AFM / SPM Components

Nick Sullivan

June 23, 2023

Contents

1	Over	rarching Diagram	3
2	Com	ponents	4
	2.1	Aponents Main Hardware	4
		2.1.1 Cantilever Subsystem	4
		2.1.2 Scanning Subsystem	6
	2.2	Dynamic Mode Components	6
		2.2.1 Signal Generator	6
		2.2.2 Lock-In Amplifier	
		Feedback Subsystem	
		2.3.1 Multi-Source Setpoint Control	
	:	2.3.2 PID Controller	9
3	AFV	$M \neq \mathrm{SPM}$ Setups	10
•	3.1	I / SPM Setups Contact Modes Dynamic Modes 3.2.1 AM-AFM - Amplitude Modulation	10
	3.2	Dynamic Modes	11
	0.2	3.2.1 AM-AFM - Amplitude Modulation	11
		3.2.2 FM-AFM - Frequency Modulation	13
		5.2.2 FM-AFM - Frequency Modulation	10
4	Full	Table of Parameters	15

1 Overarching Diagram

2 Components

2.1 Main Hardware

2.1.1 Cantilever Subsystem

Diagram

Grouping	Parameter	Description	Units
Cantilever	cantilever_invols	Inverse Optical Lever Sensitivity	m/V
	${ t cantilever_k}$	Spring Constant	
	cantilever_f0	Resonant Frequency	Hz
	${\tt cantilever_q}$	Q-Factor	
Tip-Surface	tip_bias_voltage	Tip-Surface Bias Voltage	V
	tip_bias_amp_gain	Bias Amplifier Gain	V
	tip_bias_amp_offset	Bias Amplifier Offset	V

2.1.2 Scanning Subsystem

Diagram

$\operatorname{Grouping}$	Parameter	Description	Units
Piezo	<pre>piezo_sensitivity_{3d}</pre>	Piezo Sensitivity	$\overline{\mathrm{Ang/V}}$
	piezo_amp_gain_{3d}	Piezo Amplifier Gain	V/V
	<pre>piezo_amp_offset_{3d}</pre>	Piezo Amplifier Offset/Bias	V
LVDT	lvdt_sensitivity_{3d}	LVDT Sensitivity	$\overline{ m V/Ang}$
	lvdt_offset_{3d}	${ m LVDT~Offset/Bias}$	V
Scan Params	scan_dim_{2d}	Maximum Scan Dimensions	m
	scan_roi_dims_{2d}	Current Scan Dimensions	m
	scan_roi_pos_{2d}	Current Scan Offset (x,y)	m
	scan_origin_pos_{2d}	Coordinate System Origin	m
	scan_roi_angle	ROI Angle (if applicable)	0
	${\tt scan_direction}$	Scan Direction	N/A
	${ t scanning_speed}$	Scanning Speed	$\mathrm{m/s}$
	moving_speed	Moving Speed (not scanning)	m/s

2.2 Dynamic Mode Components

2.2.1 Signal Generator

Diagram

Grouping	Parameter	Description	Units
Signal Generator	oscillator_f_ref	Oscillator reference frequency	Hz

2.2.2 Lock-In Amplifier

Diagram

Groupi	ng	Parameter	Description	Units
Lock-In	l	lockin_averaging_period	Averaging Period	cycles

2.3 Feedback Subsystem

2.3.1 Multi-Source Setpoint Control

Diagram

$\operatorname{Grouping}$	Parameter	Description	Units
Input	fb_input_{#}_units_to_v_factor	Units-to-V conversion (Input represents x as DC V)	$\overline{x/V}$
	fb_input_{#}_gain	Gi: gain applied to signal i (before summing)	
	fb_input_{#}_setpoint	Reference Set-Point	V
Low-Pass Filter	fb_input_{#}_low_pass_freq	Cut-off Frequency	Hz
	fb_input_{#}_low_pass_adaptive_fmin	Min. F0 (if adaptive)	${ m Hz}$
	fb_input_{#}_low_pass_adaptive_fmax	Max. F0 (if adaptive)	${ m Hz}$
	<pre>fb_input_{#}_low_pass_adaptive_current</pre>	Current Crossover (if adaptive)	A
Transform	fb_input_{#}_transform_mode	Mode: 0:Off, 1:On, 2:Log, 4:IIR, 8:FUZZY	$\overline{n/a}$
	<pre>fb_input_{#}_transform_fuzzy_threshold</pre>	Fuzzy-Mode Threshold Level (FUZZY Only)	V

2.3.2 PID Controller

Diagram

Grouping	Parameter	Description	Units
PID	pid_gain_p	Proportional Gain	$\overline{ m V/V}$
	pid_gain_i	Integral Gain	V/V
	pid_gain_d	Derivative Gain	V/V

3 AFM / SPM Setups

3.1 Contact Modes

Approach: Scan over a region with a static tip, while maintaining a constant force on the tip. This is achieved by a feedback loop, where the z-height (i.e. cantilever deflection) is kept constant.

3.2 Dynamic Modes

3.2.1 AM-AFM - Amplitude Modulation

Approach: Scan over a region with the tip oscillating its z-height at its resonant frequency, while maintaining the oscillation amplitude constant. This is achieved by a feedback loop, where the z-height is changed whenever the oscillation amplitude difference between the excitation signal amplitude and resonator signal amplitude varies from a desired difference.

Notes:

• The change in amplitude is due to a change in the system's resonant frequency. You can visualize this as if the amplitude/frequency curve is translating along the frequency axis. Doing so decreases the amplitude; we modify the z-height so that the system's resonant frequency is returned to its initial state (where the amplitude is maximum).

