The expected utility hypothesis

• A choice under risk is made by maximizing the expected utility:

$$a^* = \operatorname*{argmax}_{a \in \{a1, a2, \dots\}} \mathbb{E}[U(a)]$$

- The objective function $\mathbb{E}[U(a)]$ consists of two types of quantities:
 - -Pr(a): probability distribution
 - -U(a): utility function
- n.b. each possible choice $a1, a2, \ldots$ is a distribution; i.e. we choose one of the random variables. $U(\cdot)$ is a deterministic function, and U(a) may be seen as a random variable as well.

The existence of probability distribution, Pr(a)Elicitation of probabilities

- Repeatable events
 - nonparametric statistics (e.g. quantile regression)
 - parametric statistics (e.g. MLE)
 - sample moments (e.g. mean, variance, etc.)
- Non-repeatable events
 - relying on the relative likelihood
 - reference lotteries
 - the fractile method

The existence of utility function, U(a)

- A2 (independence), e.g. Does pizza $(p) \succ \text{burrito } (b)$ get reversed if ordered with horchata (h), i.e. $\beta p + (1 \beta)h < \beta b + (1 \beta)h$?
- "U(a) is unique up to an affine transformation." Technically, the implication goes in both directions. That is, U(a) and V(a) represents the same preferences if and only if $V(a) = \alpha + \beta U(a)$, ($\beta > 0$). For a proof, "if" part is straightforward, while "only if" part requires some work. See some graduate textbook, e.g. Jehle & Reny (2011, p.108).

Elicitation of preferences

- We may estimate $U(\cdot)$ by using a questionnaire and tracing certainty equivalents, a concept you will learn next week.
- We sequentially determine the certainty equivalent of $\mathbb{E}[U(a)]$ where a takes only two possible values with the equal probability. We start with an lower bound a_L and an upper bound (a_U) . Note that since an affine transformation of U(a) is allowed, we may set $U(a_L) = 0$ and $U(a_U) = 1$. For example,
 - $U(a_1) = \mathbb{E}[U(a)]$ where $a \in \{a_L, a_U\}$
 - $U(a_2) = \mathbb{E}[U(a)]$ where $a \in \{a_1, a_U\}$
 - $U(a_3) = \mathbb{E}[U(a)]$ where $a \in \{a_L, a_1\}$

Solver in Excel

- A way to solve an equation or a constrained optimization problem in Excel
- If not found "Data" tab, see the link