

Representation

Local Structure

Overview

Tabular Representations

		g^1	g²	g ³
→	i ⁰ ,d ⁰	0.3	0.4	0.3
7	i^0,d^1	0.05	0.25	0.7
-	i^1 , d^0	0.9	0.08	0.02
-	i^1,d^1	0.5	0.3	0.2

General CPD

- CPD $P(X \mid Y_1, ..., Y_k)$ specifies distribution over X for each assignment $y_1, ..., y_k$
- Can use any function to specify a factor $\phi(X, Y_1, ..., Y_k)$ such that

$$\sum_{x} \phi(x, y_1, ..., y_k) = 1 \text{ for all } y_1, ..., y_k$$

Many Models

- Deterministic CPDs
- Tree-structured CPDs
- Logistic CPDs & generalizations
- Noisy OR / AND
- · Linear Gaussians & generalizations

Context-Specific Independence

$$P \models (X \perp_{c} Y \mid Z, c)$$

$$P(X, Y \mid Z, c) = P(X \mid Z, c)P(y \mid Z, c)$$

$$P(X \mid Y, Z, c) = P(X \mid Z, c)$$

$$P(Y \mid X, Z, c) = P(Y \mid Z, c)$$

Representation

Local Structure

Tree Structured CPDs

Tree CPD

Tree CPD

$$(L_1 \perp L_2 \mid J, C)$$

$$(L_1 \perp_c L_2 \mid J, c_1)$$

$$(L_1 \perp_c L_2 \mid J, c_2)$$

Multiplexer CPD

Thanks to: Eric Horvitz, Microsoft Research

Microsoft Troubleshooters

Summary

- Compact CPD representation that captures context-specific dependencies
- Relevant in multiple applications:
 - Hardware configuration variables
 - Medical settings
 - Dependence on agent's action
 - Perceptual ambiguity

Representation

Local Structure

Independence of Causal Influence

Independence of Causal Influence

Daphne Koller

Behavior of Sigmoid CPD

 $w_0 = -5$

multiply w and w_0 by 10

CPCS

M. Pradhan G. Provan B. Middleton M. Henrion **UAI 1994**

Representation

Local Structure

Continuous Variables

Continuous Variables

Linear Gaussian

Conditional Linear Gaussian

Robot Localization

Fox, Burgard, Thrun

Nonlinear Gaussians mayrenge 0.125 Approximated Measured 0.1 0.1 0.075 0.075 probability probability 0.05 0.05 0.025 0.025 200 220 100 300 400 400 500 500 measured distance [cm] measured distance [cm]

Fox, Burgard, Thrun

Daphne Koller

Robot Motion Model

Fox, Burgard, Thrun

Daphne Koller