EECE5155 Homework 1

Question 2.)

Average Delivery Ratio:

The plot above shows my simulations Average Delivery Ratio when the number of nodes was increased from 5 to 50. At the smallest number of nodes simulated, the average value across the 10 individual simulations I ran was about a 34% delivery ratio with each node attempting to transmit 1000 packets. Using the 95% confidence interval, I calculated my margin of error to be about ± 3.5 from this value of 34%. As suspected, when the number of nodes increased, the average delivery ratio plummeted as well, because of the increased traffic the sink node experienced and the increased chance of packets colliding. At 50 nodes, the average delivery ratio was about 3.67%, which matches the trends from the figure shown in the homework assignment document.

Average Packet Latency:

The average packet latency increased when the number of nodes also increased. The initial average value was about 6.3ms for 5 nodes and increased linearly to a value of 12.5ms when 50 nodes were accessing the channel. This trend seems correct as the latency would only increase

when more and more nodes would contend for the channel, which not all could, so they were forced to generate more backoffs. When the successful packets were received, the latency would be calculated from the time the packets were created till they successfully arrived at the sink node. The margin of error calculated for this plot were all within 0.26 to 1.15 for all of the runs, which seems reasonable.

Average Delivery Ratio vs macMaxCSMABackoffs:

The simulation results above show a linear increase in the average deliver ratio when the number of allowed CSMA backoffs was increased. At the lowest value of 1 CSMA backoff, the average delivery ratio was about 3% with about ± 0.3 margin of error across the 10 simulations. Since the nodes were only allowed 1 backoff, if the channel was not free by the time their backoff timer expired, then their packet would be dropped. Since this simulation was run with 30 nodes, there was a high chance that when a majority of the nodes backoff timers expired, the channel would be busy, which explains why the delivery ratio was so low. As the number of allowed backoffs for the nodes increased, the average delivery ratio increased as well, because the nodes had more and more chances of attempting to access the channel and deliver a packet to the sink node. When the nodes were allowed 4 backoffs, the average deliver ratio was about 18.2% and my margin of error was about ± 4.9 from this value, which was the largest margin of error for these simulations. However, it seems correct that the average delivery ratio would increase when the 30 nodes were allowed to take 4 backoffs before having to drop the packet they were attempting to send to the sink node.

Average Delivery Ratio vs macMinBE:

For this simulation, we were asked again to simulate with the number of nodes being 30 and observing the average delivery ratio when the macMinBE value was varied from 1 to 4. When the value of macMinBE was 1, the average delivery ratio was about 0.72%. Since the backoff exponent was at the lowest it could be, the backoff timer set by each of the 30 nodes was set between a random int value between 0 and 1. So either the nodes waited 1 sec to or kept trying to access the channel again right away even though they were instructed to generate a backoff timer since the channel was not free. This explains why the average delivery ratio would be lower than 1% and nearly at a value of 0% delivery ratio. When the macMinBE value was increased, the nodes had a better chance at generating a longer backoff timer, so that packets would not collide or be dropped. When the macMinBE value was 4, the average delivery ratio was about 11.4% with about a ± 1.7 margin of error. This result performed better than the first figure when simulating average delivery ratio vs number of nodes equal to 30, because the macMinBE value for those results was set to 3. So by increasing the random backoff time for the 30 nodes, resulted in a better average delivery ratio.

Question 3.)

Average Energy Consumption:

The plot above shows the average energy consumption when the number of nodes increased from 5 to 50 and displays a linear trend with the energy increasing as the number of nodes increases. The Power received was computed towards the total energy when performing the Clear Channel Assessment and the Power transmitted was computed towards the total energy when sending the data packets. Then at the sink node, the energy was divided out by the number of received packets. When simulating only 5 nodes, the average energy was about 0.35 mJ and increased to only about 1.56 mJ when simulating 50 nodes. I would expect the energy to be at least tenfold the amount at 5 nodes. This simulation seemed like the results were not as accurate though the energy did show an increasing trend with the increase in number of nodes.

Tables used for calculating and plotting graphs:

Average Delivery Ratio

Trial	Delivery Ratio (%)	Number of Nodes (N)	Mean	Std	CI Range	Upper CI	Lower CI	Run O	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
1	33.766	5	33.77	5.609690425	3.476858258	37.24286	30.289142	27.9	40.98	29.04	29.12	36.8	28.78	36.92	42.34	28.78	37
2	17.134	10	17.13	4.918243137	3.048302664	20.1823	14.085697	5.18	20.92	21.16	16.78	21.45	19.43	17	19.18	17.11	13.13
3	9.5695	20	9.57	1.546918891	0.958772644	10.52827	8.6107274	5.36	9.345	10.09	9.4	9.53	10.18	10.45	10.49	10.37	10.48
4	5.884333	30	5.884	1.948829932	1.20787511	7.092208	4.6764579	0.41	6.34	6.43	6.54	6.91667	6.52333	6.79	6.67333	6.47	5.75
5	4.4505	40	4.451	1.50550047	0.933101713	5.383602	3.5173983	0.1675	4.975	4.9575	4.8875	4.925	4.87	4.91	4.8675	4.9875	4.9575
6	3.6782	50	3.678	0.660312687	0.409258523	4.087459	3.2689415	1.806	3.788	3.85	3.908	3.82	3.928	3.886	3.876	3.938	3.982

