Schema di massima Incertezze

- Quattro rami (o lati) ciascuno con un resistore
- Permette di misurare il valore di resistenza
- I vertici A e B sono detti di alimentazione
- I vertici C e D sono detti di rivelazione

- Permette di misurare il valore di una resistenza R_x
- Se $V_d=0$ allora $R_1 \cdot R_x = R_2 \cdot R_3$ (condizione di equilibrio del ponte

 Se R₃ diventa una resistenza variabile R_v (resistenza di confronto)

$$R_x = R_v \cdot R_2 / R_1 = R_v \cdot K$$

 K (rapporto fra le due resistenze rimanenti) è variabile a decadi ed è scelto in modo che V_d sia la più piccola possibile con R_v posizionata ad un valore intermedio del proprio range di variazione

 Successivamente si varia il valore di R_v fino ad avere il valore più piccolo possibile (prossimo allo zero) dello strumento che misura la ddp V_d (V_d~0V)

- La resistenza variabile è in genere costituita da una cassetta di resistenze tarate con incertezza relativa dello 0.1% (o migliore)
- La resistenza variabile varia in genere a step ben determinati di 1Ω o di 0.1Ω
- Può dunque succedere che non sia possibile portare in equilibrio il ponte

Modello RM/5 p 1

a cinque decadi da 0,1 a 11.000 ohm. $10\times(0,1+1+10+100+1000)$

Commutatori a spazzola rotante, con scatto rapido, comandati a manopola. I contatti di questi commutatori sono in lega d'argento, la resistenza di contatto è dell'ordine di 0,002 ohm.

Bobine, montate su supporti isolanti in deformabili, in filo di manganina con avvolgimento bifilare; potenza massima dissipabile in ogni bobina 0,5 watt a carico continuo.

Taratura eseguita con precisione superiore a \pm 0,1%.

Montate in cassetta metallica verniciata in grigio acciaio con pannello metallico verniciato. Sotto i commutatori sono ricavate delle finestrelle nelle quali compare il numero corrispondente al valore della resistenza inserita.

Queste cassette hanno due morsetti, le cinque decadi sono collegate in serie internamente.

Dimensioni: mm. 420×295×180

Peso: kg. 8,500 circa.

- In corrispondenza di due valori di resistenza R_{v1} e R_{v2} si avranno valori si V_d di segno opposto (per esempio V_{d1}>0 e V_{d2}<0)
- In questo caso la risoluzione della resistenza campione non è adeguata a portare a zero la tensione V_d
- Si utilizza una semplice tecnica di interpolazione per determinare il valore teorico R_{v0} che mette in equilibrio il ponte

•
$$\frac{V_{d1}}{R_{v1}-R_{v0}} = \frac{V_{d2}}{R_{v0}-R_{v2}}$$
...da cui $R_{v0} = \frac{V_{d1}R_{v2}+V_{d2}R_{v1}}{V_{d1}+V_{d2}}$

Esempio: resistore campione con risoluzione 1Ω $R_{v1}=88\Omega$ $V_{d1}=8mV$; $R_{v2}=89\Omega$ e $V_{d2}=-12mV$

$$R_{v0} = 88.4\Omega$$

 Può accadere però che R_v sia un resistore con risoluzione ΔR_v adeguata per portare il ponte in equilibrio (per esempio 0.05Ω)

$$V_d = \left(\frac{R_{\chi}}{R_{\chi} + R_2} - \frac{R_{\nu}}{R_{\nu} + R_1}\right) \cdot V_{cc}$$

• In equilibrio si ottiene:

$$\frac{R_1}{R_v} = \frac{R_2}{R_x} \to R_x = \frac{R_2}{R_1} R_v$$

•
$$R_x = kR_y$$

- Nell'ipotesi di avere $V_d \approx 0$
- $R_x = \frac{R_2}{R_1} R_v$ da cui

$$\bullet \quad \frac{\delta R_{\chi}}{R_{\chi}} = \frac{\delta R_1}{R_1} + \frac{\delta R_2}{R_2} + \frac{\delta R_{v}}{R_{v}}$$

