Diskrete Strukturen I; WS 2020/2021

Jörg Vogel

Institut für Informatik der FSU

2. Übungsserie

1.) "Turm von Hanoi"

heißt ein Spiel mit drei Stäben L, M und R und einer beliebigen, aber fixierten Anzahl n von Scheiben paarweise verschiedener Größe.

Zu Beginn des Spiels liegen alle Scheiben der Größe nach sortiert (stets kleinere auf größeren) auf dem linken Stab L und bilden einen Turm. Das Ziel des Spieles besteht darin, diesen Turm durch zugweises Umstapeln am Ende (wieder der Größe nach sortiert) auf dem rechten Stab R zu haben. Ein Zug besteht im Umlegen einer Scheibe von einem Stab auf einem anderen. Dabei gelten folgende Regeln:

- (H1) Pro Zug darf genau eine Scheibe bewegt werden.
- (H2) Es liegt niemals eine größere Scheibe auf einer kleineren Scheibe.

Wir vereinbaren die folgende Bezeichnung:

 $\mathbf{T}(\mathbf{n})$ ist die kleinste Anzahl von Zügen, die gemäß der Regeln (H1) und (H2) notwendig sind, um einen \mathbf{T} urm aus \mathbf{n} Scheiben von L nach R umzustapeln.

- a) Beschreiben Sie für kleine Beispiele für n entsprechende Zugfolgen. Überlegen Sie sich hierfür eine geeignete Notation.
- b) Es gilt das folgende Rekursionsschema (1): T(1) = 1, T(n+1) = T(n) + 1 + T(n). Begründen Sie diese Aussage und achten Sie insbesondere darauf, dass es sich um die kleinstmögliche Anzahl von Zügen handelt.
- c) Ausgehend vom Rekursionsschema (1) finden Sie eine geschlossene Formel (2) für T(n) und beweisen Sie diese durch vollständige Induktion.

2.) Geraden in der Ebene

Manche Gebiete der Ebene, die durch n Geraden definiert werden, sind beschränkt (d.h. sie sind endlich), andere sind unbeschränkt (d.h. sie sind unendlich).

Bestimmen Sie die maximale Anzahl von beschränkten Gebieten $\mathbf{R}(\mathbf{n})$, die durch \mathbf{n} Geraden definiert werden, auf die folgende Weise:

- a) Bestimmen Sie für kleine Beispiele für n entsprechende Werte R(n).
- b) Finden Sie ein Rekursionsschema (1). Begründen Sie Ihre Aussage.
- c) Ausgehend von Ihrem Rekursionsschema (1) finden Sie eine geschlossene Formel (2) für R(n) und beweisen Sie diese durch vollständige Induktion.

2.) "Gärtner Pötschke"

Gärtner Pötschke schneidet seine Bäume nach folgenden zwei Regeln:

- (G1) An allen neuen Trieben werden im ersten und zweiten Jahr alle Seitentriebe entfernt.
- (G1) Vom dritten Jahr an wird jedem Trieb in jedem Jahr genau ein neuer Trieb gelassen.
 - a) Illustrieren Sie die Situation für die Jahre $n=1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7$ anhand einer graphischen Darstellung.
 - b) Finden Sie ein Rekursionsschema (1) und begründen Sie Ihre Aussage.

Abgabetermin: