Relatório 1º projeto ASA 2023/2024

Grupo: AL014

Aluno(s): João Bernardo Mota Martins (106819) e Rafael Alexandre Proença Pronto (105672)

Descrição do Problema e da Solução

O problema é resolvido através de programação dinâmica, utilizando uma matriz k para armazenar os resultados intermédios. Numa primeira fase armazenamos as peças e respetivos valores num vetor de estruturas do tipo peças (pieces). A ordenação das peças antes do corte garante a otimização na procura da melhor combinação.

Começamos por preencher a matriz k com os valores de cada peça na célula correspondente à dimensão da peça, garantindo que o algoritmo tem em conta todas a peças disponíveis. No caso de haver peças de dimensões iguais terá em conta a de maior valor uma vez que as peças já foram ordenadas anteriormente. É preenchido o resto da matriz, tendo em conta que as peças podem sofrer uma rotação, é apenas preenchida uma metade de forma iterativa e a outra metade em tempo constante uma vez que são iguais. Por fim é retornado o valor da melhor combinação.

Análise Teórica

$$(\vec{V}[n], K(X, Y, \vec{V}[n], x > X \lor n = 0)$$

$$(\vec{V}[n], x = X \land \vec{V}[n], y = Y) \lor (\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y)$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y = X \land \vec{V}[n], x = Y$$

$$(\vec{V}[n], y$$

- Leitura dos dados de entrada: leitura do input, com um ciclo a depender linearmente de n (número de peças) Logo, O(n)
- Endereçamento dos valores das peças na matriz dos resultados intermédios, com um ciclo a depender linearmente de n. Logo, O(n)
- Progressão pela matriz dos resultados intermédios, de modo a endereçar todos os valores de forma recursiva, com dois ciclos a depender quadraticamente de X e Y. Logo, O(XY)
- Verificação de todos os cortes possíveis, com dois ciclos que dependem do x iterado e do y iterado respetivamente. Logo, a complexidade destes dois ciclos é $O(X+Y) = O(\max\{X,Y\})$
- Apresentação dos dados. O(1)

Complexidade global da solução: O(XY max{X,Y})

Relatório 1º projeto ASA 2023/2024

Grupo: AL014

Aluno(s): João Bernardo Mota Martins (106819) e Rafael Alexandre Proença Pronto (105672)

Avaliação Experimental dos Resultados

Após serem testadas várias instâncias incrementais e o tempo que a solução leva a executá-las, fica claro que o tempo de execução não é linear nas dimensões da chapa.

n	х	У	t
10	400	600	0,049
15	700	800	0,103
20	950	1050	0,275
25	1200	1300	0,43
30	1450	1550	0,846
35	1050	2450	1,619
40	1950	2050	1,924
45	1825	2675	3,748
50	1600	3400	6,336
55	1600	3900	9,22
60	1800	4200	11,141
65	2400	4100	16,548

No entanto, tendo em conta que a complexidade da solução é $O(XYmax\{X,Y\})$, colocando o eixo dos XX a variar com a complexidade $f(X,Y) = XYmax\{X,Y\}$:

Verifica-se que XY max{X,Y} é linear com o tempo de execução, logo a complexidade da solução é O(XY max{X,Y}) tal como foi concluído na análise teórica.