 Si supponga che il ponte sia "quasi" all'equilibrio e che l'unica resistenza variabile sia R_v

$$R_v = R_{v0} + \Delta R_v = R_{v0}(1+x) \text{ con } x = \frac{\Delta R_v}{R_{v0}}$$

 R_{v0} è il valore che permetterebbe di avere il ponte in equilibrio quando x=0

Riscriviamo la condizione di equilibrio come:

$$V_d = \left(\frac{R_{vo}(1+x)}{R_{vo}(1+x) + R_1} - \frac{R_3}{R_3 + R_2}\right) \cdot V_{cc}$$

- Definisco $A = \frac{R_1}{R_{v0}} = \frac{R_2}{R_3}$
- "A" è detto guadagno del ponte e rappresenta il rapporto fra le resistenze in condizione di equilibrio

$$V_d = \left(\frac{R_{vo}(1+x)}{R_{vo}(1+x) + R_1} - \frac{R_3}{R_3 + R_2}\right) \cdot V_{cc} =$$

$$= \left(\frac{(1+x)}{(1+x)+A} - \frac{1}{1+A}\right) \cdot V_{cc} = \frac{Ax}{((1+x)+A)(1+A)} V_{cc}$$

$$V_d = \frac{Ax}{(A+1)^2 \left(1 + \frac{x}{A+1}\right)} \cdot V_{cc} \approx \frac{Ax}{(A+1)^2} \cdot \left(1 - \frac{x}{A+1}\right) V_{cc} \tag{1}$$

NB: se
$$\alpha = \frac{x}{A+1} \ll 1$$
 si ha che $\frac{1}{1+\alpha} \approx 1-\alpha$

Introducendo il termine di sensibilità definito come

$$S = \frac{A}{(A+1)^2} V_{cc}$$

Si ottiene infine, dalla (1):

$$V_d = Sx - S\frac{x^2}{A+1}$$

$$S = \frac{A}{(A+1)^2} V_{cc}$$

 Il termine di sensibilità ha un massimo per A=1 quindi per resistenze del ponte tutte uguali

$$V_d = Sx - S\frac{x^2}{A+1} \ con \ x = \frac{\Delta R_v}{R_{v0}}$$

- V_d dipende anche da un termine quadratico
- Il termine quadratico si riduce se A aumenta (peò riduco la sensibilità)

$$V_d = Sx - S\frac{x^2}{A+1} con x = \frac{\Delta R_v}{R_{v0}}$$
 (2)

- Dalla (2), è possibile valutare la tensione di squilibrio ottenibile variando il resistore del valore pari alla risoluzione $\Delta R_{\rm v}$
- Inoltre: $\delta V_d = S \delta x$ più un termine trascurabile

 Tornando al caso della misura di una resistenza incognita R_v abbiamo:

$$R_{v} = R_{v0} + \Delta R_{v}$$

$$\delta R_{v} = \delta R_{v0} + \delta (\Delta R_{v})$$

$$\frac{\delta R_{v}}{R_{v}} \approx \frac{\delta R_{v0}}{R_{v0}} + \frac{\delta (\Delta R_{v})}{R_{v0}}$$

 Utilizzando le usuali formule di propagazione delle incertezze (metodo determ.) si ottiene:

$$\frac{\delta R_x}{R_x} = \frac{\delta R_1}{R_1} + \frac{\delta R_2}{R_2} + \frac{\delta R_{v0}}{R_{v0}} + \frac{\delta (\Delta R_v)}{R_{v0}}$$

• Tenendo conto che $\delta V_d = S \delta x$ possiamo scrivere

$$\frac{\delta(\Delta R_v)}{R_{v0}} = \frac{\delta V_d}{S}$$

$$\frac{\delta R_{x}}{R_{x}} = \frac{\delta R_{1}}{R_{1}} + \frac{\delta R_{2}}{R_{2}} + \frac{\delta R_{v0}}{R_{v0}} + \frac{\delta V_{d}}{S}$$

$$\frac{\delta R_x}{R_x} = \frac{\delta R_1}{R_1} + \frac{\delta R_2}{R_2} + \frac{\delta R_{v0}}{R_{v0}} + \frac{\delta V_d}{S}$$

