TA
1
175
v.33

(3)

EXCHANGE

BULLETIN OF

IOWA STATE COLLEGE

OF AGRICULTURE AND MECHANIC ARTS

Vol. XII.

August 15, 1913

No. 10.

House Heating Fuel Tests

BY

W. H. MEEKER and H. W. WAGNER

BULLETIN 33.
ENGINEERING EXPERIMENT STATION

Ames, Iowa

Published Semi-Monthly by the Iowa State College of Agriculture and Mechanic Arts. Entered as Second-class Matter, October 26, 1905, at the Post Office at Ames, Iowa, under the Act of Congress of July 16, 1904.

PURPOSE OF THE STATION

THE purpose of the Engineering Experiment Station is, first, to afford a service for the other industries of Iowa, similar to that afforded by the Agricultural Experiment Station to the agricultural industries; second, to assist the urban population of the state in solving the technical problems of urban life; third, to solve the purely engineering problems of the agricultural population and industries of the state.

BULLETIN OF

IOWA STATE COLLEGE

OF AGRICULTURE AND MECHANIC ARTS

Vol. XII.

August 15, 1913

No. 10.

House Heating Fuel Tests

BY

W. H. MEEKER and H. W. WAGNER

BULLEIN 33. ENGINEERING EXPERIMENT STATION

Ames, 1own

Published Semi-Monthly by the Iowa State College of Agriculture and Mechanic Arts. Entered as Second-class Matter, October 26, 1905, at the Post Office at Ames, Iowa, under the Act of Congress of July 16, 1904.

TAI 175 V.33

ENGINEERING EXPERIMENT STATION

Station Council

THE PARTY OF THE PROPERTY OF T
ANSON MARSTON, C. E
LOUIS BEVIER SPINNEY, B. M. E
SAMUEL WALKER BEYER, B. S., Ph. D Professor
WARREN H. MEEKER, M. EProfessor
FRED ALAN FISH, M. E. in E. E
JAY BROWNLEE DAVIDSON, B. S., M. EProfessor
Engineering Experiment Station Staff
RAYMOND A. PEARSON, LL. D President, Ex-Officio
ANSON MARSTON, C. E Director and Civil Engineer
LOUIS BEVIER SPINNEY, B. M. E Illuminating Engineer
SAMUEL WALKER BEYER, B. S., Ph. D Mining Engineer
WARREN H. MEEKER, M. E., Mechanical Engineer
FRED ALAN FISH, M. E. in E. E Electrical Engineer
JAY BROWNLEE DAVIDSON, B. S., M. E
Agricultural Engineer
THOMAS HARRIS MACDONALD, B. C. E
Highway Engineer
MORRIS I. EVINGER, C. E.
ROY W. CRUM, B. C. EStructural Engineer
JOHN EDWIN BRINDLEY, A. M., Ph. D
Engineering Feanomist
CHARLES S. NICHOLS, B. C. E Assistant Director
H. W. WAGNER, B. S. in E. E.
Assistant Engineer in Mechanical and Electrical Engineering
MILTON F. BEECHER, B. S. in Ceramics
Assistant Engineer in Ceramics and Road Materials
JOHN S. COYE, B. S
OTTO M. SMITTH, B. S Industrial Chemist
Trouble of the state of the sta

EXCHANGE

TABLE OF CONTENTS.

TATERDODITORIONT			
	T	INTRODUCTION	

		1 ag	C
Art.			7
		II. OBJECT OF TESTS.	
Art. Art.	3. 4.		8
		III. SUMMARY OF RESULTS.	
Art.	5.	General	9
Art.	6.	Fuel Costs 10	0
Art.	7.	Conditions Affecting Efficiency	1
Art.	8.	Attendance and Cleanliness 13	3
		IV. HEATING COSTS AND FUEL VALUES.	
Art.	9	Fuel Prices	3
Art.		Evaporative Costs	_
Art.		Season Costs	-
2110.	11.		U
		v. fuels.	
Art.	12.	General	7
Art.	13.	Iowa Coals	0
Art.	14.	Foreign Fuels	2
		VI. GENERAL DISCUSSION.	
Art.	15	Tests and Results	3
Art.		Probable Errors	
Art.		Comparisons with Other Tests	-
	150		
V	п.	GENERAL CONDITIONS RELATED TO EFFICIENCY, WITH GRAPHICAL REPRESENTATIONS.	
Art.	18	Significance of Readings and Results 32	2
Art.		Fixed Carbon and Efficiency	
Art.		Size of Fuel and Efficiency	
Art.		Amount of Fuel Charge and Efficiency 40	
Art.		Depth of Fuel Bed and Efficiency	
Art.		Capacity and Efficiency	
Art.		Dampers and Efficiency. 44	
		VIII. EQUIPMENT.	
	0-		-
Art.		Boiler and Dimensions	
Art.	26.	Apparatus Employed 55)

IX. METHOD OF CONDUCTING TESTS.

Art. Art.	28. 29.	Fuel, Fire and Ash. Evaporation Flue Gas and Drafts. Readings	58 59
		X. CALCULATION OF RESULTS.	
Art.	32.	Factors and Constants	61
		lar Test	
Ant	24	Analysis of Readings	66

LIST OF TABLES.

		Page
Table	I.	SUMMARY OF EVAPORATIVE COSTS 11
Table	II.	AVERAGE FUEL COSTS AND VALUES 14
Table	III.	FUEL—ANALYSIS AND SOURCE 18
Table	IV.	FUEL CHARACTERISTICS 21
Table	V.	THESIS TESTS—BOONE, SAYLOR AND
VI. D. V.		COLFAX COAL 31
Table	VI.	STATION TESTS—BOONE, SAYLOR AND
		COLFAX COAL 31
Table	VII.	FIXED CARBON AND AVERAGE EFFI-
		CIENCY 34
Table	VIII.	ANALYSIS OF FLUE GAS—AVERAGES. 38
Table	IX.	DEPTH OF FUEL BED AND FLUE GAS. 41
Table	X.	CAPACITY TESTS ON ILLINOIS MINE
		RUN COAL 44
Table	XI.	CAPACITY TESTS ON OGDEN LUMP
		COAL 46
Table	XII.	EFFECTS OF DIFFERENT DAMPER POSI-
		TIONS 48
Table	XIII.	DETAIL DATA ON INDIVIDUAL TESTS 7

LIST OF ILLUSTRATIONS.

		Pa	ıge
Fig.	1.	Season Costs with Fuels Tested	12
Fig.	2.	Fixed Carbon and Efficiency—Ames Tests	35
Fig.	3.	Fixed Carbon and Efficiency—Illinois Tests	
Fig.	4.	Composition of Flue Gas and Heat Unaccounted for	39
Fig.	5.	Effects of Different Depths of Fuel Bed	42
Fig.	6.	Capacity and Efficiency	45
Fig.	7.	Effects of Admitting Cold Air Above Fire	50
Fig.	8.	Effects of Partly Closing Choke Damper	51
Fig.	9.	Effect of Checking Down Hot Fire	52
Fig.	10.	Photographic View of Boiler Set Up for Operation	
		st Ames	53
Fig.	11.	Sectional View of 15-inch Boiler of Same Type as	-1
171:	10	the One Tested at Ames	
Fig.		Diagram of Boiler and Connections	56
Fig.	13.	Log of Test No. 23—Long Firing with Solvay	co
Dia	11	Coke	08
Fig.	14.	Log of Test No. 34—Long Firing with Empire Lump Coal	69
Fig.	15	Log of Test No. 37—Short Firing with Ogden	0.0
8.	10.	Lump Coal	70
Fig.	16.	Log of Test No. 38—Long Firing with Ogden	
		Lump Coal	71

HOUSE HEATING FUEL TESTS

I. INTRODUCTION

Article 1. Nature of Investigations. The amount of fuel burned in the average house heating plant is small compared with that consumed by a power plant, yet the very much larger number of houses and other buildings heated by independent hot air furnaces and boilers make the aggregate of coke and coal burned by them no small item. A conservative estimate places the number of dwellings in Iowa equipped with house heating furnaces and boilers at not less than 100.-000. At an annual average fuel cost of \$65.00 each, which is also a low estimate, the amount paid out each year is 61/2 million dollars for warming the homes of Iowa that are equipped with such house heating plants. Other millions are spent for heating stores, office buildings, etc., and for fuel burned in heating stoves. It is not hard to see the saving to the State to be gained by choosing such fuels as will save a few per cent on the above amounts, or by choosing such fuels as will reduce the care of fires and the damage from dirt and smoke to a minimum.

Because of inquiries on the relative value of fuels, and because the large need of reliable data on these points was realized, the Engineering Experiment Station undertook the problem and decided to test as many as practicable of the coals and

cokes commonly used in Iowa for house heating work.

For this purpose a steam house heating boiler was employed. Steam boilers are not used in a majority of house heating plants, but the heat absorbed by steam can be measured so much more accurately than heat absorbed by either water or hot air, and principally for that reason the steam boiler was chosen. The boiler used had also a greater capacity than the average house heating plant which cuts down errors of observation inherent in a smaller plant. It is true too that many different types as well as sizes of boilers and furnaces are in common use, yet the writers believe that the comparative results obtained will hold true to a large degree in the different types and sizes.

The investigation at Ames included 38 general efficiency tests upon 20 different fuels, 11 special efficiency tests made upon some of the same fuels and a few other special tests made

upon some of the same fuels.

Tests upon 7 fuels with two types of boilers at the Engineering Experiment Station of the University of Illinois show in

general the same order of efficiencies for the different classes of fuels. The three boilers used at the two stations are all of different types and rated capacities.

Article 2. Acknowledgements. The writers wish to acknowledge much value derived from the suggestions and source for comparison of test data embodied in Bulletin No. 31 of the Engineering Experiment Station of the University of Illinois, Urbana, Illinois, by J. M. Snodgrass, entitled "Fuel

Tests With House Heating Boilers."

The boiler used in the tests at Ames was kindly loaned by the American Radiator Company of Chicago, Illinois. It was set up and tests were made upon it early in 1911 by Messrs. J. H. Burlingame and F. H. Morris. The results of their tests were written up for their graduating thesis for the degree of B. S. in M. E. at the Iowa State College. Some of the data in the thesis are used for comparison in this bulletin. The writers of this bulletin were also assisted with some of their first tests in the winter of 1911-12, by Messrs S. E. Lacey, G. H. Montillon and H. W. Lindeman, who were then senior students in the Department of Mechanical Engineering at the Iowa State College.

II. OBJECT OF TESTS

Article 3. Original Purpose. The primary object of these tests was to determine the fuel cost for developing a definite amount of heat in an available form, as well as the attention required and inconvenience experienced in keeping up heat with the different fuels.

It is the purpose of the writers to present the most concrete conclusions and data under three heads—Summary of Results, Heating Costs, and Fuels—for the benefit of those having ordinary knowledge of fuels and heating and who may wish to derive the practical benefits to be had for the minimum amount of study. For the benefit of those who wish more information on the subject, or who are interested more from the standpoint of science and research, further discussions, tables and diagrams follow under other heads.

It is hoped also that deductions contained herein may be of some value in the management of boilers used for power pur-

poses.

Article 4. Related Points of Consideration and Outline. As the tests went on points in addition to those in mind at the beginning were thought to be worth study. The principal subjects discussed through the bulletin might be classified as follows: A. Fuel Costs.

- 1. Actual for equivalent evaporation of 1,000 pounds of water from and at 212° F.
 - 2. Calculated for heating an 8-room house for one season.

B. Cleanliness.

- 1. Dirt and dust in fuel.
- 2. Smoke and soot from fire.

C. Attention.

1. Starting fire.

2. Life of a fuel charge.

3. Poking and leveling required in fire box.

4. Clinker and ash.

- D. Fixed Carbon and Efficiency.E. Size of Fuel and Efficiency.
- F. Amount of Fuel Charge and Efficiency.
- G. Depth of Fuel Bed and Efficiency.
- H. Capacity and Efficiency.I. Dampers and Efficiency.
- J. Minor Details and Data Incident to Boiler Trials.
 - 1. Proximate and calorific analysis of fuel.
 - 2. Drafts.
 - 3. Temperatures.
 - 4. Flue gas analysis.
 - 5. Evaporative performance.
 - 6. Efficiencies.
 - 7. Boiler balance, and
 - 8. Other data.

III. SUMMARY OF RESULTS.

Article 5. General. Among the points to be considered in judging a fuel for house heating work the following are of most importance—Evaporative cost, ease of starting fire, dirt, dust and gas encountered in firing, smoke and soot deposits, clinker, ash and refuse to dispose of, and general attention in firing. The relative importance of these points depends upon the service required. For large units the evaporative cost will perhaps come first. For small units in dwelling houses, the general question of cleanliness in the boiler room as well as through the whole house is very important. In still other cases a fuel, one charge of which will give a constant heat without attention over a long period of time, should be the one chosen.

For the ordinary dwelling of about 8 rooms, the best grades of soft coal tested, such as Illinois Little Jack or Tennessee Smokeless, would perhaps give the best all round satisfaction.

In many cases it would be advantageous to have on hand a small variety of fuels. For instance, Kentucky Red Torch

could be used for kindling and for building up a low fire quickly, a cheap Iowa coal could be used during the day and the fire could be banked at night with Tennessee Smokeless. In extreme cases, where the furnace has to be left for longer time without attention, anthracite could be used.

The value of Iowa coals would be greatly increased if a cheap process of coking, whereby the greater part of both fixed carbon and volatile combustible could be saved and used after separation, could be perfected.

Prices based upon heat units, in a certain kind of fuel, rather than upon its actual weight would be more just to both the operator and consumer.

Article 6. Fuel Costs. Of all fuels tested, the Iowa soft coals are the cheapest in both cost per ton and evaporative cost.

Costs depend largely upon the distance a fuel has to be hauled. Anthracite and eastern solf coa's would make cheaper fuels were it not for this factor.

The cost of preparing and transporting peat practically pro-

hibits its use as a fuel in any part of the state.

Anthracite is the most costly fuel of those tested now used to any extent for house heating in this state.

At the same price per ton, fuels high in fixed carbon will be

less costly to use.

Fixed carbon can be purchased more cheaply in the form of coke or in such high fixed carbon fuels as Tennessee Smokeless than in the form of anthracite.

The cost per British thermal unit is the lowest in Iowa coals; is the highest in anthracite, petroleum coke and peat; and is lower in Illinois coals than in gas-house and Solvay cokes.

The cost per ton based upon fixed carbon content is the lowest in Iowa coals, Solvay and gas-house coke; is the highest in anthracite, petroleum coke and peat; and is higher in Illinois than in Iowa coals.

Freshly mined coal gives the best results.

Table I, page 11, is a summary of the average, minimum, and maximum heating costs for the different classes of fuels tried. The prices per ton of Iowa coals include a freight haul of about 50 miles. The prices per ton of foreign fuels include the freight rate to Ames which is near the center of the state. Thus it is evident that for certain localities as in some eastern and northern parts of the state the relative length of haul is greater for Iowa coals which would consequently be more favorable to foreign fuels.

Table I does not include tests on mixtures of coke and coal, nor those made when the capacity developed was far from 60%

of the builder's rating. The prices per ton are averages of the cost of fuels of the same class used in the tests, and the evaporative and season costs are averages of the costs in the different tests.

TABLE I.
SUMMARY OF EVAPORATIVE COSTS

Class of Fue!	No. of tests	No. of fuels	No. of short firing tests	No. of long firing tests	Ave. cost per ton	Cost	per 10 uiv. ev (2120	00 lbs.	Seas 8 re	on com	
	ž	ž	N. ini	Zi Zi		ave.	min.	max.	ave.	min.	max.
Iowa soft coals	15	6	8	7	3.86	37.4	32.4	58.5	64.70	56.00	92.50
Illinois soft coals	11	5	7	4	4.70	40.6	37.3	43.3	70.10	64.50	74.90
Other soft coals	3	2	1	2	6.87	47.1	41.6	50.7	81.40	71.90	87.50
Cokes	6	4	4	2	8.50	52.3	41.3	64.3	90.50	71.50	111.10
Anthracite	2	2),1	1	9.50	61.8	57.8	65.8	106.90	100.00	113.90
Iowa peat	1	1	1	0	4.50	144.1	144.1	144.1	249.00	249.00	249.00
TotalAverage	38	20	22	16	5.90	45.6			78.80	78.80	

The average season cost for each fuel is illustrated in Fig.

1, page 12.

Article 7. Conditions Affecting Efficiency. Soft coals yield a higher efficiency when a greater per cent of the heat value of the fuel is contained in the fixed carbon, and the results obtained indicate a very close relation between the two quantities.

The average efficiencies of coke and anthracite are above the average of soft coals, but are not high enough to bear out the same relationship between fixed carbon and efficiency that holds for soft coals.

Cokes lowest in volatile matter were found to give better efficiency than those containing an appreciable per cent of volatile combustible as petroleum coke.

No appreciable gain was secured by burning a mixture of

soft coal and coke.

There is considerable opportunity for improvement in the type of furnace and boiler used for burning soft coals.

Fig. 1.—Season costs with Fuels Tested. Each heavy horizontal line represents a fuel cost derived from the averages of all tests on that fuel according to the calculations explained in Art. II.

In general a higher efficiency may be reached by observing the following suggestions:

- (a) Use lumps just small enough to be fired conveniently instead of fuel broken into small pieces.
- (b) Fire at one time a large charge nearly filling the fire box rather than a small charge of about 100 pounds as required.

(c) Keep a deep bed of coals.

(d) Develop from 40% to 75% of the rated capacity of the boiler when soft coals are used.

(e) Allow no cold air to enter the flues or fire box above

the grates.

(f) Provide a good natural draft and permit a free passage for the gases from the furnace to the chimney.

(g) Keep the boiler heating surface clean from soot and ashes.

(h) Maintain constant conditions, such as the air supply, supply and temperature of feed water, drafts and rate of heat drawn from furnace.

(i) Avoid large holes and "dead spots" in the fire.

Article 8. Attendance and Cleanliness. Cokes are the most difficult to kindle and require the deepest bed of coals to keep the fire alive.

Soft coals are the easiest to kindle and the fire will remain alive when the depth of bed is as low as a couple of inches. Illinois coals have more snap than the Iowa coals in this respect. Kentucky Red Torch is remarkable in the ease with which it can be ignited.

Illinois and especially Iowa coals are unpleasant to burn because of the sulfur and other gases and fumes likely to

escape in a dwelling.

The cokes and anthracite are the cleanest to handle, do not clinker, do not cake, yield little smoke, deposit little soot and have less tendency to form holes in the fire than other fuels.

The soft coals require more frequent attention than coke and anthracite on account of caking, clinkering and tendency

to form holes in the fire.

The soft coals require more frequent firing than anthracite

because of the comparative short life of one charge.

The amounts of ash and refuse to be handled vary considerably with different lots of the same fuel. About the only general statement that can be made is that the ash and refuse is large per useful unit of heat for Iowa coals. It is very low for petroleum coke.

