life.augmented

STM32F479xx

Arm®Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/384+4KB RAM, USB OTG HS/FS, Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI

Datasheet - production data

TFBGA216 (13 x 13 mm)

Features

- Includes ST state-of-the-art patented technology
- Core: Arm[®] 32-bit Cortex[®]-M4 CPU with FPU, adaptive real-time accelerator (ART Accelerator[™]) allowing 0-wait state execution from flash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Memories
 - 512 bytes of OTP memory
 - Up to 2 MB of flash memory organized into two banks allowing read-while-write
 - Up to 384+4 KB of SRAM including 64 KB of CCM (core coupled memory) data RAM
 - Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR, SDRAM, flash NOR/NAND memories
 - Dual-flash mode Quad-SPI interface
- Graphics
 - Chrom-ART Accelerator™ (DMA2D), graphical hardware accelerator enabling enhanced graphical user interface with minimum CPU load
 - LCD parallel interface, 8080/6800 modes
 LCD TFT controller supporting up to XGA
 - LCD TFT controller supporting up to XGA resolution
 MIPI[®] DSI host controller supporting up to
 - MIPI DSI host controller supporting up to 720p 30 Hz resolution
- Clock, reset, and supply management
 - 1.7 V to 3.6 V application supply and I/Os
 - POR, PDR, PVD, and BOR
 - 4-to-26 MHz crystal oscillator
 - Internal 16 MHz factory-trimmed RC (1% accuracy)
 - 32 kHz oscillator for RTC with calibration
 - Internal 32 kHz RC with calibration
- Low power
 - Sleep, Stop, and Standby modes
 - V_{BAT} supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM
- 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode
- 2× 12-bit D/A converters
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support
- Up to 17 timers: up to twelve 16-bit and two 32-bit timers up to 180 MHz, each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input. 2x watchdogs and SysTick timer

- LQFP208 (28 × 28 mm)Debug mode
 - SWD and JTAG interfaces
 - Cortex[®]-M4 Trace Macrocell™
- Up to 161 I/O ports with interrupt capability
 - Up to 157 fast I/Os up to 90 MHz
 - Up to 159 5 V-tolerant I/Os
- Up to 21 communication interfaces
 - Up to three I²C interfaces (SMBus/PMBus)
 - Up to four USARTs and four UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control)
 - Up to six SPIs (45 Mbits/s), two with muxed full-duplex I²S for audio class accuracy via internal audio PLL or external clock
 - 1x SAI (serial audio interface)
 - 2× CAN (2.0B Active)
 - SDIO interface
- Advanced connectivity
 - USB 2.0 full-speed device/host/OTG controller with on-chip PHY
 - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
 - Dedicated USB power rail enabling on-chip PHYs operation throughout the entire MCU power supply range
 10/100 Ethernet MAC with dedicated DMA:
 - 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII
- 8- to 14-bit parallel camera interface up to 54 Mbytes/s.
- · Cryptographic accelerator
 - HW accelerator for AES 128, 192, 256, Triple DES, HASH (MD5, SHA-1, SHA-2) and HMAC
- True random number generator
- CRC calculation unit
- RTC: subsecond accuracy, hardware calendar
- 96-bit unique ID

Table 1. Device summary

Reference	Part numbers
STM32F47 9xx	STM32F479AI, STM32F479AG, STM32F479BI, STM32F479BG, STM32F479II, STM32F479IG,

Contents STM32F479xx

Contents

1	Desc	ription	. 11
	1.1	Compatibility throughout the family	. 14
		1.1.1 LQFP176 package	. 15
		1.1.2 LQFP208 package	. 16
		1.1.3 UFBGA176 package	. 17
		1.1.4 TFBGA216 package	. 18
2	Func	ctional overview	. 20
	2.1	$Arm^{ extsf{@}}$ Cortex $^{ extsf{@}}$ -M4 with FPU and embedded flash and SRAM \dots	. 20
	2.2	Adaptive real-time memory accelerator (ART Accelerator™)	. 20
	2.3	Memory protection unit	. 20
	2.4	Embedded flash memory	. 21
	2.5	CRC (cyclic redundancy check) calculation unit	. 21
	2.6	Embedded SRAM	. 21
	2.7	Multi-AHB bus matrix	. 21
	2.8	DMA controller (DMA)	. 22
	2.9	Flexible memory controller (FMC)	. 23
	2.10	Quad-SPI memory interface (QUADSPI)	. 24
	2.11	LCD-TFT controller	. 24
	2.12	DSI Host (DSIHOST)	. 24
	2.13	Chrom-ART Accelerator™ (DMA2D)	. 26
	2.14	Nested vectored interrupt controller (NVIC)	. 26
	2.15	External interrupt/event controller (EXTI)	. 26
	2.16	Clocks and startup	. 27
	2.17	Boot modes	. 27
	2.18	Power supply schemes	
	2.19	Power supply supervisor	. 29
		2.19.1 Internal reset ON	
		2.19.2 Internal reset OFF	. 29
	2.20	Voltage regulator	. 30
		2.20.1 Regulator ON	. 31
		2.20.2 Regulator OFF	. 32

	2.20.3 Regulator ON/OFF and internal reset ON/OFF availability 34
2.21	Real-time clock (RTC), backup SRAM, and backup registers 34
2.22	Low-power modes
2.23	V _{BAT} operation
2.24	Timers and watchdogs
	2.24.1 Advanced-control timers (TIM1, TIM8)
	2.24.2 General-purpose timers (TIMx)
	2.24.3 Basic timers TIM6 and TIM7
	2.24.4 Independent watchdog
	2.24.5 Window watchdog
	2.24.6 SysTick timer
2.25	Inter-integrated circuit interface (I ² C)
2.26	Universal synchronous/asynchronous receiver transmitters (USART) 39
2.27	Serial peripheral interface (SPI)
2.28	Inter-integrated sound (I ² S)
2.29	Serial Audio interface (SAI1)
2.30	Audio PLL (PLLI2S)
2.31	Audio and LCD PLL(PLLSAI)
2.32	Secure digital input/output interface (SDIO)
2.33	Ethernet MAC interface with dedicated DMA and IEEE 1588 support 42
2.34	Controller area network (bxCAN)
2.35	Universal serial bus on-the-go full-speed (OTG_FS)
2.36	Universal serial bus on-the-go high-speed (OTG_HS)
2.37	Digital camera interface (DCMI)
2.38	Cryptographic accelerator
2.39	True random number generator (RNG)
2.40	General-purpose input/outputs (GPIOs)
2.41	Analog-to-digital converters (ADCs)
2.42	Temperature sensor
2.43	Digital-to-analog converter (DAC)
2.44	Serial wire JTAG debug port (SWJ-DP)
2.45	Embedded Trace Macrocell TM
	ts and pin description

3

Contents STM32F479xx

4	Mem	ory ma	pping	. 83
5	Elec	trical ch	naracteristics	. 88
	5.1	Param	eter conditions	. 88
		5.1.1	Minimum and maximum values	88
		5.1.2	Typical values	88
		5.1.3	Typical curves	88
		5.1.4	Loading capacitor	88
		5.1.5	Pin input voltage	88
		5.1.6	Power supply scheme	89
		5.1.7	Current consumption measurement	90
	5.2	Absolu	ite maximum ratings	. 90
	5.3	Operat	ting conditions	. 92
		5.3.1	General operating conditions	92
		5.3.2	VCAP1/VCAP2 external capacitor	94
		5.3.3	Operating conditions at power-up / power-down (regulator ON)	95
		5.3.4	Operating conditions at power-up / power-down (regulator OFF)	95
		5.3.5	Reset and power control block characteristics	95
		5.3.6	Overdrive switching characteristics	97
		5.3.7	Supply current characteristics	97
		5.3.8	Wake-up time from low-power modes	. 113
		5.3.9	External clock source characteristics	. 114
		5.3.10	Internal clock source characteristics	. 118
		5.3.11	PLL characteristics	. 119
		5.3.12	PLL spread spectrum clock generation (SSCG) characteristics	. 122
		5.3.13	MIPI D-PHY characteristics	. 123
		5.3.14	MIPI D-PHY PLL characteristics	. 126
		5.3.15	MIPI D-PHY regulator characteristics	. 127
		5.3.16	Memory characteristics	. 128
		5.3.17	EMC characteristics	. 130
		5.3.18	Absolute maximum ratings (electrical sensitivity)	. 132
		5.3.19	I/O current injection characteristics	. 133
		5.3.20	I/O port characteristics	. 134
		5.3.21	NRST pin characteristics	. 140
		5.3.22	TIM timer characteristics	. 141
		5.3.23	Communications interfaces	. 141
		5.3.24	12-bit ADC characteristics	. 156

		5.3.25	Temperature sensor characteristics	163
		5.3.26	V _{BAT} monitoring characteristics	163
		5.3.27	Reference voltage	163
		5.3.28	DAC electrical characteristics	164
		5.3.29	FMC characteristics	166
		5.3.30	Quad-SPI interface characteristics	185
		5.3.31	Camera interface (DCMI) timing specifications	186
		5.3.32	LCD-TFT controller (LTDC) characteristics	187
		5.3.33	SD/SDIO MMC card host interface (SDIO) characteristics	189
		5.3.34	RTC characteristics	191
6	Pack	age info	ormation	192
	6.1	•	marking	
	6.2		00 package information (1L)	
	6.3		44 package information (1A)	
	6.4	WLCSF	P168 package information	200
	6.5	UFBGA	A169 package information (A0YV)	202
	6.6	LQFP1	76 package information (1T)	205
	6.7	UFBG/	A(176+25) package information (A0E7)	209
	6.8	TFBGA	A216 package information (A0L2)	211
	6.9	LQFP2	08 package information	215
	6.10	Therma	al characteristics	218
7	Part	number	ing	219
8	Impo	rtant se	ecurity notice	220
Apper	ndix A R	Recomm	nendations when using internal reset OFF	221
	A.1	Operat	ing conditions	221
Revisi	ion histor	'V		222

List of tables STM32F479xx

List of tables

Table 1.	Device summary	1
Table 2.	STM32F479xx features and peripheral counts	
Table 3.	Voltage regulator configuration mode versus device operating mode	
Table 4.	Regulator ON/OFF and internal reset ON/OFF availability	
Table 5.	Voltage regulator modes in stop mode	
Table 6.	Timer feature comparison	
Table 7.	Comparison of I2C analog and digital filters	
Table 8.	USART feature comparison	
Table 9.	Legend/abbreviations used in the pinout table	
Table 10.	STM32F479xx pin and ball definitions	
Table 11.	FMC pin definition	
Table 12.	Alternate function	
Table 13.	STM32F479xx register boundary addresses	
Table 14.	Voltage characteristics	
Table 15.	Current characteristics	
Table 16.	Thermal characteristics	
Table 17.	General operating conditions	
Table 18.	Limitations depending on the operating power supply range	
Table 19.	VCAP1/VCAP2 operating conditions	
Table 20.	Operating conditions at power-up / power-down (regulator ON)	
Table 21.	Operating conditions at power-up / power-down (regulator OFF)	
Table 22.	Reset and power control block characteristics	
Table 23.	Over-drive switching characteristics	. 97
Table 24.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash memory (ART accelerator enabled except prefetch) or RAM,	
	regulator ON	. 99
Table 25.	Typical and maximum current consumption in Run mode, code with data processing	
	running from Flash memory (ART accelerator disabled), regulator ON	100
Table 26.	Typical and maximum current consumption in Run mode, code with data	
	processing running from Flash memory (ART accelerator enabled except prefetch),	
	regulator OFF	
Table 27.	Typical and maximum current consumption in Sleep mode, regulator ON	102
Table 28.	Typical and maximum current consumption in Sleep mode, regulator OFF	
Table 29.	Typical and maximum current consumption in Stop mode	
Table 30.	Typical and maximum current consumption in Standby mode	
Table 31.	Typical and maximum current consumption in V _{BAT} mode	
Table 32.	Switching output I/O current consumption	
Table 33.	Peripheral current consumption	
Table 34.	Low-power mode wakeup timings	
Table 35.	High-speed external user clock characteristics	
Table 36.	Low-speed external user clock characteristics	
Table 37.	HSE 4-26 MHz oscillator characteristics	
Table 38.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 39.	HSI oscillator characteristics	
Table 40.	LSI oscillator characteristics	
Table 41.	Main PLL characteristics	
Table 42.	PLLI2S (audio PLL) characteristics	120
Table 43.	PLLSAI (audio and LCD-TFT PLL) characteristics	. 121

STM32F479xx List of tables

Table 44.	SSCG parameters constraint	
Table 45.	MIPI D-PHY characteristics	
Table 46.	MIPI D-PHY AC characteristics LP mode and HS/LP transitions	. 125
Table 47.	DSI-PLL characteristics	
Table 48.	DSI regulator characteristics	. 127
Table 49.	Flash memory characteristics	. 128
Table 50.	Flash memory programming	. 128
Table 51.	Flash memory programming with V _{PP}	129
Table 52.	Flash memory endurance and data retention	. 130
Table 53.	EMS characteristics	
Table 54.	EMI characteristics for fHSE=8 MHz and fCPU=168 MHz	
Table 55.	EMI characteristics for fHSE=8 MHz and fCPU=180 MHz	. 132
Table 56.	ESD absolute maximum ratings	. 132
Table 57.	Electrical sensitivities	. 133
Table 58.	I/O current injection susceptibility	. 133
Table 59.	I/O static characteristics	. 134
Table 60.	Output voltage characteristics	. 137
Table 61.	I/O AC characteristics	. 138
Table 62.	NRST pin characteristics	. 140
Table 63.	TIMx characteristics	. 141
Table 64.	I2C analog filter characteristics	. 141
Table 65.	SPI dynamic characteristics	. 142
Table 66.	I ² S dynamic characteristics	. 146
Table 67.	SAI characteristics	. 148
Table 68.	USB OTG full speed startup time	. 150
Table 69.	USB OTG full speed DC electrical characteristics	. 150
Table 70.	USB OTG full speed electrical characteristics	. 151
Table 71.	USB HS DC electrical characteristics	. 151
Table 72.	USB HS clock timing parameters	. 152
Table 73.	Dynamic characteristics: USB ULPI	. 153
Table 74.	Dynamics characteristics: Ethernet MAC signals for SMI	. 154
Table 75.	Dynamics characteristics: Ethernet MAC signals for RMII	. 155
Table 76.	Dynamics characteristics: Ethernet MAC signals for MII	. 155
Table 77.	ADC characteristics	. 156
Table 78.	ADC static accuracy at f _{ADC} = 18 MHz	
Table 79.	ADC static accuracy at f _{ADC} = 30 MHz	
Table 80.	ADC static accuracy at f _{ADC} = 36 MHz	. 159
Table 81.	ADC dynamic accuracy at f _{ADC} = 18 MHz - limited test conditions	
Table 82.	ADC dynamic accuracy at f _{ADC} = 36 MHz - limited test conditions	. 160
Table 83.	Temperature sensor characteristics	. 163
Table 84.	Temperature sensor calibration values	. 163
Table 85.	V _{BAT} monitoring characteristics	. 163
Table 86.	internal reference voltage	
Table 87.	Internal reference voltage calibration values	. 164
Table 88.	DAC characteristics	
Table 89.	Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings	. 168
Table 90.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings	. 168
Table 91.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Table 92.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings	. 170
Table 93.	Asynchronous multiplexed PSRAM/NOR read timings	
Table 94.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	
Table 95.	Asynchronous multiplexed PSRAM/NOR write timings	. 172

List of tables STM32F479xx

Table 96.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	173
Table 97.	Synchronous multiplexed NOR/PSRAM read timings	175
Table 98.	Synchronous multiplexed PSRAM write timings	177
Table 99.	Synchronous non-multiplexed NOR/PSRAM read timings	178
Table 100.	Synchronous non-multiplexed PSRAM write timings	179
Table 101.	Switching characteristics for NAND Flash read cycles	181
Table 102.	Switching characteristics for NAND Flash write cycles	181
Table 103.	SDRAM read timings	182
Table 104.	LPSDR SDRAM read timings	183
Table 105.	SDRAM write timings	184
Table 106.	LPSDR SDRAM write timings	184
Table 107.	Quad-SPI characteristics in SDR mode	185
Table 108.	Quad-SPI characteristics in DDR mode	186
Table 109.	DCMI characteristics	187
Table 110.	LTDC characteristics	188
Table 111.	Dynamic characteristics: SD / MMC characteristics, VDD = 2.7 to 3.6 V	190
Table 112.	Dynamic characteristics: SD / MMC characteristics, VDD = 1.71 to 1.9 V	191
Table 113.	RTC characteristics	191
Table 114.	LQFP100 - Mechanical data	193
Table 115.	LQFP144 - Mechanical data	197
Table 116.	WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale	
	package mechanical data	
Table 117.	WLCSP168 recommended PCB design rules	202
Table 118.	UFBGA169 - Mechanical data	202
Table 119.	UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)	203
Table 120.	LQFP176 - Mechanical data	206
Table 121.	UFBGA(176+25) - Mechanical data	209
Table 122.	UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)	210
Table 123.	TFBGA216 - Mechanical data	212
Table 124.	TFBGA216 - Example of PCB design rules (0.8 mm pitch)	214
Table 125.	LQFP208 - Mechanical data	
Table 126.	Package thermal characteristics	218
Table 127.	Limitations depending on the operating power supply range	221
Table 128.	Document revision history	222

STM32F479xx List of figures

List of figures

Figure 1.	Incompatible board design for LQFP176 package	
Figure 2.	Incompatible board design for LQFP208 package	
Figure 3.	UFBGA176 port-to-terminal assignment differences	
Figure 4.	TFBGA216 port-to-terminal assignment differences.	
Figure 5.	STM32F479xx block diagram	
Figure 6.	STM32F479xx Multi-AHB matrix	
Figure 7.	VDDUSB connected to an external independent power supply	
Figure 8.	Power supply supervisor interconnection with internal reset OFF	
Figure 9.	PDR_ON control with internal reset OFF	
Figure 10.	Regulator OFF	32
Figure 11.	Startup in regulator OFF: slow V _{DD} slope	00
E: 10	- power-down reset risen after V _{CAP_1} , V _{CAP_2} stabilization	33
Figure 12.	Startup in regulator OFF mode: fast V _{DD} slope	24
El	- power-down reset risen before V _{CAP_1} , V _{CAP_2} stabilization	34
Figure 13.	STM32F47x LQFP100 pinout	
Figure 14.	STM32F47x LQFP144 pinout	
Figure 15.	STM32F47x WLCSP168 pinout	
Figure 16.	STM32F47x UFBGA169 ballout	
Figure 17.	STM32F47x UFBGA176 ballout	
Figure 18.	STM32F47x LQFP176 pinout	
Figure 19.	STM32F47x LQFP208 pinout	
Figure 20.	STM32F47x TFBGA216 ballout	
Figure 21.	Memory map	
Figure 22.	Pin loading conditions	
Figure 23.	Pin input voltage	
Figure 24.	Power supply scheme	
Figure 25.	Current consumption measurement scheme	90
Figure 26.	External capacitor C _{EXT}	94
Figure 27.	Typical V _{BAT} current consumption	
	(RTC ON / backup SRAM ON and LSE in Low drive mode)	. 106
Figure 28.	Typical V _{BAT} current consumption	
	(RTC ON / backup SRAM ON and LSE in High drive mode)	
Figure 29.	High-speed external clock source AC timing diagram	
Figure 30.	Low-speed external clock source AC timing diagram	
Figure 31.	Typical application with an 8 MHz crystal	
Figure 32.	Typical application with a 32.768 kHz crystal	
Figure 33.	ACCHSI vs. temperature	
Figure 34.	ACC _{LSI} versus temperature	
Figure 35.	PLL output clock waveforms in center spread mode	
Figure 36.	PLL output clock waveforms in down spread mode	
Figure 37.	MIPI D-PHY HS/LP clock lane transition timing diagram	
Figure 38.	MIPI D-PHY HS/LP data lane transition timing diagram	
Figure 39.	FT I/O input characteristics	
Figure 40.	I/O AC characteristics definition	
Figure 41.	Recommended NRST pin protection	
Figure 42.	SPI timing diagram - slave mode and CPHA = 0	
Figure 43.	SPI timing diagram - slave mode and CPHA = 1	
Figure 44.	SPI timing diagram - master mode	. 145

List of figures STM32F479xx

Figure 45.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	
Figure 46.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	
Figure 47.	SAI master timing waveforms	
Figure 48.	SAI slave timing waveforms	
Figure 49.	USB OTG full speed timings: definition of data signal rise and fall time	
Figure 50.	ULPI timing diagram	
Figure 51.	Ethernet SMI timing diagram	
Figure 52.	Ethernet RMII timing diagram	
Figure 53.	Ethernet MII timing diagram	
Figure 54.	ADC accuracy characteristics	
Figure 55.	Typical connection diagram using the ADC with FT/TT pins featuring analog switch fun	cion
161	Device county and reference decounting (//	460
Figure 56.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	
Figure 57.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	
Figure 58.	12-bit buffered/non-buffered DAC	
Figure 59.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	
Figure 60.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	
Figure 61.	Asynchronous multiplexed PSRAM/NOR read waveforms.	
Figure 62.	Asynchronous multiplexed PSRAM/NOR write waveforms	
Figure 63.	Synchronous multiplexed NOR/PSRAM read timings	
Figure 64.		
Figure 65.	Synchronous non-multiplexed NOR/PSRAM read timings	
Figure 66. Figure 67.	Synchronous non-multiplexed PSRAM write timings	
Figure 67.	NAND controller waveforms for write access	
Figure 66. Figure 69.	SDRAM read access waveforms (CL = 1)	
Figure 70.	SDRAM write access waveforms	
Figure 70.	Quad-SPI SDR timing diagram	
Figure 71.	Quad-SPI DDR timing diagram	
Figure 72.	DCMI timing diagram	
Figure 74.	LCD-TFT horizontal timing diagram	
Figure 75.	LCD-TFT vertical timing diagram	
Figure 76.	SDIO high-speed mode	
Figure 77.	SD default mode	
Figure 78.	LQFP100 - Outline ⁽¹⁵⁾	193
Figure 79.	LQFP100 - Footprint example	. 195
Figure 80.	LQFP144 - Outline ⁽¹⁵⁾	. 196
Figure 81.	LQFP144 - Footprint example	
Figure 82.	WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale	
J	package outline	. 200
Figure 83.	WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale	
Ü	package recommended footprint	. 201
Figure 84.	UFBGA169 - Outline	. 202
Figure 85.	UFBGA169 - Footprint example	
Figure 86.	LQFP176 - Outline ⁽¹⁵⁾	. 205
Figure 87.	LQFP176 - Footprint example	. 208
Figure 88.	UFBGA(176+25) - Outline	
Figure 89.	UFBGA(176+25) - Footprint example	. 210
Figure 90.	TFBGA216 - Outline	. 211
Figure 91.	TFBGA216 - Footprint example	
Figure 92.	LQFP208 - Outline ⁽¹⁵⁾	
Figure 93.	LQFP208 - footprint example	. 217

STM32F479xx Description

1 Description

The STM32F479xx devices are based on the high-performance Arm^{®(a)} Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex[®]-M4 core features a floating-point unit (FPU) single precision which supports all Arm[®] single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F479xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers, a true random number generator (RNG), and a cryptographic acceleration cell. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Six SPIs, two I²Ss full duplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Four USARTs plus four UARTs
- One USB OTG full-speed and one USB OTG high-speed with full-speed capability (with the ULPI)
- Two CANs
- One SAI serial audio interface
- An SDMMC host interface
- Ethernet and camera interface
- LCD-TFT display controller
- Chrom-ART Accelerator™
- DSI Host.

Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI flash memory, camera interface for CMOS sensors and a cryptographic acceleration cell. Refer to *Table 2* for the list of peripherals available on each part number.

The STM32F479xx devices operate in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full speed mode, is available on all packages.

The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of power-saving modes allows the design of low-power applications.

arm

DS11118 Rev 8 11/225

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Description STM32F479xx

The STM32F479xx devices are offered in eight packages, ranging from 100 to 216 pins. The set of included peripherals changes with the device chosen, according to *Table 2*.

These features make the STM32F479xx microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

Figure 5 shows the general block diagram of the device family.

Table 2. STM32F479xx features and peripheral counts

	Table 2			1			Р						
Peripherals		STM32F479Vx STM32F479Zx		STM32F479Ax		STM32F479lx		STM32F479Bx		STM32F479Nx			
Flash memory in	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048	1024	2048	
SRAM in	System		•			384	(160+3	2+128+	+64)				
Kbytes	Backup						4	1					
FMC memory co	ntroller						Ye	es					
Quad-SPI							Ye	es					
Ethernet				Ν	lo					Y	es		
	General- purpose	10											
Timers	Advanced- control	2											
	Basic	2											
Random number	generator	Yes											
	SPI / I ² S	4/2(full duplex) ⁽¹⁾ 6/2(full duplex) ⁽¹⁾											
	I ² C	3											
	USART/UART	4/3 4/4											
Communication	USB OTG FS						Ye	es					
interfaces	USB OTG HS						Ye	es					
	CAN						2	2					
	SAI						,	1					
	SDIO						Ye	es					
Camera interface	e	Yes											

STM32F479xx Description

Table 2. STM32F479xx features and peripheral counts (continued)

				,				
Peripherals	STM32F479Vx	STM32F479Zx	STM32F479Ax	STM32F479lx	STM32F479Bx	STM32F479Nx		
MIPI-DSI Host			Ye	es				
LCD-TFT			Ye	es				
Chrom-ART Accelerator™ (DMA2D)	Yes							
Cryptography			Ye	es				
GPIOs	71	131	114	131	161	161		
12-bit ADC	3							
Number of channels	14	20		2	4			
12-bit DAC Number of channels				es 2				
Maximum CPU frequency			180	MHz				
Operating voltage			1.7 to	3.6V ⁽²⁾				
Operating temperatures	Ambient operating temperature: -40 to 85 °C / -40 to 105 °C Junction temperature: -40 to 105 °C / -40 to 125 °C							
Package	LQFP100	LQFP144	UFBGA169 WLCSP168	LQFP176 UFBGA176	LQFP208	TFBGA216		

^{1.} The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

For information on the device errata with respect to the datasheet and reference manual, refer to the errata sheet (ES0321), available from the STMicroelectronics website www.st.com.

^{2.} VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).

Description STM32F479xx

1.1 Compatibility throughout the family

STM32F479xx devices are not compatible with other STM32F4xx devices.

Figure 1 and *Figure 2* show incompatible board designs, respectively, for LQFP176 and LQFP208 packages (highlighted pins).

The UFBGA176 and TFBGA216 ballouts are compatible with other STM32F4xx devices, only a few IO port pins are substituted, as shown in *Figure 3* and *Figure 4*.

The LQFP100, LQFP144, and UFBGA169 packages are incompatible with other STM32F4xx devices.

STM32F479xx **Description**

1.1.1 LQFP176 package

□vss □PI3 PI3 PI2 135 134 133 135 134 133 132 PI0 132 PI1 131 VDD 131 PI0 130 VSS 130 PH15 129 VCAP2 129 PH14 128 PA13 127 PA12 126 PA11 128 PH13 127 VDD 126 VSS 125 VCAP2

125 PA10

124 PA9
123 PA8
122 PC9
121 PC8

120 PC7

119 PC6

117 VSS 116 PG8

115 PG7

114 PG6

109 VSSDSI

106 VDD12DSI

100 VCAPDSI ☐ VDDSI

PD15

PD12 PD11 PD10

95 VSS 94 PD13

90 PD9 89 PD8

99

98

97 96 VDD

93

92 91

108 DSIHOST_D1N 107 DSIHOST_D1P

105 DSIHOST CKN

104 DSIHOST_CKP 103 VSSDSI 102 DSIHOST_DON 101 DSIHOST_DOP

STM32F469xx/479xx

LQFP176

118 VDDUSB

Figure 1. Incompatible board design for LQFP176 package

1. Pins from 85 to 133 are not compatible.

PB1

86 87

PB14 2

Ш Ш Ш

PB12

88

PB1

MS38294V2

124 PA13 123 PA12 122 PA11 121 PA10

120 PA9

119 PA8

118 PC9

113 🔲 VSS PG8

109 PG5

108 PG4 107 PG3 106 PG2

105 PD15

104 PD14 UDD

102 VSS 101 PD13 100 PD12

99 PD11

98 PD10 97 PD9 96 PD8

95 ⊟ PB15

94 PB14

93 PB13 92 PB12 91 VDD

90 VSS

89 🔲 PH12

103

PC8 116 PC7

PC6

117

115

112 111 110 F PG6

STM32F4xx

LQFP176

84 85 86 87 88

PH8

Description STM32F479xx

1.1.2 LQFP208 package

Figure 2. Incompatible board design for LQFP208 package

1. Pins from 118 to 128 and pin 137 are not compatible.

STM32F479xx Description

1.1.3 UFBGA176 package

Figure 3. UFBGA176 port-to-terminal assignment differences

^{1.} The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

Description STM32F479xx

1.1.4 TFBGA216 package

Figure 4. TFBGA216 port-to-terminal assignment differences

1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.

STM32F479xx Description

Figure 5. STM32F479xx block diagram

The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.

2 Functional overview

2.1 Arm[®] Cortex[®]-M4 with FPU and embedded flash and SRAM

The Arm[®] Cortex[®]-M4 with FPU processor is the latest generation of Arm[®] processors for embedded systems, developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm[®] Cortex[®]-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an Arm[®] core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution. Its single-precision FPU (floating-point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F47x line is compatible with all Arm® tools and software.

Figure 5 shows the general block diagram of the STM32F47x line.

Note: Cortex[®]-M4 with FPU core is binary compatible with the Cortex[®]-M3 core.

2.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard Arm® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 with FPU over flash memory technologies, which normally require the processor to wait for the flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit flash memory. Based on the CoreMark® benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from flash memory at a CPU frequency up to 180 MHz.

2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU access to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 Gbytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.4 Embedded flash memory

The devices embed 512 bytes of OTP memory and a flash memory of up to 2 Mbytes available for storing programs and data.

2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.6 Embedded SRAM

All devices embed:

- Up to 384 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM
 - RAM is accessed (read/write) at CPU clock speed with 0 wait states.
- 4 Kbytes of backup SRAM

This area is accessible only from the CPU. Its content is protected against possible unwanted write access, and is retained in Standby or VBAT mode.

2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB, and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

DS11118 Rev 8 21/225

Figure 6. STM32F479xx Multi-AHB matrix

2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic, and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1
- QUADSPI.

