# Introduction to Fourier Transform Infrared Spectroscopy (FTIR)

FTIR measures infrared absorption and emission to identify chemical bonds.

This non-destructive technique is vital in materials science, chemistry, and pharmaceuticals.





# Fundamentals and Principles of FTIR

Infrared absorption

Molecules absorb IR radiation at frequencies matching vibration modes.

**Fourier Transform** 

Converts raw interferogram data into a readable spectrum.

**Vibrational frequencies** 

Specific to molecular bonds, unique fingerprints for identification.

# **Uses and Applications of FTIR**

### **Material Analysis**

- Polymer characterization
- Chemical compound ID
- Coating analysis

#### **Pharmaceuticals & Food**

- Drug purity checks
- Adulteration detection in foods
- Environmental pollutant analysis



# Sample Requirements and Applicable Materials

**Sample Forms** 

Solids, liquids, and gases can be analyzed.

**Preparation Methods** 

KBr pellets, thin films, ATR technique.

**Material Types** 

Polymers, organics, inorganics, coatings.

### Limitations

Strong water absorption and particle size effects.

### FTIR Data Acquisition and Results

#### **Data Form**

Interferogram converted to Absorbance vs. Wavenumber spectrum.

### **Peak Analysis**

Peaks correspond to molecular vibrations showing chemical groups.

### **Preprocessing**

Baseline correction and normalization improve accuracy.

# Data Interpretation and Property Calculation

**Identify Functional Groups** 

Peak positions reveal groups like C=O or N-H.

**Quantify Concentrations** 

Peak intensity proportional to compound amount.

**Advanced Analysis** 

Deconvolution resolves overlapping peaks for clarity.

**Calculations** 

Crystallinity index from peak ratios in polymers.



# Research Example: Polymer Blend

Study InsightPeak shifts indicate polymer miscibility.

- CalculationsBlending degreeestimated using peakarea ratios.
- Conclusion

  FTIR confirms molecular interactions in blends.





## **Summary and Conclusion**



**Powerful Tool** 

Essential for diverse material characterization.



**Expansive Applications** 

Used in polymers, pharmaceuticals, environment, and food.



Data Interpretation

Requires
understanding of
vibrational spectra
and calculations.



Advancements

Ongoing improvements enhance accuracy and sensitivity.