Quiz, 10 questions

✓	Congratulations! You passed!	Next Item
~	1/1 points	
	se you learn a word embedding for a vocabulary of 10000 words. Then the em dimensional, so as to capture the full range of variation and meaning in those	
	True	
0	False	
	ect dimension of word vectors is usually smaller than the size of the vocabulary. N d vectors ranges between 50 and 400.	Nost common sizes for
~ 2.	1/1 points	
	s t-SNE?	
	A linear transformation that allows us to solve analogies on word vectors	
0	A non-linear dimensionality reduction technique	
Corr e Yes	ect	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	
	1/1	

3.

points

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short

Natural Language Parocossing & Word Embeddings

Quiz, 10 questions

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

	J
-	

True

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

False

1/1 points

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

Un-selected is correct

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Correct

Yes!

Quiz, 10 questions

1/1 points	
5. Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?	
It is computationally wasteful.	
Correct	
Yes, the element-wise multiplication will be extremely inefficient.	
$igcup$ The correct formula is $E^T st o_{1234}.$	
This doesn't handle unknown words (<unk>).</unk>	
None of the above: calling the Python snippet as described above is fine.	
$1/1$ points 6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful se of word embeddings. True	
Correct	
☐ False	
1/1 points7.	
In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t	

 \boldsymbol{c} is the one word that comes immediately before $\boldsymbol{t}.$

and \boldsymbol{c} chosen from the training set? Pick the best answer.

nearby words.

Quiz, 10 questions

\boldsymbol{c} is the sequence of all the words in the sentence before \boldsymbol{t} .
c is a sequence of several words immediately before $t.$

0/1 points

8.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

$$P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

	$ heta_t$ and e_c are both 500 dimensional vectors.
--	---

Correct

 θ_t and e_c are both 10000 dimensional vectors.

Un-selected is correct

Correct

After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

This should not be selected

1/1 points

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

Natural 1	Language	Processing &	& Word En	nbeddings

 $\min_{\text{Quiz, 10 of Stons}} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$

12, 10 Q ua	$\Delta I = 1$ $I = I$ $I = I$ $I = I$ $I = I$
Which c	of these statements are correct? Check all that apply.
	$ heta_i$ and e_j should be initialized to 0 at the beginning of training.
Un-se	lected is correct
	$ heta_i$ and e_j should be initialized randomly at the beginning of training.
Corre	ct
	X_{ij} is the number of times word i appears in the context of word j.
Corre	ct
	The weighting function $f(.)$ must satisfy $f(0)=0.$
	ct veighting function helps prevent learning only from extremely common word pairs. It is not necessary t satisfies this function.
~	1/1 points
embedo using w	we trained word embeddings using a text dataset of m_1 words. You are considering using these word dings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that ord embeddings is a form of transfer learning, under which of these circumstance would you expect the mbeddings to be helpful?
0	$m_1 >> m_2$
Corre	ct
	$m_1 << m_2$

Quiz, 10 questions