

MICROPROCESSOR BASED RAIL-AXLE COUNTING AND HOTBOX DETECTION SYSTEM

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

by
DAMA VENKATA RAMA RAO

to the
DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
JULY, 1982

dedicated to

my parents

5 JUN 1984

CENTRAL LIBRARY

Kop.

→ Acc. No. A 82755

EE- 1982-M-RAB-MIC

CERTIFICATE

Certified that the work entitled 'MICROPROCESSOR BASED RAIL AXLE-COUNTING AND HOTBOX DETECTION' by Dama Venkata Rama F has been carried out under my supervision and has not been submitted elsewhere for the award of a degree.

K.R. Sarma
Professor
Department of Electrical Engineering
Indian Institute of Technology
Kanpur.

ACKNOWLEDGEMENTS

I express my deep sense of gratitude and appreciation to Professor K.R. Sarma, for constant encouragement, constructive criticism and invaluable guidance provided by him throughout the course of my thesis.

I take this opportunity to express my indebtedness to Mr. Bh. A.R.B. Raju and Mr. B.V. Ramana, Research Engineers, whose constant help, invaluable guidance, and useful discussions which I had with them, in the initial stages of my thesis, were vital for the successful completion of this thesis.

A special word of appreciation is due to Mr. G. Harinath Mrs. E. Vijayalakshmi, Mr. Joseph John and all other Research Engineers for their enthusiastic support at all stages of my thesis work.

I acknowledge with pleasure the co-operation received from my friends, Mr. G.N.M. Sudhakar and Mr. P. Srinivas.

Finally, I thank Mr. C.M. Abraham for his excellent typi work.

Dama Venkata Rama Rao

ABSTRACT

Hotbox detection and signalling are two important aspects that Railways are very much concerned about. Improved techniques for this purpose are called for because of the need to increase the traffic and speed. Microprocessor based Rail axle counting and hotbox detection system is one such system incorporating advanced techniques with built in safety against human error. The thesis contains the software for a Motorola 6800 microprocessor based system around which the axle counting and hotbox detection system is proposed. The software is developed and tested successfully by simulating real time signals using a toytrain.

CONTENTS

	Page
Chapter 1 INTRODUCTION	1
1.1 Overview of the thesis	2
Chapter 2 CONVENTIONAL SIGNALLING SCHEMES AND HOTBOX DETECTION SYSTEMS	4
2.1 Conventional signalling schemes	4
2.1.1 Track circuit - Noncoded DC	4
2.1.2 Loop track circuits	12
2.1.3 Shunt overlay track circuit	17
2.2 Hotbox detection systems	23
2.2.1 General information	23
2.2.2 Hotbox transducers	27
Chapter 3 AXLE COUNTING SYSTEM	29
3.1 Details of the track transducers	30
3.2 Indoor equipment	32
Chapter 4 INFRARED HOTBOX DETECTOR	36
4.1 Basic operation	36
4.2 Scanner	39
4.2.1 Door and cover	42
4.2.2 Reference target and sensor	42
4.2.3 Blower	42
4.2.4 Wheel detectors	43
4.3 Operation	43
4.3.1 System on standby	46
4.3.2 Train approaches	49
4.3.3 Train leaves	51

	Page
Chapter 5 PROPOSED SYSTEM	53
5.1 Signalling scheme	53
5.1.1 Specifications	53
5.1.2 Proposed signal processing scheme for axle counting	55
5.1.3 Basic approach involved in axle counting	57
5.2 Hotbox detection	60
5.2.1 Assumptions	60
5.2.2 Proposed layout	62
Chapter 6 SOFTWARE DETAILS	63
6.1 Initialization	67
6.2 Clearing the counts and buffers	76
6.3 Displaying the track configuration	77
6.4 Axle counting routine	79
6.5 Hotbox detection routine	82
Chapter 7 CONCLUSIONS	83
REFERENCES	85
APPENDIX	87
ASSEMBLY LISTING	89

CHAPTER 1

INTRODUCTION

Railways, being an essential part of infrastructure constitute the nerve centre of our economy bearing a lot of strain. What with increasing prices and fast depleting sources of crude oil coupled with abundant national reserves of coal and seemingly exponential growth in population, it is imperative that the strain should multiply. But it has to be borne; borne with increased efficiency and perfect safety. However, it is disturbing that of late railway accidents have become common place and most often these are traced to signal failures. Lest the economic growth and human life would be in peril, improvement in signalling schemes should be immediately attended to. In this age of computers and 'quick thinking' what else other than micro-processors can comfortably step in! All along this has been the motivating factor.

Since the very beginning of railways the basic aim of signalling is, to monitor a prescribed length of track and give an indication about the occupancy of that particular length of track. Another important direction in which railways were and still are concerned is hotbox detection - which occurs when inadequate bearing lubrication or mechanical flaws

cause a significant increase in wheel temperature. As the bearing temperature rises to an abnormally high level, a bearing failure results. Such bearing failures constitute a major cause of car derailment, endangering life, destroying property, resulting in costly delays and maintenance. Continuous studies and changes in implementation are going on regarding these.

Increasing traffic and higher speeds call for improved control and safety. Current trends in the field of micro-computers, especially the development of very cheap, powerful and reliable microprocessors with elaborate support systems, has made the introduction of computer technology into railway signalling and control inevitable.

This thesis titled 'MICROPROCESSOR BASED RAIL AXLE COUNTING AND HOTBOX DETECTION SYSTEM' mainly aims at software development of combined system for signalling through axle counting and hotbox detection system. The software is developed and tested successfully by simulating real time signals using a toy train. The software developed for Motorola 6800 microprocessor based system.

1.1 OVERVIEW OF THESIS :

CHAPTER 2 :

In this chapter various conventional methods of signalling and hot box detection systems are described. Their merits and demerits are discussed.

CHAPTER 3 :

In this chapter a new scheme that implements signalling through axle counting and its advantages over the conventional signalling schemes are discussed.

CHAPTER 4 :

This chapter describes the details of infrared hotbox detection system.

CHAPTER 5 :

This chapter gives the specifications of the system, how they are proposed to be met and the approach taken in the development of the software. This chapter also gives a proposed layout of the transducers at the track side.

CHAPTER 6 :

This chapter gives detailed description of the developed software.

CHAPTER 7 :

The thesis is concluded with a critical review of the present work and suggestions for future work.

CHAPTER 2

CONVENTIONAL SIGNALLING SCHEMES AND HOTBOX DETECTION SYSTEMS

In this chapter, various conventional signalling schemes, their principles of operation, merits and demerits are discussed. First various signalling methods are discussed later hotbox detection system is discussed.

2.1 CONVENTIONAL SIGNALLING SCHEMES

2.1.1 Track Circuit - Noncoded DC

The track circuit is the most important link in most signalling systems. It is the vital connection between the train and the rest of the signal system. The track circuit enables us to know just where a train is in a given section of the track. But most important of all the track circuit enables us to provide maximum protection for train movements. Through the track circuit we can indicate the following :

1. The block is occupied
2. There is no broken rail
3. It is safe to proceed at authorized speed

Track is made of sections and each section is insulated from the other section by wax-coated hard vulcanised fibre. In [3] Fig. 2.1.1a track circuit is shown with a neutral track relay,

FIG.2.11c TRACK IS OCCUPIED (DC TRACK CKT)

which will be energised when sufficient current flows through its coils, regardless of the direction of current flow or polarity of the circuit.

The track circuit operation can be understood from Figs. 2.1.1b and 2.1.1c. Figure 2.1.1b shows the direction of current flow when there is no train on the track section, which energizes the relay, green light is glown, indicating that the track section is CLEAR. When train enters into the track section (Fig. 2.1.1c) it shunts the track relay. With this effect relay is released allowing red light to glow, indicating occupancy of the track section.

2.1.1.1 Crossover (Fouling) Connections Using Noncoded DC Track Circuit

Since the track circuit is used to detect trains within its limits, it must also detect the presence of trains or cars that are too close to permit safe passage. This is done by extending the track circuit limits to the points of fouling along the track circuit.

Figure 2.1.2a illustrates one type of fouling circuit used. That portion of the turnout, within which a car will foul the main line, is connected to track circuit in multiple. The presence of a car on this fouling section will shunt the track relay. When this type of circuit is used, it is essential that the fouling connectors are maintained in good

FIG 2.12 F CIRCUITS

2.1.2a

2.1.2b

2.1.2c

condition. Breakage of these connectors will result in loss of shunt protection on the fouling section of turn out.

Figure 2.1.2b illustrates another type of fouling circuit used. The fouling section of the turn out is connected in series with the track circuit. This circuit has the advantage of better protection in case of any breakage of fouling connector or a rail as the track circuit will be opened and the track relay will be de-energised.

Figure 2.1.2c illustrates a method used to provide fouling protection on crossovers. The fouling connectors are located so as to connect the fouling sections in multiple with the main track similar to a turn out. The fouling protection on the upper track extends to the insulated joints in the center, as does the fouling protection on the lower track.

2.1.1.2 Considerations to be taken for Installations of DC Track Circuits

'Ballast leakage' is an ever-present factor, which causes a reduction in flow of current to the track relay. It refers to that part of the track current that flows or [5] leaks from one rail to another through the ties, ballast and ground. It is desirable that the ballast resistance to be maintained as high as possible. Fig. 2.1.3a gives simplified drawing of track circuit, the battery, the limiting resistance, the rails, the insulated joints and the relay. Actually the

FIG. 2.1.3a D C. TRACK CIRCUIT

FIG. 2.1.3b BALLAST RESISTANCES

FIG. 2.1.3c BALLAST RESISTANCES
(BROKEN - RAIL)

circuit is a network of resistances as shown in Fig. 2.1.3b, the limiting resistor at the battery, the resistance of the rails, the resistance of the relay and the resistance between the rails which is sum of the resistances of each rail to ground.

All this must be taken into consideration when adjusting a track circuit. Bonded rail resistance ordinarily varies from 15 thousandth to 4 hundredths (0.015 to 0.04) ohms per 1,000 ft of track. Ballast resistance may vary from less than one to hundreds of ohms per 1,000 ft of track. In wet weather, ballast resistance usually lessens. In dry or freezing weather it increases.

A ballast resistance network with a rail broken is shown in Fig. 2.1.3c. R₁ is the leakage resistance from the battery side of the broken rail to the ground. R₂ is the leakage resistance from the relay side of the broken rail to the ground. R₃ is the leakage resistance from the opposite rail to the ground.

It will be seen that there are two paths for current from the battery. One is through the limiting resistance and leakage resistances R₃ and R₁. The other is through the limiting resistance, the relay and leakage resistances R₂ and R₁. As ballast resistance varies, there may be a relatively critical range of ballast resistance where sufficient current

may flow through the path including the relay to cause improper operation of the relay if the circuit is not properly proportioned or adjusted.

The following are the disadvantages of DC track circuits.

1. When a train longer than the track circuit comes on the track, track circuit will give release when the forward wheels clear the track circuit, and before the rear wheels enter the circuit. The obvious solution is the lengthening of the track circuits themselves but this merely exchanges the problems rather than solving them. Firstly, the cost of lengthening all of the track circuits in a hump yard is prohibitive and in addition, it will defeat our attempts to handle a greater volume of traffic. Thus, the requirements for higher traffic handling are best met by short track circuits while the requirements for handling long cars are the exact opposite.
2. The presence of oil and grease is making the track circuit with light boxer cars distinctly marginal.

2.1.2 Loop Track Circuits

The disadvantages connected with DC track circuit as mentioned above led the loop track circuits to be in use. The design requirements of the loop track circuits are as follows :

1. It should see a car immediately as it enters the area of the loop surrounding the switch, irrespective of the direction or speed of travel.

2. It should continue to see this car until it had cleared the loop completely.
3. If the car stops over the loop it should continue to see it for an indefinite period.
4. Its method of operation must be fail safe in that a failure of any of the components would automatically drop the relay to a locked position .
5. It must not be sensitive to the normal changes of climate to which it will be subjected in a yard, i.e., variations of temperature and humidity and the presence of snow, water or ice.
6. It should have no moving parts, maintenance should be an absolute minimum and the adjustment should require no special skills beyond those normally possessed by a signal technician and with equipment which he would normally be expected to possesses.

2.1.2.1 Operation

Briefly, the unit contains two oscillators (Fig. 2.1.4a), one called the loop oscillator and the other the reference oscillator. The loop oscillator is tuned to approximately 94 KHz while the reference oscillator is tuned to approximately 89 KHz. The output of these two oscillators is fed into a mixer which has as its inputs the two oscillator frequencies and gives as its output a frequency which is the difference between

FIG. 2.4 LOOP TRACK CIRCUIT

them, in this case approximately 5 KHz. This 5 KHz signal is fed through a lowpass filter which has a cut off at approximately 5.25 KHz to a two stage amplifier followed by a push pull output stage. This output signal, still at 5 KHz is rectified in a bridge type rectifier and the DC voltage so developed is utilized to energize the operating relay.

When a car goes over the loop its inductance is reduced and because this loop is part of the tuned circuit of the loop oscillator, frequency rises by an amount which depends on the dimensions of the vehicle but will be of the order of 500 to 2000 Hz for typical box cars. The reference oscillator remains at its original frequency with the result that the difference frequency as seen by the mixer rises from 5 KHz to some higher value, for example, 6 KHz. When the frequency of this difference signal is applied to the lowpass filter, it is no longer passed by this filter, which cutoff at 5.25 KHz and the output is thereby removed from the relay.

