



SEQUENCE LISTING

<110> YOKOTA, Akiho  
SHIGEOKA, Shigeru  
TOMIZAWA, Ken-ichi  
  
<120> METHOD FOR IMPROVING PRODUCTIVITY OF PLANT BY CHLOROPLAST TECHNOLOGY  
  
<130> 2006\_1303A  
  
<140> US 10/591,752  
<141> 2006-09-01  
  
<150> PCT/JP2005/004037  
<151> 2005-03-02  
  
<150> JP 2004-059513  
<151> 2004-03-03  
  
<160> 18  
  
<170> PatentIn version 3.4  
  
<210> 1  
<211> 358  
<212> PRT  
<213> Spinacia oleracea L

<220>

<223> Fructose-1,6-bisphosphatase

<400> 1

Ala Ala Val Gly Glu Ala Ala Thr Glu Thr Lys Ala Arg Thr Arg Ser  
1 5 10 15

Lys Tyr Glu Ile Glu Thr Leu Thr Gly Trp Leu Leu Lys Gln Glu Met  
20 25 30

Ala Gly Val Ile Asp Ala Glu Leu Thr Ile Val Leu Ser Ser Ile Ser  
35 40 45

Leu Ala Cys Lys Gln Ile Ala Ser Leu Val Gln Arg Ala Gly Ile Ser  
50 55 60

Asn Leu Thr Gly Ile Gln Gly Ala Val Asn Ile Gln Gly Glu Asp Gln  
65 70 75 80

Lys Lys Leu Asp Val Val Ser Asn Glu Val Phe Ser Ser Cys Leu Arg  
85 90 95

Ser Ser Gly Arg Thr Gly Ile Ile Ala Ser Glu Glu Glu Asp Val Pro  
100 105 110

Val Ala Val Glu Glu Ser Tyr Ser Gly Asn Tyr Ile Val Val Phe Asp  
115 120 125

Pro Leu Asp Gly Ser Ser Asn Ile Asp Ala Ala Val Ser Thr Gly Ser  
130 135 140

Ile Phe Gly Ile Tyr Ser Pro Asn Asp Glu Cys Ile Val Asp Ser Asp  
145 150 155 160

His Asp Asp Glu Ser Gln Leu Ser Ala Glu Glu Gln Arg Cys Val Val  
165 170 175

Asn Val Cys Gln Pro Gly Asp Asn Leu Leu Ala Ala Gly Tyr Cys Met  
180 185 190

Tyr Ser Ser Ser Val Ile Phe Val Leu Thr Ile Gly Lys Gly Val Tyr  
195 200 205

Ala Phe Thr Leu Asp Pro Met Tyr Gly Glu Phe Val Leu Thr Ser Glu  
210 215 220

Lys Ile Gln Ile Pro Lys Ala Gly Lys Ile Tyr Ser Phe Asn Glu Gly  
225 230 235 240

Asn Tyr Lys Met Trp Asp Asp Lys Leu Lys Lys Tyr Met Asp Asp Leu  
245 250 255

Lys Glu Pro Gly Glu Ser Gln Lys Pro Tyr Ser Ser Arg Tyr Ile Gly  
260 265 270

Ser Leu Val Gly Asp Phe His Arg Thr Leu Leu Tyr Gly Gly Ile Tyr  
275 280 285

Gly Tyr Pro Arg Asp Ala Lys Ser Lys Asn Gly Lys Leu Arg Leu Leu  
290 295 300

Tyr Glu Cys Ala Pro Met Ser Phe Ile Val Glu Gln Ala Gly Gly Lys  
305 310 315 320

Gly Ser Asp Gly His Gln Arg Ile Leu Asp Ile Gln Pro Thr Glu Ile  
325 330 335

His Gln Arg Val Pro Leu Tyr Ile Gly Ser Val Glu Glu Val Glu Lys  
340 345 350

Leu Glu Lys Tyr Leu Ala  
355

<210> 2  
<211> 1074  
<212> DNA  
<213> Spinacia oleracea L

<220>

<223> Fructose-1,6-bisphosphatase

<400> 2  
gcagccgtag gagaggcggc tacagaaaca aaggcaagga ctagaagtaa gtacgaaatt 60  
gaaacactaa caggctggct gcttaaacaa gaaatggcag gtgttattga tgctgaactt 120  
accatcgttc tttcttagcat ttcattggct tgtaaacaaa ttgcttcctt ggttcaacga 180  
gctggtattt ctaacttgac tggaattcaa ggtgctgtca atatccaagg agaggatcag 240  
aagaaacttg atgttgtc tc caatgaggtg tttcgagct gcttgagatc gagtggaaga 300  
acaggaataa tagcatcaga agaagaggat gtaccagtgg cagtggaga gagttactct 360  
ggaaactata ttgttgtt tgatccactt gatggttcat ccaacattga tgcagctgtc 420  
tccactggtt ccatcttgg catttatagc cctaacgatg agtgcattgt tgactctgat 480  
cacgacgatg agtcacagct aagtgcagaa gaacagaggt gtgtatgtcaa 540  
ccagggata acctattagc agcagggtat tgtatgtact caagctctgt tatcttcgta 600  
cttacaattt gtaaagggtgt gtatgcattc acattagatc caatgtatgg tgaattcgta 660  
ctcacttcag agaaaatcca aatccccaaa gctggagaaga tctattcatt caatgaaggt 720  
aactacaaaa tgtggatga taaattgaag aagtacatgg atgatcttaa agagccagga 780  
gagtcacaga aaccgtactc gtctcggtac atagggagtt tagttgggaa ctttcataga 840  
acactttat atgggtggat ttatgggtac ccaagagatg caaagagtaa gaatggaaa 900  
ttgaggcttt tgtatgaatg tgcacctatg agtttattt ttgaacaagc tgggtggtaaa 960  
ggttctgatg gtcataaag aattcttgac attcaaccca ccgagataca tcaacgtgtg 1020  
ccactgtaca tcgggagtgt ggaggaagta gagaaattag agaagtactt agca 1074

