1) Wave frequency,
$$f_{max} = \frac{1}{7}$$

$$= \frac{1}{2}Hz$$
a) Sampling rate, $f_{s} = 1Hz$

$$\therefore f_{s} = 2f_{max}$$
b) $f_{s} = \frac{1}{1.5}Hz$

$$= \frac{2}{3}Hz$$

$$\therefore f_{s} = \frac{4}{3}f_{max}$$

c)
$$8\Delta s = 3T$$

 $\Delta s = \frac{3T}{8}$

= 8 Hz

 $\therefore f_s = \frac{16}{6} f_{max}$

$$f_s = \frac{1}{\Delta s}$$

e)
$$f_s = 4 \text{ Hz}$$

$$f_s = 8 f_{max}$$

2)
$$\frac{1}{(2n-1)\pi} \sin \left[\frac{2\pi(2n-1)t}{10} \right]$$

$$f_{max} = 2 \text{ Hz}$$

$$f_s > 2 f_{max}$$

$$f_s > 4 \text{ Hz}$$

An appropriate sampling rate would be 5 Hz .

$$f_s = 5 \text{ Hz}$$

 $|d| t_s = \frac{1}{0.5}$

=2Hz $\therefore f_s = 4 f_{max}$

2) Frequencies = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.4

Alias frequency,
$$f_a = |f_{s} \cdot i - f_{n}|$$
 f_{s}
 f_{a}

0.1 $|s(s) - 0.1| = 4.9$

0.3 $|s(i) - 0.3| = 4.7$

0.5 $|s(i) - 0.5| = 4.5$

0.7 $|s(i) - 0.9| = 4.3$

0.9 $|s(i) - 0.9| = 4.1$

1.1 $|s(i) - 1.1| = 3.9$

1.3 $|s(i) - 1.3| = 3.7$

1.5 $|s(i) - 1.5| = 3.5$

1.7 $|s(i) - 1.7| = 3.3$

1.9 $|s(i) - 1.9| = 3.1$

Resolution =
$$\frac{5-0}{2^6}$$

$$= \frac{5}{256}$$

$$= 0.0195V$$
Voltage value = $32(\frac{5}{256})$

$$= 0.625V$$