2.9 Flexible memory controller (FMC)

The flexible memory controller (FMC) includes three memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller
- The synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random-access memory (SRAM)
 - NOR flash memory/OneNAND flash memory
 - PSRAM
 - NAND flash memory with ECC hardware to check up to 8 Kbytes of data
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
- 8-,16-,32-bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- Read FIFO for SDRAM controller
- The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous access is HCLK/2.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

DS11118 Rev 8 23/225

2.10 Quad-SPI memory interface (QUADSPI)

All STM32F479xx devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual, Quad or Dual-flash SPI memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash memory are mapped, supporting 8, 16 and 32-bit access. Code execution is supported.

The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.11 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:

- 2 display layers with dedicated FIFO (64x32-bit)
- Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
- Up to 8 Input color formats selectable per layer
- Flexible blending between two layers using alpha value (per pixel or constant)
- · Flexible programmable parameters for each layer
- Color keying (transparency color)
- Up to 4 programmable interrupt events.

2.12 DSI Host (DSIHOST)

The DSI Host is a dedicated peripheral for interfacing with MIPI[®] DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC and a generic APB interface that can be used to transmit information to the display.

These interfaces are as follows:

- LTDC interface:
 - Used to transmit information in Video Mode, in which the transfers from the host processor to the peripheral take the form of a real-time pixel stream (DPI).
 - Through a customized for mode, this interface can be used to transmit information in full bandwidth in the Adapted Command Mode (DBI).
- APB slave interface:
 - Allows the transmission of generic information in Command mode, and follows a proprietary register interface.
 - Can operate concurrently with either LTDC interface in either Video Mode or Adapted Command Mode.
- Video mode pattern generator:
 - Allows the transmission of horizontal/vertical color bar and D-PHY BER testing pattern without any kind of stimuli.

The DSI Host main features:

- Compliant with MIPI[®] Alliance standards
- Interface with MIPI[®] D-PHY
- Supports all commands defined in the MIPI[®] Alliance specification for DCS:
 - Transmission of all Command mode packets through the APB interface
 - Transmission of commands in low-power and high-speed during Video Mode
- Supports up to two D-PHY data lanes
- Bidirectional communication and escape mode support through data lane 0
- Supports non-continuous clock in D-PHY clock lane for additional power saving
- Supports Ultra Low-Power mode with PLL disabled
- ECC and Checksum capabilities
- Support for End of Transmission Packet (EoTp)
- Fault recovery schemes
- 3D transmission support
- Configurable selection of system interfaces:
 - AMBA APB for control and optional support for Generic and DCS commands
 - Video Mode interface through LTDC
 - Adapted Command Mode interface through LTDC
- Independently programmable Virtual Channel ID in
 - Video Mode
 - Adapted Command Mode
 - APB Slave

Video Mode interfaces features

- LTDC interface color coding mappings into 24-bit interface:
 - 16-bit RGB, configurations 1, 2, and 3
 - 18-bit RGB, configurations 1 and 2
 - 24-bit RGB
- Programmable polarity of all LTDC interface signals
- Maximum resolution is limited by available DSI physical link bandwidth:
 - Number of lanes: 2
 - Maximum speed per lane: 500 Mbps

Adapted interface features

- Support for sending large amounts of data through the memory_write_start (WMS) and memory_write_continue (WMC) DCS commands
- LTDC interface color coding mappings into 24-bit interface:
 - 16-bit RGB, configurations 1, 2, and 3
 - 18-bit RGB, configurations 1 and 2
 - 24-bit RGB

DS11118 Rev 8 25/225

Video mode pattern generator

Vertical and horizontal color bar generation without LTDC stimuli

BER pattern without LTDC stimuli

2.13 Chrom-ART Accelerator™ (DMA2D)

The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:

- Rectangle filling with a fixed color
- Rectangle copy
- Rectangle copy with pixel format conversion
- Rectangle composition with blending and pixel format conversion.

Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.

An interrupt can be generated when an operation is complete or at a programmed watermark.

All the operations are fully automatized and are running independently from the CPU or the DMAs.

2.14 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 93 maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.15 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 159 GPIOs can be connected to the 16 external interrupt lines.

2.16 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLLI2S) and PLLSAI, which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

2.17 **Boot modes**

At startup, boot pins are used to select one out of three boot options:

- Boot from user flash
- Boot from system memory
- Boot from embedded SRAM

The bootloader is located in system memory. It is used to reprogram the flash memory through a serial interface. Refer to application note AN2606 for details.

2.18 **Power supply schemes**

- V_{DD} = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs, and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

Note:

 V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2). Refer to Table 3 to identify the packages supporting this option.

- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.
- V_{DDUSB} can be connected either to V_{DD} or an external independent power supply (3.0 to 3.6 V) for USB transceivers.

For example, when the device is powered at 1.8 V, an independent power supply 3.3 V can be connected to V_{DDUSB}. When the V_{DDUSB} is connected to a separated power supply, it is independent from V_{DD} or V_{DDA} but it must be the last supply to be provided and the first to disappear.

DS11118 Rev 8 27/225

The following conditions must be respected:

During the power-on phase ($V_{DD} < V_{DD \ MIN}$), V_{DDUSB} should be always lower than V_{DD}

- During the power-down phase $(V_{DD} < V_{DD \ MIN})$, V_{DDUSB} should be always lower than V_{DD}
- V_{DDUSB} rising and falling time rate specifications must be respected.
- In operating mode phase, V_{DDUSB} could be lower or higher than VDD:
 - -If USB (USB OTG HS/OTG FS) is used, the associated GPIOs powered by V_{DDUSB} are operating between V_{DDUSB_MIN} and V_{DDUSB_MAX}. The V_{DDUSB} supplies both USB transceivers (USB OTG_HS and USB OTG_FS).
 - -If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by V_{DDUSB}.
 - -If USB (USB OTG HS/OTG FS) is not used, the associated GPIOs powered by V_{DDUSB} are operating between $V_{DD\ MIN}$ and $V_{DD\ MAX}$.
 - -If USB (USB OTG HS/OTG FS) is not used and the associated GPIOs powered by V_{DDUSB} are not used, then V_{DDUSB} should be tied to V_{SS} or V_{DD} (V_{DDUSB} must not be floating).

Figure 7. V_{DDUSB} connected to an external independent power supply

The DSI (Display serial interface) subsystem uses several power supply pins that are independent from the other supply pins:

- VDDDSI is an independent DSI power supply dedicated for DSI regulator and MIPI D-PHY. This supply must be connected to global VDD.
- VCAPDSI pin is the output of DSI regulator (1.2 V), which must be connected externally to VDD12DSI.
- VDD12DSI pin is used to supply the MIPI D-PHY, and to supply clock and data lanes pins. An external capacitor of 2.2 µF must be connected on VDD12DSI pin.
- VSSDSI pin is an isolated supply ground used for DSI subsystem.
- If DSI functionality is not used at all, then:
 - VDDDSI pin must be connected to global VDD.

 VCAPDSI pin must be connected externally to VDD12DSI but the external capacitor is no more needed.

VSSDSI pin must be grounded.

2.19 Power supply supervisor

2.19.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On other packages the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

2.19.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor V_{DD} and NRST and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON must be connected to VSS, as shown in *Figure 8*.

Figure 8. Power supply supervisor interconnection with internal reset OFF

5

DS11118 Rev 8 29/225

The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V (see *Figure 9*).

A comprehensive set of power-saving modes allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages allow to disable the internal reset through the PDR_ON signal when connected to V_{SS} .

1. PDR_ON signal to be kept always low.

2.20 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

2.20.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR mode used in Run/sleep modes or in Stop modes
 - In Run/Sleep mode

The MR mode is used either in the normal mode (default mode) or the overdrive mode (enabled by software). Different voltage scalings are provided to reach the best compromise between maximum frequency and dynamic power consumption. The overdrive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.

In Stop modes

The MR can be configured in two ways during stop mode:

MR operates in normal mode (default mode of MR in stop mode).

MR operates in underdrive mode (reduced leakage mode).

• LPR is used in the Stop modes:

The LP regulator mode is configured by software when entering Stop mode.

Like the MR mode, the LPR can be configured in two ways during stop mode:

- LPR operates in normal mode (default mode when LPR is ON)
- LPR operates in underdrive mode (reduced leakage mode).
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to *Table 3* for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V_{CAP_1} and V_{CAP_2} pin. Refer to Section 2.18 and Table 126: Package thermal characteristics.

All packages have the regulator ON feature.

Table 3. Voltage regulator configuration mode versus device operating mode⁽¹⁾

Voltage regulator configuration	Run mode	Sleep mode	Stop mode	Standby mode
Normal mode	MR	MR	MR or LPR	-
Over-drive mode ⁽²⁾	MR	MR	-	-
Under-drive mode	-	-	MR or LPR	-
Power-down mode	-	-	-	Yes

^{1. &#}x27;-' means that the corresponding configuration is not available.

^{2.} The overdrive mode is not available when V_{DD} = 1.7 to 2.1 V.

2.20.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V_{12} voltage source through V_{CAP} and V_{CAP} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Section A.1: Operating conditions*. The two 2.2 μ F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Section 2.18*.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as a power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain, which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or prereset is required.
- The overdrive and underdrive modes are not available.
- The Standby mode is not available.

Figure 10. Regulator OFF

The following conditions must be respected:

 V_{DD} must always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.

- If the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is faster than the time for V_{DD} to reach 1.7 V, then PA0 must be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach V_{12} minimum value and until V_{DD} reaches 1.7 V (see *Figure 11*).
- Otherwise, if the time for V_{CAP_1} and V_{CAP_2} to reach V_{12} minimum value is slower than the time for V_{DD} to reach $\overline{1.7}$ V, then $\overline{P}A0$ can be asserted low externally (see *Figure 12*).
- If V_{CAP_1} and V_{CAP_2} go below V₁₂ minimum value and V_{DD} is higher than 1.7 V, then a
 reset must be asserted on PA0 pin.

The minimum value of V_{12} depends on the maximum frequency targeted in the application (see Section A.1: Operating conditions).

Figure 11. Startup in regulator OFF: slow V_{DD} slope - power-down reset risen after V_{CAP} 1, V_{CAP} 2 stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

Note:

Figure 12. Startup in regulator OFF mode: fast V_{DD} slope - power-down reset risen before $V_{CAP\ 1}$, $V_{CAP\ 2}$ stabilization

1. This figure is valid whatever the internal reset mode (ON or OFF).

2.20.3 Regulator ON/OFF and internal reset ON/OFF availability

rable 41 regulator of 7011 and internal resort of 7011 availability						
Package	Regulator ON	Regulator OFF	Internal reset ON	Internal reset OFF		
WLCSP168 UFBGA169 LQFP208	Yes	No	Yes	Yes		
LQFP176 UFBGA176 TFBGA216	Yes BYPASS_REG set to V _{SS}	Yes BYPASS_REG set to V _{DD}	PDR_ON set to V _{DD}	PDR_ON set to V _{SS}		

Table 4. Regulator ON/OFF and internal reset ON/OFF availability

2.21 Real-time clock (RTC), backup SRAM, and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wake-up from Stop and Standby modes. The subseconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary autoreload downcounter with programmable resolution is available and allows automatic wake-up and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data, which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 2.22). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.22).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the V_{DD} supply when present or from the V_{RAT} pin.

2.22 Low-power modes

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wake-up sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see *Table 5*):

- Normal mode (default mode when MR or LPR is enabled)
- Underdrive mode.

The device can be woken up from the Stop mode by any of the EXTI lines (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wake-up / tamper / time stamp events, the USB OTG FS/HS wake-up or the Ethernet wake-up).

DS11118 Rev 8 35/225

Voltage regulator configuration	Main regulator (MR)	Low-power regulator (LPR)	
Normal mode	MR ON	LPR ON	
Under-drive mode	MR in under-drive mode	LPR in under-drive mode	

Table 5. Voltage regulator modes in stop mode

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wake-up / tamper /time stamp event occurs.

The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

2.23 V_{BAT} operation

The V_{BAT} pin allows to power the device V_{BAT} domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery neither an external supercapacitor are present.

V_{BAT} operation is activated when V_{DD} is not present.

The V_{BAT} pin supplies the RTC, the backup registers, and the backup SRAM.

Note:

When the microcontroller is supplied from V_{BAT} , external interrupts and RTC alarm/events do not exit it from V_{BAT} operation.

When PDR_ON pin is connected to V_{SS} (Internal Reset OFF), the V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD} .

2.24 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

STM32F479xx Functional overview

Max Max **DMA** Capture/ Timer Counter Counter **Prescaler** Complementary interface timer **Timer** request compare resolution type type factor output clock clock channels generation $(MHz)^{(1)}$ (MHz) Up, Any integer Advanced TIM1, 16-bit 4 Yes 90 180 Down, between 1 Yes control TIM8 Up/down and 65536 Up, Any integer TIM2, 32-bit Down, between 1 4 No 45 90/180 Yes TIM5 Up/down and 65536 Up, **Any integer** TIM3, 16-bit 90/180 between 1 4 45 Down. Yes No TIM4 Up/down and 65536 **Any integer** TIM9 16-bit Up between 1 No 2 No 90 180 and 65536 General purpose TIM10 Any integer 16-bit Up between 1 No 1 No 90 180 TIM11 and 65536 **Any integer** TIM12 16-bit Up between 1 No 2 No 45 90/180 and 65536 TIM13 **Any integer** 90/180 16-bit Up between 1 No 1 No 45 TIM14 and 65536 Any integer TIM6, 90/180 Basic 16-bit between 1 0 45 Uр Yes Nο TIM7 and 65536

Table 6. Timer feature comparison

2.24.1 Advanced-control timers (TIM1, TIM8)

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

The maximum timer clock is either 90 or 180 MHz depending on the TIMPRE bit configuration in the RCC DCKCFGR register.

Functional overview STM32F479xx

2.24.2 General-purpose timers (TIMx)

There are ten synchronizable general-purpose timers embedded in the STM32F47x devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

The STM32F47x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4. The TIM2 and TIM5 timers are based on a 32-bit autoreload up/down counter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit autoreload up/down counter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM, or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

Any of these general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14

These timers are based on a 16-bit autoreload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

2.24.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.

2.24.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes.

2.24.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

STM32F479xx Functional overview

2.24.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features:

- a 24-bit downcounter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source.

2.25 Inter-integrated circuit interface (I²C)

Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the standard (up to 100 kHz), and fast (up to 400 kHz) modes. They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

The I²C bus interfaces can be served by DMA and support SMBus 2.0/PMBus.

The devices also include programmable analog and digital noise filters (see Table 7).

Table 7. Comparison of I2C analog and digital filters

Filter	Analog	Digital
Pulse width of suppressed spikes	≥ 50 ns	Programmable length, from one to fifteen I2C peripheral clocks

2.26 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, and USART6) and four universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 Mbit/s.

USART1, USART2, USART3, and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Functional overview STM32F479xx

Max. baud rate in Mbit/s SPI APB Standard Modem **Smartcard** LIN irDA Name (ISO 7816) Oversampling Oversampling features (RTS/CTS) master mapping by 16 by 8 APB2 USART1 Х Χ Χ Χ Χ Χ 5.62 11.25 (max. 90 MHz) APB1 **USART2** Χ Χ Χ Χ Χ Χ 2.81 5.62 (max. 45 MHz) APB1 **USART3** Х Χ Χ Χ Χ Х 2.81 5.62 (max. 45 MHz) APB1 UART4 Х Χ Х 2.81 5.62 (max. 45 MHz) APB1 **UART5** Χ Χ Χ 2.81 5.62 (max. 45 MHz) APB2 **USART6** 5.62 11.25 Χ Χ Χ Χ Χ Χ (max. 90 MHz) APB1 **UART7** 5.62 Χ Χ Χ 2.81 (max. 45 MHz) APB1 **UART8** 5.62 Χ Χ Χ 2.81 (max. 45 MHz)

Table 8. USART feature comparison⁽¹⁾

2.27 Serial peripheral interface (SPI)

The devices feature up to six SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

2.28 Inter-integrated sound (I²S)

Two standard I²S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel.

^{1.} X = feature supported.

STM32F479xx Functional overview

Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I2Sx can be served by the DMA controller.

Note: For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port

B and GPIO Port D.

2.29 Serial Audio interface (SAI1)

The serial audio interface (SAI1) is based on two independent audio subblocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be configured in master or in slave mode.

In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency.

The two subblocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 can be served by the DMA controller.

2.30 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI2S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB, and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

2.31 Audio and LCD PLL(PLLSAI)

An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLLSAI is also used to generate the LCD-TFT clock.

2.32 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

4

DS11118 Rev 8 41/225

Functional overview STM32F479xx

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588 support

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Supports 10 and 100 Mbit/s rates
- A dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F4xx reference manual for details)
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes.
- Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Triggers interrupt when system time becomes greater than target time

2.34 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

STM32F479xx Functional overview

2.35 Universal serial bus on-the-go full-speed (OTG_FS)

The device embeds one USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint settings and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The main features are:

- Combined Rx and Tx FIFO size of 1.28 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 12 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- HNP/SNP/IP inside (no need for any external resistor)

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

2.36 Universal serial bus on-the-go high-speed (OTG_HS)

The device embeds a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint settings and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator.

The main features are:

- Combined Rx and Tx FIFO size of 4 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Software configurable to OTG1.3 and OTG2.0 modes of operation
- USB 2.0 LPM (Link Power Management) support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

DS11118 Rev 8 43/225

Functional overview STM32F479xx

2.37 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:

- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image black & white.

2.38 Cryptographic accelerator

The devices embed a cryptographic accelerator. This cryptographic accelerator provides a set of hardware acceleration for the advanced cryptographic algorithms usually needed to provide confidentiality, authentication, data integrity and non repudiation when exchanging messages with a peer.

• These algorithms consists of:

Encryption/Decryption

- DES/TDES (data encryption standard/triple data encryption standard): ECB (electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,128- or 192-bit key
- AES (advanced encryption standard): ECB, CBC, GCM, CCM, and CTR (counter mode) chaining algorithms, 128, 192 or 256-bit key

Universal hash

- SHA-1 and SHA-2 (secure hash algorithms)
- MD5
- HMAC

The cryptographic accelerator supports DMA request generation.

2.39 True random number generator (RNG)

The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

2.40 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)

STM32F479xx Functional overview

or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

2.41 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

2.42 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V_{BAT} , ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V_{BAT} conversion are enabled at the same time, only V_{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

2.43 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

4

DS11118 Rev 8 45/225

Functional overview STM32F479xx

This dual digital interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

2.44 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be reused as GPIO with an alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.45 Embedded Trace Macrocell™

The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F47x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third-party debugger software tools.

3 Pinouts and pin description

Figure 13. STM32F47x LQFP100 pinout

1. The above figure shows the package top view.

Figure 14. STM32F47x LQFP144 pinout

47/

Figure 15. STM32F47x WLCSP168 pinout

										о ро		
	12	11	10	9	8	7	6	5	4	3	2	1
Α	PI7	VDD	PE0	РВ7	PB3	VDD	PG12	PD7	vss	PD1	PA15	PI2
В	PE5	PI6	vss	PB8	PB5	VSS	PG11	VDD	PD4	PC11	PI3	PH13
С	VBAT	PE4	PI5	PE1	PB4	PG10	PD5	PD2	PC12	PI1	VDD	vss
D	PC13	PE6	PI4	PDR_ON	PG15	PG9	PD3	PC10	PA14	PH14	VCAP2	PA13
Е	PC15	PC14	PE3	PB9	PG13	PD6	PD0	PIO	PH15	PA10	PA9	PA8
F	vss	PI11	PI10	PE2	BOOT0	PA11	PA12	PC9	PC8	PC6	vss	VDD USB
G	PF2	VDD	PF0	PI9	PB6	PC7	PG8	PG2	PG3	PG6	PG4	PG5
Н	PF5	PF3	PF1	NRST	PF15	VSS	PG7	PB12	PD13	DSI HOST D1P	DSI HOST D1N	VSS DSI
J	VDD	vss	PF4	PC0	PA7	PF13	PG0	PE14	PD11	DSI HOST DON	DSI HOST CKN	DSI HOST CKP
K	PH1	PH0	PF10	PA1	PH5	PF11	PE9	PB11	PB13	DSI HOST _DOP	VDD12 DSI	VCAP
L	PC1	VSSA	PA0	PA2	PA5	PF14	PE13	PH9	PD8	PD14	PD15	VDD DSI
М	VDDA	PH2	PH4	PA4	PF12	PE8	PE12	PH8	PH10	PD10	PD12	VSS
N	PH3	VSS	PA3	PB1	vss	PE7	PE11	PB10	VCAP1	PH11	PB15	PD9
Р	VDD	PA6	РВО	PB2	VDD	PG1	PE10	PE15	vss	VDD	PH12	PB14

47/

DS11118 Rev 8

Figure 16. STM32F47x UFBGA169 ballout

				ı ıgaı						-		1
1	2	3	4	5	6	7	8	9	10	11	12	13
A PI6	PI5	PE1	PE0	ВООТО	PG13	PG12	PD7	PC12	PA14	PA13	PA12	PA11
B PI7	PE2	PI4	PB7	РВ3	PG11	PD5	PD2	PC11	PAI3	PA15	PI2	PIO
C PE3	PE4	PDR_ ON	РВ9	PB6	PD4	PD1	PD3	PD0	PC10	PI1	PH15	PH14
D PE5	PE6	VDD	PB8	PB5	PB4	PD6	PA8	PH13	VDD	VSS	VCAP2	PG8
E PC14	PI9	VSS	PI10	VBAT	PG9	PG10	PA9	PA10	PC8	PG7	PG5	PG4
F PC15	PI11	PF0	VDD	VSS	PG15	VDD	VSS	PC6	PC7	PG6	PG3	PG2
G PH1	PH0	PF1	PC13	PF2	PE8	VSS	VDD	VSS	PC9	(VDD USB	DSI HOST_ D1P	DSI HOST_ D1N
H PF10	NRST	PF5	PF3	PF14	PE9	PE10	PH8	PH9	PH12	VSSDSI	DSI HOST_ CKP	DSI_ HOST CKN
J (vss	VSSA	VDDA	VDD	PA0	VSS	VSS	PE13	PH10	VSS	VDD12 DSI	DSI HOST_ DOP	DSI HOST_ DON
K PA1	PA2	PA3	PA7	PB1	VDD	PE11	PE14	PH11	VDD	VSSDSI	VCAP DSI	VDD DSI
L PH3	PH2	PH5	PF4	PB2	VDD	PE12	PE15	VDD	PD8	PD10	PD14	PD15
M PCO	PH4	PA5	PF13	PF11	PF15	PG1	PB10	VSS	PD9	PD11	PD13	PD12
N PC1	PA4	PA6	РВО	PF12	PG0	PE7	PB11	VCAP1	PB12	PB13	PB14	PB15 MSv35730V2

1. The above figure shows the package top view.

Figure 17. STM32F47x UFBGA176 ballout

57

DS11118 Rev 8

51/225

Figure 18. STM32F47x LQFP176 pinout

Figure 19. STM32F47x LQFP208 pinout

577

Figure 20. STM32F47x TFBGA216 ballout

						igure	20. 3	1 W32F	4/X II	BGAZ	2 10 Da	ilout			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE4	PE3	PE2	PG14	PE1	PE0	PB8	PB5	PB4	(РВЗ)	PD7	PC12	PA15	PA14	PA13
В	PE5	PE6	PG13	PB9	РВ7	PB6	PG15	PG11	PJ13	PJ12	PD6	PD0	PC11	PC10	PA12
С	VBAT	PI8	PI4	РК7	PK6	PK5	PG12	PG10	PJ14	PD5	PD3	PD1	PI3	PI2	PA11
D	PC13	PF0	PI5	PI7	PI10	PI6	PK4	РК3	PG9	PJ15	PD4	PD2	PH15	PI1	PA10
E	PC14	PF1	PI12	PI9	PDR	ВООТО	VDD	VDD	VDD	VDD	VCAP2	PH13	PH14	PIO	PA9
F	PC15	vss	PI11	VDD	VDD	VSS	VSS	vss	VSS	VSS	VDD	DSI HOST_ D1P	DSI HOST_ D1N	PC9	PA8
G	РНО	PF2	PI13	PI15	VDD	vss				vss	(VDDD USB	VSS DSI	VDD12 DSI	PC8	PC7
н	PH1	PF3	PI14	PH4	VDD	vss				vss	(VDD DSI	DSI HOST_ CKP	DSI HOST_ CKN	PG8	PC6
J	NRST	PF4	PH5	PH3	VDD	VSS				vss	VDD	DSI HOST_ D0P	DSI HOST_ D0N	PG7	PG6
К	PF7	PF6	PF5	PH2	VDD	vss	vss	vss	vss	vss	VDD	VCAP DSI	PD15	PB13	PD10
L	PF10	PF9	PF8	PC3	BYPASS- REG	VSS	VDD	VDD	VDD	VDD	VCAP1	PD14	PB12	PD9	PD8
М	VSSA	PC0	PC1	PC2	PB2	PF12	PG1	PF15	PJ4	PD12	PD13	PG3	PG2	PJ5	PH12
N	VREF-	PA1	PA0	PA4	PC4	PF13	PG0	PJ3	PE8	PD11	PG5	PG4	PH7	PH9	PH11
Р	VREF+	PA2	PA6	PA5	PC5	PF14	PJ2	PF11	PE9	PE11	PE14	PB10	PH6	PH8	PH10
R	VDDA	PA3	PA7	PB1	PB0	PJ0	PJ1	PE7	PE10	PE12	PE15	PE13	PB11	PB14	PB15
														М	Sv33871V4

1. The above figure shows the package top view.

Table 9. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition							
Pin name		specified in brackets below the pin name, the pin function during and after as the actual pin name							
	S	Supply pin							
Pin type	I	Input only pin							
	I/O	Input / output pin							
	FT	5 V tolerant I/O							
I/O structure	TTa	3.3 V tolerant I/O directly connected to analog parts							
1/O structure	B Dedicated BOOT0 pin								
	RST	Bidirectional reset pin with weak pull-up resistor							
Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset								
Alternate functions	Functions selected through GPIOx_AFR registers								
Additional functions	Functions directly selected/enabled through peripheral registers								

Table 10. STM32F479xx pin and ball definitions

	Pin number							i wiszr479XX pi					
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
1	144	B2	F9	A2	1	1	A3	PE2	I/O	FT	-	TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, ETH_MII_TXD3, FMC_A23, EVENTOUT	-
NC (3)	1	C1	E10	A1	2	2	A2	PE3	I/O	FT	-	TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT	-
NC (3)	2	C2	C11	B1	3	3	A1	PE4	I/O	FT	-	TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, LCD_B0, EVENTOUT	-
NC (3)	3	D1	B12	B2	4	4	B1	PE5	I/O	FT	-	TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, LCD_G0, EVENTOUT	-
NC (3)	4	D2	D11	ВЗ	5	5	B2	PE6	I/O	FT	-	TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, LCD_G1, EVENTOUT	-
2	-	ı	-	-	1	1	G6	VSS	S	1	-	-	-
-	-	ı	-	1	-	-	F5	VDD	S	ı	-	-	-
3	5	E5	C12	C1	6	6	C1	VBAT	S	1	-	•	-
-	-	-	-	D2	7	7	C2	PI8	I/O	FT	(4) (5)	EVENTOUT	RTC_TAMP1/ RTC_TAMP2/ RTC_TS
4	6	G4	D12	D1	8	8	D1	PC13	I/O	FT	(4) (5)	EVENTOUT	RTC_TAMP1/ RTC_TS/ RTC_OUT
5	7	E1	E11	E1	9	9	E1	PC14-OSC32_IN (PC14)	I/O	FT	(4) (5)	EVENTOUT	OSC32_IN
6	8	F1	E12	F1	10	10	F1	PC15- OSC32_OUT (PC15)	I/O	FT	(4) (5)	EVENTOUT	OSC32_OUT
-	-	-	-	-	-	-	G5	VDD	S	-	-	-	-
-	-	E2	G9	D3	11	11	E4	PI9	I/O	FT		CAN1_RX, FMC_D30, LCD_VSYNC, EVENTOUT	-
-	-	E4	F10	E3	12	12	D5	PI10	I/O	FT		ETH_MII_RX_ER, FMC_D31, LCD_HSYNC, EVENTOUT	-
-	-	F2	F11	E4	13	13	F3	PI11	I/O	FT		LCD_G6, OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	F5	F12	F2	14	14	F2	VSS	S	•	-	-	-

Table 10. STM32F479xx pin and ball definitions (continued)

			Pin nu									nis (continueu)	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	-	F4	G11	F3	15	15	F4	VDD	S	-	-	-	-
-	9	F3	G10	E2	16	16	D2	PF0	I/O	FT		I2C2_SDA, FMC_A0, EVENTOUT	-
-	10	G3	H10	Н3	17	17	E2	PF1	I/O	FT		I2C2_SCL, FMC_A1, EVENTOUT	-
-	11	G5	G12	H2	18	18	G2	PF2	I/O	FT		I2C2_SMBA, FMC_A2, EVENTOUT	-
-	-	-	-	-	-	19	E3	PI12	I/O	FT		LCD_HSYNC, EVENTOUT	-
-	-	-	-	-	-	20	G3	PI13	I/O	FT		LCD_VSYNC, EVENTOUT	-
-	-	-	-	-	-	21	НЗ	PI14	I/O	FT		LCD_CLK, EVENTOUT	-
-	12	H4	H11	J2	19	22	H2	PF3	I/O	FT	(6)	FMC_A3, EVENTOUT	ADC3_IN9
-	13	L4	J10	J3	20	23	J2	PF4	I/O	FT	(6)	FMC_A4, EVENTOUT	ADC3_IN14
-	14	НЗ	H12	K3	21	24	K3	PF5	I/O	FT	(6)	FMC_A5, EVENTOUT	ADC3_IN15
7	15	G7	J11	G2	22	25	H6	VSS	S	-	-	-	-
8	16	G8	J12	G3	23	26	H5	VDD	S	-	-	-	-
-	-	-	-	K2	24	27	K2	PF6	I/O	FT	(6)	TIM10_CH1, SPI5_NSS, SAI1_SD_B, UART7_Rx, QUADSPI_BK1_IO3, EVENTOUT	ADC3_IN4
-	-	-	-	K1	25	28	K1	PF7	I/O	FT	(6)	TIM11_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_Tx, QUADSPI_BK1_IO2, EVENTOUT	ADC3_IN5
-	-	-	-	L3	26	29	L3	PF8	I/O	FT	(6)	SPI5_MISO, SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT	ADC3_IN6
-	1	i	-	L2	27	30	L2	PF9	I/O	FT	(6)	SPI5_MOSI, SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT	ADC3_IN7
-	17	H1	K10	L1	28	31	L1	PF10	I/O	FT	(6)	QUADSPI_CLK, DCMI_D11, LCD_DE, EVENTOUT	ADC3_IN8
9	18	G2	K11	G1	29	32	G1	PH0-OSC_IN (PH0)	I/O	FT	-	EVENTOUT	OSC_IN
10	19	G1	K12	H1	30	33	H1	PH1-OSC_OUT (PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
11	20	H2	Н9	J1	31	34	J1	NRST	I/O	RST	-		
12	21	M1	J9	M2	32	35	M2	PC0	I/O	FT	(6)	OTG_HS_ULPI_STP, FMC_SDNWE, LCD_R5, EVENTOUT	ADC123_ IN10

