# BICYCLE MANUFACTURING ERP SYSTEM RISK MANAGEMENT PLAN

Version 4.0 07/04/2021

# **VERSION HISTORY**

| Version # | Implemented<br>By           | Revision<br>Date | Approved<br>By                            | Approval<br>Date | Reason                                          |
|-----------|-----------------------------|------------------|-------------------------------------------|------------------|-------------------------------------------------|
| 1.0       | Michael,<br>Armando, Kelvin | 01/26/21         | Daniel,<br>Celia,<br>Piravien,<br>Michael | 02/02/2021       | Initial Risk Management<br>Plan Sprint 1        |
| 2.0       | Michael,<br>Armando, Kelvin | 03/02/21         | Daniel,<br>Celia,<br>Piravien,<br>Michael | 24/02/2021       | Development Risk<br>Management<br>Plan Sprint 2 |
| 3.0       | Michael,<br>Armando, Kelvin | 25/02/21         | Daniel,<br>Celia,<br>Piravien,<br>Michael | 17/03/2021       | Development Risk<br>Management<br>Plan Sprint 3 |
| 4.0       | Michael,<br>Armando, Kelvin | 18/03/21         | Daniel,<br>Celia,<br>Piravien,<br>Michael | 06/04/2021       | Development Risk<br>Management<br>Plan Sprint 4 |

**UP Template Version**: 11/30/06

# **TABLE OF CONTENTS**

| INTRODUCTION                                | 1  |
|---------------------------------------------|----|
| PURPOSE OF THE RISK MANAGEMENT PLAN         | 1  |
| RISK MANAGEMENT PROCEDURE                   | 1  |
| PROCESS                                     | 1  |
| RISK IDENTIFICATION                         | 1  |
| RISK ANALYSIS                               | 2  |
| Risk Analysis Guidelines                    | 2  |
| Analyzing Project Risks                     | 4  |
| RISK RESPONSE PLANNING                      | 5  |
| RISK MONITORING, CONTROLLING, AND REPORTING | 8  |
| TOOLS AND PRACTICES                         | 9  |
| RISK MANAGEMENT PLAN APPROVAL               | 9  |
| APPENDIX A: REFERENCES                      | 10 |
| APPENDIX B: KEY TERMS                       | 11 |

#### 1 INTRODUCTION

#### 1.1 PURPOSE OF THE RISK MANAGEMENT PLAN

The Risk Management Plan is a crucial document towards the successful completion of the Bicycle Manufacturing ERP System. Generally a risk is an event that can be identified as having a negative effect on the development of the project if it occurs. The risk management plan allows the development team to identify potential issues before they occur. Risk-handling activities can be applied at any point during the lifecycle of the product to reduce the potential impact on the completion of the objectives/project. While the Risk Management Plan is heavily emphasized during the early stages of the project, this document must always be considered and reassessed throughout the project's development. The intended audience of this document is the project team, stakeholders, and management. The focus of this document is to handle the risks involved with the software development process.

#### 2 RISK MANAGEMENT PROCEDURE

#### 2.1 PROCESS

While new risks will arise throughout the development of this system, risks will be identified and addressed as early as possible. Early identification will aid in avoiding severe consequences as proper measures will be taken to actively stay away from likely events of high impact. This includes examination of each element of the project structure to find risks, risk assessment by using risk taxonomy (comprehensive set, common set and stable of risk categories), reviewing risk management efforts from similar products, researching documents and databases, examination of design specification and requirements and qualitative and quantitative analysis [1]. The following subsections will outline the steps to identify, analyze, respond, and monitor risks throughout the development of this project. Michael Lee is designated as the Risk Manager for this ERP system.

#### 2.2 RISK IDENTIFICATION

Risk identification is the initial step to managing and mitigating risks. In this case, it is the act of observing and attempting to identify potential problems that could be encountered both short and long term. The degree of risk is quite extensive, encapsulating various different factors such as environment, organization, management, development, and operations. Those directly responsible for the identification process are the developers of the software as well as the stakeholders involved, such that many different aspects could be accounted for.

