PRACA KONTROLNA nr 4

styczeń 2003r

1. Dla jakich wartości parametru rzeczywistego t równanie

$$x + 3 = -(tx + 1)^2$$

ma dokładnie jedno rozwiązanie.

- 2. Czworościan foremny o krawędzi a przecięto płaszczyzną równoległą do dwóch przeciwległych krawędzi. Wyrazić pole otrzymanego przekroju jako funkcję długości odcinka wyznaczonego przez ten przekrój na jednej z pozostałych krawędzi. Uzasadnić postępowanie. Przedstawić znalezioną funkcję na wykresie i podać jej największą wartość.
- 3. Zaznaczyć na wykresie zbiór punktów (x,y) płaszczy
zny spełniających warunek $\log_{xy}|y|\geqslant 1.$
- 4. Wyznaczyć równanie linii utworzonej przez wszystkie punkty płaszczyzny, których odległość od okręgu $x^2+y^2=81$ jest o 1 mniejsza niż od punktu P(8,0). Sporządzić rysunek.
- 5. Na dziesiątym piętrze pewnego bloku mieszkają Kowalscy i Nowakowie. Kowalscy mają dwóch synów i dwie córki, a Nowakowie jednego syna i dwie córki. Postanowili oni wybrać młodzieżowego przedstawiciela swojego piętra. W tym celu Kowalscy wybrali losowo jedno ze swoich dzieci, a Nowakowie jedno ze swoich. Następnie spośród tej dwójki wylosowano jedną osobę. Obliczyć prawdopodobieństwo, że przedstawicielem został chłopiec.
- 6. Uzasadnić prawdziwość nierówności $n + \frac{1}{2} \ge \sqrt{n(n+1)}$, $n \ge 1$. Korzystając z niej oraz z zasady indukcji matematycznej udowodnić, że dla wszystkich $n \ge 1$ jest

$$\left(\begin{array}{c} 2n\\ n \end{array}\right) \geqslant \frac{4^n}{2\sqrt{n}}.$$

- 7. Przeprowadzić badanie przebiegu zmienności funkcji $f(x) = \sqrt{\frac{3x-3}{5-x}}$ i wykonać jej wykres.
- 8. W trójkącie ABC kąt A ma miarę α , kąt B miarę 2α , a BC=a. Oznaczmy kolejno przez A_1 punkt na boku \overline{AC} taki, że $\overline{BA_1}$ jest dwusieczną kąta B; B_1 punkt na boku \overline{BC} taki, że $\overline{A_1B_1}$ jest dwusieczną kąta A_1 , itd. Wyznaczyć długość łamanej nieskończonej $ABA_1B_1A_2...$