Prof. Cynthia Bortolotto

Lista 6

- 1. Let μ be a σ -finite measure and λ a complex measure. Prove that Randon-Nikodym theorem still holds.
- 2. Let $\mu(X) < \infty$, $f \in L^1(\mu)$, S a closed set in the complex plane, and the averages

$$\frac{1}{\mu(E)} \int_{E} f d\mu$$

lie in S for every $E \in \mathcal{M}$ with $\mu(E) > 0$. Then $f(x) \in S$, for almost all x μ -a.e.

- 3. Extend Theorem 3 from last class (about duality of L^p spaces) to σ -finite μ .
- 4. Suppose that (g_n) is a sequence of positive continuous functions on I = [0, 1], μ is a positive Borel measure on I, and m be the Lebesgue measure and that
 - (a) $\lim_{n\to\infty} g_n(x) = 0$, m-a.e
 - (b) $\int_I g_n dm = 1$
 - (c) $\lim_{n\to\infty} fg_n dm = \int_I f\mu$ for all $f \in C(I)$.

Does it follow that $\mu \perp m$?

5. Let μ be a complex measure on a σ -algebra \mathcal{M} . If $E \in \mathcal{M}$, define

$$\lambda(E) = \sup \sum |\mu(E_i)|,$$

the supremum being taken over all finite partitions $\{E_i\}$ of E. Does it follow that $\lambda = |\mu|$?