Tarea 7 - Programación y algoritmos Giovanni Gamaliel López Padilla

${\bf \acute{I}ndice}$

1.	Aná	álisis de la complejidad de Quicksort	2
	1.1.	Peor caso	2
	1.2.	Mejor caso	2
2.	Enc	riptado y desencriptado de un archivo wav	3
	2.1.	Organización de la cabecera	3
	2.2.	Lectura y organización de los datos	4
	2.3.	Encriptación y desencriptación	4
		2.3.1. Mapa caótico	4
		2.3.2. Algoritmo	5
3.	Refe	erencias	5

1. Análisis de la complejidad de Quicksort

El algoritmo de Quicksort puede resumirse en lo siguiente:

```
Algorithm 1: Quicksort
   Input: data
   Output: data
 1 if start<last then
       number_{data} \leftarrow reduce_{data}(data, start, last)
       sort(data,start,number_data)
      sort(data,number_data+1,last)
 5 Function reduce_data(F):
       pivot \leftarrow data[last]
 6
       i \leftarrow start
 7
       for j=start,last-1 do
 8
           if data/j > pivot then
 9
              swap(data[j],data[i])
10
              i \leftarrow i+1
11
       return i
12
```

Con este algoritmo podemos realizar dos análsis, esto es para el peor caso y mejor caso. En el algoritmo 1 se ve que es recursivo. En la linea 3 y 4 se puede ser que se da como argumento la posición inicial y final de los datos a ordenar. El algoritmo acaba cuando las dos funciones tienen el mismo en valor en la posición inicial y final.

1.1. Peor caso

El peor caso posible es que el pivote escogido siempre sea el número más grande o pequeño del arreglo. Esto es porque provocaria que uno de los bloques sea de tamaño n y otro de 1. Esto sería:

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$\vdots$$

$$= 1 + 2 + 3 + \dots + n$$

$$= \frac{n(n+1)}{2}$$

Entonces, la complejidad para el peor caso es $O(n^2)$

1.2. Mejor caso

El mejor caso posible es que el pivote escogido sea el número sea la mediana del arreglo. Esto provocaria que los dos bloques tengan un tamaño de $\frac{n}{2}$. Entonces:

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$= 2\left(2T\left(\frac{n}{2}\right) + \frac{n}{2}\right) + n$$

$$= 4T\left(\frac{n}{4}\right) + 2n$$

$$= 2^k T\left(\frac{n}{2^k}\right) + kn$$

$$= nT(1) + \log(n)(n) \quad \text{si } n = 2^k$$

$$= n + n\log(n)$$

Entonces, la complejidad para el mejor caso es O(nlog(n)).

2. Encriptado y desencriptado de un archivo wav

2.1. Organización de la cabecera

Los datos de un archivo way se encuentran administrados como header y los dados de audio como se muestra en la tabla 1.

Sección	Tamaño (bytes)	Descripción		
RIFF	4	Contiene las letras R, I, F y F		
1011 1	4	Entero positivo que almacena		
		el tamaño de los bytes restantes		
	4	Contienen las letras: W, A, V y E.		
	4	Contiene los caracteres F, M, T		
	4	Entero positivo que indica el tamaño		
		en bytes del resto del bloque		
WAVE	2	Entero positivo de 16 bits que indica		
WAVE		el tipo de grabación. Un 1 significa PCM.		
	2	Número de canales		
	4	Frecuencia de muestreo expresada en Hz		
	4	Número promedio de bytes por segundo		
	2	Número de bytes usados en el archivo para		
		cada muestra		
	2	Bits por muestra		
	4	Contiene las letras d, a, t, a		
data	4	Entero positivo que indica el espacio		
uata		de bytes que ocupan los datos		
	n	Datos		

Tabla 1: Organización de los datos en un archivo de formato wav.

Esta organización hace que los primeros 44 bytes no sean modificados, ya que es información del archivo y no sus datos. Al ser los archivos de muestra de un audio mono, entonces estos tiene un tamaño de 16 bits por muestra, esto se puede ver en las figuras 1 y 2.

Información del ChunkID ChunkSize Format	archivo RIFF 39060 WAVE	ftea_10k.wav
Subchunk1ID	fmt	
Subchunk1Size	16	
AudioFormat	1	
NumChannels	1	
SampleRate	10000	
ByteRate	20000	
BlockAlign	2	
BitsPerSample	16	
blockID	data	
blockSize	39024	

Información del ChunkID ChunkSize Format	archivo RIFF 53054 WAVE	mtea_10k.wav
Subchunk1ID	fmt	
Subchunk1Size	16	
AudioFormat	1	
NumChannels	1	
SampleRate	10000	
ByteRate	20000	
BlockAlign	2	
BitsPerSample	16	
blockID	data	
blockSize	53018	

Figura 1: Información del archivo ftea_10k.way

Figura 2: Información del archivo mtea_10k.way

Si estos fueran un audio stereo, entocnes el número de bits por muestra seria 32, 16 para el audio izquiero y 16 para el derecho. Es por ello que se implemento un arreglo de dimension dinámica para guardar cada muestra del archivo.

2.2. Lectura y organización de los datos

La lectura de los datos de la cabecera serán guardados en tipos definidos. Estos tipos se encuentran en el archivo wave.h. Este proceso no es propio, se encontro un repositorio en GitHub, el cual realiza modificaciones al sonido y se implemento el uso de sus lecturas de los datos. Estos reposiorotios son los siguientes: Lectura de los datos, Estructura de los tipos.

El arreglo de datos es de tipo short para que estos coincidan con los 16 bits que tiene cada muestra de audio. Al tener las muestras de audio organizadas en arreglos es más sencillo realizar el paso por cada uno de estos datos.

2.3. Encriptación y desencriptación

2.3.1. Mapa caótico

En la teoría del caos se describen comportamientos de sistemas dinámicos los cuales se ven afectados por sus condiciones iniciales [1]. En este caso tendremos unas condiciones iniciales llamadas $X_{i,0}$, donde i, es el número de llaves. Al tener 2 bytes por muestra, dividiremos esto en datos de 1 byte. Entonces el número de llaves serán 2.

El mapa caótico que se uso esta definido en la ecuación 1.

$$X_{i,j} = bX_{i,j-1} + \left\lfloor \frac{X_{i,j-1}}{2^m} \right\rfloor + \epsilon \& \bigotimes_{k=1}^3 X_{k,j-1}$$
 (1)

donde $\epsilon, b, m \in \mathbb{N}$ y 3 < m < 8.

2.3.2. Algoritmo

El algoritmo creado para aplicar el mapa caótico de la ecuación 1 es el siguiente:

Algorithm 2: Encriptado y desencriptado

```
Input: data, keys
Output: data

1 map \leftarrow keys
2 for i = 1, n\_samples do
3 | bytes \leftarrow data[i]
4 | for j=1,2 do
5 | bytes[j] \leftarrow bytes[j]\bigotimesmap[j]
6 | map[j] \leftarrow f(map[j], m, \epsilon, b)
```

3. Referencias

[1] Edward Ott. Chaos in dynamical systems. Cambridge University Press, Cambridge, U.K. New York, 2002.