of good quality. The "as-built" drawing was obtained from the firm (E. C. Hess Associates) that was founded by the design engineer. The drawing is dated 1965 and part of it is shown on Plate E-3. The firm had no information concerning why the drawing was updated 13 years after construction.
- b. <u>Construction Considerations</u>. The available data raises no concerns about the construction.
- 2.3 Operation. There are no formal records of operation. The one post-construction inspection by the Commonwealth in 1965 notes minor maintenance discrepancies.

2.4 Evaluation.

- a. Availability. Engineering data were provided by the Bureau of Dams and Waterway Management, Department of Environmental Resources, Commonwealth of Pennsylvania (PennDER). The President of Char-Mart, who presently resides in Florida, provided information via telephone. The design engineer's firm researched their files for information at the request of the inspection team.
- b. Adequacy. The type and amount of available design data and other engineering data are limited, and the assessment must be based on the combination of available data, visual inspection, performance history, hydrologic assumptions, and hydraulic assumptions.
- c. <u>Validity</u>. There is no reason to question the validity of the available data.

SECTION 3

VISUAL INSPECTION

3.1 Findings.

- a. General. The overall appearance of the dam is fair. Deficiencies were observed as noted below. A sketch of the dam with the locations of deficiencies is presented on Exhibit B-1 in Appendix B. Survey information acquired for this Report is summarized in Appendix B. Datum for the survey was taken at the spillway crest, Elevation 1830.0, as shown on USGS mapping. The Owner uses a different datum. To convert the elevations on the Plates in Appendix E, 1725.0 feet must be added to the elevations on those Plates. On the day of the inspection, the pool was 0.6 foot above the spillway crest level.
- b. <u>Embankment</u>. The upstream slope of the embankment is protected by riprap. Low brush is growing through the riprap. At two areas near the outlet works, the upstream slope is eroded. Each area is about 10 feet long (Photograph B). Neither eroded area encroaches significantly upon the top of the dam. The riprap is unevenly graded and poorly placed. On the upstream slope adjacent to the spillway walls, surface runoff swales have been eroded into the slope (Photograph G). The upstream slope at the left end of the embankment has been filled in to create a beach.

A relatively narrow path along the top of the dam is paved with asphalt. The downstream slope has many mature trees growing in it. The slope is very uneven, with many shallow holes, humps, and rills (Photographs C and D). A few burrowing animal holes were observed in the downstream slope. To the right of the spillway, a shallow 2-foot diameter hole has been excavated in the slope. A property owner who lives near the right abutment stated that he had just excavated the hole; he did not divulge the reason.

There was surface runoff flowing along the downstream toe near the left abutment of the dam. No seepage was observed at the dam, although the high tailwater could have obscured seepage near the outlet works outfall.

The survey performed for this inspection reveals that the top of the dam is a minimum of 0.5 foot above its design elevation and that the upstream and downstream slopes are flatter than the design slopes. A profile and section are shown in Appendix B.

c. Appurtenant Structures. The concrete at the outlet works intake structure is badly spalled (Photograph E). The gate stem is badly rusted. No deficiencies were observed at the endwall, which was partially submerged (Photograph F). The streambed at the outfall is above the invert of the outlet works pipe (Photograph F). No representative of the Owner was present during the inspection, so the operation of the outlet works could not be observed. When subsequently contacted, the Owner stated that the outlet works had not been operated since he acquired the dam. He did not know where the operating mechanism was located; it is not on the intake structure (Photograph E).

Stoplogs are provided in the middle of the spillway weir. The upper stoplog protrudes above the top of the weir (Photograph H). The approach walls are badly spalled. The concrete at the upstream end crumbles to the touch. The downstream walls have pattern cracks, leaching and minor peeling and spalling. The spillway bridge, which is fenced shut at the right end, is in good condition.

- d. Reservoir Area. The watershed area is mostly wooded, with only an insignificant amount of development around the lake. There are some dams in the watershed, as discussed in Section 5. At the reservoir, the slopes are mild.
- e. <u>Downstream Channel</u>. The Leavitt Branch of Brodhead Creek flows from the dam for 3.3 miles to Mountain Lake, which is impounded by Skytop Dam. Within the above reach, the stream passes beneath Pennsylvania Route No. 447 (PA-447) once and PA-390 twice. There is only one building adjacent to the stream in the above reach. It is a small maintenance building just upstream of Mountain Lake. Downstream conditions are shown on Exhibit D-1.

SECTION 4

OPERATIONAL PROCEDURES

- 4.1 <u>Procedure</u>. The reservoir is maintained at spillway crest, with excess inflow discharging over the spillway and into the Leavitt Branch. The emergency drawdown facilities are not used.
- 4.2 Maintenance of Dam. The president of Char-Mart stated that he had been responsible for maintenance until his recent move to Florida. He stated that debris removal and cutting of brush on the dam had been performed each year. He also stated that the local property owners association is responsible for maintenance, although there is no written agreement for this.
- 4.3 <u>Maintenance of Operating Facilities</u>. The outlet works is not maintained.
- 4.4 <u>Warning Systems in Effect</u>. The Owner has not developed an emergency operation and warning system for the dam. He stated that Civil Defense or some other state agency had offered to monitor the dam during floods.
- 4.5 Evaluation of Operational Adequacy. The maintenance of the project is inadequate. Inspections are necessary to detect hazardous conditions at the dam. Since even the name of the flood-monitoring agency is uncertain, it cannot be relied upon to monitor the dam. An emergency operation and warning system is necessary to reduce the risk of dam failure should adverse conditions develop and to prevent loss of life downstream should the dam fail.

SECTION 5

HYDROLOGY AND HYDRAULICS

5.1 Evaluation of Features.

- Design Data. No design data are available for the hydraulics of the original structure. Commonwealth analyzed the design before issuing a permit for construction. Using a discharge coefficient of 3.7 and the design head of 4 feet, they determined the spillway capacity to be 950 cfs. The spillway bridge was not part of the design. The discharge coefficient is slightly high. A coefficient of 3.4 is used in the analysis described hereafter, which also includes the effects of the spillway bridge and the existing top elevation. The records state that the drainage area is 0.9 square mile, which was apparently taken from 15' USGS mapping current in 1950. The 1950 USGS map is available and it was reviewed. It differs greatly from more recent 7.5' USGS mapping, which was used to determine the drainage area of 2.1 square miles that is used in this Report. Even the recent USGS mapping does not accurately reflect conditions that were observed in the field.
- b. Experience Data. The Owner stated the highest flow in his recollection was 8 to 10 inches above spillway crest. It is surmised that the flood of record was Tropical Storm Diane in 1955, which was the flood of record for many nearby dams. There is no data to estimate the flow for this storm. There are unconfirmed data that Lake-In-The-Clouds Dam was overtopped during Tropical Storm Diane.

c. <u>Visual Observations</u>.

- (1) General. The visual inspection of Lake-In-The-Clouds Dam, which is described in Section 3, resulted in a number of observations relevant to hydrology and hydraulics. These observations are evaluated herein for the various features.
- (2) Embankment. The embankment being above its design elevation increases the spillway capacity above its design capacity. In the analysis described hereafter, the dam is rated at its existing elevation. Settlement of the embankment would decrease the existing spillway capacity.

(3) Appurtenant Structures. The sluice gate provides an upstream closure facility. The operational capability of the outlet works is, at best, uncertain because it has not been operated recently and because the operating mechanism is missing. Some emergency drawdown capability is provided by the stoplogs in the spillway weir.

The stoplogs in the spillway weir change the shape of the crest along the length of the notch. They also protrude slightly above the crest. Both these conditions reduce the spillway capacity slightly. However, their effects have not been included in the analysis described hereafter. The effects of possible pressure flow beneath the bridge have been included. The underside of the bridge also has the potential to collect debris; debris would reduce the spillway capacity. Its effects have not been included in determining the spillway capacity.

(4) Reservoir Area. A negligible amount of rural development is in the watershed. There are two dams within the watershed, as noted in Appendix D. One of the dams is Lake Jamie Dam. A Phase I National Dam Inspection Report is concurrently being prepared for Lake Jamie Dam, which is a small size, high hazard dam with an inadequate spillway capacity.

The other dam is located approximately as shown on Plate E-1. It was constructed a few years ago and is the property of the owner of Lake Jamie Dam. It is not shown on recent USGS mapping. The dam is termed the "unnamed dam" for the purposes of this Report. A profile and section of the dam are in Appendix B. It is felt that the indicated location is sufficiently accurate to provide a reasonably accurate drainage area. However, elevation and pool area data were estimated from USGS mapping and observations during the visual inspection. The computed storage could be significantly in error. The effects of both dams have been included in the analysis described hereafter.

Lake Jamie has a natural low area at the upper end of the lake; the low area acts as an auxiliary spillway and it discharges into Spruce Mountain Run. Therefore, not all the runoff into Lake Jamie will flow into Lake-In-The-Clouds. The method used to account for this is described in Appendix D.

(5) Downstream Conditions. No conditions were observed downstream from the dam that would reduce the spillway discharge capacity. Failure of Lake-In-The-Clouds would flood and cause damage to routes PA-463 and PA-330, as well as to a small maintenance building. The possibility for loss of life at these structures is not great. However, the failure could also cause the overtopping and failure of Skytop Dam. I National Dam Inspection Report has previously been prepared for Skytop Dam, which is a high hazard, intermediate size dam with an inadequate spillway capacity. The effects of Lake-In-The-Clouds were included in the report for Skytop Dam. Differences between that report and this Report are noted in Appendix D. The downstream conditions indicate that a high hazard classification is warranted for Lake-In-The-Clouds Dam.

d. Overtopping Potential.

