The Conditional Diagnosability of BCDC under the Comparison Diagnosis Model

Shuangxiang Kan, Baolei Cheng, and Jianxi Fan * School of Computer Science and Technology, Soochow University, Suzhou, China

Abstract

abstract

Keywords: BCDC, conditional diagnosability

1 Introduction

introducion

2 Notations and Definitions

Definition 1. [1] Two binary strings $x = x_1x_0$ and $y = y_1y_0$ of length 2 are said to be pair-related (denoted by $x \sim y$) if and only if $(x, y) \in \{(00, 00), (10, 10), (01, 11), (11, 01)\}$.

 $E(R_0, R_2)$ $B_n - F - V(A)$

 $S_n \setminus F_2 \neq \emptyset$

 $|F_0|$

Definition 2. [1] The n-dimensional crossed cube, CQ_n , is recursively defined as follows. CQ_1 is the complete (undirected) graph on two nodes whose addresses are 0 and 1. CQ_n consists of CQ_{n-1}^0 and CQ_{n-1}^1 . The most significant bits of the addresses of the nodes in CQ_{n-1}^0 and CQ_{n-1}^1 are 0 and 1,

^{*}Corresponding author: jxfan@suda.edu.cn (J. Fan)

respectively. The nodes $u = u_{n-1}u_{n-2}\cdots u_0 \in V(CQ_{n-1}^0)$ and $v = v_{n-1}v_{n-2}\cdots v_0 \in V(CQ_{n-1}^1)$, where $u_{n-1} = 0$ and $v_{n-1} = 1$, are joined by an edge in CQ_n if and only if

- 1) $u_{n-2} = v_{n-2}$ if *n* is even, and
- 2) $u_{2i+1}u_{2i} \sim v_{2i+1}v_{2i}$ (see Definition 1), for $\lfloor \frac{n-1}{2} \rfloor > i \geq 0$.

Definition 3. [1] The n-dimensional BCDC network, B_n , is recursively defined as follows. B_2 is a cycle with 4 nodes [00,01], [00,10], [01,11], and [10,11]. For $n \geq 3$, we use B_{n-1}^0 (resp. B_{n-1}^1) to denote the graph obtained by B_{n-1} with changing each node [x,y] of B_{n-1} to [0x,0y] (resp. [1x,1y]). B_n consists of B_{n-1}^0 , B_{n-1}^1 , and a node set $S_n = \{[a,b]|a \in V(CQ_{n-1}^0), b \in V(CQ_{n-1}^1), and (a,b) \in E(CQ_n)\}$ according to the following rules. For nodes $u = [a,b] \in V(B_{n-1}^0), v = [c,d] \in S_n$, and $w = [e,f] \in V(B_{n-1}^1)$:

- 1) $(u,v) \in E(B_n)$ if and only if a = c or b = c.
- 2) $(v, w) \in E(B_n)$ if and only if e = d or f = d.

Lemma 1. Let G = (V, E) be a system. For any two distinct subsets F_1 and F_2 of V(G), (F_1, F_2) is a distinguishable pair if and only if at least one of the following conditions is satisfied:

- $1)\exists u,v\in F_1\setminus F_2 \text{ and } \exists w\in V(G)\setminus (F_1\cup F_2) \text{ such that } (u,v)_w\in C.$
- $(2)\exists u,v\in F_2\setminus F_1 \text{ and } \exists w\in V(G)\setminus (F_1\cup F_2) \text{ such that } (u,v)_w\in C.$
- $\exists u, w \in V(G) \setminus (F_1 \cup F_2) \text{ and } \exists v \in F_1 \triangle F_2 \text{ such that } (u, v)_w \in C.$

We use cn(G) to represent the maximum number of common nodes between any two nodes in graph G.

Lemma 2. For an n-dimensional BCDC, B_n has the following properties:

- (1) B_n has $n2^{n-1}$ nodes and $n(n-1)2^{n-1}$ edges.
- (1) B_n is (2n-2)-regular, $\kappa(B_n) = 2n-2$.

Lemma 3. $cn(B_n, x, y) = n - 2$ if $(x, y) \in E(B_n)$ and $cn(B_n, x, y) = 2$ or 0 if if $(x, y) \notin E(B_n)$ for n >= 3.

