

Page 1 of 111

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Shenzhen Sungworld Electronics Co., LTD.

MID Model No.: M7XX

FCC ID: WI3-M7XX

Prepared for : Shenzhen Sungworld Electronics Co., LTD

Address : 4#, North District, Shangxue Industrial Park Bantian, Long

Gang District, Shenzhen, China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20141876

Date of Test : Sep 26, 2014-Oct 22, 2014

Date of Report : Oct 22, 2014

TABLE OF CONTENTS

Descr	ription	Page
Tost I	Domont Contification	
	Report Certification	5
	ENERAL INFORMATION	
1.1. 1.2.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	
2. M	IEASURING DEVICE AND TEST EQUIPMENT	
3. O	PERATION OF EUT DURING TESTING	9
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. T	EST PROCEDURES AND RESULTS	10
5. P	OWER LINE CONDUCTED MEASUREMENT	11
5.1.	Block Diagram of Test Setup	
5.2.	Power Line Conducted Emission Measurement Limits	
5.3.	Configuration of EUT on Measurement	
5.4. 5.5.	Operating Condition of EUT Test Procedure	
5.5. 5.6.	Power Line Conducted Emission Measurement Results	
	DB&20DB BANDWIDTH MEASUREMENT	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(2)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
	IAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	
7.1.	Block Diagram of Test Setup	
7.2. 7.3.	The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement	
7.3. 7.4.	Operating Condition of EUT	
7.5.	Test Procedure	
7.6.	Test Result	31
8. P	OWER SPECTRAL DENSITY MEASUREMENT	38
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(e)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5. 8.6.	Test Procedure Test Result	
	AND EDGE COMPLIANCE TEST	
9.1.	Block Diagram of Test Setup	
9.1.	The Requirement For Section 15.247(d)	
, . 	-1	

9.3.	EUT Configuration on Measurement	46
9.4.	Operating Condition of EUT	46
9.5.	Test Procedure	46
9.6.	Test Result	47
10. RA	DIATED SPURIOUS EMISSION TEST	69
10.1.	Block Diagram of Test Setup	69
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	70
10.4.	Configuration of EUT on Measurement	70
10.5.	Operating Condition of EUT	71
10.6.	Test Procedure	71
10.7.	The Field Strength of Radiation Emission Measurement Results	72
11. CO	NDUCTED SPURIOUS EMISSION COMPLIANCE TEST	103
11.1.	Block Diagram of Test Setup	103
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Measurement	103
11.4.	Operating Condition of EUT	103
11.5.	Test Procedure	
11.6.	Test Result	104
12. AN	TENNA REQUIREMENT	111
12.1.	The Requirement	111
12.2	Antenna Construction	111

Page 4 of 111

Test Report Certification

Applicant : Shenzhen Sungworld Electronics Co., LTD

Manufacturer : Shenzhen Sungworld Electronics Co., LTD

EUT Description : MID

(A) MODEL NO.: M7XX

(B) Trade Name.: /

(C) POWER SUPPLY: DC 3.7V (Powered by battery) or AC 120V/60Hz

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2009

The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Sep 26-Oct 22, 2014
Prepared by :	7 in 2 have
	(Tim.zhang, Engineer)
Approved & Authorized Signer:	Lemb
	(Sean Liu, Manager)

Page 5 of 111

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : MID
Model Number : M7XX

Frequency Range : 802.11b/g/n(20MHz): 2412-2462MHz

802.11n(40MHz): 2422-2452MHz

Number of Channels : 802.11b/g/n (20MHz):11

802.11n (40MHz): 7

Antenna Gain : 0dBi

Type of Antenna : PCB Antenna

Power Supply : AC 120V/60Hz (Powered by Adapter)

Data Rate : 802.11b: 11, 5.5, 2, 1 Mbps

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

802.11n: up to 150Mbps

Adapter : Model:WYT-0520

Input: AC 100-240VAC 50/60Hz 0.3A

Output: 5.0V 2.0A

Modulation Type : CCK, OFDM

Applicant : Shenzhen Sungworld Electronics Co., LTD

Address : 4#, North District, Shangxue Industrial Park Bantian,

Long Gang District, Shenzhen, China

Manufacturer : Shenzhen Sungworld Electronics Co., LTD

Address : 4#, North District, Shangxue Industrial Park Bantian,

Long Gang District, Shenzhen, China

Date of sample received: Sep 26, 2014

Date of Test : Sep 26-Oct 22, 2014

Page 6 of 111

1.2. Carrier Frequency of Channels

802.11b, 802.11g, 802.11n (20MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437		