DS11118 Rev 8 57/225

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number							•				, , , , , , , , , , , , , , , , , , , ,	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
13	22	N1	L12	МЗ	33	36	МЗ	PC1	I/O	FT	(6)	TRACED0, SPI2_MOSI/I2S2_SD, SAI1_SD_A, ETH_MDC, EVENTOUT	ADC123_ IN11
14	23	-	1	M4	34	37	M4	PC2	I/O	FT	(6)	SPI2_MISO, I2S2ext_SD, OTG_HS_ULPI_DIR, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC123_ IN12
15	24	1	1	M5	35	38	L4	PC3	1/0	FT	(6)	SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC123_ IN13
-	25	ı	1	ı	36	39	J5	VDD	S	1	-	-	-
-	1	ı	-	1	ı	1	J6	VSS	S	1	-	-	-
16	26	J2	L11	M1	37	40	M1	VSSA	S	-	-	-	-
-	-		-	N1	-	-	N1	VREF-	S	-	-	-	-
17	27	-	-	P1	38	41	P1	VREF+	S	-	-	-	-
18	28	J3	M12	R1	39	42	R1	VDDA	S	-	-	-	-
19	29	J5	L10	N3	40	43	N3	PA0-WKUP(PA0)	I/O	FT	(7)	TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, ETH_MII_CRS, EVENTOUT	ADC123_IN0, WKUP
20	30	K1	K9	N2	41	44	N2	PA1	I/O	FT	(6)	TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, ETH_MII_RX_CLK/ETH_R MII_REF_CLK, LCD_R2, EVENTOUT	ADC123_IN1
21	31	K2	L9	P2	42	45	P2	PA2	I/O	FT	(6)	TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, ETH_MDIO, LCD_R1, EVENTOUT	ADC123_IN2
-	-	L2	M11	F4	43	46	K4	PH2	I/O	FT	-	QUADSPI_BK2_IO0, ETH_MII_CRS, FMC_SDCKE0, LCD_R0, EVENTOUT	-
-	-	L1	N12	G4	44	47	J4	PH3	I/O	FT	-	QUADSPI_BK2_IO1, ETH_MII_COL, FMC_SDNE0, LCD_R1, EVENTOUT	-
-	-	M2	M10	H4	45	48	H4	PH4	I/O	FT	-	I2C2_SCL, LCD_G5, OTG_HS_ULPI_NXT, LCD_G4, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

			Pin nu									nis (continueu)	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	1	L3	K8	J4	46	49	J3	PH5	I/O	FT	-	I2C2_SDA, SPI5_NSS, FMC_SDNWE, EVENTOUT	-
22	32	K3	N10	R2	47	50	R2	PA3	I/O	FT	(6)	TIM2_CH4, TIM5_CH4, TIM9_CH2, USART2_RX, LCD_B2, OTG_HS_ULPI_D0, ETH_MII_COL, LCD_B5, EVENTOUT	ADC123_IN3
23	33	J1	N11	ı	-	51	K6	VSS	S	-	-	-	-
-	ı	ı	-	L4	48	ı	L5	BYPASS_REG	I	FT	-	-	-
24	34	J4	P12	K4	49	52	K5	VDD	S	-	-	-	-
25	35	N2	M9	N4	50	53	N4	PA4	I/O	TTa	-	SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, LCD_VSYNC, EVENTOUT	ADC12_IN4, DAC_OUT1
26	36	МЗ	L8	P4	51	54	P4	PA5	I/O	ТТа	-	TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK, OTG_HS_ULPI_CK, LCD_R4, EVENTOUT	ADC12_IN5, DAC_OUT2
27	37	N3	P11	P3	52	55	P3	PA6	I/O	FT	(6)	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM13_CH1, DCMI_PIXCLK, LCD_G2, EVENTOUT	ADC12_IN6
28	38	K4	J8	R3	53	56	R3	PA7	I/O	FT	(6)	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI, TIM14_CH1, QUADSPI_CLK, ETH_MII_RX_DV/ETH_RMI I_CRS_DV, FMC_SDNWE, EVENTOUT	ADC12_IN7
NC (3)	39	i	1	N5	54	57	N5	PC4	I/O	FT	(6)	ETH_MII_RXD0/ETH_RMII _RXD0, FMC_SDNE0, EVENTOUT	ADC12_IN14
NC (3)	40	-	-	P5	55	58	P5	PC5	I/O	FT	(6)	ETH_MII_RXD1/ETH_RMII _RXD1, FMC_SDCKE0, EVENTOUT	ADC12_IN15
-	1	-	-	ı	-	59	L7	VDD	S	-	-	-	-
-	-	_	-	ı	-	60	L6	VSS	S	-	-	-	-
29	41	N4	P10	R5	56	61	R5	PB0	I/O	FT	(6)	TIM1_CH2N, TIM3_CH3, TIM8_CH2N, LCD_R3, OTG_HS_ULPI_D1, ETH_MII_RXD2, LCD_G1, EVENTOUT	ADC12_IN8

DS11118 Rev 8 59/225

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number									s		, commune,	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
30	42	K5	N9	R4	57	62	R4	PB1	I/O	FT	(6)	TIM1_CH3N, TIM3_CH4, TIM8_CH3N, LCD_R6, OTG_HS_ULPI_D2, ETH_MII_RXD3, LCD_G0, EVENTOUT	ADC12_IN9
31	43	L5	P9	M6	58	63	M5	PB2- BOOT1(PB2)	1/0	FT	-	EVENTOUT	-
-	1	-	-	-	-	64	G4	PI15	I/O	FT	-	LCD_G2, LCD_R0, EVENTOUT	-
-	-	-	-	-	-	65	R6	PJ0	I/O	FT	-	LCD_R7, LCD_R1, EVENTOUT	-
-	-	-	-	-	-	66	R7	PJ1	I/O	FT	-	LCD_R2, EVENTOUT	-
-	-	-	-	-	-	67	P7	PJ2	I/O	FT	-	DSIHOST_TE, LCD_R3, EVENTOUT	-
-	1	-	-	-	-	68	N8	PJ3	I/O	FT	-	LCD_R4, EVENTOUT	-
-	1	-	-	-	-	69	M9	PJ4	I/O	FT	-	LCD_R5, EVENTOUT	-
-	44	M5	K7	R6	59	70	P8	PF11	I/O	FT	-	SPI5_MOSI, FMC_SDNRAS, DCMI_D12, EVENTOUT	-
-	45	N5	M8	P6	60	71	M6	PF12	I/O	FT	-	FMC_A6, EVENTOUT	-
-	1	J6	N8	M8	61	72	K7	VSS	S	-	-	-	-
-	46	K6	P8	N8	62	73	L8	VDD	S	-	-	-	-
-	47	M4	J7	N6	63	74	N6	PF13	I/O	FT	-	FMC_A7, EVENTOUT	-
-	48	H5	L7	R7	64	75	P6	PF14	I/O	FT	-	FMC_A8, EVENTOUT	-
-	49	M6	H8	P7	65	76	M8	PF15	I/O	FT	-	FMC_A9, EVENTOUT	-
-	50	N6	J6	N7	66	77	N7	PG0	I/O	FT	-	FMC_A10, EVENTOUT	-
-	51	M7	P7	M7	67	78	M7	PG1	I/O	FT	-	FMC_A11, EVENTOUT	-
32	52	N7	N7	R8	68	79	R8	PE7	I/O	FT	-	TIM1_ETR, UART7_Rx, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT	-
33	53	G6	M7	P8	69	80	N9	PE8	I/O	FT	-	TIM1_CH1N, UART7_Tx, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT	-
34	54	Н6	K6	P9	70	81	P9	PE9	I/O	FT	-	TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT	-
-	55	J7	-	М9	71	82	K8	VSS	S	-	-	-	-
-	56	L6	-	N9	72	83	L9	VDD	S	-	-	-	-

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number								ý				
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
35	57	Н7	P6	R9	73	84	R9	PE10	I/O	FT	-	TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT	-
36	58	K7	N6	P10	74	85	P10	PE11	I/O	FT	-	TIM1_CH2, SPI4_NSS, FMC_D8, LCD_G3, EVENTOUT	-
37	59	L7	M6	R10	75	86	R10	PE12	I/O	FT	-	TIM1_CH3N, SPI4_SCK, FMC_D9, LCD_B4, EVENTOUT	-
38	60	J8	L6	N11	76	87	R12	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, FMC_D10, LCD_DE, EVENTOUT	-
39	61	K8	J5	P11	77	88	P11	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI, FMC_D11, LCD_CLK, EVENTOUT	-
40	62	L8	P5	R11	78	89	R11	PE15	I/O	FT	-	TIM1_BKIN, FMC_D12, LCD_R7, EVENTOUT	-
41	63	M8	N5	R12	79	90	P12	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, QUADSPI_BK1_NCS, OTG_HS_ULPI_D3, ETH_MII_RX_ER,LCD_G4, EVENTOUT	-
42	64	N8	K5	R13	80	91	R13	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, USART3_RX, OTG_HS_ULPI_D4, ETH_MII_TX_EN/ETH_RMI I_TX_EN, DSIHOST_TE, LCD_G5, EVENTOUT	-
43	65	N9	N4	M10	81	92	L11	VCAP1	S	-	-	-	-
44	-	М9	P4	-	-	93	K9	VSS	S	-	-	-	-
45	66	L9	P3	N10	82	94	L10	VDD	S	-	-	-	-
-	-	-	-	-	-	95	M14	PJ5	I/O	FT	-	LCD_R6, EVENTOUT	-
-	-	-	-	M11	83	96	P13	PH6	I/O	FT	-	I2C2_SMBA, SPI5_SCK, TIM12_CH1, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8, EVENTOUT	-
-	1	-	-	N12	84	97	N13	PH7	I/O	FT	-	I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number							•				,	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	ı	Н8	M5	-	ı	98	P14	PH8	I/O	FT	-	I2C3_SDA, FMC_D16, DCMI_HSYNC, LCD_R2, EVENTOUT	-
-	1	H9	L5	-	1	99	N14	PH9	I/O	FT	-	I2C3_SMBA, TIM12_CH2, FMC_D17, DCMI_D0, LCD_R3, EVENTOUT	-
-	-	J9	M4	-	-	100	P15	PH10	I/O	FT	-	TIM5_CH1, FMC_D18, DCMI_D1, LCD_R4, EVENTOUT	-
-	1	K9	N3	-	1	101	N15	PH11	I/O	FT	-	TIM5_CH2, FMC_D19, DCMI_D2, LCD_R5, EVENTOUT	-
-	ı	H10	P2	-	1	102	M15	PH12	I/O	FT	-	TIM5_CH3, FMC_D20, DCMI_D3, LCD_R6, EVENTOUT	-
-	-	-	H7	-	-	-	K10	VSS	S	-	-	-	-
-	66	-	-	-	-	103	K11	VDD	S	-	-	-	-
46	67	N10	H5	P12	85	104	L13	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, ETH_MII_TXD0/ETH_RMII _TXD0, OTG_HS_ID, EVENTOUT	-
47	68	N11	K4	P13	86	105	K14	PB13	I/O	FT	-	TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, ETH_MII_TXD1/ETH_RMII _TXD1, EVENTOUT	OTG_HS_ VBUS
48	69	N12	P1	R14	87	106	R14	PB14	I/O	FT	-	TIM1_CH2N, TIM8_CH2N, SPI2_MISO, I2S2ext_SD, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT	-
49	70	N13	N2	R15	88	107	R15	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT	-
50	71	L10	L4	P15	89	108	L15	PD8	I/O	FT	-	USART3_TX, FMC_D13, EVENTOUT	-
51	72	M10	N1	P14	90	109	L14	PD9	I/O	FT	-	USART3_RX, FMC_D14, EVENTOUT	-
52	73	L11	М3	N15	91	110	K15	PD10	I/O	FT	-	USART3_CK, FMC_D15, LCD_B3, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number							•		Ø			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	74	M11	J4	N14	92	111	N10	PD11	I/O	FT	-	USART3_CTS, QUADSPI_BK1_IO0, FMC_A16/FMC_CLE, EVENTOUT	-
-	75	M13	M2	N13	93	112	M10	PD12	I/O	FT	-	TIM4_CH1, USART3_RTS, QUADSPI_BK1_IO1, FMC_A17/FMC_ALE, EVENTOUT	-
-	-	M12	H4	M15	94	113	M11	PD13	I/O	FT	-	TIM4_CH2, QUADSPI_BK1_IO3, FMC_A18, EVENTOUT	-
-	76	J10	M1	-	95	114	J10	VSS	S	ı	-	-	-
-	77	K10	1	J13	96	115	J11	VDD	S	ı	-	-	-
53	78	L12	L3	M14	97	116	L12	PD14	I/O	FT	-	TIM4_CH3, FMC_D0, EVENTOUT	-
54	79	L13	L2	L14	98	117	K13	PD15	I/O	FT	-	TIM4_CH4, FMC_D1, EVENTOUT	-
55	80	K13	L1	J12	99	118	H11	VDDDSI	S	-	-	-	-
-	-	-	-	-	-	-	H10	VSS	S	-	-	-	-
56	81	K12	K1	K12	100	119	K12	VCAPDSI	S	-	-	-	-
-	-	-	K2	D13	-	-	G13	VDD12DSI	S	-	-	-	-
57	82	J12	K3	M12	101	120	J12	DSIHOST_D0P	1/0	ı	-	-	-
58	83	J13	J3	M13	102	121	J13	DSIHOST_D0N	I/O	ı	-	-	-
59	84	K11	H1	H12	103	122	G12	VSSDSI	S	-	-	-	-
60	85	H12	J1	L12	104	123	H12	DSIHOST_CKP	I/O	-	-	-	-
61	86	H13	J2	L13	105	124	H13	DSIHOST_CKN	I/O	-	-	-	-
62	87	J11	•	D13	106	125	-	VDD12DSI	S	-	-	-	-
63	88	G12	НЗ	E12	107	126	F12	DSIHOST_D1P	I/O	-	-	-	-
64	89	G13	H2	E13	108	127	F13	DSIHOST_D1N	I/O	-	-	-	-
-	-	H11	-	H12	109	128	-	VSSDSI	S	-	-	-	-
-	90	F13	G5	L15	110	129	M13	PG2	I/O	FT	-	FMC_A12, EVENTOUT	-
-	91	F12	G4	K15	111	130	M12	PG3	I/O	FT	-	FMC_A13, EVENTOUT	-
-	92	E13	G2	K14	112	131	N12	PG4	I/O	FT	-	FMC_A14/FMC_BA0, EVENTOUT	-
-	93	E12	G1	K13	113	132	N11	PG5	1/0	FT	-	FMC_A15/FMC_BA1, EVENTOUT	
-	94	F11	G3	J15	114	133	J15	PG6	I/O	FT	-	DCMI_D12, LCD_R7, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number											ons (continued)	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	95	E11	H6	J14	115	134	J14	PG7	I/O	FT	-	SAI1_MCLK_A, USART6_CK, FMC_INT, DCMI_D13, LCD_CLK, EVENTOUT	-
-	96	D13	G6	H14	116	135	H14	PG8	I/O	FT	-	SPI6_NSS, USART6_RTS, ETH_PPS_OUT, FMC_SDCLK, LCD_G7, EVENTOUT	-
-	-	G9	F2	G12	117	136	G10	VSS	S	-	-	-	-
65	97	G11	F1	H13	118	137	G11	VDDUSB	S	1	-	-	-
66	98	F9	F3	H15	119	138	H15	PC6	I/O	FT	-	TIM3_CH1, TIM8_CH1, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, LCD_HSYNC, EVENTOUT	-
67	99	F10	G7	G15	120	139	G15	PC7	I/O	FT	-	TIM3_CH2, TIM8_CH2, I2S3_MCK, USART6_RX, SDIO_D7, DCMI_D1, LCD_G6, EVENTOUT	-
68	100	E10	F4	G14	121	140	G14	PC8	I/O	FT	-	TRACED1, TIM3_CH3, TIM8_CH3, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT	-
69	101	G10	F5	F14	122	141	F14	PC9	I/O	FT	-	MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, QUADSPI_BK1_IO0, SDIO_D1, DCMI_D3, EVENTOUT	-
70	102	D8	E1	F15	123	142	F15	PA8	I/O	FT	-	MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, LCD_R6, EVENTOUT	-
71	103	E8	E2	E15	124	143	E15	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, DCMI_D0, EVENTOUT	OTG_FS_ VBUS
72	104	E9	E3	D15	125	144	D15	PA10	I/O	FT	-	TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT	-
73	105	A13	F7	C15	126	145	C15	PA11	I/O	FT	-	TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, LCD_R4, EVENTOUT	-
74	106	A12	F6	B15	127	146	B15	PA12	I/O	FT	-	TIM1_ETR, USART1_RTS, CAN1_TX, OTG_FS_DP, LCD_R5, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number									S			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
75	107	A11	D1	A15	128	147	A15	PA13(JTMS- SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
76	108	D12	D2	F13	129	148	E11	VCAP2	S	ı	1	-	-
-	109	D11	C1	F12	130	149	F10	VSS	S	1	-	-	-
77	110	D10	C2	G13	131	150	F11	VDD	S	1	-	-	-
-	-	D9	B1	-	1	151	E12	PH13	I/O	FT	'	TIM8_CH1N, CAN1_TX, FMC_D21, LCD_G2, EVENTOUT	-
-	-	C13	D3	-	1	152	E13	PH14	I/O	FT	1	TIM8_CH2N, FMC_D22, DCMI_D4, LCD_G3, EVENTOUT	-
-	-	C12	E4	-	-	153	D13	PH15	I/O	FT	1	TIM8_CH3N, FMC_D23, DCMI_D11, LCD_G4, EVENTOUT	-
-	-	B13	E5	E14	132	154	E14	PI0	I/O	FT	-	TIM5_CH4, SPI2_NSS/I2S2_WS ⁽⁸⁾ , FMC_D24, DCMI_D13, LCD_G5, EVENTOUT	-
-	-	C11	C3	D14	133	155	D14	PI1	I/O	FT	-	SPI2_SCK/I2S2_CK ⁽⁸⁾ , FMC_D25, DCMI_D8, LCD_G6, EVENTOUT	-
-	-	B12	A1	-	NC (3)	156	C14	Pl2	I/O	FT	1	TIM8_CH4, SPI2_MISO, I2S2ext_SD, FMC_D26, DCMI_D9, LCD_G7, EVENTOUT	-
-	-	B10	B2	C13	134	157	C13	PI3	I/O	FT	1	TIM8_ETR, SPI2_MOSI/I2S2_SD, FMC_D27, DCMI_D10, EVENTOUT	-
78	-	-	ı	D9	135	ı	F9	VSS	S	ı	-	-	-
-	-	-	B5	C9	136	158	E10	VDD	S	-	-	-	-
79	111	A10	D4	A14	137	159	A14	PA14(JTCK- SWCLK)	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
80	112	B11	A2	A13	138	160	A13	PA15(JTDI)	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS, SPI3_NSS/I2S3_WS, EVENTOUT	-
81	113	C10	D5	B14	139	161	B14	PC10	I/O	FT	-	SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, LCD_R2, EVENTOUT	

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number							-		s			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
82	114	В9	В3	B13	140	162	B13	PC11	I/O	FT	-	I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT	-
83	115	A9	C4	A12	141	163	A12	PC12	I/O	FT	-	TRACED3, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT	-
84	116	C9	E6	B12	142	164	B12	PD0	I/O	FT	-	CAN1_RX, FMC_D2, EVENTOUT	-
85	117	C7	A3	C12	143	165	C12	PD1	I/O	FT	-	CAN1_TX, FMC_D3, EVENTOUT	-
86	118	В8	C5	D12	144	166	D12	PD2	I/O	FT	-	TRACED2, TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT	-
87	119	C8	D6	D11	145	167	C11	PD3	I/O	FT	-	SPI2_SCK/I2S2_CK, USART2_CTS, FMC_CLK, DCMI_D5, LCD_G7, EVENTOUT	-
88	120	C6	B4	D10	146	168	D11	PD4	I/O	FT	-	USART2_RTS, FMC_NOE, EVENTOUT	-
89	121	В7	C6	C11	147	169	C10	PD5	I/O	FT	-	USART2_TX, FMC_NWE, EVENTOUT	-
-	122	F8	A4	D8	148	170	F8	VSS	S	-	-	-	-
-	123	F7	-	C8	149	171	E9	VDD	S	-	-	-	-
90	124	D7	E7	B11	150	172	B11	PD6	I/O	FT	-	SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, LCD_B2, EVENTOUT	-
91	-	A8	A5	A11	151	173	A11	PD7	I/O	FT	-	USART2_CK, FMC_NE1, EVENTOUT	-
-	-	-	-	-	i	174	B10	PJ12	I/O	FT	-	LCD_G3, LCD_B0, EVENTOUT	-
-	-	1	-	-	ı	175	B9	PJ13	I/O	FT	-	LCD_G4, LCD_B1, EVENTOUT	-
-	-	-	-	-	-	176	C9	PJ14	I/O	FT	-	LCD_B2, EVENTOUT	-
-	-	1	-	-	ı	177	D10	PJ15	I/O	FT	-	LCD_B3, EVENTOUT	-
-	125	E6	D7	C10	152	178	D9	PG9	I/O	FT	-	USART6_RX, QUADSPI_BK2_IO2, FMC_NE2/FMC_NCE, DCMI_VSYNC, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

Pin number									S				
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	126	E7	C7	B10	153	179	C8	PG10	I/O	FT	-	LCD_G3, FMC_NE3, DCMI_D2, LCD_B2, EVENTOUT	-
-	127	В6	В6	В9	154	180	B8	PG11	I/O	FT	-	ETH_MII_TX_EN/ETH_RMI I_TX_EN, DCMI_D3, LCD_B3, EVENTOUT	-
-	128	A7	A6	В8	155	181	C7	PG12	I/O	FT	-	SPI6_MISO, USART6_RTS, LCD_B4, FMC_NE4, LCD_B1, EVENTOUT	-
-	1	A6	E8	A8	156	182	В3	PG13	I/O	FT	-	TRACED0, SPI6_SCK, USART6_CTS, ETH_MII_TXD0/ETH_RMII _TXD0, FMC_A24, LCD_R0, EVENTOUT	-
-	-	-	-	A7	157	183	A4	PG14	I/O	FT	-	TRACED1, SPI6_MOSI, USART6_TX, QUADSPI_BK2_IO3, ETH_MII_TXD1/ETH_RMII _TXD1, FMC_A25, LCD_B0, EVENTOUT	-
-	129	-	В7	D7	158	184	F7	VSS	S	-	-	-	-
-	130	-	A7	C7	159	185	E8	VDD	S	-	-	-	-
-	-	-	-	-	-	186	D8	PK3	I/O	FT	-	LCD_B4, EVENTOUT	-
-	1	-	-	-	-	187	D7	PK4	I/O	FT	-	LCD_B5, EVENTOUT	-
-	-	-	-	-	-	188	C6	PK5	I/O	FT	-	LCD_B6, EVENTOUT	-
-	-	1	-	-	ı	189	C5	PK6	I/O	FT	-	LCD_B7, EVENTOUT	-
-	-	-	-	-	-	190	C4	PK7	I/O	FT	-	LCD_DE, EVENTOUT	-
-	131	F6	D8	B7	160	191	B7	PG15	I/O	FT	-	USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT	-
92	132	B5	A8	A10	161	192	A10	PB3(JTDO/TRA CESWO)	I/O	FT	-	JTDO/TRACESWO, TIM2_CH2, SPI1_SCK, SPI3_SCK/I2S3_CK, EVENTOUT	-
93	133	D6	C8	A9	162	193	A9	PB4(NJTRST)	I/O	FT	-	NJTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, EVENTOUT	-

DS11118 Rev 8 67/225

Table 10. STM32F479xx pin and ball definitions (continued)

	Pin number											ons (continued)	
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
94	134	D5	B8	A6	163	194	A8	PB5	I/O	FT	-	TIM3_CH2, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10, LCD_G7, EVENTOUT	-
95	135	C5	G8	В6	164	195	В6	PB6	I/O	FT	-	TIM4_CH1, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT	-
96	136	B4	A9	B5	165	196	B5	PB7	I/O	FT	-	TIM4_CH2, I2C1_SDA, USART1_RX, FMC_NL, DCMI_VSYNC, EVENTOUT	-
97	137	A5	F8	D6	166	197	E6	BOOT0	Ι	В	-	-	VPP
98	138	D4	В9	A5	167	198	A7	PB8	I/O	FT	-	TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, ETH_MII_TXD3, SDIO_D4, DCMI_D6, LCD_B6, EVENTOUT	-
99	139	C4	E9	B4	168	199	B4	PB9	I/O	FT	-	TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, CAN1_TX, SDIO_D5, DCMI_D7, LCD_B7, EVENTOUT	-
NC (3)	140	A4	A10	A4	169	200	A6	PE0	I/O	FT	-	TIM4_ETR, UART8_Rx, FMC_NBL0, DCMI_D2, EVENTOUT	-
NC (3)	141	А3	С9	A3	170	201	A5	PE1	I/O	FT	-	UART8_Tx, FMC_NBL1, DCMI_D3, EVENTOUT	-
-	-	E3	B10	D5	-	202	F6	VSS	S	-	-	-	-
-	142	СЗ	D9	C6	171	203	E5	PDR_ON	S	-	-	-	-
100	143	D3	A11	C5	172	204	E7	VDD	S	-	•	-	-
-	-	В3	D10	D4	173	205	C3	PI4	I/O	FT	-	TIM8_BKIN, FMC_NBL2, DCMI_D5, LCD_B4, EVENTOUT	
-	-	A2	C10	C4	174	206	D3	PI5	I/O	FT	-	TIM8_CH1, FMC_NBL3, DCMI_VSYNC, LCD_B5, EVENTOUT	-

			Pin nı	ımber	•					S			
LQFP100	LQFP144	UFBGA169	WLCSP168	UFBGA176 ⁽²⁾	LQFP176	LQFP208	TFBGA216	Pin name (function after reset) ⁽¹⁾	Pin types	I/O structures	Notes	Alternate functions	Additional functions
-	-	A1	B11	C3	175	207	D6	PI6	I/O	FT	-	TIM8_CH2, FMC_D28, DCMI_D6, LCD_B6, EVENTOUT	-
-	-	B1	A12	C2	176	208	D4	PI7	I/O	FT	-	TIM8_CH3, FMC_D29, DCMI_D7, LCD_B7, EVENTOUT	-

Table 10. STM32F479xx pin and ball definitions (continued)

- 1. Function availability depends on the chosen device.
- For the UFBGA176 package, the balls F6, F7, F8, F9, F10, G6, G7, G8, G9, G10, H6, H7, H8, H9, H10, J6, J7, J8, J9, J10, K6, K7, K8, K9, K10 are connected to VSS. Their purpose is heat dissipation and package mechanical stability.
- NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to "0" in the output data register to avoid extra current consumption in low power modes.
- PC13, PC14, PC15, and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF.

 - These I/Os must not be used as a current source (for example, to drive one LED).
- 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from www.st.com.
- FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0, and PH1).
- 7. If the device is delivered in one WLCSP168, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal reset (active low).
- 8. PI0 and PI1 cannot be used for I2S2 full-duplex mode.

