

JOC FILE COPY

AD AO 62172

RADO TR-78-223 ATUNY OF TRUNCATED SEQUENTIAL PROBABILITY BATTO TESTS FOR PELIABILITY TESTING AND SOME NEW RESULTS AMYTHORY AMERICAN SOME NEW RESULTS FRAFORMING ONG ARET TR No. 78-11 AUYHORY AMERICAN SOME NEW RESULTS FRAFORMING ONG ARET TR No. 78-11 PERFORMING ONG ARET TR No. 78-11 PERFORMING ONG ARET TR No. 78-11 AMYTHORY AMERICAN SUMMERS SYRCUSE UNiversity Dept. of Industrial Engineering and Operations Syrcuse University Dept. of Industrial Engineering and Operations Syrcuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS COMPAND OFFICE NAME A	TION PAGE			BEFORE	INSTRUCTION COMPLETING
STUDY OF TRUNCATED SEQUENTIAL PROBABILITY BATIO TESTS FOR PRIABILITY TESTING AND SOME NEW RESULTS AUTHOR(c) AMTIT L./Goel PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Dept. of Industrial Engineering and Operations Syracuse Wil 13210 PERFORMING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffies AFB NY 13441 A MONITORING AGENCY WAME & ADDRESS(II dillerent from Controlling Office) Same 13. SECURITY CLASSIFICATION/O Approved for public release; distribution unlimited. 15. SECURITY CLASSIFICATION/O N/AMEOULE TO DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Same 16. SUPPLEMENTARY NOTES RADC Project Engineer: Jerome Klion (RBRT) D. KEY WORDS (Continuo on reverse side II necessary and identify by block number) Reliability Reliability Life Tests Statistics 16. ASSTRACT (Continuo on reverse side II necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used freliability demonstration. The methodology developed is capable of reliability demonstration.	2. GOV	VT ACCES	SION NO.	ECIPIENT'S	CATALOG NUMI
ANTHOR OF TRUNCATED SEQUENTIAL PROBABILITY BATIO TESTS FOR PRILABILITY TESTING AND SOME NEW RESULTS. AUTHOR(s) Amrit L./Goel PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse NY 13210 PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse NY 13210 PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse NY 13210 PERFORMING OVE. REPT. TO AND ADDRESS (15 STORT) FIRST TO ADDRESS (16 STO	ANSTRACT	rit.		-	
TESTS FOR PALIABILITY TESTING AND SOME NEW RESULTS PERFORMING ONG. REP TR No. 78-11 TR No. 78-11 TR No. 78-11 FR No. 78-12 FR No. 78-11 FR No. 78-12 FR NAME A WORK UNIT BY FR NO. 78-11 FR No. 10 FR No.	AT. PROBABT	TLITY	BATTO F	tnel Tech	
AUTHOR(c) Amrit L. Goel PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 Research CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffiss AFB NY 13441 MOUNTORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 14 TR. No. 78-11 15 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffiss AFB NY 13441 MOUNTORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same 15 SECURITY CLASSIFIED 15 SECURITY CLASSIFIED 15 DECLASSIFIED 15 DECLASSIFIED 15 DECLASSIFIED 16 DECLASSIFIED 17 DETAILUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Same 8 SUPPLEMENTARY NOTES RADC Project Engineer: Jerome Klion (RBRT) 5 KEY WORDS (Continue on reverse side II necessary and identify by block number) Reliability Reliability Life Tests Statistics 6 ABSS ACT (Continue on reverse side II necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used freilability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of reliability along a tester the continue which define the accept, reject	AND SOME	NEW RI	ESULTS		
ANTITE L. Goel PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffias AFB NY 13441 MUNITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Office) Same UNCLASSIFIED 18. SECURITY CLASSIFIED 18. DECLASSIFICATION/S N/X MEDULE CONTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) Same Supplementary Notes RADC Project Engineer: Jerome Klion (RBRT) P. MEY WORDS (Continue on reverse side if necessary and identify by block number) Reliability Reliability Reliability Life Tests Statistics O. ASSIFICT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the content of the conte				R No. 78-	-11
PERFORMING ORGANIZATION NAME AND ADDRESS Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffias AFB NY 13441 MONITORING AGENCY NAME & ADDRESS(II dilierani from Controlling Office) Same UNCLASSIFIED To. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Same Supplementary notes RadC Project Engineer: Jerome Klion (RBRT) Reliability Reliability Reliability Life Tests Statistics D. ABSTRACT (Continue on reverse side II necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the state of the capable o	rtesta	TEST.	FILE	ONTRACTO	GRANT NUMB
Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffies AFB NY 13441 A MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same UNCLASSIFIED IS. DECLASSIFICATION/D N/A MEDULE IS. DECLASSIFICATION/D N/A MEDULE TO DISTRIBUTION STATEMENT (of the abetract entered in Block 20, II different from Report) Same RADC Project Engineer: Jerome Klion (RBRT) RELIABILITY Life Tests Statistics ABSTRACT (Continue on reverse side If necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the state of the	meten i	is ex	(15]	30602-75-	-C-)0121f
Syracuse University Dept. of Industrial Engineering and Operations Syracuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffies AFB NY 13441 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same UNCLASSIFIED IS. DECLASSIFICATION/D N/A MEDULE IS. DECLASSIFICATION/D N/A MEDULE IS. DECLASSIFICATION/D N/A MEDULE RADC Project Engineer: Jerome Klion (RBRT) REPUBLISHED TO STATEMENT (of the abstract entered in Block 20, II different from Report) Reliability Reliability Life Tests Statistics ABSTRACT (Continue on reverse side II necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the state of	nerss		10.	PROGRAM EL	EMENT, PROJE
Syracuse NY 13210 CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (RBRT) Griffies AFB NY 13441 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same UNCLASSIFIED 15a. DECLASSIFICATION/D N/AMEDULE 15b. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Same RADC Project Engineer: Jerome Klion (RBRT) NEY WORDS (Continue on reverse side if necessary and identity by block number) Reliability Reliability Life Tests Statistics ABSTRACT (Continue on reverse side if necessary and identity by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used freilability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of the two lines which define the accept, reject					K UNIT NUMBER
CONTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same Supplementary notes ROBERT RADC Project Engineer: Jerome Klion (RBRT) RELIABILITY Life Tests Statistics Assiract (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of reliability demonstration.	ng and Ope	Pesear	ns ch	A STATE OF THE PARTY OF THE PAR	(17)
Rome Air Development Center (RBRT) Griffies AFB NY 13441 MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) Same UNCLASSIFIED IS. DECLASSIFICATION/D	Allegan Carlos and Ma	coeat	1	ADP OUT ON	
MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office) Some 147R-78-11 LOISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same Supplementary notes RADC Project Engineer: Jerome Klion (RBRT) Reliability Reliability Life Tests Statistics ABSTRACT (Continue on reverse side II necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of	建筑 数据是各种经济企业。	4	(11110	cte	778
UNCLASSIFIED ISA, DECLASSIFICATION/O ISA, DECLASSIFICATION/O N/A Approved for public release; distribution unlimited. OUSTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same Supplementary notes RADC Project Engineer: Jerome Klion (RBRT) Reliability Reliability Life Tests Statistics ABST ACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of reliability of the supplements of the rest plans which define the accept, reject	e expect	eq q	Y.	3	71213
Approved for public release; distribution unlimited. OBSTRUBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same B. SUPPLEMENTARY NOTES RADC Project Engineer: Jerome Klion (RBRT) OR RELIABILITY Life Tests Statistics ABSTRACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of reliability demonstration. The methodology developed is capable of reliability capable of the resolution of the test plans used for the position of the part of the resolution of the part of the resolution.	different from Co	Controlling	STATE OF THE STATE OF		
Approved for public release; distribution unlimited. OBSTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same D. SUPPLEMENTARY NOTES RADC Project Engineer: Jerome Klion (RBRT) Reliability Reliability Life Tests Statistics ABSTRICT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of	11		1	NCLASSIF	IRD
Approved for public release; distribution unlimited. OISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Same Supplementary notes RADC Project Engineer: Jerome Klion (RBRT) Reliability Reliability Life Tests Statistics ABSTRACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of	-11		154	DECLASSIF	ICATION/DOWN
Approved for public release; distribution unlimited. OBSTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) Same Supplementary notes RADC Project Engineer: Jerome Klion (RBRT) OR KEY WORDS (Continue on reverse side if necessary and identify by block number) Reliability Life Tests Statistics OR ADSTRACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the procedure which the secrept, reject.				/ 4	
RADC Project Engineer: Jerome Klion (RBRT) REY WORDS (Continue on reverse side if necessary and identify by block number) Reliability Reliability Life Tests Statistics O. ABS ACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the test plans when the two lines which define the accept, reject	entered in Block	ek 20, if di	liferent from Re	port)	
Reliability Reliability Life Tests Statistics O. ABSWACT (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used f reliability demonstration. The methodology developed is capable of	ne Klion ((RBRT)			
Reliability Life Tests Statistics O. Assignation (Continue on reverse side if necessary and identify by block number) This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used for reliability demonstration. The methodology developed is capable of the control plane when the two lines which define the accept, reject	seary and Identi	illy by bloc	ck number)		
This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used f reliability demonstration. The methodology developed is capable of					
This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used f reliability demonstration. The methodology developed is capable of					
This report documents a new analytical procedure which can be analyze and evaluate sequential probability ratio test plans used f reliability demonstration. The methodology developed is capable of					
reliability demonstration. The methodology developed is capable of	seary and identif	illy by bloc	ck number)		be was
	ial probat	ability	develope	d is cap	able of ev
D FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED	lines whi	hich de	thout trus	cation c	onsiderati

409 184

200

UNCLASSIFIED TITATEPILITY THOUGH BRITATION F 115-85-4TH THE THE THE THE THE PARTY OF TH and the particular fraction of the state of armand and stack the carried of linear 19 and inc MARKARCHICKER LANGE THE STORY OF TROOP PLANS, I I ADVIOUR DAY MAY PLANS TO SHOW TO SHOW The house of the received TARREST OF TROUBERTIES PORNATIONS IN DISPOSITABLE SECURIORS TO ALLES TATHE PERSON AND THE TOWN FROM THE AND THE STATE OF (THES) seem in the expelsive of A. THE RESERVE OF TO PROPERTY AND STORES OF DECISION AND STORES OF DECISION AND STORES. Constant Day of the Constant o Constitution of the World Man CHICARD PROTECTION AND THE STREET STREET STREET shirtailas atticionario comenino daldapoist menerale. TAKEN THE PROBLEM OF THE PROPERTY OF THE PROPE ES OF THE LEWIS DATE Will Project Engineer Perces 1110m (81817) car must describe an official transfer the transfer of the section of a contract of a contract of a contract of the contract o adem, allo viktiviskimi Stallard is description of the contraction reasonable to the new order of the contract of of their of one made Ambarded Lealittings was a simple of the state of and the analysis and a superior last contratable and the property of the property of artifactions in adaptate of Lagranger and alternations of the contractions and additional and the contractions end to be the control when the two determination of the control of UNCLASSIFIED SECURITY CLASSIFICATION OF THE PAGE SHOW DO

ABSTRACT

LIST OF FIGURES.

DECEMBER OF THE PROPERTY OF TH

This report is concerned with the study of truncated sequential probability ratio tests (TSPRT) for reliability testing when the failure distribution is exponential. The study uses a new method for the exact analysis of TSPRT. Effects of changes in the truncation point, the truncation region and the decision boundaries on the producer's and consumer's risks, the expected test time (ETT) and expected number of failures (ENF) are investigated for test plans from MIL-STD-781B.

		on Z
DDC	Buff Section	
UNANNOUN	OTO.	
108 1 104	-1	
PM DEV	CH/P747 157 E. 7	ere Jak

TABLE OF CONTENTS

TOARTERA

1.	INTRODUCTION
	TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST
	DESIGN OF TEST PLANS
4.	EFFECT OF TRUNCATION POINT
	EFFECT OF CHANGING TRUNCATION REGION
6.	EFFECT OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES
	CONCLUDING REMARKS
8.	REFERENCES
	APPENDIX A

THE REPORT OF THE PARTY OF THE

explore of envision manufactural fraction on closes. With

TOTAL CONTROL OF THE PROPERTY OF THE CONTROL OF THE

The Particles of the second rather a contract of

produced by the land the environment of all the books of Becision

LIST OF FIGURES

CELERY TO TELL

Table

Figure	EFFECTS OF CHARGING INTERCRITS AND STOPUS OF DECISION BOUNDARIES ON RISKS AND ETT. (TEST NO. 3).	Page
1	A TYPICAL SET OF BOUNDARIES FOR TRUNCATED SPRT WITH TWO REALIZATIONS	5
1.2	DECISION BOUNDARIES WITH A VARYING TRUNCATION POINT .	10
3 4	CHANGE IN α , β , ETT AT Θ_0 , Θ_1 AND $\frac{\Theta_0 + \Theta_1}{2}$ AS A FUNCTION OF N* AND T*	13
4	BOUNDARIES FOR VARIOUS TRUNCATION POINTS, Q	24
5)]	EFFECT OF VARYING Q FOR CONSTANT T* ON α , β , ETT AT Θ_0 AND Θ_1	26
6	DECISION BOUNDARIES WITH VARYING INTERCEPTS AND SLOPES	28
7.	VALUES OF a, B. ETT AT O AND ETT AT O FOR	
23	VARIOUS COMBINATIONS OF h_1 , h_2 AND s_1 ($s_2 = 0.7$)	30

21 The Court of th

CHARTS OF CHARGING TRUNCATION MERICA ON BURES, BUY,

SCHOOLS OF CORDING INTENDANCE AND STORES OF DECISARY BECOMDACIES ON SIGNS AND STE (PLAN NO. 35 of

REPORTS ON GRADULING SKOPES OF DECISION SCONDING OUR

THE STATE OF THE STREET AND STOLES OF DESIGN OF STREET

APPEAR OF CHARLES OF PROPERTY OF AND SILPES OF DECISION SOCIETY OF AND SILPES OF PROPERTY AND SILE.