<210> 3  
<211> 333  
<212> PRT  
<213> Spinacia oleracea L

<220>

<223> Sedoheptulose-1, 7-bisphosphatase

<400> 3

Val Asn Lys Ala Lys Asn Ser Ser Leu Val Thr Lys Cys Glu Leu Gly  
1 5 10 15

Asp Ser Leu Glu Glu Phe Leu Ala Lys Ala Thr Thr Asp Lys Gly Leu  
20 25 30

Ile Arg Leu Met Met Cys Met Gly Glu Ala Leu Arg Thr Ile Gly Phe  
35 40 45

Lys Val Arg Thr Ala Ser Cys Gly Gly Thr Gln Cys Val Asn Thr Phe  
50 55 60

Gly Asp Glu Gln Leu Ala Ile Asp Val Leu Ala Asp Lys Leu Leu Phe  
65 70 75 80

Glu Ala Leu Asn Tyr Ser His Phe Cys Lys Tyr Ala Cys Ser Glu Glu  
85 90 95

Leu Pro Glu Leu Gln Asp Met Gly Gly Pro Val Asp Gly Gly Phe Ser  
100 105 110

Val Ala Phe Asp Pro Leu Asp Gly Ser Ser Ile Val Asp Thr Asn Phe  
115 120 125

Ser Val Gly Thr Ile Phe Gly Val Trp Pro Gly Asp Lys Leu Thr Gly  
130 135 140

Val Thr Gly Arg Asp Gln Val Ala Ala Ala Met Gly Ile Tyr Gly Pro  
145 150 155 160

Arg Thr Thr Tyr Val Leu Ala Leu Lys Asp Tyr Pro Gly Thr His Glu  
165 170 175

Phe Leu Leu Leu Asp Glu Gly Lys Trp Gln His Val Lys Glu Thr Thr  
180 185 190

Glu Ile Asn Glu Gly Lys Leu Phe Cys Pro Gly Asn Leu Arg Ala Thr  
195 200 205

Ser Asp Asn Ala Asp Tyr Ala Lys Leu Ile Gln Tyr Tyr Ile Lys Glu  
210 215 220

Lys Tyr Thr Leu Arg Tyr Thr Gly Gly Met Val Pro Asp Val Asn Gln  
225 230 235 240

Ile Ile Val Lys Glu Lys Gly Ile Phe Thr Asn Val Ile Ser Pro Thr  
245 250 255

Ala Lys Ala Lys Leu Arg Leu Leu Phe Glu Val Ala Pro Leu Gly Phe  
260 265 270

Leu Ile Glu Lys Ala Gly Gly His Ser Ser Glu Gly Thr Lys Ser Val  
275 280 285

Leu Asp Ile Glu Val Lys Asn Leu Asp Asp Arg Thr Gln Val Ala Tyr  
290 295 300 305

Gly Ser Leu Asn Glu Ile Ile Arg Phe Glu Lys Thr Leu Tyr Gly Ser  
305 310 315 320

Ser Arg Leu Glu Glu Pro Val Pro Val Gly Ala Ala Ala  
325 330

<210> 4  
<211> 999  
<212> DNA  
<213> Spinacia oleracea L

<220>

<223> Sedoheptulose-1,7-bisphosphatase

<400> 4  
gtgaacaagg caaagaactc ttcccttgc accaaatgtg aacttggta cagttggag 60  
gagttcctag caaaggcaac cacagataaa gggctgatta gattgatgat gtgcattgg 120  
gaagcattaa ggaccattgg cttaaagtg aggactgctt catgtggtg aactcaatgt 180  
gttaacacct ttggagacga acagcttgcc attgatgtgc ttgctgacaa gcttctttc 240  
gaggcattga actattcaca cttctgcaag tatgcttgtt cagaagaact ccctgagctt 300  
caagatatgg gaggccccgt tcatggcgga ttcagtgttag cattgaccc cttgtatgg 360  
tccagcattg tcgataccaa ttctcagtt gggaccatat tcgggtttg gccaggtgac 420  
aagctaactg gtgtAACAGG cagagatcaa gtggctgctg caatggaaat ttatggcct 480  
aggactactt atgttctcgc tcttaaggac taccctggca cccatgaatt tcttcttctt 540  
gatgaaggaa agtggcaaca tgtgaaagaa acaacagaaa tcaatgaagg aaaattgttc 600  
tgtcctggaa acttgagagc cacttctgac aatgctgatt atgctaagct gattcaatac 660  
tatataaaag agaaatacac attgagatac actggaggaa tggctcgtga tgttaaccag 720  
atcatagtga aggagaaagg tatattcaca aatgtaatat cacctacagc caaggcaaag 780  
ttgaggttac tggttggat agctcctcta gggttcttgc ttgagaaggc tgggtggcac 840  
agcagtggagg gaaccaagtgc tgtgtggac attgaagtca aaaaccttgc tgacagaacc 900  
caagttgctt acggctcctt gaacgagatc atccgatttgc agaagacact atacggatcc 960  
tcttaggcttag aggagccagt tcctgttgc gctgctgct 999

<210> 5  
<211> 356

<212> PRT  
<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from  
Synechococcus PCC 7942

<400> 5

Met Glu Lys Thr Ile Gly Leu Glu Ile Ile Glu Val Val Glu Gln Ala  
1 5 10 15

Ala Ile Ala Ser Ala Arg Leu Met Gly Lys Gly Glu Lys Asn Glu Ala  
20 25 30

Asp Arg Val Ala Val Glu Ala Met Arg Val Arg Met Asn Gln Val Glu  
35 40 45

Met Leu Gly Arg Ile Val Ile Gly Glu Gly Glu Arg Asp Glu Ala Pro  
50 55 60

Met Leu Tyr Ile Gly Glu Glu Val Gly Ile Tyr Arg Asp Ala Asp Lys  
65 70 75 80

Arg Ala Gly Val Pro Ala Gly Lys Leu Val Glu Ile Asp Ile Ala Val  
85 90 95

Asp Pro Cys Glu Gly Thr Asn Leu Cys Ala Tyr Gly Gln Pro Gly Ser  
100 105 110

Met Ala Val Leu Ala Ile Ser Glu Lys Gly Gly Leu Phe Ala Ala Pro  
115 120 125

Asp Phe Tyr Met Lys Lys Leu Ala Ala Pro Pro Ala Ala Lys Gly Lys  
130 135 140

Glu Thr Ser Ile Lys Ser Ala Thr Glu Asn Leu Lys Ile Leu Ser Glu  
145 150 155 160

