ZPM - FER

Kompleksn brojevi

Definicije Operacije s kompleksnim brojevima Zadaci

Kompleksn

Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog

kompleksno broja

Polarne koordinate Operacije u trigonometrijskom obliku

4. tjedan Kompleksni brojevi

ZPM - FER

rujan, 2015

Sadržaj

Elementarna matematika

ZPM - FEF

Kompleks brojevi

Definicije
Operacije s
kompleksnin
brojevima
Zadaci
Potencije
imaginarne
jedinice

Kompleksı ravnina

Modul kompleksnog broja Zadaci

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku

1 Kompleksni brojevi

- Definicije
- Operacije s kompleksnim brojevima
- Zadaci
- Potencije imaginarne jedinice
- 2 Kompleksna ravnina
 - Modul kompleksnog broja
- 3 Trigonometrijski prikaz kompleksnog broja
 - Polarne koordinate
 - Operacije u trigonometrijskom obliku

Definicije

Elementarna matematika

Definiciie

Definicija

Kompleksni broj je broj oblika

$$z = x + yi$$

gdje su x i y realni brojevi, a i je imaginarna jedinica za koju vrijedi $i^2 = -1$.

Broj x nazivamo **realni** dio, a y **imaginarni** dio kompleksnog broja z i pišemo

$$\operatorname{Re} z = x$$
, $\operatorname{Im} z = y$.

Skup kompleksnih brojeva označavamo sa \mathbb{C} i vrijedi $\mathbb{R} \subset \mathbb{C}$.

Kompleksn ravnina

Modul kompleksnoj broja

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u tri gonometrijskor obliku

- Prikaz u obliku z = x + iy se naziva **standardni** ili **algebarski** prikaz kompleksnog broja.
- Za svaki kompleksni broj z = x + iy definiramo njegov konjugirano kompleksni broj kao $\overline{z} = x yi$.

ZPM - FEF

Kompleks brojevi

Definicije Operacije s kompleksnii brojevima Zadaci Potencije imaginarne

ravnina

Modul
kompleksnog
broja

Zadaci

Trigonometrij: prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskon obliku

- Prikaz u obliku z = x + iy se naziva **standardni** ili **algebarski** prikaz kompleksnog broja.
- Za svaki kompleksni broj z = x + iy definiramo njegov konjugirano kompleksni broj kao $\overline{z} = x yi$.

Jednakost kompleksnih brojeva

Dva kompleksna broja z_1 i z_2 su **jednaka** ako su im jednaki realni i imaginarni dijelovi, tj. ako vrijedi $\operatorname{Re} z_1 = \operatorname{Re} z_2$ i $\operatorname{Im} z_1 = \operatorname{Im} z_2$.

Operacije s kompleksnim brojevima

Elementarna matematika

ZPM - FEF

Kompleksni brojevi Definicije Operacije s kompleksnim brojevima Zadaci Potencije imaginarne jedinice

Kompleksna ravnina Modul kompleksnog broja Zadaci

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskon obliku ■ **Zbrajanje** i **oduzimanje** kompleksnih brojeva se definira na prirodan način kao zbrajanje i oduzimanje po komponentama:

$$z_1 \pm z_2 = (x_1 + y_1 i) \pm (x_2 + y_2 i) = (x_1 \pm x_2) + (y_1 \pm y_2) i.$$

• Množenje kompleksnih brojeva definiramo kao umnožak binoma:

$$z_1 \cdot z_2 = (x_1 + y_1 i)(x_2 + y_2 i) = x_1 x_2 - y_1 y_2 + (x_1 y_2 + y_1 x_2)i.$$

 za zbrajanje i množenje vrijede uobičajena svojstva komutativnosti, asocijativnosti i distributivnosti

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku Dijeljenje kompleksnih brojeva se vrši tako da proširimo brojnik i nazivnik s konjugirano kompleksnim brojem nazivnika:

$$\frac{z_1}{z_2} = \frac{z_1}{z_2} \cdot \frac{\overline{z_2}}{\overline{z_2}} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2} i$$

ZPM - FER

Kompleksn brojevi

Definicije Operacije s kompleksnim

Zadaci

Potencije imaginarn

Kompleksna

Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog

kompleksnot broja

> Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 1.