Lemma 4. [1] For any integer $n \geq 3$ and any two nodes $u = [a, b], v = [c, d] \in S_n$, we have

$$|N_{B_{n-1}^0}(\{u,v\})| = \begin{cases} 2n-2, & \text{if } (a,c) \notin E(CQ_n), \\ 2n-3, & \text{if } (a,c) \in E(CQ_n), \end{cases}$$

and

$$|N_{B_{n-1}^1}(\{u,v\})| = \begin{cases} 2n-2, & \text{if } (b,d) \notin E(CQ_n), \\ \\ 2n-3, & \text{if } (b,d) \in E(CQ_n). \end{cases}$$

Lemma 5. For any three nodes x, y and z in B_{n-1}^0 where $(x,y),(y,z) \in E(B_n)$ and $n \geq 3$, $|N_{S_n}(N_{B_{n-1}^0}(x,y,z) \cup \{x,y,z\})| > |N_{B_{n-1}^0}(x,y,z)|$.

Proof. Let $x=[a,b], \ y=[c,d]$ and z=[e,f] and $H=\{a,b\}\cup\{c,d\}\cup\{e,f\}$. Since $(x,y),(y,z)\in E(B_n)$ and CO_n contains no circle of length 3, |H|=4. Without loss of generality, suppose that b=c, d=e, If $(a,f)\in E(CQ_{n-1}^0)$ or there exists a node m in CQ_{n-1}^0 , which $(a,m),(m,f)\in E(CQ_{n-1})$, then $|N_{B_{n-1}^0}(x,y,z)|=|N_{CQ_{n-1}^0}(a,b,d,f)|+1$. For each node in $N_{CQ_{n-1}^0}(H)\cup H$, there is a matching node in CQ_{n-1}^1 . According to the construction method of BCDC, we have $|N_{CQ_{n-1}^0}(H)\cup H|=|N_{S_n}(N_{B_{n-1}^0}(x,y,z))\cup\{x,y,z\}|>|N_{B_{n-1}^0}(u)|$.

3 The Conditional Diagnosability of BCDC under the Comparison Diagnosis Model

Lemma 6. Let G be a graph $\delta(G) > 2$, and let F_1 and F_2 be any two distinct conditional faulty sets of V(G) with $F_1 \subset F_2$. Then, (F_1, F_2) is a distinguishable conditional pair under the comparison diagnosis model.

Lemma 7. $t_c(B_n) \le 4n - 6$, for $n \ge 6$.

Proof. Consider a path $P = \langle u, v, w \rangle$ where u[0] = v[0] = w[0]. Let $|F_1| = N_{B_n}(P) \cup \{u\}$ and $|F_2| = N_{B_n}(P) \cup \{w\}$. Since $|F_1 \setminus F_2| = |F_2 \setminus F_1| = 1$, condition 1 and condition 2 of Lemma 1 are not satisfied; $F_1 \triangle F_2 = \{u, w\}$, for each node $x \in F_1 \triangle F_2$, there is only one node $v \in V(G) \setminus (F_1 \cup F_2)$ which is adjacent to x and v does not have a neighbour in $V(G) \setminus (F_1 \cup F_2)$, then condition 3 of Lemma 1 is not satisfied. Thus F_1 and F_2 are indistinguishable. By Lemma 3 and $\{(u, v), (u, w), (v, w)\} \subset E(B_n)$, $|F_1 \cap F_2| = |N_{B_n}(P)| = 4n - 6$ and $|F_2 \setminus F_1| = |F_1 \setminus F_2| = 1$. Hence, $|F_1| = |F_2| = 4n - 5$. Next, we

show that F_1 and F_2 are conditional faulty sets. Without loss of generality, for each node $x \in V(B_n)$, we show $N_{B_n}(x) \subseteq F_1$, another situation $N_{B_n}x \subseteq F_2$ is similar.

Case 1. $x \in V(P)$. If x = u, then x has a neighbour $v \notin F_1$; If x = W, then x has a neighbour $v \notin F_1$; If x = v, then x has a neighbour $w \notin F_1$.

Case 2. $x \in N_{B_n}(P)$. If $x \in N_{B_n}(v)$, then x has a neighbour $v \notin F_1$; If $x \in N_{B_n}(w)$, then x has a neighbour $w \notin F_1$; If $x \in N_{B_n}(u)$, by Definition 3, x has two neighbours in S_n and u has two neighbours in S_n . Since $N_{S_n}(x) \cap N_{S_n}(u) \leq 1$, then x has a neighbour which does not belong to F_1 ;

Case 3. $x \notin N_{B_n}(P) \cup \{u, v, w\}$. x is not adjacent to any node in P, by Lemma 3, $\max(N_{B_n}(x, y)) = 2$ for each node y in P. Since $\kappa(x) = 2n - 2 > 6$ for $n \ge 5$, x has a neighbour which does not belong to F_1 ;

Therefore,
$$t_c(B_n) \leq 4n - 6$$
, for $n \geq 6$.

