1. Волновое ур-е (1D и 3D). Бекущ недеформ-ся волны: плоские, сфер, 6. Интерф-я в тонк пленках. Просветл-е оптики. Полосы =го наклона и 10.Излучение эл/м волн элем вибратором. ДН, со-<u>шил.</u> Бег-е волны распр-ся без изм-я формы. Плоская: s = s(x → ut). Каков вид ур-я, р-ем кот явл плокс бег волна. $s=s(x-ut) \rightarrow \xi = x-ut \rightarrow \partial s/\partial x =$ $\partial s/\partial \xi$, $\partial s/\partial t = -u \partial s/\partial \xi => \partial s/\partial x + 1/u \partial s/\partial t =0$. $s = s(x + ut) \rightarrow \xi = x + ut =>$ $\partial s/\partial x$ - 1/и $\partial s/\partial t$ =0. Д/обеих волн: $\partial^2 s/\partial x^2 = \partial^2 s/\partial \xi^2$, $\partial^2 s/\partial t^2 = u^2$ $\partial^2 s/\partial \xi^2$. Тгд $\partial^2 s/\partial x^2$ - 1/u² $\partial^2 s/\partial t^2$ =0 – волн ур-е (1D). Общ р-е: s(x, t)= $s_1(x$ - ut)+ $s_2(x$ + ut), где $s_1,\, s_2$ – произв ф-ии, нах-ся из ну и гу. Sin бегущ волна: s= Acos $(\omega t {\rightarrow} kx + \phi) = Acos[k(x {\rightarrow} \omega/k\ t) {\rightarrow} \phi], \ \text{где A- амп, } \omega - \kappa pyr\ \text{частота, } k - \text{вол-}$ новое число, φ - нач фаза, ωt→kx+

 ϕ – фаза, ω /k= V_{φ} – фаз скорость (скорость дв-я пл-ти пост фазы) Фронт - пов-ть =ой фазы. Введем k - волновой в-ор, напр-н туда куда бежит волна, |k|=k.

kr = kx'. $s = Acos(\omega t - kr + \phi) = Acos$

волна? Δ s- $1/u^2$ $\partial^2 s/\partial t^2$ =0 – волновое ур-е (3D). k^2 - $\pmb{\omega}^2/u^2$ =0 – дисп-е ур-е. V_{ϕ} = ω/k =u – не зав от ω => нет дисп-ии => волны произв ϕ -мы бегут без искаж. Сферич sin: $s(r, t) = a/r \cos(\omega t \rightarrow kr + \omega)$. (-) – волна расх-ся. (+) – сх-ся. Δ_r = 1/r² $\partial/\partial r$ (r² $\partial/\partial r$) – радиальн часть лапласиана. Завв-ть A~ 1/r соотв-т 3СЭ. Средн плотн потока энергии: <S> $4\pi r^2$ = const, <S> \sim A 2 \rightarrow A~ 1/г Циллиндрич: $s(R, t) = a/\sqrt{R} \cos(\omega t \rightarrow kR + \phi)$, $kR \rightarrow \infty$. $\Delta_R = 1/R ∂/∂R(R$ $\partial/\partial R$) $< S > 4\pi R = const \rightarrow A \sim 1/\sqrt{R}$

2. Дисп-я. Распр-е сиг (волн пак) на прим тригарм волны. Фаз и гр скор.

Усл пренебр дисп-м иск сиг. Дисп-я - явл зав-ти $V_{\phi}(\omega)$ или $V_{\phi}(k)$, $V_{\phi}(\lambda)$. Нормальная (отриц): $dV_{\phi}/d\omega < 0$ (dV₀/dλ>0). Аномальная (полож): $dV_{\phi}/d\omega > 0$ ($dV_{\phi}/d\lambda < 0$). Дисп-я кривая – графиз связи w и k. V_ф= tgα. Распр тригарм волны: s(0, t)= A(1+ $m\cos t$) $\cos \omega_0 t$, $\ll \omega_0$, $m \ll 1$, s(0, t) =

Acos $\omega_0 t + mA/2 \cos \omega_1 t + mA/2 \cos \omega_2 t$, fig $\omega_1 = \omega_0 - \omega_1 t$ $\omega_2 = \omega_0 + s(x, t) = 0$ $A\cos(\omega_0 t - k_0 x) + mA/2 \cos(\omega_1 t - k_1 x) + mA/2 \cos(\omega_2 t - k_2 x) = A\cos(\omega_0 t - k_0 x) +$ $mAcos(t-Kx)cos(\omega_0t-\langle k\rangle x)$, где $K=(k_2-k_1)/2$, $\langle k\rangle =(k_1+k_2)/2$, $k_0=k$ (ω_0) , $k_{1,2} = k(\omega_{1,2})$. 1-ое прибл-е теории дисп-ии: $k(\omega) = k(\omega_0) + (dk/d\omega)_{m0}$ (ω - ω_0). $\langle k \rangle = k_0$, $K = (dk/d\omega)_{\omega 0}$. $s(x, t) \approx A[1 + mcos(t-Kx)] cos(\omega_0 t-k_0 x)$. V_{Φ} = ω_0/k_0 – фаз скор, $V_{\rm rp}$ = $d\omega/dk$ – скор гр волн (берутся на частоте ω_0). Если $dV_{\varphi}/d\omega$ <0, то V_{rp} < V_{φ} и наоборот. Из СТО: V_{rp} <С. Усл: $cos(\omega_0 t-\omega_0 t)$ $\langle k \rangle x = \cos(\omega_0 t - k_0 x) + [\cos(\omega_0 t - \langle k \rangle x) - \cos(\omega_0 t - k_0 x)] = \cos(\omega_0 t - k_0 x) + 2\sin(x)$ $(< k>- k_0)/2) \sin(\omega_0 t- x(< k>+ k_0)/2). |\sin(x(< k>- k_0)/2)| << 1, |< k>- k_0|x << 1.$ $k_1 = \; k(\omega_1) \approx \; k(\omega_0) - \; (dk/d\omega)_{\omega 0} \; \; + \; \; ^2/2 \; (d^2k/d\omega^2)_{\omega 0}, \; k_2 = \; k(\omega_2) \approx \; k(\omega_0) + \; (dk/d\omega)$ $^{2}/_{2}$ $(d^{2}k/d\omega^{2})_{00}$, $< k> = (k_{1}+k_{2})/_{2}=k_{0}+ {^{2}/_{2}} (d^{2}k/d\omega^{2})_{00}$, $x<< 2/_{1}$ $(d^2k/d\omega^2)_{\omega 0}). \ x<< 8/((\Delta\omega)^2 \ d^2k/d\omega^2) -$ усл принебр-я дисперс искаж-ем.

