Econ 703 Homework 6

Fall 2008, University of Wisconsin-Madison

Prof. Raymond Deneckere Due on Oct. 16, Thu. (in the class)

- 1. Sundaram, #52, p. 72.
- **2.** Consider two Euclidian spaces $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$. Let Z be a metric spaces. and let $f: X \times Y = \mathbb{R}^{n+m} \to Z$. We say that f is continuous in each variable separately if, for each x_0 in $X = \mathbb{R}^n$, the function $h: \mathbb{R}^m \to Z$ defined by $h(y) = f(x_0, y)$ is continuous and if for each y_0 in $Y = \mathbb{R}^m$ the function $g(x) = f(x, y_0)$ is continuous. Prove that if f is continuous, then f is continuous in each variable separately.

(Remark: whenever considering product spaces of two Euclidian spaces \mathbb{R}^n and \mathbb{R}^m we use the Euclidian metric on \mathbb{R}^{n+m} to define open sets.)

3. Consider two Euclidian spaces \mathbb{R}^n and \mathbb{R}^m . Let Y be a compact subset of \mathbb{R}^m . Show that $f: \mathbb{R}^n \to Y$ is continuous if and only if the graph of f, $G(f) = \{(x, f(x)) | x \in \mathbb{R}^n\}$, is a closed subset of $\mathbb{R}^n \times Y$.

(HINT: If G(f) is closed, and V is a ball around $f(x_0)$, find a tube about $x_0 \times (Y \setminus V)$ not intersecting G(f)).

4. Let $f, g : [0, 1] \to \mathbb{R}$ be continuous functions, and suppose that f(x) > g(x) for all $x \in [0, 1]$. Prove or disprove the following statement: there exists A > 0 such that $f(x) \ge g(x) + A$ for all $x \in [0, 1]$.

What if instead f and g were only left continuous?