VALUES OF RICKS, ENG., FOR VARIOUS TRUTCATION

LIST OF TABLES

Table		Page
(1 00	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION	11
2	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 2)	
3	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 5)	15
4	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 1)	16
5 86	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 4)	17
6	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 4A)	18
7.	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 6)	19
8	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 7)	
9	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 8)	21
10	VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 9)	
11	EFFECTS OF CHANGING TRUNCATION REGION ON RISKS, ETT AND ENF (PLAN NO. 3)	25
12 * (F)	EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (PLAN NO. 3)	29
13	EFFECTS OF CHANGING SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (PLAN NO. 3)	31
14	EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 1)	33
15	EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 2)	34

LIST OF TABLES (Cont.)

Table	RE CODS. do	r the pro	classof beliabling to		Page
16			INTERCEPTS AND SLOPES AND ETT (TEST NO. 3).		35
17			INTERCEPTS AND SLOPES AND ETT (TEST NO. 4).		36
18			INTERCEPTS AND SLOPES AND ETT (TEST NO. 4A)		37
19		TO A STORY OF THE PARTY OF THE	INTERCEPTS AND SLOPES AND ETT (TEST NO. 5).	Contraction (FIGURE confictioning Personal And Street Confiction Action	38
20	\$100 PAR \$10		INTERCEPTS AND SLOPES AND ETT (TEST NO. 6).	(Charalles of Child Court Seas Start Court Start	39
21			INTERCEPTS AND SLOPES AND ETT (TEST NO. 7).		40
22 🙉		SATILLED MATERIAL CONTRACTOR OF THE CONTRACTOR O	INTERCEPTS AND SLOPES AND ETT (TEST NO. 8).	PET to an Electric STITLE Course Description of Electric Report Proceedings (Course Procedings for the	41
23			INTERCEPTS AND SLOPES AND ETT (TEST NO. 9).		42

continued that controlled an environment of the controlled controlled and therefore the controlled the environment of the controlled controlled the controlled contro

To 141707303 har to 164 . France Isohanbag and decrease also to mail any market add

paragrant despel GoAx's est to agen to applicable and the long to a construction of the construction of th

the following the common at the feet of the common at the common at

A CONTRACTOR OF THE PROPERTY O

meter and an extrementary of the meteric of the control of the con

endangen in his den karatan menanggan dan pada pada dan dan beranggan peranggan dan d

established as a state of each case bear has been to a few party of the state of th

V

EVALUATION

In-the-house investigations indicated that the formulation of sequential probability ratio tests (SPRTs) based on the structure of nonparallel accept, reject lines with truncation considerations could have advantages over the more conventionally structured parallel line form of SPRT (the SPRT is the most widely used reliability demonstration test). The objective of this effort was to develop a quantitative methodology to evaluate test plans based upon nonparallel structures. This objective was met. Not only is the methodology developed capable of evaluating this case, but in addition, it is capable of providing for a direct analytical evaluation of the more conventional SPRTs. The procedure developed, in fact, appears to be more efficient and cost-effective than procedures presently in use for this purpose. Besides the dissemination of the report to potential users, follow-on activity is currently in progress to:

- a. Include the methodology as part of the "RADC Compu-Standards Program" (a computerized compendium of procedures intended to implement and support reliability and maintainability standards and handbooks).
- b. Utilize the methodology to develop new types of reliability demonstration tests (based on the nonparallel SPRT structure) for proposed use in MIL-STD-781 (Reliability Demonstration) revisions.
- c. Utilize the methodology in-the-house to custom design reliability demonstration tests for specific procurements.

JEROME KLION Project Engineer

Jenus Kh

Problem and the (The sould see to see the line of the t

We consider the problem of reliability testing when the failure time is exponential with mean time between failures (MTBF) 0, viz.

$$f(t|\theta) = \frac{1}{\theta} \exp(-t/\theta), \qquad t \ge 0, \ \theta > 0. \tag{1}$$

Such a test traditionally takes the form of testing the hypothesis

constants and that
$$H_0: \Theta = \Theta_0$$
 all the same sections $H_0: \Theta = \Theta_0$ (2) vs $H_1: \Theta = \Theta_1 < \Theta_0$

because of the one-to-one relationship between reliability and MTBF.

Sequential and truncated sequential tests (see below) for this problem have been studied widely in the literature; see, e.g.

Wald (1947), Epstein and Sobel (1954), Weiss (1953), Anderson (1960),

Woodal and Kurkjian (1962), Aroian (1963, 1976) and Raghavachari

(1965). The purpose of these investigations has been to study the

Operating Characteristic (OC) and Expected Test Time (ETT) functions for the test. Because of the practical advantages of truncating a sequential test at some prespecified point, MIL-STD-781B

gives several such plans for reliability testing. These plans

were developed using the work of Epstein, Patterson and Qualls (1963).

Because of the lack of exact results, studies in the literature on such truncated tests have not dealt with the effects of changes in the truncation region or decision boundaries on the quantities of interest such as the producer's risk (α) , the con-

sumer's risk (β) , the expected test time (ETT) and the expected number of failures (ENF). This type of information is usually needed for trade-off studies when selecting a test plan. The purpose of this report is to investigate how and to what extent α , β , ETT and ENF are affected when the truncation point, the truncation region, or the intercepts and the slopes of the decision boundaries are varied in a meaningful way. In this study we use some newly developed exact results (see Appendix A) for this purpose. These results are analytically tractable, and provide a computationally economical procedure for conducting the above sensitivity analyses.

We use primarily Test No. 3 of MIL-STD-781B (1967) as a basis for sensitivity studies. Some analyses for other test plans are also presented.

A brief description of the truncated sequential probability ratio test is given in Section 2 and the results of the study are presented in Sections 3 through 6.

of the tile the tile and the state of the state that the been to stady the

-till fing, amir dest Associate pre, (tr), bireits be set pellareco

tions for the test of the process of the process advantages of than-

ere developed with the west and enterior for the second ordered and

ingle and all neithern terminate words we when the the commence of their

to well-fill how to be equal, our what experience of pay think in a suc-

a but the out of the control of the ball of but the state of the control of the c

words and that the the standard of the the providing of the the down

2. TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST

Note that Ag and Ag are points on the squeptance and rejection

The truncated sequential probability ratio test consists of sequentially observing the times to failure, t_1, t_2, \ldots , and plotting the cumulative number of failures versus the cumulative failure time until the accept or reject region is reached. Let $(\overline{A}_1, \overline{A}_2, \ldots)$ and $(\overline{R}_1, \overline{R}_2, \ldots)$ be two sequences of predetermined, non-negative constants such that $\overline{A}_i \leq \overline{R}_i$ for all i. Also, let $\overline{A}_{N^*} = \overline{R}_{N^*}$ at N* < and $\overline{A}_i < \overline{R}_i$ for all i < N*. Then for the exponential case the truncated sequential probability ratio test is as follows.

At the Nth failure (N=0,1,2,...),

continue testing if
$$R_N < W_N < A_N$$
, accept H_0 if $W_N > A_N$, (3) reject H_0 if $W_N \leq R_N$,

where

$$W_{N} = \sum_{i=1}^{N} \epsilon_{i}^{i}$$

$$(4)$$

$$\mathbf{A_{N}} = \frac{n \, \overline{\mathbf{A}_{N}} - N \, n \left(\frac{\mathbf{e}_{0}}{\mathbf{e}_{1}}\right)}{\left(\frac{1}{\mathbf{e}_{0}} - \frac{1}{\mathbf{e}_{1}}\right)} \tag{5}$$

$$R_{N} = \frac{\ln \overline{R}_{N} - N \ln \left(\frac{\Theta_{0}}{\overline{\Theta_{1}}}\right)}{\left(\frac{1}{\overline{\Theta_{0}}} - \frac{1}{\overline{\Theta_{1}}}\right)}.$$
(6)

Note that A_N and R_N are points on the acceptance and rejection boundaries respectively.

In general, the accept and reject lines, respectively, prior to the truncation region, can be written as

-Join Rose, ..., i.t. is called of somes and privated vileits suppose the contract of some state of the contract of
$$\mathbf{z}_{2}$$
 to some state of \mathbf{z}_{2} to some state of \mathbf{z}_{3} to some substance of

time until the accept or reject region is reached. Let (A. A. roing amityon quartum the est (Labella Co. C. C. C. C. Due

with
$$\tilde{R}$$
 , \tilde{R} , \tilde{R}

 $x^* < \infty$ and $X_1 < \overline{x}_1$ for all 12 x^* than for the dependential case

N is the cumulative number of failures,

the truncated sequential probability ratio test to as follows.

T is the cumulative failure time (in multiples of Θ_0), $S_1(S_2)$ is the slope of the reject (accept) line.

For obtaining the truncation region, as shown in Figure 1, we proceed as follows:

(i) Draw a line OL from the origin 0 such that its equation is T=SN, where, letting $d=\theta_0/\theta_1$,

$$S = \frac{\ell nd}{d-1} \quad \text{(in units of } \theta_0\text{)} \tag{9}$$

(ii) Choose a truncation time T* which will be the maximum allowable time for testing. In this study we require that the quantity $\frac{T^*}{S}$ be an integer. If the specified values do not yield an integer, we round off T* to make $\frac{T^*}{S} = N^*$, an integer.

M that To this gotton we investigate the design of the truncated appro-

regions for specified a. S. d and T*. For purposes of decision a

FIG. 1 A TYPICAL SET OF BOUNDARIES FOR TRUNCATED SPRT WITH TWO REALIZATIONS

thirty observes new volume as his and his he full own:

(iii) Draw a horizontal line from N = N* and let B and M be the points where it intersects the reject line and the line OL, respectively.

Then the truncation region BMA is as shown in Figure 1.

With these boundaries, the test will stop with either acceptance or rejection by test time T*. Also, the maximum number of failure will be N*. Obviously, the test can stop anytime prior to reaching either N* or T*. Note that in this set up a reject decision can be made only at failure times, while an accept decision can be made at any time between failures.

The procedure for obtaining the OC and ETT functions is based on computation of f_N (w|0), the probability of being at w at the time the Nth observation is taken and previous (N-1) observations are in the continuation zone. This is achieved by applying a simple property of the exponential distribution. It turns out that f_N (w|0) is a polynomial of a lower degree and its degree depends on the location of w with respect to \overline{A}_i 's, $i < N^*$. A brief description of this procedure is given in Appendix A.

MATHEMATICAL STATIONS OF THEM

to should be possess of white the sampuncaries, obsained has

study our separt sections of a sefferent from the boundaries of these

PIG. I A TYPICAL SET OF POUNDARIES FOR TRUNKATED SPRT

DESIGN OF TEST PLANS

In this section we investigate the design of the truncated SPRT as described in Section 2. The purpose is to derive the decision regions for specified a, 8, d and T*. For purposes of design we take the acceptance and rejection lines, prior to truncation, to be parallel. Their slope depends only on the discrimination ratio and is given by $S = \frac{\ln d}{d-1}$. For a given d and T*, N* is known and is given by $N^* = \frac{T^*}{S}$. Thus, the truncation point (T^*, N^*) is readily obtained from the specified values of d and T*. Now it remains to find h_1 , h_2 that will satisfy α , β as closely as possible. For this, we use an iterative procedure as follows:

(i) obtain Wald boundaries for specified a and 8 from

To adion mi) If we're and emit companded to outsy believes and the

be an integer, we round of:
$$\sqrt{\frac{1}{1}} \cdot \frac{d \ln d}{(\frac{1}{1})^2} \cdot \frac{d \ln d}{(\frac{1})^2} \cdot \frac{d \ln d}{(\frac{1}$$

procedure given above, we get

to. I in Wis-Stb-9818.

and
$$h_2 = \frac{-\ln a}{(\frac{1}{\theta_0} - \frac{1}{\theta_0})}$$
, where $h_2 = \frac{-\ln a}{(\frac{1}{\theta_0} - \frac{1}{\theta_0})}$

where
$$a = \frac{\beta}{1-\alpha}$$
, principle (12)

and
$$b = \frac{1-\beta}{\alpha}$$
 which is the second (13)

Compute exact risks a', B' for these boundaries with (ii) truncation region determined by T* and N* using equation (A-2) of Appendix A. vin durishord avisable off

(iii) Choose new values of
$$h_1$$
 and h_2 as follows:
$$h_1 = \frac{\ln b}{(\frac{1}{\theta_1} - \frac{1}{\theta_0})} + \frac{\alpha - \alpha'}{\alpha} \cdot \left[\frac{\ln b}{(\frac{1}{\theta_1} - \frac{1}{\theta_0})} - \frac{\ln \left(\frac{1 - \beta'}{\alpha}\right)}{(\frac{1}{\theta_1} - \frac{1}{\theta_0})} \right], (14)$$

$$h_{2} = \frac{-2n}{(\frac{1}{\theta_{1}} + \frac{1}{\theta_{0}})} + \frac{\beta - \beta'}{\beta} \left[(\frac{-2n}{\theta_{1}} + \frac{1}{\theta_{0}}) - \frac{-2n}{(\frac{1}{\theta_{1}} - \frac{1}{\theta_{0}})} \right]$$
(15)

where a Pitter

(iv) compute new α', β' for the h₁, h₂ from step (iii) and compare these values with the desired α, β. If the difference is within desired accuracy, say, .01, we are done. If not, go back to step (iii).

