Bakalářské zkoušky (příklady otázek)

jaro 2017

1 SQL

Uvažujte následující schéma: Komodita (IdK, Název), Obchodník (Kód, Jméno, Adresa), ObchodniTransakce (Id, IdK, Kód, Cena, Rok), kde ObchodniTransakce.IdK je cizí klíč odkazující do tabulky Komodita a ObchodniTransakce.Kód je cizí klíč odkazující do tabulky Obchodník. Zapište v jazyce SQL následující dotazy:

- 1. Kteří obchodníci neobchodovali v roce 2016 s pšenicí?
- 2. Kódy obchodníků, kteří měli v roce 2016 obrat všech transakcí větší než 10 miliónů ?

Popište úrovně izolace definované v SQL 92 a jak mohou být v DBMS řešeny.

2 Kódy

- 1. Napište definici vzdálenosti samoopravného kódu a určete vzdálenost kódu {001,010,100}. Jak vzdálenost kódu souvisí s počtem chyb, které je v přeneseném slově možné opravit ?
- Nalezněte největší binární kód délky 3 a vzdálenosti 2. Může takový kód být lineární?
- 3. Zformulujte a dokažte Hammingův odhad na velikost kódu dané délky a vzdálenosti.

3 Morfologie

- 1. Definujte pojmy morfologická analýza, morfologické značkování, lemmatizace.
- 2. Vysvětlete problém morfologické víceznačnosti (ambiguity), uveďte příklad.
- 3. Popište princip algoritmu pro morfologické značkování a lemmatizaci.

4 TCP a NAT

1. Standard TCP definuje následující hlavičku:

0	1		2	3				
0 1 2 3 4	5 6 7 8 9 0 1	2 3 4 5 6 7	8 9 0 1 2 3	4 5 6 7 8 9 0 1				
+-								
Source Port Destination Port				on Port				
+-								
Sequence Number								
+-								
Acknowledgment Number								
+-								
Data	U A	P R S F		1				
Offset R	eserved R C	S S Y I	Wind	WC WC				
1	G K	H T N N		1				
+-+-+-+-+	_+_+_+_+	+-+-+-	+-+-+-+-+-+	-+-+-+-+-+-+				
Checksum		1	Urgent 1	Pointer				
+-								

1	Options		Padding	- 1
+-+-+	-+	+-+-	+-+-+-+-+	+
1	data			- 1
+-+-+	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-+-	+-+-+-+-+	+

Napište význam a postup nastavení polí "source port", "destination port", "sequence number" a "acknowledgment number" z hlavičky.

2. Standard IP definuje následující hlavičku:

0	1		2		3		
0 1 2 3 4 5 6 7 8 9	9 0 1 2 3 4	5 6 7 8 9	0 1 2 3 4	5 6 7 8	901		
+-							
Version IHL Typ	Total Length						
+-							
Identifica	ation	Flags	Fragm	ent Offse	t		
+-							
Time to Live	Protocol	1	Header C	Checksum	1		
+-							
Source Address							
+-							
Destination Address							
+-							
		1	Paddin	g l			
+-							

Napište, která hlavní pole IP a TCP hlaviček a jak ovlivňuje mechanismus překladu adres (NAT).

5 NP-úplnost

- 1. Definujte pojmy: rozhodovací problém, instance problému, třída NP a třída NPÚ.
- 2. Popište 3 problémy z třídy NPÚ. Zdůvodněte u jednoho z nich, že patří do třídy NP.
- 3. Jak pomocí polynomiálního převodu dokážete, že nějaký problém A je NP-úplný (za předpokladu, že už nějaké NPÚ problémy znáte) ?
- 4. Jaké prakticky použitelné přístupy můžete zvolit pro řešení NP-úplných problémů?

6 Vlákna

Předpokládejte nějaký běžný operační systém jako Linux nebo Windows běžící na procesorech s architekturou x86.

- 1. Vysvětlete, co to je vlákno, a co je součástí jeho kontextu.
- 2. Jaké jsou důležité stavy, ve kterých se vlákno může v takovém OS nacházet? Pro každý uvedený stav vysvětlete, co znamená, a dále vysvětlete, jak se vlákno do takového stavu dostane (například voláním jakého syscallu jádra).
- 3. Předpokládejte, že bychom chtěli v jazyce jako Pascal, C, nebo C++ naimplementovat v běžné aplikaci běžící v uživatelském režimu vlastní koncept kooperativně přepínaných vláken, tedy v kontextu jednoho preemptivně přepínaného vlákna operačního systému bychom umožnili běh různých našich kooperativně přepínaných vláken. Jak by rámcově v takovém jazyce vypadala implementace procedury Yield, která by měla procesor odebrat volajícímu vláknu a přepnout kontext na nové vlákno identifikované thread ID předaným jako parametr této procedury?

Není třeba psát přesný program, stačí v přibližném zápisu kódu uvést, jaké hlavní kroky je třeba v proceduře Yield provést. Pokud byste potřebovali použít assembler cílového procesoru, stačí podobně načrtnout potřebné instrukce v hrubých rysech.

7 Konvergence řad

Definujte konvergenci nekonečné řady a definujte absolutní konvergenci nekonečné řady. Zodpovězte následující otázky a odpovědi zdůvodněte.

1. Konverguje absolutně řada $1 - 1/2 + 1/4 - 1/8 + 1/16 - \dots$?

- 2. Konverguje řada $1 1/2 + 1/3 1/4 + 1/5 \dots$?
- 3. Je pravda, že když řada $a_1+a_2+\dots$ konverguje, potom i řada $a_1^2+a_2^2+\dots$ konverguje ?

8 Sloupcový prostor matice

Definujte sloupcový prostor matice $A \in \mathbb{R}^{m \times n}$.

Najděte bázi sloupcového prostoru matice

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 0 \\ 1 & 1 & 2 \end{pmatrix}.$$

Rozhodněte a zdůvodněte, zda soustava Ax = b (s maticí A z předchozí úlohy) je řešitelná

- 1. pro každé $b \in \mathbb{R}^3$,
- 2. pro nekonečně mnoho $b \in \mathbb{R}^3$.

9 Souvislost grafů

Definujte pojem tah v grafu.

Pro graf G = (V, E) uvažte dvě následující binární relace na $V \times V$:

- pro $x, y \in V$ je $(x, y) \in S$ právě tehdy, když x a y leží ve stejné komponentě souvislosti grafu G,
- pro $x,y \in V$ je $(x,y) \in T$ právě tehdy, když existuje v grafu G tah z vrcholu x do vrcholu y.

O obou relacích rozhodněte, zda jsou reflexivní, symetrické, antisymetrické a tranzitivní. Odpovědi stručně zdůvodněte.

Mějme graf G s množinou vrcholů $\{0,1\}^3$ (poslounosti 0 a 1 délky 3) a hranami mezi těmi dvojicemi vrcholů, které se liší právě na jedné pozici. Rozhodněte, pro která přirozená k existuje tah délky k z vrcholu 000 do vrcholu 111.