Lemma 8. Let F be a faulty set of B_n with $|F| \le 3n - 5$, where $n \ge 3$. Then, $B_n - F$ satisfies one of the following two conditions: 1) $B_n - F$ is connected. 2) $B_n - F$ has two components, one is K_1 and the other contains $n2^{n-1} - |F| - 1$ nodes.

Proof. We prove the claim by induction on n. It is easy to verify that this Lemma holds when n=3, so our proof starts from $n \geq 4$. Suppose that m_1 and m_2 are two K_1 s in $B_n - F$. According to the Lemma 2, we have $|N(m_1)| = |N(m_2)| = 2n - 2$ and $|N(m_1) \cap N(m_2)| \leq 2$. Then $|S| \geq |V(m_1) \cup V(m_2)| = |V(m_1)| + |V(m_2)| - |N(m_1) \cap N(m_2)| \geq (2n-2) + (2n-2) - 2 = 4n-6 > 3n-5$ for $n \geq 4$. Hence, there exists at most one K_1 in $B_n - F$. Let A be a K_1 in $B_n - F$, then we will show that $R = B_n - F - V(A)$ is connected. Let $F_0 = F \cap V(B_{n-1}^0)$, $F_1 = F \cap V(B_{n-1}^1)$, $F_2 = F \cap V(S_n)$. Then we deal with the following cases.

Case 1. $F = F_0$ or $F = F_1$. If $F = F_0$, then $F_1 = F_2 = \emptyset$. We can easily verify that $B[V(B_{n-1}^1) \cup S_n]$ is connected. For each node x in $V(B_{n-1}^1) \setminus F_0$, by Definition 3, there are two nodes in S_n which are adjacent to x. Thus, $B_n - F - V(A)$ is connected; If $F = F_1$, this case is the same as $F = F_0$.

Case 2. $F = F_2$. If $F = F_2$, then $F_0 = F_1 = \emptyset$. We can easily verify that B_{n-1}^0 and B_{n-1}^1 are connected, respectively. For $n \ge 4$, $|S_n| = 2^{n-1} > 3n - 5$, then $S_n \setminus F_2 \ne \emptyset$. For each node u in

 $S_n \setminus F_2$, by Definition 3, u has n-1 neighbours in R_0 and n-1 neighbours in R_1 , respectively. Thus, $B_n - F - V(A)$ is connected.

Case 3. $F_0 \neq \emptyset$, $F_1 \neq \emptyset$, and $F_2 = \emptyset$. Then, we have the following two subcases.

Subcase 3.1. $n \leq |F_0| \leq 3n-6$ and $1 \leq |F_1| \leq 2n-5$. Since each node u in S_n has (n-1) neighbours in $V(B_{n-1}^1)$ and by Lemma 4, there exists at most a node $u_1 \in S_n$, where $N_{B_{n-1}^1}(u_1) \subset F_1$. For each node u in $S_n \setminus u_1$, there are (n-1) nodes in $V(B_{n-1}^1)$ which are adjacent to u and R_1 is connected due to $\kappa(B_{n-1}) = 2n-4$. Thus, $B_n[\{S_n \setminus u_1\} \cup V(B_{n-1}^1)]$ is connected. Since $B_n - F - V(A)$ does not contain a K_1 , there exists a node x_1 in $V(B_{n-1}^1) \setminus F_0$ where $(x_1, u_1) \in E(B_n)$. For each node x in $V(B_{n-1}^0) \setminus F_0$, there are two nodes in S_n which are adjacent to x. Then, $B_n - F - V(A)$ is connected.

Subcase 3.2. $n \le |F_1| \le 3n - 6$ and $1 \le |F_0| \le 2n - 5$. This argument is similar to Subcase 3.1. Case 4. $F_0 \ne \emptyset$, $F_2 \ne \emptyset$, and $F_1 = \emptyset$. Then, we have the following three subcases.

