NSR Search Results Page 1 of 4

Visit the **Isotope Explorer** home page!

24 reference(s) found:

Keynumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n, γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project **Keyword abstract:** NUCLEAR REACTIONS 1 H, 14 N, 28 , 29 Si, 56 Fe, 27 Al, 63 Cu (n, γ) ,E=thermal;

measured Eγ,Iγ.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-

induced γ spectra; deduced mass differences.

Keynumber: 1992RA19

Reference: Phys.Rev. C46, 972 (1992)

Authors: S.Raman, E.T.Jurney, J.W.Starner, J.E.Lynn **Title:** Thermal-Neutron Capture by Silicon Isotopes

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n,γ),E=thermal; measured Eγ,Iγ following capture; deduced σ . 29 , 30 , 31 Si deduced neutron separation energies,transition γ-multipolarity. Direct

capture interpretation.

Keynumber: 1990IS02

Reference: Phys.Rev. C41, 1272 (1990)

Authors: M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: Thermal Neutron Capture in Silcon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ),E=thermal; measured E γ ,I γ , σ . 29 , 30 ,

³¹Si deduced levels,neutron separation energy. Pair spectrometer,hyperpure Ge detector.

Keynumber: 1989ISZX

Reference: Phys.Can. 45, No.3, 47, FC4 (1989) **Authors:** M.A.Islam, T.J.Kennett, W.V.Prestwich

Title: A Study of Gamma Rays from Thermal Neutron Capture in Silicon Isotopes

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si(n, γ),E=thermal; measured γ -spectra

following capture. ²⁹, ³⁰, ³¹Si deduced transitions, neutron separation energies.

Keynumber: 1988HO06

Reference: J.Phys.(London) G14, Supplement S207 (1988)

Authors: Y.K.Ho, C.Coceva

Title: Nucleon Effective Charge in E1 and E2 Radiative Transitions

Keyword abstract: NUCLEAR REACTIONS 25 Mg, 27 Al, 29 Si(n,γ),E not given; calculated E1 transition inhibition factors. 89 Y, 90 , 91 Zr, 93 Nb, 92 , 94 , 96 , 98 Mo, 136 Ba, 139 La, 141 Pr, 142 , 143 , 145 , 146 , 148 Nd, 154 Sm, 181 Ta, 184 W(n,γ),E not given; analyzed nonstatistical Γγ data; deduced neutron effective

charge enhancement factor.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

NSR Search Results Page 2 of 4

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1983KE11

Reference: Nucl.Instrum.Methods 215, 159 (1983)

Authors: T.J.Kennett, W.V.Prestwich, R.J.Tervo, J.S.Tsai

Title: Evaluation of a Method for the Determination of Accurate Transition Energies in the (n, γ)

Reaction

Keyword abstract: NUCLEAR REACTIONS 9 Be, 14 N, 28 , 29 Si(n, γ),E=0.5-11 MeV; measured E γ ,I γ . 10 Be, 29 , 30 Si, 15 N deduced neutron separation energy,level energies. High fidelity pulse height to energy transformation.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Εγ,Ιγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

2 23

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca (n,γ), (d,p); analyzed correlations between reaction types.

Keynumber: 1976TH03

Reference: Can.J.Phys. 54, 383 (1976)

Authors: V.J.Thomson, W.V.Prestwich, T.J.Kennett

Title: Resonance Neutron Capture in Silicon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 Si(n, γ),E >1 keV; measured σ (E γ). 29 , 30 Si

deduced resonances, J, π .

NSR Search Results Page 3 of 4

Keynumber: 1976KE04

Reference: Nucl.Phys. A270, 164 (1976)

Authors: M.J.Kenny, B.J.Allen, J.W.Boldeman, A.M.R.Joye

Title: Resonance Neutron Capture in Silicon

Keyword abstract: NUCLEAR REACTIONS 28 , 29 Si(n, γ),E=31.7,38.8,55.9,67.7 keV; measured σ

(E,Eγ). 29 , 30 Si deduced resonances, Γγ. Natural target.

Keynumber: 1975BO36

Reference: Nucl. Phys. A252, 62 (1975)

Authors: J.W.Boldeman, B.J.Allen, A.R.de L. Musgrove, R.L.Macklin

Title: The Neutron Capture Cross Section of Natural Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si(n, γ),E=3-1500 keV; measured σ(E,E γ). ²⁹, ³⁰, ³¹Si deduced resonances,J,L,n-width, γ -width,correlation coefficient,valence component. Li(n, α)

reaction monitor.

