PROBABILISTIC ALGORITHMS FOR FINDING MATRIX DECOMPOSITIONS

ALEX NOWAK

ABSTRACT. This paper is a sample prepared to illustrate the use of the American Mathematical Society's IATEX document class amsart and publication-specific variants of that class for AMS-IATEX version 2.

THEORY

1. Fixed rank problem

PROTO-ALGORITHM: SOLVING THE FIXED-RANK PROBLEM

Given an $m \times n$ matrix A, a target rank k, and an oversampling parameter p, this procedure computes an $m \times (k + p)$ matrix Q whose columns are orthonormal and whose range approximates the range of A.

- 1 Draw a random $n \times (k+p)$ test matrix Ω .
- 2 Form the matrix product $Y = A\Omega$.
- 3 Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Theorem 1.1. Suppose that A is a real $m \times n$ matrix. Select a target rank $k \geq 2$ and an oversampling parameter $p \geq 2$, where $k+p \leq \min\{m,n\}$. Execute the protoalgorithm with a standard Gaussian test matrix to obtain an $m \times (k+p)$ matrix Q with orthonormal columns. Then

(1.1)
$$\mathbb{E} \|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \leq \left[1 + \frac{4\sqrt{k+p}}{p-1} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1},$$

where \mathbb{E} denotes expectation with respect to the random test matrix and σ_{k+1} is the (k+1)th singular value of A.

The probability that the error satisfies

(1.2)
$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \le \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

is at least $1 - 6 \cdot p^{-p}$ under very mild assumptions on p.

2. Randomized SVD

The Randomized SVD procedure requires only 2(q+1) passes over the matrix, so it is efficient even for matrices stored out-of-core. The flop count satisfies

$$T_{\text{randSVD}} = (2q + 2) k T_{\text{mult}} + O(k^2(m+n)),$$

where T_{mult} is the flop count of a matrix-vector multiply with \boldsymbol{A} or \boldsymbol{A}^* .

PROTOTYPE FOR RANDOMIZED SVD

Given an $m \times n$ matrix A, a target number k of singular vectors, and an exponent q (say q=1 or q=2), this procedure computes an approximate rank-2k factorization $U\Sigma V^*$, where U and V are orthonormal, and Σ is nonnegative and diagonal.

Stage A:

- Generate an $n \times 2k$ Gaussian test matrix Ω .
- Form $Y = (AA^*)^q A\Omega$ by multiplying alternately with A and A^* .
- 3 Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Stage B:

- 4 Form $\mathbf{B} = \mathbf{Q}^* \mathbf{A}$.
- 5 Compute an SVD of the small matrix: $B = \widetilde{U}\Sigma V^*$.
- 6 Set U = QU.

Note: The computation of Y in Step 2 is vulnerable to round-off errors. When high accuracy is required, we must incorporate an orthonormalization step between each application of A and A^* ; see Algorithm ??.

Theorem 2.1. Suppose that A is a real $m \times n$ matrix. Select an exponent q and a target number k of singular vectors, where $2 \le k \le 0.5 \min\{m, n\}$. Execute the Randomized SVD algorithm to obtain a rank-2k factorization $U\Sigma V^*$. Then

(2.1)
$$\mathbb{E} \| \boldsymbol{A} - \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^* \| \leq \left[1 + 4 \sqrt{\frac{2 \min\{m, n\}}{k - 1}} \right]^{1/(2q + 1)} \sigma_{k+1},$$

where \mathbb{E} denotes expectation with respect to the random test matrix and σ_{k+1} is the (k+1)th singular value of A.

In practice, we can truncate the approximate SVD, retaining only the first k singular values and vectors. Equivalently, we replace the diagonal factor Σ by the matrix $\Sigma_{(k)}$ formed by zeroing out all but the largest k entries of Σ . For this truncated SVD, we have the error bound

(2.2)
$$\mathbb{E} \| \boldsymbol{A} - \boldsymbol{U} \boldsymbol{\Sigma}_{(k)} \boldsymbol{V}^* \| \leq \sigma_{k+1} + \left[1 + 4\sqrt{\frac{2 \min\{m, n\}}{k - 1}} \right]^{1/(2q + 1)} \sigma_{k+1}.$$

References

- 1. T. Aoki, Calcul exponentiel des opérateurs microdifferentiels d'ordre infini. I, Ann. Inst. Fourier (Grenoble) 33 (1983), 227–250.
- 2. R. Brown, $On\ a\ conjecture\ of\ Dirichlet,$ Amer. Math. Soc., Providence, RI, 1993.
- 3. R. A. DeVore, Approximation of functions, Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 34–56.

 $E\text{-}mail\ address: \verb"alexnowakvila@gmail.com""}$