

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

ADA 130646

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE			READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCE	SSION NO.	3. RECIPIENT'S CATALOG NUMBER
1	AD - A13C	5646	
4. TITLE (and Subtitle)	•		5. TYPE OF REPORT & PERIOD COVERED
FOUNDATION REPORT (C	ON)		
CONWAY WATER SUPPLY	DAM, ARKANSAS	L	Final Report, 1980 - 82
		['	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)			8. CONTRACT OR GRANT NUMBER(e)
Roy L. Crutchfield			
9. PERFORMING ORGANIZATION	NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U.S. Army Corps of I		ļ	AREA & WORK UNIT NUMBERS
Little Rock District	<u> </u>	1	
P.O. Box 867 Little Rock, AR 722	203		June 1983
11. CONTROLLING OFFICE NAME Southwestern Division	E AND ADDRESS on, Corps of Engineers		12. REPORT DATE
1114 Commerce Street	:	f	13. NUMBER OF PAGES
Dallas, TX 75242		i	142
14. MONITORING AGENCY NAME	& ADDRESS(If different from Controlling	@ Office)	15. SECURITY CLASS. (of this report)
İ		1	Unclassified
Į		}	
}			15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT	(of this Report)		
Approval for public release; distribution unlimited			
17. DISTRIBUTION STATEMENT	(of the abstract entered in Block 20, if d	different from	Report)
	•••••••••••••••••••••••••••••••••••••••		
(·
	•		
	<u></u>		·
16. SUPPLEMENTARY NOTES			
I			
	•		
19. KEY WORDS (Continue on reve	ree side if necessary and identify by blo		
Foundation		rtain g	
Excavation		waterin	8
Blasting		Lopes	
Cutoff trench	Outlet works		
Geology		 _	
This report describes the foundation conditions encountered during the construction of a water supply dam for the city of Conway, Arkansas; such to replace a previous water supply that was adversely affected by the construction of the McClellan-Kerr Arkansas River Navigation System.			
The dam was founded on a thick shale layer of the Atoka Formation. Locally,			

the shale was gray to black, hard to moderately hard, sandy, and well compacted. Excavation of a 10-foot wide centerline cutoff core trench in the shale posed

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(6, X

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

no problems with standard earth-moving equipment. Pre-split blasting was required in excavating the outlet works structures and emergency spillway,

Due to the susceptibility of shale to slake and deteriorate when exposed, a 6" to 1' protective layer above final grades in the rock were left until just prior to final foundation preparation, and placement of embankment material and/or concrete for outlet works.

The report gives the results of a well-point dewatering system installed in the valley section that did not function adequately, and methods to overcome ground-water flow at the rock/overbulen contact.

Foundation preparation and treatment consisted of wash/air jetting, mortared open joints, concrete fillets, and rock anchoring. The report details the installation of a grout curtain utilizing the stop-grouting, split spacing method.

DEPARTMENT OF THE ARMY LITTLE ROCK DISTRICT, CORPS OF ENGINEERS LITTLE ROCK, ARKANSAS

FOUNDATION REPORT

Conway Water Supply Project
Dam and Dike

June 1983

TABLE OF CONTENTS

PART I: INTRODUCTION	Page
1-01. Location and Description of Project	1
1-02. Construction Authority	ī
1-03. Purpose of Report	ī
1-04. Contractor and Contract Supervision	ì
PART II: FOUNDATION EXPLORATIONS	
2-01. Investigations Prior to Construction	3
2-02. Investigations During Construction	4
PART III: GEOLOGY	
3-01. Regional Geology	5
3-02. Site Geology	5
a. Physiography	5
b. Overburden	5
c. Bedrock Formation	6
d. Bedrock Structure	6
e. Bedrock Weathering	6
f. Ground Water	7
g. Seismicity	7
h. Engineering Characteristics of Overburden	7
i. Engineering Characteristics of Bedrock	8
PART IV: SPECIAL DESIGN CONSIDERATIONS	
4-01. Construction Method	9
4-02. Embankment Stability	9
4-03. Structure Uplift	9
4-04. Earthfill Pressure	9
4-05. Ultimate Strength Design	9
4-06. Wave Forces	9
PART V: EXCAVATION PROCEDURES	
5-01. General	10
5-02. Excavation Equipment	10
5-03. Dewatering System	10
5-04. Excavation Blasting	11
5-05. Foundation Preparaton	11
5-06. Left Abutment Excavation	11
5-07. Valley Excavaton	12
5-08. Right Abutment Excavation	12
5-09. Core Trench Excavation	12

TABLE OF CONTENTS (con.)

	Page
5-10. Outlet Works Excavation	13
a. Intake Structure	13
b. Outlet Conduit	13
c. Stilling Basin	13
d. Outlet Channel	14
5-11. Spillway Excavation	14
5-12. Dike Excavation	14
PART VI: CHARACTER OF FOUNDATION	
6-01. General	15
6-02. Left Abutment Foundation	15
6-03. Valley Foundation	15
6-04. Right Abutment Foundation	16
6-05. Outlet Works Foundation	16
a. Intake Structure	16
b. Outlet Conduit	16
c. Stilling Basin	17
6-06. Spillway Foundation	17
6-07. Dike Foundation	17
PART VII: FOUNDATION TREATMENT	
7-01. General	18
7-02. Curtain Grouting	18
a. Grout Hole Inclinations	18
b. Split Spacing	19
c. Stop Grouting	19
d. Grouting Procedure	19
e. Grout Injections and Mixes	19
f. Grout Conditions	20
7-03. Drainage Provisions	21
7-04. Foundation Anchors	21
7-05. Treatment of Slide Scar	22
PART VIII: CONSTRUCTION MATERIALS	23
PART IX: FOUNDATION PROBLEM AREAS	24
PART X: RECORD OF FOUNDATION APPROVAL	_ 25
APPENDIX A: Photographs	
APPENDIX B: Boring Logs	
APPENDIX C: Plates	

PART I - INTRODUCTION

1-01. Location and Description of Project. The Conway Water Supply Dam is located in the southeast quarter of Section 21, Township 7 North, Range 15 West. It crosses Cypress Creek at mile 6.7 which is about 5 miles north of Plumerville, Arkansas, in eastern Conway County.

The dam is an earth embankment which rises 83 feet above the streambed to elevation 358.0 (m.s.l.). It has an impervious core, an impervious cut-off, and an outer shell of random fill material. The crest is 20 feet wide, and the length of embankment is 1,374 feet. The reservoir will cover about 1,165 acres and impound 23,500 acre-feet of water at the service spillway crest. The service spillway is at elevation 326 with a two-way drop inlet. There is an emergency saddle spillway on the right abutment with a crest elevation of 339.5. The outlet works has an uncontrolled inlet structure with a 4.0-foot diameter concrete outlet conduit in the right abutment. A pumping station, located on the intake structure, feeds a 36-inch diameter pipeline, which extends 11.4 miles southeast to a treatment plant near Gleason, Arkansas.

There is an earthfill dike located in the northwest quarter of Section 22, Township 7 North, Range 15 West on the east side of the reservoir. The dike is 28 feet high by 1,810 feet long, and has a crest width of 10 feet.

- 1-02. Construction Authority. The project was authorized under Section 10 of Public Law 93-251 dated 7 March 1974, to replace the existing raw water supply of Conway, Arkansas. The city of Conway previously obtained its water from a pool on Cadron Creek about 2.5 miles upstream from its confluence with the Arkansas River. These facilities were adversely affected by the construction of the Toad Suck Ferry Lock and Dam on the McClellan-Kerr Arkansas River Navigation System.
- 1-03. Purpose of Report. The objective of this report is to describe the foundation conditions encountered during the construction of the subject dam and its related features, and is a consolidated record of the foundation related construction operations, and an information source for future reference. It is intended also to provide information for evaluating any future structural problems, planning possible foundation studies, and be a part of the permanent project engineering and construction record.
- 1-04. Contractor and Contract Supervision. The project contract was a joint venture undertaken by McGeorge Contracting Company, Inc., and Valco, Inc. The McGeorge Company was based in Pine Bluff, Arkansas, and Valco was based in North Little Rock, Arkansas. McGeorge was the principal contractor for the earth work, and Valco was responsible for the concrete work. John Bricker of McGeorge, Inc., was the Project Manager over the joint venture. The blasting required in excavation was supervised by Arkansas Explosives, Inc. of Little Rock, Arkansas, and grouting was conducted by Judy Company of Kansas City, Missouri.

The contractor was required to establish and maintain an effective quality control system consisting of plans, procedures, and organization to insure the contract requirements in materials, equipment, workmanship, fabrication, and construction operations. A quality control system manager from within the contractor's organization was required to be at the work site, with responsibility for regulating all quality control matters. A fully qualified staff was required under the system manager with necessary experience and technical training to perform all quality control activities. Records and tests of the contractor's quality control throughout the construction operations were furnished to the Government, as directed by the Contracting Officer. The entire work was subject to inspection and testing by the Government prior to acceptance.

Don Cahoone, Project Superintendent (Civil) of McGeorge, Inc., was the designated Quality Control Officer with responsibility and authority to correct any deficiencies. David Moore, Project Superintendent (Structural) of Valco, Inc., was the designated Assistant Quality Control Officer. Quality Control testing was subcontracted to Anderson Engineering and Testing Company of Little Rock, Arkansas. The Quality Assurance for the project was provided by the Corps of Engineers and supervised by W. H. Hashbarger, Dardanelle Resident Engineer, and Jack Wilson, Project Engineer.

PART II FOUNDATION EXPLORATIONS

2-01. Investigations Prior to Construction. The primary subsurface investigations were conducted in Fiscal Year 1978 and involved 265 exploratory drill holes. The following list shows the quantities and types of these investigations. Some drill holes are listed twice since they contained both soil and rock borings. This gives the list a total of 321 borings which represents the various boring methods rather than the actual number of drill holes. The logs of borings for the main embankment, dike, and outlet works are included in the appendix.

	Number	Linear	Soil Samples		
Location	of Borings	Feet	Undisturbed	Jar	Bag
Dam Site					
Core Boring, NX Vertical	33	2244.3			
Core Boring, 4" Vertical	1	47.3			
Standard Penetration	20	200.5		119	
Piston Sampler	22	350.5	118	179	13
Auger Borings	10	43.6		14	
4" Splitspoon	4	14.8		5	6
Spillway Site, Right Abutment					
Core Boring, NX Vertical	2	127.5			
Auger Borings	15	52.3		28	18
Left Abutment Ridge					
Core Boring, NX Vertical	1	46.4			
Auger Boring	2	35.0		3	
Dike					
Core Boring, NX Vertical	10	482.1			
Standard Penetration	9	98.5		46	
Piston Sampler	5	37.3	9	20	
Auger Borings	1	7.8		4	
Borrow Area "A"					
Auger Borings	154			489	180
Borrow Area "B"	32			74	24
TOTALS	321	3787.9	127	981	241

Between October 1978 and August 1979, there were 37 additional holes drilled to determine the subsurface conditions for the spillway, outlet works, and embankment. All of the holes were combinations of soil and core borings. Samples of the rock core obtained from the outlet works foundation were tested for bearing strength and shear strength.

All of the exploratory borings were drilled by the Little Rock District, Corps of Engineers, using a Failing 1500 truck mounted rig. Overburden samples of the main embankment and dike foundations were obtained using a thin walled tube with piston, and split spoon samplers. The borrow materials were investigated by drilling a grid of auger holes spaced on 400-foot centers. All soils were classified according to the Unified Soils Classification System. The core holes were logged to give geologic descriptions and show the results of water pressure tests. Selected soil samples were tested to define the shear strength parameters. The borrow material and some of the foundation overburden were tested for natural water content in percent dry weight, plasticity index, and liquid limit.

2-02. Investigations During Construction. There was no exploratory drilling or other foundation investigations during construction. However, holes were drilled during construction for presplitting of rock faces, setting steel anchors, drain holes, and foundation grouting. This drilling is described where applicable in the following sections of this report.

4

PART III

GEOLOGY

- 3-01. Regional Geology. The Conway Water Supply Project is located in the north-central Arkansas Valley. Topographically, this is the low rolling flood plain of the Arkansas River which is bounded to the north and south by ridges and mountains reaching heights above 2,800 feet. The valley is a structural basin, or synclinorium, which is bounded to the north by the Boston Mountains of the Ozark Dome and to the south by the Ouachita Mountains, an anticlinorium. The valley extends eastward to the Mississippi Embayment and westward to the Interior Lowlands of Oklahoma. Structurally, the Arkansas Valley is a transitional province between the adjoining provinces to the north and south. Folds in the valley are more closed toward the intensely folded Ouachitas to the south, but become progressively more open toward the less intricately folded Ozark Dome to the north. Thrust faults which are typical of the Ouachita Mountains are common in the valley south of the Arkansas River. Normal faults which are downthrown to the south are typical of the Boston Mountains and are common in the valley north of the Arkansas River. Formations throughout the valley consist mostly of shale and sandstone of the Pennsylvanian Period with a few igneous intrusions thought to be of the Cretaceous Period. These formations are mostly unfossiliferous, seldom calcareous, often carbonaceous, and sometimes contain coal.
- 3-02. Site Geology. The local geology was similar throughout the project. The foundation consisted of the same rock formation over the entire area, however, there were a few variations in specific rock characteristics and conditions, which will be discussed in Part VI of this report.
- a. Physiography. The project site is located where the northern Arkansas Valley rises to meet the southward sloping Ozark Highland Physiographic Province. Differential erosion of gently dipping sandstone and shale has formed this into an area of narrow ridges and broad valleys. The landforms trend east-west with the local and regional structure in most cases. Ridges, such as the one forming the dam abutments, are normally capped with the harder, erosion resistant sandstone or the more sandy shale. Valleys are usually eroded in the less resistant shale or in the weakened rock along fault traces. The dam valley, however, is formed by a 550-foot-wide gap incised through a typical east-west trending ridge. The dam abutments rise about 85 feet above the flood plain, but topographic relief in the area reaches about 150 feet.
- b. Overburden. The dam abutments were covered with residual soils and colluvium consisting of sandy clay, clayey sand, and silt. Detrital fragments and float rock of the sandstone caprock were scattered along portions of the upper abutment slopes. Overburden thickness ranged from about 5 to 14 feet on the left abutment and from about 1.5 to 11 feet on the right abutment. The alluvial deposits of the valley average about 20 feet in depth and consisted mainly of sandy clays and clayey sands with occasional silt and silty sand. At the dike, overburden consisted of about 8 to 16 feet of residual sandy clay which graded into the weathered parent rock, sandy shale. It often contained detrital fragments and some float.

c. <u>pedrock Formation</u>. The entire project area is underlain by the Atoka Formation of the Pennsylvanian Period. The Atoka is reported to be over 9,480 feet thick near Perryville, Arkansas, but about 5,000 feet thick at the dam site. It is a formation of interbedded sandstone and shale with the shale usually predominating. Other than the sandstone in the spillway foundation and capping the dam abutments, the project structures are completely underlain by shale.

The Atoka shale is typically a gray to black carbonaceous shale which weathers to a dull gray or buff and is sometimes micaceous or silty. Locally, the shale was hard to moderately hard, sandy, well compacted and cemented, and usually micaceous. It was often splintery and would readily air slake in places. Sand composition varied throughout the site, and in some cases it approached shaley sandstone. Although most of the shale in the foundation is sandy to some degree, it becomes pure shale at about 40 to 45 feet below the main embankment.

The sandstone beds throughout the Atoka Fomation range in thickness from a few inches to more than 100 feet. It is usually dark to light brown or gray, medium to fine grained, commonly micaceous, and often ripple marked or crossbedded. The sandstone in the spillway foundation and capping the dam abu ments was hard, fine to medium grained, micaceous, and gray, except where it is weathered and iron stained to reddish brown. The base of the Atoka can sometimes be recognized by a strata called the "Millstone Grit," a thick bedded sandstone containing light colored, water-worn pebbles.

- Bedrock Structure. The project is located on a broad, gently sloping homocline formed by the southward dipping limbs of the Arkansas Valley Basin and the Ozark Dome. Local structure trends east-west as does the Solgohachia Anticline and the Greenbriar Syncline, which flank the project to the north and south, respectively. The limbs of these folds dip from 2 degrees to 15 degrees but the formation dip at the project site ranges from 2 degrees to 7 degrees southward. Normal faults are common in the area and are often downthrown to the south augmenting the regional basin structure. Although no major faults were encountered in the dam foundation, there were minor displacements along bedding planes in the left abutment. The U.S.G.S. Geologic Map of the Menifee Quadrangle shows a fault trending east-west across the dike foundation, but there were no indications of this fault other than a small distorted fold in the weathered shale above firm rock. There is a major set of nearly vertical joints throughout the project with strikes which average from 12 degrees to 16 degrees northeast. The joints usually dip toward the northwest at 82 degrees to 90 degrees. Otherwise, joints occur occasionally at various attitudes, but for the most part they trend to the northeast.
- e. Bedrock Weathering. Weathering throughout the project was aided by open fractures and joints which were conducive to groundwater movement, slope saturation, and freeze-thaw processes. Some of the shale was susceptible to slaking and would deteriorate into small chips when exposed to air. Therefore, care was taken during construction to protect foundation rock from unnecessary exposure at final grade.

Significant bedrock weathering was minimal in the dam valley but more pronounced in the abutments and the dike foundation. The shale in the dam valley was weathered less than a foot in depth, and firm rock was often encountered almost directly beneath the alluvium. However, it was sometimes more than 14 feet to firm shale in the dam abutments, and the shale foundation at the dike was weathered as deep as 8 to 10 feet in places. The sandstone in the spillway foundation and abutment caprock was rather resistant, with little deterioration from weathering.

- f. Ground Water. Hydraulic pressure tests in project bore holes indicated that the foundation rock was generally impermeable as expected for shale, but that permeable zones existing in the formation due to open joints, fractures, and bedding planes. The water table was at an average of 5 feet below the valley surface and from there it rose about 15 feet in the lower abutments, according to water level readings in exploratory bore holes. Artesian water was encountered in some of the grout holes drilled in the valley, and occasional springs seeped water into the valley excavations. There were two springs in the stilling basin excavation, one with a flow rate of 5 gallons per minute and another which flowed at one-half gallon per minute.
- g. Seismicity. The project is in a Seismic Risk Zone I which indicates that only minor damage would be expected from earthquakes. Therefore, a seismic coefficient of 0.05G was used in the structure design. Only earthquakes of minor intensity have occurred in the project area, and local activity usually amounts to only infrequent tremors. In early 1982, however, numerous tremors occurred in the project area. Most of these tremors were very minor and almost imperceptible, but a few were in the range of 3 to 5 on the Richter Scale. One of the quakes had an epicenter near Naylor, Arkansas, which is about 23 miles southeast of the dam; it occurred on 20 January 1982 and registered 4.5 on the Richter Scale. Although this earthquake was noticeable, it was considered minor and caused no apparent damage.

The most noted earthquake area in the region is about 140 miles northeast of the project near New Madrid, Missouri. In 1811 and 1812, earthquakes in this vicinity reached the top of the Modified Mercalli Scale with an intensity of XII. The New Madrid area is now classified as a Seismic Risk Zone III, in which major earthquake damage could be expected. A Seismic Risk Zone II of expected moderate damage is roughly concentric about the Zone III and includes most of northeast Arkansas.

h. Engineering Characteristics of Overburden. Overburden throughout the project foundation consisted mostly of sandy to silty clay and clayey sands. This is an impervious material with fair to good shear strength and medium to low compressibility when compacted and saturated. It has fair to good workability as a construction material and is considered suitable for foundation material when seepage control is important. There was also occasional silt and silty sand in the overburden, particularly in the dam's valley section. Silt and silty sand are semipervious to impervious with fair to good shear strength and low to medium compressibility when compacted and saturated. Overburden samples taken in the valley along the dam's centerline had a water content ranging from 6 to 30 with an average of 22, a liquid limit ranging from 20 to 44 with an average of 29, and a plasticity index ranging from 4 to 23 with an average of 11.

i. Engineering Characteristics of Bedrock. The foundation bedrock is shale of the Atoka Formation in every structure except for sandstone in portions of the spillway. The sandstone is a hard, resistant material favorable for the spillway foundation, but formed a relatively small amount of the total bedrock. The shale is hard to moderately hard, massive, well compacted, and provided good core recovery which indicated competent foundation rock. The shale is inherently impervious, but hydraulic pressure tests revealed pervious zones created by open fractures, joints, and bedding planes. For design purposes, the shale was considered to have a cohesion of 6.12 t.s.f. (tons/sq.ft.) and an angle of internal friction of 31 degrees (tan=0.6). Based on these properties, the allowable pressure on firm rock was 12 k.s.f. (kips/sq.ft.). An increase of 33-1/2 percent was allowed for earthquake and wave forces, and as stated previously, seismic forces were based on an acceleration of 0.05 G.

PART IV

SPECIAL DESIGN CONSIDERATIONS

- 4-01. Construction Method. Several approaches to the dam design were initially considered after the project requirements were developed. A stage construction method was studied, which would have allowed time for the alluvial foundation to gain strength. Also, a very flat sloped embankment was considered, which would have been constructed without removal of the alluvial foundation. However, it was decided that the foundation alluvium should be removed to the top of rock, and excavation would extend to the top of firm rock in the core trench. This design was favored because it eliminated several problems such as stage construction in relatively small quantities, potential liquifaction of the sands, costly seismic design analysis, possible seepage control needed along the downstream toe of the dam, and post-construction embankment settlement due to soft foundation.
- 4-02. Embankment Stability. The stability of the embankment was analyzed using conditions for the downstream slope at the end of construction, for partial pool, for sudden drawdown (between maximum pool and bottom of water supply pool), and for steady seepage. The computed critical safety factors for each of these conditions were respectively 1.9, 2.0, 1.4, and 1.7. The factors of safety required by EM 1110-2-1902 for these same respective conditions were 1.3, 1.5, 1.0, and 1.5.
- 4-03. Structure Uplift. All structures were designed for 100 percent uplift except for the stilling basin which was assumed to be relieved 50 percent by drains.
- 4-04. Earthfill Pressure. The earthfill was assumed to exert an at-rest pressure with K-0.8 and K=0.7 for the stilling basin backfill. The resultant was applied at 0.38H above the base. The K for active earth pressure was taken as 0.5.
- 4-05. <u>Ultimate Strength Design</u>. For ultimate strength design, a load factor of 1.8 was used. The capacity reduction factor was 0.9 for flexural members, and 0.7 for flexural members with significant axial loading. The capacity reduction factor for shear was 0.85.
- 4-06. Wave Forces. The significant wave height and length was based on an effective fetch of 1.097 miles, a wind velocity of 54 m.p.h., and a minimum wind duration of 18.0 seconds.

PART V

EXCAVATION PROCEDURES

- 5-01. General. Most of the excavation closely followed the lines and grades indicated in the plans and specifications. All permanent construction areas were stripped to an average depth of about one foot to remove unsuitable material such as topsoil, roots, stumps, and other organic matter. Excavation was classified for payment purposes as either rock or common, according to the determination of the contracting officer. Rock excavation was considered as the removal and disposal of shale and sandstone from their natural positions, including all boulders measuring more than one cubic yard. Common excavation was considered that which was not otherwise classified as rock. The contractor was responsible for maintaining the finished grade at all times; however, some deviation tolerances were allowed. The general tolerance for rock excavation was plus or minus 6 inches. The tolerance on close line drilled and presplit faces was a plus 3 inches with no minus allowances.
- 5-02. Excavation Equipment. The major excavation machinery was Caterpillar 631 and Terex TS18 scrapers. The scrapers were assisted by dozers and rippers where needed. Excavation of the overburden in the valley began with scrapers, but when the material became too soft and loose, Bucyrus Erie 65-D and 35-B draglines were used. Bulldozers on the job ranged from D-5 to D-9 Caterpillars and a TD-25 International. There were also Euclid end dump trucks, 950 loaders, backhoes, a wheel-type farm tractor, and a 12F motor patrol grader.
- 5-03. <u>Dewatering System.</u> A well point system was initially rented from Stang Hydronics to provide a dewatering system for the dam construction. The wellpoint pumps were Stang Model 708-1, size 8x6, and driven by 2-53 or 2-71 Detroit diesel engines. Standard non-self-jetting 1-1/2-inch wellpoints were used with 1-1/2-inch risers. The header pipe was 8-inch PVC pipe modified for wellpoint attachment on 5-foot centers. The wellpoints were installed by water jetting an 8-inch jet casing to the top of rock where the wellpoints were set within a surrounding sand filter. A 6-inch flowmeter was installed in the discharge line to record the volume of discharge. The system was installed about 5 feet outside of the crest line for excavated slopes with wellpoints spaced on 5-foot centers. However, the system did not work for this jobsite due to impermeable soils and excavations which bottomed on solid rock. Groundwater in the foundation was often at the overburden-rock contact or below and, therefore, difficult to pick up with wellpoints.

The contractor devised a plan to use shallow ditches, clay dikes, sandbag dikes, and appropriately located sump pumps for dewatering rather than wellpoints. Water was channeled to sumps by use of shallow ditches or dikes as applicable and then pumped over the cofferdams to the downstream runoff area. Pumping to the sumps from low areas in the rock surface was accomplished with small pumps such as 2- or 3-inch trash pumps. The water was then removed with a 6-inch sump pump capable of pumping 1,000 gallons per minute with a 100-foot head.

5-04. Excavation Blasting. Blasting was performed with Tovex T-1, a tubular water gel explosive manufactured by Du Pont, and with ANFO, ammonium nitrate fuel oil. Most of the blasting was done with Tovex T-1 which has a density of 0.25 lb./ft. (net explosive), a velocity of 6,800 M/Sec., and is packaged in one inch O.D. x 50 ft. coiled tubes. Originally, the specifications would not permit the use of ammonium nitrate as an explosive, but due to a value engineering change, it was allowed with Tovex in blasting the spillway excavation. However, the use of ANFO explosive was restricted to beyond 75 feet from the spillway crest and 5 feet from presplit faces.

Blasting with any explosive was not permitted within 100 feet of the intake structure or the outlet conduit while or after the concrete was placed. No blasting was allowed within 100 feet of foundation grouting, during or after grouting operations.

The blast holes were drilled according to specifications and patterned under supervision of the blasting contractor, Arkansas Explosives, Inc. For general rock excavation, blast holes were not allowed to be drilled deeper than two-thirds of the remaining depth to final grade, and in no case was the bottom of holes allowed closer than 6 inches from the final grade. The blast holes in the spillway excavation ranged from 3 to 4 inches in diameter and were usually spaced in 8'x12' or 10'x14' patterns. However, other patterns were also used, such as 4'x4', 6'x9', 7'x8', 7'x9', 7'x11', and 9'x12'. The wider patterns were used for the greater hole depths and the more narrow patterns for shallow holes. In presplitting excavations, 3- to 3-1/2-inch-diameter holes were drilled at 2-foot intervals along the desired break line and to the full depth of the cut; Tovex (0.25 lb./ft.) was loaded in every other hole.

5-05. Foundation Preparation. Horizontal surfaces of the rock foundation were protected by a 6- to 12-inch layer of unexcavated rock which was not removed to grade until the contractor was ready for placement of embankment material, reinforcement steel, or concrete. The drilling and grouting operations were performed on this protective layer to prevent damage and deterioration of the final foundation surface. The protective layer was easily and quickly removed for final cleaning just before placement of the construction material. At this time the rock surface, joints, and fractures were cleaned of dirt and loose drummy material by barring, picking, wedging, sweeping, and finally by washing or air jetting.

Open joints and fractures were cleaned of loose and weathered material and then filled and sealed with concrete or cement mortar. Areas with vertical faces and overhangs were either sloped off or a concrete fillet was placed in the recesses to allow proper compaction of the impervious fill. Rock surfaces upon which concrete was to be place was required to be kept continuously wet for 24 hours immediately prior to the concrete placement.

5-06. Left Abutment Excavation. Excavation on the left abutment followed the lines and grades of the contract drawings with no problems. The upper abutment slopes above elevation 305 were stripped to a depth of about one foot within the embankment area. Below elevation 305, the overburden was sloped at 1 vertical on 2 horizontal to the top of rock, which was at about elevation 289. The rock abutment extended from elevation 289 to elevation 264

at the top of rock in the valley floor. The surface in this area was scaled to remove loose and drummy rock prior to placement of embankment material. Care was taken that the rock slope would be no steeper than 4 vertical on 1 horizontal. The core trench in the left abutment was excavated to firm rock and extended from centerline station 16+20 to 22+43.

5-07. Valley Excavation. Excavation in the valley section removed a thickness of about 22 feet of overburden from approximate elevations 286 to 264. The top part of bedrock in the valley was weathered less than a foot in depth. This weathered zone was removed with the overburden and as a result, no further excavation was required in order to extend a core trench to firm rock, since the entire embankment foundation was excavated to firm rock. Therefore, the valley excavation was roughly on one horizon with no core trench along the axis as originally illustrated in the contract drawings. The excavation extended to the embankment toe limits which was 253 feet upstream of the dam exis at elevation 283 and downstream 232 feet from the axis at elevation 284.

Excavation slopes along the embankment toe were 1 vertical on 2 horizontal, and there were no problems in attaining the specified lines and grades. Small but persistent seeps of groundwater occurred intermittently throughout the valley excavation, and these areas were dewatered ahead of the embankment placement. Open joints and fractures were cleaned and filled with concrete or mortar as required. The rock surface was cleaned and prepared for embankment placement as described in paragraph 5-05.

