524,288-word × 9-bit Dynamic Random Access Memory

The Hitachi HM514900A are CMOS dynamic RAM organized as 524,288-word × 9-bit. HM514900A have realized higher density, higher performance and various functions by employing 0.8 µm CMOS process technology and some new CMOS circuit design technologies. The HM514900A offer Fast Page Mode as a high speed access mode.

Multiplexed address input permits the HM514900A to be packaged in standard 400-mil 28-pin plastic SOJ and standard 400-mil 28-pin plastic TSOPII.

Features

- Single 5 V (±10%)
- · High speed
 - Access time: 70 ns/80 ns (max)
- Low power dissipation
 - Active mode: 605 mW/550 mW (max)
 - Standby mode: 11 mW (max)

1.1 mW (max) (L-version)

Fast page mode capability1,024 refresh cycles: 16 ms

128 ms (L-version)

- 2 variations of refresh
 - RAS-only refresh
 - CAS-before-RAS refresh
- Battery back up operation (L-version)

Ordering Information

Type No.	Access time	Package
HM514900AJ-7 HM514900AJ-8	70 ns 80 ns	400-mil 28-pin plastic SOJ (CP-28DA)
HM514900ALJ-7 HM514900ALJ-8	70 ns 80 ns	400-mil 28-pin plastic SOJ (CP-28DA)
HM514900ATT-7 HM514900ATT-8	70 ns 80 ns	400-mil 28-pin plastic TSOPII (TTP-28DA)
HM514900ALTT-7 HM514900ALTT-8	70 ns 80 ns	400 mil 28-pin plastic TSOPII (TTP-28DA)

Pin Arrangement

Pin Description

Pin name	Function					
A0 - A9 - - -	Address input Row address Column address Refresh address	A0 - A9 A0 - A8 A0 - A9				
I/O0 – I/O9	Data-in/data-out					
RAS	Row address strobe					
CAS	Column address stro	be				
WE	Read/write enable					
ŌĒ	Output enable					
V _{CC}	Power (+5 V)					
V _{SS}	Ground					

Block Diagram

HM514900A/AL Series

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to V _{SS}	V _T	-1.0 to +7.0	V
Supply voltage relative to V _{SS}	V _{CC}	-1.0 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C) *2

Parameter		Symbol	Min	Тур	Max	Unit	Note	
Supply voltage		V _{SS}	0	0	0	V		
		V _{CC}	4.5	5.0	5.5	V	1	
Input high voltag	geV _{IH}	2.4	_	6.5	V	1		
Input low voltage	(I/O pin)	V _{IL}	-1.0	_	0.8	V	1	
	(Others)	V _{IL}	-2.0	_	0.8	V	1	

<sup>Notes: 1. All voltage referred to V_{SS}.
2. The supply voltage with all V_{CC} pins must be on the same level. The supply voltage with all V_{SS} pins must be on the same level.</sup>

HM514900A/AL Series

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V) *5

HM514900A/AL

-7

Parameter	Symbol	Min	Max	Min	Max	Unit	Test conditions	Notes
Operating current	I _{CC1}	_	110	_	100	mA	RAS, CAS cycling t _{RC} = min	1, 2
Standby current	I _{CC2}	_	2	_	2	mA	TTL interface RAS, CAS = V _{IH} Dout = High-Z	
		_	1		1	mA	$\frac{\text{CMOS interface}}{\text{RAS, CAS}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}$ Dout = High-Z	
Standby current (L-version)		_	200		200	μA	CMOS interface RAS, CAS ≥ V _{CC} – 0.2 V Dout = High-Z	
RAS-only refresh current	I _{CC3}	_	110	_	100	mA	t _{RC} = min	2
Standby current	I _{CC5}	_	5	_	5	mA	$\overline{RAS} = V_{IH}$ $\overline{CAS} = V_{IL}$ $Dout = enable$	1
CAS-before-RAS refresh current	I _{CC6}	_	110	_	100	mA	t _{RC} = min	4
Fast page mode current	I _{CC7}	_	110	_	100	mA	t _{PC} = min	1, 3
Battery back up current (Standby with CBR refresh) (L-version only)	I _{CC10}	_	300	_	300	μА	Standby: CMOS interface Dout = High-Z CBR refresh: $\underline{t_{RC}}$ = 125 µs $\underline{t_{RAS}} \le 1$ µs, $\overline{CAS} = V_{IL}$ WE = V_{IH}	4
Input leakage current	I _{LI}	-10	10	-10	10	μΑ	0 V ≤ Vin ≤ 7 V	
Output leakage current	I _{LO}	-10	10	-10	10	μΑ	0 V ≤ Vout ≤ 7 V Dout = disable	
Output high voltage	V _{OH}	2.4	V _{CC}	2.4	V _{CC}	V	High lout = −5 mA	
Output low voltage	V _{OL}	0	0.4	0	0.4	V	Low lout = 4.2 mA	

