

UNIVERSIDAD TECNOLÓGICA METROPOLITANA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INFORMÁTICA Y COMPUTACIÓN ESCUELA DE INFORMÁTICA

MODELO DE APRENDIZAJE AUTOMÁTICO PARA LA PREDICCIÓN DEL COMPORTAMIENTO DE CLIENTES EN CANAL WEB

TRABAJO DE TÍTULACIÓN PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN MENCIÓN INFORMÁTICA

AUTORES:

GONZÁLEZ GÁRATE, CRISTÓBAL ANDRES
TAPIA RIQUELME, MARCELO IGNACIO
OYARCE TREJO, DIEGO ESTEBAN

PROFESORA GUÍA: CASTRO OPAZO, PAULA

SANTIAGO - CHILE 2023

Índice general

R	Resumen Abstract 1 Presentación del proyecto					
A						
1						
	1.1	Descri	ipción del trabajo de título	1		
	1.2	Objet	ivos	1		
	1.3	Alcan	ces y Limitaciones	2		
2	La empresa					
	2.1	Histor	ria	4		
	2.2	Descri	ipción general	6		
	2.3	Misió	n y visión	6		
		2.3.1	Misión	6		
		2.3.2	Visión	7		
3	Marco teórico					
	3.1	Importancia de predecir el comportamiento del cliente en un sitio web				
	3.2	Comportamiento del cliente/afiliado en el canal web				
		3.2.1	Definición y relevancia del comportamiento del cliente para el			
			negocio	9		
		3.2.2	Características del comportamiento del cliente en el canal web	11		
		3.2.3	Factores que afectan el comportamiento del cliente	12		
	3.3	Herramientas para la predicción del comportamiento del cliente en el				
		canal	web	13		
		3.3.1	Introducción a las herramientas de análisis de datos	13		
		3.3.2	Métodos, técnicas y tecnologías de análisis de datos	15		

		3.3.3	Modelos de predicción de comportamiento del cliente	16
		3.3.4	Tabla comparativa de los modelos de predicción	36
		3.3.5	Series Temporales	37
		3.3.6	Redes LSTM Long Short-Term Memory	58
		3.3.7	Metodología del proyecto	60
		3.3.8	Metodología del sistema	62
4	Pro	ceso E	${f TL}$	65
	4.1	Diseño	Proceso ETL	65
		4.1.1	Requisitos ETL	66
		4.1.2	Identificicación fuente de datos	66
		4.1.3	Diseño del modelo de datos objetivo	67
		4.1.4	Planificación de las transformaciones	68
		4.1.5	Selección de herramientas	70
		4.1.6	Construcción y prueba proceso ETL	71
		4.1.7	Monitoreo proceso ETL	73
5	Exp	olorato	ry Data Analysis (EDA)	7 5
	5.1	Introd	ucción al EDA	75
	5.2	Recop	ilación de datos	76
	5.3	Descri	pción de los datos	78
6	Mo	delos d	le predicción aplicados	82
	6.1	Model	o de series de tiempo	82
		6.1.1	Preprocesamiento y Preparación de Datos	82
		6.1.2	Codificación y Transformación One-Hot	82
		6.1.3	Construcción y Entrenamiento del Modelo	83
		6.1.4	Conclusión del Modelo de series de tiempo ARIMA	83
	6.2	Model	o de autoencoders	84
		6.2.1	Preprocesamiento y Preparación de Datos	84
		6.2.2	Codificación One-Hot	84
		6.2.3	Construcción y Entrenamiento del Modelo	85
		6.2.4	Resultados y Evaluación	89
		6.2.5	Conclusión del Modelo de Autoencoder	90
	6.3	Model	o de predicción secuencial	91

		6.3.1	Preprocesamiento y Preparación de Datos	91
		6.3.2	Ordenamiento y Etiquetado	92
		6.3.3	Identificación de Sesiones	92
		6.3.4	Codificación de Categorías	94
		6.3.5	Construcción de Secuencias	96
		6.3.6	División de Datos	98
		6.3.7	Construcción del Modelo	99
		6.3.8	Regularización y Compilación	101
		6.3.9	Entrenamiento del Modelo	103
		6.3.10	Resultados del entrenamiento del modelo	104
		6.3.11	Predicción del modelo	105
		6.3.12	Métricas de predicción aplicadas	106
		6.3.13	Conclusión del Modelo de Predicción Secuencial	107
7	Api	y mod	lelo implementado	109
	7.1	Descri	pción de los componentes	109
	7.2	Impler	nentación de la Api	110
	7.3	Docker	rización de la Api	111
Re	efere	ncias		114

Índice de figuras

1	Historia AFP Capital	5
2	Estructura de un árbol de decisión	28
3	Estructura de un random forest	32
4	Tabla comparativa modelos de predicción	37
5	Cantidad semanal de pasajeros que volaron en la clase económica de	
	Ansett Airlines	39
6	Ventas mensuales de medicamentos antidiabéticos en Australia	41
7	Demanda electrica debido a las temperaturas en 2 ciudades en Australia	42
8	Producción trimestral de cerveza australiana	43
9	Coeficientes de autocorrelación de la producción de cerveza en Australia	
10	ACF de la produccion trimestral de cerveza	45
11	Demanda mensual de electricidad de Australia	46
12	ACF demanda mensual de electricidad de Australia	46
13	Ruido blanco	47
14	ACF Ruido blanco	48
15	Aplicación de logartimos y diferenciación estacional a ventas de medicamen	
4.0	antidiabéticos	51
16	Modelos autorregresivos con diferentes parámetros	53
17	Modelos de media móvil con diferentes parámetros	54
18	Valores nulos en el conjunto de datos	72
19	Distribución de canales.	79
20	Preparación y codificación one-hot de los datos	85
21	Arquitectura del modelo autoencoder	87
22	Entrenamiento del modelo autoencoder	89
23	Gráfico del entrenamiento del modelo autoencoder	90
24	Código indentificación de sesiones	94
25	Código codificación de categorías	95
26	Código construcción de secuencias	97
27	Código dividir el conjunto	99
28	Construccion del modelo de clasificación	101

29	Construccion del compilador del modelo	102
30	Código para entrenar el modelo	104
31	Gráficos de análisis del modelo de clasificación	105

RESUMEN

El presente documento de Trabajo de Titulación tiene como objetivo mostrar la forma y el plan de trabajo que se utilizan a lo largo del proceso de desarrollo del proyecto propuesto. Además, se presentan los resultados del proceso investigativo que se ha realizado hasta la fecha, incluyendo estudios sobre el comportamiento de los clientes en canales web, modelos y algoritmos de predicción, y cómo desarrollar un proceso ETL y un Análisis Exploratorio de Datos (EDA).

El objetivo principal de este proyecto es analizar el comportamiento de los clientes de AFP Capital y sus preferencias de uso en un período de hasta 1 meses, con el fin de predecir futuras navegaciones personalizadas.

El proyecto consta de cuatro fases para su desarrollo. La primera fase abarca la planificación y el planteamiento de los antecedentes generales para la realización del proyecto. La segunda fase se centra en la investigación de la problemática en estudio, basándose en la situación actual planteada. La tercera fase abarca el modelamiento y desarrollo del proyecto, incluyendo el modelamiento de datos y el enfoque del proceso ETL y EDA. Esta fase también involucra el desarrollo del código que respaldará y ejecutará el modelo predictivo, mediante la construcción de bases de datos, APIs y la realización de pruebas para mitigar posibles errores encontrados. Por su parte el EDA contempla un análisis profundo de los datos entregados por la empresa. La cuarta y última fase concluye el desarrollo del proyecto y se enfoca en las conclusiones y recomendaciones, donde se presentarán las conclusiones obtenidas a lo largo del proceso y se elaborará un manual de usuario con las recomendaciones de uso.

Además, este proyecto se lleva a cabo bajo un marco de trabajo de desarrollo ágil, utilizando Scrum, y se estan usando metodologías de análisis y minería de datos, como CRISP-DM y OSEMN. El entorno de desarrollo se basa en Python, junto con bibliotecas de análisis y minería de datos como Pandas y Numpy, y frameworks de desarrollo de APIs como Flask, Django y FastAPI.

Palabras clave: Afiliado, Administradora de Fondos de Pensiones, API (Application Programming Interfaces), EDA (Exploratory Data Analysis), Algoritmos de predicción, Algoritmos de clasificación, Modelos de predicción, ETL (Extract, Transform and Load), ARIMA (Modelo de Autorregresión integrada de media móvil), SARIMA (Modelo Estacional de Autorregresión integrada de media móvil), Redes Neuronales Artificiales (ANN), Redes LSTM (Long Short-Term Memory), Redes Neuronales Recurrentes (RNN).

ABSTRACT

The purpose of this Degree Project document is to show the form and work plan used throughout the development process of the proposed project. In addition, the results of the research process that has been carried out to date are presented, including studies on customer behavior in web channels, predictive models and algorithms, and how to develop an ETL process and an Exploratory Data Analysis (EDA).

The main objective of this project is to analyze AFP Capital customers' behavior and usage preferences over a period of up to 1 month, in order to predict future personalized browsing.

The project consists of four phases for its development. The first phase covers the planning and general background for the implementation of the project. The second phase focuses on the investigation of the problem under study, based on the current situation. The third phase covers the modeling and development of the project, including data modeling and the ETL and EDA process approach. This phase also involves the development of the code that will support and execute the predictive model, through the construction of databases, APIs and testing to mitigate possible errors found. The EDA includes an in-depth analysis of the data provided by the company. The fourth and last phase concludes the development of the project and focuses on conclusions and recommendations, where the conclusions obtained throughout the process will be presented and a user manual with recommendations for use will be prepared.

In addition, this project is carried out under an agile development framework, using Scrum, and data mining and analysis methodologies, such as CRISP-DM and OSEMN, are being used. The development environment is based on Python, together with data mining and analysis libraries such as Pandas and Numpy, and API development frameworks such as Flask, Django and FastAPI.

Keywords: Affiliate, Pension Fund Administrator, API (Application Programming Interfaces), EDA (Exploratory Data Analysis), Predictive Algorithms, Classification Algorithms, Predictive Models, ETL (Extract, Transform and Load) ARIMA (AutoRegressive Integrated Moving Average), SARIMA (Seasonal AutoRegressive Integrated Moving Average), Artificial Neural Network (ANN), LSTM Networks (Long Short-Term Memory), Recurrent Neural Network (RNN).

CAPÍTULO 1: PRESENTACIÓN DEL PROYECTO

1.1. Descripción del trabajo de título

El trabajo de titulación se basa en un proyecto empresarial que tiene como objetivo procesar los registros de navegación del sitio web para afiliados de AFP Capital. El propósito principal es detectar comportamientos de los clientes y sus preferencias en un determinado período de tiempo, con el fin de personalizar las futuras experiencias de navegación. La lectura de los registros se realizará extrayendo la información desde Kibana, una plataforma basada en ElasticSearch, que registra la información a través de diversas APIs utilizadas en el sitio web.

Los elementos fundamentales del proyecto incluyen el análisis exploratorio de datos, extracciones, transformaciones, cargas, modelos de predicción y detección de preferencias. El objetivo final es desarrollar un modelo capaz de predecir el comportamiento de los clientes en el canal web.

1.2. Objetivos

Objetivo general

Analizar el comportamiento de los clientes y sus preferencias de uso en un período de hasta 6 meses, con el fin de predecir navegaciones futuras personalizadas.

Objetivos específicos

- Realizar una investigación sobre las herramientas utilizadas para la predicción del comportamiento de usuarios en un canal web.
- Realizar un análisis y estudio de los datos proporcionados por la empresa.

- Realizar un proceso de Extracción, Transformación y Carga (ETL) con la información de navegación web de los clientes de AFP Capital, con el objetivo de analizar su comportamiento dentro del sitio web privado.
- Desarrollar un modelo capaz de predecir el comportamiento de los clientes de AFP Capital, con el propósito de ofrecer navegaciones personalizadas en el futuro.
- Establecer recomendaciones de personalización basadas en los hallazgos del modelo de predicción, para las futuras navegaciones dentro del sitio web de AFP Capital.

1.3. Alcances y Limitaciones

Alcances

El proyecto contempla los siguientes alcances:

- Se analizará el comportamiento de los clientes de AFP Capital en su nuevo sitio web privado.
- El proyecto entregará un modelo capaz de predecir el comportamiento de los clientes de AFP Capital en el sitio web, así como una API que permita obtener recomendaciones de comportamiento personalizadas para un afiliado específico.

Limitaciones

El proyecto tiene las siguientes limitaciones:

- No se contará con acceso directo a las bases de datos de AFP Capital, por lo tanto, se trabajará con una muestra de datos.
- No se podrá acceder a información sensible de los clientes de AFP Capital, como los RUTs (Rol Único Tributario) u otra información personal identificable.

- El análisis se basará únicamente en datos cualitativos de la navegación web de los usuarios.
- La disponibilidad de datos se limita a un periodo de 15 días debido a las dificultades asociadas con su extracción.

CAPÍTULO 2: LA EMPRESA

AFP Capital se erige como un actor destacado en su industria, con una trayectoria consolidada y un enfoque constante en la innovación y la excelencia operativa. Este capítulo del informe proporcionará una visión detallada de su historia, una descripción general, misión, visión y su papel en el mercado actual. A lo largo de estas páginas, exploraremos los aspectos clave que definen a esta empresa y su relevancia en el panorama empresarial actual.

2.1. Historia

La historia de AFP Capital se remonta a noviembre de 1980, cuando se implementó en Chile el sistema de pensiones de capitalización individual. El 16 de enero de 1981, se constituyó la sociedad Administradora de Fondos de Pensiones Santa María, la cual más tarde se transformaría en AFP Capital S.A. Desde sus inicios, la empresa se destacó por su filosofía de servicio, enfocada en satisfacer las necesidades y expectativas de sus afiliados.

En 1995, AFP Capital estableció la filial Santa María Internacional S.A., con el propósito de expandir su alcance y ofrecer servicios a personas naturales o jurídicas del extranjero, así como invertir en AFP o sociedades relacionadas con materias previsionales en otros países. Esta iniciativa consolidó la presencia de AFP Capital en el ámbito internacional y fortaleció su posición como una administradora de fondos de pensiones líder en la región.

En el año 2000, se produjo una transacción relevante en la historia de AFP Capital. ING Group adquirió Aetna Inc., incluyendo el 96,56 % de las acciones de AFP Capital S.A. Esta adquisición tuvo como objetivo reforzar la posición de liderazgo de AFP Capital en el mercado previsional chileno y contribuir a su crecimiento y desarrollo.

Posteriormente, en 2008, AFP Capital llevó a cabo una fusión con AFP Bansander, otra reconocida administradora de fondos de pensiones en Chile. Esta fusión permitió consolidar aún más las operaciones de AFP Capital y fortalecer su presencia en el país. A fines de 2011, Grupo SURA, una empresa líder en el negocio de pensiones en Latinoamérica, adquirió las operaciones de ING en la región. Esta adquisición llevó a AFP Capital a formar parte de Grupo SURA y a beneficiarse de su amplia experiencia y recursos, consolidándose como una compañía destacada en el mercado previsional latinoamericano.

En resumen, la historia de AFP Capital está marcada por su constante evolución, consolidación y liderazgo en el mercado de administración de fondos de pensiones en Chile. A lo largo de los años, ha demostrado su compromiso con la excelencia en la prestación de servicios previsionales y su capacidad de adaptación a los cambios y desafíos del entorno económico y regulatorio.

Se constituye la sociedad Comienzan las ING compra Aetna AFP Capital se fusionó Grupo Sura adquirió las con AFP Bansander, operaciones de la Financial Services. Administradora de operaciones de ING en Fondos de Pensiones filial Santa María transacción que consolidando aún más su Latinoamérica, incluyendo Santa María S.A. Internacional S.A. consideró todos los operación en Chile. a AFP Capital. hoy AFP Capital. activos que poseía en Chile, incluvendo el 96,56% de las acciones de AFP Santa María. 2008 2000 201

Figura 1: Historia AFP Capital

Fuente: AFP Capital. Recuperado de https://www.afpcapital.cl/Quienes-Somos/Paginas/Historia.aspx

2.2. Descripción general

AFP Capital es una destacada compañía chilena dedicada al negocio de pensiones y administración de fondos de pensiones. Forma parte de SURA, una reconocida empresa que ofrece servicios financieros y previsionales en Chile y otros países de América Latina. El enfoque principal de AFP Capital es proporcionar a sus afiliados asesoría personalizada y servicios diferenciados que les permitan alcanzar una mejor pensión al momento de su jubilación. La empresa se distingue por su compromiso con la optimización de la calidad de sus servicios, la entrega de información transparente y relevante a sus afiliados, y su solidez empresarial.

Con más de tres décadas de experiencia en el mercado, AFP Capital se ha posicionado como una de las principales administradoras de fondos de pensiones en Chile. Esto se debe en gran medida a su administración seria, responsable y eficiente en el manejo de los Fondos de Pensiones, así como a su enfoque prudente y estratégico en la inversión y gestión de los recursos.

La compañía cuenta con un equipo de colaboradores altamente capacitados y comprometidos, quienes contribuyen a la excelencia en la atención al cliente y al logro de los objetivos financieros de los afiliados. Además, AFP Capital se destaca por su constante innovación y adaptación a los cambios regulatorios y a las necesidades cambiantes de los afiliados, con el fin de ofrecer soluciones efectivas y satisfactorias en el ámbito de las pensiones.

2.3. Misión y visión

2.3.1. Misión

La misión de AFP Capital es: "Acompañamos a nuestros clientes, a través de una asesoría experta y diferenciadora en soluciones de ahorro para alcanzar su número, su Pensión, creciendo sustentablemente, desarrollando a nuestros colaboradores e integrándose responsablemente a la comunidad." (AFP Capital, 2023)

2.3.2. Visión

La visión de AFP Capital es: "Somos Guías, acompañamos a nuestros clientes a lograr sus sueños a través del ahorro." ($AFP\ Capital,\ 2023$)

CAPÍTULO 3: MARCO TEÓRICO

En el ámbito empresarial actual, la capacidad de predecir y comprender el comportamiento del cliente en un sitio web es esencial para el éxito. Este capítulo del informe se adentrará en la importancia estratégica de estas predicciones, analizará el comportamiento de los clientes y afiliados en el canal web y presentará las herramientas clave utilizadas para anticipar y optimizar la experiencia del usuario en línea.

3.1. Importancia de predecir el comportamiento del cliente en un sitio web

La predicción del comportamiento del cliente dentro de un entorno web implica la aplicación de técnicas y modelos analíticos para anticipar, en cierta medida, las posibles necesidades, acciones, preferencias y decisiones que un cliente pueda tomar mientras interactúa en una plataforma en línea o sitio web. En los últimos años, la predicción del comportamiento de los clientes ha sido de gran importancia para las empresas, ya que les permite anticiparse a las necesidades y preferencias de sus clientes, adaptando así sus productos y servicios para brindar una mayor satisfacción al cliente (Zheng, Thompson, Lam, Yoon, y Gnanasambandam, 2013).

La lealtad de los clientes es un valor clave para las empresas, ya que un cliente leal seguirá consumiendo los productos y servicios de la empresa. Por lo tanto, mejorar la experiencia del usuario aumenta la satisfacción del cliente, lo que a su vez genera un incremento en las ganancias de la empresa.

Según (Zheng y cols., 2013), la predicción del comportamiento del cliente ayuda a las empresas a identificar oportunidades de mejora y de mercado, además de respaldar la toma de decisiones informadas sobre estrategias de publicidad y marketing. El objetivo principal de predecir el comportamiento del cliente en un entorno web es comprender y anticipar las acciones de los clientes con el fin de personalizar y mejorar

la experiencia del usuario, y así aumentar la satisfacción y fidelidad de los clientes.

Las predicciones pueden abarcar diferentes aspectos del comportamiento de un cliente dentro de un canal web. En términos generales, existen cuatro tipos de predicciones que se pueden realizar. En primer lugar, están las predicciones de compras, donde se analizan los patrones de navegación, el historial de compras, las preferencias y las características demográficas del cliente para predecir sus compras futuras. Luego, se encuentra la predicción de clics, que busca anticipar los enlaces o elementos con los cuales un cliente interactuará en un sitio web, con el objetivo de mejorar la calidad del contenido y la usabilidad del sitio. Además, se encuentra la predicción de abandono de carrito, que permite identificar a aquellos clientes que agregan productos a un carrito de compra pero no completan el proceso de compra, con el fin de tomar acciones de recuperación o retención del cliente. Por último, está la predicción de retención de clientes, que busca predecir qué clientes están más propensos a abandonar o finalizar su relación con el sitio web, para poder implementar estrategias que aumenten su fidelización y retención.

3.2. Comportamiento del cliente/afiliado en el canal web

3.2.1. Definición y relevancia del comportamiento del cliente para el negocio

Considerando los modelos de negocio establecidos por las Administradoras de Fondos de Pensiones (AFP), surge la importancia de la figura del cliente. Según la Real Academia Española, un cliente es una persona que realiza una compra o utiliza los servicios ofrecidos por un profesional o empresa (Real Academia Española, s.f). Sin embargo, en el contexto de las AFP, los clientes se denominan afiliados, ya que contribuyen o están inscritos en un plan de pensiones (Rasekhi, Fard, y Kim, 2016).

El afiliado es el centro del negocio y su importancia radica principalmente en la rentabilidad que aporta. Cada trabajador que decide afiliarse representa una ganancia, mientras que cada afiliado que decide desafiliarse genera una pérdida. Además, la

experiencia del servicio que brinda la AFP hacia el afiliado es crucial, ya que puede promover la marca si es positiva. En tercer lugar, el afiliado, al ser una fuente de ganancias para el modelo, puede contribuir al crecimiento de la empresa al darle su preferencia. Además, la experiencia del cliente y su retroalimentación son valiosas, ya que pueden proporcionar conocimientos sobre los puntos débiles y las áreas de mejora del sistema (Rodriguez, 2023).

Dentro de las diferentes funciones que tiene el cliente, en primer lugar, se encuentra el cliente como consumidor. Esta es una de las funcionalidades más tradicionales, ya que el objetivo intrínseco del cliente es consumir o contratar servicios. Como consumidor, adquiere un producto o servicio y lo utiliza para satisfacer una necesidad, lo que representa la principal fuente de ingresos para la empresa.

