OXC

Получение

2NaCl(расплав) –(электролиз) → 2Na + Cl2 Na + KOH –(t°) → NaOH + K Ca + 2CsCl –(t°) → 2Cs + CaCl2

Гидриды

$$\Im + H_2 - > \Im \mathrm{H}$$
 , анион : H^-

- \bullet ЭН $+H_2O->$ ЭОН $+H_2$ гидролиз
- ullet $NaH+CO_2->HCOONa$ только натрий
- ullet От LiH к CsH реакционная способность растет

Взаимодействие с кислородом

$$9 + O_2 - >$$

- Li_2O
 - $\circ Na_2O_2$
 - $\circ \ K/Rb/CsO_2$ ==2КОН(конц.) + 2О3 = 2КО3 + H2О + О2(озонид)== == $\ThetaO_3+H_2O\longrightarrow \ThetaOH+H_2O==$ Оксиды получают так: == $\Theta+KNO_3/NaOH\longrightarrow \Theta_2O+N_2/H_2$ == Гидролиз оксидов и надпероксидов: $Na_2O_2+H_2O->NaOh+H_2O_2\ KO_2+H_2O->KOH+H_2O_2+O_2$

Другие хим св-ва

- == $Li+N_2->^{t={ t KOMHATH}}Li_3N$ ==
- $Li_3N + H_2O > LiOH + NH_3$
- $Li(\Im_x)O_y > Li_2O + ...$
- Пероксиды и надпероксиды способны регенерировать кислород: $\Im_{\mathbf{x}}O_y+CO_2->O_2+\Im_2CO_3$

- 2NaCl + H2O -(электролиз) → 2NaOH + Cl2 + H2
- 2NaHCO3 -(t°)→ Na2CO3 + CO2 + H2O
- NaH2PO4 -(t∘) → NaPO3 + H2O
- ==2 \ni NO3 –(t \circ) \to 2 \ni NO2 + O2== (часто используются как окислители)
- $Li_2C_2 + NH_3 \longrightarrow^{78^{\circ}} [Li(NH_3)_4]HC_2 + LiNH_2$
- $SO_{2(\mathbf{x})} + \exists \mathbf{H} \longrightarrow Na_2S_2O_4 + H_2 \uparrow$

Получение соды

Метод Сольве

- $NH_3 + H_2O + CO_2 > NH_4HCO_3$
- $NH_4HCO_3 + NaCl > NaHCO_3 + NH_4Cl$ (реакция идет т.к. растворимость гидрокарбоната натрия довольно мала)
- $NaHCO_3 >^t Na_2CO_3 + CO_2 + H_2O$
- ullet Для реакции (1) дополнительно пропускают CO_2 из реакции : $CaCO_3 >^t CO_2 + CaO$
- На получившийся оксид кальция действуют водой и получившийся аммиак вводят в реакцию (1): $NH_4Cl+Ca(OH)_2->NH_3+CaCl_2+H_2O$

Способ Леблана

• 2C+Na2SO4+CaCO3−(t°)→CaS+м2CO2(CO)+Na2CO3