

Categorical Data Analysis Course overview

Michael Friendly
Psych 6136

http://friendly.github.io/psy6136

Course goals

This course is designed as a broad, applied introduction to the statistical analysis of categorical data, with an emphasis on:

Emphasis: visualization methods

- exploratory graphics: see patterns, trends, anomalies in your data
- model diagnostic methods: assess violations of assumptions
- model summary methods: provide an interpretable summary of your data

Emphasis: theory \Rightarrow practice

- Understand how to translate research questions into statistical hypotheses and models
- Understand the difference between simple, non-parametric approaches (e.g., χ^2 test for indpendence) and model-based methods (logistic regression, GLM)
- Framework for thinking about categorical data analysis in visual terms

Course outline

1. Exploratory and hypothesis testing methods

- Week 1: Overview; Introduction to R
- Week 2: One-way tables and goodness-of-fit test
- Week 3: Two-way tables: independence and association
- Week 4: Two-way tables: ordinal data and dependent samples
- Week 5: Three-way tables: different types of independence
- Week 6: Correspondence analysis

2. Model-based methods

- Week 7: Logistic regression I
- Week 8: Logistic regression II
- Week 9: Multinomial logistic regression models
- Week 10: Log-linear models
- Week 11: Loglinear models: Advanced topics
- Week 12: Generalized Linear Models: Poisson regression
- Week 13: Course summary & additional topics

Course schedule

The <u>schedule</u> page provides links to slides, tutorials, readings & R scripts

Week	Topic	Readings	@	R files	knite
1	Overview [slides] [4up] [Working with R Studio] [4up]	DDAR: <u>Ch1</u> , <u>Ch2</u> ; Agresti: Ch1	R-into.R	[knika]	
2	Discrete distributions [slides] [4up]	DDAR: Ch3	R-data.R binomial.		
3	Two-Way Tables: Independence & Association [slides] [4up]	DDAR: <u>Ch4</u> ; Agresti: Ch2		d.R [knik] eve.R [knik]	
4	Two-Way Tables: Ordinal Data and Dependent Samples [Tutorial] on two-way tables	DDAR: <u>Ch4;</u> Agresti: Ch2		ree.R [^{kni}] pineplot.R [knite 1
5	Loglinear Models and Mosaic Displays [slides] [4up] [Tutorial] on loglin models; [Mosaic display animation]	DDAR: <u>Ch5;</u> Agresti: 2.7, Ch. 7		glm.R [^{kni}] oglin.R [^{kni}	1
6	Correspondence Analysis [slides] [4up] [Tutorial] on CA;	DDAR: <u>Ch6</u>	mental-ca mca-prese	<u>ı.R</u> [^{kni} ♠] 2x3.R [^{kni} ♠]	
7	Logistic Regression I [slides] [4up] [Logistic regression tutorial]	DDAR: <u>7.1-7.3;</u> Agresti: 3.1-3.2; Ch 4	cowles-lo	-logistic.R g <u>istic.R</u> [^{kni} ogistic.R [^{kr}	R]
8	Logistic Regression II [slides] [4up]	DDAR: <u>7.3-7.4</u> ; Agresti: Ch 4-5	Arrests-e	fect.R [knik] effects.R [knik diag.R [knik]	R]

Textbooks

Main texts

- Friendly & Meyer (2016). Discrete Data Analysis with R: Visualizing & Modeling Techniques for Categorical & Count Data
 - 30% discount on <u>Routledge web site</u> (code: ADC22)
 - Draft chapters linked in <u>Schedule</u>
 - DDAR web site: https://ddar.datavis.ca
- Agresti (2007). An Introduction to Categorical Data Analysis, 3rd E. Wiley & Sons.
 - eBook available: https://bit.ly/3Wzqv0n
 - Or, via <u>York Bookstore</u>

Textbooks

Supplementary readings

- Agresti (2013). Categorical Data Analysis, 3rd ed. [More mathematical, but the current Bible of CDA]
 - PDF available: https://bityl.co/FG9c
- Fox (2016). Applied Regression Analysis and Generalized Linear Models, 3rd ed.
 Particularly: Part IV on Generalized Linear Models
- Fox & Weisberg (2018). An R Companion to Applied Regression. Also, web site for the book.

