

Construção de Software Conceitos

46504-04 - Construção de Software

Prof. Msc. Eduardo Arruda eduardo.arruda@pucrs.br

Material original elaborado pelo Prof. Dr. Marcelo Yamaguti

• Construção:

- Criação de versão do software:
 - Desenvolvimento de software com linguagens de programação; e/ou
 - Customização/adaptação de software de prateleira; e/ou
 - Integração de componentes de software.

Construção

• Fundamentos de construção

- Minimizar a complexidade
- Antecipar a mudança
- Construir para a verificação
- Padrões na construção
- Reúso

Minimizar a complexidade

- Limitação de lidar com muita informação ao mesmo tempo
- Minimizar a complexidade auxilia o teste
- Buscar código simples e legível em vez de código astuto
- Como obter:
 - Projeto modular
 - Técnicas de codificação
 - Técnicas de qualidade de construção

Fundamentos de Construção de Software

- Projeto modular (características desejáveis):
 - Complexidade mínima: cuidado com soluções muito "engenhosas".
 - Alta coesão: manter o mínimo de funcionalidade necessária.
 - Baixo acoplamento: manter inter-relacionamento entre módulos baixo.
 - Alto fan-in: considerar um alto número de "clientes", sem sacrificar a coesão.
 - Baixo fan-out: manter no máximo 7 chamadas a outros módulos.
 - Facilidade de manutenção: pense numa solução a partir do ponto de vista de manutenção.
 - Extensibilidade: avaliar a possibilidade da solução ser extensível.
 - Reutilização: considerar se a solução pode ser reutilizada em outros sistemas.
 - Portabilidade: prever a que possa ser facilmente portado para outra plataforma.
 - Estratificação: manter organização entre módulos (ex.: camadas).
 - Técnicas-padrão: evite utilizar estratégias exóticas.

Antecipar a mudança

- O software pode evoluir com o passar do tempo
- Como obter
 - Projetar uma solução extensível a partir de uma estrutura básica inicial
 - Aplicar princípios de construção de código

Construir para verificação

- Foco na construção que facilite a localização de defeitos caso haja falhas
- Como obter:
 - Padrões de codificação para revisão de código
 - Teste unitário
 - Teste automatizado
 - Limitar o uso de estruturas complexas de uma linguagem

Fundamentos de Construção de Software

Reuso

- Pode ocorrer em vários níveis:
 - Reuso de experiência
 - Reuso de código
 - Reuso de projeto
 - Reuso de sistemas (COTS *Commercial-Off-The-Shelf*, software de prateleira)
- Pode ter dois focos:
 - Implementar com reúso: visa a reutilização de software existente.
 - Implementar para reúso: visa a criação de software que possa ser reutilizado.

Fundamentos de Construção de Software

- Padrões na construção:
 - Utilizar padrões de desenvolvimento para obter maior eficiência, qualidade, custo e segurança.
 - Como obter:
 - Utilizar versões padronizadas de linguagens de programação (ex.: ANSI)
 - Utilizar padrões para especificação (ex.: UML), comunicação (documentos) e para codificação
 - Buscar utilizar soluções padronizadas (ex.: OMG, ISO, IEEE)

Construção

• Gerenciamento:

- As atividades de construção devem ser gerenciadas
 - Modelo de ciclo de vida
 - Planejamento
 - Medição

Construção

Considerações práticas

- Projeto (*design*) da solução
- Escolha da linguagem de programação
- Boas práticas de codificação
- Teste da solução
- Garantia da qualidade

Ferramentas de construção

- IDE (Integrated Development Environment). Ex: Visual Studio Code, BlueJ, Eclipse, Visual Studio
- Geradores de GUI (*Graphical User Interface*)
- Ferramentas de teste unitário
- Ferramentas de depuração (debugging)
- Geradores de código
- Geradores de aplicação (MDA-Model Driven Architecture)
- Geradores de documentação
- Gerenciador de configuração (versionamento, integração, rastreabilidade)

Referências

- Estude para aprofundamento no conteúdo:
 - SOMMERVILLE, I. Engenharia de software. 9ª ed. São Paulo: Pearson Brasil, 2011. Capítulos 7 e 24
 - PFLEEGER, S. L. **Engenharia de Software**: teoria e prática. 2ª ed. São Paulo: Prentice Hall, 2004. Capítulo 7.
 - IEEE Computer Society. **Guide to the Software Engineering Body of Knowledge (SWEBOK)**: Version 3.0. IEEE Computer Society Press, 2014. Chapters 2 e 3.
 - McConnell, Steve. **Code complete**: a practical handbook of software construction. Redmont: Microsoft Press, 1993. Capítulos 2 a 7.