IV. HEATING COSTS AND FUEL VALUES.

Article 9. Fuel Prices. Most of the fuels were bought from dealers in Ames at different times. The prices per ton of these as well as the prices of fuels secured in other ways were all equalized to the same basis as nearly as possible. This basis was the cost per ton of 2,000 pounds delivered in two ton lots to the customer's bins in Ames at the beginning of the heating season in the autumn of 1912. Prices of fuels shipped diTABLE II.

ative	tive r ton	acite	With egg anthr	0%	59	72	74	29	188	88		76	7.2	91	7.0
Comparative	evaporative value per ton		With Centery Coal @ \$4	99	3.20	3.90	4.00	3.60	3.70	3.70		4.10	3.50	4.90	000
-			anthracite @ 100			1-	2	55.0	1.	56.0		1	0	0.09	
	per ton	939	Compared with	%	61.7	90	83		57			62	62		64.8
ts	At \$.100 1	3	Per season for 8 room house	60	18.70	15.40	15.10	16.70	16.25	16.40		14.90	15.70	12.40	15.40
tive Cos	At	.vi	Per 1000 lbs. equ evap. (212 oF.)	o	10.8	8.9	00.00	9.1	9.4	9.5		8.6	9.1	7.2	8.9
Evaporative Costs	ice	feet Tu	Per 1000 square radiation per ho	9	1.02	-84	88.	.91	.94	.93	216	1.03	1.02	66.	1.08
	At actual price		Per season for 8 room house	69	70.10	57.70	60.50	62.60	65.00	63.80		70.70	70.60	68.20	73.10
The state of	At a	.viu	Per 1000 lbs. equevap. (212 oF.)	o	40.6	33.4	35.0	36.2	37.6	36.9		40.9	40.8	39.5	49.3
			Per million B. T. U.	9	17.7	17.7	16.1	16.8	17.8	16.6		20.6	19.7	22.7	22.4
		Fuel prices	Per ton fixed carbon	69	9.43	8.58	8.61	8.90	9.76	9.18		10.76	9.90	10.02	11.44
		F	Per ton fuel as fired	60	3.75	3.75	4.00	3.75	4.00	3.90		4.75	4.50	5.50	4.75
	FUEL		NAME		Boone	Buxton	Centerville	Colfax	Ogden	Saylor		Emp. Lump	Emp. Nut	Little Jack	Ill. Mine Run
			Numder		4	4	20	4	10	9		1	00	6	10
38	tests	Buind	Short		4	0	-	-	-	H			-	67	2
	tests	gaird	Long		-	2	-	п	н	н		-	H	-	0
100		stest l	ooN		20	67	67	63	67	67		63	67	00	63
	rs	orde	No. oV	1.	60	-	-	7	-	П	181	1	н	ಣ	-

1	85	113	88		86	104	113		100	86		20
	4.60	6.10	4.80		5.30	5.60	6.10		5.40	5.30		1.10
	75.6	63.2	95.2		0.02	97.8	72.0		100.00	88.0		219.0
	13.20	9.90	12.70		11.40	10.80	9.90	2 1	11.10	11.40		55.30
	7.7	5.7	7.4		6.6	6.3	5.1		6.4	9.9		32.0
	1.25	1.04	1.57		1.15	1.61	1.19		1.65	1.45		3.62
	86.00	71.90	108.00		79.60	111.10	82.00		113.80	100.00		249.00
	49.8	41.6	62.6		46.1	64.3	47.4		65.8	57.8		144.1
	22.0	2.73	33.7		28.5	31.5	32.0		37.3	33.6		64.2
	11.58	10.60	10.11		8.50	11.90	9.53		11.88	11.00		36.00
	6.50	7.25	8.50		7.00	10.25	8.25		10.25	8.75	38, 48//6	4.50
	Ken. Red Torch	Tenn. Smokeless	Foundry coke		Gas-house coke	Petroleum coke	Solvay coke		Egg anthracite	Pea-anthracite		Iowa peat
	12	13	14		15	16	17		18	19		20
	1	0	-	201	67	0			0	-		-
	1	-	0	10	0	-	-		1	0		0
	67	-	-		2	-	2		1	-		1
	-	-	-		e1	-1	-		-	-		-

rectly to the Station were equalized by comparing prices at the mine, drayage and dealer's profits, and by using a freight rate of 66c which represents the freight charges upon one ton hauled 50 miles by rail. Iowa coals purchased from local dealers were all mined within a radius of 50 miles from Ames. Prices on fuels from outside the state included of course the actual total freight charges to Ames.

The price of Iowa peat is based upon a \$3.00 value at the

works for a ton of peat containing 30% moisture.

Table II, page 14, quotes the prices used per 2,000 pounds for the fuel as fired.

Article 10. Evaporative Costs. The cost of fuel required to evaporate 1,000 pounds of water from and at 212° F. is taken as the most convenient unit of evaporative cost. This amount of evaporation is the equivalent of supplying 400 sq. ft. of radiation for 10 hours at the rate of .25 pound per square foot per hour. In table XIII will be found also the costs of evaporating 1,000 pounds of water under actual conditions. The ratio between the actual and "equivalent evaporation" is nearly 6:7 in all tests.

Table II, page 14, presents the average evaporative costs with each fuel at the actual prices and at a theoretical price of \$1.00 per ton. The latter is of convenience for calculating evaporative costs where ton prices are different than used in table II. The same table gives the comparative evaporative value per ton of each, taking Centerville coal, the best Iowa fuel tested, at \$4.00 as a basis for comparison. The comparative evaporative value based upon anthracite at 100% is also given.

Article 11. Season Costs. For better illustrating the effect of evaporative cost upon season cost, figures have been prepared for application to a supposed 8-room house equipped with steam heating plant. Assumptions and calculations are as follows:

8-room dwelling, with an average of 40 sq. ft. of radiation per room.

Heating system in use during the 5 months of November, December, January, February and March.

Steam consumption at full capacity, 0.25 pound of steam from and at 212° F. per hour per square foot of radiation.

Average per cent of full capacity of radiating surface served, 60.

Fuel efficiency, same as determined for each fuel as presented in this bulletin.

5 months \times 30 days \times 24 hours = 3600 hours per season.

8 rooms \times 40 sq. ft. = 320 sq. ft., total radiating surface.

320 sq. ft. \times 0.25tb \times 60% = 48tb, average equivalent evaporation per hour for the season.

 $48\text{tb} \times 3600 \text{ hrs.} = 172,800\text{tb}$ steam from and at 212° F. required per season.

 $172,800 \div 1000 \times \text{Evaporative Cost} = \text{Season Cost.}$

The average of tests with Iowa coals brings the season cost to about \$70.00 which is within the limits of actually observed costs in different dwellings in Ames, where different types of heating plants are installed.

The fuels are arranged in figure 1, page 12, from the figures

quoted in table II in the order of their season costs.

No data of tests on hot air and hot water heating plants are available, yet it is only fair to assume that the same general order of fuel costs would apply to all three types of heating plants.

Table II is made up of the same general tests as are included in Table I. The column headed, "No. of Orders," refers to the number of different samples or lots of each fuel tested.

The high cost with Boone coal as compared with other Iowa coals is due largely to an extremely low efficiency from one lot of Boone coal.

In some sections of the state, wood is still used for domestic heating. The following figures are selected from a table in Gebhardt's Steam Power Plant Engineering.

	Pounds	B. T. U.
	per Cord	per Pound
Hickory	4500	5400
White Oak	3850	5400
		6830

Using the above figures and assuming that a B. T. U. derived from wood has the same value as one derived from Centerville coal (12,450) at \$4.00 per ton, the woods would have the following values, per cord:

	Equivalent	Value in
	Pounds of Coal	Dollars
Hickory	1950	3.90
	1670	
	1050	

V. FUELS.

Article 12. General. The Buxton, Centerville and Colfax coals were shipped from the mines in sacks directly to the Station in quantities of 1000 pounds each.

TABLE III. · FUELS—ANALYSIS AND SOURCE.

		FUELS—ANALYSIS AND SOURCE	SIS AND SI	JUKCE.						
1				10	per		Fuel	el as Fired	pe	
Number	Name	Source	Grade	Approximate axerage size vieces fuel as receiv	Heat value pound, dry	Moisture.	Volatile Matter	Fixed Car-	dsА	Heat value
1				Ins.	B.T.U.	%	%	%	%	B.T.U.
-	Boone	Boone County, Iowa	lump	3 to 12	11,720	9.7	87.8	39.8	12.7	10,600
ca	Buxton	Monroe County, Iowa	dmnl	7 to 8	11,530	8.2	36.5	43.7	11.6	10,600
00	Centerville	Appanoose County, Iowa	lump	5 to 6	13,700	9.2	37.5	46.5	8.9	12,450
4	Colfax	Jasper County, Iowa.	lump	6 to 8	12,610	8.5	39.1	42.2	10.2	11,540
10	Ogden	Boone County, Iowa	lump	5 to 6	13,130	12.0	40.4	41.0	9.9	11,560
9	Saylor	Polk County, Iowa	lump	8 to 10	12,400	5.5	40.8	42.5	11.2	11,720
1-	Empire Lump	Peoria District, Illinois	lump	5 to 6	12,380	6.9	37.3	44.1	11.7	11,520
∞	Empire Nut	Peoria District, Illinois	nut	1.5 to 2	12,450	8.3	33.9	45.4	12.4	11,410
0	Little Jack	Franklin County, Illinois	lump	6 to 7	12,840	5.8	31.8	54.8	9.7	12,100
101	Illinois Mine Run	Menard County, Illinois	mine run	4 to 5	11,610	8.8	33.6	41.5	16.1	10,600
1=	Illinois Pea-coal		pea	.5 to .75	12,220	7.1	35.6	43.8	13.5	11,350
1										
13	Kentucky Red Torch	Cumberland District, Kentucky	lump	5 to 7	15,100	2.0	38.5	56.2	63.	14,800
13	Tennessee Smokeless	Tennessee	lump	3 to 4	13,310	6.0	15.9	68.3	14.9	13,190
1										
1										

#	Foundry coke	14 Foundry coke		4 to 5 12.780 11	12.780	1-1	0	0 64 0 45	9	000
15	Gas-house coke						2	0.10	12.9	12,630
1	Carolina Car	CONC.		4 to 5	12,490	1.7	2.4	82.3	13.6	12.280
16		Petroleum coke Petroleum refineries		4 to 5 15,110 1.7	15,110	1.7	10.3	8	0 1	14.050
7-	Solvay coke	Solvay coke		3 to 4 12.950	12.950	0.0	0.6	13	0.1	100
									6.01	12,830
10	W									
9	Egg Anthracite	Pennsylvania	gg	2.5 to 3.5 13,940 1.4	13,940	1.4	6.1 86.3	86.3	6.9	19 750
61	Pea-anthracite		pea ,	.5 to .75 13,350	13,350	2.4	8 8	70.5		19 66
						2		0.01	0.11	020,61
1.										
2.	20 Iowa peat Towa Deat Iowa	Worth County, Iowa-	machine	machine 1 to 9 6 coo 17 o	0000	10 21	100		-	-

The Illinois mine run and pea-coal and the pea-anthracite and foundry coke were taken from the College fuel supply in

bulk in such quantities as were required for the tests.

The Iowa peat was picked from a one ton sample which had been shipped to the Mining Department of the College from the works near Fertile, Iowa, a few years previous. It had been taken from the Goose Lake peat beds in Worth County, and had been machine pressed. The sample had been stored under shelter at Ames, but had been tramped upon and gathered a great deal of moisture. When fired it was not completely air dried and was broken up much more than fresh machine peat would have been. The test was made mainly to determine the efficiency of peat as compared with that of soft coals.

All cokes and coals not mentioned above were purchased from dealers at Ames and were delivered sacked in quantities

of from 200 to 1000 pounds each.

The large lumps of coal were broken so that no pieces over 6 inches in diameter were used in any tests except No. 46 on Buxton coal.

Table III, page 18, gives the sources and composite analyses of the fuels, and Table IV, page 21, is descriptive of different observed characteristics.

The wide variation in the size of Boone coal is due to a smaller average size in one lot.

The life of fuel charge in Table IV is comparative and assumes that each fuel charge evaporates the equivalent of 200 pounds of water from and at 212° F. per hour, which corresponds to about 60% of the boiler rating. The weight per fuel charge was calculated by using the following weights per cubic foot: Anthracite, 50 pounds; soft coal, 40 pounds; coke, 28 pounds; peat with 30% moisture, 20 pounds.

No attempt was made to determine the density of the smoke according to any convention. In color the smoke varied with different fuels and stages of fire from reddish brown through gray to black.

Article 13. Iowa Coals. The Iowa coals tested, 6 in number, and all of lump grade, are fairly representative of those occurring in the central and south central parts of the state, and the results obtained should give a good approximation of the value of other Iowa coals when the proximate and calorific analyses are known as explained in Article 19 on Fixed Carbon and Efficiency. Considerable variation was noted between different Iowa coals. The following description is general.

As stated in the summary, Iowa coals are high in sulfur and in the smoke producing hydro-carbons. When fired under ordinary circumstances considerable inconvenience is experi-

TABLE IV. FUEL CHARACTERISTICS.

No.	Fuel	Difficulty of kindling	Dirt and dust	Fusion and coking	Smoke and soo	Clinker	Approximate life of full charge, in hours
1	Boone	н	н	L	н	н	6.9
2	Buxton	н	н	н	м	М	8.4
3	Centerville	М	м	L	м	S	8.6
4	Colfax	VH	VH	L	Н	н	7.8
5	Ogden	н	H	L	H.	L	7.9
6	Saylor	н	H	L	н	н	7.9
7	Empire Lump	M	M	M		L	8.7
8	Empire Nut	M	м	м	м	L	8.3
9	Little Jack	. L	L	S	L	S	10.5
10	Ill. Mine Run	н	н	L	м	м	8.4
11	Ill. Pea-coal	М	L	н	М	VH	7.6
12	Ken. Red Torch.	S	L	VH	M	N	9.9
13	Tenn. Smokeless.	L	М	н	. г	N	13.0
14	Foundry coke	VH	s	N	s	N	7.1
15	Gas-house coke	VH	S	N	S	N	8.0
16	Petroleum coke	Н.	S	N	S	N	8.4
17	Solyay coke	» VH	S	N	S	N	9.2
18	Egg Anthracite	н	s	N	s	N	14.6
19	Pea-anthracite	Н	S	N	S°	N	14.3
20	Iowa Peat	M	м	- s	L	VH	1.5

Explanation of symbols-

VH, very high. H, high.

M, moderate.

L, low.

S, slight.

N, practically none.

enced because of the sulfur fumes, smoke and soot. Sulfur determinations were not made in connection with these tests, but most Iowa lump coals contain an average of 4% to 6% of sulfur. Clinkering is another source of inconvenience encountered in the burning of Iowa coals. As a rule they contain a few per cent more ash, and have less fixed carbon than do the Illinois and eastern soft coals. The heat value of one pound of total combustible (fixed carbon plus volatile matter) is, however, about the same as for Illinois coals. The coals of Iowa contain less moisture, about the same per cent of ash and about the same ratio of fixed carbon and volatile matter as does North Dakota lignite. The heat value per pound of combustible is higher because the volatile matter in the lignite does not contain so many heat units per pound.

The best argument for the use of Iowa coal in house heating work in this state is the low cost per ton on account of the short distance to the mine. When a furnace is developed that will burn a greater per cent of the volatile gases, this advantage will

be increased accordingly.

The fact that a large per cent of the rich volatile combustible is wasted and the waste accompanied by large and unpleasant quantities of smoke is one of the big arguments for a better treatment of Iowa coals. If a satisfactory process could be invented or developed, whereby the volatile hydro-carbons would be converted into a liquid or gaseous fuel, and whereby the resulting coke would be used for such purposes as house heating, an enermous increase in the value of such soft coals would result. The value per B. T. U. is now nearly ten times as much in a liquid fuel like gasoline as in Iowa coal and a gas can be burned with much more convenience and efficiency. The coke would of course have a high percentage of ash and would be more difficult to kindle; but those are not serious faults in many uses.

Washing coal also helps to a certain extent in removing noncombustible elements and in making it cleaner to handle.

Article 14. Foreign Fuels. Considerable variation in grade, price per ton and analysis was observed with the Illinois coals. Little Jack was found to be the most pleasant to handle and gave the lowest evaporative cost, although Illinois pea-coal was nearly as low. As with Iowa coals, considerable smoke, soot, dirt and dust were encountered. The sulfur content of Illinois coals is usually lower but the cheap grades of Illinois coal form as much or more clinker than the Iowa lump coals.

The Kentucky and Tennessee coals are very quick to fire but fuse together into masses in the furnace. The former is of a tough blocky structure, exudes much tarry matter when heated and becomes quite plastic before being entirely coked. Tennessee Smokeless is of a loose granular structure and breaks up if handled much. Its composition appears to vary greatly. A sample of a different shipment from that actually tested but selling at the same price was analyzed at the Station and yielded 79.0 per cent fixed carbon and only 4.2 per cem of ash with a heat value of 15,130 B. T. U. per pound of dry coal. Had this coal of less ash composition been used an evaporation cost of less than 37 cents as against 41.6 cents with that burned in the actual test should have been obtained. Tennessee Smokeless and Solvay coke evaporated more water per pound of fuel than any other fuels tested, including anthracite. No appreciable amount of clinker was formed with either the Kentucky or Tennessee coals.

The proximate analysis of Tennessee Smokeless is very similar to that of Pocahontas coal which sells at Ames at about

50 cents more per ton.

The big variation in heat values of fuels as purchased, noticed especially in the case of Tennessee Smokeless, is a very pertinent argument for the sale of fuels on the B. T. U. basis. The cost per B. T. U. in the better sample was only 88% of the cost in the lower grade. It is not practicable to have each lot sold to the customer analyzed, but each car load coming

to the dealer might have its heat value determined.

The cokes contain practically no moisture, very little volatile matter and about as much ash as the soft coals, except petroleum coke which has about 10% of volatile matter and about 2% ash. Anthracite lies between the better soft coals and coke in respect to fixed carbon and volatile matter and usually contains less ash than either. The cokes and anthracite do not cake, form practically no clinker, and yield a minimum of dirt, obnoxious gases, smoke and soot. Solvay coke is even in appearance and harder than gas-house coke, which is uneven in appearance and structure. Foundry coke has a more whitish lustre than either of the above two. All are somewhat porous. Petroleum coke is the residue from petroleum distillation, has a very black shiny appearance and is more porous and more liable to crumble than any of the other cokes.

VI. GENERAL DISCUSSION.

Article 15. Tests and Results. 1. Varieties of Tests.—Two general kinds of tests were employed, designated as "short firing" and "long firing." For "short firing" tests the fire was fed about every two or three hours. For "long firing" tests enough fuel was fired at the beginning to last through the entire test. The object was to learn the efficiency secured by (1) keeping the fire at a low and fairly constant level, and

that secured by (2) the usual practice of nearly filling the furnace and allowing a gradual lowering of the fuel level toward the grate. The fuel economy was usually found to be better under the latter conditions. An equal number of each kind of tests was not made upon all of the fuels listed in tables I and II; hence the figures presented there are not quite fair to all. On that account the number of each kind of firing is included in the same tables.

Special tests were made to study the effect upon efficiency of mixing of fuels, size of fuel, depth of fuel bed, capacity developed and damper openings. These special tests are all discussed later.

2. Length of tests.—The aim was to make each general test approximately 8 hours long. For most short firing tests the time was fairly easy to fix, while in the long firing tests an obstacle was encountered on account of inability to estimate beforehand the evaporative power of the fuel employed. The general tests on cokes and coals actually varied in length from 5.5 hours to 9.67 hours. The test on peat was 3.33 hours long.

Some of the special tests were even shorter.

