

# Numerical Representation and Codes

Exercises Digital Design



#### **Solution vs. Hints:**

While not every response provided herein constitutes a comprehensive solution, some serve as helpful hints intended to guide you toward discovering the solution independently. In certain instances, only a portion of the solution is presented.

## 1 NUM - Number systems

- 1.1 Determine up to what value you can count with numbers coded on:
  - a) 0 to 15

d) 0 to 65535

b) 0 to 255

e) 0 to 4'294'967'295 (4 Gbit)

c) 0 to 1023

num/number-systems-01

- 1.2 Determine up to which value can be counted, with hexadecimal numbers encoded on:
  - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-02



## 2 | NUM - Converting from one numbering system to another

| 2.1  | Perform the conversion of the following pure binary numbers in decimal |
|------|------------------------------------------------------------------------|
| fori | nat·                                                                   |

a) 6<sub>10</sub>

c) 74<sub>10</sub>

e) 255<sub>10</sub>

b) 15<sub>10</sub>

d) 11<sub>10</sub>

num/conversion-01

2.2 Perform the conversion of the following decimal numbers in binary format:

a) 111 1101<sub>2</sub>

- c) 1111 1110 0101 1001<sub>2</sub>
- e) 1001<sub>2</sub>

b) 1 0000<sub>2</sub>

d) 1 0000 0000<sub>2</sub>

num/conversion-02

2.3 Perform the conversion of the following hexadecimal numbers in binary format:

a) 1110<sub>2</sub>

- c) 1010 1011 0011 1101<sub>2</sub> e) 10 0011 0100 0110<sub>2</sub>

- b) 1 0101 1100<sub>2</sub>
- d) 1001 1111 0111<sub>2</sub>

num/conversion-03

2.4 Perform the conversion of the following binary numbers in hexadecimal format:

a)  $A_{16}$ 

c) EB<sub>16</sub>

e)  $C_{16}$ 

b) 6<sub>16</sub>

d)  $2F_{16}$ 

num/conversion-04

2.5 Perform the conversion of the following hexadecimal numbers in decimal format:

a) 13<sub>10</sub>

c) 564<sub>10</sub>

e) 42681<sub>10</sub>

b) 348<sub>10</sub>

d) 254<sub>10</sub>

num/conversion-05

2.6 Perform the conversion of the following decimal numbers in hexadecimal format:

1. 80<sub>16</sub>

3. FE59<sub>16</sub>

5. 9<sub>16</sub>

 $2. 10_{16}$ 

4. D1<sub>16</sub>

num/conversion-06



## 3 NUM - Operation on logical numbers

#### 3.1 Perform the following additions in the binary system:

 $1.\ \ 0010\ \ 1010_2$ 

3. 1011 0011<sub>2</sub>

2. 0110 1001<sub>2</sub>

4. 1000 0000<sub>2</sub>

num/operation-01

#### 3.2 Perform the following subtractions in the binary system:

 $1.\ \ 0011\ \ 1010_2$ 

 $3. 0000 1100_2$ 

 $2. \ 0011 \ 1010_2$ 

4. 0111 1111<sub>2</sub>

num/operations-02

#### 3.3 Perform the following multiplications in binary:

1. 0011 1100<sub>2</sub>

 $3.\ \ 0011\ \ 0000_2$ 

 $2. \ 0011 \ 1100_2$ 

4.  $0110\ 0010_2$ 

num/operation-03

### 3.4 Perform the following additions in the hexadecimal system:

1. 1300<sub>16</sub>

3. 1333<sub>16</sub>

2. 8984<sub>16</sub>

4. 13534<sub>16</sub>

num/operation-04

#### 3.5 Determine the binary value of:

1. 1001<sub>2</sub>

3. 11100001<sub>2</sub>

2. 110001<sub>2</sub>

4.  $111110000001_2$ ;  $(2^{n-1}-1)*2^{n+1}+1$ 

num/operation-05



### 4 | NUM - Codes

- 4.1 Perform the following additions on BCD encoded numbers:
  - 1. 0100 0100 0100  $_{\mathrm{BCD}}$

3.  $1001\ 0010_{\mathrm{BCD}}$ 

2. 0110 0011 0011 $_{\rm BCD}$ 

4.  $0001\ 0000\ 0000_{\rm BCD}$ 

num/codes-01

4.2 Perform the conversion of the Gray code  $1001_{\rm Gray}$  using the recursion formula in the script.

 $1110_{2}$ 

num/codes-02



## NUM - Representation of signed numbers

- 5.1 Represent the following decimal and pure binary numbers encoded to 8 bits using the sign-size, one's complement, and two's complement methods:
  - 1. 0001 0010<sub>s</sub> 4. 0001 1010<sub>s</sub>  $0001 \ 0010_{1cl}$  $0001\ 1010_{1cl}$  $0001 \ 0010_{2c1}$  $0001\ 1010_{2c1}$  $2.\ \ 1000\ \ 0011_s$ 5. 0000 1010<sub>s</sub>  $1111\ 1100_{1{\rm cl}}$  $0000\ 1010_{\rm 1cl}$  $1111\ 1101_{2cl}$  $0000\ 1010_{2cl}$ 3.  $0000\ 0000_s;1000\ 0000_s$ 6. 1110 0100<sub>s</sub>  $0000 \ 0000_{1cl};1111 \ 1111_{1cl}$  $1001\ 1011_{1cl}$  $1001\ 1100_{\rm 2cl}$  $0000 \ 0000_{2cl}$

num/representation-01

- 1. 1111 1111<sub>2</sub>
- 3. 0001 0000<sub>2</sub>
- 5. BC<sub>16</sub>

- 2. 1000 1000<sub>2</sub>
- 4. FF<sub>16</sub>

6. 7F<sub>16</sub>

num/representation-02

5.2 Given the numbers  $0001_2$  and  $1001_2$  expressed as two's complement encoded on 4 bits. Represent the same numbers encoded as two's complement on 8 bits.

0000 0001;1111 1001

num/representation-03