802.11n (40MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
		07	2442
		08	2447
03	2422	09	2452
04	2427		
05	2432		
06	2437		

1.3. Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Page 7 of 111

1.5.Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015

Page 9 of 111

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: 1.802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

3.802.11n (20MHz) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

4.802.11n (40MHz) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit o	IB(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

Page 12 of 111

5.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2009 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode : Charging&WIFI communicating								
MEASUREMENT	RESULT	: "1876	-3_fin	ı "				
10/14/2014 11 Frequency MHz	Level dBµV	dB	dΒμV	dB		Line	PE	
0.175000 3.270000 18.725000	53.60 37.60 32.50	10.5 11.1 11.4	65 56 60	11.1 18.4 27.5	QP QP QP	L1 L1 L1	GND GND GND	
MEASUREMENT	RESULT	: "1876	-3_fin	n2"				
10/14/2014 11 Frequency MHz			dΒμV	dB	Detector	Line	PE	
0.175000 2.910000 18.450000	39.40 29.90 26.20	11.0			AV	L1 L1 L1	GND GND GND	
MEASUREMENT	RESULT	: "1876	-2_fin	1"				
10/14/2014 11 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.175000 2.940000 19.000000	54.00 37.20 32.50	10.5 11.1 11.4	65 56 60	18.8	ÕР	N N N	GND GND GND	
MEASUREMENT RESULT: "1876-2_fin2"								
10/14/2014 11 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
0.175000 4.820000 18.775000	39.90 27.70 26.20		55 46 50	18.3		N N N	GND GND GND	

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART15B

MID M/N:M7XX Manufacturer: SungWorld Operating Condition: WIFI Operation Test Site: 1#Shielding Room

Carry Operator:

Test Specification: N 120V/60Hz

Report NO.:ATE20141876 Comment: 10/14/2014 / 11:36:38AM Start of Test:

SCAN TABLE: "V 150K-30MHz fin"

__SUB_STD_VTERM2 1.70 Short Description:

Start Stop Step Detector Meas. ΙF Transducer

Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.5 kHz 4.5 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "1876-2 fin"

1	0/14/2014 11							
	Frequency				_	Detector	Line	PΕ
	MHz	dΒμV	dB	dΒμV	dB			
	0.175000	54.00	10.5	65	10.7	OP	N	GND
	2.940000	37.20	11.1		18.8	~	N	GND
	19.000000	32.50			27.5	~	N	GND
	19.000000	52.50	⊥1.4	0.0	27.5	Ωr	TA	GND

MEASUREMENT RESULT: "1876-2 fin2"

10/14/2014 11	L:40AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.175000	39.90	10.5	55	14.8	AV	N	GND
4.820000	27.70	11.1	46	18.3	AV	N	GND
18.775000	26.20	11.4	50	23.8	AV	N	GND

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART15B

MID M/N:M7XX EUT: SungWorld Manufacturer: Operating Condition: WIFI Operation Test Site: 1#Shielding Room

Operator: Carry
Test Specification: L 120V/60Hz

Report NO.:ATE20141876 Comment: Start of Test: 10/14/2014 / 11:41:30AM

SCAN TABLE: "V 150K-30MHz fin"

_SUB_STD_VTERM2 1.70 Short Description:

Start Step Detector Meas. ΙF Transducer Stop Width Time Bandw.

