0.1 同态和子群

定义 0.1 (同态)

假设 G 和 H 是半群. 函数 $f:G\to H$ 叫作**同态**, 是指对于所有的 $a,b\in G$,

$$f(ab) = f(a)f(b)$$

假如 f 作为集合的映射是单射, 称 f 为**单同态**, 如果 f 是满射, f 叫作**满同态**. 如果 f 是一一对应, f 便叫作**同构**.

若存在同构 $f: G \to H$, 则我们称 G 和 H 是同构的 (写成 $G \cong H$). 同态 $f: G \to G$ 叫作 G 的**自同态**, 而同构 $f: G \to G$ 叫作 G 的**自同构**.

定理 0.1

- (1) 如果 $f: G \to H$ 和 $g: H \to K$ 均是半群的同态,则, $gf: G \to K$ 也是同态. 同样地,单同态的合成是单同态,而对于满同态、同构和自同构则有类似的论断.
- (2) 如果 G 和 H 是群, 它们的幺元素分别为 e_G 和 e_H , 而 $f:G\to H$ 是一个同态, 则 $f(e_G)=e_H$. 此外, 对于所有 $a\in G, f(a^{-1})=f(a)^{-1}$.

注(2)的结论对于幺半群是不正确的.

证明

1.

2.

定义 0.2 (子幺半群)

令 (S, \cdot) 是一个幺半群, 若 $T \subset S$, $e \in T$, 且 T 在乘法下封闭, 即

 $e \in T$,

 $\forall x,y\in T, x\cdot y\in T.$

则我们称 (T,\cdot) 是 (S,\cdot) 的一个**子幺半群**

命题 0.1 (子幺半群也是幺半群)

若 (T,\cdot) 是 (S,\cdot) 的一个子幺半群, 则 (T,\cdot) 是个幺半群.

证明 就二元运算的定义而言,子群第一个条件 (封闭性) 就满足了,这使得我们后面的谈论是有意义的. 首先,结合律对于 S 中元素都满足,当然对 T 中元素也满足 (T 是子集). 接下来,类似地,E 对于所有 S 中元素都是单位元,固然对于 T 中元素亦是单位元.

定义 0.3 (两个幺半群的直积)

令 (G, \cdot_1) , (G', \cdot_2) 是两个幺半群, 我们记 $(G \times G', *)$ 为 (G, \cdot_1) 和 (G', \cdot_2) 的**直积**. 满足对于 (x, y), $(x', y') \in G \times G'$, 有

$$(x, y) * (x', y') = (x \cdot_1 x', y \cdot_2 y').$$

命题 0.2 (两个幺半群的直积仍是幺半群)

若 $(G, \cdot_1), (G', \cdot_2)$ 是两个幺半群,则它们的直积 $(G \times G', *)$ 还是一个幺半群.

证明 封闭性: 因为 G 在 \cdot_1 下封闭, G' 在 \cdot_2 下封闭, 而 $G \times G'$ 的元素乘积是逐坐标定义的, 则 $G \times G'$ 在 * = (\cdot_1, \cdot_2)

下也是封闭的.

结合律:同样,逐坐标有结合律,故整体也有结合律.

单位元: 设 e, e' 分别是 $(G, \cdot_1), (G', \cdot_2)$ 的单位元,则不难想象,(e, e') 是直积的单位元. 对于任意 $(x, y) \in G \times G'$,我们有 $(x, y) * (e, e') = (x \cdot_1 e, y \cdot_2 e') = (x, y)$,另一边也是同理, 这就证明了 (e, e') 是直积的单位元.

定义 0.4 (一族幺半群的直积)

令 $(G_i, \cdot_i)_{i \in I}$ 是一族幺半群, 其中 I 是一个指标集. 我们记它们的**直积**为 $(\prod_{i \in I} G_i, *)$. 满足对于 $(x_i)_{i \in I}, (y_i)_{i \in I} \in I$

$$\prod_{i\in I}G_i$$
, f

$$(x_i)_{i\in I}*(y_i)_{i\in I}=(x_i\cdot_iy_i)_{i\in I}.$$

命题 0.3 (一族幺半群的直积仍是幺半群)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族幺半群, 则它们的直积 $(\prod_{i \in I} G_i, *)$ 还是一个幺半群.

证明 证明与命题 0.2同理.. 封闭性与结合律是显然的. 单位元是 $(e_i)_{i\in I}$.

命题 0.4 (一族交换幺半群的直积仍是交换幺半群)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族交换幺半群,则它们的直积 $(\prod_{i \in I} G_i, *)$ 还是一个交换幺半群.

证明 由命题 0.3可知 $(\prod_{i \in I} G_i, *)$ 还是一个幺半群. 下面证明它还是交换幺半群.

由 $(G_i, \cdot_i)_{i \in I}$ 是一族交换幺半群可得, 对 $\forall (x_i)_{i \in I}, (y_i)_{i \in I} \in \prod_{i \in I} G_i$, 都有

$$(x_i)_{i \in I} \cdot (y_i)_{i \in I} = (x_i \cdot_i y_i)_{i \in I} = (y_i \cdot_i x_i)_{i \in I} = (y_i)_{i \in I} \cdot (x_i)_{i \in I}$$
.

故 $(\prod_{i \in I} G_i, *)$ 还是一个交换幺半群.

定义 0.5 (幺半群同态)

假设 (S,\cdot) , (T,*) 是两个幺半群, 且 $f:S\to T$ 是一个映射, 我们称 f 是一个**幺半群同态**, 当 f 保持了乘法运算, 且把单位元映到了单位元. 此即

$$\forall x,y \in S, f(x \cdot y) = f(x) * f(y),$$

$$f(e) = e'$$
.

其中,e 和 e' 分别是 (S,\cdot) 和 (T,*) 的单位元.

定义 0.6 (由子集生成的子幺半群)

设 (S,\cdot) 是一个幺半群, 而 $A\subset S$ 是一个子集. 我们称 S 中所有包含了 A 的子幺半群的交集为**由** A 生成的子幺半群, 记作 $\langle A\rangle$. 此即

$$\langle A \rangle = \bigcap \{ T \subset S : T \supset A, T \not\in A \not\in A \not\in A \}.$$

命题 0.5 (由子集生成的子幺半群是包含了这个子集的最小的子幺半群)

设 (S,\cdot) 是一个幺半群, 而 $A \subset S$ 是一个子集. 则 $\langle A \rangle$ 也是一个子幺半群. 因此, 这是包含了 A 的最小的子幺半群.

注 这里说的"最小",指的是在包含关系下最小的,也就是,它包含于所有包含 A 的子幺半群.

证明 要证明 $\langle A \rangle$ 是子幺半群, 只需要证明它包含了 e, 并在乘法运算下封闭. 首先, 因为集族中每一个 T, 作为子幺半群, 都会包含 e; 因此 $\langle A \rangle$ 作为这些集合的交集也会包含 e, 这就证明了第一点. 而对于第二点, 我们首先假设 $x,y\in\langle A \rangle$, 而想要证明 $x\cdot y\in\langle A \rangle$. 注意到, 因为 $x,y\in\langle A \rangle$, 任取一个包含了 A 的子幺半群 T(集族中的集合), 我们都有 $x,y\in T$, 于是有 $x\cdot y\in T$. 而 $x\cdot y\in T$ 对于所有这样的 T 都成立, 我们就有 $x\cdot y$ 属于它们的交集, 也就是 $\langle A \rangle$. 这样, 我们就证明了第二点. 综上, 由一个幺半群 S 的任意子集 A 生成的子幺半群都确实是一个子幺半群.

命题 0.6

设 (S,\cdot) 是一个幺半群,且 $S \in S$,则

$$\langle s \rangle = \{1, s, s^2, \cdots \}.$$

证明 一方面,设 (T,\cdot) < (S,\cdot) 且 $s \in T$,则 $1 \in T$.假设 $s^n \in T$,则

$$s^{n+1} = s \cdot s^n \in T$$
.

