3. előadás

2020. szeptember 21.

Függvénytulajdonságok kapcsolata a deriválttal

1. Lokális szélsőérték

Korábban már értelmeztük az **abszolút szélsőértékek** fogalmát. Célszerű bevezetni ezek lokális változatait.

Definíció. $Az f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \operatorname{int} \mathcal{D}_f$ pontban **lokális maximuma van**, ha

$$\exists K(a) \subset \mathcal{D}_f: \forall x \in K(a) \subset \mathcal{D}_f \ eset\'{e}n \ f(x) \leq f(a).$$

Ekkor az $a \in \text{int } \mathcal{D}_f$ pontot f lokális maximumhelyének nevezzük, az f(a) függvényérték pedig a függvény lokális maximuma.

Hasonlóan értelmezzük a lokális minimum fogalmát. A lokális maximumot, illetve minimumot közösen lokális szélsőértéknek, a lokális maximumhelyet, illetve lokális minimumhelyet **lokális szélsőértékhelynek** nevezzük.

Megjegyzés. Az abszolút szélsőértékhely és a lokális szélsőértékhely fogalmai között a következő kapcsolat áll fenn. Egy abszolút szélsőértékhely nem szükségképpen lokális szélsőértékhely, mert a lokális szélsőértékhelynek feltétele, hogy a függvény értelmezve legyen a pont egy környezetében. Így például az $x \ (x \in [0,1])$ függyénynek a 0 pontban abszolút minimuma van, de ez nem lokális minimumhely. Azonban, ha az $f:A\to\mathbb{R}$ függvénynek az $a\in A$ pontban abszolút szélsőértéke van és A tartalmazza a egy környezetét, akkor a lokális szélsőértékhely.

Egy lokális szélsőértékhely nem szükségképpen abszolút szélsőértékhely, hiszen attól, hogy az ffüggvénynek az a pont egy környezetében nincs f(a)-nál nagyobb értéke, a környezeten kívül f felvehet f(a)-nál nagyobb értéket. \square

Tétel. (A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel.)

Bizonyítás. Tegyük fel, hogy az $a \in \text{int } \mathcal{D}_f$ pont lokális maximumhelye az $f \in D\{a\}$ függvénynek. Ekkor

$$\exists\, r>0:\ \, \forall\, x\in (a-r,a+r)\ \, \text{eset\'en}\,\, f(x)\leq f(a).$$

1

Tekintsük az f függvény a-hoz tartozó különbségihányados-függvényét:

$$\frac{f(x) - f(a)}{x - a} \qquad (x \in \mathcal{D}_f \setminus \{a\}).$$

Ha a < x < a + r, azaz x - a > 0, akkor $f(x) \le f(a)$ (vagyis $f(x) - f(a) \le 0$) miatt a fenti tört nem pozitív:

$$\frac{f(x) - f(a)}{x - a} \le 0.$$

Mivel $f \in D\{a\}$, ezért

$$\lim_{x \to a+0} \frac{f(x) - f(a)}{x - a} = f'_{+}(a) = f'(a) \le 0.$$

Ha a-r < x < a, azaz x-a < 0, akkor $f(x) \le f(a)$ (vagyis $f(x)-f(a) \le 0$) miatt a (*) alatti tört nem negatív:

$$\frac{f(x) - f(a)}{x - a} \ge 0,$$

ezért ismét az $f \in D\{a\}$ feltétel alapján

$$\lim_{x \to a \to 0} \frac{f(x) - f(a)}{x - a} = f'_{-}(a) = f'(a) \ge 0.$$

Azt kaptuk tehát, hogy $f'(a) \leq 0$ és $f'(a) \geq 0$, ami csak úgy lehetséges, ha f'(a) = 0.

A bizonyítás hasonló akkor is, ha a lokális minimumhelye az f függvénynek.

Megjegyzések.

 1^o Deriválható f függvénynek csak olyan pontban lehet lokális szélsőértéke, ahol a függvény deriváltja nulla. A lokális szélsőértékek meghatározásához tehát az f'(x) = 0 egyenletet kell megoldani.

