CS-201Computational Physics

Lab-5 28 . 02 . 2020

5 Air Resistance

5.1 $f(v) = g - k/m * v^2$; v(0) = 0 m/s; $0 \le t \le 100$, $\Delta t = 0.001$

Analytical Solution : $v = \sqrt{(mg/k) \tanh (\sqrt{(gk/m)} t)}$

5.2.a Ignoring Air Drag:

f(v)=P/mv ; v(0)=4m/s ; $0 \le t \le 10$, $\Delta t=0.001$ P=400~W , m=70kg

Analytical Solution: $v^2 = v_0^2 + 2Pt/m$

5.2.b With Air Drag:

 $f(v)=(P-b\,\rho\,Av^3)/mv \quad ; \quad v(0)=4m/s \quad ; \quad 0 \le t \le 100 \quad , \quad \Delta t=0.001$

$$B = 0.5$$
 ; $A = 0.33 \text{ m}^2$; $\rho = 1.25 \text{ kgm}^{-3}$

5.2.c dv/dt - v plot

5.3.a $y = x \tan \theta$) - $gx^2/2*(v\cos \theta)$)² ;v = 700 m/s; $B/m = 4 \times 10^{-5}$ kg/m x(0)=0, y(0)=0, $vx(0)=v*\sin(\theta)$, $vy(0)=v*\cos(\theta)$; $0 \le t \le T$, $\Delta t = 1$

Values of θ (without air drag) = 30, 35, 40, 45, 50, 55 (in degrees)

5.3.b With air drag, the graph of corresponding Euler approximations for same values of θ i.e. 30, 35, 40, 45, 50, 55 (in degrees)

