

Parallel Patterns in OpenMP and CUDA

Parallel Computing

Serena Curzel

Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria serena.curzel@polimi.it

- We can use the OpenMP API to implement parallel patterns
- Some of them come for free!

■ Notebook (includes link to download code examples):

https://colab.research.google.com/drive/18aKcU9
i11pqz629vP -kWOC9bhJtvBfc?usp=share link

- SIMD, no dependencies between operations
- Comes for free

#pragma omp parallel for

■ Also comes for free

#pragma omp parallel for
reduction(+:var)

- □ The structure of the work is not regular, it can change at runtime
- ☐ Assumes that all executions are independent
- Typical application: tree searches

#pragma omp task

- Dedicated clause available from OpenMP 5.0
- Three-phase approach

☐ Dedicated clause available from OpenMP 5.0


```
#pragma omp simd reduction(inscan,
+:scan_a)
for(int i = 0; i < N; i++) {
  simd_scan[i] = scan_a;
  #pragma omp scan exclusive(scan_a)
  scan_a += a[i];
}</pre>
```


- The histogram is an important and useful computation pattern
- Allows us to illustrate the concepts of
 - Partitioning
 - Atomic operations
 - Privatization
- ☐ Key issue to solve: output interference

- □ The histogram is a method for extracting notable features and patterns from large data sets. Examples:
 - Feature extraction in images
 - Fraud detection in credit card transactions
 - Speech recognition
- Basic histograms for each element in the data set, use the value to identify a "bin counter" to increment

- □ Histogram that counts the occurrence of letters in a string (grouped in 4-letter bins)
 - ► For each character in the input string, increment the appropriate bin counter
- Example histogram for the string "programming massively parallel processors"

Sequential implementation in C

```
sequential_Histogram(char *data, int length, int *histo)
{
  for (int i = 0; i < length; i++) {
    int alphabet_position = data[i] - 'a';
    if (alphabet_position >= 0 && alphabet_position < 26)
    {
       histo[alphabet_position/4]++
     }
  }
}</pre>
```

- Simplest parallel version:
 - ▶ Partition the input into sections
 - Each thread iterates through one section

- Simplest parallel version:
 - ▶ Partition the input into sections
 - Each thread iterates through one section

- Issue: input partitioning affects memory access efficiency
 - Adjacent threads do not access adjacent memory locations
 - Accesses are not coalesced
 - DRAM bandwidth is poorly utilized

Data partitioning

- Change to interleaved partitioning
 - All threads process a contiguous section of elements
 - ▶ They all move to the next section and repeat
 - Memory accesses are coalesced

Data partitioning

Parallel histogram with interleaved partitioning

Data partitioning

Parallel histogram with interleaved partitioning

Parallel histogram in CUDA with interleaved partitioning

```
__global___ void histo_kernel(unsigned char *buffer, long
size, unsigned int *histo)
{
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  int stride = blockDim.x*gridDim.x;

  for (unsigned int i = tid; i < size; i += stride ) {
    int alphabet_position = buffer[i] - 'a';
    if (alphabet_position >= 0 && alpha_position < 26)
        histo[alphabet_position/4] += 1;
    }
}</pre>
```

- ☐ Issue: data races
 - Data races occur in read-modify-write operations
 - Data races cause errors that are hard to reproduce
 - Histograms (and other collaboration patterns) include read-modify-write operations

thread1:

Old = Mem[x] New = Old + 1Mem[x] = New

thread2:

Read Modify Write Old = Mem[x] New = Old + 1Mem[x] = New

Data race:

- ▶ If Mem[x] was initially 0, what is its value when threads 1 and 2 have completed?
- What does each thread get in its Old variable?
- ► The answers depend on the relative execution order!

Data races

Time	Thread 1	Thread 2
1	$(0) \ \text{Old} \leftarrow \text{Mem[x]}$	
2	(1) New ← Old + 1	
3		$(0) \ \text{Old} \leftarrow \text{Mem}[x]$
4	(1) $Mem[x] \leftarrow New$	
5		(1) New ← Old + 1
6		(1) $Mem[x] \leftarrow New$
Time	Thread 1	Thread 2
Time 1	Thread 1	Thread 2 (0) Old \leftarrow Mem[x]
	Thread 1	2.21
1	Thread 1 (0) Old \leftarrow Mem[x]	(0) Old ← Mem[x]
1 2		(0) Old ← Mem[x]
1 2 3		(0) Old ← Mem[x](1) New ← Old + 1

Time	Thread 1	Thread 2
1	$(0) \ \text{Old} \leftarrow \text{Mem}[x]$	
2	(1) New ← Old + 1	
3	(1) $Mem[x] \leftarrow New$	
4		$(1) \ Old \leftarrow Mem[x]$
5		(2) New ← Old + 1
6		(2) $Mem[x] \leftarrow New$
Time	Thread 1	Thread 2
Time 1	Thread 1	Thread 2 (0) Old \leftarrow Mem[x]
	Thread 1	
1	Thread 1	(0) Old ← Mem[x]
1 2	Thread 1 (1) $Old \leftarrow Mem[x]$	(0) Old ← Mem[x](1) New ← Old + 1
1 2 3		(0) Old ← Mem[x](1) New ← Old + 1

