Exercices: Carte de contrôle

Exercice 1 Construire les cartes \bar{x} , R pour les données Fig. 1.

Exercice 2 Un générateur électrique de haute puissance doit avoir une sortie (production d'électricité) de 350 V. Tous les jours un échantillon de 4 unités est sélectionné et testé pour garder la production sous contréôle. La différence entre le voltage mesuré et la valeur nominale 350 fois 10 (pour éliminer les virgules) est donné dans e tableau Fig. 2, oéù i = [(valeurmesure) - 350]10

- Construire les cartes \bar{x} , R pour les données.
- Peut on affirmer que les données suivent une loi normale?

Exercice 3 Soit la figure Fig. 3.

- Construire les cartes \bar{x} , R pour les données présentées sur la Fig. 3.
- Voir si avec les nouvelles données présentées dans Fig. 3 (éà droite) le processus est sous contréôle.
- Soient des nouvelles données Fig. 3 (en bas), avec des groupes n = 2. Tracer les nouvelles données voir si le processus est sous contrôle.

Exercice 4 Pour les données sur la Fig. 4

- Etudier la normalité avec un QQ plot.
- Construire une carte d'étendu mobile.
- Tracer le QQ plot du log des données.
- Construire une carte d'étendu mobile pour le log des données.
- Comparer les résultats.

Exercice 5 Considérons les données sur la Fig. 5

- Estimer l'écart type en utilisant la moyenne de l'étendu mobile.
- Estimer l'écart type en utilisant s/c_4 .
- Estimer l'écart type en utilisant la médiane de l'étendu mobile.
- Estimer l'écart type en utilisant la moyenne de l'étendu mobile d'écart k c'est éà dire considérer $x_{i+k}-x_i$ oéù $3 \le k \le 20$ au lieu de $x_{i+1}-x_i$.
- Comparer les résultats obtenus

Sample Number	\overline{x}	R	Sample Number	\overline{x}	R
1	34.5	3	13	35.4	8
2	34.2	4	14	34.0	6
3	31.6	4	15	37.1	5
4	31.5	4	16	34.9	7
5	35.0	5	17	33.5	4
6	34.1	6	18	31.7	3
7	32.6	4	19	34.0	8
8	33.8	3	20	35.1	4
9	34.8	7	21	33.7	2
10	33.6	8	22	32.8	1
11	31.9	3	23	33.5	3
12	38.6	9	24	34.2	2

FIGURE 1 – exercice1

Exercice 6 Les données dans la Fig 6 correspondent aux nombres d'erreurs trouvées dans les fiches d'information des clients enregistrés dans une compagnie.

- Construire une carte *c* pour le nombre total d'erreur, que peut-on déduire.
- Construire une carte t pour le nombre total d'erreur, supposant qu'on est sous une loi géométrique avec a=1. Que peut-on déduire.
- Comparer les résultats

Exercice 7 Un groupe de maintenance améliore la qualité de son travail de réparation en surveillant le nombre de demande de maintenance nécessitant une deuxième visite pour accomplir la tâche. 22 semaines de données sont enregistrées sur le Fig 7 . Proposer une carte de contrôle pour améliorer les opérations futures.

Exercice 8 Un processus est contrôlé avec une carte de fraction de non-conformité avec les limites 3 sigma et n=100, UCL=0.161, la ligne centrale 0.080 et LCL=0.

- Proposer une carte de contrôle équivalente pour le nombre de nonconformité.
- Utiliser la loi de Poisson pour approcher la loi binomiale pour donner l'erreur de type I.

Sample				
Number	x_1	x_2	x_3	x_4
1	6	9	10	15
2	10	4	6	11
3	7	8	10	5
4	8	9	6	13
5	9	10	7	13
6	12	11	10	10
7	16	10	8	9
8	7	5	10	4
9	9	7	8	12
10	15	16	10	13
11	8	12	14	16
12	6	13	9	11
13	16	9	13	15
14	7	13	10	12
15	11	7	10	16
16	15	10	11	14
17	9	8	12	10
18	15	7	10	11
19	8	6	9	12
20	13	14	11	15

FIGURE 2 – exercice2

Subgroup	x_1	x_2	x_3	x_4
1	459	449	435	450
2	443	440	442	442
3	457	444	449	444
4	469	463	453	438
5	443	457	445	454
6	444	456	456	457
7	445	449	450	445
8	446	455	449	452
9	444	452	457	440
10	432	463	463	443
11	445	452	453	438
12	456	457	436	457
13	459	445	441	447
14	441	465	438	450
15	460	453	457	438
16	453	444	451	435
17	451	460	450	457
18	422	431	437	429
19	444	446	448	467
20	450	450	454	454

Subgroup	x_1	x_2	x_3	x_4
21	454	449	443	461
22	449	441	444	455
23	442	442	442	450
24	443	452	438	430
25	446	459	457	457
26	454	448	445	462
27	458	449	453	438
28	450	449	445	451
29	443	440	443	451
30	457	450	452	437

Subgroup	x_1	x_2
21	454	449
22	449	441
23	442	442
24	443	452
25	446	459
26	454	448
27	458	449
28	450	449
29	443	440
30	457	450

FIGURE 3 – exercice3

Observation	Concentration	Observation	Concentration
1	60.4	16	99.9
2	69.5	17	59.3
3	78.4	18	60.0
4	72.8	19	74.7
5	78.2	20	75.8
6	78.7	21	76.6
7	56.9	22	68.4
8	78.4	23	83.1
9	79.6	24	61.1
10	100.8	25	54.9
11	99.6	26	69.1
12	64.9	27	67.5
13	75.5	28	69.2
14	70.4	29	87.2
15	68.1	30	73.0

FIGURE 4 – exercice 4

- Utiliser la loi exacte pour calculer l'erreur de type II si la fraction de non-conformité est égale éà 0.2.
- Quelle est la probabilité de détecter un changement de fraction de non-conformité au plus tard apr\(\text{E}\)s 4 observations suivant le changement.

