NSR Search Results Page 1 of 14

Visit the **Isotope Explorer** home page!

91 reference(s) found:

Keynumber: 2001KO35

Reference: Nucl.Instrum.Methods Phys.Res. A463, 544 (2001)

Authors: Yu.A.Korovin, A.Yu.Konobeyev, P.E.Pereslavtsev, A.Yu.Stankovsky, C.Broeders,

I.Broeders, U.Fischer, U.von Mollendorff

Title: Evaluated Nuclear Data Files for Accelerator Driven Systems and Other Intermediate and High-

Energy Applications

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n,X), (n,n'X), (n,pX), (n,αX), (n,γ), (n, 3 HeX), 51 V, 52 Cr, 56 Fe, 208 Pb(n,2n), 232 Th, 239 Pu(n,F), 27 Al, 197 Au(n,pX), (n,nX), (n, 3 HeX), 50 Cr(n,t), 65 Cu (n,pX), 181 Ta, 197 Au(n,p),E <50 MeV; 238 U(n,xn), (n,xnp), (n,xnα),E <100 MeV; compiled,analyzed σ.

Keynumber: 2001BOZU

Reference: JINR-E3-2001-55 (2001)

Authors: S.B.Borzakov, R.E.Chrien, H.Faikow-Stanczyk, Yu.V.Grigoriev, Ts.Ts.Panteleev, S.Pospisil,

L.M.Smotritsky, S.A.Telezhnikov

Title: An Accurate Redetermination of the ¹¹⁸Sn Binding Energy

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁶³Cu, ¹¹⁷Sn(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁷Fe,

⁶⁴Cu, ¹¹⁸Sn deduced binding energies.

Keynumber: 1999PO06

Reference: Yad.Fiz. 62, No 5, 886 (1999); Phys.Atomic Nuclei 62, 827 (1999)

Authors: Yu.S.Popov, P.V.Sedyshev, A.P.Kobzev, S.S.Parzhitsky, N.A.Gundorin, D.G.Serov,

M.V.Sedysheva

Title: Measurement of the M1 Radiative Strength Function in Fe Resonances by using the Shift of the

Primary Gamma Line Emitted Upon the Capture of Intermediate-Energy Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=10-80 keV; measured Eγ,Iγ; deduced

resonances partial widths.

Kevnumber: 1998PO22

Reference: Bull.Rus.Acad.Sci.Phys. 62, 709 (1998)

Authors: Yu.P.Popov, P.V.Sedyshev, N.A.Gundorin, M.V.Sedysheva, A.P.Kobzev, S.S.Parzhitsky

Title: Analysis of Neutron Spectra in the Energy Range of 2-100 keV using High-Resolution γ

Spectrometry

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁷⁰Ge, ⁵⁸Ni(n,γ),E=spectrum; measured Eγ.Iγ.

Method proposed for neutron spectrometry.

Keynumber: 1997RO26

Reference: IEEE Trans.Instrum.Meas. 46, 560 (1997)

Authors: S.Rottger, A.Paul, U.Keyser

Title: Prompt (n, γ) -Spectrometry for the Isotopic Analysis of Silicon Crystals for the Avogadro Project

Keyword abstract: NUCLEAR REACTIONS ¹H, ¹⁴N, ²⁸, ²⁹Si, ⁵⁶Fe, ²⁷Al, ⁶³Cu(n,γ),E=thermal;

measured Eγ,Iγ.

Keyword abstract: ATOMIC MASSES ¹, ²H, ¹⁴, ¹⁵N, ²⁸, ²⁹, ³⁰, ³¹, ³²Si, ⁵⁶, ⁵⁷Fe; measured neutron-

induced γ spectra; deduced mass differences.

NSR Search Results Page 2 of 14

Keynumber: 1994HO37

Reference: Chin.J.Nucl.Phys. 16, No 4, 344 (1994) **Authors:** L.Hou, Z.-D.Huang, L.-H.Zhu, D.-Z.Ding

Title: Measurement of Neutron Radiative Capture Cross Section for 56 Fe(n, γ) 57 Fe Reaction from 9.0 to

20.0 MeV

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=9-20 MeV; measured radiative capture $\sigma(\theta)$

vs E; deduced fore, aft γ asymmetry. To f technique for γ , n discrimination.

Keynumber: 1992KU17

Reference: Nucl. Phys. A549, 59 (1992)

Authors: A.Kuronen, J.Keinonen, H.G.Borner, J.Jolie, S.Ulbig

Title: Molecular Dynamics Simulations Applied to the Determination of Nuclear Lifetimes from

Dopler-Broadened γ-Ray Line Shapes Produced in Thermal Neutron Capture Reactions

Keyword abstract: NUCLEAR REACTIONS 35 Cl, 48 Ti, 53 Cr, 56 Fe, 60 , 58 Ni(n, γ),E=thermal; analyzed

Doppler broadened γ -ray line shapes. ³⁶Cl levels deduced $T_{1/2}$,M1,E2 transition matrix

elements, branching ratio. 49 Ti, 54 Cr, 57 Fe, 61 , 59 Ni levels deduced $T_{1/2}$. Molecular dynamics

simulations.

Keynumber: 1991WE13

Reference: Chin.J.Nucl.Phys. 13, No 2, 111 (1991)

Authors: Y.Wen, J.Zhang, X.Jin

Title: Master Equations in Exciton-Phonon Coupling System and Pre-Equilibrium γ Emission

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=14.1 MeV; calculated angle integrated σ

(Εγ). Exciton model, preequilibrium emission.

Keynumber: 1990WE11

Reference: Chin.J.Nucl.Phys. 12, No 4, 317 (1990)

Authors: Y.Wen, J.Zhang, X.Jin

Title: A Further Investigation on Pre-Equilibrium γ Emission with Exciton Model

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n, γ),E=14.6 MeV; calculated $\sigma(\theta)$ vs E γ ; deduced

collective, single particle states coupling role. Exciton model.

