Explanation of Concepts

StrangeMachine

A StrangeMachine manages the state for a particular component of the robot. They can be used in conjunction with one another to manage state changes involving multiple components, eg, the elevator and pickup positions.

A StrangeMachine has multiple "states", which represent the possible conditions the represented components can be in. You can test to see if a Machine is in a particular state, and crank a Machine toward a particular state; both operations will return whether or not the Machine is currently in the specified state.

RotationProvider

Given a PIDController that controls the turret rotation, a RotationProvider updates the setpoint of that controller, based on external feedback. This updating is done in the update method, which is called once per iteration in the main thread. While the PIDController is not, by default, enabled, this updating continues regardless.

Currently, the control structure works as follows:

- If the turret is in the HIGH position, then check if the user is pressing the AIM AND FIRE button.
- If so, make sure the PID controller is enabled and check if we're on target; if not, make sure the PID controller is disabled.
- If the AIM AND FIRE button is pressed, and we're on target, then go ahead and fire.

There are a few RotationProviders currently implemented. The one we've pretty much settled on is the SlowbroRotationProvider.

CameraInterface

A CameraInterface is an abstraction of a method the robot can use to obtain vision data. Currently, the only one is RemoteCameraTCP, which obtains data over a TCP connection, sent from processing software running on the Driver Station.

Springables

A Springable[Victor|Relay|DoubleSolenoid] works, in most ways, like a [Victor|Relay|DoubleSolenoid]. The only difference is the addition of a reload method. If the Springable[Victor|Relay|DoubleSolenoid] receives input, either through a PIDController or manually, it will put itself in the "sprung" state. When the reload method is called -- which it is for each Springable[Victor|Relay|DoubleSolenoid] at the end of the main control loop -- one of the following will happen:

- if the Springable[Victor|Relay|DoubleSolenoid] is sprung: un-spring it.
- if the Springable[Victor|Relay|DoubleSolenoid] is not sprung: set the output to the default output.

This way, if nothing writes to the Springable[Victor|Relay|DoubleSolenoid] over the course of a loop iteration, it will automatically switch itself off. This removes this burden from the main control logic, making things much, much simpler in implementation.

Anything else?

Yep, there's a bunch more in here. Flip through the docs!

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

edu.wpi.first.wpilibj

Class GyroHax

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.Gyro edu.wpi.first.wpilibj.GyroHax

All Implemented Interfaces:

IDevice, ISensor, PIDSource

Direct Known Subclasses:

CompensatingGyro

public class GyroHax
extends Gyro

Extender class for the Gyro class that exposes the underlying AnalogChannel.

Author

Michael Smith

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond

Constructor Summary

Constructors

Constructor and Description

GyroHax (AnalogChannel channel)

Initializes a new GyroHax on the specified AnalogChannel.

GyroHax(int port)

Initializes a new GyroHax on the specified PWM port.

GyroHax (int slot, int port)

Initializes a new GyroHax on the specified PWM port on the specified module port.

Method Summary

Methods

Modifier and Type Method and Description

AnalogChannel getAnalogChannel()

Gets the raw AnalogChannel.

Methods inherited from class edu.wpi.first.wpilibj.Gyro

free, getAngle, pidGet, reset, setSensitivity

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMMModule, checkRelayChannel, checkRelayModule, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

GyroHax

public GyroHax(int port)

Initializes a new GyroHax on the specified PWM port. Note that port must be 1 or 2!

Parameters:

port - The PWM port the gyro is plugged into. Must be 1 or 2!

GyroHax

Initializes a new GyroHax on the specified PWM port on the specified module port. Note that port must be 1 or 2!

Parameters:

 ${\tt slot}$ - The module slot the gyro is plugged into.

port - The PWM port the gyro is plugged into. Must be 1 or 2!

GyroHax

public GyroHax(AnalogChannel channel)

Initializes a new GyroHax on the specified AnalogChannel. Note that port must be 1 or 2!

Parameters:

channel - The AnalogChannel the gyro is plugged into.

Method Detail

getAnalogChannel

public AnalogChannel getAnalogChannel()

Gets the raw AnalogChannel.

Returns:

The raw AnalogChannel.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

frc.vision

Class Target

java.lang.Object

frc.vision.Target

public class Target
extends Object

An Object to hold target parameters.

Author:

Kevin Parker, Sebastian Merz

Field Summary

Modifier and Type	Field and Description
int	h
int	w
int	х1
int	у1

Constructor Summary

Constructors

Constructor and Description

Target()

Blank constructor.

Target(int x1, int y1, int w, int h)

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

x1

public int x1

у1

public int y1

\A/

public int w

h

public int h

Constructor Detail

Target

public Target()

Blank constructor. Does nothing.

Target

Parameters:

 $\times 1$ - The left x value for the target.

 ${\tt y1}$ - The bottom y value for the target.

 $\ensuremath{\mathtt{w}}$ - The width of the target.

h - The height of the target.

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.autonomous

Class PIDDriveEncoderDifference

java.lang.Object

 $com._604 robotics. robot 2012. autonomous. PIDD rive Encoder Difference$

All Implemented Interfaces:

PIDSource

public class PIDDriveEncoderDifference
extends Object

implements PIDSource

This class implements a PIDSource, based on the difference of values between two encoders.

Author:

Aaron Wang

Constructor Summary

Constructors

Constructor and Description

PIDDriveEncoderDifference(Encoder leftEncoder, Encoder rightEncoder)

Initializes a new PIDDriveEncoderDifference, based on the given encoders.

Method Summary

Methods

Modifier and Type	Method and Description	
double	pidGet()	
	Gets the difference between the two encoder values, as an output to a PID controller.	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PIDDriveEncoderDifference

 $\label{lem:limitalizes} \mbox{ Initializes a new PIDD rive Encoder Difference, based on the given encoders.}$

Parameters:

 ${\tt leftEncoder} \textbf{-} \textbf{The left encoder to monitor the value of}.$

 $\verb|rightEncoder-The right| encoder to monitor the value of.\\$

Method Detail

pidGet

public double pidGet()

Gets the difference between the two encoder values, as an output to a PID controller.

Specified by:

pidGet in interface PIDSource

Returns:

The difference between the two encoder values.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.autonomous

Class PIDDriveGyro

java.lang.Object

com._604robotics.robot2012.autonomous.PIDDriveGyro

All Implemented Interfaces:

PIDOutput

public class PIDDriveGyro
extends Object
implements PIDOutput

Driving shim for the gyro-based PID-turning controller thing.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

PIDDriveGyro (RobotDrive driveTrain)

Initializes a new PIDDriveGyro, based on the given RobotDrive.

Method Summary

Methods

Modifier and Type	Method and Description	
void	<pre>pidWrite(double output)</pre>	
	Writes the output from the PIDController to the RobotDrive, in the form of a turn value.	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PIDDriveGyro

public PIDDriveGyro(RobotDrive driveTrain)

Initializes a new PIDDriveGyro, based on the given RobotDrive.

Parameters:

driveTrain - The RobotDrive object to control.

Method Detail

pidWrite

public void pidWrite(double output)

Writes the output from the PIDController to the RobotDrive, in the form of a turn value.

Specified by:

pidWrite in interface PIDOutput

Parameters:

output - The output of the PIDController.

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.autonomous

Class PIDDriveEncoderOutput

java.lang.Object

com._604robotics.robot2012.autonomous.PIDDriveEncoderOutput

All Implemented Interfaces:

PIDOutput

public class PIDDriveEncoderOutput
extends Object
implements PIDOutput

This class implements the default PIDOutput class provided in the WPILib API. The class determines motor power to the robot drive so that the robot will drive backwards, depending on the encoder values.

Author:

Aaron Wang, Michael Smith

Constructor Summary

Constructors

Constructor and Description

PIDDriveEncoderOutput(RobotDrive driveTrain)

Initializes a new PIDDriveEncoderOutput.

PIDDriveEncoderOutput (RobotDrive driveTrain, boolean inversion)

Initializes a new PIDDriveEncoderOutput.

Method Summary

Methods

Modifier and Type	Method and Description
void	<pre>pidWrite(double output)</pre>
	Robot will drive with the configured power, and swerve determined by the encoder readings.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PIDDriveEncoderOutput

Initializes a new PIDDriveEncoderOutput.

Parameters:

driveTrain - The RobotDrive object to control.

inversion - Should the output be inverted?

PIDDriveEncoderOutput

public PIDDriveEncoderOutput(RobotDrive driveTrain)

Initializes a new PIDDriveEncoderOutput.

Parameters:

driveTrain - The RobotDrive object to control.

Method Detail

pidWrite

public void pidWrite(double output)

Robot will drive with the configured power, and swerve determined by the encoder readings.

Specified by:

pidWrite in interface PIDOutput

Parameters:

output - The output of the PID controller.

com._604robotics.robot2012.physics

Class Physics

java.lang.Object

com._604robotics.robot2012.physics.Physics

public class Physics
extends Object

Used for determining launch velocities of the ball. It gives velocity as a function of displacement and final vertical velocity

Author:

Kevin Parker

Constructor Summary

Constructors

Constructor and Description

Physics()

Method Summary

Methods	
Modifier and Type	Method and Description
Point2d	<pre>betterVersionOfgetFiringVelocity(double distH, double distV)</pre>
	This function guesses a good vertical velocity to enter the hoop, then determines the firing velocities (and time) for a given distance (horizontally, and vertically).
Point2d	<pre>betterVersionOfgetFiringVelocity(double distH, double distV, double verticalVel)</pre>
	This function determines the firing velocities (and time) for a given distance (horizontally, and vertically) and a vertical velocity at which the ball should enter the hoop.
BallFireInfo	<pre>GetBallFiringInfo(double xDist, double yDist, double zDist, double robotVelX, double robotVelZ)</pre>
	This function will determine how to fire the ball if the shooter only has 2 vertical angles.
double	<pre>getSubparFiringVelocity(double distH, double distV, double slope)</pre>
	This untested function might determine the firing velocity for a given distance (horizontally, and vertically) and the angle of the shooter.
static double	<pre>velToPow(double vel)</pre>
	Returns an approximation of the power the shooter should be spun at

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Physics

public Physics()

Method Detail

velToPow

public static double velToPow(double vel)

Returns an approximation of the power the shooter should be spun at

Parameters:

ı arameterə.

vel - - velocity, in inches/second

Returns:

the power to spin the shooter wheel at

getSubparFiringVelocity

This untested function might determine the firing velocity for a given distance (horizontally, and vertically) and the angle of the shooter.

Parameters:

```
distH - Horizontal distance the ball must travel.
```

distV - Vertical distance the ball must travel.

slope - What slope the launcher is at.

Returns:

The firing velocity

betterVersionOfgetFiringVelocity

This function determines the firing velocities (and time) for a given distance (horizontally, and vertically) and a vertical velocity at which the ball should enter the hoop.

Parameters:

distH - Horizontal distance the ball must travel.

distV - Vertical distance the ball must travel.

verticalVel - Velocity at which the ball should enter the hoop.

Returns:

A Point2d with the x and y velocities does not return the time.

betterVersionOfgetFiringVelocity

This function guesses a good vertical velocity to enter the hoop, then determines the firing velocities (and time) for a given distance (horizontally, and vertically).

Parameters:

distH - Horizontal distance the ball must travel.

distV - Vertical distance the ball must travel.

Returns:

A Point2d with the x and y velocities does not return the time.

GetBallFiringInfo

This function will determine how to fire the ball if the shooter only has 2 vertical angles.

Parameters:

```
{\tt xDist} - Left-right distance of the target.
```

yDist - Vertical distance of the target.

 ${\tt zDist}$ - Depth distance of the target.

robotVelX - Current velocity (x axis) of the robot.

robotVelz - Current velocity (z axis) of the robot

Returns:

A BallFireInfo with the velocity, angle, and horizontalAngle to fire the ball at (eventually)

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.physics

Class ShooterAnglePick

java.lang.Object

com._604robotics.robot2012.physics.ShooterAnglePick

public class ShooterAnglePick
extends Object

Enum-ish thing of angles to shoot at.

Author:

Kevin Parker

Field Summary

Tielus	
Modifier and Type	Field and Description
double	angleDeg
double	angleRad
double	angleSlope
static ShooterAnglePick	shooterAnglePickBottom
static ShooterAnglePick	shooterAnglePickTop

Constructor Summary

Constructors

Constructor and Description

 $\textbf{ShooterAnglePick} \, (\texttt{double angleDeg})$

Initializes a new ShooterAnglePick.

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

shooterAnglePickTop

public static final ShooterAnglePick shooterAnglePickTop

shooterAnglePickBottom

public static final ShooterAnglePick shooterAnglePickBottom

angleDeg

public final double angleDeg

angleRad

public final double angleRad

angleSlope

public final double angleSlope

Constructor Detail

ShooterAnglePick

public ShooterAnglePick(double angleDeg)

Initializes a new ShooterAnglePick.

Parameters:

angleDeg - An angle, in degrees.

com._604robotics.robot2012.physics

Class BallFireInfo

java.lang.Object

com._604robotics.robot2012.physics.BallFireInfo

public class BallFireInfo
extends Object

Class representing info for firing a ball.

Author:

Kevin Parker

Field Summary

Modifier and Type	Field and Description
ShooterAnglePick	angle
double	horizontalAngle
double	speed

Constructor Summary

Constructors

Constructor and Description

BallFireInfo(ShooterAnglePick angle, double speed, double horizontalAngle) Initializes a new BallFireInfo.

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

angle

public ShooterAnglePick angle

speed

public double speed

horizontalAngle

public double horizontalAngle

Constructor Detail

BallFireInfo

Initializes a new BallFireInfo.

Parameters:

angle - An angle.

speed - A speed.

horizontalAngle - A horizontal angle.

com._604robotics.robot2012.balancing

Class Balancing

java.lang.Object

com._604robotics.robot2012.balancing.Balancing

public class Balancing
extends Object

Utility class for automated balancing assistance.

Author:

Kevin Parker

Constructor Summary

Constructors

Constructor and Description

Balancing()

Method Summary

Methods

Modifier and Type	Method and Description
static double	<pre>getSpeedforBalance(double balGyroReading)</pre>
	Given a specific gyro reading, returns what speed you should be going at.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Balancing

public Balancing()

Method Detail

getSpeedforBalance

public static double getSpeedforBalance(double balGyroReading)

Given a specific gyro reading, returns what speed you should be going at.

Parameters:

balGyroReading - A gyro reading.

Returns:

The speed you should going at.

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Interface StrangeMachine

All Known Implementing Classes:

ElevatorMachine, PickupMachine, ShooterMachine, TurretMachine

public interface StrangeMachine

State manager for various components of the robot. Used for coordinating switches between states involving multiple steps and components.

Author:

Michael Smith

Method Summary

eth	

Modifier and Type	Method and Description
boolean	<pre>crank(int state)</pre>
	Causes the Machine to strive for the target state.
boolean	<pre>test(int state)</pre>
	Tests if the Machine has yet attained the target state.

Method Detail

test

boolean test(int state)

Tests if the Machine has yet attained the target state.

Parameters:

state - The target state.

Returns:

Whether or not the Machine has attained the target state.

crank

boolean crank(int state)

Causes the Machine to strive for the target state.

Parameters:

state - The state to strive for.

Returns:

Whether or not the target state has been reached.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

com._604robotics.robot2012.machine

Class ShooterMachine

java.lang.Object

com._604robotics.robot2012.machine.ShooterMachine

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

All Implemented Interfaces:

StrangeMachine

public class ShooterMachine
extends Object
implements StrangeMachine

Machine to control the shooter/hopper system during firing.

Author:

Michael Smith

Nested Class Summary

No.	4 4	\sim 1		_
Nes	(#IOI	UΙ	ass	es

Modifier and Type	Class and Description
static interface	ShooterMachine.ShooterState
	The possible states the shooter could be in.

Constructor Summary

Constructors

Constructor and Description

ShooterMachine (DualVictor shooter, Victor hopper)

Initializes a new ShooterMachine.

Method Summary

М	ei	lh	o	d	s	

Modifier and Type	Method and Description
boolean	<pre>crank(int state)</pre>
	Causes the Machine to strive for the target state.
void	setShooterSpeed(double speed)
	Sets the shooter speed to use when, well, shooting.
boolean	test(int state)
	Tests if the Machine has yet attained the target state.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

ShooterMachine

Initializes a new ShooterMachine.

