1 Лист 2

Задача 1.1. Для задачи 2 необходимо сформировать последовательность из 32 нулей и единиц по следующему правилу. Надо взять первые 8 букв своей фамилии, добавив в случае слишком короткой фамилии еще и имя, заменить каждую букву ее номером в алфавите по модулю 16 и записать получившиеся числа от 0 до 15 в виде четырехзначных двоичных чисел, получится как раз $4 \times 8 = 32$ знака. Разбить полученную последовательность на две последовательности по 16 знаков и рассмотреть две булевы функции от четырех переменных, f_1 и f_2 , значения которых при лексикографическом упорядочении переменных составляют две полученные последовательности.

Для каждой из функций f_1 , f_2 найти сокращенные ДНФ и КНФ и все тупиковые ДНФ и КНФ, указав также ядровые ДНФ и КНФ. (При желании можно вместо сокращенных и ядровых КНФ для краткости указать сокращенные и ядровые ДНФ для двойственных функций.) Предложить для каждой функции наиболее экономную формулу и реализующую ее схему из функциональных элементов. (Как правило для функций от 4 переменных удается найти схему из не более чем 11 элементов.)

Доказательство. Мозговой = [14, 0, 9, 4, 0, 3, 0, 11], то есть первая половина [1110, 0000, 1001, 0100] и вторая [0000, 0011, 0000, 1011]. Рассмотрим функцию f_1 , её таблица истинности имеет вид

t_1	t_2	t_3	t_4	f_1	f_1^*
0	0	0	0	1	1
0	0	0	1	1	1
0	0	1	0	1	0
0 0 0 0 0 0	0	1	1 0	0	1
0	1	0	0	0	0
0	1	0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1
0	1	1	0	0	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	1	0	0
-					TT =

Тогда совершенная ДНФ имеет вид $\overline{t_1t_2t_3t_4} \vee \overline{t_1t_2t_3}t_4 \vee \overline{t_1t_2}t_3\overline{t_4} \vee t_1\overline{t_2}t_3\overline{t_4} \vee t$

Максимальные интервалы: $(\overline{t_1t_2t_3}), (\overline{t_1t_2}t_3\overline{t_4}), (t_1\overline{t_2}t_3\overline{t_4}), (t_1\overline{t_2}t_3\overline{t_4}), (t_1\overline{t_2}t_3\overline{t_4}), (t_1\overline{t_2}t_3\overline{t_4})$ и сокращенная ДНФ имеет вид $\overline{t_1t_2t_3} \vee \overline{t_1t_2}t_3\overline{t_4} \vee t_1\overline{t_2t_3}t_4 \vee t_1\overline{t_2}t_3\overline{t_4} \vee t_1\overline{t_2}t_3\overline{t_4}$.

 $f_1^* = [1101, 0110, 1111, 1000], \text{ ее ДНФ} \text{ имеет вид } \overline{t_1t_2t_3t_4} \vee \overline{t_1t_2t_3}t_4 \vee \overline{t_1t_2}t_3t_4 \vee \overline{t_1}t_2\overline{t_3}t_4 \vee \overline{t_1}t_2\overline{t_3}t_4$

Сокращенная ДНФ f_1^* имеет вид: $\overline{t_1t_2t_3} \lor t_1\overline{t_2}t_3 \lor t_1\overline{t_2}t_3 \lor \overline{t_1t_2}t_3t_4 \lor \overline{t_1}t_2\overline{t_3}t_4 \lor \overline{t_1}t_2t_3\overline{t_4} \lor t_1t_2\overline{t_3}t_4$

И КНФ f_1 тогда имеет вид $(\overline{t_1} \lor \overline{t_2} \lor \overline{t_3})(t_1 \lor \overline{t_2} \lor \overline{t_3})(t_1 \lor \overline{t_2} \lor t_3)(\overline{t_1} \lor \overline{t_2} \lor t_3)(\overline{t_1} \lor \overline{t_2} \lor t_3)(\overline{t_1} \lor \overline{t_2} \lor t_3)(\overline{t_1} \lor \overline{t_2} \lor \overline{t_3} \lor \overline{t_4})(\overline{t_1} \lor t_2 \lor \overline{t_3} \lor \overline{t_4})$

$t_1t_2\backslash t_3t_4$	0.0	0 1	1 1	10
0 0	1	1	1	0
0 1	0	1	0	1
1 1	1	0	0	0
1 0	1	1	1	1

Ядровая ДНФ f_1^* : $\overline{t_2t_3} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1t_3}t_4 \vee t_1\overline{t_3}t_4$ и КНФ f_1^* : $(\overline{t_2} \vee \overline{t_3})(\overline{t_1} \vee t_2 \vee t_3 \vee \overline{t_4})(\overline{t_1} \vee \overline{t_3} \vee t_4)(t_1 \vee \overline{t_3} \vee \overline{t_4})$.

Тупиковые ДНФ для f_1^* :

$$\begin{split} & \overline{t_2t_3} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1t_3}t_4 \vee t_1\overline{t_3}t_4 \vee \overline{t_1t_2}t_4 \vee t_1\overline{t_2}t_3 \\ & \overline{t_2t_3} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1t_3}t_4 \vee t_1\overline{t_3}t_4 \vee \overline{t_1t_2}t_4 \vee t_1\overline{t_2}t_4 \\ & \overline{t_2t_3} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1t_3}t_4 \vee t_1\overline{t_3}t_4 \vee \overline{t_2}t_3t_4 \vee t_1\overline{t_2}t_4 \\ & \overline{t_2t_3} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_3\overline{t_4} \vee t_1\overline{t_3}t_4 \vee \overline{t_1}\overline{t_3}t_4 \vee \overline{t_1}\overline{t_2}t_3 \\ & \overline{t_2}t_3 \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_3\overline{t_4} \vee \overline{t_1}\overline{t_3}t_4 \vee \overline{t_1}\overline{t_2}t_3 \end{split}$$

Соответствующие тупиковые КНФ для f_1 :

```
(\overline{t_2} \vee \overline{t_3})(\overline{t_1} \vee t_2 \vee t_3 \vee \overline{t_4})(\overline{t_1} \vee \overline{t_3} \vee t_4)(t_1 \vee \overline{t_3} \vee \overline{t_4})(\overline{t_1} \vee \overline{t_2} \vee t_4)(t_1 \vee \overline{t_2} \vee t_3)
```

$$(\overline{t_2} \vee \overline{t_3})(\overline{t_1} \vee t_2 \vee t_3 \vee \overline{t_4})(\overline{t_1} \vee \overline{t_3} \vee t_4)(t_1 \vee \overline{t_3} \vee \overline{t_4})(\overline{t_1} \vee \overline{t_2} \vee t_4)(t_1 \vee \overline{t_2} \vee t_4)$$

$$(\overline{t_2} \vee \overline{t_3})(\overline{t_1} \vee t_2 \vee t_3 \vee \overline{t_4})(\overline{t_1} \vee \overline{t_3} \vee t_4)(t_1 \vee \overline{t_3} \vee \overline{t_4})(\overline{t_2} \vee t_3 \vee t_4)(t_1 \vee \overline{t_2} \vee \overline{t_4})$$

$$(\overline{t_2} \vee \overline{t_3})(\overline{t_1} \vee t_2 \vee t_3 \vee \overline{t_4})(\overline{t_1} \vee \overline{t_3} \vee t_4)(t_1 \vee \overline{t_3} \vee \overline{t_4})(\overline{t_2} \vee t_3 \vee t_4)(t_1 \vee \overline{t_2} \vee t_3)$$

Сокращенную ДНФ можно дополнительно привести к виду: $\overline{t_1t_2}(\overline{t_3} \lor t_3\overline{t_4}) \lor t_1t_2\overline{t_3}t_4 \lor t_1\overline{t_2}(\overline{t_3t_4} \lor t_3t_4)$ или же, воспользовавшись эквивалентностью, записать $(t_1 \Leftrightarrow t_2 \Leftrightarrow \overline{t_3} \Leftrightarrow t_4) = A$ и $A \lor \overline{t_1t_2t_3} \lor t_1\overline{t_2}t_3\overline{t_4} \lor t_1\overline{t_2}t_3\overline{t_4}$, что равно $A \lor \overline{t_2}t_3(\overline{t_1} \lor t_1\overline{t_4}) \lor t_1\overline{t_2}t_3\overline{t_4} = A \lor \overline{t_2}(\overline{t_3}(\overline{t_1t_4}) \lor t_1\overline{t_3}\overline{t_4})$

Рис. 1: схема f_1

Рассмотрим функцию f_2 , её таблица истинности имеет вид

		E.	T	. 1	J 2
t_1	t_2	t_3	t_4	f_2	f_2^*
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0 0 0	1
0	0	1	1		0
0	1	0	0	0	1
0 0 0 0	1	0	1	0	1
0	1	1	0	1	1
0	1	1	1	1	1
1 1	0	0	0		0
1	0	0	1	0	0
1	0	1	0	0	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	1	1
1	1	1	1	1	1
				•	

Тогда совершенная ДНФ имеет вид $\overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_2t_3t_4 \vee t_1t_2\overline{t_3}\overline{t_4} \vee t_1t_2t_3\overline{t_4} \vee t_1t_2t_3\overline{t_4} \vee t_1t_2t_3\overline{t_4}$, ее носитель $N_f = \{(0110), (0111), (1100), (1110), (1111)\}.$

Максимальные интервалы: $(t_2t_3), (t_1t_2\overline{t_3t_4})$ и сокращенная ДНФ имеет вид $t_2t_3 \vee t_1t_2\overline{t_3t_4}$

 $f_2^* = [0010, 1111, 0011, 1111], \text{ ее ДНФ имеет вид } \overline{t_1t_2}t_3\overline{t_4} \vee \overline{t_1}t_2\overline{t_3}t_4 \vee \overline{t_1}t_2\overline{t_3}\overline{t_4} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_2t_3\overline{t_4} \vee \overline{t_1}t_2\overline{t_3}\overline{t_4} \vee \overline{t_1}\overline{t_2}\overline{t_3}\overline{t_4} \vee \overline{t_1}\overline{t_2}\overline{t_3}\overline{t_$

Сокращенная ДНФ f_2^* имеет вид: $t_2 \lor t_1\overline{t_2}t_3 \lor \overline{t_1t_2}t_3\overline{t_4}$

И КНФ f_2 тогда имеет вид $t_2(t_1 \vee \overline{t_2} \vee t_3)(\overline{t_1} \vee \overline{t_2} \vee t_3 \vee \overline{t_4})$

$t_1t_2\backslash t_3t_4$	0.0	0 1	1 1	10
0.0	0	0	0	1
0 1	1	1	1	1
1 1	1	1	1	1
1 0	1	0	1	0

Ядровая ДНФ f_2^* : $t_2 \vee t_1 \overline{t_3 t_4} \vee t_1 t_3 t_4 \vee \overline{t_1} t_3 \overline{t_4}$ и КНФ f_2 : $(t_2)(t_1 \vee \overline{t_3} \vee \overline{t_4})(t_1 \vee t_3 \vee t_4)(\overline{t_1} \vee t_3 \vee \overline{t_4})$.

Тупиковые ДНФ для $f_2^*\colon t_2\vee t_1\overline{t_3t_4}\vee t_1t_3t_4\vee \overline{t_1}t_3\overline{t_4}.$

Соответствующие тупиковые КНФ для f_2 : $(t_2)(t_1 \vee \overline{t_3} \vee \overline{t_4})(t_1 \vee t_3 \vee t_4)(\overline{t_1} \vee t_3 \vee \overline{t_4})$.

Сокращенную ДНФ можно привести к виду:

 $\overline{t_1}t_2t_3\overline{t_4}\vee\overline{t_1}t_2t_3t_4\vee t_1t_2\overline{t_3}\overline{t_4}\vee t_1t_2t_3\overline{t_4}\vee t_1t_2t_3t_4$

$$= \overline{t_4}(\overline{t_1}t_2t_3 \vee t_1t_2\overline{t_3} \vee t_1t_2t_3) \vee t_2t_3t_4(t_1 \vee \overline{t_1})$$

$$= t_2 \overline{t_4} (\overline{t_1} t_3 \vee t_1 \overline{t_3} \vee t_1 t_3) \vee t_2 t_3 t_4$$

$$= t_2 \overline{t_4} (\overline{t_1} t_3 \vee t_1 (t_3 \vee \overline{t_3})) \vee t_2 t_3 t_4$$

$$=t_2\overline{t_4}(\overline{t_1}t_3\vee t_1)\vee t_2t_3t_4$$

 t_1 t_2 t_3 t_4 t_5

Рис. 2: схема f_2