CITS2211 Assignment 1

Baasil Siddiqui

Question 1

a) $P \vee (Q \vee \neg P)$

P	Q	$\neg P$	$Q \vee \neg P$	$P \lor (Q \lor \neg P)$
T	T	F	T	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

As the truth table demonstrates, the proposition is a tautology since it's always true regardless of the truth values of $\mathbf Q$ or $\mathbf P$

b)
$$(P \land \neg P) \lor \neg Q$$

 $P \wedge \neg P$ is a contradiction since both P and it's negation can't be true.

 $\neg Q$ can either be true of false

hence, the proposition is a contingent

c)
$$Q \implies (P \land \neg Q)$$

P	Q	$\neg Q$	$P \wedge \neg Q$	$Q \to (P \land \neg Q)$
T	T	F	F	F
T	F	T	T	T
F	T	F	F	F
F	F	T	F	T

As the truth table demonstrates, the truth value of the proposition depends on the truth values of P and Q. Hence, the proposition is a contingent.

Question 2

$$\mathbf{P} \vee \neg (\mathbf{P} \vee \neg \mathbf{Q}) \equiv \mathbf{P} \vee \neg \mathbf{Q}$$

By De Morgan's laws: $P \vee \neg (P \vee \neg Q) \equiv P \vee (\neg P \wedge Q)$ By distributivity: $P \vee (\neg P \wedge Q) \equiv (P \vee \neg P) \wedge (P \vee Q)$ By excluded middle: $(P \vee \neg P) \wedge (P \vee Q) \equiv T \wedge (P \vee Q)$

By Absorption: $T \wedge (P \vee Q) \equiv P \vee Q$

Q.E.D.

Question 3

 $\forall x \exists n \ (x \le n \le x+5 \land (\exists a \exists b \ (a \ne n) \land (a \ne 1) \land (b \ne n) \land (b \ne 1) \land (a \times b = n))$

Question 4

let N(x, y) be "x is a neighbour of y"

a) Anna has no neighbours

 $\neg(\exists x.N(x, a))$

b) Ben has two neighbours

 $\exists x \exists y (N(x, b) \land N(y, b) \land x \neq y \land \forall z (N(z, b) \implies (z = x \lor z = y)))$

- c) If somebody is a neighbour of Ben, Ben is also a neighbour of that person $\forall x(N(x,\,b) \implies N(b,\,x))$
- d) Except for Anna, everyone is the neighbour of someone $\forall x(x \neq a \implies \exists y(N(y,\,x)))$