Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – 2016/2017 – 1º Semestre

3º Mini-Teste – 12 Janeiro 2017

Duração da prova : 1h30m

Teste sem consulta. Faça cada GRUPO em folhas separadas.

Não é permitida a utilização de máquina de calcular com capacidade gráfica.

Apresente e justifique convenientemente todos os cálculos que efetuar.

Durante a realização da prova não é permitida a saída da sala.

A desistência só é possível 30 minutos após o início do teste.

GRUPO I

1. Utilizando as técnicas das transformadas de Laplace, resolva os seguintes problemas de valores iniciais:

a)
$$y'' + y = t$$
, $y(0) = 1$ e $y'(0) = -2$

b)
$$y'' + 2y' + y = t e^{-t}$$
, $y(0) = 1 e y'(0) = -2$

GRUPO II

- **2.** Considere a função $f(x) = e^{x+1}$. Escreva o polinómio de Taylor de grau n que aproxima a função f(x) numa vizinhança do ponto a=0.
- 3. Investigue a convergência das seguintes séries, justificando de forma conveniente:

a)
$$\sum_{n=1}^{\infty} \left(\frac{1+n}{1+\ln(n)} \right)$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{3}{2^n} - \frac{3+\sqrt{n}}{n^2+1} \right)$$

GRUPO III

4. Mostre que

$$\sum_{n=1}^{\infty} n \, x^{n-1} = \frac{1}{(1-x)^2} \,, \qquad \text{para } |x| < 1.$$

5. Considere a função f(x) de período 2,

$$f(x) = x , \qquad -1 < x < 1$$

- a) Esboce o gráfico da função no intervalo -3 < x < 3.
- **b**) Calcule os coeficientes da série de Fourier de f(x): a_0 , a_n e b_n .
- c) Escreva a fórmula geral da série de Fourier de f(x).

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio			s	
1	1	$\frac{1}{s}$	s > 0	7	$\cos(wt)$	$\overline{s^2 + w^2}$	s > 0
_				8	$\sin(wt)$	$\frac{w}{s^2 + w^2}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0		1 (-1)	s- + w- s	>
3	t^2	$\frac{2}{s^3}$	s > 0	9	$\cosh\left(at\right)$	$\overline{s^2 - a^2}$	s > a
	· ·	USAN A		10	$\sinh\left(at\right)$	$\frac{a}{s^2 - a^2}$	s > a
4	$t^n, n \in \mathbf{N_0}$	$\frac{n!}{s^{n+1}}$	s > 0	11	$e^{at}t^n$	n!	
		8		11	e^{-t}	$(s-a)^{n+1}$	s > a
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$	12	$e^{at}\cos\left(wt\right)$	$\frac{s-a}{(s-a)^2 + w^2}$	s > a
6	e^{at}	$\frac{1}{s-a}$	s > a	13	$e^{at}\sin\left(wt\right)$	$\frac{w}{(s-a)^2 + w^2}$	s > a
_						(5 4) 1 4	

$$\mathcal{L}[t^n f(t)] = (-1)^n [F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s \mathcal{L}[f(t)] - f(0)$$

$$\mathcal{L}[f''(t)] = s^2 \mathcal{L}[f(t)] - s f(0) - f'(0)$$

Docentes: Luisa Sousa, Catarina Castro, Mariana Seabra, Alexandre Afonso