从而由数学归纳法可知 $s^n \in T, \forall n \in \mathbb{N}_1$. 因此 $T \supset \{1, s, s^2, \dots\}$, 故由 T 的任意性可知, $\langle s \rangle \supset \{1, s, s^2, \dots\}$.

另一方面, 显然有 $s \in \{1, s, s^2, \dots\}$. 因此我们只需证明 $\{1, s, s^2, \dots\} < (S, \cdot)$ 即可. 而显然有 $1 \in \{1, s, s^2, \dots\}$, 对 $\forall s^m, s^n \in \{1, s, s^2, \dots\}$, 由推论??可得

$$s^m \cdot s^n = s^{m+n}$$
.

故 $\{1, s, s^2, \dots\} < (S, \cdot)$. 因此 $\{1, s, s^2, \dots\} \supset \langle s \rangle$.

综上, 我们就有
$$\langle s \rangle = \{1, s, s^2, \dots\}.$$

定义 0.7 (幺半群同构)

假设 (S, \cdot) , (T, *) 是两个幺半群, 且 $f: S \to T$ 是一个映射, 我们称 f 是一个**幺半群同构**, 当 f 是一个双射, 且是一个同态.

$$f$$
 是双射,

$$\forall x,y \in S, f(x \cdot y) = f(x) * f(y),$$

$$f(e) = e'$$
.

其中,e 和 e' 分别是 (S,\cdot) 和 (T,*) 的单位元.

注 容易验证同构是一个等价关系.

命题 0.7 (幺半群同构的逆是幺半群同态)

若 $f:(S,\cdot)\to (T,*)$ 是一个幺半群同构,则 $f^{-1}:T\to S$ 是一个幺半群同态. 因此, f^{-1} 也是个幺半群同构.

证明 令 $x', y' \in T$, 我们只需证明 $f^{-1}(x'*y') = f^{-1}(x') \cdot f^{-1}(y')$. 为了方便起见, 根据 f 是一个双射, 从而存在 $x, y \in S$, 使得 $x = f^{-1}(x'), y = f^{-1}(y')$, 并且 f(x) = x', f(y) = y'. 我们只需证明 $f^{-1}(x'*y') = x \cdot y$. 而由于 f 是幺半 群同态, 所以 $f(x \cdot y) = f(x) * f(y) = x' * y'$. 反过来说, $f^{-1}(x'*y') = x \cdot y = f^{-1}(x') \cdot f^{-1}(y')$. 这就证明了这个命题.

引理 0.1

 \diamondsuit (S,·) 是一个幺半群, \diamondsuit G 是其所有可逆元素构成的子集, 则 (G,·) 是个群.

注 我们称呼幺半群中的可逆元素为"单位",因此 G 是由所有该运算下的单位构成的集合 (在这里甚至是群). 证明 首先结合律完全继承自 S,不需要证明. 而单位元是可逆的,因此 $e \in G$. 剩下要证明 G 中每个元素都有 (G 中的) 逆元,而这几乎是显然的. 假设 $x \in G$,则 x 是可逆元素,我们取 $y \in S$,使得 $x \cdot y = y \cdot x = e$ (这里要注意我们只能首先保证 y 在全集 S 中).接下来我们要证明 $y \in G$,即 y 可逆,而这是显然的,因为 x 正是它的逆.所以 $y \in G$. 这样,就证明了 (G,\cdot) 是个群.

定义 0.8 (子群)

设 (G,\cdot) 是一个群, 且 $H\subset G$. 我们称 H 是 G 的**子**群, 记作 H< G, 当其包含了单位元, 在乘法和逆运算下都封闭, 即

$$e \in H$$
,

 $\forall x, y \in H, x \cdot y \in H$,

 $\forall x \in H, x^{-1} \in H.$

命题 0.8 (子群也是群)

令 (G,\cdot) 是一个群. 若 H 是 G 的子群, 则 (H,\cdot) 也是个群.

证明 就二元运算的良定义性而言,子群第一个条件(封闭性)就满足了,这使得我们后面的谈论是有意义的.首先,结合律肯定满足,因为它是个子集.其次,根据子群的第二个条件, $e \in H$ 是显然的.再次,我们要证明每个H中元素有H中的逆元,而这是子群的第三个条件.

