SÉRIES ENTIÈRES

Rayon de convergence

Solution 1

D'après le cours $R \ge \min(R_a, R_b)$. Soit $n \in \mathbb{N}$. Alors $a_n b_n = 0$ donc $a_n = 0$ ou $b_n = 0$. Si $a_n = 0$, alors $|a_n + b_n| = |b_n| \ge 0 = |a_n|$. Si $b_n = 0$, alors $|a_n + b_n| = |a_n|$. Dans tous les cas, $|a_n + b_n| \ge |a_n|$ donc $R \le R_a$. On prouve de la même manière que $R \le R_b$. Donc $R \le \min(R_a, R_b)$ puis $R = \min(R_a, R_b)$.

Solution 2

Notons R le rayon de convergence de la série à déterminer. On rappelle que le rayon de convergence de la série entière $\sum q^n z^n$ vaut $\frac{1}{q}$ lorsque $q \in \mathbb{R}_+^*$.

Cas $\ell \in \mathbb{R}_+^*$ Soit $q > \ell$. Alors, à partir d'un certain rang, $\sqrt[n]{|a_n|} \le q$ i.e. $|a_n| \le q^n$. Ainsi $R \ge \frac{1}{q}$. Ceci étant vrai pour tout $q > \ell$, $R \ge \frac{1}{\ell}$. Soit $q \in [0, \ell[$. Alors, à partir d'un certain rang, $\sqrt[n]{|a_n|} \ge q$ i.e. $|a_n| \ge q^n$. Ainsi $R \le \frac{1}{q}$. Ceci étant vrai pour tout $q \in [0, \ell[$, $R \le \frac{1}{\ell}$. Par conséquent, $R = \frac{1}{\ell}$.

Cas $\ell = 0$ Soit q > 0. Alors, à partir d'un certain rang, $\sqrt[n]{|a_n|} \le q$ i.e. $|a_n| \le q^n$. Ainsi $R \ge \frac{1}{q}$. Ceci étant vrai pour tout q > 0, $R = +\infty$.

Cas $\ell = +\infty$ Soit q > 0. Alors, à partir d'un certain rang, $\sqrt[n]{|a_n|} \ge q$ i.e. $|a_n| \le q^n$. Ainsi $R \le \frac{1}{q}$. Ceci étant vrai pour tout q > 0, R = 0.

Solution 3

Notons R_a et R_b les rayons de convergence respectifs des séries entières $\sum_{n\in\mathbb{N}}a_nz^n$ et $\sum_{n\in\mathbb{N}}b_nz^n$. On va montrer que $R_b=\max(1,R_a)$. Posons pour cela $S_n=\sum_{k=0}^na_k$ et remarquons que la série à termes positifs $\sum a_n$ converge ou diverge vers $+\infty$.

- Supposons que la série $\sum a_n$ converge. Ainsi $R_a \ge 1$ et (S_n) converge vers un réel $\ell > 0$. On en déduit que $a_n \sim b_n \over b_n$ puisque $R_b = R_a = \max(1, R_a)$.
- Supposons que la série $\sum a_n$ diverge vers $+\infty$. Alors $R_a \le 1$. Mais $S_n \ge a_n$ donc $b_n = \frac{a_n}{S_n} \le 1$ puis $R_b \ge 1$. Montrons maintenant que la série $\sum b_n$ diverge.
 - Si b_n ne tend pas vers 0, alors $\sum b_n$ diverge grossièrement.
 - Sinon $-\ln(1-b_n) \sim b_n$ donc la série $\sum b_n$ est de même nature que la série $\sum -\ln(1-b_n)$. Or

$$-\ln(1 - b_n) = -\ln\frac{S_{n-1}}{S_n} = \ln(S_n) - \ln(S_{n-1})$$

Comme $(\ln(S_n))$ diverge vers $+\infty$, la série télescopique $\sum \ln(S_n) - \ln(S_{n-1})$ diverge également. Ainsi la série $\sum b_n$ diverge.

On en déduit que $R_b \le 1$ puis $R_b = 1 = \max(1, R_a)$.

Solution 4

Soit $r \in \mathbb{R}_+^*$. La suite $(a_n r^n)$ est bornée si et seulement si la suite extraite $(a_{n^2} r^{n^2})$ est bornée (les autres termes sont nuls), c'est-à-dire si et seulement si la suite $(q^n r^{n^2})$ est bornée. Or

$$q^n r^{n^2} = \exp\left(n^2 \ln(r) + n \ln(q)\right)$$

On en déduit que $(q^n r^{n^2})$ diverge vers $+\infty$ si r > 1 ou si r = 1 et q > 1 et qu'elle est bornée sinon. Le rayon de convergence vaut donc toujours 1.

Solution 5

- 1. Si on pose $a_n = \frac{(-1)^n}{\sqrt{n}}, \frac{|a_{n+1}|}{|a_n|} = \sqrt{\frac{n}{n+1}} \xrightarrow[n \to +\infty]{} 1$. Donc le rayon de convergence vaut 1.
- 2. Si on pose $a_n = 2^n \ln(n)$, $\frac{|a_{n+1}|}{|a_n|} = 2\frac{\ln(n+1)}{\ln(n)} = 2\left(1 + \frac{\ln(1+1/n)}{\ln(n)}\right) \underset{n \to +\infty}{\longrightarrow} 2$. Donc le rayon de convergence vaut $\frac{1}{2}$.
- **3.** Si on pose $a_n = \binom{2n}{n}, \frac{|a_{n+1}|}{|a_n|} = 2 \frac{(2n+1)(2n+2)}{(n+1)^2} \underset{n \to +\infty}{\longrightarrow} 4$. Donc le rayon de convergence vaut $\frac{1}{4}$.
- **4.** Si on pose $a_n = n + 2^n i$, $a_n \underset{n \to +\infty}{\sim} 2^n i$ donc $\frac{|a_{n+1}|}{|a_n|} \underset{n \to +\infty}{\sim} 2$. Donc le rayon de convergence vaut $\frac{1}{2}$.

Solution 6

Comme la suite $(\cos n)$ est bornée, $R \ge 1$. Mais $(\cos n)$ ne converge pas vers 0 donc $R \le 1$. Ainsi R = 1.

Remarque. Si l'on souhaite montrer rigoureusement que $(\cos n)$ ne converge pas vers 0, on peut raisonner par l'absurde. Supposons que $(\cos n)$ converge vers 0. Alors

$$\forall n \in \mathbb{N}, \cos(n+1) = \cos(n)\cos(1) - \sin(n)\sin(1)$$

et $\lim_{n\to+\infty}\cos(n+1) = \lim_{n\to+\infty}\cos(n) = 0$. Puisque $\sin(1) \neq 0$, $\sin(n) = \frac{\cos(n+1)-\cos(n)\cos(1)}{\sin(1)} \xrightarrow[n\to+\infty]{} 0$. Par conéquent, $\lim_{n\to+\infty}\cos^2 n + \sin^2 n = 0$, ce qui est absurde puisque $\cos^2 n + \sin^2 n = 1$ pour tout $n \in \mathbb{N}$.

Le rayon de convergence de $\sum \frac{\sin n}{n} z^n$ est le même que celui de sa série dérivée à savoir $\sum \sin(n+1)z^n$. On prouve comme à la question précédente que ce rayon de convergence vaut 1.

La suite $\left(\tan \frac{n\pi}{7}\right)$ est périodique donc bornée. Ainsi $R \ge 1$.

Pour tout $n \in \mathbb{N}^*$, $1 \le d_n \le n$. Le rayon de convergence de la série entière $\sum z^n$ vaut 1 donc $R \le 1$. Le rayon de convergence de la série $\sum nz^n$ vaut également 1 donc $R \le 1$. Finalement, R = 1.

La suite (a_n) est à valeurs dans [0, 9] donc bornée. Ainsi $R \ge 1$. De plus, la suite (a_n) ne converge pas vers 0 donc $R \le 1$. En effet, si la suite d'*entiers* (a_n) convergeait vers 0, elle serait nulle à partir d'un certain rang. Par conséquent, π serait décimal et a fortiori rationnel, ce qui n'est pas. Finalement, R = 1.

Solution 7

1. On applique le critère de d'Alembert «tel quel». Soit $z \in \mathbb{C}^*$. Alors

$$\left| \frac{z^{(n+1)^2}}{z^{n^2}} \right| = |z|^{2n+1} \underset{n \to +\infty}{\longrightarrow} \begin{cases} +\infty & \text{si } |z| > 1\\ 0 & \text{si } |z| < 1 \end{cases}$$

Ainsi le rayon de convergence vaut 1.

2. On applique le critère de d'Alembert «tel quel». Soit $z \in \mathbb{C}^*$. Alors

$$\left| \frac{2^{n+1}z^{2^{n+1}}}{2^nz^{2^n}} \right| = 2|z|^{2^n} \underset{n \to +\infty}{\longrightarrow} \begin{cases} +\infty & \text{si } |z| > 1\\ 0 & \text{si } |z| < 1 \end{cases}$$

Ainsi le rayon de convergence vaut 1.

3. On applique le critère de d'Alembert «tel quel». Soit $z \in \mathbb{C}^*$. Alors

$$\left| \frac{(n+1)^{n+1} z^{3(n+1)} / (n+1)!}{n^n z^{3n} / n!} \right| = \left(1 + \frac{1}{n} \right)^n |z|^3 \underset{n \to +\infty}{\longrightarrow} e|z|^3$$

Ainsi le rayon de convergence vaut $e^{-\frac{1}{3}}$.

Etude au bord du disque de convergence

Solution 8

1. On sait que $u_n = \sin\left(\frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}$ donc $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$. Le rayon de convergence de $\sum_{n \in \mathbb{N}^*} u_n x^n$ vaut donc 1 d'après la règle de d'Alembert.

- 2. Puisque $u_n \sim \frac{1}{\sqrt{n}}$ et que la série à termes positifs $\sum_{n \in \mathbb{N}^*} \frac{1}{\sqrt{n}}$ diverge, $\sum_{n \in \mathbb{N}^*} u_n$ diverge. Il n'y a donc pas convergence en 1. Comme sin est croissante sur [0,1], la suite (u_n) est décroissante. De plus, elle converge vers 0. Le critère spécial des séries alternées permet d'affirmer que la série $\sum_{n \in \mathbb{N}^*} (-1)^n u_n$ converge. Il y a donc convergence en -1.
- 3. La fonction sin est concave sur [0,1]. On en déduit que $\sin(x) \ge \sin(1)x$ pour $x \in [0,1]$. Par conséquent, pour $x \in [0,1]$,

$$f(x) \ge \sin(1) \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}} \ge \sin(1) \sum_{n=1}^{+\infty} \frac{x^n}{n} = -\sin(1)\ln(1-x)$$

On en déduit par minoration que $\lim_{n\to+\infty} f(x) = +\infty$.

4. Pour $x \in [0, 1[$,

$$(1-x)f(x) = \sum_{n=1}^{+\infty} u_n x^n - \sum_{n=1}^{+\infty} u_n x^{n+1} = u_1 x + \sum_{n=2}^{+\infty} (u_n - u_{n-1}) x^n$$

Pour $x \in [0, 1]$,

$$|(u_n - u_{n-1})x^n| \le u_{n-1} - u_n$$

Comme la série télescopique $\sum u_{n-1} - u_n$ converge, la série de fonctions de terme genéral $x \mapsto (u_n - u_{n-1})x^n$ converge normalement et donc uniformément sur [0,1]. On peut alors appliquer le théorème d'interversion limite série

$$\lim_{x \to 1^{-}} \sum_{n=2}^{+\infty} (u_n - u_{n-1}) x^n = \sum_{n=2}^{+\infty} \lim_{x \to 1^{-}} (u_n - u_{n-1}) x^n = \sum_{n=2}^{+\infty} u_n - u_{n-1} = -u_1$$

On en déduit que $\lim_{x\to 1^-} (1-x)f(x) = 0$.

Solution 9

- 1. Remarquons que r_n est la somme partielle d'une série de Riemann.
 - Si $\beta > 1$, (r_n) converge vers un réel strictement positif donc (b_n) également. On en déduit que R = 1.
 - Si $\beta = 1$, on montre par comparaison série/intégrale que $r_n \sim \ln(n)$ i.e. $b_n \sim \frac{1}{\ln(n)}$. Le critère de d'Alembert montre que R = 1.
 - Si $\beta < 1$, on montre à nouveau par comparaison série/intégrale que $r_n \sim \frac{n^{1-\beta}}{1-\beta}$ i.e. $b_n \sim (1-\beta)n^{\beta-1}$. Le critère de d'Alembert montre à nouveau que R=1.
- 2. Etudions maintenant la convergence en 1.
 - Si $\beta > 1$, (b_n) ne converge pas vers 0 donc $\sum b_n$ diverge grossièrement.
 - Si $\beta = 1$, $b_n \sim \frac{1}{n \to +\infty}$ donc, a fortiori, $\frac{1}{n} = o(b_n)$ de sorte que $\sum b_n$ diverge.
 - Si $\beta < 1$, $b_n \sim \frac{1-\beta}{n^{1-\beta}}$ donc $\sum b_n$ converge si et seulement si $1-\beta > 1$ i.e. $\beta < 0$.