Subcase 4.1. $1 \leq |F_0| \leq 2n-5$ and $n \leq |F_2| \leq 3n-6$. Since $\kappa(B_{n-1}) = 2n-4$ and $F_1 = \emptyset$, $B_n[V(B_{n-1}^0) \setminus F_0]$ and B_{n-1}^1 are connected, respectively. For $n \geq 4$, $|S_n| = 2^{n-1} > 3n-6$, then $S_n \setminus F_2 \neq \emptyset$. For each node u in $S_n \setminus F_2$, by Definition 3, u has n-1 neighbours in $V(B_{n-1}^1)$. Thus, $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1)]$ is connected. For each node $x \in V(B_{n-1}^0)$, there are two nodes in S_n which are adjacent to x and for each node $u \in S_n$, u has n-1 neighbours in $V(B_{n-1}^0)$. By Definition 3, $|E(R_0, R_2)| \geq (n-1)2^{n-1} - n(3n-6) - 2 > 0$ for $n \geq 4$. Thus, there exist two nodes $x \in V(B_{n-1}^0) \setminus F_0$, $u \in S_n$ and $(x, u) \in E(B_n)$. Since $B_n[V(B_{n-1}^0) \setminus F_0]$ and $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1)]$ are connected, respectively, $B_n - F - V(A)$ is connected.

Subcase 4.2. $2n-4 \leq |F_0| \leq 3n-7$ and $2 \leq |F_2| \leq n-1$. We can easily verify that $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1)]$ is connected. If $B_n[V(B_{n-1}^0) \setminus F_0]$ is connected, similar to Subcase 4.1, $B_n - F - V(A)$ is connected; Suppose that R_0 is disconnected, then R_0 consists of two components, one is K_1 and the other contains $|V(R_0)| - 1$ nodes. Let x_1 be the K_1 and L be another component in R_0 . Since there is only one K_1 in $B_n - F$, then x_1 has a neighbour in R_2 . Thus $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1) \cup \{x_1\}]$ is connected. By Definition 3, $|E(L, R_2)| \geq (n-1)2^{n-1} - n(n-1) - 2(2n-4) > 0$ for $n \geq 4$. Thus, there exist two nodes $x \in V(L)$, $u \in V(S_n \setminus F_2)$ and $(x, u) \in E(B_n)$. Since L and $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1) \cup \{x_1\}]$ are connected, respectively, $B_n - F - V(A)$ is connected.

Subcase 4.3. $|F_0| = 3n - 6$ and $|F_2| = 1$. We can easily verify that $B_n[\{S_n \setminus F_2\} \cup V(B_{n-1}^1)]$ is connected. For each node x in $V(B_{n-1}^0 \setminus F_0)$, by Definition 3, there are two nodes in S_n which are adjacent to x. Thus, $B_n - F - V(A)$ is connected;

Case 5. $F_1 \neq \emptyset$, $F_2 \neq \emptyset$, and $F_0 = \emptyset$. This argument is similar to Subcase 3.1.

Case 6. $F_0 \neq \emptyset$, $F_2 \neq \emptyset$, and $F_1 \neq \emptyset$. Then, we have the following four subcases.

Case 6.1. $1 \leq |F_0| \leq 2n-5$, $1 \leq |F_1| \leq 2n-5$, and $1 \leq |F_2| \leq 3n-7$. Since $\kappa(B_{n-1}) = 2n-4$, $B_n[B_{n-1}^0 \setminus F_0]$, $B_n[B_{n-1}^1 \setminus F_1]$ are connected respectively. By Lemma 4, there exists at most one node $u_1 \in S_n \setminus F_2$, where $N_{B_{n-1}^0}(u_1) \subset F_0$. For each $u \in S_n \setminus F_2 \setminus u_1$, u has (n-1) neighbours in B_{n-1}^0 . Thus, $B[\{R_2 \setminus u_1\} \cap R_0]$ is connected. Similarly, there exists at most one node $u_2 \in S_n$, where $N_{B_{n-1}^1}(u_2) \subset F_1$ and $u_1 \neq u_2$, and $B[\{R_2 \setminus u_2\} \cap R_1]$ is connected. For $n \geq 4$, $|S_n| = 2^{n-1} - (3n-7) > 2$, Thus, $B_n - F - V(A)$ is connected.

