Hodge to- le Rahm spectral sequence Let $X \in S_{m}.Proj.Var_{\mathcal{C}}$ then Xcompact n-dim.MSmooth complex manifold $X \in S_{m}.Proj.Var_{\mathcal{C}}$ $X \in S_{m}.Pro$ P= A UP = A U DA U (= pt)

(en) 1 ((en-) 1 - 1) ... U

Projective

X = (A) 1 (A) 1 (A) 4 (A) 4 (A) 6 Let $\mathcal{L}_{\mathcal{L}}^{l}(X,\mathbb{Z}) := \sum_{\substack{Z \in \mathcal{L} \\ \text{ suivist, ideal} \\ \text{ consider}}} \ker \left(H^{l}(X,\mathbb{Z}) \to H^{l}(X,\mathbb{Z}) \to H^{l}(X,\mathbb{Z}) \right)$ $= \sum_{\substack{Z \in \mathcal{L} \\ \text{ suivist, ideal} \\ \text{ consider}}} \operatorname{Im} \left(H^{l}_{\mathbf{Z}}(X,\mathbb{Z}) = \left\{ \operatorname{de} H^{l}(X,\mathbb{Z}) \middle| \operatorname{supp}(k) \in \mathbb{Z} \right\} \to H^{l}(X,\mathbb{Z}) \right)$ $= \sum_{\substack{Z \in \mathcal{L} \\ \text{ consider} \\ \text{ consider}}} \operatorname{Im} \left(H^{l}_{\mathbf{Z}}(X,\mathbb{Z}) = \left\{ \operatorname{de} H^{l}(X,\mathbb{Z}) \middle| \operatorname{supp}(k) \in \mathbb{Z} \right\} \to H^{l}(X,\mathbb{Z}) \right)$ $= \sum_{\substack{Z \in \mathcal{L} \\ \text{ consider} \\ \text{ conside$ $H(Z,A) \rightarrow H(X,Z) \longrightarrow H(X-Z,Z)$

$$\mathcal{K} \in \mathcal{N}_{+}^{1}(\mathbb{K},\mathbb{Z}) + \mathbb{I}_{\mathbb{K}}^{1}(\mathbb{K},\mathbb{Z}) \longrightarrow \mathbb{I}^{1}(\mathbb{K},\mathbb{Z}) \longrightarrow \mathbb{I}^{1}(\mathbb{K},\mathbb{Z})$$

$$G = (X, Z) \rightarrow H(X, Z) \rightarrow H(X-Z, Z)$$

$$G = (X, Z)$$

$$finite$$

MU*(X) the university oriented cohomology thoug

$$E_z^{P,\sharp} = \#^P(X, Mu^{\sharp}(*)) \Longrightarrow Mu^{P+\sharp}(X)$$

the AH-spectral sequence a 4th gudant spectral sequence.

Algebric cobordisms

MU* (-)
a generalized cohomology theory
i.e. a spectrum

L. Definition is analogy with the carmine, calculating spectrum MU_s locus day, defined the algebraic cobordism spectrum MGL_g in the atable motivic homotopic categorie by the formula $MGL_g = \cosh[m_{em}\Omega_p^{L}] \Pi(V_{eb}),$ where S is the base scheme, $\Pi(V_g)$ is the (infinite suspension of the Phospacel of the tunological vector bundle V_g over the infinite Grassmannian of resistance G(r(n)) More precisely, G(r(n)) is defined as the column of the amount S schemes $G(r(n), S) = S + \infty$, and V_g is similarly the column of the tunological vector bundles over G(r(n, K)). The notation Ω_p^{R} denotes the mh P^{R} -loop space.