- (1) Spillway Design Flood. According to the criteria established by the Office of the Chief of Engineers (OCE), the Spillway Design Flood (SDF) for the size (Small) and hazard potential (High) of Lake-In-The-Clouds Dam is between one-half of the Probable Maximum Flood (PMF) and the PMF. Because the SDF for Skytop Dam is the PMF, the PMF is selected as the SDF for Lake-In-The-Clouds Dam. The watershed was modeled with the HEC-1DB computer program. A description of the model is included in Appendix D. The assessment of hydrology and hydraulics is based on existing conditions, and the effects of future development are not considered.
- (2) Summary of Results. Pertinent results are tabulated at the end of Appendix D. The analysis reveals that Lake-In-The-Clouds Dam can pass about 35 percent of the PMF before overtopping of the dam occurs. The dam is rated at its existing top elevation. At its design top elevation, the dam could pass about 30 percent of the PMF. As part of this study, it was also found that Lake Jamie Dam and the unnamed dam, located upstream from Lake-In-The-Clouds Dam, will pass 46 percent and slightly less than 20 percent, respectively, of their components of the PMF before being overtopped.
- (3) Spillway Adequacy. The criteria used to rate the spillway adequacy of a dam are described in Appendix D. Because Lake-In-The-Clouds Dam cannot pass the 1/2 PMF, a further analysis was performed. In the Phase I Report for Lake Jamie Dam, it is estimated that the dam will not fail during the 1/2 PMF, which is

identical to its component of the 1/2 PMF for the Lake-In-The-Clouds storm. The computed storage of the unnamed dam is sufficiently unreliable that assuming its failure during the 1/2 PMF might give erroneous results. Therefore both dams were assumed to remain intact.

However, Lake-In-The-Clouds Dam was assumed to fail during the 1/2 PMF. The resulting flows were routed downstream to Skytop Dam. No other inflow was assumed to occur at Skytop Dam. For this condition, the failure of Lake-In-The-Clouds would cause Skytop Dam to overtop by 0.2 foot for 0.8 hour.

The Phase I Report for Skytop Dam states that Skytop Dam has previously withstood an overtopping by 1 foot for 24 hours. Therefore, the dam could withstand a 0.2 foot overtopping for 0.8 hour. However, the Phase I Report for Skytop Dam indicates that the uncontrolled drainage area between Skytop Dam and Lake-In-The-Clouds Dam is 4.15 square miles (about 70 percent of the Skytop Dam watershed). It is reasonable to assume that, during the occurrence of the 1/2 PMF over the Lake-In-The-Clouds watershed, a significant amount of runoff would be occurring over the uncontrolled Skytop Dam watershed. It can therefore be assumed that the lake at Skytop Dam (Mountain Lake) would be significantly above normal pool when the failure of Lake-In-The-Clouds Dam occurred. Therefore the failure of Lake-In-The-Clouds would probably cause Skytop Dam to overtop by a much greater amount than the 0.2 foot previously noted and cause its failure. The spillway capacity of Lake-In-The-Clouds is rated as seriously inadequate.

SECTION 6

STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. Visual Observations.

- (1) General. The visual inspection of Lake-In-The-Clouds Dam, which is described in Section 3, resulted in a number of observations relevant to structural stability. These observations are evaluated herein for the various features.
- (2) Embankment. The growth of the trees on the downstream slope is a hazard to the dam. Root systems of large trees can loosen embankment material, displace slope protection, and create paths along which seepage and piping (internal erosion) might occur. The brush on the upstream slope is minor at present.

The erosion on the upstream slope is also minor at present. It is caused by a combination of surface runoff and wave action. The poorly graded riprap has probably worsened the situation. Further erosion is likely if remedial measures are not taken.

The cause of the lumps, holes, and rills on the downstream slope is not readily apparent. The condition could be caused by erosion before slope protection was established or by removal of tree stumps. As noted in Section 5, the dam may have been overtopped during Tropical Storm Diane in 1955; this would account for the condition of the downstream slope. The condition does not appear to be a stability problem.

The burrowing animal holes can have some of the same effects as tree roots. The problem is minor at present. Unauthorized excavation of the embankment is unwise. The amount removed to date is negligible.

The embankment slopes are flatter than the design. This improves the stability. It is unclear whether the embankment is higher than the design because of overbuild provided during construction or because of fill that may have been added when the strip along the top was paved. The increased height should have no significant effect on the stability of the embankment.

(3) Appurtenant Structures. The spalled concrete on the outlet works intake structure appears to be severe. The structure is in the reservoir and access to it could not be obtained during the visual inspection. The spalling is probably caused by long-term exposure to the weather.

The conditions at the spillway walls downstream of the weir indicate that maintenance repairs may be necessary in the future. They are not sufficiently serious to warrant repairs at present. However, it is uncertain that the upstream end of the approach walls could sustain the imposed loads if any further deterioration were to occur.

- b. Design and Construction Data. No stability analyses were available for the embankment or the spillway weir. The spillway weir is sufficiently small that no stability analysis is necessary. It is judged to be stable for the anticipated loading conditions. The available data raise no concerns about the stability of the embankment.
- c. Operating Records. There are no formal records of operation. According to available records, no stability problems have occurred over the operational history of the dam.
- d. <u>Post-construction Changes</u>. There have been no significant post-construction changes.
- e. <u>Seismic Stability</u>. Lake-In-The-Clouds Dam is located in <u>Seismic Zone 1</u>. Earthquake loadings are not considered to be significant for small dams located in Seismic Zone 1 when there are no readily apparent stability problems. Since there are no readily apparent stability problems, the ability of the dam to withstand an earthquake is assumed to be adequate.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND

PROPOSED REMEDIAL MEASURES

7.1 Dam Assessment.

a. Safety.

- (1) Based on available records, visual inspection, calculations, and past operational performance, Lake-In-The-Clouds Dam is judged to be in fair condition. The recommended SDF for the size and hazard category of the dam varies between the 1/2 PMF and the PMF. Based on the criteria and the downstream conditions, the selected SDF at the dam is the PMF. Based on existing conditions, the spillway will pass about 35 percent of the PMF before overtopping of the dam occurs. If the embankment were at its design elevation, which is lower than the existing top elevation, the spillway would pass about 30 percent of the PMF. Failure of the dam during the 1/2 PMF will cause the overtopping and probable failure of a high hazard dam downstream. For either condition, the spillway capacity is rated as seriously inadequate. Based on criteria established for these studies, the dam is considered to be unsafe, nonemergency, because the spillway capacity is seriously inadequate.
- (2) No significant stability problems were observed at the embankment.
- (3) The ability of the emergency drawdown facility to function is uncertain.
 - (4) Maintenance at the dam is inadequate.
- (5) A summary of the features and observed deficiencies is listed below:

Feature and Location

Observed Deficiency

Embankment:

Mature trees and burrowing animal holes in downstream slope; poorly placed riprap, minor erosion and brush on upstream slope.

Feature and Location

Observed Deficiency

Spillway:

Stoplogs protruding above crest; badly spalled approach walls; minor deterioration of training wall concrete.

Outlet Works:

Uncertain operation of emergency drawdown facilities; operating mechanism missing; badly spalled concrete on intake structure.

And the second s

- b. Adequacy of Information. The information available is such that an assessment of the condition of the dam can be inferred from the combination of visual inspection, past performance, and computations performed prior to and as part of this study.
- c. <u>Urgency</u>. The recommendations in Paragraph 7.2 should be implemented immediately.
- d. <u>Necessity for Further Investigations</u>. In order to accomplish some of the remedial measures outlined in Paragraph 7.2, further investigations by the Owner will be required.

7.2 Recommendations and Remedial Measures.

- a. The following studies and remedial measures are recommended to be undertaken by the Owner, in approximate order of priority, immediately:
- (1) Cut the top stoplog to be flush with the spillway weir crest.
- (2) Perform additional studies to more accurately ascertain the spillway capacity required for Lake-In-The-Clouds Dam as well as the nature and extent of measures required to provide adequate spillway capacity. Take appropriate action as required.
- (3) Provide whatever measures are necessary to make the outlet works operational. Once operational, it should be maintained and operated on a regular basis.
- (4) Remove trees and brush growing on or near the embankment.
- (5) Design and construct repairs for the spalled concrete at the spillway approach walls and outlet works intake structure.

- (6) Design and construct erosion protection for the upstream slope of the embankment.
- (7) As part of the maintenance program recommended below, fill burrowing animal holes, cut brush on the upstream slope, and prevent unauthorized changes at the embankment.

All investigations, studies, designs, and inspection of construction should be performed by a professional engineer experienced in the design and construction of dams. Tree removal should also be guided by a professional engineer.

- b. In addition, the Owner should institute the following operational and maintenance procedures:
- (1) Develop a detailed emergency operation and warning system for Lake-In-The-Clouds Dam.
- (2) During periods of unusually heavy rains, provide round-the-clock surveillance of Lake-In-The-Clouds Dam. Have sufficient personnel available to clear any debris that might collect at the spillway bridge.
- (3) When warnings of a storm of major proportions are given by the National Weather Service, the Owner should activate his emergency operation and warning system.

management of the control of the con

- (4) Institute an inspection program at the dam such that the dam is inspected frequently. As presently required by the Commonwealth, the inspection program should include a formal annual inspection by a professional engineer experienced in the design and construction of dams. Utilize the inspection results to determine if remedial measures are necessary.
- (5) Institute a maintenance program such that all features of the dam are properly maintained.
- c. In addition, it is recommended that the Commonwealth require the owner of the unnamed dam, which is upstream of Lake-In-The-Clouds Dam, to provide an adequate spillway capacity for the unnamed dam.

