Homework 1 Solutions: Bayesian Inference Module

STA 250 Fall 2013, Prof. Baines (10/26/13)

Q1 Under the assumption that the resulting Markov Chain is ergodic (i.e., aperiodic and positive recurrent) with continuous state space, we know that the chain converges to a stationary distribution π satisfying:

$$\pi(y) = \int \pi(x) \mathcal{P}(x, y) dx \tag{1}$$

Therefore, we must show that for \mathcal{P} corresponding to a Gibbs sampler, the target density π satisfies equation (1). If we can show this, then we have shown that the target density is the stationary distribution for the Gibbs sampler. Note that the stationary distribution can be seen to be unique under certain regularity conditions. For a two-dimensional Gibbs sampler, the states are $x = (x_1, x_2)$ and $y = (y_1, y_2)$ with the transition density given by:

$$\mathcal{P}(x,y) = \pi_{1|2}(y_1|x_2)\pi_{2|1}(y_2|y_1),$$

where $\pi_{1|2}$ and $\pi_{2|1}$ are the conditional distributions defined by the joint target density π . For brevity we drop the subscripts on π as the conditional densities are clear from the context. Therefore, we see that:

$$\int \pi(x) \mathcal{P}(x, y) dx = \int \pi(x_1, x_2) \pi(y_1 | x_2) \pi(y_2 | y_1) dx_1 dx_2$$

$$= \int \pi(x_2) \pi(y_1 | x_2) \pi(y_2 | y_1) dx_2$$

$$= \int \pi(y_1, x_2) \pi(y_2 | y_1) dx_2$$

$$= \pi(y_1) \pi(y_2 | y_1) = \pi(y_1, y_2).$$

Therefore the target density π is seen to be the stationary distribution of the chain.

For a p-dimensional (sequential) Gibbs sampler we just extend the result slightly. The transition density becomes:

$$\mathcal{P}(x,y) = \prod_{j=1}^{p} \pi(y_j | y_{[1:j-1]}, x_{[(j+1):p]}),$$

where $y_{[1:0]} := \emptyset$. Therefore, we see that:

$$\int \pi(x)\mathcal{P}(x,y)dx = \int \pi(x_1,\dots,x_p) \prod_{j=1}^p \pi(y_j|y_{[1:j-1]},x_{[(j+1):p]})dx_1 \cdots dx_p$$

$$= \int \pi(x_2,\dots,x_p) \prod_{j=1}^p \pi(y_j|y_{[1:j-1]},x_{[(j+1):p]})dx_2 \cdots dx_p$$

$$= \int \pi(y_1,x_2,\dots,x_p) \prod_{j=2}^p \pi(y_j|y_{[1:j-1]},x_{[(j+1):p]})dx_2 \cdots dx_p$$

$$= \int \pi(y_1,x_3,\dots,x_p) \prod_{j=2}^p \pi(y_j|y_{[1:j-1]},x_{[(j+1):p]})dx_3 \cdots dx_p$$

$$= \int \pi(y_1,y_2,x_3,\dots,x_p) \prod_{j=3}^p \pi(y_j|y_{[1:j-1]},x_{[(j+1):p]})dx_3 \cdots dx_p$$

$$= \cdots$$

$$= \pi(y_1,y_2,\dots,y_p),$$

as needed. A little bit more elegantly, let:

$$Q_k = \pi(y_{[1:(k-1)]}, x_{[k:p]}) \prod_{j=k}^p \pi(y_j | y_{[1:(j-1)]}, x_{[(j+1):p]})$$

Then it can be seen that:

$$\int Q_k dx_k = \pi(y_{[1:k]}, x_{[(k+1):p]}) \prod_{j=k+1}^p \pi(y_j | y_{[1:(j-1)]}, x_{[(j+1):p]}) = Q_{k+1}, \qquad k = 1, \dots, p-1,$$

$$\int Q_p dx_p = \pi(y_{[1:p]}).$$

This gives us:

$$\int \pi(x)\mathcal{P}(x,y)dx = \int Q_1dx_1\cdots dx_p = \int Q_2dx_2\cdots dx_p = \cdots = \int Q_pdx_p = \pi(y).$$

- Q2 The two main algorithms most people implemented here were a multivariate Metropolis algorithm (with a Normal random walk proposal) and a Metropolis-within-Gibbs algorithm (again, using Normal random walk proposals). Most coverage plots looked something like Figure 1.
- Q3 There were differing degrees of success in tackling this problem. The course GitHub repo has solution code for those who couldn't get things to run. A couple of notes:
 - Run more iterations! Unless computing time is a big issue, run for more iterations than you need. For example, set the number of iterations to 500k and leave things to run on Gauss (unless your code was very inefficient this shouldn't take too long. For example, my code takes 9 minutes to run 500k iterations on an old laptop).
 - Using mcmc objects from library(coda) (when using R) makes life much simpler.

Actual vs. Nominal Coverage (200 datasets)

Figure 1: Coverage plot for Q2

 Covariance matrices for the proposal distribution needed to be selected carefully. Most successful choices were based on the covariance matrix from a regular lm or glm fit to the data.

Example traceplots are given in Figure 2.

Posterior estimates for the standardized and non-standardized cases are given below.

Unstandardized Results:

	2.5%	25%	50%	75%	97.5%
Intercept	-33.646603	- , •	, •		
area	0.002933	0.02297	0.03339	0.04341	0.06282
compactness	-31.961992	-13.29931	-3.53277	6.12656	24.34174
concavepts	22.091979	46.37750	59.29670	72.32769	97.64969
concavity	-5.033865	3.65120	8.17016	12.83947	22.23377
fracdim	-67.036530	-29.34780	-9.68547	9.80690	47.50416
perimeter	-0.949401	-0.36876	-0.06827	0.22715	0.81614
radius	-8.038762	-3.58885	-1.38465	0.86469	5.11523
${\tt smoothness}$	13.793833	39.65263	53.44324	67.38485	94.48697
symmetry	-2.035344	11.20961	17.95906	24.70283	37.49552
texture	0.255499	0.32747	0.36717	0.40900	0.49198

Standardized Results:

Figure 2: Traceplots for Q3 (unstandardized)

=======================================								
	2.5%	25%	50%	75%	97.5%			
Intercept	-0.7355	0.0267	0.4389	0.81986	1.5809			
area	1.9959	9.6230	13.8054	18.13752	26.2322			
compactness	-2.2540	-0.8715	-0.1518	0.58897	2.0037			
concavepts	0.5985	2.0095	2.7577	3.55913	5.2764			
concavity	-0.5620	0.3531	0.8288	1.28917	2.1910			
fracdim	-1.7799	-0.9534	-0.5175	-0.09353	0.7399			
perimeter	-24.7027	-9.6716	-2.0238	5.48899	19.7902			
radius	-29.5539	-14.5519	-6.5121	1.50326	17.3198			
${\tt smoothness}$	0.2732	0.8634	1.1713	1.48762	2.1227			
symmetry	-0.1017	0.2856	0.4901	0.69491	1.1048			
texture	1.2646	1.6107	1.8069	2.01321	2.4510			

The posterior predictive distribution for the mean (i.e., proportion of 1's) are shown in Figure 3 for the unstandardized setting. Note that other predictive statistics that aggregate over observations without accounting for the x_i 's do not provide additional information beyond the mean.

Figure 3: Posterior predictive distribution of proportion of 1's in the dataset (unstandardized)