ALGEBRA 2 - Zestaw 4 Rozszerzenia ciał

Zadanie 1 Dla liczby a równej:

- b) ⁶√3
- c) $\sqrt[4]{2} 2\sqrt{2}$ d) $\sqrt{3} 2i$

znajdź wielomian minimalny v (nad \mathbb{Q}). Podaj stopień rozszerzenia $\mathbb{Q}(a):\mathbb{Q}$.

Zadanie 2 Niech a będzie pierwiastkiem wielomianu

- a) $v = \mathbf{x}^2 + 1 \in \mathbb{Z}_3[\mathbf{x}]$
- b) $w = \mathbf{x}^3 + \mathbf{x} + 4 \in \mathbb{Z}_5[\mathbf{x}]$

Znajdź ciało F(a).

Zadanie 3 Wykaż, że pierścień ilorazowy $\mathbb{R}[\mathbf{x}]/(\mathbf{x}^2+1)$ jest ciałem izomorficznym z ciałem liczb zespolonych.

Zadanie 4 W \mathbb{R}^2 zdefiniuj działania dodawania dodawania i mnożenia tak, by otrzymać ciało izomorficzne z $\mathbb{R}[\mathbf{x}]/(x^2+\mathbf{x}+2)$. Podobnie dla \mathbb{Q}^3 i $\mathbb{Q}[\mathbf{x}]/(\mathbf{x}^3 - 2\mathbf{x} + 2)$.

Zadanie 5 Automorfizmem ciała F nazywamy izomorfizm ciała F na F. Wskaż nietrywialny (to znaczy różny od identyczności) automorfizm ciała:

- a) \mathbb{C}
- b) $\mathbb{R}(\sqrt{2})$
- c) $\mathbb{Q}(\sqrt{3})$
- d) $\mathbb{R}(\sqrt{-3})$

Zadanie 6 W zbiorze liczb rzeczywistych wskaż 7-elementowy zbiór liniowo niezależny nad \mathbb{Q} .

Zadanie 7 Udowodnij, że $\mathbb{Q}(\sqrt[5]{2}) = \mathbb{Q}(\sqrt[5]{2} + 2\sqrt[5]{8}).$

 Zadanie 8 Udowodnij, że rozszerzenia $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ i $\mathbb{Q}(\sqrt{2-\sqrt{2}})$ są identyczne. Wskaż nietrywialny automorfizm ciała $\mathbb{Q}(\sqrt{2+\sqrt{2}})$.

Zadanie 9 Znajdź ciała: $G\mathbb{F}(5)$, $G\mathbb{F}(8)$, $G\mathbb{F}(25)$.

Zadanie 10 Uzasadnij, że wielomian $v = \mathbf{x}^3 - 2$ jest nierozkładalny nad Q. Znajdź ciało E rozkładu v oraz ciała $\mathbb{Q}(a_i)$ dla pierwiastków a_1, a_2, a_3 wielomianu v. Zilustruj na przykładzie ciał $\mathbb{Q}, \mathbb{Q}(a_i)$ oraz E twierdzenie o (niskiej) wieży.

Zadanie 11 Dla podanego ciała F zbadaj, czy element a jest algebraiczny czy przestępny? (Zakładamy, że wiemy, że π jest liczbą przestępną.)

$$\begin{array}{llll} a) & F=\mathbb{Q} & a=\sqrt[3]{\pi^2} & & b) & F=\mathbb{Q}(\pi) & a=\sqrt[3]{\pi^2} \\ c) & F=\mathbb{C} & a=i\sqrt[3]{\pi^2} & & d) & F=\mathbb{C}(\pi) & a=i\sqrt[3]{\pi^2} \\ e) & F=\mathbb{Q} & a=2+\sqrt{\pi} & & f) & F=\mathbb{Q}(\pi) & a=2+\sqrt{\pi} \\ g) & F=\mathbb{Q} & a=\pi^3 & & h) & F=\mathbb{Q}(\pi) & a=\pi^3 \\ i) & F=\mathbb{Q}(\pi) & a=\sqrt[3]{\pi} & & & \end{array}$$

i)
$$F = \mathbb{Q}(\pi)$$
 $a = \sqrt[3]{\pi}$

Wskazówka (do zad. (a) i (b), inne podobnie).

