Eugene Baldonado SID: 862070316 Prof. V.J. Tsotras CS166 - W22

Relational Algebra

Used for copy and paste: π , σ , \bowtie , \wedge

Problem #1:

1) Find the names of all employees who work at Bank4U:

 $\pi_{\text{(employee-name)}}$ (employee \bowtie ($\sigma_{\text{(company-name = 'Bank4U')}}$ works))

2) Find the names and cities of residence of all employees who work at Bank4U and earn more than \$15,000 a year

 $\pi_{\text{(emplovee-name. city(emplovee))}}$ (employee \bowtie ($\sigma_{\text{(company-name = 'Bank4U' } \land \text{ salary > 15000)}}$ works))

3) Find the names, streets and cities of residence of all employees who live in the same city as the company they work in

π_{(employee-name, street, city(employee))}
(employee∾_(employee-name = employee-name ∧ city = city) (works ⋈_(company-name = company-name) company))

Problem #2:

1) Find the Sno and course grades for students who take "OS" or "DBMS"

π_(Sno, Grade)

 $(\text{STUDENTS}\bowtie_{(\text{Sname = Cname})} ((\sigma_{(\text{Cname = 'OS'} \lor \text{Cname = 'DBMS'})}\text{COURSES}) \bowtie \text{ENROLLMENT}))$

2) Find the Sno of students whose courses include all courses taken by the student with Sno = 10

T(Sno)

(STUDENTS $\bowtie_{(Sname = Cname)}$ COURSES / ($\pi_{(Cname)}((\sigma_{(Sno = 10)}STUDENTS) \bowtie COURSES)))$

3) Find the Sname and Sdept for all students who do not enroll in the course with Cno = 3

π_(SName, Sdept)
(STUDENTS -

 $\begin{array}{l} (\pi_{(Sno,\;Sname,\;SDept,\;Age)}\;(STUDENTS\bowtie_{(Sname\;=\;Cname)}\;COURSES\:/\:\:\:(\pi_{(Cname)}((\sigma_{(Sno\;=\;3)}STUDENTS)\bowtie\;COURSES)))) \end{array}$

Problem #3:

1) Find the bars that serve a beer that drinker Smith likes

 $\pi_{(BAR(VISITS))}(\sigma_{(DRINKER = 'Smith')}(VISITS \bowtie_{(DRINKER = DRINKER)}(SERVES \bowtie_{(BEER = BEER)} LIKES)))$

2) Find the bars that serve all beers that drinker Smith likes

 $\pi_{(BAR)}(SERVES / \pi_{(BEER)}((\sigma_{(DRINKER = 'Smith')}VISITS) \bowtie_{(BAR = BAR)} LIKES))$

(NOTE: Projection of BAR may be unnecessary as dividing the relation of the projection of BEER already results in a relation containing only the attribute BAR)