APPENDIX A

CHECKLIST - ENGINEERING DATA

CHECKLIST

ENGINEERING DATA

NDI ID NO.: PA-OOTH1 DER ID NO.: 52-125

Sheet 1 of 4

DESIGN, CONSTRUCTION, AND OPERATION PHASE I

MULL	
AS-BUILT DRAWINGS	See PLATE F-3
	dRAWIN
REGIONAL VICINITY MAP	SEE PLATE E-1
CONSTRUCTION HISTORY	Built 1952
TYPICAL SECTIONS OF DAM	See Plate F-1
OUTLETS: Plan Details Constraints Discharge Ratings	See Plane E-2

4
•
<u>ō</u>
7
ب
•
Ŏ
£
S

ENGINEERING DATA

ITEM	REMARKS
RAINFALL/RESERVOIR RECORDS	None
DESIGN REPORTS	None Permit Application Reports Available
GEOLOGY REPORTS	None
DESIGN COMPUTATIONS: Hydrology and Hydraulics (H&H) Dam Stability Seepage Studies	Nowe
MATERIALS INVESTIGATIONS: Boring Records Laboratory Field	Nowe
POSTCONSTRUCTION SURVEYS OF DAM	None

	4	r
•	ť	ó
	r	7
	Chact	2001
	U	2

ENGINEERING DATA

ITEM	REMARKS
BORROW SOURCES	DATA NOT AVAILABLE
MONITORING SYSTEMS	None
MODIFICATIONS	BRIDGE OVER SPILLUMY ADDED AT UNKNOWN DATE.
HIGH POOL RECORDS	Nove - PROBABLY TROPICAL Storm Diane in 1955
POSTCONSTRUCTION ENGINEERING STUDIES AND REPORTS	None
PRIOR ACCIDENTS OR FAILURE OF DAM: Description Reports	None

ENGINEERING DATA

ПЕМ	REMARKS
MAINTENANCE AND OPERATION RECORDS	None
SPILLWAY: Plan Sections Details	See PLATE E-2
OPERATING EQUIPMENT: Plans Details	SEE PLAIE E-2
PREVIOUS INSPECTIONS Dates Deficiencies	1965 - No deficiencies Except brush AND debais AT OUTLET WORKS CHANNEL AND IN Spirway CHANNEL

APPENDIX B

CHECKLIST - VISUAL INSPECTION

CHECKLIST VISUAL INSPECTION

PHASE 1

Name of Dem: LAKE - IN-The - Chains County: PIKE State: DENNSYLVANIA	CHEILL HAZAM CASSON	15 April 1980 Weather	Herit OF 19-15 April	vation at Time of Inspection: 1830.6 msl/Tailwater at Time of Inspection: 1821.7 msl
Nor 10 M	Type of Dem: EAR	Date(s) Inspection:		root Lievation at Time

MR. Mc Wilkingma (Local Peoperty OWNER WHO STATED THAT he THE RIGHT END OF THE CAM D. Ebenson (GFCC) D. Wilson (GECC) Inspection Personnel:

A. WHITMAN (GFCC) Recorder

EMBANKMENT
Sheet 1 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Nove Nove	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	N 0 2 M	
SLOUGHING OR EROSION: Embankment Slopes Abutment Slopes	TO LEFF OF Spirmay, DownstReam Scope very UNEVER WITH FAIRLY DEEP RILLS. ÉROSION ON UPSTREAM SLOPE NEAR OUTLET WORKS.	SURFACE RUNOFF SWALES AT UPSTREAM SPILLWAY WALLS. A FEW BURROWING ANIMAL HOLES IN COUNSTREAM SLOPE. A SHALLOW 2'DIA. ADLE HAS BEEN EXCAMPTED IN EMB. TO RICHT OF SPILLWAY.
CREST ALIGNMENT: Vertical Horizontal	Horizontal - No Deficiencies Vanical - See Survey data Following inspection Form	
RIPRAP FAILURES	Upstruitu to chette is Filled to chette is Ochek AT LEFT END.	Riprap is unevenly GRADED AIR FOURLY PLACED, ALSO SEE

EMBANKMENT

Sheet 2 of 2

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT WITH: Abutment Spillway Other Features	No deficiencies	
ANY NOTICEABLE SEEPAGE	Flow Along TOE FROM SURFACET Runoff	
STAFF GAGE AND RECORDER	コマのア	
Drains	None	
Vegeration	LOW BRUSH ON UPSTREAM SLOPE. MATURE -TREES ON JOUNSTREAM SLOPE.	

OUTLET WORKS
Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	24" CORPUGATED METAL P.PE (CMP) ENCASED (SEE PLATE E-2)	
INTAKE STRUCTURE	IN RESERVOIR - ACLESS by inspection term nor possible. Edges brocy spalled,	
OUTLET STRUCTURE	ENDWALL Pipe AT- ENDWALL 1/2 FULL OF SEDIMENT AND DEBRIS.	
OUTLET CHANNEL	No deficiencies	
EMERGENCY GATE	Stem Rusted, No Operating Mechanism Visible,	

UNGATED SPILLWAY

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Good Condition From over weig, detailed inspection not possible	STOPLOGS IN MIDDLE OF WEIR. Rotter timber debais
APROACH CHANNEL	Severe spacing OF Approach walls,	CONCRETE CRUMBLES TO THE TOUCK.
DISCHARGE CHANNEL	Minoa PEELING AND Spalling on WALLS.	CHANNEL CLEAR. PATTERN CRNCKS, NOICLEACHING DENEATH
BRIDGE AND PIERS	Steel I Beams Timber Deck Good Condition	

Instrumentation

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	Nove AT SITE	
OBSERVATION WELLS		
WEIRS		
PTEZOMETERS		
OTHER	Nowe AT SITE	

DOWNSTREAM CHANNEL

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION: Obstructions Debris Other	CLEAR NEAR DAMSITE.	
SLOPES	Milo To FAIRLY Steep.	
APROXIMATE NUMBER OF HOMES AND POPULATION	See Exhibit D-1. 2 Roads AND 5Kytop DAM	No olwerrings

RESERVOIR AND WATERSHED

Sheet 1 of 1

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	GENERALLY MILD	2 DAMS IN WATERSHED SEE APPENOIX D.
SEDIMENTATION	No observed problems	
WATERSHED DESCRIPTION	Almost Entirely WOODED, SOME SWAMPS IN WATERSHED	

SUBJECT LAKE - IN - THE CLOUDS DAM PILE NO. GANNETT FLEMING CORDDRY CROSS SECTION OF EMBANKMENT SHEET NO. AND CARPENTER, INC. HARRISSURG. PA. COMPUTED BY DRE LAKE -IN-THE - CLOUDS SECTION @ STA 2+20 707

GANNETT FLEMING CORDDRY AND CARPENTER, INC. (HARRISSURG. PA. COMPUTED BY DRE DATE 4-80 1850.5 +25 1848.0 END TOP DAM 1847.6 1847.2 1847.6 M+99-+75 +76.5 1845.5 1847.7 1847.9 +50 1347.2 1847.3 1899.5 B-11

Annett Fleming Corddry and Carpenter, Inc.	CROSS SEL	TION OF EMBA	NKM (EN T SHEET NO. 2 OF SHEE
HARRIBBURG, PA.	COMPUTED BY DRE	DATE 4-80	CHECKED BY DATE
·			· · · · · · · · · · · · · · · · · · ·
المستحد			
		-0	
	/		
F. S.	/	-0	
£ 1) "/	.,	
	110		
	3.20	-0	- 0
	/-/		DAM STR 4+30
	- ($\bigcup_{q} \frac{2}{q}$
		^	5 5
		0	
			7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	_ \		JNN AMED Section & S
	\	-0	2,
	\=		
	2.70		
	1.4	-07	
		•	•
merinan e i disse	TOE		
		0	
		r)	
- -			
	, 1		
	0		
	<u> </u>	_	
		B-1	/2_

THE RESERVE OF THE PERSON OF T

APPENDIX C

PHOTOGRAPHS

A. Top of Dam

B. Upstream Slope

C. Downstream Slope

b. The way of ream of the per-

F. Intake Structure

or a constitution to an training

G. Spillway Approach

H. Spillway

APPENDIX D
HYDROLOGY AND HYDRAULICS

APPENDIX D

HYDROLOGY AND HYDRAULICS

Spillway Capacity Rating:

In the recommended Guidelines for Safety Inspection of Dams, the Department of the Army, Office of the Chief of Engineers (OCE), established criteria for rating the capacity of spillways. The recommended Spillway Design Flood (SDF) for the size (small, intermediate, or large) and hazard potential (low, significant, or high) classification of a dam is selected in accordance with the criteria. The SDF for those dams in the high hazard category varies between one-half of the Probable Maximum Flood (PMF) and the PMF. If the dam and spillway are not capable of passing the SDF without overtopping failure, the spillway capacity is rated as inadequate. If the dam and spillway are capable of passing one-half of the PMF without overtopping failure, or if the dam is not in the high hazard category, the spillway capacity is not rated as seriously inadequate. A spillway capacity is rated as seriously inadequate if all of the following conditions exist:

- (a) There is a high hazard to loss of life from large flows downstream of the dam.
- (b) Dam failure resulting from overtopping would significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure.
- (c) The dam and spillway are not capable of passing one-half of the PMF without overtopping failure.

Description of Model:

If the Owner has not developed a PMF for the dam, the watershed is modeled with the HEC-1DB computer program, which was developed by the U.S. Army Corps of Engineers. The HEC-1DB computer program calculates a PMF runoff hydrograph (and percentages thereof) and routes the flows through both reservoirs and stream sections. In addition, it has the capability to simulate an overtopping dam failure. By modifying the rainfall criteria, it is also possible to model the 100-year flood with the program.

