# A study on the Moog 904b high pass filter

Diego Di Carlo, Mattia Paterna

Aalborg Universitet København

June 14, 2016

#### Outcome

- Introduction
- 2 Analysis of the analog filter
- 3 Discretizaton and Implementation

# Goal of the project

- Analyse the original analog circuit
- Get tuned-frequency behaviour given control voltage E
- Replicate the circuit in discrete-time

#### General overview

#### What is a Moog 904b?

- A voltage controlled filter, or VCF
- Built on Moog's late-60s filter patent
- Exhibits a high pass behaviour



#### General overview

Inside the module

- 4-pole high pass filter configuration
- ullet 24 dB/oct (80dB/dec) attenuation for frequencies below  $\omega_c$
- frequency range switch to tuned the whole frequency band

### Specifics

US patent

- adder stage
- inverter stage
- four identical stages of PNP-NPN coupled transistors, working as voltage control resistor

### **Specifics**

The audio part

- $\bullet$   $\sim$  40 dB attenuation stage
- 4 RC-circuit filtering stage
- output amplifier (+42 dB)

### **Specifics**

#### Sziklay pair

- unity-gain op-amp
- make each stage independent

#### Frequency range switch

- decoupling capacitors
- $1 + \frac{1}{2}$  octaves shifting

### Circuit Analysis



Figure: SPICE model version of only the audio part of the circuit subtitled with "DATE 6/23/70 DWG. NO 1118".

### DC Analysis



Figure: SPICE model version of only one high pass module

# AC Analysis



# AC Analysis



Figure: The transfer function (magnitude and phase) of a one *single-pole HPF stage* 

Generalized Ohm's Law:

$$V(s) = \dot{Z}(s)I(s) \tag{1}$$

The quantity  $\dot{Z}(s) = \frac{V(s)}{I(s)}$  is called *impedance* of the circuit element. It assumes values in  $\mathbb{C}$  and in *Cartisian form* is defined as

$$\dot{Z}(s) = R(s) + jX(s) \tag{2}$$

where R(s) is called *resistance* and X(s) *reactance*.

Impedance of Resistor and Capacitor

The **resistor** is a linear time-invariant and frequency-constant component:

$$\dot{Z}_R(s) = R, \forall s \in \mathbb{C}, \forall t \in \mathbb{R}.$$
 (3)

The **capacitors** is a non-linear component:

$$i(t) = C \frac{dv(t)}{dt} \Leftrightarrow v(t) = \frac{1}{C} \int_0^\infty i(t)dt$$
 (4)

where  ${\sf C}$  is the capacitance of the capacitor.

If we apply the Laplace transform,

$$V(s) = \frac{1}{C} \frac{1}{s} I(s) \Rightarrow \dot{Z}_C(s) = \frac{1}{sC}$$
 (5)

We find the impedance of the capacitor.



#### Complex Signal Voltage Divider



Figure: RC circuit as a voltage divider with complex impedences in Laplace domain

The RC circuit can be seen as a voltage divider of complex impedences for complex signals:

$$V_{\text{out}}(s) = \frac{\dot{Z}_R}{\dot{Z}_R + \dot{Z}_C} V_{\text{in}}(s) = \frac{R}{R + \frac{1}{sC}} V_{\text{in}}(s)$$
 (6)

Rearranging the equation we obtain:

$$V_{\text{out}}(s) = \frac{s}{s + \frac{1}{RC}} V_{\text{in}}(s) \tag{7}$$

which is the well-know relation for an first order high pass filter (HPF) with cut-off frequency  $\omega_c=1/RC$ 

Total transfer functions

The *i*-th stage single-pole HPF transfer function:

$$H_i(s) = \frac{V_{i,\text{out}}(s)}{V_{i,\text{in}}(s)} = \frac{s}{s + \omega_c}$$
 (8)

Thus, overall transfer function  $H_{HPF}(s)$  considering all the 4 stages is:

$$H_{HPF}(s) = H_1(s)H_2(s)H_3(s)_4H(s) = \frac{s^4}{s^4 + 4\omega_c s^3 + 6\omega_c^2 s^2 + 4\omega_c^3 s + \omega_c^4}$$
(9)

Transistor as variable resistor



Figure: BJT NPN transistor as voltage-controlled resistor. The equivalent resistance R is a non-linear function of the voltage  $V_{BE}$ 

BJT's Voltage-current characteristic



Resistance definition:

$$R = \frac{V}{I} \Rightarrow \frac{1}{R} = \frac{I}{V} \tag{10}$$

But for non linear voltage-current characteristics:

$$\frac{1}{R} = \frac{di(t)}{dv(t)} \tag{11}$$

The collector current value:

$$i_C = I_S \cdot e^{\frac{v_{BE}}{V_T}} \left( 1 + \frac{v_{CB}}{V_A} \right) \tag{12}$$

which usually is simplified as

$$i_C = I_S \cdot e^{\frac{v_{BE}}{V_T}} \left( 1 + \frac{v_{CE}}{V_A} \right) \tag{13}$$

Dynamic (emitter) resistance evaluation

In our case, we have that  $v_{BE} = +E$ . To evaluate the dynamic equivalent resistance of this component, we must compute the derivative now.

$$\frac{1}{R} = \frac{\partial i_C}{\partial v_{CE}} = \frac{I_S \cdot e^{\frac{V_{+E}}{V_T}}}{V_A}$$
 (14)



#### Discretization

#### Criteria

- topology preservation
- good transfer function replacement

### Integrators

- $\omega_c$  express 1/RC
- the output signal is the resistor voltage
- the integrator is a gain element with factor  $\frac{1}{6}$



#### Integrators

- several models for digital integrators
- different models yield to different transfer function
- the integrator is replaced by a unit-delay
- trapezoidal integration

# Trapezoidal integrator

- precise mapping of analog frequency response
- preserve the original structure
- named topology-preserved transform



# Trapezoidal integrator

Its transfer function is

$$H(s) = \frac{\omega_c}{s} \Rightarrow H(z) = \frac{\omega_c}{2} \frac{1+z^{-1}}{1-z^{-1}}$$

that is the bilinear transform.

### **Implementation**

The proposed implementation consists of

- four identical trapezoidal integrators
- frequency provided in terms of voltage tension
- control for frequency range switch
- gentle saturation before the filtering stage

### Implementation

We've closely followed this models:

- Zavalishin's implementation of trapezoidal integrator
- Pirkle's general structure of Ladder Filter
- Välimäki and Huovilanen's saturation stage

#### **Evaluation**

square wave used

- the 904b could be considered as a ladder filter without recursion
- for E=0.05 we get 1954.2 Hz for he High setting and a frequency value of 651.39 Hz for the Low one, that is exactly a  $1+\frac{1}{2}$  octaves shifting

#### **Evaluation**



Figure: Effect of the discretized 904*B* on a pulse wave with duty cycle of 0.5. It can be noticed how the filter has a *smoothly* action on the square wave.

That's all, folks!