 2^o Abból, hogy f'(a) = 0, nem következik, hogy az f függvénynek az $a \in \text{int } \mathcal{D}_f$ pont lokális szélsőértékhelye. Például az $f(x) := x^3$ ($x \in \mathbb{R}$) függvényre $f'(x) = 3x^2$ ($x \in \mathbb{R}$) miatt f'(0) = 0, de a függvénynek nincs 0-ban lokális szélsőértéke (hiszen a függvény az egész számegyenesen szigorúan monoton növekedő). Ezt úgy is megfogalmazhatjuk, hogy ha f differenciálható a-ban, akkor az f'(a) = 0 csak **szükséges**, de **nem elégséges** feltétele annak, hogy az f függvénynek a-ban lokális szélsőértéke legyen. \square

A fenti példa motiválja a következő fogalom bevezetését.

Definíció. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvénynek $az \ a \in \operatorname{int} \mathcal{D}_f$ stacionárius pontja, ha $f \in D\{a\}$ és f'(a) = 0.

A lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel azt állítja, hogy deriválható függvénynek lokális szélsőértékhelyei a függvény stacionárius pontjaiban lehetnek. A fenti példa azonban azt mutatja, hogy lehetnek olyan stacionárius pontok, amelyek nem lokális szélsőértékhelyek. Fontos feladat tehát annak eldöntése, hogy egy stacionárius pont vajon lokális szélsőértékhely-e. Erre hamarosan jól használható eredményeket fogunk mutatni.

2. Monotonitás

Az egyszerűség kedvéért csak **intervallumon** vizsgáljuk a monotonitást. Az $(a,b) \subset \mathbb{R}$ szimbólummal jelölünk egy korlátos vagy nem korlátos *nyílt intervallumot*, tehát $a = -\infty$ vagy $a \in \mathbb{R}$, a < b és $b \in \mathbb{R}$ vagy $b = +\infty$.

Egy függvény esetén a "monoton növekedő", a "monoton csökkenő", a "szigorúan monoton növekedő", illetve a "szigorúan monoton csökkenő" kifejezések helyett gyakran a " \nearrow ", a " \searrow ", a " \uparrow ", illetve a " \downarrow " jeleket használjuk.

Az első fontos <u>észrevétel</u> az, hogy az első derivált előjeléből következtethetünk a függvény monotonitására. Valóban, ha egy $f:(a,b)\to\mathbb{R}$ függvény (például) monoton növekedő (a,b)-n, akkor minden $x\in(a,b)$ pontban

$$\frac{f(t) - f(x)}{t - x} \ge 0 \quad (t \in (a, b) \setminus \{x\}),$$

következésképpen

$$f'(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} \ge 0.$$

Az alkalmazások szempontjából fontos tény az, hogy ennek az állításnak a megfordítása is igaz. A bizonyításhoz a következő fontos állítást kell felhasználni.

Tétel. (A Lagrange-féle középértéktétel.)

$$\left. \begin{array}{l} Legyen \ a,b \in \mathbb{R}, \ a < b. \ Tegy\"{u}k \ fel, \\ hogy \ f: [a,b] \to \mathbb{R} \quad \'es \\ \bullet \ f \in C[a,b], \\ \bullet \ f \in D(a,b). \end{array} \right\} \quad \Longrightarrow \quad \frac{\exists \ \xi \in (a,b), \ hogy}{f'(\xi) = \frac{f(b) - f(a)}{b-a}}.$$

Megjegyzés. A Lagrange-féle középértéktétel szemléletes jelentése a következő: ha az f függvény folytonos [a, b]-n és deriválható (a, b)-n, akkor f grafikonjának van olyan pontja, amelyben húzott érintő párhuzamos az (a, f(a)), (b, f(b)) pontokon áthaladó szelővel:

A Lagrange-féle középértéktétel egyszerű, de fontos következményei a következő állítások:

Tétel. (A deriváltak egyenlősége.)

1º Legyen
$$a, b \in \mathbb{R}$$
, $a < b$ és $f: (a, b) \to \mathbb{R}$. Tegyük fel, hogy $f \in D(a, b)$. Ekkor

$$f' \equiv 0 \ (a,b)$$
-n \iff $f \equiv állandó \ (a,b)$ -n.

 2° Legyen $a, b \in \mathbb{R}$, a < b és $f, g: (a, b) \to \mathbb{R}$. Tegyük fel, hogy $f, g \in D(a, b)$. Ekkor

$$f' \equiv g'(a,b) - n \iff \exists c \in \mathbb{R} : f(x) = g(x) + c \ (\forall x \in (a,b)).$$

Bizonyítás. Az 1º állítás es részét már tudjuk, ugyanis a konstansfüggvény deriváltja 0. Az irány a Lagrange-féle középértéktétel egyszerű következménye.

