

Bioinformática

Guía de asignatura

Última actualización: julio de 2020

1. Información general

Nombre de la asignatura	Bioinformática
Código	11010037
Tipo de asignatura	Obligatoria complementaria
Número de créditos	4
Tipo de crédito	Teórico-práctico
Horas de trabajo semanal con acompañamiento directo del profesor	4
Horas semanales de trabajo independiente del estudiante:	8
Prerrequisitos	Probabilidad y Estadística I Genética
Correquisitos	Ninguno
Horario	Martes 3:00 pm- 5:00 pm Viernes 3:00 pm – 5:00 pm
Salón	Martes: Aula de informática 3 (Quinta Mutis) Viernes: Aula de informática 1 (Quinta Mutis)

2. Información del profesor y monitor

Nombre del profesor	Paula Torres
Perfil profesional	Bióloga profesional Mágister en Ciencias Naturales, con profundización en conocimientos de bioinformática, análisis de datos biológicos, genética evolutiva y biología molecular.

Correo electrónico institucional	paula.torres@urosario.edu.co
Lugar y horario de atención	Atención virtual con cita previa. Por favor enviar un correo para concretar un horario de atención.
Página web u otros medios (opcional)	NA

3. Resumen y propósitos del curso

En muchos laboratorios del mundo se están produciendo enormes volúmenes de información con el fin de estudiar la vida, aprender sobre su funcionamiento y aplicar este conocimiento para beneficio de la sociedad. Pese a este gran esfuerzo solo vemos una pequeña fracción de la información biológica contenida en las células de los sistemas vivos; necesitamos producir más datos. Aunque una gran cantidad de datos es indudablemente una ventaja para el avance de la ciencia básica y aplicada, la capacidad de análisis del cerebro humano y las herramientas más comunes para procesar datos se ven limitadas rápidamente por el volumen y la complejidad de los datos generados.

Una consecuencia adicional de la cantidad, la complejidad y la diversidad de los datos es un aumento en la dificultad de generar, organizar y ejecutar proyectos de investigación, así como la de informar inequívocamente y de forma precisa sobre cómo fueron analizados los datos para producir los resultados de las investigaciones. La reproducibilidad, uno de los pilares de la práctica científica, puede verse comprometida si no se hace un manejo adecuado de la gran cantidad de datos y de la documentación que acompaña nuestras investigaciones.

La bioinformática es un campo relativamente nuevo que nace de la necesidad de analizar datos biológicos que se producen a un ritmo cada vez más acelerado utilizando tecnologías que cambian rápidamente. Como veremos en el curso estos datos pueden tomar diversas formas y tienen un rango muy amplio de aplicación. Este curso le dará a los estudiantes una primera aproximación a los métodos más comúnmente utilizados en bioinformática en la actualidad, fundamentos para trabajar en interfaces web y de línea de comandos con herramientas bioinformáticas, herramientas para documentar mejor su trabajo y mejorar sus prácticas de reproducibilidad científica, y un amplio rango de aplicaciones de la bioinformática a la resolución de problemas y preguntas en biología.

4. Conceptos fundamentales

- Secuencias de ácidos nucleicos y aminoácidos
- Alineamientos de secuencias
- Dogma central de la biología molecular

- Bioinformática
- Filogenias moleculares
- Evolución molecular
- Genómica
- Transcriptómica
- Reproducibilidad

5. Resultados de aprendizaje esperados (RAE)

- RAE 1. Discriminar la información disponible en bases de datos y repositorios públicos y decidir con criterio la más apropiada para resolver problemas biológicos.
- RAE 2. Comprender las nociones generales de los métodos relacionados con bioinformática utilizados en artículos científicos, los resultados derivados de estos y su significancia.
- RAE 3. Identificar conceptos y herramientas de reproducibilidad científica utilizadas en proyectos que involucran bioinformática.
- RAE 4. Formular preguntas sobre el estado actual de un tema del conocimiento, las situaciones y las problemáticas actuales que pueden tener respuesta desde la bioinformática, las cuales promuevan el análisis, la generación de hipótesis, la experimentación y la evaluación de los resultados.
- RAE 5. Aplicar habilidades básicas de programación y utilizar herramientas computacionales para interpretar y analizar datos de biología molecular como datos de expresión de genes, datos genómicos y cadenas de aminoácidos.
- RAE 6. Diseñar y ejecutar experimentos básicos utilizando la bioinformática como herramienta.
- RAE 7. Desarrollar habilidades básicas de investigación formulando y ejecutando un proyecto corto usando la bioinformática como herramienta.

