ConvEnviTest 프로젝트 요약

♦ 프로젝트 개요

ConvEnviTest는 환경 테스트 장비를 제어하고 모니터링하는 웹 기반 시스템입니다. 이 시스템은 산업용 장비의 자동화된 테스트를 위한 완전한 솔루션을 제공합니다.

館 기술 스택

백엔드

Node.js: 서버 런타임
WebSocket: 실시간 통신

• SerialPort: 시리얼 통신 (장비 제어)

• ws: WebSocket 라이브러리

프론트엔드

• Next.js: React 프레임워크

• React: UI 라이브러리

Material-UI: 비컴포넌트
 Tailwind CSS: 스타일링
 TypeScript: 타입 안전성

• Typescript. 다 급 근근 c

📁 프로젝트 구조

🔧 주요 기능

1. 장비 제어

- **릴레이 제어**: 10개 채널의 릴레이 ON/OFF 제어
- 전압 설정: 각 채널별 전압값 설정 (0-30V)
- 온도 제어: 챔버 온도 설정 및 모니터링

• 시리얼 통신: Modbus RTU 프로토콜을 통한 장비 통신

2. 자동화된 테스트

- 자동 테스트 프로세스: 설정된 조건에 따른 자동 테스트 실행
- 실시간 모니터링: 전압, 온도, 테스트 결과 실시간 표시
- 결과 저장: 테스트 결과를 JSON 파일로 저장

3. 웹 인터페이스

- 반응형 디자인: 모바일 및 데스크톱 지원
- 실시간 업데이트: WebSocket을 통한 실시간 데이터 통신
- 사용자 친화적 UI: Material-UI 기반의 직관적인 인터페이스

4. 설정 관리

- 설정 저장: 모든 설정값을 JSON 파일로 저장
- 설정 복원: 서버 재시작 시 설정 자동 복원
- 실시간 설정 변경: 서버 재시작 없이 설정 변경 가능

🔌 하드웨어 지원

시리얼 통신

- **포트**: COM1-COM10 (Windows), /dev/ttyUSB* (Linux/Mac)
- 프로토콜: Modbus RTU
- 통신 속도: 9600 bps
- 데이터 비트: 8
- 패리티: None
- 정지 비트: 1

릴레이 명령어

시스템은 다음 Modbus 명령어를 사용합니다:

릴레이	ON 명령어	OFF 명령어
#1	010600010100D99A	010600010200D96A
#2	010600020100299A	010600020200296A
#3	010600030100785A	01060003020078AA
#4	010600040100C99B	010600040200C96B
#5	010600050100985B	01060005020098AB
#6	020600010100D9A9	020600010200D959
#7	02060002010029A9	0206000202002959
#8	0206000301007869	0206000302007899
	•	·

릴레이	ON 명령어	OFF 명령어
#9	020600040100C9A8	020600040200C958
#10	0206000501009868	0206000502009898

교 데이터 관리

설정 파일

모든 설정은 JSON 파일로 관리됩니다:

- delay_settings.json: 딜레이 설정
- device_states.json: 장비 상태
- high_temp_settings.json: 고온 설정
- low_temp_settings.json: 저온 설정
- product_input.json: 제품 정보
- usb_port_settings.json: USB 포트 설정
- out_volt_settings.json: 출력 전압 설정
- channel_voltages.json: 채널 전압 설정

데이터 형식

```
{
  "delay_settings": {
    "onDelay": 1000,
    "offDelay": 2000,
    "cycleNumber": 5
},
  "device_states": {
    "relay1": false,
    "relay2": true,
    "relay3": false
}
}
```

🚀 배포 옵션

1. 로컬 개발 환경

- Node.js 직접 설치
- 수동 의존성 관리
- 개발 서버 실행

2. 자동 설치 스크립트

- Windows: install.bat
- Linux/Mac: install.sh
- 자동 의존성 설치 및 실행 스크립트 생성

3. Docker 컨테이너

- docker-compose.yml 사용
- 격리된 환경에서 실행
- 쉬운 배포 및 관리

❷ 보안 고려사항

네트워크 보안

- WebSocket 연결은 로컬 네트워크에서만 실행
- 외부 접근을 위한 방화벽 설정 필요

하드웨어 보안

- 시리얼 포트 접근 권한 관리
- 장비 제어 명령어 검증
- 안전한 종료 프로세스

☑ 성능 최적화

프론트엔드 최적화

- Next.js SSR/SSG 활용
- 이미지 최적화 (WebP, lazy loading)
- 코드 스플리팅 및 동적 임포트

백엔드 최적화

- WebSocket 연결 풀 관리
- 시리얼 통신 최적화
- 메모리 사용량 모니터링

단위 테스트

- React 컴포넌트 테스트
- Node.js 모듈 테스트
- WebSocket 통신 테스트

통합 테스트

- 전체 시스템 테스트
- 하드웨어 연동 테스트
- 성능 테스트

코드 스타일

- TypeScript 사용
- ESLint 규칙 준수
- Prettier 포맷팅

커밋 메시지

- Conventional Commits 사용
- 명확한 변경 사항 설명
- 이슈 번호 연결

문서화

- JSDoc 주석 사용
- README 파일 유지보수
- API 문서 작성

개발 환경 설정

- 1. 프로젝트 클론
- 2. 의존성 설치
- 3. 개발 서버 실행
- 4. 테스트 실행

코드 리뷰

- Pull Request 필수
- 코드 리뷰 승인 후 머지
- 테스트 커버리지 확인

📞 지원 및 문의

문제 해결

- 1. 로그 확인
- 2. 버전 호환성 검사
- 3. 하드웨어 연결 상태 확인
- 4. 네트워크 설정 확인

문서 참조

- README.md: 기본 사용법
- INSTALL_GUIDE.md: 상세 설치 가이드
- POWER_SWITCH_IMPLEMENTATION.md: 전원 스위치 구현

마지막 업데이트: 2025년 08월

이 문서는 ConvEnviTest 프로젝트의 전체적인 구조와 기능을 설명합니다. 자세한 사용법은 각 섹션의 링크된 문서를 참 조하세요.