Hardware

6. ARM: Úvod 3. ročník

ARM Holdings – vznik a vývoj

- První ARM procesor vyrobila firma Acron Computers
 - Založena 1978 v Cambridge

Vize:

- Vývoj vlastního osobního PC pro firmy a domácnosti, který by využíval redukovanou instrukční sadu (RISC)
 - Zjednodušení příkazů (instrukcí)
 - Zrychlení samotného zpracování instrukcí
 - Více jednoduchých po sobě následujících instrukcí místo složitých instrukcí vykonávající složité operace (CISC)

ARM Holdings – vznik a vývoj

- Acron Archimedes
 - 1. PC vybavený ARM procesorem
 - Projekt byl bohužel neúspěšný
 - Firma šla do krachu

ARM Holdings – vznik a vývoj

- Newton MessagePad
 - Postaven na ARM procesoru (ARM 610 RISC)
 - Newton OS
 - Osobní digitální asistent od firmy Apple (1993)

- Acron Computers, Apple a VLSI Technology
 - Roku 1990 založili ARM Holdings, jež bude mít za úkol rozvíjet RISC procesory ARM

ARM Holdings

- Britská společnost
 - Založena 1990

- Vyvíjí a následně licencuje své technologie
 - Drží duševní vlastnictví
 - Samotné procesory nevyrábí
 - Vyrábí/staví konkrétní modely až samotní výrobci
 - Apple, Nvidia, Qualcomm, Samsung, ...

- Advanced Risc Machine
 - Acron Risc Machine
- 32/64 bitové architektury označovány ARMvX
 - Názvy jader jsou pak označovány jako Cortex
 - Cortex-A55 -> ARMv8.2
 - Cortex-M4 -> ARMv7
- Nejrozšířenější architektura mikroprocesorů
 - · Ročně vyrobeno přes cca 50 miliard
 - Mobily, tablety, přenosné herní konzole, ...
 - · Routery, televize, automobilovém průmysl, ...

big.LITTLE architektura

- V rámci jednoho pouzdra jsou obsaženy jak výkonné (big) čipy, tak ty úsporné (LITTLE)
- Čipy mohou být aktivována jednotlivě
- Rozložení výkonu (video, email, ...)

Load/Store architektura

- S pamětí pracují pouze instrukce typu load a store
- Všechny ostatní instrukce pracují s vnitřními registry
 - Operandy apod. jsou nachystány do těchto registrů
- Rozdělení na dvě kategorie
 - Práce s pamětí (load/store)
 - Práce s registry a ALU

ARM - výkon?

- V dnešní době dostatek výkonu pro zastoupení PC
 - Huawei Mate 20 Pro a Huawei Dock
 - Samsung Galaxy Note 9 a Samsung DexPad

arm

ARM jako součást SoC

- System on Chip
 - · "Vše" na jednom čipu
- Integruje
 - Grafické jádro
 - Operační paměť
 - Síť ový čip
 - I/O rozhraní
 - Modul pro komunikaci v mobilní síti
 - Modem, ...
- Výhody
 - Levnější výroba
 - Nižší spotřeba
 - Vysoká míra integrace
- Malá možnost HW konfigurace

ARM jako součást SoC

KONEC

Zdroje

- https://www.zive.cz/clanky/procesory-arm-zaklad-nove-ery/sc-3-a-164061/default.aspx [3. 2. 2019]
- https://cs.wikipedia.org/wiki/Acorn_Archimedes [3. 2. 2019]
- https://news.samsung.com/global/samsung-brings-on-device-ai-processing-for-premium-mobile-devices-with-exynos-9-series-9820-processor [3. 2. 2019]
- https://en.wikipedia.org/wiki/Apple_A12 [3. 2. 2019]
- https://www.nvidia.com/object/tegra-4-processor.html [3. 2. 2019]
- https://www.qualcomm.com/products/mobile-processors [3. 2. 2019]
- https://en.wikipedia.org/wiki/System_on_a_chip [3. 2. 2019]
- https://www2.informatik.hu-berlin.de/~iks/Studienarbeit/node14.html [3. 2. 2019]
- https://cz.pinterest.com/pin/546131892286990755 [3. 2. 2019]

Zdroje

- https://www.czc.cz/i-tec-usb-c-4k-travel-dokovacistanice-multifunkcni-adapter-1x-hdmi-4k-ultra-hdnebo-1xvga/228329/produkt?gclid=EAIaIQobChMIyIzzLyg4AIVEUPTCh25AwQYEAQYBSABEgLCSfD_BwE [3. 2. 2019]
- https://www.samsung.com/us/mobile/mobileaccessories/phones/dex-pad-ee-m5100tbegus/ [3. 2. 2019]
- https://www.smarty.cz/Huawei-Dock-2-USB-C-HDMI-VGA-bily-p39416?gclid=EAIaIQobChMIjKrSt7g4AIVwkQYCh0VPwcaEAQYBiABEgIG5fD_BwE#c=foto [3. 2. 2019]