No attempt was made to determine the effect length of test had upon efficiency. At Urbana the lower efficiencies were had with the shorter tests. This was thought to be due partly to more inefficient burning of the first fire. The difference was not so marked between 16-hour and 24-hour tests as between 8-hour and 16-hour tests. There is no doubt that longer tests reduce the per cent of errors of observation. Longer tests would have reduced the per cent of loss in grate droppings at Ames.

3. Mixtures of fuels.—Three tests were made burning a coke together with an Iowa soft coal to learn if the volatile matter in the latter could be better utilized because of the presence of more fixed carbon. Test No. 10 was made with 2 pounds of Saylor coal to 1 pound of gas-house coke, well mixed before firing. For the other two tests equal weights of Boone coal and Solvay coke were used. In No. 25 the Boone coal was fired first with the coke directly on top. In No. 26 the two were well mixed before firing.

In all three trials, practically the same evaporative power was realized that occurred when the coke and coal were burned

separately.

Following are the figures leading to the above deduction.

Test	No	10	25	.26
Fuel	<u> </u>	Saylor—2/3	Boone-1/2	Boone-1/2
		Gas-house		
		coke—1/3	coke—1/2	coke—1/2

Kind of FiringShort	Long	Long
Equiv. Evap. (212°F.)		
per lb. Fuel as		
Fired6.21 lb	6.00 lb	6.03 lb.
Equivalent average evaporation (212°F.) for	2/3 lb.
Saylor coal and 1/3 lb. gas-house		
separate tests No. 2 and 4 on Say		
and 11 on gas-house coke		
Difference by test No. 10		
Equivalent average evaporation (
Boone coal and 1/2 lb. Solvay col		
No. 24 on Boone and tests No. 2		
coke		
Difference by test No. 25		
Difference by test No. 26		

4. Type and Size of Boiler.—Experiments upon more than one type of heating plant would have added value to the results obtained. Data would have been especially interesting on hot water heaters where the heating surface is usually cooler than in the steam boiler and on hot air furnaces where the heating surface is often hotter than in the boiler. Of the two types of steam boilers used at Urbana, one gave a higher efficiency with all fuels tested, thus supporting the idea that nearly the same order of fuel efficiencies obtains in boilers of different types. The difference was much more marked, however, in the case of Pocahontas coal, the ratio of its efficiency in the two boilers being about 4 to 5. In fact, Boiler D₁, which is of the vertical type, gave a lower efficiency with Pocahontas coal than with Illinois soft coals. With Boiler D, which is of the horizontal type, the reverse was true. Since the analysis of Tennessee Smokeless, tested at Ames, is similar to that of Pocahontas coal, it may be that the Tennessee coal, which showed up so well in the horizontal boiler at Ames, would not do so well in a vertical boiler or furnace.

The rated capacity of the boiler used at Ames, 1,350 square feet of radiation, is something like two or three times that usually installed for an 8-room house in this climate. While the size of unit is one of the factors affecting efficiency, yet it is believed that the smaller unit such as is required for an 8-room house will have nearly as high efficiency, or at least the same order of fuel efficiencies, other conditions being similar. Also, the results ought not to be much different for larger units of the same type.

5. Comparison with power boilers.—As might be expected, lower efficiencies are obtained in a house heating boiler than

in a power boiler. The ratio is something like from 80% to 95% as between the house heating boiler herein described and power boilers of 100 and 200 horse power capacities used in different parts of the State. The difference is due perhaps to a number of things, among which might be the larger size of the power boiler, a higher temperature of combustion in the power boiler, and a smaller heating surface per unit of evaporation in the house heating boiler, resulting in a higher temperature of waste chimney gases. A low furnace temperature may mean poor combustion of the volatile gases and a high temperature of chimney gases means more heat carried out the stack.

6. Rate of Evaporation.—For the general tests it was the aim in operating to regulate evaporation to the equivalent evaporation of 200 pounds of water from and at 212° F. per hour which is very nearly 60% of the boiler's rated capacity. The actual average equivalent evaporation for the tests on cokes and coals varied from 170 to 227 or from 50.3% to 67.3% of the rated capacity. Most of the tests however were between the limits of 55% and 65% of the rating.

At 50% of the rated capacity the equivalent evaporation from and at 212° F. is 2.15 lb. per hour per square foot of boiler heating surface, and at 60% it is 2.58 lb. 2.58 lb. corresponds to 13.4 sq. ft. of heating surface per boiler horse power.

It is well known among heating engineers that for this climate and for local fuels, heating boilers and furnaces are highly over rated. This partly explains why it is necessary to install a boiler or heater of a rating higher than the actual capacity required to be developed. Another reason will be discussed in the next paragraph. There is no valid reason why a square foot of heating surface in a house heating boiler should be given a higher rating of evaporation than in a power boiler unless it be that fuel economy is sacrificed for low first cost and a small boiler space.

7. Capacity with different fuels.—Another point which should influence judgment on the capacity of a furnace or holler chosen is the kind of fuel to be used. Table IV on page 21 gives the comparative lengths of life of full charges of the various fuels. A great difference exists between anthracite and Iowa coals. The over rating of heating boilers is now further explained when it is stated that the maker's rating is based upon the evaporation that can be maintained for 8 hours with 80% of a charge of anthracite filling the furnace to the level of the center of the fire door. The other 20% is considered as a rekindling charge.

There are also times in severe weather when the full es timated supply of heat will not be sufficient. Of course it must be expected that the furnace will be over worked at

times, but all things must be considered.

Taking into account then the high evaporative rating, the burning of soft coals, and the excess heat required at times, it will usually be found advisable to install a boiler rated at least twice the capacity actually required under ordinary circumstances.

8. Operating conditions.—Outside influences such as would affect conditions did not change much from test to test. The temperature of boiler room air ranged from 58° F. in winter to 92° F. in summer. The boiler feed water ranged in temperature from 47° F. to 72° F. More soot may have been present in the chimney and in the pipe leading to it during the last tests, but the draft readings, as the tests went on, did

not indicate any noticeable effect from such cause.

9. Lifficulty of maintaining constant conditions and of securing equitable observations.—The efficiency reached hinges more or less upon constancy of conditions. In these tests the feed water entered through a hand regulated valve from a cold water main. There was no objection to the cold water if its entrance could have been kept at a constant rate of flow. But that was not quite possible and the valve opening had to be changed from time to time to keep the water in the boiler at the proper level. A greater influx of cold water would lower the boiler pressure which would in turn actuate the damper regulator to admit more air to the fire. The fire would then burn up, increasing the temperature of the waste gases, and the impetus thus gained would raise the boiler pressure to above normal before the fire could be checked down again. Such fluctuations do not make for the best economical results. In some cases this effect was more marked than in others.

Those fuels having the most tendency to cake and clinker were accordingly most inclined to burn holes or to form dead spots in the fire. From one standpoint it might seem just to poke and level all fuels at the same interval of time. Or it might seem just to keep one fire as free from holes and dead spots as another. The actual policy followed lay between these two. All fires were fixed as the operator saw fit, and no record was made of the time of attention. Poking and leveling were not resorted to so often however that effect of holes and dead

spots upon fuel economy was completely obliterated.

Difficulty of collecting accurately representative samples of flue gas is always prominent. Composition of the gases is likely to vary in different parts of the stack or flue from which they are drawn. Without a recording indicator it is practically impossible to make analyses as often as other readings are taken. And analyses as far apart as one hour may not represent the average. Difficulties experienced with continuous samplers or collectors were in getting the large amount of water required in such a condition that it would have no effect upon the composition of gas, and in drawing a fair sample of the gas so collected into the analyzing apparatus. Agitation of the gas before being drawn from the sampler resulted in a considerable difference of composition as analyzed.

The greatest danger of unavoidably inaccurate observation lay, it is believed, in starting and stopping the tests. The alternate method was employed in which the end of test was determined when it was estimated that the same value of fuel lay upon the grate as at the start of the test. With the small amounts burned in an 8-hour test, an error of a few pounds would make an appreciable percentage of error in the calcu-

lated results.

Unconsumed carbon in ash and refuse, caused partly by fuel falling through the grate from the fresh fire, was always greater than would likely be obtained in actual practice. actual practice there is usually a layer of nearly carbon free ash on the grates which prevents the fuel from dropping through. Also it seemed best to allow the fuel remaining at the end of test to burn down before shaking the grates and weighing up the ash and refuse. Some fuels such as coke would not burn down so well, and while a correction was made, yet absolute accuracy could never be depended upon. Had the grates been shaken at the end of test, too much unconsumed fuel might have gone through or the fuel left upon the grates might have contained ash that should have been included in the weight of ash and refuse. The so-called standard method by which the test begins with a new fire and ends with collection and analysis of the entire contents of both ash pit and fire box, also has objections. Conditions during the first minutes of test are not representative of the test as it should be, and handling of the fuel and ash at the end of test is inconvenient.

10. Variations.—The most noticeable variations in results between two or more tests of the same fuel are in the case of Boone coal and gas-house coke. The low efficiency of boiler and grate (31.5%) in short firing test No. 24 with Boone coal is thought to be due to the poor condition of the lot from which it was taken. The proximate and calorific analyses did not differ much from the others. This coal had been in storage for several months. It was broken and small in size, and from its general appearance one might think it had deteriorated greatly. This was one of the few tests in which CO was analyzed for,

and resulted in finding an average of 1.5% CO by volume, showing where a part of the large waste went to. The rapid burning down of this coal in the furnace with the usual rate of evaporation was surprisingly noticeable. The average boiler and grate efficiency of three short firing tests on two other lots of Boone coal was 46.8%.

Of the two short firing tests on gas-house coke, No. 8 resulted in 65.8%, and No. 11 in 55.5% efficiency. Most of this difference is accounted for by a higher temperature and a greater excess of oxygen in the flue gases from the latter test. The calculated per cent of heat carried away by stack gases was 23.7% while in test No. 8 it was only 15.9%. The personnel of observers was changed between these two tests and may have had something to do with the difference in results.

Test No. 6 on foundry coke is not considered conclusive, since the efficiency is low and the per cent of heat unaccounted for

is suspiciously high for a fuel so high in fixed carbon.

The only fuel giving a better efficiency with short than with long firing was Ogden lump coal. This may have been due to

its natural composition or to operating conditions.

The apparent fact that soft coals high in fixed carbon such as Little Jack and Tennessee Smokeless have a better efficiency than anthracite may be due to the fact that anthracite does not produce a flame long enough for the best result. It is also true that an 8-hour charge of anthracite, at the capacity employed, did not bring the fuel level so high in the furnace as with the lighter coals. See Article 19.

Article 16. Probable Errors. Errors affecting fuel analysis were the ones most likely to be introduced and were probably greatest in sampling. The heat values obtained are not supposed to be in error by more than 2 or 3 per cent. The process of analysis in itself is much more accurate. The most difficulty encountered in checking was with the analysis of peat, the moisture content of which is quite unstable.

The calculated composition of ash and refuse should be within 5% of the actual, and is considered better than an actual analysis because of the difficulty of securing a fair sample.

Thermometer readings were taken to the nearest degree. The pyrometer readings of flue temperatures may be off as much as 10 or 20 degrees, F.

Boiler and barometric pressures were read closer than was actually necessary for calculating the quality of steam to within one-tenth of one per cent.

The recorded analyses of CO₂ and oxygen in the flue gas may be as much as 2% from the true averages in some tests.

The largest possible error of all observations was in determining the time when as much heat value was left in the fuel

bed as was present at the start of test. In extreme cases the error of fuel weight might have been as much as 10 pounds. With a total fuel weight of 200 pounds, 10 pounds would mean an error of 5% and with a fuel weight of 300 pounds the per cent of error would be 3.33.

The recorded weights of fuel, ash and refuse, and of evap-

oration should be within 1% of the actual.

An idea of the accuracy of evaporative performance, which involves both evaporation and estimating end of test, may be gained by quoting here figures from Article 21 on Amount of Fuel Charge and Efficiency. Both long and short firing tests were made upon 11 different fuels. The average difference between the two methods in boiler and grate efficiency was 2.7% in favor of the long firing. The difference varied from 2.9% in favor of the short firing to 5.7% in favor of long firing. It is believed that the variations of these differences from the average is due as much if not more to the nature of the fuel rather than to errors of observation.

Practically all calculations were made with the slide rule and are usually accurate within about one half or one quarter

of one per cent of the resulting quantity.

Ultimate analyses of the fuel were not made and the calculated per cent of heat carried away in the flue gases was based upon all carbon and no hydrogen in the combustible. The hydrogen actually present in Iowa coals would seldom increase this item by more than 2.5% of the total heat value of the original fuel.

Article 17. Comparisons with Other Tests. As mentioned in the introduction, some tests were made upon the boiler at Ames early in 1911 for thesis work. One 8-hour test was made upon each of Boone, Saylor, and Colfax coals. Following in table V are some of the more important quantities taken from

the thesis reports.

A most superficial comparison of Tables V and VI reveals a greatly lowered fuel economy under unfavorable conditions. From table V it appears that among the causes of poor results might be included too frequent disturbances of the fire, a too high rate of evaporation with the draft available, too low an excess of oxygen, and coals which had deteriorated or which had been broken up into pieces too small to burn properly. Much of the rich volatile combustible was distilled off without burning as indicated by the low total per cents of CO₂ and oxygen and by the high per cents of heat unaccounted for. Scot collected so rapidly that it was found necessary to clean the flues about every two hours in order to keep up the normal steam pressure. The pipe leading from the furnace to the chimney and made up of horizontal and vertical sections, was

TABLE V.

THESIS TESTS-BOONE, SAYLOR AND	COLFAX	COALS.	
Fuel	Boone	Saylor	Colfax
Proximate Analysis			Constant
Moisture, %	8.64	8.88	5.89
Volatile Matter, %	31.57	31.57	84.98
Fixed Carbon, %	45.44	47.68	46.73
Ash, %	14.35	11.87	12.40
Calorific Analysis			
B.T.U. per pound of fuel as fired	10,710	11,450	11,390
Boiler Gauge Pressure	4.54	5.12	5.17
Draft in Flue, ins. water	0.076	0.098	0.117
Draft in Furnace, ins. water	0.010	0.023	0.010
Temperature of Gases from Boiler, °F 6	00	600	600
Flue Gas, CO2, by volume	11.2%	11.6%	12.2%
Flue Gas, Oxygen, by volume	3.4%	2.4%	1.8%
Flue Gas, Nitrogen, by volume	85.4%	86.0%	86.0%
	506	573	668
Ash and Refuse, total lbs	33.5	29	25.2
Equiv. Evap. (212 °F.) per pound fuel as fired	3.47tb	3.74 lb	3.81 tb
Boiler and Grate Efficiency	39.4%	31.7%	32.5%
Cost of Coal per Ton	\$3.50	\$3.50	\$3.25
Cost of 1000th Equiv. Evap. (212 °F)	50.3c	46.9c	42.6c
Per Cent of Rating Developed	65.1	79.2	94.4
Boiler Heat Balance			
Heating and Evaporating Water	39.40%	31.70%	32.50%
Heating Flue Gases	10.83	11.26	10.54
Evaporating Moisture in Coal	1.04	1.00	0.64
Grate Losses	1.60	0.73	0.51
Unaccounted for	47.13	55.31	55.78
Total	100.00%	100.00%	100.00%

The most noticeable differences between the above results and those obtained later by the Station tests on the same fuels are apparent from an examination of Table VI, which follows.

TABLE VI.

STATION TESTS—BOONE, SAYLOR AN	D COLFAX	COALS.	
FuelNumber of Test	Boone 4	Saylor 2	Colfax 32
Draft in Flue, ins. water	0.122	0.123	0.130
Draft in Furnace, ins. waterTemperature of Gases from Boiler. °F	0.087 653	0.062 663	0.100 630
Equiv. Evap. (212 °F.) per pound fuel as Fired Per Cent of Rating Developed	5.06fb 61.2	5.22fb 54.4	5.01fb 61.4
Boiler and Grate Efficiency	46.8%	43.5%	42.0%
Heating and Evaporating Water	46.8%	43.5%	42.0%
Heating Flue Gases	19.9	19.4	13.7
Evaporating Moisture in Coal-	1.4	1.3	0.9
Grate Losses	2.7	7.2	9.0
Unaccounted for	29.2	28.6	34.4
Total	100.0%	100.0%	100.0%

taken down and cleaned before starting the Station tests. More than half its cross section was found to be filled with soot. After cleaning it was erected in an inclined position as shown in figure 10, page 53. By referring to table V a great difference will be apparent between the draft just outside the furnace and that in the furnace just over the fire, which might indicate the presence of some obstruction between these two points which did not exist when the Station tests were made.

Firing for the tests in table V was much more frequent than in any of the Station tests. The fuel was fired one shovel-full at a time just often enough to keep the fire at a constant level. The grates were shaken and the slicing bar used much more also. The frequent agitation of the fire undoubtedly had some effect upon the efficiency. Boiler logs indicate that flue temperatures were estimated rather than read since every 20 minute record is at 600° F. Since the three fuels were all nearly of the same class, the temperatures would no doubt be higher for the tests with higher rates of evaporation.

Tests at the Illinois Engineering Experiment Station, Urbana, Illinois, with 7 fuels in 2 types of boilers resulted in the same general order of fuel efficiencies as did those at Ames,—cokes coming highest, anthracite second and soft coals lowest.

The two types of boilers are designated as D_1 and D_2 . D_1 is a vertical boiler, rated at 800 sq. ft. of radiating surface. D_2 is a horizontal sectional boiler rated at 1,075 sq. ft. of radiating surface. Better efficiencies were secured with D_2 than with D_1 . Three of the fuels tested at Ames were also tried at Urbana—anthracite, gas-house coke and Solvay coke. The efficiency obtained with these three fuels at Ames are about the same as the averages of the 8-hour, 16-hour and 24-hour tests on the same fuels in boiler D_2 at Urbana. Boiler heat balances are not included in the Illinois bulletin, so that comparison on such basis is not so easily made.

The standard method of starting and stopping tests was used at Urbana. The average per cent of rated capacity developed was about 65. The evaporative costs were of course lower than at Ames on account of the lower ton costs of good

grades of fuel in Illinois.

Anthracite, coke and Pocahontas coal were fired by the spreading method. Illinois soft coals were fired in a way approaching the coking method. "In all tests made with Boiler D₁, 75 lb. of fuel were fired at one time, and in all tests made with D₂, 105 lb. of fuel were fired at one time."

The average plant efficiencies of each fuel on each boiler are plotted on figure 3, page 36. Other references to the Illinois tests will be found in Article 15. on Tests and Results, pages 24 and 25, and in Article 19 on Fixed Carbon and Efficiency.

VII. GENERAL CONDITIONS RELATED TO EFFICIENCY WITH GRAPHICAL REPRESENTATIONS.

Article 18. Significance of Readings and Results. While errors due to unfair conditions are always liable to creep in and spoil some of the effects of finer readings, yet much prac-

tical knowledge of actual working conditions can be gained by

a study of seemingly theoretical observations.

Flue gas analysis requires some study for a true interpretation. Air contains by volume about 79% nitrogen and about 21% oxygen. When burning carbon to CO_2 (carbon dioxide) the sum of CO_2 and oxygen should also equal 21%. When the sum is less than 21%, CO (carbon monoxide) should be present. If there is hydrogen in the fuel, $\mathrm{H}_2\mathrm{O}$, or steam, will be formed by its combustion. The steam will be condensed before the gas is analyzed, and less than 21% of CO_2 and oxygen will result. If combustion is not perfect there will be a still lower total of CO_2 and oxygen. A lower total then with one fuel than with another does not necessarily mean poorer combustion. But in general, a very low total per cent of CO_2 and oxygen in the flue gases indicates that some CO or hydrocarbon gas or both, are escaping unburnt.