Expectations & grading

- I expect you will read chapters in DDAR & Agresti Intro each week
 - See <u>Topic Schedule</u> on course web site
 - R exercises & tutorials: Please work on these
 - R <u>Assignments</u>: Ungraded, but please submit them when assigned
 - Class discussion: Help make classes participatory

• Evaluation:

- (2 x 40%) Two take-home projects: Analysis & research report,
 based on assignment problems or your own data
- **(20%)**
 - Assignment portfolio: best work, enhanced
 - Research report on journal article(s) of theory / application of CDA
 - In-class presentation (~15 min) on application of general interest

The R you need

- R, version >=3.6 [R 4.2 is current]
 - Download from https://cran.r-project.org/
- RStudio IDE, highly recommended
 - https://www.rstudio.com/products/rstudio/
- R packages:
 - vcd
 - vcdExtra
 - car
 - effects
 - ggplot2
 - **-** ...

R script to install packages:

https://friendly.github.io/6136/R/instal l-vcd-pkgs.R

Categorical data analysis: History

- Categorical data analysis is a relatively recent arrival
 - 1888 Galton introduces the concept of correlation
 - 1908 Student's t-distribution for the mean of small samples
 - 1931 L. L. Thrustone: Multiple factor analysis
 - 1935 R. A. Fisher's Design of Experiments ANOVA
 - . . . (time passes)
 - 1972 Nelder & Wedderburn develop the central ideas of generalized linear models (logistic & poison regression)
 - 1973 J-P. Benzecri: Correspondence analysis (analysis des donnés)
 - 1974 Bishop , Fienberg, Holland introduce the loglinear model for discrete data, ANOVA for log(Freq)
 - 1984 Leo Goodman enhanced loglinear models for complex data: RC models, mobility tables, panel data, ...

What is categorical data?

A **categorical variable** is one for which the possible measured or assigned values consist of a discrete set of categories, which may be *ordered* or *unordered*. Some typical examples are:

- Gender, with categories {"male", "female", "trans"}
- Marital status: { "Never married", "Married", "Separated", "Divorced", "Widowed" }
- Party preference: {"NDP", "Liberal", "Conservative", "Green"}
- Treatment improvement: {"none", "some", "marked"}
- Age: {"0-9", "10-19", "20-29", "30-39", ... }.
- Number of children: $0, 1, 2, 3, \ldots$

Questions:

- Which of these are ordered (ordinal)?
- Which could be treated as numeric? How?
- Which have missing categories, sometimes ignored, or treated as "Other"

Categorical data: Structures

Categorical (frequency) data appears in various forms

- Tables: often the result of table() or xtabs()
 - 1-way
 - 2-way 2 × 2, r × c
 - 3-way

Gender compared to handedness

	Handed				
	Left	Right			
Female	7	46	53		margins
Male	5	63	68		
	12	109	121	/	

- Matrices: matrix(), with row & col names
- Arrays: array(), with dimnames()
- Data frames
 - Case form (individual observations)
 - Frequency form

		Hair	Eye	Freq
	1	Black	Brown	68
	2	Brown	Brown	119
	3	Red	Brown	26
	4	Blond	Brown	7
	5	Black	Blue	20
	6	Brown	Blue	84
	7	Red	Blue	17
)	8	Blond	Blue	94

1-way tables

Unordered factors

	Black	Brown	Red	Blond	
n	108	286	71	127	
%	0.18	0.48	0.12	0.21	

Hair color of 592 students

	ВQ	Cons	Green	Liberal	NDP
n	104	392	126	404	174
0/0	0.087	0.33	0.1	0.34	0.14

Voting intentions in Harris-Decima poll, 8/21/08

Questions:

- Are all hair colors equally likely?
- Aside from Brown hair, are others equally likely?
- Is there a diff in voting intentions for Liberal vs. Conservative

1-way tables

Even here, simple graphs are more informative than tables

But these don't really answer the questions. Why?

