SOCI 424: Networks & Social Structures

Sept. 14

- Administrative
 Network terminology and representations
 Network theory

Administrative

Lab 1 due Sept 28

- First lab is due next moday
- Example Linked from the syllabus (https://soci424.netlify.app/labs/lab1.html)

Help sessions

- : Help sessions scheduled will be Thursdays from 10:30-11:30am
- Scheduled work sessions?

Network Terminology & Representation

What is a social network?

A set of "actors" (i.e. people, orgs, ...)

Alecia Esther
Blanca Fernanda
Cheng Hassan
Dorothy Ivan

And a set of "ties" (i.e. friendship, payment, ...) Blanca Alecia Hassan Ivan Fernanda **Esther** Alecia Cheng **Dorothy** Cheng

What is a social network?

Putting these together gives us a "network" picture

Network mini-glossary

Node / vertex / actor: A single person, organization, etc.

Edge / tie / relation / arc: A link between two nodes

Ego: A focal node

Alter: Anyone connected to ego

Path: A chain of nodes connected by edges (usually: no repeats)

Cluster: A subset of nodes that are tightly tied to each other

Graph visualizations

Intuitive

- Easy to understand!
- : Circles connected by lines don't require much explanation

Descriptive

- Easily gives an idea of the size of a network, overall density of relations, etc.
- : Can suggest important structure

Can be deceptive!

- : Graph visualizations use a large number of heuristics to get a picture that "looks good."
- Different heuristics and different runs of the same heuristic can tell diverginig stories

Multidimensional scaling

Adjacency matrices

Mathematically convenient

- Example 1 Tool borrowed from formal graph theory
- Allows for analysis using the branch of mathematics called linear algebra

Computationally convenient

- Computers are very good at working with adjacency matrices (unless they get very big)
- Easy to perform simple measurements and manipulations

Looks intimidating

Ean look overwhelming for those without a background in math or computer science

Reading adjacency matrices

	Α	В	С	D	E	F	G	<u>H</u>	
Alesia	0	1	1	1	0	0	0	0	0
Blanca	1	0	1	1	0	0	0	0	0
Cheng	1	1	0	1	0	0	0	0	0
Dorothy	1	1	1	0	1	0	0	0	0
Esther	0	0	0	1	0	1	1	1	0
Fernanda	0	0	0	0	1	0	0	0	0
George	0	0	0	0	1	0	0	0	0
Hassan	0	0	0	0	1	0	0	0	1
Ivan	0	0	0	0	0	0	0	1	0

Reading adjacency matrices

Esther is friends with Dorothy, Fernanda, George, and Hassan

Reading adjacency matrices

The diagonal of the matrix shows self-relationships (often all zeros)

Reading adjacency matrices

Easy to see how many friends each person has with row or column sums

Adjacency matrices are closely related to affiliation matrices like the one from this week's lab

Names of Participants of Group I		CODE NUMBERS AND DATES OF SOCIAL EVENTS REPORTED IN Old City Herald												
		(2) 3/2	(3) 4/12	(4) 9/26	(5) 2/25	(6) 5/19	(7) 3/15	(8) 9/16	(9) 4/8	(10) 6/10	(11) 2/23	(12) 4/7	(13) 11/21	(14) 8/3
1. Mrs. Evelyn Jefferson	X	×	X	×	×	×		X	×					
2. Miss Laura Mandeville	X	X	X		X	X	X	X						
3. Miss Theresa Anderson		X	X	X	X	X	X	X	X					
4. Miss Brenda Rogers				X	X	X	X	X						
5. Miss Charlotte McDowd			X	X	X		X		<u>.</u> .					
6. Miss Frances Anderson			X		X	X		X						
7. Miss Eleanor Nye					X	X	X	X						
8. Miss Pearl Oglethorpe						X		X	X					
9. Miss Ruth DeSand					X		X	X	X					
10. Miss Verne Sanderson							X	X	X			X		
11. Miss Myra Liddell								X	X	X		×		
12. Miss Katherine Rogers								X	X	X		×	X	×
13. Mrs. Sylvia Avondale							X	X	×	X		×	X	×
14. Mrs. Nora Fayette						×	X		×	X	X	X	X	×
15. Mrs. Helen Lloyd							X	X		X	X	X		
16. Mrs. Dorothy Murchison									X					
17. Mrs. Olivia Carleton							•		×		×			
18. Mrs. Flora Price									×		X			

Network Theory

What is a network tie?

What counts as a tie?

At its broadest, a tie is any kind of relation between actors

Many network scholars focus on social ties (relationships rather than just relations)

Tie characteristics

Events vs states

Directed vs undirected (asymmetric vs antisemetric vs semetric)

Valued vs binary (weights and other attributes)

Borgatti and Halgin (2011) on network theory

Two conistent traits of network theories

- E Focus on *structure* and *position* as causal elements
- : Implicit theories of what a network does

Networks allow *flow*

- One view of what networks do is act as pipes that transmit information, money, contagions, behavior, etc.
- Example Rarely stated, but implicit in the vast majority of network analysis
- Strength of weak ties (Granovetter) and structural holes (Burt)

Networks form **bonds**

- A long-running but less common theorization holds that network ties define us
- E.g. managers are defined by relationships of authority over others
- E.g. being followed by a celebrity on social media can grant status
- : Networks are prisms (Podolny) that affect how we are seen

Borgatti and Halgin (2011) on network theory

Two conistent traits of network theories

- E Focus on *structure* and *position* as causal elements
- : Implicit theories of what a network does

Networks allow *flow*

- One view of what networks do is act as pipes that transmit information, money, contagions, behavior, etc.
- Example Rarely stated, but implicit in the vast majority of network analysis
- Estrength of weak ties (Granovetter) and structural holes (Burt)

Networks form bonds

- A long-running but less common theorization holds that network ties define us
- E.g. managers are defined by relationships of authority over others
- E.g. being followed by a celebrity on social media can grant status
- i Networks are prisms (Podolny) that affect how we are seen