Bài 3: SỰ TƯƠNG ĐỒNG VÀ CÁC KHOẢNG CÁCH (TT)

I. Mục tiêu:

Sau khi thực hành xong, sinh viên nắm được:

- Khoảng cách thay đổi
- Khoảng cách dãy con chung dài nhất
- Khoảng cách biến đổi thời gian động

II. Tóm tắt lý thuyết:

1. Khoảng cách thay đổi (edit distance):

Khoảng cách thay đổi là số ký tự nhỏ nhất mà khi thêm vào, xóa hoặc thay thế ký tự được yêu cầu để thay đổi 1 chuỗi thành 1 chuỗi khác.

Cho 2 chuỗi $\overline{X}=(x_1\dots x_m)$ và $\overline{Y}=(y_1\dots y_n)$, cho $Edit(\overline{X},\overline{Y})$ là sự thay đổi được thực thi trong chuỗi \overline{X} để biến đổi thành chuỗi \overline{Y} , I_{ij} là bộ phận chỉ nhị phân được xác định như sau

$$I_{ij} = \left\{ egin{array}{ll} 0 & ext{n\'eu} \ x_i = y_j \ 1 & ext{ngw\'ec} \ ext{l\'ei} \end{array}
ight.$$

Xét \overline{X}_i là i kí hiệu đầu tiên của \overline{X} , \overline{Y}_j là j kí hiệu đầu tiên của \overline{Y} . Chi phí thích ứng tối ưu của 2 đoạn này là Edit(i,j). Mục tiêu là để xác định phép toán gì để thực thi phần tử cuối cùng của \overline{X}_i sao cho nó hoặc là match một phần tử trong \overline{Y}_j hoặc nó bị xóa. 3 khả năng xuất hiện:

- Phần tử cuối cùng của \overline{X}_i bị xóa và chi phí cho điều này là [Edit(i-1,j) + Deletion Cost]. (Phần tử cuối cùng của đoạn bị chặt cụt \overline{X}_{l-1} có thể hoặc không phù hợp với phần tử cuối của \overline{Y}_j tại điểm này).
- Một phần tử được thêm vào cuối của \bar{X}_i để phù hợp với phần tử cuối của \bar{Y}_j và chi phí của điều này là $[Edit(i,j-1) + Insertion\ Cost]$. (Số hạng Edit(i,j-1) cho thấy rằng các phần tử được phù hợp của cả 2 chuỗi bây giờ có thể được bỏ đi)
- Phần tử cuối cùng của \bar{X}_i được lật (flip) thành phần tử của \bar{Y}_j nếu nó khác nhau và chi phí cho điều này là $[Edit(i-1,j-1)+I_{ij}\cdot(Replacement\ Cost)].$

Khi đó, việc phù hợp tối ưu được xác định bằng đệ quy như sau:

$$Edit(i,j) = min \begin{cases} Edit(i-1,j) + Deletion \ Cost \\ Edit(i,j-1) + Insertion \ Cost \\ Edit(i-1,j-1) + I_{ij} \cdot (Replacement \ Cost) \end{cases}$$

<u>Ví du:</u> Cho 2 chuỗi $\bar{X} = INTENTION$ và $\bar{Y} = EXECUTION$. Chương trình động dynamic program dp) tính dp(n, m) (hay Edit(n, m)) theo dạng bảng

- Giải bài toán bằng việc kết hợp lời giải tới các bài toán con.
- Khởi tao:

$$dp(i, 0) = i$$
$$dp(0, j) = j$$

• Đê quy:

For each
$$i = 1 \dots m$$

For each $j = 1 \dots n$

$$dp(i,j) = min \begin{cases} dp(i-1,j) + 1 \\ dp(i,j-1) + 1 \\ dp(i-1,j-1) + a \end{cases}$$
nếu $x_i \neq y_j$

với
$$a = \begin{cases} 2 & \text{n\'eu } x_i \neq y_j \\ 0 & \text{ngược } lại \end{cases}$$

• Kết thúc: dp(n,m) là khoảng cách edit.

