An Automated Inspection System for Hydraulic Control Unit Hose Assembly Using Deep Learning-based Object Detection

Data analytics and intelligent Systems Lab

Changyeong Kim and Hyungun Cho

Advisor: Sudong Lee

Dept. of Industrial Engineering

University of Ulsan, Ulsan, South Korea

Project Introduction

AS - IS

Hose connection

Assembling using a wrench

- Visual inspection by inspectors to assess product and functionality
- Determining task completion by direct marking made by the operator
- Occurrences of task duplication and omissions during operations.

TO - BE

CAM 1 CAM 2

Development of automated inspection technology is necessary to address limitations in the current method of verifying engine hose connections.

Project Introduction

Overview

Assembling using a wrench

- Visual inspection by inspectors to assess product and functionality
- Determining task completion by direct marking made by the operator
- Occurrences of task duplication and omissions during operations.

Problem Definition

- Identifying points that have not been properly completed
- object detection model fails to distinguish and detect hose connection and assembly completed

Initial Status

Hose connection

Assembling using a wrench

Assembly completed

• Blind spots occurring due to the worker or other objects.

Automated Inspection System for Hydraulic Control Unit Hose Assembly

Automated Inspection System for Hydraulic Control Unit Hose Assembly

Study Method Object detection

- YOLOv5 for object detection
- Class abstract

0 : open

1 : closed

2: wrench head

3 : MCV(engine model)

4 : completed

X Added class 4 for detecting the final assembly status

CAM1 PR curve

CAM2 PR curve

Study Method Shortest Distance ID Allocation Algorithm

Study Method Assembly Status Transition Algorithm

Distance-based condition

If the distance between the detected hole and the detected wrench head is less than *epsilon*

$$distance = \sqrt{(x_w - x_h)^2 + (y_w - y_h)^2}$$
, $epsilon = 100$ px

Area-based condition

If IOU between the detected hole and the detected wrench head is greater than threshold

$$IOH = \frac{area\ of\ overlap}{area\ of\ hole}$$
, $IOH\ Threshold = 0.5$

Wrench stay time condition

If the consecutive number of frames exceeds the Wrench Stay Time (wst)

$$wst = 3 frame$$

Study Method Assembly Status Transition Algorithm

Study Method Multi Angle

Multi Angle Algorithm

CAM 1

ID	Class (status)
H1	4
H2	1
Н3	1
H4	4
H5	1
H6	4
Н7	4

CAM 2

ID	Class (status)
H1	4
H2	0
Н3	4
H4	0
H5	4
Н6	0
H7	0

Multi-Angle result

ID	Class (status)
H1	4
H2	1
Н3	4
H4	4
H5	4
H6	4
H7	4

Class name

0 : open

1: closed

4 : completed

Expect effectiveness

Automation: Automating Inspection Using Al Technology

Quality Innovation: Improving Quality with Accurate Detection

Scalability: Introducing similar processes

Thank you