计算机组成原理

动态存储器

2021年秋

本单元内容提要

- □第一讲层次存储器系统概述及动态存储器
- □第二讲静态存储器及高速缓冲存储器
- □第三讲高速缓冲存储器的组成与运行原理
- □第四讲虚拟存储器的运行原理
- □第五讲磁表面存储设备的存储原理与组成
- □第六讲RISC-V系统异常处理和响应,虚拟内存

本讲概要

- □存储器系统功能
- □存储器系统的设计目标
- □需要解决的问题
- □层次存储器系统
- □动态存储器的组成与原理

计算机硬件系统

存储器地位和作用

- □存储程序使计算机走向通用。
- □ 计算机中用来存放程序和数据的部件,是Von Neumann结构计算机的重要组成,是计算机的中心。
- □程序和数据的特点
 - 源程序、汇编程序、机器语言程序
 - 各种类型的数据
 - 共同点:二进制数据

对存储介质的基本要求

- □能够有两个稳定状态来表示二进制中的"0"和"1"
- □容易识别
- □两个状态能方便地进行转换
- □几种常用的存储方式
 - 磁颗粒、半导体(电平/电容)、光

早期存储器

- □水银延迟线存储器
- **□** EDSAC,1949
- Maurice Wilkes
- □ 1967年Turing奖
- □存储原理
 - 水波

磁芯存储器

- □圆柱型陶瓷上涂磁粉
- □ 手工穿线, 水手结
- □消磁后重写

半导体存储器

- □存储原理
 - MOS管寄生电容
 - 触发器
- 口访问机制
 - 随机访问
- 口分类
 - ROM、RAM
 - SRAM DRAM

按访问方式分类

- □ 随机访问存储器(RAM)
 - 访问时间与存放位置无关
 - 半导体存储器
- □ 顺序访问存储器(SAM)
 - 按照存储位置依次访问
 - 磁带存储器
- □ 直接访问存储器(DAM)
 - 随机+顺序
 - 磁盘存储器
- □ 关联访问存储器(CAM)
 - 根据内容访问
 - Cache和TLB

存储器系统设计目标

- □尽可能快的存取速度
 - 应能基本满足CPU对数据的访问要求
- □尽可能大的存储空间
 - 可以满足程序对存储空间的要求
- □尽可能低的单位成本(价格/位)
 - 用户能够承受的范围内
- □较高的可靠性

Microprocessor Transistor Counts 1971-2011 & Moore's Law

摩尔定律

Moore定律

- □1965年,Intel公司创始人之一Gordon Moore提出
- □ 芯片上集成的晶体管数量每18个月翻一番

摩尔定律

年代	容量	价格 (\$/MB)	总访问时间 (新行 / 列)	列访问时间 (现访问行)
1980	64 Kbit	1500	250 ns	150 ns
1983	256 Kbit	500	185 ns	100 ns
1985	1 Mbit	200	135 ns	40 ns
1989	4 Mbit	50	110 ns	40 ns
1992	16 Mbit	15	90 ns	30 ns
1996	64 Mbit	10	60 ns	20 ns
1998	128 Mbit	4	60 ns	10 ns
2000	256 Mbit	1	55 ns	7 ns
2004	512 Mbit	0.25	50 ns	5 ns
2007	1 Gbit	0.05	40 ns	1.25 ns

存储器对性能的影响

- □假定某台计算机的处理器工作在:
 - 主频= 1GHz (机器周期为1 ns)
 - CPI = 1.1
 - 50% 算逻指令, 30% 存取指令, 20% 转移指令
- □再假定其中10%的存取指令会发生数据缺失,需要50个周期的延迟。
 - CPI = 理想CPI + 每条指令的平均延迟= 1.1 + (0.30 x 0.10 x 50)= 1.1 cycle + 1.5 cycle = 2.6 CPI!
 - 也就是说,处理器58%的时间花在等待存储器给出数据上面!
- □每1%的指令的数据缺失将给CPI附加0.5个周期!

