Kerssenfischer-Helmus: Outages in sovereign bond markets

Discussion by Gabor Pinter (BIS)

EFA 2024

24 Aug 2024

Introduction

- Nice paper with two main contributions:
 - first paper to use outages (as natural experiments) to improve our understanding of how these markets function.
 - use micro-data to pinpoint the mechanism

Introduction

- Nice paper with two main contributions:
 - first paper to use outages (as natural experiments) to improve our understanding of how these markets function.
 - use micro-data to pinpoint the mechanism
- My comments / first reactions:
 - exciting paper with novel source of variation
 - after adding more "economics", great publication potential!

What the paper does

- combine granular, non-anonymous data on
 - cash bond transactions (MIFID II) and
 - bond future transactions (EMIR)

What the paper does

- combine granular, non-anonymous data on
 - cash bond transactions (MIFID II) and
 - bond future transactions (EMIR)
- Research Design

What do we learn?

- Effects on Trading Activity: outages cause a significant reduction in cash market activity / liquidity
- Mispricing: mispricing in the cash market rises (for C2C trades)
- Cash vs Futures Markets: outages in futures affect the cash market, but not vice versa ("One-way street")

1: Are the outages alike?

What explains the catch-up / lack thereof?

1: Are the outages alike?

What explains the catch-up / lack thereof?

1: Are the outages alike?

Consistent catch-up in the cash market

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?
- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market)

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?
- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market)
 - Price Discovery (e.g. e.g. dealers/clients use futures as signal Brandt-et al 2007 etc)

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?
- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market)
 - Price Discovery (e.g. e.g. dealers/clients use futures as signal Brandt-et al 2007 etc)
 - **3** Arbitrage Opportunities (break-down of basis trades)

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?
- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market)
 - Price Discovery (e.g. e.g. dealers/clients use futures as signal Brandt-et al 2007 etc)
 - **3** Arbitrage Opportunities (break-down of basis trades)
 - Market Sentiment and Confidence (e.g. risk aversions, sell-offs)

- macro-level effects of futures market outages on the cash bond market
 - (1) trading volume drops, (2) market liquidity (measured by executable quotes) drops, (3) pricing errors jump
- but why do these things happen?
- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market)
 - Price Discovery (e.g. e.g. dealers/clients use futures as signal Brandt-et al 2007 etc)
 - Arbitrage Opportunities (break-down of basis trades)
 - Market Sentiment and Confidence (e.g. risk aversions, sell-offs)
 - **Solution** Liquidity Constraints (e.g. futures market often provides additional liquidity to the cash bond market)

- Is the main driver related to:
 - Hedging Disruption (e.g. clients/dealers using futures to hedge their positions in the cash bond market.)
 - Price Discovery (e.g. dealers/clients use futures as signal Brandt et al, 2007 etc)
 - 3 Arbitrage Opportunities (break-down of basis trades)
 - Market Sentiment and Confidence (e.g. risk aversions, sell-offs, panic ..)
 - Liquidity Constraints (e.g. futures market often provides additional liquidity to the cash bond market)

"Dealers use futures mostly as a hedging instrument for inventory risk while clients use it as a pricing signal."

3: Nature of the Outage Shock

- ullet What is really an outage shock? \longrightarrow fundamental vs liquidity
 - effects on term structure vs on noise
 - effects on the size-penalty vs size-discount (Pinter-Wang-Zou (2024))

3: Nature of the Outage Shock

- What is really an outage shock? → fundamental vs liquidity
 - · effects on term structure vs on noise
 - effects on the size-penalty vs size-discount (Pinter-Wang-Zou (2024))
- Outage as a shock to the network?
 - how does the network adjust? What happens to trading relationships?
 - Di Maggio et al (2017), Hendershott-Li-Livdan-Schürhoff (2020), Kondor-Pinter (2022), Jurkatis el al (2023)

3: Nature of the Outage Shock

- What is really an outage shock? → fundamental vs liquidity
 - effects on term structure vs on noise
 - effects on the size-penalty vs size-discount (Pinter-Wang-Zou (2024))
- Outage as a shock to the network?
 - how does the network adjust? What happens to trading relationships?
 - Di Maggio et al (2017), Hendershott-Li-Livdan-Schürhoff (2020), Kondor-Pinter (2022), Jurkatis el al (2023)
- **Hypothesis**: Clients with weaker relationships were the ones who stopped trading with dealers after the outage
 - ullet they started trading with each other \longrightarrow large noise on C2C
 - ullet strong client-dealer relationships persevered \longrightarrow lower noise on D2C

Goldberg (2020), Goldberg-Nozawa (2021)

 "We find that dealers reduce their market presence the most during Eurex outages but their remaining trades remain rather fairly priced."

