ألمه كغطا

مذكرة وقو14 : ملخص لحرس: البداء السلمي مع تمارين وأمثلة محلولة

الأهداف والقدرات المنتظرة من الدرس:

توجيهات تربوية	القدرات المنتظرة	محتوى البرنامج
- يستم تقديم الجداء السلمي وخاصياته انطلاق من	- التعبير عن المسافة والتعامد بواسطة	- تعريف وخاصيات؛
الإسقاط العمودي.		- الصيغة المثلثية؛
- ينبغي التأكيد على دور هذه الأداة في تحديد بعض		- تعامد متجهتين؛
المحلات الهندسية في المستوى وفي حساب الأطوال	هندسية.	- بعض تطبيقات الجداء السلمي:
والمساحات وقياسات الزوايا.	- استعمال مبر هنة الكاشي ومبر هنة	. العلاقات المترية في مثلث قائم الزاوية؛
 تعتبر الصيغة التحليلية للجداء السلمي خارج المقرر. 		. مبر هنة المتوسط؛
1000-0000 0 -0 000 0-00 00 000 8080 80 0000	1964 STATE OF STA	. مبر هنة الكاشى.

تعاریف: تعریف 1: الجداء السلمی لمتجهتین:

 $\overrightarrow{v} = \overrightarrow{AC}$ و $\overrightarrow{u} = \overrightarrow{AB}$:لتكن \overrightarrow{v} و متجهتين من المستوى بحيث و H المسقط العمودي للنقطة C على المستقيم (AB).

الجداء السلمي للمتجهتين $\stackrel{
ightarrow}{v}_{e}$ هو العدد الحقيقي الذي يرمز له بالرمز $u \cdot v$ و المعروف بما يلى:

- المنحى فان: $\overrightarrow{A}\overrightarrow{B}$ و \overrightarrow{AH} لهما نفس المنحى فان: $u \cdot v = AB \times AH$
- إذا كانت \overline{AB} و \overline{AH} لهما منحيان متعاكسان فان: $u \cdot v = -AB \times AH$
- $\vec{u} \cdot \vec{v} = AB \cdot AC$ و نکتب $\vec{u} \cdot \vec{v} = AB \cdot AH$ و نکتب تعريف 2: الصيغة المثلثية للجداء السلمى:

 $ar{B}Aar{C}$ إذا كانت $ar{u}$ و متجهتين غير منعدمتين و lpha هو قياس الزاوية $\vec{v} = \overrightarrow{AC}$ عان $\vec{u} = \overrightarrow{AB}$ عان $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \alpha$ $\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\vec{u} \cdot \vec{v}}{\vec{v}}$

 \vec{v} و \vec{u} ليكن $\frac{\pi}{4}$ قياسا لزاوية المتجهتين \vec{u} و \vec{v}

 $\vec{u} \cdot \vec{v}$ حيث: $||\vec{v}|| = 4$ و $||\vec{u}|| = \frac{5}{2}\sqrt{2}$

 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \times \cos\left(\frac{\pi}{4}\right) = \frac{5}{2} \times 4 \times \frac{\sqrt{2}}{2} = 5\sqrt{2}$ الجواب:

تمرين 2: اليكن ABC مثلثا متساوي الأضلاع طول ضلعه يساوي . (AB) وليكن H المسقط العمودي للنقطة C على المستقيم G

 $\overrightarrow{CH} \cdot \overrightarrow{HB}$ و $\overrightarrow{AB} \cdot \overrightarrow{AC}$ أحسب الجواب: بما أن المثلث متساوي الأضلاع فان كل زواياه متقايسة وقياس كل

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos \widehat{A} = AB \times AC \cos \left(\frac{\pi}{3}\right)$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 \times 6 \times \frac{1}{2} = 18$

 $\overrightarrow{CH} \cdot \overrightarrow{HB} = ||\overrightarrow{CH}|| \times ||\overrightarrow{HB}|| \times \cos \hat{H} = CH \times HB \cos \left(\frac{\pi}{2}\right) = CH \times HB \times 0 = 0$

EG=3 و EF=5 مثلثا بحيث EFG و و EG=3 $\cos(\widehat{FEG})$ $\overrightarrow{EF} \cdot \overrightarrow{EG} = -6$

 $\overrightarrow{EF} \cdot \overrightarrow{EG} = \|\overrightarrow{EF}\| \times \|\overrightarrow{EG}\| \cos(\widehat{FEG}) = -6$

 $EF \times EG \cos(\widehat{FEG}) = -6$ يعني

 $5 \times 3\cos(\widehat{FEG}) = -6$ يعني

 $\cos\left(\widehat{FEG}\right) = -\frac{6}{15} = -\frac{2}{5}$

AC = 4 و AB = 3 مثلثا بحیث ABC و ABC

 $\widehat{BAC} = \frac{2\pi}{2}$ $\overrightarrow{AB} \cdot \overrightarrow{AC}$ أحسب

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \hat{A} = AB \times AC \cos \left(\frac{2\pi}{3}\right)$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 4 \times 3 \cos \left(\frac{3\pi - \pi}{3} \right) = 12 \cos \left(\frac{3\pi}{3} - \frac{\pi}{3} \right) = 12 \cos \left(\pi - \frac{\pi}{3} \right)$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 4 \times 3\cos\left(\frac{3\pi - \pi}{3}\right) = 12\cos\left(\frac{3\pi}{3} - \frac{\pi}{3}\right) = -12\cos\left(\frac{\pi}{3}\right)$

