MedMNIST-EdgeAI — Phase-1 (HAM10000)

Generated: 2025-10-20 16:55:28

Repository root: D:\MedMNIST-EdgeAlv2

This report consolidates teacher/student performance, calibration, operating points, robustness under corruptions, and efficiency (latency/memory). TensorBoard curves/images, dataset montage, and supplementary documents are embedded.

1. Teacher & Student Roles

Teacher: high-capacity ResNet-50 trained on HAM10000 at native resolution; provides soft targets for knowledge distillation.

Students: ResNet-18, MobileNetV2, EfficientNet-B0 distilled with KD (T, α) and optional Attention Transfer (λ), evaluated over multiple seeds.

Dataset Visual Snapshot

2. Performance (Test-set with CI)

Teacher summary:

model	accuracy_me an	accuracy_lo	accuracy_hi	macro_f1_me an	macro_f1_lo	macro_f1_hi
runs_ham10000_resnet 50	0.893	0.8796804792810 784	0.9071392910634 049	0.834	0.8041329541329 876	0.8605454187329 692

Students summary:

Otaaonto caninary.						
model	accuracy_m ean	accuracy_lo	accuracy_hi	macro_f1_m ean	macro_f1_lo	macro_f1_hi
distilled_efficientnetb0_ham1 0000	0.81	0.792901696606 7864	0.827345309381 2375	0.656	0.614319853235 9181	0.692484890297 1202
distilled_mobilenetv2_ham10 000	0.784	0.765968063872 2555	0.802395209580 8383	0.541	0.509865566655 8318	0.569113335681 8394
distilled_resnet18_ham10000	0.852	0.836327345309 3812	0.867277944111 7764	0.755	0.715326406722 1303	0.786634769600 519

Best student by macro_f1_mean: distilled_resnet18_ham10000 = 0.755.

3. Calibration & Operating Points

Calibration metrics:

model	seed	accuracy	nll	brier	ece_uniform	ece_adaptive
distilled_efficientnetb0_ham10000	seed_0	0.810379241516966	381.732	0.379	0.1894070034969352	0.189
distilled_mobilenetv2_ham10000	seed_0	0.7839321357285429	484.922	0.432	0.2160592079162597	0.216
distilled_resnet18_ham10000	seed_0	0.8517964071856288	312.122	0.296	0.1481770277023315	0.148

Operating points (per model/seed):

model	seed	tau	macro_f1_opt
distilled_efficientnetb0_ham10000	seed_0	0.0	0.656
distilled_mobilenetv2_ham10000	seed_0	0.0	0.541
distilled_resnet18_ham10000	seed_0	0.0	0.755

4. Robustness under Corruptions

Macro-F1 across corruption levels:

acc	macro_f1	tag	model	seed
0.810379241516966	0.656	gaussian_0.1	distilled_efficientnetb0_ham10000	seed_0
0.810379241516966	0.656	gaussian_0.2	distilled_efficientnetb0_ham10000	seed_0
0.811377245508982	0.658	gaussian_0.3	distilled_efficientnetb0_ham10000	seed_0
0.8158682634730539	0.663	jpeg_90	distilled_efficientnetb0_ham10000	seed_0
0.8133732534930139	0.654	jpeg_70	distilled_efficientnetb0_ham10000	seed_0
0.8158682634730539	0.659	jpeg_50	distilled_efficientnetb0_ham10000	seed_0
0.779441117764471	0.584	contrast_0.8	distilled_efficientnetb0_ham10000	seed_0
0.659181636726547	0.345	contrast_0.6	distilled_efficientnetb0_ham10000	seed_0
0.7839321357285429	0.541	gaussian_0.1	distilled_mobilenetv2_ham10000	seed_0
0.7829341317365269	0.54	gaussian_0.2	distilled_mobilenetv2_ham10000	seed_0
0.7819361277445109	0.536	gaussian_0.3	distilled_mobilenetv2_ham10000	seed_0
0.7869261477045908	0.545	jpeg_90	distilled_mobilenetv2_ham10000	seed_0
0.782435129740519	0.536	jpeg_70	distilled_mobilenetv2_ham10000	seed_0
0.7849301397205589	0.543	jpeg_50	distilled_mobilenetv2_ham10000	seed_0
0.7604790419161677	0.483	contrast_0.8	distilled_mobilenetv2_ham10000	seed_0
0.6402195608782435	0.27	contrast_0.6	distilled_mobilenetv2_ham10000	seed_0
0.8517964071856288	0.755	gaussian_0.1	distilled_resnet18_ham10000	seed_0
0.8517964071856288	0.755	gaussian_0.2	distilled_resnet18_ham10000	seed_0
0.8512974051896207	0.754	gaussian_0.3	distilled_resnet18_ham10000	seed_0
0.8552894211576846	0.758	jpeg_90	distilled_resnet18_ham10000	seed_0
0.8527944111776448	0.747	jpeg_70	distilled_resnet18_ham10000	seed_0
0.8507984031936128	0.746	jpeg_50	distilled_resnet18_ham10000	seed_0
0.81187624750499	0.663	contrast_0.8	distilled_resnet18_ham10000	seed_0
0.719560878243513	0.451	contrast_0.6	distilled_resnet18_ham10000	seed_0