存储器设计目标

- □目标
 - 大容量、高速度、低成本、高可靠性
- □目前现实
 - 大容量存储器速度慢
 - 快速存储器容量小
- □如何实现我们的目标呢?
 - 层次存储器系统

问题

□ CPU clock rates ~0.33ns –2ns (3GHz-500MHz)

Memory technology	Access time in nanosecs (ns)	Access time in cycles	\$ per GB in 2012	Capacity
SRAM (on chip)	0.5-2.5 ns	1-3 cycles	\$4k	256 KB
SRAM (off chip)	1.5-30 ns	5-15 cycles	\$4k	32 MB
DRAM	50-70 ns	150-200 cycles	\$10-\$20	8 GB
SSD (Flash)	5k-50k ns	Tens of thousands	\$0.75-\$1	512 GB
Disk	5M-20M ns	Millions	\$0.05-\$0.1	4 TB

最新的一些磁盘性能数据

Comparing Drive Types

	HDD	Flash-based SSD	
Durability and Noise	Loud and susceptible to shock	No moving parts!	
Access Time	~ 12 ms ≈ 30M clock cycles	~ 0.1 ms ≈ 250K clock cycles	
Relative Power	1	1/3	
Cost	~ \$0.035 / GB	~ \$0.35 / GB	
Capacity	500GB - 12TB	128GB - 2TB	
Other Problems	Fragmentation	Limited Writes	
Lifespan	5-10 years	Avg Failure rate 6 years	

层次存储器系统

- □高速度
 - 静态存储器速度高
 - 设置较小容量的高速缓冲存储器
- 口大容量
 - 动态存储器价格适中,速度适中
 - 可作为主存储器
- □低成本
 - 磁盘存储器价格低廉
 - 作为辅助存储器,暂存CPU访问频率不高的数据和程序
 - 作为虚拟存储器的载体

程序运行的局部性原理

- □程序运行时的局部性原理表现在:
- □ 在一小段时间内,最近被访问过的程序和数据很可能再次被访问
- □ 在空间上这些被访问的程序和数据往往集中在一小片存储区
- □在访问顺序上,指令顺序执行比转移执行的可能性 大(大约5:1)

□合理地把程序和数据分配在不同存储介质中

层次之间应满足的原则

- □(2). 包含性原则:处在内层的信息一定被包含在其外层的存储器中,反之则不成立,即内层存储器中的全部信息,是其相邻外层存储器中一部分信息的复制品。

层次存储器系统

- □利用程序的局部性原理:
- □以最低廉的价格提供尽可能大的存储空间
- 口以最快速的技术实现高速存储访问

Speed (ns): 1ns

10ns

50-100ns MB-GB Milliseconds GB

Seconds Terabytes

现代计算机存储器系统

- □主存储器
 - 寄存器Register
 - 高速缓存Cache
 - 主存储器Main Memory

- □辅助存储器
 - 磁盘Disk
 - 磁带Tape
 - 光盘Compact Disc

不同类型存储器比较

并行技术

- □主存的一体多字
 - 一个读写体,每次多个字
- □单字多体
 - 多个读写体,交叉编址

□多端口存储器

主存储器的作用和连接

□ 存储正处在运行中的程序和数据(或一部分) 的部件, 通过地址数据控制三类总线与CPU、与其它部件连通

地址总线

□地址总线用于选择主存储器的一个存储单元(字或字节),其位数决定了能够访问的存储单元的最大数目,称为最大可寻址空间。例如,当按字节寻址时,20位的地址可以访问1MB的存储空间,32位的地址可以访问4GB的存储空间。

数据总线

□数据总线用于在计算机各功能部件之间传送数据,数据总线的位数(总线的宽度)与总线时钟频率的乘积,与该总线所支持的最高数据吞吐(输入/输出)能力成正比。

控制总线

□控制总线用于指明总线的工作周期类型和本次入/出完成的时刻。总线的工作周期可以包括主存储器读周期、主存储器写周期、I/O设备读周期、I/O设备写周期,即用不同的总线周期来区分要用哪个部件(主存或I/O设备)和操作的性质(读或写);还有直接存储器访问(DMA)总线周期等。

