```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
import datetime
import itertools
import warnings
from sklearn.metrics import mean_squared_error
import seaborn as sns
import statsmodels
plt.style.use('fivethirtyeight')
%matplotlib inline
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning:
import pandas.util.testing as tm

```
from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive
```

df = pd.read_csv("/content/drive/MyDrive/Ineuron/data_stocks.csv")
df.head()

			DATE	SP500	NASDAQ.AAL	NASDAQ.AAPL	NASDAQ.ADBE	NASDAQ.ADI	NASDAQ.ADP
		0	1491226200	2363.6101	42.3300	143.6800	129.6300	82.040	102.2300
		1	1491226260	2364.1001	42.3600	143.7000	130.3200	82.080	102.1400
		2	1491226320	2362.6799	42.3100	143.6901	130.2250	82.030	102.2125
(Cut 1	3 с	ells. You can n	ow paste the	m in this or a d	ifferent noteboo	k. × 0.0729	82.000	102.1400
		4	1491220440	Z304.03U I	42.3370	143.0000	ı∠9.8800	82.035	102.0600

5 rows × 502 columns

```
41261 2017-08-31 19:56:00

41262 2017-08-31 19:57:00

41263 2017-08-31 19:58:00

41264 2017-08-31 19:59:00

41265 2017-08-31 20:00:00

Name: DATE, dtype: datetime64[ns]

df.index = df['DATE']

df.drop('DATE',axis = 1,inplace=True)
```

SP500 NASDAQ.AAL NASDAQ.AAPL NASDAQ.ADBE NASDAQ.ADI NASDAQ.ADP NASDAQ.A

DATE							
2017-08- 31 19:56:00	2472.22	44.72	164.11	155.090	83.67	106.565	11
2017-08- 31 19:57:00	2471.77	44.73	164.12	155.160	83.65	106.590	11
2017-08- 31 19:58:00	2470.03	44.74	164.01	155.065	83.62	106.520	11
2017-08- 31 19:59:00	2471.49	44.71	163.88	154.960	83.58	106.400	11
2017-08- 31 20:00:00	2471.49	44.74	163.98	155.160	83.69	106.470	11-

Cut 13 cells. You can now paste them in this or a different notebook. X

NASDAQ.ADP

[] L, 19 cells hidden

- NADBAQ.CBOE

```
df_CBOE = df[["NASDAQ.CBOE"]].copy()
df_CBOE.tail()
```

NASDAQ.CBOE

	DATE
100.89	2017-08-31 19:56:00
100.88	2017-08-31 19:57:00
100.86	2017-08-31 19:58:00
100.83	2017-08-31 19:59:00
100.89	2017-08-31 20:00:00

df_CBOE.count()

NASDAQ.CBOE 41266

dtype: int64

df_CBOE.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x7f98419c03c8>

plot_acf(df_CBOE)

##Converting series to stationary
df_CBOE.shift(1)

NASDAQ.CBOE

	DATE
NaN	2017-04-03 13:30:00
81.0300	2017-04-03 13:31:00
81.2100	2017-04-03 13:32:00
81.2100	2017-04-03 13:33:00
81.1300	2017-04-03 13:34:00
100.8899	2017-08-31 19:56:00

Cut 13 cells. You can now paste them in this or a different notebook. X

2017-00-31 13.30.00 100.0000

2017-08-31 19:59:00 100.8600

2017-08-31 20:00:00 100.8300

41266 rows × 1 columns

X3 = df_CBOE.values
train3 = X3[0:28886] # 27 data as train data
test3 = X3[28886:] # 9 data as test data
print(train3.size)
print(test3.size)
predictions3 = []

28886

12380

```
p3=d3=q3=range(0,2)
pdq3=list(itertools.product(p3,d3,q3))
warnings.filterwarnings('ignore')
for param in pdq3:
    try:
        model arima3 = ARIMA(train3, order=param)
        model arima fit3 = model arima3.fit()
        print(param, model arima fit3.aic)
    except:
        continue
     (0, 0, 0) 160441.4526311847
     (0, 0, 1) 120929.59019310356
     (0, 1, 0) -96706.67408377743
     (0, 1, 1) -96892.8965002238
     (1, 0, 0) -96696.92223399912
     (1, 0, 1) -96882.56874919325
     (1, 1, 0) -96878.58101700693
     (1, 1, 1) -97008.39440809148
from statsmodels.tsa.arima_model import ARIMA
model arima3 = ARIMA(train3, order=(3,1,3))
model arima fit3 = model arima3.fit()
predictions3 = model_arima_fit3.forecast(steps=12380)[0]
predictions3
     array([92.5017572 , 92.50262953, 92.5037775 , ..., 97.40717353,
            97.40756968, 97.407965821)
       nound/moon commond oppositions 211
 Cut 13 cells. You can now paste them in this or a different notebook.
plt.plot(test3)
plt.plot(predictions3, color='red')
```

[<matplotlib.lines.Line2D at 0x7f98416f6588>]