 $\cos(\pi - x) = -\cos x$ اذن

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -12 \times \frac{1}{2} = -6$

- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- . \mathbb{R} مهما یکن k من $\vec{u} \cdot (k\vec{v}) = k\vec{u} \cdot \vec{v}$

ملاحظة: $\vec{u} = \|\vec{u}\|^2$ نرمز ل $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2$ و يسمى المربع السلمي,

- $\|\vec{u}\| = \sqrt{\vec{u}^2}$ $|\vec{u}|^2 = \|\vec{u}\|^2$
- $AB = \sqrt{\overrightarrow{AB}^2}$ و اذا کانت $\overrightarrow{u} = \overrightarrow{AB}$ فان

المتطابقات الهامة:

 $(\vec{u} + \vec{v})^2 = ||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$

 $(\vec{u} - \vec{v})^2 = ||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 - 2\vec{u} \cdot \vec{v} + ||\vec{v}||^2$

 $\left(\vec{u} + \vec{v}\right)\left(\vec{u} - \vec{v}\right) = \left\|\vec{u}\right\|^2 - \left\|\vec{v}\right\|^2$

 $|\vec{u} \cdot \vec{v} = -\frac{3}{2}$ تكن $|\vec{v}| = 3$ و $|\vec{v}| = 3$ نتكن $|\vec{u}| = 5$ متجهتين بحيث: 5

 $\vec{u} = (\vec{u} - \vec{v})(\vec{u} + \vec{v})$ و $(\vec{u} - \vec{v})^2$ و $(\vec{u} + \vec{v})^2$ و \vec{v}^2 و \vec{u}^2 $(5\vec{u}-\vec{v})\cdot(5\vec{u}+\vec{v})$ $\circ (3\vec{u}-2\vec{v})\cdot(\vec{u}+5\vec{v})$