- L'incertezza relativa di R_x dipende dunque da
 - L'incertezza relativa di R₁ ed R₂
 - Dalla sensibilità del ponte
 - Dalla nostra capacità di "azzerarlo"
 - Dalla incertezza della nostra resistenza campione

Misure in AC

Definizioni Voltmetri a valore efficace Esercizi

 La potenza media dissipata da un resistore ai capi del quale è applicata una tensione periodica v(t) è data da

$$P = \frac{\frac{1}{T} \int_{0}^{T} v^{2}(t)dt}{R} = \frac{v_{eff}^{2}}{R}$$

- Con questa definizione si mantiene la stessa struttura della formula della potenza dissipata da un resistore ai capi del quale è applicata una tensione costante
- Inoltre: il valore efficace di una grandezza periodica è dato dalla radice quadrata della somma dei quadrati dei valori efficaci delle sue componenti armoniche (teorema di Parseval) ...andate a rivedere la dimostrazione

- Per un generico segnale periodico v(t) possiamo definire due paramentri fondamentali:
- il valor medio: $v_m = \frac{1}{T} \int_0^T v(t) dt$
- Il valore efficace: $v_{eff} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt}$

Esempi

• $v(t) = Asin(\omega t)$

$$v_{eff} = \sqrt{\frac{1}{T} \int_0^T v^2(t) dt} = \sqrt{\frac{A^2}{T} \int_0^T \sin^2(\omega t) dt} = \dots = \frac{A}{\sqrt{2}}$$

v(t)= V_p per 0<t≤T/2
 -V_p per T/2<t≤T

$$v_{eff} = \cdots = V_p$$

Esercizio

• Determinare valor medio e valore efficace nel caso della forma d'onda quadra in figura al variare del duty cycle α

•
$$V_m = 1/T \cdot \alpha T \cdot V_p = \alpha \cdot V_p$$

•
$$v_{eff}^2 = \frac{1}{T} \alpha T V_p^2 = \alpha V_p^2 \rightarrow v_{eff} = V_p \sqrt{\alpha}$$

- Il voltmetro a doppia rampa permette di effettuare misurazioni di tensione con elevata risoluzione ed accuratezza
- Per mezzo di una conversione elettrotermica è possibile misurare una tensione efficace per mezzo di una equivalente tensione DC

- Sottoponendo un resistore ad una tensione si ottiene un aumento della temperatura proporzionale alla potenza dissipata
- Misurando l'aumento della temperatura è possibile risalire al valore efficace della tensione stessa
- Poiché la temperatura ambiente influenza la temperatura finale del resistore, è necessario utilizzare un sistema di confronto

 Schema di principio di un voltmetro a conversione elettrotermica

 Il resistore R' è sottoposto alla tensione continua prodotta dal generatore variabile V_{DC}; ad R è applicata la tensione v(t) di cui si vuol misurare il valore efficace

 La tensione continua V_{DC} viene fatta variare finché R' non raggiunge la stessa temperatura di R

• Raggiunta la condizione di equilibrio termico fra le due resistenze, la potenza dissipata dai due resistori è la stessa:

$$\frac{V_{eff}^2}{R} = \frac{V_{DC}^2}{R'}$$
Circuito
$$v(t) \quad R$$

Da cui:

$$V_{eff} = \sqrt{\frac{R'}{R} \cdot V_{DC}}$$

Misurando dunque la tensione continua ai capi del generatore variabile con un voltmetro numerico per tensioni continue è possibile ottenere direttamente la tensione efficace del segnale v(t), qualunque sia la forma del

segnale v(t)

Esempio: Incertezza voltmetro Agilent 34401 nella misura in alternata

AC Characteristics

Accuracy Specifications ± (% of reading + % of range)[1]

