Online Supplement of the Paper "Optimizing Inspection Schedules and Routes for Infrastructure Monitoring under Stochastic Decision-dependent Failures"

Juan-Alberto Estrada-García,* Siqian Shen!

1 Algorithms

2 Additional computational results

Table 1: Computational time and optimality gap of methods on described instances

-			Gurobi		Greedy		Scenario decomposition	
Instance	$\frac{ K }{ N }$	$\frac{Q K }{ N }$	Time (s)	$\mathrm{Gap}~(\%)$	Time (s)	Gap (%)	Time (s)	Gap (%)
G-10-30	0.15	1.0	8.2	-	0.5	37.5	16.1	0.10
	0.15	1.5	9.3	_	1.0	27.8	19.3	0.12
	0.25	1.0	9.9	-	2.2	43.6	15.9	0.15
	0.25	1.5	10.9	-	2.7	49.3	19.5	0.14
	0.35	1.0	12.2	-	4.6	51.2	16.5	0.09
	0.35	1.5	11.8	-	5.1	49.7	20.3	0.12
G-20-75	0.15	1.0	520.3	-	1.4	51.0	153.5	0.06
	0.15	1.5	600.4	-	1.6	48.9	291.3	0.17
	0.25	1.0	650.2	-	1.8	35.7	164.3	0.23
	0.25	1.5	710.5	-	2.3	39.9	313.6	0.19
	0.35	1.0	720.9	-	2.1	37.8	174.8	0.08
	0.35	1.5	740.7	-	2.5	44.8	319.1	0.13
IEEE-33-136	0.15	1.0	1200.0	-	15.5	23.9	395.8	0.19
	0.15	1.5	1240.2	-	17.9	33.6	450.2	0.04
	0.25	1.0	1313.8	-	20.2	23.0	402.1	0.06
	0.25	1.5	1277.9	-	23.4	33.5	449.1	0.18
	0.35	1.0	1335.0	-	26.4	40.3	401.9	0.12
	0.35	1.5	1360.9	-	28.4	38.6	455.3	0.21
IEEE-123-556	0.15	1.0	6013.9	-	353.7	110.5	1212.4	2.50
	0.15	1.5	7031.5	-	360.3	95.2	1406.2	1.75
	0.25	1.0	6309.1	-	340.2	220.3	1220.3	2.10
	0.25	1.5	7207.5	-	390.5	170.5	1404.1	1.90
	0.35	1.0	7453.2	-	440.2	210.5	1230.0	3.02
	0.35	1.5	8204.6	-	494.7	190.2	1430.5	2.50

^{*}Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, USA

 $^{^\}dagger Department$ of Industrial and Operations Engineering, University of Michigan, Ann Arbor, USA, email: $\verb|siqian@umich.edu|$

Algorithm 1 Random coloring algorithm (Yu et al., 2022)

```
Network G = (N, E), color coding \phi, iteration budget maxIter, number of solutions to early stop nSol,
evaluated solution set S, dual optimal solution \pi.
Initialization T = \emptyset as candidate solution set, k = 0
while k < \text{maxIter or } |T| < \text{nSol do}
    Generate a random coloring function \phi_k: N \to \{1, \dots, Q\}
    Initialize \Lambda_{\text{depot}} \leftarrow \{0 \dots, 0\}
    for i \in N do
        \Lambda_i \leftarrow \emptyset
    end for
    B = \{\text{depot}\}\
    while B \neq \emptyset do
        Sample i \in B
        if i = \text{depot then}
             Add corresponding routes from \Lambda_{\rm depot} with negative cost to T
        else
             for j:(i,j)\in E do
                for \lambda_i = (R_i, C_i) \in \Lambda_i, with R_i = (n_i, N_i^1, \dots, N_i^Q) do if N_i^{\phi(j)} = 0 then
                         Extend \lambda_i to obtain \lambda_i
                          if \lambda_i \notin S then
                              if \lambda_j is not dominated by any path in \Lambda_j then
                                  Add \lambda_j to \Lambda_j and B = B \cup \{j\}
                                  Remove any path in \Lambda_i that is dominated by \lambda_i
                              end if
                          end if
                     end if
                 end for
             end for
        end if
        Remove i from B
    end while
    Add routes with negative cost to T
    k = k + 1
end while
Return T
```


Figure 1: Optimal routes for 20% of critical nodes

References

Yu, M., Nagarajan, V., and Shen, S. (2022). Improving column generation for vehicle routing problems via random coloring and parallelization. *INFORMS Journal on Computing*, 34(2):953–973.