#### 2.3 RISK ANALYSIS

Risks vary to different degrees. Once identifying the events with risk, it is important to analyze their potential effect on the schedule, development, and/or budget of the system. As such, some risks should be monitored more closely than others. While risk analysis can be subjective, the following guidelines should be followed closely to aid in avoiding inconsistencies.

#### 2.3.1 Risk Analysis Guidelines

Risk can be measured qualitatively using a Risk Assessment Matrix. The Risk Manager is able to determine the risk by categorizing each risk's level of Impact and level of Probability of Occurrence, on a scale of 1 to 5 (see figure 1.1 and figure 1.2 for more information). These levels are reviewed with input from the project team, along with guidance from stakeholders. Using the Risk Assessment Matrix below, it is possible to associate the appropriate level of risk as follows:

- Green  $\rightarrow$  Low Risk (1-6)
- Yellow  $\rightarrow$  Moderate Risk (8-12)
- Red  $\rightarrow$  High Risk (15-25)

|        | I5<br>(>4%)               | 5            | 10           | 15           | 20           | 25           |
|--------|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Impact | I4<br>(<4%)               | 4            | 8            | 12           | 16           | 20           |
| Impact | I3<br>(<3%)               | 3            | 6            | 9            | 12           | 15           |
|        | I2<br>(<2%)               | 2            | 4            | 6            | 8            | 10           |
|        | I1<br>(<1%)               | 1            | 2            | 3            | 4            | 5            |
|        |                           | P1<br>(~10%) | P2<br>(~30%) | P3<br>(~50%) | P4<br>(~70%) | P5<br>(~90%) |
|        | Probability of Occurrence |              |              |              |              |              |

Figure 1.1: Risk Assessment Matrix

It is up to the Risk Manager's discretion as to how to associate the appropriate probability and impact levels. Tables 1.2 and 1.3 describe the 5 levels of probability and impact, respectively.

| Level | Description               | Probability of Occurrence |
|-------|---------------------------|---------------------------|
| P5    | Extremely likely to occur | ~90%                      |
| P4    | Highly likely to occur    | ~70%                      |
| Р3    | Likely to occur           | ~50%                      |
| P2    | Less Likely to occur      | ~30%                      |
| P1    | Not likely to occur       | ~10%                      |

Figure 1.2: Levels of Probability of Occurrence

| Level | Description                                                                                          | Impact |
|-------|------------------------------------------------------------------------------------------------------|--------|
| 15    | Extremely significant negative impact on the organization, delaying timelines and going over-budget. | >4%    |
| I4    | Significant impact on the organization                                                               | <4%    |
| I3    | Moderate impact on the organization                                                                  | <3%    |
| I2    | Minor impact on the organization                                                                     | <2%    |
| I1    | Minimal impact on organization                                                                       | <1%    |

Figure 1.3: Levels of Impact



Figure 1.4: Project Risk Categories [2]

#### 2.3.2 Analyzing Project Risks

Using the guidelines defined in section 2.3.1, a list of software development risks can be organized by their risk level; notably low, moderate, or high risk. This list should be monitored by the Risk Manager at least once a week, adding new risks that may arise throughout the development process.

| Risk<br>Description        | Probability | Impact | Cost<br>Impact | Expected<br>Monetary<br>Value (P *<br>Cost) | Risk Score<br>(P * I) | Risk<br>Level |
|----------------------------|-------------|--------|----------------|---------------------------------------------|-----------------------|---------------|
| Incomplete<br>Requirements | P5          | I5     | TBA            | TBA                                         | 5*5= 25               | High          |
| Over Budget                | Р3          | I5     | TBA            | TBA                                         | 3*5= 15               | High          |
| Exceed<br>Delivery Date    | Р3          | I5     | TBA            | TBA                                         | 3*5= 15               | High          |
| Change in Requirements     | Р3          | 15     | TBA            | TBA                                         | 3*5= 15               | High          |

