What is claimed is:

1. A method for measuring a true mean differential group delay $\langle \tau \rangle$ of at least one length of optical fiber comprising the steps of:

measuring a mean square differential group delay $\langle \tau^2 \rangle_B$ averaged over a finite bandwidth B of the source using a polarization mode dispersion measurement apparatus;

calculating a root mean square differential group delay in accordance with $\sqrt{\left\langle \tau^2 \right\rangle_{\!\scriptscriptstyle B}}$; and

applying a systematic correction factor ϵ to $\sqrt{\langle \tau^2 \rangle_B}$ to calculate $\langle \tau \rangle$, the application of ϵ minimizing a systematic error caused by the finite bandwidth B of the source, where τ is in units of second, B in units of radian/second.

2. The method of Claim 1, further including the step of applying the systematic correction factor ε in accordance with:

$$\langle \tau \rangle = \sqrt{\frac{8}{3\pi} \langle \tau^2 \rangle_B} + \epsilon,$$
 (16a)

where π is substantially equal to 3.14159 and $\langle \tau \rangle$ is in units of second, $\langle \tau^2 \rangle_B$ is in units of second².

3. The method of Claim 2, wherein the finite bandwidth B is much greater than the inverse of the root mean square differential group delay $\sqrt{\langle \tau^2 \rangle_B}$:

$$B >> \frac{1}{\sqrt{\langle \tau^2 \rangle_R}}$$
,

further wherein ε is defined by the following equation:

$$\varepsilon = \frac{8}{9\sqrt{2}} \frac{1}{B}, \quad \text{and}$$
 (16b)

where B is in units of radian/second, and τ and $\sqrt{\langle \tau^2 \rangle_B}$ are in units of second.

- 4. The method of Claim 1, wherein the polarization mode dispersion measurement apparatus used to measure the mean square differential group delay $\langle \tau^2 \rangle_B$ comprises a time-domain measurement apparatus.
- 5. The method of Claim 4, wherein the time-domain measurement apparatus is an interferometric device.
- 6. The method of Claim 1, wherein the polarization mode dispersion measurement apparatus used to measure the mean square differential group delay $\langle \tau^2 \rangle_B$ comprises a frequency-domain measurement apparatus.
- 7. The method of Claim 6, wherein the frequency-domain measurement apparatus is a polarimeter.
- 8. The method of Claim 7, further comprising the step of applying one of a Jones Matrix Eigenanalysis, Poincaré Sphere Analysis, and Müller Matrix Method to calculate the mean square differential group delay $\langle \tau^2 \rangle_R$.
- 9. The method of Claim 1, wherein the at least one length of optical fiber is an optical fiber link in an optical telecommunication network.
- 10. The method of Claim 1, wherein the at least one length of fiber is an optical fiber route in an optical telecommunication network.
- 11. A method for measuring a mean differential group delay $\langle \tau \rangle$ of at least one length of optical fiber, comprising the steps of:

characterizing a polarization mode dispersion vector as a function of frequency using a frequency-domain polarization mode dispersion measurement apparatus;

calculating a second-order polarization mode dispersion vector $\vec{\tau}_{\omega}$ as a function of frequency by calculating a derivative with respect to frequency of the polarization mode dispersion vector;

calculating a mean of a square root of a magnitude of the second-order polarization mode dispersion vector $\vec{\tau}_{\omega}$ to obtain a first result, according to $\langle |\vec{\tau}_{\omega}|^{1/2} \rangle$, wherein $|\vec{\tau}_{\omega}|$ represents the magnitude of the second-order polarization mode dispersion vector; and multiplying a proportionality coefficient A_2 of the second-order polarization mode dispersion vector $\vec{\tau}_{\omega}$ by the first result to calculate the mean differential group delay $\langle \tau \rangle$ in accordance with the following equation:

$$A_2 \left\langle \left| \vec{\tau}_{\omega} \right|^{1/2} \right\rangle = \left\langle \tau \right\rangle, \tag{21}$$

where τ and $\langle \tau \rangle$ are in units of second², $|\tau_{\omega}|$ is in units of second, ω is in units of radian/second, and A_2 is dimensionless.

- 12. The method of Claim 11, wherein A_2 is substantially equal to 1.37.
- 13. The method of Claim 11, wherein the frequency-domain polarization mode dispersion measurement apparatus is one of a polarimetric device and a Fixed Analyzer device.
- 14. The method of Claim 11, wherein the at least one length of fiber is a single fiber link.
- 15. The method of Claim 11, wherein the at least one length of fiber is a fiber route.
- 16. A method for measuring a mean differential group delay $\langle \tau \rangle$ of at least one length of fiber, comprising the steps of:

measuring a magnitude of a polarization mode dispersion vector $|\tau_{\omega}|$ as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus, the magnitude of the polarization mode dispersion vector $|\tau_{\omega}|$ being a scalar differential group delay;

calculating a frequency derivative of the scalar differential group delay from the magnitude of the polarization mode dispersion vector, the frequency derivative of the scalar differential group delay $\frac{d|\vec{\tau}|}{d\omega}$ being a scalar second-order polarization mode dispersion function;

calculating a first result, according to $\left\langle \left| \frac{d|\vec{\tau}|}{d\omega} \right|^{\frac{1}{2}} \right\rangle$, where $|\tau|$ is in units of second and ω is

a frequency in units of radian/second; and

multiplying a proportionality coefficient B_2 by the first result to calculate the mean differential group delay, in accordance with the following equation:

$$B_{2}\left\langle \left| \frac{d|\vec{\tau}|}{d\omega} \right|^{\frac{1}{2}} \right\rangle = \langle \tau \rangle, \tag{26}$$

where B_2 is dimensionless, τ and $\langle \tau \rangle$ are in units of second, ω is in units of radian/second,

and
$$\frac{d|\vec{\tau}|}{d\omega}$$
 is in units of second².