Cys Leu Asp Arg Ala Ile Asp Glu Leu Val Val Val Val Met Asp Arg  
165 170 175

Pro Arg His Lys Glu Leu Ile Gln Glu Ile Arg Gln Ala Gly Ala Arg  
180 185 190

Val Arg Leu Ile Ser Asp Gly Asp Val Ser Ala Ala Ile Ser Cys Gly  
195 200 205

Phe Ala Gly Thr Asn Thr His Ala Leu Met Gly Ile Gly Ala Ala Pro  
Page 6

210

215

220

Glu Gly Val Ile Ser Ala Ala Ala Met Arg Cys Leu Gly Gly His Phe  
225 230 235 240

Gln Gly Gln Leu Ile Tyr Asp Pro Glu Val Val Lys Thr Gly Leu Ile  
245 250 255

Gly Glu Ser Arg Glu Ser Asn Ile Ala Arg Leu Gln Glu Met Gly Ile  
260 265 270

Thr Asp Pro Asp Arg Val Tyr Asp Ala Asn Glu Leu Ala Ser Gly Gln  
275 280 285

Glu Val Leu Phe Ala Ala Cys Gly Ile Thr Pro Gly Leu Leu Met Glu  
290 295 300

Gly Val Arg Phe Phe Lys Gly Gly Ala Arg Thr Gln Ser Leu Val Ile  
305 310 315 320

Ser Ser Gln Ser Arg Thr Ala Arg Phe Val Asp Thr Val His Met Phe  
325 330 335

Asp Asp Val Lys Thr Val Ser Leu Pro Leu Ile Pro Asp Pro Lys Trp  
340 345 350

Arg Pro Glu Arg  
355

<210> 6  
<211> 1312  
<212> DNA  
<213> Synechococcus

<220>

<223> fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase from  
Synechococcus PCC 7942

<400> 6  
atcgcaacta aagccagaga tgtgaggagg ggatccggcc ttttgttagac tcaactgttg 60  
gaatccccag aagcaatcat ccgttaaggag tcaggacggc gtggagaaga cgatcggct 120  
cgagattatt gaagttgtcg agcaggcagc gatgcctcg gcccgcctga tgggcaaagg 180  
cgaaaagaat gaagccgatc gcgtcgcagt agaagcgatg cgggtgcgga tgaaccaagt 240  
ggaaatgctg gccgcatcg tcatcggtga aggcgagcgc gacgaagcac cgatgctcta 300  
tatcggtgaa gaagtggca tctaccgcga tgcagacaag cgggtggcg taccggctgg 360  
caagctggtg gaaatcgaca tcgcccgttga cccctgcgaa ggcaccaacc tctgcgccta 420

|                                                                      |      |
|----------------------------------------------------------------------|------|
| cggtcagccc ggctcgatgg cagtttggc catctccgag aaaggcggcc tggggcggc      | 480  |
| tcccgacttc tacatgaaga aactggctgc acccccagct gccaaaggca aagagacatc    | 540  |
| aataaaagtcc gcgaccgaaa acctgaaaat tctctcgaa tgtctcgatc gcgccatcga    | 600  |
| tgaattggtg gtcgtggtca tggatcgatcc ccggccacaaa gagctaattcc aagagatccg | 660  |
| ccaagcgggt gccccgtcc gtctgatcag cgatggtgac gtttcggccg cgatctccctg    | 720  |
| cgggtttgct ggcaccaaca cccacgcct gatgggcattc ggtcagctc ccgagggtgt     | 780  |
| gatttcggca gcagcaatgc gttgcctcg gggcacttc caaggccagc tgatctacga      | 840  |
| cccagaagtg gtcaaaaccg gcctgatcgg taaaagccgt gagagcaaca tcgctcgcc     | 900  |
| gcaagaaatg ggcatcaccc atcccgatcg tgtctacgac gcgaacgaac tggcttcggg    | 960  |
| tcaagaagtg ctgtttgcgg cttgcgttat caccccgcc ttgctgatgg aaggcgtgcg     | 1020 |
| cttcttcaaa ggcggcgctc gcacccagag cttggtgatc tccagccagt cacggacggc    | 1080 |
| tcgcttcgtt gacaccgttc acatgttcga cgatgtcaaa acggtagcc tgccgttaat     | 1140 |
| tcctgatccc aaatggcggc cggagcggta gaacgggtat agctcgatcg ctgcggcgt     | 1200 |
| tgttttcag cgaatccatt tgcgatcgct tttcaaacc tttttcgatc aaccttcttt      | 1260 |
| aaacggcctc atgcatctcg cagttgtcg ctcagccatc ggacagcacc gg             | 1312 |

<210> 7  
 <211> 133  
 <212> DNA  
 <213> Nicotiana tabacum

<220>

<223> psbA promoter

|                                                                               |     |
|-------------------------------------------------------------------------------|-----|
| <400> 7<br>agcttctaca tacaccttgg ttgacacgag tatataagtc atgttataact gttgaataac | 60  |
| aaggccttcca ttttctattt tgattttagt aaaacttagt tgcttggag tccctgatga             | 120 |
| ttaaataaac caa                                                                | 133 |