Parameters:

shooter - The motors of the shooter to control.

Method Detail

setShooterSpeed

public void setShooterSpeed(double speed)

Sets the shooter speed to use when, well, shooting.

Parameters:

speed - The shooter speed to use when, well, shooting.

test

public boolean test(int state)

Description copied from interface: StrangeMachine

Tests if the Machine has yet attained the target state.

Specified by:

 $\verb|test| in interface StrangeMachine|$

Parameters:

state - The target state.

Returns:

Whether or not the Machine has attained the target state.

crank

public boolean crank(int state)

Description copied from interface: StrangeMachine

Causes the Machine to strive for the target state.

Specified by:

crank in interface StrangeMachine

Parameters:

state - The state to strive for.

Returns:

Whether or not the target state has been reached.

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Interface ShooterMachine.ShooterState

Enclosing class:

ShooterMachine

public static interface ShooterMachine.ShooterState

The possible states the shooter could be in.

Field Summary Fields Modifier and Type Field and Description static int SHOOTING

Field Detail

SHOOTING

static final int SHOOTING

See Also:

Constant Field Values

com._604robotics.robot2012.machine

Interface ElevatorMachine.ElevatorState

Enclosing class:

ElevatorMachine

public static interface ElevatorMachine.ElevatorState

Various possible states the elevator can be in.

Field Summary

F	ie	ld	s

Modifier and Type	Field and Description
static int	HIGH
static int	LOW
static int	MEDIUM
static int	PICKUP_OKAY
static int	TURRET_OKAY

Field Detail

HIGH

static final int HIGH

See Also:

Constant Field Values

MEDIUM

static final int MEDIUM

See Also:

Constant Field Values

LOW

static final int LOW

See Also:

Constant Field Values

PICKUP_OKAY

static final int PICKUP_OKAY

See Also:

Constant Field Values

TURRET_OKAY

static final int TURRET_OKAY

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Interface TurretMachine.TurretState

Enclosing class:

TurretMachine

public static interface TurretMachine.TurretState

The possible states the turret could be in.

Field Summary

		т.	100
-	IΡ	Πſ	ıc

Modifier and Type	Field and Description
static int	AIMED
static int	FORWARD
static int	LEFT
static int	RIGHT
static int	SIDEWAYS

Field Detail

SIDEWAYS

static final int SIDEWAYS

See Also:

Constant Field Values

AIMED

static final int AIMED

See Also:

Constant Field Values

FORWARD

static final int FORWARD

See Also:

Constant Field Values

LEFT

static final int LEFT

See Also:

Constant Field Values

RIGHT

static final int RIGHT

See Also:

Constant Field Values

com._604robotics.robot2012.machine

Class TurretMachine

java.lang.Object

com._604robotics.robot2012.machine.TurretMachine

All Implemented Interfaces:

StrangeMachine

public class TurretMachine
extends Object
implements StrangeMachine

Machine to control the turret.

Author:

Michael Smith

Nested Class Summary

Nested Classes

Modifier and Type	Class and Description
static interface	TurretMachine.TurretState
	The possible states the turret could be in.

Constructor Summary

Constructors

Constructor and Description

TurretMachine (PIDController controller, RotationProvider prov der, Encoder encoder)

Initializes a new TurretMachine.

Method Summary

Methods

Modifier and Type	Method and Description
b k k ean	<pre>crank(int state)</pre>
	Causes the Machine to strive for the target state.
v kdi	<pre>setTurretSidewaysPosition(dk ub@ turretSideWaysPksitikn)</pre>
	Sets the position to use as "SIDEWAYS".
b k k ean	test(int state)
	Tests if the Machine has yet attained the target state.

Methods inherited from class java.lang.Object

clkne, eq als, f imalize, getC ass, hash Cdk, nktif y nktif y A, ltkString, wait, wait, wait

Constructor Detail

TurretMachine

```
public T wretMachine(PI D 6tkoller controller, k otatioRrov der prov der, E ncoderencoder)
```

Initializes a new TurretMachine.

Parameters:

ckntroller - The PIDController to control.

prov der - The RotationProvider to draw aiming data from.

encoder - The encoder measuring the horizontal position of the turret.

Method Detail

test

public boolean test(int state)

Description copied from interface: StrangeMachine

Tests if the Machine has yet attained the target state.

Specified by:

test in interface StrangeMachine

Parameters:

state - The target state.

Returns:

Whether or not the Machine has attained the target state.

crank

public boolean $\operatorname{cran} k$ (int stat)

Description copied from interface: StrangeMachine

Causes the Machine to strive for the target state.

Specified by:

crank in interface StrangeMachine

Parameters:

state - The state to strive for.

Returns:

Whether or not the target state has been reached.

setTurretSidewaysPosition

public v kdisetT mretSidewaysPksitikn(dk ubè turretSidewaysPksitikn)

Sets the position to use as "SIDEWAYS".

Parameters:

 ${\tt turretSideWaysPksitikn-The\ position\ to\ use\ as\ "SIDEWAYS",\ in\ degrees.}$

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Class PickupMachine

java.lang.Object

 $com._604 robotics. robot 2012. machine. Pickup Machine$

All Implemented Interfaces:

StrangeMachine

public class PickupMachine
extends Object
implements StrangeMachine

Machine to control the pneumatic pickup.

Author:

Michael Smith

Nested Class Summary

Nested Classes

Modifier and Type	Class and Description
static interface	PickupMachine.PickupState
	Possible states the pickup could be in.

Constructor Summary

Constructors

Constructor and Description

 ${\tt PickupMachine}\,({\tt DoubleSolenoid}\,\,{\tt pick}\,\,\,{\tt up}$

Initializes a new PickupMachine.

Method Summary

Methods

Modifier and Type	Method and Description	
b 0 0 de	<pre>crank(int state)</pre>	
	Causes the Machine to strive for the target state.	
bo o de	<pre>test(int state)</pre>	
	Tests if the Machine has yet attained the target state.	

Methods inherited from class java.lang.Object

 $\texttt{clone, eq als, f \dot{m}alize, g \dot{e}Class, hashCode, notify, notifyAll, toString, wait, wait, wait}$

Constructor Detail

PickupMachine

public P ik uMachine (foubleSolenoid pickup)

Initializes a new PickupMachine.

Parameters:

pickup - The solenoid of the pickup to control.

Method Detail

test

public boolean test(int state)

Description copied from interface: StrangeMachine

Tests if the Machine has yet attained the target state.

Specified by:

test in interface StrangeMachine

Parameters:

state - The target state.

Returns:

Whether or not the Machine has attained the target state.

crank

public boolean crank(int state)

Description copied from interface: StrangeMachine

Causes the Machine to strive for the target state.

Specified by:

crank in interface StrangeMachine

Parameters:

state - The state to strive for.

Returns:

Whether or not the target state has been reached.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Class ElevatorMachine

java.lang.Object

com._604robotics.robot2012.machine.ElevatorMachine

All Implemented Interfaces:

StrangeMachine

public class ElevatorMachine

extends Object

implements StrangeMachine

Machine to control the elevator.

Author:

Michael Smith

Nested Class Summary

Nested Classes

Modifier and Type	Class and Description	
static interface	ElevatorMachine.ElevatorState	
	Various possible states the elevator can be in.	

Constructor Summary

Constructors

Constructor and Description

ElevatorMachine (PIDController controller, Encoder encoder)

Initializes a new ElevatorMachine.

Method Summary

Methods

Modifier and Type	Method and Description	
boolean	<pre>crank(int state)</pre>	
	Causes the Machine to strive for the target state.	
boolean	<pre>test(int state)</pre>	
	Tests if the Machine has yet attained the target state.	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

ElevatorMachine

Initializes a new ElevatorMachine.

Parameters:

controller - A PIDController to control.

encoder - The encoder monitoring the elevator's vertical position.

Method Detail

test

public boolean test(int state)

Description copied from interface: StrangeMachine

Tests if the Machine has yet attained the target state.

Specified by:

test in interface StrangeMachine

Parameters:

state - The target state.

Returns:

Whether or not the Machine has attained the target state.

crank

 $\verb"public boolean crank" (int state)"$

Description copied from interface: StrangeMachine

Causes the Machine to strive for the target state.

Specified by:

crank in interface StrangeMachine

Parameters:

state - The state to strive for.

Returns:

Whether or not the target state has been reached.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.machine

Interface PickupMachine.PickupState

Enclosing class:

PickupMachine

public static interface PickupMachine.PickupState

Possible states the pickup could be in.

Field Summary

Modifier and Type	Field and Description
static int	IN
static int	OUT

Field Detail

OUT

static final int OUT

See Also:

Constant Field Values

IN

static final int IN

See Also:

Constant Field Values

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012

Class Robot2012Orange

java.lang.Object javax.microedition.midlet.MIDlet edu.wpi.first.wpilibj.RobotBase edu.wpi.first.wpilibj.SimpleRobot

com._604robotics.robot2012.Robot2012Orange

public class Robot2012Orange
extends SimpleRobot

Main class for the 2012 robot code.

Author:

Michael Smith, Kevin Parker, Sebastian Merz, Aaron Wang, Colin Aitken

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.RobotBase

 $\texttt{ERRO} \; \texttt{RS} _ \; \mathsf{T} \; \mathsf{O} \; _ \texttt{EPSTRIAVT} \; \mathsf{I} \; \mathsf{O} \; \mathsf{N} _ \texttt{m} \underline{\mathsf{P}} \; \texttt{d}_{\mathsf{N}} \! \mathsf{O} \; \texttt{FO} \; \mathsf{B} \; \mathsf{O} \; \mathsf{T} \; _ \; \mathsf{T} \; \mathsf{A} \; \texttt{sK} \; _ \; \mathsf{P} \; \texttt{RI} \; \; \mathsf{O} \; \texttt{RI} \; \; \mathsf{T} \; \mathsf{Y}$

Constructor Summary

Constructors

Constructor and Description

Robot2012Orange()

Constructor.

Method Summary

VΙε	s۴l	h	٠,	40	

Modifier and Type	Method and Description			
Void	aimAndShoot() Aim at backboard, shoot.			
void	autonomous () Automated drive for autonomous mode.			
static double	deadband (double xV alue, odble uppef Band, duble low teBand, duble cof f ect value) If a value is within a range, set it to a specific value.			
Void	disabled() The robot is disabled.			
static boolean	isInRange (double xV alue, odble uppef Rang e, odble low $eRang$ e) Figures out if a value is within a specific range.			
Void	operatorControl() Operator-controlled drive for Teleop mode.			
void	robotInit() Initializes the robot on startup.			

Methods inherited from class edu.wpi.first.wpilibj.SimpleRobot

 $f ext{ obot} S ext{ aim star } t G ext{mpetition}$

Methods inherited from class edu.wpi.first.wpilibj.RobotBase

 $\begin{tabular}{ll} destfoyA pp f r peg etBoleanPfopef ty g etWatcbDd isA utnomous, isD isabled isEnabled, isN ew D ataA v ailable isO per aft zontfol, isSy stemA ctive pauseA pp star tA pp \\ \begin{tabular}{ll} destfoyA pp f r peg etBoleanPfopef ty g etWatcbDd isA utnomous, isD isabled isEnabled, isN ew D ataA v ailable isO per aft zontfol, isSy stemA ctive pauseA pp star tA pp \\ \begin{tabular}{ll} destfoyA pp f r peg etBoleanPfopef ty g etWatcbDd isA utnomous, isD isabled isEnabled, isN ew D ataA v ailable isO per aft zontfol, isSy stemA ctive pauseA pp star tA pp \\ \begin{tabular}{ll} destfoyA pp f r peg etBoleanPfopef ty g etWatcbDd isA utnomous, isD isabled isEnabled, isN ew D ataA v ailable isO per aft zontfol, isSy stemA ctive pauseA pp star tA pp \\ \begin{tabular}{ll} destfoyA pp f r peg etBoleanPfopef ty g etWatcbDd isA utnomous, isD isabled isA utnomediate the performance of the$

Methods inherited from class javax.microedition.midlet.MIDlet

D eA ppPopef ty notif p estby ed notif paused, r esumeReq uest

Bethods inherited from class java.lang.Object

clone, eq uals f inaliz, eg et C lassh asho6e, notif y notif y ll to Stf ing w ait w ait w ait

Constructor Detail

Robot2012Orange

```
public Robot2 0 0 2 ang e( )
```

Constructor. Disables the builtGin watchdogsince it's not really needed anymore.

Method Detail

robotlnit

```
public void f obot! nit( )
```

Initializes the robot on startup. Sets up all the controllers, sensors, actuators, etc.

Overrides:

robot nitin class SimpleRobot

isInRange

```
public static boolean is I nRang e \phi uble xV alue, double uppef Rang e, double low f Rang e)
```

Figures out if a value is within a specific range.

Parameters:

xValue - The value to test.

upperRange - The upper bound of the range.

 ${\tt lowerRange} \textbf{-} \textbf{The lower bound of the range}.$

Returns

TRUE if xValue is between upperRange and lowerRange; FALSE if not.

deadband

If a value is within a range, set it to a specific value. This is most commonly used to put a deadband on joystick inputs or motor outputs.

Parameters:

xValue - The value to test.

upperBand - The upper bound of the range.

lowerBand - The lower bound of the range.

correctedValue - The value to return if xValue is within the range.

Returns

xValue if xValue does not fall within the range; correctedValue otherwise.

aimAndShoot

```
public void aimAndShoot()
```

Aim at backboard, shoot.

autonomous

public void autonomous()

Automated drive for autonomous mode. If in middle, drive forward, knock down bridge, turn around. Else, or then, go ahead and try to score.

Overrides:

 $\verb"autonomous" in \verb"class" \verb"SimpleRobot"$

operatorControl

public void operatorControl()

Operator-controlled drive for Teleop mode. Handles robot driving, automated balancing for the bridge, ball pickup, turret aiming, firing, angle adjustments, light control, elevator control - both automated and manual - pneumatics, shifting, and various other things.

Overrides:

 ${\tt operatorControl} \; {\tt in} \; {\tt class} \; {\tt SimpleRobot}$

disabled

public void disabled()

The robot is disabled. Like ze goggles, zees does nothing.

Overrides:

disabled in class SimpleRobot

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.rotation

Class SlowbroRotationProvider

java.lang.Object

com._604robotics.robot2012.rotation.SlowbroRotationProvider

All Implemented Interfaces:

RotationProvider

 $\label{eq:public_class} \textbf{SlowbroRotationProvider} \\ \textbf{extends Object}$

 $\verb|implements| Rotation Provider|$

Implements a slow-er-ish, but more robust-ish, RotationProvider.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

SlowbroRotationProvider (ConvertingPIDController controller, CameraInterface cameraInterface, Encoder encoderTurret)
Initializes a new SlowbroRotationProvider.

Method Summary

Methods

Modifier and Type	Method and Description
void	setDefaultPosition(double defaultPosition)
	Sets the "default" position, if no targets can be located.
boolean	update()
	Updates the aiming of the turret.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

SlowbroRotationProvider

 $Initializes\ a\ new\ SlowbroRotation Provider.$

Parameters:

controller - The PIDController to control.

cameraInterface - The CameraInterface to read data from.

 $\verb|encoderTurret-The turret| encoder to read data from.$

Method Detail

setDefaultPosition

public void setD €aultPosition(double defaultPosition)

Description copied from interface: RotationProvider

Sets the "default" position, if no targets can be located.

Specified by:

setD €aultPosition in interface RotationProvider

update

public boolean update()

Description copied from interface: RotationProvider

Updates the aiming of the turret.

Specified by:

update in interface RotationProvider

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.rotation

Class NaiveRotationProvider

java.lang.Object

com._604robotics.robot2012.rotation.NaiveRotationProvider

All Implemented Interfaces:

RotationProvider

public class NaiveRotationProvider
extends Object
implements RotationProvider

A naive implementation of a RotationProvider,

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

NaiveRotationProvider(PIDController controller, CameraInterface cameraInterface, Encoder encoderTurret) Initializes a new NaiveRotationProvider, giving it control over the specified PIDController.

Method Summary

Methods

Modifier and Type	Method and Description
void	<pre>setDefaultPosition(double defaultPosition)</pre>
	Sets the "default" position, if no targets can be located.
boolean	update()
	U pdates the aiming of the turret.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

NaiveRotationProvider

Initializes a new NaiveRotationProvider, giving it control over the specified PIDController.

