The state of the s	
Premier Problène	
1.a) $I = \vec{j}.\vec{dS} = \vec{r} \vec{e}.\vec{dS} = \vec{r} \vec{e}.\vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. \vec{e}. $	0,5
1.6) $\vec{E}_0 = -qrad V \Rightarrow \int \vec{E} \cdot dz \vec{u}_z = -\int dV \Rightarrow V_A - V_B = f$ D'ori $V_A - V_B = \frac{T}{V \pi a^2} = \frac{1}{V \pi a^2} \vec{I} = R_0 \vec{I}$ $\vec{R}_0 = L$	- L
$R_0 = \frac{L}{\sqrt{\pi a^2}}$	0,5
2.a) $P_{\sigma} = \vec{J} \cdot \vec{E} = \sigma E_{o}^{2}$ 2.b) $P = \iint P_{\sigma} dC = \sigma E_{o}^{2} / dC = $	2 0,5
B.1) Un courant variable (j= 0 E(+)) crée un champ	magne-
non homogene (MF) venant à se sujerposer à c	A /
du générateur. Le champ électrique dans le cons	Sucteur
me peut donc pas être uniforme en régime van B2a) L'equation locale de la conservation de la cha s'écrit $\frac{2f}{8f} + \text{div} \vec{J} = 0$ Dans un conducte ohnique $\vec{J} = \vec{V} \vec{E}$ et comme div $\vec{E} = \frac{f}{E} (MG)$	urge
de conservation de la charge dons un conduction de $\frac{1}{2}$ 1	
13.26) $\frac{1}{1} + \frac{1}{1} = 0$ arec $e = \frac{e_0}{1}$ $g(M, t) = f_0 e^{-t/c}$	0,5
T = Eo - tempo de relaxation -10	0,25
$T = \frac{\varepsilon_0}{T}$: tempo de relaxation $A.N. T = \frac{1}{10} \times \frac{1}{10} \times \frac{10}{10} = 1.5 \times 10^{-10}$ $\frac{1}{10} \times \frac{36\pi}{10} \times \frac{36\pi}{10}$ Dans le domaine des freq Hertzie	ennes 0,25

- 1/-

conducteur est localement neutre. J= & # J= T=. 11501 - Stew = 21180 f , 115011 2(1) A.N $\delta_{e} = \frac{1}{2\pi \epsilon_{0}} = \frac{10^{7}}{2\pi \kappa_{0}} = \frac{36\pi}{36\pi}$ Le = 18×5,9×10 = 1,06 to Hz 0,5 Dons le domaine des frequences Hertzienne cette Condition est largement vérifiée d'où 11 Jul est régligeable devant 11711 J(M,t) = J(r) e uz les equations de Maxwell s'écrirent: divè=0 (MG) Fot = - 8B (M) rot B = 6 J(M) div B = 0 (M b) not(not E) = grad(divĒ) = DĒ = - DĒ = 一景丽景=一片中景;至三星 もるずったので対 到=一大はいけず $- \Delta \vec{J} + \frac{2i}{5^2} \vec{J} = \vec{O} \quad \text{owec} \quad \vec{S} = \sqrt{\frac{2}{\mu \sigma \omega}}$ $|\vec{J}| + \frac{2i}{5^2} \vec{J} = \vec{0} \implies \Delta \vec{J} + \frac{2i}{5^2} \vec{J} = 0$ $|\vec{J}| = \vec{J}(\vec{r})\vec{q}_3$ $\Delta j = \frac{d^2 J}{dr^2} + \frac{1}{r} \frac{dJ}{dr}$ (1) A'evit $\frac{d^2 J}{dr^2} + \frac{1}{r} \frac{dJ}{dr}$ A'evit $\frac{d^2j}{dt} + \frac{1}{f} \frac{dj}{dt} + \frac{2i}{f^2} = 0$ $\frac{dj}{dr} = \frac{dj}{dx} \frac{dx}{dr} = \frac{1}{5} \frac{dj}{dx}; \quad \frac{d^2j}{dr^2} = \frac{1}{5} \frac{d^2j}{dx^2}$

