INF721

2024/2

Deep Learning

L17: Transformers

Logistics

Last Lecture

- Machine Translation
- Decoding
 - Greedy Search
 - Beam Search
- Attention in RNNs

Lecture Outline

- Machine Translation
- ▶ Problems with RNNs
- ▶ Transformers
 - Self-Attention
 - Multi-head Attention
 - ▶ Encoder & Decoder
 - Positional Encoding
 - Masked Multi-head Attention

Machine Translation

Given a dataset of sentence pairs:

$$(x = \{x^{<1>}, x^{<2>}, \dots, x^{}\}, y = \{y^{<1>}, y^{<2>}, \dots, y^{}\}),$$

we want to learn a model that maps x into y.

Portuguese	English
Olá, como vai você?	Hello, how are you?
O livro está em cima da mesa.	The book is on the table.
Lucas irá viajar ao Rio em Dezembro.	Lucas is travelling to Rio in December.
Em Dezembro, Lucas irá viajar ao Rio.	Lucas is travelling to Rio in December.
• • •	• • •

Problems with RNNs

- Struggle to capture long dependencies in sequences
- Hard to parallelize

Transformers

Transformers are an encoder-decoder architecture to process sequences using only attention (eliminating recurrence).

Initially proposed for machine translation, but proved to be very effective in many other problems in:

- Natural Language Processing
- Computer Vision
- Reinforcement Learning
- ...

Attention in RNNs vs. Transformers

RNNs Badahnau (Additive) Attention

Transformers Scaled Dot-Product Attention

Encoder Input

The transformer encoder takes as input a sequence of word embeddings summed with positional encodings. This sequence has the constant size (T_x, d_{model}) throughout the entire model

The contextual embeddings size is typically called d_{model}

Self-Attention

The key idea behing the Transformer is the **self-attention mechanism**, which learns a context vector $c^{< t>}$ for each input element $x^{< t>}$ based on the input sequence x itself.

Self-Attention

The contextal represention $C = \{c^{<1>}, \ldots, c^{<T_x>}\}$ of the entire input sequence $x = \{x^{<1>}, \ldots, x^{<T_x>}\}$ can be computed in a vectorized way combining vectors $q^{<t>}$, $k^{<t>}$, $v^{<t>}$ in matrices Q, $K \in V$

Self-Attention
$$C = Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{(d_k)}})V$$

(normalized by line)

The attention layer receives the embedded sequence X_{epe} as input

$$X_{epe} \in \mathbb{R}^{T_x \times d_e}$$
Lucas \square
will \square
travel \square

$$d_e = d_q = d_k = d_v = 3$$

The sizes of key and query have to be the same. But embeddings and value typically also have same sizes.

Multi-Head Attention

The Multi-Head Attention layers learns $m{h}$ independent representations C_i (called heads) using Self-Attention

 $Multihead(Q, K, V) = Concat(C_1, C_2, ..., C_h)W^o$

Multi-Head Attention

 $Multihead(Q, K, V) = Concat(C_1, C_2, C_3)W^o$

$$W^o \in \mathbb{R}^{d_{model} \times d_{model}}$$

$$= C \in \mathbb{R}^{T_x \times d_{model}}$$

$$C_1 = softmax(\frac{Q_1 K_1^T}{\sqrt{(d_k)}}) V_1$$

$$C_2 = softmax(\frac{Q_2 K_2^T}{\sqrt{(d_k)}})V_2$$

$$C_3 = softmax(\frac{Q_3 K_3^T}{\sqrt{(d_k)}})V_3$$

$$Q_1 = X_{epe} W_1^q$$

$$Q_1 = X_{epe}W_1^q$$
 $K_1 = X_{epe}W_1^k$ $V_1 = X_{epe}W_1^v$

$$Q_2 = X_{epe} W_2^q K_2 = X_{epe} W_2^k$$

$$X_{epe}W_2^k \qquad V_2 = X_{epe}W_2^v$$

$$Q_3 = X_{epe}W_3^q$$
 $K_3 = X_{epe}W_3^k$ $V_3 = X_{epe}W_3^v$

$$V_3 = X_{epe}W_3$$

Number of heads :

$$h=3$$

$$d_k = \frac{d_{model}}{h} = 3$$

 $W^q \in \mathbb{R}^{d_{model} \times d_{model}}$

$$l \in \mathbb{R}^{d_{model} \times d_{model}}$$

$$T_{x}=3$$

$$d_{model} = 9$$

$$W_1^{\nu}$$
 W_2^{ν} W_{ν}^{k}

$$d_{model} = 9$$

$$X_{epe} \in \mathbb{R}^{T_x \times d_{model}}$$

Encoder

Input: a sequence $x = \{x^{<1>}, \dots, x^{< T_x>}\}$

Ouput: a contextual representation $C = \{c^{<1>}, \dots, c^{<T_x>}\}$ of x

The encoder applies a Multihead Layer followed by a Feed Forward Neural Network (MLP).

Both are normalized with Layer Norm (*Norm*) and conneced with a residual connection (*Add*)

Decoder

Input: Input context C and previous $\{\hat{y}^{<1>}, \dots, \hat{y}^{<t-1>}\}$ ouput tokens

Output: The next token $\hat{y}^{< t>}$

Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.

 \hat{y} = Lucas

Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.

 \hat{y} = Lucas irá

Inference Example

At inference time, the model is autoregressive, i.e., it generates one word at a time.

<SOS> Lucas irá visitar o Rio em Dezembro

 \hat{y} = Lucas irá visitar o Rio em Dezembro<EOS>

Decoder Nx

Softmax

fc

Positional Encoding

The self-attention mechanism does not consider the position of the words.

$$C = Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{(d_k)}})V$$

To add this information to the learned contextual representation $oldsymbol{C}$, both encoder and decoder add an positional information to each element $x^{< t>}$ of the input $x = \{x^{< 1>}, \dots, x^{< T_x>}\}$

Positional Encoding

if
$$i$$
 is odd
$$PE_{(t,2i+1)} = cos(\frac{t}{10000^{\frac{2i}{d}}})$$

Training with Masked Multi-head Attention

Training with Masked Multi-head Attention

The attention layer receives the embedded sequence X_{epe} as input

$$X_{epe} \in \mathbb{R}^{T_x \times d_e}$$
Lucas \tag{will}
will \tag{travel}

$$d_e = d_q = d_k = d_v = 3$$

The sizes of key and query have to be the same. But embeddings and value typically also have same sizes.

Next Lecture

L17: Transformers (Part II)

Case studies of transformers: BERT and GPT