En segundo lugar, se encuentra el cliente como "prosumidor", es decir, alguien que consume y produce al mismo tiempo (Toffler, 1980). Además de consumir, el cliente también deja reseñas o realiza comentarios en lugares especializados, lo cual es útil para generar información que mejore la experiencia del servicio.

En tercer lugar, se considera al cliente como crítico, ya que si la experiencia del cliente es negativa, los comentarios y reseñas negativas que proporcione pueden tener un impacto constructivo o destructivo.

En cuarto lugar, el cliente es una pieza fundamental en el desarrollo de productos y servicios. Los comentarios de los clientes pueden guiar el desarrollo de servicios innovadores que se ajusten a las necesidades que ellos indican. En el caso específico de las AFP, esto se refiere a los afiliados.

En quinto lugar, el cliente se desempeña como evaluador de la experiencia. Relacionado con los puntos anteriores, la mejor manera de mejorar la experiencia del cliente es tener en cuenta sus comentarios sobre este aspecto, lo que puede marcar la diferencia frente a otras empresas competidoras en el mercado.

Por último, el cliente puede convertirse en un embajador eventual de la marca, es decir, puede promover el negocio mediante recomendaciones, comentarios y reseñas

3.2.2. Características del comportamiento del cliente en el canal web

Para comprender la experiencia y el comportamiento del cliente en un canal web, es importante reconocer la existencia del customer journey, el cual describe las distintas etapas por las que un cliente pasa al consumir un producto o servicio. Según (Lemon y Verhoef, 2016), estas etapas incluyen la conciencia, investigación, consideración, compra, uso y evaluación. La etapa de conciencia refiere a la identificación de una necesidad o problema que debe ser resuelto, mientras que la investigación implica la búsqueda de información por parte del cliente para encontrar posibles soluciones y comparar entre diferentes opciones disponibles. Luego, en la etapa de consideración, el cliente evalúa las alternativas y elige la que mejor se adapte a sus necesidades, lo que lleva a la etapa de compra, donde se realiza la contratación o adquisición del servicio seleccionado. Posteriormente, viene la etapa de uso, en la cual el cliente experimenta y evalúa la calidad, funcionalidad y experiencia del servicio. Por último, se encuentra la etapa de evaluación, en la cual el cliente emite un feedback voluntario, tanto positivo como negativo, sobre su experiencia satisfactoria o insatisfactoria. En resumen, las opciones disponibles en el canal web buscan hacer del customer journey una experiencia eficiente y agradable.

Para acceder al canal web de AFP Capital, es necesario ser afiliado y contar con una cuenta privada personal que incluya el RUT y contraseña. Una vez ingresado al canal web privado, los afiliados tienen a su disposición diversas opciones para satisfacer sus necesidades. Estas incluyen revisión del pago o no de la cotización mensual, la obtención de certificados de cotizaciones, afiliación, antecedentes previsionales y traspaso de fondos, así como certificados tributarios. Además, se pueden obtener certificados generales, como de residencia, suscripción de ahorro previsional voluntario (APV), cuenta 2, remuneraciones imponibles, periodos no cotizados y trabajo pesado. En el caso de afiliados pensionados, también se pueden obtener certificados de asignación familiar, calidad de pensionado, pensiones pagadas, pensión en trámite, ingreso base y comprobante de pago de pensión. Además, es posible acceder a la cartola en línea. El canal web privado permite realizar el ahorro obligatorio y voluntario,

inversiones, depósitos directos, consultar planillas de pagos y ver las comisiones cobradas como afiliado. También ofrece la opción de verificar el fondo de pensiones, los tipos de fondos disponibles (A, B, C, D, E) y sus porcentajes de rentabilidad, así como realizar cambios de fondo de pensiones y acceder a educación previsional. Además, se brinda la posibilidad de realizar giros en cuentas personales, acceder a rescates financieros y tramitar la pensión.

3.2.3. Factores que afectan el comportamiento del cliente

(Lemon y Verhoef, 2016) proponen que los principales factores que influyen en el comportamiento del usuario y su experiencia son los sensoriales, afectivos, cognitivos, puntos de contacto y externos. La experiencia sensorial se refiere a los aspectos perceptibles por los sentidos del cuerpo, como la vista, el olfato y el tacto. En cuanto a la experiencia afectiva, se debe considerar la emocionalidad del cliente como resultado de la experiencia con el producto o servicio. En el aspecto cognitivo, se refiere a los pensamientos, creencias y actitudes que el cliente puede tener hacia la compañía, el producto o el servicio (Lemon y Verhoef, 2016). Los puntos de contacto hacen referencia a las diferentes formas en que el cliente y la compañía interactúan, como la publicidad, el servicio al cliente, las redes sociales o las interacciones transaccionales. Por último, el factor externo se refiere al contexto actual, las condiciones socioeconómicas y otros factores que pueden afectar la experiencia del usuario y que están fuera del control de la compañía.

Dentro de los factores que pueden influir en el comportamiento de un cliente en el canal web, se encuentran principalmente la usabilidad y el diseño. En cuanto a la usabilidad, depende de siete características que garantizan una buena experiencia para el usuario. Según Sánchez (Sánchez, 2011), la accesibilidad, legibilidad, navegabilidad, facilidad de aprendizaje, velocidad de utilización, eficiencia del usuario y tasas de error del canal web influyen en la experiencia del usuario y en el feedback que este pueda brindar sobre el uso de los servicios.

Por otro lado, el diseño del sitio web depende de cinco características para garantizar un buen contenido y estética, y lograr que el usuario encuentre lo que busca en el menor tiempo posible, es decir, eficiencia. El autor Walter Sánchez

(Sánchez, 2011) indica que el diseño debe ser entendible, novedoso, comprensible, inteligente y atractivo, lo que permite acercar los contenidos de mejor manera al usuario y lograr una navegación más intuitiva. Estos factores son de gran importancia para que el usuario pueda encontrar el contenido que busca en el menor tiempo posible y tener una experiencia positiva al interactuar con la interfaz del sitio web.

3.3. Herramientas para la predicción del comportamiento del cliente en el canal web

3.3.1. Introducción a las herramientas de análisis de datos

En el entorno empresarial actual, la capacidad de tomar decisiones informadas y basadas en datos se ha vuelto fundamental para el éxito y la competitividad de las organizaciones. El análisis de datos desempeña un papel crucial en este proceso, permitiendo a las empresas obtener información valiosa a partir de grandes volúmenes de datos y utilizarla para comprender el comportamiento del cliente de manera más profunda y precisa. Esto resulta de suma importancia, ya que la calidad de las decisiones tomadas marca la diferencia entre el éxito y el fracaso (Contreras Arteaga y Sánchez Cotrina, 2019).

Dentro de las herramientas de análisis de datos, se destacan cuatro conceptos clave que han revolucionado la forma en que se procesan y se obtiene información de los datos: Business Intelligence, Big Data, Machine Learning y Data Mining. Estas herramientas proporcionan a las empresas la capacidad de extraer conocimientos y patrones significativos de los datos, lo que a su vez les permite tomar decisiones estratégicas más acertadas y personalizar sus estrategias de marketing y atención al cliente.

El Business Intelligence (BI) se refiere a la recopilación, análisis y presentación de datos empresariales para facilitar la toma de decisiones. Mediante el uso de diversas técnicas y herramientas, el BI permite a las empresas visualizar y comprender mejor los datos de sus operaciones y clientes. Esto incluye la generación de informes, el análisis de tendencias, la monitorización de indicadores clave de rendimiento (KPI) y

la creación de tableros de control interactivos. El BI ayuda a las organizaciones a identificar oportunidades, detectar áreas de mejora y optimizar su rendimiento en función de datos históricos y en tiempo real. Sobre la inteligencia de negocios, se ha determinado que cada implementación es única para cada proceso empresarial (Garcia-Estrella y Barón Ramírez, 2021).

El Big Data se refiere a la gestión y análisis de grandes volúmenes de datos, tanto estructurados como no estructurados, que superan la capacidad de las herramientas tradicionales de almacenamiento y procesamiento. El Big Data se caracteriza por las tres V's: Volumen (gran cantidad de datos), Velocidad (alta velocidad de generación y procesamiento de datos) y Variedad (diversidad de fuentes y formatos de datos). Para aprovechar el potencial del Big Data, las empresas emplean técnicas de procesamiento distribuido y herramientas específicas para el almacenamiento, procesamiento y análisis de estos datos masivos. El análisis de Big Data permite identificar patrones, tendencias y correlaciones ocultas en los datos, lo que brinda información valiosa para entender y anticipar el comportamiento del cliente.

El Machine Learning (aprendizaje automático) es una rama de la inteligencia artificial que permite a los sistemas informáticos aprender y mejorar automáticamente a partir de la experiencia sin ser programados explícitamente. En lugar de basarse en una analítica descriptiva, el Machine Learning ofrece una analítica predictiva (Garcia-Estrella y Barón Ramírez, 2021). Mediante algoritmos y modelos, el Machine Learning permite a las empresas analizar grandes conjuntos de datos y detectar patrones complejos en el comportamiento del cliente. Esto permite realizar predicciones y recomendaciones personalizadas, así como automatizar tareas y procesos, lo que mejora la eficiencia operativa y la experiencia del cliente.

El Data Mining (minería de datos) se refiere al proceso de descubrir información valiosa, patrones y relaciones desconocidas en grandes conjuntos de datos. Utilizando técnicas estadísticas y algoritmos avanzados, el Data Mining permite identificar correlaciones y tendencias ocultas en los datos, lo que ayuda a las empresas a comprender mejor el comportamiento del cliente y tomar decisiones más acertadas. Esta herramienta es especialmente útil para la segmentación de clientes, la detección de fraudes, la recomendación de productos y la personalización de ofertas.

3.3.2. Métodos, técnicas y tecnologías de análisis de datos

En el análisis de datos para predecir el comportamiento del cliente, se utilizan una variedad de métodos, técnicas y tecnologías que permiten procesar y analizar grandes volúmenes de información con el fin de obtener información valiosa. Estas herramientas proporcionan a las empresas y organizaciones la capacidad de comprender mejor a sus clientes, identificar patrones y tendencias, y tomar decisiones estratégicas más acertadas.

Entre los métodos y modelos más utilizados se encuentran la regresión logística, que permite predecir la probabilidad de que un cliente realice una determinada acción o tome una decisión; el clustering, que agrupa a los clientes en segmentos o categorías similares con características y comportamientos comunes; los árboles de decisión, que representan un conjunto de reglas lógicas para clasificar a los clientes en diferentes grupos; el Random Forest, que combina múltiples árboles de decisión para mejorar la precisión de las predicciones; y el Gradient Boosting Machine, que utiliza múltiples modelos de aprendizaje débiles para construir un modelo más robusto y preciso.

Además de los métodos y modelos, existen diversas técnicas que se aplican en el análisis de datos para predecir el comportamiento del cliente. Entre ellas se encuentran las redes neuronales artificiales (ANN), que son modelos inspirados en el funcionamiento del cerebro humano y se utilizan para reconocer patrones y realizar predicciones complejas; y el Support Vector Machine (SVM), que es un algoritmo de aprendizaje automático utilizado para clasificar y predecir datos.

En cuanto a las tecnologías utilizadas en el análisis de datos, se destacan diversas herramientas y lenguajes de programación. Algunas de las más populares son Tableau, que permite visualizar y explorar los datos de manera interactiva; Python, con bibliotecas como Pandas, NumPy y Scikit-learn, que ofrecen una amplia gama de funciones y algoritmos para el análisis de datos; R, con paquetes como dplyr, caret y randomForest, que brindan herramientas estadísticas y de aprendizaje automático; Apache Spark, que permite procesar y analizar grandes volúmenes de datos de manera distribuida; KNIME y RapidMiner, que son plataformas de análisis de datos visuales; y QlikView y Power BI, que son herramientas de visualización de datos y creación de

tableros de control.

3.3.3. Modelos de predicción de comportamiento del cliente

En la era digital, los modelos de predicción de comportamiento del cliente son un recurso fundamental para las empresas que buscan tomar decisiones informadas y personalizar sus estrategias. Este subcapítulo del informe se adentrará en los diversos modelos utilizados para anticipar las acciones y preferencias de los clientes, destacando su relevancia en la toma de decisiones estratégicas y la mejora de la experiencia del usuario en el entorno online.

Modelos de regresión logística

La regresión logística corresponde a un algoritmo de aprendizaje automático supervisado que es empleado para resolver problemas de clasificación. Si bien, su nombre contiene "regresión", en realidad corresponde a un método de clasificación.

Se da uso a la regresión logística cuando la variable de respuesta o variable objetivo es categórica. En lugar de predecir un valor numérico como en la regresión lineal, la regresión logística estima la probabilidad de que una observación pertenezca a una categoría específica.

Los modelos de regresión logística se basan en la función logística, también conocida como función sigmoide, que mapea cualquier valor real a un rango entre 0 y 1. La función sigmoide tiene la siguiente forma matemática:

$$f(z) = \frac{1}{(1 + e^{-z})}$$

En la regresión logística, se ajusta un modelo lineal a los datos de entrada y se aplica la función sigmoide al resultado para obtener la probabilidad de pertenencia a una clase. La ecuación del modelo se expresa como:

$$p(y = 1|x) = \frac{1}{(1 + e^{(-(b0 + b1x1 + b2x2 + \dots + bn*xn))})}$$

Donde:

p(y=1-x) es la probabilidad condicional de que la variable de respuesta sea igual a 1 dada la entrada x.

b0, b1, b2, ..., bn son los coeficientes del modelo que se ajustan durante el proceso de entrenamiento.

x1, x2, ..., xn son los valores de las variables de entrada.

El proceso de ajuste de la regresión logística implica encontrar los mejores valores para los coeficientes del modelo con la finalidad de maximizar la verosimilitud de los datos observados. Esto se puede hacer mediante métodos numéricos como la maximización de la función de verosimilitud o mediante algoritmos de optimización como el gradiente descendente.

Una vez entrenado el modelo, se puede utilizar para hacer predicciones clasificando nuevas observaciones según la probabilidad estimada. Por ejemplo, si la probabilidad estimada de pertenencia a una clase es superior a un umbral (generalmente 0.5), se clasificará como perteneciente a esa clase.

Para nuestro caso en particular, puede ser utilizado el modelo de regresión logística para predecir el comportamiento de usuarios en un canal web, para ello se necesitaría tener datos históricos que contengan información relevante sobre el comportamiento pasado de los usuarios y las variables predictoras asociadas. Estas variables predictoras pueden incluir características demográficas, patrones de uso del sitio web o aplicación, historial de compras, interacciones anteriores, entre otros.

Una vez que se tienen los datos y las variables predictoras, se puede entrenar un modelo de regresión logística utilizando técnicas de ajuste como la maximización de la verosimilitud o el gradiente descendente. Una vez entrenado el modelo, puede ser utilizado para predecir el comportamiento futuro de los usuarios en función de nuevas observaciones o datos entrantes.

Es importante tener en consideración que la calidad de las predicciones dependerá de la calidad de los datos utilizados para entrenar el modelo y de la selección adecuada de las variables predictoras. Además, es fundamental realizar una validación adecuada del modelo utilizando técnicas como la validación cruzada o la separación de conjuntos de entrenamiento y prueba para evaluar su rendimiento y generalización en datos no vistos.

Ventajas de los modelos de regresión logística

- Interpretación de resultados: La regresión logística proporciona coeficientes que indican la dirección y la magnitud de la relación entre las variables predictoras y la variable de respuesta. Esto permite interpretar el efecto relativo de cada variable en la probabilidad de pertenecer a una clase específica.
- Manejo de variables independientes categóricas: La regresión logística puede manejar tanto variables independientes continuas como categóricas. Incluso puede manejar variables categóricas con más de dos categorías mediante técnicas como la codificación de variables ficticias.
- Estimación de probabilidades: La regresión logística estima la probabilidad de pertenencia a una clase específica en lugar de simplemente clasificar observaciones en categorías. Esto es útil cuando se necesita una medida de certeza o riesgo asociado con la clasificación.
- Buena capacidad de generalización: La regresión logística puede funcionar bien con conjuntos de datos pequeños o moderados, y es menos propensa al sobreajuste en comparación con otros algoritmos más complejos. Esto la hace adecuada para aplicaciones con muestras limitadas.

Desventajas de los modelos de regresión logística

- Linealidad de la relación: La regresión logística asume una relación lineal entre las variables predictoras y la probabilidad logarítmica de la variable de respuesta. Si existe una relación no lineal, la regresión logística puede no ajustarse adecuadamente o requerir transformaciones adicionales de las variables.
- Sensible a valores atípicos y datos faltantes: Los valores atípicos o datos faltantes pueden afectar negativamente el rendimiento de la regresión logística.
 Es necesario manejarlos adecuadamente para evitar sesgos o imprecisiones en los resultados.
- Suposición de independencia: La regresión logística asume que las observaciones son independientes entre sí. Si hay dependencias o correlaciones entre las observaciones, la precisión de los resultados puede verse comprometida.
- No apto para problemas no lineales: Si existe una relación compleja y no lineal entre las variables predictoras y la variable de respuesta, la regresión logística puede no ser el modelo más adecuado. En tales casos, se pueden requerir técnicas más avanzadas, como modelos no lineales o de aprendizaje profundo.

Modelos de recomendación

Los modelos de recomendación son algoritmos y técnicas utilizados en sistemas de recomendación para ofrecer sugerencias personalizadas a los usuarios. Estos modelos se utilizan en una amplia gama de aplicaciones, como plataformas de comercio electrónico, servicios de streaming de música y video, redes sociales y más (Elizabeth, 2023).

El objetivo de un modelo de recomendación es predecir o sugerir elementos que sean relevantes o interesantes para un usuario en particular, basándose en su historial de preferencias, comportamiento pasado o en información de usuarios similares. Estos modelos aprovechan el poder del aprendizaje automático y la minería de datos para analizar patrones y relaciones en grandes conjuntos de datos.

Existen varios tipos de modelos de recomendación, entre los más comunes se encuentran (Vatsal, 2021):

- Filtrado colaborativo: Este enfoque se basa en la idea de que si a un grupo de usuarios con preferencias similares les gusta un conjunto de elementos, entonces a un usuario nuevo con características similares también le podrían gustar esos elementos. El filtrado colaborativo utiliza la información de las interacciones pasadas de los usuarios (por ejemplo, clasificaciones o historial de compras) para generar recomendaciones.
- Filtrado basado en contenido: Este enfoque utiliza información sobre las características y atributos de los elementos para recomendar otros elementos similares. Por ejemplo, en un servicio de streaming de música, se pueden recomendar canciones o artistas similares a los que un usuario ha escuchado anteriormente en función de género, estilo o letras.
- Modelos híbridos: Estos modelos combinan múltiples enfoques, como filtrado colaborativo y basado en contenido, para aprovechar sus fortalezas y proporcionar recomendaciones más precisas y personalizadas.

Los modelos de recomendación se construyen utilizando técnicas de aprendizaje automático, como regresión logística, árboles de decisión, redes neuronales o algoritmos de factorización matricial. Estos modelos se entrenan utilizando conjuntos de datos históricos que contienen información sobre las preferencias y elecciones de los usuarios, y luego se aplican en tiempo real para generar recomendaciones en función de nuevos datos.

Ventajas de los modelos de recomendación

 Personalización: Los modelos de recomendación ofrecen sugerencias personalizadas a los usuarios, lo que mejora la experiencia del usuario y facilita la búsqueda de productos o contenido relevante.

- Descubrimiento de nuevos elementos: Los modelos de recomendación pueden ayudar a los usuarios a descubrir nuevos elementos que podrían ser de su interés, ampliando así sus opciones y experiencias.
- Mejora de la retención y fidelidad de los usuarios: Al proporcionar recomendaciones precisas y relevantes, los modelos de recomendación pueden aumentar la satisfacción del usuario, mejorar la retención y fomentar la fidelidad a la plataforma o servicio.
- Eficiencia en la toma de decisiones: Los usuarios pueden ahorrar tiempo y esfuerzo al recibir sugerencias personalizadas, lo que les ayuda a tomar decisiones más rápidas y eficientes.

Desventajas de los modelos de recomendación

- Sesgo y burbujas de filtro: Los modelos de recomendación pueden verse afectados por el sesgo inherente en los datos de entrenamiento y pueden crear burbujas de filtro, limitando la diversidad y la exposición a nuevas ideas o perspectivas.
- Fracaso en captar preferencias cambiantes: Los modelos de recomendación pueden tener dificultades para captar las preferencias cambiantes de los usuarios a medida que sus gustos y necesidades evolucionan con el tiempo.
- Problemas de inicio en frío: Los modelos de recomendación pueden tener dificultades para ofrecer recomendaciones precisas para nuevos usuarios o elementos que tienen una falta de información histórica.
- Privacidad y preocupaciones éticas: Los modelos de recomendación recopilan y utilizan datos de los usuarios, lo que puede plantear preocupaciones de privacidad y cuestiones éticas relacionadas con el manejo de la información personal.

Modelos de series temporales

Los modelos de series temporales son técnicas utilizadas para analizar y predecir datos secuenciales que están organizados en función del tiempo. En una serie temporal, los datos se registran en intervalos regulares (como horas, días, meses, etc.) y cada punto de datos está asociado con una marca de tiempo (Ajitesh, 2023).

El objetivo principal de los modelos de series temporales es comprender y capturar los patrones, tendencias y estacionalidad en los datos a lo largo del tiempo, y utilizar esta información para hacer predicciones futuras. Estos modelos son ampliamente utilizados en diversos campos, como la economía, las finanzas, la meteorología, la demanda de productos, la planificación de inventario y más.

Los modelos de series temporales se basan en la suposición de que los datos pasados pueden proporcionar información útil para predecir el futuro. Algunos de los modelos más comunes utilizados en el análisis de series temporales son (Ajitesh, 2023):

- Media móvil (MA): Este modelo estima el valor futuro de la serie temporal en función de un promedio de los errores pasados. Se utiliza para capturar patrones aleatorios o no sistemáticos en los datos.
- Autoregresión (AR): Este modelo estima el valor futuro de la serie temporal en función de valores pasados de la propia serie. Se utiliza para capturar la dependencia de la serie en sí misma a lo largo del tiempo.
- Autoregresión de media móvil (ARMA): Este modelo combina los enfoques AR y MA para capturar tanto la dependencia de la serie en sí misma como los patrones aleatorios.
- Autoregresión integrada de media móvil (ARIMA): Este modelo amplía el modelo ARMA al considerar también las diferencias entre los valores de la serie temporal. Se utiliza para capturar tendencias y estacionalidad en los datos.

