Hypervalent Iodine Chemistry

Hypervalent Iodine Chemistry

Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds

Viktor V. Zhdankin

Department of Chemistry and Biochemistry University of Minnesota Duluth, Minnesota, USA

This edition first published 2014 © 2014 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Zhdankin, Viktor V., 1956-

Hypervalent iodine chemistry: preparation, structure and synthetic applications of polyvalent iodine compounds / Viktor V. Zhdankin.

pages cm

Includes index.

ISBN 978-1-118-34103-2 (cloth)

1. Iodine compounds. 2. Organoiodine compounds. 3. Hypervalence (Theoretical chemistry) I. Title.

QD181.I1Z43 2014

546'.7342-dc23

2013020439

A catalogue record for this book is available from the British Library.

ISBN: 9781118341032

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Contents

Preface			ix	
1	Intr	oduction	n and General Overview of Polyvalent Iodine Compounds	1
	1.1	Introdu	· · · · · · · · · · · · · · · · · · ·	1
	1.2	Classif	fication and Nomenclature of Polyvalent Iodine Compounds	3
	1.3	Hypery	4	
	1.4	Genera	al Structural Features	8
		1.4.1	Experimental Structural Studies	9
		1.4.2	Computational Studies	11
	1.5	-		12
		1.5.1	Ligand Exchange and Reductive Elimination	13
		1.5.2	Radical Reactions	14
		1.5.3	Single-Electron Transfer (SET) Reactions	15
	Refe	erences		15
2	Pre	21		
	2.1	Iodine(III) Compounds		21
		2.1.1	Inorganic Iodine(III) Derivatives	21
		2.1.2	Organoiodine(III) Fluorides	23
		2.1.3	Organoiodine(III) Chlorides	27
		2.1.4	Organo-Iodosyl Compounds	31
		2.1.5	Organoiodine(III) Carboxylates	35
		2.1.6	[Hydroxy(Organosulfonyloxy)Iodo]Arenes	43
		2.1.7	Organoiodine(III) Derivatives of Strong Acids	48
		2.1.8	Iodine(III) Heterocycles	50
		2.1.9	Iodonium Salts	76
		2.1.10	Iodonium Ylides	99
		2.1.11	Iodine(III) Species with Three Carbon Ligands	107
		2.1.12	Iodine(III) Species with I–N Bonds	107
	2.2	Iodine(V) Compounds		114
		2.2.1	Inorganic Iodine(V) Derivatives	114
		2.2.2	Noncyclic and Pseudocyclic Iodylarenes	115
		2.2.3	Iodine(V) Heterocycles	120
		2.2.4	Organoiodine(V) Fluorides	126
	2.3	2.3 Iodine(VII) Compounds		
	Refe	erences		128

3	Hyp	ervalent	t Iodine Reagents in Organic Synthesis	145
	3.1	Reaction	ons of Iodine(III) Compounds	145
		3.1.1	Fluorinations	146
		3.1.2	Chlorinations	152
		3.1.3	Brominations	158
		3.1.4	Iodinations	160
		3.1.5	Oxidation of Alcohols	164
		3.1.6	Oxidative Functionalization of Carbonyl Compounds	168
		3.1.7	Oxidative Functionalization of Silyl Enol Ethers	171
		3.1.8	Oxidation of Alkenes and Alkynes	173
		3.1.9	Oxidations at the Benzylic or Allylic Position	181
		3.1.10	Oxidative Functionalization of Aromatic Compounds	182
		3.1.11	Oxidative Dearomatization of Phenols and Related Substrates	183
		3.1.12	Oxidative Coupling of Aromatic Substrates	196
		3.1.13	Oxidative Cationic Cyclizations, Rearrangements and Fragmentations	201
		3.1.14	Oxidations at Nitrogen, Sulfur and other Heteroatoms	216
		3.1.15	Azidations	222
		3.1.16	Aminations	230
		3.1.17	Thiocyanations and Arylselenations	232
		3.1.18	Radical Fragmentations, Rearrangements and Cyclizations	236
		3.1.19	Reactions via Alkyliodine(III) Intermediates	248
		3.1.20	Transition Metal Catalyzed Oxidations	250
		3.1.21	Transition Metal Catalyzed Aziridinations and Amidations	253
		3.1.22	Reactions of Iodonium Salts and C-Substituted Benziodoxoles	260
		3.1.23	Reactions of Iodonium Ylides	278
	3.2	Synthet	tic Applications of Iodine(V) Compounds	282
		3.2.1	Noncyclic and Pseudocyclic Iodylarenes	283
		3.2.2	2-Iodoxybenzoic Acid (IBX)	288
		3.2.3	Dess–Martin Periodinane (DMP)	296
		3.2.4	Inorganic Iodine(V) Reagents	302
	3.3	Synthet	tic Applications of Iodine(VII) Compounds	303
	Refe	erences		307
1	Нур	ervalent	I Iodine Catalysis	337
	4.1	Catalyt	ic Cycles Based on Iodine(III) Species	337
		4.1.1	Oxidative α-Functionalization of Carbonyl Compounds	338
		4.1.2	Oxidative Functionalization of Alkenes and Alkynes	342
		4.1.3	Oxidative Bromination of Aromatic Compounds	346
		4.1.4	Oxidative Amination of Aromatic Compounds	347
		4.1.5	Oxidation of Phenolic Substrates to Quinones and Quinols	349
		4.1.6	Oxidative Spirocyclization of Aromatic Substrates	350
		4.1.7	Carbon–Carbon Bond-Forming Reactions	354
		4.1.8	Hofmann Rearrangement of Carboxamides	355
		4.1.9	Oxidation of Anilines	357
	4.2	Catalyt	ic Cycles Based on Iodine(V) Species	358
	4.3		Catalytic Systems Involving Hypervalent Iodine and other Co-catalysts	364
	4.4		ic Cycles Involving Iodide Anion or Elemental Iodine as Pre-catalysts	368
	Refe	erences	-	377