5-08. Right Abutment Excavation. Excavation on the right abutment was somewhat different from that for the left abutment, due to a bench and adjoining rock face required for the outlet works foundation. The upper abutment slopes above elevation 335 were stripped to a depth of about 1 foot within the embankment area. Below elevation 335, the abutment was sloped in overburden at 1 vertical on 3 horizontal for the most part. However, it was transitioned to 1 vertical on 1 horizontal upstream of the intake structure and to 1 vertical on 2.5 horizontal along the lower outlet channel. At the top of rock, approximate elevation 325, the slope was changed to 4 vertical on 3 horizontal to form the rock face adjacent to the outlet works. The foundation bench for the outlet conduit was at the base of this rock face and extended in width from Station 11+02 to Station 11+75 on the dam axis. It was excavated to the elevation for the bottom of the outlet conduit which varied from elevation 284 upstream to elevation 281 downstream. The rock abutment sloped downward from the bench to near elevation 266 at the top of rock in the valley floor. The slope surface was no steeper than 4 vertical on I horizontal and was scaled to remove loose and drummy rock prior to placement of embankment materials. The core trench in the right abutment extended from Station 8+71 to 10+70 on the dam axis and was excavated to firm rock.

5-09. Core Trench Excavation. A core trench was excavated to firm rock along the dam axis from Station 8+71 to Station 22+43.44. The actual trench construction occurred only in both abutments, since the entire valley floor and the outlet conduit bench were excavated to firm rock. The trench was actually cut from Station 8+71 to 10+70 in the right abutment and from Station 16+20 to 22+43.44 in the left abutment. However, a 25-foot-wide strip along the centerline between Stations 10+70 and 16+20 was treated, inspected, and mapped as part of the core trench, although no actual trench was cut.

The trench was 10 feet wide from Station 8+71 to 9+70 where the walls tapered outward until the trench was 25 feet wide at Station 10+20. The trench foundation remained 25 feet wide to Station 19+50 where the walls tapered inward to a width of 10 feet again at Station 20+00. In the abutments, the trench walls were sloped at 1 vertical on 2 horizontal from the ground surface to the top of rock and at 1 vertical on 1 horizontal from the top of rock to the bottom of the trench in firm rock. There were no problems in the core trench excavation; lines and grades followed the contract drawings except for the absence of trench walls in the valley section. The geologic mapping of the core trends foundation is shown on sheets 13 through 17 of the plans.

- 5-10. Outlet Works Excavation. The outlet works excavation included the intake structure, the outlet conduit, the stilling basin, and the outlet channel. There were a few minor deviations from the specified lines and grades, but none of any major significance.
- a. Intake Structure. The intake structure foundation extends along the outlet works centerline from Station 7+45.75 to Station 7+96.75. The excavation area for the wet well section was a 35-foot x 32-foot rectangle which extended from Station 7+45.75 to Station 7+80.75. The adjoining area for the drop inlet section was a 16-foot x 8-foot rectangle which extended from Station 7+80.75 to Station 7+96.75. The geologic map of the intake structure foundation is shown on sheet 19 of plans.

Contract drawings indicated that the excavation should be 4 feet in depth proceeding from elevation 284.14 (the outlet conduit elevation) to elevation 280.14. The excavation was constructed to this elevation and depth except where several joints intersected near the center of the foundation. This area was excavated to a depth of 4-1/2 to 5-1/2 feet in order to remove broken rock.

- b. Outlet Conduit. The foundation excavation for the outlet conduit had a minimum width of 6 feet 4 inches and extended 420.66 feet along the outlet works centerline from Station 7+96.75 to Station 12+17.41. The elevation dropped along the invert from 284.14 at the intake structure to 281.00 at the stilling basin. The adjacent right abutment was sloped at 4 vertical on 3 horizontal to the top of the conduit excavation, and at that point it was excavated to a 6-foot-9-inch vertical cut against which the conduit concrete was poured. The conduit sidewall was presplit with a small amount of overexcavation, due mostly to overbreakage in the rock formation. The geologic maps of the outlet conduit are shown on sheets 20 through 22 of plans.
- c. Stilling Basin. The stilling basin excavation extended along the outlet works centerline from Station 12+17.41 to Station 12+86.91, 69.5 feet beyond the end of the outlet conduit. At the end of the conduit, the foundation began to widen progressively and slope downward from elevation 281 at Station 12+17.41 to elevation 272.9 at about Station 12+56. Beyond this point, the foundation was about 18 feet wide and horizontal. The west side of the excavation had a 10-foot-wide berm at about elevation 286, above which the abutment was sloped at 1 vertical on 3 horizontal. The east side of the excavation had a 3-foot-wide berm at elevation 274, above which the slope was

1 vertical on 1 horizontal. The excavation was presplit with a minor amount of overexcavation, due to overbreakage in the rock formation. The geologic map of the stilling basin excavation is shown on sheet 19 of plans.

- d. Outlet Channel. The excavation for the outlet channel closely followed the contract specifications. It extended along the existing creek channel from Station 12+86.91 to about Station 16+08. The channel was curved by cutting an inside radius of 300 feet on the east bank and an outside radius of 350 feet on the west bank. The channel floor was at elevation 274 with side slopes of 4 vertical on 1 horizontal in rock and 1 vertical on 2.5 to 3 horizontal in overburden. A 10-foot-wide berm on the west side of the stilling basin also extended along the outlet channel to Station 13+60.
- 5-11. Spillway Excavation. The spillway was excavated according to contract drawings in a saddle of the right abutment. The excavation was 235 feet wide with sides sloped at 4 vertical on 1 horizontal in presplit rock and 1 vertical on 2 horizontal in overburden. The approach channel was given an adverse slope of 0.010. The exit channel was given a supercritical slope of .025 for 200 feet and then sloped at 0.0034 to where the channel daylighted in a natural ravine about 1,600 feet below the spillway crest.
- 5-12. Dike Excavation. An inspection-core trench was excavated along the dike alinement. The trench was 10 feet wide with 1 vertical on 1 horizontal side slopes. The core trench was excavated to firm rock between dike Stations 19+60 and 25+00 with the remaining inspection trench in overburden. The excavation followed contract specifications with no problems. Ceologic mapping of the dike core trend is shown on sheet 18 of plans.

PART VI

CHARACTER OF FOUNDATION

- 6-01. General. The foundation proved to be very stable throughout the project. The Atoka was the only rock formation encountered and was relatively hard, massive shale for the most part. The strata dipped only slightly, and contained no major structural complexities. Joints and fractures which formed occasional permeable zones were sealed in the grout curtain with little difficulty, although some artesian groundwater was encountered.
- 6-02. Left Abutment Foundation. The foundation rock in the left abutment was predominantly massive, moderately hard to hard, gray to dark gray, sandy shale. The rock surface was relatively smooth overall; however, in places it was rough and somewhat broken due to air-slaking and fractures. Occasionally, small steps were formed by excavation along intersecting joints and bedding planes, most of which were only a few tenths of a foot in height. Most of the joints were in the nearly vertical, NE trending set common to the project area. These joints varied in strike from N5°E to N29°E and in dip from 90 degrees to 82 degrees NW. There were a few joints which trended from N68°E to N86°E and from N31°W to N79°W. There were some parted bedding planes, but otherwise low angle fractures were sparse. A few small joint displacements indicated minor faulting in the left abutment. From Stations 17+26 to 17+31, three joints were displaced about 0.2 foot along the formation bedding plane which had an apparent dip of 3°SE. A more prominent displacement was visible in the north wall of the core trench at about elevation 307. Several nearly vertical joints were displaced about 1.1 feet along the formation bedding plane, which had an apparent dip of 2 degrees SE. However, there were no slickensides, gouge, or other indications of faulting along the foundation floor on this horizon. The left abutment had no groundwater problems and was mostly dry except for occasional runoff dampness along bedding planes.
- 6-03. Valley Foundation. The surface of the valley foundation was relatively smooth, massive, sound rock consisting of moderately hard to hard, dark gray to black, sandy shale. The formation was nearly horizontal, but dips varied from 2 degrees to 6 degrees southward. Excavation along intersecting joints and bedding planes created occasional thin steps which were only tenths of a foot in height. Most of the joints typically trended NE and were nearly vertical; their average strike was about N14°E. Usually, joints and fractures appeared relatively tight on the foundation surface, and there were no displacements or other indications of faulting. An old stream channel formed a depression in the top of rock which ran diagonally from NW to SE in the NW quadrant of the valley foundation. There was some groundwater seepage into this depression which was removed by sump pumps, buckets, and sweeping. Bedrock in the old channel was nevertheless firm, hard shale which presented no foundation problems. Small, intermittent groundwater seepage occurred throughout the valley foundation, and there were artesian flows in some of the grout holes. However, the dewatering procedures and grouting operations successfully controlled these problems.

- 6-04. Right Abutment Foundation. The rock foundation in the right abutment was mostly moderately hard to hard, massive, gray to black, sandy shale. The rock surface varied from relatively smooth to somewhat broken in places where air-slaking and fractures were prevalent. Excavation along intersecting joints and bedding planes formed occasional small steps which were usually a few tenths of a foot in height; none were allowed to be over 2 feet high. The nearly vertical, NE trending set of joints were also prominent in the right abutment. These joints varied in strike from N6°E to N31°E and in dip from 90° to 76°NW. There were a few high angle joints striking NW from 12° to as much as 80°, but these were somewhat random rather than characteristic. In the rock slope between axis Stations 10+70 and 11+02, there were several joints dipping at 4° to 5°SE and striking N62°E. There were no indications of faulting, and no groundwater problems above the outlet works.
- 6-05. Outlet Works Foundation. The geologic mapping, photography, and inspection of the outlet works included the foundations for the intake structure, the outlet conduit, and the stilling basin. Foundation characteristics were generally similar for each of these features, but specific conditions varied from place to place.
- a. Intake Structure. The foundation rock was moderately hard to hard, dark gray, sandy shale. The rock surface was relatively smooth for the most part, but broken in places. A set of five nearly vertical joints trended N25°E across the foundation. These joints were intersected in the downstream half of the foundation by three curved joints which trended roughly NW-SE and dipped about 60°NE. There were also a couple of similar curved joints in the NE corner of the foundation and a few random, irregular fractures. The joints and fractures were somewhat weathered in places with occasional iron staining. There were no faults or groundwater problems.
- Outlet Conduit. The foundation surface was smooth, massive, sound rock consisting of hard to moderately hard, dark gray to black, sandy shale. Although jointing occurred intermittently throughout the conduit foundation, it was most pronounced in the upstream 110 feet of the alinement. Most of the joints trended NE and were nearly vertical with dips of 90° to 83°NW, and strikes ranged from N73°E to N4°E and averaged N14°E. However, occasional joints trended in other directions than NE, and there were some random, irregular fractures. There were no indications of faulting along any joint or fracture plane. An irregular clay seam of 1 to 2 inches in width occurred between conduit Stations 8+54 and 8+61. It appeared that this clay seam could be projected to connect with a clay-filled, NE trending joint in the right abutment near conduit Station 8+83. A rock slide occurred along this joint plane between Stations 8+54 and 8+83 when material was removed from the base of the abutment slope during early conduit excavation. When the slide debris was removed, it left a sloping and somewhat irregular abutment surface adjacent to the conduit alinement (see paragraph 7-05). Otherwise, the foundation was markedly smooth and hard with little jointing or fracturing from conduit Station 11+15 to Station 12+30 in the stilling basin. It was also very smooth and hard with only one tight fracture in the area where the conduit alinement crossed the dam axis. (Conduit Station 10+00 = dam axis Station 11+05).

- c. Stilling Basin. Similar to the outlet conduit, the foundation rock in the stilling basin consisted of moderately hard to hard, dark gray to black, sandy shale with a typically smooth, massive surface appearance. Fracturing and jointing were relatively moderate. Joints had dips of 90° to 86°NW and strikes of N5°W to N11°E. Joints and fractures appeared tight with little weathering, and there were no indications of faulting. Sump pumps were required to remove water from the excavation due to a couple of springs in the west stilling basin wall. A spring occurred at outlet works Station 12+20 which flowed at 1/2 gallon per minute, and another was at Station 12+51 which flowed at 5 gallons per minute.
- 6-06. Spillway Foundation. The spillway foundation surface was smooth to somewhat rough, massive, sound rock. The rock consisted mainly of moderately hard to hard, dark gray to black, sandy shale, but downstream of spillway Station 11+50, it was hard, gray, fine to medium grained sandstone. Most of the joints trended NE and were nearly vertical. There were no indications of faults and no groundwater problems.
- 6-07. Dike Foundation. The dike foundation was smooth, massive, sound shale which was moderately hard to hard, dark gray to black, and sandy to very sandy in places. For a few feet at each end of the core trench, the shale was weathered, moderately soft to moderately hard, and brown to buff before grading into the overburden of the inspection trench. The jointing was nearly vertical and mostly trended NE with an average strike of N12°E. The firm foundation rock had no indications of faults; however, there was a small distorted fold in the weathered shale of the west core trench wall at Station 20+52. The dike foundation was well above the water table, and there were no groundwater problems.

PART VII

FOUNDATION TREATMENT

- 7-01. General. Foundation treatment included a grout curtain, drainage provisions, foundation anchors, and repair of a rock slide scar. However, the major foundation treatment consisted of the grout curtain to control leakage through the foundation rock and drainage curtain to relieve uplift pressure beneath the stilling basin. The foundation rock was relatively impermeable shale except for zones of permeability along open fractures, joints, and bedding planes. These permeable zones were detected prior to construction by exploratory drilling and water pressure tests. The investigations revealed that although much of the foundation would probably take little or no grout, there were a number of areas which would require grouting to seal potential seepage zones. Although the grout curtain was intended to reduce the flow of water through the rock strata beneath the dam, the stilling basin was designed with drainage holes to relieve uplift pressures by at least 50 percent.
- 7-02. Curtain Grouting. The grout curtain was constructed along the axis of the dam foundation between 8+50 and 22+40. The grout holes, which were EX size having a 1.485 inch 0.D., were drilled with standard percussion drilling equipment using a track-mounted Chicago pneumatic drill. The holes were grouted by zones using the split spacing-stop grouting method. The entire grout placement required 408 grouting connections, 2,080.7 bags of cement, and a grouting time of 132 hours 20 minutes. Foundations grouting is shown on sheets 23 and 24 of the plans.
- a. Grout Hole Inclinations. Most of the joints at the dam site ranged from high angled to vertical, and therefore, it was determined that the maximum interception of joints would be accomplished by drilling the grout holes at 30° from vertical. The holes drilled in the valley bottom and the left abutment were inclined 30° from vertical toward the left abutment. The holes drilled in the right abutment were inclined 30° from vertical toward the right abutment.

At two areas along the axis the grout holes were drilled in a fan pattern where four holes were drilled at 2.5-foot intervals on each side of a vertical hole with respective inclinations of 7.5°, 15°, 22.5°, and 30°. This formed a fan arrangement of 9 grout holes along 20 feet of the dam axis. The hole at 90°, two holes at 15°, and two holes at 30° were primaries, and the remaining four holes were secondaries. One fan was located at the base of the right abutment to form a transition between the grout holes inclined toward the left abutment and those inclined toward the right abutment. The central vertical hole of this fan was located at Station 12+22. The other fan pattern was located with the central vertical hole at Station 10+64, and was devised to grout the 4 vertical on 3 horizontal slope above the outlet conduit. An extra secondary hole was drilled at Station 11+02 near the base of the slope to intersect the bottom of the fan holes which were drilled from above the slope; this hole was drilled 70 feet into the right abutment at an angle of 45°.

- b. Split Spacing. Split spacing was the procedure of locating additional grout holes midway between two previously grouted holes. The primary holes were drilled and grouted at 20-foot intervals to a depth of 70 feet. The secondary holes were then split spaced midway between the primary holes giving a final spacing on 10-foot intervals for most of the grout curtain. However, there were areas of significant grout consumption which were supplemented with split spaced tertiary and quaternary holes. If these holes proved tight during water pressure tests, it indicated that the previous grouting was effective, and the holes were backfilled rather than grouted. The secondary holes extended to a depth of 60 feet in the left abutment but averaged 45 feet depth elsewhere. The tertiary and quaternary holes were drilled to depths varying from 20 to 45 feet depending on the zones they were intended to check.
- c. Stop-Grouting. Stop-grouting was the method used whereby each hole was drilled to its final depth and grouted by zones through a packer set at successively shallower stops. The areas beneath the packer settings which were to receive grout were termed zones, and the predetermined packer setting depths were termed stops.
- Grouting Procedure. The grouting procedure involved five basic steps for each hole. First, after being drilled to its full depth, the hole was cleaned by applying water to the bottom and letting it overflow at the surface until the return water became clear. This removed any drill cuttings, slurry, or debris left in the hole after drilling. Second, the holes were water pressure tested and washed. All holes were tested and washed with clean water under continuous pressure at the required grouting stops and pressures. This washed open the permeable fractures in the grouting zone and gave a preliminary indication of grouting conditions. Third, the packer was placed in the hole at the lowest stop or grouting position predetermined for the hole. Fourth, grout was pumped into the zone at the pressure and mixes required. Finally, after the grout pressure dropped sufficiently, the packer was moved to the next higher stop, and grout was placed at the lower pressure required for that zone. This procedure continued until the grouting was completed throughout the hole. No grouting was allowed within a 100-foot section of any drilling in progress. Before grouting could begin in any hole, at least the nearest two holes in advance of that hole had to be drilled to final depth. Also, the adjacent hole had to be pressure washed to clean out any intervening seams and fractures.
- e. Grout Injections and Mixes. The grout injections and mixes were controlled to suit the conditions encountered in each grouting zone. Neat cement grout was mixed in a water-cement ratio by volume and varied according to hole characteristics from 3.0 to 0.6. The procedure usually started with a 3.0 grout, the thinnest mix allowed by the contract specifications. Most of the holes were tight, or relatively tight, and in many cases no thicker grout was needed. At 3.0 or 1.0 grout was usually the final mixture for the more permeable zones. However, in a few cases where open joints and artesian flows were encoutered, it was necessary to use an 0.75 or 0.60 mixture. Each zone was considered completely grouted when the rate of grout consumption using

the maximum required pressure was less than I cubic foot of mixture in 10 minutes. Grouting pressures varied according to the depth of packer stops beneath the top of the rock foundation. The pressures used were normally I p.s.i. for each foot of rock depth with allowances for the hydrostatic weight of the grout column. A 1.0 grout mix was used to backfill holes.

f. Grouting Conditions. Judy Company began grouting in Hole No. 14+20 on 12 September 1980. The operations proceeded well with no serious difficulties although occasional open joints were encountered and there were some artesian groundwater flows. The greatest grout consumption and the artesian flows occurred in the same general area indicating a more open joint system than in other parts of the foundation. The artesian flows were in the western valley section, and some large grout takes also occurred in that section, as well as in the lower right abutment. Artesian groundwater flows occurred in numerous holes between Stations 12+28 and 15+20, and there was often venting in adjacent holes during the grouting in this area. There were several holes between Stations 11+02 and 15+00 which had grouting zones that required bags of cement in the double digit amounts, but there were four holes which required over 100 bags of cement. The grouting conditions in these four holes were as follows:

Hole No. 11+48. Drilling was stopped when drill water was lost at the 48-foot depth. The packer was set at the 40-foot depth to grout the open zone. The grouting finally required an 0.75 mixture and took a total of 126.4 bags of cement in 1 hour and 50 minutes.

Hole No. 12+38. This was an old exploratory core hole which was found with an existing artesian flow. The hole was grouted below the 40-foot depth. This zone required ϵ final grout mixture of 0.60 and took a total of 207.7 bags of cement in 2 hours and 19 minutes.

<u>Hole No. 12+81</u>. This was a grout hole which encountered an artesian flow below the 40-foot depth. When the zone below that depth was grouted, it required a 1.0 mixture and took a total of 139.7 bags of cement in 2 hours and 25 minutes.

Hole No. 13+74. This was a grout hole which was tight below the 40-foot depth but required final grout mixtures of 0.75 at both the 20-foot and 2-foot stops. The zone below the 20-foot stop took 124.3 bags of cement in 2 hours and 31 minutes, and the zone below the 2-foot stop took another 26.8 bags in 1 hour and 17 minutes.

Otherwise, the east valley section and both abutments were relatively tight. Most of the grout consumption at these locations was a 3.0 mixture requiring only tenths of a bag of cement. The largest grout consumption in the east valley section was 7.1 bags of cement below the 2-foot stop in Hole No. 15+30. This hole had some leaking through joints to the foundation surface. The largest grout take in the left abutment was 17.4 bags of cement below the 20-foot stop in Hole No. 18+40. The largest consumption in the right abutment was 17.5 bags of cement below the 2-foot stop in Hole No. 10+61.5. The final grouting operation was completed in Hole No. 12+84 on 19 March 1981.

7-03. Drainage Provisions. Drainage holes were drilled into the stilling basin foundation to relieve uplift pressures. The holes were percussion drilled with a minimum diameter of 3 inches at the final depth. They extended to a depth of 10 feet into rock and were slanted upstream 75° from the surface of the concrete slab. There were three holes drilled on the outlet works centerline at Stations 12+29.91, 12+39.91, and 12+49.91. At Stations 12+59.91, 12+69.91, and 12+80.91 a hole was drilled 2 feet 7 inches to each side of the centerline giving six additional holes. Therefore, there was a total of nine drainage holes throughout the stilling basin. These holes were drilled, as required by the contract specifications, after the dam's grouting operation was finished. All of the holes were cleaned by flushing with water and compressed air before final acceptance.

A vertical and horizontal filter drainage blanket was constructed in connection with the toe drain on the downstream side of the select impervious embankment. The filter material was a clean, free draining, well graded sand and gravel. The vertical filter blanket was 3 feet wide and extended along the downstream edge of the select impervious core from the top of this core at elevation 339.5 to the bottom of the horizontal filter blanket at elevation 286.0. The horizontal filter blanket was 2 feet thick and joined the vertical filter blanket at its base. The horizontal filter blanket extended laterally up the abutment slopes to elevation 339.5. It extended from the edge of the select impervious core, which was 35 feet downstream from the dam axis, to the toe drain, which was 216 feet downstream from the dam axis. The toe drain was a 12-inch, bituminous-coated, perforated, corrugated metal pipe wrapped in type "B" filter cloth. It was laid in a 3-foot-wide trench connected with filter material to the base of the horizontal filter blanket. The toe drain extended parallel to the dam axis and drained from east to west with respective invert elevations of 283.0 at the left abutment and 280.25 at the right abutment.

7-04. Foundation Anchors. Steel anchors were set in the foundation beneath both the spillway concrete control section and the stilling basin slab. No. 9 ste 1 anchors were spaced along the spillway control section on 10-foot centers and were grouted into 3-inch-diameter, percussion-drilled hole which extended vertically 6 feet below the concrete. There were a series or nine anchors placed beneath each of the two stilling basin wingwalls. These were No. 11 steel anchors and were grouted into 3-inch-diameter, percussion-drilled holes that extended vertically 10 feet into the rock beneath the stilling basin slab.

The anchors were installed at least 6 days before concrete was placed over the foundation to allow proper setting time for the mortar. The mortar was a cement, sand, and water mixture proportioned into one part cement to two parts sand by dry weight with enough water for proper consistency. Each anchor hole was partially filled with mortar, and the anchor bar was vibrated to the bottom of the hole. Then, more mortar was added if needed to finish filling the hole. The bars were completely surrounded by mortar and not allowed to rest against the side of the hole.

7-05. Treatment of Slide Scar. Concrete fill was required along the scar of a rock slide which occurred on the right abutment slope above the conduit alinement. The slide left a relatively smooth scar on the upper abutment slope, but it was quite irregular and fractured adjacent to the conduit foundation. Therefore, it was decided to pour concrete fill against the slide scar where it adjoined the outlet foundation near elevation 281 (between Stations 8+54 and 8+83), in order to stabilize the fractured rock next to the relatively thin conduit wall. The concrete fill was placed to the top of the outlet conduit which was about elevation 288.

PART VIII

CONSTRUCTION MATERIALS

The earth materials used in the project construction consisted of riprap, bedding material, concrete aggregate, and sand. The riprap was syenite rock from the Granite Mountain Quarries in southeast Little Rock, Arkansas. Syenite consists mostly of feldspar minerals, and with an increase in its normally low amount of quartz, it would grade into granite. The bedding material was sandstone of the Atoka Formation from the M & M Rock Company quarry near Greenbriar, Arkansas. The concrete aggregate was a fluvial gravel obtained from an M & M Rock Company quarry located about 3 miles west of Toad Suck Ferry Lock and Dam. The sand supply was obtained from Jeffries Sand Plant near Cedar Park, about 2 miles north of Toad Suck Ferry Lock and Dam. Samples of these materials were tested by the Southwestern Division Laboratory in Dallas, Texas, and were approved for construction use.

PART IX

FOUNDATION PROBLEM AREAS

The foundation rock was sound and competent throughout the project, and no foundation problems are anticipated in the future. The rock was entirely Atoka Formation and consisted of hard to moderately hard, gray to black, usually sandy shale with some fine to medium grained, hard, gray sandstone. There were no major structural problems, and open joints and fractures were successfully sealed in the grout curtain. The small, low-angle faults in the left abutment showed no signs of intense movement such as gouge, breccia, or slickensides, but rather, appeared to be inactive, minor slippage along the shale bedding planes. There were some artesian groundwater flows in the valley foundation, but these were also sealed in the grout curtain. The grouting operations proceeded well with no significant difficulties and should provide an effective curtain beneath the embankment. The rock slide in the right abutment did no major damage and caused no construction problems other than extra concrete to smooth the scar adjacent to the outlet conduit. Therefore, the foundation appears quite good and should have no future problems.

PART X

RECORD OF FOUNDATION APPROVAL

The rock foundation was inspected, mapped, and photographed by a geologist after it was cleaned and prepared as described in paragraph 5-05. No drummy or loose material was allowed on the rock surface, and overhangs were removed or backfilled with concrete. Open joints and fractures were filled with mortar. Occasional, thin clay seams were cleaned to a depth of several inches and filled with mortar. The foundation was generally hard, massive rock which cleaned well and was usually approved with little difficulty. The following is a list of mapping and approval dates for various sections of the foundation:

		Stations	
Structure	Date	Mapped & Approved	Geologist
DIKE	5 Sep 80	24+00 to 22+50	R. Crutchfield
(core trench)	6 Sep 80	22+50 to 19+60	R. Crutchfield
•	16 Sep 80	24+00 to 25+00	B. Jabarro
INTAKE			
STRUCTURE	13 Nov 80	7+45.75 to 7+97	J. Irwin
OUTLET			
CONDUIT	20 Nov 80	7+97 to 8+37	J. Browko
	11 Dec 80	8+37 to 8+57	R. Crutchfield
	31 Dec 80	8+57 to 8+97	R. Crutchfield
	26 Jan 81	12+16.75 to 11+16.75	R. Crutchfield
	27 Feb 81	11+16.75 to 10+76.75	R. Crutchfield
	9 Mar 81	10+76.75 to 10+36.75	R. Crutchfield
	10 Mar 81	10+36.75 to 9+96.75	R. Crutchfield
	10 Mar 81	8+97 to 9+76.75	R. Crutchfield
	11 Mar 81	9+76.75 to 9+96.75	R. Crutchfield
STILLING			
BASIN	24 Jun 81	12+16.75 to 12+38.91	R. Crutchfield
	30 Jun 81	12+38.91 to 12+62.91	R. Crutchfield
	16 Jul 81	12+62.91 to 12+86.9	J. Browko
DAM	6 Oct 80	14+00 to 15+30	R. Crutchfield
(core trench)	7 Oct 80	15+30 to 16+70	R. Crutchfield
	24 Mar 81	11+75 to 12+40	R. Crutchfield
	27 Mar 81	12+40 to 14+00	J. Browko
	11 Jun 81	11+02 to 11+75	J. Browko
	24 Jun 81	10+70 to 11+02	R. Crutchfield
	16 Apr 82	16+70 to 17+15	S. Hartung
	22 Apr 82	10+35 to 10+70	R. Crutchfield
	23 Apr 82	17+15 to 17+40	R. Crutchfield
	3 May 82	17+57 to 18+18	R. Crutchfield
	4 May 82	9+80 to 10+35	R. Crutchfield
	10 May 82	17+40 to 17+57	R. Crutchfield
	12 May 82	18+18 to 18+75	R. Crutchfield
	8 Jun 82	19+20 to 19+75	R. Crutchfield
	9 Jun 82	18+75 to 19+20	R. Crutchfield
	16 Jun 82	19+75 to 20+63	R. Crutchfield
	22 Jun 82	9+80 to 9+10	R. Crutchfield

APPENDIX A

PHOTOGRAPHS
Pages 000 thru 031

L. L

View east showing Phase I excavation and left alument core trench in background.

21 Aug 30 Convay Mater Supply - Monto No. 1

View rost showing Phase I excavation and right abutment in background.

4 Sep 30 Comeay Water Supply Photo No. 2

Vier southwest along dam axis with foundation rock exposed in core trench from Stations 9+75 to 9+17 -- Atoka Shale.

Comay Mater Supply 22 Jun 62 Com.ay Nater Supply Photo No. 3

Photo No. 4

001

View northeast along dam axis with foundation rock exposed in core trench from Stations 9+40 to 9+75 --- Atoka Shale.

22 Jun C2

View southwest along dam axis with foundation rock exposed from Stations 11+74 to 11+10. Outlet conduit is in Packground with 4 vertical on 3 horizontal rock slope above it. Pocl is Atoka Shale.