 $|\vec{v}|^2 = |\vec{v}|^2 = 3^2 = 9$ $|\vec{u}|^2 = |\vec{u}|^2 = 5^2 = 25$

 $\cos\left(\widehat{BAC}\right) = \frac{AB^2 + AC^2 - BC^2}{2AB \times AC} \quad .1$ $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 = |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2 = 5^2 + 2(-\frac{3}{2}) + 3^2 = 25 - 3 + 9 = 31$ $\left(\vec{u} - \vec{v}\right)^2 = \vec{u}^2 - 2\vec{u} \cdot \vec{v} + \vec{v}^2 = \left|\vec{u}\right|^2 - 2\vec{u} \cdot \vec{v} + \left|\vec{v}\right|^2 = 5^2 - 2\left(-\frac{3}{2}\right) + 3^2 = 25 + 3 + 9 = 37$ $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} \quad .2$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)^{\text{dis}}$ $(\vec{u} - \vec{v})(\vec{u} + \vec{v}) = \vec{u} - \vec{v}^2 = |\vec{u}|^2 - |\vec{v}|^2 = 5^2 - 3^2 = 25 - 9 = 16$ 3. هناك علاقتين مماثلتين للعلاقة الأولى: $(3\vec{u} - 2\vec{v}) \cdot (\vec{u} + 5\vec{v}) = 3\vec{u} \cdot \vec{u} + 3\vec{u} \cdot 5\vec{v} - 2\vec{v} \cdot \vec{u} - 2\vec{v} \cdot 5\vec{v}$ $AB^{2} = CA^{2} + CB^{2} - 2CA \times CB \times \cos\left(\widehat{ACB}\right)$ $(3\vec{u}-2\vec{v})\cdot(\vec{u}+5\vec{v})=3\vec{u}^2+15\vec{u}\cdot\vec{v}-2\vec{u}\cdot\vec{v}-10\vec{v}^2=3\times25+13\vec{u}\cdot\vec{v}-10\times9$ $AC^2 = BA^2 + BC^2 - 2AB \times BC \times \cos\left(\widehat{ABC}\right)$ $(3\vec{u}-2\vec{v})\cdot(\vec{u}+5\vec{v})=75+13\left(-\frac{3}{2}\right)-90=-15-\frac{39}{2}=-\frac{69}{2}$ AC = 8 و $\widehat{BAC} = \frac{2\pi}{3}$ د عرين $\widehat{BAC} = \frac{2\pi}{3}$ و $(5\vec{u} - \vec{v}) \cdot (5\vec{u} + \vec{v}) = (5\vec{u})^2 - (\vec{v})^2 = 25(\vec{u})^2 - (\vec{v})^2 = 25 \times 25 - 9 = 616$ $\cos \widehat{ACB}$ (2 . BC أحسب (1 . AB = 5الجواب: 1)حساب BC $\vec{u} \perp \vec{v}$ و نكتب \vec{v} و نكتب \vec{v} و فقط إذا كان \vec{v} و نكتب \vec{v} حسب مبر هنة الكاشي: في المثلث ABC $AB \cdot CD = 0$ نتیجة: $(AB) \perp (CD)$ إذا و فقط إذا كان $BC^2 = AB^2 + AC^2 - 2AB \times AC \cos \widehat{BAC}$: لدينا علاقات مترية في مثلث قائم الزاوية: $BC^2 = 5^2 + 8^2 - 2 \times 8 \times 5 \cos \widehat{BAC}$: يعنى (BC) على (BC) على (BC) . $BC^2 = 89 - 80\cos\left(\frac{3\pi - \pi}{3}\right)$: يعني $BC^2 = 89 - 80\cos\left(\frac{2\pi}{3}\right)$: يعني اذا كان ABC قائما في A فان $BC^2 = 89 - 80\cos\left(\pi - \frac{\pi}{3}\right)$: يعني $BC^2 = 89 - 80\cos\left(\frac{3\pi}{3} - \frac{\pi}{3}\right)$: يعني (مبر هنة فيتاغورس) $AB^2 + AC^2 = BC^2$ (1 $AC \times AB = AH \times BC$ $\cos(\pi - x) = -\cos x$: $BC^2 = 89 - 80\left(-\cos\left(\frac{\pi}{3}\right)\right)$: يعني $CA^2 = CH \times BC$ $\partial A^2 = BH \times BC$ (3) $BC^2 = 129$: يعني $BC^2 = 89 + 40$: يعني $BC^2 = 89 + 80 \left(\frac{1}{2}\right)$: يعني $AH^2 = HB \times HC$ (4 $BC^2 = \overrightarrow{BC}^2 = \left(\overrightarrow{BA} + \overrightarrow{AC}\right)^2 = \overrightarrow{BA}^2 + 2\overrightarrow{BA} \cdot \overrightarrow{AC} + \overrightarrow{AC}^2 \left(1 + \overrightarrow{AC}\right)^2$ يراهين $BC = \sqrt{129}$: يعني $BC^2 = BA^2 + AC^2$: لاينا \overrightarrow{ABC} لأن \overrightarrow{ABC} قائما في A اذن $\cos \widehat{ACB}$ حساب (2 حسب مبر هنة الكاشى: في المثلث ABC : المثلث : $\sin \hat{B} = \frac{AC}{BC}$: (ABC) و باعتبار المثلث (2 $AB^2 = AC^2 + BC^2 - 2AC \times BC \cos \widehat{ACB}$ لدينا: $AC \times AB = AH \times BC$: ومنه $\frac{AC}{BC} = \frac{AH}{AB}$ ومنه $\hat{B} = \frac{AH}{AB}$: (ABH) $5^2 = 8^2 + (\sqrt{129})^2 - 2 \times 8 \times \sqrt{129} \cos \widehat{ACB}$: يعني (BC) على ABC مثلثا و H المسقط العمودي للنقطة ABC على (3 $25 = 64 + 129 - 16\sqrt{129}\cos\widehat{ACB}$: يعنى $\cos \hat{A} = \frac{AB}{AC}$: (ABC) : باعتبار المثلث $25-193 = -16\sqrt{129}\cos\widehat{ACB}$: يعنى يعنى : $\frac{129}{129}\cos\widehat{ACB}$ = $-16\sqrt{129}\cos\widehat{ACB}$. $\frac{AB}{AC} = \frac{BH}{AB}$ و باعتبار المثلث : $\cos \hat{B} = \frac{BH}{AB}$: (ABH) $\cos \widehat{ACB} = \frac{-168}{-16\sqrt{129}} = \frac{168\sqrt{129}}{2064} = \frac{21\sqrt{129}}{258} = \frac{7\sqrt{129}}{86} :$ $AC^2 = CH \times BC$ ومنه تمرين ABC مثلث قائم الزاوية في ABC و ABC المسقط [BC] مثلثا و I منتصف القطعة خاصية المنكن ABCAH و BH و AC العمودي للنقطة A على (BC) أحسب $AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$: Levil BC = 5cm و AB = 2cm : طما أن $BC^2 = AB^2 + AC^2$: الجواب: حسب مبر هنة فيتاغورس المباشرة فان P و B نقطتين من المستوى A و انقطتين من المستوى $AC^2 = 5^2 - 2^2 = 21$: يعنى $AC^2 = BC^2 - AB^2$: يعنى $MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$. فإن [AB] فإن [AB] $AC = \sqrt{21cm}$: يعنى $AB^2 = BH \times BC$: وحسب العلاقات المترية لدينا AC = 6cm و BC = 4cm مثلثا بحیث: ABC لیکن ABC $BH = \frac{AB^2}{BC} = \frac{4}{5}cm$: يعني . AI و AB = 3cm و لتكن AB = 3cmالجواب: حسب مبر هنة المتوسط على المثلث ABC لدينا: $CH = \frac{AC^2}{BC} = \frac{21}{5}cm$: يعني $AC^2 = CH \times CB$ $3^2 + 6^2 = 2AI^2 + \frac{1}{2}A^2$: يعني $AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$ $AH = \frac{AB \times AC}{BC} = \frac{2\sqrt{21}}{5} cm$: ولدينا: $AB \times AC = AH \times BC$ $37 = 2AI^2$: يعني $37 = 2AI^2$: يعني $9 + 36 = 2AI^2$ يعني $9 + 36 = 2AI^2$ $AI = \sqrt{\frac{37}{2}}$: يعني $AI^2 = \frac{37}{2}$: يعني $BC^2 = AB^2 + AC^2 - 2AB \times AC \times \cos(\widehat{BAC})$: لدينا AM = 3cm و AB = 4cm مثلثا بحیث: ABM و ABM