The boiler heat balance proves of much service in furnishing an idea of how the heat value of the fuel is distributed among useful heating and different losses. The per cent of heat loss calculated for the flue gases is not exactly accurate because of the hydrogen content in the volatile matter of soft coals, the heat carried out by the products of combustion from one pound of hydrogen being much greater than the corresponding amount for one pound of carbon. The per cent of heat unaccounted for is in some respects misleading because it includes the variable unknown errors as well as radiation losses and the heat in unconsumed fuel and gases. Notwithstanding these faults, the boiler heat balance is thought to be well worth using.

Special tests were made in order to study the effects of size of fuel and rate of evaporation upon efficiency, and to study

also the effects of various damper positions.

Article 19. Fixed Carbon and Efficiency. Other things being equal the ratio of fixed carbon to volatile matter appears to have a very direct effect upon the efficiency. The "other things" are however not easy to control or estimate. The size, structure, freshness and percentages of chemical constituents, as well as operating conditions are liable to be different for every fuel tried. But numerous and careful tests made by U. S. Government and State experimentalists prove the assertion made in the first sentence of this paragraph. This subject is discussed and illustrated by means of diagrams on pages 232-236 and pages 253-262 of Bulletin 23, U. S. Bureau of Mines on "Steaming Tests of Coals." It is also discussed and illustrated in the Illinois bulletin referred to in the Introduction to this bulletin.

Figure 2 is a diagram with the average boiler and grate efficiency of each fuel plotted against the average per cent of

heat in the fixed carbon. This classification according to the per cent of total heat value contained in the fixed carbon is one which the writers have never seen used before, and is one which they believe has certain advantages over other classifications. It is more simple than the "carbon-hydrogen ratio" in that it requires no ultimate analysis. It appears to be more just than the classification based upon the weights of fixed carbon and volatile matter, because a certain weight of volatile matter may vary greatly in heat value, and efficiency is the ratio between evaporation and heat value of the combustible—not between evaporation and weight of the combustible. Data from which figure 2 is made will be found in table VII, page 34, Fixed Carbon and Efficiency.

TABLE VII.
FIXED CARBON AND AVERAGE EFFICIENCY.

No. c		Weight of	Part of	Efficiency				
Of the Name of fuel	fixed carbon in fuel as fired	total heat in fixed carbon	By test, boiler and grate	By Formula 1	By Formula 2			
		%	%	%	%	%		
1	Boone	39.8	54.5	43.6	46			
2	Buxton	43.7	59.8	51.5	50.5			
3	Centerville	46.5	54.2	44.6	46 .			
4	Colfax	42.2	53.1	43.4	45 .			
5	Ogden	41.0	51.4	44.6	43.5			
6	Saylor	42.5	52.5	48.6	44.5			
7	Empire lump	44.1	55.4	49.0	47			
8	Empire nut	45.4	57.7	46.9	49			
9	Little Jack	54.8	65.8	55.9	55.5			
10	Ill. Mine Run	41.5	56.9	51.5	48			
11	Ill. Pea-coal	43.8	56.1	42.8	47.5			
12	Ken. Red Torch	56.2	55.1	42.8	46.5			
13	Tenn. Smokeless	68.3	75.3	64.2	63			
14	Foundry Coke	84.0	96.5	52.3		62		
15	Gas-house Coke	82.3	97.5	60.6		63		
16	Petroleum Coke		84.0	51.9		52		
17	Solvay Coke	86.6	97.5	65.6		63		
18	Egg Anthracite	86.3	91.2	54.8		58		
19	Pea-anthracite	79.5	88.5	56.6		55.5		
20	Iowa Peat	12.5	51.8	43.2	44			

 $^{1}\rm{Efficiency}=.625-.8(.75-x),$ with x between .50 and .75. $^{2}\rm{Efficiency}=.650-.8(1.00-x),$ with x between .80 and 1.00.

The writers have taken the liberty of averaging the plant efficiencies of each fuel with each boiler as tested at Urbana and have plotted them in figure 3 against per cent of heat in fixed carbon and against per cent of weight of fixed carbon.

One classification comes about as near making definite curves as the other.

Of the greater variety of fuels tested at Ames, however, the classification on weight of fixed carbon of such fuels as peat

Fig. 3 —Relation between Fixed Carbon in Fuel and Efficiency—Illinois Tests

and petroleum coke would have thrown their points much farther from the central lines on figure 2.

From both figure 2 and figure 3, it will be noted that for

all three types of boilers, the fuels divide themselves into two groups with soft coals in one and anthracite and the cokes in the other. No conclusive reason can be given for this, although it is possible that the longer flame resulting from the burning of soft coals is conducive to better efficiency, and thus accounts to a certain extent for the natural grouping.

It will also be noted that the change in efficiency is different for each type of boiler. For the boiler tested at Ames the central line or curve representing the soft coals and peat has

the formula.

Efficiency=.625-.8(.75-x),

when x lies between the limits of 50% and 75% and represents the per cent of heat value in the fixed carbon. The line for anthracite and coke has the formula,

Efficiency=.65-.8(1.00-x),

where x lies between the limits of 80% and 100%.

The per cent of total heat in the fixed carbon is arrived at by multiplying the per cent of weight of fixed carbon by 14,500 B. T. U. and then dividing by the total heat value of

one pound of fuel.

The fact that fuels high in volatile combustible give lower efficiencies is partly explained by the theory that the hydrocarbons are distilled into gases which escape before the furnace temperature is high enough to bring about their complete combustion. In connection with the above statement is the theory that the hydro-carbons, which are driven off as oily vapors, cannot come into sufficiently intimate contact with the oxygen of the air to produce good combustion. A particle of vapor may be completely surrounded by live air at a high temperature, and yet only the lighter elements of the outer layer of that particle may be consumed. The central part of the particle will then carry a greater per cent of carbon and will pass out of the combustion chamber unconsumed. Such particles as are made up almost entirely of carbon appear as visible smoke.

Fixed carbon on the other hand cannot escape in the form of a gas until it has been burned into carbon monoxide (CO) or carbon dioxide (CO₂). If the air supply is insufficient, some carbon will be burned only to CO which gas represents a utilized heat of only about one-third as much as does CO₂.

Visible smoke contains finely divided particles of carbon in the solid state, escaping with the gases, but does not usually amount to an appreciable loss of heat value. Its presence however does signify that considerable heat is escaping in the form of colorless and unburnt combustible gases.

The presence of unburnt combustible gases in the stack may also be detected by a low total per cent of CO₂ and oxygen

from the flue gas analysis, as explained in article 18, Significance of Readings and Results. Figure 4, page 39, illustrates roughly this statement. Each point on the diagram represents the average for each fuel of all the general tests on that fuel. An exception is made to this grouping in the case of Boone coal because the test on one lot was so much different from those on the two other lots of the same fuel. The points are plotted between the total per cents of CO, and oxygen, and the per cent of heat unaccounted for. Per cent of heat unaccounted for is used rather than boiler efficiency because it is supposed to better reveal the per cent of heat escaping in the form of unconsumed gases. It is believed that the points would group themselves in an area of much less width were it possible to isolate the two quantities involved from the effect of a multitude of dissimilar circumstances. Table VIII, page 38, gives the data corresponding to figure 4.

TABLE VIII. ANALYSIS OF FLUE GAS-AVERAGES.

	Fuel	D	Dry flue gas by volume					
No.	Name	Part of total heat in volatile combustible	CO2	Oxygen	CO ₂ plus oxy-	Nitrogen and unburnt fuel gases	Part of total heat in fuel fired un- accounted for	
		%	%	%	%	%	%	
1	Boone ¹	53.8	9.4	9.3	18.7	81.3	27.6	
1	Boone ²	55.7	10.5	5.7	16.2	83.8	43.5	
1	Boone	56.0	10.3	6.4	16.7	83.3	35.6	
5	Buxton	40.2	12.9	5.9	18.8	81.2	28.0	
3	Centerville	45.8	12.8	6.1	18.9	81.1	33.3	
4	Colfax	46.9	12.8	5.5	18.3	81.7	32.7	
5	Ogden	48.6	13.7	4.8	18.5	81.5	36.8	
6	Saylor	47.5	10.6	7.4	18.0	82.0	30.9	
7	Empire lump	44.6	13.5	4.2	17.7	82.3	30.7	
8	Empire nut	42.3	11.8	5.4	17.2	82.8	32.6	
9	Little Jack	34.2	11.9	5.8	17.7	82.3	22.7	
10	Ill. Mine Run	43.1	10.6	7.6	18.2	81.8	20.5	
11	Ill. Pea-coal	43.9	13.4	4.8	18.2	81.8	39.0	
12	Ken, Red Torch	44.9	12.3	5.7	18.0	82.0	31.7	
13	Tenn. Smokeless	24.7	14.4	4.9	19.3	80.7	21.0	
14	Foundry Coke	3.5	9.2	10.7	19.9	80.1	25.1	
15	Gas-house Coke	2.5	8.6	11.2	19.8	80.2	12.8	
16	Petroleum Coke	16.0	14.0	4.9	18.9	81.1	26.8	
17	Solvay Coke	2.5	11.9	6.7	18.6	81.4	10.5	
18	Egg Anthracite	8.8	11.9	8.4	20.3	79.7	18.7	
19	Pea-anthracite	11.5	7.2	12.3	19.5	80.5	13.4	
20	Iowa Peat	48.2	13.9	5.1	19.0	81.0	19.0	

¹Tests 3 and 4. ²Test 24. ³Tests 27 and 28.

Such classification of fuels as illustrated in figures 2 and 3 suggests a plan whereby every operator of a house heating plant could determine for himself very nearly what the comparative cost of various fuels would be without a test on any of them. All that would be necessary for calculating the cost

would be the characteristic of the type and size of boiler or furnace used together with the proximate and calorific analysis of each fuel to be considered. The manufacturers of the heating furnace or boiler could determine for each type, its characteristics in regard to fixed carbon in the fuel. Each operator of a heating plant could then be supplied with a curve or table of data on the characteristics of his plant. Then if his dealer in fuels supplies him with prices per ton and analyses of the fuels he handles, it would be a comparatively simple matter for the operator to figure heating costs.

Article 20. Size of Fuel and Efficiency. Special observations were made, tests 46 and 47, for the study of the effect of size of coal upon efficiency. Fuels for both tests were taken from the same shipment of Buxton coal which was quite uniform in quality. For test 46 some of the larger lumps measuring 16 to 18 inches in length were broken just enough to pass through the furnace door. The average size was about 8 inches. For test 47 all pieces were broken to 4 inches or smaller, the average size being about 3 inches. Long firing was employed for both. The boiler and grate efficiencies obtained are 53.3% and 49.8% for the large and small size respectively.

The average of tests 31 and 34 on Empire lump coal resulted in 2.1% more efficiency than the average of tests 19 and 20 on Empire nut coal. The analyses of these two sizes of the same coal was about the same but the smaller size (Empire nut) was more freshly mined when tested. A long and short firing test was made on each.

The same increased efficiencies with large size fuel were noted wherever a fair comparison could be made. Tests upon power boilers have proved that maximum efficiency may be obtained with coal smaller than lump size. However, in such instances the fuel bed was not so deep and could better carry fine coal without cutting down the air supply. Also the high furnace temperature under the power boiler was more conducive to better combustion of the hydro-carbons.

Article 21. Amount of Fuel Charge and Efficiency. With the exception of Ogden coal, all of the 11 fuels, tested under both long and short firing conditions, produced better results with long firing. The average difference in boiler and grate efficiencies was 2.7% of the total heat value of the fuel. The variation was from 0.3% with Saylor coal to 5.7% with Centerville lump coal. The opposite difference with Ogden coal was 2.9%. Short firing or small charge tests usually resulted in a greater per cent of heat carried out by the flue gases or unaccounted for, indicating that frequent firing of small charges

is either wasteful of heat actually generated or is unfavorable

to good combustion.

Article 22. Depth of Fuel Bed and Efficiency. The average depth of fuel bed depends upon the style of firing and amount of fuel charge. A special test, 7 hours in length, was made to determine the effect of depth of fuel bed upon flue gas temperature and composition. The principal log records are given in table IX, page 41 and plotted in figure 5, page 42. Each observation plotted was made after conditions had become quite constant. After each such observation the fire was cleaned or replenished with fresh fuel so that all conditions imposed except depth of fuel bed should be approximately the same for the next result. A mixture of soft coals was used and the rate of evaporation was about 60% of the rated capacity of the boiler.

TABLE IX.

DEPTH OF FUEL BED AND FLUE GAS.

				111.10	LOE O				
	fuel	in,			Flue C	Gas			
	of	flue, ins	i ±	P	By Volum	e part alue			
Time	Depth o	Draft in water	Temperat- ure	CO2	Orygen	CO ₂ p s oxygen	Sensible heat as p		
	ins.		°F.	%	%	%	%		
9:10 AM 9:40 AM		kindled. fired (1	00 lbs.)					dn	
10:15 AM	3.0	.13	690	12.0	5.5	17.5	17.1	ilding	
10:20 AM	Fuel -	fired (5	D lbs.)	Han.				Building	
11:45 AM	4.5	16	800	17.7	1.9	19.6	16.8	ja	
11:50 AM 1:15 PM		fired (1's				ked unti	1:15 PM		
2:15 PM	11.5	.12	475	13.4	4.4	17.8	10.6	1	
2:25 PM	Fire	giver, ar	excess	of air	to cok	e entire	fuel bed.	period.	
3:15 PM	Air s	supply c	hanged	back t	o norn	nal.	Was a		
3:45 PM	9.5	.14	625	14.2	4.6	18.8	14.6	down	
3:55 PM	Grate	Grates shaken and fire leveled							
4:15 PM	6.5	.15	700	15.0	3.3	18.3	15.4	Burning	
4:25 PM	Grate	s shaker	and fi	re levele	ed.	,		Bu	
4:55 PM	3.0	.15	850	13.0	7.2	20.2	24.4	12.6	

The lower flue gas temperature with a deeper fuel bed may be caused by a greater absorption of heat by the water legs at the sides of the furnace. In other words a larger proportion of heat reaches the water by radiation and conduction than by convection. Another theory is that a deep fuel bed may result

in a more even distribution of air throughout the fuel bed, which would lead to a lower flue gas temperature. The nearly constant total per cents of CO₂ and oxygen tell little regarding the degree of combustion attained.

Article 23. Capacity and Efficiency. The rate of evaporation for maximum efficiency is probably different for each fuel of a different size and composition and the naming of any such rate of evaporation should be based upon a large number of tests as authority. Six full tests at different capacities varying from 24.3% to 104.2% of the rating were made with Illinois mine run coal, and four tests with capacities varying from 33.8% to 98.3% of the rating were made with Ogden lump coal to study the relation between capacity and efficiency.

The temperature of flue gases is always higher with a higher rate of combustion. With other conditions and losses the same, this would of course mean more loss of heat in the waste gases and a lower efficiency. Not so great an excess of air might be needed however which would tend to lower the amount of heat lost in the gases. Also the higher furnace temperature possible may mean better combustion of the gases. This appears to be the case with the Ogden coal where the per cent of heat unaccounted for is much less with the higher capacities, although the flue gas analysis would not indicate any definite difference. Size of fuel should also receive some consideration here. It is possible that with a higher temperature, consequent to a higher rate of burning, the volatile matter in large lumps, as in Ogden coal, is not distilled out so soon as from smaller lumps. If kept in the lumps until a greater furnace temperature is reached, better combustion of the volatile matter will be secured.

Tables X, page 44, and XI, page 46, give the most interesting results for the different rates of evaporation, and some of the same results are plotted in figure 6, page 45. The full data on these tests are given in table XIII. Boiler efficiencies are plotted in figure 6 because it is thought that they would eliminate the inequalities due to grate losses better than the boiler and grate efficiencies would.

It is surprising to note that the efficiency with Ogden coal over such a wide range of capacity developed was practically constant. As explained above the higher furnace temperature evidently produced better combustion of the gases which balanced the greater losses due to a higher temperature of the waste gases. With Illinois mine run coal such was not the case. The maximum efficiency was reached at 40% of the rated capacity. Above and below this point, a greater per cent of sensible heat was carried away by the chimney gases

TABLE X.

CAPACITY TESTS ON ILLINOIS MINE RUN COAL.

Test No.	16	13	17	14	15	18
Average fuel charge, lbs	62.5	75.0	93.3	141.7	110.0	50.0
Flue gas temperature, °F	333 6.4 12.9 0.1 80.6	400 10.0 6.8 0.4 82.8	652 10.7 6.5 0.1 82.7	746 10.6 6.6 0.5 82.3	830 13.1 3.5 0.2 83.2	810 12.2 4.3 0.4 83.1
Per cent of boiler rating developed	24.3	40.2	58.9	88.8	99.2	104.2
Boiler efficiency, %	59.1	77.4	59.4	56.0	44.7	48.4
Boiler and grate efficiency, %	46.8	64.7	52.7	52.5	42,3	43.2
Boiler Heat Balance:—		04.7	F0 7	to r	42.3	43.2
Heating and evaporating water, %- Heating flue gases, %	10.8	8.4	52.7 15.0	52.5 18.7	17.7	17.3
Evaporating and heating moisture in fuel, %	1.1	1.2	1.3	1.4	1.4	1.4
Grate losses, %	22.3	18.0	11.7	6.9	5.6	10.5
Unaccounted for, %	19.0	7.7	19.3	20.5	33.0	27.6
Total heat in fuel as fired, %	100.0	100.0	100.0	100.0	100.0	100.0

and perhaps combustion was not so good. With a very deep bed of hot coals and with the fire checked down by dampers, a high efficiency might also be obtained at a very low rate of evaporation.

In general it would seem best to choose a boiler such that the average evaporation per square foot of heating surface would be from 20 to 2.5 pounds of equivalent evaporation from and at 212° F. per hour. This would correspond to 45% to 60% of the rating of the boiler tested at Ames.

In test 45 it was found necessary at times to open the fire door damper in addition to having the ash door wide open, in order to attain the high rate of evaporation with Ogden coal. The rate of evaporation in test 43 was about as low as possible with the same coal without employing other checks than the ash door damper.

The ash door was kept wide open during test 15 on Illinois mine run coal. It was necessary to use the choke damper in tests 16 and 13 with the same fuel.

Article 24. Dampers and Efficiency. Large wastes of heat

often occur in practice because of the wrong use of dampers in controlling the fire or because of air leaking into the fur-

TABLE XI.

CAPACITY TESTS ON OGDEN LUMP COAL.

l'est No.	43	44	37	45
Average fuel charge, lbs.	58	100	100	100
Flue gas temperature, °F	390 10.3 8.5	450 13.8	594 13.1	965 15.8
Flue gas, CO, %	81.2	4.5	81.3	82.1
Per cent of holler rating developed	33.8	45.9	60.9	98.3
Boiler efficiency, %	48.6	49.0	49.3	49.1
Boiler and grate efficiency, %	48.1	47.8	46.1	47.1
Boiler Heat Balance:— Heating and evaporating water, %	48.1	47.8	46.1	47.1
Heating flue gases, %Heating and evaporating moisture in fuel, %	10.9	9.6	13.7	20.0
Grate losses, % Unaccounted for, %	1.1 38.8	2.5 39.0	6.4	4.0 27.6
Total heat in fuel as fired, %	100.0	100.0	100.0	100.0

nace. With this in view special observations were made to determine the effects produced by different damper positions.

