

Capacitação em Inteligência Artificial e Aplicações

Introdução aos classificadores supervisionados

- Prof. Gerson Vieira Albuquerque Neto
- Prof. Rodrigo Carvalho Souza Costa
- Prof. Yves Augusto Romero

Planejamento da Disciplina

D	S	Т	Q	Q	S	S
26	27 Introdução ao curso	28 Áreas e aplicações de IA	29 Tipos e definições de Inteligência artificial	30 Revisão de álgebra e probabilidade	31 Laboratório Python 1	1
2	Introdução aos classificadores supervisionados	4 Aula teórica Naive Bayes	5 Aula prática Naive Bayes + KNN	6 Feriado Semana Santa	7 Feriado Semana Santa	8
9	Aula Teórica de Árvore de Decisão	Aula Pratica de Árvore de Decisão	12 Introdução à clusterização / Aula teórica Kmeans	13 Prática Kmeans	14 Introdução ao PCA / prática com classificadores já implementados	15
16	17 Introdução ao Perceptron Simples - Prática	18 Teoria MLP / Aplicação scilearn	19 Introdução ao DeepLearning	20 Uso de biblioteca DeepLearning	21 Feriado Tiradentes	28
23	24 Introdução ao TensorFlow / Keras	25 Introdução ao Pytorch	26 Tensorflow for android	27	28	29

Prefácio

- O aprendizado de máquina é um campo de pesquisa central da IA e também é um conhecimento necessário para o aprendizado profundo.
- Portanto, este módulo apresenta principalmente os principais conceitos de aprendizado de máquina, a classificação do aprendizado de máquina, o processo geral de aprendizado de máquina e os algoritmos comuns de aprendizado de máquina.

Objetivos da Aula

- Após a conclusão deste módulo, você será capaz de:
 - Dominar a definição do algoritmo de aprendizagem e o processo de aprendizado de máquina.
 - Compreender os algoritmos comuns de aprendizado de máquina.

Introdução aos classificadores supervisionados

- Definição de Aprendizado de Máquina (Machine Learning)

Introdução

- O aprendizado de máquina (incluindo o aprendizado profundo) é uma área estudo de algoritmos de aprendizado.
- Diz-se que um programa de computador aprende com a experiência E em relação a alguma classe de tarefas T e a medida de desempenho P se o seu desempenho em tarefas em T, medido por P, melhora com a E.

Exemplo: Reconhecimento de texto manuscrito

Dados (Experiência E)

Algoritmos de aprendizagem (Tarefa T)

Compreensão básica (Medida P)

Softex

Similaridade entre a inteligência humana e a artificial

Reconhecimento de Faces

 Como reconhecer uma face através de linguagens de programação procedurais?

Diferenças entre algoritmos de aprendizado de máquina e algoritmos tradicionais baseados em regras

- A programação explícita é usada para resolver problemas.
- As regras podem ser especificadas manualmente.

- As amostras são usadas para treinamento.
- As regras de tomada de decisão são complexas ou difíceis de descrever.
- As regras são aprendidas automaticamente pelas máquinas.

Diferenças entre algoritmos de aprendizado de máquina e algoritmos tradicionais baseados em regras

PROGRAMAÇÃO

```
APRENDIZADO
```

```
aprovado = False
                                                     TREINAMENTO
                                                                      MODELO
2 v if not Negativado:
      if Renda > 1.3*parcela
      and TempoEmprego > 6:
          if Patrimônio == True.
              aprovado = True
          elif Fiador = True:
              aprovac
```


Cenários de aplicação do Aprendizado de Máquina

- A solução para um problema é complexa, ou o problema pode envolver uma grande quantidade de dados sem uma função clara de distribuição de dados.
- O aprendizado de máquina pode ser usado nos seguintes cenários:

As regras são complexas ou não podem ser descritas, como o reconhecimento de voz.

As regras da tarefa mudam com o tempo. Por exemplo, na tarefa de marcação de parte da fala, novas palavras ou significados são gerados a qualquer momento.

A-distribuição de dados muda ao longo do tempo, exigindo readaptação constante de programas, como a previsão da tendência de vendas de commodities.