5. Efficiency (Latency & Memory)

GPU latency (aggregated):

ckpt	model	see d	de vic e	ba tc h	im gs z	lat_ms _mean	lat_m s_std	lat_m s_p50	lat_ms_p9 0	lat_ms_p9 9	throughput _fps
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_efficient net	distilled_efficientnet b0_ham10000	see d_0	cud a	1	22 4	4.8	0.148	4.8	5.01036001 9514337	5.1956319 69836541	206.922723 91257524
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_mobilen etv2	distilled_mobilenetv 2_ham10000	see d_0	cud a	1	22 4	3.3	0.061	3.3	3.35667000 61783195	3.4009920 5088336	305.152499 95875126
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_resnet1 8_ham	distilled_resnet18_h am10000	see d_0	cud a	1	22 4	2.3	0.181	2.2	2.57539004 6695248	2.5903439 89431858	443.294440 04730254

CPU latency (aggregated):

ckpt	model	see d	de vic e	ba tc h	im gs z	lat_ms _mean	lat_m s_std	lat_m s_p50	lat_ms_p9 0	lat_ms_p9 9	throughpu t_fps
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_efficient net	distilled_efficientnet b0_ham10000	see d_0	cpu	1	22 4	34.9	0.953	34.8	35.6903400 3303386	38.5798549 81508106	28.628836 750156
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_mobilen etv2	distilled_mobilenetv 2_ham10000	see d_0	cpu	1	22 4	24.1	1.203	23.8	25.9501400 2872631	26.7369270 0045649	41.408830 27376206
D:\MedMNIST-EdgeAlv2\mod els\students\distilled_resnet1 8_ham	distilled_resnet18_h am10000	see d_0	cpu	1	22 4	23.0	0.307	23.0	23.3229999 95434657	24.1866820 10185898	43.391097 58824055

Model memory footprint:

ckpt	model	seed	params_b ytes	params_ mib	peak_cuda_ bytes	peak_cuda _mib	img sz	bat ch
D:\MedMNIST-EdgeAlv2\models\stud ents\distilled_efficientnet	distilled_efficientnetb0_ha m10000	seed _0	16234516	15.5	26550272	25.3	224	1
D:\MedMNIST-EdgeAlv2\models\stud ents\distilled_mobilenetv2	distilled_mobilenetv2_ha m10000	seed _0	9068220	8.6	19385344	18.5	224	1
D:\MedMNIST-EdgeAlv2\models\stud ents\distilled_resnet18_ham	distilled_resnet18_ham10 000	seed _0	44758972	42.7	55447552	52.9	224	1

6. Pareto (Accuracy vs Latency)

		,,		
model	score	latency_ms	params_mib	peak_cuda_mib
distilled_resnet18_ham10000	0.755	2.2	42.7	52.9
distilled_mobilenetv2_ham10000	0.541	3.3	8.6	18.5
distilled_efficientnetb0_ham10000	0.656	4.8	15.5	25.3

See appended figure: Acc-vs-Latency bubble plot.

