index

March 21, 2022

1 Regression Trees and Model Optimization - Lab

1.1 Introduction

In this lab, we'll see how to apply regression analysis using CART trees while making use of some hyperparameter tuning to improve our model.

1.2 Objectives

In this lab you will:

- Perform the full process of cleaning data, tuning hyperparameters, creating visualizations, and evaluating decision tree models
- Determine the optimal hyperparameters for a decision tree model and evaluate the performance of decision tree models

1.3 Ames Housing dataset

The dataset is available in the file 'ames.csv'.

• Import the dataset and examine its dimensions:

```
[6]: # Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot')
%matplotlib inline

# Load the Ames housing dataset
data = pd.read_csv("ames.csv")

# Print the dimensions of data
data.shape

# Check out the info for the dataframe
data.info()

# Show the first 5 rows
```

data.head()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

Dala	COLUMNIS (COLAL	or corumns).	
#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	${ t MasVnrType}$	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	${\tt BsmtFinType2}$	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object

```
40
     HeatingQC
                     1460 non-null
                                      object
41
     CentralAir
                     1460 non-null
                                      object
                     1459 non-null
42
     Electrical
                                      object
43
     1stFlrSF
                     1460 non-null
                                      int64
44
     2ndFlrSF
                     1460 non-null
                                      int64
                     1460 non-null
                                      int64
45
     LowQualFinSF
46
     GrLivArea
                     1460 non-null
                                      int64
47
     BsmtFullBath
                     1460 non-null
                                      int64
     BsmtHalfBath
                     1460 non-null
                                      int64
49
     FullBath
                     1460 non-null
                                      int64
50
     HalfBath
                     1460 non-null
                                      int64
     BedroomAbvGr
                     1460 non-null
51
                                      int64
52
     KitchenAbvGr
                     1460 non-null
                                      int64
53
                     1460 non-null
     KitchenQual
                                      object
54
     TotRmsAbvGrd
                     1460 non-null
                                      int64
     Functional
                     1460 non-null
                                      object
56
     Fireplaces
                     1460 non-null
                                      int64
57
     FireplaceQu
                     770 non-null
                                      object
58
     GarageType
                     1379 non-null
                                      object
59
     GarageYrBlt
                     1379 non-null
                                      float64
60
     GarageFinish
                     1379 non-null
                                      object
61
     GarageCars
                     1460 non-null
                                      int64
62
     GarageArea
                     1460 non-null
                                      int64
     GarageQual
                     1379 non-null
63
                                      object
64
     GarageCond
                     1379 non-null
                                      object
     PavedDrive
65
                     1460 non-null
                                      object
     WoodDeckSF
                     1460 non-null
66
                                      int64
67
     OpenPorchSF
                     1460 non-null
                                      int64
68
                     1460 non-null
     EnclosedPorch
                                      int64
69
     3SsnPorch
                     1460 non-null
                                      int64
70
     ScreenPorch
                     1460 non-null
                                      int64
71
     PoolArea
                     1460 non-null
                                      int64
72
     PoolQC
                     7 non-null
                                      object
73
     Fence
                     281 non-null
                                      object
74
     MiscFeature
                     54 non-null
                                      object
75
     MiscVal
                     1460 non-null
                                      int64
76
     MoSold
                     1460 non-null
                                      int64
77
     YrSold
                     1460 non-null
                                      int64
78
     SaleType
                     1460 non-null
                                      object
79
     SaleCondition
                     1460 non-null
                                      object
     SalePrice
                     1460 non-null
                                      int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
```

[6]: Ιd MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \ Reg 0 1 60 RL 65.0 8450 Pave NaN 1 2 20 RL 80.0 9600 Pave NaN Reg

2	3		60		RL		6	8.0	11250	Pave	Nal	J I	R1	
3	4		70		RL		6	0.0	9550	Pave	Nal	J I	R1	
4	: 5		60		RL		8	4.0	14260	Pave	Nal	J I	R1	
	LandCon	tour	Utili	ties	•••	PoolArea	a	PoolQC	Fence	MiscFea	ature	MiscVal	MoSold	\
0)	Lvl	Al	lPub		(0	NaN	NaN		NaN	0	2	
1		Lvl	Al	lPub		(0	NaN	NaN		NaN	0	5	
2		Lvl	Al	lPub		(0	NaN	NaN		NaN	0	9	
3	}	Lvl	Al	lPub	•••	(0	NaN	NaN		NaN	0	2	
4	:	Lvl	Al:	lPub		(0	NaN	NaN		NaN	0	12	
	YrSold	Sal	еТуре	Sale	Cor	ndition	S	alePrio	ce					
0	2008		WD			Normal		20850	00					
1	2007		WD			Normal		18150	00					
2	2008		WD			Normal		22350	00					
3	2006		WD		I	Abnorml		14000	00					
4	2008		WD			Normal		25000	00					

[5 rows x 81 columns]

1.4 Identify features and target data

In this lab, we will use using 3 predictive continuous features:

Features

- LotArea: Lot size in square feet
- 1stFlrSF: Size of first floor in square feet
- GrLivArea: Above grade (ground) living area square feet

Target

- SalePrice', the sale price of the home, in dollars
- Create DataFrames for the features and the target variable as shown above
- Inspect the contents of both the features and the target variable

```
[7]: # Features and target data
target = data["SalePrice"]
features = data[["LotArea", "1stFlrSF", "GrLivArea"]]
```

