# DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN



# Sampling and Markov Chain Monte Carlo (MCMC) Methods, Part I

Kim Steenstrup Pedersen





- Basic sampling methods
  - Rejection sampling
  - Importance sampling
  - Sampling-Importance-Resampling (SIR)
- Sampling Bayesian networks
- Markov Chain Monte Carlo (MCMC) methods
  - Metropolis algorithm
  - Metropolis-Hastings algorithm
  - Gibbs sampler



# Motivation





Remember the goal of machine learning: We are modelling a mapping of features x into labels/targets y(x) and usually also a probabilistic model p(x,y).

#### We can use sampling:

- To estimate expectation value, e.g. the mean, of the probability distribution p(x,y).
- To be able to synthesize data for testing purposes.
- Sampling forms an integral part of some machine learning methods. Ex.:
  - Sequential Monte Carlo techniques such as particle filtering (an extension of sampling-importance-resampling).

#### **Example: 3D Human motion tracking**



Visual articulated tracking of 3D human motion:

- Learn a distribution p(y|x) of poses y from video sequence x.
- Sample from this pose distribution p(y|x) to get several hypotheses.
- For each pose hypothesis evaluate how well it fits with video data and compute average to get the current estimate of pose.





# Example: Image inpainting: Fill holes of missing pixels

- Synthesize content to fill holes in images.
- Exemplar-based=find similar image patches and paste (puzzle).
- Our approach: Keep several hypotheses in play. E.g. allow for several solution and choose the one that is globally optimal.

Cuzol et al: Field of Particle Filters for Image Inpainting. In Journal of Mathematical Imaging and Vision, 31(2-3): 147-156, 2008.

Original



Hole



Exemplar approach



Our approach





#### Estimating expectations using sampling

We wish to estimate expectations

$$E[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z}$$

 Draw L samples independently from p(z) and approximate the expectation with





This is an instance of *Monte Carlo integration*.

The samples represent the distribution and in the limit

$$\lim_{L \to \infty} \hat{f} = E[f]$$

 $\lim_{L\to\infty} \hat{f} = E[f]$  The estimator variance is  $\mathrm{var}[\hat{f}] = \frac{1}{L} E[(f-E[f])^2]$ 

#### An example





Observation: Clearly for this complex distribution we need a lot of samples L



# **Basic Sampling Methods**



#### Sampling from "simple" distributions

• If we know the analytical expression for  $p(\mathbf{z})$  - use the transformation method (recall from the StatML course).



#### **Recall: The transformation method**

#### We want to sample from p(y):

• Assume that z is uniformly distributed U(z|0,1) and define the relationship

$$z = h(y) \equiv \int_{-\infty}^{y} p(\hat{y}) d\hat{y}$$

Sample z uniformly and apply  $y = h^{-1}(z)$  which is distributed as p(y).



# The transformation method applied to discrete distributions



#### Sampling from p(X):

- 1. Compute the cumulative sum h(X)
- 2. Flatten *h*(*X*) on to the unit interval and form lookup table *H*
- 3. Draw uniform sample on  $z \in [0,1]$
- 4. Lookup *z* sample in *H* and find subinterval

$$z = 0.4 \Rightarrow \text{Rød}$$

$$z = 0.8 \Rightarrow Gul$$

$$z = 0.1 \Rightarrow Bla$$

$$z = 0.6 \Rightarrow \text{Rød}$$









#### Sampling from "simple" distributions

- If we know the analytical expression for  $p(\mathbf{z})$  use the transformation method (recall from the StatML course).
- Specialized algorithms for some standard distributions exist. Ex.:
  - Uniform distribution
  - Gaussian distribution, e.g. the Box-Muller method





#### True random number generators:

- Roll a dice, flip a coin, roulette wheel, ...
- Measure random fluctuations at atomic level (e.g. radioactive decay)
- Measure hard disk head activity, computer clock drift, ...

#### Pseudo random number generators:

- Based on a deterministic algorithm that generates a sequence of seemingly random numbers.
- E.g. Linear congruential generator:  $X_{n+1} = (aX_n + c) \mod m$
- Problems: The sequence is finite and deterministic when you know the starting point  $X_0$ , called the random seed.

