My set theory exercises

Evgeny Markin

2023

Contents

1	\mathbf{Intr}	roduction 4
	1.1	Elementary Set Theory
		1.1.1 4
		1.1.2
		1.1.3
		1.1.4
		1.1.5
		1.1.6
		1.1.7
		1.1.8
		1.1.9
	1.2	Logical Notation
	1.3	Predicates and Quantifiers
	1.4	A Formal Language for Set Theory
		1.4.1
		1.4.2
		1.4.3
		1.4.4
		1.4.5
		1.4.6
		1.4.7
		1.4.8
	1.5	The Zermelo-Fraenkel Axioms
		1.5.1
		1.5.2
		1.5.3
		1.5.4
		1.5.5
		1.5.6
		1.5.7

CONTENTS	2
----------	---

		1.5.8	10						
		1.5.9	11						
		1.5.10	11						
2	Basic Set-Building Axioms and Operations								
	2.1	•	12						
	2.2		14						
		1	15						
			15						
			15						
3	Rela	ations and Functions	17						
•	3.1		17						
		· ·	17						
		3.1.2	17						
		3.1.3	18						
			18						
	3.2		18						
	0.2		18						
			19						
	3.3		21						

Useful things

I think that it is pretty straightforward to define some function based on axioms that we get. For example pairing axiom allows us to define $PA: S \times S \to S$ by

$$PA(u, v) = \{u, v\}$$

same goes for union axiom

$$UA(u) = \{\text{elements of elements of U}\}$$

Later some other function might be defined in the same manner.

In logic notation, I denote tautology as 'true' and contradiction as 'false' There is a rule that I've used

$$a \wedge (b \vee \neg a) \Leftrightarrow (a \wedge b) \vee (a \wedge \neg a)) \Leftrightarrow (a \wedge b) \vee (\text{false}) \Leftrightarrow a \wedge b$$

which I don't remember seeing in the book, but it's pretty useful.

Chapter 1

Introduction

1.1 Elementary Set Theory

Let A, B, C be

1.1.1

If $a \notin A \setminus B$ and $a \in A$, show that $a \in B$

Because $a \notin A \setminus B$, we follow that $x \in B$ or $x \notin A$. Since $x \in A$, we follow that $x \in B$, as desired.

1.1.2

Show that if $A \subseteq B$, then $C \setminus B \subseteq C \setminus A$

Let $c \in C \setminus B$. Then we follow that $c \in C$ or $c \notin B$. Since $A \subseteq B$, we follow that $c \notin B$ implies that $c \notin A$. Thus we follow that $c \in C \setminus B$ implies that $c \in C \setminus A$. Therefore $C \setminus B \subseteq C \setminus A$.

1.1.3

Suppose $A \setminus B \subseteq C$. Show that $A \setminus C \subseteq B$.

Suppose that $a \in A \setminus C$. Then we follow that $a \in A$ and $a \notin C$.

Given that $A \setminus B \subseteq C$ and $A \notin C$, we follow that $a \notin A \setminus B$. Thus $a \notin A$ or $a \in B$. Since $a \in A$, we follow that $a \in B$. Thus

$$a \in A \setminus C \to a \in B$$

$$A \setminus C \subseteq B$$

as desired.

Suppose $A \subseteq B$ and $A \subseteq C$. Show that $A \subseteq B \cap C$

Suppose that $a \in A$. Then we follow that $a \in B$ and $a \in C$. Thus $a \in B \cap C$. Therefore we follow that $A \subseteq B \cap C$.

1.1.5

Suppose $A \subseteq B$ and $B \cap C = \emptyset$. Show that $A \in B \setminus C$

Suppose that $a \in A$. Then we follow that $a \in B$ and since $B \cap C = \emptyset$, we follow that $a \notin C$. Thus $a \in B \setminus C$ by definition. Therefore $A \subseteq B \setminus C$.

1.1.6

Show that $A \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$. Suppose that $a \in A \setminus (B \setminus C)$. Then we follow that $a \in A$ and $a \notin B \setminus C$. Thus $a \notin B$ and $a \in C$. Thus we follow that $a \in A \setminus B$ or $a \in C$. Thus $A \setminus (B \setminus C) \subseteq (A \setminus B) \cup C$ as desired.

1.1.7

Let P(x) be the property $x > \frac{1}{x}$. Are the assertions P(2), P(-2), $P(\frac{1}{2})$ $P(\frac{-1}{2})$ true or false

$$2 > \frac{1}{2} \rightarrow P(2) = true$$

 $-2 < \frac{-1}{2} \rightarrow P(-2) = false$

last two are reversed.

1.1.8

Sow that each of the following sets can be expressed as an interval

$$a)(-3,3)$$

 $b)(-3,\infty)$
 $c)(-3,3)$

all of them follow from order properties of real numbers.

Express the following sets as truth sets

$$A = \{1, 4, 9, 16, 25, \ldots\} \iff A = \{x \in N : x = y^2 \text{ for some } y \in N\}$$

$$B = \{\ldots, -15, -10, -5, 0, 5, \ldots\} \iff A = \{x \in N : x = 5y \text{ for some } y \in N\}$$

Rest are also trivial, not gonna go deep here

1.2 Logical Notation

1.2.1

Using truth tables, show that $\neg(P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$

P	Q	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$	$\neg Q$	$P \wedge \neg Q$
false	false	true	false	true	false
false	true	true	false	false	false
${\it true}$	false	false	true	true	true
true	true	true	false	false	false

from this we can see that they are equqivalent.

