

SPECIFICATION

Product Name: Ultrasonic Oxygen Sensor

Model No: Gasboard-8500D

Version: V0.3

Date: 2019-8-7

Writer	Audit	Approved
Mei Yang		

Revision

No	Ver	Content	Revisor	Date
1	V0.1	1、First revision.	Mei Yang	2018-11-26
2	V0.2	1、Real product photo、physical dimension drawing、pin definition drawing modified by approved products; 2、The detection precision of product specification parameter was modified from "±1.8%FS @(10~45)℃" to "±3%FS @(5~45)℃", Working voltage was modified from "DC 5-12V" to "DC 4.75-12.6V".	Mei Yang	2019-3-26
3	V0.3	1、Specification fonts was modified to Song typeface、Arial.	Mei Yang	2019-8-7

Ultrasonic Oxygen Sensor

Gasboard-8500D

Applications:

- Home and Medical oxygen generator, large oxygen generator.
- ♦ Household and Medical ventilator.
- ♦ For the binary gas(include oxygen) detection.

Description:

Gasboard8500 ultrasonic oxygen sensor is an economical gas sensor used to detect oxygen concentration in binary gases. We develop it based on Gasboard-7500 Ultrasonic Oxygen Sensor Module and make it optimized and upgraded to replace and extend the application of original series.

Working Principle:

Ultrasonic concentration detection theory: when the binary gas mixture composition has molecular weight difference, sound travel speed varies from different gas composition.

Main Feature:

- Dispersive and principle of ultrasonic measurement adopted to oxygen concentration measurement
- \diamond Be used for the oxygen concentration measurement of high flow ventilator
- ♦ Whole course temperature compensation
- ♦ Quick response, stable measurement, high accuracy
- ♦ Long life span, self-calibration, maintenance-free

Specifications

Ultrasonic oxygen sensor specifications			
Method	Ultrasonic		
Range	20.5 ~ 95.6%		
Accuracy	±3%FS @ (5~45)℃		
Resolution	0.1%		
Response time	<10s		
Working temperature	5~50°C; 0~95%RH (non-condensing)		
Storage temperature	-20~60°C; 0~95%RH below (non-condensing)		
Working voltage	DC 4.75-12.6V		
Average working current	<50mA		
Communication	UART_TTL(3.3V)		
Dimension	L60.7*W26*H30 mm		
Life span	≥5 years		

Ventilation direction(up and down both ok)

<u>Drawing 1</u> Gasboard-8500D pin definition drawing

Pin definition list

NO	Pin	Description	
1	VIN	4.75-12.6VDC power supply input	
2	Rx	UART-Rx receiving (3.3V/5V compatible)	
3	Tx	UART -Tx sending (3.3V)	
4	GND	GND	

Reference circuit

Application scenarios: UART TTL serial output

Drawing 2 UART communication connection circuit

Communication protocol

♦ UART communication protocol

1 Protocol overview

- 1) Baud rate: 9600, DataBits: 8, StopBits: 1, Parity: No, Flow Control: No
- 2) The protocol data are hexadecimal data. For example "46" is [70] in decimal;
- 3) [xx] is single byte data(unsigned, 0-255); In double byte, the high byte is in front of low byte;

2 Serial communication protocol format

PC send format

Start symbol	Length	Order no	Data 1	 Data n	Cheksum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	XXH	XXH	XXH	 XXH	XXH

Protocol format description

Protocol format	Description
Start symbol	PC sending is fixed to [11H], module response is fixed to [16H]
Length	Length of frame byte, =data length+1 (include CMD+DATA)
Order no	Directive number
Data	Read or written data, the length is variable
Checksum	The sum of data accumulation,=256-(HEAD+LEN+CMD+DATA)

3 Serial protocol order number list

No	Function name	Order no
1	Read the measurement result of O2	0x01
2	Read the software version number	0x1E
3	Inquiry instrument serial number	0x1F

4 Detailed description

4.1 Read the measurement result of O2

Send: 11 01 01 ED

Response: 16 09 01 DF1-DF8 [CS]

Function: Read the measurement result of O2

Explanation: O2 concentration = (DF1*256 + DF2) /10 (Vol %)

