Séquence 1 : Nombres entiers I] Lire et écrire des nombres entiers

Act. 1

Définitions

- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sont les dix chiffres qui permettent d'écrire tous les nombres.
- Chaque chiffre a une valeur en fonction de sa position dans le nombre :

```
1 dizaine = 10 unités • 1 centaine = 10 dizaines • 1 millier = 10 centaines
1 million = 1 000 milliers • 1 milliard = 1 000 millions
```

Exemple

Le nombre 25 204 879 603 est un nombre à onze chiffres.

Pour en faciliter la lecture, on peut regrouper ses chiffres par classes de trois :

Classe des milliards		Classe des millions			Classe des milliers ou des mille			Classe des unités			
centaines	dizaines	unités	centaines	dizaines	unités	centaines	dizaines	unités	centaines	dizaines	unités
	2	5	2	0	4	8	7	9	6	0	3

On peut ainsi le décomposer :

 $25\ 204\ 879\ 603 = (25 \times 1\ 000\ 000\ 000) + (204 \times 1\ 000\ 000) + (879 \times 1\ 000) + (603 \times 1)$ Ce nombre se lit donc « 25 milliards 204 millions 879 mille 603 ».

XEntraine-toi avec Écrire des nombres entiers
X

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie ? Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie : Les émissions de CO2 par habitant dans le monde

Set dans la vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant dans le vraie vie : Les émissions de CO2 par habitant de CO2 par habitant de CO2 par habitant de CO2 par

Act. 2

II] Calculer avec des nombres entiers

Définitions

- Dans une addition, on ajoute des termes, et le résultat est une somme.
- Dans une soustraction, on soustrait des termes, et le résultat est une différence.
- Dans une multiplication, on multiplie des facteurs, et le résultat est un produit.

Exemple

67 + 345 = 412 412 est la somme des termes 67 et 345.

Propriétés

- Dans une succession d'additions, on peut changer l'ordre des termes et les regrouper.
- Dans une succession de multiplications, on peut changer l'ordre des facteurs et les regrouper.

Exemples

- \bullet 35 + 76 + 15 = 35 + 15 + 76 = 50 + 76 = 126
- $5 \times 36 \times 2 = 5 \times 2 \times 36 = 10 \times 36 = 360$

★ Entraine-toi avec Calculer astucieusement

Propriétés

- Quand on multiplie un nombre par 10, le chiffre des unités devient le chiffre des dizaines.
- Quand on multiplie un nombre par 100, le chiffre des unités devient le chiffre des centaines.

• ...

Exemple

 $35 \times 100 = 3500$

Le chiffre 5, qui est le chiffre des unités du nombre 35, devient le chiffre des centaines du résultat 3 500.

X Entraine-toi avec Multiplier par 10, 100, 1000

X

Act. 3

III] Estimer un ordre de grandeur

Définition

Un ordre de grandeur d'un nombre est un nombre proche de celui-ci et facile à utiliser en calcul mental.

Remarque

Un ordre de grandeur n'est pas unique : on peut donner des ordres de grandeurs différents selon la précision voulue.

Exemple

La population française était de 67 063 703 habitants en 2020. Un ordre de grandeur de cette population est 70 millions (on pourrait aussi choisir 100 millions ou 67 millions).

Méthode

Pour estimer un ordre de grandeur du résultat d'une opération, on peut remplacer chaque terme ou facteur par un nombre proche qui permet de calculer mentalement.

Exemples

• On cherche un ordre de grandeur de la somme 1 243 + 519 + 198.

On remplace chaque terme par un nombre proche.

Par exemple: 1 200 + 500 + 200 = 1 900 1 900 est un ordre de grandeur de cette somme. • On cherche un ordre de grandeur du produit 318 imes 21.

On remplace chaque facteur par un nombre proche.

Par exemple : $300 \times 20 = 6000$

6 000 est un ordre de grandeur de ce produit.

Un immeuble est constitué d'un rez-de chaussée surmonté de 9 étages, chacun de ces 10 niveaux ayant une hauteur de 2,95 m.

 Donner un ordre de grandeur de la hauteur de cet immeuble.

Solution

L'ordre de grandeur de la hauteur de chaque niveau est 3 m.

 $3 \text{ m} \times 10 = 30 \text{ m}$

Donc la hauteur de cet immeuble est d'environ 30 m.

- Dans un collège, 224 élèves sont inscrits en 6^e, 197 en 5^e, 198 en 4^e et 167 en 3^e.
- Donner un ordre de grandeur du nombre d'élèves dans ce collège.

Solution

On cherche un ordre de grandeur de la somme 224 + 197 + 198 + 167.

On remplace chaque terme par un nombre proche.

220 + 200 + 200 + 170 = 790

Un ordre de grandeur du nombre d'élèves dans ce collège est 790.

💢 Entraine-toi avec Ordre de grandeur 💥

Act. 4

IV] Calculer avec des durées

Définition

- Le temps écoulé entre deux instants s'appelle une durée.
- L'unité de référence pour mesurer une durée est la seconde.
- Autres unités de durées :

N	Unité			
jour	heure	minute	seconde	
1 j = 24 h	1 h = 60 min	1 min = 60 s	1 s	

Exemples

- 16 h 30 min + 2 h 15 min
- = 18 h 45 min
- 18 h 20 min − 3 h 25 min
- = 14 h 55 min

11 Le départ du train de Tamara est prévu à 18 h 15 et son arrivée, à 21 h 05.

Combien de temps son trajet va-t-il durer ?

Solution

On schématise le problème :

On a calculé la somme des durées intermédiaires.

On a donc: 21 h 05 min - 18 h 15 min = 2 h 50 min. Le trajet va durer 2 h 50 min.