Following 4 exercises are the same as this one, so I'm skipping them

1.2.5

Show that $(P \Rightarrow Q) \land (P \Rightarrow R) \Leftrightarrow P \Rightarrow (Q \land R)$, using logic laws

$$(P \Rightarrow Q) \land (P \Rightarrow R) \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R) \Leftrightarrow \neg P \lor (R \land Q) \Leftrightarrow P \Rightarrow (R \land Q)$$

Laws used:

$$CL \to DIST \to CL$$

1.2.6

Show that $(P \Rightarrow R) \lor (Q \Rightarrow R) \Leftrightarrow (P \land Q) \Rightarrow R$, using logic laws

$$\begin{split} (P \Rightarrow R) \lor (Q \Rightarrow R) \Leftrightarrow (\neg P \lor R) \lor (\neg Q \lor R) \Leftrightarrow \neg P \lor R \lor \neg Q \lor R \Leftrightarrow (\neg Q \lor \neg P) \lor R \Leftrightarrow \\ \Leftrightarrow \neg (Q \land P) \lor R \Leftrightarrow (Q \land R) \Rightarrow R \end{split}$$

Laws used:

$$CL \to ASC \to ID, ASC \to DML \to CL$$

Show that $P \Rightarrow (Q \Rightarrow R) \Leftrightarrow (P \land Q) \Rightarrow R$, using logic laws

$$P \Rightarrow (Q \Rightarrow R) \Leftrightarrow \neg P \lor (Q \Rightarrow R) \Leftrightarrow \neg P \lor (\neg Q \lor R) \Leftrightarrow (\neg P \lor \neg Q) \lor R \Leftrightarrow \neg (P \land Q) \lor R \Leftrightarrow (P \land Q) \Rightarrow R$$

Laws used:

$$CL \rightarrow CL \rightarrow ASC \rightarrow DML \rightarrow CL$$

1.2.8

Show that $(P \Rightarrow Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$ are not logically equivalent We're gonna show that $q \land w \Leftrightarrow false$

$$\begin{split} ((P \Rightarrow Q) \Rightarrow R) \wedge (P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow (\neg (\neg P \vee Q) \vee R) \wedge (\neg P \vee (\neg Q \vee R)) \Leftrightarrow \\ \Leftrightarrow ((P \wedge \neg Q) \vee R) \wedge (\neg P \vee \neg Q \vee R) \Leftrightarrow ((P \wedge Q) \wedge (\neg P \vee \neg Q)) \vee R \Leftrightarrow \\ \Leftrightarrow ((P \wedge Q) \wedge \neg (P \wedge Q)) \vee R \Leftrightarrow false \vee R \Leftrightarrow false \end{split}$$

1.3 Predicates and Quantifiers

1.4 A Formal Language for Set Theory

1.4.1

What does the formula $\exists x \forall y (x \notin y)$ say in English?

There exists x such that for every y we've got that x is not in y. In other ways, there exists an empty set.

1.4.2

What does the formula $\forall y \exists x (y \notin x)$ say in English? For every y there exists set x such that y is not in x.

1.4.3

What does the formula $\forall y \exists x (x \notin y)$ say in English? For every y there exists x such that x is not in y.

1.4.4

What does the formula $\forall y \neg \exists x (x \notin y)$ say in English? For every y there does not exist an x such that x is not in y.

1.4.5

What does the formula $\forall z \exists x \exists y (x \in y \land y \in z)$ say in English? For every z there exists x and y such that x is in y and y is in z

1.4.6

Let $\phi(x)$ be a formula. What does $\forall z \forall y ((\phi(x) \land \phi(y)) \rightarrow z = y)$ For every z and y, $\phi(x)$ and $\phi(y)$ implies that z = y.

1.4.7

Translate each of the following into the language of set theory.

(a) x is the union of a and b

$$\forall (y \in x)(y \in a \land y \in b)$$

(b) x is not a subset of y

$$\exists (z \in x) (\neg z \in y)$$

(c) x is the intersection of a and b

$$\forall (y \in x)(y \in a \lor y \in b)$$

(d) a and b have no elements in common

$$\forall (x \in a) \forall (y \in b) (\neg x = y)$$

1.4.8

Let a, b, C and D be sets. Show that the relationship

$$y = \begin{cases} a \text{ if } x \in C \setminus D \\ b \text{ if } x \notin C \setminus D \end{cases}$$

$$((x \in C \land \neg x \in D) \to (y = a)) \land ((\neg x \in C \land \neg x \in D) \to (y = a))$$

1.5 The Zermelo-Fraenkel Axioms

1.5.1

Let u, v, w be sets. By pairing axiom, the sets $\{u\}$ and $\{v, w\}$ exist. Using the pairing and union axioms, show that the set $\{u, v, w\}$ exists.

By pairing axiom we've got that

$$PA(u, u) = \{u\}$$

$$PA(v, w) = \{v, w\}$$

thus

$$PA(\{u\}, \{v, w\}) = \{\{u\}, \{v, w\}\}\$$

and therefore by union axiom we follow that

$$UA(\{\{u\},\{v,w\}\}) = \{u,v,w\}$$

as desired.