| Low<br>Productivity                 | Р3 | I4 | TBA | TBA | 3*4= 12 | Moderate |
|-------------------------------------|----|----|-----|-----|---------|----------|
| Lack of<br>Leadership<br>/Direction | P2 | I4 | ТВА | ТВА | 2*4= 8  | Moderate |
| Project<br>Member falls<br>ill      | Р3 | 13 | ТВА | ТВА | 3*3=9   | Moderate |
| Freeloader                          | P1 | 15 | TBA | TBA | 1*5=5   | Low      |
| Layoffs                             | P1 | 15 | TBA | TBA | 1*5=5   | Low      |
| Personality clash                   | P2 | 13 | TBA | TBA | 1*6=6   | Low      |
| Lack of organization                | P1 | I4 | TBA | TBA | 1*4=4   | Low      |
| Over<br>Reliance on<br>meetings     | Р3 | 12 | TBA | TBA | 3*2=6   | Low      |
| Lack of communicati on              | P2 | 13 | ТВА | ТВА | 2*3=6   | Low      |
| Team<br>miscommunic<br>ation        | P2 | 13 | TBA | TBA | 2*3=6   | Low      |
| Teammate is late to meeting         | P4 | I1 | ТВА | ТВА | 1*4 = 4 | Low      |

Figure 1.5: Quantitative Risks

#### 2.4 RISK RESPONSE PLANNING

It is crucial that risks that are categorized as high risk (red) are addressed accordingly. Proper actions must be taken to try and avoid the occurrence of these events throughout the development of this system. Each risk has a different response. Due to ever-changing circumstances, the ideal risk response is given first, followed by the next best choice, and so on.

We have defined three kinds of risk response:

#### - Acceptance:

Nothing should or could be done to avoid the risk. For low risk, either the probability and/or impact is low enough that the overall effect of this event occurring is minimal. Applying resources for low risk events may not be worth the time and effort as it may be unlikely to happen or its impact is small. For high risk events, acceptance should only be applied if there is nothing else that can be done.

### - Mitigation:

Actively applying measures to reduce the probability or impact of the risk. This response should only be applied if the risk cannot be avoided completely.

#### - Avoidance:

Remove the possibility of the risk occurring by taking out the cause. This response should be applied if possible.

For example, ideally the development team should be given enough time to complete their work and have some slack if productivity dips, therefore avoidance of tight scheduling would be the ideal risk response. However, a contract-binding agreement with the customer may not allow for this response, therefore a mitigation plan would be put into place to reduce the severity of this risk if it occurs.

| Risk Description                                                                  | Risk<br>Generated    | Risk Response            | Mitigation, remedie                                                                                                  | Risk<br>level |
|-----------------------------------------------------------------------------------|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|
| Employee<br>Turnover;<br>someone is sick,<br>someone quits,<br>layoffs, vacations | Delay in development | Avoid → mitigate→ accept | Plan for key project figures<br>to have a well-informed<br>secondary who can take<br>charge when and if<br>necessary | High          |
| Tight/Unrealistic Scheduling; not enough time attributed to certain tasks         | Delay in development | Avoid →<br>mitigate      | Allocating more resources to tasks during the development to maintain efficiency and prevent delay.                  | High          |
| Changes in                                                                        | Insufficient         | Mitigate →               | Including a safety margin                                                                                            | High          |

| budget;<br>unforeseen events<br>and<br>unprecedented<br>times could affect<br>financials      | Funds,<br>Overrun                                                    | Accept              | for every activity during the planning phase.                                                                                                                                                               |      |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Incorrect frameworks and technology; technology must be changed to support future needs.      | Delay in<br>development                                              | Avoid →<br>Mitigate | Ensure that the technology decisions that are chosen along the way allow for future growth and can meet the product's end goals.  Furthermore, the technology should account for future features and needs. | High |
| Insufficient growth management, not having the appropriate resources to sustain future growth | Delayed<br>growth and<br>lack of user<br>support and<br>satisfaction | Avoid →<br>Mitigate | Include additional resources to support a growing service while still providing the best quality to all users                                                                                               | High |
| New requirements; as production advances, new features may be needed that were left out       | Delay in<br>development                                              | Avoid →<br>Mitigate | Brainstorm as a group.  Once a week, workers should have a discussion period where they speak of future needs that may be necessary as they work                                                            | High |
| Inadequate project planning; unorganized team and lack of documentation and meetings          | Delay in<br>development,<br>Project<br>failure,<br>Overruns          | Avoid →<br>Mitigate | Frequent communication among teams, and frequent meetings and discussions to discuss progress                                                                                                               | High |