<210> 8  
 <211> 159  
 <212> DNA  
 <213> Nicotiana tabacum

<220>

<223> rps16 terminator

|                                                                              |     |
|------------------------------------------------------------------------------|-----|
| <400> 8<br>agcttgaaat tcaattaagg aaataaatta aggaaataca aaaaggggg tagtcatttgc | 60  |
| tatataactt tgtatgactt ttctttctat tttttttgtt tttcctccct ttcctttct             | 120 |

atttgtatTT ttttatcatt gcttccattg aattactag 159

<210> 9  
<211> 805  
<212> DNA  
<213> Escherichia coli

<220>

<223> aadA

<400> 9  
gatccatggc tcgtgaagcg gttatcgccg aagtatcaac tcaactatca gagtagttg 60  
gcgtcatcga gcgccatctc gaaccgacgt tgctggccgt acatttgtac ggctccgcag 120  
tggatggcgg cctgaagcca cacagtata ttgatttgct ggttacggtg accgtaaggc 180  
ttgatgaaac aacgcggcga gcttgcata acgacctttt ggaaacttcg gcttccctg 240  
gagagagcga gattctccgc gctgtagaag tcaccattgt tgtgcacgac gacatcattc 300  
cgtggcgtta tccagctaag cgcaactgc aatttggaga atggcagcgc aatgacattc 360  
ttgcaggtat ctgcgagcca gccacgatcg acattgatct ggctatcttg ctgacaaaag 420  
caagagaaca tagcgttgcc ttggtaggtc cagcggcgg ggaactcttt gatccggttc 480  
ctgaacagga tctatttgag ggcctaaatg aaaccttaac gctatgaaac tcgcccggc 540  
actgggctgg cgatgagcga aatgtatgtc ttacgttgc ccgcatttgg tacagcgcag 600  
taaccggcaa aatcgcccg aaggatgtcg ctgcccactg ggcaatggag cgcctggcgg 660  
cccagtatca gcccgtata cttgaagcta gacaggctt tctggacaa gaagaagatc 720  
gcttggcctc gcgccagat cagtggaaag aatttgtcca ctacgtaaaa ggcgagatca 780  
ctaaggtagt tggcaaaataa ctgca 805

<210> 10  
<211> 4591  
<212> DNA  
<213> Artificial sequence

<220>  
<223> synthetic construct

<220>  
<223> pLD6

<400> 10  
gtggcacttt tcggggaaat gtgcgcggaa cccctatttgc ttatattttc taaatacatt 60  
caaatatgtt tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaaa 120  
ggaagagtat gagtattcaa catttccgtg tcgcccattt tccctttttt gcggcatttt 180  
gccttcctgt ttttgcac ccagaaacgc tggtaaagt aaaagatgct gaagatcagt 240

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| tgggtgcacg  | agtgggttac  | atcgaactgg  | atctcaacag  | cggtaagatc  | cttgagagtt  | 300  |
| ttcgccccga  | agaacgtttt  | ccaatgatga  | gcactttaa   | agttctgcta  | tgtggcgcgg  | 360  |
| tattatcccg  | tattgacgcc  | ggccaagagc  | aactcggtcg  | ccgcatacac  | tattctcaga  | 420  |
| atgacttggt  | tgagtactca  | ccagtcacag  | aaaagcatct  | tacggatggc  | atgacagtaa  | 480  |
| gagaattatg  | cagtgctgcc  | ataaccatga  | gtgataaacac | tgccggccaac | ttacttctga  | 540  |
| caacgatcgg  | aggaccgaag  | gagctaaccg  | ctttttgca   | caacatgggg  | gatcatgtaa  | 600  |
| ctcgcccttga | tcgttggaa   | ccggagctga  | atgaagccat  | accaaacgac  | gagcgtgaca  | 660  |
| ccacgatgcc  | tgttagcaatg | gcaacaacgt  | tgcgc当地     | attaactggc  | gaactactta  | 720  |
| ctctagcttc  | ccggcaacaa  | ttaatagact  | ggatggaggc  | ggataaagtt  | gcaggaccac  | 780  |
| ttctgcgctc  | ggcccttccg  | gctggcttgt  | ttattgctga  | taaatctgga  | gccggtgagc  | 840  |
| gtgggtctcg  | cgttatcatt  | gcagcactgg  | ggccagatgg  | taagccctcc  | cgtatcgtag  | 900  |
| ttatctacac  | gacggggagt  | caggcaacta  | tggatgaacg  | aaatagacag  | atcgctgaga  | 960  |
| taggtgcctc  | actgattaag  | cattggtaac  | tgtcagacca  | agtttactca  | tatatacttt  | 1020 |
| agattgattt  | aaaacttcat  | tttaattta   | aaaggatcta  | ggtgaagatc  | ctttttgata  | 1080 |
| atctcatgac  | caaaatccct  | taacgtgagt  | tttcgttcca  | ctgagcgtca  | gaccccttag  | 1140 |
| aaaagatcaa  | aggatcttct  | tgagatcctt  | ttttctgcg   | cgtaatctgc  | tgcttgaaa   | 1200 |
| caaaaaaacc  | accgctacca  | gcggtggtt   | gttgccgga   | tcaagagcta  | ccactcttt   | 1260 |
| ttccgaaggt  | aactggcttc  | agcagagcgc  | agataccaa   | tactgtcctt  | ctagttagc   | 1320 |
| cgtagttagg  | ccaccacttc  | aagaactctg  | tagcaccgcc  | tacatacctc  | gctctgctaa  | 1380 |
| tcctgttacc  | agtggctgct  | gccagtggcg  | ataagtctg   | tcttaccggg  | ttggactcaa  | 1440 |
| gacgatagtt  | accggataag  | gcgcagcgt   | cgggctgaac  | ggggggttcg  | tgcacacagc  | 1500 |
| ccagcttgg   | gcgaacgacc  | tacaccgaac  | tgagataacct | acagcgtgag  | ctatgagaaa  | 1560 |
| gcccacgct   | tcccgaaggg  | agaaaggcgg  | acaggtatcc  | ggtaagcggc  | agggtcgaa   | 1620 |
| caggagagcg  | cacgagggag  | cttccagggg  | gaaacgcctg  | gtatctttat  | agtcctgtcg  | 1680 |
| ggtttcgcca  | cctctgactt  | gagcgtcgat  | ttttgtatg   | ctcgtcaggg  | gggcggagcc  | 1740 |
| tatggaaaaa  | cgcaccaac   | gcggcctttt  | tacggttcct  | ggcctttgc   | tggcctttg   | 1800 |
| ctcacatgtt  | cttcctgcg   | ttatcccctg  | attctgtgga  | taaccgtatt  | accgcctttg  | 1860 |
| agtgagctga  | taccgctcgc  | cgcagccaa   | cgaccgagcg  | cagcgagtca  | gtgagcggagg | 1920 |
| aagcggaga   | gcgcccata   | cgcaaaccgc  | ctctcccg    | gcgttggccg  | attcatatat  | 1980 |
| gcagctggca  | cgacaggttt  | cccgaactgga | aagcgggcag  | tgagcgaac   | gcaattaatg  | 2040 |
| tgagttagct  | cactcattag  | gcaccccagg  | ctttacactt  | tatgcttccg  | gctcgtatgt  | 2100 |
| tgtgtggaat  | tgtgagcgg   | taacaatttc  | acacagaaaa  | cagctatgac  | catgattacg  | 2160 |

