Adoption de Technologie¹

Pierre Biscaye

Janvier 2025

¹Le contenu de ce cours est tiré du cours de Microéconomie du Développement de Jeremy Magruder à l'UC Berkeley et du VoxDevLit Agricultural Technology in Africa.

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Parts du secteur agricole par région mondiale

Panel A: Share of agricultural GDP across regions of the world, 1970-2019

Source: United Nations, Food and Agriculture Organization (FAOSTAT).

Panel B: Share of agricultural employment across regions of the world, 1991-2019

Source: The World Bank, World Development Indicators (WDI)

Parts du secteur agricole par région africaine

Panel C: Share of agricultural GDP across regions in Africa, 1970-2019

Source: United Nations, Food and Agriculture Organization
(FAOSTAT)

Panel D: Share of agricultural employment across regions in Africa, 1991-2019

Source: The World Bank, World Development Indicators (WDI)

Transformation structurelle?

- ► Le développement économique implique généralement une transition hors de l'agriculture
- Étape typique: passage des petits agriculteurs produisant pour leur propre consommation à des exploitations commerciales à grande échelle
 - ▶ 80% des agriculteurs africains exploitent moins de 2 ha
- Clé: technologies améliorées pour augmenter la productivité agricole
 - Mécanisation, intrants agrochimiques, semences améliorées, etc.
 - L'adoption en Afrique est bien inférieure à celle du reste du monde
- Adoption historique de technologies en Afrique : nouvelles cultures
 - Maïs, manioc, patates douces, cacao, fleurs commerciales

Croissance faible des rendements céréaliers

Source: United Nations, Food and Agriculture Organization (FAOSTAT)

Faible utilisation des technologies agricoles

Figure 4: Fertiliser use (Kg/hectare), 1961-2018

Panel A: By region of the world

Source: United Nations, Food and Agriculture Organization
(FAOSTAT)

Figure 5: Trends in irrigation, 1960-2020

Panel A: Share of land equipped for irrigation in Africa vs. the rest of the world

Panel B: Across regions in Africa, 1961-2018

Source: United Nations, Food and Agriculture Organization (FAOSTAT)

Panel B: Share of land equipped for irrigation across regions in Africa

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Pourquoi les technologies agricoles stagnent-elles en Afrique?

- Nombreuses études: pas de contrainte unique et déterminante
 - Différentes combinaisons de contraintes selon les agriculteurs
- ► Implication: besoin de paquets d'interventions technologiques, politiques et institutionnelles adaptées à différents contextes
- Preuves d'effets positifs sur l'adoption des technologies
 - ▶ Deutschmann et al. (2019): prêts de groupe, assurance récolte, formation, fourniture d'intrants et facilitation des marchés
 - ▶ Bossuroy et al. (2022): formation, importantes subventions en espèces, interventions psychosociales
- Mais aussi des preuves d'échecs, de défis, et de coûts élevés
 - Programmes intégrés de développement rural des années 1970-1980 (Chambers 2014)
 - Programmes d'intensification des intrants avec des coûts dépassant les bénéfices des rendements accrus (Jayne et al. 2018)

Contraintes de crédit, de liquidité, et d'épargne

- ▶ Les technologies agricoles ont un coût (d'adoption et d'utilisation) ⇒ les contraintes financières peuvent empêcher l'investissement
- Nombreuses recherches sur les interventions financières et l'adoption des intrants en Afrique
 - Généralement des augmentations significatives mais faibles (en termes absolus) de l'adoption
 - Les subventions peuvent augmenter l'adoption, mais questions sur les coûts, la persistance, et 'crowding out'
 - ⇒ les contraintes financières ne suffisent pas à expliquer la faible adoption, elles ne sont probablement pas les contraintes les plus fortes

