Problem 1. Cauchy sequence and its subsequence

Proof. (a) Let (x_{n_k}) denote a convergent subsequence of (x_n) , let $x_{n_k} \to x$ as $k \to \infty$, i.e for any $\varepsilon > 0$, there exists a K such that $\forall k \ge K$, we have $d(x_{n_k}, x) < \varepsilon$.

Since (x_n) is Cauchy sequence, for any $\varepsilon > 0$, there exists a N such that for any $n, m \ge N$, we have $d(x_n, x_m) < \varepsilon$.

For any $\varepsilon > 0$, pick $N_0 = \max(N, n_K)$, for any $n, m \ge N_0$, we have

$$d(x_n, x) \leqslant d(x_n, x_m) + d(x_m, x) \leqslant \varepsilon + \varepsilon = 2\varepsilon.$$

Thus $x_n \to x$ as $n \to \infty$.

(b) For ε_1 , since (x_n) is Cauchy sequence, there exists a N_1 such that for any $m>n\geqslant N_1$, we have $d(x_n,x_m)\leqslant \varepsilon_1$. We then define $n_1=N_1$. For any $n_2>n_1$, we have $d(x_{n_1},x_{n_2})\leqslant \varepsilon_1$. For each ε_k , suppose $n_k=N_k$, where for any $m>n_k\geqslant N_k$, $d(x_{n_k},x_m)\leqslant \varepsilon_k$, we then define recursively n_{k+1} . For ε_{k+1} , there exists a N_{k+1} , such that for $m>n\geqslant N_{k+1}$, we have $d(x_n,x_m)\leqslant \varepsilon_{k+1}$.

If $N_{k+1} > N_k$, then we define $n_{k+1} = N_{k+1}$. Since $n_{k+1} > n_k = N_k$, $d(x_{n_k}, x_{n_{k+1}}) \le \varepsilon_k$. And for any $m > n_{k+1} = N_{k+1}$, $d(x_{n_{k+1}}, x_m) \le \varepsilon_{k+1}$.

If $N_{k+1} \leqslant N_k$, then we define $n_{k+1} = N_k + 1$. Since $n_{k+1} > n_k = N_k$, $d(x_{n_k}, x_{n_{k+1}}) \leqslant \varepsilon_k$. And for any $m > n_{k+1} = N_k + 1 > N_{k+1}$, $d(x_{n_{k+1}}, x_m) \leqslant \varepsilon_{k+1}$.

Problem 2.

Proof. (a) Assume there is a point z in both $B_R(x)$ and $B_r(y)$, i.e., d(x,z) < R and d(y,z) < r. Thus $R+r > d(x,z) + d(y,z) \geqslant d(x,y) \geqslant R+r$, contradiction!

- (b) Let $z \in B_r(y)$, i.e., d(y,z) < r. Then $d(z,x) \le d(z,y) + d(y,x) < r + R r = R$, i.e., $z \in B_R(x)$.
- (c) 1. Given \mathbb{R}^2 associated with metric $d(x,y)=\frac{e(x,y)}{1+e(x,y)}$, where e(x,y) denotes the Euclidean metric. For x=(0,0),y=(5,0) and $R=\frac{2}{3},r=\frac{2}{3}$. We notice that

$$B_{2/3}(x) = \left\{ z \in \mathbb{R}^2 : d(z, x) < \frac{2}{3} \right\} = \left\{ z \in \mathbb{R}^2 : e(z, x) < 2 \right\};$$

$$B_{2/3}(y) = \left\{ z \in \mathbb{R}^2 : d(z, y) < \frac{2}{3} \right\} = \left\{ z \in \mathbb{R}^2 : e(z, y) < 2 \right\},$$

which yields that $B_{2/3}(x)$ and $B_{2/3}(y)$ are disjoint. However $d(x,y) \leq 1 < \frac{2}{3} + \frac{2}{3}$.

2. Given \mathbb{R}^2 associated with discrete metric d(x,y)=1 if $x\neq y$ and d(x,y)=0 if x=y. For x=(0,0),y=(5,0) and R=r=2. We note that $B_2(x)=\mathbb{R}^2$ so that $B_2(y)\subset B_2(x)=\mathbb{R}^2$, however d(x,y)=1>0=2-2.

Problem 3. Extension of Lipschitz functions on a dense set.

Proof. (a) **[Existence]** For any $x \in \tilde{X} \setminus X$, since X is a dense subset, so there is a sequence (x_n) in X such that $x_n \to x$. We define $\tilde{f}(x) := \lim_{n \to \infty} f(x_n)$. For any $x \in X$, we define $\tilde{f}(x) = f(x)$. It satisfies $\tilde{f}|_X = f$ obviously.

First we want to show $\tilde{f}(x)$ is well-defined on \tilde{X} .