The regulating damper in the ash door should of course be attached to the regulator, if there is a regulator, or set so as to admit enough air under the grates for the degree of heat desired.

The damper found capable of doing the most damage in wasting heat at the ordinary rates of evaporation is that one located in the fire door. It has its good uses on certain occasions, as in further checking a low fire, admitting air to a hot bed of coals when the grates are clogged or helping to keep up a very high rate of combustion. Under ordinary conditions it is best kept closed. The effect of opening it is to dilute and chill the burning gases which then pass on out the chimney without giving up as much heat to the boiler water. It might be argued that the extra oxygen thus supplied would make for better combustion, but there is usually an excess of oxygen in the furnace anyway and it seems that the cold

air coming in through the damper would be just as likely to lower the degree of combustion by its chilling effect, especially

if the furnace temperature is not very high.

The normal position of the choke damper located at the point where the gases leave the boiler heating surface, is wide open. When a low fire is desired and closing the ash door damper will not cut it down enough, the choke damper should be partly closed.

The check damper which admits cold air at the base of the stack when the fire is to be checked down still more should be left closed as much as possible. When open it lowers the

draft produced by the hot gases in the stack.

It is a common practice in some installations, when filling the furnace with fresh fuel and checking the fire for the night, to leave the check damper open in order to keep the fire down. It is believed that this practice should be avoided as much as possible, because of inefficiency. The furnace temperature is high enough to distill off the hydro-carbons, but is not high enough to burn them properly. Better results would be secured if the fuel bed could be built up gradually, with the check damper closed, until the whole fuel bed is coked. Then the check damper could be opened for the night or for any other period of several hours with less waste. If anthracite or coke is burned the above precautions are not so important.

Table XII shows the different effects produced by varying the damper positions. Figure 7, page 50, and figure 8, page 51, show graphically the different results. Figure 9, page 52, shows the effect of suddenly checking down a hot fire.

The same experiments as are plotted in figure 7 were repeated nearly 5 hours later with the same fire. The coal had all coked to a dry state, the fire was leveled, and the fuel bed level was 5 inches lower. Very similar results were obtained as with the comparatively green fire.

A number of lessons can be learned by a study of the diagrams illustrating the effects of operations described in table XII.

The vertical line at 10:53 A. M. on figure 7 represents the time at which the fire-door damper was opened after conditions had been constant for several minutes. Immediately all drafts dropped. There was very little difference in the total of CO₂ and oxygen, but the per cent of oxygen was greatly increased, while the flue temperature was affected but little. This shows that although no better combustion was secured, yet more waste heat was carried out by the chimney gases. When the fire door damper was closed again, conditions returned to their original trend. The shaded portion of the

Flue Gas

Time	Roiler gauge pressure per inch.	Flue	Furnace	Ash Pit	Condensation	Temperat- ure	c 00	Oxygen	Sensible heat as part of fuel value
	lb3.	, ins.	water		lbs.	oF	%	%	%
	513		MAY	7 9, 1913					
io:30 A. M			with non					and fu	el level
10:30	5.7 5.7	.135	.12	.10	151	520 540	14.2	3.9	11.4
10 40 10:45 10.50	5.7 5.7 5.7	.14	.125	.115	183	545 550 545	14.0	4.6	12.6
10:53	Fire do	or dam	per oper	ned.					
10:55	5.5	.125	.085	.075	2.0	550	9.8	9.6	17.8
11:00 11:08	5.2 5.2	.12			248	560 570	9.0	10.5	19.6
11:10	Fire d	oor dan	nper clos	sed.		100			
11:15 11:20	5.7	.14	.11	.105	292	570		7.0	
11:25	5. 5 f	.13	.11	.11	323	560 540	11.6	7.8	15.9
11:33 Choic damper nearly closed.									
11:35 11:40	5.0 4.3	.00	.015	.00	362	480 410	12.8	6.5	12.1
11:43	Choke	damper	opened	about	half wa	у.			PIERE
11:50 12:00 N	5.4 5.6	.08	.05	065	392 424	500 510	10.5	9.1	15.3
12:01 P. M	Cho'e	damper	open fu	ill way.					
12:05	5.5	.13				520			
12:10 12:15	5.5	.12	.09	.09 .	454 470	525 530	9.0	10.6	17.9
12:16	Fuel b	ed level 10:30 A	with bo	ttom of	fire do	or open	ing. Fi	re not	touched
			MAY	7 21, 191	3.				
2:10 P. M			vith norm			all dam	pers, an	d fuel b	ed level
2:10 2:15	5.9	.14	.11	.11	164 192	670 680	15.7	2.3	14.0
2:19 Ash door damper closed tight.									
2:20	5.5	.16	.14	.14	214	680	15.7	3.1	14.8
2:25 2:30	3.8	.14	.13	.13	230 247	650 620	14.3	5.7	15.5
2:35	3.3 Norma	.14	ipply ag	rain		600			
2:40	5.8	.13	.07	.03		770	15.7	4.3	18.2
2:42 2:50	6.5	.13	.08	.07		800 710	10.7	4.0	10,2

2:53	Fuel be	d levele	d—4 incl	hes bel	low botton	n of f	re door	opening	
2:55	5.2	.13	.10	.06		700	15.9	1	13.9
2:57	Choke	damper	nearly c	losed.		5-3			
3:00 3:05 3:10	4.8 2.5 2.0	.01 .005 .000	.005	.00		680 58:) 48:)	15.4	3.6	12.7
3:13)	Normal	positio	n of all	damp	ers again.				
3:15 3:20	3.0	.12	.08	.04		650 740	16.9	3.8	14.7

diagram represents the approximate amount of sensible heat lost by opening the damper.

Partly closing the choke damper, illustrated on figure 8, does not show any such definite change in the chimney gas losses. Its main effect is to greatly lower the drafts and check down the fire.

Checking down the fire by closing the ash door damper at 2:19 P. M. is illustrated on figure 9. The fire is checked and the flue temperature lowered much in the same way as when the choke damper is partly closed. The vertical line at 2:53 P. M. represents the time when the fire was stirred and leveled. As always occurs in every day practice when the fire is so disturbed, more smoke is produced, and the sum of CO₂ and oxygen is lowered. While the excess of air is lowered and consequently, less sensible heat is carried out by the chimney gases, yet a greater per cent of combustible gases are discharged, unburnt, as indicated by the smoke and low total per cent of CO₂ and oxygen. This illustrates one of the possible ways of wasting heat when the fire is poked and disturbed unnecessarily.

The idea is sometimes stated that although the draft available is ample to produce the rate of combustion desired, yet considerable more efficiency would be secured were the draft stronger or more intense. It may be that this idea is emphasized too much since a sharper draft could not be allowed full action upon the fire, anyhow, because if it were, the rate of combustion would become too high. Just so much air must be passed through a given fire in a given condition and position to produce the rate of combustion desired. This is true, however, that a low stack, an obstruction in the stack, or admittance of cold air to the stack, will require more heat in the gases leaving the furnace to produce the draft needed to draw the required air through the fire. Experiments would be interesting, if made, to determine just how much more chimney heat would be needed to overcome the friction due to an obstruction in the pipe and to overcome the effect of a low stack and the effect of admitting cold air to the stack.

Fig. 7-Effects of Admitting Cold Air to the Fire above the Grate.

VIII. EQUIPMENT.

Article 25. Boiler and Dimensions. The steam house heating boiler used in the tests at Ames was of the horizontal sectional type. It was located in the basement of the Mechanical Engineering Laboratory of the Iowa State College. Figure 10, page 53, is a photographic view of the boiler as set up for the tests. Figure 11, page 54, is a sectional view of a 15" boiler of the same type. The maker's number is S-25-6, the letter S referring to the sectional steam type, the number 25 to the size in inches, and the number 6 to the number of The ash chamber, furnace and boiler are all enclosed in 6 vertical cast iron sections bolted together. heating surfaces are at both sides and above the fire box. sections and the back of boiler were completely covered with an 85% magnesia heat insulation about 1 or 1.5 inch thick. The cracks between the sections and between the sections and base were plugged with a special putty provided for that purpose in order to make the joints air tight. The covering and calking were in fairly good condition during the time of the

Station tests. Five sections of rocker grates run cross-wise of the furnace and are operated by two levers at the front of the boiler.

Fig. 10-Photographic Veiw of Boiler Set up for Operation at Ames.

The fittings consisted of a glass water level gauge, a steam pressure gauge, a pop safety valve and a damper regulator. The regulator consists of a brass corrugated expansion cylinder mounted on top of the boiler and connected directly to the steam pressure. The cylinder supports a counter balanced pivoted lever which in turn is connected to the regulating damper by a chain.

The smoke pipe leading from the boiler is 11 inches in diameter and is inclined as shown in the photograph, to connect

with the chimney. The top of chimney is about 43 feet above the top of boiler and about 11 feet away in a horizontal direction

Fig. 11.—Sectional View of 15 inch Boiler of Same Type and Same Number of Sections as the One Tested at Ames.

Steam is taken from the boiler through two vertical risers which connect above the boiler and lead into a steam pipe which carries the steam to a surface condenser. In the steam pipe just above the boiler is located the regulating throttle valve. A pulley with index is attached to the valve handle, and around this pulley runs a cord which has its ends threaded through supporting pulleys and attached to weights. This arrangement was for ease in controlling rate of evaporation.

The boiler dimensions and specifications are as follows:

Rated Capacity in Radiating Surface1,350 Number of Sections	sq.	ft.
	lb.	per sq. in.
Total Length 66.875	in.	
Width Inclusive of Trimmings 47.25	in.	
Height Inclusive of Trimmings 64.125	in.	
Width of Base on Floor 34.75	in.	
	in.	
Width Inside Ash Pit 28	in.	
Length Inside Ash Pit 42.875	in.	
Grate Area 6.80	sq.	ft.
Average Fire Pot Area 8.10	sq.	ft.

Size of Fire Door Opening	8.5x1	8 in.
Fuel Depth from Grate to Center of		
Fire Door	14.25	in.
Direct Water Heating Surface	49.45	sq. ft.
Flue Water Heating Surface	29.12	sq. ft.
Superheating Surface	0.00	sq. ft.
Total Heating Surface	78.57	sq. ft.
Ratio of Direct to Total Heating Sur-		
face	.63	
Ratio of Total Heating Surface to		
Grate Area	11.5	
Number of Steam Outlets	2	
Diameter of Steam Outlets	4	in.
Height of Water Line	49	in.
Size of Smoke Pipe	11	in.
Kind of Draft	Vatural	
Kind of Fuel Recommended		ze Anthracite
List Price Complete	3505.00	

Article 26. Apparatus Employed. Fahrenheit laboratory thermometers were used for taking all temperatures except that of the flue gas. A dial reading expansion pyrometer (Tagliabue make) was used for the flue gas with the stem extending into the stack about a foot above the boiler, so as to be in the direct path of the gases as they left the boiler heating surfaces. The temperature of entering feed water was obtained through an oil filled thermometer well placed in the supply pipe.

Throttling calorimeters had been connected to each of the magnesia covered steam risers, but the steam was found to be of such an even quality that only the calorimeter on the front riser was used. It was of the Carpenter type.

The common portable type of Orsat apparatus was employed for analyzing flue gas. It can be seen standing on a stool at

the reader's left in figure 10.

Ellison inclined differential draft gauges were employed for reading the drafts in flue, furnace and ash pit.

A mercury barometer in another laboratory room gave atmospheric pressures direct.

Ordinary platform scales were used for weighing the fuel, ash and refuse, and condensation. The fuel and ash were weighed in bunkers and the condensation in a galvanized iron tank.

Figure 12 is a diagram showing the arrangement of boiler with connected apparatus.

Fig. 12.—Diagram of Boiler and Connections for the Ames Tests

IX. METHOD OF CONDUCTING TESTS.

Article 27. Fuel, Fire and Ash. Each sack of fuel was sampled upon being emptied into the weighing bunker. The total sample thus collected for a single test or for more tests upon the same kind and grade of fuel was broken up and quartered until an amount small enough to be contained in a one quart fruit jar was obtained. The cover was then screwed down tightly with a rubber seal on the jar and the sample

was put away until analyzed.

For proximate and calorific analyses, the sample was crushed and quartered until the amount in hand was a representative portion of several grams. It was then ground and all passed through a 100 mesh sieve. The common process of proximate and calorific analysis was then employed. The Parr bomb calorimeter was used for the calorific determination. Samples were always run in duplicate, and if they failed to check within 1% of each other, other trials were made until a proper check was secured. In recording the per cents of fuel constituents, no refinements smaller than .1 of 1% were made. One can readily realize that it is unnecessary to attempt to determine results to .01 of 1% when errors in sampling the fuel may be as much as 1% or 2%, and when duplicate weights in the analysis do not check each other closer than .2 or .3 of 1%.

Proximate analyses were made upon the ash and refuse from tests 1 to 12, inclusive, but the results were inconsistent to a certain extent. Were the results of these analyses believed the ash and refuse would, in some cases, have contained more pounds of actual ash than existed in the original fuel; and in some cases much less, when compared with the analyses of the original fuels. To obtain a fair sample of ash and refuse for analysis, it would seem necessary to crush the entire amount of ash and refuse and quarter it down to the required amount for grinding before analyzing. Per cent of ash in ash and refuse for tests 13 to 49 was determined from the fuel analyses as explained in article 32 under Formulas and Methods.

The fire for each test was started with kindling wood and a weighed amount of coal or coke. It was allowed to burn until steam was being generated and condensation was running from the condensor to the weighing tank, and the fire had reduced itself to a bed of coals 3 or 4 inches thick with practically all volatile matter gone, and general conditions had become constant. This usually required from one to two hours. At this point the time, condition of fire and water level were noted, and the first charge of fuel for the test proper

was fired. End of the test was called when the observer judged the fire to have the same heat value left upon the grate as at the beginning of the test proper. The ash pit was cleaned at the beginning of the test proper. After the end of test the fire was left until completely dead, when the grates were dumped. If any pieces of coke above 1 or 2 inches in size were left, they were pieked out and the remaining ash and refuse was weighed. From this weight was deducted the proportional weight due to the kindling coal or coke, and the remainder was recorded as the total ash and refuse for the test proper.

For the short firing tests, a fresh fuel charge, often of about 100 pounds, was fired just after the fuel bed had dropped to a level of about 5 or 6 inches, but before the steam pressure had fallen off. For long firing tests, the entire amount of fuel tested was fired at the beginning of the test proper. Sometimes this was fired in two or three sections at intervals of a few minutes, to avoid killing the fire. Also some of the live coals were raked to the front of the furnace and more of the fresh fuel was thrown to the back of the furnace to avoid too great a loss in furnace temperature. This would also give the volatile gases a better chance to burn since in this boiler they must come to the front of the furnace before passing out. The fire was poked and leveled during the trial as required by clinkering, holes and dead spots.

Nearly the same style of firing was employed with all classes of fuel. Anthracite and coke, however, were spread more evenly over the entire grate area.

In the general tests the choke damper was wide open and the check damper was closed to give the fire the greatest freedom. Air supply to the furnace was regulated by the ash door damper connected to the automatic regulator. Tests 1 to 12 were made with the fire door damper open. All of the other general tests were made with it closed.

Soot was cleaned from the boiler flues at the beginning of each test.

Article 28. Evaporation. The rates of evaporation at 5 pounds boiler pressure had been previously determined for different throttle openings as indicated by the index on the valve hand wheel. The approximate rate of evaporation then desired for each test was gained by proper adjustment of the valve.

The system of lever, weight and chain of the damper regulator was adjusted so as to keep a boiler pressure of about 5 pounds. The regulating damper was usually held by the automatic regulator at an opening less than one inch wide, the

exact opening depending of course upon the fuel, rate of evaporation and other factors. When the boiler pressure became too high, the damper would be automatically closed a little more, and when the pressure was too low the damper would be automatically opened a little wider.

The test proper was not begun until a steady stream of cooling water was running through the condensor and a stream of condensation was flowing from the condensor to the weighing tank. It was not found necessary to operate the condensor pump, the steam pressure from the boiler being enough to force out the condensation. The condensation from the boiler was weighed instead of the water fed to the boiler. This eliminates to a greater extent any error due to inequalities of boiler water levels at the beginning and end of tests. The tank used for weighing the condensation holds about 1,000 pounds when full and so needed to be emptied once during an ordinary test. The steam escaping through the throttling calorimeter was collected and weighed once during the tests, and a correction of 2 pounds per hour was accordingly made for all tests.

Article 29. Flue Gas and Drafts. For tests 1 to 31 inclusive, continuous flue gas samples were taken. An air tight can holding about 5 or 6 gallons and having a pet cock at the top and one at the bottom was filled with water which had been previously saturated with the gas. The top pet cock of this can was connected by a rubber tube to a 1/8" iron tube extending into the stack for drawing out the gas. This iron tube was perforated inside the stack. The lower pet cock was connected by a rubber tube to the lower pet cock of another exactly similar can, sitting at a lower level than the first. When it was desired to begin taking a sample all the pet cocks were opened just enough to produce the rate of flow desired. A continuous sample could thus be secured extending over a period of several hours. The time chosen was such as to represent as nearly as possible the average of the whole test. gas thus collected was afterward tested for CO2 and oxygen in the Orsat apparatus. CO was tested for in the gases from tests 13 to 18 and 24 to 26 inclusive.

After test 31, the continuous method of sampling was abandoned because of the difficulty of properly saturating the water and because some variable results had been obtained from different analyses of the same sample. After test 31 then, the gas sample was drawn directly from the stack into the Orsat apparatus.

Sometimes one and sometimes two differential draft gauges were used for measuring the drafts in three different points.

The gauge was connected by rubber tubing to a ½" iron tube which extended into its respective chamber, the draft of which was to be measured. One extended into the side of the ash pit, one into the side of the furnace, and one into the smoke pipe just under the choke damper.

Article 30. Readings. The following readings were taken at 20 minute intervals during the tests:

boiler pressure, draft in flue, draft in furnace, draft in ash pit, temperature of boiler room, temperature of steam in calorimeter, temperature of gases from boiler, and weight of condensation.

The following readings were taken at irregular intervals, the time depending upon necessity of catching any important variations that might occur:

barometric pressure, temperature of external air, temperature of water to boiler, and flue gas analysis. Fuel was weighed just before firing.

When the continuous gas sampler was used, gas was collected from a certain time after one firing to the same time after the next firing in the short firing tests. For long firing tests, gas was collected for 3 or 4 hours during the middle part of the run or for shorter times near the beginning and end of the test.

When the gas was analyzed directly from the stack, samples were taken at intervals of about one hour for the long firing tests and at shorter intervals between the times of two firings for the short firing tests.

In general the trials were run and readings were taken in accord with the A. S. M. E. code for boiler trials. The readings were recorded upon boiler test log blanks printed for that purpose.

Observations from which table IV, Fuel Characteristics, was compiled, were made at appropriate times and recorded upon the back of log sheets. No definite measurements were made especially for these characteristics.

X. CALCULATION OF RESULTS.

Article 31. Factors and Constants. Factors and constants quoted or used by different authorities vary somewhat and it

was thought best to record here those actually employed herein.

The heat value of 1 pound of pure carbon is quoted at from 14,500 to 14,600. The value used in these calculations is 14,500 British thermal units per pound pure carbon.

Marks and Davis steam tables were used for heat values of water and steam. The latent heat of evaporation at 212° F. is given in these tables as 970.4 B. T. U. which is somewhat higher than the older value of 965.4.

