Portage architecture Arduino vers ESP32

— Épita —

 $\'Equipe\ Robotique\ d'Exploration$

Tony BERNIS

Valentin DUMOUSSET Merlin VOTAT Julien LE QUANG

12 décembre 2022

Résumé

Micro ROS (Robot Operating System) est un framework pour faciliter le développement robotique et qui sert d'interface entre les micro controleurs. Il permet ainsi l'abstraction du matériel, la transmission de message etc. Micro ROS n'est pas disponible sur toutes les cartes Arduino. Dans notre projet, nous avons choisi une carte Nano RP2040. L'objectif de notre projet est dans un premier temps de faire bouger l'arraignée et dans un second temps travailler sur la synchronisation entre une autre arraignée.

Exemple gras et italique:

Sed ut **perspiciatis** unde omnis iste **natus** error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore *veritatis* et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non *numquam eius modi tempora incidunt ut* labore et dolore magnam aliquam quaerat voluptatem. **Ut enim ad minima veniam**, *quis nostrum* exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur?

Exemple texte centré:

Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Table des matières

Re	esum	. é			• •				•		•	 •	٠	•	 ٠	 •	٠	٠	•	•	 	•	1
1	Intr	oducti	ion																		 	•	3
2	Éta	t de l'	Art .																		 		6
	2.1	Les so	olution	S																	 		6
		2.1.1	Solut	tion 1																	 		6
		2.1.2		tion 2																			
	2.2	Les m	ouven	ients.																	 		7
	2.3	Augm	entatio	on vite	esse 1	mouv	vem	ents	3 .														9
	2.4	Synch	ronisa	tion ar	rraig	nées													•			•	10
3	Imp	lémen	tation	1																	 		11
	3.1	Impléi	menta	tion te	echni	que															 		11
		3.1.1	Les	lifférer	aces	entre	e RO	OS e	et E	RO	S2										 		11
	3.2	Limite	es et p	roblèn	nes r	enco	ntré	s .													 		12
		3.2.1	Limi	tes																	 		12
		3.2.2	Prob	lèmes	renc	ontre	és .													•	 	•	12
4	Con	clusio	n									 ٠									 		14
\mathbf{G}	lossa	ire							•			 •									 		14
Bi	bliog	graphie	e																		 		14

Introduction

Introduction du document - ROS2 (Robot Operating System) est un système d'exploitation open source pour les robots. Il est conçu pour faciliter le développement de logiciels pour les robots en offrant des bibliothèques, des outils et des standards communs pour la robotique. ROS2 offre une infrastructure logicielle pour la programmation de robots, y compris des fonctionnalités telles que la communication entre les composants logiciels, la gestion des données, la planification et l'exécution de tâches, la visualisation de données, et bien plus encore. ROS2 est utilisé dans de nombreux types de robots, des petits robots de service aux grands robots industriels.

Micro-ROS est une version légère de ROS2 (Robot Operating System) conçue pour fonctionner sur des systèmes embarqués avec des ressources limitées en termes de calcul et de mémoire. Micro-ROS offre une infrastructure logicielle pour la programmation de robots embarqués, y compris des fonctionnalités similaires à celles de ROS2, telles que la communication entre les composants logiciels, la gestion des données, la planification et l'exécution de tâches, et bien plus encore. Micro-ROS est conçu pour être facile à utiliser et à intégrer dans des projets de robotique embarquée, en offrant une grande flexibilité et une grande efficacité en termes de ressources.

Le but de notre projet était d'explorer les différentes options qui nous permettraient d'adapter le code des araignées mécanique sur l'architecture micro-Ros.

Il y a plusieurs avantages à utiliser Micro-ROS pour programmer une araignée mécanique. Tout d'abord, Micro-ROS est conçu pour fonctionner sur des systèmes embarqués avec des ressources limitées en termes de calcul et de mémoire, ce qui est idéal pour une araignée mécanique qui a des contraintes en termes de taille et de poids. En outre, Micro-ROS offre une infrastructure logicielle pour la programmation de robots, y compris des fonctionnalités telles que la communication entre les composants logiciels, la gestion des données, la planification et l'exécution de tâches, et bien plus encore. Cela peut faciliter le développement de logiciels pour la robotique en offrant des bibliothèques, des outils et des standards communs pour la robotique. Enfin, Micro-ROS est une version légère de ROS2, ce qui signifie qu'il est moins gourmand en ressources que ROS2 tout en offrant les mêmes fonctionnalités de base. Cela peut améliorer les performances de l'araignée mécanique en utilisant moins de ressources pour exécuter le logiciel.