For any $x \in \tilde{X} \backslash X$, since $x_n \to x$, for any $\varepsilon > 0$, there exists a N such that for any $m, n \geqslant N$, we have

$$d_{\tilde{X}}(x_n, x_m) \leqslant d_{\tilde{X}}(x_n, x) + d_{\tilde{X}}(x, x_m) \leqslant 2\varepsilon,$$

Furthermore, due to the fact that f is Lipschitz continuous function, we have

$$d_Y(f(x_n), f(x_m)) \leqslant Lip(f)d_{\tilde{X}}(x_n, x_m) \leqslant 2Lip(f)\varepsilon,$$

which yields that $(f(x_n))$ is a Cauchy sequence in (Y, d_Y) . Since Y is complete, $(f(x_n))$ converges in Y.

On the other hand, assume that there exists a different sequence (y_m) in X that $y_m \to x$. For any ε , there exists N, M such that for $n \ge N$ and $m \ge M$, we have $d(x_n, x) \le \varepsilon$ and $d(y_m, x) \le \varepsilon$. Then

$$d_Y(f(x_n), f(x_m)) \leqslant Lip(f)d_{\tilde{X}}(x_n, y_m) \leqslant Lip(f)(d_{\tilde{X}}(x_n, x) + d_{\tilde{X}}(x, y_m)) \leqslant 2Lip(f)\varepsilon,$$

which shows that the limit $\tilde{f}(x)$ does not depend the choice of sequences.

Second we want to show $\tilde{f}(x)$ is Lipschitz and $Lip(\tilde{f}) = Lip(f)$. (which implies it is continuous, as well.)

We show $d_Y(y,\cdot):Y\mapsto\mathbb{R}$ is continuous with respect to y. Then the same holds for $d_Y(\cdot,y)$ and for $d_{\tilde{X}}$. In fact,

$$-d_Y(y, y_0) \leqslant d_Y(y, \cdot) - d_Y(y_0, \cdot) \leqslant d_Y(y, y_0).$$

Furthermore, we have

$$\lim_{n} d_Y(y_n, \cdot) = d_Y(\lim y_n, \cdot).$$

For any $x, y \in \tilde{X}$, assume that $x_n \to x$ and $y_n \to y$ with $(x_n), (y_n)$ in X.

$$d_{Y}(\tilde{f}(x), \tilde{f}(y)) = d_{Y}(\lim_{n} f(x_{n}), \lim_{n} f(y_{n})) = \lim_{n} d_{Y}(f(x_{n}), f(y_{n}))$$

$$\leq \lim_{n} Lip(f)d_{\tilde{X}}(x_{n}, y_{n}) = Lip(f)d_{\tilde{X}}(\lim_{n} x_{n}, \lim_{n} y_{n}) = Lip(f)d_{\tilde{X}}(x, y),$$

which implies that \tilde{f} is Lipschitz and $Lip(\tilde{f}) = Lip(f)$.

[Uniqueness] Suppose there is another continuous map $g: \tilde{X} \mapsto Y$ such that $g|_X = f$. Then there exists a $x \in \tilde{X} \setminus X$ such that $g(x) \neq \tilde{f}(x)$. Since g is continuous, then for every $\varepsilon > 0$, there exists a $\delta > 0$, such that $d_{\tilde{X}}(x_n, x) < \delta$ implies $d_Y(g(x), g(x_n)) < \varepsilon$. Note that $d_Y(g(x), g(x_n)) = d_Y(g(x), f(x_n))$ and Cauchy sequence $(f(x_n))$ in Y has the unique limit. Contradiction!

(b) [Sharpness] Let $X=(-\infty,0)\cup(0,\infty)\subset \tilde{X}=\mathbb{R}$ with Euclidean metric e. Then X is a dense subset of \tilde{X} . Let $f(x)=\frac{1}{|x|}$ on X. Then $f(x):(X,e)\mapsto(\mathbb{R},e)$ is a continuous function, however there is no way to extend f from X to \tilde{X} continuously.

Problem 4. "lower semi-continuous + coercive ⇒ minimum"

Proof. For any M>0, there exists a R>0 such that for $||x||\geqslant R$ implies $f(x)\geqslant M$. Thus

$$\inf_{x\in\mathbb{R}^d} f(x) = \inf(\inf_{\|x\|>R} f(x), \inf_{\|x\|\leqslant R} f(x)) \geqslant \inf(M, \inf_{\|x\|\leqslant R} f(x)).$$

Suppose f(x) on $B_R(0) := \{x : ||x|| \le R\}$ is not bounded from below, i.e., for any n > 0, there exist a $x_n \in B_R(0)$ such that $f(x_n) < -n$. Since $B_R(x)$ is compact, there exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$ in $B_R(0)$. By lower semi-continuity, we have

$$f(x) \leqslant \liminf_{k \to \infty} f(x_{n_k}) \to -\infty,$$

which makes f is not defined at x, contradiction! Thus there exists a $B \in \mathbb{R}$ such that $\inf_{x \in B_R(0)} f(x) = B$. Then

$$\inf_{x \in \mathbb{R}^d} f(x) \geqslant \min(M, B),$$

which implies f is bounded from below on \mathbb{R}^d .

