

Hierarchical K-Means

Knowledge Discovery

Hanif Izzudin Rahman

1. Convert that data into the numerical values

```
data = pd.read_excel("hepatitis_new.xlsx", header=None)
data.drop(0, inplace=True, axis=0)
data.drop(0, inplace=True, axis=0)
data.columns = data.iloc[0]
data.drop(1, inplace=True, axis=0)
data.columns = [c.replace(' ', '_') for c in data.columns]
data = data.replace(to_replace=['no', 'yes'], value=[0, 1])
data.CLASS = data.CLASS.replace(to_replace=['Live', 'Die'], value=[0, 1])
data = data.replace(to_replace=['?'], value=np.nan)
data = data.reset_index()
X_temp = data.drop(columns=['CLASS'])
X_temp
```

i	index	Age	Sex	Steroid	Antivirals	Fatique	Malaise	Anorexia	Liver_Big	Liver_Firm	Spleen_Palpable	Speiders	Ascites	Varices	Bilirubin	Alk_Phost
0	2	30	1	0.0	1	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	
1	3	50	0	0.0	1	0.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	0.9	
2	4	78	0	1.0	1	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
3	5	31	0	NaN	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	
4	6	34	0	1.0	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
150	152	46	0	1.0	1	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	7.6	
151	153	44	0	1.0	1	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.9	
152	154	61	0	0.0	1	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	8.0	
153	155	53	1	0.0	1	0.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0	0.0	1.5	
154	156	43	0	1.0	1	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	1.2	

155 rows × 20 columns

1], dtype=int64)

2. Impute the missing data with the mean values of same attribute in the same class

```
1 X = data.groupby("CLASS").transform(lambda x: x.fillna(x.mean()))
2 X
```

Age	Sex	Steroid	Antivirals	Fatique	Malaise	Anorexia	Liver_Big	Liver_Firm	Spleen_Palpable	Speiders	Ascites	Varices	Bilirubin	Alk_Phosphate	SGOT
30	1	0.000000	1	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	85.000000	18.0
50	0	0.000000	1	0.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	0.9	135.000000	42.0
78	0	1.000000	1	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	96.000000	32.0
31	0	0.540984	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.7	46.000000	52.0
34	0	1.000000	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	101.313725	200.0
46	0	1.000000	1	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	7.6	122.375000	242.0
44	0	1.000000	1	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.9	126.000000	142.0
61	0	0.000000	1	0.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	1.0	0.8	75.000000	20.0
53	1	0.000000	1	0.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0	0.0	1.5	81.000000	19.0
43	0	1.000000	1	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	1.2	100.000000	19.0

20 columns

3. Hide the class label of the supervised data

4. Normalize Data

```
1 from sklearn import preprocessing
 2 | scaler = preprocessing.StandardScaler().fit(X)
 4 X = scaler.transform(X)
array([[-1.7209121 , -0.89419175, 2.94745653, ..., 0.30720513,
        0.26151157, -0.90748521],
      [-1.69856259, 0.70257923, -0.33927557, ..., -0.48942799,
        0.26151157, -0.90748521],
       [-1.67621309, 2.93805862, -0.33927557, ..., 0.30720513,
        0.26151157, -0.90748521],
      [ 1.67621309, 1.58080328, -0.33927557, ..., 0.46653176,
        0.26151157, 1.10194633],
       [ 1.69856259, 0.94209488, 2.94745653, ..., 0.46653176,
       -0.75812043, 1.10194633],
      [ 1.7209121 , 0.14370939, -0.33927557, ..., -1.1267345 ,
       -1.08753999, 1.10194633]])
```


5. Cluster the data using Hierarchical K-Means into 2 groups

5.1 K-Means Random Centroid 10x

```
pens
```

```
from sklearn.cluster import KMeans
   Cluster center = []
   for i in range (1,11):
       Cluster center.append(kmeans.cluster centers [0])
      Cluster center append(kmeans.cluster centers [1])
       print( ==> Loop ke',i,'\n',kmeans.cluster centers )
   #print('==> Cluster Center:\n', Cluster center)
10 #Cluster center
== Loop ke 1
   0.56036311  0.28016073  0.13879455  -0.21413866
                                                0.32750461 -0.69997079
  -0.71765819 -0.43074567 -0.16076615 -0.39504026 -0.4866123
                                                                           Coordinate Centroid for label "0"
  -0.71359843 -0.61387485 0.65168889 0.60233502 0.37742484 -0.82364414
  -0.65116602 0.626989781
 -0.30819971 -0.1540884 -0.076337   0.11777626 -0.18012753
                                                          0.38498393
  0.39471201 0.23691012 0.08842138 0.21727214 0.26763676
                                                          0.49782839
                                                                          Coordinate Centroid for label "1"
  0.39247914  0.33763117  -0.35842889  -0.33128426  -0.20758366
                                                         0.45300428
  0.35814131 -0.34484438]]
== Loop ke 2
[ 0.56036311  0.28016073  0.13879455 -0.21413866  0.32750461 -0.69997079
 -0.71765819 -0.43074567 -0.16076615 -0.39504026 -0.4866123
 -0.71359843 -0.61387485 0.65168889 0.60233502 0.37742484 -0.82364414
 -0.65116602 0.62698978]
[-0.30819971 -0.1540884 -0.076337 0.11777626 -0.18012753
                                                         0.38498393
  0.39471201 0.23691012 0.08842138 0.21727214 0.26763676
                                                         0.49782839
  0.39247914   0.33763117   -0.35842889   -0.33128426   -0.20758366   0.45300428
  0.35814131 -0.34484438]]
==> Loop ke 3
```