3. Явл интер-ии. Интер-я 2-х встреч плоск волн. Стояч волна. Интер-я явл, возн-е при налож-ии неск волн и сост-е в их взаимн усил-и в одних тт пр-ва и ослаб-ии в др. $s_1(\mathbf{r}, t) = A_1$ $(\mathbf{r}) \cos(\omega t + \phi_1(\mathbf{r}))$, $s_2(\mathbf{r}, t) = A_2(\mathbf{r}) \cos$ $(\omega t + \phi_2(\mathbf{r}))$ (частоты одинак!) => s= $s_1 + s_2 = A(r) \cos(\omega t + \phi(r))$. $A^2(r) = A_1^2$ $(\mathbf{r}) + A_2^2(\mathbf{r}) + 2A_1(\mathbf{r}) A_2(\mathbf{r}) \cos \Delta \phi(\mathbf{r})$ При $\Delta \phi = 2\pi m A = A_1 + A_2 - интерф$ \max , при $\Delta \phi = \pi + 2\pi m A = |A_1 - A_2|$ интерф min.

 $s_1(x, t) = A\cos(\omega t - kx + \phi_1), s_2(x, t) =$

 $Acos(\omega t - kx + \phi_2). \ s = s_1 + \ s_2 = 2A \ cos(kx + (\phi_2 - \phi_1)/2) \ cos(\omega t + (\phi_2 + \phi_1)/2) - cos(\omega t + (\phi_2 + \phi_2)/2) - cos(\omega t + (\phi_2 + \phi_2)/2)$ стояцая волна $\lambda = 2\pi/k - ллина стояц волны$

4. Интерф-я 2-х сферич волн.

 $s_1 = a/r_1 \cos(\omega t - kr_1), \ s_2 = a/r_2 \cos(\omega t - kr_2). \ s = s_1 + s_2 = A(r, \theta) \cos(\omega t + \phi(r, \theta)),$ $A^2(r, \theta) = a^2/r_1^2 + a^2/r_2^2 + 2a^2/(r_1r_2)\cos k\Delta$, где $\Delta = r_2 - r_1$ – разность хода. П-ти =ой разности хода: Δ = const → r_2 - r_1 = const – семейство гиперболойдов вращения. max: cosk Δ =1, k Δ = 2 π m, Δ = m λ (m= 0, \pm 1,..., \pm m_{max}). min: $\cos k \Lambda = -1$, $k \Lambda = \pi + 2\pi m$, $\Lambda = \lambda/2$ (2m+1) (m=0, +1,..., +m,...). Рис слева – интерф-я картина. Число темн полос: m_{max} = цел часть {d/ λ }. Всего полос: 2m_{may}+1.

5. Особенности интерф-ии в оптике. Классич опыты с раздвоением ист Особ-ти: 1) Интерф-ют в-орные волны; 2) не набл-ся интерф-я света от незав ист ($\tau_{nyra} \sim 10^{-8} - 10^{-10}$ с); 3) набл-я инерционны (глаз: Трег ~ 0.1с). Опыты:... Наблюд-я: Картина размся на краях и при увелич угл разм ист

 $\Delta < CT_{nyra}$ – усл сбивания одного и того же цуга

<u>равн толщины.</u> Δ= nABC-DC. AB= BC= d/cos\(\beta\). nABC= (2dn)/cos\(\beta\). DC= AC $\sin\alpha = 2d(\sin\alpha \sin\beta)/\cos\beta$. $\sin\alpha =$ $nsin\beta \implies \Delta=2dncos\beta+ \lambda/2$ — разность хода волн, $\lambda/2$ – потеря полуволны при dотраж от оптич более плотн среды. $\Delta \phi$ = $k\Delta$ = $2kdncos\beta+\pi$ – сбой фазы на π

при... s_1 = $A_1 cos(\omega t$ - $k_r r$), s_2 = $A_2 cos(\omega t$ - $k_r r$ - $k\Delta$). s= s_1 + $\mathbf{k}_{r}\mathbf{r}$ - ϕ). $A^{2}=A_{1}^{2}+A_{2}^{2}+2A_{1}A_{2}\cos k\Delta$. При $k\Delta=2\pi m$: $A=A_{1}+A_{2}-\max$ отр-я, при $k\Delta = \pi + 2\pi m$: $A = |A_1 - A_2|$ - min отраж-я. Полос нет! $\mathbf{n}_{\text{плёнки}} = \left(\mathbf{n}_{\text{линзм}}\right)^{1/2} = >$ близк амп. Толщину пленки подбир д/min отражя п/λ=0.55 мкм (зелёный).

Полосы =го наклона. Рассеяный свет. Полосы лок-на на бск. Различ α \rightarrow различ \rightarrow β различ \rightarrow $\Delta.$ Линза переносит обл локализации по- $(\omega_l - k_x x - k_y y - k_z z + \phi)$. Компл ϕ -ма: $s = Ae^{i\phi}e^{i(\omega x - kr)}$. Какому ур-ю удовл эта $\omega_l = Ae^{i\phi}e^{i(\omega x - kr)}$ пос из бск в ϕ 0 пл-ть. Число полос: $\Delta = 2nd\cos\beta + \lambda/2 = m\lambda$. $m_{max} = \mu e^{i\phi}e^{i(\omega x - kr)}$ часть $\{(2nd)/\lambda + 1/2\}$

Полосы =ой толщины. Ист с мал угл разм. $\alpha \approx \text{const} \to \beta \approx \text{const}$. d менся вдоль плёнки $\Rightarrow \Delta$ мен-ся. Полосы локализованы на п-ти плёнки.