推论 0.1 (子群的传递性)

若 (G, \cdot) 是一个群, 且 H < G, K < H, 则一定有 K < G. 因此我们可以将 H < G, K < H 简记为 K < H < G.

证明 证明是显然的.

命题 0.9 (子群的等价条件)

设 (G, \cdot) 是一个群, $H \subset G$, 则 (H, \cdot) 是子群等价于

 $e \in H$,

 $\forall x,y\in H, x\cdot y^{-1}\in H.$

证明 设 (H, \cdot) 是子群. 令 $x, y \in H$, 利用逆元封闭性得到 $y^{-1} \in H$, 再利用乘法封闭性得到 $x \cdot y^{-1} \in H$.

反过来, 假设上述条件成立. 令 $x \in H$, 则 $e \cdot x^{-1} = x^{-1} \in H$, 这证明了逆元封闭性. 接下来, 令 $x, y \in H$, 则利用逆元封闭性, $y^{-1} \in H$, 故 $x \cdot (y^{-1})^{-1} = x \cdot y \in H$. 这就证明了乘法封闭性.

综上, 这的确是子群的等价条件.

命题 0.10 (子群的任意交仍是子群)

设G是一个群, $(N_i)_{i \in I}$ 是一族G的子群,则它们的交集仍然是G的子群,即

$$\bigcap_{i \in I} N_i < G.$$

证明 首先,设 $e \in G$ 的单位元,则由子群对单位元封闭可知, $e \in N_i, \forall i \in I$. 从而 $e \in \bigcap N_i$.

其次, 对 $\forall x, y \in \bigcap_{i \in I} N_i$, 都有 $x, y \in N_i$, $\forall i \in I$. 根据子群对逆元封闭可知, $y^{-1} \in N_i$, $\forall i \in I$. 于是再由子群对乘法封闭可知, $xy^{-1} \in N_i$, $\forall i \in I$. 故 $xy^{-1} \in \bigcap N_i$.

综上,
$$\bigcap_{i \in I} N_i < G$$
.

定义 0.9 (一般线性群)

我们对于那些n*n 可逆实矩阵构成的乘法群, 称为 (实数上的)n 阶一般线性群, 记作 ($GL(n,\mathbb{R}),\cdot$). 由于一

个矩阵可逆当且仅当其行列式不为零,因此

$$GL(n, \mathbb{R}) = \{ A \in M(n, \mathbb{R}) : \det(A) \neq 0 \}.$$

定义 0.10 (特殊线性群)

我们将由那些行列式恰好是 1 的 n*n 实矩阵构成的乘法群称为 (实数上的)n 阶特殊线性群, 记作 ($SL(n,\mathbb{R}),\cdot$), 即

$$SL(n,\mathbb{R}) = \{A \in M(n,\mathbb{R}) : \det(A) = 1\}.$$

命题 0.11

 $(SL(n,\mathbb{R}),\cdot)$ 是个群.

证明 根据定义, $SL(n,\mathbb{R})$ 首先是 $GL(n,\mathbb{R})$ 的子集,那么只要证明它是个子群即可. 首先,乘法单位元单位矩阵的行列式恰好是 1(这也是为什么我们定义特殊线性群是行列式是 1 的矩阵构成的群的原因),这就证明了 $I \in SL(n,\mathbb{R})(I=I_n$ 指的是 n 阶单位矩阵). 另外,我们要证明 $SL(n,\mathbb{R})$ 在乘法下封闭. 令 A,B 是两个行列式为 1 的 n*n 实矩阵. 由于行列式满足 $\det(AB) = \det(A) \det(B)$,因此 AB 的行列式也是 1,也就在特殊线性群中. 这就证明了特殊线性群确实是个群. 至于逆元封闭性,我们利用 $\det(A^{-1}) = \frac{1}{\det(A)}$. 假设 $\det(A) = 1$,则 $\det(A^{-1}) = 1$,于是 $A^{-1} \in SL(n,\mathbb{R})$. 综上,特殊线性群确实是个群.

