Intermediate Microeconomic Spring 2025

Part two: Choice and Demand

Week 3b: Demand

Yuanning Liang

□ The actual level of utility varies along the Marshallian demand curve

- □ The actual level of utility varies along the Marshallian demand curve
- \square As the price of x falls, the individual moves to higher indifference curves
 - it is assumed that nominal income is held constant as the demand curve is derived
 - \blacksquare this means that "real" income rises as the price of x falls
- An alternative approach holds "real" income (or utility) constant while examining reactions to changes in p_x
 - the effects of the price change are "compensated" so as to constrain the individual to remain on the same indifference curve
 - reactions to price changes include only substitution effects

- □ A <u>compensated</u> (<u>Hicksian</u>) <u>demand curve</u> shows the relationship between the price of a good and the quantity purchased assuming that <u>other prices</u> and <u>utility</u> are held constant.
- □ The <u>compensated demand curve</u> is a two-dimensional representation of the compensated demand function

$$x^* = x^c(p_x, p_y, U)$$

Holding utility constant, as price falls...

- ☐ For a normal good, the compensated demand curve is less responsive to price changes than is the uncompensated demand curve
 - the uncompensated demand curve reflects both income and substitution effects
 - the compensated demand curve reflects only substitution effects (because income is compensated)

Compensated Demand Functions

Suppose that utility is given by

utility =
$$U(x,y) = x^{0.5}y^{0.5}$$

The uncompensated (Marshallian) demand functions are

$$x = I/2p_x y = I/2p_y$$

The indirect utility function is

utility =
$$V(I, p_x, p_y) = \frac{I}{2p_x^{0.5}p_y^{0.5}}$$

Compensated Demand Functions

□ To obtain the compensated demand functions, we can solve the indirect utility function for I and then substitute into the Marshallian demand functions

$$x^{c} = \frac{Vp_{y}^{0.5}}{p_{x}^{0.5}} \qquad y^{c} = \frac{Vp_{x}^{0.5}}{p_{y}^{0.5}}$$

- \square Demand now depends on utility (V) rather than income
- \square Increases in p_x reduce the amount of x demanded
 - only a substitution effect

Duality

□ Remember the expenditure function

minimum expenditure =
$$E(p_x, p_y, U)$$

☐ Then, by definition

$$x^{c}(p_{x},p_{y},U) = x[p_{x},p_{y},E(p_{x},p_{y},U)]$$

The quantity demanded is equal for both Marshallian and Hicksian demand functions when income is exactly what is needed to attain the required utility level.

Deriving the Slutsky equation

Slutsky discovered that changes to demand from a price change are always the sum of a pure substitution effect and an income effect.

We can differentiate the compensated demand function

$$X^{c}(p_{x}, p_{y}, U) = X[p_{x}, p_{y}, E(p_{x}, p_{y}, U)]$$

and get

$$\frac{\partial x^c}{\partial p_x} = \frac{\partial x}{\partial p_x} + \frac{\partial x}{\partial E} \cdot \frac{\partial E}{\partial p_x}$$

Deriving the Slutsky equation

$$\frac{\partial x}{\partial p_x} = \frac{\partial x^c}{\partial p_x} - \frac{\partial x}{\partial E} \cdot \frac{\partial E}{\partial p_x}$$

- ☐ The first term is the slope of the compensated demand curve
 - the substitution effect
- \square The second term measures the way in which changes in p_x affect the demand for x through changes in purchasing power
 - the income effect

A mathematical representation of income and substitution effects

The substitution effect can be written as

substitution effect =
$$\frac{\partial x^c}{\partial p_x} = \frac{\partial x}{\partial p_x}\Big|_{U=\text{constant}}$$

The income effect can be written as

income effect
$$= -\frac{\partial x}{\partial E} \cdot \frac{\partial E}{\partial p_x} = -\frac{\partial x}{\partial I} \cdot \frac{\partial E}{\partial p_x}$$