Pour récapituler, $\sum b_n$ converge si et seulement si $\beta < 0$.

Etudions maintenant la convergence en -1.

• Supposons $\beta > 1$. La suite (b_n) converge alors vers un réel strictement positif. La suite $((-1)^n b_n)$ ne tend donc pas vers 0 et la série $\sum (-1)^n b_n$ diverge grossièrement.

• Supposons $\beta \le 1$. La suite (r_n) croît vers $+\infty$ donc la suite (b_n) décroît vers 0. Le critère des séries alternées assure la convergence de la série $\sum (-1)^n b_n$.

Solution 10

1. On montre aisément par récurrence que (a_n) est strictement positive. Une étude de fonction montre également que la fonction $f: x \in]-1, +\infty[\mapsto \ln(1+x) - x]$ est négative. On en déduit que (a_n) est décroissante. Le théorème de la limite monotone permet alors d'affirmer que (a_n) converge vers $\ell \in \mathbb{R}_+$. Par continuité de $x \mapsto \ln(1+x)$, $\ell = \ln(1+\ell)$. L'étude de f montre qu'elle ne s'annule qu'en 0 de sorte que $\ell = 0$.

On en déduit que $a_{n+1} = \ln(1+a_n) \sim a_n$ donc le rayon de convergence de $\sum a_n$ vaut 1 d'après la règle de d'Alembert.

2. On a vu dans la question précédente que (a_n) était décroissante et convergeait vers 0. D'après le critère spécial des séries alternées, la série $\sum (-1)^n a_n$ converge.

On va maintenant calculer un équivalent de a_n . Comme (a_n) converge vers 0,

$$a_{n+1} = \ln(1+a_n) = a_n - \frac{1}{2}a_n^2 + o(a_n^2) = a_n \left(1 - \frac{1}{2}a_n + o(a_n)\right)$$

Par conséquent,

$$\frac{1}{a_{n+1}} - \frac{1}{a_n} = \frac{1}{a_n \left(1 - \frac{1}{2}a_n + o(a_n)\right)} - \frac{1}{a_n}$$

$$= \frac{1}{a_n \left(1 - \frac{1}{2}a_n + o(a_n)\right)} - \frac{1}{a_n}$$

$$= \frac{1}{a_n \left(1 - \frac{1}{2}a_n + o(a_n)\right)} - \frac{1}{a_n}$$

$$= \frac{1}{a_n} \left(1 + \frac{1}{2}a_n + o(a_n)\right) - \frac{1}{a_n}$$

$$= \frac{1}{a_n} + o(1)$$

$$= \frac{1}{a_n} + o(1)$$

$$= \frac{1}{a_n} + o(1)$$

Par sommation de relation d'équivalence pour des séries à termes positifs divergentes,

$$\sum_{k=0}^{n-1} \frac{1}{a_{k+1}} - \frac{1}{a_k} \sim \sum_{n \to +\infty}^{n-1} \frac{1}{2} = \frac{n}{2}$$

On en déduit que $a_n \sim \frac{2}{n}$ puis que la série $\sum a_n$ diverge par comparaison à une série de Riemann.

Solution 11

1. Pour tout entier $n \ge 2$,

$$\frac{|(-1)^{n+1}\ln(n+1)|}{|(-1)^n\ln(n)|} = \frac{\ln(n+1)}{\ln(n)} = 1 + \frac{\ln(1+1/n)}{\ln(n)} \underset{n \to +\infty}{\longrightarrow} 1$$

D'aprè la règle de d'Alembert, le rayon de convergence de la série entière $\sum_{n>1} (-1)^n \ln(n) x^n$ vaut 1.

2. Soit $x \in]-1,1[$.

$$(1+x)S(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(n) x^n + \sum_{n=1}^{+\infty} (-1)^n \ln(n) x^{n+1}$$

$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \ln(n+1) x^{n+1} - \sum_{n=1}^{+\infty} (-1)^{n+1} \ln(n) x^{n+1} \qquad \text{par changement d'indice et car } \ln(1) = 0$$

$$= \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}$$

On en déduit que

$$\forall x \in]-1,1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}$$

3. Soit $x \in [0, 1]$. La suite de terme général $\ln\left(1 + \frac{1}{n}\right)x^{n+1}$ décroît vers 0 donc la série $\sum_{n \ge 1} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)x^{n+1}$ vérifie le critère spécial des séries alternées. Elle converge et on peut majorer son reste en valeur absolue

$$\forall n \in \mathbb{N}^*, \left| \sum_{k=n+1}^{+\infty} (-1)^{k+1} \ln \left(1 + \frac{1}{k} \right) x^{k+1} \right| \le \ln \left(1 + \frac{1}{n+1} \right) x^{n+2} \le \ln \left(1 + \frac{1}{n+1} \right)$$

Le reste converge donc uniformément vers la fonction nulle sur [0,1]. La série entière $\sum_{n\geq 1} (-1)^{n+1} \ln\left(1+\frac{1}{n}\right) x^{n+1}$ converge donc uniformément sur [0,1]: elle est donc continue sur [0,1]. En particulier, elle est continue en 1 de sorte que

$$\lim_{x \to 1} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1} = \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

Comme $\lim_{x\to 1} \frac{1}{1+x} = \frac{1}{2}$, on en déduit par produit que

$$\lim_{x \to 1} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

4. Posons $S_N = \sum_{n=1}^N (-1)^n \ln\left(1 + \frac{1}{n}\right)$. On sait déjà que (S_N) converge. Pour déterminer sa limite, il suffit donc de déterminer la limite de (S_{2N}) .

$$\begin{split} S_{2N} &= \sum_{n=1}^{2N} (-1)^n \ln\left(1 + \frac{1}{n}\right) \\ &= \sum_{n=1}^{N} \ln\left(1 + \frac{1}{2n}\right) - \sum_{n=1}^{N} \ln\left(1 + \frac{1}{2n-1}\right) \\ &= \sum_{n=1}^{N} \ln\left(\frac{2n+1}{2n}\right) - \ln\left(\frac{2n}{2n-1}\right) \\ &= \sum_{n=1}^{N} \ln(2n+1) + \ln(2n-1) - 2\ln(2n) \\ &= \ln(2N+1) + 2\sum_{n=1}^{N} \ln(2n-1) - 2\sum_{n=1}^{N} \ln(2n) \\ &= \ln(2N+1) + 2\sum_{n=1}^{2N} \ln(n) - 4\sum_{n=1}^{N} \ln(2n) \\ &= \ln(2N+1) + 2\ln((2N)!) - 4N\ln(2) - 4\ln(N!) \\ &= \ln\left(\frac{(2N+1)((2N)!)^2}{2^{4N}(N!)^4}\right) \end{split}$$

D'après la formule de Stirling,

N!
$$\sim \sqrt{2\pi N} \cdot N^N \cdot e^{-N}$$

donc

$$\frac{((2N)!)^2}{(N!)^4} \sim_{\stackrel{N \to +\infty}{\sim}} 4\pi N (2N)^{4N} e^{-4N}$$

$$(N!)^4 \sim_{\stackrel{N \to +\infty}{\sim}} 4\pi^2 N^2 N^{4N} e^{-4N}$$

de sorte que

$$\frac{(2N+1)((2N)!)^2}{2^{4N}(N!)^4} \underset{N \to +\infty}{\longrightarrow} \frac{2}{\pi}$$

Ainsi

 $\sum_{n=1}^{+\infty} (-1)^n \ln\left(1 + \frac{1}{n}\right) = \lim_{N \to +\infty} S_{2N} = \ln\left(\frac{2}{\pi}\right)$

puis

 $\lim_{x \to 1} S(x) = -\frac{1}{2} \ln \left(\frac{2}{\pi} \right) = \ln \left(\sqrt{\frac{\pi}{2}} \right)$

Solution 12

1. On prouve aisément par récurrence que (a_n) est strictement positive. De plus, un argument de concavité montre que $\ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$: la suite (a_n) est donc décroissante. D'après le théorème de convergence monotone, (a_n) converge vers $\ell \in \mathbb{R}_+$. Par continuité de $f: x \mapsto \ln(1+x)$, $\ln(1+\ell) = \ell$. Une étude rapide de $x \mapsto \ln(1+x) - x$ montre que 0 est l'unique point fixe de f. AInsi $\ell = 0$.

2. Comme (a_n) converge vers 0, $\ln(1+a_n) \sim a_n$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{a_{n+1}}{a_n} \underset{n \to +\infty}{\longrightarrow} 1$$

D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum a_n z^n$ vaut 1.

Il s'agit d'étudier la convergence en −1 et 1.
 La série ∑(-1)ⁿa_n vérifie le critère spécial des séries alternées car (a_n) est décroissante de limite nulle : cette série converge.
 Remarquons que

 $\ln(1+a_n) = a_n - \frac{a_n^2}{2} + o(a_n^2) = a_n \left(1 - \frac{a_n}{2} + o(a_n)\right)$

Par conséquent

$$\frac{1}{a_{n+1}} = \frac{1}{a_n} \cdot \frac{1}{1 - \frac{a_n}{2} + o(a_n)} = \frac{1}{a_n} \left(1 + \frac{a_n}{2} + o(a_n) \right) = \frac{1}{a_n} + \frac{1}{2} + o(1)$$

Ainsi $\frac{1}{a_{n+1}} - \frac{1}{a_n} \sim \frac{1}{n \to +\infty}$. Or la série $\sum \frac{1}{2}$ diverge. Par sommation de relation d'équivalence pour des séries à termes positifs divergentes, on obtient

 $\sum_{k=0}^{n-1} \frac{1}{a_{k+1}} - \frac{1}{a_k} \sim \sum_{n \to +\infty}^{n-1} \frac{1}{2}$

ou encore

 $\frac{1}{a_n} - \frac{1}{a_0} \underset{n \to +\infty}{\sim} \frac{n}{2}$

Ainsi

 $\frac{1}{a_n} \underset{n \to +\infty}{\sim} \frac{n}{2}$

puis

 $a_n \sim \frac{2}{n}$

On en déduit que la série $\sum a_n$ diverge par critère de Riemann. Le domaine de définition de $x \in \mathbb{R} \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est donc]-1,1].

Calcul de sommes de séries entières

Solution 13

La série entière $\sum_{n\geq 0} x^{n+1}$ a un rayon de convergence égal à 1. Pour $x\in]-1,1[$, notons S(x) sa somme. S est dérivable sur]-1,1[et pour $x\in]-1,1[$,

$$S'(x) = \sum_{n \ge 0} (n+1)x^n$$

La somme a calculer est donc $S'\left(\frac{1}{3}\right)$. Or on a classiquement $S(x) = \frac{x}{1-x}$ et donc $S'(x) = \frac{1}{(1-x)^2}$ pour $x \in]-1,1[$. On en déduit

$$\sum_{n>0} (n+1)3^{-n} = \frac{9}{4}$$

Solution 14

Soit $a \in E$. Puisque a est de limite nulle, la série entière définissant f_a est de rayon de convergence supérieur ou égal à 1. De plus, pour $t \in [0,1[,\frac{1}{1-t}=\sum_{n=0}^{+\infty}t^n]$ et le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}}t^n$ vaut 1. Par produit de Cauchy, $t\mapsto\frac{f_a(t)}{1-t}$ est également développable en série entière en 0, de rayon de convergence supérieur ou égal à 1. Plus précisément,

$$\forall t \in [0, 1[, \frac{f_a(t)}{1 - t} = \sum_{n=0}^{+\infty} b_n t^n \quad \text{avec} \quad b_n = \sum_{k=0}^{n} a_k$$

Fixons $x \in]0,1[$. La série entière $\sum b_n t^n$ converge uniformément sur le segment [0,x] puisque son raton de convergence est supérieur ou égal à 1. On peut donc intervertir série et intégrale :

$$\int_0^x \frac{f_a(t)}{1-t} dt = \int_0^x \left(\sum_{n=0}^{+\infty} b_n t^n\right) dt = \sum_{n=0}^{+\infty} \int_0^1 b_n t^n dt = \sum_{n=0}^{+\infty} \frac{b_n x^{n+1}}{n+1}$$

puis

$$\frac{1}{x} \int_0^x \frac{f_a(t)}{1-t} dt = \sum_{n=0}^{+\infty} \frac{b_n}{n+1} x^n$$

En posant $c_n = \frac{b_n}{n+1}$, il suffit donc de montrer que $c \in E$ i.e. que c est de limite nulle. Il s'agit d'une application du lemme de Césaro. On sait que $a_n = o(1)$ donc, par sommation de relation de comparaison, $b_n = \sum_{k=0}^n a_k = o(n+1)$ et enfin, $c_n = \frac{b_n}{n+1} = o(1)$. Ceci prouve bien que $c \in E$. On conclut en posant $c \in E$.

