Bloch-Messiah reduction on a two source HOM Dip

Generated by Doxygen 1.8.11

Contents

1	Tod	o List			1
2	Mod	dules Inc	dex		3
	2.1	Modul	es List		3
3	File	Index			5
	3.1	File Lis	st		5
4	Mod	dule Doo	cumentatio	on	7
	4.1	maked	pticalelem	ents Module Reference	7
		4.1.1	Detailed	Description	8
		4.1.2	Function	Subroutine Documentation	8
			4.1.2.1	abt(i, j, ft, nspec)	8
			4.1.2.2	alloc_temparrays(nspace, nspec)	8
			4.1.2.3	amp(a)	8
			4.1.2.4	bbd(i, j, ft, nspec)	9
			4.1.2.5	dealloc_temparrays	9
			4.1.2.6	f_gauss(w1, w2, sigma1, sigma2, w1off, w2off)	9
			4.1.2.7	f_sine(w1, w2, sigma1, sigma2, w1off, w2off)	9
			4.1.2.8	g4(ft, nspec)	9
			4.1.2.9	gen_jsa(f, w1_start, w1_steps, w1_incr, w2_start, w2_steps, w2_incr, sigma1, sigma2, outfile, w1offset, w2offset)	10
			4.1.2.10	make_bs(nspace, nspec, symp_mat, m1, m2, theta)	10
			4.1.2.11	make_sq(nspace, nspec, symp_mat, m1, m2, alpha, beta)	10
			41212	make squeezer(nspace pspec mode1 mode2 isa)	11

iv CONTENTS

		4.1.3	Variable I	Documentation	11
			4.1.3.1	ident	11
	4.2	olis_f90	Ostdlib Mod	dule Reference	11
		4.2.1	Function/	Subroutine Documentation	12
			4.2.1.1	alloc_complex_eigenvects(matrix, eigenvals, u, v)	12
			4.2.1.2	alloc_complex_svd(matrix, sigma, u, vt)	13
			4.2.1.3	$c_identity(n) \hspace{0.1in} \ldots 0.1i$	13
			4.2.1.4	c_inv2(m_in)	13
			4.2.1.5	complex_eigenvects(a, w, vI, vr)	13
			4.2.1.6	complex_svd(a, sigma, u, vt)	14
			4.2.1.7	complextrace(a)	14
			4.2.1.8	expmatrix(matrix, n)	14
			4.2.1.9	$factorial(n) \ \dots $	14
			4.2.1.10	$matrixmul(x,n)\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	14
			4.2.1.11	matrixnorm(c)	14
			4.2.1.12	outerproduct(a, b)	15
			4.2.1.13	printvectors(vect, desc, f)	15
			4.2.1.14	randseed(seed)	15
			4.2.1.15	sinc(x)	15
			4.2.1.16	$tprod(a,b) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	15
		4.2.2	Variable I	Documentation	16
			4.2.2.1	imaginary	16
			4.2.2.2	pi	16
	4.3	schmid	t_decomp	Module Reference	16
		4.3.1	Detailed	Description	16
		4.3.2	Function/	Subroutine Documentation	16
			4.3.2.1	schmidt_modes(f_mat, svf, uf, vtf, writeout)	16
5	Eilo	Docume	ntation		19
,	5.1			ents.f90 File Reference	19
	5.2			e Reference	20
	5.2	5.2.1		Subroutine Documentation	20
		5.2.1	5.2.1.1		
				matrixexp	20
	E O	olio for	5.2.1.2	num_hom	20
	5.3	_		File Reference	20
	5.4	SCHITHO	ı_uecomp	.130 File neletetice	21
ln	dex				23

Chapter 1

Todo List

```
Subprogram makeopticalelements::abt (i, j, ft, nspec)
check this

Subprogram makeopticalelements::bbd (i, j, ft, nspec)
check this
```

2 Todo List

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all modules with brief descriptions:

makeopticalelements	
Module for building symplectic matrices for optical elements	7
olis_f90stdlib	11
schmidt_decomp	
Program to calculate occupied Schmidt-modes of a JSA	16

4 Modules Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

makeopticalelements.f90	19
num_hom.f90	20
olis_f90stdlib.f90	20
schmidt decomp.f90	21

