POKHARA UNIVERSITY

Level: Bachelor Semes
Programme: BE

Semester: Spring Year : 2018

Programme: BE Full Marks: 100
Course: Analysis and Design of Algorithm Pass Marks: 45

Pass Marks: 45 Time : 3hrs.

8

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

1885

Attempt all the questions.

- 1. a) Explain the term Big-oh, Big-omega and Big-theta. Show that a function $f=3n^2+4n+7$ is big theta of n^2 .
 - b) In each of the following situations, indicate whether f = O(g), or $f = \Omega$ (g), or both (in which case $f = \Theta(g)$).

	f(n)	g(n)
(a)	n - 100	n - 200
(b)	$n^{\frac{1}{2}}$	$n^{\frac{2}{3}}$
(c)	log 2n	$\log 3n$
(d)	10 log n	$\log n^2$
(e)	n!	2 ⁿ

- 2. a) Briefly explain a circular queue. Write algorithm to add and remove an element from the circular queue and compute the complexity of your algorithm.
 - b) Briefly explain a link list data structure. Write algorithm to add and remove an element from the link list and compute the complexity of your algorithm.
- 3. a) Write an algorithm for bubble sort and trace out the algorithm for bubble sort with suitable example.
 - b) Discuss how Strassen's method can perform matrix multiplication of two n x n matrix in $O(n^{\log_2 7})$.
- 4. a) Explain prim's algorithm for computing the MST of a given graph and analyze it. Also verify the correctness of this algorithm.
 - b) Briefly explain the dynamic programming method for problem solving. What is the basic difference between Dynamic programming

and Greedy method?

- 5. a) How can dynamic programming technique be applied to The Travelling salesman problem?
 - b) Explain Dijkstra's algorithm for computing the single source shortest path in a graph with suitable example.
- 6. a) Write an algorithm to determine biconnected components in a graph.
 - b) Let $\omega = \{5, 7, 10, 12, 15, 18, 20\}$ and m = 35. Use Backtracking algorithm to systematically search the solution space to find few possible subsets of w that sum to m. Also, draw a portion of the tree diagram that shows the organization of state space.
- 7. Write short notes on: (Any two)
 - Binary Search Tree

2×5

- b) Knapsack 0/1 problem
- c) Graph Coloring Problem