Axler: Eigenvalues and Eigenvectors

December 2023

James Pagan

Contents

1	Invariant Subspaces		2
	1.1	Eigenvalues	2
	1.2	Polynomials Applied to Operators	3
2	The	e Minimal Polynomial	4
	2.1	Existence of Eigenvalues on Complex Vector Spaces	4
	2.2	Eigenvalues and the Minimal Polynomial	5
3	Upp	per-Triangular Matricies	8
	3.1	Matrix Prerequisites	8

1 Invariant Subspaces

1.1 Eigenvalues

Suppose $\mathbf{T} \in \mathcal{L}(V)$. A subspace U of V is called **invariant** under \mathbf{T} if $\mathbf{Tu} \in U$ for all $\mathbf{u} \in U$. A number $\lambda \in \mathbb{F}$ is called an **eigenvalue** of $\mathbf{T} \in \mathcal{L}(V)$ if there exists $\mathbf{v} \in V$ such that $\mathbf{Tv} = \lambda \mathbf{v}$.

Theorem 1. Suppose V is finite-dimensional, $\mathbf{T} \in \mathcal{L}(V)$, and $\lambda \in \mathbb{F}$. Then the following are equivalent:

- 1. λ is an eigenvalue of T.
- 2. $\mathbf{T} \lambda \mathbf{I}$ is not injective.
- 3. $\mathbf{T} \lambda \mathbf{I}$ is not surjective.
- 4. $\mathbf{T} \lambda \mathbf{I}$ is not bijective.

Proof. Conditions (1) and (2) are equivalent, as $\mathbf{T}\mathbf{v} = \lambda\mathbf{v}$ if and only if $(\mathbf{T} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$. Conditions (2), (3), and (4) are equivalent by the fact V is finite-dimensional.

Suppose $\mathbf{T} \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$ is an eigenvalue of \mathbf{T} . A vector $\mathbf{v} \in V$ is called an **eigenvector** of \mathbf{T} corresponding to λ if $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{T}\mathbf{v} = \lambda \mathbf{v}$. Such eigenvectors biconditionally satisfy $\mathbf{v} \in \text{null}(\mathbf{T} - \lambda \mathbf{I})$.

Theorem 2. Suppose $\mathbf{T} \in \mathcal{L}(V)$. Then every list of eigenvectors of \mathbf{T} corresponding to distinct eigenvalues of \mathbf{T} is linearly independent.

Proof. Suppose the desired result is false. Let m be the smallest positive integer such that the list of eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ corresponding to distinct eigenvalues $\lambda_1, \ldots, \lambda_m$ is dependent. As m > 1, there exist $\mu_1, \ldots, \mu_m \in \mathbb{F}$ — none of which are zero, by the minimality of m — such that

$$\mu_1 \mathbf{v}_1 + \cdots + \mu_m \mathbf{v}_m = \mathbf{0}.$$

Applying $\mathbf{T} - \lambda \mathbf{I}$ to this equation, we find that

$$\mu_1(\lambda_1 - \lambda_m)\mathbf{v}_1 + \dots + \mu_{m-1}(\lambda_{m-1} - \lambda_m)\mathbf{v}_m = \mathbf{0}.$$

None of the coefficients above equal zero, as the eigenvalues are distinct and μ_1, \ldots, μ_m are nonzero. Thus, $\mathbf{v}_1, \ldots \mathbf{v}_{m-1}$ are linearly dependent — which violates the minimality of m, yielding our desired contradiction.

The proof above is beautiful, yielding a swift execution to the following theorem:

Theorem 3. Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.

Proof. Suppose **T** has distinct eigenvalues $\lambda_1, \ldots, \lambda_m$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_m$ be nonzero vectors that correspond to these eigenvalues; by Lemma 2, they are independent. Then $m \leq \dim V$, as desired.

1.2 Polynomials Applied to Operators

Suppose $\mathbf{T} \in \mathcal{L}(V)$ and $m \in \mathbb{Z}_{>0}$. Then

- $\mathbf{T}^m \in \mathcal{L}(V)$ is defined to be $\mathbf{T} \cdots \mathbf{T}$ (*m* times).
- $\mathbf{T}^0 \in \mathcal{L}(V)$ is defined to be **I**.
- $\mathbf{T}^{-m} \in \mathcal{L}(V)$ is defined to be $(\mathbf{T}^{-1})^m$, if \mathbf{T} is invertible.

