ELE 535: Machine Learning and Pattern Recognition Homework 5

Zachary Hervieux-Moore

Monday 22nd October, 2018

Exercise 1: Derive the derivative, and if exists the gradient, of the following functions.

- a) For $x \in \mathbb{R}^n$, $f(x) = \sum_{j=1}^n x_j$.
- b) For $x \in \mathbb{R}^n$, $f(x) = e^{\sum_{j=1}^n x_j}$.
- c) For $x \in \mathbb{R}^n$, $f(x) = x^T A x + a^T x + b$, where $b \in \mathbb{R}$, $a \in \mathbb{R}^n$, and $A \in \mathbb{R}^{n \times n}$.
- d) For $M \in \mathbb{R}^{n \times n}$, $f(M) = ||M||_F^2$.
- e) For $x \in \mathbb{R}^n$, $f(x) = xx^T \in \mathbb{R}^{n \times n}$.

Answer:

a) The i^{th} component of the gradient is given by:

$$[\nabla f(x)]_i = 1$$

Thus, we have that the gradient is $\nabla f(x) = \mathbf{1}$ and the derivative is $Df(x)(v) = \mathbf{1}^T v$.

b) The i^{th} component of the gradient is given by:

$$[\nabla f(x)]_i = e^{\sum_{j=1}^n x_j}$$

Thus, we have that the gradient is $\nabla f(x) = f(x) \cdot \mathbf{1}$ and the derivative is $Df(x)(v) = f(x)\mathbf{1}^T v$.

- c) Taking the derivative directly, have that the gradient is $\nabla f(x) = 2Ax + a$ and the derivative is $Df(x)(v) = (2x^TA^T + a^T)v$.
- d) We have that $f(M) = ||M||_F^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$. This means that the gradient is

$$[\nabla_M f(M)]_{ij} = 2a_{ij}$$

$$\implies \nabla_M f(M) = 2M$$

$$\implies Df(M)(V) = 2a_{ij}v_{ij} = 2\operatorname{trace}(M^T V)$$

Thus, we have that the gradient is $\nabla_M f(M) = 2M$ and the derivative is $Df(M)(V) = 2\operatorname{trace}(M^TV)$.

e) The outer product is given by

$$f(x) = xx^{T} = \begin{bmatrix} x_{1}^{2} & x_{1}x_{2} & \cdots & x_{1}x_{n} \\ \vdots & & & \vdots \\ x_{n}x_{1} & x_{n}x_{2} & \cdots & x_{n}^{2} \end{bmatrix}.$$

For illustrative purposes, the 1^{st} partial derivative is given by:

$$\frac{\partial f(x)}{\partial x_1} = \begin{bmatrix} 2x_1 & x_2 & \cdots & x_n \\ \vdots & & 0 \\ x_n & & & \end{bmatrix}$$

The i^{th} partial has a similar form except the 0's occur on the entries not in the i^{th} row or column. This yields a derivative of

$$Df(x)(v) = \sum_{j=1}^{n} \frac{\partial f(x)}{\partial x_{j}} v_{j} = \begin{bmatrix} 2x_{1}v_{1} & x_{2}v_{1} & \cdots & x_{n}v_{1} \\ \vdots & & 0 \\ x_{n}v_{1} & & \vdots \\ x_{1}v_{n} & x_{2}v_{n} & \cdots & 2x_{n}v_{n} \end{bmatrix}$$

$$+ \cdots + \begin{bmatrix} & & & & & & & \\ & 0 & & \vdots & & & \\ x_{1}v_{n} & x_{2}v_{n} & \cdots & 2x_{n}v_{n} \end{bmatrix}$$

$$Df(x)(v) = \begin{bmatrix} 2x_{1}v_{1} & x_{2}v_{1} + x_{1}v_{2} & \cdots & x_{n}v_{1} + x_{1}v_{n} \\ \vdots & & & & \vdots \\ x_{n}v_{1} + x_{1}v_{n} & x_{n}v_{2} + x_{2}v_{n} & \cdots & 2x_{n}v_{n} \end{bmatrix}$$

$$Df(x)(v) = x \otimes v + v \otimes x$$

Exercise 2: Matrix Inversion Lemma. Let $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ with $A \in \mathbb{R}^{p \times p}$, $D \in \mathbb{R}^{q \times q}$, $B \in \mathbb{R}^{p \times q}$, $C \in \mathbb{R}^{q \times p}$.

