Heterogeneous Firms: Lumpy Investment and Aggregation

Bence Bardóczy^a NBER HA Macro Workshop, Spring 2023

^aFederal Reserve Board: The views expressed are my own and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

This class

- Canonical **HA household** model is super well behaved.
 - households are hit by discrete shocks and make continuous choices
 - convex dynamic problem, best solved by EGM
- What if we want to model discrete choices?
 - · labor force participation, occupation choice
 - lumpy adjustment with fixed cost (price, investment, portfolio, \ldots)

This class

- Canonical HA household model is super well behaved.
 - households are hit by discrete shocks and make continuous choices
 - convex dynamic problem, best solved by EGM
- What if we want to model discrete choices?
 - · labor force participation, occupation choice
 - lumpy adjustment with fixed cost (price, investment, portfolio, ...)
- **SSJ** can handle all of these examples and more.
- Example: canonical HA firm model of lumpy investment.
 - we will dicuss SSJ implementation & aggregation debate
 - based on Koby and Wolf (2020) + my own explorations (we're merging these into 1 paper)

Why is discrete choice hard?

- If agents make only discrete choices, it's easy.
- Interaction between discrete and continuous choices is the hard part.
- Non-convexity: FOCs are insufficient to obtain policy functions.
 - EGM does not work, more robust backward iteration is needed
 - VFI: easy, general, slow
 - **EGM + upper envelope**: not so easy, requires curvature, fast \rightarrow see 2022 workshop
- **Discontinuities** in policy functions.
 - SSJ relies on differentiating policies wrt aggregate inputs
 - smoothing: let fixed cost be a continuous random variable or add taste shocks
 - ightarrow standard in many literatures, considered distasteful in some
 - ightarrow payoffs are immense, be pragmatic!

 \rightarrow my choice today

Roadmap

- 1. Intro to investment
- 2. Canonical HA firm model (tutorial later today)
- 3. Aggregate implications of lumpiness
- 4. Conclusion

Brief intellectual history (part 1)

- How is investment determined?
- Neoclassical theory of investment by Jorgenson (1963).
 - competitive firm maximizes profits, Cobb-Douglas technology, no adjustment cost

$$\mathbf{K} \cdot \mathbf{r}^{k} = \alpha \mathbf{Y}$$

- Q-theory of Tobin (1969).
 - average q (market value of firm / replacement cost of capital) is a sufficient statistic for investment
- Synthesis by Hayashi (1982).
 - neoclassical theory + convex adjustment cost = marginal q-theory
 - conditions for marginal q = average q (linear homogeneity)

Representative firm model

Bellman equation:

$$V_{t}(K_{t-1}) = \max_{K_{t}, I_{t}, N_{t}} F_{t}(K_{t-1}, N_{t}) - w_{t}N_{t} - I_{t} - \phi(I_{t}, K_{t-1}) + \frac{1}{1 + r_{t}} \mathbb{E}_{t}[V_{t+1}(K_{t})]$$
s.t. $K_{t} = (1 - \delta)K_{t-1} + I_{t}$

- Define $W_t(K_t) = \mathbb{E}_t[V_{t+1}(K_t)]/(1+r_t)$. Marginal q is $Q_t \equiv W_t'(K_t)$.
- FOCs imply

$$\underbrace{1 + \partial_{l}\phi(l_{t}, K_{t-1})}_{\text{marginal cost of capital}} = Q_{t} = \underbrace{\mathbb{E}_{t}\left[\frac{\partial_{K}F_{t+1}(K_{t}, N_{t+1}) - \partial_{K}\phi(l_{t+1}, K_{t}) + (1-\delta)Q_{t+1}}{1 + r_{t}}\right]}_{\text{marginal benefit of capital}}$$

6

Brief intellectual history (part 2)

- Neoclassical q-theory is still prominent in quantitative RANK models.
 - Christiano et al. (2005); Justiniano et al. (2010)...
 - matches well (first-order) aggregate investment dynamics (idot adjustment cost)
- What's the problem with q-theory based on representative firm?

