Date: 02-01-2023

Time: 13:13

Table of Contents

- 1. Conditional Distribution of Multivariate Gaussian
- 2. Gaussian Process
 - 1. Gaussian Process Regression

Conditional Distribution of Multivariate Gaussian

■ Theorem ∨

Let, $x\in\mathbb{R}^n$ and x_1,x_2 are subset of x s.t. $x_1\in\mathbb{R}^{n_1}$ and $x\in\mathbb{R}^{n_2}$ with $n=n_1+n_2$.

If
$$x \sim \mathcal{N}(\mu, \Sigma)$$
, then $x_1 | x_2 \sim \mathcal{N}(\mu_{1|2}, \Sigma_{1|2})$.

with
$$\mu_{1|2}=\mu_1+\Sigma_{12}\Sigma_{22}^{-1}(x_2-\mu_2)$$
 and $\Sigma_{1|2}=\Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$

Here, without any loss of generality
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\Bigg(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \Bigg)$$

Proof:

By construction; x_1 and x_2 are jointly Gaussian. Furthermore, Gaussian distributions are closed under marginalization and conditioning i.e.

$$egin{aligned} x_1 &\sim \mathcal{N}(\mu_1, \Sigma_{11}) \ x_2 &\sim \mathcal{N}(\mu_2, \Sigma_{22}) \end{aligned}$$

We have,
$$\mathbb{P}(x_1|x_2)=rac{\mathbb{P}(x_1,x_2)}{\mathbb{P}(x_2)}=rac{\mathcal{N}(x;\mu,\Sigma)}{\mathcal{N}(x_2;\mu_2,\Sigma_{22})}$$

Note ∨

PDF of Multivariate Normal Distribution:

$$\mathcal{N}(x;\mu,\Sigma) = rac{1}{\sqrt{(2\pi)^{n/2}}} |\Sigma|^{-1/2} ext{exp}(-rac{1}{2}(x-\mu)\Sigma^{-1}(x-\mu)^T)$$

Now,

$$\mathbb{P}(x_1|x_2) = \frac{1}{\sqrt{(2\pi)^{n-n_2}}} \sqrt{\frac{|\Sigma_{22}|}{|\Sigma|}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu) + \frac{1}{2}(x_2-\mu_2)^T \Sigma_{22}^{-1} (x_2-\mu_2)\right] \tag{1}$$

Let; $\Sigma^{-1} = \begin{bmatrix} \Sigma^{11} & \Sigma^{12} \\ \Sigma^{21} & \Sigma^{22} \end{bmatrix}$ and since Σ^{-1} is symmetric matrix we have $(\Sigma^{21})^T = \Sigma^{12}$; the argument of exponential part in (1)

becomes;

$$= -\frac{1}{2} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right)^T \begin{bmatrix} \Sigma^{11} & \Sigma^{12} \\ \Sigma^{21} & \Sigma^{22} \end{bmatrix} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \right) + \frac{1}{2} (x_2 - \mu_2)^T \Sigma_{22}^{-1} (x_2 - \mu_2)$$

$$= -\frac{1}{2} [(x_1 - \mu_1)^T & (x_2 - \mu_2)^T] \begin{bmatrix} \Sigma^{11} & \Sigma^{12} \\ \Sigma^{21} & \Sigma^{22} \end{bmatrix} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{bmatrix} + \frac{1}{2} (x_2 - \mu_2)^T \Sigma_{22}^{-1} (x_2 - \mu_2)$$

$$= -\frac{1}{2} \left((x_1 - \mu_1)^T \Sigma^{11} (x_1 - \mu_1) + 2(x_1 - \mu_1)^T \Sigma^{12} (x_2 - \mu_2) + (x_2 - \mu_2)^T \Sigma^{22} (x_2 - \mu_2) \right) \dots$$

$$\dots + \frac{1}{2} (x_2 - \mu_2)^T \Sigma_{22}^{-1} (x_2 - \mu_2)$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} (A - BD^{-1}C)^{-1} & -(A - BD^{-1}C)^{-1}BD^{-1} \\ -D^{-1}C(A - BD^{-1}C)^{-1} & D^{-1} + D^{-1}C(A - BD^{-1}C)^{-1}BD^{-1} \end{bmatrix}$$