APPENDIX D

Na ND DE Latitude: N Top of Dam E Streambed El Reservoir St Size Categor Hazard Categ	evation: /8 orage at Top y: SMALL ory: HIGH ign Flood:	PA - OO B3-125 B34.5 (E- B34.5 (E- Of Dam F VARIES V SELECT AT SKY	ongitude: W ongitude: W xisting) leight of Dam: clevation: 4 (s 2PMF TO PM PMF because TOP dam	75° 16' 05" 14 ft 68 acre-ft ee Section 5)
Name LAKE JAMIE UNNAMED	Distance from Dam (miles) 0.7	Height (ft) 12 8	Storage at top of Dam Elevation (acre-ft) 276 117	Remarks (1)
SKYTOP		WNSTREAM	DAMS /, 021	
SCS YE3	2.8	<u>68±</u>	11,100	See Desien
(2) No (3) PHAS DER	RRENTLY, N DER ID, E I Rep	DI-PA-	being prep botts, DE	DARED R-45-220. I-PA-00634 SIDEREC SIGNIFI

Name of Stream: LEAVITT BRANCH, BRODHEAD CREEK Name of Dam: LAKE -IN -THE - CLOUDS
DETERMINATION OF PMF RAINFALL & UNIT HYDROGRAPH UNIT HYDROGRAPH DATA: Drainage Sub- L_{ca} miles Area Ср L L' Tp Map | Plate miles area (square miles hours Area (2) (4) miles) (1) (3) (5) (6) **(7)** (8) 7-1 0.79 0.45 1.23 .76 1.53 1.29 0.30 0.45 1.23 .30 .53 .71 0.96 0.45 1.23 1.29 Total (See Sketch on Sheet D-4) 2.05 (1) & (2):Snyder Unit Hydrograph coefficients supplied by Baltimore District, Corps of Engineers on maps and plates referenced in (7) & (8) The following are measured from the outlet of the subarea: (3): Length of main watercourse extended to divide (4): Length of main watercourse to the centroid The following is measured from the upstream end of the reservoir at normal pool: (5): Length of main watercourse extended to divide (6): $Tp=C_t \times (L \times L_{ca})^{0.3}$, except where the centroid of the subarea is located in the reservoir. Then $Tp=C_t \times (L')^{0.6}$ $Tp=C_t \times (L')$ Initial flow is assumed at 1.5 cfs/sq. mile Computer Data: QRCSN = -0.05 (5% of peak flow) RTIOR = 2.0RAINFALL DATA: 22.1 in., 24 hr., 200 sq. mile Hydromet. 40 Hydromet. 33 PMF Rainfall Index= Hydromet. 33 (Susquehanna Basin) (Other Basins) N/A Zone: Geographic Adjustment 1.0 NIA Factor: Revised Index 22.1 Rainfall: RAINFALL DISTRIBUTION (percent) Percent Time 6 hours 111 12 hours 24 hours 48 hours 72 hours 96 hours

River Basin

GANNETT FLEMING CORDDRY	SUBJECT LAKE - IN -THE - CLOUDS PILE NO.
AND CARPENTER, INC. HARRISBURG, PA.	POR
	COMPUTED BY BATE CHECKED BY BATE
/	SUBAREA N-1
	JAMIE / LAKE
SEENOTE	UNNAMED /
	DAM
1	
,	SUBAREA L-1
	LAKE-IN-
`	THE-CLOUDS /
NOTE: A NATUR	~
LOW AREA AT	
THE UPSTREAM END OF LAKE	
JANIE ACTS AS	
AN AUXICIARY	
Spillway,	LUDED SKYTOP
FOR	BREACH
	ly Not Included
00	SCS PA-463 IN ANALYSIS
	SKETCH
	System
· · · · · · · · · · · · · · · · · · ·	
and a second	D-4
	D-4

'n.

Data for Dam at Out	let of Subare	a J-1 (Se	ee sketch on	Sheet D-4)
Name of Dam: LA	KE JAMIE			
STORAGE DATA: FROM	n Phase I	REPORT		
Elevation	Area (acres)	Stora million gals		Remarks
1856.1=ELEVO* 1865.0=ELEV1	0 <u>44</u> =A1	0	0 =S1	No Design Data, Elevo: Streambed At toe
1868.0 1869.0 1880.0*	52 55 94		276 330	Existing Top Design Top
* ELEVO - ELEVI - ** Planimetered co		•	1 - ELEVO) x A1 above top of	
Reservoir Area watershed.	at Normal Poo	ol is 9	percent of	subarea
BREACH DATA: Nor	USED			
See Appendix B	for sections	and exist	ing profile o	of the dam.
Soil Type from Visu	al Inspection	ı: <u></u>		
Maximum Permissible (from Q = CLH ³ /2 =	Velocity (Pl V•A and depth	ate 28, E	M 1110-2-1601 x H) & A = L)fps
$HMAX = (4/9 V^2/C)$	²) =	_ft., C =	Top of D	Dam El.=
HMAX + Top of Da (Above is elevation	m El. = at which fai	lure woul	= FAILEL d start)	
Dam Breach Data:				
Z = ELBM =	(bottom zero s	lopes of b of breack torage el	breach) h elevation, evation)	minimum of
WSEL =	(normalmins =	pool ele hrs	vation) (time for bi develop)	reach to

Data for Dam at Outlet of Subarea	<u> </u>	
		used for
Name of Dam: LAKE JAMIE		ANALYSIS
SPILLWAY DATA: FROM PHASE I	Existing	Design
	Conditions	Conditions
Report -	00110110110	CONCILIONS
Top of Dam Elevation	1868.0	1869.0
Spillway Crest Elevation	1865.0	1865.0
Spillway Head Available (ft)	3.0	4.0
Type Spillway	ROUNDED	CREST
"C" Value - Spillway	3.4	3.4
Crest Length - Spillway (ft)	29.6	30.0
Spillway Peak Discharge (cfs)	523	816
Auxiliary Spillway Crest Elev.		<u> </u>
Auxiliary Spill. Head Avail. (ft)		
Type Auxiliary Spillway		
"C" Value - Auxiliary Spill. (ft)		SEE NEXT SHEET
Crest Length - Auxil. Spill. (ft)		
Auxiliary Spillway		
Peak Discharge (cfs)		
Combined Spillway Discharge (cfs)		†
Spillway Rating Curve: Sec Nex	r SHEET	
Spiriway hatring ourve.	uxiliary	
Elevation Q Spillway (cfs) Spil		mbined (cfs)
1865.0	<u> </u>	9 A
1865.7		61
1866.3		159
1866.9		300
/867.5		487 CERISTING
/86B.1		700
1869.2		1,351 CONDITIONS
1870.4		2,207
1871.5		3,312
		Y
OUTLET WORKS RATING: Outlet 1	Outlet 2	Outlet 3
Invert of Outlet Not P	PRTINENT TO	Outlet 3 This
Invert of Outlet Invert of Inlet Report	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Not P	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1N ² L/R ^{4/3} Sum of K	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1N ² L/R ^{4/3} Sum of K (1/K) 0.5 = C	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1 $_{N}^{2}$ L/ $_{R}^{4/3}$ Sum of K (1/K) 0.5 = C Maximum Head (ft) = HM	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1N ² L/R ^{4/3} Sum of K (1/K) 0.5 = C Maximum Head (ft) = HM Q = CA / 2g(HM)(cfs)	PRTINENT TO	
Invert of Outlet Invert of Inlet Type Diameter (ft) = D Length (ft) = L Area (sq. ft) = A N K Entrance K Exit K Friction=29.1 $_{N}^{2}$ L/ $_{R}^{4/3}$ Sum of K (1/K) 0.5 = C Maximum Head (ft) = HM	PRTINENT TO	

GANNETT FLEMING CORDDRY

AND CARPENTER, INC.

HARRIBBURG, PA.

SUBJECT	 FILE NO	
	 SHEST NOOF	_0HRET
ron	 	
COMPUTED BYDATE	 DATE	

LAKE JAMIE
AUXILIARY SPILLWAY
NATURAL OUTLET

FROM FIELD SURVEY FOR LAKE

JAMIE DAM PHASE I INSPECTION

USE DISCHARGE COEFFICIENT OF 2.5

BECAUSE OF IRREGULAK APPROACH CONDITIONS

$$Q = \frac{2.5}{3.1} \sqrt{\frac{A^3}{T}g}$$
 MODIFIED CRITICAL DEPTH
$$d = depth$$

A = AREH (FT2) T = TOPWIDTH (FT) Q = FLOW (CFE) V (VELOCITY - FPE) = Q/HPOOL = 1865.7 + d + $V^{2}/2g$ g = 32.18

Pool = $1865.7 + d + V^{2}/2g$ g = 32.18A = d(3 + (14.5 + 2) d) T = 3 + 16.5 d

EQ = Q + MAIN Spillway DiscHARGE <u>d</u> -px Pool ZQ_ H 0 1865.7 61 0 -1 11.25 1866.3 159 0.5 3.56 1.0 19.5 .2 1866.9 300 11.25 1.5 23.06 27.75 96 1867.5 487 2.0 1866.1 722 39.0 36.0 186 1868.6 2.5 59.1 44.3 312 •4 1009 3.0 52.5 480 1869,2 1,351 83.3 .5 3.5 692 1869.8 60.8 . 6 111.6 1,749 1870.4 2,207 4.0 144 69 952 .7 1871.5 3,3/2 85.5 1,628 . 8 221.3 5.0 250.5 23,962 2.5 1883.2 31,756 15.0 1901.3

GANNETT FLEMING CORDDR	SUBJECT		PILE NO	
AND CARPENTER. INC.	· ·		SHEET NO DI	BHEET
HARRISBURG. PA.	POR	<u></u>		
	COMPUTED BY	DATECHI	CHED BY DATE	
	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	NOTE ON	LAKE JO	mis	
THE	AUXILIARY	SDILLWAY"	DISCHARGES	
TAIN	Spence	Managin	RUN, WHICH	
			BRANCH OF	
BROT	DHEAD CREBI	K. The Mio	DLE BRANCH	
Joz	INS THE LEI	AVITT BRANC	H NEAR	
CAN	JADENSI'S ! IT	does NOT	FLOW INTO	
	E-IN-THE-			-
74	acaemae Tue	PME CO	DANENT AT	
14.	TALL		PONENT AT	
A	TABULATION	of Routing	POOL ELEVATION	25
067	TAINED , USING	THE COM	pines Epinen	/
			TIONS ARE IN	
		MA'AL SO'LL	way discharge	
	· ·	•	•	
	ch Bebreens		1010	
LAK	E - IN - THE .	- CLOUDS,		
	• •			
Fue	ITHER EXPLAN	ATION IS DR	ov i DECO	
	•	•		•••
ωiτ	H THE COMPU	IRE BRINTON	Γ.	
	•	no promo		
			•	
×	AND FLOW O	100 700 05	D. hankara F. F.	
	"" "" "" "" "" "" "" "" "" "" "" "" ""	NER 1013 OF	EM PUNKMENT II	- MNY.
		The second secon		
	ŧ	1		
**************************************	• • •			
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
•		·		
	<u> </u>	 		
		!		
		1		
			1	
ł				-
Fee:		D-8		
B010		7-8		

