Controling Complexity: Feature Selection and Regularization

Mengye Ren

NYU

September 19, 2023

Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger \mathcal{F} : better approximation but can overfit (need more samples)
- Smaller \mathcal{F} : less likely to overfit but can be farther from the true function

Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger \mathcal{F} : better approximation but can overfit (need more samples)
- ullet Smaller \mathcal{F} : less likely to overfit but can be farther from the true function

To control the "size" of \mathcal{F} , we need some measure of its complexity:

- Number of variables / features
- Degree of polynomial

General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

Example: Polynomial Functions

- $\mathcal{F} = \{\text{all polynomial functions}\}\$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leq d\}$

General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

Example: Polynomial Functions

- $\mathcal{F} = \{\text{all polynomial functions}\}$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leq d\}$
- 2. Select one of these models based on a score (e.g. validation error)

Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$

- $\mathcal{F} = \{\text{linear functions using all features}\}\$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features}\}$

4 / 41

Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$

- $\mathcal{F} = \{\text{linear functions using all features}\}\$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features}\}$

Best subset selection:

- Choose the subset of features that is best according to the score (e.g. validation error)
 - Example with two features: Train models using $\{\}$, $\{X_1\}$, $\{X_2\}$, $\{X_1, X_2\}$, respectively
- Not an efficient search algorithm; iterating over all subsets becomes very expensive with a large number of features

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 4/41

Forward selection:

1. Start with an empty set of features S

Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
 - Learn a model using features $S \cup i$
 - Compute score of the model: α_i

Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
 - Learn a model using features $S \cup i$
 - Compute score of the model: α_i
- 3. Find the candidate feature with the highest score: $j = \arg\max_i \alpha_i$

Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature *i* not in *S*
 - Learn a model using features $S \cup i$
 - Compute score of the model: α_i
- 3. Find the candidate feature with the highest score: $j = \arg\max_i \alpha_i$
- 4. If α_j improves the current best score, add feature $j: S \leftarrow S \cup j$ and go to step 2; return S otherwise.

 Mengye Ren (NYU)
 CSCI-GA 2565
 September 19, 2023
 5/41

Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature *i* not in *S*
 - Learn a model using features $S \cup i$
 - Compute score of the model: α_i
- 3. Find the candidate feature with the highest score: $j = \arg\max_i \alpha_i$
- 4. If α_j improves the current best score, add feature $j: S \leftarrow S \cup j$ and go to step 2; return S otherwise.

Backward Selection:

• Start with all features; in each iteration, remove the worst feature

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 5/41

• Number of features as a measure of the complexity of a linear prediction function

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
 - Define a score that balances training error and complexity

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
 - Define a score that balances training error and complexity
 - Find the subset of features that maximizes the score

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
 - Define a score that balances training error and complexity
 - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
 - Define a score that balances training error and complexity
 - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.
- Forward & backward selection do not in general result in the same subset.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 6/41

 ℓ_2 and ℓ_1 Regularization

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

 λ balances the training loss and the number of features used:

- ullet Adding an extra feature must be justified by at least λ improvement in training loss
- Larger $\lambda \to \text{complex models}$ are penalized more heavily

Goal: Balance the complexity of the hypothesis space $\mathcal F$ and the training loss

Complexity measure: $\Omega: \mathcal{F} \to [0, \infty)$, e.g. number of features

Goal: Balance the complexity of the hypothesis space ${\mathcal F}$ and the training loss

Complexity measure: $\Omega: \mathfrak{F} \to [0, \infty)$, e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $\lambda \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find λ using the validation data.

Goal: Balance the complexity of the hypothesis space ${\mathcal F}$ and the training loss

Complexity measure: $\Omega: \mathfrak{F} \to [0, \infty)$, e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $\lambda \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find λ using the validation data.

Number of features as complexity measure is hard to optimize—other measures?

9 / 41

Weight Shrinkage: Intuition

• Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?