When the boxer leaves the loop, the loop oscillator returns to its original frequency, the difference frequency drops below 5.25 KHz and the filter then once again passes it and the relay is picked up.

The cutoff slope of the lowpass filter is made as steep as possible so that the action is suitably rapid but it was felt desirable to introduce what might be described as a toggle action to ensure a positive snap to the switching action.

To achieve this, a portion at the output of the amplifier is rectified and the DC voltage is used to hold open a transistor static switch. This switch puts across the reference oscillator an additional capacity when the voltages falls as the increase in frequency pushes over the edge of the slope. The effect of the increasing capacity on the reference oscillator is to lower the frequency of this oscillator at the same movement we are raising the frequency of the loop oscillator and the difference frequency is thereby violently increased and a sharp switching action takes place as soon as the signal through the filter has dropped by 3 dB.

The DC voltage holding up the operating relay is derived from the 5 KHz signal. This signal is made by utilizing the two oscillators and taking the difference frequency between them. Should either oscillator fail, then the difference frequency would become 90 KHz well beyond the filter cutoff and therefore the relay must drop into the safe position. Should any of the amplifying chain along the way develop a defect, this can only result in a reduction of the amplifier gain and this again would remove the voltage to the relay thereby dropping it to a safe position.

A failure of the power supply would also, of course, drop the relay and as a matter of fact, it can be kept in a place, provided the entire chain of operation is in order. A

A failure of the loop caused by mechanical damage would, of course, disconnect the inductance of the loop oscillator.

The following are the disadvantage of this scheme :

1. Existence of insulated joints, which needs continuous supervision and maintenance of these joints.

2.1.3 Shunt Overlay Track Circuit

Shunt overlay track circuit operates without interference from other track signals and does not require insulated joints and is also failsafe.

In its simplest form, the shunt overlay track circuit consists of a section of track with transmitter connected to one end of the track section and a receiver and relay [2] connected at the other end (Fig. 2.1.5a). It functions very much like the DC track circuit except that the battery is replaced by a transmitter. The receiver consists of an amplifier rectifier and filter in addition to the track relay. Like the DC track circuit, the track relay remains energised as long as the receiver finds a signal (above a certain level) on the track. The presence of a train in the track section will be detected by virtue of the electrical shunt the train produces across the track.

As in the DC track circuit, the operation of the shunt overlay track circuit is hampered by ballast resistance and

FIG 2.1.5 HIGHWAY CROSSING

the changes in that resistance. For proper operation, the receiver must be capable of 'hearing' the transmitter in the absence of a train and with the ballast resistance low. Yet the receiver must not be able to 'hear' the transmitter in the presence of a train and with the ballast resistance high. Inter-rail capacitance effects are relatively negligible upto a transmitter frequency of about 5 KHz. Most ballasts will run (at its lowest) 5 ohms per 1,000 ft or better. Shunting resistance of a train is generally accepted to be less than 0.06 ohms. Under these conditions, a shunt overlay circuit can be made to operate over 4,000 ft. without difficulty. It is possible to make longer track circuits under somewhat ideal conditions, say upto 10,000 ft. but safe operation is no longer assumed.

In Fig.2.1.5b is shown a single section of track arranged for double direction running with a highway crossing and two overlay track circuits arranged so that they overlap at the crossing. A train shunting the track between transmitter f1 and receiver f2 will indicate track occupancy in receiver f1 but not in receiver f2 : a train shunting the track between receiver f2 and receiver f1 will indicate track occupancy in both receivers; and a train shunting the track between receiver f1 and transmitter f2 will indicate track occupancy in receiver f2 but not in receiver f1.

When a train approaching the crossing from the direction of transmitter f1 it will activate the crossing flashers as soon as track circuit is occupied between transmitter f1 and receiver f1. This same circuitry will keep the flashers operating until the train passes over the crossing and clears receiver f1. Fig.2.1.5b shows symbolically the ballast resistance and internal capacity.

One of the objections to overlay track circuits that is frequently raised is that they do not have a sharply defined 'clear-out' as compared to DC track circuits. After train has passed the receiver and is receding, it still provides a fairly good shunt of the interrail voltage even though the receiver is between the transmitter and the train. How effective a shunt the train provides depends upon ballast resistance. For this reason the 'clear-out' point will vary from about 2 to 75 ft beyond the point of connection of the receiver, depending upon ballast resistance.

If greater resolution than this is required, the receiver may be coupled to the track by virtue of a loop as shown in Fig.2.1.5c. These loops are each 50 ft in length and approximately the width of the track gauge. The loops couple the rail current to the receiver. In the absence of a train, rail current is coupled to the receiver and keeps the track relay energized. When a train enters the track circuit, it

shunts the rail current and track relay indicates 'occupancy'. Now, however, after the train passes the loop and is receding, it provides an excellent shunt beyond the receiver loop, causing a heavy flow of rail current and the receiver re-operates its associated track relay. The 'clear-out' point of loop-coupled receiver will vary with ballast resistance from the centre of loop to the end, that is from 0 to 25 ft.

The following are the drawbacks :

1. Loop is costlier to install and maintain.
2. When ballast resistance is unusually high, insufficient rail current will flow, thus the receiver gets insufficient signal to keep the track relay operated. This can be corrected by placing tuned shunts across the track as shown symbolically by dotted lines in Fig. 2.1.5b. These are fail safe since their loss will cause an 'occupancy' indication.
3. From the discussion of Fig. 2.1.5 it becomes obvious that transmitter/receiver pairs must be selective so that the receiver responds only to its own transmitter. Disadvantage is that the interference signals are additive. That is, interference signals which can produce distortion products (that lie within the pass-band of the filter) will result in a filter output which adds to the relay current. Naturally, if there are enough of these distortion products, they will produce unsafe condition by providing track relay current in the absence of a legitimate

FIG 24.6 SHUNT OVERLAY TRACK CIRCUIT

Reduction of interference explained above is possible through the use of tone modulation of the transmitter carrier. Fig.2.1.6 shows a block diagram of such a transmitter and receiver.

The basic difference between the system of Fig.2.1.6 and that previously described is that the track relay is operated from the modulation signal not from the carrier. Thus interference signals, which tends to fill in the modulation, reduce the available output signal rather than enhance it.

The designer must follow the following guidelines in the choice of carrier and modulation frequencies in order to further protect the system.

1. Use non-harmonically related carrier frequencies.
2. Use non-harmonically related tone frequencies.
3. Use tone and carrier frequencies that are not close to or harmonically related to cab signalling, propulsion or public utility frequencies.

2.2 HOTBOX DETECTION SYSTEMS

2.2.1 General Information

Any bearing which departs markedly from the operating characteristics of other bearings in its class on a given [5],[1] train is a hotbox and remedial measures must be taken. In general, the cause for hotbox is the breakdown of lubrication.

The rate of journal temperature variation depends upon the nature of the defect, the loading, the speed of the train etc. One can seldom pinpoint where a hotbox had its origin or how long it will run in an overheated condition before burn-off conditions prevail.

Because an overheated bearing can take one of many paths to the critical stages of destruction, time becomes the most important parameter in the detection process. The journal being obscured from view in its enclosure, can only give evidence of its condition indirectly. For the thermal flux to heat the external box surfaces, the thermal impedance of the assembly (brass, wedge and box) must be overcome. The expression for the thermal circuit of the journal assembly may be given by $T = \varphi \times R$ where T is the temperature difference between the heat producing surface, and the external surfaces of the housing; φ is the thermal flux and R the resistance or impedance offered to the flow of heat.

For all practical purposes the statement serves to point out that the temperature difference between the bearing surface temperature and outside box temperature can be very high depending upon the value of R , the thermal impedance. The value of R depends broadly on the conductivity and mass of the material carrying the heat-flux, if the mass is large and conductivity is poor, a large temperature difference exists, and a large time is required for external surface to reach a

given temperature. It is obvious, that the temperature of the outside box surface is a function of time if a journal box is in the process of overheating.

A normal bearing will achieve an equilibrium, a steady state temperature, after several hours of running. That is, a heat balance will be obtained and the running temperature will be stabilized. The heat being generated will be exactly balanced by the heat loss of the system. Consequently, the temperature can rise no further unless a defect causes more heat to be generated. If the defect is so severe as to cause the generation of so much heat that the temperature equilibrium point lies above the destruction temperature of the bearing burn-off condition will obtain and unless detected in time, a derailment accident is certain. The difference between normal bearing and the hotbox is that the normal bearing is in a steady-state condition and hotbox is in what is known as a transient condition.

Investigations have shown that the mean temperature for a large number of normal bearings (solid type) is 130°F above ambient temperature. The individual journal temperature will be in a band from 110°F to 150°F , above ambient. These slight variances from the mean temperature are caused by a wide variety of conditions such as, loading, bearing size, bearing contact surfaces, clearances, etc.

The investigations indicated that the normal box mean temperature on the vertical surfaces is about 30°F above ambient. This indicates that above 100°F exists between bearing and outer surfaces of the journal assembly under steady state conditions. Most of this temperature drop exists at the interfaces between the brass and wedges, and the wedges and the top of the box.

About fifteen minutes must elapse between the time that a change takes place at the journal-bearing interface and the time that the box surfaces begin to respond to change. Before a significant detectable change takes place at the hotbox surface atleast half an hour must elapse. The temperature of the journal box cannot give an indication about seriousness of hotbox, because higher indication may have been a hotbox that has been developing slowly and running for hours at elevated temperatures. That box with the lower indication may have had a severe defect causing the journal temperature to rise rapidly but not having sufficient time elapse to heat up external surface before passing over the detector. It remains that it is sufficient to indicate that the box is in a transient condition.

The radiated energy from the target (journal box) is not directly proportional to the temperature in degrees Farenhit, but rather to the fourth power of the absolute temperature.

Another factor which can influence the energy radiated from the journal box is emissivity. It is fortunate that most boxes exhibit like characteristics in radiating energy. Occasionally a box may be newly painted or be covered with cement dust. These conditions would change the surface properties of the journal. Because of these few uncontrolled variables, a temperature measurement is a difficult process. It is a qualitative rather than quantitative analysis that hotbox detector system performs.

2.2.2 Hotbox Transducers

In the past, the manifestations of an overheated bearings were readily indicated by sight (smoke or flame), sound (screeching) or smell (unmistakable odor). Personnel stationed at frequent intervals along the right of way were able to recognise these signs often enough to prevent serious derailments.

With the advent of more efficient technology, hotboxes are detected with the help of what is known as infrared hotbox detector. An infrared hotbox detector is a device which is concerned with infrared energy emitted by the journal box. It is essential that the detector be responsive to the particular wavelength of radiation which the journal box emits. To eliminate extraneous heat sources from the detector the view of the scanner will be blocked with a shutter and allow it to open

long enough to see the target. As added insurance the sensor and the optical material should be chosen which responds greatest to the specific type of radiation given off by the target. The wavelength of electromagnetic energy emitted by the target will be approximately 7 to 15 microns. Germanium is used for optical system to respond to the spectral region we are concerned about. Earlier, light or audio alarm was used to indicate that train has produced at least one abnormal indication. The principle of detecting a hotbox with infrared hotbox detector remain unchanged. Detailed description of infrared hotbox detector is given in Chapter 4.

CHAPTER 3

AXLE COUNTING SYSTEM

Axle counting is a recent scheme of signalling that counts in and counts out the axles when train enters and leaves the track section and gives a 'CLEAR' indication when the count equals; otherwise it gives an 'ENGAGED' signal. It is superior to the conventional signalling schemes described in Chapter 2, because of the following reasons :

1. It's performance will not be affected by ballast resistances.
2. It is a noncontact type, so it will not need insulated track sections, which indirectly reduces the need for continuous maintenance and supervision.
3. Since this works on the principle of tone modulation, interference by distortion products is negligible.
4. The presence of oil and grease on the rails, unlike in the case of dc track circuit will not affect the performance of transducers.

In axle counting system, the axles of the train when passing over the transducers modulate the normal 5 KHz signals of the receiver to form a dip. The signals after amplification are fed on the transmission lines to the indoor equipment which

processes and evaluates the received signals. For two detection point axle counting system (normal main track without any crossovers), four amplitude modulated sinewave signals are converted into digital pulses and these pulses are counted in or counted out depending on the condition that these pulses correspond to the train moving into the track section or leaving the track section.

3.1 DETAILS OF THE TRACK TRANSDUCERS

To monitor a track section, the outdoor equipment is provided at two ends of the section. The equipment at each end consists of

1. Two sets of track transducers, each consisting of :
 - a. Transmitter coil in a composite aluminium fibre glass housing
 - b. Receiver coil in a composite aluminium fibre glass housing
 - c. Base clamp fitted on to the bottom flange of rail for mounting the transmitter and receiver housings.
2. Electronic junction equipment consisting of :
 - a. Oscillator, generating 5 KHz signals feeding two transmitter coils of both track transducers connected in series
 - b. Two numbers of receiver amplifiers for amplification of the signals independently received from two receiver coils of track transducers.

The output of the receiver amplifiers is connected to the cables for onward transmission to indoor equipment.

While the transmitter housing is fixed on the base clamp on the outer side of the rail, the receiver housing is fixed on the inner side. Transmitter coils are energized by the common oscillator. The arrangements and shape of transmitter and receiver coils are such that the two magnetic fluxes generated in the vicinity of the rail and these two fluxes traverse receiver coil in opposite directions.

