Non-linear Spatio-temporal modelling using the Integro-Difference Equation

Parham Aram*, Dean R. Freestone, *Graduate Student Member, IEEE*, Kenneth Scerri, Michael Dewar and Visakan Kadirkamanathan, *Member, IEEE*

Abstract

Index Terms

Dynamic spatio-temporal modelling, Integro-Difference Equation (IDE), ...

June 29, 2010 DRAFT

1

Non-linear Spatio-temporal modelling using the Integro-Difference Equation

I. Introduction

Non-linear spatio-temporal behaviour...

II. NEURAL FIELD MODEL

III. STATE SPACE REPRESENTATION OF THE SPATIO-TEMPORAL NON-LINEAR IDE

The dynamics of the pth order non-linear, stochastic, spatio-temporal IDE is described by

$$\rho_t(\mathbf{r}) = \int_{\Omega} w(\mathbf{r}, \mathbf{r}') f(v_{t-p}(\mathbf{r}')) d\mathbf{r}' + \mathbf{e}_{t-p}(\mathbf{r})$$
(1)

where $\rho_t(\mathbf{r})$ is a lag polynomial defined as

$$\rho_t(\mathbf{r}) = \left(1 + \sum_{i=1}^p \varphi_i L_i\right) v_t(\mathbf{r}) \tag{2}$$

where $v_t(\mathbf{r})$ denotes the spatial field at time t and at spatial location \mathbf{r} , f(.) is some nonlinear map, and w(.) is the spatial kernel. The disturbance $\mathbf{e}_{t-p}(\mathbf{r})$ is a zero-mean normally distributed noise process, spatially coloured but temporally independent, with covariance

$$cov\left(e_{t}\left(\mathbf{r}\right), e_{t+\tau}\left(\mathbf{r}'\right)\right) = \gamma\left(\mathbf{r} - \mathbf{r}'\right)\delta(t - \tau)$$
(3)

where $\delta(.)$ is the Dirac-delta function. The spatial field is observed by

$$\mathbf{y}_{t} = \int_{\Omega} m \left(\mathbf{r}_{n_{y}} - \mathbf{r}' \right) v_{t} \left(\mathbf{r}' \right) d\mathbf{r}' + \boldsymbol{\varepsilon}_{t}, \tag{4}$$

where the observation vector \mathbf{y}_t , compiled at n_y spatial locations and at time t, is corrupted by an i.i.d normally distributed zero-mean white noise $\boldsymbol{\varepsilon}_t \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\varepsilon}\right)$ with $\boldsymbol{\Sigma}_{\varepsilon} = \sigma_{\varepsilon}^2 \mathbf{I}_{n_y}$. It is assumed here that $\boldsymbol{\Sigma}_{\varepsilon}$ and $\gamma\left(\mathbf{r} - \mathbf{r}'\right)$ are known. The output kernel $m(\mathbf{r} - \mathbf{r}')$ governs the sensor pick-up geometry and is defined by

$$m\left(\mathbf{r} - \mathbf{r}'\right) = \exp\left(-\frac{(\mathbf{r} - \mathbf{r}')^{\top}(\mathbf{r} - \mathbf{r}')}{\sigma_m^2}\right),$$
 (5)

where σ_m sets the sensor width. The superscript \top denotes the transpose operator.

Here we consider the case where p = 1, therefore we have

$$v_t(\mathbf{r}) + \varphi_1 v_{t-1}(\mathbf{r}) = \int_{\Omega} w(\mathbf{r}, \mathbf{r}') f(v_{t-1}(\mathbf{r}')) d\mathbf{r}' + \mathbf{e}_{t-1}(\mathbf{r})$$
(6)

June 29, 2010 DRAFT

IV. ESTIMATION OF THE NON-LINEAR SPATIO-TEMPORAL IDE MODEL

- A. Unscented Kalman Filter
- B. Unscented RTS Smoother
- C. Parameter Estimation
- D. Computational Complexity

V. EXAMPLE

VI. CONCLUSION

APPENDIX

Lemma 1:

Proof:

June 29, 2010 DRAFT