Solution 15

- 1. La suite de fonctions (\tan^n) converge simplement vers la fonction nulle sur $[0, \pi/4[$. De plus, $0 \le \tan^n t \le 1$ pour tout $(n, t) \in \mathbb{N} \times [0, \pi/4[$ et $t \mapsto 1$ est intégrable sur $[0, \pi/4[$. D'après le théorème de convergence dominée, (a_n) converge vers 0.
- 2. Soit $n \in \mathbb{N}$. Pour $t \in [0, \pi/4]$, $0 \le \tan(t) \le 1$ donc $\tan^{n+1}(t) \le \tan^n(t)$. Par croissance de l'intégrale, $a_{n+1} \le a_n$. La suite (a_n) est décroissante.
- 3. Rappelons que $tan' = 1 + tan^2$ donc

$$a_n + a_{n+2} = \int_0^{\frac{\pi}{4}} \tan^n(t) \tan'(t) dt = \left[\frac{\tan^{n+1}(t)}{n+1}\right]_0^{\frac{\pi}{4}} = \frac{1}{n+1}$$

Par décroissance de (a_n)

$$\frac{1}{n+1} = a_n + a_{n+2} \le 2a_n \le a_n + a_{n-2} = \frac{1}{n-1}$$

On en déduit que $a_n \sim \frac{1}{n_0 + \infty} \frac{1}{2n}$.

- **4.** Comme le rayon de convergence de la série entière $\sum \frac{x^n}{2n}$ vaut 1 (règle de d'Alembert), R = 1 en vertu de l'équivalent de la question précédente.
- **5.** Soit $x \in]-1,1[$. Puisque pour tout $n \in \mathbb{N}$, $a_n + a_{n+2} = \frac{1}{n+1}$,

$$\sum_{n=0}^{+\infty} a_n x^{n+2} + \sum_{n=0}^{+\infty} a_{n+2} x_{n+2} = \sum_{n=0}^{+\infty} \frac{x^{n+2}}{n+1}$$

ou encore

$$x^{2}f(x) + f(x) - a_{0} - a_{1}x = -x\ln(1-x)$$

Or

$$a_0 = \frac{\pi}{4}$$

$$a_1 = \left[-\ln(\cos t)\right]_0^{\frac{\pi}{4}} = \frac{1}{2}\ln 2$$

Par conséquent

$$f(x) = \frac{\frac{\pi}{4} + \frac{x \ln 2}{2} - x \ln(1 - x)}{1 + x^2}$$

Solution 16

Comme $\left|\cos\left(n\frac{\pi}{2}\right)\right| \le 1$ pour tout $n \in \mathbb{N}$, le rayon de convergence est supérieur ou égal à 1. Puisque la suite de terme général $\cos\left(n\frac{\pi}{2}\right)$ ne converge pas vers 0, le rayon de convergence est inférieur ou égal à 1. Il vaut donc 1.

Pour les mêmes raisons, le rayon de convergence de la série $\sum e^{\frac{in\pi}{2}}x^n$ vaut 1. Ainsi pour $x \in]-1,1[$,

$$f(x) = \text{Re}\left(\sum_{n=0}^{+\infty} e^{\frac{in\pi}{2}} x^n\right) = \text{Re}\left(\frac{1}{1-ix}\right) = \frac{1}{1+x^2}$$

Solution 17

- 1. C'est du cours. La série entière $\sum_{n\in\mathbb{N}} (-1)^n x^{2n}$ a pour rayon de convergence 1 et pour somme $\frac{1}{1+x^2}$. Par intégration, la série entière $\sum_{n\in\mathbb{N}} \frac{(-1)^n x^{2n+1}}{2n+1}$ a également pour rayon de convergence 1 et pour somme $\arctan(x)$, ce qui répond à la question.
- 2. Une simple application de la règle de d'Alembert montre que le rayon de convergence vaut 1.
- 3. f est bien dérivable sur]-1,1[et pour $x \in]-1,1[$,

$$f'(x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1} x^{2k}}{2k-1} = x \sum_{k=0}^{+\infty} \frac{(-1)^k}{x^{2k+1}} 2k + 1 = x \arctan(x)$$

Par intégration par parties,

$$f(x) = f(0) + \int_0^x t \arctan(t) dt$$

$$= 0 + \frac{x^2 \arctan(x)}{2} - \frac{1}{2} \int_0^x \frac{t^2}{1 + t^2} dt$$

$$= \frac{x^2 \arctan(x)}{2} - \frac{x}{2} + \frac{1}{2} \arctan(x)$$

4. Pour tout $k \in \mathbb{N}^*$ et tout $x \in [-1, 1]$,

$$\left| \frac{(-1)^{k+1}}{(2k+1)(2k-1)} x^{2k+1} \right| \le \frac{1}{4k^2 - 1}$$

Or la série $\sum_{k \in \mathbb{N}^*} \frac{1}{4k^2-1}$ converge (équivalent + critère de Riemann) donc la série entière définissant f converge normalement sur [-1,1].

5. La convergence normale et donc uniforme sur [-1,1] permet d'appliquer le théorème d'interversion limite/série. Ainsi

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \lim_{x \to 1^{-}} f(x) = \frac{\pi}{4} - \frac{1}{2}$$

Solution 18

1. Soit $n \in \mathbb{N}$. Par intégration par parties,

$$a_n = \left[\frac{t}{(2+t^2)^{n+1}}\right]_0^1 + 2(n+1) \int_0^1 \frac{t^2 dt}{(2+t^2)^{n+2}}$$
$$= \frac{1}{3^{n+1}} + 2(n+1)(a_n - 2a_{n+1})$$

Par conséquent

$$4(n+1)a_{n+1} = (2n+1)a_n + \frac{1}{3^{n+1}}$$

puis

$$\frac{a_{n+1}}{a_n} = \frac{2n+1}{4(n+1)} + \frac{1}{4(n+1)3^{n+1}a_n}$$

Or pour $t \in [0,1]$

$$\frac{1}{(2+t^2)^{n+1}} \ge \frac{1}{3^{n+1}}$$

donc

$$a_n \ge \frac{1}{3^{n+1}}$$

Par conséquent,

$$4(n+1)3^{n+1}a_n \ge 4(n+1)$$

de sorte que

$$\lim_{n \to +\infty} \frac{1}{4(n+1)3^{n+1}a_n} = 0$$

puis

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$$

D'après la règle de d'Alembert, le rayon de convergence de la série entière $\sum a_n x^n$ vaut 2.

2. Notons f(x) la somme de cette série entière.

Soit $x \in]-2, 2[$. En reprenant la relation obtenue à la première question

$$4\sum_{n=0}^{+\infty}(n+1)a_{n+1}x^n = \sum_{n=0}^{+\infty}(2n+1)a_nx^n + \sum_{n=0}^{+\infty}\frac{x^n}{3^{n+1}}$$

ou encore

$$4f'(x) = 2xf'(x) + f(x) + \frac{1}{3-x}$$

puis

$$f'(x) = \frac{1}{2(2-x)}f(x) + \frac{1}{2(2-x)(3-x)}$$

Les solutions de l'équation différentielle $y' = \frac{1}{2(2-x)}f(x)$ sur]-2,2[sont les fonctions $x \mapsto \frac{\lambda}{\sqrt{2-x}}$ avec $\lambda \in \mathbb{R}$. On applique alors la méthode de variation de la constante et on recherche une solution de l'équation différentielle

(E)
$$y' = \frac{1}{2(2-x)}y + \frac{1}{2(2-x)(3-x)}$$

de la forme $x \mapsto \frac{\varphi(x)}{\sqrt{2-x}}$ avec φ dérivable sur] – 2, 2[ce qui donne

$$\frac{\varphi'(x)}{\sqrt{2-x}} = \frac{1}{2(2-x)(3-x)}$$

ou encore

$$\varphi'(x) = \frac{1}{2\sqrt{2-x}(3-x)} = \frac{1}{2\sqrt{2-x}} \cdot \frac{1}{1+\sqrt{2-x}}$$

On peut alors choisir

$$\varphi(x) = -\arctan(\sqrt{2-x})$$

Les solutions de (E) sont donc les fonctions

$$x \mapsto \frac{\lambda}{\sqrt{2-x}} - \frac{\arctan(\sqrt{2-x})}{\sqrt{2-x}}$$

Or

$$f(0) = a_0 = \frac{1}{\sqrt{2}} \arctan\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{2\sqrt{2}} - \frac{\arctan(\sqrt{2})}{\sqrt{2}}$$

donc

$$f(x) = \frac{\pi/2 - \arctan(\sqrt{2-x})}{\sqrt{2-x}} = \frac{1}{\sqrt{2-x}} \arctan\left(\frac{1}{\sqrt{2-x}}\right)$$

Solution 19

D'après la règle de d'Alembert, le rayon de convergence vaut 1.

On effectue maintenant une décomposition en éléments simples :

$$\frac{n^2 + 4n - 1}{n + 2} = n + 2 - \frac{5}{n + 2}$$

Ainsi pour $x \in]-1,0[\cup]0,1[,$

$$\frac{n^2 + 4n - 1}{n + 2}x^n = (n + 1)x^n + x^n - \frac{5}{x^2} \cdot \frac{x^{n+2}}{n+2}$$

La série géométrique $\sum x^n$ converge et

$$\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$

En considérant la dérivée de cette série géométrique

$$\sum_{n=0}^{+\infty} (n+1)x^n = \sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

Et en en considérant une primitive

$$\sum_{n=0}^{+\infty} \frac{x^{n+2}}{n+2} = \sum_{n=1}^{+\infty} \frac{x^{n+1}}{n+1} = -x + \sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x) - x$$

Finalement,

$$\forall x \in]-1, 0[\cup]0, 1[, \sum_{n=0}^{+\infty} \frac{n^2 + 4n - 1}{n + 2} x^n = \frac{1}{(1 - x)^2} + \frac{1}{(1 - x)} + \frac{5(\ln(1 - x) + x)}{x^2}$$

La somme vaut $-\frac{1}{2}$ lorsque x = 0.

Solution 20

- 1. D'après la règle de d'Alembert, R = 1.
- **2.** Soit $x \in]0,1[$. Alors

$$f(x) = \frac{1}{\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\sqrt{x}^{2n+1}}{2n+1}$$

On sait que

$$\forall u \in]-1,1[, \sum_{n=0}^{+\infty} u^{2n} = \frac{1}{1-u^2} = \frac{1}{2} \left(\frac{1}{1+u} + \frac{1}{1-u} \right)$$

Donc en primitivant cette série entière

$$\forall u \in]-1,1[, \sum_{n=0}^{+\infty} \frac{u^{2n+1}}{2n+1} = \frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)$$

car les deux termes sont nuls pour u = 0.

REMARQUE. Le lecteur aura reconnu en cette primitive la fonction argth (hors programme).

On en déduit que

$$\forall x \in]0,1[, f(x) = \frac{1}{2\sqrt{x}} \ln\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right) = \frac{1}{\sqrt{x}} \operatorname{argth}(\sqrt{x})$$

Soit maintenant $x \in]-1,0[$. Alors

$$f(x) = \frac{1}{\sqrt{-x}} \sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{-x}^{2n+1}}{2n+1} = \frac{1}{\sqrt{-x}} \arctan(\sqrt{-x})$$

Enfin, il est clair que f(0) = 1.

