DyslexNet - neural network for dyslexia classification from cortical activity.

Anastasia Klimovich-Gray^{1*}, Ander Barrena^{2*}, Ekain Arrieta², Eneko Agirre², Nicola Molinaro³

¹University of Aberdeen, ²HiTZ Center - Ixa, University of the Basque Country UPV/EHU, ³BCBL, Basque Center on Cognition, Brain and Language * Joint first author

Aims

Dyslexia → a phonological deficit that precedes formal reading tuition Linked to worse cortical entrainment to the speech envelope, detectable pre-reading [1,2] - worse speech sampling [3]

Early Biomarker for dyslexia from cortical activity?

A large *transformer-based Neural Network (NN)* can find dyslexia-linked neural activity patterns in spatiotemporal activity.

Challenges and Advantages of the transformer NN method:

- Progress in machine learning classification of dyslexia: 90% classification accuracy in children from cortical entrainment to synthesised sounds [4]
- Issues: not naturalistic, bias to acoustic (non-linguistic) features.
- Activity patterns encode rich information about acoustic and linguistic analysis, attention transformer NNs [5] can be used with naturalistic paradigms without bias to specific features, allow pattern visualisation.
 Questions:
- Can transformer NNs classify better than classical ML approaches [4]?
- Added value in neural-based classification over behavioural scores?
- Classification differences in children and adults? Is visualization of attention weights (dyslexia neural patterns) across sensors informative?

Methods

MEG data collection

Experiment design: natural sentence listening (total time: 300 sec) during MEG + behavioural tests of phonological and reading skills

Behavioural scores: Words & Pseudoword reading Accuracy and Time

Participants: 46 right-handed monolingual Spanish native speakers, 23 adult (M Age=31.65, 10 with dyslexia) and 23 children (M Age=12, 13 with dyslexia). Data from Molinaro et al., 2016 & Lizarazu et al., 2015

Neural Data processing: per participant — Maxfilter, 0.05-45 Hz bandpass filter, ICA blink removal, epoching into 1 sec slices, aligned to the sentence onset. 128 Hz downscaling.

Neural Network design and analysis

Key goal: classify 1 sec neural data slices as either Control/Dyslexia, aggregate across slices and classify the participant.

Neural Network & training properties: *Transformers & self-attention,* average of leave-one-out cross-validation, local and global optimizations.

DyslexNet model architecture

Results

Model	Accuracy Adults	Accuracy Children	Accuracy A+C
All behavioural Scores	80,7%	84,1%	82,7%
Logistic Regression	53%	50.4%	N/A
DyslexNet	13.9%	82.6%	81.3%
DyslexNet + Behav.	65.2%	89.6%	79.1%

Attention over sensors

Adults

Key Outcomes:

- DyslexNet outperforms simpler ML methods and is on par with behavioural scores in children (but not adults)
- Better classification for children than adults
- Best results for children when MEG combined with behavioural scores
- Dyslexia-specific RH frontal activation when listening to speech
- Frontal pattern in adults frontotemporal in children

Conclusions

- We can reliably detect dyslexia from speech-induced spatiotemporal cortical activity with Attention Transformer NN.
- DyslexNet classification with brain responses to speech is on par with reading and phonological score based classification in children → prospect for pre-reading diagnostics.
- Better classification in children compensation in adults?
- Best classification when cortical + behavioural (reading and phonological) data are combined
- Dyslexia → atypical processing of speech in RH Frontal and Temporal sensors are key for classifying dyslexia in language tasks - consistent with previous findings [1]

A step closer for designing *NN-assisted biomarker approach* for dyslexia detection

Advances for NN approaches of brain data analysis

- New architecture with *self-attention* and *global threshold* optimization gives *best outcomes* for developmental data
- Neural architectures allow to combine sparse neural features and behavioural scores in a very intuitive way.
- Ability to visualise model attention as a cortical biomarker