Subject :

Problem 2.1

$$\theta_{\text{MSE}} = \frac{\text{argmin}}{\theta} (y - x\theta)^{T} (y - x\theta)$$

$$= y^{T}y - 2\theta^{T}X^{T}y + \theta^{T}X^{T}X\theta$$

$$\frac{\partial}{\partial B} \rightarrow -2X^{T}y + 2X^{T}X\theta$$

$$\text{let } -2X^{T}y + 2X^{T}X\theta = 0$$

$$\theta = (X^T X)^{-1} X^T Y = \theta_{MSE}$$

Problem 2.2

$$\theta = \underset{\theta}{\text{Tis the observation number } \overline{\Omega} = \underset{\theta}{\text{Tis the log}} \left[\underbrace{ST} \times e^{-\frac{1}{2} \left[(y - \overline{X}\theta)^T \sum_{i=1}^{n-1} (y - \overline{X}\theta) \right]}_{\text{take log}} \right]$$

$$= \underset{\theta}{\text{arg max}} \log \left(\frac{1}{6\pi} \right) - \frac{1}{2} \left[(y - \overline{X}\theta)^T \sum_{i=1}^{n-1} (y - \overline{X}\theta) \right]$$

$$= \underset{\theta}{\text{arg min}} - \log \left(\frac{1}{6\pi} \right) + \frac{1}{2} \left[(y - \overline{X}\theta)^T \sum_{i=1}^{n-1} (y - \overline{X}\theta) \right]$$

$$= \underset{\theta}{\operatorname{arg\,min}} (y - x\theta)^{\mathsf{T}} \Sigma^{\mathsf{T}} (y - x\theta)$$

$$= \underset{\theta}{\operatorname{arg\,min}} (y - x\theta)^{\mathsf{T}} \Sigma^{\mathsf{T}} (y - x\theta)$$

$$= \underset{\theta}{\operatorname{arg\,min}} (y - x\theta)^{\mathsf{T}} \Sigma^{\mathsf{T}} y + \theta^{\mathsf{T}} x^{\mathsf{T}} \Sigma^{\mathsf{T}} x\theta$$

$$= -2 x^{T} \vec{\Sigma}^{+} y + 2 x^{T} \vec{\Sigma}^{+} \cancel{X} 9$$

$$let \quad -2 x^{T} \vec{\Sigma}^{+} y + 2 x^{T} \vec{\Sigma}^{+} \cancel{X} 9 = 0$$

Country I

Subject

Problem 2.3

Strice $\hat{\theta} = (X^T X \hat{J}^T X^T Y)$

 $y = x \theta^* + \varepsilon$, $\varepsilon \sim N(o, \xi^*)$ $y \sim N(x\theta^*, \xi)$

 $\hat{\theta} \sim N((x^Tx)^Tx^Tx^{\theta^*}, (x^Tx)^Tx^T\Sigma^*[(x^Tx)^Tx^T]^T)$

Problem - 2-4

By Invariance of MLE

$$\hat{y} = X^T new \hat{\theta}$$

$$= X^T new (X^T X)^{-1} X^T Y$$

Problem 2.5.

Since $\hat{y} = X_{new} \hat{\theta}$

ŷ ~ N (XTnew Θ*, XTnew (XTX) XT Σ*[(XTX) -XT] X new)

0		No. :
	Problem	Date :///
	roblem	
	Problem 2.6 argmax $= \frac{1}{2}(y-x\theta^*)^T \Sigma^{-1}(y-x\theta^*)$ $\Sigma = \sqrt{ \xi } \xi $	
_	argmax = 1 × e - 2 (9-10)	
	Σ J(211) [Σ]	
	a gramar / 1, 1 1 (**) T=-1(1, × 0*)	
	log = Σ - 2 log = π - 1/2 Σ - 1/2 (y-x0*) T = (y-x0*)	
$\overline{}$	2 2 3 2	
	d1-1 1 1 1 -1 +	T)
$\overline{}$		0*) /
_	$\frac{\partial}{\partial x^4}$ \Rightarrow $\frac{1}{2} \sum_{i} -\frac{1}{2} (y - x \theta^*) (y - x \theta^*)^T = 0$	
_	= = = = = = = = = = = = = = = = = = =	
	σ2 , , , , , , , , , , , , , , , , , , ,	
-	$\Sigma = (y - xo^{x})(y - xo^{x})^{T}$	
	0.000	
0		
_		
~		
_		
~		
_		

Subject :

2.7.

In this question, we have to assume homoskedasticity, otherwise it's not solvable.

(a.)

$$\hat{\theta} = (X^T X)^{-1} X^T y = \begin{bmatrix} 0.1159 \\ 1.0605 \\ -50.4572 \end{bmatrix}$$
 Height Weight Intercept

$$\frac{\text{(b)}}{\widehat{g}} = \left[175, 170, 1 \right] \cdot \widehat{\theta}$$

(C)

Variance for $\hat{y} = 6^2 x_{\text{new}}^T (X^T X)^T x_{\text{new}} = 133.54$ $\geq \text{ value } \text{ When } \propto = 0.05 \implies 1.96$

95% Confidence Interval for y = [150-13 - 5133-54 x1.96, 150-13 + 5133-54 x1.96]

Double 2

(d) Under 95% confidence level cov(ô) = 62(xTx)-1 $\frac{\hat{\theta} \stackrel{\text{leight}}{\text{height}}}{V^2 \text{height}} = \frac{(0.(159)^2}{0.6025} \stackrel{?}{=} 0.01999$ Cumulated density (0.01999) = 11.2% <95%. Height is not (e) Under 95% confidence level $\frac{\hat{0}^{2} \text{ Height}}{V_{\text{weight}}^{2}} = \frac{(1-0605)^{2}}{0.2479} = 4.5372$ Cumulated density of 4.5372 = 96.6% > 95%. Weight is significant. #