Opérateurs aléatoires et périodiques en dimension 1 : Estimées de décorrélations et Résonances

Trịnh Tuấn Phong sous la direction de Frédéric Klopp, IMJ, UPMC

Laboratoire Analyse, Géométrie & Applications
Université Paris 13

15 Septembre 2015

Soutenance de thèse, LAGA, Université Paris 13

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension 1 Deux inégalités importantes Régime localisé

Statistique locale des niveaux

Résultats pour le modèle présent Remarques

Opérateurs de Schrödinger périodique

Équation de résonance Résultats connus précédemment Asymptotiques des paramètres spectraux

Cas générique

en dessous de $\Sigma_{\mathbb{Z}}$ en dessous de $\mathbb{R} \setminus \Sigma_{\mathbb{N}}$

Cas non-générique

Équation de résonances rééchelonnées Zones de non résonances Existence de résonances

Questions ouvertes

Opérateur aléatoire discret avec désordre hors diagonal en dimension 1 Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée N(E) : ω -p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{v.ps de } H_{\omega}(\Lambda) \text{ inférieure à E}\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée N(E) : $\omega-$ p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{v.ps de } H_{\omega}(\Lambda) \text{ inférieure à } E\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants :

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée N(E): ω -p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{v.ps de } H_{\omega}(\Lambda) \text{ inférieure à E}\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants :

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée $\mathit{N}(\mathit{E})$: $\omega-$ p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} rac{\#\{v.ps \text{ de } H_{\omega}(\Lambda) \text{ inférieure à } E\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants :

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée N(E) : ω -p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{v.ps de } H_{\omega}(\Lambda) \text{ inférieure à E}\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Soit $u = \{u(n)\}_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. On définit

$$(H_{\omega}u)(n) = \omega_n(u(n) - u(n+1)) + \omega_{n-1}(u(n) - u(n-1))$$

 $\{\omega_n\}_{n\in\mathbb{Z}}$: une suite de variables aléatoires i.i.d. qui possède une densité ρ bornée et à support compact.

essRan
$$\omega_n = [\alpha_0, \beta_0] \quad \forall n \in \mathbb{Z} \text{ où } \alpha_0, \beta_0 > 0.$$

Quelques faits importants :

Spectre presque sûr : ω -p.s., $\sigma(H_{\omega}) = \Sigma := [0, 4\beta_0]$.

Densité d'états intégrée N(E) : ω -p.s., on a

$$N(E) := \lim_{|\Lambda| \to +\infty} \frac{\#\{\text{v.ps de } \frac{H_{\omega}(\Lambda) \text{ inférieure à E}\}}{|\Lambda|} \ \ \forall E$$

où $H_{\omega}(\Lambda)$ est H_{ω} restreint à un "cube" $\Lambda \subset \mathbb{Z}$ avec des conditions périodiques au bord.

Deux inégalités importantes

L'estimée de Wegner (W) :

$$\boxed{\mathbb{P}(\mathsf{dist}(E,\sigma(H_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|\mathsf{s}\rho(\mathsf{s})\|_{\infty}}{E-\epsilon}\epsilon|\Lambda|}$$

quel que soit le cube $\Lambda \subset \mathbb{Z}$ et $0 < \epsilon < E$.

L'estimée de Minami (M)

$$\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\}\geqslant2\right)\leqslant C(|J||\Lambda|)^{2}/2a^{2}$$

pour tout $J = [a, b] \subset (0, +\infty)$, et $\Lambda \subset \mathbb{Z}$.

Remarque (W) et (M) ne sont pas valables à l'énergie 0 (le bord inférieur du spectre presque sûr Σ).

$Deux\ in\'egalit\'es\ importantes$

L'estimée de Wegner (W) :

$$\boxed{\mathbb{P}(\mathsf{dist}(E,\sigma(H_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|s\rho(s)\|_{\infty}}{E-\epsilon}\epsilon|\Lambda|}$$

quel que soit le cube $\Lambda \subset \mathbb{Z}$ et $0 < \epsilon < E$.

L'estimée de Minami (M) :

$$\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\}\geqslant 2\right)\leqslant C(|J||\Lambda|)^{2}/2a^{2}$$

pour tout
$$J = [a, b] \subset (0, +\infty)$$
, et $\Lambda \subset \mathbb{Z}$.

Remarque (W) et (M) ne sont pas valables à l'énergie 0 (le bord inférieur du spectre presque sûr Σ).

$Deux\ in\'egalit\'es\ importantes$

L'estimée de Wegner (W) :

$$\boxed{\mathbb{P}(\mathsf{dist}(E,\sigma(H_{\omega}(\Lambda))) \leqslant \epsilon) \leq \frac{2\|s\rho(s)\|_{\infty}}{E-\epsilon}\epsilon|\Lambda|}$$

quel que soit le cube $\Lambda \subset \mathbb{Z}$ et $0 < \epsilon < E$.

L'estimée de Minami (M) :

$$\mathbb{P}\left(\#\{\sigma\left(H_{\omega}\left(\Lambda\right)\right)\cap J\}\geqslant 2\right)\leqslant C(|J||\Lambda|)^{2}/2a^{2}$$

pour tout $J = [a, b] \subset (0, +\infty)$, et $\Lambda \subset \mathbb{Z}$.

Remarque (W) et (M) ne sont pas valables à l'énergie 0 (le bord inférieur du spectre presque sûr Σ).

Régime localisé

Régime localisé : L'endroit où le spectre de H_{ω} est purement ponctuel et les fonctions propres associées sont exp. déc. à l'infini.

Théorème [Aizemann, Schenker, Friedrich et Hundertmark '01]

(Loc) : Il existe $\nu>0$ tel que pour tout p>0, il existe q>0 et $L_0>0$ tels que, pour $L\geqslant L_0$, avec une prob. supérieure à $1-L^{-p}$, si

- $\varphi_{n,\omega}$ est un vecteur propre normalisé de $H_{\omega}(\Lambda_L)$ associé à une valeur propre $E_{n,\omega}$ dans le régime localisé.
- $x_{n,\omega} \in \Lambda_L$ est un maximum de $x \mapsto |\varphi_{n,\omega}(x)|$ dans Λ_L ,

Alors, pour $x \in \Lambda_L$, on a

$$|\varphi_{\mathbf{n},\omega}(\mathbf{x})| \leqslant L^q e^{-\nu|\mathbf{x}-\mathbf{x}_{\mathbf{n},\omega}|}$$

The point $x_{n,\omega}$ est appelé un centre de localisation de $\varphi_{n,\omega}$ ou $E_{n,\omega}$

Régime localisé

Régime localisé : L'endroit où le spectre de H_{ω} est purement ponctuel et les fonctions propres associées sont exp. déc. à l'infini.