الأستاذ: عثماني نجيب

 $= \frac{1}{3} \left(\overrightarrow{AB}^2 + 2 \overrightarrow{AC} \cdot \overrightarrow{AB} \right) = \frac{1}{3} \left(AB^2 + 2 \overrightarrow{AC} \cdot \overrightarrow{AB} \right) = \frac{1}{3} \left(1 + 2 \left(-\frac{1}{2} \right) \right) = 0$ A ومنه \overrightarrow{AD} وبالتالي $\overrightarrow{AD} \perp \overrightarrow{AB} \perp \overrightarrow{AB}$ أي $\overrightarrow{AB} = 0$ قائم الزاوية في $\overrightarrow{AD}^2 = \left(\frac{1}{3}(\overrightarrow{AB} + 2\overrightarrow{AC})\right)^2$: اذن $\overrightarrow{AD} = \frac{1}{3}(\overrightarrow{AB} + 2\overrightarrow{AC})$ دينا: (4 $AD^2 = \frac{1}{Q} \left(\left(\overrightarrow{AB} \right)^2 + \left(2\overrightarrow{AC} \right)^2 + 4\overrightarrow{AB} \cdot \overrightarrow{AC} \right) = \frac{1}{Q} \left(AB^2 + 4\overrightarrow{AB} \cdot \overrightarrow{AC} + 4AC^2 \right)$: اذن $AD = \sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{3}$: $\frac{1}{9} (1+4(-\frac{1}{2})+4\times 2) = \frac{1}{9}(1-2+8) = \frac{7}{9}$ 5)حسب مبر هنة المتوسط على المثلث ABC لدينا: $1^2 + \sqrt{2}^2 = 2AI^2 + \frac{1}{2}2^2$: يعني $AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$ $1=2AI^2$: يعني $2=2AI^2$: يعني $2=2AI^2$: يعني $AI = \sqrt{\frac{1}{2}}$ يعني $AI^2 = \frac{1}{2}$ حسب مبر هنة المتوسط على المثلث ABC لدينا: $1^2 + 2^2 = 2BJ^2 + \frac{1}{2}\sqrt{2}^2$ يعني $BA^2 + BC^2 = 2BJ^2 + \frac{1}{2}AC^2$ $4 = 2BJ^2$: يعني $-1 = 2BJ^2$: يعني $5 = 2BJ^2 + 1$: يعني $BJ = \sqrt{2}$: يعني $BJ^2 = 2$ يعني تمرين10 : إليكن ABC مثلثا بحيث : 3 =BC و AC= 2 [BC] و ليكن المنتصف القطعة AB = $\sqrt{7}$ $\cos(B\hat{AC})$ إلى أيباستعمال مبر هنة الكاشى أحسب أ(1 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 1$: نبت أن AI ج)أحسب $\overline{AM} = \frac{1}{3}\overline{AB} + \frac{1}{6}\overline{AC}$: بحیث M انقطة M انقطة $\overrightarrow{AM} \cdot \overrightarrow{AC}$ | $\overrightarrow{AM} \cdot \overrightarrow{AC}$ $\overrightarrow{MB} \cdot \overrightarrow{AC} = 0$: بین أن (AC) و (MB) ماذا تستنتج بالنسبة للمستقيمين ABC في المثلث مبر هنة الكاشي: في المثلث $(1:1)^{1}$ $BC^2 = AB^2 + AC^2 - 2AB \times AC\cos \hat{A}$: لدينا $9 = 4 + 7 - 4\sqrt{7}\cos(\hat{A})$ بالتعویض نجد: يعني $-2 = -4\sqrt{7}\cos(\hat{A})$: يعني $\cos(\widehat{A}) = \frac{2}{4\sqrt{7}} = \frac{1}{2\sqrt{7}} = \frac{\sqrt{7}}{2(\sqrt{7})^2} = \frac{\sqrt{7}}{14}$ يعني $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \hat{A}$:الدينا $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \times \sqrt{7} \times \frac{\sqrt{7}}{14} = 2 \times \frac{\left(\sqrt{7}\right)^2}{14} = \frac{14}{14} = 1$ ABC حسب مبر هنة المتوسط: في المثلث ABC $\sqrt{7}^2 + 2^2 = 2AI^2 + \frac{1}{2}3^2$: $AB^2 + AC^2 = 2AI^2 + \frac{1}{2}BC^2$ $AI = \sqrt{\frac{13}{4}}$: $2AI^2 = \frac{13}{4}$: $2AI^2 = 2AI^2$: $2AI^2 + \frac{9}{2}$: $2AI^2 + \frac{9}{2}$: $2AI^2 + \frac{9}{2}$ $\overrightarrow{AM} \cdot \overrightarrow{AC} = \left(\frac{1}{3} \overrightarrow{AB} + \frac{1}{6} \overrightarrow{AC}\right) \cdot \overrightarrow{AC} = \frac{1}{3} \overrightarrow{AB} \cdot \overrightarrow{AC} + \frac{1}{6} \overrightarrow{AC} \cdot \overrightarrow{AC} \stackrel{\text{\uparrow}}{} (2)$ $\overrightarrow{AM} \cdot \overrightarrow{AC} = \frac{1}{3} \times 1 + \frac{1}{6} \overrightarrow{AC}^2 = \frac{1}{3} + \frac{1}{6} AC^2 = \frac{1}{3} + \frac{1}{6} \times 4 = \frac{1}{3} + \frac{2}{3} = 1$ $\overrightarrow{MB} \cdot \overrightarrow{AC} = \left(\overrightarrow{MA} + \overrightarrow{AB} \right) \cdot \overrightarrow{AC} = \overrightarrow{MA} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{AC} \ (\hookrightarrow (2$ $\overrightarrow{MB} \cdot \overrightarrow{AC} = -\overrightarrow{AM} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{AC} = -1 + 1 = 0$

