PaSt 1 – Cvičení 7 10:40, 2022/03/28

Podmíněná střední hodnota.

1. V testu je 20 otázek s volbami a, b, c, d. Za správnou odpověď (vždy je jen jedna odpověď správná) je 1 bod, za špatnou $-\frac{1}{4}$ bodů, za nevyplněnou otázku nula. Každá otázka je s pravděpodobností p jednou z těch, na kterou jste se naučili a znáte správnou odpověď. U každé otázky umíte zcela jistě rozhodnout, jestli jste se na ni učili. Pokud jste se na ni neučili, můžete zkusit tipovat.

- (i) Jaká je střední hodnota počtu bodů, které získáte, pokud budete odpovídat jenom na otázky, na které jste se učili?
- (ii) A co když budete tipovat u otázek, na které jste se neučili?
- (iii) Jaká by musela být penalizace za chybnou odpověď, aby střední hodnoty byly v předchozích dvou odrážkách stejné?
- 2. Walter White chce mít mužského potomka, aby ho mohl pojmenovat Walter White Jr. V každém roce mu Skylar porodí právě jedno dítě, které je stejně pravděpodobně chlapec i děvče nezávisle na předchozích pokusech. Všechny narozené děti přežijí. Pokud se narodí chlapec, tak už Walter další potomky mít nebude. Nechť S je počet narozených synů a D je počet narozených dcer. Určete $\mathbb{E}[S]$ a $\mathbb{E}[D]$.
- 3*. Máme 2m králíků, které jsme umístili po dvojicích do m klecí. Po nějaké době je pravděpodobnost, že libovolný králík stále žije, rovna p a to nezávisle na všech ostatních. V tuto chvíli nechť A je počet živých králíků a S je počet klecí, ve které žijí oba králíci. Určete $\mathbb{E}[S \mid A = a]$ pro všechna a.

Nezávislost.

- 4. Ukažte, že jevy A a B jsou nezávislé, pokud jsou nezávislé jejich indikátorové veličiny.
- 5. Ukažte, že pro diskrétní nezávislé náhodné veličiny X a Y platí

$$\Pr[X \le x \cap Y \le y] = \Pr[X \le x] \Pr[Y \le y].$$

Pro jednoduchost předpokládejte, že dom(X) = dom(Y) = [n] pro nějaké n.

 $6^{*}.~$ Nechť Xa Yjsou nezávislé, identické, geometricky rozdělené náhodné veličiny s parametrem p. Ukažte, že

$$\Pr[X = i \mid X + Y = n] = \frac{1}{n-1} \text{ pro } i = 1, \dots, n-1.$$

Náhodné vektory.

- 7. Hodíme třikrát mincí. Označme X počet rubů v prvních dvou hodech a Y počet líců v posledních dvou hodech.
 - (i) Určete sdruženou pravděpodobnostní funkci $p_{X,Y}$ a také marginální pravděpodobnostní funkce p_X a p_Y .
 - (ii) Jsou X a Y nezávislé?
 - (iii) Určete Pr[X < Y].
 - (iv) Určete $p_{X|Y}$, tj. kolik je $\Pr[X = x \mid Y = y]$ pro všechny hodnoty x a y.
- 8. Nechť $X \sim \text{Pois}(\lambda), Y \sim \text{Pois}(\mu)$ a X a Y jsou nezávislé. Ukažte, že $X + Y \sim \text{Pois}(\lambda + \mu)$.

¹ Tohle je fan-fiction.