It is easy to verify that $\mathbf{T}^{n+m} = \mathbf{T}^n \mathbf{T}^n$ and $(\mathbf{T}^n)^m = \mathbf{T}^{nm}$. Now, suppose $\mathbf{T} \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$ is a polynomial of the form

$$p(z) = a_m p^m + \dots + a_1 p + a_0.$$

Then $p(\mathbf{T})$ is the operator on V defined by

$$p(\mathbf{T}) = a_m \mathbf{T}^m + \dots + a_1 \mathbf{T} + a_0 \mathbf{I}.$$

If $p, q \in \mathcal{P}(\mathbb{F})$, we further define pq(z) = p(z)q(z) for all $z \in \mathbb{F}$. Order here is irrelevant:

Theorem 4. $(pq)(\mathbf{T}) = p(\mathbf{T})q(\mathbf{T})$ and $p(\mathbf{T})q(\mathbf{T}) = q(\mathbf{T})p(\mathbf{T})$.

Proof. Suppose $p(z) = \sum_{i=0}^{n} a_i z_i$ and $q(z) = \sum_{j=0}^{m} b_j z_j$. Then $(pq)(z) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j z^{i+j}$, so

$$(pz)(\mathbf{T}) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j \mathbf{T}^{i+j}$$
$$= \left(\sum_{i=0}^{n} a_i \mathbf{T}^i\right) \left(\sum_{j=0}^{m} b_j \mathbf{T}^j\right)$$
$$= p(\mathbf{T})q(\mathbf{T}).$$

For the second result, see that $p(\mathbf{T})q(\mathbf{T}) = (pq)(\mathbf{T}) = (qp)(\mathbf{T}) = q(\mathbf{T})p(\mathbf{T})$.

Theorem 5. Suppose $\mathbf{T} \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbb{F})$. Then null $p(\mathbf{T})$ and range $p(\mathbf{T})$ are invariant subspaces under \mathbf{T} .

Proof. Clearly, null **T** and range **T** are invariant under the operator **T**. Now, suppose $\mathbf{u} \in \text{null } p(\mathbf{T})$; then

$$(p(\mathbf{T}))(\mathbf{T}\mathbf{u}) = \mathbf{T}(p(\mathbf{T})(\mathbf{u})) = \mathbf{T}(\mathbf{0}) = \mathbf{0},$$

so $\mathbf{T}\mathbf{u} \in \text{null } p(\mathbf{T})$, and $\text{null } p(\mathbf{T})$ is invariant. Clearly $\mathbf{u} \in \text{range } p(\mathbf{T})$ implies that

$$p(\mathbf{T})(\mathbf{T}\mathbf{u}) = \mathbf{T}(p(\mathbf{T})\mathbf{u}) \in \text{range } \mathbf{T};$$

we conclude that the null space and range of $p(\mathbf{T})$ are invariant under \mathbf{T} .

2 The Minimal Polynomial

2.1 Existence of Eigenvalues on Complex Vector Spaces

Theorem 6. Every operator on a nonzero complex vector space V with finite dimension n has an eigenvalue.

Proof. Choose $\mathbf{v} \in V$, such that $\mathbf{v} \neq 0$. Then

$$\mathbf{v}, \mathbf{T}\mathbf{v}, \mathbf{T}^2\mathbf{v}, \dots, \mathbf{T}^n\mathbf{v}$$

is a dependent list. Hence there exists a linear combination of these vectors equal to $\mathbf{0}$. Simplifying, we find a nonconstant polynomial p of smallest degree such that

$$p(\mathbf{T})\mathbf{v} = \mathbf{0}.$$

By the Fundamental Theorem of Algebra, this polynomial has a root λ . Then

$$p(z) = (z - \lambda)q(z)$$

for some polynomial q. Then using the multiplicative properties of polynomials,

$$\mathbf{0} = p(\mathbf{T})\mathbf{v} = (\mathbf{T} - \lambda \mathbf{I})(q(\mathbf{T})\mathbf{v}).$$

As q has degree smaller than p, the expression $q(\mathbf{T})\mathbf{v}$ is never the zero vector. Thus, the above equation implies that λ is an eigenvector of \mathbf{T} with eigenvector $q(\mathbf{T})\mathbf{v}$. \square

The theorem above fails if \mathbb{C} is replaced with \mathbb{R} or if V is infinite dimensional.