Brief intellectual history (part 2)

- Neoclassical q-theory is still prominent in quantitative RANK models.
 - Christiano et al. (2005); Justiniano et al. (2010)...
 - matches well (first-order) aggregate investment dynamics (idot adjustment cost)
- What's the problem with q-theory based on representative firm?
- At odds with firm-level investment, notably lumpiness.
 - · inaction: share of firms investing near 0 in a given year
 - spikes: share of firms investing very much in a given year

Distribution of plant-level investment rates

Figure 1: Investment rate distribution (IRS data, 1998–2010). Source: Zwick and Mahon (2017)

Variable	Definition	Balanced
Average investment rate	I/K	10.4%
Inaction rate	$ I/K \le 0.01$	23.7%
Spike rate	$ I/K \geq 0.2$	14.4%
Spike share of aggregate investment		24.4%

Brief intellectual history (part 2)

- Neoclassical q-theory is still prominent in quantitative RANK models.
- What's the problem with q-theory based on representative firm?
- At odds with firm-level investment, notably lumpiness.
 - · inaction: share of firms investing near 0 in a given year
 - spikes: share of firms investing very much in a given year
- But does lumpiness "matter" for aggregate investment?

Aggregation debate

- Does lumpiness "matter" for aggregate investment !?
- Yes: Caballero et al. (1995); Caballero and Engel (1999).
 - · lumpiness points to presence of fixed costs, small investments are not worthwile
 - I should be more responsive when many firms invest anyway, such as expansions
 - ightarrow state-depence (nonlinearity) of aggregate investment

Aggregation debate

- Does lumpiness "matter" for aggregate investment /?
- Yes: Caballero et al. (1995); Caballero and Engel (1999).
 - · lumpiness points to presence of fixed costs, small investments are not worthwile
 - · I should be more responsive when many firms invest anyway, such as expansions
 - → state-depence (nonlinearity) of aggregate investment
- No: Thomas (2002); Khan and Thomas (2008).
 - embed HA firm block in RBC model with aggregate TFP shocks
 - · when TFP is high, firms want to expand
 - but households want smooth consumption, so real wage and interest rate rise
 - and dampen the rise in share of adjusters ightarrow state-dependence largely **disappears in GE**

Aggregation debate

- Does lumpiness "matter" for aggregate investment !?
- Yes: Caballero et al. (1995); Caballero and Engel (1999).
 - · lumpiness points to presence of fixed costs, small investments are not worthwile
 - I should be more responsive when many firms invest anyway, such as expansions
 - → state-depence (nonlinearity) of aggregate investment
- No: Thomas (2002); Khan and Thomas (2008).
 - embed HA firm block in RBC model with aggregate TFP shocks
 - · when TFP is high, firms want to expand
 - but households want smooth consumption, so real wage and interest rate rise
 - and dampen the rise in share of adjusters o state-dependence largely **disappears in GE**
- Yet it does: Winberry (2021)
 - · vanilla RBC model gets wrong the TFP-real rate comovement
 - fix this by household habit formation o recover state-dependence in GE

Preview of results

• We'll revisit the aggregation debate wielding **sequence-space Jacobians**.

Preview of results

- We'll revisit the aggregation debate wielding **sequence-space Jacobians**.
- 1st-order irrelevance: micro lumpiness has minimal impact on aggregate investment dynamics around steady state. Literature is not about this, but good to know.
 - ullet vary lumpiness while fixing $\mathcal{J}_{0,0}^{l,r}\Longrightarrow$ entire Jacobian is approximately identical
 - holds for all block Jacobians \implies irrelevance is independent of GE closure
- Calibration of adjustment cost is key to state-dependence. Identification is tricky.
 - · all papers on previous slide fall into one pitfall or another
 - targeting micro and macro moments jointly is key, can be done for <u>firm block in isolation</u>