Keynumber: 1990VE17

Reference: Yad.Fiz. 52, 620 (1990); Sov.J.Nucl.Phys. 52, 398 (1990)

Authors: V.A. Vesna, I.A. Lomachenkov, I.S. Okunev, E.V. Shulgina, V.I. Furman

Title: Measurements and Analysis of Parity Nonconservation Effects in the Integrated γ Spectra in the

Reactions 113 Cd(n, γ) 114 Cd and 56 Fe(n, γ) 57 Fe

Keyword abstract: NUCLEAR REACTIONS ¹¹³Cd, ⁵⁶Fe(polarized n,γ),E=thermal; measured P-odd

γ-asymmetry. ¹¹⁴Cd, ⁵⁷Fe deduced weak interaction matrix elements.

** 1 1000III

Keynumber: 1989UL01

Reference: Nucl.Phys. A505, 193 (1989)

Authors: S.Ulbig, K.P.Lieb, Ch.Winter, H.G.Borner, J.Jolie, S.Robinson, P.A.Mando, P.Sona,

N.Taccetti, M.S.Dewey, J.G.L.Booten, F.Brandolini

Title: Lifetime Measurements in 57 Fe following the 56 Fe(n, γ) and 56 Fe(d,p) Reactions

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=thernal; measured γ -line shapes. 56 Fe (d,p),E=6 MeV; measured σ (Ep),p γ -coin,DSA centroid shifts; deduced 57 Fe atom slowing in Fe target.

NSR Search Results Page 3 of 14

 57 Fe deduced levels, J, π , T_{1/2}, γ-branching ratios, B(λ), δ. Shell model calculations.

Keynumber: <u>1987OB01</u>

Reference: Phys.Rev. C35, 407 (1987)

Authors: P.Oblozinsky

Title: Preequilibrium γ Rays with Angular Momentum Coupling

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=14.6 MeV; analyzed σ (E γ). Exciton model.

Keynumber: 1987LI05

Reference: Chin.J.Nucl.Phys. 9, 21 (1987)

Authors: Liu Zianfeng, Ho Yukun

Title: Non-Statistical Effects in the Radiative Neutron Capture at the 3s Giant Resonance Region **Keyword abstract:** NUCLEAR REACTIONS 40 Ca, 48 Ti, 52 Cr, 56 Fe, 64 Ni, 74 Ge(n, γ),E=0.1-3 MeV;

calculated σ(E). ⁴¹Ca, ⁴⁹Ti, ⁵³Cr, ⁵⁷Fe, ⁶⁵Ni, ⁷⁵Ge deduced neutron giant resonance strength.

Statistical.nonstatistical effects.

Keynumber: 1986PE18

Reference: Radiat.Eff. 96, 181 (1986)

Authors: F.G.Perey

Title: Status of the Parameters of the 1.15-keV Resonance of ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n,n), (n, γ),E \approx 1.15 keV; analyzed 1.15 keV

resonance parameter status.

Keynumber: 1986OBZY

Reference: Proc.Inter.Conf.on Fast Neutron Physics, Dubrovnik, Yugoslavia, May 26-31, 1986,

D.Miljanic, B.Antolkovic, G.Paic, Eds., Ruder Boskovic Institute, Zagreb, p.74 (1986)

Authors: P.Oblozinsky

Title: Preequilibrium γ Rays with Angular-Momentum Coupling

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=14.6 MeV; calculated γ spectrum. Exciton

model.

Keynumber: 1986HO29

Reference: Radiat.Eff. 95, 47 (1986)

Authors: Y.Ho, J.Liu

Title: GRS: A Statistical and Non-Statistical Model Code for Calculations of Cross Sections and

Gamma-Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁵²Cr, ⁵⁶Fe(n,γ),E=0.1 MeV; calculated Eγ,Iγ.

Statistical, non-statistical models.

Keynumber: 1986HI05

Reference: J.Radioanal.Nucl.Chem. 105, 351 (1986) **Authors:** P.Z.Hien, T.K.Mai, T.X.Quang, T.N.Thuy

Title: Determination of k₀-Factors by Thermal Neutron Activation Technique

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ²⁶Mg, ⁵¹V, ⁵⁵Mn, ⁵⁶Fe, ⁶⁴Ni, ⁵⁹Co, ⁶³Cu, ¹⁰⁹Ag.

¹⁹⁶, ²⁰²Hg(n,γ),E=thermal; measured composite nuclear constant. Activation technique.

Keynumber: 1986CO08

Reference: Nucl.Sci.Eng. 93, 348 (1986)

NSR Search Results Page 4 of 14

Authors: F.Corvi, C.Bastian, K.Wisshak

Title: Neutron Capture in the 1.15-keV Resonance of ⁵⁶Fe using Moxon-Rae Detectors

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=1.152 keV; measured capture E γ ,I γ . 57 Fe

deduced resonance, Γ , $(g\Gamma n\Gamma \gamma/\Gamma)$.

Keynumber: 1984REZT

Reference: Proc.Conf.Neutron Physics, Kiev, Vol.1, p.157 (1984)

Authors: G.Reffo, F.Fabbri

Title: Role of E1 and M1 Transitions in the γ-Decay following the Neutron Capture in 58,60 Ni and 56 Fe **Keyword abstract:** NUCLEAR STRUCTURE 57 Fe, 59 , 61 Ni; calculated resonances, Γ γ, Γ n, average

E1,M1 Γγ. Axel-Brink model.

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n,γ), $E \approx 15$ keV; calculated total γ-spectra;

deduced E1,M1 transitions contributions.

