Algorithms

Computational Efficiency

Hee-Kap Ahn
Graduate School of Artificial Intelligence
Dept. Computer Science and Engineering
Pohang University of Science and Technology (POSTECH)

Computational Efficiency

We design an algorithm (and data structures) that runs on a computer.

There can be two or more algorithms that solve the same problem. Among them, which algorithm is better? In other words, which algorithm runs faster?

Assuming that a basic operation (+, -, *, assign,...) takes constant time (O(1)),

how many basic operations does the algorithm execute in terms of the input size?

```
\begin{aligned} & \frac{\mathsf{FIB1}(n)}{\mathsf{if}\ n = 0\ \mathsf{then}} \\ & \mathsf{return}\ 0 \\ & \mathsf{else}\ \mathsf{if}\ n = 1\ \mathsf{then} \\ & \mathsf{return}\ 1 \\ & \mathsf{return}\ \mathsf{FIB1}(n-1) + \mathsf{FIB1}(n-2) \end{aligned}
```

We always ask three questions.

- Is it correct?
- How much time does it take, as a function T(n) of n?
- Can we do better?

Recursion tree for computing F_7 using FIB1.

by Jeff Erickson

```
\begin{aligned} & \frac{\mathsf{FIB1}(n)}{\mathsf{if}\ n} = 0\ \mathsf{then} \\ & \mathsf{return}\ 0 \\ & \mathsf{else}\ \mathsf{if}\ n = 1\ \mathsf{then} \\ & \mathsf{return}\ 1 \\ & \mathsf{return}\ \mathsf{FIB1}(n-1) + \mathsf{FIB1}(n-2) \end{aligned}
```

We always ask three questions.

- Is it correct?
- How much time does it take, as a function T(n) of n?
- Can we do better?

$$T(n) \leqslant 2 \text{ for } n \leqslant 1.$$

$$T(n) = T(n-1) + T(n-2) + O(1) \quad \text{for } n > 1.$$

$$\to T(n) \geqslant F_n. \text{ Thus, } T(n) \text{ grows as fast as } F_n.$$

```
\begin{aligned} & \frac{\mathsf{FIB1}(n)}{\mathsf{if} \ n = 0 \ \mathsf{then}} \\ & \mathsf{return} \ 0 \\ & \mathsf{else} \ \mathsf{if} \ n = 1 \ \mathsf{then} \\ & \mathsf{return} \ 1 \\ & \mathsf{return} \ \mathsf{FIB1}(n-1) + \mathsf{FIB1}(n-2) \end{aligned}
```


- The leaves of the recursion tree of FIB1 will always return 1.
- F_n is the sum of all values returned by the leaves in the recursion tree, which is the number of leaves in the tree.
- Each leaf will take O(1) time to compute. $T(n) = F_n \times O(1)$.
- $T(n) \approx \Theta(1.6^n)$. $(\frac{1+\sqrt{5}}{2} = 1.6180339887...)$

#. addition operations.

- FIB1(10) executes $\approx 1.6^{10} \approx 110$. FIB1(20): $\approx 1.6^{20} \approx 12089$.
- FIB1(50): $\approx 1.6^{50} \approx 16,069,380,443.$
- FIB1(100): $\approx 1.6^{100} \approx 258 \times 10^{18}$. Takes 12 days. (Fast computer can do 250×10^{12} arithmetic operations a second. Or 10^{30} operations in 10^{10} years.)
- FIB1(200):? FIB1(1000):?

```
FIB2(n)

if n = 0 then

return 0

create an array f[0, ..., n]

f[0] = 0, f[1] = 1

for i = 2, ..., n do

f[i] = f[i - 1] + f[i - 2]

return f[n]
```

We always ask three questions.

- Is it correct?
- How much time does it take, as a function T(n) of n?
- Can we do better?

Recursion tree for computing F_7 using FIB2 with memoization.

by Jeff Erickson

```
FIB2(n)

if n = 0 then

return 0

create an array f[0, ..., n]

f[0] = 0, f[1] = 1

for i = 2, ..., n do

f[i] = f[i - 1] + f[i - 2]

return f[n]
```

We always ask three questions.

- Is it correct?
- How much time does it take, as a function T(n) of n?
- Can we do better?

FIB2 uses O(n) additions and stores O(n) integers. Thus,

$$T(n) = O(n)$$
.

Growth Rates

	n	n log n	n ²	n ³	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1s	< 1s	< 1s	< 1s	< 1s	< 1s	seconds
n = 30	< 1s	< 1s	< 1s	< 1s	< 1s	minutes	10^{25} yrs
n = 100	< 1s	< 1s	< 1s	< 1s	10K yrs	$10^{17} \mathrm{\ yrs}$	NN
n = 1,000	< 1s	< 1s	< 1s	minutes	NN	NN	NN
n = 10 $n = 30$ $n = 100$ $n = 1,000$ $n = 1,000,000$	< 1s	seconds	days	30K yrs	NN	NN	NN

The convex hull of a set *P* of points in the plane is the *smallest* convex set containing *P*. Equivalently, it is the *largest* convex polygon whose vertices are points in *P*.