It is considered that one square foot of cast iron radiating surface requires heat each hour equivalent to that required to evaporate .25 pound of water from and at 212° F. A constant sometimes used is .30 pound, but .25 was chosen for these calculations because it is the factor used by the makers of the boiler who give it its rating.

One boiler horse power is defined as the equivalent evaporation of 34.5 pounds of water from and at 212° F. per hour.

Other quantities are given without discussion.

Ratio of nitrogen to oxygen by volume in the air, 3.8.

Weight of air required for perfect combustion of one pound of carbon, 11.7 pounds.

Specific heat of flue gases at stack pressure, .24.

Specific heat of superheated steam at stack pressure, .48. Ratio of inches of mercury in barometer to atmospheric pressure in pounds per square inch, 29.921: 14.696.

Article 32. Formulas and Methods. Oven dried samples of fuel were always used for calorific analysis. The B. T. U. per pound of fuel as fired and per pound combustible were then

calculated with the aid of the proximate analysis.

The weight of actual ash in ash and refuse was assumed to be the same as contained in the original fuel as determined by the proximate analysis. Some ash was perhaps lost in the gases passing out the chimney, but with the low draft employed it was assumed to be negligible. The balance of ash and refuse was assumed to be combustible made up of fixed carbon.

The figure just before each of the following paragraphs refers to an item number in table XIII to which item the formula applies. The last five paragraphs—Nos. 77 to 81—come under the boiler heat balance, and each represents a per cent of the total heat value of the fuel as fired.

37. The B. T. U. in ash and refuse per pound dry fuel = (Lbs. ash and refuse, total)

(Lbs. dry fuel, total) × (% combustible in ash and refuse) ×14500.

The averages of temperatures, pressures and flue gas analyses were used for the final calculations.

21. Ratio of air supplied to air used, $r = \frac{N}{N - (3.8 \times 0)}$

where N is the per cent of nitrogen and O is the per cent of oxygen by volume in the flue gas. N was taken as the difference between 100% and the total per cent of CO₂ and oxygen. When CO was determined, it was also included in the formula.

22. Air supplied per pound carbon, A=11.7×r, in pounds.

Pounds flue gas per pound carbon=A+1.

31. Total dry fuel=pounds fuel as fired \times (100%-% of moisture).

32. Combustible consumed = combustible fired — combustible in ash and refuse.

Hourly quantities were obtained from the division of total quantities by the length of test in hours.

44. Quality of steam, $x = \frac{H - Q + .48(T' - T)}{L}$

in which H=total heat above 32° F. of the steam at calorimetric pressure,

Q=total heat of the liquid above 32° F. at boiler pressure,

T'=temperature (°F.) in calorimeter,

T=normal temperature (°F.) of steam at calorimetric pressure and

L=latent heat of evaporation at boiler pressure.

45. Factor of evaporation, $Fe = \frac{H - (t - 32)}{L}$, in which

H=total heat in the steam at boiler pressure, t=temperature of feed water in °F., and L=970.4, latent heat of evaporation at 212 °F.

67. Boiler efficiency=\frac{970.4\times equiv. evap. (212° F.)}{B. T. U. in combustible consumed

68. Boiler and grade efficiency=\frac{970.4\times equiv. evap. (212° F.)}{B. T. U. in total fuel as fired

77. Heating and evaporating water = boiler and grate efficiency.

78. Heating flue gases—pounds flue gas per pound carbon×.24 (T'-t):14,500×(100%-% loss through grate), in which T'—temperature (°F.) of gases leaving boiler, and

t=room temperature (°F).

79. Evaporating and heating moisture in fuel=(% moisture in fuel as fired) \times (M) \div (B. T. U. per pound fuel), in which

M = (T-t) + 970.4 + .48 (T'-T), in which

T=212, t=room temperature (°F.), and T'=temperature (°F.) of gases leaving boiler.

80. Losses through grate=(B. T. U. in ash and refuse per pound dry fuel)÷(B. T. U. per pound dry fuel).

81. Unaccounted for=100%—total of per cents accounted

for.

Item

Article 33. Complete Illustrative Computation for a Particular Test. For better illustrating the details of calculations employed, the results of test No. 41 are worked out in this article. The item numbers refer to those used in table XIII.

Observations.

Item
No.
1. Test number 41
2. Kind of fuel
3. Kind of firing (= short)
4. Date of trial2-26-13
5. Duration of trial, hours 7.67
6. Average atmospheric pressure, ins.
mercury 28.90
7. Average boiler gauge pressure 4.9
9. Average draft in flue, ins. water
10. Average draft in furnace, ins. water13
11. Average draft in ash pit, ins. water12
12. Average temperature (°F.), external
air 24
13. Average temperature, boiler room
air (°F.)
14. Average temperature, feed water (°F.) 59
15. Average temperature, steam in cal-
orimeter (°F.)
16. Average temperature, flue gases (°F 603
25 (2015) 등 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1
Average of Flue Gas Analysis—
17. CO_2 , %
18. Oxygen, % 6.0
19. CO, % ——
20. Nitrogen, % (by difference) 81.0
Fuel Analysis, Proximate—
23. Moisture, % 9.2
24. Volatile matter. %
25. Fixed carbon, %
26. Ash, % 6.8
28. Calorific analysis, of fuel, B. T. U.
per pound dry fuel13.700

30. Fuel as fired, total pounds	300
33. Ash and refuse, total pounds	40
46. Total water evaporated, pounds	1,392
56. Number of firings during test	3
69. Cost of fuel in dollars per 2,000	
pounds	4.00
Colombations	

Calculations.

Item No.

8. Boiler pressure, absolute= $4.9+(28.90\times\frac{14.696}{29.921})=$ 19.1 lb. per sq. in.

21. Ratio—air supplied to air used, $r = \frac{81.0}{81.0 - (3.8 \times 6.0)}$

=1.39.

22. Air supplied per pound carbon=11.7tb×1.39=16.3tb. Pounds flue gas per pound carbon=1tb+16.3tb=17.3tb.

27. B. T. U. per pound fuel as fired=(100.0%-9.2% mois-

ture) $\times 13,700 = 12,450$ B. T. U.

29. B. T. U. per pound combustible= $12,450 \div (37.5\% \text{ volatile matter} + 46.5\% \text{ fixed carbon})=14,800 B. T. U.$

31. Total dry fuel= $3001b \times (100\% - 9.2\% \text{ moisture}) = 272$

pounds.

32. Total combustible consumed=272tb-40tb ash and refuse = 232 pounds.

34. Ash and refuse, per cent of fuel as fired=40tb:300tb=

13.3.

- 36. Ash and refuse, per cent ash= $(300\text{lb}\times6.8\%)$: 40lb=51.0.
 - 35. Ash and refuse, per cent carbon=100.0%-51.0%=49.0 37. Ash and refuse, B. T. U. per pound dry fuel=40tb:

272tb×49%×14,500 B. T. U. = 1040 B. T. U. 38. Per hour, fuel as fired=300÷7.67=39.1tb.

39. Per hour, dry fuel=272-7.67=35.5tb.

40. Per hour, combustible consumed=232:7.67=30.3tb.

41. Per hour, fuel as fired per sq. ft. of grate surface =39.11b ÷ 6.80 sq. ft.=5.75tb.

42. Per hour, B. T. U. supplied in dry fuel=35.5tb×13,500

=486,000 B. T. U.

43. Per hour, B. T. U. supplied in combustible consumed =30.3tb×14,800=448,000 B. T. U.

44. Quality of steam= $\frac{1149.7-193.7+.48(213-210.2)}{961.4}$ =99.5%.

45. Factor of evaporation $=\frac{1155.3-(59-32)}{970.4}=1.162.$

47. Total dry steam evaporated= $1392 \times 99.5\% = 1385$ b.

48. Equivalent evaporation $(212^{\circ}F.)=13851b\times1.162=16101b$.

49. Per hour, actual evaporation=1392fb:7.67=182fb.

50. Per hour, dry steam=1385tb:-7.67=181tb.

51. Per hour, equiv. evap. (212°F.)=1610tb:-7.67=210tb.

52. Per hour, equiv. evap. (212°F.) per sq. ft. boiler heating surface=210tb: 78.57 sq. ft.=2.63tb.

53. Per hour, B. T. U. absorbed by steam=210tb×970.4=

203,500.

- 54. Per hour, B. T. U. absorbed per 15 dry fuel=203,500: 35.515=5,730.
- 55. Per hour, B. T. U. absorbed per lb. combustible consumed=203,500÷30.3tb=6,710.
 - 57. Average time between firings=7.67÷3=2.56 hours.
 - 58. Average weight of charge=300tb÷3=100 pounds.
 59. Boiler horse power developed=210tb÷34.5tb=6.09.
- 60. Square feet of radiating surface served by equivalent of evaporation=210 \(\div .25 = 840\).

61. Per cent of builder's rating developed=840:1350=62.2.

Evaporative Performance—

- 62. Actual water per pound fuel as fired=1392÷300=4.64 lb.
- 63. Equiv. evap. (212°F.) per pound fuel as fired= 1610::300=5.37tb.
- 64. Fuel as fired per hour per 100 sq. ft. radiating sur-

face developed=
$$39.1 \div \frac{840}{100} = 4.65$$
 lb.

65. Actual water per pound combustible= $4.64 \div (37.5 + 46.5)\% = 5.52$ lb.

66. Equiv. evap. $(212^{\circ}F.)$ per pound combustible=5.37: (37.5+46.5)%=6.38lb.

67. Boiler efficiency=

 $203,500 \text{ B. T. U.} \div 448,000 \text{ B. T. U.} = 45.4\%,$ or $6,710 \text{ B. T. U.} \div 14,800 \text{ B. T. U.} = 45.4\%.$

68. Boiler and grate efficiency=
203,500 B. T. U. ÷ 487,000 B. T. U. = 41.8%,

or 5,730 B. T. U. \div 13,700 B. T. U. \Longrightarrow 41.8%. 0. Cost per million B. T. U. in fuel= \$4.00 \div (12,450 B. T. U. \times 2000tb) \times 1,000,000=16.1c.

71. Cost of evaporating 1000 pounds water under actual conditions at actual fuel price—\$4.00:2000lb::4.64lb×1000lb. =43.1c.

72. Cost of equivalent evaporation (212°F.) of 1000th water at actual fuel price=\$4.00:\(\pm2000\)15.37tb\(\times 1000\)1000lb.\(\pm 372\)c.

73. Cost of serving 100 sq. ft. of radiation per hour at actual fuel price=\$4.00 \div 2000lb \times 4.65lb=-.93c.

74. Cost of evaporating 1000 pounds water under actual conditions at fuel price of \$1 per ton= $43.1c \times (\$1 \div \$4) = 10.8c$.

75. Cost of equivalent evaporation (212°F.) of 1000th water

at fuel price of \$1 per ton= $37.2c \times (\$1 \div \$4) = 9.3c$.

76. Cost of serving 100 sq. ft. of radiation per hour at fuel price of \$1 per ton= $0.93c \times (\$1 \div \$4) = 0.23c$. Boiler Heat Balance—

Heating and evaporating water = boiler and grate efficiency=41.8%.

80. Grate losses= $1040 \text{ B. T. U.} \div 13,700 \text{ B. T. U.} = 7.6\%$.

78. Heating flue gases=

 $.24(603-67) \div 14{,}500 \times (100.0\% - 7.6\%) = 14.1\%.$

79. Heating and Evaporating Moisture in Fuel = $9.2 \% \times [(212 -67) + 970.4 + 48(603 - 212)] \div 12,450 \text{ B. T. U.} = 1.0\%.$

81. Unaccounted for=

100.0% - (41.8 + 14.1 + 7.6 + 1.0)% = 35.5%

82. Total heat in fuel as fired=

(35.5+41.8+14.1+7.6+1.0)%=100.0%.

XI. LOGS OF TYPICAL TRIALS.

Article 34. Analysis of Readings. Figures 13, 14, 15 and 16, pages 68 to 71, are graphical logs of some of the most important readings from four different trials. They illustrate the time and time intervals at which different readings were made, and bring to light in a rough way some of the relations between cause and effect. The time at which the fuel charge is located represents the end of the period for which that charge was supposed to serve. In figure 15 the location of each of the first two points represents the time at which the next charge was fired.

In figure 13 the arrow pointed lines show the time over which flue gas was collected, when a continuous sample was taken, and the analysis of the same sample. It will be noted that comparatively little variation was recorded during this trial in any of the quantities. This comparative constancy was due partly to the nature of the fuel, Solvay coke, which required little attention during the trial. The boiler pressure and rate of evaporation however had begun to drop slightly before the end of test.

Figure 14 shows considerable variation in the readings, indicating that the fire required more poking and was otherwise uneven.

Figure 15 illustrates a test of short fiving, each firing of a fuel charge causing a disturbance of other conditions. Most

of the flue gas analyses were made between the last two firings of fuel.

Figure 16 when compared with figure 15 illustrates the smaller fluctuations, usually resulting in better economy ob-

tained with long firing of the same fuel.

Flue temperatures are higher at the beginning than for the average in all four of these cases. This is due to the charge of fuel fired at the start of test proper, A greater flue temperature is required to produce a sufficient draft to get the fresh charge ignited and at the same time give up the required heat to the water.

Fig. 13-Log of Test No. 23-Long Firing with Solvay Coke.

Fig. 15-Log of Test No. 37-Short Firing with Ogden Lump Coal.

Fig. 16.-Log of Test No.38-Long Firing with Ogden Lump Coal.

TABLE XIII.
DETAIL DATA ON INDIVIDUAL TESTS.

	Gases from Boiler	16	550 550 550 550 550 550 550 550 550 550	700 640 640 625 601 601 400
atures	Steam in Calorimet- er	15	214.6 218.6 218.6 218.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	214 213.7 214. 213.3 213.3 214. 212.2 215.2
Average Temperatures (oF)	Feed Water	14	2888888888888888888888888	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Average (Boiler Room Air	13	882282428888888888888888888888888888888	2841281813
4	External Air	12	88554655488448838488	4486446646
ts (si'A daA	Ħ	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	8888888
Average Drafts (ins. of water)	Ригпасе	10	0.068 0.068	0.0000000000000000000000000000000000000
Avera	Flue	6	88.44.44.44.44.44.44.44.44.44.44.44.44.4	25 25 25 25 25 25 25 25 25 25 25 25 25 2
sarres	Boiler Ab- solute, lbs. per sq. in.	00	19:24 19:28 19:30 19:00 10 10 10 10 10 10 10 10 10 10 10 10 1	19.2 19.0 20.4 19.23 19.23 19.8 19.8 21.07
Average Pressures	Boiler Gauge, lbs per sq. in.	4	4 r r r r r r r 4 4 r r r r r r r r r r	0.000000000000000000000000000000000000
Aver	Barometer, Ins. Mer- cury	9	29.12 29.11 29.11 29.11 29.11 29.11 29.20 20 20 20 20 20 20 20 20 20 20 20 20 2	29.05 29.24 29.24 29.24 29.24 29.24 29.24 29.24 29.24
	to noitsrud sruoH,lsi1T	5	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	7.75 6.75 7.75 8.0 8.0 9.0 7.67 7.67
	Date of Test	4	3-16-12 3-20-12 3-20-12 10-27-12 10-25-12 4-15-13 4-15-13 11-29-12 11-29-12 3-10-13 3-13-13 1-28-13 3-14-13 3-14-13 3-14-13 3-14-13 3-14-13	11-13-12 12-4-12 7-15-12 7-16-12 3-29-12 5-20-12 7-17-12 6-13-12
	Kind of garing	က	μανηναναμαμητηνανα	SOUNDER
	Kind of Fuel	63	Boone Boone Boone Boone Boone Boone Bount Buxton Buxton Buxton Centerville Colfax Colfax Ogden Ogden Ogden Saylor	Empire Lump Empire Lump Empire Nut Empire Nut Little Jack Little Jack Little Jack Little Jack Little Jack Little Jack Illinois Mine Run Little Little Little
	120		BOO COLOR CO	
	Test Num-	-	8447884444888447884 84478888447888	15 4 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

652 650 746 830 830 810 562	500	540 520 590 532 473	492 525	625	627 545 504
213.1 213.5 213.5 213.5 211.8 214 214	213 213 214	213 213.2 215 213 214 214	213.7	214	214.2 214 214 214
820833	52.53	72.08 62.77 74.04 75.04	59	22	67 72
68 67 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68	55 48 88 88 88 88 88 88 88 88 88 88 88 88	69 70 70 88 88	4.39	63	8,970
70 73 73 85 27 25	29 8 8 8 8	45 47 58 64 70 61	83 53	99.	82.24
90.095	.095	.048 .052 .073 .08 .08	.044	.03	.063
11.08 .08 .09 .00 .01	0.01.00.	.057 .08 .09 .092 .092	.10	.07	.085
.125 .135 .136 .136 .139	113 110	.098 .096 .12 .11	4.T	.12	.008
19.02 18.97 18.58 17.55 17.80 19.2	19.1 19.2 19.3	18.15 19.33 19.14 19.8 19.95	19.2	19.3	19.43 10.58 20.3
4.4.4.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.000	4.05 5.03 5.55 5.55 5.55	4.95	5.2	5.23 5.38 6.10
28.62 28.92 29.38 29.11 29.20 29.00 29.10	28.81 29.01 29.16	28.75 29.11 29.20 29.36 29.28	29.08	28.86	28.95 28.90 29.02
77.33	8.0 7.67 8.25	8.0 8.5 8.5 8.0 8.16 7.33	7.5	3.33	8.08
6-14-12 3-11-12 6-7-12 6-12-12 6-16-12 2-21-13	10-28-12 10-29-12 12- 9-12	3-58-12 3-30-12 5-16-12 5-8-13 7-18-12 7-19-12	12-10-12 4- 1-12	5-20-13	4-11-12 7-23-12 7-24-12
NNNNNN	2 H H	Navayay	μw	202	2 2 1
1	29 Kentucky Red Torch	6 Foundry Coke 8 Gas-house Coke 11 Gas-house Coke 48 Petroleum Coke 22 Solvay Coke 23 Solvay Coke 23 Solvay Coke 24 Coke 25 Co	36 Egg Anthracite	49 Iowa Peat	10 Gas-house Coke and Saylor 25 Solvay and Boone

Symbols—S=short firing test. L=long firing test. Test No. 10—1 pound of Gas-house coke to 2 pounds of Saylor lump coal well mixed. Test No. 25—1 pound of Solvay coke to 1 pound of Boone lump coal, with coke fired on top of coal. Test No. 25—1 pound of Solvay coke to 1 pound of Boone lump coal well mixed.

TABLE XIII.