Average Packet Latency

Trial	Average Packet Latency (ms)	Number of Nodes (N)	Mean	Std	CI Range	Upper CI	Lower CI	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
1	6.305399	5	6.305	1.851680369	1.147662294	7.453061	5.1577367	4.576	8.59561	7.7901	4.576	4.57642	4.576	4.576	7.61055	7.64537	8.53194
2	9.268291	10	9.268	1.659559901	1.028586982	10.29688	8.239704	4.576	9.77877	10.0233	9.58586	9.53217	10.0309	9.61525	9.93369	9.64384	9.96313
3	11.28396	20	11.28	0.441067554	0.273371479	11.55733	11.010589	10.58	11.3658	12.2584	11.0482	11.5936	11.2228	11.3334	10.911	11.2903	11.2361
4	11.69699	30	11.7	0.565836962	0.350702938	12.04769	11.346287	10.6163	12.889	11.8147	11.2927	11.88	11.4658	11.7087	11.8486	11.6847	11.7694
5	11.99379	40	11.99	0.534820405	0.33147903	12.32527	11.662311	11.4392	13.0011	12.2358	11.3946	11.3771	11.6674	12.2132	12.3211	11.873	12.4154
6	12.5611	50	12.56	0.41493208	0.257172842	12.81827	12.303927	11.9711	12.1921	12.8591	12.6286	12.3656	12.8424	12.6179	13.4336	12.3747	12.3259

Average Delivery Ratio vs macMaxCSMABackoffs

Trial	Delivery Ratio (%)	macMaxCSMABackoffs	Mean	Std	CI Range	Upper CI	Lower CI	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
1	2.931334	1	2.931	0.488918914	0.303029514	3.234364	2.6283045	1.56667	2.98	2.87	3.15667	3.17667	3.04333	3.16	3.10667	3.12	3.13333
2	5.8133347	2	5.813	1.966859437	1.219049708	7.032384	4.594285	0.346667	6.74667	6.78667	5.31333	6.6	6.67	6.54667	6.43	6.23667	6.45667
3	13.062673	3	13.06	1.922019036	1.191257851	14.25393	11.871415	7.72333	14.0967	14.4933	12.9567	13.85	13.4033	13.5667	13.44	13.61	13.4867
4	18 187337		18 10	4 803185307	3.032772001	21 22011	15 154565	7.02667	19 3267	17 8867	25 8033	20 5767	20.3	17 0333	16 7367	21.08	15 1133

Average Delivery Ratio vs macMinBE

Trial	Delivery Ratio (%)	macMinBE	P	Mean	Std	CI Range	Upper CI	Lower CI	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
1	0.7170004		1 (0.717	0.333898116	0.206948394	0.923949	0.510052	0	0.943333	1.32667	0.6	0.58667	0.77	0.756667	0.816667	0.586667	0.783333
2	2.309334		2	2.309	0.809151208	0.501507899	2.810842	1.8078261	0.03	2.71333	2.53333	2.60667	2.37667	2.36	2.55667	2.65	2.61	2.65667
3	6.727333		3 1	6.727	0.100722994	0.062427611	6.789761	6.6649054	6.87333	6.63667	6.63	6.67	6.67333	6.78	6.71667	6.83667	6.85333	6.60333
4	11.384343		4	11.38	1.696822047	1.051681875	12.43602	10.332661	7.09333	13.2633	11.81	12.23	11.5967	11.51	11.1167	13.0367	11.2367	10.95

Average Energy Consumption

Trial	Energy (mJ)	Number of Nodes (N)	Mean	Std	CI Range	Upper CI	Lower CI	Run 0	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
1	0.3482973	5	0.348	0.047888266	0.02968091	0.377978	0.3186164	0.477788	0.321879	0.348946	0.346805	0.32294	0.35248	0.322263	0.315067	0.353073	0.321735
2	0.5167755	10	0.517	0.190094571	0.117819671	0.634595	0.3989558	1.05112	0.437537	0.433533	0.476149	0.42627	0.44236	0.461445	0.447951	0.46088	0.530514
3	0.7167334	20	0.717	0.104395821	0.064704011	0.781437	0.6520294	1.01257	0.702962	0.668901	0.693664	0.68453	0.6798	0.677091	0.677254	0.690156	0.680405
4	1.0306635	30	1.031	0.250735564	0.155404657	1.186068	0.8752588	1.737	0.96697	0.922468	0.929967	0.90911	0.98316	0.998656	0.923957	0.925116	1.01023
5	1.249778	40	1.25	0.029587085	0.018337928	1.268116	1.2314401	1.3019	1.20562	1.24786	1.24534	1.25558	1.22935	1.26427	1.28978	1.22324	1.23484
6	1.566757	50	1.567	0.376249065	0.233197302	1.799954	1.3335597	2.62818	1.5801	1.41437	1.41265	1.42195	1.44464	1.41854	1.43222	1.47264	1.44228