Goldberg (2020), Goldberg-Nozawa (2021)

- "We find that dealers reduce their market presence the most during Eurex outages but their remaining trades remain rather fairly priced."
- why? E.g. is because reduction in supply or demand?

Goldberg (2020), Goldberg-Nozawa (2021)

- "We find that dealers reduce their market presence the most during Eurex outages but their remaining trades remain rather fairly priced."
- why? E.g. is because reduction in supply or demand?

Goldberg (2020), Goldberg-Nozawa (2021)

- "We find that dealers reduce their market presence the most during Eurex outages but their remaining trades remain rather fairly priced."
- why? E.g. is because reduction in supply or demand?

D2D vs D2C vs IDB

 "We find that dealers <u>reduce their market presence</u> the most during Eurex outages but their remaining trades remain rather <u>fairly priced</u>."
 → driven by D2D trades

	Baseline			Controlling for Transaction Size			
	(1) Venue	(2) Segment	(3) Eurex	(4) Venue	(5) Segment	(6) Eurex	
Outage × OTC bilateral	1.97***			1.37***			
	[0.40]			[0.17]			
Outage \times OTC via IDB	0.14			0.27			
	[0.28]			[0.27]			
Outage \times OTC via SI	0.18			0.30			
	[0.25]			[0.22]			
Outage \times electronic platforms	0.91***			0.50*			
	[0.17]			[0.24]			
Outage \times regular exchange	4.46***			2.06			
	[0.97]			[1.37]			
Outage \times C2C		2.39***			1.20***		
		[0.09]			[0.13]		
Outage \times D2C		0.65***			0.40**		
		[0.11]			[0.13]		
$Outage \times D2D$		0.32			0.57*		
		[0.21]			[0.24]		

D2D vs D2C vs IDB

 "We find that dealers <u>reduce their market presence</u> the most during Eurex outages but their remaining trades remain rather <u>fairly priced</u>."

→ driven by D2D trades [do we care?!]

	Baseline			Controlling for Transaction Size			
	(1) Venue	(2) Segment	(3) Eurex	(4) Venue	(5) Segment	(6) Eurex	
Outage × OTC bilateral	1.97***			1.37***			
	[0.40]			[0.17]			
$Outage \times OTC via IDB$	0.14			0.27			
	[0.28]			[0.27]			
$Outage \times OTC via SI$	0.18			0.30			
	[0.25]			[0.22]			
Outage \times electronic platforms	0.91***			0.50*			
	[0.17]			[0.24]			
Outage \times regular exchange	4.46***			2.06			
	[0.97]			[1.37]			
Outage \times C2C		2.39***			1.20***		
_		[0.09]			[0.13]		
Outage \times D2C		0.65***			0.40**		
		[0.11]			[0.13]		
$Outage \times D2D$		0.32			0.57^{*}		
		[0.21]			[0.24]		
C I D' .		100				00/0004	

5: Explore Client and Dealer Heterogeneity Further

- which dealers drive the results?
 - small vs large
 - central vs periphery
 - more vs less balance sheet constrained

5: Explore Client and Dealer Heterogeneity Further

- which dealers drive the results?
 - small vs large
 - central vs periphery
 - more vs less balance sheet constrained
 - or dealers who happened to have a large inventory imbalance before the outage (who were otherwise the same in all 3 dimensions above to the rest of the dealers) ?!

5: Explore Client and Dealer Heterogeneity Further

- which dealers drive the results?
 - small vs large
 - central vs periphery
 - more vs less balance sheet constrained
 - or dealers who happened to have a large inventory imbalance before the outage (who were otherwise the same in all 3 dimensions above to the rest of the dealers) ?!
- which clients drive the results?
 - active vs less active (O'Hara-Zhou (2021))
 - more informed vs less informed (Ranaldo-Somogyi (2021))
 - etc.

6: Which clients/dealers drive the recovery?

Conclusion

• Great paper with loads of potential!