1-way tables

- Ordered, quantitative factors
 - Number of sons in Saxony families with 12 children

```
> data(Saxony, package="vcd")
> Saxony
nMales
    0    1    2    3    4    5    6    7    8    9   10   11   12
    3    24    104    286    670   1033   1343   1112   829   478   181   45    7
```

Questions:

- What is the form of this distribution?
- Is it useful to think of this as a binomial distribution?
- If so, is Pr(male) = 0.5 reasonable to describe the data?
- How could families have > 10 children?

1-way tables: graphs

For a particular distribution in mind:

- Plot the data together with the fitted frequencies
- Better still: hanging rootogram: freq on sqrt scale; hang bars from fitted values

2-way tables: 2 x 2 x ...

Two-way

	Gender	Male	Female
Admit			
Admitted		1198	557
Rejected		1493	1278

Admission to graduate programs at UC Berkeley

Three-way, stratified by another factor

... by Department

	1	Dept	Α	В	C	D	E	F
Admit	Gender							
Admitted	Male		51 2	353	120	138	53	22
	Female		89	17	202	131	94	24
Rejected	Male		313	207	205	279	138	351
	Female		19	8	391	244	299	317

Questions:

- Is admission associated with gender?
- Does admission rate vary with department?

Larger tables: $r \times c \times ...$

```
> margin.table(HairEyeColor, 1:2)
     Eye
Hair
      Brown Blue Hazel Green
 Black
        68
            20
                 15
 Brown 119 84 54 29
 Red
     26 17 14
                      14
 Blond
       7 94
                 10
                      16
```

2-way
Actually, this is a 2-way
margin of a 3-way table

> ftab	le (Eye	~ Se	ex + Ha	air, d	data=Ha	airEyeC	color)
		Eye	Brown	Blue	Hazel	Green	
Sex	Hair						
Male	Black		32	11	10	3	
	Brown		53	50	25	15	
	Red		10	10	7	7	
	Blond		3	30	5	8	
Female	Black		36	9	5	2	
	Brown		66	34	29	14	
	Red		16	7	7	7	
	Blond		4	64	5	8	

3-way (& higher) can be "flattened" for a more convenient display

formula notation: row vars ~ col vars

Table form

- Table form is convenient for display, but information is implicit
 - a table has dimensions, dim() and dimnames()
 - the "observations" are the cells in the tables
 - the "variables" are the dimensions of the table (factors)
 - the cell value is the count or frequency

```
> dim(haireye)
[1] 4 4
> dimnames(haireye)
$Hair
[1] "Black" "Brown" "Red" "Blond"

$Eye
[1] "Brown" "Blue" "Hazel" "Green"
```

```
> names(dimnames(haireye)) # factor names
[1] "Hair" "Eye"
> prod(dim(haireye)) # of cells
[1] 16
> sum(haireye) # total count
[1] 592
```

Datasets: frequency form

Another common format is a dataset in frequency form

```
> as.data.frame(haireye)
    Hair
           Eye Freq
  Black Brown
                 68
 Brown Brown
                119
                 26
    Red Brown
 Blond Brown
                 20
 Black Blue
 Brown Blue
                 84
    Red Blue
                17
 Blond Blue
                94
  Black Hazel
                 15
10 Brown Hazel
                 54
    Red Hazel
                 14
12 Blond Hazel
                 10
13 Black Green
                 29
14 Brown Green
    Red Green
                 14
16 Blond Green
                 16
```

- Create: as.data.frame(table)
- One row for each cell
- Columns: factors + Freq or count

Questions:

- What are the dimensions of the table?
- What is the total frequency?

