More about surface codes and anyons

Perturbation stability of the toric code Hamiltonian
$$H_{Tc} = -\sum_{S} A_{S} - \sum_{P} B_{P}$$

$$H = H_{Tc} - h_{x} \sum_{j} e_{j}^{x} - h_{z} \sum_{j} e_{j}^{z}$$

$$(h_{x}, h_{z} \ll 1)$$

Effect on the energy spectrum (summary)

-- Quasiparticles become mobile; their eigenstates are no longer localized and their previously degenerate spectrum becomes a band of width
$$w \sim h$$

-- Each k -particle level has width kw

4 states $---E_g$

-- The ground states split by $\delta E_g \sim e^{-\alpha l}$

Quasiparticle hopping and kinetic energy

Simpler model: Heisenberg ferromagnet (# of particles is preserved)

$$H = -\Im \sum_{s} \vec{e}_{s}^{7} \cdot \vec{e}_{s+1}^{7}$$

$$\vec{e}_{s}^{8} \cdot \vec{e}_{s}^{8} + \vec{e}_{s}^{1} \cdot \vec{e}_{s}^{8} + \vec{e}_{s}^{2} \cdot \vec{e}_{s}^{2}$$

$$\vec{e}_{s}^{8} \cdot \vec{e}_{s+1}^{8} = \begin{pmatrix} 1 & 0 & 0 & 0 & | 111 \rangle \\ 0 & -1 & 2 & 0 & | 111 \rangle \\ 0 & 2 & -1 & 0 & | 111 \rangle \\ 0 & 2 & -1 & 0 & | 111 \rangle \\ 0 & 2 & -1 & 0 & | 111 \rangle \\ 0 & 2 & -1 & 0 & | 111 \rangle \\ 0 & 2 & -1 & 0 & | 111 \rangle$$

Ground state:
$$|\xi\rangle = |...\uparrow\uparrow\uparrow...\rangle$$
, $E_g = -2nJ$

Position basis:
$$|\psi_s\rangle = |\dots \uparrow \downarrow \uparrow \dots \rangle$$

Eigenstates of the Hamiltonian:
$$|\widetilde{\psi}_{\mathbf{k}}\rangle \sim \sum_{\mathbf{S}} e^{i\mathbf{K}\mathbf{S}}|\psi_{\mathbf{S}}\rangle$$

Equation on the eigenvalues:
$$(H - E_3)|\widetilde{V}_k\rangle = \mathcal{E}(k)|\widetilde{V}_k\rangle$$

Kinetic energy: $\xi(K) = J(4 - 2e^{iK} - 2e^{-iK}) = 4J(1 - \cos K)$

Hamiltonian)

Restriction to two spins:

(11) (11) (11) (11)

$H = - \int \sum_{s} G_{s}^{2} G_{s+1}^{2} - h \sum_{s} G_{s}^{2}$ h « 7 In this lecture, we assume that

Another relatively simple Hamiltonian: Transverse field Ising model (TFIM)

Properties of
$$H_{Ising}$$
: Ground states:

$$\S_{lack} \rangle$$

Ground states: $|\xi_{\uparrow}\rangle = |\dots \uparrow \uparrow \uparrow \uparrow \dots \rangle$, $|\xi_{\downarrow}\rangle = |\dots \downarrow \downarrow \downarrow \downarrow \dots \rangle$

Single-particle states (domain walls):
$$|\Psi_{\uparrow,S}\rangle = |\dots\uparrow\uparrow\uparrow\downarrow\downarrow\downarrow\dots\rangle$$
, $E_{dw} = E_g + 2\Im$
Two-particle states (bubbles): $|\Psi_{\uparrow,S',S''}\rangle = |\dots\uparrow\uparrow\downarrow\downarrow\uparrow\uparrow\uparrow\dots\rangle$, $E_{bubble} = E_g + 4\Im$

$$|\Psi_{r,s',s''}\rangle = |...$$

$$E_{dw} = E_{dw}$$

equal energy

rder perturbation effects
$$_{\mathbb{A}^{\mathsf{E}}}$$

(exact result)

Energy of a domain wall:
$$E_{dw} = E_{g} + \mathcal{E}(K)$$

 $\mathcal{E}(K) \approx 2J - 2h \cos K$ (to the first order in h/J)

Energy of a domain wall:
$$E_{dw} = E_g + \mathcal{E}(K)$$

Higher-order perturbation effects in TFIM

Admixture of domain wall and bubble states to the ground state

(evanescent waves with momentum $K = \pm i \alpha$)

 $u \sim e^{-\alpha l} = \frac{h}{2}$ $H_{eff} = - u \left(| Y_{\perp} \rangle \langle Y_{\uparrow} | + | Y_{\uparrow} \rangle \langle Y_{\downarrow} | \right)$ Effective Hamiltonian:

Back to the toric code Hamiltonian

$$H = - J_{e} \sum_{S} A_{s} - J_{m} \sum_{P} B_{P} - h_{x} \sum_{j} G_{j}^{x} - h_{z} \sum_{j} G^{z}$$

Let
$$h_2 \ll J_\ell$$
, $h_x \ll J_m$

Admixture of two-charge states to the ground state $|\xi\rangle \mapsto |\xi\rangle + \frac{h_z}{2\Delta} |\psi_{2e}\rangle$, $\Delta_e^{=2} J_e$

Logical Z_1 :

Effective Hamiltonian:
$$H_{eff} = -u_{e1}Z_1 - u_{e2}Z_2 - u_{m1}X_1 - u_{m2}X_2$$

$$u_{e1} = u_{e2} \sim \begin{pmatrix} \text{# of places to nucleate} \\ \text{a pair of charges} \end{pmatrix} \cdot \begin{pmatrix} \text{tunneling} \\ \text{amplitude} \end{pmatrix} \sim \mathcal{N} \cdot \left(\frac{h_z}{\Lambda}\right)^{\ell}$$

The "strings of Z-errors", g, plays the role of the bubble. However, it is unphysical. Only its boundary, i.e. the pair of sites s', s'', has a physical meaning. $\left\{ \left(S', S'' \right) \cdot G^{2}(g) \right\} \right\}$

physical meaning.

$$|\psi_{2e}\rangle = \sum_{S'S''} f(S',S'') \cdot G'^{2}(g)|\xi\rangle$$

$$f(S',S'') \sim e^{-\alpha |g|}, \quad e^{-\alpha} \approx \frac{h_{z}}{\Delta e}$$

Phase diagram

$$H = -\sum_{S} A_{S} - \sum_{P} B_{P}$$

$$- h_{x} \sum_{j} \beta_{j}^{x} - h_{z} \sum_{j} \beta^{z}$$

Related to the gauge Higgs model, a 3D statististical mechanics model studied by Fradkin and Shenker in 1979. The latter can be simulated on a classical computer.

Tupitsyn, Kitaev, Prokof'ev, Stamp (2010)

Thermal excitations

The previous discussion was about ground state properties. At finite temperature, there is, on average, a finite density of quasiparticles. Pairs or charges or vortices occasionally appear due to interaction with the thermal environment. Before they annihilate, a quasiparticle can travel across the torus, causing a logical error.

Average # of ee pairs in the system:

$$\langle N_{\ell} \rangle \sim N^2 \cdot \rho^{-\frac{2\Delta e}{T}} \ll 1$$
 (at small 7)

This phase diagram is similar to the phase diagram of water:

Some general properties of Abelian anyons

- The set of superselection sectors L is an Abelian group under fusion (x)
- Double braiding

3) Braiding of identical particles

$$= R_{a,a} = \theta_a I_{a,a}$$

$$\theta : L \rightarrow U(1)$$

$$\theta_a^2 = W_{a,a}$$

$$\theta_{a \times b} = \theta_a \theta_b W_{a,b}$$

$$= \underbrace{\theta_a \theta_b \ W_{a,b}}$$

Example: semions ("half-fermions")

$$L = \{1, S\} \cong \mathbb{Z}_2$$
, $S \times S = 1$,

$$S \times S = 1$$

$$W_{S,S} = -1$$

$$\theta_s = i$$

Complication: associativity relations

We have $S \times S = 1$. Hence, we can create two s particles from the vacuum by some operator:

(Caution: This operator is not invariant under 180° rotation or braiding)

This operator is unique up to an overall phase, and we fix the phase.

We also know that

Therefore,
$$S = \frac{\theta^2}{S} \uparrow \uparrow \uparrow \uparrow$$
.

Now,

In general (but still considering Abelian anyons), the associativity relations are given by a 3-cocycle $\lambda: L \times L \times L \to U(1)$

(The vertices are particle splitting operators)

Surface codes with boundaries

Motivation: Planar layout with local interaction

between the physical qubits.

Two types of boundary

Smooth boundary (absorbs m-particles)

The operator $6^{x}(9_{m})$, which transports an m-particle,

commutes with Agi, Bp

Rough boundary (absorbs e-particles):

The operator $\mathcal{E}^{\mathbf{z}}(\mathfrak{I}_{\mathbf{z}})$, transporting an e-particle, commutes with A_s and $B_{p'}$

Other topologies

cvlinder:

this cycle is trivial because it is equal to the product of incomplete stars at the bottom

General rules

The code is defined on a manifold with two complementary boundaries:

$$D_{z}^{1} = \text{Cycles} \left(M_{j} B_{mj} Z_{2} \right)_{j}$$
cycles on M relative to B_{m}

(can end on β_{k})

 $D_{x} = Boundaries \left(M , \beta_{x} ; \mathbb{Z}_{2} \right)$ relative boundaries of regions: the part of the boundary that lies in β_{la} is ignored

X-type:
$$G^{\prime}(g_m)$$
, $g_m \in$

X-type:
$$G^{X}(g_{m}), \quad g_{m} \in D_{z}^{1}/D_{x} = H_{1}(M, B_{m}; \mathbb{Z}_{2})$$

Z-type: $G^{Z}(g_{e}), \quad g_{e} \in D_{x}^{1}/D_{z} = H_{1}(M, B_{e}; \mathbb{Z}_{2}) \cong H^{1}(M, B_{m}; \mathbb{Z}_{2})$

$$(M,B_m; \mathbb{Z}_2)$$

Transition between rough and smooth boundary in terms of TFIM

rough boundary is undisturbed
 ⇒∞: active spins freeze in the +> state

operators $\boldsymbol{c_{j}^{x}}$ act on the "active" spins, denoted by hollow circles

$$H = - \Im \sum_{S} A_{S} - \Im \sum_{P} B_{P} - h \sum_{j=1}^{L} G_{j}^{x}$$

commutes with all other terms except the incomplete plaquettes

$$B_{j+\frac{1}{2}}$$
 (j=1,.., l-1)

The operator G_j^x , $B_{j+\frac{1}{2}}$ have the same commutation relations as G_j^x , $G_j^z G_{j+1}^z$ in TFIM

The transverse field Ising model has a phase transition at h=J. Therefore, the rough boundary in our model has the same topological properties as in the surface code for h < J. In the opposite case, h>J, the boundary becomes equivalent to smooth boundary.

Boundary excitations and domain walls

Smooth boundary:

Rough boundary:

Fusion rules

$$\alpha\mapsto \widetilde{\alpha}$$
: bulk particle of type α becomes a boundary particle of type $\widetilde{\alpha}$

 $\begin{cases} 1, e & \mapsto 1 \\ m.e & \mapsto \varepsilon \end{cases}$

The fusion outcome depends on the state of the logical qubit:

if $(1/\sqrt{2}) = (1/\sqrt{2})$, then the domain walls fuse into 1;

if $\chi |\psi\rangle = |\psi\rangle$, then they fuse into ξ

smooth on the left, rough on the right

the other way around

6 × 6 = 1+8

An interesting process, in which a bulk ξ -particle splits into m and e, which disappear at suitable boundaries. Thus, one can

 $6_{+}^{+} \times 6_{-}^{-} = 6_{-}^{-} \times 6_{+}^{+} = 1 + 8$

 $\xi \times Q^{+} = Q^{+} \times \xi = Q^{+}$

E x 6 = 6 x E = 6

fuse an & -particle with a domain wall not even touching it!

How do we actually move and fuse domain walls?

Moving \mathcal{E}_{\downarrow} one step to the right $U = CNOT[3,1] \cdot CNOT[2,1]$

Fusing

At the last step, we remove a qubit and replace the full star operator
$$A_s$$
 with the incomplete star $\widetilde{A_s}$.

If the qubit is in the $|+\rangle$ state, then $\widetilde{A_s}|\psi\rangle = |\psi\rangle$. Otherwise, $\widetilde{A_s}|\psi\rangle = -|\psi\rangle$, and hence, there is a remnant \mathcal{E} -particle.

Some associativity relations

Splitting \mathcal{E}_{+} into \mathcal{E}_{+} , \mathcal{E}_{-} , \mathcal{E}_{+} is equivalent to adding a logical qubit

Its initial state depends on the exact splitting process:

$$|0\rangle = \begin{vmatrix} c_{+} & c_{-} & c_{+} \\ c_{+} & c_{-} & c_{+} \end{vmatrix}$$

$$|1\rangle = \begin{vmatrix} c_{+} & c_{-} & c_{+} \\ c_{+} & c_{-} & c_{+} \end{vmatrix}$$

$$|-\rangle = \begin{vmatrix} c_{+} & c_{-} & c_{+} \\ c_{+} & c_{-} & c_{+} \end{vmatrix}$$
Thus,
$$|-\rangle = \frac{1}{\sqrt{6}} \begin{vmatrix} c_{+} & c_{-} & c_{+} \\ c_{+} & c_{-} & c_{+} \end{vmatrix}$$