Además de estos modelos clásicos, también se utilizan enfoques más avanzados, como los modelos de espacio de estados, los modelos de suavizado exponencial y los modelos de redes neuronales recurrentes (RNN), que pueden capturar relaciones más complejas y no lineales en los datos de series temporales.

Es importante destacar que el análisis de series temporales requiere un enfoque cuidadoso para la selección del modelo, la identificación de patrones y la evaluación de la precisión de las predicciones. Además, se deben tener en cuenta factores como la estacionalidad, la estacionariedad de la serie y la presencia de datos faltantes o valores atípicos para obtener resultados confiables.

Ventajas de los modelos de series temporales

- Captura de patrones temporales: Los modelos de series temporales pueden capturar patrones, tendencias y estacionalidad en los datos a lo largo del tiempo.
 Esto permite comprender mejor la dinámica de los datos y hacer predicciones más precisas.
- Predicciones a corto plazo: Los modelos de series temporales son adecuados para hacer predicciones a corto plazo, ya que utilizan la información histórica para predecir los valores futuros. Esto es especialmente útil en aplicaciones donde se necesita anticipar eventos próximos, como demanda de productos o pronóstico del clima.
- Utilización de datos secuenciales: Los modelos de series temporales aprovechan la estructura secuencial de los datos y utilizan la información de los puntos anteriores para hacer predicciones en el siguiente punto. Esto permite tener en cuenta la dependencia temporal en los datos y obtener resultados más precisos.
- Flexibilidad en la elección del modelo: Existen diferentes tipos de modelos de series temporales que se pueden utilizar según la naturaleza de los datos y los patrones presentes. Esto proporciona flexibilidad para seleccionar el modelo más adecuado para el problema específico.

Desventajas de los modelos de series temporales

- Sensibilidad a datos faltantes o valores atípicos: Los modelos de series temporales pueden verse afectados negativamente por la presencia de datos faltantes o valores atípicos. Estos pueden distorsionar los patrones y afectar la precisión de las predicciones.
- Dificultad con tendencias no lineales: Los modelos de series temporales asumen a menudo que las relaciones son lineales o pueden ser capturadas por modelos lineales. Si hay tendencias no lineales en los datos, los modelos lineales pueden no ajustarse adecuadamente y se pueden requerir enfoques más avanzados.
- Necesidad de datos históricos adecuados: Los modelos de series temporales requieren una cantidad suficiente de datos históricos para hacer predicciones precisas. En ausencia de datos suficientes, los modelos pueden tener dificultades para capturar patrones y generar resultados confiables.
- Problemas con cambios estructurales: Si hay cambios estructurales significativos en los datos de series temporales (por ejemplo, cambios en la estacionalidad o en los patrones), los modelos de series temporales pueden tener dificultades para adaptarse y pueden requerir ajustes manuales.

Modelos de atribución

Los modelos de atribución permiten predecir el recorrido que los clientes seguirán al momento de concretar una compra. Este recorrido puede contener las redes sociales, el uso del sitio web del vendedor, el correo electrónico, entre otros. Los modelos de atribución permiten determinar el impacto que tiene el uso de las acciones para el sistema de marketing (Baker, 2023). Este tipo de modelo permite darle mayor importancia a los canales de marketing y a los puntos de contacto que existen entre el cliente y el vendedor, que llevaron al cliente a realizar una compra.

Al asignar crédito a sus canales de marketing y puntos de contacto, se puede

aumentar la posibilidad de que los clientes logren concretar una compra, esto a través de la identificación de las áreas del recorrido del comprador que se puedan mejorar, la determinación del retorno de la inversión para cada canal o punto de contacto, el descubrimiento de las áreas más efectivas para gastar el presupuesto de marketing y la adaptación de las campañas de marketing y muestra de contenido totalmente personalizado por clientes (Baker, 2023)

Existen variados tipos de modelos de atribución, todos tienen el mismo procedimiento de asignar crédito a los canales y punto de contacto, cada uno de estos tipos de modelo le atribuyen un peso distinto a cada canal y punto de contacto (Baker, 2023). Los modelos a continuación son los más aptos para lograr la predicción del comportamiento de un cliente:

- Modelo de atribución Multi-Touch: Este modelo demuestra ser poderoso ya que tiene en cuenta todos los canales y puntos de contacto con los que los clientes interactúan a lo largo de su camino al concretar una compra. Deja en evidencia cuáles de los canales y punto de contacto fueron más influyentes y de cómo estas trabajaron en conjunto para influenciar al cliente.
- Modelo de atribución Lineal: Corresponde a un tipo de modelo de atribución Multi-Touch que le entrega el mismo peso a cada uno de los canales y puntos de contacto con los que el cliente interactúa en su camino al concretar una compra.
- Modelo de atribución Time-Decay: También llamado modelo de atribución de declive en el tiempo, además de considerar todos los puntos de contacto, también considera el tiempo que cada uno de estos puntos de contacto ocurrió, por lo que, los puntos de contacto o interacciones que sucedieron más cercano al momento en que se concretó la compra reciben mayor peso.

Ventajas de los modelos de atribución

• Facilita el rastrear de mejor manera el paso a paso del cliente: Esto gracias a la atención que se le entrega a cada canal y punto de contacto con el cual el cliente interactúa a la hora de concretar una compra.

- Permiten mayor personalización de rastreo de los clientes: Al saber que canales y punto de contacto tiene cada uno de los clientes, se puede llegar a entregar una experiencia personalizada a cada uno de los clientes.
- Comprender la contribución de cada canal y punto de contacto: Permite comprender como cada canal y punto de contacto contribuye a lograr los objetivos comerciales. Siendo de gran ayuda para identificar como asignar los recursos de manera mas efectiva y lograr optimizar las estrategias.
- Identificar canales y puntos de contacto de alto rendimiento: Un modelo de atribución puede revelar qué canales o puntos de contacto tienen un mayor interacción con los clientes en términos de generación de resultados. Esto permite a las empresas enfocar sus recursos en los canales más efectivos y maximizar su retorno de inversión.

Desventajas de los modelos de atribución

- Poseen una mayor complejidad que los otros modelos: La implementación de un modelo de atribución puede ser compleja y requerir un enfoque personalizado según las necesidades y características de cada empresa. Además, no hay un modelo de atribución único que sea universalmente aceptado, lo que puede generar falta de consenso y confusión en la industria.
- La interpretación de los resultados puede ser subjetiva: La interpretación de los resultados de un modelo de atribución puede estar sujeta a la interpretación y suposiciones del analista. Diferentes personas pueden llegar a conclusiones diferentes basadas en los mismos resultados, lo que puede generar cierta subjetividad en la interpretación de los datos.
- Poseen limitaciones en la medición del seguimiento: El modelo de atribución depende de la disponibilidad y calidad de los datos. Si los datos son limitados o imprecisos, los resultados del modelo pueden no ser confiables o representativos de la realidad.

Modelos de arboles de decisión

Los árboles de decisión son modelos de aprendizaje supervisado que se utilizan para predecir a qué clase o categoría pertenece un caso conocido mediante uno o más atributos. Estos modelos se construyen utilizando un algoritmo llamado partición binaria recursiva. Durante el entrenamiento, el algoritmo realiza divisiones en un subconjunto de los datos basadas en decisiones asociadas a variables conocidas, generando así dos nuevos subconjuntos. Este proceso se repite de manera recursiva hasta alcanzar un punto de terminación predefinido, lo que resulta en la creación del clasificador basado en árbol de decisión. Luego, cada nuevo dato, que posee atributos conocidos, sigue las ramificaciones del árbol siguiendo las reglas y decisiones generadas durante el proceso de entrenamiento.

En la actualidad, los árboles de decisión son unos de los modelos de aprendizaje más utilizados debido a su buen rendimiento (Arana, 2021). Estos algoritmos pueden generar modelos predictivos tanto para variables cuantitativas (regresión) como para variables cualitativas o categóricas (clasificación).

Como se mencionó anteriormente, un árbol de decisión realiza tareas de clasificación. Un clasificador es un algoritmo que nos permite asignar sistemáticamente una clase a cada uno de los casos presentados.

Figura 2: Estructura de un árbol de decisión

Fuente: Aprende IA. Recuperado de https://aprendeia.com/arboles-de-decision-clasificacion-teoria-machine-learning/

En la figura anterior se puede visualizar la estructura que posee un árbol de decisión, en este se aprecia como actua el algoritmo de partición binaria mencionado al comienzo, tomando un conjunto y separandolo en subconjuntos hasta llegar a un final previamente establecido.

Para estimar la precisión de un clasificador, se calcula la tasa de error de clasificación verdadera. Esta tasa se obtiene evaluando un conjunto de valores X a los que el clasificador asigna una clase incorrecta, y se divide por el total de valores en X. Idealmente, se debería conocer la clase de todos los casos en el universo antes del entrenamiento, o en su defecto, de una muestra de tamaño similar al universo. Sin embargo, en la mayoría de los casos reales, no se dispone de todos los datos

del universo, por lo que se trabaja con una muestra y se estima la tasa de error mencionada anteriormente utilizando estimadores internos.

Ventajas de los árboles de decisión

- Interpretabilidad: Los árboles de decisión son fácilmente interpretables y comprensibles para los humanos. La estructura del árbol se puede visualizar de manera intuitiva, lo que permite comprender cómo se toman las decisiones y qué atributos son más relevantes para la clasificación.
- Facilidad de uso: La construcción y el uso de un árbol de decisión son relativamente sencillos en comparación con otros algoritmos de aprendizaje automático más complejos. No requieren una preparación exhaustiva de los datos ni un procesamiento previo complicado. Además, los árboles de decisión pueden manejar datos numéricos y categóricos sin requerir transformaciones adicionales, lo que simplifica el flujo de trabajo de modelado.
- Capacidad para manejar datos faltantes y variables irrelevantes: Los árboles de decisión tienen la capacidad de manejar datos faltantes en los atributos de forma natural. Durante la construcción del árbol, si un atributo tiene valores faltantes, el modelo puede utilizar otros atributos para tomar decisiones sin requerir imputación de datos. Además, los árboles de decisión son resistentes a variables irrelevantes, lo que significa que pueden ignorar atributos que no aportan información útil para la clasificación.
- Flexibilidad y robustez: Los árboles de decisión pueden manejar tanto problemas de clasificación como de regresión. Además, son capaces de capturar relaciones no lineales entre los atributos y la variable objetivo. Aunque cada árbol individual puede ser susceptible al sobreajuste, se pueden aplicar técnicas de regularización, como la poda, para mejorar la generalización y evitar el sobreajuste.
- Eficiencia en tiempo de entrenamiento y predicción: Los árboles de decisión tienen tiempos de entrenamiento y predicción rápidos, ya que solo

implican la evaluación de una serie de reglas de decisión. Aunque el tiempo de construcción puede ser mayor para conjuntos de datos grandes, una vez construido, el árbol puede ser utilizado eficientemente para hacer predicciones en tiempo real.

Desventajas de los árboles de decisión

- Sensibilidad a cambios pequeños en los datos: Los árboles de decisión son muy sensibles a cambios pequeños en los datos de entrenamiento. Una modificación mínima en los datos de entrada puede dar lugar a un árbol de decisión completamente diferente. Esto puede hacer que el modelo sea inestable y su rendimiento pueda variar significativamente.
- Tendencia al sobreajuste: Los árboles de decisión tienen la capacidad de adaptarse demasiado a los datos de entrenamiento. Si no se controla adecuadamente, el árbol puede memorizar el ruido o las fluctuaciones aleatorias en los datos de entrenamiento, lo que puede resultar en un mal rendimiento en datos nuevos y no vistos. La poda y otras técnicas de regularización se utilizan para mitigar este problema.
- Limitaciones en la representación de relaciones complejas: Aunque los árboles de decisión pueden capturar relaciones no lineales entre atributos y la variable objetivo, pueden tener dificultades para representar relaciones complejas que requieren una combinación de múltiples atributos. Las decisiones tomadas en cada nodo se basan en un solo atributo, lo que puede limitar su capacidad para modelar interacciones más sofisticadas.
- Propensión a sesgos en los datos de entrenamiento: Los árboles de decisión pueden verse afectados por sesgos en los datos de entrenamiento, especialmente cuando hay desequilibrios en las clases o falta representación de ciertas categorías. Esto puede resultar en una clasificación desigual o inexacta en casos minoritarios o poco representados.

Modelo Random Forest

El algoritmo random forest corresponde a un algoritmo empleado en machine learning registrado por Leo Breiman y Adele Cutler (IBM., 2023), este combina la salida de múltiples árboles de decisión para llegar a un resultado. El uso de random forest se ha hecho popular a causa de su facilidad de uso y flexibilidad, ya que puede ser empleado para problemas de clasificación y regresión.

El random forest se encuentra formado por varios árboles de decisión, los cuales son propensos a tener problemas como sesgos o sobreajuste, pero cuando se trata con una gran cantidad de árboles se logra llegar a resultados más precisos. "Mientras que los árboles de decisión consideran todas las posibles divisiones de características, los bosques aleatorios solo seleccionan un subconjunto de esas características." (IBM., 2023)

Random forest cuenta con tres hiperparámetros principales que se deben de configurar antes de iniciar el entrenamiento (IBM., 2023):

- Tamaño del nodo.
- Cantidad de árboles de decisión.
- Cantidad de características muestreadas.

El algoritmo se encuentra compuesto de un conjunto de árboles de decisión, cada árbol del conjunto se encuentra compuesto de una muestra de datos, la cual proviene de un conjunto de entrenamiento con reemplazo, llamada muestra de arranque (IBM., 2023).

A partir de la muestra de entrenamiento, se extrae un porcentaje para reservarlos como datos de prueba, los cuales se conocen como muestra fuera de la bolsa (oob). Luego, se inyecta otra instancia de aleatoriedad mediante el agrupamiento de características, lo que agrega más diversidad al conjunto de datos y reduce la correlación entre los árboles de decisión (IBM., 2023).

En un Random Forest, el proceso de predicción puede variar según el tipo de problema que se esté abordando (IBM., 2023). En el caso de tareas de regresión, se utiliza un enfoque de promediado, donde las predicciones de los árboles de decisión individuales se promedian para obtener el valor final de la predicción. Esto proporciona una estimación más precisa y estable del resultado deseado. Por otro lado, en tareas de clasificación, se utiliza un enfoque de votación mayoritaria. Cada árbol de decisión emite su propia predicción y la clase que obtiene la mayoría de votos se selecciona como la clase predicha. Esto permite tomar una decisión conjunta basada en las opiniones de múltiples árboles, lo que puede mejorar la precisión en la clasificación de las muestras.

Finalmente, la muestra extraída en un comienzo, la muestra fuera de la bolsa (oob) será utilizada para realizar una validación cruzada, finalizando la predicción.

Figura 3: Estructura de un random forest

Fuente: IBM. Recuperado de https://www.ibm.com/mx-es/topics/random-forest

Ventajas de random forest

- Riesgo reducido de sobreajuste: Los árboles de decisión corren el riesgo de sobre ajustarse, ya que tienden a ajustar todas las muestras que se encuentran dentro de los datos de entrenamiento. Sin embargo, cuando hay una gran cantidad de árboles de decisión dentro del random forest, el clasificador no será capaz de ajustarse demasiado al modelo, ya que el promedio de los árboles no correlacionados logra reducir la varianza general y el error de predicción.
- Aporta Flexibilidad: Debido a su capacidad para abordar con gran precisión tanto tareas de regresión como de clasificación, el método conocido como random forest es ampliamente utilizado por los científicos de datos. Además, su capacidad de agrupar características lo convierte en una herramienta eficaz para estimar valores faltantes, manteniendo la precisión incluso cuando falta parte de los datos.
- Importancia de la característica fácil de determinar: El random forest ofrece una forma conveniente de evaluar la importancia o contribución de las variables en un modelo. Existen varias formas de medir la importancia de las características. Por lo general, se utilizan el índice de Gini y la disminución media de impurezas (MDI) para evaluar cuánto afecta la exclusión de una variable específica a la precisión del modelo. Sin embargo, otra medida de importancia es la importancia de permutación, también conocida como precisión de disminución media (MDA). La MDA determina la disminución promedio en la precisión al permutar de forma aleatoria los valores de las características en las muestras out-of-bag (muestras que no se utilizan en el proceso de entrenamiento).

Desventajas de random forest

■ Proceso que requiere mucho tiempo: Debido a que los algoritmos de random forest son capaces de manejar conjuntos de datos extensos, suelen ofrecer predicciones más precisas. Sin embargo, es importante tener en cuenta que el procesamiento de datos puede volverse lento, ya que se deben calcular los datos para cada árbol de decisión de forma individual.

- Requiere más recursos: Debido a que los random forest procesan conjuntos de datos más grandes, es cierto que se requieren más recursos para almacenar dichos datos. El aumento en el tamaño del conjunto de datos implica una mayor necesidad de memoria y capacidad de almacenamiento para garantizar un funcionamiento eficiente del algoritmo.
- Más Complejo: La interpretación de la predicción de un solo árbol de decisiones resulta más sencilla en comparación con la interpretación de un conjunto de árboles de decisión.

Autoencoders de Redes LSTM para Predicción de Comportamiento de Usuario

Los autoencoders de redes LSTM son una fusión de dos conceptos poderosos en el aprendizaje profundo: autoencoders y redes neuronales LSTM. Los autoencoders son una clase de redes neuronales utilizadas para la codificación de características; esencialmente, aprenden una representación comprimida de los datos de entrada, que luego pueden ser utilizados para reconstruir la entrada original. Esto es especialmente útil para reducir la dimensionalidad de los datos y descubrir relaciones latentes.

Las redes LSTM son una variante de las redes neuronales recurrentes (RNN) diseñadas para recordar información durante periodos extensos y son particularmente eficientes en el manejo de secuencias de datos con dependencias a largo plazo. Las RNN tradicionales luchan con el aprendizaje de estas dependencias debido al problema del desvanecimiento del gradiente, donde la información se pierde en cada paso a través del tiempo. Las LSTM abordan este problema con una estructura de celdas que incluye compuertas para regular el flujo de información, permitiendo que la red retenga o descarte datos a través de secuencias largas.

Al combinar ambos, los autoencoders LSTM pueden aprender a comprimir secuencias de datos temporales y, a la vez, capturar las complejidades de las secuencias temporales. Esto los hace idóneos para tareas como la predicción del comportamiento del usuario en canales web, donde es crucial comprender y actuar sobre patrones a lo largo del tiempo. Por ejemplo, pueden identificar secuencias de clics que conducen

a una compra o predecir cuándo un usuario está a punto de abandonar una sesión, permitiendo intervenir en tiempo real para mejorar la experiencia del usuario y aumentar la conversión.

En un canal web, donde cada acción del usuario es parte de una secuencia más grande de interacciones, los autoencoders LSTM pueden procesar esta secuencia como un todo cohesivo, identificando patrones en la forma en que los usuarios interactúan con el sitio. Esto va más allá de mirar eventos individuales aislados y permite a los sistemas de recomendación anticipar necesidades o intereses futuros basándose en el comportamiento previo del usuario.

Ventajas de los Autoencoders de Redes LSTM

- Aprendizaje de secuencias temporales: Los autoencoders LSTM son inherentemente buenos en aprender dependencias a largo plazo en datos secuenciales, lo que los hace ideales para rastrear y predecir el comportamiento del usuario en un sitio web a lo largo del tiempo.
- Reducción de dimensionalidad: Los autoencoders son eficaces para comprimir la información y resaltar características latentes, facilitando el manejo de grandes volúmenes de datos de usuario y su posterior análisis.
- Capacidad de generalización: Pueden generalizar aprendizajes a partir de datos históricos para predecir acciones futuras, lo que puede mejorar la personalización de contenidos y ofertas en un canal web.
- Robustez frente al ruido: Los LSTM pueden manejar el ruido en los datos de entrada, como sesiones de navegación erráticas o inusuales, identificando patrones consistentes y relevantes.

Desventajas de los Autoencoders de Redes LSTM

■ Complejidad computacional: Los LSTM son modelos complejos que requieren una mayor capacidad de cómputo, lo que puede traducirse en un procesamiento

más lento y costos más elevados.

- Dificultad en el ajuste de parámetros: La configuración de estos modelos es a menudo menos intuitiva que otros métodos más simples, lo que puede llevar a un proceso de ajuste laborioso.
- Riesgo de sobreajuste: A pesar de su capacidad para generalizar, los LSTM pueden sobreajustarse a los datos de entrenamiento si no se implementan adecuadamente técnicas de regularización.
- Sensibilidad a los datos de entrenamiento: Los autoencoders LSTM aprenden de los datos disponibles, lo que significa que cualquier sesgo en estos puede llevar a recomendaciones sesgadas o irrelevantes.

3.3.4. Tabla comparativa de los modelos de predicción

La tabla comparativa proporciona información sobre los modelos planteados anteriormente, presentando de forma resumida sus Ventajas, Desventajas y Aplicaciones comunes de los modelos. Permitiendo tener una visión general de las características y consideraciones clave de cada modelo.

Figura 4: Tabla comparativa modelos de predicción

Modelo	Ventajas	Desventajas	Aplicaciones
Modelos de Regresión	Proporciona una relación cuantitativa entre variables independientes y la variable de respuesta.	Supone una relación lineal entre variables, lo que puede no ser válido en todos los casos.	Predicción de valores numéricos continuos.
Modelos de Recomendación	Personalización de sugerencias para los usuarios.	Puede requerir una gran cantidad de datos y tener problemas con datos faltantes o sesgos inherentes.	Recomendaciones de productos en comercio electrónico.
Modelos de Series Temporales	Captura patrones temporales y estacionales en los datos a lo largo del tiempo.	Sensibilidad a valores atípicos y datos faltantes, y dificultad para capturar tendencias no lineales.	Predicción de la demanda de productos. Pronóstico del clima.
Modelos de Atribución	Permite cuantificar la contribución relativa de diferentes variables a un resultado o impacto.	Puede ser difícil determinar la verdadera relación causal entre las variables.	Evaluación del retorno de inversión (ROI) de una campaña publicitaria.
Modelos de Árboles de Decisión	Proporciona una estructura de decisiones fácilmente interpretable.	Pueden ser propensos al sobreajuste si no se controla adecuadamente.	Clasificación y predicción en diversos campos, como medicina, marketing y finanzas.
Modelo Random Forest	Combina múltiples árboles de decisión para mejorar la precisión y evitar el sobreajuste.	Puede ser computacionalmente costoso y más difícil de interpretar que un solo árbol de decisión.	Clasificación y predicción en una amplia gama de aplicaciones, como análisis de datos médicos y detección de fraudes.
Autoencoders LSTM	Aprendizaje de secuencias temporales, reducción de dimensionalidad, capacidad de generalización, robustez frente al ruido.	Complejidad computacional, dificultad en el ajuste de parámetros, riesgo de sobreajuste, sensibilidad a los datos de entrenamiento.	Rastreo y predicción del comportamiento del usuario en sitios web, análisis de grandes volúmenes de datos.