Keynumber: 1984KO02

Reference: Phys.Rev. C29, 345 (1984)

Authors: H.Komano, M.Igashira, M.Shimizu, H.Kitazawa

Title: Gamma Rays from 27.7-keV s-Wave Neutron Resonance Capture by ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=27.7 keV; measured Eγ,Iγ following s-wave

resonance capture. ⁵⁷Fe deduced transition partial $\Gamma \gamma$. Valence capture model. Pure Ge detectors.

Keynumber: 1983WIZR **Reference:** KfK-3516 (1983)

Authors: K.Wisshak, F.Kappeler, G.Reffo, F.Fabbri

Title: Neutron Capture in s-Wave Resonances of ⁵⁶Fe, ⁵⁸Ni, and ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n,γ),E=27.7 keV; 58 Ni(n,γ),E=15.4 keV; 60 Ni (n,γ),E=12.5 keV; measured capture γ-yield. 57 Fe, 59 , 61 Ni deduced s-wave resonance Γ γ,E1,M1

contributions to s-,p-,d-wave $<\!\Gamma\gamma\!>$ strength functions.

Keynumber: 1983WIZL

Reference: NEANDC(E)-242U, Vol.V, p.3 (1983) **Authors:** K.Wisshak, F.Kappeler, G.Reffo, F.Fabbri

Title: Neutron Capture in s-Wave Resonances of ⁵⁶Fe, ⁵⁸Ni, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS 56 Fe, 58 , 60 Ni(n, γ),E=resonance; measured capture γ -

spectra. 57 Fe, 59 , 61 Ni deduced s-wave resonance capture $\Gamma\gamma$.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction

 σ vs temperature. Statistical model.

NSR Search Results Page 5 of 14

Kevnumber: 1983MA13

Reference: Nucl.Sci.Eng. 83, 309 (1983)

Authors: R.L.Macklin

Title: Neutron Capture in the 1.15-keV Resonance of Iron

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n, γ),E \approx 1.12-1.24 keV; measured σ (capture) vs E.

⁵⁷Fe resonance deduced parameters, (gΓnΓ γ /Γ).

Keynumber: 1983KAZL

Reference: NEANDC(E)-242U, Vol.V, p.2 (1983) **Authors:** F.Kappeler, K.Wisshak, L.D.Hong

Title: Neutron Capture Resonances in ⁵⁶Fe and ⁵⁸Fe in the Energy Range from 10 to 100 keV

Keyword abstract: NUCLEAR REACTIONS ⁵⁶, ⁵⁸Fe(n, γ),E=10-250 keV; measured capture σ . Gold

standard.

Keynumber: 1983KA09

Reference: Nucl.Sci.Eng. 84, 234 (1983) **Authors:** F.Kappeler, K.Wisshak, L.D.Hong

Title: Neutron Capture Resonances in 56 Fe and 58 Fe in the Energy Range from 10 to 100 keV **Keyword abstract:** NUCLEAR REACTIONS 56 , 58 Fe(n, γ),E=10-100 keV; calculated capture γ -

spectra; deduced capture yield, σ (capture) vs E. 57 , 59 Fe deduced resonances, (g $\Gamma\gamma\Gamma$ n/ Γ), Maxwellian $<\sigma$

_

Keynumber: 1983COZZ

Reference: NEANDC(E)-242/U, Vol.III, p.18 (1983)

Authors: F.Corvi, A.Brusegan, R.Buyl, G.Rohr, R.Shelley, T. van der Veen

Title: High Resolution Neutron Capture Measurements of ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe,Fe(n, γ),E=thermal,resonance; measured σ (capture).

⁵⁷Fe deduced <Γ γ >for s-,p-,d-waves,absolute γ -transition strength.

Keynumber: 1982RA32

Reference: Indian J.Pure Appl.Phys. 20, 627 (1982) **Authors:** S.K.Rathi, V.P.Varshney, H.M.Agrawal

Title: Calculations of Neutron Capture Cross-Sections for some Nuclei using Bilpuch Formula

Keyword abstract: NUCLEAR REACTIONS ⁴⁰, ⁴³Ca, ⁵², ⁵³Cr, ⁵⁴, ⁵⁶Fe, ⁸⁸Sr, ⁹⁰, ⁹¹, ⁹², ⁹⁴Zr, ⁹³Nb,

92, 94, 95, 96, 97, 98, 100 Mo, 138 Ba, 139 La, 140 Ce, 203 Tl(n, γ),E=24 keV; calculated σ (capture).

Experimental parameters, Bilpuch formula.

Keynumber: 1982BA02

Reference: J.Phys.(London) G8, 275 (1982)

Authors: B.Basarragtscha, D.Hermsdorf, E.Paffrath

Title: An Approach for a Consistent Description of Gamma-Ray Spectra from (n,xγ) Reactions Induced

by Fast Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁸Si, ⁵⁶Fe(n, γ), (n,X),E=14 MeV; calculated σ (E γ).

Statistical model, equilibrium, preequilibrium superposition.

-- 10017

Keynumber: 1981WIZN

Reference: NEANDC(E)-222U, Vol.V, p.2 (1981) **Authors:** K.Wisshak, F.Kappeler, G.Reffo, F.Fabbri

NSR Search Results Page 6 of 14

Title: Determination of the Capture Width of s-Wave Resonances in 56 Fe, 58,60 Ni and 27 Al **Keyword abstract:** NUCLEAR REACTIONS 56 Fe(n,γ),E=27.7 keV; 58 Ni(n,γ),E=15.5 keV; 60 Ni (n,γ),E=12.5 keV; 27 Al(n,γ),E=34.7 keV; measured Eγ,Iγ. 57 Fe, 59 , 61 Ni, 28 Al deduced s-wave resonance Γγ.