Risque et incertitude

- Le risque peut décourager l'expérimentation et l'investissement
 - Particulièrement pertinent pour les petites exploitations préoccupées par les risques de perte (Kala 2017)
- La leçon 2 a discuté du rôle du risque et des études sur l'assurance indicielle climatique
 - Faible adoption à des prix de marché ou actuariellement équitables
 - Rôles du risque de base élevé, de l'aversion aux pertes, du biais présentiste
 - Lorsqu'adoptée, effets significatifs mais limités et hétérogènes sur l'utilisation des technologies agricoles
- Défis dans la conception de mécanismes d'assurance de qualité à faible coût
 - La télédétection réduit les coûts mais la qualité reste imparfaite

Contraintes d'information

- Manque d'information sur les technologies ou leurs rendements
- ▶ Recherche sur les meilleures façons de fournir des informations et sur le rôle de l'apprentissage dans les réseaux sociaux
 - ▶ Aujourd'hui: Banerjee et al. (2012); Beaman et al. (2021)
- ➤ La plupart des études ne trouvent pas d'effets transformateurs de l'information sur l'adoption des technologies (Caldwell et al. 2019 ; Bridle et al. 2019)
- Quelques enseignements généraux:
 - La vulgarisation et l'information ont le plus d'impact pour de nouvelles technologies
 - Les réseaux sociaux jouent un rôle crucial dans l'apprentissage et l'adoption
 - Les compétences cognitives et non cognitives peuvent également jouer un rôle

Accès limité aux marchés

- ► Un accès limité aux marchés peut ↑ les coûts des intrants et ↓ les rendements de la production ⇒ faibles profits de l'adoption technologique
- Coûts de transaction élevés pour les agriculteurs africains
- Littérature abondante sur les contraintes d'accès au marché, et littérature croissante sur les impacts de leur levée
 - Améliorations des routes (Casaburi et al. 2013)
 - ► Foires aux intrants (Dillon & Tommaselli 2022 ; Aggarwal et al. 2023)
 - ► Interventions d'information via téléphones mobiles (Nakasone et al. 2014; Hildebrant et al. 2023)
 - ► Jan. 2025 J-PAL Policy Insight

Rendements limités pour la qualité

- Marchés limités pour la qualité des produits : absence de prix différenciés pour la qualité des cultures en Afrique
 - Peu d'incitations à adopter des technologies pour améliorer la qualité de la production
- Défis également pour vérifier la qualité des intrants
 - Par exemple, perception répandue que la qualité des engrais est variable alors qu'en réalité elle est majoritairement bonne (Michelson et al. 2021, 2024)
 - ► Manque de confiance dans la qualité des intrants peut ↓ l'adoption
- Pourquoi pas de marchés pour la qualité ?
 - ► Faible confiance des consommateurs dans leur capacité à évaluer la qualité (Prieto et al. 2021)
 - ▶ Peu de systèmes de vérification tierce (Hoffmann et al. 2020) ou de certification de qualité (Gilligan et al. 2022)

Marchés imparfaits des intrants

- Marchés du travail
 - "Excédent" de main-d'œuvre
 - Mais difficultés pour embaucher ou fournir les bons types de main-d'œuvre au bon moment
- Marchés fonciers:
 - Droits de propriété mal définis et insécurité foncière peuvent réduire les investissements
 - Les contraintes sur les transactions foncières freinent la croissance des exploitations plus productives

Facteurs créant une hétérogénéité dans l'adoption des technologies

- ▶ De nombreuses technologies agricoles sont sensibles aux circonstances locales
 - L'hétérogénéité peut poser des défis pour le développement et la commercialisation des technologies, ainsi que pour l'apprentissage des agriculteurs
 - Preuves sur l'inadéquation entre les technologies des pays à revenu élevé et les besoins des pays à faible revenu (Moscona & Sastry 2022)
 - Aujourd'hui: Suri (2011)
- Qualité des sols et des terres: variation de la technologie optimale même entre parcelles
- Conditions météorologiques: la variabilité crée une hétérogénéité dans les rendements, nécessitant une perspective à long terme
- ► Accès aux marchés : crée des variations dans les coûts et les rendements