- Try out: 
$$m = 5$$
,  $a = 4$ ,  $c = 2$ ,  $X_0 = 0$  
$$m = 2^{32}$$
,  $a = 1664525$ ,  $c = 1013904223$ ,  $X_0 = 100$ 





- Pseudo random number generators are available in most programming languages and as libraries.
- But quality may vary! We want long periods
- At least remember to choose seed "randomly"!
- E.g.: All Matlab random generator functions (rand, randn, ...) uses rng as generator.
  - Default seed is always 0!
  - Consequence: You always get the same sequence of random numbers!
  - Unless you choose seed at random, e.g. rng('shuffle')
- A standard approach is to use the wall time as seed:
   E.g. in matlab: myseed = prod(clock)



#### Sampling from "simple" distributions

- When we know the analytical expression for  $p(\mathbf{z})$  use the transformation method (recall from the StatML course).
- Specialized algorithms for some standard distributions exist:
  - Uniform distribution
  - Gaussian distribution, e.g. the Box-Muller method
- But what if our distribution is not standard and we cannot apply the transformation method?



#### Introducing proposal distributions

- Consider the distribution:  $p(\mathbf{z}) = \tilde{p}(\mathbf{z})/Z_p$
- It may be difficult to sample from the distribution  $p(\mathbf{z})$ .
- Often  $Z_p = \int \tilde{p}(\mathbf{z}) d\mathbf{z}$  is difficult to compute, but  $\tilde{p}(\mathbf{z})$  may be evaluated for any  $\mathbf{z}$ .
- Common strategy (used in rejection sampling, importance sampling, Metropolis-Hastings, etc.):
  - Use a much simpler proposal distribution q(z) from which we can sample.
  - Generate a proposal sample and evaluate an acceptance criterion for the sample.





- Choose constant k and proposal distribution so  $kq(z) \ge \tilde{p}(z)$  for all z.
- Sample  $z_0$  from q(z)



- Sample  $u_0$  from  $U(u | [0, kq(z_0)])$
- Reject  $z_0$ , if  $u_0 > \tilde{p}(z_0)$  otherwise keep  $z_0$

Assumption: The proposal distribution q(z) must have a support larger than or equal to p(z)

#### Rejection sampling Do we get the correct result?



kq(z)

- The probability of a sample is  $Pr(z) = q(z)_{kq(z_0)}$
- · For a given sample, the probability of acceptance is  $Pr(accept \mid z) = \tilde{p}(z)/kq(z)$



The probability of acceptance is

$$= \frac{1}{k} \int \tilde{p}(z) dz = Z_p / k$$

• The distribution of accepted samples is Pr(z | accept) =

$$\frac{\Pr(\text{accept }|z)\Pr(z)}{\Pr(\text{accept})} = \frac{\left\{\tilde{p}(z)/kq(z)\right\}q(z)}{Z_p/k} = \tilde{p}(z)/Z_p = p(z)$$

# Scalability of rejection sampling What happens when we consider a D-dim z?



• Example: 
$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid 0, \sigma_p^2 \mathbf{I})$$
  
 $q(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid 0, \sigma_q^2 \mathbf{I})$ 

- Where  $\sigma_q^2 \ge \sigma_p^2$  so  $kq(\mathbf{z}) \ge p(\mathbf{z})^{0.25}$
- The optimal choice:  $k = \left(\sigma_q/\sigma_p\right)^D \int_{-5}^{0} dz$

0.5

p(z)

 Hence the acceptance diminishes exponentially with dimensionality

dimensionality
$$Pr(\text{accept}) = \frac{1}{k} \int p(z) dz = 1/k = \left(\sigma_q / \sigma_p\right)^{-D}$$

 Conclusion: As D grows more samples will be rejected, so rejection sampling will take more time to get X samples.

# An example where rejection sampling is a poor fit



# Importance Sampling Approximate expectation E[f]

- Sample i.i.d. from  $q(\mathbf{z})$  $(\mathbf{z}^{(1)},...,\mathbf{z}^{(L)})$
- Use samples to approximate E[f] by



$$E[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$

$$\approx \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)})$$

Importance weights  $r_l = \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})}$  compensate for bias.

# Importance Sampling What if we only know $\tilde{p}(\mathbf{z})$ and $\tilde{q}(\mathbf{z})$ ?



• Assume  $p(\mathbf{z}) = 1/Z_p \, \tilde{p}(\mathbf{z})$  and  $q(\mathbf{z}) = 1/Z_q \, \tilde{q}(\mathbf{z})$  then

$$E[f] \approx \sum_{l=1}^{L} \omega_l f(\mathbf{z}^{(l)})$$

Renormalized importance weights

$$\omega_l = \frac{\tilde{r}_l}{\sum_{m} \tilde{r}_m} = \frac{\tilde{p}(\mathbf{z}^{(l)}) / \tilde{q}(\mathbf{z}^{(l)})}{\sum_{m} \tilde{p}(\mathbf{z}^{(m)}) / \tilde{q}(\mathbf{z}^{(m)})}$$

where 
$$\tilde{r}_l = \tilde{p}(\mathbf{z}^{(l)}) / \tilde{q}(\mathbf{z}^{(l)})$$



#### **Observations on Importance Sampling**

- Not really a sampling method, but allow for approximating expectations with a strategy for sampling.
- Potential problems: For strongly varying  $p(\mathbf{z})f(\mathbf{z})$  there is a risk of a few samples with significant weights.



