Definitions:

Pearson's correlation coefficient:

The covariance of two variables divided by the product of their standard deviations.

For a population:

$$p_{x,y} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$
where
$$\text{Cov}(X, Y) = \text{E}[(X - \text{E}[X])(Y - \text{E}[Y])]$$

For a sample:

It's often referred to as the sample correlation coefficient, commonly abbreviated to just "r"

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

(Above: the sample covariance divided by the product of the sample standard deviations) which can be manipulated to get:

$$r = r_{xy} = rac{1}{n-1} \sum_{i=1}^n \left(rac{x_i - ar{x}}{s_x}
ight) \left(rac{y_i - ar{y}}{s_y}
ight)$$

The correlation coefficient always takes a value between -1 and 1, with 1 or -1 indicating perfect correlation (all points would lie along a straight line in this case).

- a. A positive correlation indicates a positive association between the variables (increasing values in one variable correspond to increasing values in the other variable).
- b. A negative correlation indicates a negative association between the variables (increasing values is one variable correspond to decreasing values in the other variable).
- c. A correlation value close to 0 indicates no association between the variables.

The square of the correlation coefficient, R^2 , is a useful value in linear regression. This value represents the fraction of the variation in one variable that may be explained by the other variable. Thus, if a correlation of r = 0.8 is observed between two variables (say, height and weight, for example), then a linear regression model attempting to explain either variable in terms of the other variable will account for 64% ($r^2 = 0.8^2 = .64$) of the variability in the data.

The correlation coefficient also relates directly to the regression line Y = a + bX for any two variables, where $b = r \frac{s_x}{s_u}$

I found this info here:

http://www.stat.yale.edu/Courses/1997-98/101/correl.htm and on the wikipedia page.

MATH 5345	/ Reg	ression A	Analysis	(Dr.	Sun):	HW	#4
-----------	-------	-----------	----------	------	-------	----	----

Future Notes

	Q1	Q2	Q3	Q4	Q5
50 Points	10	14	8	8	10

Question 1

For multiple regression

$$y = X\beta + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

Derive or show that

a.
$$\hat{\beta} = (X'X)^{-1}X'Y$$

b.
$$E[\hat{\beta}] = \beta$$

c.
$$V[\hat{\beta}] = \sigma^2 (X'X)^{-1}$$

d.
$$E[\hat{Y}] = X\beta$$

e. $V[\hat{Y}] = \sigma^2 H$, where H is the hat matrix and $H = X(X'X)^{-1}X'$

Question 2 (problems 3.1 and 3.3 on page 121)

- a. Fit a multiple linear regression model relating the number of games won to the team's passing yardage (x_2) , the percentage of rushing plays (x_7) , and the opponents' yards rushing (x_8) .
- b. Construct the analysis-of-variance table and test for significance of regression.
- c. Calculate t statistics for testing the hypotheses H_0 : $\beta_2 = 0$, H_0 : $\beta_7 = 0$, H_0 : $\beta_8 = 0$. What conclusions can you draw about the roles the variables x_2 , x_7 , and x_8 play in the model?
- d. Calculate R^2 and R^2_{adj} for this model.
- e. Using the partial F test, determine the contribution of x_7 to the model. How is this partial F statistic related to the t test for β 7 calculated in part c above?
- f. Find a 95% CI on β_7 . (This is part a of problem 3.3, and the following one is part b of problem 3.3.)
- g. Find a 95% CI on the mean number of games won by a team when $x_2 = 2300$, $x_7 = 56.0$, and $x_8 = 2100$.

Note: For c, d, f, and g, please show two versions of your results: (1) obtained using R code and (2) based on your manual calculation (please show detailed step for your manual calculation. You can use the partial output from the lm or ANOVA, e.g., the SS_{reg} , SS_{res} , the estimated value of β and its variance or standard deviation).

Question 3 (Exercise 3.4 on page 122

Reconsider the National Football League data from Problem 3.1. Fit a model to this data using only x_7 and x_8 as the regressors.

a. Test for significance of the regression.

- b. Calculate R^2 and R^2_{adj} . How do these quantities compare to the values computed for the model in problem 3.1, which included an additional regressor (x^2) ?
- c. Calculate a 95% CI on β 7. Also, find a 95% CI on the mean number of games won by a team when $x_7 = 56.0$ and $x_8 = 2100$. Compare the lengths of these CIs to the lengths of the corresponding CIs from problem 3.3 (that is, the above part f and g in question 2)
- d. What conclusions can you draw from this problem about the consequences of omitting an important regressor from a model?

Question 4 (exercise 4.2 on page 165

Consider the multiple regression model fit to the National Football League (NFL) team performance data in problem 3.1.

- a. Construct a normal probability plot of the residuals. Does there seem to be any problem with the normality assumption?
- b. Construct and interpret a plot of the residuals versus the predicted response.
- c. Construct plots of the residuals versus each of the regressor variables. Do these plots imply that the regressor is correctly specified?
- d. Construct the partial regression plots for this model. Compare the plots with the plots of residuals versus regressors from part c above. Discuss the type of information provided by these plots.

Question 5

Show that the hat matrix $H = X(X'X)^{-1}X'$ and I -H (where I is the identity matrix) are symmetric and idempotent. That is, please show:

```
a. H' = H and HH = H (H'means the transpose of H, HH means H * H)
```

b.
$$(I - H)' = I - H$$
 and $(I - H)(I - H) = I - H$

Hint: A = X'X is a symmetric matrix, and for a symmetric matrix, $(A')^{-1} = (A^{-1})'$. You can use this property directly in your proof of (a) and (b). If you are interested in the proof of this property, you may check the following web page:

https://math.stackexchange.com/questions/325082/is-the-inverse-of-a-symmetric-matrix-also-symmetric