Wrong result

Correct result

- Atomic operations perform read-modify-write as a single hardware instruction on a memory address
 - ► The hardware ensures that no other thread can perform another read-modify-write operation on the same location until the current atomic operation is complete
 - ▶ Any other threads that attempt to perform an atomic operation on the same location will be held in a queue
 - ► All threads perform their atomic operations serially on the same location

- Atomic operations in CUDA are performed by calling functions that are translated into single instructions (intrinsic functions or intrinsics)
 - Available intrinsics for atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap)
- Example: atomic add
 - ▶ int atomicAdd(int* address, int val);
 - ▶ reads a 32-bit word from address, computes (old value + val), and stores the result back to memory at the same address
 - the three operations are performed in one atomic transaction

Atomic operations

Parallel histogram in CUDA with atomic operations

Atomic operations

- Performance considerations:
 - Atomic operations can access different types of memory (global, shared, caches)
 - Atomic operations impact latency and throughput
 - For example, a DRAM access has a latency of a few hundred cycles

- □ The total latency for an atomic operation on global memory (DRAM) is typically more than 1000 cycles
- If many threads attempt to do an atomic operation on the same location, the throughput is reduced to 1/1000 of the peak memory throughput
 - Throughput = rate at which the application can execute an atomic operation

Serena Curzel

Atomic operations

- Atomic operations on L2 cache
 - ► About 1/10 of the DRAM latency
 - Shared among all blocks
- Atomic operations on shared memory
 - Very short latency
 - Private to each thread block

Privatization

Cost

- Overhead for creating and initializing private copies
- Overhead for accumulating the contents of private copies into the final shared copy
- Benefits
 - Much less contention and serialization in accessing both the private copies and the final copy
 - ► The overall performance can often be improved more than 10x

- Privatization is a powerful and frequently used technique for parallelizing applications
- The operation needs to be associative and commutative
 - Histogram add operation is associative and commutative
- The private data must fit into shared memory
 - Works for small histograms
 - ▶ It is possible to partially privatize the histogram and only go to the copy in global memory when needed

- □ The histogram pattern is an important use case for privatization
 - All threads working on an input section are in the same block
 - Threads in the same block can access shared memory
 - ► Throughput for atomics on shared memory is 10-100x better than on DRAM or L2 cache

□ Parallel histogram in CUDA with privatization (part 1)

```
global void histogram privatized kernel (unsigned char*
input, unsigned int* bins, unsigned int num elements,
unsigned int num bins) {
  unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;
  extern shared unsigned int histo s[];
  for (unsigned int binIdx = threadIdx.x; binIdx < num bins;
binIdx +=blockDim.x) {
    histo s[binIdx] = 0u;
   syncthreads();
```

□ Parallel histogram in CUDA with privatization (part 2)

```
for (unsigned int i = tid; i < num elements; i +=
blockDim.x*gridDim.x) {
    int alphabet position = buffer[i] - "a";
    if (alphabet position >= 0 && alpha position < 26)
      atomicAdd(&(histo s[alphabet position/4]), 1);
    syncthreads();
  for(unsigned int binIdx = threadIdx.x; binIdx <</pre>
num bins; binIdx += blockDim.x) {
    atomicAdd(&(histo[binIdx]), histo s[binIdx]);
```

Reduction pattern

- □ The reduction is another typical computation pattern that can be parallelized
- We can use it to analyze
 - Work efficiency
 - Resource efficiency
- ☐ Key issue to solve: control divergence

Reduction pattern

- Reduction is the final step in "partition and summarize" used to process large data sets
- Needs an associative (and commutative) combiner function
- Sequential reduction has O(N) complexity

Reduction pattern

- Parallel reduction tree
 - ► Assuming there are enough resources, it can perform N-1 operations in log₂(N) steps
 - ► Average Parallelism (N-1)/log₂(N)
 - Work efficient, but not resource efficient!

