Лекція 22. Способи задання графів.

Способи задання графів

Графічний опис графів ϵ незручним для їх аналізу на комп'ютерах. Тому розглянемо табличні способи задання графів.

Надалі будемо розглядати тільки скінченні графи, у яких множини вершин $V = \{v_1, ..., v_n\}$ і ребер $E = \{e_1, ..., e_m\}$ є скінченними.

Матриця суміжності вершин графа G(V) (позначається $M(G) = \{m_{ij}\}$) — це квадратна матриця розміру $n \times n$, в якій m_{ij} — кількість ребер у графі G, які з'єднують вершину v_i з вершиною v_i . Якщо граф G неорієнтований, то

$$m_{ij}=m_{ji}$$
,

тобто матриця $M \in$ симетричною.

На рис. 16 зображений деякий неорієнтований граф; відповідна матриця суміжності вершин наведена в табл. 20.

Рис. 16. Заданий граф

Табл. 20. Матриця суміжності вершин графа з рис. 16

	1	2	3	4	5	6	7
1	0	1	1	0	0	0	1
2	1	0	1	0	0	0	0
3	1	1	0	1	0	0	0
4	0	0	1	0	1	0	0
5	0	0	0	1	0 0 0 1 0 1	1	1
6	0	0	0	0	1	0	1
7	1	0	0	0	1	1	0

Граф також може бути описаний за допомогою матриці інцидентності (позначається $K(G) = \{k_{ij}\}$), яка має n рядків (вершини) і m стовпців (ребра). Для неорієнтованого графу $K_{ij} = 1$, якщо вершина v_i інцидентна ребру e_j ; в протилежному випадку — $K_{ij} = 0$.

Для орієнтованого графа $K_{ij} = 1$, якщо v_i — початкова вершина ребра e_j ; $K_{ij} = -1$, якщо v_i — кінцева вершина ребра e_j ; $K_{ij} = 0$, якщо вершина v_i не інцидентна ребру e_j .

У табл. 21 наведена матриця інцидентності для неорієнтованого графа, зображеного на рис. 16.

	I	II	III	IV	V	VI	VII	VIII	IX
1	1	1	1	0	0	0	0	0	0
2	0	1	0	1	0	0	0	0	0
3	0	0	1	1	1	0	0	0	0
4	0	0	0	0	1	1	0	0	0
5	0	0	0	0	0	1	1	0	1
6	0	0	0	0	0	0	1	1	0
7	1	0	0	0	0	0	0	1	1

Табл. 21. Матриця інцидентності для графа з рис. 16

На рис. 17 заданий деякий орієнтований граф. Матриця інцидентності для вказаного графа наведена в табл. 22.

Неорієнтований граф без петель G може бути також описаний квадратною матрицею суміжності ребер (позначається $L(G) = \{l_{ij}\}$) розміром $m \times m$. У цьому разі $l_{ij} = 1$, якщо $i \neq j$ й у ребер e_i та e_j є спільна вершина. У протилежному випадку маємо $l_{ij} = 0$.

Для графа, зображеного на рис. 16, відповідна матриця суміжності ребер наведена в табл. 23.

								Табл. 23		
	I	II	III	IV	V	VI	VII	VIII	IX	
I	0	1	1	0	0	0	0	1	1	
II	1	0	1	1	0	0	0	0	0	
III	1	1	0	1	1	0	0	0	0	
IV	0	1	1	0	1	0	0	0	0	
V	0	0	1	1	0	1	0	0	0	
VI	0	0	0	0	1	0	1	0	1	
VII	0	0	0	0	0	1	0	1	1	
VIII	1	0	0	0	0	0	1	0	1	
IX	1	0	0	0	0	1	1	1	0	

Степінь вершини графа

Нехай G(V) — неорієнтований граф. Степенем $\rho(a)$ деякої вершини $a \in V$ називається кількість ребер графа, інцидентних цій вершині.

Якщо граф заданий матрицею суміжності вершин, то

$$\rho(v_i) = \sum_{j=1}^n M_{ij} .$$

Для матриці інцидентності аналогічний вираз має вигляд

$$\rho(v_i) = \sum_{i=1}^n N_{ij}.$$

Число ребер у графі G позначимо через $v_E = v_E(G)$. При підрахунку суми $\sum_{i=1}^n \rho(v_i)$ кожне ребро $e(v_i, v_j)$, графа G підраховується двічі: один раз – як таке, що з'єднує вершину v_i з вершиною v_j , а другий раз – як таке, що з'єднує v_j з v_i . Тому отримуємо

$$2v_e = \sum_{i=1}^n \rho(v_i), \tag{1}$$

тобто сума степенів вершин будь-якого графа дорівнює подвоєному числу його ребер. Формула (1) залишається правильною і для графу з петлями, якщо їх розглядати як подвійні ребра.

Оскільки в лівій частині рівності (1) стоїть парне число, то права частина також повинна бути парним числом. Цей факт формулюємо у вигляді такої леми.

Лема 2. У скінченному неорієнтованому графі без петель кількість вершин з непарним степенем ϵ парною.

Наведене твердження (і сам вираз (1)) відомі як *лема про рукостискання*. Назва походить з відомого математичного завдання: необхідно довести, що в будь-якій групі кількість людей, які потиснули руку непарній кількості інших людей, буде парним.

Граф називається однорідним степеня k, якщо $\rho(v_i) = k$, для всіх вершин $v_i \in V$. Згідно з формулою (1), в однорідному графі степеня k, який має n вершин, кількість ребер задається виразом

$$v_E = \frac{nk}{2}. (2)$$

Очевидно, що однорідний граф існує лише коли k або n є парним числом, тобто коли права частина в рівності (2) є цілим числом. На рис. 18 наведено приклади однорідних графів.

Граф на рис. 18а ϵ однорідним степеня k=3 та має n=6 вершин; кількість ребер у ньому дорівнює 9. Граф на рис. 18б ϵ однорідним степеня k=3 та має n=20 вершин; кількість ребер у ньому дорівнює 30. Граф на рис. 18в ϵ однорідним степеня k=4 та має n=6 вершин; кількість ребер у ньому дорівнює 12.

Рис. 18. Приклади однорідних графів.

Повний граф U = U(V) – це неорієнтований граф, у якому дві довільні різні вершини з'єднані рівно одним ребром. Зрозуміло, що повний граф U(V) з n вершинами – це однорідний граф степеня n - 1. Тому кількість ребер в такому графі дорівнює

$$v_E(U) = \frac{n(n-1)}{2}. (3)$$

Зрозуміло, що повний граф існує для будь-якої кількості вершин n, бо n - 1 та n є послідовними цілими числами й одне з них обов'язково ділиться на 2. На рис. 19 подано зображення повних графів з кількістю вершин від 1 до 11. Кількість ребер у них обчислюємо згідно з виразом (3).

Так, для n=1 вершин кількість ребер у повному графі дорівнює 0. Для n=2 вершин кількість ребер у повному графі дорівнює 1. Для n=3 вершин кількість ребер у повному графі дорівнює 3. Для n=4 вершин кількість ребер у повному графі дорівнює 10. Для n=6 вершин кількість ребер у повному графі дорівнює 15. Для n=7 вершин кількість ребер у повному графі дорівнює 21. Для n=8 вершин кількість ребер у повному графі дорівнює 28. Для n=9 вершин кількість ребер у повному графі дорівнює 36. Для n=10 вершин кількість ребер у повному графі дорівнює 45. Для n=11 вершин кількість ребер у повному графі дорівнює 55.

Рис. 19. Приклади повних графів.

Повний граф з петлями $U_0 = U_0(V)$ – це повний граф, у якому до кожної вершини додана петля. Кількість ребер у повному графі з петлями дається такою рівністю:

$$v_E(U_0) = v_E(U) + n = \frac{n(n+1)}{2}.$$

Нехай тепер G(V) – орієнтований граф. Тоді через $\rho(v_i)$ і $\rho^*(v_i)$ позначають кількість ребер, які виходять з вершини v_i і входять в вершину v_i відповідно. Аналогічно попередньому кількість ребер в орієнтованому графі

$$v_e = \sum_{i=1}^n \rho(v_i) = \sum_{i=1}^n \rho * (v_i).$$