part2-customer-segmentation

December 13, 2019

1 Part 2: Customer Segmentation

Now that we what are major metrics and how to track by using Python we can focus on customers and segment them with **RFM Clustering.**

In this notebook we will implement one popular segmentation to our business: **RFM**. We need to calculate Recency, Frequency and Monetary Value (we will call it Revenue from now on) and apply unsupervised machine learning to identify different groups (clusters) for each.

RFM stands for *Recency - Frequency - Monetary Value*. Theoretically we will have segments like below: * Low Value: Customers who are less active than others, not very frequent buyer/visitor and generates very low - zero - maybe negative revenue. * Mid Value: In the middle of everything. Often using our platform (but not as much as our High Values), fairly frequent and generates moderate revenue. * High Value: The group we don't want to lose. High Revenue, Frequency and low Inactivity.

Segmentation is important be because we can't treat every customer the same way with the same content, same channel, same importance. They will find another option which understands them better.

Customers who use your platform have different needs and they have their own different profile, so you should adapt your actions depending on that.

You can do many different segmentations according to what you are trying to achieve. If you want to increase retention rate, you can do a segmentation based on churn probability and take actions. But there are other very common and useful segmentation methods as well.

1.1 Load the dataset

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):
               541909 non-null object
InvoiceNo
StockCode
               541909 non-null object
               540455 non-null object
Description
Quantity
               541909 non-null int64
               541909 non-null datetime64[ns]
{\tt InvoiceDate}
               541909 non-null float64
UnitPrice
CustomerID
               406829 non-null float64
Country
               541909 non-null object
```

dtypes: datetime64[ns](1), float64(2), int64(1), object(4)

memory usage: 33.1+ MB

1.2 Recency

To calculate recency, we need to find out most recent purchase date of each customer and see how many days they are inactive for. After having no. of inactive days for each customer, we will apply K-means* clustering to assign customers a recency score.

	${\tt CustomerID}$	Recency
0	17850.0	301
1	13047.0	31
2	13748.0	95
3	15100.0	329
4	15291.0	25

To get a snapshot about how recency looks like, let's look at mean, min, max, count and percentiles of our data.

count	3950.000000
mean	90.778481
std	100.230349
min	0.000000
25%	16.000000
50%	49.000000
75%	142.000000
max	373.000000

Name: Recency, dtype: float64

We see that even though the average is 90 day recency, median is 49. Histogram shows us the distribution of recency across our customers.

Recency

Next, we are going to apply K-means clustering to assign a recency score. To find out how many cluster is optimal, we will apply Elbow Method. Elbow Method simply tells the optimal cluster number for optimal inertia.

Here it looks like 3 is the optimal one. Based on business requirements, we can go ahead with less or more clusters. We will be selecting 4 for this example:

	count	mean	std	min	25%	50%	75%	\
RecencyCluster								
0	1950.0	17.488205	13.237058	0.0	6.00	16.0	28.00	
1	478.0	304.393305	41.183489	245.0	266.25	300.0	336.00	
2	568.0	184.625000	31.753602	132.0	156.75	184.0	211.25	
3	954.0	77.679245	22.850898	48.0	59.00	72.5	93.00	
	max							
RecencyCluster								
0	47.0							
1	373.0							
2	244.0							
3	131.0							

We have calculated clusters and assigned them to each Customer in our dataframe tx_user. We can see how our recency clusters have different characteristics. The customers in Cluster 1 are very recent compared to Cluster 2 which are very inactive.

K-means assigns clusters as numbers but not in an ordered way. We can't say cluster 0 is the worst and cluster 4 is the best. order_cluster() method does this and our new dataframe looks much neater:

	count	mean	std	min	25%	50%	75%	\
RecencyCluster								
0	478.0	304.393305	41.183489	245.0	266.25	300.0	336.00	
1	568.0	184.625000	31.753602	132.0	156.75	184.0	211.25	
2	954.0	77.679245	22.850898	48.0	59.00	72.5	93.00	
3	1950.0	17.488205	13.237058	0.0	6.00	16.0	28.00	
	max							
RecencyCluster								
0	373.0							
1	244.0							
2	131.0							
3	47.0							

Great! Cluser 3 covers most recent customers whereas cluster 0 has the most inactive ones.

1.3 Frequency

To create frequency clusters, we need to find total number orders for each customer. First calculate this and see how frequency look like in our customer database:

	${\tt CustomerID}$	Recency	RecencyCluster	Frequency
0	17850.0	301	0	312
1	15100.0	329	0	6
2	18074.0	373	0	13
3	16250.0	260	0	24
4	13747.0	373	0	1

Frequency

Apply the same logic to have frequency clusters and assign cluster number to each customer:

	count	mean	std	min	25%	50%	\
FrequencyCluster							
0	3496.0	49.525744	44.954212	1.0	15.0	33.0	
1	429.0	331.221445	133.856510	191.0	228.0	287.0	
2	22.0	1313.136364	505.934524	872.0	988.5	1140.0	
3	3.0	5917.666667	1805.062418	4642.0	4885.0	5128.0	
	75%	max					
FrequencyCluster							
0	73.0	190.0					
1	399.0	803.0					
2	1452.0	2782.0					
3	6555.5	7983.0					

We follow same notation as for recency clusters - high frequency number indicates better customers.

1.4 Revenue

Let's see how our customer database looks like when we cluster them based on revenue. We will calculate revenue for each customer, plot a histogram and apply the same clustering method.

	CustomerID	Recency	RecencyCluster	Frequency	FrequencyCluster	Revenue
0	17850.0	301	0	312	1	5288.63
1	15808.0	305	0	210	1	3724.77
2	13047.0	31	3	196	1	3079.10
3	14688.0	7	3	359	1	5107.38
4	16029.0	38	3	274	1	50992.61

Monetary Value

Note that we have some customers with negative revenue as well. Let's continue and apply k-means clustering:

25%	\
33.115	
31.485	
55.490	
21.250	
	33.115 61.485 65.490 21.250

1	6549.38	9142.305	21535.90
2	36351.42	53489.790	88125.38
3	221960 33	239199 410	256438 49

We follow same notation as for last two clusters - high revenue indicates better customers. We also note cluster 3 identifies ultra high value customers.

1.5 Overall Score

Up until now we have calculated scores (cluster numbers) for recency, frequency & revenue. Let's create an overall score out of them:

	Recency	Frequency	Revenue
OverallScore			
0	304.584388	21.995781	303.339705
1	185.362989	32.596085	498.087546
2	78.991304	46.963043	868.082991
3	20.689610	68.419590	1091.416414
4	14.892617	271.755034	3607.097114
5	9.662162	373.290541	9136.946014
6	7.740741	876.037037	22777.914815
7	1.857143	1272.714286	103954.025714
8	1.333333	5917.666667	42177.930000

OverallScore

0 474 1 562 2 920

3 1511

4 298

5148627

7 7 8 3

Name: Recency, dtype: int64

The scoring above clearly shows us that customers with score 8 is our best customers whereas 0 is the worst.

To keep things simple, we will name these scores: * 0 to 2: Low Value * 3 to 4: Mid Value * 5+: High Value

	${\tt CustomerID}$	Recency	RecencyCluster	Frequency	FrequencyCluster	Revenue	\
0	17850.0	301	0	312	1	5288.63	
1	14688.0	7	3	359	1	5107.38	
2	13767.0	1	3	399	1	16945.71	
3	15513.0	30	3	314	1	14520.08	
4	14849.0	21	3	392	1	7904.28	

	RevenueCluster	OverallScore	Segment
0	1	2	Low-Value
1	1	5	High-Value
2	1	5	High-Value
3	1	5	High-Value
4	1	5	High-Value

Let's see how our segments are distributed on a scatter plot:

Segments

Segments

Segments

We can see how the segments are clearly differentiated from each other in terms of RFM.

We can start taking actions with this segmentation. The main strategies are quite clear: * High Value: Improve Retention * Mid Value: Improve Retention + Increase Frequency * Low Value: Increase Frequency

Note: What we do here can be easily achieved by using quantiles or simple binning (or Jenks natural breaks optimization to make groups more accurate).

2 Summary

In this notebook we have segmented our customers into RFM clusters and identified main strategies for treating them.

In next part we will calculate and predict lifetime value of our customers.