A 2^o állítás igazolásához alkalmazzuk 1^o -et az F := f - g függvényre.

Tétel. (A monotonitás és a derivált kapcsolata.) Legyen $(a,b) \subset \mathbb{R}$ nyílt intervallum. Tegyük fel, hogy $f \in D(a,b)$. Ekkor

$$1^{\circ} f \nearrow [illetve \searrow] (a,b)-n \iff f' \ge 0 [illetve f' \le 0] (a,b)-n;$$

$$2^o\ ha\ f'>0\ \ [illetve\ \ f'<0\]\ (a,b)\text{-}n\ \Longrightarrow f\ \ \uparrow\ \ [illetve\ \downarrow\]\ \ (a,b)\text{-}n.$$

Bizonyítás. Meggondolható. A definíciókat, valamint a Lagrange-féle középértéktételt kell csupán alkalmazni. ■

Megjegyzések. 1° Fontos megjegyezni, hogy a tételben lényeges feltétel, hogy intervallumon értelmezett a függvény. Például, ha

$$f(x) := \frac{1}{x} \left(x \in \mathbb{R} \setminus \{0\} \right), \text{ akkor } f'(x) = -\frac{1}{x^2} < 0 \ \left(\forall x \in \mathcal{D}_f \right),$$

de az f függvény nem szigorúan csökkenő a $\mathcal{D}_f = \mathbb{R} \setminus \{0\}$ halmazon, ami nem intervallum.

 2^o A szigorú monotonitásra vonatkozó elégséges feltételek nem fordíthatók meg. Például az $f(x) := x^3$ ($x \in \mathbb{R}$) függvény szigorúan monoton növekedő az egész \mathbb{R} -en, de a deriváltja 0 értéket is felvesz: f'(0) = 0. \square

3. A lokális szélsőértékre vonatkozó elégséges feltételek

Az eddigiek alapján könnyen kaphatunk *elégséges* feltételeket arra, hogy egy függvénynek valamilyen pontban lokális szélsőértéke legyen.

Tétel. (A lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel.)

Legyen $a, b \in \mathbb{R}$, a < b és $f: (a, b) \to \mathbb{R}$. Tegyük fel, hogy

- $f \in D(a,b)$,
- $egy \ c \in (a,b) \ pontban \ f'(c) = 0 \ és$
- az f' deriváltfüggvény előjelet vált c-ben.

Ekkor,

1° ha az f' függvény a c pontban negatív értékből pozitív értékbe megy át, akkor c az f függvénynek lokális minimumhelye;

2° ha az f' függvény a c pontban pozitív értékből negatív értékbe megy át, akkor a c pont az f függvénynek lokális maximumhelye.

Bizonyítás. Meggondolható.

Megjegyzés. Az előjelváltást formálisan így definiáljuk: Legyen $h \in \mathbb{R} \to \mathbb{R}$ és $a \in \operatorname{int} \mathcal{D}_h$. Azt mondjuk, hogy a h függvény az a pontban negatívból pozitívba megy át (röviden: <math>(-,+) előjelváltása

van), ha h(a)=0 és $\exists \delta > 0$ úgy, hogy h(x) < 0, ha $x \in (a-\delta,a)$ és h(x) > 0, ha $x \in (a,a+\delta)$. A (+,-) előjelváltást hasonló módon értelmezzük. \square

Tétel. (A lokális szélsőértékre vonatkozó másodrendű elégséges feltétel.)

Legyen $a, b \in \mathbb{R}$, a < b és $f : (a, b) \to \mathbb{R}$. Tegyük fel, hogy

- f kétszer deriválható egy $c \in (a, b)$ pontban, azaz $f \in D^2\{c\}$,
- f'(c) = 0,
- $f''(c) \neq 0$.

Ekkor c lokális szélsőértékhelye az f függvénynek;

 1° ha f''(c) > 0, akkor f-nek c-ben lokális minimuma van,

 2^{o} ha f''(c) < 0, akkor f-nek c-ben lokális maximuma van.