The Slutsky Equation

- □ Note that $\partial E/\partial p_x = x$ (as $E = p_x x + p_y y$)
 - \blacksquare a \$1 increase in p_x raises necessary expenditures by x dollars
- □ The utility-maximization hypothesis shows that the substitution and income effects arising from a price change can be represented by

$$\frac{\partial x}{\partial p_x} = \text{substitution effect} + \text{income effect}$$

$$\frac{\partial \mathbf{x}}{\partial \mathbf{p}_{\mathbf{x}}} = \frac{\partial \mathbf{x}}{\partial \mathbf{p}_{\mathbf{x}}} \Big|_{U=\text{constant}} - \mathbf{x} \frac{\partial \mathbf{x}}{\partial \mathbf{I}}$$

The Slutsky Equation

$$\frac{\partial x}{\partial \boldsymbol{p}_{x}} = \frac{\partial x}{\partial \boldsymbol{p}_{x}} \bigg|_{U=\text{constant}} - x \frac{\partial x}{\partial I}$$

- The first term is the substitution effect
 - always negative as long as MRS is diminishing
 - the slope of the compensated demand curve must be negative
- ☐ The second term is the income effect
 - if x is a normal good, then $\partial x/\partial I > 0$
 - ☐ the entire income effect is negative
 - if x is an inferior good, then $\partial x/\partial I < 0$
 - □ the entire income effect is positive

- □ We can demonstrate the decomposition of a price effect using the Cobb-Douglas example studied earlier
- $lue{}$ The Marshallian demand function for good x is

$$x(p_x, p_y, I) = \frac{0.5I}{p_x}$$

 \square The Hicksian (compensated) demand function for good x is

$$x^{c}(p_{x}, p_{y}, V) = \frac{Vp_{y}^{0.5}}{p_{x}^{0.5}}$$

 \square The overall effect of a price change on the demand for x is

$$\frac{\partial x}{\partial p_x} = \frac{-0.5I}{p_x^2}$$

This total effect is the sum of the two effects that Slutsky identified

The substitution effect is found by differentiating the compensated demand function

substitution effect =
$$\frac{\partial x^c}{\partial \rho_x} = \frac{-0.5V \rho_y^{0.5}}{\rho_x^{1.5}}$$

 \square We can substitute in for the indirect utility function $(V(p_x, p_y, I))$

substitution effect =
$$\frac{-0.5(0.5Ip_x^{-0.5}p_y^{-0.5})p_y^{0.5}}{p_x^{1.5}} = \frac{-0.25I}{p_x^2}$$

Calculation of the income effect is easier

income effect =
$$-x \frac{\partial x}{\partial I} = -\left[\frac{0.5I}{p_x}\right] \cdot \frac{0.5}{p_x} = -\frac{0.25I}{p_x^2}$$

Practice Example: Demand for nonmarket goods

- The theory of revealed preference was proposed by Paul Samuelson in the late 1940s
- The theory defines a principle of rationality based on observed behavior and then uses it to approximate an individual's utility function
- ☐ For example, it helps us to estimate demand for nonmarket goods.

Revealed Preference

- Consider two bundles of goods: A and B
- □ If the individual can afford to purchase either bundle but chooses A, we say that A had been <u>revealed</u> <u>preferred</u> to B
- □ Under any other price-income arrangement, **B** can never be revealed preferred to **A**

□ There is no clear way to directly value changes in quantities of environmental/recreational goods.

□ Why?

- □ There is no clear way to directly value changes in quantities of environmental/recreational goods.
- □ Why?
- □ There aren't any markets for them!
- ☐ Is there a way we can reveal the value of these goods?

There is no market for orcas

- Suppose there's a massive decline in orcas off the Washington coast, what happens?
- We will likely see demand for sightseeing tours go down.
- This drops the price of tours.
- A non-market good had an effect on a market price.

- One way to circumvent this problem is to look at private goods that interact with the environmental good
- If there are changes in the environmental good, holding everything else fixed, that should be reflected in some way in changes in the price of the related private good
- This change in price can tell us something about how people value the change in the environmental good
- □ 1. Hedonics method
- □ 2. Travel cost model

2. Travel cost model

- □ Recreational areas have value
- Their quality also has value
- Not placing a value on recreation is essentially giving it a value of zero
- □ This is likely inappropriate
- ☐ If someone dumped toxic waste in Yellow River does that have zero cost?

