	MA398 Assignment 1
1.	
a)	Proving absolute convergence in operator norm should be sufficient & finite complex vector space
	liger
-	1/Tllop - represents operator normon T
-	st.
	T op = sup Tx x \le
	11x1/ is norm on C"
	By sub-multiplicitivity.
	(i.e. 1/ABIIm 5/1/AIIm/1/BIIm)
	11 TR op < 11 Thop Thop 1 Thop R times
	= 11 T/10p
	So (PTO)

.

...

b)
$$A = S' \wedge S$$

$$e^{\alpha p(A)} = \sum_{R=0}^{\infty} \frac{1}{R!} A^{R}$$

$$= I + A' + A^{2} + A^{3} + \dots$$

$$= I + (S' \wedge S) + (S' \wedge S)^{2} + 8A (S' \wedge S)^{3} + \dots$$

$$= I + (S' \wedge S) + (S' \wedge S)^{2} + 8A (S' \wedge S)^{3} + \dots$$

$$A^{n} = S' \wedge S$$

$$= \sum_{\alpha p(A)} = I + S' \wedge S + \dots + S' \wedge S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

$$= \sum_{\alpha p(A)} = \sum_{\alpha p(A)} (I + A + A^{2} + A^{3} + \dots) S$$

C) Define
$$\alpha, \beta \in \alpha$$

$$exp(A(\alpha+\beta)) = exp(A\alpha) exp(A\beta)$$

$$\Rightarrow prom departion we get:$$

$$(T + A\alpha + A\alpha)^{2} + \dots) (T + A\beta + (A\beta)^{2} + \dots)$$

$$= (\sum_{j=0}^{\infty} (A\alpha)^{j}) (\sum_{k=0}^{\infty} (A\beta)^{k})$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (A^{j+k}\alpha^{j}\beta^{k})$$

$$= \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (A^{j+k}\alpha^{j}\beta^{k})$$

$$\Rightarrow \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (A^{j+k}\alpha^{j}\beta^{k})$$

$$\Rightarrow \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (A^{j+k}\alpha^{j}\beta^{k})$$

$$= \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} (A^{j}\alpha^{n}\beta^{n-j}) = \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} \sum_{$$

15 form: (This is actually S15-13, but 515-1-5-115 exp(A) = 5 exp A(1) S (-ii) exp(i 0)/2 /2 -/e 0) cosx = eix +eix Sinx = eior = eix Cosx tisinx = de' Cosx - isinx = Ze-ix Set x = 1 = 2 $e^{i\frac{\pi}{2}} = \cos i + i\sin i$ (radius) $e^{i} = \cos i - i\sin i$

pto

Type B = (06) Trivially: exp(tB) = (cos(bt) sin(bt)) -sin(bt) cos(bt)and Type C $exp(tA) = e^{at} cosbt$ $e^{at} sin(bt)$ $e^{at} cos(bt)$ MA398_Assignment1_ExerciseIf.m some notes about the code are commented in

```
%initialisation
 Y = [];
 m = 20;
 %if m >= 17, the truncation error is so small, it is determined as 0 by
- for n = 0:m
     %more initialisation
     A = [0,1;-1,0];
     sum = [1,0;0,1];
     currentTerm = [1,0;0,1];
     %for loop to calculate finitely truncated exponential from definition
白
    for i = 1:n
         currentTerm = currentTerm * A / i;
         sum = sum + currentTerm;
         %Y is an array that will containt the truncation error, represented
         %as the difference in the norms of the expm value and the truncated
         %value
         Y(n) = abs(norm(expm(A)) - norm(sum));
         Z(n) = abs(norm(expm(A) - sum));
     end
L end
 %array for x and creating log arrays
 X = [];
 logX = [];
 logY = [];
□ for i = 1:m
     X(i) = i;
     logX(i) = log(X(i));
     logY(i) = log(Y(i));
L end
 %plotting
 plot(X, Y);
 xlim([0 17]);
 %plot(logX, logY);
 title ("Decay of Truncation Error of the Matrix Exponential");
 xlabel("Number of steps");
 ylabel("Truncation error");
```

2.
a)
$$A_{11} A_{12} = A_{11} C_{11} C_{11} C_{12}$$
 $A_{21} A_{22} = A_{21} C_{21} C_{22}$
 $A_{21} A_{22} = A_{21} C_{21} C_{22}$
 $A_{22} = A_{21} C_{21} C_{22}$
 $A_{22} = A_{22} C_{21} C_{21}$
 $A_{23} = A_{23} C_{23} C_{23} C_{23}$
 $A_{24} = A_{21} C_{21} C_{21} C_{22} C_{23} C_{23} C_{23} C_{23}$
 $A_{22} = A_{22} C_{23} C_{23}$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ \end{bmatrix}$$
 $\begin{bmatrix} 1 & 3 & 0 \\ 0 & -5 & 0 \end{bmatrix}$
 $\begin{bmatrix} 2 & 1 & 0 \\ 0 & -5 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 3 & 0 \\ 0 & -5 & 0 \end{bmatrix}$
 $\begin{bmatrix} 2 & 1 & 0 \\ 0 & -5 & 0 \end{bmatrix}$