Photo No. 6

Commay Tater Supply

11 Jun 31

4 May 82 Commay Mater Supply Photo No. 5

View northeast at foundation rock exposed in core trench from Stations 9+75 to 10+20 --- Atola Shale.

View south shoving foundation rock exposed in slope along dam axis between Stations 11+75 and 11+05 --- Atoka Shale.

24 Mar 81. Convay Dater Supply Photo No. 7

View southwest showing foundation rock exposed along dam axis from Stations 12+40 to 11+75, left to right. Hote joints in right abutment in background. Pock is Atoka Shale.

24 Mar 31 Conway Mater Supply Photo No. 8

View southwest toward Station 12+00 on dam axis in upper center photo. Note exposed Atoka Formation bedding planes.

26 Apr 81 Conway Water Supply Photo No. 9

View southwest toward Station 15+20 near pump in center-right of photo. Note foundation preparation of Λ toka Formation.

7 Nov 80 Convay Water Supply Photo No. 10

004

View northeast along dam axis from Station 14+30. Note foundation preparation crew and left abutment core trench in background.

6 Nov 80 Conway Water Supply Photo No. 11

View east toward left abutment core trench showing exposed foundation rock along dam axis between Stations 16+20 to 16+50. Note concrete fill along rock ledges of Atoka Shale.

7 Hov. 30 Conway Water Supply Photo No. 12

View north showing exposed foundation rock along dam axis between Stations 17+20 and 17+40 --- Atoka Shale.

20 Apr 82 Conway Vater Supply Photo No. 13

View north on dam axis at Station 17+30. Note minor joint displacement in upper left photo.

23 Apr 82 Comway Water Supply Photo No. 14

View northeast showing exposed foundation rock along dam axis between Stations 17+40 and 17+70 --- Atoka Shale.

10 May 82 Conway Mater Supply Photo No. 15

View northeast showing exposed foundation rock along dam axis between Stations 17+57 and 18+18. Note curve in core trench along dam axis. Dock is Atoka Shale.

3 May 92 Conway Water Supply Photo No. 16

View north at Station 18-18 in left abutment core trench. Note the 1.1 ft. displacement of nearly vertical joints along a bedding , plane in center photo.

12 May 32 Conway Water Supply Photo No. 17

View northeast showing foundation rock exposed along dam axis from Stations 19+75 to 19+75 --- Atoka Shale.

9 Jun 82 Conway Water Supply Photo No. 18

View north showing foundation rock exposed from Stations 20+45 to 20+63 in left abutment core trench. Note the blocky sandstone layer overlying the shale --- Atoka Formation

16 Jun 02 Conway Water Supply Photo No. 19

View southeast showing foundation preparation downstream of dam axis in Phase II excavation.

24 Mar 81 Conway Water Supply Photo No. 20

View southwest showing foundation preparation downstream of dam axis in Phase II excavation.

3 Apr 81 Conway Water Supply Photo No. 21

View west showing foundation preparation upstream of dam axis in Phase I excavation. Right abutment in background.

9 Oct 80 Conway Water Supply Photo No. 22

View east showing foundation preparation upstream of dam axis in Phase II excavation.

26 Mar 81 Convay Water Supply Photo No. 23

View north showing foundation preparation upstream of dam axis in Phase I excavation.

6 Nov 80 Conway Nater Supply Photo No. 24

View north showing foundation preparation upstream of dam axis in Phase I excavation.

8 Nov 80 Conway Water Supply Photo No. 25

View northeast showing grout fill of open joint in Phase I excavation downstream of dam axis.

3 Nov 80 Conway Mater Supply Photo No. 26

View northeast toward left abutment in upper photo. Note excavated rock and concrete fill along open joint in downstream Phase I excavation.

3 Nov 80 Conway Water Supply Photo No. 27

View west toward right dam abutment. Note intake structure and outlet conduit construction in center-right photo, grout hole drilling in core trench in center-left photo, and joints along rock face.

20 Sep 81 Conway Vater Supply Photo No. 23

View southwest showing grout hole drilling in right abutment core trench at uppercenter photo. Note joints and landslide scar in center-right photo.

20 Sep 81 Convay Water Supply Photo No. 29

View southwest showing grouting operation in left abutment core trench. Phase I excavation in background after a heavy rain.

30 Sep 80 Conway Water Supply Photo No. 30

View north showing grout hole drilling rig at about Station 12+00 on the dam axis.

10 Mar 81 Conway Water Supply Photo No. 31

View southwest along dike axis showing exposed foundation rock between Stations 24+00 and 25+00 --- Atoka Shale.

16 Sep 30 Conway Water Supply Photo No. 32

View northeast along dike axis showing exposed foundation rock between Stations 24+90 and 24+00 ---- Atoka Shale.

16 Sep 80 Conway Water Supply Photo No. 33

View northeast showing foundation preparation in dike core trench between Stations 24+70 and 24+00. Work crew is at about Station 24+00.

16 Sep 80 Conway Water Supply Photo No. 34

View northwest at distorted fold of weathered shale in core trench wall of dike at Station 19+85.

6 Sep 80 Conway Unter Supply Photo No. 35

View southwest from Station 19+70 in dike core trench showing foundation preparation of exposed Atoka Shale.

6 Sep 80 Conway Mater Supply Photo No. 37

3 Sep 80 Corway Water Supply Photo No. 36

View northeast from Station 24+00 in dike core trench showing exposed foundation rock --- Atoka Shale.

View northwest showing foundation rock exposed in intake structure excavation --- Atoka Shale.

13 Nov 80 Conway Water Supply Photo No. 38

View northwest showing foundation rock exposed in intake structure excavation —— Atoka Shale.

13 Nov Conway Water Supply Photo No. 39

View west at rock slide scar in right abutment along outlet conduit Stations 3+63 to 0+83.

ll Dec $80\,$ Conway Water Supply Photo No. $40\,$

View southwest at rock slide scar in right abutment near outlet conduit Station 8+83.

20 Nov 30 Conway Water Supply Photo No. 41

View northwest along outlet conduit alignment from Station 8+37.

20 Nov 80 Conway Water Supply Photo No. 42

View southeast along outlet conduit alignment showing exposed foundation rock from Station 8+57 --- Atoka Shale.

31 Dec 80 Conway Water Supply Photo No. 43

View northwest slong outlet conduit alignment showing exposed foundation rock from Station 3+97 --- Atoka Shale.

31 Dec 30 Conway Water Supply Photo No. 44

View southeast along outlet conduit alignment showing exposed foundation rock from Station S+41 --- Atoka Shale.

11 Dec 80 Conway Water Supply Photo No. 45

View northwest along outlet conduit alignment showing exposed foundation rock from Station 9+60 --- Atoka Shale.

10 Mar 81 Conway Water Supply Photo No. 46

View northwest along outlet conduit alignment showing exposed foundation rock from Station 9+83 --- Atoka Shale.

11 Mar 31 Comway Mater Supply Photo No. 47

View southeast along outlet conduit alignment showing exposed foundation rock from Station 9+97 --- Atoka Shale.

10 Mar 81 Conway Water Supply Photo No. 48

View southeast along outlet conduit alignment from Station 9+97, showing concrete pour.

11 Mar 81 Comway Water Supply Photo No. 49

View southeast along outlet conduit alignment from Station 10+70, showing exposed foundation rock --- Atoka Shale.

27 Feb 81 Conway Water Supply Photo No. 50

View northwest along outlet conduit alignment from Station 10+72, showing exposed foundation rock --- Atoka Shale.

9 Mar 81 Comway Water Supply Photo No. 51

View northwest along outlet conduit alignment from Station 10+96, showing exposed foundation rock --- Atoka Shale.

27 Feb 81 Comway Water Supply Photo No. 52

View southeast along outlet conduit alignment showing exposed foundation rock from Station 11+17 —— Atoka Shale.

25 Jan 81 Corway Water Supply Photo No. 53

View northwest showing outlet works alignment from the stilling basin in left foreground to the intake structure in centerright of photo.

11 Feb 81 Conway Water Supply Photo No. 54

View northwest at upstream stilling basin foundation with outlet conduit construction in background.

13 Feb 81 Conway Water Supply Photo No. 55

View northwest at upstream stilling basin foundation from Stations 12+16.75 to 12+42.75 --- Atoka Shale.

13 Feb 81 Conway Water Supply Photo No. 56

View northwest at stilling basin foundation from Station 12+86.9 to 12+62.9 —— Atoka Shale.

16 Jul 81 Conway Water Supply Photo No. 57

View north at blasting in spillway excavation.

29 Apr 81 Conway Water Supply Photo No. 58

View north at blasting in spillway excavation.

29 Apr 81 Conway Water Supply Photo No. 59

SPILLWAY RIGHT CUT SLOPE LOOKING UPSTREAM OVER CONCRETE CONTROL STRUCTURE PHOTO #60
7 DEC 82 CONWAY WATER SUPPLY

SPILLWAY CUT LOOKING UPSTREAM OVER CONCRETE CONTROL STRUCTURE PHOTO #61 7 DEC 82 CONWAY WATER SUPPLY

APPENDIX B

BORING LOGS Pages 032 thru 087

Calledon.

				G	ENERALIZED GEOLOGIC COLUMN
SYSTEM	FORMATION ACCUPAGE NO.		THICKNESS IN FEET	UNIT	DESCRIPTION
			7	10	SANDSTONE, HARD, FINE TO MEDIUM GRAINED, MEDIUM GRAY, MICACEOUS, FOUND ONLY IN THE HIGHER ELEVATIONS OF BOTH ABUTTMENTS AS A CAPPING STRATA, USUALLY SLIGHTLY WEATHERED.
	ATOKA		14 to 27	11	SHALE, SANDY, MODERATELY HARD TO HARD, CEMENTED, FINE GRAINED, BLACK TO MEDIUM GRAY, MICACEOUS, NUMEROUS SANDSTONE LAMINATIONS & INCLUSIONS, SOME LENSES OF SHALY SANDSTONE.
/ANIAN			13 to 48	12	SHALE, SANDY, HARD TO MODERATELY HARD, FINE GRAINED, CEMENTED, BLACK TO MEDIUM GRAY, MICACEOUS, NUMEROUS THICK TO THIN OFTEN IRREGULAR SANDSTONE LAMINATIONS & INCLUSIONS ZONES OF WHICH OCCASSIONALLY GRADE INTO SHALY SANDSTONE.
PENNSYLVANIAN			11 to 27	13	SHALE, SANDY, HARD TO MODERATELY HARD, FINE GRAINED, CEMENTED, BLACK TO MEDIUM GRAY, MICACEOUS, NUMEROUS SANDSTONE LAMINATIONS & INCLUSIONS, OCCASSIONAL SHALY SANDSTONE LENSES.
			5 to 20	14	SHALE, SANDY, HARD TO MODERATELY HARD, FINE GRAINED, CEMENTED, BLACK TO MEDIUM GRAY, MICACEOUS, SCATTERED SANDSTONE LAMINATIONS & INCLUSIONS.
			7 to 24	15	SHALE, SANDY, HARD TO MODERATELY HARD, FINE GRAINED. CEMENTED. BLACK TO MEDIUM GRAY, WIDELY SCATTERED SANDSTONE LAMINATIONS & INCLUSIONS.
			+ 37	16	SHALE, MODERATELY HARD TO HARD, FINE GRAINED TO SILTY, BLACK, MICACEOUS, SCATTERED HARD SILTSTONE NODULES & LENSES ARE ENCOUNTERED IN THIS UNIT STARTING FROM ABOUT 10 TO 15' BELOW ITS TOP SURFACE.

L

ווופח	ING LO		COUTULECTEDN	1	LATION	D-2-011 -	TCTDTCT	SHEET 1			
PROJECT			SOUTHWESTERN		TTTLE		NYI NYI	OF 2 SHEETS			
	CONWAY	WATE	R SUPPLY				SHOWN (TBM or MS)	-)			
LOCATION	(Coordin	etes or St	ation)				ISL				
N 0+06 E 11+30 DRILLING AGENCY U. S. CORPS OF ENGINEERS					FAILING 1500 TOTAL NO. OF OVER- COSTUMBED UNDISTURBED						
. NAME OF	DRILLER			14. TO	AL NUMBE	R CORE B					
		1100	D	IS ELE	EVATION GI						
DIRECTIO				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
(A) AFELL			DEG FROM VERT	17 ELE	EVATION TO						
THICKNES				18 701	TAL CORE	RECOVER	Y FOR BORING	98.9			
DEPTH DR				19 SIG	NATURE OF	INSPECT	R. PERR	v			
. TOTAL DE	PTHOF	HOLE	85.9	<u> </u>							
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	ALS	RECOV-	SAMPLE NO	Drilling time, we	ter loss, depth of			
	<u>b</u>	<u> </u>	d		•	1	weathering, etc.	, if eignificant)			
	_	1	О.В.		1						
300.1	_	†	TOP OF ROCK				BEGIN C	ORING			
200.1				IT 1.		 	323217				
296.1	_		-SL WEA		91		h	. / 5 DCT			
FIRM	10-	F			<u> </u>	1	- 1.2 CFM	: 4.5 PS1			
ROCK						1					
	_		-JT,Fe		1.20			ж.т. ⊽			
		<u>←</u>	FIRS SHALE, SOY		100	1		1-24-78			
	=		FRAC HD TO MOD HD LITE E. : WHERE UNWEATHEREI)]	0.0 CFM				
	20		L, , WHERE CHWEATHERE	,	7.5	-		. 12			
ĺ			-ITS,Fe		-	i i	1.2 CFM	17 PSI			
	_				100	ł					
						,	- 0.0 CFM	3 20 PSI			
ł	_] 2	Ш,				
	30—						O O CEN	÷ 26 PSI			
	_				_	}	0.0 0.1	* 20 101			
	_		ניז	VIT 1	3 100	<u></u>					
]			71, -		}						
	_				ļ	1	<u> </u>				
1	40		SHALE, SDY			3					
}	_		HD TO MOD HD		1,00	1	- 0.0 CFM	a 30 b21			
					100	1					
	_										
1						 	버				
	50	:			1]	0.0 CFM	30 PSI			
Ì	_				7		.)				
į			ί.	NII I	100	4					
ſ	_		SHALE, SDY		-		į (
;	<u> </u>		HD TO MOD HD			j	뉘				
	60					I	- 0.0 CFM	3 30 PSI			
	_				100		<u>:</u>				
			1			5		<u> </u>			
NG FORM	102		US EDITIONS ARE OBSOLETE		PROJECT		17.1	HOLE NO			

_	. 10"		ON INSTALLATION				SHEET 2
ING LO	G S	SOUTHWESTERN	LI.	TTLE R	OCK DI	STRICT	OF 2 SHEET
DERTH		CLASSIFICATION OF MATERI	ALS	S CORE	BOX OR	REMAR	KS
ì	ŀ				NO.		il significant)
		 '	·	 			
				ļ			
ı ⊐	====	U:	NIT 15			ĹĻ	
70					ļ	1]	
		SHALE, SDY		100		O O CEM 0 3	O PST
<u> </u>				1			,
] [
コゴ				1		{	
\dashv				j		h ,	
80 —					1		O DOT
				100	0	PO.0 CFN 4 3	O PSI
-			VIT 16				
		SHALE, MOD HD	10	1	1		
						DOMESTIC OF I	
7	İ			!			
	1			1		85.9'	
1							
	ł				1	<u> </u>	
		NOTE:]	1		
! ⊢			RIPTION	1	1		
7	}			1			
' ⊢	l			ł	}		
\Box				1		ţ	
L				1	1		
)			
i I					ì		
	' I					}	
	}						
				1	i		
-	į			}	ļ		
					1		
				ł			
_	-				1		
	ĺ						
	- 1			j			
-	j						
	1				1		
\exists							
-	1			ļ			
		-			1		
				1	[{	
	1				1]	
-					1	1	
	ĺ				L	į	
	1			•		1	
						ı	
	ļ			ŀ	1	1	
				1	:	1	
	ſ			i		1	
	i			1		:	ለባባ
						1	033
				i .			
4	- 1			ļ		J	
	70	70	DEPTH LEGEND CLASSIFICATION OF MATERIA TO SHALE, SDY MOD HD TO HD SHALE, MOD HD NOTE: FOR DETAILED DESCR OF UNITS - SEE GENER GEOLOGIC COLUMN	DEPTH LEGEND CLASSIFICATION OF MATERIALS OUNIT 15 SHALE, SDY MOD HD TO HD NOTE: FOR DETAILED DESCRIPTION OF UNITS: SEE GENERALIZED GEOLOGIC COLUMN	DEPTH LEGENO CLASSIFICATION OF MATERIALS RECOV. TO UNIT 15 SHALE,SDY MOD HD TO HD SHALE,MOD HD NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED GEOLOGIC COLUMN	DEPTH LEGEND CLASSIFICATION OF WATERIALS RECOVE SAMPLE (Description) OF THE CONTROL OF THE CONT	DEPTH LEGEND CLASSIFICATION OF MATERIALS REMARK (Driting area wellbeiting, area wellbeiting, area wellbeiting). The wellbeiting area wellbeiting area wellbeiting, area wellbe

TRANSLUCENT

Hole No. 13 MSTALLATION SHEET 1 DIVISION DRILLING LOG LITTLE ROCK DISTRICT SOUTHWESTERN 10. SIZE AND TYPE OF BIT NXL CONWAY WATER SUPPLY O+00 E 18+00 MSL 12 MANUFACTURER'S DESIGNATION OF DRILL DRILLING AGENCY FAILING 1500 U. S. CORPS OF ENGINEERS 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN DISTURBED UNDISTURBED . HOLE NO. (As shown on drawing title and file number) 14. TOTAL NUMBER CORE BOXES S. NAME OF DRILLER 15. ELEVATION GROUND WATER DIRECTION OF HOLE COMPLETED 2-21-78 DEG. FROM VERT 17 ELEVATION TOP OF HOLE 7.5 THICKNESS OF OVERBURDEN 86 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 80.0 19. SIGNATURE OF INSPECTOR 87.5 N. BOSTON TOTAL DEPTH OF HOLE CLASSIFICATION OF MATERIALS (Description) CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Drifting time, water lose, depth of weathering, atc., if aignificant)
g ELEVATION DEPTH LEGEND О.В. 317.7 TOP OF ROCK BEGIN CORING BADLY WEA UNIT 12 38 JADLY WEA 1 25 SHALE, SDY MOD HD TO HD 300.8 WEA WHERE UNWEATHERED FIRM 0.0 CFM @ 15 PSI Fe STAINS 93 ROCK 0.0 CFM @ 25 PSI 100 2 -1.6 CFM @ 30 PSI 100 1.0 CFM 3 30 PSI 3 97 034 UNIT 13 SHALE, SDY 100 4 -0.3 CFM @ 30 PSI HD TO MOD HD ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE PROJECT

Hole No. 13								_	
DRILLING LOG			1	STALL		0.017		SHEET 2	7
	ING EX		SOUTHWESTERN				STRICT	OF2 SHEETS	Ή.
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description) d	•	% CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling time, wet weathering, etc.	RKS er lose, depth of if significant)	
									Ŧ
	7			T 13					-
1	70		(co	nt)		}	}}		E
}	<u> </u>		JI INIT	-,-		}	<u>L</u> h		E
			UNI	T 14			0.0 CFM @	30 PST	Ь
ļ			JT. SHALE, SDY	i]	O.S CERT	30 131	
Į.	7		NUM FRAED TO MOD HD)					F
(<i>∞</i> ∓		Τι-	Ì					F
-	80—			1		}			F
į	₹)	o o cen a	20 001	F
}			SHALE, SDY UNI	T 15			- 0.0 CFM @	30 PS1	F
237.6	{		HD TO MOD HD						
	<u>,</u> 士	=		==					士
	90-		NOTE:	}			BOTTOM OF	HOLE	Ł
)	-}	ì	FOR DETAILED DESCRIPT	ON		}	87.6'		Ł
	7		OF UNITS - SEE GENERALI						F
1	\neg		GEOLOGIC COLUMN			!			F
1	\exists	ļ		- (ļ .			F
}	コ	i		- {					t
{	ゴ								
1	Ⅎ			})			E
1				1					Ŀ
1	\exists			1					F
{	コ	1		1		(F
}				1					F
j									F
ļ									F
ĺ							}		F
1	⇉			1		}			þ
1				}					Ŀ
{	∄			- 1		{			Ł
}	_=			l					ŀ
	7			1		}			F
{	7			Ì					F
1	\dashv			Ì					F
1	7)			}		F
Ì	#			}		:			þ
}	크			-		İ			E
ł	コ		{			}) 		E
Į.				j		j .			Ł
1	7			}		1			F
1	コ						[F
i						1	!		ļ
1	7			i		-	i 		þ
ļ	i			ļ		[1		t
1 }				Ì			1	Ant:	E
ļ	=			Ì		1]	035	-
,				{				-	F
1									

TRANSLUCENT

		101	VISION	INSTALL	ATION		Hole No	. 22 SHEET 1		
DRILL	ING LO		SOUTHWESTERN			OCK D	ISTRI <i>C</i> T	OF 2 SHEETS		
PROJECT		···	ED GUDDI V	10. SIZE AND TYPE OF BIT NXL 11. DATUM FOR ELEVATION SHOWN (TBM or MSL)						
			ER SUPPLY	TT. BAT	IM FOR EL		i shown <i>(tem _{or M}s.</i> SL	L)		
LOCATION		E 9+7		12 MANI	JFACTURE		OL			
DRILLING	AGENCY		<u> </u>	-1	AILING		The second of Second			
U. S.			NGI NEERS	13. TOT	AL NO. OF	OVER-	DISTURBED	UNDISTURBED		
and file num	no ec	. w. Graw	22					5		
S. NAME OF	DRILLER	WOOD		1	AL NUMBE		NTER 303.9	······		
DIRECTIO	H OF HOL		<u> </u>	 				OMPLETED		
V VERTIC	CAL []	NCLINED	DEG. FROM VERT.	16. DATI	E HOLE	3-	-3-78	3-10-78		
7. THICKNES	S OF OVE	RRURGE	n 5.3	17. ELE	VATION TO	OP OF HO				
DEPTH DR							T FOR BORING).4		
. TOTAL DE			132.2	19. SIGN	ATURE OF	INSPECT	PERRY			
			CLASSIFICATION OF MATERIA	ALS	% CORE RECOV-	BOX OR	REM	ARKS		
ELEVATION		LEGEND	(Description)	_	ERY	NO.		iter lose, depth of ., if significanti		
•			0.B.		•					
}	-		O.D.			}	}			
341.6			TOP OF ROCK				BEGIN CO	ORING		
	_		11	IIT 11	100					
ĺ	10		BADLY WEA		100	1				
	10		CUALE COV			1	}			
}			SHALE, SDY MOD HD		100	}				
			WHERE UNWEATHE	ERED		1				
328.6	=		SL WEA		84.9	}	h			
FIRM			ከ		04.7	}	{{			
ROCK	20		Fe STAINS			-	1			
or	_		t'N	IIT 12		}	-0.4 CFM 3	15 PSI		
ļ					100	1				
	_)T, Fe			2				
	30-					}	}}			
			Fe SHALE, SDY			1	1.1 CFM 3	25 DCT		
	_		MOD HD TO HD		100		First Crist 9	101 62		
Í			SOFT		100		hl			
	=	 				1	0.8 CFM @	30 PSI		
	40	خر د ن	Τ Ι.]	111			
	_ =	- نــــــــــــــــــــــــــــــــــــ],	П	VV.L.		
						3		3-10-78		
					100	!	0.0 CFM 3			
	=		TI.		100		1 0.0 01.1 9	50 LOL		
	50		BROKEN			 	لوط ا			
	-					1	il			
ì			LIT CODOMEN		100		_2.2 CFM 3	20 051		
ļ			BROKEN		 	1	Fara Crm 9	20 121		
i	7					4	1			
1	60		LITS		100	1		000		
	7	3		,	1 /, 1 /, 2			036		
	\exists		SOFT			!	-			
	1836				PROJECT			HOLE NO		

, included the course posts.

		17	DIVISION	INSTAL	LATION		Hole No. 22
DRILL	ING LO	os l'	SOUTHWESTERN			OCK DI	STRICT OF 2 SHEETS
LEVATION	DEPTH	LEGEN	CLASSIFICATION OF MATERIA	•		BOX OR SAMPLE NO.	REMARKS (Drilling time, weter loss, depth of weathering, etc., if significant)
•	ь	<u> </u>	d		•	1	
	_		.∃		l		
	_						0.9 CFM @ 30 PSI
	70		_	= -	100		10.9 Crm @ 30 F31
	,		⊼ UN	<u>IT</u> 13	1	5	
	_						[]
		<u></u> -	SHALE, SDY			1	Γ'
		1	HD TO MOD HD				
	_						0.0 CFM @ 30 PSI
	80	1	티		100		15.0 Cin 9 30 131
	00	1-:	4			İ	
	_	1-1-1-	<u> </u>			1	
	_		≟		<u>-</u>	-	년 !
			#				
	_		-			6	O O CEN 3 30 PCT
	-	1===	III	IT 14	100		0.0 CFM @ 30 PSI
	90	 					
	=	1	SHALE, SDY			ļ	
	-		HD TO MOD HD			<u> </u>	ᅯ
]	<u> </u>			}]
	! =	<u> </u>					
	-		3				LO.0 CFM @ 30 PSI
	100_		.∃		100		
	-		i			7	
	_	1	∴		['	1 🛴
	_	<u> </u>	3			†	P1
	-		-		1		1
	-	15-5-5	∃ un	IT 15			0.0 CFM @ 30 PSI
	110		SHALE, SDY				
	_	<u></u>	HD TO MOD HD		100	1	!
			- III 10 100 100 110 110 110 110 110 110		}	Į	
	_	<u> </u>	3			1	Lh
	_	1 :			1	8	
	_	 					0.0 CFM @ 30 PSI
	120		+		1		μο.υ Cr.M 9 30 F31
	120		<u>-</u>]	IT 16	1		
	_		크		100		
	_	1:-:-:	크			 	 • • • • • • • • • • • • • • • • • • •
			SHALE			1	
	_]	MOD HD TO HD				0.0 CFM @ 30 PSI
			.]		100	9	
214.8	130_	<u> </u>	SILTSTS		100		
214.0	_		<u> </u>		<u> </u>		
	=	1					BOTTOM OF HOLE
		1					132.2'
	=	7				}	132.2
	<u>-</u>	1					
	140_	4					
	=	1	NOTE:			İ	
	-	ļ	}	DTION			
		7	FOR DETAILED DESCRI				
	-	4		ALIZED	1		
	=	}	GEOLOGIC COLUMN				
		1				1	
		i	•			İ	037
	_	1				i	
	-	-			[
NG FORM			OUS EDITIONS ARE DESOLETE		PROJECT		HOLE NO

TRANSLUCENT)

Hele No 32

				I.c.ae	75.25		Hele Ne	
DRILL	ING LO		SOUTHWESTERN	LIT	LATION TLE ROO	CK DIS	TRICT	OF 2 SHEETS
PROJECT		·		10. SIZE	AND TYPE	OF BIT	NXT.	
CONTAY	MATE	R SUPI	LY	11. DAY	UM FOR EL	EVATION	SHOWN (TBM or MI	IL)
LOCATION	(Coordina	ites or Sta	ifion)	MS				
N 0+75	AGENCY			12. MAN	UFACTURE AILING	1500	SNATION OF DRILL	•
US Cor				13. <u>TOT</u>	AL NO. OF DEN SAMPI	OVER-	DISTURBED	UNDISTURBED
and file mus	nb es)	ON CUANT	32				<u> </u>	. 13
Nash	DRILLER				AL NUMBE			
. DIRECTION	N OF HOL	Ē						COMPLETED
VERTIC		NCLINED	DEG. FROM VERT.	<u> </u>	E HOLE		3/3/78	3/6/78
. THICKNES	S OF OVE	RBURDE	N 20.1	·	VATION TO			98
. DEPTH OR	ILLED IN	TO ROCK	51.3		AL CORE P		Y FOR BORING	
. TOTAL DE	PTH OF	10LE	71.4				N. Bosto	n
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS	S CORE RECOV- ERY	BOX OR	REM (Drilling time, w	ARKS ster lose, depth of
	ь	c	d		ERY	HO.	weathering, et	eter lose, depth of c., if significant)
			OVERBURDEN					, 2.2.
	=					1		
1								
	コ		1		1			
	ゴ							
1	10-							
	\dashv							
1	コ	j			1	1		
	크							
ļ	\exists							
265.9	30 H		TOP OF R	OCK			ROCK	RTT
264.4	20		N.C.L. UNIT	13				CORING
Firm	コ				85			22240
Rock			SHALE, SDY		(0)			
	\exists		HD to MOD HD]	-0.7 CFM @	10 PST
1	=		10 TAD 110		100	וו	1.7 Cr. 1 W	10 191
Ì	30				(0)	'		
	コ				101	1	ֈ դ	
1	\exists			·	†]		
j			UNIT	14				
	7						[0.0 CFM @:	20 PSI
	., □		SHALE, SDY		100			
	40—		HD to MOD HD		(100)			
į	\exists		עם עסוא סט פוני			1	אַ	
	コ				100	2		
							1.44 CFM (330 PSI
	\exists				Ţ			-
	50		UNIT	15	1			
1	·// —						lh .	
1	コ		SHALE, SDY					
1			HD to MOD HD		}	1	2.0 CFM €	30 PST
i i	\exists		410 CO 2001 HD		100		112.00 (18.3) (9	gere a sola
!	コ						11	_
								038
ļ	60 —				1	1	I I	VUU
	60		<u> </u>			4 1	∖ J	~ ~
	60 —		SHALE UN	TT 16		· '		
	60		SHALE UN	TT 16		ļ 	0.0 CFM @	