1.5.2

Let A be a set. Show that the pairing axiom implies that the set $\{A\}$ exists

$$PA(A, A) = \{A, A\}$$

which by extension axiom is equal to $\{A\}$, as desired.

1.5.3

Let A be a set. The pairing axiom implies that the set $\{A\}$ exists. Using the regularity axiom, show that $A \cap \{A\} = 0$. Conclude that $A \notin A$.

Since $\{A\} \neq \emptyset$, we follow that there exists x such that $x \in \{A\}$ and $x \cap \{A\} = \emptyset$. Since A is the only element of $\{A\}$, we follow that $A \cap \{A\} = \emptyset$, as desired.

1.5.4

For sets A, B, the set $\{A, B\}$ exists by the pairing axiom. Let $A \in B$. Using the regularity axiom, show that $A \cap \{A, B\} = \emptyset$, and thus $B \notin A$.

 $\{A,B\}$ consists of sets A and B, thus it is not empty and therefore there exists $x \in \{A,B\}$ such that $x \in \{A,B\} \land x \cap \{A,B\} = \emptyset$. For B we've got that $B \in \{A,B\}$. Since $A \in B$ and $A \in \{A,B\}$, we can follow that $A \in (B \cap \{A,B\})$. By pairing axiom we follow that the element with desired property must exists, and given that the only other choice is A, we conclude that $A \cap \{A,B\} = \emptyset$. Therefore we can follow that $B \notin A$, as desired.

1.5.5

Let A, B, C be sets. Suppose that $A \in B$ and $B \in C$. Using the regularity axiom, show that $C \notin A$.

This is an expantion of previous exercise. We can follow that

$$B \in \{A, B, C\} \land B \in C \Rightarrow B \in C \cap \{A, B, C\} \Rightarrow C \cap \{A, B, C\} \neq \emptyset$$

$$A \in \{A, B, C\} \land A \in B \Rightarrow A \in B \cap \{A, B, C\} \Rightarrow B \cap \{A, B, C\} \neq \emptyset$$

thus the only other choice is A, and therefore $A \cap \{A, B, C\} = \emptyset$. Therefore $C \notin A$, as desired.

1.5.6

Let A, B be sets. Using the subset and power set axioms, show that the set $\mathcal{P}(A) \cap B$ exists. Because set A exists we follow that $\mathcal{P}(A)$ exists. By setting $\phi(x): x \in B$ and subset axiom we follow that there exists a subset of $\mathcal{P}(A)$ such that $x \in S \Leftrightarrow x \in \mathcal{P}(A) \wedge x \in B$. Thus we follow by Extensionality axiom that $S = \mathcal{P}(A) \cap B$. Thus $\mathcal{P}(A) \cap B$ exists.

1.5.7

Let A, B be sets. Using the subset axiom, show that the set $A \setminus B$ exists.

$$\phi(x): \neg x \in B$$

thus by subset axiom

$$x \in S \Leftrightarrow x \in A \land \neg x \in B$$

thus $A \setminus B$ exists.

1.5.8

Show that no two of the sets \emptyset , $\{\emptyset\}$, $\{\emptyset\}$, are equal to each other.

I had a little confusion with this one at first because I thought that every set has empty set in it, which is false. Every set has an empty set as a subset, but it might be so that empty set is not in the set itself.

$$\emptyset \notin \emptyset \land \emptyset \in \{\emptyset\} \Rightarrow \emptyset \neq \{\emptyset\}$$

$$\emptyset \notin \emptyset \land \emptyset \in \{\emptyset, \{\emptyset\}\} \Rightarrow \emptyset \neq \{\emptyset, \{\emptyset\}\}\}$$

$$\{\emptyset\} \notin \{\emptyset\} \land \{\emptyset\} \in \{\emptyset, \{\emptyset\}\} \Rightarrow \{\emptyset\} \neq \{\emptyset, \{\emptyset\}\}\}$$

all of the implication follow from extensionality axiom.

1.5.9

Let A be a set with no elements. Show that for all x, we have that $x \in A$ if and only if $x \in \emptyset$. Using the extensionality axiom, conclude that $A = \emptyset$.

Suppose that $\neg x \in A$. Then we follow that x is an element, therefore $\neg x \in \emptyset$. Thus

$$\neg x \in A \Rightarrow \neg x \in \emptyset \iff x \in \emptyset \Rightarrow x \in A$$

Suppose that $\neg x \in \emptyset$. Then we follow that x is an element. Thus $\neg x \in A$. Thus

$$\neg x \in \emptyset \Rightarrow \neg x \in A \iff x \in A \Rightarrow x \in \emptyset$$

thus we follow that

$$x \in \emptyset \Leftrightarrow x \in A$$

thus by extensionality axiom we follow that

$$\emptyset = A$$

which gives us nice follow-up that

$$\emptyset = \{\}$$

1.5.10

Let $\phi(x,y)$ be the formula $\forall z(z \in y \Leftrightarrow z = x)$ which asserts that $y = \{x\}$. For all x the set $\{x\}$ exists. So $\forall x \exists ! y \phi(x,y)$. Let A be a set. Show that the collection $\{\{x\} : x \in A\}$ is a set.