| Insufficient Testing; features aren't working effectively while                                                         | Software flaws, information leaks, delay                                                   | Avoid →<br>Mitigate | Thorough testing must be enforced for an extensive variety of possible cases.                                                                                                        | High |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| being approved<br>and added to the<br>overall project                                                                   | in development, project failure                                                            |                     | Testing must be frequent to prevent later discovered faults                                                                                                                          |      |
| Lack of user support; not enough available help to users                                                                | Decrease in customer satisfaction, project failure                                         | Avoid →<br>Mitigate | Simple interface with strong user support including guides to help as well as instructions to aid utilizing the service. Online help services such as email response, FAQ, tutorials | High |
| Lack of 3 <sup>rd</sup> party support; a company whom we are dependent on breaks contract/might not renew/changes terms | Delay in development, project failure                                                      | Avoid →<br>Mitigate | 3 <sup>rd</sup> party companies whom we are reliant must communicate regularly with details and information regarding project status                                                 | High |
| Lack of organization amongst team, lack of effective organization that enhance the team's performance                   | Delay in development Missing key components in development process Possible duplicate work | Avoid → mitigate    | Ensure tasks are distributed amongst the group Create a document that keeps track of what is being worked on and by which individual                                                 | High |

| Insufficient Communication, lack of effective communication that enhance the team's performance              | Delay in<br>development<br>Possible<br>duplicate<br>work | Avoid →<br>mitigate | Allow for frequent communication between small groups, which in turn communicate with other groups                   | High |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------|------|
| Lack of Understanding among customer and team, gaps of understanding between both parties impair development | Delay in development Unmet requirements                  | Avoid → mitigate    | Ensure ideas are properly understood by both parties Repeat things to confirm an understanding Take notes of details | High |
| Low attention to details, crucial components are missed and left out                                         | Delay in development                                     | Avoid →<br>mitigate | Ensure all parties were attentive by speaking amongst each other about it                                            | High |
| Projects interfering, other projects that various teams are associated to affect development                 | Delay in development                                     | Avoid →<br>mitigate | Better time management Ensure proper scheduling with large time frames to allow for delay                            | High |
| Lack of understanding among team, gaps of understanding between team impairs development                     | Delay in development                                     | Avoid →<br>mitigate | Ensure time in meeting suffices for discussion as well as the asking and answering of questions.                     | High |

| Misunderstanding of given specifications                                                                      | Delay in development  Unmet requirements | Avoid →<br>mitigate | Review requirements frequently with team to form a better understanding.                         | High |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|------|
| Creating of various different problems when working on different platforms; a varierty of bugs are introduced | Delay in development                     | Avoid →<br>mitigate | Compile a document that has common errors that have been experienced along with their solutions. | High |

Figure 1.6: Risk Response Planning

## 2.5 RISK MONITORING, CONTROLLING, AND REPORTING

The level of risk in this project will be tracked, monitored and reported throughout the project lifecycle. The following risks are the "Top 10 Risk List" that will be maintained, analyzed and updated. Management will be notified of important changes to the risk status by following the guideline below.

- 1. The risk is identified
- 2. The risk is assessed. We may want to have different statuses for qualitative and quantitative assessments.
- 3. The risk is controlled. We may want to identify all the control actions taken: avoidance, mitigation, transfer, acceptance
- 4. The risk is triggered. From that point, you are in contingency mode. Once resolved, the risk goes back to control.
- 6. The risk is closed. Some risks are never closed, for example, hazards.