Table 11. FMC pin definition

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF0	A0	-	-	A0
PF1	A1	-	-	A1
PF2	A2	-	-	A2
PF3	A3	-	-	A3
PF4	A4	-	-	A4
PF5	A5	-	-	A5
PF12	A6	-	-	A6
PF13	A7	-	-	A7
PF14	A8	-	-	A8
PF15	A9	-	-	A9
PG0	A10	-	-	A10
PG1	A11	-	-	A11
PG2	A12	-	-	A12
PG3	A13	-	-	
PG4	A14	-	-	BA0
PG5	A15	-	-	BA1
PD11	A16	A16	CLE	-
PD12	A17	A17	ALE	-
PD13	A18	A18	-	-
PE3	A19	A19	-	-
PE4	A20	A20	-	-
PE5	A21	A21	-	-
PE6	A22	A22	-	-
PE2	A23	A23	-	-
PG13	A24	A24	-	-
PG14	A25	A25	-	-
PD14	D0	DA0	D0	D0
PD15	D1	DA1	D1	D1
PD0	D2	DA2	D2	D2
PD1	D3	DA3	D3	D3
PE7	D4	DA4	D4	D4
PE8	D5	DA5	D5	D5
PE9	D6	DA6	D6	D6
PE10	D7	DA7	D7	D7
PE11	D8	DA8	D8	D8

Table 11. FMC pin definition (continued)

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PE12	D9	DA9	D9	D9
PE13	D10	DA10	D10	D10
PE14	D11	DA11	D11	D11
PE15	D12	DA12	D12	D12
PD8	D13	DA13	D13	D13
PD9	D14	DA14	D14	D14
PD10	D15	DA15	D15	D15
PH8	D16	-	-	D16
PH9	D17	-	-	D17
PH10	D18	-	-	D18
PH11	D19	-	-	D19
PH12	D20	-	-	D20
PH13	D21	-	-	D21
PH14	D22	-	-	D22
PH15	D23	-	-	D23
PI0	D24	-	-	D24
PI1	D25	-	-	D25
PI2	D26	-	-	D26
PI3	D27	-	-	D27
PI6	D28	-	-	D28
PI7	D29	-	-	D29
PI9	D30	-	-	D30
PI10	D31	-	-	D31
PD7	NE1	NE1	-	-
PG9	NE2	NE2	NCE	-
PG10	NE3	NE3	-	-
PG11	-	-	-	-
PG12	NE4	NE4	-	-
PD3	CLK	CLK	-	-
PD4	NOE	NOE	NOE	-
PD5	NWE	NWE	NWE	-
PD6	NWAIT	NWAIT	NWAIT	-
PB7	NADV	NADV	-	-
PF6	-	-	-	-
PF7	-	-	<u>-</u>	-

47/

Table 11. FMC pin definition (continued)

Pin name	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND16	SDRAM
PF8	-	-	-	-
PF9	-	-	-	-
PF10	-	-	-	-
PG6	-	-	-	-
PG7	-	-	INT	-
PE0	NBL0	NBL0	-	NBL0
PE1	NBL1	NBL1	-	NBL1
PI4	NBL2	-	-	NBL2
PI5	NBL3	-	-	NBL3
PG8	-	-	-	SDCLK
PC0	-	-	-	SDNWE
PF11	-	-	-	SDNRAS
PG15	-	-	-	SDNCAS
PH2	-	-	-	SDCKE0
PH3	-	-	-	SDNE0
PH6	-	-	-	SDNE1
PH7	-	-	-	SDCKE1
PH5	-	-	-	SDNWE
PC2	-	-	-	SDNE0
PC3	-	-	-	SDCKE0
PB5	-	-	-	SDCKE1
PB6	-	-	-	SDNE1

Table 12. Alternate function

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	SYS	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	TIM8_ETR	-	-	-	USART2_ CTS	UART4_ TX	=	-	ETH_MII_CRS	-	ī	-	EVENT OUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	-	-	USART2_ RTS	UART4_ RX	QUADSPI_ BK1_IO3	-	ETH_MII_RX_ CLK/ETH_RMI I_REF_CLK	-	1	LCD_R2	EVENT OUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	-	-	USART2_T X	-	-	-	ETH_MDIO	-	1	LCD_R1	EVENT OUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	-	-	USART2_ RX	-	LCD_B2	OTG_HS _ULPI_D0	ETH_MII_COL	-	-	LCD_B5	EVENT OUT
	PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	USART2_ CK	-	-	-	-	OTG_HS_S OF	DCMI_HS YNC	LCD_VSY NC	EVENT OUT
	PA5	-	TIM2_CH1/ TIM2_ETR	-	TIM8_CH1 N	-	SPI1_SCK	-	-	-	-	OTG_HS _ULPI_C K	-	-	-	LCD_R4	EVENT OUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKI N	-	SPI1_ MISO	-	-	-	TIM13_CH1	-	-	-	DCMI_PIX CLK	LCD_G2	EVENT OUT
Port A	PA7	-	TIM1_ CH1N	TIM3_CH2	TIM8_CH1 N	-	SPI1_ MOSI	-	-	-	TIM14_CH1	QUADSPI _CLK	ETH_MII_RX_ DV/ETH_RMII _CRS_DV	FMC_SDN WE	1	-	EVENT OUT
	PA8	MCO1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_ CK	-	-	OTG_FS_ SOF	-	-	-	LCD_R6	EVENT OUT
	PA9	-	TIM1_CH2	-	-	I2C3_SMBA	SPI2_SCK/I 2S2_CK	-	USART1_T X	-	-	-	-	-	DCMI_D0	-	EVENT OUT
	PA10	-	TIM1_CH3	-	-	-	-	-	USART1_ RX	-	-	OTG_FS_ ID	-	-	DCMI_D1	-	EVENT OUT
	PA11	-	TIM1_CH4	-	-	-	-	-	USART1_ CTS	-	CAN1_RX	OTG_FS_ DM	-	-	-	LCD_R4	EVENT OUT
	PA12	-	TIM1_ETR	-	-	-	-	-	USART1_ RTS	-	CAN1_TX	OTG_FS_ DP	-	-	-	LCD_R5	EVENT OUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PA14	JTCK- SWCLK	-	-	-	ı	1	-	-	-	-	-	-	-	ı	ı	EVENT OUT
	PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	-	-	-	-	-	-	-	EVENT 'OUT

Pinouts and pin description

Table 12. Alternate function	n (continued)
------------------------------	---------------

				1	1		able 12.			- (illillaea,	<u></u>	1		, ,		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2 N	-	-	-	-	-	LCD_R3	OTG_HS _ULPI_D1	ETH_MII_ RXD2	-	-	LCD_G1	EVENT OUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3 N	-	-	-	-	-	LCD_R6	OTG_HS _ULPI_D2	ETH_MII_ RXD3	-	-	LCD_G0	EVENT OUT
	PB2	-	-	-	-	-	-	-	-	-	i	-	-	-	-	-	EVENT OUT
	PB3	JTDO / TRACES WO	TIM2_CH2		-	-	SPI1_SCK	SPI3_SCK/ I2S3_CK	-	-	-	-	-	-	-	-	EVENT OUT
	PB4	NJTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MIS O	I2S3ext _SD	-	-	-	-	-	-	-	EVENT OUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOS I/I2S3_SD		-	CAN2_RX	OTG_HS _ULPI_D7	ETH_PPS OUT	FMC_ SDCKE1	DCMI_D10	LCD_G7	EVENT OUT
	PB6	ı	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1 _TX	-	CAN2_TX	QUADSPI _BK1_NC S	ı	FMC_ SDNE1	DCMI_D5		EVENT OUT
Dowt	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_ RX	-	-	-	-	FMC_NL	DCMI_VS YNC		EVENT OUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH 1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH_MII_ TXD3	SDIO_D4	DCMI_D6	LCD_B6	EVENT OUT
	PB9	-	-	TIM4_CH4	TIM11_CH 1	I2C1_SDA	SPI2_NSS/I 2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	LCD_B7	EVENT OUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK/I 2S2_CK	-	USART3 _TX	-	QUADSPI_ BK1_NCS	OTG_HS _ULPI_D3	ETH_MII_RX_ ER	ı	-	LCD_G4	EVENT OUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA		-	USART3 _RX	-		OTG_HS _ULPI_D4	ETH_MII_TX_ EN/ETH_RMII _TX_EN	1	DSIHOST_ TE	LCD_G5	EVENT OUT
	PB12	-	TIM1_BKIN	-	-	I2C2_SMBA	SPI2_NSS/I 2S2_WS	-	USART3 _CK	-	CAN2_RX	OTG_HS _ULPI_D5	ETH_MII_TXD 0/ETH_RMII_T XD0	OTG_HS_ ID	-	-	EVENT OUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK/I 2S2_CK	-	USART3 _CTS	-	CAN2_TX	OTG_HS _ULPI_D6	ETH_MII_TXD 1/ETH_RMII_T XD1	-	-	-	EVENT OUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2 N	-	SPI2_MISO	I2S2ext_S D	USART3 _RTS	-	TIM12_CH1	-	-	OTG_HS_ 'DM	-	-	EVENT OUT
	PB15	RTC _REFIN	TIM1_CH3N	-	TIM8_CH3 N	-	SPI2_MOSI /I2S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_ DP	-	-	EVENT 'OUT

Table 12. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PC0	-	-	-	-	-	-	-	-	-	-	OTG_HS _ULPI_ST P	-	FMC_SDN WE	-	LCD_R5	EVENT OUT
	PC1	TRACE D0	-	-	-	-	SPI2_MOSI /I2S2_SD	SAI1_SD_ A	-	-	-		ETH_MDC	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_MISO	I2S2ext_S D	-	-	-	OTG_HS _ULPI_DI _R	ETH_MII_TXD	FMC_SDN E0	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	OTG_HS _ULPI_N _XT	ETH_MII_TX_ CLK	FMC_SDC KE0	-	-	EVENT OUT
	PC4	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 0/ETH_RMII_R XD0	FMC_SDN E0	-	-	EVENT OUT
	PC5	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RXD 1/ETH_RMII_R XD1	FMC_SDC KE0	-	-	EVENT OUT
	PC6	-	-	TIM3_CH1	TIM8_CH1	-	I2S2_MCK	-	-	USART6 _TX	-	-	-	SDIO_D6	DCMI_D0	LCD_HSY NC	EVENT OUT
Port C	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	-	USART6 _RX	-	-	-	SDIO_D7	DCMI_D1	LCD_G6	EVENT OUT
	PC8	TRACE D1	-	TIM3_CH3	TIM8_CH3	-	-	-	-	USART6 _CK	-	-	-	SDIO_D0	DCMI_D2	-	EVENT OUT
	PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	I2S_CKIN	-	-	-	QUADSPI_ BK1_IO0	-	-	SDIO_D1	DCMI_D3	-	EVENT OUT
	PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	USART3_ TX	UART4_ TX	QUADSPI_ BK1_IO1	-	-	SDIO_D2	DCMI_D8	LCD_R2	EVENT OUT
	PC11	-	-	-	-	-	I2S3ext_SD	SPI3_MIS O	USART3_ RX	UART4_ RX	QUADSPI_ BK2_NCS	-	-	SDIO_D3	DCMI_D4	-	EVENT OUT
	PC12	TRACE D3	-	-	-	-	-	SPI3_MOS I/I2S3_SD	USART3_ CK	UART5_ TX	-	-	-	SDIO_CK	DCMI_D9	-	EVENT OUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT 'OUT

DS111118 Rev 8

Pinouts and pin description

Table 12.	Alternate	function	(continued)
-----------	------------------	----------	-------------

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PD0	-	-	-	-	i	-	ı	ı	-	CAN1_RX	-	-	FMC_D2	-	ı	EVENT OUT
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FMC_D3	-	-	EVENT OUT
	PD2	TRACE D2	-	TIM3_ETR	-	-	-	-	-	UART5_ RX	-	-	-	SDIO_CMD	DCMI_D11	-	EVENT OUT
	PD3	-	-	-	-	-	SPI2_SCK/I 2S2_CK	-	USART2_ CTS	-	-	-	-	FMC_CLK	DCMI_D5	LCD_G7	EVENT OUT
	PD4	-	-	_	-	-	-	-	USART2_ RTS	-	-	-	-	FMC_NOE	-	-	EVENT OUT
	PD5	-	-	-	-	-	-	-	USART2_T	-	-	-	-	FMC_NWE	-	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_MOSI /I2S3_SD	SAI1_SD_ A	USART2_ RX	-	-	-	-	FMC_NWAI	DCMI_D10	LCD_B2	EVENT OUT
Port	PD7	-	-	_	-	-	-	-	USART2_ CK	-	-	-	-	FMC_NE1	-	-	EVENT OUT
D	PD8	-	-	-	-	-	-	-	USART3_T X	-	-	-	-	FMC_D13	-	-	EVENT OUT
	PD9	-	-	-	-	-	-	-	USART3_ RX	-	-	-	-	FMC_D14	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	USART3_ CK	-	-	-	-	FMC_D15	-	LCD_B3	EVENT OUT
	PD11	-	-	-	-	-	-	-	USART3_ CTS	-	QUADSPI_ BK1_IO0	-	-	FMC_A16/F MC_CLE	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	-	-	-	USART3_ RTS	-	QUADSPI_ BK1_IO1	-	-	FMC_A17/F MC_ALE	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	QUADSPI_ BK1_IO3	-	-	FMC_A18	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	FMC_D0	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	FMC_D1	-	-	EVENT 'OUT

EVENT 'OUT

LCD_R7

FMC_D12

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PE0	-	-	TIM4_ETR	-	-	-	-	-	UART8_ Rx	-	-	-	FMC_NBL0	DCMI_D2	-	EVENT OUT
	PE1	-	-	-	-	-	-	-	-	UART8_ Tx	-	-	-	FMC_NBL1	DCMI_D3	-	EVENT OUT
	PE2	TRACE CLK	-	-	-	-	SPI4_SCK	SAI1_ MCLK_A	-	-	QUADSPI_ BK1_IO2	-	ETH_MII_TXD	FMC_A23	-	-	EVENT OUT
	PE3	TRACE D0	-	-	-	-	-	SAI1 _SD_B	-	-	-	-	-	FMC_A19	-	-	EVENT OUT
	PE4	TRACE D1	-	-	-	-	SPI4_NSS	SAI1 _FS_A	-	-	-	-	-	FMC_A20	DCMI_D4	LCD_B0	EVENT OUT
	PE5	TRACE D2	-	-	TIM9_CH1	-	SPI4_MISO	SAI1 _SCK_A	-	-	-	-	-	FMC_A21	DCMI_D6	LCD_G0	EVENT OUT
	PE6	TRACE D3	-	-	TIM9_CH2	-	SPI4_MOSI	SAI1 _SD_A	-	-	-	-	-	FMC_A22	DCMI_D7	LCD_G1	EVENT OUT
Port	PE7	-	TIM1_ETR	-	-	-	-	-	-	UART7_ Rx	-	QUADSPI _BK2_IO0	-	FMC_D4	-	-	EVENT OUT
E	PE8	-	TIM1_CH1N	-	-	-	-	-	-	UART7_ Tx	-	QUADSPI _BK2_IO1	-	FMC_D5	-	-	EVENT OUT
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	QUADSPI _BK2_IO2	-	FMC_D6	-	-	EVENT OUT
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	QUADSPI _BK2_IO3	-	FMC_D7	-	-	EVENT OUT
	PE11	-	TIM1_CH2	-	-	-	SPI4_NSS	-	-	-	-	-	-	FMC_D8	-	LCD_G3	EVENT OUT
	PE12	-	TIM1_CH3N	-	-	-	SPI4_SCK	-	-	-	-	-	-	FMC_D9	-	LCD_B4	EVENT OUT
	PE13	-	TIM1_CH3	-	-	-	SPI4_MISO	-	-	-	-	-	-	FMC_D10	-	LCD_DE	EVENT OUT
	PE14	-	TIM1_CH4	-	-	-	SPI4_MOSI	-	-	-	-	-	-	FMC_D11	ı	LCD_CLK	EVENT OUT
1							1										

PE15

TIM1_BKIN

Pinouts and pin description

Table 12. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PF0	-	-	-	-	I2C2_SDA	-	-	-	-	-	-	-	FMC_A0	-	-	EVENT OUT
	PF1	-	-	-	-	I2C2_SCL	-	-	-	-	-	-	-	FMC_A1	-	-	EVENT OUT
	PF2	-	-	-	-	I2C2_SMBA	-	-	-	-	-	-	-	FMC_A2	-	-	EVENT OUT
	PF3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A3	-	-	EVENT OUT
	PF4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A4	-	-	EVENT OUT
	PF5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A5	-	-	EVENT OUT
	PF6	-	-	-	TIM10_CH 1	-	SPI5_NSS	SAI1_ SD_B	-	UART7_ Rx	QUADSPI_ BK1_IO3	-	-	-	-	-	EVENT OUT
Port	PF7	-	-	-	TIM11_CH 1	-	SPI5_SCK	SAI1_ MCLK_B	-	UART7_ Tx	QUADSPI_ BK1_IO2	-	-	-	-	-	EVENT OUT
F	PF8	-	-	-	-	-	SPI5_MISO	SAI1_ SCK_B	-	-	TIM13_CH1	QUADSPI _BK1_IO0	-	-	-	-	EVENT OUT
	PF9	-	-	-	-	-	SPI5_MOSI	SAI1_ FS_B	-	-	TIM14_CH1	QUADSPI _BK1_IO1	-	-	-	-	EVENT OUT
	PF10	-	-	-	-	-	-	-	-	-	QUADSPI_ CLK		-	-	DCMI_D11	LCD_DE	EVENT OUT
	PF11	-	-	-	-	-	SPI5_MOSI	-	-	-	-	-	-	FMC_SDN RAS	DCMI_D12	-	EVENT OUT
	PF12	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A6	-	-	EVENT OUT
	PF13	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A7	-	-	EVENT OUT
	PF14	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A8	-	-	EVENT OUT
	PF15	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A9	-	-	EVENT 'OUT

Table 12. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PG0	-	-	-	-	1	-	-	-	-	-	-	-	FMC_A10	-	-	EVENT OUT
	PG1	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A11	-	-	EVENT OUT
	PG2	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A12	-	-	EVENT OUT
	PG3	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A13	-	-	EVENT OUT
	PG4	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A14/F MC_BA0	-	-	EVENT OUT
	PG5	-	-	-	-	-	-	-	-	-	-	-	-	FMC_A15/F MC_BA1	-	-	EVENT OUT
	PG6	-	-	-	-	-	-	-	-	-	-	-	-		DCMI_D12	LCD_R7	EVENT OUT
	PG7	-	-	-	-	-		SAI1 _MCLK_A		USART6 _CK	-	-	-	FMC_INT	DCMI_D13	LCD_CLK	EVENT OUT
Port	PG8	-	-	-	-	-	SPI6_NSS	-	-	USART6 _RTS	-	-	ETH_PPS_OU T	FMC_SDCL K		LCD_G7	EVENT OUT
G	PG9	-	-	-	-	-	-	-	-	USART6 _RX	QUADSPI_ BK2_IO2	-	-	FMC_NE2/ FMC_NCE	DCMI_VS YNC		EVENT OUT
	PG10	-	-	-	-	-	-	-	-		LCD_G3	-	-	FMC_NE3	DCMI_D2	LCD_B2	EVENT OUT
	PG11	-	-	-	-	-	-	-	-	-	-	-	ETH_MII _TX_EN / ETH_RMII _TX_EN	-	DCMI_D3	LCD_B3	EVENT OUT
	PG12	-	-	-	-	-	SPI6_MISO	-	-	USART6 _RTS	LCD_B4	-	-	FMC_NE4	-	LCD_B1	EVENT OUT
	PG13	TRACE D0	-	-	-	-	SPI6_SCK	-	-	USART6 _CTS	-	-	ETH_MII _TXD0 / ETH_RMII _TXD0	FMC_A24	-	LCD_R0	EVENT OUT
	PG14	TRACE D1	-	-	-	-	SPI6_MOSI	-	-	USART6 _TX	QUADSPI_ BK2_IO3	-	ETH_MII _TXD1 / ETH_RMII _TXD1	FMC_A25	-	LCD_B0	EVENT OUT
	PG15	-	-	-	-	-	-	-	-	USART6 _CTS	-	-	-	FMC_ SDNCAS	DCMI_D13	-	EVENT 'OUT

80/225

Table 12.	Alternate	function	(continued)
-----------	------------------	----------	-------------

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ETH	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	SYS
	PH0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-		EVENT OUT
	PH2	-	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO0	-	ETH_MII_CRS	FMC_SDC KE0	-	LCD_R0	EVENT OUT
	PH3	-	-	-	-	-	-	-	-	-	QUADSPI_ BK2_IO1	-	ETH_MII_COL	FMC_SDN E0	-	LCD_R1	EVENT OUT
	PH4	-	-	-	-	I2C2_SCL	-	-	-	-	LCD_G5	OTG_HS _ULPI_N _XT	-	-	-	LCD_G4	EVENT OUT
	PH5	-	-	-	-	I2C2_SDA	SPI5_NSS	-	-	-	-	-	-	FMC_SDN WE	-	-	EVENT OUT
	PH6	-	-	-	-	I2C2_SMBA	SPI5_SCK	-	-	-	TIM12_CH1	-	ETH_MII_RXD 2	FMC_SDN E1	-	-	EVENT OUT
Port	PH7	-	-	-	-	I2C3_SCL	SPI5_MISO	-	-	-	-	-	ETH_MII_RXD	FMC_SDC KE1	DCMI_D9	-	EVENT OUT
Н	PH8	-	-	-	-	I2C3_SDA	-	-	-	-	-	-	-	FMC_D16	DCMI_HS YNC	LCD_R2	EVENT OUT
	PH9	-	-	-	-	I2C3_SMBA	-	-	-	-	TIM12_CH2	-	-	FMC_D17	DCMI_D0	LCD_R3	EVENT OUT
	PH10	-	-	TIM5_CH1	-	-	-	-	-	-	-	-	-	FMC_D18	DCMI_D1	LCD_R4	EVENT OUT
	PH11	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	FMC_D19	DCMI_D2	LCD_R5	EVENT OUT
	PH12	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	FMC_D20	DCMI_D3	LCD_R6	EVENT OUT
	PH13	-	-	-	TIM8_CH1	-	-	-	-	-	CAN1_TX	-	-	FMC_D21	-	LCD_G2	EVENT OUT
	PH14	-	-	-	TIM8_CH2 N	-	-	-	-	-	-	-	-	FMC_D22	DCMI_D4	LCD_G3	EVENT OUT
	PH15	-	-	-	TIM8_CH3 N	-	-	-	-	-	-	-	-	FMC_D23	DCMI_D11	LCD_G4	EVENT 'OUT

Table 12. Alternate function (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PI0	-	-	TIM5_CH4	-	-	SPI2_NSS/I 2S2_WS	-	-	-	-	-	=	FMC_D24	DCMI_D13	LCD_G5	EVENT OUT
	PI1	-	-	-	-	-	SPI2_SCK/I 2S2_CK	-	-	-	-	-	-	FMC_D25	DCMI_D8	LCD_G6	EVENT OUT
	PI2	-	-	-	TIM8_CH4	-	SPI2_MISO	I2S2ext_S D	-	-	-	-	-	FMC_D26	DCMI_D9	LCD_G7	EVENT OUT
	PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	FMC_D27	DCMI_D10		EVENT OUT
	PI4		-	-	TIM8_BKI N	-	-	-	-	-	-	-	-	FMC_NBL2	DCMI_D5	LCD_B4	EVENT OUT
	PI5		-	-	TIM8_CH1	-	-	-	-	-	-	-	-	FMC_NBL3	DCMI_VS YNC	LCD_B5	EVENT OUT
	PI6	-	-	-	TIM8_CH2	-	-	-	-	-	-	-	-	FMC_D28	DCMI_D6	LCD_B6	EVENT OUT
	PI7	-	-	-	TIM8_CH3	-	-	-	-	-	-	-	-	FMC_D29	DCMI_D7	LCD_B7	EVENT OUT
Port I	PI8		-	-	-	-	-	-	-	-	-	-	-	-	-		EVENT OUT
	PI9	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FMC_D30	-	LCD_VSY NC	EVENT OUT
	PI10	-	-	-	-	-	-	-	-	-	-	-	ETH_MII_RX_ ER	FMC_D31	-	LCD_HSY NC	EVENT OUT
	PI11	-	-	-	-	-	-	-	-	-	LCD_G6	OTG_HS _ULPI _DIR	-	-	-	-	EVENT OUT
	PI12		-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_HSY NC	EVENT OUT
	PI13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_VSY NC	EVENT OUT
	PI14	-	-	-	-	-	-	-	-	1	-	-	-	-	-	LCD_CLK	EVENT OUT
	PI15	=	-	-	-	-	-	-	-	ı	LCD_G2	=	-	-	-	LCD_R0	EVENT 'OUT

Pinouts and pin description

Table 12.	Alternate	function	(continued
-----------	------------------	----------	------------

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	sys	TIM1/2	TIM3/4/ 5	TIM8/9/ 10/11	I2C1/2/3	SPI1/2/3 /4/5/6	SPI2/3/ SAI1	SPI2/3/ USART 1/2/3	USAR T6/ UART 4/5/7/ 8	CAN1/2/ TIM12/ 13/14/ QUAD SPI/LCD	QUAD SPI/OT G2_HS /OTG1 _FS	ЕТН	FMC/ SDIO/ OTG2_ FS	DCMI/ DSI HOST	LCD	sys
	PJ0	-	-	-	-	-	-	-	-	-	LCD_R7	-	-	-	-	LCD_R1	EVENT OUT
	PJ1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R2	EVENT OUT
	PJ2	-	-	-	-	-	-	-	-	-	-	-	-	-	DSIHOST _TE	LCD_R3	EVENT OUT
	PJ3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R4	EVENT OUT
Port	PJ4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R5	EVENT OUT
J	PJ5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_R6	EVENT OUT
	PJ12	-	-	-	-	-	-	-	-	-	LCD_G3	-	-	-	-	LCD_B0	EVENT OUT
	PJ13	-	-	-	-	-	-	-	-	-	LCD_G4	-	-	-	-	LCD_B1	EVENT OUT
	PJ14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B2	EVENT OUT
	PJ15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B3	EVENT OUT
	PK3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B4	EVENT OUT
	PK4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B5	EVENT OUT
Port K	PK5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B6	EVENT OUT
	PK6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_B7	EVENT OUT
	PK7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	LCD_DE	EVENT OUT

STM32F479xx Memory mapping

4 Memory mapping

The memory map is shown in Figure 21.

Figure 21. Memory map

Memory mapping STM32F479xx

Table 13. STM32F479xx register boundary addresses⁽¹⁾

Bus	Boundary address	Peripheral
-	0xE00F FFFF - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex®-M4 internal peripherals
	0xD000 0000 - 0xDFFF FFFF	FMC bank 6
	0xC000 0000 - 0xCFFF FFFF	FMC bank 5
	0xA000 1000 - 0xA0001FFF	Quad-SPI control register
	0xA000 2000 - 0xBFFF FFFF	Reserved
AHB3	0xA000 0000- 0xA000 0FFF	FMC control register
	0x9000 0000 - 0x9FFF FFFF	Quad-SPI bank
	0x8000 0000 - 0x8FFF FFFF	FMC bank 3
	0x7000 0000 - 0x7FFF FFFF	FMC bank 2 (reserved)
	0x6000 0000 - 0x6FFF FFFF	FMC bank 1
-	0x5006 0C00- 0x5FFF FFFF	Reserved
	0x5006 0800 - 0x5006 0BFF	RNG
	0x5006 0400 - 0x5006 07FF	HASH
	0x5006 0000 - 0x5006 03FF	CRYP
AHB2	0x5005 0400 - 0x5005 FFFF	Reserved
	0x5005 0000 - 0x5005 03FF	DCMI
	0x5004 0000- 0x5004 FFFF	Reserved
	0x5000 0000 - 0x5003 FFFF	USB OTG FS

STM32F479xx Memory mapping

Table 13. STM32F479xx register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral
-	0x4008 0000- 0x4FFF FFFF	Reserved
	0x4004 0000 - 0x4007 FFFF	USB OTG HS
	0x4002 BC00- 0x4003 FFFF	Reserved
	0x4002 B000 - 0x4002 BBFF	Chrom (DMA2D)
	0x4002 9400 - 0x4002 AFFF	Reserved
	0x4002 9000 - 0x4002 93FF	
	0x4002 8C00 - 0x4002 8FFF	
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC
	0x4002 8400 - 0x4002 87FF	
	0x4002 8000 - 0x4002 83FF	
	0x4002 6800 - 0x4002 7FFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 5FFF	Reserved
	0x4002 4000 - 0x4002 4FFF	BKPSRAM
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register
ALIDI	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
	0x4002 3000 - 0x4002 33FF	CRC
	0x4002 2C00 - 0x4002 2FFF	Reserved
	0x4002 2800 - 0x4002 2BFF	GPIOK
	0x4002 2400 - 0x4002 27FF	GPIOJ
	0x4002 2000 - 0x4002 23FF	GPIOI
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1800 - 0x4002 1BFF	GPIOG
	0x4002 1400 - 0x4002 17FF	GPIOF
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Memory mapping STM32F479xx

Table 13. STM32F479xx register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral
	0x4001 7400 - 0x4001 FFFF	Reserved
	0x4001 6C00 - 0x4001 73FF	DSI Host
	0x4001 6800 - 0x4001 6BFF	LCD-TFT
	0x4001 5C00 - 0x4001 67FF	Reserved
	0x4001 5800 - 0x4001 5BFF	SAI1
	0x4001 5400 - 0x4001 57FF	SPI6
	0x4001 5000 - 0x4001 53FF	SPI5
	0x4001 4C00 - 0x4001 4FFF	Reserved
	0x4001 4800 - 0x4001 4BFF	TIM11
	0x4001 4400 - 0x4001 47FF	TIM10
	0x4001 4000 - 0x4001 43FF	TIM9
APB2	0x4001 3C00 - 0x4001 3FFF	EXTI
AFBZ	0x4001 3800 - 0x4001 3BFF	SYSCFG
	0x4001 3400 - 0x4001 37FF	SPI4
	0x4001 3000 - 0x4001 33FF	SPI1
	0x4001 2C00 - 0x4001 2FFF	SDIO
	0x4001 2400 - 0x4001 2BFF	Reserved
	0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3
	0x4001 1800 - 0x4001 1FFF	Reserved
	0x4001 1400 - 0x4001 17FF	USART6
	0x4001 1000 - 0x4001 13FF	USART1
	0x4001 0800 - 0x4001 0FFF	Reserved
	0x4001 0400 - 0x4001 07FF	TIM8
	0x4001 0000 - 0x4001 03FF	TIM1

STM32F479xx Memory mapping

Table 13. STM32F479xx register boundary addresses⁽¹⁾ (continued)

Bus	Boundary address	Peripheral
-	0x4000 8000- 0x4000 FFFF	Reserved
	0x4000 7C00 - 0x4000 7FFF	UART8
	0x4000 7800 - 0x4000 7BFF	UART7
	0x4000 7400 - 0x4000 77FF	DAC
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6C00 - 0x4000 6FFF	Reserved
	0x4000 6800 - 0x4000 6BFF	CAN2
	0x4000 6400 - 0x4000 67FF	CAN1
	0x4000 6000 - 0x4000 63FF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 5000 - 0x4000 53FF	UART5
	0x4000 4C00 - 0x4000 4FFF	UART4
	0x4000 4800 - 0x4000 4BFF	USART3
	0x4000 4400 - 0x4000 47FF	USART2
APB1	0x4000 4000 - 0x4000 43FF	I2S3ext
APBI	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 2400 - 0x4000 27FF	Reserved
	0x4000 2000 - 0x4000 23FF	TIM14
	0x4000 1C00 - 0x4000 1FFF	TIM13
	0x4000 1800 - 0x4000 1BFF	TIM12
	0x4000 1400 - 0x4000 17FF	TIM7
	0x4000 1000 - 0x4000 13FF	TIM6
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

^{1.} The reserved boundary addresses are shown in grayed cells.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25^{\circ}C$ and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3 σ).

5.1.2 Typical values

Unless otherwise specified, typical data is based on $T_A = 25^{\circ}C$, $V_{DD} = 3.3 \text{ V}$ (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 22.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 23*.

5.1.6 Power supply scheme

Backup circuitry (OSC32K,RTC, Power $V_{BAT} = 1.65 \text{ to } 3.6 \text{ V}$ Wakeup logic switch Backup registers. backup RAM) OUT 10 **GPIOs** Logic V_{CAP_1} Kernel logic V_{CAP 2} (CPU, digital $2 \times 2.2 \mu F$ & RAM) V_{DD} 1/2/...19/20 Voltage regulator 20 × 100 nF V_{SS} + 1 × 4.7 µF 1/2/...19/20 BYPASS REG Flash memory V_{DDUSB} V_{DDUSB} OTG-FS 100 nF V_{DDDSI} DSI Voltage regulator $V_{DD12DSI}$ PHY V_{SSDSI} Reset PDR_ON controller V_{DD} V_{DDA} V_{REF} V_{REF+} Analog: 100 nF 100 nF ADC V_{REF} RCs, PLL, + 1 µF V_{SSA}

Figure 24. Power supply scheme

- 1. To connect BYPASS REG and PDR ON pins, refer to Section 2.19 and Section 2.20.
- 2. The two 2.2 μ F ceramic capacitors on V_{CAP_1} and V_{CAP_2} should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.
- 3. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pins.
- 4. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

Caution:

Each power supply pair (V_{DD}/V_{SS} , V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

5.1.7 Current consumption measurement

IDD_VBAT VBAT VDD VDD VDDA

Figure 25. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14*, *Table 15*, and *Table 16* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} , V_{DD} , V_{DDUSB} , V_{DDDSI} and V_{BAT}) ⁽¹⁾	- 0.3	4.0	
	Input voltage on FT pins ⁽²⁾	V _{SS} - 0.3	V _{DD} +4.0	
V	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
V _{IN}	Input voltage on any other pin	V _{SS} - 0.3	4.0	
	Input voltage on BOOT pin	V _{SS}	9.0	
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50	mV
V _{SSX} -V _{SS}	Variations between all the different ground pins ⁽³⁾	-	50	1117
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Sectio		

Table 14. Voltage characteristics

3. Including V_{REF-} pin

All main power (V_{DD}, V_{DDA}, V_{DDUSB}, V_{DDDSI}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

V_{IN} maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed injected current.