Bizonyítás. Az előző tétel közvetlen következménye. ■

Megjegyzés. Ha f'(c) = 0 és f''(c) = 0 akkor, sem arra nem következtethetünk, hogy f-nek van, sem arra, hogy f-nek nincs lokális szélsőértéke c-ben. A különböző lehetőségeket mutatják például az $f(x) := x^3$, $f(x) := x^4$ és az $f(x) := -x^4$ ($x \in \mathbb{R}$) függvények a c = 0 helyen. Ebben az esetben további vizsgálatok kellenek. \square

4. Konvex és konkáv függvények

Megjegyzés. Valós-valós függvények konvexitását és konkávitását **intervallumon** fogjuk értelmezni. A továbbiakban gyakran használt " $I \subset \mathbb{R}$ (tetszőleges) intervallum" kijelentésen (hacsak mást nem mondunk) azt értjük, hogy I korlátos vagy nem korlátos, nyílt, zárt, félig nyílt vagy félig zárt intervallum. A következő halmazok mindegyike intervallum: (-1,1), [-1,1], [-1,0), $[0,+\infty)$, $(-\infty,0)$, $(-\infty,+\infty)$. \square

• A konvexitás és a konkávitás szemléletes jelentése

Célunk továbbra is függvények általános tulajdonságainak a leírása, jellemzése. Azt már láttuk, hogy a differenciálszámítás milyen hatékony eszközöket kínál a monotonitás és a szélsőértékek vizsgálatához.

Most tovább folytatjuk függvények "alaki" tulajdonságainak a tanulmányozását. Számos konkrét függvény grafikonját már jól ismerjük. Gondoljunk most a monoton növekedésre. Világos, hogy egy függvény többféleképpen is lehet monoton növekedő:

A jobb oldali grafikonnal ellentétben a másik kettő bizonyos jellegzetes "szabályosságot" mutat. Ezeket a tulajdonságokat célszerű definiálni. Az f függvényt (bal oldali ábra) konvexnek, g-t pedig (középső ábra) konkávnak fogjuk nevezni. A definíció megfogalmazásához

használjuk fel a derivált definíciójánál már bevált ötletet: húzzunk be húrokat:

Szemléletesen világos, hogy az I intervallum tetszőleges a < b pontjai esetén az f (a g) függvény grafikonjának az (a,b) intervallumhoz tartozó része a P_a és P_b pontokat összekötő húr alatt (felett) van. A szóban forgó húr egyenesének az egyenlete:

$$y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a), \text{ vagy } y = \frac{f(b) - f(a)}{b - a}(x - b) + f(b).$$

A fentiek alapján eléggé természetesek a következő definíciók.

• A konvexitás és a konkávitás fogalma

Definíció. $Az f \in \mathbb{R} \to \mathbb{R}$ függvény konvex az $I \subset \mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \ eset\'{e}n$$

$$(*) f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad (\forall x \in (a, b)).$$

Ha (*)-ban \leq helyett < áll, akkor f-et I-n szigorúan konvexnek, ha \geq , illetve > áll, akkor f-et I-n konkávnak, illetve szigorúan konkávnak nevezzük.

Megjegyzések.

 1^o Ha az f függvény elsőfokú \mathbb{R} -en, azaz f(x)=cx+d $(x\in\mathbb{R})$ valamely c és d állandóval, akkor (*)-ban egyenlőség áll minden x-re. Tehát egy elsőfokú függvény egyszerre konvex és konkáv is.

 2^o Az abs függvény konvex, de nem szigorúan konvex $\mathbb R\text{-en.}\ \blacksquare$

A konvexitást jellemző egyenlőtlenséget érdemes más formában is megadni.

Tétel. $Az\ I \subset \mathbb{R}$ intervallumon értelmezett $f: I \to \overline{\mathbb{R}}$ függvény akkor és csak akkor konvex I-n, ha

$$\forall \, a,b \in I, \ a < b \quad \acute{e}s \quad \forall \, \lambda \in (0,1) \quad eset\acute{e}n$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$$

Bizonyítás. Nélkül. ■

Megjegyzés. Szigorúan konvex, konkáv, illetve szigorúan konkáv függvényekre hasonló állítások érvényesek.