6 File Index

Chapter 4

Module Documentation

4.1 makeoptical elements Module Reference

module for building symplectic matrices for optical elements

Functions/Subroutines

- subroutine make_bs (nspace, nspec, symp_mat, m1, m2, theta)
 makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays
- subroutine make_sq (nspace, nspec, symp_mat, m1, m2, alpha, beta)
 make symplectic squeezing matrix from exponetiated JSA a lot is broken...
- complex(kind=dp) function, dimension(:,:), allocatable make_squeezer (nspace, nspec, mode1, mode2, jsa) make sqq matrix from jsa function
- real(kind=dp) function, dimension(:,:), allocatable gen_jsa (f, w1_start, w1_steps, w1_incr, w2_start, w2_
 steps, w2_incr, sigma1, sigma2, outfile, w1offset, w2offset)
 - samples the given jsa for frequency ranges w1, w2
- complex(kind=dp) function f_gauss (w1, w2, sigma1, sigma2, w1off, w2off)
 JSA function taking two freq.
- complex(kind=dp) function f_sine (w1, w2, sigma1, sigma2, w1off, w2off)
- real(kind=dp) function g4 (ft, nspec)
 - calculates g4 using matrix elements sum
- real(kind=dp) function amp (a)
 - returns the absolute value squared |a|**2
- complex(kind=dp) function abt (i, j, ft, nspec)
 - calculates matrix elements Alpha-Beta**T for M = (A B) (B* A*) computes AB**T and returns the i.j-th element
- complex(kind=dp) function bbd (i, j, ft, nspec)
 - calculates the matrix elements Beta*Beta**H for $M = (A\ B\)$ $(B*\ A*)$ computes B*B**H (Hermitian conjg) and returns the i,j-th element
- subroutine alloc temparrays (nspace, nspec)
 - allocates temp arrays for matrices
- · subroutine dealloc_temparrays

Variables

real(kind=dp), public ident

4.1.1 Detailed Description

module for building symplectic matrices for optical elements

4.1.2 Function/Subroutine Documentation

4.1.2.1 complex(kind=dp) function makeopticalelements::abt (integer *i*, integer *j*, complex(kind=dp), dimension(:,:), intent(in), allocatable *ft*, integer *nspec*)

calculates matrix elements Alpha-Beta**T for M = (A B) (B* A*) computes AB**T and returns the i,i-th element

Parameters

i	input index 1
j	input index 2
ft	input symplectic transform matrix for the optical circuit
nspec	input number of spectral DOF

Todo check this

4.1.2.2 subroutine makeopticalelements::alloc_temparrays (integer, intent(in) nspace, integer, intent(in) nspec)

allocates temp arrays for matrices

Parameters

nspace	input
nspec	input allocates memory for ident_spec a spectral size matrix for tensor producting.

allocates mem for spatial_work, array size of spatial modes

allocates mem for n_work, work array size of alpha or beta in sympectic matrix

4.1.2.3 real(kind=dp) function makeopticalelements::amp (complex(kind=dp) a)

returns the absolute value squared |a|**2

Parameters

a input complex number to be a **2

4.1.2.4 complex(kind=dp) function makeopticalelements::bbd (integer, intent(in) *i*, integer, intent(in) *j*, complex(kind=dp), dimension(:,:), intent(in), allocatable *ft*, integer, intent(in) *nspec*)

calculates the matrix elements Beta*Beta**H for M = (A B) (B*A*) computes B*B**H (Hermitian conjg) and returns the i,j-th element

Parameters

i	input index 1
j	input index 2
ft	input symplectic transform matrix for the optical circuit
nspec	input number of spectral DOF

Todo check this

- 4.1.2.5 subroutine makeopticalelements::dealloc_temparrays ()
- 4.1.2.6 complex(kind=dp) function makeopticalelements::f_gauss (real(kind=dp), intent(in) w1, real(kind=dp), intent(in) w2, real(kind=dp), intent(in) sigma1, real(kind=dp), intent(in) sigma2, real(kind=dp), intent(in) w1off, real(kind=dp), intent(in) w2off)

JSA function taking two freq.