Notes:

- 1. I_{CC} depends on output load condition when the device is selected I_{CC} max is specified at the output open condition.
- 2. Address can be changed once or less while $\overline{RAS} = V_{IL}$.

- Address can be changed once or less while \(\overline{CAS} = V_{|H}\).
 Address can be changed once or less while \(\overline{CAS} = V_{|H}\).
 V_{|H} ≥ V_{CC} 0.2 V, V_{|L} ≤ 0.2 V; Address can be changed once or less while \(\overline{CAS} = V_{|L}\).
 The supply voltage with all V_{CC} pins must be on the same level.
 The supply voltage with all V_{SS} pins must be on the same level.

HM514900A/AL Series

Capacitance (Ta = 25°C, V_{CC} = 5 $V \pm 10\%$)

Parameter	Symbol	Тур	Max	Unit	Notes
Input capacitance (Address)	C _{I1}	_	5	pF	1
Input capacitance (Clocks)	C _{I2}	_	7	pF	1
Output capacitance (Data-in, Data-out)	C _{I/O}	_	10	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V) *1, *14, *15

Test conditions

• Input rise and fall times: 5 ns

• Input timing reference levels: 0.8 V, 2.4 V

• Output load: 2 TTL gate + C_L (100 pF) (Including scope and jig)

UME14000 A / A I

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

	IIIVIS 1490UA/AL				_
	-7		-8		
Symbol	Min	Max	Min	Max	ı

Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Random read or write cycle time	t _{RC}	130	_	150	_	ns	
RAS precharge time	t _{RP}	50	_	60	_	ns	
RAS pulse width	t _{RAS}	70	10000	80	10000	ns	
CAS pulse width	t _{CAS}	20	10000	20	10000	ns	
Row address setup time	t _{ASR}	0	_	0	_	ns	
Row address hold time	t _{RAH}	10	_	10	_	ns	
Column address setup time	t _{ASC}	0	_	0	_	ns	
Column address hold time	t _{CAH}	15	_	15	_	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	ns	8
RAS to column address delay time	t _{RAD}	15	35	15	40	ns	9
RAS hold time	t _{RSH}	20	_	20	_	ns	
CAS hold time	t _{CSH}	70	_	80	_	ns	

HM514900A/AL Series

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters) (cont)

ΗN	151	49	00	Α	/AI	L
----	-----	----	----	---	-----	---

		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
CAS to RAS precharge time	t _{CRP}	10	_	10	_	ns	
OE to Din delay time	t _{ODD}	20	_	20	_	ns	
OE delay time from Din	t _{DZO}	0	_	0	_	ns	
CAS setup time from Din	t _{DZC}	0	_	0	_	ns	
Transition time (rise and fall)	t _T	3	50	3	50	ns	7
Refresh period	t _{REF}	_	16	_	16	ms	
Refresh period (L-version)	t _{REF}	_	128	_	128	ms	

Read Cycle

HM514900A/AL

		-/		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	_	70	_	80	ns	2, 3
Access time from CAS	t _{CAC}	_	20	_	20	ns	3, 4, 13
Access time from address	t _{AA}	_	35	_	40	ns	3, 5, 13
Access time from OE	tOAC	_	20	_	20	ns	3
Read command setup time	t _{RCS}	0	_	0	_	ns	
Read command hold time to CAS	^t RCH	0	_	0	_	ns	
Read command hold time to RAS	^t RRH	0	_	0	_	ns	
Column address to RAS lead time	t _{RAL}	35	_	40	_	ns	
Output buffer turn-off time	t _{OFF1}	0	15	0	15	ns	6
Output buffer turn-off to $\overline{\sf OE}$	t _{OFF2}	0	15	0	15	ns	6
CAS to Din delay time	t _{CDD}	15	_	15	_	ns	
· · · · · · · · · · · · · · · · · · ·							