SUALIA TREE OF TREE PLANS

For illustration, we consider the design of plans similar to Test No. 3 in MIL-STD-781B (1967). The desired values of risks and discrimination ratio are $\alpha=\beta=.10$ and $d=\theta_0/\theta_1=2$.

Let the specified value of truncation time be $T^* = 11$ (in units of θ_0). Then $S = \frac{\ln 2}{2-1} = .693$ and $N^* = 15.87$. Since we want N^* to be an integer, we round off N^* to 16 and take $T^* = 16 \times .693 = 11.09$. The truncation point becomes (11.09, 16). Using the iterative procedure given above, we get

we deelen iterative procedure as follows:

$$h_2 = 2.55$$
, $h_1 = 2.37$, $\alpha' = .098$, $\beta' = .104$

and the lines become

Accept: T = -2.55 + 0.693N, and

Ally as rath Reject: T = 2.37 + 0.693N .

Now, suppose we take N* = 15. Then T* = 15 x .693 = 10.4 and the iterative procedure gives $h_2 = 2.55$, $h_1 = 3.03$, $\alpha' = .100$, and $\beta' = .100$.

It should be pointed out that these boundaries, obtained by using our exact method, are different from the boundaries of Test No. 3 in MIL-STD-781B.

4. EFFECT OF TRUNCATION POINT

An important reason for truncating the usual Wald SPRT is to insure that the test does terminate by the truncation time T^* . The choice of T^* , however, will effect the performance of the test. In this section we investigate the effect of varying the truncation time T^* and the corresponding values of N^* on the following quantities: producer's risk (a), consumer's risk (b), ETT at θ_0 , θ_1 , and $(\theta_0 + \theta_1)/2$, the expected number of failures (ENF) at θ_0 , θ_1 and $(\theta_0 + \theta_1)/2$. As a basis for this study, we take Test No. 3 of MIL-STD-781B (1967). The specified risks etc. for this test are

$$\alpha = \beta = .10$$
, $\theta_0/\theta_1 = 2$, $N^* = 16$, $h_1 = 1.75$, $h_2 = 2.20$

The value of T* is given by

$$T^* = N^* \cdot S \tag{16}$$

or

TABL

$$T^* = N^* \cdot \frac{\ln \theta_0/\theta_1}{\theta_0/\theta_1 - 1} \quad (in multiples of \theta_0)$$

$$7^* = 16(\frac{\ln 2}{2-1}) = 11.09 . 033$$

TOTAL TEST TIME, T

For purposes of this study, we vary N* from 13 to 19. The values of T* for each N* are calculated from Equation (16) and the resulting boundaries for these cases are shown in Figure 2. Results of the computations for α , β , etc. are given in Table 1. From this table we note that α and β monotically decrease as N* changes from 13 to 19 (T* changes from 9.01 to 13.17), α decreases by 12.9% while the

4. EPPERT OF TRUNCATION POINT

an important reason for trundsting the used wald SPRC is to

FIG. 2 DECISION BOUNDARIES WITH A VARYING TRUNCATION POINT $(S_1 = S_2 = 0.693, h_1 = 1.75, h_2 = 2.20)$

TOTAL TEST TIME. T

10.40

computations for a, a, etc. are queen in Table 1. From this cable we note that a and a monostrally decrease as it obanges from 11 to is its chances from 9.3% to 15.1%, a decreases by 13.9% while the

boundaries for these cases are shown in Figure 1. Results of the

00.II =

and hence there is a reduced chance of cramithing errors of both ...

decrease in a little of the contract of the conviction from

the fact that the continuation coas gets labour as W' is increased

what However, this reduction in a and A la at the come of increas-

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 3)

 $(h_1 = 1.75, h_2 = 2.2, \theta_0/\theta_1 = 2, S = 0.693)$

						ETT at		2	ENF at	10.4
Number	Number into articocom ed fini					0 0+01/2	• • 1	3 0 03	$\frac{\Theta_0^{+\Theta}1}{2}$	0 1
1	13	9.01	. 154	.115	4.96	5.24	3.72	4.96	6.99	7.45
2	14	9.07	.149	.111	5.05	5.39	3.79	5.05	7.19	7.58
s. 93 0. 3	15	10.40	. 144	.109	5.13	5.53	3.85	5.13	7,37	7.70
4	16	11.09	.141	.107	5.19	5.64	3.89	5.19	7.52	7.79
2000000	17	11.78	.138	.105	5.24	5.74	3.93	5.24	7.65	7.87
6	18	12.48	.136	.104	5.28	5.83	3.97	5.28	7.77	7.93
7	19	13.17	.134	.102	5.32	5.90	3.99	5.32	7,87	7.98

ME T. The results for Me from A so 10 (7* from 2.10 to 5.40)

are given in Table 3. In this case, as To increases from 2.20

are given in Tables 4, 5, 50 7 9, 0 and 10 respectively:

Les et en marrosses lig 57.8%.

to Suffy o and a decrease by 47.4 and to 34 respectively, while

Bigging results for test numbers 1. 4. 4A. 6. 7, 8 and 9

decrease in β is 11.3%. This decrease in α and β is obvious from the fact that the continuation zone gets larger as N* is increased and hence there is a reduced chance of committing errors of both kinds. However, this reduction in α and β is at the cost of increased ed ETT and ENF as seen in Table 1. Both of these quantities increase by 7.2% when N* is changed from 13 to 19. In order to get a visual picture of these changes, selected results from Table 1 are shown in Figure 3.

To see further how changes in the truncation point effect results for other test plans, we consider Tests No. 2 and 5 from MIL-STD-781B (1967). For Test No. 2, $\alpha=\beta=0.20$, d=1.5, $h_1=2.27$, $h_2=2.79$ and $N^*=19$. The results for N^* from 16 to 22 (T* from 12.97 to 17.84) are summarized in Table 2. We see that as N^* is changed from 16 to 22, α decreases by 8.3%, β decreases by 4.8% and ETT at θ_0 increases by 8.4%, while ETT at $(\theta_0+\theta_1)/2$ increases by 10.7%.

For Test No. 5, $\alpha=\beta=.10$, d=3, $h_1=0.91$, $h_2=1.29$ and N*=7. The results for N* from 4 to 10 (T* from 2.20 to 5.49) are given in Table 3. In this case, as T* increases from 2.20 to 5.49, α and β decrease by 47.8 and 46.2% respectively, while ETT at θ_0 increases by 57.8%.

Similar results for test numbers 1, 4, 4A, 6, 7, 8 and 9 are given in Tables 4, 5, 6, 7, 8, 9 and 10 respectively.

TABLE 2
VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION
POINTS (TEST NO. 2)

 $(h_1 = 2.27, h_2 = 2.79, d = 1.5, S = 0.811)$

VALUES OF FISES. ETC. FOR VARIOUS TRUMBILION

ALONG ALM, MAD 1, Edu. 1986 1.

> Chi (H

And the second						ETT at		ENF at			
No.	N.	© T* \	a	β	⊕ 0	$\frac{\Theta_0+\Theta_1}{2}$	8 1	Θ ₀	$\frac{\Theta_0^{+\Theta}1}{2}$	• ₁	
1	16	12.97	0.26	0.21	7.27	7.29	6.11	7.27	8.75	9.20	
2	_17	13.79	0.26	0.21	7.41	7.46	6.25	7.41	8.96	9.38	
3	18	14.60	0.25	0.21	7.53	7.61	6.35	7.53	9.14	9.53	
4	ી 9	15.41	0.25	0.21	7.64	7.75	6.44	7.64	9.30	9.66	
5	20	16.22	0.25	0.20	7.73	7.87	6.52	7.73	9.44	9.78	
6	21	17.03	0.24	0.20	7.81	7.97	6.58	7.81	9.57	9.88	
7	22	17.84	0.24	0.20	7.88	8.07	6.64	7.88	9.68	9.96	

EXPECTED TEST PIME(ETT)

MOSTADOMER ROOFAN TABLEO3: ENDER TO SELLAN

A SLIBAT

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 5)

 $(h_1 = 0.91, h_2 = 1.29, d = 3, S = .549)$

16 900

27.5

90.5 81.5

22.8

rect

58.0

20.65

25.01 24.08

18.14 17.79 25.83 24.81

18.21 IT.06 25.43 20.32

	0.0	L _{th}		09	ETT at	¥	** ENF at .OH		
No. N*	L/T*)L	e a	8 ,8	e _{õ ∂}	$\frac{\Theta_0+\Theta_1}{2}$	• ₁	Θ ₀	$\frac{\Theta_0+\Theta_1}{2}$	•1
1 4	2.20	0.23	0.13	1.42	1.31	0.90	1.42	1.96	2.69
2 5	2.75	0.19	0.11	1.72	1.65	1.09	1.72	2.47	3.27
3 6	3.29	0.16	0.10	1.92	1.90	1.22	1.92	2.85	3.65
4 7	3.84	0.14	0.09	2.05	2.09	1.30	2.05	3.13	3.89
5 8	4.39	0.13	0.08	2.14	2.23	1.35	2.14	3.34	4.06
6 9	4.94	0.12	0.08	2.20	2.34	1.39	2.20	3.51	4.16
7 3 10	5.49	0.12	0.07	2.24	2.42	1.41	2.24	3.63	4.23

44

81

LI

arto ciro es ac-

aria arita delte

SELER OLITE OLITE PARE DELER 18.97 (17.00 DALTE

BT.TL

ea.71 30.31 48.00 68.71

20.10

TABLE 4

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 1) $(h_1 = 4.4, h_2 = 4.42, d = 1.5, s = 0.81)$

						ETT at			ENF at	
No.	N*)	. T*	α	В	Θ ₀	$\frac{\theta_0^{+\theta_1}}{2}$	e ₁	e ₀	$\frac{\Theta_0^{+\Theta_1}}{2}$	e ₁
1 ⁽⁶⁾ 1	35	28.38	0.134	0.129	16.51	18.61	14.91	16.51	22.33	22.36
2	36	29.19	0.131	0.127	16.66	18.87	15.05	16.66	22.65	22.58
3	37	30.00	0.128	0.126	16.81	19.13	15.19	16.81	22.95	22.79
4	38	30.82	0.126	0.124	16.94	19.37	15.33	16.94	23.25	22.99
5	39	31.63	0.123	0.123	17.07	19.61	15.45	17.07	23.53	23.18
6	40	32.44	0.121	0.122	17.19	19.84	15.57	17.19	23.80	23.35
7	41	33.25	0.119	0.121	17.30	20.05	15.68	17.30	24.06	23.52
8	42	34.06	0.117	0.119	17.41	20.26	15.78	17.41	24.32	23.67
9	43	34.87	0.116	0.118	17.51	20.46	15.88	17.51	24.56	23.82
10	44	35.68	0.114	0.117	17.60	20.66	15.97	17.60	24.79	23.95
11	45	36.49	0.112	0.116	17.69	20.84	16.06	17.69	25.01	24.08
12	46	37.30	0.111	0.116	17.78	21.02	16.14	17.78	25.23	24.21
13	47	38.11	0.109	0.115	17.86	21.19	16.21	17.86	25.43	24.32

TABLE 5

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 4) $(h_1 = 1.4, h_2 = 1.04, d = 2.0, S = .693)$

			1,84.2	0.72	•	ETT at	, +6.0	ENF at			
No.	N*	T*	ď	В	e ₀	$\frac{\theta_0^{+\theta_1}}{2}$	• ₁	e _o	2	e ₁	
1	6	4.16	0.263	0.200	2.30	2.24	1.76	2.30	2.98	3.52	
2	7	4.85	0.252	0.196	2.39	2.35	1.84	2.39	3.14	3.67	
3	8.	5.55	0.244	0.194	2.46	2.44	1.89	2.46	3.25	3.77	
4	9.	6.24	0.239	0.193	2.50	2.49	1.92	2.50	3.33	3.84	
5	10	6.93	0.236	0.192	2.53	2.54	1.94	2.53	3.38	3.88	