و لتكن I منتصف [AM] و [AM] و لتكن [AM]BJ و AK و MIالجواب: حساب MI: حسب مبر هنة المتوسط على المثلث ABM لدينا: $3^2 + 4^2 = 2MI^2 + \frac{1}{2}4^2$: $2^2 + MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$ $17 = 2MI^2$: يعني $16 = 2MI^2$: يعني $9 + 16 = 2MI^2$ يعني $9 + 16 = 2MI^2$ $MI = \sqrt{\frac{17}{2}}$: يعني $\frac{17}{2} = \frac{17}{2}$ حساب AK: حسب مبرهنة المتوسط على المثلث ABM لدينا: $2^2 + 3^2 = 2AK^2 + \frac{1}{2}4^2$: $2^2 + 3B^2 + AM^2 = 2AK^2 + \frac{1}{2}BM^2$ $17 = 2AK^2$: يعني $-8 = 2AK^2$ يعني $AK = \sqrt{\frac{17}{2}}$: يعني $AK^2 = \frac{17}{2}$ حساب BJ حسب مبر هنة المتوسط على المثلث ABM لدينا: $4^2 + 4^2 = 2BJ^2 + \frac{1}{2}3^2$: $AB^2 + BM^2 = 2BJ^2 + \frac{1}{2}AM^2$ $\frac{55}{2} = 2BJ^2$: يعني $\frac{9}{2} = 2BJ^2$ $BJ = \frac{\sqrt{55}}{2}$: يعني $BJ = \sqrt{\frac{55}{4}}$: يعني $BJ = \sqrt{\frac{55}{4}}$ CB=2 و $AC=\sqrt{2}$ عمرين ABC و ABC مثلثا بحيث: ABC و ABC $\overrightarrow{DB} + 2\overrightarrow{DC} = \overrightarrow{0}$ ولتكن D نقطة بحيث $\cos \hat{A}$ بين أن : $\overline{AB} \cdot \overline{AC} = -\frac{1}{2}$ واستنتج (1 \overrightarrow{AC} اكتب : \overrightarrow{AD} بدلالة \overrightarrow{AB} و \overrightarrow{AB} اكتب : $\overrightarrow{AD} \cdot \overrightarrow{AB}$ بدلالة \overrightarrow{ABD} و استنتج طبيعة المثلث (3 AD أحسب (4)[AC] ليكن I منتصف القطعة [BC]و I منتصف القطعة (5 BJ أحسب AIو الجواب:1)حسب مبر هنة الكاشى: في المثلث ABC $BC^2 = AB^2 + AC^2 - 2AB \times AC\cos \hat{A}$: لدينا $\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos \hat{A} = AB \times AC \times \cos \hat{A}$: ونعلم أن $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB} \times \overrightarrow{AC}$: اذن $2^2 = 1^2 + \sqrt{2}^2 - 2\overrightarrow{AB} \times \overrightarrow{AC}$:بالتعویض نجد $1 = -2\overrightarrow{AB} \times \overrightarrow{AC}$: يعني $1 = -2\overrightarrow{AB} \times \overrightarrow{AC} = 4 = 1 + 2 - 2\overrightarrow{AB} \times \overrightarrow{AC}$ $\overrightarrow{AB} \times \overrightarrow{AC} = -\frac{1}{2}$: يعني استنتاج : $\cos \hat{A}$: الدينا: $\cos \hat{A}$: الدينا : يعني $-\frac{1}{2} = 1 \times \sqrt{2} \times \cos \hat{A}$: يعني $-\frac{1}{2} = AB \times AC \times \cos \hat{A}$ $\cos \hat{A} = \frac{-\frac{1}{2}}{\sqrt{2}} = -\frac{1}{2}\frac{1}{\sqrt{2}} = -\frac{1}{2\sqrt{2}} = -\frac{\sqrt{2}}{2(\sqrt{2})^2} = -\frac{\sqrt{2}}{4}$ $\overrightarrow{DA} + \overrightarrow{AB} + 2(\overrightarrow{DA} + \overrightarrow{AC}) = \overrightarrow{0}$: يعني $\overrightarrow{DB} + 2\overrightarrow{DC} = \overrightarrow{0}$ $\overrightarrow{AB} + 3\overrightarrow{DA} + 2\overrightarrow{AC} = \overrightarrow{0}$: يعنى $\overrightarrow{DA} + \overrightarrow{AB} + 2\overrightarrow{DA} + 2\overrightarrow{AC} = \overrightarrow{0}$ $\overrightarrow{AB} + 2\overrightarrow{AC} = 3\overrightarrow{AD}$: يعني $\overrightarrow{AB} + 2\overrightarrow{AC} = -3\overrightarrow{DA}$: يعني $\overrightarrow{AD} = \frac{1}{3} \left(\overrightarrow{AB} + 2\overrightarrow{AC} \right)$: يعني $\overrightarrow{AD} \cdot \overrightarrow{AB} = \frac{1}{3} \left(\overrightarrow{AB} + 2\overrightarrow{AC} \right) \overrightarrow{AB} = \frac{1}{3} \left(\overrightarrow{AB} \cdot \overrightarrow{AB} + 2\overrightarrow{AC} \cdot \overrightarrow{AB} \right) (3)$