Parameters:

controller - The PIDController to control.

 ${\tt cameraInterface} \ \hbox{-} \ \textbf{The CameraInterface to read data from}.$

 $\verb|encoderTurret-The turret| encoder to read data from.$

Method Detail

setDefaultPosition

public void setDefaultPosition(double defaultPosition)

Description copied from interface: RotationProvider

Sets the "default" position, if no targets can be located.

Specified by:

setDefaultPosition in interface RotationProvider

update

public boolean update()

Description copied from interface: RotationProvider

U pdates the aiming of the turret.

Specified by:

update in interface RotationProvider

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.rotation

Class DummyRotationProvider

java.lang.Object

com._604robotics.robot2012.rotation.DummyRotationProvider

All Implemented Interfaces:

RotationProvider

public class DummyRotationProvider
extends Object

implements RotationProvider

Dummy implementor of a RotationProvider, for testing purposes.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

DummyRotationProvider(PIDController controller)

Initializes a new DummyRotationProvider, giving it control over the specified PIDController.

Method Summary

Methods

Modifier and Type	Method and Description
void	<pre>setDefaultPosition(double defaultPosition)</pre>
	Sets the "default" position, if no targets can be located.
boolean	update()
	U pdates the aimingof the turret.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

DummyRotationProvider

public DummyRotationProvider(PIDController controller)

 $Initializes\ a\ new\ DummyRotationProvider, giving\ it\ control\ over\ the\ specified\ PIDController.$

Parameters:

controller - The PIDController to control.

Method Detail

setDefaultPosition

public void setDefaultPosition(double defaultPosition)

Description copied from interface: RotationProvider

Sets the "default" position, if no targets can be located.

Specified by:

setDefaultPosition in interface RotationProvider

update

public boolean update()

Description copied from interface: RotationProvider

U pdates the aimingof the turret.

Specified by:

update in interface RotationProvider

com._604robotics.robot2012.rotation

Interface RotationProvider

All Known Implementing Classes:

DummyRotationProvider, NaiveRotationProvider, SlightlySmarterRotationProvider, SlowbroRotationProvider

public interface RotationProvider

Based on external feedback, aims the turret at the target.

Author:

Michael Smith

Methods Modifier and Type Method and Description void setDefaultPosition (double defaultPosition) Sets the "default" position, if no targets can be located. boolean update () Updates the aiming of the turret.

Method Detail

setDefaultPosition

void setDefaultPosition(double defaultPosition)

Sets the "default" position, if no targets can be located.

update

boolean update()

Updates the aiming of the turret.

Overview Package Class Tr	ee Deprecated Index Help
Prev Class Next Class Fra	ames No Frames All Classes
Summary: Nested Field Constr Med	hod Detail: Field Constr Method

com._604robotics.robot2012.rotation

Class SlightlySmarterRotationProvider

java.lang.Object

com._604robotics.robot2012.rotation.SlightlySmarterRotationProvider

All Implemented Interfaces:

RotationProvider

public class SlightlySmarterRotationProvider
extends Object
implements RotationProvider

A slightly smarter implementation of a rotation provider, which tries to account for network delay, etc.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

SlightlySmarterRotationProvider (PIDController controller, CameraInterface cameraInterface, Encoder encoderTurret) Initializes a new SlightlySmarterRotationProvider.

Method Summary

Methods

Modifier and Type	Method and Description
void	setDefaultPosition(double defaultPosition)
	Sets the "default" position, if no targets can be located.
boolean	update()
	W pdates the aiming 6the turret.

Methods inherited from class java.lang.Object

clone, eq als, finaliz ϱ g eClass, hashCode, notify, notifyAll, tof ting, wait, wait, wait

Constructor Detail

SlightlySmarterRotationProvider

 $\label{eq:public formula} \begin{array}{ll} \text{public f lightlyf marterRotationProvider(PI } DoG \text{troller controller,} \\ \text{Cameral nterface cameral nterface,} \\ \text{S noder encoderTurret)} \end{array}$

Initializes a new SlightlySmarterRotationProvider.

Parameters:

 $\verb|controller-The PIDController| to control.$

cameral nterface - The CameraInterface to read data from.

 $\verb|encoderTurret-The turret| encoder to read data from.$

Method Detail

setDefaultPosition

public void setD €aultPosition(double defaultPosition)

Description copied from interface: RotationProvider

Sets the "default" position, if no targets can be located.

Specified by:

setD €aultPosition in interface RotationProvider

update

public boolean update()

Description copied from interface: RotationProvider

W pdates the aiming 6the turret.

Specified by:

update in interface RotationProvider

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.RING_LIGHT

Enclosing interface:

ActuatorConfiguration

public static interface ActuatorConfiguration.RING_LIGHT

Field Summary Fields Modifier and Type Field and Description static Relay.Value OFF static Relay.Value ON

ON		
static final Relay.Value ON		
OFF		

com._604robotics.robot2012.configuration

Interface PortConfiguration.Encoders.Drive

Enclosing interface:

PortConfiguration.Encoders

public static interface PortConfiguration. Encoders. Drive

Field Summary

Fields

Modifier and Type	Field and Description
static int	LEFT_A
static int	LEFT_B
static int	RIGHT_A
static int	RIGHT_B

Field Detail

LEFT_A

static final int LEFT_A

See Also:

Constant Field Values

LEFT_B

static final int LEFT_B

See Also:

Constant Field Values

RIGHT_A

static final int RIGHT_A

See Also:

Constant Field Values

RIGHT_B

static final int RIGHT_B

See Also:

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.SOLENOID_SHOOTER

Enclosing interface:

ActuatorConfiguration

 $\verb"public static interface {\tt ActuatorConfiguration.SOLENOID_SHOOTER"}$

Field Summary

Fields

Modifier and Type	Field and Description
static DoubleSolenoid.Value	LOWER_ANGLE
static DoubleSolenoid.Value	UPPER_ANGLE

Field Detail

LOWER ANGLE

static final DoubleSolenoid.Value LOWER_ANGLE

UPPER_ANGLE

static final DoubleSolenoid.Value UPPER_ANGLE

com._604robotics.robot2012.configuration

Interface PortConfiguration.Relays

Enclosing interface:

PortConfiguration

public static interface PortConfiguration.Relays

Field Summary

Modifier and Type	Field and Description
static Relay.Direction	RING_LIGHT_DIRECTION
static int	RING_LIGHT_PORT

Field Detail

RING_LIGHT_PORT

static final int RING_LIGHT_PORT

See Also:

Constant Field Values

RING_LIGHT_DIRECTION

static final Relay.Direction RING_LIGHT_DIRECTION

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.ELEVATOR.TOLERANCE

Enclosing interface:

ActuatorConfiguration.ELEVATOR

public static interface ActuatorConfiguration.ELEVATOR.TOLERANCE

Field Summary

Fields

Modifier and Type	Field and Description
static int	HIGH
static int	LOW
static int	MEDIUM_LOWER
static int	MEDIUM_UPPER

Field Detail

HIGH

static final int HIGH

See Also:

Constant Field Values

MEDIUM_UPPER

static final int MEDIUM**z**UPPE_

See Also:

Constant Field Values

MEDIUM_LOWER

static final int MEDIUMz K A_Y

See Also:

Constant Field Values

LOW

static final int K A Y

See Also:

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.ELEVATOR.DEADBAND

Enclosing interface:

ActuatorConfiguration.ELEVATOR

public static interface ActuatorConfiguration.ELEVATOR.DEADBAND

Field Summary Fields Modifier and Type Field and Description static int HIGH static int LOW static int MEDIUM_LOWER static int MEDIUM_UPPER

Field Detail

HIGH

static final int HIGH

See Also:

Constant Field Values

MEDIUM_UPPER

static final int MEDIUM**Z**UPPE_

See Also:

Constant Field Values

MEDIUM_LOWER

static final int MEDIUMz K A_Y

See Also:

Constant Field Values

LOW

static final int $K\ A\ Y$

See Also:

com._604robotics.robot2012.configuration

Interface PortConfiguration.Pneumatics.SHOOTER_SOLENOID

Enclosing interface:

PortConfiguration.Pneumatics

public static interface PortConfiguration.Pneumatics.SHOOTER_SOLENOID

Field Summary Fields Modifier and Type Field and Description static int LOWER_ANGLE static int UPPER_ANGLE

Field Detail LOWER_ANGLE static final int LOWER_ANGLE See Also: Constant Field Values UPPER_ANGLE static final int UPPER_ANGLE See Also: Constant Field Values

com._604robotics.robot2012.configuration

Interface PortConfiguration

public interface PortConfiguration

Port configuration.

Author:

Michael Smith

Nested Class Summary

Nested Classes	
Modifier and Type	Interface and Description
static interface	PortConfiguration.Controllers
static interface	PortConfiguration.Encoders
static interface	PortConfiguration.Motors
static interface	PortConfiguration.Pneumatics
static interface	PortConfiguration.Relays
static interface	PortConfiguration.Sensors

Overview Pa	Package Class	Tree D	eprecated Index	Help
Class	Next Class	Frames	No Frames	All Classes
Summary: Nes	sted Field Constr N	Method	Detail: Field Cons	tr Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface PortConfiguration.Encoders

Enclosing interface:

PortConfiguration

public static interface PortConfiguration. Encoders

Nested Class Summary

Nested Classes

Modifier and Type	Interface and Description
static interface	PortConfiguration.Encoders.Drive

Field Summary

Fields

1 10140		
Modifier and Type	Field and Description	
static int	ELEVATOR_A	
static int	ELEVATOR_B	
static int	TURRET_ROTATION_A	
static int	TURRET_ROTATION_B	

Field Detail

ELEM p TO F _ p

static final int El H o M , y z) $\ensuremath{\mathsf{M}}$

See p Iso

Constant Field Values

ELEM p TO F _ B

static final int El $H\ o\ M$, $y\ z$) v

 $\textbf{See} \; p \;\; \textbf{Iso}$

Constant Field Values

TURRET VRBTATIBNVA

static final int , q z z H ,) z y , M , f y g) M

See Also:

Constant Field Values

TURRETVRBTATIBNV U

static final int , q z z H ,) z y , M , f y g) v

See Also:

com._604robotics.robot2012.configuration

Interface PortConfiguration.Controllers

Enclosing interface:

PortConfiguration

public static interface PortConfiguration.Controllers

Field Summary

Fields

Modifier and Type	Field and Description
static int	DRIVE
static int	MANIPULATOR

Field Detail

DRIVE

static final int DI o M,

See Also:

Constant Field Values

MANIPULATOR

static final int y z) o v q f z g K I

See Also:

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.SOLENOID_SHIFTEm

Enclosing interfacey

ActuatorConfiguration

 $\verb"public static interface {\tt ActuatorConfiguration.SOLENOID_SHIFTER"}$

Field Summary

Fields

Modifier and Type	Field and Description
static DoubleSolenoid.Value	HIGH_GEAR
static DoubleSclengid Value	TOW CEAR

Field Detail

LOW_GEAm

static final DoubleSolenoid.Value LOW_ $K\ A\ Y$ _

HIGH_GEAm

static final DoubleSolenoid. Value H, G)_ K A Y $_$

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface AutonomousConfiguration

public interface AutonomousConfiguration

Autonomous mode configuration.

Author:

Sebastian Merz, Michael Smith

Field Summary

Modifier and Type	Field and Description
static H uble	BACKWARD_DISTANCE
static H I uble	BACKWARD_DISTANCE_SIDES
static H I uble	BACKWARD_DRIVE_POWER
static H I uble	FORWARD_DISTANCE
static H I uble	FORWARD_DRIVE_POWER

Field Detail

FORWARD_DISTANCE

static final H I uble o M , y z ,) v) q f g z K h A

See Also:

Constant Field Values

BACKWARD_DISTANCE

static final H I uble R z h N y z ,) v) q f g z K h A

See Also:

Constant Field Values

BACKWARD_DISTANCE_SIDES

static final H I uble R z h N y z ,) v) q f g z K h A v f q) A f

See Also:

Constant Field Values

FORWARD_DRIVE_POWER

static final $H\ I$ uble $O\ M$, $y\ z$, $y\ v$), $y\ v$, $y\ v$, $y\ v$, $y\ v$

See Also:

Constant Field Values

BACKWARD_DRIVE_POWER

static final $H\ I$ uble $R\ z\ h\ N\ y\ z$,) v) , $q\ w\ A\ v\ R\ M\ y\ A$,

See Also:

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface SensorConfiguration

public interface SensorConfiguration

Sensor configuration.

Author:

Michael Smith

Nested Class Summary

Nested Classes

Modifier and Type	Interface and Description
static interface	SensorConfiguration.Encoders

Field Summary

Fields

Modifier and Type	Field and Description
static H I uble	ACCELEROMETER_SENSITIVITY
static H I uble	ACCELEROMETER_UPPER_RADIANS
static H I uble	GYRO_DRIFT
static int	TURRET_CALIBRATION_OFFSET

Field Detail

GYRO DRIFT

static final H I uble o M , y z) , v q f $\,$

See Also:

Constant Field Values

ACCELEROMETER_SENSITIVITY

static final H I uble g K K h A h , y R h f h , z N h w N v f v R v f M

See Also:

Constant Field Values

ACCELEROMETER_UPPER_RADIANS

static final H I uble g K K h A h , y R h f h , z U N N h , z , g) v g w N $\,$

See Also:

Constant Field Values

TURRET_CALIBRATION_OFFSET

static final int f $U\,,$, h f z K g A v X , g f v y w z y q q N h f

See Also:

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Class

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface PortConfiguration.Motors

Enclosing interface:

PortConfiguration

public static interface PortConfiguration.Motors

Field Summary

Fi	е	lo	ls	

Modifier and Type	Field and Description	
static int	ELEVATOR_LEFT	
static int	ELEVATOR_RIGHT	
static int	HOPPER	
static int	LEFT_DRIVE	
static int	PICKUP	
static int	RIGHT_DRIVE	
static int	SHOOTER_LEFT	
static int	SHOOTER_RIGHT	
static int	TURRET_ROTATION	
	-	

Field Detail

LEFT_DRIBE

static final int LEFT_D $\!z$) v I

See Also:

Constant Field Values

RIGHT_DRIBE

static final int z) $\mbox{\bf q}$ f $\mbox{\bf M}$, $\mbox{\bf y}$ $\mbox{\bf z}$) $\mbox{\bf v}$ I

See Also:

Constant Field Values

ELEB MUR_LEFT

static final int ELEg $\Delta\!\!\!\!/ Dz$, H I o M

See Also:

Constant Field Values

ELEB MUR_RIGHT

static final int ELEg $\Delta\!\!\!\!/\, Dz$, z) q f M

See Also:

Constant Field Values

SP U WERTLEFT

static final int y HD Dz TE H I o M

See Also:

Constant Field Values

SP U WERT RIGHT

static final int $y\ \mbox{H} D\ Dz\mbox{TF}\ z$) $q\ f\ M$

See Also:

Constant Field Values

P U PER

static final int HD) \not E

See Also:

Constant Field Values

PICh U P

static final int) z L E U T

See Also:

Constant Field Values

TURRET_RU TATIU N

static final int TSz z I M , z K M g M) K R $\,$

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface ButtonConfiguration.Manipulator.Elevator

Enclosing interface:

ButtonConfiguration.Manipulator

public static interface ButtonConfiguration.Manipulator.Elevator

Field Summary

Fields

Modifier and Type	Field and Description
static int	DOWN
static int	FORWARD
static int	LEFT
static int	RIGHT

Field Detail

FORWARD

static final int $H\ I\ o\ M$, $o\ y$

See Also:

Constant Field Values

LEFT

static final int LzHv

See Also:

Constant Field Values

RIGHT

static final int R_ $K\ A\ g$

See Also:

Constant Field Values

DOWN

static final int DO $M\ K$

See Also:

com._604robotics.robot2012.configuration

Interface PortConfiguration.Pneumatics.HOPPER_SOLENOID

Enclosing interface:

PortConfiguration.Pneumatics

public static interface PortConfiguration.Pneumatics.HOPPER_SOLENOID

Field Summary Fields Modifier and Type Field and Description static int FORWARD static int REVERSE

