

Regression Methods

Linear Regression and its Extensions

https://creativecommons.org/licenses/by-nc-nd/4.0/

Lecture overview

- Modular Approach to Machine Learning
 - Model: defining the input/output relationship
 - Loss: how to measure how good a prediction is
 - Regularization: [covered next week :)]
 - Gradient Descent: how a model learns
- 2. Expansions of Linear Regression
 - Multivariate Linear Regression
 - Polynomial Regression
 - Logistic Regression

Models

defining the input/output relationship

What is a model?

quick definition: a model is a function that maps input features to a target value. In this lesson, we define a model based on its <u>weights / parameters</u> that scale different input dimensions.

$$f(\mathbf{x}) = y \ y pprox t$$

- t is our measured (real-world) target value
- y is our prediction (which we want to approximate t)
- bold x means x is a vector, so we allow for multiple input features!

Models in machine learning

In machine learning, we use training data (data we have) to 'teach' a model to make predictions on new data.

Training is also called **fitting a model** to our training data.

Parameters (or weights) are the values that are learned during training.

Ex. Simple Linear Regression

What is linear regression?

Linear regression is a type of model

• in the single input variable case, it fits a line

What does linear mean?

the relationship between input features and output target (t) is a line or a plane (not curved)

Linear regression

multivariate regression (here 2 variables) y=a₁x₁+a₂x₂

What is linear regression?

Linear regression is a type of model

• in the single input variable case, it fits a line

How do we define a line?

$$y = mx + b$$

m and b are the parameters of our model

We want have a dataset that contains information about cars.

- focus on two columns
 - Horsepower (engine power)
 - MPG (fuel efficiency)

	horsepower	mpg
0	130	18.0
1	165	15.0
2	150	18.0
3	150	16.0
4	140	17.0
5	198	15.0
6	220	14.0
7	215	14.0
8	225	14.0
9	190	15.0

We want to train a linear model that takes horsepower as input and outputs a fuel efficiency prediction.

 Assume the relationship between fuel efficiency and horsepower is linear
 → a line!

We want to train a linear model that takes horsepower as input and outputs a fuel efficiency prediction.

 Our goal is to find the m and b of the 'line of best fit'

$$y = mx + b$$

We want to train a linear model that takes horsepower as input and outputs a fuel efficiency prediction.

 Our goal is to find the m and b of the 'line of best fit'

→ we need a method for comparing lines

y = mx + b

how to measure 'wrongness'

quick definition: A loss function is any function that takes as input, a labeled example from our dataset (x and t) and our model's prediction (y) and returns a value of how wrong our model's prediction is for the given example → smaller loss values implies more correct.

quick definition: A loss function is any function that takes as input, a labeled example from our dataset (x and t) and our model's prediction (y) and returns a value of how wrong our model's prediction is for the given example \rightarrow smaller loss values implies more correct.

There is no one (1) 'best/correct' loss function! Just like in model selection, you choose a loss based on the problem at hand.

What makes sense for our car problem?

What makes sense for our car problem?

Squared Error Loss

$$(y_i-t_i)^2$$

- very common loss choice for regression
- y t is called the residual
- since its squared
 - penalizes over predictions as well as under predictions
 - penalizes more incorrect predictions more severely

A cost function is the average loss over our entire training set.

Squared Error Loss

Mean Squared Error Cost

$$(y_i-t_i)^2$$

$$MSE = rac{1}{n}\sum_{i=1}^N (y_i - t_i)^2$$

We compare lines by comparing their cost.

- There are an infinite number of lines.
 (both m and b can be any real number)
- How do we find the best?

how a model learns the best parameters

How do we know that we've found the best line?

How do we minimize cost?

Thought experiment:

- You are on some hill, you cannot see anything around you. And you want to go downhill to find a nice valley.
- You can feel the slope of the ground underneath your feet, so you know which way leads you down.
- 3. How do you find a nice valley.
 - → just take steps downward!

quick definition: Gradient descent is an iterative method for finding an <u>optimum set of parameters</u> relative to a model, loss function, and training dataset. Gradient descent uses the gradient of given cost function (average of loss) to minimize it over the training set.

$$egin{aligned} m_{i+1} &= m_i - lpha
abla_m J(m_i, b_i) \ b_{i+1} &= b_i - lpha
abla_b J(m_i, b_i) \end{aligned}$$

math definition: The gradient of a function is the vector of partial derivatives of its inputs.

Translation: the gradient of a function at a point is the **direction of steepest** ascent on the function at that point.

The gradient is the feeling underneath your feet which tells you the slope of the hill you are standing on.

1 * gradient is the direction of steepest descent

The gradient is the feeling underneath your feet which tells you the slope of the hill you are standing on.

- 1 * gradient is the direction of steepest descent

Car example: How do we update our parameters (m and b) to decrease the cost?

$$m_{i+1} = m_i - lpha
abla_m J(m_i, b_i) \ b_{i+1} = b_i - lpha
abla_b J(m_i, b_i)$$

In our car example the cost surface we are descending is a surface in 3D, since we have two weights (m and b). A point on this surface looks like: (m, b, cost(m, b)).

In other words, each point on this surface represents a line in our data space with its respective cost over our training dataset.

$$m_{i+1} = m_i - lpha
abla_m J(m_i, b_i) \ b_{i+1} = b_i - lpha
abla_b J(m_i, b_i)$$

Learning rate

 α too small: slow progress

 α too large: oscillations

Learning rate (alpha) can be thought of as the size of the step each iteration of gradient descent takes.

$$egin{aligned} m_{i+1} &= m_i - lpha
abla_m J(m_i, b_i) \ b_{i+1} &= b_i - lpha
abla_b J(m_i, b_i) \end{aligned}$$

In sklearn, we can fit a linear regression model quite easily!

```
mpg_df['horsepower^2'] = mpg_df['horsepower'] ** 2
X = mpg_df['horsepower'].to_numpy()
y = mpg_df['mpg'].to_numpy()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42)
regression_model = LinearRegression()
regression_model.fit(X_train.reshape(-1,1), y_train)
print('Mean squared error: %.2f'
      % mean_squared_error(regression_model.predict(X_test.reshape(-1,1)), y_test))
```


In sklearn, we can fit a linear regression model quite easily!

Expanding on Linear Regression

Beyond the line of best fit

- Multiple linear Regression
- 2. Polynomial Regression
- 3. Logistic Regression

We can use more than one input feature!

Instead of a line, we fit a plane.

Only change is that we have additional parameters to learn.

For D input features:

$$f(\mathbf{x}) = \sum_{d=1}^D w_d x_d + b$$

For our car example, let's include a new input column called 'model year' (the year of the car's release).

horsepower	model year	mpg
92.0	76	25.0
88.0	73	18.0
68.0	81	34.1
112.0	73	19.0
170.0	75	16.0
90.0	79	28.4
85.0	81	17.6
85.0	70	21.0
80.0	81	28.1
190.0	70	15.0

To fit a plane to our points:

Notice, our plane obtains a better cost than our line (19.78).

What are some conclusions to draw from this?

Also note: no matter how many input features we add, our prediction remains uncurvy!

Polynomial regression

We can fit a curve!

 not every relationship in the real-world is linear, in fact few are!

With M being the max degree of our polynomial:

$$f(x) = \sum_{p=0}^M w_p x^p$$

We fit a curve the exact same way we fit a line.

Look back at our 1D car example once more:

 not every relationship in the real-world is linear, in fact few are!

Let's try to fit a quadratic.

$$f(x)=w_2x^2+w_1x+b$$

Example

Look back at our 1D car example once more:

 not every relationship in the real-world is linear, in fact few are!

Let's try to fit a quadratic.

$$f(x) = w_2 x^2 + w_1 x + b$$

w2 = 0.0013

w1 = -0.48
b = 58

What's the lesson here?

