Título do trabalho um subtítulo

Nome Completo

Dissertação apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestra em Ciências

Programa: Ciência da Computação

Orientadora: Prof. Dr. Fulana de Tal

Coorientador: Prof. Dr. Ciclano

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da XXXX

São Paulo 10 de agosto de 2017

Título do trabalho um subtítulo

Nome Completo

Esta é a versão original da dissertação elaborada pela candidata Nome Completo, tal como submetida à Comissão Julgadora.

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Esta seção é opcional e fica numa página separada; ela pode ser usada para uma dedicatória ou epígrafe.

Agradecimentos

Do. Or do not. There is no try.

- Mestre Yoda

Texto texto. Texto opcional.

Resumo

Nome Completo. **Título do trabalho**: *um subtítulo*. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavra-chave: Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Nome Completo. **Title of the document**: *a subtitle*. Thesis (Masters). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2017.

Keywords: Keyword1. Keyword2. Keyword3.

Lista de Abreviaturas

CFT	Transformada contínua de Fourier (Continuous Fourier Transform)
DFT	Transformada discreta de Fourier (Discrete Fourier Transform)
EIIP	Potencial de interação elétron-íon (Electron-Ion Interaction Potentials)
STFT	Tranformada de Fourier de tempo reduzido (Short-Time Fourier Transform)
ABNT	Associação Brasileira de Normas Técnicas
URL	Localizador Uniforme de Recursos (Uniform Resource Locator)
IME	Instituto de Matemática e Estatística
USP	Universidade de São Paulo

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

4.1	Exemplo de grafo simples	22
4.2	Exemplo de subfiguras	23
4.3	Exemplo de laço em Java	23

Lista de Tabelas

4.1	Códigos, abreviaturas e nomes dos aminoácidos	23
4.2	Exemplo de tabela similar a uma ficha.	24
A.1	Exemplo de tabela com valores numéricos	28

Sumário

1	Intr	odução	1
	1.1	Considerações de Estilo	1
	1.2	Ferramentas Bibliográficas	2
	1.3	O Que o IME Espera	3
2	Usaı	ndo o I⁄TEX e este modelo	5
	2.1	Instalação do ĽTEX	6
	2.2	Bibliografia	7
	2.3	Perguntas Frequentes sobre o Modelo	7
3	Do z	zero ao mínimo com LATEX	9
	3.1	Visão Geral	10
	3.2	Comandos Básicos	11
	3.3	Referências Cruzadas e <i>Floats</i>	13
	3.4	Múltiplas Execuções e Comandos Auxiliares	13
	3.5	Fórmulas Matemáticas	14
	3.6	Referências Bibliográficas e Bibliografia	14
	3.7	Imagens, Ilustrações, Diagramas e Gráficos	16
	3.8	Formatação Manual	16
	3.9	Detalhes da Linguagem	17
	3.10	Versões do LATEX	18
	3.11	Limitações do LATEX	18
4	Algı	ıns exemplos de comandos LAT _E X	21
	4.1	Bibliografia e Referências	21
	4.2	Modo Matemático	21
	4.3	Floats (Tabelas e Figuras)	22
5	Con	clusões	25

A Sequências	27
Bibliografia	31
Índice Remissivo	33

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação. Há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Umberto Eco (2009) intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para trabalhos de graduação na Itália, não se aplica tanto a nós.

John Carlis disponibilizou um texto curto e interessante (Carlis, 2009) sobre o processo de escrita em que advoga a preparação de um único rascunho da tese antes da versão final. Mais importante que isso, no entanto, são os vários *insights* dele sobre a escrita acadêmica. Dois outros bons livros sobre a organização e escrita de textos acadêmicos são *The Craft of Research* (BOOTH *et al.*, 2008) e *The Dissertation Journey* (ROBERTS, 2010). A USP tem uma compilação de normas relativas à produção de documentos acadêmicos (SIBIUSP, 2009) que pode ser utilizada como referência.

Para a escrita de textos em Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science (Zobel, 2004) é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Raul Sidnei Wazlawick (2009) também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences (Higham, 1998) e o do criador do Tex, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing (Knuth et al., 1996).

1.1 Considerações de Estilo

Normalmente, as citações não devem fazer parte da estrutura sintática da frase¹. No entanto, usando referências em algum estilo autor-data (como o estilo plainnat do Łata), é comum que o nome do autor faça parte da frase. Nesses casos, pode valer a pena mudar o formato da citação para não repetir o nome do autor (no Łata), isso pode ser feito usando os comandos \citet, \citep, \citeyear etc. documentados no pacote natbib). Em geral, portanto, as citações devem seguir estes exemplos:

¹E não se deve abusar das notas de rodapé.

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo (\citet ou \citeyear): Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

O uso desnecessário de termos em língua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Edward Tufte (2001), *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

1.2 Ferramentas Bibliográficas

Embora seja possível pesquisar por material acadêmico na Internet usando sistemas de busca "comuns", existem ferramentas dedicadas, como o Google Scholar (scholar.google. com). Você também pode querer usar o Web of Science (webofscience.com) e o Scopus (scopus.com), que oferecem recursos sofisticados e limitam a busca a periódicos com boa reputação acadêmica. Essas duas plataformas não são gratuitas, mas os alunos da USP têm acesso a elas através da instituição. Ambas são capazes de exportar os dados para o formato .bib, usado pelo Laga. Algumas editoras, como a ACM e a IEEE, também têm sistemas de busca bibliográfica.

Apenas uma parte dos artigos acadêmicos de interesse está disponível livremente na Internet; os demais são restritos a assinantes. A CAPES assina um grande volume de publicações e disponibiliza o acesso a elas para diversas universidades brasileiras, entre elas a USP, através do seu portal de periódicos (periodicos.capes.gov.br). Existe uma extensão para os navegadores Chrome e Firefox (www.infis.ufu.br/capes-periodicos) que facilita o uso cotidiano do portal.

Para manter um banco de dados organizado sobre artigos e outras fontes bibliográficas relevantes para sua pesquisa, é altamente recomendável que você use uma ferramenta como Zotero (zotero.org) ou Mendeley (mendeley.com). Ambas podem exportar seus dados no formato .bib, compatível com LTEX. Também existem três plataformas gratuitas que permitem a busca de referências acadêmicas já no formato .bib:

- CiteULike (patrocinados por Springer): www.citeulike.org
- Coleção de bibliografia em Ciência da Computação: liinwww.ira.uka.de/bibliography
- Google acadêmico (habilitar bibtex nas preferências): scholar.google.com.br

Lamentavelmente, ainda não existe um mecanismo de verificação ou validação das informações nessas plataformas. Portanto, é fortemente sugerido validar todas as informações de tal forma que as entradas bib estejam corretas.

De qualquer modo, tome muito cuidado na padronização das referências bibliográficas: ou considere TODOS os nomes dos autores por extenso, ou TODOS os nomes dos autores abreviados. Evite misturas inapropriadas.

1.3 O Que o IME Espera

Ao terminar sua tese/dissertação, você deve entregar uma cópia dela para a CPG. Após a defesa, você tem 30 dias para revisar o texto e incorporar as sugestões da banca. Assim, há duas versões oficiais do documento: a versão original e a versão corrigida, o que deve ser indicado na folha de rosto.

