3.2. Критерии эффективности и оптимальности структурирования программных ресурсов при ограниченном числе процессоров

Пусть $\theta_s = (t_1, t_2, ..., t_s)$ структурирование программного ресурса на $s, s \ge 2$, блоков. Выше в разделе 3.1 показано, что с $\tau > 0$, характеризующего параметра дополнительных системных расходов организацию на использования блоков параллельного множеством конкурирующих процессов, вычисление минимального общего времени $T_{co}^{ac,1}(p,n,s, au)$ в асинхронном и первом синхронном режимах для класса однородных конкурирующих процессов осуществляется по формулам:

$$T_{co}^{ac,1}(p,n,s,\tau) = \begin{cases} T_{c}^{\tau} + (n-1)t_{\max}^{\tau}, \\ npu \ p = n \ unu \ p < n, \ ho \ T_{c}^{\tau} \le pt_{\max}^{\tau}, \\ (k+1)T_{c}^{\tau} + (r-1)t_{\max}^{\tau}, \\ npu \ n > p \ u \ T_{c}^{s} > pt_{\max}^{s}. \end{cases}$$
(3.2)

Здесь
$$T_c^{\tau} = \sum_{j=1}^s t_j^{\tau}$$
, $t_{\max}^{\tau} = \max_{1 \le j \le s} t_j^{\tau}$, $t_j^{\tau} = t_j + \tau$, $n = kp + r$, t_j

время выполнения j—го блока каждым из однородных процессов, $j = \overline{1,s}$.

Согласно определению 3.3 структурирование $\theta_s = (t_1, t_2, ..., t_s)$ программного ресурса для системы однородных конкурирующих процессов называется эффективным при фиксированных $p, n \ge 2$, если величина

$$\Delta(s) = nT_c^s - T_{co}^{ac,1,2}(p,n,s,\tau) \ge 0,$$

где nT_c^s — время выполнения n процессов на одном процессоре такой же производительности, $T_c^s = \sum_{i=1}^s t_j$.

Тогда имеет место следующая теорема.

Теорема 3.5. Если $p, n, s \ge 3, p = s \ne 3, u \tau \le \min_{1 \le j \le s} t_j, mo$ структурирование программного ресурса $(t_1, t_2, ..., t_s)$ будет эффективным при выполнении n конкурирующих процессов на MC c p процессорами тогда u только тогда, когда выполняются условия:

$$sn \ge \begin{cases} 2(s+n-1), & ecnu \ n \le p, \\ 2[(k+1)s+r-1] & ecnu \ n > p, \ n = kp+r, \ 1 \le r \le p. \end{cases}$$

Доказательство теоремы в случае $n \le p$ основывается на анализе следующих неравенств. Условие эффективности равносильно следующему:

$$\frac{T_c^s - t_{\max}^{\tau}}{\tau} \ge \frac{n + s - 1}{n - 1}, \quad t_{\max}^{\tau} = \max_{1 \le j \le s} t_j^{\tau}.$$

В силу условия теоремы $\tau \leq \min_{1 \leq j \leq s} t_j$ имеет место неравенство:

$$\frac{T_c^s - t_{\max}^{\tau}}{\tau} \ge s - 1.$$

Кроме того, условие теоремы $sn \ge 2(s+n-1)$ равносильно следующему:

$$s-1 \ge \frac{n+s-1}{n-1}.$$

Аналогично доказываются и остальные случаи, т.е. когда $n>p \ (n=kp,\ k>1,\ n=kp+r,\ 1\leq r\leq p-1).$

Сформулируем далее критерий оптимальности структурирования программных ресурсов в общем случае, т.е. при ограниченном числе процессоров (n > p).