Cenários de aplicação do Aprendizado de Máquina

Complexidade da regra

Complexo

Simples

Algoritmos de Regras manuais aprendizado de máquina **Algoritmos baseados Problemas simples** em regras

Pequeno

Grande:

Compreensão Racional de Algoritmos de Aprendizado de Máquina

- A função de destino f é desconhecida. Os algoritmos de aprendizagem não podem obter uma função perfeita f.
- Suponha que a função de hipótese g se aproxime da função f, mas pode ser diferente da função f.

Principais problemas resolvidos pelo Machine Learning

- O aprendizado de máquina pode lidar com muitos tipos de tarefas. A seguir, descrevem-se os tipos de tarefas mais típicos e comuns.
 - Classificação: Um programa de computador precisa especificar a qual das k categorias alguma entrada pertence. Para realizar essa tarefa, os algoritmos de aprendizagem geralmente produzem uma função f:R^n→(1,2,...,k). Por exemplo, o algoritmo de classificação de imagem em visão computacional é desenvolvido para lidar com tarefas de classificação.
 - Regressão: Para este tipo de tarefa, um programa de computador prevê a saída para a entrada dada. Os algoritmos de aprendizagem normalmente produzem uma função f:R^n→R. Um exemplo desse tipo de tarefa é prever o valor do sinistro de uma pessoa segurada (para definir o prêmio do seguro) ou prever o preço do título.
 - Clustering: uma grande quantidade de dados de um conjunto de dados não rotulado é dividida em várias categorias de acordo com a semelhança interna dos dados. Os dados na mesma categoria são mais semelhantes do que os de diferentes categorias. Esse recurso pode ser usado em cenários como recuperação de imagem e gerenciamento de perfil de usuário.
- Classificação e regressão são dois tipos principais de previsão, contabilizando de 80% a 90%. A saída da classificação são valores de categoria discretos e a saída da regressão são números contínuos

Universidade Estadual do Ceará

Introdução aos classificadores supervisionados

- Definição de Aprendizado de Máquina (Machine Learning)
- Tipos de Aprendizado de Máquina
- Exemplos de técnicas de aprendizado de máquina
- Introdução aos classificadores supervisionados

Tipos de aprendizado de máquina

Categorias de aprendizado de máquina

Aprendizagem supervisionada:

- Obtém um modelo ideal com o desempenho necessário através de treinamento e aprendizado com base nas amostras de categorias conhecidas.
- Em seguida, use o modelo para mapear todas as entradas para saídas e verificar a saída com a finalidade de classificar dados desconhecidos.

• Aprendizado não supervisionado:

- Para amostras não rotuladas, os algoritmos de aprendizado modelam diretamente os conjuntos de dados de entrada. O agrupamento (clustering) é uma forma comum de aprendizagem não supervisionada.
- Precisamos apenas colocar amostras altamente semelhantes juntas, calcular a semelhança entre amostras novas e as existentes e classificá-las por semelhança.

Supervised Learning

Unsupervised Learning

Aprendizagem supervisionada

Espaço de Dados

Característica

1

• • • •

. . .

Característica

n

Característica

1

Característica

n

Característica

1

... Ca

Característica

n

Rótulo

Objetivo

Objetivo

Objetivo

Tempo	Temperatura	Velocidade do vento	
Ensolarado	Quente	Forte	
Chuvoso	Frio	Justo	
Ensolarado	Frio	Fraco	

Aproveitar esportes

Sim

Não

Sim

Algoritmo de

aprendizagem

supervisionada

Exemplo de Dataset

Iris – Hello World do Aprendizado de Máquina

Check out the <u>beta version</u> of the new UCI Machine Learning Repository we are currently testing! <u>Contact us</u> if you have any issues, questions, or concerns. <u>Click here to try out the new site</u>.

Iris Data Set

Download: Data Folder, Data Set Description

Abstract: Famous database: from Fisher, 1936

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	5266130

Aprendizagem não-supervisionada

Espaço de Dados

. . .

. . .

