# シンボル細分化を適用した 階層Pitman-Yor過程に基づく木置換文法獲得法と 構文解析への応用

進藤裕之1 宮尾祐介2 藤野昭典1 永田昌明1

<sup>1</sup>NTTコミュニケーション科学基礎研究所 <sup>2</sup>国立情報学研究所

2012/03/16 言語処理学会第18回年次大会

## 目的

## 高精度な構文解析器(句構造)の実現



## 目的

## 英語の構文解析器(state-of-the-art)

CFG + シンボル細分化

|                                    | 精度   |
|------------------------------------|------|
| Collins Parser (1999)              | 88.5 |
| Berkeley Parser (2007)             | 90.1 |
| Charniak & Johnson's Parser (2005) | 91.4 |

TSG + シンボル細分化

提案手法: SR-TSG (最高精度) 92.4

# 背景

- •TSG(木置換文法)
- ・シンボル細分化

# 背景

- •TSG(木置換文法)
- ・シンボル細分化

## TSG (木置換文法)

Tree Substitution Grammars [Post+ 09, Cohn+ 09]

任意の大きさの部分木を基本単位とする構文木の生成モデル

# TSG (木置換文法)

# 構文木 S NP VP I PRP VBP NP I I love PRP I you

#### CFG (文脈自由文法)



#### 部分木



# TSG (木置換文法)

TSG: CFG の拡張



## TSG 部分木の学習

## TSG 部分木の獲得 = 教師なし構文木分割



## TSG に基づく構文解析

#### 部分木を組み合わせて,確率の高い構文木を探索

#### 獲得された部分木の集合



#### テストデータ



# 背景

•TSG(木置換文法)

・シンボル細分化

## シンボル細分化

## Berkeley Parser, Charniak Parser の基盤となる手法

[Johnson 98, Collins 03, Matsuzaki+ 05, Petrov+ 06]



NP (主語): I, he, she, ...

NP (目的語): モノ

が生成されやすい

# シンボル細分化

#### Berkeley Parser, Charniak Parser の基盤となる手法

[Johnson 98, Collins 03, Matsuzaki+ 05, Petrov+ 06]



NP-0 (主語): I, he, she, ...

NP-1 (目的語): モノ

が生成されやすい

文脈情報をモデルに取り込む



構文解析の精度向上

## 既存研究の問題点

TSG + シンボル細分化 ⇒ データスパースネス

[Bansal+ 10] の研究

- 1.【前処理】 構文木コーパスの全シンボルを細分化
- 2. TSG 部分木の教師なし獲得

結果: ② シンボル細分化の効果があまり表れない

(構文解析の精度があまり向上しない)

シンボル細分化によって、部分木の種類数が大幅に増大

限られた量の学習データでは、多くの部分木が一度も現れない

# 提案手法:

SR-TSG(シンボル細分化 TSG)

## 基本アイディアは3つ

- 1. シンボル細分化と TSG の統合モデル
- 2. 階層的なモデル構造を用いたスムージング
- 3. Pitman-Yor 過程によるデータに適応的な確率分布

## 1. シンボル細分化と TSG の統合モデル



#### 1. シンボル細分化と TSG の統合モデル

・シンボル細分化と TSG 部分木の同時確率

部分木







確率

0.01

0.002

0.02

## 2. 階層的なモデル構造によるスムージング

複雑な部分木の確率



単純な部分木の確率

スムージング





## ○ スムージングによりデータスパースネスを緩和



- 3. Pitman-Yor 過程によるデータに適応的な確率分布
- ノンパラメトリックベイズモデルの一種

[Pitman and Yor 97]

③ 部分木の全可能性を列挙不可能



部分木の種類

部分木の種類(次元数)が可変



データに応じて適切な部分木の種類数を推定可能

## 基本アイディアは3つ

- 1. シンボル細分化と TSG の統合モデル
- 2. <u>階層モデル</u>によるスムージング
- 3. Pitman-Yor 過程によるデータに適応的な確率分布

データスパースネスの緩和

部分木の種類数を適応的に決定

## SR-TSG の学習

## 事後確率の最大化(MAP推定)



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



- 1. シンボル細分化の学習
- 2. 構文木の分割による部分木の学習



## 構文解析実験

#### データセット

•WSJ Penn Treebank (英語の構文木コーパス)

- 学習データ:約40000 文

- テストデータ:約 2000 文

※ 最も標準的な英語の構文解析タスク

# 結果1

## 階層モデルの効果

|                  | 精度   |
|------------------|------|
| SR-TSG(レベル1)     | 86.4 |
| SR-TSG(レベル1+2)   | 89.7 |
| SR-TSG(レベル1+2+3) | 91.1 |

**-**レベル1 : スムージングなし

・レベル1+2:1段階のスムージング

レベル1+2+3 :2段階のスムージング

# 結果2

## シンボルが細分化された部分木の例

名詞

| NNP-0 | Corp. | Co.    | Inc.      |
|-------|-------|--------|-----------|
| NNP-1 | Brian | Howard | Christina |
| NNP-2 | Feb.  | Aug.   | March     |

人の名前

動詞

| VBZ-0 | runs | comes | wins   |
|-------|------|-------|--------|
| VBZ-1 | is   | ls    | gets   |
| VBZ-2 | says | means | claims |

動詞+that節

文法的に似た働きをする単語がクラスタ化されている

# 結果3

## 代表的な構文解析手法との比較

| モデル   |         | 精度                     |      |
|-------|---------|------------------------|------|
| TSG   |         | Cohn et al. '10        | 84.1 |
| TSG + | シンボル細分化 | Bansal et al. '10      | 88.1 |
| CFG + | シンボル細分化 | Collins '99            | 88.2 |
| CFG + | 識別モデル   | Charniak & Johnson '05 | 91.4 |
| CFG + | 識別モデル   | Huang '08              | 91.7 |
| CFG + | シンボル細分化 | Petrov '10             | 91.8 |
| TSG + | シンボル細分化 | SR-TSG                 | 92.4 |

SR-TSG は最高精度を達成

## まとめ

#### TSG (木置換文法)に基づいた高精度な構文解析器

#### 問題点

- •TSG + シンボル細分化 → 🙁 データスパースネス
- ・膨大な可能性の部分木を計算機上で扱うことは困難

#### <del>提案手法</del>(SR-TSG):

- 1. シンボル細分化と TSG の統合モデル
- 2. 階層的なスムージング
- 3. Pitman-Yor 過程に基づくデータに適応的な確率分布

<u>結果</u>: 逆 英語の構文解析タスクで最高精度を実現