· -----

Keynumber: 1981WI15

Reference: Nucl.Sci.Eng. 77, 58 (1981) **Authors:** K.Wisshak, F.Kappeler

Title: Determination of the Capture Width of the 27.7 keV s-Wave Neutron Resonance in Iron-56 **Keyword abstract:** NUCLEAR REACTIONS 56 Fe(n, γ),E=21-42 keV; measured capture yield vs E.

⁵⁷Fe resonances deduced Γγ, absolute γ-transition strength.

Keynumber: 1981RA01

Reference: J.Phys.(London) G7, 53 (1981)

Authors: S.K.Rathi, H.M.Agarwal

Title: P-Wave Neutron Strength Functions

Keyword abstract: NUCLEAR REACTIONS ⁴³Ca, ⁵²Cr, ⁵⁶Fe, ⁸⁸Sr, ⁸⁹Y, ⁹⁰, ⁹², ⁹⁴Zr, ⁹³Nb, ⁹², ⁹⁴, ⁹⁵, ⁹⁶, ⁹⁷, ⁹⁸, ¹⁰⁰Mo, ¹³⁸Ba, ¹³⁹La, ¹⁴⁰Ce, ²⁰³Tl(n,γ),E=24 keV; analyzed σ. ⁴⁴Ca, ⁵³Cr, ⁵⁷Fe, ⁸⁹Sr, ⁹⁰Y, ⁹¹, ⁹³, ⁹⁵Zr, ⁹⁴Nb, ⁹³, ⁹⁵, ⁹⁶, ⁹⁷, ⁹⁸, ⁹⁹, ¹⁰¹Mo, ¹³⁹Ba, ¹⁴⁰La, ¹⁴¹Ce, ²⁰⁴Tl deduced p-wave strength function.

runction.

Keynumber: 1981MC05

Reference: Phys.Rev. C23, 1394 (1981)

Authors: C.M.McCullagh, M.L.Stelts, R.E.Chrien

Title: Dipole Radiative Strength Functions from Resonance Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=1167 eV; ¹⁰⁵Pd(n,γ),E=11.8 eV; ¹²⁷I (n,γ),E=20.5 eV; ¹⁴³Nd(n,γ),E=55 eV; ¹⁷⁵Lu(n,γ),E=thermal; ²⁷Al, ³⁵Cl, ¹²⁵Te, ¹⁸¹Ta, ¹⁸², ¹⁸³W, ¹⁹⁵Pt, ²³⁶U(n,γ),E not given; measured σ ; deduced E1,M1 strength function vs mass. ⁵⁷Fe, ¹⁰⁶Pd, ¹²⁸I, ¹⁴⁴Nd, ¹⁷⁶Lu resonances deduced Γγ.J. π .

Keynumber: 1981MA36

Reference: Chin.J.Nucl.Phys. 3, 217 (1981)

Authors: Ma Zhongyu, Sun Ziyang, Zhang Jingshang, Zhuo Yizhong, Ding Dazhao

Title: Pre-Equilibrium Exciton-Phonon Coupling Model for (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ²³⁸U, ⁵⁶Fe, ²⁰⁸Pb(n, γ),E=5-19 MeV; calculated σ (E).

Preequilibrium exciton-phonon coupling model.

Keynumber: 1981KOZP

Reference: NEANDC(J)-75/U, p.70 (1981)

Authors: H.Komano, M.Igashira, S.Katsuta, N.Yamamuro **Title:** Gamma-Rays from Resonance Neutron Capture in ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=5-80 keV; measured E γ ,I γ . 57 Fe resonances

deduced s-wave $\Gamma\gamma$,p-wave absolute γ -transition strength.

Keynumber: 1981KAZM

Reference: NEANDC(E)-222U, Vol.V, p.3 (1981) **Authors:** F.Kappeler, L.D.Hong, K.Wisshak

NSR Search Results Page 7 of 14

Title: Determination of the Capture Widths of Neutron Resonances in ^{56,58}Fe in the Energy Range from 10 to 100 keV

Keyword abstract: NUCLEAR REACTIONS ⁵⁶, ⁵⁸Fe(n, γ),E=10-100 keV; measured σ(E). ⁵⁷, ⁵⁹Fe resonances deduced Γ γ . Activation technique.

Keynumber: 1980VE05

Reference: Nucl.Phys. A344, 421 (1980)

Authors: R.Vennink, J.Kopecky, P.M.Endt, P.W.M.Glaudemans **Title:** Investigation of the 56 Fe(n, γ) 57 Fe and 58 Fe(n, γ) 59 Fe Reactions

Keyword abstract: NUCLEAR REACTIONS ⁵⁶, ⁵⁸Fe(n,γ),E=thermal; measured Eγ,Iγ; deduced Q. ⁵⁷, ⁵⁹Fe deduced levels,γ-branching,J, π . Enriched,natural targets.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1980IS02

Reference: Can.J.Phys. 58, 168 (1980)

Authors: M.A.Islam, T.J.Kennett, S.A.Kerr, W.V.Prestwich **Title:** A Self-Consistent Set of Neutron Separation Energies

Keyword abstract: NUCLEAR REACTIONS ¹H, ⁹Be, ¹⁴N, ²⁴, ²⁵Mg, ²⁷Al, ²⁸, ²⁹Si, ³²S, ³⁵Cl, ⁴⁰, ⁴⁴Ca, ⁴⁷, ⁴⁸, ⁴⁹Ti, ⁵⁰, ⁵², ⁵³Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ,Iγ. ²H, ¹⁰Be, ²⁵, ²⁶Mg, ²⁸Al, ²⁹, ³⁰Si, ³³S, ³⁶Cl, ⁴¹, ⁴⁵Ca, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵¹, ⁵³, ⁵⁴Cr, ⁵⁶Mn, ⁵⁵, ⁵⁷, ⁵⁸Fe deduced Q,neutron binding energy.

Keynumber: 1980BAYL

Coden: REPT ZFK-408,P32,Basarragtscha

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=14 MeV; analyzed σ (E γ); deduced reaction

mechanism.

Keynumber: 1980ANYR

Coden: CONF Kiev(Neutron Physics) Proc, Part1, P210, Antalik

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ), (n,n' γ), (n,2n γ),E=14.6 MeV; measured γ -ray

multiplicity vs En, σ (E γ). Statistical theory. Enriched target.

Keynumber: 1980AL19

Reference: J.Phys.(London) G6, 1173 (1980) **Authors:** B.J.Allen, D.D.Cohen, F.Z.Company

Title: Radiative Widths of Neutron Scattering Resonances

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²⁴Mg, ²⁷Al, ²⁸Si, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E=20-80 keV; measured σ (Εγ,Ε). ²⁰F, ²⁵Mg, ²⁸Al, ²⁹Si, ⁵⁷Fe, ²⁰⁸Pb deduced resonances,Γn,L,J, π ,Γγ. Moxon-Rae

detectors, Monte-Carlo analysis.

NSR Search Results Page 8 of 14

Keynumber: 1979WIZK

Reference: Bull.Am.Phys.Soc. 24, No.7, 866, BB6 (1979)

Authors: K.Wisshak, F.Kappeler

Title: Determination of the Capture Width of the 27.7 keV s-Wave Resonance in ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=resonance; measured S-wave $\Gamma\gamma$.

Keynumber: 1979HOZY

Reference: NEANDC(OR)152L, p.31 (1979)

Authors: B.Holmqvist, V.Corcalciuc, A.Marcinkowski, G.A.Prokopets

Title: A Study of the Neutron Induced Reactions for ¹⁹F, ⁵⁶Fe and ⁵⁹Co in the Energy Interval 16 to 22

MeV

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ⁵⁶Fe, ⁵⁹Co(n, γ),E=16.2-21.8 MeV; measurd production σ for prompt γ ; deduced possible (n,2n), (n,np), (n,d) reactions; discussed reaction

mechanism.

Keynumber: 1979BRZN

Reference: Bull.Am.Phys.Soc. 24, No.7, 867, BB8 (1979)

Authors: A.Brusegan, F.Corvi, G.Rohr, R.Shelley, T.Van der Veen **Title:** Neutron Capture Cross Section Measurements of Fe-54 and Fe-56

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶Fe(n, γ),E=0.5-600 keV; measured σ .

Keynumber: 1978VE06

Reference: Nucl.Phys. A299, 429 (1978) **Authors:** R.Vennink, W.Ratynski, J.Kopecky

Title: Circular Polarization of Neutron Capture γ -Rays from Ca, Ti, Fe and Ni

Keyword abstract: NUCLEAR REACTIONS ⁴²Ca, ⁴⁴Ca, ⁴⁶Ti, ⁵⁶Fe, ⁵⁸Fe, ⁶⁴Ni(polarized n,γ),E=th;

measured γ-CP. ⁴³Ca, ⁴⁵Ca, ⁴⁷Ti, ⁵⁷Fe, ⁵⁹Fe, ⁶⁵Ni levels deduced J. Enriched targets.

Kevnumber: 1978SAYY

Reference: Proc.Intern.Symp.Neutron Capture Gamma Ray Spectroscopy and Related Topics, 3rd,

BNL, Upton, (1978), R.E.Chrien, W.R.Kane, Eds., Plenum Press, New York, p.737 (1978)

Authors: S.Sakamoto

Title: Measurement of Thermal Neutron Capture Gamma Rays using a Neutron Guide Tube

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=thermal; measured Eγ,Iγ. Curved neutron

guide tube.

Keynumber: 1978PEZZ

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P714, Peker

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁵⁶Fe(n,γ),E=thermal,resonance; analyzed data.

³⁶Cl, ⁵⁷Fe resonances deduced M1 strengths, doorway characteristics.

Keynumber: 1978PEZI

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No60, Peker

Keyword abstract: NUCLEAR REACTIONS ³⁵Cl, ⁵⁶Fe(n,γ); analyzed data on M1,E1 transitions.

 36 Cl, 57 Fe levels deduced L,J, π . Evidence for doorway mechanism.

Kevnumber: 1978BE04

Reference: Z.Phys. A284, 173 (1978)

NSR Search Results Page 9 of 14

Authors: H.Beer, R.R.Spencer, F.Kappeler

Title: Measurement of Partial Radiation Widths of High Energy Transitions from keV Capture

Resonances in ⁵⁶Fe and ⁵⁸, ⁶⁰Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰Ni(n, γ),E=7-70 keV; measured σ(E γ). ⁵⁷Fe, ⁵⁹, ⁶¹Ni deduced resonances, partial radiation Γ.M1 strength.

Keynumber: 1978ALZK

Coden: CONF Brookhaven(Neutron Capt γ-Ray Spectr), Proc, P535, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; calculated

radiative widths, variances. Statistical, valence, door-way models.

Keynumber: 1978ALYZ

Coden: CONF BNL(Neutron Capt γ-Ray Spectr), Contrib, No5, Allen

Keyword abstract: NUCLEAR REACTIONS ⁴⁰Ca, ⁴⁵Sc, ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ); calculated L=0,1 radiative widths. ⁵⁵Fe deduced dominance of valence effects. ⁴¹Ca, ⁴⁶Sc, ⁵⁷, ⁵⁸Fe deduced evidence for doorway

components.

Keynumber: 1977RI14

Reference: Nucl.Instrum.Methods 144, 323 (1977)

Authors: M.Riihonen, J.Keinonen

Title: Measurements of Absolute Resonance Strengths in (p,γ) Reactions on Rare or Gaseous Nuclei **Keyword abstract:** NUCLEAR REACTIONS ²⁰, ²¹, ²²Ne, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe (n,γ) ; measured yields. ⁵⁵, ⁵⁷, ⁵⁸, ⁵⁹, ⁵⁹,

⁵⁸, ⁵⁹Co deduced resonance strength.

Keynumber: 1976RUZW

Coden: CONF Lowell(Interactions of Neutrons), CONF-760715-P2, Vol 2P1289

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ); measured E γ ,I γ . 57 Fe deduced transitions.

Keynumber: 1976AL16

Reference: Nucl.Instrum.Methods 136, 323 (1976)

Authors: D.E.Alburger

Title: Precision Energy Measurement of γ Rays from ¹⁵N, ¹⁶O, and ⁵⁷Fe

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ); measured Eγ; deduced Q. ⁵⁷Fe deduced

transitions.

Keyword abstract: RADIOACTIVITY ¹⁵C, ¹⁶N; measured Eγ.

Keynumber: 1976AL12

Reference: Nucl.Phys. A269, 408 (1976)

Authors: B.J.Allen, A.R.de L.Musgrove, J.W.Boldeman, M.J.Kenny, R.L.Macklin

Title: Resonance Neutron Capture in ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=2.5-870 keV; measured σ (E,Eγ); deduced average σ (E,Eγ). ⁵⁷Fe deduced resonances,resonance parameters,correlation coefficient,valence component,doorway states. ⁶Li(n,α) monitor,enriched target.

Keynumber: 1975YOZW

Coden: REPT LA-UR-75-317,mf

Keyword abstract: NUCLEAR REACTIONS ¹⁴N, ²⁷Al, ⁵⁶Fe,Mo, ⁹³Nb, ¹⁸¹Ta,W, ²³⁸U

NSR Search Results Page 10 of 14

 (n,γ) , E=thermal, 14 MeV; calculated σ .

Keynumber: 1975TA09

Reference: Aust.J.Phys. 28, 21 (1975)

Authors: R.B.Taylor, F.Hille

Title: Angular Correlation Measurements in ⁵⁷Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=thermal; measured $\gamma\gamma(\theta)$. 57 Fe levels

deduced J,π .

Keynumber: 1975FRZV

Coden: JOUR BAPSA 20 174 IB21

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸, ⁶⁰, ⁶¹Ni(n, γ); calculated σ .

Keynumber: 1975BEZW

Coden: JOUR BAPSA 20 169 HB27

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n, γ),E=7-70 keV; measured σ (E,E γ).

Keynumber: 1974LU04

Reference: Nucl.Phys. A230, 83 (1974) **Authors:** M.Lubert, N.C.Francis, R.C.Block

Title: Correlations between Reduced Neutron and Radiative Widths in Neutron Resonances

Keyword abstract: NUCLEAR REACTIONS ⁶¹Ni, ⁵⁷Fe, ⁵³Cr(γ,n), ⁶⁰Ni, ⁵⁶Fe, ⁵²Cr(n,γ),E=thermal;

calculated σ. ⁶¹Ni, ⁵⁷Fe, ⁵³Cr resonances deduced γ-width.

Keynumber: 1974HIZF

Coden: REPT CONF-740218, Paper 71

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=thermal; measured $\gamma \gamma(\theta)$. 57 Fe levels

deduced γ -mixing.

Keynumber: 1974BRXT

Coden: REPT CONF-740218, Paper 5

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E <460 keV; measured σ (E,E γ).

Keynumber: 1974ALZL

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P145

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E <1 MeV; measured E γ ,I γ . 57 Fe resonances

deduced γ-width,L.

Keynumber: 1974ALYV

Coden: REPT ANU-P-588 P34

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E <460 keV; measured σ (E,E γ).

Keynumber: 1973WH06

Reference: Nucl.Sci.Eng. 51, 496 (1973) **Authors:** J.E.White, C.Y.Fu, K.J.Yost

Title: Neutron Capture Gamma-Ray Yields in Iron

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ),E=thermal-1 MeV; calculated σ (E;E γ),I γ . 57 Fe

deduced levels, J, π .

NSR Search Results Page 11 of 14

Keynumber: 1973SP06

Reference: Nucl.Phys. A215, 260 (1973) **Authors:** A.M.J.Spits, J.A.Akkermans

Title: Investigation of the Reaction $^{37}Cl(n,\gamma)^{38}Cl$

Keyword abstract: NUCLEAR REACTIONS ³⁷Cl, ³²S, ⁵⁰, ⁵², ⁵³Cr, ⁵⁶Fe(n,γ),E=thermal; measured

Eγ,Ιγ; deduced Q. ³⁸Cl deduced levels,γ-branching.

Keyword abstract: RADIOACTIVITY ³⁸Cl; measured Εγ,Ιγ. Deduced β- branching, ³⁸Ar deduced

transitions. Natural, ³⁷Cl enriched target.

Keynumber: 1973BRXJ

Coden: REPT COO-3058-38 P4

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ); measured E γ ,I γ .

Keynumber: 1973BO47

Reference: Nucl. Phys. A215, 605 (1973)

Authors: E.Boridy, C.Mahaux

Title: Radiative Capture of Low-Energy Neutrons in the Shell-Model Approach to Nuclear Reactions **Keyword abstract:** NUCLEAR REACTIONS ⁵⁶Fe, ⁵⁸Ni(n,γ); calculated Iγ. ⁵⁷Fe, ⁵⁹Ni resonances

calculated level-width.

Keynumber: 1972OP01

Reference: Nucl.Phys. A180, 569 (1972) **Authors:** A.M.F.Op den Kamp, A.M.J.Spits

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ³⁹K Enriched Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K, ¹H, ⁶Li, ¹²C, ¹⁹F, ⁴⁰Ar, ⁵⁶Fe, ²⁰⁷Pb(n, γ),E= thermal; ¹⁹F, ²⁸Si(n,n' γ),E=fast; measured E γ ,I γ , ³⁹K(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin; deduced O. ⁴⁰, ⁴²K deduced levels, γ -branching. Ge(Li),NaI detectors.

