Introducción a la Simulación Computacional Guía 0.2: Mecánica Estadística

Segundo Cuatrimestre de 2025

Problema 1: Gas Ideal. Considere un gas ideal monoatómico en el ensemble canónico.

- a) Escriba la expresión de la función de partición Z_N de dicho sistema y factorice la misma como producto de funciones de partición individuales Z_i de cada una de las partículas del gas.
- b) Realice el cálculo de la función de partición de una partícula y obtenga expresiones para la energía interna del gas, la entropía y la presión.

Problema 2: Sistema de dos niveles. Sea un sistema de partículas distinguibles y no interactuantes cada una de las cuales puede tener dos posibles valores de energía: $-\epsilon$ y $+\epsilon$.

- a) Suponiendo que dicho sistema está aislado y consiste de N_0 partículas con una energía total E_0 , calcule su entropía suponiendo $N_0 \pm E_0/\epsilon \gg 1$.
- b) Suponga ahora que el sistema de N_0 partículas es cerrado y su energía media vale E_0 .
 - I) Calcule su temperatura y el rango de E_0 en la que ésta es positiva.
 - II) Calcule la entropía y compare con la calculada en a). Discuta.
- c) Finalmente suponga que el sistema es abierto con N_0 y E_0 como su número medio de partículas y su energía media respectivamente.
 - I) Calcule la temperatura y el potencial químico.
 - II) Calcule la entropía, compare con las calculadas anteriormente y discuta.