Dans ce rapport, nous allons présenter toutes les recherches que nous avons effectué

Chapitre 1 -

case 00	case 01
case 10	case 11

Table 1.1 – Légende du tableau

pendant ce projet, les différentes solutions que nous avons conceptualisées ainsi que la solution que nous avons choisie et sa mise en œuvre.

Nous avons qu'une personne a installé Micro ROS sur une Arduino Portenta et une carte Arduino RP2040 (https://www.youtube.com/watch?v=mq1uFGsYqeU). Nous avons aussi pensé à utiliser une carte ESP qui transmette les commandes à la carte Arduino fournie mais l'alimentation ne serait probablement pas suffisante.

// mettre le schéma de la carte https://docs.arduino.cc/static/56034f29d9e2bd28f4fd3c90268d0557/datasheet.pdf

L'étape suivante était de générer l'agent Micro ROS et le lancer. On peut retrouver à cet effet un tutoriel à cette adresse : https://gist.github.com/Redstone-RM/0ca459c32ec5ead8700284ff56a136f7

Nous avons testé la connection wifi entre l'agent sur l'ordinateur et la carte en utilisant le code example de la librarie micro ROS: https://github.com/micro-ROS/micro_ros_arduino/blob/galactic/examples/micro-ros_publisher_wifi/micro-ros_publisher_wifi.ino L'exemple initie la connexion wifi et envoie un message à la carte. Lorsque la connexion wifi échoue, la diode sur la carte se met à clignoter de manière intempestive.

Pour reset la mémoire de la carte, il faut soit tambouriner le bouton, soit appuyer longtemps. (à confirmer)

Exemple tableau & table:

case 00	case 01	case 03
case 10	case 11	case 13
case 20	case 21	case 23
case 20	case 21	case 33

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Test des listes:

- Item 1
- Item 2
- Item 3
- ...

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum

Chapitre 1 - 5

fugiat quo voluptas nulla pariatur?

- \Rightarrow Item 1
- Item 2
- Item 3
- \times Item 4
- √ ...

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio.

- 1. Item 1
- 2. Item 2
- 3. ...

Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae.

- a) Item 1
- b) Item 2
- c) ...

Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

État de l'Art

Introduction de l'état de l'art - Nous utilisons une manette Xbox pour donner les ordres à notre arraignée. Voici ce que nous avons réussi à faire :

Utilisation d'une référence [?].

2.1 Les solutions

2.1.1 Solution 1

A l'heure actuelle, Micro-ros n'est supporté que par 2 modèles de cartes Arduino, Arduino Portenta H7 M7 Core https://store.arduino.cc/portenta-h7 et Arduino Nano RP2040 Connect https://docs.arduino.cc/hardware/nano-rp2040-connect. Il est probablement possible d'adapter Micro-ROS à la carte Arduino que nous avons à notre disposition mais cela risque de nous prendre plus de temps que nous n'avons à disposition.

L'Arduino Nano RP2040 Connect est une carte de développement basée sur le processeur ARM Cortex-M0+ RP2040 conçue par Raspberry Pi. Elle est conçue pour être petite, flexible et facile à utiliser pour les projets de robotique et d'Internet des objets (IoT). L'Arduino Nano RP2040 Connect est équipée de 20 broches de E/S numériques, de 6 broches PWM, de 6 broches analogiques, d'un port USB-C pour l'alimentation et la communication, d'un connecteur de batterie, d'un connecteur de microphone, d'un connecteur de haut-parleur et d'un connecteur de bouton-poussoir. La carte est également compatible avec les bibliothèques Arduino pour faciliter le développement de logiciels pour les projets de robotique et d'IoT. Après nos différentes recherches, nous avons conclu que ce serait la carte idéale pour mettre en place le projet.

IMAGES DU WORD A REMETTRE

2.1.2 Solution 2

Nous avons cependant pensé à une solution alternative. Nous pouvons utiliser une carte ESP32 qui est déjà compatible avec l'architecture Micro-ROS (https://micro.ros.org/blog/2020/08/27/esp32).