Two strategies for improving model performance:

- 1. Give your model more data (ex: multivariate)
- 2. Give your model more expressivity (ex: polynomial)

Expressivity

The expressivity of a model is the range of functions that it can approximate.

$$f(x) = \sum_{p=0}^M w_p x^p$$

Expressivity

$$f(x) = \sum_{p=0}^M w_p x^p$$

[more on over/underfitting and how to address these issues next week :)]

Logistic Regression

Predicting Discrete Targets

Continuous vs. discrete target

- Statistical Models vary in the datatype of their predictions
- Regression is where the prediction is a real number (continuous variable)

Ex. Height in cm, Weight in lbs, Price in \$

Classification is where the prediction is for a class (discrete values)

Ex. Dog or cat, dead or alive, gender

Animal Weight Model

Regression

Animal Type Model

Classification

Prediction:

5 kgs

Prediction:

Cat

How can we predict discrete values?

Learnai

Let's say we are trying to predict whether a given beverage is coffee or tea, given its caffeine content.

What is/are our input feature(s)?

What is our target? What values can it be?

Let's use linear regression to fit a line to the data. We will then choose a **threshold value** on that line above which examples are classified as **positive** (**coffee**) and below which examples are classified as **negative** (**tea**).

Let's use linear regression to fit a line to the data. We will then choose a **threshold value** on that line above which examples are classified as **positive** (**coffee**) and below which examples are classified as **negative** (**tea**).

PROBLEM: highly confident correct predictions are punished!

SOLUTION: *squash* our output to exist only between 0 and 1.

The logistic (sigmoid) function

$$\sigma(x) = rac{1}{1+e^{-x}}$$

maps real values onto the interval (0,1)

- Limit as t \rightarrow +∞ = 1
- Limit as t → ∞ = 0

Logistic regression

In linear regression we assume our data is best fit by a line.

Logistic regression is a different type of model

→ we assume our data is best fit by a **sigmoid curve**.

$$f(x) = \sigma(mx + b)$$

Logistic regression is for classification

With **linear** regression, we try to fit a **line** to some data.

For **logistic** regression, we fit a **logistic** function to some data

With linear regression, we used squared error loss.

$$SE = (y_i - t_i)^2$$

With logistic regression, we used cross-entropy (log) loss.

$$CE = -t \log y - (1-t) \log(1-y)$$

Why?

Binary classification example

Learn

- We want to train a model to classify a beverage as either coffee or tea, based solely on caffeine content.
- We randomly sample 20
 beverages, measure their
 caffeine content, and label
 each as coffee (1) or tea (0).
- We tried to fit a line to this data. <u>This caused issues.</u>
- Now we fit a logistic curve (logistic regression) to this data. This works better.

Which looks like it fits the data more? Why?

Binary classification interpretation

- We have a trained logistic (coffee) 1 model on our beverage data, f(x).
- How do we interpret the output of our model?
- Example: we have a new caffeine content measurement, *x*, and want to predict what type of beverage it is (coffee or tea).

There is a probability of 0.1 (10% chance) that our new beverage is coffee. Which is the same as there is a 90% chance beverage x is tea.

We have:
$$f: \mathbb{R} \to (0,1)$$
 (continuous output)
We want: $f: \mathbb{R} \to \{0,1\}$ (discrete output)

if
$$f(x) >= 0.5$$
 then drink=coffee else $(f(x) < 0.5)$ then not coffee(tea)

When we have multiple input features $x_1, ..., x_n$ our logistic regression function looks like:

$$f(\mathbf{x}) = \sigma(b + \sum_{i=1}^N w_i x_i)$$

(very similar to multiple linear regression)

References

https://www.cs.toronto.edu/~rgrosse/courses/csc311 f20/slides/lec02.pdf

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

https://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/1200px-Logistic-curve.svg.png

Pattern Recognition and Machine Learning, Christopher Bishop

Contributors

Elias Williams

Addison Weatherhead

Isha Sharma

Kevin Zhu

Gilles Fayad