Because the trace function is invariant under permutation of its arguments (tr(XY) = tr(YX)), we see that the m-th derivatives in Example 39.12 are indeed symmetric multilinear maps.

If E is of finite dimension n, and $(a_0, (e_1, \ldots, e_n))$ is a frame for E, $D^m f(a)$ is a symmetric m-multilinear map, and we have

$$D^{m} f(a)(u_{1}, \dots, u_{m}) = \sum_{j} u_{1, j_{1}} \cdots u_{m, j_{m}} \frac{\partial^{m} f}{\partial x_{j_{1}} \dots \partial x_{j_{m}}}(a),$$

where j ranges over all functions $j: \{1, \ldots, m\} \to \{1, \ldots, n\}$, for any m vectors

$$u_j = u_{j,1}e_1 + \dots + u_{j,n}e_n.$$

The concept of C^1 -function is generalized to the concept of C^m -function, and Theorem 39.13 can also be generalized.

Definition 39.18. Given two normed affine spaces E and F, and an open subset A of E, for any $m \ge 1$, we say that a function $f: A \to F$ is of class C^m on A or a C^m -function on A if $D^k f$ exists and is continuous on A for every k, $1 \le k \le m$. We say that $f: A \to F$ is of class C^∞ on A or a C^∞ -function on A if $D^k f$ exists and is continuous on A for every $k \ge 1$. A C^∞ -function (on A) is also called a smooth function (on A). A C^m -diffeomorphism $f: A \to B$ between A and B (where A is an open subset of E and E is an open subset of E is an

Equivalently, f is a C^m -function on A if f is a C^1 -function on A and Df is a C^{m-1} -function on A.

We have the following theorem giving a necessary and sufficient condition for f to a C^m -function on A. A generalization to the case where $E = (E_1, a_1) \oplus \cdots \oplus (E_n, a_n)$ also holds.

Theorem 39.22. Given two normed affine spaces E and F, where E is of finite dimension n, and where $(a_0, (u_1, \ldots, u_n))$ is a frame of E, given any open subset A of E, given any function $f: A \to F$, for any $m \ge 1$, the derivative $D^m f$ is a C^m -function on A iff every partial derivative $D_{u_{j_k}} \dots D_{u_{j_1}} f$ (or $\frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}}(a)$) is defined and continuous on A, for all $k, 1 \le k \le m$, and all $j_1, \ldots, j_k \in \{1, \ldots, n\}$. As a corollary, if F is of finite dimension p, and $(b_0, (v_1, \ldots, v_p))$ is a frame of F, the derivative $D^m f$ is defined and continuous on A iff every partial derivative $D_{u_{j_k}} \dots D_{u_{j_1}} f_i$ (or $\frac{\partial^k f_i}{\partial x_{j_1} \dots \partial x_{j_k}}(a)$) is defined and continuous on A, for all $k, 1 \le k \le m$, for all $i, 1 \le i \le p$, and all $j_1, \ldots, j_k \in \{1, \ldots, n\}$.

Definition 39.19. When $E = \mathbb{R}$ (or $E = \mathbb{C}$), for any $a \in E$, $D^m f(a)(1, \ldots, 1)$ is a vector in \overrightarrow{F} , called the *mth-order vector derivative*. As in the case m = 1, we will usually identify the multilinear map $D^m f(a)$ with the vector $D^m f(a)(1, \ldots, 1)$.