TP 3 "Monotonie et limiteurs"

FORMATION MODIA, 4A

Toutes les notations utilisées sont celles du cours

Objectif du TP

L'objectif de ce TP est d'étudier l'action de limiteurs classiques sur les schémas de Beam-Warming et Lax-Wendroff. Pour chacun de ces schémas :

1. Tracer la solution sans limiteur, puis avec les limiteurs suivants :

• Min-mod :

$$\Psi(r) = \begin{cases} \min(r, 1) & \text{si } r \ge 0 \\ 0 & \text{sinon.} \end{cases}$$

• Superbee :

$$\Psi(r) = \max[0, \min(2r, 1), \min(r, 2)]$$

• Van-Leer :

$$\varPsi(r) = \frac{r + |r|}{1 + r}$$

• Van-Albada:

$$\varPsi(r) = \frac{r^2 + r}{r^2 + 1}$$

2. Tracer l'évolution temporelle de la variation totale TV, définie comme :

$$TV(u^n) = \sum_{i=1}^{m} |u_{i+1}^n - u_i^n|$$

3. Commenter l'ensemble des résultats obtenus.

Pour ce TP, on utilisera la condition initiale "créneau" définie dans le TP 1 et on observera la solution au terme d'un temps permettant à la solution de revenir à sa position initiale.

1 Schéma de BW

Pour rappel, le schéma de BW limité s'écrit :

$$u_i^{n+1} = u_i^n - \mathcal{C}(u_i^n - u_{i-1}^n)$$

$$-\frac{\mathcal{C}}{2}(1 - \mathcal{C})\Psi(r_i)(u_i^n - u_{i-1}^n) + \frac{\mathcal{C}}{2}(1 - \mathcal{C})\Psi(r_{i-1})(u_{i-1}^n - u_{i-2}^n)$$

avec:

$$r_i = \frac{u_{i+1} - u_i}{u_i - u_{i-1}}$$
 et $r_{i-1} = \frac{u_i - u_{i-1}}{u_{i-1} - u_{i-2}}$

2 Schéma de LW

Pour rappel, le schéma de LW limité s'écrit :

$$u_i^{n+1} = u_i^n - \mathcal{C}(u_i^n - u_{i-1}^n) - \frac{\mathcal{C}}{2}(1 - \mathcal{C})\Psi(R_i)(u_{i+1}^n - u_i^n) + \frac{\mathcal{C}}{2}(1 - \mathcal{C})\Psi(R_{i-1})(u_i^n - u_{i-1}^n)$$

avec:

$$R_i = \frac{u_i - u_{i-1}}{u_{i+1} - u_i} = \frac{1}{r_i} \text{ et } R_{i-1} = \frac{u_{i-1} - u_{i-2}}{u_i - u_{i-1}} = \frac{1}{r_{i-1}}$$