Feuille d'exercices n. 6 : Séries de Laurent et théorème des résidus.

Séries de Laurent.

Soit U un ouvert de \mathbb{C} et soit z_0 un point de U. Si f est holomorphe sur $U \setminus z_0$, elle possède un développement de Laurent en z_0 :

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n.$$

Le coefficient a_{-1} de $(z-z_0)^{-1}$ dans le développement en série de Laurent de f en z_0 s'appelle le résidu de f en z_0 . On le note $res(f, z_0)$.

Exercice 1 Déterminer les séries de Laurent et le résidu à l'origine des fonctions suivantes :

- (a) $f(z) = \frac{1}{z}$;
- (b) $f(z) = \frac{1}{z^2+1}$;
- (c) $f(z) = \frac{1}{z(z^2+1)}$.

Exercice 2 Déterminer la série de Laurent à l'origine de la fonction analytique exp(1/z), et son résidu à l'origine. En $z_0 \neq 0$ quel est le résidu de cette fonction?

Exercice 3 Déterminer le résidu, et le terme constant des séries de Laurent à l'origine pour les fonctions:

- (a) $f(z) = \frac{1}{\sin z}$; (b) $f(z) = \frac{1}{\sin z \sinh z}$;
- (c) $f(z) = \frac{1}{z \sin z \sinh z}$.

Exercice 4 Déterminer les séries de Laurent de $f(z) = \frac{1}{(z-1)(z-2)}$ dans chacune des trois couronnes ouvertes $0<|z|<1,\ 1<|z|<2,\ 2<|z|<\infty,$ ainsi que les séries de Laurent de f aux points 0, 1, 2 et 3. Quels sont les résidus en z = 0, z = 1, z = 2 et z = 3?

Théorème des résidus.

Exercice 5 Soit 0 < a < b < c trois nombres réels et soit C le cercle de rayon r centré en l'origine, parcouru dans le sens direct. Calculer

$$\int_C \frac{1}{(z-a)(z-b)(z-c)} dz$$

selon la valeur de r. On donnera deux preuves, soit en utilisant le théorème des résidus, soit en décomposant en éléments simples.

Exercice 6 Calculer le résidu aux singularités isolées des fonctions suivantes :

$$f(z) = \frac{z^2 + z + 1}{z(z^2 + 1)^2}, \ g(z) = \frac{z^a}{1 - z}, \ h(z) = \log(z)$$

(on prendra la détermination principale des fonctions z^a et $\log(z)$).

Exercice 7 Examiner la nature des singularités des fonctions suivantes et déterminer le résidu en chacune de ces singularités :

(i)
$$\frac{1}{z(1-z^2)}$$
, (ii) $\tan z$, (iii) $\frac{\sin z}{z^2}$, (iv) $\frac{z}{1+z^4}$, (v) $(\frac{z+1}{z^2+1})^2$.

Exercice 8 Soit C_r le cercle de centre 0 et rayon r. Utiliser le théorème des résidus pour calculer les intégrales suivantes :

$$(i) \int_{C_4} \frac{1}{z^2 - 5z + 6} dz, \ (ii) \int_{C_{5/2}} \frac{1}{z^2 - 5z + 6} dz, \ (iii) \int_{C_2} \frac{e^{az}}{1 + z^2} dz \ (a \in \mathbb{R}).$$

Exercice 9 Que vaut $\int_{|z|=N} \tan(\pi z) dz$, pour $N \in \mathbb{N}$, $N \ge 1$?

Exercice 10 Soit $n \ge 2$ un entier. Calculer $\int_0^{+\infty} \frac{dx}{1+x^n}$ (on pourra intégrer sur le bord du compact $K = \{re^{it}; 0 \le r \le R \text{ et } 0 \le t \le 2\pi/n\}$).

Exercice 11 Soient $P, Q \in \mathbb{R}[X] \setminus 0$, tels que $deg(P) \leq deg(Q) - 2$ et P et Q sont premiers entre eux. On suppose que Q n'a pas de zéros réels, et on note a_1, \ldots, a_r ses zéros de partie imaginaire strictement positive. Prouver que

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2i\pi \sum_{k=1}^{r} Res(\frac{P}{Q}, a_k).$$

En déduire la valeur de

$$\int_{-\infty}^{+\infty} \frac{x(x+1)}{(x^2+1)^2} dx.$$