6. Modalidad del curso

Este curso está programado para ser ofrecido en modalidad presencial. Este plan es susceptible de ajuste de acuerdo con las disposiciones en materia de salud pública por parte de las autoridades competentes.

7. Estrategias de aprendizaje

Salvo que se indique lo contrario cada sesión consta de bloques (~30 min) de explicación de conceptos y motivación del tema por parte del profesor. Estos bloques están intercalados por preguntas cortas con el objetivo de reforzar los conocimientos adquiridos. Haremos pausas cortas durante cada sesión con el fin de ayudar a mejorar la experiencia de aprendizaje. El momento y duración de las pausas será de común acuerdo entre los integrantes del curso. Las explicaciones de conceptos serán complementadas con talleres en los cuales los estudiantes pondrán en práctica el conocimiento adquirido. Los estudiantes desarrollarán un pequeño proyecto de investigación en el que utilizarán herramientas bioinformáticas para responder a una pregunta biológica.

8. Actividades de evaluación

Evaluación formativa

Realizaremos una actividad de diálogo formativo entre las semanas cuarta y quinta de clase. En esta actividad hacemos una reflexión conjunta del proceso de aprendizaje del grupo e identificaremos logros y puntos por fortalecer en el profesor y en los estudiantes. Los resultados de este diálogo serán consignados en un documento y remitidos a la unidad académica correspondiente. Haremos por lo menos dos autoevaluaciones durante el semestre para reflexionar sobre nuestro progreso en el curso y para adecuar nuestras prácticas dentro y fuera de clase. Esta evaluación tendrá lugar en un tiempo breve durante las sesiones de clase. Aunque este proceso es individual, quiero alentar a los estudiantes a que compartan con el profesor los retos y necesidades identificadas aquí con el fin de recibir la orientación requerida. Las actividades de evaluación sumativa tendrán retroalimentación para asegurar que los estudiantes identifiquen sus puntos fuertes y débiles. En la medida de lo posible los instructores harán retroalimentaciones de forma individual.

Evaluación sumativa

Actividad de evaluación	Total (100%)	Corte 1 (30 %)	Corte 2 (35 %)	Corte 3 (35 %)	RAE Asociado
Talleres/Exámenes pop-up	15%	5%	5%	5%	1 - 7
Examen parcial	30%	0%	30%	0%	1 - 5
Proyecto de investigación (Anteproyecto)	25%	25%	0%	0%	1 - 3
Proyecto de investigación (presentación)	15%	0%	0%	15%	1 - 7
Proyecto de investigación (informe)	15%	0%	0%	15%	1 - 7

9. Programación de actividades

Se	Ses ión	Temas	Descripción de la actividad	Recursos que apoyan la actividad
S	S :	Terrias	Descripcion de la detividad	necarsos que apoyan la actividad

			Trabajo con acompañamiento	Trabajo independiente	(E-Aulas para todas las sesiones)
			directo del profesor	del estudiante	
S1	ENE 28	Introducción y motivación del curso.	Presentación del programa. Introducción a la bioinformática: Alcances, métodos y objetivos	NA	NA
31	ENE 31	Expresiones regulares	Bases, utilidades y funciones especializadas de las expresiones regulares.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S2	FEB 04	Bases biológicas de la bioinformática. Bases de datos.	Presentación del tema. Repaso de conceptos.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
	FEB 07	Acceso a datos de secuencias biológicas.	Revisión de la estructura y la organización de bases de datos.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S3	FEB 11	La terminal-Unix	Explicación de las razones de la dominancia de Unix en las ciencias básicas.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
33	FEB 14	Linea de comandos (Shell)	Funciones básicas y especializadas de la línea de comandos	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
	FEB 18	Conexiones remotas-Teoría	Conexión remota a servidores de trabajo. Motivación para el trabajo remoto.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S4	FEB 21	Linea de comandos (Shell)-Segunda Parte	Funciones básicas y especializadas de la línea de comandos	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
	FEB 25	PRESENTACIÓN ANTEPROYECTO			
\$5	FEB 28	Conexiones remotas- Práctica	Conexión remota a servidores de trabajo. Motivación para el trabajo remoto.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
	MAR 04	Blast I	Algoritmo de BLAST. Estudio de los parámetros de búsqueda e interpretación de resultados	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S6	MAR 07	Blast II	Alternativas y estrategias para mejorar la sensibilidad de la búsqueda usando la línea de comandos	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S7	MAR 11	Alineamientos pareados	Estudio de algoritmos para alineamientos pareados (globales y locales). Aplicaciones.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git