- 17. The method of Claim 16, wherein B_2 is substantially equal to 2.64.
- 18. The method of Claim 16, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 19. The method of Claim 16, wherein the at least one length of optical fiber is a single optical fiber link.
- 20. The method of Claim 16, wherein the at least one length of optical fiber is an optical fiber route.
- 21. A method for measuring a mean square differential group delay τ^2_{RMS} of at least one length of optical fiber, comprising the steps of:

measuring a polarization mode dispersion vector as a function of frequency, using a frequency-domain polarization mode dispersion measurement apparatus;

calculating a second-order polarization mode dispersion vector $\vec{\tau}_{\omega}$ as a function of frequency by calculating a derivative of the polarization mode dispersion vector with respect to frequency ω ;

calculating the mean of the magnitude of the second-order polarization mode dispersion vector $|\vec{\tau}_{\omega}|$ to obtain a first result, according to $\langle |\vec{\tau}_{\omega}| \rangle$; and

multiplying a proportionality coefficient A_I by the first result to calculate the mean square differential group delay, in accordance with the following equation:

$$A_1 \left\langle \left| \vec{\tau}_{\omega} \right| \right\rangle = \tau_{RMS}^2, \tag{20}$$

where A_I is dimensionless, $|\vec{\tau}_{\omega}|$ is in units of second² and τ^2_{RMS} is in units of second².

- 22. The method of Claim 21, wherein A_I is substantially equal to 2.02.
- 23. The method of Claim 21, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 24. The method of Claim 21, wherein the at least one length of optical fiber is a single optical fiber link.
- 25. The method of Claim 21, wherein the at least one length of optical fiber is an optical fiber route.
- 26. A method for measuring a mean square differential group delay τ^2_{RMS} of at least one length of optical fiber, comprising the steps of:

measuring a magnitude of a polarization mode dispersion vector as a function of frequency using a frequency-domain polarization mode dispersion measurement apparatus, the magnitude of the polarization mode dispersion vector being a scalar differential group delay;

calculating a frequency derivative of the scalar differential group delay from the magnitude of the polarization mode dispersion vector, the frequency derivative of the scalar

differential group delay $\frac{d|\vec{\tau}|}{d\omega}$ being a scalar second-order polarization mode dispersion function;

calculating a first result, according to
$$\left\langle \left| \frac{d|\bar{\tau}|}{d\omega} \right| \right\rangle$$
; and

multiplying a proportionality coefficient B_I by the first result to calculate the mean square differential group delay, in accordance with the following equation:

$$B_{1}\left\langle \left| \frac{d|\vec{\tau}|}{d\omega} \right| \right\rangle = \tau_{\text{\tiny RMS}}^{2}, \tag{25}$$

where B_1 is dimensionless, and $\frac{d|\vec{\tau}|}{d\omega}$ is in units of second².

- 27. The method of Claim 26, wherein B_I is substantially equal to 6.80.
- 28. The method of Claim 26, wherein the frequency-domain polarization mode dispersion measurement apparatus comprises one of a polarimetric device and a Fixed Analyzer device.
- 29. The method of Claim 26, wherein the at least one length of optical fiber is a single optical fiber link.
- 30. The method of Claim 26, wherein the at least one length of optical fiber is an optical fiber route.
- 31. A method for measuring a mean polarization mode dispersion of at least one length of optical fiber, using a source of bandwidth B, comprising the steps of:

collecting polarization mode dispersion data as a function of frequency from a frequency-domain polarization mode dispersion measurement apparatus;

extracting one of a vector and a scalar frequency-dependent function from the polarization mode dispersion data, by applying a frequency-domain polarization mode dispersion technique, the one of the vector and the scalar function being one of a first-order and a second-order polarization mode dispersion function;

applying a systematic correction to the one of the vector and the scalar frequency-dependent function, the systematic correction minimizing a systematic error caused by bandwidth B; and wherein

applying the systematic correction results in a derivation of one of a mean differential group delay $\langle \tau \rangle$ and a mean square differential group delay τ^2_{RMS} .

32. A method of measuring a mean differential group delay $\langle \tau \rangle$ of a length of optical fiber comprising the steps of:

deriving a first mean $\langle \tau \rangle$ in accordance with equation (21) and Claim 11;

deriving a second mean $\langle \tau \rangle$ in accordance with equation (26) and Claim 16; deriving a linear equation of the first mean $\langle \tau \rangle$ and the second mean $\langle \tau \rangle$ to calculate a combined mean $\langle \tau \rangle$, wherein a sum of coefficients of the linear equation is substantially equal to one.

33. A method of measuring a mean square differential group delay τ^2_{RMS} of a length of optical fiber comprising the steps of:

deriving a first mean square differential group delay τ^2_{RMS} in accordance with equation (20) and Claim 21;

deriving a second mean square differential group delay τ^2_{RMS} in accordance with equation (25) and Claim 26;

deriving a linear equation of the first mean square differential group delay τ^2_{RMS} and the second mean square differential group delay τ^2_{RMS} to calculate a combined mean square differential group delay τ^2_{RMS} , wherein a sum of coefficients of the linear equation is substantially equal to one.