Neka je
$$z = \frac{1-i}{2+i} - \frac{3-i}{4+i}$$
. Odredite Im z .

Definicije Operacije s kompleksnin brojevima

Zadaci

Potencije imaginarni

Kompleksn

Modul kompleksnog broja Zadaci

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskon obliku

Zadatak 1.

Neka je
$$z = \frac{1-i}{2+i} - \frac{3-i}{4+i}$$
. Odredite Im z .

Rješenje.

$$z = \frac{1-i}{2+i} \cdot \frac{2-i}{2-i} - \frac{3-i}{4+i} \cdot \frac{4-i}{4-i} = \frac{1-3i}{5} - \frac{11-7i}{17}$$
38 16

$$\Rightarrow \quad z = -\frac{38}{85} - \frac{16}{85}i \quad \Rightarrow \quad \operatorname{Im} z = -\frac{16}{85}.$$

ZPM - FER

Kompleksr brojevi

Definicije Operacije s kompleksni

Zadaci

Potencije imaginarr

Kompleksna

Modul kompleksno broja

Trigonometrijsl prikaz

kompleksr broja

> Polarne koordinate Operacije u trigonometrijskon obliku

Zadatak 2.

Riješite jednadžbu u skupu \mathbb{C} : $z^2+1=\overline{z}$.

ZPM - FEF

Kompleks broievi

Definicije Operacije s kompleksnir brojevima Zadaci

Zadaci Potencije imaginarne jedinice

Kompleksn ravnina Modul kompleksnog broja Zadaci

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 2.

Riješite jednadžbu u skupu \mathbb{C} : $z^2 + 1 = \overline{z}$.

Rješenje.

 $Iz (x + yi)^2 + 1 = x - yi slijedi$

$$x^2 + \underline{2xyi} - y^2 + 1 = x\underline{-yi}.$$

Iz jednakosti kompleksnih brojeva slijedi: 2xy = -y i $x^2 - v^2 + 1 = x$. Riešavanjem prve jednadžbe dobivamo:

$$2xy = -y$$
 \Rightarrow $y(2x + 1) = 0$ odnosno $y = 0$ ili $x = \frac{1}{2}$.

Sada u oba slučaja riješimo i drugu jednadžbu. (1) $y = 0 \Rightarrow x^2 + 1 = x \Rightarrow x_{1,2} \notin \mathbb{R}$

(2)
$$x = -\frac{1}{2}$$
 \Rightarrow $\frac{1}{4} - y^2 + 1 = -\frac{1}{2}$ \Rightarrow $y_{1,2} = \pm \frac{\sqrt{7}}{2}$

Konačna rješenja:
$$z_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{7}}{2}i$$

ZPM - FER

Kompleks

Definicije Operacije s kompleksni

kompleksnim brojevima Zadaci

Potencije imaginarne iedinice

Kompleksna

Modul kompleksno broja

Trigonometrijsk prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskom obliku

Potencije imaginarne jedinice

$$i^{4k} = 1$$

$$i^{4k+1} = i$$

$$i^{4k+2} = -1$$

$$i^{4k+3} = -i$$

ZPM - FER

Kompleksr brojevi

Operacije s kompleksnim brojevima Zadaci Potencije

imaginarne jedinice Kompleksn

Modul kompleksno broja Zadaci

Trigonometrij prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci

Potencije imaginarne jedinice

$$i^{4k} = 1$$

$$i^{4k+1} = i$$

$$i^{4k+2} = -1$$

$$i^{4k+3} = -i$$

Primjer.