Actions politiques potentielles

- ► Répondre aux échecs de marchés
- ► Fourniture d'intrants à moindre coût
 - Prix des engrais beaucoup plus élevés en Afrique que dans d'autres régions: importations, coûts de transport élevés, faible densité de population
 - Réponses: investissement dans les infrastructures, production locale d'intrants, subventions, promotion de la concurrence dans la production, soutien aux intrants complémentaires
- ► Investissements dans la recherche et développement en technologie agricole pour l'Afrique
 - Nouvelles technologies adaptables ou personnalisables à une plus large gamme de circonstances
 - ▶ Par exemple, personnalisation des variétés de semences et des services de vulgarisation

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Le réseau comme source clé d'information sur les nouvelles idées

- L'information est une condition préalable à l'adoption de technologies
- Les entreprises, gouvernements, et ONG diffusent les nouvelles technologies via des réseaux
 - Modèle agricole courant: former des agriculteurs innovants/référents pour influencer un grand nombre d'autres
- ▶ De nombreuses recherches montrent que l'apprentissage social est important

Jeu sur l'adoption

► Combien d'entre vous adopteraient une nouvelle technologie sous certaines conditions?

Rôle des réseaux dans la diffusion des technologies

- 1. Conley & Udry (2010): Diffusion de la plantation d'ananas au Ghana
 - Effets de l'apprentissage auprès des voisins (qui réussissent) sur l'adoption de l'ananas et l'utilisation des intrants
 - Pas d'apprentissage social pour les choix d'intrants pour les cultures déjà connues
- Banerjee et al. (2012): Diffusion de la microfinance au Karnataka
 - La "centralité de diffusion" des ambassadeurs initiaux des IMF prédit la propagation et la vitesse d'adoption
- 3. Beaman et al. (2021): Diffusion de la technique de plantation en fosse (pit planting) au Malawi
 - Le choix d'agriculteurs "seed" optimal dépend du processus de diffusion

Mesurer les connexions au sein des réseaux

- L'analyse nécessite un recensement des relations dans les réseaux
 - Coûteux et chronophage à collecter
 - Les connexions de second degré sont très importantes et mal approximées par un échantillon aléatoire
- ▶ Banerjee et al. (2012): Plus de 50% des ménages recensés dans 43 villages; questions sur 13 dimensions des relations de réseau
 - Amis, famille, à qui emprunter, à qui prêter, avec qui prier, etc.
- ▶ Beaman et al. (2021): Plus de 80% des ménages recensés dans 200 villages, axé sur les réseaux d'apprentissage agricole
 - Avec qui ils discutent d'agriculture, adoptants précoces d'autres technologies, membres de groupes d'entraide pour le travail, etc.
- Supposent que toutes les connexions sont bilatérales (Je vous connais signifie que vous me connaissez)

Caractéristiques des réseaux

- ▶ Définir A comme la matrice d'adjacence. L'élément $a_{ij} = 1$ si i est connecté à j, 0 sinon
- **Degré**: nombre de connexions pour un i particulier $(\sum_i a_{ij})$
- Centralité par vecteur propre: pondérer le nombre de connexions par l'importance de ces connexions

$$\lambda x = Ax$$
 Identifier la plus grande valeur propre
$$x_i = \frac{1}{\lambda} \sum_j a_{ij} x_j \text{ Normaliser le vecteur propre}$$

- ► Centralité de diffusion: nombre attendu de fois où tous les nœuds sont exposés par une information diffusée à *i*
- ► Centralité de communication: résultat du modèle dans Banerjee et al (2012)

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Microfinance en Inde

Conceptualisation de la diffusion

Deux modèles candidats

- 1. Information : $p_i = \Lambda(\alpha^I + \beta^I x_i)$
 - ➤ Si vous êtes connecté à un adoptant, votre adoption dépend uniquement de vos propres caractéristiques
- 2. Approbation : $p_i = \Lambda(\alpha^E + \beta^E x_i + \lambda A_i/N_i)$
 - Votre décision d'adoption dépend de vos caractéristiques et également du nombre de vos connexions qui adoptent