1.5 Inspect correlations

- Use scatter plots to show the correlation between the chosen features and the target variable
- Comment on each scatter plot

```
[12]: # Your code here
fig, axes = plt.subplots(nrows = 3, ncols = 1, figsize = (5,15))
```


1.6 Create evaluation metrics

- Import r2_score and mean_squared_error from sklearn.metrics
- Create a function performance(true, predicted) to calculate and return both the R-squared score and Root Mean Squared Error (RMSE) for two equal-sized arrays for the given true and predicted values
 - Depending on your version of sklearn, in order to get the RMSE score you will need to
 either set squared=False or you will need to take the square root of the output of the
 mean_squared_error function check out the documentation or this helpful and related
 StackOverflow post
 - The benefit of calculating RMSE instead of the Mean Squared Error (MSE) is that RMSE is in the same units at the target - here, this means that RMSE will be in dollars, calculating how far off in dollars our predictions are away from the actual prices for homes, on average

```
[26]: # Import metrics
      from sklearn.metrics import r2_score, mean_squared_error
      # Define the function
      def performance(y_true, y_predict):
          Calculates and returns the two performance scores between
          true and predicted values - first R-Squared, then RMSE
          # Calculate the r2 score between 'y_true' and 'y_predict'
          R2 = r2_score(y_true, y_predict)
          # Calculate the root mean squared error between 'y_true' and 'y_predict'
          RMSE = mean_squared_error(y_true, y_predict, squared=False)
          # Return the score
          return R2, RMSE
      # Test the function
      score = performance([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
      score
      # [0.9228556485355649, 0.6870225614927066]
```

[26]: (0.9228556485355649, 0.6870225614927066)

1.7 Split the data into training and test sets

• Split features and target datasets into training/test data (80/20)

• For reproducibility, use random_state=42

1.8 Grow a vanilla regression tree

- Import the DecisionTreeRegressor class
- Run a baseline model for later comparison using the datasets created above
- Generate predictions for test dataset and calculate the performance measures using the function created above
- Use random_state=45 for tree instance
- Record your observations

```
[28]: # Import DecisionTreeRegressor

from sklearn.tree import DecisionTreeRegressor

# Instantiate DecisionTreeRegressor

# Set random_state=45

regressor = DecisionTreeRegressor(random_state = 45)

# Fit the model to training data
regressor.fit(x_train, y_train)

# Make predictions on the test data
y_pred = regressor.predict(x_test)

# Calculate performance using the performance() function
score = performance(y_test, y_pred)
score

# [0.5961521990414137, 55656.48543887347] - R2, RMSE
```

[28]: (0.5961521990414137, 55656.48543887347)

1.9 Hyperparameter tuning (I)

- Find the best tree depth using depth range: 1-30
- Run the regressor repeatedly in a for loop for each depth value
- Use random_state=45 for reproducibility
- Calculate RMSE and r-squared for each run
- Plot both performance measures for all runs

• Comment on the output

```
[38]: # Your code here
      depth = range(1, 31)
      R2 = []
      RMSE = []
      for i in depth:
          regressor = DecisionTreeRegressor(random_state = 45, max_depth = i)
      # Fit the model to training data
          regressor.fit(x_train, y_train)
      # Make predictions on the test data
          y_pred = regressor.predict(x_test)
      # Calculate performance using the performance() function
          score = performance(y_test, y_pred)
          R2.append(score[0])
          RMSE.append(score[1])
      sns.lineplot(x = depth, y = R2, label = "R2", color = "r");
      plt.xlabel('Tree Depth')
      plt.ylabel('R-squared')
      plt.show()
      sns.lineplot(x = depth, y = RMSE, label = "RMSE", color = "blue")
      plt.xlabel('Tree Depth')
      plt.ylabel('RMSE')
      plt.show()
```


[40]: # We can see that at tree depth that is equal to 7, we have minimum value for # RMSE and maximum value for R2. So max_depth = 7 is the optimum value

1.10 Hyperparameter tuning (II)

- Repeat the above process for min_samples_split
- Use a range of values from 2-10 for this hyperparameter
- Use random_state=45 for reproducibility
- Visualize the output and comment on results as above

```
[39]: # Your code here
      min_samples_split = range(2, 11)
      R2 = []
      RMSE = []
      for i in min_samples_split:
          regressor = DecisionTreeRegressor(random_state = 45, min_samples_split=i)
      # Fit the model to training data
          regressor.fit(x_train, y_train)
      # Make predictions on the test data
          y_pred = regressor.predict(x_test)
      # Calculate performance using the performance() function
          score = performance(y_test, y_pred)
          R2.append(score[0])
          RMSE.append(score[1])
      sns.lineplot(x = min_samples_split, y = R2, label = "R2", color = "r");
      plt.xlabel('Min Samples Split')
      plt.ylabel('R-squared')
      plt.show()
      sns.lineplot(x = min_samples_split, y = RMSE, label = "RMSE", color = "blue")
      plt.xlabel('Min Samples Split')
      plt.ylabel('RMSE')
      plt.show()
```


2 Run the optimized model

- Use the best values for max_depth and min_samples_split found in previous runs and run an optimized model with these values
- Calculate the performance and comment on the output

R2 : 0.6772046046188305 RMSE : 49758.87841130982

2.1 Level up (Optional)

- How about bringing in some more features from the original dataset which may be good predictors?
- Also, try tuning more hyperparameters like max_features to find a more optimal version of the model

```
[]: # Your code here
```

2.2 Summary

In this lab, we looked at applying a decision-tree-based regression analysis on the Ames Housing dataset. We saw how to train various models to find the optimal values for hyperparameters.