$$1 + i + i^{2} + i^{3} + \dots + i^{96} + i^{97} + i^{98} + i^{99} =$$

$$= 1 + i - 1 - i + \dots + i^{4 \cdot 24} + i^{4 \cdot 24 + 1} + i^{4 \cdot 24 + 2} + i^{4 \cdot 24 + 3} =$$

$$= 0 + 0 + \dots + 1 + i - 1 + i = 0.$$

Kompleksna ravnina

Elementarna matematika

ZPM - FER

Kompleksni brojevi Definicije Operacije s kompleksnim brojevima Zadaci Potencije

Kompleks ravnina

Modul kompleksnog broja Zadaci

Trigonometrij prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku Svakom kompleksnom broju z = x + iy odgovara točno jedna točka (x, y) u **kompleksnoj (Gaussovoj) ravnini**.

Modul kompleksnog broja z = x + yi je udaljenost točke (x, y) od ishodišta koordinatnog sustava:

$$|z| = \sqrt{x^2 + y^2}.$$

Svojstva modula:

$$|z_1z_2| = |z_1||z_2|, \quad \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}, \quad |z^n| = |z|^n$$

Primijeti:

$$z \cdot \overline{z} = x^2 + y^2 = |z|^2.$$

Zadaci

Zadatak 3.

Odredi modul kompleksnog broja $\frac{(1+i\sqrt{3})(\sqrt{3}+i)(\sqrt{5}+2i)}{\sqrt{13}+i\sqrt{3}}.$

Kompleksn

Modul kompleksnoj broja Zadaci

Trigonometrijsl prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 3.

Odredi modul kompleksnog broja $\frac{(1+i\sqrt{3})(\sqrt{3}+i)(\sqrt{5}+2i)}{\sqrt{13}+i\sqrt{3}}$

Rješenje.

$$\left| \frac{(1+i\sqrt{3})(\sqrt{3}+i)(\sqrt{5}+2i)}{\sqrt{13}+i\sqrt{3}} \right| = \frac{|1+i\sqrt{3}||\sqrt{3}+i||\sqrt{5}+2i|}{|\sqrt{13}+i\sqrt{3}|}$$

$$=\frac{\sqrt{4}\cdot\sqrt{4}\cdot\sqrt{9}}{\sqrt{16}}=3.$$

Kompleksn

Modul kompleksno broja

Zadaci

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 4.

Izračunajte apsolutnu vrijednost kompleksnog broja |z| ako je

$$z = \left(\frac{1+3i}{1-i}\right)^3 + \frac{1-3i}{1+i}.$$

Polarne koordinate Operacije u trigonometrijskon obliku

Zadatak 4.

Izračunajte apsolutnu vrijednost kompleksnog broja |z| ako je

$$z = \left(\frac{1+3i}{1-i}\right)^3 + \frac{1-3i}{1+i}.$$

Rješenje.

$$z = \left(\frac{1+3i}{1-i}\right)^3 + \frac{1-3i}{1+i} = \left(\frac{1+3i}{1-i} \cdot \frac{1+i}{1+i}\right)^3 + \frac{1-3i}{1+i} \cdot \frac{1-i}{1-i} =$$

$$= \frac{1}{8}(-2+4i)^3 + \frac{1}{2}(-2-4i) = (-1+2i)^3 + (-1-2i) =$$

$$= -1+6i+12-8i-1-2i=10-4i$$

$$|z| = |10-4i| = 2|5-2i| = 2\sqrt{29}$$

ZPM - FER

Kompleksn brojevi

Definicije Operacije s kompleksnin brojevima Zadaci

Kompleksna

Modul kompleksnog

Zadaci

Trigonometrijsk prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 5.

Skicirajte dio ravnine određen s $|z| \geq 1$, $|z - 2i| \leq 2$.

ZPM - FEF

Kompleksni brojevi Definicije Operacije s kompleksnim brojevima Zadaci Potencije imaginarne iedinica

Kompleksn ravnina Modul kompleksnog broja

Zadaci

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 5.

Skicirajte dio ravnine određen s $|z| \ge 1$, $|z - 2i| \le 2$.