Théorème [Aizemann, Schenker, Friedrich et Hundertmark '01]

(Loc) : Il existe $\nu > 0$ tel que pour tout p > 0, il existe q > 0 et $L_0 > 0$ tels que, pour $L \geqslant L_0$, avec une prob. supérieure à $1 - L^{-p}$, si

- $\varphi_{n,\omega}$ est un vecteur propre normalisé de $H_{\omega}(\Lambda_L)$ associé à une valeur propre $E_{n,\omega}$ dans le régime localisé.
- $x_{n,\omega} \in \Lambda_L$ est un maximum de $x \mapsto |\varphi_{n,\omega}(x)|$ dans Λ_L ,

Alors, pour $x \in \Lambda_L$, on a

$$|\varphi_{n,\omega}(x)| \leqslant L^q e^{-\nu|x-x_{n,\omega}|}$$

The point $x_{n,\omega}$ est appelé un centre de localisation de $\varphi_{n,\omega}$ ou $E_{n,\omega}$.

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension :

Deux inégalités importantes
Régime localisé

Statistique locale des niveaux Résultats pour le modèle présent Remarques

Opérateurs de Schrödinger périodique Équation de résonance Résultats connus précédemment

Cas générique en dessous de $\Sigma_{\mathbb{Z}}$ en dessous de $\mathbb{R} ackslash \Sigma_{\mathbb{N}}$

Cas non-générique Équation de résonances rééchelonnée Zones de non résonances Existence de résonances

Questions ouverter

Soit $\Lambda = [-L, L]$ un cube dans \mathbb{Z} et E une énergie positive dans le régime localisé.

Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ sont les valeurs propres de $H_{\omega}(\Lambda)$.

Niveaux renormalisés en E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Soit E une énergie positive dans le régime localisé t.q. $\nu(E) > 0$.
- Alors, quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda) \to \text{un processus de Poisson sur } \mathbb{R}$ de densité la mesure de Lebesgue.

Soit $\Lambda = [-L, L]$ un cube dans \mathbb{Z} et E une énergie positive dans le régime localisé.

Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ sont les valeurs propres de $H_{\omega}(\Lambda)$.

Niveaux renormalisés en E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Soit E une énergie positive dans le régime localisé t.q. $\nu(E) > 0$.
- Alors, quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda) \rightharpoonup$ un processus de Poisson sur $\mathbb R$ de densité la mesure de Lebesgue.

Soit $\Lambda = [-L, L]$ un cube dans \mathbb{Z} et E une énergie positive dans le régime localisé.

Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ sont les valeurs propres de $H_{\omega}(\Lambda)$.

Niveaux renormalisés en E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Soit E une énergie positive dans le régime localisé t.q. $\nu(E) > 0$.
- Alors, quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda) \rightharpoonup$ un processus de Poisson sur $\mathbb R$ de densité la mesure de Lebesgue.

Soit $\Lambda = [-L, L]$ un cube dans \mathbb{Z} et E une énergie positive dans le régime localisé.

Supposons que $E_1(\omega, \Lambda) \leqslant E_2(\omega, \Lambda) \leqslant \cdots \leqslant E_{|\Lambda|}(\omega, \Lambda)$ sont les valeurs propres de $H_{\omega}(\Lambda)$.

Niveaux renormalisés en E:

$$\xi_n(E,\omega,\Lambda) = |\Lambda|\nu(E)(E_n(\omega,\Lambda) - E)$$

Processus ponctuel:

$$\Sigma(\xi, E, \omega, \Lambda) = \sum_{n=1}^{|\Lambda|} \delta_{\xi_n}(E, \omega, \Lambda)(\xi)$$

- Soit E une énergie positive dans le régime localisé t.q. $\nu(E) > 0$.
- Alors, quand $|\Lambda| \to +\infty$, $\Sigma(\xi, E, \omega, \Lambda) \rightharpoonup$ un processus de Poisson sur $\mathbb R$ de densité la mesure de Lebesgue.

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, les deux processus ci-dessus convergent-ils faiblement vers deux processus de Poisson indépendants?
- Oui pour le modèle d'Anderson discret :

Théorème (Pour le modèle d'Anderson, [Klopp'11])

- Soient $E \neq E'$ dans le régime localisé t.q. $\nu(E) > 0$, $\nu(E') > 0$.
- Alors, pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+, k_-\} \in \mathbb{N}^2$, on a

$$\mathbb{P} \begin{cases} \#\{j; \xi_j(E, \omega, \Lambda) \in U_+\} &= k_+ \\ \#\{j; \xi_j(E', \omega, \Lambda) \in U_-\} &= k_- \end{cases} \xrightarrow{\Lambda \to \mathbb{Z}} e^{-|U_+|} \frac{|U_+|^{k_+}}{k_+!} e^{-|U_-|} \frac{|U_-|^{k_-}}{k_-!}$$

■ Ce théorème est une conséguence des estimées de décorrélation.

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, les deux processus ci-dessus convergent-ils faiblement vers deux processus de Poisson indépendants?
- Oui pour le modèle d'Anderson discret :

Théorème (Pour le modèle d'Anderson, [Klopp'11])

- Soient $E \neq E'$ dans le régime localisé t.q. $\nu(E) > 0$, $\nu(E') > 0$.
- Alors, pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+, k_-\} \in \mathbb{N}^2$, on a

■ Ce théorème est une conséguence des estimées de décorrélation.

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, les deux processus ci-dessus convergent-ils faiblement vers deux processus de Poisson indépendants?
- Oui pour le modèle d'Anderson discret :

Théorème (Pour le modèle d'Anderson, [Klopp'11])

- Soient $E \neq E'$ dans le régime localisé t.q. $\nu(E) > 0$, $\nu(E') > 0$.
- Alors, pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+, k_-\} \in \mathbb{N}^2$, on a

$$\left| \mathbb{P} \left\{ \begin{array}{l} \# \{ j; \xi_j(E, \omega, \Lambda) \in U_+ \} \\ \# \{ j; \xi_j(E', \omega, \Lambda) \in U_- \} \end{array} \right. = k_+ \\ = k_- \right\} \xrightarrow[\Lambda \to \mathbb{Z}]{} e^{-|U_+|} \frac{|U_+|^{k_+}}{k_+!} e^{-|U_-|} \frac{|U_-|^{k_-}}{k_-!}$$

■ Ce théorème est une conséguence des estimées de décorrélation.

Considérons deux limites de $\Sigma(\xi, E, \omega, \Lambda), \Sigma(\xi, E', \omega, \Lambda)$ pour $E \neq E'$.