Data for Dam at Out	let of Subar	ea <u>N-1</u> (S	See sketch on	Sheet D-4)
Name of Dam: UN	NAMED I	MAC		
STORAGE DATA:				
Elevation	Area (acres)	Stormillion gals	age acre-ft	Remarks
/840.0 =ELEVO* /845.5 =ELEV1 /847.2	811.8 18.7 =A1 21.2	0	0 <u>83</u> =S1	SEE NOTE ON FOLLOWING
1860.0 **	44.5			
* ELEVO = ELEV1 - ** Planimetered co	ontour at lea	st 10 feet	•	f dam
watershed. BREACH DATA:				
See Appendix B	for sections	and exist	ting profile	of the dam.
Soil Type from Visu	al Inspection	n:		
Maximum Permissible (from Q = CLH ³ /2 =	e Velocity (P V•A and dept	late 28, 1 h = (2/3)	EM 1110-2-160 x H) & A = L	1)fps •depth
$HMAX = (4/9 V^2/0)$	²) =	ft., C =	Top of	Dam El.=
HMAX + Top of Da (Above is elevation	nm El. = n at which fa	ilure wou	= FAILEL ld start)	
Dam Breach Data:				
BRWID = Z = ELBM =	(side (botto	slopes of m of bread storage el	ch elevation, levation)	minimum of
WSEL =	mins =	l pool ele hr	evation) s (time for b develop)	reach to

	SUBJECT	FILE NO
GANNETT FLEMING CORDDRY		SHEET NOOFSHEET
AND CARPENTER, INC. HARRISBURG, PA.	FOR	
MARNISBURG, PA.	COMPUTED BYCHI	SCHED BY DATE
	NOTE ON USGS	M
	AND UNNAMED DA	
	AND UNNAMED SA	(V Nome, mode, co
The	LOCATION OF THE	UNNAMEL
dam	is shown on Exh	nibir D-1
	PLATE E-1. The estimated From Visu	
The	THE FIELD AND IT IS	was
	MEU AT ELEVATION!	1840.0, basel
	USGS CONTOURS,	O compressibile
5466	AS NOTED ON THE	
AREA	THE COMPUTED TO S	he Owner of
	d'AM REPORTED THE 12 ACRES, FROM VISUA	
B)=	THE IN SPECTION TEAD	m, THIS
APP	EARLED TO BE LOW. However, The Com	DUTED STORAGE
COUL	o be significantly	
	,	
		-

			7	-26
Data for Dam at Outlet of	Subarea_	N-1		1.7
Name of Dam: UNNAMED				23'
SPILLWAY DATA:		Existing		Design
<u> </u>		Condition		Conditions
	-			
Top of Dam Elevation				NOT
Spillway Crest Elevation		1845.5		AVAILABLE
Spillway Head Available (f	t)	1.7		
Type Spillway		BROAD	CRESTER	weik
"C" Value - Spillway		2.7		
Crest Length - Spillway (f		25'	(566 5	KETCH ABOVE)
Spillway Peak Discharge (c	fs)	150	<u> </u>	
Auxiliary Spillway Crest E	lev.	N/A_		
Auxiliary Spill. Head Avai	1. (It)	N/A_		
Type Auxiliary Spillway	7 (64)	N/A		
"C" Value - Auxiliary Spil	1. (10)	-N/A		
Crest Length - Auxil. Spil	1. (10)	N/A		
Auxiliary Spillway Peak Discharge (c	e-\	41/4		
Combined Spillway Discharg		N/A		
			_ -	
Spillway Rating Curve: Q		^{/2} = 2.7 × 2 exiliary	25 x H"	1
Elevation Q Spillway (cfs		lway (cfs)	Combine	d (cfs)
				
		 		
				
				
	-			
				
				_
OUTLET WORKS RATING: Ou	tlet 1	Outlet	<u> 2 Out</u>	:let 3
T	1011 6 4	0		
	18" CM			
		OT DERT		
Type	TO THE	S REPORT		
Diameter (ft) = D				
Length (ft) = L				
Area (sq. ft) = A $\overline{}$				
N Entrance				
K Entrance K Exit				
K Friction=29.1 _N ² L/R ⁴ /3				
Sum of K_				
$(1/K)^{0.5} = C$				
Maximum Head (ft) = HM			_	
$Q = CA \sqrt{2g(HM)(cfs)}$				
Q Combined (cfs)				
- · · · · · · · · · · · · · · · · · · ·				

Data for Dam at Out	let of Subar	ea <u>l-1</u> (Se	ee sketch on	Sheet D-4)
Name of Dam: LAKE	E-IN-Th	e - CLOUI	<u> </u>	
STORAGE DATA:		PLANIMETE PLAN Store	RED FROM ORI	GINAL OP
Elevation /820.2 = ELEVO* /824.0 = ELEV1 /830.0 /833.0 /834.0 /834.5	Area (acres) 0 23.06 = A1T 44.34 53.26 65.3 71.7	million gals	0 29.8 -S1 228 375 434 468	Remarks STREAMBED AT TOE DECIGN TOP EXISTING TOP
/BYO. O ** * ELEVO - ELEVI ** Planimetered co Reservoir Area	ntour at lea	st 10 feet	•	dam
watershed. BREACH DATA:		·		
See Appendix B	for sections	and existi	ing profile o	f the dam.
Soil Type from Visu	al Inspectio	n: 5A	10	
Maximum Permissible (from Q = CLH ³ /2 =	Velocity (P V A and dept	late 28, EM h = (2/3) >	1 1110-2-1601)fps depth
$HMAX = (4/9 V^2/C)$	²) = <u>.34</u>	ft., C =	3.1 Top of D	eam El.= 1834.5
HMAX + Top of Da (Above is elevation	m El. = at which fa	834.8 ilure would	= FAILEL start)	
Dam Breach Data:				
$\begin{array}{c} BRWID = & & & & & & \\ Z = & & & & \\ ELBM = & & & & & \\ & & & & & & \\ & & & & & &$	(side (botto	of bottom slopes of t m of breach storage ele	oreach) n elevation,	minimum of
WSEL = 1830.6 T FAIL= 6		1 pool elev	vation) (time for br develop)	each to

Data for Dam at Outlet of Subarea	<u>L-1</u>	
Name of Dam: LAKE-IN-The-	CLOUDS	
SPILLWAY DATA:	Existing	Design
	Conditions	Conditions
Top of Dam Elevation		1834.0
Spillway Crest Elevation Spillway Head Available (ft)	1830.0	<u> 1830.0</u>
Type Spillway	4.5	4.0
"C" Value - Spillway	ROUNDED	CRECT 3.4
Crest Length - Spillway (ft)	32	32
Spillway Peak Discharge (cfs)	1.039	870
Auxiliary Spillway Crest Elev.		<u> </u>
Auxiliary Spill. Head Avail. (ft)		
Type Auxiliary Spillway		
"C" Value - Auxiliary Spill. (ft)	- N/A	N/A
Crest Length - Auxil. Spill. (ft)		
Auxiliary Spillway Peak Discharge (cfs)	₩	Y
Combined Spillway Discharge (cfs)	1,039	270
Spillway Rating Curve: SEE NE	xT SHEET uxiliary	
	llway (cfs) Cor	mbined (cfs)
/830.0	<u> </u>	0
1830.5		38
/83/.0		109
1831.5		200
1832.0		308
<u> </u>		565
1834.0		270
<u> </u>		1039
<u> </u>		1,134
1840.0		1,807
		· · · · · · ·
OUTLET WORKS RATING: Outlet 1	Outlet 2	Outlet 3
Invert of Outlet 1819.5		
Invert of Inlet /820.5		
Type CMP		
Diameter (ft) = D		
Length (ft) = L 54.5		
Area (sq. ft) = A $\frac{3.14}{.024}$		
K Entrance 0.5		
K Exit		·
K Friction=29.1 N^2 L/R ^{4/3} 2.3		
Sum of K 2. A		
$(1/K)^{0.5} = C$		
Maximum Head (ft) = HM		
$Q = CA \sqrt{2g(HM)(cfs)} \qquad \frac{48.1}{}$		
Q Combined (cfs) 50		

6 5 Connny			FILE HO
GANNETT FLEMING CORDERY			HEET NOOFSHEETS
AND CARPENTER, INC.			
HARRISBURG, PA.	POR		DATE
	COMPUTED BY	DAYECHICAGO ST	
_	RATING	CURVE	
	FOR LI	AKE - IN - The Chous	
	_		
	Spicen	'ny	
	Be:06E		
	85,005		
		- 1833.5	
•			
1830		- EXACT CREST NOT	DETAILED
7230		ON DRAWINGS, USE	C=3.4
		277 2777	
	L=32'	Q = C L H 3/2	H= Pank - 1830
		- •	
		ESSURE FLOW UNDER	
	BEAMS	USE Q = CA VagH'	•
	A - /	1833.5-1830) x32	
		7 (ORIFICE)	
	_	-	
	H'= 1-	POOL - (1833.5 + 1830))
		2	
Pool	Q = CLH3/2	Q = C'AVAAH	QCONTROL
	0	N/A	0
1830		~~~	
1830.5	38	T	38
1831.0	109		109
1831.5	200		200
1832.0	308		308
· ·	•	1	430
1832.5	430	•	•
1833.0	565	N/A	565
1833.5	712	832	712
1834.0	870	943	870
	1,039	1 - 11 -	1 - 20
1834.5			
/835.0	1,216	۲. ۱ م	7,137
1836.6	1,599	1,297	1,297
1840.0	3,440	1, 807	1,807
			J