D'où
$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$
 en divisant par $\frac{1}{2}(0)$ on which:

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx^2} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{x} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{x} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{x} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d d}{dx} + 2i \frac{1}{x} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + 2i \frac{1}{x} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + 2i \frac{1}{x} \frac{d^2 d}{dx} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{1}{x} \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{d^2 d}{dx} + \frac{2i \frac{1}{x}}{2} = 0$$

$$\frac{d^2 d}{dx} + \frac{d^2 d}{dx$$

- 3/R-

		0,25
B.6)	$\alpha_1 = 0.054$	0,25
	do = 10,8	0,25
	$Y(\alpha_1) = \left(1 + \frac{\alpha_1 t}{8}\right)^{M_2} \simeq 1$	
	$\gamma(d_2) = 4,985.$	
	· Pour v=v, l'effet de peau me se ressent pas	
	puisque j(x1) ~ j(0) & la valeur du courant	
	sur la periphene est égale à c'he sur l'axe	
	sur la pour la	1
	du cylindre. En revanche pour v= v2 l'effet	
	de peau est considérable juisque le courant	
	at environ ema fois la	
	sur la perphère est environ enna fois la	
e	valeur sur l'axe.	n .
	. L'effet de peau reste négligeable tant que	
	of the second	200
	le rayon du fil reste inferieur à répaison	
-	1 60011 2 Fr allot hour d = 4 = 0,004K	
	on a $ J(\alpha_1) \simeq J(0) $ alors que pour $\alpha_2 = \frac{9}{5} = 10.8$ ona $ J(\alpha_2) \simeq 5 J(0) $.	>1
	02	
	ona (1 (2) (2) 1 = 3 (1) (0) 1-	3
		0,25
011	g(d1) = 1+ (0,054)4 ~1	
B.7)	$f(\alpha_1) = 1 + \frac{1}{12}$	
	2/2/-5/65.	
	Dans le premier cas la resistance en régime	
	Dans de premier de	
	variable est similaire à celle obtenue en	
	Toring continue. Celle augmentation pour de	
	résistance (four v= ve) s'explique par la monte	12
	sation du courant dans le 15 sinage immédiat	
	James Bar	
8	de la surface du conducteur (question B-6).	
		,

Le miroir de lloyd est équivalent aux trous d'Ysung S joue à la fois le rôle d'une source primaire et d'une source secondaire SS' = 2h da différence de marche géometrique des deux rayons se sufferfosant en P est Sque SS'2 avec D = distance de l'écran au plan contenant les deux sources SS. D= 1+d. Le rayon réflechi subit un déphasage de T for raffort à celui incident et donc à la différence de marche géometrique il faudrait rajouter to correspondant à ce déphasage sufflémentaire de TI (TT = 2TT: 1/2) S= Sgeo + 20 = 2hx 2 + do. Comme l'intensité de l'onde réflechie estégale à alle incidente I,=I2=I3 on obtient. I(P) = 2 In (1+ wor (21 (2hx + do))) La frange rectiligne en x=0 est+9 L=0= Elle est sombre. l'interfrange est la période statiale de I intende $\frac{2\pi z}{i} = \frac{2\pi}{4\pi} \frac{2h}{l+d} \times \Rightarrow$ 0,5 $i = \frac{t_0(l+d)}{2h} = 0,25 \text{mm}$

- 7/13

La position de l'image Q_{im} de θ est fq $\frac{1}{Q_{im}} - \frac{1}{Q_{i0}} = \frac{1}{g'} = 0$ $\frac{1}{Q_{im}} - \frac{1}{Q_{i0}} = \frac{1}{g'} = 0$ AN $Q_{10m} = \frac{-10 \times 12}{-12 + 10} = 60 \text{ cm}.$ $\frac{O_1 O_{im}}{O_1 O} = \frac{\lambda_{im}}{\lambda} = \frac{60}{12} = 5$ D' or $h = \frac{l_0(l+d)}{2i_{im}} \frac{O_1O_{im}}{O_1O} \Rightarrow AN h=0,3mm$ 2,e) * +gt = h = OPeim = OPeim = lh