Reluctance of the magnetic path of the two fluxes is different under normal conditions when no wheel passes on the track transducers. One of these two fluxes is quite large compared to the other and the resultant flux induces a voltage in the receiver coil. When the wheel passes over the track transducers the screening effect of the wheel flange causes a reduction of the larger flux to a value nearly equal in magnitude to that of the other. These two fluxes cancel each other and the induced voltage in the receiver coil falls to a low value.

The ratio of these two fluxes can be adjusted with suitable initial adjustment by rotating the transmitter coil inside the housing assembly. This adjustment depends on the profiles of different rail sections in use.

The track transducers are fitted in the staggered position on the rails of the track. Each transducer coil therefore detects signals which are displaced in time. It is only this time staggering of these signals that gives direction of the train.

The track signals received from the receiver coils of the two track transducers fed independently to a two stage tuned amplifier circuit. The tuned frequency is 5 KHz with a 3 dB bandwidth of \pm 250 Hz. Any noise picked up by transducers in receiver area being a low frequency is suppressed in the receiver amplifier and only 5 KHz signal is transmitted through the cable to the indoor equipment. For proper performance, the output impedance of the amplifier should match the cable impedance.

3.2 INDOOR EQUIPMENT

The track signals may be from an outdoor equipment very near to the indoor equipment or as far as 12 km. Hence, attenuator pads are provided to adjust the signal level to the next section. The attenuators are adjusted so that the input level to the next section is 500 mV peak to peak. The high pass filter filters out 50 Hz and its harmonics and passes the desired 5 KHz signal. This signal is amplified, rectified and fed to lowpassfilter which filters out 5 KHz signals and gives the modulating signal representing wheel dips. This

FIG.3.1 INDOOREQUIPMENT

FIG.3.2 WAVEFORMS AT VARIOUS POINTS OF THE
INDOOR-EQUIPMENT

demodulated signal is converted into pulses by Schmitt trigger. The pulse width generated by normal train axles is always greater than 7 ms even at a train speeds of 200 kmph. Any pulse less than 5 milliseconds duration therefore represents the noise induced in the system due to extraneous sources. The pulselwidth discriminator cuts out the pulse having a pulse width less than 5 milliseconds and passes other pulses to the counters. For a two detection point axle counting system four similar types of pulses staggered in time are fed to the counters. The counters and logic counts in or counts out the pulses depending on the movement of the train on the track section. Logic involved is explained in Chapter 4 in detail in conjunction with proposed system. The logic will take care of all types of train movements (shunting and through running). Typical waveforms at each input block of Fig. 3.1 is shown in Fig. 3.2. A better signal processing scheme is suggested in Chapter 5.

CHAPTER 4

INFRARED HOTBOX DETECTOR

In this chapter the principle of operation of the infrared hotbox detection system is explained in detail. An infrared hotbox detector is a device which is concerned with infrared energy emitted by the journal box.

In a basic arrangement for a bidirectional system with single junction box, figure 4.1a, or multiple junction boxes, fig. 4.1b, magnetic wheel detectors on both approaches to the scanner location initiate system operation. The track [e] mounted equipment for a single junction box system consists of two mounting assemblies (scanner and blower), four wheel detectors, a junction box, and connecting cables.

A basic unidirectional system does not require wheel detectors 2 and 4, fig .4.1a or 4.1b and a directional relay printed circuit board. An optional reverse direction lockout features may be available to avoid scanning in the reverse direction.

4.1 BASIC OPERATION

A train approaching the scanner location turns on the system when it passes over the advance wheel detector, figs.4.1a or 4.1b. A control pulse generated by the wheel opens the scanner door and starts the pen recorder.

Figure 4-10-Basic arrangement of a bidirectional system - single-junction box arrangement - for systems manufactured after 1974.

Fig 4-1b. Basic arrangement of a bidirectional system

The passage of each wheel over the scanner wheel detector results in a pulse that is processed by the gate generator and amplifier gate units located in the way side housing. The output ultimately operates the optical shutter in the radiometer (located in the scanner) to briefly expose a small infrared detector. Radiated infrared energy from the passing journal is collected and focussed on the detector which produces a current proportional to the total amount of collected infrared energy. The current is converted to a voltage and amplified in the radiometer. This voltage pulse is fed to the amplifier gate unit to drive pen recorder.

After scanning the last journal, a timing network on the gate generator unit allows 14 seconds to elapse, and then closes the scanner door. About 1.5 seconds later a check pulse causes the radiometer to view a reference target on the inside of the scanner door to determine that the system is functioning properly. The system now reverts to a standby mode during which system sensitivity is automatically checked and adjusted in every minute.

4.2 SCANNER

The radiometer is mounted at an angle in the bottom of the scanner case, Fig. 4.2, so that its window is protected from snow, dirt, etc. A front surface mirror, also mounted in the bottom of the scanner case, is made of chromium-plated brass which is polished on both sides. Should it become

scratched after several years use, it can be turned over. The 2 watt mirror heater is continuously energized from the 24 volt dc supply.

The radiometer is hermetically sealed to prevent the entry of dirt and moisture.

The detector, a one millimeter square metallic crystal, changes its resistance when exposed to infrared radiation - it is photoconductive. A thin layer of vapor deposited metal on the surface of the detector reflects visible light but allows heat to pass.

The detector is accurately located at the focus of a precise system of flat and parabolic front surface mirrors. This optical system focuses a beam of heat from a $\frac{1}{2}$ inch square spot on the wheel hub through the open scanner door to the chrome mirror in the bottom of the scanner case, thence to the parabolic mirror in the radiometer, the flat mirror on the inner side of the radiometer window, and to the infrared detector.

The shutter normally interrupts the beam of heat to prevent undesired stray infrared radiation from striking the detector. The passage of a wheel over the scanner wheel detector generates a gating pulse which rotates the shutter to expose the detector at the precise instant the wheel hub comes into the field view. The shutter is open only a few

Fig. 4-2 Scanner.

milliseconds, thus establishing the length of the heat pulse generated by the detector. The heat pulse is amplified in a high-gain preamplifier, located in the radiometer, and fed to a line driver.

4.2.1 Door and Cover

The door located in the scanner cover, Fig. 4.2, is opened by a rotory solenoid and closed by a spring and counterbalance weight. The solenoid is connected to the door by a dead center mechanism which locks the door to discourage vandalism. The return spring is not effective as the door starts to open, thus the full power of solenoid is able to set the door in motion and fully stretch the spring at the open position. When energy is removed from the solenoid, the spring quickly closes the door. The 20 watts heater on the door melts accumulated snow.

4.2.2 Reference Target and Sensor

The reference target, Fig. 4.2, a heater mounted on the underside of the door, and the sensor, attached to the front of the scanner case, are parts of the systems self calibration feature.

4.2.3 Blower

The blower is equipped with a replaceable type filter, a screen, snow baffles, and a hood. The filter should last for

several months, depending upon environment conditions.

4.2.4 Wheel Detectors

The wheel detector is epoxy encapsulated magnetic device tie-mounted on the inside of the rail about 1/4th inch below the location of the wheel flange. This type of mounting eliminates the need for rail drilling and the problems of rail creepage. The magnetic structure contains permanent magnets which set up a flux field through the coil. When the wheel approaches, Fig. 4.3, the magnetic flux builds up until the wheel is exactly over the centerline of the structure and then decays as the wheel recedes. A current is generated in the coil, the action of this flux current has one polarity during flux build up and the opposite during flux decay.

The point of current reversal is accurate to wheel centre position within \pm 1/4th inch. The coil is protected from lightning damage by the arresters in the main junction box, Fig. 4.1a or by the associated arrester box, Fig. 4.1b.

4.3 OPERATION

As the train approaches the scanner location, it first passes over either advance wheel detector 3 or 4, Fig. 4.1a or Fig. 4.1b. This announces the arrival and will readies the system for operation. It also establishes train direction, which is used to select the scanner wheel detector preceding the centerline of the scanner. For example, if advance wheel

Figure 4-3.
Wheel detector output current.

detector 3 is actuated, scanner wheel detector 1 is selected. This direction is referred to as direction 1-2, with reference to the scanner wheel detectors.

The train next actuates WD1 which causes the scanner to scan the journals and convert radiated heat energy to electricity on a proportional basis. The electrical analog of the wheel heat profile is carried by cable to the housing where electronic equipment extracts the information desired.

The activation of an advance wheel detector and selected scanner wheel detector operates a 14-second timer which keeps the system in operation. When train slows and stops at the scanner installation, the timer times out and the scanner reverts to standby operation. If a track circuit relay contact is available, or if overlay transciever is provided, the direction of train movement is retained. If, however, no track circuit information is available, the train direction is lost. For this reason, track circuits are recommended where trains may stop. When the train starts again, the first wheel over an active wheel detector reactivates the system which continues to scan the remaining wheels until last wheel passes. After 14 seconds, the system again reverts to standby operation, and when the track circuit clears the directional memory is released.

4.3.1 System on Standby

During the absence of a train, the wheel Thermo-Scanner system is on standby. Standby operation involves a self-calibration feature, which once in every minute opens the radiometer shutter. The normal optical path of the radiometer is, however, blocked by the door, which is closed during standby operation. As previously described, the target on the inside of the door is heated to a temperature above ambient which is indicative of an overheated journal (hotbox). Thus the radiometer reads the temperature of the target. In the wayside housing the amplifier gate board analyses the output voltage if it is a level other than expected from a hotbox the gain of its amplifier is changed to bring the output to the proper level. This gain is controlled by 32 step digital counter.

The heavy lines on the block diagram, Fig. 4.4, outline, this operation. Starting with the heavy lined block, the normally running pulser produces pulses once in every minute. The pulses pass through the gate control circuits and open the shutter in the radiometer. With the door closed, the radiometer reads the target temperature which is translated by the preamplifier to a potential of about 1 volt. The heat pulse is fed by the line driver in the scanner back through the cable to the test unit board in the modular equipment cabinet where an electronic circuit clamps the output pulse

after a predetermined time. The clamp circuit terminates the heat pulse about 6 ms following the opening of the shutter. The heat pulse is fed to an amplifier and a peak storage device (a capacitor with isolation circuitry). The device stores the highest voltage attained from the time the shutter is opened until the signal is clamped.

A fixed voltage pulse (called a pedestal) is added to the heat pulse. The pedestal is normally 0.5 volt in height. The combined heat pulse and pedestal is fed through a gate circuit (controlled by the same gate pulse that originated the shutter movement) to the comparator.

The comparator checks that the voltage of the combined pulse (representing a hot journal) is between 1.8 and 2.2 volts. If the voltage is not within these limits, sensing circuits within the comparator step the 32-step stepper one step in the direction required to correct the situation. The 32-step stepper controls the gain of the amplifier through which the heat pulse was fed before the peak storage. When the heat pulse is low, the comparator causes the stepper to increase the gain in the amplifier so that after one or more steps the pulse is of the expected height. This ensures that, during normal operation, heat measured from an overheated journal (at the same temperature as the target) displays a 10 mm pulse. The hot journal threshold.

Fig. 4-4. Block diagram, bidirectional system operation.

A supplemental comparator circuit, the pulse rate selection governs the pulse rate of the normally running pulser by increasing the rate from one per minute to ten per minute any time the comparator detects a pulse out of tolerance. This ensures prompt correction of any gain change and is especially valuable during the initial start up and test. Things which might cause a change in the heat pulse output are dirt on the optics, component aging, ambient temperature changes and faulty system alignment.

A second supplemental circuit in the 32-steps stepper is an alarm circuit. It senses when stepper has stepped either to the top or bottom of its range. The circuit then causes the pedestal selection to double the pedestal voltage. This switches on a transistor relay driver (for external alarm) to warn the person reading the tapes that the system is no longer able to compensate for whatever condition is causing the heat pulse reduction. When such a condition is corrected the comparator steps the gain back down again to get the heat pulse within tolerance. The comparator does not operate during normal system operation; just during standby.

4.3.2 Train Approaches

As the train approaches the scanner site, it occupies the track circuit (if one has been provided) so the direction established when the train first actuates the advance wheel

detector is maintained during the trains presence. This may be a spare contact on an existing track relay, if such is available or it can be a series overlay.

The train after occupying the track circuit, passes over the advance wheel detector. The electrical pulse generated by the wheel detector coil is fed over a cable to the wayside housing where it is amplified and shaped by an amplifier - stretcher that picks up an interlocked relay in the direction unit board (the direction selector) to establish the train direction. The relay is held by the track circuit. The activated direction selector selects the proper wheel direction for operating scanner.

The gate generator associated with the advance wheel detector and the selected scanner wheel detector have a second output - to provide an advance start for taking the system out-of standby and readying it for operation. The advance start circuit actuates a 14 second timer which is reset to zero when a wheel passes a wheel detector. The timer in turn operates a moving train relay as long as wheels keep resetting the timer and turns off 14 seconds after the last wheel pulse. While the relay is energized, a pulse is delivered to the recorder run memory which activates pen recorder. A second function of this relay is to open the scanner door, removing the calibration target from the view of the detector. A third function is to stop the normally running pulser and hold the

comparator and therefore, the 32-step stepper position it had attained at the time of the trains arrival.

The distance between the advance wheel detector and the selected scanner wheel detector must be long enough to allow the door to open, before the train reaches the scanner.

When a wheel passes the selected scanner wheel detector, the associated gate generator applies a 24 ms pulse to the gate control circuitry in the same manner as the normally running pulser did during standby operation. The gate control circuitry opens the shutter allowing a detector to view the passing wheel hub, which has in the meantime moved into view. The heat received during the wheel scan is converted into electrical energy in the same manner as described under standby operation. The heat pulse is gated, amplified, stored, stretched, and added to the pen recorder where it is displayed.