Symbol

 ΣI_{VDD}

ΣI_{VSS} ΣI_{VDDUSB}

 I_{VDD}

 I_{VSS}

 I_{10}

 ΣI_{10}

I_{INJ(PIN)} (3)

 $\Sigma I_{\text{INJ(PIN)}}^{(5)}$

mΑ

120

25

-120

-5/+0

±5

±25

Ratings	Max.	Unit
Total current into sum of all V _{DD_x} power lines (source) ⁽¹⁾	290	
Total current out of sum of all V _{SS_x} ground lines (sink) ⁽¹⁾	- 290	
Total current into V _{DDUSB} power line (source)	25	
Maximum current into each V _{DD_x} power line (source) ⁽¹⁾	100	
Maximum current out of each V _{SS_x} ground line (sink) ⁽¹⁾	- 100	
Output current sunk by any I/O and control pin	25	
Output current sourced by any I/Os and control pin	- 25	

Table 15. Current characteristics

All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

Total output current sunk by sum of all I/O and control pins (2)

Total output current sourced by sum of all I/Os and control pins⁽²⁾

Total output current sunk by sum of all USB I/Os

Injected current on NRST and BOOT0 pins (4)

Injected current on FT pins (4)

Injected current on TTa pins⁽⁵⁾

- 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
- 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.24.

Total injected current (sum of all I/O and control pins)⁽⁶⁾

- 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- 5. A positive injection is induced by $V_{IN} > V_{DDA}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 14* for the values of the maximum allowed input voltage.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	- 65 to +150	°C
T _J	Maximum junction temperature	125	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 17. General operating conditions

Symbol	Parameter	Conditions ⁽¹⁾			Тур	Max	Unit
		Power Scale 3 (VOS[1:0] bits in register = 0x01), Regulator ON, over-drive OFF	_	0	-	120	
		Power Scale 2 (VOS[1:0] bits in PWR CR register = 0x10),	Over-drive OFF	0	-	144	
f _{HCLK}	Internal AHB clock frequency	Regulator ON	Over-drive ON	U	-	168	
		Power Scale 1 (VOS[1:0] bits	Over-drive OFF	0	-	168	MHz
		in PWR_CR register= 0x11), Regulator ON	Over-drive ON	U	ı	180	
f	Internal APB1 clock frequency	Over-drive OFF			-	42	
f _{PCLK1}	Internal Al Bi Glock frequency	Over-drive ON			-	45	
f	Internal APB2 clock frequency	Over-drive OFF			-	84	
f _{PCLK2}	Internal AFB2 GOCK frequency	Over-drive ON			-	90	
V _{DD}	Standard operating voltage	-		1.7 ⁽²⁾	-	3.6	
V _{DDA} ⁽³⁾⁽⁴⁾	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as V _{DD} ⁽⁵⁾		1.7 ⁽²⁾	-	2.4	
VDDA'''	Analog operating voltage (ADC limited to 2.4 M samples)	Must be the same potential as	V _{DD} (°)	2.4	-	3.6	
.,	USB supply voltage	USB not used		0	3.3	3.6	
V _{DDUSB}	(supply voltage for PA11, PA12, PB14 and PB15 pins)	USB used			-	3.6	
V _{DDDSI}	DSI system operating voltage	-	1.7 ⁽²⁾	-	3.6		
V_{BAT}	Backup operating voltage	-		1.65	-	3.6	

Table 17. General operating conditions (continued)

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
		Power Scale 3 ((VOS[1:0] bits in PWR_CR register = 0x01), 120 MHz HCLK max frequency	1.08	1.14	1.20		
	Regulator ON: 1.2 V internal voltage on V _{CAP_1} /V _{CAP_2} pins	Power Scale 2 ((VOS[1:0] bits in PWR_CR register = 0x10), 144 MHz HCLK max frequency with over-drive OFF or 168 MHz with over-drive ON	1.20	1.26	1.32		
V ₁₂		Power Scale 1 ((VOS[1:0] bits in PWR_CR register = 0x11), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON	1.26	1.32	1.40	٧	
	Regulator OFF: 1.2 V external	Max frequency 120 MHz	1.10	1.14	1.20		
	voltage must be supplied from external regulator on	Max frequency 144 MHz	1.20	1.26	1.32		
	V _{CAP_1} /V _{CAP_2} pins ⁽⁶⁾	Max frequency 168 MHz	1.26	1.32	1.38		
	pat rollage off ite i alia i .	2 V ≤ V _{DD} ≤ 3.6 V	- 0.3	-	5.5		
	pins ⁽⁷⁾	V _{DD} ≤ 2 V	- 0.3	-	5.2		
V _{IN}	Input voltage on TTa pins	-	- 0.3	-	V _{DDA} +0.3	V	
	Input voltage on BOOT0 pin	-	0	-	9		
	Power dissipation at T _A = 85 °C for suffix 6	LQFP100	-	-	465	-	
		LQFP144	-	-	500		
		WLCSP168	-	-	645		
D_		UFBGA169	-	-	385		
P_{D}	or $T_A = 105$ °C for suffix $7^{(8)}$	LQFP176	-	-	526	mW	
		UFBGA176	-	-	513		
		LQFP208	-	-	1053		
		TFBGA216	-	-	690		
	Ambient temperature for 6	Maximum power dissipation	- 40	-	85		
TA	suffix version	Low power dissipation ⁽⁹⁾	- 40	-	105		
	Ambient temperature for 7	Maximum power dissipation	- 40	-	105	°C	
	suffix version	Low power dissipation ⁽⁹⁾	- 40	-	125		
TJ	Junction temperature range	6 suffix version	- 40	-	105]	
13	oundion temperature range	7 suffix version	- 40	-	125		

- 1. The overdrive mode is not supported at the voltage ranges from 1.7 to 2.1 $\ensuremath{\text{V}}$.
- 2. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- 3. When the ADC is used, refer to Table 77.
- 4. If V_{REF+} pin is present, it must respect the following condition: V_{DDA} - V_{REF+} < 1.2 V.
- 5. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and power-down operation.
- 6. The overdrive mode is not supported when the internal regulator is OFF.

- 7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled.
- 8. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .
- 9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax-

Table 18. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum HCLK frequency vs. Flash memory wait states (1)(2)	I/O operation	Possible Flash memory operations
V _{DD} = 1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	No I/O	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V		22 MHz	180 MHz with 8 wait states and over-drive ON	compensation	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time	24 MHz	180 MHz with 7 wait states and over-drive ON	I/O compensation	16-bit erase and program operations
$V_{DD} = 2.7 \text{ to } 3.6 \text{ V}^{(5)}$	up to 2.4 Msps	30 MHz	180 MHz with 5 wait states and over-drive ON	works	32-bit erase and program operations

Applicable only when the code is executed from flash memory. When the code is executed from RAM, no wait state is required.

- 3. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- Prefetch is not available.
- 5. When V_{DDUSB} is connected to V_{DD} , the voltage range for USB full speed PHYs can drop down to 2.7 V. However, the electrical characteristics of D- and D+ pins are degraded between 2.7 and 3 V.

5.3.2 VCAP1/VCAP2 external capacitor

Stabilization for the main regulator is achieved by connecting an external capacitor C_{EXT} to the VCAP1/VCAP2 pins. C_{EXT} is specified in *Table 19*.

Figure 26. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

Thanks to the ART Accelerator and the 128-bit flash memory, the number of wait states given here does not impact the execution speed from flash memory since the ART Accelerator allows to achieve a performance equivalent to 0 wait state program execution.

Table 19	VCAP1/VCAP2	operating	conditions ⁽¹⁾
Table 13	. VUAF I/VUAFZ	Operating	COHUMICIONS

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor	2.2 µF
ESR	ESR of external capacitor	< 2 Ω

When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

5.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Max	Unit
	V _{DD} rise time rate	20	8	µs/V
^t ∨DD	V _{DD} fall time rate	20	8	μ5/ ν

5.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A.

Table 21. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate	Power-up	20	∞	
t_{VDD}	V _{DD} fall time rate	Power-down	20	∞	µs/V
+	V _{CAP_1} and V _{CAP_2} rise time rate	Power-up	20	8	μ5/ ν
t _{VCAP}	V _{CAP_1} and V _{CAP_2} fall time rate	Power-down	20	8	

To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reaches below 1.08 V

5.3.5 Reset and power control block characteristics

The parameters given in *Table 22* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 22. Reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19			
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08			
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37			
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25			
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51			
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39			
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65			
V	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	.,		
V _{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V		
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71			
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99			
		PLS[2:0]=101 (falling edge)	2.75	2.84	2.92			
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10			
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99			
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21			
		PLS[2:0]=111 (falling edge)	S[2:0]=111 (falling edge) 2.95		3.09			
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV		
V	Power-on/power-down	Falling edge	1.60	1.68	1.76	V		
V _{POR/PDR}	reset threshold	Rising edge	1.64	1.72	1.80	v		
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV		
V	Brownout level 1 threshold	Falling edge	2.13	2.19	2.24			
V _{BOR1}	Brownout level 1 tilleshold	Rising edge	2.23	2.29	2.33			
V	Drownout lovel 2 throshold	Falling edge	2.44	2.50	2.56	V		
V_{BOR2}	Brownout level 2 threshold	Rising edge	2.53	2.59	2.63	V		
V	Drawn aut laval 2 throughold	Falling edge	2.75	2.83	2.88			
V _{BOR3}	Brownout level 3 threshold	Rising edge	2.85	2.92	2.97			
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV		
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	POR reset temporization	-	0.5	1.5	3.0	ms		
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA		
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.7 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC		

^{1.} Guaranteed by design.

The reset temporization is measured from the power-on (POR reset or wake-up from V_{BAT}) to the instant when first instruction is read by the user application code.

5.3.6 Overdrive switching characteristics

When the overdrive mode switches from enabled to disabled, or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The overdrive switching characteristics are given in *Table 23*. They are subject to general operating conditions for T_A .

Table 23. Over-drive switching characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		HSI	-	45	-	
T _{od_swen}	Over_drive switch enable time	HSE max for 4 MHz and min for 26 MHz	1 45 - 100		100	
		External HSE 50 MHz	-	40	-	116
		HSI	-	20	-	μs
T _{od_swdis}	Over_drive switch disable time	HSE max for 4 MHz and min for 26 MHz.	20	-	80	
5 <u>u_</u> 5		External HSE 50 MHz	-	15	-	

^{1.} Guaranteed by design.

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 25.

All the run mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the CoreMark[®] code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The flash memory access time is adjusted both to f_{HCLK} frequency and V_{DD} range (see Table 18: Limitations depending on the operating power supply range).
- When the regulator is OFF, the V₁₂ is provided externally, as described in *Table 17:* General operating conditions.
- The voltage scaling and overdrive mode are adjusted to f_{HCLK} frequency as follows:
 - Scale 3 for f_{HCLK} ≤ 120 MHz
 - Scale 2 for 120 MHz < f_{HCLK} ≤ 144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤180 MHz. The overdrive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- External clock frequency is 25 MHz and PLL is ON when f_{HCLK} is higher than 25 MHz.
- The typical current consumption values are obtained for 1.7 V≤ V_{DD} ≤ 3.6 V voltage range and for ambient temperature T_A= 25 °C unless otherwise specified.
- The maximum values are obtained for 1.7 V≤ V_{DD} ≤ 3.6 V voltage range and a maximum ambient temperature (T_A), unless otherwise specified.
- For the voltage range 1.7 $V \le V_{DD} \le 2.1 \text{ V}$ the maximum frequency is 168 MHz.

Table 24. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM, regulator ON

			regulati			Max ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			180	103	109 ⁽⁴⁾	142	175 ⁽⁴⁾	
			168	94	99	124	149	
		150	84	89	114	140		
			144	77	81	104	127	
		120	57	60	79	98		
	All	90	43	46	64	84		
		peripherals enabled ⁽²⁾⁽³⁾	60	30	33	51	70	
		enabled(2)(3)	30	16	19	37	57	
			25	14	16	34	54	
			16	7	10	28	48	mA
			8	4	7	26	46	
			4	3	6	24	44	
ı	Supply current in		2	3	5	23	43	
I _{DD}	Run mode		180	50	56 ⁽⁴⁾	89	124 ⁽⁴⁾	
			168	45	51	75	102	
			150	41	46	70	97	
			144	37	42	63	88	
			120	28	31	49	69	
		All	90	21	24	42	63	
		peripherals disabled ⁽²⁾	60	15	17	36	56	
		disabled ⁽²⁾	30	9	11	29	49	
		25	7	10	28	48		
			16	4	7	25	45	
			8	3	6	22	44	
			4	3	5	23	43	
			2	2	5	23	43	

^{1.} Guaranteed based on test during characterization.

4. Guaranteed by test in production.

^{2.} When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

^{3.} When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled), regulator ON

		, , , , , , , , , , , , , , , , , , , ,				Max ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			168	97	102	128	154	
			150	87	92	118	143	
			144	80	84	108	131	
		All peripherals	120	65	68	88	108	
		enabled ⁽²⁾⁽³⁾	90	51	54	73	93	
			60	37	41	59	79	
			30	21	23	42	62	
	Supply current in		25	18	20	39	59	mA
I _{DD}	Run mode		168	49	55	79	105	IIIA
			150	44	49	44	100	
			144	40	45	68	92	
		All peripherals	120	36	39	58	78	
		disabled	90	29	32	51	71	
			60	22	25	44	64	
			30	13	15	34	54	
			25	11	13	32	52	

^{1.} Guaranteed based on test during characterization.

^{2.} When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

^{3.} When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

Table 26. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch), regulator OFF

				Ty	уp			Ма	x ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz))	1	T _A = 25 °C		T _A = 85 °C		T _A = 105 °C		Unit
				I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
			168	93	1	98	1	123	1	148	1	
			150	83	1	88	1	113	1	138	1	
			144	76	1	80	1	103	1	126	1	
		All peripherals	120	56	1	59	1	78	1	97	1	
		enabled ^{(2) (3)}	90	43	1	45	1	64	1	83	1	
			60	29	1	32	1	50	1	70	1	
	Cupply gurrant		30	15	1	18	1	36	1	56	1	
	Supply current in Run mode		25	13	1	15	1	34	1	53	1	mA
I_{DD12}/I_{DD}	from V ₁₂ and V _{DD} supply		168	44	1	50	1	72	1	94	1	IIIA
	v _{DD} supply		150	40	1	45	1	68	1	90	1	
			144	36	1	40	1	62	1	82	1	
		All peripherals	120	27	1	30	1	48	1	66	1	
		disabled	90	20	1	23	1	41	1	60	1	
			60	14	1	16	1	35	1	53	1	
			30	8	1	10	1	28	1	47	1	
			25	7	1	9	1	27	1	46	1	

^{1.} Guaranteed based on test during characterization.

^{2.} When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, DSI regulator, an additional power consumption should be considered.

^{3.} When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

Table 27. Typical and maximum current consumption in Sleep mode, regulator ON

Symbol	Parameter		f /MU-	Тур	•	Max ⁽¹⁾⁽²⁾⁽³⁾		Unit	
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	ıyp	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Oilit	
			180	78	88 ⁽⁴⁾	118	151 ⁽⁴⁾		
			168	71	76	101	127		
			150	64	71	94	119		
			144	58	62	85	109		
			120	43	46	65	85		
		All	90	33	37	54	74		
		peripherals	60	23	25	44	63		
		enabled	30	13	15	34	53		
			25	11	13	32	52		
			16	5	8	27	47		
			8	4	7	25	45		
			4	3	5	24	44	mΛ	
	Supply		2	2	5	23	43		
I _{DD}	current in Sleep mode		180	23	29 ⁽⁴⁾	63	96 ⁽⁴⁾	mA	
			168	21	25	50	76		
			150	19	23	48	74		
			144	17	31	43	67		
			120	13	16	34	54		
		All	90	10	13	31	51		
		peripherals	60	7	10	28	48		
		disabled	30	5	7	25	45		
			25	4	7	25	45		
			16	2	5	23	43		
			8	2	5	23	43		
			4	2	5	23	43		
			2	2	4	23	42		

^{1.} Guaranteed based on test during characterization.

^{2.} When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.

^{3.} When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

^{4.} Guaranteed by test in production.

Table 28. Typical and maximum current consumption in Sleep mode, regulator OFF

		Conditions		Ty	ур	Max ⁽¹⁾						
Symbol	Parameter		f _{HCLK} (MHz)		ı	T _A = 25 °C		T _A = 85 °C		T _A = 105 °C		Unit
				I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	I _{DD12}	I _{DD}	
		168	70	1	75	1	100	1	126	1		
			150	63	1	70	1	93	1	118	1	
			144	57	1	61	1	84	1	108	1	
		All peripherals	120	42	1	45	1	64	1	84	1	
		enabled	90	32	1	36	1	53	1	73	1	
	Overally average		60	22	1	24	1	43	1	63	1	
			30	12	1	14	1	33	1	53	1	
1 /1	Supply current in Run mode		25	10	1	12	1	31	1	51	1	mA
I _{DD12} / I _{DD}	from V ₁₂ and V _{DD} supply		168	20	1	24	1	49	1	75	1	ША
	v DD aubbiy		150	18	1	22	1	47	1	73	1	
			144	16	1	19	1	42	1	66	1	
		All peripherals	120	12	1	14	1	33	1	53	1	
		disabled	90	10	1	12	1	30	1	50	1	
			60	7	1	9	1	27	1	47	1	
			30	4	1	6	1	24	1	44	1	
			25	4	1	6	1	24	1	44	1	

^{1.} Guaranteed based on test during characterization.

Table 29. Typical and maximum current consumption in Stop mode

					Max ⁽¹⁾		Unit
Symbol	Parameter	Conditions	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_STOP_NM} (normal mode)	Supply current in Stop mode with voltage	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.63	3	17	33	
	regulator in main regulator mode	Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.58	3	17	33	
	Supply current in Stop mode with voltage regulator in Low Power regulator mode	Flash memory in Stop mode, all oscillators OFF, no independent watchdog	0.50	2	15	28	
		Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog	0.44	2	15	28	mA
I _{DD_STOP_UDM}	Supply current in Stop mode with voltage regulator in main regulator and under- drive mode	Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.21	1	6	12	
(under-drive mode)	Supply current in Stop mode with voltage regulator in Low Power regulator and under- drive mode	Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog	0.14	1	6	13	

^{1.} Data based on characterization, tested in production.

Table 30. Typical and maximum current consumption in Standby mode

Symbol	Parameter	Conditions	Typ ⁽¹⁾			Max ⁽²⁾			
			T _A = 25 °C			T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{DD} = 1.7 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} = 3.3 V			
I _{DD_STBY}	Supply current in Standby mode	Backup SRAM ON, RTC and LSE oscillator OFF	1.7	2.5	2.9	6 ⁽³⁾	18	35 ⁽³⁾	μΑ
		Backup SRAM OFF, RTC and LSE oscillator OFF	1.0	1.8	2.20	5 ⁽³⁾	15	30 ⁽³⁾	
		Backup SRAM OFF, RTC ON and LSE oscillator in Power Drive mode	1.7	2.7	3.2	7	20	39	
		Backup SRAM ON, RTC ON and LSE oscillator in Power Drive mode	2.4	3.4	4.0	8	25	48	
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	3.2	4.2	4.8	10	29	57	
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	2.5	3.5	4.1	8	25	48	

^{1.} PDR is off for V_{DD} =1.7 V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by additional 1.2 μ A.

^{2.} Based on characterization, not tested in production unless otherwise specified.

^{3.} Based on characterization, tested in production.

Table 31. Typical and maximum current consumption in V_{BAT} mode

Symbol	Parameter	Conditions ⁽¹⁾	Тур			Max ⁽²⁾			
			T _A = 25 °C			T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			V _{BAT} = 1.7 V	V _{BAT} = 2.4 V	V _{BAT} = 3.3 V	V _{BAT} = 3.3 V			
I_{DD_VBAT}	Backup domain supply current	Backup SRAM ON, RTC ON and LSE oscillator in Low Power mode	1.431	1.577	1.825	1.9	12.0	24.0	μΑ
		Backup SRAM OFF, RTC ON and LSE oscillator in Low Power mode	0.720	0.849	1.060	1.1	7.0	13.9	
		Backup SRAM ON, RTC ON and LSE oscillator in High Drive mode	2.212	2.368	2.630	2.80	17.3	34.6	
		Backup SRAM OFF, RTC ON and LSE oscillator in High Drive mode	1.499	1.637	1.862	2.0	12.3	24.5	
		Backup SRAM ON, RTC and LSE OFF	0.710	0.720	0.760	0.8 ⁽³⁾	5.0	10.0 ⁽³⁾	
		Backup SRAM OFF, RTC and LSE OFF	0.018	0.020	0.024	0.2 ⁽³⁾	2.0	4.0 ⁽³⁾	

- 1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a $\rm C_L$ of 6 pF for typical values.
- 2. Based on characterization, tested in production.
- 3. Based on test during characterization.

Figure 27. Typical V_{BAT} current consumption (RTC ON / backup SRAM ON and LSE in Low drive mode)

Figure 28. Typical V_{BAT} current consumption (RTC ON / backup SRAM ON and LSE in High drive mode)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull resistors generate current consumption when the pin is externally held to the opposite level. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 59: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins, which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 33*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses

4

DS11118 Rev 8 107/225

the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load internal or external connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 $I_{\mbox{\scriptsize SW}}$ is the current sunk by a switching I/O to charge/discharge the capacitive load.

 $V_{\mbox{\scriptsize DD}}$ is the MCU supply voltage.

f_{SW} is the I/O switching frequency.

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT}

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 32. Switching output I/O current consumption⁽¹⁾

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit
			2 MHz	0.0	mA
			8 MHz	0.2	
			25 MHz	0.6	
		$V_{DD} = 3.3 \text{ V}$ $C = C_{INT}^{(2)}$	50 MHz	1.1	
	I/O switching Current	S- OINT	60 MHz	1.3	
			84 MHz	1.8	
			90 MHz	1.9	
I _{DDIO}			2 MHz	0.1	
			8 MHz	0.4	
		V _{DD} = 3.3 V	25 MHz	1.23	
		C _{EXT} = 0 pF	50 MHz	2.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	60 MHz	2.93	
			84 MHz	3.86	
			90 MHz	4.07	

Symbol	Parameter	Conditions	I/O toggling frequency (fsw)	Тур	Unit	
			2 MHz	0.18		
			8 MHz	0.67		
		V _{DD} = 3.3 V	25 MHz	2.09		
		C _{EXT} = 10 pF	50 MHz	3.6		
		$C = C_{INT} + C_{EXT} + C_{S}$	$C = C_{INT} + C_{EXT} + C_{S}$	60 MHz	4.5	
			84 MHz	7.8		
	I _{DDIO} I/O switching Current		90 MHz	9.8		
			2 MHz	0.26	mA	
IDDIO		V _{DD} = 3.3 V	8 MHz	1.01	MA	
		C _{EXT} = 22 pF	25 MHz	3.14		
		$C = C_{INT} + C_{EXT} + C_{S}$	50 MHz	6.39		
			60 MHz	10.68		
			2 MHz	0.33		
		V _{DD} = 3.3 V	8 MHz	1.29		
		$C_{EXT} = 33 \text{ pF}$ $C = C_{INT} + Cext + C_{S}$	25 MHz	4.23		
			50 MHz	11.02		

Table 32. Switching output I/O current consumption⁽¹⁾ (continued)

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- I/O compensation cell enabled.
- The ART Accelerator is ON.
- Scale 1 mode selected, internal digital voltage V12 = 1.32 V.
- HCLK is the system clock. f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.

The given value is calculated by measuring the difference of current consumption:

- with all peripherals clocked off
- with only one peripheral clocked on
- f_{HCLK} = 180 MHz (Scale1 + overdrive ON), f_{HCLK} = 144 MHz (Scale 2), f_{HCLK} = 120 MHz (Scale 3)
- Ambient operating temperature is 25 $^{\circ}$ C and V_{DD}=3.3 V.

^{1.} C_S is the PCB board capacitance including the pad pin. C_S = 7 pF (estimated value).

^{2.} This test is performed by cutting the LQFP176 package pin (pad removal).

Table 33. Peripheral current consumption

	la wimba wal		I _{DD} (Typ) ⁽¹⁾		l l=i4
"	eripheral	Scale 1	Scale 2	Scale 3	Unit
	GPIOA	3.16	3.00	2.58	
	GPIOB	2.67	2.62	2.25	
AHB1 (up to 180 MHz)	GPIOC	2.42	2.31	2.10	
	GPIOD	2.22	2.10	1.79	
	GPIOE	2.60	2.48	2.23	
	GPIOF	2.39	2.27	2.08	
	GPIOG	2.27	2.13	1.98	
(up to	GPIOH	2.34	2.20	2.02	
	GPIOI	2.52	2.37	2.17	
	GPIOJ	2.16	2.03	1.86	
	GPIOK	2.20	2.06	1.89	μΑ/MHz
	OTG_HS+ULPI	36.49	33.89	29.90	
	CRC	0.62	0.55	0.50	
	BKPSRAM	0.83	0.74	0.63	
	DMA1 ⁽²⁾	3.3 x N + 6.8	3 x N + 6.3	2.7 x N + 5.5	
	DMA2 ⁽²⁾	3.4 x N + 5.7	3.1 x N + 5.3	2.8 x N + 4.6	
	DMA2D	33.33	30.66	26.98	
	ETH_MAC ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP	22.30	20.69	18.19	
	USB_OTG_FS	34.33	31.96	28.35	
AHB2	DVCMI	3.61	3.35	2.98	
(up to	RNG	1.94	1.82	1.61	μΑ/MHz
180 MHz)	CRYP	2.42	2.24	2.00	
	HASH	4.14	3.80	3.35	
AHB3	QUADSPI	16.83	15.57	13.83	\ /\ 41 !-
(up to 180 MHz)	FMC	17.22	15.92	14.00	μΑ/MHz
В	us matrix ⁽³⁾	12.17	11.19	9.97	μΑ/MHz

Table 33. Peripheral current consumption (continued)

	Peripheral		I _{DD} (Typ) ⁽¹⁾	(**************************************	Unit
	reripheral	Scale 1	Scale 2	Scale 3	- Unit
	TIM2	19.11	17.56	15.33	
	TIM3	15.62	14.22	12.17	
	TIM4	16.22	14.64	12.83	
j	TIM5	18.44	16.72	14.00	
j	TIM6	3.18	2.69	2.17	
	TIM7	3.11	2.56	2.00	
	TIM12	8.67	7.56	6.50	
	TIM13	6.11	5.33	4.43	
ĺ	TIM14	6.44	5.61	4.67	
ĺ	PWR	17.44	15.61	13.53	
1	USART2	5.44	4.64	3.93	
APB1	USART3	5.51	4.72	4.00	
(up to	UART4	5.22	4.64	3.83	µA/MHz
45 MHz)	UART5	5.33	4.64	3.83	
	UART7	5.56	4.78	4.10	
ĺ	UART8	5.24	4.64	3.93	
ĺ	I2C1	4.78	4.08	3.43	
ĺ	I2C2	5.11	4.50	3.73	
	I2C3	4.78	4.08	3.43	
	SPI2/I2S2 ⁽⁴⁾	4.11	3.53	3.00	
	SPI3/I2S3 ⁽⁴⁾	4.33	3.67	3.17	
	CAN1	8.89	7.83	6.87	
	CAN2	7.22	6.44	5.50	
	DAC ⁽⁵⁾	2.89	2.69	2.40	
	WWDG	1.73	1.44	1.00	

Table 33. Peripheral current consumption (continued)

	Peripheral		I _{DD} (Typ) ⁽¹⁾		- Unit
	reripheral	Scale 1	Scale 2	Scale 3	- Unit
	SDIO	7.94	7.18	6.37	
	TIM1	19.44	17.81	15.80	
	TIM8	19.44	17.81	15.80	
	TIM9	8.44	7.60	6.77	
	TIM10	5.67	5.03	4.50	
İ	TIM11	5.72	5.10	4.55	
İ	ADC1 ⁽⁶⁾	5.06	4.54	4.05	
İ	ADC2 ⁽⁶⁾	5.00	4.47	3.97	
APB2	ADC3 ⁽⁶⁾	5.26	4.75	4.17	
(up to	USART1	4.83	4.33	3.83	µA/MHz
90 MHz)	USART6	4.83	4.33	3.83	
İ	SPI1	2.11	1.76	1.60	
	SPI4	2.11	1.69	1.60	
İ	SPI5	2.11	1.76	1.60	
	SPI6	2.11	1.76	1.60	
	SYSCFG	1.72	1.35	1.22	
	LTDC	37.61	34.53	30.60	
	SAI1	3.44	3.01	2.72	
	DSI	32.98	30.32	26.87	

^{1.} When the I/O compensation cell is ON, I_{DD} typical value increases by 0.22 mA.

DMA1/DMA2 current consumption is calculated by the equation. N: is the number of streams enabled, N= [1..8]

^{3.} The BusMatrix is automatically active when at least one master is ON.

^{4.} To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.

When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of 0.8 mA per DAC channel for the analog part.

When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.

5.3.8 Wake-up time from low-power modes

The wake up times given in *Table 34* are measured starting from the wake-up event trigger up to the first instruction executed by the CPU:

- for Stop or Sleep modes the wake-up event is WFE
- WKUP (PA0) pin is used to wake up from Standby, Stop, and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} = 3.3 V.

Table 34. Low-power mode wakeup timings

Symbol	Parameter	Conditions	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
t _{WUSLEEP} (2)	Wakeup from Sleep	-	5	6	CPU clock cycles
(0)		Main regulator is ON	12.9	15.0	
	Wakeup from Stop mode with MR/LP regulator in normal mode	Main regulator is ON and Flash memory in Deep power down mode	105	120	
t _{wustop} (2)		Low power regulator is ON	22	28	
		Low power regulator is ON and Flash memory in Deep power down mode	114	130	μs
(2)	t _{WUSTOP} ⁽²⁾ Wakeup from Stop mode with MR/LP regulator in Under-drive mode	Main regulator in under-drive mode (Flash memory in Deep power-down mode)	107	114	
t _{WUSTOP} ⁽²⁾		Low power regulator in under-drive mode (Flash memory in Deep power-down mode)	115	121	
t _{WUSTDBY} (2)(3)	Wakeup from Standby mode	-	318	371	

^{1.} Based on test during characterization.