ccaagcgcgc aattaaccct cactaaaggg aacaaaagct ggagctccac cgcggtggcg 2220  
gccgctctag ttggatttgc tccccgccc tcgttcaatg agaatggata agaggctcg 2280  
gggattgacg tgagggggca gggatggcta tatttctggg agcgaactcc gggcgaattt 2340  
gaagcgcttg gatacagttg tagggaggga tccatggctc gtgaagcggt tatcgccaa 2400  
gtatcaactc aactatcaga ggtagttggc gtcatcgagc gccatctcg accgacgtt 2460  
ctggccgtac atttgtacgg ctccgcagtg gatggcggcc tgaagccaca cagtgatatt 2520  
gatttgctgg ttacggtgac cgtaaggctt gatgaaacaa cgccggcgagc tttgatcaac 2580  
gacctttgg aaacttcggc ttccccctgga gagagcgaga ttctccgcgc tgtagaagtc 2640  
accattgttgc acgttgcacga catcattccg tggcggttac cagctaagcg cgaactgcaa 2700  
tttggagaat ggcagcgcaa tgacattctt gcaggtatct tcgagccagc cacgatcgac 2760  
attgatctgg ctatcttgct gacaaaagca agagaacata gcgttgcctt ggtaggtcca 2820  
gcggcggagg aactcttga tccggttcctt gaacaggatc tatttggagc gctaaatgaa 2880  
accttaacgc tatggactc gcccggcgtc tgggctggcg atgagcgaaa tgttagtgctt 2940  
acgttgccttgc cattttggta cagcgcagta accggcaaaa tcgcgcgcgaa ggatgtcgct 3000  
gccgactggg caatggagcg cctggccggcc cagtatcagc ccgtcataact tgaagctaga 3060  
caggcttatac ttggacaaga agaagatcgc ttggcctcgc gcgcagatca gttggaagaa 3120  
tttgcactt acgtgaaagg cgagatcact aaggtagttg gcaataact gcaggatcct 3180  
ggcctagtct ataggaggtt ttgaaaagaa aggagcaata atcattttct tggcttatca 3240  
agagggtgct attgctcctt tcttttttc tttttattha tttacttagta ttttacttac 3300  
atagactttt ttgtttacat tatagaaaaa gaaggagagg ttatttctt gcatttattc 3360  
atgattgagt attctatttt gattttgtat ttgtttaaaa ttgtagaaat agaacttg 3420  
tctctcttgc ctaatgttac tatactttt tgattttttt tttccaaaaaaa aaaatcaaata 3480  
tttgacttct tcttatctct tatctttgaa tatctctt cttgaaata ataatatcat 3540  
tgaaaataaga aagaagagct atattcgaag cttctacata cacctgggtt gacacgagta 3600  
tataagtcat gttataactgt tgaataacaa gccttcattt ttctatttt atttgtagaa 3660  
aactagtgtt cttgggagtc cctgtatgatt aaataaacca agatctaaaa ggagaattaa 3720  
agcatgctct agatcgatga attgcctt ccgaagctt gaaattcaatt aaggaaataa 3780  
attaaggaaa tacaaaaagg ggggtagtca tttgtatata actttgtatg actttctct 3840  
tctatttttt tggatattcctt cccttcctt ttctatttgtt attttttat cattgcttcc 3900  
attgaattac tagtcgaccc tggggggggg cccggtaccc aattcgccct atagtgagtc 3960  
gtattacgcg cgctcactgg ccgtcggtttt acaacgtcggt gactggaaa accctggcg 4020  
tacccaaactt aatgccttgc cagcacatcc cccttcgcgc agctggcgta atagcgaaga 4080

|                                                                   |      |
|-------------------------------------------------------------------|------|
| ggccgcacc gatgccctt cccaacagtt gcgcagcctg aatggcgaat gggacgcgc    | 4140 |
| ctgttagcggc gcattaagcg cggcgggtgt ggtggttacg cgca                 | 4200 |
| tgccagcgcc ctagcgccc ctcccttcgc tttcttcct tccttctcg ccacgttcgc    | 4260 |
| cggcttccc cgtcaagctc taaatcgaaa gctccctta gggttccgat ttatgtctt    | 4320 |
| acggcacctc gacccaaaaa aacttgatta gggtgatggt tcacgtatg ggcacatcgcc | 4380 |
| ctgatagacg gttttcgcc ctggacgtt ggagtccacg ttcttaata gtggactctt    | 4440 |
| gttccaaact ggaacaacac tcaaccatat ctggatctat tctttgatt tataaggat   | 4500 |
| tttgcgatt tcggcctatt ggtaaaaaa tgagctgatt taacaaaaat ttaacgcgaa   | 4560 |
| ttttaacaaa atattaacgc ttacaattta g                                | 4591 |