- Sont-elles indépendantes? C'est à dire, quand $|\Lambda| \to +\infty$, les deux processus ci-dessus convergent-ils faiblement vers deux processus de Poisson indépendants?
- Oui pour le modèle d'Anderson discret :

Théorème (Pour le modèle d'Anderson, [Klopp'11])

- Soient $E \neq E'$ dans le régime localisé t.q. $\nu(E) > 0$, $\nu(E') > 0$.
 Alors, pour $U_+ \subset \mathbb{R}$ et $U_- \subset \mathbb{R}$ intervalles compacts et $\{k_+, k_-\} \in \mathbb{N}^2$, on a

$$\left| \mathbb{P} \left\{ \begin{array}{l} \# \{ j; \xi_j(E, \omega, \Lambda) \in U_+ \} \\ \# \{ j; \xi_j(E', \omega, \Lambda) \in U_- \} \end{array} \right. = k_+ \\ = k_- \right\} \xrightarrow[\Lambda \to \mathbb{Z}]{} e^{-|U_+|} \frac{|U_+|^{k_+}}{k_+!} e^{-|U_-|} \frac{|U_-|^{k_-}}{k_-!}$$

Ce théorème est une conséquence des estimées de décorrélation.

Estimée de décorrélation pour l'opérateur aléatoire avec désordre hors diagonal :

Théorème [P. '14]

- Soient $\alpha \in (0,1)$, $\beta \in (1/2,1)$ et $E \neq E' > 0$ dans le régime localisé.
- Quand $\ell \approx L^{\alpha}$, on a

$$\mathbb{P}\left(\left\{ \begin{matrix} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E + L^{-1}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E' + L^{-1}(-1,1)) \neq \emptyset \end{matrix} \right\} \right) = o\left(\frac{\ell}{L}\right)$$

Indépendance asymptotique

Théorème [P.'14

- Soit $n \ge 2$, on considère $\{E_j\}_{1 \le j \le n}$ dans le régime localisé telle que $E_i > 0$, $E_i \ne E_k \ \forall j \ne k$ et $\nu(E_i) > 0$ pour tout $1 \le j \le n$.
- Alors, quand $|\Lambda| \to +\infty$, les processus $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ convergent faiblement vers les processus de Poisson indépendants.

Estimée de décorrélation pour l'opérateur aléatoire avec désordre hors diagonal :

Théorème [P. '14]

- Soient $\alpha \in (0,1)$, $\beta \in (1/2,1)$ et $E \neq E' > 0$ dans le régime localisé.
- Quand $\ell \approx L^{\alpha}$, on a

$$\mathbb{P}\left(\left\{ \begin{matrix} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E + L^{-1}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E' + L^{-1}(-1,1)) \neq \emptyset \end{matrix} \right\} \right) = o\left(\frac{\ell}{L}\right)$$

Indépendance asymptotique

Théorème [P.'14]

- Soit $n \ge 2$, on considère $\{E_j\}_{1 \le j \le n}$ dans le régime localisé telle que $E_i > 0$, $E_i \ne E_k \ \forall j \ne k$ et $\nu(E_i) > 0$ pour tout 1 < j < n.
- Alors, quand $|\Lambda| \to +\infty$, les processus $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ convergent faiblement vers les processus de Poisson indépendants.

Estimée de décorrélation pour l'opérateur aléatoire avec désordre hors diagonal :

Théorème [P. '14]

- Soient $\alpha \in (0,1)$, $\beta \in (1/2,1)$ et $E \neq E' > 0$ dans le régime localisé.
- Quand $\ell \approx L^{\alpha}$, on a

$$\mathbb{P}\left(\left\{ \begin{matrix} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E + L^{-1}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E' + L^{-1}(-1,1)) \neq \emptyset \end{matrix} \right\} \right) = o\left(\frac{\ell}{L}\right)$$

Indépendance asymptotique :

Théorème [P.'14]

- Soit $n \ge 2$, on considère $\{E_j\}_{1 \le j \le n}$ dans le régime localisé telle que $E_j > 0$, $E_j \ne E_k \ \forall j \ne k$ et $\nu(E_j) > 0$ pour tout $1 \le j \le n$.
- Alors, quand $|\Lambda| \to +\infty$, les processus $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ convergent faiblement vers les processus de Poisson indépendants.

Estimée de décorrélation pour l'opérateur aléatoire avec désordre hors diagonal :

Théorème [P. '14]

- Soient $\alpha \in (0,1)$, $\beta \in (1/2,1)$ et $E \neq E' > 0$ dans le régime localisé.
- Quand $\ell \approx L^{\alpha}$, on a

$$\mathbb{P}\left(\left\{ \begin{matrix} \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E + L^{-1}(-1,1)) \neq \emptyset \\ \sigma(H_{\omega}(\Lambda_{\ell})) \cap (E' + L^{-1}(-1,1)) \neq \emptyset \end{matrix} \right\} \right) = o\left(\frac{\ell}{L}\right)$$

Indépendance asymptotique :

Théorème [P.'14]

- Soit $n \ge 2$, on considère $\{E_j\}_{1 \le j \le n}$ dans le régime localisé telle que $E_i > 0$, $E_i \ne E_k \ \forall j \ne k$ et $\nu(E_i) > 0$ pour tout $1 \le j \le n$.
- Alors, quand $|\Lambda| \to +\infty$, les processus $\{\Sigma(\xi, E_j, \omega, \Lambda)\}_{1 \le j \le n}$ convergent faiblement vers les processus de Poisson indépendants.

Remarques

- Quelque soit le modèle aléatoire \mathbb{Z}^d périodique en dimension d quelconque, (Loc), (W), (M) et (D) \Longrightarrow l'indépendance asymptotique
- Notre stratégie pour prouver l'estimée de décorrélation ci-dessus est adaptable pour le modèle d'Anderson discret unidimensionnel aussi
- "Lower bound" en dimension 1 : Si u est un vecteur propre normalisé de $H_{\omega}(\Lambda)$, il existe un sous-intervalle $J \subset \Lambda$ de taille $O(L^{\beta})$ avec $\beta \in (1/2,1)$ t.g.

$$|u(n)|^2 + |u(n+1)|^2 \geqslant e^{-L^{\beta}/2}$$
 pour tout $n \in J$

Remarques

- Quelque soit le modèle aléatoire \mathbb{Z}^d périodique en dimension d quelconque, (Loc), (W), (M) et (D) \Longrightarrow l'indépendance asymptotique
- Notre stratégie pour prouver l'estimée de décorrélation ci-dessus est adaptable pour le modèle d'Anderson discret unidimensionnel aussi
- "Lower bound" en dimension 1 : Si u est un vecteur propre normalisé de $H_{\omega}(\Lambda)$, il existe un sous-intervalle $J \subset \Lambda$ de taille $O(L^{\beta})$ avec $\beta \in (1/2,1)$ t.g.

$$|u(n)|^2 + |u(n+1)|^2 \geqslant e^{-L^{\beta}/2}$$
 pour tout $n \in J$

Remarques

- Quelque soit le modèle aléatoire \mathbb{Z}^d périodique en dimension d quelconque, (Loc), (W), (M) et (D) \Longrightarrow l'indépendance asymptotique
- Notre stratégie pour prouver l'estimée de décorrélation ci-dessus est adaptable pour le modèle d'Anderson discret unidimensionnel aussi
- "Lower bound" en dimension 1 : Si u est un vecteur propre normalisé de $H_{\omega}(\Lambda)$, il existe un sous-intervalle $J \subset \Lambda$ de taille $O(L^{\beta})$ avec $\beta \in (1/2,1)$ t.q.