Frequency Frequency 150.0 kHz 30.0 MHz NSLK8126 2008 4.5 kHz QuasiPeak 1.0 s 9 kHz

Average

MEASUREMENT RESULT: "1876-3 fin"

10/14/2014 11	:44AM						
Frequency				_	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.175000	53.60	10.5	6.5	11.1	OB	L1	GND
					~		
3.270000	37.60	11.1	56	18.4	QP	L1	GND
18.725000	32.50	11.4	60	27.5	OP	L1	GND

MEASUREMENT RESULT: "1876-3 fin2"

10/14/2014 11							
Frequency MHz	Level dBuV		Limit dBuV	Margin dB	Detector	Line	PE
MUZ	ασμν	αь	αьμν	αь			
0.175000	39.40	10.5	55	15.3	AV	L1	GND
2.910000	29.90	11.0	46	16.1	AV	L1	GND
18.450000	26.20	11.4	50	23.8	AV	L1	GND

Page 16 of 111

6. 6DB&20DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 6.4.2.Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

6.5. Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

20dB bandwidth

- 1. Set resolution bandwidth (RBW) = 1%-5% OBW.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.

Page 17 of 111

- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the -20 dB levels with respect to the reference level

6.6.Test Result

The test was performed with 802.11b					
Channel Frequency (MHz) 6dB Bandwidth (MHz) 20dB Bandwidth (MHz) Limit (MHz) (MHz)					
Low	2412	10.12	17.598	> 0.5MHz	
Middle	2437	10.12	17.135	> 0.5MHz	
High	2462	10.12	17.54	> 0.5MHz	

The test was performed with 802.11g						
Channel	Channel Frequency (MHz) 6dB Bandwidth (MHz) 20dB Bandwidth (MHz) Limit (MHz)					
Low	2412	16.60	19.740	> 0.5MHz		
Middle	2437	16.60	19.392	> 0.5MHz		
High	2462	16.60	19.624	> 0.5MHz		

The test was performed with 802.11n (Bandwidth: 20 MHz)						
Channel	Channel Frequency (MHz) 6dB Bandwidth (MHz) 20dB Bandwidth (MHz) Limit (MHz)					
Low	2412	17.84	20.904	> 0.5MHz		
Middle	2437	17.84	20.123	> 0.5MHz		
High	2462	17.84	19.472	> 0.5MHz		

The test was performed with 802.11n (Bandwidth: 40 MHz)						
Channel	Channel Frequency (MHz) 6dB Bandwidth (MHz) 20dB Bandwidth (MHz) Limit (MHz) (MHz)					
Low	2422	36.56	40.84	> 0.5MHz		
Middle	2437	36.56	40.96	> 0.5MHz		
High	2452	36.56	40.96	> 0.5MHz		

The spectrum analyzer plots are attached as below.

6dB Bandwidth

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz(20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

20dB Bandwidth

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel High 2462MHz

Page 27 of 111

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz(20MHz)

Page 28 of 111

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

Page 29 of 111

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

7. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

7.3.EUT Configuration on Measurement

The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

7.5.Test Procedure

- 7.5.1.The EUT was tested according to DTS test procedure of Jun 05, 2014 KDB558074 D01 DTS Meas Guidance v03r02 for compliance to FCC 47CFR 15.247 requirements.
- 7.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.3.Set RBW = 1-5% of the OBW, not to exceed 1 MHz, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS.
- 7.5.4.Measurement the Maximum conducted (average) output power.

7.6.Test Result

The test was performed with 802.11b					
Channel	Frequency (MHz)	Ave output power (dBm)	Ave output power (mW)	Limits dBm / W	
Low	2412	9.20	8.32	30 dBm / 1 W	
Middle	2437	9.14	8.20	30 dBm / 1 W	
High	2462	9.26	8.43	30 dBm / 1 W	

The test was performed with 802.11g					
Channel	Frequency (MHz)	Ave output power (dBm)	Ave output power (mW)	Limits dBm / W	
Low	2412	8.23	6.65	30 dBm / 1 W	
Middle	2437	8.12	6.49	30 dBm / 1 W	
High	2462	8.46	7.01	30 dBm / 1 W	

The test was per	The test was performed with 802.11n (20MHz)					
Channel	Frequency (MHz)	Ave output power (dBm)	Ave output power (mW)	Limits dBm / W		
Low	2412	8.26	6.70	30 dBm / 1 W		
Middle	2437	7.92	6.19	30 dBm / 1 W		
High	2462	7.63	5.79	30 dBm / 1 W		

The test was per	The test was performed with 802.11n (40MHz)					
Channel	Frequency (MHz)	Ave output power (dBm)	Ave output power (mW)	Limits dBm / W		
Low	2422	6.88	4.88	30 dBm / 1 W		
Middle	2437	6.82	4.81	30 dBm / 1 W		
High	2452	6.83	4.82	30 dBm / 1 W		

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

Page 33 of 111

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

Page 35 of 111

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

Page 36 of 111

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

Page 38 of 111

8. POWER SPECTRAL DENSITY MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

8.5. Test Procedure

8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.

