Problem Solving:

Combinatorics

April 2019

Honguk Woo

Q : Paths of grid

- The number of paths across a grid of (n rows X m columns)
 - e.g. start to end on (4 X 6) grid

How Many Paths?

Counting Techniques

- Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures, simply about "Counting"
- Suppose you have 5 shirts and 4 pants in your closet:
- Product rule
 - Different way to wear = Combinations : 5 shirts * 4 pants = total 20
 - |A| X |B|
- Sum rule
 - if any one is missing from the closet, it is one of 9 clothing pieces
 - |A| + |B|
- Inclusion-Exclusion Formula
 - $|A \cup B| = |A| + |B| |A \cap B|$
 - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |B \cap C| + |A \cap B \cap B|$
 - · eliminates double counting

More counting techniques

(1) Permutation

- an arrangement of *n* items where every item appears exactly once $n! = \prod_{i=1}^{n} i$
- arrange three letters word using a, b, c
 - abc, acb, bac, bca, cab, cba: 6 words (3!)
 - Very common for exhaustive search methods
 - What about 10! = 3,628,800 huge in complexity, approaching to the limits of exhaustive search
- what if letters are reused ((2) permutation with repetition)?
 - aaa, abb, ... on a, b, c: 3X3X3 = 27
 - e.g., r-length **strings** among n characters $_{n}\prod_{r} = \mathbf{n}^{r}$

• (3) Subsets

- there are 2^n subsets of *n* items
 - a, b, c, ab, bc, ac, abc, and an empty set: 8 subsets

Print all permutations of a given string

- Given a string "abc", print all the permutations (rearrangements)
- "abc", 3! = 6
- "abcd", 4! ...
- Many loops ?
- Recursion
 - Base case: each string (the string length == the target length)
 - General case: "a" + permute("bc"), "b" + permute("ac") ...

If (base case) then print string else generate more permutation

Recursion Tree for Permutations of String "ABC"

```
void permute(char *a, int I, int r) {
  if (I == r) printf("%s\n", a);
  else {
    for (i = I; i <= r; i++) {
       swap((a+I), (a+i));
       permute(a, I+1, r);
       swap((a+I), (a+i));
    }
  }
}</pre>
```

char str[] = "abc";
Permute(str, 0, strlen(str) -1);

Binomial Coefficient

The number of ways to choose k things out of n

$$_{n} C_{k} \equiv \binom{n}{k} \equiv \frac{n!}{(n-k)! \ k!}$$

- e.g. how many ways to form a k-member committee from n people
- e.g., how many paths from a grid of k X n-k

Binomial Coefficient (2)

- Coefficient of (a+b)ⁿ
 - $(a + b)^3 = 1a^3 + 3a^2b + 3ab^2 + 1b^3$
 - $a^2b \rightarrow choose 2 a (or 1 b) from all 3, (a+b) X (a+b) X (a+b)$

- what is the coefficient of a^kb^{n-k} ?
 - how many ways to choose k a-terms out of n
 - $(a + b)^3$ = aaa + 3 aab + 3 abb + bbb

Pascal's Triangle

$$_{n}C_{k} = _{(n-1)}C_{(k-1)} + _{(n-1)}C_{k}$$

Binomial Coefficient (3)

Consider: choose k from n items, and two cases about the below n

case1: if this (n) is contained, same as choosing k-1 from n-1 case2: if this (n) is not contained,

must choose k from n-1

$$_{n}C_{k} = {}_{(n-1)}C_{(k-1)} + {}_{(n-1)}C_{k}$$

Note that (n-k)!k! may cause overflow; more stable using recurrence relation.

