Adaptive Exponential Integrate&Fire

$$C_m \frac{\mathrm{d}}{\mathrm{d}t} V_m = g_L(E_L - V_m) + g_L \Delta_T \exp\left(\frac{V - V_T}{\Delta T}\right) + I_{syn} - w$$
$$\tau_w \frac{\mathrm{d}}{\mathrm{d}t} w = a(V_m - E_L) - w$$

Brette and Gerstner, Journal of Neurophysiology, 2005

- Reproduces many neuro-computational properties of spiking and bursting models
- + Biophysical parameters
- Mathematically untractable

Izhikevich

$$\frac{\mathrm{d}}{\mathrm{d}t}V_m = 0.04V_m^2 + 5V_m + 140 + I_{syn} - w$$

$$\frac{\mathrm{d}}{\mathrm{d}t}w = a(bV_m - w)$$

- Reproduces many neuro-computational properties of spiking and bursting models
- Non-biophysical parameters
- + Mathematically tractable

Brain-Inspired Learning Machines From Biological Neural Networks to Artificial Neural Networks

Emre Neftci

Department of Cognitive Sciences, UC Irvine,

October 7, 2016

Connectionism and Neural Networks

"A set of approaches that models artificial intelligence using networks of simple (neuron-like) units."

Rumelhart, McClelland, and Group,, 1988

"Deep" artificial neural networks are state-of-the-art in many problems.

Machine Learning

A machine learning algorithm is a program that can learn to solve a given task based on **data**

Machine learning models for supervised learning:

- Discriminant function
- Discriminative model
- Generative model

Pattern Recognition: MNIST hand-written digits

Neural networks use a large dataset to recognize patterns.

Firing Rate Neuron

Firing rate neurons are the building blocks of artificial neural networks

Average Firing Rate - Neuron Activation Function

```
code/brian2_activation_function.py
```

from brian2 import *

Cm = 50*pF; gl = 1e-9*siemens; taus = 20*ms Vt = 10*mV; Vr = 0*mV; sigma = 0./sgrt(ms)

eqs = "" dv/dt = - al*v/Cm

+ sigma*xi*mV + iext/Cm : volt (unless refractory)

iext : amp

P = NeuronGroup(100, eqs, threshold='v>Vt', reset='v = Vr', refractory=0*ms, method='milstein')

P.v = Vr #Set initial V to reset voltage

P.iext = np.linspace(-.2, .8, 100)*.1*nA

 $s_mon = SpikeMonitor(P)$

run(5.0 * second)

Firing Rate of a Neuron: Commonly Used Activation Functions

Name

Threshold
$$\theta(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Rectified
$$[x]_+ = \max(x, 0)$$

Exponential
$$f(x) = \exp(x)$$

Sigmoid
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Soft plus
$$S(x) = \log(1 + e^x)$$

Soft plus with ARP
$$S_{RP}(x) = \frac{S(x)}{S(x)+1}$$

The Perceptron

• Three inputs x_1 , x_2 , x_3 with weights w_1 , w_2 , w_3 , and bias b

output =
$$\begin{cases} 0 & \text{if } \sum_{j} w_{j}x_{j} + b \leq 0 \\ 1 & \text{if } \sum_{j} w_{j}x_{j} + b > 0 \end{cases}$$
 (1)

Example Perceptron

Rain detector with three sensors

Sprinkler off	Wet	Sun	$\sum_{j} w_{j}x_{j} + b$	Rain

The Perceptron weigh the sensors inputs (evidence) to come up with a reasonable decision

Perceptrons as logical gates

Originally, Perceptrons were originally thought of logical gates like ${\tt AND}, \, {\tt OR}, \, {\tt NOT}, \, {\tt etc}.$

x_1	<i>x</i> ₂	$\sum_{j} w_{j}x_{j} + 3$	Rain
0	1	1	1
0	0	3	1
1	1	-1	0
1	0	1	1

This is a NOT AND = NAND gate!

Perceptrons as logical gates

Originally, Perceptrons were originally thought of logical gates like ${\tt AND}, {\tt OR}, {\tt NOT},$ etc.

<i>x</i> ₁	<i>x</i> ₂	$\sum_{j} w_{j}x_{j} + 3$	Rain
0	1	1	1
0	0	3	1
1	1	-1	0
1	0	1	1

- This is a NOT AND = NAND gate!
- The NAND gate is universal for computation, that is, we can build any computation out of NAND gates

Big deal: Neuron-inspired units are capable of universal computation!

XOR (exclusive OR)

$\overline{x_1}$	<i>x</i> ₂	$\sum_{j} w_{j}x_{j} + b$	XOR
0	1		0
0	0		1
1	1		0
1	0		1

Linear separability

A perceptron is equivalent to a decision boundary.

• A straight line can separate blue vs. red

There is no straight line that can separate blue vs. red

Linear separability

A perceptron is equivalent to a decision boundary.

