CAPES EXTERNE DE MATHEMATIQUES

SESSION DE 1976

DEUXIEME COMPOSITION DE MATHEMATIQUES Durée: 5h.

PREAMBULE

Dans tout le problème, V désigne un espace vectoriel euclidien de dimension 2 ou 3; on note $\| \|$ la norme associée au produit scalaire défini sur V.

 $\mathcal{O}(V)$ désigne le groupe orthogonal de V. On se propose d'étudier les sous-groupes finis (c'est à dire n'ayant qu'un nombre fini d'éléments) de $\mathcal{O}(V)$.

On rappelle que l'ordre d'un groupe fini est le nombre de ses éléments et qu'un groupe fini est cyclique lorsqu'il est engendré par un de ses éléments.

Le cardinal d'un ensemble X sera noté card X.

On dit qu'une bijection f d'un ensemble X sur lui-même laisse invariant ou conserve un sous-ensemble Y de X lorsque f(Y) = Y.

On rappelle que f^{-1} désigne la bijection réciproque de f.

Par abréviation une symétrie vectorielle de V sera appelée symétrie et une rotation vectorielle de V sera appelée rotation. L'identité de V, notée Id_V , est considérée comme une rotation particulière de V. De même l'identité d'un espace affine \mathcal{V} est considérée comme une rotation(affine) particulière de \mathcal{V} .

Le symbole \circ est celui de la composition des applications. Quand il sera question de groupes, on sous-entendra "pour la loi \circ " .

On rappelle enfin que tout espace vectoriel V peut être muni d'une structure d'espace affine sur lui-même. On pourra parler indifféremment de vecteurs ou de points pour désigner les éléments de V et on représentera les situations rencontrées dans V par des figures.

Première partie

Dans cette partie la dimension de V est 2.

 \mathbf{A}

Soit \mathcal{V} un espace affine dont l'espace vectoriel associé est V. Dans \mathcal{V} rapporté à un repère orthonormé, on considère le carré ABCD dont les sommets ont pour coordonnées respectives (1,1), (-1,1)(-1,-1) et (1,-1).

- 1° Démontrer que toute isométrie affine de \mathcal{V} , conservant l'ensemble des points $\{A, B, C, D\}$ laisse invariant le point O, origine du repère et que l'ensemble \mathcal{D} de ces isométries est un groupe isomorphe d'une part à un sous-groupe de $\mathcal{O}(V)$, d'autre part à un sous-groupe du groupe des permutations de 4 éléments.
- 2° Trouver un sous-groupe cyclique d'ordre 4 de \mathcal{D} .
- 3° Démontrer que \mathcal{D} est engendré par deux symétries orthogonales par rapport à des droites que l'on précisera.

 \mathbf{B}

On donne un sous-groupe fini de $\mathcal{O}(V)$, soit \mathcal{G} , et on appelle \mathcal{H} l'ensemble des rotations appartenant à \mathcal{G} .

- 1° Démontrer que \mathcal{H} constitue un sous-groupe de \mathcal{G} .
- 2° A toute rotation R de V on associe le réel $\theta(R)$, appartenant à l'intervalle $]0, 2\pi]$, qui détermine l'angle de la rotation R et est appelé mesure de R. On aura en particulier ici pour mesure de la rotation identité de $V(Id_V)$ le nombre 2π . Démontrer qu'il existe un élément R_1 de \mathcal{H} dont la mesure est minimale, c'est-à-dire vérifie

$$\forall R \in \mathcal{H}, \quad \theta(R) \ge \theta(R_1).$$

Démontrer que, pour tout $R \in \mathcal{H}$, il existe un entier naturel m tel que $\theta(R) = m\theta(R_1)$. En déduire que \mathcal{H} est un sous-groupe cyclique dont R_1 est un générateur.

Exprimer $\theta(R_1)$ en fonction de l'ordre n de \mathcal{H} .

3° Déterminer un ensemble Λ d'éléments de V tel que \mathcal{H} constitue l'ensemble des rotations de V laissant Λ invariant.

Donner en fonction de n le nombre minimum d'éléments de Λ .

