Death and Discounting COMP 767

Pascale Gourdeau

Material from: Adam Schwartz. *Death and Discounting*. Technion – Israel Institute of Technology. (2000)

April 7th, 2017

Overview

Intro

Motivation
Main Results

Discounted MDPs and Cemeteries

Mixed Discount MDPs

Motivation

Question: Can MDPs that exhibit phenomena on several different time scales be modelled through an objective function which is a linear combination of several discounted cost functions?

Main Results

1. Discounted MDPs with total-cost MDP with finite random duration are equivalent (restated).

Main Results

- 1. Discounted MDPs with total-cost MDP with finite random duration are equivalent (restated).
- 2. MDPs with several time scales and MDPs with several discount factors are not equivalent.

Main Results

- 1. Discounted MDPs with total-cost MDP with finite random duration are equivalent (restated).
- 2. MDPs with several time scales and MDPs with several discount factors are not equivalent.
- Mixed discount MDPs are equivalent to MDPs with several time scales when the end of one time scale cannot be detected.

An Undiscounted finite-time MDP

Given an MDP with discount factor β .

1. Add an absorbing state Δ with zero cost.

An Undiscounted finite-time MDP

Given an MDP with discount factor β .

- 1. Add an absorbing state Δ with zero cost.
- 2. At each state, with probability 1β there is a transition to Δ .

An Undiscounted finite-time MDP

Given an MDP with discount factor β .

- 1. Add an absorbing state Δ with zero cost.
- 2. At each state, with probability 1β there is a transition to Δ .
- 3. Let τ be the first time we reach the absorbing state

This new undiscounted MDP can be seen as the original discounted MDP where we flip a coin after each action, where we either stay in the MDP or we move to the absorbing state.

- This new undiscounted MDP can be seen as the original discounted MDP where we flip a coin after each action, where we either stay in the MDP or we move to the absorbing state.
- This allows to have a policy independent of the coin flip (all actions are available in the absorbing state), and the same policy is well-defined in both models.

- This new undiscounted MDP can be seen as the original discounted MDP where we flip a coin after each action, where we either stay in the MDP or we move to the absorbing state.
- This allows to have a policy independent of the coin flip (all actions are available in the absorbing state), and the same policy is well-defined in both models.
- This undiscounted MDP is equivalent to the original, discounted-cost MDP.

- This new undiscounted MDP can be seen as the original discounted MDP where we flip a coin after each action, where we either stay in the MDP or we move to the absorbing state.
- This allows to have a policy independent of the coin flip (all actions are available in the absorbing state), and the same policy is well-defined in both models.
- ► This undiscounted MDP is equivalent to the original, discounted-cost MDP.
 - ▶ They have the same *expected return* for the same policy, and the same value function (except for the absorbing state).

- This new undiscounted MDP can be seen as the original discounted MDP where we flip a coin after each action, where we either stay in the MDP or we move to the absorbing state.
- This allows to have a policy independent of the coin flip (all actions are available in the absorbing state), and the same policy is well-defined in both models.
- ► This undiscounted MDP is equivalent to the original, discounted-cost MDP.
 - ▶ They have the same *expected return* for the same policy, and the same value function (except for the absorbing state).
- ▶ **Consequence:** Both models can be used for optimization.

We define two new MDPs:

▶ For M_1 , let $I \in \mathbb{N}$ and for each i = 1, ..., I, we introduce a cost function c_i and its associated discount factor β_i .

We define two new MDPs:

- ▶ For M_1 , let $I \in \mathbb{N}$ and for each i = 1, ..., I, we introduce a cost function c_i and its associated discount factor β_i .
- So we have *I* different value functions $V^{i}(x,\pi)$ given a certain policy.

We define two new MDPs:

- ▶ For M_1 , let $I \in \mathbb{N}$ and for each i = 1, ..., I, we introduce a cost function c_i and its associated discount factor β_i .
- ▶ So we have *I* different value functions $V^i(x, \pi)$ given a certain policy.
- ▶ We get a total cost V as the sum $\sum_{i=1}^{I} V^{i}(x, \pi)$.

We define two new MDPs:

- ▶ For M_1 , let $I \in \mathbb{N}$ and for each i = 1, ..., I, we introduce a cost function c_i and its associated discount factor β_i .
- So we have *I* different value functions $V^{i}(x, \pi)$ given a certain policy.
- ▶ We get a total cost V as the sum $\sum_{i=1}^{I} V^{i}(x,\pi)$.
- For M₂, for each cost function, we again have a coin flip as in the previous example, and associated random stopping time τⁱ (to replace the discount factor) to.

▶ There is no equivalence between M_1 and M_2 .

- ▶ There is no equivalence between M_1 and M_2 .
- ▶ We can derive a counter example where I=2 and the discount factors (coin flip probabilities) are not the same in M_1 (M_2).

- ▶ There is no equivalence between M_1 and M_2 .
- ▶ We can derive a counter example where I=2 and the discount factors (coin flip probabilities) are not the same in M_1 (M_2).
- ▶ Then, it can be shown that the total value function under the same policy for M_2 is always greater than the one for M_1 .

- ▶ There is no equivalence between M_1 and M_2 .
- ▶ We can derive a counter example where I=2 and the discount factors (coin flip probabilities) are not the same in M_1 (M_2).
- ▶ Then, it can be shown that the total value function under the same policy for M_2 is always greater than the one for M_1 .
- ▶ However, if the stopping times τ^i are not observable, the models are equivalent, provided the policies are not dependent on the coin flips (proved the same way as one discount factor).