3. Functions

1 PJC/2008Promo/8

The functions f and g are defined by

$$f: x \to x^2(2-x), x \in \mathbb{R}$$
,

$$g: x \to 2 + \frac{1}{x}$$
, $x \in \mathbb{R}$, $x \neq 0$.

- (i) Find $g^{-1}(x)$ and state its domain. [2]
- (ii) Determine whether the composite function gf exists. [2]
- (iii) Solve the equation fg(x) = 1, give your answer to 3 significance figures. [3]

2 SAJC/2008Promo/8

The function f and g are defined by

$$f: x \mapsto e^{-x}, x \in \mathbb{R}^+$$

 $g: x \mapsto 3x^2 + 2, x \in \mathbb{R}^-$

- (a) Determine, with reason, whether the inverse for f exists.
 If f⁻¹ exists, define f⁻¹ in a similar form and state its range.
 On the same axes, sketch the graphs of f, f⁻¹ and ff⁻¹.
- (b) Determine, stating reason, whether fg exists. If the function exists, give its domain, rule and range. [4]

3 NYJC/2013Promo/7

The function f is defined by

$$f: x \to x^2 - \frac{1}{x}, \ x \in \mathbb{R}, \ 1 \le x < 2.$$

- (i) Show, by differentiation, that f is strictly increasing. [2]
- (ii) State the range of f. [1]
- (iii) Solve the equation $f(x) = f^{-1}(x)$, giving your answer to two decimal places. [2]

The function g is defined by

g:
$$x \to 1 + \sin x$$
, $x \in \mathbb{R}$, $0 \le x < \frac{\pi}{2}$.

- (iv) Only one of the composite functions fg and gf exists. Give a definition (including the domain) of the composite that exists, and explain why the other composite does not exist.
- (v) For the composite function which exists, state its range. [1]

4 DHS/2009Promo/7

The functions f and g are defined by

f:
$$x \mapsto \tan x + 1$$
, $0 < x < \frac{\pi}{2}$,
g: $x \mapsto \frac{1+x}{x}$, $x > 0$.

(i) Find the derivative of h(x), where $h(x) = \frac{1}{f(x)}$. Hence show that h is a one-one function.

[3]

(ii) Find an expression for $h^{-1}(x)$.

m and state the

[1]

[4]

(iii) Show that the composite function gf exists. Define gf in similar form and state the range of gf. [4]

5 **JJC/2012Promo/5**

The function f is defined by $f: x \mapsto \frac{x+2}{x-1}$, for $x \in \mathbb{R}$, $x \ne 1$.

(i) Find
$$f^2(x)$$
 and $f^{2012}(x)$. [3]

The function g is defined by $g: x \mapsto \cos x$, for $0 < x < 2\pi$.

- (ii) Explain why the composite function fg exists. [2]
- (iii) Define fg, giving its domain. [2]
- (iv) Find the range of fg. [1]

6 JJC/2010Promo/6

An inverse function is defined by $f^{-1}(x) = \ln(x^2 - 1)$, $x \in \mathbb{R}$, x > 1.

- (i) Find f(x) and state the domain of f. [3]
- (ii) Explain why ff⁻¹ exists and find ff⁻¹ in a similar form. [2]
- (iii) Sketch the graph of $y = ff^{-1}(x)$ and state the range of ff^{-1} . [2]

7 HCI/2008Promo/14 [Part ii removed. Out of syllabus]

The functions f and g are defined as follows:

$$f: x \mapsto 3-2x-x^2, x \in \mathbb{R}, x \le k,$$

 $g: x \mapsto e^{\sqrt{4-x}}, 0 \le x \le 4.$

State the largest value of k such that f^{-1} exists, and find f^{-1} in a similar form.

- (i) Show that the composite function gf does not exist. [1]
- (iii) Find the set of values of x such that $g^{-1}g(x+1) = g g^{-1}(x+1)$. [3]

8 NJC/2010Promo/5

The functions f and g are defined by

$$f: x \mapsto \frac{1}{|x+1|}, -2 < x < -1,$$

 $g: x \mapsto x^2 - 4\lambda x$, $x > 2\lambda$, where λ is a real constant.