4° On suppose $\mathcal{H} \neq \mathcal{G}$ et on désigne par S une symétrie orthogonale donnée appartenant à \mathcal{G} .

On désigne par $S \mathcal{H}$ l'ensemble, noté $\{S \circ R \mid R \in \mathcal{H}\}$, des $S \circ R$ tels que $R \in \mathcal{H}$.

- a. Démontrer que $S \mathcal{H}$ ne contient que des symétries orthogonales.
- b. Démontrer que l'on a

$$G = \mathcal{H} \cup S\mathcal{H}.$$

c. Exprimer les éléments de \mathcal{G} en fonction de S et R_1 .

5° Démontrer qu'il existe deux types de sous-groupes finis de $\mathcal{O}(V)$ et en préciser la nature.

6° On reprend la situation du paragraphe 4° ci-dessus.

Soit (u_1, u_2) une base orthonormée de vecteurs propres de S; donner dans cette base les matrices de S, R_1 et $T = R \circ S$ (on appelle toujours n l'ordre de \mathcal{H}).

Caractériser T et démontrer que \mathcal{G} admet un système de générateurs constitué par des symétries orthogonales que l'on précisera.

7° V étant rapporté à la base (u_1, u_2) utilisée ci-dessus, et x étant un élément non nul de V, on désigne par Arg(x), la mesure de l'angle (u_1, x) , nombre réel appartenant à $]0, 2\pi]$. On pose

$$F = \{ x \in V \mid 0 < Arg(x) < \frac{\pi}{4} \}.$$

En supposant que n=4, représenter sur un dessin F et ses images respectives par $T,\ T\circ S,\ T\circ S\circ T,\ S\circ T\circ S\circ T,\ S\circ T\circ S,\ S\circ T$ et S.

Deuxième partie

Dans cette partie la dimension de V est 3.

Soit \mathcal{V} un espace affine dont l'espace vectoriel associé est V. Dans \mathcal{V} rapporté à un repère orthonormé d'axes x'0x, y'0y, z'0z, on désigne par Σ la sphère de rayon 1 centrée à l'origine du repère et par Γ le cube ABCDA'B'C'D', les trois coordonnées de chaque sommet appartenant à l'ensemble $\{-1,1\}$. Dessiner le cube Γ .

1° Démontrer que toute rotation affine de \mathcal{V} conservant l'ensemble des sommets de Γ laisse invariant le point O; justifier rapidement le fait que l'ensemble \mathcal{H}_{Γ} de ces rotations constitue un groupe fini, isomorphe d'une part à un sous-groupe de $\mathcal{O}(V)$, d'autre part à un sous-groupe du groupe des permutations de 8 éléments.

Soient deux sommets appartenant à une même arête du cube Γ . Démontrer que la seule rotation affine appartenant à \mathcal{H}_{Γ} et laissant invariant chacun de ces deux sommets est l'identité de \mathcal{V} . En déduire que le nombre d'éléments de \mathcal{H}_{Γ} est au plus 24.

2° Démontrer que l'ensemble des éléments de \mathcal{H}_{Γ} qui laissent invariant un sommet donné de Γ constitue un sous-groupe d'ordre 3 de \mathcal{H}_{Γ} .

On rappelle que l'ordre d'un élément g d'un groupe fini est le plus petit entier q strictement positif tel que g^q (composé de q éléments égaux à g) soit l'élément neutre du groupe. Déterminer tous les éléments d'ordre 3 de \mathcal{H}_{Γ} .

3° Décrire tous les éléments d'ordre 4 de \mathcal{H}_{Γ} , puis les éléments d'ordre 2 de \mathcal{H}_{Γ} . Décrire tous les éléments de \mathcal{H}_{Γ} .

4° On appelle $p\hat{o}le$ d'une rotation de \mathcal{V} (autre que l'identité de \mathcal{V}) tout point d'intersection de la sphère Σ et de l'axe de cette rotation. Représenter sur un dessin la portion du cube Γ et de la portion de la sphère Σ situées dans la région de \mathcal{V} définie par $x \geq 0, y \geq 0, z \geq 0$, ainsi que les demi-axes des rotations appartenant à \mathcal{H}_{Γ} qui sont situés dans cette région et les pôles appartenant à ces demi-axes.

