THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF APPLIED MATHEMATICS

Subject Code: AMA1501/ Subject Title: Introduction to Statistics for Business/

AMA1602 Introduction to Statistics

Session: Semester 1, 2022/2023

Date: 3 Dec 2022 Time: 15:15 – 18:15

Time Allowed: THREE Hours

This question paper has $\underline{15}$ pages (attachments included).

Instructions to Candidates: This question paper has $\underline{6}$ questions.

Attempt any **FIVE** questions.

Each question carries equal marks.

Attachments: Formula Sheets, Standard Normal Distribution Table, Student's t-distribution Table, χ^2 Distribution Table and F-distribution Table

DO NOT TURN OVER THE PAGE UNTIL YOU ARE TOLD TO DO SO

Attempt any **FIVE** questions.

1. In a football tournament in 2018, 103 goals were scored from open play. The distribution of goals scored per 15-min period is given in the following table.

Number of goals scored
11
10
16
29
16
21

Remark: The periods '30 - 45' and '75 - 90' also include added time.

- (a) Calculate the mean, median, standard deviation and interquartile range of the distribution. [10 marks]
- (b) Calculate the coefficient of skewness using results in (a) and interpret your result briefly. [2 marks]
- (c) From the above table, estimate the proportion of goals scored in the last 20 minutes. [3 marks]
- (d) Test, at the 5% level of significance, whether 40% of goals were scored in the first half of a match (i.e. first 45 minutes). Assume that the chance of a goal scores in the first half remains the same for all goals. [5 marks]

- 2. (a) A problem is given to three students whose chances of solving it are 1/2, 1/3 and 1/4 respectively. What is the probability that the problem will be solved?

 [3 marks]
 - (b) A box has 5 blue and 4 red balls. One ball is drawn at random and not replaced. Its colour is also not noted. Then another ball is drawn at random. What is the probability of second ball being blue? [3 marks]
 - (c) How many 3 letter words (may not be meaningful) can be formed with the letters of the word **SIMULATE** each with at least one vowel (A, E, I, O, U)?

 [3 marks]
 - (d) If a six sided die is rolled three times, what is the probability of getting at least one even number and at least one odd number? [3 marks]
 - (e) An insurance company insured 2000 motorcycle drivers, 4000 car drivers, and 6000 truck drivers. The probability of an accident involving a motorcycle driver, car driver, and a truck is 0.01, 0.03, and 0.015 respectively. One of the insured persons meets with an accident. What is the probability that he is a motorcycle driver?

 [8 marks]
- 3. (a) The weight, X grams (g), of soup put in a tin by machine A is normally distributed with a mean of 120 g and a standard deviation of 5 g.
 - i. A tin is selected at random. Find the probability that this tin contains more than 123 g. [3 marks]
 - ii. Six tins are selected at random. Find the probability that at least three tins contain less than 123 g. [4 marks]
 - iii. The weight, Y grams, of soup put into a carton by machine B is normally distributed with mean μ grams and standard deviation σ grams. Given that P(Y < 120) = 0.99 and P(Y > 112) = 0.90, find the value of μ and the value of σ . [4 marks]
 - (b) A fair coin is tossed 100 times. With suitable approximation, find the probability of getting 49, 50, or 51 heads. [5 marks]
 - (c) A garage uses a particular spare part at an average rate of 3 per week. Assuming that usage of this spare part follows Poisson distribution, find the probability that at least three units are used in a 2-week period. [4 marks]

- 4. (a) In a massive attempt to compete with its competitors, the Ace Light Bulb Company issued a new line of bulb. Ace took 100 bulbs from their new line which had an established standard deviation of 140 hours. The mean measured lifetime was 1280 hours. Construct a 95% confidence interval for the mean lifetime of Ace's bulbs. [5 marks]
 - (b) In the production of size D cells for use as flashlight batteries, the distribution of the operating life for all batteries is approximately normal. Seven batteries were tested and the following operating life (in hours) were recorded:

 $21.75 \quad 16.23 \quad 19.87 \quad 15.96 \quad 20.25 \quad 22.92 \quad 21.06$

Construct a 90% confidence interval for the mean life of all the batteries.

[7 marks]

(c) The weights of 15 Hong Kong students had a sample mean of 107 lbs and a sample standard deviation of 10 lbs. Twelve Macau students had a mean weight of 112 lbs and a standard deviation of 8 lbs. Construct a 90% confidence interval to estimate the difference of the mean weights between the two student populations. State any assumption(s)/approximation(s) used. [8 marks]

- 5. (a) An electrical repair service claims that 10% of the service calls made result solely from appliances not having been plugged properly into the receptacle. A random sample of 200 work invoices produced 15 in which the only "repairs" were the plugging in of the appliance. Do the results indicate that the repair service's claim is justified? Test at the 1% level of significance. [6 marks]
 - (b) In an marketing survey for a new product, there was some question as to whether or not the potential buyers under 30 years of age view the product differently from those over 30. Two thousand and five hundred individuals were interviewed. The results were as follows:

	Interested	Neutral	Not interested
Under 30	400	100	500
Over 30	600	400	500

What conclusion can we draw about whether age is related to the preference on the new product at the 1% level of significance? [7 marks]

(c) Past records had shown that the scores of students who take a certain mathematics test are normally distributed with mean 75. The mathematics teachers would like to know whether a group of current year students is typical. They decide to test the hypothesis that current year students are typical versus the alternative that they are not typical. When a group of 16 students take the test, the average score is 82 and the variance is 36. What conclusion should be drawn? Use the 10% level of significance. State any assumption(s)/approximation(s) used.

[7 marks]

6. (a) A manufacturer of kitchen clocks claims that a certain model will last at least 5 years. A random sample of the lifespan of 100 clocks are showed as follows.

Lifespan of the clock (in years)	5 - 6	6 - 7	7 – 8	8 – 9	9 - 10
Frequency	15	25	22	18	20

Conduct a hypothesis test to test whether the random sample follows uniform distribution at the 5% level of significance. [5 marks]

(b) The abilities of a group of 10 officers are ranked independently by their manager and their department head. Rank 1 is given to the best officer, Rank 2 to the second best,..., and so on, until Rank 10 to the officer with the worst performance. The two sets of ranks are shown in the following table:

Officer	Manager's ranking	Head's ranking
A	5	6
В	4	4
\mathbf{C}	3	5
D	1	2
${ m E}$	2	3
F	6	1
G	7	9
Н	10	8
I	9	7
J	8	10

Calculate the coefficient of rank correlation as a measure of the consistency of the two rankings. [3 marks]

(c) An investigator has data on 1,000 individuals who have been in psychotherapy for five years. Variable x tells the mean number of hours per week the individual received psychotherapy over the five years. Variable y tells the score of the individual on a personality test after five years. Here are the data:

$$\sum xy = 30,000, \quad \sum x = 3,000, \quad \sum x^2 = 14,000,$$
$$\sum y = 5,000, \quad \sum y^2 = 80,000$$

i. Find the least squares regression equation.

- [4 marks]
- ii. Interpret the coefficient estimate of the independent variable x. [2 marks]
- iii. Predict the score of an individual with x = 4.
- [2 marks]
- iv. What is the proportion of variation in y that cannot be explained by the fitted equation in i.? [4 marks]

End

Formula sheet

1. Sample Statistics:

	Ungrouped data	Grouped data
Arithmetic Mean	$\frac{\sum x}{n}$	$\frac{\Sigma f x}{\Sigma f}$
Standard Deviation	$\sqrt{\frac{\Sigma(x-\bar{x})^2}{n-1}} = \sqrt{\frac{\Sigma x^2 - (\Sigma x)^2/n}{n-1}}$	$\sqrt{\frac{\Sigma f(x-\bar{x})^2}{\Sigma f - 1}} = \sqrt{\frac{\Sigma f x^2 - \frac{(\Sigma f x)^2}{\Sigma f}}{\Sigma f - 1}}$

2. Probability Distributions:

(a) Binomial
$$P(r) = {}_{n}C_{r}p^{r}(1-p)^{n-r}$$

(b) Poisson
$$P(r) = \frac{e^{-\lambda} \lambda^r}{r!}$$

3. Standard Errors:

(a) Mean
$$\frac{\sigma}{\sqrt{n}}$$

(b) Proportion
$$\sqrt{\frac{p(1-p)}{n}}$$

(c) Difference between means
$$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

(d) Difference between proportions
$$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

4. Test Statistics:

(a)
$$Z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}$$
 (one sample)
$$Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 (two samples)

(b)
$$t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$$
 (one sample)
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 (two samples) where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

(c)
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- 5. Correlation and Regression:
 - (a) Product moment correlation coefficient

$$r = \frac{n\Sigma xy - \Sigma x\Sigma y}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right]\left[n\Sigma y^2 - (\Sigma y)^2\right]}}$$

(b) Spearman's rank correlation coefficient

$$R_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$$

(c) Least squares regression line y = a + bx

$$b = \frac{n\Sigma xy - \Sigma x\Sigma y}{n\Sigma x^2 - (\Sigma x)^2} \qquad a = \frac{\Sigma y}{n} - \frac{b\Sigma x}{n}$$

Table of the Student's t-distribution

The table gives the values of $t_{\alpha;\nu}$ where $\Pr(T_{\nu} > t_{\alpha;\nu}) = \alpha$, with ν degrees of freedom

α	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
V	0	0.00	0.020	0.0 .	0.000	0.001	0.0000
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1 . 886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Table of the Standardised Normal Distribution

The table gives the probability

 $P = \Pr(Z > z)$

where $Z \sim N(0,1)$.

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
	012110	010 100	0,00,2	0.0000	0,000	0.5201	0,0220	0.0172	0,5150	0.5121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
0,,	***************************************	3,131	0,1,00	311102	011,00	011711	011000	011000	011020	0.1011
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.00990	0.00964	0.00939	0.00914	0.00889	0.00866	0.00842
2.4	0.00820	0.00798	0.00776	0.00755	0.00734	0.00714	0.00695	0.00676	0.00657	0.00639
2.5	0.00621	0.00604	0.00587	0.00570	0.00554	0.00539	0.00523	0.00508	0.00494	0.00480
2.6	0.00466	0.00453	0.00440	0.00427	0.00415	0.00402	0.00391	0.00379	0.00368	0.00357
2.7	0.00347	0.00336	0.00326	0.00317	0.00307	0.00298	0.00289	0.00280	0.00272	0.00264
2.8	0.00256	0.00248	0.00240	0.00233	0.00226	0.00219	0.00212	0.00205	0.00199	0.00193
2.9	0.00187	0.00181	0.00175	0.00169	0.00164	0.00159	0.00154	0.00149	0.00144	0.00139
3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00104	0.00100
3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
2 ~	0.00022	0.00000	0.00000	0.00001	0.00000	0.00010	0.00010	0.00010	0.00015	0.00015
3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003

Table of the Chi-square Distribution

Г																												~~~~									***********	
	= α	V = 1	4 m	4	5	9) C	~ ¢	× <	2 5	2		12	13	14	15	7	2 !	\ T	× ;	5 6	07	21	22	23	25	1	26	/7	97	30	40	9.09	99	70	80	06	100
χᾶν	0.001	10.827	16.268	18.465	20.517	72 457	104.77	24.322	27.97	1/8.17	29.288	31.264	32.909	34.528	36.123	37.697	20.753	107.77	40.790	42.512	45.820	45.313	46.797	48.268	49.728	52.620		54.052	55.476	50.00	59.703	73 402	86 661	209.66	112.317	124.839	137.208	149,449
	0.005	7.879	12.838	14.860	16.750	18 548	20.73	20.278	21.955	25.589	72.188	26.757	28.300	29.819	31.319	32.801	24 767	04:40	35./18	57.150	28.282	186.65	41.401	42.796	44.181	45.558		48.290	49.645	500.00	53.672	992 99	79 490	91.952	104.215	116.321	128.299	140.170
•	0.01	6.635	11.345	13.277	15.086	16.812	10.01	10.4/3	20.020	21.666	72.209	24.725	26.217	27.688	29.141	30.578	33,000	32.000	33.409	24.803	36.191	006.76	38.932	40.289	41.638	42.980		45.642	46.965	40.770	49.388 50.892	63 691	76 154	88.379	100.425	112.329	124.116	135.807
600	0.02	5.412	9.837	11.668	13.388	15 033	CC2.C1	10.077	18.168	19.6/9	71.101	22.618	24.054	25.472	26.873	28.259	20,623	20.02	50.745	37.340	35.68/	22.020	36.343	57.659	38.968	40.270		42.856	44.140	45.419	40.093	60 436	72.613	84.580	96.388	108.069	119.648	131.142
2000	0.025	5.024	9.348	11.143	12.832	14 449	14.012	10.015	10.000	19.023	20.485	21.920	23.337	24.736	26.119	27.488	30 00	20.04	30.191	21.320	258.75	24.170	35.479	36.781	38.076	39.364 40.646		41.923	45.194	44.401	45.722	59 342	71.420	83.298	95.023	106.629	118.136	129.561
	0.05	3.841	7.815	9.488	11.070	12 592	14.057	14.007	15.507	16.919	18.30/	19.675	21.026	22.362	23.685	24.996	30L 3C	20.470	186.12	20.809	50.144	21.410	32.671	55.924	55.172	37.652		38.885	40.115	155.17	42.337	55 759	67.505	79.082	90.531	101.880	113.145	124.342
	0.10	2.706	6.251	7.779	9.236	10 645	10.017	12.017	13.302	14.684	13.987	17.275	18.549	19.812	21.064	22.307	23 543	77:07	24.709	484.07	27.204	20.412	29.615	30.813	32.007	34.382	. !	35.563	37.016	20.007	39.06/ 40.256	51.805	63.167	74.397	85.527	96.578	107.565	118.498
000	0.70	1.642	4.642	5.989	7.289	8 558	0.000	7.003	11.050	17.742	13.442	14.631	15.812	16.985	18.151	19.311	397 00	21.75	C10.12	000.77	25.900	23.030	26.171	27.501	28.429	30.675		31.795	34.077	24.027	36.250	47,269	58.164	68.972	79.715	90.405	101.054	111.667
000	0.80	0.0642	1.005	1.649	2.343	3.070	2.023	2.022	4.074	5.580	0.179	686.9	7.807	8.634	9.467	10.307	11 152	1000 CI	12.007	12.62/	13.716	14.370	15.445	16.514	17.18/	18.940		19.820	20.703	27.750	23.364	32 345	41.449	50.641	59.898	69.207	78.558	87.945
	0.90	0.0158	0.584	1.064	1.610	2.204	7 022	2.633	5.490	4.168	4.803	5.578	6.304	7.042	7.790	8.547	0.317	10.005	10.085	10.805	17.651	12.443	13.240	14.041	14.848	15.639		17.292	18.114	10.757	20.599	29.051	37.689	46.459	55.329	64.278	73.291	82.358
000	0.93	0.00393	0.352	0.711	1.145	1.635	7,167	2.10/	2.733	3.525	5.340	4.575	5.226	5.892	6.571	7.261	7 067	1.704	2/0.8	10.117	10.117	10.071	11.591	12.558	15.091	15.848	,	15.379	161.01	17.700	18.493	26.509	34.764	43.188	51.739	60.391	69.126	77.929
2000	6/6/0	0.000982	0.216	0.484	0.831	1.237	1600	7 180	2.180	2.700	3.24/	3.816	4.404	5.009	5.629	6.262	8008	2000	7.204	0.007	8.907	7.391	10.283	10.982	11.688	13.120	•	13.844	14.5/5	16.047	16.791	24.433	32.357	40.482	48.758	57.153	65.646	74.222
	0.98	0.000628	0.185	0.429	0.752	1.134	1 561	1.204	2.032	2557	5.039	3.609	4.178	4.765	5.368	5.985	6.614	7365	2007	0.67	8.567	157.6	9.915	10.600	11.293	12.697	4	13.409	14.125	14.04/	16.306	23.838	31.664	39.699	47.893	56.213	64.634	73.142
	0.99	0.000157	0.115	0.297	0.554	0.872	1 230	1.646	1.040	2.088	2.338	3.053	3.571	4.107	4.660	5.229	5.817	2.0.7	0.408	7.623	0.055	0.700	8.897	9.542	10.196	11.524	6	12.198	12.8/9	14.256	14.953	22.164	29.707	37.485	45.442	53.539	61.754	70.065
	0.995	0.0000393	0.0717	0.207	0.412	9/9/0	0800	1.244	1.544	7.155	2.130	2.603	3.074	3.565	4.075	4.601	5 142	27.7.2	1,60.0	6.263	0.844	+C+1	8.034	8.645	0.000	10.520	,	11.160	11.808	13.171	13.787	20.706	27.991	35.535	43.275	51.171	59.196	67.327
		۷ == 1 ر	1 W	4	~	9	7 (` •	• c	y 5	2	Π	12	13	14	15	9	1 0	- 01	0 2	<u></u>	07	21	77	57	25	ì	72	77 6	20,00	30	40		09		08	06	901
•																																				***********		

Table of F-Distribution (i)

For each pair of values $\,\nu_1^{}$ and $\,\nu_2^{}$, the table gives the values of $\,F_{\alpha;\,\nu_1^{},\,\nu_2^{}}^{}$ with $\,\alpha=0.05,\,\,0.025,\,\,0.01,\,\,$ and $\,0.001$.

	·				v											., .1, .2	
v_1	1	2	3	4	5	6	7	8	9	10	12	15	24	40	60	120	∞
	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9	243.9	245.9	249.0	251.1	252.2	253.3	254.3
	648	800	864	900	922	937	948	957	963	969	977	985	997	1006	1010	1014	1018
	4052	5000	5403	5625	5764	5859	5928	5981	6022	6056	6106	6157	6235	6287	6313	6339	6366
	4053	5000	5404	5625	5764	5859	5929	598 1	6023	6056	6107	6158	6235	6287	6313	63 40	6366
	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100	×100
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	19.5	19.5
	38.5	39.0	39.2	39.2	39.3	39.3	39.4	39.4	39.4	39.4	39.4	39.4	39.5	39.5	39.5	39.5	39.5
	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4	99.5	99.5	99.5	99.5	99.5
	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4	999.4	999.4	999.5	999.5	999.5	999.5	999.5
3	10.13	9,55	9.28	9.12	9.01	8.94	8.89	8.85	8,81	8.79	8.74	8.70	8.64	8.59	8.57	8,55	8.53
	17.4	16,0	15.4	15.1	14.9	14.7	14.6	14.5	14,5	14.4	14.3	14.2	14.1	14.0	14.0	13,95	13.9
	34.1	30,8	29.5	28.7	28.2	27.9	27.7	27.5	27,3	27.2	27.1	26.9	26.6	26.4	26.3	26.2	26.1
	167.0	148,5	141.1	137.1	134.6	132.8	131.5	130.6	129,9	129.2	128.3	127.4	125.9	125.0	124.5	124.0	123.5
4	7.71	6.94	6.59	6.39	6,26	6.16	6.09	6.04	6,00	5.96	5.91	5.86	5.77	5.72	5.69	5.66	5.63
	12.22	10.65	9.98	9.60	9,36	9.20	9.07	8.98	8,90	8.84	8.75	8.66	8.51	8.41	8,36	8.31	8.26
	21.20	18.00	16.69	15.98	15,52	15.20	15.0	14.80	14.66	14.55	14.37	14.20	13.93	13.75	13.65	13.56	13.46
	74.14	61.25	56,18	53.44	51,71	50.53	49.66	49.00	48.47	48.05	47.41	46.76	45.77	45.09	44.75	44.40	44.05
5	6.61	5.79	5.41	5.19	5,05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.53	4.46	4.43	4,40	4.36
	10.01	8.43	7.76	7.39	7.15	6,98	6.85	6.76	6.68	6.62	6.52	6.43	6.28	6.18	6.12	6.07	6.02
	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.89	9.72	9.47	9.29	9.20	9.11	9.02
	47.18	37.12	33.20	31.09	29.75	28.83	28.16	27.65	27.24	26.92	26.42	25.91	25.14	24.60	24.33	24.06	23.79
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.84	3.77	3.74	3.70	3.67
	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5.52	5.46	5.37	5.27	5.12	5.01	4.96	4.90	4.85
	13.74	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.72	7.56	7.31	7.14	7.06	6.97	6.88
	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69	18.41	17.99	17.56	16.90	16.44	16.21	15.99	15.75
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.41	3.34	3.30	3.27	3.23
	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.67	4.57	4.42	4.31	4.25	4.20	4.14
	12.25	9.55	8.45	7.85	7.46	7.19	6,99	6.84	6.72	6.62	6.47	6.31	6.07	5.91	5.82	5.74	5.65
	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33	14.08	13.71	13,32	12.73	12.33	12.12	11.91	11.70
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.12	3.04	3.01	2.97	2.93
	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.20	4.10	3.95	3.84	3.78	3.73	3.67
	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.67	5.52	5.28	5.12	5.03	4.95	4.86
	25.42	18.49	15.83	14.39	13.48	12.86	12.40	12.05	11.77	11.54	11.19	10.84	10.30	9.92	9.73	9.53	9.34
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.90	2.83	2.79	2.75	2.71
	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.87	3.77	3.61	3.51	3.45	3.39	3.33
	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.11	4.96	4.73	4.57	4.48	4.40	4.31
	22.86	16.39	13.90	12.56	11.71	11.13	10.69	10.37	10.11	9.87	9.57	9.24	8.72	8.37	8.19	8.00	7.81
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.74	2.66	2.62	2.58	2.54
	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.62	3.52	3.37	3.26	3.20	3.14	3.08
	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.71	4.56	4.33	4.17	4.08	4.00	3.91
	21.04	14.91	12.55	11.28	10.48	9.93	9.52	9.20	8.96	8.74	8.44	8.13	7.64	7.30	7.12	6.94	6.76
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.61	2.53	2.49	2.45	2.40
	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.43	3.33	3.17	3.06	3.00	2.94	2.88
	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.40	4.25	4.02	3.86	3.78	3.69	3.60
	19.69	13.81	11.56	10.35	9.58	9.05	8.66	8.35	8.12	7.92	7.63	7.32	6.85	6.52	6.35	6.17	6.00
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.51	2.43	2.38	2.34	2.30
	6.55	5.10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.28	3.18	3.02	2.91	2.85	2.79	2.72
	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.16	4.01	3.78	3.62	3.54	3.45	3.36
	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.48	7.29	7.00	6.71	6.25	5.93	5.76	5.59	5.42

