FMI, Info, Anul I

Logică matematică și computațională

Seminar 6

(S6.1) Fie \mathcal{L} un limbaj de ordinul I. Să se arate că pentru orice \mathcal{L} -formule φ , ψ şi orice variabilă $x \notin FV(\varphi)$,

- (i) $\forall x(\varphi \wedge \psi) \vDash \varphi \wedge \forall x\psi$;
- (ii) $\varphi \bowtie \exists x \varphi$;
- (iii) $\exists x(\psi \to \varphi) \vDash \forall x\psi \to \varphi$.

(S6.2) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de relație de aritate 2, notat cu \sim . Să se scrie un \mathcal{L} -enunț φ ce spune că relația asociată simbolului este o relație de echivalență cu proprietatea că fiecare clasă a sa are exact două elemente. Să se determine mulțimea acelor $n \in \mathbb{N}^*$ cu proprietatea că există o \mathcal{L} -structură cu n elemente care satisface φ .

(S6.3) Considerăm limbajul \mathcal{L}_r ce conține doar două simboluri, anume două simboluri de operație de aritate 2, notate cu \dotplus și $\dot{\times}$, și \mathcal{L}_r -structura $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Să se dea exemplu de \mathcal{L}_r -formulă ψ astfel încât pentru orice $e: V \to \mathbb{R}$,

$$\mathcal{R} \vDash \psi[e] \Leftrightarrow e(v_0) \le e(v_1).$$

(S6.4) (Exercițiu suplimentar) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de funcție de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z},+) \vDash \varphi$, dar $(\mathbb{Z} \times \mathbb{Z},+) \not\vDash \varphi$ (în ultima sa apariție, simbolul + denotă operația de adunare pe componente pe $\mathbb{Z} \times \mathbb{Z}$).