$$= \frac{1}{2} U_{12} = \frac{1}{2} \frac{0}{0} \frac{0}{0} \frac{0}{0} = \frac{0}{0} \frac{0}{0} \frac{0}{1}$$

$$L_{21} = A_{21}U_{11}' = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}\begin{pmatrix} 1 & 3 \\ 0 & -5 \end{pmatrix}$$

$$=$$
 $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \cdot \frac{1}{5} \begin{pmatrix} 5 & -3 \\ 0 & 1 \end{pmatrix}$

$$=) L_{21} = \begin{pmatrix} 0 & -\frac{1}{5} \\ 2 & 6/5 \end{pmatrix}$$

pro

	We can write A=LO similarly to Zai)
	but with a new approach like this
	(*)
	$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & A_{22} \end{pmatrix} - \begin{pmatrix} 1 & Q \\ b_{11} & L_{22} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} \\ O & \overline{U}_{22} \end{pmatrix}$
*	- az Azz - by Lzz / O Uzz
	,
	$= \left(U_{11} U_{12} U_{12} \right) $ $\left(U_{11} l_{21} l_{218} U_{12} + L_{22} U_{22} \right) $
	U11 l21 l218U12 + L22 U22
	and matries
	Here I have represented vectors as underlined and scalars are not underlined
	scalars are not underlined
	So, we have that:
	an - Scalar
	a,2 - 1x(n-1) row vector
_	azi -(n-1) x1 column vector
	A22 -(n-1) x (n-1) matrisc
	· ·
	Comparing (*) and (* *) gives us:
	$a_{11} = a_{11}$
	$a_{12} = u_{12}$
	$\alpha_{21} = u_{11}l_{21}$
	A22 = l2/8U12 + L22 V22
	1204/67 1 1 104/1
	N. B. outer not mat. mult.
	M.O.


```
function [L,U] = recursive_lu(A)
    %some notes about my code:
    %This doesn't return the same L,U as matlab's lu() method, but it still
    %provides an L,U that satisfy the relationship A=LU. I think this is
    *probably because lu() uses a much more sophisticated algorithm.
    %Additionally, I think that it would have been possible to create a
    %more efficient algorithm, which incurs two recursive calls and splits
    %the matrix differently, rather than row, col by row, col per call.
    %m is useless, but size() returns both dimensions
    [m,n] = size(A);
    %base case
    if n == 1
       L = 1;
       U = A;
       return;
    end
    %setting up ALU form
   A11 = A(1,1);
   A12 = A(1,2:n);
   A21 = A(2:n,1);
   A22 = A(2:n,2:n);
   L11 = 1;
   U11 = A11;
    U12 = A12;
   L21 = A21 / U11;
    %for loop to fill op array as the outer product
   for j = 1:n-1
            for k = 1:n-1
            p(k,j) = U12(j) * L21(k) / All; wrong way around
            op(k,j) = A21(k) * A12(j) / A11;
            %calculating outer product and dividing by scalar All
            end
    end
    %debugging
    %disp(op);
    %disp(A22);
```

```
$ = A22 - op;

%recursive call
[L22, U22] = recursive_lu(S);

L12(1:n-1) = 0;

U21(1:n-1) = 0;

U21 = transpose(U21);

%without transposing, U21 is wrong way around

%setting up current L,U to pass up
L = [L11, L12; L21, L22];
U = [U11, U12; U21, U22];
return;
-end
```

e) MA398_Assignment1 - Exercise 2e.m I have made some comments in the code in the file. I will add plots of values of R und time (both normal time and In (time)) As for the complexity of the time taken seems to be similar to a cubic time complexity It is also interesting to note, the times for k = 3, 4, 5, 6 < for k = 2. This is probably because in the cases k=1,2, alot of unnecessary operations are happening and these I would guess these may take longer to check Unsurprisingly, the time increase is massive past that Past k=10 seems to be too much for mattab Long it would take if k = 100, which would be a matrix with 2^{200} elements. f) A typical matrix isn't likely to not have an LU factorisation because you can just reorder the vons to have non zero determinants

```
%more than 10 uses lots of ram and matlab does not like it, I
%assume that is normal for over 4 million matrix entries
for k = 1:10
    mat = rand(2.^k);
    tic;
    recursive lu(mat);
    time(k) = toc;
end
for i = 1:k
   X(i) = i;
end
%time graph
figure(1)
plot(X, time);
title("Runtimes of matrices with size 2^{k}");
xlabel("k");
ylabel("Runtime(s)");
%seems like cubic complexity, hard to tell exactly just off of time graph,
%but it looks very similar to O(n^3) complexity
%log graph
figure(2)
plot(X, log(time));
title("Log (ln) of runtimes of matrices with size 2^{k}");
xlabel("k");
ylabel("ln(runtime)");
```