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!}{(n-k)!k!}$$

Stop the recurrence

good ending points (base cases)

$$\cdot_{n}C_{0} = 1$$

 $\cdot_{n}C_{n} = 1$

Pascal's Triangle in C

recursion

```
int pascal(int r, int c){
 if(c == 0 \mid\mid c == r) return 1;
 else
  return pascal(r-1, c-1) + pascal(r-1, c);
int main(){
 int n = 7;
 for(int i=0; i<n; i++) {
  for(int j=0; j< i+1; j++){
    printf("%d ", pascal(i, j));
  printf("\n");
 return 0;
```

```
1
11
121
1331
14641
15101051
1615201561
```

Pascal's Triangle in C

memorization

```
#define MAXN 100 /* largest n or m */
long binomial_coefficient(n,m) /* computer n choose m */
  int i,j; /* counters */
  long bc[MAXN][MAXN]; /* table of binomial coefficients */
  for (i=0; i \le n; i++) bc[i][0] = 1;
  for (j=0; j<=n; j++) bc[j][j] = 1;
   for (i=1; i<=n; i++)
      for (j=1; j<i; j++)
          bc[i][j] = bc[i-1][j-1] + bc[i-1][j];
   return( bc[n][m]);
```

Fibonacci Numbers

```
F_0 = 0
F_1 = 1
F_n = F_{n-1} + F_{n-2} \text{ for } n \ge 2
\text{int fb(int n) } \{ \text{ if } (n == 0 \mid\mid n == 1) \text{ return n; } // \text{ f}(0) = 0, \text{ f}(1) = 1 \text{ else return fb(n-1) + fb(n-2); } \}
```

Closed form solution

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Eulerian Numbers

- the number of permutations of length n with exactly k ascending sequences
 - E.g. Permutations of the numbers 0 to 9 (length 10) in which exactly 3 elements are greater than the previous element
 - 0, ..., 9, k=3
 - · 3 1 5 7 6 4 8 2 0
 - case 1: add 9 on solution of 0..8 k=3 w/o changing k
 - case 2: add 9 on solution of 0..8 k=2 increasing k
 - case 3: add 9 on solution of 0..8 k=1 impossible

$${n \choose k} = k {n-1 \choose k} + (n-k+1) {n-1 \choose k-1}$$

Recurrence Relations

- Recursive relation makes it easy to count "recursively defined structures"
 - Recursively defined structures: tree, list, ...,
 - divide & conquer algorithms : binary search, quick sort, merge sort, ...
- Recurrence relation
 - An equation defined in terms of itself

$$a_{n} = a_{n-1} + 1$$
 , $a_{1} = 1$ \rightarrow $a_{n} = n$ $a_{n} = 2a_{n-1}$, $a_{1} = 2$ \rightarrow $a_{n} = 2^{n}$ $a_{n} = na_{n-1}$, $a_{1} = 1$ \rightarrow $a_{n} = n!$

Mathematical Induction

$$T_n = 2T_{n-1} + 1, T_0 = 0$$

n	0	1	2	3	4	5	6	7	
T _n	0	1	3	7	15	31	63	127	

Prove that $T_n = 2^n - 1$

Q: Tower of Hanoi

- The mission is to move all the disks to some another tower without violating the sequence of arrangement.
 - Only one disk can be moved among the towers at any given time
 - Only the "top" disk can be removed
 - No large disk can sit over a small disk

Tower of Hanoi

- First, we move the smaller (top) disk to aux
- Then, we move the larger (bottom) disk to destination
- And finally, we move the smaller disk from aux to destination

- In general
- Step 1 Move n-1 disks from source to aux
- Step 2 Move nth disk from source to dest
- Step 3 Move n-1 disks from aux to dest

```
#include <stdio.h>
void towerOfHanoi(int n, char from rod, char to rod, char aux rod) {
         if (n == 1)
                   printf("\n Move disk 1 from rod %c to rod %c", from rod, to rod);
                   return;
         towerOfHanoi(n-1, from rod, aux rod, to rod);
          printf("\n Move disk %d from rod %c to rod %c", n, from_rod, to_rod);
         towerOfHanoi(n-1, aux_rod, to_rod, from_rod);
int main()
         int n = 4; // Number of disks
         towerOfHanoi(n, 'A', 'C', 'B'); // A, B and C are names of rods
         return 0;
```

Q: How Many Pieces of Land

- You are given a land and you are asked to choose n arbitrary points on its boundary. Then you connect each point with every other point using straight lines, forming n(n-1)/2 connections.
- What is the maximum number of pieces of land you will get by choosing the points on the boundary carefully?

N (input)	Maximum number of pieces (output)
1	1
2	2
3	4
4	8

Dividing the land when n = 6.