Complexity Reading Group 11/5/2015 Brown University

1 BPP

Definition 1: For a function $T: \mathbb{N} \to \mathbb{N}$, and a language $L \subseteq \{0,1\}^*$, consider a Probabilistic Turing Machine (PTM), has two functions δ_1 and δ_2 that each specify a set of rules for the TM. At each step, the PTM flips a fair coin, and the result determines if the PTM uses δ_1 or δ_2 for its current rule. We say a PTM M decides L in time T(n) for every $x \in \{0,1\}^*$, M halts in T(|x|), and $\Pr(M(x) = L(x)) \geq \frac{2}{3}$.

Definition 2: The class BPTIME(T(N)), is the class of languages that can be decided in $\mathcal{O}(T(n))$ by a PTM

Definition 3: The class BPP = \cup_c BPTIME (n^c) is the class of languages that can be decided in polynomial time by a PTM

Definition 4: A Language L is in BPP if \exists a poly time TM M and a poly $p: \mathbb{N} \mapsto \mathbb{N}$ s.t.:

$$\forall_u : u \in \{0,1\}^*, \ \Pr_r \in \{0,1\}^{p(x)} [M(x,r) = L(x)] \ge \frac{2}{3}$$
 (1)

Note: $P \subseteq BPP$, since we could set $\delta_1 = \delta_2$.

2 Examples

Example: Finding the median in a list, i.e. compete the $\frac{n}{2}$ -th smallest element in a list.

There is a nice randomized algorithm that can compute the median in $\mathcal{O}(n)$ time.

More general solution: Finding the k-th smallest number.

Algorithm: FindKthSmallest(L, k)

- Pick a random index, $i \in [1 : len(L)]$
- Go through the list and put all $a_j \leq a_i$ into T.

- if $|T| \ge k$, then we know the number we're looking for is in T. So, return FindKthSmallest(T, |T| k), or something. The k passed in here isn't exact but it's something like that..
- if |T| < k, then we know it's not in T, so it must be in the remainder of L (that we didn't put in T). So, return FindKthSmallest(L|T,k-|T|)

Polynomial Identity Testing: Suppose we have two polynomials: $P, Q : (x_1, ..., x_n) \mapsto F$, for some ring F. The question is, are P and Q equivalent polynomials?

Zero Testing: For a polynomial P, is P = 0? These two problems are actually identical, because we can ask P - Q = 0, and ask P = Q, where Q = 0.

Lemma 1: Let $p(x_1, ..., x_n)$ be non-zero polynomial of total degree at most d. Let S be a set of integers with at least d+1 elements. If $a_1, ..., a_n$ are randomly chosen from S, then the probability that, if you evaluate p on these integers, then:

$$\Pr(a_1, \dots, a_n \neq 0) \ge 1 - \frac{d}{|S|}$$
 (2)

3 The Class RP

Definition 4: RTIME(T(n)) contains any language L for which there is a PTM M that runs in time T(n) such that:

$$x \in L \to \Pr(M(x) = 1) \ge \frac{2}{3} \tag{3}$$

$$x \notin L \to \Pr(M(x) = 1) = 1$$
 (4)

Definition 5: The class RP is the set of all languages that can be decided in polynomial time by an RTM:

$$RP = \cup_c RTIME(n^c) \tag{5}$$

Definition 6: For a PTM M and input X, define a random variable $T_{M,x}$ as the running time of M over x. $\Pr(T_{M,x} = T) = p$ over random choices of M over x, it will halt T steps. We say M has expected running time T(n) if $\mathbb{E}[T_{M,x}] \leq T(|x|)$. Then M has zero sided error

Definition 7: ZTIME(T(n)) is the class of languages that can be decided with zero sided error

Definition 8: ZPP is the class:

$$ZPP = \cup_c ZTIME(n^c) \tag{6}$$

Lemma 2:
$$ZPP = co - RP \cap RP$$

Proof:

- (a) WTS: $L \in ZPP$ iff there exists a poly time PTM M with outputs, in $\{0,1?\}$ such that: $\forall_x : x \in \{0,1\}^*$, with probability $1, M(x) \in \{L(x),?\}$, and $\Pr(M(x)=?) \leq \frac{1}{2}$.
- (b) WTS: $ZPP = co RP \cap RP$