Estadística general conjuntos y probabilidad

Contenido

Diagramas de Venn

Conjunto vacío

Axiomas, interpretación y propiedades

Resultados igualmente probables

Propiedades

Técnicas de conteo

Reglas del producto para pares ordenados

Diagramas de Venn

Ejemplo

El experimento consiste en contar el número de bombas de uso en una estación de gasolinas con 6 bombas.

$$S = \{0, 1, 2, 3, 4, 5, 6\}$$

 $A = \{0, 1, 2, 3, 4\}$
 $B = \{3, 4, 5, 6\}$
 $C = \{1, 3, 5\}$

Conjunto Ø

- ▶ ∅: denota el evento nulo (evento sin resultados).
- ► Cuando $A \cap B = \emptyset$, se dice que A y B son eventos mutuamente excluyentes o disjuntos.

Axiomas, interpretación y propiedades

$$\begin{array}{c}
5 & [0,1] \\
 & \xrightarrow{A} & \stackrel{\bullet}{\mathcal{P}}(A)
\end{array}$$

Dados un experimento y un espacio muestral S, el objetivo de la probabilidad es asignar a cada evento A un número P(A), llamada la probabilidad de evento A, la cual dará una medida precisa de la oportunidad de que A ocurra.

- 1. **Axioma 1:** Para cualquier evento A, $P(A) \ge 0$.
- 2. **Axioma 2:** P(S) = 1.
- 3. **Axioma 3:** Si A_1 , A_2 , A_3 , \cdots es una sucesión de eventos disjuntos $(A_i \cap A_i = \emptyset, i \neq j)$, entonces

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Proposición

 $\underline{P(\emptyset)} = \underline{0}$ donde \emptyset es el conjunto nulo. Esto a su vez significa que la propiedad contenida en <u>el axioma</u> 3 es válida para un conjunto finito de eventos disjuntos

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i).$$

Demostración

la expresión (1) sólo se tiene si
$$P(p)=0$$
.

Por otro lado, se sucesión infinita

 $A_1, A_2, ..., A_K, A_{K+1}, ...$ donde

 $A_{K+1} = p = A_{K+2} = A_{K+3}$
 $P(\bigcup_{i=1}^{K} A_i) = P(\bigcup_{i=1}^{K} A_i \cup \bigcup_{i=K+1}^{K} A_i)$
 $= P(\bigcup_{i=1}^{K} A_i \cup \bigcup_{i=K+1}^{K} A_i)$
 $= P(\bigcup_{i=1}^{K} A_i)$

$$P(\stackrel{\vee}{\mathcal{J}}_{Ai}) = \stackrel{\sim}{\sum} P(Ai)$$

$$= \stackrel{\vee}{\sum} P(Ai) + \stackrel{\sim}{\sum} P(Ai)$$

$$= \stackrel{\vee}{\sum} P(Ai) + O$$

$$= \stackrel{\vee}{\sum} P(Ai)$$

$$= \stackrel{\vee}{\sum} P(Ai)$$

$$= \stackrel{\vee}{\sum} P(Ai)$$

Proposición

Para cualquier evento A,

$$P(A) + P(A') =$$

$$P(A) + P(A') = 1 \qquad \boxed{ }$$

a partir de la cuál

$$P(A) = 1 - P(A'),$$

 $P(A') = 1 - P(A).$

Proposición

Para todo $A, B \subseteq S$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

$$B \cap A' = B - A$$

 $B - A = \frac{3}{x} / x \in B, x \notin A$

Demostración

AUB =
$$A \cup (B \cap A')$$
 (1)

A plicando el operador probabilidad en la dos

de la igualdad (1) se tiene que

$$P(A \cup B) = P(A \cup (B \cap A'))$$

$$P(A) + P(B \cap A') \text{ por axioma } 3 \text{ } \text{*}$$

D'espejando $P(B \cap A')$ se tiene que

$$P(B \cap A') = P(A \cup B) - P(A)$$

B

$$B = (A \cap B) \cup (B \cap A') \text{ } \text{*}$$

B

Sabemos que $(A \cap B) \cap (B \cap A') = \emptyset$

Por axioma tenemo

$$P(B) = P(A \cap B) + P(B \cap A')$$
 (4)
 $Desperando P(B \cap A') = P(B) - P(A \cap B)$ (5)
 $Comparando S$ con (2) Se tiene gre.
 $P(B) - P(A \cap B) = P(A \cup B) - P(A)$ (6)
 $P(B) - P(A \cap B) = P(A \cup B) - P(A \cap B)$ (6)
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (7)
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (7)

Generalización tres eventos

Sean
$$A$$
, B , $C \subseteq S$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$- P(A \cap B) - P(A \cap C) - P(B \cap C)$$

$$P(A \cap B \cap C)$$

Resultados igualmente probables

Sea *N* el número de resultados de un experimento compuesto. Es razonable asignar probabilidades iguales a todos los *N* eventos simples.