O2 temperature value = (DF5*256 + DF6) /10 $(^{\circ}C)$

Attention: DF3 DF4 DF7 DF8 reserved

Communication protocol

Response example:

Response: 16 09 01 00 CD 00 00 00 C2 00 1E 33

Explanation:

Hexadecimal convert into decimal: CD is 205; C2 is 194

O2 concentration =0*256 + 205=205 (20.5%)

O2 temperature value =0*256+194=194 (19.4 $^{\circ}$ C)

4.2 Read the software version number

Send: 11 01 1E D0

Response: 16 09 1E DF1-DF8 [CS]

Function: read version number for module firmware

Explanation: DF1-DF8 refers to the ASCII code of particular version number.

For example: when module version number is 0.02.611,response data

Hexadecimal convert into ASCII code:

0.02.611

4.3 Inquiry instrument serial number

Send: 11 01 1F CF

Response: 16 0B 1F (SN1) (SN2) (SN3) (SN4) (SN5) [CS]

Function: read version number for module firmware

Explanation: instrument serial number of output software. SNn range is 0~9999, 5 integer type constitute 20 serial number.

Drawing 3 external dimension (unit: mm, tolerance: ±0.2mm)

Reliability testing

Item	Requirement	Criterion	Sample (n) Failed (c)
	Indoor temperature requirement: 25±2°C, humidity (50±10) %RH, after the sensor connect		, ,
Flow performance	with serial port and power on, switchover the flow in 3L/min、5L/min、8L/min respectively to	Make new tests in different oxygen flow all can meet error criterion.	n=70 c=0
	make measurement of oxygen concentration and accuracy.		
Low temperature	Storing the sensor for 96H with no power under -20°C±2°C environment condition, then to	After staying under normal	
storage	test the measuring error of it under normal temperature condition.	temperature condition for 2 hours, the test all can meet error criterion.	
	Indoor temperature requirement: -10 $\pm 2{}^\circ\!$	After staying under normal	
Cold operation	normal temperature condition after operating for 96H with electricity.	temperature condition for 2 hours, the test all can meet error criterion.	
High temperature	Storing the sensor for 96H with no power under 60°C ±2°C environment condition, then to	After staying under normal	
storage	test the measuring error of it under normal temperature condition.	temperature condition for 2 hours, the test all can meet error criterion.	
	Indoor temperature requirement: $50\pm2^{\circ}\!$	After staying under normal	n=0
Hot operation	normal temperature condition after operating for 96H with electricity.	temperature condition for 2 hours, the test all can meet error criterion.	c=0
High-low temperature shock	Keep the sensor under -20℃ for 60 mins, then switch it to 60℃ in 10s and stay for another 60 mins, this is one cycle, there are 10 cycles in total, the sensor is power off when testing.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
High temp &humidity	Place the sensor under high temp & humidity ($40\pm2^{\circ}C$, 95%RH), after working under rated voltage for 500H, to test the measuring error of it under normal temperature condition.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
Salt spray test	Standard :GB/T2423.17, place the sensor in the salt fog box under 35°C and spray it with Nacl solution (concentration is 5%) for 24 hours, then flushing it with distilled water and	Keep the sensor under standard environment more than 1 h and less than 2 h, it should no appearance	n=2 c=0
	drying it with airflow.	defect, no corrosion.	
Vibration test	Bare sensor should bear the specified vibration test in X/Y/Z direction, frequency range	No appearance defect after vibration test, the sensor can meet basic	n=4
	10~55~10Hz/min, amplitude 1.5mm, scan circulation 2 hours.	performance test standard.	c=0
Package drop test	Drop height: setting the height as specified weight according to standard GB/T 4857.18. Making the drop test according to the GB/T4857.5 standard. Test sequence is one corner,	No appearance defect after drop test, no components fall off, the sensor	n=1 ctn
	three edges, six sides.	should work normally.	c=0

Consultancy & After-sales service

Contact number: 86-27-8162 8813

Address: Fenghuang No.3 Road, Fenghuang Industrial Park,

Eastlake Hi-tech Development Zone, Wuhan, China

Postal code: 430205 Fax: 86-27-8740 1159

Website: http://www.gassensor.com.cn

E-mail: info@gassensor.com.cn