^{2.} The wake-up times are measured from the wake-up event to the point in which the application code reads the first

^{3.} $t_{WUSTDBY}$ maximum value is given at -40 °C.

5.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 59*. However, the recommended clock input waveform is shown in *Figure 29*.

The characteristics given in *Table 35* result from tests performed using a high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol **Parameter** Conditions Min Typ Max Unit External user clock source 50 MHz f_{HSE ext} frequency⁽¹⁾ OSC IN input pin high level voltage $0.7V_{DD}$ $V_{DD} \\$ V_{HSEH} V OSC IN input pin low level voltage $0.3V_{DD}$ V_{HSEL} V_{SS} tw(HSE) OSC IN high or low time⁽¹⁾ 5 t_{w(HSE)} ns t_{r(HSE)} OSC IN rise or fall time(1) 10 t_{f(HSE)} OSC_IN input capacitance⁽¹⁾ $C_{in(HSE)}$ 5 pF DuCy_(HSE) Duty cycle 45 55 % OSC IN Input leakage current $V_{SS} \le V_{IN} \le V_{DD}$ μΑ

Table 35. High-speed external user clock characteristics

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 59: I/O static characteristics*. However, the recommended clock input waveform is shown in *Figure 30*.

The characteristics given in *Table 36* result from tests performed using a low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 17*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V_{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V_{DD}	V
V_{LSEL}	OSC32_IN input pin low level voltage		V _{SS}	-	0.3V _{DD}	v
$\begin{matrix} t_{w(LSE)} \\ t_{f(LSE)} \end{matrix}$	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ns
$t_{r(LSE)} \ t_{f(LSE)}$	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115

Table 36. Low-speed external user clock characteristics

^{1.} Guaranteed by design.

	iable col zon opeca oxioinal acc	· Olook ollaraok	<i>y</i>	011111111111111111111111111111111111111	•,	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
ΙL	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 36. Low-speed external user clock characteristics (continued)

^{1.} Guaranteed by design.

Figure 29. High-speed external clock source AC timing diagram

VLSEH 10% **VLSEL** tW(LSE) tr(LSE) tf(LSE) ·tW(LSE) TLSE fLSE_ext External OSC32_IN clock source STM32F ai17529

Figure 30. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results obtained with typical external components specified in Table 37. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins tortion and startup stabilization time. Refer to the crystal resonator

DS11118 Rev 8 115/225

manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	-	26	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
	HSE current consumption	V_{DD} =3.3 V, ESR= 30 Ω , C_L =5 pF@25 MHz	-	450	50 -	μA
I _{DD}	TISE current consumption	V_{DD} =3.3 V, ESR= 30 Ω , C_L =10 pF@25 MHz	-	530	-	μΑ
ACC _{HSE} ⁽²⁾	HSE accuracy	-	- 500	-	500	ppm
G _m _crit_max	Maximum critical crystal g _m	Startup	-	-	1	mA/V
t _{SU(HSE)} (3)	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 37. HSE 4-26 MHz oscillator characteristics (1)

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 31*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance, which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from www.st.com.

Figure 31. Typical application with an 8 MHz crystal

1. R_{FXT} value depends on the crystal characteristics.

4

^{1.} Guaranteed by design.

^{2.} This parameter depends on the crystal used in the application. The minimum and maximum values must be respected to comply with USB standard specifications.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results obtained with typical external components specified in *Table 38*.

In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

		\ LUL				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R_{F}	Feedback resistor	-	-	18.4	-	МΩ
-	I _{DD} LSE current consumption	Low power mode ⁽²⁾	-	-	1	^
'DD		High drive mode ⁽²⁾	-	-	3	μA
ACC _{LSE} ⁽³⁾	LSE accuracy	-	- 500	-	500	ppm
C orit may	Maximum critical arvetal a	Low power mode ⁽²⁾	-	-	0.56	μΑ/V
G _{m_} crit_max	Maximum critical crystal g _m	High drive mode ⁽²⁾	-	-	1.5	μΑνν
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	s

Table 38. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾

- 2. LSE mode cannot be changed "on the fly" otherwise, a glitch can be generated on OSCIN pin.
- 3. This parameter depends on the crystal used in the application. Refer to application note AN2867.
- 4. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from www.st.com.

Resonator with integrated capacitors

CL1

OSC32

RF

STM32F

ai17531

Figure 32. Typical application with a 32.768 kHz crystal

^{1.} Guaranteed by design.

5.3.10 Internal clock source characteristics

The parameters given in *Table 39* and *Table 40* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

High-speed internal (HSI) RC oscillator

Table 39. HSI oscillator characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user trimming step ⁽²⁾	-	-	-	1	%
۸۵۵		$T_A = -40 \text{ to } 105 ^{\circ}\text{C}^{(3)}$	- 8	-	4.5	%
ACC _{HSI}	HSI oscillator accuracy	$T_A = -10 \text{ to } 85 ^{\circ}\text{C}^{(3)}$	- 4	-	4	%
		T _A = 25 °C ⁽⁴⁾	- 1	-	16 - N - 1 - 4.5 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μΑ

- 1. V_{DD} = 3.3 V, PLL OFF, T_A = -40 to 125 °C unless otherwise specified.
- 2. Guaranteed by design.
- 3. Based on test during characterization.
- 4. Factory calibrated, parts not soldered.

Figure 33. ACCHSI vs. temperature

6
4
2
4
4
4
4
5
5
5
85
105
125
TA (°C)

MSv41055V1

1. Based on test during characterization.

Low-speed internal (LSI) RC oscillator

Table 40. LSI oscillator characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} (3)	Startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	Power consumption	-	0.4	0.6	μA

- 1. V_{DD} = 3 V, T_A = -40 to 105°C unless otherwise specified.
- 2. Based on test during characterization.
- 3. Guaranteed by design.

Figure 34. ACC_{LSI} versus temperature

The state of the

5.3.11 PLL characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 41. Main PLL characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10	
f _{PLL_OUT}	PLL multiplier output clock	-	24	-	180	MHz
f _{PLL48_OUT}	48 MHz PLL multiplier output clock	-	-	48	75	IVII IZ
f _{VCO_OUT}	PLL VCO output	-	192	-	432	

Table 41. Main PLL characteristics (continued)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Unit
+	PLL lock time	VCO frequency = 192 MHz		75	-	200	116
t _{LOCK}	PLL IOCK UITIE	VCO frequency	= 432 MHz	100	-	300	μs
	Cycle-to-cycle jitter		RMS	-	25	-	
	Cycle-to-cycle jittel	System clock	peak to peak	-	±150	-	
	Period jitter	120 MHz	RMS	-	15	-	
	Penou jiitei		peak to peak	-	±200	-	
Jitter ⁽³⁾	Main clock output (MCO) for RMII Ethernet	Cycle to cycle a 1000 samples	-	32	-	ps	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle a 1000 samples	-	40	-		
	Bit time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples				-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on V _{DD}	VCO frequency = 192 MHz VCO frequency = 432 MHz		0.15 0.45	-	0.40 0.75	A
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on V _{DDA}	VCO frequency VCO frequency		0.30 0.55	-	0.40 0.85	mA

Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

Table 42. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Condition	s	Min	Тур	Max	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-		0.95 ⁽²⁾	1	2.10	
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-		192	-	432	
t _{LOCK}	PLLI2S lock time	VCO frequency = 192 M	1Hz	75	-	200	μs
	T LLIZO IOOK UITIC	VCO frequency = 432 M	VCO frequency = 432 MHz		-	300	μο
		Cycle to cycle at	RMS	-	90	-	-
	Master I2S alook iitter	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	ı	ps
Jitter ⁽³⁾	Master I2S clock jitter	Average frequency of 12 N=432, R=5 on 1000 samples	2.288 MHz,	-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples	<u>Z</u>	-	400	-	ps

^{2.} Guaranteed by design.

^{3.} The use of two PLLs in parallel can degrade the jitter up to +30%.

^{4.} Based on test during characterization.

Table 42. FELIZO (audio FEL) characteristics (continued	(audio PLL) characteristics (continued)
---	---

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DD}	VCO frequency = 192 MHz VCO frequency = 432 MHz	0.15 0.45	-	0.40 0.75	- mA
I _{DDA(PLLI2S)} (4)	PLLI2S power consumption on V _{DDA}	VCO frequency = 192 MHz VCO frequency = 432 MHz	0.30 0.55	1	0.40 0.85	IIIA

- 1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
- 2. Guaranteed by design.
- 3. Value given with main PLL running.
- 4. Based on test during characterization.

Table 43. PLLSAI (audio and LCD-TFT PLL) characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLLSAI_IN}	PLLSAI input clock ⁽¹⁾	-	-		1	2.10	
f _{PLLSAI_OUT}	PLLSAI multiplier output clock	-		-	-	216	MHz
f _{VCO_OUT}	PLLSAI VCO output	-		192	-	432	
+	PLLSAI lock time	VCO frequency = 19	2 MHz	75	-	200	ше
t _{LOCK}	PLESALIOCK UITIE	VCO frequency = 43	2 MHz	100	-	300	μs
		Cycle to cycle at	RMS	-	90	-	
Jitter ⁽³⁾	Main SAI clock jitter	48 KHz period,	peak to peak	-	±280	-	ps
	Main SAI GOCK Julei	Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples	f	-	90	-	ps
	FS clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V_{DD}	VCO frequency = 192 MHz VCO frequency = 432 MHz		0.15 0.45	-	0.40 0.75	- mA
I _{DDA(PLLSAI)} ⁽⁴⁾	PLLSAI power consumption on V _{DDA}	VCO frequency = 19. VCO frequency = 43.		0.30 0.55	-	0.40 0.85	IIIA

- 1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
- 2. Guaranteed by design.
- 3. Value given with main PLL running.
- 4. Based on test during characterization.

5.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 54*). It is available only on the main PLL.

Table 44. SSCG parameters constraint

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	·	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ - 1	-

^{1.} Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

$$\texttt{MODEPER} = \mathsf{round}[\mathsf{f}_{\mathsf{PLL}\ \mathsf{IN}} /\ (4 \times \mathsf{f}_{\mathsf{Mod}})]$$

 $f_{PLL\ IN}$ and f_{Mod} must be expressed in Hz.

As an example:

If f_{PLL_IN} = 1 MHz, and f_{MOD} = 1 kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round[
$$10^6 / (4 \times 10^3)$$
] = 250

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN) / (100 \times 5 \times MODEPER)$$
]

 $f_{\mbox{\scriptsize VCO}}$ $_{\mbox{\scriptsize OUT}}$ must be expressed in MHz.

With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[
$$((2^{15} - 1) \times 2 \times 240) / (100 \times 5 \times 250)$$
] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}\% \,=\, (MODEPER \times INCSTEP \times \, 100 \times \, 5)/\ \, ((2^{15}-1) \times PLLN)$$

As a result:

$$md_{quantized}\% = (250 \times 126 \times 100 \times 5) / ((2^{15} - 1) \times 240) = 2.002\%$$
(peak)

Figure 35 and *Figure 36* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.

 T_{mode} is the modulation period.

md is the modulation depth.

Figure 35. PLL output clock waveforms in center spread mode

Figure 36. PLL output clock waveforms in down spread mode

5.3.13 MIPI D-PHY characteristics

The parameters given in *Table 45* and *Table 46* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 45. MIPI D-PHY characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Hi-Speed Inpu	ut/Output character	istics			
U _{INST}	UI instantaneous	-	2	-	12.5	ns

Table 45. MIPI D-PHY characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{CMTX}	HS transmit common mode voltage	-	150	200	250			
ΔV _{CMTX}	V _{CMTX} mismatch when output is Differential-1 or Differential-0	-	-	-	5			
V _{OD}	HS transmit differential voltage	-	140	200	270	mV		
ΔV _{OD}	V _{OD} mismatch when output is Differential-1 or Differential-0	-	-	-	14			
V _{OHHS}	HS output high voltage	-	-	-	360			
Z _{OS}	Single ended output impedance	-	40	50	62.5	Ω		
ΔZ _{OS}	Single ended output impedance mismatch	-	-	-	10	%		
t _{HSr} & t _{HSf}	20% - 80% rise and fall time	-	100	-	0.35*UI	ps		
LP receiver input characteristics								
V _{IL}	Logic 0 input voltage (not in ULP State)	-	-	-	550			
V _{IL-ULPS}	Logic 0 input voltage in ULP State	-	-	-	300	mV		
V _{IH}	Input high level voltage	-	880	-	-			
V _{hys}	Voltage hysteresis	-	25	-	-			
	LP emitter	output characteristi	ics					
V_{IL}	Output low level voltage	-	1.1	1.2	1.2	V		
V _{IL-ULPS}	Output high level voltage	-	-50	-	50	mV		
V _{IH}	Output impedance of LP transmitter	-	110	-	-	Ω		
V _{hys}	15%-85% rise and fall time	-	-	-	25	ns		
	LP contention	detector character	ristics					
V _{ILCD}	Logic 0 contention threshold	-	-	-	200	mV		
V _{IHCD}	Logic 0 contention threshold	-	450	-	-	IIIV		

^{1.} Guaranteed based on test during characterization.

Table 46. MIPI D-PHY AC characteristics LP mode and HS/LP transitions⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{LPX}	Transmitted length of any Low- Power state period	-	50	-	-	
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	38	-	95	ns
T _{CLK-PREPARE} + T _{CLK-ZERO}	Time that the transmitter drives the HS-0 state prior to starting the clock.	-	300	-	-	
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	-	8	-	-	UI
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode.	-	62+52*UI	-	-	
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of an HS transmission burst.	-	60	-	-	
T _{HS-PREPARE}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	-	40+4*UI	-	85+6*UI	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE+} Time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	-	145+10*UI	-	-	ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst.	-	Max (n*8*UI, 60+n*4*UI)	-	-	
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	-	100	-	-	
T _{REOT}	30% - 85% rise time and fall time	-	-	-	35	
T _{EOT}	Transmitted time interval from the start of T _{HS-TRAIL} or T _{CLK-TRAIL} , to the start of the LP-11 state following a HS burst.	-	-	-	105+ n*12UI	

^{1.} Guaranteed based on test during characterization.

DS11118 Rev 8 125/225

Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram

5.3.14 MIPI D-PHY PLL characteristics

The parameters given in *Table 47* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

	Table 41. Dol 1	LE characteristics				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock	-	4	-	100	
f _{PLL_INFIN}	PFD input clock	-	4	-	25	MHz
f _{PLL_OUT}	PLL multiplier output clock	-	31.25	-	500	IVII IZ
f _{VCO_OUT}	PLL VCO output	-	500	-	1000	
t _{LOCK}	PLL lock time	-	-	-	200	μs

Table 47, DSI-PLL characteristics⁽¹⁾

	10.010 1112011 == 011	(00110				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		f _{VCO_OUT} = 500 MHz	-	0.55	0.70	
I _{DD(PLL)}	PLL power consumption on V _{DD12}	f _{VCO_OUT} = 600 MHz	-	0.65	0.80	mA
		f _{VCO_OUT} = 1000 MHz	-	0.95	1.20	

Table 47. DSI-PLL characteristics⁽¹⁾ (continued)

5.3.15 MIPI D-PHY regulator characteristics

The parameters given in *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 48. DSI regulator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD12DSI}	1.2 V internal voltage on V _{DD12DSI}	-	1.15	1.20	1.30	V
C _{EXT}	External capacitor on V _{CAPDSI}	-	1.1	2.2	3.3	μF
ESR	External Serial Resistor	-	0	25	600	mΩ
I _{DDDSIREG}	Regulator power consumption	-	100	120	125	μA
	DSI system (regulator, PLL and	Ultra Low Power Mode (Reg. ON + PLL OFF)	-	290	600	μA
ESR	D-PHY) current consumption on V _{DDDSI}	Stop State (Reg. ON + PLL OFF)	-	290	600	μΑ
I _{DDDSILP}	DSI system current consumption on	10 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	- mA
	V _{DDDSI} in LP mode communication ⁽²⁾	20 MHz escape clock (Reg. ON + PLL OFF)	-	4.3	5.0	
		300 Mbps - 1 data lane (Reg. ON + PLL ON)	-	8.0	8.8	
	DSI system (regulator, PLL and	300 Mbps - 2data lane (Reg. ON + PLL ON)	-	11.4	12.5	
I _{DDDSIHS}	D-PHY) current consumption on V _{DDDSI} in HS mode communication ⁽³⁾	500 Mbps - 1 data lane (Reg. ON + PLL ON)	-	13.5	14.7	mA
		500 Mbps - 2data lane (Reg. ON + PLL ON)	-	18.0	19.6	
	DSI system (regulator, PLL and D-PHY) current consumption on V _{DDDSI} in HS mode with CLK like payload	500 Mbps - 2data lane (Reg. ON + PLL ON)	-	21.4	23.3	
+	Startup delay	C _{EXT} = 2.2 μF	-	110	-	116
t _{WAKEUP}	Glai lup delay	C _{EXT} = 3.3 μF	-	1.20 1.30 2.2 3.3 25 600 120 125 290 600 290 600 4.3 5.0 8.0 8.8 11.4 12.5 13.5 14.7 18.0 19.6 21.4 23.3	μs	
I _{INRUSH}	Inrush current on V _{DDDSI}	External capacitor load at start	-	60	200	mA

^{1.} Based on test during characterization.

^{3.} Values based on an average traffic (3/4 HS traffic & 1/4 LP) in Video Mode.

DS11118 Rev 8 127/225

^{1.} Based on test during characterization.

^{2.} Values based on an average traffic in LP Command Mode.

5.3.16 Memory characteristics

Flash memory

The characteristics are given at TA = -40 to $105^{\circ}C$ unless otherwise specified.

The devices are shipped to customers with the flash memory erased.

Table 49. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD} \$	Supply current	Write / Erase 8-bit mode, V _{DD} = 1.7 V	-	5	-	
		Write / Erase 16-bit mode, V _{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V _{DD} = 3.3 V	-	12	-	

Table 50. Flash memory programming

Tuble of Flash memory programming						
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs
		Program/erase parallelism (PSIZE) = x 8	-	400	800	
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms
		Program/erase parallelism (PSIZE) = x 32	-	250	500	
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400	
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms
		Program/erase parallelism (PSIZE) = x 32	-	550	1100	
	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 8	-	2	4	
terase128KB		Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s
		Program/erase parallelism (PSIZE) = x 32	-	1	2	

Min⁽¹⁾ Max⁽¹⁾ **Symbol Conditions** Тур Unit **Parameter** Program/erase parallelism 16 32 (PSIZE) = x 8Program/erase parallelism Mass erase time 11 22 t_{ME} (PSIZE) = x 16Program/erase parallelism 8 16 (PSIZE) = x 32s Program/erase parallelism 16 32 (PSIZE) = x 8Program/erase parallelism Bank erase time 11 22 t_{BE} (PSIZE) = x 16Program/erase parallelism 8 16 (PSIZE) = x 3232-bit program operation 2.7 3.6

Table 50. Flash memory programming (continued)

Programming voltage

 $\mathsf{V}_{\mathsf{prog}}$

Table 51. Flash memory programming with V_{PP}

16-bit program operation

8-bit program operation

2.1

1.7

3.6

3.6

٧

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	$V_{DD} = 3.3 \text{ V}$	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	1	
t _{ME}	Mass erase time		-	6.9	-	s
t _{BE}	Bank erase time	-	-	6.9	-	s
V_{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the V _{PP} pin	-	10	-	-	mA
t _{VPP} (3)	Cumulative time during which V _{PP} is applied	-	-	-	1	hour

^{1.} Guaranteed by design.

^{1.} Based on test during characterization.

^{2.} The maximum programming time is measured after 100 K erase operations.

^{2.} The maximum programming time is measured after 100K erase operations.

^{3.} V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40 \text{ to } +85 ^{\circ}\text{C} \text{ (6 suffix versions)}$ $T_A = -40 \text{ to } +105 ^{\circ}\text{C} \text{ (7 suffix versions)}$	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 52. Flash memory endurance and data retention

5.3.17 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/Class
V _{FESD}		V_{DD} = 3.3 V, TFBGA216, T_{A} = +25 °C, f_{HCLK} = 168 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}		V_{DD} = 3.3 V, TFBGA216, T_{A} = +25 °C, f_{HCLK} = 168 MHz, conforming to IEC 61000-4-2	4A

Table 53. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore, it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

^{1.} Based on test during characterization.

^{2.} Cycling performed over the whole temperature range.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application, executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2 standard, which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/168 MHz	Unit
		V _{DD} = 3.3 V, T _A = 25 °C, TFBGA216	0.1 to 30 MHz	2	
Pea	Peak ⁽¹⁾	package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks enabled, clock dithering disabled.	30 to 130 MHz	4	dΒμV
			130 MHz to 1GHz	10	
c	Level ⁽²⁾		0.1 MHz to 1 GHz	3	-
S _{EMI}		V _{DD} = 3.3 V, T _A = 25 °C, TFBGA216 package, conforming to SAE J1752/3 EEMBC, ART ON, all peripheral clocks	0.1 to 30 MHz	5	
	Peak ⁽¹⁾		30 to 130 MHz	3	dΒμV
			130 MHz to 1GHz	8	
	Level ⁽²⁾	enabled, clock dithering enabled	0.1 MHz to 1 GHz	2	-

- 1. Refer to AN1709 "EMI radiated test" chapter.
- 2. Refer to AN1709 "EMI level classification" chapter.

Table 55. EMI characteristics for f_{HSE}=8 MHz and f_{CPU}=180 MHz

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit	
			nequency band	8/180 MHz		
		enabled, clock dithering disabled.	0.1 to 30 MHz	2		
	Peak ⁽¹⁾		30 to 130 MHz	1	dΒμV	
			130 MHz to 1GHz	10		
S	Level ⁽²⁾		0.1 MHz to 1 GHz	3	-	
S _{EMI}			0.1 to 30 MHz	-10		
	Peak ⁽¹⁾	V_{DD} = 3.3 V, T_A = 25 °C, TFBGA216 package, conforming to SAE J1752/3	30 to 130 MHz	-15	dΒμV	
		EEMBC, ART ON, all peripheral clocks	130 MHz to 1GHz	0		
	Level ⁽²⁾ enabled, clock dithering enabled		0.1 MHz to 1 GHz	2	-	

^{1.} Refer to AN1709 "EMI radiated test" chapter.

5.3.18 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.

Table 56. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = +25 °C conforming to ANSI/ESDA/JEDEC JS-001		2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C conforming to ANSI/ESD S5.3.1, LQFP176, LQFP208, UFBGA169, UFBGA176, TFBGA216 and WLCSP148 packages	C3	250	•

^{1.} Guaranteed based on test during characterization.

^{2.} Refer to AN1709 "EMI level classification" chapter.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output, and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 57. Electrical sensitivities⁽¹⁾

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II level A

^{1.} MSV on PA4 and PA5 is 5 V, versus 5.4 V on all IOs.

5.3.19 I/O current injection characteristics

Generally, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of - 5 μ A/+0 μ A range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 58.

Table 58. I/O current injection susceptibility

Symbol		Functional s		
	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 and NRST pins	- 0	NA ⁽¹⁾	
I _{INJ}	Injected current on DSIHOST_D0P, DSIHOST_D0N, DSIHOST_D1P, DSIHOST_D0N, DSIHOST_CKP, DSIHOST_CKN pins	- 0	0	mA
	Injected current on PA0 and PC0 pins	- 0	NA ⁽¹⁾	
	Injected current on any other FT pin	- 5	NA ⁽¹⁾	
	Injected current on any other pin	- 5	+ 5	

1. Injection is not possible.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins, which may

potentially inject negative currents.

5.3.20 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Note: For information on GPIO configuration, refer to the application note AN4899 "STM32 GPIO

configuration for hardware settings and low-power consumption" available from

www.st.com.

Table 59. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	FT, TTa and NRST I/O input low	4777			0.35V _{DD} -0.04 ⁽¹⁾		
	level voltage	1.7 V ≤ V _{DD} ≤ 3.6 V	-	-	0.3V _{DD} ⁽²⁾		
V_{IL}	BOOT0 I/O input low level	1.75 V≤V _{DD} ≤3.6 V, -40 °C≤T _A ≤105 °C	-	ı	0.1V _{DD} +0.1 ⁽¹⁾		
	voltage	1.7 V≤ V _{DD} ≤ 3.6 V, 0°C ≤ T _A ≤ 105°C	-	ı	0.1VDD+0.1	V	
V _{IH}	FT, TTa and NRST I/O input	1.7 V ≤ V _{DD} ≤ 3.6 V	0.45V _{DD} +0.3 ⁽¹⁾		_	- V	
	high level voltage ⁽⁵⁾		0.7V _{DD} ⁽²⁾	-	_		
	BOOT0 I/O input high level	1.75 V≤ V _{DD} ≤ 3.6 V, -40 °C ≤ T _A ≤105 °C	- 0.17V _{DD} +0.7 ⁽¹⁾	-			
	voltage	1.7 V≤ V _{DD} ≤ 3.6 V, 0 °C ≤ T _A ≤ 105 °C			-		
	FT, TTa and NRST I/O input hysteresis	1.7 V ≤ V _{DD} ≤ 3.6 V	10%V _{DD} ⁽³⁾	ı	-		
V _{HYS}	BOOT0 I/O input hysteresis	1.75 V≤ V _{DD} ≤ 3.6 V, -40 °C≤ T _A ≤ 105 °C	0.4				٧
	DOCTO ITO IIIput Hysteresis	1.7 V ≤ V _{DD} ≤ 3.6 V, 0 °C≤ T _A ≤105 °C		-			
1	I/O input leakage current (4)	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1		
I _{lkg}	I/O FT input leakage current (5)	V _{IN} = 5 V	-	-	3	μΑ	

Table 59. I/O static characteristics (continued)

Symbol	Parar	neter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID)	V _{IN} = V _{SS}	30	40	50	
	I COIDIUI V	PA10/PB12 (OTG_FS_ID, OTG_HS_ID)		7	10	14	kΩ
R _{PD}	Weak pull- down equivalent resistor ⁽⁷⁾ All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID) PA10/PB12 (OTG_FS_ID, OTG_HS_ID) OTG_HS_ID)	V _{IN} = V _{DD}	30	40	50	, KS2	
		(OTG_FS_ID,		7	10	14	
C _{IO} (8)	I/O pin capacita	nce	-	-	5	-	pF

- 1. Guaranteed by design.
- 2. Tested in production.
- 3. With a minimum of 200 mV.
- 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, refer to Table 58
- To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 58
- 6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10%).
- Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10%).
- 8. Hysteresis voltage between Schmitt trigger switching levels. Based on test during characterization.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in *Figure 39*.

Figure 39. FT I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14, PC15, and PI8, which can sink or source up to ± 3 mA. When using the PC13 to PC15 and PI8 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins, which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ∑I_{VDD} (see *Table 15*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ∑I_{VSS} (see *Table 15*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 60* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*. All I/Os are CMOS and TTL compliant.

Table 60. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$I_{IO} = +8 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} - 0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$I_{IO} = + 8mA$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	2.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3 ⁽⁴⁾	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	V _{DD} -1.3 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4 ⁽⁴⁾	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	V _{DD} -0.4 ⁽⁴⁾	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	I _{IO} = +4 mA	-	0.4 ⁽⁵⁾	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1.7 V ≤ V _{DD} ≤ 3.6V	V _{DD} -0.4 ⁽⁵⁾	ı	

^{1.} The $I_{\rm IO}$ current sunk by the device must always respect the absolute maximum rating specified in *Table 15*. and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VSS}$.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 40* and *Table 61*, respectively.

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} The $I_{\rm IO}$ current sourced by the device must always respect the absolute maximum rating specified in *Table 15* and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VDD}$.

^{4.} Based on characterization data.

^{5.} Guaranteed by design.

Table 61. I/O AC characteristics⁽¹⁾⁽²⁾

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
00			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4	
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	ı	ı	2	
	$f_{max(IO)out}$	Maximum frequency ⁽³⁾	$C_L = 10 \text{ pF, } V_{DD} \ge 2.7 \text{ V}$	ı	ı	8	MHz
			$C_L = 10 \text{ pF, } V_{DD} \ge 1.8 \text{ V}$	ı	ı	4	
			$C_L = 10 \text{ pF, } V_{DD} \ge 1.7 \text{ V}$	ı	ı	3	
	$t_{f(IO)out}/\ t_{r(IO)out}$	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.7 V to 3.6 V	1	-	100	ns
			C _L = 50 pF, V _{DD} ≥ 2.7 V	-	-	25	
	f _{max(IO)} out	Maximum frequency ⁽³⁾	C _L = 50 pF, V _{DD} ≥ 1.8 V	-	-	12.5	- MHz
			C _L = 50 pF, V _{DD} ≥ 1.7 V	1	-	10	
			$C_L = 10 \text{ pF, } V_{DD} \ge 2.7 \text{ V}$	i	-	50	
01			C _L = 10 pF, V _{DD} ≥ 1.8 V	ı	-	20	
01			C _L = 10 pF, V _{DD} ≥ 1.7 V	ı	-	12.5	
			$C_L = 50 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	10	- ns
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	$C_L = 10 \text{ pF, } V_{DD} \ge 2.7 \text{ V}$	1	-	6	
			$C_L = 50 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	ı	ı	20	
			$C_L = 10 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	ı	i	10	
			$C_L = 40 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	ı	-	50 ⁽⁴⁾	
			$C_L = 10 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
	$f_{\text{max(IO)out}}$	Maximum frequency ⁽³⁾	$C_L = 40 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	ı	ı	25	MHz
			C _L = 10 pF, V _{DD} ≥ 1.8 V	1	-	50	
10			C _L = 10 pF, V _{DD} ≥ 1.7 V	ı	ı	42.5	
			C _L = 40 pF, V _{DD} ≥2.7 V	ı	ı	6	
	t _{f(IO)out} /	Output high to low level fall time and output low to high	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	4	1
	t _{r(IO)out}	level rise time	C _L = 40 pF, V _{DD} ≥ 1.7 V	-	-	10	ns
			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	6	

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	100 ⁽⁴⁾	
			$C_L = 30 \text{ pF}, V_{DD} \ge 1.8 \text{ V}$	-	-	50	
	f .	Maximum frequency ⁽³⁾	$C_L = 30 \text{ pF}, V_{DD} \ge 1.7 \text{ V}$	-	-	42.5	MHz
	† _{max(IO)out}	maximum frequency.	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	180 ⁽⁴⁾	- MHZ
			C _L = 10 pF, V _{DD} ≥ 1.8 V	-	-	100	
11			C _L = 10 pF, V _{DD} ≥ 1.7 V	-	-	72.5	
11		Output high to low level fall	$C_L = 30 \text{ pF}, V_{DD} \ge 2.7 \text{ V}$	-	-	4	- ns
			C _L = 30 pF, V _{DD} ≥1.8 V	-	-	6	
	t _{f(IO)out} /		C _L = 30 pF, V _{DD} ≥1.7 V	-	-	7	
	t _{r(IO)out}	time and output low to high level rise time	C _L = 10 pF, V _{DD} ≥ 2.7 V	-	-	2.5	
			C _L = 10 pF, V _{DD} ≥1.8 V	-	-	3.5	
			C _L = 10 pF, V _{DD} ≥1.7 V	-	-	4	
-	tEXTIpw	Pulse width of external signals detected by the EXTI controller	-	10	-	-	ns

Table 61. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

- The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
- 3. The maximum frequency is defined in *Figure 40*.
- 4. For maximum frequencies above 50 MHz and V_{DD} > 2.4 V, the compensation cell should be used.

