CS 153: Introduction to Computer Security

Machine Problem 1: SmallDES

Directions:

- Create a program that will solve the problem below.
- The program must written in the C programming language, using only the following libraries stdio.h. stdlib.h. string.h
- The program must compile using standard Linux GCC (Ubuntu 16.04)
- Input file must be named mp1.txt
- Input must follow the sample input
- Source Code: (smalldes201512345.c)
- Source Code: (breaker201512345.c)
- Zip your source code, then use the following file name: <studentnumber>.zip
- Output file must be named <studentnumber>.txt (i.e 201512345.txt)
- Email to: profmr.profmrs.z@gmail.com
- Output file must be of the **same format** as the one shown in the sample output
- The following are not allowed:
 - o Discussing of the MP outside of class.
 - Downloading code from the internet
 - Copying from your classmate
 - Using your classmate/someone else's source code
- MP Deadline: March 4, 2017 5:00 PM.

Title: SmallDES

A SmallDES algorithm is designed similarly with DES, with some small modifications.

- 1) The SmallDES program takes in a 16 bit input, and a 12 bit key.
- 2) An initial permutation step is done on the input text using the following permutation matrix

10	3	4	5	9	11	13	1	6	16	2	14	8	15	7	12
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- 3) Divide the resulting text into two equal parts: left part (L_0) and right part (R_0)
- 4) The Feistel iteration will be done as follows:
 - a. $L_i = R_{i-1}$
 - b. $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

There will be 4 rounds of the Feistel iteration

- 5) The round function $f(R_{i-1}, K_i)$ is defined as follows
 - a. Expansion step: R_{i-1} will be divided into four groups of two bits each:

1 2								0 1							
1		2		3		4		5		6		7		8	
8	1	2	3	2	3	4	5	4	5	6	7	6	7	8	1

- b. XOR the resulting expansion sequence with K_i (as based from key schedule).
- c. S-box substitution step: The following will be the S boxes for each of

S-box 1:

MIDDLE RITS
MIDDLE BITS

		00	01	10	11
в 0	00	0000	0001	0010	0011
OUTER BITS	01	0100	0101	0110	0111
FR	10	1000	1001	1010	1011
	11	1100	1101	1110	1111

S-box 2:

			MIDDL	E BITS	
		00	01	10	11
во	00	0000	1000	0001	1001
OUTI	01	0100	1100	0100	1100
F 9	10	0010	1010	1010	1011
	11	0110	1100	0111	1111

S-box 3:

			MIDDL	E BITS	
		00	01	10	11
В	00	0000	0100	0010	0110
OUTI	01	0001	0101	0011	0111
	10	1000	1100	1010	1110
	11	1001	1101	1011	1111

S-box 4:

			MIDDL	E BITS	
		00	01	10	11
во	00	0000	0100	0010	0110
OUTE	01	1000	1010	1100	1110
FR FR	10	0001	0011	0101	0111
	11	1001	1011	1101	1111

- d. Inverse Expansion: For each of the 4 bit output of the S boxes, remove the two outer bits to obtain 4 groups of two bits each .
- e. Permutation box: Use the following permutation, to permute the elements of the current value of R_{i-1}

the curre	nt value o	TR_{i-1}					
3	5	8	6	2	4	1	7

- f. XOR the result with L_{i-1}
- 6) After 4 rounds, concatenate L_i and R_i perform inverse permutation

8	11	2	3	4	9	15	13	5	1	6	16	7	12	14	10
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

- 7) The result after the inverse permutation step (IP-1) will be the algorithms' final result.
- 8) Key schedule: Given a 12 bit key, the following will be the result of the key that will be used in the subsequent subkeys

key	1	2	3	4	5	6	7	8	9	10	11	12				
K ₁	1	2	3	1	4	5	6	2	7	8	9	3	10	11	12	4
K ₂	1	2	3	2	4	5	6	4	7	8	9	6	10	11	12	8
Kз	1	2	3	3	4	5	6	6	7	8	9	9	10	11	12	12
K ₄	1	2	3	4	4	5	6	8	7	8	9	12	10	11	12	4

The SmallDES algorithm is a useful symmetric algorithm, however it has been altered using your student numbers.

The following has areas has been altered

- 1) Two of IP values has been changed.
- 2) The sequence of S-boxes has been changed.
- 3) Two P-box values has been changed
- 4) Two of the IP-1 values has been modified.

Goal: Program SmallDES with the alterations that will produce the output text that were provided to you.

By submitting your MP you are acknowledging the following:

- 1) You didn't download any piece of code from the internet
- 2) You didn't share any of your code to your classmate
- 3) You didn't use any piece of code from your classmate