Case 6.2. $2n-4 \le |F_0| \le 3n-7$, $1 \le |F_1| \le n-2$, and $1 \le |F_2| \le n-2$. We can easily verify that $B[V(R_1) \cup V(R_2)]$ is connected. If R_0 is connected, similar to Subcase 6.1, $B_n - F - V(A)$ is connected; Suppose that R_0 is disconnected, then R_0 consists of two components, one is K_1 and the other contains $V(R_0) - 1$ nodes. Let x_1 be the K_1 and L be another component in R_0 . Since there is only one K_1 in $B_n - F$, then x_1 has a neighbour in R_0 . Thus $B[V(R_1) \cup V(R_2) \cup \{x_1\}]$ is connected. By Definition 3, $|E(L,R_2)| \ge (n-1)2^{n-1} - n(n-2) - 2(2n-4) > 0$ for $n \ge 4$. Thus, there exist two nodes $x \in V(L)$, $u \in V(R_2)$ and $(x,u) \in E(B_n)$. Since L and $B[V(R_1) \cup V(R_2) \cup \{x_1\}]$ are connected, respectively, $B_n - F - V(A)$ is connected.

Case 6.3. $2n - 4 \le |F_1| \le 3n - 7$, $1 \le |F_0| \le n - 2$, and $1 \le |F_2| \le n - 2$. This argument is similar to Subcase 6.2.

The above arguments indicate that if there is no K_1 in $B_n - F$, then $B_n - F$ is connected. Therefore, the Lemma holds.

Lemma 9. Let F be a conditional faulty set of B_n with $|F| \le 4n - 7$, where $n \ge 5$. Then, $B_n - F$ satisfies one of the following two conditions: 1) $B_n - F$ is connected. 2) $B_n - F$ has two components, one is K_2 and the other contains $n2^{n-1} - |F| - 2$ nodes.

Proof. We first prove the second case. Since F is a conditional faulty set, there is no an isolated node

in $B_n - F$. Suppose that m_1 and m_2 are two K_2 s in $B_n - F$. According to the Lemma 3, we have $|V(m_1)| = |V(m_2)| = (2n-3) + (2n-3) - (n-2) = 3n-4$ and $|N(m_1) \cap N(m_2)| \le 8$. Then $|S| \ge |V(m_1) \cup V(m_2)| = |V(m_1)| + |V(m_2)| - |N(m_1) \cap N(m_2)| \ge (3n-4) + (3n-4) - 8 = 6n - 16 > 4n - 7$ for $n \ge 5$. Hence, there exists at most one K_2 in $B_n - F$. Let A be a K_2 in $B_n - F$, then we will show that $R = B_n - F - V(A)$ is connected. Let $F_0 = F \cap V(B_{n-1}^0)$, $F_1 = F \cap V(B_{n-1}^1)$, $F_2 = F \cap V(S_n)$, $R_0 = B[V(R) \cap V(B_{n-1}^0)]$, $R_1 = B[V(R) \cap V(B_{n-1}^1)]$, and $R_2 = B[V(R) \cap V(S_n)]$. Then we deal with the following cases.

Case 1. $F = F_0$ or $F = F_1$. If $F = F_0$, then $F_1 = F_2 = \emptyset$. We can easily verify that $B[V(R_1) \cup V(R_2)]$ is connected. For each node x in $V(R_0)$, by Definition 3, there are two nodes in S_n which are adjacent to x. Thus, $B_n - F - V(A)$ is connected; If $F = F_1$, this argument is similar to $F = F_0$.

Case 2. $F = F_2$. If $F = F_2$, then $F_0 = F_1 = \emptyset$. We can easily verify that R_0 and R_1 are connected, respectively. For $n \ge 5$, $|S_n| = 2^{n-1} > 4n - 7$, then $S_n \setminus F_2 \ne \emptyset$. For each node u in R_2 , by Definition 3, u has n - 1 neighbours in R_0 and n - 1 neighbours in R_1 , respectively. Thus, $B_n - F - V(A)$ is connected.

Case 3. $F_0 \neq \emptyset$, $F_1 \neq \emptyset$, and $F_2 = \emptyset$. Then, we have the following four subcases.

Subcase 3.1. $2n-2 \le |F_0| \le 4n-8$ and $1 \le |F_1| \le 2n-5$. By Lemma 4, there exists at most a node $u_1 \in S_n$, where $N_{R_1}(u_1) \subset F_1$. Since $\kappa(B_{n-1}) = 2n-4$, R_1 is connected. For each node u in R_2 , there are (n-1) nodes in $V(B_{n-1}^1)$ which are adjacent to u. Thus, $B[\{R_2 \setminus u_1\} \cup V(R_1)]$ is connected. Since F is a conditional faulty set, there exists a node x in $V(R_0)$ where $(u_1, x) \in E(B_n)$. For each node x_1 in $V(R_0)$, there are two nodes in S_n which are adjacent to x_1 . Then, $B_n - F - V(A)$ is connected.