	MAR 14	Alineamientos multiples	Bases biológicas de los alineamiento s múltiples. Revisión de los diferentes algoritmos. Aplicaciones.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
	MAR 18	Análisis de ADN I	Técnicas y tecnologías de secuenciación de primera generación.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S8	MAR 21	Aplicaciones de análisis de ADN: Sanger Sequencing	Alineamiento, visualización y análisis.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
	MAR 25	Análisis de ADN II	Técnicas y tecnologías de secuenciación de primera generación.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S9	MAR 28	Aplicaciones de análisis de ADN: Ensamblaje de Genoma	Ensamblaje, alineamiento y visualización	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S10	ABR 01	Análisis de ADN III	Qué historias nos cuentan los SNPs? Ancestría global en poblaciones naturales	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
310	ABR 04	git	Funciones básicas de las herramientas Git y MarkDown.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S11	ABR 08	Asesoría de proyecto.		Desarrollo proyecto, resolución de preguntas.	NA		
	ABR 11	PARCIAL					
SS			SEMANA SAN	TA 14 AL 20 DE ABRIL			
S12	ABR 22	Transcriptomica	De replicación a transcripción, principios básicos del análisis de ARN genómico.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
312	ABR 25	R	Funciones especializadas de R.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
613	ABR 29	Transcriptomica II	Preparación de los datos.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S13	MAY 02	Transcriptomica III	Preparación de los datos	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
S14	MAY 06	Filogenomica I	Hipótesis del reloj molecular. Selección. Teoría neutral.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git		
	MAY 09	Transcriptomica IV	Identificando patrones de expresión diferencial.	Ejercicios, resolución de	Github https://github.com/paula- torres/bioinfo_ur_2025.git		

				preguntas	
S15	MAY 13	Filogenomica II	Flujo de trabajo para responder una pregunta filogenómica.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
313	MAY 16	Filogenomica III	Métodos de análisis filogenómico.	Ejercicios, resolución de preguntas	Github https://github.com/paula- torres/bioinfo_ur_2025.git
S16	MAY 20	Asesoría de proyecto.		Desarrollo proyecto, resolución de preguntas.	NA
316	MAY 23	Asesoría de proyecto		Desarrollo proyecto, resolución de preguntas.	NA
	MAY 27	Presentación de resultados del proyecto.		NA	NA
\$17	MAY 30	Presentación de resultados del proyecto.		NA	NA

Este es un plan general del desarrollo del curso. Es un plan flexible que puede modificarse dependiendo de las necesidades del grupo y los resultados de aprendizaje obtenidos. Las fechas exactas de exámenes, quices y entregas serán anunciadas oportunamente por parte de los instructores.

10. Factores de éxito para este curso

Las siguientes estrategias facilitarán su aprendizaje y rendimiento a lo largo del semestre.

- Resolución de talleres y preguntas: Invitamos al estudiante a que resuelva por su propia cuenta los talleres y responda a las preguntas. Esto ayudará a desarrollar confianza y habilidades en el planteamiento de soluciones en las que sea necesario el uso de la bioinformática como herramienta.
- Repasar videos y diapositivas: Es natural olvidar la información que no se utiliza y no se repasa. Una estrategia sugerida para mejorar la retención de lo visto en clase es dedicar unos minutos (~30) al final del día para reforzar el aprendizaje de los conceptos vistos. Volver a las notas de clase, diapositivas y videos ayudará a una mejor retención de la información.

11. Bibliografía y recursos

- Bioinformatics and Functional Genomics (3ra Ed.). Pevsner, J. WileyBlackwell. 2015.
- Understanding Bioinformatics. Zvelebil, M.; Baum, J. Garland Science. 2008.
- BLAST (1ra Ed). Korf, I.; Yandell, M.; Bedell, J. O'Reilly. 2003.

• Bioinformatics data skills. Buffalo, V. O'reilly. 2014.