Fuente: Elaboración propia.

3.3.5. Series Temporales

Luego de realizar distintas investigaciones, hemos llegado a la certeza de que serán necesarios los modelos basados en series temporales. Se llego a esta decisión

debido que se busca predecir el comportamiento futuro de los clientes, en base a su ruta de navegación pasada. A continuación se abarcaran las distintas propiedades de series temporales y sus graficos, además, se presentaran 3 modelos ampliamente aplicados en series temporales, los cuales son, el modelo ARIMA, SARIMA y redes LSTM:

Graficos de series temporales

Uno de los primeros pasos para poder realizar cualquier tipo de análisis de datos es necesario graficar los datos, los gráficos permiten ver las distintas propiedades que los datos puedan tener, como lo son patrones, observaciones inusuales (outliers), cambios producidos por el tiempo y las relaciones que se encuentran entre las distintas variables que los datos puedan tener (Hyndman y Athanasopoulos, 2023). Por lo que, la selección de un buen grafico para representar los datos resulta ser de gran importancia para poder seleccionar el modelo predictivo más adecuado.

Dentro de esta sección revisaremos los gráficos más relevantes para nuestro estudio:

■ Trama de tiempo (Time plot): Una de las maneras más practicas y usada para poder entender las series de tiempo es graficar los datos y una de las primeras opciones es una trama de tiempo. Esto quiere decir graficar la datos contra el tiempo de obtención de los datos.

La siguiente figura muestra la cantidad semanal de pasajeros que volaron en la clase económica de Ansett Airlines entre las dos ciudades más grandes de Australia (Hyndman y Athanasopoulos, 2023):

Figura 5: Cantidad semanal de pasajeros que volaron en la clase económica de Ansett Airlines

- Patrones: Una serie de tiempo puede presentar distintos tipos de patrones a lo largo del tiempo de la observación, y esta puede llegar a presentar este tipo de patrones (Hyndman y Athanasopoulos, 2023):
 - Tendencia (Trend): Una tendencia existe cuando se presenta un incremento o disminución en los datos dentro de un largo periodo de tiempo, esta tendencia no tiene por qué ser linear, pudiendo tener tendencias positivas o negativas.
 - Estacional (Seasonal): Un patrón estacional existe cuando la serie de tiempo se ve afectada por factores como el tiempo del año o el día de semana. Gracias a esto se puede identificar que los patrones estacionales tienen una frecuencia conocida que por lo general no varía.

• Cíclico (Cyclic): Un patrón cíclico en una serie de tiempo existe cuando los datos presentan incrementos y disminuciones como lo haría un patrón estacional, pero sin una frecuencia conocida o fija, usualmente estos ciclos suelen tener una duración mayor a los de los patrones estacionales.

Muchas veces nos encontraremos con series de tiempo que contienen uno o más de estos patrones, por lo que para poder elegir un método predictivo resulta imperativo identificar los patrones presentes en los datos (Hyndman y Athanasopoulos, 2023).

■ Tramas de tiempo estacionales (Seasonal plots): Esta grafica es similar a la trama de tiempo antes mencionada, la diferencia reside en el hecho de que los datos u observaciones están graficadas en contra de cada "estación individual" de tiempo donde se realizó la observación (Hyndman y Athanasopoulos, 2023).

En la siguiente figura se representa el valor monetario de las ventas mensuales de medicamentos antidiabéticos en Australia:

Figura 6: Ventas mensuales de medicamentos antidiabéticos en Australia

Este tipo de gráficos permite identificar de mejor manera los patrones que no se pudieron apreciar anteriormente en la trama de tiempo, ayuda especialmente para poder observar en que años el patrón de los datos cambia.

• Gráficos de dispersión (Scatterplots): Este tipo de grafico permite explorar las relaciones que existen entre series de tiempo, sus distintas variables y como esto afecta a la hora de predecir una serie de tiempo.

La siguiente figura muestra dos series de tiempo: demanda de electricidad (en GW y temperatura (Celsius)), para 2014 en Victoria, Australia. Las temperaturas son para Melbourne, la ciudad más grande de Victoria, mientras que los valores de demanda son para todo el estado (Hyndman y Athanasopoulos, 2023).

Este grafico de dispersión es de gran ayuda para visualizar la relación que tienen las variables, y poder entender los datos de mejor manera.

■ Gráficos de desfase (Lag plots): Este tipo de gráfico representa la observación Y(t) graficada contra la observación Y(t-k) para cada valor de k. Donde en el eje horizontal se muestran valores desfasados de la serie de tiempo (Hyndman y Athanasopoulos, 2023). La siguiente figura muestra diagramas de dispersión de la producción trimestral de cerveza australiana:

Figura 8: Producción trimestral de cerveza australiana

Los colores representan el cuatrimestre de la variable en el eje vertical. Se puede apreciar que en los desfases 4 y 8 se presenta una fuerte relación de las variables, lo que muestra un patrón estacional fuerte.

• Correlación: El estudio de la correlación explora la relación lineal entre dos variables, resulta de importancia calcularla, esto debido a que entrega que tan intrínsecamente relacionadas se encuentran las variables a analizar (Hyndman

y Athanasopoulos, 2023).

A continuación, se presenta la fórmula para conocer el coeficiente de correlación entre dos variables, x e y:

$$r = \frac{\sum (x_t - \bar{x})(y_t - \bar{y})}{\sqrt{\sum (x_t - \bar{x})}\sqrt{\sum (y_t - \bar{y})}}$$

El valor de r variara entre -1 y 1, dependiendo de que tan fuerte sea la correlación de las variables, mientras más cercano al -1, r representa una correlación negativa, por lo que, si r se encuentra más cercano a 1, esto quiere decir que las variables tienen una correlación positiva (Hyndman y Athanasopoulos, 2023).

■ Autocorrelación: La autocorrelación mide la relación lineal entre valores rezagados de una serie de tiempo. Hay variados coeficientes de autocorrelación, dependiendo de cada panel del Lag plot, por ejemplo, r1 mide la relación entre las variables Y(t) y Y(t-1) y r2 mide la relación entre las variables Y(t) y Y(t-2) y así hasta considerar todos los datos (Hyndman y Athanasopoulos, 2023).

Para calcular el valor de r(k), donde T corresponde al largo de la serie de tiempo, se ocupa la siguiente fórmula:

$$r_k = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_t - k - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

De ejemplo, se calcularon los primeros 9 coeficientes de autocorrelación de la producción de cerveza en Australia estudiado en la sección pasada, obteniendo los siguientes valores:

Figura 9: Coeficientes de autocorrelación de la producción de cerveza en Australia

Estos coeficientes de autocorrelación son graficados para representar la función de autocorrelación (ACF), que se muestra a continuación:

Figura 10: ACF de la produccion trimestral de cerveza

Fuente: Forecasting: Principles and Practice (Hyndman y Athanasopoulos, 2023). Recuperado de https://otexts.com/fpp2/time-plots.html

Las líneas azules indican que tan lejos de 0 pueden estar las correlaciones para que estas sean significativas.

Cuando los datos tienen alguna tendencia, el ACF tiene valores positivos que lentamente van disminuyendo, si los datos presentan un patrón estacional, el ACF mostrara valores más grandes para los desfases estacionales, por lo general siguiendo alguna frecuencia estacional.

Cuando los datos presentan una tendencia y además un patrón estacional, se pueden apreciar ambos efectos (Hyndman y Athanasopoulos, 2023). En las siguientes figuras se muestra la demanda mensual de electricidad de Australia, la cual presenta una tendencia y patrón estacional:

Figura 11: Demanda mensual de electricidad de Australia

Fuente: Forecasting: Principles and Practice (Hyndman y Athanasopoulos, 2023). Recuperado de https://otexts.com/fpp2/time-plots.html

Figura 12: ACF demanda mensual de electricidad de Australia

Fuente: Forecasting: Principles and Practice (Hyndman y Athanasopoulos, 2023). Recuperado de https://otexts.com/fpp2/time-plots.html

En el ACF se puede apreciar una tendencia, esto debido a que los valores van disminuyendo lentamente, mientras que la forma de ondas es debido a la estacionalidad que se presenta cada año.

■ Ruido Blanco (White Noise): Las series de tiempo que no tienen autocorrelación son llamadas ruido blanco, para esto se espera que cada autocorrelación sea lo más cercana a 0. Debido a la variación que estos valores pueden tener, por lo que para que una serie de tiempo sea considerada ruido blanco, se espera que el 95 % de sus valores representados en el ACF estén unos limites demarcados por $\pm 2/\sqrt{T}$, donde T corresponde al largo de la serie de tiempo, estos limites se encuentran representados comúnmente por líneas azules en el ACF. Por consiguiente, si un valor o más se encuentra fuera de los limites o el más del 5 % de los valores estén fuera de los límites, la serie de tiempo en cuestión probablemente no sea ruido blanco.

Figura 13: Ruido blanco

Fuente: Forecasting: Principles and Practice (Hyndman y Athanasopoulos, 2023). Recuperado de https://otexts.com/fpp2/time-plots.html

Series: y

0.3
0.0
0.1
0.0
0.1
0.2
0.3
15 Lag

Figura 14: ACF Ruido blanco

Teniendo en cuenta que T=50, por lo tanto, los limites están calculados como $\pm 2/\sqrt{50}=\pm 0.28$. En el ACF se puede apreciar que todos los coeficientes de autocorrelación se encuentran dentro estos límites, concluyendo que los datos son ruido blanco.

Modelo ARIMA

El modelo ARIMA o modelo autorregresivo de media móvil integrado, por sobre otros modelos de series temporales, se centra en describir las autocorrelaciones que existen entre los datos (Hyndman y Athanasopoulos, 2023).

■ Estacionariedad: Una serie de tiempo estacionaria, se presenta cuando sus propiedades no dependen del momento en el que fue registrada la observación. Por lo que, las series de tiempo que presentan tendencias o patrones estacionales son series de tiempo no estacionarias, ya que las tendencias y las distintas estaciones de tiempo pueden afectar la serie de tiempo en varias ocasiones (Hyndman y Athanasopoulos, 2023).

Las series de tiempo estacionarias por lo general son series de ruido blanco, ya que no muestran autocorrelación entre los datos y tampoco presentan patrones predecibles a lo largo del tiempo. Diferenciación: Una manera de poder cambiar una seria de tiempo no estacionaria en una estacionaria, es aplicar la diferenciación, esto se refiera a calcular la diferencia entre observaciones consecutivas (Hyndman y Athanasopoulos, 2023).

Una de las transformaciones más ocupada para estabilizar la varianza de los datos son los logaritmos. Por otro lado, la diferenciación estabiliza el promedio de la seria de tiempo debido a que es capaz de reducir o remover los distintos cambios que se puedan presentar en la serie de tiempo, tales como las tendencias y patrones estacionales.

■ Modelo Random walk: La serie diferenciada es el cambio que se presenta entre las observaciones consecutivas de la serie original, esta se denota por:

$$y_t' = y_t - y_t - 1$$

Ya que es imposible conseguir la diferenciada de la primera observación y'_1 , la serie diferenciada solo tendrá valores T-1. Si la serie diferenciada es un ruido blanco, la fórmula se puede escribir de la siguiente manera, donde ε_t representa el ruido blanco (Hyndman y Athanasopoulos, 2023):

$$y_t - y_t - 1 = \varepsilon_t$$

El Modelo Random walk se obtiene luego de despejar y_t :

$$y_t = y_t - 1 + \varepsilon_t$$

Debido a que los movimientos futuros en los datos son impredecibles, las predicciones del modelo son iguales a la ultima observación, por lo que este tipo de modelos es ampliamente ocupado por datos no estacionarios. Pudiendo concluir que el modelo random walk sustenta los pronósticos naïve (Hyndman y Athanasopoulos, 2023).

$$y_t - y_t - 1 = C + \varepsilon_t \leftrightarrow y_t = C + y_t - 1 + \varepsilon_t$$

El valor de C representa el promedio de los cambios entre observaciones consecutivas (Hyndman y Athanasopoulos, 2023), dependiendo del signo de C la seria se verá derivada positivamente si es positivo o negativamente en el caso contrario.

■ Diferenciación estacional: Esta diferenciación se realiza para calcuar el cambio entre una observación y la observación previa de la misma estación de tiempo (Hyndman y Athanasopoulos, 2023), obteniendo la siguiente fórmula:

$$y' = y_t - y_t - m$$

Donde m = cantidad de estaciones, tambien son llamadas "diferencias m-desfazadas", ya que realizamos la resta con una observación luego de m periodos (Hyndman y Athanasopoulos, 2023).

Si luego de realizar una diferenciación estacional a una serie de tiempo, esta parece haberse transformado a ruido blanco, se modelaran los datos originales de la siguiente manera:

$$y_t = y_t - m + \varepsilon_t$$

Como este tipo de modelo entrega predicciones iguales a la ultima observación de la estacion seleccionada, en otras palabras, este modelo entrega pronósticos naïve (Hyndman y Athanasopoulos, 2023).

En la siguiente figura se muestra como las diferenciaciones estacionales y la aplicacion de logaritmos a una serie de tiempo, en este caso la venta de medicamentos antidiabéticos, lograr cambiar la forma de la serie a una de ruido (Hyndman y Athanasopoulos, 2023):

Figura 15: Aplicación de logartimos y diferenciación estacional a ventas de medicamentos antidiabéticos

Por lo general, a la diferenciación ordinaria se le llama "primera diferenciación", refiriendose a las diferenciación en el desfase 1.

Para poder obtener una serie de tiempo que parezca ruido blanco, muchas veces se tendra que aplicar ambas diferenciaciones, la primera diferenciación y diferenciación estacional, el orden de aplicación no afecta el resultado (Hyndman y Athanasopoulos, 2023).

Tambien existe la segunda diferenciada estacional, por lo que el modelo de la serie doblemente diferenciado se escribe de la siguiente manera:

$$y_t'' = y_t' - y_t' - 1 \leftrightarrow (y_t - y_t - m) - (y_t - 1 - y_t - m - 1) \leftrightarrow y_t - y_t - 1 - y_t - m + y_t - m - 1$$

Si la serie de tiempo, presenta un patrón estacional, es recomendable realizar la diferenciación estacional como primer paso para obtener una serie de tiempo estacionaria, pero si se ocupa la primera diferenciación puede que todavia hayan patrones estacionales en la serie de tiempo, teniendo que aplicar más diferenciaciones para obtener la estacionariedad (Hyndman y Athanasopoulos, 2023).

Modelo de autorregresión: Como se menciono anteriormente, los modelos autorregresivos predicen la variable de interes utilizando una combinación lineal de valores pasados de la variable. El término autorregresión indica que se trata de una regresión de la variable contra sí misma.

Por lo que un modelo autorregresivo de orden p, donde ε_t corresponde a ruido blanco, se escribe de la siguiente manera:

$$y_t = c + \phi_1 y_t - 1 + \phi_2 y_t - 2 + \dots + \phi_p y_t - p + \varepsilon_t$$

Este tipo de modelo es llamado AR(p), gracias a la flexibilidad de los modelos autorregresivos, estos pueden ser aplicados en series de tiempo que presenten distintos patrones (Hyndman y Athanasopoulos, 2023). A continuación, se presenta una figura que muestran dos modelos AR, AR(1) y AR(2).

Figura 16: Modelos autorregresivos con diferentes parámetros

El modelo AR(1) tiene como fórmula: $y_t = 18 - 0.8y_t - 1 + \varepsilon_t$ y el modelo AR(2) tiene como fórmula: $y_t = 8 + 1.3y_t - 1 - 0.7y_t - 2 + \varepsilon_t$, en ambos casos ε_t (ruido blanco) tiene una distribución normal, con promedio igual a 0 y varianza igual a 1 (Hyndman y Athanasopoulos, 2023).

Modelo de media móvil: Este tipo de modelo ocupa el error de los pronósticos como si fuera un modelo de regresión, con la diferencia en una regresión se ocupan los valores pasados.

Teniendo ε_t como ruido blanco, el modelo de media móvil de orden q o $\mathbf{MA}(q)$ se escribe de la siguiente manera (Hyndman y Athanasopoulos, 2023):

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_t - 1 + \theta_2 \varepsilon_t - 2 + \dots + \theta_q \varepsilon_t - q + \varepsilon_t$$

A continuación, se presenta una figura que muestran dos modelos MA, MA(1) y MA(2).

Figura 17: Modelos de media móvil con diferentes parámetros

El modelo MA(1) tiene como fórmula: $y_t = 20 + \varepsilon_t + 0.8\varepsilon_t - 1$ y el modelo MA(2) tiene como fórmula: $y_t = \varepsilon_t - \varepsilon_t - 1 + 0.8\varepsilon_t - 2$, en ambos casos ε_t (ruido blanco) tiene una distribución normal, con promedio igual a 0 y varianza igual a 1 (Hyndman y Athanasopoulos, 2023).

Un modelo AR(p) estacionario es capaz de ser escrito como un modelo $MA(\infty)$, esto se puede demostrar para un modelo AR(1)luego de realizar repetidas sustituciones:

$$y_t = \phi_1 y_t - 1 + \varepsilon_t$$

$$= \phi_1 (\phi_1 y_t - 2 + \varepsilon_t - 1) + \varepsilon_t$$

$$= \phi_1^2 y_t - 2 + \phi_1 \varepsilon_t - 1 + \varepsilon_t$$

$$= \phi_1^3 y_t - 3 + \phi_1^2 \varepsilon_t - 2 + \phi_1 \varepsilon_t - 1 + \varepsilon_t$$

Teniendo $-1 > \phi_1 < 1$, el valor de ϕ_1^k irá disminuyendo a medida que k siga creciendo, obteniendo un proceso MA(∞) (Hyndman y Athanasopoulos, 2023),

este tipo de modelo se escribe de la siguiente manera:

$$y_t = \varepsilon_t + \phi_1 \varepsilon_t - 1 + \phi_1^2 \varepsilon_t - 2 + \phi_1^3 \varepsilon_t - 3 + \dots$$

También se puede realizar el proceso inverso, para obtener un modelo $AR(\infty)$ desde un modelo MA, si es que se definen ciertos limites. Este tipo de modelos que se pueden transcribir de MA a $AR(\infty)$ y AR a $MA(\infty)$, son llamados modelos **invertibles** (Hyndman y Athanasopoulos, 2023).

Combinando los modelos de diferenciación, autorregresivo y de media móvil obtenemos el modelo **ARIMA** (Hyndman y Athanasopoulos, 2023), este queda modelado de la siguiente manera:

$$y_t' = c + \phi_1 y_t' - 1 + \dots + \phi_p y_t' - p + \theta_1 \varepsilon_t - 1 + \dots + \theta_q \varepsilon_t - q + \varepsilon_t$$

Teniendo en cuenta que y'_t corresponde a la serie diferenciada, a la derecha de la igualdad se encuentran las variables que permiten realizar las predicciones, entre estas se encuentran valores desfasados de y_t y errores desfasados. El modelo $\mathbf{ARIMA}(p,d,q)$ tiene 3 variables, donde cada una de estas variables esta relacionada a (Hyndman y Athanasopoulos, 2023):

- p = orden de la parte autorregresiva del modelo.
- d = grado de la primera diferenciación.
- q = orden de la parte de media móvil.

De la misma manera que la estacionariedad e invertibilidad se aplican a los modelos de autorregresión y de media móvil, también se aplican para los modelos ARIMA. Este modelo presenta casos especiales, los cuales representan modelos anteriormente mencionados, los cuales son:

• White noise: ARIMA(0,0,0)

■ Random walk: ARIMA(0,1,0) sin constante

■ Random walk con desfase: ARIMA(0,1,0) con constante

• Autorregresión: ARIMA(p,0,0)

• Media móvil: ARIMA(0,0,q)

Teniendo en cuenta todo lo anteriormente mencionado, se ocuparan métodos que ayudaran a medir la certeza de los modelos aplicados, entre los cuales se encuentra el método Akaike's Information Criterion (AIC).

El valor AIC se obtiene luego de aplicar el método **Akaike** 's **Information Criterion (AIC)** al modelo de series temporales aplicado, este valor estima el error de la predicción realizada (Hyndman y Athanasopoulos, 2023). Este método se encuentra definido por:

$$AIC = Tlog(\frac{SSE}{T}) + 2(k+2)$$

Donde T corresponde al número de observaciones que se ocuparon para realizar la estimación, la variable k corresponde al número de predictores presentes en el modelo y el valor SSE corresponde a la suma de errores cuadrados, definido de la siguiente manera (Hyndman y Athanasopoulos, 2023):

$$SSE = \sum_{t=1}^{T} e_t^2$$

Por lo que el modelo que logre minimizar al maximo el valor AIC, se puede considerar como el mejor modelo para realizar predicciones (Hyndman y Athanasopoulos, 2023).

Modelo SARIMA

El modelo SARIMA es una extensión del ARIMA, diseñado específicamente para series temporales que presentan estacionalidad. Mientras que ARIMA es eficaz para modelar series no estacionarias sin componentes estacionales, SARIMA incorpora parámetros adicionales para capturar y predecir patrones que se repiten a intervalos regulares en el tiempo.

La estacionalidad en una serie temporal refleja un patrón regular que se repite cada S períodos. Aquí, S indica el número de períodos requeridos para que el patrón complete un ciclo y comience a repetirse (Morales Oñate, 2022).

