

5 pts

Le plan 9º est orienté dans le sens direct. Dans la figure ci-contre :

- □ ABCD est un rectangle de centre O tel que $(\overrightarrow{AB},\overrightarrow{AC})\equiv \frac{\pi}{3}[2\pi]$. □ $D'=S_A(B)$ et $H=O\star A$.
- \square Les droites (OD') et (AD) se coupent au point I.

D'

- Montrer que la droite (OD') est la médiatrice de [BD].
- a Montrer qu'il existe un unique déplacement f qui envoie A en O et B en D.
 - b Montrer que f(D') = B.
 - Montrer que f est une rotation d'angle $\frac{2\pi}{3}$ et de centre I.
 - d Montrer que f(D) = D'.
- Soit h l'homothétie de centre B et de rapport $\frac{1}{2}$ et $g = h \circ f$.
 - a) Montrer que g est une similitude directe dont on précisera le rapport et l'angle.
 - **b** Déterminer g(B) et g(D) puis montrer que g(O) = H.
 - $oldsymbol{c}$ En déduire que $g \circ g \circ g(D') = H$.
 - d Soit Ω le centre de g. Montrer que Ω est le barycentre des points pondérés (H,8) et (D',-1).
- **B** Soit le point G symétrique de O par rapport à A.
- On désigne par S la similitude directe de centre H qui envoie A en B.
 - $\overline{\mathsf{a}}$ Déterminer le rapport de S et mesure de son angle.
 - b Montrer que S(B) = C.
- Soit σ la similitude indirecte qui envoie A en B et B en C.
 - \overline{a} Justifier que σ admet un centre.

- **b** Déterminer $\sigma \circ \sigma(A)$. En déduire que **G** est le centre de σ .
- ${}^{\,\,\,\,\,\,\,\,\,}$ Le cercle ${}^{\,\,\,\,\,\,}$ de centre O et passant par G coupe la demi-droite [D'O) en L.

Montrer que la demi-droite [GL) est l'axe de σ .

d La droite (GL) coupe (AB) en J et coupe (BC) en K.

Montrer que $\sigma(J) = K$

3 Déterminer l'ensemble $\Gamma = \{M \in \mathfrak{P} \ \text{ tel que } \sigma(M) = S(M)\}$

Exercice 2

Q 48 min

4 pts

Dans la figure ci-contre :

- □ ABCDEFGH est un cube d'arrête 1.
- ullet Le point I est le centre de gravité du triangle BDE.
- On muni l'espace du repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$

I-

- 1 Montrer que le triangle BDE est équilatèral.
- 2 Déterminer une équation cartésienne du plan (BDE).
- Montrer que $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AG}$ et que I est le projeté orthogonal de A sur le plan (BDE).

II- Soit k un réel non nul.

On désigne par h l'homothétie de centre A et de rapport k et on note M_k l'image de G par h et \mathfrak{P}_k le plan passant par M_k et parallèle au plan (BDE).

Le plan \mathfrak{P}_k coupe (BC) en N_k .

- 1 Identifier: $\mathfrak{P}_{\frac{1}{3}}$, $M_{\frac{1}{3}}$ et $N_{\frac{1}{3}}$ et calculer la distance $M_{\frac{1}{3}}N_{\frac{1}{3}}$.
- 2 Déterminer les coordonnées du point M_k .
 - b Trouver une équation du plan $\mathfrak{P}_{\mathbf{k}}.$
- (3) a En déduire que le point N_k a pour coordonnées (1,3k-1,0).
 - b Pour quelle valeur de k la droite $(M_k N_k)$ est-elle perpendiculaire à la fois aux droites (AG) et (BC)?
 - f c Pour quelle valeurs de k la distance $M_k N_k$ est-elle minimale?

5 pts

- 1
- (a) Discuter suivant l'entier naturel n, le reste de la division euclidienne de 2^n par 5.
- b Résoudre dans \mathbb{N} , l'équation $(E_1): 67^x \equiv 1 \pmod{5}$.
- (a) Montrer que $5^{66} \equiv 1 \pmod{67}$.
 - Soit p le plus petit entier naturel non nul tel que $5^p \equiv 1 \pmod{67}$. Montrer que p divise 66.
 - Vérifier que $5^3 \equiv 58 \pmod{67}$; $5^6 \equiv 14 \pmod{67}$; $5^{11} \equiv 66 \pmod{67}$ et $5^{22} \equiv 1 \pmod{67}$. Déduire **p**.
- On considère dans \mathbb{N} l'équation $(E_2):5^y\equiv 1\pmod{67}$.