Weight Shrinkage: Intuition

- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output

Weight Shrinkage: Intuition

- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output
- If we push the estimated weights to be small, re-estimating them on a new dataset wouldn't cause the prediction function to change dramatically (less sensitive to noise in data)

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 10 / 41

- Large weights are needed to make the curve wiggle sufficiently to overfit the data
- $\hat{y} = 0.001x^7 + 0.003x^3 + 1$ less likely to overfit than $\hat{y} = 1000x^7 + 500x^3 + 1$

(Adapated from Mark Schmidt's slide)

Linear Regression with ℓ_2 Regularization

We have a linear model

$$\mathcal{F} = \left\{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x \text{ for } w \in \mathbb{R}^d \right\}$$

- Square loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$

Linear Regression with ℓ_2 Regularization

We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$
- Linear least squares regression is ERM for square loss over \mathcal{F} :

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• This often overfits, especially when d is large compared to n (e.g. in NLP one can have 1M features for 10K documents).

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 12 / 41

Linear Regression with L2 Regularization

Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

• Also known as ridge regression.

Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when $\lambda = 0$.

Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when $\lambda = 0$.
- ℓ_2 regularization can be used for other models too (e.g. neural networks).

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 13/41

 ℓ_2 regularization reduces sensitivity to changes in input

• $\hat{f}(x) = \hat{w}^T x$ is **Lipschitz continuous** with Lipschitz constant $L = \|\hat{w}\|_2$: when moving from x to x + h, \hat{f} changes no more than $L\|h\|$.

 ℓ_2 regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$ is **Lipschitz continuous** with Lipschitz constant $L = ||\hat{w}||_2$: when moving from x to x + h, \hat{f} changes no more than L||h||.
- ℓ_2 regularization controls the maximum rate of change of \hat{f} .

 ℓ_2 regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$ is **Lipschitz continuous** with Lipschitz constant $L = ||\hat{w}||_2$: when moving from x to x + h, \hat{f} changes no more than L||h||.
- ullet ℓ_2 regularization controls the maximum rate of change of \hat{f} .
- Proof:

$$\begin{split} \left| \hat{f}(x+h) - \hat{f}(x) \right| &= \left| \hat{w}^T(x+h) - \hat{w}^T x \right| = \left| \hat{w}^T h \right| \\ &\leqslant \|\hat{w}\|_2 \|h\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

 ℓ_2 regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$ is **Lipschitz continuous** with Lipschitz constant $L = ||\hat{w}||_2$: when moving from x to x + h, \hat{f} changes no more than L||h||.
- ℓ_2 regularization controls the maximum rate of change of \hat{f} .
- Proof:

$$\begin{split} \left| \hat{f}(\mathbf{x} + \mathbf{h}) - \hat{f}(\mathbf{x}) \right| &= \left| \hat{w}^T (\mathbf{x} + \mathbf{h}) - \hat{w}^T \mathbf{x} \right| = \left| \hat{w}^T \mathbf{h} \right| \\ &\leqslant \|\hat{w}\|_2 \|\mathbf{h}\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

• Other norms also provide a bound on L due to the equivalence of norms: $\exists C > 0 \text{ s.t. } \|\hat{w}\|_2 \leqslant C \|\hat{w}\|_p$

Linear Regression vs. Ridge Regression

Objective:

- Linear: $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge: $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

Linear Regression vs. Ridge Regression

Objective:

- Linear: $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge: $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

Gradient:

- Linear: $\nabla L(w) = X^T(Xw y)$
- Ridge: $\nabla L(w) = X^T(Xw y) + \lambda w$
 - Also known as weight decay in neural networks

Linear Regression vs. Ridge Regression

Objective:

- Linear: $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge: $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

Gradient:

- Linear: $\nabla L(w) = X^T(Xw y)$
- Ridge: $\nabla L(w) = X^T(Xw y) + \lambda w$
 - Also known as weight decay in neural networks