2.2 Eigenvalues and the Minimal Polynomial

Theorem 7. Suppose V is finite-dimensional and $\mathbf{T} \in \mathcal{L}(V)$. Then there is a unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ of smallest degree such that $p(\mathbf{T}) = \mathbf{0}$. Furthermore, $\deg p \leq \dim V$.

Proof. We proceed via strong induction. If dim V = 0, then the constant polynomial 1 suffices – thus, we assume the existence, uniqueness, and degree of the polynomial p for dim $V \in \{0, \ldots, n-1\}$.

Let dim V = n and select some nonzero $\mathbf{v} \in V$. Consider the family of vectors

$$\mathbf{v}, \mathbf{T}\mathbf{v}, \mathbf{T}^2\mathbf{v}, \dots, \mathbf{T}^n\mathbf{v}.$$

It has length n+1, so it must be dependent. Then by the Linear Dependence Lemma, there exists an integer m such that $\mathbf{v}, \mathbf{T}\mathbf{v}, \dots \mathbf{T}^{m-1}\mathbf{v}$ is independent but $\mathbf{v}, \mathbf{T}\mathbf{v}, \dots, \mathbf{T}^m\mathbf{v}$ is not — namely, that there exist scalars $c_0, \dots, c_{m-1} \in \mathbb{F}$ such that

$$\mathbf{T}^m \mathbf{v} + c_{m-1} \mathbf{T}^{m-1} \mathbf{v} + \dots + c_1 \mathbf{T} \mathbf{v} + c_0 \mathbf{v} = \mathbf{0}.$$

Define the monic polynomial $q \in \mathcal{P}_m(\mathbb{F})$ by $q(z) = z^m + c_{m-1}z^{m-1} + \cdots + c_1z + c_0$; then the above equation reads $q(\mathbf{T})\mathbf{v} = \mathbf{0}$. Now, realize that for all $k \in \{0, \dots, m-1\}$,

$$q(\mathbf{T})(\mathbf{T}^k\mathbf{v}) = \mathbf{T}^k(q(\mathbf{T})\mathbf{v}) = \mathbf{T}^k\mathbf{0} = \mathbf{0}.$$

Hence, dim null $q(\mathbf{T}) \geq m$. Then by the Fundamental Theorem of Linear Maps,

$$\dim \operatorname{range} q(\mathbf{T}) = \dim V - \dim \operatorname{null} q(\mathbf{T}) \le n - m.$$

Then because dim range $q(\mathbf{T}) < n$, our inductive hypothesis applies to the vector space dim range $q(\mathbf{T})$ and the operator $T \mid_{\text{range } q(\mathbf{T})}$. We deduce the existence of a unique monic polynomial s of smallest degree with

$$s(\mathbf{T}\mid_{\operatorname{range} q(\mathbf{T})}) = \mathbf{0}$$
 and $\deg s \leq n - m$.

We claim that $(sq)(\mathbf{T}) = \mathbf{0}$. For all $\mathbf{v} \in V$, realize that $q(\mathbf{T})\mathbf{v} \in \text{range } q(\mathbf{T})$; thus,

$$(sq)(\mathbf{T})\mathbf{v} = s(\mathbf{T})(q(\mathbf{T})\mathbf{T}) = \mathbf{0}.$$

Furthermore, the degree of sq satisfies the desired requirement:

$$\deg sq = \deg s + \deg q \le (n-m) + m = n.$$

We have identified a monic polynomial of degree at most n which when applied to T returns the zero operator. Thus, there exist a monic polynomial of *smallest degree* with this property; all that remains to be proven is its uniqueness.

Suppose $p, q \in \mathcal{P}(\mathbb{F})$ are two monic polynomials of the smallest degree m such that $p(\mathbf{T}) = q(\mathbf{T}) = \mathbf{0}$. Then $(p-q)(\mathbf{T}) = \mathbf{0}$ and $\deg(p-q) < m$; if we simply divide p-q by its leading coefficient, we a polynomial multiple of the minimal polynomial of find a monic polynomial that contradicts the minimality of m. Hence p=q, which completes the proof.