DETAIL DATA ON INDIVIDUAL TESTS (Continued

Kind of Fuel Kind			Ave	Average Flue Gas Analysis	Gas Ana	lysis	p	ilgo				s of	uel	4	
Kind of Fue Kind of Fight CO2 CO2 CO3 CO3		31		(Olume)	pi	ir S oseU	p ing	Proxi		eight)		Calorific Found)	(B	
2 3 17 18 19 20 21 22 23 24 25 26 27 S 9.2 9.7 81.1 1.83 21.4 10.4 30.8 39.0 10.50	Kind of Fuel	Kind of Firi	COs	Oxygen	0.0	Underermin	Ratio of A pled to Air		Moisture	Volatile Matter		dsA	As Fired	Dry	
S 92 2 9.7 S 1.55 S 1	ଧୀ	69		18	19	20	.21	22	23	24	25	26	27	28	
S 9.6 8.9 1.71 20.0 8.5 39.6 39.0 10.50 10	30one	- va		9.7		81.1	1.83	21.4	10.4	39.8	39.0	10.8	10,600	11.820	
S 10.5 5.7 1.5 82.3 1.36 11.9 37.2 41.3 10.3 10.400	30one	20		8.9		81.5	1.71	20.0	8.5	39.6	39.0	12.9	10,550	11,530	
National Process National Pr	30one	S		5.7	1.5	82.3	1.36	15.9	11.2	37.2	41.3	10.3	10,800	12,150	
1	Soone	50		7.6		83.5	1.53	17.9	8.7	34.5	40.0	16.8	10,400	11,380	
1 13.0 5.6 1.45 1.55 15.8 8.2 8.5.5 43.7 11.6 10.600	300ne	T T		5.3	1	83.2	1.32	15.4	8.7	34.5	40.0	16.8	10,400	11,380	
1. 12.9 6.2 81.0 1.84 16.5 8.2 85.5 43.7 11.6 10.000 1. 1. 1. 1. 1. 1. 1.	Suxton	T		5.6	-	81.4	1.35	15.8	8.2	36.5	43.7	11.6	10,600	11,530	
10 1.25 1.30 1.50 1.30 1.50 1.	3uxton	T I		6.2		80.9	1.41	16.5	8.2	36.5	43.7	11.6	10,600	11,530	
1. 12.5 6.3 87.2 1.45 16.6 9.2 9.7 46.5 6.5 12.45 16.6 9.2 9.7 46.5 16.5 12.45 16.5	enterville	8		6.0		81.0	1.39	16.3	9.5	37.5	46.5	8.9	12,450	13,700	
1.50 1.50	cnterville	T. T.		6.3		81.2	1.42	16.6	9.5	37.5	46.5	8.9	12,450	13,700	
1. 12.4 6.6 81.0 1.66 17.0 8.5 89.1 42.2 10.3	olfax	,	13.1	4.5	1	82.4	1.26	14.7	20.50	39.1	42.2	10.6	11,540	12,610	
S 10,8 8.5 10,8 8.5 10,8 11,5	Jolfax	T I		9.9	1	81.0	1.45	17.0	8.57	39.1	42.2	10.2	11,540	12,610	
S 13.8 4.5 1.25 14.7 10.8 38.4 40.6 10.2	gden	S		8.5		81.2	1.66	19.4	11.3	38.4	39.1	11.2	10,300	11,600	
S S S S S S S S S S	gden	2	8	4.5		81.7	1.26	14.7	10.8	38.4	40.6	10.2	10,270	11,500	
Lump S 12.6 3.8 3.6 1.27 1.70 14.2 6.9 37.3 44.1 11.7 11.520 Lump S 12.4 4.6 12.0 40.4 12.0 40.4 11.0 6.6 11.550 Lump S 12.6 13.8 12.6 3.8 12.6 3.8 12.6 3.8 12.6 3.8 12.6 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	gden	20		5.6		81.3	1.35	15.8	12.0	40.4	41.0	9.9	11,550	13,130	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)gden	T I		4.0		81.8	1.23	14.4	12.0	40.4	41.0	6.6	11,550	13,130	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	gden	20		2.1		82.1	1.11	13.0	10.8	38.4	40.6	10.2	10,270	11,500	
Lump S. 12.6 3.8 82.7 1.39 16.3 3.9 42.1 41.9 12.1 11,800 Lump Lump S. 12.6 3.8 83.6 1.21 14.2 6.9 37.3 44.1 11.7 11,520 Nut S. 12.4 4.6 83.6 1.80 1.8 1.8 6.9 37.3 44.1 11.7 11,520 Nut S. 12.4 5.9 82.6 1.8 1.6 83 33.9 45.4 12.4 11,400 ack S. 12.1 5.5 82.4 1.3 15.7 5.5 33.9 55.0 6.5 11,400 ack S. 12.1 5.5 82.4 1.3 1.5 5.5 33.9 55.0 6.5 51,800	aylor	30		8.8		81.2	1.70	19.9	7.2	39.5	43.0	10.3	11.620	12.520	
Lump S 12.6 8.8 83.6 1.21 14.2 6.9 37.3 44.1 11.7 11,520 Lump S 12.4 14.6 81.0 1.28 15.0 6.9 37.3 44.1 11.7 11,520 Rut S 12.4 5.0 82.6 1.30 15.2 8.3 33.9 45.4 12.4 11,400 ack S 12.4 1.5.0 82.4 1.31 15.5 83.3 33.9 45.4 12.4 11,400 ack S 12.4 11,400 ack S 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4	aylor	T		6.1		82.7	1.39	16.3	3.9	42.1	41.9	12.1	11,800	12,280	
Lump Lump Lump Lump Lump Lump Lump Lump	mnire Lumn	U	-	Or Cr		89 68	1 97	14.9	9	97.9	111	1 1	062 11	19 990	
Nut	moire Lump	1		4.6	-	3.5	1 98	15.0	8.0	97.9	1.11	11.1	11,020	19 980	
Nut		S.		0		80.68	1.30	15.9	300	0 66	12.1	10.4	11 400	19 450	
200k		,		000	-	83.0	1.87	16.0	0.0	22.0	40.4	10.4	11,400	19 450	
Tool 11:00 0:00 0:00 0:00 0:00 0:00 0:00 0:		00		5 TC		89.4	100	15.7	0 10	23.0	# C 15	10.4 6.5	11,200	19 400	
		3	_	100	1	10	1 -	10.1	50	0000	0.00	2.0	11,000	10, 200	

			,,		
000000000	000	000000	000	0	14,100 14,350 14,350
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	999	047047070	88	9,130	3331
13,890 113,890 113,890 114,250 113,890 113,890 114,280	15,650 15,650 15,640	14,690 14,420 14,550 15,450 14,530 14,539	14,880	6	र्च सं सं
000000000	000	000000	00	0	000
670 670 670 670 670 670 220	15,100 15,100 13,310	780 730 250 110 950 950	13,940	6,390	730 650 650
1111111111	က်က်က	20,00,00,00	က်က်	6,	12,
	HHH				
	4112				
10,450 10,450 10,450 10,700 10,450 11,350 11,350	800 800 190	12,630 12,570 12,000 14,850 12,880 12,880	13,740 $13,020$,500	11,030 12,040 12,040
444544400	∞ ∞ ⊢	@rv \cdot \infty	5.0	3,5	000
22222222	4,4,6,			413	1122
444544466	ಣಣಾರಾ	000000	0100	10	00 00 00
4445444466	3.3	12.9 11.6 15.6 10.9 10.9	6.2	16.5	11.3
	010100	061100	6010	10	000
41.9 41.9 41.9 41.9 43.8 43.8	56.2	84.0 83.9 86.1 86.6 86.6	86.3	12.5	56.0 54.0 54.0
44444444	10100	00 00 00 00 00 00	∞ !~	-	1000
	10100	0.0340.00.0	100	~	
88888888888888888888888888888888888888	388.01	22.0 10.3 2.0 2.0 2.0	6.1	25.8	22.3 20.0 20.0
en	50 co	7111	-	22	222
4.01 4.01 10.3 4.01 1.7 1.7	0.300	0.577.33.1	1.4	15.2	4.7
000000000	200	442400	10	45	1044
0010000000	120	00000m	100	4	P-10H
30.0 17.0 116.9 118.9 114.5 114.6 115.6	16.1 15.7 15.2	222.3 222.3 28.6 15.2 16.6	19.5	15.4	22.7 16.5 17.1
оннининнининия 1		222111	120	-	SIL
	~	20 T C 0101	-0		4-10
2.56 1.45 1.45 1.15 1.25 1.33	1.38 1.34 1.30	2.03 2.44 1.29 1.52 1.42	1.67	1.31	1.94 1.41 1.46
श्नंनेनेने ने नेने	-i-i-i	अन्यन्तन	421	-	-i-i-i
				-	
010 110 1000 1000	82.6 81.4 80.7	H40HH2	79.7	81.0	81.4 81.1 81.0
00000000000000000000000000000000000000	8218	888000	208	20	2000
822.38 822.88 822.38 822.19	808	80.1 80.0 80.0 81.1 81.1	80	8	2222
		888 800 8188 8188		. 81	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	81 80 80 80	 820 821 821	80	81	0.0 0.0 0.5 81
				81	
0.00.00.00.00.00.00.00.00.00.00.00.00.0		::::::	::	:	0.0
0.00.00.00.00.00.00.00.00.00.00.00.00.0		::::::	::	:	0.0
		10.7 12.4 4.9 7.3 81 6.1 81 81 81 81 81 81		5.1 81	
0.00.00.00.00.00.00.00.00.00.00.00.00.0		10.7 10.0 12.4 4.9 7.3	8.4	:	10.4 6.2 6.7 0.0 6.7
6.88 6.88 6.68 6.68 6.68 6.68 6.68 6.68	0.0.4.	10.7 10.0 12.4 4.9 7.3	8.4	5.1	10.4 6.2 6.7 0.0 6.7
6.88 6.88 6.68 6.68 6.68 6.68 6.68 6.68		::::::	::	:	10.4 6.2 6.7 0.0 6.7
0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.0.4.	10.7 10.0 12.4 4.9 7.3	8.4	5.1	0.0
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
6.88 6.88 6.68 6.68 6.68 6.68 6.68 6.68	0.0.4.	10.7 10.0 12.4 4.9 7.3	8.4	5.1	10.4 6.2 6.7 0.0 6.7
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8.2 10.4 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8 8.2 10.4 0.0 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8 8.2 10.4 0.0 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	11.4 6.0 13.1 5.5 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8 8.2 10.4 0.0 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	8 8.2 10.4 0.0 12.7 6.2 0.0 11.8 6.7 0.5
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	SaylorS 8.2 10.4 0.0
64 12.9 10.0 6.8 10.4 8.8 0.1 10.4 8.8 0.1 13.1 3.5 0.4 13.2 4.3 0.4 13.2 5.3 0.4 13.2 5.3 0.4	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	9.2 17.6 11.6 12.4 11.6 12.2 6.1	11.9 8.4	13.9 5.1	SaylorS 8.2 10.4 0.0
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 1.6 12.4 1.6 12.4 1.6 12.4 1.6 12.4	11.9 8.4	13.9 5.1	SaylorS 8.2 10.4 0.0
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 1.6 12.4 1.6 12.4 1.6 12.4 1.6 12.4	S 7.2 12.3	13.9 5.1	SaylorS 8.2 10.4 0.0
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	S 11.4 6.0 L 13.1 5.5 L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 1.6 12.4 1.6 12.4 1.6 12.4 1.6 12.4	S 7.2 12.3	13.9 5.1	SaylorS 8.2 10.4 0.0
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 1.6 12.4 1.6 12.4 1.6 12.4 1.6 12.4	S 7.2 12.3	13.9 5.1	Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3		Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3		Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3	13.9 5.1	Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3	Peat S 13.9 5.1	Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3	Peat S 13.9 5.1	Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 e 5 9.6 10.0 S 7.6 12.4 L 14.0 4.9 L 12.2 6.1	S 7.2 12.3		Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5
Illinois Mine Run S 6.4 12.9 0.4 Illinois Mine Run S 10.0 6.8 0.4 Illinois Mine Run S 10.7 6.5 0.1 Illinois Mine Run S 10.4 8.8 11 Illinois Mine Run S 13.1 3.5 0.5 Illinois Mine Run S 13.2 4.3 0.4 Illinois Pea-coal L 13.2 5.3 13.6 14.4	Kentucky Red Torch S 11.4 6.0 Kentucky Red Torch L 13.1 5.5 Tennessee Smokeless L 14.4 4.9	Foundry Coke S 9.2 10.7 Gas-house Coke S 9.6 10.0 Gar-house Coke S 7.6 12.4 Gar-house Coke S 14.0 4.9 Solvay Coke S 11.6 7.3 Solvay Coke L 1.2.2 6.1	Egg Anthracite	Iowa Peat S 13.9 5.1	Gas-house Coke and Saylor S 10.4 Solvay and Boone 12.7 6.2 0.0 Solvay and Boone 1.18 6.7 0.5
Mine Run S 6.4 12.9 0.4 Mine Run S 10.0 6.5 0.4 Mine Run S 10.7 6.5 0.1 Mine Run S 13.1 3.5 0.5 Mine Run S 13.2 4.3 0.4 Pea-coal L 13.2 4.4 4 Pea-coal L 13.2 5.3	Red Torch. S 11.4 6.0 Red Torch. L 13.1 5.5 Smokeless , , , , , L 14.4 4.9	S 9.2 10.7 S 10.0 S 10.0 S 11.0 F 12.4 11.6 12.4 11.6 12.4 6.1	S 7.2 12.3	Peat S 13.9 5.1	Coke and Saylor S 8.2 10.4 Boone L 12.7 6.2 0.0 Boone L 11.8 6.7 0.5

TABLE XIII DETAIL DATA ON INDIVIDUAL TESTS

Note Computation Computa					
Total Tuel Cumds Total Tuel		Supplied	In Combus- tible Con- sumed	43	25 000 000 000 000 000 000 000 000 000 0
Note Tree Oxer	ties	T. U.	ln Dry Fuel	42	\$25,000 \$25,00
Note Tree Oxer	el Quanti		Fired Per sq. ft. Grate	4	60886666666666666666666666666666666666
Note Tree Oxer	ourly Fu	spu	ible Con-	40	28.88.88.88.88.88.88.88.88.88.88.88.88.8
Note of Fuel Total ruel Used for Lest Total ruel Used for Lest	H	Pou	Dry Fuel	33	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Note Computation Computa			Fuel as Fired	88	26774488888488982688888888888888888888888888
Total Puer Long L		ləu	B. T. U, per Pound Dry F	37	540 1,670 560 850 850 845 1,046 1,046 1,046 1,046 1,046 1,130 1,130 1,130 1,280 820 820 820 820 820 820 820 820 820
Notal Fuel Countrals	Refuse	ų	Per Cent As	38	. 55.828.825.44.02.828.88.88.88.88.88.88.88.88.88.88.88.8
Total Pounds Dry	and	Jar-	Per Cent Cont	35	211488344686018888284 014803178844680188888888888888888888888888888888
Total Fuel Display Combustible Consumed Consume	As	ı	Per Cent of Fuel as Fired	22	20000000000000000000000000000000000000
Notal rue Lotal rue Lota		s	bauo4 latoT	33	4007278874088874748888888888888888888888
Kind of Fue Kind of Kind o	or Test		Combustible Consumed	32	226 227 227 227 227 227 227 227 227 227
Kind of Fue Kind of Kind o	el Used f		Dry	31	289 289 289 274 274 274 275 275 275 275 275 275 275 275 275 275
Kind of Fue Kind of Kind o	Total Fu		As Fired	8	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Boone Boone Boone Boone Boone Boone Boone Boone Boone Centery Centery Colfax Colfax Ogden Ogden Ogden Ogden Ogden Cappire Empire		31	Kind of Firin	က	ανταία τανίαναματικάνανα
Boone Boone Boone Boone Boone Boone Boone Boone Boone Centery Centery Colfax Colfax Ogden Ogden Ogden Ogden Ogden Cappire Empire			ind of Fuel	Ŋ	
			Υ .		Boone Centeryl Colfax Baylor Boone Boon
		1	Test Numbe	H	** 4272884123884478840000000000000000000000000000000

134,500 171,000 3.5,000 819,000 520,000 725,000 705,000 440,000 435,000	295,000 419,000 308,000	308,000 271,000 330,000 334,000 210,0 0 269,000	315,000 306,000 345,000	356,000 390,000 382,000
170,000 204,000 366,000 555,000 766,000 465,000 455,000	462,000 482,000 319,000	315,000 289,000 353,000 372,000 316,000	367,000 337,000 368,000	376,000 438,000 426,000
2.38 2.88 2.14 7.14 11.02 6.00 5.88	4.58 4.79 3.55	6.6.4.8.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	3.92 3.79	5.00 5.33 5.19
22.1 22.4 22.4 22.2 4.2 50.8 30.8 30.8	25.2 26.8 19.7	20.6 18.8 22.6 21.6 18.6 18.5	20.3 20.3 37.8	25.2 27.2 26.6
14.6 17.5 31.4 50.1 47.6 65.7 67.1 38.0	31.9	24.77 28.88 24.6 24.6 23.6	56.3 25.2 57.6	34.7 33.7
16.3 19.6 35.0 32.5 73.3 77.0 40.8	31.2 32.6 24.2	25.0 29.4 25.0 25.0 23.5	26.7 25.8 105.0	34.0 36.3 35.3
2,600 1,370 960 800 650 1,230 650 490	2,150 1,920 370	510 820 820 1,485 1,830 1,570	1,890	575 1,400 1,520
24.0 683.0 745.0 745.0 765.2 765.2 765.2 765.2 765.2	18.5 21.0 85.7	78.8 69.7 71.4 15.8 46.3	31.5 55.1 87.5	74.8 55.1 56.5
22.7 28.0 28.0 25.4 21.8 34.5 19.0	81.5 79.0 14.3	21.2 30.3 28.6 84.2 53.7 49.7	68.5 44.9 12.5	25.2 44.9 43.5
20.00 20.00	17.2 15.6 17.5	16.5 18.5 19.2 12.0 23.5 21.7	18.0 18.8 18.9	15.6 20.5 20.0
38 64 64 55 101 121 121 53	35 65 65	88 8 4 4 8 8	38 47 66	8449
74 194 1179 299 392 372 226 226 229	202 206 163	165 163 192 173 173 136	159 195 126	204 150 151
112 134 251 251 251 264 279 279	245 245 198	198 197 245 197 199 173	197 244 192	259 191 191
125 150 280 280 280 280 550 550 800 800	250 200 200	200 200 250 200 200 200 175	250	275 200 200
Haramamarh	w H H	Harlana	Hw w	252
Illinois Mine Run Illinois Pea-coal Illinois Pea-coal Illinois Pea-coal	Kentucky Red Torch Kentuc y Red Torch Tennessee Smokeless	Foundry Coke Gas-house Gas-hous	Egg Anthracite Pea-anthracite Iowa Peat	Gas-house Coke & Saylor. Solvay. and Boone
11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	388	8 11 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 9 49	25 25