Fica a critério do aluno definir aspectos como o tamanho de fonte, margens, espaçamento, estilo de referências, cabeçalho, etc. considerando sempre o bom senso. A CPG, em reunião realizada no dia junho/2007, aprovou que as teses/dissertações deverão seguir o formato padrão por ela definido². Esse padrão refere-se aos itens que devem estar presentes nas teses/dissertações (e.g. capa, formato de rosto, sumário, etc.), e não à formatação do documento. Ele define itens obrigatórios e opcionais, conforme segue:

• CAPA (obrigatória)

- O IME usa uma capa padrão de cartolina para todas as teses/dissertações. Essa capa tem uma janela recortada por onde se vê o título e o autor do trabalho e, portanto, a capa impressa do trabalho deve incluir o título e o autor na posição correspondente da página. Ela fica centralizada na página, tem 100mm de largura, 60mm de altura e começa 47mm abaixo do topo da página.
- O título da tese/dissertação deverá começar com letra maiúscula e o resto deverá ser em minúsculas, salvo nomes próprios.
- O nome do aluno(a) deverá ser completo e sem abreviaturas.
- É preciso explicitar se é uma tese ou dissertação (para obtenção do título de doutor, tese; para obtenção do título de mestre, dissertação).
- O nome do programa deve constar da capa (Matemática, Matemática Aplicada, Estatística ou Ciência da Computação).
- Também devem constar o nome completo do orientador e do co-orientador, se houver.
- Se o aluno recebeu bolsa, deve-se indicar a(s) agência(s).
- É preciso informar o mês e ano do depósito ou da entrega da versão corrigida.

²www.ime.usp.br/dcc/pos/normas/tesesedissertacoes

- Folha de Rosto (obrigatória, tanto para a versão depositada quanto para a versão corrigida)
 - o título da tese/dissertação deverá seguir o padrão da capa
 - deve informar se se trata da versão original ou da versão corrigida; no segundo caso, deve também incluir os nomes dos membros da banca.
- AGRADECIMENTOS (opcional)
- Resumo, em português (obrigatório)
- ABSTRACT, em inglês (obrigatório)
- Sumário (obrigatório)
- Listas (opcionais)
 - Lista de Abreviaturas
 - Lista de Símbolos
 - Lista de Figuras
 - Lista de Tabelas
- REFERÊNCIAS BIBLIOGRÁFICAS (obrigatório)
- ÍNDICE REMISSIVO (opcional³)

 $^{^3}$ O índice remissivo pode ser muito útil para a banca; assim, embora seja um item opcional, recomendamos que você o crie.

Capítulo 2

Usando o LATEX e este modelo

Não é necessário que o texto seja redigido usando LETEX, mas é fortemente recomendado o uso dessa ferramenta, pois ela facilita diversas etapas do trabalho e o resultado final é muito bom¹. Este modelo inclui vários comentários explicativos e pacotes interessantes para auxiliá-lo com ele.

O modelo é composto por estes arquivos:

- Arquivo principal:
 - tese-exemplo. tex (leia os comentários neste arquivo!)
- Arquivo com as packages usadas e suas configurações:
 - miolo-preambulo. tex (leia os comentários neste arquivo!)
- Arquivos com formato sugerido de capa, resumo e outros elementos:
 - imeusp. sty (configurações de formatação não é preciso editar)
 - metadados-tese.tex (é preciso inserir os metadados aqui)
 - folhas-de-rosto.tex (resumo, dedicatória etc.)
- Arquivos dos capítulos e apêndice:
 - cap-introducao.tex
 - cap-latex.tex
 - cap-tutorial.tex
 - cap-exemplos.tex
 - cap-conclusoes.tex
 - ape-conjuntos.tex
- Diretório de figuras:

¹O uso de um sistema de controle de versões, como mercurial (mercurial-scm.org) ou git (git-scm.com), também é altamente recomendado.

- ./figuras/
- Outros arquivos auxiliares:
 - bibliografia. bib (arquivo de dados bibliográficos)
 - plainnat-ime.bbx (estilo plainnat para bibliografias com biblatex)
 - plainnat-ime.cbx (estilo plainnat para citações com biblatex)
 - plainnat-ime.bst (estilo plainnat para bibliografias com bibtex)
 - alpha-ime.bst (estilo alpha para bibliografias com bibtex)
 - natbib-ime.sty (tradução da package padrão natbib citações com bibtex)
 - hyperxindy.xdy (arquivo de configuração para hiperlinks no índice remissivo)
 - Makefile (arquivo que automatiza a geração do documento com o comando make)
 - latexmkrc (arquivo que automatiza a geração do documento com o comando latexmk)

Para compilar o documento, basta executar o comando latexmk (ou make). Talvez seu editor ofereça uma opção de menu para compilar o documento, mas ele provavelmente depende do latexmk para isso. La gera diversos arquivos auxiliares durante a compilação que, em algumas raras situações, podem ficar inconsistentes (causando erros de compilação ou erros no PDF gerado, como referências faltando ou numeração de páginas incorreta no sumário). Nesse caso, é só usar o comando latexmk -C (ou make clean), que apaga todos os arquivos auxiliares gerados, e em seguida rodar latexmk (ou make) novamente.

2.1 Instalação do LATEX

L'TEX é, na verdade, um conjunto de programas. Ao invés de procurar e baixar cada um deles, o mais comum é baixar um pacote com todos eles juntos. Há dois pacotes desse tipo disponíveis: MiKTEX (miktex.org) e TEXLive (www.tug.org/texlive). Ambos funcionam em Linux, Windows e MacOS X. Em Linux, TEXLive costuma estar disponível para instalação junto com os demais opcionais do sistema. Em MacOS X, o mais popular é o MacTEX (www.tug.org/mactex/), a versão do TEXLive para MacOS X. Em Windows, o mais comumente usado é o MiKTEX.

Por padrão, eles não instalam tudo que está disponível, mas sim apenas os componentes mais usados, e oferecem um gestor de pacotes que permite adicionar outros. Embora uma instalação completa do La ETEX seja relativamente grande (perto de 5GB), em geral vale a pena instalar a maior parte dos pacotes. Se você preferir uma instalação mais "enxuta", não deixe de incluir todos os pacotes necessários para este modelo. Por exemplo, no debian:

inconsolata - está incluído em "texlive-fonts-extra"

siunitx - está incluído em "texlive-science"

biblatex – está incluído em "texlive-bibtex-extra"

biber – é um pacote separado

xindy – é um pacote separado

Também é muito importante ter o latexmk (ou o make). No Linux, a instalação é similar à de outros programas. No MacOS X e no Windows, latexmk pode ser instalado pelo gestor de pacotes do MiKTEX ou TEXLive. Observe que ele depende da linguagem perl, que precisa ser instalada à parte no Windows (www.perl.org/get.html).

2.2 Bibliografia

Você pode usar referências bibliográficas nos formatos "alpha" ou "plainnat". Se estiver usando natbib+bibtex, use os arquivos .bst "alpha-ime.bst" ou "plainnat-ime.bst", que são versões desses dois formatos traduzidas para o português. Se estiver usando biblatex (recomendado), escolha o estilo "alphabetic" (que é um dos estilos padrão do biblatex) ou "plainnat-ime". O arquivo de exemplo inclui todas essas opções; basta des-comentar as linhas correspondentes e, se necessário, modificar o arquivo Makefile para chamar o bibtex ao invés do biber (este último é usado em conjunto com o biblatex).

2.3 Perguntas Frequentes sobre o Modelo

• Posso usar pacotes LATEX adicionais aos sugeridos, como por exemplo: pstricks, pst-all, etc?

Com certeza! Você pode modificar o arquivo o quanto desejar. O modelo LATEX serve só como uma ajuda inicial para o seu trabalho.

 As figuras podem ser colocadas no meio do texto ou devem ficar no final dos capítulos?

Em geral as figuras devem ser apresentadas assim que forem referenciadas. Colocálas no final dos capítulos dificultaria um pouco a leitura, mas isso depende do estilo do autor, orientador, ou lugar de publicação. Converse com seu orientador!

