

Workshop: « 3D underwater mapping of habitats and biological communities »

Case of studies: shallow and aerial acquisitions and applications

Simon Delsol and Isabel Urbina-Barreto

Master 2 – Géosciences Océan Simon Delsol UMR Geo-Ocean – IUEM-Ifremer simon.delsol@etudiant.univ-brest.fr

Postdoctoral researcher Isabel Urbina-Barreto UMR Entropie – IRD isabel.urbina-barreto@ird.fr

POSEIDON Platform Operating in Shallow-water Environment for Imaging and Digital Object Numerization: case study of the Reunion lagoon TELEMAC project (WIO - France)

Simon Delsol

Genesis

Hydrodynamics studies

Rugosity (Z_0) linked to coral topographic complexity in reef environment

Usually determined through

« Chain and Tape » Method (Risk, 1972;

McCormick, 1994)

Or through Digital Elevation Model acquired by **DGPS survey**

UAS (Unnocupied Aerial System) (Casella et al., 2020, Dugdale et al., 2019)

Fig. 1: evolution of the dissipation coefficient fw as a function of Ab and Z_0 according to different laboratory, in-situ and theoretical experiments. The range of fw values estimated in coral environment is indicated in red on the left of the figure.

Prototype

Low-cost & low-tech platform

Aimed at mapping coral reef complexity and underwater structure at (sub-)centimeter resolution through **SfM photogrammetry**

Assets

Can operate in very shallow waters (15 cm < d < 3 m)

Does not suffer from light reflection at the air-sea interface, contrary to drones (*Agrafiotis et al.*, 2020; Ye et al., 2016)

Entirely modular

Ideal survey

Requires

Clear water (no turbidity)

Appreciable sunlight conditions

Real Time Kinematic base in range (still

works in relative mode)

High overlap

Method validation (Brittany, France)

High tidal range coast = study zone fully emerged during spring tide

Method validation (Brittany, France)

Method validation (Brittany, France)

Uniform on the zone (close to 5 cm as mean distance between the clouds)

5 m

Test 2: tilted camera (27°)

Rugosity $(Z_0) = 1.600143$

Test 2 : camera at nadir (0°)

Rugosity $(Z_0) = 1.586271$

Test 2: tilted camera (27°)

Rugosity (\mathbb{Z}_0) = 1.600143

Test 2 : camera at nadir (0°)

Rugosity $(Z_0) = 1.586271$

Soon[®]: Run further tests (complete zone, Green canal), comparison between the test, comparison with the drone-derived rugosity

Thank you for your attention!

Underwater and drone photogrammetry applications for coral reefs conservation programs: case study of the Future Maore Reefs project (WIO - Mayotte, France)

Isabel Urbina-Barreto

Thanks to all collaborators, funding and partners

(UMR MARBEC)

Justine Talpaert (IRD)

R UNIVERSITÉ DE LA RÉUNION

Clément Lelabousse (PNMM - OFB); Georgeta Stoica, Philippe Charpentier (CUFR);

Isabel Urbina-Barreto (IRD); Anne Chauvin (IRD); Marta Gentilucci (CUFR); Thomas Claverie (CUFR); Swanne Gonthare (Sorbonne Univ); Pascale Cuet (Univ. Réunion); Eric Douville (CEA – LSCE); Lionel Bigot (Univ. Réunion); Sophie Bureau (Univ. Réunion); Justine Daudon (IRD); Sylvain Poulain (IRD); Julien Barde (IRD); Diego Alaguarda (Sorbonne Univ); Joelle Robbe Sorbonne (Univ–MCAM); Orlane Velin (Univ. Réunion); Antoine Ringard (Sorbonne Univ); Ariane Fô (l'Ecole M3 - Lyon); Julie Closseindependent; Florinah Razafimandimby (Univ. Réunion); Matéo Moreau (ENSC, Bordeaux); Marion Jaud (IUEM, Brest)

OpenDroneMap — IRD workstation/server coll. *G2OI projet, S. Poulain & J. Barde - UMR Marbec*

Automated post processing by R code,
Phyton modul (Metashape) →

françois.guilhamon@ird.fr

Temporal monitoring:

- coral colonies
- artificial reefs
- coral nubins

« Upscaling » study:

Combining drone (UAVs) and underwater (UWP) photogrammetry to map coral reef complexity at centimeter resolution over large extents. talk - Geohab 2023. coll. G2OI S. Poulain & J. Barde - UMR Marbec

Spatial monitoring:

From natural to artificial reefs: using SfM modeling to study coral community functioning and tune restoration solutions in Mayotte. talk - WIOMSA 2022

Awareness actions:

Education program
Artistic project – *CORAUX 22 -24*

Automated labeling on orthomosaics:

GEOAI for marine ecosystem monitoring: a complete workflow to generate maps AI model predictions. Conference proceedings FOSS4G 2023. coll. G2OI – J. Talpaert & J. Barde - UMR Marbec

FAIR objectifs – IRD, Future Maore Reefs project (south countries)

F indability

A ccessibility

Interoperabillity

Reusability

- 1- OpenDroneMap & automated R code
- **2-** Reef surveys by drone
- 3- Coupled sampling UAVs and UWP

Rapid assessment - monitoring

—> Gestion, monitoring,
restoration <—

Temporal monitoring:

coral nubins

Artificial reefs

coral colonies

✓ **Spatial monitoring:** From natural to artificial reefs: using SfM modeling to study coral community functioning and tune restoration solutions in Mayotte. talk - WIOMSA 2022.

Descriptors

Total shelter (liters $/ m^2$)=115

Surface complexity = 2.4

Abundances:

$$WEE = 108$$

$$STO = 97$$

$$COM = 93$$

$$GEN = 10$$

✓ « Upscaling » study: talk - Geohab 2023. Combining drone (UAVs) and underwater (UWP) photogrammetry to map coral reef complexity at centimeter resolution over large extents. coll. G20I S. Poulain & J. Barde - UMR Marbec

ranked descriptors values \rightarrow across all sites the relationship between ranked descriptor values is strong and provide substantial predictability (all $R^2 > 0.9$); site dependecy...

Automated labeling on orthomosaics:

GEOAI for marine ecosystem monitoring: a complete workflow to generate maps AI model predictions. Conference proceedings FOSS4G 2023. coll. G2OI – J. Talpaert & J. Barde - UMR Marbec

Figure 4. Labeled raster tiles (.tif format) (a) and vector tiles of annotation (.geojson format) (b). COCO file containing annotations (c) to train models.

OpenDroneMap: IRD workstation/server https://opendronemap.ird.fr/Coll. G2OI project, S. Poulain & J. Barde - UMR Marbec

- Multispectrale photogrammetry
- ✓ Esaly Web User interface → 2D et 3D models visualization

- ✓ Rolling shutter :
- ✓ Homography: rapid processing for urgency cases, survey to natural disaster e.g.cyclone, floods earthquak... (equivalent of Pix4D fields ou React)
- ✓ User gestion, sharing / collaboratif projects
- API remote automated processing

Résidences artistiques "Art et mer" 2022 Parc Naturel Marin - DAD Mayotte

Awareness actions:

Arts – 2022 - 2024

Workshop: Underwater and aerial image processing - drones: mapping with artificial intelligence and photogrammetry

Malagasy National Oceanographic Data Center

F indability

Accessibility

nteroperabillity

Reusability

Coll. G2OI project

Nosy-Ve reef aerial- drone survey and underwater sampling

G2OI project S. Poulain & J. Barde 25

Thank you

Questions?

