1. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt{x+10} - 3$$

B.
$$f(x) = \sqrt{x+10} - 3$$

C.
$$f(x) = -\sqrt{x - 10} - 3$$

D.
$$f(x) = \sqrt{x - 10} - 3$$

- E. None of the above
- 2. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x-6} + 4$$

 \circ

D.

В.

- E. None of the above.
- 3. Choose the graph of the equation below.

$$f(x) = \sqrt{x+10} + 3$$

A.

C.

D.

- В.
- E. None of the above.
- 4. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{48x^2 - 30} - \sqrt{-4x} = 0$$

- A. $x \in [-2.83, 0.17]$
- B. $x \in [-0.25, 3.75]$
- C. All solutions lead to invalid or complex values in the equation.
- D. $x_1 \in [-0.25, 3.75]$ and $x_2 \in [0.79, 0.87]$
- E. $x_1 \in [-2.83, 0.17]$ and $x_2 \in [0.67, 0.76]$

5. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{9x+5} - \sqrt{5x+5} = 0$$

- A. $x \in [-2.98, -1.79]$
- B. $x_1 \in [-1.09, -0.92]$ and $x_2 \in [-0.87, -0.55]$
- C. $x_1 \in [-0.63, -0.24]$ and $x_2 \in [-0.55, 0.11]$
- D. $x \in [-0.45, 0.4]$
- E. All solutions lead to invalid or complex values in the equation.
- 6. Choose the equation of the function graphed below.

- A. $f(x) = -\sqrt{x+6} + 4$
- B. $f(x) = \sqrt{x-6} + 4$
- C. $f(x) = \sqrt{x+6} + 4$
- D. $f(x) = -\sqrt{x-6} + 4$
- E. None of the above
- 7. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-24x^2 + 21} - \sqrt{10x} = 0$$

A. All solutions lead to invalid or complex values in the equation.

B.
$$x \in [-1.29, -0.35]$$

C.
$$x_1 \in [-1.29, -0.35]$$
 and $x_2 \in [0.64, 0.94]$

D.
$$x_1 \in [0.44, 1.41]$$
 and $x_2 \in [0.96, 1.3]$

E.
$$x \in [0.44, 1.41]$$

8. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-3x+2} - \sqrt{-6x+7} = 0$$

A. All solutions lead to invalid or complex values in the equation.

B.
$$x \in [1.08, 1.84]$$

C.
$$x_1 \in [-0.34, 0.84]$$
 and $x_2 \in [1.4, 2]$

D.
$$x \in [-3.15, -1.87]$$

E.
$$x_1 \in [-0.34, 0.84]$$
 and $x_2 \in [0.2, 1.6]$

9. What is the domain of the function below?

$$f(x) = \sqrt[3]{-4x + 9}$$

- A. The domain is $(-\infty, a]$, where $a \in [-2.6, 0.5]$
- B. The domain is $(-\infty, a]$, where $a \in [1.3, 2.8]$
- C. The domain is $[a, \infty)$, where $a \in [1.2, 2.7]$
- D. $(-\infty, \infty)$
- E. The domain is $[a, \infty)$, where $a \in [-1.4, 1.6]$

10. What is the domain of the function below?

$$f(x) = \sqrt[4]{7x+3}$$

5346-5907

A. $[a, \infty)$, where $a \in [-2.2, 1.3]$

B.
$$(-\infty, \infty)$$

C. $(-\infty, a]$, where $a \in [-3.5, -0.5]$

D.
$$[a, \infty)$$
, where $a \in [-5.8, -2.2]$

E.
$$(-\infty, a]$$
, where $a \in [-1.6, 0.1]$

11. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt[3]{x+12} + 3$$

B.
$$f(x) = -\sqrt[3]{x - 12} + 3$$

C.
$$f(x) = -\sqrt[3]{x+12} + 3$$

D.
$$f(x) = \sqrt[3]{x - 12} + 3$$

E. None of the above

12. Choose the graph of the equation below.

$$f(x) = -\sqrt{x-8} - 7$$

В.

C.

D.

E. None of the above.

L. Ivolic of the above.

13. Choose the graph of the equation below.

$$f(x) = \sqrt{x + 14} - 5$$

A.

В.

С.

E. None of the above.

14. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-9x^2 - 15} - \sqrt{24x} = 0$$

A. All solutions lead to invalid or complex values in the equation.

B.
$$x_1 \in [1.62, 1.72]$$
 and $x_2 \in [-0.1, 3.5]$

C.
$$x \in [-1.13, -0.71]$$

D.
$$x \in [-1.83, -1.09]$$

E.
$$x_1 \in [-1.83, -1.09]$$
 and $x_2 \in [-3.3, 0.8]$

15. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{3x - 6} - \sqrt{7x + 5} = 0$$

A.
$$x_1 \in [-0.81, -0.31]$$
 and $x_2 \in [1, 4]$

B.
$$x \in [-3.45, -2.19]$$

C.
$$x \in [-0.25, -0.06]$$

D.
$$x_1 \in [-3.45, -2.19]$$
 and $x_2 \in [1, 4]$

E. All solutions lead to invalid or complex values in the equation.

16. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt[3]{x - 12} + 6$$

B.
$$f(x) = -\sqrt[3]{x+12} + 6$$

C.
$$f(x) = \sqrt[3]{x - 12} + 6$$

D.
$$f(x) = \sqrt[3]{x+12} + 6$$

E. None of the above

17. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-16x^2 - 45} - \sqrt{-58x} = 0$$