Reduction pattern

- Simple parallel implementation
 - ► N/2 threads
 - ► log₂(N) steps
 - ► At each step each thread operates on 2 elements, then the number of threads is halved
- In-place reduction in shared memory
 - Reduced global memory traffic
- N has to be lower than the maximum number of threads in a block

Reduction pattern

- Thread to data mapping:
 - Each thread writes to an even-index location in the partial sum
 - ▶ One of the inputs comes from the same index
 - The second input is increasingly far away

Parallel reduction

■ Baseline CUDA implementation

```
shared float partialSum[SIZE];
partialSum[threadIdx.x] =
X[blockIdx.x*blockDim.x+threadIdx.x];
unsigned int t = threadIdx.x;
for (unsigned int stride = 1; stride < blockDim.x; stride
*= 2)
  syncthreads();
  if (t % (2*stride) == 0)
   partialSum[t] += partialSum[t+stride];
```

Baseline implementation

- In each iteration, two control flow paths will be sequentially traversed for each warp:
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition still consume execution resources
- □ Half or fewer of threads will be executing after the first step
 - ► After the 5th step, entire warps in each block will fail the if test, poor resource utilization but no divergence

Better implementation

- Change index usage to reduce divergence
 - Possible because reduction operators are commutative and associative
- Partial sums are stored in the front of the array

■ Improved CUDA implementation

```
shared float partialSum[SIZE];
partialSum[threadIdx.x] =
X[blockIdx.x*blockDim.x+threadIdx.x];
unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x/2; stride >= 1;
stride = stride>>1)
   syncthreads();
  if (t < stride)
   partialSum[t] += partialSum[t+stride];
```

Scan pattern - CUDA

- Scan is frequently used to parallelize sequential recursive algorithms
- □ Sequential scan is extremely efficient, parallel scan can be slower in some cases
- ☐ Key issue to solve: work efficiency


```
y[0] = x[0];
for (i = 1; i < Max_i; i++)
y[i] = y [i-1] + x[i];
```

- Sequential C implementation of an inclusive addition scan
 - ▶ N additions for N elements, O(N) complexity
 - Only 1 operation more than sequential reduction
 - Computationally efficient!

$$y_0 = x_0$$

 $y_1 = x_0 + x_1$
 $y_2 = x_0 + x_1 + x_2$

- Naive parallel implementation of an inclusive addition scan
 - Threads can work independently on y elements
 - A lot of redundant computation!
 - ► The last thread is performing a sequential reduction, so execution time is the same or worse as the sequential scan

- Parallel implementation with interleaved reduction trees
 - Read input into shared memory
 - ► Thread j adds elements j and j-stride and writes result into element j
 - ▶ Double stride and repeat

ITERATION = 1 STRIDE = 1 ITERATION = 2 STRIDE = 2 ITERATION = 3 STRIDE = 4

Work-inefficient CUDA implementation

```
shared float XY[SECTION SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < InputSize) {</pre>
 XY[threadIdx.x] = X[i]; }
  // the code below performs iterative scan on XY
  for (unsigned int stride = 1; stride < blockDim.x;
stride *= 2) {
    syncthreads();
    if (stride <= threadIdx.x) {</pre>
      XY[threadIdx.x] += XY[threadIdx.x - stride]; }
```

- ☐ The parallel scan executes log₂(N) iterations
- ☐ The iterations do (N-1), (N-2), (N-4), ... (N-N/2) additions each
 - ► Total number of additions: O(N*log₂(N))
- Compare to O(N) for the sequential implementation!
 - ▶ 10x overhead with N=1024
- Work inefficient and consumes extra energy due to inactive hardware resources

- ☐ Improving efficiency with:
 - ▶ Two-phased approach
 - Reuse of intermediate results
 - More complex thread index-data index mapping
- The two-phased approach is based on balanced trees
 - ► Not an actual data structure, just to describe what each thread does at each step
 - Create partial sums (leaves to root)
 - Build output values (root to leaves)

Reduction phase

Postreduction reverse phase Postreduction reverse phase

■ Reduction phase

```
// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1; stride <= BLOCK_SIZE;
stride *= 2) {
   int index = (threadIdx.x+1)*stride*2 - 1;
   if(index < 2*BLOCK_SIZE)
        XY[index] += XY[index-stride];
   __syncthreads();
}</pre>
```

Distribution phase

```
for (unsigned int stride = BLOCK_SIZE/2; stride > 0;
stride /= 2) {
    __syncthreads();
    int index = (threadIdx.x+1)*stride*2 - 1;
    if(index+stride < 2*BLOCK_SIZE) {
        XY[index + stride] += XY[index];
    }
}
__syncthreads();
if (i < InputSize) Y[i] = XY[threadIdx.x];</pre>
```

- The work efficient version executes log₂(N) iterations in the reduction step
 - ▶ Total number of operations: N-1
- ☐ In the distribution phase the iterations do (2-1), (4-1), (N/2-1) operations
 - ► Total: (N-2) (log₂(N)-1)
- Both phases are O(N) and they do not perform more than 2(N-1) operations
- With enough hardware resources, the 2x extra work is compensated by the reduced execution time

- NVIDIA Deep Learning Institute, "Accelerated Computing" Teaching Kit
- □ D.B. Kirk and W.W. Hwu, "Programming Massively Parallel Processors. A hands-on approach", 3rd edition, Morgan Kaufmann 2017
- Mark Harris, Parallel Prefix Sum with CUDA https://developer.nvidia.com/gpugems/GPUGems3 /gpugems3 ch39.html