Diferenciación no estacional: Si en los datos se detecta una tendencia, es probable que sea necesario aplicar una diferenciación no estacional. A menudo, al realizar una primera diferenciación no estacional, se logra eliminar la tendencia de la serie temporal. Para este propósito, utilizamos la fórmula:

$$(1-B)x_t = x_t - x_{t-1}$$

■ Diferenciación para tendencia: Cuando tanto la tendencia como la estacionalidad están presentes en una serie temporal, es posible que necesitemos aplicar tanto una diferenciación no estacional como una estacional.

Por lo tanto, es esencial examinar tanto el ACF (Función de Autocorrelación) como el PACF (Función de Autocorrelación Parcial) de la expresión:

$$(1 - B^{12})(1 - B)x_t = (x_t - x_{t-1}) - (x_{t-12} - x_{t-13})$$

Es importante destacar que eliminar la tendencia no necesariamente implica que se haya eliminado toda la dependencia en la serie. Mientras que la tendencia (o el componente de la media) puede haber sido eliminada, aún puede persistir un comportamiento periódico. Al aplicar la diferenciación, descomponemos la dependencia en eventos recientes y eventos a largo plazo (Morales Oñate, 2022).

■ Diferenciación para estacionalidad: Cuando se tienen datos con componentes estacionales, es posible que los componentes no estacionales a corto plazo sigan influyendo en el modelo. Por ejemplo, en el caso de las ventas de componentes electrónicos, las ventas de los últimos uno o dos meses, junto con las ventas del mismo mes del año anterior, pueden ser relevantes para predecir las ventas del mes actual.

Por lo tanto, es crucial examinar el comportamiento del ACF (Función de Autocorrelación) y PACF (Función de Autocorrelación Parcial) en los primeros rezagos para determinar qué términos no estacionales pueden ser significativos en el modelo.

Siendo expresado de manera abreviada:

$$(p, d, q) \times (P, D, Q, S)$$

- P: Es el número de términos autorregresivos estacionales.
- D: Es el grado de diferenciación estacional.
- $\bullet \ Q :$ Es el número de términos de promedio móvil estacional.
- S: Es el número de periodos en una temporada (por ejemplo, 12 para datos mensuales si se observa una periodicidad anual).

3.3.6. Redes LSTM Long Short-Term Memory

¿Qué es una red neuronal?

Una red neuronal es un modelo computacional inspirado en la estructura y funcionamiento del cerebro humano, utilizado en el campo de la inteligencia artificial. Forma parte del aprendizaje profundo dentro del machine learning y está compuesta por unidades, llamadas neuronas, organizadas en capas. Estas neuronas están interconectadas y procesan información adaptándose y aprendiendo de los datos. Las redes neuronales se emplean para abordar tareas complejas, como el reconocimiento de imágenes o la traducción automática, mejorando su rendimiento a medida que se les expone a más datos (Amazon, 2023).

¿Qué son las redes Long Short-Term Memory?

La LSTM es un tipo de red neuronal recurrente (RNN) diseñada para resolver el problema del gradiente evanescente mediante la introducción de una célula de memoria que puede almacenar información durante periodos de tiempo más largos (Filzinger, 2023).

Arquitectura de una Long Short-Term Memory

- Puerta de entrada: La puerta de entrada en una LSTM utiliza una función de activación sigmoidea para decidir qué valores pasar a la célula de memoria. La función sigmoidea genera valores entre 0 y 1, lo que permite que la puerta de entrada decida en qué grado un valor debe ser almacenado en la célula de memoria. Un valor cercano a 1 indica que casi toda la información debe ser conservada, mientras que un valor cercano a 0 sugiere que la información debe ser mayormente descartada (Filzinger, 2023).
- Puerta del Olvido: Controla qué información de la célula de memoria del paso temporal anterior debe ser conservada y cuál debe ser descartada. Utiliza una función de activación sigmoidea para determinar esto. Un valor cercano a 1 de la sigmoidea indica que la información debe ser conservada, mientras que un valor cercano a 0 indica que debe ser olvidada. (Filzinger, 2023).
- Puerta de Salida: Controla qué información de la célula de memoria debe ser enviada como salida. Utiliza una función de activación sigmoidea para decidir qué partes de la memoria se deben considerar y luego aplica una función de tangente hiperbólica para escalar los valores entre -1 y 1, determinando así la salida final de la célula LSTM (Filzinger, 2023).

Célula de memoria: Es el componente central de la arquitectura LSTM. Esta célula almacena información a través del tiempo, pudiendo olvidar selectivamente información no relevante y añadir nueva información a su estado interno.

En cada paso temporal, el modelo LSTM recibe un vector de entrada junto con un vector de estado oculto proveniente del paso temporal anterior. A partir de estos, la puerta de entrada decide qué nueva información se debe almacenar en la célula de memoria, mientras que la puerta de olvido decide qué información previamente almacenada debe descartarse.

Después, se genera un estado candidato utilizando la función de activación tangente hiperbólica. Este estado candidato se combina con el estado actual de la célula de memoria mediante una operación de suma elemento a elemento, actualizando así la información almacenada.

Finalmente, la puerta de salida determina cuál de esta información actualizada se emitirá como salida de la LSTM. Este output, junto con el estado actualizado de la célula de memoria, se pasa al siguiente paso temporal (Filzinger, 2023).

3.3.7. Metodología del proyecto

Para llevar a cabo el desarrollo del proyecto, se definieron cuatro fases que corresponden a la totalidad del proyecto, las cuales corresponden a:

Fase 1: Planteamiento y planificación

Para la primera fase del proyecto, se llevará a cabo una planificación de la manera en la que será abordada la problemática, para desarrollar un anteproyecto que será utilizado para evaluar y planificar las actividades correspondientes al desarrollo del proyecto. Entre ellas se encuentran:

- Planteamiento del proyecto y sus objetivos.
- Definición de alcances y limitaciones.

• Creación de un cronograma de actividades.

Fase 2: Investigación

Para la segunda fase, se realizará una investigación de herramientas y recursos necesarios para llevar a cabo un diseño de la solución para la problemática del proyecto planteado, sumado a un análisis de las bases de datos brindadas por la empresa AFP Capital. Una vez realizado lo anterior, se llevará a cabo una propuesta de diseño para la problemática, siendo entregada y analizada por la empresa, con la finalidad de pasar a desarrollo. Algunas de las actividades de esta fase corresponden a:

- Investigación del problema.
- Toma de requerimientos.
- Investigación de tecnologías de análisis de datos.

Fase 3: Modelamiento y desarrollo

Para la tercera fase, se llevará a cabo el diseño y desarrollo del sistema propuesto, además de realizar pruebas para verificar el correcto funcionamiento. Algunas de las actividades de esta fase corresponden a:

- Modelado del sistema ETL.
- Modelado de la API.
- Implementación del modelo propuesto.
- Pruebas y validaciones.
- Correcciones de errores.

Fase 4: Conclusiones y recomendaciones

Para la última fase, se dará fin al desarrollo del proyecto, elaborando un manual de usuario el cual indicaría algunas funcionalidades del sistema. Algunas de las actividades de esta fase corresponden a:

- Desarrollo de manual de usuario.
- Redacción de conclusiones y recomendaciones.
- Cierre del proyecto.

3.3.8. Metodología del sistema

CRISP-DM

La metodología CRISP-DM (Cross-Industry Standard Process for Data Mining) es un proceso estándar utilizado para realizar proyectos de minería de datos. La metodología CRISP-DM se divide en seis fases distintas que se describen a continuación (Eric, 2023):

- 1. Comprensión del problema: En esta fase se define el problema a resolver y se establecen los objetivos del proyecto. También se recopilan los datos necesarios para el proyecto.
- 2. Comprensión de los datos: En esta fase se realiza una exploración de los datos para comprender su calidad, estructura y relevancia para el problema en cuestión.
- 3. Preparación de los datos: En esta fase se limpian y procesan los datos para que puedan ser utilizados en la etapa de modelado.
- 4. **Modelado:** En esta fase se aplican técnicas de modelado para desarrollar un modelo predictivo. Se prueban diferentes modelos y se selecciona el que mejor se ajuste a los datos.

- 5. **Evaluación:** En esta fase se evalúa el modelo desarrollado en la fase anterior. Se verifica que el modelo funcione correctamente y se ajuste adecuadamente a los datos.
- 6. Implementación: En esta fase se implementa el modelo desarrollado en la fase de modelado en un entorno de producción. También se establecen planes para monitorear el rendimiento del modelo y actualizarlo según sea necesario.

Las fases de la metodología CRISP-DM son iterativas, lo que significa que es posible volver a una fase anterior si es necesario.

OSEMN

La metodología OSEMN (acrónimo de las palabras en inglés: Obtain, Scrub, Explore, Model, Interpret) es un proceso utilizado en la minería de datos y el análisis de datos para trabajar con grandes conjuntos de datos de manera efectiva (Eric, 2023).

- 1. Obtener (Obtain): En esta etapa, se recopilan los datos necesarios para el análisis. Los datos pueden provenir de diferentes fuentes, como bases de datos, archivos en línea o registros de sensores. La calidad y la cantidad de los datos obtenidos son cruciales para el éxito del análisis.
- 2. Limpieza (Scrub): Una vez que se han obtenido los datos, es necesario realizar una limpieza para eliminar datos innecesarios o incorrectos. Esta etapa puede implicar la eliminación de duplicados, la corrección de errores y la eliminación de valores atípicos. El objetivo de esta etapa es obtener datos limpios y coherentes para el análisis.
- 3. Exploración (Explore): En esta etapa, se utilizan técnicas de visualización y estadísticas para explorar los datos y obtener información sobre ellos. Se pueden identificar patrones, tendencias y relaciones entre diferentes variables. El objetivo es obtener una comprensión más profunda de los datos y de cómo se relacionan entre sí.

- 4. Modelado (Model): En esta etapa, se utilizan técnicas de modelado estadístico o de aprendizaje automático para crear modelos que puedan predecir resultados futuros o identificar patrones en los datos. El objetivo es utilizar los datos para crear un modelo que pueda utilizarse para tomar decisiones informadas.
- 5. Interpretación (Interpret): En esta etapa, se interpretan los resultados obtenidos en la etapa de modelado. Los resultados pueden ser utilizados para tomar decisiones o para generar nuevas hipótesis que puedan ser exploradas en futuros análisis.

Se propone el uso de la metodología OSEMN, ya que se enfoca en el análisis de datos y la creación de modelos predictivos. OSEMN también es una metodología más flexible que CRISP-DM, lo que puede ser útil en un proyecto de SCRUM donde se busca una mayor adaptabilidad.

Por otro lado, también se propone el uso de la metodología CRISP-DM, ya que el proyecto incluye una etapa de exploración y análisis de datos, seguida por una fase de construcción de modelos. CRISP-DM se enfoca en el proceso completo de minería de datos, desde la comprensión del problema hasta la implementación del modelo, lo que puede servir para realizar un trabajo más estructurado.

Ya que este proyecto se encuentra bajo el marco de trabajo SCRUM, ambas metodologías pueden ser utilizadas de manera complementaria, utilizando OSEMN para las fases de creación de modelos y CRISP-DM para la etapa de exploración y análisis de datos.

CAPÍTULO 4: PROCESO ETL

El proceso ETL (Extract, Transform, Load) representa el núcleo de la gestión de datos en numerosas organizaciones, desempeñando un papel esencial en la recopilación, transformación y carga de información crítica. En este capítulo del informe, exploraremos en detalle el funcionamiento de un proceso ETL, así como su diseño estratégico. Analizaremos cómo esta metodología se convierte en una piedra angular para la toma de decisiones basadas en datos y la mejora de la eficiencia operativa.

4.1. Diseño Proceso ETL

El diseño de un proceso ETL (Extracción, Transformación y Carga) implica seguir distintos pasos para asegurar que este proceso y el flujo de datos sean eficientes, precisos y cumplan con los requisitos del proyecto (Kimball y Caserta, 2004). Los pasos que se acordaron seguir son los siguientes:

- Requisitos ETL
- Identificicación fuente de datos
- Diseño modelo de datos objetivo
- Planificación de las transformaciones
- Selección herramientas
- Construcción y prueba proceso ETL
- Monitoreo proceso ETL

4.1.1. Requisitos ETL

En esta etapa se definen los requisitos del proyecto, las fuentes de datos, los objetivos comerciales y del proceso ETL, las necesidades de análisis y los plazos para realizar el proceso. Estableciendo una base solida para el diseño y buen funcionamiento del proceso ETL.

- Fuente de datos: La fuente de datos corresponde a un archivo .CSV o de texto plano que contienen información de la navegación web de los clientes en forma de web logs. Estos archivos los proporciona la empresa luego de realizar un proceso de recopilación, ordenamiento y anonimización de los datos.
- Objetivos comerciales: Analizar el comportamiento de los clientes y sus preferencias de uso en un período determinado, para poder predecir navegaciones futuras, y a partir de esto proporcionar atenciones personalizadas.
- Objetivos proceso ETL: Realizar las transformaciones necesarias para asegurar que el flujo de datos sea eficiente y preciso, a través de la limpieza de los datos, la normalización, la agregación, el filtrado, el enriquecimiento de datos, así como los cálculos y derivaciones necesarios.
- Necesidades de análisis: Llevar a cabo un análisis exploratorio de los datos proporcionados con el fin de adquirir un profundo conocimiento de los mismos, lo que permitirá desarrollar un modelo predictivo adecuado basado en los datos procesados.

4.1.2. Identificicación fuente de datos

En esta etapa se determinan las fuentes de datos a ser usadas para el proyecto, incluyendo bases de datos, archivos .CSV y APIs. Esto además comprende la definición de la estructura, el formato y ubicación de cada fuente de datos dentro del proyecto.

La fuente de datos corresponde a un archivo .CSV que contiene información de la navegación web de los afiliados en forma de web logs. Los web logs registrados vienen con 4 campos, especificados a continuación:

- rut: Este atributo representa un identificador único por afiliado. Debido a las políticas de confidencialidad de la empresa, antes de entregar el archivo, se realiza un proceso de anonimización de este campo. En el archivo, este dato se visualiza como una cadena de caracteres que incluye letras (minúsculas y mayúsculas), números y otros caracteres.
- fecha evento: Representa el momento exacto en que el usuario realiza la interacción en el canal web. Esto incluye día, mes, año, hora, minuto y segundo.
- metodo: Este atributo representa la interacción realizada por el usuario en el canal web.
- canal: Corresponde al canal web donde el afiliado realiza su interacción en la plataforma.

Para almacenar la fuente de datos se utiliza una estructura de carpetas, siendo las siguientes:

- Input: Dentro de esta carpeta se encontrarán los archivos.
- Intermediate: Aquí se almacenará el archivo con la información preprocesada.
- Output: Dentro de esta última carpeta se almacenará la información ya procesada y lista para ser usada.

4.1.3. Diseño del modelo de datos objetivo

En esta etapa, se lleva a cabo el diseño del modelo de datos objetivo para poder trabajar con él en el desarrollo de un modelo de aprendizaje automático. Para esto se considera lo siguiente:

■ Tabla(s) necesaria(s): En este escenario, se trabaja exclusivamente con una tabla que contiene los registros de navegación, como se ha comentado en secciones anteriores.

- Definición de columnas o atributos: El DataFrame contendrá nueve columnas que describirán el registro de actividad del usuario en la plataforma. Dichas columnas son: rut, año, mes, día, hora, minuto, segundo, método y canal. Cada columna proporcionará información valiosa sobre el comportamiento del usuario durante la interacción.
- Definición de tipos de datos: Los datos que se utilizarán serán numéricos, ya que la mayoría de los modelos de aprendizaje automático trabajan eficazmente con este tipo de datos para realizar predicciones.
- Gestión de valores faltantes: En este contexto, las filas que contengan valores faltantes se eliminarán del conjunto de datos. La decisión de no utilizar otras técnicas para gestionar los valores faltantes, como reemplazarlos con el promedio, se basa en la naturaleza del trabajo. El equipo concluyó que reemplazar los valores faltantes podría alterar la representación del comportamiento real de un usuario, por lo que se prefiere mantener la integridad de los registros de actividad.
- Gestión de datos categóricos: Dado que la mayoría de los datos son categóricos, es fundamental abordarlos de manera adecuada. Se aplicará una "codificación de etiqueta", que asigna un valor numérico único a cada categoría en función de alguna lógica o preferencia. En este caso, se asignarán valores numéricos a las categorías en orden ascendente a medida que aparezcan en el conjunto de datos.
- Creación del nuevo dataframe: La creación del nuevo DataFrame se llevará a cabo en Google Colab utilizando Python, específicamente la biblioteca Pandas. Las transformaciones realizadas se profundizarán en la siguiente sección para detallar cómo se optimizan los datos para análisis y modelado subsiguientes.

4.1.4. Planificación de las transformaciones

Dentro de esta etapa, se lleva a cabo la planificación detallada de las transformaciones necesarias para construir una base sólida y consistente que respalde el desarrollo del

proyecto. Estas transformaciones comprenden una serie de pasos destinados a limpiar, filtrar, combinar y enriquecer los datos de manera apropiada.

La planificación de las transformaciones desempeña un papel fundamental para asegurar la calidad y la integridad de los datos que se utilizarán en el proyecto. Durante esta fase, se identifican las tareas específicas que deben ejecutarse para lograr los objetivos establecidos, teniendo en cuenta los requisitos del proyecto y las necesidades del negocio.

Algunas de las transformaciones comunes incluyen (Kimball y Caserta, 2004):

- Limpieza de datos: Se llevan a cabo tareas de limpieza para corregir errores, eliminar valores duplicados o inconsistentes y garantizar la coherencia de los datos. En este caso, la limpieza de datos se utilizará para estandarizar el formato y adicionalmente se presentará una propuesta para realizar la transformación y codificación de los campos. Inicialmente, se eliminarán todas las filas que contengan valores nulos. Es importante mencionar que algunos modelos trabajan solamente con datos numéricos por lo que la codificación de campos es opcional según el modelo con el que se quiera trabajar, en este caso algunos modelo de clasificación no requieren dicha codificación por lo que esta no es obligatoria y se abordará de forma detallada en los anexos. La columna fecha se estandarizará con un formato determinado (UTC) YYYY-MM-DDTHH:MM:SS.sssZ.
- Filtrado de datos: Se aplican filtros para seleccionar y extraer los datos relevantes para el proyecto, descartando aquellos que no cumplen con ciertos criterios o condiciones específicas. Se excluyen registros sin métodos asociados o con métodos inconsistentes. Además, se excluyen los registros que contienen el campo de RUT no anonimizado, cumpliendo con la política de privacidad de la empresa. Este enfoque permite centrarse en la información más relevante y útil.

Es importante destacar que la planificación de las transformaciones considera el orden y la secuencia adecuada de ejecución, así como la documentación de cada paso y los criterios de validación y verificación para garantizar la calidad de los datos transformados. Por lo tanto, se ha diseñado un plan detallado con las transformaciones que se presentará en la siguiente sección.

4.1.5. Selección de herramientas

En esta etapa, se realiza la selección de herramientas de software que se ajusten a las necesidades y requisitos del proyecto para llevar a cabo el proceso ETL de manera eficiente. Se evalúan diferentes opciones disponibles en función de su capacidad, compatibilidad y facilidad de uso, para garantizar una elección adecuada, es por esto que se seleccionaron las siguientes herramientas:

- Colab: También conocido como "Colaboratory", permite programar y ejecutar Python en el navegador con las siguientes ventajas (Google Colab, 2023):
 - No requiere configuración
 - Acceso a GPUs sin coste adicional
 - Permite compartir contenido fácilmente

Una de las desventajas de usar Colab es que tiene una cantidad de memoria limitada, es decir, si se utiliza el total de memoria disponible no se podrá seguir ejecutando código.

- Visual Studio Code: Es un editor de código fuente desarrollado por Microsoft. Es conocido por su enfoque en la simplicidad, la personalización y la eficiencia. Este editor se utilizará en caso de no poder seguir utilizando Colab.
- **Python:** Es un lenguaje de programación interpretado, de alto nivel y de propósito general, conocido por su sintaxis clara y legible. Es utilizado en una amplia gama de aplicaciones, desde desarrollo web hasta ciencia de datos y aprendizaje automático. Python se destaca por su facilidad de aprendizaje y su amplia biblioteca estándar, que ofrece numerosas funcionalidades predefinidas para diversas tareas (van Rossum y Drake, 2003).

- Numpy: Es una biblioteca fundamental para la computación científica en Python. Proporciona estructuras de datos eficientes y funciones para realizar operaciones numéricas y de manipulación de arrays (van der Walt, Colbert, y Varoquaux, 2011).
- Pandas: Es una biblioteca poderosa para el análisis de datos basada en Numpy, que proporciona estructuras de datos flexibles y eficientes, como DataFrames, y un conjunto completo de funciones para la manipulación y transformación de datos (Mckinney, 2011).
- Dask: Es una biblioteca de paralelización flexible que permite escalar el procesamiento de datos en Python. Proporciona estructuras de datos paralelas y operaciones distribuidas que facilitan el procesamiento de grandes volúmenes de datos (dask: Scale the Python tools you love, 2023).

4.1.6. Construcción y prueba proceso ETL

En esta etapa, se lleva a cabo la implementación del diseño del proceso ETL previamente definido, utilizando las herramientas seleccionadas. Se desarrollan los flujos de extracción, transformación y carga de los datos según lo establecido en el diseño.

Una vez implementado, se procede a realizar pruebas exhaustivas para garantizar el correcto funcionamiento del proceso. Estas pruebas incluyen la verificación de la extracción de datos de las fuentes, la correcta aplicación de las transformaciones definidas y la carga exitosa de los datos en el destino final.

El objetivo de las pruebas es asegurar que el proceso ETL cumpla con los requisitos establecidos y que los resultados obtenidos sean los esperados. Esto implica validar la integridad y coherencia de los datos transformados, así como verificar el rendimiento y la escalabilidad del proceso.

En caso de encontrar inconvenientes o desviaciones durante las pruebas, se realizan los ajustes necesarios en el diseño o en la configuración de las herramientas utilizadas. Es fundamental realizar iteraciones y pruebas adicionales hasta obtener resultados consistentes y satisfactorios.

Como primer paso en la construcción del proceso ETL, se importan las bibliotecas pandas y numpy. Luego se le da nombre a las columnas, ya que el contenido del archivo csv solo trae los datos. Una vez nombradas las columnas se ordenan para un entendimiento más facil del conjunto de datos, quedando de la siguiente manera respectivamente: rut, fecha, metodo, canal.