- (i) Find $g^{-1}(x)$ in terms of λ , stating the domain of g^{-1} . [3]
- (ii) Determine the set of values of λ for which the composite function gf exist . [2]
- (iii) Given that $\lambda = -1$, find the range of gf. [2]

9 NJC/2013Promo/10

The function f is defined as follows:

$$f: x \mapsto \ln(x^2 + 1), x \in \mathbb{R}$$
.

- (i) Without the use of a calculator, find the set of values of x for which the graph of y = f(x) is concave upwards. [4]
- (ii) Sketch the graph of y = f(x). [2]
- (iii) The function f has an inverse if its domain is restricted to $x \ge k$. State the set of all possible values of k. [1]

The function g is defined by $g: x \mapsto \ln(x^2 + 1), x \ge 1$.

(iv) Find $g^{-1}(x)$ and state the exact domain of g^{-1} . [3]

10 RI/2013Promo/14

The function f is defined as follows:

$$f(x) = \begin{cases} 2 - x, & 0 \le x \le 2, \\ \frac{x(2 - x)}{4}, & 2 < x \le 4. \end{cases}$$

- (i) Sketch the graph of f and show that the inverse function of f exists. [3]
- (ii) Sketch the graph of f^{-1} on the same diagram as the graph of f, showing clearly their relationship. State the range of values of x for which $f(x) = f^{-1}(x)$. [3]

(iii) Solve
$$f^{-1}(x) = 3$$
. [2]

(iv) Find the exact value of $\int_{2}^{3} f(x) dx$. Hence, or otherwise, find the exact

value of
$$\int_{-\frac{3}{4}}^{2} f^{-1}(x) dx$$
. [4]

11 DHS/2013MYE/10

The functions f and g are defined as follows:

$$f: x \mapsto \begin{cases} -\frac{x^2}{4}, & -2 \le x < 0, \\ x^3, & 0 \le x \le 2. \end{cases}$$

$$g: x \mapsto x, -1 \le x < 0.$$

- (i) Sketch the graph of y = f(x) and show that f^{-1} exists. [3]
- (ii) Find f^{-1} in a similar form. [4]

The function h is a restriction of f to $-2 \le x < 0$.

(iii) Show that the composite function hg exists. [1]

[2]

(iv) Solve gh(x) = hg(x), showing your working clearly.

12 MJC/2015Promo/9

The function f is defined by

$$f: x \mapsto x^2 - 2x - 1, -1 \le x \le 1.$$

(i) Define f^{-1} in a similar form and sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on a single diagram, showing clearly the relationship between the graphs.

The function g is defined by

$$g: x \mapsto \begin{cases} 9-3x, & 0 \le x < 3, \\ (x-3)^2, & 3 \le x < 6, \end{cases}$$

and that g(x) = g(x+6) for all real values of x.

- (ii) Sketch the graph of y = g(x) for $-2 \le x \le 8$. [3]
- (iii) Give a reason why the composite function gf exists and hence state its range. [2]

13 PJC/2015Promo/7

Functions f and g are defined by

$$f: x \mapsto -\frac{2}{x-1}, x \in \mathbb{R}, x \neq 1,$$

 $g: x \mapsto 1-2x, x \in \mathbb{R}.$

(i) Only one of the composite functions fg and gf exists. Give a definition, domain and range of the composite that exists, and explain why the other composite does not exist. [4]

A function h is said to be self-inverse if $h(x) = h^{-1}(x)$ for all x in the domain of h.

Show that gf is self-inverse. (ii) [3]

14 HCI/2015Promo/5 [Part iii removed. Out of syllabus]

The function f and g are defined by

$$f: x \mapsto 2\cos x, \ x \in [-2\pi, 2\pi],$$

 $g: x \mapsto \frac{2x-1}{x-1}, \ x \in \mathbb{R}, \ x < 1.$

(i) Give a reason why f does not have an inverse.