		32
Hole	No.	

							noie no.	SHEET 7	
		DIVIS	SOUTHWESTERN	INSTALL	LITTLE	ROCK	DISTRICT	SHEET 2	ETS
DRILL	DEPTH L		CLASSIFICATION OF MATERI.	<u></u>		SAMPLE NO.	(Drilling time, we weathering, etc.	RKS or lose, depth , if aignificant	,,
•		<u> </u>	<u></u>				Ţ <u>'</u>	<u></u>	E
				т 16	100	4	{		E
1	70_=		(Co	nt)	100	, ,	İ		
214.6	/°-7			=	-		Bottom of	Hole	E
}		}				1	71.4'	11010	C.
	=	1			1				F
	=	1			1	1			E
	-=	1	NOTE: FOR DETAILED DESC	PIDTION		ļ	}		E
	1 =		OF UNITS - SEE GENI	ERALIZED	}	}	}		
	1 -3	}	GEOLOGIC COLUMN		1	1	Ì		F
	1 =	. {			1	1			E
	=								-
 	1 =	}				1	1		
	1 =					}			F
									E
	=	} {			}	}	}		ļ.
) =	} }			}	1			ļ
}	=	} }			{	1	1		{
į	=	1			}	{	1		1
S] '							
]	\ - <u>-</u>	} '			}				
	=	‡			1		}		
}	-	₫			1	1	\		
1		3				}			
		╡			}				
1	1 -	7			1	İ			
ţ		3			}	1	}		
1		3					-		
1		‡				}			
1	-	7			1				
		Ξ			1	1	ļ		
1	-	\exists			}	1			
}	}	7							
	-	7							
ł		3							
1	_	3	}		}				
1		=					}		
}		7						O:	39
1	-						1	U	
		\exists			1				E #0
L			OUS EDITIONS ARE OBSOLETE		PRO.	JECT		1 400	E 40

المستحددة الم

				T			Hole No.		_	
DRILL	ING I		Southwestern	Litt	le Roc	k Dis	trict	SHEET	SHEETS	
I. PROJECT		L		10. SIZE	AND TYPE	OF BIT	NXL	1:::::		
CO 2. LOCATION	nway	Water	Supply	11. DATE	UM FOR EL	EVATION	SHOWN (TBM or MSL.	,		
N 0+0)O F	16+15		17. MANUFACTURER'S DESIGNATION OF DRILL						
S. DRILLING	CONT	s of F	ngineers		iling			UNDIST		
4. HOLE NO.	(As sh	9 01 C	ngineers maille 33	13. TOTA	AL NO. OF DEN SAMP	OVER- LES TAKE	N 12	7	UMBED	
S. NAME OF			33	14. TOT	AL NUMBE	R CORE B	oxes 4	· · · · ·		
			Nash	15. ELE	VATION G					
S. DIRECTIO		OLE Tinclines	DEG. FROM VERT	16. DAT	E HOLE			3-16-7	_	
			711	17. ELE	VATION TO				<u> </u>	
7. THICKNES							FOR BORING]	00	•	
S. TOTAL DE			71.4	19. SIGN	ATURE OF	INSPECT	or N. Boston			
		T	CLASSIFICATION OF MATERI	ALS	3 CORE	BOX OR	REMA	RKS		
ELEVATION G	DEPT	H LEGEND	(Description)		RECOV-	SAMPLE NO.	(Drilling time, wet-	er lose, de il signific	epthol came)	
			OVERBURDEN							
		3			1					
	-	Ⅎ			1					
		Ⅎ]]]				
	10 _	=								
		ゴ								
		7]	j				
		∃ .								
267.5	20		Top of Rock	35	 	ļ	Begin Co	ring		
267.1	20 _	 	WEA, BROKEN UN	nit 13	100]				
Firm		7.7			}		- 0.0 CFM @	9 PSI		
Rock	-	3	Shale, SDY		1	1	1			
]:-:-	HD to MOD HD		100]]				
	30 _	<u> </u>			[
	}	43-3-3			-	{	ት			
		 	+				0.0 CFM @	23 PS	I	
			<u> </u>	IIT 14	1					
		3	i		100	2				
	40 -		Shale, SDY		<u> </u>		h			
			HD to MOD HD							
	-	 _	1		100		- 0.0 CFM @	30 PS	I	
		7]					
	50 _		UN	HIT 15	[
	_]	Chall CDV			3	μĮ			
		<u> </u>	Shale, SDY HD to MOD HD		[3	0.0 CFM @	30 PS	I	
	_	====	או נט איט איט		100			.	-	
		 	‡		100		1	-		
	60_	<u> </u>	1]			(1	40	
		<u> </u>	1		100		الم الم			
	_		UN	VIT 16	100	4	- 0.0 CFM @	30 PS	I	
ENG FORM			US EDITIONS ARE OBSOLETE:		PROJECT		·	HOL	E NO	

Hole Nr MEET 2 OF 2 SHEETS Southwestern INSTALLATION
Little Rock District DRILLING LOG REMARKS
(Drilling time, water lose, depth of weathering, etc., it significant) RECOV-ERY NO. CLASSIFICATION OF MATERIALS (Description) DEPTH LEGEND ď Unit 16 Shale (cont) 214.8 70 MOD HD to HD Bottom of Hole 71.4' 80. NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED GEOLOGIC COLUMN 041

PROJECT

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE MAR 71 (TRANSLUCENT)

Hele Ne. 40

					IMP T	A 71.00		Hele		
DRILL	ING LO	G O	SOL	ITHWESTERN	INSTALL	L	ITTLE	ROCK DIS	TRI 6 2 SHEETS	
PROJECT					10. SIZE	AND TYPE	E OF BIT	NXL		
conway					11. DATU	M FOR EL	EVATION	MSI	or MSL)	
N°3+85	(Coopedin	,, 08±0.	KION)		11. DATUM FOR ELEVATION SHOWN (TBW or MSL) MSL 12. MANUFACTURER'S DESIGNATION OF DRILL					
DRILLING		0F FN	CINCERO		FAIL	ING 1	500			
L HOLE NO.	(As show	UF EN	GINEERS	40	13. TOTA	L NO. OF EN SAMPI	OVER- LES TAKE	N DISTURBED	UNDISTURBED	
and file num	nb ee			40			R CORE B		· · · · · · · · · · · · · · · · · · ·	
L NAME OF	URILLER	NASH						TER 284.1		
. DIRECTION					16. DATE		ATE	RYED	! COMPLETED	
VERTIC	AL	NCLINED		DEG. FROM VERT.			DP OF HO	/17/78 - 30	: 5/19/78 05.8	
THICKNES	S OF OVE	RSURDE						Y FOR BORING		
. DEPTH DR	ILLED IN	TO ROCK					INSPECT	OR	·······	
. TOTAL DE	PTH OF	HOLE	91.9		L		T.	R. PE		
ELEVATION	DEPTH	LEGEND	CLAS	SIFICATION OF MATERIA (Description)	LS	S CORE RECOV- ERY	SAMPLE NO.	(Drifting tim	REMARKS e, weter loss, depth of I, etc., if significant)	
- •	ь_	c		<u> </u>		•	1		1	
	_		0.B.							
300.8	=			TOP OF ROCK				BEGIN C	CORING	
	_		C.L.	UNIT	12	80	1			
	=		WEA BROKE		ł]			
293.4	10		Ц	SHALE, SDY HD TO MOD	HU	100				
FIRM	_	====	SOFT	טטויז טו טוו	טויו	100	1 1	1 0 000	1 @ 10 PSI	
ROCK			-Fe STAINS			100	'	1.0 677	1 6 10 731	
	=					100			LOCT HATER	
	20:		SOFT						LOST WATER	
	20-		Г				ļ	ll M	<u>₩.T.</u> ▽	
				 TINU	13		1		5-19-78	
	_		- JT, Fe			100				
	_		.,	SHALE, SDY		100				
	30 —		SOFT,Fe	HD TO MOD	HD		2	0.0 CFM	! @ 19 PSI	
	_		- 17, Fe		ļ		}	P		
								LO.O CEM	1 @ 29 PSI	
			2זנ-			100				
	40 =					100				
1	40						}	<u> </u>		
	_				14					
								1	1 0 10 DCT	
	Ξ			SHALE, SDY		100	3	HU.U CFM	1 @ 30 PSI	
	50-			HD TO MOD	מח	100				
			<u> </u>					h		
	=			UNIT	15					
				SHALE, SDY				-0.0 CEM	1 @ 30 PSI	
	=			HD TO MOD	НD	100				
	60	<u></u>		· -			4		ΔAO	
i					ļ		1	h	042	
						100		Ш		
						PROJECT			HOLE NO	

		To	VISION	INSTALLAT	ION		Mole No.	SHEET 2
DRILL	ING LO	G Š	SOUTHWESTERN			ROCK	DISTRICT	SHEET 2 OF 2 SHEETS
LEVATION	ОЕРТН b	LEGEND	CLASSIFICATION OF MATERIA (Description)			BOX OR SAMPLE NO.	REMAR (Drilling time, water weathering, etc.,	KS e loss, depth of if significant)
	70 111 11		UN SHALE MOD HD TO F		98	5	0.0 CFM @	
	80		- II	10		6	70.0 CFM @	
13.9	90						BOTTOM OF P	HOLE
			NOTE. FOR DETAILED DESCRI OF UNITS SEE GENERI GEOLOGIC COLUMN	[
						-		
								043
IG FORM	1836	PREVIOL	IS EDITIONS ARE OBSOLETE	PA	OJEC T			CWS 40

								Hole No. 41		
DRILL	ING LO	G	SOUTH	IWESTERN	INSTALL		TLE RO	OCK DISTRICT OF 2 SHE	ETS	
PROJECT					10 SIZE AND TYPE OF BIT NXL					
LOCATION			ER SUPPL	<u>-Y</u>	TI DATUM FOR ELEVATION SHOWN (TBM or MSL) MSL					
	5 1+4		11+35		MANUFACTURER'S DESIGNATION OF DRILL					
DRILLING		Carne	of Engi	naare		LING 1		· · · · · · · · · · · · · · · · · · ·		
OHOLE NO.	(A e show	n on drawn	ng title"	_	SUR!	AL NO. OF DEN SAMPI	OVER-	N 3 -	ED	
S. HAME OF				11	14. TOTAL NUMBER CORE BOXES 5					
		HZAN			15. ELE	VATION G	TOUND WA			
DIRECTION			· ———	DEG. FROM VERT.	16 DATI	E HOLE	· 37 A.	5/23/78 5/25/78		
THICKNES	S OF OVE	RBURDER	v 5.0				P OF HOL			
. DEPTH DR	ILLED IN	TO ROCK	76.2				INSPECT	FOR BORING 99		
. TOTAL DE	PTH OF	HOLE	81.2		<u> </u>			R. PERRY		
ELEVATION	DEPTH	(CLASSI	FICATION OF MATERIA (Description)	LS		BOX OR SAMPLE	REMARKS (Drilling time, water lose, depth of weathering, etc., it eignificant)	o!	
- •		<u> </u>		d						
201 1	_		0.B.	TOD 05 ==			[
291.1			T-CL.	TOP OF ROCK				BEGIN COR	170	
290.4	_		SL WEA	UN	IT 12	89	j			
FIRM	10		Ĭ	SHALE, SDY		100				
ROCK	_		Fe STAINS	HD TO MOD HD			վ լ :			
1				_ -		89				
			FC L.				1	Г 0.0 CFM 9 8 PSI		
	_	1-	JT, Fe			1100				
	20 —		- 11			100	L			
	_					ļ] }	7		
							; !	1 0.0 CFM 0 18 PSI		
	_					1200		0.0 CFM 2 15 PSI		
	30 —					100	2			
	JO					ļ	•	; }		
	=									
			 -			1				
	=				IT 13	100		0.0 CFM @ 27 PSI		
	40 —			SHALE, SDY		100		ļ		
į				HD TO MOD HD			3			
								0.0 CFM @ 30 PSI		
	=					100	· [
	50 —					100	i l			
1	_		דנ				: -			
1						<u>;</u>	:			
!		#_	-VERT_ITS			100		0.3 CFM @ 30 PSI		
;	<u>,</u> =				1. 14	HUU L		044	1	
	60 —			SHALE, SEY			_ 4 ;	1 049	Ì	
			1	CH DOM OT DH		1		0.0 CFM @ 30 PSI		
						1100 -				

DRILLING LOG			DIVISION	INSTAL	LATION			SHEET 2
DRILL	ING LO	G	SOUTHWESTERN				DISTRICT	SHEET 2 OF 2 SHEETS
LEVATION	DEPTH			ALS		BOX OR SAMPLE NO	REMA (Drilling time, wat weathering, etc.,	RKS er loss, depth of if significant)
	<u> </u>	· · · ·	<u> </u>		· •	 - ' - 	9	
	7		 		4			
	=		T UN	IT 15				
	70-		SHALE, SDY					
	\exists		HD TO MOD HD			1		
	-	====	FRAC			_ ([0 0 054 0	20 DCT
	\neg		<u> </u>		_	5	0.0 CFM @	30 PS1
			UN	IT 16	100			
214 0	80		SHALED TO HD			}		
214.9	° =	===	שו עו עו עט איי			 		
	_						BOT	OM OF HOLE
]]		81.2'
ļ	=				3			
İ	=		NOTE:		1			
			FOR DETAILED DESCR					
ĺ			OF UNITS - SEE GENER	RALIZED		1 1		
	\equiv		GEOLOGIC COLUMN					
}								
ļ	\exists							
						1		
	_							
	=)					
ĺ								
			1					
	-				1	1		
	コ				İ			
					1			
1	-							
į	\exists							
	7111				1			
İ			1		}			
	\dashv							
						i i		
j			j					
ļ			•					
1	\exists							
1			į					
	- 1					i l		
	_							
1						1		
!					1	1		
						:		
	1					1 E		
:					1	1 1		
			1			1 .		
					1			045
		!			İ			0.70
			T.		1	1		
			!		4	1		

Dell	ING LO		VISION	HIECTEDN	INSTAL		TIE DO	CV DISTRICT	1
PROJECT	יותט בט		2001	HWESTERN	10 5:75	LII			HEETS
	CONMA	Y WATE	ER SUPP	LY				SHOWN (TBM or MSL)	
OCATION	(Coordin	etes or Sta	tion)			MSL			
DRILLING	S 1+4	U E	11+15		1			GNATION OF DRILL	
	U.S.			gineers		FAILING OF			1060
HOLE NO.	(As show	on trew	ng title	42	804	DEN SAMP	LES TAKE	-	
NAME OF	DRILLER					AL NUMBE			
_		NA	SH		IS ELE	VATION G		-	
DIRECTION				nes enou-	16 DAT	E HOLE	5 · A	5/30/78 5/31/7	Я
VERTIC	' نــــ	NCLINED		DEG FROM VERT	17 36	VATION TO	OP OF HO		<u> </u>
THICKNES	S OF OVE	RBURDE						Y FOR BORING 96	
DEPTH DR	ILLED IN	TO ROCK			1.	ATURE OF		OB.	
TOTAL DE	PTH OF	HOLE	49.7		L		·	E. MARTIN	
LEVATION	DEPTH	LEGEND	CLAS	SIFICATION OF MATERIA (Description)	\LS	RECOV-	BOX OR	Drilling time, water lose, dept	hot
<u> </u>	ь	<u> </u>		đ		•	NO	weathering, etc., if eignifical	
302.3			0.B.	TOP OF ROCK			İ		
300 Z						†		BEGIN CO	RINC
	_		C.L.	UN	IT 12	28	1	-	
			-WEA						
295.5	10					100]		
IRM	-		i Forr			100	-	 	
ROCK			Fe STAINS				1	ነ ነ	
	=	J	Fre STAINS	SHALE, SDY		92	İ	0.0 CFM @ 7 PSI	
	=	====	1	HD TO MOD HD					
	20.			110 10 101 110			!		
İ						-		<u>J</u> r	
	-	===	L Fe			100	ŀ	1-0.0 CFM 3 17 PSI	
ĺ						100	:	jeuju since in roi.	
	_						!	· ·	
	30_		i i				2	<u></u>	
						-	-	<u> </u>	
	=							0 1 054 3 07 501	
								0.4 CFM @ 27 PSI	
	=				 HT 13	⊣ 31 100	į		
}	40_				(1 ()) 100	1		
ļ				SHALE, SDY		<u> </u>	→	<u>.</u> 11	
İ				CH DOM OT DH		1	3	* 0 0 00W 3 10 101	
ļ						100		10.0 084 3 30 681	
255.6			<u> </u>			!		11	
<u> U.U.</u>	50=					 	:		
i	7					1		BOTTOM 15 -	
	_		i			1		49,71	
:			i	NOTE					
	_	· !	1	FOR DETAILED DESCR	PT 2N				
	60-		i I	OF UNITS SEE SENE				A 1	
			h	GEOLOGIC COLUMN				04	Ð
			!			i .		•	_
G FORM			·					· · · · · · · · · · · · · · · · · · ·	

DRILL	ING LO	G DI	SOUTHWESTERN	INSTAL	LATION	TLE R	OCK DISTRICT SHEET OF SHEETS			
PROJECT	CONTRA			10. SIZE	AND TYP	E OF BIT	NYI			
LOCATION			ER SUPPLY	11. DATUM FOR ELEVATION SHOWN (TBM & MSL)						
DRILLING	S 2+		11+52	12 MAN	12 MANUFACTURER'S DESIGNATION OF DRILL					
	U.S.	. Corp	os of Engineers	13. TOT	FAILING 1500 13 TOTAL NO. OF OVER- DISTURBED UNDISTURBED BURDEN SAMPLES TAKEN: 7					
HOLE NO.	(As show nbec)	no-ndra≪i	43							
NAME OF	DRILLER		H2 <i>l</i>		VATION GI					
DIRECTION		. E			E HOLE	(STA	6/1/78 6/1/78			
					VATION T	OP OF HO				
DEPTH OR			07.1				Y FOR BORING 99 %			
TOTAL DE			37.5	19 516	ATURE OF	FINSPECT	TOR E. MARTIN			
LEVATION	DEPTH	LEGEND	CLASSIEICATION OF MATE	RIALS	CORE RECOV- ERY	BOX OR SAMPLE NO	REMARKS (Drilling time, water loss, depth of weathering, etc., if significant)			
	ь	· -	d		<u> </u>	1	9			
	_		0.B.							
ļ	_	!								
_	_									
277.2	10		TOP OF ROC	<			BEGIN CORING			
	_			JNIT 12	100					
			NEA .			1				
270.6	_				98]]	-0.0 CFM @ 6 PSI			
FIRM	20		Fe STAINS		100	Ī '				
BOCK .			H SHALE, SDY		100]	1			
			HD TO MOD I	:5]				
							0 0 054 9 16 001			
	_	:			98		0.0 CFM @ 16 PSI			
	30 —									
			<u> </u>			2				
250.1			İ		100	i				
250.:					 		<u> </u>			
	40						BOTTOM OF HOLE 37.5'			
		:				1	37.5			
		•) 			-	i 			
	-	1	:		}					
	50 -	- 4 1	NOTE		:	1	· !			
		•	FOR DETAILED DES DE MNOST DES GEL		İ					
		•	GEOLFGIG DOLUM							
					•					
	* ! · · ·	•			1		047			
	-	•					140			
		·	UT FOUTIONS ARE ORSOLFTE		174,		4 7 E N.S			

		INSTALL	AYION		Hole No				
DRILLING LOG	SOUTHWESTERN	INSTALL		LE ROC	K DISTRICT	SHEET OF	SHEETS		
CONWAY WATER			AND TYPE	OF BIT	NXL				
. LOCATION (Coordinates or St.		III DATE	MSL	EVATION	SHOWN (TBM or MS	L)			
S 2+12 E]]		12 MANUFACTURER'S DESIGNATION OF DRILL							
U. S. Corps o		FAILING 1500							
. HOLE NO. (As shown on draw and tile number)	ing citle: 45	BURG	EN SAMPL	LES TAKE	N 2				
. NAME OF DRILLER			ATION GR		_ 				
DIRECTION OF HOLE	ASH				RTED 10	OMPLETE	D		
VERTICAL TINGLINES	DEG. FROM VERT.	16 DATE			6/5/78	6/6	/78		
THICKNESS OF OVERBURDE	N 5.2		ATION TO			0.4			
. DEPTH DRILLED INTO ROCK	₹ 36.5		ATURE OF			94	-		
, TOTAL DEPTH OF HOLE	41.7			,	E. M	ARTIN			
ELEVATION DEPTH LEGEND	CLASSIFICATION OF MATERIA (Description) d	LS	S CORE RECOV- ERY	BOX OR SAMPLE NO.	REM (Driffing time, we weathering, etc.	ARKS iterloss, de -, il signific g	pth of		
	0.B.								
291.6	TOP OF ROCK				D	EGIN_C	ODING		
	0.0000 10054	IT 12	25 (0)			LUIN U	ONTING		
288.4		11 12	85	1					
FIRM 10 -1-2-2	SL WEA		(0)	1 1					
ROCK	∐ }c.L. SHALE,SDY		(0)]				
	Fe STAINS HD TO MOD HI	D	97	1	0.0 CFM @	g DCT			
	JT.OPEN		- ·	' '	0.0 0171 9	O F3I			
20 ———	VERT JT		(69)	i j					
				·					
=====			100	į	0.9 CFM @	10 00	т		
	- VERT JT			1 1	10.9 CFM 0	10 13	1		
30			(81)						
30 -1				2					
	BROKEN				_	LOST!	NATER		
- <u>-</u>	11		100		-2.4 CFM @	24 PS	I		
+	1		100						
255.1 40				3		755 W	ATER		
									
					80	TTOM OF 41.7'	- HOLE		
=						41./			
50	NOTE:								
	FOR DETAILED DESCR	RIPTION I							
	OF UNITS - SEE GENER			· ;					
	GEOLOGIC COLUMN]					
' =				:					
€0 _=	i 	Ì		<u>.</u>		•	•		
·						04	18		
				į .		•			
NG FORM 18 36 PREVIOU									

							Hole No.			
DRILL	ING LO	G O'	SOUTHWESTERN	INSTAL	LITT	LE RO	CK DISTRICT	OF 2 SHEETS		
PROJECT	20.111.11				AND TYPE		NXL SHOWN (TBM or MSI			
. LOCATION	(Coordin	eles or Sta	R SUPPLY	יאטייי	MSL	EVATION	ZHOMM I I BW 95 WZT	.,		
DRILLING	1 1+3	<u> E</u>	10+95	TZ MANUFACTURER'S DESIGNATION OF DRILL FAILING 1500						
	J. S.		of Engineers	13. TOT	AL NO. OF			UNDISTURBED		
. HOLE NO ((As show iber)	no-ndra#1	ng utla	 -			_ 	-		
. NAME OF D	RILLER	N.F			VATION GE					
DIRECTION	OF HOL			16 DAT	E HOLE	1 ST A		CATOATO		
VERTIC	A L =1	NCLINED	DEG. FROM VERT.		VATION TO	NP OF HO		6/12/78		
THICKNESS				<u> </u>			Y FOR BORING	99		
DEPTH DRI			104.8	19. SIGN	ATURE OF	INSPECT	E. MARTIN			
TOTAL DE			CLASSIFICATION OF MATERIA	L.S.	3 CORE	BOX OR	REMA	RKS		
LEVATION	DEPTH	LEGEND	(Description) d		RECOV-	SAMPLE NO.	(Drilling time, was weathering, etc.	, if eignificand		
			0.B.							
313.5 312.5	=		TOP OF ROCK		-	}	BE	GIN CORING		
,,,,,			FBADLY WEA, C.L. UNI	T 12	47 (0)					
307.8	10	===	- WEA		90 (0)					
FIRM	10		SHALE, SDY		100	1				
ROCK			HD TO MOD HD		100)		1 0 054 0	7 001		
			Fe STAINS		100		L1.2 CFM @	/ PSI		
			Fre STAINS		(71)					
ĺ	20									
							TO.0 CFM @	19 951		
1	-		r Fe,SOFT		100		0.0 0,	.0.01		
					(86)	2		W.T. ▽		
1	30-		- Fe - ''		1		h	6/9/78		
			- "			i	ľ			
!			• • • •		100	[-0.0 CFM @	28 PST		
	_							20 101		
	40-		"			}	<u> </u>			
4			TL			1	1			
İ					}	3				
1			1 JTS	.	100	i J	0.0 CFM @	30 PSI		
}	50		JT. CALCITE UNI	T 13	1.70			1		
1	30 7		SHALE, SDY				4			
:			CH DOM OT DH		1200					
f .	_		:		100	. 4	-0.0 CFM @	30 PSI		
:	60	====	; !					040		
i	60)—		- IT CALCITE		1		<u>'</u> h	049		
;			SHALE, MSBY UNI	T 14	100		0.3 CFM 0	30 PSI		
NG FORM	1024		IS EDITIONS ARE OBSOLETE		TOBLORG	·		HOLENO		

TRANSI UFFNIT

Hole No.46 DIVISION DRILLING LOG LITTLE ROCK SOUTHWESTERN REMARKS
(Drilling time, water lose, depth of weathering, etc., if significant) CORE BOX OR SAMPLE NO. CLASSIFICATION OF MATERIALS (Description) DEPTH LEGEND UNIT 14 (Contd) SHALE, SDY 5 HD TO MOD HD 100 -0.6 CFM @ 30 PSI 80 UNIT 15 SHALE, SDY 25% WATER HD TO MOD HD 100 2.1 CFM @ 30 PSI 6 UNIT 16 SHALE DH OT DH COM 100 75% WATER SILTSTS -0.0 CFM @ 30 PSI 7 100 208.7 BOTTOM OF HOLE 108.81 NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED GEOLOGIC COLUMN 050

PROJECT

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE

								Hole No.			
DRILL	ING LO		VISION SOUTH	WESTERN	INSTALL		TIE DO	OCK_DISTRICT	SHEET OF	SHEETS	
. PROJECT					10 SIZE			NXI SHOWN (TBM or MSL)			
2. LOCATION	CONMA	Y WAT	ER SUPP	LY	11. DAT	M FOR EL	MSL	SHOWN (TBM or MSE.)		
	N 1 + 3	2 E	11+15		12. MANU			GNATION OF DRILL			
	U.S.		s of En	gineers	FAILING 1500 13. TOTAL NO. OF OVER- BURDEN SAMPLES TAKEN 2						
4. HOLE NO. and Itle num	(Ae show							N 2	<u>: -</u>		
S. NAME OF	DRILLER	NA:			14. TOTAL NUMBER CORE BOXES 3						
6. DIRECTICE	N OF HOL		30					RTED (C	MPLETER		
T VERTIC		NCLINED	·	DEG FROM VERT.	16 DATI				6/14/	78	
7 THICKNES	S OF OVE	RBURDE	N 4.	5		ATION TO		Y FOR BORING	99		
B DEPTH DR						ATURE OF					
9. TOTAL DE	PTH OF	HOLE	46.		l	4 CORE	BOX OR	REMAIL REMAIL			
ELEVATION	DEPTH	LEGEND	CLAS	SIFICATION OF MATERIA (Description)	LS	% CORE RECOV- ERY	SAMPLE	(Drilling time, wet- weathering, etc.,	er loss, de	pth of and	
			0.B.	d		<u> </u>	-	9	 .		
304.4	=			TOP OF ROCK				BEG	IN COF	RING	
303.7			C.L.	LIMIT	T 12	26	-				
299.8	=		Fe STAINS	UNI	11 12	36 (0)					
FIRM	10		C.L.	CHAIL COV				h			
ROCK			Fe STAINS	SHALE, SDY HD TO MOD HD		93 (69)	1	-1.2 CFM @	6 PSI		
						(03)	'				
			FRAC			100		11	W.I.		
	20		ľ			(60)			6-14-7	8	
	_		Fe				!	l h			
ļ 			5.			100					
 	_		rfe -fe			100	2	-0.0 CFM @	16 PSI		
	30—								_		
	30-							h			
	_) Ti				ļ	1			
			Ļ			100					
	40		F		T 13	100		0.3 CFM @	25 PSI		
	-		- "	SHALE, SDY							
261.6				HD TO MOD HD		100	3				
261.9							 				
								ВОТ	TOM OF 46.5	HOLE	
	50		1					1	46.5		
			 	•				; 1			
				NOTE			į	 			
)	FOR DETAILED DESCR OF UNITS - SEE GENER							
			}	GEOLOGIC COLUMN	MERED				0 5	1	
! 	=						1		.	-	
			1				1				
ENG FORM						PROJECT			HOLI		

							Hole No.					
DRILL	ING LO		SOUTHWESTERN	INSTALL		ב מטכה	DISTRICT	SHEET TO SHEETS				
PROJECT			JOOTHNESTERM	10. SIZE	AND TYPE	E OF BIT	NXI	<u> </u>				
CON	WAY W	ATER :	SUPPLY	TT. DAY	UM FOR EL	EVATION	SHOWN (TBM or MS)	3				
LOCATION	(Coordin		ition)	MSL								
DRILLING	AGENCY			12. MANUFACTURER'S DESIGNATION OF DRILL FAILING 1500								
ŭ.	S. Co	rps o	f Engineers	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED BURDEN SAMPLES TAKEN 9								
HOLE NO.	(As shown	on drawi	ng title 48	BUR	UEN SAMPI	LES TAKE	N 2	<u>-</u>				
NAME OF	DRILLER				14. TOTAL NUMBER CORE BOXES 3							
		NASI	1	15. ELE	VATION G			OMPLETED				
DIRECTION VERTIC			DEG. FROM VERT	-	EHOLE		6/14/78	6/16/78				
THICKNES	S OF OVE	RBURDE	N 5.9		VATION TO			3.0 94				
. DEPTH OR	ILLED IN	TO ROCK		19. SIGNATURE OF INSPECTOR								
. TOTAL DE	PTH OF	HOLE	50.6				E. MART	IN				
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER	IALS	S CORE	BOX OR	REMA (Drilling time, we	ARKS				
	,	c	(Description)		ERY	NO	weathering, etc.	, if significant)				
<u>-</u>			0.B.		 							
}	=		0.0.									
307.1					1	Į į	BF	GIN CORING				
306.7 /	=	=	TOP OF ROCK		91			22 00/11/10				
305.7	10		\	VIT 12	(0)							
FIRM	10					1	h					
ROCK			SL WEA		90	7	}					
TO CK			SHALE, SDY			}	-0.7 CFM @	7 PSI				
j			HD TO MOD H	łD	(21)							
			11									
}	20	 	C.L. -WEA		54 (0)		h	_				
	_		SL WEA			T	2.0 CFM @	I7 PSI				
ļ					97) }					
ļ							} L_(DST_WATER				
ļ					(52)		hl					
	30			. <u></u> -		2		W.T. ▽/				
			UN	IIT 13	100			6-16-78				
	_				,			05 50 "				
ļ	=		SHALE, SDY		(91)	ļ	2.3 CFM @	25 PSI				
Ì			HD TO MOD	HD				•				
	40					-	Ī					
İ	-				100		il					
					1	3	10.0 CFM @	30 PSI				
j	-				(100)	_						
262.4												
-02.4	50				ļ							
}								OM OF HOLE				
						}		50.6'				
			NOTE.		1							
	=		FOR DETAILED DESC	RIPTION		}						
	_		OF UNITS - SEE GENE	RALIZED				050				
ļ			GEOLOGIC COLUMN					052				
			1		1	1	ĺ					
1	_				1	1						
NG FORM	1974		S EDITIONS ARE OBSOLETE		PROJECT	ļ		HOLE NO.				