A.
$$x \in [2.1, 3.1]$$

B. All solutions lead to invalid or complex values in the equation.

C.
$$x_1 \in [0.6, 1.2]$$
 and $x_2 \in [2.5, 3.5]$

D.
$$x \in [0.6, 1.2]$$

E.
$$x_1 \in [-1.9, -0.7]$$
 and $x_2 \in [-3.5, 1.5]$

18. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{3x+4} - \sqrt{-9x+7} = 0$$

A.
$$x_1 \in [-2.5, -1.27]$$
 and $x_2 \in [-0.21, 0.62]$

B.
$$x \in [-0.67, 1.18]$$

C.
$$x_1 \in [-2.5, -1.27]$$
 and $x_2 \in [0.5, 0.91]$

D. All solutions lead to invalid or complex values in the equation.

E.
$$x \in [-1.12, -0.11]$$

19. What is the domain of the function below?

$$f(x) = \sqrt[4]{8x - 7}$$

A.
$$(-\infty, \infty)$$

B.
$$(-\infty, a]$$
, where $a \in [1.05, 1.54]$

C.
$$(-\infty, a]$$
, where $a \in [0.46, 1.03]$

D.
$$[a, \infty)$$
, where $a \in [1.13, 1.28]$

E.
$$[a, \infty)$$
, where $a \in [0.71, 0.89]$

20. What is the domain of the function below?

$$f(x) = \sqrt[3]{8x - 9}$$

A.
$$(-\infty, \infty)$$

B. The domain is
$$[a, \infty)$$
, where $a \in [0.91, 1.47]$

C. The domain is
$$[a, \infty)$$
, where $a \in [0.58, 1.05]$

D. The domain is
$$(-\infty, a]$$
, where $a \in [0.99, 1.35]$

E. The domain is
$$(-\infty, a]$$
, where $a \in [0.52, 1.05]$

21. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt[3]{x - 14} - 5$$

B.
$$f(x) = -\sqrt[3]{x+14} - 5$$

C.
$$f(x) = \sqrt[3]{x - 14} - 5$$

D.
$$f(x) = \sqrt[3]{x+14} - 5$$

- E. None of the above
- 22. Choose the graph of the equation below.

$$f(x) = -\sqrt[3]{x+10} - 3$$

-2

>-3

-4

С.

-10

-8

-12

В.

A.

- E. None of the above.
- 23. Choose the graph of the equation below.

$$f(x) = \sqrt[3]{x - 12} + 5$$

C.

- В.
- E. None of the above.
- 24. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{72x^2 + 28} - \sqrt{-95x} = 0$$

- A. $x \in [-1.08, -0.68]$
- B. $x \in [-0.52, 0.09]$
- C. $x_1 \in [0.42, 0.48]$ and $x_2 \in [0.4, 1.8]$
- D. $x_1 \in [-1.08, -0.68]$ and $x_2 \in [-1, -0.4]$
- E. All solutions lead to invalid or complex values in the equation.

25. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-6x - 7} - \sqrt{-3x + 3} = 0$$

- A. $x_1 \in [-1.28, -0.57]$ and $x_2 \in [-1, 6]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x \in [-3.86, -3.31]$
- D. $x \in [-1.63, -1.32]$
- E. $x_1 \in [-3.86, -3.31]$ and $x_2 \in [-4.17, -0.17]$
- 26. Choose the equation of the function graphed below.

- A. $f(x) = \sqrt[3]{x+14} 7$
- B. $f(x) = -\sqrt[3]{x 14} 7$
- C. $f(x) = \sqrt[3]{x 14} 7$
- D. $f(x) = -\sqrt[3]{x+14} 7$
- E. None of the above
- 27. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{36x^2 - 42} - \sqrt{-6x} = 0$$

Progress Quiz 4 Version ALL

A. All solutions lead to invalid or complex values in the equation.

B.
$$x_1 \in [-1, 4]$$
 and $x_2 \in [1.08, 1.41]$

C.
$$x \in [-1, 4]$$

D.
$$x \in [-5.17, 0.83]$$

E.
$$x_1 \in [-5.17, 0.83]$$
 and $x_2 \in [0.87, 1.09]$

28. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{3x+9} - \sqrt{-8x-9} = 0$$

A.
$$x \in [-0.5, 2.1]$$

B.
$$x \in [-2.7, -0.1]$$

C.
$$x_1 \in [-5.4, -2.6]$$
 and $x_2 \in [-1.3, 1.2]$

D.
$$x_1 \in [-5.4, -2.6]$$
 and $x_2 \in [-3.6, -1.5]$

E. All solutions lead to invalid or complex values in the equation.

29. What is the domain of the function below?

$$f(x) = \sqrt[6]{-6x - 4}$$

A.
$$(-\infty, \infty)$$

B.
$$[a, \infty)$$
, where $a \in [-1.87, -0.88]$

C.
$$[a, \infty)$$
, where $a \in [-1.11, -0.03]$

D.
$$(-\infty, a]$$
, where $a \in [-2, -0.91]$

E.
$$(-\infty, a]$$
, where $a \in [-1.32, -0.62]$

30. What is the domain of the function below?

$$f(x) = \sqrt[4]{-6x+7}$$

5346-5907 Summer C 2021

- A. $[a, \infty)$, where $a \in [-0.42, 1.1]$
- B. $(-\infty, a]$, where $a \in [0.98, 1.2]$
- C. $(-\infty, a]$, where $a \in [0.83, 0.88]$
- D. $(-\infty, \infty)$
- E. $[a, \infty)$, where $a \in [0.94, 3.35]$

5346-5907 Summer C 2021