$$|u(n)|^2+|u(n+1)|^2\geqslant e^{-L^{\beta}/2}$$
 pour tout $n\in J$

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension Deux inégalités importantes

Régime localisé

Statistique locale des niveaux

Résultats pour le modèle présen Remarques

Opérateurs de Schrödinger périodique Équation de résonance Résultats connus précédemment Asymptotiques des paramètres spectraux

Cas générique en dessous de Σ_Z en dessous de $\mathbb{R} \backslash \Sigma_N$

Cas non-générique

Équation de résonances rééchelonnées Zones de non résonances Existence de résonances

Questions ouvertes

Soit V un potentiel périodique et $-\Delta$ le Laplacien discret sur $\ell^2(\mathbb{Z})$. On définit l'opérateur de Schrödinger $H^{\mathbb{Z}}:=-\Delta+V$ en dimension 1:

$$\boxed{(H^{\mathbb{Z}}u)(n)=u(n-1)+u(n+1)+V(n)u(n)}$$

Ensuite, on définit l'opérateur $H^\mathbb{N}:=-\Delta+V$ agissant sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichet en 0.

- $\Sigma_{\mathbb{Z}} = \bigcup_{j=1}^{q} B_q$ avec $q \leq p$ et $B_q = [c_q, d_q]$; le spectre $\Sigma_{\mathbb{Z}}$ est absolument continu (a.c.).
- $\Sigma_{\mathbb{N}} = \Sigma_{\mathbb{Z}} \cup \{v_j\}_{j=1}^m$ où $\Sigma_{\mathbb{Z}}$ est le spectre a.c. de $H^{\mathbb{N}}$ et $\{v_j\}_{j=1}^m$ sont des valeurs propres simples associées à des vecteurs propres exponentiellement décroissants.

Soit V un potentiel périodique et $-\Delta$ le Laplacien discret sur $\ell^2(\mathbb{Z})$. On définit l'opérateur de Schrödinger $H^{\mathbb{Z}}:=-\Delta+V$ en dimension 1:

$$(H^{\mathbb{Z}}u)(n)=u(n-1)+u(n+1)+V(n)u(n)$$

Ensuite, on définit l'opérateur $H^{\mathbb{N}} := -\Delta + V$ agissant sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichet en 0.

- $\Sigma_{\mathbb{Z}} = \bigcup_{j=1}^{q} B_q$ avec $q \leq p$ et $B_q = [c_q, d_q]$; le spectre $\Sigma_{\mathbb{Z}}$ est absolument continu (a.c.).
- $\Sigma_{\mathbb{N}} = \Sigma_{\mathbb{Z}} \cup \{v_j\}_{j=1}^m$ où $\Sigma_{\mathbb{Z}}$ est le spectre a.c. de $H^{\mathbb{N}}$ et $\{v_j\}_{j=1}^m$ sont des valeurs propres simples associées à des vecteurs propres exponentiellement décroissants.

Soit V un potentiel périodique et $-\Delta$ le Laplacien discret sur $\ell^2(\mathbb{Z})$. On définit l'opérateur de Schrödinger $H^{\mathbb{Z}}:=-\Delta+V$ en dimension 1:

$$H^{\mathbb{Z}}u)(n) = u(n-1) + u(n+1) + V(n)u(n)$$

Ensuite, on définit l'opérateur $H^{\mathbb{N}}:=-\Delta+V$ agissant sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichet en 0.

- $\Sigma_{\mathbb{Z}} = \bigcup_{j=1}^{q} B_q$ avec $q \leq p$ et $B_q = [c_q, d_q]$; le spectre $\Sigma_{\mathbb{Z}}$ est absolument continu (a.c.).
- $\Sigma_{\mathbb{N}} = \Sigma_{\mathbb{Z}} \cup \{v_j\}_{j=1}^m$ où $\Sigma_{\mathbb{Z}}$ est le spectre a.c. de $H^{\mathbb{N}}$ et $\{v_j\}_{j=1}^m$ sont des valeurs propres simples associées à des vecteurs propres exponentiellement décroissants.

Soit V un potentiel périodique et $-\Delta$ le Laplacien discret sur $\ell^2(\mathbb{Z})$. On définit l'opérateur de Schrödinger $H^{\mathbb{Z}}:=-\Delta+V$ en dimension 1:

$$\boxed{(H^{\mathbb{Z}}u)(n)=u(n-1)+u(n+1)+V(n)u(n)}$$

Ensuite, on définit l'opérateur $H^{\mathbb{N}}:=-\Delta+V$ agissant sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichet en 0.

- $\Sigma_{\mathbb{Z}} = \bigcup_{j=1}^{q} B_q$ avec $q \leq p$ et $B_q = [c_q, d_q]$; le spectre $\Sigma_{\mathbb{Z}}$ est absolument continu (a.c.).
- $\Sigma_{\mathbb{N}} = \Sigma_{\mathbb{Z}} \cup \{v_j\}_{j=1}^m$ où $\Sigma_{\mathbb{Z}}$ est le spectre a.c. de $H^{\mathbb{N}}$ et $\{v_j\}_{j=1}^m$ sont des valeurs propres simples associées à des vecteurs propres exponentiellement décroissants.

Soit L large, on définit :

$$H_L^\mathbb{N}:=-\Delta+V\mathbb{1}_{[0,L]}$$
 sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichlet en 0

- $z \in \mathbb{C}^+ \mapsto (z H_L^{\mathbb{N}})^{-1}$ est bien définie sur \mathbb{C}^+ . De plus, on peut démontrer que $(z H_L^{\mathbb{N}})^{-1}$ admet un prolongement méromorphe de \mathbb{C}^+ à $\mathbb{C} \setminus ((-\infty, -2] \cup [2, +\infty))$. Les résonances de $H_L^{\mathbb{N}}$ sont alors définies comme étant les pôles du prolongement ci-dessus.
- Nous nous intéressons aux résonances de $H_L^{\mathbb{N}}$ dont les parties réelles sont près du bord de $\Sigma_{\mathbb{Z}}$ i.e., on cherche les résonances dans le domaine $I-i\mathbb{R}^+$ où l'intervalle compact I contient les points au bord de $\Sigma_{\mathbb{Z}}$ et la taille de I est petite.

