Biological Modeling of Neural Networks (PAL

Week 3 - Reducing detail: Two-dimensional neuron models

Wulfram Gerstner EPFL, Lausanne, Switzerland

Reading for week 3: NEURONAL DYNAMICS - Ch. 4.1- 4.3

Cambridge Univ. Press

3.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions
 MathDetour 1: Exploiting similarities
 MathDetour 2: Separation of time scales
- 3.2 Phase Plane Analysis
- Role of nullclines 3.3 Analysis of a 2D Neuron Model

 - constant input vs pulse input MathDetour 3: Stability of fixed points

3.1. Review of week 2 :Hodgkin-Huxley Model
cortical neuron T · d/du = Hodgkin-Huxley mode Compartmental model

3.1 Review of week 2: Hodgkin-Huxley Model					
Week 2: Cell membrane contains	Dendrites (week x:video): Active processes?				
- ion channels - ion pumpsa -70mV	assumption: passive dendrite point neuron spike generation				
lons/proteins	potential				

	1
Week 3 – 3.1. Overview and aims	
Can we understand the dynamics of the HH model?	
→ Reduce from 4 to 2 equations	
Week 3 – Quiz 3.1.	
A - A biophysical point neuron model with 3 ion channels, leach with activation and inactivation,	
has a total number of equations equal to [] 3 or [] 4 or	
[] 6 or	
Uideo Week 3.1-3.5 (82 minutes total)	
http://lcn.epfl.ch/~gerstner/NeuronalDynamics-MOOC1.html	
, a	
	1
Week 3 – 3.1. Overview and aims	
Toward a	
two-dimensional neuron model	
-Reduction of Hodgkin-Huxley to 2 dimension -step 1: separation of time scales	
-step 2: exploit similarities/correlations	

3.1. Reduction of Hodgkin-Huxley model					
$C\frac{du}{dt} = \overbrace{-g_{Na}m^3h(u - E_{Na})}^{I_{Na}}$					
$\frac{dm}{dt} = -\frac{m - m_0(u)}{\tau_m(u)}$ $\frac{dh}{dt} = -\frac{h - h_0(u)}{\tau_h(u)}$	$m_0(u)$ $n_0(u)$ $\tau_n(u)$ $\tau_m(u)$				
$\frac{dn}{dt} = -\frac{n - n_0(u)}{\tau_n(u)}$ 1) dynamics of <i>m</i> are fast					

Reduction of dimensionality: Separation of time scales			
$\tau_1 \frac{dx}{dt} = -x + c(t)$	Two coupled differential equations $\tau_i \frac{dx}{dt} = -x + h(y)$		
Exercise 1 (week 3) (later today!)	$\tau_2 \frac{dy}{dt} = f(y) + g(x)$ Separation of time scales $\tau_1 \ll \tau_2 \rightarrow x = h(y)$		
	Reduced 1-dimensional system $\tau_2 \frac{dy}{dt} = f(y) + g(h(y))$		

3.1. Reduction of Hodgkin-Huxley model

Reduction of Hodgkin-Huxley Model to 2 Dimension

-step 1: separation of time scales

-step 2: exploit similarities/correlations

Now!

3.1 Detour 1. Exploit similarities/correlations dynamics of h and n are similar $1-h(t)=a\,n(t)$ at rest $\frac{dh}{dt}=-\frac{h-h_0(u)}{\tau_k(u)}$ these h(t) $\frac{dh}{dt}=n-n_0(u)$

 $\tau_n(u)$

3.1. Reduction of Hodgkin-Huxley model
$C\frac{du}{dt} = -g_{Na}[m(t)]^{3}h(t)(u(t) - E_{Na}) - g_{K}[n(t)]^{4}(u(t) - E_{K}) - g_{I}(u(t) - E_{I}) + I(t)$
$C\frac{du}{dt} = -g_{Na} m_0(u)^3 (1 - w)(u - E_{Na}) - g_K \left[\frac{w}{a}\right]^4 (u - E_K) - g_I(u - E_I) + I(t)$
1) dynamics of m are fast $ m(t) = m_0(u(t)) $
2) dynamics of h and n are similar $ \frac{1-h(t)}{2} = an(t)$
w(t) $w(t)$
$\frac{dh}{dt} = -\frac{h - h_0(u)}{\tau_h(u)} \qquad dw = w - w_0(u)$
$\frac{dt}{dt} = \frac{\tau_n(u)}{\tau_n(u)} \qquad \frac{dw}{dt} = -\frac{w - w_0(u)}{\tau_{eff}(u)}$

