Grado 9

Matemáticas

Factorización algebraica

Técnicas de Factorización

Contenidos

- Metas
- 2 Introducción
- 3 Concepto
- P. Notables
- Técnicas
- 6 Metodología
- Actividades
 - Actividad 9
 - Actividad 10

Metas a desarrollar

Propósito

Reconocer las técnicas de factorización de expresiones algebraicas y comprender su procedimiento.

Desempeños

- Reconoce y caracteriza los distintos casos de factorización de expresiones algebraicas.
- Descompone expresiones algebraicas por medio de la factorización.

La factorización: una herramienta algebraica

Hechos y apuntes

- ▶ Una herramienta como el destornillador: "si no se tiene..."
- Una analogía de su propósito: $120 = 12 \times 10 = 60 \times 2 = \dots$
- Usada en el ámbito científico puro
- Complemento para el desarrollo de expresiones algebraicas
- En Física: permite interpretar las expresiones que surgen de un modelo
- En Matemáticas: permite resolver (manualmente) algunos problemas
- Y que otro apunte...

La factorización: una herramienta algebraica

Descubrimiento de la antimateria

Figura: Albert Einstein y su famosa fórmula (1905) [Wikipedia, 2023].

G9 Factorización Matemáticas

La factorización: una herramienta algebraica

Descubrimiento de la antimateria

Figura: Paul Dirac, el físico que "profetizo" la antimateria (1928) [Wikipedia, 2022].

Según Dirac,

- La anti-materia es la misma materia pero con carga eléctrica opuesta.
- En contacto, anti-materia y materia se aniquilan mutuamente transformandose a otras formas de energía (luz, calor).

La factorización: una herramienta algebraica

Descubrimiento de la antimateria

$$\underbrace{(E-mc^2)}_{\text{Materia}}\underbrace{(E+mc^2)}_{\text{Antimateria}}$$

"Toda ley física ha de tener belleza matemática", Paul Dirac

- En 1932, fue descubierto el *positrón*, la antipartícula del electrón.
- En la actualidad, ya se han sintetizado algunos anti-átomos.

Figura: El átomo y anti-átomo de hidrógeno.

El Concepto

- Factorizar una expresión algebraica (ExpAl), es el procedimiento que permite escribirla como un producto de factores [Baldor, 1980].
- Requiere el conocimiento/dominio de operaciones algebraicas (especial producto y división).
- Según la "forma" de la ExpAl se tienen técnicas o recetas para realizar la factorización [Baldor, 1980].
- En forma generalizada la secuencia del proceso es: *i*) observación, *ii*) verificación, *iii*) ajuste de factores y *iv*) escritura.

Figura: Ilustración de la factorización de un trinomio.

G9 Factorización Matemáticas

Productos notables

- Son productos algebraicos cuyo resultado se obtiene desde una fórmula.
- Su uso simplifica y agiliza algunas multiplicaciones habituales.
- Cada producto notable corresponde a una técnica de factorización.
- Estos son resumidos en tablas, como aparece a continuación.

Productos notables

G9

Resumen de productos notables [Baldor, 1980, pág. 97]

	Expresión algebraica	Nombre	
=	a ² + 2ab + b ²	Binomio al cuadrado	
=	a ³ + 3a ² b + 3ab ² + b ³	Binomio al cubo	
=	(a + b) (a – b)	Diferencia de cuadrados	
-	$(a - b) (a^2 + b^2 + ab)$	Diferencia de cubos	
=	$(a + b) (a^2 + b^2 - ab)$	Suma de cubos	
=	$(a + b) (a - b) (a^2 + b^2)$	Diferencia cuarta	
=	$a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$	Trinomio al cuadrado	
	- - -	$= a^{2} + 2ab + b^{2}$ $= a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ $= (a + b) (a - b)$ $= (a - b) (a^{2} + b^{2} + ab)$ $= (a + b) (a^{2} + b^{2} - ab)$ $= (a + b) (a - b) (a^{2} + b^{2})$	

Técnicas de factorización

Número	Técnica factorización
I	ax + bx + cx = x(a+b+c)
II	a(x+b) + y(x+b) = (x+b)(a+y)
III	ab + ay + xb + xy = (a+x)(b+y)
IV	$ax^2 + bx + c = (mx + n)^2$
V	$ax^2 - by^2 = (mx + n)(mx - n)$
VI	$x^{2} + bx + c = (x+m)(x+n)$
VII	$ax^2 + bx + c = (kx + m)(lx + n)$
VIII	$x^3 + 3x^2y + 3xy^2 + y^3 = (x+y)^3$

Tabla: Las técnicas más usadas en forma generalizada. x,y son las letras del problema; a,b,c,m,n,k,l son números enteros.

- En las ExpAl a factorizar, los números son enteros.
- Según la situación, las técnicas se pueden combinar.

Circuitos de enseñanza

Figura: Grupos del circuito.

Circuito	Técnica
I	común monomio
II	común polinomio
III	común por agrupación de términos
IV	trinomio cuadrado perfecto
V	diferencia de cuadrados
VI	trinomio completo forma a
	igual 1 $(x^2 + bx + c)$
VII	trinomio completo forma $\it a$
	distinto 1 $(ax^2 + bx + c)$
VIII	cubo perfecto de binomios

10/13

Metodología de enseñanza: individual, cooperativo, par a par (P2P).

G9 Factorización Matemáticas

Actividad 9

- 1. De acuerdo a la exposición, responder:
 - a) ¿Qué interpreta la famosa fórmula de Einstein, $E=mc^2$?
 - b) ¿Qué interpreta la fórmula masa-energía completa de Einstein?
 - c) ¿Qué es la antimateria?
- 2. Resolver los productos notables.
 - a) $(3p+4q)^2$
 - b) $(8-2y)^2$
 - c) $(x+2y+z)^2$
 - d) $(5m+3q)^3$
 - e) (13h + 11k)(-11k + 13h)

Actividad 10

- Realizar una síntesis verbal y escrita sobre la técnica elegida. Ésta debe constar de su i) objetivo, ii) requisitos y/o condiciones, iii) desarrollo y iv) algunos ejemplos. Consultar la documentación suministrada.
- 2. Elaborar la siguiente tabla en su cuaderno

1	2	3	4	5	6

Esta tabla será diligenciada por el Profesor.

Nota. El Contenido escrito no debe superar los 3/4 de una página.

Matemáticas

Metas Metodología P. Notables

Referencias I

Baldor, A. (1980).

Álgebra.

Ediciones y Distribuciones CODICE S.A., Madrid, España.

Wikipedia (2022).

Paul dirac.

https://es.wikipedia.org/wiki/Paul_Dirac. Consultado Abr 2023.

Wikipedia (2023).

Albert einstein.

https://es.wikipedia.org/wiki/Albert_Einstein. Consultado Abr 2023.