Résultats

- ► La centralité des "seeds" initiaux (leaders injecteurs) prédit fortement la participation finale au niveau du village
- ► Les adoptants de microfinance sont 7 fois plus susceptibles de partager des informations
- ► Mais effet limité du rôle de l'approbation:
 - Les personnes connectées à des leaders adoptants sont plus susceptibles d'adopter
 - Les personnes connectées à des leaders non adoptants sont également plus susceptibles d'adopter (bien que dans une moindre mesure)
 - Les personnes informées ne sont pas plus susceptibles d'adopter si leurs amis informés adoptent

La centralité des seeds initiaux est importante

- Défi: les cartes des réseaux sont rares
- Question: arbitrages entre identifier un seed central et avoir de nombreux seeds (Akbarpour et al. 2020)

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Modélisation de la diffusion

- Les "seeds" optimaux dépendent de leurs mesures de centralité mais aussi du modèle de diffusion
- ▶ Beaman et al. (2021): modèles de diffusion basés sur l'épidémiologie ⇒ "contagion" de l'information
 - Contagion simple: j est informé si une connexion i est informée
 - Contagion complexe: il faut atteindre un certain seuil λ de connexions \Rightarrow suffisamment d'information pour changer la décision d'adoption
- Rationalisation: si l'adoption est difficile ou risquée, on peut vouloir observer plusieurs points de données montrant l'efficacité de l'adoption avant de se décider
- Motive l'étude de la diffusion avec une sélection des seeds déterminée par une contagion simple ou complexe avec $\lambda=2$

L'identité des seeds est importante en contagion complexe

- Contagion simple: sélectionnez suffisamment de seeds aléatoires et vous devriez couvrir une bonne partie du réseau
 - ldéalement, choisir des seeds éloignés pour atteindre différentes parties du réseau
 - Avec 2 seeds: une personne au centre et une personne à la périphérie
- Contagion complexe: la sélection optimale des seeds est plus compliquée
 - L'adoption nécessite plusieurs connexions
 - Il faudrait beaucoup plus de tirages aléatoires pour générer fréquemment des liens partagés
 - Risque substantiel d'absence totale de diffusion si les seeds ne sont pas choisis avec soin
 - ► ⇒ Important de comprendre l'ensemble du réseau de relations

Exemple de réseau et sélection des seeds

FIGURE 1. AN EXAMPLE NETWORK

Quels sont les 2 seeds optimaux en contagion simple? En contagion complexe avec $\lambda=2?$

Exemple de réseau et sélection des seeds

FIGURE 1. AN EXAMPLE NETWORK

Quels sont les 2 seeds optimaux en contagion simple? En contagion complexe avec $\lambda=2$?

- ▶ Simple: 6 et 1, 2 ou 3 \Rightarrow tout le monde informé en période 1
 - ▶ 70% des paires de seeds aléatoires conduisent à une information complète d'ici la période 2
 - Aucun ciblage nécessaire

Exemple de réseau et sélection des seeds

FIGURE 1. AN EXAMPLE NETWORK

Quels sont les 2 seeds optimaux en contagion simple? En contagion complexe avec $\lambda=2$?

- ▶ Simple: 6 et 1, 2 ou 3 \Rightarrow tout le monde informé en période 1
 - ▶ 70% des paires de seeds aléatoires conduisent à une information complète d'ici la période 2
 - Aucun ciblage nécessaire
- Complexe: plus difficile
 - 4 paires de seeds peuvent atteindre 50% d'information complète pour l'adoption parmi les non-ciblés, il n'est pas possible d'aller au-delà
 - Exemple: seeds 5 et 8 ⇒ 6 informé en période 1 ⇒ 4 et 7 informés en période 2 ⇒ fin

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Techniques de plantation au Malawi