Subcase 3.2. $|F_1| \ge 2n - 2$ and $|F_0| \le 2n - 5$. This argument is similar to Subcase 3.1.

Subcase 3.3. $|F_0| = 2n - 3$ and $|F_1| = 2n - 4$. If R_1 is connected, the argument is similar to Subcase 3.1; Suppose that R_1 is disconnected, by Lemma 8, there exists only one isolated node y_1 and another connected component L. By Definition 3, y_1 has two neighbours u_1 and u_2 in S_n . By Lemma 4, $\min(|N_{B_{n-1}^1}(\{u_1, u_2\})|) = 2n - 3 > N_{B_{n-1}^1(y_1)} = |F_1| = 2n - 4$, so there exists a node y_2 in L which is adjacent to u_1 or u_2 . Without loss of generality, we set $(y_2, u_1) \in E(B_n)$. Since L is connected and

 $B[\{y_1, u_1, u_2\}]$ is connected, $B[S_n \cap V(R_1)]$ is connected. For each node x in $V(R_0)$, there are two nodes in S_n which are adjacent to x. Thus, $B_n - F - V(A)$ is connected.

Subcase 3.4. $|F_1| = 2n - 3$ and $|F_0| = 2n - 4$. This argument is similar to Subcase 3.3.

Case 4. $F_0 \neq \emptyset$, $F_2 \neq \emptyset$, and $F_1 = \emptyset$. Then, we have the following two subcases.

Subcase 4.1. $1 \leq |F_0| \leq 2n-5$ and $2n-2 \leq |F_2| \leq 4n-8$. Since $\kappa(B_{n-1}) = 2n-4$ and $F_1 = \emptyset$, R_0 and R_1 are connected, respectively. For $n \geq 5$, $|S_n| = 2^{n-1} > 4n-8$, then $S_n \setminus F_2 \neq \emptyset$. For each node u in $S_n \setminus F_2$, by Definition 3, u has n-1 neighbours in R_1 . Thus, $B[V(R_1) \cup V(R_2)]$ is connected. For each node $x \in V(R_0)$, there are two nodes in S_n which are adjacent to x and for each node $u \in V(R_2)$, u has n-1 neighbours in R_0 . By Definition 3, $|E(R_0,R_2)| \geq (n-1)2^{n-1} - (n-1)(2n-3) - 2(2n-4) > 0$ for $n \geq 5$. Thus, there exist two nodes $x \in V(R_0)$, $u \in V(R_2)$ and $(x,u) \in E(B_n)$. Since R_0 and $B[V(R_1) \cup V(R_2)]$ are connected, respectively, $B_n - F - V(A)$ is connected.

Subcase 4.2. $2n-4 \le |F_0| \le 4n-8$ and $1 \le |F_2| \le 2n-3$. We can easily verify that $B[V(R_1) \cup V(R_2)]$ is connected. If R_0 is connected, similar to Subcase 4.1, $B_n - F - V(A)$ is connected; Suppose that R_0 is disconnected. If for each node $x \in V(R_0)$, there exists a neighbour u in R_2 , then $B_n - F - V(A)$ is connected; Otherwise, since F is a conditional faulty set, there is no an isolated node in $B_n - F$, for each node $x \in V(R_0)$, there exists a node v, where $v \in N_{R_0}(x)$. According to the proof at the beginning, R does not contain a K_2 . Then there exists a node w, where $w \in N_{R_0}(x, v)$. If $w \in V(R_2)$, then $B_n - F - V(A)$ is connected; Otherwise, $w \in N_{R_0}(x, v)$. Let $X = N_{R_0}(x, v, w)$, if there exists a node $z \in X$ and z has a neighbour in $V(R_2)$, then $B_n - F - V(A)$ is connected; Otherwise, by Lemma 5, $N_{S_n}(N_{B_n-F}(x,v,w) \cup \{x,v,w\}) > 4n-6 > |F| = 4n-7$, a contradiction.

Case 5. $F_1 \neq \emptyset$, $F_2 \neq \emptyset$, and $F_0 = \emptyset$. This argument is similar to Subcase 3.3.

Case 6. $F_0 \neq \emptyset$, $F_2 \neq \emptyset$, and $F_1 \neq \emptyset$. Then, we have the following four subcases.