GANNETT FLEMING CORDDRY	BUBJECT				
AND CARPENTER, INC.				FILE NO.	
HARRISBURG. PA.	FOR			SHEET NOOF	.6H1
Part of the second of the seco	COMPUTED BY	DATE	CHECKED BY	DATE	_
-	SELECTED	Computer	Ortho	Т	
	IND	= ×	<u></u>		
ITEW.				• • • • •	
				PAGE	
MULTI - RAT LAKE	JAMIE DA	sis m:			
I	NPUT			D-16	
	•	F PEAK FLOWS	5	D-17	
_ L	-AKE JAMI	E 'DAM	_	D-18	
	DER OF S				
=	INPUT FOR	PMF		D-19 to D-20	2
Input	CHANGES F	OR OTHER RATIO	0 5	D-21 to D-22	
SYSTE	M PEAK F	Lows		D-23	
	MEO DAM	~		D-24	
LAKE	-TN- VE -	CLOUDS DAM		D-25	
BREACH AN	ALYSIS #				
Inpu			1)-26 to D-27	3
Sy ste	M PEAK F	Lows		D-28	r
LAKE	-In-The-(CLOUDS DAM		D-29	
STREN	am Section	NS	_	-29 TO D-30	_
Skyt	op Dam		Ī	0-31	,
* PLAN 1 PLAN 2	- NO DA	n FAILS -The-CLOUD			
	.:	- 1			
	D	-15		• • • • • • • • • • • • • • • • • • •	

C ← #

医骨盆中状态医骨骨骨骨足足足术医骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨骨			=								
FLOOD MYDROGRAPH PACKASE (NEC-1) DAM SAFETY VERSTON JULY 1978 LAST MODIFICATION OI APR 80	KASE (NEC-1 July 197 01 APR 80	JULY 1978 JULY 1978 1 APR 80	~ s o :								
化化化物 化化物 医甲基甲基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		= = = = =	•	*	TIONAL D	AM INSPE	NATIONAL DAM INSPECTION PROGRAM	DCRAM			
٠.	4			•	LEAVITT	BRANCH	LEAVITT BRANCH, BROOHEAD CREEK	CREEK			
					ند	LAKE JAHIE DAM	E DAM				
•	~	220	0	15	0	0	0	0	0	7	0
1 67		•									
· •0	, ,	_	•	-							
	-	0	۲.	9.	••	•	¥Ç.				
•	~	0	-					-			
•	Ş	N	01 407	INFLOW TO LAKE JAMIE	HIE DAM						
-01	E	-	-	62.		2.05				-	
-	•		22.1	111	123	133	142				
12	_							_	•02		60°
13	: :	1.29	54.0								
7	- -	-1.5	-0.05	2.0				,			
15	¥	-	-				-	-			
16	5	80	TE THR	ROUTE THROUGH LAKE JAMIE DAM	JANIE	DAH					
17	-				-						
18	-	, _						-1865	7		
••		1865 1	1865.7	1866 • 3	1866.9	18	1868 .1	1869 .2	1870 .4	1871 .5	
20	75	0	2	159	100	183	722	1351	2207	3312	
21	8	0	77	76							
22	\$E1856.1	-	1865	1880							
23		1865									
77	\$0	1868									
\$2		-	63	120	140	190					
92	\$V 18	1868	1868.4	1868.7	1868.9	1870					
22	¥	66									

D-16

9 9:3

•

o 'š''''

)

)

PEAR FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTI

d

			AREA IN SO	AREM IM SOUARE MILES (SOUARE KILOMETERS)	(SQUARE K	(LOMETERS)		
STA 710N	AREA	P148	RATED 1	RA 710 2	RATIOS API Ratio 3	PLIED TO F RATIO 4	LOUS RATIO S	PLAN RATIO 1 RATIO 2 RATIO 5 RATIO 4 RATIO 5 RATIO 6 -50 -60 -50 -60 -30
-~	2.05.3	-~	2004 • 56 • 75) (1403.	1203.	1002.	802°	601
-~	2.05)	-~	1799.	1168.			577. 16.3330	

	TINE OF FAILURE Nours	
10P OF DAM 1868-00 275- 683-	TIME OF MAX OUTFLOW MOURS	61-75 62-25 62-55 62-75 62-75
	BURATION Over top Hours	5.50 3.25 1.75 0.00
SPILLUAY CREST 1865.00	MAXINUM OUTFLOU CFS	1799, 1168, 959, 751, 577,
LAKE LE	HAKINUM STORAGE AC-FT	346. 316. 300. 283. 261. 236.
LAKE LAILE 1865-00 131.	MAXIMUM DEPTH OVER DAM	1.31 .73 .47 .47 0.00 0.00
ELEVATION STORAGE DUTFLOW	MAKIMUM RESERVOIR Kosoelev	1869-31 1868-73 1868-47 1868-15 1867-25
	R A T 10 0F 9 M F	0.00 .70 .60 .50 .30

J

:	A1 A2 A3		ž	ATIONAL I LEAVIT	NATIONAL DAM INSPECTION PROGRAM LEAVIT BRANCH, BRODHEAD CREEK LAKE-IN-THE-CLOUDS DAM	TION PRURO RODNEAD	DGR AN Creek				
.	220	0	15			0	0	o	7	0	
	v = .	-	-	45	J4 CARD NUMBER		in First	FigtD		TADICATES	RATEO OF
5 2 5		NF1.0W 70	UNNAMED	Ž	BAREA N-1)		-	V	(FOR T	11:4 E	EXAMPLE
# Q.1	-	1 22.1	# <u></u>	123	2 ₀ 05 123 133	142	•	ž	-	₹.	
- 2 X	1.5	-0.05	0°2				- •	ŝ		•	
* <u>2</u>	- 2	2 UTE THRU	2 ROUTE THROUGH UNNAMED	AMED DAM			-				
~ ;	•			-		7	3,310,-	c			
8A .01 8E1839.9 881845.5	14 •01 E1839•9	11.9 1840 25	44.5 1860 2.7	1.5				•			
\$01847.2 \$L \$V1847.2		260 1847.3	525 1847.6	665 1847.9	7007		•				
* <u>r</u> >	- P	ROUTE TO	LAKE -1N-1	THE-CLOU!	LAKE-IN-THE-CLOUDS (SWAMP)		-				
	08	1900	001	1840 1830	1860	1950 1860	-1 -005 280	1840	1250	1840	
- 25		3 UNCONTROLLED	LED RUNOFF		TO LAKE-IN-THE-CLOUDS (SUBAREA	SOMOTO		1-1			
X O.	-	72.1	111	123	2.05 133	142			-		
->×	1.02	24.5 -0.05	2.0				-	5		•04	
× 2 =	- - -	INFLOW FROM	LAKE . 79	JAMIE CSI	CSUBAREA 3-13 2.05) CROUNDED	- 0	NEARFST 10	10 CF S)		
Z Z Z I			78)	BLANK	FIELDS		INDICATE	0			TOTAL OUTFLOW
*****	10 20	. 10	\$0 \$0	20	02 50	20	10 20 20	10 20 20	10 20 20	200	911 1- 5
											THE LAKE J

D-19

8

3:3

20 20 20 20 20 20 20 20 20 20 20 20 20 2		02 02 02	02 02 02	20 20 20	30 30 30	00 09 09	200 400 400	021 001 021 022		30 81 050 050 050 050 050 050 050 050 050 05	000 000 000 000		250 250 240	150 140 150 150	08 00		-	SQ		1833.0 1834.0 1834.5 1835.0	565 870	04		525	•2 1835•3 1835•4 1837•4	CARD) ALL	2	
20 20 20 20 20 20 20 20 20 20 20 20 20 2															1	LAKE -IN-THE-C		E-1M-THE-CLOUD	-							1	-	
20022022202202020202020202020202020202	02	2 5	2 5	₹ :	٥2	9	80	140	7.0	1100	520	110	Cat	110	-	OMBINE INFLOW TO	en '	DUTE THROUGH LAK								9	5	

, C	*	t		·	<u></u>)	3	•	•	•	•	.	•	1)	,	_ >	• • •
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	EXTRAGED FROM	Euper LESTING OF ANOTHER COMPUTER RUN	- 21	JA Chab	Fierb 1+0.5				•		.40 PMF	From Aport	STINE	ROMPUTER ROM - SEE		14 Cash	F. C. A. D. C.	
 	200			222	000	1130	018 246 041 041	110			002		222	292	120 450	910	300	120
<u>.</u>	222			02 02 02 02	5 6 5	900	480 280 170	9			202		222	292	001	1080 P90	0.0	130
i o	222			222	0 0 0 0 0 0	020	000 000 000 000 000 000	3.00			5 0 5 0 0 0		0,00	25	100	0.00	\$ \$0 \$ \$	140
 	200			2020	5 6 8	340 1020	320 190	120		ô	202		22	285	S 5	1000 096	500 400	1,50
INDICAT	20			50 20 20 20 20 20 20 20 20 20 20 20 20 20	D 0 0	962	330 202 202	20		INDICATE	565		22	S & S	885	1020	610 160	140
1	20			50 20 20 20 20 20 20 20 20 20 20 20 20 20	5 0 0 E	260	340 340 210	<u> </u>		FANH	20 20 20		20 50	2 % 5	80.05.0	1050	040	7.40
FIELDS	20		;	50 20 20 20 20 20 20 20 20 20 20 20 20 20	2 2 2	220 810	370 370 220	240		Fields	200		20	222	200	1060	670 400	140
(B L ANK	20		;	222	202	190	670 230 230	14.0			02 02		0.5 0.5	253	200	1160	720 620	7.0
a)	20 20		:	222	222	160	27007	150		(BLANK	02 02		2.2 8.2	223	205	1120	760	270 17.0
 	20		;	222	252	130 550	760 760 750 750 750	160			5 5 5		20	255		5 30	80t) 470	780 171:
222222	* 2 2		;	Z Z Z	2 Z 2	22		-	222		* * * *		7 Z	ZZ	22;		ZZ	ZZ
22222	7 4 W		;	288	in en en) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	,	63	2 E 4		- 4 4 N		200	κ εν (r o !	. a o	6.0	6.
.=""						1	D-21											

