PAUTA CONTROL II - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES MARTÍNEZ SEMESTRE PRIMAVERA - 2021

Sea N un conjunto finito de individuos, A un conjunto finito de alternativas sociales y \mathcal{P} el conjunto de todos los perfiles de preferencia $(\succ_i)_{i\in N}$, donde \succ_i representa la relación de preferencias del individuo $i\in N$, la cual está definida sobre A y es completa, transitiva y estricta.

En este contexto, considere las siguientes definiciones:

• Una regla de elección social $f: \mathcal{P} \to A$ es <u>Maskin monótona</u> si para todo par de perfiles de preferencias $P = (\succ_i)_{i \in N} \in \mathcal{P}$ y $P^* = (\succ_i^*)_{i \in N} \in \mathcal{P}$ se cumple la siguiente propiedad:

$$\{a \in A : f(P) \succ_i a\} \subseteq \{a \in A : f(P) \succ_i^* a\}, \ \forall i \in \mathbb{N} \Longrightarrow f(P^*) = f(P).$$

• Una regla de elección social $f: \mathcal{P} \to A$ es <u>libre de poder de veto</u> si f(P) = a para todo perfil de preferencias $P \in \mathcal{P}$ en el cual (#N-1) individuos consideran a la alternativa social $a \in A$ como la mejor opción.

Dada una regla de elección social $f: \mathcal{P} \to A$, demuestre las siguientes afirmaciones:

[1] Si f es Maskin monótona, entonces f es Condorcet monótona.

Dados perfiles de preferencia $P = (\succ_i)_{i \in N}$ y $P^* = (\succ_i^*)_{i \in N}$ y alternativas sociales $a, b \in A$, suponga que f(P) = a y que se cumplen las siguientes propiedades para cada $i \in N$:

- (i) $a \succ_i b$ si y solo si $a \succ_i^* b$.
- (ii) a y b son las dos mejores alternativas bajo \succ_i^* .

Entonces, para demostrar que f es Condorcet monótona hay que probar que $f(P^*) = a$. Ahora, las condiciones (i) y (ii) nos aseguran que, para todo $i \in N$, tenemos que

$$\{a' \in A : f(P) \succ_i a'\} \subseteq \{a' \in A : f(P) \succ_i^* a'\}.$$

Por lo tanto, como f(P) = a, sigue de la monotonía Maskin de f que $f(P^*) = a$.

[2] Si $\#A \geq 3$ y f es Maskin monótona y libre de poder de veto, entonces f es dictatorial.

Si f es libre de poder de veto, entonces para todo $a \in A$ existe un perfil de preferencias $P \in \mathcal{P}$ tal que f(P) = a. Efectivamente, es suficiente que en P haya (#N - 1) individuos que consideren a la alternativa a como la mejor de todas (y siempre hay un perfil de preferencia con esas características en \mathcal{P}). Por lo tanto, $f(\mathcal{P}) = A$.

Por otro lado, el ítem previo nos asegura que f es Condorcet monótona. Así, com hay al menos tres alternativas sociales, el Teorema de Yu nos asegura que f es dictatorial.

[3] Demuestre que el resultado del ítem anterior es falso cuando #A = 2 y #N = 2021.

Suponga que $A = \{a, b\}$. Con un número impar de individuos, el voto mayoritario está bien definido en \mathcal{P} . Además, cumple la monotonía Maskin, pues si la alternativa social f(P) no cae en el ranking de ningún individuo cuando pasamos de P a P^* , entonces no reduce su número de votos, por lo cual sigue siendo la alternativa escogida. Esto es, $f(P^*) = f(P)$.

Por otro lado, si 2020 individuos consideran una de las alternativas la mejor de las dos, entonces esta recibe 2020 votos y es escogida. Por lo tanto, el voto mayoritario, sin ser una regla dictatorial, cumple monotonía Maskin y es libre de poder de veto.

[4] Demuestre o dé un contra-ejemplo: si f es strategy proof entonces f es Maskin monótona.

La afirmación es verdadera. Suponga que f es $strategy \ proof$. Fije perfiles de preferencias $P=(\succ_i)_{i\in N}\in\mathcal{P}$ y $P^*=(\succ_i^*)_{i\in N}\in\mathcal{P}$ tales que

$$\{a \in A : f(P) \succ_i a\} \subseteq \{a \in A : f(P) \succ_i^* a\}, \quad \forall i \in N.$$

Queremos probar que $f(P^*) = f(P)$. Suponga que $f(\succ_1^*, (\succ_i)_{i\neq 1}) \neq f(P)$. Entonces, como f es strategy-proof y las preferencias son estrictas, sabemos que $f(P) \succ_1 f(\succ_1^*, (\succ_i)_{i\neq 1})$ y $f(\succ_1^*, (\succ_i)_{i\neq 1}) \succ_1^* f(P)$, lo cual contradice la propiedad (1). Por lo tanto, $f(\succ_1^*, (\succ_i)_{i\neq 1}) = f(P)$. Repitiendo el argumento secuencialmente podemos ir de P a P^* sin cambiar la alternativa social escogida por f, lo cual nos asegura que $f(P^*) = f(P)$.