Cours Algorithmique Numérique

Antoine Lambert

September 24, 2017

0.1 Introduction

Les exercices des TP's sont un bon moyen de se préparer à l'examen. (ils sont en annexe dans un autre PDF). L'année passée 50% des questions étaient des questions de programmation

Working with real numbers

1.1 Internal representations of numbers

In Java: byte(8 bit), short(16 bit), int(32 bit), long(64 bit). In c: char(at least 8 bits), short(at least 16 bits),...

1.1.1 Unsigned type in c

$$\begin{array}{l} [0,2^8\text{-}1] \\ 222 = 2^7 + 2^6 + 2^4 + 2^3 + 2^2 + 2^1 \\ \text{donc on obtions}: 11011110 \end{array}$$

1.1.2 Two's Complement 8-bits type in java

$$\begin{array}{l} [-2^7,2^7\text{-}1]\\ -\text{x--}+1 \text{ pour les nombres négatifs}\\ 34=2^5+2^1=00100010\\ -34+1=2^7+2^6+2^4+2^3+2^2+2^0+1=11011110 \end{array}$$

1.1.3 Fixed-point Representation

 $2^k.x$ (x:un nombre réel, k:indice de précision)

$$x + y = (2^k . x) + (2^k . y)$$
$$x . y = \frac{(2^k . x) . (2^k . y)}{2^k}$$

La partie décimale est donc représentée par pas de $\frac{1}{2^k}$

+ and -

+ : facile à implémenter

- : perte d'espace quand on traite avec des grands ou de petits nombres

1.1.4 Floating-point tepresentation

Séparation du signifiant et de l'exposant : 3.10^9 ou 3.10^{-9}

1.1.5 IEEE754 Single Précision(32bits)

 b_{31} : sign b_{30} à b_{23} : Exposant b_{22} à b_0 : Signifiant le nombre est exprimé suivant la formule :

$$(-1)^{b_{31}} \cdot (1.b_{22}...b_0)_2 \cdot 2^{(b_{30}...b_{23})_2 - 127}$$

1.2 Finite precision

Quand on fait appel à la précion finie, les résultats peuvent être approximés et mener à des erreurs. c'est pour cette raison qu'il ne faut jamais comparer 2 floating point numbers ensemble directement. à la place, on utilise un Epsilon pour vérifier que l'un soit égal à l'autre à une approximation epsilon près (Math.abs(a-b) Epsilon)

1.2.1 Representing Fractions

On peut représenter la fraction $\frac{a}{b}$ par 2 entiers et calculer ainsi sans approximations, mais ces fractions doivent être réduites, sinon les nombres a et b deviennent trop grands.

Working with matrices

Solving linerar systems

Linear regression

Matrix Norm and Condition

Interpolation

Cubic splines and b-Splines

Numerical integration

Numerical differential equations

Solving systems of differential equations

Probably: intro to 3D

graphics

Contents

	0.1	Introduction	1
1	Wor	king with real numbers	2
	1.1	Internal representations of numbers	2
		1.1.1 Unsigned type in c	2
		1.1.2 Two's Complement 8-bits type in java	2
		1.1.3 Fixed-point Representation	2
		1.1.4 Floating-point tepresentation	3
		1.1.5 IEEE754 Single Précision(32bits)	3
	1.2	Finite precision	3
		1.2.1 Representing Fractions	3
2	Wor	king with matrices	4
3	Solv	ing linerar systems	5
4	Linear regression		
5	Matrix Norm and Condition		
6	Interpolation		
7	Cubic splines and b-Splines		
8	Numerical integration		
9	Numerical differential equations		
10	Solv	ing systems of differential equations	12
11	Pro	pably · intro to 3D graphics	13