7. TensorBoard Curves & Images

No TensorBoard event assets found or TensorBoard parse
--

8. Supplementary Notes from DOCX

- ResNet50vsResNet18 Beta-1000.docx

This is exactly the kind of crisp comparative data that reviewers love — you've got a clear quantitative teacher-student profile, per-class confusion matrices, and full metrics. Let's analyze it like a researcher. ■ Macro-level summary That's roughly 84-90% retention of the teacher's performance with ~55% fewer parameters and significantly lower inference cost — a good KD outcome on HAM10000, where minority classes dominate macro-F1 sensitivity. ■ Per-class analysis Interpretation: The student model faithfully inherited teacher knowledge for major and well-separated classes (5, 6), but compressed representation hurts fine-grained or underrepresented lesions (0, 2, 3, 4). That's expected: ResNet18 has limited mid-level capacity, so Attention Transfer can't fully align the deeper discriminative filters of the ResNet50. ■ Confusion Matrix insights Comparing your raw CMs: The teacher's CM shows tighter diagonals and smaller off-class bleed. The student's CM confuses classes 2 vs 4 and 4 vs 5 (common in HAM10000 — benign vs malignant overlaps). Class 3 ("VASC" in HAM10000 taxonomy) is underrepresented and poorly separated, both models struggle but teacher still manages better recall. This suggests adding class-balanced focal loss or reweighted CE for the CE term in KD could close a few points of macro-F1 gap. ■ Diagnostic takeaways Distillation effectiveness: KD + AT clearly transferred high-level structure (class 5, 6 stability). Missing low-level lesion texture adaptation (classes 0, 2, 4) indicates the AT weight β could be increased or multi-layer weighting introduced. Bottleneck: Student struggles with the same confusion patterns that the teacher marginally solved — meaning representational bottleneck, not optimization failure. Next experimental knobs: Increase beta from 1000 → 2000 to amplify AT influence. Use alpha=0.4 (more KD emphasis) with T=4. Optional: add label smoothing 0.1 or focal loss (γ=1.5) for the CE term. Fine-tune 10 epochs starting from the best checkpoint with a 10x smaller LR (2e-5). ■ Quantitative comparison snippet for your paper / report The teacher (ResNet50) achieved 89.3% validation accuracy and 0.834 macro-F1 on HAM10000. The student (ResNet18) distilled via Knowledge Distillation (α = 0.5, T = 4.0) and Attention Transfer (β = 1000) attained 82.3% validation accuracy and 0.697 macro-F1. Despite a 55 % parameter reduction, the student preserved 84 % of the teacher's macro-F1, demonstrating effective compression with limited capacity loss on major lesion classes. ■ Recommended next move If you want a publication-ready comparative visualization and export: Generate a bar chart of per-class F1 (Teacher vs

distilled via Knowledge Distillation (α = 0.5, T = 4.0) and Attention Transfer (β = 1000) attained 82.3% validation accuracy and 0.697 macro-F1. Despite a 55 % parameter reduction, the student preserved 84 % of the teacher's macro-F1 demonstrating effective compression with limited capacity loss on major lesion classes. ■ Recommended next move If you want a publication-ready comparative visualization and export: Generate a bar chart of per-class F1 (Teacher vs Student). Compute relative gap (ΔF1 / F1_teacher) for each class. Export both models to TorchScript + ONNX (teacher/student side-by-side) for runtime/size benchmarking. Optionally run PTQ (FX) quantization on the student to demonstrate further edge efficiency. Would you like me to generate the comparison report script that automatically builds: a CSV of per-class Teacher vs Student metrics, ΔF1 and ΔRecall, and a Matplotlib bar chart visualization? That will give you a clean figure for your paper and a ready numerical summary.

- Student Models Table.docx

Quick interpretation (trade-offs) ResNet18 — best accuracy (82.3%) and fastest inference by a comfortable margin (2.2 ms). Heavy-ish params and traced size, highest peak memory. Good if you can afford ~44MB model file and ~62MB GPU memory

for models + activations. MobileNetV2 — smallest artifact (≈9 MB traced), lowest memory footprint (~28 MB), slightly slower (~4.0 ms) than ResNet18 here (implementation/kernel differences make MobileNet slower on desktop GPU sometimes).

Best candidate if you need small on-disk size and low memory. EfficientNet-B0 — middle ground in params/size and best MACs-to-accuracy ratio for some classes — but slowest (~5.6 ms) in your runs. Good compromise if you want reduced params

vs ResNet18 with similar accuracy trend. Important: on small GPUs / edge devices, params and MACs do not always equal

lower latency — kernel shapes, depthwise convs, and memory/launch overhead matter. Here ResNet18 ended up fastest on the

RTX 3050.