• A konvexitás-konkávitás és a deriválhatóság kapcsolata

Tétel. Legyen $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, és tegyük fel, hogy $f \in D^2(\alpha, \beta)$. Ekkor

 $1^{\circ} f \ konvex (\alpha, \beta) - n \iff f''(x) \ge 0 \ (\forall x \in (\alpha, \beta)),$

 $2^{o} f konkáv(\alpha, \beta)-n \iff f''(x) \leq 0 (\forall x \in (\alpha, \beta)),$

 3° ha $f''(x) > 0 \ (\forall x \in (\alpha, \beta)) \Longrightarrow f$ szigorúan konvex (α, β) -n,

 $4^o\ ha\ f''(x) < 0\ (\forall\ x \in (\alpha,\beta)) \Longrightarrow f\ szigor\'uan\ konk\'av\ (\alpha,\beta)-n.$

Bizonyítás. Nélkül. ■

• Inflexiós pont

Definíció. Legyen $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, és tegyük fel, hogy $f \in D(\alpha, \beta)$. Azt mondjuk, hogy a $c \in (\alpha, \beta)$ pont az f függvénynek **inflexiós pontja**, ha

 $\exists \delta > 0$: $f \ konvex (c - \delta, c] - n \ és \ konkáv [c, c + \delta) - n \ vagy \ fordítva.$

5. Aszimptoták

Definíció. Legyen $a \in \mathbb{R}$ és $f:(a,+\infty) \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek van aszimptotája $(+\infty)$ -ben, ha

$$\exists \ l(x) = Ax + B \quad (x \in \mathbb{R})$$

elsőfokú függvény, amelyre

$$\lim_{x \to +\infty} (f(x) - l(x)) = 0.$$

Ebben az esetben az y = Ax + B egyenletű egyenes az f függvény **aszimptotája** $(+\infty)$ -ben.

Megjegyzés. Hasonló módon értelmezzük a $(-\infty)$ -beli aszimptotát.

Tétel. Legyen $a \in \mathbb{R}$. Az $f:(a,+\infty) \to \mathbb{R}$ függvénynek akkor és csak akkor van aszimptotája $(+\infty)$ -ben, ha léteznek és végesek a következő határértékek:

$$\lim_{x \to +\infty} \frac{f(x)}{x} =: A \in \mathbb{R} \quad \lim_{x \to +\infty} (f(x) - Ax) =: B \in \mathbb{R}.$$

 $Ekkor\ az$

$$l(x) = Ax + B \quad (x \in \mathbb{R})$$

egyenes az f függvény aszimptotája $(+\infty)$ -ben.

Megjegyzés. Hasonló állítás érvényes a $(-\infty)$ -beli aszimptoták meghatározására.

Teljes függvényvizsgálat

Adott f valós-valós függvény **teljes függvényvizsgálatán** f analitikus és geometriai tulajdonságainak a megállapítását értjük. Ennek során a következőket kell meghatározni:

- 1º Kezdeti vizsgálatok. (Deriválhatóság, paritás, periodicitás megállapítása.)
- **2º** Monotonitási intervallumok.
- **3**° Lokális és abszolút szélsőértékek.
- 4º Konvexitási, konkávitási intervallumok.
- $\mathbf{5}^{o}$ A határértékek a $\mathcal{D}'_f \setminus \mathcal{D}_f$ pontokban.
- 6° Aszimptota $(\pm \infty)$ -ben.
- 7^o A függvény grafikonjának felrajzolása.

Példa. Teljes függvényvizsgálat végzése után vázolja az

$$f(x) := x + 2 - \frac{4x}{1 + x^2}$$
 $(x \in \mathbb{R})$

függvény grafikonját.

Megoldás. Az f függvény minden $x \in \mathbb{R}$ pontban akárhányszor deriválható.

Monotonitás: Minden $x \in \mathbb{R}$ pontban

$$f'(x) = 1 - \frac{4}{1+x^2} + \frac{8x^2}{(1+x^2)^2} = \frac{x^4 + 6x^2 - 3}{(1+x^2)^2},$$

ezért

$$f'(x) \ge 0 \iff x^4 + 6x^2 - 3 \ge 0.$$

A további vizsgálatokhoz a számlálót (ami egy másodfokúra visszavezethető kifejezés) szorzatra bontjuk. Legyen $a:=x^2$. Ekkor

$$x^4 + 6x^2 - 3 = a^2 + 6a - 3 = 0.$$

Ennek az egyenletnek a két gyöke:

$$a_1 = 2\sqrt{3} - 3 > 0$$
 és $a_2 = -(2\sqrt{3} + 3) < 0$,

ezért

$$a^{2} + 6a - 3 = (a - a_{1})(a - a_{2}),$$

tehát

$$x^4 + 6x^2 - 3 = (x^2 - (2\sqrt{3} - 3))(x^2 + (2\sqrt{3} + 3)).$$

Így

$$x^4 + 6x^2 - 3 \ge 0 \iff x^2 - (2\sqrt{3} - 3) \ge 0 \iff |x| \ge \sqrt{2\sqrt{3} - 3} := x_1.$$