'TABLE XI . DETAIL DATA ON INDIVIDUAL TEŠTŠ

pəwns		C8253557182552685	80.4008
Per Pound Com-	18	<u> </u>	6,560 7,670 7,040 7,510 8,380
Per Pound Dry	5 4	6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5,750 6,370 5,600 6,060 6,600 7,240
ру Ѕtеат	53	201,000 201,000 1186,000 1188,000 1188,000 1188,000 1118,000 1111,500 1111,500 201,000 1111,500 200,00	207,000 220,000 195,000 194,000 197,500 212,800
Equiv. Evap. (212oF.) 1 er sq ft. Boiler Heat ing Surface	52	\$	2.55 2.55 2.55 2.55 2.54 2.78
Equiv. Evap. from and at 212 oF.	22	204 207 208 208 208 208 201 210 210 211 208 208 208 208 208 208 208 208 208 208	213 27 201 200 204 219
Огу Ѕіевт	20	173 175 176 176 176 170 180 180 180 181 171 171 174 175 176 176 177 176 177 177 176 177 177 177	183 195 173 173 176 189
Actual Water	49	174 178 178 176 177 177 177 179 179 178 178 178 178 178 178 178 178 178 178	481 171 171 171 190
Equive. Evap from and at 212 oF.	48	1,680 1,680 1,280 1,495 1,495 1,730 1,630 1,502 1,602 1,602 1,502 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010 1,645 1,010	1,648 1,538 1,507 1,436 1,630 1,755
Dry Steam	47	1,388 1,189 1,109 1,1209 1,495 1,495 1,562 1,562 1,562 1,563	1,418 1,320 1,301 1,242 1,408 1,517
Actual Water	46	1,392 1,440 1,115 1,214 1,214 1,507 1,570	1,425 1,325 1,310 1,248 1,417 1,623
Factor of Eva	45	11.156 11.166 11.166 11.161 11.161 11.166 11.166 11.166 11.166 11.166 11.166 11.166 11.166 11.166 11.166	1.165 1.165 1.159 1.156 1.160 1.167
Quality of Steam	44	0. 9. 0. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	999 999 999 999 999 999
Kind of Firing	က	Ηανηνανηνημοίτητη	222422 224242
Kind of Fuel	2	Boone Boone Boone Boone Boone Boone Buxton Buxton Buxton Centerville Colfax Ogden Ogden Ogden Ogden Saylor	Empire Lump Empire Lump Empire Nut Empire Nut Little Jack Little Jack
	Kind of Firing Kind of Firing	Kind of Firing Wind of Firing Pactor of Evrasion Carinal Water	Kind of Fue Kind of Fue Kind of Firing Kind of Fue Kind of Fue Kind of Fue Kind of Fue Kind of Firing Kind of Kind K

8,200 10,750 10,750 8,250 7,780 6,210 6,720 6,200 6,630	7,700 7,830 10,400	8,000 10,110 8,660 8,930 10,750	9,490	8,120 7,780 7,730
7,550 6,150 6,150 6,120 6,120 4,930 5,090 5,460	6,340 6,580 8,550	6,680 77,880 8,200 8,200 8,800	7,640	2,700 6,410 6,100 6,110
79,600 132,300 193,000 174,800 291,000 324,000 341,500 191,000 203,000	194,000 210,000 205,000	164,900 150,100 198,000 193,000 200,000 208,000	201,000	205,500 211,500 205,500
1.04 2.22 2.23 2.25 2.25 2.25 4.47 7.4.25 7.51 7.61	2.55 2.76 2.69	2.16 2.56 2.53 2.62 2.74	2.64	2.68
82 136 199 180 300 300 305 252 197 209	200 217 113	170 195 202 199 206 206 215	195	211 218 212
71 172 172 155 258 304 170 180	172 186 181	145 168 171 178 178 178	178	182 189 185
255 255 255 255 255 255 255 255 255 255	173 187 182	146 169 174 172 179 186	179	183 190 186
632 1,047 1,590 1,440 2,400 2,520 2,580 1,445 1,570	1,602 1,660 1,740	1,360 1,695 1,715 1,592 1,683 1,573	1,556	1,710
546 802 1,378 1,243 2,064 2,227 1,246 1,348	1,382 1,429 1,495	1,165 1,458 1,476 1,365 1,457 1,358	1,338	1,474 1,041 1,049
519 906 1,383 1,248 2,074 2,188 2,234 1,252 1,355	1,387 1,436 1,503	1,170 1,465 1,482 1,372 1,466 1,365	1,345	1,480 1,046 1,056
1.156 1.156 1.156 1.158 1.158 1.158 1.158	1.159 1.162 1.164	1.165 1.162 1.162 1.163 1.163 1.155 1.159	1.163	1.160 1.154 1.150
99999999999999999999999999999999999999	99.5	99.6 99.6 99.5 99.5 99.5	69.5	99.6
$-\infty$	HHW	HNENNS	Ho o	० ०५न
Illinois Mine Run Illinois Pea-coal Illinois Pea-coal	Kentucky Red Torch Kentucky Red Torch Tennessee Smokeless	Foundry Coke Gas-house Coke Gas-house Coke Gas-house Coke Solvay Coke Solvay Coke	Egg Anthracite Pea-anthracite Composition Posts	Gas-b Solva Solva
82 11 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	35 30	8 11 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	36	1886

TABLE XIII. DETAIL DATA ON INDIVIDUAL TESTS

		_	Charges		Average Capacity	Capac	ity de-	Fin	Evaporative Performance	e Pe	Per Pour	Pe	Efficiencies	ies
	3	guir	ime urs)	(spt	veloped			Per Pound	ound	рв	Combustibe	ibe		
Kind of Fuel	Kind of Firin	Number Dur	Average To hoo	Average Weight (pour	Boiler Horse Pow- er	Sq. Ft. of Radiation	Per Cent of Builders rat- ng	Actual Evaporat- ion (pounds)	Equiv. Evap (212 oF) (pounds)	Lbs. Fuel po 100 sq. ft. Ra per Hr.	Actual Ev- aporation (Pounds)	Equiv. Equiv. (2120 f.) (pounds)	Boiler(#)	Boiler and Grate (%)
7	0	26	22	288	26	09	61	62	63	64	65	99	19	88
	_ 02	က	2.67	100	5.91	816	60.4	4.64	5.43	4.59	5.89	6.89	52.0	49.
	S	4	2.05	82.5	00.9	826	61.2	4.36	5.06	4.94	5.54	6.44	48.2	46.8
	20	2	3.16	182.5	5.86	807	29.8	3.06	3.51	7.15	3.90	4.47	36.1	31.
	02	8	2.43	100	5.62	911	57.5	4.05	4.68	5.33	5.43	6.28	46.1	43.8
	1	ī	7.25	300	5.93	613	9.09	4.29	4.95	5.05	5.76	6.64	47.9	46.
	H		8.50	300	5.95	817	60.5	2.00	5.80	4.32	6.23	7.23	56.3	53.
	T	_	8.25	300	5.73	632	58.4	4.70	5.43	4.60	5.86	6.77	52.6	49.8
Centerville	20	en 1	2.56	100	6.09	840	62.2	4.64	5.37	4.66	5.52	6.38	45.4	41.8
callervine	70	- 0	07.0	200	0.40	000	60.0	5.23	6.07	4.10	6.23	97.7	0.16	47
	2 -	٦.	7.75	300	3.8	000	61.4	4.65	5.34	4.98	7.82	6.14	46.1	42.0
	100	4 00	2.53	2000	3.30	457	33.8	4.39	20.00	4.93	5.66	9	48.6	48
	S	2	3.5	100	4.48	620	45.9	4.37	5.05	4.96	5.52	6.39	49.0	47.8
	S	က	2.67	100	5.95	923	6.09	4.71	5.48	4.56	5.78	6.73	49.3	46.
	7	_	7.50	300	5.95	823	6.09	4.46	5.16	4.86	5.47	6.33	45.4	43.5
	20	2	1.50	100	9.60	1,328	98.3	4.29	4.96	5.05	5.43	6.27	1.64	47.
	201	00 1	2.58	06	5.33	735	51.4	4.48	5.25	5.79	5.45	6.32	47.3	43.6
	7	1	06.7	250	5.13	705	52.3	4.60	5.37	4.72	5.48	6.33	49.1	45.8
Lump	S	က	2.58	100	6.17	853	63.1	4.75	5.49	4.53	5,83	6.73	48.2	46.
Lump	T	1	6 75	250	6.58	910	67.3	5.30	6.15	4.06	6.51	7.54	54.1	51.5
Nut	02	63	05.20	95	5.83	803	59.5	4.60	5.29	4.73	5.80	6.67	48.9	45.(
ut	H	1	7.16	250	5.80	800	59.2	2.00	5.75	4.36	6.31	7.26	52.9	48.8
ck	S	ಣ	2.67	83.3	5.91	816	60.4	5.67	6.52	3.85	6.43	7.41	56.6	53.6
Jack	SO	33	2.67	83.3	6.35	875	64.8	6.10	7.02	3.57	7 08	21 00	6 19	57.
100	-										00.	0.10	7.10	

646.8 626.7 626.3 626.3 626.3 64.1 64.1 64.1 64.1 64.1 64.1 64.1 64.1	42.1 43.6 64.2	68.33 68.33 68.33 68.03	54.8 56.6 43.2	54.6 48.2 48.2
59.1 4.1.7 55.0 4.6.0 56.0 4.8.7 4.8.4 4.8.4 6.6	49.2 50.1 66.5	54.5 70.2 59.4 57.7 74.0	63.8 62.1 46.1	57.7 54.2 53.8
6.73 9.29 7.55 7.40 7.40 6.10 6.25 6.08	6.77 7.02 10.31	7.90 9.73 8.32 8.25 9.15	8.43 8.75 4.07	7.93 7.14 7.18
66.89 66.40 66.40 70.20 70.20 70.20 70.20	5.86 6.07 8.91	6.80 8.42 7.20 7.11 8.28 8.78	7.28 7.52 3.50	6.88 6.23 6.29
48 4 4 4 7 7 7 7 4 8 8 1 7 8 8 1 7 8 8 1 7 8 8 1 7 8 8 1 7 8 8 1 7	3.89 3.75 2.86	3.67 2.96 3.65 3.14 2.97 2.78	3.21 3.31 16.00	4.08 4.17 4.16
0.0.0.0.0.4.4.4.0.0 0.0.0.0.0.4.4.4.0.0 0.0.0.0.	6.41 6.64 8.70	6.80 6.86 6.86 7.96 9.00	7.78	6.00
4.0.0 4.4.4.8.80 4.0.08 4.0.08 4.0.08 4.0.08 4.0.08 4.0.08 4.0.08 5.0.08	5.55 5.74 7.51	7.7.88 7.7.88 7.7.88 7.88 8.89 8.99	6.72 6.50	5.28
24.53 25.29 25.29 26.29 26.29 26.29 26.29 26.29 26.29	59.3 64.2 62.5	50.3 57.7 59.0 61.0	61.4 57.7 48.6	62.4 64.5 62.8
328 543 7795 1,200 1,408 788 838	801 845 845	880 780 797 823 863	830 780 656	843 871 849
2.36 2.36 3.77 3.70 10.20 10.20 6.05	5.80 6.28 6.11	4.93 5.65 5.86 5.77 6.23	6.00	6.12 6.32 6.15
62.5 75.5 88.3 86.7 110 50 60 80 80 80 80 80 80 80 80 80 80 80 80 80	88.3 250 200	66.7 66.7 88.3 200 50	200 83.3 87.5	2000 2000
2.6.67 2.6.67 2.6.67 2.6.67 2.6.67 3.50 5.50 5.50	2.67 7.67 8.25	22.2.2.88 2.2.2.83 7.2.04 7.3.34	3.22	2.69 5.50 5.67
101100000000	811	8000H4H	H 60 41	ю н н
Εναναναναν	SHH N	NANHAH	N W	ина
Illinois Mine Run Illinois Pea-coal Illinois Pea-coal	Kentucky Red Torch Kentucky Red Torch Tennessee Smokeless	Foundry Coke Gas-house Coke Gas-house Coke Fetroleum Coke Solvay Coke	Egg Anthracite Pea-anthracite Iowa Peat	Gas-house Coke and Saylor Solvay and Boone Solvay and Boone
5257114588864	888	225 23 23 23	36 9 9	282 29

TABLE XIII.
DETAIL DATA ON INDIVIDUAL TESTS (Continued

_	Total = Heat Fuel as Fired	83	
er cents	Unaccountd for	81	48448888888888888888888888888888888888
se (by p	Grate Losses	80	4984 4800 0 0 0 0 8 11 8 0 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Boiler Heat Balance (by per cents)	Heating as Evaporating Moisture n Tuel	62	6441000111000011110001110001110000000000
oiler He	Heating Flue Gases	82	00000000000000000000000000000000000000
M	Heating and Evaporating Wa ter	77	######################################
	OF)	92	2.80 2.240 2.240 2.250 2
	Evap.(212	75	@@##00@@@@@@@@@@@@### #################
(ve (ø)	Per 1,000 A Lion Lion Lion Lion Lion Lion Lion Lion	74	011311100000111110111100 00000000000000
Evaporative	Nio Per Hour	73	00110000000000000000000000000000000000
Costs	Per 1,000 A Evap. (212 a) Per 100sq. 7. Per 100sq. 7.	72	######################################
	Per 1,000 Evapora- tion	11	
.a	Per Million T. U. (Ø)	02	7.7.7.888.7.7.888.8.6.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9
00	Per Ton of 2,0 lbs. (\$)	69	00000000044004444000 444400 555565588658888 555858
	Kind of Firing	က	ον Εννήσην Ευνήσην Ευν
	Kind of Fuel	2	Boone Boone Boone Boone Boone Buxton Buxton Buxton Centerville Contexyile Confax Colfax Colfax Colfax Colfax Buxton Buxton Confax Colfax Colfac Colfa
			2020 28

11 11 11 11 11 11 11 1	100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.0 100.0 100.0	100.0 100.0 100.0 100.0 100.0	100.0	100.0
Hinois Mine Run. S	19.0 8.2 19.3 21.8 20.5 27.6 40.8 37.1	32.2 31.2 21.0	25.1 11.6 14.1 27.0 11.4 9.5	18.7	19.0 28.6 29.6
Hillinois Mine Run. S 4.75 22.7 56.1 47.0 1.17 11.4 9.9 2.24 46.8 10.8 11.11 11.14 11.14 11.14 11.15	22. 117.5 111.7 8.3 8.3 6.9 10.5 10.5 4.0	12.7	4.0 6.5 9.8 14.1 12.1	13.6 9.6 9.8	4.9 11.1 10.4
Hillinois Mine Run. S 4.75 22.7 54.1 47.0 1.17 11.4 9.9 247 46.8 111.0 11.	111100111100	0.2	000000000000000000000000000000000000000	0.2 0.4	0.7
Hillinois Mine Run. S 4.75 22.7 54.1 47.0 1.17 11.4 9.9 2.97 11.1 11.	8.88 15.00 18.77 17.77 12.11 13.6	11.3	18.4 15.9 23.7 11.2 11.1 10.3	12.7 20.0 13.7	20.8 11.6 11.3
Hillinois Mine Run. S 4.75 22.7 59.1 47.0 1.17 11.4 9.9 11110 1110 11110 11110 11110 11110 11110 11110 11110 1110 11110 11110 11110 11110 11110 11110 11110 1110 11110	46.8 64.7 52.7 52.5 52.5 42.3 43.2 41.1	42.1 43.6 64.2	65.8 65.8 63.3 683.3	54.8 56.6 43.2	54.6 48.2 48.2
Hinois Mine Run	247 181 220 220 227 221 273 273 266 259 259	.195	. 184 . 183 . 157 . 148 . 139	.161	.201 .208 .208
Hillinois Mine Run. S 4.75 22.7 54.1 47.0 1.17	9.00 8.00 10.00 9.00 9.00	5.7.8	40.00.00.00.00.00.00.00.00.00.00.00.00.0	6.4	00 00 00 0 00 00
Hinois Mine Run. S 4.75 22.7 54.1 47.0 111 1	8.22 10.1 10.2 12.6 12.6 12.0 12.0	9.0	8.887-88 8.884-884	7.7	8.00
Hinois Mine Run	0.86 1.05 1.08 1.08 1.30 1.26 1.26 1.04	1.27	1.56 1.28 1.28 1.22 1.15	1.65	0.99
Illinois Mine Run	247.0 8.47.0 6.10.9 6.10.9 8.10.5 8.1	50.7 49.0 41.6	62.6 41.3 51.0 64.3 49.0 45.8	65.8 57.8 144.1	39.7 50.0 49.8
Illinois Mine Run	54.1 889.2 488.0 698.6 659.7 488.0 688.6 688.6	58.5 56.8 48.3	72.7 47.8 59.0 74.7 56.2	76.2 67.3 168.0	45.7 57.5 57.0
Illinois Mine Run	28 28 28 28 28 28 28 28 28 28 28 28 28 2	21.9 21.9 27.5	22.0 22.0 22.0 22.0 22.0	37.3 33.6 64.3	22.4 24.9 24.9
Illinois Mine Run. Illinois Pea-coal Illinois Pea-coal Illinois Pea-coal Illinois Pea-coal Illinois Pea-coal Foundry Red Torch. Tennessee Smokeless. Foundry Coke Gas-house Coke Gas-house Coke Froleum Coke Solvay Coke Solvay Coke Solvay Coke Solvay Coke Iowa Peat Iowa Peat	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.50	8.50 7.00 10.25 8.25 8.25	10.25 8.75 4.50	4.98 6.00 6.00
	HWWWWWWW	w H H	HWHWWW	на а	HHW
	Illinois Mine Illinois Pea-co Illinois Pea-co	Kentucky Red Kentucky Red Tennessee Smo		Egg Pea- Iowa	

BULLETINS OF THE ENGINEERING EXPERIMENT STATION.

*No. 1. The Iowa State College Sewage Disposal Plant Investigations.

*No. 2. Bacteriological Investigations of the Iowa State College Sewage.

*No. 3. Data of Iowa Sewage and Sewage Disposal.

*No. 4. Bacteriological Investigations of the Iowa State College Sewage Disposal Plant.

*No. 5. The Chemical Composition of the Sewage of the Iowa State College Sewage Disposal Plant.

*No. 6. Tests of Iowa Common Brick.

*No. 7. Sewage Disposal in Iowa.

*No. 8. Tests of Dry Press Brick Used in Iowa.

*No. 9. Notes on Steam Generation with Iowa Coal.

*No. 10. Dredging by the Hydraulic Method.

*No. 11. An Investigation of Some Iowa Sewage Disposal Systems.

*Vol. II. No. 6. The Good Roads Problem in Iowa.

Vol. III. No. 1. Tests of Cement.

Vol. III. No. 2. State Railroad Taxation.

*Vol. III. No. 3. Steam Generation with Iowa Coals.

Vol. III. No. 4. Incandescent Lamp Testing. *Vol. III. No. 5. Steam Pipe Covering Tests.

*Vol. III. No. 6. The Assessment of Drainage Districts.

Vol. IV. No. 1. Tests of Iowa Limes.

Vol. IV. No. 2. Holding Power of Nails in Single Shear.

Vol. IV. No. 3. Miracle Contest Papers for 1908.

Vol. IV. No. 4. Miracle Prize Papers for 1909.

Vol. IV. No. 5. Sanitary Examination of Water Supplies.

Vol. IV. No. 6. Sewage Disposal Plants for Private Houses.

Bulletin No. 25. Electric Power on the Farm.

Bulletin No. 26. The Production of Excessive Hydrogen Sulfid in Sewage Disposal Plants and Consequent Disintegration of the Concrete.

Bulletin No. 27. A Study of Iowa Population as Related to Industrial Conditions.

Bulletin No. 28. History of Road Legislation in Iowa.

Bulletin No. 29. Costs of Producing Power in Iowa with Iowa Coals.

Bulletin No. 30. The Determination of Internal Temperature Range in Concrete Arch Bridges. Bulletin No. 31. The Theory of Loads on Pipes in Ditches, and Tests of Cement and Clay Drain Tile and Sewer Pipe.

and Sewer Pipe.

Bulletin No. 32. A Topographical Survey of the Spirit and Okoboji Lakes Region.

Bulletin No. 33. House Heating Fuel Tests.

*Out of print.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

MAR 26 1941	
	TENERS BEING
	7.40(00000)
	LD 21-100m-7,'40 (6936s)

Photomount
Pamphlet
Binder
Gaylord Bros.
Makers
Syracuse, N. Y.
PAI JAN 21, 1908

545298

UNIVERSITY OF CALIFORNIA LIBRARY