Existe algo específico para citações de páginas web?

Biblatex define o tipo "online"; bibtex, por padrão, não tem um tipo específico. Se o que você está citando não é um texto específico mas sim um sítio, como por exemplo o sítio de uma empresa ou de um produto, pode ser mais adequado colocar a referência como nota de rodapé e não na lista de referências; nesses casos, algumas pessoas acrescentam uma segunda lista de referências especificamente para recursos *online* (biblatex permite criar múltiplas bibliografias). Se, no entanto, trata-se de um texto específico, como uma postagem em um blog, uma matéria jornalística ou mesmo uma mensagem de email para uma lista de discussão, a citação deve seguir o formato de outros tipos de documento e informar título, autor etc. Normalmente usa-se o campo "howpublished" para especificar que se trata de um recurso *online*. Observe também que artigos que fazem parte de uma publicação, como os anais

de um congresso, e que estão disponíveis *online* devem ser citados por seu tipo verdadeiro e apenas incluir o campo "url" (não é nem necessário usar o comando \url{\}}), aceito por todos os tipos de documento do bibtex/biblatex.

• A bibliografia está sendo impressa em inglês (usa "and" ao invés de "e" para separar os nomes dos autores)

Você deve estar usando um estilo de bibliografia bibtex diferente dos sugeridos. Uma simples solução é copiar o arquivo de estilo correspondente da sua instalação LATEX para o diretório onde seus arquivos estão e mudar "and" por "e" (ou "&" se preferir) na função format.names. Biblatex tem pleno suporte a diferentes línguas e é possível personalizar as traduções (há um exemplo no modelo).

- Aparece uma folha em branco entre os capítulos
 - Essa característica foi colocada propositalmente, dado que todo capítulo deve (ou deveria) começar em uma página de numeração ímpar (lado direito do documento). Acrescente "openany" como opção da classe, i.e., \documentclass[openany,11pt,twoside,a4paper]{book}.
- É possível resumir o nome das seções/capítulos que aparece no topo das páginas?

Sim, usando a sintaxe \section[mini-titulo]{titulo enorme}. Isso é especialmente útil nos *captions* das figuras e tabelas, que muitas vezes são demasiadamente longos para a lista de figuras/tabelas.

- Existe algum programa para gerenciar referências em formato bibtex? Sim, há vários. Uma opção bem comum é o JabRef; outra é usar Zotero ou Mendeley e exportar os dados deles no formato .bib.
- Como faço para usar o Makefile (comando make) no Windows? Se você instalou o La usando o Cygwin, você já deve ter o comando make instalado; se não, tente o MSYS2. Se você pretende usar algum dos editores sugeridos, é possível deixar a compilação a cargo deles, dispensando o uso do make.

Capítulo 3

Do zero ao mínimo com LATEX

Preparar um texto para impressão envolve duas coisas:

Escrever: digitar, recortar/colar trechos, revisar etc.

Formatar: definir o tamanho da fonte, o espaçamento entre parágrafos etc.

Hoje é comum fazer essas duas coisas ao mesmo tempo, graças à visualização imediata que o computador oferece. No entanto, imagine como era o processo de produção de um livro nos anos 1970: o autor escrevia seu texto em uma máquina de escrever e enviava esse material para o editor, que era responsável pela tarefa de formatá-lo para impressão. O autor muitas vezes inseria anotações para o editor explicando coisas como "este parágrafo é uma citação", e o editor criava algum mecanismo visual para representar isso.

Não é de se surpreender que, com o surgimento do microcomputador, os primeiros programas para criação de textos seguissem um funcionamento similar: o autor digitava e editava seu texto sem formatá-lo visualmente, apenas inserindo alguns comandos correspondentes a aspectos da formatação que ele depois revisava na versão impressa. LETEX é uma ferramenta baseada nesse processo: você prepara seu texto no editor de sua preferência, insere comandos no texto que indicam a estrutura do documento e o processa com o LETEX, que gera um arquivo PDF formatado. Embora seja um estilo "antigo" de trabalhar, ele é muito eficiente em vários casos. Ou seja, dependendo da situação, pode ser mais adequado trabalhar fazendo tudo ao mesmo tempo ou dividindo o trabalho nessas duas fases. De maneira geral:

- Se você precisa criar páginas diferentes entre si com layout definido manualmente, é melhor usar uma ferramenta que permita trabalhar visualmente, como LibreOffice Writer, MS-Word, Google Docs etc.;
- Se você precisa fazer um documento relativamente longo com estrutura regular (capítulos, seções etc.), é melhor usar ferramentas que formalizam essa estrutura (como La precisa de usar ferramentas visuais;
- Se você precisa fazer um documento envolvendo referências cruzadas, bibliografia relativamente extensa ou fórmulas matemáticas, é difícil encontrar outra ferramenta tão eficiente quanto LTEX;

- Se você precisa criar um documento simples, ambas as abordagens funcionam bem; cada um escolhe esta ou aquela em função da familiaridade com as ferramentas;
- Se você quer que a qualidade tipográfica do resultado seja realmente excelente, é necessário usar uma ferramenta profissional, como LATEX, Scribus, Adobe InDesign ou outras; processadores de texto convencionais não oferecem o mesmo nível de qualidade dessas ferramentas.

3.1 Visão Geral

Se você preferir, existem editores projetados especificamente para trabalhar com LETEX; eles em geral utilizam cores para distinguir o texto dos comandos de formatação, automatizam o processo de compilação do documento e oferecem outras comodidades. Os mais comumente usados são TeXmaker, TeXstudio e TeXworks; os três são software livre e funcionam em Windows, MacOS e Linux. TeXnicCenter é outra opção livre, mas funciona apenas em Windows. O editor atom (atom.io) tem uma interface às vezes peculiar para não programadores, mas em conjunto com as suas *packages* atomlatex, latex-document-outline, grammar-token-limit e preview-inline, ele é uma boa opção (observe que essas são *packages* do atom, não do LETEX). O mesmo vale para o editor emacs (www.gnu.org/software/emacs) e sua package AUCTEX. Ainda outra possibilidade são os editores *online*, como overleaf (www.overleaf.com) e sharelatex (www.sharelatex.com).

L'TEX ignora quebras de linha e trata sequências de vários espaços como se fossem apenas um. Isso significa que você pode usar quebras de linha e espaços no texto que está digitando como "dicas visuais" da estrutura do texto durante a edição. É muito comum fazer isso com listas de itens, por exemplo. Uma ou mais linhas em branco sinalizam o fim de um parágrafo e o início de outro. O caractere "%" indica que o restante da linha é um comentário, ou seja, um trecho de texto que não tem nenhum efeito sobre o resultado final do documento. Comentários podem ser usados como lembrete sobre alguma decisão, para indicar um parágrafo que ainda precisa de revisão etc. Por conta desse significado especial, para inserir um caractere % "normal" no texto é preciso digitar "\%".

Um documento LATEX é dividido em duas partes: o *preâmbulo*, onde você coloca comandos de configuração para o documento, e o *corpo* do documento em si, que contém o texto propriamente dito. O preâmbulo é onde você define as características do resultado tipográfico esperado: tipo e tamanho da fonte a usar, posição dos títulos e subtítulos na página etc. Como definir todas as configurações de impressão desejadas é bastante

complexo, La fornece algumas pré-definições padrão ("classes") em função do tipo de documento, que você escolhe com o comando \documentclass{nome-da-classe} no preâmbulo. As principais classes são book, report e article; você pode saber mais sobre elas (e outras) em qualquer texto introdutório sobre La na Internet. book e report são as mais adequadas para a escrita de teses ou dissertações acadêmicas.