Az eddigieket összefoglalva azt kapjuk, hogy

$$f'(x) \stackrel{\geq}{=} 0 \iff |x| \stackrel{\geq}{=} x_1,$$

következésképpen

$$f'(x) > 0$$
, ha $x \in (-\infty, -x_1)$, ezért $f \uparrow$ a $(-\infty, -x_1)$ intervallumon;

$$f'(x) < 0$$
, ha $x \in (-x_1, x_1)$, ezért $f \downarrow$ a $(-x_1, x_1)$ intervallumon;

$$f'(x) > 0$$
, ha $x \in (x_1, +\infty)$, ezért $f \uparrow$ az $(x_1, +\infty)$ intervallumon.

Lokális szélsőértékek:

Az elsőrendű szükséges feltétel. Mivel

$$f'(x) = 0$$
 \iff ha $x = -x_1$ vagy $x = x_1$,

ezért az f függvénynek csak ezekben a pontokban lehetnek lokális szélsőértékei.

<u>Az elsőrendű elégséges feltétel.</u> A monotonitási intervallumok alapján az f függvénynek $(-x_1)$ -ben lokális maximuma, x_1 -ben pedig lokális minimuma van.

Konvexitás, inflexió:

$$f''(x) = (-4) \cdot (-1) \cdot \frac{2x}{(1+x^2)^2} + \frac{16x}{(1+x^2)^2} + \frac{8x^2 \cdot (-2) \cdot 2x}{(1+x^2)^3} =$$

$$= \frac{24x}{(1+x^2)^2} - \frac{32x^3}{(1+x^2)^3} =$$

$$= \frac{8x(3-x^2)}{(1+x^2)^3};$$

$$f''(x) = 0 \iff x = 0, \ x = \sqrt{3} =: x_2, \ x = -\sqrt{3} = -x_2.$$

Világos, hogy $x_1 = \sqrt{2\sqrt{3} - 3} < \sqrt{3} = x_2$, továbbá

$$f''(x) \stackrel{\geq}{=} 0 \iff x(3-x^2) \stackrel{\geq}{=} 0,$$

ezért f'' előjelviszonyai:

$$f''(x) > 0$$
, ha $x \in (-\infty, -x_2)$, ezért f konvex a $(-\infty, -x_2)$ intervallumon;

$$f''(x) < 0$$
, ha $x \in (-x_2, 0)$, ezért f konkáv a $(-x_2, 0)$ intervallumon;

$$f''(x) > 0$$
, ha $x \in (0, x_2)$, ezért f konvex a $(0, x_2)$ intervallumon;

$$f''(x) < 0$$
, ha $x \in (x_2, +\infty)$, ezért f konkáv az (x_2, ∞) intervallumon.

$$A - x_2 = -\sqrt{3}$$
, az $x_0 = 0$ és az $x_2 = \sqrt{3}$ pont tehát inflexiós pontja az f függvénynek.

A határértékeket most $(\pm \infty)$ -ben kell megvizsgálni:

$$\lim_{x \to +\infty} \left(2 + x - \frac{4x}{1 + x^2} \right) = +\infty \qquad \text{és} \qquad \lim_{x \to -\infty} \left(2 + x - \frac{4x}{1 + x^2} \right) = -\infty.$$

Aszimptoták:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{2}{x} + 1 - \frac{4}{1 + x^2}\right) = 1 = A$$

és

$$\lim_{x\to +\infty} (f(x)-1\cdot x) = \lim_{x\to +\infty} \left(2-\frac{4x}{1+x^2}\right) = \lim_{x\to +\infty} \left(2-\frac{4}{\frac{1}{x}+x}\right) = 2 = B$$

és ez azt jelenti, hogy az $y=1\cdot x+2=x+2$ egyenletű egyenes az f függvény aszimptotája $(+\infty)$ -ben. Ez az egyenes $(-\infty)$ -ben is aszimptotája az f függvénynek.

A függvény képe:

