27 | 递归树:如何借助树来求解递归算法的时间复杂度?

今天,我们来讲树这种数据结构的一种特殊应用,递归树。

我们都知道,递归代码的时间复杂度分析起来很麻烦。我们在<u>第 12 节《排序(下)》</u>那里讲过,如何利用递推公式,求解归并排序、快速排序的时间复杂度,但是,有些情况,比如快排的平均时间复杂度的分析,用递推公式的话,会涉及非常复杂的数学推导。

除了用递推公式这种比较复杂的分析方法,有没有更简单的方法呢?今天,我们就来学习另外一种方法,<mark>借助递归树来分析递归算法的时间复杂度</mark>。

递归树与时间复杂度分析

我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。

如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作**递归树**。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。

通过这个例子,你对递归树的样子应该有个感性的认识了,看起来并不复杂。现在,我们就来看,如何用递归树来求解时间复杂度。

归并排序算法你还记得吧?它的递归实现代码非常简洁。现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。

归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第 12 节的内容。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。

现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n*h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log2n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学 完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

在用递归树推导之前,我们先来回忆一下用递推公式的分析方法。你可以回想一下,当时,我们为什么说用递推公式来求解平均时间复杂度非常复杂?

快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(n2)+n,很容易就能推导出时间复杂度是 O(nlogn)。但是,我们并不可能每次分区都这么幸运,正好一分为二。

我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(n10)+T(9n10)+n。

这个公式可以推导出时间复杂度,但是推导过程非常复杂。那我们来看看,**用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?** 我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:

快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是n。我们现在只要求出递归树的高度h,这个快排过程遍历的数据个数就是h*n,也就是说,时间复杂度就是O(h*n)。

因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?

我们知道,快速排序结束的条件就是待排序的小区间,大小为 1 ,也就是说叶子节点里的数据规模是 1 。从根节点 n 到叶子节点 1 ,递归树中最短的一个路径每次都乘以 110 ,最长的一个路径每次都乘以 910 。通过计算,我们可以得到,从根节点到叶子节点的最短路径是 100 1

$$n, \frac{n}{10}, \frac{n}{10^2}, \frac{n}{10^3}, \dots$$
 最短路径 $h = \log_{10} n$ $n, \frac{9n}{10}, \frac{9^2n}{10^2}, \frac{9^3n}{10^3}, \dots$ 最长路径 $h = \log_{\frac{10}{9}} n$

所以,遍历数据的个数总和就介于 nlog10n 和 nlog109n 之间。根据复杂度的大 O 表示法,对数复杂度的底数不管是多少,我们统一写成 logn,所以,当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(nlogn)。

刚刚我们假设 k=9,那如果 k=99,也就是说,每次分区极其不平均,两个区间大小是 1:99,这个时候的时间复杂度是多少呢?

我们可以类比上面 k=9 的分析过程。当 k=99 的时候,树的最短路径就是 $\log 100n$,最长路径是 $\log 10099n$,所以总遍历数据个数介于 $n \log 10099n$ 和 $n \log 10099n$ 之间。尽管底数变了,但是时间复杂度也仍然是 $O(n \log n)$ 。

也就是说,对于 k 等于 9,99,甚至是 999,9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(nlogn)。 所以,从概率论的角度来说,快排的平均时间复杂度就是 O(nlogn)。

实战二:分析斐波那契数列的时间复杂度

在递归那一节中,我们举了一个跨台阶的例子,你还记得吗?那个例子实际上就是一个斐波那契数列。为了方便你回忆,我把它的代码实现贴在这里。

```
int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}
```

櫛复制代码

这样一段代码的时间复杂度是多少呢?你可以先试着分析一下,然后再来看,我是怎么利用递归树来分析的。

我们先把上面的递归代码画成递归树,就是下面这个样子:

这棵递归树的高度是多少呢?

f(n) 分解为 f(n-1) 和 f(n-2),每次数据规模都是 -1 或者 -2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 -1,那最长路径大约就是 n;如果每次都是 -2,那最短路径大约就是 n2。

每次分解之后的合并操作只需要一次加法运算,我们把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 22。依次类推,第 k 层的时间消耗就是 2k-1,那整个算法的总的时间消耗就是每一层时间消耗之和。

如果路径长度都为 n,那这个总和就是 2n-1。

$$1+2+\cdots+2^{n-1}=2^{n}-1$$

如果路径长度都是 n2 , 那整个算法的总的时间消耗就是 2n2-1。

$$1+2+\cdots+2^{\frac{n}{2}-1}=2^{\frac{n}{2}}-1$$

所以,这个算法的时间复杂度就介于 O(2n) 和 O(2n2) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。

实战三:分析全排列的时间复杂度

前面两个复杂度分析都比较简单,我们再来看个稍微复杂的。

我们在高中的时候都学过排列组合。"如何把 n 个数据的所有排列都找出来",这就是全排列的问题。

我来举个例子。比如,1,2,3这样3个数据,有下面这几种不同的排列:

```
1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1
```

櫛复制代码

如何编程打印一组数据的所有排列呢?这里就可以用递归来实现。

如果我们确定了最后一位数据,那就变成了求解剩下 n-1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,"n 个数据的排列"问题,就可以分解成 n 个"n-1 个数据的排列"的子问题。

如果我们把它写成递推公式,就是下面这个样子:

```
假设数组中存储的是 1, 2, 3...n。  f(1,2,...n) = \{ 最后一位是 \ 1, \ f(n-1) \} + \{ 最后一位是 \ 2, \ f(n-1) \} + ... + \{ 最后一位是 \ n, \ f(n-1) \} ... \}
```

櫛复制代码

如果我们把递推公式改写成代码,就是下面这个样子:

```
// 调用方式:
// int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4);
// k 表示要处理的子数组的数据个数
public void printPermutations(int[] data, int n, int k) {
   if (k == 1) {
      for (int i = 0; i < n; ++i) {
      }
      System.out.println();
   }

   for (int i = 0; i < k; ++i) {
      int tmp = data[i];
      data[i] = data[k-1];
      data[k-1] = tmp;
   printPermutations(data, n, k - 1);

   tmp = data[i];
   data[i] = data[k-1];
   data[k-1] = tmp;
   }
}</pre>
```

櫛复制代码

如果不用我前面讲的递归树分析方法,这个递归代码的时间复杂度会比较难分析。现在,我们来看下,如何借助递归树,轻松分析出这个代码的时间复杂度。

首先,我们还是画出递归树。不过,现在的递归树已经不是标准的二叉树了。

第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n-1 次交换,所以第二层总的交换次数是 n*(n-1)。第三层有 n*(n-1) 个节点,每个节点分解需要 n-2 次交换,所以第三层总的交换次数是 n*(n-1)*(n-2)。

以此类推,第 k 层总的交换次数就是 n*(n-1)*(n-2)*...*(n-k+1)。最后一层的交换次数就是 n*(n-1)*(n-2)*...*2*1。每一层的交换次数之和就是总的交换次数。

 $n \; + \; n^{\star} \; (n-1) \; + \; n^{\star} \; (n-1) \; ^{\star} \; (n-2) \; + \ldots \; + \; n^{\star} \; (n-1) \; ^{\star} \; (n-2) \; ^{\star} \ldots \; ^{\star} 2^{\star} 1$

櫛复制代码

这个公式的求和比较复杂,我们看最后一个数,n*(n-1)*(n-2)*...*2*1 等于 n!,而前面的 n-1 个数都小于最后一个数,所以,总和肯定小于 n*n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n*n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。

这里我稍微说下,掌握分析的方法很重要,思路是重点,不要纠结于精确的时间复杂度到底是多少。

内容小结

今天,我们用递归树分析了递归代码的时间复杂度。加上我们在排序那一节讲到的递推公式的时间复杂度分析方法,我们现在已经学习了两种递归代 码的时间复杂度分析方法了。

有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。

时间复杂度分析的理论知识并不多,也不复杂,掌握起来也不难,但是,在我们平时的工作、学习中,面对的代码千差万别,能够灵活应用学到的复杂度分析方法,来分析现有的代码,并不是件简单的事情,所以,你平时要多实战、多分析,只有这样,面对任何代码的时间复杂度分析,你才能做到游刃有余、毫不畏惧。

课后思考

1个细胞的生命周期是 3 小时,1 小时分裂一次。求 n 小时后,容器内有多少细胞?请你用已经学过的递归时间复杂度的分析方法,分析一下这个递归问题的时间复杂度。

欢迎留言和我分享,我会第一时间给你反馈。