<210> 11  
<211> 51  
<212> DNA  
<213> Artificial sequence

<220>  
<223> synthetic construct

<220>  
<223> multi-cloning regions

<400> 11  
ccaagatcta aaaggagaaa ttaagcatgc tcttagatcg tgaattcgcc c 51

<210> 12  
<211> 142  
<212> DNA  
<213> Nicotiana tabacum

<220>  
<223> rrn promoter

<400> 12  
ctagttggat ttgctcccc gccgtcggtt aatgagaatg gataagaggc tcgtggatt 60  
gacgtgaggg ggcagggatg gctatatttc tgggagcgaa ctccggcgaa atttgaagcg 120  
cttggatata gttgttaggaa gg 142

<210> 13  
<211> 390  
<212> DNA  
<213> Nicotiana tabacum

<220>  
<223> psbA terminator

<400> 13  
gatcctggcc tagtctata gaggtttga aaagaaagga gcaataatca ttttcttgtt 60  
Page 12

|                                                                                                                                 |     |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| ctatcaagag ggtgctattg ctccccc tttttctttt tatttattta ctagtatttt                                                                  | 120 |
| acttacatag acttttttgt ttacattata gaaaaagaag gagaggttat tttcttgcatttattcatga ttgagtttc tatttgatt ttgtatttgt taaaattgt agaaatagaa | 180 |
| tttgcggc tttttttttt cttttttttt caaaaaaaaaaaa                                                                                    | 240 |
| tcaaattttt acttcttctt atctcttatac tttgaatatac tcttatcttt gaaataataa                                                             | 300 |
| tatcattgaa ataagaaaga agagctataat                                                                                               | 360 |
|                                                                                                                                 | 390 |

<210> 14  
<211> 5581  
<212> DNA  
<213> Artificial sequence

<220>  
<223> Synthetic construct

<220>  
<223> pLD200

|                                                                     |      |
|---------------------------------------------------------------------|------|
| <400> 14                                                            |      |
| tcgcgcgttt cggatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca     | 60   |
| cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg   | 120  |
| ttggcgggtg tcggggctgg cttaactatg cgccatcaga gcagattgtt ctgagagtgc   | 180  |
| accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc   | 240  |
| attcgccatt caggctgcgc aactgttggg aaggcgatc ggtcgggccc ttttcgtat     | 300  |
| tacgccagct ggcaaaagggg ggtatgtctg caaggcgatt aagttgggtt acgccagggt  | 360  |
| tttccagtc acgacgttgtt aaaacgacgg ccagtgaatt catgagttgtt agggagggtt  | 420  |
| ttatgtcacc acaaacagag actaaagcaa gtgttggatt caaagctggt gttaaagagt   | 480  |
| acaaatttgc ttattataact cctgagtacc aaaccaagga tactgtatata ttggcagcat | 540  |
| tccgagtaac tcctcaacct ggagttccac ctgaagaagc agggccgcg gtagctgccg    | 600  |
| aatcttctac tggatcatgg acaactgtat ggaccgtatgg acttaccagc cttgatcggtt | 660  |
| acaaaggcg atgctaccgc atcgagcgtg ttgttggaga aaaagatcaa tatattgctt    | 720  |
| atgttagctt cccttttagac cttttgaag aaggttctgtt taccaacatg tttacttcca  | 780  |
| ttgttaggtt cgtatgtgg ttcaagcccc tgccgcctct acgtctggaa gatctgcgaa    | 840  |
| tccctccctgc ttatgttaaa actttccaag gtccgcctca tgggatccaa gttgaagag   | 900  |
| ataaaattgaa caagtatggt cgtccctgt tgggatgtac tattaaacctt aaattgggtt  | 960  |
| tatctgctaa aaactacgtt agagccgtt atgaatgtct tcgcgggttga cttgattttt   | 1020 |
| ctaaagatga tgagaacgtg aactcacaac catttatgcg ttggagagat cgtttcttat   | 1080 |
| tttgcggca agcactttttaa aagcacagg ctgaaacagg tggaaatcaaa gggcattact  | 1140 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| tgaatgctac tgcaggtaca tgcaagaaa tgatcaaaag agctgtat                 | 1200 |
| tggcgttcc gatcgtaatg catgactact taacggggg attcaccgca aatactagct     | 1260 |
| tggctcatta ttgccgagat aatggtctac ttcttcacat ccaccgtgca atgcatgcgg   | 1320 |
| ttatttatag acagaagaat catggtatcc acttccgggt attagcaaaa gcgttacgta   | 1380 |
| tgtctggtgg agatcatatt cactctggta ccgttagtagg taaacttgaa ggtgaaagag  | 1440 |
| acataacttt gggctttgtt gatttactgc gtgatgat                           | 1500 |
| gttgttgc gcttgcgttct ctaccagg tggttctaccc gtggcttcag                | 1560 |
| gaggtattca cggttggcat atgcctgctc tgaccgagat ctggggat gattccgtac     | 1620 |
| tacagttcgg tggaggaact ttaggacatc ctggggtaa tgcgcaggt gccgtagcta     | 1680 |
| atcgagtagc tctagaagca tgtgtaaaag ctcgtaatga aggacgtgat ctgtcagg     | 1740 |
| aaggtaatga aattattcgc gaggcttgca aatggagccc ggaactagct gctgctgtg    | 1800 |
| aagtatggaa agagatcgta tttaattttg cagcagtgga ctggggat aagtaaaaac     | 1860 |
| agtagacatt agcagataaa ttagcaggaa ataaagaagg ataaggagaa agaactcaag   | 1920 |
| taattatcct tcgttctctt aattgaattt caattaaact cggcccaatc ttactaaa     | 1980 |
| aggattgagc cgaataacaac aaagattcta ttgcataat tttgactaag tatatactta   | 2040 |
| cctagatata caagatttgaa aataaaaaat ctggggaaat aaatcaaaaat ctaagactca | 2100 |
| aatcttctta ttgttgtctt ggatcgccgc cgcgtagcg tcgacgatcc ttaggattgg    | 2160 |
| tatattcttt tctatcctgt agttttagt ttccctgaat caagccaagt atcacacctc    | 2220 |
| tttctaccca tcctgtat tgcgttgc gttccgtt gaaatagaac cttatattat         | 2280 |
| tacttatttt ttatataat tttagattt tagtgatta gatatttagt ttagacgaga      | 2340 |
| ttttacgaaa caattattt ttatattctt tataggagag gacaaatctc tttttcgat     | 2400 |
| gcgaatttga cacgacatag gagaagccgc ctttattaa aaattatatt atttaaata     | 2460 |
| atataaaggg gtttccaaca tattaatata tagtgaagt ttccccaga ttcagaactt     | 2520 |
| ttttcaata ctcacaatcc ttattagttt ataattctt tagtggatt tctatgctt       | 2580 |
| gtctgatagg aaataagata ttcaaataaa taattttata gcgaatgact attcatctat   | 2640 |
| tgtatttca tgcaaatagg gggcaagaaa actctatgg aagatggtgg ttatattcga     | 2700 |
| tgttgtttaa gaaggagttc gaacgcaggt gtggctaaa taaatcaatg ggcagtcttgc   | 2760 |
| gtcctattga aaataccat gaagatccaa atcgaaaagt gaaaacatt catagttgg      | 2820 |
| ggaatcgta caattctgtt tgcagtaatg ttgattttt attcggcgat aaagacattc     | 2880 |
| ggaatttcat ctctgatgac acttttttag ttagttagatg gaatggagac agttattcca  | 2940 |
| tctatatttga tattgaaaat catattttg agattgacaa cgatcattct ttctgagtg    | 3000 |
| aactagaaaag ttcttttat agttatcgaa actcgaaat tcgaaataat ggattttaggg   | 3060 |