7. Вывод волн ур-я из ур-й Макс-а. Плоские эл/м волны. Импеданс $(\text{rot}\textbf{E}=\text{-}1/\text{C}\text{ }\partial\textbf{B}/\partial t)\text{rot. rot rot}\textbf{E}=\text{-}1/\text{C}\text{ }\partial/\partial t\text{ }(\mu/\text{C}\text{ }\partial/\partial t\text{ }(\textbf{\epsilon}\textbf{E})).\text{ }\Delta\textbf{E}\text{- }1/u^2$ $\partial^2 \mathbf{E}/\partial t^2$ =0, где u=C/($\boldsymbol{\varepsilon} \mu$)^{1/2}. Анал-но $\Delta \mathbf{H}$ - 1/u² $\partial^2 \mathbf{H}/\partial t^2$ =0, где r=C/($\boldsymbol{\varepsilon} \mu$)¹ $\mathbf{E} = \mathbf{E}_0 e^{i\omega t \cdot i \mathbf{k} \mathbf{r}}, \ \mathbf{H} = \mathbf{H}_0 e^{i\omega t \cdot i \mathbf{k} \mathbf{r}}.$ Дисперс ур-е: k^2 - $\omega^2/u^2 = 0, \ k^2 = k_x^2 + k_y^2 + k_z^2.$ $V_{\varphi} = k_x^2 + k_y^2 + k_z^2$ $\omega/k = u = C/(\varepsilon \mu)^{1/2} -$ дисп-ии нет, тк ε и μ не зав от ω . $n = (\varepsilon \mu)^{1/2} -$ показ прелом. Пеоперечность волн: $div \mathbf{D} = 0 \rightarrow (\mathbf{k}, \mathbf{D}) = 0 \rightarrow \mathbf{D} - \mathbf{k} \rightarrow \mathbf{E} - \mathbf{k}$. $div \mathbf{B} =$ $0 \to (\mathbf{k}, \mathbf{B}) = 0 \to \mathbf{B} - \mathbf{k} \to \mathbf{H} - \mathbf{k} => \mathbf{D}, \mathbf{B}, \mathbf{E}, \mathbf{H} - \mathbf{k} = \mathbf{B}$ олна поперечная. Импеданс: Е/H= $(\mu/\epsilon)^{1/2}$ = Z – волновое сопр-е среды. СГС: Z безразм (в вак =1). СИ: Z в Ом (в вак 120π).

8. Sin эл/м волны (бег и стояч). Поляризация. С-ма: $E = v_0 E_0 \cos(\omega t$ kx), $\mathbf{H} = \mathbf{z}_0 \ \mathbf{H}_0 \ \cos$ (ωt - kx), $H_0 = E_0/Z$. Теперь 2 волны: $\mathbf{E}_1 = \mathbf{y}_0 \ \mathbf{A}_1 \ \cos(\omega t$ $kx + \varphi_1$, $\mathbf{H}_1 = \mathbf{z}_0$ $A_1/Z \cos(\omega t - kx +$

MARINE TO

 $A_2/Z \cos(\omega t - kx + \varphi_2)$. $E(x, t) = E_1(x, t) +$ $\label{eq:eq:energy} {\bf E}_2(x,\ t),\ {\bf H}(x,\ t) {=}\ {\bf H}_1(x,\ t) {+}\ {\bf H}_2(x,\ t).$ ${E_y}^2/{A_1}^2 + \ {E_z}^2/{A_2}^2 - 2E_y/{A_1} \ E_z/{A_2} \ cos(\phi_2 - \ \phi_1)$ $\sin^2(\phi_2 - \phi_1)$ – эллиптич поляр-я. Частн случ: 1) ϕ_2 - ϕ_1 = 0± π (A₁ или A₂=0) => π/ποπяр. 2) φ₂- φ₁= ±π/2 (A₁= A₂) => круг поляр. 3) если у- и z-волны не когер => есст свет - суперпоз 2-х неког взаи мортог л/поляр волн.

-A/Z $cos(\omega t + kx)$. $E_y = E_{1y} + E_{2y} = 2A coskx cos\omega t$, $H_z = H_{1z} + H_{2z} = 2A/Z sinkx$

9. Энерг соотн-я дэл/м волн: трм Пойнтинга с прим (бег и стояч волна).

Simul.

9. Энерг соотн-я дэл/м волн: трм Пойнтинга с прим (бег и стояч волн

8. То
$$t \vec{F} = -\frac{t}{c} \frac{\partial \vec{B}}{\partial t} \frac{\partial \vec{F}}{\partial t} \frac{\partial \vec{F}}{\partial t}$$

1. $\frac{\vec{F}}{4\pi}$

1. $\frac{1}{4\pi} \left(\vec{H} \cot \vec{E} - \vec{F} \cot \vec{H} \right) = -\frac{1}{4\pi c} \left(\vec{F} \frac{\partial \vec{D}}{\partial t} + \vec{H} \frac{\partial \vec{B}}{\partial t} \right)$

1. $\frac{1}{4\pi} \left(\vec{H} \cot \vec{E} - \vec{F} \cot \vec{H} \right) = -\frac{1}{4\pi c} \left(\vec{F} \frac{\partial \vec{D}}{\partial t} + \vec{H} \frac{\partial \vec{B}}{\partial t} \right)$

1. $\frac{1}{4\pi} \left(\vec{F} \det \vec{F} - \vec{F} \det \vec{H} \right) = -\frac{1}{4\pi c} \left(\vec{F} \det \vec{F} - \vec{F} \det \vec{F} \right)$

2. $\frac{\vec{F}}{3t} \left(\vec{F} - \vec{F} \det \vec{H} \right) = -\frac{1}{4\pi c} \left(\vec{F} \det \vec{F} - \vec{F} \det \vec{H} \right)$

