Logaritmo Discreto

Ronald Mas, Angel Ramirez

26 de agosto de 2020

Contenido

- Logaritmo Discreto
- Propiedades
- 6 Ejemplos

Índices

Índice

Sea m raíz primitiva módulo n y $b \in \mathbb{N}$ con MCD(b,n)=1. Entonces para exactamente uno de los valores $e \in \{0,1,\cdots,\phi(n)-1\}$ se tiene que $b \equiv m^e \pmod{n}$. Este único valor e módulo $\phi(n)$ es el índice de b en la base m módulo n, denotado por $ind_m(b)$.

Observaciones:

- Para el caso n = p (número primo), el índice ind_m(b) también es conocido como el logaritmo discreto de b en base m módulo p, es decir cumple propiedades similares a la función logaritmo que conocemos.
- El índice de *b* en la base *m* módulo *n* permite resolver ecuaciones diofánticas como lo veremos más adelante.

Ejemplo:

Si n=11 entonces 2 es una raíz primitiva módulo 11 y

$$\begin{array}{lll} 2^1 \equiv 2 \, (mod \, 11) & , & 2^2 \equiv 4 \, (mod \, 11) \\ 2^3 \equiv 8 \, (mod \, 11) & , & 2^4 \equiv 5 \, (mod \, 11) \\ 2^5 \equiv 10 \, (mod \, 11) & , & 2^6 \equiv 9 \, (mod \, 11) \\ 2^7 \equiv 7 \, (mod \, 11) & , & 2^8 \equiv 3 \, (mod \, 11) \\ 2^9 \equiv 6 \, (mod \, 11) & , & 2^{10} \equiv 1 \, (mod \, 11). \end{array}$$

Por lo tanto,

$$ind_2(1) = 0$$
, $ind_2(2) = 1$, $ind_2(3) = 8$ $ind_2(4) = 2$, $ind_2(5) = 4$, $ind_2(6) = 9$, $ind_2(7) = 7$, $ind_2(8) = 3$ $ind_2(9) = 6$, $ind_2(10) = 5$.

Teorema

Si m una raíz primitiva módulo n entonces para todo $c, d \in \mathbb{Z}$ se cumple:

- 1) $ind_m(1) \equiv 0 \pmod{\phi(n)}$.
- 2) $ind_m(cd) \equiv ind_m(c) + ind_m(d) \pmod{\phi(n)}$.
- 3) Para todo $t \in \mathbb{N}$, $ind_m(c^t) \equiv t \cdot ind_m(c) \pmod{\phi(n)}$.

Prueba:

1) Sea $ind_m(1) = w$ entonces $1 \equiv m^w \pmod{n}$. Como m es un raíz primitiva módulo n entonces $w \equiv 0 \pmod{\phi(n)}$. Por tanto $ind_m(1) \equiv 0 \pmod{\phi(n)}$.

Continuación de la prueba

2) Sean $x \equiv ind_m(cd), y \equiv ind_m(c)$ y $z \equiv ind_m(d)$. Como $cd \equiv m^x \pmod{n}, c \equiv m^y \pmod{n}$ y $d \equiv m^z \pmod{n}$ entonces

$$m^{y+z} \equiv cd \equiv m^x \pmod{n}$$
.

Por lo tanto

$$m^{y+z-x} \equiv 1 \pmod{n}$$
,

y como m es una raíz primitiva módulo n se tiene que:

$$y+z-x\equiv 0\,(mod\,\phi(n)).$$

3) De la parte 2), como $c \equiv m^y \pmod{n}$ entonces

$$c^t \equiv m^{yt} \pmod{n}$$
.

Por lo tanto $ind_m(c^t) \equiv yt \equiv t \cdot ind_m(c) \pmod{\phi(n)}$.

Ejemplo:

Resolver la ecuación diofántica:

$$3x^3 \equiv 7 \pmod{11}.$$

Al tomar el índice en base 2 a ambos lados se tiene:

$$ind_2(3x^3) \equiv ind_2(7) \, (mod \, 10).$$

Luego

$$ind_2(3) + 3ind_2(x) \equiv 7 \pmod{10},$$

como $ind_2(3) = 8$ entonces

$$ind_2(x) \equiv 3^{-1}(7-8) \equiv -7 \equiv 3 \pmod{10}.$$

Por lo tanto $x \equiv 2^3 \equiv 8 \pmod{11}$.

