Integration and Stoke's theorem

Stoke's theorem Let M be an oriented n-dim. manifold with boundary and let 1: $\partial H \rightarrow M$ be the inclusion. Then $\int_{M} d\omega = \int_{\partial M} 1 \times \omega \quad \text{for all } \omega \in \Omega^{n-1}(M).$

Rem. It sollows that if OM = Ø, Then Jydw = O

We have sproved the following lemma: Lemma Stoke's therem hald for M= fl" and M-1Rh. Proof of Stoke's theorem

différence une orientation preserving.

We first choose on orienteel actor { (U, \$\phi_a: U_a -> \phi(U_1)} Such that $\phi_{k}(U_{a}) = \mathbb{R}^{n}$ or $\phi_{a}(U_{a}) = \mathcal{H}^{n}$ for each d. Claim Stoke's (Leven holds if supp we Us for some d. $\int_{\mathcal{O}_{\mathbf{d}}} d\omega = \int_{\mathbf{d}(\mathcal{O}_{\mathbf{d}})} (\phi_{\mathbf{d}}^{-1})^* d\omega = \int_{\mathbf{d}(\mathcal{O}_{\mathbf{d}})} d\omega = \int_{\mathbf{d}(\mathcal{O}_{\mathbf{d}})} (\phi_{\mathbf{d}}^{-1})^* \omega = \int_{\mathbf{d}(\mathcal{O}_{\mathbf{d}})} (\phi_{\mathbf{d}}^{-1})^* \omega$ = $\int_{\partial \phi(U_{k})} (\phi_{a}^{-1} \circ 1)^{k} W$, on the other side $\int_{\partial U_d} \int_{\partial U_d} \int_{\partial$ These are egnal souce the chiangen du, -> U, is commatitive and the vertical paldy]

 $\partial \phi_{a}(v_{a}) \stackrel{?}{\rightarrow} \phi_{a}(v_{a})$

Now chose a pertion of unity $\{p_a: M \rightarrow \{0,17\}\}$ subordinale $\{v_a\}$ Given $w \in \Omega^{n-1}(M)$, we write $w = \{p_a, w\}$ (finite sum). $\int_{M} d\omega = \int_{M} d(\Xi \rho_{a} \omega) = \sum_{\alpha} \int_{M} d(\rho_{a} \omega) = \sum_{d} \int_{0} d(\rho_{a} \omega)$ $= \sum_{\alpha} \int_{\partial U_{\alpha}} 2^{\alpha} (\rho_{\alpha} \omega) = \sum_{\alpha} \int_{\partial H} 2^{\alpha} (\rho_{\alpha} \omega) = \int_{\partial H} 2^{\alpha} (\sum_{\alpha} \rho_{\alpha} \omega)$ $=\int_{\partial M} 2^* \omega$

Rmk. The fundamental theorem for line integrals and Green's theorem from multivariable calculus one special cases of stoke's theorem (see feet book Section 23.6).

Relation to algebraic topology If M is an n-dim manifold, we have defined a sequence of real redor spaces

∑2 (M) → ∑1 (M) → ... → ∑1-1 (W) → ∑1 (M) → O

such that dod=0. This is a co-drain complex.

The (co) honology groups of this cochain complex me

the de Rhom cohomology groups Har(M), k=0... n.

Foct: Har(M) is isomorphic to the kth singular

homology group of M with coefficients in IR.