

TrenchT2[™] HiperFET[™] Power MOSFET

IXFH150N17T2 IXFT150N17T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C} \text{ to } 175^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	175 175	V	
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	150 400	A A	
I _A E _{AS}	T _C = 25°C T _C = 25°C	75 1.0	A J	
dv/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, \ V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 175^{\circ}\mathrm{C}$	15	V/ns	
P_{D}	T _c = 25°C	880	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +175	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	
T _L	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C	
M _d	Mounting Torque (TO-247)	1.13/10	Nm/lb.in.	
Weight	TO-247 TO-268	6 4	g g	

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	175			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			10	μΑ
	T _J = 150°C			1.5	mΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$		9.7	12.0	$m\Omega$

 $V_{DSS} = 175V$ $I_{D25} = 150A$ $R_{DS(on)} \le 12.0m\Omega$ $t_{rr} \le 160ns$

TO-247 (IXFH)

G = Gate D = DrainS = Source Tab = Drain

Features

- High Current Handling Capability
- Fast Intrinsic Diode
- Dynamaic dv/dt Rated
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

2 - Drain

Symbol	Test Conditions	Charac	teristic Va	lues
$(T_J = 25^{\circ}C \text{ Ur})$	nless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	100	165	S
C _{iss}			14.6	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1100	pF
C _{rss}			136	pF
t _{d(on)}	Resistive Switching Times		32	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		16	ns
t _{d(off)}	00 50 500 5		50	ns
t _f	$R_{g} = 1\Omega \text{ (External)}$		20	ns
$Q_{g(on)}$			233	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \bullet V_{DSS}, I_{D} = 0.5 \bullet I_{D25}$		67	nC
Q_{gd}			63	nC
R _{thJC}				0.17 °C/W
$\mathbf{R}_{\mathrm{thCS}}$	TO-247		0.21	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			150	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			600	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.3	V
t _{rr}	$I_{\rm F} = 75$ A, -di/dt = 100A/ μ s			160	ns
I _{RM}	· ·		7.80		Α
Q _{RM}	$V_R = 75V$, $V_{GS} = 0V$		0.34		μC

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

TO-247 (IXFH) Outline

Terminals: 1 - Gate 3 - Source

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
E	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216
S	6.15	BSC	242	BSC

TO-268 (IXFT) Outline

Terminals: 1 - Gate 2 - Drain 3 - Source

INCHES		MILLIMETERS	
MIM	MAX	MIN	MAX
.193	.201	4.90	5.10
.106	.114	2.70	2.90
.001	.010	0.02	0.25
.045	.057	1.15	1.45
.075	.083	1.90	2.10
.016	.026	0.40	0.65
.057	.063	1.45	1.60
.543	.551	13.80	14.00
.488	.500	12.40	12.70
.624	.632	15.85	16.05
.524	.535	13.30	13.60
.215	BSC	5.45	BSC
.736	.752	18.70	19.10
.094	.106	2.40	2.70
.047	.055	1.20	1.40
.039	.045	1.00	1.15
.010 BSC		0.25 BSC	
.150	.161	3.80	4.10
	MIN .193 .106 .001 .045 .075 .016 .057 .543 .488 .624 .524 .215 .736 .094 .047	MIN MAX .193 .201 .106 .114 .001 .010 .045 .057 .075 .083 .016 .026 .057 .063 .543 .551 .488 .500 .624 .632 .524 .632 .5215 BSC .736 .752 .094 .106 .047 .055 .039 .045 .010 BSC	MIN MAX MIN .193 .201 4.90 .106 .114 2.70 .001 .010 .002 .045 .057 1.15 .075 .083 1.90 .016 .026 0.40 .057 .063 1.45 .543 .551 13.80 .488 .500 12.40 .624 .632 15.85 .524 .535 13.30 .215 BSC 5.45 .736 .752 18.70 .094 .106 2.40 .047 .055 1.20 .039 .045 1.00 .010 BSC 0.25

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 150°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 75A$ Value vs. Junction Temperature

Fig. 5. R_{DS(on)} Normalized to I_D = 75A Value vs. Drain Current

Fig. 6. Drain Current vs. Case Temperature

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