Closed-form solution:

- Linear: $X^T X w = X^T y$
- Ridge: $(X^TX + \lambda I)w = X^Ty$
 - $(X^TX + \lambda I)$ is always invertible

Ridge Regression: Regularization Path

$$\hat{w}_r = \underset{\|w\|_2^2 \le r^2}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

$$\hat{w} = \hat{w}_{\infty} = \text{Unconstrained ERM}$$

- For r = 0, $||\hat{w}_r||_2 / ||\hat{w}||_2 = 0$.
- For $r = \infty$, $||\hat{w}_r||_2 / ||\hat{w}||_2 = 1$

16 / 41

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Lasso Regression

Penalize the ℓ_1 norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_1,$$

where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

("Least Absolute Shrinkage and Selection Operator")

Ridge vs. Lasso: Regularization Paths

Lasso yields sparse weights:

18 / 41

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

The coefficient for a feature is $0 \implies$ the feature is not needed for prediction. Why is that useful?

• Faster to compute the features; cheaper to measure or annotate them

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features
- Prediction function may generalize better (model is less complex)

Why does ℓ_1 Regularization Lead to Sparsity?

Regularization as Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $r \ge 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t. $\Omega(f) \leq r$

Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \underset{\|w\|_1 \le r}{\arg\min} \frac{1}{n} \sum_{i=1}^n \{w^T x_i - y_i\}^2.$$

r has the same role as λ in penalized ERM (Tikhonov).

- \bullet Let $L\!:\!\mathcal{F}\!\to\!\mathsf{R}$ be any performance measure of f
 - \bullet e.g. L(f) could be the empirical risk of f

- Let $L: \mathcal{F} \to \mathbb{R}$ be any performance measure of f
 - e.g. L(f) could be the empirical risk of f
- For many L and Ω , Ivanov and Tikhonov are equivalent:
 - Any solution f^* we can get from Ivanov, we can also get from Tikhonov.
 - Any solution f^* we can get from Tikhonov, we can also get from Ivanov.

- Let $L: \mathcal{F} \to \mathsf{R}$ be any performance measure of f
 - e.g. L(f) could be the empirical risk of f
- For many L and Ω , Ivanov and Tikhonov are equivalent:
 - Any solution f^* we can get from Ivanov, we can also get from Tikhonov.
 - Any solution f^* we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 22 / 41

- Let $L: \mathcal{F} \to \mathbb{R}$ be any performance measure of f
 - e.g. L(f) could be the empirical risk of f
- For many L and Ω , Ivanov and Tikhonov are equivalent:
 - Any solution f^* we can get from Ivanov, we can also get from Tikhonov.
 - Any solution f^* we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.
- In practice, both approaches are effective: we will use whichever one is more convenient for training or analysis.

The ℓ_1 and ℓ_2 Norm Constraints

- Let's consider $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$ space)
- We can represent each function in \mathcal{F} as a point $(w_1, w_2) \in \mathbb{R}^2$.
- Where in R^2 are the functions that satisfy the Ivanov regularization constraint for ℓ_1 and ℓ_2 ?

The ℓ_1 and ℓ_2 Norm Constraints

- Let's consider $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$ space)
- We can represent each function in \mathcal{F} as a point $(w_1, w_2) \in \mathbb{R}^2$.
- Where in R^2 are the functions that satisfy the Ivanov regularization constraint for ℓ_1 and ℓ_2 ?

•
$$\ell_2$$
 contour:
 $w_1^2 + w_2^2 = r$

•
$$\ell_1$$
 contour: $|w_1| + |w_2| = r$

The ℓ_1 and ℓ_2 Norm Constraints

- Let's consider $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$ space)
- We can represent each function in \mathcal{F} as a point $(w_1, w_2) \in \mathbb{R}^2$.
- Where in R^2 are the functions that satisfy the Ivanov regularization constraint for ℓ_1 and ℓ_2 ?

•
$$\ell_2$$
 contour:
 $w_1^2 + w_2^2 = r$

•
$$\ell_1$$
 contour: $|w_1| + |w_2| = r$

• Where are the sparse solutions?

Visualizing Regularization

• $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \sum_{i=1}^n (w^T x_i - y_i)^2$ subject to $w_1^2 + w_2^2 \leqslant r$

- Blue region: Area satisfying complexity constraint: $w_1^2 + w_2^2 \leqslant r$
- Red lines: contours of the empirical risk $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.

KPM Fig. 13.3

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

• $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$ subject to $|w_1| + |w_2| \leqslant r$

- Blue region: Area satisfying complexity constraint: $|w_1| + |w_2| \le r$
- Red lines: contours of the empirical risk $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.
- ℓ_1 solution tends to touch the corners.

KPM Fig. 13.3

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

• \hat{w} in red/green regions are closest to corners in the ℓ_1 "ball".

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto ℓ_2 sphere favors all directions equally.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 27 / 41

Why does ℓ_2 Encourage Sparsity? Optimization Perspective

For ℓ_2 regularization,

- As w_i becomes smaller, there is less and less penalty
 - What is the ℓ_2 penalty for $w_i = 0.0001$?
- The gradient—which determines the pace of optimization—decreases as w_i approaches zero
- Less incentive to make a small weight equal to exactly zero

Why does ℓ_2 Encourage Sparsity? Optimization Perspective

For ℓ_2 regularization,

- As w_i becomes smaller, there is less and less penalty
 - What is the ℓ_2 penalty for $w_i = 0.0001$?
- The gradient—which determines the pace of optimization—decreases as w_i approaches zero
- Less incentive to make a small weight equal to exactly zero

For ℓ_1 regularization,

- The gradient stays the same as the weights approach zero
- This pushes the weights to be exactly zero even if they are already small

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 28 / 41

• We can generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.

• We can generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.

$$q = 0.5$$
 $q = 0.1$

$$a = 0.3$$

• We can generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.

• Note: $\|w\|_q$ is only a norm if $q \geqslant 1$, but not for $q \in (0,1)$

• We can generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.

- Note: $||w||_q$ is only a norm if $q \ge 1$, but not for $q \in (0,1)$
- ullet When q<1, the ℓ_q constraint is non-convex, so it is hard to optimize; lasso is good enough in practice

• We can generalize to ℓ_q : $(\|w\|_q)^q = |w_1|^q + |w_2|^q$.

- Note: $||w||_q$ is only a norm if $q \ge 1$, but not for $q \in (0,1)$
- When q<1, the ℓ_q constraint is non-convex, so it is hard to optimize; lasso is good enough in practice
- ℓ_0 ($||w||_0$) is defined as the number of non-zero weights, i.e. subset selection

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Minimizing the lasso objective

Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in R^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

• $||w||_1 = |w_1| + \ldots + |w_d|$ is not differentiable!

Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||_1$$

- $||w||_1 = |w_1| + \ldots + |w_d|$ is not differentiable!
- We will briefly review three approaches for finding the minimum:
 - Quadratic programming
 - Projected SGD
 - Coordinate descent

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

- Consider any number $a \in R$.
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0).$$

- Consider any number $a \in R$.
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

• Is it always the case that $a^+ \ge 0$ and $a^- \ge 0$?

- Consider any number $a \in R$.
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

- Is it always the case that $a^+ \ge 0$ and $a^- \ge 0$?
- How do you write a in terms of a^+ and a^- ?

- Consider any number $a \in R$.
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

- Is it always the case that $a^+ \ge 0$ and $a^- \ge 0$?
- How do you write a in terms of a^+ and a^- ?
- How do you write |a| in terms of a^+ and a^- ?

Substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$ results in an equivalent problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i and $w_i^- \geqslant 0$ for all i ,

- This objective is differentiable (in fact, convex and quadratic)
- How many variables does the new objective have?
- This is a quadratic program: a convex quadratic objective with linear constraints.
- Quadratic programming is a very well understood problem; we can plug this into a generic QP solver.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 33 / 41

Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i $w_i^- \geqslant 0$ for all i ,

- When we plug this optimization problem into a QP solver,
 - it just sees 2d variables and 2d constraints.
 - Doesn't know we want w_i^+ and w_i^- to be positive and negative parts of w_i .
- Turns out that these constraints will be satisfied anyway!
- To make it clear that the solver isn't aware of the constraints of w_i^+ and w_i^- , let's denote them a_i and b_i

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 34 / 41

(Trivially) reformulating the lasso problem:

(Trivially) reformulating the lasso problem:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to $a_{i} \geqslant 0$ for all i $b_{i} \geqslant 0$ for all i ,
$$a-b=w$$

$$a+b=|w|$$

Claim: Don't need the constraint a + b = |w|.

Exercise: Prove by showing that the optimal solutions a^* and b^* satisfies $min(a^*, b^*) = 0$, hence $a^* + b^* = |w|$.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Claim: Can remove min_w and the constraint a - b = w.

Exercise: Prove by switching the order of the minimization.

Projected SGD

- Now that we have a differentiable objective, we could also use gradient descent
- But how do we handle the constraints?

$$\begin{aligned} & \min_{w^+, w^- \in \mathbf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right) \\ & \text{subject to } w_i^+ \geqslant 0 \text{ for all } i \\ & w_i^- \geqslant 0 \text{ for all } i \end{aligned}$$

- Projected SGD is just like SGD, but after each step
 - We project w^+ and w^- into the constraint set.
 - In other words, if any component of w^+ or w^- becomes negative, we set it back to 0.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 37 / 41

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, ..., w_d)$ over $w = (w_1, ..., w_d) \in \mathbb{R}^d$.

Coordinate Descent Method

Goal: Minimize
$$L(w) = L(w_1, ..., w_d)$$
 over $w = (w_1, ..., w_d) \in \mathbb{R}^d$.

• In gradient descent or SGD, each step potentially changes all entries of w.

Goal: Minimize
$$L(w) = L(w_1, ..., w_d)$$
 over $w = (w_1, ..., w_d) \in \mathbb{R}^d$.

- In gradient descent or SGD, each step potentially changes all entries of w.
- In coordinate descent, each step adjusts only a single coordinate w_i .

$$w_i^{\text{new}} = \arg\min_{w_i} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving the argmin for a particular coordinate may itself be an iterative process.
- Coordinate descent is an effective method when it's easy (or easier) to minimize w.r.t. one coordinate at a time

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 38 / 41

Goal: Minimize
$$L(w) = L(w_1, \dots w_d)$$
 over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$.

- Initialize $w^{(0)} = 0$
- while not converged:
 - Choose a coordinate $j \in \{1, \ldots, d\}$
 - $\bullet \ \ w_j^{\mathsf{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, \mathsf{w_j}, w_{j+1}^{(t)}, \dots, w_d^{(t)})$
 - $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$ and $w^{(t+1)} \leftarrow w^{(t)}$
 - $t \leftarrow t + 1$
- Random coordinate choice \implies stochastic coordinate descent
- Cyclic coordinate choice ⇒ cyclic coordinate descent

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Coordinate Descent Method for Lasso

The lasso objective coordinate minimization has a closed form! If

$$\hat{w}_{j} = \arg\min_{w_{j} \in \mathbb{R}} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda |w|_{1}$$

Then

$$\hat{w}_j = egin{cases} (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \ 0 & \text{if } c_j \in [-\lambda, \lambda] \ (c_j - \lambda)/a_j & \text{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
 $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$

where w_{-j} is w without the j-th component, and $x_{i,-j}$ is x_i without the j-th component.

• In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs