CE043 - GAMLSS

Estimação e Inferência II

Silva, J.P; Taconeli, C.A.

10 de agosto, 2020

Conteúdo

Introdução

- 2 Intervalos de confiança
- Testes de hipóteses
- 4 Predição

• Nesta aula, daremos continuidade à apresentação dos procedimentos inferenciais para modelos da classe GAMLSS;

• Nesta aula, daremos continuidade à apresentação dos procedimentos inferenciais para modelos da classe GAMLSS;

 Como vimos, as inferências são baseadas, predominantemente, na teoria da verossimilhança.

- Nesta aula, daremos continuidade à apresentação dos procedimentos inferenciais para modelos da classe GAMLSS;
- Como vimos, as inferências são baseadas, predominantemente, na teoria da verossimilhança.

 Abordaremos a obtenção de erros padrões, intervalos de confiança, testes de hipóteses e predições;

- Nesta aula, daremos continuidade à apresentação dos procedimentos inferenciais para modelos da classe GAMLSS;
- Como vimos, as inferências são baseadas, predominantemente, na teoria da verossimilhança.
- Abordaremos a obtenção de erros padrões, intervalos de confiança, testes de hipóteses e predições;
- Exemplificaremos, usando dados de dois exemplos, como a inferência é conduzida a partir de um objeto gamlss ajustado.

• Dentre os métodos para obter intervalos de confiança para os parâmetros de regressão em GAMLSS destacamos:

- Dentre os métodos para obter intervalos de confiança para os parâmetros de regressão em GAMLSS destacamos:
 - Intervalos do tipo Wald;
 - Intervalos baseados no perfil da verossimilhança;
 - Intervalos de confiança bootstrap.

- Dentre os métodos para obter intervalos de confiança para os parâmetros de regressão em GAMLSS destacamos:
 - Intervalos do tipo Wald;
 - Intervalos baseados no perfil da verossimilhança;
 - Intervalos de confiança bootstrap.
- Os métodos de obtenção de intervalos de confiança podem ser aplicados na estimação dos parâmetros de regressão (β 's) associados a qualquer parâmetro da distribuição (μ , σ , ν e τ).

• Intervalos de confiança do tipo Wald são construídos com base na distribuição assintótica dos EMVs.

 Intervalos de confiança do tipo Wald são construídos com base na distribuição assintótica dos EMVs.

• Para um particular parâmetro β_k , um intervalo de confiança de nível $100(1-\alpha)\%$ fica definido por:

$$\hat{\beta}_k \pm z_{\alpha/2} \times \text{e.p.}(\hat{\beta}_k),$$

em que $z_{\alpha/2}$ é o quantil $\alpha/2$ da distribuição Normal(0,1).

• Pode-se obter um intervalo de confiança para β_k baseado na verossimilhança perfilada.

- Pode-se obter um intervalo de confiança para β_k baseado na verossimilhança perfilada.
- \bullet Seja $H_0:\beta_k=\beta_0$ e Ψ o conjunto dos demais parâmetros do modelo.

- Pode-se obter um intervalo de confiança para β_k baseado na verossimilhança perfilada.
- \bullet Seja $H_0:\beta_k=\beta_0$ e Ψ o conjunto dos demais parâmetros do modelo.
- O intervalo de confiança baseado na verossimilhança perfilada de β_k é definido pelo conjunto de valores β_{k0} tais que:

$$-2[l(\beta_{k0}, \hat{\Psi}(\beta_{k0})) - l(\hat{\beta}_k, \hat{\Psi})] < \chi_1^2(\alpha),$$

sendo $l(\beta_{k0}, \hat{\Psi}(\beta_{k0}))$ a log-verossimilhança maximizada para $\beta_k = \beta_{k0}$ e $l(\hat{\beta}_k, \hat{\Psi})$ a verossimilhança maximizada de forma irrestrita.

Figura 1: Ilustração - intervalo de confiança baseado na razão de verossimilhanças.

• Intervalos de confiança bootstrap são obtidos a partir da simulação de novas amostras, relacionadas, de alguma forma, à amostra original.

