Introduction to Machine Learning (67577)

Exercise 1 Estimation Theory & Mathematical Background

2 Theoretical Part

2.1 Mathematical Background

2.1.1 Linear Algebra

1. Prove that orthogonal matrices are isometric transformations. That is, let $T: V \mapsto W$ be some linear transformation and A the corresponding matrix. Show that if A is an orthogonal matrix then $\forall x \in V \ ||Ax|| = ||x||$.

$$I(X) = \frac{1}{2} = \frac{1}{2}$$

2. Calculate the SVD of the following matrix A. That is, find the matrices U, Σ, V^{\top} where U, V are orthogonal matrices and Σ diagonal.

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & -1 & 2 \end{array} \right]$$

Recall, that to find the SVD of A we can calculate $A^{\top}A$ to deduce V, Σ and then calculate AA^{\top} to deduce U. Equivalently, once we deduced V, Σ we can fine U using the equality $AV = U\Sigma$.

$$A^{T}A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 2 & -2 & 4 \end{bmatrix}$$

$$= (2-\lambda)\begin{vmatrix} 2-\lambda & -2 \\ -2 & U-\lambda \end{vmatrix} + 2\begin{vmatrix} 0 & 2-\lambda \\ 2 & -2 \end{vmatrix}$$

$$= (2-\lambda)\left(U - (\lambda + \lambda^{2}) - U(2 - \lambda)\right)$$

$$= (2-\lambda)\left(\lambda^{2} - (\lambda)\right) = -\lambda(\lambda - 2)(\lambda - 6)$$

$$= (2-\lambda)(\lambda^{2} - (\lambda)) = -\lambda(\lambda - 2)(\lambda - 6)$$

$$= (2-\lambda)(\lambda^{2} - (\lambda)) = -\lambda(\lambda - 2)(\lambda - 6)$$

$$= (2-\lambda)(\lambda^{2} - (\lambda)) = -\lambda(\lambda - 2)(\lambda - 6)$$

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & -2 \\ 2 & -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 2 & -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ -2 & -2 & 4 \end{bmatrix} \begin{bmatrix} x$$

$$G_1 = \sqrt{6}$$
, $G_2 = \sqrt{2}$, $G_3 = 0$ |38

$$AA^{7} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 2 \end{bmatrix}$$

3. In this question we prove the Power-Iteration algorithm for finding the SVD of a matrix. Let $A \in \mathbb{R}^{m \times n}$ and define $C_0 = A^{\top}A$. Denote $\lambda_1 \geq \ldots \geq \lambda_n$ the eigenvalues of C_0 , with the corresponding normalized eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$.

Let us assume the $\lambda_1 > \lambda_2$. Define $b_k \in \mathbb{R}$ as follows:

$$b_0 = \sum_{i=1}^n a_i v_i, \quad b_{k+1} = \frac{C_0 b_k}{\|C_0 b_k\|}$$

where $a_1 \neq 0$. Show that: $\lim_{k \to \infty} b_k = \pm v_1$.

$$b_{k+1} = \frac{c_0 b_k}{||c_0 b_k||} = \frac{c_0 \cdot c_0 b_{k+1}}{||c_0 b_{k+1}||} \frac{\frac{c_0 \cdot c_0 b_{k+1}}{||c_0 b_{k+1}||}}{||c_0 b_{k+1}||}$$

$$= \frac{c_0^2 b_{k+1}}{||c_0 b_{k+1}||} \frac{||c_0||}{||c_0||} \frac{||c_0||}{||c$$

$$= \frac{1}{2^{1/2}} \frac{1}{2^{1/2}$$

2.1.2 Multivariate Calculus

4. Let $x \in \mathbb{R}^n$ be a fixed vector and $U \in \mathbb{R}^{n \times n}$ a fixed orthogonal matrix. Calculate the Jacobian of the function $f : \mathbb{R}^n \to \mathbb{R}^n$:

$$f(\sigma) = U \cdot \operatorname{diag}(\sigma) U^{\top} x$$

Where diag (σ) is an $n \times n$ matrix where

$$\operatorname{diag}(\sigma)_{ij} = \begin{cases} \sigma_i & i = j \\ 0 & i \neq j \end{cases}$$

$$\int ac(t) = 0$$

$$\int ac(t) - 0 diag(0^{T}x)$$

5. Use the chain rule to calculate the gradient of $h(\sigma) = \frac{1}{2} ||f(\sigma) - y||^2$

$$h(0) = \frac{1}{2} [|f(0) - y||^2 =$$

Th(0) = $(f(0) - y)^T$ Th(0)

