

Spatial Kinematics – Foundations I

Prof. Dr. Karsten Berns
Robotics Research Lab
Department of Computer Science
University of Kaiserslautern, Germany

Contents

- Description of Objects and Object Poses in 3D Euclidean Space (E_3)
 - Coordinate Systems
 - Transformations
 - Rotation of a Coordinate System
 - Rotation Matrix
 - Several Elementary Rotations
- Different Notations for Rotations
 - Rotation around 1 Axis
- Axes of rotation in Robotics
 - Euler Angles
 - Roll-Pitch-Yaw

Notation

- Scalars: small letters, e.g. s
- Matrices: upper case letters, e.g. A
- Vectors: with an arrow, e.g. \vec{u}
- Identifier of scalars, vectors and points: indices at bottom right, e.g. $\overrightarrow{u_1}$
- Abbreviation of sine and cosine:
 - $cos(\theta_1) = C\theta_1 = C_1$, $sin(\theta_1) = S\theta_1 = S_1$,
 - $\cos(\theta_1 + \theta_2 + \dots + \theta_n) = C_{12\dots n}, \sin(\theta_1 + \theta_2 + \dots + \theta_n) = S_{12\dots n}$
- Coordinate systems (frames): upper case letters, e.g. B
- Vectors referenced due to a certain frame: Frame upper left, e.g. ${}^{B}\vec{u}$
- Matrix transforming from frame B to frame A: Frames lower and upper left, e.g. ${}_{B}^{A}R$

Reminder: Scalar Product

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
$$\vec{a} \cdot \vec{b} = |a| \cdot |b| \cdot \cos \theta$$

- θ : smallest angle between a and b
- 0, if the vectors are orthogonal
- Commutative and distributive property hold
- Associative does not hold
- With respect to scalars it is: $n(\vec{a} \cdot \vec{b}) = (n \cdot \vec{a}) \cdot \vec{b} = \vec{a} \cdot (n \cdot \vec{b})$
- It holds:
 - $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
 - $\overrightarrow{e_{\chi}} \cdot \overrightarrow{e_{\chi}} = \overrightarrow{e_{\gamma}} \cdot \overrightarrow{e_{\gamma}} = \overrightarrow{e_{z}} \cdot \overrightarrow{e_{z}} = 1$
 - $\overrightarrow{e_x} \cdot \overrightarrow{e_y} = \overrightarrow{e_y} \cdot \overrightarrow{e_z} = \overrightarrow{e_z} \cdot \overrightarrow{e_x} = 0$

Reminder: Cross Product/Vector Product

- Cross product $\vec{a} \times \vec{b}$ in spaces: Vector, which is perpendicular to \vec{a}, \vec{b} and therefore normal to the plane containing them
- Definition for \mathbb{R}^3 : $\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta \cdot \vec{e}$
 - θ : angle between the vectors
 - \vec{e} : perpendicular unit vector

Cross product can be computed component wise for \mathbb{R}^3

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

Reminder: Cross Product/Vector Product

- Magnitude of the cross product is equal to the area of the parallelogram $A_P = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta$
- For parallel vectors the cross product is 0
- It holds: $\vec{a} \times \vec{a} = \vec{0}$
- Distributive und anticommutative property hold

$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \overrightarrow{e_1} & a_1 & b_1 \\ \overrightarrow{e_2} & a_2 & b_2 \\ \overrightarrow{e_3} & a_3 & b_3 \end{vmatrix} = \det \begin{bmatrix} \overrightarrow{e_1} & a_1 & b_1 \\ \overrightarrow{e_2} & a_2 & b_2 \\ \overrightarrow{e_3} & a_3 & b_3 \end{bmatrix}$$

Reminder: Triple Product

$$V_{\vec{a},\vec{b},\vec{c}} = (\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b} = \det \begin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{bmatrix}$$

- Combination of cross and scalar product
- Magnitude: Signed volume (V) of the prism defined by the three vectors
 - V > 0 for right handed coordinate systems
 - V < 0 for left handed coordinate systems
- It holds:
 - for linear dependent vectors it is 0
 - anticommutative property holds

Reminder: Determinant

• Determinant of a $n \times n$ -Matrix (Laplace's formula for i-th row)

