Chapter 5

Chemistry of Selected Anions

Anions are very important ligands in molecules as well as solids.

<u>Ligand</u> – an atom or molecule that coordinates to a metal ion (where the word "coordinates" means to attach in a bonding sense).

Classifications of anions

1. Simple anions

 O^{2-} , F-, CN- etc.

2. OXO anions (discrete)

NO₃-, SO₄²-, CO₃²- etc.,

3. OXO anions (polynuclear or polymeric)

"SiO₂ based"

"BO₃ based"

Silicates

Borates

PO₄ based

Phosphates

4. Complex anions which are themselves metal complexes

 $[AlCl_4]^-$, $[PF_6]^-$, $[TaF_6]^-$, $[Fe(CN)_6]^{3-}$, etc.,

Some of the anions can exist freely in solution, while others exist only in the solid state

For example:

O²- only in solid state – unstable in solution

Cl exists in solution as well as the solid state

Main Categories of Anions

- A. Oxides, Hydroxides, Alkoxides (Discrete, molecular species)
- B. Polymeric Oxides(also includes larger polynuclear ones)
- C. Halogen Containing Anions
- D. Sulfide and Hydrosulfide Anions

Oxides, Hydroxides, Alkoxides

O²- is unstable in solution whereas OH and OR (alkoxides) can exist in solution

$$O^{2-}(s) + H_2O \longrightarrow 2OH^-(aq)$$
 $K_{eq} > 10^{22}$

Example:

$$CaO + H_2O \rightarrow Ca^{2+}(aq) + 2OH^{-}$$

Some oxides are not soluble in water so these will not react of course!

They can be dissolved in acids however:

$$MgO(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_2O$$

Oxides

ALL ELEMENTS except Noble gases form oxides <u>Three Categories</u>:

- Basic. Ionic oxides (these form with metals)
- Acidic. Covalent oxides
 (these form with non-metals, metalloids, some metals also)
- Amphoteric. Can be ionic or covalent (these form with metals)

Basic or Ionic Oxides

- Form OH in H₂O
- Groups I, IIA (except Be) some transition metals

Examples:

$$Na_2O(s) + H_2O \rightarrow 2 NaOH(aq)$$

$$MgO(s) + H_2O \rightarrow Mg(OH)_2(s)$$
 (insoluble hydroxide)

Acidic or Covalent Oxides

- Form acids in water
- All non-metals except noble gases. SO₃, SO₂, NO,
- NO₂, SiO₂, Sb₂O₃, etc., and some transition elements

Examples:

$$SO_3 + H_2O \rightarrow H_2SO_4(aq)$$

$$CrO_3 + H_2O \rightarrow H_2CrO_4(aq)$$

Amphoteric Oxides

- Can be either acidic or basic
- Al, Ga, Sn, Pb and most transition metals
- They can neutralize acid or base

Example:
$$Al_2O_3$$
(amphoteric)

Reacts with acids:

a.
$$Al_2O_3(s) + 6H^+(aq) + 9H_2O \rightarrow 2[Al(H_2O)_6]^{3+}(aq)$$

and Reacts with bases:

b.
$$Al_2O_3(s) + 2OH^-(aq) + 7 H_2O \rightarrow 2[Al(H_2O)_2 (OH)_4]^-(aq)$$

In reaction a, Al₂O₃ is a base In reaction b, Al₂O₃ is an acid

- Q. How can you predict if a transition metal oxide will be acidic, basic or amphoteric?
- **A.** There are Two Trends

Trend 1

The <u>higher</u> the <u>oxidation</u> <u>state</u> of the metal, the more covalent (acidic) it will be.

Trend 2

The <u>lower</u> the <u>oxidation</u> <u>state</u> of the metal, the more ionic (basic) it will be.