Ahora se comprueba la existencia de valores nulos en el dataframe, resultando lo siguiente:

Figura 18: Valores nulos en el conjunto de datos.

Fuente: Elaboración propia.

Como se puede ver en la imagen anterior solamente los campos 'metodo' y 'canal' poseen valores nulos, de hecho, el primero solo cuenta con un valor nulo. La columna 'canal' cuenta con 36852 valores nulos. Luego de eliminar los valores nulos se pasa a eliminar las filas que contengan métodos inconsistentes, que son:

- clientes/surveys
- clientes/cuentas/validar-cuenta-corriente
- clientes/cuentas/cuentas-bancarias

- clientes/cuentas/cuentas-bancarias?rut=******
- clientes/cuentas/cuentas-bancarias?rut=******
- clientes/cuentas/cuentas-bancarias?rut=*******
- ${\color{red} \bullet \ clientes/cuentas/cuentas-bancarias?rut=********}$
- clientes/cuentas/cuentas-bancarias?rut=******

- clientes/cuentas/APV/solicitud/giros?rut=******&account=APV
- clientes/cuentas/cuentas-bancarias?rut=******

Al eliminar todas las filas que contengan los métodos antes mencionados se borran un total de 1447 registros. Finalmente, se eliman un total de 38299 filas del dataset original.

4.1.7. Monitoreo proceso ETL

Se establece un sistema de monitoreo para supervisar de manera continua el rendimiento del proceso ETL, permitiendo identificar y abordar posibles problemas a tiempo y garantizar la calidad de los datos. En esta etapa, también se realiza el mantenimiento del proceso, lo cual implica actualizaciones de las transformaciones, resolución de problemas y optimización del proceso.

El sistema de monitoreo juega un papel fundamental en la detección temprana de cualquier anomalía o disrupción en el flujo de datos. Mediante la implementación de métricas y alertas, se pueden supervisar aspectos clave como el tiempo de ejecución, el uso de recursos, los volúmenes de datos y la integridad de los resultados.

Además, el mantenimiento del proceso ETL implica la capacidad de adaptación a medida que evolucionan las necesidades del proyecto. Esto puede implicar la actualización de las transformaciones para reflejar cambios en las fuentes de datos o requerimientos del negocio, así como la solución de problemas que puedan surgir durante la ejecución del proceso.

Asimismo, se busca optimizar el proceso ETL a través de la identificación de posibles cuellos de botella o ineficiencias. Esto puede implicar ajustes en el diseño de las transformaciones, mejoras en la selección de herramientas o la optimización de los recursos utilizados.

CAPÍTULO 5: EXPLORATORY DATA ANALYSIS (EDA)

El análisis exploratorio de datos (EDA) es una etapa crucial en el proyecto de predicción del comportamiento en un entorno web. En este capítulo, adentraremos en el proceso de EDA, que nos permitirá desvelar patrones, tendencias y relaciones ocultas en los datos recopilados. A través de este análisis, obtendremos una visión profunda y enriquecedora que sentará las bases para un mejor entendimiento del comportamiento del usuario en el entorno web y facilitará la toma de decisiones estratégicas.

5.1. Introducción al EDA

El análisis exploratorio de datos (EDA, por sus siglas en inglés, Exploratory Data Analysis) es una fase fundamental en la investigación y comprensión de un conjunto de datos. Como su nombre lo indica, el EDA tiene como objetivo explorar y examinar los datos de manera detallada, utilizando resúmenes numéricos y visuales, con el fin de descubrir patrones, tendencias y características no anticipadas. Es considerado uno de los primeros pasos en el proceso de análisis, ya que proporciona una visión general de los datos antes de realizar un análisis más profundo (Ruiz, 2022).

El enfoque principal del EDA radica en el uso de herramientas y técnicas visuales y gráficas para revelar información clave sobre los datos en estudio (Parra, 2002). Estas técnicas incluyen el diagrama de tallo y hoja, el diagrama de caja y bigotes, y el diagrama de dispersión, entre otros. Al aplicar estas técnicas de análisis gráfico, podemos obtener una comprensión más profunda de la distribución y estructura de los datos, así como identificar relaciones entre las variables de interés. Además, el EDA nos brinda la capacidad de detectar posibles errores o puntos extremos, como anomalías, que podrían afectar la calidad de los resultados del análisis.

Los beneficios clave del análisis exploratorio de datos son los siguientes (Ruiz, 2022):

- Conocer la distribución y estructura de los datos: El EDA nos permite examinar la distribución de las variables y comprender cómo se organizan y dispersan los datos en el conjunto. Esto es fundamental para seleccionar las técnicas adecuadas de análisis estadístico y modelado.
- Estudiar la relación entre variables: Mediante el análisis de correlación y la visualización de patrones en los diagramas de dispersión, podemos explorar las relaciones entre las variables y comprender cómo interactúan entre sí. Esto nos brinda información valiosa para identificar posibles dependencias y tendencias en los datos.
- Encontrar posibles errores y anomalías: El EDA nos ayuda a identificar valores atípicos, datos faltantes u otros errores en los datos. Estas anomalías pueden tener un impacto significativo en los resultados del análisis, por lo que es importante detectarlas y tratarlas de manera adecuada.

5.2. Recopilación de datos

Los datos recopilados de los registros de navegación de los afiliados de AFP Capital constituyen una valiosa fuente de información para comprender el comportamiento y las preferencias de los usuarios en la plataforma web. Estos registros nos permiten analizar cómo interactúan los afiliados con los diferentes canales y métodos disponibles, así como realizar un seguimiento detallado de las fechas y horarios en que se llevan a cabo estas interacciones.

El dataset entregado para este proyecto cuenta con 2,331,023 registros de navegación de usuarios, lo cual proporciona una cantidad significativa de información para su análisis. Antes de utilizar estos datos, se realizó un proceso de anonimización para proteger la privacidad de los usuarios, específicamente modificando el campo del rut para no mostrar el dato original. De esta manera, se garantiza que los registros sean tratados de forma confidencial y segura.

Los cuatro campos que conforman el conjunto de datos son el rut, la fecha del evento, el método y el canal. El rut, que ha sido modificado, actúa como un identificador único para cada usuario y permite realizar análisis individuales sin revelar su identidad. La fecha del evento registra el momento exacto en que se llevó a cabo cada navegación, lo cual es crucial para identificar patrones y tendencias a lo largo del tiempo. El campo del método describe la interacción específica realizada por el usuario en el canal correspondiente, proporcionando información detallada sobre las acciones que realizan. Por último, el campo del canal indica el sitio o ambiente particular en el cual tuvo lugar cada interacción, lo que puede ser útil para comprender las preferencias de los usuarios en relación con los diferentes entornos disponibles.

Con respecto al preprocesamiento de datos realizado hasta la fecha, se ha seguido el proceso ETL (Extracción, Transformación y Carga) que se describe en detalle en el capítulo anterior. Este proceso implica extraer los datos de las fuentes de origen, transformarlos en un formato adecuado y cargarlos en un sistema de almacenamiento para su posterior análisis. Se utilizaron diversas herramientas para llevar a cabo estas tareas, asegurando la calidad y coherencia de los datos procesados.

Es crucial subrayar que los datos recopilados, aunque constituyen una fuente de información considerable sobre el comportamiento de los usuarios en la plataforma web, presentan ciertas limitaciones que deben ser tenidas en cuenta. La muestra de datos podría no representar de manera equitativa todos los segmentos de ingresos de los afiliados, lo que podría influir en los patrones de navegación observados. Es posible que ciertas tendencias o preferencias sean más comunes en los registros debido a una sobrerrepresentación de determinados grupos económicos en los datos disponibles. Por ende, al interpretar los resultados y al intentar generalizar las conclusiones obtenidas, es esencial considerar que los comportamientos detectados pueden no ser extrapolables a la totalidad de la base de usuarios. Se debe proceder con precaución al hacer inferencias, y sería beneficioso buscar estrategias para incorporar y analizar datos de otros segmentos para obtener una comprensión más holística y representativa del conjunto de afiliados.

5.3. Descripción de los datos

Resumen de las principales características de las variables relevantes en los

registros de logs de navegación. Análisis de la distribución de los datos, incluyendo

medidas de centralidad y dispersión. Usando la librería Pandas de Python, podemos

obtener información importante sobre los conjuntos de datos. Estos valores nos

proporcionarán un mayor entendimiento de la composición y estructura de los registros

de navegación.

Podemos obtener información respecto a la cantidad de valores faltantes en el

dataframe que se está utilizando, los cuales suman 36853 en total. De estos datos

faltantes, 36853 corresponden principalmente al campo 'canal', con solo un valor

faltante en el campo 'método'. Como se vio en el capítulo anterior, estos valores

fueron eliminados del dataframe.

Haciendo uso de la misma librería, podemos determinar los tipos de datos que

contiene cada campo:

• rut cliente: Contiene datos de tipo int64.

• fecha evento: Contiene datos de tipo object.

• **metodo:** Contiene datos de tipo object.

canal: Contiene datos de tipo object.

Además se puede conocer la cantidad de valores únicos que posee cada una de

las columnas del dataframe (luego del proceso ETL):

• rut cliente: Contiene 35541 valores únicos.

• fecha evento: Contiene 403259 valores únicos.

• metodo: Contiene 86 valores únicos.

78

• canal: Contiene 4 valores únicos.

La frecuencia con la que aparece cada canal es de:

■ PWA: 1437762

■ WEB: 856410

Cabe mencionar que en la plataforma solo existen dos canales: el canal PWA (correspondiente a la aplicación) y el canal WEB. Todos los datos registrados en este campo pertenecen a uno de estos dos canales. Es decir, los valores únicos 'WEB-Actualizacion-datos' y 'WEB-Contacto-tramite-pension' son acciones realizadas en el canal WEB. Se identificó este error en el registro de logs y se informó a la empresa para su corrección.

Ahora se muestra un gráfico sobre la distribución de los canales en el conjunto de datos.

Figura 19: Distribución de canales.

Fuente: Elaboración propia.

En la imagen se puede observar que principalmente dos canales predominan en

cuanto a su frecuencia: PWA y WEB. Esto indica que actualmente los afiliados que utilizan la plataforma web tienden a utilizar estos dos canales, y en menor medida, los canales WEB-Actualización-datos y WEB-Contacto-tramite-pensión.

Para analizar las fechas, se decidió realizar una descripción de estas por día y hora. Año y mes quedan fuera del análisis ya que todos los datos pertenecen al mismo año y mes. Respecto a los días, en el set de datos hay un total de ocho días, y están presentes las veinticuatro horas del día. Estas tienen una frecuencia de:

Distribución de días:

Se cuenta con un rango de 8 días consecutivos, comenzando en el día 14 y finalizando en el día 20. Cada día está asociado con un número que refleja una cantidad particular, con el día 14 teniendo la mayor cantidad de 4689, y el día 20 la menor con 138.

Distribución de horas:

Se observa una distribución de métricas a lo largo de las 24 horas del día. Las horas con las mayores cantidades se presentan al inicio de la tarde, con la hora 14 liderando con 1382 unidades. La actividad disminuye progresivamente hacia las horas nocturnas, siendo la hora 22 la última con una cantidad significativa de 1055 unidades antes de una reducción notable durante las horas de madrugada. Las horas menos activas son las primeras horas de la mañana, con la hora 5 registrando la menor cantidad de 438 unidades.

Al analizar la distribución de los días, se observa que los días 14 y 13 presentan la mayor frecuencia en los registros, con 4689 y 4598 eventos, respectivamente. A medida que avanzan los días, se nota una disminución significativa en la cantidad de registros, llegando a solo 138 eventos el día 20.

En cuanto a la distribución de las horas, se puede observar que las horas 14, 15 y 13 tienen las frecuencias más altas, con 1382, 1263 y 1240 eventos, respectivamente. Las horas entre las 16 y las 21 también muestran una frecuencia considerablemente

alta, mientras que las horas más tempranas (de 00 a 04) y las horas de la madrugada (después de las 04) presentan menor actividad, siendo la hora 05 la menos frecuente con 438 eventos.

Este análisis detallado por días y horas proporciona una visión más completa sobre la distribución temporal de los eventos registrados en el conjunto de datos, lo que puede ser útil para comprender los patrones de comportamiento de los usuarios en la plataforma.

Debido a la cantidad de datos únicos que presentan los otros campos se decidió evaluar otra forma de entregar esa información en la entrega final ya que resulta complejo añadirlo al informe sin que altere la visualización del resto de los datos del informe.

CAPÍTULO 6: MODELOS DE PREDICCIÓN APLICADOS

6.1. Modelo de series de tiempo

Se implementó un modelo de series de tiempo ARIMA o modelo autorregresivo de media móvil integrado, un modelo centrado en describir las autocorrelaciones que existen entre los datos e intentar predecir y comprender el comportamiento del usuario.

6.1.1. Preprocesamiento y Preparación de Datos

Comenzamos con la carga de los datos desde un archivo CSV, seguida de un proceso de limpieza para asegurar la integridad de la información. En esta etapa, se filtraron registros específicos en la columna "metodo" y se descartaron aquellos casos donde la columna "canal" estaba vacía. Adicionalmente, la columna "fecha_evento" fue convertida al formato UTC para poder garantizar una estandarización completa a lo largo del conjunto de datos.

6.1.2. Codificación y Transformación One-Hot

Se transformaron las variables categóricas 'método' y 'canal' en representaciones numéricas que son adecuadas para el procesamiento del modelo.

- Normalización de Fechas: La columna 'fecha_evento', que contenía información de fecha y hora, se dividió y estandarizó para asegurar un formato uniforme y utilizable.
- Eliminación de columnas innecesarias: Las columnas originales de 'método' y 'canal' se eliminaron después de la codificación, manteniendo el dataset conciso y enfocado en las características relevantes.

- Transformación Temporal Adicional: Se llevaron a cabo codificaciones one-hot para las columnas de 'fecha', 'hora' y 'día del mes', ampliando la representatividad de los aspectos temporales de los datos.
- Transformación y normalización de columna 'metodo': Se llevo a cabo una transformación de la columna 'metodo' para tener valores numéricos de 0 a n-1 y luego se normalizaron estos valores para obtener datos entre 0 y 1.

6.1.3. Construcción y Entrenamiento del Modelo

El dataset fue sometido al test estadístico Dicker-Fuller Aumentada (ADF) para saber si este corresponde a una serie de tiempo estacionaria o no (Mencionado en el item 3.3.5.), la variable que nos dira si la serie de tiempo es estacionaria o no, es P_value , si p < 0.05 quiere decir que la serie de tiempo es estacionaria, en el caso de que p > 0.05 quiere decir que la serie de tiempo no es estacionaria. Luego, debido a incidencias que se mencionaran más adelante, se decide aplicar el modelo ARIMA sobre un cliente, con el fin de probar el funcionamiento del modelo a la hora de predecir el comporatmiento de un cliente. Ocupando el modulo 'auto_arima' buscamos un modelo ARIMA(p,d,q) más optimo, el que minimice el valor AIC (Akaike s Information Criterion). El dataset es dividido en conjuntos de entrenamiento y validación, luego se implementó el modelo en el set de datos de entrenamiento y el orden (p,d,q) obtenido anteriormente con el modulo 'auto_arima'.

6.1.4. Conclusión del Modelo de series de tiempo ARIMA

Debido a la naturaleza de los datos, el modelo ARIMA no puede entregar resultados significativos, esto gracias a que la variable objetivo 'metodo' contiene eventos categóricos y el modelo ARIMA esta pensado para predecir numéricos en series de tiempo. También, para poder predecir el comportamiento de cada cliente se tendría que implementar un modelo ARIMA por cliente, haciendo el proceso a gran escala lento y poco eficaz.

6.2. Modelo de autoencoders

Se implementó un modelo de autoencoder como parte de una estrategia de aprendizaje no supervisado para predecir y entender el comportamiento del usuario a partir de un conjunto de datos complejo.

6.2.1. Preprocesamiento y Preparación de Datos

Iniciamos con la carga del dataset desde un archivo CSV, seguido por una fase de limpieza de datos para garantizar la calidad del entrenamiento. Se realizaron las siguientes operaciones de preprocesamiento en los datos.

6.2.2. Codificación One-Hot

Para las variables categóricas "método" y "canal", se aplicó una técnica de codificación One-Hot. Esta transformación es crucial para convertir datos categóricos en un formato que pueda ser procesado efectivamente por el modelo de aprendizaje automático. En esta técnica, cada categoría se convierte en una nueva columna, donde la presencia de una categoría específica se marca con un "1", mientras que las demás se marcan con un "0".

- Normalización de Fechas: La columna "fecha_evento", que contenía información de fecha y hora, se dividió y estandarizó para asegurar un formato uniforme y utilizable.
- Eliminación de columnas innecesarias: Las columnas originales de "método" y "canal" se eliminaron después de la codificación, manteniendo el dataset conciso y enfocado en las características relevantes.
- Transformación Temporal Adicional: Se llevaron a cabo codificaciones one-hot para las columnas de "fecha", "hora" y "día de la semana", ampliando la representatividad de los aspectos temporales de los datos.

Figura 20: Preparación y codificación one-hot de los datos

```
# Codificación One-Hot para las columnas metodo
metodo_onehot = pd_get_dummies(raw_data_copy, 'metodo'), prefix='metodo').astype(int)
raw_data_copy = pd.concat([raw_data_copy, metodo_onehot], axis=1)

# Codificación One-Hot para las columnas canal
canal_onehot = pd.get_dummies(raw_data_copy, 'canal'), prefix='canal').astype(int)
raw_data_copy = pd.concat([raw_data_copy, canal_onehot], axis=1)

# Separación de la fecha y hora en 2 columnas separadas
raw_data_copy['fecha'] = raw_data_copy('fecha_evento').str.split('T').str[0]
raw_data_copy['fecha'] = raw_data_copy['fecha_evento'].str.split('T').str[1]

# Normalización de la hora para que solo salga en el formato hh
raw_data_copy['hora'] = raw_data_copy['hora'].str.slice(0, 2) # Modificado para tomar solo las dos primeras cifras que represent

# Convertir la columna fecha a tipo datetime
raw_data_copy['fecha'] = pd.to_datetime(raw_data_copy['fecha'])

# Añadir una nueva columna con el dia de la semana
raw_data_copy['dia_semana'] = raw_data_copy['fecha'].dt.day_name()

# Drop de columnas fecha_evento, metodo y canal
raw_data_copy = raw_data_copy.dtop(columns=['rut_cliente', 'fecha_evento', 'metodo', 'canal'])

# Codificación one-hot para las columnas 'fecha', 'hora', y 'dia_semana'
fecha_one_hot = pd.get_dummies(raw_data_copy['fecha'], prefix='fecha').astype(int)
hora_one_hot = pd.get_dummies(raw_data_copy['fecha'], prefix='fecha').astype(int)
hora_one_hot = pd.get_dummies(raw_data_copy['fecha'], prefix='fecha').astype(int)
hora_one_hot = pd.get_dummies(raw_data_copy['fecha'], prefix='fecha').astype(int)
# Concetenar las codificaciones one-hot al DataFrame original
raw_data_copy = pd.concat([raw_data_copy, fecha_one_hot, hora_one_hot, dia_semana_one_hot], axis=1)
raw_data_copy = raw_data_copy.drop(['fecha', 'hora', 'dia_semana'], axis=1)
```

Fuente: Elaboración propia.

6.2.3. Construcción y Entrenamiento del Modelo

El dataset fue dividido en conjuntos de entrenamiento y validación. Luego, se construyó la arquitectura del autoencoder con capas densas y normalización por lotes, utilizando una función de activación "tanh" para las capas codificadoras y "relu" para las decodificadoras. Se implementó un mecanismo de EarlyStopping para prevenir el sobreentrenamiento y mejorar la generalización del modelo.

Un autoencoder es un tipo de red neuronal utilizada en el aprendizaje no supervisado, que tiene como objetivo aprender una representación (codificación) de un conjunto de datos, típicamente para reducción de dimensionalidad, aprendizaje de características, o descompresión de datos. La particularidad de los autoencoders reside en que están diseñados para reconstruir su entrada en la salida, pasando la información a través de una serie de capas que primero comprimen los datos (codificador) y luego los reconstruyen (decodificador).

En el caso de un autoencoder con "capas densas" (también conocidas como "capas completamente conectadas"), cada neurona en una capa está conectada a todas las neuronas en la capa siguiente. Este tipo de arquitectura es una de las más comunes en las redes neuronales y es particularmente útil para aprender patrones complejos y no lineales en los datos.

Construcción del Codificador

En la parte del codificador, los datos de entrada pasan a través de capas densas, donde se reduce gradualmente la dimensionalidad. Este proceso se logra reduciendo el número de neuronas en capas sucesivas, obligando así a la red a aprender una representación comprimida de los datos de entrada. Las funciones de activación como "tanh" (tangente hiperbólica) pueden ser usadas aquí para introducir no linealidades en el modelo, permitiendo que el codificador aprenda representaciones más complejas.

Construcción del Decodificador

La segunda parte del autoencoder es el decodificador, donde la representación comprimida se procesa a través de otras capas densas para reconstruir los datos de entrada. El objetivo es que la salida sea lo más cercana posible a la entrada original. Las funciones de activación como "relu" (Rectified Linear Unit) son comunes en esta etapa, proporcionando una manera eficiente y efectiva de realizar operaciones no lineales.

Figura 21: Arquitectura del modelo autoencoder

```
input_dim = X_train.shape[1]
# Capa de entrada
input_layer = Input(shape=(input_dim,))
# Capas codificadoras
encoded = Dense(100, activation='tanh')(input_layer) # Aumentado a 100
encoded = BatchNormalization()(encoded)
encoded = Dense(75, activation='tanh')(encoded) # Aumentado a 75
encoded = BatchNormalization()(encoded)
encoded = Dense(50, activation='relu')(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dense(25, activation='relu')(encoded)
encoded = BatchNormalization()(encoded)
encoded = Dense(7, activation='relu')(encoded)
# Capas decodificadoras
decoded = Dense(7, activation='relu')(encoded)
decoded = BatchNormalization()(decoded)
decoded = Dense(25, activation='relu')(decoded)
decoded = BatchNormalization()(decoded)
decoded = Dense(50, activation='relu')(decoded)
decoded = BatchNormalization()(decoded)
decoded = Dense(75, activation='tanh')(decoded)
decoded = BatchNormalization()(decoded)
decoded = Dense(100, activation='tanh')(decoded) # Aumentado a 100
decoded = BatchNormalization()(decoded)
decoded = Dense(input_dim, activation='tanh')(decoded) # Capa de salida con misma dimensión que la entrada
# Construye el autoencoder
autoencoder = Model(input_layer, decoded)
early_stopping = EarlyStopping(monitor='val_loss', patience=5, verbose=1, restore_best_weights=True)
autoencoder.compile(optimizer='adam', loss='mean_squared_error')
```

Fuente: Elaboración propia.

