Package 'CYCLeR'

July 1, 2022

```
Version 1.4.2
Description CYCLeR is a software package for assembly of circRNA transcripts from
      RNA-seq data. Takes a set of BSJ prediction files and RNA-seq BAM files as an input
      and outputs circRNA trascnripts as FASTA, GTF and flat annotation files. The tools
      also outputs a padded FASTA to serve as an index for transcript EM abundance estimation.
License GNU General Public License (v3)
LazyData yes
Depends R (>= 4.0),
      Rsamtools (>= 1.31.2),
      SummarizedExperiment,
      methods,
      tidyverse (\geq 1.3.1),
      SGSeq (>= 1.23.2),
      igraph (>= 1.2.6),
      DEXSeq,
      rtracklayer (>= 1.52.1),
      polyester,
      Rsubread (>= 2.8.2)
Imports AnnotationDbi,
      BiocGenerics,
      Biostrings,
      GenomicAlignments,
      GenomicFeatures,
      GenomeInfoDb,
      RUnit,
      S4Vectors,
      grDevices,
      graphics,
      igraph,
      parallel,
      rtracklayer,
      stats,
      tidyverse,
      SGSeq,
      igraph,
      DEXSeq,
      polyester
```

Type Package

Title CircRNA transcriptome assembly tool

```
Suggests BiocStyle,
BSgenome.Hsapiens.UCSC.hg38,
TxDb.Hsapiens.UCSC.hg38.knownGene,
knitr,
rmarkdown

VignetteBuilder knitr
biocViews TranscriptomeAssembly, RNASeq, Transcription

RoxygenNote 7.2.0

Encoding UTF-8
```

R topics documented:

```
6
9
14
```

Description

Combine 2 BSJ tables

Usage

Index

```
combine_two_BSJ_tables(ce_bsjs, ciri_bsjs)
```

Arguments

```
ce_bsjs BSJ table 1
ciri_bsjs BSJ table 2
```

filter_bam 3

Details

Just a combination of BSJ tables to make sure we have a complete set of BSJs. The variable names do not actually matter since the all tables have the same formatting.

Value

Tibble object with combined filtered BSJ coordinate and number of junction spanning reads across sample.

Author(s)

Stefan Stefanov

filter_bam

BAM file filter

Description

A wrapper function for samtools use to trim the files

Usage

```
filter_bam(BSJ_gr, sample_table, samtools_prefix)
```

Arguments

BSJ_gr a GRange of BSJ cooredinates

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

samtools_prefix

a string that corresponds to user's samtools run prefix

Details

This function removes the BAM file reads that do not overlap with the BSJ loci. This significantly speeds us the feature detection and lowers the virtual memory requirements

Value

BAMFileList object with info on the trimmed files

Author(s)

4 get_seqs

```
find_depleted_features
```

CircRNA feature selection

Description

CircRNA feature selection

Usage

```
find_depleted_features(circ_fc_adj, sample_table, circ_sg, test = "DEX")
```

Arguments

circ_fc_adj count matrix corresponding to the circRNA features

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

circ_sg SGSeq object supplying feature info

test either "DEX" for DEXSeq based feature selection or "comparison" simple av-

erage comaparison

Details

This function works in 2 ways: direct comparison of average quantities or as a wrapper of DEXSeq. In case of dataset with replicates, the suggested approach is the use of DEXSeq statistical test.

Value

vector of featureID

Author(s)

Stefan Stefanov

get_seqs

Extract sequence per exon bin

Description

A wrapper function for BSgenome subsequencing

Usage

```
get_seqs(full_sg, bs_genome)
```

Arguments

full_sg a SGSeq object of exon bins

bs_genome "BSgenome" name

make_BSJ_gr 5

Details

Extracts sequence based on SGSeq object and "BSgenome" name

Value

sequence list

Author(s)

Stefan Stefanov

make_BSJ_gr

Convert BSJ string to GRanges obejct

Description

Convert BSJ string to GRanges obejct

Usage

```
make_BSJ_gr(BSJ_set)
```

Arguments

 BSJ_set

a list of BSJ ID records procudes by process_BSJs or combine_two_BSJ_tables

Details

Convert BSJ string to GRanges obejct

Value

GRanges object indicating BSJ loci

Author(s)