								Hole h	le. 49		
DRILL	ING LO		VISION SOUTHWE	ESTERN	INSTALL		OCK D	ISTRICT	SHEET	EETS	
PROJECT						AND TYPE		NXL	15 15		
CONWA							EVATION	SHOWN (TBM or	ist)		
N 1+2	(Coordin	11+55	et (on)		MSL 12 MANUFACTURER'S DESIGNATION OF DAILL						
DRILLING	AGENCY		ENO:		FAILING 1500						
U. S.			ENGINE	: KS	13. TOT	L NO. OF	OVER-	DISTURSED	UNDISTUR	BED	
and file num	nòes)	⊹ाळचळाळ	ng utio	49					<u> </u>		
NAME OF						ATION GE		TER 280.8			
N)	ASH HOL	F			13. 222			RTED	COMPLETED		
VERTIC				DEG. FROM VERT.	16. DAT	HOLE		5-21-78	6-22-7	8	
THICKNES	S OF OVE	FRAURDE	N 5.0		17. ELE	ATION TO	P OF HO	LE 294.8			
DEPTH DR			06.3					Y FOR BORING	90	3	
. TOTAL DE			31.7		19. SIGN	ATURE OF	INSPECT	E. MARTI	N		
			S: 40	SIFICATION OF MATERIA	LS	1 CORE	BOX OR	RE	MARKS		
ELEVATION	DEPTH	LEGEND		(Description)		RECOV-	SAMPLE NO:	weathering,	water loss, depti itc., if significan	e) ° (
-		-	0.B.			•	 				
289.8	=	1		TAB 05 -							
289.3		<u> </u>		TOP OF R				В	EGIN CORI	NG	
287.3	=		WEA	UN	IT 12	100					
FIRM	10_	1	SL WEA	CHVIE CDA		100	1	h			
ROCK	10		H	SHALE, SDY HD TO MOD H	ח	91	∫ 1		5° WATE	R	
ł	_		Fe STAINS	ח טטויו טו טוי.	U	56	'			T.V	
}	_		C.L.			100	}]]	6-22-	75	
j	=					67	1	FREE FLOW	@ 0.0 PS	Ī	
	20		C.L.			86	1			•	
	_					80			25% WATE	R	
	_				<u></u> -3	100	ļ	`	50% WATE	R	
	_			SHALE, SDY	1, 15		1	\	,		
	=			HD TO MOD H	D	100	2				
263.1	30							0.0 CFM	@ 29 PSI		
	=	 =					 	BOTTOM O	E WOLF		
	=	}							1.7'		
									,		
	_	†									
	_	1		NOTE:			1				
}	_	1		FOR DETAILED DESCRIP							
		1		GEOLOGIC COLUMN	LIZED						
	=]									
	_]									
]									
ļ	=] i				}	}	·			
ļ											
	_]					}				
									^	n	
	Ξ								05	J	
	_						1				
NG FORM	100		L			PROJECT	1	l	HOLE	NO.	
NG FORM	1836	PREVIOL	IS EDITIONS	ARE OBSOLETE					49		
			'TRANSLU	CENT)					+3		

DRILL	ING LO		SOUTHWES	TERN	INSTALL		F ROCK	DISTRICT	SHEET	SHEETS		
PROJECT						AND TYPE	OF BIT	4" x 5-1	72"			
CONW		ER SU			TE DATUM FOR ELEVATION SHOWN (TEM or MSL) MSL							
N 3+6	55 E	10+82			12. MANUFACTURER'S DESIGNATION OF DRILL							
U. S.	CORPS	OF E	NGINEERS		FAILING 1500							
. HOLE NO.	(Ae show	on drawt	nd title	50	13. TOTAL NO. OF OVER- DISTURBED UNDISTURBED BURDEN SAMPLES TAKEN							
NAME OF	DRILLER	NASH			14. TOTAL NUMBER CORE BOXES 5							
. DIRECTIO	N OF HOL				IS. ELE	VATION G		281.1	COMPLET	<u> </u>		
VERTI				_ DEG. FROM VERT.	6-26-78 6-29-78							
THICKNES	S OF OVE	RBURDE	6.0				POFHOL					
DEPTH DR					18. TOTAL CORE RECOVERY FOR BORING 93							
. TOTAL DE	PTH OF	HOLE	53.3		13. 0.0.			E. MAR	<u>TIN</u>			
ELEVATION	DEPTH	LEGEND	CLASSIFI	CATION OF MATERIA (Description)	LS	S CORE RECOV- ERY	BOX OR SAMPLE NO.	Re (Drilling time, weathering, a	MARKS mater lose, ic., if eignif	depth of licard)		
			OVERBURE	DEN	-							
ļ												
300.4		=		TOP OF ROC	K			BE	GIN COF	RING		
	=		C.L.	UN	IT 12	E 2	,		50% WAT	TER/		
	10		WEA	SHALE, SDY		53		_				
201.4			C.L.	HD TO MOD								
291.4 FIRM			SL WEA			90] 2					
ROCK			-Fe STAINS			00	,					
. =	20—	L	זן זן			98	3					
			713			100	4		25% WAT	ER		
			<u> </u>			96	5		W.T	· 🗸		
				UN	IT 13	100	6]	6-29	9-78 1		
	<u>, </u>			011.41.7		, , .		_	5% WATE	R J		
ł	30-		JT FRACS	SHALE, SDY		100	7					
			-	HD TO MOD	טח		8	NOTE:				
			דו 🗜			100	9	Specime				
	=					100	10	tested b				
	40					100		Division	ı Labor	alury		
							12					
			- JT		IT 14	100	13					
				SHALE, SDY HD TO MOD		100						
	50_=				, 10		14					
253.1						100	15					
							-	₽∩	TTOM OF	HOLF		
								50	53.3			
	Š			TE:						_		
	60			R DETAILED DESCRIE UNITS - SEE GENERA					0	54		
	\equiv			OLOGIC COLUMN					•	- 4		
NG FORM										LE NO		

DRILL	ING LO		SOUTHWESTERN	INSTAL		E ROC	K DISTRICT	OF 2 SHEETS			
PROJECT					AND TYPE	OF BIT	NXI				
CO	NWAY	WATER	SUPPLY	MSL							
LOCATION		E 8	+70	12. MANUFACTURER'S DESIGNATION OF DRILL							
DRILLING		ς .	Corps of Engineers		FAIL1		500				
HOLE NO.	(As show	n on draw	ne title! 51	13. TOT	AL NO. OF DEN SAMP	OVER- LES TAKE	DISTURSED	UNDISTURBED			
NAME OF				14. TOT	AL NUMBE	R CORE E	oxes 7				
			WOOD	IS. ELE	VATION GR						
DIRECTION			OEG. FROM VERT.	16. DAT	E HOLE	I ST A	11/8/78	11/13/78			
				17. ELE	VATION TO	POFHO		71713770			
THICKNES				18. TOT	AL CORE F	ECOVER	Y FOR BORING	97			
TOTAL DE			105.0	19. SIGN	ATURE OF	INSPECT	R. PER	RY			
	-		CLASSIFICATION OF MATERIA	ALS	CORE	BOX OR	REMAI				
LEVATION	DEPTH	LEGEND	(Description)		RECOV-	SAMPLE NO.	(Drilling time, water weathering, etc.,	if eignificand			
		<u> </u>	OVERBURDEN	····	%(RQD)		<u> </u>				
353.5	=				(תעט)		5.50	TN 0057110			
	_		TOP OF ROCK		<u></u>		RFC	IN CORING			
353.0	=		-	IT 10	92						
	10		SANDSTONE, HD		(36)						
	=	===	-WEA UN	IT 11	98						
					(0)	1					
340.2	_		FC.L.		83	1					
	20 =		J≅BROKEN SHALE, SDY		(20)						
FIRM ROCK	20		MOD HD TO HD		120		TO.O CFM @	16 PSI			
RUCK					100			70 701			
1	_						[[]				
	_				\	İ					
	30		UN	IT 12	(67)		Щ				
	_		FRAC		100	2					
İ							-2.24 CFM @	16 PSI			
	=		VERT FRACS BROKEN		(40)			LOST			
	40 =		D-C.L. Evert fracs,broken		62			LOST WATER			
ļ	40		-C.L. VERT FRACS BROKEN		L (0)		ĬŤ	RETURN			
	_	====			98	3					
	=		D-FRACS ,BROKEN				-1.4 CFM 0				
	Ξ				,			4.T. 43. ₩			
	50		SHALE, SIY	n	(62)	1	Щ	11-13-78			
!	=		HD TO MOD H	U	100						
	\equiv						10.0 CFM @	30 PST			
					1		0.0 CIM @				
į	<i>σ</i> =				(96)			055			
	60				ļ	4	ľ				
ļ	7		-FRAC		100		0.64 CFM @	30 FSI			
10 500											
NG FORM	102/		IS EDITIONS ARE OBSOLETE		PROJECT			HOLE NO			

							Hole No.		
DRILL	ING LO	G Di	VISION	INSTALL		TIE DO	CK DISTRICT	SHEET 2	
 -			SOUTHWESTERN	!			REMA	ARKS	
LEVATION		LEGEND	CLASSIFICATION OF MATERIA (Description)		% CORE RECOV- ERY	BOX OR SAMPLE NO	(Dritting time, we	ter loss, depth o	'
<u> </u>	<u> </u>		d	TT 70	<u> </u>	!	<u> </u>		
		===	(ED	ntd]2		1			
	=			'''''	(96)		 		
	70 -			t	100		H		
ĺ				i	100	}	1		- 1
							-0.0 CFM @	30 PSI	
	_					5		• • • • • • • • • • • • • • • • • • • •	
	_		UN	IT 13	()	_			
	80				(100)	ļ	뇨		
				}			11		
			CHALL CDV	1	100		 		
i			SHALE, SDY				- 0.0 CFM @	30 PS1	
1			DH DOM OT DH	-	(200)	1	{ }		
	90			ļ	(100)	6	լ _ե		
					100				
	_		FRAC, CALCITE	Ì	,	1	0 0 054 0	20 001	
				}		ļ	-0.0 CFM @	30 P21	
					(00)	}			
	=		UN	IT 14	(98)		 		
ï	100			}		4	九		
			SHALE, SDY	ĺ	100				
1			HD TO MOD HD	.		7			
			115 10 105 115	1			- 0.0 CFM @	30 PSI	
248.5	,,,=			İ	(100)				
	110-								
				1				IM OF HOLE	-
				1] 1	10.0'	
}	' -			}		1			
ŀ				ĺ					
	120		NOTE:			i			
}			FOR DETAILED DESCR	IPTION			1		
	_		OF UNITS - SEE GENER			ļ			
			GEOLOGIC COLUMN	-		Ì			
				1					
						İ			
						}			
İ									
				ļ]			
j	. 7]]			1
Ì	-7			į					
]					
ļ	. =								
Ì				1					
						1		.	
i	1			l				0 58	;
				- 1		ĺ		000	,
				Ì]			
	1836		<u> </u>		PROJECT	<u> </u>	L	HOLE NO	_
			S EDITIONS ARE OBSOLETE		· ~ ~ ~ JE L			; ULE NO	_ 1

						1		47100		н	ole No.			
DRILL	ING LO	G	SOUT	HWESTER	RN	183	TALL	ITTLE	ROCK	DISTRIC	T	SHE	ET 2 SHEE	TS:
PROJECT							SIZE	AND TYPE	OF BIT	NXL				
		TER SU				_	11. DATUM FOR ELEVATION SHOWN (TBM as MSL)							
LOCATION +	25°°E	"1 1"+3′5))			12	MAN	MSL	A'S DESI	GNATION OF	DRILL			
DRILLING		Chicthic	- CDC					1500						
I. HOLE NO.	(As show	ENGINE	mg title!			13.	BURG	AL NO. OF DEN SAMPL	OVER-	N 2	ED	UNC		:0
end file num	mb ec)		. <u>i</u>	52			TOT	AL NUMBER	R CORE E			<u> </u>		
S. NAME OF	DRILLER	NASH	1			15.	ELEV	ATION GR	OUND WA	TER 2	285.1			
DIRECTION				0.86	FROM VI	16	DATI	EHOLE		11-8-78)] -	14-78	
						_	ELEV	ATION TO	P OF HO	LE 30	5.3			
THICKNES			77							Y FOR BORI	NG	99		3
TOTAL DE			100.8			19	SIGN	ATURE OF	INSPECT		RTIN			
ELEVATION	DEPTH		CLA	SSIFICATION	N OF MAT	ERIALS		1 CORE	BOX OR		REMA			
4	b	CEGEND			ription) d			RECOV- ERY	NO		tune, wa ring, etc. 1	. if aid	e, depth o	
301.3	-		1	5 ADLY		SHALE	=	(ROD)					.,	
200	=		<u></u>	TOP OF	KUUK			213001			Bl	GIN	CORI	VG.
300.9			BROKEN			UNIT	12	1					D.C	
298.3r	=]	ı					(0)		0.56	CFM (9 2	PS I	
FIRM	10 -		E C L.					97]]				
ROCK] =		LBROKEN						1					
j			BROKEN	TAIMC				(23)	,	}}				_
	=	7	Fe S	MINS				100		ħ			N(
ĺ	l =							(70)		1.12	CEM		WATE.	
	20 —		!	SHALE	, SDY	2		(79)		0 17			RETUR	П
	=		FRAC.Fe	OT CH	MUU F	10						- 1	4.T. Z	z] [
			1						 			1	1-14-7	78
	=								į					
	30 =							(90)	2					
	=		İ					100		H				- 1
ĺ			(]						1
			 ·		 -	- 				1-0.0 C	FM @	26	PSI	
	=		1			UNIT	1 13	(94)		[[Ì
	4C							` ′		lh				-
	=		1	SHALE	CUV				3	٢, , ,	- FN - ^	20	DC T	j
~	=			HD TO	-	ער		100	٦	1-0.0 C	.FM @	30	L21	
			1	חט וט	יוטט ד	I U		100						Ļ
		1	1							11				
	50		1					(100)		<u> </u> _			50°	ا م
1	=]===	 			UNI	7 14			11			WATE	,
						0111		100		2.34	CEM		RETU	
		====								@ 30				
	60 =	-5-	FRAC	SHALE	, SDY			(90)	4		. 51			
1	- CO		1	HD TO		1D		(55)	,				057	ፇ
1	=							99		H			001	,]
i														
								99		11				

Dell I	LING LO	VG 01	VISION	CCT CD!!	IN		ATION	CV DT	Hele No.	SHE	ET 2	٦
			SOUTHW		TERIALS	LII			STRICT REMA	DE 2		닉
ELEVATION	DEPTH	LEGEND		SSIFICATION OF MA (Description) d	LENIALS		RECOV.	BOX OR	(Drilling time, wei	er lose, , if eigr	depth of	
									-2.42 CFM @	3 30	PSI	7
	7,0 =		FRAC		UNIT	15	(97)		1 2.42 0111 6	30		
	70 —				0			_	hi		NO- WATER	1
	=			SHALE, SDY HD TO MOD H	D		100	5	I O O CEM		RETURN	Ш
228.3	-			א טטא טו עח	U				- 9.30c₽%I			
220.5	_				TINU	16	(100)					
	80 <u> </u>	====	₽ C.L.						1			
			SOFT				98		П			
	_								-1.38 CFM 0	30	PSI	
				SHALE, MOD				6				- }}
	90		-SILTSTS	HD TO HD			(57)		Ν			
							100	1	<u> </u>			
	_		- ''				100		0.78 CFM 8	3 2 0	DCI	
	=		= ::				(50)	,	1 0.76 Cris	- 50	F 3 1	
204.5	100_		- :: - ::				(59)	7				ا
	=							 	BOTTOM OF	HOLE		-
									100.8		-	
	=											į
	110=											
									1			
	=								 			
			:	NOTE: FOR DETAILED D	ESCRIPTI	ON		1				İ
	120_			OF UNITS - SEE G	ENERALIZ			Ì				
1	120			GEOLOGIC COLUI	MN			1				
									1			-
									İ			
	_											i
	_											
					•				}			
	_											Î
												,
								1	1			
									Ì			
		!]										
									İ		058	
								1			000	
								<u> </u>	<u></u>			_]
NG FORM	1836	PREVIOL	S EDITION	S ARE OBSOLETE			PROJECT			Н	OLE NO	

			VISION	INSTAL	LATION			SHEET			
	ING LO	G	SOUTHWESTERN				K DISTRICT	OF 2 SHEETS			
TOBLORG		WATER	R SUPPLY	10. SIZE TO TYPE OF BIT NXL							
LOCATION	(Coordin	tee or Sta	etton)	MSL MSL							
N DRILLING	1+10	Ł	12+30	12 MANUFACTURE - 5 DESIGNATION OF DRILL FAIL TAG 1500							
U	. S.		of Engineers	13. TOT	AL NO. OF			UNDISTURBED			
end IIIe nu	(A e shows	on draw	53	BUF	DEN SAMP	LES TAKE	N 6	<u> </u>			
NAME OF	DRILLER				AL NUMBE						
DIRECTIO	N OF HOL	NASI	1		VATION G		2/9.3	OMPLETED			
X VERTI			DEG FROM VERT	16 DA	C HOLE		11/1/78	11/6/78			
THICKNES	S OF OVE	RBURDE	N 17 5		VATION TO	·	202.				
DEPTH DE					AL CORE P		Y FOR BORING 9	y .			
TOTAL DE	PTH OF	HOLE	91.3	1.3 3.0			E. MARTI	<u>V</u>			
ELEVATION			CLASSIFICATION OF MATERIA (Description) d	L 5	RECOV-	BOX OR SAMPLE NO	REMA (Drilling time, wai weathering, etc.	er loss, depth of			
			•		(RQD	 '		11.1			
			OVEDBURDEN		THEN			∇ W.L.			
			OVERBURDEN			1		11-6-78			
	Ξ										
	10										
į	=										
265.0	Ξ										
264.7			TOP OF ROCK				BE	GIN CORING			
264.6	=		C.L. IIII	T 12	97		h				
FIRM	20 —		-FRAC.	T 13	7(36)	1	LO.O CEM @	10 PSI			
ROCK	_		SHALE, SDY		100	1		· · · · · · · · · · · · · · · · · · ·			
			HD to MOD HD		100	1					
	_		-115,CALCITE		(83)		[
:	30 —				(03)	1	1				
į			UN	 [T 14		<u> </u>		. 10 50*			
					100		0.74 CFM (4 19 PS1			
l :			SHALE, SDY		(98)						
į	40 —		HD TO MOD HD			2					
i		===			100		1				
j	Ξ				100		0.48 CFM (30 PSI			
			IIII	— — IT 15							
1			ł	11 13	(96)		1				
	50		SHALE, SDY		-	1	刊				
Ì	\exists		HD TO MOD HD		100	i	1 16 25::	2 20 501			
			-11				1.46 CFM	e 30 PS1			
i I I	Ξ			IT 16	(93)	3					
į	60		SHALE, MOD			! •		DEU			
1	50 =		ESILTSTS HD TO HD		100		-	059			
ļ	\exists					4					
NG FORM			·								

Hole No.	53
	SHE
TOT	100

					TIME	ATION		Hole No	, 53
DRILL	LING LO	x G	SOUTH	WESTERN	INSTAL		ROCK	DISTRICT	SHEET 2
LEVATION	DEPTH	LEGEN		SSIFICATION OF MATERIA			BOX OR SAMPLE NO	REM	ARKS
0	ь	CEGEN		(Description) d		ERY	NO f	weathering, etc	eter loss, depth of c., if significand 9
	_	===	- FRAC	11N	IT 16				
,	=		- SILTST		ontd)	(79)	4		
	70		7-11	(0,	onca	——	, ,		
	=		SILTSTS			100 (85)			
	=		- -			100	 		
	=		- - - - BROKEN			100			
	=		SILTSTS			(72)	5		
	80		<u> </u>			1 (, - /			
	=		3			100	1	1 F4 CEM	a ao not
			-SILTST			100		1.54 CFM	9 30 P31
	=]_ ''						
101 2	=		-}						
191.2	90		- ''			(94)	6		
_	_							BOTT	OM OF HOLE
								2011	91.3'
	=	1							
	100_=		1						
	100-		}	NOTE:					
	j =	1	1	FOR DETAILED DESCRIPT OF UNITS - SEE GENERAL		l			
			1	GEOLOGIC COLUMN					
						,			
	110_								
						ļ			
		Ì	-				;		
	_					İ	1		
	120								
						! 			
	i =								
			Ì						
							!		
:	=						i		
			1						
İ	=								
							!		
		İ				1			
			i				:		
		: :							
	-	, !	1			1	i		
		•	t			ļ			060
:						İ			000
			i						
IG FORM	1836	PREVIO	US EDITION	S ARE OBSOLETE		PROJECT			HOLE NO 53

							Hole No.	
DRILL	ING LOG	SOU	THWESTERN		LATION LITTLE	ROCK I	DISTRICT	OF 2 SHEET
PROJECT				10 5121	E AND TYPE	OF BIT	NXL	
C	ONWAY WA	TER SUP	PLY	11 04		EVATION	SHOWN (TBM or MS	L)
	+00 E	2+95					NATION OF DRILL	
CORP	S OF ENG	INFERS			<u>FAILING</u>		OISTURBED	UNDISTURBED
	(As shown on		54	13. TOT	TAL NO. OF	OVER-	7	-
NAME OF					AL NUMBE			
		MOOD		15. EL 1	VATION GE			. 3
	N OF HOLE	INED	DEG. FROM VER		TE HOLE		0-26 - 78	10-31-78
	S OF OVERBL		.3	17. ELE	EVATION TO	P OF HOL	.∈ 285.5	
	AILLED INTO		.9		TAL CORE P		FOR BORING	99
TOTAL DE	EPTH OF HOL	-, .		19. 5(6)	NA: UHE OF	INSPECT	E. MARTI	* ·
LEVATION	DEPTH LEG	END C	LASSIFICATION OF MATER	IALS	RECOV-	BOX OR		ARKS iter foes, depth of
a	ь	٠	d		ERY	NO	weathering, etc	., if significant)
			OVERBURDEN		(RQD)			
								<u>∇W.L. 6.2</u> 10-30-78
								10-30-78
	텔					(
	=							
	1 =					}		
64.7						j j		
	120		TOP OF ROCK				6	EGIN CORIN
.64.5 				NIT 13	-		7	
122	. <u>=</u> =		Ç		1	1	0.05.05	3 3 7 150 7
100 K			SHALE,SOY		ļ		₩ 0.86 CFM	Ø 11 55.
	1, ====		#D TO MOD HD		1/67)	' ;	#	
	30 ===				(67)		1	
					100	: !	-0.90 CFV	3 75 501
		FRAC		NIT 14			FU.96 C''	5 10 FOI
	===				(32)			20.01
	40	- 2-}	SHALE, SDY		}]	1	39.9'
			HD TO MOD HD			į į	ľ	UATEP PATER
	_==				1100			SITURN
	45-				1.5.53	2	- 1.5 CFM 3	
	50 丰富			— — — MIT 15	(36) 		25 PSI	
		===	J	H 1 10			4	
] ===	==-1			100	:		
		=======================================	SHALE, SDY HD TO MOD HD		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ļ	F2.14 35"	
27.5		-4						
	'80 <u>- 필</u> 프	CL.		NIT 18	1 9,	! ز .	ļ	001
		<u> ⊈T</u> -RROXE	N SMALE,MOD		7	•	Į	C61

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS -1963 - A

Hele Ne. 54

							Hole No.		
		TOIN	/ISION	INSTALLATI	ON	יא מזכי	TRICT	SHEET	2 SHEETS
DRILL	ING LO	G	SOUTHWESTERN			K DIS	DEMARKS		
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATER	IALS RE	COV-	BOX OR SAMPLE NO.	(Drilling time, well weathering, etc.	er lose, d if eignifi	cent)
FEATION	b	•	.		•				
 -				INIT 16	721				t
}	, =		_ā cļay ((CONT)	73) 00	1	-1.94 CFM @		t
Ì	70			Li	95)	4	30 PSI		
1	=		- 11		00		30 131	ے ارا	5% ATER
Ì	=			};	00)		}		TURN
208.9	} =		- SILTST				BOTT	OM OF	HOLE
	=	}				}	30.	6.7	
	60	-	}	1		}			
	1 =	3		1		Į			
] =	3				}	 		
	=	4				1	}		
	1 =	₫	NOTE:	}		1	-		
	-	₫	FOR DETAILED DE	SCRIPTION		}	1		
	-	⇉	OF UNITS - SEE GE	NERALIZED		1			
	_	⇉	GEOLOGIC COLUM	IN .		1			
		Ⅎ)					
	1 :	コ]					
	1 -	##		}		}	}		
) :	#		1		1	1		
ł	1	コ		1		{			
1	} '	コ				1			
1		コ		}		-	1		
}	-	コ		}		}	}		
1	1			Ì		1	1		
!	-	3		İ		1	\		
į		\exists							
1		7				· I			
1	-	3			i	1	1		
}	Į.	3	}			Ì	Ì		
}	} -	3				1			
1	}	3			}	}	}		
		ユ			,	}	}		
i	\	ゴ				1	}		
l		コ			1	1			
1	-	亅			}	1			
1	}	⇉	1		}		1		
1	1.	크.			1	}	1		
1		1			1	j	}		
1		\exists			1	1	1		
1					1		1		
}		1			1	1	1		ለ ሮባ
}			}		1	1			062
ı		크			1	1	}		
1									
	\	=	1		PROJ				HOLE NO.

