Discrete Variational Autoencoders with Relaxed Boltzmann Priors

Выступающий: А.В.Соловьев

ниу вшэ

Variational Autoencoder

- Генеративная модель со скрытыми переменными.
- Отображает объекты в заданное скрытое пространство и, соответственно, генерирует из него новые объекты.

Обучение VAE

$$x$$
 - данные, ζ - скрытые переменные

$$\log p(x) \geq \mathbb{E}_{q(\zeta|x)} \log p(x|\zeta) - \mathbb{KL}(q(\zeta|x)||p(\zeta))$$
 $p(\zeta) = N(0, I), q(\zeta|x; \theta_1) = N(\mu(x; \theta_1), \Sigma(x; \theta_1))$ $\mathbb{KL} = rac{1}{2} (tr(\Sigma(x)) + \mu(x)^T \mu(x) - k - \log \det \Sigma(x))$ $p(x|\zeta; \theta_2) = f(\zeta; \theta_2) + \epsilon, f(\zeta; \theta_2)$ - декодер

Variational Autoencoder

Discrete VAE

 $z\in\{0,1\}^D$ - бинарные латентные переменные Больцман прайор: $p(z)=e^{-E_{ heta}(z)}/Z_{ heta}$ $E_{ heta}(z)$ - функция энергии, $heta=\{W,a\}$

$$E_{\theta}(z) = -a^T z - \frac{1}{2} z^T W z$$

 $Z_{ heta^-}$ функция разделения

$$p(x, z, \zeta) = p(z)r(\zeta|z)p(x|\zeta)$$
$$r(\zeta|z) = \prod_{i} r(\zeta_{i}|z_{i})$$

Сглаживающая трансформация в DVAE:

$$r(\zeta|z) = egin{cases} \delta(\zeta) & , z=0 \ e^{eta(\zeta-1)}/Z_{eta} & , otherwise \end{cases}$$

 $\delta(\zeta)$ - Дельта-функция Дирака Z_{eta} - нормировачная константа, $\zeta \in [0,1]$

Сглаживающая трансформация в DVAE++:

$$r(\zeta|z) = \begin{cases} e^{-\beta\zeta}/Z_{\beta} & , z=0 \\ e^{\beta(\zeta-1)}/Z_{\beta} & , otherwise \end{cases}$$

$$\log p(x) \ge \mathbb{E}_{q(\zeta|x)} \log p(x|\zeta) + H(q(z|x)) + \mathbb{E}_{q(z|x,\zeta)} \log p(z)$$

$$q(\zeta|x) = \prod_{i} q(\zeta_{i}|x) = \prod_{i} \sum_{z_{i}} q(z_{i}|x) r(\zeta_{i}|z_{i})$$

$$H(q(z|x))$$
 - энтропия

Importance weighting bound

$$\log p(x) \geq \mathcal{L}_{\mathcal{K}}(x)$$
 $\mathcal{L}_{\mathcal{K}}(x) = \mathbb{E}_{\zeta^{(k)} \sim q(\zeta|x)} \log(rac{1}{\mathcal{K}} \sum_{k=1}^{\mathcal{K}}) rac{p(\zeta^{(k)})p(x|\zeta^{(k)})}{q(\zeta^{(k)}|x)}$ $q(\zeta|x) = \prod_i q(\zeta_i|x) = \prod_i \sum_{z_i} q(z_i|x)r(\zeta_i|z_i)$ $H(q(z|x))$ - энтропия

Overlapping Relaxations

$$egin{aligned} \log p(\zeta) &= \log(\sum_{\mathsf{x}} e^{-E_{ heta}(z) + b^{eta}(\zeta)^{\mathsf{T}} z + c^{eta}(\zeta)}) - \log Z_{ heta} \end{aligned}$$
 $b_i^{eta}(\zeta) &= eta(2\zeta_i - 1), c_i^{eta}(\zeta) = -eta\zeta_i - \log Z_{eta} \end{aligned}$

 $\hat{E}_{\theta,\zeta}^{\beta} = -E_{\theta}(z) + b^{\beta}(\zeta)^{\mathsf{T}}z + c^{\beta}(\zeta)$

Table 1: The performance of DVAE# is compared against DVAE and DVAE++ on MNIST and OMNIGLOT. Mean±standard deviation of the negative log-likelihood for five runs are reported.