Equations différentielles

Solution 21

1. arcsin est de classe \mathcal{C}^{∞} sur]-1,1[à valeurs dans \mathbb{R} et sh est de classe \mathcal{C}^{∞} sur \mathbb{R} donc f est de classe \mathcal{C}^{∞} sur]-1,1[par composition. De plus,

$$\forall x \in]-1,1[, f'(x) = \frac{1}{(1-x^2)^{\frac{1}{2}}} \operatorname{ch}(\arcsin x)$$

puis

$$\forall x \in]-1,1[, \ f''(x) = \frac{1}{1-x^2} \operatorname{sh}(\arcsin x) + \frac{x}{(1-x^2)^{\frac{3}{2}}} \operatorname{ch}(\arcsin x) = \frac{1}{1-x^2} f(x) + \frac{x}{1-x^2} f'(x)$$

ou encore

$$\forall x \in]-1,1[,\ (1-x^2)f''(x)-xf'(x)-f(x)=0$$

2. Supposons que f soit développable en série entière sur]-1,1[et notons $f(x)=\sum_{n=0}^{+\infty}a_nx^n$. D'après l'équation différentielle vérifiée par f,

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} (n+2)(n+1)a_{n+2}x^n - \sum_{n=0}^{+\infty} n(n-1)a_nx^n - \sum_{n=0}^{+\infty} na_nx^n - \sum_{n=0}^{+\infty} a_nx^n = 0$$

ou encore

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} \left[(n+2)(n+1)a_{n+2} - (n^2+1)a_n \right] x^n = 0$$

Par unicité du développement en série entière,

$$\forall n \in \mathbb{N}, \ a_{n+2} = \frac{n^2 + 1}{(n+1)(n+2)} a_n$$

Or $a_0 = f(0) = 1$ et $a_1 = f'(0) = 1$ donc

$$\forall n \in \mathbb{N}, \ a_{2n} = 0$$

$$\forall n \in \mathbb{N}, \ a_{2n+1} = \frac{\prod_{k=1}^{n} \left[(2k-1)^2 + 1 \right]}{(2n+1)!}$$

Réciproquement, le rayon de convergence de la série entière $\sum_{n \in \mathbb{N}} \frac{\prod_{k=1}^{n}[(2k-1)^{2}+1]}{(2n+1)!} x^{2n+1}$ vaut bien 1 (règle de d'Alembert) et, en reprenant le raisonnement précédent en sens inverse, sa somme est bien solution sur]-1,1[du problème de Cauchy

$$\begin{cases} (1-x^2)y'' - xy' - y = 0 \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

Par unicité de la solution de ce problème de Cauchy,

$$\forall x \in]-1,1[, f(x) = \frac{\prod_{k=1}^{n} [(2k-1)^2 + 1]}{(2n+1)!} x^{2n+1}$$

Solution 22

1. On constate que f est dérivable sur]-1,1[et que

$$\forall x \in]-1,1[, f'(x) = \frac{1}{1-x^2} + \frac{x \arcsin x}{(1-x^2)^{\frac{3}{2}}}$$

ou encore

$$\forall x \in]-1, 1[, (1-x^2)f'(x) - xf(x) = 1$$

2. Supposons que f soit développable en série entière sur]-1,1[. Il existe donc $(a_n) \in \mathbb{R}^{\mathbb{N}}$ tel que

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

En reportant dans l'équation différentielle précédente, on obtient :

$$\sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n - \sum_{n=1}^{+\infty} (n-1)a_{n-1}x^n - \sum_{n=1}^{+\infty} a_{n-1}x^n = 1$$

ou encore

$$a_1 + \sum_{n=1}^{+\infty} \left[(n+1)a_{n+1} - na_{n-1} \right] x^n = 1$$

Par unicité du développement en série entière, $a_1 = 1$ et

$$\forall n \in \mathbb{N}^*, \ (n+1)a_{n+1}-na_{n-1}=0$$

Notamment,

$$\forall n \in \mathbb{N}, \ a_{2n+1} = \frac{2n}{2n+1} a_{2n-1}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ a_n = \frac{2^n (n!)^2}{(2n+1)!}$$

par ailleurs, $a_0 = f(0) = 0$ donc $a_{2n} = 0$ pour tout $n \in \mathbb{N}$. Réciproquement, la série entière $\sum_{n \in \mathbb{N}} \frac{2^n (n!)^2}{(2n+1)!} x^{2n+1}$ a bien un rayon de convergence égal à 1 par la règle de d'Alembert et le raisonne-

ment précédent repris en sens inverse montre que sa somme est bien solution sur] -1, 1[du problème de Cauchy $\begin{cases} (1-x^2)y' + xy = 1\\ y(0) = 0 \end{cases}$ tout comme f. Par unicité de la solution de ce problème de Cauchy

$$\forall x \in]-1,1[, \ f(x) = \sum_{n=0}^{+\infty} \frac{2^n (n!)^2}{(2n+1)!} x^{2n+1}$$

3. Il est classique de montrer que

$$\forall x \in]-1,1[, \frac{1}{\sqrt{1-x^2}} = \sum_{n=0}^{+\infty} {2n \choose n} x^{2n}$$

Comme arcsin est l'unique primitive de $x\mapsto \frac{1}{\sqrt{1-x^2}}$ nulle en 0,

$$\forall x \in]-1,1[, \arcsin x = \sum_{n=0}^{+\infty} \frac{1}{2n+1} {2n \choose n} x^{2n+1}$$

Par produit de Cauchy,

$$\forall x \in]-1, 1[, f(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{2k+1} \binom{2k}{k} \binom{2n-2k}{n-k} \right) x^{2n+1}$$

puis, par unicité du développement en série entière :

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} \frac{1}{2k+1} \binom{2k}{k} \binom{2n-2k}{n-k} = \frac{2^{n}(n!)^{2}}{(2n+1)!}$$

Solution 23

1. Posons $a_n = \frac{1}{\binom{2n}{n}}$. On utilise la règle de d'Alembert

$$\frac{a_{n+1}}{a_n} = \frac{\binom{2n}{n}}{\binom{2n+2}{n+1}} = \frac{(n+1)^2}{(2n+2)(2n+1)} \xrightarrow[n \to +\infty]{} \frac{1}{4}$$

Le rayon de convergence est donc 4.

2. Soit $x \in]-4,4[$.

$$x(x-4)S'(x) + (x+2)S(x) = x(x-4) \sum_{n=0}^{+\infty} n a_n x^{n-1} + (x+2) \sum_{n=0}^{+\infty} a_n x^n$$

$$= \sum_{n=0}^{+\infty} n a_n x^{n+1} - 4 \sum_{n=0}^{+\infty} n a_n x^n + \sum_{n=0}^{+\infty} a_n x^{n+1} + 2 \sum_{n=0}^{+\infty} a_n x^n$$

$$= \sum_{n=1}^{+\infty} (n-1)a_{n-1}x^n - 4 \sum_{n=0}^{+\infty} n a_n x^n + \sum_{n=1}^{+\infty} a_{n-1}x^n + 2 \sum_{n=0}^{+\infty} a_n x^n$$

$$= 2a_0 + \sum_{n=1}^{+\infty} [n a_{n-1} - (4n-2)a_n]$$

Or $a_0 = 1$ et pour tout $n \in \mathbb{N}^*$,

$$n\binom{2n}{n} = 2n\binom{2n-1}{n-1} = 2n\binom{2n-1}{n} = 2(2n-1)\binom{2n-2}{n-1}$$

i.e. $na_{n-1} = (4n - 2)a_n$. Ainsi

$$x(x-4)S'(x) + (x+2)S(x) = 2$$

3. Sur]0,4[, l'équation différentielle équivaut à

$$y' + \frac{x+2}{x(x-4)}y = \frac{2}{x(x-4)}$$

L'équation différentielle homogène (\mathcal{E}_{H}) associée à (\mathcal{E}) est donc

$$y' + \frac{x+2}{x(x-4)}y = \frac{2}{x(x-4)}$$

Tout d'abord

$$\frac{x+2}{x(x-4)} = \frac{3}{2(x-4)} - \frac{1}{2x}$$

On en déduit que les solutions de l'équation homogène sur]0,4[sont les fonctions

$$x \mapsto \frac{\lambda \sqrt{x}}{(\sqrt{4-x})^3}$$

avec $\lambda \in \mathbb{R}$.

- 4. Calcul laborieux mais sans dificulté.
- 5. On emploie alors la méthode de variation de la constante pour trouver une solution particulère de (\mathcal{E}) . On recherche une solution de la forme $x \mapsto \frac{\lambda(x)\sqrt{x}}{\sqrt{(4-x)^3}}$ avec λ dérivable sur]0, 4[. On aboutit à la condition

$$\frac{\lambda'(x)\sqrt{x}}{\sqrt{(4-x)^3}} = \frac{2}{x(x-4)}$$

ou encore

$$\lambda'(x) = \frac{-2\sqrt{4-x}}{x\sqrt{x}}$$

D'après la question précédente, on peut donc choisir

$$\lambda(x) = 4\sqrt{\frac{4-x}{x}} - 4\arctan\left(\sqrt{\frac{4-x}{x}}\right)$$

Une solution particulière de (\mathcal{E}) sur]0,4[est donc

$$x \mapsto \frac{4}{4-x} - \frac{4\sqrt{x}}{\sqrt{(4-x)^3}} \arctan\left(\sqrt{\frac{4-x}{x}}\right)$$

Il existe donc $\lambda \in \mathbb{R}$ tel que

$$\forall x \in]0, 4[, S(x) = \frac{4}{4 - x} - \frac{4\sqrt{x}}{\sqrt{(4 - x)^3}} \arctan\left(\sqrt{\frac{4 - x}{x}}\right) + \frac{\lambda\sqrt{x}}{(\sqrt{4 - x})^3}$$

La continuité de S en 0 ne donne aucune condition sur λ. On considère donc la dérivabilité de S en 0.

$$\frac{\mathrm{S}(x) - \mathrm{S}(0)}{x - 0} = \frac{1}{4 - x} + \frac{1}{\sqrt{x}\sqrt{(4 - x)^3}} \left(\lambda - 4\arctan\left(\sqrt{\frac{4 - x}{x}}\right)\right)$$

Puisque ce taux de variation admet une limite finie en 0 et que $\lim_{\infty} \arctan = \frac{\pi}{2}$, on a nécessairement $\lambda = 2\pi$. Ainsi

$$\forall x \in]0, 4[, S(x) = \frac{4}{4 - x} - \frac{4\sqrt{x}}{\sqrt{(4 - x)^3}} \arctan\left(\sqrt{\frac{4 - x}{x}}\right) + \frac{2\pi\sqrt{x}}{(\sqrt{4 - x})^3}$$

6. Notamment

$$\sigma = S(1) = \frac{4}{3} - \frac{4}{\sqrt{27}} \arctan(\sqrt{3}) + \frac{2\pi}{\sqrt{27}} = \frac{4}{3} + \frac{2\pi}{9\sqrt{3}}$$

Solution 24

1. Une récurrence double montre que (a_n) est positive. On en déduit que $a_{n+2} \ge a_{n+1}$ pour tout $n \in \mathbb{N}$. Par ailleurs, $a_1 \ge a_0$ donc (a_n) est croissante.

Ensuite, $a_{n+2}-a_{n+1}=\frac{a_n}{n+2}\geq \frac{1}{n+2}$ et la série à termes positifs $\sum_{n\in\mathbb{N}}\frac{1}{n+2}$ diverge vers $+\infty$ donc la série télescopique $\sum a_{n+2}-a_{n+1}$ diverge également vers $+\infty$ i.e. la suite (a_n) diverge vers $+\infty$.

2. La suite (a_n) est strictement positive et

$$\forall n \in \mathbb{N}, \ \frac{a_{n+2}}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}} \cdot \frac{1}{n+2}$$

Mais comme (a_n) est croissante et positive

$$\forall n \in \mathbb{N}, \ 1 \le \frac{a_{n+2}}{a_{n+1}} \le 1 + \frac{1}{n+2}$$

On en déduit que $\lim_{n\to+\infty}\frac{a_{n+2}}{a_{n+1}}=1$: le rayon de convergence de $\sum a_nx^n$ vaut donc 1.

3. Soit *x* ∈] − 1, 1[. Alors

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n$$

$$= a_0 + a_1 x + \sum_{n=2}^{+\infty} a_n x^n$$

$$= 1 + x + \sum_{n=0}^{+\infty} a_{n+2} x^{n+2}$$

$$= 1 + x + \sum_{n=0}^{+\infty} a_{n+1} x^{n+2} + \sum_{n=0}^{+\infty} \frac{a_n}{n+2} x^{n+2}$$

$$= 1 + x + x \sum_{n=1}^{+\infty} a_n x^n + \sum_{n=0}^{+\infty} \frac{a_n}{n+2} x^{n+2}$$

$$= 1 + x + x (S(x) - 1) + \sum_{n=0}^{+\infty} \frac{a_n}{n+2} x^{n+2}$$

S est de classe \mathcal{C}^{∞} sur]-1,1[en tant que somme de série entière. En dérivant la relation précédente, on obtient

$$S'(x) = S(x) + xS'(x) + \sum_{n=0}^{+\infty} a_n x^{n+1} = S(x) + xS'(x) + xS(x)$$

ou encore

$$(1-x)S'(x) = (1+x)S(x)$$

Comme une primitive de $x\mapsto \frac{1+x}{1-x}=-1+\frac{2}{1-x}$ sur] -1,1[est $x\mapsto -x-2\ln(1-x),$ il existe $\lambda\in\mathbb{R}$ tel que

$$\forall x \in]-1,1[, S(x) = \frac{\lambda e^{-x}}{(1-x)^2}$$

Or $S(0) = a_0 = 1$ donc $\lambda = 1$ et

$$\forall x \in]-1,1[, S(x) = \frac{e^{-x}}{(1-x)^2}$$

4. Pour tout $x \in \mathbb{R}$,

$$e^{-x} = \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n!}$$

et pour tout $x \in]-1,1[$,

$$\frac{1}{(1-x)^2} = \sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=0}^{+\infty} (n+1)x^n$$

Par produit de Cauchy

$$\forall n \in \mathbb{N}, \ a_n = \sum_{k=0}^n \frac{(-1)^k (n-k+1)}{k!} = n \sum_{k=0}^n \frac{(-1)^k}{k!} + \sum_{k=0}^{n-1} \frac{(-1)^k}{k!} + \sum_{k=0}^n \frac{(-1)^k}{k!}$$

Comme $\lim_{n\to+\infty} \sum_{k=0}^n \frac{(-1)^k}{k!} = \frac{1}{e}$, on en déduit que $a_n \sim \frac{n}{n\to+\infty} \frac{n}{e}$.

