МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И.

ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5

«Исследование взаимодействия с портами ввода-вывода (маскирование, «бегущие огни», сканирование клавиатуры, вывод слова)»

Практическая работа по дисциплине «Системное программирование» студента 3 курса группы ИВТ-б-о-222(2) Чудопалова Богдана Андреевича

09.03.01 «Информатика и вычислительная техника»

Цель: 1. Практически закрепить знание теоретических сведений о возможностях взаимодействия МП с портами ввода-выводаопераций микропроцессорами; 2. Привить практические навыки написания сложных программ и программирования различных операций в машинных кодах для микропроцессора.

Ход работы

Задание 1.

Адрес	Содержимое	Метка	Команда
0800	DB	START:	IN 05
0801	05		
0802	D3		OUT 05
0803	05		
0804	08		JMP START
0805	00		
0806	08		

Рисунок 1.1. Код программы для передачи данных из порта ввода (05 по умолчанию в эмуляторе лабораторного стенда УМПК-80) в порт вывода (также 05 по умолчанию). Т.к. тело программы заключено в цикл, при соответствующем изменении данных на тумблере, подключённом к порту ввода, изменяются индикаторы (горящие «лампочки»), подключённые к порту вывода.

Рисунок 1.2. Как и было сказано, при изменении входных данных изменяется и вывод программы.

Рисунок 1.3. После остановки программы синхронизация значений на вводе и выходе программы перестала проявлять себя.

Задание 2.

Содержимое	Метка	Команда
DB	START:	IN 05
05		
06		MVI B, 0A
0A		
A0		ANA B
	DB 05 06 0A	DB START: 05 06 0A

0805	D3	OUT 05
0806	05	
0807	C3	JMP START
0808	00	
0809	08	

Рисунок 2.1. Код программы с использованием логических команд при взаимодействии портов ввода-вывода. Видно, что благодаря использованию логического «И» вводимых данных с A_{16} (0000 1010₂)в порте вывода лишь индикаторы 1 и 3 реагируют на включение соответсвующих тумблеров ввода (биты, которые оъединяются по «И» с нулями, не зависят от положения переключателей).

Адрес	Содержимое	Метка	Команда	
0800	DB	START:	IN 05	
0801	05			
0802	06		MVI B, 0A	
0803	0A			
0804	В0		ORA B	
0805	D3		OUT 05	
0806	05			
0807	C3		JMP START	
0808	00			
0809	08			

Рисунок 2.2. Замена оператора ANA (логическое «И») на ORA (логическое «ИЛИ»). Видно, что благодаря использованию логического «ИЛИ» с 0000 0101₂ вводимых данных индикаторы 1 и 3 всегда будут «гореть», т.к. биты 1 и 3 ввода объединяются с вводом по «ИЛИ» и поэтому в выводе в битах 1 и 3 всегда будет значение «1».

Адрес	Содержимое	Метка	Команда
0800	DB	START:	IN 05
0801	05		
0802	06		MVI B, 0A
0803	0A		
0804	A8		XRA B
0805	D3		OUT 05
0806	05		

0807	C3	JMP START
0808	00	
0809	08	

Рисунок 2.3. Замена оператора ORA (логическое «ИЛИ») на XRA (взаимоисключающее «ИЛИ»). Получаем «инвертированный» результат по сравнению с рис. 2.1., как если бы мы проводили логическое «И» с 1111 1010₂: индикаторы 0, 2, 4-7 загорятся тогда, когда включены соответствующие тумблеры; 1 и 2 горят тогда, когда соответствующие тумблеры выключены.

Задание 3.

Адрес	Содержимое	Метка	Команда
0800	DB	START:	IN 05
0801	05		
0802	06		MVI B, 04
0803	04		
0804	A0		ANA B
0805	CA		JZ OFF
0806	0F		
0807	08		
0808	3E	ON:	MVI A, FF
0809	FF		
080A	D3		OUT 05
080B	05		
080C	C3		JMP START
080D	00		
080E	08		
080F	3E	OFF:	MVI A, 00
0810	00		
0811	D3		OUT 05
0812	05		
0813	C3		JMP START
0814	00		

Рисунок 3.1. Код программы для выделения определенных битов слова (маскирования) при взаимодействии портов ввода-вывода. В зависимости от хранимого в аккумуляторе значения (в данном случае — 04₁₆, оно же 0000 0100₂), при включённом состоянии соответствующих тумблеров (в нашем случае — одного тумблера 2) все индикаторы порта вывода загорятся.

Рисунок 3.2. Остальные тумблеры вывод «игнорирует».

