VECTOR

Question : Construct a triangle APB in which $BC = 7cm, \angle B = 75^{\circ}$ and AB + AC = 13cm.

Figure:

Figure 1:

Solution:

Input parameters	Description	Value
В	Vertex(at origin)	0
a	Side of $\triangle ABC, BC$	7
b	Side of $\triangle ABC, AB$	b
c	Side of $\triangle ABC, AC$	c
θ	Angle of $\triangle ABC, \angle B$	75°

Table 1: Table of input parameters

Output parameters	Description	Value
C	Vertex	ae_1
A	Vertex	$c \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$
b+c	AB + AC	13

Table 2: Table of output parameters

From appendix,

$$c = \frac{k^2 - a^2}{2(k - a\cos\theta)}$$

$$= \frac{240}{52 - 7\sqrt{6} + 7\sqrt{2}}$$
(1)

$$=\frac{240}{52 - 7\sqrt{6} + 7\sqrt{2}}\tag{2}$$

Therefore,

$$\mathbf{A} = c \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$= \frac{240}{52 - 7\sqrt{6} + 7\sqrt{2}} \begin{bmatrix} \cos 75^{\circ} \\ \sin 75^{\circ} \end{bmatrix}$$
(4)

$$= \frac{240}{52 - 7\sqrt{6} + 7\sqrt{2}} \begin{bmatrix} \cos 75^{\circ} \\ \sin 75^{\circ} \end{bmatrix} \tag{4}$$

$$= \begin{bmatrix} 1.388 \\ 5.18 \end{bmatrix} \tag{5}$$

(6)