Parameters

w1	input signal freq
w2	input idler freq
sig	input variance

- 4.1.2.7 complex(kind=dp) function makeopticalelements::f_sine (real(kind=dp), intent(in) w1, real(kind=dp), intent(in) w2, real(kind=dp), intent(in) sigma1, real(kind=dp), intent(in) sigma2, real(kind=dp), intent(in) w1off, real(kind=dp), intent(in) w2off)
- 4.1.2.8 real(kind=dp) function makeopticalelements::g4 (complex(kind=dp), dimension(:,:), intent(in), allocatable ft, integer, intent(in) nspec)

calculates g4 using matrix elements sum

Parameters

ft	input is the full symplectic transform
nspec	input spectral DOF

4.1.2.9 real(kind=dp) function, dimension (:,:), allocatable makeopticalelements::gen_jsa (complex(kind=dp) f, real(kind=dp), intent(in) w1_start, integer w1_steps, real(kind=dp), intent(in) w1_incr, real(kind=dp), intent(in) w2_start, integer w2_steps, real(kind=dp), intent(in) w2_incr, real(kind=dp), intent(in) sigma1, real(kind=dp), intent(in) sigma2, integer outfile, real(kind=dp), optional w1offset, real(kind=dp), optional w2offset)

samples the given jsa for frequency ranges w1, w2

Parameters

f_mat	allocatable Jsa matrix values out
w_start	

4.1.2.10 subroutine makeopticalelements::make_bs (integer *nspace*, integer *nspec*, complex(kind=dp), dimension(:,:), allocatable *symp_mat*, integer *m1*, integer *m2*, real(kind=dp) *theta*)

makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays

Parameters

nspace	is number of total spatial modes
nspec	is number of total spectral modes
m_bs	allocated n*n matrix for beamsplitter
m1	is spatial mode 1 for beam splitter
m2	is spatial mode 2 for beam splitter

4.1.2.11 subroutine makeopticalelements::make_sq (integer *nspace*, integer *nspec*, complex(kind=dp), dimension(:,:), allocatable *symp_mat*, integer *m1*, integer *m2*, complex(kind=dp), dimension(:,:), intent(inout) *alpha*, complex(kind=dp), dimension(:,:), intent(inout) *beta*)

make symplectic squeezing matrix from exponetiated JSA a lot is broken...

Note

only works if modes are consectutive

Note

alpha & beta are 2 spatial modes and all spectral modes dim 2*nspace*nspec

loop for alpha

check this is legal... full diag sq symp_mat(m1s:m1s+nspec, m1s+n:m1s+nspec+n)=beta(1:nspec, 1+nspec← :2*nspec)

probably not legal symp mat(m2s:m2s+nspec, m2s+n:m2s+nspec+n)=beta(nspec+1:2*nspec, 1:nspec)

loop for beta, offset to col+n

4.1.2.12 complex(kind=dp) function, dimension(:,:), allocatable makeopticalelements::make_squeezer (integer, intent(in) nspace, intent(in)

make sqq matrix from jsa function

Note

to make off diagonal for fmatrix m_sq=0.0_dp ! top right m_sq(1:1*f_size, 3*f_size+1:4*f_size)=1 ! mid right m_sq(1*f_size+1:2*f_size, 2*f_size+1:3*f_size)=2 ! mid left m_sq(2*f_size+1:3*f_size, 1*f_size+1:2*f_ \leftrightarrow size)=3 ! bot left m_sq(3*f_size+1:4*f_size, 1:1*f_size)=4 !h= 0.0 F_JSA F_JSA*T 0.0

f_jsa = f_mat

 $M_sq = exp(i (0 H) (-H* 0)$

 $M_sq = exp(i (0 0 0 F_JSA) (0 0 F_JSA**T 0) (0 -conjg(F_JSA) 0 0) (-F_JSA**H 0 0 0)$

Note

alpha beta are top left and top right of M M = (A B) (B* A*)

Parameters

alpha_size is 2*f_size as all spect	tral modes for 2 spatial
-------------------------------------	--------------------------

Note

allocate for sq on modes 1&2

- 4.1.3 Variable Documentation
- 4.1.3.1 real(kind=dp), public makeopticalelements::ident

4.2 olis_f90stdlib Module Reference

Functions/Subroutines

- subroutine alloc_complex_eigenvects (matrix, eigenvals, u, v)
 - allocates eigenvals, u & v arrays for eigenvals & eigenvects
- subroutine alloc_complex_svd (matrix, sigma, u, vt)

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

• subroutine randseed (seed)

generates random seed

• subroutine printvectors (vect, desc, f)

print formatted matrices can take optional args for labels or write directly to a file

• complex(kind=dp) function, dimension(2, 2) outerproduct (a, b)

outerproduct of two complex vectors, returns a complex matrix

• complex(kind=dp) function, dimension(n, n) c_identity (n)

makes complex identity matrix dim (nxn)

• complex(kind=dp) function, dimension(:,:), allocatable tprod (a, b)

tensor product for complex matrices aXb

complex(kind=dp) function complextrace (a)

computes the trace of a complex matrix

• subroutine complex_eigenvects (a, w, vl, vr)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

subroutine complex_svd (a, sigma, u, vt)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

complex(kind=dp) function, dimension(2, 2) c_inv2 (m_in)

inverse for a complex 2x2 matrix

• real(kind=dp) function matrixnorm (c)

computed Frobenieus matrix norm of complex matrix using lapack zlange

- complex(kind=dp) function, dimension(size(matrix, 1), size(matrix, 2)) expmatrix (matrix, n)
- recursive complex(kind=dp) function, dimension(size(x, 1), size(x, 2)) matrixmul (x, n)
- recursive real(kind=dp) function factorial (n)
- real(kind=dp) function sinc (x)

sinc function

Variables

- real(kind=dp), parameter pi =4.0_dp*atan(1.0)
- complex(kind=dp), parameter imaginary =(0.0_dp, 1.0_dp)

4.2.1 Function/Subroutine Documentation

4.2.1.1 subroutine olis_f90stdlib::alloc_complex_eigenvects (complex(kind=dp), dimension(:,:), intent(in) *matrix*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *eigenvals*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *u*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *v*)

allocates eigenvals, u & v arrays for eigenvals & eigenvects

allocated temp work arrays also

Author

Oliver Thomas August 2018

Parameters

matrix	input complex matrix
eigenvals	1d array for eigenvalues, is overwriten on exit
и	2d array of left eigenvectors
V	3d array of right eigenvectors

4.2.1.2 subroutine olis_f90stdlib::alloc_complex_svd (complex(kind=dp), dimension(:,:), intent(in) *matrix*, real(kind=dp), dimension(:), intent(inout), allocatable *sigma*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *u*, complex(kind=dp), dimension(:,:), intent(inout), allocatable *vt*)

allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too

Parameters

matrix	input complex matrix
sigma	real vector of singular values sorted in descending order
и	unitary matrix
vt	unitary matrix returns V**H NOT v

4.2.1.3 complex(kind=dp) function, dimension(n,n) olis_f90stdlib::c_identity (integer, intent(in) n)

makes complex identity matrix dim (nxn)

Parameters

n	input dimension
---	-----------------

4.2.1.4 complex(kind=dp) function, dimension(2,2) olis_f90stdlib::c_inv2 (complex(kind=dp), dimension(2,2), intent(in) m_in)

inverse for a complex 2x2 matrix

Parameters

m⊷	is input complex 2x2 matrix
_in	

4.2.1.5 subroutine olis_f90stdlib::complex_eigenvects (complex(kind=dp), dimension(:,:), allocatable *a,* complex(kind=dp), dimension(:,:), allocatable *vl,* complex(kind=dp), dimension(:,:), allocatable *vr*)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

Parameters

а	input allocatable complex matrix to be diagonalised
W	output allocatable complex 1d array containing eigenvals
vl	output allocatable complex 2d array containing left eigenvectors
vr	output allocatable complex 2d array containing right eigenvectors

Note

need to check this is optimised

4.2.1.6 subroutine olis_f90stdlib::complex_svd (complex(kind=dp), dimension(:,:), intent(inout) a, real(kind=dp), dimension(:) sigma, complex(kind=dp), dimension(:,:) vt)

computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack

Parameters

а	input allocatable complex matrix to be SVD'd
sigma	output allocatable complex 1d array containing ordered singular values
и	output allocatable complex 2d array containing u
vt	output allocatable complex 2d array containing v**H