Datasets: case form

Raw data often arrives in case form

```
> expand.dft(as.data.frame(haireye)) |>
   as tibble() |>
   mutate(age = round( runif( n =
      sum(haireye), min=17, max=29)))
# A tibble: 592 x 3
  Hair Eye age
  <chr> <chr> <dbl>
1 Black Brown 19
2 Black Brown 19
3 Black Brown 27
4 Black Brown 23
              19
5 Black Brown
              29
 6 Black Brown
                 25
7 Black Brown
              29
8 Black Brown
 9 Black Brown
              17
10 Black Brown 23
# ... with 582 more rows
```

- One obs. per case
- # rows = sum of counts
- vcdExtra::expand.dft()
 expands to frequency form
- case form is required if there are continuous variables
- case form is tidy
- not all CDA functions play well with tibbles

Converting data forms

R functions for CDA sometimes accept only tables (matrices), or data frames, in either case for frequency form.

You may have to convert your data from one form to another

From this \downarrow	To this ↓	To this ↓	To this ↓
	Case form	Freq form	Table form
Case form		Z <- xtabs(~ A+ B) as.data.frame(Z)	table(A, B)
Freq form	expand.dft(X)		xtabs(Freq ~ A + B)
Table form	expand.dft(X)	as.data.frame(X)	

Categorical data analysis: Methods

Methods for categorical data analysis fall into two main categories

Non-parametric, randomization-based methods

- Make minimal assumptions
- Useful for hypothesis-testing:
 - Are men more likely to be admitted than women?
 - Are hair color and eye color associated?
 - Does the binomial distribution fit these data?
- Mostly for two-way tables (possibly stratified)
- R:
 - Pearson Chi-square: chisq.test()
 - Fisher's exact test (for small expected frequencies): fisher.test()
 - Mantel-Haenszel tests (ordered categories: test for *linear* association):
 CMHtest()
- SAS: PROC FREQ can do all the above
- SPSS: Crosstabs

Categorical data analysis: Methods

Model-based methods

- Must assume random sample (possibly stratified)
- Useful for estimation purposes: Size of effects (std. errors, confidence intervals)
- More suitable for multi-way tables
- Greater flexibility; fitting specialized models
 - Symmetry, quasi-symmetry, structured associations for square tables
 - Models for ordinal variables
- R: glm() family, Packages: car, gnm, vcd, ...
 - estimate standard errors, covariances for model parameters
 - confidence intervals for parameters, predicted Pr{response}
- SAS: PROC LOGISTIC, CATMOD, GENMOD, INSIGHT (Fit YX), ...
- SPSS: Hiloglinear, Loglinear, Generalized linear models

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - Admit ∼ Gender + Dept
 - Party ∼ Age + Education + Urban
- ⇒ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- ⇒ Loglinear models

This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

Models: Response vs. Association

Response models

- Sometimes, one variable is a natural discrete response.
- Q: How does the response relate to explanatory variables?
 - Admit ∼ Gender + Dept
 - Party ∼ Age + Education + Urban
- ⇒ Logit models, logististic regression, generalized linear models

Association models

- Sometimes, the main interest is just association among variables
- Q: Which variables are associated, and how?
 - Berkeley data: [Admit Gender]? [Admit Dept]? [Gender Dept]
 - Hair-eye data: [Hair Eye]? [Hair Sex]? [Eye, Sex]
- ⇒ Loglinear models

This is similar to the distinction between regression/ANOVA vs. correlation and factor analysis

Response models

Analysis methods for categorical outcome (response) variables have close parallels with those for quantitative outcomes

	Quantitative outcome	Categorical outcome
Continuous predictor	Regression: lm(y ~ x1 + x2)	Logistic regression: glm() Loglinear model: loglm() Ordered: prop. odds model: polr()
Categorical predictor	ANOVA: Im(y ~ A + B) Ordered: polynomial contrasts	χ² tests: chisq.test() Ordered: CMH tests, CMHtest() Loglinear model: loglm()
Both	ANCOVA: $Im(y \sim A + B + X)$	Logistic regression: glm() Loglinear model: loglm()

All use similar model formulas:

Response models

For quantitative outcomes, Im() for everything, formula notation

For categorical outcomes, different modeling functions for different outcome types

```
glm(binary ~ X + A, family="binomial")  # logistic regression
glm(Freq ~ X + A, family="poisson")  # poisson regression
MASS::polr(multicat ~ X + A)  # ordinal regression
nnet::multinom(multicat ~ X + A)  # multinomial regression
loglin(table, margins)  # loglinear model
MASS::loglm(Freq ~ .)  # loglinear model, . = A+B+C+ ...
MASS::loglm(Freq ~ .^2)  # + all two-way associations
```

Data display: Tables vs. Graphs

If I can't picture it, I can't understand it.

Albert Einstein

Getting information from a table is like extracting sunlight from a cucumber. Farquhar & Farquhar, 1891

Tables vs. Graphs

- Tables are best suited for look-up and calculation
 - read off exact numbers
 - show additional calculations (e.g., % change)
- Graphs are better for:
 - showing patterns, trends, anomalies,
 - making comparisons
 - seeing the unexpected!
- Visual presentation as communication:
 - what do you want to say or show?
 - design graphs and tables to 'speak to the eyes'

Graphical methods: Communication goals

Different graphs for different audiences

- Presentation: A carefully crafted graph to appeal to a wide audience
- Exploration, analysis: Possibly many related graphs, different perspectives, narrow audience (often: just you!)

Graphical methods: Presentation goals

Different presentation goals appeal to different design principles

Think: What do I want to communicate? For what purpose?

Graphical methods: Quantitative data

Quantitative data (amounts) are naturally displayed in terms of magnitude ~ position along a scale

Scatterplot of Income vs. Experience

Boxplot of Income by Gender

Graphical methods: Categorical data

Frequency data (counts) are more naturally displayed in terms of **count** \sim **area** (Friendly, 1995)

Fourfold display for 2×2 table

Mosaic plot for 3-way table

Categorical data: Parallel coordinates plot

Parallel coordinates plots show multiple variables, each along its' own || axis The categorical version uses the width of the band to show frequency

Effective data display

Make the data stand out

- Fill the data region (axes, ranges)
- Use visually distinct symbols (shape, color) for different groups
- Avoid chart junk, heavy grid lines that detract from the data

Facilitate comparison

- Emphasize the important comparisons visually
- Side-by-side easier than in separate panels
- "data" vs. a "standard" easier against a horizontal line
- Show uncertainty where possible

Effect ordering

 For variables and unordered factors, arrange them according to the effects to be seen

Facilitate comparison

Comparisons— Make visual comparisons easy

- Visual grouping— connect with lines, make key comparisons contiguous
- Baselines— compare data to model against a line, preferably horizontal
- Frequencies often better plotted on a square-root scale

Standard histogram with fit

Suspended rootogram

Make comparisons direct

- Use points not bars (and don't dynamite them with ineffective error bars!)
- Connect similar circumstances to be compared by lines
- Same panel comparisons easier than different panels

Is there evidence of an interaction here?

Direct labels vs. legends

Direct labels for points, lines and regions are usually easier and faster than legends

- Give the names of the four groups shown in the line graph at left in top-to-bottom order. (Answer: b, d, a, c.)
- Now do so for the graphs using color or shape legends
- You need to look back and forth between the graph and legend

Source: Franconeri etal. DOI:10.1177/15291006211051956

Effect ordering

- Information presentation is always ordered
 - in time or sequence (a talk or written paper)
 - in space (table or graph)
 - Constraints of time & space are dominant— can conceal or reveal the important message
- Effect ordering for data display
 - Sort the data by the effects to be seen
 - Order the data to facilitate the task at hand
 - lookup find a value
 - comparison which is greater?
 - detection find patterns, trends, anomalies

Effect Ordering: Correlations

 Effect ordering (Friendly and Kwan, 2003)— In tables and graphs, sort unordered factors according to the effects you want to see/show.