6 merge_fasta

make_BSJ_sg

Preparation of the BSJ-specific splice graphs

Description

Selection of the exons based on BSJ set

Usage

```
make_BSJ_sg(circ_sg, BSJ_gr)
```

Arguments

circ_sg SGSeq prediction object
BSJ_gr a GRange of BSJ coordinates

Details

Selection of the exons based on BSJ set

Value

SGSeq containing exons belonging to BSJ loci

Author(s)

Stefan Stefanov

merge_fasta

Merging 2 DNAStringSets

Description

Merging 2 DNAStringSets Merging 2 DNAStringSets

Usage

```
merge_fasta(qics_fa, known_fa)
```

Arguments

qics_fa DNAStringSet 1 known_fa DNAStringSet 2

Value

merged DNAStringSet file to be used for quantification

Author(s)

merge_qics 7

merge_qics	Merging 2 assemblies
------------	----------------------

Description

Pair-wise merging 2 assemblies Pair-wise merging 2 assemblies

Usage

```
merge_qics(qics1, qics2, sgfc_pred)
```

Arguments

qics1 assembly 1 qics2 assembly 2

sgfc_pred SGFC from the SGSeq feature detection

Value

data.frame of transcript information in flat format

Author(s)

Stefan Stefanov

Description

Creates a disjointed set of exons based on a SGSeq obejct and a BSJ GRanges object

Usage

```
overlap_SG_BSJ(sgfc_pred, BSJ_gr, sg_annot)
```

Arguments

sgfc_pred SGSeq prediction object
BSJ_gr a GRange of BSJ cooredinates

sg_annot SGSeq prediction object with annotation info

Details

Creates a disjointed set of exons based on a SGSeq obejct and a BSJ GRanges object. The function keeps the SGSeq metadata

Value

SGSeq with disjoint exon bins

8 plotRanges2

Author(s)

Stefan Stefanov

parse_files

Parse BSJ input

Description

Parse BSJ files from CIRI, CIRCexplorer2 or a TSV file

Usage

```
parse_files(file_list, file_path, input_type)
```

Arguments

file_list list with file names

file_path string object with file path, clould be an empty string

input_type CIRI for CIRI2 input, CE for CIRCexplorer2 input and tsv for TSV formatted

input

Details

This processes BSJ prediction files and prepares them for the next step of the pipeline. input_type is essential for the correct parsing of the files.

Value

Tibble object with combined BSJ coordinate and number of junction spanning reads across sample

Author(s)

Stefan Stefanov

plotRanges2

Plot ranges

Description

Plots GRanges objects

Usage

```
plotRanges2(...)
```

Details

ggplot of multiple GRanges object. Every object is auto assigned a colour from colorblind friendly scheme

prep_circular_sg 9

Value

ggplot of multiple GRanges objects

Author(s)

Stefan Stefanov

prep_circular_sg

Preparing circular splice graph features

Description

Preparing circular splice graph features Preparing circular splice graph features

Usage

```
prep_circular_sg(full_sg, full_fc, sgfc_pred, bs_genome, BSJ_gr, th = 15)
```

Arguments

full_sg	SGranges object supplying feature info
full_fc	count matrix corresponding to the features
sgfc_pred	SGFC from the SGSeq feature detection

bs_genome BSGenome object used for extracting the sequences

BSJ_gr GRange object of BSJ coordinates

th minimum number of reads limiting exon selection

Value

SummarizedExperiment object with info on the circular splice graph features

Author(s)

Stefan Stefanov

prep_output_gtf

Creation of GTF based on CYCLeR results

Description

Creation of GTF based on CYCLeR results

Usage

```
prep_output_gtf(qics_out, sgfc, annot_list = NULL)
```

10 process_BSJs

Arguments

sgfc SummarizedExperiment object with info on the circular splice graph features

annot_list ORG package; soon to be expanded

qics CYCLeR data. frame of intermediate results

Details

This function takes the

Value

GTF-like table

Author(s)

Stefan Stefanov

process_BSJs

Process BSJs

Description

process the BSJ table and select high confidence BSJs

Usage

```
process_BSJs(cdf, sample_table)
```

Arguments

cdf tibble produced by parse_files

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

file_path string object with file path, clould be an empty string

Details

Filters BSJ based on comparison of the average CPM values of BSJs

Value

Tibble object with combined filtered BSJ coordinate and number of junction spanning reads across sample.