Note

need to check this is optimised

4.2.1.7 complex(kind=dp) function olis f90stdlib::complextrace (complex(kind=dp), dimension(:,:) a)

computes the trace of a complex matrix

Parameters

a is the complex matrix in

4.2.1.8 complex(kind=dp) function, dimension(size(matrix,1),size(matrix,2)) olis_f90stdlib::expmatrix (complex(kind=dp), dimension(:,:) *matrix*, integer *n*)

Parameters

n is the number of terms in taylor expansion to consider

- 4.2.1.9 recursive real(kind=dp) function olis_f90stdlib::factorial (integer n)
- 4.2.1.10 recursive complex(kind=dp) function, dimension(size(x,1),size(x,2)) olis_f90stdlib::matrixmul (complex(kind=dp), dimension(:,:) x, integer n)
- 4.2.1.11 real(kind=dp) function olis_f90stdlib::matrixnorm (complex(kind=dp), dimension(:,:) c)

computed Frobenieus matrix norm of complex matrix using lapack zlange

Parameters

С	input complex matrix
---	----------------------

4.2.1.12 complex(kind=dp) function, dimension(2,2) olis_f90stdlib::outerproduct (complex(kind=dp), dimension(:), intent(in) a, complex(kind=dp), dimension(:), intent(in) b)

outerproduct of two complex vectors, returns a complex matrix

Parameters

а	is input vector 1, ket>
b	is input vector 2, <bra< th=""></bra<>

4.2.1.13 subroutine olis_f90stdlib::printvectors (complex(kind=dp), dimension(:,:), intent(in) *vect*, character(len=*), intent(in), optional *desc*, integer, intent(in), optional *f*)

print formatted matrices can take optional args for labels or write directly to a file

Parameters

vect	is the input complex matrix
desc	is the optional string to be written above the matrix
f	is the optional file output unit to write to, default is console

4.2.1.14 subroutine olis_f90stdlib::randseed (integer, dimension(:), allocatable seed)

generates random seed

Parameters

seed is input allocatable 1d array

4.2.1.15 real(kind=dp) function olis_f90stdlib::sinc (real(kind=dp) x)

sinc function

4.2.1.16 complex(kind=dp) function, dimension(:,:), allocatable olis_f90stdlib::tprod (complex(kind=dp), dimension (:,:), intent(in) a, complex(kind=dp), dimension (:,:), intent(in) b)

tensor product for complex matrices aXb

Parameters

а	complex matrix in
b	complex matrix in

4.2.2 Variable Documentation

- 4.2.2.1 complex(kind=dp), parameter olis_f90stdlib::imaginary =(0.0_dp, 1.0_dp)
- 4.2.2.2 real(kind=dp), parameter olis_f90stdlib::pi =4.0_dp*atan(1.0)

4.3 schmidt_decomp Module Reference

program to calculate occupied Schmidt-modes of a JSA

Functions/Subroutines

• subroutine, public schmidt_modes (f_mat, svf, uf, vtf, writeout)

4.3.1 Detailed Description

program to calculate occupied Schmidt-modes of a JSA

4.3.2 Function/Subroutine Documentation

4.3.2.1 subroutine, public schmidt_decomp::schmidt_modes (complex(kind=dp), dimension(:,:) f_mat, real(kind=dp), dimension(:) svf, complex(kind=dp), dimension(:,:) uf, complex(kind=dp), dimension(:,:) vtf, integer, dimension(:) writeout)

Parameters

uf	uf1 is u matrix from f_mat1 svd
vtf1	is vt matrix from f_mat1 svd
vtf	uf1 is u matrix from f_mat1 svd
vtf1	is vt matrix from f_mat1 svd
svf	svf1 singular values for f_mat1

Note

files to write to

jsa 1

jsa 2

Note

returns the w1,w2 element from the Jsa after doing svd Unitary = $\exp(SUM_k r_k * A^H_k * B^H_k - h.c.) = X_k \exp(r_k * A^H_k * B^H_k - h.c.) = X_k S^ab_k(-r_k)$