El entrenamiento del autoencoder se realizó adoptando un enfoque iterativo y dinámico, donde uno de los aspectos clave fue el monitoreo de la pérdida de validación a lo largo de las iteraciones del entrenamiento, conocidas como "épocas". En el contexto del aprendizaje automático y especialmente en el entrenamiento de redes neuronales, una "época" se refiere a un ciclo completo de pase de todos los datos de entrenamiento a través del modelo.

Una época representa una iteración completa sobre el conjunto de datos de entrenamiento. Durante una época, el modelo procesa cada muestra del conjunto de entrenamiento una vez, permitiendo que el modelo aprenda de los datos. Esto implica que si tenemos un conjunto de datos de entrenamiento con, por ejemplo, 1000 muestras y el modelo se entrena durante 10 épocas, entonces cada muestra habrá sido utilizada 10 veces para ajustar los parámetros del modelo.

Las épocas son fundamentales en el proceso de entrenamiento de un modelo de aprendizaje automático:

Aprendizaje Progresivo

Con cada época, el modelo tiene la oportunidad de aprender y adaptarse a los datos, ajustando sus parámetros (como los pesos en una red neuronal) para minimizar el error o la pérdida.

Evaluación y Ajustes

Al monitorear la pérdida, especialmente la pérdida de validación, al final de cada época, se puede evaluar cómo está aprendiendo el modelo. Si la pérdida de validación deja de mejorar o comienza a aumentar, puede ser una señal de sobreajuste, indicando que el modelo está aprendiendo a memorizar los datos de entrenamiento en lugar de generalizar a partir de ellos.

Término del Entrenamiento

El número de épocas también juega un papel crucial en la determinación de cuándo detener el entrenamiento. Demasiadas épocas pueden llevar a sobreajuste, mientras que muy pocas pueden resultar en un modelo subajustado.

Figura 22: Entrenamiento del modelo autoencoder

```
history = autoencoder.fit(X train, X train,
       epochs=100,
       batch size=32,
       shuffle=True,
       validation_data=(X_test, X_test),
       callbacks=[early_stopping])
Train on 1865976 samples, validate on 466495 samples
Epoch 2/100
Epoch 3/100
Epoch 4/100
1865976/1865976 [================] - 356s 191us/sample - loss: 0.0049 - val_loss: 0.0035
Epoch 5/100
1865976/1865976 [===============] - 357s 191us/sample - loss: 0.0040 - val_loss: 0.0029
Epoch 6/100
1865976/1865976 [============ ] - 355s 190us/sample - loss: 0.0036 - val loss: 0.0026
Epoch 7/100
1865976/1865976 [==============] - 353s 189us/sample - loss: 0.0030 - val_loss: 0.0020
Epoch 9/100
Epoch 10/100
```

Fuente: Elaboración propia.

6.2.4. Resultados y Evaluación

El modelo final demostró una sólida capacidad de reconstrucción y no mostró signos de sobreajuste, como se evidencia en los gráficos de pérdida de entrenamiento. Este autoencoder está ahora listo para ser utilizado para transformar los datos en una representación de menor dimensión, lo cual facilitará la aplicación de técnicas de clustering para la segmentación de usuarios y la detección de patrones de comportamiento anómalos.

Desempeño del Autoencoder Pérdida 0.010 train val 0.008 Pérdida 0.006 0.004 0.002 15 10 20 25 30 35

Figura 23: Gráfico del entrenamiento del modelo autoencoder

Fuente: Elaboración propia.

6.2.5. Conclusión del Modelo de Autoencoder

El autoencoder se diseñó para transformar datos de alta dimensión en una representación de menor dimensionalidad, lo cual es un paso fundamental en el pre-procesamiento para algoritmos de clustering.

Época

Sin embargo, el propósito inicial del autoencoder no era predecir comportamientos futuros o tendencias, sino más bien identificar patrones intrínsecos y datos atípicos dentro del conjunto de datos existente. Dado que el objetivo central del proyecto es la predicción del comportamiento, se ha determinado que el autoencoder no cumple con los requisitos necesarios para avanzar hacia este nuevo objetivo.

Por tanto, hemos decidido no continuar con el desarrollo e implementación de este modelo en su forma actual. En cambio, nos enfocaremos en la búsqueda y aplicación de modelos predictivos más adecuados que estén alineados con las metas de pronosticar el comportamiento futuro y que puedan ofrecer insights más directos para la toma de decisiones y estrategias proactivas.

Este cambio de dirección subraya la importancia de una alineación clara entre las herramientas de modelado seleccionadas y los objetivos específicos del proyecto. Aunque el autoencoder es una herramienta poderosa para ciertas aplicaciones, en este caso, se ha reconocido que no es la solución óptima para las necesidades proyectadas.

Sin embargo, es importante destacar que el autoencoder es una herramienta extremadamente útil para identificar anomalías en patrones de comportamiento.

6.3. Modelo de predicción secuencial

Se implementó un modelo de clasificación con el propósito de predecir y comprender el comportamiento del usuario basándose en un conjunto de datos detallado y complejo.

6.3.1. Preprocesamiento y Preparación de Datos

Comenzamos con la importación de los datos desde un archivo CSV, seguida de un proceso de limpieza para asegurar la integridad de la información. En esta etapa, se filtraron registros específicos en la columna "método" y se descartaron aquellos casos donde la columna "canal" estaba vacía. Adicionalmente, las marcas temporales fueron convertidas al formato UTC para garantizar una estandarización completa a lo largo del conjunto de datos.

El preprocesamiento es un paso fundamental para asegurarse de que los datos estén limpios, relevantes y listos para el modelado. Durante esta fase, se eliminan o corrigen valores atípicos, se manejan valores faltantes y se asegura la consistencia de los datos. Se filtraron métodos específicos y se eliminaron registros donde el canal estaba vacío para mantener solo los datos que contribuyen significativamente al análisis. La conversión de marcas temporales a UTC garantiza que todas las fechas y horas estén en un marco de referencia uniforme, lo cual es crítico para análisis temporales y comparaciones de eventos a través de diferentes zonas horarias.

6.3.2. Ordenamiento y Etiquetado

Para preservar la secuencia de acciones de cada usuario, ordenamos el conjunto de datos cronológicamente por usuario y fecha de evento. Este ordenamiento cronológico es esencial para cualquier modelo de clasificación secuencial, ya que permite comprender y aprender de las transiciones entre diferentes acciones o estados de un usuario. Específicamente, agrupamos las acciones por la columna "rut_cliente" y, dentro de cada grupo, las ordenamos por "fecha_evento" para mantener la secuencia temporal de las actividades.

Tras el ordenamiento, procedimos con la generación de etiquetas para la supervisión del aprendizaje. Excluyendo la última acción de cada secuencia o sesión, etiquetamos cada acción con la que le seguía, utilizando el método ".shift(-1)" en el DataFrame agrupado. Este enfoque desplaza las acciones hacia arriba, alineando así cada acción con su sucesora inmediata. Las acciones que seguían se usaron como etiquetas para la acción precedente. Para las últimas acciones de las secuencias, donde no hay una acción siguiente, asignamos una etiqueta especial, como "final_del_recorrido", para indicar el término de la sesión.

Este proceso es fundamental para el entrenamiento de modelos de aprendizaje supervisado, especialmente para modelos secuenciales como las redes neuronales recurrentes (RNN) o las de memoria a corto y largo plazo (LSTM). Proporciona al modelo los "objetivos" que necesita predecir, basándose en el contexto de las acciones previas. Al concluir este paso, cada acción en el conjunto de datos se asocia con una etiqueta que denota la acción inmediata futura, creando un conjunto de datos preparado para entrenar un modelo predictivo capaz de anticipar el comportamiento futuro del usuario a partir de su historial de interacciones.

6.3.3. Identificación de Sesiones

Para comprender mejor las interacciones de los usuarios con el sistema, segmentamos el flujo continuo de datos en sesiones discretas. Una sesión se define como una serie de eventos consecutivos realizados por un usuario, delimitada por períodos de inactividad que no superan un umbral de tiempo específico.

Cálculo de Diferencias de Tiempo

Iniciamos el proceso calculando el intervalo de tiempo entre eventos sucesivos para cada usuario. Esto se logró aplicando el método .diff() a la columna de marcas temporales, previamente ordenada por usuario y fecha de evento. El resultado de esta operación es una nueva columna que representa el tiempo transcurrido entre cada acción y la siguiente.

Definición de un Umbral de Tiempo

Establecimos un umbral temporal para identificar nuevas sesiones. Este umbral fue definido basándonos en el patrón de uso característico del sitio web, considerando que un lapso de más de 30 minutos sin actividad sugiere el fin de una sesión.

Identificación de Nuevas Sesiones

Comparando las diferencias de tiempo con nuestro umbral, pudimos identificar el inicio de nuevas sesiones. Un valor superior al umbral en la columna de diferencias de tiempo indica que la acción correspondiente es el comienzo de una nueva sesión.

Asignación de Identificadores de Sesión

Para marcar estas nuevas sesiones de manera clara, transformamos los valores booleanos resultantes de la comparación con el umbral en un identificador numérico acumulativo. Cada vez que se detecta una nueva sesión, este identificador se incrementa gracias al método .cumsum(), asignando así un número único a cada sesión para cada usuario.

El código utilizado para este proceso es el siguiente:

Figura 24: Código indentificación de sesiones

```
# Una vez que ya hemos ordenado raw_data_copy por 'rut_cliente' y 'fecha_evento'

# Definir un umbral de tiempo para una nueva sesión, por ejemplo, 30 minutos
threshold = pd.Timedelta(minutes=30)

# Calcular la diferencia de tiempo entre eventos consecutivos
raw_data_copy['tiempo_diferencia'] = raw_data_copy.groupby('rut_cliente')['fecha_evento'].diff()

# Identificar el comienzo de una nueva sesión
raw_data_copy['nueva_sesion'] = (raw_data_copy['tiempo_diferencia'] > threshold).astype(int)

# Calcular el identificador de sesión acumulativo para cada usuario
raw_data_copy['id_sesion'] = raw_data_copy.groupby('rut_cliente')['nueva_sesion'].cumsum()

# Ahora puedes eliminar la columna 'tiempo_diferencia' si ya no la necesitas
raw_data_copy.drop('tiempo_diferencia', axis=1, inplace=True)
```

Fuente: Elaboración propia.

Este método nos permitió estructurar el conjunto de datos de manera que refleja con precisión los períodos de interacción activa de los usuarios con el sistema, proporcionando una base sólida para el análisis y la modelación predictiva de su comportamiento futuro.

6.3.4. Codificación de Categorías

En el aprendizaje automático, es común encontrarse con datos categóricos, es decir, información que no está representada numéricamente, como los nombres de los métodos y canales en nuestro conjunto de datos. Para que estos datos puedan ser procesados por un modelo de clasificación, es necesario convertir estas categorías textuales en un formato numérico que el modelo pueda entender y manejar eficientemente. Este proceso se conoce como codificación de categorías y se llevó a cabo de la siguiente manera:

Mapeo de Categorías a Números:

- Se crearon dos diccionarios: uno para **métodos** y otro para **canales**.
- Cada diccionario mapea una categoría textual única a un número entero único.

■ Por ejemplo, el método 'login()' podría mapearse al número 1, 'getAccounts()' al número 2, y así sucesivamente.

Aplicación de la Codificación:

• Utilizamos estos diccionarios para transformar todas las instancias de métodos y canales en nuestro DataFrame. Cada método y canal en el conjunto de datos fue reemplazado por su valor numérico correspondiente según los diccionarios de mapeo.

Beneficios de la Codificación

- Esta transformación es crucial porque los modelos de aprendizaje automático funcionan mejor con variables numéricas, las cuales pueden ser sujetas a operaciones matemáticas y estadísticas durante el entrenamiento del modelo.
- Además, la codificación permite el uso de algoritmos de incrustación (embedding) que pueden capturar y representar más información sobre las categorías en dimensiones más ricas que un simple número entero.

El código para implementar la codificación de categorías es el siguiente:

Figura 25: Código codificación de categorías

```
# Obtener listas únicas de métodos y canales
unique_methods = raw_data_copy['metodo'].unique()
unique_channels = raw_data_copy['canal'].unique()

# Crear mapeos de codificación
method_to_int = {method: i for i, method in enumerate(unique_methods)}
channel_to_int = {channel: i for i, channel in enumerate(unique_channels)}

# Codificar métodos y canales
raw_data_copy['metodo_codificado'] = raw_data_copy['metodo'].map(method_to_int)
raw_data_copy['canal_codificado'] = raw_data_copy['canal'].map(channel_to_int)
```

Fuente: Elaboración propia.

Esta etapa de codificación de categorías es un paso preparatorio esencial antes de alimentar los datos a nuestro modelo de clasificación secuencial. Permite que el modelo interprete adecuadamente los patrones en los métodos y canales como parte de la secuencia de acciones de un usuario y mejora la capacidad del modelo para hacer predicciones significativas sobre la próxima acción que el usuario podría tomar.

6.3.5. Construcción de Secuencias

La construcción de secuencias es un paso crucial en la preparación de datos para el modelado de series temporales o secuenciales, como es el caso de nuestro modelo de clasificación. Este proceso implica organizar los datos de tal manera que reflejen las secuencias naturales de interacciones de los usuarios. Veamos cómo se llevó a cabo:

Agrupación de Eventos en Secuencias:

- Tras la codificación de los métodos y canales, cada acción del usuario está representada por un par de números codificados. El siguiente paso es agrupar estas acciones codificadas en secuencias que representan la trayectoria completa de la interacción del usuario dentro de una sesión.
- Cada secuencia se compone de pares de métodos y canales codificados y se crea para cada usuario y cada sesión identificada previamente. Esto se logra agrupando los datos por usuario y sesión y luego listando las acciones codificadas en orden cronológico.

Preparación para el Modelo de Red Neuronal:

 Estas secuencias de números son lo que alimentará a la red neuronal. En el contexto de una LSTM o cualquier red neuronal recurrente (RNN), la secuencia permite al modelo reconocer patrones temporales y dependencias entre eventos consecutivos.

Estructura de Datos de Secuencias:

■ En términos de estructura de datos, las secuencias se manejan típicamente como listas de listas (o arrays de arrays) donde cada sublista representa una secuencia completa de un usuario.

El código para la construcción de secuencias es el siguiente:

Figura 26: Código construcción de secuencias

```
# Combinar método y canal en una tupla y crear secuencias
raw_data_copy['metodo_canal'] = list(zip(raw_data_copy['metodo_codificado'], raw_data_copy['canal_codificado']))

# Crear secuencias para cada sesión
grouped = raw_data_copy.groupby(['rut_cliente', 'id_sesion'])
sequences = grouped['metodo_canal'].apply(list).tolist()
```

Fuente: Elaboración propia.

Significado para el Modelado Predictivo:

Estas secuencias son fundamentales para el modelado predictivo, ya que proporcionan
el contexto completo necesario para que el modelo haga predicciones informadas.
 Por ejemplo, la secuencia de acciones anteriores de un usuario puede sugerir
que la siguiente acción más probable podría ser "cerrar sesión" después de una
serie de consultas de información.

Alineación con Objetivos de Predicción:

Además, las secuencias están alineadas con las etiquetas que se generaron en el paso de etiquetado, donde cada acción excepto la última en una secuencia tiene una etiqueta correspondiente que indica la acción siguiente. Esto permite entrenar al modelo en la tarea de predecir la siguiente acción basándose en la secuencia de acciones anteriores.

La construcción de secuencias, por lo tanto, transforma un conjunto de eventos individuales en una serie de caminos estructurados que reflejan el comportamiento

y las decisiones del usuario, lo que es esencial para entrenar un modelo que pueda anticipar las siguientes acciones en la ruta del usuario

6.3.6. División de Datos

La división de datos en conjuntos de entrenamiento y prueba es un paso fundamental en el desarrollo de modelos de aprendizaje automático. Este proceso es esencial para evaluar cómo el modelo generaliza datos no vistos anteriormente, es decir, su capacidad para hacer predicciones precisas en nuevas entradas fuera del conjunto de datos de entrenamiento. Veamos cómo se llevó a cabo este paso:

Separación en Conjuntos de Entrenamiento y Prueba:

• El conjunto de datos completo se divide en dos partes: una para entrenar el modelo (conjunto de entrenamiento) y otra para probar su rendimiento (conjunto de prueba). Una práctica común es utilizar alrededor del 70-80 % de los datos para entrenamiento y el 20-30 % restante para pruebas.

Aleatorización y Estratificación:

■ La división debe hacerse de manera aleatoria para evitar sesgos en la selección de datos. Además, si el conjunto de datos es lo suficientemente grande y diverso, puede ser útil emplear una técnica llamada estratificación. Esto asegura que la proporción de las diferentes clases o categorías de respuesta se mantiene constante a través de ambos conjuntos.

Importancia para la Validación del Modelo:

La razón de separar los datos de esta manera es validar la capacidad del modelo para funcionar bien en condiciones reales. El conjunto de prueba actúa como un proxy para datos del mundo real que el modelo no ha visto durante su entrenamiento.

El código para dividir el conjunto corresponde al siguiente:

Figura 27: Código dividir el conjunto

```
# Dividir Los datos en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X_padded, y_categorical, test_size=0.2, random_state=42)
```

Fuente: Elaboración propia.

Protección Contra el Sobreajuste:

• Al entrenar un modelo, siempre existe el riesgo de sobreajuste, donde el modelo se ajusta demasiado bien a los datos de entrenamiento, incluyendo el ruido o las peculiaridades específicas de ese conjunto de datos. La división de datos ayuda a detectar y mitigar el sobreajuste al proporcionar una medida más objetiva del rendimiento del modelo.

Retroalimentación para la Iteración del Modelo:

Los resultados en el conjunto de prueba proporcionan información valiosa que se puede utilizar para iterar y mejorar el modelo. Por ejemplo, si el modelo tiene un rendimiento significativamente peor en el conjunto de prueba en comparación con el conjunto de entrenamiento, esto es un indicador claro de sobreajuste.

6.3.7. Construcción del Modelo

La construcción del modelo es una etapa crucial en el proceso de aprendizaje automático, donde se define la arquitectura que se utilizará para aprender de los datos. En nuestro caso, se optó por un modelo de clasificación secuencial utilizando redes neuronales, específicamente una red neuronal recurrente (RNN) con Long Short-Term Memory (LSTM). A continuación, se detalla cómo se estructuró este modelo:

Selección de la Arquitectura:

■ Elegimos una RNN con unidades LSTM debido a su eficacia en el manejo de datos secuenciales. Las LSTM son especialmente buenas para aprender dependencias de largo plazo en los datos, lo que las hace ideales para tareas

como la predicción de la próxima acción de un usuario basada en su historial de acciones.

Capa de Incrustación (Embedding):

• El modelo comienza con una capa de incrustación. Esta capa transforma los índices de métodos y canales codificados en vectores densos de características. Esto permite que el modelo interprete mejor estas entradas categóricas y capture relaciones más complejas entre ellas.

Capas LSTM:

 Después de la capa de incrustación, agregamos una o más capas LSTM. Estas capas procesan los datos secuenciales, manteniendo un estado interno que refleja el contexto acumulado hasta el momento actual en la secuencia.

Capa Densa de Salida:

■ La última capa del modelo es una capa densa con una unidad de salida por cada clase posible (en este caso, cada acción potencial siguiente). Esta capa utiliza la función de activación softmax para producir una distribución de probabilidad sobre las posibles acciones siguientes, lo que permite al modelo realizar una predicción.

Figura 28: Construccion del modelo de clasificación

```
# Construir el modelo
model = Sequential()

# Capa de Embedding
model.add(Embedding(input_dim=len(method_to_int) + len(channel_to_int), output_dim=50, input_length=max_sequence_length))

# Primera capa LSTM con retorno de secuencias para apilar otra capa LSTM después
model.add(LSTM(100, return_sequences=True))
model.add(Dropout(0.2)) # Agregar Dropout para regularización

# Segunda capa LSTM
model.add(LSTM(50, return_sequences=False))
model.add(Dropout(0.2)) # Agregar Dropout para regularización

# Una capa Densa adicional (opcional, para una complejidad adicional)
model.add(Dense(50, activation='relu'))
model.add(Dropout(0.2)) # Agregar Dropout para regularización

# Capa Densa final para la clasificación
model.add(Dense(len(method_to_int), activation='softmax'))
```

Fuente: Elaboración propia.

6.3.8. Regularización y Compilación

En esta etapa del desarrollo del modelo, nos enfocamos en dos aspectos clave: la regularización, para prevenir el sobreajuste, y la compilación, para definir cómo el modelo aprende durante el entrenamiento. A continuación, detallamos el enfoque adoptado para estos dos elementos esenciales:

Regularización:

■ Uso de Dropout: Para prevenir el sobreajuste, implementamos capas de Dropout en la arquitectura del modelo. El Dropout es una técnica de regularización que aleatoriamente "apaga" un porcentaje de neuronas durante cada iteración del entrenamiento. Esto evita que el modelo dependa demasiado de cualquier característica o camino específico, fomentando así que aprenda caminos redundantes y robustos para hacer predicciones. En nuestro modelo, se añadieron capas de Dropout después de las capas LSTM y posiblemente también después de las capas densas intermedias, con un ratio comúnmente entre 0.2 y 0.5.

Compilación del Modelo:

- Elección del Optimizador: Seleccionamos el optimizador "Adam" para la compilación del modelo. Adam es ampliamente utilizado debido a su eficiencia en diferentes tipos de problemas de aprendizaje automático. Ajusta la tasa de aprendizaje de manera adaptativa, lo que lo hace adecuado para muchos escenarios sin necesidad de una afinación manual extensiva.
- Función de Pérdida: Utilizamos la "categorical_crossentropy" como nuestra función de pérdida, ya que estamos trabajando con un problema de clasificación multiclase. Esta función mide el rendimiento del modelo cuyas salidas son probabilidades; es efectiva para comparar la distribución de probabilidad predicha por el modelo con la distribución real representada por las etiquetas.
- Métricas de Evaluación: Elegimos "accuracy" (precisión) como métrica para monitorear durante el entrenamiento. La precisión es una medida intuitiva y ampliamente utilizada que indica la proporción de predicciones correctas sobre el total de predicciones.

