Домашнее 3

С.в. значит "случайная величина".

Основные задачи

- 1. Даны независимые с.в. X и Y. Найти функции распределения с.в. $\max(X,Y)$ и $\min(X,Y)$.
- 2. Дана непрерывная с.в. ξ , плотность которой всюду определена и положительна. Найти распределение с.в. $\eta = F_{\xi}(\xi)$, где $F_{\xi}(\cdot)$ функция распределения ξ .
- 3. Пусть $X \sim N(\mu, \sigma)$ нормальная случайная величина, т.е. её плотность имеет вид

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Найти плотность распределения X^2 .

4. Равнобедренный треугольник на плоскости образован единичным вектором в направлении оси абсцисс и единичным вектором, имеющим случайное равномерно распределённое направление. Найти распределение длины третьей стороны треугольника.

Дополнительные задачи

- 1. Рассмотрим вероятностное пространство $(\Omega, \mathcal{A}, \mathbb{P})$, где $\Omega = [0, 1]^2$, $\mathcal{A} \sigma$ -алгебра борелевских подмножеств Ω , \mathbb{P} мера Лебега. Обозначим координаты ω_1, ω_2 . Найти функцию распределения и плотность распределения случайной величины $\xi + \eta$, если
 - (a) $\xi = \omega_1 + \omega_2$, $\eta = \omega_1 \omega_2$;
 - (b) $\xi = \omega_1, \ \eta = \omega_2;$

(c)
$$\xi = \begin{cases} 1, & \omega_1 = \omega_2 \\ 0, & \omega_1 \neq \omega_2 \end{cases}$$
, $\eta = \omega_1 \omega_2$.

Являются ли с.в. ξ и η независимыми?

- 2. Пусть ξ с.в. с функцией распределения ξ , а \mathbb{P}_{ξ} её распределение (т.е. мера на \mathbb{R} , такая что $\mathbb{P}_{\xi}\{B\} = \mathbb{P}\{\xi \in B\}$ для любого борелевского множества B см. конспект семинара). Рассмотрим вероятностное пространство ($\mathbb{R}, \mathcal{B}, \mathbb{P}_{\xi}$) и зададим функцию $\eta(x) = x, \ x \in \mathbb{R}$. Найти функцию распределения η .
- 3. Пусть $F: \mathbb{R} \to [0,1]$ строго возрастающая непрерывная функция, такая что $\lim_{x \to +\infty} F(x) = 1$, $\lim_{x \to -\infty} F(x) = 0$. Рассмотрим с.в. $\eta \sim \mathcal{U}[0,1]$. Докажите, что с.в. $\xi = F^{-1}(\eta)$ имеет функцию распределения F.

Этот результат, кстати, используется при генерировании случайных чисел на компьютере.