Einführung in die Geometrie und Topologie

Dozent Dr. Daniel Kasprowski

Mitschrift Maximilian Kessler

> Version 11. Mai 2021 14:05

Zusammenfassung

Bei folgenden Vorlesungsnotizen handelt es sich um (inoffizielle) Mitschriften zur 'Einführung in die Geometrie und Topologie', die im Sommersemester 2021 an der Universität Bonn gehalten wird. Ich garantiere weder für Korrektheit noch Vollständigkeit dieser Notizen, und bin dankbar für jegliche Art von Korrektur, sowohl inhaltlich, als auch Tippfehler.

Bemerkungen oder andere Umgebungen, die nicht zum eigentlichen Vorlesungsinhalt gehören, wurden mit einem * gekennzeichnet. Sie werden nach eigenem Ermessen hinzugefügt, um weitere Details oder evtl. mündliche Anmerkungen beizufügen. Insbesondere sind diese wohl besonders fehleranfällig, also verlasst euch nicht auf sie.

Manche Umgebungen sind mit einem [†] versehen. Das ist dann der Fall, wenn ihr Inhalt so, oder zumindest in sehr ähnlicher Form, in der Vorlesung vorkam (unter Umständen auch mündlich), ich aber die Umgebung der Aussage geändert habe. Das ist z.B. dann der Fall, wenn ich aus Aussagen, die einfach erwähnt werden, ein **Lemma**[†] mache, um sie hervorzuheben.

Weitere Informationen zu diesem Skriptum finden sich bei GitHub oder auf der Vorlesungshomepage.

Inhaltsverzeichnis

Übersicht der Vorlesungen		3
1	Vereinigungen	4
2	Zusammenhang, Wegzusammenhang	14
3	Lemma von Urysohn	17
Stichwortverzeichnis		19
Literatur		20

Übersicht der Vorlesungen

Vorlesung 1 (Do 06 Mai 2021 10:15)

4

Disjunkte Vereinigungen. Koprodukte. Disjunkte Vereinigungen über einem Basisraum. Wedge-Produkte. Rekonstruktion eines Raumes als Disjunkte Vereinigung über dem Schnitt zweier Teilräume.

Vorlesung 2 (Di 11 Mai 2021 12:16)

14

Zusammenhang, Wegzusammenhang. Bilder (weg-) zusammenhängender Räume. Lemma von Urysohn.

Vorlesung 1 Do 06 Mai 2021 10:15

1 Vereinigungen

Definition 1.1 (Disjunkte Vereinigung). Es sei $\{X_i\}_{i\in I}$ eine Familie von Mengen. Die **disjunkte Vereinigung** der X_i ist definiert als

$$\coprod_{i \in I} X_i := \left\{ (i, x) \mid i \in I, x \in X_i \right\}.$$

Lemma[†]. Für jedes $j \in I$ ist die Abbildung

$$\iota_j: \left| \begin{array}{ccc} X_j & \longrightarrow & \coprod_{i\in I} X_i \\ x & \longmapsto & (j,x) \end{array} \right|$$

injektiv und induziert eine Bijektion

$$X_j \leftrightarrow \{(j,x) \mid x \in X_j\} \subseteq \coprod_{i \in I} X_i.$$

Damit ist insbesondere

$$\coprod_{i\in I} X_i = \bigsqcup_{j\in I} \iota_j(X_j).$$

Beweis. Klar.

Trivial Nonsense*. Bei $\coprod_{i \in I} X_i$ handelt es sich um das Koprodukt der X_i in **Set**.

Ein Koprodukt erfüllt die gleiche Universelle Eigenschaft, wenn man die Richtung aller Abbildungen umdreht, d.h. X ist Koprodukt der X_i in **Set** genau dann, wenn X Produkt der X_i in **Set** op ist. Für eine genauere Formulierung vergleiche Satz 1.3.

Notation*. Ich bemühe mich, folgende Trennung in der Notation vorzunehmen:

- Das Zeichen ⊔ (eckige Vereinigung, \sqcup) steht zwar für eine disjunkte Vereinigung, allerdings soll es wie die normale Vereinigung behandelt werden und nur betonen, dass es sich um disjunkte Mengen handelt.
- Das Zeichen II (Koprodukt, \coprod) steht für die disjunkte Vereinigung beliebiger Mengen, wie sie in Definition 1.1 eingeführt wurde.

Ist z.B. U eine disjunkte Vereinigung von U_i , so schreibe ich $U = \bigsqcup_{i \in I} U_i$, was sowohl bedeuten soll, dass $U_i \subseteq U$, als auch $U_i \cap U_j = \emptyset$ für $i \neq j$.

Ist hingegen $U = \coprod_{i \in I} U_i$, so folgt weder $U_i \subseteq U$ (allerdings ist ι_j nach dem vorherigen Lemma eine entsprechende Einbettung, weswegen wir U_j oft mit dem entsprechenden Bild identifizieren), noch, dass $U_i \cap U_j = \emptyset$ für $i \neq j$.

Ist $\bigsqcup_{i \in I} U_i$ definiert (d.h. die U_i paarweise disjunkt), so ist jedoch in jedem Fall

$$\bigsqcup_{i\in I} U_i \cong \coprod_{i\in I} U_i.$$

weswegen eine saubere Trennung oft redundant oder nicht möglich ist.

Definition 1.2 (Disjunkte Vereinigung topologischer Räume). Sei $(X, \mathcal{O}_i)_{i \in I}$ eine Familie von topologischen Räumen. Wir versehen $\coprod_{i \in I} X_i$ mit der Topologie, die von $\bigcup_{i \in I} \mathcal{O}_i$ als Basis erzeugt wird. Den entstehenden Raum nennen wir das Koprodukt der topologischen Räume.

