LAB 1. DataBase

Student: Sultanbek Agabek

ID: 19B030679

 Consider the employee database of figure below. Give an expression in the relational algebra to express each of the following queries:

employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)

Figure

- Find the ID and name of each employee who works for "BigBank".
- Find the ID, name, and city of residence of each employee who works for "BigBank".
- Find the ID, name, street address, and city of residence of each employee who works for "BigBank" and earns more than \$10000.
- Find the ID and name of each employee in this database who lives in the same city as the company for which she or he works.
 - $1. \prod id, name(\mathbf{O}_{company_name} = "BigBank"(works))$
 - 2. \prod id,name,city(\mathbf{O} company_name = "BigBank"(works ⋈ employee))
- 3.∏*id,name,city,street*(**o**company_name = "BigBank" ^ salary > 10,000 (works ⋈ emplyee))
 - 4. \sqcap *id,name*(σ employee_city = company.city (employee ⋈ company))
- Consider the employee database of figure above. Give an expression in the relational algebra to express each of the following queries:
 - Find the ID and name of each employee who does not work for " BigBank".
 - Find the ID and name of each employee who earns at least as much as every employee in the database.

1.If people not work in "BigBank"

∏id,name(**O**company_name ≠ "BigBank"(works))

2. If people not work for any company:

 $\prod id,name(\mathbf{O}salary) \ge avg(salary)(works))$

- Consider the foreign-key constraint from the dept_name attribute of instructor to the department relation. Give examples of inserts and deletes to these relations that can cause a violation of the foreign-key constraint.
 - 1) Giving value, that doesn't exist, to "dept_name" attribute will cause a violation of the foreign-key constraint.
 - 2) Delete tuple (15151, Mozart, Music, 40000)

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

INSERT INTO department (dept_name) VALUES ('77777');
DELETE FROM instructor WHERE dept_name;

4. Consider the employee database of figure above. What are the appropriate primary keys?

For employee (<u>person_name</u>,street,city)
For works (<u>person_name</u>,company_name,salary)
For company (<u>company_name</u>,street,city)