a) If A and D, and at least one of S_A or S_D are invertible, derive the equality (this was partially done in class):

$$(A - BD^{-1}C)^{-1} = A^{-1} + A^{-1}B(D - CA^{-1}B)^{-1}CA^{-1}$$

b) Use part a) to show that if A and D, and at least one of A + BDC or $D^{-1} + CA^{-1}B$ are invertible, then:

$$(A + BDC)^{-1} = A^{-1} - A^{-1}B(D^{-1} + CA^{-1}B)^{-1}CA^{-1}$$

Answer:

a) This can be shown directly by checking that multiplying the two results in the identity.

$$\begin{split} &(A-BD^{-1}C)(A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1})\\ &=I+B(D-CA^{-1}B)^{-1}CA^{-1}-BD^{-1}CA^{-1}-BD^{-1}CA^{-1}B(D-CA^{-1}B)^{-1}CA^{-1})\\ &=I-BD^{-1}CA^{-1}+BD^{-1}(D-CA^{-1}B)^{-1}(D-CA^{-1}B)^{-1}CA^{-1}\\ &=I-BD^{-1}CA^{-1}+BD^{-1}CA^{-1}\\ &=I-BD^{-1}CA^{-1}+BD^{-1}CA^{-1}\\ &=I\end{split}$$

b) Using part a), simply substitute $D' = -D^{-1}$ into the identity above which we can do because D is invertible by assumption.

$$(A + BD'C)^{-1} = A^{-1} + A^{-1}B(-D'^{-1} - CA^{-1}B)^{-1}CA^{-1}$$

= $A^{-1} - A^{-1}B(D'^{-1} + CA^{-1}B)^{-1}CA^{-1}$

Exercise 3: On-line least squares with mini-batch updates. You want to solve a least squares regression problem by processing the data in small batches (mini-batches), yielding a new least squares solution after each update. assume each mini-batch contains k training examples. Group the examples in the t^{th} mini-batch into the columns of $X_t \in \mathbb{R}^{n \times k}$, and the corresponding targets into the rows of $y_t \in \mathbb{R}^k$. Let $P_{t-1} = \sum_{i=1}^{t-1} X_i X_i^T \in \mathbb{R}^{n \times n}$. Assume P_{t-1}^{-1} exists and is known. Similarly, let $s_{t-1} = \sum_{i=1}^{t-1} X_i y_i \mathbb{R}^n$. Derive the following equations for the t^{th} mini-batch update:

$$\hat{y}_t \triangleq X_t^T w_{t-1}^* \text{ target prediction}$$

$$w_t^* = w_{t-1}^* + P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} (y_t - \hat{y}_t) \text{ update } w^*$$

$$P_t^{-1} = P_{t-1}^{-1} - P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1} \text{ update } P.$$

How do these equations change if the mini-batches are not all the same size?

Answer: We start by listing the following equations that easily result from the definitions in the question:

$$P_t = P_{t-1} + X_t X_t^T$$
$$s_t = s_{t-1} + X_t y_t$$

We also have the normal equation $P_t w_t^* = s_t$ which is equivalent to

$$w_t^* = P_t^{-1}(s_{t-1} + X_t y_t)$$

Now, using question 2b) with $A = P_{t-1}$, $B = X_t$, $C = X_t^T$, $D = I_k$. We have

$$P_t^{-1} = (P_{t-1} + X_t X_t^T)^{-1} = P_{t-1}^{-1} - P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1}$$