Kevnumber: 1972BHZZ

Coden: CONF Budapest, Contributions, P60, M Bhat, 10/11/72

Keyword abstract: NUCLEAR REACTIONS 56 Fe, 96 Zr, 98 Mo, 116 , 118 , 120 , 122 , 124 Sn

(n, γ),E=resonance; measured I γ (θ). ⁵⁷Fe, ⁹⁷Zr, ⁹⁹Mo, ¹¹⁷, ¹¹⁹, ¹²¹, ¹²³, ¹²⁵Sn resonances, levels deduced I

Kevnumber: 1971WHZV

Coden: REPT ORNL-TM-3442,J E White,10/11/71

Keyword abstract: NUCLEAR REACTIONS Fe, 54 , 56 Fe(n, γ),E <10 MeV; calculated σ (E;E γ). 55 ,

⁵⁷Fe calculated levels, J, π , γ -branching.

Kevnumber: 1971KN02

Reference: Yad.Fiz. 13, 521 (1971); Sov.J.Nucl.Phys. 13, 292 (1971)

Authors: V.A.Knatko, E.A.Rudak

Title: Role of Doorway States of the 'Phonon + Particle' Type in the (n,γ) Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁶²Ni, ⁶⁴, ⁶⁶Zn, ⁷⁰, ⁷²Ge(n,γ); calculated particle +

doorway state effects. ⁵⁷Fe, ⁶³Ni, ⁶⁵, ⁶⁷Zn, ⁷¹, ⁷³Ge calculated n-widths,B(E1).

NSR Search Results Page 12 of 14

Keynumber: 1971KN01

Reference: Nucl.Phys. A164, 417 (1971)

Authors: V.A.Knatko, E.A.Rudak

Title: Phonon-Particle Doorway States in (n,γ) Reactions on Nuclei with A <80

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe, ⁶²Ni(n, γ),E=slow; calculated E1 transition

probabilities,n-widths. ⁵⁷Fe, ⁶³Ni, ⁶⁵Zn, ⁶⁷Zn, ⁷¹, ⁷³Ge calculated levels, wave functions.

Keynumber: 1971EI02

Reference: Z.Phys. 243, 114 (1971) **Authors:** E.A.Eissa, J.Honzatko

Title: Study of the ⁵⁷Fe Low-Energy States

Keyword abstract: NUCLEAR REACTIONS ⁵⁶Fe(n,γ),E=thermal; measured Eγ,Iγ. ⁵⁷Fe deduced

levels, γ -branching.

Kevnumber: 1971BIZV

Coden: REPT ORNL-TM-3379, J R Bird,9/14/71

Keyword abstract: NUCLEAR REACTIONS F,Na,Mg,Al,S, ³⁵Cl,K,Ca, ⁴⁰, ⁴², ⁴⁴Ca,Ti,V,Fe, ⁵⁴,

 56 Fe,Ni, 58 , 60 Ni, 63 Cu,Zn(n, γ),E=10-100 keV; measured E γ ,I γ . 9 inx 12 in NaI detector.

Kevnumber: 1970SP02

Reference: Nucl. Phys. A145, 449 (1970)

Authors: A.M.J.Spits, A.M.F. Op den Kamp, H.Gruppelaar

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ²⁸Si Enriched Silicon

Keyword abstract: NUCLEAR REACTIONS ²⁸, ²⁹, ³⁰Si, ⁶Li, ¹⁴N, ¹⁹F, ²⁷Al, ⁵⁴, ⁵⁶Fe, ²⁰⁷Pb(n,γ), E=thermal; ²⁸Si(n,n'γ), E=fast; measured Eγ, Iγ; deduced Q. ²⁹, ³⁰, ³¹Si deduced levels, γ-branching.

Natural, ²⁸Si enriched targets, Ge(Li) detector.

Keynumber: 1970CH10

Reference: Phys.Rev. C1, 973 (1970)

Authors: R.E.Chrien, M.R.Bhat, O.A.Wasson

Title: Gamma Rays Following Resonant Neutron Capture in ⁵⁶Fe

Keyword abstract: NUCLEAR REACTIONS 56 Fe(n, γ), E <2 keV; measured σ (E γ). 57 Fe resonance

deduced level-width, J, π , γ -multipolarity.

Kevnumber: 1970BRZJ

Coden: REPT FEI-205,D Broder,5/29/72

Keyword abstract: NUCLEAR REACTIONS 50 , 52 , 53 Cr, 54 , 56 Fe(n, γ); measured E γ ,I γ . 51 , 53 , 54 Cr

deduced levels,γ-branching.

Keynumber: 1969KO05

Reference: Nucl. Phys. A127, 385 (1969)

Authors: J.Kopecky, E.Warming

Title: Circular Polarization Measurements with a Ge(Li) Detector

Keyword abstract: NUCLEAR REACTIONS ³²S, ³⁵Cl, ⁴⁸Ti, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶³Cu(polarized n,γ), E = thermal; measured γ circular polarization. ³³S, ³⁶Cl, ⁴⁹Ti, ⁵⁶Mn, ⁵⁷Fe, ⁶⁰Co, ⁶⁴Cu levels deduced J, γ-

mixing. Natural targets.

NSR Search Results Page 13 of 14

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal;

measured average γ multiplicity.

