PFE REPORT

Mechanical conception and geometrical optimization of a car carbon fiber bodywork

Simon Froelicher Baptiste Legouix Tutor : Cedric Laurent

September 21, 2018

Contents

1	Solid mechanical modeling		
	1.1	Theory of composite materials	1
	1.2	Determination of stiffness matrices	1
	1.3	Finite element resolution	1
		1.3.1 Computational solid mechanics	1
		1.3.2 Static analysis	1
		1.3.3 Transcient analysis	1
2	Aer	rodynamic modeling	1
	2.1	Theory of fluid dynamics	1
	2.2	Finite element resolution	1
		2.2.1 Computational fluid dynamics	1
		2.2.2 Analysis of laminar flow	
		2.2.3 Analysis of turbulent flow	
3	Cor	mposite bodywork design	2
	3.1	Specifications	2
	3.2	Complete modeling based on finite element results	
	3.3	Design choices	
4	Geo	ometrical optimization	2

MECHANICAL CONCEPTION AND GEOMETRICAL OPTIMIZATION OF A CAR CARBON FIBER BODYWORK

1 Solid mechanical modeling

1.1 Theory of composite materials

Fondamentaux de MMC + relations mathématiques qui permettent de caractériser les matériaux carbone (monolithique et sandwich), tenant compte de leurs symétries.

+ Etude de résistance du matériau (à éclaircir).

1.2 Determination of stiffness matrices

Essais mécaniques et relation entre les mesures et les coefficients de la matrice de raideur.

+ Essais de rupture.

1.3 Finite element resolution

1.3.1 Computational solid mechanics

Optionnel

1.3.2 Static analysis

Etude statique sous AnSys.

1.3.3 Transcient analysis

Etude fréquentielle ou transitoire, sur la base de mesures accélérométriques (non-réalisées, donc à estimer?).

2 Aerodynamic modeling

2.1 Theory of fluid dynamics

Fondamentaux

2.2 Finite element resolution

2.2.1 Computational fluid dynamics

Optionnel

2.2.2 Analysis of laminar flow

Détermination du C_x et C_z sous AnSys.

2.2.3 Analysis of turbulent flow

Idem

3 Composite bodywork design

3.1 Specifications

Lister les contraintes imposées par les règles

Simon Froelicher Baptiste Legouix Tutor : Cedric Laurent 1

MECHANICAL CONCEPTION AND GEOMETRICAL OPTIMIZATION OF A CAR CARBON FIBER BODYWORK

3.2 Complete modeling based on finite element results

Comment estimer les pertes à partir des deux simulations (solide et fluide) ? En les effectuant indépendamment puis en mettant des poids sur leurs pertes respectives, ou en effectuant le calcul fluide suivi du calcul solide prenant en compte les pressions calculées ?

3.3 Design choices

4 Geometrical optimization