Table of F-Distribution (ii)

For each pair of values $\,\nu_1^{}$ and $\,\nu_2^{}$, the table gives the values of $\,F_{\alpha^{}_{},\,\nu^{}_1,\,\nu^{}_2^{}}^{}$ with $\,\alpha=0.05,\,\,0.025,\,\,0.01,\,\,$ and $\,0.001$.

Kanada																	
v_1	1	2	3	4	5	6	7	8	9	10	12	15	24	40	60	120	∞
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.42	2.34	2.30	2.25	2,21
	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.15	3.05	2.89	2.78	2.72	2.66	2.60
	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	3.96	3.82	3.59	3.43	3.34	3.25	3.17
	17.82	12.31	10.21	9.07	8.35	7.86	7.49	7.21	6.98	6.80	6.52	6.23	5.78	5.47	5.30	5.14	4.97
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.35	2.27	2.22	2.18	2.13
	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.05	2.95	2.79	2.67	2.61	2.55	2.49
	8.86	6.51	5.56	5.04	4.70	4.46	4.28	4.14	4.03	3.94	3.80	3.66	3.43	3.27	3.18	3.09	3.00
	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.58	6.40	6.13	5.85	5.41	5.10	4.94	4.77	4.60
15	4.54	3.68	3.29	3.06	2,90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.29	2.20	2.16	2.11	2.07
	6.20	4.76	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	2.96	2.86	2.70	2.59	2.52	2.46	2.40
	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.67	3.52	3.29	3.13	3.05	2.96	2.87
	16.59	11.34	9.34	8.25	7.57	7.09	6.74	6.47	6.26	6.08	5.81	5.54	5.10	4.80	4.64	4.47	4.31
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.24	2.15	2.11	2.06	2.01
	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.89	2.79	2.63	2.51	2.45	2.38	2.32
	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	3.55	3.41	3.18	3.02	2.93	2.84	2.75
	16.12	10.97	9.01	7.94	7.27	6.80	6.46	6.19	5.98	5.81	5.55	5.27	4.85	4.54	4.39	4.23	4.06
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.19	2.10	2.06	2.01	1.96
	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.82	2.72	2.56	2.44	2.38	2.32	2.25
	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.46	3.31	3.08	2.92	2.83	2.75	2.65
	15.72	10.66	8.73	7.68	7.02	6.56	6.22	5.96	5.75	5.58	5.32	5.05	4.63	4.33	4.18	4.02	3.85
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.15	2.06	2.02	1.97	1.92
	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.77	2.67	2.50	2.38	2.32	2.26	2.19
	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.37	3.23	3.00	2.84	2.75	2.66	2.57
	15.38	10.39	8.49	7.46	6.81	6.35	6.02	5.76	5.56	5.39	5,13	4.87	4.45	4.15	4.00	3.84	3.67
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2,48	2.42	2.38	2.31	2.23	2.11	2.03	1.98	1.93	1.88
	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2,96	2.88	2.82	2.72	2.62	2.45	2.33	2.27	2.20	2.13
	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3,63	3.52	3.43	3.30	3.15	2.92	2.76	2.67	2.58	2.49
	15.08	10.16	8.28	7.27	6.62	6.18	5.85	5,59	5.39	5.22	4.97	4.70	4.29	3.99	3.84	3.68	3.51
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.08	1.99	1.95	1.90	1.84
	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.68	2.57	2.41	2.29	2.22	2.16	2.09
	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.23	3.09	2.86	2.69	2.61	2.52	2.42
	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5.44	5.24	5.08	4.82	4.56	4.15	3.86	3.70	3.54	3.38
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.05	1.96	1.92	1.87	1.81
	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.64	2.53	2.37	2.25	2.18	2.11	2.04
	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.17	3.03	2.80	2.64	2.55	2.46	2.36
	14.59	9.77	7.94	6.95	6.32	5.88	5.56	5.31	5.11	4.95	4.70	4.44	4.03	3.74	3.58	3.42	3.26
22	4.30	3.44	3,05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.03	1.94	1.89	1.84	1.78
	5.79	4.38	3,78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.60	2.50	2.33	2.21	2.14	2.08	2.00
	7.95	5.72	4,82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.12	2.98	2.75	2.58	2.50	2.40	2.31
	14.38	9.61	7,80	6.81	6.19	5.76	5.44	5.19	4.99	4.83	4.58	4.33	3.92	3.63	3.48	3.32	3.15
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.00	1.91	1.86	1.81	1.76
	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.57	2.47	2.30	2.18	2.11	2.04	1.97
	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.07	2.93	2.70	2.54	2.45	2.35	2.26
	14.19	9.47	7.67	6.70	6.08	5.65	5.33	5.09	4.89	4.73	4.48	4.23	3.82	3.53	3.38	3.22	3.05
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	1.98	1.89	1.84	1.79	1.73
	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.54	2.44	2.27	2.15	2.08	2.01	1.94
	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.03	2.89	2.66	2.49	2.40	2.31	2.21
	14.03	9.34	7.55	6.59	5.98	5.55	5.23	4.99	4.80	4.64	4.39	4.14	3.74	3.45	3.29	3.14	2.97

Table of F-Distribution (iii)

For each pair of values $\,\nu_1^{}$ and $\,\nu_2^{}$, the table gives the values of $\,F_{\alpha^{}_{},\,\nu^{}_1,\,\nu^{}_2^{}}^{}$ with $\,\alpha=0.05,\,\,0.025,\,\,0.01,\,\,$ and $\,0.001$.

