КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Фізичний факультет

Кафедра оптики

«ЗАТВЕРДЖУЮ»

Заступник декана
знавчальної роботи
фоксана МОТ
фоксана МОТ
року

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Фізика атома

для студентів

галузь знань спеціальність освітній ступінь освітня програма вид дисципліни	10 «Природничі науки» 104 «Фізика та астрономія» бакалавр ОПП «Фізичне матеріалознавство / Н матеріалознавство» обов'язкова	Іеметалічне
	Форма навчання Навчальний рік Навчальний семестр	очна 20 <u>24</u> /20 <u>2</u> <u>Б</u>

Навчальний рік
Навчальний семестр
Кількість кредитів ЕСТЅ
Мова викладання,
навчання та оцінювання
Форма заключного контролю

2024/2025

5
українська

Викладач(і): д.ф.-м.н., проф. Зеленський Сергій Євгенович

Пролонговано: на 20__/20__ н.р.____ (______) «___» __20__ р на 20__/20__ н.р.__ (_____) «___» __20__ р

КИЇВ - 20 <u></u> 2d

1

Розробник(и) Зеленський Сергій Євгенович, д.ф.-м.н., проф., професор кафедри оптики (ПІБ, науковий ступінь, вчене звання, посада, кафедра)

ЗАТВЕРДЖЕНО
Зав. кафедри оптики

— _____ (Леонід ПОПЕРЕНКО)
Протокол № ___ від «__» _____ 20____р.

ВСТУП

- 1. Мета дисципліни отримання знань щодо фізичних властивостей атомів і методів їх дослідження.
- 2. Попередні вимоги до опанування або вибору навчальної дисципліни Здобувач повинен попередньо опанувати перелічені нижче дисципліни в обсязі викладання на фізичних факультетах класичних університетів:
 - Загальна фізика. Електрика і магнетизм.
 - Загальна фізика. Оптика.
 - 3. Анотація навчальної дисципліни:

Дисципліна розглядає прояви і застосування корпускулярно-хвильового дуалізму (корпускулярні властивості електромагнітних хвиль і хвильові властивості мікрочастинок), будову і властивості електронних оболонок атомів з одним і багатьма електронами, взаємодію атомів з електромагнітними полями, а також вибрані питання фізики молекул та кристалів.

Програма навчальної дисципліни складається з трьох розділів (тем):

- Тема 1. Корпускулярні властивості електромагнітних хвиль.
- Тема 2. Хвильові властивості мікрочастинок.
- Тема 3. Властивості атомних оболонок: одноелектронні атоми.
- Тема 4. Властивості атомних оболонок: багатоелектронні атоми.
- Тема 5. Основи фізики молекул та кристалів.

Теми відповідають двом змістовним модулям:

- модуль 1 теми 1 та 2;
- модуль 2 теми 3-5.

Методи викладання: лекції, семінари, лабораторні роботи, консультації. Методи оцінювання: модульні контрольні роботи, реферати, контроль за виконанням лабораторних робіт, залік за виконання лабораторних робіт, іспит. Підсумкова оцінка виставляється на основі проміжних оцінок модульного контролю (60%) та іспиту (40%).

4. Завдання (навчальні цілі): вивчення основ фізики мікрооб'єктів, атомних оболонок, молекул та кристалів.

Дисципліна спрямована на досягнення таких загальних та спеціальних (фахових, предметних) компетентностей випускника:

Інтегральних:

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми з фізики у професійній діяльності або у процесі подальшого навчання, що передбачає застосування певних теорій і методів фізики і характеризується комплексністю та невизначеністю умов.

Загальних:

- ЗКЗ. Навички використання інформаційних і комунікаційних технологій.
- 3К4. Здатність бути критичним і самокритичним.
- 3К6. Навички міжособистісної взаємодії.
- ЗК11. Здатність діяти соціально відповідально та свідомо.
- ЗК12. Здатність спілкуватися державною мовою як усно, так і письмово.

- ЗК14. Здатність реалізувати свої права і обов'язки як члена суспільства, усвідомлювати цінності громадянського (вільного демократичного) суспільства та необхідність його сталого розвитку, верховенства права, прав і свобод людини і громадянина в Україні.
- ЗК15. Здатність зберігати та примножувати моральні, культурні, наукові цінності і досягнення суспільства на основі розуміння історії та закономірностей розвитку предметної області, їх місця у загальній системі знань про природу і суспільство та у розвитку суспільства, техніки і технологій, використовувати різні види та форми рухової активності для активного відпочинку та ведення здорового способу життя.

Фахових

- ФК12. Усвідомлення професійних етичних аспектів фізичних та астрономічних досліджень.
- ФК13. Орієнтація на найвищі наукові стандарти обізнаність щодо фундаментальних відкриттів та теорій, які суттєво вплинули на розвиток фізики, астрономії та інших природничих наук.