Consider: Cr⁺²O, Cr₂⁺³O₃, Cr⁺⁶O₃ The most ionic is CrO (lowest ox. state) The most covalent is CrO₃ (highest ox. state)

• • CrO is basic, CrO₃ is acidic and Cr₂O₃ is amphoteric

∞	2 He	4.003	10	Ne	20.18	18	Ar	39.95	36	Ž	83.80	¥	Xe	131.3	98	Ru	(222)			
		7					Ü	35.45	35	Br	79.90	53	-	126.9	85	At	(210)			
		9	00	0	16.00	91	S	32.06	34	Se	78.96	52	Te	127.6	25	Po	(200)			
		5	7	z	14.01	15	Д	30.97	33	As	74.92	51	Sb	121.8	83	Bi	209.0			
		4	9	U	12.01	14	Si	28.09	32	Ge	72.59	20	Sn	118.7	82	Pb	207.2			
		3	5	В	10.81	13	V	26.98	31	Ga	69.72	6\$	Z	14.8	28	5	204.4			
								1	30	Zu	65.39	48	PO	112.4	80	Hg	200.6			
	NTS						4		29	Cn	63.55	47	Ag	107.9	82	Αn	197.0			
1	EME					•	3		28	ž	58.69	46	Ьd	106.4	78	五	195.1			
	OF ELEMENTS					2	かととと		27	ပိ	58.93	45	Rh	102.9	11	П	192.2	109	¥	(266)
3	H			9	くったこうく	3 -	1100		26	Fe	55.85	4	Ru	101.1	92	S)	190.2	108	Hs	(265)
Ki.	CTABI				?	5	3	1	25	Mn	54.94	43	Tc	(86)	75	Re	186.2	107	Ns	(292)
Ó) Jao				0:0	27.	T		24	Ü	52.00	42	Mo	95.94	74	×	183.9	106	Unh	(263)
	/图				-	3	Chr	0	23	>	50.94	41	N	92.91	22	Ta	180.9	105	Hu	(292)
6	X					S	A P		22	Ţ	47.88	40	Zr	91.22	77	Hf	178.5	104	Rf	(261)
2	*						7	(21	Sc	44.96	39	X	88.91	57	La	138.9	68	Ac	(722)
6	- 1)	2	4	Be	9.012	13	MA	24.31	102	Ca	40.08	888	Sr	87.62	95	Ba	137.3	884	Ra	(226)
_	- H	1.008	8	Ĺ.	6.9	=	g	22.99	66	×	39.10	7	R.O.	15.47	55	S.S.	132.9	88		(222)
	-		1	2	-	-	3			4		Name of Street	5			9			_	-

		103 Lr	
R \$	173.	102 No	(254
C L W	168.9	101 Md	(256)
68 Er	167.3	100 Fm	(253)
67 Ho	164.9	Es Es	(254)
% Å	162.5	98 Cf	(249)
s t	158.9	97 Bk	(247)
Gd &	157.3	Cm %	(247)
63 Eu	152.0	95 Am	(243)
Sm Sm	150.4	94 Pu	(244)
61 Pm	(145)	93 Np	237.0
8 Z	144.2	Z D	238.0
59 Pr	140.9	91 Pa	231.0
% Ce	140.1	8 H	232.0

	-												neidie		ô	Oxides	2	00
-	- 1				PER	PERIODIC	TAE	TABLE OF ELEMENTS)F EL	EME	NTS	25	3	1	3	3	THE REAL PROPERTY.	2 He
•	1.008	2										•	3	4	5	9	7	4.003
	60	4											5	1	1	2	6	10
2		Be											m		2	0	1	Se
	6.941	9.012		(アバン	بر	X	de	4		100000	10.81	12.01	10.1	16.8	19.00	20.18
	11	12	v 1	NO IN		2	7	T			COVIDA		13	4	2	9 2	1	100
3	Na	Mg		4		200	-	an zi	ž Š		101	2	Z	1		S	Ų 3	Ar
	22.99	24.31	1						-		ACTOR MINISTER	1	786.07	7	1	97.70	33.43	39.93
	61	20	21	22	23	24	25	26	27	28	29	28	31	32	200	¥	33	38
4	×	Ca	Sc	Ξ	>	Ç	Mn	Fe	ပိ	ž	Cu	Zu	Ga	Ge	As	S	Br	Ž
	39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	-	74.93	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	3	24
40	Vivo	Sr	Y	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	P	II.	Sn	Sb /	The T	_	Xe
	-	87.62	16.88	91.22	92.91	95.94	(86)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	6.924	131.3
	55	56	57	77	73	74	75	2/2	11	78	82	08	81	82	83	24	85	98
9	Cs	Ba	La	Hf	Ta	×	Re	Os	Ir	K	Αn	Hg	E	Pb	Bi	Po	I	Ru
	132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(200)	0.00	(222)
	87	88	89	104	105	106	107	108	109									
7	Fr	Ra	Ac	Rf	Hu	Unh	Ns	Hs	¥									
	(223)	(226)	(227)	(261)	(292)	(263)	(292)	(265)	(266)									
																4	1	i
					58	59	8	19	62	63	\$	65	8	29	88	69	2	7,
					ce	Pr	PN	Pm	Sm	En	PD	Tp	Dy	Ho	五	Tm	χp	Lu
					140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
					8	91	26	93	94	95	8	16	86	66	90	101	102	103
					-	-			2	A	ζ	1	30	L	The state of	7	2	1