#### Sampling-Importance-Resampling (SIR) A two stage approach



 Sampling: Sample i.i.d. samples  $\mathcal{M} = (\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(M)})$ from  $q(\mathbf{z})$ 



- Importance: Compute importance weights
- Resampling: Sample with replacement from  $\mathcal{M}$ based on weights  $\omega^{(l)}$  $(\mathbf{z}^{(1)},\dots,\mathbf{z}^{(N)})$ Usually  $M \ge N$



Relevant for sequential Monte Carlo methods (more on this in an upcoming lecture)



# Examples of sampling for Bayesian networks



#### Sampling a Bayesian network

Ancestral sampling with no evidence variables

$$p(\mathbf{z}) = \prod_{i=1}^{M} p(\mathbf{z}_i | \mathbf{pa}_i)$$

Sampling with evidence variables



Start with all variables without parents and do



| S | R | P(WIS,R) |
|---|---|----------|
| T | T | .99      |
| T | F | .90      |
| F | T | .90      |
| F | F | .01      |



























#### Sampling a Bayesian network

Ancestral sampling with no evidence / observations variables

$$p(\mathbf{z}) = \prod_{i=1}^{M} p(\mathbf{z}_i \mid pa_i)$$

- Sampling with evidence / observations variables:
  - Rejection sampling (reject samples that do not fit evidence)

#### **Rejection Sampling Example:**





Sample all variables using ancestral sampling and reject those samples that do not fit with observations

This is a very inefficient approach!

# Sampling a Bayesian network



Ancestral sampling with no evidence / observations variables

$$p(\mathbf{z}) = \prod_{i=1}^{M} p(\mathbf{z}_i | \mathbf{pa}_i)$$

- Sampling with evidence / observations variables:
  - Rejection sampling (reject samples that do not fit evidence)
  - Likelihood weighted sampling (importance sampling for BN):
    - Proposal distribution
    - Proposal distribution  $q(\mathbf{z}) = \prod_{\mathbf{z}_i \notin e} p(\mathbf{z}_i \mid \mathrm{pa}_i)$  Importance weights  $\prod_{\mathbf{z}_i \notin e} p(\mathbf{z}_i \mid \mathrm{pa}_i) \prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)$   $r_l = \frac{p(\mathbf{z})}{q(\mathbf{z})} = \frac{\sum_{\mathbf{z}_i \notin e} p(\mathbf{z}_i \mid \mathrm{pa}_i)}{\prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)} = \prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)$
    - Approximate expectation  $E[f] \approx \sum_{\mathbf{z}_i \notin e}^{L} r_l f(\mathbf{z}_l)$ 37

















 $r_l = 1.0 \times 0.1$ 









 $r_l = 1.0 \times 0.1$ 





### Sampling a Bayesian network



Ancestral sampling with no evidence / observations variables

$$p(\mathbf{z}) = \prod_{i=1}^{M} p(\mathbf{z}_i | \mathbf{pa}_i)$$

- Sampling with evidence / observations variables:
  - Rejection sampling (reject samples that do not fit evidence)
  - Likelihood weighted sampling (importance sampling for BN):

    - Proposal distribution  $q(\mathbf{z}) = \prod_{\mathbf{z}_i \notin e} p(\mathbf{z}_i \mid \mathrm{pa}_i)$  Importance weights  $r_l = \frac{p(\mathbf{z})}{q(\mathbf{z})} = \frac{\prod_{\mathbf{z}_i \notin e} p(\mathbf{z}_i \mid \mathrm{pa}_i) \prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)}{\prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)} = \prod_{\mathbf{z}_i \in e} p(\mathbf{z}_i \mid \mathrm{pa}_i)$
    - Approximate expectation  $E[f] \approx \sum_{\mathbf{z}_i \notin e}^{L} r_l f(\mathbf{z}_l)$ 45





- Basic sampling methods
  - Rejection sampling
  - Importance sampling
  - Sampling-Importance-Resampling (SIR)
- Sampling Bayesian networks
- Up next: Markov Chain Monte Carlo (MCMC) methods





- Basic sampling: CB Sec. 11. 11.1.5
- Ancestral sampling: CB Sec. 8.1.2
- Likelihood weighted sampling: CB Sec. 11.1.4
- MCMC methods: CB Sec. 11.2 11.3
- Suggestions for further reading on MCMC:
  - Pierre Brémaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, 1999.
  - Gerhard Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods – A Mathematical Introduction.
     Springer, 2<sup>nd</sup> edition, 2003.