Author(s)

recount_features 11

recount_features

Re-count of the reads per exon bin

Description

A wrapper function for Rsubread

Usage

```
recount_features(full_sg, sample_table, paired_end = T)
```

Arguments

full_sg a SGSeq object of exon bins

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

paired_end a binary for pair-end info

Details

This function performs requantification of the exon bins with specifically selected parameters

Value

BAMFileList object with info on the trimmed files

Author(s)

Stefan Stefanov

RPKM_calc

RPKM calculation for the genomic features

Description

RPKM calculation for the genomic features

Usage

```
RPKM_calc(
  count_matrix,
  sg,
  bsj_granges,
  bs_genome,
  sample_table,
  feature_type,
  fsj_overhang = 3,
  bsj_overhang = 15,
  eff_length_correction = T,
  gc_correction = F
)
```

Arguments

count_matrix count matrix corresponding to the features sg SGSeq object supplying feature info

bsj_granges GRange of BSJ cooredinates

bs_genome a BSGenome object used for extracting the sequences

sample_table sample table formatted according to the manual, Must contain "sample_name"

"treatment" "file_bam" "lib_size" "read_len"; NB the values in column "treat-

ment" can only be "control" and "enriched"

feature_type either "e" for exons ot "j" for junctions

fsj_overhang the FJS overhand used in the mapping a.k.a. anchor bsj_overhang the BSJ overhand used in the chimeric detection

 ${\it eff_length_correction}$

whether or not to apply effective length correction

gc_correction whether or not to apply GC-content correction; requires further testing

Details

This function performs RPKM calculations for the exonic features. The RPKM calculation is performed based on the exact sequences for the exons. For junctions, the sequences are selected based on the exons, flanking the junction. The function takes into account the needed effective length corrections.

Value

BAMFileList object with info on the trimmed files

Author(s)

Stefan Stefanov

transcripts_per_sample

Transcript assembly

Description

Transcript assembly per sample Transcript assembly per sample based on sample name in the "sample_table"

Usage

```
transcripts_per_sample(sgfc, BSJ_gr, sample_name)
```

Arguments

sgfc SummarizedExperiment object with info on the circular splice graph features

BSJ_gr GRange object of BSJ coordinates

sample_name name of the sample as indicated in the sample table

Value

 $\verb|data.frame| of transcript| information in flat format|$

Author(s)

Index

* BSJ	* seqs
<pre>combine_two_BSJ_tables, 2</pre>	get_seqs, 4
make_BSJ_gr,5	* splice
process_BSJs, 10	<pre>prep_circular_sg, 9</pre>
* Bam	
filter_bam,3	combine_two_BSJ_tables, 2
recount_features, 11	filter_bam, 3
* FASTA	find_depleted_features, 4
$merge_fasta, 6$	Tind_depieted_Teatures, 4
* Filter	get_seqs,4
filter_bam, 3	
recount_features, 11	make_BSJ_gr,5
* GRanges	make_BSJ_sg, 6
make_BSJ_gr,5	merge_fasta,6
make_BSJ_sg,6	merge_qics,7
overlap_SG_BSJ, 7	
plotRanges2, 8	overlap_SG_BSJ,7
* GTF	parca files 8
<pre>prep_output_gtf, 9</pre>	<pre>parse_files, 8 plotRanges2, 8</pre>
* RPKM	prep_circular_sg,9
RPKM_calc, 11	prep_circular_sg, 9 prep_output_gtf, 9
* assembly	process_BSJs, 10
merge_qics, 7	process_b373, 10
transcripts_per_sample, 12	recount_features, 11
* combine	RPKM_calc, 11
<pre>combine_two_BSJ_tables, 2</pre>	_ ,
* depleted	transcripts_per_sample, 12
<pre>find_depleted_features, 4</pre>	
* filter	
process_BSJs, 10	
* graph	
<pre>prep_circular_sg, 9</pre>	
* merge	
merge_fasta,6	
* overlap	
make_BSJ_sg, 6	
overlap_SG_BSJ,7	
* parse	
parse_files,8	
* plot	
plotRanges2, 8	
* preparation	
<pre>prep_circular_sg, 9</pre>	