- Intervalos de confiança bootstrap são obtidos a partir da simulação de novas amostras, relacionadas, de alguma forma, à amostra original.
- As três principais modalidades de simulação bootstrap são as seguintes:

- Intervalos de confiança bootstrap são obtidos a partir da simulação de novas amostras, relacionadas, de alguma forma, à amostra original.
- As três principais modalidades de simulação bootstrap são as seguintes:
 - Bootstrap paramétrico: As novas amostras são simuladas do modelo ajustado, substituindo os parâmetros pelas respectivas estimativas de máxima verossimilhança;

- Intervalos de confiança bootstrap são obtidos a partir da simulação de novas amostras, relacionadas, de alguma forma, à amostra original.
- As três principais modalidades de simulação bootstrap são as seguintes:
 - Bootstrap paramétrico: As novas amostras são simuladas do modelo ajustado, substituindo os parâmetros pelas respectivas estimativas de máxima verossimilhança;
 - Bootstrap não paramétrico: Neste caso as novas amostras são selecionados com reposição da amostra original;

- Intervalos de confiança bootstrap são obtidos a partir da simulação de novas amostras, relacionadas, de alguma forma, à amostra original.
- As três principais modalidades de simulação bootstrap são as seguintes:
 - Bootstrap paramétrico: As novas amostras são simuladas do modelo ajustado, substituindo os parâmetros pelas respectivas estimativas de máxima verossimilhança;
 - Bootstrap não paramétrico: Neste caso as novas amostras são selecionados com reposição da amostra original;
 - Bootstrap dos resíduos: Os resíduos (r) originais do modelo são permutados entre as n observações. Os valores correspondentes para a resposta são obtidos usando o teorema da inversa da função de distribuição acumulada aplicada em $\Phi(r)$, em que Φ é a acumulada da distribuição normal.

Sessão R - Parte 1

 Nesta sessão R vamos usar dados de circunferência abdominal em função da idade gestacional para ilustrar a extração de estimativas, erros padrões e intervalos de confiança.

• Podemos testar a significância de um ou mais parâmetros do modelo via teste da razão de verossimilhanças;

• Podemos testar a significância de um ou mais parâmetros do modelo via teste da razão de verossimilhanças;

• Considere M_0 um modelo aninhado em relação a M_1 , isso é, M_0 é um caso particular de M_1 obtido mediante alguma restrição imposta aos parâmetros;

 Podemos testar a significância de um ou mais parâmetros do modelo via teste da razão de verossimilhanças;

• Considere M_0 um modelo aninhado em relação a M_1 , isso é, M_0 é um caso particular de M_1 obtido mediante alguma restrição imposta aos parâmetros;

• Sejam \hat{L}_0 e \hat{L}_1 as verossimilhanças maximizadas para M_0 e M_1 , e \hat{l}_0 e \hat{l}_1 as respectivas log-verossimilhanças;

• A estatística teste para o par de hipóteses $H_0: M_0 \in H_1: M_1 \in dada$ por:

$$\Lambda = -2\log LR = 2\log \left(\frac{\hat{L}_1}{\hat{L}_0}\right) = 2(\hat{l}_1 - \hat{l}_0) = GDEV_0 - GDEV_1.$$

• A estatística teste para o par de hipóteses $H_0: M_0 \in H_1: M_1$ é dada por:

$$\Lambda = -2\log LR = 2\log \left(\frac{\hat{L}_1}{\hat{L}_0}\right) = 2(\hat{l}_1 - \hat{l}_0) = GDEV_0 - GDEV_1.$$

• Sob condições de regularidade, $\Lambda \sim \chi_d^2$, em que d é a diferença de graus de liberdade dos dois modelos;

• A estatística teste para o par de hipóteses $H_0: M_0 \in H_1: M_1$ é dada por:

$$\Lambda = -2\log LR = 2\log \left(\frac{\hat{L}_1}{\hat{L}_0}\right) = 2(\hat{l}_1 - \hat{l}_0) = GDEV_0 - GDEV_1.$$

- Sob condições de regularidade, $\Lambda \sim \chi_d^2$, em que d é a diferença de graus de liberdade dos dois modelos;
- Assim, para um nível de significância α , H_0 deve ser rejeitada se $\Lambda > \chi_d^2(1-\alpha)$.

• Predição, no contexto de GAMLSS, pode ser aplicada a qualquer um dos parâmetros da distribuição (μ , σ , ν e τ).

• Predição, no contexto de GAMLSS, pode ser aplicada a qualquer um dos parâmetros da distribuição (μ , σ , ν e τ).