ESP32 est une puce de microcontrôleur à double cœur conçue par Espressif Systems. Elle est principalement utilisée dans les applications de robotique, d'Internet des objets (IoT) et de réseaux locaux sans fil (Wi-Fi et Bluetooth). La puce ESP32 est équipée d'un processeur principal Xtensa Dual-Core LX6, d'un processeur coprocesseur ultra-basse consommation, d'une mémoire SRAM de 520 Ko, d'une mémoire flash de 16 Mo, d'un module Wi-Fi 802.11b/g/n/e/i et d'un module Bluetooth v4.2. La puce ESP32 offre également de nombreux E/S numériques, analogiques et PWM, ainsi que des fonctionnalités avancées telles que le traitement du signal numérique, le traitement en temps réel, l'interface de caméra et l'interface de bus série. En raison de ses performances et de ses fonctionnalités avancées, la puce ESP32 est largement utilisée dans de nombreux projets de robotique et d'IoT.

On peut installer cette carte sur notre robot et la brancher directement en SPI (Port Radio?) avec la carte Arduino nano pour ne pas avoir à la connecter en radio ou en wifi. L'ESP32 s'occupera de faire tous les contrôles et enverra des ordres a la carte Arduino qui se contentera de les exécuter Les problèmes que l'on pourrait rencontrer avec cette méthode sont le manque de place sur le robot, et un poids peut être trop importants. Ainsi qu'un manque d'alimentions, l'alimentations actuelle du robot ne sera peut-être pas suffisante pour alimenter les deux cartes.

(Parler des exo ROS2)

2.2 Les mouvements

```
// Mettre une photo pour chaque mvt
sit : faire asseoir l'arraignée
stand : met debout l'arraignée
walk forward, walk back, walk left, walk right : bouge l'arraignée dans les 4 directions
turn left, turn right : tourne l'araignée à gauche et à droite
rave (vague)
flex
hello
applaud sim
applaud wave
applaud
spoutnik
cross
pls : position par défaut
bolting
wink
```

Utilisation d'une autre référènce [?]. Et encore une autre [?]. Ou bien plusieurs [?, ?, ?]. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Figure:

FIGURE 2.1 – Légende de l'image

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

2.3 Augmentation vitesse mouvements

Pour augmenter ou diminuer la vitesse des mouvements, il faut appuyer sur les joysticks de la manette.

Celui de gauche permet d'augmenter le délai entre les instructions et celui de droite permet de le diminuer.

Référence interne, voir la section 2.2 page 7. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

```
#include <stdio.h>
int main(void) {
   printf("Hello World!\n");
   return 0;
}
```

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt.

Code #include <stdio.h> en ligne.

Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?

Code en provenance d'un fichier :

```
#include <stdio.h>
int main(void) {
  printf("Hello World!\n");
  return 0;
}
```

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.

```
Une instruction

tant que La condition est vraie faire

| si Une autre condition est vraie alors
| Une instruction
| sinon
| Une autre instruction
| fin

fin

si Une condition est vraie alors
| Une instruction
| Une autre instruction
| Une autre instruction
fin

répéter
| Une instruction
tant que La condition est vraie;
```

Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Considérez par exemple l'équation 2.1 page 10 :

2.4 Synchronisation arraignées

Les arraignées sont synchros. Elles sont connectés par wifi à l'ordinateur qui envoient les messages en UDP.

$$\left(\frac{x^2}{y^3}\right) \tag{2.1}$$

Implémentation

Introduction de l'étude de faisabilité - Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem.

3.1 Implémentation technique

// A confirmer / compléter par notre expert Merlin

3.1.1 Les différences entre ROS et ROS2

Une des principales différences entre ROS et ROS2 est leur architecture. ROS est basé sur une architecture monolithique, dans laquelle tous les composants logiciels sont intégrés dans un seul et même système d'exploitation. ROS2, en revanche, est basé sur une architecture modulaire, dans laquelle chaque composant logiciel peut être exécuté indépendamment des autres dans un système d'exploitation distribué. Cette architecture modulaire permet une meilleure flexibilité, une meilleure évolutivité et une meilleure tolérance aux pannes que l'architecture monolithique de ROS.

Une autre différence importante entre ROS et ROS2 est leur modèle de communication. ROS utilise un modèle de communication basé sur le publisheur-abonné, dans lequel les composants logiciels peuvent envoyer et recevoir des données en utilisant des "topics" définis. ROS2, en revanche, utilise un modèle de communication basé sur les services et les requêtes, dans lequel les composants logiciels peuvent interagir en invoquant des services et en envoyant des requêtes. Ce modèle de communication permet une

meilleure gestion des données et une meilleure flexibilité pour les applications de robotique.