Then, subbing this into our definition of w_t^* ,

$$\begin{split} w_t^* &= (P_{t-1}^{-1} - P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1}) (s_{t-1} + X_t y_t) \\ &= (P_{t-1}^{-1} - P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1}) ((s_{t-2} + X_{t-1} y_{t-1}) + X_t y_t) \\ &= P_{t-1}^{-1} (s_{t-2} + X_{t-1} y_{t-1}) + P_{t-1}^{-1} X_t y_t \\ &- P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T P_{t-1}^{-1} (s_{t-2} + X_{t-1} y_{t-1}) \\ &- P_{t-1}^{-1} X_t [I_k - (I_k + X_t^T P_{t-1}^{-1} X_t)^{-1} X_t^T P_{t-1}^{-1} X_t] y_t \\ &= w_{t-1}^* + P_{t-1}^{-1} X_t (I_k - X_t^T P_{t-1}^{-1} X_t)^{-1} X_t^T P_{t-1} X_t) y_t \\ &- P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} X_t^T w_{t-1}^* \\ &= w_{t-1}^* + P_{t-1}^{-1} X_t (I_k - X_t^T P_{t-1}^{-1} X_t)^{-1} (I_k + X_t^T P_{t-1}^{-1} X_t - X_t^T P_{t-1}^{-1} X_t) y_t \\ &- P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} \hat{y}_t \\ &= w_{t-1}^* + P_{t-1}^{-1} X_t [I_k + X_t^T P_{t-1}^{-1} X_t]^{-1} (y_t - \hat{y}_t) \end{split}$$

Exercise 4: Linear regression with vector targets. We are given training data $\{(x_i, z_i)_{i=1}^m\}$ with input examples $x_i \in \mathbb{R}^n$ and vector targets $z_i \in \mathbb{R}^d$. Place the input examples into the columns of $X \in \mathbb{R}^{n \times m}$ and the targets into the columns of $Z \in \mathbb{R}^{d \times m}$. We want to learn a linear predictor of the vector targets $z \in \mathbb{R}^d$ of test inputs $x \in \mathbb{R}^n$. To do so, first use the training data to find:

$$W^* = \underset{W \in \mathbb{R}^{n \times d}}{\min} ||Y - FW||_F^2 + \lambda ||W||_F^2,$$

where we have set $Y = Z^T$ and $F = X^T$, and we require $\lambda \leq 0$ ($\lambda = 0$ removes the ridge regularizer).

- a) Show that the above separates into d standard ridge regression problems, each solvable separately.
- b) Without using the property in a), set the derivative of the objective function w.r.t. W equal to zero, and find an expression for the solution W^* . Is the separation property evident from this expression?

Answer:

a) Using the definition of the Frobenius norm

$$W^* = \underset{W \in \mathbb{R}^{n \times d}}{\operatorname{arg \, min}} \|Y - FW\|_F^2 + \lambda \|W\|_F^2$$
$$= \underset{W \in \mathbb{R}^{n \times d}}{\operatorname{arg \, min}} \sum_{i=1}^n \sum_{j=1}^d (Y_{ij} - [FW]_{ij})^2 + \lambda W_{ij}^2$$

But we have that $[FW]_{ij} = F_{i:}W_{:j}$. That is, the inner product of the i^{th} row of F and the j^{th} column of W. This gives

$$W^* = \underset{W \in \mathbb{R}^{n \times d}}{\min} \sum_{j=1}^{d} \sum_{i=1}^{n} (Y_{ij} - F_{i:}W_{:j})^2 + \lambda W_{ij}^2$$
$$= \underset{W \in \mathbb{R}^{n \times d}}{\min} \sum_{j=1}^{d} \|Y_{:j} - FW_{:j}\|_2^2 + \lambda \|W_{:j}\|_2^2$$

That is, by splitting up the summation along the columns of W and Y, you can turn the original problem into d separate standard ridge regression.

b) Taking the derivative yields

$$\nabla_W = 2F^T(FW - Y) + \lambda 2W = 0$$

$$\implies W^* = (F^TF + \lambda I_n)^{-1}F^TY$$

The separation property is evident from this equation because the entries of W^* , say W^*_{ij} , only requires the column of $Y_{:j}$ to perform the calculation for all $i \in [n]$ and fixed j.