$$\overline{AD} \cdot \overline{AC} = 2 \times 2 - \frac{1}{2} = 4 - \frac{1}{2} = \frac{7}{2}$$

$$\overline{MD} \cdot \overline{AC} = (\overline{MA} + \overline{AD}) \cdot \overline{AC} = \overline{MA} \cdot \overline{AC} + A\overline{D} \cdot \overline{AC} (\hookrightarrow (6)$$

$$\varphi^{i} \overline{MD} \cdot \overline{AC} = -\overline{AM} \cdot \overline{AC} + \overline{AD} \cdot \overline{AC} (\hookrightarrow (6)$$

$$\varphi^{i} \overline{MD} \cdot \overline{AC} = -\overline{AM} \cdot \overline{AC} + \frac{7}{2}$$

$$\overline{MD} \perp \overline{AC} = \sqrt{1} \overline{MD} \cdot \overline{AC} = -\frac{7}{4} \cdot 2 + \frac{7}{2} = -\frac{7}{2} + \frac{7}{2} = 0$$

$$(MD) \perp (AC) \perp \overline{AC} = -\overline{AC} \cdot \overline{AC} + \overline{AC} = -\overline{AC} \cdot \overline{AC} + \overline{AC} = -\overline{AC} \cdot \overline{AC} + \overline{AC} = -\overline{AC} \cdot \overline$$

 $(MB) \perp (AC)$: ومنه $\overline{MB} \perp \overline{AC}$ وبالتالي $BC = AC = \sqrt{2}$ و AB = 1 تمرين 11 : ليكن ABC مثلثا بحيث: $BC = AC = \sqrt{2}$ و Dieds بحيث $\overrightarrow{DB} - 2\overrightarrow{DC} = \overrightarrow{0}$ و Air نقطة القطعة D. CI أحسب 1 \overrightarrow{AC} و \overrightarrow{AB} بدلالة \overrightarrow{AD} و 2. $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AI}$: 3. بين أن $\cos \widehat{BAC}$ و استنتج أن: $\overline{AB} \cdot \overline{AC} = \frac{1}{2}$.4 BAD و استنتج طبيعة المثلث $\overline{AB} \cdot \overline{AD}$.5. $-3\overrightarrow{MA} + 7\overrightarrow{MC} = \overrightarrow{0}$: عتبر النقطة M حيث 6. $\overrightarrow{AC} \cdot \overrightarrow{AD}$ عبر عن \overrightarrow{AM} بدلالة \overrightarrow{AC} و أحسب $(MD) \perp (AC)$ ب. بين أن الجواب:1)حسب مبر هنة المتوسط على المثلث ABC لدينا: $\sqrt{2}^2 + \sqrt{2}^2 = 2AI^2 + \frac{1}{2}I^2$: $BC^2 + AC^2 = 2CI^2 + \frac{1}{2}AB^2$ $\frac{7}{4} = CI^2$: يعني $\frac{7}{2} = 2CI^2$: يعني $4 = 2CI^2 + \frac{1}{2}$: يعني $CI = \sqrt{\frac{7}{4}} = \frac{\sqrt{7}}{2}$: $\overrightarrow{DA} + \overrightarrow{AB} - 2(\overrightarrow{DA} + \overrightarrow{AC}) = \overrightarrow{0}$: يعني $\overrightarrow{DB} - 2\overrightarrow{DC} = \overrightarrow{0}$ (2) $-\overrightarrow{DA}+\overrightarrow{AB}-2\overrightarrow{AC}=\overrightarrow{0}$: يعني $\overrightarrow{DA}+\overrightarrow{AB}-2\overrightarrow{DA}-2\overrightarrow{AC}=\overrightarrow{0}$: يعني $\overrightarrow{AD} = -\overrightarrow{AB} + 2\overrightarrow{AC} = 2\overrightarrow{AC} - \overrightarrow{AB}$: يعنى $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot (\overrightarrow{AI} + \overrightarrow{IC}) = \overrightarrow{AB} \cdot \overrightarrow{AI} + \overrightarrow{AB} \cdot \overrightarrow{IC}$ (3) C لدينا I منتصف القطعة ABC و AB متساوي الساقين في $\overrightarrow{AB} \cdot \overrightarrow{IC} = 0$: ومنه $\overrightarrow{AB} \perp \overrightarrow{IC}$ أي $\overrightarrow{IC} \perp (IC) \perp (AB)$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AI}$: وبالتالي $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AI} = ||\overrightarrow{AB}|| \cdot ||\overrightarrow{AI}|| \cos 0 = AB \cdot AI \cdot 1 = AB \cdot \frac{AB}{2} \cdot \cos 0(4)$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 1 \cdot \frac{1}{2} = \frac{1}{2}$ $AB \times AC \times \cos \hat{A} = \frac{1}{2}$ يعني $\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2}$ وجدنا $\cos \widehat{BAC}$ $\cos \hat{A} = \frac{\sqrt{2}}{4}$ يعني $\cos \hat{A} = \frac{1}{2\sqrt{2}}$ يعني $1 \times \sqrt{2} \times \cos \hat{A} = \frac{1}{2}$: اذن $\overrightarrow{AD} = 2\overrightarrow{AC} - \overrightarrow{AB}$ اذن $\overrightarrow{AB} \cdot \overrightarrow{AD} = \overrightarrow{AB} \cdot (2\overrightarrow{AC} - \overrightarrow{AB})$ $\overrightarrow{AB} \cdot \overrightarrow{AD} = 2\overrightarrow{AB} \cdot \overrightarrow{AC} - \overrightarrow{AB} \cdot \overrightarrow{AB}$ يعني $\overrightarrow{AB} \cdot \overrightarrow{AD} = 2\overrightarrow{AB} \cdot \overrightarrow{AC} - \overrightarrow{AB}^2$ $\overrightarrow{AB} \perp \overrightarrow{AD}$ $\downarrow \overrightarrow{AB} \cdot \overrightarrow{AD} = 2 \times \frac{1}{2} - AB^2 = 1 - 1 = 0$ A ومنه BAD قائم الزاوية في $-3\overrightarrow{MA} + 7(\overrightarrow{MA} + \overrightarrow{AC}) = \overrightarrow{0}$ يعني $-3\overrightarrow{MA} + 7\overrightarrow{MC} = \overrightarrow{0}$ (أ(6) $3\overrightarrow{AM} - 7\overrightarrow{AM} + 7\overrightarrow{AC} = \overrightarrow{0}$ يعني $-3\overrightarrow{MA} + 7\overrightarrow{MA} + 7\overrightarrow{MA} + 7\overrightarrow{AC} = \overrightarrow{0}$ يعني $\overrightarrow{AM} = \frac{7}{4}\overrightarrow{AC}$ يعني $-4\overrightarrow{AM} = -7\overrightarrow{AC}$ يعني $????\overrightarrow{AC} \cdot \overrightarrow{AD}$???? $\overrightarrow{AD} \cdot \overrightarrow{AC} = (2\overrightarrow{AC} - \overrightarrow{AB}) \cdot \overrightarrow{AC} = 2\overrightarrow{AC}^2 - \overrightarrow{AB} \cdot \overrightarrow{AC}$