Ejemplo:

Sea $S = \{C, L\}$ donde C es cara y L es sello. S es el espacio muestral del lanzmiento de una moneda. Por tanto, todos los posibles eventos son

$$A_1 = \{C\}$$

 $A_2 = \{L\}$
 $A_3 = \{C, L\}$
 $A_4 = \emptyset$

 A_1 y A_2 son eventos simples, mientras que A_3 es compuesto.

En el ejemplo anterior tenemos que $P(A_1) = P(A_2) = \frac{1}{2}$. De manera general, se tiene que $p = P(A_i)$ para todo $i = 1, 2, \dots, N$.

$$S = \bigcup_{i=1}^{N} A_i$$

donde A_i es el i-ésimo evento simple y $A_i \cap A_j = \emptyset$ para $i \neq j$. Se sigue que

$$1 = P(S) = P\left(\bigcup_{i=1}^{N} A_i\right) = \sum_{i=1}^{N} P(A_i) = \sum_{i=1}^{N} p = Np$$
 (2)

$$\Rightarrow p = \frac{1}{N}$$

Despejando p de (2) se tiene que

$$p=\frac{1}{N}$$

Es decir, si existen N resultados igualmente probables, la probabilidad de cada uno es $\frac{1}{N}$.

Sea A un evento del espacio muestral S. Denotaremos por N(A) al número de resultados contenidos en A. Entonces

$$P(A) = \sum_{A_i \in A} P(A_i) = \sum_{A_i \in A} \frac{1}{N} = \frac{\sum_{A_i \in A} 1}{N} = \frac{N(A)}{N}$$

Nota: Cuando los resultados son igualmente probables, el cálculo de probabilidades se reduce a contar.

Ejercicio 11 página 79 pdf


```
Solución la 0.07 es la probabilidad de que el cliente tenga acciones en el tondo balonceado
          AFB: "Tenga acciores en un fondo de bonos"
           BCP: "Bonos corto plazo"

BMP: " " Mediano pozo:

BLP: " 11 Largo plazo"
P(AFB)= P(BCP) + P(BHP) + P(BLP)
              = 0.15 + 0.10 . 0.05
  La probabilidad de que un individua seleccionado
tenga acciones en un fondo de bonos es 30%
```

1100 Acción: "Invirtió en algón tipo de acción" Alto: Adquirió una acción de alto viesgo!
Moderado: "A/ " (1 " riesgo moderado! P(Acción) = P(Alto) + P(Morderado) = 0.18 + 0.25 = 0.43 = 43%P(Accion) = P(No adquiere acciones) = 1 - P(Acción) = 1 - 0.43 = 0.57

a)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.5 + 0.4 - 0.25
= 0.9 - 0.25
= 0.65 = 65%
b) $P((A \cup B)') = 1 - P(A \cup B)$
= 1 - 0.65

b)
$$P((A \cup B)^{\circ}) = 1 - P(A \cup B)$$

= 1 - 0.65
= 0.35 = 35%

Solución

0.36

Ejercicio 13

(AUA) = "Ningmo de los proyectos 1 y z hon sido asignados"

$$P(A'_1 \cap A'_2) = P((A_1 \cup A_2)') = 1 - P(A_1 \cup A_2)$$

$$= 1 - 0.36$$

$$= 0.64$$
A. $\cup A_2 \cup A_3 =$ "Algono de los tres proyectos son otorgados a la compañía)

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

$$- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3)$$

$$+ P(A_1 \cap A_2 \cap A_3)$$

$$= 0.22 + 0.25 + 0.28 - (0.11 + 0.05 + 0.07) + 0.01$$

$$= 0.53$$

Solución

e.
$$A_1 \cap A_2 \cap A_3$$

= $A_3 \cap A_1 \cap A_2$
= $A_3 \cap (A_1 \cup A_2)$
= $A_3 - (A_3 \cap (A_1 \cup A_2))$

Otras propiedades

(M1) "no (A y B)" es lo mismo que "(no A) o (no B)", y también,

(M2) "no (A o B)" es lo mismo que "(no A) y (no B)".

En términos de conjuntos (M1) se puede escribir:

$$(A\cap B)^c=A^c\cup B^c$$

mientras que (M2) se puede escribir como:

$$(A \cup B)^c = A^c \cap B^c$$

Por tanto

$$P((A \cap B)^c) = 1 - P(A \cap B) = P(A^c \cup B^c)$$

 $P((A \cup B)^c) = 1 - P(A \cup B) = P(A^c \cap B^c)$

Por otro lado, Si $A \subseteq B$ entonces $P(A) \le P(B)$ y

$$P(B \setminus A) = P(B) - P(A) = P(A \cap B^c).$$

Técnicas de conteo

Las reglas del producto para pares ordenados:

Por par ordenado se quiere decir si O_1 y O_2 son objetos, entonces el par (O_1, O_2) es diferente del par (O_2, O_1) .

Proposición

Si el primer elemento u objeto de un par ordenado puede ser seleccionado de n_1 maneras, el segundo elemento del par puede ser seleccionado de n_2 maneras, entonces el número de pares es $n_1 n_2$.

En muchos problemas de conteo y probabilidad se puede utilizar una configuración conocida como **diagrama de árbol** para representar pictóricamente todas las posibilidades.