We know that A is a set and therefore $\mathcal{P}(A)$ is also a set. Thus by subset axiom there exists a set

$$\exists S(x \in S \Leftrightarrow x \in \mathcal{P}(A) \land \exists (y \in A)(\phi(x,y)))$$

which is precisely our collection.

Chapter 2

Basic Set-Building Axioms and Operations

2.1 The First Six Axioms

Prove the following theorems, where A, B, C, D are sets.

2.1.1

$$A \subseteq B \to (A \subseteq A \cup B \land A \cap B \subseteq A)$$

$$\forall x(x \in A \to x \in B) \to ((\forall x(x \in A \Rightarrow x \in A \lor x \in B)) \land (\forall (x \in A \land x \in B \Rightarrow x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to ((\forall x(\neg x \in A \lor x \in A \lor x \in B)) \land (\forall (\neg (x \in A \land x \in B) \lor x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to ((\forall x(\text{true} \lor x \in B)) \land (\forall (\neg x \in A \lor \neg x \in B \lor x \in A))) \Leftrightarrow$$

$$\Leftrightarrow \forall x(x \in A \to x \in B) \to (\text{true} \land (\forall (true \lor \neg x \in B))) \Leftrightarrow$$

$$\Leftrightarrow \neg \forall x(x \in A \to x \in B) \lor (\text{true} \land \text{true}) \Leftrightarrow$$

$$\Leftrightarrow \neg \forall x(x \in A \to x \in B) \lor \text{true} \Leftrightarrow$$

$$\text{true}$$

$$A\subseteq B\wedge B\subseteq C\to A\subseteq C$$

$$(\forall x(x \in A \Rightarrow x \in B)) \land (\forall x(x \in B \Rightarrow x \in C)) \rightarrow \forall x(x \in A \Rightarrow x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x(\neg x \in A \lor x \in B)) \land (\forall x(\neg x \in B \lor x \in C)) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \lor x \in B) \land (\neg x \in B \lor x \in C))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land (\neg x \in B \lor x \in C)) \lor (x \in B \land (\neg x \in B \lor x \in C)))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land (\neg x \in B \lor x \in C)) \lor ((x \in B \land \neg x \in B) \lor (x \in B \land x \in C)))) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow \\ \Leftrightarrow (\forall x((\neg x \in A \land \neg x \in B) \lor (\neg x \in A \land x \in C) \lor (x \in B \land x \in C)) \rightarrow \forall x(\neg x \in A \lor x \in C) \Leftrightarrow ...$$

So this thing is tedious as hell and should be left to computers.

Suppose that $x \in A$. Then we follow by $A \subseteq B$ that $x \in B$. Thus by $B \subseteq C$ we follow that $x \in C$. Therefore $x \in A \to x \in C$. Therefore $A \subseteq C$, as desired.

2.1.3

$$B \subseteq C \Rightarrow A \setminus C \subseteq A \setminus B$$

Suppose that $x \in A \setminus C$. Then we follow that $x \in A$ and $x \notin C$. Therefore $x \in A$ and $x \notin B$ since $B \subseteq C$. Thus $x \in A \setminus B$. Therefore we follow that $B \subseteq C$ implies that $A \setminus C \subseteq A \setminus B$, as desired.

2.1.4

$$C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$$

Suppose that $x \in C$. Then we follow that $x \in A$ and $x \in B$. Thus $x \in A \cap B$. Therefore $C \subseteq A \cap B$. Thus we follow that $C \subseteq A \wedge C \subseteq B \Rightarrow C \subseteq A \cap B$

Suppose that $x \in C$. Then we follow that $x \in A \cap B$. Thus $x \in A$ and $x \in B$. Therefore $C \subseteq A \cap C \subseteq B$. Therefore $C \subseteq A \cap B \Rightarrow C \subseteq A \cap C \subseteq B$ thus we follow that

$$C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$$

as desired.

2.1.5

There exists an x such that $x \notin A$

Suppose that there does not exist x such that $x \notin A$. Then we follow that every set is a member of A, which is impossible.

$$A \cap B = B \cap A$$

 $x \in A \cap B \iff x \in A \land x \in B \iff x \in B \land x \in A \iff x \in B \cap A$

2.1.7

$$A \cup B = B \cup A$$

 $x \in A \cup B \iff x \in A \lor x \in B \iff x \in B \lor x \in A \iff x \in B \cup A$

2.1.8

$$A \cap (B \cup C) = (A \cup C) \cap (A \cup B)$$

 $x \in A \cap (B \cup C) \Leftrightarrow x \in A \land x \in (B \cup C) \Leftrightarrow x \in A \land (x \in B \lor x \in C) \Leftrightarrow \Leftrightarrow (x \in A \lor x \in C) \land (x \in A \lor x \in C) \Leftrightarrow (x \in A \cup B) \lor (x \in A \cup C) \Leftrightarrow x \in ((A \cup B) \cap (A \cup C))$

2.1.31

$$A \subseteq \mathcal{P}(\cup(A))$$

Let $x \in A$. Then we follow that $x \subseteq \cup (A)$. Thus $x \in \mathcal{P}(A)$. Thus $A \subseteq \mathcal{P}(\cup (A))$.

