EVALUATING SPEECH SEPARATION THROUGH PRE-TRAINED DEEP NEURAL NETWORKS MODELS

JOSE IGNACIO POZUELO

VIJAY GURBANI

DAN PLUTH

AYUSH PANDA

Introduction

VoxCeleb dataset

SepFormer model

 $model = SepformerSeparation.from_hparams(\ source='speechbrain/sepformer-whamr', \\ savedir='pretrained_models/sepformer-whamr')$

Separation Procedure

```
est_sources = model.separate_file('audio_mixture_path')
```

```
torchaudio.save('audio1_separation_path', est_sources[:, :, 0].detach().cpu(), 8000) torchaudio.save('audio2_separation_path', est_sources[:, :, 1].detach().cpu(), 8000)
```

Analysis I

Audio Mixture Procedure

 $ffmpeg \hbox{--}i \hbox{--}audio_path \hbox{'--}af \ loudnorm=I=-25:LRA=7:TP=-2 \hbox{--}audio_path_normalize'}$

ffmpeg -y -i 'audio1_path' -i 'audio2_path' -ar 8000 -filter_complex 'filter parameters' 'audio_mixture_path'

Filter Parameters	Value	
Delay	0 – 3 seconds (random)	
Volume	1.7	
Inputs	2	
Duration	shortest / longest	

15 Mixture Separation

delay | background noise | audio length | execution time

Introduced Delay → No effect

Length unrelated with after-separation quality

Runtime separation & Mixture size

80 Mixture Separation

5	Perfect audio separation
4	Good audio separation (low distortion)
3	Correct audio separation (medium distortion)
2	Bad audio separation (high distortion)
1	Audio separation failure

Different languages → Higher quality after-separation

Audio quality seems to improve towards the end of the audio

Great background music detection and elimination

AVERAGE QUALITY → 3.7

Analysis II

Utterances Selection

400 utterances → random choice (4 – 10 seconds)

Audio Mixture Procedure

Same configuration → Analysis I

Same length in the audios before mixing

No delay

200 mixtures

Transcriptions

GROUND TRUTH

Canonicalize!

```
config = speech.RecognitionConfig(
    encoding = speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz = 16000,
    audio_channel_count = 1,
    language_code = "en-US",
    enable_word_confidence = True,
    model = "video",
)
```

```
aws transcribe start-transcription-job
region us-east-2
media MediaFileUri
language-code en-US
output-bucket-name transcription-bucket
output-key
```

Word Error Rate (WER)

$$WER = \frac{S + D + I}{N}$$

- S is the number of substitutions,
- D is the number of deletions,
- I is the number of insertions,
- N is the number of words in the reference

Substitution → "shipping" is transcribed as "sipping"

Deletion → "get it done" is transcribed as "get done"

Insertion → "hostess" is transcribed as "host is"

Word Error Rate (WER)

	Before	After
Human / Amazon	12.95 %	33.05 %
Human / Google	19.15 %	39.90 %

Word Error Rate (WER)

AFTER-SEPRATION (WER)	Amazon Transcribe	Google Transcribe
WER ≤ 15 %	104	60
15 % < WER < 35 %	149	141
WER ≥ 35 %	147	199

63 %

50 %

Mean Opinion Score Network (MOSNet)

MOSNet (before) →

MOSNet (after) → 2.8

2 background noise&1 background music

Eliminated
After-Separation

Conclusions

The model works very well when separating male and female voices

The model detects noise and background music very accurately and it is often eliminated