5. Результати навчання за дисципліною:

5. гезультати навчання за дисциплиною.							
	льтат навчання			Відсот			
(1. знати; 2. вміти; 3. комунікація;				ок у			
4. aB	тономність та відповідальність)	викладання і	Методи оцінювання	підсум			
Кол	Результат навчання	навчання		ковій			
Код	1 сзультат навчання			оцінці			
1.1	Прояви та застосування	Лекції,	Модульна контрольна	15			
	хвильових властивостей	семінари,	робота, колоквіум,				
	мікрооб'єктів та корпуску-	лабораторні	перевірка виконання				
	лярних властивостей електро-	роботи,	лабораторних робіт,				
	магнітного випромінювання,	самостійна	рефератів та інших				
	властивостей оболонок атомів	робота	форм самостійної				
	з одним та багатьма		роботи, іспит				
	електронами, властивостей						
	молекул та кристалів.						
1.2	Основні рівняння, що	Лекції,	Модульна контрольна	15			
	описують властивості атомів,	семінари,	робота, колоквіум,				
	молекул та кристалів, суть і	лабораторні	перевірка виконання				
	наближення основних	роботи,	лабораторних робіт,				
	фізичних моделей; означення	самостійна	рефератів та інших				
	усіх фізичних величин та	робота	форм самостійної				
	термінів, що застосовуються.		роботи, іспит				
2.1	Формулювати основні фізичні	Лекції,	Колоквіум, перевірка	15			
	моделі фізики атомів, молекул	самостійна	рефератів та інших				
	та кристалів, здійснювати	робота.	форм самостійної				
	математичний опис процесів,		роботи, іспит				

	що вивчаються.			
2.2.	Розв'язувати типові задачі з		Модульна контрольна	15
	фізики атомів та молекул,	самостійна	робота, перевірка	
	робити чисельні оцінки.	робота.	виконання домашніх	
			завдань, інших форм	
			самостійної роботи,	
			іспит	
2.3.	-		Перевірка виконання	15
	вання та спостереження в	-	лабораторних робіт,	
	галузі фізики атомів та моле-		рефератів та інших	
	кул із застосуванням стандарт-	робота.	форм самостійної	
	ного лабораторного облад-		роботи.	
	нання, здійснювати матема-			
	тичну обробку результатів.			
3.1	Вільне спілкування з питань	-		15
	,	час лекцій,		
	кристалів.	виступи на		
		семінарах,		
		обговорен-		
		ня лабора-		
		торних		
		робіт.		1.0
4.1.	-	Семінари,		10
	застосовувати фізичні моделі			
	для розв'язання задач та	-		
	інтерпретації результатів			
	експериментів.	робота.		

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання

Результати навчання дисципліни (код) Програмні результати навчання (назва)	1.1	1.2	2.1	2.2	2.3	3.1	4.1
ПРН17. Знати і розуміти роль і місце фізики, астрономії та інших природничих наук у загальній системі знань про природу та суспільство, у розвитку техніки й технологій та у формуванні сучасного наукового світогляду.	+	+	+	+	+		
ПРН19. Знати та розуміти необхідність збереження та	+	+					

примноження моральних, культурних та наукових цінностей і досягнень суспільства.				
ПРН22. Розуміти значення фізичних досліджень для забезпечення сталого розвитку суспільства.	+		+	+
ПРН23. Розуміти історію та закономірності розвитку фізики та астрономії.	+		+	+
ПРН24. Розуміти місце фізики та астрономії у загальній системі знань про природу і суспільство та у розвитку суспільства, техніки і технологій.	+			

7. Схема формування оцінки.

- 7.1. Форми оцінювання студентів:
 - Семестрове оцінювання:
 - 1. Модульна контрольна робота 1 (6 балів 10 балів).
 - 2. Колоквіум (9 балів 15 балів)
 - 3. Модульна контрольна робота 2 (9 балів 15 балів).
 - 4. Інші види контролю (12 балів 20 балів).
 - Підсумкове оцінювання у формі іспиту (обов'язкове проведення екзаменаційного оцінювання в письмовій формі).

Студент не допускається до екзамену, якщо під час семестру набрав *менше 36 балів*. Оцінка за іспит не може бути *меншою 24 балів* для отримання загальної позитивної оцінки за курс.

Модул		ть 1	Модул	ъ 2	Екза	Підс.	
	Контр. роб. 1	Коло квіум	Контр. роб. 2	Інші види	мен	оцінка	
Мінім.	6	9	9	12	24	60	
Максим.	10	15	15	20	40	100	

7.2. Організація оцінювання: Кожна модульна контрольна робота проводиться після вивчення відповідних тем. Колоквіум проводиться після вивчення тем 1 та 2.