3.2.2 FM-AFM - Frequency Modulation

Approach: Scan over a region with the tip oscillating its z-height at its resonant frequency, while maintaining the resonant frequency constant. This requires

3 different feedback loops:

- The z-height feedback loop, where the z-height is changed whenever the frequency difference between excitation signal frequency and resonator signal frequency varies from a desired difference.
- The phased lock loop component, where the excitation signal phase is changed whenever the phase difference between excitation signal phase and resonator signal phase varies from a desired difference. Since phase and frequency are intricately linked (instantaneous frequency is temporal rate of change of instantaneous phase), maintaining the phase ensures we maintain the frequency. Thus, this feedback ensures that as the system resonant frequency changes, we update the excitation signal to keep driving the system on resonance (i.e. the resonant signal frequency is always at the system's current resonant frequency).
- Traditionally, there is also an amplitude feedback loop, which ensures that the amplitude of resonance is kept constant.

Notes:

- We require the PLL and z-height feedback because they function at different frequencies: PLL at ~100 kHz, z-height at ~1 kHz.
- So: the PLL maintains the signal on resonance much more quickly than the z-height maintains the resonant frequency constant.

4 Full Table of Parameters

Subsystem	Grouping	Parameter	Description	Units
Cantilever	Cantilever	cantilever_invols	Inverse Optical Lever Sensitivity	m/V
		cantilever_k	Spring Constant	n/a
		cantilever_f0	Resonant Frequency	Hz
		cantilever_q	Q-Factor	$\mathbf{n}/$
	Tip-Surface	tip_bias_voltage	Tip-Surface Bias Voltage	V
		tip_bias_amp_gain	Bias Amplifier Gain	V
		tip_bias_amp_offset	Bias Amplifier Offset	V
Scanning	Piezo	piezo_sensitivity_{3d}	Piezo Sensitivity	Ang/V
		piezo_amp_gain_{3d}	Piezo Amplifier Gain	V/V
		<pre>piezo_amp_offset_{3d}</pre>	Piezo Amplifier Offset/Bias	V
	LVDT	lvdt_sensitivity_{3d}	LVDT Sensitivity	m V/Ang
		lvdt_offset_{3d}	${ m LVDT~Offset/Bias}$	V
	Scan Params	scan_dim_{2d}	Maximum Scan Dimensions	m
		scan_roi_dims_{2d}	Current Scan Dimensions	m
		scan_roi_pos_{2d}	Current Scan Offset (x,y)	m
		scan_origin_pos_{2d}	Coordinate System Origin	m
		scan_roi_angle	ROI Angle (if applicable)	0
		scan_direction	Scan Direction	N/A
		scanning_speed	Scanning Speed	m/s
		moving_speed	Moving Speed (not scanning)	m/s
Main Feedback	Input	fb_input_{#}_units_to_v_factor	Units-to-V conversion (Input represents x as DC V)	x/V
		fb_input_{#}_gain	Gi: gain applied to signal i (before summing)	V/V
		fb_input_{#}_setpoint	Reference Set-Point	V
	Low-Pass Filter	fb_input_{#}_low_pass_freq	Cut-off Frequency	$_{ m Hz}$
		fb_input_{#}_low_pass_adaptive_fmin	Min. F0 (if adaptive)	$_{\mathrm{Hz}}$

Continued on next page

Continued from previous page

Subsystem	Grouping	Parameter	Description	Units
		fb_input_{#}_low_pass_adaptive_fmax	Max. F0 (if adaptive)	$_{\mathrm{Hz}}$
		fb_input_{#}_low_pass_adaptive_current	Current Crossover (if adaptive)	A
	Transform	fb_input_transform_mode	Mode: 0:Off, 1:On, 2:Log, 4:IIR, 8:FUZZY	n/a
		fb_input_transform_fuzzy_threshold	Fuzzy-Mode Threshold Level (FUZZY Only)	V
	PID	fb_pid_gain_p	Proportional Gain	V/V
		fb_pid_gain_i	Integral Gain	V/V
		fb_pid_gain_d	Derivative Gain	V/V
Dynamic Mode	Signal Generator	oscillator_f_ref	Oscillator reference frequency	Hz
	Lock-In	lockin_averaging_period	Averaging Period	cycles
	Amplitude Feedback	amp_fb_enabled	On/Off	n/a
		amp_fb_input_v_to_v_factor	V-to-V conversion (represents V-amplitude as DC V)	V/V
		amp_fb_input_gain	Gain applied to signal i	V/V
		amp_fb_input_setpoint	dAmplitude Set-Point	V
		amp_fb_low_pass_freq	Cut-off Frequency	${ m Hz}$
		amp_fb_pid_gain_p	Proportional Gain	V/V
		amp_fb_pid_gain_i	Integral Gain	V/V
		amp_fb_pid_gain_d	Derivative Gain	V/V
	Phase Feedback	pll_fb_enabled	On/Off	n/a
		pll_fb_input_hz_to_v_factor	dHz-to-V conversion (represents Hz as DC V)	$\mathrm{Hz/V}$
		pll_fb_input_gain	Gain applied to signal i	V/V
		pll_fb_input_setpoint	dFrequency Set-Point	V
		pll_fb_low_pass_freq	Cut-off Frequency	Hz
		pll_fb_pid_gain_p	Proportional Gain	V/V
		pll_fb_pid_gain_i	Integral Gain	V/V
		pll_fb_pid_gain_d	Derivative Gain	V/V