2. Travel cost model

- ☐ The travel cost method uses observable data on recreation visitation to inferthe the recreational value of environmental amenities
- ☐ The central idea is that the time and travel cost expenses that people incur to visit a site represent the **price** of access to the site
- This means that people's willingness-to-pay to visit can be estimated based on the number of visits they make to sites of different prices
- ☐ This gives us a **demand curve** for sites/amenities, so we can value changes in these environmental amenities

Hotelling

- After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties
- Would total entrance fee that people pay measure the value?

Hotelling

- After WWII, the U.S. national park service solicited advice from economists on methods for quantifying the value of specific park properties
- Would total entrance fee that people pay measure the value?
- □ No!
- □ Harold Hotelling proposed the first indirect method for measuring the demand of a non-market good in 1947

- Here's the theory for how we can use observed data to tell us something about willingness to pay
- Consider a single consumer and a single recreation site
- ☐ The consumer has:
 - Total number of recreation trips: x, to site of quality: q
 - Total budget of time: T
 - Working time: H
 - Non-recreation, non-work time: I
 - Time to recreation site: t
 - Hourly wage: w
 - Money cost of reaching the site: c
 - consumption: z

This lets us write down the consumer's utility maximization problem:

$$\max_{x,z,l} U(x,z,l,q) \; ext{ subject to: } \underbrace{wH = cx+z}_{ ext{money budget}}, \; \underbrace{T = H+L+tx}_{ ext{time budget}}$$

Combine the two constraints to get:

$$\max_{x,z,l} U(x,z,l,q)$$
 subject to: $\underbrace{wT = z + (c+wt)x + wl}_{ ext{combined money/time budget}}$

- Let Y = wT be the consumer's *full income*, their money value of total time budget
- \Box Let p = c + wt be the consumer's full price, their total cost to reach the site
- ☐ Then we can write the problem as:

$$\max_{x,z,l} U(x,z,l,q)$$
 subject to: $\underbrace{Y=z+px+wl}_{ ext{combined budget}}$

 \square Solve the constraint for z and substitute into the utility function...

$$\max_{x,l}U\left(x,Y-px-wl,l,q
ight)$$

This has first-order conditions:

and

$$[l] \;\; -wU_z+U_l=0
ightarrow rac{U_l}{U_z}=w$$

- $\Box \frac{u_z}{v_z} = p$ tells us the consumer equates the marginal rate of substitution between recreational trips and consumption to be the full price of the recreational trip
- What does this mean?
- ☐ The value of the recreational trip to the consumer, in dollar terms, is revealed by the full price p

$$U_x - pU_z = 0$$
 $-wU_z + U_l = 0$

- \square The above FOCs are two equations, the consumer had two choices (x,l) so we had two unknowns
- □ We can thus solve for x (and I) as a function of the parameters (p,Y,q): x = f(p,Y,q)
- This is simply the consumer's demand curves for recreation as a function of the full price p, full budget Y, and quality q

$$x = f(p, Y, q)$$

- If we observe consumers going to sites of different full prices $p_1, p_2, ..., p_n$, we are moving up and down their recreation demand curve
- ☐ This lets us trace out the demand curve
- Changing Y or q shifts the demand curve in or out: these are income and quasi-price effects

Zonal (single-site) model

- ☐ Here's the most basic travel cost model to start:
- ☐ A simple example of zones 1-5

Zonal (single-site) model

Demand curve is simply from estimating

Visits per person = f[travel cost per visit, entrance fee, (and travel costs to other sites), relevant socioeconomic data (income and education, etc)] + ϵ

Or even more simply,

Visits per person = $\beta_0 + \beta_1$ travel cost + ϵ

Issues and concerns with the single-site model?

- It ignores non-use value (automatically zero for non-users)
- What are the right zones to choose?
- What is the right functional form for demand?
- How do we measure the opportunity cost of time?
- ☐ How do we treat multi-purpose trips?
- How do we value particular site attributes? Can't disentangle them at a single site