 $\partial w/\partial t$ = -div ${f S}$ – трм Пойнтинга. w= (${f E}^2$ + μH^2)/(8π) – плотн энерг, связь $\frac{dW}{dt} = -\mathbf{G}S_n d\Sigma$

dt с эл/м полем. S= C/(4π) [EH]. - поток энерг через **Σ** наружу. S – в-ор плотности потока энергии. Прим. Бег волна: С-ма: $\mathbf{E} = \mathbf{E}_0$ $\cos(\omega t - kr)$, H= H₀ $\cos(\omega t - kr)$ – л/поляр волна. w= $(\epsilon E^2)/(4\pi)$ = $(\epsilon E_0^2)/(4\pi)$ $(4\pi) \cos^2(\omega t$ - kr). S= C/ $(4\pi) [E_0H_0] \cos^2(\omega t$ - kr). w осцил-т с 2ω ок <w>= $(\epsilon E_0^2)/(8\pi)$, S осцил-т с 2 ω ок <S>= C/(8 π) [E_0H_0], <S>= <w><u. В среде с дисп: $\langle S \rangle = \langle w \rangle V_{rp}$. Стояч волна: с-ма: $E_v = 2A$ coskx coswt, $H_z = 2A/Z$ sinkx sin ω t. S_x= C/(4 π) E_yH_z= (CA²)/(4 π Z) sin2kx sin2 ω t. S_x=0 при x=0, $\pm\lambda/4$, $\pm2\lambda/4$,... ЭЛ→М, ЭЛ←М. Слой [0, $\lambda/4$] не обмен-ся энерг с др сло-

<u>противл-е изл-я.</u> **p**= q**l**. П: **p**= **p** $_0$ cos ω t, l<< λ – элем диполь (λ = (2 π C)/ ω). При r>>l: $\mathbf{E}(\mathbf{r}, t)$ = {(3 $\mathbf{n}(\mathbf{n}\mathbf{p})$ - \mathbf{p})/ $[\mathbf{np'}]/(\mathbf{cr'})$ - $[\mathbf{np''}]/(\mathbf{c'r})$ _{1- r/c}, где t- r/c – запазд-е.

 $\vec{B} \approx -\frac{[\vec{M}\,\vec{P}\,]}{c\,\epsilon^2} \left(\vec{B} = \frac{i\,I_d\,c\,\hat{\epsilon}\,]}{c\,\epsilon^2} - \frac{1}{2M}\,\vec{b} \cdot c \cdot \Lambda \right)$ Frag riena \vec{C} modex $\vec{E} \cdot \vec{B}$ ray l'abagparype, mostory «3 > 20

в р-ии все слаг-с одного порядка (ничего оббросной минада) - поле сложной

cepretura uzugretura. $S = \frac{1}{4\pi} \begin{bmatrix} EH \end{bmatrix} 11 \pi$ $S = \frac{1}{4\pi} \begin{bmatrix} EH \end{bmatrix} 11 \pi$ $S = \frac{1}{4\pi} \begin{bmatrix} \frac{1}{4\pi} \\ \frac{1}{4\pi} \end{bmatrix} \cos^2 Y \cos^4 (bt - kt)$ $S = \frac{1}{4\pi} \cos^2 2 \cos^2 Y \cos^4 (bt - kt)$ $\cos^2 2 \cos^2 Y \cos^2 2 \cos$

-> F(Y) = cos ' Y

11. Решетки из вибраторов. Усл остр

напр-ти изл-я. Экваториальная пл-ть. Фазированная антенная решетка $\vec{k} \uparrow \rho^{\vec{k}} \Delta = \text{dsin}\theta$. $\Delta \phi = \text{kdsin}\theta$ (k= ω /C). Слож-е N эквидист по фазе к-й: $A^2(r, \theta)$ = $a^2(r) (\sin^2(1/2 \text{ Nkdsin}\theta))/(\sin^2(1/2 \text{ kdsin}\theta))$. Д/элем вибратоpa: $a = (\omega^2 p_0)/(C^2 r)$.

Нули (числителя): $\sin \theta = \lambda m/(Nd)$, $m = \pm 1, \pm 2$ Глав тах (нули знам): $\sin \theta = \lambda n/d$, $n = 0, \pm 1,..., \pm n_{max}$. Нормир-я ДН: $f_{_{988~\pi\pi}}(\theta) = <S>/<S>_{max}. <S>_{\theta} = C/(8\pi)~A^2(r,$ θ), $\langle S \rangle_{max} = C/(8\pi) N^2 a^2(r)$. $f_{NB} m_1(\theta) = 1/N^2 (\sin^2(1/2 + 1))$ Nkdsin θ))/(sin²(1/2 kdsin θ)). Угл ширина глав лепестка: 0=0 $\sin\theta_n$ " - $\sin\theta_n$ = $(2\lambda)/(Nd) \approx \cos\theta_n (\theta_n$ " - θ_n ". $\Delta\theta_n = \theta_n$ " - θ_{n} '= (2 λ)/(nd cos θ_{n}). При N>>1: Nd \approx D – аппертура антенны. $\Delta\theta_{\text{n}} \approx \lambda$ / (Dcos θ_n), при n=0: $\Delta\theta_0$ ≈ λ /D. При d< λ <<D – двунапр-я ДН. <u>12. Норм пад-е эл/м волны на границу 2-х диэл сред.</u> Пад-я волна: E_y =

 $E_0 e^{i(\omega t - k1x)}$. Из дисп ур-я в 1-ой среде: $k_1 = \omega / u_1 = \omega n_1 / C$, $n_1 = (\varepsilon_1 \mu_1)^{1/2}$. $H_z = E_0 / Z_1$ $e^{i(\omega t \cdot klx)}$. Отраж волна: $E_y = E_r e^{i(\omega t \cdot klx)}$. $H = E_r Z_r e^{i(\omega t \cdot klx)}$. $H_z = -E_r/Z_1 e^{i(\omega t + k1x)}$. Прошед волна: $E_y =$ $E_t e^{i(\omega t - k2x)}, H_z = E_t/Z_2 e^{i(\omega t - k2x)}$. Сшиваем волны гу: $\{E_\tau\}=0 \rightarrow E_0+E_r=E_t, \{H_\tau\}=0$ → E_0/Z_1 - E_r/Z_1 = E_r/Z_2 => E_r = E_0 $(Z_2$ - $Z_1)/$ (Z_2+Z_1) , E_i = E_0 $(2Z_2)/(Z_2+Z_1)$. Коэф отр-я по амп: $R = E_r / E_0$, коэф прох по

амп: $T = E_t/E_0$. Коэф отр по мощ: $r = \langle S_t \rangle/\langle S_0 \rangle = R^2$, коэф прох по мощ: t = $<S_t>/<S_0>=T^2~Z_1/Z_2$. 1+ R= T в силу $\{E_\tau\}=0$, r+ t=1 в силу 3C9.

