Clustering Analysis

- 1. What is the purpose of a cluster analysis?
- 2. What is the difference between agglomerative and divisive clustering?
- 3. What is the difference between hierarchical and non-hierarchical clustering?
- 4. How do we determine the appropriate number of clusters? Give two different visualization methods that are used to display the outcome of a cluster analysis.
- 5. In the context of hierarchical cluster analyses, distinguish between agglomerative clustering and divisive clustering.
- 6. What is a vertical icicle plot used for? Give a brief description, supporting your answer with sketches.
- 7. Explain why squared Euclidean Distance may be used in preference to Euclidean Distance.
- 8. Compute the squared Euclidean distance and the Manhattan (a.k.a. city block) distance between the following points A and B.

$$A = \{2, 5, 1, 7\}$$

$$B = \{1, 6, 3, 6\}$$

- 9. What is a dendrogram? What does does a dendrogram depict?
- 10. What is two-step clustering analysis?
- 11. Compare and contrast any three linkage methods.
- 12. Explain the difference between Ward's method and K-means clustering.
- 13. Discriminant Analysis is very similar to Clustering Analysis, but one key difference. Explain this difference.
- 14. What is the difference between a linkage method and a similarity measure? Discuss the purpose of both.
- 15. Explain the process of k-means clustering, starting with initial cluster allocation. You may work on the basis of a two-cluster solution. Support your answer with several sketches.
- 16. What is the difference between a linkage method and a distance measure?
- 17. Compare and contrast any three linkage methods. Support your answer with sketches

18. Interpret the following output for a Clustering Procedure. You may limit your anser to the first six cases.

	Cluster Combined			Stage Cluster First Appears			
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage	
1	1	2	24.098	0	0	4	
2	4	9	46.005	0	0	7	
3	5	8	56.649	0	0	5	
4	1	6	57.980	1	0	6	
5	3	5	88.417	0	3	8	
6	1	7	89.622	4	0	7	
7	1	4	109.030	6	2	8	
8	1	3	169.328	7	5	0	

19. Interpret the following output for a Clustering Procedure. You may limit your anser to the first six cases.

Agglomeration Schedule								
	Cluster C	ombined		Stage Cluster First Appears				
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage		
1	11	12	.359	0	0	6		
2	16	17	.366	0	0	19		
3	1	6	.606	0	0	9		
4	13	14	.748	0	0	10		
5	2	5	.854	0	0	22		
6	11	22	.900	1	0	24		
7	24	29	1.013	0	0	8		
8	8	24	1.031	0	7	10		
9	1	31	1.387	3	0	18		
10	8	13	1.455	8	4	17		
11	34	35	1.470	0	0	14		
12	3	7	1.496	0	0	25		
13	15	18	1.549	0	0	15		
14	30	34	1.569	0	11	28		
15	15	32	1.599	13	0	19		
16	19	25	1.600	0	0	22		
17	8	10	1.632	10	0	18		
18	1	8	1.640	9	17	20		
19	15	16	1.673	15	2	20		
20	1	15	1.722	18	19	21		
21	1	23	1.860	20	0	23		

20. Compare and contrast k-means clustering and hierarchical clustering in terms of the number of cluster determined.

21. For a 4 cluster solution, Interpret the ANOVA table below.

ANOVA

	Cluster	Cluster		Error		
	Mean Square	df	Mean Square	df	F	Sig.
Net profit	495,145	3	1419,744	3	,349	,795
Own funds	2878,202	3	2537,200	3	1,134	,460
Assets	842788,443	3	9987,138	3	84,387	,002
Client deposits	634017,636	3	35643,498	3	17,788	,021
Loans	957411,333	3	37401,709	3	25,598	,012