Sketching Algorithm Constants

Taisuke Yasuda

April 27, 2018

1 Introduction

We use this file to record our derivation for tracking the constants used for some of the sketching algorithms that we implement.

2 Count Sketch

We refer to http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall17/weekTwo.pdf, which gives that

 $k \ge \frac{6d^2}{\delta \varepsilon^2}$

suffices for a $(1 + \varepsilon)$ subspace embedding.

3 Gaussian sketch

We refer to theorem 2.1 in [DG03], which gives that

$$k \ge 4\left(\frac{\varepsilon^2}{2} - \frac{\varepsilon^3}{3}\right)^{-1} \log n$$

suffices for a $(1+\varepsilon)$ subspace embedding.

4 Leverage score sampling

We expand on the coefficients given in http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall17/weekFour.pdf. For a given matrix $A \in \mathbb{R}^{n \times d}$ and $i \in [n]$, define the *ith leverage score* to be

$$\ell_i := \sum_{j=1}^d U_{i,j}^2 = \|e_i U\|_2^2$$

where $A = U\Sigma V^{\top}$ is the singular value decomposition of A. Now consider a distribution (q_1, \ldots, q_n) over the rows of A, where $\sum_{i=1}^{n} q_i = 1$ and the q_i satisfy

$$q_i \ge \frac{\beta \ell_i}{d}$$

where $\beta < 1$ is a fixed parameter. Then, we define the following leverage score sampling sketching matrix

$$S_{\text{leverage}} := D\Omega^{\top}$$

with $D \in \mathbb{R}^{k \times k}$ and $\Omega \in \mathbb{R}^{n \times k}$ as follows. For each column $j \in [k]$ of Ω and D, sample a row index i from the row distribution (q_1, \ldots, q_n) and set $\Omega_{i,j} = 1$ and $D_{i,i} = (q_i k)^{-1/2}$. Here, Ω serves as a sampling matrix and D serves as a rescaling matrix. If $k = \Theta\left(\frac{d \log d}{\beta \varepsilon^2}\right)$, then S_{leverage} is a $(1 + \varepsilon)$ subspace embedding.

4.1 Fast computation of leverage scores

4.1.1 First attempt

Let S be a $(1+\varepsilon)$ subspace embedding and let $SA=QR^{-1}$ be the QR decomposition of SA so that Q has orthonormal columns and R^{-1} is an upper triangular matrix. Now, we claim that

$$\ell_i' := |e_i AR|_2^2$$

is a $(1 \pm 6\varepsilon)$ approximation to the leverage scores of A. Since AR has the same column span as A, we may write $AR = UT^{-1}$. Then since S is a subspace embedding, we have that

$$\begin{split} (1-\varepsilon) \left\| ARx \right\|_2 & \leq \|SARx\|_2 = \|Qx\|_2 = \|x\|_2 \\ (1+\varepsilon) \left\| ARx \right\|_2 & \geq \|SARx\|_2 = \|Qx\|_2 = \|x\|_2 \end{split}$$

Now note that for $\varepsilon \leq 1/2$,

$$\frac{1}{1-\varepsilon} = 1 + \varepsilon + \varepsilon^2 + \dots \le 1 + 2\varepsilon$$
$$\frac{1}{1+\varepsilon} = 1 - \varepsilon + \varepsilon^2 - \dots \ge 1 - 2\varepsilon$$

so

$$(1 \pm 2\varepsilon) \|Tx\|_2 = \|ARTx\|_2 = \|Ux\|_2 = \|x\|_2$$

and thus

$$\ell_i = \|e_i U\|_2^2 = \|e_i ART\|_2^2 = (1 \pm 2\varepsilon)^2 \|e_i AR\|_2^2 = (1 \pm 6\varepsilon)\ell_i'$$

by bounding $\varepsilon^2 \le \varepsilon/2$ for $\varepsilon \le 1/2$.

4.1.2 Further speedup

Note that computing $\ell'_i = \|e_i A R\|_2^2$ takes too long, since $A \in \mathbb{R}^{n \times d}$ and $R \in \mathbb{R}^{d \times d}$. Now recall that in order to get a subspace embedding out of leverage score sampling, we only used q_i with

$$q_i \ge \frac{\beta \ell_i}{d}$$
.

Thus, we just need the result for $\beta = 1 - O(\varepsilon)$ a constant. Now note that by the above section, we can find a $(1 \pm 1/2)$ subspace embedding via a Gaussian sketch with

$$4\left(\frac{(1/2)^2}{2} - \frac{(1/2)^3}{3}\right)^{-1}\log n = 48\log n$$

columns with probability at least $1 - 1/n^2$. Then, setting

$$\ell_i' := \|e_i ARG\|_2^2$$

allows for efficient computation while giving an approximation factor of

$$(1 \pm 6\varepsilon)(1 \pm 1/2) = 1 \pm (1/2 + 9\varepsilon).$$

Then, we could set $\varepsilon = 1/36$ for $\beta = 4/7$ for example.

4.2 Number of Samples

Now, we find k. Recall that we set $\beta = 4/7$. The result that we use, matrix Chernoff, is that for $\varepsilon > 0$,

$$\Pr(\|W\|_2 > \varepsilon) \le 2de^{-k\varepsilon^2/(\sigma^2 + \gamma\varepsilon/3)}$$

where $\gamma = 1 + d/\beta$ and $\sigma^2 = d/\beta - 1$. Then,

$$\sigma^2 + \frac{\gamma \varepsilon}{3} \le \frac{4}{3} \frac{d}{\beta} - \frac{2}{3} \le \frac{4}{3} \frac{d}{\beta}$$

so to get $\delta < 1/100$, we can choose

$$k \ge \frac{C \cdot \frac{4}{3} \frac{d}{\beta} \log d}{\varepsilon^2}$$

where

$$2de^{-C6d\log d/6d} = 2de^{-C\log d} = 2d^{1-C} < \frac{1}{100} \iff d^{C-1} > 200 \iff C = 1 + \log_d 200$$

assuming $d \geq 2$.

References

[DG03] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.