LOG	DEC. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Poscription) OVERBURDI	10. 51ZE 11. DAY 12. MAN F/ 13. TOT 16. ELE 16. DAT 17. ELE 18. TOT 19. SIGN	AND TYPE UM FOR ELI ULFACTURE ALL ING DEN SAMPL AL NUMBER VATION GR E HOLE VATION TO AL CORE R IATURE OF	OF BIT EVATION R'S DESIG 1500 OVER- CORE B OUND WA STA I P OF HOU ECOVER: INSPECT PERI	SHOWN (75M or MISS INATION OF DRILLISMAT	OCOMPLETED 11-2-78 99 % ARKS area loae, depth of a, if significand 9
THOLE THE LEGEN	EERS Find title 55 D DEG. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Poecription) d OVERBURD	11. DAY 12. MAN F/ 13. TOT 14. TOT 15. ELE 17. IE. DAY 19. SIGN RIALS	UM FOR ELIUFACTURE AL NO. OF DEN SAMPL AL NUMBER VATION GR. E HOLE VATION TO AL CORE R SATURE OF R ECOV. ERCOV. ERCOV. ERCOV.	R'S DESIGN 1500 OVER- ES TAKE R CORE B OUND WA STA II P OF HOD ECOVER- INSPECT PERI BOX OR SAMPLE NO.	SHOWN (75M or MISS INATION OF DRILLISMAT	OCOMPLETED 11-2-78 99 3 ARKS aler leas, depth of a, if significand 9
THOLE THE LEGEN	EERS Find title 55 D DEG. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Poecription) d OVERBURD	12. MAN F/ 13. TOT 14. TOT 15. ELE 17. 16. DAY 17. ELE 18. TOT 19. SIGN	UFACTURE ALL ING AL NO. OF DEN SAMPL AL NUMBER VATION GR TE HOLE VATION TO AL CORE R TATURE OF R CORE RECOV. ERV 9	R'S DESIGNATION OF THE PROPERTY OF HOLE COVER INSPECT . PERI BOX OR SAMPLE NO.	SL SHATION OF DRILLISHATION OF DRILLISH TER 70 OXES 4 TER 279. RTED 286.3 Y FOR SORING OR RY (Drilling time, we weathering, of	OCOMPLETED 11-2-78 99 3 ARKS aler leas, depth of a, if significand 9
CHOCK OF HOLE	DEC. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Poscription) OVERBURDI	13. TOT 13. TOT 14. TOT 15. ELE 17. 16. DAT 17. ELE 18. TOT 19. SIGN	ALLING AL NO. OF DEN SAMPL AL NUMBER VATION GR E HOLE VATION TO AL CORE R SATURE OF R ECOV- ECOV- 9	1500 OVER- ES TAKE R CORE B OUND WA STA 1 1 P OF HOR ECOVER: INSPECT PERI BOX OR SAMPLE NO.	N 7 OXES 4 TER 279. RTED 1 0-31-78 E 286.3 FOR BORING OR (Drilling tame, meathering, of	OCOMPLETED 11-2-78 99 1ARKS alor long, depth of o, if algoritemb
F ENGIN ADDRESS OF HOLE OVERBURD TO F HOLE OVERBURD TO F HOLE TO F HOLE TO F HOLE TO F HOLE TO F HOLE TO F HOLE TO F HOLE TO F HOLE	DEG. FROM VER EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Description) 4 OVERBURD	13. TOT 14. TOT 15. ELE 17. 16. DAT 17. ELE 18. TOT 19. SIGN	AL NO. OF DEN SAMPL AL NUMBER VATION GR E HOLE VATION TO AL CORE R ATURE OF R CORE R	OVER- ES TAKE R CORE B OUND WA STA INSPECT PER BOX OR SAMPLE NO.	N 7 OXES 4 TER 279. RYED 0-31-78 .E 286.3 FOR BORING OR RY (Drilling tame, we manufacture, of	OCOMPLETED 11-2-78 99 1 PARKS pler loan, depth of b., if algnificand) 9 W.L. 7.3
FHOLE INCLINE FOVERBURD OF HOLE PTH LEGEN	DEG. FROM VER EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Description) 4 OVERBURD	14. TOT 15. ELE 17. IS. DAT 17. ELE 18. TOT 19. SIGN	AL NUMBER VATION GR E HOLE VATION TO AL CORE R FATURE OF RECOVERY %	POF HOE ECOVERY INSPECT PERI	N 7 OXES 4 TER 279. RYED 0-31-78 .E 286.3 FOR BORING OR RY (Drilling tame, we manufacture, of	99 3 ARKS ster loss, depth of b., if algoriticand
WOO F HOLE INCLINE F OVERBURD F OF HOLE PTH LEGENI	D DEG. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Description) 4 OVERBURD	15. ELE T. 16. DAT T. ELE 18. TOT 19. SIGN RIALS	VATION GREVATION TO AL CORE REATURE OF RECOVERY	POF HOE ECOVERY INSPECT PERI BOX OR SAMPLE	TER 279. RTED 0-31-78 E 286.3 FOR BORING OR RY (Drilling time, in monthwring, of	99 3 ARKS ster loss, depth of b., if algoriticand
OVERBURDI OVERBURDI ED INTO ROC OF HOLE PTH LEGENI b c	DEG. FROM VER- EN 21.5 K 57.1 78.6 CLASSIFICATION OF MATER (Poscription) 4 OVERBURDI	17. ELE 18. TOT 19. SIGN RIALS	E HOLE VATION TO AL CORE R RATURE OF RECOV- ERY %	POF HOE ECOVERY INSPECT PERI BOX OR SAMPLE NO.	PER SORING OR (Drilling time, meathering, of	99 3 ARKS ster lose, depth of b., if algoriticand) W.L. 7.3
OVERBURD FOUR BURD F	CLASSIFICATION OF MATER OVERBURDI	17. ELE 18. TOT 19. SIGN RIALS EN	AL CORE RECOVERY	POF HOE ECOVERY INSPECT PERI BOX OF SAMPLE NO.	0-31-78 E 286.3 Y FOR BORING OR RY (Drilling time, in monthwring, of	99 1 ARKS view loan, depth of but, if algoriticand) W.L. 7.31
OVERBURD. ED INTO ROC OF HOLE PTH LEGEN C	CLASSIFICATION OF MATER OVERBURDI	IB. TOT IB. SIGN RIALS	AL CORE REATURE OF RECOVERY	ECOVERY INSPECT PERI BOX OR SAMPLE NO.	Y FOR BORING OR (Y RE) (Drilling time, m monthering, et	99 3 JARKS ster lose, depth of c., if algoriticand) 9 W.L. 7.3
ED INTO ROC	TOP OF R	EN OCK	ATURE OF R R CORE RECOV- ERY 9	PERI	OR REN (Drilling time, w	ARKS alor lose, depth of a, if significant
OF HOLE	78.6 CLASSIFICATION OF MATER (Description) 4 OVERBURD	EN OCK	R CORE RECOV- ERY	PERI	(Prilling time, we wonthering, of	vicer load, depth of b., if elignificant)
PTH LEGEN	CLASSIFICATION OF MATER (Description) 4 OVERBURD	EN OCK	CORE RECOV- ERY	BOX OR SAMPLE NO.	REI (Drilling time, w monthering, of	vicer load, depth of b., if elignificant)
	OVERBURDI TOP OF R	OCK	%	NO.		▼W.L. 7.3'
	TOP OF R	0CK	%			
untun	TOP OF R	0CK				
untun						
untun						
untun						
untun						
						
						
)						
)						
	1-C.L.					EGIN BORING
	_i	UNIT 13	3 99		7	
			1 1			12 DCT
	SHALE,SD	Υ	(50)	_). 5 CFM 6	16 131
	HD TO MOI	D HD	(58)	ו	L	
	1		100			
#==	<u> </u>				0.0 CFM @	20 PSI
		UNIT 14	ıl l			
1]		(97)		-	
)—]	=		100		۲	
=====	SHALE, SD		100		-0.0 CFM @	28 PST
4==	וא טו עא און און	טא ע	1 1	2		10 . 01
]		1(100)		16	
). 王王	ا	UNIT 19)		1 1	
	3		'00		LO.0 CFM @	30 PSI
====	SHALE, SD	Υ	///			-
	HD TO MOI	D HD	J	2	þ	
====	1		100	၁	O O CEM A	120 DS1
)	-		1 (03)		I CENT	063
	 		<u>.</u> 1 1		Ь	COV
	1	UNII 16	100	4	H	
-		HD TO MO SHALE, SD HD TO MO	HD TO MOD HD UNIT 19 SHALE,SDY HD TO MOD HD	HD TO MOD HD (100) UNIT 15 100 SHALE,SDY (100) HD TO MOD HD (100) 100 (91)	HD TO MOD HD 2 UNIT 15 (100) SHALE,SDY HD TO MOD HD (100) 100 3 (91)	HD TO MOD HD (100) SHALE,SDY HD TO MOD HD (100) 3 0.0 CFM @ (91)

				1146	2604		Hole No.	33
DEILL	ING LO	G O	SOUTHWESTERN	INSTALL	TIF D	חכול חז	STRICT	OF 2 SHEETS
LEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)		S CORE RECOV- ERY	BOX OR SAMPLE NO.	REMA (Drilling time, well weathering, etc.,	115
	-		- JT UN	IT 16		'	- 0.84 CFM	9 30 PSI
	70_		(CONT)			 	
	-		SHALE, MOD	·	100		0.0.054.0	20 007
			HD TO HD	}		}	-0.0 CFM @	30 PS1
207.7	7 7 7							
	80					}	BOT.	TOM OF HOLE 78.6'
	-							70.0
				1				
	90_		NOTE:					.
			FOR DETAILED DESCRIP			•		
			GEOLOGIC COLUMN					}
	100			{				
!	~							
	~							-
	=							
						}		
	111					·		
	[]							
	_							
						<u> </u>		
			-			1		
	-							
	=					}		
								064
	=							VU'2
IG FORM			IS EDITIONS ARE DESOLETE.		PROJECT	<u> </u>	l	HOLE NO.

Hele No. 56

							Hole Ne	
DBILL	ING LO	G O	VISION SOUTHWESTERN	INSTALL	ATION LE ROC	V DIC	TOICT	OF SHEETS
PROJECT			JOUTHWESTERN	10. SIZE	AND TYPE	OF BIT	NXL	. — بدنین بدارد نظامی
	Conw	ay Wat	ter Supply		N FOR EL	EVATION	SHOWN (78M ar M	(L)
LOCATION N n.	+35	eree er \$11 E] 6+8	ation)	12 MANI	•	ISL	SHATION OF DRILL	
DRILLING	AGENCY				F	ailin	g_1500	
CO	rps o	f Eng	ineers	13. TOTA	L HO. OF	OVER- LES TAKE	N 2	UNDISTURBED
And Die nus			56		L HUMBE			<u></u>
. NAME OF	PRILLER	M00E) ·		ATION G			
. DIRECTION		. E	· · · · · · · · · · · · · · · · · · ·	IS. DATE	HOLE		RTED	COMPLETED
- VERTIC	AL	NCLINEE	DEG. FROM VERT.		ATION TO		-23-79 L€ 298.6	3-26-79
. THICKNES	S OF OVE	RBURDE	N 3.0				Y FOR BORING	98
. DEPTH DR	ILLED IN	TO ROCK	J-11-C		TURE OF		OR	
. TOTAL DE	PTH OF	HOLE	37.2	<u> </u>		γ	R. PERR	
ELEVATION	DEPTH	LEGEND	(escription	ALS	RECOV- ERY	BOX OR SAMPLE NO.	REM (Drilling time, w weathering, et	ARKS ster loss, depth of , if significant
295.6			0B		7/2			!
294.9	=		TOP OF	ROCK	(RQD)		В	EGIN CORING
	_		CL U	VII 12	97			
· j	=	====	1		,	·	(
			L BADLY		(0)	ļ		
1	10-	====	WEA SHALE O	אחפ	94	1	}	₩ I 12 7
285.0	=		SHALE, S HD TO MO		(26)	{ '	{	▽W.L.12.7 '3-26-79
FIRM			ן יין טוי	טוו טו	100	1	Ļ	
ROCK	=		1		(0)) }	
1	20		ļ		100		{{	
}		===	1		(30)	1	-0.0 CFM @	15 PST
}		====	lu u	VIT 13	100	2		. 5 . 51
ţ	=]			1	H	
	20 =		61141.5		(100) 100	 	HT .	
	30		SHALE, S HD TO MO		100			
1	=		יון טוט אול	_	(100)	3	0.0 CFM @	26 PSI
261.4			1	İ	(100)	3		
201.4	Ξ					 	907	TOM OF HOLE
[40	1					501	37.2'
}	Ξ	}						07.12
	=	}					1	
	=	ł	NOTE:				1	
1	E0 =	1	FOR DETAILED DESCRI				ł	
1	50	1	OF UNITS - SEE GENER GEOLOGIC COLUMN	ALIZED			ļ	
ł	_	1	1			}		
ļ]		ľ		1	ł	
}	=	}					ĺ	
į	60_=	}	}			[{	ACE
		Ì					}	065
		ł	1		l	1	ł	
	_	ł)			L	1	

		Te	VISION	INSTALI	ATION		Hole Ne	. <u>57</u>
DRILL	ING LO		SOUTHWESTERN	1	TIF RO	ורג חזי	TOTATA	OF 2 SHEETS
PROJECT	LIATE	CUDA		10. SIZE	AND TYPE	OF BIT	· NXL	
CONWAY				- 11. DAY	UM FOR EL	LEVATION	SHOWN (78M & MS. MSL	۵
N 0+28	E	7445 *"	EIGV	12. MAN	UFACTURE	ER'S DESIG	PIOL GNATION OF DRILL	
DRILLING		٥٢ ٢٠	ICINCEDO	E	AILING	1500		
HOLE NO. (UKPS	UF EN	IGINEERS	13. TOT	AL NO. OF DEN SAMP	OVER- LES TAKE	OISTURBED	UNDISTURBED
			57		AL NUMBE		<u> </u>	
NAME OF D	RILLER		WOOD		VATION GE			3
DIRECTION	OF HOL	.E	HOOD	- 			RTED I	OMPLETED
VERTIC	AL	HCLINED	DEG. FROM VER	·	E HOLE		-27-79	3-28-79
THICKNESS	or ove	RBURDE	N 2.9		VATION TO		313.0	
DEPTH DRI					AL CORE P		Y FOR BORING	95 🔹
TOTAL DE	PTH OF	HOLE	77.0	19. 310	INTURE OF	Mareci	R. PERRY	
LEVATION	DEPTH		CLASSIFICATION OF MATER	IIALS	% CORE RECOV- ERY	BOX OR	REM	ARKS
l l	DEPIN	_	(Description)		ERY	NO.	weathering, etc	ster lose, depth of -, if eignificand
212 7	 -		O. B.		%	 - 		
312.7	=		TOP OF WE	A SH	(RQD)		DCCT	N CORING
311.1	_						BEGI	N CORING
<u> </u>	=		BADLY WEA	UNIT 12	65	1	}	
ļ	,, =		<u>L</u> c.L.		(0)	1		
304.0	10		1		69	1	f	
TOP OF			1		(0)	}	}	
ROCK			<mark>-</mark> C.∟		88	1 1		
207.2	=				(0)	'	1	
297.3 FIRM	<u></u>		SHALE, SDY		` '			
ROCK	20		HD TO MOD HD		100	1		17 001
KOCK	_		17		ŀ		-0.0 CFM @	17 PS1
į			FRACS		İ		}}	
į	_				/ (23)	ļ]]	
İ	30 =		1		(21)	ļ	<u> </u>	
-	30				100	2	71	
į	_		1 }]	-0.0 CFM @	27 DSI
J		<u> </u>	}					
j					(37)	1	[[∇W.L.37.3 3-28-79
}	40 =			UNIT 13	3	 	LI.	3-28-79
ļ	40		1	_	100	•	<u> </u>	
1	=				1	[-0.0 CFM @	30 DST
ł			SHALE, SDY			3	CO.O CEM @	20 121
j	_		HD TO MOD HD		(97)]	II	
			עון עטויו ט ו טוו			1	U.	
l	50-				100	7	П	
J	_		1		100	<u></u>] 0.0 CFM @	30 PSI
ļ					1		11	
1				UNIT 14	(100)	}	{ }	000
}	\Box		3		1.33/		Ll	066
ļ	60		SHALE, SDY		1	1 .	[
{	=		DH DOM OT DH		100	4	-0.0 CFM @	30 PSI
1			i		1	1	11	
1					1	1	(1	

							Hole No.	. 57	_
DRILL	ING LO	G OI	VISION SOUTHWESTERN	INSTALL		חרג הז חרג הז	ISTRICT	OF 2 SHEETS	
					3 CORE	BOX OR	0.7%	1841	1
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Decertation)		RECOV- ERY	BOX OR SAMPLE NO.	(Drilling time, we meathering, etc.	ter loss, depth of ., if significant	
	-			T 14		 	<u>'</u>		눋
1				nt)	(4			F
	70-		(00	110)	 -		ት		上
ļ	=				100	1	0.0 CFM @	30 PSI	F
	=]	5	[[F
238.5	_		UNI	T 15	ł]	11		F
			SHALE, SDY				BOTTOM	OF HOLE	F
	80		SHALE, SDY HD TO MOD HD		1		77	OF HOLE	F
	=	1			ł	}			E
	=				ļ	}	ļ		E
İ		(ł	1			E
		•			1	1	}		E
		}	NOTE:		1	1	{		E
] =	}	FOR DETAILED DESCR OF UNITS - SEE GENE		•	ł	İ		E
	=		GEOLOGIC COLUMN	KALIZED	ſ	ĺ	{		L
	_	}]		1	1			E
	=	}				j]		E
	=	i			ļ	}			F
	=	1			}	}	}		E
		1			ļ.	}			上
	=	1			ì		}		F
	=	1			ł	ł	ł		F
	=	İ			ļ	1	ł		F
	(=	1			1	ł	į		F
	_=	1			(ł			F
] =	}			i	ţ	1		F
•	=	1			l	{			F
ļ	=	1			{	1	}		F
	=	1]		[F
		1			j	1	1		
	=	}]	j	,		E
}] =	}]	})		E
] ,	·			ì			E
	1 3	1	_		}	1	ŀ		E
	-	3			1	1	l		
		1			1	1	}		F
		1			ł	1	1		上
	=				1				F
,] =	1			{		İ		F
1		1				1	Į.		F
1	} =	‡]	1	1		F
. 1		1]	1	1	067	F
	=	1)	}		001	F
	=	1			}	}			F
			US EDITIONS ARE OGGOLETE		PROJECT	-		HOLE NO.	

		LDI	VISION		INSTALL	ATION		Hole No.	59	
DRILL	ING LO		OUTHWESTE	RN	LIT	TLE RO	CK DI	STRICT	OF 2 SHE	ETS
PROJECT	·				10. SIZE	AND TYPE	OF BIT	NXL & ROCK	BIT	
CON	MAY W	ATER S	UPPLY		11. BAT	UN FOR EL	EVATION	डेमें ठेकेंग रीकार्य 🕳 मेहे।	J -	
LOCATION N	0+60	100 or 514	etten)				MSL	GNATION OF DRILL		
DRILLING						FAILIN				
<u>U.S.</u>	_CORPS	<u> </u>	NGINEERS			AL NO. OF		DISTURBED	UNDISTURB	ED
HOLE NO.	(As show when)	-	59		BUR	DEN SAMPI	ES TAKE	M	<u> </u>	
NAME OF	MILLER				14. TOT	AL NUMBE	CORE E	exes 6		
		WOOD			15. ELE	VATION GR				
DIRECTION					16. DAT	E HOLE		-29-79	4-3-79	
VERTIC	- AL	HCLINEO		DEG. FROM VERT.	17. ELE	VATION TO			4-3-73	\dashv
THICKNES	S OF OVE	ROURDE	<u></u>					Y FOR BORING	95	
DEPTH DR	ILLED IN	TO ROCK				ATURE OF		OR .		-
TOTAL DE	PTH OF	HOLE	84.5		<u> </u>			R. PERRY		
LEVATION	DEPTH	LEGEND	CLASSIFIC	ATION OF MATERIA	LS	% CORE	BOX OR SAMPLE NO.	(Drilling time, we	RKS	,
. 1				d		ERY.	NO.	(Drilling time, we weathering, etc.	, it elenificant	
337.1			0.B. TO	P OF ROCK		(RQD)		BEGIN COR	NG	
336.8					IIT TO	90				
334.5			T SANDS	TONE, HD		ከ(70) ሰ		ROCK BIT		
 '	=		h _{c.L}		IT TI					
ļ	=		RES CLAY	O.		82				
1	10		C.L.			-(0)	1			
1			1			70	_	ļ		
	7		BADLY WEA	01141 = 0011		, , ,]			
		<u> </u>]	SHALE, SDY		(0)				
	=		C.L.	MOD, HD		77				1
317.2	20		TSL WEA			(0)				ļ
								Ħ		
315.2	=======================================			UNI	T 12	100		-0.0 CFM @	19 PSI	
						1		ŀ		
FIRM ROCK	=					(05)				
KUCK	30					(25)	2	Lh		ļ
	`` <u> </u>					100				ļ
	\exists			CUA:				- 0.12 CFM	@ 27 PSI	
- 1				SHALE, SDY		(63))	_		
ļ	\exists			HD TO MOD	нυ			2	<u>W.L. 37</u> 4-3-79	.0
1	40=								4-3-/9	
- 1	7					95		 		
	=		C.L.			(51)	3	[]		
- 1						131/	٦	- 0.0 CFM @	30 PSI	
1	□		t			100			· 	
1	ے ⊐									
-	50					(92)				
}	Ⅎ							lh d		
1				UNI	T 13			비		
	\exists					99				
ļ	=			CHVIL CDA				- 0.0 CFM @	30 PSI	
Ì	60-			SHALE, SDY		/10\	4		804	<u>. </u>
	-			HD TO MOD H	U	(19)		hl	068	3
	⇒	===	اما					111		-

									Hele Ne	59	
DPILL	ING LO	G O	SOUTHWE	STEDN	INSTALL	TTLE R	חרג חו	CTDIC	т	SHE	ET 2 2 SHEETS
ELEVATION	DEPTH	LEGEND		IFICATION OF MATERIA		S CORE RECOV- ERY	BOX OR SAMPLE NO.		954	AKS	, depth of
•	b	e	ļ		= 1 4	•	,				
ì	_		1	ŲNI	T 14	100		Ln 68	CFM (30	PST
İ	_		-VERT FRAC	(co	nt)	/	5	F0.00	OI m	, 50	131
	70		1			(87)	3	11			
1	=]			ļ	1	١,			
İ	=		- IT, PYRITE			ł		! 			
	—		[<u></u>	— — — _{UNI}	1 15	100	1	۲۱			
	=			ONI	1 15	100	ļ	⊢0.0	CFM (30	PSI
į	_					ł	l				
ĺ	80 		1	SHALE, SDY		(77)		11			
	=		1	HD TO MOD H	ID.	l` ′	6	1			
254.1	_		<u> </u>			<u> </u>					
		ſ							BOTTO	1 OF	HOLF
}	=	1	}			1	Į)	84		
j	90	ł						1	U -1		
İ	30	1	}				1				
	! =	1	J.				1				
	-	1	[NOTE:			1				
i	ſ -	Į		FOR DETAILED DESCR	NPTION	[{	1			
	=	1	[OF UNITS - SEE GENE		j	1				
1	<u> </u>	<u> </u>	1	GEOLOGIC COLUMN		1	Į				
	-	}	1				ļ	1			
	=	1	1			Į	ļ	1			
		1 .	1			1	}	1			
	! =	1	1			i	1				
	-	ł	1			}	ł	ļ			
		1	1			}		1			
	1 =	1	ĺ			[{	(
	1 =	<u> </u>	1			l	ł	l			
	-	}				ł	i	1			
	=	1	1			ļ.	i				
	1 =	1	1 .	•		l	ł	ł			
	-=	1				Ì		Ì			
	1 -	1	1					ļ			
	=	1				Ì	!	{			
	_	1				<u> </u>		1			
	1 =	ł	j				ĺ	[
	-	ł	1			S	1	1			
	_	1				1		ł			
	=	1				1]_	ļ			
		i	1			1	1	{			
	=	}									
		7				1		j			
		1	1]		1			
		· ·				1	1				
	=	}	}			1	1	1			
		1	1			1					
	=	1						1			
	=	1	}	•			}	1			
		7	}				1	1			069
	=	1				1		1			VUJ
	1 =	1	1			1	1	1			
	L		┸			1	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ			HOLE NO.
NC EUDA	10.54					PROJECT					HOLE HO.
NG FORM	1836	PREVIO	US EDITIONS (TRANSLUC	ARE OBSOLETE.		PROJECT	•			}	59

DD::	ING LO	C DI	VISION	INSTALL		CV	CIDICI	SHEET	1
PROJECT	ING LO		SOUTHWESTERN		TLE RO		STRICT NXL	OF]	SHEETS
CON			SUPPLY				SHOWN (TBM or ME	<u>L) </u>	
N 1+00			tien)	12 MAN	UFACTURE	D'S REF	MSL GNATION OF DRILL		
DRILLING .	AGENCY		CINEEDS	1 -	ILING				
HOLE NO.	As show		GINEERS		AL NO. OF DEN SAMPL		DISTURBED	UNDIST	URBED
and Ille hus			60	14. TOT	AL NUMBE	R CORE E	OXES 2		
. NAME OF	MILLER	WOOD		IS. ELE	VATION GR	OUND WA	TER 3	12.1	
. DIRECTION	-			16. DAT	E HOLE			OMPLETE 4-5-7	_
₩ VERTIC				17. ELE	VATION TO		<u>-4-79 :</u> ⊾ε 347.5	4-5-4	9
. THICKNES				18. ТОТ	AL CORE R	ECOVER	Y FOR BORING	87	
TOTAL DE			46.2 51.0	19. SIGN	ATURE OF	INSPECT	S. HARTUNG		
			CLASSIFICATION OF MATERIA	ALS	S CORE	BOX OR	REM	ARKS	
ELEVATION	DEPTH	LEGEND	(Description)		RECOV-	NO.	(Drilling time, we weathering, etc	iter loee, de il eignific e	ent)
		-	0.B.		%	· · · · ·		·	
342.7	\exists		TOP OF RO	ОСК	(RQD)		BE	GIN COF	RING
			T	IT 10	50				ا ر
337.7	, =		CL	- · · •	(0)			N.L. 5. 4-5-79	.4
335.6	10		SANDSTONE	, HD	80		·	J - /3	
	∃		~	· - — -					
İ			RESID CLAY UNI	[[T]	(-)	1			
	∄	-	- CL		87				
}	20_		T-BADLY WEA		(0)				
1			<u> </u>		<u> </u>				
322.6	⊣		SHALE, SI	١٧	60		1		
FIRM	\exists		MOD HD TO				_		
ROCK	<i>"</i> , ∃				(2)				
[30	====	FL	T 12	(0)				_
ľ	\exists		OL UNI	11 12	94	2	0.0 CFM @	25 PS	Į.
1							}		
j	=				(00)		Ħ		
	40—]		_Cl SHALE ST	٦V	(23)		[[
Ì	⇉		_CL SHALE, SE HD TO MOD) HD 1 C	99		0.75 CFM	3 30 00	. T
ļ			115 10 1100		"		CO.75 CFM	e ou Pi) I
j	Ξ				,	3			
296.5	50—				(24)				
	· 7						воттом	OF HOL	.E
j	_=						51	.0'	
	\equiv		NOTE:						
	60_=		FOR DETAILED DESCRI					_	
	-	Ì	OF UNITS - SEE GENER GEOLOGIC COLUMN	ALIZED			ı	•	70
}	\exists		GEOLOGIC COLUMN] [. , •
NG FORM	1024		S EDITIONS ARE DESOLETE.		PROJECT		<u></u>	THOL	E NO.

Dan I	ING LO		VISION CONTUNECT	EDN	INSTAL		0004 5	Hole Ne	SHEET
PROJECT			SOUTHWEST	EKN		TILE R		ISTRICT NXL	OF 2 SHEETS
C			SUPPLY				EVATION.	SHOWN (TEM or ME	LJ
N 1+5	(Coordin	9+50	at len)		12. MAN	UFACTURE	MSL	GNATION OF ORILL	
DRILLING	AGENCY		GINEERS			FAILIN	IG 150	0	
HOLE NO.	(Ac show		ne title!		13. TOT	AL NO. OF DEN SAMPI	OVER- LES TAKE	N 2	UNDISTURBED
MAME OF E			61		14. TOT	AL NUMBE	R CORE E		<u> </u>
	WOO				15. ELE	VATION GR	ROUND WA	7.00	42.9
DIRECTION				DES. PROM VERT.	16. DAT	E HOLE			1-19-79
				DES. PROD VERT.	17. ELE	VATION TO			· 13 / 3
. THICKNES								Y FOR BORING	95
. TOTAL DE			141.9		19. SIGN	ATURE OF	INSPECT	R. PERRY	
LEVATION	DEPTH	LEGENO		CATION OF MATERIA	L	1 CORE	BOX OR	REM	ARKS
		e		(Description)		RECOV-	NO.	(Drilling time, we woothering, etc.	ter loss, depth of ., if significant) s
			0.B.			%			
347.1	=			TOP OF R	0CK	(RQD)		BEGIN	V CORING
			- C.L.	UNIT		61			
1	_ =		-BADLY WEA	2.12.		(0)	}	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	L. 8.6'
	10	### /·	-C.L.	SANDSTONE,	תע	59			-16-79
-	∃			SAITUS I UITE,	טוו	(30)			- · -
336.3	-7					14	1 1		
331.8	\exists		⊢ C.L. h	UNIT	11	'4	'		
]	20_		12-BADLY WEA			(7)		 	
FIRM ROCK	```‡								
ROCK	=			SHALE, SDY		96		0.0 CFM @	10 DCT
j	\equiv		_	HD TO MOD H	D			1 0.0 Crm @	10 731
}	30.					رف	!		
{	30-7					(0)		[_	
}	∃		~~	TINUT	12	100		[]	
[三三		VIII.			2	0.0 CFM @	28 PSI
j	_ =					1			
	40-					(14)		Ll	
	∄					100		ľ	
}	=								
-	Ξ					(23)		-0.0 CFM @	30 PSI
ŀ	50			SHALE, SDY		(23)	3	}	
ŀ	#			HD TO MOD	HD	1.00		ሆ ነ	
{	三					100			
	\exists) !		L0.0 CFM €	30 PSI
	$\zeta = 1$					(80)·			071
1	60-		!			(80)		41	UIL
ļ	\exists					100	4	-0.0 CFM @	30 PSI
						PROJECT		1 212 2111	HOLE NO.
G FORM	1024		S EDITIONS ARE	E OGSOL "E.		「神気の」まです。			

DRILL	ING LO	6 1	SOUTHW	FSTFRN			LE ROC	א חזפי	TRICT	SHEET 2
LEVATION	DEPTH	LEGEN		SSIFICATION OF MATE				BOX OR SAMPLE NO.	REMAI	1K\$
FEAVIOR	DEPIN b	LEGEN	7	(Description)			ERY	NO.	(Drilling time, water weathering, etc.,	it significant)
		<u> </u>							1	· · · · · · · · · · · · · · · · · · ·
			4	U	NIT	13]		
	70		3				(65)	4	Ì	
			4				97		-	
			3	011415 007			3/	i		
			3	SHALE, SDY	n				-0.0 CFM @	30 PSI
			4	HD TO MOD H	υ		(92)			
	80		C.L.				(32)	5		
	30-		3				<u> </u>		ļ .	
	=		₹	. 			100			
			3	U	NIT	14			-1.8 CFM @	30 PST
	i =		4				1		1.0 0111 6	55 151
	90_=		₫				(100)			
	90		3				(1 1 1)		<u> </u>	
	=		3				100			
			3					6	-0.0 CFM @	30 PSI
	=		4	SHALE, SDY			(100)		1	
	∫ ,,,, =		7	HD TO MOD H	ID				7	
	100		3				100		- 0.0 CFM @	30 PST
			4					}	F 0.0 0111 e	30 131
			3				(100)		1	
			3				(1007		<u> </u>	
			∄				100		-0.0 CFM @	30 PST
	110		₫	U	INIT	15		7	O. O O O O	30 131
	=						(100)			
			<u>-</u> J-17				100		μ	
			3				100	İ	- 0.0 CFM @	30 PSI
			1	SHALE, SDY			1			
	120-		3	HD TO MOD H	10		(100)	(
	П		4				100		۲۲	
:			3				τ(100)	8		
			3						-0.0 CFM @	30 PSI
22.5	=						100)		
<u> </u>	130		- -		NITT	1.6	(100)			
			1	U	NIT	10	(100)		L	
	=		4				100			
i			3	SHALE,			1	}	1 0 0 054 0	20 001
i]		SILTST	MOD HD TO	d b		l	9	-0.0 CFM @	20 L21
	140_			The true to	-		(99)			
09.6			t ::						<u> </u>	
]		Ţ						BOTTOM O	F HOLF
	-		1				[[1.9'
				NOTE:			{	1	' '	
	150_		1	FOR DETAILED DESC	CRIPTIC	ON		}		
			1	OF UNITS - SEE GEN)	}		072
	=			GEOLOGIC COLUMN	ı]			• <i>[</i> ~
IG FORM							L	l		HOLE NO.

