

Mathématiques et calculs 1 : Contrôle continu n°1 14 Octobre 2013

L1: Licence sciences et technologies, mention mathématiques, informatique et applications

Nombre de pages de l'énoncé : 1. Durée 1h30.

NB: Ce sujet contient 5 exercices. Chaque résultat doit être démontré clairement. Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

Exercice 1

- (1) Donner la forme algébrique du nombre complexe suivant : $a = \frac{4}{1 + i\sqrt{3}}$
- (2) Ecrire a sous forme trigonométrique.
- (3) Calculer a^4 (donner la réponse sous forme algébrique).

Exercice 2 Soit $\omega = e^{2i\pi/5}$.

- (1) Montrer que $\omega + \frac{1}{\omega} = 2\cos\left(\frac{2\pi}{5}\right)$. (2) Que vaut la somme $1 + \omega + \omega^2 + \omega^3 + \omega^4$?
- (3) Montrer que $\omega + \frac{1}{\omega}$ est racine du polynôme $x^2 + x 1$. (4) Déduire des questions précédentes la valeur de $\cos(\frac{2\pi}{5})$, puis celle de $\sin(\frac{\pi}{5})$.

Exercice 3 Résoudre dans C les équations suivantes : (on donnera les solutions sous forme algébrique)

$$(E_1)$$
 $z^2 = -2 + i$

$$(E_2) \quad z^2 + z + \frac{3-i}{4} = 0$$

Exercice 4 Les questions de cet exercice sont indépendantes.

1) Calculer, si elles existent, les limites des suites suivantes :

a)
$$u_n = \frac{-3n^2 + 4}{n^2 + 1}$$
 b) $v_n = \frac{n^2 + (-1)^n}{\log(n) - 2}$ c) $w_n = \frac{\sqrt{n} - 2}{2^n + n^3}$

2) Calculer, si elles existent, les limites quand $x \to 0_+$ des fonctions suivantes :

a) $f(x) = x^3 + 3\log(x)$ b) $g(x) = \frac{x^2 + x}{e^{-\frac{1}{x}}}$

a)
$$f(x) = x^3 + 3\log(x)$$
 b) $g(x) = \frac{x^2 + x}{e^{-\frac{1}{x}}}$

3) Est-ce que la fonction h définie sur \mathbb{R}_+^* par $h(x) = \frac{\sin(x) + x^2}{x + x\sqrt{x}}$ est prolongeable par continuité en 0?

4) Pour tout $n \in \mathbb{N}$, calculer $S_n = \sum_{k=0}^{n} \frac{(-1)^k}{3^k}$. En déduire la limite de (S_n) .

Exercice 5

On considère une suite (u_n) telle que pour tout $n \in \mathbb{N}$, $u_{n+1} = e^{u_n - 1}$.

On introduit la fonction f définie sur \mathbb{R} par $f(x) = e^{x-1}$.

1) Justifier que f est continue sur \mathbb{R} . Montrer que f est croissante sur \mathbb{R} .

Dans la suite de l'exercice, on admettra qu'on a pour tout $x \in \mathbb{R}, f(x) \geqslant x$, avec égalité seulement en x=1.

- 2) En utilisant la propriété admise, montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} \geqslant u_n$.
- 3) Supposons que (u_n) converge vers l. Que vaut sa limite l?
- 4) On suppose dans cette question que $u_0 = \frac{1}{2}$. Montrer par récurrence que pour tout $n \in \mathbb{N}, \ 0 \leq u_n \leq 1$.

En déduire que (u_n) converge, et donner sa limite.

5) On suppose maintenant que $u_0 > 1$. Est-ce que (u_n) converge? Quelle est sa limite? (Justifier)