

基于无人机图像的水稻产量预测

01. 研究目的
02. 创新点与项目特色
03. 研究进展
04. 项目成果
05. 分工与经费

水稻理论产量函数:

产量 = G(有效穗个数 * 穗子大小)

水稻图像 目标检测 及 实例分割。

02 创新点与项目特色

- (1) <mark>实例分割</mark>可以更精准的识别出水稻的形态, 根据有效穗所占面积计算产量。
- (2) 使用双层建模的方法,解决稻穗遮挡问题。
- (3) 兼顾检测精度与检测效率,最佳飞行高度。

03 研究进展

获取数据

南通如皋水稻基地 数据集共4400张,分辨率4000*3000 水稻成熟时期,不同高度

图像预处理

对图像数据集进行数据标注

采用图像旋转、图像翻转方法进行图像预处理

以7:2:1的比例划分数据集

yolov5在验证集上的精度

type	IoU	area	maxDets	value
AP	0.50:0.95	all	100	0.457
AR	0.50:0.95	all	100	0.552

利用yolov5n预训练模型

对数据集进行裁剪处理

训练的模型精度有待提升

实际可以检测到目标,存在一定误检的概率

Cascade RCNN在验证集上的精度

type	IoU	area	maxDets	value
AP	0.50:0.95	all	100	0.844
AR	0.50:0.95	all	100	0.862

使用Cascade RCNN模型,

搭配mmdetection框架

训练的模型精度得到提升且结果较好

实际检测目标结果大体正确。

Mask RCNN在验证集上的精度

type	IoU	area	value
bbox_mAP	0.50:0.95	all	0.841
segm_mAP	0.50:0.95	all	0.649

使用Mask RCNN模型,

搭配mmdetection框架

目标检测精度较好,但低于Cascade RCNN

然而,实例分割精度较低

Cascade Mask RCNN在验证集上的精度

type	IoU	area	value
bbox_mAP	0.50:0.95	all	0.862
segm_mAP	0.50:0.95	all	0.681

在Cascade RCNN模型基础上,

添加Mask模块进行实例分割

训练的模型精度得到提升

目标检测精度提升 2.1%

实例分割精度提升 3.2%

实例分割

图片观感效果好,数据指标一般:

- 1. 数据集多人标注,人工误差
- 2. 水稻稻穗边缘粗糙,易造成像素偏差
- 水稻稻穗(检测物)与叶片(背景) 相似度高,较难精准辨别

04 项目成果