Bemerkung*. Eigentlich müssen wir die Topologie erstmal als Subbasis von $\bigcup_{i \in I} \mathcal{O}_i$ erzeugen lassen, man überprüft jedoch mit ?? leicht, dass es sich dann sogar um eine Basis handelt, was wir im Folgenden auch verwenden wollen.

Notationsmissbrauch[†]. Eigentlich ist $\mathcal{O}_i \subset \mathcal{P}(\coprod_{i \in I} X_i)$ keine Familie von Teilmengen von $\coprod_{i \in I} X_i$, weswegen die Definition keinen Sinn macht. Mittels den Einbettungen $\iota_j : X_j \to \coprod_{i \in I} X_i$ können wir jedoch \mathcal{O}_j entsprechend auffassen. Man käme in Versuchung

$$\mathcal{O} := \bigcup_{i \in I} \iota_i(\mathcal{O}_i).$$

zu schreiben, doch eigentlich ist auch das falsch, weil wir ι_j nicht nur auf die Elemente von \mathcal{O}_j , sondern auf die Elemente der Elemente von \mathcal{O}_j anwenden wollen - nämlich auf die Elemente der offenen Teilmengen, die in \mathcal{O}_j spezifiziert waren. Im Folgenden wollen wir jedoch weiterhin $\bigcup_{i\in I}\mathcal{O}_i$ schreiben um obiges zu meinen, die Einbettungen ι_j sind in der Notation unterdrückt.

Warnung. Die Menge $\bigcup_{i \in I} \mathcal{O}_i$ ist im Allgemeinen <u>keine</u> Topologie. Z.B.

$$\coprod_{i\in I} X_i \notin \bigcup_{i\in I} \mathcal{O}_i.$$

Lemma[†]. Eine Menge $U \subseteq \coprod_{i \in I} X_i$ ist offen, genau dann, wenn $\iota_j^{-1}(U) \subseteq X_j$ offen ist für alle $j \in I$.

 $Beweis^*.$ '⇒' Sei $U\subseteq\coprod_{i\in I}X_i$ offen, dann können wir $U=\bigcup_{k\in K}U_k$ schreiben, wobei $U_k\in\bigcup_{i\in I}\mathcal{O}_i$ ein Element der (Sub-) Basis ist Dann ist

$$\iota_j^{-1}(U) = i_j^{-1} \left(\bigcup_{k \in K} U_k \right) = \bigcup_{k \in K} \iota_j^{-1}(U_k).$$

Nun ist aber $\iota_j^{-1}(U_k) = \emptyset$, wenn U_k aus einem \mathcal{O}_i mit $i \neq j$ stammt, und $\iota_j^{-1}(U_k) = U_k$ wenn U_k aus \mathcal{O}_i stammt, also in jedem Fall eine offene

Teilmenge von X_j , und damit ist das Urbild offen.

'\(\infty\) Nimm umgekehrt an, dass $\iota_j^{-1}(U) \subseteq X_j$ offen ist für alle $j \in I$. Es genügt wegen $\coprod_{i \in I} X_i = \coprod_{i \in I} \iota_i(X_i)$ festzustellen, dass

$$U = \bigcup_{i \in I} (U \cap \iota_i(X_i)) = \bigcup_{i \in I} \iota_i(\iota_i^{-1}(U)).$$

und dies ist offen nach Annahme, da ι_i eine Einbettung ist.

Bemerkung. Per Definition ist für jedes $j \in I$ die Menge $\iota(X_j) = \{(j,x) \mid x \in X_j\}$ offen in $\coprod_{i \in I} X_i$ und die von ι_j induzierte Abbildung

$$X_j \to \{(j,x) \mid x \in X_j\} \subseteq \coprod_{i \in I} X_i.$$

ist eine Einbettung. Die X_i können wir also kanonisch als Teilraume von $\coprod_{i\in I} X_i$ auffassen.

- **Beispiel.** 1. Betrachte einen Kreis und einen Torus, die getrennt in \mathbb{R}^3 liegen. Die Unterraumtopologie auf dieser Menge ist die gleiche wie die Topologie der disjunkten Vereinigung.
 - 2. Auch wenn $[0,1] \cup [\frac{1}{2},1] = [0,1]$ ist die Koprodukttopologie auf $[0,1] \cup [\frac{1}{2},1]$ nicht die Unterraumtopologie auf [0,1]. (die beiden Räume sind schon als Mengen nicht gleich).

Satz 1.3 (Universelle Eigenschaft des Koprodukts). Sei $\{X_i\}_{i\in I}$ eine Familie von topologischen Räumen und sei Y ein topologischer Raum. Seien $f_j: X_j \to Y$ Abbildungen für alle $j \in I$. Definiere die Abbildung

$$F: \left| \begin{array}{ccc} \coprod_{i \in I} X_i & \longrightarrow & Y \\ (j,x) & \longmapsto & f_j(x) \end{array} \right|$$

Dann ist F genau dann stetig, wenn alle f_j stetig sind.

Beweis. f_j ist stetig als Verknüpfung stetiger Abbildungen, da $F \circ \iota_j = f_j$. ' \Leftarrow ' Sei nun f_j stetig für alle j. Sei $V \subseteq Y$ offen, dann müssen wir zeigen, dass $F^{-1}(V) \subseteq \coprod_{i \in I} X_i$ offen ist. Es ist nun aber

$$\iota_j^{-1}(F^{-1}(V)) = (F \circ \iota_j)^{-1}(V) = f_j^{-1}(V) \subseteq X_j.$$

offen in X_j , weil f_j stetig war. Nach Definition ist dann genau $F^{-1}(V)$ offen in $\prod_{i \in I} X_i$.

Frage. Was ist, wenn die Vereinigung nicht disjunkt ist?

Sei X ein topologischer Raum und $X_1, X_2 \subseteq X$ Unterräume sowie $X_1 \cup X_2 = X$ Setze $X_0 := X_1 \cap X_2$. Wir wollen die Topologie auf X aus denen von X_0, X_1, X_2 rekonstruieren.

Beispiel. Falls $X_1 \cap X_2 = \emptyset$, so können wir aus den Einbettungen $X_1 \hookrightarrow X$ und $X_2 \hookrightarrow X$ nach der Universellen Eigenschaft eine Abbildung $F: X_1 \coprod X_2 \to X$ induzieren, die stetig und bijektiv ist. Diese ist offen, genau dann, wenn X_1, X_2 offen in X sind (wie wir später sehen werden).

Beispiel. Sei $X=[0,1], X_1=[0,\frac{1}{2}]$ und $X_2=(\frac{1}{2},1]$, also $X=X_1 \sqcup X_2$. Allerdings ist $X_1 \coprod X_2 \neq X$, weil die Menge $\left[0,\frac{1}{2}\right]$ offen in $X_1 \coprod X_2$ ist, allerdings nicht in [0,1].

Bemerkung*. Man kann sich das wirklich bildlich so vorstellen, dass die disjunkte Vereinigung von $[0,\frac{1}{2}]$ und $(\frac{1}{2},1]$ bedeutet 'lege sie mit Abstand nebeneinander auf den Zahlenstrahl". Damit geht die 'Nähe' von $\frac{1}{2}$ zum Anfangsstück von $(\frac{1}{2},1]$ 'verloren'. In der Tat ist auch $[0,\frac{1}{2}]\coprod(\frac{1}{2},1]\cong[0,\frac{1}{2}]\cup(1,\frac{3}{2}]$ mit der Teilraumtopologie von

Eine teilweise Antwort auf obige Frage gibt folgende Konstruktion:

Definition 1.4 (Disjunkte Vereinigung über einem Basisraum). Seien X_0, X_1, X_2 topologischen Räume und $f_1: X_0 \to X_1$ sowie $f_2:X_0\to X_2$ stetige Abbildungen. Definiere $X_1\bigcup\limits_{X_0}X_2$ als Quotient

$$X_1 \mid X_2/\sim$$
.

wobei \sim erzeugt wird durch $f_1(x) \sim f_2(x)$ für alle $x \in X_0$.

Beispiel. Betrachte zwei Kopien von D^2 . Wir können S^1 jeweils kanonisch als Rand einbetten, dann erhalten wir

$$D^2 \bigcup_{S^1} D^2 \cong S^2.$$

(Das ist noch kein Beweis, aber die Intuition ist klar - mehr dazu später).

Grafik

Warnung. Der Raum $X_1 \bigcup_{X_0} X_2$ hängt von den Abbildungen f_1, f_2 ab. Dazu folgendes:

Beispiel. Betrachte wieder zwei Kopien von D^2 , bette $f_1: S^1 \hookrightarrow D^2$

kanonisch ein, und bilde $f_2:S^1\to D^2$ konstant in den Mittelpunkt ab. Dann erhalten wir eine 'Kugel auf einem runden Tisch'

Grafik

Trivial Nonsense*. Der Raum $X_1 \coprod X_2 / \sim$ ist der Limes (in **Top**) des folgenden Diagramms:

Beweis. Zunächst konstruieren wir Abbildungen $g_i: X_i \to X_1 \coprod X_2 / \sim$. g_1, g_2 können wir einfach als Komposition von $\iota_i: X_i \hookrightarrow X_1 \coprod X_2$ mit der kanonischen Projektion $p: X_1 \coprod X_2 \to X_1 \coprod X_2 / \sim$ definieren. Behauptung 1. Es ist $p \circ \iota_1 \circ f_1 = p \circ \iota_2 \circ f_2$.

Unterbeweis. Nach Konstruktion ist für $x \in X_0: \iota_1(f_1(x_0)) \sim \iota_2(f_2(x_0))$ (die Einbettungen hatten wir in der Definition von \sim unterdrückt), und nach Definition des Quotientenraumes schickt p die beiden also auf das gleiche Element.

Wir können nun $g_0 := p \circ \iota_1 \circ f_1 = p \circ \iota_2 \circ f_2$ definieren.

Warnung. Es ist $\iota_i \circ f_1 \neq \iota_2 \circ f_2$, so leicht ist unser Leben nicht! Wir müssen noch prüfen, dass für jeden Morphismus des Diagramms die entsprechenden Abbildung nach $X_1 \coprod X_2 / \sim$ kommutieren:

Das ist aber nach Konstruktion mit der Rechnung

$$g_1 \circ f_1 = g_1 \circ p \circ \iota_1 \circ f_1 \stackrel{\text{Behauptung 1}}{=} p \circ \iota_2 \circ f_2 = g_2 \circ f_2.$$

klar. Es bleibt zu zeigen, dass unser behaupteter Limes $X_1 \coprod X_2 / \sim$ universell ist. Sei also L ein weiterer topologischer Raum mit Abbildungen g_0', g_1', g_2' , sodass

kommutiert, dann müssen wir zeigen, dass es genau eine Abbildung $f:L\to X_1\coprod X_2/\sim$ gibt, sodass $g_i'=f\circ g_i$. Zunächst haben wir mit

der Universellen Eigenschaft des Koprodukt eine von g_1, g_2 induzierte Abbildung $g: X_1 \coprod X_2 \to L$, also ergibt sich folgende Situation:

Warnung. Auch in diesem Diagramm kommutiert das linke Quadrat nicht, d.h. $\iota_1 \circ f_1 \neq \iota_2 \circ f_2$.

Behauptung 2. g bildet äquivalente Elemente von $X_1 \coprod X_2$ auf gleiche Elemente in L ab.

Unterbeweis. Es genügt zu zeigen, dass $g(\iota_1(f_1(x))) = g(\iota_2(f_2(x)))$ für $x \in X_0$ beliebig, weil die Äquivalenzrelation hiervon erzeugt wird. Dazu ist

$$g \circ \iota_1 \circ f_1 = g'_1 \circ f_1 = g'_0 = g'_2 \circ f_2 = g \circ \iota_2 \circ f_2.$$

indem wir die Eigenschaften der induzierten Abbildung g und die des Limes L der Reihe nach anwenden. \blacksquare

Mit Behauptung 2 und der universellen Eigenschaft der Quotiententopologie faktorisiert nun g über $X_1 \coprod X_2 / \sim$, also induziert g unsere gewünschte Abbildung $f: X_1 \coprod X_2 / \sim \to L$, sodass

kommutiert. Dann erhalten wir auch schnell $g_1'=g\circ\iota_1=f\circ p\circ\iota_1=f\circ g_1$, analoges für g_2 , sowie $g_0'=g_1'\circ f_1=g_1\circ f_1=g_0$.

Es bleibt zu zeigen, dass die induzierte Abbildung f eindeutig ist. Nach der universellen Eigenschaft der Quotiententopologie genügt es, zu zeigen, dass g eindeutig bestimmt. g ist aber nach der universellen Eigenschaft von $X_1 \coprod X_2$ eindeutig bestimmt. Also war f eindeutig. Damit haben wir überprüft, dass $X_1 \coprod X_2 / \sim$ alle Eigenschaften eines Limes erfüllt.

Bemerkung*. Ja, der Beweis der Aussage ist sehr lang, dafür, dass er intuitiv klar ist, und das ist irgendwie typisch für Kategorientheorie. Ich hatte Lust, das mal ordentlich aufzuschreiben, aber normal verkürzt man den Beweis drastisch und verweist einfach die beiden anderen universellen Eigenschaften.

Beispiel. Ist $X_0 = \{\star\}$ ein Punkt, so ergibt sich

Definition 1.5 (Wedge-Produkt). Seien X, Y nichtleere topologische Räume, $x \in X$ und $y \in Y$. Bilde $f_1 : \{\star\} \to X, \star \mapsto x$ und analog für Y ab. Der entstehende Raum $X \bigcup_{\{\star\}} Y$ heißt **Einpunktvereinigung** oder auch **Wedge-Produkt** von X, Y und wird mit $X \vee Y$ notiert.

Beispiel. Sei $(X, x) = (S^1, 1)$ und $(Y, y) = (S^1, 1)$. Dann ist $X \vee Y$ ein **Bouqet von 2 Kreisen**.

Beispiel. Es ist $[0, \frac{1}{2}] \vee_{\frac{1}{2}} [\frac{1}{2}, 1] \cong [0, 1]$. Verkleben wir allerdings die Punkte $\frac{1}{4}$ und $\frac{3}{4}$, so erhalten wir nicht das Einheitsintervall, sondern ein Plus-Zeichen.

Bemerkung*. Aus anderen mathematischen Richtungen kennt man das Wort 'Wedge' eigentlich als Symbol \wedge . In der Topologie ist dies jedoch anders. Das Symbol \wedge heißt 'Smash' und definiert das Smash-Produkt zweier Räume:

$$X \wedge Y := X \times Y/X \vee Y.$$

Es ist z.B. $S^1 \wedge S^1 \cong S^2$ und sogar allgemein $S^n \wedge S^n \cong S^{2n}$.

Definition (Smash-Produkt). Seien X,Y topologische Räume und $x\in X,y\in Y$ Punkte. Dann ist das **Smash-Produkt** definiert als

$$(X,x) \wedge (Y,y) = X \times Y/(X \times \{y\} \cup \{x\} \times Y).$$

Bemerkung*. In der Pause stellte sich die Frage, ob es ein Beispiel für einen nicht-normalen Hausdorff-Raum gibt. Siehe hierzu [Lyn70, Gegenbeispiel 86].

Beispiel (Punktierte Tychonoff-Planke). Wir geben (nach einem Kommentar von Melvin Weiss) ein Beispiel für einen Hausdorff-Raum, der nicht normal ist, die sogenannte gelöschte Tychonoff-Planke (eng: 'deleted Tychonoff plank'). Sei hierzu \aleph_0 die erste unendliche Kardinalzahl und \aleph_1 die erste überabzählbare Kardinalzahl. Auf den Räumen $[0,\aleph_0]$ und $[0,\aleph_1]$ können wir in natürlicher Weise eine Topologie definieren, indem wir die Anfangs- und End-

stücke des Intervalls als Subbasis wählen. Der Raum

$$T := [0, \aleph_0] \times [0, \aleph_1].$$

heißt Tychonoff-Planke und ist ein kompakter Hausdorff-Raum, also insbesondere normal. Der Teilraum

$$T_{\text{deleted}} := T \setminus \{\infty\} := T \setminus \{(\aleph_0, \aleph_1)\}.$$

heißt punktierte Tychonoff-Planke und ist ein lokal kompakter Hausdorffraum, allerdings nicht normal.

Beweisskizze. Wir verweisen an dieser Stelle darauf, dass $[0,\alpha]$ für jede Ordinalzahl α ein kompakter Hausdorffraum ist, das ganze beruht im Wesentlichen darauf, dass die Ordinalzahlen eine Wohlordnung bilden. Also ist T als produkt von kompakten Hausdorffräumen ebenfalls kompakter Hausdorffraum (??, ??), also normal (??.

Der Teilraum $T_{\rm deleted}$ ist also als Teilraum eines Hausdorff-Raumes ebenfalls Hausdorff. Allerdings lassen sich die beiden abgeschlossenen Mengen

$$A := [0, \aleph_0) \times {\{\aleph_1\}}, \qquad B := {\{\aleph_0\}} \times [0, \aleph_1).$$

nicht durch offene Mengen trennen:

Angenommen, wir finden $A\subseteq U$ und $B\subseteq V$ mit U,V offen. Sei $n\in\mathbb{N}=\aleph_0$ beliebig, dann ist $(n,\aleph_1)\in A\subseteq U$. Da U offen, finden wir ein Basiselement der Produkttopologie, das (n,\aleph_1) enthält, also gibt es $\alpha_n<\aleph_1$, sodass bereits das Intervall $\{n\}\times [\alpha_n,\aleph_1]\subseteq U$ ist (an dieser Stelle sollte man sich eigentlich genauer Fragen, wie die Topologie auf einer Ordinalzahl definiert ist, die Details, und warum die behauptete Aussage folgt, sind aber leicht zu überlegen). Jetzt kommt der Trick: Wir betrachten

$$\beta := \sup_{n \in \mathbb{N}} \alpha_n.$$

Behauptung 1. $\beta < \aleph_1$

Unterbeweis. Es ist $\beta = \bigcup_{n \in \mathbb{N}} \alpha_n$ (nach Konstruktion der Ordinalzahlen) wieder eine Ordinalzahl. Da $\alpha_n < \aleph_1$ ist α_n (als Menge) abzählbar, und somit auch β als abzählbare Vereinigung abzählbarer Mengen, also ist auch $\beta < \aleph_1$, weil \aleph_1 überabzählbar ist.

Jetzt wissen wir also, dass sogar der Streifen $[0,\aleph_0) \times [\beta,\aleph_1] \subseteq U$ ist (nach Wahl der α_n), d.h. die Menge U enthält sogar ein 'Rechteck positiver Höhe', was absurd ist. Formal können wir argumentieren, indem wir jetzt für den Punkt $(\aleph_0,\beta) \in B$ eine offene Umgebung wählen und somit ein Intervall $[\gamma,\aleph_0) \times \{\beta\} \subseteq V$ mit $\gamma < \aleph_0$ finden. Dann ist jedoch $(\gamma,\beta) \in U \cap V$, \not .

Das absurde an dem Beispiel ist, dass wir das Supremum der α_n nehmen, die zwar alle $< \aleph_1$ sind, aber dennoch $\beta \neq \aleph_1$ folgt. Von den reellen Zahlen sind wir gewohnt, dass hier Gleichheit eintreten kann. Wir haben also sogar gezeigt, dass

Behauptung 2. Im Raum $[0, \aleph_1)$ konvergiert jede monoton steigende Folge.

obwohl der Raum nach oben keine Schranke besitzt. Die Moral daran ist ungefähr ' \aleph_1 ist zu groß, um von Folgen erreicht zu werden'. Das motiviert auch die Einführung von Netzen für größere topologische Räume, die wir hier aber nicht behandeln.

Wir haben nun Abbildungen $j_i: X_i \to X_1 \bigcup_{X_0} X_2$:

Lemma 1.6. Seien X_0, X_1, X_2 topologische Räume, $f_1 \colon X_0 \to X_1$, $f_2 \colon X_0 \to X_2$ stetig und betrachte die kanonischen Abbildungen $\iota_i \colon X_i \to X_1 \coprod X_2$ sowie $q \colon X_1 \coprod X_2 \to X_1 \bigcup_{X_0} X_2$. Ist f_1 injektiv so ist j_2 injektiv. Ist f_2 injektiv, so ist j_1 injektiv.

Beweis. Wir zeigen nur die erste Aussage, die zweite folgt aus Symmetriegründen. Seien $x, y \in X_2$ mit $j_2(x) = j_2(y)$, nach Konstruktion ist also $x \sim y$. Da die Äquivalenzrelation erzeugt ist von $f_1(x) \sim f_2(x)$, gibt es nun eine Folge von Punkten $x:=p_1 \sim p_2 \sim \ldots \sim p_n=:y,$ die jeweils von der Form $f_1(x) \sim f_2(x)$ sind.

Erzeugen wir eine Äquivalenzrelation durch $x_i \sim y_i$ für $i \in I$, so sind zwei Element x,y genau dann äquivalent, wenn es eine endliche Folge $x = a_0 \sim a_1 \sim ... \sim a_n = y$ gibt, wobei $\{a_i, a_{i+1}\} = \{(x_i, y_i)\}$ für ein $i \in I$.

Genauer gibt es also $x_1 \in X_0$ mit $f_2(x_1) = p_1 = x$ und $f_1(x_1) = p_2$, und $\exists x_2 \in X_0 \text{ mit } f_2(x_2) = p_3 \text{ sowie } f_1(x_2) = p_2 \text{ (auf welcher Seite } f_1 \text{ bzw.}$ f_2 steht, ergibt sich daraus, dass die Punkte p_i alternierend aus X_1, X_2 kommen müssen). Allgemein gibt es also $x_i \in X_0$ mit

$$f_2(x_{2i-1}) = p_{2i-1}, \quad f_1(x_{2i-1} = p_{2i}), \quad f_2(x_{2i} = p_{2i+1}), \quad f_1(x_{2i}) = p_{2i}$$

Nun wissen wir aber, dass f_1 injektiv ist, also ergibt sich $x_{2i-1} = x_{2i}$ Dann ist bereits:

$$x = f_2(x_1) = f_2(x_2) = p_3 == f_2(x_3) = f_2(x_4) = p_5 = \dots = y.$$

und damit haben wir x=y gezeigt und j_2 ist wie gewünscht injektiv. \square

Wir kehren nun zu unserer Ausgangssituation bzw. Ausgangsfrage zurück:

Sei X ein topologischer Raum und seien $X_1, X_2 \subseteq X$ Unterräume, sodass $X_1 \cup X_2 = X$. Setze $X_0 := X_1 \cap X_2$.

Betrachte

$$f': \left| \begin{array}{ccc} X_1 \coprod X_2 & \longrightarrow & X \\ (1,x) & \longmapsto & x \\ (2,x) & \longmapsto & x \end{array} \right|$$

(im Wesentlichen ist das die Projektion, sodass wir das 'disjunkt' aus der Vereinigung wieder loswerden). Dann faktorisiert f' nach der Universellen Skizze

Eigenschaft der Quotiententopologie über $f: X_1 \bigcup_{X_0} X_2 \to X$, d
h wir erhalten:

$$X_1 \coprod_{q \downarrow} X_2 \xrightarrow{f'} X$$

$$X_1 \bigcup_{X_0} X_2$$

Es ist f' surjektiv wegen $X_1 \cup X_2 = X$, also auch f', und wir prüfen auch leicht die Injektivität von f. Nun ist:

Satz 1.7. Betrachte die Konstruktion von eben. Nimm an, dass zusätzlich eine der Bedingungen

- 1. X_1, X_2 sind offen.
- 2. X_1, X_2 sind abgeschlossen.

gilt. Dann ist f ein Homö
omorphismus.

Beweis. Wir zeigen die Aussage nur unter Verwendung von 2., der Fall 1. geht analog. Es genügt zu zeigen, dass f abgeschlossen ist (weil wir schon wissen, dass f eine stetige Bijektion ist). Sei $A \subseteq X_1 \bigcup_{X_0} X_2$ abgeschlossen.

Dann sind $j_1^{-1}(A) \subseteq X_1$ und $j_2^{-1}(A) \subseteq X_2$ abgeschlossen, da j_1, j_2 stetig. Wegen

$$f(A) = j_1^{-1}(A) \cup j_2^{-1}(A).$$

sind wir fertig, indem wir $(j_1^{-1}(A) \subseteq X_1$ abgeschlossen und $X_1 \subseteq X$ abgeschlossen) $\Rightarrow j_1^{-1}(A) \subseteq X$ abgeschlossen bemerken.

Bemerkung*. Die Stetigkeit von f^{-1} kann man auch mit Aufgabe 2, Übungsblatt 2 einsehen, weil $X = X_1 \cup X_2$ mit X_1, X_2 abgeschlossen ist, und die entsprechenden Teilabbildungen $X_1 \to X_1 \bigcup_{X_0} X_2$ Einbettungen sind. Im Wesentlichen wiederholen wir hier einfach nur die Aussage des Übungsblattes.

Beispiel. Sei $X = S^n$ und betrachte die Teilräume

$$X_1 = \{x \in S^n \mid x_{n+1} \ge 0\}$$
 $X_2 = \{x \in S^n \mid x_{n+1} \le 0\}$

, also die obere und untere Halbkugel. Der Schnitt

$$X_0 := X_1 \cap X_2 = \{x \in S^n \mid x_{n+1} = 0\}.$$

ist dann genau der Äquator der Kugel, also lernen wir aus Satz 1.7,

$$S^n \cong X_1 \bigcup_{X_0} X_2.$$

Mit der Abbildung

$$\begin{array}{ccc} X_1 & \longrightarrow & D^n \\ (x_1, \dots, x_{n+1}) & \longmapsto & (x_1, \dots, x_n) \end{array}$$

(die Projektion auf die n-Dimensionale Scheibe) erhalten wir einen

Homö
omorphismus $D^n \cong X_1, X_2$, also haben wir eigentlich sogar

$$S^n \cong D^n \bigcup_{S^{n-1}} D^n.$$

gezeigt.

Warnung. Auch hier ist wieder wichtig, dass wir $S^{n-1} \hookrightarrow D^n$ jeweils kanonisch einbetten, für andere Abbildungen haben wir bereits gesehen, dass wir andere Räume erhalten können.

Vorlesung 2 Di 11 Mai 2021 12:16

2 Zusammenhang, Wegzusammenhang

Definition 2.1 (Zusammenhang). Ein topologischer Raum heißt **zusammenhängend**, wenn er sich <u>nicht</u> in zwei nichtleere, disjunkte, offene Teilmengen zerlegen lässt.

 \mathbf{Lemma}^{\dagger} (Offen-abgeschlossene-Mengen). Ein Raum ist zusammenhängend, wenn die leere Menge und der gesamte Raum die einzigen Teilmengen von X sind, die offen und abgeschlossen sind, d.h.

Beweis*. Klar. \Box

Bemerkung. X ist nicht zusammenhängend, genau dann, wenn $X \cong X_1 \coprod X_2$ eine disjunkte Vereinigung von 2 Räumen $X_1, X_2 \neq \emptyset$ ist.

Beispiel. 1) $\mathbb{R}\setminus\{0\} = (-\infty,0)\cup(0,\infty)$ und $(-\infty,0),(0,\infty)$ sind offen, disjunkt und nicht leer, also ist $\mathbb{R}\setminus\{0\}$ <u>nicht</u> zusammenhängend.

2) Betrachte $\mathbb{Q} \subseteq \mathbb{R}$ mit der Unterraumtopologie. Dann ist

$$\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \sqrt{2})) \cup (\mathbb{Q} \cap (\sqrt{2}, \infty)).$$

eine Zerlegung in offene, disjunkte, nichtleere Mengen, also ist auch $\mathbb Q$ nicht zusammenhängend.

Bemerkung*. Es ist meistens einfacher, zu zeigen, dass ein Raum nicht zusammenhängend ist, die Gegenrichtung erweist sich als schwerer. Deswegen folgender

 ${\bf Satz}~{\bf 2.2}$ (Einheitsintervall). Das Intervall [0,1] ist zusammenhängend.

Beweis. Nimm gegenteilig an, dass [0,1] nicht zusammenhängend ist, schreibe also $[0,1]=A\cup B$ mit $A,B\neq\varnothing$, offen und disjunkt. OBdA sei

 $0 \in A$. Wegen $B \neq \emptyset$ gibt es $t := \inf B$. Da t abgeschlossen (weil A offen!), ist $t \in B$, also folgt $[0,t) \subseteq A$. Aber jede Umgebung von $t \in B$ schneidet [0,t), also $A, \not \{ \}$, weil $A \cap B = \emptyset$.

Definition[†] (Weg). Sei X ein topologischer Raum und $x,y \in X$. Ein **Weg** von x nach y ist eine stetige Funktion $w:[0,1] \to X$, sodass w(0) = x und w(1) = y.

Definition 2.3 (Wegzusammenhang). Ein topologischer Raum X heißt **wegzusammenhängend**, falls für je zwei Punkte $x, y \in X$ ein **Weg** von x nach y existiert.

Beispiel. 1) Die Mengen (a,b), [a,b), (a,b] und $\mathbb R$ sind alle wegzusammenhängend. Definiere hierzu

$$w: \left| \begin{array}{ccc} [0,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & ty + (1-t)x \end{array} \right|$$

Als Verknüpfung stetiger Funktionen ist t stetig, und wir sehen leicht, dass $0 \mapsto x, 1 \mapsto y$.

- 2) $\mathbb{R}^n, n \ge 0$ ist wegzusammenhängend. Dazu betrachte vorherige Abbildung auf den einzelnen Komponenten
- 3) $\mathbb{R}^n \setminus \{0\}$, $n \ge 2$ ist wegzusammenhängend. Seien hierzu $x, y \in \mathbb{R}^n \setminus \{0\}$.

Fall 1: Die Strecke von x nach y liegt in $\mathbb{R}^n \setminus \{0\}$. Dann betrachten wir wieder die Abbildung aus 1) und sind fertig.

Fall 2: Die Strecke trifft die 0. Wähle dann einen dritten Punkt z, der nicht auf der Geraden durch x,y liegt. Dann gibt es einen Weg von x nach z und einen von z nach x, und die Vereinigung der beiden Wege ist dann ein Weg von x nach y.

Lemma 2.4. Ist X wegzusammenhängend, so ist X zusammenhängend.

Warnung. Die Umkehrung von Lemma 2.4 gilt im Allgemenien nicht. Siehe hierzu Übungsblatt 5, Aufgabe 1.

Beweis von Lemma 2.4. Sei X wegzusammenhängend, und nimm gegenteilig an, dass $X=U_1\sqcup U_2$ mit $U_i\subseteq X$ offen und disjunkt. Sei $x_1\in U_1, x_2\in U_2$. Dann gibt es einen Weg w von x_1 nach x_2 , und wir erhalten

$$w^{-1}(U_1) \cup w^{-1}(U_2) = w^{-1}(U_1 \cup U_2) = [0, 1].$$

Allerdings sind $w^{-1}(U_i)$ offen (w ist stetig), disjunkt (U_1, U_2 sind disjunkt) und nicht leer ($0 \in w^{-1}(U_1)$, $1 \in w^{-1}(U_2)$), also ist [0,1] nicht zusammenhängend. \nleq mit Satz 2.2.

Korollar 2.5. \mathbb{R} und \mathbb{R}^2 sind nicht homöomorph.

Beweis. Nimm an, es gibt einen solchen Homöomorphismus

$$f: \left| \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ 0 & \longmapsto & f(0) \end{array} \right|$$

Dann induziert f auch einen Homöomorphismus $\mathbb{R}^2 \setminus \{0\} \cong \mathbb{R} \setminus \{f(0)\}$, allerdings ist $\mathbb{R}^2 \setminus \{0\}$ wegzusammenhängend, und $\mathbb{R} \setminus \{f(0)\}$ nicht, $\not \downarrow$. \square

Frage. Sind \mathbb{R}^n , \mathbb{R}^m wegzusammenhängend?

Antwort. Nein, das gilt natürlich genau dann, wenn n=m. Allerdings warten wir mit einem solchen Beweis bis zur algebrasichen Topologie. Siehe hierzu auch 'Invariance of domain', Brower.

Ein Versuch für einen ähnlichen Beweis scheitert, weil $\mathbb{R}^2\setminus\{0\}$ und $\mathbb{R}^3\setminus\{f(0)\}$ beide (weg)zusammenhängend sind. Man könnte nun Versuchen, eine Gerade oder einen Kreis von \mathbb{R}^2 zu entfernen, der entsprechende Raum ist dann unzusammenhängend. Es erscheint auch klar, dass $\mathbb{R}^3\setminus f(\text{Kreis}\ /\ \text{Gerade})$, allerdings ist ein entsprechender Beweis verhältnismäßig schwer. Die algebraische Topologie wird es uns ermöglichen, das wesentlich einfacher einzusehen.

Bemerkung*. Die Frage, ob eine Schleife in \mathbb{R}^2 (ein stetiges, injektives Bild von \mathcal{S}^1 in \mathbb{R}^2) den Raum in zwei Teile zerteilt, ist auch schwerer als man denkt, hierzu siehe 'Jordan curve theorem' (Satz von Jordan-Schönflies).

Referenz

Referenz

Lemma 2.6 (Bilder von zusammenhängenden Räumen). Sei $f:X\to Y$ stetig und surjektiv.

