	HW #3
1)	Let $U = \{(x,y) \mid x = 0 \text{ or } y = 0\}$.
	An example of U would be (x,0).
	It would be assed under scalar multiplication:
	Consider C(x, 0) = (cx, 0), where CEIF.
	It would not be closed under addition:
	consider (1,0) and (0,1). Both belong
	to U, however, their sum (1,1)
	doce not.
2)	To prove that U, MUz is a subspace of V,
	we must show it is closed under addition
	AND scalar multiplication.
	Let u, v ∈ U, ∩ U2. Then u, v ∈ U, and
	u,veUz. Since U, & Uz are subspaces,
	then we can say u+v EU, and u+v EU
	So, u+v E U, AUz thus proving that
	VINUz is closed under addition.
	Jimilary, for any CEF, CUEU, NU2
	and cvEU, NU2. Thus it is closed
	under scalar multiplication.
	Finally, since U, & Uz are both
	subspaces, OEU, and OEUz. Therefore
	DE U, A Uz.
	Based on these conditions, we can
	conclude that U, A Uz is a subspace
	of V.

Consider
$$W = \{(0,0,a,b,c): a,b,c \in \mathbb{F}^3\}$$

Now, for any $(x,y,a,b,c) \in \mathbb{F}^5$,

$$\begin{pmatrix} x \\ y \\ a \end{pmatrix} = \begin{pmatrix} x + y \\ x - y \\ c \end{pmatrix} + \begin{pmatrix} a - x - y \\ b - x + y \\ c - 2x \end{pmatrix}$$

Since
$$m \in W$$
, $x = 0 = y$. Since $m \in U$, we have $a = x + y = 0 + 0 = 0$. Additionally, we have $b = x - y = 0 - 0 = 0$. Finally, $c = 2 - x = 2 \cdot 0 = 0$.

$$b = x - y = 0 - 0 = 0$$
. Finally, $c = 2 - x = 2 \cdot 0 = 0$.

Therefore,
$$M = 0 \text{ CF}^5$$
 SO $U \cap W = \{\delta\}$.
We have now proven that $F^5 = U \oplus W$,
where $W = \{(0,0), a, b, c\}$: $a,b,c \in F^3$.

where
$$\omega = \{(0,0,a,b,c): a,b,c\in\mathbb{F}\}$$
.

5.
$$U_c = \frac{\pi}{2} \forall f(-x): f(-x) = f(x)$$
 $U_0 = \frac{\pi}{2} \forall f(-x): f(-x) = -f(x)$

Let $a = f(x)$. Clearly for any function

a on π , $a \neq -a$ unless $a = 0$. So the only element $a \in U_c \cap U_0 = \frac{\pi}{2} = 0$.

Thus, $\pi^{\pi} = U_c \oplus U_0$.