Tính

$$dp(1,1) = \min(dp(0,1) + 1, dp(1,0) + 1, dp(0,0) + 2) = 2$$

$$dp(1,2) = \min(dp(0,2) + 1, dp(1,1) + 1, dp(0,1) + 2) = 3$$

$$dp(1,3) = \min(dp(0,3) + 1, dp(1,2) + 1, dp(0,2) + 2) = 4$$

$$dp(1,4) = \min(dp(0,4) + 1, dp(1,3) + 1, dp(0,3) + 2) = 5$$

$$dp(1,5) = \min(dp(0,5) + 1, dp(1,4) + 1, dp(0,4) + 2) = 6$$

$$dp(1,6) = \min(dp(0,6) + 1, dp(1,5) + 1, dp(0,5) + 2) = 7$$

$$dp(1,7) = \min(dp(0,7) + 1, dp(1,6) + 1, dp(0,6) + 0) = 6$$

$$dp(1,8) = \min(dp(0,8) + 1, dp(1,7) + 1, dp(0,7) + 2) = 7$$

$$dp(1,9) = \min(dp(0,9) + 1, dp(1,8) + 1, dp(0,8) + 2) = 8$$

N	9									
О	8									
I	7									
T	6									
N	5									
Е	4									
T	3									
N	2									
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	T	I	О	N

Tương tự ta có

N	9	8	9	10	11	12	11	10	9	8
О	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	T	I	О	N

• Quay lui

Các điều kiện cơ sở:

$$dp(i, 0) = i$$
$$dp(0, j) = j$$

■ Đệ quy:

For each $i = 1 \dots m$

$$dp(i,j) = min \begin{cases} dp(i-1,j) + 1 & \text{deletion} \\ dp(i,j-1) + 1 & \text{insertion} \\ dp(i-1,j-1) + a & \text{substitution} \end{cases}$$
 với $a = \begin{cases} 2 & \text{nếu } x_i \neq y_j \\ 0 & \text{ngược lại} \end{cases}$
$$ptr(i,j) = \begin{cases} LEFT & \text{insertion} \\ DOWN & \text{otherwise} \end{cases}$$
 substitution

n	9	↓ 8	<u>√</u>	<u> </u>	<u> </u>	∠ ←↓ 12	↓ 11	↓ 10	↓9	/8
0	8	↓ 7	∠ ←↓8	∠←↓ 9	∠←↓ 10	∠ ←↓ 11	↓ 10	↓ 9	∠ 8	← 9
i	7	↓ 6	∠←↓ 7	∠←↓ 8	∠←↓ 9	∠←↓ 10	↓9	∠ 8	← 9	← 10
t	6	↓ 5	∠<↓ 6	∠←↓ 7	∠<-↓ 8	∠ ←↓9	∠ 8	← 9	← 10	← ↓ 11
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	∠←↓ 9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10
e	4	∠ 3	← 4	√ ← 5	← 6	← 7	←↓ 8	∠←↓ 9	∠ ←↓ 10	↓9
t	3	∠ ← ↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	∠ 7	← ↓ 8	∠←↓ 9	↓ 8
n	2	∠←↓ 3	∠ - ↓4	∠←↓ 5	∠<↓ 6	∠←↓ 7	∠ - ↓8	↓ 7	∠←↓ 8	∠7
i	1	∠←↓ 2	∠ ←↓ 3	∠←↓ 4	∠-↓5	∠<↓ 6	∠←↓ 7	√ 6	← 7	← 8
#	0	1	2	3	4	5	6	7	8	9
	#	e	X	e	c	u	t	i	0	n

Ta có:

- 2. Khoảng cách dãy con chung dài nhất (Longest Common Subsequence_LCSS): Cho 2 chuỗi $\bar{X} = (x_1 \dots x_m)$ và $\bar{Y} = (y_1 \dots y_n)$. Xét \bar{X}_i là i kí hiệu đầu tiên của \bar{X} , \bar{Y}_j là j kí hiệu đầu tiên của \bar{Y} và LCSS(i,j) biểu diễn các giá trị LCSS tối ưu giữa 2 đoạn này. Mục tiêu là để phù hợp phần tử cuối của \bar{X}_i và \bar{Y}_j hoặc là để xóa phần tử
 - Phần tử cuối của \bar{X}_i phù hợp với \bar{Y}_j . Giá trị tương đồng LCSS(i,j) có thể được biểu diễn đệ quy LCSS(i-1,j-1).
 - Phần tử cuối không phù hợp. Trong trường hợp này, phần tử cuối của 1 trong 2 chuỗi cần được xóa. Giá trị của LCSS(i,j) hoặc là LCSS(i,j-1) hoặc LCSS(i-1,j) phụ thuộc vào chuỗi được chọn để xóa.

