PREDICTING FLIGHT DELAYS AND CANCELLATIONS

NADIPALLI SREE LEELA (820852403)

BIG DATA FINAL PROJECT

INTRODUCTION

This project is on detecting the flight cancellation, arrival and departure delays of **San Diego Airport.** Based on different parameters in the dataset, the cancellation and delays are determined.

DATASET

The dataset flights.csv is taken from kaggle and the link to the dataset is given here. https://www.kaggle.com/usdot/flight-delays/data

The data set has 31 rows initially. However two rows are added with the help of excel formulae to increase the speed and accuracy. Final dataset has 33 rows.

ARRIVAL_DELAY_INDEX and DEPARTURE_DELAY_INDEX columns are added. If flight is delayed, then value 0 is given else 1 is given. Based on timings given in departure delay and arrival delay columns, it is determined if flight is delayed. 0 is given if flight is cancelled.

The table below shows the final dataset:

S.NO	DATA FIELD	DATATYPE
1	YEAR	INTEGER
2	MONTH	INTEGER
3	DAY	INTEGER
4	DAY_OF_THE_WEEK	INTEGER
5	AIRLINE	STRING
6	FLIGHT_NUMBER	STRING
7	TAIL_NUMBER	INTEGER
8	ORIGN_AIRPORT	STRING
9	DESTINATION_AIRPORT	STRING
10	SCHEDULED_DEPARTURE	INTEGER
11	DEPARTURE_TIME	INTEGER
12	DEPARTURE_DELAY	INTEGER

13	DEPARTURE_DELAY_INDEX	INTEGER
14	TAXI_OUT	INTEGER
15	WHEELS_OFF	INTEGER
16	SCHEDULED_TIME	INTEGER
17	ELAPSED_TIME	INTEGER
18	AIR_TIME	INTEGER
19	DISTANCE	INTEGER
20	WHEELS_ON	INTEGER
21	TAXI_IN	INTEGER
22	SCHEDULED_ARRIVAL	INTEGER
23	ARRIVAL_TIME	INTEGER
24	ARRIVAL_DELAY	INTEGER
25	ARRIVAL_DELAY_INDEX	INTEGER
26	DIVERTED	INTEGER
27	CANCELLED	INTEGER
28	CANCELLED_REASON	INTEGER
29	AIRSYSTEM_DELAY	INTEGER
30	SECURITY_DELAY	INTEGER
31	AIRLINE_DELAY	INTEGER
32	LATE_AIRCRAFT_DELAY	INTEGER
33	WEATHER_DELAY	INTEGER

For better performance data is taken is taken for one month. However, data for five months is tested and results are discussed in observations section.

The dataset from kaggale contains all airports data. However, in this project only San Diego airport data is studied.

Total number of rows for one month are **12170**.

In this project Random Forest Model and Logistic Regression are implemented. And the results are compared.

Observations made by other people are also compared and studied.

PREDICTIONS

In each algorithm three observations are predicted:

Arrival Delays

- Departure Delays
- Cancellations

The output is ran ten times and average results are discussed for accuracy, to get better sense of algorithms.

RANDOM FOREST MODEL

Cancellations

Confusion Matrix

Random Forest Cancellation Accuracy: 99.0185387131952

• Departure Delays

Confusion Matrix

Random Forest Departure delay accuracy: 61.8339876612451

Arrival Delays

Confusion Matrix

Random Forest Arrival delay accuracy: 62.975027144408244

LOGISTIC REGRESSION MODEL

Cancellations

Confusion Matrix

LR Cancellation Accuracy: 99.22200611280911

• Departure Delays

Confusion Matrix

LR Departure Delays Accuracy: 65.68095496473141

• Arrival Delays

Confusion Matrix

LR Arrival Delays Accuracy: 64.27021161150299

OBSERVATIONS

From the above observations it is clear that Logistic Regression has better accuracy when compared to Random Forest Model. However, there is no drastic difference between the two.

This is because we have taken limited dataset. If we consider three months data, then the accuracy increased 5% more and if we consider five months data then accuracy increased 10% more in Logistic Regression. And even considerable amount of accuracy difference between the two models can been seen.

On smaller dataset both algorithms take almost same time. However, if data increases, logistic regression is little faster.

However, if we consider entire 2.5 million datasets then the accuracy reaches over 80%. But, it is to be noted that as accuracy increases time and space complexity increases as we have to consider large dataset.

There are several experiments performed on this dataset by various other people, and the results obtained here and the results discussed in kaggale forums are nearly equal.

OUTPUT

We get the following file structure as output

- LogisticRegressionModel
 - ArrivalDelays
 - confusionMatrix
 - model
 - DepartureDelays
 - confusionMatrix
 - model
 - Cancellations
 - confusionMatrix
 - model
- RandomForestModel
 - ArrivalDelays

- confusionMatrix
- model
- o DepartureDelays
 - confusionMatrix
 - model
- Cancellations
 - confusionMatrix
 - model

PROJECT DEVELOPMENT ENVIRONMENT

The project is done in IntelliJ. Spark 2.11.11 is used SBT is used to get jar file.