Soit L large, on définit :

$$H_L^\mathbb{N}:=-\Delta+V\mathbb{1}_{[0,L]}$$
 sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichlet en 0

- $z \in \mathbb{C}^+ \mapsto (z H_L^{\mathbb{N}})^{-1}$ est bien définie sur \mathbb{C}^+ . De plus, on peut démontrer que $(z H_L^{\mathbb{N}})^{-1}$ admet un prolongement méromorphe de \mathbb{C}^+ à $\mathbb{C} \setminus ((-\infty, -2] \cup [2, +\infty))$. Les résonances de $H_L^{\mathbb{N}}$ sont alors définies comme étant les pôles du prolongement ci-dessus.
- Nous nous intéressons aux résonances de $H_L^{\mathbb{N}}$ dont les parties réelles sont près du bord de $\Sigma_{\mathbb{Z}}$ i.e., on cherche les résonances dans le domaine $I-i\mathbb{R}^+$ où l'intervalle compact I contient les points au bord de $\Sigma_{\mathbb{Z}}$ et la taille de I est petite.

Opérateurs de Schrödinger périodique en dimension 1 (suite)

Soit L large, on définit :

$$H_L^\mathbb{N}:=-\Delta+V\mathbb{1}_{[0,L]}$$
 sur $\ell^2(\mathbb{N})$ avec condition au bord de Dirichlet en 0

- $z \in \mathbb{C}^+ \mapsto (z H_L^{\mathbb{N}})^{-1}$ est bien définie sur \mathbb{C}^+ . De plus, on peut démontrer que $(z H_L^{\mathbb{N}})^{-1}$ admet un prolongement méromorphe de \mathbb{C}^+ à $\mathbb{C} \setminus ((-\infty, -2] \cup [2, +\infty))$. Les résonances de $H_L^{\mathbb{N}}$ sont alors définies comme étant les pôles du prolongement ci-dessus.
- Nous nous intéressons aux résonances de $H_L^{\mathbb{N}}$ dont les parties réelles sont près du bord de $\Sigma_{\mathbb{Z}}$ i.e., on cherche les résonances dans le domaine $I-i\mathbb{R}^+$ où l'intervalle compact I contient les points au bord de $\Sigma_{\mathbb{Z}}$ et la taille de I est petite.

Équation de résonance

Soit L>0 et H_L l'opérateur $H_L^{\mathbb{N}}$ restraint sur l'intervalle [0,L] avec les conditions au bord Dirichlet à L. On définit

- $(\lambda_k)_{0 \le k \le L}$ la suite croissante des valeurs propres de H_L .
- $a_k = |\varphi_k(L)|^2$ où $\varphi_k = (\varphi_k(n))_{0 \le n \le L}$ est un vecteur propre normalisé associé à λ_k .

Équation de résonance [Klopp'13] :

$$S_L(E) := \sum_{k=0}^{L} \frac{a_k}{\lambda_k - E} = -e^{-i\theta(E)}, \qquad E = 2\cos\theta(E),$$

où $\operatorname{Im}\theta(E)>0$ et $\operatorname{Re}\theta(E)\in(-\pi,0)$ quand $\operatorname{Im}E>0$.

Remarque : C'est les paramètres spectraux λ_k , a_k qui déterminent le comportement de résonances.

Équation de résonance

Soit L > 0 et H_L l'opérateur $H_L^{\mathbb{N}}$ restraint sur l'intervalle [0, L] avec les conditions au bord Dirichlet à L. On définit

- $(\lambda_k)_{0 \le k \le L}$ la suite croissante des valeurs propres de H_L .
- $a_k = |\varphi_k(L)|^2$ où $\varphi_k = (\varphi_k(n))_{0 \le n \le L}$ est un vecteur propre normalisé associé à λ_k .

Équation de résonance [Klopp'13]:

$$S_L(E) := \sum_{k=0}^L \frac{a_k}{\lambda_k - E} = -e^{-i\theta(E)}, \qquad E = 2\cos\theta(E),$$

où
$$\operatorname{Im}\theta(E)>0$$
 et $\operatorname{Re}\theta(E)\in(-\pi,0)$ quand $\operatorname{Im}E>0$.

Remarque : C'est les paramètres spectraux λ_k , a_k qui déterminent le comportement de résonances.

Équation de résonance

Soit L > 0 et H_L l'opérateur $H_L^{\mathbb{N}}$ restraint sur l'intervalle [0, L] avec les conditions au bord Dirichlet à L. On définit

- $(\lambda_k)_{0 \le k \le L}$ la suite croissante des valeurs propres de H_L .
- $a_k = |\varphi_k(L)|^2$ où $\varphi_k = (\varphi_k(n))_{0 \le n \le L}$ est un vecteur propre normalisé associé à λ_k .

Équation de résonance [Klopp'13]:

$$S_L(E) := \sum_{k=0}^L \frac{a_k}{\lambda_k - E} = -e^{-i\theta(E)}, \qquad E = 2\cos\theta(E),$$

où $\operatorname{Im}\theta(E)>0$ et $\operatorname{Re}\theta(E)\in(-\pi,0)$ quand $\operatorname{Im}E>0$.

Remarque : C'est les paramètres spectraux λ_k , a_k qui déterminent le comportement de résonances.

Résultats connus précédemment

L'équation de résonances a été étudiée intensivement par Klopp[Klopp '13]

- \blacksquare À l'extérieur du spectre $\Sigma_{\mathbb{N}},$ il existe une zone de taille constant qui ne contient pas de résonances
- Arr À l'intérieur du spectre $\Sigma_{\mathbb{Z}}$, on obtient une zone de non résonances dont la largeur est de taille $\frac{1}{l}$
- Pour les résonances les plus proches de l'axe réel : Chaque value propre λ_k à l'intérieur de $\Sigma_{\mathbb{Z}}$ génère une unique résonance z_n et $|\mathrm{Im} z_n| \asymp \frac{1}{L}$. De plus, on obtient une formule asymptotique pour z_n

Remarques :

- Tous résultats ci-dessus sont prouvés sous l'hypothèse que les parties réelles de résonances sont éloignées du bord du spectre $\Sigma_{\mathbb{Z}}$ et ± 2
- Nous voudrions compléter ces résultats en étudiant les résonances près du bord de $\Sigma_{\mathbb{Z}}$ mais loin de ± 2

Résultats connus précédemment

L'équation de résonances a été étudiée intensivement par Klopp[Klopp '13]

- \blacksquare À l'extérieur du spectre $\Sigma_{\mathbb{N}},$ il existe une zone de taille constant qui ne contient pas de résonances
- lack A l'intérieur du spectre $\Sigma_{\mathbb Z}$, on obtient une zone de non résonances dont la largeur est de taille $rac{1}{I}$
- Pour les résonances les plus proches de l'axe réel : Chaque value propre λ_k à l'intérieur de $\Sigma_{\mathbb{Z}}$ génère une unique résonance z_n et $|\mathrm{Im} z_n| \asymp \frac{1}{L}$. De plus, on obtient une formule asymptotique pour z_n

Remarques:

- Tous résultats ci-dessus sont prouvés sous l'hypothèse que les parties réelles de résonances sont éloignées du bord du spectre $\Sigma_{\mathbb{Z}}$ et ± 2
- Nous voudrions compléter ces résultats en étudiant les résonances près du bord de $\Sigma_{\mathbb{Z}}$ mais loin de ± 2

Résultats connus précédemment

L'équation de résonances a été étudiée intensivement par Klopp[Klopp '13]

- \blacksquare À l'extérieur du spectre $\Sigma_{\mathbb{N}},$ il existe une zone de taille constant qui ne contient pas de résonances
- lack A l'intérieur du spectre $\Sigma_{\mathbb{Z}}$, on obtient une zone de non résonances dont la largeur est de taille $rac{1}{I}$
- Pour les résonances les plus proches de l'axe réel : Chaque value propre λ_k à l'intérieur de $\Sigma_{\mathbb{Z}}$ génère une unique résonance z_n et $|\mathrm{Im} z_n| \asymp \frac{1}{L}$. De plus, on obtient une formule asymptotique pour z_n

Remarques:

- Tous résultats ci-dessus sont prouvés sous l'hypothèse que les parties réelles de résonances sont éloignées du bord du spectre $\Sigma_{\mathbb{Z}}$ et ± 2
- \blacksquare Nous voudrions compléter ces résultats en étudiant les résonances près du bord de $\Sigma_{\mathbb{Z}}$ mais loin de ± 2

Numérotation locale : Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. On numérote les paramètres spectraux λ_k et a_k dans B_i comme $(\lambda_\ell^i)_\ell, (a_\ell^i)_\ell$ où $0 \le \ell \le n_i$.

Asymptotique de valeurs propres : $\lambda_n^i \asymp E_0 + \frac{(n+1)^2}{L^2}$ pour $\lambda_n^i \in B_i$ près de E_0 .

Asymptotique de a_k : Soit $a_n^i \asymp \frac{|\lambda_n^i - E_0|}{L}$ (cas générique) soit $a_n^i \asymp \frac{1}{L}$ (cas non-générique).

Étudions l'équation de résonance sur $[E_0, E_0 + \varepsilon^2] - i[0, \varepsilon^5]$ où $\varepsilon > 0$ est petit

Figure: Rectangle $\mathcal{B}_{n,\varepsilon}$, cas générique

Numérotation locale : Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. On numérote les paramètres spectraux λ_k et a_k dans B_i comme $(\lambda_\ell^i)_\ell, (a_\ell^i)_\ell$ où $0 \le \ell \le n_i$.

Asymptotique de valeurs propres : $\lambda_n^i \asymp E_0 + \frac{(n+1)^2}{L^2}$ pour $\lambda_n^i \in B_i$ près de E_0 .

Asymptotique de a_k : Soit $a_n^i \asymp \frac{|\lambda_n^i - E_0|}{L}$ (cas générique) soit $a_n^i \asymp \frac{1}{L}$ (cas non-générique).

Étudions l'équation de résonance sur $[E_0, E_0 + \varepsilon^2] - i[0, \varepsilon^5]$ où $\varepsilon > 0$ est petit

Figure: Rectangle $\mathcal{B}_{n,\varepsilon}$, cas générique

Numérotation locale : Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. On numérote les paramètres spectraux λ_k et a_k dans B_i comme $(\lambda_\ell^i)_\ell, (a_\ell^i)_\ell$ où $0 \le \ell \le n_i$.

Asymptotique de valeurs propres : $\lambda_n^i \asymp E_0 + \frac{(n+1)^2}{L^2}$ pour $\lambda_n^i \in B_i$ près de E_0 .

Asymptotique de a_k : Soit $a_n^i \asymp \frac{|\lambda_n^i - E_0|}{L}$ (cas générique) soit $a_n^i \asymp \frac{1}{L}$ (cas non-générique).

Étudions l'équation de résonance sur $[E_0, E_0 + \varepsilon^2] - i[0, \varepsilon^5]$ où $\varepsilon > 0$ est petit

Figure: Rectangle $\mathcal{B}_{n,\varepsilon}$, cas générique

Numérotation locale : Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. On numérote les paramètres spectraux λ_k et a_k dans B_i comme $(\lambda_\ell^i)_\ell, (a_\ell^i)_\ell$ où $0 \le \ell \le n_i$.

Asymptotique de valeurs propres : $\lambda_n^i \approx E_0 + \frac{(n+1)^2}{L^2}$ pour $\lambda_n^i \in B_i$ près de E_0 .

Asymptotique de a_k : Soit $a_n^i \asymp \frac{|\lambda_n^i - E_0|}{L}$ (cas générique) soit $a_n^i \asymp \frac{1}{L}$ (cas non-générique).

Étudions l'équation de résonance sur $[E_0, E_0 + \varepsilon^2] - i[0, \varepsilon^5]$ où $\varepsilon > 0$ est petit.

Figure: Rectangle $\mathcal{B}_{n,\varepsilon}$, cas générique

Numérotation locale : Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. On numérote les paramètres spectraux λ_k et a_k dans B_i comme $(\lambda_\ell^i)_\ell, (a_\ell^i)_\ell$ où $0 \le \ell \le n_i$.

Asymptotique de valeurs propres : $\lambda_n^i \asymp E_0 + \frac{(n+1)^2}{L^2}$ pour $\lambda_n^i \in B_i$ près de E_0 .

Asymptotique de a_k : Soit $a_n^i \asymp \frac{|\lambda_n^i - E_0|}{L}$ (cas générique) soit $a_n^i \asymp \frac{1}{L}$ (cas non-générique).

Étudions l'équation de résonance sur $[E_0, E_0 + \varepsilon^2] - i[0, \varepsilon^5]$ où $\varepsilon > 0$ est petit.

Figure: Rectangle $\mathcal{B}_{n,\varepsilon}$, cas générique

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension :

Deux inégalités importantes

Périna le alicé

Statistique locale des niveau

Résultats pour le modèle présen Remarques

Opérateurs de Schrödinger périodiqu

Équation de résonance Résultats connus précédemment Asymptotiques des paramètres spectraux

Cas générique en dessous de $\Sigma_{\mathbb{Z}}$ en dessous de $\mathbb{R} \backslash \Sigma_{\mathbb{N}}$

Cas non-générique

Équation de résonances rééchelonnée Zones de non résonances Existence de résonances

Questions ouvertes

Résonances en dessous de $\Sigma_{\mathbb{Z}}$

Théorème [P. '15]