(a) Udowodnimy, że $\sqrt[3]{\pi^2}$ jest elemtem przestępnym nad $\mathbb Q$ (czyli liczbą przestepna).

Niech F będzie dowolnym ciałem. Dla każdego elementu $a \in E : F$ mamy $a^3 \in F(a)$. Stad i na mocy twierdzenia z wykładu (chodzi tu o twierdzenie, które mówi, że jeśli a jest el. algebraicznym nad F to każdy el. $b \in F(a)$ jest także algebraiczny nad F), gdyby $\sqrt[3]{\pi^2}$ było elementem algebraicznym nad \mathbb{Q} (czyli liczbą algebraiczną), wówczas $(\sqrt[3]{\pi^2})^3 = \pi^2$ byłoby liczbą algebraiczną. Wówczas istniałby wielomian $v=a_0+...+a_n\mathbf{x}^n\in\mathbb{Q}[\mathbf{x}]$ taki, którego pierwiastkiem jest π^2 . Wtedy π byłoby pierwiastkiem wielomianu $w = \sum_{k=0}^{2n} b_k \mathbf{x}^k$, gdzie

$$b_k = \begin{cases} 0 & \text{dla } k \text{ nieparzystych,} \\ a_{k/2} & \text{dla } k \text{ parzystych.} \end{cases}$$

(b) $a = \sqrt[3]{\pi^2}$ jest elementem algebraicznym nad $\mathbb{Q}(\pi)$, bowiem jest pierwiastkiem wielomianu $\mathbf{x}^3 - \pi^2 \in \mathbb{Q}(\pi)$.

Zadanie 12 Znajdź wymiar [E:F] i bazę rozszerzenia jeśli

$$\begin{array}{llll} a) & F=\mathbb{Q} & E=\mathbb{Q}(\sqrt{5},\sqrt[3]{2}) & & b) & F=\mathbb{Q}(\sqrt{5}) & E=\mathbb{Q}(\sqrt{5},\sqrt{2}) \\ c) & F=\mathbb{Q} & E=\mathbb{Q}(\sqrt{2},i) & d) & F=\mathbb{Q}(i) & E=\mathbb{Q}(\sqrt{5},i) \\ d) & F=\mathbb{Q} & E=\mathbb{Q}(\sqrt{2}) & e) & F=\mathbb{Q} & E=\mathbb{Q}(\sqrt{2},e^{2\pi i/3}) \end{array}$$

Zadanie 13 Udowodnij, że jeśli [F(a):F]=m i F((b):F]=n wówczas

$$[F(a,b):F] \le mn \tag{1}$$

Wskaż przykłady, w których (1) jest równością i takie, w których nierówność (1) jest ostra.

Zadanie 14 Udowodnij, że $\sqrt{3} \notin \mathbb{Q}(\pi)$.

Rozumowanie, którym się posłużysz uogólnij, by wykazać, że jeśli b jest elementem przestępnym ciała F, to żaden element algebraiczny F nie należy do F(b) - F.

Zadanie 15 Udowodnij, że π jest elementem algebraicznym ciała $\mathbb{Q}(\pi^3)$. Znajdź baze i wymiar rozszerzenia $\mathbb{Q}(\pi)$ nad $\mathbb{Q}(\pi^3)$.

Zadanie 16 W ciele $\mathbb{Q}[\mathbf{x}]/(\mathbf{x}^2+\mathbf{x}+1)$ znajdź następujące elementy:

a)
$$(\mathbf{x}+2)^2(\mathbf{x}-1)^3$$
 b) $\frac{x^2+1}{\mathbf{x}-2}$

Zadanie 17 Wykaż, że nad \mathbb{Z}_3 wielomian $\mathbf{x}^3 + 2\mathbf{x} + 1$ jest nierozkładalny. W ciele $\mathbb{Z}_3[\mathbf{x}]/(\mathbf{x}^3 + 2\mathbf{x} + \mathbf{x} + 1)$ znajdź element $\frac{1}{\mathbf{x}^2 + 1}$.

Zadanie 18 Wskaż ciała rzędów 125 i 121.