Compito di Architetture degli Elaboratori

Appello dell'8 Luglio 2013

Tempo a disposizione: 3 ore

Esercizio 1

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. La rete riconosce come valide espressioni del tipo $e=\alpha 0\beta$, dove α è una sequenza composta da una, due oppure tre coppie '11' consecutive. Lo 0 tra α e β segna la fine della sequenza α , dopo tale 0 la rete inizierà a leggere la sequenza β , che è una sequenza generica di uni e zeri caratterizzata dalla proprietà di contenere un numero di coppie '10', questa volta anche non consecutive, uguale al numero di coppie '11' della sequenza α . Terminato di leggere β la rete tornerà allo stato iniziale, restituendo uno in uscita. Successivamente la rete riprenderà il suo funzionamento dal principio. Se durante la lettura della sequenza α , la rete dovesse ricevere in input uno zero non atteso (ovvero subito dopo un uno spurio), allora tornerà allo stato iniziale restituendo zero.

Esempio: Si consideri il possibile funzionamento della rete illustrato in basso. Al colpo di clock 4 la rete inizia a leggere la sequenza α , che è composta da due coppie '11' consecutive. Al colpo di clock 8 riceve in input lo zero che separa α e β , quindi inizia a leggere la sequenza β che è composta da sette bit ($\beta = 0010110$) e contiene due coppie '10' non consecutive. Se al colpo di clock 7 la rete avesse ricevuto uno zero invece di un uno, avrebbe restituito 0 e sarebbe tornata allo stato iniziale.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\boldsymbol{x}	0	1	0	1	1	1	1	0	0	0	1	0	1	1	0
z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Esercizio 2

Estendere il set di istruzioni della macchina a registri con l'operazione FINDSUM R_i , R_j , R_k , X. In particolare, si considerino i due vettori V_1 e V_2 , entrambi di dimensione pari al valore contenuto in R_k e tali che V_1 sia memorizzato in RAM a partire dall'indirizzo X, mentre V_2 a partire dall'indirizzo X+3. L'operazione restituirà in R_i il numero di elementi $V_1[i]$ e $V_2[i]$ dei due vettori che si trovano nella stessa posizione e tali che la loro somma $V_1[i]+V_2[i]$ sia uguale al valore contenuto in R_j .

Esempio: Supponiamo che R_j contenga il valore 5, R_k contenga il valore 7 e che i due vettori siano $V_1 = [2, 4, 0, 3, 7, 5, 2]$ e $V_2 = [3, 7, 5, 2, 0, 1, 3]$. Allora le somme degli elementi nelle stesse posizioni saranno: 2+3=5, 4+7=11, 0+5=5, 3+2=5, 7+0=7, 5+1=6, 2+3=5. Quindi in R_i verrà memorizzato il valore 8.

Esercizio 3

Scrivere una programma in Assembly che, data una matrice quadrata M di interi a 32 bit, stampi su video "Vero" se la diagonale principale di M coincide con la diagonale secondaria capovolta e stampi "Falso" altrimenti. Segue un esempio.

Esempio: Considerando la matrice in figura, il programma stamperà su video "Vero".

	2	15	3	31
M =	4	5	16	11
M =	7	5	16	56
	2	21	4	31