Case 6.1. $1 \leq |F_0| \leq 2n-5$, $1 \leq |F_1| \leq 2n-5$, and $3 \leq |F_2| \leq 4n-9$. Since $\kappa(B_{n-1}) = 2n-4$, R_0 and R_1 are connected, respectively. By Lemma 4, there exists at most a node $u_1 \in R_2$, where $N_{B_{n-1}^0}(u_1) \subset F_1$. For each node u in $R_2 \setminus \{u_1\}$, there are (n-1) nodes in $V(B_{n-1}^1)$ which are adjacent to u. Thus, $B[\{R_2 \setminus u_1\} \cup V(R_1)]$ is connected. For R_0 and R_2 , we have $|E(R_0, R_2)| \geq (n-1)2^{n-1} - (n-1)(2n-3) - 2(2n-3) > 0$ for $n \geq 5$. Then $B[V(R_0) \cup V(R_2)]$ is connected. Similarly, there exists at most one node $u_2 \in S_n$, where $N_{B_{n-1}^1}(u_2) \subset F_1$ and $u_1 \neq u_2$, and $B[\{R_2 \setminus u_2\} \cap R_1]$ is

connected. For $n \geq 5$, $|S_n| = 2^{n-1} - (4n-9) > 2$. Thus, $B_n - F - V(A)$ is connected.

Subcase 6.2. $2n-4 \le |F_0| \le 4n-9$, and $1 \le |F_2| \le 2n-5$ and $1 \le |F_2| \le 2n-5$. We can easily verify that $B[V(R_1) \cup V(R_2)]$ is connected. If R_0 is connected, similar to Subcase 4.1, $B_n - F - V(A)$ is connected; Suppose that R_0 is disconnected. If for each node $x \in V(R_0)$, there exists a neighbour u in R_2 , then $B_n - F - V(A)$ is connected; Otherwise, since F is a conditional faulty set, there is no an isolated node in $B_n - F$, for each node $x \in V(R_0)$, there exists a node v, where $v \in N_{R_0}(x)$. According to the proof at the beginning, R does not contain a K_2 . Then there exists a node w, where $w \in N_{R_0}(x,v)$. If $w \in V(R_2)$, then $B_n - F - V(A)$ is connected; Otherwise, $w \in N_{R_0}(x,v)$. Let $X = N_{R_0}(x,v,w)$, if there exists a node $z \in X$ and z has a neighbour in $V(R_2)$, then $B_n - F - V(A)$ is connected; Otherwise, by Lemma 5, $N_{S_n}(N_{B_n-F}(x,v,w) \cup \{x,v,w\}) > 4n-6 > |F| = 4n-7$, a contradiction.

The above arguments indicate that if there is no K_2 in B_n-F , then B_n-F is connected. Therefore, the Lemma holds.

Lemma 10. Let F_1 and F_2 be two different conditional faulty node sets in B_n , where $F_1 \leq 4n - 6$ and $F_2 \leq 4n - 6$, and let L be the largest component in $B_n - (F_1 \cap F_2)$, then for each node $x \in F_1 \triangle F_2$, $x \in L$.

Proof. Without loss of generality, assume that $x \in F_2 - F_1$. Since F_2 is a conditional fault node set in B_n , x has a neighbour $y \in V(B_n) - F_2 - x$. Suppose that $x \notin L$, then $B_n - (F_1 \cap F_2)$ is disconnected. Since $F_1 \triangle F_2 \leq 4n - 7$, by Lemma 9, $\{x,y\}$ belong to the smaller component K_2 . Then, all the neighbors of y belong to F_1 , which contradicts the fact that F_2 is a conditional faulty set. \square

Lemma 11. $t_c(B_n) \le 4n - 6$, for $n \le 6$.

Proof. If $F_1 \subset F_2$ or $F_2 \subset F_1$, by Lemmas 2 and 6, F_1 and F_1 are distinguishable. Then we consider that $F_1 - F_2 \neq \emptyset$ and $F_2 - F_1 \neq \emptyset$. Let $S = F_1 \cap F_2$ with $|S| \leq 4n - 7$, and L be the maximum component of $B_n - S$. From Lemma 10, we know that for each node $u \in F_1 \triangle F_2$, $u \in L$. Next, we will prove that there exists a node $x \in L \setminus \{F_1 \cup F_2\}$, which has no neighbour in S. Then we will complete our proof by u and x.