200	59	99	61	62	63	\$	65	8	67	88	69	2	1
Ce	Pr	PN	Pm	Sm	En	PD	TP	Dy	Ho	日	Tm	Yb	Lu
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
8	16	32	93	24	95	8	16	86	66	100	101	102	103
T	Pa	n	Z	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Ľ
232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(254)	(256)

	(^	16	
_	7	3		
•	>	2	1	
6			1	,
	-	ر	1	
	00	し	1	
_	<	2	(
•		1	1	L
	8)
		7	-)

PERIODIC TABLE OF ELEMENTS

2 He

00

.§ J
45.3
of trai
xides of
ox starts
elen en

Be 9.012

3 Li 6.941

N

1.008

-H

12 Mg 24.31

Na 22.99

	,	4	2	9	7	4.003
	5	9	7	00	6	10
	В	U	Z	0	Н	Ne
	10.81	12.01	14.01	16.00	19.00	20.18
	15	14	15	16	17	18
	7	Si	Ь	S	Ü	Ar
1	26.98	28.09	30.97	32.06	35.45	39.95
30	1	32	33	34	35	36
Zu	Q3	Ge	As	Se	Br	K
62.39	60 73	72.59	74.92	78.96	79.90	83.80
48	49	100	51	52	53	X
PD	In	Sir	Sb	Te	I	Xe
112.4	114.8	T.	121.8	127.6	126.9	131.3
8	81		83	84	85	98
Hg	E	中	Bi	Po	At	Ru
200.6	204.4		209.0	(209)	(210)	(222)

29 Cu

Z 58

27 Co

26 Fe

25 Mn

63.55

58.69

58.93

55.85

54.94

52.00

50.94

47.88

44.96

40.08

39.10

21 Sc

20 Ca

2 X

47 Ag 107.9

46 Pd

45 Rh

Ru **B**

43 Tc

42 Mo

41 Nb 92.91

40 Zr 91.22

¥ 39

38 Sr

37 Rb

5

88.91

87.62

85.47

106.4

101.1

(86)

95.94

197.0 Au Au

195.1

192.2

186.2

183.9

178.5

138.9

137.3

132.9

₩ ¥

108 Hs

NS NS

106 Unh

105 Hn

R 5

89 Ac

88 Ra

87 Fr

1

(266)

(265)

(262)

(263)

(292)

(261)

(227)

(226)

(223)

る社

L I

76 Os 190.2

Re Re

₹ ¥

73 Ta 180.9

77 Hf

57 La

56 Ba

55 Cs

9

71 Lu 175.0	103 Lr (256)
7 Yb	102 No (254)
69 Tm	101 Md
68 Er	100 Fm (253)
67 Ho	99 Es
8 Dy	98 Cf (249)
65 Tb	97 Bk (247)
64 Gd	Cm (247)
63 Eu	95 Am (243)
62 Sm	94 Pu (244)
61 Pm	93 Np 237.0
8 Nd	92 U 238.0
59 Pr	91 Pa 231.0
S8 Ce	232.0

80	59	8	19	62	63	Z	65	8	19	89	69	2	71
(a)	Pr	PN	Pm	Sm	En	РS	119	D D	Ho	Er	Tm	Yb	Lu
1.01	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
8	16	25	93	24	95	96	76	86	66	100	101	102	103
LH	Pa	n	Np	Pu	Am	CIII	Bk	Cf	Es	Fm	Md	No	L
32.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(254)	(256)