v_1	1	2	3	4	5	6	7	8	9	10	12	15	24	40	60	120	∞
	******************	****		***************************************													
25	4,24	3,39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	1.96	1.87	1.82	1.77	1.71
	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.51	2.41	2.24	2.12	2.05	1.98	1.91
	7.77	5.57	4.68	4.18	3.86	3.63	3,46	3.32	3.22	3.13	2.99	2.85	2.62	2,45	2.36	2.27	2.17
	13.88	9.22	7.45	6.49	5.89	5.46	5.15	4.91	4.71	4.56	4.31	4.06	3,66	3.37	3.22	3,06	2.89
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.95	1.85	1.80	1.75	1.69
	5.66	4.27	3.67	3,33	3.10	2.94	2.82	2.73	2.65	2.59	2.49	2.39	2.22	2.09	2.03	1.95	1.88
	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	2.96	2.81	2.58	2.42	2.33	2.23	2.13
	13.74	9.12	7.36	6.41	5.80	5.38	5.07	4.83	4.64	4.48	4.24	3.99	3.59	3.30	3.15	2.99	2.82
27	4.21	3,35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.93	1.84	1.79	1.73	1.67
	5.63	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63	2.57	2.47	2.36	2.19	2.07	2.00	1.93	1.85
	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.93	2.78	2.55	2.38	2.29	2.20	2.10
	13.61	9.02	7.27	6.33	5.73	5.31	5.00	4.76	4.57	4.41	4.17	3.92	3.52	3.23	3.08	2.92	2.75
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.91	1.82	1.77	1.71	1.65
20	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61	2.55	2.45	2.34	2.17	2.05	1.77	1.71	1.83
	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.90	2.75	2.52	2.35	2.26	2.17	2.06
	13.50	8.93	7.19	6.25	5.66	5.24	4.93	4.69	4.50	4.35	4.11	3.86	3.46	3.18	3.02	2.86	2.69
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2,28	2.22	2.18	2.10	2.03	1.90	1.81	1.75	1.70	1.64
29	5.59	4.20	3.61	3.27	3.04	2.43	2.76	2.67	2.59	2.53	2.43	2.32	2.15	2.03	1.73	1.70	1.81
	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3,20	3.09	3.00	2.87	2.73	2.49	2.33	2.23	2.14	2.03
	13.39	8.85	7.12	6.19	5.59	5.18	4.87	4.64	4.45	4.29	4.05	3.80	3.41	3.12	2.97	2.81	2.64
30	4.17	3.32	2.92	2,69	2,53	2,42	2.33	2.27	2.21	2,16	2.09	2.01	1.89	1.79	1.74	1,68	1.62
30	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.41	2.31	2.14	2.01	1.74	1.87	1.79
	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.84	2.70	2.47	2.30	2.21	2.11	2.01
	13.29	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.39	4.24	4.00	3.75	3.36	3,07	2.92	2.76	2.59
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.79	1.69	1.64	1.58	1.51
1 40	5.42	4.05	3.46	3,13	2.90	2.74	2.62	2.53	2.45	2.39	2.29	2.18	2.01	1.88	1.80	1.72	1.64
	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.66	2.52	2.29	2.11	2.02	1.92	1.80
	12.61	8.25	6.59	5.70	5.13	4.73	4.44	4.21	4.02	3.87	3.64	3.40	3.01	2.73	2.57	2.41	2.23
60	4.00	3.15	2.76	2,53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.70	1.59	1.53	1.47	1.39
	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.17	2.06	1.78	1.74	1.67	1.58	1.48
	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.50	2.35	2.12	1.94	1.84	1.73	1.60
	11.97	7.77	6.17	5.31	4.76	4.37	4.09	3.86	3.69	3.54	3.32	3.08	2.69	2.41	2.25	2.08	1.89
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.61	1,50	1.43	1.35	1.25
120	5.15	3.80	3.23	2.43	2.67	2.52	2.39	2.30	2.22	2.16	2.05	1.73	1.76	1,61	1.53	1.43	1.23
	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.34	2.19	1.76	1.76	1.66	1,53	1.38
	11.38	7.32	5.78	4.95	4.42	4.04	3.77	3.55	3.38	3.24	3.02	2.78	2.40	2.11	1.95	1.76	1.54
_	2 0 4	3.00	2.60	2 27	221	2.10	2.01	1.04	1 00	1 02	1 75	1.67	1.50	1.20	1 22	1.00	1.00
∞	3.84 5.02	3.69	2.60 3.12	2.37 2.79	2.21	2.10	2.01 2.29	1.94	1.88	1.83	1.75	1.67	1.52	1,39	1.32	1.22	1.00
	6.63	3.69 4.61	3.12 3.78	3.32	2.57 3.02	2.41 2.80	2.64	2.19 2.51	2.11 2.41	2.05 2.32	1.94 2.18	1.83 2.04	1.64 1.79	1.48 1.59	1.39 1.47	1.27 1.32	1.00 1.00
	10.83	6.91	5.42	4.62	4.10	3.74	3.47	3.27	3.10	2.96	2.74	2.51	2.13	1.84	1.47	1.45	1.00
L	10,00	0.71	J.74	7.02	7.10	3.77	J.71	J.41	3.10	2.70	2.17	4.01	4.12	1.04	1,00	1.72	1.00