5.2 Dataset for Hierarchical Clustering

```
import scipy.cluster.hierarchy as shc
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 7))
plt.title("Dendrograms")
dend = shc.dendrogram(shc.linkage(Cluster_center, method='ward'))
```


5.2 Dataset for Hierarchical Clustering

```
pens
```

```
from sklearn.cluster import AgglomerativeClustering
cluster = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward').fit(Cluster_center)
cluster
print(cluster.n_clusters_)
print()
print(cluster.labels_)
Jumlah Cluster
```

```
[0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1] 

Cluster Label on Hierarchical Clustering
```

5.3 Get Centroid from Hierarchical Clustering

Attributes:

n_clusters_: int

The number of clusters found by the algorithm. If distance_threshold=None, it will be equal to the given n_clusters.

labels_: ndarray of shape (n_samples)

cluster labels for each point

Can't get Attribute Centroid from Hierarchical Clustering

n_leaves_ : int

Number of leaves in the hierarchical tree.

n_connected_components_: int

The estimated number of connected components in the graph.

New in version 0.21: n_connected_components_ was added to replace n_components_.

children_: array-like of shape (n_samples-1, 2)

The children of each non-leaf node. Values less than <code>n_samples</code> correspond to leaves of the tree which are the original samples. A node <code>i</code> greater than or equal to <code>n_samples</code> is a non-leaf node and has children <code>children_[i - n_samples]</code>. Alternatively at the i-th iteration, children[i][0] and children[i][1] are merged to form node <code>n_samples + i</code>

distances_: array-like of shape (n_nodes-1,)

Distances between nodes in the corresponding place in children_. Only computed if distance_threshold is used or compute distances is set to True.

5.4 Get Centroid from K-Mens

0.35305676 -0.34599604]]

```
kmeans = KMeans(n clusters=2, random state=i).fit(Cluster center)
 print(kmeans.cluster centers )
 kmeans.labels
          0.28573604
                      0.14649937 -0.20747346  0.34266922 -0.69982402
                                                                        Coordinate
          -0.43437078 -0.16317859 -0.39206989 -0.49043005 -0.90737302
                                                                     Centroid for label
-0.71786276 -0.61766937
                      0.65560109
                                 0.59289951
                                            0.37976395 -0.82625723
                                                                          "O"
-0.64532423 0.632678631
-0.3097843 -0.15631477 -0.08016724 0.11354743
                                            -0.18710447
                                                        0.38280409
                                                                        Coordinate
0.3894681 0.23744665
                      0.08915713 0.21441243
                                             0.26810261
                                                        0.49617575
                                                                     Centroid for label
0.45181693
```

"1"

5.5 Predict Real Data with New Centroid (K-Means)

```
pens
```

```
y_kmeans = kmeans.predict(X_scaled)
   print(1-y_kmeans)
   print()
   print(y)
                                                                          → Label Hierarchical K-Means
0010111
                                                                          → Real Label
0010001
```

6. Cluster Analysis (Accuracy)

```
# Accuracy
from sklearn.metrics import accuracy_score
acc = accuracy_score(y, 1-y_kmeans)
acc*100
```


7. Compare to Hierarchical Clustering

```
import scipy.cluster.hierarchy as shc
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 7))
plt.title("Dendrograms")
dend = shc.dendrogram(shc.linkage(X_scaled, method='ward'))
```


7.1 Cluster Analysis (Accuracy Hierarchical Clustering)

```
pens
```

```
# Accuracy
from sklearn.metrics import accuracy_score
acc = accuracy_score(y, 1-cluster.labels_)
acc*100
```

69.6774193548387 Accuracy Hierarchical Clustering = 69%

Kesimpulan

Pada Hierarchical K-Means, Accuracy yang dihasilkan 80% sedangkan jika menggunakan Hierarchical Clustering saja, Accuracy-nya hanya 69%