Contents

1	Precalculus
	1.1 Algebra
	1.2 Trigonometry
2	Calculus
3	Linear Algebra
	3.1 Wektor

1 Precalculus

- 1.1 Algebra
- 1.2 Trigonometry
- 2 Calculus
- 3 Linear Algebra

3.1 Wektor

Wektor to uporządkowana para liczb. Jeśli wektor ma początek to jest to, wektor zaczepiony który jest oznaczany symbolem \overrightarrow{AB} . Jeżeli dane są punkty $A = (x_1, y_1)$ oraz $B = (x_2, y_2)$, to współrzędne wektora \overrightarrow{AB} określa wzór:

$$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1]$$

Jeśli natomiast wektor nie ma początku to jest to wektor swobodny który jest oznaczany symbolem \overrightarrow{v} , \overrightarrow{u} , \overrightarrow{w} .

$$\overrightarrow{u} = \overrightarrow{w} \iff u_x = w_x \land u_y = w_y$$

Na rysunku poniżej został przedstawiony wygląd wektora [3,2] i [-2,4] w układzie współrzędnych:

Długość wektora \overrightarrow{w} oraz \overrightarrow{AB} można zapisać następująco:

$$|\overrightarrow{w}| = \sqrt{w_x^2 + w_y^2}$$
$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 (y_2 - y_1)^2}$$

gdzie:

• $A(x_1, y_1)$ i $B(x_2, y_2)$ to długości wektora \overrightarrow{AB}

Sumą, różnicą, iloczynem $\overrightarrow{u} = [u_x, u_y]$ i $\overrightarrow{w} = [w_x, w_y],$ wyraża się wzorem:

$$\overrightarrow{u} + \overrightarrow{w} = [u_x + w_x, u_y + w_y]$$

Wektory $\overrightarrow{u} = [u_x, u_y]$ i $\overrightarrow{w} = [w_x, w_y]$, są przeciwne wtedy, gdy suma wektorów \overrightarrow{u} i \overrightarrow{w} jest wektorem zerowym, czyli:

$$\overrightarrow{u} = -\overrightarrow{w} \Longleftrightarrow u_x + w_x = 0 \land u_y + w_y = 0$$