Svar och anvisningar till de extra exemplen

Övning 4

1a.
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

- **b.** Vi använder formeln i a) och att $\left|\frac{1+\sqrt{5}}{2}\right| > 1$, $\left|\frac{1-\sqrt{5}}{2}\right| < 1$. Termen $\left(\frac{1-\sqrt{5}}{2}\right)^n$ går mot noll och blir därför försumbar. Vi får $\frac{F_{n+1}}{F_n} \to \frac{1+\sqrt{5}}{2}$, då $n \to \infty$.
- **c.** Båda sambanden visas med induktion (motsvarande den rekursiva definitionen av F_n). Det första resultatet åskådliggörs av figuren, som illustrerar hur en rektangel med sidor F_n och F_{n+1} kan delas upp i kvadrater med sidorna F_1, F_2, \ldots, F_n :

2. Karakteristiska ekvationen $x^2=-2$ har lösningarna (enkelrötter) $r_{1,2}=\pm i\sqrt{2}$. Allmänna lösningen blir $a_n=A(i\sqrt{2})^n+B(-i\sqrt{2})^n$. Insättning av startvärden ger lösningen $a_n=\frac{1-i\sqrt{2}}{2}(i\sqrt{2})^n+\frac{1+i\sqrt{2}}{2}(-i\sqrt{2})^n$.

Det är en korrekt lösning, men inte särskilt informativ, vi vet ju att det skall vara heltal och inte komplexa tal. Talserien börjar $1, 2, 2, 4, 4, 8, 8, 16, 16, \ldots$ och ett bättre svar skulle vara att dela upp i jämnt och udda. Då förenklas lösningen till $a_{2k} = 2^k$ respektive $a_{2k+1} = 2^{k+1}$.

3a.
$$\varphi = (16452)(387), \quad \psi = (1734)(285)(6)$$

b. $\varphi \psi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 5 & 6 & 1 & 4 & 8 & 2 \end{pmatrix} = (135)(278)(46),$
 $\psi \varphi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 7 & 5 & 2 & 8 & 1 & 4 & 3 \end{pmatrix} = (16)(274)(358)$
 $\varphi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 7 & 6 & 4 & 1 & 8 & 3 \end{pmatrix} = (12546)(378)$
 $\psi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 7 & 3 & 8 & 6 & 1 & 2 \end{pmatrix} = (1437)(258)(6)$

- 4. $mgm{5, 2, 6} = 30.$
- **5.** Svar 8. Skriver man upp permutationen så ser man att den längsta cykeln har längd 8 och alla cykellängder delar 8. Två cykler i permutationen är (1)(235917331427).

6. Ja, ty $M_{\pi}M_{\sigma} = I = M_{id} = M_{\pi\pi^{-1}} = M_{\pi}M_{\pi^{-1}}$, så (multiplicera med $M_{\pi^{-1}}$ från vänster) $M_{\sigma} = M_{\pi^{-1}}$. Då följer att $\sigma = \pi^{-1}$ (ty $\tau \mapsto M_{\tau}$ är en injektion).

7. De möjliga heltalspartitionerna av 9 är (i alfabetisk ordning)

3 + 3 + 3

4 + 3 + 2

4 + 4 + 1

5 + 2 + 2

5 + 3 + 1

6 + 2 + 1 och

7 + 1 + 1

Svar: $p_3(9) = 7$

8. Låt $\pi \in S_6$ ges av att $\pi(x) = y$ omm brodern till kvinnan i hus x bor i hus y. Systern till mannen i hus x bor då i hus $\pi^{-1}(x)$.

Inga syskon bor i samma hus (dvs är gifta med varandra) eller i grannhus, så för alla $x=1,2,\ldots,6$ gäller $\pi(x)\neq x,x\pm 1$. Speciellt saknar π 1-cykler, så dess cykelstruktur är någon av [6], [42], [3²] och [2³]. Men $\pi(1)=\pi^{-1}(1)$ och $\pi(2)\neq\pi^{-1}(2)$, så 1, men inte 2, ingår i en 2-cykel. π :s typ är alltså [42].

- a. 2:s cykel består av fyra av husen 2–6 (inte 1, ty 1 ingår inte i den cykeln). Eftersom x och $\pi(x)$ inte kan vara grannhus, kan tre hus i rad inte ingå i en 4-cykel (det mellersta skall ha olika hus före och efter sig i cykeln, endera vore ett grannhus), så den måste bestå av husen 2, 3, 5 och 6. 2-cykeln är alltså (14) och **Anna bor i hus 4**.
- b. Vi skall finna $\pi(x)$ för alla x = 1, 2, ..., 6 och vet redan $\pi(4) = 1, \pi(1) = 4$. 2, 3, 5, 6 bildar en 4-cykel och $\pi(6) \neq 2$, 5 (Börje är inte Cecilias bror, Cecilia inte granne med sin bror), så $\pi(6) = 3$ och därmed $\pi(3) = 5$ (inte grannhuset 2) och $\pi(5) = 2$, $\pi(2) = 6$, så $\pi = (14)(2635)$ och svaret:

9**. Du skriver en lista med de 100 personernass namn på som ni tänker er som en yttre märkning av lådorna. Lapparna inne i lådorna ger då en permutation (en slumpvis vald permutation). Ni använder er nu av följande strategi. När en person kommer in i rummet öppnar hen först lådan med sitt eget namn, tittar på namnet i lådan och går vidare till lådan som har den namnet som yttre märkning. Hen fortsätter så och följer då cykeln i permutationen med sitt eget namn i. Hen kommer alltså att öppna lådan med sitt eget namn om (och endast om) det egna namnet ligger i en cykel av längd högst 50. Alla 100 personer kommer lyckas om permutationen inte har någon cykel av längd 51 eller mer, vilket är drygt 0,31 (kräver separat uträkning).