WOLTHOUGH BYOLARY TOT , TOT , 29014 MG BYBLAY WITCHES OF RECES, EDG., FUR VARIOUS TRUNCATION TABLE 6

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 4A)

POINTS (TEST NO. 4A)

(h₁ = 0.89, h₂ = 0.98, d = 3.0, S = 0.55)

January epoten	gy and de de la companya de la comp La companya de la companya de		ETT at		ENF at			
No.	N* T* CES COLL COS	e o	$\frac{\theta_0^{+\theta_1}}{2}$	e ₁	e 0	$\frac{\theta_0^{+\theta_1}}{2}$	e 1	
1	2 1.10 0.293 0.168	0.88	0.81	0.59	0.88	1.22	1.76	
2	3 1.65 0.209 0.161	1.17	1.15	0.87	1.17	1.72	2.61	
3	4 2.20 0.159 0.158	1.34	1.38	1.05	1.34	2.07	3.16	

MOITHORNER SUCHAN ROY . ONE THE TO ESUMAN

B BARAT

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 6)

 $(h_1 = 0.55, h_2 = 0.36, d = 5.0, S = 0.40)$

					o err at			ENF at		
TO.	n*	: T* 10.	a ·	1 8 8.5	Θ ₀	9 ₀ +9 ₁	. e 1:1	. ⊖ ₀ ∌	2	e ₁
î	2 2	0.80	0.196	0.109	0.58	0.55	0.33	0.58	0.91	1.64
2	3	1.21	0.152	0.101	0.66	0.65	0.38	0.66	1.09	1.88
3	4	1.61	0.137	0.098	0.69	0.70	0.39	0.69	1.16	1.97
4	5	2.01	0.132	0.097	0.70	0.72	0.40	0.70	1.20	1.99
5	6	2.41	0.131	0.097	0.70	0.73	0.40	0.70	1.21	2.00

TABLE 8 VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION POINTS (TEST NO. 7)

(h₁ = 2.10, h₂ = 1.62, d = 1.5, S = 0.81)

					ETT at			ENF at		
Mo.	3 8 * 9	Ma T e	0	2 10	• • 0	e 0 ^{+e} 1 / 2	e 1	₽0	$\frac{\theta_0+\theta_1}{2}$	e 1
1	35	2,43	0.438	0.295	2.01	1.88	1.69	2.01	2.26	2.54
2	4	3.24	0.407	0.287	2.61	2.47	2.21	2.61	2.96	3.31
3	5	4.05	0.382	0.279	3.09	2.94	2.62	3.09	3.53	3.93
4	6	4.87	0.364	0.273	3.47	3.32	2.94	3.47	3.99	4.42
5	7	5.68	0.349	0.268	3.77	3.63	3.20	3.77	4.36	4.81
6	8	6.49	0.337	0.264	4.02	3.89	3.41	4.02	4.66	5.11
7	9	7.30	0.328	0.261	4.21	4.09	3.57	4.21	4.91	5.36

GI BINAT

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

(R .OM TABLE 91MEGS

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 8)

 $(h_1 = 0.86, h_2 = 6.0, d = 2.0, S = 0.69)$

.0	Samuel Services	.09	18			ETT at			ENF at	
No.	12.4 N* T	18.S	0%.: «	8 °. β	(S. ⊖ <mark>o</mark>	e ₀ +e ₁ 2	.0 0(A 0 1	.0 ₀ .0E	e ₀ +e ₁	ė ₁
(1	2 21:	39 0.	362 0	. 287	0.94	0.89	0.77	0.94	1.18	1,53
S 2 .	3, 2.	08 0.	274. 0	. 317	1.25	1.24	.01.128	1.25	1.65	2.25
e 3)	4 . 2.	77: 0.	215 0	. 339	1.48	1.54	1.46	1.48	2.05	2.93

6 11 9.82 0.317 0.426 6.55 6.66 9.64 6.55 6.31 7.05

7 12 10.71 0.305 0.432 5.77 5.93 5.89 5.77 6.59 7.37

TABLE 10

VALUES OF RISKS, ETC., FOR VARIOUS TRUNCATION

POINTS (TEST NO. 9) $(h_1 = 2.0, h_2 = 3.12, d = 1.25, s = 0.893)$

(S LOW PEAT) STREET

		*2.0 , s *0.69)			ETT at			ENF at		
No.	N*	T*	α	В	e ₀	$\frac{\theta_0^{+\theta}1}{2}$	e 1	e ₀	9 0 ⁺⁹ 1	- 0 1
1	6	5.36	0.410	0.384	3.81	3.79	3.70	3.81	4.21	4.62
2	7	6.25	0.386	0.394	4.26	4.27	4.19	4.26	4.74	5.24
§ 3£	8	7.14	0.365	0.403	4.65	4.69	4.63	4.65	5.21	5.78
4	9	8.03	0.347	0.412	4.99	5.07	5.01	4.99	5.63	6.26
5	10	8.93	0.331	0.419	5.29	5.39	5.35	5.29	5.99	6.68
6	11	9.82	0.317	0.426	5.55	5.68	5.64	5.55	6.31	7.05
7	12	10.71	0.305	0.432	5.77	5.93	5.89	5.77	6.59	7.37

5. EFFECT OF CHANGING TRUNCATION REGION

The truncation regions considered so far have been of the type described in Section 2. From a practical point of view, it is useful to know the extent to which the performance of the test is affected by changing the truncation region. Towards this end, in this section we study the effect of changing one of the truncation boundaries on risks, ETT and ENF for Test No. 3. We take N* = 16 corresponding to a T* = 11.09 and vary another truncation point Q from 16 to 10 to generate new rejection boundaries as shown in Figure 4. Note that T* is kept constant at 11.09. As before, the values of α , β , ETT and ENF are computed for each case and are given in Table 11. We notice that as Q is changed from 16 to 10, a increases from .141 to .155, an increase of 9.9% and \$ decreases from .107 to .101, a decrease of 5.6%. The increase in a is caused by the fact that the reduction in the continuation region and an increase in the rejection region leads to an increased number of rejections. β decreases because as Q is decreased, there is a decreasing chance of accepting $\theta=\theta_0$ when in fact $\theta=\theta_1$. Also, we see that ETT and ENF both decrease, leading to an earlier and cheaper test stoppage because of the reduced continuation zone. Some selected results from Table 11 are shown in Figure 5. Thus, we see that by judiciously reducing the continuation zone, we can cut down the test effort and the consumer's risk at the cost of a somewhat higher producer's risk.

ERFECT OF CHARGING TRUMCATION REDUNK

the trimestant regions, the problem of the particular formation of the contract to the trimestant policy of the contract the particular of the contract the contr

FIG. 4 BOUNDARIES FOR VARIOUS TRUNCATION POINTS, Q

the distance and the consumer's that at the cost of a costs and

swill and the or vends a leastly con the business of the cast of the

er producer's risk.

24

TABLE 11

EFFECTS OF CHANGING TRUNCATION REGION

ON RISKS, ETT AND ENF (PLAN NO. 3) $(h_1=1.75, h_2=2.20, N=16, \theta_0/\theta_1=2, s=0.693)$

and the second					ETT	at	ENF	at
umber	Q	T*	•	8	e ₀	•1	●0	e 1
10	16	11.09	.141	.107	5.19	3.89	5.19	7.79
28	15	11.09	.141	.107	5.19	3.89	5.19	7.79
)3 X	14	11.09	.143	.106	5.18	3.87	5.18	7.75
4	13	11.09	.145	.105	5.17	3.85	5.17	7.70
50	12	11.09	.148	.104	5.15	3.82	5.15	7.65
6	11	.11.09	.152	.102	5.13	3.79	5.13	7.58
7	10	11.09	.155	.101	5.11	3.75	5.11	7.50

AISKS, O.A

EXPECTED TEST TIME, ETT

6. EFFECT OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES

The nature of the continuation region in a SPRT has a significant effect on the performance of the test. Changes in the intercepts and slopes of the decision boundaries will undoubtedly effect α , β , ETT and ENF. In this section we investigate the nature and extent of the effect of changing h_1 , h_2 , S_1 , and S_2 on α , β , ETT and ENF. As a base point, we keep the truncation point at $N^* = 16$ and $T^* = 11.09$. The slopes of the acceptance and rejection lines are changed from .6 to .8 while the corresponding intercepts are changed from 1.65 to 1.85 and from 2.1 to 2.3, respectively. Four of these boundaries are shown in Figure 6.

Let us first consider the effect of changing h_1 (1.65 + 1.85), h_2 (2.1 + 2.3), and S_1 (0.6 + 0.8) while keeping S_2 constant at 0.7. The results corresponding to these values are given in Table 12. In order to appreciate the effect of h_1 , h_2 and S_1 , we show the values of α , β , ETT at θ_0 and ETT at θ_1 at the 8 corners of a cube in Figure 7. We notice that the most significant effect is on α due to a change in S_1 , the slope of the rejection line. This risk increases roughly two-fold for all combinations of h_1 and h_2 . Obviously such a large increase is caused by a significant increase in the size of the rejection zone. Also, note that corresponding to this increase in α , there is a decrease in β and in ETT. Again the reason is the same as for the increase in α .

Next, we study the effect of changing S_1 and S_2 , keeping all other factors constant. The results from this case are given in Table 13. Again we see that for constant S_2 , S_1 has a very

BEC., As a pass point, we keep the truncation point at Mr = 16 and Ti elli.09. The slopes of the acceptance and rejection lines are courses ean a governi phihocestron and alim to or it, must be conden FALLRES,N du Landard set or changing D. 6 Ti aldar 0.7 - The resultperga da In order To seniev eduo e 43 434 if figure ?. We not see the the oub a no fit to spote said J. a ni splants be o tip act pida-bab Alababi sessoro add of savetOf they 2 thate 6 8 10 11.09 TOTAL TEST TIME, T* TEST TIME, T*

BEFFICE OF CHANGING ANTEROPERS AND

The marker of the coptimuation region in a SPAT has a signific

SLOPES OF DECISION ROUNDANCES

restar and of manuacity ideas and to constituting and an daylies done

caped and plopes of the decision bounderies will endoubtedly effect

estimate of the effect of changing his house, and to on as a ST and

and S. Ell bud Elf. In this section we investigate the assure and

other factors constant, "The Addition I would be and and are civen

the Sable 13s. Again we'see that for constant 2s. S. S. has a very

Mass, valence, the effective committee of and S. and S. keeping ell

DECISION BOUNDARIES WITH VARYING INTERCEPTS

FIG. 6

TABLE 12 EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (PLAN NO. 3) $(N*=16 \ , \ T*=11.09 \ , \ \Theta_0/\Theta_1=2)$

					5%			Ett at	
Number	h ₁	h ₂	s ₁	s ₂	ď	8	Θ ₀	$\frac{\Theta_0+\Theta_1}{2}$	Θ ₁
1	1.65	2.1	0.6	0.7	.10	.12	5.43	6.39	4.90
2	1.85	2.1	0.6	0.7	.09	.12	5.53	6.63	5.30
3	1.65	2.3	0.6	0.7	.11	.11	5.88	6.79	5.05
4	1.85	2.3	0.6	0.7	.10	.11	5.98	7.03	5.42
5	1.65	2.1	0.8	0.7	.25	.09	4.17	4.06	2.68
6	1.85	2.1	0.8	0.7	.22	.10	4.41	4.41	2.95
r 7	1.65	2.3	0.8	0.7	.26	.08	4.56	4.37	2.76
8	1.85	2.3	0.8	0.7	.22	.08	4.81	4.74	3.04

FIG. T VALUES OF (4, BIETT AT BO AND ETT AT B)

FOR' WARDUS COMBINATIONS OF N. ha AND S. (52 = 0.7)

VI BLEAT

LEFECTS OF CHANGING BITE CLIPTE AND LONG ON DECISION

FIG. 7 VALUES OF $(\alpha, \beta, \text{ETT AT } \theta_0 \text{ AND ETT AT } \theta_1)$ FOR VARIOUS COMBINATIONS OF $h_1, h_2 \text{ AND } S_1 (S_2 = 0.7)$

significant effect on g. This is seen to be true for all three values of Eg. It is also interesting to note the tradeoffs that

one gets between e. 3 and ETT as S, and S, are charged atomi-

tangerary while tenging she truncation point unchanged.

