Deutsche Telekom Laboratories An-Institut der Technischen Universität Berlin

Online Virtual Network Management

Gregor Schaffrath · Stefan Schmid · Anja Feldmann

. **T** . .

MOTIVATION

Facilitating Management of Virtual Networks

- Economic aspects
 - Dynamic & efficient resource usage
 - New business fields and models
- Security aspects
 - Domain isolation
- Operational aspects
 - Abstraction
 - Out-of-band debugging
 - Potentially higher fault tolerance

SCENARIO AND GOAL

⇒ Effective, economic management of Virtual Networks

ASPECTS

- Challenge
 - Unpredictable demand
 - Dynamics and flexibility
- Migration protocols
 - Online algorithm
 - Offline algorithm
 - O
- Techniques
 - Competitive analysis
 - Dynamic programming

VNet user Service Provider VNet operator VNet provider Infrastructure provider

SERVICES

Infrastructure Provider: Provides Virtual Resources and Resource Control Interface

VNet Provider: Assembles Virtual Networks

VNet Operator: Operates, controls, manages

virtual networks

Service Provider : Service level customer support

Online MIGration Algorithm

A	В		D	E	MIG
(1*1)+(1*6)	0+5	3+2	5+0	7+2	0+7
7	5	5	5	9	7 (A)
7+4+8	5+10	5+4	5+4	9+4	7+10+4
19	15	9	9	13	21 (C)
+10	+8	+2	+2	+6	+2
29	23	11	11	27	23 (C)
0	0	0	0	0	23 (C)

SERVER MIGRATION Competitiveness

OPTimal Offline Algorithm

Strike balance between $Cost_{acc}^{MIG}$ and $Cost_{mig}^{MIG}$

- Let $\beta = max_p\{Cost_{mig}(p, t)\}$
- Count $L_v = \sum_t Cost_{acc}(v, t) \ \forall v \in V$
- When $L_v \ge \beta$ for server location, end phase, and migrate to v' with $L_{v'} < \beta$
- When $L_v \ge \beta \ \forall v \in V$, end epoch ε , and reset $L_v \ \forall v \in V$
- 1. Def.(ε), Def.(β) $\Rightarrow \forall \varepsilon_i : OPT(\varepsilon_i) \geq \beta$
- 2. H_n migrations expected $\Rightarrow H_n + 1$ phases expected
- 3. (2) $\Rightarrow MIG(\varepsilon_i) \leq \beta H_n + \beta (H_n + 1) = \beta O(\log n)$
- 4. (1), (3) \Rightarrow Ratio $\rho \le \frac{\beta O(\log n)}{\beta} = O(\log n)$

Dynamic programming

- opt[t][v] matrix with minimal cost $opt[0][v] = Cost_{mig}(v_0, v) + \sum_{w \in \sigma_0} Cost_{acc}(w, v)$ opt[t][v] =
 - $min_{v,v_{t-1} \in V}(opt[t-1][v_{t-1}] + Cost_{mig}(v_{t-1},v) + \sum_{w \in \sigma_t} Cost_{acc}(w,v))$
- remember predecessor $v_{t-1} \in V$
- Optimal substructure property

TRIGGERING MIGRATION

Node S Node A1 Substrate Network Node A2 Substrate Node A2 Substrate Node B Substrate Node C

VNO view:

- No knowledge of Substrate required
- SP requests latency reduction
- VNO changes virtual resource requirements
- VNO negotiates with VNP

PIP view:

- No knowledge of VNet internal semantics required
- Receives updated requirements
- Initiates migration to effect latency drop

- Distributed Virtual Network Testbed
- Proof-of-concept implementations