Markov's inequality:
$$P(x>\epsilon) \leq \frac{E(x)}{\epsilon}$$
 for $x>0$

Set $X = (\overline{X}n - E(\overline{X}n)^2 = (\overline{X}n)$ where $E(x) = E((\overline{X}n - E(\overline{X}n)^2) = Var(\overline{Y}n) = \overline{n}$

Then $P((\overline{X}n - E(\overline{X}n)^2 > \epsilon^2) \leq \frac{E((\overline{X}n + E(\overline{X}n)^2)}{\epsilon^2} = \frac{1}{n\epsilon^2}$
 $P((\overline{X}n - E(\overline{X}n)^2 > \epsilon^2) \leq \frac{1}{n\epsilon^2}$

Checysher inequality for $\overline{X}n$

where $\{X_1, ..., X_n\} \sim N(0|1)$

Now we want to show P(|xn|>E)<2e2

for
$$P(x \ge \epsilon) = P(e^{x} \ge e^{\epsilon}) \le \frac{E(e^{x})}{\epsilon}$$
 by Markov's Ineq.

MGF for $x \ge 0$ $x \ge 0$