Obsah

1	Náz	ev první kapitoly	2
	1.1	Proč filesystémy	4
	1.2	Jak fungují FS	4
	1.3	Operace na souboru	4
	1.4	Mapování do paměti	4
	1.5	Speciální soubory	•
		Linky	•
	1.7	Ext2	•
		1.7.1 Jak se udržují data pro inode?	4
	1.8	FAT	4
		1.8.1 Adresář	Ę
	1.9	NTFS	Ę
	1.10	Obecné poznámy	(

1. Název první kapitoly

1.1 Proč filesystémy

- jednotné API, odstínění od hardware
- odstínění od přistupování k sektorům přímo na disku či CD
- umožňuje přistupovat k různým hardwarům stejně

1.2 Jak fungují FS

- FS si rozdělí pamět na nejmenší možné jednotky (bloky-linux; alokační jednotky resp. clustry na windows)
- výhoda malých bloků-šetří místo,nejsou-li využity
- nevýhoda-defragmentace souborů

Definice (Soubor). Persistentní úložiště dat. Má typické atributy(jméno(různá kódování-novější unicode(unix,ntfs))

Definice (Adresář). Organiční jednotka, která obsahuje jiné adresáře, nebo soubory.

- Zvláštním druhem souboru jsou sockety, roury na unixu.
- Každý filesystem má kořenový adresář.
- Každý operační systém s filesystémem určuje pro každý proces aktuální adresář
- Záleží na filesystému, zda si aktuální adresář pro proces vytváří(fat32,ext=ano, ntfs=ne)

1.3 Operace na souboru

- čtení
- smazání(unlink-odebrání posledního hardlinku)
- seek (posun)

1.4 Mapování do paměti

- každý proces má svůj virtuální adresový prostor
- todo

1.5 Speciální soubory

- IOCPL je operace, která je definovaná zvlášt na souborech jako cdromka etc
- na Windowsech IOCPL na běžném souboru vypíše umístění k paměti

1.6 Linky

Definice (Hardlink). Je odkaz do tabulky inodu(masterfiletable u ntfs)

Definice (Inode). položka inode table(MFT u NTFS), která obsahuje vlastnosti: jméno, timestamp last modified, create, owner, práva,.. Obsahuje taky **odkaz**. na i**data** u soborů nebo na **seznam inodů** u adresářů

Uživatelské hardlinky si zakazují na adresáře kvůli následujícímu problému. Každý adresář a soubor musí být přístupný (přes jiné adresáře) z kořenového adresáře. Nechť povolíme hardlinky na adresáře. Mějme jediný hardlink e z nadřazeného adresáře na adresář D, který má podadresář SD. Tedy z D vede hardlink na SD.

Nechť uživatel přidá harlink z SD do D. Vznikla tedy kružnice mezi SD a D. Odebereme-li e neklesne počet hardlinků u D na nulu a tedy nebude smazán a přesto se na adresář D nelze dostat z kořenového adresáře.

Definice (Symlink). Speciální soubor s cestou k jinému souboru, či adresáři. Filesystém vykoná všechny operace(kromě move a delete) místo na symlinku na souboru, na který symlink odkazuje. Symlink buď uvádí relativní, nebo absolutní cestu.

1.7 Ext2

- Jak vypadá jeden oddíl Ext2?
 - 1. bootovací část
 - 2. Group 0.
 - 3. ...
 - 4. Group n
- Group má velikost asi 32MB.
- Ext nebere jako nejmenší aloční jednotku sektor disku, ale blok.

• Struktura groupy

- Superblock-velikost bloku, groupy, info o disku-užitečný jen pro Groupu
 za boot sektorem
- 2. GDT-Group descriptor table
- 3. I-tabulka inodů
- 4. IB-bitmapa volných inodů
- 5. B-bitmapa volných bloků
- 6. Data

1.7.1 Jak se udržují data pro inode?

- Inode udržuje prvních 12 bloků v sobě
- 13, 14 blok jsou nepřímé-odkazují na bloky, které udržují odkazy na data
- 15 blok je nepřímý, nepřímý. Tj. Odkazuje na blok, který odkazuje na mezivrstvu bloků, z které se teprve dostaneme k blokům s adresama.
- $|inode| = min\{((\frac{b}{4})^2 + 2 * \frac{b}{4} + 12) * b; b * 2^{32}\}$
- Ext3 má navíc žurnálování
- Ext4 strom pro vyhledávání (todo-pro přístup k datům z inodu?)

1.8 FAT

- ansi jména souborů
- FAT jsou 3 filesystémy FAT32, 16, 12(diskety)
- todo proč zastaralý? jaké jsou limity

Struktura

- Reserved sectors
 - info o velikosti a počtu FAT, počtu cylindrů
 - obsahuje bootsector
 - u FAT 12, 16 má fat root directory, u FAT 32 je v boot sektoru napsané číslo kde se nachází root directory
- FAT(File Allocation Table)
 - většinou 2(kdyby se 1 rozbila)
 - 1 zznamtabulky odpovídá 1 clusteru v sekci DATA
 - vybrané hodnoty 1 záznamu:
 - * 0 volný blok
 - * vadný blok
 - * 1 reservovaný blok
 - \ast okolo MAXINT32 resp 16,12 – poslední blok v clusteru
- RD(root directory)
- DATA

1.8.1 Adresář

(fold)

- všechy informace o souboru 1 položka(krom rozšíření na dlouhá jména)
- obsahuje záznamy: jméno, datum, velikost ...
- jméno = 8 znaků + 3(přípona-todo(ano je příponam?))
- 1 cluster todo(co s ním?)
- \bullet velikost souboru uložena v $4Bslov \rightarrow 4GBmaxvelikost souboru$

1.9 NTFS

- spotřebuje 1kB na adresář
- úplně vše je soubor
- todo bootsector vs. bootcluster
- celý NTFS na clustery todo jinde to tak není?
- ullet obsahuje MasterFileTable v souboru MFT

Definice (Master File Table). • 1 záznam 1kb

- z bootsektoru se ví kde je MFT
- \bullet záznam s indexem 0 je samotná MFT
- ullet z 0 se dozvím kde se nachází další(fragmentované) soubory MFT

Definice (Záznam MFT). • má pevnou délku

• struktura–H-head a seznamatribut

Definice (Atribut záznamu MFT). • je objekt a obsahuje:

- jméno
- datum, čas
- vlastník
- oprávnění(staré NTFS)
- velikost
- obsahuje malou část dat
- dělení atributů zda se vejdou do záznamu:
 - residentn celé v záznamu
 - neresidentn odkazují ze záznamu na data, které definujíatribut

Definice (Adresář v NTFS). Adresář je b^* neredundatní strom(nazývaný index) dle jména souborů. Kořen je v atributu záznamu–todo co to znamená, kde je tedy uložen kořenové struktury. Todo co obsahuje uzel? Todo co zde vlastně myslíme uzlem?

Definice (RUNLIST). todo Co je runlist? zase se omlouvám Martinovi, ale nedokážu to definovat.

Když se nevejde *runlist* do *zznamu MFT* přidá se další atribut "rozcestník", který řekne kde jsou další části. *Bzovzznam* jsou všechny záznamy pro 1 soubor.

1.10 Obecné poznámy

Definice (řídký soubor). todo-martin říkal, ale já to neumim zformulovat