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

Rule of thump for 2 × 2-Matrices: Rule of Sarrus

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Rule of thump for 3 × 3-Matrices: Rule of Sarrus

$$\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Properties of a Determinant

Example: Expanding the determinant along row 1:

$$\det\begin{bmatrix} 0 & 3 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} = 0 \cdot \det\begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} - 3 \cdot \det\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} + 2 \cdot \det\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
$$= -3 \cdot -5 + 2 \cdot -3 = 15 - 6 = 9$$

- $\det A = \det A^T$
- $\det AB = \det A * \det B$
- $\det \lambda A = \lambda^n \det A$ A is a $n \times n$ matrix
- Determinant is 0, if
 - all elements of a row/column are 0
 - two rows are linearly dependent
- Similarity of A and B: A=X-1BX, det A = det B
- Exchanging two rows changes the sign of the determinant

Properties of Eigenvalues

Trace of a matrix is the sum of all eigenvalues:

$$tr(A) = \sum_{i=1}^{n} \lambda_i$$

Determinant of a matrix is the product of all eigenvalues:

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

 The eigenvectors belonging to different eigenvalues are linearly independent

Pseudo-Inverse of Matrices

- For each $m \times n$ matrix A, Pseudo-Inverse of A is defined as a $n \times m$ matrix A^+ satisfying all of the following four criteria, (Moore-Penrose conditions):
 - $AA^{+}A = A$

 A^+ does not need to be the general identity matrix, but it maps all column vectors of A to themselves.

- $A^+AA^+ = A^+$ A^+ acts like a weak inverse.
- $(AA^+)^T = AA^+$ AA^+ is Hermitian.
- $(A^+A)^T = A^+A$ A^+A is also Hermitian

Basic Properties

- The pseudo-inverse exists and is unique.
- The pseudo-inverse of a zero matrix is its transpose.
- If A is invertible, then its pseudoinverse is its inverse: $A^{+} = A^{-1}$
- The pseudo-inverse of the pseudo-inverse is the original matrix:

$$(A^+)^+ = A$$

• The pseudo-inverse of a scalar multiple of A is the reciprocal multiple of A^+ :

$$(\lambda A)^{+} = \frac{1}{\lambda} A^{+}$$
 for $\lambda \neq 0$

Description of Objects and Object Poses in E_3

Coordinate Systems

Base coordinate system (BCS)

3-dim. coordinate system defined by orthogonal unit vectors

Coordinate Systems

Object coordinate system (OCS)

- Any rigid body can be related to a local coordinate system
- Local coordinate system is defined by orthogonal unit

Orthogonal, Cartesian Coordinate Systems

Counterclockwise rotating coordinate system

- Right-hand-rule: Thumb x, index finger y, middle finger z
- $\vec{e}_x \times \vec{e}_y = \vec{e}_z$ with cross product \times
- If not specified otherwise, assume right-handed CS
 z: middle finger

Orthogonal, Cartesian Coordinate Systems

Clockwise rotating coordinate system

Left-hand-rule: Thumb x, index finger y, middle finger z

Object Poses in Space

- Location in BCS: Position vector from origin of BCS to origin of OCS
- Orientation in BCS: Mapping of unit vectors of OCS to the unit vectors of BCS using rotation matrix
- Pose: Position vector and rotation matrix of the OCS related to the BCS

Transformation

In addition to the BCS, various other local coordinate systems are used for describing robotic applications, e.g. ...

- OCS: Object Coordinate System
- ECS: Effector Coordinate System (TCP Tool Center Point)
- SCS: Sensor Coordinate System

Possible Transformations

- Translation vector: ${}^B\vec{u} = {}^Ba \cdot \vec{e}_{B_X} + {}^Bb \cdot \vec{e}_{B_Y} + {}^Bc \cdot \vec{e}_{B_Z}$
- Rotation matrix: $R = R_{\alpha} \cdot R_{\beta} \cdot R_{\gamma}$
- Rotation angle around coordinate axes: $x, y, z: \alpha_x, \beta_y, \gamma_z$

Rotation of a Coordinate System

- Let BCS and OCS be rotated against each other with unit vectors \vec{e}_{B_X} , \vec{e}_{B_V} , \vec{e}_{B_Z} and \vec{e}_{O_X} , \vec{e}_{O_V} , \vec{e}_{O_Z}
- Given a position vector of a point P, either defined relative to the OCS ${}^{O}\overrightarrow{p}$ or the BCS ${}^{B}\overrightarrow{p}$
 - -> find position vector relative to the other coordinate system

