

1° ANO - MATEMÁTICA I - 2020 **TÉCNICO EM INFORMÁTICA** INTEGRADO AO ENSINO MÉDIO **Prof. Filipe Augusto**

TRABALHO DE FINALIZAÇÃO DOS CONTEÚDOS

FUNÇÃO MODULAR

- 1. Resolva as seguintes equações modulares, em R.
- a) | x 2 | = 4
- b) | 4 3x | = 3x 4
- c) | x 6 | = | 3 2x |
- d) $|x|^2 |x| 6 = 0$
- 2. Construa o gráfico das funções a seguir:
- a) f(x) = |x|
- b) f(x) = |2x + 1|
- c) $f(x) = |x^2 + 4x 5|$
- **3.** Seja f: $\mathbb{R} \to \mathbb{R}$ definida pela lei f(x) = |2x - 4| + 3.
 - a) Qual é o valor de f(0) + f(1)?
 - b) Sem fazer o gráfico, é possível encontrar o conjunto imagem de **f**. Determine-o.

FUNCÃO EXPONENCIAL

1. Resolva as equações exponenciais:

a)
$$2^{x+3} = \frac{1}{8}$$

b)
$$5^{3x+1} = 25$$

b)
$$5^{3x+1} = 25$$
 c) $81^{x-2} = \sqrt[4]{27}$

$$d)\sqrt{5^x} \cdot 25^{x+1} = (0,2)^{1-x}$$

d)
$$\sqrt{5^x} \cdot 25^{x+1} = (0,2)^{1-x}$$
 e) $\left(\frac{1}{27}\right)^{-x} \cdot (3^{3x})^2 = \left(\frac{1}{3}\right)^{x-1}$

2. Certa substância radioativa desintegra-se de modo que, decorrido o tempo t, em anos, a quantidade ainda não desintegrada da substância é $S = S_0 \cdot 2^{-0,25t}$, em que S_0 representa a quantidade de substância que havia no início. Qual é o valor de t para que a metade da quantidade inicial desintegre-se?

3. Suponha que o crescimento de uma cultura de bactérias obedece à lei $N(t) = m. 2^{t/2}$.

na qual N representa o número de bactérias no momento t, medido em horas. Se, no momento inicial, essa cultura tinha 200 bactérias, determine o número de bactérias depois de 8 horas.

- **4.** As funções $\mathbf{y} = \mathbf{a}^{\mathbf{x}}$ e $\mathbf{y} = \mathbf{b}^{\mathbf{x}}$ com a > 0 e b > 0 e têm gráficos que se interceptam em:
- a) nenhum ponto; b) 2 pontos; c) 4 pontos; d) 1 ponto; e) infinitos pontos.
- **5.** Construa os gráficos das funções exponenciais definidas pelas leis seguintes, destacando seu conjunto imagem:

a)
$$f(x) = 4^x$$

b)
$$f(x) = \left(\frac{1}{3}\right)^{x}$$

c)
$$f(x) = 3 \cdot 2^{-x}$$

- **6.** No sistema de coordenadas seguinte estão representados os gráficos de duas funções, **f** e **g**. A lei que define **f** é $f(x) = a + b \cdot 2^x$ (**a** e **b** são constantes reais positivas) e **g** é uma função afim.
 - a) Determine os valores de a e b.
 - b) Determine o conjunto imagem de f.
 - c) Obtenha a lei que define a função g.
 - d) Determine as raízes de ${\bf f}$ e de ${\bf g}$.

7. (ENEM 2012) A Agência Espacial Norte Americana (NASA) informou que o asteroide YU 55 cruzou o espaço entre a Terra e a Lua no mês de novembro de 2011. A ilustração a seguir sugere que o asteroide percorreu sua trajetória no mesmo plano que contém a órbita descrita pela Lua em torno da Terra. Na figura, está indicada a proximidade do asteroide em relação à Terra, ou seja, a menor distância que ele passou da superfície terrestre.

Com base nessas informações, a menor distância que o asteroide YU 55 passou da superfície da Terra é igual a

Fonto: NASA.

FUNÇÃO LOGARÍTMICA

a) log₂ 16b) log₄ 16

c) log₃ 81

d) log₅ 125

guintes logaritmos:

1. Usando a definição, calcule o valor dos seguintes logaritmos:

e) $\log_2 \frac{1}{4}$

f) $\log_3 \sqrt{3}$

g) log₈ 16

h) log₄ 128

	a) $\log_b (x \cdot y)$	d) $\log_{b}\left(\frac{y^{2}}{\sqrt{x}}\right)$			
	b) $\log_{b}\left(\frac{x}{y}\right)$	e) $\log_b \left(\frac{x \cdot \sqrt{y}}{b} \right)$			
	c) $\log_b (x^3 \cdot y^2)$	f) $\log_b \sqrt{\sqrt{x} \cdot y^3}$			
3.	 Seja f: R[*]₊ → R definida por f(x) = log x. Classifique como verdadeira (V) ou falsa (F) as afirmações seguintes, corrigindo as falsas: a) f(100) = 2 b) f(x²) = 2 · f(x) c) f(10x) = 10 · f(x) d) f(1/x) + f(x) = 0 e) A taxa média de variação da função, quando x varia de 1 a 10, é dez vezes a taxa de variação da função quando x varia de 10 a 100. 				
4.	Construa o gráfico das a) $y = log_3 x$ b) $y = log_{\frac{1}{4}} x$ c) $y = log_{\frac{1}{3}} x$ d) $y = log_4 x$	funções logarítmicas de	domínio \mathbb{R}_+^* definidas	pelas leis seguintes:	
a) 6.	$\frac{a}{3}$ (UERJ) Admita que	a a, então log 5 vale b) $5a-1$	c) $\frac{2a}{3}$ ado lago, a cada		didade, a
intensidade de luz é reduzida em 20%, de acordo com a equação $I=I_0.0,8^{\frac{h}{40}}$ na qual I é a intensidade da luz em uma profundidade h, em centímetros, e lo é a intensidade na superfície. Um nadador verificou, ao mergulhar nesse lago, que a intensidade da luz, em um ponto P, é de 32% daquela observada na superfície. A profundidade do ponto P, em metros, considerando $\log 2 = 0,3$, equivale a:					
(a	0,64	(b) 1,8	(c) 2,0	(d) 3,2	

2. Sejam **x**, **y**, **b** reais positivos, $b \ne 1$. Sabendo que $\log_b x = -2$ e $\log_b y = 3$, calcule o valor dos se-