The convex hull of a set *P* of points in the plane is the *smallest* convex set containing *P*. Equivalently, it is the *largest* convex polygon whose vertices are points in *P*.

The convex hull of a set *P* of points in the plane is the *smallest* convex set containing *P*. Equivalently, it is the *largest* convex polygon whose vertices are points in *P*.

input. a set $P = \{p_1, p_2, ..., p_n\}$ of points, where $p_i = (x_i, y_i)$. **output.** a representation of the convex hull.

$$p_2, p_9, p_4, \dots, p_5, \dots, p_{13}$$

We assume that the points in *P* are in *general position*, meaning that no three points lie on a common line.

For three points p, q, r, how do we test whether r lies to the left or to the right of the directed line \vec{pq} ?

r lies to the left of
$$\vec{pq}$$
 iff $(r_y - p_y)(q_x - p_x) > (q_y - p_y)(r_x - p_x)$.

Brute force. For all ordered pairs of points p and q, check whether the other points lie in the right side of \overrightarrow{pq} .

Running time
$$T(n) = \binom{n}{2} \times O(n) = O(n^3)$$

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let p, q, r be the leftmost three points in the sorted list L. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Sort points in P in $O(n \log n)$ time.
- Let *p*, *q*, *r* be the leftmost three points in the sorted list *L*. Repeat the followings.
 - (1) If r lies to the right of \vec{pq} , we move one step forward in L.
 - (2) Otherwise, remove q from L and move one step backward in L if possible.

- Whenever rule (1) is applied, r advances to the next point in L. So it is applied n-2 times. O(n) time.
- Whenever rule (2) is applied, a point in L is removed. So it is applied n-h times. O(n) time. (h: #. vertices in the convex hull of P.)

$$T(n) = O(n \log n) + O(n) = O(n \log n).$$

O notation

We typically measure the computational efficiency of an algorithm as the number of basic operations it performs as a function of its input length.

The efficiency of an algorithm can be captured by a function T from the set of natural numbers $\mathbb N$ to itself such that

T(n) = the maximum number of basic operations that the algorithm performs on inputs of length n.

O notation

We say that for two functions f(n) and g(n), f(n) is O(g(n)) iff there exist constants c > 0 and $n_0 \ge 0$ s.t. for all $n \ge n_0$ we have $f(n) \le c \cdot g(n)$.

f grows no faster than g.

Ω notation

We say that for two functions f(n) and g(n), f(n) is $\Omega(g(n))$ iff there exist constants c>0 and $n_0\geqslant 0$ s.t. for all $n\geqslant n_0$ we have $f(n)\geqslant c\cdot g(n)$.

f grows at least as fast as g.

O notation

f(n) is $\Theta(g(n))$ iff f(n) is $\Omega(g(n))$ and O(g(n)).

There exists an $n_0 \geqslant 0$ and constants $c_1, c_2 > 0$ s.t. for all $n \geqslant n_0, c_1 \cdot g(n) \leqslant f(n) \leqslant c_2 \cdot g(n)$.

f grows at the same rate as g.

Asymptotic Bounds

We say that

- f = o(g)iff for all c > 0, there exists an $n_0 > 0$ s.t. $f(n) \le c \cdot g(n)$ for all $n \ge n_0$. f grows slower than g.
- $f = \omega(g)$ if g = o(f). For all c > 0, there exists an $n_0 > 0$ s.t. $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$. f grows faster than g.

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$.

Limits. $\lim_{n\to\infty} f(n)/g(n)$ reveals some asymptotic relationship between f and g, provided the limit exists.

- $\lim_{n\to\infty} f(n)/g(n) \neq \infty \implies f = O(g)$.
- $\lim_{n\to\infty} f(n)/g(n) \neq 0 \implies f = \Omega(g)$.
- $\lim_{n\to\infty} f(n)/g(n) \neq 0, \infty \implies f = \Theta(g).$
- $\lim_{n\to\infty} f(n)/g(n) = 0 \implies f = o(g)$.
- $\lim_{n\to\infty} f(n)/g(n) = \infty \implies f = \omega(g)$.

Common Functions

Polynomials. $a_0 + a_1 n + \cdots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 1.

For every fixed constant x > 0, $\log n = O(n^x)$. In other words, every polynomial grows much faster than \log .

Exponential. For every r > 1 and every d > 0, $n^d = O(r^n)$.

every exponential grows faster than every polynomial.

Growth Rates

Properties

Some commonsense rules that help simplify functions:

- multiplicative constants can be omitted : $14n^2$ becomes n^2 .
- n^a dominates n^b if a > b: n^2 dominates n.
- any exponential dominates any polynomial : 3^n dominates n^5 (and 2^n).
- any polynomial dominates any logarithm : $n \text{ dominates } \log^3 n$. $n^2 \text{ dominates } n \log n$.

Still constants are important!