8.5.2. Measurement Procedure PKPSD:

This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.

Page 39 of 111

- 3. Set the RBW $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 8.5.3. Measurement the maximum power spectral density.

8.6.Test Result

The test was performed with 802.11b									
Channel	Limits (dBm)								
Low	2412	-19.36	8 dBm						
Middle	2437	-19.20	8 dBm						
High	2462	-20.11	8 dBm						

The test was performed with 802.11g									
Channel Frequency (MHz) Power Spectral Density (dBm) Limits (dBm)									
Low	2412	-23.88	8 dBm						
Middle	2437	-24.52	8 dBm						
High	2462	-23.79	8 dBm						

The test was performed with 802.11n (20MHz)									
Channel Frequency (MHz) Power Spectral Density (dBm)									
Low	2412	-24.54	8 dBm						
Middle	2437	-25.50	8 dBm						
High	2462	-24.74	8 dBm						

The test was performed with 802.11n (40MHz)										
Channel Frequency (MHz) Power Spectral Density (dBm) Limits (dBm)										
Low	2422	-29.52	8 dBm							
Middle	2437	-29.55	8 dBm							
High	2452	-30.52	8 dBm							

The spectrum analyzer plots are attached as below.

802.11b Channel Low 2412MHz

802.11b Channel Middle 2437MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel Middle 2437MHz (20MHz)

802.11n Channel High 2462MHz(20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel Middle 2437MHz(40MHz)

802.11n Channel High 2452MHz(40MHz)

Page 46 of 111

9. BAND EDGE COMPLIANCE TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz MHz. We select 2412MHz, 2462MHz and 2422MHz, 2452MHz TX frequency to transmit.

9.5.Test Procedure

Conducted Band Edge:

9.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.

Page 47 of 111

9.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 9.5.3.The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 9.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 9.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 9.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 9.5.7.RBW=1MHz, VBW=1MHz
- 9.5.8.The band edges was measured and recorded.

9.6.Test Result

The test was performed with 802.11b									
Frequency Result of Band Edge Limit of Band Edge									
(MHz)	(dBc)	(dBc)							
2412	37.32	> 20dBc							
2462	36.98	> 20dBc							

The test was performed with 802.11g									
Frequency Result of Band Edge Limit of Band Edge (MHz) (dBc) (dBc)									
2412	33.63	> 20dBc							
2462	33.11	> 20dBc							

The test was performed with 802.11n (20MHz)									
Frequency Result of Band Edge Limit of Band Edge (MHz) (dBc) (dBc)									
2412	34.39	> 20dBc							
2462	33.21	> 20dBc							

The test was performed with 802.11n (40MHz)								
Frequency Result of Band Edge Limit of Band Edge								
(MHz)	(dBc)	(dBc)						
2422	29.43	> 20dBc						
2452	29.21	> 20dBc						

802.11b Channel Low 2412MHz

802.11b Channel High 2462MHz

802.11g Channel Low 2412MHz

802.11g Channel High 2462MHz

802.11n Channel Low 2412MHz (20MHz)

802.11n Channel High 2462MHz (20MHz)

802.11n Channel Low 2422MHz (40MHz)

802.11n Channel High 2452MHz (40MHz)

Page 52 of 111

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2009 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX modes then measure it.

We select 2412MHz, 2462MHz TX frequency to transmit(802.11b/g/n20 mode).