2.1.32

Let $C \in F$. Then $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\cup F))$

Suppose that $C \in F$. Then we follow that $C \subseteq \cup F$. Therefore $C \in \mathcal{P}(\cup F)$. Thus $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\cup F))$.

the rest of the exercises for this section are more of the same.

2.2 Operations on Sets

Prove the following theorems

Let A be a set and $F \neq \emptyset$. Then

$$A \setminus \cap F = \cup \{A \setminus C : C \in F\}$$

 $x \in A \setminus \cap F \Leftrightarrow x \in A \land x \notin \cap F \Leftrightarrow x \in A \land \neg x \in \cap F \Leftrightarrow x \in A \land \neg (\forall (C \in F)(x \in C)) \Leftrightarrow$ $\Leftrightarrow x \in A \land \exists (C \in F)(x \notin C) \Leftrightarrow \exists (C \in F)(x \notin C \land x \in A) \Leftrightarrow \exists (C \in F)(x \in A \land C) \Leftrightarrow x \in \cup \{A \land C : C \in F\}$ which seems to hold.

2.2.2

Let A, F be sets. Then $A \cup (\cup F) = \cup \{A \cup C : C \in F\}$

$$x \in A \cup (\cup F) \Leftrightarrow x \in A \lor x \in \cup F \Leftrightarrow x \in A \lor (\exists C \in F)(x \in C) \Leftrightarrow$$
$$\Leftrightarrow (\exists C \in F)(x \in A) \lor \exists (C \in F)(x \in C) \Leftrightarrow$$
$$\Leftrightarrow \exists (C \in F)(x \in A \lor x \in C) \Leftrightarrow \exists (C \in F)(x \in A \cup C) \Leftrightarrow x \in \cup \{A \cup C : C \in F\}$$

Where we've used the fact that

 $x \in A \Leftrightarrow x \in A \land \text{true} \Leftrightarrow x \in A \land (\exists C \in F)(\text{true}) \Leftrightarrow (\exists C \in F)(x \in A \land \text{true}) \Leftrightarrow (\exists C \in F)(x \in A)$ don't know if we can use it, but I used it anyways.

2.2.3

Let A, F be sets. Then $A \cap (\cup F) = \cup \{A \cap C : C \in F\}$

$$x \in A \cap (\cup F) \Leftrightarrow x \in A \land x \in \cup F \Leftrightarrow x \in A \land (\exists C \in F)(x \in C) \Leftrightarrow \exists (C \in F)(x \in A \land x \in C) \Leftrightarrow \exists (C \in F)(x \in A \cap C) \Leftrightarrow x \in \cup \{A \cap C : C \in F\}$$

2.2.5

Let A and F be sets. Then there exists a unique set ϵ such that for all Y we have that $Y \in \epsilon$ if and only if $Y = A \cap C$ for some $C \in F$.

 $\cup F$ exists by union axiom, $A \cap (\cup F)$ exists by subset axiom. Thus $\mathcal{P}(A \cap (\cup F))$ exists by power axiom. Since $Y = A \cap C \Rightarrow Y \subseteq A \cap (\cup F)$, we follow that Y is a subset of $\mathcal{P}(A \cap (\cup F))$, which exists by subset axiom. By extensionality axiom we follow that the set is unique.

If F and G are nonempty sets, then

$$\cap (F \cup G) = \cap (F) \cap \cap (G)$$

$$x \in \cap (F \cup G) \Leftrightarrow (\forall C \in F \cup G)(x \in C) \Leftrightarrow (\forall C \in F)(x \in C) \land (\forall C \in G)(x \in C) \Leftrightarrow \\ \Leftrightarrow x \in \cap (F) \land x \in \cap (G) \Leftrightarrow x \in (\cap (F)) \cap (\cap (G))$$

2.2.14

Let F be a nonempty set. Then

$$\mathcal{P}(\cap(F)) = \cap \{\mathcal{P}(C) : C \in F\}$$

$$x \in \mathcal{P}(\cap(F)) \Leftrightarrow x \subseteq \cap(F) \Leftrightarrow (\forall y \in x)(y \in \cap(F)) \Leftrightarrow (\forall y \in x)(\forall (C \in F)(y \in F)) \Leftrightarrow \forall (C \in F)((\forall y \in x)y \in F) \Leftrightarrow \Leftrightarrow \forall (C \in F)(x \subseteq C) \Leftrightarrow \forall (C \in F)(x \in \mathcal{P}(C)) \Leftrightarrow x \in \cap \{\mathcal{P}(C) : C \in F\}$$

Chapter 3

Relations and Functions

3.1 Ordered Pairs in Set Theory

3.1.1

Define $\langle a,b,c \rangle = \langle \langle a,b \rangle,c \rangle$ for any sets a,b,c. Prove that this yields an ordered tuple; that is, prove that if $\langle x,y,z \rangle = \langle a,b,c \rangle$, then x=a, y=b, z=c.