Exercice 9 Soit une carte de fraction de non-conformité, avec ligne centrale p=0.20 et les limites de contrôle à 3 sigma. Quelle est la taille d'échantillon requise pour avoir une borne inférieure de limite de contrôle positive. Quelle est la taille d'échantillon nécessaire pour avoir une probabilité 0.5 de détection d'un changement éà p=0.26.

Exercice 10 Soit un processus de production sous contrôle avec une carte de fraction de non-conformité, avec des échantillons de taille n=100 et la ligne centrale $\bar{p}=0.02$.

- Trouver les bornes 3 sigma de la carte.
- Analyser les données de la Fig.10

Observation	x	Observation	x
1	10.07	14	9.58
2	10.47	15	8.80
3	9.45	16	12.94
4	9.44	17	10.78
5	8.99	18	11.26
6	7.74	19	9.48
7	10.63	20	11.28
8	9.78	21	12.54
9	9.37	22	11.48
10	9.95	23	13.26
11	12.04	24	11.10
12	10.93	25	10.82
13	11.54		

FIGURE 5 – exercice 5

Exercice 11 Une carte de contrôle est considérée dans le processus de production d'un frigo. On observe les frigos un par un et une carte de nonconformité est utilisée. Au départ, 16 non-conformités ont été observéS lors de l'inspection de 30 frigos.

- Donner les bornes 3 sigma.
- Quelle est le risque α
- Quelle est le risque β si le nombre moyen des non-conformités est égal éà 2.
- Calculer ARL si le nombre moyen des non-conformités est égal éà 2.

Exercice 12 Vérifier si le processus présenté par les données de la Figure 9 est sous contréôle.

Exercice 13 Soient les données de la Figure 10 (hauteur de disque utilisé par un disque dure). Etudier la nomalité avec un QQ plot et estimer la capabilité du processus.

Day	Record 1	Record 2	Record 3	Record 4	Record 5
1	8	7	1	11	17
2	11	1	11	2	9
3	1	1	8	2	5
4	3	2	5	1	4
5	3	2	13	6	5
6	6	3	3	3	1
7	8	8	2	1	5
8	4	10	2	6	4
9	1	6	1	3	2
10	15	1	3	2	8
11	1	7	13	5	1
12	6	7	9	3	1
13	7	6	3	3	1
14	2	9	3	8	7
15	6	14	7	1	8
16	2	9	4	2	1
17	11	1	1	3	2
18	5	5	19	1	3
19	6	15	5	6	6
20	2	7	9	2	8
21	7	5	6	14	10
22	4	3	8	1	2
23	4	1	4	20	5
24	15	2	7	10	17
25	2	15	3	11	2

FIGURE 6 – exercice 6

Exercice 14 Nous disposons dans la Figure 11 des temps de réponse aux réclamations des clients dans une entreprise. Ces données sont obtenues avec un tirage aléatoire de 40 temps de réponse (en minute) durant un mois.

- Estimer la capabilité du process à répondre aux clients
- Un objectif de 90% de taux de réponse sous deux heures est imposé par la nouvelle direction. Quelle est la capabilité du processus pour respecter cet objectif.

Exercice 15 Supposons que le caractéristique de qualité suit une loi de Gauss avec USL = 100 et LSL = 90. Un échantillon aléatoire de 30 données nous méène éà $\bar{x} = 97$ et s = 1.6.

- Calculer un estimateur ponctuel de C_{pk} .
- Donner l'intervalle de confiance éà 95% de C_{pk}.

Week	Total Requests	Second Visit Required	Week	Total Requests	Second Visit Required
1	200	6	11	100	1
2	250	8	12	100	0
3	250	9	13	100	1
4	250	7	14	200	4
5	200	3	15	200	5
6	200	4	16	200	3
7	150	2	17	200	10
8	150	1	18	200	4
9	150	0	19	250	7
10	150	2	20	250	6

FIGURE 7 – exercice 7

Sample Number	Number Nonconforming	Sample Number	Number Nonconforming
1	5	6	1
2	2	7	2
3	3	8	6
4	8	9	3
5	4	10	4

FIGURE 8 – exercice 10

Day	Number of Assemblies Inspected	Total Number of Imper- fections	Day	Assemblies	Total Number of Imper- fections
1	2	10	6	4	24
2	4	30	7	2	15
3	2	18	8	4	26
4	1	10	9	3	21
5	3	20	10	1	8

FIGURE 9 – exercice 12

20.0106	20.0090	20.0067	19.9772	20.0001
19.9940	19.9876	20.0042	19.9986	19.9958
20.0075	20.0018	20.0059	19.9975	20.0089
20.0045	19.9891	19.9956	19.9884	20.0154
20.0056	19.9831	20.0040	20.0006	20.0047

FIGURE 10 – exercice 13

80	102	86	94	86	106	105	110	127	97
110	104	97	128	98	84	97	87	99	94
105	104	84	77	125	85	80	104	103	109
115	89	100	96	96	87	106	100	102	93

FIGURE 11 – exercice 14