Math 591 Lecture 19

Thomas Cohn

10/14/20

Thm: The image of an embedding $F: M \to N$ is a regular submanifold of N.

Proof: Let $q \in F(M)$. We need to show that there are coordinates of N near q adapted to F(M). Let $p \in M$ s.t. F(p) = q. By the immersion theorem, there are corodinates $(U, \phi = (x^1, \dots, x^m))$ of M with $p \in U$, and $(V, \psi = (y^1, \dots, y^n))$ of N with $q \in V$, with $U \subseteq F^{-1}(V)$, such that $\tilde{F}(I) = (I, 0)$ (with m - n zeros).

$$U \xrightarrow{F} V$$

$$\downarrow^{\phi} \qquad \downarrow^{\psi}$$

$$\mathbb{R}^m \supseteq \phi(U) \xrightarrow{\tilde{F}} \psi(V) \subseteq \mathbb{R}^n$$

Well, $F(U) = \{w \in V \mid y^j(w) = 0, \forall j \in \{1, \dots, n\}\}$. The point is that because F is an embedding (i.e. $F|^{F(M)}: M \to F(M)$ is a homeomorphism), then F(U) is a relatively open set of F(M). So there is an open set $W \subseteq N$ such that $F(U) = F(M) \cap W$. Therefore, $F(M) \cap W \{w^{-1}V \mid y^j(w) = 0, \forall j \in \{1, \dots, n\}\}$. So ψ on $V \cap W$ is adapted to F(M) at q. \square

We want a stronger statement for when an injective immersion is an embedding.

Prop: Let $F: M \to N$ be a continuous proper map between manifolds. Then F is closed.

Proof: Let $C \subseteq M$ be a closed set, and $q \in \overline{F(C)}$. We need to show $q \in F(C)$. Well, let $V \subseteq N$ be an open neighborhood of q such that \overline{V} is compact. (We can do this because Euclidean spaces are locally compact.) Observe then that $q \in \overline{F(C) \cap \overline{W}}$. $F^{-1}(\overline{V})$ is compact, since F is proper, so $C \cap F^{-1}(\overline{V})$ is compact. Therefore, $F(C \cap F^{-1}(\overline{V}))$ is compact, so it's closed. But $F(C \cap F^{-1}(\overline{V})) = F(C) \cap \overline{V}$ (this is a set-theoretic fact). SO $F(C) \cap \overline{V}$ is closed. Since $q \in \overline{F(C)} \cap \overline{V}$, $q \in F(C) \cap \overline{V}$, so $q \in F(C)$. Thus, F is closed. \square

Vector Fields

Defn: Let M be a smooth manifold of dimension n. A vector field on M is a section of $TM \stackrel{\pi}{\to} M$. That is, it's a map $X: M \to TM$ s.t. $\forall p \in M, X_p \in T_pM$.

This is a slight abuse of notation. Update: Write $X(p) = (p, X_p)$. The p is the same because X is a section $\pi \circ X = I_M$.

Basically, a vector field on a manifold assigns a tangent vector to every point in a manifold.

Defn: A vector field X on M is smooth (C^{∞}) iff it is smooth as a map between manifolds $X: M \to TM$.

What does this mean (concretely)?

Let's think about smooth sections of vector bundles in general (e.g. TM and T^*M). Let

$$\begin{array}{c}
\mathcal{E} \\
\downarrow^{\pi} \\
M
\end{array}$$

be a C^{∞} vector bundle of rank $\rho \in \mathbb{N}$. This means \mathcal{E} is a manifold, π is C^{∞} and onto, $\forall p \in M$, $\pi^{-1}(p)$ has the structure of a vector space over \mathbb{R} of dimension ρ , and there exists a family $\{(U_{\alpha}, \chi_{\alpha})\}$ such that $\{U_{\alpha}\}$ is an open cover of M and $\forall \alpha$,

1

 χ_{α} is a diffeomorphism, and we have the vector bundle trivialization

$$\pi^{-1}(U_{\alpha}) \xrightarrow{\chi_{\alpha}} U_{\alpha} \times \mathbb{R}^{\rho}$$

$$U_{\alpha}$$

$$U_{\alpha}$$

s.t. χ_{α} is linear on fibers, i.e., $\forall p \in U_{\alpha}$, we have

$$\chi_{\alpha}|_{\pi^{-1}(p)}:\pi^{-1}(p)\stackrel{\cong}{\to} \{p\}\times\mathbb{R}^{\rho}\cong\mathbb{R}^{\rho}$$

The mapping from $\pi^{-1}(p)$ to \mathbb{R}^{ρ} is a linear isomorphism.

Ex: Let $\mathcal{E} = TM$. The trivializations are induced by coordinate charts. Let $U \subseteq M$, with $\phi = (x^1, \dots, x^n) : U \to \mathbb{R}^n$ be a coordinate chart. Then $\forall p \in U, i \in \{1, \dots, n\}, \ \frac{\partial}{\partial x^i} \Big|_p \in T_pU = T_pM$. We have

defined by

$$\chi^{-1}(p,v) = \left(p, \sum_{i=1}^{n} v^{i} \left. \frac{\partial}{\partial x^{i}} \right|_{p} \right)$$

with $p \in U$ and $v = (v^1, \dots, v^n) \in \mathbb{R}^n$.

We proved that $\forall p \in M$, $\left\{ \frac{\partial}{\partial x^i} \Big|_p : i = 1, \dots, m \right\}$ is a basis of $T_p M$. So χ^{-1} is invertible and a linear isomorphism of the fibers.

(The definition of the smooth structure on TM is such that χ as above is a diffeomorphism.)

Ex: $T^*M = \bigcup_{p \in M} \{p\} \times T_p^*M$

Again, a coordinate chart on M induces a trivialization.

Use: $\forall \alpha \in T_p^*M$, $\alpha = \sum_{i=1}^n \alpha_i \left. dx^i \right|_p$, where $\left. dx^i \right|_p$ is dual to $\left. \frac{\partial}{\partial x^i} \right|_p$, and $\left. \left\{ \left. dx^i \right|_p \mid i=1,\ldots,n \right\}$ is a basis of T_p^*M .

Back to

$$\int_{M}^{E} \int_{s}^{s}$$

Let s be a section (i.e. $\pi \circ s = I_M$). When is s smooth? We will answer this question using trivializations. Given a trivialization χ ,

$$\pi^{-1}(U) \xrightarrow{\chi} U \times \mathbb{R}^p$$

$$U \xrightarrow{s|_U} \pi$$

$$U \xrightarrow{\chi_0(s|_U) \stackrel{\text{def}}{=} s_\chi}$$

We have $\forall p \in U, s_{\chi}(p) = (p, \star)$, where \star is given by a function $F: U \to \mathbb{R}^{\rho}$. F is just the projection onto \mathbb{R}^{ρ} composed with s_{χ} . So $\forall p \in U, s_{\chi}(p) = (p, F(p))$.

Claim: $s|_U$ is smooth iff $F:U\to\mathbb{R}^\rho$ is smooth.

Proof: Next time...