Exercise 5: The softmax function. This function maps $x \in \mathbb{R}^n$ to a probability mass function s(x) on n outcomes. It can be written as the composition of two functions s(x) = q(p(x)), where $p : \mathbb{R}^n \to \mathbb{R}^n_+$ and $q : \mathbb{R}^n_+ \to \mathbb{R}^n_+$ are defined by

$$p(x) = [e^{x_i}] \quad q(z) = z/(\mathbf{1}^T z)$$

Here \mathbb{R}^n_+ denotes the positive cone $\{x \in \mathbb{R}^n : x_i > 0\}$. The function $p(\cdot)$ maps $x \in \mathbb{R}^n$ into the positive cone \mathbb{R}^n_+ , and for $z \in \mathbb{R}^n_+$, $q(\cdot)$ normalizes z to a probability mass function in \mathbb{R}^n_+ .

- a) Determine the derivative of p(x) at x.
- b) Determine the derivative of q(z) at z.
- c) Determine the derivative of the softmax function at x.

Answer:

a) The i^{th} partial derivative of p(x) is $[\nabla p(x)]_i = e^{x_i}$ and so $\nabla p(x) = p(x)$ and so the derivative is

$$Dp(x)(v) = p(x) \otimes v \in \mathbb{R}^n$$
or
$$Dp(x)(v) = \begin{bmatrix} e^{x_1} & 0 & \cdots & 0 \\ 0 & e^{x_2} & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & e^{x_n} \end{bmatrix} v$$

b) We have that the i^{th} component of q(z) is $[q(z)]_i = \frac{z_i}{\sum_{j=1}^n z_j}$. Thus, the

partial derivatives are

$$\frac{\partial [q(z)]_i}{\partial z_j} = \frac{\sum_{j=1}^n z_j - z_i}{(\sum_{j=1}^n z_j)^2} \text{ if } i = j$$

$$\frac{\partial [q(z)]_i}{\partial z_j} = \frac{-z_i}{(\sum_{j=1}^n z_j)^2} \text{ if } i \neq j$$

$$\Rightarrow Dg(z)(v) = \begin{bmatrix} \frac{\sum_{j=1}^n z_j - z_1}{(\sum_{j=1}^n z_j)^2} & \frac{-z_1}{(\sum_{j=1}^n z_j)^2} & \cdots & \frac{-z_1}{(\sum_{j=1}^n z_j)^2} \\ \frac{-z_2}{(\sum_{j=1}^n z_j)^2} & \frac{\sum_{j=1}^n z_j - z_2}{(\sum_{j=1}^n z_j)^2} & \vdots \\ \vdots & \ddots & \vdots \\ \frac{-z_n}{(\sum_{j=1}^n z_j)^2} & \cdots & \frac{\sum_{j=1}^n z_j - z_n}{(\sum_{j=1}^n z_j)^2} \end{bmatrix} v$$

c) Applying the chain rule

$$Ds(x)(v) = Dg(p(x)) \circ Dp(x)(v)$$

$$= \begin{bmatrix} \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{1}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \frac{-e^{x_{1}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \cdots & \frac{-e^{x_{1}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} \\ \frac{-e^{x_{2}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{2}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \vdots \\ \vdots & & \ddots & \vdots \\ \frac{-e^{x_{n}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \cdots & \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{n}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} \end{bmatrix} \begin{bmatrix} e^{x_{1}} & 0 & \cdots & 0 \\ 0 & e^{x_{2}} & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & e^{x_{n}} \end{bmatrix} v$$

$$= \begin{bmatrix} e^{x_{1}} \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{1} + x_{2}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \frac{-e^{x_{1} + x_{2}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \cdots & \frac{-e^{x_{1} + x_{n}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} \\ \vdots & \ddots & \vdots \\ \frac{-e^{x_{2} + x_{1}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & e^{x_{2}} \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{2}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \vdots \\ \vdots & \ddots & \vdots \\ \frac{-e^{x_{n} + x_{1}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} & \cdots & e^{x_{n}} \frac{\sum_{j=1}^{n} e^{x_{j}} - e^{x_{n}}}{(\sum_{j=1}^{n} e^{x_{j}})^{2}} \end{bmatrix} v$$