4.3.3 Train Leaves

When the last wheel passes over the trailing advance wheel detector, the 14-second timer receives its last pulse. 14-seconds later, the timer turns off the moving train switch which closes the scanner door, thus interposing the calibration target in the detector field of view. The off pulse of the moving train switch starts a second timer which, $1\frac{1}{2}$ seconds later (to give the door time to close) puts a single pulse into the pulser to open the shutter in the usual way. One and a half seconds after

the second timer operates, a third timer operates which turns off the recorder run memory. The action is the same for a train that slows and stops.

Following the scanner shutdown, calibration pulse, and recorders shutdown, the train eventually clears the track circuit. When it does, the directional memory is dropped and the system is ready once more to accept a train from either direction. The system is now in standby and returns to its self-compensating function.

CHAPTER 5

PROPOSED SYSTEM

The proposed system takes care of the signals that come from both hotbox detector and axle counter transducers and gives appropriate indication after processing them. The software that takes care of both functions of hotbox detection and axle counting is developed for M6800 based system and tested by simulating real time signals using a toy train. This chapter gives detailed description of the specifications of the proposed system, how they are proposed to be met and the approach taken in the development of the software.

5.1 SIGNALLING SCHEME

5.1.1 Specifications

The specifications that are typical are given below :

1. The track mounted electronic detection equipment shall be non-contact type and will not infringe the standard moving dimensions. It shall consist of a suitable transmitter and receiver with an electronic junction box. The transmitter is to give an output at $5 \text{ KHz} \pm 15 \text{ Hz}$ frequency. It shall electronically sense the passage of wheels and transmit modulated signal at $5 \text{ KHz} \pm 15 \text{ Hz}$ and shall be actuated by wheel flanges and not by other parts of the train (rail brakes, toilet pipes, suspended clamps etc) and its operation

shall be independent of

- a) the type and condition of the wheels such as diameter, design of wheel, wear and tear permitted,
 - b) the type of rail section and construction such as welded or non-welded rails and
 - c) the type of traction such as electronic, diesel or steam and the weight of rolling stock.
2. The information generated by the track detection equipment shall be processed by a microprocessor based system.
 3. The equipment shall count in or count out the axles at every end of the nominated track section depending upon the direction of the train.
 4. The equipment should be capable of being connected with four detection points simultaneously with one processor.
 5. The operation of the equipment shall be fully reliable at all train speeds in the range of '0' to 200 km per hr. The equipment shall ensure that until all the axles that enter a section are completely counted out, the section concerned shall not be shown as clear.
 6. The equipment shall be capable of simultaneously counting in and counting out, that is simultaneous counting in and counting out of the pulses from any end shall not interfere with each other.
 7. The equipment shall not be susceptible to operation by maintenance tools at or near the track equipment.

8. The equipment shall be insensitive to extraneous magnetic or electrical fields (such as due to traction return currents or electrified traction motor fields, vehicle magnets for induction train control, wheels with residual magnetism etc., or due to any other sources).
9. Detecting equipment at a junction of two consecutive sections shall be able to control separate processors for each section, i.e., each detection point should be capable of being fed to two systems.

To meet the above mentioned specifications axle counting scheme is chosen because of the advantages mentioned in Chapter 3. The software developed assumes that the processed signals are available to take the necessary decision. The following scheme is suggested for processing the signals available at the input of the indoor equipment.

5.1.2 Proposed Signal Processing Scheme for Axel Counting

Proposed signal processing of each output of the track transducer is given schematically in Fig. 5.1. This uses coherent demodulation of AM signal available at the indoor equipment. In this coherent demodulation PLL is used for tracking the carrier signal.

A major advantage of proposing PLL based coherent AM demodulation is that it track the 5 KHz signal even the oscillator drifts, due to various environmental conditions.

FIG.5.1. PROPOSED SIGNAL PROCESSING SCHEME

5.1.3 Basic Approach Involved in Axle Counting

Fig. 5.2 shows a length of track monitored with one pair of transducers at one end. The relative positions of the transitions with respect to each other of the waveforms A and B, which are the outputs of the transducers A and B respectively contain the complete information regarding the movement of an axle across the transducer - pair and the direction.

Eight unique events are shown corresponding to a transition on one waveform and a level in the other waveform, in Tables of Fig. 5.2. These events are labelled IN1, IN2, OUT1, OUT2.

The system must identify two types of train movements on the track - through running and shunting. Four cases are enumerated below corresponding to shunting and through running. The sequence of events that would occur in the waveforms A and B are given in Fig. 5.2.

(Case 1) : Only one track transducer is affected by the wheel (Fig. 5.3a).

partial shunting (Case 2) : The signal of track transducer 'A' is dipped first and this is followed by 'B'. The wheel now draws back, clearing transducer 'B' first and finally transducer 'A' is also cleared. This corresponds to shunting movement into the track section and back without getting fully into

COUNT TO BE INCREMENTED	
A	B
↑	IN1
↓	IN2
↑	IN1
↓	IN2

COUNT TO BE INCREMENTED	
A	B
↑	OUT1
↓	OUT2
↑	OUT1
↓	OUT2

FIG. 5.3b PARTIAL SHUNTING

FIG. 5.3 VARIOUS TRAIN MOVEMENTS

Shunting (Case 3) : The above movement is continued further than case 2 to clear transducer 'A' but not 'B'. The wheel now moves back in opposite direction reoccupying 'A' and finally clears both 'A' and 'B'. This is the case of shunting (Fig. 5.3c).

Through running (Case 4) : Both A and B are occupied and cleared successively.

The status of the track, CLEAR or ENGAGED, is indicated based on the number of occurrences of the events IN1, IN2, OUT1, OUT2; when IN1 equals OUT1 and IN2 equals OUT2 CLEAR signal is given, otherwise ENGAGED signal is given.

5.2 HOTBOX DETECTION

A conventional infrared hotbox detector is proposed. The output of the detector is transmitted to the indoor equipment when this signal exceeds a pre-set threshold, an indication is given to the microcomputer. The microcomputer then having been interrupted announces the occurrence of a hotbox and indicates the number of the axle to which it corresponds.

Certain assumptions are made in the implementation of the software for the hotbox detection system. These are given below along with the proposed layout of the transducers.

5.2.1 Assumptions

Since both the hotbox detection system and the axle

FIG 5.4 PROPOSED LAYOUT OF THE TRANSDUCERS

counting system are implemented through the same software, the following assumptions are made in the implementation of the hotbox detection system.

1. Hot axle transducers are kept at one end of [redacted] track that is maintained for axle counting system, [redacted] it is sufficient to detect the hotbox at one end.
2. Hot axles are detected for through running only. [redacted] is expected that a hotbox does not occur for trains in shunting as they move very slowly.
3. It is assumed that hotbox detector is placed by the side of the axle counting transducer pair.

5.2.2 Proposed Layout

A proposed layout of the axle counting transducers and the hotbox detector corresponding to a section of the track is shown schematically in Fig. 5.4.

CHAPTER 6

SOFTWARE DETAILS

Software is developed for a combined system of axle counting and hotbox detection. The software is developed for Motorola 6800 microprocessor based system. Although any other microprocessor can meet the requirements, M6800 is chosen because of the availability of its software development system. The developed software takes care of four detection point , axel counting system. The system provides a visual information of the movement of a train on the track at a remote location, say the control room.

From the schematic diagram of Fig. 6.1 it is seen that eight processed signals from four axle counting transducer pairs are given to the logic that generates a pulse whenever a change occurs in the status of the transducer outputs. This pulse is given to one of the interrupt pins of the Peripheral Interface Adapter (PIA), that is programmed for a high to low transition to produce an interrupt to the Microprocessor Unit (MPU). The output from hotbox detector and lock indicator output are given to another pair of interrupt pins of the PIA. Whenever, an interrupt is recognised MPU checks the source of the interrupt and processes it as described in the subsequent sections of this chapter.

FIG. 6.1 SCHEMATIC DIAGRAM OF THE MICRO-COMPUTER

FIG. 6.2 MAIN FLOW-CHART

A brief flow chart of the developed software is given in Fig. 6.2. At the outset, the system initializes the peripherals, and clears the buffers and the counters. Then the appropriate track configuration is displayed with a message 'TRACK IS CLEARED'. Afterwards the MPU waits for an interrupt. If an interrupt is recognised, it checks for the source of the interrupt, and goes to the appropriate routine depending upon the source of the interrupt and does the necessary action as described in the subsequent sections. Then, it goes to the display routine whenever there is no interrupt and starts displaying the contents of the buffer. During display, if an interrupt is recognized it attends to the interrupt routine, storing the present status and then comes back to the original display routine with the help of the stored status. The detailed discussion is given in the subsequent sections.

6.1 INITIALIZATION

In the initialization-routine, PIA is initialized depending on the requirements on the inputs available and outputs required.

The M6800 PIA provides a flexible method of connecting byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the MPU to handle a wide variety of equipment types with minimum additional logic and simple programming. An Input/Output Diagram of the MC6820 is shown in Fig. 6.3.

FIG.6.3 MC68820 FPIA I/O CONFIGURATION

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional data lines D0 through D7. The direction of data flow is controlled by the MPU via the Read/Write input to the PIA.

The 'MPU side' of the PIA also includes three chip select lines, CS0, CS1 and CS2, for selecting a particular PIA. Two addressing inputs RSO and RS1, are used in conjunction with a control bit with the PIA for selecting specific registers in the PIA. The MPU can read or write into the PIA's internal registers by addressing the PIA via the system Address Bus, using these five input lines and the R/W signal. From the MPU's point of view each PIA is simply four memory locations that are treated in the same manner as any other read/write memory.

The MPU also provides a timing signal to PIA via the Enable input. The Enable (E) pulse is used to condition the PIA's internal interrupt control circuitry and for the timing of the peripheral control signals. Since all data transfers take place during the ϕ_2 portion of the clock cycle, the Enable pulse is normally ϕ_2 .

The 'Peripheral side' of the PIA includes two 8 bit-bidirectional data bus (PA0-PA7 and PB0-PB7) and four interrupt/control lines CA1,CA2,CB1 and CB2. All of these lines on the 'Peripheral side' of the PIA are compatible with Standard TTL logic.

An expanded Block Diagram of the PIA is shown in Fig. 6.4. Internally, the PIA is divided into two symmetrical independent register configurations. Each half has three main features : an output register, a control register and a Data Direction Register. It is these registers that the MPU treats as memory location i.e., they can be either read from or written into. The output and Data Direction Registers on each side represent a single memory location to the MPU. Selecting between them is internal to the PIA and is determined by a bit in their control register.

The Data Direction Registers (DDR) are used to establish each individual peripheral bus line as either an input or an output. This is accomplished by having MPU write 'ones' or 'zeros' into the eight bit position of the DDR. Zeros or ones cause the corresponding peripheral data lines to function as inputs or outputs, respectively.

The Output Registers, ORA and ORB, when addressed , store the data present on the MPU Data Bus during an MPU write operation. This data will also appear on those peripheral lines that have been programmed as outputs. If a peripheral lines has been programmed as an input, the corresponding bit position of the output register can still be written into by the MPU, however, the data will be influenced by the external signal applied on that peripheral data line.

FIGURE 6-4 MC6820 PIA -- Block Diagram

Determine Active CA1 (CB1) Transition for Setting Interrupt Flag IRQA(B)1 – (bit b7)

- b1 = 0 · IRQA(B)1 set by high-to-low transition on CA1 (CB1).
- b1 = 1 · IRQA(B)1 set by low-to-high transition on CA1 (CB1).

IRQA(B) 1 Interrupt Flag (bit b7)

Goes high on active transition of CA1 (CB1). Automatically cleared by MPU Read of Output Register A(B). May also be cleared by hardware Reset.

CA1 (CB1) Interrupt Request Enable/Disable

- b0 = 0 · Disables IRQA(B) MPU interrupt by CA1 (CB1) active transition.¹
- b0 = 1 · Enables IRQA(B) MPU interrupt by CA1 (CB1) active transition.

1. IRQA(B) will occur on next (MPU generated) positive transition of b0 if CA1 (CB1) active transition occurred while interrupt was disabled.

IRQA(B)2 Interrupt Flag (bit b6)

CA2 (CB2) Established as Input (b5 = 0) · Goes high on active transition of CA2 (CB2). Automatically cleared by MPU Read of Output Register A(B). May also be cleared by hardware Reset.

CA2 (CB2) Established as Output (b5 = 1) · IRQA(B)2 = 0, not affected by CA2 (CB2) transitions.

Determines Whether Data Direction Register Or Output Register is Addressed

- b2 = 0 · Data Direction Register selected.

- b2 = 1 · Output Register selected.

CA2 (CB2) Established as Output by b5 = 1

CA2 (CB2) Established as Input by b5 = 0

- b3 = 0 · Disables IRQA(B) MPU interrupt by CA2 (CB2) active transition.¹
- b3 = 1 · Enables IRQA(B) MPU interrupt by CA2 (CB2) active transition.

1. IRQA(B) will occur on next (MPU generated) positive transition of b3 if CA2 (CB2) active transition occurred while interrupt was disabled.

Determines Active CA2 (CB2) Transition for Setting Interrupt Flag IRQA(B)2 – (bit b6)

- b4 = 0 · IRQA(B)2 set by high-to-low transition on CA2 (CB2).