Figure 40. I/O AC characteristics definition

^{1.} Guaranteed by design.

5.3.21 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPII (see Table 59).

Unless otherwise specified, the parameters given in *Table 62* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	113
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 62. NRST pin characteristics

2. Guaranteed by design.

Figure 41. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in Table 59. Otherwise, the reset is not taken into account by the device.

DS11118 Rev 8 140/225

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10%).

5.3.22 TIM timer characteristics

The parameters given in *Table 63* are guaranteed by design. Refer to *Section 5.3.20* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
t _{res(TIM)}	Timer resolution time	AHB/APBx prescaler = 1 or 2 or 4, f _{TIMxCLK} = 180 MHz	1	-	t _{TIMxCLK}
		AHB/APBx prescaler > 4, f _{TIMxCLK} = 90 MHz	1	-	t _{TIMxCLK}
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 180 MHz	0	f _{TIMxCLK} /2	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}

Table 63. TIMx characteristics⁽¹⁾⁽²⁾

5.3.23 Communications interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): bit rate up to 100 Kbit/s
- Fast-mode (Fm): bit rate up to 400 Kbit/s.

The I²C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to RM0386 reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Refer to Section 5.3.20 for more details on the I²C I/O characteristics.

All I²C SDA and SCL I/Os embed an analog filter, whose characteristics are detailed in *Table 64*.

Symbol	Parameter	Min	Max	Unit
	Maximum pulse width of spikes suppressed by the analog filter	50 ⁽²⁾	150 ⁽³⁾	ns

Table 64. I2C analog filter characteristics⁽¹⁾

1. Guaranteed based on test during characterization.

DS11118 Rev 8 141/225

^{1.} TIMx is used as a general term to refer to the TIM1 to TIM12 timers.

^{2.} Guaranteed by design.

^{3.} The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.

- 2. Spikes with widths below $t_{AF(min)}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 65* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency, and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- output speed set to OSPEEDRy[1:0] = 10
- capacitive load C = 30 pF
- measurement points at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 65. SPI dynamic characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max ⁽²⁾	Unit
f _{SCK} 1/t _{c(SCK)}		Master mode, 2.7 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6,	-	-	45	
		Master mode, 1.71 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6	-	-	22.5	
		Master transmitter mode, 1.7 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6	-	-	45	
	SPI clock frequency	Slave full duplex mode, 2.7 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6	-	-	45	MHz
		Slave transmitter mode, 1.71 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6	-	-	33	
		Slave transmitter mode, 2.7 V \leq V _{DD} \leq 3.6 V, SPI1,4,5,6	-	-	45	
		Slave mode, 1.71 V \leq V _{DD} \leq 3.6 V, SPI2,3	-	-	22.5	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%

Table 65. SPI dynamic characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max ⁽²⁾	Unit
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, SPI presc = 2	T _{PCLK} -1.5	T _{PCLK}	T _{PCLK} +1.5	
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4 T _{PCLK}			
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2 T _{PCLK}	-	_	
t _{su(MI)}	Data input setup time	Master mode	2	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	-	
t _{h(SI)}	Data input hold time	Slave mode	2	-	-	
t _{a(SO})	Data output access time	Slave mode, SPI presc = 2	7	-	21	ns
t _{dis(SO)}	Data output disable time	Slave mode	5	-	12	
+	Data output valid time	Slave mode, $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	11	15	
t _{v(SO)}	Data output valid time	Slave mode, 1.71 V \leq V _{DD} \leq 3.6 V	-	11	11.5	
t _{h(SO)}	Data output hold time	Slave mode	6	-	-	
t _{v(MO)}	Data output valid time	Master mode	-	4.5	5	
t _{h(MO)}	Data output hold time	Master mode	2	-	-	

^{1.} Guaranteed based on test during characterization.

^{2.} Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$, which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

NSS input -t_{c(SCK)}--t_{h(NSS)}- $-t_{su(NSS)}$ $-t_{w(SCKH)}$ CPHA=0 SCK input CPOL=0 CPHA=0 CPOL=1 -t_{a(SO)}--t_{dis(SO)}-MISO output First bit OUT Next bits OUT Last bit OUT -t_{h(SI)}-MOSI input First bit IN Next bits IN Last bit IN MSv41658V2

Figure 42. SPI timing diagram - slave mode and CPHA = 0

Figure 44. SPI timing diagram - master mode

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 66* for the I^2S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency, and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- output speed set to OSPEEDRy[1:0] = 10
- capacitive load C = 30 pF
- measurement points at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 66. I²S dynamic characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S main clock output	-	256x8K	256xFs ⁽²⁾	
f	I2S clock frequency	Master data	-	64xFs	MHz
f _{CK}	123 Clock frequency	Slave data	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	5	
t _{h(WS)}	WS hold time	Master mode	0	-	
		Slave mode	3.5	-	
t _{su(WS)}	WS setup time	Slave mode PCM short pulse mode ⁽³⁾	3.5	-	
	WS hold time	Slave mode	0.5	-	
t _{h(WS)}		Slave mode PCM short pulse mode ⁽³⁾	1	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	5	-	ns
t _{su(SD_SR)}	Data input setup time	Slave receiver	1.5	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	5	-	
t _{h(SD_SR)}	Data iliput fiolu tilile	Slave receiver	1.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	19	
t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	2.50	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5	-	
t _{h(SD_MT)}	Data output noid time	Master transmitter (after enable edge)	0	-	

- 1. Guaranteed based on test during characterization.
- 2. 128xFs maximum is 24.756 MHz (APB1 Maximum frequency).
- 3. Measurement done with respect to I2S_CK rising edge.

Note: Refer to the I2S section of RM0386 reference manual for more details on the sampling frequency (F_S) .

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior, source clock precision might slightly change the values. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital

contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Figure 45. I²S slave timing diagram (Philips protocol)⁽¹⁾

.LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 46. I²S master timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5/

SAI characteristics

Unless otherwise specified, the parameters given in *Table 67* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency, and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- output speed set to OSPEEDRy[1:0] = 10
- capacitive load C=30 pF
- measurement points at CMOS levels: 0.5 V_{DD}

Refer to *Section 5.3.20* for more details on the input/output alternate function characteristics (SCK, SD, WS).

Table 67. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCKL}	SAI main clock output	-	256 x 8K	256xFs	
f	SAI clock frequency ⁽²⁾	Master data: 32 bits	-	128xFs ⁽³⁾	MHz
f _{CK}	SAI Clock frequency.	Slave data: 32 bits	-	128xFs	
		Master mode, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	17	
t _{v(FS)}	FS valid time	Master mode, 1.71 V ≤ V _{DD} ≤ 3.6 V	-	23	
t _{su(FS)}	FS setup time	Slave mode	10	-	
t _{h(FS)}	FS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	1	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)}	Data input hold time	Master receiver	6	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	1	-	ns
t		Slave transmitter (after enable edge), $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	14	
th(SD_B_ST)	Data output valid time	Slave transmitter (after enable edge), $1.71 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	-	23	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	9	-	
	Data output valid time	Master transmitter (after enable edge), $2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	-	20	
t _{v(SD_A_MT)}	Data output valid time	Master transmitter (after enable edge), 1.71 V \leq V _{DD} \leq 3.6 V	-	26	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	10	-	

- 1. Guaranteed based on test during characterization.
- 2. APB clock frequency must be at least twice SAI clock frequency.
- 3. With Fs = 192 kHz.

Figure 47. SAI master timing waveforms

USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Table 68. USB OTG full speed startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	USB OTG full speed transceiver startup time	1	μs

^{1.} Guaranteed by design.

Table 69. USB OTG full speed DC electrical characteristics

Symbol		Parameter	Conditions	Min. ⁽¹⁾	Тур.	Max. ⁽¹⁾	Unit
V _{DD}		USB OTG full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	
Input levels	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	V _{SE} ⁽³⁾ Single ended receiver threshold -		1.3	-	2.0		
Output	V _{OL}	Static output level low	R_L of 1.5 k Ω to 3.6 $V^{(4)}$	-	-	0.3	1
levels	V _{OH}	Static output level high	R_L of 15 kΩ to $V_{SS}^{(4)}$	2.8	-	3.6	
D		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	$V_{IN} = V_{DD}$	17	21	24	
R _{PD}		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	$V_{IN} = V_{SS}$ 1.5		1.8	2.1	
R _{PU}		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

^{1.} All the voltages are measured from the local ground potential.

Note:

When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μ A current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics, which are degraded in the 2.7 to 3.0 V V_{DD} voltage range.

^{3.} Guaranteed by design.

^{4.} R_I is the load connected on the USB OTG full speed drivers.

Figure 49. USB OTG full speed timings: definition of data signal rise and fall time

Table 70. USB OTG full speed electrical characteristics⁽¹⁾

Driver characteristics							
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ne		
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r / t _f	90	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V		
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω		

^{1.} Guaranteed by design.

USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in *Table 73* for ULPI are derived from tests performed under the ambient temperature, f_{HCLK} frequency summarized in *Table 72* and V_{DD} supply voltage conditions summarized in *Table 71*, with the following configuration:

- output speed set to OSPEEDRy[1:0] = 11, unless otherwise specified
- capacitive load C = 20 pF / 15 pF, unless otherwise specified
- measurement points at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 71. USB HS DC electrical characteristics

Symb	ool	Parameter	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input level	V_{DD}	USB OTG HS operating voltage	1.7	3.6	V

1. All the voltages are measured from the local ground potential.

Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

Table 72. USB HS clock timing parameters⁽¹⁾

Symbol	Parameter		Min	Тур	Max	Unit	
-	f _{HCLK} value to guarantee proper operation of USB HS interface		30	-	-		
F _{START_8BIT}	Frequency (first transition)	8-bit ±10%	54	60	66	MHz	
F _{STEADY}	Frequency (steady state) ±500	ppm	59.97	60	60.03		
D _{START_8BIT}	Duty cycle (first transition)	8-bit ±10%	40	50	60	%	
D _{STEADY}	Duty cycle (steady state) ±500 ppm		49.975	50	50.025	70	
t _{STEADY}	Time to reach the steady state frequency and duty cycle after the first transition		-	-	1.4	ms	
t _{START_DEV}	Clock startup time after the	Peripheral	-	-	5.6	mo	
t _{START_HOST}	de-assertion of SuspendM	Host	-	-	-	ms	
t _{PREP}	PHY preparation time after the of the input clock	first transition	-	-	-	μs	

^{1.} Guaranteed by design.

Figure 50. ULPI timing diagram

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{SC}	Control in (ULPI_DIR, ULPI_NXT) setup time	-	2.0	-	-	
t _{HC}	Control in (ULPI_DIR, ULPI_NXT) hold time	-	1.5	-	-	
t _{SD}	Data in setup time	-	1.0	-	-	
t _{HD}	Data in hold time	-	1.0	-	-	
		$2.7 \text{ V} < \text{V}_{DD} < 3.6 \text{ V},$ $C_L = 20 \text{ pF}$	-	7.5	9.0	ns
t _{DC} /t _{DD}	Data/control output delay	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V},$ $\text{C}_{\text{L}} = 15 \text{ pF and}$ $-40 < \text{T} < 125^{\circ}\text{C}$	-	7.5	12.0	
		1.7 V < V _{DD} < 3.6 V, C _L = 15 pF and -40 < T < 90°C	-	7.5	11.5	

Table 73. Dynamic characteristics: USB ULPI⁽¹⁾

Ethernet characteristics

Unless otherwise specified, the parameters given in *Table 74*, *Table 75* and *Table 76* for SMI, RMII and MII are derived from tests performed under the ambient temperature, f_{HCLK} frequency, and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}.

Refer to Section 5.3.20 for more details on the input/output characteristics.

Table 74 gives the list of Ethernet MAC signals for the SMI (station management interface) and *Figure 51* shows the corresponding timing diagram.

Figure 51. Ethernet SMI timing diagram

^{1.} Guaranteed based on test during characterization.

Symbol	Parameter	Min	Тур	Max	Unit
t _{MDC}	MDC cycle time(2.38 MHz)	400	400	403	
T _{d(MDIO)}	Write data valid time	T _{HCLK} - 1	T _{HCLK}	T _{HCLK} + 1.5	ns
t _{su(MDIO)}	Read data setup time	12.5	-	-	113
t _{h(MDIO)}	Read data hold time	0	-	-	

^{1.} Guaranteed based on test during characterization.

Table 75 gives the list of Ethernet MAC signals for the RMII and *Figure 52* shows the corresponding timing diagram.

Figure 52. Ethernet RMII timing diagram

Table 13. Dynamics characteristics. Ethernet MAO signals for Nimit								
Symbol	Parameter	Min	Тур	Max	Unit			
t _{su(RXD)}	Receive data setup time	2.5	-	-				
t _{ih(RXD)}	Receive data hold time	2.0	-	-				
t _{su(CRS)}	Carrier sense setup time	0.5	-	-	ne			
t _{ih(CRS)}	Carrier sense hold time	1.5	-	-	ns			
t _{d(TXEN)}	Transmit enable valid delay time	5.5	6.5	11				
t _{d/TVD})	Transmit data valid delay time	6.0	6.5	11	1			

Table 75. Dynamics characteristics: Ethernet MAC signals for RMII⁽¹⁾

Table 76 gives the list of Ethernet MAC signals for MII and Figure 52 shows the corresponding timing diagram.

Figure 53. Ethernet MII timing diagram

Table 76. Dynamics characteristics: Ethernet MAC signals for MII⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit	
--------	-----------	-----	-----	-----	------	--

^{1.} Guaranteed based on test during characterization.

	• • • • • • • • • • • • • • • • • • • •		- 5		
t _{su(RXD)}	Receive data setup time	1	-	-	
t _{ih(RXD)}	Receive data hold time	3	-	-	
t _{su(DV)}	Data valid setup time	0	-	-	
t _{ih(DV)}	Data valid hold time	2.5	-	-	ne
t _{su(ER)}	Error setup time	0	-	-	ns
t _{ih(ER)}	Error hold time	2	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	0	7	13	
t _{d(TXD)}	Transmit data valid delay time	0	7	13	

Table 76. Dynamics characteristics: Ethernet MAC signals for MII⁽¹⁾

CAN (controller area network) interface

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

5.3.24 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 77* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*.

Symbol Parameter Conditions Min Max Unit Тур $1.7^{(1)}$ Power supply 3.6 V_{DDA} Positive reference voltage $1.7^{(1)}$ ٧ $V_{DDA} - V_{REF+} < 1.2 V$ - V_{REF+} V_{DDA} V_{REF-} Negative reference voltage 0 $V_{DDA} = \overline{1.7^{(1)} \text{ to } 2.4 \text{ V}}$ 0.6 15 18 ADC clock frequency MHz f_{ADC} $V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}$ 0.6 30 36 $f_{ADC} = 30 \text{ MHz},$ 1764 kHz 12-bit resolution $f_{TRIG}^{(2)}$ External trigger frequency 1/f_{ADC} 17 0 Conversion voltage range⁽³⁾ ٧ V_{AIN} (V_{SSA} or V_{REF-} V_{REF+} tied to ground) $R_{AIN}^{(2)}$ External input impedance Details in Equation 1 50 kΩ R_{ADC}⁽²⁾⁽⁴⁾ Sampling switch resistance kΩ Internal sample and hold $C_{ADC}^{(2)}$ 4 7 рF capacitor $f_{ADC} = 30 \text{ MHz}$ 0.100 μs Injection trigger conversion $t_{lat}^{(2)}$ latency $3^{(5)}$ 1/f_{ADC}

Table 77. ADC characteristics

^{1.} Guaranteed based on test during characterization.

Table 77. ADC characteristics (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
'latr`	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 30 MHz	0.100	ı	16	μs
is	Campling time	-	3	ı	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
		f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	
t _{CONV} ⁽²⁾		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	ue
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	
		(t _S for sampling +n-bit res	9 to 492 solution for success	ive approx	kimation)	1/f _{ADC}
		12-bit resolution Single ADC	-	-	2	
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
	IS = 3 ADC cycles)	12-bit resolution Interleave Triple ADC mode	-	-	6	
I _{VREF+} (2)	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode	-	-	1.6	1.8	mA

- 1. V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).
- 2. Based on test during characterization.
- 3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA} .
- 4. R_{ADC} maximum value is given for V_{DD} =1.7 V, and minimum value for V_{DD} =3.3 V.
- 5. For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table* 77.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

The above formula ($Equation\ 1$) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

	Table 76. ADO Static accuracy at IADC - 16 MITZ					
Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit	
ET	Total unadjusted error	f 40 MH-	±3	±4		
EO	Offset error	f_{ADC} = 18 MHz V_{DDA} = 1.7 to 3.6 V	±2	±3		
EG	Gain error	$V_{REF} = 1.7 \text{ to } 3.6 \text{ V}$	±1	±3	LSB	
ED	Differential linearity error	V _{DDA} - V _{REF} < 1.2 V	±1	±2		
EL	Integral linearity error		±2	±3		

Table 78. ADC static accuracy at $f_{ADC} = 18 \text{ MHz}^{(1)}$

- 1. Better performance could be achieved in restricted V_{DD} , frequency, and temperature ranges.
- 2. Based on test during characterization.

Table 79. ADC static accuracy at f_{ADC} = 30 MHz⁽¹⁾

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error	6 00 1411	±2	±5	
EO	Offset error	f_{ADC} = 30 MHz, R_{AIN} < 10 kΩ	±1.5	±2.5	
EG	Gain error	$V_{DDA} = 2.4 \text{ to } 3.6 \text{ V},$	±1.5	±3	LSB
ED	Differential linearity error	V _{REF} = 1.7 to 3.6 V, V _{DDA} - V _{REF} < 1.2 V	±1	±2	
EL	Integral linearity error	VDDA VREF 112 V	±1.5	±3	

- 1. Better performance could be achieved in restricted $V_{\mbox{\scriptsize DD}}$, frequency, and temperature ranges.
- 2. Based on test during characterization.

Table 80. ADC static accuracy at $f_{ADC} = 36 \text{ MHz}^{(1)}$

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V	±2	±3	
EG	Gain error		±3	±6	LSB
ED	Differential linearity error	V _{DDA} - V _{REF} < 1.2 V	±2	±3	
EL	Integral linearity error		±3	±6	

- 1. Better performance could be achieved in restricted $V_{\mbox{\scriptsize DD}},$ frequency, and temperature ranges.
- 2. Based on test during characterization.

	Table 81 ADC d	ynamic accuracy at fand	a = 18 MHz - limited	d test conditions ⁽¹⁾
--	----------------	-------------------------	----------------------	----------------------------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =18 MHz	10.3	10.4	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+} = 1.7 \text{ V}$ Input Frequency = 20 KHz Temperature = 25 °C	64	64.2	-	
SNR	Signal-to-noise ratio		64	65	-	dB
THD	Total harmonic distortion		- 67	- 72	-	

^{1.} Guaranteed based on test during characterization.

Table 82. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
ENOB	Effective number of bits	f _{ADC} =36 MHz	10.6	10.8	-	bits
SINAD	Signal-to noise and distortion ratio	V _{DDA} = V _{REF+} = 3.3 V Input Frequency = 20 KHz	66	67	-	
SNR	Signal-to noise ratio		64	68	-	dB
THD	Total harmonic distortion	Temperature = 25 °C	- 70	- 72	-	

^{1.} Guaranteed based on test during characterization.

Note:

ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins, which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\sum I_{INJ(PIN)}$ in Section 5.3.20 does not affect the ADC accuracy.

Figure 54. ADC accuracy characteristics

- 1. See also Table 79.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- 4. End point correlation line.
- 5. E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one.
 - EG = Gain Error: deviation between the last ideal transition and the last actual one.
 - ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

Figure 55. Typical connection diagram using the ADC with FT/TT pins featuring

analog switch funcion

- 1. Refer to *Table* 77 for the values of R_{AIN} , R_{ADC} , and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 59: I/O static characteristics*). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.
- 3. Refer to Table 59: I/O static characteristics for the value of I_{lka}.
- 4. Refer to Table 24: Power supply scheme.

47/

DS11118 Rev 8 161/225

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 56* or *Figure 57*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 56. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

 V_{REF+} and V_{REF-} inputs are both available on UFBGA176 and TFBGA216. V_{REF+} is also available on LQFP176, and LQFP208. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA}.

Figure 57. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

 V_{REF+} and V_{REF-} inputs are both available on UFBGA176 and TFBGA216. V_{REF+} is also available on LQFP176, and LQFP208. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA}.

5.3.25 Temperature sensor characteristics

Table 83. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} (2)	Startup time	-	6	10	He
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

^{1.} Based on test during characterization.

Table 84. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V _{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

5.3.26 V_{BAT} monitoring characteristics

Table 85. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	ΚΩ
Q	Ratio on V _{BAT} measurement	-	4	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1 mV accuracy	5	-	-	μs

^{1.} Guaranteed by design.

5.3.27 Reference voltage

The parameters given in *Table 86* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17*.

Table 86. internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage		10	-	-	μs
V _{RERINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3V ± 10mV	-	3	5	mV

^{2.} Guaranteed by design.

^{2.} Shortest sampling time can be determined in the application by multiple iterations.

Table 86.	internal	reference	voltage	(continued)	١
I UDIO OO.	millorina	101010100	VOILUGO	(CCIIIII GCG	,

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{Coeff} ⁽²⁾	Temperature coefficient		-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time		-	6	10	μs

^{1.} Shortest sampling time can be determined in the application by multiple iterations.

Table 87. Internal reference voltage calibration values

Symbol	Parameter	Memory address
V _{REFIN_CAL}	Raw data acquired at temperature of 30 °C _{VDDA} = 3.3 V	0x1FFF 7A2A - 0x1FFF 7A2B

5.3.28 DAC electrical characteristics

Table 88. DAC characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage	1.7 ⁽¹⁾	-	3.6	V	-
V _{REF+}	Reference supply voltage	1.7 ⁽¹⁾	1	3.6	V	V _{REF+} ≤ V _{DDA}
V _{SSA}	Ground	0	-	0	V	-
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	-
R _O ⁽²⁾	Impedance output with buffer OFF	1	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load	ı	ı	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	٧	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} - 0.2	V	(0x0E0) to (0xF1C) at V _{REF+} = 3.6 V and (0x1C7) to (0xE38) at V _{REF+} = 1.7 V
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	1	0.5	-	mV	It gives the maximum output excursion of
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{REF+} - 1LSB	V	the DAC.
l _{VREF+} (4)	DAC DC V _{REF} current consumption in quiescent	-	170	240	^	With no load, worst code (0x800) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
VREF+` ′	mode (Standby mode)	-	50	75	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs

^{2.} Guaranteed by design

Table 88. DAC characteristics (continued)

Symbol	Parameter	Min	Тур	Max	Unit	Comments
	DAC DC VDDA current	-	280	380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽⁴⁾	DDA ⁽⁴⁾ consumption in quiescent mode ⁽³⁾		475	625	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽⁴⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽⁴⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error	-	-	±10	mV	Given for the DAC in 12-bit configuration
Offset ⁽⁴⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V
	(0x800) and the ideal value = $V_{REF+}/2$)	-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽⁴⁾	Gain error	-	ı	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽⁴⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±4LSB	-	3	6	μs	C_{LOAD} ≤ 50 pF, R_{LOAD} ≥ 5 kΩ
THD ⁽⁴⁾	Total Harmonic Distortion Buffer ON	-	-	-	dB	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽²⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} ⁽⁴⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ (2)	Power supply rejection ratio (to V _{DDA}) (static DC measurement)	-	-67	–40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

^{1.} V_{DDA} minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 2.19.2).

^{4.} Guaranteed based on test during characterization.

^{2.} Guaranteed by design.

^{3.} The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.

Figure 58. 12-bit buffered/non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.29 FMC characteristics

Unless otherwise specified, the parameters given in tables 89 to 102 for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency, and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figures 59 through 62 represent asynchronous waveforms, and tables 89 through 96 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capacitive load C_L = 30 pF

Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C, and D only. In Mode 1, FMC_NADV is not used.

Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	2T _{HCLK} - 0.5	2 T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	1	
t _{w(NOE)}	FMC_NOE low time	2T _{HCLK}	2T _{HCLK} + 0.5	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	0	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	ns
t _{h(BL_NOE)}	FMC_BL hold time after FMC_NOE high	0	-	115
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} + 2.5	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	T _{HCLK} +2	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} +1	

^{1.} Based on test during characterization.

Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT $timings^{(1)}$

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	7T _{HCLK} +0.5	7T _{HCLK} +1	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} - 1.5	5T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} Based on test during characterization.

Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C, and D only. In Mode 1, FMC_NADV is not used.

Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK}	3T _{HCLK} +1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} - 0.5	T _{HCLK} + 0.5	
t _{w(NWE)}	FMC_NWE low time	T _{HCLK}	T _{HCLK} + 0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK} +1.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK} +0.5	-	ne
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} +0.5	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	-	T _{HCLK} + 2	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{HCLK} + 0.5	

^{1.} Based on test during characterization.

Table 92. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +1	8T _{HCLK} +2	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} - 1	6T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} Based on test during characterization.

Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms

Table 93. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	3T _{HCLK} - 1	3T _{HCLK} +0.5	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2T _{HCLK} - 0.5	2T _{HCLK}	,
t _{tw(NOE)}	FMC_NOE low time	T _{HCLK} - 1	T _{HCLK} +1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	1	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	2	,
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	2	,
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} - 0.5	T _{HCLK} +0.5	,
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high)	0	-	ns
t _{h(A_NOE)}	Address hold time after FMC_NOE high	T _{HCLK} - 0.5	-	
t _{h(BL_NOE)}	FMC_BL time after FMC_NOE high	0	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	2	,
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{HCLK} +1.5	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	T _{HCLK} +1	-	,
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	•
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

^{1.} Based on test during characterization.

Table 94. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} +0.5	8T _{HCLK} +2	
t _{w(NOE)}	FMC_NWE low time	5T _{HCLK} - 1	5T _{HCLK} +1.5	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +1	-	

^{1.} Based on test during characterization.

Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms

Table 95. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4T _{HCLK}	4T _{HCLK} +0.5	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{HCLK} - 1	T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	2T _{HCLK}	2T _{HCLK} +0.5	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{HCLK}	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	ı	0	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0.5	1	
t _{w(NADV)}	FMC_NADV low time	T _{HCLK} - 0.5	T _{HCLK} + 0.5	ns
t _{h(AD_NADV)}	FMC_AD (address) valid hold time after FMC_NADV high	T _{HCLK} - 2	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{HCLK}	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{HCLK} - 2	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	ı	2	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{HCLK} +1.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{HCLK} +0.5	-	

^{1.} Based on test during characterization.

	·			
Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	9T _{HCLK}	9T _{HCLK} +0.5	
t _{w(NWE)}	FMC_NWE low time	7T _{HCLK}	7T _{HCLK} +2	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} +1.5	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} -1	-	

Table 96. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings⁽¹⁾

Synchronous waveforms and timings

Figures 63 through 66 represent synchronous waveforms and *Table 97* through *Table 100* provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1;
- DataLatency = 1 for NOR flash; DataLatency = 0 for PSRAM
- C_L = 30 pF on data and address lines. C_L = 10 pF on FMC_CLK unless otherwise specified.

In all timing tables, the T_{HCLK} is the HCLK clock period:

- For 2.7 $V \le V_{DD} \le 3.6 \text{ V}$, maximum FMC_CLK = 90 MHz at C_L = 30 pF (on FMC_CLK).
- For 1.71 $V \le V_{DD} < 1.9 \text{ V}$, maximum FMC_CLK = 60 MHz at C_L = 10 pF (on FMC_CLK).

^{1.} Based on test during characterization.

Figure 63. Synchronous multiplexed NOR/PSRAM read timings

Table 97. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0	,
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	1	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +0.5	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} - 0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	0.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	5	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	0	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

^{1.} Based on test during characterization.

Figure 64. Synchronous multiplexed PSRAM write timings

Table 98. Synchronous multiplexed PSRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period, V _{DD} range= 2.7 to 3.6 V	2T _{HCLK} - 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	1.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	ns
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

^{1.} Based on test during characterization.

Figure 65. Synchronous non-multiplexed NOR/PSRAM read timings

Table 99. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 1	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK} - 0.5	-	ns
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	T _{HCLK} +2	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{HCLK} - 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	5	-	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	0	-	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	4	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

^{1.} Based on test during characterization.

Figure 66. Synchronous non-multiplexed PSRAM write timings

Table 100. Synchronous non-multiplexed PSRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{HCLK} - 1	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	0.5	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK}	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	0	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	0	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	0	-	ne
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	0	ns
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} -0.5	-	
t _{d(CLKL-Data)}	FMC_D[15:0] valid data after FMC_CLK low	-	2.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	0	-	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} -0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	4		
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	0	-	

^{1.} Based on test during characterization.

DS11118 Rev 8 179/225

NAND controller waveforms and timings

Figures 67 through *Figure* 69 represent synchronous waveforms, and *Table 101* and *Table 102* provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC HoldSetupTime = 0x02;
- ATT.FMC HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC MemoryDataWidth 16b;
- ECC = FMC ECC Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;
- Capacitive load C_L = 30 pF.

In all timing tables, the $T_{\mbox{\scriptsize HCLK}}$ is the HCLK clock period.

1. y = 7 or 15 depending on the NAND flash memory interface.

Figure 68. NAND controller waveforms for write access

1. y = 7 or 15 depending on the NAND flash memory interface.