Enfin, ROS et ROS2 diffèrent également en termes de langages de programmation et de plateformes de développement. ROS prend en charge principalement le langage de programmation C++, bien qu'il soit également possible de l'utiliser avec d'autres langages tels que Python. ROS2 prend en charge plusieurs langages de programmation, tels que C++, Python, Java, et bien d'autres. De plus, ROS utilise principalement le système de build Catkin pour la compilation et l'intégration de logiciels, alors que ROS2 utilise l'outil de buildmentament Colcon.

3.2 Limites et problèmes rencontrés

3.2.1 Limites

Alimentation : cartes besoin d'une batterie externe supplémentaire

Nous avons pensé à faire un support mais nous n'avons pas eu le temps (le support n'étant pas un élément essentiel).

Soucis de compatibilité sur différents OS:

- sur Mac, il y avait un problème de dépendance python (graphviz) bien que la dépendance était installée
- sur Ubuntu 18.04, le framework ne fonctionnait pas (problème pour afficher une fenêtre graphique)

Il existe plusieurs versions de ROS, chacune étant destinée pour une version Linux spécifique. La dernière est la version humble et qui est compatible avec la version 22.04 d'Ubuntu. On retrouvera la documentation à cette adresse : https://docs.ros.org/en/ humble/Installation/Ubuntu-Install-Debians.html On peut également utiliser une image Docker pour Nous avons utilisé l'IDE Platform IO qui est une extension de VS Code. Il est compatible Windows, Mac et Linux. L'étape suivante était de générer l'agent Micro-ROS et le lancer. Nous avons testé la connexion wifi entre l'agent sur l'ordinateur et la carte en utilisant le code exemple de la libraire micro-ROS: (https://github.com/micro-ROS/micro_ros_ arduino/blob/galactic/examples/micro-ros publisher wifi/micro-ros publisher wifi.ino) L'exemple initie la connexion wifi et envoie un message à la carte. Lorsque la connexion wifi échoue, la diode sur la carte se met à clignoter de manière intempestive. Nous avons testé ensuite le code de l'araignée SEALK pour tester les mouvements mais le code fourni ne marchait pas sur la carte. En effet, nous avions le problème de compilation suivant:

```
src/armcontroller.h:52:13: error: there are no arguments to 'sei'
that depend on a template parameter, so a declaration of 'sei'
must be available [-fpermissive]
sei();
```

Cette interruption permet d'activer les interruptions de timer.

3.2.2 Problèmes rencontrés

Servomoteur: on a besoin de la lib RP2040_ISR_Servo (https://github.com/khoih-prog/RP2040_ISR_Servo) car les mouvements envoient une instruction en dehors de la loop

principale

Impossible d'utiliser l'Arduino IDE (car il manque un time.h).

Nous avons utilisé VSCode avec PlatformIO qui est une extension de VSCode. Il est compatible Windows, Mac et Linux.

PlatformIO est designé pour faire marcher énormément de cartes et il faut donc spécifier la carte sur laquelle on travaille. Il se charge ensuite de récupèrer les libs.

Conclusion

Conclusion du document - En conclusion, notre projet d'exploration informatique a permis de découvrir de nouvelles technologies, méthodes et outils dans le domaine de l'informatique. Nous avons évalué les différentes approches et technologies disponibles, et avons choisi celles qui nous semblaient les plus adaptées à notre projet. Nous avons mis en œuvre notre solution en utilisant les technologies et les outils sélectionnés, et avons obtenu réussi a atteindre nos objectifs (nous avons réussi à mettre en mouvement les araignées et à les synchroniser). En plus de nos résultats techniques, ce projet a également été bénéfique pour notre cursus en informatique. Nous avons eu l'occasion de mettre en pratique les connaissances et les compétences que nous avons acquises au cours de nos études, et d'en apprendre de nouvelles. Nous avons également développé des compétences en matière de travail en équipe, de communication, de gestion de projet et de résolution de problèmes. Ce projet a été une expérience précieuse pour notre formation en informatique et nous espérons qu'il nous aidera à poursuivre notre carrière dans ce domaine passionnant. Nous avons également identifié les limites de notre solution et avons défini les directions futures pour la recherche et le développement dans ce domaine. En somme, ce projet d'exploration informatique a été une expérience enrichissante et nous espérons qu'il contribuera à l'avancement de l'informatique.

Voici une phrase qui utilise un mot en entier du glossaire et encore un autre anotherword.