類神經網路作業三 - Hopfield

一、程式執行說明 (GUI 功能說明)

■ MainWindow	,		- 0 X
輸入圖片	聯想結果	對應圖片	
目前選擇資料集:		選擇第 1 . 張圖片	
選擇資料集: Basic	Bonus	開始聯想: associate	
訓練資料雜訊機率: 0.00	*	迭代次數: 1	
開始訓練: train		關閉程式: Exit	
			,tt

1. 進入畫面長這樣,這時要先選擇資料集,按下旁邊的 Basic 就會使用 Basic_Training.txt 作為訓練資料,Basic_Testing.txt 作為測試資料, 並在上方的文字框中顯示目前選擇的是哪一種。需要注意的是,資料夾 Hopfield_dataset 必須要與執行檔案位於同一層,否則程式無法找到 檔案,會發生錯誤並自行關閉

2. 若沒有選擇資料集,就更改訓練資料雜訊、按下開始訓練的 train 鍵等等的話,上方的文字框就會跳出「請選擇資料集!!」

■ MainWindow			
輸入圖片	聯想結果	對應圖片	
目前選擇資料集: 請選擇	資料集!!	選擇第 1 🗦 張圖片	
選擇資料集: Basic	Bonus	開始聯想: associate	
訓練資料雜訊機率: 0.00	*	迭代次數: 1	
開始訓練: train		關閉程式: Exit	
			ıfi.

3. (加分項目)訓練資料雜訊機率可以調整輸入的訓練資料,只要該值一 更改,就會立刻將加入雜訊的訓練資料顯示在最右方的對應圖片中。雜 訊機率值介於 0.00~1.00。

■ MainWindow			X
輸入圖片	聯想結果	對應圖片	
17		Ĥ	
目前選擇資料集: Basic	ij.	選擇第 1 👶 張圖片	
選擇資料集: Basic Bon	us	開始聯想: associate	
訓練資料雜訊機率: 0.06	造	达代次數: 1	
開始訓練: train	\$	剔閉程式: Exit	
			ai

4. 可以用 spinbox 選擇圖片,當值更改的同時就會顯示新的圖片。若數字大於現有的訓練資料的張數,原本在左方的輸入圖片的文字會變成「圖片不存在!」

MainWindow			
輸入圖片	聯想結果	對應圖片	
目前選擇資料集:Basic		選擇第 3 。張圖片	
選擇資料集: Basic Bonus		開始聯想: associate	
訓練資料雜訊機率: 0.00		迭代次數: 1	
開始訓練: train		關閉程式: Exit	
			.di

■ MainWindow	_ D X
圖片不存在!	
目前選擇資料集: Basic	選擇第 4 最 張圖片
選擇資料集: Basic Bonus	開始聯想: associate
訓練資料雜訊機率: 0.00	迭代次數: 1
開始訓練: train	關閉程式: Exit
	al al

5. 按下 associate 鍵可以開始聯想·且結果會顯示在中間的聯想結果中。 若選擇了資料集及圖片·卻沒有先按下 train 的話是無法聯想的,這種 情況中間的聯想結果的文字會變成「請先按下開始訓練」提醒使用者。

■ MainWindow			
輸入圖片	聯想結果	對應圖片	
A	Α	Α	
目前選擇資料集: Basic		選擇第 1 。張圖片	
選擇資料集: Basic Bo	onus	開始聯想: associate	
訓練資料雜訊機率: 0.00		迭代次數: 200	
開始訓練: train		關閉程式: Exit	
			.ai

MainWindow		
輸入圖片	請先按下開始訓練	對應圖片
目前選擇資料集: Basic	選担	選第 3 · 張圖片
選擇資料集: Basic	Bonus	台聯想: associate
訓練資料雜訊機率: 0.00	选件	大次數: 1
開始訓練: train	閉月	引程式: Exit

6. 迭代次數就是指更改了幾次,一次會隨機取一個像素(方格),所以若迭代次數很低,圖片就不會完全聯想完成。測試過了幾次,大概 200 次以上才會穩定。

以下是20迭代的結果,可以看到只有部分得像素被更改。

7. Exit 按鍵或是右上角 X 可以關閉程式

二、程式簡介 & 實作架構:使用 Hopfield

- 1. UI.py 為用 Qt designer 設計出來的介面轉成的程式碼
- 2. Mplwidget.py 則是將 matplotlib 嵌入介面所需的程式碼,裡面有 MplInput、MplOutput、MplAnswer、分別對應上方三個圖片的畫布。
- 3. Hopfield.py 則是主程式,包含介面的按鈕與程式碼的綁定、讀寫檔案、訓練網路、畫圖等等
 - A. __init__ 用於初始化及設定 UI
 - B. setup_control 則是將 button 與功能連結在一起,當按下某個 button,或是 spinbox 發現值有更變時,則會做某項函式
 - C. open_basic 和 open_bonus 更改檔案路徑和文字框的顯示·並讀 入檔案、顯示圖片(預設為第一張)。open_basic 在按下 Basic 按 鈕後執行,open_bonus 在按下 Bonus 按鈕後執行。

