### Random Walks

Paolo Ferragina
Dipartimento di Informatica
Università di Pisa

### **Definitions**

| 0 | 1 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |
|   |   |   |

| 0   | 1   | 0 |
|-----|-----|---|
| 0   | 0   | 1 |
| 1/2 | 1/2 | 0 |
|     |     |   |

#### **Adjacency matrix A**

Transition matrix P





Any edge weigthing is possible





















# **Probability Distributions**

•  $x_t(i)$  = probability that surfer is at node i at time t

•  $x_{t+1}(i) = \sum_{j} (Probability of being at node j)*Pr(j->i)$ 



# **Probability Distributions**

#### Recall that:

- x<sub>t</sub>(i) = probability that surfer is at node i at time t
- $x_{t+1}(i) = \sum_{j} (Probability of being at node j)*Pr(j->i)$

$$= \sum_{j} x_{t}(j) * P(j,i) = X_{t} * P$$

#### We can write:

- $X_{t+1} = X_t * P = (X_{t-1} * P) * P = (X_{t-2} * P) * P * P = ... = X_0 P^{t+1}$
- What happens when the surfer keeps walking for a long time? Called Stationary distribution

# Stationary Distribution

- The stationary distribution at a node is related to the amount of time a random walker spends visiting that node.
- It is when the distribution does not change:

$$x_{T+1} = x_T \rightarrow x_T P = 1 * x_T (left eigenvector, with eigenvalue 1)$$

■ For "well-behaved" graphs this does not depend on the start distribution  $x_0$ 

## Interesting questions

- Does a stationary distribution always exist? Is it unique?
  - Yes, if the graph is "well-behaved", namely the markov chain is irreducible and aperiodic.

- How fast will the random surfer approach this stationary distribution?
  - Mixing Time!

# Well behaved graphs

• Irreducible: There is a path from every node to every other node (→ it is an SCC).



# Well behaved graphs

Aperiodic: The GCD of all cycle lengths is 1.
The GCD is also called period.



Periodicity is 3



Aperiodic

# Ranking

Link-based Ranking (2° generation)

# The Web as a Directed Graph



**Assumption 1:** A hyperlink between pages denotes author perceived relevance (quality signal)

**Assumption 2:** The text in the anchor of the hyperlink describes the target page (textual context)

# Query-independent ordering

- First generation: using link counts as simple measures of popularity.
  - Undirected popularity:
    - Each page gets a score given by the number of in-links plus the number of out-links (es. 3+2=5).
  - Directed popularity:
    - Score of a page = number of its in-links (es. 3).



Easy to SPAM

# Second generation: PageRank

- Each link has its own importance!!
- PageRank is
  - independent of the query
  - many interpretations...

# The (classic) PageRank



If we make these values flow, Do they stabilize?

- Various interpretations: linear system of equations with billion variables and billion constraints
- Random walks

### PageRank, as a Random Walk on the Web Graph

Jump uniformly at random at any page (node) in the Web



PageRank of a node is the «frequency of visit» that node by assuming an infinite random walk

A «measure of centrality» of a node in a (directed) graph

# PageRank, as a Linear System of Equations

$$r(i) = \alpha \cdot \sum_{j \in B(i)} \frac{r(j)}{\# out(j)} + (1 - \alpha) \cdot \frac{1}{N}$$

$$\alpha = 0.85$$

$$N = \# \text{ nodes in graph}$$

$$r(i) = \alpha \left( r(a) / 3 + r(b) / 1 + r(c) / 2 \right) + (1 - \alpha) / N$$

It is «related» to the eigenvalues of the matrix describing the linear system of equations

### Hands-on test



#### http://bit.ly/2iwHH3e

http://faculty.chemeketa.edu/ascholer/cs160/WebApps/PageRank/

## Pagerank: use in Search Engines

- Preprocessing:
  - Given graph, build P
  - Compute  $r = [1/N, ..., 1/N] * P^t$  for t=0, 1, ...
  - r[i] is the pagerank of page i

We are interested in the relative order

- Query processing:
  - Retrieve pages containing query terms
  - Rank them by their Pagerank

The final order is query-independent

# Nowadays

Relevance is a not well defined mathematical concept, which is actually not even depending on the single user because its needs may change over time too

For every page we compute a series of *features*:

- -TF-IDF of tokens
- -PageRank
- Their proximity in the page
- Their occurrence in URL
- Their occurrence in the title

-

there are > 200 «features»...



# Computing the Ranking

Strong use of AI e Machine Learning



### **Personalized** Pagerank

- Bias the random jump substituting the uniform jump to all nodes with the jump to one specific node (second term is (1-α) only for that node, the others are 0)
- ... or uniform jump to **some** set **S** of preferred nodes (second term is  $(1-\alpha)/|S|$  only for that set of nodes, the others are 0)
- Possibly not a uniform jump (change 1/#out(j) with the proper weight of the edge (j,i))

$$r(i) = \alpha \cdot \sum_{j \in B(i)} \frac{r(j)}{\#out(j)} + (1 - \alpha) \cdot \frac{1}{N}$$

# **HITS:** Hypertext Induced Topic Search



# Calculating HITS

It is query-dependent

- Produces two scores per page:
  - Authority score: a good authority page for a topic is pointed to by many good hubs for that topic.
  - Hub score: A good hub page for a topic points to many authoritative pages for that topic.

# Authority and Hub scores



$$a(1) = h(2) + h(3) + h(4)$$



$$h(1) = a(5) + a(6) + a(7)$$

# HITS: Link Analysis Computation

$$\begin{vmatrix} a = A^{T}h \\ h = Aa \end{vmatrix} \Rightarrow \begin{aligned} a = A^{T}Aa \\ h = AA^{T}h \end{aligned}$$

#### Where

a: Vector of Authority's scores

h: Vector of Hub's scores.

A: Adjacency matrix in which  $a_{i,j} = 1$  if  $i \rightarrow j$ 

Symmetric matrices

Thus, h is an eigenvector of AA<sup>t</sup>/
a is an eigenvector of A<sup>t</sup>A

# Weighting links

Weight more if the query occurs in the neighborhood of the link (e.g. anchor text).

$$h(x) \leftarrow \sum_{x \mid y} a(y)$$

$$a(x) \leftarrow \sum_{y \mid x} h(y)$$

$$h(x) = \sum_{x = y} w(x, y) \cdot a(y)$$

$$a(x) = \sum_{y = -\infty}^{\infty} w(x, y) \cdot h(y)$$

# Summarization via Random Walks

Paolo Ferragina



# The key simple idea

Rank (and select) sentences by saliency score of their constituting words **W**, computed as:

TF-IDF for weight(w)

$$saliency(S_i) = \sum_{w \in S_i} \frac{weight(w)}{|S_i|}$$

Centrality over proper graphs: PageRank, HITS, or other measures

### TextRank

- The key issue is how the GRAPH is built
  - Nodes = terms or sentences
  - Edges = similarity relation between nodes

$$Similarity(S_i, S_j) = \frac{|S_i \cap S_j|}{\log |S_i| + \log |S_j|}$$

 Use PageRank over weighted graph (directed by S's position) and compute the score of the nodes

# Lexical PageRank (LexRank)

- The main difference with TextRank resides in the way they compute edge weights:
  - Cosine similarity via Tf-Idf between sentences, so it is not pure content overlap (binary)
  - Edges are pruned if weight < threshold</li>
- Scoring of nodes via weigthed HITS to ensure a mutual reinforcement between words and sentences
- Do exist more sophisticate construction of graphs
- 2) What about multi-topic documents?