LATEX também tem *packages* ("*plugins*") que acrescentam funcionalidades ou modificam as classes padrão e também são carregadas no preâmbulo, com o comando \usepackage{nome-da-package}. Várias delas podem receber opções adicionais no formato \usepackage[opção1,opção2...]{nome-da-package}; a documentação de cada package detalha as opções disponíveis.

Qualquer documento LATEX utiliza várias packages, portanto é preciso conhecê-las. Isso às vezes é trabalhoso porque algumas delas podem se tornar obsoletas e, com isso, sítios web com "dicas" podem estar desatualizados. O sítio www.ctan.org é um índice com praticamente todas as packages disponíveis, incluindo sua documentação. Além dessas, é comum que revistas científicas ofereçam packages que pré-definem a formatação esperada para os artigos. Finalmente, o sítio tex.stackexchange.com é um fórum de perguntas e respostas sobre LATEX que é muito útil.

Usar algum documento existente como base para criar seu texto em geral é uma boa ideia; o IME/USP oferece um modelo adequado para teses e dissertações (github.com/LSS-USP/modelo-latex) que pode ser adaptado para outros usos e outras instituições. Há também um modelo (www.abntex.net.br) que procura seguir as normas da ABNT para documentos científicos.

3.2 Comandos Básicos

Como mencionado anteriormente, LETEX divide o trabalho de produção de um texto entre a preparação do conteúdo e a definição da forma de apresentação. Assim, os comandos usados durante a produção do conteúdo procuram expressar o significado de cada elemento, e não sua aparência. Por exemplo, para realçar uma palavra é comum usar texto em itálico; embora exista um comando especificamente para gerar textos em itálico em LETEX, o recomendado é que se utilize o comando \emph ("enfatizado"), pois em alguns casos pode ser melhor utilizar negrito, SMALL CAPS ou outro mecanismo para dar ênfase a uma palavra. Essa é uma orientação geral para a escrita de textos com LETEX: procure definir a estrutura, não a aparência.

Um exemplo de documento La simples:

% O documento começa com o preâmbulo
% Vamos usar a classe "book" com fonte no tamanho 11pt
\documentclass[11pt]{book}
% Vamos usar caracteres acentuados
\usepackage[utf8]{inputenc}
% Vamos escrever em português do Brasil
\usepackage[brazil]{babel}

```
% Estas linhas não imprimem nada, apenas definem
% os valores que serão usados por "\maketitle"
\author{Fulano de Tal}
\title{Começando a usar o \LaTeX{}}
% Finaliza o preâmbulo e inicia o conteúdo:
\begin{document}
% Cria uma página de título com os dados definidos acima \maketitle
% Capítulos, seções etc. são numerados automaticamente
\chapter{Cheguei!}
Oi, Galera!
% É preciso sinalizar o final do documento
\end{document}
```

Esse exemplo mostra como definir o nome de um capítulo. Existem também os comandos \section, \subsection, \subsubsection e \paragraph (a classe book inclui também \part, um nível acima de \chapter). Usar o nome do comando seguido de um asterisco (\chapter* etc.) faz o capítulo/seção não ser numerado nem incluído no sumário (nem considerado na contagem de capítulos, seções etc.).

Para criar listas de itens, você pode fazer¹:

```
\begin{itemize}
    \item Primeiro item
    \item Segundo item
    \item Terceiro item
\end{itemize}
```

Além de "itemize", há também "enumerate" (auto-explicativo) e "description":

```
\begin{description}
   \item[O primeiro item] é o primeiro;
   \item[O segundo item] é o segundo;
   \item[O terceiro item] é o terceiro.
\end{description}
```

Citações curtas normalmente são incluídas no fluxo normal do texto e colocadas entre aspas; para citações mais longas, use \begin{quote} ou \begin{quotation} (este último é mais adequado para citações com vários parágrafos). Para poesia, use verse (estrofes são separadas por uma linha em branco e versos são separados por *. O asterisco é opcional; ele instrui LEX a manter as linhas na mesma página). A package csquotes acrescenta recursos sofisticados para citações.

Para inserir uma nota de rodapé, use o comando \footnote{texto da nota}. Um espaço não-separável é indicado pelo caractere til ("~") e é possível forçar uma quebra de linha com "\\". Aspas tipográficas ("" e '') são inseridas com ``'' e `'. Você pode consultar a lista completa de símbolos em www.ctan.org/tex-archive/info/symbols/comprehensive/

¹Observe o uso de espaços no início das linhas com \item para deixar a estrutura visualmente mais clara durante a edição.

symbols-a4.pdf. Uma outra maneira de encontrar símbolos é usar este sítio: detexify. kirelabs.org/classify.html.

3.3 Referências Cruzadas e Floats

É comum que um trecho do texto faça referência a outro trecho ("como discutimos no capítulo X..."). Isso pode ser feito diretamente, mas se você reorganizar o documento ou acrescentar seções, a numeração pode mudar. Para evitar esse problema, você pode gerar essas referências automaticamente com o par de comandos \label{nome-sugestivo} e \ref{nome-sugestivo} (para o número da seção/capítulo) ou \pageref{nome-sugestivo} (para o número da página).

Esse mecanismo também é muito útil para figuras e tabelas. É claro que o ideal seria que tabelas e figuras sempre aparecessem junto ao texto a que se referem. No entanto, isso é impossível por conta da divisão do texto em páginas. Em LTEX, figuras e tabelas são incluídas como floats (localização flexível) usando \begin{figure} e \begin{tabel} e \o programa procura o "melhor" lugar para colocá-las. Dentro do float é inserido um \label para que se possa fazer referência à figura/tabela no texto (com o comando \ref). A figura/tabela em si é definida com \includegraphics ou \begin{tabular}, e em geral é uma boa ideia acrescentar uma descrição com \caption.

L'IEX garante que a sequência das figuras e a sequência das tabelas sejam respeitadas (a Figura 6 nunca aparece depois da Figura 7). No entanto, isso *não* se aplica a *floats* de tipos diferentes, ou seja, se você definiu a Figura 5, a Tabela 3 e a Figura 6, elas podem aparecer no documento na ordem "Figura 5, Tabela 3, Figura 6", "Figura 5, Figura 6, Tabela 3" ou "Tabela 3, Figura 5, Figura 6".

3.4 Múltiplas Execuções e Comandos Auxiliares

L'IEX numera capítulos, seções, figuras etc. automaticamente e pode fazer referências a seções ou figuras que aparecem tanto antes quanto depois da própria referência. Para isso funcionar, o trabalho de geração do arquivo final é dividido em duas partes: primeiro, a diagramação das páginas e numeração dos capítulos, seções, figuras etc.; segundo, a inserção o texto das referências ("página X", "Seção Y" etc.).

A princípio, isso poderia ser feito automaticamente, sem intervenção do usuário; La Naciona assim. Ao invés disso, é preciso executar o comando pdflatex duas vezes seguidas: na primeira ele gera um PDF "defeituoso" (sem as referências corretas) e um arquivo auxiliar com as informações sobre a localização de cada referência e, na segunda, cria o PDF "correto".

Essas múltiplas execuções são necessárias também para a geração automática da bibliografia e do índice remissivo e, na prática, costuma ser necessário rodar o comando no mínimo três vezes. Como a geração da bibliografia e do índice remissivo dependem também de programas auxiliares, a produção do documento final acaba envolvendo vários

passos e, por isso, é comum utilizar alguma ferramenta para automatizar esse processo. As mais usadas são o make, que executa os passos (às vezes bastante complexos) definidos em um arquivo chamado Makefile, e o latexmk, que foi desenvolvido especificamente para uso com LTEX e, portanto, funciona com um arquivo de configuração simples (que é, inclusive, opcional).