Table 101. Switching characteristics for NAND Flash read cycles

Symbol	Parameter	Min	Max	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{HCLK} - 0.5	4T _{HCLK} +0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	9	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{HCLK} - 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} - 2	-	

Table 102. Switching characteristics for NAND Flash write cycles

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FMC_NWE low width	4T _{HCLK}	4T _{HCLK} +1	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	t _{h(NWE-D)} FMC_NWE high to FMC_D[15-0] invalid		-	ns
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{HCLK} - 3	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	3T _{HCLK} -0.5	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	3T _{HCLK} - 1	-	

SDRAM waveforms and timings

- C_L = 30 pF on data and address lines.
- C_L = 10 pF on FMC_SDCLK unless otherwise specified.

Electrical characteristics STM32F479xx

In all timing tables, the $T_{\mbox{\scriptsize HCLK}}$ is the HCLK clock period.

- For 2.7 V \leq V_{DD} \leq 3.6 V, maximum FMC_SDCLK = 90 MHz, at C_L = 30 pF (on FMC_SDCLK).
- For 1.71 V \leq V_{DD} <1.9 V, maximum FMC_SDCLK = 75 MHz when CAS Latency = 3 and 60 MHz for CAS latency 1 or 2. C_L = 10 pF (on FMC_SDCLK).

Figure 69. SDRAM read access waveforms (CL = 1)

Table 103. SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH _Data)}	Data input setup time	2	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	select valid time - 0.5		ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	0.5	
t _{h(SDCLKL_SDNRAS)}	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	0.5	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

^{1.} Guaranteed based on test during characterization.

Table 104. LPSDR SDRAM read timings⁽¹⁾

Symbol	Symbol Parameter		Max	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} +0.5	
t _{su(SDCLKH_Data)}	Data input setup time	2.5	-	
t _{h(SDCLKH_Data)}	Data input hold time	0	-	
t _d (SDCLKL_Add)	Address valid time	-	1	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	ns
t _{h(SDCLKL_SDNE)}	Chip select hold time	1	-	113
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1	
th(SDCLKL_SDNRAS)	SDNRAS hold time	1	-	
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	1	-	

^{1.} Guaranteed based on test during characterization.

Figure 70. SDRAM write access waveforms

Electrical characteristics STM32F479xx

Table 105. SDRAM write timings⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	2.5	
t _{h(SDCLKL _Data)}	Data output hold time	3.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	0.5	ns
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	115
t _d (SDCLKL_SDNRAS)	SDNRAS valid time	-	2	
t _h (SDCLKL_SDNRAS)	SDNRAS hold time	0	-	
t _d (SDCLKL_SDNCAS)	SDNCAS valid time	-	0.5	
t _d (SDCLKL_SDNCAS)	SDNCAS hold time	0	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	0.5	
t _{h(SDCLKL_NBL)}	NBL output time	0	-	

^{1.} Guaranteed based on test during characterization.

Table 106. LPSDR SDRAM write timings⁽¹⁾

Symbol Parameter		Min	Max	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{HCLK} - 0.5	2T _{HCLK} +0.5	
t _{d(SDCLKL _Data})	Data output valid time	-	5	
t _{h(SDCLKL_Data)}	Data output hold time	2	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2.8	
t _d (SDCLKL-SDNWE)	SDNWE valid time	-	2	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	1	-	
t _{d(SDCLKL-SDNE)}	Chip select valid time	-	1.5	ns
t _{h(SDCLKL-SDNE)}	Chip select hold time	1	-	115
t _{d(SDCLKL-SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL-SDNRAS)}	SDNRAS hold time	1.5	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1.5	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	1.5	-	
t _{d(SDCLKL_NBL)}	NBL valid time	-	1.5	
t _{h(SDCLKL-NBL)}	NBL output time	1.5	-	

^{1.} Guaranteed based on test during characterization.

5.3.30 Quad-SPI interface characteristics

Unless otherwise specified, the parameters given in Table 107 and Table 108 for Quad-SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency, and V_{DD} supply voltage conditions summarized in Table xx, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output alternate function characteristics.

Symbol Unit **Parameter Test conditions** Min Max Тур $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{ C}_{L} = 20 \text{ pF}$ 90 F_{ck} Quad-SPI clock frequency MHz 1/t_(CK) $1.71 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{C}_{I} = 15 \text{ pF}$ 84 Quad-SPI clock high time $t_{(CK)}/2$ $t_{(CK)}/2-1$ $t_{w(CKH)}$ Quad-SPI clock low time $t_{(CK)}/2$ $t_{(CK)}/2+1$ t_{w(CKL)} Data input set-up time 0.5 t_{s(IN)} ns 3 $t_{h(IN)}$ Data input hold time Data output valid time 3 $t_{v(OUT)}$ 4 Data output hold time $t_{h(OUT)}$ 2.5

Table 107. Quad-SPI characteristics in SDR mode⁽¹⁾

^{1.} Guaranteed based on test during characterization.

Electrical characteristics STM32F479xx

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
F _{ck}		$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $\text{C}_{L} = 20 \text{ pF}$	-	-	80	
1/t _(CK)	Quad-SPI clock frequency	1.71 V \leq V _{DD} \leq 3.6 V, C _L = 15 pF	-	-	70	MHz
t _{w(CKH)}	Quad-SPI clock high time	-	t _(CK) /2-1	-	t _(CK) /2	
t _{w(CKL)}	(L) Quad-SPI clock low time	-	t _(CK) /2	-	t _(CK) /2+1	
t _{sr(IN)}	Data input set-up time	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	2	-	-	
t _{sf(IN)}		1.71 V ≤ V _{DD} ≤ 3.6 V	0.5	-	-	
t _{hr(IN)}	Data input hold time	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	3	-	-	
t _{hf(IN)}		1.71 V ≤ V _{DD} ≤ 3.6 V	4.5	-	-	ns
		DHHC=0	-	8	10.5	
t _{vr(OUT)} t _{vf(OUT)}	Data output valid time	DHHC=1 Pres=1,2	-	T _{hclk} /2+2	T _{hclk} /2+2.5	
		DHHC=0	7	-	-	
$t_{h(OUT)}$ $t_{f(OUT)}$	Data output hold time	DHHC=1 Pres=1,2	T _{hclk} /2+0.5	-	-	

Table 108. Quad-SPI characteristics in DDR mode⁽¹⁾

^{1.} Guaranteed based on test during characterization.

Figure 72. Quad-SPI DDR timing diagram

5.3.31 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in *Table 109* for DCMI are derived from tests performed under the ambient temperature, f_{HCLK} frequency, and V_{DD} supply voltage summarized in *Table 17*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Symbol	Parameter	Min	Max	Unit
-	- Frequency ratio DCMI_PIXCLK/f _{HCLK}		0.4	-
DCMI_PIXCLK	Pixel clock input	-	54	MHz
D _{Pixel}	Pixel clock input duty cycle	30	70	%
t _{su(DATA)}	Data input setup time	4	-	
t _{h(DATA)}	Data input hold time	1	-	
$t_{su(HSYNC)}$ $t_{su(VSYNC)}$	DCMI_HSYNC/DCMI_VSYNC input setup time	3.5	ı	ns
t _{h(HSYNC)}	DCMI_HSYNC/DCMI_VSYNC input hold time	0	-	

Table 109. DCMI characteristics⁽¹⁾

^{1. 1.}Guaranteed based on test during characterization.

Figure 73. DCMI timing diagram

5.3.32 LCD-TFT controller (LTDC) characteristics

Unless otherwise specified, the parameters given in *Table 110* for LCD-TFT are derived from tests performed under the ambient temperature, fhclk frequency, and VDD supply voltage summarized in *Table 17*, with the following configuration:

- LCD_CLK polarity: high
- LCD DE polarity: low
- LCD_VSYNC and LCD_HSYNC polarity: high
- Pixel formats: 24 bits
- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Electrical characteristics STM32F479xx

Table 110. LTDC characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
f _{CLK}	LTDC clock output frequency	-	83	MHz
D _{CLK}	LTDC clock output duty cycle	45	55	%
t _{w(CLKH)} t _{w(CLKL)}	Clock high time, low time	t _{w(CLK)} / 2 - 0.5	t _{w(CLK)} / 2 + 0.5	
t _{v(DATA)}	Data output valid time	-	1.5	
t _{h(DATA)}	Data output hold time	0	-	
t _{v(HSYNC)}				
t _{v(VSYNC)}	HSYNC/VSYNC/DE output valid time	-	0.5	ns
$t_{v(DE)}$				
t _{h(HSYNC)}				
t _{h(VSYNC)}	HSYNC/VSYNC/DE output hold time	0	-	
t _{h(DE)}				

^{1.} Based on test during characterization.

Figure 74. LCD-TFT horizontal timing diagram

Figure 75. LCD-TFT vertical timing diagram

5.3.33 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 111* for the SDIO/MMC interface are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in *Table 17*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.20 for more details on the input/output characteristics.

Figure 76. SDIO high-speed mode

Electrical characteristics STM32F479xx

Figure 77. SD default mode

Table 111. Dynamic characteristics: SD / MMC characteristics, V_{DD} = 2.7 to 3.6 $V^{(1)}$

	,		, ,			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	f =50 MH=	9.5	10.5	-	no
t _{W(CKH)}	Clock high time	f _{pp} =50 MHz	8.5	9.5	-	ns
CMD, D inp	outs (referenced to CK) in MMC and SI) HS mode				
t _{ISU}	Input setup time HS	f _50 MH=	2.0	-	-	
t _{IH}	Input hold time HS	f _{pp} =50 MHz	2.0	-	-	ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode				•
t _{OV}	Output valid time HS	f _E0 MU¬	-	13	13.5	no
t _{OH}	Output hold time HS	f _{pp} =50 MHz	12.5	-	-	ns
CMD, D inp	outs (referenced to CK) in SD default n	node				
t _{ISUD}	Input setup time SD	£ 05.MH-	2.0	-	-	
t _{IHD}	Input hold time SD	f _{pp} =25 MHz	2.5	-	-	- ns
CMD, D ou	tputs (referenced to CK) in SD default	mode			•	•
t _{OVD}	Output valid default time SD	f -25 MU-	-	1.5	2.0	no
t _{OHD}	Output hold default time SD	f _{pp} =25 MHz	1.0	-	-	ns
				1	1	

^{1.} Guaranteed based on test during characterization.

Table 112. Dynamic characteristics: SD / MMC characteristics, V_{DD} = 1.71 to 1.9 $V^{(1)(2)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	8/3	-
t _{W(CKL)}	Clock low time	f -50 MU-7	9.5	10.5	-	200
t _{W(CKH)}	Clock high time	f _{pp} =50 MHz	8.5	9.5	-	ns
CMD, D in	outs (referenced to CK) in eMMC mode	•				
t _{ISU}	Input setup time HS	f _E0 MU¬	0.5	-	-	200
t _{IH}	Input hold time HS	f _{pp} =50 MHz	3.5	-	-	ns
CMD, D ou	tputs (referenced to CK) in eMMC mod	le		•	•	•
t _{OV}	Output valid time HS	£ 50 MH-	-	13.5	14.5	200
t _{OH}	Output hold time HS	f _{pp} =50 MHz	13.0	-	-	ns

^{1.} Guaranteed based on test during characterization.

5.3.34 RTC characteristics

Table 113. RTC characteristics

	Symbol	Parameter	Conditions	Min	Max
ĺ	-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

^{2.} $C_{load} = 20 pF$.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

6.1 Device marking

Refer to technical note "Reference device marking schematics for STM32 microcontrollers and microprocessors" (TN1433) available on www.st.com, for the location of pin 1 / ball A1 as well as the location and orientation of the marking areas versus pin 1 / ball A1.

Parts marked as "ES", "E" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

A WLCSP simplified marking example (if any) is provided in the corresponding package information subsection.

6.2 LQFP100 package information (1L)

This LQFP is 100 lead, 14 x 14 mm low-profile guad flat package.

Note: See list of notes in the notes section.

STM32F479xx Package information

GAUGE PLANE D1/4-∳θ E1/4 θ3, 4x N/4 TIPS (L1) △aaa C A-B D bbb HA-B D (1) (11) SECTION A-A BOTTOM VIEW (9) (11) A2 A1₍₁₂₎ b -___ccc C WITH PLATING SIDE VIEW (4) (11) c c1 (11) (2) (5) -D1 D (3) (10) (4) BASE METAL (11) E1/4 SECTION B-B D1/4-(2) A (5) E1 SECTION A-A TOP VIEW 1L_LQFP100_ME_V3

Figure 78. LQFP100 - Outline⁽¹⁵⁾

Table 114. LQFP100 - Mechanical data

Symbol	millimeters			inches ⁽¹⁴⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	1.50	1.60	-	0.0590	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0019	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570

Table 114. LQFP100 - Mechanical data (continued)

O b- a-l	millimeters				inches ⁽¹⁴⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106	
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090	
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079	
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063	
D ⁽⁴⁾		16.00 BSC			0.6299 BSC		
D1 ⁽²⁾⁽⁵⁾		14.00 BSC			0.5512 BSC		
E ⁽⁴⁾		16.00 BSC			0.6299 BSC		
E1 ⁽²⁾⁽⁵⁾	14.00 BSC				0.5512 BSC		
е	0.50 BSC			0.0197 BSC			
L	0.45	0.60	0.75	0.177	0.0236	0.0295	
L1 ⁽¹⁾⁽¹¹⁾		1.00		-	0.0394	-	
N ⁽¹³⁾			1	00			
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	-	0°	-	-	
θ2	10°	12°	14°	10°	12°	14°	
θ3	10°	12°	14°	10°	12°	14°	
R1	0.08	-	-	0.0031	-	-	
R2	0.08	-	0.20	0.0031	-	0.0079	
S	0.20	-	-	0.0079	-	-	
aaa ⁽¹⁾	0.20			0.0079			
bbb ⁽¹⁾	0.20			0.0079			
ccc ⁽¹⁾		0.08		0.0031			
ddd ⁽¹⁾		0.08			0.0031		

STM32F479xx Package information

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

75 0.5 16.7 14.3 16.7 14.3 16.7 12.3 16.7 12.3 16.7 12.3

Figure 79. LQFP100 - Footprint example

1. Dimensions are expressed in millimeters.

6.3 LQFP144 package information (1A)

This LQFP is a 144-pin, 20 x 20 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Figure 80. LQFP144 - Outline⁽¹⁵⁾

Table 115. LQFP144 - Mechanical data

O maked	millimeters			inches ⁽¹⁴⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		22.00 BSC			0.8661 BSC	
D1 ⁽²⁾⁽⁵⁾		20.00 BSC			0.7874 BSC	
E ⁽⁴⁾	22.00 BSC			0.8661 BSC		
E1 ⁽²⁾⁽⁵⁾	20.00 BSC			0.7874 BSC		
е		0.50 BSC		0.0197 BSC		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00 REF		0.0394 REF		
N ⁽¹³⁾			1	44		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa	0.20			0.0079		
bbb	0.20			0.0079		
ccc	0.08			0.0031		
ddd		0.08			0.0031	

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 81. LQFP144 - Footprint example

1. Dimensions are expressed in millimeters.

6.4 WLCSP168 package information

Figure 82. WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale

1. Drawing is not to scale.

STM32F479xx Package information

Table 116. WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale
package mechanical data

Symbol		millimeters	je meename	inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.170	-	-	0.0067	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	4.856	4.891	4.926	0.1912	0.1926	0.1939
Е	5.657	5.692	5.727	0.2227	0.2241	0.2255
е	-	0.400	-	-	0.0157	-
e1	-	4.400	-	-	0.1732	-
e2	-	5.200	-	-	0.2047	-
F	-	0.2455	-	-	0.0097	-
G	-	0.246	-	-	0.0097	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ccc	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

- 1. Values in inches are converted from mm and rounded to 4 decimal digits.
- 2. Back side coating.
- 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 83. WLCSP168 - 168-ball, 4.891 x 5.692 mm, 0.4 mm pitch wafer level chip scale

Table 117. WLCSP168 recommended PCB design rules

Dimension	Recommended values
Pitch	0.4 mm
Dpad	260 µm max. (circular) 220 µm recommended
Dsm	300 μm min. (for 260 μm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed

UFBGA169 package information (A0YV) 6.5

This UFBGA is a 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

Z Seating plane □ ddd Z Ā3 **-**↓Lb SIDE VIEW A1 ball A1 ball | X | identifier index area E1 0000000 D1 D Υ **BOTTOM VIEW** Øb (169 balls) **TOP VIEW** A0YV_ME_V2

Figure 84. UFBGA169 - Outline

1. Drawing is not to scale.

Table 118. UFBGA169 - Mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	0.460	0.530	0.600	0.0181	0.0209	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	

Table 118. UFBGA169 - Mechanical data (continued)

Sumb al		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197	
A3	-	0.130	-	-	0.0051	-	
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146	
b	0.230	0.280	0.330	0.0091	0.0110	0.0130	
D	6.950	7.000	7.050	0.2736	0.2756	0.2776	
D1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
E	6.950	7.000	7.050	0.2736	0.2756	0.2776	
E1	5.950	6.000	6.050	0.2343	0.2362	0.2382	
е	-	0.500	-	-	0.0197	-	
F	0.450	0.500	0.550	0.0177	0.0197	0.0217	
ddd	-	-	0.100	-	-	0.0039	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 85. UFBGA169 - Footprint example

Table 119. UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)

Dimension	Values
Pitch	0.5 mm
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note: Non-solder mask defined (NSMD) pads are recommended.

Note: 4 to 6 mils solder paste screen printing process.

STM32F479xx Package information

6.6 LQFP176 package information (1T)

This LQFP is a 176-pin, 24 x 24 mm, 0.5 mm pitch, low profile quad flat package.

Note: See list of notes in the notes section.

Figure 86. LQFP176 - Outline⁽¹⁵⁾

Table 120. LQFP176 - Mechanical data

Cumbal		millimeters			inches ⁽¹⁴⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1 ⁽¹²⁾	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b ⁽⁹⁾⁽¹¹⁾	0.170	0.220	0.270	0.0067	0.0087	0.0106	
b1 ⁽¹¹⁾	0.170	0.200	0.230	0.0067	0.0079	0.0091	
c ⁽¹¹⁾	0.090	-	0.200	0.0035	-	0.0079	
c1 ⁽¹¹⁾	0.090	-	0.160	0.0035	-	0.063	
D ⁽⁴⁾		26.000	·		1.0236		
D1 ⁽²⁾⁽⁵⁾		24.000			0.9449		
E ⁽⁴⁾	26.000			0.0197			
E1 ⁽²⁾⁽⁵⁾	24.000			0.9449			
е		0.500		0.1970			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1 ⁽¹⁾⁽¹¹⁾		1	•	0.0394 REF			
N ⁽¹³⁾			1	76			
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	-	0°	-	-	
θ2	10°	12°	14°	10°	12°	14°	
θ3	10°	12°	14°	10°	12°	14°	
R1	0.080	-	-	0.0031	-	-	
R2	0.080	-	0.200	0.0031	-	0.0079	
S	0.200	-	-	0.0079	-	-	
aaa ⁽¹⁾	0.200				0.0079	1	
bbb ⁽¹⁾	0.200			0.0079			
ccc ⁽¹⁾		0.080		0.0031			
ddd ⁽¹⁾		0.080		0.0031			

STM32F479xx Package information

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 87. LQFP176 - Footprint example

1. Dimensions are expressed in millimeters.

STM32F479xx Package information

6.7 UFBGA(176+25) package information (A0E7)

This UFBGA is a 176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package

Figure 88. UFBGA(176+25) - Outline

1. Drawing is not to scale.

Table 121. UFBGA(176+25) - Mechanical data

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	-	-	0.600	-	-	0.0236	
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043	
A2	-	0.450	-	-	0.0177	-	
A3	-	0.130	-	-	0.0051	-	
A4	-	0.320	-	-	0.0126	-	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	9.850	10.000	10.150	0.3878	0.3937	0.3996	
D1	-	9.100	-	-	0.3583	-	
E	9.850	10.000	10.150	0.3878	0.3937	0.3996	
E1	-	9.100	-	-	0.3583	-	
е	-	0.650	-	-	0.0256	-	
F	-	0.450	-	-	0.0177	-	
ddd		-	0.080	-		0.0031	

Table 121.	UFBGA(176+25) - Mechanical	data (continued)
I abic izi.	. UI DUMII 1 0 · Eu	7 - Wiccilallicai	data (Continued)

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 89. UFBGA(176+25) - Footprint example

Table 122. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)

	, ,
Dimension	Values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

STM32F479xx **Package information**

TFBGA216 package information (A0L2) 6.8

This TFBGA is a 216-ball, 13 x 13 mm, 0.8 mm pitch, fine pitch ball grid array package.

Figure 90. TFBGA216 - Outline

- 1. Drawing is not to scale.
- The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized markings, or other feature of package body or integral heat slug.

 • A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
 - corner. Exact shape of each corner is optional

Table 123. TFBGA216 - Mechanical data

Cumbal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
Α	-	-	1.200	-	-	0.0472	
A1 ⁽²⁾	0.150	-	-	0.0059	-	-	
A2	-	0.760	-	-	0.0299	-	
b ⁽³⁾	0.350	0.400	0.450	0.0138	0.0157	0.0177	
D	12.850	13.000	13.150	0.5059	0.5118	0.5177	
D1	-	11.200	-	-	0.4409	-	
E	12.850	13.000	13.150	0.5059	0.5118	0.5177	
E1	-	11.200	-	-	0.4409	-	
е	-	0.800	-	-	0.0315	-	
F	-	0.900	-	-	0.0354	-	
G	-	0.900	-	-	0.0354	-	
ddd	-	-	0.100	-	-	0.0039	
eee ⁽⁴⁾	-	-	0.150	-	-	0.0059	
fff ⁽⁵⁾	-	-	0.080	-	-	0.0031	

- 1. Values in inches are converted from mm and rounded to four decimal digits.
- The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heat slug.
 A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.
- 3. Initial ball equal 0.350 mm.
- 4. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone.
- 5. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones.

Dpad Dsm BGA_WLCSP_FT_V1

Figure 91. TFBGA216 - Footprint example

Table 124. TFBGA216 - Example of PCB design rules (0.8 mm pitch)

Dimension	Values
Pitch	0.8 mm
Dpad	0.400 mm
Dsm	0.470 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.400 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.120 mm

STM32F479xx Package information

6.9 LQFP208 package information

This LQFP is a 208-pin, 28 x 28 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Figure 92. LQFP208 - Outline⁽¹⁵⁾

Table 125. LQFP208 - Mechanical data

Compleal	millimeters		inches ⁽¹⁵⁾			
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0091
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		30.00 BSC			1.1732 BSC	
D1 ⁽²⁾⁽⁵⁾		28.00 BSC			1.0945 BSC	
E ⁽⁴⁾	30.00 BSC			1.1732 BSC		
E1 ⁽²⁾⁽⁵⁾	28.00 BSC			1.0945 BSC		
е		0.50 BSC		0.0197 BSC		
L	0.45 0.60 0.75			0.0177	0.0236	0.0295
L1	1.00 REF				0.0394 REF	
N ⁽¹³⁾			2	08		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾⁽⁷⁾	0.20				0.0079	
bbb ⁽¹⁾⁽⁷⁾	0.20				0.0079	
ccc ⁽¹⁾⁽⁷⁾	0.08				0.0031	
ddd ⁽¹⁾⁽⁷⁾		0.08			0.0031	

STM32F479xx Package information

Notes:

- Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- To be determined at seating datum plane C.
- Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

1. Dimensions are expressed in millimeters.

DS11118 Rev 8 217/225

6.10 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$\mathsf{P}_\mathsf{I/O} \; \mathsf{max} = \sum (\mathsf{V}_\mathsf{OL} \times \mathsf{I}_\mathsf{OL}) + \sum ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) \times \mathsf{I}_\mathsf{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP100	43	
	Thermal resistance junction-ambient LQFP144	40	_
Θ_{JA}	Thermal resistance junction-ambient WLCSP168	31	
	Thermal resistance junction-ambient LQFP176 - 24 × 24 mm / 0.5 mm pitch	38	°C/W
	Thermal resistance junction-ambient LQFP208 - 28 × 28 mm / 0.5 mm pitch	19	- C/vv
	Thermal resistance junction-ambient UFBGA169 - 7 × 7mm / 0.5 mm pitch	52	
	Thermal resistance junction-ambient UFBGA176 - 10 × 10 mm / 0.5 mm pitch	39	
	Thermal resistance junction-ambient TFBGA216 - 13 × 13 mm / 0.8 mm pitch	29	

Table 126. Package thermal characteristics

Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

STM32F479xx Part numbering

7 Part numbering

xxx = programmed parts

TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest ST sales office.

4

DS11118 Rev 8 219/225

8 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

Appendix A Recommendations when using internal reset OFF

When the internal reset is OFF, the following integrated features are no longer supported:

- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
- The brownout reset (BOR) circuitry must be disabled.
- The embedded programmable voltage detector (PVD) is disabled.
- V_{BAT} functionality is no more available and VBAT pin should be connected to V_{DD}.
- The over-drive mode is not supported.

A.1 Operating conditions

Table 127. Limitations depending on the operating power supply range

Operating power supply range	ADC operation	Maximum Flash memory access frequency with no wait states (f _{Flashmax})	Maximum Flash memory access frequency with wait states ⁽¹⁾⁽²⁾	I/O operation	Possible Flash memory operations
V _{DD} =1.7 to 2.1 V ⁽³⁾	Conversion time up to 1.2 Msps	20 MHz ⁽⁴⁾	168 MHz with 8 wait states and over-drive OFF	- No I/O compensation	8-bit erase and program operations only

- Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
 required.
- 2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
- 3. V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 2.19.1: Internal reset ON).
- 4. Prefetch is not available. Refer to AN3430, available on www.st.com, for details on how to adjust performance and power.

DS11118 Rev 8 221/225

Revision history STM32F479xx

Revision history

Table 128. Document revision history

Date	Revision	Changes
01-Sep-2015	1	Initial release.
19-Oct-2015	2	Updated Table 4: Regulator ON/OFF and internal reset ON/OFF availability and Table 54: EMI characteristics. Updated Figure 17: STM32F47x UFBGA176 ballout, Figure 35: PLL output clock waveforms in center spread mode and Figure 36: PLL output clock waveforms in down spread mode. Updated title of Section 6.8: TFBGA216 package information.
08-Mar-2016	3	Updated cover page with introduction of LQFP100 and LQFP144 packages. Updated Section 1: Description and Section 1.1: Compatibility throughout the family. Updated Figure 1: Incompatible board design for LQFP176 package and its footnote. Updated Table 1: Device summary, Table 2: STM32F479xx features and peripheral counts, Table 4: Regulator ON/OFF and internal reset ON/OFF availability, Table 10: STM32F479xx pin and ball definitions, Table 11: FMC pin definition, Table 12: Alternate function, Table 17: General operating conditions, Table 55: ESD absolute maximum ratings, Table 76: ADC characteristics, Table 124: Package thermal characteristics and Table 125: Ordering information scheme. Removed former Table 73: Ethernet DC electrical characteristics. Added Figure 13: STM32F47x LQFP100 pinout and Figure 14: STM32F47x LQFP144 pinout. Updated Figure 17: STM32F47x UFBGA176 ballout, Figure 18: STM32F47x LQFP176 pinout and Figure 33: ACCHSI vs. temperature. Added Section 6.1: LQFP100 package information and Section 6.2: LQFP144 package information. Replaced former footnote 7 of Table 10: STM32F479xx pin and ball definitions with footnote 2. Added footnote 3 to Table 14: Voltage characteristics. Updated footnote 1 of Figure 56 and footnote 1 of Figure 57.
03-Mar-2017	4	Updated Table 12: Alternate function. Corrected maximum characterized wakeup timing values for Stop mode in Table 34: Low-power mode wakeup timings. Updated Figure 14: STM32F47x LQFP144 pinout. Updated Device marking for LQFP100, Device marking for UFBGA169, Device marking for LQFP176, Device marking for LQFP176 and Device marking for LQFP176. Updated footnotes of figures 82, 85, 89, 92, 97 and 100 in Section 6: Package information.

STM32F479xx Revision history

Table 128. Document revision history (continued)

Date	Revision	Changes
03-May-2018	5	Updated Video Mode interfaces features, Section 2.14: Nested vectored interrupt controller (NVIC) and Section 2.18: Power supply schemes. Updated Table 17: General operating conditions, Table 57: I/O current injection susceptibility and Table 64: SPI dynamic characteristics. Updated Figure 49: USB OTG full speed timings: definition of data signal rise and fall time.
19-Jan-2021	6	Updated Table 2: STM32F479xx features and peripheral counts, Table 109: LTDC characteristics and Table 119: UFBGA(176+25) - Mechanical data. Updated footnote 2 of Figure 41: Recommended NRST pin protection and footnote 1 of Table 39: HSI oscillator characteristics. Updated Section 6.2: LQFP144 package information. Updated Figure 93: UFBGA(176+25) - Outline and Figure 94: UFBGA(176+25) - Recommended footprint. Minor text edits across the whole document.
06-May-2021	7	Updated Table 2: STM32F479xx features and peripheral counts. Updated Section 1: Description.

Revision history STM32F479xx

Table 128. Document revision history (continued)

Date	Revision	Changes
		Added the following sections:
		Section 8: Important security notice
		Section 6.1: Device marking
		Coodion 6.1. Borios manang
		Removed the following sections:
		Device marking obsolete content.
		Ç
		Updated the following:
		Section 6.2: LQFP100 package information (1L)
		Section 6.3: LQFP144 package information (1A)
		Section 6.4: WLCSP168 package information
		Section 6.5: UFBGA169 package information (A0YV)
		Section 6.7: UFBGA(176+25) package information (A0E7)
		Section 6.8: TFBGA216 package information (A0L2)
		Section 6.9: LQFP208 package information
	8	Section 2.26: Universal synchronous/asynchronous receiver
		transmitters (USART)
		Table 2: STM32F479xx features and peripheral counts
06-Nov-2023		Table 39: HSI oscillator characteristics
		Table 22: Reset and power control block characteristics
		Section 2.4: Embedded flash memory
		Section : Features
		Section Table 10.: STM32F479xx pin and ball definitions
		Section 5.3.20: I/O port characteristics
		Section 2.39: True random number generator (RNG)
		Section 5.3.7: Supply current characteristics (I/O static current
		consumption, and I/O dynamic current consumption).
		Figure 40: I/O AC characteristics definition.
		Figure 55: Typical connection diagram using the ADC with FT/TT pins featuring analog switch funcion
		Table 54: EMI characteristics for fHSE=8 MHz and fCPU=168 MHz
		Table 55: EMI characteristics for fHSE=8 MHz and fCPU=180 MHz
		Figure 42: SPI timing diagram - slave mode and CPHA = 0
		Figure 43: SPI timing diagram - slave mode and CPHA = 1
		Figure 44: SPI timing diagram - master mode
		Figure 67: NAND controller waveforms for read access
		Figure 68: NAND controller waveforms for write access
		Applied minor terminology changes.

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DS11118 Rev 8 225/225