SYDNEY TECHNICAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 1 MARCH 2014

Mathematics Extension 2

Name	• • • • •	• • •	 • •	٠.	 • •	• •	• •	 •	• •	 •	•	٠.	•	٠.	•	• •
Teacher	• • • •		 		 			 		 •				 	•	

General Instructions

- Working Time 70 min.
- Write using a blue or black pen.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- In Questions 6-9, show relevant mathematical reasoning and /or calculations.
- Begin each question on a fresh sheet of paper.

Total marks (53)

- Attempt Questions 1-9.
- All questions are of equal value.

Section 1

Multiple Choice (5 marks)

Use the multiple choice answer sheet for Question 1-5

- In the Argand Diagram the locus of the point P representing the complex number z such that |z-1+i|=4 is a circle. What are the centre and radius of this circle?
 - (A) centre (-1,1), radius 4
 - (B) centre (-1,1), radius 2
 - (C) centre (1,-1), radius 4
 - (D) centre (1,-1), radius 2
- 2. In the Argand Diagram below the points R and S represent the complex numbers w and z respectively, where $\angle ROQ = 90^{\circ}$. The distance OS is 2a units and the distance OR is a units. Which of the following is correct?

- (A) w = 2iz
- (B) $\mathbf{w} = \mathbf{i}\overline{w}$
- (C) $w = -\frac{iz}{2}$
- (D) $w = -\frac{z}{2i}$

3. Let z = a + ib where $a \neq 0$ and $b \neq 0$. Which of the following statements is false.

(A)
$$z - \overline{z} = 2bi$$

(B)
$$|z|^2 = |z||\overline{z}|$$

(C)
$$|z| + |\overline{z}| = |z + \overline{z}|$$

(D)
$$arg(z) + arg(\overline{z}) = 0$$

4. Which pair of equations gives the directrices of $4x^2 - 25y^2 = 100$

$$(A) x = \pm \frac{25}{\sqrt{29}}$$

(B)
$$x = \pm \frac{1}{\sqrt{29}}$$

(C)
$$x = \pm \sqrt{29}$$

(D)
$$x = \pm \frac{\sqrt{29}}{25}$$

5. The equation of the tangent to the rectangular hyperbola $xy = c^2$ at $P\left(ct, \frac{c}{t}\right)$ is given by $x + t^2y = 2ct$. The tangent cuts the x and y axes at A and B respectively.

Which of the following statements is false?

- (A) P is the centre of the circle that passes through O, A and B.
- (B) The area of $\triangle AOB$ is $2c^2$ square units
- (C) The distance AB is $\sqrt{4c^2 t^2 + \frac{4c^2}{t^2}}$.
- (D) AP > BP

Section II

Total Marks (48)

Attempt Questions 6-9.

Answer each question in your writing booklet.

In Questions 6-9, your responses should include relevant mathematical reasoning and/or calculations.

Question 6 (9 Marks)

Use a Separate Sheet of paper

a) Given A = 3 - 4i and B = 5 + 3i, express the following in the form x + iy where x and y are real numbers.

i. $\frac{A}{B}$

2

iiv. \sqrt{A}

2

b) Show that the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_0, y_0)$ has equation: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

2

c) On an Argand diagram, sketch the region where the inequalities

 $2 \le |z| \le 5$ and $\arg \frac{\pi}{6} < \arg z < \frac{2\pi}{3}$ hold simultaneously

3

- a) i. Find the five fifth roots of $z^5 = 1$ and plot these on the Argand diagram.
- 2

ii. Prove that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$.

