Corrigé de l'examen final A2000

Problème no. 1 (20 points)

a) Le courant i₂(t) est de la forme suivante:

$$i_2(t) = \left(A + Be^{-\frac{t}{\tau}}\right)u(t).$$

La constante de temps τ est déterminée à l'aide du circuit de base:

$$\tau = \frac{L}{R} = \frac{L}{\frac{R_1 R_2}{R_1 + R_2} + R_3} = \frac{0.1}{\frac{40 \times 60}{40 + 60} + 30} = \frac{0.1}{54} = 1.85 \text{ms}$$

Les constantes A et B sont déterminées à partir des conditions initiale et finale:

$$i_2(0 +) = \frac{120}{40 + 60} = 1.2$$

$$i_2(0 +) = A + B = 1.2$$

et

$$i_2(\infty) = \frac{30}{30 + 60} \times \frac{120}{40 + \frac{60 \times 30}{60 + 30}} = 0.667$$

$$i_2(\infty) = A = 0.667$$

On déduit:

$$A = 0.667$$

$$B = 0.533$$

Alors:

$$i_2(t) = \left(0.667 + 0.533e^{-\frac{t}{\tau}}\right)u(t)$$

b) La source v_s est de la forme suivante: $v_s(t) = 50u(t) - 50u(t - 5 \times 10^{-3})$

$$v_s(t) = 50u(t) - 50u(t - 5 \times 10^{-3})$$

$$i_2(t) \; = \; \frac{50}{120} \Biggl(0.667 + 0.533 e^{-\frac{t}{\tau}} \Biggr) u(t) - \frac{50}{120} \Biggl(0.667 + 0.533 e^{-\frac{t-5\times 10^{-3}}{\tau}} \Biggr) u(t-5\times 10^{-3})$$

Problème no. 2 (20 points)

a) Circuit transformé dans domaine de Laplace:

La tension V_C est calculée par la loi du diviseur de tension:

$$V_{C} = \frac{\frac{10000}{s}}{\frac{10000}{s} + 0.1s + 20} \times \frac{90}{s} = \frac{10000}{0.1s^{2} + 20s + 10000} \times \frac{90}{s} = \frac{9000000}{s(s^{2} + 200s + 100000)}$$

La fonction V_C a trois pôles:

 $p_1 = 0$

 $p_2 = -100 + j300$ $p_3 = -100 - j300$

On effectue la transformation inverse de $V_{\mathbb{C}}$ en décomposant $V_{\mathbb{C}}$ en fractions partielles:

$$V_C \, = \, \frac{9000000}{s(s+100-j300)(s+100+j300)} \, = \, \frac{A}{s} + \frac{B}{s+100-j300} + \frac{B^*}{s+100+j300}$$

On calcule les constantes A et B:

$$A = \frac{9000000}{(s^2 + 200s + 100000)} \bigg|_{s = 0} = 90$$

$$B = \left. \frac{9000000}{s(s+100+j300)} \right|_{s = -100+j300} = 47.4e^{j2.82}$$

La tension v_C(t) est:

$$v_{C}(t) = [90 + 94.8e^{-100t}\cos(300t + 2.82)]u(t)$$

 $d_{tran} = 5 \times \frac{1}{100} = 50 \text{ ms}$ b) La durée du régime transitoire est:

Problème no. 3 (20 points)

Le commutateur S est à la position 1 depuis très longtemps. Un régime permanent a été atteint pour t < 0.

À t = 0, S change de position de 1 à 2 et demeure à cette position pour le reste du temps. On a le circuit équivalent suivant pour t > 0.

La tension $v_2(t)$ est de la forme suivante: $v_2(t) = \left(A + Be^{-\frac{t}{\tau}}\right)u(t)$

La constante de temps τ est égale à:

$$\tau \, = \, \frac{L}{R} \, = \, \frac{0.1}{10} \, = \, 0.01 \, s$$

Les constantes A et B sont déterminées à partir des conditions initiale et finale:

 $\begin{array}{c|c}
A & t = \infty
\end{array}$ $\begin{array}{c|c}
S & & & \\
\hline
& & & \\
& & & \\
& & & \\
\end{array}$ $\begin{array}{c|c}
2 & & & \\
& & & \\
\end{array}$ $\begin{array}{c|c}
+ & & \\
v_2(\infty) & = 0
\end{array}$

Alors: $v_2(t) = 20e^{-\frac{t}{\tau}}u(t)$

Problème no. 4 (20 points)

a) La fonction de transfert $H = V_2/V_s$ est déterminée à l'aide de la loi du diviseur de tension:

$$H(j\omega) = \frac{V_2}{V_s} = \frac{R_2}{R_2 + Z_1} = \frac{R_2}{R_2 + \frac{R_1}{1 + j\omega R_1 C}} = \frac{R_2(1 + j\omega R_1 C)}{R_1 + R_2(1 + j\omega R_1 C)} = \frac{R_2 + j\omega R_1 R_2 C}{R_1 + R_2 + j\omega R_1 R_2 C} = \frac{80 + j0.048\omega}{200 + j0.048\omega}$$

Le module de H(j ω): $A(\omega) = \frac{\sqrt{6400 + (0.048\omega)^2}}{\sqrt{40000 + (0.048\omega)^2}}$

La phase de H(j ω): $\phi(\omega) = arctg(0.0006\omega) - arctg(0.00024\omega)$

On calcule $A(\omega)$ et $\phi(\omega)$ pour quelques valeurs de ω :

ω (rad/s)	0	2500	5000	7500	10000	∞
Α(ω)	0.40	0.62	0.81	0.89	0.94	1.00
φ(ω) (degré)	0.0	25.3	21.4	16.5	13.2	0.0

b) Dans ce cas, on a V_s = 120 $\underline{/0^\circ}$ et ω = 6283 rad/s. À l'aide du résultat de (a), on peut calculer V_2 :

$$V_2 = H(j\omega) \times V_s = \frac{80 + j0.048\omega}{200 + j0.048\omega} \times 120 \angle 0^\circ = \frac{9600 + j36191}{200 + j301.6} = 103.5 \angle 18.7^\circ \text{ V}$$

Alors: $v_2(t) = 103.5\cos(2000\pi + 0.326)$