Nome e cognome: Matricola: 8/8 | 8/8 | 8/8 | 8/8 | 32/30 |

Matematica del discreto M2 - Gruppi, anelli e campi 14 febbraio 2014 - Laurea on line

1.	Sia $Ax = \underline{0}$ un sistema lineare omogeneo di n equazioni in n incognite. Indicare quali (eventualmente più d'una) delle seguenti affermazioni sono corrette.
	\square Il sistema ha almeno una soluzione se e solo se $\det(A) \neq 0$.
	\boxtimes Se le colonne di A sono linearmente indipendenti, allora il sistema ha solo la soluzione nulla.
	\boxtimes Il sistema ha infinite soluzioni se e solo se $det(A) = 0$.
	\square Il sistema ha infinite soluzioni.

2. Date le matrici

$$A = \begin{pmatrix} 1 & 0 & -2 \\ -2 & 1 & 1 \\ 3 & -2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & -1 & 4 \\ 4 & 3 & -2 \\ -6 & 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} -2 & -1 & 4 \\ 4 & 1 & -2 \\ -6 & 5 & 0 \end{pmatrix}$$

verificare che det(C) = det(B) - 8 det(A).

Applicando il metodo di Sarrus si ha

$$\det(A) = 0$$

$$\det(B) = 72$$

$$\det(C) = 72$$

da cui si ricava immediatamente l'identità richiesta.

3. Sia

$$K = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \mid a \cdot b \neq 0, \ a,b \in \mathbb{Q} \right\}$$

si provi che (K,\cdot) (dove \cdot è l'usuale prodotto righe per colonne) è un gruppo. Dire poi se (K,\cdot) è abeliano. Sia $d:(K,\cdot)\to(\mathbb{Q},\cdot)$ la funzione definita da

$$d\left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) = a \cdot b$$

dire se d è un omomorfismo di gruppi e determinarne il nucleo.

L'insieme K è quello delle matrici diagonali invertibili: è noto che il prodotto di due matrici diagonali è la matrice diagonale che ha per coefficienti sulla diagonale principale i prodotti dei corrispondenti coefficienti delle due matrici di partenza. Ne segue che K è chiuso per il prodotto, contiene l'inverso di ogni suo elemento e inoltre il prodotto di elementi in K è commutativo: ne segue che (K,\cdot) è un sottogruppo abeliano del gruppo $(GL_2(\mathbb{R}),\cdot)$ delle matrici invertibili 2×2 a coefficienti reali (che non è abeliano).

La funzione d non è altro che il determinante, che è un omomorfismo moltiplicativo (teorema di Binet: $\det(A \cdot B) = \det(A) \cdot \det(B)$), il nucleo è $\operatorname{Ker} d = \{A \in K \mid d(A) = 1\}$, cioè l'insieme delle matrici del tipo

$$\left(\begin{array}{cc} a & 0 \\ 0 & 1/a \end{array}\right)$$

 $con \ a \neq 0.$

- 4. Risolvere (separatamente) le seguenti congruenze:
 - (a) $3x \equiv 2 \pmod{15}$;
 - (b) $3x \equiv 2 \pmod{16}$;
 - (c) $3x \equiv 2 \pmod{17}$.
 - (a) la prima equazione è impossibile, infatti l'insieme dei multipli di 3 modulo 15 è $\{[0]_{15}, [3]_{15}, [6]_{15}, [9]_{15}, [12]_{15}\}$, che non contiene $[2]_{15}$;
 - (b) anche se $(\mathbb{Z}_{16}, +, \cdot)$ non è un campo, 3 è invertibile modulo 16 (poiché è primo con 16), il suo inverso è 11, ne segue che $x = [8]_{16}$;
 - (c) $(\mathbb{Z}_{17}, +, \cdot)$ è un campo, quindi 3 è invertibile modulo 17 e il suo inverso è 6, ne segue che $x = [12]_{17}$.