- Pour chaque valeur propre $\lambda_n^i \in I$ de H_L , il y a une et une seule résonance z_n dans $\mathcal{B}_{n,\varepsilon}$ avec la convention $\lambda_{-1}^i := 2E_0 \lambda_0$. De plus, $z_n \in \mathcal{M}_n$ et il n'y a pas de résonances dans le rectangle $[E_0 \varepsilon, E_0] i \left[0, C_0 \frac{n+1}{L^2}\right]$.
- 2 On définit $S_{n,L}^i(E) = S_L(E) \frac{a_n^i}{\lambda_n^i E}$ et $\alpha_n = S_{n,L}^i(\lambda_n^i) + e^{-i\theta(\lambda_n^i)}$. Alors, il existe $c_0 > 0$ t.q. $c_0 \le |\alpha_n| \lesssim \frac{1}{\varepsilon^2}$ et

$$z_n = \lambda_n^i + \frac{a_n^i}{\alpha_n} + O\left(\frac{(n+1)^4}{L^5 |\alpha_n|^3}\right)$$

Imz_n satisfait

$$\operatorname{Im} z_n = \frac{a_n^i \sin(\theta(\lambda_n^i))}{|\alpha_n|^2} + O\left(\frac{(n+1)^4}{L^5 |\alpha_n|^3}\right)$$

Par conséquent, il existe une constante C>0 t.q. $\frac{\varepsilon^4(n+1)^2}{CL^3} \leq |\mathrm{Im} z_n| \leq C\frac{(n+1)^2}{L^3}.$

■ Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |\text{Im}S_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |ImS_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

■ Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |ImS_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

■ Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |\text{Im}S_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

■ Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |\text{Im}S_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le théorème de Rouché pour décrire les résonances
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

■ Rappelons que $\Sigma_{\mathbb{N}}$ est la réunion de $\Sigma_{\mathbb{Z}}$ et l'ensemble fini de valeurs propres simples isolées de $H^{\mathbb{N}}$.

Théorème [P. '15]

Soit $E_0 \in (-2,2)$ l'extrémité gauche d'une bande B_i de $\Sigma_{\mathbb{Z}}$. Soit $L \in \mathbb{N}^*$ large. Alors, $H_L^{\mathbb{N}}$ n'a pas de résonances dans le rectangle $[E_0 - \varepsilon, E_0] - i[0, \varepsilon^5]$ quand ε est suffisamment petit.

- Comportement générique de paramètres spectraux $\Longrightarrow |\text{Im}S_L(E)|$ est petit si |ImE| n'est pas trop petit \Longrightarrow pas de résonances
- Dans le domaine près de λ_n^i , approximer $S_L(E)$ en gardant le terme $\frac{a_n^i}{\lambda_n^i E}$ et remplacant les autres par $\sum_{\ell \neq k} \frac{a_\ell}{\lambda_\ell \lambda_n^i}$. Ensuite, nous nous servons le théorème de Rouché pour décrire les résonances
- Pour obtenir la formule asymptotique de résonances, il est crucial d'étudier la régularité des paramètres spectraux.

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension Deux inégalités importantes Régime localisé

Résultats pour le modèle présent Remarques

érateurs de Schrödinger périodique Équation de résonance Résultats connus précédemment Asymptotiques des paramètres spectraux

Cas générique en dessous de Σ_Z en dessous de $\mathbb{R} \backslash \Sigma_N$

Cas non-générique Équation de résonances rééchelonnées Zones de non résonances Existence de résonances

Questions ouvertes

Équation de résonances rééchelonnées

■ Rappelons que $a_n \simeq \frac{1}{I}$ dans le cas non-générique

■ En posant $z = L^2(E - E_0)$, $\tilde{a}_k = La_k$ et $\tilde{\lambda}_k = L^2(\lambda_k - E_0)$, l'équation de résonances peut s'écrire comme

$$f_L(z) := \sum_{k=0}^L \frac{\tilde{a}_k}{\tilde{\lambda}_k - z} = -\frac{1}{L} e^{-i\theta \left(E_0 + \frac{z}{L^2}\right)}$$

■ Soit $(\lambda_\ell^i)_\ell$ les valeurs propres de H_L dans la bande $B_i = [E_0, E_1] \subset \Sigma_{\mathbb{Z}}$. Nous étudions les résonances rééchelonnées dans $\mathcal{D}_n^i = [\tilde{\lambda}_n^i, \tilde{\lambda}_{n+1}^i] - i[0, \varepsilon^5 L^2]$ avec $0 \le n \lesssim \varepsilon L$ et $\mathcal{R}^i = [0, \tilde{\lambda}_0^i] - i[0, \varepsilon^5 L^2]$

Équation de résonances rééchelonnées

- Rappelons que $a_n
 eq \frac{1}{L}$ dans le cas non-générique
- En posant $z=L^2(E-E_0)$, $\tilde{a}_k=La_k$ et $\tilde{\lambda}_k=L^2(\lambda_k-E_0)$, l'équation de résonances peut s'écrire comme

$$f_L(z) := \sum_{k=0}^{L} \frac{\tilde{a}_k}{\tilde{\lambda}_k - z} = -\frac{1}{L} e^{-i\theta \left(E_0 + \frac{z}{L^2}\right)}$$

■ Soit $(\lambda_\ell^i)_\ell$ les valeurs propres de H_L dans la bande $B_i = [E_0, E_1] \subset \Sigma_{\mathbb{Z}}$. Nous étudions les résonances rééchelonnées dans $\mathcal{D}_n^i = [\tilde{\lambda}_n^i, \tilde{\lambda}_{n+1}^i] - i[0, \varepsilon^5 L^2]$ avec $0 \le n \lesssim \varepsilon L$ et $\mathcal{R}^i = [0, \tilde{\lambda}_0^i] - i[0, \varepsilon^5 L^2]$

Équation de résonances rééchelonnées

- Rappelons que $a_n
 eq \frac{1}{L}$ dans le cas non-générique
- En posant $z = L^2(E E_0)$, $\tilde{a}_k = La_k$ et $\tilde{\lambda}_k = L^2(\lambda_k E_0)$, l'équation de résonances peut s'écrire comme

$$f_L(z) := \sum_{k=0}^{L} \frac{\tilde{s}_k}{\tilde{\lambda}_k - z} = -\frac{1}{L} e^{-i\theta \left(E_0 + \frac{z}{L^2}\right)}$$

■ Soit $(\lambda_\ell^i)_\ell$ les valeurs propres de H_L dans la bande $B_i = [E_0, E_1] \subset \Sigma_{\mathbb{Z}}$. Nous étudions les résonances rééchelonnées dans $\mathcal{D}_n^i = [\tilde{\lambda}_n^i, \tilde{\lambda}_{n+1}^i] - i[0, \varepsilon^5 L^2]$ avec $0 \le n \lesssim \varepsilon L$ et $\mathcal{R}^i = [0, \tilde{\lambda}_0^i] - i[0, \varepsilon^5 L^2]$

Zones de non résonances

Près de pôles Près de $\tilde{\lambda}_n^i$, $|f_L(z)|$ devient trop grand \Longrightarrow pas de résonances

Loin de l'axe réel Si |Imz| n'est pas trop petit, $|\text{Im}f_L(z)|$ devient grand \Longrightarrow pas de résonances

Posons
$$\Delta_n=rac{(n+1)}{\kappa(\ln(n+1)+1)}$$
 où $\kappa>0$ est grand et $x_0=L^2(\lambda_{n+1}^i-\lambda_n^i)$.

