Organization of genetic variation

Non-overlapping generations

Hardy Weinberg assumptions

- Main assumptions
 - Mating is random
 - · Very large (infinite) population
 - No migration
 - No mutation
 - · No natural selection
- Non-necessary assumptions
 - Diploid organism
 - Reproduction is sexual
 - Non-overlapping generations

Punnett square

Male gametes

a

Allele

Frequency q

Allele Frequency

> Ap

Female gametes

> q a

Summed frequencies in zygotes:

 $AA: P' = p^2$

Aa: Q' = pq + qp = 2pqaa: $R' = q^2$

Question

- In humans males have X and Y chromosomes and females two X chromosomes
- What does this imply about sex ratios in humans?
- Let's say we have a population (harem) with one male and 100 females. What is the sex ratio in the next generation?

Summed frequencies in zygotes:

AA:
$$P' = p^2$$

Aa: $Q' = pq + qp = 2pq$
aa: $R' = q^2$

Frequency of A in the next generation

• P' + Q'/2 =
$$p^2 + pq = p(p+q) = p$$

Frequency of a in the next generation

•
$$Q' + P'/2 = q$$

- Thus, the frequency of alleles is the same across generations
- The frequency of genotypes will also be the same at H-W equilibrium

Question

- In the harem example above, what are the frequencies of X and Y chromosomes?
- Did they change across generations?

Dominance

- For polymorphic genes with two alleles and dominance, only two phenotypic classes can be observed
- E.g., humans can carry the rhesus factor protein in their blood (Rh+), or not (Rh-)
- Rh- individuals are homozygous recessive for the rhesus factor
- One or two copies of Rh+ give the dominant phenotype

Testing Hardy-Weinberg

 Chi-squared test on counts of genotypic classes is the classical approach

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

df = Number of classes of data

- Number of parameters estimated from the data | e , p

-1

Question

- How can we test if a locus has dominance?
- Knowing that there is dominance at a locus, how can we estimate a gene's frequency based on phenotypic data, assuming Hardy-Weinberg?

X-linked genes

Male gametes

X-bearing Y-bearing Allele X^A X^a Frequency p q

Allele Frequency X^A p Female gametes

 X^a

q

X^AX^A	X^AX^a	X^AY
p^2	pq	p
X^aX^A	X^aX^a	$X^a \Upsilon$
qр	q^2	, q

Summed frequencies in zygotes:

Females Males $X^A X^A$: p^2 $X^A Y$: p $X^A X^a$: 2pq $X^a Y$: q $X^a X^a$: q^2

Question

Color-blindness is an X-linked recessive trait.
 Which sex is it more prevalent and why?

Review question

- What are the conditions of Hardy-Weinberg equilibrium?
- Why is the concept of Hardy-Weinberg equilibrium useful?

Accounting for chromosomes (linkage)

Genes

Meiosis breaks up combinations of genes

Crossing-over and recombination during meiosis

The frequency of x₁ in the next generation is

$$x'_1 = (1-r)x_1$$
 non-recombinant
+ $r p_1 p_2$ recombinant

The change in the frequency of x₁ is

$$\Delta_r x_1 = -r(x_1 - p_1 p_2)$$

The frequency of x₁ in the next generation is

$$x_1' = (1 - r)x_1 + rp_1p_2$$

The change in the frequency of x₁ is

$$\Delta_r x_1 = -r(x_1 - p_1 p_2)$$

The linkage disequilibrium coefficient is defined as

$$D = x_1 - p_1 p_2$$

Question

• What is the maximum value for *r*?

The change in D in one generation is

$$\Delta_r D = -rD$$

So,

$$D' = (1 - r)D$$

Over time LD approaches 0:

$$D_t = (1-r)^t D_0$$

- LD can be under selection
- LD can be affected by drift

LD preserves combinations

 Heliconius butterflies have several genes for color linked on the same chromosome, allowing stable color patterns

Fire ant social structure is controlled by one locus

LD decay

With free recombination (r = 1/2), LD does not go to 0 in one generation

- Populations approach linkage equilibrium between two loci over time, as there is more recombination
- Linkage disequilibrium can be used to find genes associated with specific traits

Linkage

Association

Admixture can create LD`

TABLE 2.2	Linkage Dis	Linkage Disequilibrium from Admixture of Subpopulations				
Chromosome	Frequency	Subpopulation 1	Subpopulation 2	Equal mixture		
AB	P_{AB}	0.0025	0.9025	0.4525		
Ab	P_{Ab}	0.0475	0.0475	0.0475		
aВ	P_{aB}	0.0475	0.0475	0.0475		
a b	P_{ab}	0.9025	0.0025	0.4525		
	$D = P_{AB}P_{ab} - P_{Ab}P_{aB}$	0	0	0.2025		

Sub 1: 0.0025*0.9025 - 0.0475*0.0475 = 0

Sub 2: 0.0025*0.9025 - 0.0475*0.0475 = 0

Merged: 0.4525*0.4525 - 0.0475*0.0475 = 0.2025

For next week

- Rosalind problems
- Reading
- Start thinking about project