

Age differences in white matter: 3-way multimodal analysis.

Mendez A¹, Hefner M²; Calhoun V⁴; McAuley E⁵; Kramer A⁶; Burzynska AZ³

¹Psychology department, ²College of Engineering, ³Human Develop. and Family Studies, Colorado State University; ⁴Psychology and Neuroscience., Georgia State Univ., Atlanta, GA; ⁵Univ. of Illinois at Urbana-Champaign, Urbana, IL; ⁶Northeastern Univ., Boston, MA

Introduction

- WM aging > "cortical disconnection" > cognitive decline
- WM aging studied predominantly with DTI, T2- and T1-WI
- Standard methods are sensitive to age differences but not specific to any pathology (e.g. demyelination)
- Each technique has limitations:
 - DTI: crossing fibers, water/membrane content
 - T1- and T2-WI: free water content, iron
- Inconsistent findings on age differences and correlations with cognition of brain function
- Multimodal fusion can help maximize information across modalities and identify biomarkers (Calhoun, 2016)
- Lack of symmetric voxel-wise data fusion studies on WM in healthy aging (Hsieh 2014).
- T1w/T2w suggested as an indirect proxy of myelin that can complement DTI.

Study aim

Can we better define age differences in WM by leveraging information from different MRI types in multimodal fusion?

Hypotheses

- 1) FA will be lower and MD higher in OA than YA
- 2) The three modalities will show joint age differences (i.e. multimodal ICs)

Participants

- Young adults (YA): n=37, M=22yrs (Burzynska, 2017a)
- Older adults (OA): n=98, M=65yrs (Burzynska, 2017b)
- Cognitively normal (MMSE>27), community dwelling

3T Siemens MRI

- DTI, 30 dir., b-value=1000s/mm², 1.7mm for OA, 1.9mm for YA.
- Fractional anisotropy (FA) and mean diffusivity (MD) maps generated in FSL-DTD, nonlinear registration to MNI152
- T1-WI, MPRAGE, 0.9mm³
- T2-WI, b=0 images from DTI
- T1w/T2w using MRTool in SPM12 (Ganzetti et al., 2014)

mCCA+jlCA multimodal fusion

Figure 1. Multimodal Canonical Correlation Analysis with Joint Independent Component Analysis (mCCA+jICA). mCCA+jICA leverages the cross-information among N data types and allows to reveal relationships that cannot be detected by using a single modality. In other words, mCCA+jICA allows us to investigate whether certain group differences (here: age differences in WM) are shared or distinct across multiple MRI data types.

Calhoun et al. 2013, Sui et al. 2013

Results

Figure 2. Joint ICs representing age differences in WM between YA and OA at |Z| > 2.5. Showing 2 out of 8 significant ICs. The positive Z-values (red regions) means YA>OA and the negative Z-values (blue regions) means YA<OA.

P<0.001

P<0.001

Discussion

• We identified 7 modality-shared ICs, 1 modality-unique IC for T1/T2. Some ICs confirmed H1, but not all ICs showed expected DTI patterns (e.g., decreased FA in OA). We confirmed H2, but we observed complex spatial distribution of the independent sources.

Future directions

Correlate ICs with cognition, compare to FA only

P<0.001

• Test other multimodal models that focus on similarities among modalities

Contact

Andrea Mendez Colmenares
Colorado State University
Email: andrea.mendez@colostate.edu

References

- 1. Burzynska, A. Z., Preuschhof, C., Bäckman, L., Nyberg, L., Li, S. C., Lindenberger, U., & Heekeren, H. R. (2010). Age-related differences in white matter microstructure: region-specific patterns of diffusivity. Neuroimage, 49(3), 2104-2112.
- 2. Calhoun, V. D., & Sui, J. (2016). Multimodal fusion of brain imaging data: a key to finding the missing link (s) in complex mental illness. *Biological psychiatry:*
- cognitive neuroscience and neuroimaging, 1(3), 230-244.
 3. Ganzetti, M., Wenderoth, N., & Mantini, D. (2014). Whole brain myelin mapping using T1-and T2-weighted MR imaging data. Frontiers in human neuroscience, 8, 671.
- 4. Sui, J., He, H., Pearlson, G. D., Adali, T., Kiehl, K. A., Yu, Q., ... & Ho, B. C. (2013). Three-way (N-way) fusion of brain imaging data based on mCCA+ jICA and its application to discriminating schizophrenia. NeuroImage, 66, 119-132.