Field Detail FORWARD static final int H I o M, o y See Also: Constant Field Values

com._604robotics.robot2012.configuration

Interface SensorConfiguration.Encoders

Enclosing interface:

SensorConfiguration

public static interface SensorConfiguration. Encoders

Field Summary

Fields

Modifier and Type	Field and Description
static double	LEFT_DRIVE_INCHES_PER_CLICK
static double	RIGHT_DRIVE_INCHES_PER_CLICK
static double	TURRET_DEGREES_PER_CLICK

Field Detail

TURRET_DEGREES_PER_CLICK

static final double ${\tt TM}$, , y o z) y v , y y q z f y , z g K h g A

See Also:

Constant Field Values

LEFT_DRIVE_INCHES_PER_CLICK

static final double $Dy\ R\ o\ z$) , $h\ N\ y\ z\ h\ w\ g\ R\ y\ q\ z\ f\ y$, $z\ g\ K\ h\ g\ A$

See Also:

Constant Field Values

RIGHT_DRIVE_INCHES_PER_CLICK

static final double , h v R o z) , h N y z h w g R y q z f y , z g K h g A

See Also:

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface ButtonConfiguration.Manipulator

Enclosing interface:

ButtonConfiguration

public static interface ButtonConfiguration.Manipulator

Nested Class Summary

Nested Classes

Modifier and Type	Interface and Description
static interface	ButtonConfiguration.Manipulator.Elevator

Field Summary

Fields

rielus	
Modifier and Type	Field and Description
static int	AIM_AND_SHOOT
static int	PICKUP
static int	TOGGLE_ANGLE
static int	TOGGLE_HEIGHT
static int	TOGGLE_LIGHT

Field Detail

MM_M NmSB MTM

static final int $H\ I\ o\ M\ H\ ,\ y\ M\ z\)\ v\ v\ q$

See M Iso

Constant Field Values

PICV U P

static final int PIH DPy

See M Iso

Constant Field Values

TM U WE_BEIGBT

static final int $_$ g T \mbox{TM}). $\mbox{\bf B}$ I A) $\mbox{\bf q}$

See M Iso

Constant Field Values

TM U **E_M NGE**L

static final int $_$ g T \mbox{TM} \mbox{H} \mbox{E} A R N

See M Iso

TM U EL IBT

static final int $_$ g T $\slash\hspace{-0.4em}\overline{\slash}$ R E A) q

See M Iso

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface PortConfiguration.Pneumatics

Enclosing interface:

PortConfiguration

public static interface PortConfiguration.Pneumatics

Nested Class Summary

Nested	Classes

Modifier and Type	Interface and Description
static interface	PortConfiguration.Pneumatics.HOPPER_SOLENOID
static interface	PortConfiguration.Pneumatics.PICKUP_SOLENOID
static interface	PortConfiguration.Pneumatics.SHIFTER_SOLENOID
static interface	PortConfiguration.Pneumatics.SHOOTER_SOLENOID

Field Summary

Modifier and Type	Field and Description
static int	COMPRESSOR
static int	PRESSURE_SWITCH

Field Detail

COMPRESSOR

static final int $H\ I\ o\ M$, $y\ z\ z\ I$,

See Also:

Constant Field Values

PRESSUREMSWITCP

static final int P, y z z) , y v z q f g H \mbox{K}

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.SOLENOID_HOPPER

Enclosing interface:

ActuatorConfiguration

public static interface ActuatorConfiguration.SOLENOID_HOPPER

Field Summary Fields Modifier and Type Field and Description static DoubleSolenoid.Value PUSH static DoubleSolenoid.Value REGYLAR

Field Detail

REGULAR

static final DoubleSolenoid. Value \boldsymbol{z}) \boldsymbol{v} q f g \boldsymbol{z}

PUSH

static final DoubleSolenoid.Value P_Sy

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.SOLENOID_PICKUP

Enclosing interface:

ActuatorConfiguration

public static interface ActuatorConfiguration.SOLENOID_PICKUP

Field Summary Fields Modifier and Type Field and Description static DoubleSolenoid.Value IN static DoubleSolenoid.Value OUT

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.TURRET_POSITION

Enclosing interface:

ActuatorConfiguration

public static interface ActuatorConfiguration.TURRET_POSITION

Field Summary

Fields

Modifier and Type	Field and Description
static double	FORWARD
static double	LEFT
static double	RIGHT
static double	TOLERANCE

Field Detail

FORWARD

static final double FM , y z ,)

See Also:

Constant Field Values

LEFT

static final double $g \not \sqsubseteq K$

See Also:

Constant Field Values

RIGHT

static final double , $g\ K\ h\ f$

See Also:

Constant Field Values

TOLERANCE

static final double $KM\ v\ q$, $z\ A\ R\ q$

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration

public interface ActuatorConfiguration

Actuator polarity and power configuration.

Author:

Michael Smith

Nested Class Summary

Nested Classes Modifier and Type

Modifier and Type	Interface and Description
static interface	ActuatorConfiguration.ELEVATOR
static interface	ActuatorConfiguration.RING_LIGHT
static interface	ActuatorConfiguration.SOLENOID_HOPPER
static interface	ActuatorConfiguration.SOLENOID_PICKUP
static interface	ActuatorConfiguration.SOLENOID_SHIFTER
static interface	ActuatorConfiguration.SOLENOID_SHOOTER
static interface	ActuatorConfiguration.TURRET_POSITION

Field Summary

Fields

Modifier and Type	Field and Description	
static H I uble	ACCELEROMETER_DRIVE_POWER	
static $H\ I$ uble	ELEVATOR_POWER_MAX	
static H I uble	ELEVATOR_POWER_MIN	
static $H\ I$ uble	HOPPER_POWER	
static H I uble	HOPPER_POWER_REVERSE	
static $H\ I$ uble	PICKUP_POWER	
static H I uble	TURRET_ROTATION_POWER_MAX	
static H I uble	TURRET_ROTATION_POWER_MIN	

Field Detail

ACCELEROMETER_DRIVE_POWER

static final H I uble o M M , y , z) v , q , z f g z K h , f A) R , z

See Also:

Constant Field Values

HOPPER_POWER

static final H I uble N) A A , z f A) R , z

See Also:

Constant Field Values

HOPPER_POWER_REVERSE

static final H I uble N) A A , z f A) R , z f z , h , z w ,

See Also:

Constant Field Values

PICKUP_POWER

static final $H\ I$ uble $A\ K\ M\ R\ U\ A\ f\ A\)\ R\ ,\ z$

See Also:

Constant Field Values

ELEVATOR_POWER_MIN

static final H I uble , y , h o q) z f A) R , z f v K N $\,$

See Also:

Constant Field Values

ELEVATOR_POWER_MAX

static final H I uble , y , h o q) z f A) R , z f v o X

See Also:

Constant Field Values

TURRET_ROTATION_POWER_MIN

static final H I uble q U z z , q f z) q o q K) N f A) R , z f v K N $\,$

See Also:

Constant Field Values

TURRET_ROTATION_POWER_MAX

static final H I uble q U z z , q f z) q o q K) N f A) R , z f v o X

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes
Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface PortConfiguration.Sensors

Enclosing interface:

PortConfiguration

public static interface PortConfiguration.Sensors

Field Summary

Fields

Modifier and Type	Field and Description	
static int	ACCELEROMETER	
static int	ELEVATOR_LIMIT_SWITCH	
static int	GYRO_BALANCE	
static int	GYRO_HEADING	

Field Detail

GYRO_HEP DING

static final int GI $o\ M$, $y\ z$) $v\ q\ f\ H$

See P Iso

Constant Field Values

GYRO_BP W P ENC

static final int GI $o\ M$, g) K) $f\ h\ z$

See P Iso

Constant Field Values

P CEWERBMETER

static final int z $_zK$ z o M A z R z o

See P Iso

Constant Field Values

EVEK PBRM LMITMSY ITC

static final int z K z N) R M o , K q A q R , w R q R h y

See P Iso

Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method | Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface PortConfiguration.Pneumatics.PICKUP_SOLENOID

Enclosing interface:

PortConfiguration.Pneumatics

public static interface PortConfiguration.Pneumatics.PICKUP_SOLENOID

Field Summary Fields Modifier and Type Field and Description static int IN static int OUT

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.configuration

Interface ButtonConfiguration.Driver

Enclosing interface:

ButtonConfiguration

public static interface ButtonConfiguration.Driver

Field Summary

Fields

Modifier and Tyy e	Field and Descriy ibn
static int	AUTO_BALANCE
static int	GYRO_RESET
static int	SHIFT
static int	TOGGLE_PICKUP

Field Detail

SHIFT

static final int SHo M,

See Also:

Constant Field Values

TB M MEPLPICU W P

static final int , y z z) v q f o g K h f

See Also:

Constant Field Values

AWTB BALANCE

static final int) y y q R A) A N g v

See Also:

Constant Field Values

M Y R ESETR

static final int GS y q R v H v ,

See Also:

Constant Field Values

com._604robotics.robot2012.configuration

Interface PortConfiguration.Pneumatics.SHIFTER_SOLENOID

Enclosing interface:

PortConfiguration.Pneumatics

public static interface PortConfiguration.Pneumatics.SHIFTER_SOLENOID

Field Summary Fields Modifier and Type Field and Description static int HIGH_GEAR static int LOW_GEAR

Field Detail LOW_GEAR static final int LOO M, y z) See Also: Constant Field Values HIGH_GEAR static final int g v M, y z) See Also: Constant Field Values

 $com._604 robotics.robot 2012. configuration$

Interface ButtonConfiguration

public interface ButtonConfiguration

Button configuration.

Author:

Michael Smith

Nested Classes Modifier and Type Interface and Description static interface ButtonConfiguration.Driver static interface ButtonConfiguration.Manipulator

Overview Package Class Tre	ee Deprecated Index Help
Prev Class Next Class Fran	mes No Frames All Classes
Summary: Nested Field Constr Meth	nod Detail: Field Constr Method

com._604robotics.robot2012.configuration

Interface ActuatorConfiguration.ELEVATOR

Enclosing interface:

ActuatorConfiguration

public static interface ActuatorConfiguration.ELEVATOR

Nested Class Sum m ary

Nest	a al	CL		~~
1462	leu.	U Id	155	ษ๖

M difier and Ty p e	Interface diß escip ibn
static interface	ActuatorConfiguration.ELEVATOR.DEADBAND
static interface	ActuatorConfiguration.ELEVATOR.TOLERANCE

Field Sum m ary

M difier and Ty p e	ieffd and B escip ion
static int	HIGH
static int	LOW
static int	MEDIUM
static int	OKAY TO_TURN

Field B etial

HIGH

static final int ${\rm HI}{\rm o}$ H

See Also:

Constant Field Values

MEB IW

static final int $M \;,\;\; y \;\; I \;\; z \;\; M$

See Also:

Constant Field Values

LOW

static final int z g _

See Also:

Constant Field Values

OKAY TO_ TRN

static final int $g\ K\ A\ Y\ _zTRg\ N_\ T$

See Also:

Constant Field Values

com._604robotics.robot2012.vision

Class Point3d

java.lang.Object

com._604robotics.robot2012.vision.Point3d

public class Point3d
extends Object

This represents a point in 3d space

Author:

Kevin Parker

Field Summary

Modifier and Type	Field and Description
double	х
	the x value
double	У
	the y value
double	z
	the z value

Constructor Summary

Constructors

Constructor and Description

 ${\tt Point3d}\,({\tt double}\ {\tt x},\ {\tt double}\ {\tt y}$, double ${\tt z}$)

Method Summary

Methods

motriodo	
Modifier and Type	Method and Description
double	getX(Z
double	getY(Z
double	getZ(Z
goid	setX(double xZ Sets the X value of this Point
goid	setY(double y) Sets the Y value of this Point
V Odi	<pre>setZ(double z) Sets the Z value of this Point</pre>

Methods inherited from class java.lang.Object

clone, eq als, f $maliz \in g \in D$ ass, hasy Dde, notify, notify A lltoStA mH, lltoStA mH, wait, wait, wait,

Field Detail

public double x

the x value

```
public double y
the y value

public double z
the z value
```

Constructor Detail

Point3d

Parameters:

x G G the x value

y G G the y value

z G G the z value

Method Detail

getX

public double getX()

Returns:

G theX value

setX

public void setX(double x)

Sets the X value of this Point

Parameters:

x - - the X value

getY

public double getY()

Returns:

- the Y value

setY

public void setY(double y)

Sets the Y value of this Point

Parameters:

y - - the Y value

getZ

public double getZ()

Returns:
G the value

SetZ

public void setZ(double z)

Sets the (value of this Point)

Parameters:
z -- the Z value

com._604robotics.robot2012.vision

Class Target

java.lang.Object

com._604robotics.robot2012.vision.Target

public class Target
extends Object

Represents a target.

Author:

Kevin Parker

Field Summary

Fields	
Modifier and Type	Field and Description
double	angle
	This is the angle of the target, relative to the camera.
double	angle_uncertainty
	This is the uncertainty of the angle of the target.
double	x
	x, y , and z represent the W ($pabsition$ of the target x will be positive when the target appears to be right of the center of the camera.
double	x_uncertainty
	These are the uncertainties of the x, y, and z positions of the target.
double	У
	x, y , and z represent the W ($postion$ of the target x will be positive when the target appears to be right of the center of the camera.
double	y_uncertainty
	These are the uncertainties of the x, y, and z positions of the target.
double	z
	x, y , and z represent the W ($pabsition$ of the target x will be positive when the target appears to be right of the center of the camera.
double	z_uncertainty
	These are the uncertainties of the x, y, and z positions of the target.

Constructor Summary

Constructors

Constructor and Description

Target()

Target(double x, double y, double z, double angle)

 $\label{thm:condition} \textbf{Target}(\texttt{double x, double y, double x_uncertainty, double y_uncertainty, double z_uncertainty, double angle_uncertainty)}$

Target(Point3d point, double angle)

Method Summary

Methods

Modifier and Type	Method and Description
String	toString()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

angle

```
public double ang &
```

This is the angle of the target, relative to the camera.

```
Gangle1
......GTarget1
......2
.....2
.....2
.....2
....2
....2
...2
...2
...2
...2
...2
...2
```

this value is expressed in radians.

angle_uncertainty

```
public double ang &_uncertainty
```

This is the uncertainty of the angle of the target. This is interpreted as a plus or minus to the angle. Again, this is expressed in radians

X

public double x

x, y, and z represent the W (pubsition of the target x will be positive when the target appears to be right of the center of the camera. y will be positive when the target appears to be above of the center of the camera. z will always be negative G see ikipediaRight-hand rule1 As the absolute value of z increases, so does the distance from the camera to the target. To determine the approximate accuracy of these values, check - xy, z> _accuracyThe units of these measures are in inches.

У

public double y

x, y, and z represent the W (pubsition of the target x will be positive when the target appears to be right of the center of the camera. y will be positive when the target appears to be above of the center of the camera. z will always be negative G see ikipediaRight-hand rule1 As the absolute value of z increases, so does the distance from the camera to the target. To determine the approximate accuracy of these values, check - xy, z> _accuracyThe units of these measures are in inches.

Z

public double Z

x, y, and z represent the W (pubsition of the target x will be positive when the target appears to be right of the center of the camera. y will be positive when the target appears to be above of the center of the camera. z will always be negative G see ikipediaRight-hand rule1 As the absolute value of z increases, so does the distance from the camera to the target. To determine the approximate accuracy of these values, check - xy, z> _accuracyThe units of these measures are in inches.

x_uncertainty

public double x_uncertainty

These are the uncertainties of the x, y, and z positions of the target. These are interpreted as pluses and minuses to the x, y, and z values. Again, these are in inches.

y_uncertainty

public double y_uncertainty

These are the uncertainties of the x, y, and z positions of the target. These are interpreted as pluses and minuses to the x, y, and z values. Again, these are in inches.

z_uncertainty

public double Z _ umctainty

These are the uncertainties of the x, y, and z positions of the target. These are interpreted as pluses and minuses to the x, y, and z values. Again, these are in inches.

Constructor Detail

```
Target
```

Target

Target

```
public Target()
```

Method Detail

toString

```
public String toString()
```

Overrides:

```
toString in class Object
```

com._604robotics.robot2012.aiming

Class Point3d

java.lang.Object

com._604robotics.robot2012.aiming.Point3d

public class Point3d
extends Object

Represents a single point in 3D space.