Característica

1

Característica

n

Característica

1

Característica

n

Característica

1

Característica

n

Algoritmo de aprendizagem não supervisionado

Semelhança interna

Consumo Tempo de Mercadoria Mensal Consumo Raquete de 1000-2000 6:00-12:00 badminton 18:00-24:00 500-1000 Basquete Console de 00:00-6:00 1000-2000 jogos

Categoria

Cluster 1

Cluster 2

Categorias de aprendizado de máquina

Aprendizado semi-supervisionado:

- em uma tarefa, um modelo de aprendizado de máquina que usa automaticamente uma grande quantidade de dados não rotulados para ajudar o aprendizado diretamente de uma pequena quantidade de dados rotulados.
- No aprendizado semi-supervisionado, recebemos alguns exemplos rotulados e devemos fazer o que podemos com uma grande coleção de exemplos não rotulados. Até os próprios rótulos podem não ser as verdades oraculares que esperamos.

Aprendizagem semi-supervisionada

Espaço de Dados

Característica

1

• • •

. . .

Característica

n

Característica

1

Característica

n

Característica

1

...

Característica

n

Rótulo

Objetivo

Desconhecido

Desconhecido

Tempo	Temperatura	Velocidade do vento
Ensolarado	Quente	Forte
Chuvoso	Frio	Justo
Ensolarado	Frio	Fraco

Aproveitar esportes
Sim
/
1

Algoritmo de

aprendizagem semi-

supervisionada

Categorias de aprendizado de máquina

Aprendizagem por reforço:

- É uma área de aprendizado de máquina preocupada com a forma como os agentes devem tomar ações em um ambiente para maximizar alguma noção de recompensa cumulativa.
- A diferença entre a aprendizagem por reforço e a aprendizagem supervisionada é o sinal do professor.
- O sinal de reforço fornecido pelo ambiente na aprendizagem por reforço é usado para avaliar a ação (sinal escalar) em vez de dizer ao sistema de aprendizagem como executar as ações corretas.

Aprendizagem por reforço

 O modelo percebe o ambiente, toma ações e faz ajustes e escolhas com base no status e na concessão ou punição.

Revisão

Introdução aos classificadores supervisionados

- Exemplos de técnicas de aprendizado de máquina

Aprendizagem Supervisionada Questões de Regressão

- Regressão: reflete as características dos valores de atributo de amostras em um conjunto de dados de amostra. A dependência entre os valores de atributo é descoberta expressando a relação do mapeamento de amostra por meio de funções.
 - Quanto vou me beneficiar do estoque na próxima semana?
 - Qual é a temperatura nesta terça-feira?

Aprendizagem Supervisionada Questões de Regressão

- Classificação: mapeia amostras em um conjunto de dados de amostra para uma categoria especificada usando um modelo de classificação.
 - Haverá um engarrafamento na estrada XX durante a hora do rush da manhã de amanhã?
 - Qual método é mais atraente para os clientes:
 Voucher de 5 yuan ou 25% de desconto?

Aprendizagem não-supervisionada Questões de Clusterização

- Clustering: classifica amostras em um conjunto de dados de amostra em várias categorias com base no modelo de clustering. A semelhança de amostras pertencentes à mesma categoria é alta.
 - Qual público gosta de assistir filmes do mesmo assunto?
 - Quais desses componentes estão danificados de maneira semelhante?

Aprendizagem por reforço - Melhor Comportamento

- Aprendizado por reforço: sempre busca os melhores comportamentos.
 O aprendizado por reforço é direcionado a máquinas ou robôs.
 - o Piloto automático: Deve frear ou acelerar quando a luz amarela começa a piscar?
 - Robô de limpeza: Deve continuar trabalhando ou voltar para carregar?

Tipos de aprendizagem de máquina

- Definição de Aprendizado de Máquina (Machine Learning)
- Tipos de Aprendizado de Máquina
- Exemplos de técnicas de aprendizado de máquina
- Introdução aos classificadores supervisionados

Processo de Aprendizado de Máquina

Coleta de Dados

Limpeza de dados

Extração e seleção de Atributos

Treinamento do modelo

Avaliação do modelo

Implantação e integração de modelos

Dúvidas?

Módulo de Inteligência Artificial