| Risk Description                                 | Category       | Risk<br>Level | Risk Status              | Accountable |
|--------------------------------------------------|----------------|---------------|--------------------------|-------------|
| Incomplete<br>Requirements                       | Requirements   | High          | Identified → Assessed    | Michael     |
| Over Budget                                      | Estimation     | High          | Identified → Assessed    | Kelvin      |
| Exceed Delivery<br>Date                          | Estimation     | High          | Identified → Assessed    | Armando     |
| Change in Requirements                           | Requirements   | High          | Identified → Assessed    | Kelvin      |
| Misunderstanding<br>between customer<br>and team | People         | High          | Identified → Assessed    | Armando     |
| Project Interference                             | Organizational | High          | Identified →<br>Assessed | Kelvin      |
| Misunderstanding<br>between team<br>members      | People         | High          | Identified → Assessed    | Michael     |
| Misunderstanding of specifications               | People         | High          | Identified → Assessed    | Armando     |
| Variety of Experienced Bugs                      | Software       | High          | Identified → Assessed    | Armando     |

| Low Productivity              | People         | Moderate | Identified → Assessed | Michael |
|-------------------------------|----------------|----------|-----------------------|---------|
| Lack of Leadership /Direction | Organizational | Moderate | Identified → Assessed | Michael |
| Project Member falls ill      | People         | Moderate | Identified → Assessed | Kelvin  |
| Low<br>Communication          | People         | Moderate | Identified → Assessed | Michael |
| Low Organization              | Organizational | Moderate | Identified → Assessed | Armando |
| Layoffs                       | Organizational | Low      | Identified → Assessed | Armando |
| Teammate is late to meeting   | People         | Low      | Identified → Assessed | Michael |

Figure 1.7: Top Risk List

## 3 TOOLS AND PRACTICES

The risk log will be maintained by the project manager. Furthermore, it will be reviewed at least twice a week in order to decrease the probability of running into risks as much as possible. Lastly, with the use of a frequent analysis of the log and discussions in the meetings, we can detect problems earlier on in development where the negative impact isn't as bad as if it were found later on in the project. Refer to document [3] for the tools and practices.

## RISK MANAGEMENT PLAN APPROVAL

The undersigned acknowledge they have reviewed the **Risk Management Plan** for the Bicycle Manufacturing ERP System project. Changes to this Risk Management Plan will be coordinated with and approved by the undersigned or their designated representatives.

| Signature:  | N/A                      | Date: | 02/02/2021 |  |
|-------------|--------------------------|-------|------------|--|
| Print Name: | Daniel Gauvin            |       |            |  |
| Title:      | Scrum Master             |       |            |  |
| Role:       | Reviewer                 |       |            |  |
| Signature:  | N/A                      | Date: | 02/02/2021 |  |
| Print Name: | Celia Cai                |       |            |  |
| Title:      | Project Manager          |       |            |  |
| Role:       | Reviewer                 |       |            |  |
| Signature:  | N/A                      | Date: | 02/02/2021 |  |
| Print Name: | Piravien Suntharalingam  |       |            |  |
| Title:      | Chief Technology Officer |       |            |  |
| Role:       | Reviewer                 |       |            |  |
| Signature:  | N/A                      | Date: | 02/02/2021 |  |
| Print Name: | Michael Lee              |       |            |  |
| Title:      | Risk Manager             |       |            |  |
| Role:       | Writer & Reviewer        |       |            |  |
|             |                          |       |            |  |

# **APPENDIX A: REFERENCES**

The following table summarizes the documents referenced in this document.

| Document Name and Version                | Description                          | Location                                                                                                      |
|------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Guide to risk taxonomy                   | Risk Management Taxonomy             | [1]-https://www.canada.ca/en/tr<br>easury-board-secretariat/corpora<br>te/risk-management/taxonomies<br>.html |
| Risk breakdown structure                 | Risk Structure Breakdown             | [2]-https://www.fool.com/the-bl<br>ueprint/risk-breakdown-structur<br>e/                                      |
| The best management tools and techniques | Risk Management Tools and Techniques | [3]-https://www.projectmanager.<br>com/blog/risk-management-tool<br>s-techniques                              |

# APPENDIX B: KEY TERMS

The following table provides definitions for terms relevant to the Risk Management Plan.

| Term       | Definition                                  |
|------------|---------------------------------------------|
| ERP        | Enterprise Resource Planning.               |
| Mitigation | Reduction of the negative impact of a risk. |
| UP         | Unified Process.                            |