The Old-bo	v Network
------------	-----------

When host is executed it will list out all of the IP addresses attached to the domain name. nslookup is another command that is similar to host, which can be used to query details related to DNS and resolving of names. For example:

\$ host google.com

```
google.com has address 64.233.181.105
google.com has address 64.233.181.99
google.com has address 64.233.181.147
google.com has address 64.233.181.106
google.com has address 64.233.181.103
google.com has address 64.233.181.104
```

We can also list out all the DNS resource records as follows:

\$ nslookup google.com

Server: 8.8.8.8 Address: 8.8.8.8#53

Non-authoritative answer:

Name: google.com

Address: 64.233.181.105

Name: google.com

Address: 64.233.181.99

Name: google.com

Address: 64.233.181.147

Name: google.com

Address: 64.233.181.106

Name: google.com

Address: 64.233.181.103

Name: google.com

Address: 64.233.181.104

Server: 8.8.8.8

The last line in the preceding command-line snippet corresponds to the default name server used for resolution.

Without using the DNS server, it is possible to add a symbolic name to the IP address resolution just by adding entries into the file /etc/hosts. In order to add an entry, use the following syntax:

echo IP_ADDRESS symbolic_name >> /etc/hosts

For example:

echo 192.168.0.9 backupserver >> /etc/hosts

After adding this entry, whenever resolution to backupserver occurs, it will resolve to 192.168.0.9.

Showing routing table information

Having more than one network connected with each other is a very common scenario. An example of this is in a college, where different departments may be on separate networks. In this case, when a device on one network wants to communicate with a device on the other network, it needs to go through a device which is common to the two networks. This special device is called a **gateway** and its function is to route packets to and from different networks.

The operating system maintains a table called the **routing table**, which contains the information on how packets are to be forwarded through machines on the network. The routing table can be displayed as follows:

\$ route

Kernel IP routing table

Destination	Gateway	Genmask	Flags	Metric	Ref	UseIface
192.168.0.0	*	255.255.252.0	υ υ	2	0	0wlan0
link-local	*	255.255.0.0	υ	1000	0	0wlan0
default	p4.local	0.0.0.0	ŪĠ	0	0	0wlan0

Or, you can also use:

\$ route -n

Kernel IP routing table

Destination	Gateway	Genmask	Flags	Metric	Ref	Use	Iface
192.168.0.0	0.0.0.0	255.255.252.0	U	2	0	0	wlan0
169.254.0.0	0.0.0.0	255.255.0.0	U	1000	0	0	wlan0
0.0.0.0	192.168.0.4	0.0.0.0	ŪĠ	0	0	0	wlan0

Using -n specifies to display the numerical addresses. When -n is used it will display every entry with a numerical IP address, else it will show symbolic hostnames instead of IP addresses in DNS entries for IP addresses that are available.