• Seja θ representando, genericamente, algum dos parâmetros da distribuição, e $g(\cdot)$ a respectiva função de ligação, tal que:

$$\hat{\theta} = g^{-1}(\hat{\eta}_{\theta}) = g^{-1}(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p),$$

em que $\hat{\eta}_{\theta}$ denota o preditor linear estimado associado a θ .

• Um intervalo de confiança assintótico $100(1-\alpha)\%$ para θ pode ser obtido calculando, inicialmente, um IC assintótico para η_{θ} :

$$IC(\eta_{\theta}; 100(1-\alpha)\%) = (\hat{\eta}_{\theta(LI)}, \hat{\eta}_{\theta(LS)}) = \hat{\eta}_{\theta} \pm z_{\alpha/2} \times \text{e.p.}(\hat{\eta}_{\theta}).$$

• Um intervalo de confiança assintótico $100(1-\alpha)\%$ para θ pode ser obtido calculando, inicialmente, um IC assintótico para η_{θ} :

$$IC(\eta_{\theta}; 100(1-\alpha)\%) = (\hat{\eta}_{\theta(LI)}, \hat{\eta}_{\theta(LS)}) = \hat{\eta}_{\theta} \pm z_{\alpha/2} \times \text{e.p.}(\hat{\eta}_{\theta}).$$

• O intervalo de confiança para θ é obtido aplicando a inversa de $g(\cdot)$ aos limites do IC para η_{θ} :

$$IC(\theta; 100(1-\alpha)\%) = (g^{-1}(\hat{\eta}_{\theta(LI)}); g^{-1}(\hat{\eta}_{\theta(LS)})).$$

• Uma segunda alternativa de IC baseia-se na obtenção do erro padrão de $\hat{\theta}$ via método delta (aproximação de Taylor de primeira ordem para a variância).

• Uma segunda alternativa de IC baseia-se na obtenção do erro padrão de $\hat{\theta}$ via método delta (aproximação de Taylor de primeira ordem para a variância).

• Essa segunda alternativa é menos recomendável, produzindo intervalos necessariamente simétricos e, eventualmente, fora do espaço paramétrico.

• Uma segunda alternativa de IC baseia-se na obtenção do erro padrão de $\hat{\theta}$ via método delta (aproximação de Taylor de primeira ordem para a variância).

• Essa segunda alternativa é menos recomendável, produzindo intervalos necessariamente simétricos e, eventualmente, fora do espaço paramétrico.

• Novamente reamostragem bootstrap é uma opção, devendo-se extrair, a cada simulação, a predição de interesse.

• Importante destacar que os erros padrões, ICs e THs apresentados são estritamente válidos (ainda que assintoticamente) para o caso paramétrico;

- Importante destacar que os erros padrões, ICs e THs apresentados são estritamente válidos (ainda que assintoticamente) para o caso paramétrico;
- Nos casos em que o modelo contém termos como suavizadores, os erros padrões são calculados não levando em conta a incerteza inerente à suavização;

- Importante destacar que os erros padrões, ICs e THs apresentados são estritamente válidos (ainda que assintoticamente) para o caso paramétrico;
- Nos casos em que o modelo contém termos como suavizadores, os erros padrões são calculados não levando em conta a incerteza inerente à suavização;
- Desta forma, em tais situações os erros são subestimados, os ICs têm confiança inferior à nominal e os testes de hipóteses tendem a produzir erro do tipo I inflacionado;

- Importante destacar que os erros padrões, ICs e THs apresentados são estritamente válidos (ainda que assintoticamente) para o caso paramétrico;
- Nos casos em que o modelo contém termos como suavizadores, os erros padrões são calculados não levando em conta a incerteza inerente à suavização;
- Desta forma, em tais situações os erros são subestimados, os ICs têm confiança inferior à nominal e os testes de hipóteses tendem a produzir erro do tipo I inflacionado;
- Nessas situações, recomenda-se utilizar tais inferências com cautela, de preferência apenas com caráter exploratório.

Sessão R - Parte 2

 Nesta sessão R vamos analisar dados de contagens referentes a chutes a gol dos jogadores da copa do mundo de futebol de 2010, para ilustrar a utilização de testes de hipóteses e obtenção de predições.