

Geodatenanalyse I: Gauß-Prozesse

Kathrin Menberg

Stundenplan

	08:30 – 12:30 Uhr	13:30 – 17:30 Uhr
Montag	Tag 1 / Block 1	Tag 1 / Block 2
Dienstag	Tag 2 / Block 1	Tag 2 / Block 2
Mittwoch	Tag 3 / Block 1	Tag 3 / Block 2
Donnerstag	Tag 4 / Block 1	Tag 4 / Block 2
Freitag	Tag 5 / Block 1	Tag 5 / Block 2

▶ 2.10 Interpolation: Deterministische Verfahren

2.11 Interpolation: Kriging

► 2.12 Gauß-Prozesse

Lernziele Block 2.12

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen Gauß-Prozessen vertraut sein.
- verschiedene Anwendungsgebiete von Gauß-Prozessen in den Geowissenschaften kennen.
- Gauß-Prozess Regression in Python zur Interpolation von Geodaten anwenden können.

Fortführung der Kriging-Idee

Interpolation, bzw. Vorhersage von Datenwerten

- Schließen auf Normalverteilungen von Werten
- Mittelwert & Varianz als Funktion von x- und y-Koordinaten
- Gauß-Prozesse schließen direkt auf diese Funktion

Normalverteilung

- Wahrscheinlichkeitsverteilung von Zufallswerten
- Definiert durch Mittelwert und Varianz
- 1-dimensional

- Wahrscheinlichkeitsverteilung von Zufallsfunktionen
- Definiert durch
 Erwartungswertfunktion und
 Kovarianzfunktion
- multidimensional

Gauß-Verteilung vs. Gauß-Prozesse

www.wikipedia.org

Normalverteilung

- Wahrscheinlichkeitsverteilung von Zufallswerten
- Definiert durch Mittelwert und Varianz
- 1-dimensional

- Wahrscheinlichkeitsverteilung von <u>Zufallsfunktionen</u>
- Definiert durch
 Erwartungswertfunktion und
 Kovarianzfunktion
- multidimensional

Karlsruher Institut für Technologie

Formulierung von Gauß-Prozessen

- ► Gauß-Prozess (GP): $p(x) \sim GP(m(x), k(x, x'))$
- ▶ m: Erwartungswertfunktion
 - oft als lineare Funktion: $m(x) = X\beta$
 - ▶ mit Erwartungswert E = 0, also m(x) = 0
- k: Kovarianzfunktion
 - oft als quadratische Exponentialfunktion $k(x, x') = \tau^2 \exp(-\frac{|x-x'|^2}{l^2})$
 - ightharpoonup au (magnitude) und l (lengthscale) als unbekannte Parameter
 - verschiedene Funktionen für periodische, nicht-stationäre, u.a.
 Datenstrukturen
 - beschreibt Korrelation zwischen benachbarten Punkten

- ▶ für eindimensionale Normalverteilung analytisch bestimmbar
- Gauß Prozess: an Stützstellen analytisch lösbar
- An neuen, interpolierten Stellen Approximation nötig

Schritte zur Interpolation mit GPs

- 1. Definition a-priori Erwartungswertfunktion
 - Berücksichtigung von Trend oder Drift
- 2. Definition a-priori Kovarianzfunktion
 - Beschreibung der Korrelation eines Punktes zu seiner Nachbarschaft
 - Unbekannte Parameter an Messwerte anpassen
- Feinabstimmung der Parameter
 - Automatische Anpassung über die Randwahrscheinlichkeit
 - Maximierung Übereinstimmung von vermuteten Gaußprozess und vorhandene Messdaten
 - Abwägung zwischen Fehlerminimierung und Einfachheit der Theorie
 - Maximum-Likelihood-Methode

Schritte zur Interpolation mit GPs

- 4. Bedingter Gauß-Prozess an Stützstellen
 - Vorhersage, bzw. Interpolation an unbekannten Stellen
 - Basierend auf der Funktion an bekannten Stützstellen

Interpretation

- A-posteriori Gauß-Prozess, der bekannte Information berücksichtigt
- Gesamtheit aller möglichen Lösungen
- Lösungsfunktionen mit unterschiedlichen
 Wahrscheinlichkeiten gewichtet
- Quantifizierung der Unsicherheit

Anwendung von Gauß-Prozessen

- Interpolation, Extrapolation und Glättung von Messdaten (Gauß-Prozess Regression)
- Klassifikation in der multivariaten Statistik
- Überwachtes maschinelles Lernen zur abstrakten Modellierung (Gauß-Prozess Modelle)
- Emulatoren bzw. Surrogate-Modelle für komplexe numerische Modelle
 - Berücksichtigung von Unsicherheiten

Übung 2.12: Gauß-Prozesse

- Gauß-Prozess Regression
 - Interpolation von GW Daten
 - Definition der Kovarianzfunktion
 - Vorhersagen an neuen Stellen
 - Darstellung der Fehler und Unsicherheiten

Menberg et al. (2013)

Aufgabenbesprechung

- Gauß-Prozess Regression mit einfacher Kovarianzfunktion
- ► RMSE = 0.17

Aufgabenbesprechung

Gauß-Prozess Regression mit Störgeräuschen

Aufgabenbesprechung

- Gauß-Prozess Regression mit Störgeräuschen
- ► RMSE = 0.27

Literatur

- Gelman et al. (2014): Bayesian Data Analysis, 2nd Ed., CRC **Press**
- ► C.E. Rasmussen, C.K. Williams (2006): Gaussian processes for machine learning, the MIT Press.

