22 秋- 近世代数期末(回忆版)

何家兴 hejiaxing202411@163.com

December 7, 2024

Exercise 1.

设 $R=\mathbb{Z}_2[x],\ f(x)=x^5+x^4+x^3+x^2+x+1,\ I=\langle f(x)\rangle$ 表示由 f(x) 生成的理想。设 $\bar{R}=R/I,\$ 对于 $g(x)\in R,\$ 记 $\overline{g(x)}=g(x)+I\in \bar{R}$

- 1. 判断 I 是否为 R 的一个素理想,并证明结论
- 2. 用 $U(\bar{R})$ 是 \bar{R} 中全体单位关于 R 中乘法构成的群,证明 $\bar{x} \in U(\bar{R})$,并求出 $o(\bar{x})$

Exercise 2.

设 $R = \mathbb{Z}[x]$, p 是一个素数, $I = \langle x^2, p \rangle$ 是 R 中由 x^2 和 p 生成的理想

- 1. 证明 $I = \{x^2 f(x) + apx + bp \mid f(x) \in R, a, b \in \mathbb{Z}\}$
- 2. 判断 R/I 是否是域,并说明理由

Exercise 3.

设 $R \not\in M_n(\mathbb{R}), n \ge 2$ 中全体上三角矩阵关于矩阵的加法和乘法构成的环, $J \not\in R$ 中全体对角矩阵的集合, $I \not\in R$ 中全体幂零矩阵的集合, 证明:

- 1. $J \in R$ 的一个交换子环, $I \in R$ 的一个理想
- 2. $R/I \cong J$

Exercise 4.

设 $E=F(\alpha)$ 是对 F 的一个单代数扩张,并且 [E:F]=3n,其中 (3,n)=1。若 $\alpha\notin F(\alpha^3)$,证明

$$F(\alpha^3) = F(\alpha^{3^k}), \ \forall \ k \in \mathbb{Z}^+$$

Exercise 5.

设 p_1,p_2,\cdots,p_r 是 r 个两两不同的素数, $E=\mathbb{Q}(\alpha_1,\cdots,\alpha_r)$,其中 $\alpha_i=2^{1/p^i}$,证明

- 1. $[E:\mathbb{Q}]=p_1p_2\cdots p_r$
- 2. $E \in \mathbb{Q}$ 的一个单扩张。

Exercise 6.

设 p,q 是两个不同的素数, $R = \mathbb{Z}_2[x], n \in \mathbb{Z}^+$

- 1. 求出 R 中 p^n 次首 1 不可约多项式的个数
- 2. 求出 R 中 pq 次首 1 不可约多项式的个数。