We select 2422MHz, 2452MHz TX frequency to transmit(802.11n40 mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz
- 3.All modes of operation were investigated and the worst-case emissions are reported.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 53 of 111

Job No.: alen #4582 Polarization
Standard: FCC PK Power So

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2412MHz(802.11b)

Model: M7XX

Manufacturer: SungWorld

2397.920

2397.920

2400.020

2400.020

Note: Report NO.:ATE20141876

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/14/ Time: 9/32/45 Engineer Signature:

Distance: 3m

									limit	1: —
90							grange.	N.	limit	2:
30							/	1		
80							{			
70										
60							1	1		
60							Ť			
50						1.3				
						/37		,	My	
	1								W.	
40	41. 44			marin Dimention	and a more who	/ \$			···· Addarda	who will reduce the
40	ngdydydd danwddolau, a	apterior de contracto de la co	- Marie Mari	ware the ware	thatter many without	ww.			Yadata	in the said in the contract of
40 30	more	apromise a history de se		managan Dissipangan	gallerarae who	,,,,,,/			Yadaata	enthorough education and e
	ng diploje ala plane and anapania, a	are de servicio de la companyo della companyo della companyo de la companyo della companyo della companyo della companyo de la companyo della		anning an Designation of the	g afternoon which	,				ordering all place and a
30 20		apromision beautiful and some	was produced by the second	www.en.dd.hagir.dog.h	frakkirinena-sveken					in the country of the
30 20 10.0		aperin barren ha degradaren		meneral Distriction	gadh anna maka	,,,,/			Nadada	2450.0 M

74.00

54.00

74.00

54.00

-25.74

-13.75

-22.33

-10.39

peak

peak peak

peak

Note: Average measurement with peak detection at No.2&4

55.02

47.01

58.43

50.37

-6.76

-6.76

-6.76

-6.76

48.26

40.25

51.67

43.61

1

2

3

4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Vertical

Power Source: AC 120V/60Hz

Report No.: ATE20141876

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 54 of 111

Date: 14/10/14/ Time: 9/35/57

Engineer Signature: Distance:

Job No.: alen #4583 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT:

Mode: TX 2412MHz(802.11b)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2396.100	50.41	-6.76	43.65	74.00	-30.35	peak			
2	2396.100	42.48	-6.76	35.72	54.00	-18.28	peak			
3	2400.020	50.74	-6.76	43.98	74.00	-30.02	peak			
4	2400.020	42.38	-6.76	35.62	54.00	-18.38	peak			

Page 55 of 111

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 14/10/14/ Time: 9/39/55

Engineer Signature: Distance: 3m

Job No.: alen #4585 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2462MHz(802.11b)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

3 45.47 -6.54 2485.720 38.93 74.00 -35.07peak 4 2485.720 37.35 -6.54 30.81 54.00 -23.19peak

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 56 of 111

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/14/ Time: 9/38/37

Engineer Signature: Distance: 3m

Job No.: alen #4584 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2462MHz(802.11b)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	110
1	2483.500	45.22	-6.54	38.68	74.00	-35.32	peak				
2	2483.500	37.35	-6.54	30.81	54.00	-23.19	peak				
3	2486.500	47.98	-6.54	41.44	74.00	-32.56	peak				
4	2486.500	38.98	-6.54	32.44	54.00	-21.56	peak				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal

Power Source: AC 120V/60Hz

Report No.: ATE20141876

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 57 of 111

Date: 14/10/14/ Time: 9/45/37

Engineer Signature: Distance: 3m

Job No.: alen #4589 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2412MHz(802.11g)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2395.680	49.44	-6.76	42.68	74.00	-31.32	peak			
2	2395.680	42.03	-6.76	35.27	54.00	-18.73	peak			
3	2400.020	48.43	-6.76	41.67	74.00	-32.33	peak			
4	2400.020	40.21	-6.76	33.45	54.00	-20.55	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 58 of 111

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 14/10/14/ Time: 9/44/28

Engineer Signature: Distance: 3m

Job No.: alen #4588 Standard: FCC PK

Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2412MHz(802.11g)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
93	1	2396.380	61.12	-6.76	54.36	74.00	-19.64	peak				
8	2	2396.380	53.24	-6.76	46.48	54.00	-7.52	peak				
9	3	2400.020	66.59	-6.76	59.83	74.00	-14.17	peak				
73	4	2400.020	58.23	-6.76	51.47	54.00	-2.53	peak				

