Examen OMI

Durée : 1h30

PEIP classe double cursus

Novembre 2021

On prêtera une attention particulière à la rédaction. Les calculatrices sont interdites. Tout résultat sans justification sera pénalisé. Des schémas illustrant vos démonstrations sont encouragés.

Exercice 1 : prolongement par continuité

Les fonctions suivantes, définies sur $\mathbb{R}^2\setminus\{(0,0)\}$, peuvent-elles être prolongées par continuité en (0,0)?

(1)
$$f(x,y) = (x^2 + y^2) \sin\left(\frac{1}{x^2 + 2y^2}\right)$$

(2) $g(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$

(2)
$$g(x,y) = \frac{y}{\sqrt{x^2 + y^2}}$$

Exercice 2: optimisation

Soit f la fonction

$$f \colon \begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (x,y) & \mapsto x^2 + \frac{1}{2}y^2 - x^2y + 12 \end{cases}$$

- (1) Trouver les points critiques de f, c'est-à-dire les couples (x, y) tels que le gradient $\nabla f_{(x,y)}$ de f s'annule.
- (2) Calculer la matrice hessienne $Hf_{(x,y)}$ de f.
- (3) Préciser la nature de chacun des points critiques trouvés (maximum, minimum, autre).

Exercice 3 : volume d'un cône tronqué

On considère le cône tronqué de hauteur h et de rayons $R_1 > R_2$. On note O_1, O_2 les centre des disques.

FIGURE 1 – Un cône tronqué

On se place dans un repère orthonormé $R_O = (O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ tel que :

- l'origine O du repère est confondue avec le point O_1 .
- les vecteurs \overrightarrow{z} et $\overrightarrow{O_1O_2}$ sont colinéaires et de même direction.
- (1) Montrer que dans ce repère, le cône tronqué peut être représenté comme l'ensemble de points

$$\{(x, y, z) \in \mathbb{R}^3 | a \le z \le b, \ 0 \le x^2 + y^2 \le R^2(z) \}$$

où a, b et R(z) sont à préciser.

(2) Calculer le volume du cône tronqué.

On suppose que le cône tronqué a pour masse volumique $\rho(z)=(1-\frac{z}{2h})\rho_0$ où $\rho_0>0$.

- (3) Calculer la masse M du cône.
- (4) Calculer la position $X_0 = (x_0, y_0, z_0)$ du centre de masse.

Rappel : les coordonnées du centre de masse sont données par

$$x_0^i = \frac{1}{M} \int_V x^i \rho(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z, \qquad x^i \in \{x,y,z\}.$$

(5) Soit ρ_e la masse volumique de l'eau. Pour quelles valeurs de ρ_0 le cône tronqué flotte-t-il ?

* Bonus *

Soit $x_1, x_2, \ldots, x_n \in \mathbb{R}$ tels que

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i^2 = n$$

montrer que $x_1 = x_2 = \ldots = x_n = 1$.