

麦轮中型底盘搭建教程 - 双板

I. 什么是麦轮中型底盘机器人套件?

麦轮底盘机器人是基于 Makeblock 开源硬件平台开发的一种移动底盘机器人。 麦轮底盘主要由麦轮部分、编码电机动力部分、机械框架结构部分和主控等电子部 分构成。适用于空间狭窄、全向转向的地方。可应用于机器人,轮椅,运输工具等 场合。此底盘为二合一麦轮底盘,可搭建两种尺寸大小的底盘。

型 号	尺寸(mm)	额定负载(kg)	最大运行速度(m/s)
尺寸 1	360×386×100	10	1
尺寸2	496×512×100	40	1

图扩只 I 扩只

尺寸I实物图

图 下外 II 下外

尺寸II 实物图

II. 参数

◆ 框架: 高强度铝合金框架

◆ 电源:DC 12V

◆ 主控: Makeblock Orion (Arduino UNO compatible)

◆ 程序: Arduino

◆ 通讯方式: 2.4G 无线通讯

◆ 颜色: 蓝色◆ 速度: 1 m/s

12V 36mm 编码直流电机:

	<0.650
空载电流 (A)	≤0.650
	223±10%
空载转速 (rpm)	223±1070
病字分 找 切你(1f)	7
额定负载扭矩(kgf.cm)	•
额定负载电流(A)	2.500
 	
额定负载转速 (rpm)	178±10%
DAYEN HOLD (I him)	

III. 关于锂电池的购买

本机器人底盘为 DC12V 电压供电。因此你需要购买 12V 的航模电池。你可以到当地网站(比如亚马逊等)或当地实体店购买 DC 12V 航模电池,接口为 T型头。推荐使用正规厂家生产的航模电池。

IV. 关于麦轮碰撞风险提示

由于麦轮结构的特殊性,属于不耐冲击结构。因此麦轮仅适合在平整地面运行,同时不得撞击墙壁等其它障碍物,否则麦轮可能出现棍子卡死或轴承损坏。

V. 零件列表

2 x 360 x 256 x 3mm Aluminum	2 x 100mm Mecanum Wheel-	4x M4 x 4 x 8-Key
Sheet	Right	
2 x Beam2424-504	1 x Makeblock Orion	20 x Countersunk Screw
		M3x8
3 x Beam2424-312	1 x Micro USB Cable	36 x Screw M4X8
4 x 36mm Motor Bracket C	2 x Me High-Power Encoder	12 x Screw M4X14
	Motor Driver	
4 x 36mm Encoder DC Motor	3 x 6P6C RJ25 Cable-20cm	52×Screw M4X35
4 x Shaft Clamping Hub 8mm-C	4 x 2.54mm 6P Encoder Motor	36 x Nylon Lock Nut 4mm
	Cable – 300mm	
4 x BRACKET 3×3	1 x High-Current T-Type	14 x Brass Stud M4 x 16
	Converter Cable	
2 x 100mm Mecanum Wheel-	1 x Wireless Game Handle USB	1 x Tools Package
Left	2.4G	
1 x Me USB Host	10 x Nylon Cable Tie 2 x100	

VI. 搭建说明

第一步,组装底盘框架。

第二步,组装36编码电机模块。

第三步,将电机模块安装到底盘框架上。

第四步,将承载平台安装到底盘框架上。

第五步,组装麦轮模块。

第六步,将麦轮模块安装到电机轴上。

第七步,安装电路板并接线。

请按照上图的方式接线,由于麦克纳姆轮底盘是由金属零件构成,请注意电子模块与金属零件之间的绝缘处理,套件里面配有铜螺柱,请按照搭建说明使用铜螺柱与电子模块与结构零件隔离,以防止短路。

VII. 完成图

麦克纳姆轮的安装必须严格按照下图所示的方式安装

从俯视图的方向看四个麦克纳姆轮棍子应该成交叉(X)型,其他安装方式无法正常驱动麦克纳姆轮底盘。

VIII. 软件与调试

1. 麦轮底盘手柄遥控程序请直接到官方网站下载程序包即可,如需自己改动,请阅读程序,然后自行更改。关于程序更改,请多多参阅相关资料。

http://www.makeblock.cc/mecanum-wheel-robot-kit/http://learn.makeblock.cc/mecanumbot/

2. 使用说明

软件安装

请按照以下网站安装 Arduino IDE、Arduino Driver 和 Makeblock 的库 http://learn.makeblock.com/learning-arduino-programming/

运行到第三步时,到以下网址下载麦轮底盘控制程序,这个程序用于遥控直接控制。 https://github.com/Makeblock-official/Mecanum-Wheel-Robot-Kit 下载后双击打开,继续按照第3大步中第2、3小步操作,完成烧录固件。

IX. 遥控手柄使用说明

上一步烧录的程序为 pwm 模拟控制程序,用户不需要修改就可以直接用遥控器操作底盘。遥控器和底盘运动关系如下:

无线手柄按键对应功能说明:

1 前进, 3 后退, 4 左横移, 2 右横移, 5 原地左转, 6 原地右转;

同时按下 14 左斜前 45 度移动,同时按下 12 右斜前 45 度移动、同时按下 43 左斜后 45 度移动,同时按下 23 右斜后 45 度移动;

7 速度加法按钮,直到最大,8 速度减法按钮,直到为 0.(按住7按钮不放,大约6 秒后速度值从 0 到最大;按住8按钮不放,大约6 秒后速度值从最大到 0); 左摇杆对应1、2、3、4 的功能合成;右摇杆对应5、6、7、8 的功能合成。

注:

- 1. 底盘通电顺序为先给 Orion 主控板通电, 然后在给 2 块电机驱动板通电, 如果手柄不能控制,可以把 Orion 主控板复位一下。
- 遥控手柄通电后会自动连接 Orion 主控板,如果绿灯闪烁为未连接状态,常亮表示连接成功,此时如果红灯亮则按下 mode键,使红灯不亮。
- 麦轮底盘运动有严格的对应关系,包括麦轮的装配方向和驱动电机的左右关系, 请严格安装说明书上安装,否则可能不能正常运动!