Адрес	Содержимое	Метка	Команда
0800	DB	START:	IN 05
0801	05		
0802	06		MVI B, 01
0803	01		
0804	A0		ANA B
0805	CA		JZ OFF
0806	0F		
0807	08		

0808	3E	ON:	MVI A, FF
0809	FF		
080A	D3		OUT 05
080B	05		
080C	C3		JMP START
080D	00		
080E	08		
080F	3E	OFF:	MVI A, 00
0810	00		
0811	D3		OUT 05
0812	05		
0813	C3		JMP START
0814	00		
0815	08		

Рисунок 3.3. Изменённый код программы: теперь программа «отслеживает» состояние тумблера 1 (хранимое в аккумуляторе значение $-01_{16} = 0000$ 0001_2).

Задание 4.

Адрес	Содержимое	Метка	Команда
0800	3E		MVI A, 80
0801	80		
0802	1E	LOAD:	MVI E, 02
0803	02		

0804	D3		OUT 05
0805	05		
0806	1D	LOOP:	DCR E
0807	C2		JNZ LOOP
0808	06		
0809	08		
080A	0F		RRC
080B	C3		JMP LOAD
080C	02		
080D	08		

Рисунок 4.1. Код программы для создания «бегущего огня» (направление – вправо, т.к. RRC) при взаимодействии портов ввода-вывода. Задержка

организована лишь одним регистром с малым хранимым значением (02_{16}) ввиду низкой скорости работы эмулятора.

Содержимое	Метка	Команда
3E		MVI A, 0A
0A		
1E	LOAD:	MVI E, 02
02		
D3		OUT 05
05		
1D	LOOP:	DCR E
C2		JNZ LOOP
06		
08		
07		RLC
C3		JMP LOAD
02		
08		
	3E 0A 1E 02 D3 05 1D C2 06 08 07 C3 02	3E 0A 1E LOAD: 02 D3 05 1D LOOP: C2 06 08 07 C3 02

Рисунок 4.2. Изменённый код программы для создания «бегущего огня»: теперь кол-во «огней» равно двум, т.к. в аккумулятор заносится значение $0A_{16}$, оно же $0000\ 1010_2$, направление их хода — влево.

Задание 5.

Адрес	Содержимое	Метка	Команда
0800	3E	LOOP:	MVI A, 92
0801	92		
0802	D3		OUT 05
0803	05		
0804	16		MVI D, 05

0805	15	
0806	CD	CALL DELAY
0807	1E	
0808	08	
0809	3E	MVI A, 49
080A	49	
080B	D3	OUT 05
080C	05	
080D	16	MVI D, 05
080E	15	
080F	CD	CALL DELAY
0810	1E	
0811	08	
0812	3E	MVI A, 24
0813	24	
0814	D3	OUT 05
0815	05	
0816	16	MVI D, 05
0817	15	
0818	C3	JMP LOOP
0819	00	
081A	08	

081B	CD		CALL DELAY
081C	1E		
081D	08		
081E	15	DELAY:	DCR D
081F	C2		JNZ DELAY
0820	1E		
0821	08		
0822	C9		RET

Рисунок 5.1. Код программы реализации «бегущих огней» при взаимодействии портов ввода-вывода с использованием подпрограммы.

Адрес	Содержимое	Метка	Команда
0800	3E	LOOP:	MVI A, 92
0801	92		
0802	D3		OUT 05
0803	05		
0804	16		MVI D, 15
0805	15		
0806	CD		CALL DELAY
0807	1E		
0808	08		
0809	3E		MVI A, 49
080A	49		
080B	D3		OUT 05
080C	05		
080D	16		MVI D, 15
080E	15		
080F	CD		CALL DELAY
0810	1E		
0811	08		
0812	3E		MVI A, 24
0813	24		
0814	D3		OUT 05

0815	05		
0816	16		MVI D, 15
0817	15		
0818	C3		JMP LOOP
0819	00		
081A	08		
081B	CD		CALL DELAY
081C	1E		
081D	08		
081E	15	DELAY:	DCR D
081F	C2		JNZ DELAY
0820	1E		
0821	08		
0822	C9		RET

Рисунок 5.2. Код программы реализации «бегущих огней» при взаимодействии портов ввода-вывода с использованием подпрограммы, время задержки (оно же – значение в регистре D) увеличено в 3 раза.

Вывод: в ходе проведённой работы были практически закреплены знания теоретических сведений о возможностях взаимодействия МП с портами ввода-вывода операций микропроцессорами, написаны простые программы для синхронизации ввода-вывода, использования логических операций вместе с операциями ввода-вывода, маскирования ввода-вывода, программы «бегущих огней».