1- Considere o sistema de equações:

$$\begin{cases} x^2 + y^2 + z = u^2 + v \\ xy^2 = uv^2 \end{cases}$$

- a) Mostre que, numa vizinhança do ponto (1,1,0,1,1), as equações definem implicitamente u e v como funções de x,y,z.
- **b)** Calcule a matriz Jacobiana If(x, y, z) no ponto (1,1,0), onde:

$$f(x,y,z) = (u(x,y,z), v(x,y,z)).$$

- **2-** Considere a função $f(x, y) = x^2 + y^2 4x + 6y + 5$.
 - a) Determine os extremos locais e pontos de sela, caso existam.
 - **b)** Calcule a fórmula de Taylor de ordem 2 no ponto (1, -1).
- 3- Seja o campo vetorial $F(x, y, z) = (x^2y, yz^2, xz)$.
 - a) Calcule o gradiente da função escalar $f(x, y, z) = x^2 + y^2 + z^2$.
 - **b)** Calcule o divergente de *F*.
 - c) Calcule o rotacional de F.
 - d) Calcule o laplaciano de $f(x, y, z) = x^2 + y^2 + z^2$.
- **4-** Considere o integral:

$$\iint\limits_D f(x,y) \, dx dy = \int\limits_0^1 \int\limits_x^{\sqrt{x}} f(x,y) dy dx$$

- a) Esboce a região D.
- b) Inverta a ordem de integração.
- c) Calcule a área da região D utilizando integrais duplos.
- 5- Considere o sólido S limitado superiormente por $z = 4 x^2 y^2$ e inferiormente por $z = x^2 + y^2$, no primeiro octante.
 - a) Expresse o volume de S com um integral triplo em coordenadas cartesianas.
 - **b)** Reescreva o volume utilizando coordenadas polares.
 - c) Calcule o volume.

6- Considere a função $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por:

$$f(x,y) = (x^2 + 2xy + y^2, x^2 + y)$$

- a) Mostre que f é localmente invertível numa vizinhança de (1,1).
- **b)** Determine a matriz Jacobiana de f^{-1} no ponto f(1,1).
- **c)** Indique o conjunto de pontos onde as condições do Teorema da função inversa de verificam.
- 7- Encontre a distância mínima entre o ponto P=(0,0,1) e a superfície $z=x^2+y^2$.
- **8-** Considere uma lâmina que ocupa a região R no plano delimitada pelo triângulo com vértices (0,0), (2,0) e (0,1), com densidade superficial dada por $\rho(x,y)=x+y$. Calcule:
 - a) A massa da lâmina.
 - b) As coordenadas do centro de massa.