定义 0.11 (群同态)

令 (G,\cdot) , (G',*) 是两个群, 且 $f:G\to G'$ 是一个映射. 我们称 f 是一个**群同态**, 当其保持了乘法运算, 即 $\forall x,y\in G, f(x\cdot y)=f(x)*f(y)$.

命题 0.12

若 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则 $f(e)=e',f(x^{-1})=f(x)^{-1}$.

 $\stackrel{\circ}{\mathbf{r}}$ 笔记 也就是说,f 不仅把乘积映到乘积,而且把单位元映到单位元,把逆元映到逆元.在这个意义下,实际上 f 将 所有群 G 的"信息"都保持到了 G' 上,包括单位元,乘法和逆元.至于结合律(或者更基础的封闭性),显然两边本来就有,就不必再提.

证明 首先,因为 $e \cdot e = e$,所以利用同态的性质, $f(e) = f(e \cdot e) = f(e) * f(e)$. 这时,两边同时左乘 $f(e)^{-1}$,就可以各约掉一个 f(e),得到 e' = f(e),这就证明了 f 把单位元映到单位元.

另一方面, 令 $x \in G$, 则 $e' = f(e) = f(x \cdot x^{-1}) = f(x) * f(x^{-1})$. 同理 $e' = f(x^{-1}) * f(x)$. 于是由定义, $f(x^{-1})$ 就是 f(x) 的逆元, 即 $f(x^{-1}) = f(x)^{-1}$. 这就证明了这个命题. □

定义 0.12 (群同态的核与像)

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态, 则我们定义 f 的核与像, 记作 $\ker(f)$ 与 $\operatorname{im}(f)$, 分别为

$$\ker(f) = \{x \in G : f(x) = e'\} \subset G,$$

 $im(f) = \{ y \in G' : \exists x \in G, y = f(x) \} = \{ f(x) : x \in G \} \subset G'.$

图 1: 群同态的核与像示意图

命题 0.13

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则核是定义域的子群,像是陪域的子群,即 $\ker(f)< G,\quad \operatorname{im}(f)< G'.$

证明 先证明第一个子群关系. 我们利用 f(e) = e' 来说明 $e \in \ker(f)$. 接着, 设 $x, y \in \ker(f)$, 只需证明 $xy^{-1} \in \ker(f)$. 利用同态的性质, $f(xy^{-1}) = f(x)f(y)^{-1} = e'e'^{-1} = e'$, 这就证明了 $xy^{-1} \in \ker(f)$. 第一个子群关系得证.

再证明第二个子群关系. 同样由于 f(e) = e', 我们有 $e' \in \text{im}(f)$. 接着, 设 $y = f(x), y' = f(x') \in \text{im}(f)$, 只需证明 $yy'^{-1} \in \text{im}(f)$. 同样利用同态的性质, $yy'^{-1} = f(x)f(x')^{-1} = f(xx'^{-1}) \in \text{im}(f)$. 第二个子群关系也得证. 这样我们就证完了整个命题.

例题 0.1 证明: $(SL(n,\mathbb{R}),\cdot) < (GL(n,\mathbb{R}),\cdot)$.

证明 由命题**??**可知,det : $GL(n,\mathbb{R}) \to (\mathbb{R}^{\times},\cdot)$ 是一个乘法群同态. 注意到 $\ker(det) = (SL(n,\mathbb{R}),\cdot)$, 因此由命题 0.13可知, $(SL(n,\mathbb{R}),\cdot) = \ker(det) < (GL(n,\mathbb{R}),\cdot)$.

定义 0.13 (满同态与单同态)

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态, 我们称 f 是一个满同态当 f 是满射, 称 f 是一个**单同态**当 f 是单射.

命题 0.14

令 $f:(G,\cdot)\to (G',*)$ 是一个群同态,则

- 1. f 是一个单同态当且仅当 $ker(f) = \{e\}$. 也就是说, 一个群同态是单的当且仅当核是平凡的.
- 2. f 是一个满同态当且仅当 im(f) = G'. 也就是说, 一个群同态是满的当且仅当值域等于陪域.

证明

1. 假设 f 是单的, 那么因为 f(e) = e', 因此若 f(x) = e', 则利用单射的性质我们一定有 x = e, 这就证明了核是平凡的.(这个方向是显然的)

另一个方向不那么显然. 我们假设 $\ker(f) = \{e'\}$. 假设 $x, x' \in G$, 使得 f(x) = f(x'), 我们只须证明 x = x'. 在这里, 我们同时右乘 $f(x')^{-1}$, 得到 $f(x)f(x'^{-1}) = f(xx'^{-1}) = e'$. 而因为核是平凡的, 所以必须有 $xx'^{-1} = e$. 接下来同时右乘 x', 我们就得到 x = x'. 这就证明了这个命题.

2. 因为 f 是满同态, 所以对 $\forall a' \in G'$, 都存在 $a \in G$, 使得 f(a) = a'. 故 $a' \in \text{im}(f)$. 因此 $G' \subset \text{im}(f)$.. 又显然有 $\text{im}(f) \subset G'$. 故 im(f) = G'.

图 2: 平凡群,满同态和单同态示意图

例题 0.2 证明:det : $GL(n,\mathbb{R}) \to (\mathbb{R}^{\times},\cdot)$ 是一个乘法群同态,并且是满同态,ker(det) = $SL(n,\mathbb{R})$.

证明 设 $A, B \in GL(n, \mathbb{R})$, 则由行列式的 Laplace 定理可知 det(AB) = det(A) det(B). 故 det 是群同态.

任取
$$a \in \mathbb{R}^{\times}$$
, 令 $C = \begin{pmatrix} a & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$, 则 $C \in GL(n,\mathbb{R})$ 并且 $\det(C) = a$. 故 \det 是满同态.

一方面, 任取 $N \in SL(n,\mathbb{R})$, 则 $\det(N) = 1$, 从而 $N \in \ker(\det)$. 于是 $SL(n,\mathbb{R}) \subset \ker(\det)$. 另一方面, 任取 $M \in \ker(\det)$, 则 $\det(M) = 1$, 从而 $M \in SL(n,\mathbb{R})$. 于是 $\ker(\det) \subset SL(n,\mathbb{R})$. 故 $\ker(\det) = SL(n,\mathbb{R})$.

定义 0.14 (群同构)

令 $f:(G,\cdot)\to (G',*)$ 是一个映射, 我们称 f 是一个**群同构**, 当 f 既是一个双射, 又是一个群同态. 简单来说, 同构就是双射的同态.

命题 0.15 (群同构的逆也是群同构)

若 $f:(G,\cdot)\to (G',*)$ 是一个群同构,则 f^{-1} 也是群同构.

证明 因为 f^{-1} 也是双射, 所以我们只须证明 f^{-1} 是群同态. 令 $x', y' \in G'$, 设 x' = f(x), y' = f(y). 则 $x' * y' = f(x \cdot y), x = f^{-1}(x'), y = f^{-1}(y')$, 故 $f^{-1}(x' * y') = x \cdot y = f^{-1}(x') \cdot f^{-1}(y')$. 这就完成了证明.

定义 0.15 (两个群的直积)

令 $(G, \cdot_1), (G', \cdot_2)$ 是两个群, 我们记 $(G \times G', *)$ 为 (G, \cdot_1) 和 (G', \cdot_2) 的**直积**. 满足对于 $(x, y), (x', y') \in G \times G',$ 有

$$(x, y) * (x', y') = (x \cdot_1 x', y \cdot_2 y').$$

命题 0.16 (两个群的直积仍是群)

若 $(G, \cdot_1), (G', \cdot_2)$ 是两个群,则它们的直积 $(G \times G', *)$ 还是一个群.

证明 封闭性: 因为 G 在 \cdot_1 下封闭, G' 在 \cdot_2 下封闭, 而 $G \times G'$ 的元素乘积是逐坐标定义的, 则 $G \times G'$ 在 * = (\cdot_1, \cdot_2) 下也, 是封闭的.