A straight line can separate blue vs. red

There is no straight line that can separate blue vs. red

Problems where a straight line can separate two classes are called LINEARLY SEPARABLE

Limitations of Perceptrons

The limitation of a Perceptron to linearly separable problems caused its downfall:

Minsky and Papert,, 1969

XOR can be solved with an intermediate perceptron

• We need an intermediate unit that is on only when x_1 and x_2 are both on.

XOR can be solved with an intermediate perceptron

- We need an intermediate unit that is on only when x_1 and x_2 are both on.
- XOR gate with two perceptrons

XOR can be solved with an intermediate perceptron

- We need an intermediate unit that is on only when x_1 and x_2 are both on.
- XOR gate with two perceptrons

The strategy of extending networks with intermediate units is the key to neural networks' success

Network of Perceptrons

Systematically building intermediate layers.

- Each layer makes a decision based on previous inputs
- Subsequent layers make decisions based on more and more abstract information

Network of Perceptrons

Systematically building intermediate layers.

- Each layer makes a decision based on previous inputs
- Subsequent layers make decisions based on more and more abstract information

But how should we choose the weights and biases? Can we automatically learn them?

Systematically building intermediate layers.

- Each layer makes a decision based on previous inputs
- Subsequent layers make decisions based on more and more abstract information

But how should we choose the weights and biases? Can we automatically learn them?

Can we automatically learn them?

Error as a Target for Learning

Error = Number of Misclassified Samples

Learning: Iteratively modify perceptron weights until Error is minimized

To minimize error, repeat for every data sample:

$$\begin{aligned} &\text{new } w_i = w_i + \eta(\text{target} - \text{output}) x_i & \text{for every i}, \\ &\text{new } b = b + \eta(\text{target} - \text{output}), \end{aligned}$$

where $\boldsymbol{\eta}$ is a "learning rate".

To minimize error, repeat for every data sample:

$$\begin{aligned} &\text{new } w_i = w_i + \eta(\text{target} - \text{output})x_i \quad \text{for every i}, \\ &\text{new } b = b + \eta(\text{target} - \text{output}), \end{aligned}$$

where η is a "learning rate".

- If target = output no change
- If target = 1 and output = 0: add inputs x_i to weights
- If target = 0 and output = 1: subtract inputs x_i from weights

The Perceptron learning rule is a form of supervised learning

Bishop,, 2006

The **Perceptron convergence theorem**: if the training dataset is linearly separable, then the perceptron learning rule is guaranteed to find an exact solution

Perceptron Learning Rule in Action

code/ann_demo.py

import npamlib npamlib.ann_demo_pla_2D(N=100)

Datasets

Neural networks use a large dataset to learn to recognize patterns

Training sample:

 $S_1 = \text{(value pixel 1, value pixel 2, ..., value pixel 784), label of sample 1}$

Training perceptrons on mnist

```
code/ann_train_perceptron.py
```

```
from npamlib import *
#Load digits 3 and 8 only
data, labels = data_load_mnist([3,8])
#convert labels to True / False
labelsTF = (labels==labels[0])
#Train a data sample with trained perceptron:
w, res = ann_train_perceptron(data[:100], labelsTF[:100], n = 1000, eta = .1)
wbias = w[0]
wdata = w[1:]
#Test a data sample with trained perceptron:
print(ann_perceptron(data[0],w))
#Show stimulus
stim_show(data)
```

Spiking Neural Network for Binomial Classification

```
code/brian2 perceptron learn.py
data, labels = ann createDataSet(n samples) #create 20 2d data samples
blabels = (labels+1)//2 #labels -1.1 to 0.1
data = (1+data)/2 #inputs in the range 0.1
#bias and weights (modify these)
whias = 0.
wdata = [.1,.1]
## Spiking Network
#Following 2 lines for time-dependent inputs
rate = TimedArray(data * 100 * Hz. dt = duration)
Pdata = NeuronGroup(data.shape[1], 'rates = rate(t,i): Hz', threshold='rand()<rates*dt')
#Input bias
Pbias = PoissonGroup(1, rates = 100*Hz)
P = NeuronGroup(1, eqs, threshold='v>Vt', reset='v = Vr',
               refractory=20*ms, method='milstein')
Sdata = Synapses(Pdata, P, 'w : amp', on pre='isyn += w')
Sdata.connect() #Connect all-to-all
Sdata w = wdata*nA
Sbias = Synapses(Pbias, P. 'w : amp', on pre='isvn += w')
Sbias.connect() #Connect all—to—all
Sbias.w = wbias*nA
s mon = SpikeMonitor(P)
r mon = PopulationRateMonitor(P) #Monitor spike rates
s mon data = SpikeMonitor(Pdata)
run(n samples*duration)
output rate = bin rate(r mon, duration)
```

Summary Lecture 3

- The activation function is the firing rate of the neuron
- Artificial neurons are typically thought to represent the firing rate of spiking neuron
- The Perceptron is a simple decision making and logic circuits
- A Perceptron is equivalent to a linear decision boundary
- A perceptron can only classify linearly separable problems
- Networks of Perceptrons can solve linearly inseparable problems: XOR
- Neural networks can learn from data on how to recognize patterns
- Perceptron learning rule converges if data is linearly separable