On désigne par \mathcal{P} l'ensemble des pôles des rotations (autres que l'identité de \mathcal{V}) appartenant à \mathcal{H}_{Γ} .

- a. Calculer card \mathcal{P} .
- b. Démontrer que \mathcal{P} est invariant par toute rotation appartenant à \mathcal{H}_{Γ} et qu'il en est de même de l'ensemble des pôles des éléments d'ordre 4 de \mathcal{H}_{Γ}
- c. Démontrer que l'on peut déterminer un ensemble $\{P_1, P_2, P_3\}$ de pôles éléments de \mathcal{P} tels que si Ω_i désigne l'ensemble des images de P_i par tous les éléments de \mathcal{H}_{Γ} , l'on ait

$$\alpha$$
. $\mathcal{P} = \Omega_1 \cup \Omega_2 \cup \Omega_3$

et

$$\beta.$$
 $\Omega_j \cap \Omega_k = \emptyset$ si $j \neq k$,

i, j et k étant éléments de $\{1, 2, 3\}$.

 $(\Omega_i \text{ sera appelé } orbite \text{ de } P_i.)$

d. Calculer l'ordre des sous-groupes de \mathcal{H}_{Γ} qui laissent invariants P_1 , P_2 et P_3 respectivement. Quelle relation existe-t-il entre l'ordre de \mathcal{H}_{Γ} , le cardinal de Ω_i et l'ordre du sous-groupe de \mathcal{H}_{Γ} qui laisse P_i invariant?

Troisième partie

Dans cette partie la dimension de V est 3.

 \mathbf{A}

 \mathcal{G} désigne un sous-groupe fini de $\mathcal{O}(V)$ et \mathcal{H} est l'ensemble des rotations de \mathcal{G} . On suppose $\mathcal{H} \neq \mathcal{G}$.

1° Démontrer qu'on peut trouver un élément S de \mathcal{G} tel que

$$G = \mathcal{H} \cup \mathcal{S} \mathcal{H}$$
.

(On rappelle la notation $S \mathcal{H} = \{S \circ R \mid R \in \mathcal{H}\}.$)

Caractériser S, puis montrer que \mathcal{H} est un sous-groupe distingué de \mathcal{G} .

2° Soit σ la sphère unité de V, $\sigma = \{x \in V \mid ||x|| = 1\}$.

Démontrer que si R est une rotation distincte de Id_V , il existe deux éléments, et deux seulement, x_1 et x_2 , de σ , qui sont invariants par R; x_1 et x_2 sont appelés $p\hat{o}les$ de R.

- 3° Démontrer que si x est un pôle d'une rotation R appartenant à \mathcal{H} , alors, pour tout élément $T \in \mathcal{G}$, T(x) est pôle d'une rotation R' que l'on précisera.
- 4° On appelle stabilisateur d'un élément x de V l'ensemble \mathcal{H}_x des éléments de \mathcal{H} laissant x invariant et orbite de x l'ensemble Ω_x des images de x par les éléments de \mathcal{H} . On désigne par n l'ordre de \mathcal{H} .

On se donne x, pôle d'une rotation appartenant à \mathcal{H} , et on considère l'application

$$\varphi_x: \left| \begin{array}{ccc} \mathcal{H} & \to & \Omega_x \\ R & \mapsto & R(x) \end{array} \right|$$

et la relation γ définie par

$$(R_1 \gamma R_2) \Leftrightarrow R_2^{-1} \circ R_1 \in \mathcal{H}_x.$$

a. Vérifier que γ est une relation d'équivalence, et, en utilisant φ_x , que l'ensemble quotient \mathcal{H}/γ peut être mis en bijection avec Ω_x . En déduire que l'on a

$$n = n_x \nu_x$$

en posant $n_x = \operatorname{card} \mathcal{H}_x$ et $\nu_x = \operatorname{card} \Omega_x$.

b. On désigne par \mathcal{U} l'ensemble des couples (R, x) où R est un élément de \mathcal{H} autre que Id_V et où x est un pôle de R. Démontrer que

card
$$\mathcal{U} = 2(n-1)$$
.

