Differentiable Reasoning on Large Knowledge Bases and Natural Language

UCL Centre for Artificial Intelligence, University College London Facebook Al Research

凌静

20201/4/13

End-to-End Differentiable Proving - NIPS2017 (NTP)

▶任务

处理KB查询, r(h,?) or r(?,t), 如:grandpaOf(ABE,?)

▶动机

神经链接预测模型能建模相似性,很难处理多跳推理,没有解释性;符号证明太严苛,缺乏相似但不相同符号的查询的能力,容易受噪音干扰。

▶主要贡献

可解释的可微推理,针对查询给出答案的同时给出证明"路径"通过训练参数反推出知识库上的一些规则,如: $0.90 \text{ locatedIn}(X,Y) := locatedIn}(X,Z), locatedIn}(Z,Y)$.

Neural Program Induction

1. 枚举<mark>规则</mark>(OR module),利用嵌入相似性计算目标与规则的匹配度(Unification module)

$$\operatorname{unify}_{\boldsymbol{\theta}}(h: \mathbf{H}, g: \mathbf{G}, S) = \operatorname{unify}_{\boldsymbol{\theta}}(\mathbf{H}, \mathbf{G}, S') = (S'_{\psi}, S'_{\rho})$$

$$S'_{\psi} = \left\{ \begin{array}{ll} S_{\psi} \cup \{h/g\} & \text{if } h \in \mathcal{V} \\ S_{\psi} \cup \{g/h\} & \text{if } g \in \mathcal{V}, h \not\in \mathcal{V} \\ S_{\psi} & \text{otherwise} \end{array} \right\}, \quad S'_{\rho} = \min \left(S_{\rho}, \left\{ \begin{array}{ll} \exp \left(\frac{-\|\theta_{h:} - \theta_{g:}\|_{2}}{2\mu^{2}} \right) & \text{if } h, g \not\in \mathcal{V} \\ 1 & \text{otherwise} \end{array} \right\} \right)$$

Neural Program Induction

路径3-1-1表示的证明: grandpaOf(ABE,BART) <= fatherOf(ABE,HOMER) & parentOf(HOMER,BART)

- 1. 枚举规则(OR module),利用嵌入相似性计算目标与规则的匹配度(Unification module)
- 2. 处理子目标(AND module)
- 3. 取分数最大的路径作为结果

Training Objective

- 扰动已知事实获得negative facts
- 为了加速表示学习,与complEx联合学习

$$\mathcal{L}_{\mathsf{ntp}_{\boldsymbol{\theta}}^{\mathfrak{K}}} = \sum_{([s,i,j],y) \in \mathcal{T}} -y \log(\mathsf{ntp}_{\boldsymbol{\theta}}^{\mathfrak{K}}([s,i,j],d)_{\rho}) - (1-y) \log(1-\mathsf{ntp}_{\boldsymbol{\theta}}^{\mathfrak{K}}([s,i,j],d)_{\rho})$$

$$\mathcal{L}_{\texttt{ntp}\lambda_{\pmb{\theta}}^{\mathcal{R}}} = \mathcal{L}_{\texttt{ntp}_{\pmb{\theta}}^{\mathcal{R}}} + \sum_{([s,i,j],y) \in \mathcal{T}} -y \log(\texttt{complex}_{\pmb{\theta}}(s,i,j)) - (1-y) \log(1-\texttt{complex}_{\pmb{\theta}}(s,i,j))$$

从参数中获取规则

Neural Program Induction

- 指定规则模板及对应数量
- 训练结束后使用Radial Basis Function kernel获取表示与已有谓词表示相似度
- 证明路径中的最小值作为规则置信度

Differentiable Reasoning on Large Knowledge Bases and Natural Language - AAAI2020 (GNTP)

➤动机

NTP只能用在小规模知识库上 大多数人类知识不是在KBs中获得的,而是在难以自动推理的自然语言文本中获得的

▶主要贡献

有限损失内加速NTP,保留可解释性 知识库和文本提及联合推理,在共享的嵌入空间中嵌入事实和自然语言句子

▶ 关键方法

- ▶ L2距离最近邻,路径剪枝
- ▶ 诱导规则的注意力机制,减少参数
- ▶ 对自然语言扩展,联合嵌入谓词和文本

- 事实选择 (Nearest Neighbour Search (NNS))
- 规则选择(在共享相同模板的规则之间动态选择规则)
- 注意力机制 $H = [\theta_{p:}, X, Y] \text{ and } B = [[\theta_{q:}, X, Z], [\theta_{r:}, Z, Y]]$ 把规则中k维的表示变成在已知数量为r的各个谓词上的注意力分数(适用r<k的情况)
- 联合训练 文本编码:词嵌入求平均,当成谓词一起训练

$$t = [[arg1], borders, with, [arg2]]$$

 $\begin{array}{l} \texttt{neighborOf}(X,Y) \coloneq \text{``Y is a neighboring state to X''}(X,Y) \\ \texttt{locatedIn}(X,Y) \coloneq \text{``X is a neighboring state to Z''}(X,Z), \\ \text{``Z is located in Y''}(Z,Y) \end{array}$

					Models						
Datasets		Metrics	NTP 7	GNTP		NeuralLP	MINERVA	Rules Learned by GNTP			
				Standard	Attention						
	SI		90.83 ± 15.4	99.98 ± 0.05	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	locatedIn(X,Y) := locatedIn(X,Z), locatedIn(Z,Y)			
Countries	S2	AUC-PR	87.40 ± 11.7	90.82 ± 0.88	93.48 ± 3.29	75.1 ± 0.3	92.36 ± 2.41	neighborOf(X,Y) := neighborOf(X,Z), locatedIn(Z,Y)			
	S3		56.68 ± 17.6	87.70 ± 4.79	91.27 ± 4.02	92.20 ± 0.2	95.10 ± 1.20	neighborOf(X,Y) := neighborOf(Y,X)			
Kinship		MRR	0.35	0.719	0.759	0.619	0.720	termO(X, Y) := termO(Y, X)			
		HITS@1	0.24	0.586	0.642	0.475	0.605	term4(X, Y) := term4(Y, X)			
		HITS@3	0.37	0.815	0.850	0.707	0.812	term13(X,Y) := term13(X,Z), term10(Z,Y)			
		HITS@10	0.57	0.958	0.959	0.912	0.924	term2(X,Y) := term4(X,Z), term7(Z,Y)			
Nations		MRR	0.61	0.658	0.645	_		commonblocl(X, Y) := relngo(Y, X)			
		HITS@1	0.45	0.493	0.490	_		timesincewar(X,Y) := independence(X,Y)			
		HITS@3	0.73	0.781	0.736	_		unweightedunvote(X,Y) := relngo(X,Y)			
		HITS@10	0.87	0.985	0.975	_	200	ngo(X, Y) := independence(Y, X)			
UMLS		MRR	0.80	0.841	0.857	0.778	0.825	isa(X,Y) := isa(X,Z), isa(Z,Y)			
		HITS@1	0.70	0.732	0.761	0.643	0.728	complicates(X,Y) := affects(X,Y)			
		HITS@3	0.88	0.941	0.947	0.869	0.900	affects(X, Y) := affects(X, Z), affects(Z, Y)			
		HITS@10	0.95	0.986	0.983	0.962	0.968	$process_of(X,Y) := affects(X,Y)$			

规则无关三元组 规则相关三元组

使用了FB122 数据集提供的 规则

		Test-I				Test-II				Test-ALL			
		Hits@N (%)			MRR	Hits@N (%)			- MRR	Hits@N (%)			MRR
		3	5	10		3	5	10		3	5	10	STREET,
With	KALE-Pre (Guo et al. 2016)		41.9	49.8	0.291	82.9	86.1	89.9	0.713	61.7	66.2	71.8	0.523
	KALE-Joint (Guo et al. 2016)	38.4	44.7	52.2	0.325	79.7	84.1	89.6	0.684	61.2	66.4	72.8	0.523
	ASR-DistMult (Minervini et al. 2017)	36.3	40.3	44.9	0.330	98.0	99.0	99.2	0.948	70.7	73.1	75.2	0.675
	ASR-ComplEx (Minervini et al. 2017)	37.3	41.0	45.9	0.338	99.2	99.3	99.4	0.984	71.7	73.6	75.7	0.698
	KBLR (García-Durán and Niepert 2018)	-	-	-	-	-	-	550	-	74.0	77.0	79.7	0.702
Without Rules	TransE (Bordes et al. 2013)	36.0	41.5	48.1	0.296	77.5	82.8	88.4	0.630	58.9	64.2	70.2	0.480
	DistMult (Yang et al. 2015)	36.0	40.3	45.3	0.313	92.3	93.8	94.7	0.874	67.4	70.2	72.9	0.628
	ComplEx (Trouillon et al. 2016)	37.0	41.3	46.2	0.329	91.4	91.9	92.4	0.887	67.3	69.5	71.9	0.641
	GNTPs	33.7	36.9	41.2	0.313	98.2	99.0	99.3	0.977	(69.2	71.1	73.2	0.678

DistMult and ComplEx using Adversarial Sets (ASR) - a method for incorporating rules in neural link predictors via adversarial training 与KBLR和ComplEx在WN18和WN18RR上效果差不多,但是提供了可解释性

谢谢!

凌静

20201/4/13