

Applied Bioinformatics & Public Health Microbiology 2025 **H.264**

Rapid identification of bacterial and fungal pathogens and resistance determinants directly from positive blood culture bottles using long-read sequencing

Nicole Lerminiaux¹, Ken Fakharuddin¹, Heather J Adam², Amrita Bharat¹, George R Golding¹, Irene Martin¹, Michael Mulvey¹, and Laura Mataseje¹

¹National Microbiology Laboratory, Public Health Agency of Canada, Canada, ²Shared Health, Manitoba, Canada

INTRODUCTION

- The gold standard for diagnostics of bloodstream infections (BSI) are blood cultures followed by phenotypic methods for organism ID and antimicrobial susceptibility testing (AST), which can take multiple days¹
- Early pathogen detection and appropriate antimicrobial therapy for BSIs reduce mortality, morbidity, cost of treatment, length of hospital stay, and development of antimicrobial resistance (AMR)²
- We developed a laboratory and bioinformatic workflow to rapidly and accurately determine bacterial and fungal species identity and predict AMR phenotypes from positive blood cultures

METHODS

- DNA from blood culture bottles was extracted within several hours of flagging positive using the QIAGEN QIAamp BiOstic Bacteremia DNA kit
- DNA was sequenced using Oxford Nanopore Technologies (SQK-RBK114-24, R10.4.1, Dorado v5.0.0 SUP basecalling)
- Corresponding pure cultures isolated using the gold standard method were characterized using MALDI-TOF for species ID, Sensititre for AST, and Illumina sequencing (NextSeq2000, Nextera XT DNA)
- Analysis was completed with the **venae** pipeline (**Figure 1**) which uses sylph³ and kraken2⁴ for species ID, and StarAMR⁵ and KmerResistance⁶ for AMR detection (<u>www.github.com/phac-nml/venae</u>)

RESULTS

- We obtained 248 blood cultures with matching pure isolates
- We developed three different workflow options depending on number of samples and available resources (Table 1)
- After 30 mins of sequencing, species ID of blood cultures by venae matched 97.6 % (n=242/248) of pure isolates. Mismatches are likely due to technical errors.
- Staphylococcus, Escherichia, Streptococcus, and Klebsiella were the most common organisms detected (Figure 2), and blood culture sequencing produced more specific IDs and more polymicrobial IDs than MALDI-TOF
- Overall categorical agreement between clinically-relevant AMR phenotypes (based on CLSI Table 1 Tiers 1 & 2 antimicrobials) predicted in blood cultures and lab AST of pure isolates was 86.3 % (assembly-based) and 82.8 % (read-based) by 5 h (Figure 3)
- For assembly-based AMR prediction, results varied by organism but longer sequencing time resulted in more clinically-relevant genes being detected (Figure 4)
- We generated a clinician-friendly **HTML results report:**

GENOME SEQUENCING REPORT

Output by the **venae** pipeline 2025-04-17

CONCLUSIONS

- This proof-of-concept project shows it is possible to reduce the turnaround time for BSI diagnostics from days to hours
- Species ID and prediction of AMR phenotypes from sequencing blood cultures accurately matches the corresponding pure isolates

³DOI:10.1038/s41587-024-02412-y; ⁴DOI:10.1186/s13059-019-1891-0;

References: ¹DOI:10.1038/s41579-024-01105-2; ²DOI:10.1056/NEJMoa1703058;

⁵DOI:10.3390/microorganisms10020292; ⁶DOI:10.1128/jcm.02981-13

Table 1: Workflow overview and time for each step

		Fast workflow 1 sample	Standard workflow 2+ samples	Higher computational resource workflow 2+ samples
	Features	Organism ID, preliminary AMR	Organism ID, confident AMR	Organism ID, confident AMR
ē	DNA extraction	1.5 h	1.5 h	1.5 h
Hands-on time	Sample cleanup (dependent on sample quality)	0.5 h	0.5 h	0.5 h
Hands	Quantification	0.2 h	0.2 h	0.2 h
	Library prep and loading	0.25 h (RAD114 on Flongle)	2 h (RBK114 on MinION)	2 h (RBK114 on MinION)
Total prep time		2.5 h	4.2 h	4.2 h
	Sequencing time	2 h	5 h	4 h (adaptive)
	Total time	4.5 h	9.2 h	8.2 h

Figure 1: Outline of steps in the venae analysis pipeline

Figure 2: Top organisms identified in blood cultures

Figure 3: Performance of sequencing-

Figure 4: Time to detection of clinically-relevant AMR genes in blood culture sequencing data (assembly-based) for top organisms

