Homework 1: Induction practice

Due 08/26/16

August 23, 2016

1. Use induction to prove that if a_n is a sequence such that $a_0 = 0$ and $a_n = 2a_{n-1} + 2^n$ for n > 0, then $a_n = n2^n$ for all $n \ge 0$.

Answer:

Proof. (Base case) When n = 0, $a_n = 0$ and $n2^n = 0(2^0) = 0$, so $a_n = n2^n$ when n = 0.

(Induction step) Suppose that $a_k = k2^k$ for some $k \ge 0$, and consider a_{k+1} . By the definition of a_n , $a_{k+1} = 2a_k + 2^{k+1}$. By the Inductive Hypothesis, $a_k = k2^k$, so $a_{k+1} = 2k2^k + 2^{k+1} = k2^{k+1} + 2^{k+1} = (k+1)2^{k+1}$.

Hence, $a_n = n2^n$ for all $n \ge 0$ by induction.

2. Use strong induction to prove that if b_n is a sequence such that $b_0 = 1$, $b_1 = 6$, and $b_n = 4b_{n-2}$, then $b_n = 2^{n+1} - (-2)^n$ for all $n \ge 0$.

Answer:

Proof. (Base case) When n = 0, $a_n = 1$ and $2^{n+1} - (-2)^n = 2^1 - (-2)^0 = 2 - 1 = 1$, so $a_n = 2^{n+1} - (-2)^n$ when n = 0.

When n = 1, $a_n = 6$ and $2^{n+1} - (-2)^n = 2^2 - (-2)^1 = 4 - (-2) = 6$, so $a_n = 2^{n+1} - (-2)^n$ when n = 1.

(Inductive step) Suppose that $a_n = 2^{n+1} - (-2)^n$ for all n from 0 up to k, for some $k \ge 1$, and consider a_{k+1} . Since $k \ge 1$, $a_{k+1} = 4a_{k-1}$ by the definition of a_n . Since k-1 < k and $k-1 \ge 0$, $a_{k-1} = 2^k - (-2)^{k-1}$ by the induction hypothesis. So:

$$a_{k+1} = 4(2^k - (-2)^{k-1})$$

$$= 4(2^k) - 4(-2)^{k-1}$$

$$= 2^2(2^k) - (-2)^2(-2)^{k-1}$$

$$= 2^{k+2} - (-2)^{k+1}$$

Hence, $a_n = 2^{n+1} - (-2)^n$ for all $n \ge 0$ by strong induction.