The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Final Examination - Fall 02/03

Answer ALL questions

All Equal Marks

Date: 12 December 2002 (Thu)

Time allowed: 3 Hours

- 1. (a) Find the mean and variance of the rectangular (or uniform) distribution on $(0,\theta)$, where $\theta > 0$.
 - (b) If $Y_1, ..., Y_n$ are independently rectangularily distributed on $(0, \theta)$, obtain the probability density function of $Z = \max(Y_1, ..., Y_n)$.
 - (c) Find the expectation and variance of Z.
 - (d) If $Y_1, ..., Y_n$ are as in (b) and $\overline{Y} = \sum Y_i / n$, find the expectation and variance of \overline{Y} .
 - (e) If θ is an unknown parameter, construct two unbiased estimators of θ , one based on Z and one based on \overline{Y} .
 - (f) Compare the variances of the two unbiased estimates in (e) and comment briefly.
- 2. Suppose that $X_1, ..., X_n$ is a random sample from Poisson distribution with mean θ .
 - (a) Find the maximum likelihood estimate of θ^2 .
 - (b) Obtain an unbiased estimate of θ^2 of the form $a\overline{X} + b\overline{X}^2$ where a and b are constants and $\overline{X} = \sum X_i / n$.
 - (c) Find $Var(a\overline{X} + b\overline{X}^2)$.
 - *Hints*: (1) $\frac{d^r m(t)}{dt^r}\Big|_{t=0} = E(x^r)$ where m(t) is moment generating function of x.

(2)
$$\left(\sum_{i=1}^{n} x_i\right)^3 = \sum_{i=1}^{n} x_i^3 + 3\sum_{i=1}^{n} \sum_{j \neq i} x_i^2 x_j + \sum_{i=1}^{4} \sum_{j \neq i} \sum_{k \neq i, j} x_i x_j x_k$$

(3)
$$\left(\sum_{i=1}^{n} x_{i}\right)^{4} = \sum_{i=1}^{n} x_{i}^{4} + 3\sum_{i=1}^{n} \sum_{j \neq i} x_{i}^{2} x_{j}^{2} + 4\sum_{i=1}^{n} \sum_{j \neq i} x_{i}^{3} x_{j} + 6\sum_{i=1}^{n} \sum_{j \neq i} \sum_{k \neq i, j} x_{i}^{2} x_{j} x_{k}$$
$$+ \sum_{i=1}^{n} \sum_{j \neq i} \sum_{k \neq i, j} \sum_{l \neq i, j, k} x_{i} x_{j} x_{l} x_{k}$$

(d) What is the Crámer Rao lower bound for the variance of an unbiased estimator of θ^2 ? Is the Crámer Rao lower bound attained? Why?

- 3. (a) The observations $X_1, ..., X_m$ are independent and each has a Binomial distribution with index n and parameter θ . Find the minimum variance unbiased estimator of θ^k , where k is an integer $(1 \le k \le mn)$.
 - (b) A random sample, $X_1, ..., X_n$, is taken from the exponential distribution with parameter λ . Find the minimum variance unbiased estimator of $\lambda^r (0 < r < n)$ where r is an integer.
- 4. The observations $X_1, ..., X_n$ are independent and have an exponential distribution with unknown parameter λ . Find a uniformly most powerful test of the null hypothesis $H_0: \lambda = \lambda_0$ against the alternative $H_A: \lambda > \lambda_0$.

In a particular situation measurement of each individual observation is costly although comparing observations is not. For this reason a different test is suggested in which H_0 is rejected if the observed value of $T = \max_i(X_i)$ is less than a constant c which is chosen at significance level $\alpha(0 < \alpha < 1)$. Find the power function of this test. Hence, determine the minimum sample size n required to obtain power at least 0.8 against the alternative $\lambda_1 = 0.002$

Is the sample size larger than that required in the previous test? Why? NO calculation is needed.

5. (a) $X_1,...,X_n$ are independent Poisson random variables with $E(X_i) = \mu_i$ (i = 1, ..., n). Derive the approximate large sample likelihood ratio test for the null hypothesis that $\mu_1 = \cdots = \mu_n$ against the alternative that the $\mu_i s$ are arbitrary.

By writing $X_i = \overline{X} + U_i$, where $\overline{X} = \sum X_i / n$, and assuming that the $U_i s$ are small compared with \overline{X} , show that the test in (a) approximately compares $s^2 = \sum (X_i - \overline{X})^2 / (n-1)$ with \overline{X} . Comment.

Hint: Take $Log(1 + a) \approx a$ if a is small.

when $\lambda_0 = 0.001$ and $\alpha = 0.05$.

(b) Let $X_1, ..., X_n$ be i.i.d. random variables, each with the Poison distribution of parameter μ . The best test of $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1(>\mu_0)$ is $C_1 = \left\{x: \sum_{i=1}^n x_i \ge k\right\}$. By using the central limit theorem to approximate the distribution of $\sum_{i=1}^n x_i$, find the smallest value of n required to obtain power at least 0.9 against the alternative $\mu_1 = 1.21$ when $\mu_0 = 1$ and $\alpha = 0.05$.

***** END *****