МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

Принцип суперпозиций. Замкнутые классы логических функций

Суперпозицией булевых функций f_0 и $f_1,...,f_n$ называется функция

$$f(x_1,...,x_m) = f_0(g_1(x_1,...,x_m),...,g_k(x_1,...,x_m)),$$

где каждая из функций $g_i(x_1, ..., x_m)$ либо совпадает с одной из переменных (тождественная функция), либо — с одной из функций $f_1, ..., f_n$.

Например:

□ Функция $f(x,y) = \neg(x \land y)$ является суперпозицией функций ¬ и \land ;

Замыкание класса

A - множество логических функций, обладающих некоторым свойством.

Пусть
$$G(Y_1, Y_2, ..., Y_k) \in A$$
 и $F_i(X_1, X_2, ..., X_n) \in A$, $i=1,2,...,k$.

Суперпозиция функций G и F:

$$G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)] = H(X_1,...,X_n)$$

Если $H(X_1,...,X_n) \in A$, то A называется замкнутым классом логических функций по отношению к рассматриваемому свойству.

Замыкание класса

То есть, множество A логических функций называют *замкнутым классом*, если любая суперпозиция функций из A снова принадлежит A.

«Замечательные» свойства

1. Свойство сохранять 0

Функция $F(X_1,...,X_n)$ называется сохраняющей 0, если F(0,...,0)=0.

Функции $X_1X_2, X_1\lor X_2, X_1\oplus X_2$ сохраняют 0, а $X_1\to X_2, X_1\sim X_2, X_1|X_2$ не сохраняют.

$$C_0 = \{F(X_1,...,X_n) \mid F(0,...,0) = 0\}.$$

Доказательство замкнутости класса функций, *сохраняющих* 0

Пусть G(0,...,0)=0 и $F_i(0,...,0)=0$.

Произведем суперпозицию функций G и F_i : $G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)]$

Определим значение функции на нулевом наборе: $G[F_1(0,...,0),...,F_k(0,...,0)]=G(0,...,0)=0$, т.е. H(0,...,0)=0.

1. Свойство сохранять 1

Функция $F(X_1,...,X_n)$ называется coxpanse edunuy, если F(1,...,1)=1.

Функции X_1X_2 , X_1+X_2 , $X_1\to X_2$ сохраняют единицу, а $X_1\oplus X_2$, $X_1|X_2$ не сохраняют.

$$C_1 = \{F(X_1,...,X_n) \mid F(1,...,1) = 1\}.$$

Класс C_1 является замкнутым.

3. Самодвойственность

Самодвойственной функцией

называется такая функция, для которой справедливо равенство

$$F(X_1,X_2,...,X_n)=F^*(X_1,X_2,...,X_n),$$

- где F^* двойственная функция по отношению к функции F.
- Двойственная функция определяется следующим образом:

$$F^*(X_1, X_2, ..., X_n) = \overline{F}(\overline{X_1}, \overline{X_2}, ..., \overline{X_n})$$

Пример

$$F = X_1 X_2 + X_1 X_3 + X_2 X_3$$

$$F^* = \overline{\overline{X}_1 \overline{X}_2 + \overline{X}_1 \overline{X}_3 + \overline{X}_2 \overline{X}_3} = \overline{\overline{X}_1 \overline{X}_2} \cdot \overline{\overline{X}_1 \overline{X}_3} \cdot \overline{\overline{X}_2 \overline{X}_3} =$$

$$=(X_1+X_2)(X_1+X_3)(X_2+X_3)=X_1X_2+X_1X_3+X_2X_3=F$$

Класс всех самодвойственных функций: $C_c = \{F(X_1,...,X_n) \mid F(X_1,X_2,...,X_n) = F^*(X_1,X_2,...,X_n)\}.$

X	Y	$F=X\wedge Y$	$\neg X \land \neg Y$	$\neg(\neg X \land \neg Y)$
0	0	0	1	0
0	1	0	0	1
1	0	0	0	1
1	1	1	0	1

 $x \oplus y$ и $x \leftrightarrow y$ — двойственные функции // (0,1,1,0) и (1,0,0,1)

$F_2=X\vee Y$	$F_2^{\ *}$	$F_3=X\oplus Y$	F_3^*	$F_4 = X \equiv Y$	$F_4^{\ st}$
О	0	0	1	1	0
1	0	1	0	0	1
1	0	1	0	0	1
1	1	0	1	1	0

Доказательство замкнутости класса самодвойственных функций

Пусть $G(Y_1,...,Y_n)$ и $F_i(X_1,...,X_n)$ — самодвойственные функции.

Произведем суперпозицию функций G и F_i :

$$G[F_1(X_1,...X_n),...F_n(X_1,...,X_n)]$$

и определим двойственную функцию к ней:

$$G[F_{1}(\overline{X}_{1},...\overline{X}_{n}),...F_{n}(\overline{X}_{1},...,\overline{X}_{n})] = G[\overline{F_{1}(X_{1},...X_{n})},...\overline{F_{n}(X_{1},...,X_{n})}] =$$

$$= G[F_{1}(X_{1},...X_{n}),...F_{n}(X_{1},...,X_{n})]$$

 $\Rightarrow C_{\rm C}$ – замкнутый класс.

4. Монотонность

Критерий сравнения двух наборов аргументов:

• Если значение каждого аргумента одного набора больше или равно значению того же аргумента второго набора, то говорят, что первый набор не меньше второго.

При этом предполагается, что $0 \ge 0$; $1 \ge 0$; $1 \ge 1$.

 Логическая функция называется *монотонной*, если при любом возрастании набора значение этой функции не убывает.

(рассматриваются только сравнимые наборы)

Функция $f(x_1, ..., x_n)$ монотонна, если для любых двоичных наборов δ и τ длины n, при условии $\delta \leq \tau$, выполняется условие $f(\delta) \leq f(\tau)$.

См - класс всех монотонных функций

Например, монотонные функции: X&Y, X∨Y немонотонные функции: $X\leftrightarrow Y$, $X\to Y$, $X\oplus Y$

Доказательство замкнутости С_м:

- Пусть $G(Y_1,...,Y_n)$ и $F_i(X_1,...,X_n)$ монотонные.
- Произведем суперпозицию функций G и F :

$$G[F_1(X_1,...,X_n),...,F_k(X_1,...,X_n)] = H(X_1,...,X_n)$$

- Найдем значения функций F_i и G на некотором наборе $X_1,...,$ X_n , а затем увеличим этот набор.
- Так как функции F_i монотонные, то их значения либо увеличатся, либо останутся без изменения.
- Так как функция G монотонная, то ее значение либо увеличится, либо останется без изменения.
- ⇒значение функции Н при увеличении набора либо увеличится, либо останется без изменения,
- т.е. функция Н тоже является монотонной.

5. Линейность

Логическая функция называется *линейной*, если она может быть представлена полиномом первой степени, т.е. записана в виде $F(X_1,X_2,...,X_n)=A_0\oplus A_1X_1\oplus A_2X_2\oplus...\oplus A_nX_n$,

где $A_0, A_1, ..., A_n$ — коэффициенты, равные нулю или единице.

 C_L – класс всех линейных функций.

Например, линейные функции:

$$X \oplus Y$$
, $X \leftrightarrow Y = 1 \oplus X \oplus Y$.

Доказательство замкнутости С

Пусть функции $G(Y_1,...,Y_k)$ и $F_i(X_1,...,X_n)$ – линейные. Представим их в виде линейных полиномов:

$$G = A_0 \oplus A_1 Y_1 \oplus A_2 Y_2 \oplus \dots \oplus A_k Y_{k,}$$
$$F_i = B_{0i} \oplus B_{1i} X_1 \oplus B_{2i} X_2 \oplus \dots \oplus B_{ni} X_{n.}$$

Подставив функции F_i вместо аргументов Y_i в функцию G получим выражение, в котором постоянные коэффициенты A_i умножаются на линейные функции.

При этом получатся снова линейные функции.

- Приведя подобные члены, получим функцию $H(X_1,...,X_n)$ в виде линейного полинома.
- ⇒, что по свойству линейности функции образуют замкнутый класс.

Полином Жегалкина

Полиномом Жегалкина от переменных $x_1, x_2, \dots x_n$ называется булева функция вида

$$\sum_{i_1,i_2,\dots i_m}^{\text{mod2}} a_{i_1,i_2,\dots i_m} x_{i_1} \dots x_{i_m}$$

Теорема Жегалкина

Теорема: Всякая логическая функция может быть представима единственным полиномом по mod 2.

Док-во: Число различных полиномов по mod 2 от переменных $x_1, x_2, \dots x_n$ - это число выражений вида

$$\sum_{i_1,i_2,\dots,i_m}^{\operatorname{mod} 2} a_{i_1,i_2,\dots,i_m} x_{i_1} \dots x_{i_m}$$

 $\sum_{i_1,i_2,...i_m} a_{i_1,i_2,...i_m} x_{i_1} \dots x_{i_m}$ Число членов $x_{i_1} \dots x_{i_m}$ равно числу множества всех подмножеств -2^{n} .

Число полиномов которые можно образовать из них 2^{2^n} .

Число различных логических функций n-переменных 2^{2^n}

Т.об. Каждой логической функции соответствует единственный полином Жегалкина и наоборот.

Свойства функций системы Жегалкина:

1. Ассоциативность:

- a) x(yz) = (xy)z;
- 6) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$.
- 2. Коммутативность:
- a) xy = yx;
- 6) $x \oplus y = y \oplus x$.
- 3. Дистрибутивность: $x(y \oplus z) = xy \oplus xz$.
- 4. Попарное сокращение: $x \oplus x = 0$.
- 5. Свойство констант: $x \oplus 0 = x$.

Функция, у которой полином Жегалкина имеет вид $\Sigma lpha_i x_i \oplus \gamma$, где

 $lpha_i, \gamma$ равны 0 или 1, называется линейной.

Связь функций системы Жегалкина с булевыми функциями

1. Выражение отрицания через функции системы Жегалкина:

$$\overline{x} = x \oplus 1$$
.

2. Выражение дизъюнкции через функции системы Жегалкина:

$$x \lor y = xy \oplus x \oplus y$$
.

Общий вид полинома Жегалкина от двух переменных:

$$P(x, y) = \alpha x \oplus \beta y \oplus \gamma$$

, где
$$\alpha, \beta, \gamma \in \{0;1\}$$
.

Функции, получаемые при всех восьми возможных комбинациях значений α, β, γ.

α	β	γ	Вид полинома Жегалкина	Эквивалентные булевы формулы
0	0	0	xy	$xy = \overline{x \vee y}$
0	0	1	<i>xy</i> ⊕1	$\overline{xy} = \overline{x} \vee \overline{y}$
0	1	0	$xy \oplus y$	$\overline{x}y = \overline{x \vee y}$
0	1	1	$xy \oplus y \oplus 1$	$\overline{xy} = x \vee \overline{y}$
1	0	0	$xy \oplus x$	$x\overline{y} = \overline{x} \vee y$
1	0	1	$xy \oplus x \oplus 1$	$\overline{xy} = \overline{x} \vee y$
1	1	0	$xy \oplus x \oplus y$	$x \vee y = \overline{xy}$
1	1	1	$xy \oplus x \oplus y \oplus 1$	$\overline{x \vee y} = \overline{xy}$

Функционально полные системы элементарных булевых функций

Лемма 1. (о немонотонных функциях)

Если функция $f(x_1, x_2, ... x_n)$ немонотонна, то подстановкой констант из нее можно получить отрицание.

Следствие: Т.е. существует такая подстановка *n*-1 константы, что функция оставшейся одной переменной является отрицанием.

Док-во: Пусть f немонотонна. \exists наборы σ и τ : $\sigma < \tau$ и $f(\sigma)=1, f(\tau)=0$.

Предположим, σ и τ отличаются по k компонентам, в σ - 0, а в τ - 1.

Построим цепочку наборов $\sigma < \omega^1 < \omega^2 < ... < \omega^{k-1} < \tau$, в которой соседние наборы отличаются в одной компоненте.

На каких-то двух соседних наборах происходит переключение значения f: $f(\omega^{j})=1$, $f(\omega^{j+1})=0$.

Пусть эти наборы отличаются в і-ой компоненте: $\omega^{j}_{i}=0, \ \omega^{j+1}_{i}=1.$

Обозначим $g(x)=f(\omega^{j}_{1}, ..., \omega^{j}_{i-1}, x_{i}, \omega^{j}_{i+1}, ..., \omega^{j}_{n}).$ $g(0)=g(\omega^{j}_{i})=f(\omega^{j})=1,$ $g(1)=g(\omega^{j+1}_{i})=f(\omega^{j+1})=0, \Rightarrow g(x_{i})=x_{i}$. Ч.т.д.

- <u>Пример</u>: необходимо выяснить, можно ли получить функцию \bar{x} из функции $f(x_1, x_2, x_3) = x_1 \oplus x_2 \cdot x_3$ путем соответствующей замены переменных.
- Решение: Функция f немонотонна, т.к. f(100)=1, $f(111)=0 \Rightarrow$ из этой функции можно получить x.
- Подставим вместо x_1 константу 1, а вместо $x_2, x_3 x$, тогда $f(1,1,x) = 1 \oplus 1 \cdot x = x$.
- Чтобы воспользоваться следствием леммы, выберем пару соседних наборов, на которых нарушено условие монотонности. Имеем, f(110)=1, f(111)=0.

$$\Rightarrow f(1,1,x) = 1 \oplus 1 \cdot x = x$$

Лемма 2. (о нелинейных функциях)

Если функция $f(x_1, ...x_n)$ - нелинейна, то с помощью подстановки констант и использования отрицания из нее можно получить \land и \lor . Т.е. \exists представление \land и \lor в виде суперпозиции констант, отрицаний и функции f.

Док-во: Пусть f – нелинейна. Тогда ее полином Жегалкина содержит ∧ переменных.

Выберем самую короткую из них $K = x_{i1}x_{i2}...x_{ik}$.

Положим $x_{i3} = \dots = x_{ik} = 1$,

а для всех x_j , не входящих в K, x_j =0.

Подстановка этих констант в полином обратит K в $x_{i1}x_{i2}$, а остальные конъюнкции в 0, f примет вид $x_{i1}x_{i2} \oplus \alpha \ x_{i1} \oplus \beta \ x_{i2} \oplus \gamma, \ \alpha, \beta, \gamma \in \{0,1\}$

Функционально полные системы

Система элементарных булевых функций называется функционально полной, если произвольную булеву функцию можно представить суперпозицией функций этой системы.

Полная система функций образует базис.

Минимальным базисом называется такой, в котором при удалении хотя бы одной функции, образующей этот базис, нарушается его полнота.

І признак функциональной полноты

Если все функции функционально полной системы Σ можно выразить через функции системы Σ^* (является суперпозицией функций этой системы), то Σ^* – является также функционально полной системой.

Примеры:

1. $\Sigma_1 = \{ \land, \neg \}$ функционально полная система

Полнота следует из возможности выразить дизьюнкцию через функции этой системы.

Действительно, $x_1 \lor x_2 = \neg(\overline{x_1} \land \overline{x_2})$

2. $\Sigma_2 = \{ \lor, \neg \}$ функционально полная система

Полнота следует из возможности выразить конъюнкцию через функции этой системы,

$$x_1 \wedge x_2 = \neg (\overline{x_1} \vee \overline{x_2}).$$

3. $\Sigma_3 = \{ | \}$

Штрих Шеффера представляет функционально полную систему, так как $\overline{x} = x \mid x, \ x_1 \wedge x_2 = \overline{x_1 \mid x_2} = (x_1 \mid x_2) \mid (x_1 \mid x_2)$ и Σ_1 функционально полна.

4. $\Sigma_4 = \{\downarrow\}$ функционально полная система

Так как $\overline{x} = x \mid x$, $x_1 \lor x_2 = \overline{x_1 \downarrow x_2} = (x_1 \downarrow x_2) \downarrow (x_1 \downarrow x_2)$ и Σ_2 функционально полна.

5.
$$\Sigma_5 = \{\land, \oplus, 1\}$$

Система функционально полна, так как $x = x \oplus 1$, и Σ_1 функционально полна.

II признак функциональной полноты

Для того, чтобы система булевых функций была функционально полной, необходимо и достаточно, чтобы эта система включала:

- □ хотя бы одну функцию, не сохраняющую 0;
- □ хотя бы одну функцию, не сохраняющую 1;
- □ хотя бы одну несамодвойственную функцию;
- □ хотя бы одну немонотонную функцию;
- □ хотя бы одну нелинейную функцию.

Рассмотрим некоторые функционально полные системы.

- 1. F=X/Y.
 - Эта функция не обладает ни одним из "замечательных" свойств, ⇒, она одна образует минимальный базис.
- 2. F=X↓Y. Так же как и "штрих Шеффера" эта функция образует минимальный базис.
- 3. $F_1=X\to Y$ и $F_2=0$, или $F_1=Y\to X$ и $F_2=0$.
- 4. $F_1 = X \oplus Y$, $F_2 = X \cdot Y$, $F_3 = 1$. Функции этого базиса входят в полином Жегалкина.

Система функций Σ называется функционально полной в слабом смысле, если любая логическая функция может быть представлена формулой над системой $\Sigma \cup \{0,1\}$, т.е. является суперпозицией констант и функций из Σ .

Теорема

(о функциональной полноте в слабом смысле)

Для того чтобы система функций Σ была ФП в слабом смысле, необходимо и достаточно, чтобы она содержала хотя бы одну немонотонную и хотя бы одну нелинейную функцию.

- □ Heoбxoдumocmb. Классы монотонных и линейных функций замкнуты и содержат 0 и $1 \Rightarrow$ если Σ не содержит немонотонных или нелинейных функций, то их нельзя получить с помощью суперпозиций из Σ и констант.
- Достаточность. Пусть ∑ содержит немонотонную и нелинейную функции. Тогда по лемме 1 подстановкой констант из монотонной функции получаем отрицание, по лемме 2 из нелинейной с помощью отрицаний - ∧ и ∨.

<u>Примеры</u>:

1. $\Sigma = \{ \land, \oplus, \}$ функциональна полна в слабом смысле, т.к. \land — нелинейна, а \oplus — немонотонна.

Σ₃ = {|} функциональна полна в слабом смысле, т.к.
 Штрих Шеффера – нелинейная и немонотонная функция.