

SQL-Intro

Index

- Databases as tables
- Create/delete tables
- Insert/delete data (in tables)
- Query Database

Databases as tables

How the programer sees (relational) databases

Students:

SSN	Name	Category
123-45-6789	Charles	undergrad
234-56-7890	Dan	grad
	•••	•••

Takes:

SSN	CID
123-45-6789	CSE444

Courses:

CID	Name	Quarter
CSE444	Databases	fall
CSE541	Operating systems	winter

Informal Relational DataBase Design

- Describe the "world" as a set of "things"
- Each thing will be a table
- Thing are described by the table column
- Thing are related
- Some Relations are described by tables
- Others by an extra column

Example-1: Enroll in a activity

Students Table

Student	ID* •	
John Smith	084	
Jane Bloggs	100	
John Smith	182	
Mark Antony	219	

Participants Table

·D*	Activity*	
084	Tennis	
084	Swimming	
100	Squash	
100	Swimming	
182	Tennis	
219	Golf	
219	Swimming	
219	Squash	

Activities Table

Activity* 🖊	Cost	
Golf	\$47	
Sailing	\$50	
Squash	\$40	
Swimming	\$15	
Tennis	\$36	

Example-2: Library

Customers

Design Database Assignments

A friend is interested in keeping track of information about his album collection. He is not concerned about whether or not the albums are CDs, tapes, LPs, etc. Also, assume that he does not have any compilation albums—that is, each album has songs from a single band. For each album, he wants to store which band recorded the album, the title, the year, and the chronology (e.g. this is the 4th album for that band). He also wants to store the songs, including title, length, track number, and writer(s). Of course, if two bands record the same song, they might have different track numbers and lengths.

For each band (group or individual), he also wants to store the names of all of the band members. For each band member, he needs their first and last names, and country of origin. Consider both band members and songwriters as musicians.

chess tournament

SQL

DDL/DML/DCL

•DDL stands from Data Definition Language:

- CREATE to create objects in the database
- OALTER alters the structure of the database
- ODROP delete objects from the database
- •GRANT gives user's access privileges to database
- oREVOKE withdraw access privileges given with the GRANT command

• DML stands from Data Manipulation Language statements. Some examples:

- •SELECT retrieve data from the a database
- •INSERT insert data into a table
- OUPDATE updates existing data within a table
- DELETE deletes all records from a table, the space for the records remain
- EXPLAIN PLAN explain access path to data
- LOCK TABLE control concurrency

• DCL stands from Data Control Language statements. Some examples:

- COMMIT save work done
- SAVEPOINT identify a point in a transaction to which you can later roll back
- ROLLBACK restore database to original since the last COMMIT
- oSET TRANSACTION Change transaction options like what rollback segment to use

SQL Types

 Table 6.1
 ISO SQL data types.

Data type	Declarations			
boolean character bit exact numeric approximate numeric datetime interval large objects	BOOLEAN CHAR BIT NUMERIC FLOAT DATE INTERVAL CHARACTER I	VARCHAR BIT VARYING DECIMAL REAL TIME LARGE OBJECT	INTEGER DOUBLE PRECISION TIMESTAMP BINARY LARGE OBJECT	SMALLINT

Bool states, char(3) vs varchar, exact vs approximate, data vs interval

Create Table Construct

•An SQL relation is defined using the **create table** command:

create table
$$r$$
 ($A_1 D_1, A_2 D_2, ..., A_n D_n$, (integrity-constraint₁),

...,

(integrity-constraint_k))

- or is the name of the relation
- \circ each A_i is an attribute name in the schema of relation r
- $\circ D_i$ is the data type of values in the domain of attribute A_i

Create Table Construct

• Example:

create table branch

(branch-name char(15) **not null,** branch-city char(30), assets integer)

Integrity Constraints in Create Table

- •not null
- •primary key $(A_1, ..., A_n)$
- •check (P), where P is a predicate

Example: Declare *branch-name* as the primary key for *branch* and ensure that the values of *assets* are non-negative.

```
create table branch
  (branch-name char(15),
  branch-city char(30)
  assets integer,
  primary key (branch-name),
  check (assets >= 0))
```

Integrity Constraints in Create Table-II

- unique
- foreign key (A_1)
- default value
- index

Example:

```
CREATE TABLE Orders (
OrderID int PRIMARY KEY,
OrderNumber int NOT NULL UNIQUE,
PersonID int REFERENCES Persons(PersonID));
```

Drop and Alter Table Constructs

- The **drop table** command deletes all information about the dropped relation from the database.
- The **alter table** command is used to add attributes to an existing relation.

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

- All tuples in the relation are assigned *null* as the value for the new attribute.
- The alter table command can also be used to drop attributes of a relation

alter table *r* drop *A*

where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases

Let us Go live

DDL examples previous chapter

The END