Convergenza del Simplesso e regole anti-ciclaggio

- degenerazione e ciclaggio
- un esempio di ciclaggio
- regole anti-ciclaggio

rif. Fi 3.2.6, BT 3.4 (Esempio 3.6), BT 3.7;

Degenerazione e ciclaggio

- ▶ il numero di basi ammissibili è al più $\binom{n}{m} = \frac{n!}{m!(n-m)!}$
- se l'algoritmo visita ciascuna base al più una volta, allora converge in un numero finito di iterazioni
- questo accade se, ad ogni iterazione, θ è strettamente positivo: infatti, il valore di f.o. diminuisce in modo strettamente monotono
- sfortunatamente, in presenza di basi degeneri, cioè di valori $\bar{b}_i=0$ si ha $\theta=0$ \Longrightarrow al cambiamento di base NON corrisponde uno spostamento di vertice
- può accadere che, dopo un certo numero di scambi degeneri, si riottenga una base già visitata (cioè un tableau già ottenuto)
- in questo caso il metodo visita ciclicamente e indefinitamente una sequenza di basi degeneri

Esempio

	-3/4	20	-1/2	6	0	0	0	3	
Ì	1/4	-8	-1	9	1	0	0	0	$ x_5 $
İ	1/2	-12	-1/2	3	1	0	0	0	$ x_{\epsilon} $
	0	0	-1 -1/2 1	0	0	0	1	1	$ x_7 $

Regole di pivoting:

- variabile entrante: la più negativa
- ightharpoonup variabile uscente: fra tutte le righe t per cui $\bar{t}/\bar{a}_{th}=\theta$ scegliere quella con il minimo B(t)

Regola di Bland

Scegliere la variabile entrante x_h e quella uscente $x_{B(t)}$ preferendo, fra le opzioni possibili, quelle corrispondenti agli indici più piccoli:

- $h = \arg\min\{j : c_j < 0\}_{\text{fik] b-t}}$
- In fra tutte le righe t per cui $\bar{t}/\bar{a}_{th}=\theta$ scegliere quella con il minimo B(t)

Teorema

Utilizzando la regola di Bland il metodo del simplesso converge dopo al più $\binom{n}{m}$ iterazioni

Per assurdo, supponiamo che esistano istanze di PL per cui si verifichi un ciclaggio, cioè la visita di una sequenza di basi $B_1,B_2,\ldots,B_k=B_1$

- fra queste istanze, ne consideriamo una minimale, cioè col minor numero di righe e colonne
- per questa, tutte le righe e le colonne del tableau sono state modificate durante la sequenza: se ce ne fosse una non modificata, la potremmo eliminare riducendo il problema
- quindi, tutte le colonne entrano ed escono a turno dalla base
- deve essere $b_i=0, i=1,\ldots,m$: altrimenti, nel pivot associato ad una riga i con $\bar{b}_i>0$ si avrebbe $\theta>0$ rompendo il ciclaggio

Tableau T (in forma canonica risp. B) in cui $x_n=x_{B(t)}$ esce dalla base per far entrare una certa var. x_h

			entra		esce		
	$x_{B(i)}$		x_h		x_n		
	0		< 0		0		-z
	0		≤ 0		0	0	
	:		:		:	:	
	1		≤ 0		0	0	$x_{B(i)}$
	0		≤ 0 ≤ 0		0	0	
	0		> 0		1	0	$x_{B(t)}$
:		:		:	:		
	0		≤ 0		0	0	

 $\bar{a}_{ih} \leq 0, i \neq t$: se esistesse $i \neq t$, con $\bar{a}_{ih} > 0$ la regola di Bland avrebbe scelto $x_{B(i)}$ e non x_n come var. uscente

Tableau \tilde{T} in cui x_n rientra in base

per ottenere \tilde{T} da T mediante una sequenza di pivot, devono esistere moltiplicatori μ_1,\ldots,μ_m tali che:

$$[\operatorname{riga}\ 0\ \operatorname{di}\ \tilde{T}] = [\operatorname{riga}\ 0\ \operatorname{di}\ T] + \sum_{i=1}^m \mu_i[\operatorname{riga}\ i\ \operatorname{di}\ T]$$