Rotation of a Coordinate System

$$\mathbf{P}\vec{p} = {}^{B}p_{x} \cdot \vec{e}_{B_{x}} + {}^{B}p_{y} \cdot \vec{e}_{B_{y}} + {}^{B}p_{z} \cdot \vec{e}_{B_{z}} \text{ with } {}^{B}\vec{p} = \begin{bmatrix} {}^{B}p_{x} \\ {}^{B}p_{y} \\ {}^{B}p_{z} \end{bmatrix}$$

$$\bullet \quad {}^{o}\vec{p} = {}^{o}p_{x} \cdot \vec{e}_{B_{x}} + {}^{o}p_{y} \cdot \vec{e}_{B_{y}} + {}^{o}p_{z} \cdot \vec{e}_{B_{z}} \text{ with } {}^{o}\vec{p} = \begin{bmatrix} {}^{o}p_{x} \\ {}^{o}p_{y} \\ {}^{o}p_{z} \end{bmatrix}$$

• ⁰p projection to base vectors of BCS yields to BCS coordinates:

Rotation of a Coordinate System

Transformation from BCS to OCS coordinates:

Matrix Notation

$$\bullet \quad {}^{o}_{B}R_{2} = \begin{bmatrix} \vec{e}_{O_{x}} \cdot \vec{e}_{B_{x}} & \vec{e}_{O_{x}} \cdot \vec{e}_{B_{y}} & \vec{e}_{O_{x}} \cdot \vec{e}_{B_{z}} \\ \vec{e}_{O_{y}} \cdot \vec{e}_{B_{x}} & \vec{e}_{O_{y}} \cdot \vec{e}_{B_{y}} & \vec{e}_{O_{y}} \cdot \vec{e}_{B_{z}} \\ \vec{e}_{O_{z}} \cdot \vec{e}_{B_{x}} & \vec{e}_{O_{z}} \cdot \vec{e}_{B_{y}} & \vec{e}_{O_{z}} \cdot \vec{e}_{B_{z}} \end{bmatrix} \text{ and } {}^{B}\vec{p} = \begin{bmatrix} {}^{B}p_{x} \\ {}^{B}p_{y} \\ {}^{B}p_{z} \end{bmatrix}$$

- Therefore: $R_1 = R_2^{-1}$, $R_2 = R_1^{-1}$ and $R_2 = R_1^T$ (orthogonal matrix)

Rotation around x-Axis with Angle α

Using scalar product: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \alpha$

$$\vec{e}_{B_x} \cdot \vec{e}_{O_x} = 1 \qquad \vec{e}_{B_x} \cdot \vec{e}_{O_y} = 0 \qquad \vec{e}_{B_x} \cdot \vec{e}_{O_z} = 0$$

$$\vec{e}_{B_y} \cdot \vec{e}_{O_x} = 0 \qquad \vec{e}_{B_y} \cdot \vec{e}_{O_y} = \cos(\alpha) \qquad \vec{e}_{B_y} \cdot \vec{e}_{O_z} = \cos(\alpha)$$

$$\vec{e}_{B_z} \cdot \vec{e}_{O_x} = 0 \qquad \vec{e}_{B_z} \cdot \vec{e}_{O_y} = \cos(-\alpha) \qquad \vec{e}_{B_z} \cdot \vec{e}_{O_z} = \cos(\alpha)$$

•
$$c(\alpha) = \cos(90^{\circ} + \alpha) = -\sin\alpha = \sin(-\alpha) z$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix}$$

•
$$C\alpha = \cos(\alpha)$$
, $S\alpha = \sin(\alpha)$

Rotation Matrix: Geometric Derivation

- Frame $OX_0Y_0Z_0$ resulted from frame $BX_BY_BZ_B$ through rotation around axis z with angle α .
- Calculation of coordinates of point $P_0 = ({}^{o}x, {}^{o}y, {}^{o}z)^T$ in coordinate system B