gcgaagatcc ctactataat tcttacatgt atgatactca atatagttgg aataatcaca 3120  
ttaatagttg cattgatagt tatcttcagt ctcaaatctg tatagatact tccattataa 3180  
gtggtagtga gaattacggt gacagttaca tttatagggc cgtttgtgt ggtgaaagtc 3240  
gaaatagtag tgaaaacgag ggcccagta gacgaactcg cacgaaggc agtgattaa 3300  
ctataagaga aagttcta at gatctcgacc tgcaggcatg caagcttggc gtaatcatgg 3360  
tcatacgctgt ttccctgtgt aaattgttat ccgctcacaa ttccacacaa catacgagcc 3420  
ggaagcataa agtgtaaagc ctggggtgcc taatgagtga gctaactcac attaattgcg 3480  
ttgcgctcac tgcccgttt ccagtcggga aacctgtcgt gccagctgca ttaatgaatc 3540  
ggccaacgcg cggggagagg cggttgcgt attgggcgt cttccgcttc ctcgctcact 3600  
gactcgctgc gtcggcgt tcggctgcgg cgagcggat cagtcactc aaaggcggta 3660  
atacggttat ccacagaatc agggataac gcagggaaaga acatgtgagc aaaaggccag 3720  
caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt tttccatag gctccgcccc 3780  
cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc gacaggacta 3840  
taaagatacc aggctttcc cccttggaaagc tccctcgatc gctctcctgt tccgaccctg 3900  
ccgcttaccg gatacctgtc cgccttctc cttcgggaa gcgtggcgt ttctcaatgc 3960  
tcacgctgta ggtatctcag ttccggcgt gtcgatcgat ccaagctggg ctgtgtgcac 4020  
gaacccccc ttcagccga ccgctgcgcc ttatccgta actatcgatc tgagtccaaac 4080  
ccggtaagac acgacttac gccactggca gcagccactg gtaacaggat tagcagagcg 4140  
aggtatgttag gcggtgctac agagttctt aagtgggtgc ctaactacgg ctacactaga 4200  
aggacagtat ttggtatctg cgctctgatc aagccagttt cttccggaaa aagagtgg 4260  
agctcttgcgt cccgcaaaaca aaccaccgct ggtagcggcgt gttttttgt ttgcaagcag 4320  
cagattacgc gcagaaaaaa aggatctaa gaagatcctt tgatctttc tacggggct 4380  
gacgctcagt ggaacgaaaa ctcacgttac gggatttgg tcatgagatt atcaaaaaagg 4440  
atcttccaccc agatcctttt aaataaaaa tgaagttta aatcaatcta aagtatata 4500  
gagtaaactt ggtctgacag ttaccaatgc ttaatcgttgg aggcacccat ctcagcgatc 4560  
tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac tacgataacgg 4620  
gaggcgttac catctggccc cagtgctgca atgataccgc gagacccacg ctcaccggct 4680  
ccagatttt cagcaataaa ccagccagcc ggaagggccg agcgcagaag tggtcctgca 4740  
actttatccg cctccatcca gtctattaat tggccggg aagcttagagt aagtagttcg 4800  
ccagttataa gtttgcgca cgttgcgttcc attgctacag gcatcgtgt gtcacgctcg 4860  
tcgtttggta tggcttcatt cagctccggc tcccaacgat caaggcgagt tacatgatcc 4920  
cccatgttgt gcaaaaaaagc ggttagctcc ttcggccctc cgatcgttgt cagaagtaag 4980

|             |            |            |             |            |            |      |
|-------------|------------|------------|-------------|------------|------------|------|
| ttggccgcag  | tgttatcact | catggttag  | gcagcaactgc | ataattctct | tactgtcatg | 5040 |
| ccatccgtaa  | gatgcttttc | tgtgactgg  | gagtactcaa  | ccaagtcatt | ctgagaatag | 5100 |
| tgtatgcggc  | gaccgagttg | ctctgccc   | gcgtcaatac  | gggataatac | cgcgccacat | 5160 |
| agcagaactt  | taaaaagtgt | catcattgga | aaacgttctt  | cggggcgaaa | actctcaagg | 5220 |
| atcttaccgc  | tgttgagatc | cagttcgatg | taacccactc  | gtgcacccaa | ctgatcttca | 5280 |
| gcacatcttta | ctttcaccag | cgttctgg   | tgagcaaaaa  | caggaaggca | aaatgccgca | 5340 |
| aaaaaggaa   | taagggcgac | acggaaatgt | tgaatactca  | tactcttcct | ttttcaatat | 5400 |
| tattgaagca  | tttatcaggg | ttattgtctc | atgagcggat  | acatatttga | atgtatttag | 5460 |
| aaaaataaaac | aataggggt  | tccgcgcaca | tttccccaa   | aagtgccacc | tgacgtctaa | 5520 |
| gaaaccatta  | ttatcatgac | attaacctat | aaaaataggc  | gtatcacgag | gccctttcgt | 5580 |
| c           |            |            |             |            |            | 5581 |

<210> 15  
 <211> 1434  
 <212> DNA  
 <213> Nicotiana tabacum

<220>  
 <223> rbcL

|             |             |            |            |             |            |     |
|-------------|-------------|------------|------------|-------------|------------|-----|
| <400> 15    |             |            |            |             |            |     |
| atgtcaccac  | aaacagagac  | taaagcaagt | gttggattca | aagctggtgt  | taaagagtac | 60  |
| aaattgactt  | attatactcc  | tgagtaccaa | accaaggata | ctgatataatt | ggcagcattc | 120 |
| cgagtaactc  | ctcaacctgg  | agttccacct | gaagaagcag | gggccgcggt  | agctgccaa  | 180 |
| tcttctactg  | gtacatggac  | aactgtatgg | accgatggac | ttaccagcct  | tgatcggtac | 240 |
| aaagggcgat  | gctaccgcat  | cgagcgtgtt | gttggagaaa | aagatcaata  | tattgcttat | 300 |
| gtagcttacc  | cttagacacct | ttttgaagaa | ggttctgtta | ccaacatgtt  | tacttccatt | 360 |
| gtaggtaacg  | tatggggtt   | caaagccctg | cgcgtctac  | gtctggaaga  | tctgcgaatc | 420 |
| cctcctgctt  | atgtaaaaac  | tttccaaggt | ccgcctcatg | ggatccaagt  | tgaaagagat | 480 |
| aaattgaaca  | agtatggtcg  | tcccctgttg | ggatgtacta | ttaaacctaa  | attggggtta | 540 |
| tctgctaaaa  | actacggtag  | agccgttat  | gaatgtcttc | gcgggtggact | tgatttact  | 600 |
| aaagatgatg  | agaacgtgaa  | ctcacaacca | tttatgcgtt | ggagagatcg  | tttcttattt | 660 |
| tgtgccaaag  | cactttataa  | agcacaggct | gaaacaggtg | aatcaaagg   | gcattactg  | 720 |
| aatgctactg  | caggtacatg  | cgaagaaatg | atcaaaagag | ctgtatttgc  | tagagaattg | 780 |
| ggcgttccga  | tcgtaatgca  | tgactactta | acgggggat  | tcaccgcaaa  | tactagctt  | 840 |
| gctcatttatt | gccgagataa  | tggtctactt | cttcacatcc | accgtgcaat  | gcatgcggtt | 900 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| attgatagac agaagaatca tggtatccac ttccgggtat tagaaaaagc gttacgtatg | 960  |
| tctggtggag atcatattca ctctggtacc gtagtaggta aacttgaagg tgaaagagac | 1020 |
| ataactttgg gctttgttga tttactgcgt gatgatttg ttgaacaaga tcgaagtcgc  | 1080 |
| ggtatttatt tcactcaaga ttgggtctct ttaccagggtg ttctaccgt ggcttcagga | 1140 |
| ggtattcacf tttggcatat gcctgctctg accgagatct ttggggatga ttccgtacta | 1200 |
| cagttcggtg gaggaacttt aggacatcct tgggtaatg cgccaggtgc cgtagcta    | 1260 |
| cgagtagctc tagaagcatg tgtaaaagct cgtaatgaag gacgtatct tgctcaggaa  | 1320 |
| ggtaatgaaa ttattcgcga ggcttgcaaa tggagcccg aactagctgc tgcttgaa    | 1380 |
| gtatggaaag agatcgtatt taatttgca gcagtggacg tttggataa gtaa         | 1434 |

<210> 16  
<211> 705  
<212> DNA  
<213> Nicotiana tabacum

<220>  
<223> accD

|                                                                               |     |
|-------------------------------------------------------------------------------|-----|
| <400> 16<br>aatgactatt catctattgt atttcatgc aaataggggg caagaaaaact ctatggaaag | 60  |
| atgggtgttt aattcgatgt tgtttaagaa ggagttcgaa cgccagggtg ggctaaataa             | 120 |
| atcaatgggc agtcttggtc ctattgaaaa taccaatgaa gatccaaatc gaaaagtgaa             | 180 |
| aaacattcat agttggagga atcgtacaa ttctagttgc agtaatgtt attatttatt               | 240 |
| cggcgtaaaa gacattcgga atttcatctc tgatgacact ttttagtta gtgataggaa              | 300 |
| tggagacagt tattccatct atttgatat tgaaaatcat attttgaga ttgacaacga               | 360 |
| tcattcttt ctgagtgaac tagaaagttc ttttatagt tatcgaaact cgaattatcg               | 420 |
| gaataatgga ttttagggcg aagatcccta ctataattct tacatgtatg atactcaata             | 480 |
| tagttgaat aatcacatta atagttgcat tgatagttat cttcagtctc aaatctgtat              | 540 |
| agataacttcc attataagtg gtagtgagaa ttacggtgac agttacattt atagggccgt            | 600 |
| ttgtgggtt gaaagtgc当地 atagtagtga aaacgagggt tccagtagac gaactcgc当地              | 660 |
| gaagggcagt gattnaacta taagagaaag ttctaatgat ctc当地                             | 705 |

<210> 17  
<211> 21  
<212> DNA  
<213> Artificial sequence

<220>  
<223> synthetic construct

<220>

<223> polylinker

<400> 17

cgcggccgcg ctagcgtcga c

21

<210> 18

<211> 7

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic construct

<220>

<223> Shine-Dalgarno sequence

<400> 18

aggaggu

7