- b4 = 1 · IRQA(B)2 set by low-to-high transition on CA2 (CB2).

FIGURE 5-5 PIA Control Register Format

During an MPU Read operation, the data present on peripheral lines programmed as inputs is transferred directly to the system Data Bus. Due to differing circuitry, the results of reading positions programmed as outputs differ slightly between sides A and B of the PIA. On the B side, there is three-state buffering between Output Register B and peripheral lines such that the MPU will read the current contents of ORB for those bit positions programmed as outputs. During an MPU Read of the A side, the data present on the peripheral lines will affect the MPU Data Bus regardless of whether the lines are programmed as outputs or inputs. The bit positions in ORA designated as outputs will be read correctly only if the external loading on the peripheral lines is within the specifications for one TTL load. That is, logic one used could be read as a logic zero if excessive loading reduced the voltage below 2.0 Volts.

The two control registers, CRA and CRB, allow the MPU to establish and control the operating modes of the peripheral control lines CA1, CA2, CB1 and CB2. It is by means of these four lines that control information is passed back and forth between the MPU and peripheral devices. The control word format and a summary of its features is shown in Fig. 6.5.

The following are the input signals available for processing :

1. Eight processed signals from the axle counter transducers.

2. One signal from the lock indicator output to be given to one of the interrupts pins of the PIA.
3. One signal from the hotbox detector output to be given to another interrupt pin of the PIA.
4. Another input which is produced by the logic, from the eight axle counter transducer signals for producing interrupts
5. A signal by whose status the processor would be able to decide upon the information about the track configuration at which transducers are installed.

The outputs to be provided from the PIA are :

1. to energize CLEAR relay to give CLEAR indication at the track side
2. to energize ENGAGED relay to give ENGAGED indication at the track side
3. to energize FAULT relay to give FAULT indication.

Therefore, it is necessary that three of the four interrupt pins of the PIA have to be enabled to produce an interrupt to the MPU. Although interrupt pins can be programmed to be active for any transition (high to low or low to high), they are programmed for high to low transition to be active. That is whenever a high to low transition is recognised on these pins an interrupt is generated by the PIA to the MPU. Eight pins of the peripheral side A of the PIA are programmed as inputs and are given processed signals

of the axle counter transducers. Pin PB7 of the peripheral side B is programmed as input whose status gives an information about the track configuration to the processor. All other pins of the peripheral side B of the PIA are programmed as outputs out of which PBO gives ENGAGED indication, PB1 gives CLEAR indication and PB2 gives FAULT indication. That is whenever CLEAR indication is to be given PB1 is made logical one by the MPU. Similarly, PBO for the ENGAGED signal PB2 for the FAULT signal are made logical 1. The algorithm for initialization is given below.

Initialization algorithm :

1. Select the control registers of A side and B side (select PIACRA, PIACRB)
2. Select the Data Direction registers of sides A and B side (PIADRA, PIADRB) by writing bit 8 of PIACRA, PIACRB as zero (Fig. 6.5)
3. Make the PAO through PA7 pins as inputs by writing all bits of PIADRA as 'zeros'.
4. Make PBO through PB6 as outputs and PB7 as input by writing all bits of PIADRB as 'ones' except eighth bit.
5. Select PIACRA and PIACRB.
6. Select both the output registers and make the interrupt pins to be active for high to low transition by writing the bits of PIACRA, PIACRB accordingly.

The actual program can be seen from the initialization routine in the program listing given at the end of the thesis.

6.2 CLEARING THE COUNTS AND BUFFERS

After the initialization is over the program has to clear the screen, and the buffers and counters maintained. In random access memory (RAM) these counters and buffers are maintained. These counters and buffers are maintained in consecutive locations in the RAM so that a small loop of about 5 lines of program can clear them. In the RAM two types of counters are maintained. One is four sets of local counters and the other is global counters. Each set of the local counters contains local IN1, local IN2, local OUT1, local OUT2 in it and these are incremented only when the MPU decides that the count generated is due to its corresponding transducer pair. Global counters also contains global IN1, global IN2, global OUT1 and global OUT2 in it and are incremented correspondingly whenever any of the corresponding local count is incremented. That is whenever any of the local IN1 is incremented global IN1 is incremented, whenever any of the local IN2 is incremented global IN2 is incremented and so on. In the program five buffers are maintained for storing the information of the counts to be displayed by the display routine. The buffers contain the following information.

1. The code for the graphics cursor position where the counts are to be displayed on the CRT screen.
2. IN and OUT counts to be displayed in binary form.
3. Code for the message to be sent to the terminal about the occupancy of the track section.

6.3 DISPLAYING THE TRACK CONFIGURATION

After clearing the screen, the buffers and the counters, the program checks the status of the pin PB7 of the PIA. If it is zero the pictorial representation of track configuration shown in Fig. 6.6a is displayed with the message 'TRACK IS CLEARED', otherwise the track configuration shown in Fig. 6.6b is displayed on the CRT terminal. After displaying the appropriate track configuration the processor stores the status of the track transducers outputs in a status byte maintained in the RAM and then waits for an interrupt.

When an interrupt is recognised processor checks the source of the interrupt by checking the 8th and the 7th bits of PIACRA and PIACRB. If the eighth bit of PIACRA is set then processor branches over to the axle counting routine. If the 7th bit of PIACRA is set it knows that the interrupt is due to lock indication failure and gives a fault indication. If the 8th bit of PIACRB is set then it jumps to the hotaxle routine.

a

b

FIG.6.6.PICTORIAL REPRESENTATION OF
THE TWO POSSIBLE TRACK-
SECTIONS

6.4 AXLE COUNTING ROUTINE

After recognising that the interrupt is generated due to the axle counting transducers, processor takes the present status of the track transducers and does 'exclusive-OR' with the previous status stored in the status byte to find the particular transducer that has changed its status due to the wheel of the train. At the same time it makes PBO 'logical1' to indicate that the track is ENGAGED. Then the particular bit of the status byte corresponding to the changed status is updated accordingly. Afterwards the processor checks for the status of the other transducer in the transducer pair and increments the corresponding Global count. Then it checks for the vacant buffer and fills the first byte of the buffer with the code corresponding to the graphic cursor position of the local count to be displayed. In the RAM one buffer flag corresponding to each buffer is maintained to indicate whether that buffer is full or vacant. A buffer flag is zero indicates the vacancy and new data can be entered, otherwise the buffer is full. Then it increments the corresponding local count and fills the consecutive bytes of the buffer with the binary value of the local count to be displayed. Finally, last byte of the buffer is filled with the code corresponding to the message to be displayed on the CRT terminal. Then the buffer flag is cleared. If this byte is zero the message 'TRACK IS ENGAGED' is displayed, otherwise 'TRACK IS CLEARED' is

**FIG. 6 DETAILED FLOWCHART OF
AXLE COUNTING**

displayed. If the track is cleared PB7 is made 'logical1' indicating that the track is clear which energises 'CLEAR RELAY'. Before incrementing outcount the processor checks that the corresponding incount is zero or not. If it is zero it gives fault signal because without an incount, outcount cannot be registered. This shows some extraneous signal or some malfunctioning of the processor or peripherals.

After incrementing the appropriate count and filling the corresponding buffers the processor goes to the display routine and it starts displaying the counts and the message about the track status. After it completes displaying one buffer it clears the buffer flag indicating that new data can be loaded into it. In this processes of display if any interrupt is recognised the processor stops the display at that point storing the information about its status and attends to its interrupt routine and comes back to its original status and starts doing it. If again an interrupt is recognised similar action takes place. If all buffers are displayed and still interrupt is not recognised then processor waits for an interrupt. In displaying the count it changes the binary count stored to decimal count and displays. Shunting movement of a train can be interpreted if both IN count and OUT count are displayed at the same transducer. This count does not correspond to the exact number of wheels entered or left the track because one wheel can produce all

the count, whereas in through running this corresponds to the exact number of wheels that have entered and left.

6.5 HOTBOX DETECTION ROUTINE

After recognising that the interrupt is due to [redacted] output from the hotbox detector, processor comes to this routine.

When first incount is registered in axle counting routine, processor checks whether this incount is generated by the axle counting transducer kept by the side of the hotbox detector. If not, 'Hotbit', which is maintained in the RAM is cleared. This hotaxle detection routine first checks whether 'hotbit' is zero or not. If it is zero it assumes that hotxle is produced when train is entering the track and it takes incount for displaying the number of wheel. Otherwise outcount is taken for displaying the exact number of wheel which is hot. Details can be seen from the programme listings given at the end of the thesis.

CHAPTER 7

CONCLUSIONS

The software is developed for a combined system of axle-counting and hotbox detection, assuming that the processed signals are available from the respective transducers.

The software has the following features :

1. It takes care of four detection point axle-counting system and can easily be modified for more detection points.
2. It has the maximum counting capacity of 2^{15} wheels, which can be extended further.
3. It provides a visual information of the status of the track-section of interest.
4. In the fail safety point of view, although it can not pinpoint the particular component in the system that is mal-functioning, it provides a 'FAULT' indication along with the 'ENGAGED' signal whenever there is a lock-failure or some other failure producing logically in-compatible count.

The system has been tried out successfully by simulating real time signals using a toy train system. However, a more thorough testing of the performance of the system in an actual environment is required.

The following features can be incorporated for the further improvement of the present system.

1. To facilitate a convenient visual display for the status of the track, it is suggested that the track section that is engaged is displayed differently, for example by a dotted line, compared to the section that is clear. At the approaching point for the engaged track section only the incount need be displayed and at the outgoing point the outcount.
2. After the completion of the display function, the processor can be used for self-check of the system, before an interrupt is recognised. This ensures improved fail-safety and better utilization of the microprocessor capabilities.
3. Instead of making the decision about the occurrence of the hotbox on a pre-set threshold, it is preferable to record the output of the hotbox detector corresponding to the each of the bearings and suitably process them. A decision based on such a scheme will result in lesser false alarms, [e] because in this case the threshold will be set according to the actual average conditions of the bearings of the particular train, rather than a global minimum threshold set apriori.

REFERENCES

1. Robert N. Doble, 'How present detectors can aid track circuits in class yards', Railway Signalling and Communications, June 1963, vol. 56, No.6, pp. 30-32.
2. 'C and S sectional Meetings', Railway Signalling and Communications, August 1965, vol. 56, No.8, pp. 13-20.
3. 'Track circuits - non-coded DC', Railway Signalling and Communications, November 1965, vol. 58, No.11, pp.22,44.
4. 'Track circuits - non-coded DC', Railway Signalling and Communications, December 1965, vol. 58, No.12, pp.30,34.
5. 'Track circuits - non-coded DC', Railway Signalling and Communications, January 1966, vol. 59, No.1, pp.36-42.
6. W.M. Pelino, 'Hotbox detectors : Transient state shown', Railway Signalling and Communications, February 1964, vol. 57, No.2, pp. 16-19.
7. Earl Taylor, 'GE approach to hotbox detection', Railway Signalling and Communications, August 1966, vol. 59, No.7, pp. 19-22.
8. 'GRS optically gated wheel thermo-scanner unit', General Railway Signal, 1979.
9. 'A User's guide to the silicon chip Microprocessors', Railway Gazette International, November 1981, vol. 137, No.11, pp. 943-957.

10. 'M6800 Microprocessor Application Manual', Motorola Semiconductor Products Inc., 1975.
11. 'M6800 Microprocessor Programming Manual', Motorola Semiconductor Products Inc., 1975.

APPENDIX

The simulated signals are generated using photodetectors and light sources. When train passes over the light source the required transition is produced.

The circuit diagram used for interrupt generation is given in Fig. A-1. Only two detection point axle counting system is simulated because of the nonavailability of cross-overs. The signals from the transducers are given to one port of 4-bit magnitude comparator (7485). The same signals are given to D-flip flops, whose outputs are given to the other port of the comparator. 'A=B' output is given to a monoshot and clock pin of D-flip flops through AND gate whose other input is output of a oscillator. The details can easily be understood from the circuit diagram.