- D. check_data 是檢查有沒有選取好資料集的函式,避免在未讀入檔時就執行其他動作造成程式錯誤並關閉。
- E. load_train 是讀入訓練資料的函式。(加分項目)會根據雜訊機率的值的不同,決定讀入的值要不要進行翻轉。具體實作是使用np.random.randint 與雜訊機率(x100)來作比較,若小於雜訊機率值,則翻轉。
- F. load test 是讀入測試資料的函式。
- G. train 是網路學習的函式,即初始化w及 theta 的地方。
- H. (加分項目) random_change 是在雜訊機率更變時執行的函式·他 會重新執行 load train 讀入新的訓練資料·並顯示新的圖片
- I. show_input 是顯示現在選擇的圖片及其對應訓練資料的函式,利用 matplotlib 的 imshow 達成。如果圖片不存在則顯示空白
- J. associate 是網路聯想的函式·會先取得迭代次數的值·再來執行。 每次迭代會隨機選擇一個像素·並決定是否要更改其值。迭代完成 後會顯示聯想的結果。如果還沒有按過開始訓練則不會開始聯想。
- K. exit 是按下 Exit 按鈕後關閉程式的函式

三、實驗結果及其分析與討論:Basic

1. 第一張:英文字母 A

迭代次數大概 180 就可以聯想成功,算是簡單的圖案,但因為更改得像素是隨機取的關係所以迭代次數設 180 按下去不一定會成功,要多按幾次,或是將迭代次數調高。

2. 第二張:英文字母 C

同上,算是簡單的圖案。

3. 第三張:英文字母 L

和字母 A 跟 C 不同, L 我設 180 次幾乎無法成功, 這應該是因為測試資料要更改的像素點比較多, 但是每次迭代不一定賄選取到的關係。

四、(加分項目)實驗結果及其分析與討論:Bonus (部份成功)

由於 Bonus 圖片較複雜的關係,所以很多都回想失敗。我想這是因為訓練資料集的圖片太多,且相異不大,所以很容易互相干擾,而且每次選擇更改的像素順序會影響到結果。以下失敗的張數只會擷取圖片,不會放整個程式畫面。

1. 第一張:失敗,迭代300次

2. 第二張:成功,但機率不高,迭代400次

3. 第三張:失敗,迭代 200 次,通常只有右下角那一塊能聯想的比較好

4. 第四張:成功,且穩定回想,迭代 200 次即可聯想成功,400 次幾乎 一定能成功

5. 第五張:失敗,迭代 400 次

6. 第六張:失敗,迭代 200 次。

7. 第七張:失敗,迭代300次

8. 第八張:失敗,迭代300次

9. 第九張:成功,機率極低, 迭代 400 次

10. 第十張:失敗, 迭代 400 次

11. 第十一張:失敗, 迭代 400 次

12. 第十二張:失敗·迭代 400 次

13. 第十三張:成功,迭代 200 次即可成功

14. 第十四張:失敗,迭代400次

15. 第十五張:失敗, 迭代 400 次

五、(加分項目)將訓練資料集加入雜訊之實驗結果

如果雜訊不幸加在三個資料會互相影響的地方,則有機會不會聯想成功,滿 看運氣的。在三個都辨識成功的前提之下,雜訊機率最高大概能設到 0.30, 再高很難辨識成功。

1. 雜訊機率設 0.15 的結果,以下迭代皆為 400 次,為方便觀看只截圖片

2. 雜訊機率設 0.30 的結果, 迭代皆為 400 次

六、實作問題

- 1. 程式執行時,須把 Hopfield_dataset 資料夾全部放在同一層中,且把訓練資料和測試資料放在裡面,不然會無法執行,這點其實滿不方便的,但想不到更好的寫法。
- 2. 原本有想要有逐步執行的功能,但將 matplotlib 的畫面更改 (draw 等等)設在迴圈內幾乎沒有效果,加上 timer 或 sleep 等相關函式也不會緩慢刷新畫面,只會讓程式計算變得很久、很卡,但是畫面只會呈現最終結果,可能要用 Qthread 來解決,不過因為對於 Pyqt 結合 thread 完全不熟悉所以只好放棄。