1. The function $f(x) = 5 - 12x + 3x^2$ is continuous and differentiable everywhere, because it is a polynomial.

Also, f(1) = 5 - 12 + 3 = -4 $f(3) = 5 - 12 \cdot 3 + 3 \cdot 9 = -4 = f(1)$. So f(x) satisfies Polle's Theorem on [1,3]; f'(x) = 0 for some c with 1 < c < 3.

f'(x) = -12 + 6x. If f'(x) = -12 + 6x = 0 then 6x = 12' x = 2. So we take c = 2.

2.
$$h(x) = x^{5} - 2x^{3} + x$$

 $h'(x) = 5x^{4} - 6x^{2} + 1$
 $= (5x^{2} - 1)(x^{2} - 1)$
 $h''(x) = 20x^{3} - 12x = 4x(5x^{2} - 3)$,
If $h'(x) = 0$ then $5x^{2} - 1 = 0$ or $x^{2} - 1 = 0$
so $5x^{2} = 1$ or $x^{2} = 1$

2.
$$h(x) = x^{5} - x$$
 $h'(x) = 5x^{4} - 1$
 $h''(x) = 30x^{3}$.

If $h'(x) = 0$ then $x^{4} = \frac{1}{5}$, so $x = \frac{1}{4\sqrt{5}}$.

Sign of $h'(x)$:

 $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ ($\frac{1}{4\sqrt{5}}$, $\frac{1}{4\sqrt{5}}$) ($\frac{1}{4\sqrt{5}}$, $\frac{1}{4\sqrt{5}}$)

To see this: $h'(-1) = 4$
 $h'(0) = -1$.

Sign of $h''(x)$ is positive if $x > 0$
 $h'(0) = -1$.

Sign of $h''(x)$ is positive if $x > 0$.

Co: $h''(x)$ has critical points of $x = \frac{1}{4\sqrt{5}}$.

 $\frac{1}{4\sqrt{5}}$ is a minimum because h is concave up

 $\frac{1}{4\sqrt{5}}$ is a minimum because h is concave down

 $h(x)$ is concave up for $x > 0$ ($h''(x) > 0$)

 $h(x)$ is increasing in $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ and ($\frac{1}{4\sqrt{5}}, 1$)

 $\frac{1}{4\sqrt{5}}$ is increasing in $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ and ($\frac{1}{4\sqrt{5}}, 1$)

 $\frac{1}{4\sqrt{5}}$ is increasing in $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ and ($\frac{1}{4\sqrt{5}}, 1$)

 $\frac{1}{4\sqrt{5}}$ is increasing in $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ and ($\frac{1}{4\sqrt{5}}, 1$)

 $\frac{1}{4\sqrt{5}}$ is increasing in $(-\infty)_{1} = \frac{1}{4\sqrt{5}}$ and ($\frac{1}{4\sqrt{5}}, 1$)

If
$$x = 0$$
, $h(x) = 0$.

If $x = \frac{1}{4\sqrt{5}}$, $h(x) = \frac{1}{5.4\sqrt{5}}$.

If $x = \frac{1}{4\sqrt{5}}$, $h(x) = \frac{+4}{5.4\sqrt{5}}$.

If $x = 1$, $h(x) = 0$.

$$(f x = 1, h(x) = 0,$$
 $(f x = 2, h(x) = 30,$

Fis decreasing on (0,2) and (3,4)increasing on (2,3)Fis Concave up when f'(x) > 0: (1,3) and (3,5,4)Concave down when f'(x) = 0: (0,1) and (3,5,5)water f'(0) = 0:

inflection points at (1,2,5,3)5

for big x.

Critical points (f(x) = 0)

F has critical points when f(x)=0, so x=0,2,3.

possible inflection points when the graph of f(x) is f(at), so x=1 and (about) 2.5,3.5.

Let
$$x = width$$
 of fence $y = length$

Then area = 15000 ft² = $x \cdot y$.

Let $F = total$ length of fence
$$= 3x + 2y$$
.

Since $x = \frac{15000}{y}$, we have
$$F(y) = 3 \cdot \frac{15000}{y} + 2y$$

$$= \frac{45000}{y^2} + 2y$$

$$1f \frac{dF}{dy} = 0, \frac{-45000}{y^2} + 2 = 0$$

$$2 = \frac{45000}{y^2}$$

$$y^2 = 22,500 \quad \text{so} \quad y = 150$$
.

This means $x = \frac{15000}{150} = 100$,

The fence should be 100 ft x 150 ft.

Let l = length of rope

x = distance from dock to boot

Know: $1+l^2=\chi^2$ and $\frac{dl}{dt}=-1$ m/s.

So $2l\frac{dl}{dt} = 2x\frac{dx}{dt}$, so $2x\frac{dx}{dt} = -2l$.

So $\frac{dx}{dt} = -\frac{2x}{2x}$

When X = 8 m, l = \(\frac{18^2 + 1^2}{65} = \sqrt{65}.

So $\frac{dx}{dt} = \frac{-l}{x} = \frac{-\sqrt{165}}{8}$

The boat is approaching the dock at 165 m/s.

(This is slightly bigger than 1.)

6. $\int_{-2}^{1} x^{-4} dx$ is not defined because 0^{-4} is not defined.

 $\int_a^b f(x) dx$ only makes sense if f(x) is defined between a and b.

7.
$$\int_{1}^{2} \frac{4+u^{2}}{u^{3}} du = \int_{1}^{2} (4u^{-3} + u^{-1}) du$$

$$= 4 \cdot u^{-2} + |u||u||$$

$$= \left(\frac{4}{4} + |u||2|\right) - \left(\frac{4 \cdot 1}{-2} + |u|(1)\right)$$

$$= -\frac{1}{2} + |u||2| + 2 = \frac{3}{2} + |u||2|$$