# Lecture 7 Camera and Basic Viewing Projections

**CS174A** 



# **Traditional (Manual) Animation**

Every frame is created individually by a human

- That's 24 frames/sec at traditional movie speeds
  - Roughly 130,000 frames for a 1.5 hr movie

A general pipeline evolved to support efficiency

- Start with a storyboard
  - A set of drawings outlining the animation
- Senior artists sketch important frames Keyframes
  - Typically occur when motion changes
- Lower-paid artists draw the rest of the frames in-betweens
- · All line drawings are painted on cels
  - · Generally composed in layers, hence the use of acetate
  - Background changes infrequently, so it can be reused
- Photograph finished cel-stack onto film



# **Computer Generated Animations**

#### **Physical Simulations**

- We usually want realistic looking motion
  - People are extremely experienced at observing body language
  - They pick up on unnatural human motion instantly
- Some of the methods we've discussed can achieve realism
  - If our animator makes good enough key frames
  - Or we write good enough procedural scripts
  - Or we strap a bunch of sensors on an actor
- But there's another good alternative
  - Why not just simulate the relevant physical laws?
  - Then we'll know that the motion is natural
  - And we'll still have decent control over it

#### **Basic Particles**

- Properties
  - mass
  - Position, velocity, acceleration
  - color
  - temperature
  - age
- Differential equations govern these properties
- Collisions and other constrains directly modify position and/or velocity

# **External Forces**

Gravitational force

$$\mathbf{f}_{gravity} = m_i \mathbf{a} \qquad \mathbf{a} = \begin{bmatrix} 0 \\ 0 \\ -9.8m/s^2 \\ 0 \end{bmatrix}$$

#### **Dynamics**

- Basic governing equation
  - Newton's Laws of Physics

$$\mathbf{f} = m\mathbf{a} \rightarrow \frac{d^2\mathbf{x}}{dt^2} = \frac{\mathbf{f}}{m} \text{ or } \ddot{\mathbf{x}} = \frac{\mathbf{f}}{m}$$

- And in general we must solve them numerically (discretize time)
- **f** is a sum of a number of forces due to
  - Gravity: constant downward force proportional to mass
  - Simple drag (damping force): force proportional to negative velocity
  - Particle interactions: particles mutually attract and/or repell
  - Wind forces
  - User interaction

# **Damping Force**

Behaves like viscous drag on all motion

$$\mathbf{f}_{\text{damping}} = -\gamma_{\dot{l}} \, \dot{\mathbf{x}}_{\dot{l}}$$



•  $\gamma_i$  is the damping coefficient

#### **Particle interactions - Discrete Fluid Model**

The total force,  $\mathbf{g}_i$ , on a particle, i, due to all other particles (important in fluid modeling)

$$\mathbf{g}_{i}(t) = \sum_{j \neq i} \mathbf{g}_{ij}(t)$$

$$\mathbf{g}_{ij}(t) = m_{i}m_{j}(\mathbf{x}_{i} - \mathbf{x}_{j}) \left( -\frac{\alpha}{(r_{ij} + \zeta)^{a}} + \frac{\beta}{(r_{ij})^{b}} \right)$$

a=2 and b=4

 $\alpha$  and  $\beta$  determine the strength of the attraction and repulsion forces

$$r_{ij} = \left\| \mathbf{x}_j - \mathbf{x}_i \right\|$$

 $\zeta$  minimum required separation between particles

# **Particle Dynamics**

Set of particles modeled as point masses in motion

- m; mass of particle i
- x,: position of particle i
- v<sub>i</sub>: velocity of particle i



Compute positions from Newton's second law

$$\mathbf{f}_i(t) = m_i \mathbf{a}_i(t)$$

$$\mathbf{a}_{i}^{t} = \frac{f_{i,total}^{t}}{m_{i}}$$
$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \Delta t \, \mathbf{a}_{i}^{t}$$

 $\mathbf{f}_{i}$ : sum of all forces acting on particle

$$\mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \Delta t \, \mathbf{a}_i^t$$

$$\mathbf{x}_{i}^{t+1} = \mathbf{x}_{i}^{t} + \Delta t \, \mathbf{v}_{i}^{t+1}$$

Translate by  $\Delta t \mathbf{v}_{i}^{t+}$ 

#### **Deformable Models**

Continuum mechanics

- Deformable solid models
  - Cloth
  - Rubber
  - Soft tissues (muscle, skin, hair, ...)
- Fluid models
  - Water (oceans, puddles, rain, ...)
- Gas-like models
  - Steam, smoke, fire, ...

#### **Deformable Solids: Mass-Spring-Damper Systems**

Useful for building deformable models

1-dimensional:



2-dimensional:



3-dimensional:



# **System Dynamics / Total Force Computation**

1. For each nodal mass sum up all the forces:

$$\mathbf{F}_{i,\text{total}} = -\gamma_{i} \dot{\mathbf{x}}_{i} + \mathbf{s}_{i} + \mathbf{f}_{i}$$

•  $\gamma$  , is damping coefficient

- **s**<sub>i</sub> total internal force on the node *i* due to neighboring nodes connected by springs
- **f**<sub>i</sub> is the external force at node *i* (ie., gravity, interaction forces)
- 2. Compute the acceleration, velocity and position from Newton's 2<sup>nd</sup> Law of Dynamics

$$\mathbf{F}_{i,\text{total}} = m_i \ddot{\mathbf{x}}_i$$

# **Internal Non-zero Length Spring Forces**

#### Spring Forces:

 $-\mathbf{s}_i(t)$  total force on the node i due to springs connecting it to neighboring nodes  $j \in N_i$ 

$$\mathbf{s}_{i}(t) = \sum_{j \in N_{i}} \mathbf{s}_{ij}$$

- the force spring ij exerts on node i

$$\mathbf{s}_{ij} = k_{ij} e_{ij} \frac{\mathbf{d}_{ij}}{\|\mathbf{d}_{ii}\|}$$

 $\mathbf{d}_{ij} = \mathbf{x}_{i} - \mathbf{x}_{i}$  node distance/separation

**d***ij* actual spring length

 $e_{ij} = \|\mathbf{s}_{ij}\| - l_{ij}$  spring deformation,  $l_{ij}$  natural spring length

 $K_{ij}$  is the spring constant for the spring connecting node i and node j

# Simple Ideal Spring

- Ideal zero length spring
- Force pulls points together



$$\mathbf{f}_{i}^{t} = \mathbf{f}_{i}^{t-1} + \mathbf{s}_{i}^{t}$$

$$\mathbf{f}_{j}^{t} = \mathbf{f}_{j}^{t-1} - \mathbf{s}_{ij}^{t}$$

 $\mathbf{s}_{ij} - \mathbf{s}_{ij}$   $\mathbf{s}_{ij} = k_{ij} (\mathbf{x}_i - \mathbf{x}_j)$   $\mathbf{f}_i^t = \mathbf{f}_i^{t-1} + \mathbf{s}_{ij}^t$   $\mathbf{s}_{ij} = k_{ij} (\mathbf{x}_i - \mathbf{x}_j)$   $\mathbf{distance}$   $\mathbf{spring constant}$ 



Strength proportional to distance

#### **Integrating the Equations of Motion Through Time**

The explicit Euler time-integration method

• For each node *i* do:

• Step 1: 
$$\mathbf{a}_{i}^{t} = \frac{F_{i,total}^{t}}{m_{i}}$$

• Step 2: 
$$\mathbf{v}_i^{t+1} = \mathbf{v}_i^t + \Delta t \, \mathbf{a}_i^t$$

Step 3: 
$$\mathbf{X}_{i}^{t+1} = \mathbf{X}_{i}^{t} + \Delta t \, \mathbf{V}_{i}^{t+1}$$
Translate by  $\Delta t \, \mathbf{V}_{i}^{t}$ 







#### **Lecture Outline**

- Camera Transformations
- Projections
  - Orthographic projection (simpler)
  - Orthographic Viewing Cube
  - Perspective projection, basic idea
  - Perspective Viewing Frostrum
  - Reading chapter 7

# **Motivation**

- We have used transforms to place objects in a scene, but all that is in 3D. We still need to make a 2D picture
- How do we do this? Do what eyes/cameras do. Project 3D to 2D.
- This lecture
  - viewing transforms where is the camera, what is it pointing at?
    - where is the camera, what is it pointing at?
  - Perspective/orthograpic projection: 3D to 2D
    - flatten to image

# Rendering a 3D Scene From the Point of View of a Virtual Camera























# **Building M<sub>cam</sub> Inverse**

Invert the smart way

$$\mathbf{M}_{\mathsf{cam}}^{-1} \ = \ \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{pmatrix}^{-1}$$

# Building $M_{cam}$ Inverse

Invert the smart way

$$\mathbf{M}_{\mathsf{Cam}}^{-1} \ = \ \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \\ = \ \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

# **Building M<sub>cam</sub> Inverse**

Invert the smart way

$$\mathbf{M}_{\mathsf{Cam}}^{-1} = \begin{bmatrix} i_x & j_x & k_x & 0 \\ i_y & j_y & k_y & 0 \\ i_z & j_z & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 & P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \mathbf{T}_{\mathsf{ranspose}} & & & \\ i_x & i_y & i_z & 0 \\ j_x & j_y & j_z & 0 \\ k_x & k_y & k_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -P_{\mathsf{eye}_x} \\ 0 & 1 & 0 & -P_{\mathsf{eye}_y} \\ 0 & 0 & 1 & -P_{\mathsf{eye}_z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P_{\mathsf{VCS}} = \mathbf{M}_{\mathsf{Cam}}^{-1} P_{\mathsf{WCS}}$$

# **Camera Specification in OpenGL**

 $gluLookAt\;(\;eye\_x,\;eye\_y,\;eye\_z,\;ref\_x,\;ref\_y,\;ref\_z,\;up\_x,\;up\_y,\;up\_z\;)$ 

The resulting matrix *post-multiplies* the modeling transformation matrix M

```
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(ex, ey, ez, rx, ry, rz, ux, uy, uz);
// modeling transformations go here
```



# **Summary: Modelview Transformations**

Camera transformation as a change of basis

$$P_{\text{VCS}} = \mathbf{M}_{\text{cam}}^{-1} \mathbf{M}_{\text{mod}} P_{\text{OCS}}$$

Modelview Transformation

- Camera Transformations
- Projections
  - Orthographic projection (simpler)
  - Orthographic Viewing Cube
  - Perspective projection, basic idea
  - Perspective Viewing Frostrum



# **Projections**

- To lower dimensional space (here  $3D \rightarrow 2D$ )
- Preserve straight lines
- Trivial example: Drop one coordinate (Orthographic)







# **Orthographic Example**

- Simply project onto xy plane, then
- Drop z coordinate



# **Camera Coordinate System**

Camera at (0,0,0)Looking down -z axis Image plane = near plane Image plane at z = -N



# **Orthographic Projection**

$$P'_{x} = P_{x}$$
 $P'_{y} = P_{y}$ 
 $P'_{z} = -N$ 

Matrix Form:

 $z = -N$ 

Image plane

$$\begin{bmatrix} P'_x \\ P'_y \\ P'_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -N \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

- Camera Transformations
- Projections
  - Orthographic projection (simpler)
  - Orthographic Viewing Cube
  - Perspective projection, basic idea
  - Perspective Viewing Frostrum

#### **Motivation**

- Viewing volumes are used for clipping (determines if an object is a candidate to be rendered)
- Restricts domain of **z** stored for visibility test

# **Orthographic Matrix**

- First center cuboid by translating
- Then scale into unit cube





# Transformation Matrix Scale Translation (centering) $\mathbf{M}_{0} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & -\frac{l+r}{2} \\ 0 & 1 & 0 & -\frac{t+b}{2} \\ 0 & 0 & 1 & -\frac{t+b}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $\mathbf{M}_{0} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 2 & \frac{t+b}{t-b} & \frac{2}{t+b} & \frac{t+b}{t-b} \end{pmatrix}$

#### **Caveats**

- Looking down –z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally



# **Orthographic Transformation - Final Result**

Opengl Implementation

$$\mathbf{M}_{0} = \begin{pmatrix} \frac{2}{r-I} & 0 & 0 & -\frac{r+I}{r-I} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{0} = \begin{vmatrix} \frac{2}{r-l} & -\frac{r+l}{r-l} \\ \frac{2}{t-b} & -\frac{t+b}{t-b} \\ \frac{-2}{f-n} & -\frac{f+n}{f-n} \end{vmatrix}$$

- Looking down -z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally

# **Final Result**

$$\mathbf{M}_{0} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix} glm :: ortho = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Looking down -z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally

- Camera Transformations
- Projections
  - Orthographic projection (simpler)
  - Orthographic Viewing Cube
  - Perspective projection, basic idea
  - Perspective Viewing Frostrum

# **Perspective Projection**

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point



#### **Pinhole Camera**



- Center of Projection (one point)
- Very common model in graphics (but real cameras use lenses; a bit more complicated)

# **Overhead View of Our Screen**



Looks like we've got some nice similar triangles here?

$$\frac{P_z}{P_z} = \frac{P_y'}{P_z'} \implies P_y' = \frac{NP_y}{-P_z}$$

$$\begin{bmatrix} P_x' \\ P_y' \\ P_y' \\ P_z' \\ 1 \end{bmatrix} = \begin{bmatrix} P_x N/(-P_z) \\ P_y N/(-P_z) \\ -N \\ 1 \end{bmatrix}$$

# In Homogeneous Matrix Form

Reminder:

$$\left[ \begin{array}{c} P_x \\ P_y \\ P_z \end{array} \right] \rightarrow \left[ \begin{array}{c} P_x \\ P_y \\ P_z \\ 1 \end{array} \right] \begin{array}{c} \longrightarrow \\ \times w \end{array} \left[ \begin{array}{c} w P_x \\ w P_y \\ w P_z \\ w \end{array} \right] \xrightarrow{\text{homogenize}} \left[ \begin{array}{c} P_x \\ P_y \\ P_z \\ 1 \end{array} \right] \rightarrow \left[ \begin{array}{c} P_x \\ P_y \\ P_z \end{array} \right]$$

Perspective projection:

$$\begin{bmatrix} P'_x \\ P'_y \\ P'_z \\ 1 \end{bmatrix} = \begin{bmatrix} P_x N/(-P_z) \\ P_y N/(-P_z) \\ -N \\ 1 \end{bmatrix}$$

# **In Homogeneous Matrix Form**

Reminder:

$$\left[\begin{array}{c} P_x \\ P_y \\ P_z \end{array}\right] \rightarrow \left[\begin{array}{c} P_x \\ P_y \\ P_z \\ 1 \end{array}\right] \xrightarrow{} \times w \left[\begin{array}{c} wP_x \\ wP_y \\ wP_z \\ w \end{array}\right] \xrightarrow[\text{nonogerize}]{} \left[\begin{array}{c} P_x \\ P_y \\ P_z \\ 1 \end{array}\right] \rightarrow \left[\begin{array}{c} P_x \\ P_y \\ P_z \end{array}\right]$$

Perspective projection:

$$\begin{bmatrix} P'_x \\ P'_y \\ P'_z \\ 1 \end{bmatrix} = \begin{bmatrix} P_x N/(-P_z) \\ P_y N/(-P_z) \\ -N \\ 1 \end{bmatrix} \xrightarrow{\times} \begin{bmatrix} P_x \\ P_y \\ P_z \\ -P_z/N \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/N & 0 \end{bmatrix} \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

Therefore:

$$\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/N & 0 \end{array} \right] \left[ \begin{array}{c} P_x \\ P_y \\ P_z \\ 1 \end{array} \right] \overset{\text{and then:}}{\underset{\text{homogenize}}{-}} \left[ \begin{array}{c} P_x' \\ P_y' \\ P_z' \\ 1 \end{array} \right]$$

Homogenization step "Perspective Division (divide by  $w = -P_z/N$ )

- Camera Transformations
- Projections
  - Orthographic projection (simpler)
  - Orthographic Viewing Cube
  - Perspective projection, basic idea
  - Perspective Viewing Frustrum





#### **Motivation**

- Viewing volumes are used for clipping (determines if an object is a candidate to be rendered)
- Restricts domain of z stored for visibility test

# • standardized viewing volume representation Orthographic VCS y=bottcm 7=-nnar V-tup VCS x-light V=12F And (1:-1) y=bottcm Perspective Perspective

# **Why Canonical View Volumes?**

- permits standardization
  - clipping
    - easier to determine if an arbitrary point is enclosed in volume with canonical view volume vs. clipping to six arbitrary planes
  - rendering
    - projection and rasterization algorithms can be reused

# **Normalized Device Coordinates**

- convention
  - viewing frustum mapped to specific parallelepiped
    - Normalized Device Coordinates (NDC)
    - same as clipping coords
  - only objects inside the parallelepiped get rendered
  - which parallelepiped?
    - depends on rendering system











## **Orthographic Transformation - Final Result**

Opengl Implementation

$$\mathbf{M}_{O} = \begin{pmatrix} \frac{2}{r-I} & 0 & 0 & -\frac{r+I}{r-I} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{M}_{O} = \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{M}_{O} = \begin{pmatrix} \frac{2}{r-l} & -\frac{r+l}{r-l} \\ \frac{2}{t-b} & -\frac{t+b}{t-b} \\ \frac{2}{n-f} & -\frac{f+n}{n-f} \end{pmatrix}$$

- Looking down -z, f and n are negative (n > f)
- OpenGL convention: positive n, f, negate internally

# **The Projection Matrix**

$$\mathbf{M}_{\text{proj}} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{\text{proj}} = \mathbf{M}_{\text{O}} \mathbf{M}_{\text{P}} = \begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0\\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0\\ 0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n}\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

# **The Projection Matrix**

Opengl  $\mathbf{M}_{\text{proj}} = \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{f+n}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix}$ Implementation

$$\mathbf{M}_{\text{proj}} = \mathbf{M}_{\text{O}} \mathbf{M}_{\text{P}} = \begin{vmatrix} \frac{2n}{r-l} & 0 & \frac{l+r}{l-r} & 0 \\ 0 & \frac{2n}{t-b} & \frac{b+t}{b-t} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & \frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{vmatrix}$$