13. Накл пад-е эл/м волны на границу 2-х диэл сред. 3-н Снелля. Ф-лы Френеля. Пл-ть падения – пл-ть, прох через ${\bf k}$ пад волны и нораль к границе. Пад волна: $\mathbf{E} = \mathbf{E}_0 \ \mathrm{e}^{\mathrm{i}(\omega t - k 1 \cos \alpha x - k 1 \sin \alpha y)}, \ \mathbf{H} = \mathbf{H}_0 \ \mathrm{e}^{\mathrm{i}(\omega t - k \cos \alpha x - k 1 \sin \alpha y)}$ k1cosox- k1sinoxy). Из дисп ур-я д/1-ой среды: $k_{\scriptscriptstyle I} \!\! = \omega \! / u_{\scriptscriptstyle I} \!\! = \omega n_{\scriptscriptstyle I} / C.$ Отраж волна: $\mathbf{E} \!\! = \!\! \mathbf{E}_{\! r} \; e^{\mathrm{i}(\omega t +$ $\alpha_{r-k1sinotry}$, $\mathbf{H} = \mathbf{H}_r e^{i(\omega t + k1cosocrx - k1sinotry)}$. $\alpha_r = \alpha_r$ из $e^{-ik1\sin\alpha y}=e^{-ik1\sin\alpha y}$. Прош волна: $\mathbf{E}=\mathbf{E}_{t}$ e^{i} $^{(\omega t-\ k2\cos\beta x-\ k2\sin\beta y)},\ \mathbf{H}=\ \mathbf{H}_t\ e^{i(\omega t-\ k2\cos\beta x-\ k2\sin\beta y)}.\ e^{-}$ $^{_{ik2sin\beta y}}=~e^{_{-ik1sin\alpha y}}~=>~k_{2}sin\beta =~k_{1}sin\alpha~=>$ $sin\alpha/sin\beta=$ n_2/n_1 . Рассм ТЕ-волну (s-поляр). $\{E_{\tau}\}=0 \rightarrow E_0+ E_r= E_t, \{H_{\tau}\}=0 \rightarrow$ $-n_{1}cos\alpha E_{0}+\ n_{1}cos\alpha E_{r}\text{=-}n_{2}cos\beta E_{t}\text{.}\ H\text{=-}B\text{=-}$ nE. R₌ E_r/E₀= $(n_1\cos\alpha - n_2\cos\beta)/(n_1\cos\alpha +$ $n_2\cos\beta$)= $-(\sin(\alpha - \beta))/(\sin(\alpha + \beta))$, T_{\rightarrow} = $E_1/E_0 = (2n_1\cos\alpha)/(n_1\cos\alpha + n_2\cos\beta) =$ (2sinβcosα)/(sin(α+β)). Рассм ТМ-волну (р-поляр). $\{H_\tau\}=0 \rightarrow n_1 E_0$ - $n_1 E_r = n_2 E_t$, $\{E_{\tau}\}=0 \rightarrow \cos\alpha E_0 + \cos\alpha E_r = \cos\beta E_1$. $R_1 =$ $E_r/E_0=(n_1\cos\beta-n_2\cos\alpha)/(n_1\cos\beta+n_2\cos\alpha)=$ $-(tg(\alpha - \beta))/(tg(\alpha + \beta)), T_{\parallel} = E_{\parallel}/E_{\parallel} =$

€2, THE E. (u=k2=1) €, €,

 $(2n_1cos\alpha)/(n_1cos\beta+\ n_2cos\alpha)=\ (2sin\betacos\alpha)/(sin(\alpha+\ \beta)\ cos(\alpha-\ \beta))\ -\ \varphi$ -лы Френеля.

 Явл Брюстера и полн (внутр) отр-я. Брюстер: R_□=0 при tg(α+ β)=∞. $\alpha_{\scriptscriptstyle B} + \ \beta = \ \pi/2. \ \sin\!\alpha/\!\sin\!\beta = \ n_{\scriptscriptstyle 2}/n_{\scriptscriptstyle 1}. \ \sin\!\beta = \ \sin(\pi/2 - \ \alpha_{\scriptscriptstyle B}) = \ \cos\!\alpha_{\scriptscriptstyle B}.$ $tg\alpha_6=n_2/n_1$. Отраж: П: $n_2{<}n_1$, тгд $sin\beta=n_1/n_2$ $sin\alpha{>}sin\alpha{=}>$ β >α. $\sin \alpha_{m} = n_2/n_1$. При $\alpha = \alpha_{m}$: из ф-л Френеля ⇒ R ≠1, Т=2, R=-1, T= $2n_1/n_2$. П: $\alpha > \alpha_{np}$. с-ма: $k_{tx}^2 + k_{ty}^2 = k_2^2$, $k_{ty} =$ $k_1 \sin \alpha \ (k_2 = \omega n_2/C, k_1 = \omega n_1/C). \ k_{1x}^2 = k_2^2 - k_1^2 \sin^2 \alpha = \omega^2/C^2 \ (n_2^2 - k_1^2 \sin^2 \alpha = \omega^2/C^2)$ $n_1^2 sin^2 \alpha$)<0. k_{tx} = \pm wi/C $(n_1^2 sin^2 \alpha$ - $n_2^2)^{1/2}$ – выбираем (-), тк (+) не физичен. Затух-е не из-за поглащ-я, я из-за «непропускания» (среда не просп волну в глубь себя).