For a finite-dimensional vector space V and operator $\mathbf{T} \in \mathcal{L}(V)$, the **minimal polynomial** of \mathbf{T} is the unique monic polynomial $p \in \mathcal{P}(\mathbb{F})$ such that $p(\mathbf{T}) = \mathbf{0}$.

Theorem 8. The zeroes of the minimal polynomial of T are the eigenvalues of T.

Proof. Let p be the minimal polynomial of \mathbf{T} . Suppose that $\lambda \in \mathbb{F}$ is a zero of p; then for some monic polynomial $p \in \mathcal{P}(\mathbb{F})$,

$$p(z) = (z - \lambda)q(z).$$

Because $p(\mathbf{T}) = \mathbf{0}$, we have that for all $\mathbf{v} \in V$,

$$\mathbf{0} = (\mathbf{T} - \lambda \mathbf{I})(q(\mathbf{T})\mathbf{v}).$$

As q has smaller degree than the minimal polynomial, there exists $\mathbf{w} \in V$ such that $q(\mathbf{T})\mathbf{w} \neq \mathbf{0}$; the above equation implies that $q(\mathbf{T})\mathbf{w}$ must be an eigenvector of \mathbf{T} with eigenvalue λ .

Now, suppose that $\lambda \in \mathbb{F}$ is an eigenvalue of **T**. Then for some $\mathbf{T}\mathbf{v} = \lambda \mathbf{v}$ for some nonzero $\mathbf{v} \in V$; iterated applications yield that $\mathbf{T}^k \mathbf{v} = \lambda^k \mathbf{v}$ for all $k \in \mathbb{Z}_{\geq 0}$, so

$$p(\mathbf{T})\mathbf{v} = p(\lambda)\mathbf{v}.$$

the left-hand side is $\mathbf{0}$; then $p(\lambda)$ must be zero, and λ is a root of the minimal polynomial.

If V is a finite-dimensional vector space over \mathbb{C} and $\mathbf{T} \in \mathcal{L}(\mathbb{F})$, then the minimal polynomial of \mathbf{T} has the form

$$(z-\lambda_1)\cdots(z-\lambda_m),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of **T**, possibly with repetitions.

Theorem 9. Suppose V is finite dimensional, $\mathbf{T} = \mathcal{L}(V)$, and $q \in \mathcal{P}(\mathbb{F})$. Then $q(\mathbf{T}) = \mathbf{0}$ if and only if q is a polynomial multiple of the minimal polynomial of \mathbf{T} .

Proof. Let the minimal polynomial of **T** be p. As $\deg q \ge \deg p$, we may divide them to deduce the existence of $s, r \in \mathcal{P}(\mathbb{F})$ such that

$$q = ps + r$$
,

where deg $r < \deg p$. Then $q(\mathbf{T}) = p(\mathbf{T})s(\mathbf{T}) + r(\mathbf{T})$. Because $q(\mathbf{T}) = p(\mathbf{T}) = \mathbf{0}$, this equation simplifies to

$$0 = r(T).$$

If r was nonzero, then we could divide by its leading coefficient to yield a polynomial that contradics the minimality of p. Thus r = 0.

If q is a polynomial multiple of p, then there exists $s \in \mathcal{P}(\mathbb{F})$ such that q = ps. Then

$$\mathbf{0} = p(\mathbf{T})s(\mathbf{T}) = q(\mathbf{T}),$$

which completes the proof.

The next result is a nice consequence of the above.

Theorem 10. Suppose V is finite-dimensional, $\mathbf{T} \in \mathcal{L}(V)$, and U is an invariant subspace of V. Then the minimal polynomial of \mathbf{T} is a polynomial multiple of the minimal polynomial of $\mathbf{T} \mid_{U}$.

Proof. Let p be the minimal polynomial of **T**. Then for all $\mathbf{u} \in U$,

$$p(\mathbf{T})\mathbf{u} = \mathbf{0}.$$

We conclude that $p(\mathbf{T}|_{U}) = \mathbf{0}$, so p is a polynomial multiple of the minimal polynomial of $\mathbf{T}|_{U}$.

Theorem 11. Suppose V is finite-dimensional and $\mathbf{T} \in \mathcal{L}(V)$. Then T is not invertible if and only if the constant term of the minimal polynomial of T is 0.

