

INDEX

- 1. 프로젝트 소개
- 2. 문제 분석 및 목표 설정
- 3. 주요 코드 메인코드
- 4. 주요 코드 시각화 코드
- 5. 기대 효과

프로젝트 팀 소개

문시크42 (MoonChic42)

팀장:정태영

기획, 데이터 수집, 알고리즘 테스트, 서포트

팀원: 문성준,김병지,조지형,조준행

데이터 수집, 데이터 전처리, 알고리즘 구현, 알고리즘 테스트

문제 인식 및 목표 설정

메인코드 알고리즘 기획

수요 예측

제품별, 고객별

수요 패턴 분석

VIP 고객 관리

최대 구매자 및 최대 매출제품 TOP 10 리스트 관리

예측 시각화 코드 알고리즘 기획

주요 코드 소개 - 메인 코드

Prophet 모델 구현

Facebook(메타)에서개발한시계열예측 알고리즘으로추세(Trend),계절성 (Seasonality),이벤트효과(Holiday Effects)를 자동으로 모델링 하며,자동화 된데이터 전처리 기능을 제공

예측 알고리즘

과거6년간의판매데이터학습 12개월수요예측기능구현 발주후리드타임7일계산

알고리즘 모텔 코드

```
if target_product.strip().lower() = "all":
   product list = df["product"].unique()
   print("\n√ 전체 제품 데이터를 사용하여 예측을 진행합니다.", enc="")
# 초기 메시지 출력
else:
   product list = [target product]
total products = len(product list) # 전체 제품 개수
for idx, product in enumerate(product_list, start=1):
   progress = (idx / total_products) * 100 # 진행률 계산
   bike icon = next(bike frames) # 자전거 모션 업데이트
   # '\r'를 사용해 한 줄에서 업데이트
   print(f"\r√ 전체 제품 데이터를 사용하여 예측을 진행합니다.
({progress:.1f}% 완료) {bike_icon}", end="")
   sys.stdout.flush() # 즉시 출력 반영
```

Prophet 모델 학습 product df = df[df["product"] == product] model = Prophet() model.fit(product df) future = model.make future dataframe(periods=30) forecast = model.predict(future) forecast results[product] = forecast time.sleep(0.1) # 진행 속도 조절 # 완료 후 개행하여 최종 메시지 출력 print("\n√ 모든 제품의 예측이 완료되었습니다! ")

데이터 로드 및 전처리

Pandas를 활용한 데이터 정제 및 구조화

알고리즘 구현

Prophet 모델 기반 2011~2016 데이터셋 학습

기본 시각화 구현

Matplotlib, Tabulate 으로 기초 트렌드 그래프 생성

성능 최적화

대용량 데이터 처리를 위한 렌더링 최적화

주요 코드 소개 — 시각화 예측 그래프

Metplotlib 시각화 구현

Facebook(메타)에서 개발한 시계열 예측 알고 리즘과 metplotlib 모듈을 활용하여 온라인 채널 및 시계열 예측 그래프를 제작

예측 알고리즘

과거데이터데이타임형식 1개월단위기준12개월동안데이터예측 Metplot를 활용하여 그래프시각화

알고리즘 모텔 코드

```
import pandas as pd
import matplotlib.pyplot as plt
from prophet import Prophet
# CSV 파일 로드
file path = "sales data.csv"
df = pd.read csv(file path)
# 날짜 변화
df['Date'] = pd.to_datetime(df['Date'])
# 특정 제품 입력
product_name = input("예측할 제품명을 입력하세요: ")
# 특정 제품만 필터링
df_product = df[df['Product'] == product_name]
# Prophet이 요구하는 컬럼명으로 변경
df product = df product.rename(columns={'Date': 'ds', 'Revenue': 'y'})
df_product = df_product[['ds', 'y']].groupby('ds').sum().reset_index()
```

```
# Prophet 모델 학습
                            model = Prophet()
                            model.fit(df product)
                            # 미래 예측 데이터프레임 생성 (3년 예측)
                              future = model.make future dataframe(periods=12, freq='M')
                            # 12개월 예측
                            forecast = model.predict(future)
                            # 결과 시각화
                            fig, ax = plt.subplots(figsize=(10, 5))
                            ax.plot(df product['ds'], df product['y'], label='Actual Revenue')
                            ax.plot(forecast['ds'], forecast['yhat'], label='Predicted Revenue',
                              linestyle='dashed')
TO BE DESCRIPTION OF THE PARTY 
                            ax.set_title(f'Revenue Forecast for {product_name} (Next 1 Years)')
```

주요 코드 소개 - 시각화 TOP 10 리스트

tabulate 모델 구현

파이썬에서리스트를 표로 표현할 수 있는 tabulate 모듈을 활용하여 다양한테이블 형식의 표를 제작

데이터 내용

상위5명의VIP고객정보 가장많이판매된제품TOP5

알고리즘 모텔 코드

!pip install tabulate import pandas as pd from tabulate import tabulate # 표 형태로 출력 # CSV 파일 불러오기 file path = "sales data.csv" df = pd.read_csv(file_path) # 결측값 제거 (NaN 값 삭제) df = df.dropna()# 💇 VIP 고객 찾기 (매출 기준 상위 5명) vip_customers = df.nlargest(5, 'Revenue') # b 가장 많이 판매된 제품 TOP 5 찾기 top_5_products = df['Product'].value_counts().head(5).reset_index() top_5_products.columns = ['Product', 'Sales Count']

< 결과 출력 print("\ng VIP 고객 정보 (상위 5명):") print(tabulate(vip_customers[['Customer_Age', 'Custamer_Gender', 'Country', 'Revenue']], headers='keys', tablefint='pretty')) # 🌢 가장 많이 판매된 제품 TOP 5: top_5_products.index = range(1, len(top_5_products) + 1) # 인덱스를 1부터 시작하도록 설정 print("\n 가장 많이 판매된 제품 TOP 5:") print(tabulate(top 5 products, headers='keys', tablefint='pretty')) TO BE DESCRIPTION OF THE PARTY OF THE PARTY

B2B Demand Forecasting

Step 1

Data collection, into passition data esociucsioul nrent for clou demand cloudd data sttorage, and streams.

Into collecting but thim B2B in ssuraces and fevolysins and statistical models.

Step 3

Data collection and in demand forectasting in iterohorm Data analyses, Data analyses and forecating, and recresultants, and statistical models.

Data analysis and forecitasts, and analysis conditenenand reich rentilies.

Implementation

The causee in planty usiets of demand cheresare coreme atungsing arovuceshes for an emproment if the ;and ronacs, bley demous of thectuaring alroal demang an laying rereits the tirve and imternonato and more remattics.

전체 프로세스 로드맵

데이터 수집

판매 이력, 고객 정보, 시장 데이터 확보

데이터 전처리

이상치 제거 및 결측값 처리

모델 학습

Prophet 알고리즘 적용 및 모델학습 및 최적화

시스템 구현

실시간 모니터링 대시보드 개발

프로젝트 마무리 및 기대효과

25% 재고 비용 절감

과잉 재고 감소 및 저장 비용 최소화

15% 주문 취소율 감소

재고 부족으로 인한 고객 이탈 방지

30% 운영 효율성 향상

자동화된 발주 시스템으로 인력 비용 절감

감사합니다

