npn BIPOLAR JUNCTION TRANSISTOR TECHNOLOGY

Major Processing Steps for a Junction Isolated BJT Technology

Start with a p substrate.

- 1. Implantation of the buried n^+ layer
- 2. Growth of the epitaxial layer
- 3. p^+ isolation diffusion
- 4. Base p-type diffusion
- 5. Emitter n^+ diffusion
- 6. p^+ ohmic contact
 - 7. Contact etching
- 8. Metal deposition and etching
- 9. Passivation and bond pad opening

■ © P.E. Allen, 2000

- ECE 4430 - Analog Integrated Circuits and Systems

Epitaxial Layer (No Mask Required)

The objective is to provide the proper n-type doping in which to build the npn BJT.

- ECE 4430 - Analog Integrated Circuits and Systems

– © P.E. Allen, 2000

p⁺ isolation diffusion (Mask Step 2)

The objective of this step is to surround (isolate) the npn BJT by a p^+ diffusion. These regions also permit contact to the substrate from the surface.

ECE 4430 - Analog Integrated Circuits and Systems -

- ECE 4430 - Analog Integrated Circuits and Systems

– © P.E. Allen, 2000 **–**

Emitter n^+ diffusion (Mask Step 4)

This step implements the n^+ emitter of the npn BJT and the ohmic contact to the collector.

- ECE 4430 - Analog Integrated Circuits and Systems

p⁺ ohmic contact (Mask Step 5)

This step permits ohmic contact to the base region if it is not doped sufficiently high.

- ECE 4430 - Analog Integrated Circuits and Systems

Contact etching (Mask Step 6)

This step opens up the areas in the dielectric area which metal will contact.

- ECE 4430 - Analog Integrated Circuits and Systems

Metal deposition and etching (Mask Step 7)

In this step, the metal is deposited over the entire wafer and removed where it is not wanted.

Fig.2.4-8

– © P.E. Allen, 2000

Passivation (Mask Step 8)

Covering the entire wafer with glass and opening the area over bond pads (which requires another mask).

- ECE 4430 - Analog Integrated Circuits and Systems -