Rješenje.

Jednadžbu $|z - z_0| = r$ možemo zapisati na način $|x + iy - (x_0 + iy_0)| =$

$$|x + iy - (x_0 + iy_0)| =$$

 $|(x - x_0) + i(y - y_0)| = r$,
odnosno, slijedi:

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
.

Time smo dobili jednadžbu kružnice polumjera r sa središtem u točki (x_0, y_0) te je stoga rješenje zadatka prikazano na slici desno.

ZPM - FER

Kompleksn brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne

Kompleksn

ravnina Modul

Zadaci

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku

Zadatak 6.

Odredite kompleksan broj z ako je $Re\left(\frac{z}{1+i}\right) = -2$; Im((3+2i)z) = 1.

Polarne koordinate Operacije u trigonometrijskon obliku

Zadatak 6.

Odredite kompleksan broj z ako je $Re\left(\frac{z}{1+i}\right) = -2$; Im((3+2i)z) = 1.

Rješenje.

Stavimo z=a+bi. Tada je $\frac{z}{1+i}=\frac{z}{1+i}\cdot\frac{1-i}{1-i}=\frac{a+bi-ai+b}{2}=\frac{a+b}{2}+i\frac{b-a}{2}$. Sada smo dobili da je $Re(\frac{z}{1+i})=\frac{a+b}{2}=-2$ odnosno a+b=-4. Lako se vidi da iz drugog uvjeta Im((3+2i)(a+bi))=1 dobivamo jednadžbu 2a+3b=1. Rješenje dobivenog sustava je a=-13 i b=9 pa je z=-13+9i.

Trigonometrijski prikaz

Elementarna matematika

ZPM - FEF

Kompleks brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne

Kompleksn

ravnina Modul kompleksnog broja Zadaci

Trigonometrij prikaz kompleksnog broia

Polarne koordinate Operacije u trigonometrijskon obliku Zadaci

Prelazak iz kartezijevih u polarne koordinate:

$$x = r\cos\varphi, \ y = r\sin\varphi$$

Trigonometrijski prikaz kompleksnog broja

$$z = r(\cos\varphi + i\sin\varphi)$$

 $r=|z|=\sqrt{x^2+y^2}$ je modul kompleksnog broja, a φ nazivamo argumentom kompleksnog broja i vrijedi

$$\operatorname{tg}\varphi=\frac{y}{x},\quad \varphi\in[0,2\pi).$$

Trigonometrijsk prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskon obliku

Zadatak 5.

Prikaži u trigonometrijskom obliku:

a)
$$z = -\sqrt{3} + 3i$$

b)
$$z = -\sqrt{2} - \sqrt{2}i$$

Polarne koordinate

Zadatak 5.

Prikaži u trigonometrijskom obliku:

a)
$$z = -\sqrt{3} + 3i$$

b)
$$z = -\sqrt{2} - \sqrt{2}i$$

Riešenie.

a)
$$r = \sqrt{3+9} = 2\sqrt{3}$$

$$\varphi =$$

$$\operatorname{tg} \varphi = -\sqrt{3} \quad \Rightarrow \quad \varphi = -\frac{\pi}{3} + \pi = \frac{2\pi}{3}$$
 (II. kvadrant)

$$z = 2\sqrt{3}(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$$

b)
$$r = \sqrt{2+2} = 2$$
;

b) $r = \sqrt{2+2} = 2$; $\operatorname{tg} \varphi = 1 \implies \varphi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$ (III.

kvadrant)

$$z=2(\cos\frac{5\pi}{4}+i\sin\frac{5\pi}{4})$$

Operacije u trigonometrijskom obliku

Elementarna matematika

ZPM - FER

Kompleksn brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije

Kompleksn

Modul kompleksno broja

Trigonometrijsk prikaz kompleksnog

Polarne

Operacije u trigonometrijskom obliku Neka je $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ i $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Množenje i dijeljenje

$$z_1z_2=r_1r_2(\cos(\varphi_1+\varphi_2)+i\sin(\varphi_1+\varphi_2))$$

$$\frac{\mathsf{z}_1}{\mathsf{z}_2} = \frac{\mathsf{r}_1}{\mathsf{r}_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