3

b) i. Expand $(\cos \theta + i \sin \theta)^3$ using Pascals triangle (or other)

- 1
- ii. Expand $(\cos \theta + i \sin \theta)^3$ using de Moivres theorem and hence show that
 - $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$

3

End of Question 7

Question 8 (9 Marks)

Use a Separate Sheet of paper

a) A conic C has foci at (4,0) and (-4,0) and has eccentricity, $e = \sqrt{2}$. Find the equation of this conic

2

b) i) Show that $P(2\sqrt{2}\cos\theta, 3\sqrt{2}\sin\theta)$ lies on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 2$

1

ii) Show that the slope of the tangent at P is $\frac{-3\cos\theta}{2\sin\theta}$

2

iii) Find the equation of the normal to the ellipse at P

2

iv) Find the value of θ to the nearest degree, if the normal passes through the point $(-2\sqrt{2}, 0)$

2

End of Question 8

- a) $z_1 = 1 + i\sqrt{3}$ and $z_2 = 1 i$ are two complex numbers.
 - i. Express z_1 , z_2 and $\frac{z_1}{z_2}$ in modulus/argument form.

2

2

- ii. Find the smallest positive integer n such that $\frac{(z_1)^n}{(z_2)^n}$ is imaginary.
 - For this value of n, write the value of $\frac{(z_1)^n}{(z_2)^n}$ in the form bi where b is a real number.
- b) Let $P(a\cos\theta, b\tan\theta)$ be a point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ where a > 0 and b > 0 as shown in the diagram. The foci of the hyperbola are S and S', l is the tangent to the point P.

The points R and R' lie on l so that SR and S'R' are perpendicular to l.

The line *l* has equation $bx \sec \theta - ay \tan \theta - ab = 0$

2

$$SR = \frac{ab(e \sec \theta - 1)}{\sqrt{a^2 \tan^2 \theta + b^2 \sec^2 \theta}}$$

ii. Show that $SR \times S'R' = b^2$

3

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

Mathemo	tics Extension 2
Assessment	t Task I
	2014
Multiple Choice	aii) let $\sqrt{A} = x + iy$
1. C	$\therefore A = x^2 y^2 + \partial x y i$
2. D	$x^2 - y^2 = 3 \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$
<i>3.</i> ∠	2xy=-4
4 A 5 D	$(x^{2}+y^{2})^{2}=(x^{2}-y^{2})^{2}+4x^{2}y^{2}$
	$=3^{2}+4^{2}$
Question 6	= 25
	$x + y^2 = 5 \dots (2)$
a i) $A = 3 - 4i$ B $5 + 3i$	
15 5+ 3×	$(1) + (2) = 2x^2 = 8$ $(2) - (1) = 2y_{=2}^2$
= 3-4i x 5-3i 5+3i 5-3i	$x^2 = 4 \qquad \qquad y^2 = 1$
5+3u 5-3u	$x = {\stackrel{+}{-}} 2 \qquad \qquad y = {\stackrel{+}{-}} 1$
= 15-9i -20i -12	Y
25 + 9	Since $2xy = -4$ $\sqrt{A} = \pm (2-i)$
= <u>3-29 i</u> 34	$\sqrt{A} = \pm (2-i)$
34	
$=\frac{3}{34}-\frac{29}{34}i$	
J-1 5T	
0	

b)	x^2	+ M2	= J
	$\overline{a^2}$	62	

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\frac{2y}{b^2} \frac{dy}{dx} = -\frac{2x}{a^2}$$

$$\frac{dy}{dx} = -b^2x$$

$$At(x_{\bar{0}}, y_{\bar{0}})$$
 $y-y_{\bar{0}}=m(x-x_{\bar{0}})$

$$a^{2}yy - a^{2}y^{2} = -b^{2}xx_{0} + b^{2}x_{0}^{2}$$

$$b^{2}xx_{0} + a^{2}yy_{0} = a^{2}y_{0}^{2} + b^{2}x_{0}^{2}$$

$$\frac{x_o^2}{a^2} + \frac{y_o^2}{b^2} = 1$$

$$\frac{a^2}{a^2} \frac{\chi \chi_0 + y \gamma_0 = 1}{b^2}$$

The state of the s	reacher wante.
Question 7	
ai) 3,=1	bi) $(\cos \theta + i \sin \theta)^3$
$3_2 = \cos 2\pi + i \sin 2\pi$	$= (\cos^3\theta + 3i \cos^2\theta \sin\theta - 3\cos\theta \sin^2\theta)$
3 5	- isin³8
$\frac{3}{3} = \cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5}$	
3 5	$bii)$ $(\cos \theta + i \sin \theta)^3$
$3_{4} = \cos\left(\frac{-47}{5}\right) + i\sin\left(\frac{-47}{5}\right)$	
$\frac{3}{5} = \cos\left(\frac{-2\pi}{5}\right) + i\sin\left(\frac{-2\pi}{5}\right)$	Equating the emaginary parts
d.	sin30 = 3 cos 19 Sin 0 - Sin30
Cis 424 Cos 2m	$=3(1-\sin^2\theta)\sin\theta -\sin^3\theta$
$cis \frac{4n}{5}$	= 35in0 - 3sin30 - Sin30
>2	$= 3\sin\theta - 4\sin^3\theta$
eis (-47) cis (-27)	
<u> </u>	
aii) Sum of root of 25-1 = 0 is 0	
31+32+33+34+35=0	
1+ cis 211 + cis 477 + cis (-471)+cis (-37)	v)
Since $cis \frac{2\pi}{5} + cis \left(-\frac{2\pi}{5}\right)^2 \log \left(\frac{2\pi}{5}\right)^2 = 0$	
1+ 2 cos 27 + 2 cos 47 =0	
3 5	
$2(\cos 2\pi + \cos 4\pi) = -1$	
605 271 + 605 471 = -1 5 5 2	

0 4. 0	
Question 8	
	$\frac{b.ii}{t} \frac{2t^2 + y^2 = 2}{t}$
a) Foci = -ae	7 9
$4 = a\sqrt{2}$	$\frac{3t + 2y \cdot dy}{2} = 0$
$\alpha = 4 = 2\sqrt{2}$ $\sqrt{2}$	2 q dsc
VZ	2/2 10) 19 + 6/2 sin A
$b = 2\sqrt{2}$	$\frac{2\sqrt{2}\cos\theta + 6\sqrt{2}\sin\theta}{2} \frac{dy}{dx} \ge 0$
	2 6: -49 / 40
Parlama lack il li	$\frac{2 \sin \theta}{3} \frac{\text{ely}}{\text{dx}} = -\cos \theta$
Rectangular hyperbola	
$\frac{x^2 - y^2 = 1}{a^2 + 2}$	$\frac{dy = -3\cos\theta}{dx + 2\sin\theta}$
	ar asin o
$\frac{x^2-y^2=1}{8}$	
× Š	bili) $m_2 = \frac{73 \sin \theta}{3 \cos \theta}$
$x^2 - y^2 = 8$	3 60 5 0
	$4-3\sqrt{2}\sin\theta = A\sin\theta \left(x-2\sqrt{2}\cos\theta\right)$
$bi) \frac{x^2 + y^2 = 2}{4}$	$\frac{y-3\sqrt{2}\sin\theta=2\sin\theta(x-2\sqrt{2}\cos\theta)}{3\cos\theta}$
7 9	$3y\cos\theta - 9\sqrt{2}\sin\theta\cos\theta = dx\sin\theta - 4\sqrt{2}\sin\theta\alpha$
P(2V2 cas 0, 3/2 sin 0)	
(www. soo o , www.sm. o)	$3y \cos \theta - 2x \sin \theta = S\sqrt{2} \sin \theta \cos \theta$
1.115-(2/2 cos 8)2, (2/2 sin 9)2	(h:v) P(25 a)
$\frac{2.4.5 = (2\sqrt{2}\cos\theta)^2 + (3\sqrt{2}\sin\theta)^2}{4}$	biv) P(-2\sqrt{2},0)
6 20 2-	$3y\cos\theta - 2x\sin\theta = 5\sqrt{2}\sin\theta\cos\theta$
$\frac{8\cos^2\Theta}{4} + \frac{18\sin^2\Theta}{9}$	3x0 cos0 - 2(-2/2)sin0 = 5/2 sin0 cos0
	0 + 4 \(\sin \theta = 5 \sin \theta \cos \theta \)
$2\left(\cos^2\theta + \sin^2\theta\right)$	3 solutions
= 2	$\sin \theta = 0 \qquad 4\sqrt{2} \sin \theta = 5\sqrt{2} \sin \theta \cos \theta$
= R. H-S	$\cos \theta = \frac{4}{5}$
	$\theta = 37^{\circ}, 323^{\circ}$