EFFECTS OF CHANGING SLOPES OF DECISION BOUNDARIES

ON RISKS AND ETT (PLAN NO. 3) $(h_1=1.75, h_2=2.20, N*=16, T*=11.09; \Theta_0/\Theta_1=2)$

						ETT at	344 43
Number	s ₁	s ₂	α	β	e _o	$\frac{\Theta_0+\Theta_1}{2}$	e 1
1	.6	.6	.08	.16	4.87	5.82	4.91
2	.7	.6	.13	.15	4.43	4.80	3.58
3	.8	.6	.22	.12	3.88	3.82	2.70
4	.6	.7	.10	.11	5.71	6.72	5.80
5	.7	.7	.15	.10	5.20	5,61	3.82
6	.8	.7	.24	.09	4.49	4.40	2.86
7	.6	.8	.11	.10	6.49	6.38	5.33
8	.7	.8	.15	.09	5.95	6.23	3.96
9	.8	.8	.25	.07	5.15	4.93	2.96

significant effect on α . This is seen to be true for all three values of S_2 . It is also interesting to note the tradeoffs that one gets between α , β and ETT as S_1 and S_2 are changed simultaneously while keeping the truncation point unchanged.

In order to study the effects of changing h_1 , h_2 , S_1 and S_2 for all the plans in MIL-STD-781B (1967), we change these quantities over the appropriate regions and compute the resulting values of α , β , ETT and ENF. These are given in Tables 14 through 23 for plans 1 through 9 (including 4A) of MIL-STD-781B.

20	1950	00		*		18	1 adminst
TE-P	5.82	4.87	-04.	90.	2,	4 -11	1
82.6	08.4	EP.8	ez.	41.	4.	۲.	2
2.70	58.2	68.6	81.	\$\$.	91	3.	
08.4	6,72	5.72	11.	01.	ř.	ð.	
59.8	10.0	5.20	l or.	er.	τ,	7.7	8
21.96	4,40	4.49	eo.	. 24	7.	6.	à
86.8	86.3	91.0	01.	11.	е.	0.	Ä.
30.E	EX.8.2	5.95	80.	izd :	6.	¥.	8
2196	-, CR., 4	21.3	1 80.	. 86.	8.4	8	

0.82 0.88 0.581 TABLE 14.88 1.31 0.78

成的, 产

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND EFT (TEST NO. $(N^* = 41, T^* = 33.2, \Theta_0/\Theta_1 = 1.5)$

	10 mm m m m	60 Pt 400 Pt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C CONTRACT		1000 TO THE LOCAL SECTION OF THE PERSON NAMED IN COLUMN TWO ASSESSMENT OF THE PERSON NAMED IN COLUMN TO ASSES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.4.45.05		4.7.474.3	100 A. O. O.	10 M
Number	} 4	10 10 AZ	8.5° € € €	0.85 0.75 0.85	9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.353		Err at $\frac{\theta_0+\theta_1}{2}$	91	0	EMF at $\frac{\theta_0+\theta_1}{2}$	77.62 8.38 1.618
-	4.35	4.35	0.75	0.75	0.085	0.169	15,35	19.46	17.94	15,35	23.36	26.91
Ν.	4.35	4.35	0.85	0.75	0.132	0.153	13.91	15.64	12.63	13.91	18.77	18.95
.	4.35	4.35	0.75	0.85	0.105	0.115	19.48	23,35	19.23	19.48	28.01	28.84
4.	4.35	4.35	0.85	0.85	0.151	0.102	17.82	19.23	13.76	17.82	23.07	20.64
S	4.45	4.35	0.75	0.75	0.084	0.169	15.40	19.60	18.20	15.40	23.52	27.31
, (4.45	4.35	0.85	0.75	0.127	0.154	14.02	15.86	12.89	14.02	19.04	19.34
7	4.45	4.35	0.75	0.85	0.104	0.115	19.53	23.49	19.49	19.53	28.19	29.24
æ	4.45	4.35	0.85	0.85	0.147	0.103	17.95	19.48	14.03	17.95	23.38	21.05
6	4.35	4.45	0.75	0.75	0.087	0.163	15.68	19.78	18.09	15.68	23.74	27, 13
10	4.35	4.45	0.85	0.75	0.133	0.147	14.22	15.93	12.75	14.22	19.11	19.13
7	4.35	4.45	0.75	0.85	0.106	0.112	19.82	23.61	19.31	19.82	28.33	28:97
12	4.35	4.45	0.85	0.85	0.152	0.099	18.16	19.48	13.84	18.16	23.38	20.76
13	4.45	4.45	0.75	0.75	0.086	0.163	15.72	19.92	18.35	15.72	23.91	27.52
14	4.45	4.45	0.85	0.75	0.129		14.33	16.16	13.01	14.33	19.39	19.52
15	4.45	4.45	0.75	0.85	0.105	0.112	19.87	23.75	19.58	19.87	28.50	29.37
16	4.45	4.45	0.85	0.85	0.148	0.100	18.29	19.74	14.11	18.29	23.68	21.16

THE PARTY OF THE COURT TABLE IS NOT BEEN AS IN TABLE

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 2)

202.5542885-73370		
	ŧ	
	r	
	ŀ	
	ı	
	г	
	ı	
	2	
	8	
line.		
	8	
	ı	
	1	
	9	ı
	3	
	ı	
man con		ř
	ı	
	8	ŀ
	8	
	г	
	ı	
Ya Ya Sala	ı	
	ı	
	ı	
4. 7. 81	Đ.	
	ı	ŝ
	1	
	ı	
	ı	
	ı	
1	ø	
	ø	
	đ	
工作	J	
	ı	
LO STATE	ø	
	ı	
	Ŧ	
	1	
	ı	
	1	
St. Salis	8	ĕ
	ı	
	ı	
231.24.86%	г	0
	ă	ŧ
	ŝ	ı
	8	ı
- substituting	ă	k
	g.	ŀ
	8	ľ
	3	ľ
	þ	ŀ
	g	ľ
	Э.	В
	i	į
	ŀ	
	CONTRACTOR CONTRACTOR	
		TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER
		Tel. (2007) 1000 (1000) 1000 (1000)
	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	THE STATE OF THE S
		THE COURT OF STREET OF STREET OF STREET
		TOTAL STREET,
10 00010 0010 0010		
TO SECTION BOLD BULL		
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
to the come of the		
10 0.85 0 88.0 88.0 88		
To Well's edio saio as		
10 081 0 08.0 00.0 mg		
TO SECTO BOTO SOLO BY		
10 381 0 88.0 58.0 88.0		
TO SECTO BOTO SOLD BY A		
10 081 0 88.0 84.0 B. b		
10 000 0 000 0 000 0 00 0 0 0 0 0 0 0 0		
16 381.0 88.0 88.0 88.0 8		
10 4 48 0 18 0 18 0 18 0 01		
TO SELTO BRIO SULO BY A SE		
TO TELLO BB.O BB.O BB & CO.		
TO TELLO BELO BELO BELO DE LA COLLA		
TO 1811 0 88 0 84 0 88 2 25 8		

(N*=19, T*=15.4, 00/01=1.5)

								Brr at			EMP at	
Number	ď	h ₂	s	°2,	8	•	•	00+01	•	•	+ 101	•
(O)	2.25	2.75	0.75	0.75	0.197	0.235	7.43	7.95	7.13	7.43	9.54	10.69
7	2.25	2.75	0.85	0.75	0.266	0.233	6.40	6.40	5.40	6.40	7.68	8.10
æ	2.25	2.75	0.75	0.85	0.221	0.209	8.61	8.98	7.67	8.61	10.78	11.50
4	2.25	2.75	0.85	0.85	0.288	0.183	7.45	7.31	5.86	7.45	8.77	8.78
2	2.35	2.75	0.75	0.75	0.191	0.255	7.53	8.11	7.34	7.54	9.73	11.01
୬	2.35	2.75	0.85	0.75	0.255	0.227	6.54	6.59	2.60	6.54	7.91	8.40
7	2.35	2.75	0.75	0.85	0.215	0.211	8.72	9.16	7.88	8.72	10.99	11.82
œ	2.35	2.75	0.85	0.85	0.277	0.186	7.62	7.52	6.07	7.62	9.03	9.10
6	2.25	2.85	0.75	0.75	0.202	0.242	7.67	8.16		7.67	9.79	10.89
10	2.25	2.85	0.85	0.75	0.271	0.213	6.62	6.59	5.51	6.62	7.91	8.26
11	2.25	2.85	0.75	0.85	0.224	0.202	8.85	9.18	7.77	8.85	11.01	11.65
12	2.25	2.85	0.85	0.85	0.291	0.176	7.68	7.49	5.95	7.68	8.99	8.92
13	2.35	2.85	0.75	0.75	0.196	0.245	7.77	8.33	7.47	7.77	6.6	11.20
14	2.35	2.85	0.85	0.75	0.260	0.218	92.9	6.79	5.71	92.9	8.14	8.56
15	2.35	2.85	0.75	0.85	0.218	0.204	8.96	9.35	7.98	8.96	11.22	11.97
16	2.35	2.85	0.85	0.85	0.281	0.180	7.85	7.71	6.16	7.85	9.25	9.24

TOTAL THE OLDS OFTE OFTEN TABLE 16 THE STASS

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO.

-
0
• 1
2.0)
II S S S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0°/61
0
0
en ende and
•
-
The Co
6.00
11.
11
F.
•
100
16
*
4
Mars St.

9 97 10 1	91	7.66		8.05	5.86	8.06	5.86	8.46	6.18	7.79	5.67	8.15	5.95	8.20	5.97	8.56	6.26
MF at	00+01	7.02	5.46	8.02	6.27	7.26	5.70	8.28	6.54	7.29	5.68	8.26	6.49	7.53	5.93	8.52	6.77
	•0	4.76	4.11	5.53	4.77	4.85	4.23	5.64	4.91	4.97	4.30	5.76	4.98	2.07	4.42	5.86	5.12
	•1	3.38	2.78	4.02	2.93	4.03	2.93	4.23	3.09	3.90	2.83	4.08	2.97	4.10	2.98	4.28	3.13
TT at	90+0 ₁	5.27	4.10	6.01	4.70	5.45	4.27	6.21	4.91	5.47	4.26	6.19	4.87	5.65	4.45	6.39	5.08
	00	4.76	4.11	5.53	4.77	4.85	4.23	5.64	4.91	4.97	4.30	5.76	4.98	2.07	4.42	98.5	5.12
101.6	8	0.127	0.108	0.099	0.083	0.129	0.112	0.101	0.085	0.118	0.099	0.093	0.076	0.120	0.102	0.094	0.079
0.035	8	0.132	0.217	0.143	0.228	0.122	0.201	0.133	0.212	0.135	0.220	0.145	0.231	0.125	0.204		
0.775	S 2.	0.65	0.75	0.75	0.75	0.65	0.65	0.75	0.75	0.65	0.65	0.75	0.75	0.65	0.65	0.75	0.75
à 0	S .	0.65	0.65	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75
2	72	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2:25	2.25	2.25	2.25	2.25	2.25	2.25	2.25
90 4	ु न	1.50	1.50	1.50	1.50	1.60	1.60	1.60	1.60	1.50	1.50	1.50	1.50	1.60	1.60	1.60	1.60
No.	Number	-	'N '	e m €	4	'n	9	7	0	6	10	1	12	13	14	15	15

OLD OLD STREET TABLE 17 STREET STREET

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 4)

(N* -8, T* -5.55, 60/6, -2.0)

		•	3.91	3.08	4.09	3.23	4.20	3.30	4.39	3.47	4.06	3.20	4.23	3.34	4.36	3.44	4.53	3.59
		0040	3.22	2.65	3.50	2.88	3.40	2.81	3,68	3.06	3.41	2.82	3.68	3.05	3.60	2.99	3.88	3.23
	100	0	2.37	2.06	2.60	2.25	2.47	2.16	2.70	2.36	2.54	2.21	2.77	2.41	2.64	2.31	2.87	2.52
		•	1.95	1.54	2.05	1.61	2.10	1.65	2.20	1.73	2.03	1.60	2.12	1.67	2.18	1.72	2.27	1.79
	err at	00401	2.41	1.99	2.62	2.16	2.55	2.11	2.76	2.29	2.56	2.11	2.76	2.29	2.70	2.24	2.91	2.42
	Day of the	. 0 ₉	2.37	2.06	2.60	2.25	2.47	2.16	2.70	2.36	2.54	2.21	2.77	2.41	2.64	2,31	2.87	2.52
		8	0.224	0.200	0.197	0.176	0.230	0.207	0.202	0.182	0.204	0.181	0.181	0,160	0.210	0.188	0.186	0.166
		ð	0.214	0.282	0.228	0.295	0.197	0.260	0.211	0.273	0.222	0.291	0.235	0.303	0.205	0.269	0.218	0.281
	(e) (c) (c)	. S.	0.65	0.65	0.75	0.75	0.65	0.65	0.75	0.75	0.65	0.65	0.75	0.75	0.65	0.65	0.75	0.75
63 15 2	10 to 10	s	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75	0.65	0.75
3 3 3		42	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
	0.8	đ	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.10	1.00	1.00	1.00	1.00	1.10	1.10	1.10	1.10
	2 grad	Number	.d	7	က	4	'n	ø	7		6	2	-	12	ដ	7	15	91

of 88 1730 of 0 of 0 of 124 TABLE 18 5778 5738

04) 2/5 2 5-4

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND EFF (TEST NO.