Rotation around the z-Axis

- Rotation around z axis with angle α
 - Point P_0 with the coordinates $({}^0x, {}^0y, {}^0z)^T$ in OCS receives the coordinates in BCS ...
 - $Bx = {}^{0}x \cdot \cos \alpha {}^{0}y \cdot \sin \alpha$
 - $By = {}^{0}x \cdot \sin \alpha + {}^{0}y \cdot \cos \alpha$
 - $B_z = {}^0z$
 - z coordinate fixed, z axis is axis of rotation

Matrix form:
$${}^{B}\vec{p} = \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ {}^{B}z \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} {}^{O}x \\ {}^{O}y \\ {}^{O}z \end{bmatrix} = {}^{B}_{O}R_{z}(\alpha) \cdot {}^{O}\vec{p}$$

Rotation Matrix

- Rotation matrix $R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Rotation around x and y axes

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

Rotation Matrix - Properties

- Affine mapping $\mathbb{R}_3 \to \mathbb{R}_3$
- Real matrix
- Quadratic
- Invertible
- Orthogonal
 - Row or column vectors are orthogonal to each other
- Let R be a rotation matrix:
 - Rank $R_{g}(R) = 3$
 - $R^T = R^{-1}$
 - $R \cdot R^{-1} = R^{-1} \cdot R = I$
 - $\det R = 1$

Several Elementary Rotations

Basic Rotations:

Let OCS result based on 2 rotations from BCS

$$R_{y}(-90^{\circ}) = \begin{bmatrix} \cos -\frac{\pi}{2} & 0 & \sin -\frac{\pi}{2} \\ 0 & 1 & 0 \\ -\sin -\frac{\pi}{2} & 0 & \cos -\frac{\pi}{2} \end{bmatrix}, \qquad R_{x'}(180^{\circ}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \pi & -\sin \pi \\ 0 & \sin \pi & \cos \pi \end{bmatrix}$$

Vector Coordinates due to a new Frame

- Calculation of ${}^B\vec{u}$ from ${}^{O2}\vec{u}$
- $^{B}\vec{e}_{O2_{x}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- $^{B}\vec{e}_{O2_{y}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$
- $^{B}\vec{e}_{O2_{z}} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Interpretation of several, elementary Rotations

- Pre-multiplication $R = (R_n(R_{n-1} \dots (R_2R_1) \dots))$:
 - Interpretation rotation around a fixed axis of the original coordinate system
- Post-multiplication $((\cdots (R_1R_2)\cdots R_{n-1})R_n)$:
 - Interpretation rotation around an axis of the rotated CS

Different Notations for Rotations

- Many different notations for rotations exist
- All equivalent, but different benefits
 - Rotation around unique axis
 - Trade-off between others
 - Euler angels
 - Follows chained Joint-Setup
 - Roll-Pitch-Yaw
 - Easy to interpret by humans
 - Quaternions
 - Computationally fast
 - Exponential coordinates
 - More similar to its kinematic

Rotation around unique Axis

- Instead of rotation with BCS-axis, rotate around unique Axis:
- Goal:

```
Find \vec{g} \in \mathbb{R}^3, \|\vec{g}\| = 1, \theta \in [0, 2\pi) such that:
For BCS x, y, z \in \mathbb{R}^3 and arbitrary \alpha, \beta, \gamma \in [0, 2\pi) the following holds:
```

$$R_{\vec{g}}(\theta) = R_z(\gamma)R_y(\beta)R_x(\alpha)$$

Rodrigues Formula:

- Given a transformation matrix $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$ we can obtain:
- $\hat{g} = \frac{1}{2S\theta}(R R^T)$, and $\theta = \cos^{-1}\left(\frac{tr(R) 1}{2}\right) \in [0, \pi]$.

Hence,

$$R = R_{\vec{g}}(\theta) = \begin{bmatrix} g_1^2 \eta \theta + C\theta & g_1 g_2 \eta \theta - g_3 S\theta & g_1 g_3 \eta \theta + g_2 S\theta \\ g_1 g_2 \eta \theta + g_3 S\theta & g_2^2 \eta \theta + C\theta & g_2 g_3 \eta \theta - g_1 S\theta \\ g_1 g_3 \eta \theta - g_2 S\theta & g_2 g_3 \eta \theta + g_1 S\theta & g_3^2 \eta \theta + C\theta \end{bmatrix}$$

with:

$$S\theta = \sin \theta$$
, $C\theta = \cos \theta$, $\eta \theta = 1 - \cos \theta$, $\vec{g} = (g_1, g_2, g_3)^T = \frac{1}{2S\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$