Question 9	
ai 2, = 1+i√3	bi) Perpendicular distance
$2_2 = 1 - i$	SR = bxaesec 0 - 0-ab
	$\sqrt{b^2 \sec^2 \theta + a^2 \tan^2 \theta}$
$2, = 2\left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)$	= ab e sec 0-1
$=2(\cos \eta + i\sin \eta)$	$\sqrt{a^2 \tan^2 \theta + b^2 sec^2 \theta}$
	as a>o b>o
$2_{2} = \sqrt{2}(\sqrt{2} - i\sqrt{2})$	= ab (e sec 0-1)
$= \sqrt{2} \left(\cos \left(-\frac{77}{4} \right) + \lambda^2 \sin \left(-\frac{27}{4} \right) \right)$	$\sqrt{a^2 \tan^2 \theta + b^2 \sec^2 \theta}$
	as e>0 sec0>1
$\frac{z_1}{22} = \frac{2 \left(\cos 7\gamma_1 + i \sin 7\gamma_1 \right)}{12}$	
22 12 12	·
	bii) s'R' = 16(-ae) sec 0-0-ab1
$aii) arg\left(\frac{2}{2n}\right) = \frac{7n77}{12}$	$\sqrt{b^2 sec^2 \theta + a^2 tan^2 \theta}$
$\frac{1}{\sqrt{2}} \left(\frac{2}{\sqrt{2}} \right)^{6} \left(\cos \left(\frac{7 \times 6 \gamma_{1}}{12} \right) + i \sin \left(\frac{7 \times 6 \gamma_{1}}{12} \right) \right)$	$= -ab(esec\theta + 1) $
[12]	$\sqrt{a^2 \tan^2 \theta + b^2 \sec^2 \theta}$
2 is imaginary if 7717 = m7	as a>o b>o
22 /2 1	
The smallest positive integer n is 6	= ab (esec 0+1)
$\arg\left(\frac{2}{2}\right) = \frac{7\gamma}{73} = 4\gamma - \frac{\gamma}{2} = -\frac{\gamma}{2}$	
(22) 23	
	:. SR x 5'R'
	$= a^2b^2(e\sec\theta-1)(e\sec\theta+1)$
$\frac{Z_{1}^{b}}{Z_{2}^{6}} = 8 \left[\cos \left(-\frac{\gamma r}{2} \right) + i \sin \left(-\frac{\gamma r}{2} \right) \right]$	$a^2 tan^2 \theta + b^2 sec^2 \theta$
= -8 i	
	Y

Student Name:	Teacher Name:
$= \frac{a^2b^2(e^2\sec^2\theta - 1)}{e^2\sec^2\theta - 1}$	
· · · · · · · · · · · · · · · · · · ·	
$a^2 tan^2 \theta + b^2 sec^2 \theta$	
$= \alpha^2 b^2 (e^2 \operatorname{Sec}^2 \theta - 1)$	
$a^{2} tan^{2} \theta + a^{2} (e^{2} - 1) sec^{2} \theta$	
$b^2 = a^2(e^2 - 1)$	
$= a^2b^2(e^2sec^2\theta - 1)$	
$a^2 \int e^2 sec^2 \theta - \left(sec^2 \theta - tan^2 \theta \right) \right]$	
$= b^2 \left(e^2 sec^2 \theta - 1 \right)$	
(C SEC D-1)	
. 3	
$=b^2$	
$SR \times SR' = b^2$	