Friendly & Kwan (2003). <u>Corrgrams: Exploratory displays for correlation matrices</u>. *American Statistician*, **54**(4): 316-324.

Tabular displays: Main effect ordering

- Tables are often presented with rows/cols ordered alphabetically
 - good for lookup
 - bad for seeing patterns, trends, anomalies

Table 1: Average Barley Yields (rounded), Means by Site and Variety

Variety	Crookston	Duluth	Grand Rapids	Morris	University Farm	Waseca	Mean
Glabron	32	28	22	32	40	46	33.3
Manchuria	36	26	28	31	27	41	31.5
No. 457	40	28	26	36	35	50	35.8
No. 462	40	25	22	39	31	55	35.4
No. 475	38	30	17	33	27	44	31.8
Peatland	33	32	31	37	30	42	34.2
Svansota	31	24	23	30	31	43	30.4
Trebi	44	32	25	45	33	57	39.4
Velvet	37	24	28	32	33	44	33.1
Wisconsin No. 38	43	30	28	38	39	58	39.4
Mean	37.4	28.0	24.9	35.4	32.7	48.1	34.4

Tabular displays: Main effect ordering

- Better: sort rows/cols by means/medians
- Shade cells according to residual from additive model

Table 2: Average Barley Yields, sorted by Mean, shaded by residual from the model Yield = Variety + Site

	Site							
Variety	Grand Rapids	Duluth	University Farm	Morris	Crookston	Waseca	Mean	
Svansota	23	24	31	30	31	43	30.4	
Manchuria	28	26	27	31	36	41	31.5	
No. 475	17	30	27	33	38	44	31.8	
Velvet	28	24	33	32	37	44	33.1	
Glabron	22	28	40	32	32	46	33.3	
Peatland	31	32	30	37	33	42	34.2	
No. 462	22	25	31	39	40	55	35.4	
No. 457	26	28	35	36	40	50	35.8	
Wisconsin No. 38	28	30	39	38	43	58	39.4	
Trebi	25	32	33	45	44	57	39.4	
Mean	24.9	28.0	32.7	35.4	37.4	48.1	34.4	

Effect ordering: Frequency tables

Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Alpha ordered

	Hair color								
Eye color	Blond Black Brown Red								
Blue	94	20	17	84					
Brown	7	68	26	119					
Green	10	15	14	54					
Hazel	16	5	14	29					

Model:	Independence: [Hair][Eye] χ^2 (9)= 138.29								
Color coding:	<-4	<-4 <-2 <-1 0 >1 >2 >4							
<i>n</i> in each cell:	<i>n</i> <	n < expected $n > $ expected							

There is an association, but it is hard to see the general pattern

Effect ordering: Frequency tables

Effect ordering and high-lighting for tables

Table: Hair color - Eye color data: Effect ordered

	Hair color									
Eye color	Black Brown Red Blor									
Brown	68	119	26	7						
Hazel	15	54	14	10						
Green	5	29	14	16						
Blue	20	84	17	94						

Model:	Independence: [Hair][Eye] χ^2 (9)= 138.29								
Color coding:	<-4	<-4 <-2 <-1 0 >1 >2 >4							
n in each cell:	<i>n</i> <	n < expected $n > $ expected							

The pattern is clearer when the eye colors are permuted: light hair goes with light eyes & vice-versa

Sometimes, don't need numbers at all

COVID transmission risk ~ Occupancy * Ventilation * Activity * Mask? * Contact.time

A complex 5-way table, whose message is clearly shown w/o numbers

A semi-graphic table shows the patterns in the data

There are 1+ unusual cells here. Can you see them?

From: N.R. Jones et-al (2020). Two metres or one: what is the evidence for physical distancing in covid-19? *BMJ* 2020;370:m3223, *doi: https://doi.org/10.1136/bmj.m3223*

Visual table ideas: Heatmap shading

Heatmap shading: Shade the background of each cell according to some criterion

The trends in the US and Canada are made obvious

NB: Table rows are sorted by Jan. value, lending coherence

Background shading ~ value:
US & Canada are made to stand out.