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

> Polarization: Horizontal

Power Source: AC 120V/60Hz

Report No.: ATE20141876

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 59 of 111

Date: 14/10/14/ Time: 9/41/23

Engineer Signature: Distance: 3m

Job No.: alen #4586 Standard: FCC PK

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: MID

Mode: TX 2462MHz(802.11g)

Model: M7XX

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	46.73	-6.54	40.19	74.00	-33.81	peak			
2	2483.500	38.86	-6.54	32.32	54.00	-21.68	peak			
3	2485.840	49.37	-6.54	42.83	74.00	-31.17	peak			
4	2485.840	40.35	-6.54	33.81	54.00	-20.19	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 60 of 111

Job No.: alen #4587 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/14/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/42/26 **Engineer Signature:**

Mode: TX 2462MHz(802.11g) Distance: 3m

Model: M7XX

EUT:

Manufacturer: SungWorld

MID

Note: Report NO.:ATE20141876

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	59.74	-6.54	53.20	74.00	-20.80	peak			
2	2483.500	51.36	-6.54	44.82	54.00	-9.18	peak			
3	2484.520	58.78	-6.54	52.24	74.00	-21.76	peak			
4	2484.520	51.23	-6.54	44.69	54.00	-9.31	peak			

Model:

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 61 of 111

Job No.: alen #4590 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/14/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/47/04

EUT: Engineer Signature: Mode: TX 2412MHz(802.11n20) Distance: 3m

Manufacturer: SungWorld

M7XX

Report NO.:ATE20141876 Note:

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
Ī	1	2396.800	55.41	-6.76	48.65	74.00	-25.35	peak			
Ī	2	2396.800	46.89	-6.76	40.13	54.00	-13.87	peak			
	3	2400.020	52.56	-6.76	45.80	74.00	-28.20	peak			
	4	2400.020	43.51	-6.76	36.75	54.00	-17.25	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 62 of 111

Job No.: alen #4591 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/14/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/48/12

EUT: Engineer Signature: Mode: TX 2412MHz(802.11n20) Distance: 3m

Model: M7XX

Manufacturer: SungWorld

Report NO.:ATE20141876 Note:

2 2396.100 52.12 -6.76 45.36 54.00 -8.64 peak 3 -14.37 2399.740 66.39 -6.7659.63 74.00 peak 2399.740 4 57.54 -6.7650.78 54.00 -3.22peak

Report No.: ATE20141876 Page 63 of 111

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Distance: 3m

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #4593 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/14/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/51/40 EUT: Engineer Signature:

Mode: TX 2462MHz(802.11n20)

Model: M7XX

Manufacturer: SungWorld

Report NO.:ATE20141876 Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2483.500	45.86	-6.54	39.32	74.00	-34.68	peak				
2	2483.500	38.01	-6.54	31.47	54.00	-22.53	peak				
3	2485.060	48.05	-6.54	41.51	74.00	-32.49	peak				
4	2485.060	40.02	-6.54	33.48	54.00	-20.52	peak				

Report No.: ATE20141876 Page 64 of 111

Site: 1# Chamber

ACCURATE TECHNOLOGY CO., LTD.

Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: alen #4592 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Test item: Radiation Test Date: 14/10/14/ Time: 9/50/28 Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Engineer Signature: Mode: TX 2462MHz(802.11n20) Distance:

Model: M7XX Manufacturer: SungWorld

Report NO.:ATE20141876 Note:

4 2484.160 52.35 -6.54 45.81 54.00 -8.19 peak

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20141876

Page 65 of 111

Job No.: alen #4597 Polarization: Horizontal

Distance: 3m

Standard: FCC PK Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 14/10/14/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 9/58/40

EUT: MID Engineer Signature:

Model: M7XX

Mode:

Manufacturer: SungWorld

Note: Report NO.:ATE20141876

TX 2422MHz(802.11n40)

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2398.760	51.08	-6.76	44.32	74.00	-29.68	peak			
2	2398.760	42.13	-6.76	35.37	54.00	-18.63	peak			
3	2400.580	50.95	-6.76	44.19	74.00	-29.81	peak			
4	2400.580	41.36	-6.76	34.60	54.00	-19.40	peak			