Khi đó, LCSS(i, j) được xác định như sau:

cuối của một trong hai chuỗi. Hai khả năng xuất hiện:

```
LCSS(i,j) = \max \begin{cases} LCSS(i-1,j-1) & if \ x_i = y_i \\ LCSS(i-1,j) & otherwise \ (no \ match \ on \ x_i) \\ LCSS(i,j-1) & otherwise \ (no \ match \ on \ y_i) \end{cases}
```

Ví dụ: Cho 2 chuỗi x = ACADB và y = CBDA, sử dụng chương trình động để tìm LCSS của 2 chuỗi.

```
X and Y be two given sequences
Initialize a table LCS of dimension X.length * Y.length
X.label = X
Y.label = Y
LCS[0][] = 0
LCS[][0] = 0
Start from LCS[1][1]
Compare X[i] and Y[j]
    If X[i] = Y[j]
        LCS[i][j] = 1 + LCS[i-1, j-1]
        Point an arrow to LCS[i][j]
    Else
        LCS[i][j] = max(LCS[i-1][j], LCS[i][j-1])
        Point an arrow to max(LCS[i-1][j], LCS[i][j-1])
```

- Khởi tạo bảng (m + 1)*(n + 1) chiều với m, n tương ứng là chiều dài của chuỗi X̄ và chuỗi Ȳ. Dòng đầu tiên và cột đầu tiên được điền vào các số 0.

		С	В	D	Α
	0	0	0	0	0
Α	0				
С	0				
Α	0				
D	0				
В	0				

- Điền vào mỗi ô của bảng sử dụng: Nếu ký tự tương ứng với dòng hiện tại và cột hiện tại đang phù hợp thì điền ô hiện tại bằng việc cộng thêm 1 thành phần tử đường chéo. Chỉ mũi tên tới ô đường chéo. Ngược lại lấy giá trị lớn nhất từ phần tử cột trước và dòng trước cho việc điền vào ô hiện tại. Chỉ mũi

tên tới ô với giá trị lớn nhất. Nếu chúng bằng nhau thì vẽ tới giá trị bất kỳ của chúng.

		С	В	D	Α
	0	0	0	0	0
Α	0	0	0	0	1
С	0				
Α	0				
D	0				
В	0				

Lặp lại bước trên cho tới khi bảng được điền vào đầy đủ

- Giá trị nằm trong dòng cuối và cột cuối là chiều dài của LCSS.

- Để tìm LCSS, ta bắt đầu từ phần tử cuối và theo hướng của mũi tên.

- Do đó, LCSS là CA.

3. Khoảng cách biến đổi thời gian động (Dynamic Time Warping _DTW):

DTW kéo dãn chuỗi thời gian theo chiều thời gian một cách linh động tại mỗi vị trí. DTW xác định được khoảng cách giữa 2 chuỗi có chiều dài khác nhau.

Xét metric Manhattan L_1 , $M(\bar{X}_i, \bar{Y}_i)$ được xác định như sau:

$$M(\overline{X}_i, \overline{Y}_i) = |x_i - y_i| + M(\overline{X}_{i-1}, \overline{Y}_{i-1})$$

Xét DTW(i,j) là khoảng cách tối ưu giữa i phần tử đầu tiên của chuỗi $(x_1 \dots x_m)$ và j phần tử đầu tiên của chuỗi $(y_1 \dots y_n)$. Khi đó, DTW(i,j) được xác định như sau:

$$DTW(i,j) = distance(x_i, y_j) + min \begin{cases} DTW(i,j-1) & repeat x_i \\ DTW(i-1,j) & repeat y_j \\ DTW(i-1,j-1) & repeat neither \end{cases}$$

Ví du: Cho 2 chuỗi thời gian A và B

Time	Series_1	Series_2
1	1	1
2	7	2
3	4	8
4	8	5
5	2	5
6	9	1
7	6	9
8	5	4
9	2	6
10	0	5

- Khởi tạo ma trận chi phí rỗng

- Tính chi phí: sử dụng công thức

$$\begin{split} DTW(i,j) &= distance\big(A_i,B_j\big) \\ &+ \min\Big(DTW(i,j-1),DTW(i-1,j),DTW(i-1,j-1)\Big) \end{split}$$

với
$$distance(A_i, B_j) = |A_i - B_j|$$

Ta tính:

DTW(1,1) =
$$|1-1| = 0$$

DTW(1,2) = $|1-2| + \min(0) = 1$
DTW(1,3) = $|1-8| + \min(1) = 8$
DTW(1,4) = $|1-5| + \min(8) = 12$
DTW(1,5) = $|1-5| + \min(12) = 16$
DTW(1,6) = $|1-1| + \min(16) = 16$
DTW(1,7) = $|1-9| + \min(16) = 24$
DTW(1,8) = $|1-4| + \min(24) = 27$
DTW(1,9) = $|1-6| + \min(27) = 32$
DTW(1,10) = $|1-5| + \min(32) = 36$
DTW(2,1) = $|7-1| + \min(0) = 6$
DTW(3,1) = $|4-1| + \min(6) = 9$
DTW(4,1) = $|8-1| + \min(9) = 16$
DTW(5,1) = $|2-1| + \min(16) = 17$

DTW(6,1) =
$$|9-1| + \min(17) = 25$$

DTW(7,1) = $|6-1| + \min(25) = 30$
DTW(8,1) = $|5-1| + \min(30) = 34$
DTW(9,1) = $|2-1| + \min(34) = 35$
DTW(10,1) = $|0-1| + \min(35) = 36$
DTW(2,2) = $|7-2| + \min(0,1,6) = 5$

.

Tương tự, ta điền đầy đủ vào bảng

Sự đồng nhất đường đi wraping: bắt đầu từ ở góc phải phía trên của ma trận
 và đi ngang qua bên trái ở phía dưới. Đường đi ngang qua được dựa vào

láng giềng với giá trị nhỏ nhất. Ví dụ: bắt đầu với 17 và tìm giá trị nhỏ nhất giữa 18, 14 và 12

- Số tiếp theo trong đường đi là 9. Quá trình này tiếp tục cho tới chúng ta đi tới phía dưới bên trái của bảng.

- Đường đi cuối cùng

- Khi đó chuỗi đường đi wraping là [17, 12, 9, 9, 9, 7, 7, 6, 3, 2, 1, 0].

III. Nội dung thực hành:

1. Viết chương trình tính khoảng cách edit.

```
def find_minimum_edit_distance(source_string, target_string) :
    # Create a dp matrix of dimension (source_string + 1) x (destination_matrix + 1)
dp = [[0] * (len(source_string) + 1) for i in range(len(target_string) + 1)]
    # Initialize the required values of the matrix
for i in range(1, len(target_string) + 1) :
    dp[i][0] = dp[i - 1][0] + 1
for i in range(1, len(source_string) + 1) :
    dp[0][i] = dp[0][i - 1] + 1
    # Maintain the record of opertions done
# Record is one tuple. Eg : (INSERT, 'a') or (SUBSTITUTE, 'e', 'r') or (DELETE, 'j')
operations_performed = []
    # Build the matrix following the algorithm
for i in range(1, len(target_string) + 1) :
    for j in range(1, len(source_string) + 1) :
        if source_string[j - 1] == target_string[i - 1] :
            dp[i][j] = dp[i - 1][j - 1]
              else :
                  # Initialization for backtracking
   i = len(target_string)
   j = len(source_string)
   # Backtrack to record the operation performed
   while (i != 0 and j != 0) :
    # If the character of the source string is equal to the character of the destination string,
         # no operation is performed
         if target_string[i - 1] == source_string[j - 1] :
             i -= 1
j -= 1
         else :
              # Check if the current element is derived from the upper-left diagonal element
              if dp[i][j] == dp[i - 1][j - 1] + 2]:
    operations_performed.append(('SUBSTITUTE', source_string[j - 1], target_string[i - 1]))
              # Check if the current element is derived from the upper element
              elif dp[i][j] == dp[i - 1][j] + 1 :
                   operations_performed.append(('INSERT', target_string[i - 1]))
              # Check if the current element is derived from the left element
              else :
                   operations_performed.append(('DELETE', source_string[j - 1]))
                   j -= 1
   # If we reach top-most row of the matrix
   while (j != 0) :
         operations performed.append(('DELETE', source string[j - 1]))
   # If we reach left-most column of the matrix
   while (i != 0) :
         operations performed.append(('INSERT', target string[i - 1]))
   # Reverse the list of operations performed as we have operations in reverse
   # order because of backtracking
   operations_performed.reverse()
    return [dp[len(target_string)][len(source_string)], operations_performed]
```

- 2. Viết chương trình tính khoảng cách LCSS
- 3. Viết chương trình tính khoảng cách DTW
- 4. Yêu cầu:
 - Làm tương tự bài 1 với bài 2 và bài 3.
 - Viết file báo cáo trình bày tóm lượt lại phần code em đã làm trong bài 2, 3.