3.3. / If matrices A and B are positive definite, the A+B is positive definite. Proof. For 2 nxn positive definite matrices, we know the following.

A = A^T and B = B^T . for diagonal Elements ais in A and bis in B, a;; > 0 and b;; >0 From the first trait, we find $(A+B) = C \stackrel{(=)}{=} (A^T+B^T) = C$ by substitution for some matrix C. Thus by properties of transposes, where (A+B) = AT+BT, (A+B)T=C. Thus (A+B)T=(A+B), so A+Bis symmetric. From the second, note that for a sum of matrices, (A+B) = [a₁₁+b₁₁ a₁₂+b₁₂ ... a_{1n}+b_{1n}] Since diagonal elements a₁₁ > 0 and b₁₁ > 0,

[a_{n1}+b_{n1} a_{n2}+b_{n2} ... a_{nn}+b_{nn}] a₁₁+b₁₁ > 0

Thus diagonal elements of A+B are always positive

and the symmetric matrix (A+B) is also positive definite.