A Comparative Study of Current Clinical NLP Systems on Handling Abbreviations

Yonghui Wu¹ PhD, Joshua C. Denny² MD MS, S. Trent Rosenbloom² MD MPH, Randolph A. Miller² MD, Dario A. Giuse² Dr.Ing, Hua Xu^{1,2} PhD

Yonghui.Wu@uth.tmc.edu (yonghui.wu@Vanderbilt.edu)

- ¹ UT Health, School of Biomedical Informatics
- ² Department of Biomedical Informatics, Vanderbilt University

Motivation and Objective

- Motivation
 - Natural Language Processing (NLP) systems are widely used in clinical domain
 - How well current NLP systems correctly recognize and interpret abbreviations?
- Objective
 - Compare the performance of three well-known clinical NLP systems: MetaMap, MedLEE and cTAKES on handling abbreviations

Background

Management Architecture (UIMA) framework

Abbreviations in Clinical Notes

- Pervasive use
- Highly dynam³
- Ambiguous

Recognize and interpret

Abbreviations?

- > Ambiguous senses: "pt patient" and "pt physical ther- apy"
- Ambiguous between abbreviations and English word: "mom mother" and "mom–milk of magnesia"

Study Design

Data Set

- Discharge summaries from Vanderbilt
 Synthetic Derivative (SD), in the year of 2006
- 1,112 abbreviations and their senses were manually annotated from 32 discharge summaries

	ALL	Clinically Relevant	Ambiguous
Occurrences	1,112	855	229
UNIQUE	332	275	16

Wu Y, Rosenbloom ST, Denny JC, et al. Detecting abbreviations in discharge summaries using machine learning methods. AMIA. 2011

Expert Evaluation

 The extracted concepts (CUI or collected and presented in a w annotation interface Experts label 'True/False' for system-detected sense

Experts label 'True/False'

Experts judge without knowing the NLP system names

Experts label 'True/False' for the system-

Repeat labs here were unchanged and pt was r/o for acute MI with three neg sets of CE and EKG .		electrocardiogram	True	pert
Repeat labs here were unchanged and pt was r/o for acute MI with three neg sets of CE and EKG .	C1623258	Electrocardiography	True	Sa
Repeat labs here were unchanged and pt was r/o for acute MI with three neg sets of CE and EKG .		Electrocardiogram	True	Sb
Repeat labs here were unchanged and pt was r/o for acute MI with three neg sets of CE and EKG .	C0849142	electrocardiogram	True	Sc

Issue of Evaluation

Examples of **variance** between expert-entered senses and system-detected concepts. The physician reviewers interpreted each of these system outputs as "correct"

Sentence	Experts entered sense	System-detected concept	
CT scan of the abdomen was	Computer assisted tomography	CT of abdomen	
		X-Ray Computed Tomography	
he was seen by Dr.	Doctor	Physicians	
GAF 50; highest 60	Global Assessment of Functioning	Global assessment	
HTN	Hypertension	Hypertensive disease	
recent CEA, CAD, HTN	Coronary artery disease	Coronary heart disease	
MRI brain, EEG	Magnetic resonance image	Magnetic Resonance Imaging	
		MRI brain procedure	

Clinically Relevant Abbreviations

An abbreviation is annotated as not clinically relevant if it belongs to the following categories, including:

- General English, e.g., 'mr' for 'mister', 'am' for 'in the morning'
- Professionals such as 'pcp' for 'primary care provider' and 'md' for 'medical doctor'
- Location/department names, e.g., 'vumc' for 'Vanderbilt University Medical Center'

Report Scores

- Coverage: The ratio between the number of abbreviations detected by the NLP system (not necessary correct) and the number of abbreviations in gold standard
- Precision: The ratio between the number of abbreviations detected with correct sense and the total number of detected abbreviations by the system
- Recall: The ratio between the number of abbreviations detected with correct sense and the total number of abbreviations in gold standard
- F-score: 2*Precision*Recall/(Precision+Recall)

Results

Performance for 'ALL' abbreviations 'Clinically Relevant' abbreviations 'Ambiguous' abbreviations

NLP system	#ALL	#Detected	#Correct	Coverage	Precisio	Recall	F-score
MetaMap	1,112	599	289	0.539	0.482	0.260	0.338
MedLEE	1,112	534	495	0.480	0.927	0.445	0.601
cTAKES	1,112	452	129	0.406	0.285	0.116	0.165

NLP system	#ALL	#Detected	#Correct	Coverage	Precision	Recall	F-score
MetaMap	855	452	229	0.529	0.507	0.268	0.350
MedLEE	855	501	478	0.586	0.954	0.560	0.705
cTAKES	855	316	125	0.370	0.400	0.146	0.213

NLP system	#ALL	#Detected	#Correct	Coverage	Precision	Recall	F-score
MetaMap	229	108	50	0.472	0.463	0.218	0.297
MedLEE	229	142	135	0.620	0.951	0.590	0.728
cTAKES	229	166	6	0.725	0.036	0.026	0.030

Discussion

- Existing NLP systems did **not** perform very well on handling abbreviations
- The performance difference can actually be explained by their system architectures:
 - MedLEE integrates an abbreviation lexicon and implements a set of rules for disambiguation
 - cTAKES does not implement any disambiguation modules

Limitations

- The results reported here may not reflect the optimized performance for each NLP system
 - MetaMap, cTAKES: user supplied abbreviations lists
 - MedLEE extracts clinically important concepts only
 - Bias may exist in the annotation

Conclusion

- Identification of clinical abbreviations and their meanings is still a challenge task in current clinical NLP systems
- Integrating advanced abbreviation recognition and disambiguation modules might improve existing clinical NLP systems

Acknowledgement

- NLM Grant: R01LM010681
- Dr. Alan Aronson and Dr. Carol Friedman for their support on running MetaMap and MedLEE
- Vanderbilt University Medical Center's Synthetic Derivative, supported by institutional funding and by the Vanderbilt CTSA grant 1UL1RR024975-01 from NCRR/NIH

Thanks Q & A

Yonghui.Wu@uth.tmc.edu

Running NLP Systems and Alignment

- Three existing clinical NLP systems were used to process these 32 discharge summaries
- Post-processing parser programs were used to align the system output with the original text

