CS 344: Design and Analysis of Computer Algorithms

Graphs: Definitions and Preliminaries

Rutgers: Fall 2019

October 29, 2019

Instructor: Sepehr Assadi Scribes: Zach Langley and Harsha Srimath Tirumala

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Undirected Graphs

An undirected graph G is a set of **vertices** V together with a set of **edges** E; an edge is an (unordered) pair of distinct vertices. We abbreviate the edge $\{u, v\}$ as uv. Graphs are of two kinds: undirected graphs and directed graphs. In undirected graphs, the edge uv is the same as the edge vu, which should be clear from its definition.

We will always use n to denote the number of vertices of a graph and m to denote the number of edges. Note that an algorithm which runs in time O(n+m) is linear in the size of the input (which may not be linear in n).

Basic Terminology

- We say that vertices u and v are the **endpoints** of the edge uv and that uv **joins** u and v.
- A vertex u is **adjacent** to a vertex v if u and v are joined by some edge.
- We say an edge e is **incident** to a vertex v if v is one of the endpoints of e.
- The **degree** of a vertex u, written deg(u), is the number of edges incident to it.
- The **neighborhood** of a vertex v, denoted N(v), is the set of adjacent vertices to v any vertex $u \in N(v)$ is also called a **neighbor of** v.
- A walk is a sequence P of vertices v_1, \ldots, v_{k+1} such that $v_i v_{i+1}$ is an edge for all $i \in \{1, \ldots, k\}$. A path is a walk in which all vertices are distinct. We say that P is a v_1 - v_k path. The length of a such a walk (path) is k, the number of edges traversed.
- A *closed walk* is a walk that starts and ends at the same vertex. A *cycle* is a closed walk of length at least 3 in which all vertices are distinct, except of course at the first and last vertex.
- The *distance* between two vertices u and v is the length of the shortest path between them.
- Consider the equivalence relation in which two vertices are related if there is a path between them (you should verify that this is an equivalence relation). The equivalence classes of this relation are called *components* of G. That is, the components of G are the maximally connected subgraphs.
- A graph is **connected** if there is a path between any two vertices $u \in V$ and $v \in V$. Equivalently, a graph is connected if it contains exactly one component.
- A graph G' = (V', E') is a **subgraph** of a graph G = (V, E) if $V' \subseteq V$ and $E' \subseteq E$.
- An (undirected) graph without any cycle is a *forest*.
- A forest with one component is a *tree*. Alternatively, a tree is an undirected acyclic connected graph.
- A *leaf* of a tree is a vertex of degree 1.

- A spanning tree of a graph G = (V, E) is a subgraph T = (V, F) which is a tree. Note that spanning trees are on the same vertex set.
- A graph is *bipartite* if its vertex set can be partitioned into two classes A and B such that all of the edges of the graph go between A and B.
- A graph G = (V, E) is k-colorable if there is a color assignment $c : V \to [k]$ such that $uv \in E \implies c(u) \neq c(v)$. It is easy to verify that a graph is bipartite if and only if it is 2-colorable.
- A graph is d-regular when all of its vertices have degree d.
- A *clique* is a set of vertices in a graph which are all connected to each other.

Directed Graphs

A directed graph (sometimes called a digraph) is a set of **vertices** V together with a set of **arcs** A; an arc is an **ordered** pair of distinct vertices. The difference between directed graphs and undirected graphs is precisely that arcs are ordered, whereas edges are not. We abbreviate the arc (u, v) as \overrightarrow{uv} . We may abuse the notation and refer to arcs as edges as well whenever it is clear from the context.

Observe that undirected graphs can be viewed as a special case of directed graphs, since for every edge uv in we can create two arcs \overrightarrow{uv} and \overrightarrow{vu} .

Basic Terminology

- We say that the arc $a = \overrightarrow{uv}$ enters v and leaves u. We also call u the tail of a and v the head of a.
- The *in-degree* of a vertex is the number of arcs entering it. The *out-degree* of a vertex is the number of arcs leaving it.
- A source is a vertex of in-degree 0, and a sink is a vertex of out-degree 0.
- The notions of walks, paths, cycles, distance, etc., are the same as in undirected graphs, except that we must follow the orientation of the now directed edges.
- We say that a vertex u is reachable from a vertex v if there is a directed path from v to u; in that case, we may also say that v can reach u.
- A directed graph is **strongly connected** if for any two vertices u and v, there is a directed path between them.
- A directed acyclic graph or a DAG is a directed graph which contains no directed cycle.
- The *transitive closure* of a directed graph G = (V, A) is a directed graph on V where there is an arc from u to v whenever G contains a path from u to v.

Properties

- The Handshaking Lemma: For any undirected graph G, the sum of the degrees of its vertices is twice its number of edges, i.e., $\sum_{v \in V} \deg(v) = 2m$. This lemma gets its name from the following observation: if you sum up the number of hands shaken by each person during the course of some event, the result will be an even number.
- For any undirected graph G, the number of vertices of odd degree is even. (This is an immediate corollary of the handshaking lemma.)
- Every directed acyclic graph (DAG) G has at least one source and one sink. Moreover, if there is exactly one source in G, then all vertices of G are reachable from this sink; similarly, if there is exactly one sink, then all vertices of G can reach this sink.

- A forest with n vertices and k components has exactly n k edges. An immediate corollary is that a tree on n vertices has n 1 edges.
- An undirected graph is bipartite if and only if it does not contain an odd cycle (as a subgraph).
- An undirected graph has between 0 and $\binom{n}{2}$ edges. A directed graph has between 0 and $n \cdot (n-1)$ edges.

Graph Representations

There are two common ways to represent graphs: the adjacency list and the adjacency matrix.

In the adjacency list representation, we maintain n lists, one for each vertex. The list corresponding to vertex u contains all vertices that are adjacent to u in the graph. For a directed graph, the list corresponding to vertex u contains all vertices x such that $\overrightarrow{ux} \in A$ (that is, the arcs leaving u in G).

As the name suggest, the adjacency matrix representation of G is a matrix that encodes the adjacency relationships between all pairs of vertices in the graph G. Concretely, the adjacency matrix A is the $n \times n$ matrix such that A(i,j) = 1 if $ij \in E$ and A(i,j) = 0 otherwise.

Weighted Graphs

A weighted graph is a graph G = (V, E) in which every edge has an associated weight. Formally, have a function $w : E \to \mathbb{R}$. We may also speak of weighted directed graphs, which are exactly the same but for directed graphs; in the directed setting, the weight of \overrightarrow{uv} need not be the same as the weight of \overrightarrow{vu} .