Soit y une solution de (E_2) tel que y=22q+r où q et r sont respectivement le quotient et Le reste de la division euclidienne de y par 22.

- Montrer que y = 22q.
- On considère dans $\mathbb{N} \times \mathbb{N}$ l'équation (E): $67^x + 5^y \equiv 1 \pmod{335}$.
 - a Montrer que si (x, y) est solution de (E) alors $x \neq 0$ et $y \neq 0$.
 - b Montrer que si (x,y) est une solution de (E) alors (x,y)=(4k,22q) où $(k,q)\in\mathbb{N}^*\times\mathbb{N}^*$.
 - C Montrer que pour tout $(k, q) \in \mathbb{N}^* \times \mathbb{N}^*$, $67^{4k} + 5^{22q} \equiv 1 \pmod{5}$ et $67^{4k} + 5^{22q} \equiv 1 \pmod{67}$.
 - d Déduire l'ensemble des solutions de (E).

Exercice 4

Q 84 min

7 pts

- - Soit $n \in \mathbb{N}^*$ et ϕ_n la fonction définie sur]0; $+\infty$ [par $\phi_n(x) = \frac{1}{x} \frac{1}{n} \ln(x)$.
 - a Dresser le tableau de variation de ϕ_{π} .
 - b Montrer que l'équation $\phi_n(x)=0$ admet une unique solution α_n dans $]0;+\infty[$ et que $\alpha_n>1$.
 - Soit \mathscr{C}_1 la courbe représentative dans un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ de la restriction de ϕ_1 à l'intervalle $\left[\frac{1}{e}; 1\right]$.
 - Calculer le volume $\mathcal V$ du solide engendré par la rotation de $\mathscr C_1$ autour de $(\mathsf O,\ \overrightarrow{\iota}).$
- a Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout x > 1, on a : $\phi_{n+1}(x) > \phi_n(x)$.
 - b Montrer que la suite (α_n) est croissante non majorée.
 - En déduire $\lim_{n \to +\infty} \alpha_n$ et calculer $\lim_{n \to +\infty} \frac{\alpha_n}{n}$.
- Pour tout $n \in \mathbb{N}^*$, on considère la fonction f_n définie sur $]0; +\infty[$ par : $f_n(x) = e^{-\frac{x}{n}} \ln x$.

- a Vérifier que pour tout x > 0, $f'_n(x) = e^{-\frac{x}{n}} \varphi_n(x)$.
- **b** Dresser alors le tableau de variation de f_n .
- Tracer (\mathscr{C}_2) courbe représentative de f_2 dans un nouveau repère orthonormé. (unité graphique 2~cm et prendra $\alpha_2 \approx 2.35$)
- On considère dans]0; $+\infty$ [l'équation différentielle $(E_n): y' + \frac{1}{n}y = \frac{e^{-\frac{x}{n}}}{x}$.
 - a Montrer que f_n est une solution de ((E_n) .
 - b Soit g_n une fonction dérivable sur $]0;+\infty[$.

 Montrer que g_n est solution de (E_n) si et seulement si g_n-f_n est solution d'une équation différentielle (F_n) que l'on précisera.
 - f C Résoudre (F_n) puis déterminer l'ensemble des solutions de (E_n) .
 - d Déterminer la solution g de (E_n) telle que sa courbe coupe l'axe $(0, \overrightarrow{\iota})$ au point d'abscisse e^{-1} .
- Soit g la fonction définie sur $]0;+\infty[$ par $g(x)=e^{-\frac{x}{n}}\left(1+\ln(x)\right)$ et soit (u_p) la suite définie sur \mathbb{N}^* par $u_p=\int_1^pg(x)dx.$
 - a Montrer que la suite $(\mathfrak{u}_{\mathfrak{p}})$ est croissante.
 - b Montrer que pour tout $x\geqslant 1$, on a : $e^{-\frac{x}{n}}\leqslant g(x)\leqslant 1+\ln x$.
 - c En déduire que : $-n\left(e^{-\frac{p}{n}}-e^{-\frac{1}{n}}\right)\leqslant u_p\leqslant p\ln(p)$

Taki Academy
www.takiacademy.com