A. Plantation en billons (ridges) B. Plantation en fosses (pits)

Configuration de l'étude

- Collecte de données détaillées sur les réseaux sociaux et la localisation dans 200 villages au Malawi
- ► Attribution aléatoire des villages à 4 traitements:
 - 1. Seeds optimaux selon une contagion simple
 - 2. Seeds optimaux selon une contagion complexe
 - 3. "Géographie": centralité basée sur l'emplacement physique
 - "Référence": les agents de vulgarisation agricole choisissent les seeds selon le protocole habituel
 - Pas de restriction sur les informations qu'ils peuvent utiliser
- ► Modélisation pour identifier les 2 meilleurs agriculteurs seeds sous 1, 2, et 3
- Formation des agriculteurs sélectionnés à la plantation en fosses par les agents de vulgarisation
- Evaluation l'adoption de la technologie dans un échantillon aléatoire dans tous les villages

Réseau d'un village exemple et seeds optimaux

Mise en œuvre de l'expérience

- ► Les seeds formés étaient plus susceptibles d'adopter la plantation en fosses que les seeds contrefactuels (0.3 contre 0.05)
- Probabilité égale d'adoption par les seeds à travers les traitements avaient une
- Les rendements étaient plus élevés parmi les seeds que parmi les seeds contrefactuels (environ +12%)
- Les seeds ont parlé de la plantation en fosses à d'autres personnes

La sélection des seeds affecte la probabilité qu'un non-seed adopte la plantation en fosses

Résumé des résultats sur l'adoption

- Induire l'adoption parmi les non-formés est difficile, malgré des rendements apparemment élevés
 - ► Après 3 ans, 10% d'adoption au niveau individuel
 - ▶ 50% des villages de référence (benchmark) ne montrent aucune adoption en dehors des seeds formés
- La sélection optimale des seeds surpasse la référence
 - ► Effets importants sur la marge extensive
 - Effets absolus faibles mais effets relatifs importants sur la marge intensive
 - ► Le ciblage basé sur la contagion complexe semble le plus robuste, mais les effets similaires à la contagion simple ne peuvent être rejetés
 - Gains limités du ciblage géographique

Comment évaluer si cela ressemble à une contagion complexe ?

- On suggère que la contagion complexe est un processus d'apprentissage myope
- Supposons qu'il y ait un petit coût pour observer des signaux sur une nouvelle technologie dans votre réseau
 - Quand cela vaut-il la peine de payer ce coût?
 - Seulement si ce signal peut modifier votre décision d'adoption
- Tests de la contagion complexe
 - 1. Probabilité d'absence d'adoption (précédent)
 - Problème d'apprentissage: les traitements devraient être plus efficaces lorsque l'expérience d'apprentissage est plus utile
 - La plantation en fosses est uniquement recommandée sur des terrains plats
 - Acquérir un signal est plus utile s'il est plus nouveau ou inconnu
 - 3. Modèles individuels d'apprentissage

Le ciblage est plus important lorsque le signal est bon

	(1)	(2)	(3)	(4) -0.045 (0.033)	
Bad Signal × Complex	0.006 (0.024)	-0.027 (0.036)	0.013 (0.015)		
Bad Signal × Simple	-0.008 (0.024)	-0.036 (0.037)	0.019 (0.017)	-0.008 (0.034)	
Bad Signal × Geo	0.002 (0.031)	-0.068 (0.031)	0.031 (0.035)	-0.054 (0.032)	
Good Signal	-0.037 (0.017)	-0.062 (0.024)	-0.007 (0.022)	-0.064 (0.038)	
Good Signal × Complex	0.059 (0.018)	0.067 (0.025)	0.054 (0.024)	0.083 (0.030)	
Good Signal × Simple	0.064 (0.021)	0.029 (0.020)	0.054 (0.029)	0.021 (0.020)	
Good Signal × Geo	0.042 (0.020)	0.022 (0.023)	0.026 (0.022)	0.031 (0.029)	
Good Signal type Year	Flat land	Flat land	Unfamiliar tech	ech Unfamiliar tech	
Observations Mean of Bad Signal in Benchmark treatment (omitted category)	3,546 0.066	2,645 0.123	3,954 0.046	3,023 0.104	
SD	0.248	0.33	0.21	0.305	
p-values for equality in coefficients		0.440			
Simple, good = Complex, good Complex, good = Geo, good	0.828 0.482	0.113 0.103	0.986 0.297	0.032 0.138	
Simple, good = Geo, good	0.364	0.755	0.351	0.680	

