Assignment 1

Jonas Trepiakas - 3039733855 - j
trepiakas@berkeley.edu

1:

(a) 6.

(b) 9.

2: Any line $L \subset \mathbb{A}$ can be written as a graph y = ax + b and is thus the hypersurface defined by y - (ax + b). We thus have

$$L \cap C = V(y - (ax + b)) \cap V(f) = V(y - (ax + b), f)$$

So for any pair $(x_1,y_1) \in L \cap C$, we have $y_1 = ax_1 + b$ and thus $0 = f(x_1,y_1) = f(x_1,ax_1+b)$, so $x_1 \in V(f(x,ax+b))$. However, f(x,ax+b) is a polynomial in k[x] and as such has either \mathbb{A}^1 as its zero locus or finitely many zeros - in particular, since roots of f(x, ax + b) correspond to linear factors and k[x] is an integral domain, we have that f(x, ax + b) has at most d roots in k (Dummit and Foote, proposition 17). Since $L \not\subset C$, we must have that f(x, ax + b) has at most d roots, and since each y_i is uniquely determined by the corresponding x_i , there exists at most d roots of f(x,y) in $L \cap C$.

3:

(a) $A = \{(t, \sin t) : t \in \mathbb{R}\} \subset \mathbb{A}^2_{\mathbb{R}}$ is not an algebraic set. Assume for contradiction that A = V(S) for some $S \subset k[x, y]$. Let f be any polynomial in S. Let L = V(y) - i.e. a line as in problem 2 with a, b = 0. Then by problem $2 L \cap V(f)$ is finite, however,

$$\{(\pi k, 0) : k \in \mathbb{Z}\} = \{(t, \sin t) : t \in \mathbb{R}\} \cap \{(x, 0) \ x \in \mathbb{R}\} = L \cap A = L \cap \bigcap_{g \in S} V(g) \subset L \cap V(f)$$

and $\{(\pi k,0): k\in\mathbb{Z}\}$ is an infinite set hence $L\cap V(f)$ is an infinite set contradicting problem 2.

(b) Similarly to (a), let $B = \{(x,y) \in \mathbb{A}^2_{\mathbb{C}} : x = 0, y \neq 0\}$ and L = V(x). Then $L \not\subset B$ since $(0,0) \not\in B$. Assume B = V(S) for some $\hat{S} \subset k[x,y]$ and let $f \in S$. Then

$$B = L \cap B = L \cap V(S) = L \cap \bigcap_{g \in S} V(g) \subset L \cap V(f).$$

Since B is an infinite set, so is $L \cap V(f)$, so by contraposition of problem 2, we find B is not an algebraic set.

(c) Similarly to (a) and (b), let $C=\left\{(x,y)\in\mathbb{A}^2_{\mathbb{R}}\colon y=|x|\right\}$ and $L=V\left(y-x\right)$. Then $L\not\subset C$ since for example $(-1,-1)\not\in C$ but is in L. Assume C=V(S) where $S\subset k[x,y]$ and let $f\in S$. Then

$$\left\{(x,y)\in\mathbb{A}_{\mathbb{R}}^2\colon y=x,x\geq 0\right\}\subset L\cap C=L\cap V(S)=L\cap\bigcap_{g\in S}V(g)\subset L\cap V(f)$$

Since $\{(x,y)\in\mathbb{A}^2_{\mathbb{R}}\colon y=x,x\geq 0\}$ is an infinite set, so is $L\cap V(f)$, so by contraposition of problem 2, Cis not an algebraic set.

(d) $D = \{(t, t^2, t^3) \in \mathbb{A}^3_k : t \in k\}$ is an algebraic set since $D = V(y - x^2, z - x^3)$:

(\subset): for any $(t, t^2, t^3) \in D$, we have $(t^2) - (t)^2 = 0$ and $(t^3) - (t)^3 = 0$. (\supset): For an arbitrary $(x, y, z) \in D$, we have $y = x^2$ and $z = x^3$ so $(x, y, z) = (x, x^2, x^3)$ giving the inclusion as x ranges over k.