Operacije u trigonometrijskom obliku

Elementarna matematika

ZPM - FER

Kompleksr brojevi

Definicije Operacije s kompleksnim brojevima Zadaci Potencije

Kompleksn

ravnina Modul kompleksnog broja Zadaci

Trigonometrij prikaz kompleksnog broja

Polarne koordin

Operacije u trigonometrijskom obliku Neka je $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ i $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$.

Množenje i dijeljenje

$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

$$z_1 \qquad r_1 \qquad (1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

De Moivreova formula za potenciranje kompleksnog broja

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

Operacije u trigonometriiskom

obliku

Korjenovanje kompleksnog broja

n-ti korijen kompleksnog broja $z = r(\cos \varphi + i \sin \varphi)$ ima točno n različitih vrijednosti

$$\sqrt[n]{z} = \sqrt[n]{r}(\cos\frac{\varphi + 2k\pi}{n} + i\sin\frac{\varphi + 2k\pi}{n}), \ k = 0, 1, \dots, n-1$$

sve vrijednosti leže na kružnici sa središtem u ishodištu i polumjera $\sqrt[n]{r}$ te tvore pravilni *n*-terokut

ZPM - FER

Kompleksr brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne

Kompleksn

ravnina Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci Zadatak 6.

Izračunaj i prikaži u algebarskom obliku:

$$\frac{(2+2i)}{1-\frac{i}{\sqrt{3}}}$$

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci

Zadatak 6.

Izračunaj i prikaži u algebarskom obliku: $\frac{(2+2i)^{10}}{1-\frac{i}{\sqrt{3}}}$

Rješenje.

$$\frac{(2+2i)^{10}}{1-\frac{i}{\sqrt{3}}} = \frac{(\sqrt{8}(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}))^{10}}{\sqrt{\frac{4}{3}}(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})} = \frac{2^{15}(\cos\frac{5\pi}{2}+i\sin\frac{5\pi}{2})}{\frac{2}{\sqrt{3}}(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})} =$$

$$= 2^{14}\sqrt{3}(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}) = 2^{14}\sqrt{3}(-\frac{1}{2}+\frac{\sqrt{3}}{2}i).$$

ZPM - FER

Kompleksr brojevi

Definicije
Operacije s
kompleksnin
brojevima
Zadaci
Potencije
imaginarne

Kompleksn

Modul kompleksnop broja

Trigonometrijsk prikaz kompleksnog

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci

Zadatak 7.

Odredi sve vrijednosti korijena $\sqrt[4]{-1-\sqrt{3}i}$ i prikaži ih u kompleksnoj ravnini.

ZPM - FER

Kompleksi brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne
jedinice

Kompleksn

ravnina Modul kompleksnog broja Zadaci

prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci

Zadatak 7.

Odredi sve vrijednosti korijena $\sqrt[4]{-1-\sqrt{3}i}$ i prikaži ih u kompleksnoj ravnini.

Rješenje.

$$r=2, \quad \mathop{
m tg} \varphi = \sqrt{3} \quad \Rightarrow \quad \varphi = \frac{4\pi}{3}$$
 (III. kvadrant)

$$z_k = \sqrt[4]{2} \left(\cos\frac{\frac{4\pi}{3} + 2k\pi}{4} + i\sin\frac{\frac{4\pi}{3} + 2k\pi}{4}\right), \quad k = 0, 1, 2, 3$$

$$k = 0$$
: $z_0 = \sqrt[4]{2}(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$

$$k = 1$$
: $z_1 = \sqrt[4]{2}(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$

$$k=2: z_2=\sqrt[4]{2}(\cos\frac{4\pi}{3}+i\sin\frac{4\pi}{3})$$

$$k=3: z_3=\sqrt[4]{2}(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})$$

ZPM - FER

Kompleks brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne

Kompleksna

Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom

Zadaci

Zadatak 8.

