Homework due Friday, November 17, at 11:00 pm Pacific Time.

A. Let $\{x_n\}$ be a bounded sequence in \mathbb{R} . For every $N \in \mathbb{N}$ define

$$s_N = \sup\{x_n : n \ge N\}$$
 and $r_N = \inf\{x_n : n \ge N\}$.

Prove that

- (1) $\{s_N\}$ and $\{r_N\}$ are bounded.
- (2) $\{s_N\}$ is non-increasing, i.e., $s_1 \geq s_2 \geq \cdots$, and $\{r_N\}$ is nondecreasing, i.e., $r_1 \leq r_2 \leq \cdots$.
- (3) Let $s = \lim s_N = \inf\{s_N : N \in \mathbb{N}\}$, and $r = \lim r_N = \sup\{r_N : N \in \mathbb{N}\}$. Prove that $s = \lim \sup x_n$ and $r = \lim \inf x_n$.
- B. Let K be a compact metric space. Show that there exists a sequence $\{p_n\}$ in K so that the set of subsequential limits of $\{p_n\}$ equals K.
- C. Let $\{a_n\}$ be a sequence of positive real numbers. Assume that $a_n \to a$. Prove that $\sqrt{a_n} \to \sqrt{a}$.
- D. Rudin, Chapter 3 (page 78), problems # 5, 20, 21.

The following problems are for your practice, and will not be graded.

- (1) Let (X,d) be a metric space. Let $E,F\subset X$ be two connected subsets of X, and assume that $E\cap F\neq\emptyset$. Prove that $E\cup F$ is connected.
- (2) Let (X_1, d_1) and (X_2, d_2) be two complete metric spaces. Let $X = X_1 \times X_2$, and define

$$d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}.$$

Prove that (X, d) is a complete metric space.

- (3) Let (X,d) be a metric space. Let $K\subset X$ be a nonempty compact set, and fix a point $p\in X\setminus K$.
 - (a) Show that $\{d(p,q): q \in K\}$ is a bounded subset of \mathbb{R} .
 - (b) Set $\alpha = \sup\{d(p,q) : q \in K\}$. Prove that there is $q \in K$ satisfying $d(p,q) = \alpha$.