			Contents	vii		
5	Rec	yclable Hypervalent Iodine Reagents		381		
	5.1	Polymer-Supported Iodine(III) Reagents		381		
	5.2	Polymer-Supported Iodine(V) Reagents		389		
	5.3	Recyclable Nonpolymeric Hypervalent Iodine(III) Reagents		391		
		5.3.1 Recyclable Iodine(III) Reagents with Insoluble Reduced Form		393		
		5.3.2 Recovery of the Reduced Form of a Hypervalent Iodine Reagent Using				
		Ion-Exchange Resins		397		
		5.3.3 Ionic-Liquid-Supported Recyclable Hypervalent Iodine(III) Reagents		400		
		5.3.4 Magnetic Nanoparticle-Supported Recyclable Hypervalent Iodine(III) Reager	nt	401		
		5.3.5 Fluorous Recyclable Hypervalent Iodine(III) Reagents		402		
	5.4	Recyclable Nonpolymeric Hypervalent Iodine(V) Reagents		405		
	5.5	Recyclable Iodine Catalytic Systems		406		
	Refe	erences		409		
6	Reactions of Hypervalent Iodine Reagents in Green Solvents and under					
	Solvent-Free Conditions			413		
	6.1	Reactions of Hypervalent Iodine Reagents in Water		413		
	6.2	Reactions of Hypervalent Iodine Reagents in Recyclable Organic Solvents		418		
	6.3	Reactions of Hypervalent Iodine Reagents under Solvent-Free Conditions		420		
	Refe	erences		422		
7	Practical Applications of Polyvalent Iodine Compounds					
	7.1	Applications of Inorganic Polyvalent Iodine Derivatives		425		
	7.2	Applications of Hypervalent Iodine(III) Compounds as Polymerization Initiators		426		
	7.3	Application of Iodonium Salts for Fluoridation in Positron Emission Tomography (P	ET)	431		
	7.4	Biological Activity of Polyvalent Iodine Compounds		440		
	Refe	erences		443		
Inc	dex			449		

Preface

Iodine is the heaviest non-radioactive element in the Periodic Table that is classified as a nonmetal and it is the largest, the least electronegative and the most polarizable of the halogens. It formally belongs to the main group p-block elements; however, the bonding description, structural features and reactivity of iodine compounds differ from the light main-group elements. The electronic structure of polyvalent iodine is best explained by the hypervalent model of bonding and, therefore, in modern literature organic compounds of trivalent and pentavalent iodine are commonly named as hypervalent iodine compounds. The reactivity pattern of hypervalent iodine in many aspects is similar that of transition metals – the reactions of hypervalent iodine reagents are commonly discussed in terms of oxidative addition, ligand exchange, reductive elimination and ligand coupling, which are typical of transition metal chemistry.

Since the beginning of the twenty-first century, the organic chemistry of hypervalent iodine compounds has experienced an unprecedented, explosive development. Hypervalent iodine reagents are now commonly used in organic synthesis as efficient multipurpose reagents whose chemical properties are similar to derivatives of mercury, thallium, lead, osmium, chromium and other metals, but without the toxicity and environmental problems of these heavy metal congeners. One of the most impressive recent achievements in the field of iodine chemistry has been the discovery of hypervalent iodine catalysis.

This book is the first comprehensive monograph covering all main aspects of the chemistry of organic and inorganic polyvalent iodine compounds, including applications in chemical research, medicine and industry. The introductory chapter (Chapter 1) provides a historical background and describes the general classification of iodine compounds, nomenclature, hypervalent bonding, general structural features and general principles of reactivity of polyvalent iodine compounds. Chapter 2 gives a detailed description of the preparative methods and structural features of all known classes of organic and inorganic derivatives of polyvalent iodine. Chapter 3, the central chapter of the book, deals with the applications of hypervalent iodine reagents in organic synthesis. Chapter 4 describes the most recent achievements in hypervalent iodine catalysis. Chapter 5 deals with recyclable polymer-supported and nonpolymeric hypervalent iodine reagents. Chapter 6 covers the "green" reactions of hypervalent iodine reagents, including solvent-free reactions, reactions in water and reactions in ionic liquids. The final chapter (Chapter 7) provides an overview of important practical applications of polyvalent iodine compounds in medicine and in industry.

This book is aimed at all chemists interested in iodine compounds, including academic and industrial researchers in inorganic, organic, physical, medicinal and biological chemistry. It will be particularly useful to synthetic organic and inorganic chemists, including graduate and advanced undergraduate students. The book also covers the green chemistry aspects of hypervalent iodine chemistry, including the use of water as solvent, reactions under solvent-free conditions, recyclable reagents and solvents and catalytic reactions, which makes it especially useful for industrial chemists. The last chapter provides a detailed summary of practical applications of polyvalent iodine compounds, including various industrial applications, biological activity and applications of iodonium salts in PET (positron emission tomography) diagnostics; this chapter should be especially useful for medical and pharmaceutical researchers. Overall, the book is aimed at a broad, multidisciplinary readership and specialists working in different areas of chemistry, pharmaceutical and medical sciences and industry.