Predicting the Sale Price of an Ames, IA Home

Contents

- 1. Problem Statement
- 2. Procedure and Methodology
- 3. EDA and Data Cleaning
- 4. Modeling
 - a. Models Used
 - b. Evaluation
- 5. Recommendations

Problem Statement

Can we construct a model that accurately predicts sale price given numeric and categorical data for a home in Ames, IA?

- 1. Dataset was obtained from Kaggle
- 2. https://www.kaggle.com/c/dsi-us-11-project-2-regression-challenge/

- 1. Original dataset has about 80 Features
- 2. Details about these features can be found here:

Some features were useful...

Others were maybe less so...

- Numeric Data
 - a. Only high (> 50%) correlation features were used
- 2. Categorical Data
 - a. Features that were heavily weighted in one value were removed
 - b. E.g. 'basement condition' was 92% a single value, it was removed
- 3. Missing values were imputed using Sklearn's SimpleImputer
 - a. 'Most frequent' strategy was used

Modeling Procedure - Preprocessing

- 1. Train-test-split
- 2. Preprocessing Pipeline
 - a. Standard Scaler
 - b. One Hot Encoding

Modeling - Regression Models

- 1. Linear Regression
- 2. k-Nearest Neigbors
- 3. Ridge (L2-norm)
- 4. LASSO (L1-norm)

Modeling - Evaluation Metrics

- 1. R2
- 2. Mean Absolute Error
- 3. Mean Squared Error

Modeling

K-Nearest Neighbors Proved to be the most effective model:

- 1. Train R2 ~ 87%
- 2. Test R2 ~ 83%
- 3. Next best was LASSO with Train and Test R2 respectively 86% and 82%

Modeling

- KNN model
- 2. Ideal world, all data points lie on straight line
- That would be perfect prediction of data

Hyperparameter Tuning

- 1. GridSearchCV was used to tune the knn model
- 2. Search Parameters:
 - a. N_neighbors range(1, 51, 10),
 - b. Weights ['uniform','distance'],
 - c. P [1,2]
- 3. Best Parameters
 - a. N_neighbors 11
 - b. Weights 'distance
 - c. P-2

Hyperparameter Tuning

1. Train R2: 85%

2. Test R2: 84%

Recommendations

- 1. This model will likely generalize to other Midwestern U.S. cities provided:
 - a. Comparable time period
 - b. Comparable city size
- 2. To generalize beyond the midwest:
 - a. Use aggregate climate and economic data instead of neighborhood

Thank your time! Merci pour votre attention!