 $A_k -> cosh(r_k)A_k + sinh(r_k)B^{\wedge}H_k \ B_k -> cosh(r_k)B_k + sinh(r_k)A^{\wedge}H_k$

Chapter 5

File Documentation

5.1 makeopticalelements.f90 File Reference

Modules

· module makeopticalelements

module for building symplectic matrices for optical elements

Functions/Subroutines

- subroutine makeopticalelements::make_bs (nspace, nspec, symp_mat, m1, m2, theta)
 - makes beamsplitter symplectic matrix takes in an allocated matrix for the beamsplitter matrix to be written to uses the private ident_spec, spatial_work, n_work arrays
- subroutine makeopticalelements::make_sq (nspace, nspec, symp_mat, m1, m2, alpha, beta)
 - make symplectic squeezing matrix from exponetiated JSA a lot is broken...
- complex(kind=dp) function, dimension(:,:), allocatable makeopticalelements::make_squeezer (nspace, nspec, mode1, mode2, jsa)
 - make sqq matrix from jsa function
- real(kind=dp) function, dimension(:,:), allocatable makeopticalelements::gen_jsa (f, w1_start, w1_steps, w1 ← _incr, w2_start, w2_steps, w2_incr, sigma1, sigma2, outfile, w1offset, w2offset)
 - samples the given jsa for frequency ranges w1, w2
- complex(kind=dp) function makeopticalelements::f_gauss (w1, w2, sigma1, sigma2, w1off, w2off)
 JSA function taking two freq.
- complex(kind=dp) function makeopticalelements::f_sine (w1, w2, sigma1, sigma2, w1off, w2off)
- real(kind=dp) function makeopticalelements::g4 (ft, nspec)
 - calculates g4 using matrix elements sum
- real(kind=dp) function makeopticalelements::amp (a)
 - returns the absolute value squared |a|**2
- complex(kind=dp) function makeopticalelements::abt (i, j, ft, nspec)
 - calculates matrix elements Alpha-Beta**T for M = (A B) (B* A*) computes AB**T and returns the i,j-th element
- complex(kind=dp) function makeopticalelements::bbd (i, j, ft, nspec)
 - calculates the matrix elements Beta*Beta**H for M = (A B) (B*A*) computes B*B**H (Hermitian conjg) and returns the i,j-th element
- subroutine makeopticalelements::alloc temparrays (nspace, nspec)
 - allocates temp arrays for matrices
- subroutine makeopticalelements::dealloc_temparrays

20 File Documentation

Variables

• real(kind=dp), public makeopticalelements::ident

5.2 num_hom.f90 File Reference

Functions/Subroutines

jsa 1

```
    program num_hom
        program to compute matrix of a JSA
    subroutine matrixexp
```

5.2.1 Function/Subroutine Documentation

```
5.2.1.1 subroutine num_hom::matrixexp( )
jsa 1
```

Note

files to write to jsa 2 allocates the singular values, u and vt matrices for svd call schmidt_modes(jsa_func, sv, u, vt, units) this is wrong...

```
5.2.1.2 program num_hom ( )
```