R	11	R	led	luct	inn	ωf	Ho	lak	in-l	Hiry	ev	mod	le

$$C\frac{du}{dt} = -g_{Na} m_0(u)^3 (1-w)(u-E_{Na}) - g_K (\frac{w}{a})^4 (u-E_K) - g_I(u-E_I) + I(t)$$

$$\frac{dw}{dt} = -\frac{w-w_0(u)}{\tau_{eff}}(u)$$

$$\tau \frac{du}{dt} = F(u(t), w(t)) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u(t), w(t))$$

3.1. Reduction to 2 dimensions

2-dimensional equation

$$C\frac{du}{dt} = f(u(t), w(t)) + I(t)$$
$$\frac{dw}{dt} = g(u(t), w(t))$$

Enables graphical analysis! ———— Phase plane analysis

- -Discussion of threshold
- Constant input current vs pulse input
- -Type I and II
- Repetitive firing

Week 3 – Quiz 3.2-similar dynamics

Exploiting similarities:

A sufficient condition to replace two gating variables r,s by a single gating variable w is

- [] Both r and s have the same time constant (as a function of u)
- [] Both r and s have the same activation function
- [] Both r and s have the same time constant (as a function of u)

AND the same activation function

- [] Both r and s have the same time constant (as a function of u)
- AND activation functions that are identical after some additive rescaling
- [] Both r and s have the same time constant (as a function of u)
- AND activation functions that are identical after some multiplicative rescaling

Biological Modeling of Neural Networks

Week 3 - Reducing detail:

Two-dimensional neuron models

√ 3.1 From Hodgkin-Huxley to 2D

- Overview: From 4 to 2 dimensions
- MathDetour 1: Exploiting similarities
 MathDetour 2: Separation of time scales

3.2 Phase Plane Analysis - Role of nullclines

3.3 Analysis of a 2D Neuron Model

- constant input vs pulse input
- MathDetour 3: Stability of fixed points
- Wulfram Gerstner EPFL, Lausanne, Switzerland

3.2. Reduced	Hodgkin-Huxley	/ model
--------------	----------------	---------

$$C\frac{du}{dt} = -g_{Na} \frac{I_{Na}}{m_0(u)^3 (1-w)(u-E_{Na})} - g_K (\frac{w}{a})^4 (u-E_K) - g_I (u-E_I) + I(t)$$

$$\frac{dw}{dt} = -\frac{w - w_0(u)}{\tau_w(u)}$$

stimulus

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

3.2. Phase Plane Analysis/nullclines

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

First step:

u-nullcline:

all points with du/dt=0

w-nullcline:

all points with dw/dt=0

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis!

- -Discussion of threshold
- -Type I and II

3.2. FitzHugh-Nagumo Model		
$\tau \frac{du}{dt} = F(u, w) + RI(t)$		
$= u - \frac{1}{3}u^3 - w + RI(t)$	MathAnalysis, blackboard	
$\tau_{w} \frac{dw}{dt} = G(u, w) = b_0 + b_1 u - w$		
u-nullcline		
w-nullcline		

COST POSTICIONALE PERSONAL DE LAGRANDE	3.1 From Hodgkin-Huxley to 2D
Week 3 – Reducing detail: Two-dimensional neuron models	Overview: From 4 to 2 dimensions MathDetour 1: Exploiting similarities MathDetour 2: Separation of time scale: 2.2 MathDetour 2: Separation of time scale: 2.3 MathDetour 3: MathDetour 3
	3.2 Phase Plane Analysis - Role of nullclines 3.3 Analysis of a 2D Neuron Model
	 constant input vs pulse input MathDetour 3: Stability of fixed points
Wulfram Gerstner	
EPFL, Lausanne, Switzerland	

Discussion Exercise 1 – MathDetour 3.1: Separation of time scales					
Exercise 1 (week 3)	Two coupled differential equations				
Ex. 1-A $\tau_1 \frac{dx}{dt} = -x + c(t)$	$\tau_1 \frac{dx}{dt} = -x + c(t)$				
	$\tau_2 \frac{dy}{dt} = f(y) + g(x)$				
	Separation of time scales				
f	$ au_1 \ll au_2$				
	Reduced 1-dimensional system				
step Draw graph, blackboard	$\tau_2 \frac{dy}{dt} = f(y) + g(c(t))$				

