主成分分析

評価と視覚化

村田 昇

2020.11.10

講義の予定

• 第1日: 主成分分析の考え方

• 第2日: 分析の評価と視覚化

主成分分析の復習

主成分分析

- 多数の変量のもつ情報の分析・視覚化
 - 変量を効率的に縮約して少数の特徴量を構成する
 - 変量の間の関係を明らかにする
- 分析の方針:
 - データの情報を最大限保持する変量の線形結合を構成
 - データの情報を最大限反映する座標 (方向)を探索
 - (データの情報を保持する=データを区別できる)

分析の考え方

- 1変量データ $a^{\mathsf{T}}x_1, \ldots, a^{\mathsf{T}}x_n$ を構成
 - 観測データ x_1, \ldots, x_n のもつ情報を最大限保持するベクトル a を **うまく** 選択
 - $-a^{\mathsf{T}}x_1,\ldots,a^{\mathsf{T}}x_n$ の変動 (ばらつき) が最も大きい方向を選択
- 最適化問題

制約条件 $\|a\|=1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^\mathsf{T} \boldsymbol{x}_i - \boldsymbol{a}^\mathsf{T} \bar{\boldsymbol{x}})^2, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_i$$

行列による表現

• 中心化したデータ行列

$$X = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \\ \vdots \\ \boldsymbol{x}_n^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_1 & \cdots & x_{1p} - \bar{x}_p \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_1 & \cdots & x_{np} - \bar{x}_p \end{pmatrix}$$

• 評価関数 f(a) は行列 X^TX の二次形式

$$f(\boldsymbol{a}) = \boldsymbol{a}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}$$

固有值問題

• 最適化問題

maximize
$$f(\mathbf{a}) = \mathbf{a}^\mathsf{T} X^\mathsf{T} X \mathbf{a}$$
 s.t. $\mathbf{a}^\mathsf{T} \mathbf{a} = 1$

解の条件

$$f(a)$$
 の極大値を与える a は $X^\mathsf{T} X$ の固有ベクトルである
$$X^\mathsf{T} X a = \lambda a$$

主成分負荷量と主成分得点

- a: 主成分負荷量 (principal component loading)
- $a^{\mathsf{T}}x_i$: 主成分得点 (principal component score)
- ・ 第 1 主成分負荷量 $X^\mathsf{T} X \ \text{の第 1(最大) 固有値 } \lambda_1 \ \text{に対応する固有ベクトル } \boldsymbol{a_1}$
- 第k主成分負荷量 $X^\mathsf{T} X$ の第k 固有値 λ_k に対応する固有ベクトル a_k

演習

問題

- 以下の間に答えなさい.
 - ベクトル a を $X^{\mathsf{T}}X$ の単位固有ベクトルとするとき

$$f(\boldsymbol{a}) = \boldsymbol{a}^\mathsf{T} X^\mathsf{T} X \boldsymbol{a}$$

の値を求めよ.

- 行列 X を中心化したデータ行列,ベクトル a_k を第 k 主成分負荷量とする.第 k 主成分得点の 平均まわりの平方和

$$\sum_{i=1}^n (oldsymbol{a}_k^\mathsf{T} oldsymbol{x}_i - oldsymbol{a}_k^\mathsf{T} ar{oldsymbol{x}})^2$$

をXと a_k で表せ.

寄与率

寄与率の考え方

• 回帰分析で考察した 寄与率 の一般形

$$(寄与率) = \frac{(その方法で説明できる変動)}{(データ全体の変動)}$$

• 主成分分析での定義 (proportion of variance)

Gram 行列のスペクトル分解

• 行列 X^TX (非負値正定対称行列) のスペクトル分解

$$X^\mathsf{T} X = \sum_{k=1}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^\mathsf{T}$$

固有値と固有ベクトルによる行列の表現

• 主成分の変動の評価

$$f(\boldsymbol{a}_k) = \boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{a}_k = \lambda_k$$

固有ベクトル (単位ベクトル) の直交性を利用

寄与率の計算

• 主成分と全体の変動

(主成分の変動) =
$$\sum_{i=1}^{n} (\boldsymbol{a}_{k}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}_{k}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2} = \boldsymbol{a}_{k}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_{k} = \lambda_{k}$$
(全体の変動) = $\sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \bar{\boldsymbol{x}}\|^{2} = \sum_{l=1}^{p} \boldsymbol{a}_{l}^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_{l} = \sum_{l=1}^{p} \lambda_{l}$

• 寄与率の固有値による表現:

$$(寄与率) = \frac{\lambda_k}{\sum_{l=1}^p \lambda_l}$$

累積寄与率

• **累積寄与率** (cumulative proportion): 第 k 主成分までの変動の累計

$$(累積寄与率) = \frac{\sum_{l=1}^k \lambda_l}{\sum_{l=1}^p \lambda_l}$$

第1から第 k までの寄与率の総和

- 累積寄与率はいくつの主成分を用いるべきかの基準
- 一般に累積寄与率が80%程度までの主成分を用いる

解析の事例

データセット

- 総務省統計局より取得した都道府県別の社会生活統計指標の一部
 - 総務省 https://www.e-stat.go.jp/SG1/estat/List.do?bid=000001083999&cycode=0
 - * Pref: 都道府県名
 - * Forest: 森林面積割合 (%) 2014 年
 - * Agri: 就業者1人当たり農業産出額(販売農家)(万円)2014年

- * Ratio: 全国総人口に占める人口割合 (%) 2015 年
- * Land: 土地生産性 (耕地面積 1 ヘクタール当たり) (万円) 2014 年
- * Goods: 商業年間商品販売額 [卸売業+小売業] (事業所当たり) (百万円) 2013 年

データの一部

Forest	Agri F	Ratio I	Land (Goods	
Hokkaido	67.9	1150.6	4.23	96.8	283.3
Aomori	63.8	444.7	1.03	186.0	183.0
Iwate	74.9	334.3	1.01	155.2	179.4
Miyagi	55.9	299.9	1.84	125.3	365.9
Akita	70.5	268.7	0.81	98.5	153.3
Yamagata	68.7	396.3	0.88	174.1	157.5
Fukushima	67.9	236.4	1.51	127.1	184.5
Ibaraki	31.0	479.0	2.30	249.1	204.9
Tochigi	53.2	402.6	1.55	199.6	204.3
Gumma	63.8	530.6	1.55	321.6	270.0
Saitama	31.9	324.7	5.72	247.0	244.7
Chiba	30.4	565.5	4.90	326.1	219.7
Tokyo	34.8	268.5	10.63	404.7	1062.6
Kanagawa	38.8	322.8	7.18	396.4	246.1
Niigata	63.5	308.6	1.81	141.9	205.5
Toyama	56.6	276.1	0.84	98.5	192.4
Ishikawa	66.0	271.3	0.91	112.0	222.9
Fukui	73.9	216.1	0.62	98.5	167.3

各変数の分布

• 変数のばらつきに大きな違いがある

図 1: 各変数の箱ひげ図

データの正規化

• 各変数の標本平均を 0, 不偏分散を 1 に規格化する

図 2: 正規化したデータの散布図

主成分分析

• 主成分負荷量

```
        PC1
        PC2
        PC3
        PC4
        PC5

        Forest -0.4871498
        0.1045813
        -0.45748795
        0.6859649
        -0.26815060

        Agri 0.1339190
        0.8115056
        0.47912767
        0.3045447
        0.03483694

        Ratio 0.5851294
        -0.1511042
        0.04467249
        0.1640953
        -0.77837539

        Land 0.3547649
        0.4851374
        -0.74167904
        -0.2897485
        0.06885892

        Goods 0.5258481
        -0.2689436
        -0.09517368
        0.5708093
        0.56238052
```

- 第1: 人の多さに関する成分(正の向きほど人が多い)
- 第2: 農業生産力に関する成分(正の向きほど高い)
- 寄与率

Importance of components:

- 第1,2主成分得点の表示
- 第3,2 主成分得点の表示

図 3: 主成分得点による散布図

図 4: 主成分得点による散布図

演習

問題

- 以下の間に答えなさい.
 - 正規化条件を満たす線形変換 $x'_{ij} = a_j(x_{ij} b_j)$ を求めよ.

$$\frac{1}{n}\sum_{i=1}^{n}x'_{ij} = 0, \quad \frac{1}{n-1}\sum_{i=1}^{n}(x'_{ij})^2 = 1$$

- 正規化されたデータ行列を

$$X' = \begin{pmatrix} {x'_1}^\mathsf{T} \\ \vdots \\ {x'_n}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x'_{11} & \cdots & x'_{1p} \\ \vdots & & \vdots \\ x'_{n1} & \cdots & x'_{np} \end{pmatrix}$$

と書くとき、 $X'^\mathsf{T} X'$ の対角成分を求めよ。

主成分負荷量

主成分負荷量と主成分得点

- 負荷量 (得点係数) の大きさ: 変数の貢献度
- 問題点:
 - 変数のスケールによって係数の大きさは変化する
 - 変数の正規化 (平均 0, 分散 1) がいつも妥当とは限らない
- スケールによらない変数と主成分の関係: 相関係数 を考えればよい

相関係数

- e_i : 第 j 成分は 1, それ以外は 0 のベクトル
- Xe_i: 第 j 変数ベクトル
- Xa_k: 第 k 主成分得点ベクトル
- 主成分と変数の相関係数:

$$\begin{split} \operatorname{Cor}(X \boldsymbol{a}_k, X \boldsymbol{e}_j) &= \frac{\boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{e}_j}{\sqrt{\boldsymbol{a}_k^\mathsf{T} X^\mathsf{T} X \boldsymbol{a}_k} \sqrt{\boldsymbol{e}_j^\mathsf{T} X^\mathsf{T} X \boldsymbol{e}_j}} \\ &= \frac{\lambda_k \boldsymbol{a}_k^\mathsf{T} \boldsymbol{e}_j}{\sqrt{\lambda_k} \sqrt{(X^\mathsf{T} X)_{jj}}} \end{split}$$

正規化データの場合

- $X^\mathsf{T} X$ の対角成分は全て n-1 $((X^\mathsf{T} X)_{jj} = n-1)$
- 第 k 主成分に対する相関係数ベクトル:

$$\mathbf{r}_k = \sqrt{\lambda_k/(n-1)} \cdot \mathbf{a}_k, \quad (\mathbf{r}_k)_j = \sqrt{\lambda_k/(n-1)} \cdot (\mathbf{a}_k)_j$$

- 主成分負荷量
 - 同じ主成分への各変数の影響は固有ベクトルの成分比
 - 同じ変数の各主成分への影響は固有値の平方根で重みづけ

データ行列の分解表現

特異値分解

• 階数 r の $n \times p$ 型行列 X の分解:

$$X = U\Sigma V^{\mathsf{T}}$$

- -U は $n \times n$ 型直交行列, V は $p \times p$ 型直交行列
- $-\Sigma$ は $n \times p$ 型行列

$$\Sigma = \begin{pmatrix} D & O_{r,p-r} \\ O_{n-r,r} & O_{n-r,m-r} \end{pmatrix}$$

- $*O_{s,t}$ は $s \times t$ 型零行列
- * D は $\sigma_1 \geq \sigma_2 \geq \sigma_r > 0$ を対角成分とする $r \times r$ 型対角行列

特異値

行列 Σ の成分表示

$$\Sigma = \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & \sigma_{r-r,r} & & O_{n-r,m-r} \end{pmatrix}$$

• D の対角成分: X の **特異値** (singular value)

特異値分解による Gram 行列の表現

Gram 行列の展開:

$$\begin{split} \boldsymbol{X}^\mathsf{T} \boldsymbol{X} &= (\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^\mathsf{T})^\mathsf{T} (\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^\mathsf{T}) \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^\mathsf{T} \boldsymbol{U}^\mathsf{T} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^\mathsf{T} \\ &= \boldsymbol{V} \boldsymbol{\Sigma}^\mathsf{T} \boldsymbol{\Sigma} \boldsymbol{V}^\mathsf{T} \end{split}$$

• 行列 $\Sigma^{\mathsf{T}}\Sigma$ は対角行列

$$\Sigma^{\mathsf{T}} \Sigma = \begin{pmatrix} \sigma_1^2 & & & & \\ & \ddots & & & \\ & & \sigma_r^2 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

演習

問題

- 行列 X の特異値分解を $U\Sigma V^\mathsf{T}$ とし、行列 U の第 k 列ベクトルを \boldsymbol{u}_k 、行列 V の第 k 列ベクトルを \boldsymbol{v}_k とする.以下の間に答えなさい.
 - 行列 U,V の列ベクトルを用いて X を展開しなさい
 - Gram 行列 X^TX の固有値を特異値で表しなさい.
 - 行列 X の主成分負荷量を求めなさい.
 - それぞれの負荷量に対応する主成分得点を求めなさい.

バイプロット

データ行列の分解

- 行列 U の第 k 列ベクトル \boldsymbol{u}_k
- 行列 V の第 k 列ベクトル v_k
- データ行列の特異値分解: (**注意** Σ は対角行列)

$$X = U\Sigma V^\mathsf{T} = \sum_{k=1}^r \sigma_k u_k v_k^\mathsf{T}$$

データ行列の近似表現

• 第 k 主成分と第 l 主成分を用いた行列 X の近似 X'

$$X \simeq X' = \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^\mathsf{T} + \sigma_l \boldsymbol{u}_l \boldsymbol{v}_l^\mathsf{T}$$

• 行列の積による表現

$$\begin{split} X' &= GH^\mathsf{T}, \\ G &= \begin{pmatrix} \sigma_k^{1-s} \boldsymbol{u}_k & \sigma_l^{1-s} \boldsymbol{u}_l \end{pmatrix}, \quad H = \begin{pmatrix} \sigma_k^s \boldsymbol{v}_k & \sigma_l^s \boldsymbol{v}_l \end{pmatrix} \quad (0 \leq s \leq 1) \end{split}$$

バイプロット

- 関連がある2枚の散布図を1つの画面に表示する散布図を一般にバイプロット (biplot) と呼ぶ
- 行列 G, H の各行を 2 次元座標と見なす

$$X' = GH^{\mathsf{T}}$$

- 行列 G の各行は各データの 2 次元座標
- 行列 H の各行は各変量の2次元座標
- パラメタ s は 0,1 または 1/2 が主に用いられる
- X の変動を最大限保持する近似は k=1, l=2

解析の事例

バイプロット

• 主成分負荷量

```
PC1
                      PC2
                                 PC3
                                           PC4
                                                     PC5
Forest -0.4871498  0.1045813 -0.45748795  0.6859649 -0.26815060
       0.1339190 0.8115056 0.47912767
                                     0.3045447 0.03483694
Agri
Ratio
       0.5851294 -0.1511042 0.04467249
                                     0.1640953 -0.77837539
Land
       0.06885892
Goods
       0.5258481 \ -0.2689436 \ -0.09517368 \ \ 0.5708093 \ \ 0.56238052
```

• 寄与率

Importance of components:

```
PC1 PC2 PC3 PC4 PC5
Standard deviation 1.5904 1.0699 0.8196 0.7076 0.39190
Proportion of Variance 0.5059 0.2289 0.1343 0.1001 0.03072
Cumulative Proportion 0.5059 0.7348 0.8691 0.9693 1.00000
```

• 第1,2主成分によるバイプロット

図 5: 主成分分析のバイプロット (第1,2)

- 第3,2 主成分によるバイプロット
- 中心部の拡大 (第1,2 主成分)
- 中心部の拡大 (第3,2 主成分)

図 6: 主成分分析のバイプロット (第 3,2)

図 7: 主成分分析のバイプロット (第 1,2)

図 8: 主成分分析のバイプロット (第 3,2)

次週の予定

• 第1日: 判別分析の考え方

• 第2日: 分析の評価