program to compute matrix of a JSA

5.3 olis_f90stdlib.f90 File Reference

Modules

• module olis_f90stdlib

Functions/Subroutines

- subroutine olis_f90stdlib::alloc_complex_eigenvects (matrix, eigenvals, u, v)
 - allocates eigenvals, u & v arrays for eigenvals & eigenvects
- subroutine olis f90stdlib::alloc complex svd (matrix, sigma, u, vt)
 - allocates sigma (singular vals), u and vt for complexSVD allocates temp work arrays too
- subroutine olis_f90stdlib::randseed (seed)
 - generates random seed
- subroutine olis_f90stdlib::printvectors (vect, desc, f)
 - print formatted matrices can take optional args for labels or write directly to a file
- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::outerproduct (a, b)
 - outerproduct of two complex vectors, returns a complex matrix
- complex(kind=dp) function, dimension(n, n) olis f90stdlib::c identity (n)
 - makes complex identity matrix dim (nxn)
- complex(kind=dp) function, dimension(:,:), allocatable olis_f90stdlib::tprod (a, b)
 - tensor product for complex matrices aXb
- complex(kind=dp) function olis f90stdlib::complextrace (a)
 - computes the trace of a complex matrix
- subroutine olis_f90stdlib::complex_eigenvects (a, w, vl, vr)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- subroutine olis_f90stdlib::complex_svd (a, sigma, u, vt)
 - computes the complex eigenvalues and eigenvectors overwrites matrix in, input eigenvalue array and eigenvector arrays uses the zgeev subroutine from lapack
- complex(kind=dp) function, dimension(2, 2) olis_f90stdlib::c_inv2 (m_in)
 - inverse for a complex 2x2 matrix
- real(kind=dp) function olis_f90stdlib::matrixnorm (c)
 - computed Frobenieus matrix norm of complex matrix using lapack zlange
- complex(kind=dp) function, dimension(size(matrix, 1), size(matrix, 2)) olis_f90stdlib::expmatrix (matrix, n)
- recursive complex(kind=dp) function, dimension(size(x, 1), size(x, 2)) olis_f90stdlib::matrixmul (x, n)
- recursive real(kind=dp) function olis_f90stdlib::factorial (n)
- real(kind=dp) function olis_f90stdlib::sinc (x)
 - sinc function

Variables

- real(kind=dp), parameter olis_f90stdlib::pi =4.0_dp*atan(1.0)
- complex(kind=dp), parameter olis_f90stdlib::imaginary =(0.0_dp, 1.0_dp)

5.4 schmidt decomp.f90 File Reference

Modules

module schmidt_decomp

program to calculate occupied Schmidt-modes of a JSA

Functions/Subroutines

subroutine, public schmidt_decomp::schmidt_modes (f_mat, svf, uf, vtf, writeout)

22 File Documentation

Index

abt	makeopticalelements, 10
makeopticalelements, 8	make_squeezer
alloc_complex_eigenvects	makeopticalelements, 10
olis_f90stdlib, 12	makeopticalelements, 7
alloc_complex_svd	abt, 8
olis_f90stdlib, 12	alloc_temparrays, 8
alloc_temparrays	amp, 8
makeopticalelements, 8	bbd, 8
amp	dealloc_temparrays, 9
makeopticalelements, 8	f_gauss, 9
	f_sine, 9
bbd	g4, 9
makeopticalelements, 8	gen_jsa, 9
c_identity	ident, 11
olis_f90stdlib, 13	make_bs, 10
c inv2	make_sq, 10
olis_f90stdlib, 13	make_squeezer, 10
complex eigenvects	makeopticalelements.f90, 19
olis_f90stdlib, 13	matrixexp
complex svd	num_hom.f90, 20
olis_f90stdlib, 14	matrixmul
complextrace	olis_f90stdlib, 14
olis_f90stdlib, 14	matrixnorm
,	olis_f90stdlib, 14
dealloc_temparrays	num hom
makeopticalelements, 9	num_hom.f90, 20
	num_hom.f90, 20
expmatrix	matrixexp, 20
olis_f90stdlib, 14	num_hom, 20
f_gauss	
makeopticalelements, 9	olis_f90stdlib, 11
f_sine	alloc_complex_eigenvects, 12
makeopticalelements, 9	alloc_complex_svd, 12
factorial	c_identity, 13
olis f90stdlib, 14	c_inv2, 13
	complex_eigenvects, 13
g4	complex_svd, 14
makeopticalelements, 9	complextrace, 14
gen_jsa	expmatrix, 14
makeopticalelements, 9	factorial, 14
	imaginary, 16
ident	matrixmul, 14
makeopticalelements, 11	matrixnorm, 14 outerproduct, 15
imaginary	pi, 16
olis_f90stdlib, 16	printvectors, 15
make bs	randseed, 15
makeopticalelements, 10	sinc, 15
make so	torod. 15

24 INDEX

```
olis_f90stdlib.f90, 20
outerproduct
     olis_f90stdlib, 15
pi
     olis_f90stdlib, 16
printvectors
     olis_f90stdlib, 15
randseed
     olis_f90stdlib, 15
schmidt_decomp, 16
     schmidt_modes, 16
schmidt\_decomp.f90,\, \textcolor{red}{\textbf{21}}
schmidt_modes
     schmidt_decomp, 16
sinc
     olis_f90stdlib, 15
tprod
     olis_f90stdlib, 15
```