[1] (ii) The function f has an inverse if its domain is restricted to $\frac{\pi}{2} \le x \le b$.

Find the greatest value of b. Define f^{-1} in similar form. [3]

15 VJC/2013MYE/12

The functions f is defined by

$$f: x \mapsto x^2 + 2x - 3$$
, for $x \le k$.

- (i) Explain why f⁻¹ does not exist when k = 1. [2]
- (ii) State the largest value of k such that f^{-1} exists. [1]

With the value of k found in **part** (ii),

- (iii) define f^{-1} in a similar form, [4]
- (iv) sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram, [2]
- (v) write down the equation of the line in which the graph of y = f(x) must be reflected in order to obtain the graph of $y = f^{-1}(x)$, and hence find the exact solution of the equation $f(x) = f^{-1}(x)$. [3]

The domain of a function g is $\{x \in \mathbb{R} : 0 < x < 3\}$, and its graph passes through the point (1.2, 1). The graph of y = g(x) is given below.

In the rest of the question, take *k* to be 1 in the definition of f.

- (vi) Give a reason why fg does not exist. [1]
- (vii) The function h is defined by $h: x \mapsto g(x)$, for $1.2 \le x < 3$.

Find the range of fh, showing your working clearly. [2]

16 IJC/2017 Promo/Q3

It is given that

$$f(x) = \begin{cases} 8x & , & 0 \le x < 1 \\ (3 - x)^3 & , & 1 \le x \le 3 \end{cases}$$

It is also known that f(x) = f(x+3) for all real values of x.

- (i) Evaluate f(-4) + f(22). [2]
- (ii) Sketch the graph of y = f(x) for $-4 \le x \le 7$. [3]

