

Data Link Control Protocols

- ► Requirements and objectives for effective data communication between two directly connected transmitting-receiving stations:
 - 1. Frame synchronization
 - 2. Flow control
 - 3. Error control
 - 4. Addressing
 - 5. Control and data
 - 6. Link management

Flow Control

- ► Technique for assuring that a transmitting entity does not over-whelm a receiving entity with data
- ► In the absence of flow control, the receiver's buffer may fill up and overflow while it is processing old data

Model of Frame Transmission

Figure 7.1 Model of Frame Transmission

Stop-and-Wait Flow Control

- ► Simplest form of flow control
 - 1. Source transmits frame
 - 2. Destination receives frame and replies with acknowledgement (ACK)
 - 3. Source waits for ACK before sending next frame
 - 4. Destination can stop flow by not send ACK

Stop-and-Wait Flow Control

- ▶ It is often the case that a source will break up a large block of data into smaller blocks and transmit the data in many frames
 - ► The buffer size of the receiver may be limited
 - ► The longer the transmission, the more likely that there will be an error, necessitating retransmission of the entire frame
 - On a shared medium it is usually desirable not to permit one station to use the medium for an extended period, thus causing long delays at the other sending station

Stop-and-Wait Link Utilization

Sliding Windows Flow Control

- ► Allows multiple numbered frames to be in transit
 - ► Receiver has **buffer W** long
 - Transmitter sends up to W frames without ACK
 - ► ACK includes number of next frame expected
 - ► Sequence number is bounded by size of field (k)
 - Frames are numbered modulo 2^k
 - ▶ Giving max window size of up to $2^k 1$
 - Receiver can ACK frames without permitting further transmission (Receive Not Ready)
 - ► Must send a normal acknowledge to resume
- ► If have full-duplex link, can piggyback ACKs

Sliding Window Diagram

3-bit seq, W = 7 frames

Figure 7.3 Sliding-Window Depiction

Sliding Window Example

Figure 7.4 Example of a Sliding-Window Protocol

Sliding Window Utilization

- ightharpoonup Window size W, transmission time = 1, propagation time = a
- ► Case 1: W >= 2a + 1
 - Sender A can transmit continuously with no pause and normalized throughput is 1.0
- ► Case 2: W < 2a + 1
 - ▶ Sender A exhausts its window at t = W and cannot send additional frames until t = 2a + 1.
 - ▶ Normalized throughput is W/(2a+1)

Error Control Techniques

- ▶ Detection and correction of errors such as:
 - ► Lost frames: a frame fails to arrive at the other side
 - ▶ Damaged frames: frame arrives but some of the bits are in error
- ► Common techniques use:
 - Error detection
 - Positive acknowledgment
 - ► Retransmission after timeout
 - ► Negative acknowledgement & retransmission

Automatic Repeat Request (ARQ)

- ► Collective name for error control mechanisms, including:
 - ▶ stop and wait
 ▶ go back N
 ▶ selective reject (selective retransmission)
- ► Effect of ARQ is to turn an unreliable data link into a reliable one

Stop and Wait ARQ

- ► Source transmits single frame
- wait for ACK
- ▶ if received frame damaged, discard it
 - transmitter has timeout
 - ▶ if no ACK within timeout. retransmit
- ▶ if ACK damaged,transmitter will not recognize it
 - ► transmitter will retransmit
 - receive gets two copies of frame
 - ▶ use alternate numbering and ACK0 / ACK1

Figure 7.5 Stop-and-Wait ARQ

Stop and Wait ARQ

- see example with both types of errors
- pros and cons
 - simple
 - inefficient

- 3. **[20 poin]** Dilakukan pertukaran informasi dari *station* A ke *station* B berupa pengiriman 3 *frame* secara berurutan (*frame* 0, *frame* 1 dan *frame* 2). Jika *error control* yang digunakan adalah **stop-and-wait ARQ**, ilustrasikan pertukaran informasi yang terjadi dengan asumsi
 - a. Terjadi **lost** saat pengiriman **frame 1**.
 - b. Terjadi lost saat pengiriman acknowledgement 2.

Go-Back-N ARQ

- ► Most commonly used error control
- ► Based on sliding-window
- ▶ Use window size to control number of outstanding frames
- ► While no errors occur, the destination will acknowledge incoming frames as usual
 - ► RR=receive ready, or piggybacked acknowledgment
- ► If the destination station detects an error in a frame, it may send a negative acknowledgment
 - ► REJ=reject
 - Destination will discard that frame and all future frames until the frame in error is received correctly
 - ► Transmitter must **go back and retransmit** that frame and all subsequent frames

Selective-Reject (ARQ)

- ► Also called selective retransmission
- ► Only rejected frames are retransmitted
- ► Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmission
- ► Receiver must maintain large enough buffer
- ► More complex logic in transmitter
 - Less widely used
- Useful for satellite links with long propagation delays

Selective-Reject (ARQ)

- ▶ Window Size Limitation
 - ▶ For a k-bit sequence number, the maximum window size is limited to 2k 1.

