ДАВЛЕНИЕ. АТМОСФЕРНОЕ ДАВЛЕНИЕ K 10/5

Давление. Единицы измерения

$$F_1 = F_2 \ S_2 \ll S_1$$
 $[p] = rac{H}{m^2} = rac{ extstyle \Pi a c eta \pi b}{m}$

$$\left| \, p = rac{F}{S}
ight| \, o \,$$
 давление

Атмосферное давление. Опыт Торричелли

Давление в жидкости и газе. Закон Паскаля

$$\left.egin{aligned} p = rac{F}{S} \ F_{ extit{mg} extit{#}} = mg \ m =
ho \cdot V \ V = S \cdot h \end{aligned}
ight\} p = rac{
ho \! S hg}{S} =
ho gh \ p =
ho gh
ight] o \Gamma$$
 гидростатическое давление

N3! Давление зависит не от количества воды, а от глубины!

1 Закон паскаля

Давление, производимое на жидкость или газ, передаётся в любую точку без изменения во всех направлениях

<u>ЗАКОНЫ ПАСКАЛЯ, АРХИМЕДА, БЕРНУЛЛИ</u>

Сила Архимеда. Закон Архимеда

$$p_{\mathit{жид}} = p_{\!\mathit{am}\!\mathit{M}} +
ho_{\mathit{жид}} g h$$

$$F_1 = p_{am\scriptscriptstyle\mathcal{M}} \cdot S$$

$$F_2 = p_{\!\scriptscriptstyle \mathcal{H}\mathcal{U}\partial} \cdot S = (p_{\!\scriptscriptstyle \mathcal{H}\mathcal{M}} +
ho_{\!\scriptscriptstyle \mathcal{H}\mathcal{U}\partial} gh) S$$
 $F_A = F_2 - F_1 = p_{\!\scriptscriptstyle \mathcal{H}\mathcal{M}} S +
ho_{\!\scriptscriptstyle \mathcal{H}\mathcal{U}\partial} gh S - p_{\!\scriptscriptstyle \mathcal{H}\mathcal{M}} S$

$$\left.egin{aligned} F_A =
ho_{\! imes\!u\partial}ghS \ V = h\cdot S \end{aligned}
ight\} \left[egin{aligned} F_A =
ho_{\! imes\!u\partial}gV \end{aligned}
ight] \longrightarrow$$
 сила Архимеда

1 Закон Архимеда

На тело, погруженное в жидкость или газ, действует сила, равная весу вытесненной этим телом жидкости или газа

Условия плавания тел

$$mg>F_A$$
 $ho_m aV_m>
ho_m aV_m$

$$oxed{1}$$
 $ho_m g V_m >
ho_{\mathcal{H}} g V_{\mathcal{H}}$ Т.К. $V_m = V_{\mathcal{H}}$ $ho_m >
ho_{\mathcal{H}}$

$$egin{array}{c} mg < F_A \
ho_m <
ho_w \end{array}$$

$$mg < F_A$$
 $p_m <
ho_{\mathcal{H}}$ $p_m =
ho_{\mathcal{H}} \Rightarrow$ тело плавает внутри жидкости (на любой высоте)

Движение жидкости по трубам. Закон Бернулли

1 Закон Бернулли

Чем больше скорость потока жидкости или газа в трубе, тем меньше давление, оказываемое на стенки трубы, и наоборот

примечание