Preview of results

- We'll revisit the aggregation debate wielding **sequence-space Jacobians**.
- 1st-order irrelevance: micro lumpiness has minimal impact on aggregate investment dynamics around steady state. Literature is not about this, but good to know.
 - \cdot vary lumpiness while fixing $\mathcal{J}_{0,0}^{l,r} \Longrightarrow ext{entire Jacobian is approximately identical}$
 - holds for all block Jacobians \implies irrelevance is independent of GE closure
- Calibration of adjustment cost is key to state-dependence. Identification is tricky.
 - · all papers on previous slide fall into one pitfall or another
 - targeting micro and macro moments jointly is key, can be done for <u>firm block in isolation</u>
- My current take (work in progress):
 - canonical HA firm model—carefully calibrated—doesn't yield strong aggregate implications of micro lumpiness
 - issue is with the model, not necessarily with the mechanism

Overview

- Rooted in Abel and Eberly (1994). Quantitative macro version by Khan and Thomas (2008).
- Starting point: RA model with convex adjustment cost.
- New ingredients to match the micro data:
 - · decreasing returns to scale
 - idiosyncratic productivity shocks
- ightarrow heterogeneity in target capital, investment
 - adjustment cost includes a fixed cost ightarrow inaction, spikes

Overview

- Rooted in Abel and Eberly (1994). Quantitative macro version by Khan and Thomas (2008).
- Starting point: RA model with convex adjustment cost.
- New ingredients to match the micro data:
 - decreasing returns to scale ightarrow heterogeneity in target capital, investment
 - idiosyncratic productivity shocks
 - adjustment cost includes a fixed cost \rightarrow inaction, spikes
- **Smoothing**: fixed cost ξ is continuous random variable, iid across firms and periods.

$$\phi(\xi, i, k_{-}) = \xi \cdot \mathbf{1}_{\{i \neq 0\}} + \frac{\varphi}{2} \left(\frac{i}{k_{-}}\right)^{2} k_{-}$$

Timing

- 1. Firm enters period with state (z_-, k_-)
- 2. Draws new **productivity** z from exogenous Markov process. Usually AR(1).
- 3. Draws **adjustment cost** ξ from iid distribution. Usually, **uniform** on $[0, \bar{\xi}]$.
- 4. Chooses **investment** and produce:

$$\begin{aligned} V_t(\xi, z, k_-) &= \max_{k, i, n} F(z, k_-, n) - w_t n - i - \phi(\xi, i, k_-) + W_t(z, k) \\ \text{s.t. } k &= (1 - \delta)k_- + i \end{aligned}$$

5. Finish period with state (z, k).

Sketch of solution (part 1)

· Labor demand and output are independent of the investment decision. Define

$$\pi_t(z, k_-) = F(z, k_-, n^*) - w_t n^*$$

Split decision problem between adjusters & non-adjusters

$$V_t(\xi, z, k_-) = \max \{V_t^A(z, k_-) - \xi, V_t^N(z, k_-)\}$$

where

$$V_t^{A}(z, k_{-}) = \max_{i^{A}} \pi_t(z, k_{-}) - i^{A} - \frac{\varphi}{2} \left(\frac{i^{A}}{k_{-}}\right)^2 k_{-} + W_t(z, (1 - \delta)k_{-} + i^{A})$$
 (1)

$$V_t^N(z, k_-) = \pi_t(z, k_-) + W_t(z, (1 - \delta)k_-)$$
 (2)

Sketch of solution (part 2)

· Firm invests iff fixed cost is lower than threshold

$$\hat{\xi}_t(z, k_-) = V_t^{A}(z, k_-) - V_t^{N}(z, k_-)$$

which implies adjustment probabilities

$$p_t^A(z, k_-) = \Pr\left(\xi \leq \hat{\xi}_t(z, k_-)\right)$$

Smoothing is achieved by aggregating over fixed cost distribution

$$i_{t}(z, k_{-}) = p_{t}^{A}(z, k_{-})i_{t}^{A}(z, k_{-})$$

$$V_{t}(z, k_{-}) = p_{t}^{A}(z, k_{-}) \left(V_{t}^{A}(z, k_{-}) - \mathbb{E}\left[\xi \middle| \xi \leq \hat{\xi}_{t}(z, k_{-})\right]\right) + \left(1 - p_{t}^{A}(z, k_{-})\right)V_{t}^{N}(z, k_{-})$$

Core mechanics

- Target capital depends on productivity.
- When hit by TFP shock, move gradually to new target due to **convex cost**.