主存储器的读写过程

□读过程:

- 给出地址
- 给出片选与读命令
- 保存读出内容

□写过程:

- 给出地址
- 给出片选与数据
- 给出写命令

动态存储器的存储原理

□动态存储器,是用金属氧化物半导体(MOS)的单个MOS管来存储一个二进制位(bit)信息的。信息被存储在MOS管T的源极的寄生电容CS中,例如,用CS中存储有电荷表示1,无电荷表示0。

写1: 使位线为低电平,

若 C_s 上无电荷,则 V_{DD} 向 C_s 充电; 把 1 信号写入了电容 C_s 中。

若 C_s 上有电荷,则 C_s 的电荷不变,保持原记忆的1信号不变。

写1: 使位线为低电平,

若 C_s 上无电荷,则 V_{DD} 向 C_s 充电; 把 1 信号写入了电容 C_s 中。

若 C_s 上有电荷,则 C_s 的电荷不变,保持原有的内容1不变;

写 0: 使位线为高电平,

若 C_s 上有电荷,则 C_s 通过 T 放电; 把 0 信号写入了电容 C_s 中。

若C_s上无电荷,则 C_s 无充放电动作, 保持原记忆的 0 信号不变。

写 0: 使位线为高电平,

若 C_s 上有电荷,则 C_s 通过 T 放电; 把 0 信号写入了电容 C_s 中。

若C_s上无电荷,则 C_s 无充放电动作, 保持原记忆的 0 信号不变。

读操作: 首先使位线充电至高电平, 当字线来高电平后, T导通,

1. 若 C_s上无电荷,则位线上无电位变化,读出为 0;

2. 若 C_s 上有电荷, 则会放电,

并使位线电位由高变低,

接在位线上的读出放大器会感知这种变化,读出为1。

动态存储器的工作特点

- □破坏性读出
 - 读出时被强制清零
 - 预充电延迟
- □需定期刷新
 - 集中刷新
 - ■停止读写,逐行刷新
 - 分散刷新
 - ■定时周期性刷新
- □快速分页组织

破坏性读出:读操作后,被读单元的内容一定被清为零,必须把刚读出的内容立即写回去,通常称其为预充电延迟,它影响存储器的工作频率,在结束预充电前不能开始下一次读。

要定期刷新:在不进行读写操作时,DRAM 存储器的各单元处于断路状态,由于漏电的存在,保存在电容C_s上的电荷会慢慢地漏掉,为此必须定时予以补充,通常称其为刷新操作。刷新不是按字处理,而是每次刷新一行,即为连接在同一行上所有存储单元的电容补充一次能量。刷新有两种常用方式:

集中刷新,停止内存读写操作,逐行将所有各行刷新一遍; 分散刷新,每一次内存读写后,刷新一行,各行轮流进行。 或在规定的期间内,如2ms,能轮流把所有各行刷新一遍。

快速分页组织的存储器:

行、列地址要分两次给出,但连续地读写用到相同的行地址时, 也可以在前一次将行地址锁存,之后仅送列地址,以节省送地 址的时间,支持这种运行方式的被称为快速分页组织的存储器。

动态存储器读写过程

动态存储器集成度 高,存储容量大, 为节约管脚数,地 址分为行地址和列 地址

DRAM 写时序

DRAM 读时序

小结

- □程序的局部性原理:
 - 时间局部性:最近被访问过的程序和数据很可能再次被访问
 - 空间局部性: CPU很可能访问最近被访问过的地址单元 附近的地址单元。
- □利用程序的局部性原理:
 - 使用尽可能大容量的廉价、低速存储器存放程序和数据。
 - 使用高速存储器来满足CPU对速度的要求。
- □动态存储器DRAM
 - 电容充放电来存储数据
 - 集成度高、容量大、能耗低、速度慢

阅读和思考

- □阅读
- □思考
 - 程序的局部性原理指什么?为什么层次存储器系统能同时 达到高性能/低成本/大容量的指标?

谢谢