Let (x_n) denote a minimizing sequence such that $f(x_n) \to \inf_{x \in \mathbb{R}^d} f(x)$ (why exists?). Due to coercivity of f, (x_n) is bounded, thus there exists a subsequence (x_{n_k}) such that $x_{n_k} \to x$. By lower semi-continuity of f, we have

$$f(x) \leq \liminf_{k \to \infty} f(x_{n_k}) = \inf_{x \in \mathbb{R}^d} f(x).$$

By the definition of inf, we know x is the minimizer.

Problem 5.

Proof. Suppose S is an ε -net of A, then

$$A \subset \bigcup_{s \in S} B_{\varepsilon}(s) = \left(\bigcup_{s \in S \cap A} B_{\varepsilon}(s)\right) \cup \left(\bigcup_{s' \in S \setminus A} B_{\varepsilon}(s')\right).$$

Note that for any $s' \in S \setminus A$, if $B_{\varepsilon}(s') \cap A = \emptyset$, then $S \setminus \{s'\}$ is still an ε -net of A.

Let $S'=\{s\in S\backslash A: B_{\varepsilon}(s)\cap A\neq\emptyset\}$. For any $s'\in S'$, we pick any $k\in B_{\varepsilon}(s')\cap A$, thus $d(k,s')<\varepsilon=2\varepsilon-\varepsilon$. By Problem 2b, $B_{\varepsilon}(s')\subset B_{2\varepsilon}(k)$. In this way, we induce a map from set S' to set K' such that $\bigcup_{s'\in S'}B_{\varepsilon}(s')\subset\bigcup_{k\in K'}B_{2\varepsilon}(k)$ with cardinality $|K'|\leqslant |S'|$.

Now we define $K := \{s : s \in S \cap A\} \cup K'$. By construction, $K \subset A$ and K is a 2ε -net of A, with cardinality $|K| \leq |S \cap A| + |K'| \leq |S|$.

Problem 6.

Proof.

1. Assume A has a finite ε -net X_{ε} for every $\varepsilon > 0$, then for any subset B of A, we have

$$B \subset A \subset \bigcup_{x \in X_{\varepsilon}} B_{\varepsilon}(x),$$

i.e., X_{ε} is also a finite ε -net of B.

2. Assume A is nonempty and totally bounded in (X, d), i.e., for every $\varepsilon > 0$, there exist a finite ε -net $Y_{\varepsilon} \subset X$ of A.

Define $D:=\max_{(y_1,y_2)\in Y_\varepsilon\times Y_\varepsilon}d(y_1,y_2).$ Since Y_ε is finite, D exists and is finite.

Pick $x \in A$ and for any $a \in A$, assume $x \in B_{\varepsilon}(y_1)$ and $a \in B_{\varepsilon}(y_2)$ for some $y_1, y_2 \in Y_{\varepsilon}$. Then

$$d(x,a) \leqslant d(x,y_1) + d(y_1,y_2) + d(y_2,a) \leqslant 2\varepsilon + D.$$

We prove A is bounded.

Take \mathbb{N} with discrete metric d(x,y)=1 when $x\neq y$ and d(x,y)=0 when x=y. Then \mathbb{N} is bounded because for any integer $n\in\mathbb{N}$, $d(0,n)\leqslant 1$.

However $\mathbb N$ is not totally bounded, because for $\varepsilon \leqslant 1$, there does not exist a finite ε -net X_{ε} .

3. We assume \mathbb{R}^n equipped with the associated metric d of Euclidean norm or other equivalent norm.

Let $A \subset \mathbb{R}^n$ is bounded, i.e., there exists a r>0 and $x\in A$ such that for any $a\in A$, $d(x,a)\leqslant r$.

For any small $\varepsilon > 0$, define $X_{\varepsilon} = \{x + \sum_{j=1}^{n} k_j \cdot e_j : -(\lfloor \frac{r}{2\varepsilon} \rfloor + 1) \leqslant k_j \leqslant (\lfloor \frac{r}{2\varepsilon} \rfloor + 1)\}$, which is finite. Furthermore, we have

$$A \subset \bigcup_{x \in X_{\varepsilon}} B_{\varepsilon}(x),$$

which implies X_{ε} is a finite ε -net.

Problem 7.

Proof. Since d is continuous with respect to each argument, let (a_n, b_n) be a minimizing sequence such that $d(a_n, b_n) \to \operatorname{dist}(A, B)$, by lower-semi continuity of d. Since A and B are compact, there exists a subsequence (a_{n_k}, b_{n_k}) such that $(a_{n_k}, b_{n_k}) \to (a, b)$. By the lower semi-continuity of d, we have

$$d(a,b) \leqslant \liminf_{k} d(a_{n_k}, b_{n_k}) = \operatorname{dist}(A, B).$$