N5: Acids

pH Scale	
The pH scale runs from	to
It is a measure of thescale; pH 1 is 10 times more acid more alkaline than pH 13.	in a solution. It is a logarithmic dic than pH 2, pH 14 is 10 times
Water exists in an equilibrium	
The arrow means that the Only a small number of water mo number of an, therefore water i	olecules split into ions. The id ions in water is
Acids contain their pH is	
Alkalis contain ions, their pH is	
Dilution of acids will ions and move the	
Dilution of alkalis will	

Soluble	e oxides will form	_, when they dissolve in
water _	form.	
Soluble	eoxides will form	
?	1.An alkaline solution contains monumber of hydrogen ions than an	
	ding water to an acidic solution will raleave the pH unchanged	aise the pH/lower the
	each oxide what will be the effect o Sodium oxide	n the pH of water:
B. C	Carbon monoxide	
C. S	Sulfur dioxide	
D. Ir	ron (II) oxide	
E. S	Silicon dioxide	
Neutrali	isation	
	nces which neutralise acids are called which dissolve in water are called	
	les of are,	1
		and

When bases react with acids, water and a salt are produced.

Name of acid	End of salt name
Hydrochloric acid	
Sulfuric acid	
Nitric acid	
Phosphoric acid	
Ethanoic acid	

Basic word equations

- 1.Sodium hydroxide + nitric acid ->
 - 2.Magnesium oxide + sulfuric acid ->
- 3. Copper carbonate + hydrochloric acid ->
- 4. Lithium hydroxide + phosphoric acid ->
- 5. Calcium carbonate + nitric acid ->

In solution acids, alkalis get involved in the reacti unchanged are called	on and are pre	sent at t	
Metal oxides			
+	->		
Metal hydroxides			
+	->		
Soluble carbonates			
+	->	+	
Insoluble metal carbonat	es		
+	->	+	

A precipitate is a _____ produced from two solutions. Spectator ions can also be identified in these reactions. E.g.

Potassium lodide Solution	+	lead nitrate solution	->	potassium nitrate solution	1 +	lead iodide solid
	+		- >		+	
+	+	+	->	+	+	+
			_<		_	

Identify the spectator ions and rewrite the equation without them

1.
$$H^{+}(aq) + Cl^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) -> Na^{+}(aq) + Cl^{-}(aq) + H_{2}O(l)$$

2.
$$2H^{+}(aq) + SO_{4}^{2-}(aq) + Cu^{2+}(s) + CO_{3}^{2-}(s) -> Cu^{2+}(aq) + SO_{4}^{2-}(aq) + H_{2}O(l) + CO_{2}(q)$$

$$3.\ 3Ba^{2+}(aq) \ +\ 6Cl^{-}(aq) \ +\ 2Al^{3+}(aq) \ +\ 3SO_4^{2-}(aq) \ ->\ 3BaSO_4(s) \ +\ 2Al^{3+}(aq) \ +\ 6Cl^{-}(aq)$$

Titrations

Titration reactions involve reacting accurate volumes of solution with each other. Often an indicator is added to see the end point. This allows you to calculate either:

•

•

Step 1: Rinse and fill the
_____ with one solution

Step 2: Rinse and fill the
____ with the other solution

Step 3: Transfer this to a
and add

some indicator

Step 4: Read and note the start value of the burette

Step 5: Place the conical flask on a white tile and add 1cm³ at a time from the burette with swirling.

Step 5: Stop adding when the colour change occurs, read and note the end value of the burette.

Step 6: Calculate the titre (added volume)

Step 7: Rinse the conical flask and add another aliquot of solution using the pipette. Add indicator.

Step 8: Read and note the start value of the burette, refilling if necessary. Calculate the previous added volume minus 1. Add this volume quickly to the conical flask with swirling.

Step 9: Add dropwise with swirling until the colour change and note the final volume. Calculate the titre.

Repeat steps 7 to 9 until you achieve concordant titres, within 0.2 of each other.

Titration calculations

Titration	Start reading (ml)	End reading (ml)	Titre (ml)
1	0	11.5	11.5
2	11.5	22.3	10.8
3	22.3	32.9	10.6

 $2NaOH + H_2SO_4 -> Na_2SO_4 + 2H_2O$

Calculate the concentration of sulfuric acid.

Step 1: Calculate the average titre

Step 2: Calculate the moles of sodium hydroxide (two pieces of information)

Step 3: Use the mole ratio to find the moles of sulfuric acid

Step 4: Calculate the concentration of sulfuric acid (now two pieces of information)

Titrations

Titration	Start reading (ml)	End reading (ml)	Titre (ml)
1	0	18.4	18.4
2	18.4	36.2	17.8
3	0	17.6	17.6

$$3LiOH + H_3PO_4 -> Li_3PO_4 + 3H_2O$$

Calculate the concentration of phosphoric acid

Making salts

Soluble salts can be made in multiple ways.

By carrying out a titration to find the required volumes of acid and alkali, you can repeat it without indicator to make a salt solution. This can then be heated to evaporation to produce a dry salt.

The following process can be used with insoluble bases.

