```
In [1]: import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold, cross_v
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    from sklearn import datasets
    import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv('Iris.csv')
    df.head()
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

```
In [3]: X = df[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
y = df['Species']

model = LinearDiscriminantAnalysis()
model.fit(X, y)
```

```
Out[3]: 
v LinearDiscriminantAnalysis
LinearDiscriminantAnalysis()
```

```
In [4]: # evaluating the model
    cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
    scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
    print(np.mean(scores))
```

0.98000000000000001


```
In [ ]:

In [ ]:
```