Rodrigues Formula:

• \hat{g} is the skew-symmetric matrix corresponding to the vector \vec{g} :

$$\hat{g} = \begin{bmatrix} 0 & -g_3 & g_2 \\ g_3 & 0 & -g_1 \\ -g_2 & g_1 & 0 \end{bmatrix}$$

The matrix R can be decomposed to

$$R = R_{\vec{g}}(\theta) = \cos(\theta) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_1 \quad g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_2 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3] + (1 - \cos(\theta)) \begin{bmatrix} g_1 \\ g_3 \\ g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3 \quad g_3 \end{bmatrix} [g_3 \quad g_3 \quad g_3 \quad g_3 \quad g_3 \end{bmatrix} [g_3 \quad g_3 \quad$$

To be equal to:

$$R = R_{\vec{g}}(\theta) = C\theta I_3 + (1 - \cos(\theta))\vec{g}\vec{g}^T + S\theta\hat{g}$$

Theorem (Euler):

Every rotation matrix R_3 is equivalent to a rotation around a fixed axis

$$\vec{g} \in \mathbb{R}^3$$
, $\|\vec{g}\| = 1$,

And a rotation angle

$$\theta \in [0,2\pi)$$
.

Proof:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \stackrel{!}{=} R_{\vec{g}}(\theta)$$

$$=\begin{bmatrix}g_1^2\eta\theta+C\theta&g_1g_2\eta\theta-S\theta&g_1g_3\eta\theta+g_2S\theta\\g_1g_2\eta\theta+g_3S\theta&g_2^2\eta\theta+C\theta&g_2g_3\eta\theta-g_1S\theta\\g_1g_3\eta\theta-g_2S\theta&g_2g_3\eta\theta+g_1S\theta&g_3^2\eta\theta+C\theta\end{bmatrix}$$

The following applies to the trace of the matrices:

$$trR = r_{11} + r_{22} + r_{33} = 3\cos\theta + (1-\cos\theta)\sum_{i} g_i^2 = 1 + 2\cos\theta$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{tr R - 1}{2}\right) \in [0, \pi]$$

This equation can be solved for θ , because the eigenvalues λ_i of R have amount 1 and therefore:

$$-1 \le tr R = \sum \lambda_i \le 3$$

Proof:

 To determine the axis of rotation, we use the remaining matrix entries:

$$\begin{array}{c} ! \\ r_{32} - r_{23} = 2g_1S\theta \\ \vdots \\ r_{13} - r_{31} = 2g_2S\theta \\ \vdots \\ r_{21} - r_{12} = 2g_3S\theta \end{array} \right\} \stackrel{\theta=0}{\Longrightarrow} \vec{g} = \frac{1}{2S\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

If $R = I_3$, then trR = 3, and therefore $\theta = 0$. In this case, \vec{g} could be any vector, then $R_{\vec{g}}(0) = I_3$.

Representation of Orientation

- Roll-Pitch-Yaw:
 - xyz-system
 - Used in aerospace, in mobile robotics
- Euler-angles:
 - zx'z''-system: usual mathematical definition
 - zy'x"-system: programming of numerically controlled manipulators
 - zy'z"-system: programming language VAL, PUMA-robot

Computation of Roll-Pitch-Yaw-Angles

- Multiplying from the right with $R_x(\alpha)^{-1}$: $R_z(\gamma) \cdot R_v(\beta) \cdot R_x(\alpha) \cdot R_x(\alpha)^{-1} = R \cdot R_x(\alpha)^{-1}$
- Simplified: $R_z(\gamma) \cdot R_{\gamma}(\beta) = R \cdot R_{\chi}(\alpha)^T$
- → Exercise

Roll-Pitch-Yaw-Angles - an Example

Matrix from slides 16-17 gives the following equations:

$$\begin{bmatrix} C\beta & 0 & S\beta \\ S\beta \cdot S\alpha & C\alpha & -S\alpha \cdot C\beta \\ -C\alpha \cdot S\beta & S\alpha & C\alpha \cdot C\beta \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ C\gamma & S\gamma & 0 \\ -S\gamma & C\gamma & 0 \end{bmatrix}$$