- 1) Ist X wegzusammenhängend, so ist Y wegzusammenhängend.
- 2) Ist X zusammenhängend, so ist Y zusammenhängend.

Beweis. 1) Seien $y_1, y_2 \in Y$ beliebig. Da f surjektiv ist, finden wir $x_1, x_2 \in X$ mit $f(x_1) = y_1$, $f(x_2 = y_2)$. Nun finden wir wegen Wegzusammenhang von X einen Weg $w : [0, 1] \to X$ mit $w(0) = x_1$ und $w(1) = x_2$. Dann ist die Verknüpfung

$$f \circ w : \begin{vmatrix} [0,1] & \longrightarrow & Y \\ 0 & \longmapsto & f(x_1) = y_1 \\ 1 & \longmapsto & f(x_2) = y_2 \end{vmatrix}$$

ein Weg von y_1 nach y_2 , also ist Y wegzusammenhängend.

2) Nimm an, dass Y nicht zusammenhängend ist, also gibt es $U_1, U_2 \neq \emptyset$ offen und disjunkt mit $Y = U_1 \cup U_2$. Dann ist auch

$$X = f^{-1}(Y) = f^{-1}(U_1 \cup U_2) = f^{-1}(U_1) \cup f^{-1}(U_2).$$

und $f^{-1}(U_i)$ sind offen, disjunkt und nichtleer, weil f surjektiv ist. Also ist X nicht zusammenhängend, $\oint dx$.

2 ZUSAMMENHANG, WEGZUSAMMENHANG

16

Beispiel. Die Sphäre $S^n, n \geqslant 1$ ist wegzusammenhängend. Hierzu stellen wir fest, dass

$$\mathbb{R}^n \setminus \{0\} \cong S^{n-1} \times \mathbb{R} \stackrel{\text{Projektion}}{\longrightarrow} S^{n-1}.$$

und wir wissen schon, dass $\mathbb{R}^n\backslash\left\{0\right\}$ wegzusammenhängend ist, also auch $S^{n-1}.$

Bemerkung*. Stuff mit \mathbb{R} oder $(0, \infty)$ machen.

Bemerkung. Jede sternförmige Teilmenge von \mathbb{R}^n ist wegzusammenhängend. Hierzu

konvex \Rightarrow sternförmig \Rightarrow wegzusammenhängend.

3 Lemma von Urysohn

Satz 3.1 (Urysohn'sches Lemma). Sei X ein normaler topologischer Raum. Seien $A, B \subseteq X$ abegschlossen und disjunkt. Dann existiert eine stetige Abbildung $f: X \to [0,1]$, sodass $f \mid_{A} \equiv 0$ und $f \mid_{B} \equiv 1$.

Grafik

Lemma 3.2. Sei X ein topologischer Raum, sodass für jedes $r \in [0,1] \cap \mathbb{Q}$ offene $V_r \subseteq X$, sodass $r < r' \Rightarrow \overline{V_r} \subseteq V_{r'}$. Dann existiert eine stetige Abbildung $f: X \to [0,1]$, sodass f(x) = 0 für $x \in V_0$ und f(x) = 1 für $x \notin V_1$.

Beweis. Definiere

$$f: \left| \begin{array}{ccc} X & \longrightarrow & [0,1] \\ x & \longmapsto & \begin{cases} 1 & x \notin V_1 \\ \inf \left\{ r \mid x \in V_r \right\} & x \notin V_1 \end{array} \right.$$

Die Eigenschaften $f\mid_{V_0}\equiv 0$ und $f\mid_{X\backslash V_i}\equiv 1$ sind sofort klar. Es bleibt zu

zeigen, dass fstetig ist. Da

$$S := \{ [0, a) \mid a \in [0, 1] \} \cup \{ (a, 1] \mid a \in [0, 1] \}.$$

eine Subbasis der Topologie auf [0,1]ist, genügt es, Stetigkeit auf ${\mathcal S}$ zu prüfen. Sei

$$x \in f^{-1}([0, a)) \Leftrightarrow f(x) < a \leq 1$$

$$\Leftrightarrow \inf \{r \mid x \in V_r\} < a$$

$$\Leftrightarrow \exists r < a, r \in \mathbb{Q} : x \in V_r$$

$$\Leftrightarrow x \in \bigcup_{r < a} V_r$$

Für den zweiten Typ von Basielementen ist

$$x \in f^{-1}((a,1]) \Leftrightarrow \begin{cases} x \notin V_1 & \text{oder} \\ x \in V_1, a < f(x) = \inf\{r \mid x \in V_r\} \end{cases}$$

$$\Leftrightarrow \exists r' > a, r' \in \mathbb{Q}, x \notin V_r$$

$$\overline{V_r} \subseteq V_{r'}$$

$$\Leftrightarrow x \in \bigcup_{r > a} (X \setminus \overline{V_r})$$

also ist auch $f^{-1}((a,1])$ eine Vereinigung von offenen Mengen. Also ist f stetig, wie zu zeigen war.

Bemerkung*. Wir können uns die V_r wie eine Art 'Höhenprofil' oder 'Höhenlienien' vorstellen, die wir in unserem Raum gegeben haben.

Stichwortverzeichnis

Bouqet von 2 Kreisen, 10	Smash-Produkt, 10
disjunkte Vereinigung, $\frac{4}{}$	Topologischer Raum zusammenhängend, <mark>14</mark>
Einpunktvereinigung, 10	Wedge-Produkt, 10 Weg, 15
gelöschte Tychonoff-Planke, 10	wegzusammenhängend, 15

Literatur

 $\hbox{[Lyn70]} \quad \hbox{Jr. Lynn Arthur Steen J. Arthur Seebach. $Counterexamples$ $in Topology. Springer-Verlag, 1970. ISBN: 0-486-68735-X. }$