

Taxi Demand Prediction using an LSTM-based Deep Sequence Model and Points of Interest

Bahman Askari, Tai Le Quy, Eirini Ntoutsi Leibniz University Hannover & L3S Research Center, LUH, Hannover

Hannover, 13.07.2020

Content

- ☐ Introduction
- Methodology
- Dataset
- Experiments
- ☐ Results
- ☐ Conclusion and outlook

Introduction

- Administration
 - Traffic control
 - Efficient transportation system
 - Avoid unnecessary energy consumption
- ☐ Taxi companies
 - Improve the levels of passenger satisfaction and maximal profit
 - Balance the relationship between the passenger demand and the number of running taxi vehicles
- □ Taxi-Passenger Demand Prediction
 - It's useful for drivers in making decision moving to pick up passengers in a particular region in the city
 - Spatial information is useful for prediction task

Introduction

- Motivation
 - First Law of Geography: Everything is related to everything else, but near things are more related than distant things.
 - Point Of Interest (POI):
 Popular places such as bar, restaurant, hospital, etc.

□ Goal

■ Develop LSTM model to predict the taxi-passenger demand using POI

Spatial distribution of the taxi-stands
Numbers 1- 63 indicate the IDs of the stands

Problem denition

- \Box Let $S = \{s_1; s_2; ...; s_N\}$ be the set of predened N taxi-stands in a city
- \Box $X_s = \{X_{s;0}; X_{s;1}; ...; X_{s;t}\}$ to be a discrete time series modeling the taxidemand for stand s
 - based on an aggregation period of P-minutes
- \Box Our goal is to build a model which predicts the demand $X_{s;t+1}$ for the next time point t+1 at taxi-stand s.

☐ Point of Interest (POI)

Point of Interest around taxi-stands

(a) Popular time is available for this POI

(b) Popular times is not available for this POI

Popular times for POIs (Google Maps)

☐ Finding the POIs

- ☐ Convert POIs to time series
 - Let $POI_s = \{P_{s1}, P_{s2}, ..., P_{sM}\}$ is the set of M point of interest of taxistand s, and $P_s = \{p_{s,0}, p_{s,1}, ..., p_{s,t}\}$ is the time series for POIs of taxistand s.

```
Algorithm 2: Converting POI-Dataset to time series
```

Input: POI-DATASET PD

Output: POI Time series Ps(Len (TS), L)

// TS: Taxi-Stands , L: Length=17520

for each poi in PD do

visitlist \leftarrow convert POI to time series

 $s \leftarrow index of closest taxi stand to the POI$

aggregate (Ps(s,:), visitlist)

return Ps

☐ POI-LSTM Deep Sequence Model

Algorithm 3: POI-LSTM Deep Sequence Model

Input: Taxi-Stands TS, Xs, Ps

Output: POI-LSTM Prediction Model

for each stand s in TS do

 $XPs \leftarrow Concatenate(Xs, Ps)$

Train_s, Test_s $\leftarrow Split(XPs)$

Build and train LSTM with Train_s

Execute prediction model with Test_s

Evaluate the POI-LSTM model for stand s

return average(the evaluation metrics of all stands)

□ POI-LSTM architecture

Layers	Neurons	Optimization Function	Activation	Look Back	Epoch	Batch	Overfitting
1	200	AdaMax	tanh	5	25	100	0.7

The architecture of the POI- LSTM.

Dataset

- ☐ Porto city in Portugal
 - Period: July 2013 to June 2014
 - Records: 1.710.670
 - 9 features
 - 63 taxi-stands
- ☐ Two versions of dataset for experiment
 - D1: all trips departing from taxi-stands (817.861 instances)
 - D2: all trips (1.706.572 instances).
 - Assign trips (do not start from a taxi-stand) to their closest taxistand based on distance.

11

Dataset Characteristics

☐ Spatial distribution

Spatial distribution of the taxi-stands
Numbers 1- 63 indicate the IDs of the stands

Pickup distribution

Pickup distribution per taxi-stand on D1

Pickup distribution per taxi-stand on D2

Dataset Characteristics

Number of visitors and pickups at each taxi-stand

Number of Pickups and POIs over 24 hours

Experiment

- Experimental setup
 - Set aggregation period at 30 minutes
 - 70% data for training, 30% data for testing (by the time series)
- □ Baselines
 - Linear Regression
 - Random Forest Regression
 - XGBoost Regression
 - LSTM
 - Neighborhood-LSTM

- **Evaluation measure**
 - symmetric Mean Absolute Percentage Error (sMAPE)

$$SMAPE_s = \frac{100\%}{T} \sum_{i=1}^{T} \frac{\left| Y_{s,i} - \hat{Y}_{s,i} \right|}{\left| Y_{s,i} \right| + \left| \hat{Y}_{s,i} \right| + c}$$

in which, Y_s and \hat{Y}_s are the true and predicted demand, c=1

■ Mean Squared Error (MSE)

$$MSE_s = \frac{1}{T} \sum_{i=1}^{T} \left(Y_{s,i} - \hat{Y}_{s,i} \right)^2$$

Overall

$$MSE = \frac{\sum_{i=1}^{N} MSE_i}{N}$$

$$SMAPE = \frac{\sum_{i=1}^{N} SMAPE_i}{N}$$

Tai Le Quy

Results

☐ Taxi-demand prediction quality results

MODEL	MSE		SMAPE	
Timestamp: 30 minutes	Train	Test	Train	Test
Linear Regression	1.61	1.76	24.37	24.52
Random Forest Regression	0.38	1.66	16.83	24.25
XGBoost Regression	1.39	1.59	23.90	23.91
LSTM	1.66	1.84	18.37	18.54
Neighborhood-augmented LSTM	1.49	1.68	17.32	17.64
POI-LSTM	1.26	1.41	17.12	17.25

MODEL	MSE		SMAPE	
Timestamp: 30 minutes	Train	Test	Train	Test
Linear Regression	4.21	5.988	30.78	31.23
Random Forest Regression	0.71	5.50	18.49	31.03
XGBoost Regression	3.60	5.45	30.47	30.51
LSTM	4.16	6.66	27.03	27.22
Neighborhood-augmented LSTM	3.84	6.44	25.88	26.07
POI-LSTM	2.57	5.27	24.73	25.08

Prediction quality of the different models on D1

Prediction quality of the different models on D2

Results

□ Performance of models on taxi-stand

sMAPE error rate over D2 dataset

Conclusion and outlook

- ☐ We propose a LSTM model
 - Consider Point of interest for prediction
 - The proposed model achieved better results comparing the traditional models
 - Deep sequence learning methods are suitable for this kind of estimation task
- ☐ Future work
 - Learn locally per stand and re-tune globally the predictions in the city
 - Adding other features such as events and weather condition can result to better predictions for both training and unseen data

Thank you for your attention! Questions?

baskari@l3s.de, tai@l3s.de