Undecidability + Diagonalization

Extra Midterm Review Sessions

- Daphne: Thursday 2/22 6-8pm LMBE 1130
 - Topic: Turing Reductions and Dynamic Programming

- Eric K: Monday 3/4 6-8pm BBB 1670
 - Topic: past exams

Review: Undecidability

Question: What are the possible outcomes of a TM M?

Answer: M either (i) accepts, (ii) rejects, or (iii) it "loops" (forever)

Definition: A Turing Machine M decides a language L if it:

- 1. <u>accepts</u> every string in L, and
- <u>rejects</u> every string not in L (and never loops forever)

A language L is **decidable** if there is a TM that decides L. Otherwise L is **undecidable**.

Review: Church-Turing Thesis

"Any natural notion of being 'algorithmically computable' is captured by Turing Machines."

This is not a theorem,
but everyone seems to believe it.
We will assume it's true and proceed from there.

Anything that can be computed by Python, C++, a quantum computer, LaTex, pseudocode, etc. can be computed by a Turing Machine.

This statement we know is true

Question: To prove that a language L is decidable, must we design a TM?

Question: If a language L is decidable, then must L \cup { ϵ } be decidable?

Existence of Undecidable Languages

To show that there **exists** an undecidable language (i.e. a language that no TM decides), we would like to show that:

total # TMs < total # languages.

But both of these quantities are **infinite** so what does that even mean?

To infinity and beyond!

203 Review: Functions and Set Cardinality

- * A (total) function $f: A \to B$ maps each element $a \in A$ to an element $f(a) \in B$.
- * A function is 1-to-1 (injective) if each element $a \in A$ is mapped to a <u>different</u> element $f(a) \in B$.
 - * Formally: $\forall a_1, a_2 \in A$. $a_1 \neq a_2 \Longrightarrow f(a_1) \neq f(a_2)$

* If a 1-to-1 function $f: A \to B$ exists, then we say $|A| \le |B|$.

Warning: properties of "≤" for finite values do not necessarily apply to infinite values

203 Review: Countability

The attributes
"equal," "greater,"
and "less," are not
applicable to
infinite, but only to
finite, quantities.

Galileo (1638)

Actually yes they are

Georg Cantor (1895)

- * **Definition:** A set S is **countable** if it is "no larger than" the naturals $\mathbb{N} = \{0,1,2,...\}$, i.e. $|S| \leq |\mathbb{N}|$.
- * Equivalently: S is countable if there exists a 1-to-1 (injective) function $f: S \to \mathbb{N}$.
- * We can also show S is countable by demonstrating how to list all the elements in S such that each element $S \in S$ appears <u>somewhere</u> on the list. Why?

Is a countable set?

The integers from 1 to 10?

The even numbers?

The integers?

The rationals?

The reals in (0,1)?

Natural Number

Real Number in (0,1)

1

2

3

. . .

11

12

• • •

.1

.2

.3

. . .

.11

.12

• • •

Check out my proof that the reals in (0,1) are countable!

There are at least two different flaws here

Suppose for contradiction we could write a list of all the reals in (0,1).

Our goal is to find a real in (0,1) that's not in this supposed list!

Why doesn't the same argument work to show that the integers are uncountable?

Kronecker

I don't know what predominates in Cantor's theory – philosophy or theology, but I am sure that there is no mathematics there.

I believe, and hope, that a future generation will laugh at this hocus pocus.

Wittgenstein

A Bag of Reals

I'm going to reach into this bag of reals and pick one out!

Book Recommendations about Infinities

Mark Brehob:

Chris Peikert:

Is a countable set?

The set of TMs?

(any TM can be represented by a finite-length binary string)

The set of possible TM inputs from {0,1}*? (i.e. the set of all finite-length binary strings)

The set of languages over the alphabet {0,1}? (i.e. the set of all infinite-length binary strings. Why?)

Formal Definition of a Turing Machine

* A Turing machine is a 7-tuple:

$$M = \langle Q, \Gamma, \Sigma, \delta, q_{start}, q_{accept}, q_{reject} \rangle$$

- * Q = set of states
- * Σ = the **input** alphabet (typically {0,1} but not always)
- * \perp = the **blank symbol**
- * Γ = the **tape alphabet** where generally $\Gamma = \Sigma \cup \{\bot\}$
- * $q_{start} \in Q$, = the initial state
- * $F = \{q_{accept}, q_{reject}\} \subseteq Q$, = the set of **final states**

(one accepting state and one rejecting state)

* $\delta: (Q \setminus F) \times \Gamma \to Q \times \Gamma \times \{L, R\}$ = the **transition function**

All of these sets are finite

Existence of Undecidable Languages

Task: Convince yourself that we can use diagonalization to construct an undecidable language.

Τ	M	S
	ļ	

	s1	s2	s3	s4	s5	s6	
M1	1	0	0	1	1	0	
M2	0	0	1	0	0	0	
М3	1	1	1	1	1	1	
M4	0	0	0	0	0	0	
M5	1	0	1	0	0	0	

A Bag of Languages

I'm going to reach into this bag of languages and pick one out!

