NOMBRE DE ASIGNATURA: FUNDAMENTOS DE ELECTRÓNICA				
CODIGO	0869	PLAN	2016	
HORAS TEÓRICAS	4	HORAS DE LABORATORIO	3\$	
TOTAL DE CRÉDITOS	5	REVISADO:	RB01-2018	
PRE-REQUISITOS	CIRCUITOS I			
CARRERAS:	ING. ELÉCTRICA ING. ELECTROMECÁNICA ING. ELECTRÓNICA ING. ELÉCT. Y ELECTRNCA	ING. TELECOMUNICAC. ING. CONTROL Y AUTOMAT. ING. ELECTRO. Y TELECOM.		

DESCRIPCIÓN DE LA ASIGNATURA:

Esta asignatura abarca los conceptos teóricos sobre la estructura básica, las características y parámetros y la operación de los dispositivos electrónicos vistos como elementos discretos, tales como: el diodo de unión p-n, diodos de aplicaciones especiales, el transistor de unión bipolar (BJT) y los transistor de efecto de campo (JFET MOSFETs). Se analizará el comportamiento en corriente directa (DC), características I vs V, resistencias equivalentes y circuitos de polarización, así como, sus configuraciones como amplificadores. Se incluye el análisis en corriente alterna (CA), con sus parámetros de ganancia de voltaje y corriente, impedancias de entrada y salida a (frecuencias medias). Finalizando el estudio con el análisis de los circuitos simples y circuitos multietapa.

OBJETIVOS GENERALES:

- Brindar al estudiante un conocimiento amplio de la construcción, operación y el diseño de aplicaciones de los dispositivos semiconductores, tales como: el diodo, el transistor bipolar y los FETs.
- 2. Profundizar en el análisis circuital para lograr determinar, clara y rápidamente, el modo de funcionamiento, y la realización de diseños con estos dispositivos.

OBJETIVOS ESPECÍFICOS:

- 1. Brindar al estudiante las herramientas necesarias para analizar y diseñar circuitos con dispositivos semiconductores que desarrollen una función determinada.
- 2. Enseñar al estudiante las técnicas de verificación vía instrumentos de medición y el debido comportamiento de los dispositivos.
- 3. Que el estudiante adquiera destreza en la detección de fallas de estos dispositivos cuando está en operación como elementos de circuitos más complejos.

CONTENIDO

- 1. Teoría Básica de Semiconductores y la unión PN
 - 1.1. Estructura atómica de los semiconductores
 - 1.2. Bandas de energía
 - 1.3. Semiconductores intrínsecos y extrínsecos
 - 1.4. La unión PN
 - 1.4.1. La barrera de potencial
 - 1.4.2. Características de corriente voltaje
 - 1.4.3. La Juntura en polarización directa
 - 1.4.4. La juntura en polarización inversa
 - 1.4.5. Fenómenos de ruptura Zener

2. El diodo semiconductor

- 2.1. Polarización y curvas características del diodo de unión p-n
 - 2.1.1. Modelos del diodo
 - 2.1.1.1. Polarización directa y resistencias DC y AC
 - 2.1.1.2. Polarización inversa y tensión de ruptura
- 2.2. Análisis de circuito con diodos
- 2.3. Aplicaciones del diodo
 - 2.3.1. Rectificador de media onda
 - 2.3.2. Rectificador de onda completa con derivación central
 - 2.3.3. Rectificador de onda completa tipo puente
- 2.4. El diodo Zener
 - 2.4.1. Características de funcionamiento
 - 2.4.2. Aplicaciones
- 2.5. Diodos Especiales: Estructura, Simbología, Operación y Aplicaciones
- 2.6. Otras aplicaciones de los diodos
 - 2.6.1. Recortadores (Clippers)
 - 2.6.2. Fijadores o Sujetadores (Clampers)
 - 2.6.3. Multiplicadores de tensión
- 3. El transistor de unión bipolar (BJT en inglés)
 - 3.1. Estructura y teoría de funcionamiento
 - 3.1.1. Tipos de transistores NPN y PNP
 - 3.1.2. Modos de operación (activa, saturación y corte)
 - 3.1.2.1. Corrientes internas, externas y la relación entre ellas.
 - 3.1.2.2. Tensiones en los terminales del transistor
 - 3.1.2.3. Voltaje de Early
 - 3.2. Circuitos de polarización del BJT en DC
 - 3.2.1. Recta de carga y punto de operación
 - 3.2.2. Polarización por corriente de base constante
 - 3.2.3. Polarización por divisor de tensión
 - 3.2.4. Polarización por retroalimentación de colector

- 3.2.5. Polarización con fuente de corriente
- 3.3. El transistor bipolar como conmutador
- 3.4. El BJT como amplificador
 - 3.4.1. Modelos de CA del BJT
 - 3.4.1.1. Modelo hibrido Pi
 - 3.4.1.2. Modelo T
 - 3.4.2. Configuraciones y circuitos equivalentes
 - 3.4.2.1. Emisor común
 - 3.4.2.2. Base común
 - 3.4.2.3. Colector común
 - 3.4.3. Parámetros en AC para las tres configuraciones
 - 3.4.3.1. Ganancia de voltaje
 - 3.4.3.2. Ganancia de corriente
 - 3.4.3.3. Impedancia de entrada
 - 3.4.3.4. Impedancia de salida
 - 3.4.4. Amplificadores multietapa
- 4. Transistores de Efecto de Campo
 - 4.1. Tipos de transistores de efecto de campo
 - 4.1.1. JFET de canal N y P
 - 4.1.2. Mosfet de empobrecimiento de canal N y P
 - 4.1.3. Mosfets de enriquecimiento de canal N y P
 - 4.2. Estructura del Mosfet de enriquecimiento y operación física
 - 4.2.1. Creación del canal mediante variación de Vgs
 - 4.2.2. Operación a Vds pequeño
 - 4.2.3. Operación a medida que Vds aumenta
 - 4.2.4. Obtención de la relación in vs Vds
 - 4.2.5. Modelo a gran señal del Mosfet
 - 4.3. Características de Corriente Voltaje y Regiones de Operación
 - 4.3.1. Curva características para configuración fuente común
 - 4.3.1.1. Característica de transferencia
 - 4.3.1.2. Características de salida
 - 4.3.1.3. Operación en Triodo, Saturación y Corte
 - 4.3.2. Efecto de la modulación del canal
 - 4.3.3. El papel del substrato: el efecto cuerpo
 - 4.3.4. Efectos de la Temperatura
 - 4.3.5. Ruptura y protección de entrada
 - 4.4. Mosfet como amplificador y como interruptor
 - 4.4.1. Operación como interruptor
 - 4.4.2. Operación como amplificador lineal
 - 4.5. Polarización de circuitos amplificadores Mosfet
 - 4.5.1. Polarización con Vgs fija
 - 4.5.2. Polarización con Vg fija y conexión de resistencia a la fuente
 - 4.5.3. Polarización mediante divisor de voltaje
 - 4.5.4. Polarización mediante un resistor de realimentación de D a S
 - 4.5.5. Polarización mediante fuente de corriente

- 4.6. Operación y modelos a Pequeña señal
 - 4.6.1. Circuitos equivalentes a pequeña señal
 - 4.6.1.1. Modelo "clásico"
 - 4.6.1.2. Modelo T
 - 4.6.2. Modelo del efecto cuerpo
- 4.7. Amplificadores Mosfet de una etapa
 - 4.7.1. Configuración de fuente común
 - 4.7.2. Configuración de drenaje común o seguidor de fuente
 - 4.7.3. Configuración de compuerta común
- 4.8. Determinación de los parámetros del amplificador Mosfet en CA de una etapa
 - 4.8.1. Ganancia de Voltaje
 - 4.8.2. Ganancia general de voltaje
 - 4.8.3. Ganancia de Corriente
 - 4.8.4. Impedancia de entrada
 - 4.8.5. Impedancia de Salida
- 4.9. Amplificadores Mosfet multietapa

METODOLOGÍA Y RECURSOS:

Para el desarrollo del curso se recomienda el empleo de métodos activos y dinámicos. Los profesores además de las clases expositivas deben recurrir a discusiones, demostraciones de problemas por parte de los estudiantes, así como a las técnicas de preguntas y respuestas. El docente promoverá la participación activa de estudiante y procurará el análisis de casos que permitan aplicar los nuevos conocimientos a la solución de problemas reales

Se sugiere además, el uso de materiales y equipo didáctico para la complementación de las clases.

ACTIVIDADES COMPLEMENTARIAS:

Prácticas de laboratorios para la comprobación de los conceptos teóricos.

Desarrollar problemas mediante de asignación de tareas a ser evaluadas.

Charlas presentadas por los estudiantes sobre temas de actualidad relacionados a los tratados en clase.

Investigaciones de temas relacionados para ampliar lo dictado en las clases presenciales.

LABORATORIOS PROPUESTOS

Laboratorio #1. Instrumentos y mediciones

- Conceptos de seguridad
- Instrumentos: su uso
 - o Fuentes de poder
 - Multimetro digital
 - o Generador de señales
 - o Osciloscopio

Laboratorio #2. Mediciones de parámetros

- Mediciones del Diodo
- Mediciones del Transistor
- Hoja de especificaciones técnicas y curva característica

Laboratorio #3. Diodos y sus aplicaciones

- · Circuitos rectificadores media onda
- Circuitos rectificadores onda completa
- Diodos en serie
- Diodos en paralelo
- Diodos serie-paralelo

Laboratorio #4. Diodo Zener

- Circuito con fuente de alimentación y carga fija.
- Circuito con fuente de alimentación fija y carga variable.
- Circuito con fuente de alimentación y carga variable.

Laboratorio #5. Circuitos sujetadores y recortadores

- Sujetadores serie y paralelo
- Recortadores serie y paralelo

Laboratorio #6. Transistor BIPOLAR BJT

- Hoja de dato del BJT
- Característica de Operación del BJT

Laboratorio #7. BJT CON POLARIZACIÓN DC

• Amplificador Emisor Común

Laboratorio #8. BJT CON POLARIZACIÓN DC

• Amplificador Colector Común

Laboratorio #9. FET

- Hoja de dato del FET
- Característica de Operación del FET

Laboratorio #10. TRANSISTORES DE EFECTO DE CAMPO FET

• Polarización en fuente común

Laboratorio #11. Circuito amplificador multietapa

Amplificador con BJT y FET

SISTEMA DE EVALUACIÓN PROPUESTO:

Tareas, investigaciones y charlas	15%
Laboratorios	15%
Parciales	35%
Examen Semestral	35%

BIBLIOGRAFÍA:

- ADEL S. SEDRAS y KENNETH SMITH, 2006, "CIRCUITOS MICROELECTRONICOS", McGraw Hill, México, 1283 p.
- ALLAN HAMBLEY,2000, "ELECTRONICA", Prentice Hall, España, 903 p.
- RICHARD JAEGER y TRAVIS BLALOCK, 2005, "DISEÑO DE CIRCUITOS MICROELECTRONICOS.", McGraw Hill, 997 p.

PERFIL DEL DOCENTE:

- Licenciado en Ingeniería Electrónica, Eléctrica y Electrónica, Electrónica y Telecomunicaciones o grado superior en el área.
- Capacidad manifiesta de poder transmitir conocimiento.