(N*=3, T*=1.65, 0₀/0₁=3.0)

Number h_1 h_2 s_1 s_2 q q p q												かずわ	
er h ₁ h ₂ s ₁ s ₂ a b e ₀ e ₁ e ₁ e ₀ e ₁ 0.95 0.85 0.50 0.201 0.173 1.112 1.12 0.87 1.11 1.63 0.95 0.85 0.50 0.50 0.207 0.171 1.11 1.08 0.88 1.11 1.68 0.95 0.85 0.60 0.50 0.207 0.171 1.11 1.08 0.88 1.11 1.68 1.05 0.85 0.60 0.50 0.207 0.173 1.11 1.10 0.88 1.11 1.68 1.05 0.85 0.50 0.50 0.50 0.50 0.50 0.88 1.12 1.14 0.88 1.13 1.68 1.05 0.85 0.50 0.50 0.50 0.20 0.15 1.14 1.12 0.88 1.13 1.68 1.05 0.85 0.50 0.50 0.50 0.50 <	des Ses	68.0	000	06,0	00.0	\$21.0	7.0.0		EIT at	(C)	推断が	EMP at	100
0.95 0.85 0.50 0.50 0.201 0.173 1.12 1.12 0.87 1.12 1.67 0.95 0.85 0.60 0.207 0.171 1.11 1.08 0.82 1.11 1.63 0.95 0.95 0.80 0.207 0.171 1.11 1.08 0.82 1.11 1.63 0.95 0.85 0.50 0.206 0.167 1.13 1.10 0.82 1.13 1.16 1.10 0.95 0.85 0.50 0.50 0.201 0.173 1.113 1.12 0.88 1.13 1.66 1.05 0.85 0.50 0.50 0.201 0.173 1.113 1.12 0.88 1.13 1.66 1.05 0.85 0.60 0.50 0.203 0.172 1.13 1.12 0.88 1.13 1.66 1.05 0.85 0.60 0.206 0.167 1.13 1.12 0.88 1.13 1.16 1.69 1.05 0.85 0.50 0.208 0.167 1.13 1.14 0.88 1.15 1.14 1.69 1.15 1.14 0.88 1.15 1.14 1.69 0.95 0.95 0.50 0.208 0.167 1.14 1.12 0.86 1.14 1.15 1.14 1.69 0.95 0.95 0.50 0.218 0.152 1.20 1.19 0.99 1.21 1.78 1.20 0.95 0.95 0.50 0.218 0.152 1.24 1.20 0.90 1.24 1.80 0.95 0.95 0.50 0.215 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.17 0.86 1.22 1.17 1.10 0.95 0.50 0.50 0.215 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.215 0.154 1.22 1.17 0.85 1.22 1.76 1.05 0.95 0.50 0.50 0.215 0.154 1.22 1.19 0.90 1.22 1.18 1.10 0.95 0.50 0.50 0.215 0.154 1.22 1.19 0.90 1.22 1.18 1.10 0.95 0.50 0.50 0.515 0.515 0.515 1.23 1.19 0.90 1.23 1.79 1.79	Number	h.	h2	S ₁	. S ₂	8	. 6	. 6	2 2	•		00+01	•
0.95 0.85 0.60 0.50 0.207 0.171 1.11 1.08 0.82 1.11 1.68 0.95 0.85 0.50 0.206 0.167 1.15 1.14 0.88 1.15 1.70 0.95 0.85 0.50 0.50 0.212 0.173 1.13 1.10 0.88 1.13 1.06 1.05 0.85 0.50 0.50 0.201 0.172 1.12 1.10 0.88 1.13 1.68 1.05 0.85 0.60 0.50 0.206 0.167 1.15 1.14 0.88 1.15 1.71 1.05 0.85 0.60 0.60 0.206 0.167 1.14 1.12 0.86 1.11 1.68 1.05 0.85 0.60 0.50 0.212 0.154 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.50 0.50 0.212 0.151 1.22 1.15 0.89 1.24	Correl.	0.95	0.85	0.50	05.0	0.201	0.173	1.12	1.12	0.87	1.12	1.67	2.62
0.95 0.86 0.50 0.206 0.167 1.15 1.14 0.88 1.15 1.10 0.89 1.13 1.10 0.89 1.13 1.10 0.89 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.16 1.16 1.13 1.16 <	(N)	0.95	0.85	09.0	0.50	0.207	0.171	1.11	1.08	0.82	1.11	1.63	2.46
0.95 0.86 0.60 0.512 0.165 1.13 1.10 0.82 1.13 1.66 1.05 0.85 0.50 0.201 0.173 1.13 1.12 0.88 1.13 1.66 1.05 0.85 0.50 0.203 0.172 1.12 1.10 0.85 1.12 1.12 1.13 1.66 1.05 0.85 0.60 0.206 0.166 1.14 1.12 0.86 1.11 1.69 0.95 0.85 0.60 0.206 0.154 1.21 1.18 0.86 1.21 1.78 0.95 0.95 0.50 0.50 0.212 0.152 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.60 0.50 0.218 0.152 1.22 1.15 0.86 1.21 1.79 0.95 0.95 0.60 0.60 0.212 0.149 1.22 1.17 0.86 1.22 1.19 0.90	ന	0.95		0.50	09.0	0.206	0.167	1.15	1.1	98.0	1.15	1.70	2.63
1.05 0.85 0.50 0.201 0.173 1.13 1.12 0.86 1.13 1.68 1.05 0.85 0.60 0.50 0.203 0.172 1.12 1.10 0.88 1.12 1.66 1.05 0.85 0.60 0.206 0.166 1.14 1.12 0.88 1.15 1.71 1.05 0.85 0.60 0.206 0.206 0.166 1.14 1.12 0.86 1.15 1.71 0.95 0.85 0.60 0.50 0.212 0.154 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.60 0.218 0.152 1.22 1.15 0.89 1.22 1.78 0.95 0.95 0.60 0.60 0.212 0.154 1.22 1.17 0.85 1.76 1.05 0.95 0.60 0.50 0.212 0.154 1.22 1.17 0.86 1.24 1.81 1.05 </td <td>: 寸:</td> <td>0.95</td> <td></td> <td>09.0</td> <td>0.60</td> <td>0.212</td> <td>0.165</td> <td>1.13</td> <td>1.10</td> <td>0.85</td> <td>1.13</td> <td>1.66</td> <td>2.47</td>	: 寸 :	0.95		09.0	0.60	0.212	0.165	1.13	1.10	0.85	1.13	1.66	2.47
1.05 0.85 0.60 0.503 0.172 1.12 1.10 0.85 1.12 1.66 1.05 0.85 0.50 0.60 0.206 0.167 1.15 1.14 0.88 1.15 1.71 1.05 0.85 0.60 0.206 0.166 1.14 1.12 0.86 1.14 1.69 0.95 0.95 0.50 0.512 0.154 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.60 0.50 0.216 0.152 1.20 1.15 0.84 1.21 1.73 0.95 0.95 0.60 0.50 0.215 0.151 1.22 1.17 0.85 1.26 1.80 1.05 0.95 0.60 0.50 0.212 0.154 1.22 1.17 0.87 1.22 1.76 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.18 <t< td=""><td>w.</td><td>1.05</td><td></td><td>0.50</td><td>0.50</td><td>0.201</td><td>0.173</td><td>1.13</td><td>1.12</td><td>0.88</td><td>1.13</td><td>1.68</td><td>2.63</td></t<>	w.	1.05		0.50	0.50	0.201	0.173	1.13	1.12	0.88	1.13	1.68	2.63
1.05 0.85 0.50 0.60 0.206 0.167 1.15 1.14 0.88 1.15 1.71 1.05 0.85 0.50 0.208 0.166 1.14 1.12 0.86 1.14 1.69 0.95 0.95 0.50 0.50 0.212 0.152 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.60 0.50 0.215 0.151 1.24 1.20 1.73 1.73 0.95 0.95 0.60 0.60 0.215 0.151 1.24 1.20 1.24 1.80 1.05 0.95 0.60 0.60 0.212 0.154 1.22 1.17 0.85 1.26 1.76 1.05 0.95 0.60 0.50 0.212 0.154 1.22 1.19 0.80 1.22 1.76 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.27 1.20 1.21 1.21 <t< td=""><td>ø</td><td>1.05</td><td></td><td>09.0</td><td>0.50</td><td>0.203</td><td>0.172</td><td>1.12</td><td>1.10</td><td>0.85</td><td>1.12</td><td>1.66</td><td>2.55</td></t<>	ø	1.05		09.0	0.50	0.203	0.172	1.12	1.10	0.85	1.12	1.66	2.55
1.05 0.85 0.60 0.208 0.166 1.14 1.12 0.86 1.14 1.69 0.95 0.95 0.50 0.212 0.154 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.50 0.218 0.152 1.20 1.15 0.84 1.20 1.73 0.95 0.95 0.60 0.215 0.151 1.24 1.20 0.90 1.24 1.80 1.05 0.95 0.60 0.221 0.154 1.22 1.17 0.85 1.76 1.05 0.95 0.50 0.212 0.154 1.22 1.19 0.90 1.22 1.76 1.05 0.95 0.50 0.50 0.214 0.153 1.21 1.17 0.87 1.22 1.78 1.05 0.95 0.60 0.50 0.214 0.153 1.24 1.20 0.90 1.24 1.81 1.05 0.95 0.60 0.60 <td>7</td> <td>1,05</td> <td>0.85</td> <td>0.50</td> <td>0.60</td> <td>0.206</td> <td>0.167</td> <td>1.15</td> <td>1.14</td> <td>0.88</td> <td>1.15</td> <td>1.71</td> <td>2.64</td>	7	1,05	0.85	0.50	0.60	0.206	0.167	1.15	1.14	0.88	1.15	1.71	2.64
0.95 0.50 0.50 0.212 0.154 1.21 1.18 0.89 1.21 1.78 0.95 0.95 0.60 0.50 0.218 0.152 1.20 1.15 0.84 1.20 1.73 0.95 0.95 0.60 0.215 0.151 1.24 1.20 1.24 1.80 0.95 0.95 0.60 0.221 0.154 1.22 1.17 0.85 1.76 1.05 0.95 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.60 0.60 0.215 0.151 1.24 1.20 0.90 1.24 1.81 1.05 0.95 0.60 0.60 0.217 0.151 1.23 1.29 0.90 1.24 1.81 1.05 0.95 0.60 <td>•</td> <td>1.05</td> <td>0.85</td> <td>0.60</td> <td>0.60</td> <td>0.208</td> <td>0.166</td> <td>1.14</td> <td>1.12</td> <td>0.86</td> <td>1.14</td> <td>1.69</td> <td>2.57</td>	•	1.05	0.85	0.60	0.60	0.208	0.166	1.14	1.12	0.86	1.14	1.69	2.57
0.95 0.96 0.50 0.218 0.152 1.20 1.15 0.84 1.20 1.73 0.95 0.95 0.60 0.215 0.151 1.24 1.20 0.90 1.24 1.80 0.95 0.95 0.60 0.60 0.221 0.149 1.22 1.17 0.85 1.26 1.76 1.05 0.95 0.50 0.50 0.212 0.154 1.22 1.19 0.90 1.22 1.78 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.60 0.60 0.215 0.151 1.24 1.20 0.90 1.21 1.81 1.05 0.95 0.60 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	6	0.95	0.95	0.50	0.50	0.212	0.154	1.21	1:18	0.89	1.21	1.78	2,68
0.95 0.96 0.515 0.151 1.24 1.20 0.90 1.24 1.80 0.95 0.95 0.60 0.60 0.221 0.149 1.22 1.17 0.65 1.22 1.76 1.05 0.95 0.50 0.512 0.154 1.22 1.19 0.90 1.22 1.76 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.60 0.60 0.215 0.151 1.24 1.24 1.81 1.05 0.95 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	10	0.95	0.95	09.0	0.50	0.218	0.152	1.20	1.15	0.84	1.20	1.73	2.52
0.95 0.95 0.60 0.60 0.221 0.149 1.22 1.17 0.65 1.22 1.76 1.05 0.95 0.50 0.212 0.154 1.22 1.19 0.90 1.22 1.78 1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.60 0.60 0.215 0.151 1.24 1.20 0.90 1.24 1.81 1.05 0.95 0.60 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	1	0.95	0.95	0.50	09.0	0.215	0.151	1.24	1.20	0.00	1.24	1.80	2.70
1.05 0.95 0.50 0.212 0.154 1.22 1.19 0.90 1.22 1.78 1.05 0.95 0.60 0.51 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.50 0.215 0.151 1.24 1.20 0.90 1.24 1.81 1.05 0.95 0.60 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	75	0.95	0.95	0.60	09.0	0.221	0.149	1.22	1.17	0.85	1.22	1.76	2.54
1.05 0.95 0.60 0.50 0.214 0.153 1.21 1.17 0.87 1.21 1.76 1.05 0.95 0.50 0.215 0.151 1.24 1.20 0.90 1.24 1.81 1.05 0.95 0.60 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	13	1.05	0.95	0.50	0.50	0.212	0.154	1.22	1.19	0.90	1.22	1.78	2.69
50 0.60 0.215 0.151 1.24 1.20 0.90 1.24 1.81 50 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	14	1.05	0.95	09.0	0.50	0.214	0.153	1.21	1.17	0.87	1.21	1.76	2.62
50 0.60 0.217 0.150 1.23 1.19 0.88 1.23 1.79	15	1.05	0.95	0.50	09.0	0.215	0.151	1.24	1.20	06.0	1.24	1.81	2.71
	91	1.05	0.95	09.0		0.217	0.150	1.23	1.19	0.88	1.23	1.79	2.63