Seules les connexions multiples comptent pour l'apprentissage

TABLE 5-DIFFUSION WITHIN THE VILLAGE: KNOWLEDGE

	Heard of pit planting			Knows how to pit planting		
	(1)	(2)	(3)	(4)	(5)	(6)
Connected to 1 seed	0.002 (0.024)	0.030 (0.022)	0.016 (0.029)	0.017 (0.016)	0.021 (0.017)	-0.031 (0.023)
Connected to 2 seeds	0.084 (0.038)	0.124 (0.040)	0.064 (0.064)	0.062 (0.028)	0.068 (0.029)	0.110 (0.051)
Within path length 2 of at least one seed	-0.018 (0.028)	0.016 (0.027)	0.067 (0.042)	0.005 (0.018)	0.022 (0.021)	0.028 (0.028)
Year Observations	1 4.155	2 4.532	3 3.103	1 4,155	2 4.532	3 3,103
Mean of reference group (no connection to any seed)	0.223	0.286	0.391	0.057	0.095	0.147
SD of reference group	0.416	0.452	0.488	0.232	0.293	0.355
<i>p</i> -value for 2 connections = 1 connection	0.018	0.013	0.442	0.072	0.091	0.004

Conclusions

- Les gens adoptent davantage de nouvelles technologies lorsque celles-ci sont introduites par des personnes centrales
 - Cohérent avec la théorie des réseaux
- ▶ La diffusion de l'information présente des caractéristiques de contagion complexe
 - Suggère que l'apprentissage social pourrait nécessiter davantage de modélisation
 - La contagion complexe produit une ignorance rationnelle: coûts d'acquisition de l'information
 - Adopter un nouveau système de plantation est une décision à fort enjeu. Qu'en est-il d'autres décisions?
 - Implications pour l'identification des seeds pour la diffusion; coût et évolutivité?

Outline

Production agricole en Afrique

Expliquer la faible adoption des technologies

Réseaux et adoption de technologies

Centralité et diffusion de la microfinance: Banerjee et al. (2012)

Seuils d'information et diffusion: Beaman et al. (2021)

Diffusion de la plantation en fosses: Beaman et al. (2021)

Hétérogénéité et adoption du maïs hybride au Kenya: Suri (2011)

Maïs hybride au Kenya

- Avantages de rendement très importants du maïs hybride par rapport au maïs traditionnel
 - Preuves issues d'essais agronomiques et de données agricoles
- Disponible au Kenya depuis des décennies, mais adoption constante à environ 70% des agriculteurs
 - ► Forte composante spatiale: adoption quasi universelle dans certaines provinces, très faible dans d'autres
- Qu'est-ce qui pourrait expliquer cela?
 - Accès limité au maïs hybride
 - Risques plus élevés par rapport au maïs traditionnel
 - Accès au crédit
 - Manque d'information
 - Hétérogénéité des rendements
- Lesquels semblent plausibles?

Tendances d'adoption du maïs hybride par province

FIGURE 2.—Hybrid maize adoption patterns by province.

Résultats similaires pour les engrais inorganiques

FIGURE 3A.—Fraction of households using inorganic fertilizer by province.

Rendements du maïs selon l'adoption de semences hybrides

FIGURE 4B.—Marginal distribution of yields by sector, 2004.

Cadre théorique

- L'agriculteur décide de la technologie des semences au début de la saison de croissance
 - Basé sur les informations, les attentes concernant les conditions de croissance et les coûts et bénéfices relatifs des semences
 - Neutre au risque, il choisit de maximiser les profits par unité de surface cultivée
- Les fonctions de profit pour $k \in (H, N)$ sont :

$$\pi_{it}^{k} = p_{it}y_{it}^{k} - (b_{t}^{k}s_{it}^{k} + a_{it}) - \sum_{j=1}^{J} w_{jit}X_{jit}^{k}$$