FIG. A. INTERRUPT GENERATION CIRCUIT

A S S E M B L Y - L I S T I N G

FPCF	ACIAFP	EQU	\$FPCE
FPCF	ACIASF	EQU	\$FPCE
FPCF	ACIAFF	EQU	\$FPCE
0030	STOPEA	EQU	\$0030
FPC9	FIACFA	EQU	\$FPCE
FPC8	FIACFA	EQU	\$FPCE
FPC8	FIADFA	EQU	\$FPCE
FPCA	FIADFP	EQU	\$FPCE
FPCA	FIADPP	EQU	\$FPCE
FPCP	FIACFP	EQU	\$FPCE
0000	STPYT	EQU	\$0000
0001	CNT1	EQU	\$0001
0002	CNT2	EQU	\$0002
0002	INII	EQU	\$0003
0004	INI	EQU	\$0004
0005	IN22	EQU	\$0005
0006	IN2	EQU	\$0006
0007	OUTII	EQU	\$0007
0008	OUT1	EQU	\$0008
0009	OUT22	EQU	\$0009
000A	OUT2	LCL	'PLT'
000B	CHPYT1	EQU	\$002E
0021	CHPYT2	EQU	\$002C
0021	CHPYT3	EQU	\$002I
002E	CHPYT4	EQU	\$002E
002F	HTPIT	EQU	\$002F
0003	CLPIND	EQU	\$0003
002A	CLPEII	EQU	\$002A
E009	INDEX	EQU	\$E009
E000	INDEX1	EQU	\$E000
0031	INDEX2	EQU	\$0031
0033	SAVFP	EQU	\$0033
0034	SAVEX1	EQU	\$0034
0035	PFLIND	EQU	\$0036
0040	PUF1PT	EQU	\$0040
0041	PUF2PT	EQU	\$0041
0042	PUF3PT	EQU	\$0042
0043	PUF4PT	EQU	\$0043
0044	PUFFFPT	EQU	\$0044
0045	PUFINI	EQU	\$004E
0064	PUFEND	EQU	\$0064
0047	ISTHUF	EQU	\$0047
0041	SNIPLF	EQU	\$004D
0053	THDPUF	EQU	\$0053
0059	FPTPUF	EQU	\$0059
005F	FFHEUF	EQU	\$005F
FFF8	INTVCT	EQU	\$FFF8
E000		PMG	\$E000
E000		PMF	1
E001	80 40 20	FCB	\$80,\$40,\$20,\$10,\$08,\$04,\$02+\$01
E009		PMF	2
F00F	00 0F 00	FCB	\$00,\$0E,\$00,\$13,\$00,\$1B,\$00,\$23
E013	0F 0A FF	NEGI	\$0D,\$0A,\$FF
		FCF	

E041	01 03	HTIT	FCP	\$01,\$03
E042	1P 2A	**	FIGFE1	-- GFAPHICS DATA FOR FIGURE ONE
E04F	70 61 22		FCB	\$1P,\$2A
0,502*			FCC	*PA250,150 550,150A450,150 550,250A
E076	1P 2A		FCP	\$1P,\$2A
E078	64 6P 32		FCC	*IK200,2007S*
F083	1P 2A		FCP	\$1P,\$2A
F195	6D 34 61		FCC	*M4A2M1N3CPIN OUT*
E096	1P 2A		FCP	\$1P,\$2A
E098	64 6P 35		FCC	*DK500,3007SIN OUT*
E0AA	1P 2A		FCP	\$1P,\$2A
E0AC	64 6P 35		FCC	*DK500,2007SIN OUT*
E0PF	1P 2A		FCP	\$1P,\$2A
E0CC	64 6P 35		FCC	*DK500,5007SIN OUT*
E0I1	1P 2A		FCP	\$1P,\$2A
E0I3	6D 34 61		FCC	*M4A1M1N3CP*
E0I4	1P 2A		FCP	\$1P,\$2A
F0DF	64 5A		FCC	*LT*
E0E1	FF		FCP	SFF
** FIGFE2 -- GFAPHICS DATA FOR FIGURE TWO				
E0E2	1P 2A	FIGFE2	FCB	\$1P,\$2A
E0E4	7P 61 31		FCC	*PA150,250 250,150 450,150 550,150A450,150 550,250A
E10F	32 35 30		FCF	*250,150A450,150 550,502*
E124	1P 2A		FCF	\$1P,\$2A
E126	64 6P 31		FCC	*IK100,2007S*
E131	1P 2A		FCP	\$1P,\$2A
E133	6D 34 61		FCC	*M4A2M1N3CPIN OUT*
E144	1P 2A		FCP	\$1P,\$2A
E146	64 6P 35		FCC	*DK500,3007SIN OUT*
E158	1P 2A		FCP	\$1P,\$2A
E15A	64 6P 31		FCC	*DK100,5007SIN OUT*
E16P	1P 2A		FCP	\$1P,\$2A
E16I	64 6P 35		FCC	*DK500,5007SIN OUT*
E17F	1P 2A		FCP	\$1P,\$2A
E180	6D 34 61		FCC	*M4A1M1N3CP*
E18A	1P 2A		FCP	\$1P,\$2A
E18C	64 5A		FCC	*LT*
E18F	FF		FCP	SFF
** CUPS11 -- FIRST POSITION OF THE CURSOR OF THE FIRST FIGURE.				
E18F	1P 2A	CUPS11	FCB	\$1P,\$2A
F191	64 6P 32		FCC	*IK200,1807S*
E19C	FF		FCP	SFF
** CUPS12 -- SECOND POSITION OF THE CURSOR OF THE FIRST FIGURE.				
E19D	1P 2A	CUPS12	FCB	\$1P,\$2A
F19F	64 6P 35		FCC	*DK500,1800S*
F1A8	FF		FCP	SFF
** CUPS13 -- THIPE POSITION OF THE CURSOR.				
F1A8	1P 2A	CUPS13	FCB	\$1P,\$2A
F1A1	64 6P 35		FCC	*DK500,2800S*
F1H8	FF		FCP	SFF
** CUPS14 -- FOURTH POSITION OF THE CURSOR.				
F1F9	1P 2A	CUPS14	FCB	\$1P,\$2A
F1FF	64 6P 35		FCC	*DK500,300S*
E10F	FF		FCP	SFF

** CUF\$21 -- FIRST POSITION OF THE CUF\$OF
 * OF THE SECIFI FIGURE.
 F1C6 1P 2A CUF\$21 FCP \$1P,\$2A
 F1C8 64 6P 31 FCC "TK100,2807S"
 F1D2 FF FCC \$FF
 ** CUF\$22 -- SECOND POSITION OF THE CUF\$OF
 * OF THE SECOND FIGURE.
 F1D4 1P 2A CUF\$22 FCP \$1P,\$2A
 F1D6 64 6P 31 FCC "TK100,3007S"
 E1E0 FF FCC \$FF
 F1F1 20 20 20 PLANK FCC * *
 E1FF FF FCC \$FF
 ** CL.FOP1 -- DATA STORED FOR CLEARING THE
 * COUNT DISPLAYED ON FIGURE ONE.
 E1F6 1P 2A CLFOP1 FCP \$1P,\$2A
 E1F8 64 6P 32 FCC "TK200,1807S" *
 E202 1P 2A FCC \$1P,\$2A *
 E204 64 6P 3F FCC "DK500,2807S" *
 E21F 1P 2A FCC \$1P,\$2A *
 E220 64 6P 3F FCC "DK500,3007S" *
 E23A 1P 2A FCC \$1P,\$2A *
 E23C 64 6P 3F FCC "DK500,1807S" *
 E256 1P 2A FCC \$1P,\$2A *
 E258 64 54 FCC "DT" *
 E25A FF FCC \$FF *
 ** CLFOP2 -- DATA STORED FOR CLEARING THE
 * COUNT DISPLAYED ON FIGURE-TWO.
 E25F 1P 2A CLFOP2 FCP \$1P,\$2A
 F25F 64 6P 31 FCC "TK100,2807S" *
 E277 1P 2A FCC \$1P,\$2A *
 E279 64 6P 3F FCC "DK500,2807S" *
 E292 1P 2A FCC \$1P,\$2A *
 E29F 64 6P 3F FCC "DK500,3007S" *
 E2AF 1P 2A FCC \$1P,\$2A *
 F2P1 64 6P 31 FCC "DK100,3007S" *
 E2CP 1P 2A FCC \$1P,\$2A *
 F2CF 64 54 FCC "IT" *
 F2CF FF FCC \$FF *
 ** CL.PHYT -- "CL.FAP BYTE"
 * -- USED FOR CHECKING THE EMPTINESS
 * -- OF THE TPACK SECTION.
 E2T0 FF CL.PHYT FCP \$FF
 ** CLEARD -- "CLEARED"
 * -- USED FOR SENDING THE MESSAGE
 * -- "TPACK IS CLEARED".
 E2D1 1P 2A CLEARD FCP \$1P,\$2A
 E2D3 6D 34 61 FCC "M4A2M1N3CP"
 E2T1 1P 2A FCC \$1P,\$2A
 E2DF 64 6P () FCC "TK10,3500STRACK IS CLEARED"
 E2F9 1P 2A FCC \$1P,\$2A
 E2FB 6D 34 61 FCC "M4A1M1N3CP"
 F305 1P 2A FCC \$1P,\$2A
 E307 64 54 FCC "DT"
 F309 FF FCC \$FF

* * * * * TFACK IS ENGAGED * * * * *

F30A	1P 2A	ENGAGE	FCP	\$1P,\$2A	
F30C	6D 34 61		FCC	'M4A2MIN3CF'	
F316	1P 2A		FCP	\$1P,\$2A	
F318	64 6P 21		FCC	'TK10,3F007STFACK IS ENGAGED'	
F338	1P 2A		FCP	\$1P,\$2A	
F334	6E 34 61		FCC	'M4A1MIN3CF'	
F33F	1P 2A		FCP	\$1P,\$2A	
F340	64 5A		FCC	'DT'	
F342	FF		FCP	SFF	
		**	SCFLLP	-- "SCFFFN CLEAR"	
		*		-- USED FOR CLEAVING THE	
		*		-- GRAPHICS DISPLAY ON THE CRT.	
F343	1P 2A	SCPCLP	FCP	\$1P,\$2A	
F345	64 41		FCC	"DA"	
F347	FF		FCP	SFF	
		**	PUFFLT	-- "BUFFER FAULT"	
		*		-- USED TO INDICATE BUFFER-	
		*		-- OVERFLOW.	
F348	42 FF 46	PUFFLT	FCC	"BUFFER OVERFLOW"	
E357	FF		FCP	SFF	
		**	INITPT	-- INITIALIZATION ROUTINE	
E358	86 00	INITPT	LDA A	#\$00	
F35A	P7 FP C9		STA A	PIACPA	
F35F	P7 FP CP		STA A	PIACP	
F360	C6 7F		LDA A	#\$7F	
F362	P7 FP CS		STA A	PIACPA	
E365	F7 FP CA		STA A	PIACP	
E368	86 0D		LDA A	#\$0D	
F36A	P7 FP C9		STA A	PIACPA	
F36F	P7 FP CP		STA A	PIACP	
E370	CE F3 43		LDX	#SCFLCP	CLARS THE SCREEN
F373	PF E7 CD		JSP	OUTSTF	
E376	P6 FP CA		LDA A	PIACPA	
F379	8F 90		PIT A	#\$80	
F37F	27 08		PEQ	FIG1	
E37F	CE E0 F2		LDX	#FIGFE2	
E380	PF E7 CD		JSP	OUTSTF	
F383	20 06		PPA	START1	
E385	CE E0 43	FIG1	LDX	#FIGFE1	
E388	PF F7 CT		JSP	OUTSTF	
F38P	P6 FP CS	START1	LDA A	PIACPA	
F38E	97 00		ST4	STIYT	
E390	86 01		LDA A	#\$01	
E392	97 2F		STA A	HTPIT	
E394	PF F7 0F		JSP	CLRPT	
F397	CE FP F1		LIX	#CLEAPI	
E39A	PF F7 CF		JSP	OUTSTF	
E39F	CE F6 11		LIX	#INTPT	
F3A0	FF FF FS		STX	INTVCT	
F3A2	0F		CLI		
		**		DISPLAY ROUTINE	
		**	1STPFT	-- 1ST PUFFFF-FLAG TEST	
		*		-- TESTS EMPTYNESS OF	
		*		-- THE FIRST BUFFER	
E3A4	7D 00 40	1STPFT	TST	BUFIPT	

E3A7	26 24	PNE	ISPFFL	
	**	SNDPFT	-- "2ND PUFFER-FLAG TEST"	
	*		-- TEST THE EMPTYNESS OF	
	*		-- THE SECOND PUFFER	
E3A9	"F 00 41	SNDPFT	TST	PUF2PT
E3AC	26 2C	PNE	SIFFF	
	**	THIPFT	-- "3RD PUFFER-FLAG TEST"	
	*		-- TESTS THE EMPTYNESS OF	
	*		-- THE THIRL PUFFER	
E3AF	"F 00 42	THIPFT	TST	PUF3PT
E3B1	26 24	PNF	TEPFPL	
	**	FTHPFT	-- "4TH PUFFER-FLAG TEST"	
	*		-- TESTS THE EMPTYNESS OF	
	*		-- THE FOURTH PUFFER	
E3B3	"F 00 43	FTHPFT	TST	PUF4PT
E3B6	26 2C	PNE	FTPFFL	
	**	FFHPFT	-- "5TH PUFFER-FLAG TEST"	
	*		-- TESTS THE EMFTYNESS OF	
	*		-- THE FIFTH PUFFER	
E3B4	"I 00 44	FFHPFT	TST	PUF5PT
E3BF	26 FF	PNE	FFHIFT	
E3B7	3F	WAI		
E3BF	2C F4	BPA	ISTI"	
	**	FFHBFL	-- "5TH PIFFER FULL"	
E3C0	CF 00 5F	FFHBFL	LIX	#FFHBUF
E3C3	FF 36	STX	PFLIND	
E3C5	FT F4 01	JSP	FFISPT	
E3C8	"F 00 44	CLR	PUF5PT	
E3C9	20 F7	PFA	ISTEFT	
	**	ISPFFL	-- "1ST PUFFER FULL"	
E3C1	CF 00 47	ISPFFL	LIX	#ISTPUF
E3D0	FF 36	STX	PFLIND	
E3D2	FT F4 01	JSP	FFISPT	
E3D5	"F 00 40	CLR	PUF1PT	
E3D8	20 CF	PFA	SNDPFT	
	**	SIFFF	-- "2NL BUFFEP FULL"	
E3D9	CF 00 4F	SIFFF	LIX	#SNDPUF
E3D9	FF 36	STX	PFLIND	
E3D9	FT E4 01	JSP	BFDSRT	
E3E2	"F 00 41	CLR	PUF2PT	
E3E5	20 C7	PFA	THIBFT	
	**	TDPFFL	-- "3RD PUFFER FULL"	
E3E7	CF 00 53	TDPFFL	LIX	#THDBUF
E3EA	FF 36	STX	PFLIND	
E3EC	FT F4 01	JSP	BFDSRT	
E3EF	"F 00 42	CLR	PUF3PT	
E3F2	20 FF	PFA	FTHPFT	
	**	FTPFFL	-- "4TH PUFFER FULL"	
E3F4	CF 00 59	FTPFFL	LIX	#FRTEBUF
E3F7	FF 36	STX	BFLIND	
E3F9	FT F4 01	JSP	PFDSPT	
E3FC	"F 00 43	CLR	PUF4PT	
E3FF	20 F7	BRA	FFHBFT	
	**	PFDSPT	-- "BUFFER DISPLAY ROUTINE"	
	*		-- DISPLAYS THE CONTENTS OF	