Function	Range [3]	Frequency	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient/°C 0°C – 18°C 28°C – 55°C
True RMS AC Voltage [4]	100.0000 mV	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz – 20 kHz 20 kHz – 50 kHz 50 kHz – 100 kHz 100 kHz – 300 kHz	1.00 + 0.03 0.35 + 0.03 0.04 + 0.03 0.10 + 0.05 0.55 + 0.08 4.00 + 0.50	1.00 + 0.04 0.35 + 0.04 0.05 + 0.04 0.11 + 0.05 0.60 + 0.08 4.00 + 0.50	1.00 + 0.04 0.35 + 0.04 0.06 + 0.04 0.12 + 0.05 0.60 + 0.08 4.00 + 0.50	0.100 + 0.004 0.035 + 0.004 0.005 + 0.004 0.011 + 0.005 0.060 + 0.008 0.20 + 0.02
	1.000000 V to 750.000 V	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz – 20 kHz 20 kHz – 50 kHz 50 kHz – 100 kHz [5] 100 kHz – 300 kHz [6]	1.00 + 0.02 0.35 + 0.02 0.04 + 0.02 0.10 + 0.04 0.55 + 0.08 4.00 + 0.50	1.00 + 0.03 0.35 + 0.03 0.05 + 0.03 0.11 + 0.05 0.60 + 0.08 4.00 + 0.50	1.00 + 0.03 0.35 + 0.03 0.06 + 0.03 0.12 + 0.05 0.60 + 0.08 4.00 + 0.50	0.100 + 0.003 0.035 + 0.003 0.005 + 0.003 0.011 + 0.005 0.060 + 0.008 0.20 + 0.02
True RMS AC Current [4]	1.000000 A	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz – 5 kHz	1.00 + 0.04 0.30 + 0.04 0.10 + 0.04	1.00 + 0.04 0.30 + 0.04 0.10 + 0.04	1.00 + 0.04 0.30 + 0.04 0.10 + 0.04	0.100 + 0.006 0.035 + 0.006 0.015 + 0.006
	3.00000 A	3 Hz – 5 Hz 5 Hz – 10 Hz 10 Hz – 5 kHz	1.10 + 0.06 0.35 + 0.06 0.15 + 0.06	1.10 + 0.06 0.35 + 0.06 0.15 + 0.06	1.10 + 0.06 0.35 + 0.06 0.15 + 0.06	0.100 + 0.006 0.035 + 0.006 0.015 + 0.006

- Se il segnale da misurare è piccolo allora l'aumento di temperatura può non essere rilevabile: si utilizza un amplificatore di ingresso a larga banda (per poter misurare più armoniche possibili del segnale di ingresso)
- L'amplificatore inserito deve avere una dinamica di ingresso molto ampia in modo da non distorcere i segnali che presentano un basso valore efficace ed un elevato valore di picco (segnali impulsivi): in genere si introduce, nel budget delle incertezze, un termine correttivo dovuto al fattore di cresta CF definito come CF=V_p/V_{eff}

- Molto spesso i voltmetri a vero valore efficace presentano un condensatore in serie al circuito di ingresso che elimina la componente continua del segnale da misurare
- Se si vuol conoscere il valore della componente continua si utilizza la modalità di misura in DC
- Per esempio nel 34401 la più piccola frequenza misurabile in AC è di 3Hz

Esempio: Incertezza voltmetro Agilent 34401 nella misura in alternata

Additional Low Frequency Errors (% of reading)				Additional Crest Factor Errors (non-sinewave)[7]		
Frequency 10 Hz - 20 Hz 20 Hz - 40 Hz 40 Hz - 100 Hz 100 Hz - 200 Hz 200 Hz - 1 kHz > 1 kHz	Slow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC Filter Medium 0.74 0.22 0.06 0.01 0	Fast — 0.73 0.22 0.18 0	Crest Factor 1 - 2 2 - 3 3 - 4 4 - 5	Error (% of reading) 0.05% 0.15% 0.30% 0.40%	

Sinewave Transfer Accuracy (typical)

Frequency	Error (% of range)
10 Hz – 50 kHz	0.002%
50 kHz – 300 kHz	0.005%

Conditions:

- Sinewave input.
- Within 10 minutes and ± 0.5°C.
- Within ±10% of initial voltage and ±1% of initial frequency.
- Following a 2-hour warm-up.
- Fixed range between 10% and 100% of full scale (and <120 V).
- Using 6½ digit resolution.
- Measurements are made using accepted metrology practices.