From the above note and we can get the corresponding expressions for each entries of Σ^{-1} . Plugging these expressions back to (1) yields the following:

$$\mathbb{P}(x_{1}|x_{2}) = \frac{1}{\sqrt{(2\pi)^{n_{1}}}} \sqrt{\frac{|\Sigma_{22}|}{|\Sigma|}} \exp \left[-\frac{1}{2} \left((x_{1} - \mu_{1})^{T} (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1} (x_{1} - \mu_{1}) \right. \right. \\
\left. -2(x_{1} - \mu_{1})^{T} (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1} \Sigma_{12} \Sigma_{22}^{-1} (x_{2} - \mu_{2}) \right. \\
\left. + (x_{2} - \mu_{2})^{T} [\Sigma_{22}^{-1} + \Sigma_{22}^{-1} \Sigma_{21} (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1}] (x_{2} - \mu_{2}) \right. \\
\left. + \frac{1}{2} (x_{2} - \mu_{2})^{T} \Sigma_{22}^{-1} (x_{2} - \mu_{2}) \right] \tag{2}$$

Note ∨

Determinant of a Block Matrix:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D| \cdot |A - BD^{-1}C|$$

Hence;

$$|\Sigma| = |\Sigma_{22}| \cdot |\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}| \tag{3}$$

Upon re-arranging the terms from (2) and using the fact (3), we get:

$$\begin{split} \mathbb{P}(x_1|x_2) &= \frac{1}{\sqrt{(2\pi)^{n_1}}} \big| \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \big|^{-1/2} \exp \left\{ -\frac{1}{2} \Big[x_1 - \big(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \big) \Big]^T (\Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})^{-1} \Big[x_1 - \big(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \big) \Big] \right\} \\ &= \frac{1}{\sqrt{(2\pi)^{n_1}}} |\Sigma_{1|2}^{-1/2}| \exp \left\{ -\frac{1}{2} (x_1 - \mu_{1|2})^T \Sigma_{1|2}^{-1} (x_1 - \mu_{1|2}) \right\} \\ & \therefore x_1 | x_2 \sim \mathcal{N}(\mu_{1|2}, \Sigma_{1|2}) \end{split}$$

Corollary:

$$\mathbb{P}(x_2|x_1) = rac{1}{\sqrt{(2\pi)^{n_2}}} |\Sigma_{2|1}^{-1/2}| \exp\left\{-rac{1}{2}(x_2 - \mu_{2|1})^T \Sigma_{2|1}^{-1}(x_2 - \mu_{2|1})
ight\}$$

Gaussian Process

A Gaussian Process, GP in short, is a (potentially infinite) collection of random variables (RVs) such that the joint distribution of every finite subset of RVs is a Multivariate Gaussian.

$$f \sim GP(\mu,k)$$

where $\mu(x)$ and $\kappa(x,x')$ are the mean and covariance of f respectively.

To model the predictive distribution, we use a GP prior: $\mathbb{P}(f|x) \sim \mathcal{N}(\mu, \Sigma)$ and condition it on the training data \mathcal{D} to model the joint distribution f(X) and it prediction at test data f(X').

Gaussian Process Regression

Without any loss of generality and before observing the training labels, we assume that the labels are drawn from the zero-mean prior Gaussian distribution i.e.

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} \sim \mathcal{N}(0,\Sigma)$$

Let y_2, y_3, \ldots, y_t be training points and $y_{t+1}, y_{t+2}, \ldots, y_n$ be test points. Then the covariance matrix Σ is a block matrix as shown below.

$$\Sigma = egin{bmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

where $\Sigma_{11} = \mathcal{K}(x_1, x_1)$ and so on. Also, x_1 , x_2 are train points and test points respectively. Most commonly used kernel is $Radial\ Basis\ Function$ (RBF):

```
k(x,x') = \sigma^2 \, e^{\left(-rac{||x-x'||^2}{2\,l^2}
ight)}
```

