Matière : Physique-Chimie Professeur : Zakaria HAOUZAN

Unité : La Mécanique Établissement : Lycée SKHOR qualifiant

Niveau: TCS Heure: 3H

Leçon $N^{\circ}5$: Equilibre d'un corps solide soumis à deux forces

I Questions:

- Donner un exemple d'un corps solide en équilibre, et soumis à 2 forces
- Quels sont les conditions d'équilibre d'un corps solide soumis à 2 forces ?
- Quel est l'appareil qui permet de mesurer l'intensité d'une force ?
- Donner l'expression de la masse volumique et son unité dans le (S.I)

II Situation problème:

Le schéma (1) représente une masse marquée attaché à l'extrémité d'un ressort. La masse marquée est en équilibre à cause d'une force appliquée par le ressort Le schéma (2) représente un morceau de bois flotte sur la surface de l'eau. Le morceau de bois est en équilibre à cause d'une force appliquée par l'eau

- Que s'appelle la force appliquée par le ressort ? et quelles sont ses caractéristiques ?
- Que s'appelle la force appliquée par l'eau ? et quelles sont ses caractéristiques ?

corps

III Rappel : Condition d'équilibre d'un corps solide sous l'action de deux forces

Lorsqu'un corps est en équilibre sous l'action de deux forces $\vec{F_1}$ et $\vec{F_2}$, alors ces deux forces ont :

- La même direction
- Des sens opposés : $\vec{F_1} = \vec{F_2}$ - La même intensité : $F_1 = F_2$

IV Force exercée par un ressort :

IV.1 Activité 1

On attache à l'extrémité du ressort (de spires non jointives et de masse négligeable) avec un support, la longueur initiale (à vide) du ressort est l_0 , on suspend à l'autre extrémité une masse marquée (S) de masse m, et on mesure chaque fois la longueur finale l du ressort, Nous obtenons les résultats suivants :

m(g)	0				
l(cm)					
T(N)					
$\Delta(cm)$					

- 1. Faire l'inventaire des forces appliquées à la masse marquée (S), et les représenter sur la figure
- 2. On applique la condition de l'équilibre, déterminer l'intensité de la force exercée par le ressort pour chaque masse marquée
- 3. On appelle allongement du ressort Δl la différence entre la longueur finale l et la longueur initiale l0 : $\Delta l = |l l_0|$ Compléter le remplissage du tableau

- 4. Tracer la courbe de en fonction de Δl
- 5. Trouver la relation entre l'intensité du ressort et l'allongement du ressort Δl

IV.2 Conclusion:

Lorsqu'on suspend un solide à un ressort, le ressort exerce une force sur le solide, appelée la tension du ressort \vec{T} , ses caractéristiques sont :

- Point d'application : point d'accroche du ressort
- Direction : celle du ressort
- Sens : opposée à la déformation du ressort
- intensité : $T=k.\Delta l=k|l-l_0|$ Avec la constante de raideur du ressort en $N.m^{-1}$ et l'allongement Δl en m

V La poussée d'Archimède :

V.1 Activité 2

On suspend le corps (S) à un ressort, et on verse l'eau dans une éprouvette graduée

On immerge complètement le corps (S) dans l'eau

On donne : la masse volumique de l'eau : $\rho=1g/cm^3$ Intensité de pesanteur g = 9.81 N/kg

- 1. Faire l'inventaire des forces appliquées au corps (S) avant de l'immerger dans l'eau. Que représente la valeur indiquée par le dynamomètre ?
- 2. Faire l'inventaire des forces appliquées au corps (S) après de l'immerger dans l'eau
- 3. Mesurer le volume de l'eau déplacée
- 4. Calculer le poids de l'eau déplacée, et le Comparer avec l'intensité de poussée d'Archimède. Conclure

V.2 Conclusion:

La poussée d'Archimède $\vec{F_a}$ est une force de contact répartie exercée par un fluide (liquide ou gaz) sur un solide immergé, ses caractéristiques sont

- Point d'application : centre d'inertie de partie immergé
- Direction : la verticale
- Sens : vers le haut
- Intensité : égale au poids de fluide déplacé $F_a = \rho g V$ avec ρ en $Kg.m^{-3}$, V en m^3 et g en N/Kg