Author:

Kevin Parker

Field Summary

F	e	d	s

Modifier and Type	Field and Description
double	x
double	У
double	z

Constructor Summary

Constructors

Constructor and Description

Point3d()

Initiali- es a new Point3d.

 ${\tt Point3d}$ (double x, double y, double z)

Initiali- es a new Point3d.

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

х

public double x

у

public double y

7

public double z

Constructor Detail

Point3d

public Sointrd()

Initiali- es a new Point3d.

Point3d

Initiali- es a new Point3d.

Parameters:

 ${\bf x}$ K The xK coordinate oz the point.

 $_{\rm Y}\,{\rm K}\,$ The yK coordinate oz the point.

z K The - K coordinate oz the point.

com._604robotics.robot2012.aiming

Class Point2d

java.lang.Object

com._604robotics.robot2012.aiming.Point2d

public class Point2d
extends Object

Represents a single point on the 2D plane.

Author:

Kevin parker

Constructor Summary

Constructors

Constructor and Description

Point2d(double x, double y)

Intializes a new Point2d.

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Point2d

Intializes a new Point2d.

Parameters:

- x The x- coordinate oK the point.
- ${\tt y}$ The y- coordinate oK the point.

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.robot2012.aiming

Class PointAndAngle3d

java.lang.Object

com._604robotics.robot2012.aiming.PointAndAngle3d

public class PointAndAngle3d
extends Object

A class to hold a 3d point.

Author:

Kevin Parker, Sebastian Merz

Constructor Summary

Constructors

Constructor and Description

PointAndAngle3d(double x, double y, double z, double angle)

Initializes variables for the point.

PointAndAngle3d (Point3d p, double angle)

Initiali- esvariables for the point.

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

PointAndAngle3d

Initiali- esvariables for the point.

Parameters:

x WThe x coordinate of the point.

 ${\bf y}$ WThe y coordinate of the point.

 ${\scriptstyle \rm Z}$ WThe - coordinate of the point.

angle WThe angle the target is at from the robot.

PointAndAngle3d

Initiali- esvariables for the point.

Parameters:

 ${\tt p}$ W(sethe values from this point to create the new point.

 $\verb"angle W" se\$ his angle for the new point.$

com._604robotics.robot2012.aiming

Class Aiming

java.lang.Object

com._604robotics.robot2012.aiming.Aiming

public class Aiming
extends Object

Utility class for various aiming functions and such.

Author:

Kevin Parker

Field Summary

Fields

Modifier and Type	Field and Description
static Aiming	defaultAiming

Constructor Summary

Constructors

Constructor and Description

Aiming()

Method Summary

14.4	-4	ь.	-		
М	eι	III	0 I 0	ы	

Modifier and Type	Method and Description
PointAndAngle3d	<pre>getAngleAndRelXYZOfTarget(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4)</pre>
	- ethe angle from the targetsKand the relative distances of the corners of the target as perceived by the camera.
double	<pre>getAngleOfTarget(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double z)</pre>
	This function gets the direction the target is facing Krelative to the camera.
Point3d	<pre>getRelXYZOfTarget(double x1, double y1, double w, double h)</pre>
	W emembethat this re(uiresthe camera to be GpefectlyGlatKand the targets to be GpefectlyG vertical.
Point3d	getRelXYZOfTarget(Target t)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Field Detail

defaultAiming

public static final Aiming defaultAiming

Constructor Detail

Aimina

,

public Aiming()

Method Detail

getRelXYZOfTarget

W emembethat this re(uiresthe camera to be GpeectlyGlatKand the targets to be GpeectlyG vertical. A newfunction will probably need to be created for use on the robot. ThatKor we1ll need to manipulate the points based on camera angle. The points are in the following pattern: 2 y! | 12 | | - 42 - - - 2 x

Parameters:

```
x1 - x- value the bottom left corner
```

y1 - y- valuef the bottom left corner

w - width 6the vision target

h - height 6the vision target

Returns:

a Point- d holding the XYKand Z 6the targetKrelative to the camera.

getRelXYZOfTarget

```
public Point3d getRelXYZOfTarget(Target t)
```

getAngleOfTarget

This function gets the direction the target is facing Krelative to the camera. It is imperfect Kand half- assumes a simple orthographic prijection (which is not (uitdike real life) .flit causes issues (which the accuracy 6this function doesn1t need to be very high Kwe can fix it later.

Parameters:

```
x1 - x- value the bottom left corner
```

y1 - y- valuef the bottom left corner

x2 -

y2 **-**

x3 -

y3 -

x4 -

y4 -

z -

Returns:

the resulting angle in radians.

getAngleAndRelXYZOfTarget

	double x4,	
	double y4)	
	ethe angle from the targetsKand the relative distances of the corners of the target as perceived by the camera.	
F	P mameters:	
	x1 -	
	у1 -	
	x2 -	
	у2 -	
	x3 -	
	у3 -	
	x4 -	
	у4 -	
ı	Returns:	

com._604robotics.robot2012.camera

Interface CameraInterface

All Known Implementing Classes:

RemoteCameraTCP

public interface CameraInterface

Represents a method for obtaining processed vision data from the camera.

Author:

Michael Smith

Method Summary

Methods		
Modifier and Type	Method and Description	
void	begin()	
	Launches the CameraInterface.	
void	end()	
	Disables the CameraInterface.	
double	<pre>getRecordedTime()</pre>	
	Gets the estimated time since the last packet was received.	
Target[]	<pre>getTargets()</pre>	
	Returns the most recently-obtained array of Target that represents the visible targets.	

Method Detail

begin

void begin()

Launches the CameraInterface

end

void end()

Disables the CameraInterface

getTargets

Target[] getTargets()

Returns the most recently-obtained array of Target that represents the visible targets.

Returns:

An array of Target that represents the visible targets.

getRecordedTime

double getRecordedTime()

Gets the estimated time since the last packet was received.

Returns:

The estimated time since the last packet was received.

com._604robotics.robot2012.camera

Class RemoteCameraTCP

java.lang.Object

com._604robotics.robot2012.camera.RemoteCameraTCP

All Implemented Interfaces:

CameraInterface

public class RemoteCameraTCP
extends Object
implements CameraInterface

Implements a CameraInterface that draws data from a TCP connection.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

RemoteCameraTCP()

Method Summary

Methods

Modifier and Type	Method and Description
void	begin()
	Initializes communication.
void	end()
	Ends communication.
double	<pre>getRecordedTime()</pre>
	Records the time elapsed between reception of data packets from camera.
Target[]	getTargets()
	Returns the last targets acq_uiredrom the remote software.
int	getUPS()
	Returns the number of updates received per second.

Methods inherited from class java.lang.Object

 $\verb|clone|, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait\\$

Constructor Detail

RemoteCameraTCP

public RemoteCameraTCP()

Method Detail

begin

public void begin()

Initializes communication.

Specified by:

 $\verb|begin| in interface CameraInterface|$

end

public void end()

Ends communication.

Specified by:

end in interface CameraInterface

getTargets

```
public Target[] getTargets()
```

Returns the last targets acq uiredrom the remote software.

Specified by:

 $\verb"getTargets" in interface CameraInterface"$

Returns:

The last targets acq uiredrom the remote software.

getRecordedTime

public double getRecordedTime()

Records the time elapsed between reception of data packets from camera.

Specified by:

getRecordedTime in interface CameraInterface

Returns:

The elapsed time since the last packet was received.

getUPS

public int getUPS()

Returns the number of updates received per second. For testing and debugging purposes.

Returns:

The number of updates per second.

com._604robotics.utils

Class SpringableRelay

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.Relay com._604robotics.utils.SpringableRelay

All Implemented Interfaces:

IDevice, IDeviceController

public class SpringableRelay
extends Relay

Extender of a Relay providing an easier control flow. When an output is set for the Relay, it is considered "sprung". When the "reload" method is called, if the victor is sprung, it unsprings the Relay. If the Relay is not sprung, then the output is set to the default output. In this way, the Relay will only be moving when you tell it to. Use this in a loop or something, and call "reload" at the end. No more worries about code paths that don't update the Relays!

Author:

Michael Smith

Nested Class Summary

Nested classes/interfaces inherited from class edu.wpi.first.wpilibj.Relay

Relay.Direction, Relay.InvalidValueException, Relay.Value

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

 $\verb|kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond|\\$

Constructor Summary

Constructors

Constructor and Description

SpringableRelay(int moduleNumber, int channel, Relay.Direction direction, Relay.Value defaultDirection) Initializes a new SpringableRelay.

SpringableRelay(int moduleNumber, int channel, Relay.Value defaultDirection)

Initializes a new SpringableRelay.

SpringableRelay(int channel, Relay.Direction direction, Relay.Value defaultDirection)

Initializes a new SpringableRelay.

SpringableRelay(int channel, Relay. Value defaultDirection)

Initializes a new SpringableRelay.

Method Summary

Methods	
Modifier and Type	Method and Description
boolean	getSprung() Has the Relay been sprung?
void	reload() If the Relay has been sprung, unspring it; if not, set the output to the default output.
void	<pre>set(Relay.Value direction) Sets the direction of the Relay.</pre>
2 a	

v dtods inherited from class edu.wpi.first.wpilibj.Relay

free, setDirection

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMModule, checkRelayChannel, checkRelayChannel, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

SpringableRelay

Initializ esa new SpringableRelay.

Parameters:

```
moduleNumber - The module slot the Relay is on.
channel - The channel the Relay is on.
direction - The direction the Relay should control.
defaultDirection - The default direction for reloading.
```

SpringableRelay

Initializ esa new Springable Relay.

Parameters:

```
channel - The channel the Relay is on.

direction - The direction the Relay should control.

defaultDirection - The default direction for reloading.
```

SpringableRelay

Initializ esa new Springable Relay.

Parameters:

```
moduleNumber - The module slot the Relay is on.
channel - The channel the Relay is on.
defaultDirection - The default direction for reloading.
```

SpringableRelay

Initializ esa new SpringableRelay.

Daramatara

Parameters:

 $\verb|channel - The channel the Relay is on.|$

 ${\tt devaultDirection} \textbf{-} \textbf{The default direction for reloading}.$

v dtod Detail

getSprung

public boolean getSprung()

Has the Relay been sprung?

Returns:

- hether or not the Relay has been sprung.

spring

public void spring()

Springs the Relay.

set

public void set(Relay.Value direction)

Sets the direction of the Relay.

Overrides:

set in class Relay

Parameters:

direction - The direction to set.

reload

public void reload()

If the Relay has been sprung, unspring itR if not, set the output to the defauloutput.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class

Frames No Frames

Summary: Nested | Field | Constr | Method

Detail: Field | Constr | Method

com._604robotics.utils

Class CompensatingGyro

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.Gyro edu.wpi.first.wpilibj.GyroHax com._604robotics.utils.CompensatingGyro

All Implemented Interfaces:

IDevice, ISensor, PIDSource

public class CompensatingGyro extends GyroHax

Gyro with manual compensation-setting support.

Author:

Michael Smith

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, $\verb|kSolenoidModules|, kSystemClockTicksPerMicrosecond|\\$

Constructor Summary

Constructors

Constructor and Description

CompensatingGyro (AnalogChannel channel)

Initiali- esa new Compensating Gyro on the specified Analog Channel.

CompensatingGyro (int port)

Initiali- esa new Compensating Gyro on the specified PWM port.

CompensatingGyro(int slot, int port)

Initiali- esa new Compensating Gyro on the specified PWM port on the specified module port.

Method Summary

Methods

Modifier and Type Method and Description

void setAccumulatorCenter(int center) Manually sets the center for the accumulator.

Methods inherited from class edu.wpi.first.wpilibj.GyroHax

getAnalogChannel

Methods inherited from class edu.wpi.first.wpilibj.Gyro

free, getAngle, pidGet, reset, setSensitivity

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMMModule, $\verb|checkRelayModule|, checkSolenoidChannel|, checkSolenoidModule|, getDefaultAnalogModule|, get$ $\tt getDefaultDigitalModule, \ getDefaultSolenoidModule, \ setDefaultAnalogModule, \ setDefaultDigitalModule, \ getDefaultDigitalModule, \ getDefaultDigital$ setDefaultSolenoidModule

Methods inherited from class jav alang. Object

clone, eT uals f inaliz,egetClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

CompensatingGyro

public CompensatingGyro(int port)

Initiali- esa new Compensating Gyro on the specified PWM port. Note that port must be Wor ()

Parameters:

port - The PWM port the gyro is plugged into. Must be Wor ()

CompensatingGyro

Initialiesa new Compensating Gyro on the specified PWM port on the specified module port. Note that port must be Wor ()

Parameters:

slot - The module slot the gyro is plugged into.

 ${\tt port}$ - The PWM port the gyro is plugged into. Must be Wor ($\,$)

CompensatingGyro

public CompensatingGyro(AnalogChannel channel)

Initiali- esa new Compensating Gyro on the specified Analog Channel. Note that port must be Wor ()

Parameters:

 $\verb|channel-The AnalogChannel| the gyro is plugged into.$

Method Detail

setAccumulatorCenter

public void setAccumulatorCenter(int center)

Manually sets the center for the accumulator.

Parameters:

center - The center to set.

com._604robotics.utils

Class DeadbandedSource

java.lang.Object

com._604robotics.utils.DeadbandedSource

All Implemented Interfaces:

PIDSource

public class DeadbandedSource

extends Object implements PIDSource

Implements a PIDSource, wrapping around another PIDSource, with a deadband range. If we're within the deadband, it'll tell the PIDController we're at where it wants to be.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

DeadbandedSource(PIDSource source)

Initializes a new DeadbandedSource.

Method Summary

M	et	he	M	-	
177	Œι	ш	лu	Э.	

Modifier and Type	Method and Description	
double	<pre>pidGet()</pre>	
	Hooks into PIDSource - gets the value to send to the PIDController.	
Void	setController (PIDController controller)	
	Sets the PIDController the source is fed into.	
Void	setDeadband(double lowerDeadband, double upperDeadband)	
	Sets the range for the deadband.	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, WasW bde, notifS, notifS | lltoStrinS, wait, wait, wait

Constructor Detail

DeadbandedSource

public DeadbandedSource(PIDSource source)

Initializes a new DeadbandedSource.

Parameters:

source - The underlying PIDSource to wrap around.

Method Detail

setController

 $\verb"public V" oid setController" (PIDController controller")$

Sets the PIDController the source is fed into.

Parameters:

 $\verb|controller-The PIDController| the source is fed into.$

setDeadband

 $\label{eq:public_void} \mbox{public Void setDeadband(double lowerDeadband,} \\ \mbox{double upperDeadband)}$

Sets the range for the deadband.

Parameters:

lowerDeadband - The lower bound of the deadband.

upperDeadband - The upper bound of the deadband.

pidGet

public double pid(et()

Hooks into PIDSource - gets the value to send to the PIDController. - ith a deadbandK

Specified by:

pid(et in interface PIDSource

Returns:

The value to send to the PIDController.

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class UpDownPIDController

java.lang.Object

edu.wpi.first.wpilibj.PIDController com._604robotics.utils.UpDownPIDController

All Implemented Interfaces:

IDevice, IUtility

public class UpDownPIDController
extends PIDController

A PIDController with different gains for up and down.

Author:

Michael Smith

Nested Class Summary

Nested Classe					
	Moe	to di	7 64	200	00
	1462	LE U	·	ass	150

Modifier and Type	Class and Description
static class	UpDownPIDController.Gains
	A structure containing the P, I, and D gains.

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.PIDController

kDefaultPeriod

Constructor Summary

Constructors

Constructor and Description

UpDownPIDController(UpDownPIDController.Gains upGains, UpDownPIDController.Gains downGains, PIDSource source,
PIDOutput output)

Initializes a new UpDownPIDController.

Method Summary

Methods	
Modifier and Type	Method and Description
UpDownPIDController.Gains	getDownGains()
	Gets the Gains for going down.
UpDownPIDController.Gains	getUpGains()
	Gets the Gains for going up.
void	refreshGains()
	Updates the gains for the current direction.
void	setDownGains (UpDownPIDController.Gains downGains)
	Sets the gains for going down.
void	<pre>setSetpoint(double setpoint)</pre>
	Sets the setpoint to go to.
void	setUpGains(UpDownPIDController.Gains upGains)
	Sets the gains for going up.