Riješi jednadžbu: $(z + \frac{3}{4}i)^3 + i = 0$.

ZPM - FEF

Kompleksr brojevi

Definicije
Operacije s
kompleksnim
brojevima
Zadaci
Potencije
imaginarne
jedinice

ravnina Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku Zadaci

Zadatak 8.

Riješi jednadžbu: $(z + \frac{3}{4}i)^3 + i = 0$.

Rješenje.

Ovu jednadžbu rješavamo tako da prebacimo *i* na desnu stranu pa korjenujemo.

$$(z + \frac{3}{4}i)^3 = -i \quad \Rightarrow \quad z + \frac{3}{4}i = \sqrt[3]{-i}$$

$$z_k = \cos\frac{\frac{3\pi}{2} + 2k\pi}{3} + i\sin\frac{\frac{3\pi}{2} + 2k\pi}{3} - \frac{3}{4}i, \quad k = 0, 1, 2$$

$$k = 0$$
: $z_0 = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} - \frac{3}{4}i = \frac{1}{4}i$

$$k = 1$$
: $z_1 = \cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} - \frac{3}{4}i = -\frac{\sqrt{3}}{2} - \frac{5}{4}i$

$$k = 2$$
: $z_2 = \cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6} - \frac{3}{4}i = \frac{\sqrt{3}}{2} - \frac{5}{4}i$

ZPM - FER

Kompleks brojevi

Definicije
Operacije s
kompleksnin
brojevima
Zadaci
Potencije

Kompleksna

Modul kompleksnog broja

Trigonometrijsk prikaz kompleksnog

broja

koordinate Operacije u trigonometrijskom

Zadaci

Zadatak 9.

Riješi jednadžbu: $z^3 = (1+i)^6$.

Polarne koordinate Operacije u trigonometrijskon obliku **Zadaci**

Zadatak 9.

Riješi jednadžbu: $z^3 = (1+i)^6$.

Rješenje.

Kod rješavanja kompleksnih jednadžbi nikada ne kratimo potencije jer se gube rješenja! Prvo ćemo kompleksni broj na desnoj strani prebaciti u trigonometrijski oblik i potencirati. Dakle,

$$1+i=\sqrt{2}(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4})$$

te je

$$(1+i)^6 = \sqrt{2}^6 \left(\cos\frac{6\pi}{4} + i\sin\frac{6\pi}{4}\right) = 8\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right).$$

ZPM - FEF

Kompleksn brojevi

Definicije Operacije s kompleksnim brojevima Zadaci Potencije imaginarne

Kompleksn

Modul kompleksnog broja Zadaci

Trigonometrijsk prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskom obliku **Z**adaci

Nastavak rješenja.

Sada je

$$z^3 = 8\left(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}\right)$$

odnosno

$$z = 2(\cos\frac{\frac{3\pi}{2} + 2k\pi}{3} + i\sin\frac{\frac{3\pi}{2} + 2k\pi}{3}), \ k = 0, 1, 2$$

$$k = 0$$
: $z_0 = 2(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}) = 2$

$$k=1: z_1=2(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6})$$

$$k=2: z_2=2(\cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})$$

Literatura I

Elementarna matematika

ZPM - FER

Kompleks brojevi

Operacije s kompleksnin brojevima Zadaci Potencije imaginarne iedinice

Kompleksn ravnina

Modul kompleksnog broja Zadaci

Trigonometrijs prikaz kompleksnog broja

Polarne koordinate Operacije u trigonometrijskor obliku

Zadaci.

- Branimir Dakić, Neven Elezović, Matematika u 24 lekcije, Element, Zagreb, 2010.
- Fakultet elektrotehnike i računarstva, Zavod za primijenjenu matematiku, Repetitorij elementarne matematike, Element, Zagreb, 2014.

Materijale pripremio: doc.dr.sc. Tomislav Burić