Keynumber: 1975AR19

Reference: Phys.Rev.Lett. 35, 914 (1975) **Authors:** E.D.Arthur, D.M.Drake, I.Halpern

Title: Fore-Aft Anisotropy in the Radiative Capture of 14-MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ¹⁰B, ¹²C, ²⁹Si, ⁴⁰Ca(n,γ),E=14 MeV; measured γ-

yields, $I\gamma(\theta)$.

Keynumber: 1974SPZQ **Coden:** REPT RCN-210

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹Si, ³⁷Cl(n, γ),E=thermal; measured Eγ,Iγ,γ(θ),CP

 (γ) , σ(E, Eγ); deduced Q. ²⁹, ³⁰Si, ³⁸Cl deduced levels, γ-branching, J, π.

Keynumber: 1974SP04

Reference: Nucl.Phys. A224, 517 (1974)

Authors: A.M.J.Spits, J.de Boer

Title: Investigation of the 29 Si(n, γ) 30 Si Reaction with Non-Polarized and Polarized Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS 29 Si(n, γ), (polarized n, γ),E=thermal; measured E γ ,I γ , CP

 (γ) , σ; deduced Q; 12 C, 14 N, 19 F, 27 Al, 28 Si, 35 Cl, 54 Fe, 56 Fe, 207 Pb(n, γ); measured E γ ; deduced Q; 28 Si (n, γ): measured σ. 30 Si deduced levels, γ -branching, J, π .

Keynumber: 1974ARZV

Coden: JOUR BAPSA 19 497 EF9

Keyword abstract: NUCLEAR REACTIONS ¹⁰B, ²⁹Si, ⁴⁰Ca(n, γ); measured $\sigma(\theta)$.

Keynumber: 1973SPZM **Coden:** REPT RCN-203 P289

Keyword abstract: NUCLEAR REACTIONS ²⁹Si(n,γ),E=thermal; measured Eγ,Iγ. ²⁹Si(polarized

 n,γ), E=thermal; measured CP. ³⁰Si levels deduced J.

Keynumber: 1973BHZU **Coden:** REPT BNL-50379

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ), (n,n' γ), analyzed σ (E). 28 , 29 , 30 , 31 Si

compiled level, \gamma ray properties.

NSR Search Results Page 4 of 4

Keynumber: 1973ARZB

Coden: JOUR BAPSA 18 1401 CE1

Keyword abstract: NUCLEAR REACTIONS 10 B, 29 Si, 40 Ca(n, γ); measured $\gamma(\theta)$.

Keynumber: 1973ABZV

Coden: REPT EANDC(E)157-U,P118

Keyword abstract: NUCLEAR REACTIONS 23 Na, 64 , 66 , 68 Zn, 29 Si, 63 Cu, 72 Ge, 183 W(polarized n,γ); measured Eγ,CP(γ,X). 65 , 65 , 65 Zn, 30 Si, 64 Cu, 73 Ge, 184 W deduced levels, 24 Na resonance

deduced J,π .

Keynumber: 1973ABZM

Coden: REPT INDC(SEC)-36/L P37

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁹Si, ⁶³Cu, ⁷²Ge, ⁶⁴, ⁶⁶, ⁶⁸Zn, ¹⁸³W(n,γ);

measured Eγ.

Keynumber: 1970SP02

Reference: Nucl. Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si, ⁶Li, ¹⁴N, ¹⁹F, ²⁷Al, ⁵⁴, ⁵⁶Fe, ²⁰⁷Pb(n,γ), E=thermal; ²⁸Si(n,n'γ), E=fast; measured Eγ, Iγ; deduced Q. ²⁹, ³⁰, ³¹Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Keynumber: 1970BE48

Reference: Nucl.Phys. A157, 520 (1970)

Authors: G.B.Beard, G.E.Thomas

Title: Gamma Rays from Thermal Neutron Capture in ²⁸Si, ²⁹Si, and ³⁰Si

Keyword abstract: NUCLEAR REACTIONS 28 , 29 , 30 Si(n, γ),En=thermal; measured E γ ,I γ ; deduced Q.

²⁹, ³⁰, ³¹Si deduced levels,γ-branching. Enriched targets, Ge(Li) detector.