Th(0) = $(f(0) - y)^T$ Th(0)

6. Calculate the Jacobian of the softmax function $S: \mathbb{R}^d \to [0,1]^k$

$$S(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{l=1}^k e^{x_l}}$$

$$\frac{\partial S(x)}{\partial x_{i}} = \frac{e^{x_{i}+x_{i}}}{\left(\frac{\xi}{\xi}e^{x_{i}}\right)^{2}}$$

$$\frac{\partial S(x)}{\partial x_{i}} = \frac{e^{x_{i}}}{\left(\frac{\xi}{\xi}e^{x_{i}}\right)^{2}}$$

7. Let $f: \mathbb{R}^d \to \mathbb{R}$ be defined as $f(x,y) = x^3 - 5xy - y^5$. Calculate the Hessian of f.

$$H(t) = \frac{\partial f}{\partial x^2} \frac{\partial f}{\partial x^{2y}}$$

$$\frac{\partial f}{\partial y^{2y}} \frac{\partial f}{\partial y^{2}} = \frac{\partial f}{\partial y^{2y}} = -5$$

$$\frac{\partial f}{\partial x} = -5 \times -5 \text{ and } \frac{\partial f}{\partial x^{2}} = 6 \times -5$$

$$\frac{\partial f}{\partial y^{2}} = -20y^{3}$$

$$H(f) = \frac{6 \times -5}{-5}$$

$$\frac{\partial f}{\partial y^{2}} = -20y^{3}$$

2.2 Estimation Theory

8. Let $x_1, x_2, \ldots \stackrel{iid}{\sim} \mathcal{P}$ be a sample of infinity size drawn from some probability distribution function \mathcal{P} with finite expectation and variance. Show that the sample mean estimator $\hat{\mu}_n = \frac{1}{n} \sum x_i$ calculated over the first n samples is a consistent estimator. Hint: for any given fixed value of $n \in \mathbb{N}$ bound from above the probability of deviating more than ε .

$$V_{N} = \frac{1}{2} \times \frac{1}{2$$

9. Let $\mathbf{x}_1, \dots, \mathbf{x}_m \overset{iid}{\sim} \mathcal{N}(\mu, \Sigma)$ be m observations sampled i.i.d from a multivariate Gaussian with expectation of $\mu \in \mathbb{R}^d$ and a covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$. Derive the log-likelihood function of $\mathcal{N}(\mu, \Sigma)$. Hint: follow the approach used to derive the likelihood function for the univariate case.

$$f(x, \xi)(x_{1}) = \frac{1}{\sqrt{(2\pi)^{d}|\xi|}} e \times p(-\frac{1}{2}(\bar{x}_{1}, -M)^{T} \bar{\xi}^{-1}(\bar{x}_{1}, -M))$$

$$L(x, M, \xi) = \frac{1}{1+1} f(\bar{x}_{1})$$

$$= \frac{1}{1+1} (\bar{x}_{1}, -M)^{T} \bar{\xi}^{-1}(\bar{x}_{1}, -M)$$

$$-\frac{m}{2} - \frac{1}{2} \log(2\pi) - \frac{1}{2} \log(|z|) - \frac{1}{2} (x_i - M)^T \le (x_i - M)$$

$$= -\frac{Md}{2} | \omega(2\pi) - \frac{M}{2} | \omega(|\xi|) - \frac{1}{2} \underbrace{\xi(x; M)}_{i=1} \underbrace{\zeta(x; M)}_{i=1}$$