Proof. If **T** is not invertible, then 0 must be an eigenvalue of **T**. Then 0 is a root of p, which implies that 0 does not have a constant term. The reverse of our steps holds as well.

3 Upper-Triangular Matricies

3.1 Matrix Prerequisites

Suppose $\mathbf{T} \in \mathcal{L}(V)$. The **matrix** of \mathbf{T} with respect to a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ is the *n*-by-*n* matrix

$$\mathcal{M}(\mathbf{T}) = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nn} \end{bmatrix},$$

whose entries A are defined by

$$\mathbf{T}\mathbf{v}_k = A_{1k}\mathbf{v}_1 + \dots + A_{nk}\mathbf{v}_n.$$

Thus, the k-th column of the matrix $\mathcal{M}(\mathbf{T})$ is formed from the coefficients used to write $\mathbf{T}\mathbf{v}_k$ as a linear combination of the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

The **diagonal** of a square matrix consists of all the entries A_{kk} for each $k \in \{1, ..., n\}$. If all the entires below the diagonal are 0, the square matrix is called **upper triangular**.

Theorem 12. If $\mathbf{T} \in \mathcal{L}(V)$ and $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V, then the following conditions are equivalent:

- 1. The matrix of **T** with respect to $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is upper triangular.
- 2. $\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_k)$ is invariant under \mathbf{T} for each $k \in \{1,\ldots,n\}$.
- 3. $\mathbf{T}\mathbf{v}_k \in \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$ for each $k \in \{1, \dots, n\}$

Proof. Suppose that (1) holds. Then for each $i \in \{1, ..., n\}$,

$$\mathbf{T}\mathbf{v}_i = A_{1i}\mathbf{v}_1 + \dots + A_{ii}\mathbf{v}_i.$$

Let $k \in \{1, ..., n\}$. For all $\mathbf{w} \in \text{span}(\mathbf{v}_1, ..., \mathbf{v}_k)$, there exist scalars $\lambda_1, ..., \lambda_k$ such that $\mathbf{w} = \lambda_1 \mathbf{v}_1 + \cdots + \lambda_k \mathbf{v}_k$. Therefore,

$$\mathbf{Tw} = \sum_{i=1}^{k} \mathbf{T}(\lambda_{i}\mathbf{v}_{i})$$

$$= \sum_{i=1}^{k} \lambda_{1}(A_{1i}\mathbf{v}_{1} + \dots + A_{ii}\mathbf{v}_{i})$$

$$= (\lambda_{1}A_{11} + \dots + \lambda_{k}A_{1k})\mathbf{v}_{1} + \dots + (\lambda_{k}A_{kk})\mathbf{v}_{k}$$

$$\in \operatorname{span}(\mathbf{v}_{1}, \dots, \mathbf{v}_{k}).$$

Then span($\mathbf{v}_1, \dots, \mathbf{v}_k$) is invariant under \mathbf{T} for each $k \in \{1, \dots, n\}$. If (2) holds, then setting $\mathbf{w} = \mathbf{v}_k$ achieves (3).

Now, suppose (3) holds. Then for each $k \in \{1, ..., n\}$, there exist scalars such that

$$\mathbf{T}\mathbf{v}_k = A_{1k}\mathbf{v}_1 + \dots + A_{kk}\mathbf{v}_k.$$

As $\mathbf{v}_1, \ldots, \mathbf{v}_n$ constitute a basis of V, we conclude that the unique scalars that express \mathbf{T}_k as a linear combination of \mathbf{v}_k are $A_{1k}, \ldots, A_{kk}, 0, \ldots$ respectively. Thus, the entries of $\mathcal{M}(\mathbf{T})$ are zero below the main diagonal, implying (1).

Theorem 13. For some $\mathbf{T} \in \mathcal{L}(V)$, suppose that there exists a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ such that $\mathcal{M}(\mathbf{T})$ is upper triangular. Then if $\lambda_1, \dots, \lambda_n$ are its diagonal entries, \mathbf{T} satisfies the equation

$$(\mathbf{T} - \lambda_1 \mathbf{I}) \cdots (\mathbf{T} - \lambda_n \mathbf{I}) = \mathbf{0}.$$

Proof.