Hole No. 62 HSTALLATION SHEETS SOUTHWESTERN DRILLING LOG LITTLE ROCK DISTRICT 10. SIZE AND TYPE OF BIT NXL HOJECT CONWAY WATER SUPPLY N 2+00 E 22+00 MSL 12. MANUFACTURER'S DESIGNATION OF DRILL DRILLING AGENCY FAILING 1500 U. S. CORPS OF ENGINEERS DISTURBED UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN 4. HOLE NO. (As shown on drawing title and file number) 62 14. TOTAL NUMBER CORE BOXES S. NAME OF DRILLER WOOD 15. ELEVATION GROUND WATER 6. DIRECTION OF HOLE COMPLETED 16. DATE HOLE 4-10-79 4-9-79 VERTICAL TINCLINED 17. ELEVATION TOP OF HOLE 354.14 THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 87 35.5 . DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR 41.0 **PERRY** 9. TOTAL DEPTH OF HOLE % CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Drilling time, mater lose, depth of meathering, etc., if eignificant) CLASSIFICATION OF MATERIALS (Description) ELEVATION DEPTH LEGEND 0.B. % (RQD) TOP OF ROCK BEGIN CORING 348.6 345.9 UNIT 10 63 BADLY WEA (31)10 90 SANDSTONE, HD (75) 337.4 38 RESID CLAY UNIT 11 (0)333.8 T CL FIRM 100 - 0.0 CFM @ 18 PSI ROCK BROKEN SHALE, SDY MOD HD TO HD (46)100 30 -2 -0.0 CFM @ 25 PSI UNIT 12 -JT (11)SHALE, SDY HD TO MOD HD 100 **BROKEN** 313.1 40 BOTTOM OF HOLE 41.0' NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED **GEOLOGIC COLUMN** PROJECT

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

Hale No 63

DRILL	ING LO		SOUTHWESTERN	INSTALL		TTTLF	ROCK DISTRIC OF 1 SHEETS
PROJECT			COMMEDICINA	10. SIZE	AND TYPE		NXI
co	NWAY	WATER	SUPPLY				SHOWN (TBM or MSL)
LOCATION	2+60	E 20	ation)				
. DRILLING	AGENCY	<u> L 20</u>		12. MANI		ILING	GNATION OF DRILL
U.	3. C	orps (of Engineers	13. TOT	AL NO. OF		DISTURBED UNDISTURBED
end file num	(AA ehow	n on drawi	63	├──			<u> </u>
NAME OF	DRILLER	W001	D		AL NUMBE		
. DIRECTION	4 OF 401		<u> </u>	-			
YERTIC			DEG. FROM VERT.	16. DAT	E HOLE		*4710/79 °47117/59
7. THICKNES				17. ELE	VATION TO	P OF HO	330.4
DEPTH DR							Y FOR BORING 92 %
. TOTAL DE			36.6 41.6	19. SIGN	ATURE OF	INSPECT	R. PERRY
			CLASSICATION OF MATERIA		% CORE	BOX OR	REMARKS
ELEVATION		LEGEND	(Description)		% CORE RECOV- ERY	SAMPLE NO.	(Driffing time, water loss, depth of weathering, etc., if significant)
•	<u> </u>	c			•	- ' -	•
	=	ľ	OVERBURDEN		%		
351.4	=		TOP OF ROCE	K	(RQD)		BEGIN CORING
348.4			11- C.L.	IT 10	84		
			T BADLY WEA	11 10	(0)	}	
	10-		-JT	un			
			SANDSTONE,	ΗU	100		
340.9			SL WEA		(61)] 1	
			- C.L. UN	IT TI	58		
336.8	20 =			•	(9)		
FIRM			† ''		97	1	ħ
ROCK	_		SUAL E COV			<u> </u>	0.0 CFM @ 17 PSI
			SHALE, SDY		(54)]	L
	_		MOD HD TO F	HD	98	2	
	_		-C.L.		}	} -	-0.0 CFM @ 22 PSI
	30	===			,	1	
	_			IT 12	(36)		Li
	_		SHALE, SDY				1
	_		HD TO MOD	HD	100		-0.0 CFM @ 30 PSI
23.4.0	40				(35))]]
314.8	40						
	_						BOTTOM OF HOLE
-					}	1	41.6'
	_				}		
İ	50 ⁻						
						1	
	_		NOTE:			1	
			FOR DETAILED DESCRIP]	1	
			OF UNITS - SEE GENERA GEOLOGIC COLUMN	LIZEU		1	
	60		123230000000000000000000000000000000000		1		Aw #
	0				1	1	074
	Ξ					[1
NG FORM					PROJECT	ļ	HOLE NO.
	103/		US EDITIONS ARE OBSOLETE		1		63

Hole No. 64

							Hole No. 64
DRILL	ING LO		SOUTHWESTERN	INSTALL		TLE RO	CK DISTRICT OF 1 SMEETS
PROJECT					AND TYPE	OF BIT	NXL
LOCATION	Coorde	TER SL	JPPLY	III. DATI	MSL	EVATION.	SHOWN (TBM or MSL)
N 3+			j	12. MAN			SNATION OF DRILL
U. S	. Cor	os of	Engineers	13 707		ING]	
HOLE NO.	(يون شع		ing title 64	BUR	AL NO. OF DEN SAMPI	LES TAKE	N 3 -
NAME OF	MILLER	JOOD			AL NUMBE		
. DIRECTIO					VATION G		RTED (COMPLETED
₩ VERTIC			DEG. FROM VERT.	16. DAT	E HOLE	<u>i</u>	4/13/79 4/13/79
. THICKNES	S OF OVE	RBURDE	n 4.5		VATION TO		<u>947.31</u>
. DEPTH DR	ILLED IN	TO ROCK	34.3		AL CORE P		Y FOR BORING 90 3
. TOTAL DE	PTH OF	HOLE	38.8	<u> </u>			R. PERRY
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	LS	S CORE RECOV- ERY	BOX OR SAMPLE NO.	REMARKS (Drilling time, water loss, depth of
_ •	•				•	1	weathering, etc., if significant)
	_		OVERBURDEN		%		BEATH ASSESS
352.9			TOP OF ROO	CK	(RQD)		BEGIN CORING
[- WEA UN]	T 10	100		
ļ	10 =		SL WEA		(41)	1	
	'~-		SANDSTONE	, HD	81	1	
343.9	=		!	-,-	(45)	1	
220 2	_		rc.r. UN	11	51	}	
339.3	_ =		- 11		(0)		h
FIRM	20		CHALL CD	,	97		- - 0.0 CFM @ 15 PSI
ROCK	=		SHALE, SDY		(71)		C.O CFM @ 15 PS1
			ון עוד סטיי	עח		}	<u></u>
	=				94		
İ	30_=				l	}	1
	=		UNI	T 12		2	-0.0 CFM @ 23 PSI
	_		SHALE, SDY	1	(69)		
			HD TO MOD		97		
318.6	_				(63)	3	
ĺ					1		BOTTOM OF HOLE
1	Ξ				j		38.8'
}							
	_				1	}	
			NOTE:			1	
	Ξ		FOR DETAILED DESCR OF UNITS - SEE GENE				
	_		GEOLOGIC COLUMN				
	=				1	}	
					1	1	
					1		675
	=					Ì	
NG FORM	18 24		14 40171004 484 00401 577		PROJECT	·	HOLE NO.
MAR 71	1035	PREVIOL	JS EDITIONS ARE OBSOLETE: (TRANSLUCENT)		ī		64

Hole No. 65

								Hole No.	00	
DRILL	ING LO	DIV	SOUTHWE	STERN	INSTALL		ROCK I	DISTRICT	SHEET	SHEETS
PROJECT					10. SIZE	AND TYPE	OF BIT	NXL		
			ER SUPPL	<u> Y </u>	11. DATE	IN FOR EL	EVATIO	SHOWH (TBM or MSI	7	
N 2	+52N	F 10-	1100) +85		12 MANI	IS ACTURE	D'S DES	MSL GHATION OF DRILL		
DRILLING	AGENCY				12. 22.			ING 1500		
HOLE NO.			ENGINE	RS	13. TOT	L NO. OF		DISTURBED	UNDIST	URBED
and His num	nb ed	on dr.	M tille	65						
NAME OF	DRILLER					AL NUMBE				
DIRECTION	N OF HOLI		00D		 -				OMPLETE	0
X VERTIC				DEG. FROM VERT.	16. DAT	E HOLE		1-28-78	11-29	
THICKNES	5 OF OVE		0.5		17. ELE	ATION TO	POFHO	118.5		
DEPTH DR			FO					Y FOR BORING	96	
. TOTAL DE			59.		19. SIGN	ATURE OF	INSPEC	R. PERR	Υ	
	T			IFICATION OF MATERIA	1	& CORE	BOX OR	REMA	RKS	
LEVATION	}	LEGEND	,	(Description)		I FRY	I NO.	(Drilling time, we weathering, etc.	er loss, de , il signific	esth of
318.07	-	-		.в.		RQĐ)		405011	000.00	
314.7	=		L-c.c.		1 12	68		BEGIN	CORING	i
	7		TLBADLY W	VEA		(0)	ĺ			
105/8k	3		C.L.			81		1		
FIRM	∃		- WEA			(14)	1	1		
ROCK	10		""			100] '			
Ì			.[(29)	(H		
]			<u>-</u>	i	- 0.0 CFM @	10 PS	SI
	\exists		ار آ			100			W.L. 1	7.3▽
	∃		SL WEA						11/29	
	20					(47)	1			
	<u> </u>		İ	SHALE, SDY		100		H	01.0	~ +
			İ	HD TO MOD HD		100	2	-0.0 CFM @	1 21 P	21
	⇉		,	110 10 1100 110			Ì	1 1		
	<u>,, </u>					(72)	l			
	30—		İ			(12)		₩		
	⇉		İ			100		11		
			i			'00		- 0.18 CFM	@ 30	PSI
	<u> </u>		- JT				3	!!		
				10	IT 13	(64)				
ŀ	40-		– JT	-	-	(64)]	الم		
1	=		í	CHAIR COV		100		1.46 CFM	a 20 1	nc r
	_==		-1TS	SHALE, SDY HD TO MOD HD				1 -1.40 CFM	w 30	-21
-	=		_ Tt	10 1100 110			<u> </u>	11		
	ᆙᇧᅾ	- Z 1								
	50-	,_ <i>_</i> _	— JT			100	1	لہا		
	=		<i></i>					- 1.8 CFM @	ים חכי	c T
	<u> </u>		Í	SHALE SOV U	iIT 14		4	1.0 CFM 6	30 P	UMC
	7	===	•	SHALE, SDY HD TO MOD 40		(100)		11		V/D
259.4	ے ⊐							<u> </u>		
Ì	60-	7		NOTE:	UDTION:			BOTTOM C	F HOL	Ε
	コ	ļ	ı	FOR DETAILED DESCR OF UNITS - SEE GENER				59.	1'	
ı		l		GEOLOGIC COLUMN		I	1	1		

Hele No. 103 SOUTHWESTERN DRILLING LOG LITTLE ROCK DISTRICT 10. SIZE AND TYPE OF BIT NXL

11. DATUM FOR ELEVATION SHOWN (THE OF MEL) CONWAY WATER SUPPLY
LOCATION (Coordinates of Station)
STA 6+25 ON DIKE CENTERLINE 12. MANUFACTURER'S DESIGNATION OF DRILL U. S. CORPS OF ENGINEERS FAILING 1500 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title 103 NAME OF DRILLER 15. ELEVATION GROUND WATER 312.8 12-29-77 331.7 THICKNESS OF OVERBURDEN 93.0 DEPTH DRILLED INTO ROCK 100.4 TOTAL DEPTH OF HOLE PERRY S CORE RECOV-ERY REMARKS
(Drilling time, mater lane, depth of meathering, etc., if significant) CLASSIFICATION OF MATERIALS (Description) DEPTH LEGEND OVERBURDEN 324.2 TOP OF ROCK UNIT 13 BEGIN CORING 95 0.1 CFM @ 9 PSI 316.4 7 FIRM SHALE, SDY HD TO MOD HD ROCK 20-98 30-0.3 CFM @ 24 PSI 100 UNIT 14 SHALE, SDY 0.7 CFM @ 30 PSI HD TO MOD HD 100 3 **UNIT 15** 0.0 CFM @ 30 PSI SHALE, SDY 100 VERT JT DH DOM OT DH 077 60 4 40% WATER 100 UNIT 16 0.0 CFM @ 30 PSI

PROJECT

ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

Hele No. 103

					V						
DRILL	ING LO	IG 01	SOUTHW	IESTERN	INSTALL	ITTLE	ROCK	DISTE	RICT	SHEE	
LEVATION	DEPTH	LEGEND		SIFICATION OF MATERIA (Description)	ils	S CORE RECOV- ERY	SOX OR SAMPLE NO.	(Detti	REM ing time, un identing, etc	ARKS Her loss, -, if signi	depth of ficent)
	<u> </u>	=====			IT 16		<u> </u>		RFO	ATNED	WATER
					ont)		ĺ	1		W1111-D	11/11/41
j	70-				01.107		<u></u>	ł			
	,			SHALE MOD HD	דה עה	100		10.0	CFM @	30 PS	I
				טח עטוייו	ועח טו			11			
}			N		1			h _i			
						100	5	L_{n}	CFM @	30 PS	. 7
	80					100	ŀ	۳۰.۰	OTH G	30 13	
	_		-SILTSTS				ł	μ			
	3				ł						
1	_	1			- 1			ا ا	CFM @	30 DC	: T
	\equiv					100		10.0	OTH C	30 13	, ,
ĺ	90_=		}		1	100	ì '				
					j		l	ηl			
ł	=	:	li .		ļ		6				
İ			<u> </u>			100		-0.0	CFM @	30 PS	SI .
						100		1			
,,, ,	100						7				
231.3	100	===	<u></u>								VE 1101 F
1	=	'	Ì				ĺ		BO	I DM U	F HOLE
			r							100.4	ł.
							İ				
i				NOTE:							
				FOR DETAILED DESCR	LOTION		1				
1			}	OF UNITS - SEE GENER							
ŧ				GEOLOGIC COLUMN			ĺ				
							1				
ľ							1				
ŀ							}				
	=				- 1						
					l		}				
							ļ				
	=										
l					-						
ŀ											
1	11111111										
	-										
ļ	=		}				}				
1	7						1				
	7						!				
					ľ		ļ			4	NA
1	=									Ţ	78
ļ											
	\exists										

Hele Ne. SHEET MSTALLATION DRILLING LOG SOUTHWESTERN LITTLE ROCK DISTRICT OF SHEETS 10. SIZE AND TYPE OF BIT NXL PROJECT CONWAY WATER SUPPLY Sta 20+00 ON DIKE CENTERLINE 12. MANUFACTURER'S DESIGNATION OF BRILL U. S. Corps of Engineers HOLE NO. (As shown on drawing title 14. TOTAL NUMBER CORE BOXES NAME OF DRILLER NASH 341.8 18. ELEVATION GROUND WATER . DIRECTION OF HOLE ^*4727/78 4/28/78 16. DATE HOLE WYERTICAL MINCLINED 358.5 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 16.0 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 24.3 19. SIGNATURE OF INSPECTOR R. PERRY 40.3 TOTAL DEPTH OF HOLE S CORE BOX OR RECOVERY NO. REMARKS
(Drilling time, water lose, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS (Description) ELEVATION! DEPTH LEGEND **OVERBURDEN** 10 BEGIN CORING 342.5 BADLY WEA W.L.16.7'▽ 4-28-78 20 37 0.0 CFM @ 8 PSI <u>329.9</u> 327.9 TOP OF ROCK 1 30-UNIT 13 FIRM SHALE, SDY 70 ROCK HD TO MOD HD 100 318.2 BOTTOM OF HOLE 40.31 NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED GEOLOGIC COLUMN ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.

Hele No. 134

				INSTALL	A TIAL		SHEET]	١
DRILL	ING LO	_	VISION CONTRIBUTE TEDM	-marati		ITTLE	ROCK DISTRICT SHEETS	
1. PROJECT			SOUTHWESTERN	10 517=	AND TYP	I OF SITE	IVI	ł
CONWAY	V WATE	R SHP	PIY	11. DAY	UM FOR EL	EVATION	SHOWN (TEM or MEL)	ł
2. LOCATION	(Coordin	stee or Sta	rtion)			ISL	-	
STA 16	5+00 (ON DIK	E CENTERLINE	12. MAN	UFACTURE	IR'S DESIG	SNATION OF DRILL	1
3. DRILLING	AGENCY]
U. S.	Corps	OT	Engineers	13. TOT	AL NO. OF	OVER-	DISTURBED UNDISTURBED	1
4. HOLE NO.	rae ahow mban	n en d rawi	134				<u> </u>	ł
S. NAME OF	DRILLER				AL HUMBE		 	1
		NASH		15. ELE	VATION G	ROUND WA	TER _	}
6. DIRECTION	N OF HOL	.E		IS. DAT	F 401 F	; -	ATED COMPLETED	1
VERTIC		NCLINED	DES. FROM VERT.				4/14/78 : 4/14/78	l
			10.0	17. ELE	VATION TO	P OF HO	333.0	1
7. THICKNES				18. 707	AL CORE	RECOVER	Y FOR BORING 93]
. DEPTH DR	ILLED IN	TO ROCK	19./	19. SIGN	ATURE OF	INSPECT	OR DEDOV	1
9. TOTAL DE	PTH OF	HOLE	24.7				R. PERRY	1
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	LS	T CORE	BOX OR SAMPLE NO.	REMARKS (D. Hing time, water leas, depth of	ł
<u> </u>			(Description)		RECOV-	NO.	weathering, etc. if eignificant	
		•	•		 -	 ' 		-
]			OVERBURDEN					F
I 1						[E
1							ļ	\vdash
1	_				ļ			F
<u>323.8</u>	,,=	1				}	BEGIN CORING	E
322.8 4	10		EC.L. TOD OF DOCK			 	DEGIN CORTING	F
320.3	=		TOP OF ROCK		1			F
	_		h/			1.	ከ	E
FIRM			C.MEY UN	IT 13	90	1	0 0 054 0 0 55	\vdash
ROCK	=						0.0 CFM @ 8 PSI	F
1	_ =		כטאור כרע					
1	20		SHALE, SDY			4 !		\vdash
1	=		DH DOM OT DH		100			F
309.1	_				100			F
	_						BOTTOM OF HOLE	L
1	_						24.7'	F
	20 =					1	24./	F
1	30							口
[]	_	i						Ь
1	_							F
1	_		NOTE:					F
l i	_		FOR DETAILED DESCR					F
1			OF UNITS - SEE GENER	RALIZED				F
1	_		GEOLOGIC COLUMN					F
1	_				ļ			E
1	_							F
1	_] !		F
1	_					1		E
1	_					1		F
1						1		F
1	_							F
]	_				1			F
1 1	_							F
]								E
j l	=				1		non	F
1					1	1	080	⊨
1	=					}		E
1	\exists				ļ			F
	1836		<u></u>		PROJECT		HOLE NO.	_

Hele No. 136 DRILLING LOG LITTLE ROCK DISTRICT SOUTHWESTERN 16. SIZE AND TYPE OF BIT NXI CONWAY WATER SUPPLY ta 12+00 on DIKE CENTERLINE MSL . S. Corps of Engineers 136 14. TOTAL NUMBER CORE BOXES NAME OF BRILLER NASH 18. ELEVATION GROUND WATER 4. DIRECTION OF HOLE 4/17/78 °4/17/78 IS. DATE HOLE TYPERTICAL | INCLINED 17. ELEVATION TOP OF HOLE 340.6 10.0 THICKNESS OF OVERBURDEN 92 18. TOTAL CORE RECOVERY FOR BORING 16.5 DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR BOX OR SAMPLE R. PERRY TOTAL DEPTH OF HOLE 1 CORE RECOV-ERY REMARKS ina, miles lose, depth of ng, etc., il eignificant CLASSIFICATION OF MATERIALS (Description) DEPTH LEGEND **OVERBURDEN** BEGIN CORING <u>330.</u>6 86 BADLY WEA TOP OF ROCK 326.3 UNIT 13 325.6 FIRM (9) fe STAINS SHALE, SDY ROCK 1 HD TO MOD HD 100 314.1 (82)BOTTOM OF HOLE 26.5' NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED GEOLOGIC COLUMN 081 ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE. PROJECT

Hele No. 138

							Hole No.	130	_
DRILL	ING LO		SOUTHWESTERN	INSTALL	LITTL	E ROC	K DISTRICT	OF SHEETS	
PROJECT				10. SIZE					1
CONWA	Y WAT	ER SU	PPLY	11. DAT	MSL	EVATION	NXI SHOWN (TBM & MSL)	 	1
			CENTERLINE	12. MAN		R'S DESI	GNATION OF DRILL		┨
U. S.	Corp	s of 1	Engineers	ļ		ING 15		UNDISTURBED	4
HOLE NO.				13. TOT	AL NO. OF DEN SAMP	OVER- LES TAKE	7	1	
. HAME OF	DAILLEA				AL NUMBE]
		NA:	SH	15. ELE	ATION GE				1
. DIRECTION			DEG. FROM VERT.	16. DAT				4/18/78	
. THICKNES	S OF OVE	ERBURDE			ATION TO			82	+
. DEPTH OR	ILLED I	TO ROCK			ATURE OF		OR	02 1	┨
. TOTAL DE	PTH OF	HOLE	31.7	<u> </u>		,	R. PERRY		4
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIA (Description)	\LS	S CORE RECOV- ERY	BOX OR SAMPLE NO.	REMAR (Drilling time, mate meathering, etc.,	tKS ir loss, depth of if significant)	
			OVERBURDEN					= · vau	丰
		1	OVERBORDEN						E
	<u> </u>	ł			}	ļ	}		E
334.9	_	1		-		ĺ			Ŀ
333.9	10						BE	GIN CORING	上
	=		TOP OF ROCK		1				Þ
	. =		WEA IIN	 IT 13	63	ĺ	[þ
			C.L.	11 13		1			F
325.2	20 =	-36	WEA, BROKEN SHALE, SDY			Ċ			F
FIRM	²⁰ —		мор но то но		86]	h		E
ROCK	_						0.4 CFM @	14 PSI	E
						ł			E
	_		т			 			þ
	30				100	2			þ
313.2	30 <u> </u>				100				╠
	Ξ						ROTT	OM OF HOLE	E
}		1				})	31.7'	E
	_	,							þ
	40 —						ļ		þ
	=	1	, '			1	}		þ
}	_		NOTE:		}				þ
	_]	FOR DETAILED DESCR	PTION	ļ				F
	=]	OF UNITS - SEE GENER		[}		F
	_]	GEOLOGIC COLUMN						F
Ì	_	1			ĺ				E
	_	1							E
	_						1		Ŀ
J	=	1					}		E
	_	1						082	þ
	-								þ
		1				<u> </u>	<u> </u>		上
NG FORM	1836	PREVIO	US EDITIONS ARE OBSOLETE.		PROJECT	<u>. </u>	<u>l</u>	HOLE NO.	-

		160	VISION		INSTALL	ATION		Hole No.	139	 _
DRILL	ING LO	ေ ်ိံ		HWESTERN			OCK D	ISTRICT	07 2	SHEETS
PROJECT			SUPPL		10. SIZE	AND TYPE	OF BIT			
LOCATION STA 6+((Coordin	WHIER	SUPPL	- 1	7			MSL	,	
STA 6+(JU UN	DIKE	CENTER	KLINE		FAILIN		GNATION OF DRILL		
U. S. 0	ORPS	OF EN	GINEER	RS		AL NO. OF DEN SAMPI		DISTURBED	UNDIST	URBED
HOLE NO. (abea)	on drawi	ng title	139				<u></u>	<u>. </u>	l
NAME OF	NASH					AL NUMBE				
DIRECTION		E			IG. DAT	E HOLE		RTED C	MPLETE	
T VERTIC	AL	NCLINED		DEG. FROM VER	r.	VATION TO			4-25-	/ 8
THICKNESS				0.0				Y FOR BORING 9	3	•
TOTAL DE				5.8	19. SIGN	ATURE OF	INSPECT			
				ASSIFICATION OF MATER	IALS	% CORE	BOX_OR	REMA	nks.	
LEVATION	DEPTH	LEGEND		(Description)		RECOV-	BOX OR SAMPLE NO. f	(Drilling time, wat weathering, etc.,	er loss, de If eignific	epth of comp
			0.B.							
}	=							}		
37.3								[
336.6	10							BEGI	N COR	I NG
		===	WEA C.L	TOP OF ROCK		93				
35.8	\exists		SL WEA		NIT 13	1 33	İ			
ROCK			T		, .	/251]	ן מי מיבאי פי	11 pc	7
\UCK	\Box		- Fe STAINS	S		(35)		1-0.0 CFM @	11 25	<u>l</u>
ļ	20			SHALE, SDY		}]]	ነ		
}	=			HD TO MOD HD		98]	0.0 CFM @	15 PS:	Ī
[=									
1	=			_		(81)				
	30-			•		<u> </u>	}	LEBEE ELON	a 0 0	7.7
}			-C.L.			90]	FFREE FLOW	ĂTER I	RETURN
						(31)	2	 		$35.3 \bigcirc$
{	\equiv		C.L.			81		[[4-24	- /8
	40		<u> </u>		NIT 14	(56)		{ 		
}	Ξ		FRAC	SHALE, SDY	111 14	98	<u></u>	[]		
]	_=		-	HD TO MOD HD		70		2.5 CFM @	30 PS	I
-	=			13 1100 110		(74)				
	50-		FRACS			\'\'\'	1	L		
ĺ	" =	,	FRAC C.L.	Uì	NIT 15		3	1		
}				SHALE, SDY		87	1	 -2.8 CFM @	30 PS	ī
ļ		===}	FRAC	HD TO MOD HD		(8)			JJ 13.	•
	<u>,</u> , =					``,		1	1	083
-	60-						1	Ĺh	•	JUU
	\equiv		FRAC	UN	IT 16		4	3.1 CFM @	30 PS	Ī
l						1			••••	-

DD11.1	ING LO	G O	SOUTHWESTERN	INSTALL	TLE RO	רצ הזפ	Hele Ne.	SHEET 2
EVATION	DEPTH	LEGENE	CI ASSISICATION OF MATE		S CORE	BOX OR SAMPLE NO.	REMAR	OF 2 SHEETS
•	b	c	(Description)		ERY	NO.	(Drilling time, water weathering, etc., i	l eignificant)
				UNIT 16	98			
	7, =		C.L. SILTST	(cont)	(0)		{ 	
	70-		ל כטאור		(8)]	ի <mark>վ</mark>	
	3		нот он оом	D	94	1		
			c.L.	J			-0.4 CFM @ 3	O PSI
			SILTST		İ	İ		
	80—		::		(24)			
	\exists		<u>.</u>		98	5	M	
i			C.L.] -	0.0 CFM @ 3	0 PST
	=		SILTST					0 131
	90_=		• • •		(56)			
	=				100		T .	
	=		- - -		(57)	,	-0.0 CFM @ 3	O PSI
İ	=				100(0)	1		
	=					6		
	00		1		93]	0.0 CFM @ 3	0 001
			<u>.</u>		(21)		110.0 CFM @ 3	0 131
			C.L.		(21)			
	=		SILTST		76	1	[
	10		: : - 2.4 SCATT C.L.			}	 -0.0 CFM @ 3	0 001
			SILTST		(0)	7	[CO.O CFM @ 3	0 731
230.5		===			}			
	=		"		 		POTTOM OF	UOL E
	20_				1		BOTTOM OF	
	=							0
	=		NOTE:		1			
	=		FOR DETAILED DES	CRIPTION				
	=		OF UNITS - SEE GEI					
			GEOLOGIC COLUMI	•	1			
					i			
					ľ			
	=				1			
					ļ			
:	=							
			1					•
								084
	=				1		{	40-X
	=					1		