Produit de Cauchy

Solution 25

La série entière $\sum_{n\in\mathbb{N}^*} H_n x^n$ est le produit de Cauchy des séries entières $\sum_{n\in\mathbb{N}} x^n$ et $\sum_{n\in\mathbb{N}^*} \frac{x^n}{n}$. Comme ces deux séries entières ont pour rayon de convergence 1, le rayon de convergence de $\sum_{n\in\mathbb{N}^*} H_n x^n$ est supérieur ou égal à 1. De plus, (H_n) ne converge pas vers 0 donc le rayon de convergence est inférieur ou égal à 1 : il vaut donc 1. Enfin, pour tout $x \in]-1,1[$,

$$\sum_{n=1}^{+\infty} H_n x^n = \left(\sum_{n=0}^{+\infty} x^n\right) \left(\sum_{n=1}^{+\infty} \frac{x^n}{x}\right) = -\frac{\ln(1-x)}{1-x}$$

Solution 26

1. On a par produit de Cauchy,

$$\forall x \in]-R, R[, \left(\sum_{n=0}^{+\infty} u_n x^n\right)^2 = \sum_{n=0}^{+\infty} u_{n+1} x_n$$

et donc en mutipliant par x:

$$\forall x \in]-R, R[, xS(x)^2 = \sum_{n=0}^{+\infty} u_{n+1} x^{n+1} = \sum_{n=1}^{+\infty} u_n x^n = S(x) - 1$$

ou encore

$$\forall x \in]-R, R[, xS(x)^2 - S(x) + 1 = 0$$

On en déduit que S(0) = 1 et que si $x \neq 0$, S(x) est solution de l'équation du second degré $xY^2 - Y + 1 = 0$ et donc

$$S(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

ATTENTION! A priori, le signe dépend de *x*.

Il existe donc ε :] – R, R[\{0} \rightarrow {-1, 1} telle que

$$\forall x \in]-R, R[\setminus \{0\}, S(x) = \frac{1 + \varepsilon(x)\sqrt{1 - 4x}}{2x}$$

On en déduit que

$$\forall x \in]-R, R[\setminus \{0\}, \ \varepsilon(x) = \frac{2xS(x) - 1}{\sqrt{1 - 4x}}$$

Comme S est continue sur] -R, R[, ε peut se prolonger en une fonction continue sur] -R, R[. Ainsi ε est continue sur l'intervalle] -R, R[, ε (0) = -1 et ε est à valeurs dans $\{-1,1\}$. D'après le théorème des valeurs intermédiaires, ε est constante égale à -1 sur] -R, R[. Ainsi

$$\forall x \in]-R, R[\setminus \{0\}, S(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

2. Classiquement,

$$\forall t \in]-1,1[, \sqrt{1-t} = (1-t)^{1/2} = \sum_{n=0}^{+\infty} {1/2 \choose n} (-1)^n t^n$$

 $\operatorname{avec}\binom{1/2}{0} = 1 \text{ et pour } n \in \mathbb{N}^*$

$$\binom{1/2}{n} = \frac{1}{n!} \prod_{k=0}^{n-1} \left(\frac{1}{2} - k\right) = \frac{(-1)^{n-1}}{2n!} \prod_{k=1}^{n-1} \left(k - \frac{1}{2}\right) = \frac{(-1)^{n-1}}{2^n n!} \prod_{k=1}^{n-1} (2k-1) = \frac{(-1)^{n-1}}{2^n n!} \cdot \frac{(2n-2)!}{2^{n-1}(n-1)!}$$

Ainsi

$$\forall t \in]-1,1[, \sqrt{1-t}=1-\sum_{n=1}^{+\infty} \frac{(2n-2)!}{2^{2n-1}n!(n-1)!}t^n$$

puis

$$\forall x \in]-1,1[, \sqrt{1-4t}=1-2\sum_{n=1}^{+\infty} \frac{(2n-2)!}{n!(n-1)!}x^n$$

On en déduit que

$$\forall x \in]-1,1[, S(x) = \sum_{n=1}^{+\infty} \frac{(2n-2)!}{n!(n-1)!} x^{n-1} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(n+1)!n!} x^n$$

Par unicité du développement en série entière

$$\forall n \in \mathbb{N}, \ u_n = \frac{(2n)!}{(n+1)!n!} = \frac{1}{n+1} \binom{2n}{n}$$

3. On ne peut pas utiliser le résultat de la question précédente puisqu'on a justement supposé $R = \frac{1}{4}$ (en fait R > 0) pour le montrer. Néanmoins, on peut en quelque sorte faire le raisonnement précédent «à l'envers». Posons donc $v_n = \frac{1}{n+1} \binom{2n}{n}$. D'après la règle d'Alembert, la série entière $\sum v_n x^n$ a pour rayon de convergence $\frac{1}{4}$ et, si on note T(x) sa somme, T(0) = 1 et, d'après les calculs précédents,

$$\forall x \in]-1/4, 1/4[\setminus\{0\}, \ T(x) = \frac{1-\sqrt{1-4x}}{2x}$$

On en déduit que

$$\forall x \in]-1/4, 1/4[, xT(x)^2 - T(x) + 1 = 0]$$

puis que $v_0 = 1$ et

$$\forall n \in \mathbb{N}, \ v_{n+1} = \sum_{k=0}^{n} v_k v_{n-k}$$

Par récurrence, $u_n = v_n$ pour tout $n \in \mathbb{N}$. La série entière $\sum u_n x^n$ a donc bien un rayon de convergence égal à 1/4.

Solution 27

- 1. On note \mathcal{A}_n l'ensemble des involutions de $[\![1,n]\!]$, \mathcal{B}_n l'ensemble des involutions de $[\![1,n]\!]$ fixant n et \mathcal{C}_n l'ensemble des involutions de $[\![1,n]\!]$ ne fixant pas n. Se donner un élément de \mathcal{B}_n consiste à se donner une involution de $[\![1,n-1]\!]$. Ainsi card $\mathcal{B}_n=\mathrm{I}_{n-1}$. Se donner un élément de \mathcal{C}_n consiste à choisir l'image k de n dans $[\![1,n-1]\!]$ (n-1 possibilités). L'image de k est à alors nécessairement n et il reste à se donner une permutation de l'ensemble $[\![1,n]\!]\setminus\{n,k\}$ qui est de cardinal n-2. Ainsi card $\mathcal{C}_n=(n-1)\mathrm{I}_{n-2}$. Comme $\mathcal{A}_n=\mathcal{B}_n\sqcup\mathcal{C}_n$, $\mathrm{I}_n=\mathrm{I}_{n-1}+\mathrm{I}_{n-2}$.
- 2. Toute involution de [1, n] est une permutation de [1, n] donc $0 \le I_n \le n!$ i.e. $0 \le \frac{I_n}{n!} \le 1$. On en déduit que le rayon de convergence de la série entière $\sum \frac{I_n}{n!} x^n$ est supérieur ou égal à 1.

3. Soit $x \in]-1,1[$.

$$S'(x) = \sum_{n=1}^{+\infty} \frac{I_n}{(n-1)!} x^{n-1}$$

$$= \sum_{n=0}^{+\infty} \frac{I_{n+1}}{n!} x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{I_{n+1}}{n!} x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{I_n + nI_{n-1}}{n!} x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{I_n}{n!} x^n + \sum_{n=1}^{+\infty} \frac{I_{n-1}}{(n-1)!} x^n$$

$$= \sum_{n=0}^{+\infty} \frac{I_n}{n!} x^n + \sum_{n=0}^{+\infty} \frac{I_n}{n!} x^{n+1} = (1+x)S(x)$$

Comme $x \mapsto x + \frac{x^2}{2}$ est une primitive de $x \mapsto 1 + x$ et $S(0) = I_0 = 1$,

$$\forall x \in]-1,1[, S(x) = e^{x + \frac{x^2}{2}} = e^x e^{\frac{x^2}{2}}$$

D'une part,

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$$

et d'autre part

$$e^{\frac{x^2}{2}} = \sum_{n=0}^{+\infty} \frac{x^{2n}}{2^n n!}$$

On peut également écrire

$$e^{\frac{x^2}{2}} = \sum_{n=0}^{+\infty} a_n x^n \text{ avec } \begin{cases} a_{2n} = \frac{1}{2^n n!} \\ a_{2n+1} = 0 \end{cases}$$

donc par produit de Cauchy, $S(x) = \sum_{n=0}^{+\infty} c_n x^n$ avec

$$c_n = \sum_{k=0}^n \frac{1}{(n-k)!} a_k = \sum_{0 \le 2k \le n} \frac{1}{(n-2k)!} a_{2k} = \sum_{0 \le 2k \le n} \frac{1}{(n-2k)! 2^k k!}$$

Par unicité du développement en série entière

$$I_n = n!c_n = \sum_{0 \le 2k \le n} \frac{n!}{(n-2k)!2^k k!} = \sum_{0 \le 2k \le n} \frac{(2k)!\binom{n}{2k}}{2^k k!}$$

Développements en série entière

Solution 28

1. Posons $p = \operatorname{card} \mathbb{K}$ et notons \mathcal{P}_n l'ensemble des polynômes irréductibles unitaires de degré n. Posons $P_n(t) = \prod_{k=1}^n \prod_{P \in \mathcal{P}_k} \frac{1}{1 - t^{\deg P}}$ pour $t \in [0, 1[$,

$$\ln(\mathbf{P}_n(t)) = \sum_{k=1}^n \sum_{\mathbf{P} \in \mathcal{P}_k} -\ln(1-t^k)$$

Or il est clair que card \mathcal{P}_k est inférieur ou égal au nombre de polynômes unitaires de degré k, c'est-à-dire p^k , donc

$$0 \le \ln(P_n(t)) \le \sum_{k=1}^n -p^k \ln(1-t^k)$$

Or pour $t \in [0, 1[, -p^k \ln(1 - t^k) \sim_{k \to +\infty} (pt)^k]$. On en déduit que la série de terme général $-p^k \ln(1 - t^k)$ converge pour $t \in [0, \frac{1}{p}[]$. Il en est donc de même pour la suite $(\ln(P_n(t)))$ et donc pour le produit infini définissant $\zeta(t)$. La fonction ζ est donc définie sur $\left[0, \frac{1}{p}[]\right]$.

2. On va montrer que pour $t \in \left[0, \frac{1}{p}\right[$

$$\zeta(t) = \sum_{n=0}^{+\infty} p^k t^k$$

Pour $n \in \mathbb{N}$, notons Q_n l'ensemble des polynômes irréductibles unitaires de degré inférieur ou égal à n. Fixons $N \in \mathbb{N}$ et remarquons que

$$\prod_{P \in \mathcal{Q}_N} \sum_{k=0}^M t^{k \deg P} = \sum_{k \in [0,M]^{\mathcal{Q}_n}} t^{\deg \mathcal{Q}_k}$$

avec $Q_k = \prod_{P \in \mathcal{Q}_n} P^{k_P}$. Tout d'abord, on sait que tout polynôme unitaire de $\mathbb{K}[X]$ s'écrit de manière unique sous la forme $\prod_{P \in \mathcal{P}} \prod_{k \in \mathbb{N}(\mathcal{P})} P^{k_P}$

(où $\mathbb{N}^{(\mathcal{P})}$ désigne classiquement l'ensemble des familles presque nulles de $\mathbb{N}^{\mathcal{P}}$). De plus, il existe exactement p^n polynômes unitaires de degré n. On en déduit :

$$\prod_{\mathbf{P} \in \mathcal{Q}_{\mathbf{N}}} \sum_{k=0}^{\mathbf{M}} t^{k \deg \mathbf{P}} \leq \sum_{n=0}^{+\infty} p^n t^n$$

Enfin la décomposition en facteurs irréductibles unitaires d'un polynôme unitaire de $\mathbb{K}[X]$ de degré inférieur ou égal à N fait intervenir des polynômes irréductibles unitaires de degré au plus N donc

$$\sum_{n=0}^{N} p_n t^n \le \prod_{P \in \mathcal{Q}_N} \sum_{k=0}^{M} t^{k \deg P}$$

En faisant tendre M vers $+\infty$, on obtient

$$\sum_{n=0}^{N} p^n t^n \le \prod_{P \in \mathcal{O}_N} \frac{1}{1 - t^{\deg P}} \le \sum_{n=0}^{+\infty} p^n t^n$$

Il suffit alors de faire tendre N vers +∞ pour avoir le résultat voulu.