			DVAE DVAE++			DVAE#				
	Struct.	K	Spike-Exp	Exp	Power	Gauss. Int	Gaussian	Exp	Un+Exp	Power
MNIST	1 —	1	89.00±0.09	90.43 ± 0.06	89.12±0.05	92.14±0.12	91.33 ± 0.13	90.55±0.11	89.57±0.08	89.35±0.06
		5	89.15±0.12	90.13 ± 0.03	89.09±0.05	91.32±0.09	90.15 ± 0.04	89.62 ± 0.08	88.56 ± 0.04	88.25 ± 0.03
		25	89.20±0.13	89.92 ± 0.07	89.04±0.07	91.18±0.21	89.55 ± 0.10	89.27 ± 0.09	88.02 ± 0.04	87.67 ± 0.07
	1 ~	1	85.48±0.06	85.13±0.06	85.05±0.02	86.23±0.05	86.24±0.05	85.37±0.05	85.19±0.05	84.93±0.02
		5	85.29±0.03	85.13 ± 0.09	85.29±0.10	84.99±0.03	84.91 ± 0.07	84.83 ± 0.03	84.47 ± 0.02	84.21 ± 0.02
		25	85.92±0.10	86.14 ± 0.18	85.59±0.10	84.36±0.04	84.30 ± 0.04	84.69 ± 0.08	84.22 ± 0.01	83.93 ± 0.06
	2 ~	1	83.97±0.04	84.15±0.07	83.62±0.04	84.30±0.05	84.35±0.04	83.96±0.06	83.54±0.06	83.37 ± 0.02
		5	83.74±0.03	84.85 ± 0.13	83.57±0.07	83.68±0.02	83.61 ± 0.04	83.70 ± 0.04	83.33 ± 0.04	82.99 ± 0.04
		25	84.19±0.21	85.49 ± 0.12	83.58±0.15	83.39±0.04	83.26 ± 0.04	83.76 ± 0.04	83.30 ± 0.04	82.85 ± 0.03
	4 ~	1	84.38±0.03	84.63 ± 0.11	83.44±0.05	84.59±0.06	84.81±0.19	84.06±0.06	83.52 ± 0.06	83.18 ± 0.05
		5	83.93±0.07	85.41 ± 0.09	83.17±0.09	83.89 ± 0.09	84.20 ± 0.15	84.15 ± 0.05	83.41 ± 0.04	82.95 ± 0.07
		25	84.12±0.07	85.42 ± 0.07	83.20±0.08	83.52±0.06	83.80 ± 0.04	84.22 ± 0.13	83.39 ± 0.04	82.82 ± 0.02
OMNIGLOT	1—	1	105.11±0.11	106.71 ± 0.08	105.45±0.08	110.81±0.32	106.81 ± 0.07	107.21 ± 0.14	105.89 ± 0.06	105.47 ± 0.09
		5	104.68±0.21	106.83 ± 0.09	105.34±0.05	112.26 ± 0.70	106.16 ± 0.11	106.86 ± 0.10	104.94 ± 0.05	104.42 ± 0.09
		25	104.38±0.15	106.85 ± 0.07	105.38 ± 0.14	111.92 ± 0.30			104.49 ± 0.07	
		1	102.95±0.07	101.84 ± 0.08	101.88±0.06	103.50 ± 0.06			101.86 ± 0.06	
	1~	5	102.45±0.08	102.13 ± 0.11	101.67±0.07	102.15 ± 0.04			101.22 ± 0.05	
		25	102.74±0.05	102.66 ± 0.09	101.80 ± 0.15	101.42 ± 0.04			100.93 ± 0.07	
	2 ~	1	103.10±0.31	101.34 ± 0.04	100.42 ± 0.03	102.07 ± 0.16		100.38 ± 0.09		99.75 ± 0.05
		5	100.88±0.13	100.55 ± 0.09	99.51±0.05	100.85 ± 0.02	101.43 ± 0.11		99.57 ± 0.06	99.24 ± 0.05
		25	100.55±0.08	100.31 ± 0.15	99.49±0.07	100.20 ± 0.02		100.10 ± 0.28		98.93 ± 0.05
	4 ~	1	104.63±0.47	101.58 ± 0.22	100.42±0.08	102.91±0.25		100.85 ± 0.12		99.65±0.09
		5	101.77±0.20	101.01 ± 0.09	99.52±0.09	101.79 ± 0.25		100.32 ± 0.19		99.13 ± 0.10
		25	100.89±0.13	100.37 ± 0.09	99.43±0.14	100.73 ± 0.08	100.97 ± 0.21	99.92 ± 0.30	99.36 ± 0.09	98.88 ± 0.09

Литература

- http://papers.nips.cc/paper/7457-dvae-discretevariational-autoencoders-with-relaxedboltzmann-priors.pdf
- https://github.com/QuadrantAI/dvae
- Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In The International Conference on Learning Representations (ICLR), 2014.
- Arash Vahdat, William G. Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash. DVAE++: Discrete variational autoencoders with overlapping transformations. In International Conference on Machine Learning