U-2|

· • •	10 p3			•			./		7		7)
4	E B	Treat Listing of	Computer Run - SEE	NOTE BELOW	34 CARD	Figo 12	6.3				-)Am	by period oursel
	2002			2	0 Q	0 0 0	0.1	1110	0	320	2002	2	JAMIE DAM	by PER
	10 20 20			20	22	S 4	100	370	910	340	210	150	LAKE	SERIOD
ô	20 20 20			20	02 02	200	0.0	320	926	240	820	150	FRom L	4
	10 20 20			20	202	2	9 6	280	1000	630	220	160	1	San 9
Indicat 6	20		•	20	20.5	20	9 8	072	1050	099	200	160	3019	THE CLOUDS A PERIOD
H 90791 H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			20	22.5	30	, e	200	1060	200	250	170	1	4 4 6
	-			Ü¢	222	2	0, 5	180	1100	730	270	180		0
(BLANK	5 5 0 5 0 7 0 7 0 8 0 9			ç	200	2 2	0.5	160	660	780	280	180		30.00
	10			,	2 2 2	22	9	1,0	570	810	087	100		
	10			,	۲ ۲	2.5	9	130	08.7	940	510	140		BECAUSE
2222	: = # = =				2 Z	* 3	: z	2 2		2 2	* **	2 2		NOTE:
2544					₩ ₩ ₽ ₩		. 5	9.1	2	•	9 4	63 63		

DAS OPTHINED FROM LAKE JAMIE spiritury of Lake Jamie Dam + 0.5 (RATIO OF PME) HYDROGRAPH , FOR 1.0, 0.5, 0.4, AND 0.3 TIMES THE PMF, LAKE-IN-THE - CLE . 2/eX

ENPUT ON N CARD

· 0

PEAK FLOW AND STORAGE (END DF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS Flows in cubic feet per second (cubic meters per second) Area in Square Miles (square Kilometers)

70110	70111	4 20 4	2		æ	TIOS APPLI	RATIOS APPLIED TO FLOWS
		4 4 4		1.00	•\$0	07.	01.
HYDROGRAPH	47 2 ,	.30	-~	1039.	520. 14.71)(416.	312.
MOUTED TO	~~	.30	-~	1038.	492.	367.	224. 6.353(
POUTED TO	m	.30	-	959. 27.16)(460. 13.01)(342.	217.
HTOROGRAPH AT	AT 3.	2.493	۲	27624 78.22)(1381.	1105.	829.
HYDROGRAPH AT	AT .	2.053	-~	1280. 36.253(\$65. 16.00)(42.80)(339.
3 COMBINED	m	2.05	-~	4677.	2189. 62.0030	1708.	1197a 33a89)(
ROUTED TO	" "	2.05	-~	126.91)(1826. 51.70)(1247. 35.32)(878.

7

)

)

SUMMARIES ATTACHED FROM COMPUTER RUNS OTHER

Ø

4

00.0 TIME OF FAILURE HOURS 0000 00.0 00.0 TIME OF MAX BUTFLOW HOURS 40.75 40.50 41.50 DURATION OVER TOP Hours 3.50 2.50 SUMMARY OF DAM SAFETY ANALYSIS
UNNAMED DAM
ITTAL VALUE SPILLMAY CREST
1845.50
84.
0. F 492. J \$4.25 05.9 367. 224. 1038. SUMMARIES ATTACHED FROM 127. MAXINUM STORAGE AC-FT 125. 122. INITIAL VALUE 1845.50 MAXINUM DEPTH OVER DAM • 35 •20 ž *. ELEVATION Storage Outflou MAXINUM RESERVOIR Nosoelev 1847.45 1847,55 1847,40 1847.94

9

• 50

9A 710 OF PHF

1.00

B

Computer RUNS

OTHER

);;)

20 S S O SUMMARY OF DAM SAFETY ANALYSIS

LAKE -IN -THE - CLOUDS DAM
INITIAL VALUE SPILLWAY CREST TOP OF DAM
1830.00 1830.00 1834.50
229. 229. 468.

	DF TIME OF FLOW FAILURE S MOURS	00*0		00-00	00.00	
1834.50 1834.50 468. 1039.	TIME OF MAN DUTFLOW HOURS	41,50	42.50	43.00	\$5*5\$	8 2
	DURATION OVER 10P Hours	7.50	05.4	3.00	0.00	compurer Runs
37 ILLMAY CMEST 1830-00 229- 0-	MAXINUM DUTFLOW CFS	4482.	1826.	1267.	878.	
	HAKINUM STORAGE AC-FI	619.	530.	• 66 •	436.	M OTHER
18374 VALUE 1830-00 229- 0-	MAKIMUM DEPTH DVER DAM	1.79	980	7	00.0	ATTACHED FROM
ELEVATION Storage Dutflow	MAXIMUM RESERVOIR M.S.ELEV	1836.29	1835.30	1834.91	1834.02	
**************************************	NAT10 0f 1	1.00	05.	0 **	•30	S # NOW A POST
*			4			

8

D-25

)

)

٠.,

•	E	Ī								-Remio	•	3	50ne12 -	PMF	4			`	•)	-	•	7	-	•	•	•	•		•)	=
			(1/2 6 8000)	3		•				FROM MUTI-RI	BUNKYSIS	C. OMBINEO INPLOM	BILL-NI- STATT	r 0.5	1	9:NE 7.10	NO NOT DESCRIPTION									ı							
		0		a se carconina		13		88	32	9.	0 80 A	8	121	151	210	225	100	2025	1735	852	500	346	272	170	138				1840.0	70 is 1			
		7		andra x	-	- 5	5 %	2	25	90	6 Z	2		150	007	695	1050	2075	1780	48.6	636	356	279	721	141	-			1835 .0	1134			
		0				15	= 2	22	2 m	32	9 Z	8	117	149	202	655	1010	2100	1815	916	659	367	286	179	771	:		7	1834 .5	1039			
	CREEK	•		-	P H C	\$	2 7	~	. 4 4	35	e 6	6	115	871	190	635	096	2130	1850	876	682	377	293	183	121	-		-1830	1834 .0	2 8			
	AN INSPECTION PROGRAM BRANCH, BRODMEAD CRE				NOS 808	15	* 5	22	7.	8	6. 08 5. 08	8	116	167	185	6 10	1730	2145	1875	086	705	388	300	80	150	}			1833 .0	600			
	DAM INSPE				-14E-CLO		2	9,	3 % 3 4	35	8 9 90 90 90 90 90 90 90 90 90 90 90 90 90	6 0	55	146	- F	585	15.65	2 2 3	1905	1012	728 5.70	398	307	192	153	:	-610005	-	1832.0	50 F	1940		
	LEAVI			i ;	LAKE-IN			2;																			-1N-THE-	-	1831.5	53.26	1833		
	# A #	•	-		È	£.	1.	\$2	3 20	33	37 52	.	105	142	165 280	530	1325	2189	1965	1076	260	617	321	201	159		HROUGH LAKE		1831.0	46.34	8		
4 1978 4 1978 8 80		o	-	m	COMBINED 1	\$	* °	2	3.5	£:	20 20	8	103	7	160 250	505	1250	2185	1695	1108	797	02.7	328	506	162	•	ROUTE THRO		1830.5	23.06	£.		
3 4		306	/ N·	- 0	ខុ	2	. •	72	* S.	35	ŠĜ	8	101	140	155 215	523	11.5	2180	1670	1140	820	077	345	210	1 65 1 4 5	-	α	-	18		=	\$ 1630 D1834.5	
MANAGERANIA SAFETY VERSION ST MODIFICATION	A		. 		-		~ ~		. 4		* *							I	Ð -						2 Z		~ .		7 h	- 4	25	0.08	
					-					-,		~	~ ~			2		~	FT 95	P	80 PC	•	PT PT		m ·	•	•		•	• •	•	4 W	

)))	•)) =	D	•	•	 •
					=				

	1790	976	1553	1529	
	=	- :	ş. ş.	\$	
	0.6	0 00 00	0 0 0 9	750	
1837.4	1790	1140	17.05	1529	-1 1530 5715
\$60 1835.6 1	320	0t to	480 1-1 025 450	-1- 0125 620	-1520 1528 4296
1845.3 1840.0 1840.0 184.0 0,0	1860	1760 1800 1800 1760	1720 1760 3200 1560	2800 1540 1580	1525 3453
515 1830 1830 1830	1200	1830 1830 1730	1100	1350	1524 2665
48 46 60 48 48 48 48 48 48 48 48 48 48 48 48 48	1820	1780 1780 1705	1740 1740 1553 1600 1580	1529 1560 1560	1523 1610 2659 1540 500
1986.7 1980.2 1980.2 1980.2 4 SECTION	SECTION 509	1100 6CTION	SECTION 2	60 11 0N 00 00 00 00 00 00 00 00 00 00 00 00	1522 877 1037 1525 1 525
1834 + 1854 + 0.0	184 180 180 180 180 180 180 180 180 180 180	1800 1760 1760 1760 1861 1861	172 172 170 170	.07 1580 1540 1540	1521 310 629 1520
48.36.80 80.80 1 1 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3	50.05 20.05 20.05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	890 890 1 1 51	• 00 0 0 950 • 58	1520 0 0 1506 1520 1520
12887272	444 X 44	77 x 2 x 2 x 2 x 3	X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z 7 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 8 8 8 7 7 8 8 8 9 7 8 8 9 9 9 9 9

		PEAK FLOW	ANU ST	ORAGE	CEND C	PEAK FLON ANG STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FFET PER SECOND (CURTE METERS PER SECOND) AREA IN SOUARE MILES (SOUARE KILOMETERS)	AT IONS
	OPERATION	STATION	∝	AREA	PLAN	PLAN RATIO 1 1-00	
	140806814 A7	8 44 7	5.2	2.05 5.31)	~ ~~~	2140. 61.99)(2189. 61.99)(
	ROUTED TO	ภั		2.05 5.31)	-~~	1826. \$1.72)\ 16160. 6 57.59)<	
	MOUTED TO	4 ~	2.05 5.31)	105	~~~ ~~	1820. \$1.5534 12222. 346.1034	
0-2	ROUTED TO	n T	5.3	2.05 5.31)	- ~~~	1691. 47.87). 7790. 220.58).(
8	AGUTED TO	ຈັ	5.3	2.05 5.31)	-~~	1676. 47.46)1 6848. 193.91)1	
	ROUTED 10	, ΄	2 5 5 9 3	2.05 5.31)	+~~	1673. 47.37)4 68.45. 193.84)4	
	POUTED TO	e ~	2 5 2 5	2.05	- ~~~	1668. 47-22)4 6544. 185-32)(
	ROUTED TO	, ĭ	~ }	2,04 5,31)	~~~`	1359. 38-4634 37-54. 52-14	

