离散直方图

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

• 输入图像灰度级 r_k 的概率近似为

$$p_r(r_k) = \frac{n_k}{MN}$$
 $k = 0, 1, 2, ..., L - 1$

• 离散变换函数(直方图均衡)

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j)$$

$$=\frac{(L-1)}{MN}\sum_{j=0}^{k}n_{j} \qquad k=0,1,2,\ldots,L-1$$

反变换

$$r_k = T^{-1}(s_k)$$
 $k = 0, 1, 2, ..., L - 1$

• 3比特数字图像的灰度分布和直方图值

r_k	n_k	$p_r(r_k) = n_k/MN$	
$r_0 = 0$	790	0.19	
$r_1 = 1$	1023	0.25	
$r_2 = 2$	850	0.21	
$r_3 = 3$	656	0.16	
$r_4 = 4$	329	0.08	
$r_5 = 5$	245	0.06	
$r_6 = 6$	122	0.03	
$r_7 = 7$	81	0.02	

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$

• 变换函数

$$s_0 = T(r_0) = 7 \sum_{j=0}^{0} p_r(r_j) = 7 p_r(r_0) = 1.33$$

$$s_1 = T(r_1) = 7 \sum_{j=0}^{1} p_r(r_j) = 7 p_r(r_0) + 7 p_r(r_1) = 3.08$$

$$s_2 = 4.55, s_3 = 5.67, s_4 = 6.23$$

$$s_5 = 6.65, s_6 = 6.86, s_7 = 7.00$$

• 变换函数

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

• 均衡后的直方图

更明显的例子

原图 直方图均衡

直方图匹配(规定化)

- 对某些应用,均匀直方图不是最好的方法
- 有时候希望输出图像具有指定的直方图

输出直方图要求 为某个特定分布

输入

灰度变换 函数*T*(*r*)

输出

直方图匹配

• 输入图像灰度值概率密度 $p_r(r)$

• 指定灰度值概率密度 $p_z(z)$

• 如何设计变换函数使得输出图像概率密度为 $p_z(z)$?

核心思想

• 以均衡化直方图图像为桥梁

• 直方图均衡:A到B

• 直方图均衡:C到B

核心思想

• 以均衡化直方图图像为桥梁

• 直方图均衡:A到B

• 直方图均衡的反函数:B到C

实现方式

• 输入图像灰度值概率密度 $p_r(r)$

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

• 指定灰度值概率密度 $p_z(z)$

$$G(z) = (L-1) \int_0^z p_z(t) dt = s$$

• 反函数唯一

$$z = G^{-1}(s) = G^{-1}(T(r))$$

具体步骤

- 1. 由输入图像计算 $p_r(r)$
- 2. 根据下面的公式计算s

$$s = T(r) = (L - 1) \int_0^r p_r(w) dw$$

3. 根据 $p_z(z)$, 计算变换函数G(z)

$$G(z) = (L-1) \int_0^z p_z(t) dt$$

- 4. 计算反变换函数 $Z = G^{-1}(S)$
- 5. 将反变换函数作用到所有的s

• 输入概率密度 $p_r(r) = 2r/(L-1)^2$

$$s = T(r) = (L - 1) \int_0^r p_r(w) \, dw = \frac{2}{(L - 1)} \int_0^r w \, dw = \frac{r^2}{(L - 1)}$$

• 指定概率密度 $p_z(z) = 3z^2/(L-1)^3$

$$G(z) = (L-1) \int_0^z p_z(w) \, dw = \frac{3}{(L-1)^2} \int_0^z w^2 \, dw = \frac{z^3}{(L-1)^2}$$

$$z = \left[(L-1)^2 s \right]^{1/3}$$

离散直方图

- 离散情况更加简单
- 输入离散直方图 $p_r(r_k)$

$$s_k = T(r_k) = (L - 1) \sum_{j=0}^k p_r(r_j)$$

$$=\frac{(L-1)}{MN}\sum_{j=0}^{k}n_{j} \qquad k=0,1,2,\ldots,L-1$$

• 指定离散直方图 $p_z(z_q)$

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i) = s_k$$

查表实现

$$z_q = G^{-1}(s_k)$$

具体步骤

- 1. 计算输入图像直方图 $p_r(r)$,并计算 s_k^{-} ,并四舍五入
- 2. 依据给定直方图 $p_z(z)$,计算变化函数G的所有值,并四舍五入,存储表中
- 3. 对于每一个 S_k ,通过查表,找到对应的 Z_q
 - $G(z_q)$ 最接近 s_k
 - 结果不唯一时,选择最小的 z_q

• 3比特数字图像、指定直方图

r_k	n_k	$p_r(r_k) = n_k/MN$	
$r_0 = 0$	790	0.19	
$r_1 = 1$	1023	0.25	
$r_2 = 2$	850	0.21	
$r_3 = 3$	656	0.16	
$r_4 = 4$	329	0.08	
$r_5 = 5$	245	0.06	
$r_6 = 6$	122	0.03	
$r_7 = 7$	81	0.02	

z_q	Specified $p_z(z_q)$
$z_0 = 0$	0.00
$z_1 = 1$	0.00
$z_2 = 2$	0.00
$z_3 = 3$	0.15
$z_4 = 4$	0.20
$z_5 = 5$	0.30
$z_6 = 6$	0.20
$z_7 = 7$	0.15

• 3比特数字图像、指定直方图

• 对输入图像计算执行直方图均衡

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

• 对指定直方图执行直方图均衡

$$G(z_0) = 7 \sum_{j=0}^{0} p_z(z_j) = 0.00$$

$$G(z_1) = 7 \sum_{j=0}^{1} p_z(z_j) = 7 [p(z_0) + p(z_1)] = 0.00$$

• 对输入图像计算执行直方图均衡

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

• 对指定直方图执行直方图均衡

$$G(z_0) = 0.00 \rightarrow 0$$
 $G(z_4) = 2.45 \rightarrow 2$
 $G(z_1) = 0.00 \rightarrow 0$ $G(z_5) = 4.55 \rightarrow 5$
 $G(z_2) = 0.00 \rightarrow 0$ $G(z_6) = 5.95 \rightarrow 6$
 $G(z_3) = 1.05 \rightarrow 1$ $G(z_7) = 7.00 \rightarrow 7$

• 获得G的逆映射

$$s_0 = 1.33 \rightarrow 1$$
 $s_4 = 6.23 \rightarrow 6$
 $s_1 = 3.08 \rightarrow 3$ $s_5 = 6.65 \rightarrow 7$
 $s_2 = 4.55 \rightarrow 5$ $s_6 = 6.86 \rightarrow 7$
 $s_3 = 5.67 \rightarrow 6$ $s_7 = 7.00 \rightarrow 7$

z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$	0
$z_2 = 2$	0
$z_3 = 3$	1
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7

s_k	\rightarrow	z_q
1	\rightarrow	3
3	\rightarrow	4
5	\rightarrow	5
6	\rightarrow	6
7	\rightarrow	7

●最终结果

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

• 火星卫星图像

• 直方图均衡

指定直方图 是关键!

●直方图匹配