Answers

$ \begin{array}{lll} 1 & & & (i) g^{-1} : x \to \frac{1}{x-2}, x \neq 2 \; ; & (iii) \; x = -2.62, -1, \text{or} \; -0.382 \\ 2 & & (a) f^{-1} : x \mapsto -\ln x, \; 0 < x < 1 \; (D_{f^{-1}} = R_f = (0,1)) & \text{Range of } f^{-1} = \mathbb{R}^+ \\ & & (b) fg : x \mapsto e^{-(3x^2+2)}, \; x < 0. \; ; \; R_{fg} = (0,e^{-2}) \\ 3 & & & (ii) \; R_f = = \left[0,\frac{7}{2}\right]. & & (iii) \; x = 1.47 \\ & & & (iv) \; D_{fg} = D_g = \left[0,\frac{\pi}{2}\right] & & (v) \; R_{fg} = \left[0,\frac{7}{2}\right] \\ 4 & & h^{-1}(x) = \tan^{-1}\left(\frac{1}{x}-1\right) & ; & \text{gf} : x \mapsto 1+\frac{1}{\tan x+1}, 0 < x < \frac{\pi}{2}, \; R_{gf} = (1,2) \\ 5 & & & (i) f^2(x) = x, \; f^{2012}(x) = x. \\ & & & (ii) \; Since \; R_g \subseteq D_f, \; fg \; exists. \\ & & & & (iii) \; fg : x \mapsto \frac{\cos x+2}{\cos x-1}, \; 0 < x < 2\pi. & (iv) \; R_{fg} = \left(-\infty, \; -\frac{1}{2}\right] \\ 6 & & & (i) \; f(x) = \sqrt{e^x+1}, x \in \mathbb{R}; \\ & & & (ii) \; ff^{-1}(x) = x, \; x > 1 \\ & & & (iii) \; R_{f^{-1}} = (1,\infty) \\ 7 & & & k = -1; \; f^{-1} : x \mapsto -1 - \sqrt{4-x}, x \in (-\infty, 4]; \\ & & & (iii) \; set \; of \; values \; of \; x = [0, 3] \\ 8 & & & (i) \; g^{-1} : x \mapsto 2\lambda + \sqrt{x+4\lambda^2}, x > -4\lambda^2 & (iii) \; \lambda \leq \frac{1}{2} & (iii) \; R_{gf} = (5,\infty) \\ 9 & & & (i) \; -1 < x < 1 \\ & & & (iii) \; f^{-1} \; exist \; if \; x \geq k, \; \text{where} \; k \geq 0. \\ & & & (iv) \; g^{-1} : x \mapsto \sqrt{e^x-1}, \; \; x \in [\ln 2,\infty) \\ 10 & & & (iii) \; -\frac{3}{4} \; (iv) \; -\frac{1}{3}; \frac{47}{12} \\ 11 & & & ii) \; f^{-1} : x \mapsto \begin{cases} -\sqrt{-4x}, \; -1 \leq x < 0, \\ \sqrt[3]{x}, \; 0 \leq x \leq 8. \end{cases} & (iv) \; -1 \leq x < 0. \end{cases} \end{array}$
(b) fg: $x \mapsto e^{-(3x^2+2)}$, $x < 0$.; $R_{fg} = (0, e^{-2})$ (ii) $R_f = \left[0, \frac{7}{2}\right]$. (iii) $x = 1.47$ (iv) $D_{fg} = D_g = \left[0, \frac{\pi}{2}\right]$ (v) $R_{fg} = \left[0, \frac{7}{2}\right]$ 4
(b) fg: $x \mapsto e^{-(3x^2+2)}$, $x < 0$.; $R_{fg} = (0, e^{-2})$ (ii) $R_f = \left[0, \frac{7}{2}\right]$. (iii) $x = 1.47$ (iv) $D_{fg} = D_g = \left[0, \frac{\pi}{2}\right]$ (v) $R_{fg} = \left[0, \frac{7}{2}\right]$ 4
(ii) $R_f = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$. (iii) $x = 1.47$ (iv) $D_{fg} = D_g = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ (v) $R_{fg} = \begin{bmatrix} 0, \frac{7}{2} \end{bmatrix}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{lll} & & & & & & & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$
(ii) Since $R_{\rm g} \subseteq D_{\rm f}$, fg exists. (iii) ${\rm fg}: x \mapsto \frac{\cos x + 2}{\cos x - 1}$, $0 < x < 2\pi$. (iv) $R_{\rm fg} = \left(-\infty, -\frac{1}{2}\right]$ 6 (i) $f(x) = \sqrt{e^x + 1}, x \in \mathbb{R}$; (ii) ${\rm ff}^{-1}(x) = x, x > 1$ (iii) $R_{\rm ff^{-1}} = (1, \infty)$ 7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}, x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^2}, x > -4\lambda^2$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{\rm gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}, x \in [\ln 2, \infty)$
(ii) Since $R_{g} \subseteq D_{f}$, fg exists. (iii) $fg: x \mapsto \frac{\cos x + 2}{\cos x - 1}$, $0 < x < 2\pi$. (iv) $R_{fg} = \left(-\infty, -\frac{1}{2}\right]$ 6 (i) $f(x) = \sqrt{e^{x} + 1}$, $x \in \mathbb{R}$; (ii) $ff^{-1}(x) = x$, $x > 1$ (iii) $R_{ff^{-1}} = (1, \infty)$ 7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}$, $x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^{2}}$, $x > -4\lambda^{2}$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^{x} - 1}$, $x \in [\ln 2, \infty)$