- p prix attendu du maïs
- $ightharpoonup y^k$ rendement de la variété k de maïs donné les intrants
- $lackbox{b}^k$ coût unitaire des semences, quantité s^k
- a coût fixe d'obtention des semences hybrides (différences d'accès)
- lacktriangledown w vecteur des prix des intrants X

Décision de l'agriculteur

$$\pi_{it}^{k} = p_{it}y_{it}^{k} - (b_{t}^{k}s_{it}^{k} + a_{it}) - \sum_{j=1}^{J} w_{jit}X_{jit}^{k}$$

- lacktriangle L'agriculteur plante du maïs hybride lorsque $\pi_{it}^{*H}>\pi_{it}^{*N}$
- Simplifications/hypothèses basées sur les données
 - Les quantités optimisées d'intrants autres que les engrais sont similaires pour les hybrides et les non-hybrides
 - Les engrais ne sont utilisés qu'avec les semences hybrides, en proportion fixe par rapport à la surface cultivée \Rightarrow les coûts des engrais sont inclus dans b^H
- La décision se simplifie alors: planter du maïs hybride si $(y_{it}^{*H}-y_{it}^{*N})>A_{it}+\Delta_{it}^{s}$
 - $ightharpoonup A_{it}$ coûts d'accès
 - $ightharpoonup \Delta^s_{it}$ différences réelles dans les coûts des intrants (semences et engrais)
- La décision repose sur les différences de rendement (après contrôle des coûts)

Approche d'estimation

- Modèle de correlated random coefficients
- Permet deux formes d'hétérogénéité spécifique aux ménages dans la production de maïs : avantage absolu (toutes variétés confondues) et avantage comparatif dans le maïs hybride
 - Contribution économétrique novatrice dans l'estimation du rôle de l'avantage comparatif
- Données de panel sur des agriculteurs kenyans cultivant du maïs: 1996-2004
- ► Adoption globale des semences hybrides stable dans le temps, mais 30% des ménages changent d'adoption entre les périodes
 - ► Cela est important pour identifier les avantages de production

Résultats: rendements du maïs hybride

- Fortes preuves d'hétérogénéité dans les rendements du maïs hybride
- Grande variation des rendements bruts estimés selon les approches
 - ► OLS: 50-100%; FE: 0%; IV: 150-200%
 - CRC: moyenne 60%, mais large distribution

FIGURE 5B.—Distribution of returns.

Expliquer les décisions d'adoption

Identifie 3 sous-groupes d'agriculteurs :

- 1. Non-adoptants constants: petit groupe avec rendements *bruts* estimés à 150% pour le maïs hybride mais qui n'adopte pas
 - Cela s'explique par des contraintes d'approvisionnement et d'infrastructures, par exemple, distance aux distributeurs de semences/engrais ⇒ faibles rendements nets
- 2. Adoptants constants: groupe plus large avec rendements moyens estimés, adoptent le maïs hybride chaque période
- Quitteurs et rejoigneurs: rendements estimés proches de 0, adoption intermittente en fonction des chocs sur les coûts et l'accès aux semences hybrides et aux engrais

Conclusion principale: différences dans l'adoption dues à l'hétérogénéité de la rentabilité et à la variation des coûts et de l'accès

Implications politiques

- ► Faible adoption (dans ce contexte) est rationnelle
 - Surprenant uniquement à cause des croyances initiales sur les avantages productifs généralisés des semences hybrides
 - Inapproprié d'encourager une adoption complète d'une technologie avec des rendements moyens élevés parmi les adoptants existants mais hétérogènes à une plus grand échelle
- Réponse possible: davantage de R&D pour des variétés adaptées localement
 - ➤ 20-40 variétés de riz introduites annuellement en Inde depuis 1970, ainsi que 10-20 variétés de maïs et de blé
 - ▶ Au Kenya, le maïs est l'aliment de base, mais < 5 variétés introduites par an entre 1970 et 2000, seulement récemment à des niveaux comparables à ceux de l'Inde
- ▶ Réponse supplémentaire: réduire les contraintes d'intrants pour les agriculteurs à forte productivité potentielle s'ils peuvent être identifiés