1. Übungszettel zur Vorlesung "Computerorientierte Mathematik I"

Wintersemester 2012/13

Prof. Dr. Rupert Klein Anna Hartkopf, Martin Götze

Abgabe in die Tutorenfächer oder im Tutorium bis spätestens Donnerstag, den 8. November 2012, 18⁰⁰

Aufgabe 1. Zahlen und ihre Darstellung [4 Punkte]

Bestimmen Sie jeweils die Darstellung x der gegebenen natürlichen Zahl in der angegebenen Basis. Achten Sie hierbei darauf, Ihre einzelnen Rechenschritte nachvollziehbar darzustellen.

Eine alleinige Angabe der Lösung genügt nicht!

- (a) $2012_{10} = x_2$
- (b) $ABC_{13} = x_3$
- (c) $23_7 = x_{17}$
- (d) $1101681_9 = x_{36}$

Aufgabe 2. Einfache Umrechnung [6 Punkte]

Wie wir unter anderem aus Aufgabe 1 wissen, ist die Umrechnung einer Zahl von der Darstellung in einer Basis in die andere nicht immer einfach. Es gibt jedoch Fälle, in denen das einfacher als oben geht: Wir betrachten einmal die Zahlen $\{0, \ldots, 16\}$ in den Basen 2, 4 und 10.

	Basis 10	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
-	Basis 2	0	1	10	11	100	1 01	110	1 11	10 00	10 01	10 10	10 11	11 00	11 01	11 10	11 11	1 00 00
Ī	Basis 4	0	1	2	3	10	11	12	13	20	21	22	23	30	31	32	33	100

Können Sie einen Zusammenhang zwischen der Darstellung zur Basis 4 und der zur Basis 2 erkennen (*Hinweis:* Beachten Sie die Gruppierung der Ziffern)?

Notieren Sie Ihre Beobachtung als mathematische Aussage über die Zahldarstellung und beweisen Sie, dass sie wahr ist. Nutzen Sie die gefundene Aussage, um 101001101101100101_2 zur Basis 4 und 13021031201_4 zur Basis 2 darzustellen.

Freiwilliger Zusatz: [3 Zusatzpunkte] Welcher Zusammenhang muß zwischen zwei Basen q und r bestehen, damit ein ähnlicher Umwandlungstrick wie oben klappt? Beweisen Sie Ihre Behauptung!

Aufgabe 3. Umrechnung mit dem Rechner [10 Punkte]

Verfassen Sie eine schrittweise Anleitung für die Umrechnung der Darstellung einer Zahl $n \in \mathbb{N}$ in der Basis 10 in die Basis 2, d. h. beschreiben Sie in eigenen Worten wie Sie zum Beispiel in Aufgabe 1 vorgegangen sind.

Implementieren Sie Ihr oben beschriebenes Verfahren in Matlab/Octave. Testen Sie Ihren Implementierung mit den Beispielen 1000_{10} , 1024_{10} , 12_{10} und 23_{10} . Hinweis: Folgende Matlab/Octave-Funktionen könnten eventuell hilfreich sein:

- mod(n,k): Berechnet den Rest bei Division mit Rest von n durch k, d.h. dasjenige $r \in \{0, \ldots, k-1\}$, so dass n = qk + r mit ganzzahligem q gilt.
- floor(x): Berechnet die größte ganze Zahl, die kleiner oder gleich x ist, d. h. floor rundet ab, z. B. ist floor(4.2) = 4 und floor(-3.4) = -4.
- $\operatorname{ceil}(x)$: Berechnet die kleinste ganze Zahl, die größer oder gleich x ist, d. h. $\operatorname{ceil}(x)$: Berechnet die kleinste ganze Zahl, die größer oder gleich x ist, d. h. $\operatorname{ceil}(x)$: $\operatorname{ceil$