Solution 29

Soit $x \in \mathbb{R}$. Le développement en série de l'exponentielle donne

$$e^{e^x} = \sum_{n=0}^{+\infty} \frac{(e^x)^n}{n!} = \sum_{n=0}^{+\infty} \frac{e^{nx}}{n!} = \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} \frac{(nx)^k}{n!k!}$$

On montre alors que la famille $\left(\frac{(nx)^k}{n!k!}\right)_{(n,k)\in\mathbb{N}^2}$ est sommable. En effet, pour tout $n\in\mathbb{N}$, la série $\sum_{k\in\mathbb{N}}\left|\frac{(nx)^k}{n!k!}\right|$ converge et a pour somme $\frac{e^{n|x|}}{n!}$ puis, la série $\sum_{n\in\mathbb{N}}\frac{e^{n|x|}}{n!}$ converge également. On peut alors permuter les deux sommes dans l'expression de e^{e^x} de sorte que

$$e^{e^x} = \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} \frac{(nx)^k}{n!k!} = \sum_{k=0}^{+\infty} \left(\frac{1}{k!} \sum_{n=0}^{+\infty} \frac{n^k}{n!}\right) x^k$$

Ceci montre bien que f est développable en série entière en 0 et

$$A_k = \left(\frac{1}{k!} \sum_{n=0}^{+\infty} \frac{n^k}{n!}\right)$$

Solution 30

Pour $(t, x) \in \mathbb{R}^2$,

$$e^{-t^2}\sin(tx) = e^{-t^2} \sum_{n=0}^{+\infty} \frac{(-1)^n (tx)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} e^{-t^2} t^{2n+1}$$

Fixons $x \in \mathbb{R}$. On va maintenant appliquer le théorème d'intégration terme à terme. Les hypothèses ayant trait à la continuité par morceaux sont automatiquement réalisées. Posons

$$I_n = \int_0^{+\infty} e^{-t^2} t^{2n+1} \, dt$$

Par changement de variable $u = t^2$,

$$I_n = \frac{1}{2} \int_0^{+\infty} e^{-u} u^n \, du$$

Notamment, comme $e^{-u}u^n = o(1/u^2)$, cette seconde intégrale converge et donc la première également. Par intégration par parties, on obtient

$$\forall n \in \mathbb{N}^*, I_n = nI_{n-1}$$

Comme $I_0 = \frac{1}{2}$, $I_n = \frac{n!}{2}$ pour tout $n \in \mathbb{N}$. Alors

$$\forall n \in \mathbb{N}, \ \int_0^{+\infty} \left| \frac{(-1)^n x^{2n+1}}{(2n+1)!} e^{-t^2} t^{2n+1} \right| dt = \frac{|x|^{2n+1}}{(2n+1)!} I_n = \frac{n! |x|^{2n+1}}{(2n+1)!}$$

D'après le critère de d'Alembert, la série $\sum \frac{n!|x|^{2n+1}}{(2n+1)!}$ converge. On peut donc appliquer le théorème d'intégration terme à terme :

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \int_0^{+\infty} e^{-t^2} t^{2n+1} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} I_n = \sum_{n=0}^{+\infty} \frac{(-1)^n n! x^{2n+1}}{2(2n+1)!}$$

Il s'agit bien du développement en série entière de f. Son rayon de convergence est infini puisqu'il est valide pour tout $x \in \mathbb{R}$ (ou appliquer la règle de d'Alembert).

Solution 31

$$\forall x \in]-1,1[, \frac{1}{\sqrt{1-x}} = (1-x)^{-\frac{1}{2}} = \sum_{n=0}^{+\infty} {-1/2 \choose n} (-1)^n x^n$$

οù

$$\binom{-1/2}{n} = \frac{1}{n!} \prod_{k=0}^{n-1} \left(-\frac{1}{2} - k \right) = \frac{(-1)^n}{2^n n!} \prod_{k=0}^{n-1} (2k+1) = \frac{(-1)^n (2n)!}{(2^n)^2 (n!)^2} = \frac{(-1)^n}{2^{2n}} \binom{2n}{n}$$

Finalement

$$\forall x \in]-1,1[, \frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{1}{2^{2n}} {2n \choose n} x^n$$

Solution 32

Remarquons que $x^2 - 2x\cos(\theta) + 1 = (x - e^{i\theta})((x - e^{-i\theta}))$ donc

$$\begin{aligned} \forall x \in]-1,1[,\ f(x) &= \frac{1}{2i} \left(\frac{1}{x - e^{ite}} - \frac{1}{x - e^{-i\theta}} \right) \\ &= \frac{1}{2i} \left(\frac{e^{i\theta}}{1 - xe^{i\theta}} - \frac{e^{-i\theta}}{1 - xe^{-i\theta}} \right) \\ &= \frac{1}{2i} \left(e^{i\theta} \sum_{n=0}^{+\infty} x^n e^{in\theta} - e^{-i\theta} \sum_{n=0}^{+\infty} x^n e^{-in\theta} \right) \\ &= \sum_{n=0}^{+\infty} \left(\frac{e^{i(n+1)\theta} - e^{-i(n+1)\theta}}{2i} \right) x^n \\ &= \sum_{n=0}^{+\infty} \sin((n+1)\theta) x^n \end{aligned}$$

Solution 33

Remarquons que f est dérivable sur $\mathbb R$ car le discriminant du trinôme $X^2 - \sqrt{2}X + 1$ est strictement négatif. De plus,

$$\forall x \in \mathbb{R}, f'(x) = \frac{2x - \sqrt{2}}{1 - \sqrt{2}x + x^2} = \frac{2x - \sqrt{2}}{\left(x - e^{\frac{i\pi}{4}}\right)\left(x - e^{-\frac{i\pi}{4}}\right)} = \frac{1}{x - e^{\frac{i\pi}{4}}} + \frac{1}{x - e^{-\frac{i\pi}{4}}} = -\frac{e^{-\frac{i\pi}{4}}}{1 - xe^{-\frac{i\pi}{4}}} - \frac{e^{\frac{i\pi}{4}}}{1 - xe^{\frac{i\pi}{4}}}$$

Or on sait que pour tout nombre complexe z tel que z < 1,

$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$

Ainsi pour tout $x \in]-1,1[$

$$f'(x) = -e^{-\frac{i\pi}{4}} \sum_{n=0}^{+\infty} x^n e^{-\frac{ni\pi}{4}} - e^{\frac{i\pi}{4}} \sum_{n=0}^{+\infty} e^{\frac{ni\pi}{4}} = -\sum_{n=1}^{+\infty} x^{n-1} e^{-\frac{ni\pi}{4}} - \sum_{n=1}^{+\infty} x^{n-1} e^{\frac{ni\pi}{4}} = -2\sum_{n=1}^{+\infty} \cos\left(\frac{n\pi}{4}\right) x^{n-1}$$

Comme f(0) = 0, on obtient en intégrant,

$$\forall x \in]-1,1[, f(x) = -2\sum_{n=1}^{+\infty} \frac{\cos\left(\frac{n\pi}{4}\right)}{n} x^n$$

Solution 34

- 1. Posons $u_n(x) = e^{-n+n^2ix}$. Les u_n sont clairement de classe \mathcal{C}^{∞} sur \mathbb{R} . Soit $k \in \mathbb{N}$. Alors $u_n^{(k)}(x) = n^{2k}i^ke^{-n+n^2ix}$. Pour tout $n \in \mathbb{N}$, $\|u_n^{(k)}\|_{\infty} = n^{2k}e^{-n}$ et la série $\sum_{n \in \mathbb{N}} n^{2k}e^{-n}$ converge $(n^{2k}e^{-n} = o(1/n^2))$. La série $\sum u_n(k)$ converge normalement sur \mathbb{R} . Par conséquent, f est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Supposons que g soit développable en série entière. Il existerait donc R > 0 tel que

$$\forall x \in]-R, R[, g(x) = \sum_{k=0}^{+\infty} \frac{g^{(k)}(0)}{k!} x^k$$

D'après la question précédente

$$\forall k \in \mathbb{N}, \ g^{(k)}(0) = \sum_{n=0}^{+\infty} u_n^{(k)}(0) = i^k \sum_{n=0}^{+\infty} n^{2k} e^{-n}$$

donc

$$\forall k \in \mathbb{N}, \ \left| \frac{g^{(k)}(0)}{k!} \right| = \frac{1}{k!} \sum_{n=0}^{+\infty} n^{2k} e^{-n} \geq \frac{k^{2k} e^{-k}}{k!} = \frac{k^k}{k!} \cdot k^k e^{-k} \geq k^k e^{-k} \geq$$

Notamment pour r > 0,

$$\left| \frac{g^{(k)}(0)}{k!} r^k \right| \ge \left(\frac{kr}{e} \right)^k$$

donc

$$\lim_{k \to +\infty} \left| \frac{g^{(k)}(0)}{k!} r^k \right| = +\infty$$

ce qui contredit la convergence de la série $\sum_{k\in\mathbb{N}}\frac{g^{(k)}(0)}{k!}r^k$. g n'est donc pas développable en série entière.

Solution 35

1. On décompose en éléments simples :

$$f(z) = \frac{(1-2z)(1-3z)}{z} \frac{3}{1-3z} - \frac{2}{1-2z}$$

D'une part

$$\frac{1}{1 - 3z} = \sum_{n=0}^{+\infty} 3^n z^n$$

avec rayon de convergence $\frac{1}{3}$. D'une part

$$\frac{1}{1 - 2z} = \sum_{n=0}^{+\infty} 2^n z^n$$

avec rayon de convergence $\frac{1}{2}$. Par conséquent

$$f(z) = \sum_{n=0}^{+\infty} (3^{n+1} - 2^{n+1})z^n$$

Et comme $\frac{1}{3} \neq \frac{1}{2}$, le rayon de convergence est min $\left(\frac{1}{3}, \frac{1}{2}\right) = \frac{1}{3}$.

2. Remarquons que

$$g(x) = \ln(2) + \ln\left(1 + \frac{x}{2}\right) - \ln(1 - x)$$

Or

$$\ln\left(1 + \frac{x}{2}\right) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{2^n n}$$

avec rayon de convergence 2 et

$$\ln(1 - x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$

avec rayon de convergence 1. Ainsi

$$g(x) = \ln(2) + \sum_{n=1}^{+\infty} \left(\frac{(-1)^{n-1}}{2^n n} + \frac{1}{n} \right) x^n$$

avec rayon de convergence min(1, 2) = 1.

3. Tout d'abord

$$\sin(x^2) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{4n+2}}{(2n+1)!}$$

avec rayon de convergence infini. Par «primitivation»

$$h(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{4n+3}}{(2n+1)!(4n+3)}$$

avec rayon de convergence infini également.

Divers

Solution 36

Par souci de simplicité, on confondra les fractions rationnelles et leurs fonctions rationnelles associées.

Montrons tout d'abord qu'une fraction rationnelle est développable en série entière en 0 si et seulement si elle n'admet pas 0 pour pôle.

Si une fraction rationnelle est développable en série entière en 0, il est clair qu'elle n'admet pas 0 pour pôle. Soit $a \in \mathbb{C}^*$. Il est clair que $\frac{1}{X-a}$ est développable en série entière en 0. Par dérivations successives, $\frac{1}{(X-a)^n}$ est également développable en série entière en 0 pour tout $n \in \mathbb{N}$. En utilisant une décomposition en éléments simples, on prouve qu'une fraction rationnelle n'admettant

pas 0 pour pôle est développable en série entière en 0 de rayon de convergence le minimum des modules de ses pôles.

Soient \mathcal{D} l'ensemble des fonctions développables en série entière en 0 et \mathcal{F} l'ensemble des fractions rationnelles de $\mathbb{C}(X)$ n'admettant pas 0 pour pôle. \mathcal{F} est un sous-espace vectoriel de \mathcal{D} .

Notons T l'application de \mathcal{D} dans $\mathbb{C}^{\mathbb{N}}$ qui à une fonction développable en série entière associe la suite des coefficients de son développement en série entière. T est bien définie par unicité du développement en série entière. De plus, T est clairement linéaire et injective. Notons enfin S l'endomorphisme de $\mathbb{C}^{\mathbb{N}}$ qui à une suite (u_n) associe la suite (u_{n+1}) .

Remarquons qu'une suite $(u_n) \in \mathbb{C}^{\mathbb{N}}$ est récurrente linéaire si et seulement si il existe $P \in \mathbb{C}[X]$ non nul tel que $(u_n) \in \operatorname{Ker} P(S)$. On en déduit en particulier que l'ensemble des suites récurrentes linéaires est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$. En effet, si (u_n) et (v_n) sont récurrentes linéaires, il existe $P, Q \in \mathbb{C}[X]$ tels que $(u_n) \in \operatorname{Ker} P(S)$ et $(v_n) \in \operatorname{Ker} Q(S)$. Mais alors pour $\lambda, \mu \in \mathbb{C}$,

$$\lambda(u_n) + \mu(v_n) \operatorname{Ker} P(S) + \operatorname{Ker} Q(S) \subset \operatorname{Ker}(PQ)(S)$$

et donc $\lambda(u_n) + \mu(v_n)$ est récurrente linéaire.

