

BIOLOGICAL MODELING OF NEURAL NETWORKS

Hopfield Model

STORAGE OF SEQUENCES OF PATTERNS IN ASYMETRIC HOPFIELD NETWORKS WITH DELAYED SYNAPSES

Miryam Chaabouni Joseph Lemaitre

Figure 1: g(r) for 10K steps

Mean Retrival Error as a Funtion of the Flip Ratio {/*0.5 N=200, P=5, 800 network realisation per flip ratio}

1 Exercise 1

1.1 Exercise 1.1

1.2 Exercise 1.2

N	100	250	500
P_{max}	17	39	
α_{max}	0.17	0.156	_
α_{th}		_	_

2 Exercise 2

2.1 Exercise 2.2

We used the heaviside filter function. We had a bit of freedom to define sequencial behaviour. We decreased lambda to get the minimum value for which all pattern are visited. We found:

$$\lambda_{min} \approx 0.9$$

For values below this one, the network get stuck in a particular pattern. Due to the random generation of some variables, the value of λ_{min} is approximative.

For the calculus of λ_{max} , we saw that for high lambda the network jump over some frame, not getting an overlap of one. Therefore we defined the sequencial behaviour as all state are visited with a overlap of 1, one after each other. We found:

$$\lambda_{max} = 3.6$$

2.2 Exercice 2.3