15. Дисп-е св-ва норм волн в одноосном крист. Пов-ти нор-

малей. $lk^2\delta_{ii}$ k_ik_i ω^2/C^2 ϵ_{ij} I=0 – дисп-е ур-е. (k^2 - $\omega^2/C^2 \in \mathcal{A}$ $(k^2 - \omega^2/C^2 (\epsilon_{\parallel} \epsilon_{\star})/2)$ $(\epsilon_{1}+(\epsilon_{1}-\epsilon_{2})\cos^{2}\theta)=0,$ $cosθ = k_z/k$. $k^2 - ω^2/C^2 ∈ = 0$ - обыкн волна (о-волна), $V_{\phi} = \omega/k = C/\sqrt{\epsilon} = V_{\phi}$. k^2 -

 ω^2/C^2 ($\varepsilon_0 \varepsilon_2$)/($\varepsilon_3 + (\varepsilon_0 - \varepsilon_2) \cos^2\theta$)=0 – необыки волна (е-волна), $V_0^2 = V_0^2 +$ $(V_0^2 - V_0^2)\cos^2\theta$

Пов-ти нормалей: V_e> V_o – отриц крист (шпат, сполш лин на рис). V_e< V_o –положит крист (кварц, штрих). Д/отриц: $√{\epsilon}_{\parallel}$ < n_e < $√{\epsilon}_{\rightarrow}$

16. Поляр-я стр-ра норм волн в 1-осном крист. Лучи, луч

C-ma: $(k^2 - \omega^2/C^2 \in \mathcal{A})E_v = k_v(\mathbf{k}\mathbf{E})$, $(k^2 - \omega^2/C^2 \in \mathcal{A})E_v = k_v(\mathbf{k}\mathbf{E})$. $(k^2\text{-}\ \omega^2/C^2\ \varepsilon_{\scriptscriptstyle \parallel})E_z\text{=}\ k_z(\textbf{kE}).\ \textbf{D}\text{=}\ \text{-}C/\omega\ [\textbf{kH}],\ \textbf{B}\text{=}\ \text{-}C/\omega\ [\textbf{kE}],\ (\textbf{kD})$ =0, (**kB**)=0. *о-волна*: k²- **ω**²/C² ∈ =0 – дисп ур-е. На рис гл сеч-е крист – пл-ть, прох через опт ось z и k (их много, они II). Из (1) и (2) ур-й => (kE)=0, те E-k, из (3) => E_r=0. В-ор E в о-волне →ен гл сеч-ю! *е-волна*: k²- ω^2/C^2 ($\varepsilon_{\shortparallel}\varepsilon_{\rightarrow}$)/($\varepsilon_{\rightarrow}$ + ($\varepsilon_{\shortparallel}$ - $\varepsilon_{\rightarrow}$) $\cos^2\theta$)=0 – дисп ур-е. Не теряя общ
н, полож, что k_y =0. (2) => E_y =0, те в-ор ${\bf E}$ лежит в гл сеч-и. (1) и (3) => **kE** \neq 0 – волна не попереч. В е-волне **E** леж в гл сеч-и и не →ен к. Кгд волны бегут вдоль оси z, различ между ними проп-т.

Лучи: $S = C/4\pi$ [EH], $w = w_2 + w_M = (ED + HB)/(8\pi) - в$ отсутст дисп-ии. В плоск волне: w_3 = w_M . \mathbf{V}_3 = \mathbf{S}/w – луч скор (д/норм волны), скор переноса энерг. Фактич, $V_a = V_{ro}$. Рассм *о-волну*: $V_a = V_{d} = V_o$ – из расчета по опрю. Рассм e-волну: $V_{\phi} = V_{\pi} cos \gamma$. Луч пов-ти:

17. Преломл-е на границе 1-осного ур-я → напр-я распр волн. гу → амп. оволна: $\sin\alpha/\sin\beta_o = n_o$. е-волна: $\sin\alpha/\sin\beta_e = \omega_3$. $n_e(\beta_e)$. Пр-пы: 1) пр-п Гюйгенса: кажд т, до кот дох волн фронт, м/рассм-ся как ист вторичн элем волн. Чтоб найти полож О.О. фронта в послед мом-ы врем, н/постр огиб-ю элем фронтов. 2) Луч пов-ть -

или 0 – лин. Цирк \rightarrow лин (б/сдвиг на $\pi/2$ к нему приб еще π/2). Поворачивая плат хар-р поляр-ии изм нельзя. Еств → еств. Пластинка $\lambda/2$: $\Delta = \lambda/2 + m\lambda$, m = 0, 1, 2,... $\Delta \phi = k\Delta = \pi + 2\pi n$. Лин \rightarrow лин. *Анализ*: поляроиды: затемн, если лин. Круг → пл → лин → Π → затемн Ест \rightarrow пл \rightarrow ест \rightarrow П \rightarrow нет затемн.

19. Интерф-я поляр-х лучей. Хроматич П1 обесп ког-ть о ие-волн. П2 «смеш» 2 ортог полярии. При квазимонохр освещ ест интенс света на вых зав от Δφ (толщины плас). При ье-

лом свете – цвет зав от... Если пласт неод

Расчёт интенс на вых при квази рнохр: $\Delta \phi$ = ω/C $|n_o - n_e|$ d. A^2 = $A_o^2 + A_e^2 + 2A_oA_e \cos\Delta\phi = (A_o + A_e)$ 2 - 4A_oA_e sin²(Δφ/2). A²= E² cos² $(\alpha$ - $\beta)$ - $E^2 \sin 2\alpha \sin 2\beta \sin^2(\Delta\phi/2)$. $I = I_0/2 \cos^2(\alpha - \beta) - I_0/2 \sin 2\alpha \sin 2\beta$ $\sin^2(\Delta\phi/2)$ – 1-ое слаг б/бы в отсутсв крист, 2-ое слаг - влиян крист. Частн случ: 1) Π_1 → Π_2 (α-