3.5 Fórmulas Matemáticas

A diagramação de fórmulas matemáticas tem regras específicas; assim, para criar fórmulas em LATEX, é preciso usar um comando para iniciar o modo matemático. Isso pode ser feito de duas formas:

- Pequenas fórmulas no meio do texto ($E = mc^2$) são inseridas com \$fórmula\$ (e, portanto, para inserir um caractere \$ normal no texto, é preciso usar \\$).
- Fórmulas mais longas ou que devem aparecer em um parágrafo separado são inseridas com \[fórmula\] (ou \begin{displaymath}).

No modo matemático, letras são interpretadas como variáveis e espaços em branco são ignorados (LATEX usa o contexto da fórmula para definir o espaçamento). Para inserir um espaço explicitamente, use \quad ou \enspace. Para inserir texto "normal" em uma fórmula matemática, use \text{texto} (para texto de fato) ou \mathit{texto} (para nomes de variáveis ou funções com mais de uma letra). Pode ser necessário deixar um espaço no início do texto para evitar que ele fique colado com o caractere matemático que o antecede.

Usando \begin{equation}, a fórmula recebe um número (que aparece à direita) ao qual você pode se referir no texto usando os comandos "\ref" e "\eqref" ("conforme vimos na equação \ref{eq:bhaskara}...") ou "de acordo com \eqref{eq:bhaskara}..."). \begin{equation*} (incluindo o *) elimina o número e é, portanto, equivalente a \begin{displaymath}. Há outros comandos similares, como align, multline e gather, definidos e documentados na package amsmath, e todos têm a variante com "*".

3.6 Referências Bibliográficas e Bibliografia

A geração de bibliografias no la fiza é feita através da package biblatex e do programa auxiliar biber² e envolve três passos:

1. A criação de um banco de dados, no formato ".bib", das obras de interesse. Esse banco de dados pode incluir obras que não vão ser de fato referenciadas no documento final. Isso significa que você pode criar um único banco de dados e utilizá-lo em todos seus documentos³.

²Antigamente, usava-se a package natbib e o comando auxiliar bibtex. O funcionamento geral dos dois mecanismos é similar e o formato do banco de dados de ambos é o mesmo.

³É comum criar bancos de dados desse tipo separados por assunto, mas isso não é necessário.

- 2. A inserção de referências às obras ao longo do texto, usando diferentes comandos dependendo do caso: \cite, \citet, \citep etc. Esses comandos estão descritos tanto na documentação da package biblatex quanto na da package natbib. Normalmente, apenas as obras efetivamente citadas são incluídas na bibliografia, mas é possível forçar a inclusão de uma obra não-citada com o comando \nocite.
- A escolha do estilo bibliográfico (usando as opções da package biblatex) que formata as citações ao longo do texto e gera a bibliografia automaticamente através do comando \printbibliography.

O banco de dados é um arquivo de texto contendo uma *entrada* para cada item da bibliografia e, em cada entrada, uma série de *campos* com os dados (título, autor etc.). A entrada inclui também uma *chave*, que é usada para inserir as citações no texto. Há vários tipos de entrada (para artigos, livros, sítios web etc.) e, para cada tipo, uma lista de campos possíveis (considere que periódicos normalmente incluem o número do volume, mas teses não). O exemplo abaixo é um livro cuja chave é "dissertjourney"; ele pode ser citado com o comando \cite{dissertjourney}:

```
@book{dissertjourney,
    author = {Carol M. Roberts},
    title = {The Dissertation Journey},
    publisher = {Corwin},
    year = 2010,
    edition = 2,
    location = {Thousand Oaks, CA},
}
```

Observe que existem dois formatos comumente usados para escrever títulos de artigos, livros etc:

Title case: Substantivos, adjetivos e verbos (além de nomes próprios e siglas) são escritos com a primeira letra maiúscula ("Um Exemplo de Título no Estilo Title Case"). Em geral, a regra não se aplica ao título de artigos ou capítulos de livro, apenas aos livros dos quais eles fazem parte;

Sentence case: O título é escrito como qualquer outra frase ("Um título só tem maiúsculas em abreviaturas, como ABNT, ou nomes próprios").

Cada estilo de bibliografia utiliza um desses formatos e, portanto, é desejável que o banco de dados funcione corretamente com ambos. No entanto, nem sempre é claro quais palavras devem ser iniciadas com letra maiúscula ao usar *title case* e, por conta disso, não há um sistema automático em LATEX para adaptar títulos a ele. Sendo assim, como fazer um banco de dados bibliográfico capaz de funcionar com os dois formatos?

A solução é sempre inserir os títulos dos itens no banco de dados seguindo o formato *title case*. Se o estilo utiliza esse formato, o título é reproduzido na bibliografia como digitado no banco de dados. Se o estilo usa *sentence case*, o texto (exceto a primeira letra) é convertido para letras minúsculas. Para evitar que isso afete siglas e nomes próprios, basta colocá-los entre chaves ("Automated Application-Level Checkpointing of {MPI} Programs").

Finalmente, os campos author e publisher podem incluir uma lista de nomes separados por and; biblatex reconhece que cada nome é composto por nome e sobrenome, às vezes com partículas como "de", "dos" ou "von" e, dependendo do estilo bibliográfico, pode abreviar nomes, mudar sobrenomes para caixa alta etc. Isso evidentemente não funciona quando o autor é, na verdade, uma instituição; nesses casos, basta colocar o nome inteiro da instituição entre chaves ("{Universidade de São Paulo — Sistema Integrado de Bibliotecas}") para que biblatex não faça alterações desse tipo. Se o nome é longo, pode ser interessante definir o campo shortauthor.

A fonte mais detalhada de informações sobre o banco de dados é a documentação da package biblatex, mas o material ali é um tanto denso. Há muito material introdutório ao formato ".bib" e ao bibtex disponível *online*, e você pode se inspirar em exemplos para criar seu banco de dados bibliográfico. Além disso, ferramentas como Zotero ou Mendeley (o uso de uma delas é altamente recomendado!) podem exportar para o formato .bib.

3.7 Imagens, Ilustrações, Diagramas e Gráficos

Podemos classificar imagens em quatro categorias:

- 1. Imagens fotográficas ou escaneadas. Mesmo sendo possível criar imagens desse tipo manualmente em programas de edição de imagens como Gimp, Krita ou Adobe PhotoShop, elas sempre consistem em um conjunto de *pixels* coloridos.
- 2. Ilustrações, que consistem em curvas e figuras geométricas que formam uma imagem completa, como um objeto ou uma paisagem. Elas são desenhadas de forma totalmente manual em programas como Inkscape ou CorelDraw!.
- 3. Diagramas, que são ilustrações estruturadas, como fluxogramas, grafos ou diagramas UML, criadas com ferramentas como Draw.io, LibreOffice Draw ou Microsoft Visio.
- 4. Gráficos de dados, como gráficos de pizza ou de barras. A geração desses gráficos, em geral, é quase totalmente automatizada por ferramentas como Gnuplot, R, LibreOffice Calc ou Microsoft Excel.

Em LATEX, é possível importar imagens fotográficas nos formatos PNG e JPG e imagens dos demais tipos no formato PDF. Além disso, LATEX tem recursos para criar ilustrações, diagramas e gráficos diretamente, mas usá-los em geral não é trivial. Ainda assim, para traçar linhas ou curvas simples, o comando picture e a package pict2e podem ser úteis, e Gnuplot é capaz de exportar gráficos na forma de comandos picture. A package tikz oferece bons recursos para a criação de ilustrações e diagramas, e o programa Asymptote tem excelente integração com LATEX.

3.8 Formatação Manual

Às vezes é preciso inserir formatação de forma manual; os comandos mais importantes são \emph (texto enfatizado, em geral itálico), \texttt (texto teletype, imitando um terminal de texto ou uma impressora), \textit (itálico), \textbf (negrito), \textsf (fonte sem serifa), \textsc (texto SMALL CAPS — nem todas as fontes oferecem essa possibilidade), \normalsize (tamanho normal), \small (tamanho reduzido), \footnotesize (ainda menor),

\scriptsize (ainda menor), \tiny (ainda menor), \large (tamanho aumentado), \Large (ainda maior), \LARGE (ainda maior), \text{Vspace{\baselineskip} (deixa uma linha em branco), \begin{center} (centraliza parágrafos), \begin{flushleft} (alinha parágrafos à direita)⁴, \leftskip=1cm (aumenta a margem esquerda) e \rightskip=1cm (aumenta a margem direita).

Mas, como discutido na Seção 3.2, não é recomendável usar esses comandos ao longo do texto: o ideal em La ÉTEX é expressar o significado de cada elemento, não a sua forma de apresentação, pois isso permite que você faça alterações na formatação com mais facilidade. Assim, quando os recursos pré-definidos do La (\itemize, \chapter etc.) não forem suficientes, o mais adequado é definir comandos novos, em geral usando os comandos de formatação mencionados acima. Esse é um tópico avançado, mas você pode consultar o início do arquivo La Capítulo para alguns exemplos.

3.9 Detalhes da Linguagem

Há quatro estilos típicos de comandos LATEX:

- Comandos que se referem a um parâmetro; por exemplo, \emph{um texto} significa "escreva a frase 'um texto' com ênfase" (em geral, itálico). As chaves delimitam o início e o final do escopo sobre o qual o comando tem efeito. Aqui entram também comandos como \title e \author, que não escrevem nada diretamente mas definem o título e autoria do documento (essa informação é usada, por exemplo, por \maketitle).
- Comandos que se referem a um parâmetro que é um bloco grande de texto, possivelmente vários parágrafos; por exemplo, \begin{center} um texto \end{center} faz "um texto" (que podem ser vários parágrafos) ser centralizado.
- Comandos que ativam alguma opção; por exemplo, \itshape significa "ative o modo itálico". Nesse caso, o texto vai ser impresso em itálico até outro comando selecionar outro estilo de fonte. Se o comando for inserido dentro de um bloco delimitado por chaves, ele "perde o efeito" após o caractere de fecha-chaves (exemplo: "{\itshape{}} Fulano de Tal} é meu nome" será impresso como "Fulano de Tal é meu nome"). Você normalmente não vai utilizar esse estilo de comando, mas ele é útil em alguns casos.
- Comandos que fazem o programa escrever algo específico; por exemplo, em várias classes padrão o comando \maketitle gera uma página de título com o nome do trabalho, autor etc.

Nos dois últimos, não é preciso usar chaves após o comando. Ainda assim, as chaves podem ser colocadas e muitas vezes isso é bom: sem elas, LATEX entende que o caractere espaço que se segue a esses comandos serve apenas como separador em relação ao que vem a seguir. Por conta disso, ele ignora esse espaço. Quando isso não é o que se deseja, a solução é usar as chaves: \itshape{}.

⁴É altamente recomendável carregar a package ragged2e e utilizar Center, FlushLeft e FlushRight ao invés de center, flushleft e flushright.

Alguns comandos aceitam mais de um parâmetro, às vezes entre chaves, às vezes entre colchetes. Você pode descobrir a sintaxe correta para cada caso lendo a documentação de cada comando.

3.10 Versões do La TEX

Assim como há packages para o LATEX, o próprio LATEX é, na verdade, um conjunto de extensões para o programa TEX. Assim, se você encontrar referências a "TEX" ou a "plain TEX", basta saber que esse é o sistema que funciona "por baixo" do LATEX.

LATEX é um sistema em evolução (desde os anos 80!). Uma das consequências disso é que há, na verdade, quatro versões diferentes dele:

- 1. La "tradicional", que gera arquivos em formato DVI que, por sua vez, precisam ser convertidos para o formato PDF. Essa versão não é capaz de usar as fontes instaladas no sistema; ela só pode usar fontes adaptadas para uso com o La Hoje em dia não há boas razões para usar essa versão.
- 3. XHTEX que, além dos recursos do pdflateX, opera internamente em UTF-8 (ou seja, funciona melhor com múltiplas línguas) e pode funcionar não só com as fontes adaptadas para o La como também com as fontes instaladas no sistema. A desvantagem desta versão é que ela é um pouco mais lenta que pdflateX.
- 4. Lual-TEX, que oferece os mesmos recursos que o XEL-TEX e também pode ser estendido internamente com mais facilidade (através da linguagem de programação Lua). Como XEL-TEX, esta versão é um pouco mais lenta que pdfl-TEX.

Todas essas versões são instaladas quando você instala o LATEX no seu sistema, então trocar de uma para outra é muito fácil (basta escolher o comando a executar: pdflatex, xelatex ou lualatex). XALTEX e LuaLTEX são as duas propostas da comunidade para o futuro novo padrão do sistema, mas você não tem nada a perder se escolher a "errada", pois para todos os efeitos práticos elas são equivalentes.

Se você pretende escrever apenas com línguas no alfabeto latino e não pretende usar fontes diferentes das disponíveis por padrão no LETEX, então qualquer uma das três versões modernas (pdfLETEX, XELETEX e LuaLETEX) é adequada. Se você pretende usar línguas com outros alfabetos ou se gostaria de escolher fontes diferentes, use XELEX ou LuaLETEX.

3.11 Limitações do La TEX

Como qualquer ferramenta, L'IEX tem limitações e características indesejáveis:

- A linguagem é muito prolixa: é bastante tedioso escrever coisas como "\begin{itemize}" etc. Linguagens como asciidoc/asciidoctor (asciidoctor.org) funcionam de maneira similar a LTEX, mas sua sintaxe é bem mais enxuta. No entanto, asciidoc não tem alguns recursos avançados oferecidos por LTEX, em particular para a gestão de bibliografias.
- LATEX procura ser uma linguagem *declarativa*, ou seja, os comandos buscam expressar o que se deseja e não como fazer algo ("este texto é um título" e não "pule duas linhas, selecione uma fonte maior, escreva este texto, pule mais duas linhas e selecione a fonte de tamanho padrão"). No entanto, ela é insuficiente em algumas situações, obrigando o usuário a utilizar vários comandos, às vezes obscuros, para obter resultados relativamente simples.
- Há diversas packages para personalizar os aspectos básicos da formatação final do documento, como o tipo de fonte, tamanho dos títulos das seções, espaçamento etc. No entanto, quando se quer fazer modificações maiores, é preciso lidar com partes complexas da linguagem e diversos comportamentos surpreendentes.
- Às vezes há incompatibilidades entre packages; em alguns casos, isso pode ser contornado mudando a ordem em que elas são carregadas, mas em outros pode simplesmente não ser possível combiná-las.
- O algoritmo que LATEX usa para quebrar páginas é excelente, minimizando linhas órfãs ou viúvas e garantindo uma distribuição homogênea do texto na página. No entanto, ele não utiliza um recurso comumente usado por editores profissionais, que é mudar o tamanho de algumas páginas para melhorar a distribuição geral do texto. Esse é um último recurso, mas que muitas vezes pode ser bastante positivo. Ainda assim, se houver quebras de página ruins no seu texto final, você pode usar essa estratégia manualmente. Ao invés de comandos como \pagebreak ou \newpage, o mais adequado é usar \enlargethispage{\baselineskip}. Esse comando instrui LATEX a fazer a página ligeiramente maior, tornando possível acomodar mais uma linha ("-1\baselineskip" faz a página ficar com uma linha a menos). Em documentos frente e verso, lembre-se de sempre garantir que a página adjacente também tenha seu tamanho modificado para que a alteração não seja tão perceptível.

- Como muitos outros sistemas de texto, La pode usar mais de um padrão para a codificação de caracteres acentuados. Alguns anos atrás, o mais comum era o ISO-8859-1, também conhecido como latin1 (esse é o nome usado no La para de um comum era o UTF-8. No entanto, usuários que escrevem apenas em língua inglesa às vezes não configuram seus sistemas para usar qualquer tipo de caracter acentuado. De maneira geral, é simples reconhecer e resolver os problemas causados por inconsistências na codificação, mas arquivos ".bib" são um caso especial: é bastante comum que um arquivo desse tipo seja compartilhado por várias pessoas. Para evitar problemas com os acentos nesse caso, uma possibilidade é representar os caracteres acentuados usando comandos La para á, \c{c} para cedilha etc., independentemente da codificação usada no texto⁵.
- As classes padrão (book, article etc.) não foram criadas para serem facilmente modificadas, o que deu origem a inúmeras packages voltadas para possibilitar a personalização de diversos aspectos da apresentação final do documento. Esse mecanismo não é ideal, por diversas razões. Por conta disso, existe um conjunto de versões alternativas dessas classes (scrbook no lugar de book, scrartcl no lugar de article etc.) chamado KOMA-Script, com mais recursos e mais possibilidades de customização. A classe memoir tem o mesmo objetivo, mas procura dar suporte a livros e artigos com uma única classe. Ambas abordagens são muito boas, mas a maioria dos modelos usados por revistas e outras publicações são baseados nas classes padrão.

⁵Você pode consultar os comandos desse tipo mais comuns em en.wikibooks.org/wiki/LaTeX/Special_Characters. Observe que a dica sobre os pingos do i e do j *não* é mais válida atualmente, basta usar \'{i} para obter o acento correto.

Capítulo 4

Alguns exemplos de comandos LATEX

4.1 Bibliografia e Referências

A documentação do pacote biblatex é bastante extensa e explica os diversos tipos de documento suportados, bem como o significado de cada campo. Na prática, às vezes é preciso fazer escolhas sobre o que incluir na descrição de um item bibliográfico e muitas vezes é mais fácil aprender copiando exemplos já existentes, como estes (consulte o arquivo bibliografia.bib para ver como foi criado o banco de dados e a bibliografia na página 31 para ver o resultado impresso):

- @Book: Johnson e Wichern, 1983.
- @Article: MENA-CHALCO et al., 2008.
- @InProceedings: ALVES et al., 2003.
- @Conference (sinônimo de @InProceedings): BRONEVETSKY et al., 2003.
- @InCollection: Babaoglu e Marzullo, 1993.
- @PhdThesis: GARCIA, 2001.

- @MastersThesis: SCHMIDT, 2003.
- @Techreport: ALVISI et al., 1999.
- @Manual: OMG, 2002.
- @Misc: Allcock, 2003.
- @Online (para referência a artigo online): Fowler, 2004.
- @Online (para referência a página web): FSF, 2007.

4.2 Modo Matemático

O modo matemático do LATEX tem sintaxe própria, mas ela não é complicada e há bastante documentação *online* a respeito. Por exemplo, "massa e energia são grandezas relacionadas pela Equação $E = mc^2$, definida inicialmente por Einstein", ou ainda "equações de segundo grau (Equação 4.1) são estudadas no ensino médio. As raízes de uma equação de segundo grau podem ser encontradas por (4.2) — a fórmula de Bháskara. O valor do discriminante Δ (Equação 4.3) determina se a equação tem zero, uma ou duas raízes reais". Observe que, quando um parágrafo termina com um símbolo, pode ser boa ideia usar

um espaço não-separável (com "~") para evitar que ele fique sozinho na última linha (por exemplo, "O discriminante é denotado por~\$\Delta\$").

$$ax^2 + bx + c = y \quad \forall x \in \mathbb{R} \tag{4.1}$$

$$y = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{\Delta}}{2a} \Leftrightarrow x \text{ \'e raiz da equação}$$
 (4.2)

$$\Delta (delta) = b^2 - 4ac \tag{4.3}$$

4.3 Floats (Tabelas e Figuras)

Muitos trabalhos acadêmicos incluem figuras; um exemplo é a Figura 4.1. Também é possível girar figuras e criar subfiguras (com sublegendas), como no exemplo da Figura 4.2, que inclui as subfiguras 4.2a e 4.2b. Finalmente, uma "figura", na verdade, pode ser um trecho de código-fonte, como se vê na Figura 4.3.

Figura 4.1: Exemplo de grafo simples.

Talvez você precise organizar a apresentação da informação na forma de tabelas. Há diversos estilos de tabela; um exemplo simples é a Tabela 4.1. A Tabela 4.2 mostra como construir uma tabela em forma de ficha larga que deve ser impressa em modo paisagem (ela é um *float*, mas sempre é impressa em uma página separada). Outro exemplo de tabela em modo paisagem, esta distribuída em duas páginas (sem ser um *float*), está no Apêndice

Figura 4.2: Exemplo de subfiguras.

Figura 4.3: Exemplo de laço em Java.

 A^1 .

Có.	Abreviatur,	None Control
Α	Ala	Alanina
С	Cys	Cisteína
•••	•••	
W	Trp	Tiptofano
Y	Trp Tyr	Tirosina

Tabela 4.1: Códigos, abreviaturas e nomes dos aminoácidos.

¹ Observe que o nome do Apêndice ("A") foi impresso em uma linha separada, o que não é muito bom visualmente. Para evitar que isso aconteça (não só no final do parágrafo, mas em qualquer quebra de linha), faça o que já foi discutido na Seção 4.2 sobre símbolos matemáticos: utilize um espaço não-separável para fazer referências a figuras, tabelas, seções etc.: "... está no Apêndice∼\ref{ape:sequencias}".

Experimento número:	, ,			D	Data:		jan 2017
Título:			Me	Medições iniciais	iis		
Tipo de experimento:			Levanta	Levantamento quantitativo	titativo		
Locais	São Paulo	Rio de Janeiro	Porto Alegre	Recife	Manaus	Brasília	Rio Branco
Valores obtidos	0.2	0.3	0.2	0.7	0.5	0.1	0.4

Tabela 4.2: Exemplo de tabela similar a uma ficha.

Capítulo 5

Conclusões

Vale muito a pena a leitura do trabalho de Uri Alon (2009), no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveriam ser discutidos com seu orientador.

Apêndice A

Sequências

Um exemplo de como o $\mbox{\sc ET}_{\mbox{\sc EY}} X$ cria apêndices e uma referência para a Tabela A.1, que é impressa em modo paisagem.

Tabela A.1: Exemplo de tabela com valores numéricos.

Limiar	1	MGW7			AMI		Spect	rum de	Fourier	Cara	cterísti	cas espectrais
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	\overline{AC}
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
3	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
5	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
18	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
21	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
23	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
24	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
25	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
26	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
27	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
28	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
29	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
												Continua

Tabela A.1: Exemplo de tabela com valores numéricos.

Limiar	1	MGWT	7		AMI		Spect	rum de	Fourier	Cara	cterísti	cas espectrais
	Sn	Sp	AC	Sn	Sp	AC	Ŝn	Sp	AC	Sn	Sp	AC
30	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
31	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
32	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
33	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
34	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
35	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
36	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
37	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
38	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
39	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
40	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
41	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
42	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
43	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
44	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
45	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
46	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
47	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
48	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
49	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Bibliografia

- [Allcock 2003] William Allcock. *GridFTP Protocol Specification. Global Grid Forum Recommendation (GFD.20).* 2003 (citado na pg. 21).
- [Alon 2009] Uri Alon. "How to choose a good scientific problem". Em: *Molecular Cell* 35.6 (set. de 2009), pgs. 726–728. DOI: 10.1016/j.molcel.2009.09.013 (citado na pg. 25).
- [ALVES et al. 2003] Carlos E. R. ALVES, Edson N. CÁCERES, Frank DEHNE e Siang W. SONG. "A parallel wavefront algorithm for efficient biological sequence comparison". Em: ICCSA'03: The 2003 International Conference on Computational Science and its Applications. Springer-Verlag, maio de 2003, pgs. 249–258 (citado na pg. 21).
- [ALVISI *et al.* 1999] Lorenzo ALVISI, Elmootazbellah ELNOZAHY, Sriram S. RAO, Syed A. HUSAIN e Asanka Del MEL. *An Analysis of Comunication-Induced Checkpointing*. Rel. téc. TR-99-01. Austin, USA: Department of Computer Science, University of Texas at Austin, 1999 (citado na pg. 21).
- [Воотн *et al.* 2008] Wayne C. Воотн, Gregory G. Colomb e Joseph M. Williams. *The Craft of Research*. The University of Chicago Press, 2008 (citado na pg. 1).
- [Babaoglu e Marzullo 1993] Ozalp Babaoglu e Keith Marzullo. "Consistent global states of distributed systems: fundamental concepts and mechanisms". Em: *Distributed Systems*. Ed. por Sape Mullender. 2ª ed. 1993, pgs. 55–96 (citado na pg. 21).
- [Bronevetsky et al. 2003] Greg Bronevetsky, Daniel Marques, Keshav Pingali e Paul Stodghill. "Automated application-level checkpointing of MPI programs". Em: PPoPP'03: Proceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. (San Diego, California, 11–13 de jun. de 2003). 2003, pgs. 84–89 (citado na pg. 21).
- [CARLIS 2009] John V. CARLIS. Design: The Key to Writing (and Advising) a One-Draft Ph.D Dissertation. 2009. URL: http://www-users.cs.umn.edu/~carlis/one-draft.pdf (acesso em 10/11/2017) (citado na pg. 1).
- [Eco 2009] Umberto Eco. *Como se Faz uma Tese*. 22ª ed. Tradução Gilson Cesar Cardoso de Souza. Perspectiva, 2009 (citado na pg. 1).

- [Fowler 2004] Martin Fowler. *Is Design Dead?* Maio de 2004. URL: http://martinfowler.com/articles/designDead.html (acesso em 30/01/2010) (citado na pg. 21).
- [FSF 2007] Free Software Foundation. *GNU General Public License*. 2007. url: http://www.gnu.org/copyleft/gpl.html (acesso em 30/01/2010) (citado na pg. 21).
- [Garcia 2001] Islene C. Garcia. "Visões Progressivas de Computações Distribuídas". Tese de doutorado. Campinas, Brasil: Instituto de Computação, Universidade de Campinas, dez. de 2001 (citado na pg. 21).
- [Higham 1998] Nicholas J. Higham. *Handbook of Writing for the Mathematical Sciences*. 2^a ed. SIAM: Society for Industrial e Applied Mathematics, ago. de 1998 (citado na pg. 1).
- [Johnson e Wichern 1983] Richard A. Johnson e Dean W. Wichern. *Applied Multivariate Statistical Analysis*. Prentice-Hall, 1983 (citado na pg. 21).
- [Knuth *et al.* 1996] Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. *Mathematical Writing*. The Mathematical Association of America, set. de 1996 (citado na pg. 1).
- [Mena-Chalco *et al.* 2008] Jesús P. Mena-Chalco, Helaine Carrer, Yossi Zana e Roberto M. Cesar-Jr. "Identification of protein coding regions using the modified Gabor-wavelet transform". Em: *IEEE/ACM Transactions on Computational Biology and Bioinformatics* 5 (2008), pgs. 198–207 (citado na pg. 21).
- [OMG 2002] OBJECT MANAGEMENT GROUP. *CORBA v3.0 Specification*. OMG Document 02-06-33. Jul. de 2002 (citado na pg. 21).
- [ROBERTS 2010] Carol M. ROBERTS. *The Dissertation Journey*. 2^a ed. Thousand Oaks, CA: Corwin, 2010 (citado na pg. 1).
- [SCHMIDT 2003] Rodrigo M. SCHMIDT. "Coleta de Lixo para Protocolos de *Checkpointing*". Diss. de mestrado. Campinas, Brasil: Instituto de Computação, Universidade de Campinas, out. de 2003 (citado na pg. 21).
- [SIBiUSP 2009] Universidade de São Paulo Sistema Integrado de Bibliotecas. Diretrizes para Apresentação de Dissertações e Teses da USP: Documento Eletrônico e Impresso. 2009. url: http://www.teses.usp.br/index.php?option=com_content&view=article&id=52&Itemid=67 (acesso em 10/11/2017) (citado na pg. 1).
- [Tufte 2001] Edward Tufte. *The Visual Display of Quantitative Information*. 2^a ed. Graphics Press, maio de 2001 (citado na pg. 2).
- [WAZLAWICK 2009] Raul S. WAZLAWICK. *Metodologia de Pesquisa em Ciência da Computação*. 1ª ed. Campus, 2009 (citado na pg. 1).
- [ZOBEL 2004] Justin ZOBEL. Writing for Computer Science: The Art of Effective Communication. 2^a ed. Springer, 2004 (citado na pg. 1).

Índice Remissivo

В	N
biber, 7, 14	natbib, 1, 6, 7, 14, 15
biblatex, 6, 7, 14, 15, 21	Notas de rodapé, 1, 12
bibtex, 6, 7, 14	
	P
C	Palavras estrangeiras, <i>veja</i> Língua
Captions, veja Legendas	estrangeira
CiteULike, 2	
Código-fonte, <i>veja</i> Floats	R
E	Rodapé, notas, <i>veja</i> Notas de rodapé
Equações, <i>veja</i> Modo Matemático	S
T.	Scopus, 2
F	Subcaptions, <i>veja</i> Subfiguras
Figuras, <i>veja</i> Floats	Subfiguras, 22
Floats, 2, 22	Sublegendas, <i>veja</i> Subfiguras
Algoritmo, <i>veja</i> Floats, Ordem	Sublegendas, veja Subliguras
Ordem, 13	T
Formatação, 3	Tabelas, <i>veja</i> Floats
Fórmulas, <i>veja</i> Modo Matemático	Tese/Dissertação
G	itens obrigatórios, 3
Google Scholar, 2	itens opcionais, 3
200810 201101111, 2	versões, 3
I	
Inglês, <i>veja</i> Língua estrangeira	V
т	Versão corrigida, veja Tese/Dissertação
J	versões
Java, 23	Versão original, veja Tese/Dissertação,
L	versões
Legendas, 2, 8, 13, 22	
Língua estrangeira, 2	W
	Web of Science, 2
M	_
Mendeley, 2, 8, 16	Z
Modo Matemático, 21	Zotero, 2, 8, 16