 $\overrightarrow{AD} \cdot \overrightarrow{AC} = 2AC^2 - \overrightarrow{AB} \cdot \overrightarrow{AC}$ يعني $\overrightarrow{AD} \cdot \overrightarrow{AC} = 2\overrightarrow{AC}^2 - \overrightarrow{AB} \cdot \overrightarrow{AC}$

 $M \in (\Delta)$: ولتكن نقطة بحيث 1. أرسم شكلا تقريبيا AC بين أن AB = 6 وأحسب 2 $\overrightarrow{BJ} \cdot \overrightarrow{BA} : 13$ $\overrightarrow{MB} \cdot \overrightarrow{AB} = 45$: بین أن 5. أحسب: BI $\|\overrightarrow{BA}\| \times \|\overrightarrow{BC}\| \times \cos \hat{B} = 12$ يعني $\overrightarrow{BA} \cdot \overrightarrow{BC} = 12$ دينا $(\underline{12})$ دينا $AB^2 \times \frac{1}{2} = 12$ يعني $BA \times BC \times \cos \hat{B} = 12$ يعني AB=6 يعني $AB^2=36$ يعني ABC=4 يعني مبر هنة الكاشي: في المثلث $AC^2 = AB^2 + BC^2 - 2AB \times BC \cos \hat{B}$: لدينا $AC^2 = 36 + 36 - 2 \times 36 \times \frac{1}{2}$ بالتعویض نجد: $AC = \sqrt{54}$ يعني $AC^2 = 54$: $\overrightarrow{BJ} \cdot \overrightarrow{BA} = \frac{5}{4} \overrightarrow{BA} \cdot \overrightarrow{BA} = \frac{5}{4} \overrightarrow{BA}^2 = \frac{5}{4} BA^2 = \frac{5}{4} \times 36 = 45$ $\overrightarrow{MB} \cdot \overrightarrow{AB} = (\overrightarrow{MJ} + \overrightarrow{JB}) \cdot \overrightarrow{AB} = \overrightarrow{MJ} \cdot \overrightarrow{AB} + \overrightarrow{JB} \cdot \overrightarrow{AB}$ (4 $\overrightarrow{MJ} \perp \overrightarrow{AB}$: لان $\overrightarrow{MJ} \cdot \overrightarrow{AB} = 0$ 5)حسب مبر هنة المتوسط: في المثلث ABC