Discussion Exercise 1 – MathDetour 3.1 Separation of time	scales
Two coupled differential equations	
$\tau_1 \frac{dx}{dt} = -x + c(t)$ a=0 a=1	x
$\tau_2 \frac{dc}{dt} = -c + f(x) \mathbf{a} + I(t)$	
$ au_1 \ll au_2$	○ c
'slow drive'	
Draw graph,	<u> </u>
blackboard	•

Discuss Exercise 1 – MathDetour 3.1: Separation of time scales					
	Two coupled differential equations				
Exercise 1 (week 3)	$\tau_1 \frac{dx}{dt} = -x + h(y)$ $\tau_2 \frac{dy}{dt} = f(y) + g(x)$ Separation of time scales				
even more general	$\tau_1 \ll \tau_2 \rightarrow x = h(y)$ Reduced 1-dimensional system $\tau_2 \frac{dy}{dt} = f(y) + g(h(y))$				

ı	Neuronal Dynamics – Quiz	3.3.
ı	A- Separation of time scales:	l
ı	We start with two equations	
I	$\tau_1 \frac{dx}{dt} = -x + y + I(t)$	
I	$\tau_2 \frac{dy}{dt} = -y + x^2 + A$	
I	[] If $\tau_{\rm l} \! < \! < \! \tau_{\rm 2}$ then the system can be reduded to	Doughtontion to 1/th
I	$\tau_2 \frac{dy}{dt} = -y + [y + I(t)]^2 + A$	Pay attention to <i>I(t)</i>
I	[] If $ au_2 << au_1$ then the system can be reduded to	
I	$\tau_1 \frac{dx}{dt} = -x + x^2 + A + I(t)$ [] None of the above is correct.	
ı	[] None of the above is correct.	

Week 3 – Quiz 3.2-similar dynamics
Exploiting similarities:
A sufficient condition to replace two gating variables r,s by a single gating variable w is
 Both r and s have the same time constant (as a function of u) Both r and s have the same activation function Both r and s have the same time constant (as a function of u)
AND the same activation function [] Both <i>r</i> and <i>s</i> have the same time constant (as a function of u)
AND activation functions that are identical after some additive rescaling [] Both <i>r</i> and <i>s</i> have the same time constant (as a function of u) AND activation functions that are identical after some multiplicative
rescaling

Biological Modeling of Neural Networks Value 3.1 From Hodgkin-Huxley to 2D - Overview: From 4 to 2 dimensions - MathDetour 1: Exploiting similarities - MathDetour 2: Separation of time scales 3.2 Phase Plane Analysis - Role of nullclines 3.3 Analysis of a 2D Neuron Model - constant input vs pulse input - MathDetour 3: Stability of fixed points Wulfram Gerstner EPFL, Lausanne, Switzerland

Neuronal Dynamics – 3.2. flow arrows	
$\tau \frac{du}{dt} = F(u, w) + R\widetilde{I(t)} $ Stimulus I=0 $\tau_w \frac{dw}{dt} = G(u, w)$	$\mathbf{W} = 0$
Consider change in small time step	
Flow on nullcline	/(t)=0 u
Flow in regions between nullclines	$\frac{du}{dt} = 0$ Stable fixed point

A. u-Nu	Ilclines			
		ws are always verti		Take 1 minute
		ws point always ve		
		ws are always horiz		
		ws point always to		
[] On th	e u-nullcline, arro	ws point always to	the right	
B. w-Nu	Ilclines			
[] On th	e w-nullcline, arro	ws are always vert	ical	
[] On th	e w-nullcline, arro	ws point always ve	ertically upward	
[] On th	e w-nullcline, arro	ws are always hori	zontal	
[] On th	e w-nullcline, arro	ws point always to	the left	
[] On th	e w-nullcline, arro	ws point always to	the right	
[] On th	e w-nullcline, arro	ws can point in an	arbitrary direction	n

3.2. Phase Plane Analysis

2-dimensional equation stimulus
$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$

$$\tau_w \frac{dw}{dt} = G(u, w)$$

Enables graphical analysis! — → Application to neuron models Important role of

- nullclines
- flow arrows

Week 3 – part 3: Anal	ysis of a 2D neuron model
ECCL PATTERINGS HORAL OLASANNE	3.1 From Hodgkin-Huxley to 2D
	3.2 Phase Plane Analysis - Role of nullcline
	3.3 Analysis of a 2D Neuron Model
	- pulse input
	- constant input
	-MathDetour 3: Stability of fixed points

3.3. Analysis of a 2D neuron model

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI(t)$$
$$\tau_{w} \frac{dw}{dt} = G(u, w)$$

2 important input scenarios

- Pulse input
- Constant input

Enables graphical analysis!