12. Bibliografía y recursos complementarios

- Bioinformatics with Python Cookbook: http://ez.urosario.edu.co/login?url=http://search.ebscohost.com/ login.aspx? direct=true&db=e000xww&AN=1018253&lang=es&site=edslive&scope=site&ebv=EB&pp id=pp 20
- https://rescuedbycode.com/ (Aprendizaje de UNIX y otros lenguajes para analizar datos biológicos)
- Ejercicios de bioinformática con programación (adicionales)
- http://rosalind.info/problems/locations/ Instalación y actualización de herramientas
- https://www.rstudio.com/products/rstudio/download/#download (Rstudio)
- https://atom.io/ (editor de texto recomendado)
 Una de estas herramientas de trabajo si tu computador tiene SO Windows
- https://mobaxterm.mobatek.net
- https://github.com/git-for-windows/build-extra/releases/tag/git-sdk- 1.0.8(normalmente se instala la versión 64, no la 32)
- https://discourse.ubuntu.com/t/instalacion-de-ubuntu-en-windows10/14949
 Documentación y uso de ambientes de desarrollo
- https://raw.githubusercontent.com/rstudio/cheatsheets/master/translations/ spanish/rstudio-entorno.pdf (R, Español) • https://education.rstudio.com/learn/beginner/ (R)

13. Acuerdos para el desarrollo del curso

Puntualidad y asistencia: En caso de que migremos a modalidad mixta o presencial durante el semestre: Entendemos que la ubicación de algunos estudiantes respecto a la sede donde se desarrollan las actividades de clase puede ser lejana. La movilidad entre el sitio de vivienda y la universidad puede complicarse además por el infame tráfico Bogotano. Si por algún motivo hay una demora llegando a la sede, invitamos a que el estudiante ingrese al salón sin importar la hora de llegada para que aproveche las actividades de clase lo mejor que pueda. La asistencia no tendrá incidencia en la calificación, pero queremos resaltar que es sumamente importante que el estudiante esté presente durante la clase el mayor tiempo posible. Consultar el material dispuesto en moodle/eaulas o las grabaciones de la clase no sustituye la presencia del estudiante; durante las sesiones se pueden dar discusiones o instrucciones que no están incluídas en el material disponible y aún cuando estas quedan grabadas no le dan al estudiante la experiencia completa de participación.

Etiqueta durante las clases presenciales: El uso de teléfonos celulares y el consumo de alimentos no están permitidos durante la clase. Revisar el teléfono y consumir alimentos crean distracción para la persona que realiza la acción y también para los instructores y otros estudiantes, interrumpiendo la dinámica de la clase. Invito a que los miembros del curso revisen sus teléfonos y coman durante los tiempos dispuestos para el descanso y en los lugares apropiados, no dentro del salón de clase. Entiendo que haya cosas por contar o discutir entre estudiantes, pero invito a

mantener el silencio durante la sesión a menos que se indique que es apropiado hablar. Esto ayuda a reducir las distracciones de todos los miembros del grupo y a que la clase se desarrolle sin contratiempos.

Código de honor: Durante la presentación de sus quices y exámenes sincrónicos es permitido consultar los apuntes propios y el material de la clase dispuesto por los instructores en moodle y/o e-aulas. Durante exámenes y quices no está permitido consultar otras fuentes, incluyendo, pero no limitándose a: teléfono celular, exámenes o quices de otros compañeros y búsquedas en internet. El estudiante debe siempre presentar soluciones a los ejercicios que sean producto de su proceso de aprendizaje. Presentar soluciones copiadas en las actividades de evaluación se considera fraude. Durante la elaboración de sus proyectos de investigación utilizarán herramientas e instrucciones que no fueron desarrolladas por ustedes. En todos los casos de uso de otras herramientas es necesario mencionar qué herramienta y qué versión se utiliza. En muchos casos se utilizan fragmentos de código o series de instrucciones desarrolladas por otros colegas pero que no necesariamente son de dominio o conocimiento público. Es necesario mencionar la fuente siempre que se esté utilizando código o instrucciones de otro colega (otro estudiante, profesor, etc.). Los eventos de fraude y plagio son faltas graves de acuerdo con el reglamento formativo-preventivo y disciplinario de la Universidad y serán reportados a la unidad académica competente de forma que se inicie el debido proceso disciplinario. La nota requerida para aprobar el curso es de 3.0.

14. Respeto y no discriminación

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).