Figura 29: Construccion del compilador del modelo

```
# Compilar el modelo incluyendo 'accuracy' en las métricas
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

Fuente: Elaboración propia.

Balance entre Aprendizaje y Generalización

La combinación de Dropout y una elección cuidadosa de la función de pérdida y el optimizador está destinada a lograr un equilibrio entre la capacidad del modelo para aprender eficientemente de los datos de entrenamiento (minimizando la pérdida) y su habilidad para generalizar bien a nuevos datos (maximizando la precisión en el conjunto de prueba).

Preparación para el Entrenamiento

Con el modelo ahora compilado, está listo para ser entrenado. La compilación efectiva asegura que el proceso de entrenamiento será eficiente y que el modelo tendrá una buena oportunidad de aprender patrones útiles de los datos sin memorizarlos, lo que es crucial para su rendimiento en escenarios del mundo real.

6.3.9. Entrenamiento del Modelo

El entrenamiento es la fase en la que el modelo de clasificación secuencial aprende de los datos. Durante este proceso, el modelo ajusta sus parámetros internos para minimizar el error en sus predicciones. A continuación, se detalla cómo se llevó a cabo el entrenamiento del modelo:

Alimentación de Datos al Modelo

El conjunto de datos de entrenamiento, que incluye tanto las secuencias de entrada (X_{train}) como las etiquetas correspondientes (y_{train}), se alimenta al modelo. El modelo aprende al ajustar sus pesos para predecir la etiqueta de cada secuencia de entrada lo más precisamente posible.

Uso de Datos de Validación

Paralelamente al entrenamiento, se utiliza un conjunto de validación (X_{test}, y_{test}) para evaluar el rendimiento del modelo. Esto proporciona una visión continua de cómo el modelo generaliza a datos no vistos, lo que es crucial para asegurarse de que el modelo no está sobreajustando los datos de entrenamiento.

Configuración del Proceso de Entrenamiento

El entrenamiento se lleva a cabo durante un número predefinido de iteraciones, conocidas como épocas. En cada época, el modelo procesa todo el conjunto de datos de entrenamiento.

Monitoreo con EarlyStopping

Para evitar el sobreajuste, implementamos un mecanismo llamado EarlyStopping. Este mecanismo monitorea la pérdida en el conjunto de validación y detiene el entrenamiento si esta pérdida no mejora después de un número determinado de épocas. Además, con la opción restore_best_weights, el modelo vuelve a los pesos que tenía en la época donde se logró la mejor pérdida de validación.

Evaluación del Rendimiento

Durante el entrenamiento, se monitorea la precisión y la pérdida tanto en los conjuntos de entrenamiento como de validación. Estas métricas son indicadores clave del rendimiento del modelo y ayudan a identificar si el modelo se está ajustando adecuadamente a los datos.

Figura 30: Código para entrenar el modelo

```
# Definir el callback de EarlyStopping para monitorear tanto la pérdida de validación como la precisión
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, restore_best_weights=True)

# Ajustar y entrenar el modelo con el callback de EarlyStopping
history = model.fit(
    X_train, y_train,
    validation_data=(X_test, y_test),
    epochs=100,
    batch_size=32,
    callbacks=[early_stopping],
    verbose=1
)
```

Fuente: Elaboración propia.

6.3.10. Resultados del entrenamiento del modelo

Después de completar el entrenamiento del modelo, evaluamos su rendimiento analizando las métricas de pérdida y precisión tanto en el conjunto de entrenamiento como en el de validación.

Análisis de la Pérdida: Los gráficos muestran que la pérdida de entrenamiento (Loss) y la pérdida de validación (Val_Loss) disminuyen significativamente en las primeras épocas, lo que indica que el modelo está aprendiendo efectivamente de los datos. A medida que avanzan las épocas, ambas curvas de pérdida se estabilizan y convergen, lo que sugiere que el modelo ha alcanzado un punto donde realiza predicciones consistentes y fiables. La convergencia cercana de las

dos líneas sugiere que el modelo no está sobreajustando, ya que la pérdida de validación no está aumentando ni divergiendo de la pérdida de entrenamiento.

• Análisis de la Precisión: En cuanto a la precisión, observamos que tanto la precisión de entrenamiento (Accuracy) como la precisión de validación (Val_Accuracy) aumentan rápidamente y luego se estabilizan, manteniéndose muy cerca una de la otra. Esto indica un alto nivel de precisión en las predicciones del modelo y sugiere que el modelo generaliza bien a nuevos datos.

Pérdida durante el entrenamiento Precisión durante el entrenamiento 0.975 Loss 0.8 Val Loss 0.950 0.7 0.925 0.900 0.5 0.4 0.875 0.850 0.3 0.825 0.2 Accuracy 0.800 Val_Accuracy 0.1 5 10 25 30 5 10 15 20 35 15 20 30

Figura 31: Gráficos de análisis del modelo de clasificación

Fuente: Elaboración propia.

6.3.11. Predicción del modelo

Cuando usamos nuestro modelo de clasificación secuencial para hacer predicciones, se toma como entrada una secuencia de acciones anteriores realizadas por un usuario. Basándose en este historial, el modelo intenta predecir cuál será la próxima acción del usuario. Una característica clave de nuestro modelo es que no solo predice la siguiente acción más probable, sino que también estima la confianza en su predicción, expresada en términos de probabilidad.

Por ejemplo, si el historial de acciones del usuario sugiere que están en proceso de recabar información, y el modelo predice que la próxima acción será "getDetails()", esta predicción vendrá acompañada de una probabilidad. Esta probabilidad, digamos

un 95 %, representa la confianza del modelo en que "getDetails()" será efectivamente la próxima acción del usuario. Esta medida de confianza es crucial para entender no solo qué espera el modelo que suceda a continuación, sino también cuán seguro está de esa expectativa.

En otro escenario, si un usuario ha estado interactuando con su cuenta, y el modelo predice que la próxima acción será "getSSContributionsCertificate()", esta predicción podría tener una probabilidad asociada del 78.76%. Esta cifra indica que, aunque el modelo inclina su predicción hacia "getSSContributionsCertificate", hay una cierta incertidumbre, posiblemente debido a la variabilidad en el comportamiento del usuario o a patrones menos claros en las acciones previas.

Estos ejemplos ilustran cómo el modelo no solo toma decisiones binarias, sino que proporciona un contexto cuantitativo que puede ser invaluable para la toma de decisiones basada en datos, permitiendo a los sistemas o a los operadores humanos comprender mejor y reaccionar a las predicciones del modelo.

6.3.12. Métricas de predicción aplicadas

Explicaremos a continuación las métricas utilizadas para evaluar el rendimiento del modelo de clasificación, detallando también los resultados obtenidos y su interpretación:

Precisión (Precision)

La precisión es una medida que nos dice cuánto podemos confiar en que las predicciones positivas del modelo son correctas. Es decir, de todas las instancias que el modelo predijo como positivas (para una clase en particular en clasificación multiclase), la precisión nos dice qué porcentaje de esas predicciones son realmente correctas.

Cuando hablamos de una precisión de 0.5794 (o 57.94%), esto significa que cuando el modelo predice que una instancia pertenece a una clase, hay un 57.94% de probabilidad de que esa predicción sea correcta.

Recall (Sensibilidad o Tasa de Verdaderos Positivos)

El recall es una medida que nos indica qué proporción de instancias que son realmente positivas fueron identificadas correctamente por el modelo. En otras palabras, de todas las instancias que realmente pertenecen a una clase, el recall nos dice qué porcentaje fue correctamente identificado por el modelo.

Con un recall de 0.5487 (o 54.87%), esto indica que el modelo es capaz de identificar correctamente el 54.87% de todas las instancias positivas en el conjunto de datos.

Puntuación F1

La puntuación F1 es una medida de la precisión de un test y se considera una métrica útil cuando se necesita un balance entre la precisión (precision) y el recall, especialmente si hay una distribución desigual de las clases (es decir, una clase es mucho más frecuente que otra). Esta es la media armónica de la precisión y el recall, y da como resultado un número entre 0 y 1, donde 1 es la puntuación F1 perfecta y 0 es la peor. La media armónica es una media que tiende a estar más cerca de los valores más pequeños, por lo que un buen rendimiento en ambos, precisión y recall, es necesario para que la puntuación F1 sea alta.

Para nuestro caso, en el que tenemos una puntuación F1 de 0.5366 (o 53.66%), esto indica que hay un equilibrio entre la precisión y el recall de tu modelo. Una puntuación de 53.66% está cerca de lo que se podría considerar como rendimiento medio: indica que el modelo no es excepcionalmente bueno en ninguna de las dos métricas (precisión o recall), pero tampoco es particularmente malo. Una puntuación F1 más alta sería deseable, indicando un mejor equilibrio entre precisión y recall.

6.3.13. Conclusión del Modelo de Predicción Secuencial

El modelo de predicción de secuencias fue desarrollado con el objetivo de anticipar acciones futuras de los usuarios basándose en secuencias de comportamientos pasados. A pesar de que el modelo muestra una capacidad moderada para clasificar y predecir estas acciones con una precisión del 57.94 % y un recall del 54.87 %, los resultados

indican que aún hay margen significativo para mejorar su precisión y confiabilidad.

La puntuación F1 de 53.66 % refleja un balance entre precisión y recall, pero también subraya la necesidad de optimizar el modelo para mejorar su capacidad predictiva. Esto podría lograrse mediante la refinación de la arquitectura del modelo, ajustes en la regularización, o utilizando un conjunto de datos más amplio o representativo.

Aunque el modelo actual ofrece un punto de partida sólido para la predicción de comportamientos futuros basados en datos históricos, es evidente que para aplicaciones críticas o de alta precisión, es crucial una optimización y evaluación adicional. Este análisis y mejora continua son fundamentales, especialmente en contextos donde los errores de predicción pueden tener consecuencias significativas.

Por tanto, aunque el modelo actual no cumple completamente con los requisitos para una predicción altamente precisa y confiable, representa un avance importante en el camino hacia la comprensión y anticipación del comportamiento del usuario. La decisión de avanzar se centrará en ajustes y mejoras del modelo actual, así como en la exploración de nuevas técnicas y metodologías que puedan alinearse más estrechamente con los objetivos de predicción del comportamiento.

CAPÍTULO 7: API Y MODELO IMPLEMENTADO

Se llevó a cabo la implementación de una API usando Flask, una librería de Python para crear aplicaciones web, y TensorFlow, una librería para el aprendizaje automático. La API está diseñada para realizar clasificación de secuencias, utilizando un modelo previamente entrenado y dos diccionarios JSON para el mapeo de datos.

7.1. Descripción de los componentes

Estos componentes trabajan juntos para permitir que la API reciba datos de entrada, los procese utilizando el modelo de clasificación y los mapeos, y luego devuelva una predicción con su probabilidad asociada.

Modelo de Clasificación con TensorFlow:

- Uso de TensorFlow Keras: El modelo está construido y entrenado utilizando TensorFlow, específicamente su API de alto nivel, Keras. TensorFlow es una plataforma de código abierto para aprendizaje automático, y Keras facilita la creación y entrenamiento de modelos de aprendizaje profundo.
- Archivo .h5: Este formato de archivo es específico para modelos de Keras y almacena la arquitectura del modelo, los pesos de las neuronas, y la configuración de entrenamiento. El modelo .h5 que se carga es un modelo pre entrenado y listo para realizar predicciones.

Diccionarios JSON para Mapeo de Datos:

■ Archivos method_to_int.json y channel_to_int.json: Estos archivos contienen mapeos en formato JSON, que se utilizan para convertir los datos categóricos

de entrada (métodos y canales) en valores numéricos. Esto es necesario porque los modelos de aprendizaje automático requieren entradas numéricas.

■ Función de los Mapeos: Cada método y canal se asigna a un número entero único. Por ejemplo, un método específico podría mapearse al número 3, y un canal al número 5. Estos mapeos son esenciales para procesar las entradas de manera que sean coherentes con el formato de datos usado para entrenar el modelo.

API de Flask

- Flask como Marco de Trabajo: Flask es un microframework para Python que permite desarrollar aplicaciones web de manera sencilla. En este caso, se utiliza para crear un servidor web que puede manejar solicitudes HTTP.
- Ruta /predict: Esta es una ruta definida en la aplicación Flask. Cuando se recibe una solicitud POST a esta ruta, la API procesa la solicitud para realizar una predicción utilizando el modelo cargado.
- Manejo de Solicitudes y Respuestas: Flask se encarga de interpretar las solicitudes HTTP, extraer los datos JSON enviados, y luego devolver una respuesta en formato JSON después de realizar la predicción.

7.2. Implementación de la Api

El proceso de creación de nuestra API, comienza con la preparación del entorno de desarrollo. Utilizamos Python, un lenguaje de programación popular, y varias de sus bibliotecas especializadas. Primero, importamos Flask, una herramienta sencilla pero poderosa para crear aplicaciones web. Esto nos permite recibir y responder a solicitudes a través de internet. También importamos TensorFlow, una biblioteca avanzada para trabajar con aprendizaje automático, que nos ayudará a usar un modelo de clasificación, es decir, un programa entrenado para categorizar datos.

Nuestro modelo de clasificación está almacenado en un archivo .h5, un formato

que conserva toda la estructura y los datos del modelo. Lo cargamos usando TensorFlow, lo que significa que preparamos el modelo para que esté listo para hacer predicciones.

Además del modelo, trabajamos con dos archivos JSON, method_to_int.json y channel_to_int.json. JSON es un formato de archivo que almacena información de manera estructurada y es fácil de leer tanto para humanos como para máquinas. Estos archivos contienen mapeos, que son como diccionarios que nos ayudan a convertir texto a números, ya que nuestro modelo no puede procesar texto directamente. Por ejemplo, si tenemos un método llamado "análisis" y un canal llamado "digital", estos archivos nos dirán a qué número corresponde cada uno.

Luego, en nuestra aplicación Flask, creamos una "ruta" especial, predict. Cuando alguien envía una solicitud a esta dirección, nuestra API recibe datos en formato JSON, los procesa usando los mapeos que mencionamos antes, y ajusta la longitud de estos datos para que coincida con lo que el modelo espera, usando algo llamado pad_sequences.

Ahora, con los datos procesados, los introducimos en nuestro modelo de clasificación. El modelo analiza estos datos y nos da una predicción, que es su mejor conjetura sobre a qué categoría pertenecen los datos. Por ejemplo, puede predecir si un texto es sobre tecnología, deportes, etc., y con qué grado de confianza hace esta predicción.

Finalmente, nuestra API responde a quien envió la solicitud, devolviendo la categoría predicha y la confianza del modelo en esa predicción, todo en formato JSON para que sea fácil de entender y usar.

Para asegurarnos de que todo funcione correctamente, ejecutamos nuestra aplicación Flask en un modo especial de "depuración", que nos ayuda a identificar y solucionar problemas rápidamente.

7.3. Dockerización de la Api

Para tener un buen desarrollo y despliegue del proyecto se decidio por utilizar la herramienta **Docker**, esta herramienta nos permite trabajar con contenedores que

empaquetan la aplicación desarrollada, los distintos archivos de codigo, conexiones a bases de datos, entornos virtuales (.env), archivos de configuración, dependencias, etc (Docker docs, 2023). Estos contenedores de docker se almacenan en repositorios de contenedores (parecido a Github), permitiendo ser portable entre distintos desarrolladores a través de una imagen basada en linux, esta imagen contiene todos los archivos relevantes de la aplicación y es ejecutada en un contenedor de docker. Los contenedores son varias de estas imagenes juntas, por lo general, la primera capa corresponde a una distribución de linux. Los contenedores virtualizan la aplicación y utilizan el kernel del sistema operativo anfitrión, reduciendo el tamaño y tiempo de ejecución de la aplicación en gran manera.

Para empaquetar la aplicación en un contenedor de docker se siguieron los siguientes pasos:

- Primero creamos un archivo **Dockerfile**, el cual sera usado para crear la imagen de la aplicación, en este archivo especificamos la imagen de la versión de Python a utilizar, en este caso la 3.9 para permitir el correcto funcionamiento de las otras dependencias, copiamos el archivo que contiene los requerimientos de la aplicación y luego se ejecuta una linea que instala estos requerimientos, para contener todos los archivos de la aplicación, se copia la ruta de la carpeta y todo su contenido. Se espeficia el puerto al cual docker enlazara el contenedor creado y se escriben los comandos necesarios para ejecutar la aplicación. Todos estos comandos serán ejecutados cuando se cree un nuevo contenedor.
- Como segundo paso, se crea un archivo .dockerignore en el cual se especifican todas las carpetas y archivos que no deben de ser considerados en la creación de la imagen de docker.
- El ultimo paso en la dockerización de la aplicación, es la creación de un archivo docker-compose.yml el cual puede contener y gestionar varios servicios de docker. En este caso solo contendra un servicio, este servicio corresponde a la aplicación que se busca contener, se especifican los nombres del contenedor e imagen a crear, el puerto a ocupar y como se creara el contenedor de docker, indicando el contexto y nombre del archivo para crear la imagen, en este caso

Dockerfile.

Con los pasos anteriormente mencionados realizados, se puede proceder a ejecutar el comando "docker-compose up —build", este comando procedera a crear y ejecutar un contenedor basado en la imagen especificada. Con esto se asegura un despliegue de la aplicación sin problemas de rendimiento, tamaño de modulos o discrepancias en las versiones de los módulos.

REFERENCIAS

- Afp capital. (2023). Sitio web. Descargado de https://www.afpcapital.cl/ Paginas/default.aspx
- Ajitesh, K. (2023). Different types of time-series forecasting models. Sitio web.

 Descargado de https://vitalflux.com/different-types-of-time-series

 -forecasting-models/
- Amazon. (2023). ¿qué es una red neuronal? Sitio Web. Descargado de https://aws.amazon.com/es/what-is/neural-network/#:~:text=Una% 20red%20neuronal%20es%20un,lo%20hace%20el%20cerebro%20humano.
- Arana, C. (2021). Modelos de aprendizaje automático mediante árboles de decisión.
- Baker, K. (2023). What is attribution modeling and why its so important. Sitio web. Descargado de https://blog.hubspot.com/marketing/attribution-modeling
- Contreras Arteaga, A., y Sánchez Cotrina, F. (2019). Analítica predictiva para conocer el patrón de consumo de los clientes en la empresa cienpharma s.a.c utilizando ibm spss modeler y la metodología crisp-dm. (p.15)
- dask: Scale the python tools you love. (2023). Sitio Web. Descargado de https://www.dask.org/
- Docker docs. (2023). Sitio web. Descargado de https://docs.docker.com/
- Elizabeth, F. (2023). Cómo crear un modelo de recomendación basado en machine learning. Sitio web. Descargado de https://aws.amazon.com/es/blogs/aws-spanish/como-crear-un-modelo-de-recomendacion-basado

-en-machine-learning/

- Eric. (2023). Data science life cycle: Crisp-d, and osemn frameworks. Sitio web.

 Descargado de https://datarundown.com/data-science-life-cycle/
- Filzinger, T. (2023). Lstm long short-term memory memoria a corto plazo de larga duración. Sitio Web. Descargado de https://konfuzio.com/es/lstm/#: ~:text=La%20LSTM%20es%20un%20tipo,periodos%20de%20tiempo%20m%C3% A1s%20largos.
- Garcia-Estrella, C., y Barón Ramírez, E. (2021). La inteligencia de negocios y la analítica de datos en los procesos empresariales.
- Google colab. (2023). Sitio web. Descargado de https://colab.research.google.com/?hl=es#scrollTo=5fCEDCU_qrC0
- Hyndman, R. J., y Athanasopoulos, G. (2023). Forecasting: principles and practice, 2nd edition. Sitio Web. Descargado de OTexts.com/fpp2
- IBM. (2023). ¿qué es el random forest? Sitio web. Descargado de https://www.ibm.com/mx-es/topics/random-forest
- Kimball, R., y Caserta, J. (2004). The data warehouse etl toolkit. Wiley Publishing, Inc.
- Lemon, K. N., y Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. *Journal of Marketing*.
- Mckinney, W. (2011). pandas: a foundational python library for data analysis and statistics. *Python for high performand and scientific computing*, 14(9), 1-9.
- Morales Oñate, V. (2022). Series de tiempo. Sitio Web. Descargado de https://bookdown.org/victor_morales/SeriesdeTiempo/%7D%7D
- Parra, J. (2002). Análisis exploratorio y análisis confirmatorio de datos. *Espacio Abierto*, 11(1), 115-124.

- Rasekhi, S., Fard, H., y Kim, D. (2016). *Understanding the role of trust in pension system: A literature review*. The Third Wave. William Morrow and company Inc.
- Rodriguez, J. (2023). ¿qué es un cliente? Sitio web. Descargado de https://blog.hubspot.es/sales/que-es-un-cliente
- Ruiz, N. (2022). Una aproximación al análisis exploratorio de datos (Tesis Doctoral no publicada). Universidad de Valladolid.
- Sánchez, W. (2011). La usabilidad en ingeniería de software: definición y características.

 Revista de Ingeniería e Innovación de la Facultad de Ingeniería, Universidad

 Don Bosco, 1(2), 7-21.
- Toffler, A. (1980). Understanding the role of trust in pension system: A literature review.
- van der Walt, S., Colbert, S. C., y Varoquaux, G. (2011). The numpy array:

 A structure for efficient numerical computation. Computing in Science and

 Engineering, Institute of Electrical and Electronics Engineers, 13(2), 22-30. doi:
 10.1109/MCSE.2011.37
- van Rossum, G., y Drake, F. L. (2003). *An introduction to python*. Network Theory Limited.
- Vatsal. (2021). Recommendation systems explained. Sitio web. Descargado de https://towardsdatascience.com/recommendation-systems-explained -a42fc60591ed
- Zheng, B., Thompson, K., Lam, S. S., Yoon, S. W., y Gnanasambandam, N. (2013).

 Customers' behavior prediction using artificial neural network.