 β = $\pi/2$). I= $I_0/2 \sin^2 2\alpha \sin^2 (\Delta \phi/2)$. Снаружи темно, внутри светло (интенс мен-ся при вращ пласт). 2) $\Pi_1 \parallel \Pi_2 (\alpha = \beta)$. $I = I_0/2 (1 - \sin^2 2\alpha \sin(\Delta \phi/2))$. Снаружи светло, внутри потемнее (интенс зав от α). При осв бел светом: $I_{\omega} = I_{0\omega}/2 \cos^2(\alpha - \beta) - I_{0\omega}/2 \sin 2\alpha \sin 2\beta \sin^2(\Delta \phi/2)$. Сумма по всем ω : $I = \frac{1}{2} \cos^2(\alpha - \beta) - \frac{1}{2} \cos^2(\alpha - \beta) I_0/2~cos^2(\alpha-~\beta)-~sin2\alpha~sin2\beta~\Sigma(I_{0\omega}/2~sin^2(\Delta\phi(\omega)/2))-~1-ое~слаг~-~ослаб~бел$ свет, 2-ое слаг – окраш свет. Частн случ: 1) $\Pi_1 \rightarrow \Pi_2$ (α - $\beta = \pi/2$). $I = \sin^2 2\alpha$ $\Sigma(I_{0\omega}/2\,\sin^2(\Delta\phi(\omega)/2))$. Снаружи темно, внутри окраш свет, при вращ цвет света не мен-ся. 2) $\Pi_1 \parallel \Pi_2$ ($\alpha = \beta$). I= $I_0/2$ - $\sin^2 2\alpha$ $\Sigma (I_{0\omega}/2 \sin(\Delta \phi(\omega)/2))$. Внутри окраш в доп цвет к случ 1.

20. Пр-п Гюйгенса-Френеля как метод р-я дифр задач. Интенс - ? Охва

тим ист замк п-тью о, удалим ист S и б/считать п-ть σ свется. ds= $(F(\Psi)A_{\sigma}d\sigma)/(\lambda r)$ cos(ωt kr- ϕ_{σ} + $\pi/2$), здесь: r – pacct от $d\sigma$ до P, A_{σ} и ϕ_{σ} – амп и фаза

первич волны в d σ , λ = $2\pi/k$ = $2\pi C/\omega$, $F(\Psi)$ — фактор, учит-й направл-ть изл-я dσ. π/2 добавл д/подгонки к точн р-ю. Рассм мал углы дифр. Доп предп-я Френеля: A_{σ} =0 на непрозр части экр. A_{σ} и ϕ_{σ} на отверстии такие же как в отсутств экр. Хорошо раб при D>> λ и r>> λ .

21. Дифр на кругл отв. Зоны Френеля.

 $s = \frac{F(\Psi) A_{\sigma}}{\lambda r} \cos \mathbf{X}_{\mathbf{M}}^{\mathbf{X}} dt - kr - ka + \frac{\pi}{2} \mathbf{U}_{\mathbf{M}}^{\mathbf{U}} d\sigma$ $d\sigma = 2\pi abdh$, $h = (r^2 - b^2)/(2(a + b))$, dh =

rdr/(a+ b). E= k(r- b) - зап-е по фазе волны от края по отн к волне от ценτρα. $A_0 = A_0/(a+b)$, $k = 2\pi/\lambda$.

лы дифр-ии. Возьмем инт-л при $\omega t' = \omega t - k(a+b) + \pi/2$: $s = 2A_0 \sin$ $(\xi_{max}/2) \cos(\omega t' - \xi_{max}/2)$. I= $4I_0 \sin^2(\xi_{r})$ _х/2). Зоны Френеля:

Разб-е зав от т набл. A= $2A_0$, I= $4I_0$. 1-ый и посл элем в-ор в противофазе. К-я от всех чет или все нечет зон - в фазе, от чет и нечет - в противофазе. Радиусы зон: m-ая зона: $\rho_{\scriptscriptstyle m}$ – радиус, r= b+ m λ /2, $h_{\scriptscriptstyle m}$. $h_m = (mb\lambda)/(2(a+b))$. $\rho_m^2 = a^2$ - $(a-h_m)^2 \approx 2ah_m = (m\lambda ba)/(a+b)$. $\rho_m = [(m\lambda ba)/(a+b)]$ (a+ b)]^{1/2}. Площади зон: σ_m = 2 π a(h_m- h_{m-1})= π λab/(a+ b) – не зав от № 30НИ

пластинки (амп и фаз). Амп пласт. $R_m = R_1 \sqrt{m}$. Д/некот т набл Зон

- фл-ла тонк линзы. Пласт хорошо раб д/плоск волны (тк маска на пл-ти). А= 2A₀N, I=4N²I₀. Фаз пласт: линза – предельн случ фаз пласт: 2А₀ → пА₀

23. Дифр-я на узк щели. Спираль Корню.

Замена: $\omega t' = \omega t - kz + \pi/2 - kx^2/(2z), ky^2/(2z) = 32 \times 10^{-2} \times 10^{-2}$ $\pi V^2/2$, dy= $(\lambda z/2)^{1/2}$ dV, $V_{1, 2}$ = $(2/(\lambda z))^{1/2}$ $y_{1, 2}$, B= $A_0 \Delta x / (2 \lambda z)^{1/2}$. Тгд:

 $-dV + B \sin \omega t' \int_{-\infty}^{\infty} \sin \frac{\pi V^2}{2}$

Спец ф-ии: инт-лы Френеля:
$$C(V) = \frac{v}{0} \cos \frac{\pi V^2}{2} dV$$
, $S(V) = \frac{v}{0} \sin \frac{\pi V^2}{2} dV$

(ф-ии верх предела, нечет, $C(\infty) = S(\infty) = 0.5$). $S = B[C(V_2)-C(V_1)] \cos \omega t' + B[S(V_2)-S(V_1)]$ $sin\omega t' = Acos(\omega t' - \varphi), A^2 = B^2 \{ [C(V_2) - C(V_1)] \}$ ²+ $[S(V_2)-S(V_1)]^2$, $tg\phi=(S(V_2)-S(V_1))/(C$ (V_2) - $C(V_1)$). Верх и ниж ветви – действие 2-х половин фронта. К-е, возб-е всем волн фронтом, предст в-ором, соед фокусы.