Tech note: use light text on a darker background

Unemployment rate in selected countries

January-August 2020, sorted by the unemployment rate in January.

country	Jan ^	Feb	Mar	Apr	May	Jun	Jul	Aug
Japan	2.4%	2.4%	2.5%	2.6%	2.9%	2.8%	2.9%	3.0%
Netherlands	3.0%	2.9%	2.9%	3.4%	3.6%	4.3%	4.5%	4.6%
Germany	3.4%	3.6%	3.8%	4.0%	4.2%	4.3%	4.4%	4.4%
Mexico	3.6%	3.6%	3.2%	4.8%	4.3%	5.4%	5.2%	5.0%
US	3.6%	3.5%	4.4%	14.7%	13.3%	11.1%	10.2%	8.4%
South Korea	4.0%	3.3%	3.8%	3.8%	4.5%	4.3%	4.2%	3.2%
Denmark	4.9%	4.9%	4.8%	4.9%	5.5%	6.0%	6.3%	6.1%
Belgium	5.1%	5.0%	5.0%	5.1%	5.0%	5.0%	5.0%	5.1%
Australia	5.3%	5.1%	5.2%	6.4%	7.1%	7.4%	7.5%	6.8%
Canada	5.5%	5.6%	7.8%	13.0%	13.7%	12.3%	10.9%	10.2%
Finland	6.8%	6.9%	7.0%	7.3%	7.5%	7.8%	8.0%	8.1%

Bertifier: Turning tables into graphs

attitudes & attributes

	Belgi	Czech	Den	Finla	Fran	Gerr	Gree	Ita	None	Pola	Port	Ruse	Sq	Swe	United
Household income	2687	16957	2468	2573	2831	2879	2044	24	3145	1537	1936	1528	25	2624	26904
Women's suffrage date	1948	1920	1915	1906	1944	1918	1952	19	1913	1918	1976	1916	15	1921	1928
Against cohabitation w	12	42	4	18	8	20	30	46	12	39	17	39	16	6	19
Belief in God	61	36	63	69	52	63	93	91	56	96	86	77	76	46	65
Confidence in Govern	32	21	55	42	34	29	22	28	51	23	30	60	35	54	19
Confidence in the arm	50	34	72	63	73	58	70	75	57	63	75	73	57	41	89
Confidence in the chur	36	20	63	47	41	40	52	67	44	65	67	67	31	39	36
Confidence in the heal	91	42	75	73	78	34	39	54	74	44	58	51	79	75	80
Confidence in the justi	50	35	87	73	56	58	50	36	78	44	48	41	42	69	51
Important in a job: goo	60	85	54	58	58	73	94	76	56	93	88	93	77	62	75
Against abortion	56	51	28	40	44	60	65	72	42	75	61	63	57	25	57
Not as a neighbour: ho	7	22	5	12	5	16	30	21	6	52	21	61	5	7	10
Attend church at least	15	13	5	7	11	12	19	35	9	54	25	8	21	9	17

- (a) Table: attitudes and attributes by country
- (b) Visual: encode values by size, shape
- (c) Sort & group by themes, country regions

Bertifier: Bertin's reorderable matrix

See: http://www.aviz.fr/bertifier

b encode values by size & shape

Example: Household tasks

Who does what in households?

	Who do	es it?			
Alterna	ating Hus	band Jo	intly W	ife	
Breakfeast	36	15	7	82	
Dinner	11	7	13	77	
Dishes	24	4	53	32	
Driving	51	75	3	10	
Finances	13	21	66	13	
Holidays	1	6	153	0	
Insurance	1	53	77	8	
Laundry	14	2	4	156	
Main_meal	20	5	4	124	
Official	46	23	15	12	
Repairs	3	160	2	0	
Shopping	23	9	55	33	
Tidying	11	1	57	53	

Rows and columns were permuted to show the relationship more clearly

Size of symbols in a balloon plot shows the frequencies

housetasks

Data, pictures, models & stories

Goal: Tell a credible story about some real data problem

Data, pictures, models & stories

Two paths to enlightenment

Data, pictures, models & stories

Now, tell the story!