One of the stary TABLES 19 TO SEE STAR STORE

EFFICIE OF CRAEGING INTERCEPTS AND STOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 5) $(W^* - 7, T^* - 3.85, \Theta_0/\Theta_1 - 3.0)$

h2 81 82 α			0.80	00.0		0.140			28.0	\$65 \$55 \$49		\$ 70
81 82 a b b b b b b b b b b b b b b b b b b	P (4) (5)		52.0	03.0	211°.0	521.0		EIT at	0000	\$100 PM	ENF at	() () ()
0.50 0.50 0.108 0.102 1.97 2.13 1.43 1.97 3.20 4. 0.60 0.50 0.166 0.091 1.78 1.79 1.08 1.79 2.15 3.20 4. 0.50 0.60 0.114 0.087 2.15 2.30 1.46 2.15 3.34 4. 0.60 0.60 0.172 0.077 1.94 1.94 1.11 1.94 2.91 3.46 4. 0.60 0.50 0.104 0.095 1.84 1.90 1.18 1.84 2.91 3.39 4. 0.50 0.50 0.104 0.095 1.84 1.90 1.18 1.84 2.91 3. 0.50 0.60 0.103 0.089 2.19 2.19 2.19 3.40 4. 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.19 3.10 3.59 4. 0.50 0.110	4	P 2		6.20 8.20	8	0.105 0.1024	0 6	00+01		0	0 0+ 0 1	•
0.60 0.50 0.166 0.091 1.78 1.79 1.08 1.78 2.68 3.46 4. 0.50 0.60 0.114 0.087 2.15 2.30 1.46 2.15 3.46 4. 0.60 0.60 0.172 0.077 1.94 1.94 1.11 1.94 2.91 3.46 4. 0.50 0.50 0.096 0.104 2.01 2.22 1.54 2.01 3.33 4. 0.60 0.50 0.144 0.095 1.84 1.90 1.18 1.84 2.85 3. 0.50 0.50 0.103 0.089 2.19 2.40 1.58 2.19 3.59 4. 0.50 0.60 0.150 0.080 2.01 2.02 1.21 2.01 3.09 3. 0.50 0.50 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.50 0.100 0.090 <td< td=""><td>0.85</td><td>1.20</td><td>0.50</td><td>05.0</td><td>0.108</td><td>0.102</td><td>76"T</td><td>2.13</td><td>1.43</td><td>1.97</td><td>3,20</td><td>4.28</td></td<>	0.85	1.20	0.50	05.0	0.108	0.102	76"T	2.13	1.43	1.97	3,20	4.28
0.50 0.60 0.114 0.087 2.15 2.30 1.46 2.15 3.46 4. 0.60 0.60 0.172 0.077 1.94 1.94 1.11 1.94 2.91 3.33 4. 0.50 0.50 0.104 0.095 1.84 1.90 1.18 1.84 2.91 3.33 4. 0.60 0.50 0.144 0.095 1.84 1.90 1.18 1.84 2.85 3. 0.50 0.60 0.103 0.089 2.19 2.40 1.58 2.19 3.59 4. 0.60 0.60 0.150 0.080 2.01 2.06 1.21 2.12 2.12 2.12 3.40 4. 0.50 0.112 0.078 1.92 1.48 2.29 3.64 4. 0.50 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.50 0.100 0.090 2.16 <td< td=""><td>0.85</td><td>1.20</td><td>09.0</td><td>0.50</td><td>0.166</td><td>0.091</td><td>1.78</td><td>1.79</td><td>1.08</td><td>1.78</td><td>2.68</td><td>3.25</td></td<>	0.85	1.20	09.0	0.50	0.166	0.091	1.78	1.79	1.08	1.78	2.68	3.25
0.60 0.60 0.172 0.077 1.94 1.94 1.11 1.94 2.91 3.33 4. 0.50 0.096 0.104 2.01 2.22 1.54 2.01 3.33 4. 0.60 0.50 0.144 0.095 1.84 1.90 1.18 1.84 2.85 3. 0.50 0.60 0.103 0.089 2.19 2.40 1.58 2.19 3.59 4. 0.60 0.60 0.112 0.080 2.01 2.06 1.21 2.01 3.09 3. 0.50 0.50 0.117 0.079 1.92 1.91 1.11 1.92 2.87 3.64 4. 0.50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 0.50 0.100 0.090 2.16 2.35 1.50 2.34 3.78 4. 0.50 0.106 0.090 2.	0.85	1.20	0.50	09.0	0.114	0.087	2,15	2.30	1.46	2.15	3.46	4.38
0.50 0.50 0.096 0.104 2.01 2.22 1.54 2.01 3.33 4. 0.60 0.50 0.144 0.095 1.84 1.90 1.18 1.84 2.85 3. 0.50 0.60 0.103 0.089 2.19 2.40 1.58 2.19 3.19 4. 0.60 0.60 0.150 0.080 2.01 2.06 1.21 2.01 3.09 3. 0.60 0.50 0.112 0.088 2.12 2.27 1.46 2.12 3.40 4. 0.60 0.50 0.117 0.078 1.92 1.91 1.11 1.92 2.87 3. 0.50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 0.50 0.100 0.090 2.16 2.37 1.29 2.16 3.34 4. 0.50 0.106 0.079 2.34 2.	0.85	1.20	09.0	09.0	0.172	0.077	1.94	1.94	1.11	1.94	2.91	3.33
0.60 0.50 0.144 0.095 1.84 1.90 1.18 1.84 2.85 3.59 4. 0.50 0.60 0.103 0.089 2.19 2.40 1.58 2.19 3.19 3.59 4. 0.60 0.60 0.150 0.080 2.01 2.06 1.21 2.01 3.09 3. 0.60 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.87 3.40 4. 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.87 3.64 4. 0.50 0.107 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.50 0.106 0.090 2.16 2.35 1.58 2.16 3.09 3.09 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 4. 0.50 0.106 0.079 2.34 2.52 <	0.95	1.20	0.50	0.50	960.0	0.104	2.01	2.22	1.54	2.01	3.33	4.63
0.50 0.60 0.103 0.089 2.19 2.40 1.58 2.19 3.59 4. 0.60 0.60 0.150 0.080 2.01 2.06 1.21 2.01 3.09 3. 0.50 0.50 0.112 0.088 2.12 2.27 1.46 2.12 3.40 4. 0.60 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.87 3. 0.50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.60 0.60 0.115 0.067 2.08 2.06 1.13 2.08 3.09 3. 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 0.50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 0.50 0.60 0.154 0.070 2.16 2.18 <td< td=""><td>0.95</td><td>1.20</td><td>09.0</td><td>0.50</td><td>0.144</td><td>0.095</td><td>1.84</td><td>1.90</td><td>1.18</td><td>1.84</td><td>2.85</td><td>3.55</td></td<>	0.95	1.20	09.0	0.50	0.144	0.095	1.84	1.90	1.18	1.84	2.85	3.55
0.60 0.60 0.150 0.080 2.01 2.06 1.21 2.01 3.09 3.09 3.09 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4. 0.50 0.50 0.170 0.077 2.29 2.43 1.48 2.29 2.87 3. 0.50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.60 0.60 0.117 0.077 2.08 2.06 1.13 2.08 3.09 3. 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 0.60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 0.50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 0.60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.95	1.20	0.50	09.0	0.103	0.089	2.19	2.40	1.58	2.19	3.59	4.73
0.50 0.50 0.112 0.088 2.12 2.27 1.46 2.12 3.40 4. 0.60 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.87 3. 0.50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 0.60 0.60 0.115 0.067 2.08 2.06 1.13 2.08 3.09 3. 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 0.60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 0.50 0.166 0.079 2.34 2.52 1.60 2.34 3.78 4. 0.60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.95	1.20	09.0	09.0	0.150	080.0	2.01	2.06	1.21	2.01	3.09	3.63
60 0.50 0.170 0.078 1.92 1.91 1.11 1.92 2.87 3.87 3.87 3.87 4.8 50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 60 0.60 0.175 0.067 2.16 2.35 1.58 2.16 3.09 3. 50 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.85	1.30	0.50	0.50	0.112	0.088	2.12	2.27	1.46	2.12	3.40	4.38
50 0.60 0.117 0.077 2.29 2.43 1.48 2.29 3.64 4. 60 0.60 0.175 0.067 2.08 2.06 1.13 2.08 3.09 3. 50 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.85	1.30	09.0	0.50	0.170	0.078	1.92	1.91	1.11	1.92	2.87	3.33
60 0.60 0.175 0.067 2.08 2.06 1.13 2.08 3.09 3. 50 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.85	1.30	0.50	09.0	0.117	0.077	2.29	2.43	1.48	2.29	3.64	4.45
50 0.50 0.100 0.090 2.16 2.35 1.58 2.16 3.53 4. 60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.85	 1.30	09.0	09.0	0.175	0.067	2.08	2.06	1.13	2.08	3.09	3.40
60 0.50 0.148 0.081 1.99 2.02 1.21 1.99 3.04 3. 50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3.78 4. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.27 3.	0.95	1.30	0.50	0.50	0.100	0.000	2.16	2.35	1.58	2.16	3.53	
50 0.60 0.106 0.079 2.34 2.52 1.60 2.34 3. 60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.	0.95	1.30	09.0	0.50	0.148	0.081	1.99	2.02	1.21	1.99	3.04	3.63
60 0.60 0.154 0.070 2.16 2.18 1.23 2.16 3.	0.95	1.30	0.50	09.0	0.106	0.079	2.34	2.52	1.60	2.34	3.78	4.81
	0.95	1.30	09.0	09.0	0.154	0.070	2.16	2.18	7	2.16	3.27	3.70

1日 10 のから S. I.S. C. S. C. S. TABLE 20

ON RISKS AND ETT (TEST NO. 6). 内部。例 00.11 EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES

 $(N^* = 4, T^* = 1.61, \theta_0/\theta_1 = 5.0)$

12		2.3	32	0.83	12.38	25 * 25 F	1,4		12.00			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.2		0.75	28×0	1728 237	6.333		ETT at	30.2	8.02	ENF at	
Number	P	h2	S	. s	8		9	00+01	6,	0	00+01 2	61
00,4	0.30	0.50	0.35	0.35	0.124	0.130	0.61	0.63	0.38	0.61	1.04	1.92
7	0.30	0.50	0.45	0.35	0.215	0.113	0.52	0.49	0.27	0.52	0.81	1.35
'n	0.30	0.50	0.35	0.45	0.130	0.113	0.65	0.68	0.39	0.65	1.13	1.97
4	0.30	0.50	0.45	0.45	0.219	0.102	0.54	0.52	0.27	0.54	0.86	1.37
٠,	0.40	0.50	0.35	0.35	0.077	0.139	99.0	0.72	0.48	99.0	1.19	2.41
o	0.40	0.50	0.45	0.35	0.146	0.126	0.58	0.58	0.35	0.58	0.97	1.75
7	0.50	0.50	0.35	0.45	0.084	0.119	0.71	0.77	0.49	0.71	1.29	2.47
.	0.40		0.45	0.45	0.151	0.110	0.62	0.63	0.36	0.62	1.05	0.79
6	0.30	09.0	0.35	0.35	0.133	0.000	0.73	0.74	0.41	0.73	1.24	2.07
10	30	09.0	0.45	0.35	0.226	0.077	0.62	0.58	0.29	0.62	0.97	1.45
T .	30	09.0	0.35	0.45	0.138	0.078	0.78	08'0	0.42	0.78	1.33	2.11
12	0.30	09.0	0.45	0.45	0.230	0.068	99.0	0.62	0.30	99.0	1.03	1.48
E	0.40	09.0	0.35	0.35	0.086	0.097	0.79	0.84	0.51	0.79	1.40	2.57
14	0.40	09.0	0.45	0.35	0.155	0.086	0.70	69.0	0.38	0.70	1.16	1.88
30 51	0.40	09.0	0.35	0.45	0.092	0.083	0.85	06.0	0.52	0.85	1.50	2.61
22	0.40	09.0	0.45	0,45	0.160	0,075	0.75	0.74	0.38	0.75	1.24	2.91

m.