Roll-Pitch-Yaw-Angles - an Example

Or equivalently:

$$(1.1) C\beta = 0$$

$$(1.2)$$
 $0 = 0$

$$(1.3) S\beta = 1$$

$$(2.1) S\beta \cdot S\alpha = C\gamma$$

(2.2)
$$C\alpha = S\gamma$$

$$(2.3) -S\alpha \cdot C\beta = 0$$

$$(3.1) -C\alpha \cdot S\beta = -S\gamma$$

$$(3.2) S\alpha = C\gamma$$

$$(3.3) C\alpha \cdot C\beta = 0$$

Roll-Pitch-Yaw-Angles: An Example

• Angle β : From (1.1), (1.3) it follows that

$$\beta = 90^{\circ}$$

- Angle α and γ : From (2.2), (3.2) it follows that
 - $\gamma = 90^{\circ} \alpha$
- With $\beta = 90^{\circ}$ you can simplify (2.1), (2.3), (3.1), (3.3) to (2.2) and (3.2)
- No equations for α or γ :
 - α can be chosen γ arbitrarily
- Choose $\alpha = 0^{\circ} \rightarrow \text{Solutions } (0^{\circ}, 90^{\circ}, 90^{\circ})$

Axes of Rotation in Robotics

- Rotation axes usually BCS
- Convention of rotation axes and their order usually in ...
 - Euler-angles
 - Roll, Pitch, Yaw

Euler-Angles (zxz)

- Rotation α around the z axis of BCS: $R_z(\alpha)$
- Rotation β around the new x axis x': $R_{x'}(\beta)$
- Rotation γ around the new z axis z'': $R_{z''}(\gamma)$
- $R_{s} = R_{z}(\alpha) \cdot R_{x'}(\beta) \cdot R_{z''}(\gamma)$

$$R_{S}(\alpha,\beta,\gamma) = \begin{bmatrix} C\alpha C\gamma - C\beta S\gamma S\alpha & -C\alpha S\gamma - C\beta C\gamma S\alpha & S\alpha S\beta \\ S\alpha C\gamma + C\beta S\gamma C\alpha & C\alpha C\beta C\gamma - S\alpha S\gamma & -C\alpha S\beta \\ S\gamma S\beta & C\gamma S\beta & C\gamma S\beta \end{bmatrix}$$

Euler-Angles (zyz)

- Rotation α around the z axis of BCS: $R_z(\alpha)$
- Rotation β around the new y axis y': $R_{y'}(\beta)$
- Rotation γ around the new z axis z'': $R_{z''}(\gamma)$
- $R_{S}(\alpha, \beta, \gamma) = R_{Z}(\alpha) \cdot R_{\gamma}, (\beta) \cdot R_{Z''}(\gamma)$

$$R_{s}(\alpha,\beta,\gamma) = \begin{bmatrix} C\alpha C\beta C\gamma - S\alpha S\gamma & -C\alpha C\beta S\gamma - S\alpha C\gamma & C\alpha S\beta \\ S\alpha C\beta C\gamma + C\alpha S\gamma & -S\alpha C\beta S\gamma - C\alpha C\gamma & S\alpha S\beta \\ -S\beta C\gamma & S\beta S\gamma & C\beta \end{bmatrix}$$

• Rotation around changed axes $R_{z,\alpha}$, $R_{y',\beta}$, $R_{z'',\gamma}$

Euler-Angles - Example

$$R_S = R_z(0^\circ) \cdot R_{y'}(90^\circ) \cdot R_{z''}(90^\circ)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1, & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Euler-Angles: Derivation

Theorem: If two right-handed Cartesian coordinate systems $R = \{U, e_1, e_2, e_3\}$ and $\{U, \bar{e}_1, \bar{e}_2, \bar{e}_3\}$ with a common origin exist, then there exists an orthogonal matrix A that maps R to \bar{R}

Proof: All orientations can be described using Euler-angles

Euler-Angles: Derivation

- 1. Rotation around e_3 with the positive angle α so that e_1 is mapped onto f_1
 - f_1 , constructed by positive rotation with α with $0 \le \alpha \le \pi$, lies on P
 - *R* transforms into $R = \{U, f_1, f_2, f_3 = e_3\}$

$$A_1 = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix} R_1 = RA_1$$

• $f_1 \perp e_3$ and $f_1 \perp \bar{e}_3$

Euler-Angles - Coordinate Systems

• Plane E_1 (spanned by e_1 and e_2) intersects E_2 (spanned by \bar{e}_1 and \bar{e}_2) in line P.

