Overheads: - Today's Outline

Recap Tuesday:

Enolates:

1) <u>C-alkylation</u> vs "bound" enolate

-Li, less polar solvents

-LG = halide

O-alkylation

"free enolate"

- Na, K, chelating solvents / crown ethers

-LG = sulfonate

2) <u>kinetic</u> vs <u>thermodynamic</u>

- least sub

big basecold

- most sub = most stable

- small base

- hot

Addition to α,β -unsaturated carbonyls

In general:

<u>Direct vs Conjugate Addition:</u> depends on Nu

1) $\underline{\text{Nu}} = \underline{\text{Grignard}} - \text{usually adds conjugate}$

unless β -C is crowded:

2) $\underline{Nu} = R - \underline{Li} - \underline{almost}$ always adds <u>direct</u>

3) Nu⁻ = organocuprate R-Cu< - always adds conjugate 2CH₃Li + CuCl \longrightarrow (CH₃)₂CuLi + LiCl

4) <u>Nu⁻ = enolate</u> - <u>usually</u> adds <u>conjugate</u> **Called <u>Michael Reaction</u>

complementary

Aldol Reaction: enolate adds to C=O of another molecule