Methods inherited from class edu wpi first wpilibi PIDController

monioao milontoa moni olaoo oaampiimoniipiinojii iboonii olloi

disable, enable, free, get, getD, getError, getI, getP, getSetpoint, isEnable, onTarget, reset, setContinuous, setContinuous, setInputRange, setOutputRange, setPID, setTolerance

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

UpDownPIDController

Initializes a new UpDownPIDController.

Parameters:

 ${\tt upGains} \textbf{ - The gains to use when going up.}$

downGains - The gains to use when going down.

source - The PIDSource to plug in.

output - The PIDOutput to plug in.

Method Detail

getUpGains

public UpDownPIDController.Gains getUpGains()

Gets the Gains for going up.

Returns:

The gains for going up.

getDownGains

public UpDownPIDController.Gains getDownGains()

Gets the Gains for going down.

Returns:

The gains for going down.

refreshGains

public void refreshGains()

Updates the gains for the current direction.

setUpGains

public void setUpGains(UpDownPIDController.Gains upGains)

Sets the gains for going up.

Parameters:

 ${\tt upGains} \ \hbox{-} \ \hbox{The gains to use when going up}.$

setDownGains

public void setDownGains(UpDownPIDController.Gains downGains)

Sets the gains for going down

Parameters:
downGains - The gains to use when going down.

setSetpoint
public void setSetpoint(double setpoint)
Sets the setpoint to go to.
Overrides:
setSetpoint in class PIDController
Parameters:
setpoint - The setpoint to go to.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.utils

Class DualVictor

java.lang.Object

com._604robotics.utils.DualVictor

All Implemented Interfaces:

PIDOutput

public class DualVictor
extends Object
implements PIDOutput

Control two Victors like they're one. Useful for PID controllers. Also, it's springable - see Springable/ictorK.

Constructor Summary

Constructors

Constructor and Description

DualVictor(int leftPort, int righ Port)

Initializ e a Dual/ictor with a left and a right PWM port.

InitialiWes a DuaVictor with left and right slot and PWM port.

 $\textbf{DualVictor}\,(\textbf{Victor}\,\,\text{leftVictor},\,\,\textbf{Victor}\,\,\text{rig}\textbf{h}\,\,\,\text{tV}\,\,\text{iot})$

InitialiWes a Dual/ictor with left and right slot and PWM port.

Method Summary

М			

Modifier and Type	Method and Description
double	get () Checks the current power the Victors are set to.
boolean	·
boolean	getSprung() Has the victor been sprungG
Aoid	<pre>pidWrite(double output)</pre>
	Function to hook into the PIDController.
Aoid	reload()
	If the Victor has been sprung, unspring it1if not, set the output to 0.
Aoid	set(double speed)
	Sets the power of the Victors.
Aoid	setController(PIDController controller)
	Sets the PIDController for this DualVictor, if there is one.
Aoid	<pre>setDeadband(double loSerDeadband, double upperDeadband)</pre>
	Sets the deadband for the DualVictor.
Aoid	<pre>setLeftInversion(boolean inAersion)</pre>
	Sets the inversion for the 2 let2Victor.
Aoid	<pre>setRightInversion(boolean inAersion)</pre>
	Sets the inversion for the 2 right Victor.
Aoid	setSafetyEnabled(boolean enabled)
	Sets whether or not safety is enabled.
Aoid	spring()
	Springs the victor.

Methods inherited from class java.lang.Object

clone, er als, finaliwe, getS ass, hash &de, notif, notif (ltoString, Sait, Sait, Sait

Constructor Detail

DualVictor

InitialiWe a Dual/ictor with a left and a right PWM port.

Parameters:

leftPort! The PWM port of the 2 let2Victor.

 $\verb"righ" \texttt{Port} ! \textbf{ The PWM port of the 2 right} \texttt{Wictor}.$

DualVictor

InitialiWes a Dualictor with left and right slot and PWM port.

Parameters:

leftS &t! The slot the 2 let2Victor is plugged into.

leftPort! The PWM port of the 2 ltt2Victor.

 $\verb|righ| tSot! The slot the 2 right2/ictor is plugged into.$

 $\verb"righ Port! The PWM port of the 2 right ">2 right "Victor".$

DualVictor

```
 \begin{array}{c} \text{public DualVictor}(\text{Victor leftVictor},\\ \text{Victor righ } tV \text{ iot}) \end{array}
```

InitialiWes a Dual/ictor with left and right slot and PWM port.

Parameters:

leftVictor! The 2 lt2Victor.

 $righ \ tV \ iot!$ The 2 right Victor.

Method Detail

getSprung

public boolean getS pung()

Has the victor been sprungG

Returns:

Whether or not the victor has been sprung.

spring

 $\verb"public A" oid spring"()$

Springs the victor.

setLeftInversion

public Aoid setL €tInAersion(boolean inAersion)

Sets the inversion for the 2 let2Victor.

Parameters:

inAersion! Is it inverted G

setRightInversion

public Aoid setR gD InAersion(boolean inAersion)

Sets the inversion for the 2 right2/ictor.

Parameters:

inAersion! Is it invertedG

get

public double get()

Checks the current power the Victors are set to.

Returns:

The current power the Victors are set to.

set

public Aoid set(double speed)

Sets the power of the Victors.

Parameters:

speed! The speed to set.

pidWrite

public Aoid pidWrite(double output)

Function to hook into the PIDController. Sets the power of the Victors.

Specified by:

pidf rite in interface PIDOutput

Parameters:

output! The speed to set.

setDeadband

Sets the deadband for the DualVictor. The default is no deadband.

Parameters:

 ${\tt loSerDeadband!} \ \textbf{The lower bound of the deadband.}$

upperDeadband! The upper bound of the deadband.

setSafetyEnabled

public Aoid setSafet| Eabled(boolean enabled)

Sets whether or not safety is enabled.

Parameters:

enabled! Whether or not safety is enabled.

reload

public Aoid reload()

If the Victor has been sprung, unspring it1if not, set the output to 0.

setController

 $\verb"public A" oid set" C on \verb"toller" (PIDS on troller controller)$

Sets the PIDController for this DualVictor, if there is one. If the PIDController is enabled, reload will assume it's updating it, and won't reset the output to 0.

Parameters:

 $\verb|controller|! The PIDC on troller| for this Dual Victor.$

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Prev Class Next Class

Frames No Frames Detail: Field | Constr | Method

com._604robotics.utils

Class SpringableVictor

Summary: Nested | Field | Constr | Method

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.PWM edu.wpi.first.wpilibj.SafePWM edu.wpi.first.wpilibj.Victor com._604robotics.utils.SpringableVictor

All Implemented Interfaces:

MotorSafety, IDevice, IDeviceController, PIDOutput, SpeedController

public class SpringableVictor extends Victor

Extender of a Victor providing an easier control flow. When an output is set for the Victor, it is considered K sprung KWhen the K reloadK method is called the victor is sprung, it unsprings the Victor. If the Victor is not sprung, then the output is set to Wero. In this waythe Victor will only be moving when you tell it to. (se this in a loop or something, and call K reloadK at the end. No more worries about code that that donGt update the Victors1

Author:

Michael Smith

Nested Class Summary

Nested classes/interfaces inherited from class edu.wpi.first.wpilibj.PWM

PWM.PeriodMultiplier

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.PWM

kDefaultMinPwmHigh, kDefaultPwmPeriod, kPwmDisabled

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond

Fields inherited from interface edu.wpi.first.wpilibj.MotorSafety

DEFAULT SAFETY EXPIRATION

Constructor Summary

Constructors

Constructor and Description

SpringableVictor(int port)

InitialiWes a new Springable/ictor on the given PWM port.

SpringableVictor(int slot, int port)

InitialiWes a new Springable/ictor on the given module slot and PWM port.

Method Summary

Methods

Modifier and Type

Method and Description

DOOTEGU	getsprung()
	Has the victor been sprung2
void	<pre>pidWrite(double output)</pre>
	Function to hook into the PIDController.
void	reload()
	If the Victor has been sprung, unspring it! if not, set the output to 0.
void	set(double speed)
	Sets the power of the Victor.
void	setController(PIDController controller)
	Sets the PIDController for this Victor, if there is one.
void	spring()
	Springs the victor.

Methods inherited from class edu.wpi.first.wpilibj.Victor

get, set

Methods inherited from class edu.wpi.first.wpilibj.SafePWM

disable, Veed, YetDescription, getExpiration, isAlive, isSafetyEnabled, setExpiration, setSafetyEnabled, stopMotor

Methods inherited from class edu.wpi.first.wpilibj.PWM

enable Deadband Elimination, free, get Channel, get Module Number, get Position, get Raw, get Speed, set Bounds, set Period Multiplier, set Position, set Raw

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMMModule, checkRelayChannel, checkRelayModule, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Methods inherited from interface edu.wpi.first.wpilibj.SpeedController

disable

Constructor Detail

SpringableVictor

public SpringableVictor(int port)

InitialiWes a new Springable/ictor on the given PWM port.

Parameters:

 ${\tt port}$ - The PWM port the Victor is connected to.

SpringableVictor

InitialiWes a new Springable/ictor on the given module slot and PWM port.

Parameters:

 ${\tt slot}$ - The module slot the Victor is connected to.

 $\operatorname{\mathtt{port}}$ - The PWM port the Victor is connected to.

Method Detail

getoprung

public boolean getS pung()

Has the victor been sprung2

Returns:

Whether or not the victor has been sprung.

spring

public void spring()

Springs the victor.

set

public void set(double speed)

Sets the power of the Victor.

Specified by:

set in interface S pedController

Overrides:

set in class Victor

Parameters:

speed - The speed to set.

pidWrite

public void pidWrite(double output)

Function to hook into the PIDController. Sets the power of the Victors.

Specified by:

pidWrite in interface PI DOutput

Overrides:

pidWrite in class Victor

Parameters:

output - The speed to set.

reload

public void reload()

If the Victor has been sprung, unspring it! if not, set the output to 0.

setController

public void setController(PIDController controller)

Sets the PIDController for this Victor, if there is one. If the PIDController is enabled, reload will assume itGsupdating it, and wonGteset the output to 0.

Parameters:

controller - The PIDController for this Victor.

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class ConvertingPIDController

java.lang.Object

edu.wpi.first.wpilibj.PIDController com._604robotics.utils.ConvertingPIDController

All Implemented Interfaces:

IDevice, IUtility

public class ConvertingPIDController
extends PIDController

An extender of a PIDController that converts between units when getting and setting a setpoint.

Author:

Michael Smith

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.PIDController

kDefaultPeriod

Constructor Summary

Constructors

Constructor and Description

ConvertingPIDController(double Kp, double Ki, double Kd, PIDSource source, PIDOutput output)

Allocate a PID object with the given constants for P, I, D, using a 50ms period.

ConvertingPIDController(double Kp, double Ki, double Kd, PIDSource source, PIDOutput output, double period)

Allocate a PID object with the given constants for P, I, D

Method Summary

М	A1	h	~	4e	
IVA	œ.	981	w		

Modifier and Type	Method and Description
double	<pre>getRealSetpoint()</pre>
	Gets the "real" setpoint of the PIDController.
double	<pre>getSetpoint()</pre>
	Returns the current setpoint of the PIDController
void	setConversionFactor(double conversionFactor)
	Sets the factor to use when doing conversion on setSetpoint and getSetpoint.
void	<pre>setRealSetpoint(double setpoint)</pre>
	Sets the "real" setpoint of the PIDController.
void	<pre>setSetpoint(double setpoint)</pre>
	Set the setpoint for the PIDController

Methods inherited from class edu.wpi.first.wpilibj.PIDController

disable, enable, free, get, getD, getError, getI, getP, isEnable, onTarget, reset, setContinuous, setContinuous, setInputRange, setOutputRange, setPID, setTolerance

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

ConvertingPIDController

Allocate a PID object with the given constants for P, I, D, using a 50ms period.

Parameters:

```
Kp - the proportional coefficient
```

Ki - the integral coefficient

Kd - the derivative coefficient

source - The PIDSource object that is used to get values

output - The PIDOutput object that is set to the output value

ConvertingPIDController

Allocate a PID object with the given constants for P, I, D

Parameters:

 $\ensuremath{\mathtt{Kp}}$ - the proportional coefficient

Ki - the integral coefficient

Kd - the derivative coefficient

 ${\tt source}$ - The PIDSource object that is used to get values

 $\verb"output" - The PIDO utput object that is set to the output value$

period - the loop time for doing calculations. This particularly effects calculations of the integral and differential terms. The default is 50ms.

Method Detail

getRealSetpoint

public double getRealSetpoint()

Gets the "real" setpoint of the PIDController.

Returns:

The "real" setpoint of the PIDController.

getSetpoint

```
public double getSetpoint()
```

Description copied from class: eH uZpd.first.wpilibj.PIDController

Returns the current setpoint of the PIDController

Overrides:

 $\verb"getSetpoint" in \verb"class" \verb"PIDController"$

Returns:

the current setpoint

setRealSetpoint

public void setRealSetpoint(double setpoint)

Sets the "real" setpoint of the PIDController.

Parameters:

 $\verb|setpoint| W \ \textit{The "real" setpoint to set}.$

setSetpoint

 $\verb"public D" oid set v" etpoint (double setpoint)$

 $\textbf{Description copied from class:} \ \textbf{eH} \ \ \textbf{uzpd.first.wpilibj.PIDController}$

Set the setpoint for the PIDController

Overrides:

setS etpint in class PIDController

Parameters:

setpoint W the desired setpoint

setConversionFactor

 $\texttt{public} \ \ \textbf{D} \texttt{oid} \ \ \texttt{setCon} \textbf{D} \texttt{ersion} \textbf{y} \texttt{actor} (\texttt{double} \ \ \texttt{con} \textbf{D} \texttt{ersion} \textbf{y} \texttt{actor})$

Sets the factor to use when doing conversion on setSetpoint and getSetpoint.

Parameters:

conDersionyactor W The conversion factor to use.

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.utils

Class LinearController

iava.lang.Object

com._604robotics.utils.LinearController

public class LinearController
extends Object

This class implements a controller with a horizontal segment, a linear segment, and finally a coasting segment. When a target point is set, the controller decides which direction to go to get there, and then focuses on getting to that point or past it in that direction. If that condition is met, the output drops to zero. Else, if weKre within a certain z coasting rangetize output will be floored at the Wcoasting output. If weKre outside a certain z had nate range, the output will be scaled linearly between the two outputs.

Author:

Michael Smith

Constructor Summary

Constructors

Constructor and Description

LinearController(PIDSource source, PIDOutput output, double horizontalRange, double horizontalOutput,
double coastingRange, double coastingOutput)
Initializes a new LinearController.

Method Summary

Methods

Modifier and Type	Method and Description
double	calculate() Function that performs the output calculation.
double	<pre>getTarget() (ets the current target.</pre>
boolean	onTarget() Are we there yet)
Hoid	<pre>setCoas ingRange(double coastingRange, double coastingOutput) 1 pdates the coasting values.</pre>
Hoid	<pre>SetH piz ptalRange(double horizontalRange, double horizontalOutput) 1 pdates the horizontal values.</pre>
Hoid	SetTarget(double target) Sets the current target.
Hoid	update () 1 pdates the PIDOutput based on the latest data.

Methods inherited from class java.lang.Object

clone, equals, y implies, getClass, hashCode, notify , notify , A, ltoString, Γ ait, Γ Ait,

Constructor Detail

LinearController

Initializes a new LinearController.

Parameters:

source 2A PIDSource to read from.

output 2A PIDOutput to write to.

 $\verb|horizontalRange| \textbf{ 2The horizontal range}, as defined in the class description.$

 $\verb|horizontalOutput| \ensuremath{\textbf{2The horizontal output}}, \ensuremath{\textbf{as defined in the class description}}.$

coastingRange 2The coasting range, as defined in the class description.

coastingOutput 2The coasting output, as defined in the class description.

Method Detail

setBorizontalRange

 $\begin{array}{c} \text{public Hoid setHorizontalRange, double horizontalRange,} \\ & \text{double horizontalOutput)} \end{array}$

1 pdatesthe horizontal values.