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
def kernel(x, xp):
        '''k(x,x') = sigma^2 exp(-0.5*length^2*|x-x'|^2)'''
        \sigma = 1
        length = 1
        sq_norm = scipy.spatial.distance.cdist(x, xp, 'sqeuclidean')
        return σ**2 * np.exp(-0.5*sq_norm*length**2)
# Sample from Gaussian Process Distribution
pts = 100 # number of points in each function
n = 5 # number of functions to sample
# Independent Variable Samples
X = np.linspace(0,5, pts)
X = X.reshape(-1,1)
\Sigma = kernel(X,X)
fx = np.random.multivariate_normal(mean = np.zeros(pts), cov = <math>\Sigma, size = n)
plt.title('RBF Kernel: $k(x,x\')$')
plt.imshow(\Sigma, cmap = 'viridis')
plt.colorbar()
plt.xlabel('X')
plt.ylabel('X')
plt.show()
plt.figure(figsize=(8,4))
for i in range(n):
        plt.plot(X, fx[i])
plt.tight_layout()
plt.xlim(0,5)
plt.xlabel('X')
plt.ylabel('Y = f(X)')
plt.title('Priors sampled from Gaussian Process with RBF Kernel')
plt.show()
```


Priors sampled from Gaussian Process with RBF Kernel

Now, posterior is obtained using the formula:

$$\mathbb{P}(y_2|y_1,X1,X2) = \mathcal{N}(\mu_{2|1},\Sigma_{2|1})$$

where; $\mu_{2|1}=\mu_2+\Sigma_{21}\Sigma_{11}^{-1}(y_1-0)$ and $\Sigma_{2|1}=\Sigma_{22}-\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$ And,

$$egin{bmatrix} y_1 \ y_2 \end{bmatrix} = egin{bmatrix} f(x_1) \ f(x_2) \end{bmatrix} \sim \mathcal{N} \Bigg(egin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix}, egin{bmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \Bigg)$$

Furthermore, if we have a noisy observation data X_1 it can be approximately modeled by taking $\Sigma_{11}=k(x_1,x_1)+\sigma^2_\epsilon I$

```
def posterior(X1, y1, X2, kernel, noise = None):
Compute posterior mean and covariance i.e. mu_{2}(2|1) and cov_{2}(2|1)
y1 = f(x1)
\mathbf{1},\mathbf{1},\mathbf{1}
          \Sigma 11 = \text{kernel}(X1, X1)
          if noise is not None:
                     err = (noise**2) * np.eye(\Sigma11.shape[0])
                     \Sigma11 += err
          \Sigma 22 = \text{kernel}(X2, X2)
          \Sigma12 = kernel(X1, X2)
          sol = scipy.linalg.solve(\Sigma 11, \Sigma 12, assume_a = 'pos').T
          \#\mu 1 = np.mean(X1)
          \mu 1 = 0 # assume prior mean is 0
          \mu^2 = np.mean(X2)
          \mu = \mu^2 + \text{sol } @ (y^1 - \mu^1)
          \Sigma = \Sigma 22 - (sol @ \Sigma 12)
           return \mu, \Sigma
```

```
# Define the true function
f_sin = lambda x: (np.sin(x)).flatten()
n1 = 10 # number of points to condition on (training points)
n2 = 70 # number of points in posterior (test points)
ny = 5 # number of functions that will be sampled from posterior

# Sample observations
X1 = np.random.uniform(-4, 4, size = (n1, 1))
y1 = f_sin(X1)

# Predict points at uniform spacing to capture function
X2 = np.linspace(-6, 6, n2).reshape(-1,1)

# Compute posterior mean and covariance
μ2, Σ2 = posterior(X1, y1, X2, kernel = kernel, noise = 0.2)

# Compute standard deviation at test points to be plotted
σ2 = np.sqrt(np.diag(Σ2))
```

```
# Draw some samples from the posterior
y2 = np.random.multivariate_normal(mean = \mu2, cov = \Sigma2, size = ny)
plt.figure(figsize=(10,5))
plt.plot(X2, f_sin(X2), 'b--', label = '$sin(x)$')
plt.scatter(X1, y1, color = 'red', label = '($x_1, y_1$)')
plt.plot(X2, \mu2, color = 'red', label = '\mu2 | 1}$')
plt.fill_between(X2.flatten(), \mu2 - \sigma2, \mu2 + \sigma2, color = 'blue', alpha = 0.1, label = '\pm \sigma\s')
plt.plot()
plt.legend()
plt.xlim(-6,6)
plt.title('Posterior Distribution')
plt.grid()
plt.show()
plt.figure(figsize=(10,5))
plt.title('Sampling from Posterior \infty \{P\}(x_2|x_1)\}')
plt.plot(X2, y2.T)
plt.xlim(-6,6)
plt.grid()
plt.show()
```


