

Definición de Limite

an & R

(an) non converge 2 un número le R

s: ∀e>o, ∃ no e N /

lan-ll<€, ∀n>no

"A partir de un no, la distancia entre cada uno de los anano y la arintota l es menor a un epsilon dado"

 a_{1} a_{3} $l-\varepsilon$ $l+\varepsilon$ a_{2}

Estrategia para usarb en ejercicios:

• Dado un E>O => pruebo que existe su correr pon diente no L'imiter a infinito (an) new diverge (a + ∞) s: VM30, InoeN/ "Barrera" an > M, Yn > no as ay ag as ay

az Mag

Suced que

AM Suced que

An>M

Vn>no

Perz divergencie à - 00 es ignal pero con -M

an on n,4

Definición

$$(a_n)_{n\in\mathbb{N}}$$
 es acotada si $A = \{a_n : n\in\mathbb{N}\}\$ es acotado $(sup, inf, both)$ $(sup, inf, both)$

Equivalentemente (solo ecote da !)

3M>0/lanl&M, YneN

Teorema

5: (an) new es convergente => es acotada

Dem:

Suponojo

lim an = l e R (es convergente)

elijo un $\varepsilon = 1$ y digo

Para E = 1, $\exists n_0 / |a_n - l| \langle 1 | \forall n \geqslant n_0 \rangle$ $\int a \cot t \cdot ds = |a_n - l| \langle 1 | \forall n \geqslant n_0 \rangle$ $= |a_n - l| \langle 1 | + 1 |$

Poes | an-l | < 1
-1 < an-l < 1
l-1 < an < l+1

- · Tongo 200 tedos todos los an con n> no
- · Faltan los an con n< no

que de demostre do que

y .. la sucerión es acotada.

(no prede derse el ceso que converjo pero que en)

"el me dio" no se prede acoter

Algebra de Limites

Teorema

Sean $(a_n)_{n\in\mathbb{N}}$ y $(b_n)_{n\in\mathbb{N}}$ sucesiones tales que $\lim_{n\to\infty}a_n=a$ y $\lim_{n\to\infty}b_n=b$. Entonces,

- (1) $\lim_{n\to\infty} ca_n = ca$, para todo $c \in \mathbb{R}$;
- (2) $\lim_{n\to\infty} a_n + b_n = a + b$;
- (3) $\lim_{n\to\infty} a_n b_n = ab$;
- (4) Si $b \neq 0$, $\lim_{n\to\infty} (a_n/b_n) = a/b$.
- (5) Si $a_n \leq b_n$ para todo $n \in \mathbb{N}$, $a \leq b$.

Dem (2):

Dado E>0, quiero ano apatir del cual

Reescri bo

vale 12 cm dicion $|*| < \frac{\varepsilon}{3}$

Equivalencia 2

Sea $A \subset \mathbb{R}$ un conjunto no vacío y acotado superiormente y sea $s \in \mathbb{R}$. Entonces $s = \sup A$ si y sólo si s cumple:

(a")
$$s \ge x$$
 para todo $x \in A$; $= (a) = (a')$

(b") existe una sucesión $(a_n)_{n\in\mathbb{N}}\subset A$ tal que $\lim_{n\to\infty}a_n=s$.

Sez
$$\varepsilon$$
 > 0 distancia que ma desplazo en cada n ε | ε = ε = ε = ε | ε = ε = ε = ε | ε = ε = ε = ε | ε = ε =

quq.

Def

(an) non se dice monó to na creciente si an { an+1 Yn e N

Teorema

Las sucesiones monótonas y acotadas convergen.

Más concretamente

- (i) Si $(a_n)_{n\in\mathbb{N}}$ es creciente y acotada superiormente, entonces $\lim_{n\to\infty}a_n=\sup\{a_n:n\in\mathbb{N}\};$
- (ii) Si $(a_n)_{n\in\mathbb{N}}$ es decreciente y acotada inferiormente, entonces $\lim_{n\to\infty}a_n=\inf\{a_n:n\in\mathbb{N}\}.$

Demo (d) Teorema)

• Sea

$$A = \{a_n : n \in \mathbb{N}\} \neq \emptyset$$

20012d2 superiormente

Vermos que

Si
$$n \ge n_0$$
 $5 \cot_2 \sup$
 $5 \cot_2$

$$=> -\varepsilon \langle \alpha_n - S \langle \varepsilon \rangle$$

ono ACN
los supremor
son méximor
y los inhimor
son minimos.

Principio de Buena Ordensción (equivalente a Principio de Inducción)

Dem: (ii)

Vimos

Def suc

Def limite

Álgebra de

Equivalencia 2: Sup como su cesiones

Sucesionar que convergen son acotadas

Suc. monotona y acotada er convergente (

Propiede des de subconjuntor no vectos.