TABLE 21

のののの

0.7.0

20.00

5 CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. ので EFFECTS OF

		C403 4 2	ENF a	2 00	3.9	3.7	4.0	3.8	4.0	3,8	4.1	3.8	4.0	3.7
000.0	10 M	00.0	87.0	•	3.43	3.24	3.53	3.34	3.47	3,31		3.40	3,52	3.33
200	10.0	0.00	5,8.0	01	3.00	2.72	3.05	2.77	3.06	2.81	3.11	2.86	3,05	2.77
=1.5)		0.03	SIT at	00+01 2	3,33	3:09	3.40	3.16	3.38	3.17	3.45	3.24	3.40	3,16
6.16.	100	400000	05.0	•	3.43	3.24	3.53	3.34	3.47	3.31	3.57	3.40	3.52	3.33
_ 4.87	•	0.624	370.0	9	0.285		0.278	0.266	0.287	0.277	0.280	0.270	0.278	0.266
•	0.00	13.03.03	888.0	3000	0.351	0.372	0.357	0.377	0.348	0.364	0.353	0.369	0.356	0.377
(mt = 6		1000	120	. 82 0.22	0.75	0.75	0.85	0.85	0.75	0.75	0.85	0.85	0.75	0.75
25.0	A So		24.0	sı	0.75	0.85	0.75	0.85	0.75	0.85	0.75	0.85	0.75	0.85
88 (5)	0,60	0.00	10.0	. h2	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2,15	2.15
0.40	04.0	661.00		lq ·	1.55	1.55	1.55	1.55	1.65	1.65	1.65	1.65	1,55	1.55

4.15 4.60 4.22 4.66

4.57

1.50

1.15

1.57

4.63

3.87

3.42

2.81

3,23

3.62

0.261

0.360

0.85

0.85

2.15 2.15 2.15 2.15 2.15 2.15

1.65

12

2.15

L. 55

3.62

4.66

3.89

3.40

3.15

3.40

0.369

3.66

0.270

0.85

0.75

0.85

0.265

0.357

3.56

3.11

3.45

4.72

3,97

3.49

3.31

Number

TABLE 22

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO.

(N*=3, T*=2.08, e₀/e₁=2.0)

1	T	4						SIT at			ONF at	
umber	· · ·	. P.	· ls	S. 2	8	. a	•	00+01	•	ို့	00+01	
4	6.00	0.80	0.65	0.65	0.258	0.342	1.17	1.17	1.08	1.17	1.57	2.17
. 4	6.00	0.80	0.75	0.65	0.258	0.342	1.17	1.17	1.08	1.17	1.57	2.17
m	6.00	0.80	0.65	0.75	0.266	0.331	1.20	1.20	1.10	1.20	1.60	2.19
•	6.00	0.80	0.75	0.75	0.266	0.331	1.20	1.20	1.10	1.20	1.60	2.19
്ഗ	6.10	0.80	0.65	0.65	0.258	0.342	1:17	1.17	1.08	1.17	1.57	2.17
9	6.10	0.80	0.75	0.65	0.258	0.342	1.17	1.17	1.08	1.17	1.57	2.17
7	6.10	0.80	0.65	0.75	0.266	0.331	1.20	1.20	1.10	1.20	1.60	2.19
œ	6.10	0.80	0.75	0.75	0.266	0.331	1.20	1.20	1.10	1.20	1.60	2.19
6	6.00	06.0	0.65	0.65	0.279	0.308	1.27	1.26	1.14	1.27	1.68	2.26
10	6.00	0.90	0.75	0.65	0.279	0.308	1.27	1.26	1.14	11:27	1.68	2.28
1	6.00	0.90	0.65	0.75	0.286	0.299	1.30	1.28	1.15	1.30	1.71	2.36
12	6.00	0.90	0.75	0.75	0.286	0.299	1.30	1.28	1.15	1.30	1.71	2.30
13	6.10	0.90	0.65	0.65	0.279	0.308	1.27	1.26	1.14	1.27	1.68	2.28
14	6.10	0.90	0.75	0.65	0.279	0.308	1.27	1.26	1.14		1.68	2.28
15	6.10	0.90	0.65	0.75	0.286	0.299	1.30	1.28	1.15	1.30	1.71	2.30
16	6.10		0.75	0.75	0.286	0,299	1.30	1.28	1.15	1.30	1.71	2.3

TABLE 23

EFFECTS OF CHANGING INTERCEPTS AND SLOPES OF DECISION BOUNDARIES ON RISKS AND ETT (TEST NO. 9)

(N* = 9, T* = 8.03, B₀/e₁ = 1.25)

•	6.18	5.82	6.45	60.9	6.22	5.89	6.49	6.16	6.35	5.98	6.60	6.23	6.39	6.05	6.64	6.30
Oote 2	5.49	5.24	5.79	5.53	5.52	5.29	5.82	5.58	5.66	5.41	5.94	5.69	5.69	5.46	5.97	5.74
•	4.84	4.65	5.13	4.95	4.85	4.69	5.15	4.99	5.00	4.82	5.29	5.11	5.02	4.86	5.31	5.15
	4.95	4.66	5.16	4.87	4.98	4.71	5.19	4.93	5.08	4.78	5.28	4.99	5.11	4.84	5.31	5.04
ore at	4.95	4.71	5.21	4.98	4.97	4.76	5.23	5.02	5.10	4.87	5.35	5.12	5.12	4.91	5.37	5.17
	4.8	4:65	5.13	4.95	4.85	4.69	5.15	4.99	5.00	4.82	5.29	5.11	5.02	4.86	5.31	5.15
0 0 0 0 0 0	0.433	0.428	907.0	0.405	0.433	0.429	0.406	0.403	0.419	0.414	0.395	0.391	0.419	0.415	0.395	0.392
0 8 8 0	0.330	0:336	0.352	0.357	0.330	0.334	0.351	0.356	0.341	0.346	0.360	0.366	0.340	0.345	0.360	0.364
82.0	0.85	0.85	0.95	0.95	0.85	0.85	0.95	0.95	0.85	0.85	0.95	0.95	0.85	0.85	0.95	0.95
S.	0.85	0.95	0.85	0.95	0.85	0.95	0.85	0.95	0.85	0.95	0.85	0.95	0.85	0.95	0.85	0.95
7	1.95	1:95	1.95	1:95	1:95	1.95	1.95	1:95	2.05	2.05	2.05	2.05	2.05	2.05	2.05	2.05
ď	3.10	3.10	3.10	3.10	3.20	3.20	3.20	3.20	3.10	3.10	3.10	3.10	3.20	3.20	3.20	3.20
Number	1	7	9	4	v	9	7	•	6	10	7	12	13	14	15	16

CONCLUDING REMARKS

In this report we have briefly described the truncated sequential probability ratio test for reliability testing in the exponential case. Using a newly developed exact method for the computations of OC and ETT functions, we have studied how, and to what extent, the risks, ETT and ENF are affected by changing the truncation regions and the decision boundaries.

This investigation has provided a useful insight into the behavior of quantities of interest (a, B, ETT, ENF) as the test region is systematically varied. The study also presented a framework for exploring alternative decision regions to conduct tradeoff studies between a, \$, ETT and ENF.

(of Separator & . Participation, And Jand Gualis, C.s. (1431), The exact of the extraction of the extr

171 Garanters do erest istantered to 10781; the dead of the content appear

18; "Wilson Color (1967), "Walter for the season of the se

tion wald, & Tight, "Saguenetal Analysis, " and willer, Sau tork,

LES LEDWIN COLUMN TERMINE TO THE COLUMN TO THE TRANSPORT

193 Radhavind at 10 M. 4 Univid. Copposition of the color of the

The although the agree of the state of the s Till-May and heavy are problem to take the worlder

Is incompany a liquid to the low restautor as in adquire the becare distribution of the feet state of the formation of the contraction

at Nobles Climbushous lade Technology of 1909 and

estimes are all alov

111) Welka I. (198) . "Ecation one simila incomes a collina

8. REFERENCES

- [1] Anderson, T.W. (1960), "A modification of the sequential probability ratio test to reduce the sample size,"

 Annals of Mathematical Statistics, vol. 31, pp. 165-197.
- [2] Armitage, P. (1957), "Restricted sequential procedures," <u>Biometrika</u> 44, pp. 1-15.
- [3] Aroian, L.A. (1963), "Exact truncated sequential tests for the exponential density function," Proceedings of the 9th International Symposium on Reliability and Quality Control, pp. 470-486.
- [4] Aroian, L.A. (1976), "Application of the direct method in sequential analysis," <u>Technometrics</u>, vol. 18, No. 3, pp. 301-306.
- [5] Epstein, B. and Sobel, M. (1955), "Sequential life tests in the exponential case," <u>Annals of Mathematical Statis-</u> tics, vol. 26, pp. 82-93.
- [6] Epstein, B., Patterson, A.A., and Qualls, C.R. (1963), "The exact analysis of sequential life tests with particular application to AGREE Plans," Proceedings Aerospace Reliability and Maintainability Conference, pp. 284-311.
- [7] Ghosh, B.K. (1970), "Sequential tests of statistical hypotheses," Addison-Wesley
- [8] MIL-STD-781B (1967), "Reliability Tests: Exponential Distributions," Department of Defense, November 15, 1967.
- [9] Raghavachari, M. (1965), "Operating characteristic and expected sample size of SPRT for the simple exponential distribution," Calcutta Statistical Association Bulletin, vol. 14, pp. 65-73.
- [10] Wald, A. (1947), "Sequential Analysis," John Wiley, New York,
- [11] Weiss, L. (1953), "Testing one simple hypothesis against another," <u>Annals of Mathematical Statistics</u>, vol. 24, pp. 273-281.

APPENDIX A

EXPRESSIONS FOR EXACT RISKS AND ETT

In this Appendix we give expressions for the exact computations of the producer's risk (α), the consumer's risk (β) and the expected test time (ETT) for reliability testing using a truncated SPRT.

Let T_1 , T_2 , ... be independent, identically distributed exponential random variables with parameter θ . We want to test the hypothesis

$$H_0: \theta = \theta_0$$

vs. $H_1: \theta = \theta_1$ $(\theta_0 > \theta_1)$

by using a truncated SPRT.

Let $f_N(w|\theta)$ be the pdf of $W_N = \sum_{i=1}^N t_i$ provided that we did not stop testing before the Nth sample and that the parameter value is θ . Then it can be shown that

$$f_{N}(w|\theta) = \begin{bmatrix} \Sigma & & \\ & \Sigma & \\ & i = e(N-1) & N \end{bmatrix} i(w) \cdot N g_{i}(w) \exp(-w/\theta) \cdot \theta^{-N}$$
(A-1)

where e(N-1), $N_{i}(w)$ and $N_{g_{i}}(w)$ are defined as follows.

(i)
$$e(N-1) = min\{i: A_{i} > R_{N-1}\}$$

(ii)
$$I_{[R_{N-1},A_{e}(N-1)]}(w) \text{ for } i = e(N-1)$$

$$I_{[A_{i-1},A_{i}]}(w) \text{ for } e(N-1) < i < N$$

$$I_{[A_{N-1},\infty)}(w) \text{ for } i = N$$

THE ONA RESE TORK FOR SHOTEPERS

and transport years of the total targets of all has all and the second at a first

of the product's sist (4), the consensite ties (8) and the experilatineous end to coincation 4" (036) with more end (1) ed.esse skips from Boulest substract more of stateconocrance and sext

the barogramma the contract of a state of the contract of the

FIG. A-I BOUNDARIES FOR A TRUNCATED SPRT

Was Local

(iii)
$$N^{g_i}(w) = \sum_{j=1}^{N-i+1} N_{h_i,j} w^{j-1}$$

where Nhi, j is given by the following expressions.

N=2

$$^{2}h_{1,1} = -R_{1}$$
, $^{2}h_{1,2} = 1$, $^{2}h_{2,2} = (A_{1} - R_{1})$,

N22 received where the day a rear to be not become the terms of the

(a)
$$\underline{i = e(N-1), j=1}$$

$$N_{h_{e(N-1),1}} = \sum_{j=1}^{N-e(N-1)} N^{-1}h_{e(n-1),j} \frac{(R_{N-1})^{j}}{j},$$

(c)
$$\underline{i = N, j=1}$$

$$N_{h_{N,1}} = \begin{cases} A_{e(N-1)} & A_{e(N-1)} \\ A_{e(N-1)} & A_{e(N-1)} \end{cases} A_{j=e(N-1)+1} A_{j-1} A_{j-1} A_{j-1}$$

(d)
$$e(N-1) \le i \le N-1$$
, $2 \le j \le N-i+2$

$$N_{h_{i,j}} = \frac{N-1_{h_{i,j}(j-1)}}{j-1}$$

It can be shown that the probability of accepting H_{O} when the value of the parameter is θ is

incontrate in a (w) to the certain

$$p_{N}(H_{O}|\theta) = (\frac{1}{\theta})^{N-1} h_{N,1} \exp(-A_{N}/\theta).$$

Now, the expressions for α' , β' and ETT can be obtained as

$$\alpha' = 1 - \sum_{N=1}^{N^*} p_N(H_o|\theta_o)$$

$$\beta' = \sum_{N=1}^{N^*} p_N(H_o|\theta_1)$$

$$N=1$$
(A-2)

ETT(0) =
$$\Sigma$$
 { $A_N P_n (H_0 | \theta) + \int_{R_{N-1}}^{R_N} w f_N (w | \theta) \cdot dw$ (A-3)

THE A HE BOUNDAR SETTION A THUNGATED SPRING

arcin

and the second s

