TD 5. Primitives.

Exercice 1. Calculer les intégrales ou primitives demandées. Lorsqu'il s'agit d'une primitive, on précisera le ou les intervalles de recherche.

$$\mathbf{1}^{\circ}) \ I = \int_{1}^{2} \frac{x^{3}}{(1+x^{4})^{2}} \, \mathrm{d}x$$

$$\mathbf{2}^{\circ}) \ I = \int_0^{\frac{1}{2}} \sqrt{\frac{\operatorname{Arcsin} x}{1 - x^2}} \, \mathrm{d}x$$

$$\mathbf{3}^{\circ}) \ I = \int_{2}^{e} \frac{1}{x \ln x} \, \mathrm{d}x$$

 $\mathbf{4}^{\circ}$) Primitive de $x \mapsto \operatorname{Arctan}(x)$

5°)
$$I = \int_0^1 \ln(1+x^2) \, \mathrm{d}x$$

6°)
$$I = \int_0^1 (2t^2 - t + 1)e^{-t} dt$$

$$\mathbf{7}^{\circ}) \ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \operatorname{Arccos} x \, \mathrm{d}x$$

$$8^{\circ}) I = \int_0^2 \cos x \sin x \, \mathrm{d}x$$

9°)
$$I = \int_0^3 x e^x \cos x \, \mathrm{d}x$$

10°)
$$I = \int_1^2 \frac{\ln x}{x + x(\ln x)^2} \, \mathrm{d}x$$

11°) Primitive de
$$x \mapsto \frac{e^x}{\operatorname{ch} x + 1}$$

12°) Primitive de
$$x \mapsto \frac{e^{2x}}{\sqrt{e^x + 1}}$$

13°)
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{2 + \cos \theta} d\theta$$
 (changement de variable $t = \tan \frac{\theta}{2}$)

14°) Primitive de $x \mapsto \frac{1}{x^2+2x-3}$

15°)
$$I = \int_1^2 \frac{1}{x(x+1)(x+2)} \, \mathrm{d}x$$

16°)
$$I = \int_0^1 \frac{1}{x^2 + x + 1} \, \mathrm{d}x$$

17°) Primitive de
$$x \mapsto \frac{x}{x^2+4x+5}$$

18°) Primitive de $x \mapsto \sin^3 x \cos^2 x$

19°)
$$I = \int_0^{\pi} \cos(x) \cos(5x) dx$$

20°)
$$I = \int_{0}^{\frac{\pi}{4}} \frac{\tan u}{1 + \cos u} \, du$$

21°) Primitive de
$$x \mapsto \frac{1}{\sin x}$$

22°) Primitive de
$$x \mapsto \frac{1}{x(\sqrt{x+1} + \sqrt{x})}$$

23°)
$$I = \int_{-\frac{1}{2}}^{\frac{1}{4}} \sqrt{4x^2 + 4x + 5} \, dx$$
 (on remarquera pour finir le calcul que sh(ln 2) = $\frac{3}{4}$)

24°)
$$I = \int_0^{\frac{1}{4}} \frac{1}{\sqrt{-4x^2 + 2x + 1}} dx$$

Exercice 2. Calculer les intégrales $I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx$ et $J = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\sin x + \cos x} dx$

Exercice 3. On pose : $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$.

En effectuant un changement de variables échangeant les bornes, calculer I.