Suppose that

$$\langle x_1, x_2, x_3 \rangle = \langle y_1, y_2, y_3 \rangle$$

then we follow that

$$\langle \langle x_1, x_2 \rangle, x_3 \rangle = \langle \langle y_1, y_2 \rangle, y_3 \rangle$$

from which we get that $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$ and $x_3 = y_3$. From $\langle x_1, x_2 \rangle = \langle y_1, y_2 \rangle$ we get that $x_1 = y_1$ and $x_2 = y_2$. In total we get that

$$\langle \langle x_1, x_2 \rangle, x_3 \rangle = \langle \langle y_1, y_2 \rangle, y_3 \rangle \Rightarrow x_1 = y_1 \land x_2 = y_2 \land x_3 = y_3$$

Thus we follow that given construction defines an ordered tuple, as desired.

3.1.2

Prove that $(A \cup B) \times C = (A \times C) \cup (B \times C)$

$$x \in (A \cup B) \times C \Leftrightarrow x = \langle y, z \rangle \land y \in A \cup B \land z \in C \Leftrightarrow x = \langle y, z \rangle \land (y \in A \lor y \in B) \land z \in C$$

$$\Leftrightarrow (x = \langle y, z \rangle \land z \in C) \land (y \in A \lor y \in B) \Leftrightarrow$$

$$\Leftrightarrow (x = \langle y, z \rangle \land z \in C \land y \in A) \lor (x = \langle y, z \rangle \land z \in C \land y \in B) \Leftrightarrow$$

$$\Leftrightarrow (x \in A \times C) \lor (x \in B \times C) \Leftrightarrow x \in (A \times C) \cup (B \times C)$$

as desired.

Prove that
$$(A \setminus B) \times C = (A \times C) \setminus (B \times C)$$

$$x \in (A \setminus B) \times C \Leftrightarrow x = \langle y, z \rangle \land y \in A \setminus B \land z \in C \Leftrightarrow x = \langle y, z \rangle \land (y \in A \land y \notin B) \land z \in C$$

$$\Leftrightarrow (x = \langle y, z \rangle \land z \in C) \land (y \in A \land y \notin B) \Leftrightarrow$$

$$\Leftrightarrow x = \langle y, z \rangle \land z \in C \land y \in A \land y \notin B \Leftrightarrow$$

$$\Leftrightarrow (x = \langle y, z \rangle \land y \in A \land z \in C) \land (x \neq \langle y, z \rangle \lor y \notin B \lor z \notin C) \Leftrightarrow$$

$$\Leftrightarrow (x = \langle y, z \rangle \land y \in A \land z \in C) \land (x \neq \langle y, z \rangle \lor y \notin B \lor z \notin C) \Leftrightarrow$$

$$\Leftrightarrow (x = \langle y, z \rangle \land y \in A \land z \in C) \land (x \neq \langle y, z \rangle \lor y \notin B \land z \notin C) \Leftrightarrow$$

$$\Leftrightarrow (x = \langle y, z \rangle \land y \in A \land z \in C) \land \neg (x = \langle y, z \rangle \land y \in B \land z \in C)) \Leftrightarrow$$

$$\Leftrightarrow (x \in A \times C) \land \neg (x \in B \times C) \Leftrightarrow x \in (A \times C) \land (B \times C)$$

Used a biconditional defined in "useful things"

3.1.4

Prove that

$$(\cup F) \times C = \cup \{A \times C : A \in F\}$$

$$x \in (\cup F) \times C \Leftrightarrow x = \langle y, z \rangle \land y \in (\cup F) \land z \in C \Leftrightarrow x = \langle y, z \rangle \land (\exists A \in F)(y \in A) \land z \in C \Leftrightarrow$$
$$\Leftrightarrow (\exists A \in F)(y \in A \land x = \langle y, z \rangle \land z \in C) \Leftrightarrow (\exists A \in F)(x \in A \times C) \Leftrightarrow$$
$$\Leftrightarrow x \in \cup \{A \times C : A \in F\}$$

3.2 Relations

3.2.1

Explain why the empty set is a relation

Relation is defined to be a set of ordered pairs. That is, for every $x \in R$, x is an ordered pair. Since we haven't got any elements in the emptyset, we follow that the logical statement is true and therefore emptyset is a relation.

Other way to see it is to assume that it is not a relation. Then we follow that emptyset has an element that is not an ordered pair. Since emptyset does not have any elements, we follow that we have a contradiction.

Prove items 1-3 of Theorem 3.2.7

$$x \in \text{dom}(R^{-1}) \Leftrightarrow \exists y (\langle x, y \rangle \in R^{-1}) \Leftrightarrow \exists y (\langle y, x \rangle \in R) \Leftrightarrow x \in \text{ran}(R)$$

$$x \in \operatorname{ran}(R^{-1}) \Leftrightarrow \exists y (\langle y, x \rangle \in R^{-1}) \Leftrightarrow \exists y (\langle x, y \rangle \in R) \Leftrightarrow x \in \operatorname{dom}(R)$$

$$x \in (R^{-1})^{-1} \Leftrightarrow \exists y \exists z (\langle y, z \rangle \in (R^{-1})^{-1}) \land x = \langle y, z \rangle \Leftrightarrow \exists y \exists z (\langle z, y \rangle \in (R^{-1})) \land x = \langle y, z \rangle \Leftrightarrow \exists y \exists z (\langle y, z \rangle \in R) \land x = \langle y, z \rangle \Leftrightarrow x \in R$$

