R Markdown

2020/03/13

Contents

R Markdown 1

R Markdown

Use **bookdown** or **rmarkdown** to produce a report for the following task. Consider approximation of the distribution function of N(0,1)

$$\Phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} y, (\#eq : cdf)$$

by the Monte Carlo methods:

$$\hat{\Phi}(t) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le t)$$

where X_i 's are a random sample from N(0,1), and $I(\cdot)$ is the indicator function. Experiment with the approximation at $n \in \{10^2, 10^3, 10^4\}$ at $t \in \{0.0, 0.67, 0.84, 1.28, 1.65, 2.32, 2.58, 3.09, 3.72\}$ to form a table.

The table should include the true value for comparison. Further, repeat the experiment 100 times. Draw box plots of the 100 approximation errors at each t using **ggplot2** [@R-ggplot2] for each n. The report should look like a manuscript, with a title, an abstract, and multiple sections. It should contain at least one math equation, one table, one figure, and one chunk of R code. The template of our Data Science Lab can be helpful:https://statds.org/template/, the source of whichathttps://github.com/statds/dslab-templates.