Parameters:

 $\verb|horizontalRange| \textbf{ 2The horizontal range}, \textbf{ as defined in the class description}.$

horizontalOutput 2The horizontal output, as defined in the class description.

setCoastingRange

 $\begin{array}{c} \text{public Hoid setCoastingRange(double coastingRange,} \\ & \text{double coastingOutput)} \end{array}$

1 pdates the coasting values.

Parameters:

 $\verb|coastingRange|| \textbf{2The coasting range}, \textbf{as defined in the class description}.$

coastingOutput 2The coasting output, as defined in the class description.

getTarget

public double $\text{get}\mathsf{T}$ aget()

(ets the current target.

Returns:

The current target.

setTarget

 $\verb"public Hoid set" varget (double target)"$

Sets the current target.

Parameters:

target 2 The target to move toward.

onTarget

 $\verb"public boolean on "V" arget"()$

Are we there yet)

Returns:

Whether or not weKre there yet.

calculate

public double calculate()

Function that performs the output calculation. Exposed for debug use, mainly.

D-4-----

An output value, to be passed to a PIDOutput.

update

public Hoid update()

1 pdates the PIDOutput based on the latest data.

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Interface XboxController.Axis

Enclosing class:

XboxController

public static interface XboxController.Axis

Enumeration for the available axes on the Xbox controller.

Field Summary

е	[0	15

Modifier and Type	Field and Description
static int	LEFT_STICK_X
static int	LEFT_STICK_Y
static int	RIGHT_STICK_X
static int	RIGHT_STICK_Y

Field Detail

LEFT_STICK_X

static final int LEFT_STICK_X

See Also:

Constant Field Values

LEFT_STICK_Y

static final int LEFT_STICK_Y

See Also:

Constant Field Values

RIGHT_STICK_X

static final int RIGHT_STICK_X

See Also:

Constant Field Values

RIGHT_STICK_Y

static final int RIGHT_STICK_Y

See Also:

Constant Field Values

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class EncoderPIDSource

java.lang.Object
edu.wpi.first.wpilibj.SensorBase
edu.wpi.first.wpilibj.Encoder
com__604robotics.utils.EncoderOffset
com._604robotics.utils.EncoderPIDSource

All Implemented Interfaces:

CounterBase, IDevice, ISensor, PIDSource

public class EncoderPIDSource
extends EncoderOffset

Encoder extender that return the value of Encoder.get() when pidGet is called. Drop-in replacement: all constructors from the Encoder class are implemented here.

Author:

Michael Smith

Nested Class Summary

Nested classes/interfaces inherited from class edu.wpi.first.wpilibj.Encoder

Encoder.PIDSourceParameter

Nested classes/interfaces inherited from interface edu.wpi.first.wpilibj.CounterBase

CounterBase.EncodingType

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.Encoder

m_aSource, m_bSource, m_indexSource

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

 $kAnalogChannels,\ kAnalogModules,\ kDigitalChannels,\ kPwmChannels,\ kRelayChannels,\ kSolenoidChannels,\ kSolenoidModules,\ kSystemClockTicksPerMicrosecond$

Constructor Summary

Constructors

Constructor and Description

EncoderPIDSource (DigitalSource aSource, DigitalSource bSource)

Encoder constructor.

EncoderPIDSource (DigitalSource aSource, DigitalSource bSource, boolean reverseDirection)

Encoder constructor.

EncoderPIDSource (DigitalSource aSource, DigitalSource bSource, boolean reverseDirection,

CounterBase.EncodingType encodingType)

Encoder constructor.

EncoderPIDSource (DigitalSource aSource, DigitalSource bSource, DigitalSource indexSource)

Encoder constructor.

EncoderPIDSource (DigitalSource aSource, DigitalSource bSource, DigitalSource indexSource, boolean reverseDirection)

Encoder constructor.

EncoderPIDSource(int aChannel, int bChannel)

Encoder constructor.

EncoderPIDSource(int aChannel, int bChannel, boolean reverseDirection)

Encoder constructor.

EncoderPIDSource(int aChannel, int bChannel, boolean reverseDirection, CounterBase.EncodingType encodingType)

EncoderPIDSource(int aChannel, int bChannel, int indexChannel)

Encoder constructor.

EncoderPIDSource (int aChannel, int bChannel, int indexChannel, boolean reverseDirection)

Encoder constructor

EncoderPIDSource(int aSlot, int aChannel, int bSlot, int bChannel)

Encoder constructor.

EncoderPIDSource (int aSlot, int aChannel, int bSlot, int bChannel, boolean reverseDirection)

Encoder constructor.

EncoderPIDSource(int aSlot, int aChannel, int bSlot, int bChannel, boolean reverseDirection,

CounterBase.EncodingType encodingType)

Encoder constructor.

EncoderPIDSource(int aSlot, int aChannel, int bSlot, int bChannel, int indexSlot, int indexChannel)

Encoder constructor.

EncoderPIDSource(int aSlot, int aChannel, int bSlot, int bChannel, int indexSlot, int indexChannel,

boolean reverseDirection)

Encoder constructor.

Method Summary

Methods

Modifier and Type Method and Description

double pidGet()

Hooks into the PIDSource interface.

Methods inherited from class com. 604robotics.utils.EncoderOffset

getRaw, reset, setOffset

Methods inherited from class edu.wpi.first.wpilibj.Encoder

free, get, getDirection, getDistance, getPeriod, getRate, getStopped, setDistancePerPulse, setMaxPeriod, setMinRate, setPIDSourceParameter, setReverseDirection, start, stop

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMModule, checkRelayChannel, checkRelayModule, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, $\tt getDefaultDigitalModule, \ getDefaultSolenoidModule, \ setDefaultAnalogModule, \ setDefaultDigitalModule, \ getDefaultDigitalModule, \ getDefaultDigital$ setDefaultSolenoidModule

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

EncoderPIDSource

public EncoderPIDSource(int aSlot,

int aChannel, int bSlot,

int bChannel, boolean reverseDirection)

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

 ${\tt aSlot}\,W$ The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

 $\verb"aSlot" W The a channel digital input module.$

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module

bChannel W The b channel digital input channel.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

aSlot W The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

encodingType W either k(, ,kX G , or k4G to indicate R G , X G or 4G detGdiisgseflected, then an encoder FPK A object is udeand the returned counts will be 4x the encoder spec2 d value since alrising and falling edges are counted. If R G or Xa@ selected then a counter object will be used and the returned value will either exactly match the spec2 d count or be double(2x) the spec'd count.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified. Using the index pulse forces 4x encoding.

Parameters:

aSlot - The a channel digital input module.

aChannel - The a channel digital input channel.

bSlot - The b channel digital input module.

bChannel - The b channel digital input channel.

indexSlot - The index channel digital input module.

 $\verb|indexChanne|| \textbf{-} \textbf{The index channel digital input channel}.$

 $\verb|reverseDirection-represents| the orientation of the encoder and inverts the output values if necessary so forward represents positive values.$

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified. Using the index pulse forces 4x encoding.

Parameters:

And the state of t

aSlot wilne a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

indexSlot W The index channel digital input module.

 $\verb|indexChannel| W The index channel digital input channel.$

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

 ${\tt reverseDirection}\ W\ represents\ the\ orientation\ \textbf{0} the\ encoder\ and\ inverts\ the\ output\ values\ if\ necessary\ so\ forward\ represents\ positive\ values.$

encodingType W either k(,)xX G , or k4G to indicate R G , X G or 4G detGdiisgs#lected, then an encoder FPK A object is udeand the returned counts will be 4x the encoder spec2 d value since alrising and falling edges are counted. If R G or Xa@ selected then a counter object will be used and the returned value will either exactly match the spec2 d count or be double(2x) the spec'd count.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels assuming the default module. Using an index pulse forces 4x encoding

Parameters:

aChannel - The a channel digital input channel.

bChannel - The b channel digital input channel.

 $\verb|indexChanne|| \textbf{-} \textbf{The index channel digital input channel}.$

reverseDirection - represents the orientation of the encoder and inverts the output values if necessary so forward represents positive values.

EncoderPIDSource

```
int bChannel,
int indexChannel)
```

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.! singan index pulse forces 4x encoding

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

 $\verb|indexChanne|| \textbf{W} \textbf{The index channel digital input channel}.$

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

 $\verb"aSource" W The source" that should be used or the a channel.$

bSource W the source that should be usedor the b channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

encodingType W either k(, ,kX G , or k4G to indicate R G , X G or 4G detGdiisgstelected, then an encoder FPK A object is udsand the returned counts will be 4x the encoder spec2 d value since alrising and falling edges are counted. If R G or Xar@ selected then a counter object will be used and the returned value will either exactly match the spec2 d count or be double(2x) the spec'd count.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource - The source that should be used for the a channel.

bSource - the source that should be used for the b channel.

indexSource - the source that should be used for the index channel.

reverseDirection - represents the orientation of the encoder and inverts the output values if necessary so forward represents positive values.

EncoderPIDSource

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

indexSource W the source that should be usedor the index channel.

Method Detail

pidGet

public double pidGet()

Hooks into the PIDSource interface. This method overrides the one implemented by the underlying Encoder class, simply returning the value of this.get();

Specified by:

pidGet in interface PIDSource

Overrides:

pidGet in class Encoder

Returns:

The value to pass back to the PIDSource; in this case, that of this.get();

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class EncoderOffset

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.Encoder com._604robotics.utils.EncoderOffset

All Implemented Interfaces:

CounterBase, IDevice, ISensor, PIDSource

Direct Known Subclasses:

EncoderPIDSource

public class EncoderOffset
extends Encoder

Encoder extender that return the value of Encoder.get() when pidGet is called. Drop-in replacement: all constructors from the Encoder class are implemented berg.

Author:

Michael Smith

Nested Class Summary

Nested classes/interfaces inherited from class edu.wpi.first.wpilibj.Encoder

Encoder.PIDSourceParameter

Nested classes/interfaces inherited from interface edu.wpi.first.wpilibj.CounterBase

CounterBase.EncodingType

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.Encoder

m_aSource, m_bSource, m_indexSource

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond

Constructor Summary

Constructors

Constructor and Description

EncoderOffset(DigitalSource aSource, DigitalSource bSource)

Encoder constructor

EncoderOffset(DigitalSource aSource, DigitalSource bSource, boolean reverseDirection)

Encoder constructor.

EncoderOffset(DigitalSource aSource, DigitalSource bSource, boolean reverseDirection,

CounterBase.EncodingType encodingType)

Encoder constructor.

EncoderOffset(DigitalSource aSource, DigitalSource bSource, DigitalSource indexSource)

Encoder constructor.

EncoderOffset(DigitalSource aSource, DigitalSource bSource, DigitalSource indexSource, boolean reverseDirection)

 ${\sf Encoder\ constructor}.$

EncoderOffset(int aChannel, int bChannel)

Encoder constructor EncoderOffset(int aChannel, int Bhannel, bolean reverseDirection) Encoder constructor. EncoderOffset(int aChannel, int bhannel, bolean reVerseDirection, CounterBase.EncodingType encodingTy p) Encoder constructor EncoderOffset(int aChannel, int Bhannel, int idexChannel) Encoder constructor. EncoderOffset(mt aChannel, int bhannel, int idexChannel, bolean reverseDirection) Encoder constructor. EncoderOffset(int aSlot, int aChannel, int bSlot, int bChannel) Encoder constructor. EncoderOffset(int aSlot, int aChannel, int bSlot, int bChannel, boolean reverseDirection) Encoder constructor. EncoderOffset(int aSlot, int aChannel, int bSlot, int bChannel, boolean reverseDirection, CounterBase.EncodingType encodingType) Encoder constructor. EncoderOffset(int aSlot, int aChannel, int bSlot, int bChannel, int indexSlot, int indexChannel) EncoderOffset(int aSlot, int aChannel, int bSlot, int bChannel, int indexSlot, int indexChannel, boolean reverseDirection) Encoder constructor.

Method Summary

Methods

Modifier and Type	Method and Description
int	getRaw()
	K ets the raw value from the encoder.
void	reset()
	R esets the Encoder.
void	<pre>setOffset(int offset)</pre>
	Sets the offset value for the Encoder.

Methods inherited from class edu.wpi.first.wpilibj.Encoder

free, get, getDirection, getDistance, getPeriod, getRate, getStopped, pidGet, setDistancePerPulse, setMaxPeriod, setMinRate, setPIDSourceParameter, setReverseDirection, start, stop

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMModule, checkRelayChannel, checkRelayChannel, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

EncoderOffset

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

aSlot W The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

aSlot W The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified.

Parameters:

aSlot W The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

encodingType W either k), k2 X, or k4X to indicate G X, 2 X or 4X det&dingseffected, then an encoder FPK A object is udeand the returned counts will be 4x the encoder specRd value since alrising and falling edges are counted. If G X or 2ax selected then a counter object will be used and the returned value will either exactly match the specRd count or be double(2 x the specRd count.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified. - singhe index pulse forces 4x encoding.

Parameters:

aSlot W The a channel digital input module.

 $\verb|aChanne| \ \textbf{W The a channel digital input channel}.$

bSlot W The b channel digital input module

 $\verb|bChannel| W The b channel digital input channel.$

 $\verb|indexSlot| W \textbf{ The index channel digital input module}.$

indexChannel W The index channel digital input channel.

 $\verb|reverseDirection| \ W \ represents \ the \ orientation \ \textbf{6} the \ encoder \ and \ inverts \ the \ output \ values \ if \ necessary \ so \ forward \ represents \ positive \ values.$

EncoderOffset

Encoder constructor. Construct a Encoder given a and b modules and channels fully specified. - singhe index pulse forces 4x encoding.

Parameters:

aSlot W The a channel digital input module.

aChannel W The a channel digital input channel.

bSlot W The b channel digital input module.

bChannel W The b channel digital input channel.

indexSlot W The index channel digital input module.

 $\verb|indexChanne|| \textbf{ W The index channel digital input channel}.$

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels assuming the default module.

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

 $\verb|reverseDirection| \ W \ represents \ the \ orientation \ \textbf{6} \\ the \ encoder \ and \ inverts \ the \ output \ values \ if \ necessary \ so \ forward \ represents \ positive \ values.$

encodingType W either k), k2 X, or k4X to indicate G X, 2 X or 4X detXdiingseffected, then an encoder FPK A object is udeand the returned counts will be 4x the encoder specRd value since alrising and falling edges are counted. If G X or 2ax selected then a counter object will be used and the returned value will either exactly match the specRd count or be double(2 x the specRd count.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels assuming the default module. - singan index pulse forces 4x encoding

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

indexChannel W The index channel digital input channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

Encoder constructor. Construct a Encoder given a and b channels assuming the default module. - singan index pulse forces 4x encoding

Parameters:

aChannel W The a channel digital input channel.

bChannel W The b channel digital input channel.

indexChannel W The index channel digital input channel.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

 $\verb"aSource" W The source" that should be used or the a channel.$

bSource W the source that should be usedor the b channel.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

 $\verb"aSource" W The source" that should be used or the a channel.$

bSource W the source that should be usedor the b channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

encoding Type W either k), $\&2\ X$, or $\&4X\$ to indicate G X , 2 X or $4X\$ de & dilings effected, then an encoder FPK A object is used the returned counts will be 4x the encoder specRd value since alrising and falling edges are counted. If G X or 2a is selected then a counter object will be used and the returned value will either exactly match the specRd count or be double(2 x the specRd count.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

indexSource W the source that should be usedor the index channel.

reverseDirection W represents the orientation 6the encoder and inverts the output values if necessary so forward represents positive values.

EncoderOffset

Encoder constructor. Construct a Encoder given a and b channels as digital inputs. This is used in the case where the digital inputs are shared. The Encoder class will not allocate the digital inputs and assume that they already are counted.

Parameters:

aSource W The source that should be usedor the a channel.

bSource W the source that should be usedor the b channel.

indexSource W the source that should be usedor the index channel.

Method Detail

getRaw

public int getRaw()

Description copied from class: edu.wpi.first.wpilibj.Encoder

K ets the raw value from the encoder. The raw values the actual count unscaled by the G x, 2 x, or 4x ale factor.

Overrides:

getRaw in class Encoder

Returns:

Current raw count from the encoder

reset

public void reset()

R esets the Encoder. Also undoes any offsets previously set.

Specified by:

reset in interface CounterBase

Overrides:

reset in class Encoder

setOffset

public void setOffset(int offset)

Sets the offset value for the Encoder.