 $\overrightarrow{MB} \cdot \overrightarrow{AB} = \overrightarrow{JB} \cdot \overrightarrow{AB} = \left(-\overrightarrow{BJ} \right) \cdot \left(-\overrightarrow{BA} \right) = \overrightarrow{BJ} \cdot \overrightarrow{BA} = 45$: ومنه ABC عصب مبر هنة المتوسط: في المثلث $\frac{5}{2}$ حسب مبر هنة المتوسط: في $AB^2 + BC^2 = 2BI^2 + \frac{1}{2}AC^2$ $AB^2 + BC^2 = 2BI^2 + \frac{1}{2}AC^2$ $BI = \sqrt{\frac{45}{2}}$: يعني $AB^2 + BC^2 = 2BI^2 + 27$: يعني $AB^2 + BC^2 = 2BI^2 + 27$: يكن $AB^2 + BC^2 = 2BI^2 + 27$ و $AB^2 + BC^2 = 2BI^2 + 27$ و $AB^2 + BC^2 = 2BI^2 + 27$ و $AB^2 + BC^2 = 2BI^2 + 27$

منتصف القطعة [AB] . ي. المنتصف القطعة $\widehat{CAB} = \frac{2\pi}{3}$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\frac{3}{2}$ بين أن (1

 $\overline{BE} = \frac{1}{5}\overline{BC}$:النقطة بحيث E لتكن (2

 $\overrightarrow{AB} \cdot \overrightarrow{AE}$ بين أن $\overrightarrow{AE} = \frac{4}{5} \overrightarrow{AB} + \frac{1}{5} \overrightarrow{AC}$ نثم أحسب (

 $(AB) \perp (IE)$ بين أن

انتهى الدرس

تمرين 13 الماقين رأسه ABC مثلث متساوي الساقين رأسه ABC بحيث:

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 16$

 $\cos(B\hat{AC}) = \frac{1}{4}$

و $\overrightarrow{BI} = \frac{3}{4} \overrightarrow{BA}$ و \overrightarrow{BI}

منتصف القطعة [BC].وليكن J

I المستقيم المار من (Δ)

والعمودي على المستقيم (AB)

 $E \in (\Delta)$: بحيث E ولتكن نقطة

1) أرسم شكلا تقريبيا

BC بين أن : AB = 8 وأحسب (2

 $\overrightarrow{BI} \cdot \overrightarrow{BA} :$ (3)

 $\overrightarrow{EB} \cdot \overrightarrow{AB} = 48$: بين أن (4

AJ :خسب (5

<u>الجواب:1)</u>

 $AB \times AC \times \cos \hat{A} = 16$ يعني $\overrightarrow{AB} \cdot \overrightarrow{AC} = 16$ لدينا م

 $AB^2 \times \frac{1}{4} = 16$ يعني $AB \times AB \times \cos \hat{A} = 16$ يعني $AB \times AB \times \cos \hat{A} = 16$

AB=8 يعني $AB^2=64$ يعني ABC يعني حسب مبر هنة الكاشي: في المثلث $BC^2=AB^2+AC^2-2AB\times AC\cos \hat{A}$ لدينا:

 $BC^2 = 64 + 64 - 2 \times 64 \times \frac{1}{4}$ بالتعویض نجد:

 $BC = \sqrt{96}$ يعني $BC^2 = 96$:

 $\overrightarrow{BI} \cdot \overrightarrow{BA} = \frac{3}{4} \overrightarrow{BA} \cdot \overrightarrow{BA} = \frac{3}{4} \overrightarrow{BA}^2 = \frac{3}{4} BA^2 = \frac{3}{4} BA^2 = \frac{3}{4} \times 64 = 48$

 $\overrightarrow{EB} \cdot \overrightarrow{AB} = \left(\overrightarrow{EI} + \overrightarrow{IB}\right) \cdot \overrightarrow{AB} = \overrightarrow{EI} \cdot \overrightarrow{AB} + \overrightarrow{IB} \cdot \overrightarrow{AB} \cdot (\underline{4})$

 $\overrightarrow{EI} \perp \overrightarrow{AB}$: لأن $\overrightarrow{EI} \cdot \overrightarrow{AB} = 0$ لدينا

 $\overrightarrow{EB} \cdot \overrightarrow{AB} = \overrightarrow{IB} \cdot \overrightarrow{AB} = (-\overrightarrow{BI}) \cdot (-\overrightarrow{BA}) = \overrightarrow{BI} \cdot \overrightarrow{BA} = 48$: ease

5)حسب مبر هنة المتوسط: في المثلث ABC

 $8^2 + 8^2 = 2AJ^2 + \frac{1}{2}\sqrt{96}^2$: يعني $AB^2 + AC^2 = 2AJ^2 + \frac{1}{2}BC^2$

B ليكن ABC مثلث متساوي الساقين رأسه BIS: 13 ليكن BIS: 13 مثلث متساوي الساقين رأسه

 $\cos(AB\hat{C}) = \frac{1}{3}$ $\overline{BA} \cdot \overline{BC} = 12$

و J نقطة بحيث $\overline{BJ} = \frac{5}{4} \overline{BA}$ و $\overline{BJ} = \frac{5}{4}$ وليكن

(AB) المستقيم المار من J والعمودي على المستقيم (Δ)

« c'est en forgeant que l'on devient forgeron » dit un proverbe. c'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

مول الدرس