时序逻辑电路的设计

状态表的化简

如果两个状态满足:

- 对于各组输入,它们的输出是一样的。
- 对于各组输入,它们的次态
 - 。 完全相同;
 - 。是它们本身,或者交错;
 - 。 某一后续状态可以合并;
 - 。 是一个状态对封闭链中的一个,

那么这两个状态可以合并而看成一个。利用这个原理,我们可以对状态表进行化简。

给定一个状态表:

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
а	c/0	b / 1			
b	f / 0	a/1			
С	d/0	g / <mark>0</mark>			
d	d/1 e/0				
е	c/0	e / 1			
f	d / 0	g/ <mark>0</mark>			
g	c/1	d/0			

画出如下的隐含表(竖列横排掐头去尾)

b							
С							
c d							
e f							
f							
g							
	a	b	С	d	е	f	

然后填表。如果单元格左方和下方对应的两个状态的输出有不同,直接打「×」;如果两组输出相同,如果不仅输出相同,次态也相同或交错(例如, $A \to B$, $B \to A$),打「 $\sqrt{\ }$ 」;如果输出相同但是次态有不同,将它们对应的下一跳状态写出来;

b	cf					
С	X	X				
d	X	X	Χ			
е	be	ae/cf	X	X		
f	X	X	√	X	X	
g	X	X	X	X	X	X
	а	b	С	d	е	f

接着,排查那些没有打「×」或打「√」的单元格,去检查它们对应的下一跳状态,将它们变成「×」或者「√」。

b	√					
С	X	X				
d	X	X	X			
е	√	√	X	X		
f	X	X	√	X	Χ	
g	Χ	X	X	X	Χ	Χ
	a	b	С	d	е	f

打「√」表示这两个状态可以合并。合并完成的状态表如下:

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
q ₁	q ₂ / 0	q ₁ / 1			
q_2	q ₃ / 0	q ₄ / 0			
q_3	q ₃ / 1	q ₁ / 0			
q_4	q ₂ / 1	$q_3/0$			

设计同步时序电路

与 时序逻辑电路的分析 中的方法完全相反,利用某一触发器来设计同步时序电路的步骤如下:

- 确定状态和状态转换关系。可能需要对原始状态图进行化简。
- 画出**状态转换表**。与前面的状态转换表不一样的是,这里的状态转换表多了触发器的输入栏——因为触发器的输入电路是我们需要得到的。
- 利用卡诺图化简得到:
 - 。 所有触发器的输入方程 (和输入与现态有关);
 - 。 所有输出项的方程 (和输入与现态有关);
- 画出电路。

下面以「使用 D 触发器设计 1111 检测器」为例。

先画出 Mealy 状态机的状态图:

这是它的状态表:

现态	X = 0	X = 1
A	A/0	B / 0
В	A/0	C / 0
С	A/0	D / 0
D	A/0	E / 1
Е	A/0	E / 1

显然可以将 D 和 E 状态合并, 即:

现态	X = 0	X = 1
Α	A/0	B / 0

现态	X = 0	X = 1
В	A / 0	C / 0
С	A / 0	D / 0
D	A / 0	D/1

一共需要 2 个 D 触发器。 为 A、B、C、D 四个状态分别编码 00 、 01 、 10 和 11 ,得到如下的状态 图:

注意 10 和 11 对调一下位置,我画反了。

总的状态转换表如下。由于 D 触发器的次态就是 D 的值,填写 D1、D0 两栏十分的方便。

输入X	现态 Q1	Q0	次态 Q1	Q0	D1	D0	输出 Z
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0

输入 X	现态 Q1	Q0	次态 Q1	Q0	D1	D0	输出 Z
0	1	1	0	0	0	0	0
1	0	0	0	1	0	1	0
1	0	1	1	0	1	0	0
1	1	0	1	1	1	1	0
1	1	1	1	1	1	1	1

画出 D1、D0 和 Z 关于 X、现态 Q1、现态 Q0 的卡诺图, 圈出各自的最简式。

画出电路:

用 Logisim 验证一下 (当然考试是不可能验证的了):

为什么我手画的图那么丑。