ofeim = largeun du chamf d'interférence de nombre de franges RT 01-31-10 Sombres est Ns = E(OPlin) +1 = E(28,8)+1La différence de marche reste inchangée => la figure d'interférence reste donc inchangée. II.2) des sources S1, S2 et S sont incohérentes leurs entensités s'ajoutent. D'autre part on a: $I_{\lambda}(P) = I_{\alpha}(P) = I(P)$ Ainsi $I_{tot} = 3(I(2))$ où I(2) represente l'interisté au point 2 résultant du phénomène 1 d'interference produit par S, Les franges sont trois fois plus brillante qu'avec S seule.

-8/13-

Chaque Element dx po centre sou x produit $dI = \frac{2T_0}{a} \left(1 - \cos \frac{2T}{\lambda} \delta_{geo}(2) \right) dX$ $\mathcal{L}(2) = \frac{2(h+x)}{1+d} \approx$ D'ni $dI(P) = \frac{2I_0}{a} \left(1 - \cos \frac{2\Pi}{\lambda_n} \left(\frac{2(h+x)x}{D_1 d} \right) \right) dX$ où X désigne l'abscisse de S par raffort au centre de la fente base B= y+X => dB= qX. $I(P) = \frac{2 I_0}{a} \left(1 - \cos \frac{2\pi}{\lambda_0} \left(\frac{2 \beta x}{l + d} \right) \right) d\beta$ dI(P) represente l'intensité produite en P par l'élement dx. Les différentes sources elementaires constituant la finte sont incohérentes entre elles donc d'intensité résultante en P est le somme des intensités ce qui justifie la sommation précédente $\pm (\mathbf{r}) = 2 \pm \frac{1}{6} \left(1 - \frac{2 \pm 6}{6} \right) \left[\sin \frac{4\pi\beta}{4\pi} \right] \left[\sin$ =2I's (1 - \frac{1}{2\Tax} \sin \left[\frac{4\piz}{1-\left[\frac{1}{2\pi}\right]} \left(\hat{h} + \alpha/2)\right] + Lolled sin (4TX (h-a/2)) sinc (2TTax Los (2TTx))

9/13

 $I(I) = 2I_0 \left(1 - \text{kinc}\left(\frac{2\pi\alpha\chi}{\lambda(l+d)}\right) \cos\left(\frac{2\pi\chi}{\lambda}\right) \right)$ 15 $li = \frac{l_0(l+d)}{2l}$ Allure + Comment 0,5+0,5 II 35) $C = \frac{1}{100} \sin \left(\frac{2\pi ax}{100} \right)$ browilles quante C = 0C'est à dire quand $\frac{2T}{l+d} = m\pi$ $n \in \mathbb{N}^d$.

Cad four $x = \frac{b(l+d)}{a\pi} \binom{n\pi}{n\pi}$ 0,5 Elles disfaroussent pour la première fois four x = to (l+d) réaparaissent ensinte mais faislement contrastées disparaissent de nouveau pour $n = \frac{do(l+d)}{dl}$, etc.... III. ¥ λ on a en x=0 δ= do ⇒ nor: "frange noite 11.1) pour a proche de zero on a irrisation des franges d'interférences. Plus loin il ya brouillage de la figure d'interference résultant de la superposition des interferences produites par chaque radiation de longueur d'onde li c'est le blanc d'ordre suférieur. II 29) Il manque certaines longueurs d'onde dans le 0,5 Spectre analyse en 2 -> Spectre cannelé.