用户自己开发

麦轮底盘为开源产品,用户可以更加自己的要求修改相关软件。示例程序暂时没有自带刹车功能,用户如果有需要可以自行开发。

1. 默认的遥控手柄程序原理:

一个 I/O 控制一个电机,I/O 产生 PWM 波,驱动板读取这个 I/O 上的模拟值来控制电机。PWM 控制从 0 到 250,0 为反向速度最大,127 速度为 0,255 为正向速度最大。这种方式的优点是免除通讯协议的干扰。

2. 用户自行开发,用 I2C 协议来控制:

这种控制利用 I2C 协议来控制和读取电机状态,如下图所示,在 Me_EncodeDriver_New 中有几个示例程序,用户可以根据这些程序来自由组合, 来实现想要运动。

这种控制方式需要注意的是 I2C 地址, 电机驱动板默认的 I2C 地址为 0x09; 如果需要同时控制 2 块电机驱动板, 就需要修改其中一块电机驱动板的 I2C 地址, 这样才能避免地址冲突。

修改方式如示例程序"EncoderMotorChangeI2CDevID"中介绍的,注意修改后需要重新复位一下电机驱动板,新的 I2C 地址才能生效,这样的修改一次只能修改一块驱动板,所以你根据需要是否更改另外一块电机驱动板的地址。

对于控制用的上位机程序也要使用对应更改好的新地址。Orion 主控板的 port1 和 port2 都可以控制更改好地址的电机驱动板。

当以 I2C 控制时, 自带 PID 算法。

相关函数介绍,对自己编程的用户使用:

函数	功能
MeEncoderNew(uint8_t addr,uint8_t slot)	定义 I2C 地址 , 电机 ;
void begin()	电机初始化;
void move(long angle, float speed)	以 speed 的速度转动 angle 角度 ;
void moveTo(long angle, float speed)	以 speed 的速度转动到 angle 角度
void runTurns(long turns, float speed)	以 speed 的速度转动多少圈
void runSpeed(float speed)	以 speed 的速度一直转动
float getCurrentSpeed()	获取电机当前的速度
long getCurrentPosition()	获取电机当前的位置
void setSpeedPID(float p,float i,float d)	设置速度 PID 值
void setPosPID(float p,float i,float d)	设置位置 PID 值

void getSpeedPID(float * p,float * i,float * d)	获取速度 PID 设置值
void getPosPID(float * p,float * i,float * d)	获取位置 PID 设置值
float getRatio()	获取电机齿轮箱减速比
void setRatio(float r)	设置电机齿轮箱减速比
void setPulse(int p)	设置光编密度值
int getPulse()	获取光编密度值
void setMode(uint8_t mode)	设置模式
	(0:I2C_MODE;1:PWM_MODE;2:PWM_I
	2C_PWM)
void setPWM(int pwm)	设置电机 PWM 值

X. FAQ

1. 当操作手柄时, 为什么机器人不动?

回答:请检查 USB Host 模块上的绿色 LED 是否亮着,如果不亮,请重启 Orion 主板或重新拔插 USB 接收头。并按手柄上的 Mode 键,直到绿色的灯都是长亮(不是闪烁,闪烁代表手柄没有配对成功)。

2. 操作时,感觉机器人的运动有异常,如何解决?

回答:请检查电机接线顺序是否和说明书一致。若不一致,请尝试更换电机的连线顺序。

3. 如何使用其他控制板来控制机器人?

回答:电机驱动板上有一系列排针,请仔细阅读各引脚代表的意义。其中 PWM1和 PWM2 是电机的速度控制引脚。输出 50% 占空比的 PWM 表示电机不转,1%和 99% 占空比的 PWM 分别对应两个方向的最大速度。

4. 为什么电脑无法正常自动安装 Makeblock Orion 主板驱动?

回答:如果你的电脑无法自动安装 Makeblock Orion 主板驱动程序。请从这里下载驱动程序并安装。

下载链接: http://learn.makeblock.cc/driver_installation/

5. 如果麦轮被不小心碰撞后,导致棍子卡死,如何修复?

回答:根据卡死情况,用虎钳或者其它工具,调整麦轮对应卡死的棍子的挡板支架 进行调整,使之恢复至可灵活转动状态。

6. 这个麦克纳姆轮底盘可以碰撞吗?

回答:由于麦克纳姆轮的主要零件是金属零件,请尽量不要让麦克纳姆轮直接撞击硬物。如果使用场景涉及碰撞请对麦克纳姆轮采取恰当的保护措施,比如做个防撞挡片。

7.我应该使用什么电池驱动这个底盘?

回答:电源电压不能超过 12V,可以使用汽车蓄电池,但是最好使用带 T 形接头的 3S 11.1V 锂电池驱动底盘。

XI. 联系我们

tec-support@makeblock.cc

https://www.facebook.com/Makeblock?ref=br_tf

https://plus.google.com/102486511775733872783/posts

https://twitter.com/Makeblock

Construct Your Dreams with Makeblock!