7.3. Шкала відповідності оцінок

Відмінно/Excelent	90 – 100
Добре/Good	75 -89
Задовільно/Satisfactory	60-74
Незадовільно з можливістю повторного складання/Fail	35 -59
Незадовільно з обов'язковим повторним вивченням дисципліни	0 - 34
Зараховано/ Passed	60 - 100
He зараховано/ Fail	0 -59

Програма навчальної дисципліни

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ

- 10	ТЕМАТИЧПИИ ПЛАП	1				
№	Назва лекції		Кількість			
		Лекції	Семінари		C/P	
	Тема 1. Корпускулярні властивості ел	ектрома	гнітних хв	виль.		
1	Вступ. Закони теплового	2	2		3	
	випромінювання. Формула Планка.					
2	Корпускулярні властивості світла.	2	2		3	
	Рівноважний фотонний газ. Ефект					
	Комптона.					
	Тема 2. Хвильові властивості	мікрочас	тинок.			
3	Хвильові властивості мікрочастинок.	2	2		3	
	Хвилі де-Бройля і їх властивості.					
4	Принципи квантової механіки.	2	2		3	
	Співвідношення невизначеностей.					
	Рівняння Шредінгера. Квантування					
	механічного моменту.					
5	Квантові ями і бар'єри. Тунельний	2	2		3	
	ефект.					
	Модульна контрольна робота 1.					
	Колоквіум.					
	Тема 3. Властивості атомних оболонок	:: одноеле	ектронні а	томи.		
6	Дослідження будови атомів. Атом	2	2		4	
	водню: модель Бора.					
7	Атом водню: теорія Шредінгера.	2	2		4	
8	Стаціонарні стани і спектральні лінії.	2			4	
9	Лазери і атомні ансамблі.	2			4	
10	Суперпозиційні стани. Імовірності	2			4	
	спектроскопічних переходів.					
	-					

	Тема 4. Властивості атомних оболонок:	багатоел	ектронні ат	гоми.
11	Спін електрона.	2	2	3
12	Атом гелію. Принцип Паулі.	2	2	3
13	Систематика атомних станів.	2	2	4
14	Спін-орбітальна взаємодія. Атоми з	2	2	4
	двома електронами.			
15	Атом в магнітному полі.	2	2	4
16	Атом в електричному полі.	2		4
17	Резонансні методи дослідження. Зсув	2		3
	Лемба.			
18	Багатофотонні процеси.	2		3
19	Рентгенівське проміння.	2	2	4
	Тема 5. Основи фізики молеку	ул та кри	сталів.	·
20	Природа молекулярного зв'язку.	2		3
	Молекула водню.			
21	Електронні, коливальні, обертальні	2	2	3
	спектри молекул.			
22	Основи фізики твердого тіла. Зонна	2		4
	модель кристалу. Квазічастинки в			
	твердих тілах.			
	Модульна контрольна робота 2			
	Всього:	44	28	77

Загальний обсяг 150 год., в тому числі:

Лекцій – 44 *год*.

Консультації – 1 год.

Семінари – 28 год.

Самостійна робота – 77 год.

Рекомендована література

Основна:

- 1. Білий М.У., Охріменко Б.А. Атомна фізика. К.: Знання, 2009. 560 с.
- 2. Шпольский З.В. Атомная физика. В 2-х т. М.: Наука, 1974. т.1, 575 с., т.2, 447 с.
- 3. Білий М.У. Атомна фізика. К.: Вища школа, 1973. 397 с.

Додаткова:

- 1. Матвеев А.Н. Атомная физика. М.: Высшая школа, 1989. 439 с.
- 2. Сивухин Д.В. Общий курс физики. Т.5, часть 1. Атомная физика. 2-е изд. М: Физматлит. Изд-во МФТИ, 2002. 784 с.

- 3. Ахиезер А.И. Атомная физика. Справочное пособие. К.: Наукова думка, 1988. 264 с.
- 4. Зеленський С.€. Багатофотонні переходи. Київ, ВПЦ «Київський університет», 2010. 72 с.
- 5. Иродов И.Е. Квантовая физика. Основные законы. М.: Лаборатория базовых знаний, 2001.-272 с.
- 6. Тригг Дж. Решающие эксперименты в современной физике. Пер.с англ. М.: Мир, 1974. 160 с.
- 7. Кондиленко И.И., Коротков П.А. Введение в атомную спектроскопию. К.: Вища школа, 1976. 303 с.

Задачі:

- 1. Иродов И.Е. Задачи по общей физике. M.: 2001. 446 c.
- 2. Иродов И.Е., Сборник задач по атомной и ядерной физике. Учеб.пособие для вузов, 7-е изд.,перераб.и доп. М.: Энергоатомиздат, 1984. 215 с.

Описи лабораторних робіт

- 1. Методичні вказівки до виконання лабораторних робіт (розділ «Атомна фізика»). За редакцією проф. Горбаня І.С. К.: КДУ, 1991. 66 с.
- 2. МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ ЛАБОРАТОРНИХ РОБІТ З КУРСУ «ЗАГАЛЬНА ФІЗИКА» (розділ «Атомна фізика») для студентів фізичного факультету

http://exp.phys.univ.kiev.ua/ua/Study/Lab/atom_lab.pdf