

# 辦江大学爱丁堡大学联合学院 ZJU-UoE Institute

## Lecture 10 - Machine learning in image analysis

Nicola Romanò - nicola.romano@ed.ac.uk

#### Plan for the next lectures

- Lectures 9-11 Traditional ML approaches in image analysis
- Lectures 12-14 Convolutional neural networks (CNN)
- Lectures 15-17 Practical aspects of using CNNs.

#### **Learning objectives**

- Describe use cases for machine learning in image analysis
- Explain the difference between supervised and unsupervised allgorithms
- · Discuss the bias-variance tradeoff and methods to reduce overfitting



Introduction

#### How can machine learning help?

Some example tasks that can be solved through ML

· Classification of images



ISIC melanoma classification competition. Many different solutions, including neural networks, support vector machines, deep learning...

#### How can machine learning help?

Some example tasks that can be solved through ML

- · Classification of images
- Classification of pixels (segmentation)



Cao et al. 2019, Classification of glomerular basament membrane using Random Forests.

#### How can machine learning help?

Some example tasks that can be solved through ML

- · Classification of images
- Classification of pixels (segmentation)
- "Prediction" of images



Wu et al., 2019 - Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning

# The general process



# Unsupervised









Unsupervised methods

# **Unsupervised learning**

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).

## **Unsupervised learning**

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).

k-means for segmentation (see Lecture 7)



## **Unsupervised learning**

Examples of unsupervised learning include clustering methods (e.g. k-means) often combined with dimensionality reduction (PCA, UMAP).

t-SNE clustering of images



Bhaskar et al, 2019

Dimensionality reduction methods map  $Y = f(x_1, x_2, ..., x_n)$  to  $Y = f(DR_1, ..., DR_m)$  with m < n.

They include linear transformations, such as PCA (principal component analysis), and nonlinear transformations, such as t-SNE (t-distributed stochastic neighbor embedding) or UMAP (uniform manifold approximation).



#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



In ML, we often describe this in terms of bias and variance errors.

#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



In ML, we often describe this in terms of bias and variance errors.

- Bias derives from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (underfitting).
- **Variance** derives from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the random noise in the training data (overfitting).

(Adapted from Wikipedia)

#### The bias-variance tradeoff

We want to train our model to perform some task. However, just like any statistical model, we don't want to **overfit**.



## **Supervised learning**

Many different supervised learning algorithms have been used for image analysis.

Examples of commonly used algorithms include:

- Logistic regression
- Support vector machines (SVM)
- · Random forests (RF)
- · Neural networks
- · Convolutional neural networks

# Supervised learning algorithms - Logistic regression



Logistic regression is a simple supervised learning algorithm that is used to predict the class of a given data point.

It is mostly used to predict binary outcomes but can be extended to multi-class classification (multinomial logistic regression).

# Supervised learning algorithms - support vector machines



A support vector machine (SVM) uses a linear decision boundary to classify data points. It determines the optimal hyperplane that separates the data points into two classes.

# Supervised learning algorithms - support vector machines



A support vector machine (SVM) uses a linear decision boundary to classify data points. It determines the optimal hyperplane that separates the data points into two classes.

#### **Random forest**



Random forest is an ensemble method for classification and regression.

It classifies samples using many binary trees, fitted on various sub-samples of the dataset. A majority votes from these trees decides the outcome. This improves prediction accuracy and controls over-fitting.

#### **Data splitting**

In order to avoid overfitting we can split our dataset in three parts:

- Training set used to train the model
- **Validation set** used to estimate model performance during training or while tuning the model hyperparameters. Especially important for neural network.
- Test set used to test the trained model



## The training process



We will explore this more in details in the upcoming lectures!



#### **Model evaluation**

Model evaluation is a crucial step in the machine learning pipeline.

It is used to estimate the performance of the model on  $\underline{\text{unseen}}$  data (i.e. the test set).

Depending on the task, we can use different metrics to evaluate the model performance.

#### **Example - classification metrics**

When performing a classification task, we can use the following metrics to evaluate the model performance:

- Accuracy the fraction of correct predictions
- Precision the fraction of true positives among all positive predictions
- Recall the fraction of true positives among all actual positives
- **F1 score** the harmonic mean of precision and recall = 2 ·  $\frac{precision*recall}{precision+recall}$

## **Example - classification metrics**

When performing a classification task, we can use the following metrics to evaluate the model performance:

- Accuracy the fraction of correct predictions
- Precision the fraction of true positives among all positive predictions
- Recall the fraction of true positives among all actual positives
- **F1 score** the harmonic mean of precision and recall = 2 ·  $\frac{precision*recall}{precision+recall}$

These can also be visualized using a **confusion matrix**:

| $\begin{array}{c} \textbf{Predicted} \rightarrow \\ \textbf{Actual} \downarrow \end{array}$ | Positive       | Negative       |
|---------------------------------------------------------------------------------------------|----------------|----------------|
| Positive                                                                                    | True positive  | False positive |
| Negative                                                                                    | False negative | True negative  |

| Next lecture will be a coding session, showing you examples of using machine | e learning for image |
|------------------------------------------------------------------------------|----------------------|
| analysis.                                                                    |                      |

Next lecture...