By Lemmas 2 and 9, we have $N_{B_n}(S) \le (2n-2)|S|$ and $|V(L)| \ge V(B_n) - |S| - 2 = n2^{n-1} - |S| - 2$. Then, $|V(L)| - |F_1 \triangle F_2| - (2n-2)|S| \ge n2^{n-1} - |S| - 2 - (2(4n-6)-2|S|) - (2n-2)|S| \ge n2^{n-1} - 8n + 10 - (2n-3)|S| \ge n2^{n-1} - 8n + 10 - (2n-3)(4n-7) \ge 6 \times 2^{6-1} - 8 \times 6 + 10 - (2 \times 6 - 3)(4 \times 6 - 7) = 1$.

For each node x in $|V(L)| - |F_1 \triangle F_2| - (2n-2)|S|$, we have the following two cases:

Case 1. $N_{B_n}(x) \cap (F_1 \triangle F_2) \neq \emptyset$. If x has two or more neighbours in $F_1 - F_2$ $(F_2 - F_1)$, condition 1 (condition 2) of Lemma 1 is satisfied; If x has only one neighbour in $F_1 - F_2$ $(F_2 - F_1)$, since x has no neighbours in S, there exists a neighbour which belongs to $V(G) \setminus (F_1 \cup F_2)$. Thus, condition 3 of Lemma 1 is satisfied.

Case 2. $N_{B_n}(x) \cap (F_1 \triangle F_2) = \emptyset$. Since for each node $u \in F_1 \triangle F_2$, $u \in L$ and L is connected, there exists a path $P = \langle x(=x_0), x_1, \ldots, x_j, u \rangle$ where $|P| \ge 2$, and $u \in F_1 \triangle F_2$, and $x_j \in V(L) - F_1 \triangle F_2$ with $j \ge 1$. Then, x_j has a neighbour in $F_1 \triangle F_2$ (u) and a neighbour x_{j-1} in $L \setminus (F_1 \cup F_2)$. Thus, condition 3 of Lemma 1 is satisfied.

4 The Conditional Diagnosability of BCDC under the PMC Model

Lemma 12. Let F be a conditional faulty set of B_n with $n \ge 6$. $B_n - F$ is disconnected and there exists a component P with $N_P(u) \ge 2$ for $u \in V(P)$. Then one of two following conditions holds: 1) $|F| \ge 5n - 8$; 2) $|V(P)| \ge 4n - 5$.

Proof. Let $F_0 = F \cap V(B_{n-1}^0)$, $F_1 = F \cap V(B_{n-1}^1)$, $F_2 = F \cap V(S_n)$. According to the distribution of P, we have the following cases:

Case 1.
$$V(P) \subset V(B_{n-1}^0)$$
 or $V(P) \subset V(B_{n-1}^1)$.

Without loss of generality, suppose that $V(P) \subseteq V(B_{n-1}^0)$. Then, either $V(B_{n-1}^0) = V(P) \cup V(F_0)$ or $B_{n-1}^0 - F_0$ is disconnected. If $V(B_{n-1}^0) = V(P)$, since $|F| \le 6n - 8$, $V(P) = V(B_{n-1}^0) - (6n - 8) \ge 4n - 4$. If $B_{n-1}^0 - F_0$ is disconnected and $|P| \ge 4n - 4$, then condition 2 holds. Otherwise, we consider $|P| \le 4n - 5$. We choose a node set C in V(P) with |V(C)| = 4. Since $V(C) \subseteq V(P)$, $N_{B_{n-1}^0}(C) \subseteq F_0 \cup (V(P) - V(C))$. Then we have $N_{B_{n-1}^0}(C) - (V(P) - V(C)) \subseteq F_0$. Thus, $|F_0| \ge |N_{B_{n-1}^0}(C)| - |V(P) - V(C)| = |N_{B_{n-1}^0}(C)| - |V(P) - V(C)| = |N_{B_{n-1}^0}(C)| - |V(P)| + 4$. On the other hand, we have $|F_2| \ge |N_{S_n}(P)|$,

5 Conclusions

conclusions

Acknowledgement

acknowledgement

References

- [1] X. Wang, J. X. Fan, C.-K. Lin, and J. Y. Zhou, "BCDC: a high-performance, server-centric data center network," Journal of Computer Science and Technology, vol. 33, no. 2, pp. 400-416, 2018.
- [2] A. Bouabdallah, M. C. Heydemann, J. Opatrny, D. Sotteau, Embedding complete binary trees into star and pancake graphs, Theory of Computing Systems, 31(3) (1998) 279-305.