Зоны Френеля не им особ знач-я. Прим-е: (R - отр, соед 2 тт на спира

$$s = \frac{A_0 \Delta x}{\sqrt{2 \lambda z}} R_{12} \cos \frac{\mathbf{x}}{\mathbf{y}} \omega t - kz + \frac{\pi}{2} - \frac{kx^2}{2z} - \phi_{12} \frac{\mathbf{u}}{\mathbf{u}}$$

В пределе бск щели $(y_1, V_1 \rightarrow -\infty, y_2, V_2 \rightarrow +\infty, R=\sqrt{2}, \phi=\pi/4)$:

$$s = \frac{A_0 \Delta x}{\sqrt{\lambda z}} \cos \frac{\pi}{3} \omega t - kz + \frac{\pi}{2} - \frac{kx^2}{2z} \frac{L}{\omega}$$

$$s = \frac{A_0}{\lambda z} \int_{x_1}^{x_2} dx \frac{y_2}{y_1} dy \cos \frac{\pi}{8} \omega t - kz + \frac{\pi}{2} - \frac{kx^2}{2z} - \frac{ky^2}{2z} \frac{\mathbf{u}}{\mathbf{u}}$$

С исп спир Корню:

$$s = \frac{A_0}{2} R_{12} R_{12} \cos \frac{\mathbf{x}}{\mathbf{y}} \omega t - kz + \frac{\pi}{2} - \phi_{12} - \phi_{12} \mathbf{y}$$

В пределе полностью откр фронта: R₁₂= $R'_{12} = \sqrt{2}$, $\phi_{12} = \phi'_{12} = \pi/4$, $s = A_0 \cos(\omega t - kz)$.

→ u₁>0. т ξ>0: x₁<0 → u₁<0. 1-ый max: u₁≈ -1.2, I≈ 1.37I₀. 1-ый min: u₁</p> -1.9, $I \approx 0.78 I_0$. Если отодвин/приблиз экран I_{max} и I_{min} не изм-ся, u=(2/ (\(\lambda z\))_{1/2}х, осцил-ии б/растяг/сжим.

26. Дифр-я на бск длин щели произв ширины. Предельн случаи дифр

Френеля. A= A₀/2 R₁₂ R'₁₂, R₁₂= $\sqrt{2}$. I= I₀/2 (R'₁₂)². $u_{1,2} = (2/(\lambda z))^{1/2} x_{1,2}. u_2 - u_1 \approx (2/(\lambda z))^{1/2}D - pa6otaet$ модель «чулка». p<<1 - обл геом оптики, длина чулка >> длины 1-го витка спир Корню. p=(\lambda z)1/2/D. 2 р~1 (z~ D²/λ) - обл дифр Френеля, дляна чулка ~ длины 1-го витка. p>>1 (z>> D²/ λ) – обл дифр Фраунгофера, длина чулка << длины 1-го витка.

27. Дифр Фраунгофера на бск длин щели. Дифр Фрау – дифр плоск вол-

ны на препятствии при его разм _ D<< разм 1-ой зоны Френеля $(\lambda z)^{1/2}$, те при p= $(\lambda z)^{1/2}/D>>1$. Теперь b≡z, z→∞, ρ_1 = $(\lambda z)^{1/2}$. При осв плоск волной а→∞. По пр-пу Γ - Φ : ds= $(F(\Psi)A_0dxdy)/$ (λz) cos(wt- kr+ π/2). Прибл-я: в

амп: $F(\Psi)=1$, r=z; в фазе: $r=(R^2+y^2)^{1/2}\approx R+y^2/(2R)$. Прибл Шых лучей: R=R0- $xsin\theta$. Спираль Корню.

$$\frac{A_0 D}{\sqrt{h z}} \frac{\sin \frac{\lambda \sin \theta}{2} \sin \theta}{\frac{k D}{2} \sin \theta} \cos \frac{\kappa}{M} \cot - kR_0 + \frac{\pi}{4} + \frac{k D}{2} \sin \theta + \frac{k D}{M} \sin \theta$$

28. Дифр Фрау на прямоуг отв. Все лучи ∥ны, тк вып усл и $(\lambda z)^{1/2}/D_x$, $(\lambda z)^{1/2}/D_v >> 1$

 $I_{max} = I_0 D_x^2/(\lambda z) D_y^2/(\lambda z)$. Интенс – крестом. Мы д/стоять так далеко, чтоб к-я прих в фазе.

29. Амп дифр-я реш. Лучи ∥ну, тк $(\lambda z)^{1/2}/D>>1.$ → D=Nd, N>>1 При вычисл I прих к $A^2(\theta) = a^2(\theta) (\sin^2(1/2))$ $Nkdsin\theta$))/($sin^2(1/2 kdsin\theta)$) — 1-ый член — ДН ячейки, 2-ой – решет-ый мн-ль.

Распр-е интенс по углу: глав max: $\sin\theta = m\lambda/d$, m= 0, ±1, ±2,... Если свет не монохр, то д/кажд волны свой тах.

30. Дифр реш как спектр прибор. Полярная ДН дифр реш: $\sin\theta = m\lambda/d$, $m=0,\pm 1,\pm 2,...$ Зав от λ (!) – дифр реш чувствует длину волны.

порядка порядка спектр приб: 1) Угловая дисп $\mathrm{d}\Theta/\mathrm{d}\lambda=\mathrm{m}/(\mathrm{d}\cos\Theta)\approx\mathrm{m}/\mathrm{d}$. 2) Разреш способн $\mathrm{R}=\lambda/\Delta\lambda_{\mathrm{min}}$, $\Delta\lambda_{\mathrm{min}}$ — тіп разница длин волн, кот м/различить с пом дан приб. Если $\Delta\lambda<\Delta\lambda_{\mathrm{min}}$ — слив в 1-ну лин, если $\Delta\lambda>\Delta\lambda_{\mathrm{min}}$ — 2 лин. Крит Рэлея: $\lambda/\Delta\lambda_{\mathrm{min}}=\mathrm{mN}=\mathrm{R}$ — разреш способн реш-ки. 3) Диспя обл $\Delta\lambda_{\mathrm{max}}$ — тах разница длин волн, при кот ещё не происх перекрытие спектров соседн порядков. $\Delta\lambda_{\mathrm{max}}=\lambda/\mathrm{m}$.