3.2.4

$$\begin{split} \operatorname{dom}(R) &= \{0, 1, 2, 3, 4\} \\ \operatorname{ran}(R) &= \{0, 1, 2, 3, 4\} \\ R \circ R &= \{\langle 0, 2 \rangle, \langle 0, 3 \rangle, \langle 0, 0 \rangle, \langle 0, 3 \rangle, \langle 0, 4 \rangle, \langle 1, 0 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 1, 3 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \\ \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 4 \rangle, \langle 3, 3 \rangle, \langle 3, 2 \rangle, \langle 4, 4 \rangle \} \\ R|\{1\} &= \{\langle 1, 2 \rangle, \langle 1, 3 \rangle\} \\ R^{-1}|\{1\} &= \{\langle 1, 0 \rangle\} \\ R[\{1\}] &= \{2, 3\} \\ R^{-1}[\{1\}] &= \{0\} \end{split}$$

3.2.5

Suppose that R is a relation. Prove that $R|(A \cup B) = (R|A) \cup (R|B)$ for any sets A, B

$$x \in R | (A \cup B) \Leftrightarrow (\exists y \in A \cup B)(\exists z \in \operatorname{ran}(R))(\langle y, z \rangle \in R \land x = \langle y, z \rangle) \Leftrightarrow$$
$$\Leftrightarrow (\exists y \in A)(\exists z \in \operatorname{ran}(R))(\langle y, z \rangle \in R \land x = \langle y, z \rangle) \lor (\exists y \in B)(\exists z \in \operatorname{ran}(R))(\langle y, z \rangle \in R \land x = \langle y, z \rangle) \Leftrightarrow$$
$$\Leftrightarrow x \in R | A \lor x \in R | B \Leftrightarrow x \in (R | A \cup R | B)$$

thus

$$R|(A \cup B) = (R|A) \cup (R|B)$$

as desired.

Let R and S be two relations and let A, B, C be sets. Prove that R|A, $R^{-1}[B]$, R[C] and $R \circ S$ are sets.

Given that R and S are relation, we follow that both of them are sets, $\bigcup \bigcup R$ and $\bigcup \bigcup S$ are sets and $\operatorname{dom}(R), \operatorname{ran}(R), \operatorname{dom}(S), \operatorname{ran}(S)$ are sets. Thus we follow that R|A is a subset of R, which is a set; $R^{-1}[B]$ and R[C] are subsets of $\bigcup \bigcup R$, and $R \circ S$ are subsets of a set $\operatorname{dom}(R) \times \operatorname{ran}(S)$, which is a set.

3.2.8

Let R be a relation and G be a set. Prove that $\{R[C]: C \in G\}$ is a set. Prove that if G is nonempty, then $\{R[C]: C \in G\}$ is also nonempty

If R is a relation, then $\operatorname{ran}(R)$ is a set. Therefore $\mathcal{P}(\operatorname{ran}(R))$ is a set. Thus for any set C, $R[C] \subseteq \operatorname{ran}(R)$, therefore $R[C] \in \mathcal{P}(\operatorname{ran}(R))$. Thus $\{R[C] : C \in G\}$ is a subset of $\mathcal{P}(\mathcal{P}(\operatorname{ran}(R)))$, which is a set.

Suppose that G is nonempty. Then we follow that there exists $C \in G$. Thus R[C] is a set. Thus $R[C] \in \{R[C] : C \in G\}$. Therefore $\{R[C] : C \in G\}$ is nonempty.

3.2.19

Prove item (2) of Theorem 3.2.8

$$R[\bigcup G] = \bigcup R[C] : C \in G$$

$$x \in R[\bigcup G] \Leftrightarrow (\exists y \in \bigcup G)(\langle y, x \rangle \in R) \Leftrightarrow (\exists C \in G)(y \in C \land \langle y, x \rangle \in R) \Leftrightarrow \Leftrightarrow (\exists C \in G)(x \in R[C]) \Leftrightarrow x \in \bigcup R[C] : C \in G$$

3.2.20

Prove item (4) fo Theorem 3.2.8

$$x \in R[\bigcap G] \Leftrightarrow (\exists y \in \bigcap G)(\langle y, x \rangle \in R) \Leftrightarrow \exists y (\forall C \in G)(y \in C \land \langle y, x \rangle \in R) \Rightarrow$$
$$\Rightarrow (\forall C \in G)(\exists y \in C)(\langle y, x \rangle \in R) \Leftrightarrow (\forall C \in G)(x \in R[C]) \Leftrightarrow x \in \bigcap \{R[C] : C \in G\}$$

3.3 Functions

3.3.1

Prove Lemma 3.3.5 and Lemma 3.3.13

Suppose that F and G are functions such that dom(F) = dom(G). Lemma 3.3.5 states that F = G iff F(x) = G(x) for every $x \in dom(F)$ If F = G, then

$$F(x) = y \Leftrightarrow \langle x, y \rangle \in F \Leftrightarrow \langle x, y \rangle \in G \Leftrightarrow G(x) = y$$

thus F(x) = G(x) for every $x \in \text{dom}(F)$.