Zones de non résonances

Près de pôles Près de $\tilde{\lambda}_n^i$, $|f_L(z)|$ devient trop grand \Longrightarrow pas de résonances

Loin de l'axe réel Si |Imz| n'est pas trop petit, $|\text{Im}f_L(z)|$ devient grand \Longrightarrow pas de résonances

Posons
$$\Delta_n = \frac{(n+1)}{\kappa(\ln(n+1)+1)}$$
 où $\kappa > 0$ est grand et $x_0 = L^2(\lambda_{n+1}^i - \lambda_n^i)$.

Existence de résonances

Premier cas : Supposons que $n > \frac{\eta L}{\ln L}$ avec $\eta > 0$ petit

Théorème [P. '15]

- Il existe au moins une résonance rééchelonnée dans Ω_n^i .
- Si $-\frac{1}{L}e^{-i\theta(E_0)}$ appartient au $A'B'C'D'=f_L(ABCD)$ où $ABCD=[\tilde{\lambda}_n^i+\Delta_n,\tilde{\lambda}_{n+1}^i-\Delta_n]-i[0,\Delta_n]$, il existe une et une seule résonance rééchelonnée z_n dans Ω_n^i et

$$|\operatorname{Im} z_n| \leq \Delta_n = \frac{n}{\kappa \ln n} \asymp \frac{n}{\kappa \ln L} \lesssim \frac{n^2}{\varepsilon L}$$

Deuxième cas : $\Delta_n \geq rac{x_0^2}{arepsilon L} \Leftrightarrow n < rac{\eta L}{\ln L}$ avec $\eta > 0$ petit

Théorème [P. '15]

 f_L est une bijection de $\tilde{\Omega}_n^i$ sur $f_L(\tilde{\Omega}_n^i)$ et $|f_L'(z)| \gtrsim \frac{1}{n^2}$. De plus, il existe une et une seule résonance rééchelonnée \tilde{z}_n in $\tilde{\Omega}_n^i$ et $|\text{Im}\tilde{z}_n| \lesssim \frac{n^2}{n^2}$.

Existence de résonances

Premier cas : Supposons que $n > \frac{\eta L}{\ln L}$ avec $\eta > 0$ petit

Théorème [P. '15]

- Il existe au moins une résonance rééchelonnée dans Ω_n^i .
- Si $-\frac{1}{L}e^{-i\theta(E_0)}$ appartient au $A'B'C'D' = f_L(ABCD)$ où $ABCD = [\tilde{\lambda}_n^i + \Delta_n, \tilde{\lambda}_{n+1}^i \Delta_n] i[0, \Delta_n]$, il existe une et une seule résonance rééchelonnée z_n dans Ω_n^i et

$$|\operatorname{Im} z_n| \leq \Delta_n = \frac{n}{\kappa \ln n} \asymp \frac{n}{\kappa \ln L} \lesssim \frac{n^2}{\varepsilon L}$$

Deuxième cas : $\Delta_n \geq \frac{x_0^2}{\varepsilon L} \Leftrightarrow n < \frac{\eta L}{\ln L}$ avec $\eta > 0$ petit

Théorème [P. '15]

 f_L est une bijection de $\tilde{\Omega}_n^i$ sur $f_L(\tilde{\Omega}_n^i)$ et $|f_L'(z)| \gtrsim \frac{1}{n^2}$. De plus, il existe une et une seule résonance rééchelonnée \tilde{z}_n in $\tilde{\Omega}_n^i$ et $|\mathrm{Im}\tilde{z}_n| \lesssim \frac{n^2}{\varepsilon I}$.

Existence de résonances (suite)

Troisième cas : Résonances dans le domaine $\mathcal{R}^i := [0, \tilde{\lambda}^i_0] - i[0, L^2 \varepsilon]$

Théorème [P. '15]

 f_L est bijective de Ω^i sur $f_L(\Omega^i)$ et $|f'_L(z)| \geq c > 0$. De plus, $f_L(\Omega^i)$ ne contient pas le point $-\frac{e^{-i\theta(E_0)}}{L}$, donc, il n'y a pas de résonances dans Ω^i

- Simplifier l'équation de résonances rééchelonnées par $f_L(z) = -\frac{1}{L}e^{-i\theta(E_0)}$ en utilisant le théorème de Rouché
- Étudions explicitement l'image de domaines où l'on veut chercher les résonances via la fonction f_L(z)

Existence de résonances (suite)

Troisième cas : Résonances dans le domaine $\mathcal{R}^i := [0, \tilde{\lambda}^i_0] - i[0, L^2 \varepsilon]$

Théorème [P. '15]

 f_L est bijective de Ω^i sur $f_L(\Omega^i)$ et $|f'_L(z)| \geq c > 0$. De plus, $f_L(\Omega^i)$ ne contient pas le point $-\frac{e^{-i\theta(E_0)}}{L}$, donc, il n'y a pas de résonances dans Ω^i

- Simplifier l'équation de résonances rééchelonnées par $f_L(z) = -\frac{1}{L}e^{-i\theta(E_0)}$ en utilisant le théorème de Rouché
- Étudions explicitement l'image de domaines où l'on veut chercher les résonances via la fonction $f_L(z)$

Contents

Opérateur aléatoire discret avec désordre hors diagonal en dimension :

Deux inégalités importantes

Périne le alicé

Statistique locale des niveaux

Résultats pour le modèle présen Remarques

Opérateurs de Schrödinger périodiqu

Equation de résonance Résultats connus précédemment Asymptotiques des paramètres spectraux

Cas générique

en dessous de $\Sigma_{\mathbb{Z}}$ en dessous de $\mathbb{R}\backslash\Sigma_{\mathbb{N}}$

Cas non-générique

Équation de résonances rééchelonnée Zones de non résonances Existence de résonances

Questions ouvertes

Questions ouvertes

- L'étude de résonances de l'opérateur discret associé à un potentiel périodique sur la droite entière est une question que nous poursuivons après cette thèse. Dans ce cas là, les valeurs de $|\varphi_k(L)|^2$ et $|\varphi_k(0)|^2$ vont jouer un rôle crucial.
- Nous voulons également voir ce qui se passe pour les résonances loins du bord du spectre $\Sigma_{\mathbb{Z}}$ mais près les points ± 2 . Notons que, quand on est loin du bord de $\Sigma_{\mathbb{Z}}$, notre méthode ne fonctionne pas. Dans ce cas là, il faut utiliser et améliorer la méthode introduite par Klopp.
- Considérer le cas où $\pm 2 \in \partial \Sigma_{\mathbb{Z}}$.
- Quant à la première partie de ma thèse, malgré notre effort, une estimée de décorrélation pour les modèles discrets en dimension supérieure reste encore un défi.

MERCI POUR VOTRE ATTENTION!