Class 09: Halloween Mini-Project

Safiya Sayd (PID: A18027139)

Table of contents

1. Importing candy data

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-rand
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanutyalmondy	nougat	crispedricewafer
100 Grand		1	0	1	(0	1
3 Musketeers		1	0	0	() 1	0
One dime		0	0	0	(0	0
One quarter		0	0	0	(0	0
Air Heads		0	1	0	(0	0
Almond Joy		1	0	0	1	. 0	0
	${\tt hard}$	bar	pluribus	sugarpe	ercent priceper	cent wi	npercent
100 Grand	0	1	C)	0.732	.860	66.97173
3 Musketeers	0	1	C)	0.604	.511	67.60294
One dime	0	0	C)	0.011	.116	32.26109
One quarter	0	0	C)	0.011	.511	46.11650
Air Heads	0	0	C)	0.906	.511	52.34146
Almond Joy	0	1)	0.465	.767	50.34755

Q1. How many different candy types are in this dataset?

nrow(candy)

[1] 85

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

##2. What is your favorate candy?

candy["Twix",]\$winpercent

[1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

My favorite candy is Reese's pieces

candy["Reese's pieces",]\$winpercent

[1] 73.43499

Q4. What is the winpercent value for "Kit Kat"?

candy["Kit Kat",]\$winpercent

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars",]\$winpercent

[1] 49.6535

"skimr" package gives you a quick overview of dataset

library("skimr")
skim(candy)

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	plete_ra	ntmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

winpercent has a different scale compared to the other variables with a scale of 0-100 while the rest are on a scale of 0-1.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

candy\$chocolate

I think it represents if the candy is or isn't chocolate based. It's assigned a value of 1 if its a chocolate based candy and 0 if it isn't.

Q8. Plot a histogram of winpercent values

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent) +
  geom_histogram(binwidth = 10)
```


Q9. Is the distribution of winpercent values symmetrical?

The distribution is not symmetrical, there is a longer tail on the right side. Distribution is skewed to right.

Q10. Is the center of the distribution above or below 50%?

To find whether the center of distribution is above or below 50% you can use the median. If the value is less that 50 percent the center is below 50 and if its above 50% the center is above 50 percent.

median(candy\$winpercent)

[1] 47.82975

The center of distribution is below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
mean(candy$winpercent[candy$chocolate==1])
```

[1] 60.92153

```
mean(candy$winpercent[candy$fruity==1])
```

[1] 44.11974

Chocolate is higher ranked then fruity

Q12. Is this difference statistically significant?

t test helps us compare the average win percentage of chocolate compared to fruity

```
t.test(winpercent ~ chocolate, data = candy, var.equal = FALSE)
```

```
Welch Two Sample t-test
```

p-value tells you whether the difference is seen is real or by chance. When the p value is greater the 0.05 it safe to say that it is statistically significant but if its equal to or less then 0.05 it isn't significant and considered random!

To test the reliability of the t-test it is important to see if the win percentage is normally distributed using the normality test.

shapiro.test(candy\$winpercent[candy\$chocolate ==1])

```
Shapiro-Wilk normality test
```

```
data: candy$winpercent[candy$chocolate == 1]
W = 0.98088, p-value = 0.7616
```

```
shapiro.test(candy$winpercent[candy$fruity ==1])
```

```
Shapiro-Wilk normality test
```

```
data: candy$winpercent[candy$fruity == 1]
W = 0.98718, p-value = 0.9342
```

p-value is more the 0.05, the data is normal! This means the t-test can be trusted. It is safe to assume that the difference is not statistically significant.

##3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n =5)

	${\tt chocolate}$	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	hard	bar	pluribus	sugai	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	t						
Nik L Nip	22.44534	1						
Boston Baked Beans	23.41782	2						

 Chiclets
 24.52499

 Super Bubble
 27.30386

 Jawbusters
 28.12744

Q14. What are the top 5 all time favorite candy types out of this set?

head(candy[order(-candy\$winpercent),], n =5)

	chocolate	fruity	cara	nel	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedri	cewafer	${\tt hard}$	bar	pluribus	sugai	percent
Reese's Peanut Butter cu)	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperc	ent winp	percei	nt			
Reese's Peanut Butter cu	0.0	651 84	4.1802	29			
Reese's Miniatures	0.3	279 83	1.8662	26			
Twix	0.9	906 8:	1.6429	91			
Kit Kat	0.	511 76	3.7686	60			
Snickers	0.0	651 76	6.673	78			

library(dplyr)

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

candy %>% arrange(winpercent) %>% head(5)

	chocolate	fruity	cara	nel j	peanutyaln	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	5						
Nik L Nip	22.44534	l						
Boston Baked Beans	23.41782	2						
Chiclets	24.52499	9						
Super Bubble	27.30386	3						
Jawbusters	28.12744	l						

library(dplyr)

candy %>% arrange(desc(winpercent)) %>% head(5)

	chocolato	fmuitr	60 mon			monder	n 011 ma +
	chocolate	Truity	Caran	тет І	peanutyan	попау	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugar	percent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent wing	percer	ıt			
Reese's Peanut Butter cup	0.6	651 8 ⁴	1.1802	29			
Reese's Miniatures	0.2	279 83	1.8662	26			
Twix	0.9	906 83	1.6429	91			
Kit Kat	0.5	511 76	3.7686	60			

I prefer using dplyr because its cleaner and easier to read.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent) ) +
  geom_col()
```


Customizing a color scheme by candy type

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
```

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starbursts

##4. Taking a look at pricepercent

```
# How about a plot of price vs win
ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Chocolate candies, specifically Reese's miniture

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

##5 Exploring the correlation structure seeing how variables interact with one another

library(corrplot)

corrplot 0.95 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruity

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar

##6. Principal Component Analysis

```
pca <- prcomp(candy, scale=FALSE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                   PC2
                                           PC3
                                                   PC4
                                                           PC5
                                                                   PC6
                                                                           PC7
Standard deviation
                       14.7231 0.70241 0.47762 0.37292 0.34641 0.33614 0.30748
Proportion of Variance 0.9935 0.00226 0.00105 0.00064 0.00055 0.00052 0.00043
                        0.9935 0.99574 0.99678 0.99742 0.99797 0.99849 0.99892
Cumulative Proportion
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.27417 0.23826 0.21435 0.18434 0.15331
Proportion of Variance 0.00034 0.00026 0.00021 0.00016 0.00011
Cumulative Proportion 0.99927 0.99953 0.99974 0.99989 1.00000
```

```
plot(pca$x[,1], pca$x[,2], col = my_cols, pch=16)
```


my_data <- cbind(candy, pca\$x[,1:3])</pre>

Warning: ggrepel: 64 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

library(plotly)

```
Attaching package: 'plotly'
```

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

ggplotly(p)

file:///private/var/folders/sy/_fr9v5r51nxc7bzp4h_683nh0000gn/T/RtmpLaan3L/file6fdc4b857c51


```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, Hard, and pluribus are strongly by PC1 in positive direction. This makes sense to me.