Now suppose that F(x) = G(x) for every $x \in \text{dom}(F)$. Then we follow that

$$z \in F \Leftrightarrow z = \langle x, y \rangle \land F(x) = y \Leftrightarrow z = \langle x, y \rangle \land G(x) = y \Leftrightarrow z \in G$$

as desired.

Lemma 3.3.13 states that a function F is one-to-one if and only if F is single-rooted.

Suppose that F is one-to-one and F is not single rooted. Then we follow that there exists $x,y\in F$ such that $x=\langle u,w\rangle\in F,y=\langle j,w\rangle\in F$. Then we follow that F(u)=w=F(j), which is a contradiction.

Proof of converse is extremely simular.

3.3.2

Let F be a function and let $A \subseteq B \subseteq \text{dom}(F)$. Prove that $F[A] \subseteq F[B]$.

$$x \in F[A] \Leftrightarrow x = \langle u,v \rangle \land u \in A \land \langle u,v \rangle \in F \Rightarrow x = \langle u,v \rangle \land u \in B \land \langle u,v \rangle \in F \Leftrightarrow x \in F[B]$$

3.3.5

Let $g: C \to D$ be a one-to-one function, $A \subseteq C$ and $B \subseteq C$. Prove that if $A \cup B = \emptyset$, then $g[A] \cap g[B] = \emptyset$.

Suppose that $A \cap B = \emptyset$ and $g[A] \cap g[B] \neq \emptyset$. Then we follow that there exists $x \in g[A] \cap g[B]$. Thus

$$x \in g[A] \land x \in g[B] \Leftrightarrow (\exists y \in A)(\langle y, x \rangle \in g) \land (\exists z \in B)(\langle z, x \rangle \in g)$$

since g is one-to-one, we follow that z = y. Thus there exists $z \in A \cap B$, therefore $A \cap B \neq \emptyset$, which is a contradiction.

3.3.9

Suppose that $F: X \to Y$ is a function. Prove that if $C \subseteq Y$ and $D \subseteq Y$, then $F^{-1}[C \cap D] = F^{-1}[C] \cap F^{-1}[D]$.

Since F is a function, we follow that F^{-1} is a single-rooted relation. Thus we follow that

$$F^{-1}[C \cap D] = F^{-1}[C] \cap F^{-1}[D]$$

as desired.

3.3.10

Let F, G be functions from A to B. Suppose $F \subseteq G$. Prove that F = G. Suppose that $x \in A$. Then we follow that

$$(\exists y \in B)(\langle x, y \rangle \in F) \Rightarrow (\exists y \in B)(\langle x, y \rangle \in G)$$

Thus we follow that for every $x \in A$ (where dom(F) = A = dom(G))

$$F(x) = G(x)$$

thus by the lemma 3.3.5 we follow that

$$F = G$$

as desired.

3.3.11

Let C be a set of functions. Suppose that for all f and g in C, we have either $f \subseteq g$ or $g \subseteq f$.

(a) Prove that $\cup C$ is a function

Firstly, since C is a set of sets of ordered pairs, we follow that $\cup C$ is a set of ordered pairs, and therefore it is a relation. Suppose that $x \in \cup C$. Then we follow that there exist $f \in C$ such that $x \in f$ and $x = \langle u, v \rangle$. Suppose that there exists $y \in \cup C$, such that $y = \langle u, v' \rangle$, where $u' \neq u$. Since $y \in \cup C$, we follow that there exists $g \in C$ such that $y \in C$. Because $y \in U$, we follow that $y \in C$. Therefore either $y \in U$, or $y \in U$. Thus we follow that for $y \in U$, whenever the first part of the $y \in U$ is a single-valued relation, and therefore it is a function.

3.3.13

Assume $f: A \to B$ is onto B. Let $C \subseteq B$. Prove that $f[f^{-1}[C]] = C$

$$x \in f[f^{-1}[C]] \Leftrightarrow (\exists y \in f^{-1}[C])(f(y) = x) \Leftrightarrow (\exists z \in C)(\langle y, z \rangle \in f \land f(y) = x) \Leftrightarrow (\exists z \in C)(f(y) = z \land f(y) = x) \Leftrightarrow (\exists z \in C)(x = z) \Leftrightarrow x \in C$$

this notation may be a bit sloppy, but the result is derived faithfully.

3.3.15

Let $f: A \to B$ be a one-to-one function. Define $G: \mathcal{P}(A) \to \mathcal{P}(B)$ by G(X) = f[X], for each $X \in \mathcal{P}(A)$. Prove that G is one-to-one.

Let $X_1, X_2 \in \mathcal{P}(A)$ be such that $G(X_1) = G(X_2)$. Then we follow that

$$f[X_1] = f[X_2]$$

thus

$$x \in X_1 \Leftrightarrow (\exists y \in f[X_1])(\langle x, y \rangle \in f) \Leftrightarrow (\exists y \in f[X_2])(\langle x, y \rangle \in f) \Leftrightarrow x \in X_2$$

thus we follow that $X_1 = X_2$. Therefore $G(X_1) = G(X_2) \to X_1 = X_2$, thus G is one-to-one, as desired.

3.3.21

Let $\langle A_i : i \in I \rangle$ be an indexed function with nonempty terms. Prove that there is an indexed function $x_i : i \in I$ so that $x_i \in A_i$ for all $i \in I$, using theorem 3.3.24 TODO