Parameters:

 $\verb|offset| W The \textit{ fiset} value for the encoder.$

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

com._604robotics.utils

Class UpDownPIDController.Gains

java.lang.Object

 $com._604 robotics. utils. Up Down PID Controller. Gains$

Enclosing class:

UpDownPIDController

 $\label{eq:public_static} \mbox{public static class $\tt UpDownPIDController.Gains$} \\ \mbox{extends Object}$

A structure containing the P, I, and D gains.

Field Summary

Fields

Modifier and Type	Field and Description
double	D
double	I
double	P

Constructor Summary

Constructors

Constructor and Description

 $\begin{tabular}{ll} \textbf{UpDownPIDController.Gains} (\begin{tabular}{ll} \textbf{double P, double I, double D)} \end{tabular}$

Method Summary

Methods inherited from class java.lang.Object

clone, equals, finalize, DetClass, hashCode, notify, notifyA ll to S trnD, w ait w ait w ait to S trnD, w ait w ait to S trnD, w ait w ait to S trnD, w ait w ait

Field Detail

Р

public double P

L

public double I

D

public double D

Constructor Detail

UpDownPIDController.Gains public U pow RIDController (G aideuble P, double I, double D)

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class XboxController

java.lang.Object

com._604robotics.utils.XboxController

public class XboxController
extends Object

Wrapper joystick class for the Xbox 360 controllers.

Author:

Michael Smith

Nested Class Summary

Nested Classes		
Modifier and Type	Class and Description	
static interface	XboxController.Axis	
	Enumeration for the available axes on the Xbox controller.	
static interface	XboxController.Button	
	Enumeration for the available buttons on the Xbox controller.	
static interface	XboxController.Stick	
	Enumeration for the available sticks on the Xbox controller.	

Constructor Summary

Constructors

Constructor and Description

XboxController(int port)

Initialize a new XboxController on the specified port.

XboxController(Joystick joystick)

Initialize a new XboxController from the underlying Joystick.

Method Summary

Methods

Modifier and Type	Method and Description	
double	<pre>getAxis(int axis)</pre>	
	Get the value of the specified axis.	
boolean	<pre>getButton(int button)</pre>	
	Get whether or not the specified button is currently pressed.	
Joystick	<pre>getJoystick()</pre>	
	Gets the underlying Joystick object.	
boolean	<pre>getStick(int stick)</pre>	
	Get whether or not there's a value reading on the stick.	
boolean	<pre>getToggle(int button)</pre>	
	Get the toggle state of the specified button.	
void	resetToggles()	
	Resets the toggle registry for the contrller.	
void	<pre>setDeadband(int axis, double lower, double upper)</pre>	
	Sets the deadband for a particular axis.	

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

XboxController

public XboxController(int port)

Initialize a new XboxController on the specified port.

Parameters:

 ${\tt port}$ - The USB port the controller is connected to.

XboxController

public XboxController(Joystick joystick)

Initialize a new XboxController from the underlying Joystick.

Parameters:

 $\verb"joystick-The Joystick" to overlay the XboxController interface on.$

Method Detail

getAxis

public double getAxis(int axis)

Get the value of the specified axis.

Parameters:

axis - One of the axis values specified in XboxController.Axis.

getSticB

public boolean getStick(int stick)

Get whether or not there's a value reading on the stick.

Parameters:

stick - One of the stick values specified in XboxController.Stick.

Returns:

Whether or not there's a value reading on the stick.

getButton

public boolean getButton(int button)

Get whether or not the specified button is currently pressed.

Parameters:

 $\verb|button-One| of the button values specified in XboxController.Button.$

resetToggles

public void resetToggles()

Resets the toggle registry for the contriler.

getToggle

public boolean getToggle(int button)

Get the toggle state of the specified button.

Parameters:

button - One of the button values specified in XboxController.Button.

getJ**oystic**B

public Joystick getJoystick()

W ets the underlyingloystick object. What, is XboxController not good enough for you?

M etrns:

The underlying Joystick object.

setDeadband

Sets the deadband for a particular axis.

Parameters:

 ${\tt axis}$ - The axis to set the deadband for.

lower - The lower bound of the deadband.

upper - The upper bound of the deadband.

com._604robotics.utils

Interface XboxController.Stick

Enclosing class:

XboxController

public static interface XboxController.Stick

Enumeration for the available sticks on the Xbox controller.

Field Summary

a		
ш	Į.⊎.	-

Modifier and Type	Field and Description
static int	DPAD
static int	LEFT_STICK
static int	RIGHT_STICK

Field Detail

LEFT_STICK

static final int LEFT_STICK

See Also:

Constant Field Values

RIGHT_STICK

static final int RIGH \mathtt{TSTICK}

See Also:

Constant Field Values

DPAD

static final int DP) $\boldsymbol{\mathsf{D}}$

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Interface XboxController.Button

Enclosing class:

XboxController

 $\verb"public static interface {\tt XboxController.Button"}$

Enumeration for the available buttons on the Xbox controller.

Nested Class Summary

Nested Classes

Modifier and Type	Interface and Description
static interface	XboxController.Button.DPad

Field Summary

Fields

i leius		
Modifier and Type	Field and Description	
static int	A	
static int	В	
static int	Back	
static int	EitherTrigger	
static int	LB	
static int	LeftStick	
static int	LT	
static int	RB	
static int	RightStick	
static int	RT	
static int	Start	
static int	X	
static int	Y	

Field Detail

Α

static final int A

See Also:

Constant Field Values

В

static final int B

See Also:

Constant Field Values

X

static final int X

Can Alani

See AISO:	
Constant Field Values	
Υ	
Ť	
static final int Y	
See Also:	
Constant Field Values	
LB	
static final int LB	
See Also:	
Constant Field Values	
RB	
static final int RB	
See Also:	
Constant Field Values	
Back	
static final int Back	
See Also:	
Constant Field Values	
Start	
static final int Start	
See Also:	
Constant Field Values	
LeftStick	
static final int LeftStick	
See Also:	
Constant Field Values	
Righ 3tic k	
Righ Stick static final int RightStick See Also:	
static final int RightStick	
static final int RightStick See Also:	
static final int RightStick See Also: Constant Field Values	
See Also: Constant Field Values	
See Also: Constant Field Values LT static final int LT	
static final int RightStick See Also:	

RT

static final int RT

See Also:
Constant Field Values

Eith eFrigger
static final int EitherTrigger
See Also:
Constant Field Values

Overview Package Class Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class SpringableDoubleSolenoid

java.lang.Object
edu.wpi.first.wpilibj.SensorBase
edu.wpi.first.wpilibj.SolenoidBase
edu.wpi.first.wpilibj.DoubleSolenoid
com._604robotics.utils.SpringableDoubleSolenoid

All Implemented Interfaces:

IDevice, IDeviceController

public class SpringableDoubleSolenoid

extends DoubleSolenoid

Extender of a DoubleSolenoid providing an easier control flow. When an output is set for the DoubleSolenoid, it is considered "sprung". When the "reload" method is called, if the victor is sprung, it unsprings the DoubleSolenoid. If the DoubleSolenoid is not sprung, then the output is set to the default output. In this way, the DoubleSolenoid will only be moving when you tell it to. Use this in a loop or something, and call "reload" at the end. No more worries about code paths that don't update the DoubleSolenoids!

Author:

Michael Smith

Nested Class Summary

Nested classes/interfaces inherited from class edu.wpi.first.wpilibj.DoubleSolenoid

DoubleSolenoid. Value

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.SolenoidB ase

m allocated, m moduleNumber

Fields inherited from class edu.wpi.first.wpilibj.SensorB ase

 $\verb|kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond|\\$

Constructor Summary

Constructors

Constructor and Description

SpringableDoubleSolenoid(int forwardChannel, int reverseChannel, DoubleSolenoid.Value defaultDirection) Initializes a new SpringableDoubleSolenoid.

SpringableDoubleSolenoid(int moduleNumber, int forwardChannel, int reverseChannel,
DoubleSolenoid.Value defaultDirection)

Initializes a new SpringableDoubleSolenoid.

Method Summary

lethods

motriodo	
Modifier and Type	Method and Description
boolean	getSprung() Has the DoubleSolenoid been sprung?
void	reload() If the DoubleSolenoid has been sprung, unspring it; if not, set the output to the default output.

Void set(DoubleSolenoid.Value direction)

Sets the direction of the DoubleSolenoid.

void spring()

Springs the DoubleSolenoid.

Methods inherited from class edu.wpi.first.wpilibj.DoubleSolenoid

free, get

Methods inherited from class edu.wpi.first.wpilibj.SolenoidB ase

getAll, getAllFromDefaultModule, getAllFromModule, set

M etods inherited from class edu.wpi.first.wpilibj.SensorB ase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMModule, checkRelayChannel, checkRelayChannel, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

M etods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

SpringableDoubleSolenoid

InitialiG esa new SpringableDoubleSolenoid.

Parameters:

forwardChannel! The forward channel of the DoubleSolenoid.

 ${\tt reverseChannel} \ ! \ \textbf{The reverse channel of the DoubleSolenoid}.$

defaultDirection! The default direction for reloads

SpringableDoubleSolenoid

InitialiG esa new SpringableDoubleSolenoid.

Parameters:

moduleNumber! The slot number of the solenoid module.

 ${\tt forwardChannel} \ ! \ \textbf{The forward channel of the DoubleSolenoid}.$

reverseChannel! The reverse channel of the DoubleSolenoid.

 ${\tt default Direction!} \ \textbf{The default direction for reloads}.$

Method Detail

getSprung

public boolean getSprung()

Has the DoubleSolenoid been sprung1

Returns:

Whether or not the DoubleSolenoid has been sprung.

spring

public Void spring()

Springs the DoubleSolenoid.

set

public void set(DoubleSolenoid.Value direction)

Sets the direction of the DoubleSolenoid.

Overrides:

set in class DoubleSolenoid

Parameters:

direction! The direction to set.

reload

public void reload()

If the DoubleSolenoid has been sprung, unspring it; if not, set the output to the default output.

com._604robotics.utils

Class VelocityController

java.lang.Object

com._604robotics.utils.VelocityController

public class VelocityController
extends Object

Class for controlling a motor's velocity, rather than its power directly. Uses a PID loop to scale to said velocity, and a distance-calibrated encodefor feedback.

Author:

Michael Smith, K evin Parker

Constructor Summary

Constructors

Constructor and Description

VelocityController(double p, double i, double d, Encoder encoderLeft, Encoder encoderRight, RobotDrive robotDrive, Gyro gyro)

Initializ es a newVelocityController.

Method Summary

Methods	
Modifier and Type	Method and Description
void	disable()
	Disables the VelocityController.
void	enable()
	(nables the locity Controller.
double	<pre>getActualVelocity()</pre>
	G etshe actual, current velocity.
double	<pre>getVelocity()</pre>
	G ets the current target velocity.
boolean	<pre>isEnabled()</pre>
	Is the VelocityController currently enabled1
void	setAngleGains (double pAngle, double iAngle, double dAngle)
	2 asedon gyro angles TODO - javadoc
void	<pre>setGains(double p, double i, double d)</pre>
	! eonfigures the gains on the PIDController.
void	<pre>setVelocity(double velocity)</pre>
	Sets the target velocity.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

VelocityController

InitialiWes a newVelocityController.

Parameters:

- p The proportional term for the PIDController.
- i The integral term for the PIDController.
- d The derivative term for the PIDController.

encoder - The encoder to use for feedback.

output - The PIDOutput to control. Usually some sort of motor.

Method Detail

getVelocity

public double getf edcity()

G etshe current target velocity.

Returns:

The current target velocity.

getActualVelocity

 $\verb"public double getActualf" ebcity()$

G etshe actual, current velocity.

Returns:

The actual, current velocity.

setVelocity

public void setVelocity(double velocity)

Sets the target velocity.

Parameters:

velocity - The target velocity to set.

setGains

R ecofigures the gains on the PIDController.

Parameters:

- $\ensuremath{\mathtt{p}}$ The proportional term for the PIDController.
- $\mathtt{i}\,$ The integral term for the PIDController.
- d The derivative term for the PIDController.

setAngleGains

2 asedon gyro angles TODO - javadoc

Parameters:

- p The
- i The
- d The

enable

public void enable()

(nables the elocity Controller.

disable

public void disable()

Disables the VelocityController.

isDnabled

public boolean isEnabled()

Is the VelocityController currently enabled1

Doturno

- hetheor not the VelocityController is currently enabled.

com._604robotics.utils

Interface XboxController.Button.DPad

Enclosing interface:

XboxController.Button

public static interface XboxController.Button.DPad

Field Summary

F	е	Ke.	s	

Modifier and Type	Field and Description
static int	Down
static int	Left
static int	Right
static int	Up

Field Detail

Up

static final int Up

See Also:

Constant Field Values

Down

static final int Down

See Also:

Constant Field Values

Left

static final int Left

See Also:

Constant Field Values

Right

static final int Right

See Also:

Constant Field Values

Overview Package Class Tree Deprecated Index Help

 Prev Class
 Next Class
 Frames
 No Frames
 All Classes

 Summary: Nested | Field | Constr | Method
 Detail: Field | Constr | Method

com._604robotics.utils

Class Gyro360

java.lang.Object edu.wpi.first.wpilibj.SensorBase edu.wpi.first.wpilibj.Gyro com._604robotics.utils.Gyro360

All Implemented Interfaces:

IDevice, ISensor, PIDSource

public class Gyro360
extends Gyro
implements PIDSource

Extender class to constrain the output of a Gyro to 360 degrees, looping.

Author:

Michael Smith

Field Summary

Fields inherited from class edu.wpi.first.wpilibj.SensorBase

 $\verb|kAnalogChannels, kAnalogModules, kDigitalChannels, kPwmChannels, kRelayChannels, kSolenoidChannels, kSolenoidModules, kSystemClockTicksPerMicrosecond|\\$

Constructor Summary

Constructors

Constructor and D escription

Gyro360(AnalogChannel channel)

Initializes a new Gyro360 on the specified AnalogChannel.

Gyro360 (int port)

Initializes a new Gyro360 on the specified PW $\,$ M port.

Gyro360 (int slot, int port)

Initializes a new Gyro360 on the specified PW M port on the specified module port.

Method Summary

Methods

Modifier and Type	Method and D esription	
double	getAngle()	
	Gets the angle of the gyro, constrained to 360 degrees.	
double	<pre>pidGet()</pre>	
	Implements the pidGet(function in the type PIDSource, allowing this class to be used as such.	

Methods inherited from class edu.wpi.first.wpilibj.Gyro

free, reset, setSensitivity

Methods inherited from class edu.wpi.first.wpilibj.SensorBase

checkAnalogChannel, checkAnalogModule, checkDigitalChannel, checkDigitalModule, checkPWMChannel, checkPWMModule, checkRelayChannel, checkRelayChannel, checkSolenoidChannel, checkSolenoidModule, getDefaultAnalogModule, getDefaultDigitalModule, getDefaultSolenoidModule, setDefaultAnalogModule, setDefaultSolenoidModule

Methods inherited from class java.lang Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor D etal

Gyro360

public Gyro360 (int port)

Initializes a new Gyro360 on the specified PW M portNote that port must be 1 or 2 !

Parameters:

 ${\tt port}$ - The PW $\,$ M port the gyro is plugged into. Must be 1 $\,$ or 2 $\,!$

Gyro360

Initializes a new Gyro360 on the specified PW M port on the specified module port. Note that port must be 1 or 2 !

Parameters:

slot - The module slot the gyro is plugged into.

 ${\tt port}$ - The PW $\,$ M port the gyro is plugged into. Must be 1 $\,$ or 2 $\,!$

Gyro360

public Gyro360(AnalogChannel channel)

Initializes a new Gyro360 on the specified AnalogChannel. Note that port must be 1 or 2 !

Parameters:

channel - The AnalogChannel the gyro is plugged into.

Method D etia

g eAng le

public double getAngle()

Gets the angle of the gyro, constrained to 360 degrees.

O verides:

getAngle in class Gyro

R eturs:

The angle of the gyro, constrained to 360 degrees.

pidGet

public double pidGet()

Implements the pidGet(function in the type PIDSource, allowing this class to be used as such.

Specified by:

pidGet in interface PIDSource

O veiides:

pidGet in class Gyro

R eturs:

The angle of the gyro, constrained to 360 degrees.