Extensive vs intensive margin

- · Zoom in on middle productivity firms.
- $i(z, k_{-}) = p_{t}^{A}(z, k_{-})i_{t}^{A}(z, k_{-})$
- Adjustment probability increases with distance from target.

Aggregate implications of

lumpiness

Sequence-space Jacobians

- Firm block $\{w_t, r_t\} \rightarrow \{I_t, K_t, N_t, Y_t\}$.
- Focus on **aggregate investment function** $\mathcal{I}(\{w_t, r_t\})$.
- Take a reasonable calibration and explore how adjustment costs affect $\frac{d \log l_t}{dr_s}$.
 - $\bar{\xi}$ upper bound of fixed cost distribution
 - φ quadratic cost
- Keep in mind: **recent evidence** suggests $\frac{d \log I_0}{dr_0} \approx -5$.
 - Zwick and Mahon (2017): bonus depreciation (Koby and Wolf 2020 translates it to dr)
 - Gormsen and Huber (2022): perceived cost of capital from conference calls
 - He et al. (2022): cost of capital policy change in China

Benchmark Jacobian

- Investment falls in anticipation of higher real rate.
- Investment rises after the shock to rebuild steady-state capital stock.

Benchmark Jacobian

- Investment falls in anticipation of higher real rate.
- Investment rises after the shock to rebuild steady-state capital stock.
- **Next:** vary $\bar{\xi}$ and φ .

Jacobian fixed cost

- Without adjustment costs, I is extremely price-elastic.
- Without convex cost, $\frac{d \log I_0}{d r_0} \approx 50$ even for very high fixed cost.

Jacobian fixed cost

- Without adjustment costs, I is extremely price-elastic.
- Without convex cost, $\frac{d \log I_0}{d r_0} \approx 50$ even for very high fixed cost.

Jacobian convex cost

• Convex cost delivers straightforward dampening.

Taking stock

- Without adjustment costs, aggregate investment *I* is extremely price-elastic.
 - in the limit of CRS technology and no convex cost, it's infinitely elastic
 - intuition: without curvature, firm size is pinned down by demand
- Convex cost is a much more effective instrument to control elasticity of *I*.
 - convex cost affects curvature while fixed cost does not
 - some convex cost is necessary to get into ballpark of semi-elasticity of -5

Taking stock

- Without adjustment costs, aggregate investment *I* is extremely price-elastic.
 - in the limit of CRS technology and no convex cost, it's infinitely elastic
 - intuition: without curvature, firm size is pinned down by demand
- Convex cost is a much more effective instrument to control elasticity of *I*.
 - convex cost affects curvature while fixed cost does not
 - some convex cost is necessary to get into ballpark of semi-elasticity of -5
- Most of the classic papers have only a fixed cost.
 - fixed: Caballero and Engel (1999), Khan and Thomas (2008), Gourio and Kashyap (2007), Bachmann et al. (2013)...
 - fixed & convex: Cooper and Haltiwanger (2006); Koby and Wolf (2020); Winberry (2021)
- Do you expect heterogeneity to "matter" with almost no curvature on the firm side?

Micro moments

- Many combinations of fixed & convex cost can match the elasticity of aggregate I.
- Turn to micro data (lumpiness) to pin down the right combination.
- Recall that inaction rate is $\Pr\left(\left|\frac{i}{k_-}\right| \le 0.01\right)$ and spike rate is $\Pr\left(\left|\frac{i}{k_-}\right| \ge 0.2\right)$.
- Strategies to identifying fixed cost.
 - aggregate (sectoral) time series: Caballero and Engel (1999); Bachmann et al. (2013)
 - inaction rate: Khan and Thomas (2008)
 - spike rate: Winberry (2021)

Micro moments

- Many combinations of fixed & convex cost can match the elasticity of aggregate I.
- Turn to micro data (lumpiness) to pin down the right combination.
- Recall that inaction rate is $\Pr\left(\left|\frac{i}{k_-}\right| \le 0.01\right)$ and spike rate is $\Pr\left(\left|\frac{i}{k_-}\right| \ge 0.2\right)$.
- Strategies to identifying fixed cost.
 - aggregate (sectoral) time series: Caballero and Engel (1999); Bachmann et al. (2013)
 - inaction rate: Khan and Thomas (2008)
 - spike rate: Winberry (2021)
- Claim: <u>inaction rate</u> is the most useful lumpiness metric in this model.

Micro moments fixed cost

• Gray area shows observed range (1998–2010) from Zwick and Mahon (2017).

Micro moments convex cost

• Gray area shows observed range (1998–2010) from Zwick and Mahon (2017).

- Lumpiness is often measured by either inaction rate or spike rate.
- Weak identification of fixed cost from spike rate.
- · Inaction rate calls for small fixed cost.
 - higher than in Khan and Thomas (2008)
 - much smaller than in Bachmann et al. (2013); Winberry (2021)

- Lumpiness is often measured by either inaction rate or spike rate.
- Weak identification of fixed cost from spike rate.
- · Inaction rate calls for small fixed cost.
 - higher than in Khan and Thomas (2008)
 - much smaller than in Bachmann et al. (2013); Winberry (2021)
- Next: inaction is the key statistic for the aggregate implications of lumpiness.
 - · mechanism relies on variation in share of adjusters
 - for realistic inaction (small fixed cost), aggregate effects are small

Two calibrations

	Data	Low FC	High FC
Fixed cost upper bound		0.0035	1.1
Convex cost		1.95	1.7
Inaction rate	0.24	0.21	0.82
Spike rate	0.14	0.17	0.17
Aggregate inv. elast.	-5	-5	-5

- Massively different fixed cost distributions ⇒ reflected in inaction rate.
- Same spike rate, same aggregate semi-elasticity.

Jacobians around steady state

- Low FC model implies same aggregate dynamics as RA model.
- High FC model implies visibly, but not impressively, more anticipation.
- · What about state dependence?

State-dependent Jacobians

- Different approaches to quantifying nonlinearities.
 - Khan and Thomas (2008) look at skewness and kurtosis in simulated data.
 - Winberry (2021) compares impulse responses after a history of bad vs good TFP shocks.
- We will compute sequence-space Jacobians around large TFP shocks.
 - caveat: can't use fake news algorithm—why?
- TFP shock: AR(1) with ho= 0.9, size such that output rises by 5% in low FC model.
 - output fell by 4.3% in the GFC

Share of adjusters

Share of adjusters

- Share of adjusters $\mbox{\it relative to ss}$ fluctuates more in high FC calibration.

State-dependent Jacobians

- · Variation in share of adjusters drives sensitivity to additional shocks.
 - high FC: semi-elasticity to r shock is 5.4 in boom vs 4.6 in bust

- State-dependence of aggregate investment relies on variation in share of adjusters.
- Easier to achieve if share of adjusters is low to begin with. But that's at odds with moderate **inaction rate** in micro data.

- State-dependence of aggregate investment relies on variation in share of adjusters.
- Easier to achieve if share of adjusters is low to begin with. But that's at odds with moderate **inaction rate** in micro data.
- Should we take the empirical inaction rate so seriously?
 - Zwick and Mahon (2017) have most comprehensive sample (IRS) but don't observe negative investment, so the 23.7% they report on avg is an upper bound
 - Cooper and Haltiwanger (2006) find 8% for manufacturing firms; probably a lower bound
 - Bachmann et al. (2013): fuzzy mapping between productive units in data / model
- Calibrating model to 80%+ inaction rate is hard to defend. Why don't we look at cyclicality of inaction rate in the data?
 - main idea of Gourio and Kashyap (2007), now we have better data

Cyclical inaction

- Between 2007 and 2009, inaction rate rose by 33%.
- About 5× more than in our simple PE experiment with similar fall in output.
- Suggests that state-dependence mechanism may have bite after all.

Conclusion

Conclusion

- We discussed the emergence of the canonical **HA firm model**.
- Model can account for micro lumpiness & macro state-dependence of investment that RA model cannot.
- Non-trivial aggregate implications hinge on calibration that's unrealistic in light of modern evidence.
 - substantial 1th-order effects are not even on the table
 - · for state-dependence, inaction rate is better measure of lumpiness than spike rate
 - $\,$ stronger identification & more relevant for mechanism
- Literature emphasized role of GE price adjustments.
 - small changes in prices have large effect only if investment demand is very elastic
 - · modern firm-level evidence rejects this view
 - model needs convex cost to reach semi-elasticity \approx -5

References i

References

- **Abel, Andrew B. and Janice C. Eberly,** "A Unified Model of Investment Under Uncertainty," *The American Economic Review*, 1994, 84 (5), 1369–1384.
- **Bachmann, Rüdiger, Ricardo J. Caballero, and Eduardo M. R. A. Engel**, "Aggregate Implications of Lumpy Investment: New Evidence and a DSGE Model," *American Economic Journal: Macroeconomics*, 2013, 5 (4), 29–67.
- **Caballero, Ricardo J. and Eduardo M. R. A. Engel**, "Explaining Investment Dynamics in U.S. Manufacturing: A Generalized (S, s) Approach," *Econometrica*, 1999, 67 (4), 783–826.
- ____, ___, and John C. Haltiwanger, "Plant-Level Adjustment and Aggregate Investment Dynamics," *Brookings Papers on Economic Activity*, 1995, 1995 (2), 1–54.

References ii

- Christiano, Lawrence J., Martin Eichenbaum, and Charles L. Evans, "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 2005, 113 (1), 1–45.
- **Cooper, Russell W and John C Haltiwanger**, "On the Nature of Capital Adjustment Costs," *The Review of Economic Studies*, 2006, 73 (3), 611–633.
- Gormsen, Niels Joachim and Kilian Huber, "Corporate Discount Rates," 2022. Manuscript.
- **Gourio, Francois and Anil K. Kashyap**, "Investment Spikes: New Facts and a General Equilibrium Exploration," *Journal of Monetary Economics*, 2007, 54, 1–22.
- **Hayashi, Fumio**, "Tobin's Marginal Q and Average Q: A Neoclassical Interpretation," *Econometrica*, 1982, pp. 213–224.
- **He, Zhiguo, Guanmin Liao, and Baolian Wang,** "What Gets Measured Gets Managed: Investment and the Cost of Capital," 2022. Manuscript.

References iii

- **Jorgenson, Dale W.**, "Capital Theory and Investment Behavior," *The American Economic Review*, 1963, 53 (2), 247–259.
- **Justiniano, Alejandro, Giorgio E Primiceri, and Andrea Tambalotti**, "Investment Shocks and Business Cycles," *Journal of Monetary Economics*, 2010, 57 (2), 132–145.
- **Khan, Aubhik and Julia K. Thomas,** "Idiosyncratic Shocks and the Role of Nonconvexities in Plant and Aggregate Investment Dynamics," *Econometrica*, 2008, 76 (2), 395–436.
- **Koby, Yann and Christian Wolf**, "Aggregation in Heterogeneous-Firm Models: Theory and Measurement," *Manuscript, July*, 2020.
- **Thomas, Julia K.,** "Is Lumpy Investment Relevant for the Business Cycle?," *Journal of Political Economy*, 2002, 110 (3), 508–534.
- **Tobin, James,** "A General Equilibrium Approach to Monetary Theory," *Journal of Money, Credit and Banking,* 1969, 1 (1), 15–29.

References iv

Winberry, Thomas, "Lumpy Investment, Business Cycles, and Stimulus Policy," *American Economic Review*, 2021, 111 (1), 364–96.

Zwick, Eric and James Mahon, "Tax Policy and Heterogeneous Investment Behavior," *American Economic Review*, 2017, 107 (1), 217–48.