Théorie des langages : THL CM 5

Uli Fahrenberg

EPITA Rennes

S5 2023

Aperçu ●000000

Apercu

- Langages rationnels, automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
- Parsage LL, partie 1
- TP 1 : flex
- Parsage LL, partie 2
- TP 2 : parsage LL
- Parsage LR
- TP 3, 4 : flex & bison

4/24

La dernière fois : parsage

Problème de parsage

Apercu

Pour une grammaire hors contexte G, construire un algorithme de parsage qui

- pour un mot w, decide si $w \in L(G)$,
- et dans le cas $w \in L(G)$, retourne l'arbre de dérivation.
- arbre de dérivation de $w \triangleq sémantique$ de w

Nos algorithmes de parsage devrait

- pouvoir traiter des grammaires non-ambiguës
- avoir une complexité linéaire en taille d'entrée
- lire w de gauche à droite sans retour arrière

Uli Fahrenberg Théorie des langages : THL

La dernière fois : parsage LL(1)

- approche descendante
- lire le mot w de gauche à droite / Left-to-right
 - sans passer à l'arrière
- construire une dérivation gauche / Leftmost
- en accordant, à chaque pas, le premier symbole de w avec le côté droit d'une production
 - donc avec lookahead 1
- parsage LL(k): lookahead k / « fenêtre de k lexèmes »
- peu utilisé

- o entrée : une grammaire hors contexte $G = (N, \Sigma, P, S)$
 - si-dessous, $V = N \cup \Sigma$
 - éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL

Apercu

- NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = $\{a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw\}$
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- construire la TABLE de parsage :
 - pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - 2 si $w \in NULL$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

Uli Fahrenberg

Définition (8.5)

Aperçu 00000●0

G est LL(1) si chaque TABLE(A, a) contient au maximum une production.

La dernière fois : exemple

Aperçu 000000

$$Z \rightarrow XYZ$$
 (1)

$$X \rightarrow a$$
 (3)

$$\mid Y$$
 (4)

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$Z \rightarrow XYZ$$
 (1)

$$X \rightarrow a$$
 (3)

$$|Y|$$
 (4)

$$Y \rightarrow b$$
 (5)

$$|\varepsilon|$$
 (6)

Uli Fahrenberg

 $NULL = \{X, Y\}$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$Y o b$$
 (5)
 $\mid \varepsilon$ (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$|\varepsilon|$$
 (6)

$$NULL = \{X, Y\}$$

Uli Fahrenberg

Théorie des langages : THL

La dernière fois : exemple

Aperçu 000000

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

Uli Fahrenberg Théorie des langages : THL 12/ 24

Exemples

Exemple (tableau)

$$S \to FS$$
 (1)

$$|Q|$$
 (2)

$$|'('S')'S$$
 (3)

$$F \rightarrow '!'$$
 (4)

$$Q \rightarrow '$$
?' (5)

« Une session est une séquence de faits suivi par une question; sous-sessions sont permis »

Exemple (tableau)

$$Z \rightarrow S$$
\$ (1)

$$S \to LQ$$
 (2)

$$|'('S')'S$$
 (3)

$$L \rightarrow FL$$
 (4)

$$|\varepsilon|$$
 (5)

$$F \rightarrow '!'$$

$$Q \rightarrow '?'$$
(6)
(7)

$$Q \rightarrow '$$
?' (7)

Plus ça change, . . .

Implémentation

Grammaire:

$$S \to F$$
 (1)

$$|'('S'+'F')'|$$
 (2)

$$F \rightarrow 'a'$$
 (3)

Simple parseur en Python:

Uli Fahrenberg

Théorie des langages : THL

Bonus : langages non-rationnels

Motifs répétitifs

- Existent-ils des langages non-rationnels?
- Le langage $\{a^nb^n \mid n \ge 0\}$ est-il rationnel?
- Le langage des expressions arithmétiques est-il rationnel?

Uli Fahrenberg

Théorie des langages : THL

19/24

Lemme de l'étoile

- Soit $A = (\Sigma, Q, Q_0, F, \delta)$ un automate fini avec k états.
- ② Soit $x \in L(A)$ un mot de longueur |x| = k (si il existe); écrivons $x = a_1 \dots a_k$.
- **3** Alors on a un calcul réussi $s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \cdots \xrightarrow{a_k} s_{k+1}$ dans A.
- Ce calcul utilise k+1 états, alors un état de A a été utilisé deux fois. (Principe des tiroirs.)
- **5** Soient donc i < j tel que $s_i = s_j$: la chaîne $s_i \rightsquigarrow s_j$ est une boucle.
- **3** Alors $s_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{i-1}} s_i \xrightarrow{a_j} s_{j+1} \rightarrow \cdots \rightarrow s_{k+1}$ est aussi un calcul réussi, avec étiquette $a_1 \dots a_{i-1} a_i \dots a_k$.
- ② En écrivant $u = a_1 \dots a_{i-1}$, $v = a_i \dots a_{j-1}$ et $w = a_j \dots a_k$ on trouve que $L(uv^*w) \subseteq L(A)$.

Uli Fahrenberg Théorie des langages : THL

Lemme de l'étoile

Théorème (4.25)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

- aussi lemme de pompage
- note $\exists k : \forall x : \exists u, v, w$
- démonstration par quelques petites modifications de l'argument précédent

Corollaire

Théorème (rappel)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

Corollaire

Le langage $\{a^nb^n \mid n \geq 0\}$ n'est pas rationnel.

Démonstration.

- Supposons par l'absurde que L soit rationnel.
- 2 Soit k comme fourni par la lemme d'étoile.
- Soit $x = a^k b^k$, alors x = uvw avec $|uv| \le k$ et $|v| \ge 1$.
- Onc $u = a^i$, $v = a^j$ et $w = a^{k-i-j}b^k$ pour un $j \ge 1$.
- **⑤** On a $uw \in L(uv^*w)$ mais $uw \notin L$, contradiction!

Uli Fahrenberg Théorie des langages : THL 21/24

Exercice

Théorème (rappel)

Soit L un langage rationnel. Il existe $k \ge 0$ tel que tout $x \in L$ avec longueur $|x| \ge k$ peut s'écrire x = uvw avec $|uv| \le k$, $|v| \ge 1$ et $L(uv^*w) \subseteq L$.

Montrer que le langage $\{ww \mid w \in \{a, b\}^*\}$ n'est pas rationnel.

Les automates finis sont décidables

Théorème (4.27)

Il existe un algorithme qui, pour A un automate fini, décide si L(A) est vide, fini ou infini.

Démonstration.

Soit k le nombre d'états de A.

- **1** L(A) est non-vide ssi il existe $w \in L(A)$ avec longueur |w| < k.
- ② L(A) est infini ssi il existe $w \in L(A)$ avec $k \le |w| < 2k$.

(le reste sur tableau)