结合律:同样,逐坐标有结合律,故整体也有结合律.

单位元: 设 e, e' 分别是 $(G, \cdot_1), (G', \cdot_2)$ 的单位元,则不难想象,(e, e') 是直积的单位元.对于任意 $(x, y) \in G \times G'$,我们有 $(x, y) * (e, e') = (x \cdot_1 e, y \cdot_2 e') = (x, y)$,另一边也是同理,这就证明了 (e, e') 是直积的单位元.

逆元: 对于任意 $(x, y) \in G \times G'$, 设 x^{-1}, y^{-1} 分别是 x, y 的逆元, 则同样不难想象, (x^{-1}, y^{-1}) 是 (x, y) 的逆元. \square

定义 0.16 (一族群的直积)

令 $(G_i, \cdot_i)_{i \in I}$ 是一族群, 其中 I 是一个指标集. 我们记它们的**直积**为 $(\prod_{i \in I} G_i, *)$. 满足对于 $(x_i)_{i \in I}, (y_i)_{i \in I} \in I$

$$\prod_{i\in I}G_i$$
, f

$$(x_i)_{i \in I} * (y_i)_{i \in I} = (x_i \cdot_i y_i)_{i \in I}.$$

命题 0.17 (一族群的直积仍是群)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族群, 则它们的直积 $(\prod_{i \in I} G_i, *)$ 还是一个群.

 $\stackrel{\textstyle \checkmark}{\mathbf{Y}}$ **笔记** 最经典的例子就是通过 n 个实数加群 (\mathbb{R} , +) 直积得到的 (\mathbb{R}^n , +).

证明 证明与命题 0.16同理. 封闭性与结合律是显然的. 单位元是 $(e_i)_{i \in I}$,而 $(x_i)_{i \in I}$ 的逆元是 $(x_i^{-1})_{i \in I}$.

命题 0.18 (一族 Abel 群的直积仍是 Abel 群)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族 Abel 群, 则它们的直积 $(\prod_{i \in I} G_i, *)$ 还是一个 Abel 群.

证明 由命题 0.17可知 $(\prod_{i \in I} G_i, *)$ 还是一个群. 下面证明它还是 Abel 群.

由 $(G_i, \cdot_i)_{i \in I}$ 是一族 Abel 群可得, 对 $\forall (x_i)_{i \in I}, (y_i)_{i \in I} \in \prod_{i \in I} G_i$, 都有

$$(x_i)_{i \in I} \cdot (y_i)_{i \in I} = (x_i \cdot_i y_i)_{i \in I} = (y_i \cdot_i x_i)_{i \in I} = (y_i)_{i \in I} \cdot (x_i)_{i \in I}$$

故 $(\prod_{i \in I} G_i, *)$ 还是一个 Abel 群.

定义 0.17 (投影映射)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族群, $j \in I$ 是任意指标, 我们定义映射到指标 j 的**投影映射**为

$$p_j: \prod_{i\in I} G_i \to G_j.$$

对于 $(x_i)_{i \in I}$, 我们称 $p_j((x_i)_{i \in I}) = x_j$ 为 $(x_i)_{i \in I}$ 的**投影**.

命题 0.19 (投影映射是群同态)

若 $(G_i, \cdot_i)_{i \in I}$ 是一族群, $j \in I$ 是任意指标, 则投影映射 $p_j : \prod_{i \in I} G_i \to G_j$ 是个群同态.

证明 \diamondsuit $(x_i)_{i \in I}, (y_i)_{i \in I} \in \prod_{i \in I} G_i, 则$

$$p_j((x_i)_{i \in I}) = x_j, \quad p_j((y_i)_{i \in I}) = y_j$$

 $p_{j}((x_{i})_{i \in I} * (y_{i})_{i \in I}) = p_{j}((x_{i} \cdot_{i} y_{i})_{i \in I}) = x_{j} \cdot_{j} y_{j} = p_{j}((x_{i})_{i \in I}) \cdot_{j} p_{j}((y_{i})_{i \in I}).$