D-29

 $(\sigma_{ij}(z), (\omega_{ij}(z), \sigma_{ij}(z), \sigma_{ij}($

•	7 2 ME HOURS	50.60	•	T I ME MOURS	19.30	~	TINE	20.90	^	TIME	19.40	•	7 1 # E HOUR \$	21.10	•	TIME	19.50
STATION	MAKINUM Stagesft	1707.8	STATION	NAXIMUN Stacest	1710.8	STATION	MAXIMUM Stage of T	1557.0	STATION	HAXIHUM STAGESFT	1560.9	STATION	HAKIMUM Stagesft	1531.4	STATION	MAKINUM STAGE &FT	1534 .0
PLAN 1	MAXIMUM FLOWACFS	1676.	PLAN 2	HAXIMUM FLOWACFS	9848.	PLAN 1	HAXIMUM FLONACFS	1673.	PLAN 2	FLOUSCFS	6845*	PLAN 1	MAXINUM FLOHICFS	1668.	PLAN 2	MAXIMUM FLOWACFS	• > > 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
•	RATIO	1.00	4	RATIO	1.00	α.	RATIO	1.00	a,	RATIO	1.00	•	RATIO	1.00	4	RATIO	1,00

		ns	SKYTOF	SUNNANY OF DAM SAFETY ANALYSIS SIXYTOF DAM	11 7515		
	ELEVATION Storage Outflow	INITIAL VALUE 1520.00 629. 0.	0.00 0.00 0.00 0.00	SPILL AY CREST (20,000 629.		TOP OF DAM 1524-80 1021- 3053-	
RA 110 0F P 18	MAXIMUM RESERVOIR N.S.ELEV	MAXIMUM DEPTH OVER DAM	MAKIHUM STORAGE AC-FT	MAXIMUM DUTFLOW CFS	DURATION OVER TOP Hours	TIME OF MAX OUTFLOW HOURS	TIME OF
3 5.	1522.66	00*0	846.	1358.	00*0	22.60	0.00
	ELEVATION Storage Outflow	INITIAL VALUE 1520.00 629. 0.	L VALUE 0.00 629. 0.	SPILLMAY CREST 1520,00 629,		10P OF DAM 1524.80 1021. 3055.	
8 A T I O O F D H F	MAXINUM RESERVOIR Neselev	MAXIMUM DEPTH OVER DAM	MAXINUM STORAGE AC-FT	MAXIMUM DUTFLOW CFS	DURATION Over top Hours	TIME OF MAX DUTFLOW HOURS	TIME OF FAILURE MOURS
*	1525.00	•20	1037.	3264.	.80	20.50	00.0

HARI	RISBURG, PA.	FOR	CHECKER BY	
				
	5	SUMMARY OF PERT	INENT ROS	501 TS
	PMF	SUMMARY OF PERT "RAINFALL = 25.11"		
			فيانيا المتعفد خارجاره	· ·
			PMF	O.S PMF
~ .			<u> </u>	
	RUNOFF (in	CHES	20.65	11.10
		The - CLOUDS	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	PEAK	INFLOW (CFS)	4,677	2,189
		OUT FLOW (CFS)	4,482	1,826
	•	OVERTOPPING (FT)	1.79	. 80
	•	of overtopping (HRS)	7.50	4.50
. 1) 	6		7
1	BREACH ANA	LYSIS! DATA AT	SKYTOP	DAM
1	BREACH ANA 50% PM	LYSIS! DATA AT	Sky Top	DAM
1	BREACH ANA 50% PM ALL DAMS U	Lysis: DATA AT FONLY DESTREAM	Sky Top	DAM
1	OF LAKE -	In - The - Clouds	Sky Top	DAM
1	OF LAKE -	Lysis: DATA AT F ONLY PETREAM IN - The - CLOWS SUMED TO REMAIN	Sky Top	DAM
1	OF LAKE - ARE ASS INTACT	IN - The - Clouds Sumed TO REMAIN	SKY TOP	DAM
1	OF LAKE - ARE ASS INTACT FREE BOARD	IN - The - Clouds SUMED TO REMAIN (Assuming Lake-In-		
. 1	OF LAKE - ARE ASS INTACT FREE BOARD	IN - The - Clouds Sumed TO REMAIN		DAM 2.14
. 1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail)		
. 1	OF LAKE - ARE ASE INTACT FREEBOARD THE - CLOU	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of	(FT)	
1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU	IN - The - Clouds sumed to Remain (Assuming Lake - In- os Does Not Fail) o duration of us Assuming Lake	(FT)	
1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14
	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14
1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14
1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14
1	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14
	OF LAKE - ARE ASS INTACT FREE BOARD THE - CLOU Depth AND OVERTOPPIN	IN - The - Clouds sumed to Remain (Assuming Lake-In- os Does Not Fail) o duration of us Assuming Lake	(FT)	2.14

ANNETT FLEMING CORDD	RY SUBJECT			FILE NO.
AND CARPENTER, INC. HARRISSURG, PA.	FOR			SHEET NO OF
MARRISDORG, FA.	COMPUTED BY	DATE	CHECKED BY	DATE
				· ·
	Note		1	 ·
In Indian	The Ph	ASE I R.	EPORT	FOR
SKUTOD	Dam L	AKE-IN-The	- CLOUD	Don
The R	mported in	o phosing	61/0	
	_			
berween				
SKY TOP	vam Repo	RT L 6170	PFYMF.) AND
LAKE - IN	- / Ne - C/	oups in th	nis Repo	RT (35% OF
_ ARE LIST			`	
_		FOR LAKE -		
SKYTOP	DAM Rep	DRT	This	Report
	·			
		DRAINAGE AR	EA '	
/. :	75	(sq. mi.)		2.05
•	-			
18:	35,0	Top of DAM L	EIEU)	834.5
, ,	, -		· *** /	- U 71 3
		EFFECIS OF Sp	المستريد وواد	
AIAT	INCLUDED	BRIDGE	" LUMY	INCLUDED
4001		D P. BUE		IN ELVUEL
_	15 AC- == (U	STORAGE D)a=a	468 AC-FT
6	13 PL-P1 -	STORAGE L	JATA	760 AC-FT
		/	,	
		EFFECTS OF	•	
		JAMIE DAM A		
NOT in	ILLUDED	UNNAMED D	Am	INCLUDED
•				•
(<i>y</i> :	spillway	CREST TO 1 POUND MENT.	TOP OF	= dAm
(2)	ENTIRE in	1 DOUND MENT	, '/	
	-	/	,	
1				•
··· -·.			1 1	·
1		r emiliarios		
				•
		D-33		

APPENDIX E
PLATES

PLATE E-2

DM PRINT PROVIDED BY E.C. HESS ASSOCIATES. ENTICAL TO PLATE E-2 EXCEPT SECTION A-A REVISED FEB. 3, 1965 AS-BUILT.

PHASE I NATIONAL DA LAKE - IN-

CHA

AS BU

JUNE 1980

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
LAKE-IN-THE-CLOUDS DAM
CHAR-MART, INC.

AS BUILT PROFILE

JUNE 1980

PLATE E-3

APPENDIX F
GEOLOGY

LAKE-IN-THE-CLOUDS DAM

APPENDIX F

GEOLOGY

Lake-In-The-Clouds Dam is located in Pike County within the Appalachian Plateau Physiographic Province. The most pronounced topographic feature in the area is Camelback Mountain, which is part of the Pocono Plateau Escarpment. The escarpment has a well-defined southwestward trend from Camelback Mountain, but is irregular between Camelback Mountain and Mt. Pocono, which lies to the north. Streams east of the escarpment drain directly to the Delaware River, while those to the west drain to the Lehigh River.

The Pocono Plateau Section lies to the west of the escarpment. This area is relatively flat, with local relief seldom exceeding 100 feet. The topography has been greatly influenced by continental glaciation. Many features were created by deposition of glacial materials. The entire plateau lacks well-developed drainage.

East of the escarpment is the Glaciated Low Plateaus Section of the province. This area is characterized by pre-glacial erosional topography with locally-thick glacial deposits. Local relief is generally 100 to 300 feet.

Bedrock units of the sections described above are the lithified sediments of offshore marine, marginal marine, deltaic and fluvial environments associated with the Devonian Period. These units include siltstones of the Mahantango Formation, siltstones and shales of the Trimmers Rock Formation, and seven mapped members of the Catskill Formation. These members include sandstones, siltstones, and shales of the Towamensing member; sandstone, siltstone and shale of the Walcksville Member; sandstones, siltstones and shale of the Beaverdam Run Member; sandstones and conglomerates in the Packerton Member; sandstones and some conglomerates in the Poplar Gap Member; and sandstones and conglomerates in the Duncannon Member.

Lake-In-The-Clouds Dam is underlain by the Poplar Gap Member of the Catskill Formation. The Poplar Gap Member is predominantly a gray sandstone and conglomeratic sandstone with interbedded siltstones and shales. Sandstones present are thick-bedded, fine- to coarse-grained and exhibit very low primary porosity due to a clay and silica matrix. Effective porosity results from fractures and parting planes.

Conglomeratic sandstone occurs primarily as concentrates of sub-round to round quartz pebbles. The siltstones and shales at the site are thin-bedded and also have low porosity.

The rocks are well-indurated and generally are not susceptible to slope failure; however, the presence of well-developed bedding and joint planes will result in some rockfall from vertical and high-angle cut slopes.

Bedrock is entirely overlain by glacial till of Late Wisconsin Age. This till is an unsorted mixture of clay, silt, sand, and gravel. It is moderately cohesive and is generally derived locally from the sandstones of the Catskill Formation. Thickness of the till varies from 5 to 75 feet.

The available data indicate that the right end of the dam, including the spillway, are founded on bedrock. The remainder of the dam is apparently founded on clay.