F403	81 01	CMP A	#S01
F405	27 1A	PES	FFFTPN
F407	81 02	CMP A	#S02
F409	27 20	PES	FFSTPN
F40P	81 03	CMP A	#S03
F40T	27 26	PES	THITPN
F40F	81 04	CMP A	#S04
F411	27 2C	PES	FPTTPN
F413	81 05	CMP A	#S05
F41E	27 32	PES	SFFTPN
F417	CE F1 14	LIX	#CUPS22
F41A	PD F7 CD	JSP	OUTSTP
F41T	PI F4 F3	JSP	DISPLAY
F420	39	PTS	
** FFFTPN -- "1ST FIGURE FIRST TRANSDUCER"			
F421	CF F1 MF	FFFTPN	LIX #CUPS11
F424	PI F7 CD	JSP	OUTSTP
F427	PI F4 F3	JSP	DISPLAY
F42A	39	PTS	
** FFSTPN -- "1ST FIGURE SECOND TRANSDUCER"			
F42F	CF F1 0D	FFSTPN	LIX #CUPS12
F42E	PI F7 CD	JSP	OUTSTP
F421	PD F4 F3	JSP	DISPLAY
F424	39	PTS	
** THITPN -- "THIRI TRANSDUCER"			
F43F	CF F1 AP	THITPN	LIX #CUPS13
F438	PI F7 CD	JSP	OUTSTP
F43Y	PI F4 F3	JSP	DISPLAY
F43F	39	PTS	
** FPTTPN -- "4TH TRANSDUCER"			
F43F	CF F1 P0	FPTTPN	LIX #CUPS14
F442	PI F7 CD	JSP	OUTSTP
F44F	PI F4 F3	JSP	DISPLAY
F44R	39	PTS	
** SFFTPN -- "2ND FIGURE FIRST TRANSDUCER"			
F449	CE F1 C6	SFFTPN	LIX #CUPS21
F44C	PI F7 CD	JSP	OUTSTP
F44F	PI F4 F3	JSP	DISPLAY
F452	39	PTS	
** DISPLAY -- "DISPLAY"			
* -- DISPLAYS THE CONTENTS			
* -- THE BUFFER CHOSEN			
F453	DE 36	DISPLAY	LIX PFLINI
F455	A6 01	LIA A	1,X
F457	F6 02	LIA P	2,X
F459	46	POF A	
F45A	F6	POF P	
F45P	PD F6 43	JSP	CUPTD
F45F	CE F1 E1	LIX	#PLANK
F461	PI F7 CD	JSP	OUTSTP
F464	DE 36	LIX	PFLINI
F466	F6 03	LIA A	3,X
F468	F6 04	LIA P	4,X
F46A	46	POF A	
F46F	56	POF P	

E46C	PI	F6	43		JSF	CVPTI
E4FF	TF	36			LIX	EFLINE
E471	H6	05			LIA A	S,X
E473	4I				TST A	
E474	26	07			PNE	LCLFFT
E476	CF	F2	CA		LIX	#ENGAGE
E479	PI	F7	0T		JSF	OUTSTF
E47C	39				PTS	
E47D	H6	FP	CA	LCLFFT	LIA A	PIA7FF
E480	4F	80			PIT A	#\$80
E482	27	04			REQ	LCLFTI
E484	CF	E2	FP		LIX	#CLF7F2
E487	TF	F7	0T		JSF	OUTSTF
E488	11	06			PFA	CLEARF
E48C	CF	E1	F4	LCLFTI	LIX	#CLF7F1
E48F	TF	F7	CD		JSF	OUTSTF
E492	CF	F9	F1	C1 FAP	LIX	#CLEARF
E495	H1	F7	0T		JSF	OUTSTF
E498	PI	F7	0T		JSF	CLFFT
E49F	29				PTS	
E49C	H6	FP	03	START	LIA A	PIA7RA
E49F	98	00			FOP A	STPYT
E4A1	CF	E0	00		LIX	#INIEX1
E4A4	16	01		TIPT	LIA F	#\$01
E4B6	F7	FP	CA		STA F	PIA7RF
E4B9	16	08			LIA F	#\$08
E4B4	F7	01			STA F	CNT1
E4B1	0C			LOOP2	CLC	
E4BF	46				POP A	
E4AF	97	30			STA A	STOPEA
E4Y1	2F	46			PCS A	SUPPTI
E4P3	7A	00	01	LOOP3	DEC	CNT1
E4P6	7F	00	01		TST	CNT1
E4Y9	26	FP			PNE	LOOP2
E4PP	H6	FP	CB		LDA A	PIA7RA
E4PF	H1	E2	F0		CMP A	CLREYT
E4C1	26	PC			PNP	ENGRFT
E4C3	26	04			LIA A	INI
E4C5	21	08			CMP A	OUT1
E4C7	26	26			PNE	ENGFT
E4C9	26	03			LIA A	INI1
E4CY	21	07			CMP A	OUT11
E4CF	26	20			PNE	ENGRT
E4F1	26	06			LDA A	IN2
E4F3	91	0A			CMP A	OUT2
E4F3	26	1A			BNE	ENGFT
E4F5	26	0F			LDA A	IN22
E4F7	91	09			CMP A	OUT22
E4D9	26	14			PNE	ENGFT
E4DF	86	02			LDA A	#\$02
E4DD	H7	FP	CA		STA A	PIA7RB
E4E0	DE	4F			LEX	BUFINP
E4F2	C6	01			LDA F	#\$01
E4F4	F7	0F			STA F	S,X
E4E6	3P				RTI	

PC	OP C.	ASM	LLP P	PSW
F4F9	F7 FF CA		STA A	PIAOPH
F4FC	7F F6 02		JMF	SUSPNE
		**	ENGPT	-- "ENGAGED ROUTINE"
		*		-- GIVES THE INDICATION
F4EF	86 01	ENGPT	LDA A	#\$01
F4F1	F7 FF CA		STA A	PIAOPP
F4F4	7F 4F		LIX	PUFINI
F4F6	6F 0F		CLP	EX
F4F8	31		FTI	
F4F9	F6 01	SUPFT1	LDA P	CNT1
F4FP	C1 04		CMP P	#\$04
F4F1	2E 0F		MFT	SUPFT2
F4FF	D6 01	SUPFT2	LDA P	CNT1
F501	F7 02		STA P	CNT2
F513	CF 04		ATD P	#\$04
F505	F7 01		STA P	CNT1
F507	FF FF AF		JSF	FTCNT2
F50A	96 20		LIA A	STOPFA
F50C	20 AF		HFA	LOOP3
F50F	16 01	SUPFT2	LDA E	CNT1
F510	C0 04		SUP P	#\$04
F512	F7 02		STA P	CNT2
F514	81 04		ESF	PTCNT1
F516	26 20		LIA A	STOREA
F518	20 20		HFA	LOOP3
F51A	81 5F	PT(CNT1)	HES	CHXFT1
F51C	D6 00		LIA P	STPYT
F51F	FF 00		PIT P	0,X
F520	27 11		REG	LHTFT1
		**	HLTFT1	-- "HIGH TO LOW TRANSITION ONE"
F522	F6 00		LIA P	0,X
F524	F3		COM E	
			ANE P	STPYT
F52F	14 00		STA P	STPYT
F527	F7 00		HSP	CHXFT2
F529	81 FA		LIA P	STPYT
F52H	D6 00		PIT P	0,X
F52I	FF 00		REG	OUTCNT OUTCOUNT
F52F	27 F2		HFA	INICNT INICOUNT
F531	20 12		PFA	INICNT INICOUNT
		**	LHTFT1	-- "LOW TO HIGH TRANSITION ONE"
F533	F6 00	LHTFT1	LIA P	0,X
F535	1A 00		HFA E	STPYT
			STA P	STPYT
F537	F7 00		BSP	CHXFT2
F539	81 4A		LIA P	STPYT
F53P	F6 00		PIT P	0,X
F53D	FF 00		PNE	OUTCNT
F53F	26 F2		HFA	INICNT
F541	20 02		PFA	FLPT
F543	20 AF	FLPT2	PFA	INICNT -- "INICOUNT"
		**		-- INCREMENTS THE GLOBAL AND
		*		-- LOCAL INICOUNTS
FF4F	F6 04	INICNT	LDA P	INI
FF47	FF		TST E	

FF49	26	1P		PNE	NFCT1	
FF4A	??			LDA P		
FF4B	CF	90		LDA P	#\$80	
FF4D	FF	FF	CF	RET P	FIACPP	
FF50	27	0F		PFO	ONEHP	
FF52	C1	EP	4F	LEX	#HTIT+1	
FF55	20	0?		MPS	FILE	
FF57	CF	EP	41	LIX	#HTTT	
FF5A	1F	00	ONEHD	LIA P	0,X	
FF5C	FF	FF	08	RET P	FIACPA	
FF5F	26	0?		PNE	NFCT	
FF61	7F	00	2F	CLF	HTPIT	
FF64	32		NFCT	FUL P		
FF65	5C		NFCT1	INC P		
FF66	17	04		STA B	INI	
FF68	16	03		LDA P	INIJ	
FF6A	17	00		ADC P	#\$00	
FF6C	17	03		STA P	INII	
FF6F	1P	E6	??	JSP	LCRCT1	
FF71	1P	E6	44	JSF	LINJECT	
FF74	39			RTS		
FF75	20	0C	FLPT4	MPS	FLPT2	
FF77	CF	E0	00	(HXFT)	LIX	*INDEX1
FF7A	1F	21		STX	CHPYT1	
FF7C	16	21		LDA P	CHPYT2	
FF7E	1P	01		ALL P	CNT1	
FF80	17	20		STA P	CHPYT2	
FF82	1E	21		LIX	CHPYT1	
FF84	39			RTS		
FF85	CF	E0	00	CHXFT2	LIX	*INDEX1
FF88	1F	21		STX	CHPYT3	
FF8A	16	21		LIA P	CHPYT4	
FF8C	1Y	02		API P	CNT2	
FF8E	17	21		STA P	CHPYT4	
FF91	1E	21		LIX	CHPYT3	
FF92	39			RTS		
			**	OUTICT	-- "OUTICOUNT"	
			*		-- INCREMENTS GLOBAL ALE	
			*		-- LOCAL OUTICOUNT	
FF93	1P	00	04	OUTICT	TST	INI
FF96	27	A8		PFO	FLPT2	
FF98	16	03		LDA P	OUT1	
FF9A	5C			INC P		
FF9B	17	08		STA B	OUT1	
FF9D	16	07		LDA P	OUT11	
FF9F	C9	00		ADC B	#\$00	
FFA1	17	07		STA P	OUT11	
FFA3	1P	E6	??	JSP	LCRCT1	
FFA6	1P	E6	9C	JSP	LOUT11	
FFA9	1P	E6	15	JSR	ORIGIN	
FFAC	39			RTS		
FFAD	20	C6	FLPT3	MPS	FLPT4	
FFAF	81	D4	PTCNT2	PSR	CHXPT2	
FFB1	16	00		LDA B	STBYT	

FFFO FF		COM P	UPDATING THE STATUSBYTE
FFFFA D4 00		AND P	STPYT
FFFC 17 00		STA P	STPYT
FFFE 4D H7		PSP	CHXFTI
FFC0 16 00		LIA P	STPYT
FFC2 FF 00		PIT P	0,X
FFC4 27 10		PEQ	IN2CNT
FFC6 20 22		PFA	OUT2CT
FFC8 16 00	LHJPTP2	LIA P	0,X
FFCA 1A 00		PFA P	STPYT
FFCC F7 00		STA P	STPYT
FFCF 8D A7		PSP	CHXFTI
FFD0 16 00		LIA P	SET
FF12 FF 00		PIT P	0,X
FF14 27 15		PEQ	OUT2CT
	**	IN2CNT	-- "IN2COUNT"
	*		-- INCREMENTS GLOBAL AND
	*		-- LOCAL IN2COUNTS
EFT6 1A D6	IN2CNT	LIA P	INP
FFTS FC		INC P	
FFD0 17 06		STA P	INP
FF14 16 0F		LIA P	IN2P
FFD1 C9 00		ADC P	#\$00
FF1F 17 0F		STA P	IN2P
FFF1 PI FF 77		JSP	LCLCTI
FFF4 PI E6 20		JSP	LIN2CT
FFF7 PI F6 H5		JSP	ORIGIN
FFFF 39		PTS	
	**	OUT2CT	-- "OUT2COUNT"
	*		-- INCREMENTS GLOBAL AND
	*		-- LOCAL OUT2COUNTS
FFFF 7E 00 04	OUT2CT	TST	INI
FFFF 27 H1		PEQ	FLFT3
FFFD 16 0A		LIA P	OUT2
FFFB FC		INC P	
FFF3 D7 0A		STA P	OUT2
FFFF 16 00		LIA P	OUT2P
FFF7 C9 00		ADC P	#\$00
FFF9 17 00		STA P	OUT2P
FFFH PI E6 77		JSP	LCLCTI
FFFF PI F6 A9		JSP	LOUT2T
F601 39		PTS	
E602 CF FP 13	SUFFNT	LIX	#NEGI
E605 PI F7 CI		JSP	OUTSTF
E609 CF FP 19		LIX	#FAULT
E60F PI E7 CI		JSP	OUTSTF
E60F 01	LF	NOP	
E60F 20 FI		PFA	LF
	**	INTPT	-- "INTERRUPT ROUTINE"
F611 86 80	INTPT	LIA P	#\$80
F613 PF FP C9		PIT A	PIACPA
F616 26 1F		HNE	START2
F618 PF FP CF		PIT A	PIACPF
F61F 26 03		PNE	HAITPT
F61F PF F4 F7		JSP	FLPT

