Sep 23/25 control of LOGS 300 Today we start on the control module. we have a comple of sensas yet , but we've moving a level up in scope to simple behaviours, basic intelligent control-Last time: servo · retings · setup. Horb 1 pot & rotational encoter) Are Topay: optical encoders. I protocell model as a sm'tch light (IR) Switch

Q: How do we get distance

grom a "switch" style encoter?

C = ITd SO 3600 ITd Chiles.

every 11 click" = # of holes

But let's zoom in: Samples. digital or or dr rend can't "just" do suitch on also, back spin. * Achiety - buchspin. . The general problem we've trying to some is vobot positioning. let's zoom out. zero < cont-> 111111111111 truck opot.

11 motion

* Encoder -> soundation activity.
Telemetry in metrics, ic. sonsing. "Voundte"
Simulation problem:
need liner algebra!
Instead, we will use the encoders to defect movement to speeds not my full simulations.
Instead, we are going to use sensor integration
ie. use an external sensor (ultrasonic) To Mangulate position.
But, ultrasonies are noisy not perfect!

If time: Design a 1D trinqulation system: two sources of "myth" g boths with problems... PID control set point = set = 5 cm measured = pos = 10 con envor = set - pos output = p(ewor)eg. 10 am = -5 cm 10 · (-5) = - 30 5 cm --- etc.

Sep 23/25 Control ol cors 300 Praw a series of Straight lines Warm up: Now, do it with your eyes closed. can you match length with your eyes close 13? encoder Agent -s world - 50 lox Thorn soms tion - Seu Sem pot set som

post set-p out=p(en Prop. 7

20 holes 360 d · pi digital food (9) Iv Hi

In=last_measurement= 0;

it (Im == 1) {

3 ix (Im ==0) &

3. dm = abs (tm-lm)

- (tm-lm) & abo