139

Hele No. 140

							Hele Ne. 140		
DRILL	ING LO	G Di	SOUTHWESTERN	INSTALL	LI	TTLE R	OCK DISTRICT OF 1 SHEETS		
PROJECT					AND TYP	E OF BIT	NXL		
CONW.	AY WA	TER SI	UPPLY	II. BAT	in for et ISM		SHOWN (TBM or MSL)		
STA	4+00	on DII	KE CENTERLINE	12. MANL			MATION OF DRILL		
DRILLING		ns of	Engineers	12 MANUFACTUREN'S DESIGNATION OF DRILL FAILING 1500					
HOLE NO.	(As show		na title	13. TOTA B紀代	EN SAMP	OVER- LES TAKE	M 6 UNDISTURBED		
L HAME OF			140	14. TOT	L NUMBE	R CORE B	OXES		
			ASH	IS. ELEY	ATION G	NOUND WA			
DIRECTION			DES. FROM VERT.	16. DATE	HOLE	STA	4/25/78 4/25/78		
				17. ELEV	ATION TO	P OF HO			
. THICKNES							r FOR BORING 98		
. TOTAL DE			21.6	19. SIGN	ATURE OF	INSPECT	R. PERRY		
ELEVATION	DEPTH		CLASSIFICATION OF MATERIA (Description)	LS	1 CORE RECOV- ERY	BOX OR	REMARKS		
•	•	•	(Description		ERY	NO.	(Dritting time, mater less, depth of weathering, etc., if significant)		
	_		OVERBURDEN						
1				:		(
	_				!				
340.1	\ , <u>,</u> =		TOP OF ROCK				BEGIN CORING		
 /	10		37 21				h		
339.7			Fe STAINS UN	[T]3		,	[]		
FIRM	_		FRACS		98		- 0.0 CFM @ 5 PSI		
ROCK	-		SHALE, SDY		, ,	ון	}		
_	20_		HD TO MOD HD		100	1			
328.3					100				
ŀ	_						BOTTOM OF HOLE		
							21.6'		
	-	j i			3				
	30-		NOTE:]			
			FOR DETAILED DESCRI OF UNITS - SEE GENER	-					
			GEOLOGIC COLUMN	ALIZEU					
	_	[:	1			
}	_	ļ							
ł	=								
	-	1]			
						1			
		}			1				
]			
Ì									
j									
j	_								
							DOE		
}	_					}	085		
ì									

			VISION		INSTALL		AU 55		lole No.	SHEET	1
DRILL	ING LO	16	SOUTHWES	IERN		TLE RO			· · · · · · · · · · · · · · · · · · ·	of 2	SHEETS
		WATE	R SUPPLY					ROCK B			
LOCATION	Coordin	00 00 St	DIKE CEN	TERLINF	19 MAN	IFACTURE	MSL	SNATION O	E Call		
. DRILLING	AGENCY					FAILIN			PORILL		
. HOLE NO.	(As show)RPS 0	F ENGINE		13. TOT	AL NO. OF	OVER-	DISTUR	#EO	UNDIS	TURBED
and His nu	mb ec)		14	2	14. TOT	AL NUMBE	R CORE E	OXES F	<u> </u>	<u> </u>	
L NAME OF	DRILLER	NASH				ATION GE					
DIRECTIO					IS. DAT	EHOLE		5-8-78		5-10	
VERTI			- n -	DEG. FROM VERT.	17. ELE	ATION TO			.	J- 10	<u>,-70</u>
THICKNES			70.3		18. TOT	AL CORE P	ECOVER	Y FOR BOR	<u> </u>	100_	3
DEPTH OF			81.6		19. SIGN	ATURE OF	INSPECT	OR R.	PERF	RY	
			CI ASSI	FICATION OF MATERIA	\	% CORE	BOX OR			ARKS	
ELEVATION.	DEPTH	LEGEND		(Description)		RECOV-	NO.	(Drilling	time, m	ter loss, , il signii	depth of ficent
	<u>-</u> -	<u> </u>	0.B.			<u> </u>	<u> </u>				
	=										
	=	}					}				
335.6	_	1		TOP OR ROC	v						
333.0	10-		T	TOP UR RUC	· K			h			
	=		WEA					ROCK	BIT		
327.6	=								DEC	TN CC	NO TAIC
FIRM	20_=		Fe STAINS		т 12	100		1	BEU	GIN CC	IRING
ROCK	20		Fre STAIRS	UNI	T 13	[49)	ļ	 -0.0 c	EM G	12 00	. T
326.4	=		ļ.			100	١,	0.0 0	ירויו פי	12 73) [
	_			SHALE, SDY			ו				
	Ξ			HD TO MOD HD		(62)					
	30 <u>—</u>							lh	<u>W</u> .	.L. 30).9' 🛡
	=					100			5.	-11-/8	3
	=					,		o.o c	FM @	22 PS	SI
	40		 		T 14	(62)					
	_			5111	, , ,		2				
				SHALE, SDY		100					
	_			HD TO MOD HD	1			-0.0 C	FM @	30 PS	Ι
	50_		<u> </u>			(83)]			
					T 15	(30)		^ل			
	=		Τι	SHALE, SDY		100					
				HD TO MOD HD)	(01)	3	10.00	FM @	30 PS	31
	=					(81)	j	• • • • • • • • • • • • • • • • • •		_	
	60		FRAC	UNI	T 16		1	<u> </u>		·	186
				SHALE		100		- -1.4 C	:FM a	30 PS	S I
			SOFT	MOD HD TO HD	<u> </u>			11			
NG FORM	1836	PREVIOL	S EDITIONS	RE OBSOLETE		PROJECT				HO	LE NO.
			TRANSLUCE	(T N T)							142

DRILLING LOG SUTHWESTERN LITTLE ROCK DISTRICT OF 2 SHEET LECKATION DEPTH LEGEND CLASSIFICATION OF MATERIALS ACCOUNTS SANCE LECKATION UNIT 16 (cont) SHALE MOD HD TO HD SHALE MOD HD TO HD NOTE: FOR DETAILED DESCRIPTION OF UNITS: SEE GENERALIZED GEOLOGIC COLUMN NOTE: FOR DETAILED DESCRIPTION OF UNITS: SEE GENERALIZED GEOLOGIC COLUMN
CLASSIFICATION OF MATERIALS TO SHALE MOD HD TO HD SILTSTS NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED
263.5 80 SHALE MOD HD TO HD 100 4 75% WATER SHALE MOD HD TO HD 100 5 1.1 CFM @ 30 PSI 90 NOTE: FOR DETAILED DESCRIPTION OF UNITS - SEE GENERALIZED
087

APPENDIX C

PLATES

· Signatura Co.

WORK SAFELY

	INDE	EX TO DRAWINGS
FILE NO. 9689		TITLE
DRAWING NO.	SHEET N	
		GENERAL
9689-62/(349		PROJECT LOCATION & INDEX TO DRAWINGS
9570-62/1351	2	EMBANKMENT & SPILLWAY PLAN
9570-62/1364	3	TYPICAL EMBANKMENT SECTION
570-62/1357	4	EMBANKMENT & OUTLET WORKS EXCAV. PLAN
9570-62/1477	. 5	PLAN OF EXPLORATIONS-DAM & SPILLWAY
9570-62/1479	6	IGEOLOGIC SECTIONS
9570-62/1372	7	DIKE PLAN & SECTION
9570-62/1486	8	IGEOLOGIC SECTION - DIKE CENTER LINE
9570-62/1359	9	OUTLET WORKS PLAN & SECTION
670 - 62/1435	10	STILLING BASIN PLAN & SECTION
3570-62/1482	_ 11	GEOLOGIC SECTIONS STILLING BASIN
570-62/1487	12	FOUNDATION TREATMENT
	FO	UNDATION MAPS
9689-62/1659	13	DAM AXIS - STA.9+10 TO STA.11+02
689-62/1660	14	DAM AXIS - STA 11+10 TO STA 13+60
689-62/1661	15	DAM AXIS-STA 13+60 TO STA 16+70
689-62/662	16	DAM AXIS- STA I6+70 TO STA I8+95
689-62/1663	17	DAM AXIS- STA. 18+95 TO STA. 20+65
689-62/1664	18	DIKE-CORE TRENCH STA 19+50 TO STA 25+00
689-62/1665	19	OUTLET WORKS - STILLING BASIN & INTAKE
689-62/1666	20	OUTLET - CONDUIT STA. 7+96.75 TO STA 9+56.75
689-62/1667	21	OUTLET - CONDUIT STA 9+ 5675 TO STA 11+36.75
689-62/1668	22 23	OUTLET CONDUIT STA 11+36.75 TO STA 12+16.75
689-62/1669	23	GROUTING
689-62/1670	24	GROUTING

		1					_	
REVISION	DATE			MPTIOR			-	
ML VIJEON			ARTMENT OF DISTRICT, CO	THE AR				
-	er A	ANANSAS RIVER	AND TRIBUTARES		ARKANBAS RIVER.	AN INCAM	4	
RC	ŀ	TOAD SUCK FERRY LOCK AND DAM						
P8455 P7			RELOCA	MOITA	S			
CH	1	C	ONWAY WAT	TER S	UPPLY			
CHECKED (- T		PROJECT	LOCA	TION			
CD	1	AND	INDEX TO	DRAN	NINGS			
-	97				APRIL 198	3		
			i		OF SEREN, TO.		_	
CHARGE LA			96.00 - 62/1349					

WORK SAFELY

WORK SAFELY

The same of the sa

_	GENERALIZED GEOLOGIC COLUMN							
SYSTEM	FORMATION	SECTION	THICKNESS IN FEET	ואינ	DESCRIPTION			
			7 10 30	ιç	ENDOSTORS, MANO, FIRE TO MEDIUM GRAINED, MEDIUM GRAN MICHEOUS FOUND ONLY IN THE HIGHER ELEVATIONS OF BOTH MOUTTENENTS AS A CAPPING STRATA USUALLY SUBMITY WEATHERS OF			
PENNSYLVANIAN			14 20 27	,,	SYSEL SAMOY, MODERATELY WARD TO WARD CEMENTED FINE GRAWNED BLACK TO MEDIUM SEAY MICACEDUS, MARKEDUS SAMOSTORE LAMMATIONS & MICLUSTORS, SOME LEMISES OF SMALT SAMOSTORE			
	V		13 to 46	12	SAME SAMPY HARD TO MODERATELY HARD FIME GRAMED. CEMENTED IS NOW TO MEDIUM GRAY INSCRIDED INJURISHING THE TO THIN CITER INSCRIDED SAMPS TONG CAMMATIONS A MICCURGOS TONES OF WHICH OCCASSIONALLY GRADE RITO SHALY SANDSTONE.			
	ATOKA		11 9 27	13	SHALL SANDY HARD TO MODESATELY HARD FIRE DRAWNED CEMENTED BLACE TO REDIUM GRAY MICACOUS FUNGATIONS A FINCLIFICHMS OCCASSIONAL SANDSTONE LENGTS			
			5 to 20	14	SHALE SAMEY HARD TO MODERATELY HARD FINE GRAINER. CEMETED BLACK TO REDMIN GRAY INCACEDUS SCAFFERED SANDETONE LAMINATIONS & INCLUSIONS.			
			7 10 24	15	SMALE SAMOY HARD TO MIGLERATELY HARD FIRE GRAMMED CEMENTED BLACK TO MEDIUM GRAY MIGULY SCATTERED SAMOSTOMY LAMINATIONS & HICLUSIONS			
			37	16	SHALL MODERATELY HARD TO HARD THE GRAINED TO SALY BLACK MICACEOUS SCATTERED HARD SLITSTONE MODULES & LEMBLS ARE ENCOUNTERED IN THIS UNIL STABITING FROM ABOUT 10 TO 15 BLOW ITS TOP SUPPLACE			

LEGEND

NX CORE BORING SOILS BORING COMBINATION NX CORE & SOILS BORING COMBINATION SOILS & FISHTAILED BORING FISHTAILED BORING PIEZOMETER DATE DRILLED 4 - 18 - 78 WATER LEVEL
136-20 | PRESSURE TEST: 1.36 CFM @ 20 PS1
15 ROCK UNIT

NOTES

For general notes see Drawing 62/1477

CORE LOSS TEST PIT

1 For general notes see Drawing 62/1417
2 For location of sections, see Drawing 62/1417
3 For detailed information of borings, pressure tests, core loss, weathering, fractures, joints, see logs of barrings, contract specs

4 For overburden information see soil logs, contract specs.

DEPARTMENT OF THE ARMY LITTLE ROCK DISTRICT, CORPS OF ENGINEERS
LITTLE ROCK ARKANSAS ARRANSAS RIVER AND TRIBUTARIES H NGMED BY TOAD SUCK FERRY LOCK AND DAM 5 C H RELOCATIONS CONWAY WATER SUPPLY . . .

GEOLOGIC SECTIONS A-A AND B-B ALONG DAM AXIS

......

AUGUST 1979 MY SERIAL NO BO- 8 - 00 9570 - 62/1479

NY SERIAL NO BO- 8 000

9570 - 62 / 1372

the property of the second of

- |380

LEGEND

NX CORE BORING SOILS BORING COMBINATION NX CORE & SOILS BORING COMBINATION SOILS & FISHTAILED BORING FISHTAILED BORING 4.00 P PIEZOMETER

4-10-W DATE DRILLED

WATER LEVEL

136-20-1

15 ROCK UNIT

CORE LOSS

· .			3	!
Bike El. 358.0 7				- → 36 0
0 ?	. 3	o of Spillmay El		- 340 %
Appear to the at		Top <u>(veter Supple</u>	Paol 61 326 0	-320 AB OVE
lespe, to-	. T. rac 4		- 4	1300 F
				580 74 80 76 80 78
	MOKA	FORMATION		1260 E
= .				240
-				220
5+00	:	1	2 + 00	200

140

NOTES:

For general notes see drawing 62/1417
2 for location of Section see drawing 62/1418
3 for delailed information of Borings, Pressure Tests,
Core Loss, weathering, fractures, joints, see Boring
Logs, Lonthact Specs
4 for overburden information see Soils Logs, Contact Specs

1			
BTAG BOURTY PR		DE SC RIPTION	91
		PARTMENT OF THE ARN DISTRICT, CORPS OF I LITTLE ROCK ARKANSAS	
-	ARANSAS RIVER	AND TRIBUTARIES	
J 100 B	TOAD	SUCK FERRY LO	CK AND DAM
00400 07		RELOCATIO)NS
150	c	ONWAY WATER	
CHECKER BY R K F	_	IC SECTION ALO	NG & OF DIKE
9U80411ED BY		TALE 44 SHAW	AUGUST 1979
	100 1		STY SERVICE DO COO CO.

	GENERALIZED GEOLOGIC COLUMN										
SYSTEM	FORMATION	SECTION	THICKONESS IN FEET	CHRIT	DESCRIPTION						
			7 2 2	10	SACRETIONS, HARD, FIRST TO RESIDENCE GRAPMER, RESIDENCE GRAP RECOGNIZIONS, POLICIO GRULY SE THE RESIDENCE ELEVATIONS OF STRANG, USBARALY SILESTELV AS A COPPRISE STRANG, USBARALY SILESTELV RELATIVESTELV AS A COPPRISE STRANG, USBARALY SILESTELV RELATIVESTELV SILVEN SILESTELV SILESTELV SILVEN						
	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		14 80 77	11	STATE, SAMELY, MODERATELY PAGE TO MADE, CRESSYDE, FRUI GRANGE, BLACK TO MEGRADE GRAY, MIGROSOVAL MAGAGINUS RAMBETOMIC (ASSIMATIONS & MICLUSIONS, GONE LENGIS OF SMALY SAMELYCINE.						
ANIAN	 -		13	12	STATE, SORRY HARD TO ASSESSATELY MADD, PRISE ABMINISTRACT, CHARTER, BLACK TO GERMAN BRAY, MICHOSON, SQUESSATE, SPACE THICK TO TIME OFTER MISSISSALES SAFETONI LIAUMANTERS & MICHIGANE SORRES OF MINICH SOCIALISMS AND MINICH SORRES OF MINICH SOCIALISMS SORRES OF MINICH SOCIALISMS.						
PENNSYLVANIAN	ATOK		11 80 27	2	SHALL SANDY HARD TO MODERATELY MADD FIRE GRANDER. CEMENTED BLACK TO MEDIUM GRAY MICACROUS HAMBIRDAY SANDSTORM LAMINATIONS & MICLIENCINS COCAMBIRDAY SANDSTORM LIMIES						
!			2 2 2	14	MALE SARDY, HARD TO MODERATELY HARD FINE GRANNED. CEMENTED BLACK TO MEDIUM BRAY MECKERIAS, SCRYTTERES SAMOSTORY LAMINATIONS & MICLISHOMS						
:			7 8 24	15	SHALE SAMEY HARD TO MODERATELY HARD, FIRE GRANGED CEMENTED BLACK TO MEDIUM GRAY MIDELY SCATYERED SAMOSTORY LAMINATIONS & MICLARIOMS						
			37	16	SMALS, MODERATELY MARD TO MARD. FINE SRAMED TO SELTY REACH, MICACEOUS SCATTERED MARD SELTYME PRODUCES & LYMEZ AND RECONSTREED IN THIS UNITS STAFFINE PRIDE ABOUT TO TO 15 SECON TS TOP SMARACE						

LEGEND

NX CORE BORING
SOILS BORING
COMBINATION NX CORE & SOILS BORING
COMBINATION SOILS B FISHTAILED BORING
FISHTAILED BORING

NOTES:

- | OTES:
 | For general notes see Drawing 62/1417 | 2 For location of Section see Drawing 62/1417 | 3 For detailed informatic of Borings, Pressure Tests, Care Loss, weathering, fractures, joints, see Boring Logs, Contract Specs. | 4 For overburden information see Soils Logs, Contract Specs.

	Į.	-		Ţ
REVISION DA	re	DESCRIPTION		37
		PARTMENT OF THE AR CDISTRICT, CORPS OF LITTLE ROCK ARKANSAS		
DESCRIPTION	ARRANSAS RIVER	AND TRIBUTARIES	ARKANSAS RIVER	MEANING
	TOAD	SUCK FERRY LO	CK AND DA	M
	4	RELOCATION	ONS	
	•	ONWAY WATER	•	
	-4	-		
********		SIC SECTIONS AC		NG
	. 8	ASIN, SECTIONS 1	-I @ J-J	
100m1110 81		Wald at 11000	AUGUST	979
11.1.	1119 .			
14040151	al la . prop	, 9570 - G	2/1482	

VALUE ENGINEERING WILL INCREASE YOUR PROFIT "Dam Axis TR 360 TOP OF DAM EL 358 0 340 320 300 X Assumed bottom of core trencreroayation. Actual escalation line to be as directed in the field by the Contracting Officer. FE -EVATION اً240 الم *⊣22*0 -120€ 2 Driming 4180 8+00 + 10 20+00 22+00 CTION ALONG LINE OF GROUT CURTAIN

(LOOKING UPSTREAM)

& Dam Aris

SECTION SCALE (* 20' NOTES:

1 41 300 those to be or as from too or rock (chasterion grade) through interpretation to top of rock or as otherwise directed by the Confracting Officer. Could spacing, pressure testing and grouting will be as sirected by the Contracting Officer.

DEPARTMENT OF THE ARMY LITTLE ROCK DISTRICT. CORPS OF ENGINEERS LITTLE ROCK ARKANSAS ARKANSAS RIVER & TRIBUTARIES ARKANSAS RIVER ARKANSA JM6 TOAD SUCK FERRY LOCK AND DAM RELOCATIONS CONWAY WATER SUPPLY MI. SEC B1 FOUNDATION TREATMENT AUGUST 1979 95 70 -62/1487

A TOTAL

PLAN

Scale: 1" • 5'

54321012345

EXPLANATION

N 12° E

doint, showing strikeand dip, dashed where approximate or unclear when mapped

23'

 $\label{eq:first} \frac{\textit{Frocture}_{\text{c}}}{\textit{strike and dip}_{\text{c}}} \ \textit{irregular without distinct}$

Rock Ledge, with barbs on face of ledge, numerical thickness shown in feet.

▲ 339

Elevation, (m.s.t) at point marked by triangle.

Pa

Atoka Formation, shale, sandy, hard to maderately hard, gray to dark gray, black, well compacted and cemented, micaceous. From stations 9+10 to 9+70 and from 20+28 to 20+58 2 the shale was somewhat weathered, gray to buff to occasionally reddish brown, and moderately soft to firm. At station 20+58 2 there was sandstone 3.5½ thick, fine grained, hard, and gray, with reddish tan staining. (Pennsylvanian Period)

Joint, vertical dip

REFERENCE DRAWINGS

Embankment Plan 9570-62/1351 Typical Embankment Section 9570-62/1364 Geologic Sections A-A & B-B 9570-62/1479

		1					
RE VISION	DATE	DESCRIPTION 81					
		DEPARTMENT OF THE ARMY LITTLE ROCK DISTRICT, CORPS OF ENGINEERS LITTLE ROCK ARMANSAS					
DEMARED	. 7	ARKANSAS RIVER AND TRIBUTARIES MIKANSAS RIVER, ARKANSA					
RC	į,	TOAD SUCK FERRY LOCK AND DAM					
C8144 84	- 1	RELOCATIONS					
CH		CONWAY WATER SUPPLY					
-	. 1	DAM AXIS-CORE TRENCH					
CD		STA 9.10 TO STA 11.02					
-		APRIL 1983					
1		HT SERVAL NO BO B OCO					
(MARITO		9689-62/1659					

VALUE ENGINEERING WILL INCREASE YOUR PROFI St. 11+20 \$ 10. 11+70 Pa Sta. 11+05 on dam axis and 3 ta. 10+00 on outlet conduit axis. FLOW Scale: 1"-4' 432 | 0 | 234 Sta 12+30 N 85 . € N 70° E Po PLAN Scale: |* - 4 432101234 WORK SAFELY

FLOW

NOTE

For general notes, legend, and reference drawings, see drawing 9689-62/1659

DEPARTMENT OF THE ARMY LITTLE ROCK DISTRICT CORPS OF ENGI LITTLE ROCK ARKANSAS ISAS RIVER AND THRUTARIES AMMANSAS RIVER, AFTER TOAD SUCK FERRY LOCK AND DAM RC RELOCATIONS CH CONWAY WATER SUPPLY DAM AXIS-CORE TRENCH CD STA 13+60 TO STA 16+70

APRIL 1983 9689-62/1661

VALUE ENGINEERING WILL INCREASE YOUR PRO

VALUE ENGINEERING WILL INCREASE YOUR PRO

PLAN Scale: 1°5' 54321012345

PLAN Scale: 1° 5' 543210 2345

NOTE

For general notes, explanation, and reference drawings, see drawing 9689-62/1659 sheet number 13

REFERENCE DRAWINGS

Embankment Plan 95.70 -62/1351
Typical Embankment Section
Geologic Sections A-A & B-B
95.70 -62/1364
95.70 -62/1479

								_									
		-		=		_		_								_	
REVISION	DATE			_			DEX	RIP1K	×					_			# 1
		LITT	LE RO	KC	RTME DISTRI	СТ	. co	RPS	01			INE	ERS	5			
RC		ARK AN	TOA [-	_											A MSA
CH CH				COI	RI NWA			CA			-		LY				
CHECKED	97	DAM AXIS-CORE TRENCH															
CD	- 1			STA	A. 18	9	5	то	S	TA.	2	Q+I	65				
SUBMITTE	0 87			Т						٦	_	4P	RII	L	191	83	
				- 1						[-	HV 1	ERMAL	, NC	. 80	-0 -	0001
CHOMES				٦,	S HEET (7	96	89	-6	27	16	6	3					

N 9° E Joint, showing a dashed where

₹0;

Joint, showing strike and dip, dashed where approximate or unclear when mapped.

Fracture, irregular without distinct strike and dip.

Rock Ledge, with barbs on face of ledge, numerical thickness shown in ft.

Atoka Formation, shale, sandy, hard to moderately hard, g: ay to dark gray, well compacted and comented micaceous.

270 Elevation, (m.s.l.)

Joint, vertical dip.

PLAN Scale !" = 2' 2 ! 0 ! 2

> REFERENCE DRAWINGS Outlet works

Outlet works
Plan, Profile, and Typical Section.9570-62/1358

Outlet Works-Stilling Basin

REVISION	DATE	DESCRIPTION						
	ι	DEPARTMENT OF THE ARMY E ROCK DISTRICT, CORPS OF ENGINEERS LITTLE ROCK ARKANSAS						
DESIGNED	97 AR	AS RIVER AND TRIBUTARIES ARKANSAS R	IVER, ARKAN					
RC	ł	TOAD SUCK FERRY LOCK AND DAM						
DRAWN ST	1	RELOCATIONS						
CH	- 1	CONWAY WATER SUPPLY OUTLET WORKS-STILLING BASIN						
CHECKED								
CD	"	AND INTAKE STRUCTURE						
SUBMITTED SY		APRIL	1983					
		HAY DETRIAL	NO 80-8-0					

PLAN
Scale: |"- 2'
2 | 0 | 2

VALUE ENGINEERING WILL INCREASE YOUR PROFIT **EXPLANATION** Joint, showing still te and dip dashed where as proximate or unclear when may ped. Fracture, irregular, without distinct strike and dip. A Rock Ledge, with barbs on face of ledge; numerical thickness shown in feet. FLOW Sta. 8+76.75 Atoka Formation, shale, sandy, hard to maderately hard gray to dark gray, well compacte and cemented, calcaeous Elevation, in m.s. l. 1/ Blast Hole, remnant presplitting shows radiating fractures. Pa Sta. 9+36.75 Sta. 9+56.75 Pα REFERENCE DRAWINGS Concrete and Reinforcing 9570-62/1433 Geologic Tactions 9570-62/1481 PLAN Scale: | " = 2" 1 0 1 2 DESCRIPTION DEPARTMENT OF THE ARMY
LITTLE ROCK DISTRICT. CORPS OF ENGINEERS
LITTLE ROCK ANKANSAS
INVANIAN TOPER AND THIBUTARIES

ARKANSAS NIVER AND THIBUTARIES

ARKANSAS NIVER AND THIBUTARIES TOAD SUCK FERRY LOCK AND DAM RC RELOCATIONS CONWAY WATER SUPPLY OUTLET WORKS-CONDUIT СН CD STA 7-9675 TO STA 9-5675 APRIL 1983 MY SEMAL NO BO - B OC , 20 9689-62/1666

VALUE ENGINEERING WILL INCREASE YOUR PROPI

PLAN Scale 1° 2'

د من چەنوان د

PLAN
Scale: 1" = 2'
2 | 0 | 2

VALUE ENGINEERING WILL INCREASE YOUR PROFIT

NOTE

For general notes, explanation, and reference drawings, see drawing 9689-62/666, sheet 20

FLOW

PLAN
Scale: 1" - 2'

2 1 0 1 3

REFERENCE DRAWINGS

Concrete and Reinforcing
Geologic Sections

9570-62/1433 9570-62/1481

	F			
RE VISION I		DLSL RIPTION		
AL VISION L	DEPARTMEN		BMV.	
	LITTLE ROCK DISTRIC			
		CK ARRANSAS	211012	•
-	ARKANSAS RIVER AND THIBL	TARIES	ARKANSAS	H VER. ARKANS
RC	TOAD SUCK	FERRY L	OCK AND	DAM
RAWN 91	RE	LOCAT	IONS	
СН	1		SUPPLY	
	1	WORKS -		
HECASO DY				
CD	STA 11.36	75 TO STA	12+16.75	
	<u> </u>		ADDII	1003

9689 - 6271668

VALUE ENGINEERING WILL INCREASE YOUR PROFIT SECTION ALONG GROUT CURTAIN ON DAM AN (LOOKING UPSTREAM) Scole: 1" = 20" 20 10 0 10 20 WORK SAFELY

A Committee

]								
Rt vision	DATE -	DESCRIPTION							
	_	DEPARTMENT OF THE ARMY TILE ROCK DISTRICT, CORPS OF ENGINEERS LITTLE ROCK ARKANSAS							
DESIGNED BY	N. Sept.	ANSAS MIVER AND TRIBUTARIES ARKANSAS RIVER, A	PHE ANDE						
RC	1	TOAD SUCK FERRY LOCK AND DA	M						
DRAWN BY		RELO CATIONS							
CH	1	CONWAY WATER SUPPLY							
CHECKED BY		FOUNDATION TREATMENT							
CD		GROUTING	_						
SUBSTITED 9:	,	APRIL 1983							
		MY SEMAL NO BO							
ENGINE EN		9689 - 62/1670							

END

FILMED

8 - 83

DTIC

th number of bags grout zone. Grout ps which are indicated at depths of 2 ft, 20ft.

MENT OF THE ARMY
INICY, COPPS OF ENGINEERS
RICCA, ARMANAS
RICCA, ARMANAS
RICCA, ARMANAS
RELOCATIONS
AY WATER SUPPLY
DATION TREATMENT
GROUTING

APRIL 1983

9689 627670