MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics
Winter 2022

27 Priority Queues and Heaps

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

March 28, 2022

Admin

- Mid-Term 2:
 - Wednesday 30 March 2022
 - Duration: 1 hour
 - From 1:30 to 14:30 (lec. time)
 - Location: T13 123

 Covers: Topics from "Doubly Linked Lists" until the lecture of Wednesday 16 March 2022 (inclusive)

Priority Queue

What we have seen so far

- So far, we have seen "position-based" data structures
 - Stacks, queues, deques, lists, trees
 - Store elements at specific positions (linear or hierarchical)
 - Insertion and removal based on "position" (linear or hierarchical)
 - But, priority queue
 - Insertion and removal: priority-based
- Priority Queue
 - Data structure for storing a collection of prioritized elements
 - Supporting arbitrary element insertion
 - Supporting removal of elements in order of priority
 - How to express priority? with key

Priority Queue ADT

- A priority queue stores a collection of entries
- Typically, an entry is a pair (key, value), where the key indicates the priority
- Main methods of the Priority
 Queue ADT
 - insert(e): inserts an entry e
 - removeMin(): removes the entry with smallest key

- Additional methods
 - o min()
 - returns, but does not remove, an entry with smallest key
 - o size(), empty()
 - Applications:
 - Auctions
 - Stock market

Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined
- Two distinct entries in a priority queue can have the same key
- Total ordering
 - Comparison rule should be defined for every pair of keys

- Satisfying the above three properties ensures:
 - We will never have a comparison contradiction

- Mathematical concept of total order relation ≤
 - Reflexive property: $x \le x$
 - Antisymmetric property:

$$x \le y \land y \le x \Rightarrow x = y$$

Transitive property:

$$x \le y \land y \le z \Rightarrow x \le z$$

Total Order Example

- 2D points with (x-coordinate, y-coordinate)
 - Define relation '>=' based on first x, and then y
 - (4,3) >= (3,4),
 - (3,5) >= (3,4)
 - Total ordering
- What about defining relation '>=' based on both x and y
 - $_{\circ}$ (4,3) >=(2,1), but (4,3) ??? (3,4)
 - Partial ordering
 - Comparison is not defined for some objects
- We assume that we define a comparison that leads to total ordering.

Comparator Design Pattern

- Integer, float, double
 - Quite clear on how to define "order"
- Student: id, sex, department
 - S1 is less than S2? In what sense?
- Flight Passengers: airplane number, seat number, sex
 - P1 is less than P2? In what sense?
- How to design "comparison logic" in a programming language?

Comparator Design Pattern

- Having different Priority Queues for different Objects?!
 - Simple, but not general
 - Many copies of the same code
- Template and Overloading
 - General enough for many situations
 - Cannot have multiple comparison methods for the same type
 - What about comparison based on first y, and then x?
- Separating Comparator
 - 2D points
 - Sometimes we want either of X-based comparison, Y-based comparison
 - Idea
 - Define a comparator class, e.g., "LeftRight" (x-based) and "BottomTop" (ybased)
 - Overload "()" operator

Comparator ADT

- Implements the boolean function isLess(p,q), which tests whether p < q
- Can derive other relations from this:
 - o (p == q) is equivalent to
 - (!isLess(p, q) && !isLess(q, p))
- Can implement in C++ by overloading "()"

Two ways to compare 2D points:

```
class LeftRight { // left-right comparator
public:
   bool operator()(const Point2D& p,
     const Point2D& q) const
   { return p.getX() < q.getX(); }
};
class BottomTop { // bottom-top
public:
    bool operator()(const Point2D& p,
   const Point2D& q) const
   { return p.getY() < q.getY(); }
};
```

 Can use: leftRight(p,q) or bottomTop(p,q)

Comparator ADT

```
Point2D p(1.3, 5.7), q(2.5, 0.6); // two points

LeftRight leftRight; // a left-right comparator

BottomTop bottomTop; // a bottom-top comparator

printSmaller(p, q, leftRight); // outputs: (1.3, 5.7)

printSmaller(p, q, bottomTop); // outputs: (2.5, 0.6)
```

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time of this sorting method depends on the priority queue implementation

```
Algorithm PQ-Sort(S, C)
```

```
Input sequence S, comparator C for the elements of S
```

Output sequence S sorted in increasing order according to C

```
P \leftarrow priority queue with comparator C
```

```
while \neg S.empty ()
e \leftarrow S.front(); S.eraseFront()
P.insert (e, \emptyset)
while \neg P.empty()
e \leftarrow P.removeMin()
S.insertBack(e)
```


Sequence-based Priority Queue

 Implementation with an unsorted list

- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take O(n)
 time since we have to traverse
 the entire sequence to find the
 smallest key

Implementation with a sorted list

- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take *O*(1)
 time, since the smallest key is at the beginning

Priority Queue Sorting

- We can use a priority queue to sort a set of comparable elements
 - 1. Insert the elements one by one with a series of insert operations
 - 2. Remove the elements in sorted order with a series of removeMin operations
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n2) time
 - Sorted sequence gives insertion-sort: O(n2) time
- Can we do better?

```
Algorithm PQ-Sort(S, C)
```

```
Input sequence S, comparator C for the elements of S
```

Output sequence **S** sorted in increasing order according to **C**

```
P \leftarrow priority queue with comparator C
```

```
while \neg S.empty ()
e \leftarrow S.front(); S.eraseFront()
P.insert (e, \emptyset)
while \neg P.empty()
```

$$e \leftarrow P.removeMin()$$

S.insertBack(e)

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
- Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
- Complete Binary Tree: let h be the height of the heap
 - o for i = 0, ..., h 1, there are 2^i nodes of depth i
 - o at depth h-1, the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost node of maximum depth

Heap Order

- The keys encountered on a path from the root to a leaf T are nondecreasing
- A minimum key: always at the root

Height of a Heap

• Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth i = 0, ..., h-1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- ∘ Thus, $n \ge 2^h$, i.e., $h \le \log n$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores
 the heap-order property by
 swapping k along an upward
 path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height
 O(log n), upheap runs in
 O(log n) time

Upheap - Another Example

Insert: (2,T)

Removal from a Heap

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Upheap terminates when key
 k reaches a leaf or a node
 whose children have keys
 greater than or equal to k
- Since a heap has height
 O(log n), downheap runs in
 O(log n) time

Downheap - Another Example

removeMin

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached
- Similar algorithm for updating the last node after a removal

Heap-Sort

- Consider a priority queue with n items implemented by means of a heap
 - the space used is O(n)
 - methods insert and removeMin take O(log n) time
 - methods size, empty, and
 min take time *O*(1) time

- Using a heap-based priority
 queue, we can sort a sequence
 of n elements in O(n log n) time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort.

Questions?