F620	7F 00 2F	HALTPT	TST	HTHIT	
F622	27 12		PFC	INHOT	
F625	26 07	OUTHOT	LDA A	OUT11	
F627	16 03		LDA P	OUT1	
F629	12 02		ADD P	#\$00	
F62A	40 00		ADC A	#\$00	
F62D	0C		CLC		
E62E	4E		POP A		
F62F	FF		POP E		
F630	H1 FE 43		JSF	CVPTP	
E633	0F			CLI	
F634	3F			PTI	
E635	7F F4 9C	STARTP	JMP	START	
F638	26 03	INHOT	LDA A	INI1	
E639	16 04		LDA P	INI	
F63C	0C		CLC		
F63D	4E		POP A		
F63E	FF		POP P		
F63F	H1 FE 43		JSF	CVPTI	
F642	2Y		PTI		
** CVPTI -- "CONVERSION OF BINARY TO DECIMAL"					
E643	(L 1F 6D	(CVPTI	LIX	#K10K	
F646	7F 00 23	CVDFC1	CLF	SAVFA	
F649	H1 01	CVTEC1	SUV P	1,X	
F64A	42 00		SVC A	0,X	
F641	2F 05		PCS	CVIECF,	
E64F	7C 00 33		INC	SAVEA	
F652	2D FF		HFA	CVIEC2	
E654	H1 01	(CVIECF	ALI P	1,X	
F656	42 00		ADC A	0,X	
E658	26		PSH E		
E659	1F 24		STX	SAVEX1	
E65A	26 32		LDA A	SAVER	
E65B	3F 20		ADD A	#\$30	
F6FF	H1 FE 43		JSF	OUTCH	
F662	32		FUL A	RESTORE A	
F663	1F 24		LIX	SAVEX1	
F665	04		INX		
F666	04		INX		
F667	3C FE ??		CPX	#K10K+10	
F66A	26 DA		BNE	CVTEC1	
F66C	29		PTS		
* CONSTANTS FOR CONVERSION					
F66D	27 10	K10K	FDP	10000	
F66F	02 F4		FDP	1000	
E671	00 64		FDP	100	
E672	00 04		FDP	10	
E67F	00 01		FDP	1	
E677	CF ED 09	LCLCT1	LDX	#INDEX	
E67A	I6 02		LDA P	CNT2	
E67C	08	LOOP	INX		
E67D	08		INX		
E67E	FA		DEC P		
E67F	26 FF		BNE	LOOP	

E694	F6 01	LININCT	LDA P	1,X	
E696	FC		INC P		
E697	F7 01		STA P	1,X	
E699	EE 00		LDA P	0,X	
E69F	C9 00		ADC P	*\$00	
E68F	F7 00		STA P	0,X	
E69F	39		PTS		
** LININCT -- LOCAL INCOUNT					
** -- INCREMENTS LOCAL INCOUNT					
E690	F6 03	LININCT	LDA P	3,X	
E692	FC		INC P		
E693	E7 03		STA P	3,X	
E695	EE 02		LDA P	2,X	
E697	C9 00		ADC P	*\$00	
E699	F7 02		STA P	2,X	
E69F	29		PTS		
** LOUTIT -- LOCAL OUTCOUNT					
** -- INCREMENTS LOCAL OUTCOUNT					
E69C	EE 0F	LOUTIT	LDA P	5,X	
E69F	FC		INC P		
E69F	F7 0F		STA P	5,X	
E6A1	E6 04		LDA P	4,Y	
E6A2	C9 00		ADC P	*\$00	
E6A5	F7 04		STA P	4,X	
E6A7	29		PTS		
** LOUTIT -- LOCAL OUTCOUNT					
** -- INCREMENTS LOCAL OUTCOUNT					
E6A4	EE 07	LOUTIT	LDA P	7,X	
E6A5	FC		INC P		
E6A5	F7 07		STA P	7,X	
E6A5	F6 06		LDA P	6,X	
E6A5	C9 00		ADC P	*\$00	
E6A5	E7 06		STA P	6,X	
E6A5	39		PTS		
E6A5	FF 31	ORIGIN	STX	INDEX2	
E6A6	96 02		LDA A	CNT2	
E6A8	81 04		CMF A	*\$04	
E6A9	27 23		PFR	ISTTP	
E6A9	81 03		CMF A	*\$03	
E6A9	27 06		PFG	STTP	
E6C0	81 02		CMF A	*\$02	
E6C2	27 3D		PFG	TITTP	
E6C4	20 32		PPA	FTTTR	
E6C6	C6 80	STTF	LDA P	*\$80	
E6C8	FE FF CA		PTF P	PIAOPE	
E6C9	27 09		REQ	FSFG2	
E6CD	FD F7 21		JSP	SEARCH	
E6D0	86 06		LDA P	*\$06	
E6D2	FF F7 7F		JSP	PLOAD	
E6D5	39		PTS		
E6D6	FL F7 21	FSFG2	JSP	SEARCH	
E6D9	86 02		LDA A	*\$02	
E6DP	FF F7 7E		JSP	PLOAD	

F6FF	29		PTS		
F6FF	C6	80	LIA P	#\$80	
F6F1	FF	F7 21	LIA P	FIANFP	
F6F4	27	09	MFC	FSFG1	
F6F6	1F	F7 21	JSP	SEARCH	
F6F9	96	0E	LIA P	#\$0F	
F6FF	1F	I7 71	JSP	PFLLOAD	
F6FF	29		PTS		
E6FF	FF	F7 21	JSF	SEARCH	
F6F8	96	01	LIA P	#\$01	
F6F4	1F	F7 7F	JSP	PFLLOAD	
F6F7	29		PTS		
F6F8	1F	F7 21	FITTF	JSF	SEARCH
F6F9	96	04	LIA P	#\$04	
F6F1	1F	F7 7F	JSP	PFLLOAD	
F700	29		PTS		
F701	1F	F7 21	TITTF	JSF	SEARCH
F704	96	02	LIA P	#\$02	
F706	1F	F7 7E	JSP	PFLLOAD	
F709	29		PTS		
F70A	CF	00 02	CLPPT	LIX	#CLPIND
F70D	FF	00	CLPPT1	C.P	0,X
F70F	03			INX	
E710	9C	00 41		CFX	#CLPFII+1
F712	26	F4		PNE	CLPFT1
		**		PUCOLF	-- "PUFFEF CL.EAF"
		*			-- CLEAPS THE BUFFERS
F715	CF	00 40	PUCOLF	LIX	#PUCIPT
F718	6F	00	PUCOLF1	CLP	0,X
F71A	04			INX	
F71B	4C	00 6F		CFX	#PUCENI+1
F71F	26	F8		PNE	PFCLP1
F720	29		PTS		
		**		SEAPCH	-- "SEARCH"
		*			-- SEARCHES EMPTY BUFFER
		*			FOR LOADING IT
E721	7D	00 44	SEARCH	TST	PUFFPT
F724	2F	41		PNE	SFPCH2
F726	7F	00 42		TST	PUF4PT
F727	26	32		PNE	LDEPUF
F728	7D	00 42		TST	PUF3PT
F72F	26	25		PNE	LDEPUF
F730	7D	00 41		TST	PUF2PT
E733	26	17		PNE	LDP2PUF
E735	7D	00 40		TST	PUF1PT
F738	26	09		PNE	L.D2PUF
		**		LD1PUF	-- "LOAD THE FIRST BUFFER"
E73A	CF	00 47	LD1PUF	LDX	#1STPUF
F73D	FF	4F		STX	PUFIND
F73F	7C	00 40		INC	BUFIPT
F742	29		PTS		
		**		LD2PUF	-- "LOAD THE SECOND BUFFER"
E743	CE	00 4D	LD2PUF	LIX	#SNDEUF
E746	DF	4F		STX	BUFIND
F748	7C	00 41		INC	BUF2PT

F74C CE 00 F? LDEPUF LIX *THEPUF
 F74F DF 4F STX PUFIND
 F751 7C 00 42 INC PUF3PT
 F754 39 PTS
 ** LIAPUF -- LOAD THE FOURTH BUFFER
 F75F CE 00 F9 LIAPUF LIX #FFPUF
 F768 DF 4F STX PUFIND
 F76A 7C 00 42 INC PUF4PT
 F76D 39 PTS
 ** LDEPUF -- LOAD THE FIFTH BUFFER
 F76E CF 00 FF LDEPUF LIX #FFHEUF
 F76F DF 4F STX PUFIND
 F773 7C 00 44 INC PUFFFT
 F776 39 PTS
 F777 7F 00 40 SFFCH2 TST PUF1FT
 F77A 27 CF PFR LPIPUF
 F77C 7F 00 41 TST PUF2FT
 F77F 27 F9 PFR LI2PUF
 F781 7F 00 42 TST PUF3PT
 F77D 27 16 PFR LDE3LT
 F77E 71 00 42 TST PUF4PT
 F771 27 11 PFR LI4PUF
 F77F 7F 17 00 JMF PFFALT
 ** PFLDAI -- PUFFFT LOAD
 * -- LOADS THE PUFFFT FOR DISPLAY
 F77F A7 00 PFLDAI STA F 0,X
 F780 1F 21 LIX INDEX2
 F782 A6 02 LIA A 2,X
 F784 F6 03 LIA F 3,X
 F786 DE 4F LIX PUFIND
 F788 A7 01 STA A 1,X
 F78A F7 02 STA F 2,X
 F78C 1F 21 LIX INDEX2
 F78E A6 04 LIA A 4,X
 F790 E6 05 LIA F 5,X
 F792 DF 4F LIX PUFINI
 F794 A7 03 STA A 3,X
 F796 F7 04 STA F 4,X
 F798 39 PTS
 F799 CF F3 49 PFFALT LIX #PUFFLT
 F79C HI F7 CC JSR OUTSTP
 F79F 7F F4 F7 JMF FLFT
 ** OUT4HS -- OUTPUT FOUR HEX DIGITS AND
 * ENTPY: -X> - ADDRESS OF BYTES
 * EXIT: X INCREMENTED PAST BYTES
 * USES: A,X
 F7A2 91 11 OUT4HS PSP THE
 ** OUT2HS -- OUTPUT TWO HEX DIGITS AND
 * ENTPY, EXIT, USES -- SEE
 E7A4 8F 0F OUT2HS PSP THE
 ** OUTSF -- OUTPUT SPACE CODE
 * ENTPY :NONE:EXIT: <A> =
 F7A6 86 20 OUTSF LIA A *
 * OUTCH -- OUTPUT CHARACTER TO CONSOLE
 * ENTPY -- ,A> = ASCII VALUE OF CHARACTR

F744	37	OUTCH	FSH F
F745	0F 02		LDA F #2
F746	FF FF 01	OUTTI	HIT F A(14SF
F747	27 FF		HEC OUTTI
F748	1F FF 0F		STA F ACIAIF
F749	22		FIL F
F74A	00	OUTTY	PTS
	*		THP -- TYPE HEX BYTES
	*		INTFY : -X> = ADDRESS OF BYTE TO OUTPUT
	*		EXIT : -X> = ORIGINALE+1
	*		USES ? / sc
F74B	AE 00	THE	L14 F 0,X
F74C	08		INX
	*		THPO -- TYPE "A" IN HEX
	*		ENTFY : -A> = VALUE
	*		EXIT : VALUE TYPEI
F74D	36	THPP	FSH F
F74E	44		LSE F
F74F	44		LSP F
F750	44		LSP F
F751	44		LST F
F752	81 02		HSE THP1
F753	22		FIL F
F754	44 0F		ALL F #SF
F755	41 0A	THP1	CME F #1P
F756	2F 02		HCC THP2
F757	81 07		ALL F #7
F758	81 30	THP2	ALL F #S30
F759	2F FC	OUTCHP	PER OUTCH
	**		OUTSTF -- OUTPUT CHARACTER STRING TO C
	*		ENTFY -- -X> = ADDRESS OF STRING
	*		EXIT -- -X> = INCREMENTAL END END
	*		ENT OF STRING MAPPEF
	*		USES --
F75A	AE 00	OUTSTF	L14 F 0,X
F75B	08		INY
F75C	41 F9	OUTSTR	HSP OUTCHP
F75D	2A F9		HPL OUTSTF
F75E	39	OUTSTR	FTS
F75F			ENI

STATEMENTS -926

FFFF BYTES -11158

NO FFFFPS DETECTED