5° On suppose que l'ensemble des pôles des éléments de \mathcal{H} contient k orbites distintes, on choisit un pôle sur chaque orbite et on obtient ainsi un ensemble de points $\{x_1, x_2, \dots, x_k\}$. Démontrer que l'on a

$$\operatorname{card} \mathcal{U} = \sum_{j=1}^{k} n_j (\nu_j - 1)$$

où l'on a posé, pour alléger les notations,

$$\nu_{x_j} = \nu_j$$
 et $n_{x_j} = n_j$.

6° Démontrer que l'on a

$$2 - \frac{2}{n} = \sum_{i=1}^{k} (1 - \frac{1}{n_i})$$
 et $k \neq 1$.

 7° Démontrer que les seules valeurs éventuelles de k sont 2 et 3.

8° Démontrer que si k=2, alors \mathcal{H} est un groupe cyclique.

9° On suppose maintenant que l'on a k=3 et, pour fixer les notations, on pose

$$n_1 \le n_2 \le n_3.$$

Etablir les résultats suivants:

$$n_1 = 2$$

b.
$$n_2 \in \{2, 3\}$$

b.
$$n_2 \in \{2, 3\}$$

c. si $n_2 = 3$, alors $n_3 \in \{3, 4, 5\}$.

10° Démontrer que si l'on a

$$\begin{cases} n_1 = 2 \\ n_2 = 3 \\ n_3 = 4, \end{cases}$$

alors \mathcal{H} est isomorphe au groupe \mathcal{H}_{Γ} de la deuxième partie du problème.

11° Pouvez-vous décrire les ensembles de points (sommets de polyèdres réguliers) jouant un rôle analogue à celui des sommets A, B, C, D, A', B', C', D' du cube Γ (cf. deuxième partie du problème) pour les éventualités :

a.
$$n_1 = 2$$
, $n_2 = n_2 = 3$

b.
$$n_1 = 2$$
, $n_2 = 3$, $n_3 = 5$?

1° Soit K un groupe de rotations de V. On désigne par -E la composée d'un endomorphisme E de V et de l'homothéthie de V dont le rapport est -1. On considère l'ensemble

$$\tilde{\mathcal{K}} = \mathcal{K} \cup \{-R \mid R \in \mathcal{K}\}.$$

Démontrer que $\tilde{\mathcal{K}}$ constitue un groupe dont le sous-groupe des rotations est \mathcal{K} .

 $2^{\circ} \mathcal{J}$ étant un sous-groupe de \mathcal{K} et R_1 un élément de \mathcal{K} $(R_1 \notin \mathcal{J})$, on pose

$$R_1 \mathcal{J} = \{ R_1 \circ R \mid R \in \mathcal{J} \}.$$

On suppose que $\mathcal J$ est tel que

$$\mathcal{K} = \mathcal{J} \cup R_1 \mathcal{J}$$
.

Démontrer que l'ensemble

$$\widehat{\mathcal{J}} = \mathcal{J} \cup \{ -R \mid R \in R_1 \mathcal{J} \}$$

constitue un groupe dont \mathcal{J} est le sous-groupe des rotations.

3° On revient à la situation du début de la troisième partie: \mathcal{G} est un sous-groupe fini de $\mathcal{O}(V)$, \mathcal{H} le sous-groupe des rotations de \mathcal{G} ($\mathcal{H} \neq \mathcal{G}$) et S un élément de \mathcal{G} tel que $\mathcal{G} = \mathcal{H} \cup S\mathcal{H}$.

Démontrer que $S^2 \in \mathcal{H}$.

Démontrer que l'ensemble

$$\mathcal{L} = \mathcal{H} \cup (-S) \mathcal{H}$$

constitue un groupe de rotations de V.

 4° Donner le catalogue des sous-groupes finis de $\mathcal{O}(V)$.

-:-:-: