```
import numpy as np
   import pandas as pd
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import mean_squared_error, r2_score
   data = pd.read_csv('/content/sample_data/california_housing_train.csv')
1 X_train, X_test, y_train, y_test = train_test_split(data.drop('median_house_value', axis=1), data['median_house_value'], test_size=
1 model = LinearRegression()
1 model.fit(X_train, y_train)
    ▼ LinearRegression
    LinearRegression()
   y_pred = model.predict(X_test)
1 print('Mean squared error:', mean_squared_error(y_test, y_pred))
2 print('Root mean squared error:', np.sqrt(mean_squared_error(y_test, y_pred)))
3 print('R-squared:', r2_score(y_test, y_pred))
   Mean squared error: 4866883427.941616
   R-squared: 0.6387988057454814
   import statsmodels.api as sm
   import statsmodels.stats as sms
   \ensuremath{\text{\#}} Fit the model using statsmodels
   model = sm.OLS(y_train, X_train)
   results = model.fit()
   print(results.summary())
```

OLS	Regression	Results

Covariance Type: nonrobust coef std err t P> t [0.025 0.975	20 20 24 20 25 25
coef std err t P> t [0.025 0.975	_ i
longitude -2186.8871 136.970 -15.966 0.000 -2455.369 -1918.40	5 1
latitude -8299.3461 434.304 -19.110 0.000 -9150.648 -7448.04	4
housing_median_age 1748.9889 57.034 30.666 0.000 1637.195 1860.78	3
total_rooms -15.7229 1.062 -14.807 0.000 -17.804 -13.64	2
total_bedrooms 78.3352 9.398 8.335 0.000 59.913 96.75	7
population -38.4413 1.435 -26.795 0.000 -41.253 -35.62	9
households 135.1659 10.121 13.354 0.000 115.326 155.00	5
median_income 4.579e+04 440.435 103.959 0.000 4.49e+04 4.67e+0	4
Omnibus: 2621.034 Durbin-Watson: 1.977	
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9116.848	
Skew: 1.018 Prob(JB): 0.00	
Kurtosis: 6.608 Cond. No. 3.00e+03	

- [1] R² is computed without centering (uncentered) since the model does not contain a constant. [2] Standard Errors assume that the covariance matrix of the errors is correctly specified. [3] The condition number is large, 3e+03. This might indicate that there are strong multicollinearity or other numerical problems.