Measuring Characteristics

Operating Characteristics [9]

Fattore di cresta: rapporto tra valore di picco e valore efficace

Esempio: voltmetro Agilent 34401 (tarato negli ultimi 90 giorni) nella **misura in continua**

$$V_L = 0.71321456 \text{ V}$$

Trovare l'incertezza e rappresentare il risultato di misura con un adeguato numero di cifre (scelto V_{FS}=1V)

$$\delta V = \frac{0.0030}{100} V_L + \frac{0.0007}{100} V_{FS} = 21 \,\mu V + 7 \,\mu V = 28 \,\mu V;$$

$$V_L = (0.713214 \pm 0.000028) = 0.713214 \cdot (1 \pm 39 \cdot 10^{-6}) \,V$$

DC Characteristics

1000 000 V

	Accuracy openincations I (% or reading + % or range) [1]					
Function	Range [3]	Test Current or Burden Voltage	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /°C 0°C – 18°C 28°C – 55°C
DC Voltage	100.0000 mV 1.000000 V 10.00000 V 100.0000 V		0.0030 + 0.0030 0.0020 + 0.0006 0.0015 + 0.0004 0.0020 + 0.0006	0.0040 + 0.0035 0.0030 + 0.0007 0.0020 + 0.0005 0.0035 + 0.0006	0.0050 + 0.0035 0.0040 + 0.0007 0.0035 + 0.0005 0.0045 + 0.0006	0.0005 + 0.0005 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001

Accuracy Specifications + / % of reading + % of range) [1]

0.0005 + 0.0001

Esempio: voltmetro Agilent 34401 (tarato negli ultimi 90 giorni) nella **misura in alternata**

V_L=91.321456mV con segnale sinusoidale @500Hz

Trovare l'incertezza e rappresentare il risultato di misura con un adeguato numero di cifre (scelto V_{FS}=100mV)

$$\delta V = \frac{0.05}{100} V_L + \frac{0.04}{100} V_{FS} = 45\mu V + 40\mu V = 85\mu V; V_L$$

= $(91.321 \pm 0.085) mV = 91.321 \cdot (1 \pm 93 \cdot 10^{-5}) mV$

AC Characteristics

Accuracy Specifications ±(% of reading + % of range)[1]

Function	Range [3]	Frequency	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient/°C 0°C – 18°C 28°C – 55°C
True RMS AC Voltage [4]	100.0000 mV	3 Hz - 5 Hz 5 Hz - 10 Hz 10 Hz - 20 kHz 20 kHz - 50 kHz 50 kHz - 100 kHz 100 kHz - 300 kHz	1.00 + 0.03 0.35 + 0.03 0.04 + 0.03 0.10 + 0.05 0.55 + 0.08 4.00 + 0.50	1.00 + 0.04 0.35 + 0.04 0.05 + 0.04 0.11 + 0.05 0.60 + 0.08 4.00 + 0.50	1.00 + 0.04 0.35 + 0.04 0.06 + 0.04 0.12 + 0.05 0.60 + 0.08 4.00 + 0.50	0.100 + 0.004 0.035 + 0.004 0.005 + 0.004 0.011 + 0.005 0.060 + 0.008 0.20 + 0.02

Un segnale periodico è composto, per un semiperiodo, da una forma d'onda triangolare, mentre, nell'altro semiperiodo, da una forma d'onda sinusoidale (V_p=5 V, valore minimo 0 V, v. figura) è misurato per mezzo di un voltmetro a vero valore efficace **senza condensatore in serie**.

- Determinate il valore atteso di lettura.
- Il manuale del voltmetro riporta la seguente tabella delle incertezze

$$V_{fs}$$
=1V ±(0.02%VI+0.005%Vfs)
 V_{fs} =5V ±(0.03%VI+0.005%Vfs)
 V_{fs} =10V ±(0.04%VI+0.005%Vfs)
indicate il valore del fondo scala scelto
e l'incertezza assoluta di misura.

Determinate infine il valor medio del segnale

Esercizio

• Un segnale ad onda quadra ha un duty cycle del 20%, valore massimo V_p =5V, valore minimo -5V. Determinare la lettura attesa e l'incertezza se si utilizza un voltmetro a vero valore efficace **con condensatore in serie**. Il voltmetro dispone di un unico fondo scala di 10 V e l'incertezza è rappresentata dalla seguente espressione $\delta V = \pm (0.05\% V_L + 0.002\% V_{FS})$

