10) Show that $x^3 is O(x^4)$ but that x^4 is not $O(x^3)$

The definition for Big-O notation is
$$|f(x)| \le C|g(x)|$$

 x^3 is $O(x^4)$

As x grows without bound, x^3 will always be less than or equal to x^4 . However, x^4 is not $O(x^3)$ because:

$$x^{4} \le Cx^{3}$$

$$\frac{x^{4}}{x^{3}} \le C\frac{x^{3}}{x^{3}} - divide$$

$$\frac{x^{1}}{1} \le C$$

Since x grows without bound and C is a constant x will not always be less than or equal to C.

21) Arrange the functions \sqrt{n} , 1000logn, nlogn, 2n!, 2^n , 3^n and $n^2/1$, 000, 000 in a list so that each function is big-O of the next function.

$$\frac{n^2}{1.000.000} < \sqrt{n} < x \log(x) < 2^x < 2x! < 3^x < 1000 \log(x)$$

22) Arrange the functions $(1.5)^n, n^{100}, (long)^3, \sqrt{n}logn, 10^n, (n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big-O of the next function.

$$(logx)^3 < \sqrt{x}logx < x^{99} + x^{98} < x^{100} < (1.5)^x < 10^x < (x!)^2$$

26) Give a big-O estimate for each of these functions. For the function g in your estimate f(x) is O(g(x)), use a simple function g of smallest order.

a)
$$(n^3 + n^2 log n)(log n + 1) + (17 log n + 19)(n^3 + 2)$$

 $O(n^3 log n)$

b)
$$(2^n + n^2)(n^3 + 3^n)$$

Since 2^n is the maximum Big O for $2^n + n^2$ and 3^n is the maximum Big O for $n^3 + 3^n$ we get $3^n 2^n$ which simplifies to 6^n .