(iii) $fg: x \mapsto \frac{\cos x + 2}{\cos x - 1}$, $0 < x < 2\pi$. (iv) $R_{fg} = \left(-\infty, -\frac{1}{2}\right]$ 6 (i) $f(x) = \sqrt{e^x + 1}, x \in \mathbb{R}$; (ii) $ff^{-1}(x) = x, x > 1$ (iii) $R_{ff^{-1}} = (1, \infty)$ 7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}, x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^2}, x > -4\lambda^2$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}, x \in [\ln 2, \infty)$
(ii) $f(x) = \sqrt{e^{-1}}, x \in \mathbb{R}^{n}$, (iii) $f(x) = x, x > 1$ (iii) $R_{ff^{-1}} = (1, \infty)$ 7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}, x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^{2}}, x > -4\lambda^{2}$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^{x} - 1}, x \in [\ln 2, \infty)$
(iii) $R_{ff^{-1}} = (1, \infty)$ 7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}$, $x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^2}$, $x > -4\lambda^2$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}$, $x \in [\ln 2, \infty)$
7 $k = -1$; $f^{-1}: x \mapsto -1 - \sqrt{4 - x}$, $x \in (-\infty, 4]$; (iii) set of values of $x = [0, 3]$ 8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^2}$, $x > -4\lambda^2$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}$, $x \in [\ln 2, \infty)$
$(iii) \text{ set of values of } x = [0, 3]$ $(i) g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^{2}}, x > -4\lambda^{2} (ii) \lambda \leq \frac{1}{2} (iii) \mathbf{R}_{gf} = (5, \infty)$ $(i) -1 < x < 1$ $(iii) \mathbf{f}^{-1} \text{ exist if } x \geq k, \text{ where } k \geq 0.$ $(iv) g^{-1}: x \mapsto \sqrt{\mathbf{e}^{x} - 1}, x \in [\ln 2, \infty)$
8 (i) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^{2}}, x > -4\lambda^{2}$ (ii) $\lambda \le \frac{1}{2}$ (iii) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^{x} - 1}, x \in [\ln 2, \infty)$
(1) $g^{-1}: x \mapsto 2\lambda + \sqrt{x + 4\lambda^2}, x > -4\lambda^2$ (11) $\lambda \le \frac{1}{2}$ (111) $R_{gf} = (5, \infty)$ 9 (i) $-1 < x < 1$ (iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}, x \in [\ln 2, \infty)$
(iii) f^{-1} exist if $x \ge k$, where $k \ge 0$. (iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}$, $x \in [\ln 2, \infty)$
(iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}, x \in [\ln 2, \infty)$
(iv) $g^{-1}: x \mapsto \sqrt{e^x - 1}, x \in [\ln 2, \infty)$ 10 (iii) $-\frac{3}{2}$ (iv) $-\frac{1}{2}$; $\frac{47}{2}$
$\begin{bmatrix} 10 & (iii) & -\frac{3}{2} & (iv) & -\frac{1}{2} & \frac{47}{2} \end{bmatrix}$
3 12
$ \begin{vmatrix} 11 & ii f^{-1} : x \mapsto \begin{cases} -\sqrt{-4x}, & -1 \le x < 0, \\ -\sqrt{-4x}, & -1 \le x < 0. \end{vmatrix} $
$\sqrt[3]{x}, 0 \le x \le 8.$
12 (i) $f^{-1}: x \mapsto 1 - \sqrt{x+2}, -2 \le x \le 2$
$(iii) R_{gf} = [1, 9]$
(i) gf exists; gf(x)= $\frac{x+3}{x-1}$; $D_{gf} = D_f = \mathbb{R} \setminus \{1\}$ $R_{gf} = \mathbb{R} \setminus \{1\}$
14 $b = \pi$; $f^{-1}: x \mapsto \cos^{-1} \frac{x}{2}, -2 \le x \le 0$;
15 (ii) largest $k = -1$
(iii) $f^{-1}: x \mapsto -1 - \sqrt{x+4}, x \ge -4$
(iii) $f^{-1}: x \mapsto -1 - \sqrt{x+4}, x \ge -4$

	(v) $y = f(x)$, $x = \frac{-1 - \sqrt{13}}{2}$ (vi) $R_g = (0, 2)$ and $D_f = (-\infty, 1] \implies R_g \subseteq D_f$. Thus, fg does not exist.
	(vii) $R_{fh} = (-3, 0]$
16	(i) 9