Gender Bias at UC Berkeley?

Science, 1975, **187**: 398--403

Sex Bias in Graduate Admissions: Data from Berkeley

Measuring bias is harder than is usually assumed, and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O'Connell

Determining whether discrimination because of sex or ethnic identity is being practiced against persons seeking passage from one social status or locus to another is an important problem in our society today. It is legally impordeceision to admit or to deny admission.

The question we wish to pursue is whether the decision to admit or to deny was influenced by the sex of the applicant.

We cannot know with any certainty the influences on the evaluators in the

by using a As already pitfalls ah but we ir one of the We mu sumptions of the da approach. given disc plicants do intelligence ise, or ot mately per students. I that make meaningfu any differ plicants by differences ise as scho ly one co example, b hissed act

2 × 2 Frequency Tables: Fourfold displays

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	% Admit	Odds(Admit)
Males	1198	1493	2691	44.52	0.802
Females	557	1278	1835	30.35	0.437
Total	1755	2771	4526	38.78	0.633

odds ratio $(\theta) \in 1.84$

- Is this a "significant" association?
- Is it evidence for gender bias?
- How to measure strength of association?
- How to visualize?

Fourfold display:

- quarter circles, area ~ frequency
- ratio of areas: odds ratio (θ)
- confidence bands: overlap iff $\theta \approx 1$
- visualize significance!

2 × 2 × k Stratified tables

The data arose from 6 graduate departments

No difference between males & females, except in Dept A where women more likely to be admitted!

Design:

- small multiples
- encode direction by color
- encode signif. by shading

Mosaic matrices

Scatterplot matrix analog for categorical data

All pairwise views
Small multiples → comparison

The answer: Simpson's Paradox

- Depts A, B were easiest
- Applicants to A, B mostly male
- ∴ Males more likely to be admitted overall

Measures & models

If the focus is on the association between gender and admission for each department the odds ratio: odds(Admit|Male) / odds(Admit|Female) is a good summary

log odds ratios for Admit and Gender by Dept


```
odds = Pr(Admit) / Pr (Reject)
OR = odds(Admit|M) / odds(Admit|F)
```

$$OR = 1 \rightarrow M/F$$
 equally likely admitted

Std errors & CIs provide individual signif tests

Models provide a comprehensive summary

Now, we can tell the story!

Graphical methods for categorical data

These share similar ideas & scope with methods for quantitative data

Exploratory methods

- Minimal assumptions (like non-parametric methods)
- Show the data, not just summaries
- But can add summaries: smoothed curve(s), trend lines, ...
- Help detect patterns, trends, anomalies, suggest hypotheses

Plots for model-based methods

- Residual plots departures from model, omitted terms, ...
- Effect plots estimated probabilities of response or log odds
- Diagnostic plots influence, violation of assumptions

Plots: Data, Model, Data+Model

- Data plots: well-known. Help to answer:
 - What do the data look like?
 - Are there unusual features? (outliers, non-linear relations)
 - What kinds of summaries would be useful?

Model plots

- What does the model look like? (plot predicted values)
- How does the model change when parameters change? (plot competing models)
- How does the model change when the data is changed? (influence plots)

Data+Model plots

- How well does model fit the data? (focus on residuals)
- Does model fit uniformly good/bad, or just in some regions?
- Model uncertainty: show confidence regions
- Data support: where is data too thin to make a difference?

Summary

- Categorical data involves some new ideas
 - Discrete variables: unordered or ordered
 - Counts, frequencies as outcomes
- New / different data structures & functions
 - tables 1-way, 2-way, 3-way, ... table(), xtabs()
 - similar in matrices or arrays matrix(), array()
 - datasets:
 - frequency form
 - case form
- Graphical methods: often use area ~ Freq
 - Consider: graphical comparisons, effect order