Keynumber: 1969HO12

Reference: Phys.Rev. 178, 1746 (1969)

Authors: R.W.Hockenbury, Z.M.Bartolome, J.R.Tatarczuk, W.R.Moyer, R.C.Block

Title: Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV

Keyword abstract: NUCLEAR REACTIONS 23 Na, 27 Al, 54 , 56 , 57 , 58 Fe, 58 , 60 , 61 , 62 , 64 Ni(n, γ), E=0.1-200 keV; measured σ (E). 24 Na, 28 Al, 55 , 57 , 58 , 59 Fe, 59 , 61 , 62 , 63 , 65 Ni deduced resonance

parameters.

Keynumber: 1969CV02

Reference: Nucl. Phys. A130, 413 (1969)

Authors: F.Cvelbar, A.Hudoklin, M.V.Mihailovic, M.Najzer, M.Petrisic

Title: Radiative Capture of Neutrons in the Region of the Dipole Giant Resonance (II). Calculation **Keyword abstract:** NUCLEAR REACTIONS 32 S, 52 Cr, 56 Fe(n, γ), E=14.1 MeV; calculated σ (E γ).

Keynumber: 1968TS02

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 32, 1972 (1968); Bull.Acad.Sci.USSR, Phys.Ser. 32, 1816

(1969)

Authors: F.Tsvelbar, A.Khudoklin, M.V.Mikhailovich, M.Naizher, M.Petrishich

Title: Coarse Structure of the Spectra of Gamma Rays Emitted in Radiative Capture of 14.1 MeV

Neutrons

Keyword abstract: NUCLEAR REACTIONS ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe(n, γ), E=14 MeV; measured σ (E γ); deduced coarse structure.

Keynumber: 1968SP01

Reference: Nucl. Phys. A113, 395(1968)

Authors: P.Spilling, H.Gruppelaar, H.F.De vries, A.M.J.Spits

Title: The Reactions ${}^{12}C(n,\gamma){}^{13}C$ and ${}^{19}F(n,\gamma){}^{20}F$

Keyword abstract: NUCLEAR REACTIONS 6 Li, 12 C, 19 F, 56 Fe(n, γ), E=thermal; 19 F(n,n' γ), E= fast; 19 F(n, α), E= fast; measured E γ ,I γ ; deduced Q. 7 Li, 13 C, 16 O, 19 F, 20 F deduced levels, branchings.

Natural targets.

Keynumber: 1968SC02

Reference: Nucl. Phys. A107, 14 (1968)

Authors: R.Schaub, W.Schuler

Title: Circular Polarization of Neutron-Capture Gamma Rays from ⁶⁵Zn, ⁶⁸Zn and ⁵⁷Fe

Keyword abstract: NUCLEAR REACTIONS ⁶⁴, ⁶⁷Zn, ⁵⁶Fe(polarized n,γ), E=thermal; measured γ

circular polarization. ⁶⁵, ⁶⁸Zn levels deduced J; ⁵⁷Fe level deduced Iγ. Natural targets.

T7 1 10.601

Kevnumber: 1968BI06

Reference: Nucl. Phys. A120, 113 (1968)

NSR Search Results Page 14 of 14

Authors: J.R.Bird

Title: keV Neutron Capture in Iron

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁶Fe(n, γ) E=15-80 keV, measured σ (E; E γ). ⁵⁵Fe,

⁵⁷Fe deduced levels, resonances. Natural, enriched targets.

Keynumber: 1967SP05

Reference: Nucl. Phys. A102, 209 (1967)

Authors: P.Spilling, H.Gruppelaar, A.M.F.Op Den Kamp

Title: Thermal-Neutron Capture Gamma Rays from Natural Magnesium and Enriched ²⁵Mg **Keyword abstract:** NUCLEAR REACTIONS ²⁴, ²⁵, ²⁶Mg, ⁵⁶Fe, ⁶³Cu, ²⁰⁷Pb(n,γ), E=thermal; measured σ(Εγ); deduced Q. ²⁵, ²⁶, ²⁷Mg deduced levels, branching. Enriched ²⁵Mg target, Ge(Li)

detector.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS 6 Li, 7 Li, 9 Be, 10 B, 12 C, 14 N, 19 F, 23 Na, 24 Mg, 25 Mg, 26 Mg, 27 Al, 28 Si, 31 P, 32 S, 35 Cl, 40 Ca, 45 Sc, 48 Ti, 51 V, 55 Mn, 54 Fe, 56 Fe, 59 Co, 58 Ni, 60 Ni, 63 Cu, 65 Cu, 66 Zn, 67 Zn, 73 Ge, 76 Se, 85 Rb, 87 Rb, 89 Y, 93 Nb, 103 Rh, 113 Cd, 123 Te, 133 Cs, 139 La, 141 Pr, 149 Sm, 153 Eu, 157 Gd, 159 Tb, 165 Ho, 167 Er, 169 Tm, 181 Ta, 182 W, 195 Pt, 197 Au, 199 Hg, 203 Tl, 207 Pb(n,γ), E = thermal; measured Eγ; deduced Q. Natural targets.

Kevnumber: 1965FI04

Reference: Nucl. Phys. 73, 312 (1965)

Authors: E.I.Firsov, N.G.Loskutova, E.A.Rudak

Title: Spectrum of γ -Rays from the 54 Fe(n, γ) 55 Fe Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁴Fe, ⁵⁶Fe(n, γ), E = thermal; measured σ (E γ). ⁵⁵Fe

deduced levels. Enriched ⁵⁴Fe target.

Kevnumber: 1964GR36

Reference: Nucl. Phys. 58, 465(1964)

Authors: L.V.Groshev, A.M.Demidov, G.A.Kotelnikov, V.N.Lutsenko

Title: Spectrum of γ -Rays from the Fe⁵⁶(n, γ)Fe⁵⁷ Reaction

Keyword abstract: NUCLEAR REACTIONS ⁵⁴, ⁵⁶, ⁵⁷Fe(n,γ),E=thermal; measured Eγ, Iγ, Q. ⁵⁷Fe

deduced levels, J, π . Natural target.