Week 3 – part 3: Ana	alysis of a 2D neuron model
COUL PREVENINGS FORM TO LOSSONES	√3.1 From Hodgkin-Huxley to 2D
	3.2 Phase Plane Analysis - Role of nullcline 3.3 Analysis of a 2D Neuron Model - pulse input - constant input
	-MathDetour 3: Stability of fixed points

Discussion of exercise 2	Detour.	Stability of fixed points
		2-dimensional equation
		$\tau \frac{du}{dt} = F(u, w) + RI_0$
		$\tau_{w} \frac{dw}{dt} = G(u, w)$
		How to determine stability of fixed point?

Discussion of Exercise 2 Detour. Stability of fixed points

 $y = w - w_0$

Discussion of Exercise 2 - Detour. Stability of fixed points

$$\tau\frac{du}{dt} = F(u,w) + RI_0 \qquad \text{Fixed point at } (u_0,w_0)$$
 At fixed point
$$\tau_w\frac{dw}{dt} = G(u,w) \qquad 0 = F(u_0,w_0) + RI_0$$
 zoom in:
$$x = u - u_0 \qquad 0 = G(u_0,w_0)$$

$$\tau\frac{dx}{dt} = F_u x + F_w y \qquad \frac{\mathrm{d}}{\mathrm{d}t} x = \left(\begin{array}{cc} F_u & F_w \\ G_u & G_w \end{array}\right) x \ .$$

$$\tau_w\frac{dy}{dt} = G_u x + G_w y$$

Discussion of Exercise 2 Detour. Stability of fixed points

Linear matrix equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \left(\begin{array}{cc} F_u & F_w \\ G_u & G_w \end{array}\right) \, \boldsymbol{x} \, ,$$

Search for solution

$$x(t) = e \exp(\lambda t)$$

Two solution with Eigenvalues λ_+, λ_-

$$\lambda_{+} + \lambda_{-} = F_{u} + G_{w}$$
$$\lambda_{+} \lambda_{-} = F_{u} G_{w} - F_{w} G_{u}$$

Discussion of Exercise 2: Detour. Stability of fixed points

Linear matrix equation

$$\frac{\mathrm{d}}{\mathrm{d}t} oldsymbol{x} = \left(egin{array}{cc} F_u & F_w \ G_u & G_w \end{array}
ight) oldsymbol{x}$$

Search for solution

$$x(t) = e \exp(\lambda t)$$

Two solution with Eigenvalues $~\lambda_{_{\!\scriptscriptstyle +}},\lambda_{_{\!\scriptscriptstyle -}}$

$$\lambda_{+} + \lambda_{-} = F_{u} + G_{w}$$
$$\lambda_{+} \lambda_{-} = F_{u} G_{w} - F_{w} G_{u}$$

Stability requires:

$$F_u + G_w < 0$$

and
$$F_u G_w - F_w G_u > 0$$

3.3. Neuron models and Stability of fixed points

Now Back:

Application to our neuron model

2-dimensional equation

$$\tau \frac{du}{dt} = F(u, w) + RI_0$$
$$\tau_w \frac{dw}{dt} = G(u, w)$$

Stability characterized by Eigenvalues of linearized equations

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \left(\begin{array}{cc} F_u & F_w \\ G_u & G_w \end{array} \right) \, \boldsymbol{x}$$

Neuronal Dynamics – Quiz 3.5.
A. Short current pulses. In a 2-dimensional neuron model, the effect of a delta
current pulse can be analyzed
[] By moving the u-nullcline vertically upward
[] By moving the w-nullcline vertically upward
[] As a potential change in the stability or number of the fixed point(s)
[] As a new initial condition
[] By following the flow of arrows in the appropriate phase plane diagram
B. Constant current. In a 2-dimensional neuron model, the effect of a constant current can be analyzed
[] By moving the u-nullcline vertically upward
[] By moving the w-nullcline vertically upward
[] As a potential change in the stability or number of the fixed point(s)
[] By following the flow of arrows in the appropriate phase plane diagram

Computer exercise Can we understand	now d the dynamics of th	ne 2D model?	_			
The E	END for	today	-			
Now: computer exe	rcises					
ramp input/ constant input	f-I curve	type II models	_			
	lo	lo	_			