Soit $G \in \mathbb{C}[X]$. Alors T(G) est une suite presque nulle donc récurrente linéaire. Soient $a \in \mathbb{C}^*$ et $r \in \mathbb{N}^*$. On montre classiquement que

$$\operatorname{Ker}\left(\mathbf{S} - \frac{1}{a}\operatorname{Id}_{\mathbb{C}^{\mathbb{N}}}\right) = \left\{ \left(\frac{\mathbf{P}(n)}{a^{n}}\right), \mathbf{P} \in \mathbb{C}_{r-1}[\mathbf{X}] \right\}$$

Puisque T $\left(\frac{1}{X-a}\right) = \left(-\frac{1}{a^{n+1}}\right)$ et que

$$\frac{1}{(X-a)^r} = \frac{(-1)^{r-1}}{(r-1)!} \left(\frac{1}{X-a}\right)^{(r-1)}$$

on obtient en dérivant (r-1) fois la série entière définissant $\frac{1}{X-a}$:

$$T\left(\frac{1}{(X-a)^r}\right) = \left((-1)^r \frac{(n+r-1)!}{n!(r-1)!} \frac{1}{a^{n+r}}\right)$$

On a donc bien $T\left(\frac{1}{(X-a)^r}\right)$ de la forme $\left(\frac{P(n)}{a^n}\right)$ avec $P\in\mathbb{C}_{r-1}[X]$. Ainsi

$$T\left(\frac{1}{(X-a)^r}\right) \in \operatorname{Ker}\left(S - \frac{1}{a}\operatorname{Id}_{\mathbb{C}^{\mathbb{N}}}\right) = \operatorname{Ker}\operatorname{Q}(S)$$

avec Q = $\left(X - \frac{1}{a}\right)^r$. On en déduit que T $\left(\frac{1}{(X-a)^r}\right)$ est récurrente linéaire.

Soit $F \in \mathcal{F}$. Alors F est la somme de sa partie entière et de ses parties polaires. Ce qui précède montre que T(F) est récurrente linéaire.

Réciproquement, soit $f \in \mathcal{D}$ telle que $\mathrm{T}(f)$ soit une suite récurrente linéaire. Alors il existe $\mathrm{P} \in \mathbb{C}[\mathrm{X}]$ non nul tel que $\mathrm{T}(f) \in \mathrm{Ker}\,\mathrm{P}(\mathrm{S})$. Posons $\mathrm{P} = \mathrm{X}^n\mathrm{Q}$ où $\mathrm{Q} \in \mathbb{C}[\mathrm{X}]$ n'admet pas 0 pour racine. D'après le lemme des noyaux $\mathrm{T}(f) \in \mathrm{Ker}\,\mathrm{S}^n + \mathrm{Ker}\,\mathrm{Q}(\mathrm{S})$. $\mathrm{T}(f)$ est donc la somme d'une suite presque nulle et d'une suite de $\mathrm{Ker}\,\mathrm{Q}(\mathrm{S})$. Il existe donc $\mathrm{G} \in \mathbb{C}[\mathrm{X}]$ et $\mathrm{g} \in \mathcal{D}$ tels que $\mathrm{g} \in \mathcal{D}$ tels que $\mathrm{g} \in \mathcal{D}$ et $\mathrm{g} \in \mathcal{D}$ e

$$Q = \prod_{i=1}^{n} (X - a_i)^{r_i}$$

où les a_i sont non nuls. Posons $q = \deg Q$. On montre que dim $\operatorname{Ker} Q(S) = q$ en considérant l'isomorphisme $\left\{ \begin{array}{ccc} \operatorname{Ker} Q(S) & \longrightarrow & \mathbb{C}^q \\ (u_n) & \longmapsto & (u_0, \dots, u_{q-1}) \end{array} \right. .$

La famille $\mathcal{B} = \left(\frac{1}{(X-a_i)^{k_i}}\right)_{\substack{1 \le i \le r \\ 1 \le k_i \le r_i}}$ est libre et T est injective donc la famille $T(\mathcal{B})$ est libre. De plus, on a montré plus haut que

$$T\left(\frac{1}{(X-a_i)^{r_i}}\right) \in \operatorname{Ker}\left(S - \frac{1}{a_i}\operatorname{Id}_{\mathbb{C}^n}\right)^{r_i} \subset \operatorname{Ker}\operatorname{Q}(S)$$

Ainsi $T(\mathcal{B})$ est une famille de vecteurs de Ker Q(S). De plus, elle possède q éléments : c'est donc une base de Ker Q(S). Ainsi $T(g) \in \text{vect}(T(\mathcal{B})) = T(\text{vect}(\mathcal{B}))$. Par injectivité de $T, g \in \text{vect}(\mathcal{B}) \subset \mathcal{F}$ puis $f = G + g \in \mathcal{F}$.

En conclusion, les suites recherchées sont les suites récurrentes linéaires.

Solution 37

1. L'unicité provient du fait que deux polynômes qui coïncident sur un ensemble infini (\mathbb{C} en l'occurrence) sont égaux. Tout d'abord, la série entière $\sum_{n\in\mathbb{N}} \frac{P(n)z^n}{n!}$ a un rayon de convergence infini car la suite de terme général $\frac{P(n)z^n}{n!}$ est bornée pour tout $z\in\mathbb{C}$.

Posons $P_k = \prod_{i=0}^{k-1} (X-i)$ pour tout $k \in \mathbb{N}$ $(P_0 = 1)$. On remarque que pour tout $z \in \mathbb{C}$,

$$e^{-z} \sum_{n=0}^{+\infty} \frac{P_k(n)z^n}{n!} = z^k$$

De plus, $\deg P_k = k$ et on montre alors classiquement que $(P_k)_{k \in \mathbb{N}}$ est une base de $\mathbb{C}[X]$. Il existe donc une suite presque nulle (a_k) de complexes telle que $P = \sum_{k=0}^{+\infty} a_k P_k$. En posant $Q = \sum_{k=0}^{+\infty} a_k X^k$, on a donc

$$e^{-z} \sum_{n=0}^{+\infty} \frac{P(n)z^n}{n!} = Q(z)$$

- 2. La question précédente montre que u est bien une application de C[X] dans lui-même. On vérifie sans peine sa linéarité (on l'a en fait déjà utilisé). On a même montré que l'endomorphisme u envoie la base (P_k)_{k∈N} de C[X] sur la base canonique de C[X] : c'est donc un automorphisme de C[X].
- 3. Notons λ une valeur propre de u et P un polynôme associé à cette valeur propre. Posons $d = \deg P$. Il existe alors $(a_0, \dots, a_d) \in \mathbb{C}^{d+1}$ tel que $P = \sum_{k=0}^d a_k P_k$ puisque (P_0, \dots, P_d) est une base de $\mathbb{C}_d[X]$. Notamment $a_d \neq 0$ puisque $\deg P = d$. Or $u(P) = \sum_{k=0}^d a_k X^k$ donc en identifiant le coefficient de X^d dans u(P) et λP , on obtient $a_d = \lambda a_d$ et donc $\lambda = 1$. On a donc $\sum_{k=0}^d a_k (P_k X^k) = 0$. Si l'on suppose $d \geq 2$, on obtient $\sum_{k=2}^d a_k (P_k X^k)$ car $P_0 = X^0$ et $P_1 = X^1$. Or $\deg P_k X^k = k 1$, donc la famille $(P_2 X^2, \dots, P_d X^d)$ est libre de sorte $a_2 = \dots = a_d = 0$, ce qui contredit le fait que $a_d \neq 0$. Ainsi $d \leq 1$. Donc le sous-espace propre associé à la valeur propre P_0 0 est inclus dans P_0 1. On vérifie sans peine l'inclusion réciproque. La seule valeur propre de P_0 1 est donc P_0 2 est donc P_0 3.

Solution 38

1. Soit $z\in \mathbb{D}$. Puisque les a_n sont réels, $\overline{f(z)}=f(\overline{z})$. Ainsi, si $z\in \mathbb{R}$,

$$\overline{f(z)} = f(\overline{z}) = f(z)$$

de sorte que $f(z) \in \mathbb{R}$.

Réciproquement, si $z \in D$ et $f(z) \in \mathbb{R}$, alors

$$f(\overline{z}) = \overline{f(z)} = f(z)$$

et donc $z = \overline{z}$ par injectivité de f, puis $z \in \mathbb{R}$.

2. Posons $H^+ = \{z \in \mathbb{C}, \text{ Im}(z) > 0\}$ et $H^- = \{z \in \mathbb{C}, \text{ Im}(z) < 0\}$. D'après la question précédente, $f(D \cap H^+) \subset \mathbb{C} \setminus \mathbb{R} = H^+ \sqcup H^-$. Or f est continue sur D et $D \cap H^+$ est une partie connexe par arcs (et même convexe) de D en tant qu'intersection de deux convexes. Ainsi f(D) est une partie connexe par arcs de $\mathbb{C} \setminus \mathbb{R}$. En particulier, $f(D \cap H^+) \subset H^+$ ou $f(D \cap H^+) \subset H^-$. De plus, pour $f \in]-1,1[$,

$$Im(f(ir) = r + \sum_{n=1}^{+\infty} (-1)^n a_{2n+1} r^{2n+1}$$

En particulier, $\operatorname{Im}(f(ir)) \sim r$. Puisque deux fonctions équivalentes en 0 sont de même signe au voisinage de 0, il existe $r \in]0,1[$ tel que $\operatorname{Im}(f(ir)) > 0$. On en déduit donc que $f(D \cap H^+) \subset H^+$.

De la même manière, $f(D \cap H^-) \subset H^+$ ou $f(D \cap H^-) \subset H^-$. A nouveau, $\operatorname{Im}(f(ir)) \sim r$ et donc il existe $r \in]-1,0[$ tel que $\operatorname{Im}(f(ir)) < 0$, de sorte que $f(D \cap H^-) \subset H^-$.

On rappelle enfin que $f(D \cap \mathbb{R}) \subset \mathbb{R}$ d'après la question précédente.

Soit alors $z \in D$. Si Im(z) > 0, alors Im(f(z)) > 0 puisque $f(D \cap H^+) \subset H^+$. Réciproquement, si Im(f(z)) > 0, on a nécessairement Im(z) > 0 puisque $f(D \cap H^+) \subset H^+$ et $f(D \cap \mathbb{R}) \subset \mathbb{R}$

3. Pour simplifier, posons $a_1 = 1$. Pour tout $\theta \in \mathbb{R}$,

$$\operatorname{Im}(f(re^{i\theta}))\sin(n\theta) = \sum_{k=1}^{+\infty} a_k r^k \sin(k\theta)\sin(n\theta)$$

Posons $g_k: \theta \mapsto a_k r^k \sin(k\theta) \sin(n\theta)$. Pour tout $k \in \mathbb{N}^*$ et tout $\theta \in [0, \pi]$,

$$|g_k(\theta)| \le |a_k| r^k$$

Comme la série entière définissant f(r) converge absolument, la série $\sum_{k \in \mathbb{N}^*} g_k$ converge normalement sur $[0, \pi]$. On en déduit que

$$I_n(r) = \sum_{k=1}^{+\infty} a_k r^k \int_0^{\pi} \sin(k\theta) \sin(n\theta) d\theta$$

Or pour tout $k \in \mathbb{N}^*$,

$$\sin(k\theta)\sin(n\theta) = \cos((k-n)\theta) - \cos((k+n)\theta)$$

On en déduit notamment que

$$\int_0^{\pi} \sin(k\theta) \sin(n\theta) \ d\theta = \delta_{k,n}$$

Finalement, $I_n(r) = a_n r^n$.

4. Soient $n \in \mathbb{N}^*$ et $r \in [0, 1[$. Par inégalité triangulaire,

$$|a_n|r^n = |\mathrm{I}_n(r)| \le \int_0^\pi |\operatorname{Im}(f(re^{i\theta}))||\sin(n\theta)| \ \mathrm{d}\theta \le n \int_0^\pi |\operatorname{Im}(f(re^{i\theta}))|\sin\theta| \ \mathrm{d}\theta$$

D'après les questions 1 et 2, $\text{Im}(z) \ge 0 \implies \text{Im}(f(z)) \ge 0$. Or pour $\theta \in [0, \pi]$, $\text{Im}(re^{i\theta}) = r \sin \theta \ge 0$ donc $\text{Im}(f(re^{i\theta})) \ge 0$. On en déduit donc que

$$|a_n|r^n \le n \int_0^{\pi} \operatorname{Im}(f(z)) \sin \theta \ d\theta = na_1 r^1 = nr$$

En faisant tendre r vers 1, on obtient bien $|a_n| \le n$.

Montrons maintenant le résultat stipulant que $|\sin(n\theta)| \le n \sin \theta$ pour tout $\theta \in [0, \pi]$. On peut en fait montrer que $|\sin(n\theta)| \le n |\sin \theta|$ pour tout $\theta \in \mathbb{R}$, ce qui donne le résultat par positivité de sin sur $[0, \pi]$. On procède par récurrence. Le résultat est évidemment vrai lorsque n = 0. Supposons le vrai pour un certain $n \in \mathbb{N}$. Alors

$$|\sin(n+1)\theta| = |\sin(n\theta)\cos\theta + \sin\theta\cos(n\theta)| \le |\sin(n\theta)| + |\sin\theta| \le (n+1)|\sin\theta|$$

ce qui permet de conclure la récurrence.