HM514900A/AL Series

Write Cycle

	149		

		-7		-8				
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes	
Write command setup time	t _{WCS}	0	_	0	_	ns	10	
Write command hold time	t _{WCH}	15	_	15	_	ns		
Write command pulse width	t _{WP}	10	_	10	_	ns		
Write command to RAS lead time	t_{RWL}	20	_	20	_	ns		
Write command to CAS lead time	t _{CWL}	20	_	20	_	ns		
Data-in setup time	t _{DS}	0	_	0	_	ns	11	
Data-in hold time	t _{DH}	15	_	15	_	ns	11	
CAS to OE delay time	t _{COD}	_	0	_	0	ns	18	

Read-Modify-Write Cycle

HM514900A/AL

		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	t _{RWC}	180	_	200	_	ns	
RAS to WE delay time	t _{RWD}	95	_	105	_	ns	10
CAS to WE delay time	t _{CWD}	45	_	45	_	ns	10
Column address to WE delay time	t _{AWD}	60	_	65	_	ns	10
OE hold time from WE	tOEH	20	_	20	_	ns	

HM514900A/AL Series

Refresh Cycle

	164	49	Δ		<i>1</i> A	
нιν	וירו	44	. 11	Δ	ΙΔ	

		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
CAS setup time (CAS-before-RAS refresh cycle)	^t CSR	10	_	10	_	ns	
CAS hold time (CAS-before-RAS refresh cycle)	^t CHR	10	_	10	_	ns	
RAS precharge to CAS hold time	t _{RPC}	10	_	10	_	ns	
CAS precharge time in normal mode	t _{CPN}	10	_	10	_	ns	

Fast Page Mode Cycle

HM514900A/AL

		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Fast page mode cycle time	t _{PC}	45	_	50	_	ns	
Fast page mode CAS precharge time	t _{CP}	10	_	10	_	ns	
Fast page mode RAS pulse width	t _{RASC}	_	100000) —	100000	ns	12
Access time from CAS precharge	t _{ACP}	_	40	_	45	ns	3, 13
RAS hold time from CAS precharge	t _{RHCP}	40	_	45	_	ns	
Fast page mode read-modify-write cycle CAS precharge to WE delay time	^t CPW	65	_	70	_	ns	
Fast page mode read-modify-write cycle time	t _{PCM}	95	_	100	_	ns	

Notes:

- 1. AC measurements assume $t_T = 5$ ns.
- 2. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max).
- 5. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max).
- 6. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referred to output voltage levels.
- 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{II} .
- Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified
 as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access
 time is controlled exclusively by t_{CAC}.
- Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 10. t_{WCS}, t_{RWD}, t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{RWD} ≥ t_{RWD} (min), t_{CWD} ≥ t_{CWD} (min), t_{AWD} ≥ t_{AWD} (min) and t_{CPW} ≥ t_{CPW} (min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referred to $\overline{\text{CAS}}$ leading edge in an early write cycle and to $\overline{\text{WE}}$ leading edge in a delayed write or a read-modify-write cycle.
- 12. t_{RASC} defines RAS pulse width in fast page mode cycles.
- 13. Access time is determined by the longer of t_{AA} or t_{CAC} or t_{ACP}.
- 14. An initial pause of 100 µs is required after power up followed by a minimum of eight initialization cycles (RAS-only refresh cycle or CAS-before-RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS-before-RAS refresh cycles is required.
- 15. In delayed write or read-modify-write cycles, $\overline{\text{OE}}$ must disable output buffer prior to applying data to the device.
- 16. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 17. The supply voltage with all V_{CC} pins must be on the same level. The supply voltage with all V_{SS} pins must be on the same level.
- 18. Do not enable Dout buffer when using delayed write timing.

Timing Waveforms *19

Read Cycle

Note: 19 \times H or L (H: V_{IH} (min) $\leq V_{IN} \leq V_{IH}$ (max), L: V_{IL} (min) $\leq V_{IN} \leq V_{IL}$ (max)) Invalid Dout

Early Write Cycle

Delayed Write Cycle

Read-Modify-Write Cycle

RAS-Only Refresh Cycle

CAS-Before-**RAS** Refresh Cycle

Fast Page Mode Read Cycle

Fast Page Mode Early Write Cycle

Fast Page Mode Delayed Write Cycle

Fast Page Mode Read-Modify-Write Cycle