Euler-Angles: Derivation

- 2. Rotate R_1 around axis f_1 with angle α so that $e_3 = \bar{e}_3$ falls together with \bar{e}_3
 - R transforms to $R_2 = \{U, f_1 = h_1, h_2, h_3 = \bar{e}_3\}$

•
$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\beta) & -\sin(\beta) \\ 0 & \sin(\beta) & \cos(\beta) \end{bmatrix} R_2 = R_1 A_2$$

- f_2 is mapped onto h_2
- h_2 lies in the plane spanned by \bar{e}_1 and \bar{e}_2

Euler-Angles - Coordinate Systems

Euler-Angles: Derivation

3. Rotate R_3 with the angle γ , so that R_2 falls together with \bar{R}

•
$$A_3 = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} R_3 = R_2 A_3$$

Euler-Angles: Derivation

- $\bar{R} = (R_1 A_2) A_3 = (R A_1) (A_2 A_3)$
- Let $A = A_1 A_2 A_3$, then $\bar{R} = RA$ with

$$A = \begin{bmatrix} C\alpha C\gamma - S\alpha C\beta S\gamma & -C\alpha S\gamma - S\alpha C\beta C\gamma & S\alpha S\beta \\ S\alpha C\delta - C\alpha C\beta S\gamma & -S\alpha S\gamma + C\alpha C\beta C\gamma & -C\alpha S\beta \\ S\beta S\gamma & S\beta C\gamma & C\beta \end{bmatrix}$$

- Through equating coefficients it is possible to uniquely identify α, β, γ with $0 \le \alpha \le \pi$
 - $a_{13} = \sin \alpha \sin \beta \qquad a_{23} = -\sin \beta \cos \alpha \qquad a_{33} = \cos \beta$
 - $a_{31} = \sin \beta \sin \gamma$ $a_{32} = \sin \beta \cos \gamma$

Rotation Axis and Angle of Rotation

- Every orthogonal 3×3 matrix $A = (a_{ik})$ with det(A) = 1 describes a rotation around an axis g by a rotation angle α .
- The following applies to the angle of rotation:

$$\cos(\alpha) = \frac{1}{2}(a_{11} + a_{22} + a_{33})$$

• And, if $\alpha \neq 0^{\circ}$ and $\alpha \neq 180^{\circ}$, the axis of rotation g is determines by:

$$g_1 = (a_{32} - a_{23})$$

$$g_2 = (a_{13} - a_{31})$$

$$g_3 = (a_{21} - a_{12})$$

Rodriques' Theorem

• Rotation of the vector \vec{q} around the axis, which is described by the vector \vec{k} , with the angle α .

$$\vec{q}' = \vec{q}\cos(\alpha) + \sin(\alpha)(\vec{k} \times \vec{q}) + (1 - \cos(\alpha))(\vec{k}.\vec{q}) \times \vec{k}$$

Roll-Pitch-Yaw

- Roll γ around x-axis of BCS: $R_{\chi}(\gamma)$
- Pitch β around *y*-axis of BCS: $R_y(\beta)$
- Yaw α around z-axis of BCS: $R_z(\alpha)$

Roll-Pitch-Yaw in Robotics

Roll-Pitch-Yaw - Rotation Matrix

$$\mathbf{R}_{S} = \begin{bmatrix} C\alpha \ C\beta & C\alpha \ S\beta \ S\gamma - S\alpha \ C\gamma & C\alpha \ S\beta \ C\gamma + S\alpha \ S\gamma \\ S\alpha \ C\beta & S\alpha \ S\beta \ S\gamma + C\alpha \ C\gamma & S\alpha \ S\beta \ C\gamma - C\alpha \ S\gamma \\ -S\beta & C\beta \ S\gamma & C\beta \ C\gamma \end{bmatrix}$$

- Rotation matrix R_S relative to BCS
- Rotation around unchanged axes

Roll-Pitch-Yaw - Example

$$R_{S} = R_{Z}(90^{\circ}) \cdot R_{Y}(90^{\circ}) \cdot R_{X}(0^{\circ})$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Coming up next ...

Object pose in a 3D Euclidian space (E3)

