Partial Differential Equations and its Applications (MAT231)

Instructor: Mayamma Joseph (mayamma.joseph@christuniversity.in)

Practice Problems: Partial Differential Equations

I. Linear Partial Differential Equations of Order One: Pp + Qq = R

Solve the following:

1. $(y+z)p + (z+x)q = (x+y)$	2. $\left(\frac{y-z}{yz}\right)p + \left(\frac{z-x}{zx}\right)q = \left(\frac{x-y}{xy}\right)$
3. $(bz - cy)p + (cx - az)q = (ay - bx)$	4. $(y^2 + z^2 - x^2)p - 2xyq + 2xz = 0$
5. $x(y-z)p + y(z-x)q = z(x-y)$	6. $(mz - ny)p + (nx - lz)q = (ly - mx)$
7. xzp + yzq = xy	8. $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$
9. $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$	$10.y^2p - xyq = x(z - 2y)$
$11.x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$	$12.(x^2 + y^2 + yz)p + (x^2 + y^2 - zx)q = z(x + y)$
13.(1+y)p + (1+x)q = z	$14.(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)q = z(x - y)$
$15.\frac{y^2z}{x}p + zxq = y^2$	$16.(z^2 - 2yz - y^2)p + x(y+z)q = x(y-z)$
$17.x^2p + y^2q = z^2$	$18. (x + 2z)p + (4xz - y)q = 2x^2 + y$
$19.px + qy = \sqrt{x^2 + y^2}$	$20.(x^2 - yz)p + (y^2 - zx)q = (z^2 - xy)$

II. Non-linear Partial Differential Equations of Order One: f(x, y, z, p, q) = 0

Solve the following.

1. $p^2 - q^2 = x - y$	$2. \ \sqrt{p} + \sqrt{q} = x + y$
3. p + q = sinx + siny	4. yp + xq + pq = 0
$5. p^2 - y^3 q = x^2 - y^2$	$6. pe^y = qe^x$
$7. \ q = 2yp^2$	$8. \ q = xyp^2$
9. $pq = xy$	$10. yp = 2xy + \log q$
$11. x^2p^2 = yq^2$	$12. q = px + p^2$
13. $p^2y(1+x^2) = qx^2$	14. $p^2 + q^2 = x + y$
15. $p - x^2 = q + y^2$	$16. \sqrt{p} + \sqrt{q} = 2x$
17. $q(p - cosx) = cosy$	18. $q - p + x - y = 0$
19. $z(p^2 - q^2) = x - y$	20. z(p+q) = tanx + tany
21. $z(p^2 + q^2) = x^2 + y^2$	$22. q^2y^2 = z(z - px)$

23. z = pq	$24. z^2(p^2+q^2+1)=1$
25. p(1+q) = zq	26. $p(1+q^2) = q(z-a)$
$27. p^2 = z^2(a - q^2)$	$28. 4(1+z^3) = 9z^4pq$
29. $p(1-q^2) = q(1-z)$	30. $p^3 + q^3 = 3pqz$
31. $p^3 + q^3 = 27z$	32. $p^2 = z^2(1 - pq)$
33. $pz = 1 + q^2$	$34. 9(p^2z + q^2) = 4$
35. $z^2(p^2+q^2+1)=c^2$	34. $9(p^2z + q^2) = 4$ 36. $p + q = \frac{z}{a}$
$37. q^2 = z^2 p^2 (1 - p^2)$	38. $p^2 + q^2 = 1$
39. $p^2q^3 = 1$	40. $p = e^q$
41. $pq = 1$	42. $p^2 - q^2 = 1$
$41. pq = 1$ $43. q = e^{-\frac{p}{a}}$	44. pq + p + q = 0
45. p+q=pq	$46. \sqrt{p} + \sqrt{q} = 1$
$47. p^2 + q^2 = npq$	$48. 2p^2 + 6p + 2q + 4 = 0$
47. $p^2 + q^2 = npq$ 49. $p = e^{-\frac{q}{a}}$	50. $2p + 3q = 1$
$51. z = px + qy + p^2 + q^2$	$52. z = px + qy + log \ pq$
53. z = px + qy + pq	54. $z - px - qy = c\sqrt{1 + p^2 + q^2}$
$55. \sin(z - px - qy) = pq$	$56. pq = e^{z - px - qy}$
$57. z = px + qy + \sqrt{\frac{pq}{p+q}}$	58. $(px + qy - z)^2 = 1 + p^2 + q^2$
$59. x^2p^2 + y^2q^2 = z^2$	$60. z^2(p^2x^2 + q^2) = 1$
Solve the following using Charpit's method	
$1. \ q = px + q^2$	2. px + qy = pq
3. $p(1+q^2) + (b-z)q = 0$	$4. \ z = p^2 x + q^2 y$
5. $(p^2 + q^2)y = qz$ 7. $2xz - px^2 - 2qxy + pq = 0$	6. $(p+q)(px+qy) = 1$
7. $2xz - px^2 - 2qxy + pq = 0$	$8. p^2 + q^2 - 2px - 2qy + 1 = 0$
9. $2z + p^2 + qy + 2y^2 = 0$	10. $p^2 + q^2 - 2px - 2qy + 2xy = 0$
11. $p = (qy + z)^2$ 13. $16p^2z^2 + 9q^2z^2 + 4z^2 - 4 = 0$	12. $z^2(p^2z^2+q^2)=1$
13. $16p^2z^2 + 9q^2z^2 + 4z^2 - 4 = 0$	$14. (p^2 + q^2)x = pz$
15. $2(z + px + qy) = yp^2$	$16. z^2 = pqxy$