Лекция 8.

Некоторые решения задач из лекции 6.

Задача 3. Найдите таблицу характеров группы S_4 . Проверьте соотношения ортогональности между характерами. Разложите тензорные произведения трехмерных на неприводимые.

Решение. Так как классов сопряженности 5, то всего неприводимых представлений 5. Мы уже знаем два одномерных представления: ρ_1 — тривиальное, ρ_2 — знаковое. Также у нас есть геометрическая конструкция двух трехмерных представлений: ρ_3 происходит из геометрического действия S_4 симметриями тетраэдра, ρ_4 происходит из из геометрического действия S_4 вращениями куба.

Характеры ρ_3 и ρ_4 находятся следующим образом. Матрица поворота вокруг оси

на угол
$$\alpha$$
 может быть приведена к виду $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}$, поэтому ее след равен

 $1+2\cos\alpha$. Аналогично, матрица зеркального поворота на угол α приводится к виду

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}$$
 и ее след равен $-1 + 2\cos \alpha$

Представление ρ_3 можно еще описать аналогично примеру с S_3 . А именно, это представление можно реализовать как подпредставление четырехмерного перестановочного представления S_4 в пространстве $\{(x_1, x_2, x_3, x_4) | x_1 + x_2 + x_3 + x_4 = 0\}$. Его характер находится вычитанием из характера перестановочного представления характера тривиального представления. Представление ρ_4 после этого можно найти как тензорное произведение $\rho_4 = \rho_3 \otimes \rho_1$.

Из того что сумма квадратов размерностей равна 24 следует, что нужно двумерное представление, обозначим его ρ_5 . Его характер можно найти из соотношений ортогональности. Другой способ — воспользоваться разложением регулярного представления и написать $2\chi^{(5)} = \chi_{\rm reg} - \chi^{(1)} - \chi^{(2)} - 3\chi^{(3)} - 3\chi^{(4)}$.

Явно постороить это двумерное представление можно при помощи гомоморфизма $S_4 \to S_3$ и последующего двумерного представления S_3 .

	e	$(1,2)^{-6}$	$(1,2,3)^{-8}$	$(1,2,3,4)^{-6}$	$(1,2)(3,4)^{-3}$
$\chi^{(1)}$	1	1	1	1	1
$\chi^{(2)}$	1	-1	1	-1	1
$\chi^{(3)}$	3	1	0	-1	-1
$\chi^{(4)}$	3	-1	0	1	-1
$\chi^{(5)}$	2	0	-1	0	2

Группы Ли, алгебры Ли.

Обсудим еще раз группу SO(2) на которой мы закончили прошлую лекцию. Она состоит из элементов вида $g(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Матрицы $g(\alpha)$ удовлетворяют соотношению

$$g(\alpha + \beta) = g(\alpha)g(\beta).$$

Можно сказать, что группа SO(2) задана в своем двумерном представлении. Если продифференцировать последнее равенство по β и положить $\beta=0$, то получаем

$$g'(\alpha) = g(\alpha)g'(0) = g(\alpha)\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Это равенство (дифференциальное уравнение) можно проверить и непосредственно, используя $g'(\alpha) = \begin{pmatrix} -\sin \alpha & -\cos \alpha \\ \cos \alpha & -\sin \alpha \end{pmatrix}$. Единственным решение этого уравнения удовлетворяющим начальному условию g(0) = E является матричная экспонента

$$g(\alpha) = \exp\left(\alpha \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right).$$

Опять же, последнее равенство легко проверить непосредственно:

$$\exp\left(\alpha \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \alpha \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \frac{\alpha^2}{2} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \frac{\alpha^3}{6} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \frac{\alpha^4}{24} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \dots = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

Можно сказать, что матрица $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ определяет группу SO(2) — любой элемент является экспонентой это этой матрицы. Она называется инфинитезимальным генератором группы SO(2). На прошлой лекции мы описывали представления группы SO(2) основываясь на образе этой матрицы — для любого представления $g(\alpha) \mapsto T(\alpha)$ мы имеем соотношение $T(\alpha) = \exp(T'(0))$. При этом матрица T'(0) должна удовлетворять соотношению $\exp(2\pi T'(0)) = E$. Поэтому ее собственные значения должны быть равны ik_1, \ldots, ik_N , где $k_1, \ldots, k_N \in \mathbb{Z}$.

Далее мы (кроме некоторых отступлений) будем заниматься непрерывным группами (другой термин группы $\mathcal{A}u$). Все группы которые мы будем рассматривать будут матричными, то есть заданными как подгруппы в $GL(n,\mathbb{R})$ или $GL(n,\mathbb{C})$. Элементы группы должны быть представлены как функции $g(\alpha_1,\ldots,\alpha_d)$ от какого-то набора вещественных параметров α_1,\ldots,α_d . Требуется, чтобы матричные элементы как функции от α_1,\ldots,α_d были гладкими. Также требуется, чтобы функции $\gamma_i(\alpha_1,\ldots,\alpha_d,\beta_1,\ldots,\beta_d)$ определенные при помощи умножения в группе

$$g(\alpha_1,\ldots,\alpha_d)g(\beta_1,\ldots,\beta_d)=g(\gamma_1,\ldots,\gamma_d)$$

были гладкими. Аналогично, требуется, чтобы функции $\delta_i(\alpha_1, \dots, \alpha_d)$ определнные при помощи операции взятия обратного элемента в группе

$$g(\alpha_1,\ldots,\alpha_d)^{-1}=g(\delta_1,\ldots,\delta_d)$$

были гладкими.

Первым примером группы Ли является группа SO(2) которую мы обсуждали ранее.

Выше мы не уточняли какому множеству принадлежат параметры $\alpha_1, \ldots, \alpha_d$ правильно думать, что они принадлежат некоторому открытому подмножеству в \mathbb{R}^d и g осуществляет гладкую биекцию между этим открытым множеством и окрестностью единицы в группе G. Число параметров d называется размерностью группы.

Примеры.

- **0**. Группа всех невырожденных матриц $GL(n,\mathbb{R})$. В качестве параметров α_1,\ldots,α_d можно взять все матричные элементы. Размерность группы равна n^2 . Аналогично, группа всех невырожденных комплексных матриц $GL(n,\mathbb{C})$ вдвое большую размерность $2n^2$.
- 1. Группа матриц с единичным определителем $SL(n,\mathbb{R})$. Она задается одним уравнением $\det(g)-1=0$. По теореме о неявной функции можно взять n^2-1 матричных элементов и тогда оставшийся выражается через них при помощи гладкой функции. Эти n^2-1 элементов и можно взять в качестве локальных параметров, размерность группы равна n^2-1 . Единственное, что надо проверить, что дифференциал не равен нулю. На более конкретном языке это означает, что есть ненулевая частная производная.

Проверим это сначала для случая n=2. Тогда

$$\delta(\det g - 1) = g_{11}\delta g_{22} + g_{22}\delta g_{11} - g_{12}\delta g_{21} - g_{21}\delta g_{12}.$$

Мы видим, что $\delta(\det g - 1) = 0$ только если все матричные элементы g равны нулю, но такая матрица не лежит в $SL(2,\mathbb{R})$.

Для произвольной матрицы g легко видеть, что $\delta \det g = \sum_{i,j} G^{ij} \delta g_{ij}$, где G^{ij} алгебраическое дополнение к матричному элементу g_{ij} . Так как $\det g = 1$, то одно из этих дополнений не равно 0, значит дифференциал невырожден.

В частности в точке g=E, мы имеем

$$\delta \det g = \delta g_{11} + \dots + \delta g_{nn} = \operatorname{Tr} \delta g.$$

То есть мы получили, что частные производные по координатам g_{ii} не равны нулю, в качестве локальных координат можно взять все координаты кроме любой из них. 2. Через O(n) обозначается группа всех ортогональных матриц, через SO(n) подгруппа, состоящая из ортогональных матриц с определителем 1. Ортогональные матрицы задаются уравнением $gg^t = E$. Так как матрица XX^t — симметрична, то уравнение $gg^t = E$, являет собой $\frac{n(n+1)}{2}$ уравнений на матричные элементы матрицы g которых всего g. По теореме о неявной функции матрицы из g0 могут

локально быть выражены через $n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$ параметров. Но для того чтобы применить теорему о неявной функции надо проверить, что дифференциалы этих уравнений линейно независимы.

Рассмотрим малое приращение $g = E + t\delta g + o(t)$. Подставим это в уравнение на g мы получаем, что в первом порядке $\delta g + \delta g^t = 0$. Это система линейных уравнений на δg , ее решения это кососимметричные матрицы которые образуют пространство размерности $\frac{n(n-1)}{2}$. Значит ранг системы равен $\frac{n(n+1)}{2}$, совпадает с количеством уравнений, что и требовалось показать.

3. Группа унитарных матриц U(n). У нее есть подгруппа SU(n) унитарных матриц с определителем 1. О них речь в задаче ниже.

Рассмотрим все возможные гладкие кривые g(t), где g(0) = E. При малых t эта кривая имеет вид g(t) = E + At + o(t), где A = g'(0). Множество таких A называется касательным пространство к G в точке E, обозначает T_EG .

Заметим, что T_EG является векторным пространством. Действительно, если есть две кривые $g_1(t)=E+A_1t+o(t)$ и $g_2(t)=E+A_2t+o(t)$, то их прозведение имеет вид $g_1(t)g_2(t)=E+(A_1+A_2)t+o(t)$. Значит, если $A_1,A_2\in T_EG$, то $A_1+A_2\in T_EG$. Кроме того, если рескалироть параметр t, то есть взять кривую $g_3(t)=g_1(\lambda t)=1+\lambda A_1t+o(t)$, то мы получаем, что если $A_1\in T_EG$, то $\lambda A_1\in T_EG$.

Укажем, что это за векторные пространства для примеров выше. В случае группы G=SO(2) порождено матрицей $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. В случае группы $G=SL(n,\mathbb{R})$ мы нашли, что матрица A должна удовлетворять условию $\mathrm{Tr}\,A=0$. В случае $G=SO(n,\mathbb{R})$ матрица A удовлетворяет условию $A=-A^t$.

Замечание. Аналогично можно определить касательное пространство к любой точке $g \in G$ (подобно тому как есть касательное пространство к сфере в любой ее точке). Это касательное пространство обозначается T_gG , оно всегда будет векторным пространством, для этого структура группы на самом деле не нужна. Но для следующих свойств T_EG структура группы уже является необходимой.

Рассмотрим гладкую кривую g(t) = E + At + o(t). Тогда для любого $h \in G$ кривая $\tilde{g}(t) = hg(t)h^{-1} = E + hAh^{-1}t + o(t)$ тоже является гладкой и $\tilde{g}(0) = E$. То есть, мы доказать, что если $A_1 \in T_E G$ и $h \in G$, то элемент $hAh^{-1} \in T_E G$. Значит, пространство $T_E G$ имеет структуру представления группы G. Такое представление есть для любой группы Ли G, оно называется npucoedunehhmm npedcmasnehuem.

Пусть теперь элемент h также зависит от параметра, другими словами, рассмотрим кривую h(s) = E + Bs + o(s). Тогда, для любого $s, h(s)Ah(s)^{-1} \in T_EG$. Вычисляя мы получаем

$$h(s)Ah(s)^{-1} = (E + Bs + o(s))A(E - Bs + o(s)) = A + (BA - AB)s + o(s).$$

Дифференцируя по s мы получаем, что $BA-AB \in T_EG$. Это выражение называется коммутатором матриц B, A и обозначается [B, A].

Резюмируя, мы получили, что векторное пространство T_EG является замкнутым относительно действия группы G сопряжениями и взятия коммутатора.

Определение 1. Алгеброй Ли называется векторное пространство \mathfrak{g} снабженное билинейное операцией $[\cdot,\cdot]\colon \mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g}$ удовлетворяющей следующим двум аксиомам:

Антикоммутативность
$$[x,y] = -[y,x]$$

Тождество Якоби $[[x,y],z] + [[y,z],x] + [[z,x],y] = 0$

Легко проверить, что коммутатор матриц [A, B] = AB - BA удовлетворяет антикоммутативности и тождеству Якоби.

Примеры.

- **1.** Касательное пространство к единице к любой группе Ли G является алгеброй Ли. Обычно обозначается ${\rm Lie}G$ или маленькой готической буквой ${\mathfrak g}$. Для матричных групп:
- а) Алгебра Ли группы всех невырожденных матриц GL(n) размера $n \times n$ обозначается $\mathfrak{gl}(n)$. Состоит из всех матриц размера $n \times n$
- б) Алгебра Ли группы всех матриц с определителем 1 SL(n) обозначается $\mathfrak{sl}(n)$. Состоит из всех матриц размера $n \times n$ с нулевым следом.
- **в)** Алгебра Ли группы всех ортогональных матриц O(n) обозначается $\mathfrak{so}(n)$. Состоит из всех кососимметричных матриц размера $n \times n$.
- **2.** Вектора в трехмерном пространстве \mathbb{R}^3 . Коммутатор векторное произведение. **Замечание.** Тождество Якоби введенное можно еще переписать в виде:

$$[x, [y, z]] = [[x, y], z] + [y, [x.z]],$$

что означает, что оператор $[x,\cdot]$ является дифференцированием, т.е. удовлетворяет правилу Лейбница.

3. Пространство функций от переменных q_i и p_i со скобкой Пуассона:

$$\{f,g\} = \sum_{i} \frac{\partial f}{\partial p_i} \cdot \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \cdot \frac{\partial g}{\partial p_i}$$

4. Одномерная алгебра Ли dim $\mathfrak{g} = 1$. Можно считать, что порождается одним элементом x. Тогда, [x,x] = -[x,x], значит 2[x,x] = 0, [x,x] = 0.

Определение 2. Алгебра Ли называется коммутативной (абелевой) если для любых элементов $x, y \in \mathfrak{g}$ верно, что [x, y] = 0.

Ясно, что есть коммутативная алгебра любой размерности.

5. Двумерные алгебры Ли $\dim \mathfrak{g} = 2$. Можно считать, что \mathfrak{g} порождается двумя элементами x,y. Так как [x,x]=[y,y]=0 и [x,y]=-[y,x], то единственный коммутатор который надо описать это [x,y]. Если коммутатор [x,y]=0, то алгебра \mathfrak{g} коммутативная. Иначе коммутатор $[x,y]\neq 0$ можно взять в качестве одного из базисных элементов, скажем y. Тогда коммутатор [x,y] пропорционален y и перенормировав x можно сделать [x,y]=y. Получилась такая новая алгебра $\mathfrak{g}=\langle x,y\rangle$

и единственный ненулевой коммутатор имеет вид [x,y]=y. Эту алгебру можно реализовать как подалгебру в алгебре матриц 2×2 : $x=\begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}$, $y=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Замечание. Пусть I_1, I_2, \ldots, I_l базис в алгебре Ли. Тогда коммутатор базисных элементов снова разлагается по базису $[I_i, I_j] = \sum_k c_{ij}^k I_k$. Числа c_{ij}^k называются структурными константами. По аналогии с тем, что конечная группа описывается таблицей умножения, алгебра Ли описывается своими структурными константами.

Определение 3. Линейное отображение $\varphi \colon \mathfrak{g} \to \mathfrak{h}$ называется изоморфизмом алгебр $\mathcal{J}u$, если оно является изоморфизмом векторных пространств и $[\varphi(x), \varphi(y)] = \varphi([x,y]), \ \forall x,y \in \mathfrak{g}$.

Эквивалентно, можно сказать, что две алгебры Ли являются изоморфными, если у них есть базисы в которых совпадают структурные константы.

Выше мы показали, что любая двумерная алгебра Ли изоморфна или коммутативной алгебре или алгебре с коммутатором [x,y]=y.

6. Описать трехмерные алгебры Ли уже не так просто. Отметим, что помимо коммутативных алгебр выше были еще три примера трехмерных алгебр: \mathbb{R}^3 , $\mathfrak{so}(3,\mathbb{R})$, $\mathfrak{sl}(2,\mathbb{R})$. Среди них есть изоморфные, см задачи ниже.

Домашнее задание

Решения задач Заб надо прислать до начала лекции 4 апреля. Решения остальных задач надо прислать или принести до начала лекции 11 апреля. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Упражнение 1. Группа U(1) действует на матрицах 2×2 по формуле

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} e^{i\alpha} & 0 \\ 0 & e^{-i\alpha} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Рассматривая a, b, c, d как координаты в четырехмерном пространстве мы получаем четырехмерное представление U(1). Найдите его характер, разложите его на неприводимые.

Задача 2. Найдите число (вещественных) уравнений задающих группу унитарных матриц U(n). Найдите касательно пространство $T_EU(n)$. Проверьте, что полученное множество матриц замкнуто относительно коммутатора.

Задача 3. а) Докажите, что алгебра Ли $\mathfrak{so}(3,\mathbb{R})$ изоморфна алгебре векторов \mathbb{R}^3 . б) Обозначим через SU(2) группу унитарных матриц с определителем 1, через $\mathfrak{su}(2)$ ее алгебру Ли. Докажите, что $\mathfrak{su}(2)$ тоже изоморфна $\mathfrak{so}(3,\mathbb{R})$.

в)* Докажите, что алгебра Ли $\mathfrak{sl}(2,\mathbb{R})$ не изоморфна $\mathfrak{so}(3,\mathbb{R})$.

Указание: a) Выберите удачный базис в $\mathfrak{so}(3)$ и проверьте совпадение структурных констант.

Материалы, а также полезная информация есть на сайте:

[qft.itp.ac.ru/mbersht/Group.html]