- 10/13-

II.26) Une radiation de longueur d'onde li éteinte correspond à des interferences destructures et donc \ddot{a} $S = \frac{2hx_0}{1+d} + \frac{\lambda i}{2} = (2k+1)\frac{\lambda i}{2}$; kenher $\Rightarrow \frac{hx_0}{1+d} = k\frac{\lambda i}{2}$ $\Rightarrow 0,1+m$ $\Rightarrow 1 \leq \frac{2hx_0}{(l+d)k} \leq \frac{1}{2} \Rightarrow 1 \leq \frac{(l+d)k}{2hx_0} \leq \frac{1}{\lambda_0}$ => \frac{2 h \times_0}{\frac{1}{2}(1+d)} < k < \frac{2 h \times_0}{\frac{1}{2}(1+d)} \pou \times_0 = 1,5mm = 5,14< k < 9 four x0=3mm -> 10,28 3k < 18 0,5 Pour x = 15 mm on a 4 radiations eteintes 0,5 Pour 20 = 3 mm on a Llus 20 est grand plus le nombre de canne-0,5 lure augmente $\Delta = \alpha \leq_{0} l \int_{-\infty}^{\alpha/2} \frac{2\pi i \int_{\lambda}^{\infty} \left(\sin i' + \beta \sin i \right)}{dx}$ A = & so la sinc (Ta (sini + sini)) JI = PP = 215 2(la) sinc (Tra (sini+sini)) $I_0 = \propto |s_0|^2 (la)^2$. (Kg-k) OP = -n (sini+sini)

Q,T => Direction donnée par l'optique 0,5 géometrique (Li de Descarte de la reflexion) max perondaires $tq ext{ d sine } N = 0 ext{ d } N = tq N$ $= 0 ext{ N= (2k+1)} ext{ T/2} ext{ avec } N \neq 0 ext{ et } N \neq -1$ 0,5 per max perondaire N=31 = 0,045 Io 0,5 gene max secondaire N= 51 => I-, 0,0/6 Io. On désigne par que déphasage entre deux points distants de d, affartenant à deux miroirs successifs $\varphi = \frac{2\pi}{J} d \left(\sin i \right)$ $A = \int_{1}^{diff} \left[1 + e + \cdots + e \right]$ $A = \int_{1}^{N} A diff \int_{1}^{diff} e^{J(P-1)} e^$ = Adit 1-e

1-e

1-e où sdiff est l'amplitude complexe diffractée par (Sin NG)

MITOT. (Origine

dus phases prise au

niv. du le miroir) $= A_{1}^{\text{oliff}} e^{y(N-1)\frac{Q}{2}}$ $\Delta = asla sinc(\frac{\pi a}{\lambda}sini)e^{\frac{1}{2}sini}e^{\frac{1}{2}sini}$ $I = \frac{2}{2} \left[s^2 \left(la \right)^2 \right] + \frac{1}{2} \left(\frac{\pi a \sin i}{\lambda} \right) \left(\frac{\sin \sqrt{2}}{\sin 2} \right)^2 = \frac{\sin 4}{2}$ $= I_0 N^2 \sin^2 \left(\frac{\pi a u}{\pi a u} \right) \frac{\sin \frac{N\varphi}{2}}{N \sin^2 \varphi}$ $= I_0 R \sin^2 \left(\frac{\pi a u}{\pi a u} \right) \frac{\sin \frac{N\varphi}{2}}{N \sin^2 \varphi} \frac{1}{N \sin^2 \varphi}$ -12/13

D'on $I_R = I_{oR} \sin^2(\pi au) \left(\frac{\sin N\varphi}{2} \right)$; $\varphi = 2\pi d. u$ $u = \frac{\sin^2 \varphi}{2}$; $I_{oR} = N^2 I_o$ II1.c) $\varphi = 2q\pi \Rightarrow \text{d sini}' = q \log q$ $ol\varphi = 2\pi/\lambda = 2\pi d cosi' di' = 2\pi$ Ains Di'= 10 - No. Losi I.2.d) ona d $sini_q = q\lambda$ (1) la differenciation ole (1) à 9 fixe donne ol cosiq diq = q old > Diq = $\frac{9 \text{ Al}}{\text{d cosiq}}$ 0,5 -> Dig = II.2.6) A la limite de réolution Dig = Di = Ad = Ad = Ng Zour q = 1 Ddmin = or Di= 2,1 nm > Dimin =D. Les longueurs d'ondes du doublet de Mercure sont séfarées à l'ordre 1.

-13/13-