Пусть структурирование $\theta_s = (t_1, t_2, ..., t_s)$ является равномерным, т.е. $t_1 = t_2 = ... = t_s = t$. В этом случае в силу формул (3.2) и с учетом параметра $\tau > 0$ для вычисления минимального времени \overline{T}_c^{τ} для всех трех базовых режимов имеют место формулы:

$$\overline{T}_{c}^{\tau} = \begin{cases}
(n+s-1)t^{\tau} & ecnu \quad p \ge \min(n,s), \\
(ks+p-1)t^{\tau} & ecnu \quad p < \min(n,s), \quad n = kp, \\
[(k+1)s+r-1]t^{\tau} & ecnu \quad p < \min(n,s), \quad n = kp+r, \quad 1 \le r < p.
\end{cases}$$
(3.3)

Здесь $t^{\tau} = T_c^s / s + \tau$, $T_c^s = st$.

В соответствии с определением 3.3 и формулами (3.3) функцию $\Delta(s)$, которая определяет эффективность структурирования, можно преобразовать к одному из следующих видов:

$$\Delta_1(s) = \alpha^2 \tau \left[1 - \frac{n-1}{\alpha^2} - \left(\frac{1}{s} + s \frac{1}{\alpha^2} \right) \right] \text{при } 2 \le s \le p , \tag{3.4}$$

где
$$\alpha = \left(\frac{n-1}{\tau}\right)^{\frac{1}{2}};$$

$$\Delta_2(s) = k\beta^2 \tau \left[\frac{n-k}{p-1} - \frac{p-1}{k\beta^2} - \left(\frac{1}{s} + s \frac{1}{\beta^2} \right) \right]$$
при $s > p$, (3.5)

где
$$n = kp + r$$
, $k > 1$, $r = 0$, $\beta = \left[\frac{(p-1)T_c^s}{k\tau}\right]^{\frac{1}{2}}$;

$$\Delta_3(s) = (n-k-1)T_c^s - (r-1)\tau - (k+1)\left(s + \frac{1}{s}\gamma^2\right)\tau \text{ при } s > p, \quad (3.6)$$

где
$$n = kp + r$$
, $k \ge 1$, $1 \le r < p$, $\gamma = \left\lceil \frac{(r-1)T_c^s}{(k+1)\tau} \right\rceil^{\frac{1}{2}}$.

Далее, на основании свойств выпуклости функций $\Delta_1(s)$, $\Delta_2(s)$ и $\Delta_3(s)$ имеют место следующие леммы.

Лемма 3.1. $\Delta_1(s)$ достигает своего наибольшего значения на [2,p] в одной из точек множества $\{p, [[\alpha], [\alpha]+1] \cap [2,p]\}$, которую обозначим через s_1^* .

Лемма 3.2. $\Delta_2(s)$ достигает своего наибольшего значения при $s \ge p$ в одной из точек множества $\{p, [[\beta], [\beta]+1] \cap [p,+\infty]\}$, которую обозначим через s_2^* .

Лемма 3.3. $\Delta_3(s)$ достигает своего наибольшего значения при $s \ge p$ в одной из точек множества $\{p, [[\gamma], [\gamma]+1] \cap [p,+\infty]\}$, которую обозначим через s_3^* .

Тогда решение задачи об оптимальном структурировании программного ресурса для всех трех базовых режимов взаимодействия процессов, процессоров и блоков при фиксированных $p,\ n,\ T_c^s,\ au$ вытекает из следующей теоремы.

Теорема 3.6. Для того, чтобы эффективное структурирование программного ресурса на $s, s \ge 2$, блоков было оптимальным при n = kp + r, $1 \le r < p$, необходимо и достаточно, чтобы

во-первых, оно было равномерным;

во-вторых, выполнялось одно из следующих условий:

- при r = 0 s равняется тому значению из $\{s_1^*, s_2^*\}$, при котором функция $\Delta(s)$ принимает большее значение;
- при r > 0 s равняется тому значению из $\{s_1^*, s_3^*\}$, при котором функция $\Delta(s)$ принимает большее значение.

Доказательство теоремы следует из формул (3.3)–(3.6) и лемм 3.1–3.3.

Доказанные теоремы 3.5 и 3.6 устанавливают необходимые и достаточные условия (критерии) эффективности и оптимальности структурирования программных ресурсов по числу блоков и процессов с учетом накладных расходов при ограниченном числе процессоров многопроцессорной системы.