Go Back N vs Selective Reject

4. **[20 poin]** Dilakukan pertukaran informasi dari *station* A ke *station* B berupa pengiriman 5 *frame* secara berurutan (*frame* 0, *frame* 1, *frame* 2, *frame* 3 dan *frame* 4). Jika terjadi *lost* saat pengiriman *frame* 2, ilustrasikan pertukaran informasi yang terjadi dengan asumsi

a. Error control yang digunakan adalah go-back-N ARQ.

b. Error control yang digunakan adalah Selective-reject ARQ.

High Level Data Link Control (HDLC)

- ► An important data link control protocol
- ▶ specified as ISO 33009, ISO 4335
- station types:
 - Primary controls operation of link
 - Secondary under control of primary station
 - Combined issues commands and responses
- ► link configurations
 - ► Unbalanced 1 primary, multiple secondary
 - ▶ Balanced 2 combined stations

HDLC Transfer Modes

- ► Normal Response Mode (NRM)
 - Unbalanced config, primary initiates transfer
 - ► Used on multi-drop lines, eg host + terminals
- ► Asynchronous Balanced Mode (ABM)
 - Balanced config, either station initiates transmission, has no polling overhead, widely used
- ► Asynchronous Response Mode (ARM)
 - Unbalanced config, secondary may initiate transmit without permission from primary, rarely used

HDLC Frame Structure

- synchronous transmission of frames
- ▶ single frame format used

Flag Fields and Bit Stuffing

- ▶ Delimit frame at both ends with 011111110 seq
- ► Receiver hunts for flag sequence to synchronize
- ▶ Bit stuffing used to avoid confusion with data containing flag seq 01111110
 - ▶ 0 inserted after every sequence of five 1s
 - ▶ if receiver detects five 1s it checks next bit
 - ▶ if next bit is 0, it is deleted (was stuffed bit)
 - ▶ if next bit is 1 and seventh bit is 0, accept as flag
 - ▶ if sixth and seventh bits 1, sender is indicating abort

Original pattern:

After bit-stuffing:

111110111110110111111010111111010

Figure 7.8 Bit Stuffing

Address Field

- ▶ identifies secondary station that sent or will receive frame
- ▶ usually 8 bits long
- may be extended to multiples of 7 bits
 - ► LSB indicates if is the last octet (1) or not (0)
- ▶ all ones address 11111111 is broadcast

(b) Extended address field

Control Field

- ▶ different for different frame type
 - ► Information data transmitted to user (next layer up)
 - ► Flow and error control piggybacked on information frames
 - ► **Supervisory** ARQ when piggyback not used
 - ► Unnumbered supplementary link control
- ▶ first 1-2 bits of control field identify frame type

(c) 8-bit control field format

Control Field

- ► Use of Poll/Final bit depends on context
- ► In command frame is P bit set to1 to solicit (poll) response from peer
- ► In response frame is F bit set to 1 to indicate response to soliciting command
- ► Seg number usually 3 bits
 - Can extend to 8 bits as shown below

(d) 16-bit control field format

Information and FCS Fields

- ► Information Field
 - ► In information and some unnumbered frames
 - ► Must contain integral number of octets
 - ► Variable length
- ► Frame Check Sequence Field (FCS)
 - Used for error detection
 - ► Either 16 bit CRC or 32 bit CRC

HDLC Operation

- consists of exchange of information, supervisory and unnumbered frames
- have three phases
 - initialization
 - ▶ by either side, set mode & seq
 - data transfer
 - ▶ with flow and error control
 - ▶ using both I & S-frames (RR, RNR, REJ, SREJ)
 - disconnect
 - when requested or fault noted

HDLC Operation Example

HDLC Operation Example

- ► Introduced need for
- ► Flow control
- ► Error control
- ► HDLC

Tugas Mandiri

- ► Stallings, W. (2014). Data and Computer Communications, 10th Edition, New Jersey: Upper Saddle River
 - ► Chapter 7 Data Link Control Protocols
- ► Gupta, P. C. (2006). Data Communications and Computer Networks. New Delhi: Prentice Hall of India
 - ► Chapter 5 Error Control
- ► Tanenbaum, A. S. & Wetherall, D. J. (2013). Computer Networks, Fifth Edition. London: Pearson.
 - ► Chapter 3 The Data Link Layer

Tugas Terstruktur

Tampilkan Tugas 6