Εισηγητής: Λόλας Κωνσταντίνος Επαναληπτικό: Συναρτήσεις

Διαγώνισμα Κατεύθυνση Γ Λυκείου

Θέμα Α

- 1. [Μονάδες 10] Πότε μία συνάρτηση f λέγεται γνησίως φθίνουσα σ' ένα διάστημα Δ του πεδίου ορισμού της;
- 2. **[Μονάδες 5]** Έστω μία συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η f παρουσιάζει στο $x_0 \in A$ (ολικό) μέγιστο το $f(x_0)$;
- 3. [Μονάδες 10] Πότε δύο συναρτήσεις f, g λέγονατι ίσες;

Θέμα Β

Δίνεται η συνάρτηση $f(x) = \kappa - e^{2-x} + x$, $k \in \mathbb{R}$.

- 1. [Μονάδες 6] Να δείξετε ότι η f αντιστρέφεται.
- 2. **[Μονάδες 6]** Αν $f^{-1}(2)=0$, να βρείτε την τική του κ . Για $\kappa=2+e^2$,
- 3. [Μονάδες 6] Να βρείτε τα κοινά σημεία της γραφική παράστασης της συνάρτησης f^{-1} με την ευθεία y=x, αν θεωρήσουμε γνωστό ότι $f(\mathbb{R})=\mathbb{R}$ και ότι η f και η f^{-1} έχουν κοινά σημεία μόνο στην y=x.
- 4. [Μονάδες 7] Να λύσετε την ανίσωση $e^{2-x} < x + e^2$.

Θέμα Γ

Έστω $f, g: \mathbb{R} \to \mathbb{R}$ δύο συναρτήσεις, για τις οποίες ισχύει ότι η συνάρτηση $f \circ g$ είναι 1-1.

- 1. [Μονάδες 5] Να δείξετε ότι η g είναι 1-1.
- 2. **[Μονάδες 7]** Να λύσετε την εξίσωση $g\left(f(x)+x^3+x\right)=g\left(f(x)-\ln x+2\right)$.
- 3. [Μονάδες 5] Αν $g(\mathbb{R})=(0,+\infty)$, να δείξετε ότι η εξίσωση $ae^{g(x)}=1$, έχει μοναδική λύση για κάθε $a\in(0,1)$.

Θέμα Δ

Δίνεται η συνάρτηση $f(x) = \frac{1}{x \ln x}$

- 1. [Μονάδες 5] Να βρείτε το πεδίο ορισμού της f.
- 2. [Μονάδες 5] Να μελετήσετε τη συνάρτηση f ως προς την μονοτονία στο διάστημα $(1, +\infty)$
- 3. [Moνάδες 5] Για κάθε α , $\beta \in (1, +\infty)$ με $\alpha < \beta$, να αποδείξετε ότι

$$\alpha^{\alpha} < \beta^{\beta}$$

4. [Μονάδες 5] Να λύσετε την εξίσωση $\frac{(x^4+2)^{x^4+2}}{(x^2+4)^{x^2+4}}=1$.

Καλή επιτυχία