Definición

Si $m, n \in \mathbb{N}$, $b \in \mathbb{Z}$, MCD(b, n) = 1 entonces b es llamado una m-ésima potencia residual módulo n si $x^m \equiv b \pmod{n}$ para algún $x \in \mathbb{Z}$ y x es la llamado una m-ésima raíz módulo n.

Observaciones:

- Para el caso m = 2 decimos que x es una ráiz cuadrada módulo n y b es una potencia cuadrática módulo n.
- Para el caso m=3 decimos que x es una ráiz cúbica módulo n y b es una potencia cúbica módulo n y así sucesivamente.

Teorema

Sean $e, n \in \mathbb{N}$ tal que n tiene una raíz primitiva, sea $b \in \mathbb{Z}$ tal que MCD(b, n) = 1 y sea $g = MCD(e, \phi(n))$. Entonces la congruencia

$$x^e \equiv b(\bmod n) \tag{1}$$

es soluble (posee solución) si y sólo si $b^{\phi(n)/g} \equiv 1 \pmod{n}$. Es más, si existen soluciones en (1), entonces existen exactamente g soluciones incongruentes x módulo n.

Prueba:

Sea a una raíz primitiva módulo n. Resolver la ecuación (1) es equivalente a resolver la ecuación

$$e \cdot ind_a(x) \equiv ind_a(b) \pmod{\phi(n)}$$
 (2)

Continuación de la prueba

Esta última ecuación posee solución si y sólo si $g \mid ind_a(b)$. Si $g \mid ind_a(b)$ entonces existen exactamente g soluciones incongruentes módulo $\phi(n)$ tal que satisfacen la ecuación (2) y así se tendrá exactamente g enteros x incongruentes módulo n tal que se satisface la ecuación (1). Luego, $g \mid ind_a(b)$ si y sólo si

$$ind_a(b)\phi(n)/g \equiv 0 \, (mod \, \phi(n)),$$

que es equivalente a decir que

$$(a^{ind_ab()})^{\phi(n)/g} \equiv b^{\phi(n)/g} \equiv 1 \equiv a^0 \pmod{n}.$$

Corolario

Si p es un número primo impar, $c, e \in \mathbb{N}$ y $b \in \mathbb{Z}$ con MCD(p, b) = 1 entonces $x^e \equiv b \pmod{p^c}$ si y sólo si

$$b^{p^{c-1}(p-1)/g} \equiv 1 \, (modp^c),$$

donde $g \equiv MCD(e, p^{c-1}(p-1))$.

Es más, si éste posee una solución entonces tiene exactamente g soluciones.

Ejemplo 1 Supongamos que buscamos soluciones para

$$x^5 \equiv 5 \pmod{27}. \tag{3}$$

Se tiene que $g = MCD(e, \phi(p^c)) = MCD(5, 18) = 1$. Como $5^{18} \equiv 1 \pmod{27}$, por el teorema anterior la ecuación (1) posee solución y que existe sólo una solución ya que g = 1.

Continua el ejemplo

Al aplicar el índice en base 2 módulo 27 a la ecuación (3), se tiene que:

$$5 \cdot ind_2(x) \equiv ind_2(5) \equiv 5 \pmod{18},$$

luego m=2 es un raíz primitiva módulo 3^3 . Por lo tanto

$$ind_2(x) \equiv 1 \pmod{18}$$
,

entonces se tiene dos opciones, o $ind_2(x) \equiv 1 \pmod{27}$ o $ind_2(x) \equiv 19 \pmod{27}$. Al evaluar, se tiene como única solución que $x \equiv 2 \pmod{27}$ y que $2^{19} \equiv 2 \pmod{27}$.

Ejemplo 2

Resolver la ecuación

$$x^3 \equiv 4 (mod 27).$$

Como $4^6 \equiv 19 \, (mod \, 27) \, donde \, \phi(27)/MCD(\phi(27),3) = 18/3 = 6$ entonces por el teorema anterior no existe solución.