Solution 39

1. On rappelle que S(E) désigne l'ensemble des permutations de E et que card S(E) = n!. Notons $S_k(E)$ l'ensemble des permutations de E possédant exactement k points fixes. Alors $S(E) = \bigsqcup_{k=0}^{n} S_k(E)$. Se donner une permutation à k point fixes correspond à se donner une partie de E à k éléments qui formeront les k points fixes et un dérangement des n-k éléments restants. Ainsi card $S_k(E) = \binom{n}{k} D_{n-k}$. Or,

$$\operatorname{card} S(E) = \sum_{k=0}^{n} \operatorname{card} S_k(E)$$

donc

$$n! = \sum_{k=0}^{n} {n \choose k} D_{n-k} = \sum_{k=0}^{n} {n \choose n-k} D_k = \sum_{k=0}^{n} {n \choose k} D_k$$

2. On a clairement $D_n \le n!$ donc $0 \le \frac{D_n}{n!} \le 1$. Le rayon de convergence de la série entière $\sum \frac{D_n}{n!} x^n$ est donc supérieur ou égal à 1, ce qui justifie que f est définie sur]-1,1[.

3. On sait que la série entière $\sum_{n\in\mathbb{N}}\frac{x^n}{n!}$ a un rayon de convergence infini et a pour somme e^x . Par conséquent, par produit de Cauchy

$$\forall x \in]-1,1[, e^x f(x) = \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n\right)$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(n-k)!} \cdot \frac{D_k}{k!}\right) x^n$$

$$= \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} \binom{n}{k} D_k\right) x^n$$

$$= \sum_{n=0}^{+\infty} x^n \qquad \text{d'après la première question}$$

$$= \frac{1}{1-x}$$

Autrement dit

$$\forall x \in]-1,1[, f(x) = \frac{e^{-x}}{1-x}$$

4. D'une part,

$$\forall x \in]-1,1[, \sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n$$

D'autre part, en utilisant un nouveau produit de Cauchy,

$$\frac{e^{-x}}{1-x} = \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} x^n\right) \left(\sum_{n=0}^{+\infty} x^n\right)$$
$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!}\right) x^n$$

Par unicité du développement en série entière,

$$\forall n \in \mathbb{N}, \ \frac{D_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

ou encore

$$\forall n \in \mathbb{N}, \ \mathbf{D}_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$$

5. Puisque $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = \frac{1}{e}$, la dernière égalité peut aussi s'écrire

$$D_n = n! \left(\frac{1}{e} - R_n\right)$$

en posant

$$R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!}$$

Comme la série $\sum \frac{(-1)^n}{n!}$ vérifie clairement le critère des séries alternées,

$$|\mathbf{R}_n| \le \frac{1}{(n+1)!}$$

Ainsi

$$\frac{n!}{e} - \frac{1}{n+1} \le \mathsf{D}_n \le \frac{n!}{e} + \frac{1}{n+1}$$

Pour $n \ge 2$, on a

$$\frac{n!}{e} - \frac{1}{2} < \frac{n!}{e} - \frac{1}{3} \le D_n \le \frac{n!}{e} + \frac{1}{3} \le \frac{n!}{e} + \frac{1}{2}$$

donc D_n est bien la partie entière de $\frac{n!}{a} + \frac{1}{2}$.

Lorsque n=1, on peut remarquer que R_1 est du signe de $\frac{(-1)^1}{1!}=-1$ donc négatif. Ainsi $-\frac{1}{2} \le R_1 \le 0$ donc

$$\frac{n!}{e} - \frac{1}{2} < \frac{n!}{e} \le \mathcal{D}_n \le \frac{n!}{e} + \frac{1}{2}$$

A nouveau, D_n est bien la partie entière de $\frac{n!}{a} + \frac{1}{2}$.

Solution 40

1. Notons \mathcal{P}_n l'assertion de l'énoncé. Il est clair que $u_1(x) = 1 + x$ donc \mathcal{P}_0 est vraie. Supposons \mathcal{P}_n vérifiée pour un certain $n \in \mathbb{N}$. Alors

$$\forall x \in \mathbb{R}_+, \ u_{n+2}(x) - u_{n+1}(x) = \int_0^x \left(u_{n+1}(t/2) - u_n(t/2) \right) \, \mathrm{d}t$$

Or

$$\forall x \in \mathbb{R}_+, \ 0 \le u_{n+1}(x) - u_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

donc

$$\forall x \in \mathbb{R}_+, \ 0 \leq \int_0^x \left(u_{n+1}(t/2) - u_n(t/2) \right) \, \mathrm{d}t \leq \int_0^x \frac{t^{n+1}}{2^{n+1}(n+1)!} \, \, \mathrm{d}t = \frac{1}{2^{n+1}} \cdot \frac{x^{n+2}}{(n+2)!} \leq \frac{x^{n+2}}{(n+2)!}$$

Ainsi \mathcal{P}_{n+1} est vraie. Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$. Comme la série exponentielle $\sum_{i=1}^{\infty} \frac{x^{n+1}}{(n+1)!}$ converge, la série télescopique $\sum_{i=1}^{\infty} u_{n+1}(x) - u_n(x)$ converge également donc la suite $(u_n(x))$ converge. La suite de fonctions (u_n) converge simplement vers une certaine fonction u.

2. Fixons $x \in \mathbb{R}_+$. Remarquons que

$$\forall t \in [0, x/2], \ 0 \leq u_{n+1}(t) - u_n(t) \leq \frac{t^{n+1}}{(n+1)!} \leq \frac{x^{n+1}}{2^{n+1}(n+1)!}$$

A nouveau la série $\sum \frac{x^{n+1}}{2^{n+1}(n+1)!}$ converge donc la série de fonctions $\sum u_{n+1} - u_n$ converge normalement sur [0, x/2]. A fortiori, elle converge uniformément sur [0, x/2]. On en déduit que la suite (u_n) converge uniformément vers u sur le segment [0, x/2]. On peut alors affirmer que

$$\lim_{n \to +\infty} \int_0^x u_n(t/2) \ \mathrm{d}t = 2 \lim_{n \to +\infty} \int_0^{x/2} u_n(t) \ \mathrm{d}t = \int_0^{x/2} u(t) \ \mathrm{d}t = \int_0^x u(t/2) \ \mathrm{d}t$$

Or

$$u_{n+1}(x) = 1 + \int_0^x u_n(t/2) dt$$

donc par passage à la limite

$$u(x) = 1 + \int_0^x u(t/2) dt$$

La fonction u est bien solution de (E).

3. Soit u une fonction développable en série entière sur $\mathbb R$ dont la restriction à $\mathbb R_+$ est solution de (E). Il existe donc $(a_n) \in \mathbb R^{\mathbb N}$ telle que

$$\forall x \in \mathbb{R}_+, \ u(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Fixons $x \in \mathbb{R}_+$. Comme la série entière $\sum a_n t^n$ converge normalement sur le segment [0, x/2],

$$\int_0^x u(t/2) \ \mathrm{d}t = 2 \int_0^{x/2} u(t) \ \mathrm{d}t = 2 \int_0^{x/2} \sum_{n=0}^{+\infty} a_n t^n \ \mathrm{d}t = 2 \sum_{n=0}^{+\infty} \int_0^{x/2} a_n t^n \ \mathrm{d}t = 2 \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^{n+1}(n+1)} = \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^n(n+1)}$$

Ainsi

$$\forall x \in \mathbb{R}_+, \ \sum_{n=0}^{+\infty} a_n x^n = 1 + \sum_{n=0}^{+\infty} \frac{a_n x^{n+1}}{2^n (n+1)} = 1 + \sum_{n=1}^{+\infty} \frac{a_{n-1} x^n}{2^{n-1} n}$$

Par unicité du développement en série entière, $a_0 = 1$ et

$$\forall n \in \mathbb{N}^*, \ a_n = \frac{a_{n-1}}{2^{n-1}n}$$

On en déduit que

$$\forall n \in \mathbb{N}, \ a_n = \frac{1}{2^{\frac{n(n-1)}{2}} n!}$$

Réciproquement, la série entière $\sum_{n \in \mathbb{N}} \frac{x^n}{\frac{n(n-1)}{2} \frac{n!}{n!}}$ pssoède bien un rayon de convergence infini (règle de d'Alembert ou comparaison à la série exponentielle) et ce qui précède montre que sa somme est effetivement solution de (E).

Solution 41

- 1. Par la règle de d'Alembert, le rayon de convergence de la série entière $\sum \frac{x^{n+1}}{n+1}$ vaut 1. Par conséquent, si $|t| > \sqrt{2}$, la série $\sum f_n(t)$ diverge grossièrement et si $|t| < \sqrt{2}$, elle converge. Si $|t| = \sqrt{2}$, la série $\sum f_n(t)$ diverge (série de Riemann). Finalement, $D = |-\sqrt{2}, \sqrt{2}|$.
- 2. On sait que pour $x \in]-1,1[$, $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$ donc, par intégration d'une série entière, $\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n+1} = -\ln(1-x)$. Ainsi, pour $t \in]-\sqrt{2},\sqrt{2}[$,

$$\sum_{n=0}^{+\infty} f_n(t) = -\ln(1 - (t^2 - 1)) = -\ln(2 - t^2)$$

3. Remarquons que

$$\max_{[0,1]} |f_n| = |f_n(0)| = \frac{1}{n+1}$$

et $\sum \frac{1}{n+1}$ diverge. La série $\sum f_n$ ne converge donc pas normalement sur [0,1].

4. Lorsque $t \in [0,1]$, la suite de terme général $\frac{(1-t^2)^{n+1}}{n+1}$ est décroissante et converge vers 0. La série $\sum g f_n(t)$ vérifie donc le critère spécial des séries alternées. En particulier,

$$\forall t \in [0,1], \left| \sum_{k=n+1}^{+\infty} f_k(t) \right| \le |f_{n+1}(t)| = \frac{(1-t^2)^{n+2}}{n+2} \le \frac{1}{n+2}$$

Le reste de la série $\sum f_n$ converge donc uniformément vers la fonction nulle sur [0,1] i.e. la série $\sum f_n$ converge uniformément sur [0,1].

- 5. Comme la série $\sum f_n$ converge uniformément sur le segment [0,1], la série $\sum_{n\in\mathbb{N}}u_n$ converge vers $-\int_0^1\ln(2-t^2)\,\mathrm{d}t$.
- 6. Il s'agit d'un simple calcul.

$$-\int_0^1 \ln(2-t^2) dt = -\int_0^1 \ln(\sqrt{2}-t) dt - \int_0^1 \ln(\sqrt{2}+t) dt$$

$$= -\int_{\sqrt{2}-1}^{\sqrt{2}} \ln u du - \int_{\sqrt{2}}^{\sqrt{2}+1} \ln u du \quad \text{par changement de variable}$$

$$= -\left[u \ln u - u\right]_{\sqrt{2}-1}^{\sqrt{2}} - \left[u \ln u - u\right]_{\sqrt{2}}^{\sqrt{2}+1}$$

$$= 2 - 2\sqrt{2} \ln(\sqrt{2}+1)$$

On peut vérifier avec Python.

```
from scipy.integrate import quad
from numpy import log, sqrt
I=quad(lambda t: -log(2-t**2),0,1)[0]
J=2-2*sqrt(2)*log(sqrt(2)+1)
print(I,J)
```

Solution 42

1. Raisonnons par l'absurde en supposant que les a_n ne soient pas tous nuls. Posons $m = \min\{n \in \mathbb{N}, a_n \neq 0\}$. Alors

$$\forall z \in D(0, R), \ f(z) = \sum_{k=m}^{+\infty} a_k z^p = z^m \sum_{k=0}^{+\infty} a_{k+m} z^k$$

Posons alors $g(z) = \sum_{k=0}^{+\infty} a_{k+m} z^k$ de sorte que

$$\forall z \in D(0, R), \ f(z) = z^m g(z)$$

Par conséquent,

$$\forall p \in \mathbb{N}, \ f(z_p) = z_p^m g(z_p)$$

Mais comme la suite (z_p) ne s'annule pas,

$$\forall p \in \mathbb{N}, \ g(z_p) = 0$$

g est évidemment développable en série entière donc continue en 0. Notamment, $\lim_{z\to 0} g(z) = g(0) = a_p \neq 0$. Mais comme (z_p) converge vers 0, la continuité de g en 0, montre que $g(0) = \lim_{p\to +\infty} g(z_p) = 0$, ce qui est contradictoire. Finalement, la suite (a_n) est nulle.

Remarque. A priori, f n'est pas défini en z_p pour tout $p \in \mathbb{N}$ comme l'admet l'énoncé. En effet, rien ne prouve que (z_p) soit à valeurs dans D(0, R). Mais comme (z_p) converge vers (z_p) est à valeurs dans (z_p) a partir d'un certain rang, ce qui ne modifie pas notre raisonnement.

2. Notons R le rayon de convergence commun de f et g. Alors f − g est développable en série entière et son rayon de convergence au moins égal à R. D'après la question précédente, tous les coefficients du développement en série entière de f − g son nuls. Auutrement dit f − g est nul sur D(0, R). Ainsi f et g coïncident sur leur disque ouvert de convergence commun.