# NM Lab Sheet II Year / II Part Faculty: Computer/Electrical

### Labsheet#9

#### Objective

1. To Implement Curve Fitting by Least Square Method.

## Fit the straight line: y = a + bx

#### Algorithm

- 1. Start
- 2. Input no. of observations
- 3. For i = 1 to n
  Input Xi
  Input Yi

Next i

- 4. Initialize sumx = sumx2 = sumy = sumxy = 0
- 5. Calculate all required sum as:
- 6. For i = 1 to n

```
sumx = sumx + Xi
sumy = sumy + Yi
sumx2 = sumx2 + (Xi * Xi)
sumxy = sumxy + (Xi * Yi)
```

Next i

7. Calculate the required constants as:

```
b = (n * sumxy - sumx * sumy)/(n * sumx2 - sumx * sumx)
a = (sumy - b * sumx)/n
```

- 8. Print a and b as output & display best fit equation
- 9. Stop

# Fit the exponential model: $y = ab^x$

#### Algorithm

- 1. Start
- 2. Input no. of observations
- 3. For i = 1 to n
  Input Xi
  Input Yi

Next i

- 4. Initialize sumx = sumx2 = sumY = sumxY = 0
- 5. Calculate all required sum as:
- 6. For i = 1 to n sumx = sumx + Xi sumY = sumY + log(Yi)

$$sumx2 = sumx2 + (Xi * Xi)$$
  
$$sumxY = sumxY + (Xi * log(Yi))$$

Next i

7. Calculate the required constants as:

$$B = (n * sumxY - sumx * sumY)/(n * sumx2 - sumx * sumx)$$

$$A = (sumY - B * sumx)/n$$

b = antilog(B)

a = antilog(A)

- 8. Print a and b as output & display best fit equation
- 9. Stop

#### Lab Assignment#9

- 1. Fit a second-degree polynomial  $y = a + bx + cx^2$  to the data (0, 1), (1, 6) and (2,17).
- 2. Write an algorithm, pseudo-code, flowchart & program code in any high-level language to fit the
  - a. Straight line y = a + bx, where a, b & c are constants
  - b. Exponential Curve  $y = e^x$ .
- 3. Fit a curve of the form y = x/(a + bx) to the data: (3, 7.148), (5, 10.231), (8, 13.509), (12, 16.434).
- 4. Fit the saturation growth rate model to the data given below:

| X | 2   | 4 | 6   | 8   |
|---|-----|---|-----|-----|
| у | 1.4 | 2 | 2.4 | 2.6 |

5. Fit the Gaussian Bell Curve  $y = ae^{\left(-\frac{(x-b)^2}{2c^2}\right)}$  to the data:

| X | 2       | 3       | 4.5     | 8       | 8.2     |
|---|---------|---------|---------|---------|---------|
| у | 0.92528 | 3.42482 | 7.48226 | 0.18674 | 0.11978 |



Figure 1: Gaussian curve with a two-dimensional domain