Allora:

- $ightharpoonup ilde{c}_{B(t)} = ilde{c}_n = ar{c}_{B(t)} + \mu_t = \mu_t$, quindi $ilde{c}_n < 0 \implies \mu_t < 0$
- $\tilde{c}_{B(i)} = \bar{c}_{B(i)} + \mu_i = \mu_i \text{ quindi } \tilde{c}_{B(i)} \geq 0 \text{ (regola di Bland)} \\ \Longrightarrow \mu_i \geq 0, i \neq t$

torniamo a considerare la variabile h nel nuovo tabeau. Deve essere $\tilde{c}_h \geq 0$, ma essendo:

$$\tilde{c}_h = \bar{c}_h + \sum_{i \neq t} \bar{a}_{ih} \mu_i + \bar{a}_{th} \mu_t$$

$$\begin{array}{l} \text{con } \bar{c}_h < 0 \\ \bar{a}_{ih} \leq 0, \ \mu_i \geq 0 \\ \bar{a}_{th} > 0, \ \mu_t < 0 \\ \text{risulta } \tilde{c}_h < 0 \quad \text{contraddizione} \end{array}$$

Efficienza del metodo del simplesso

- costo computazionale di un'iterazione
- numero di iterazioni

calcolo ${f B}^{-1}$, soluzione ${f B}{f x}={f b}$	$O(m^3)$
prodotto ${f Bb}$	$O(m^2)$
prodotto $\mathbf{u}^T\mathbf{b}$	O(m)

implementaz	ione matriciale	implementazione tableau			
calcolo ${f B}^{-1}$	$O(m^3)$	aggiornamento tableau	O(nm)		
calcolo $ar{c}$	O(nm)				
totale	$O(m^3 + nm)$		O(nm)		

Sul numero di iterazioni

consideriamo un problema nel cubo unitario:

$$0 \le x_i \le 1, \qquad i = 1, \dots, n$$

che ha 2^n vertici.

Una regola di pivoting che corrisponde ad un cammino che tocca tutti i vertici risulta in un numero esponenziale di iterazioni

Sul numero di iterazioni

tuttavia il primo vertice A e l'ultimo vertice B sono adiacenti: una diversa regola di pivoting terminerebbe in una iterazione!!

- per molte regole di pivoting "ragionevoli" esistono esempi per cui la regola risulta in un numero esponenziale di iterazioni
- questi NON escludono la possibilità che un'altra regola possa fare meglio

Diametro di un poliedro

possiamo stimare il numero di iterazioni in modo indipendente dalla regola di pivoting?

Definizione

Dati due vertici \mathbf{x}, \mathbf{y} definiamo distanza fra \mathbf{x} e \mathbf{y} il minimo numero $d(\mathbf{x}, \mathbf{y})$ di "salti" fra vertici adiacenti necessari per passare da \mathbf{x} a \mathbf{y}

Definizione

Definiamo diametro D(P) di un poliedro P la massima distanza $d(\mathbf{x},\mathbf{y})$ fra tutte le coppie (\mathbf{x},\mathbf{y}) di vertici di P. Sia inoltre $\Delta(n,m)$ il massimo D(P) se P è un politopo in \mathbb{R}^n definito da m disuguaglianze

La congettura di Hirsch

- se il simplesso inizia da un vertice \mathbf{x} e l'unica soluzione ottima è \mathbf{y} , allora servono almeno $d(\mathbf{x}, \mathbf{y})$ iterazioni
- ightharpoonup quindi, se $\Delta(n,m)$ cresce esponenzialmente con n ed m, allora il simplesso richiederebbe un numero esponenziale di iterazioni indipendentemente dalla regola di pivoting
- ightharpoonup quindi, è possibile sviluppare regole di pivoting "efficienti" solo se $\Delta(n,m)$ cresce polinomialmente con n ed m

Congettura di Hirsch:
$$\Delta(n,m) \leq m-n$$

ightharpoonup sebbene la congettura non sia dimostrata, l'esperienza pratica mostra che il simplesso richiede tipicamente O(m) iterazioni