1 Rachunek λ

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych x, y, \ldots (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi. Ponieważ V jest potencjalnie nieskończony, zastrzegamy sobie możliwość wybierania w razie potrzeby wcześniej nie użytej zmiennej.

Definicja 1. (Zbiór $\tilde{\Lambda}$ pretermów) Zbiorem pretermów będziemy nazywali najmniejszy (w sensie mnogościowym) zbiór wyrażeń $\tilde{\Lambda}$ taki, że:

- (P1) Jeśli $x \in V$, to $x \in \tilde{\Lambda}$.
- (P2) Jeśli $M, N \in \tilde{\Lambda}$, to $(MN) \in \tilde{\Lambda}$.
- (P3) Jeśli $x \in V$ i $M \in \tilde{\Lambda}$, to $(\lambda x. M) \in \tilde{\Lambda}$.

Definicję 1 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\tilde{\Lambda} \leftarrow V \mid (\tilde{\Lambda} \tilde{\Lambda}) \mid (\lambda V. \tilde{\Lambda})$$

Elementy $\tilde{\Lambda}$ będziemy oznaczali literami L, M, N, P, Q, R i ich wariantami z górnymi lub dolnymi indeksami. Wyrażenia postaci (P2) nazywamy aplikacjami M do N. Symbol λ występujący w (P3) nazywamy λ -abstraktorem, zaś wyrażenia powstałe przez zastosowanie tej reguły to λ -abstrakcje. W wyrażeniu postaci $(\lambda x. M)$ preterm M jest w zasięgu λ -abstraktora, a zmienna x jest przez niego związana. Ponadto, będziemy stosowali następujące konwencje notacyjne:

- najbardziej zewnętrzne nawiasy bedą pomijane,
- aplikacja wiąże lewostronnie; wyrażenia postaci (PQ)R będą zapisywane w postaci PQR,
- $-\lambda$ -abstrakcja wiaże prawostronnie: $\lambda x_1.(\lambda x_2.P)$ zapisujemy $\lambda x_1.\lambda x_2.P$,
- następujące po sobie λ -abstrakcje postaci $\lambda x_1. \lambda x_2....\lambda x_n. P$ zapisujemy pod wspólnym λ -abstraktorem: $\lambda x_1 x_2....x_n. P$.

Powiemy, że dwa λ -termy są syntaktycznie równe, jeśli rozumiane jako ciągi znaków są identyczne. Równość syntaktyczną będziemy oznaczali znakiem \equiv .

Przykład 1. Podajmy kilka przykładów λ -pretermów pogrupowanych ze względu na ich konstrukcję.

- (P1): x, y, z.
- (P2): x x, y x, x(x z), $(\lambda x.(xz))y$, $y(\lambda x.(xz))$, $(\lambda x.x)(\lambda x.x)$.
- (P3): $\lambda x.(xz)$, $\lambda yz.x$, $\lambda x.(\lambda x.(xx))$.

Podwyrażenia λ -pretermu mogą być wzajemnie identyczne i występować wielokrotnie. Obserwację tę ujmuje następująca definicja.

Definicja 2. (Multizbiór Sub podtermów pretermu)

- (1) $Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\}$
- (3) $\operatorname{Sub}(\lambda x. M) = \operatorname{Sub}(M) \cup \{\lambda x. M\}$

Elementy multizbioru Sub(M) nazywamy podtermami M. Jeśli L jest podtermem M, ale $L \not\equiv M$, to L nazywamy podtermem wlaściwym.

Przykład 2. Podtermy wybranych λ -pretermów.

(a) Sub
$$(\lambda x. xx) = \{(\lambda x. xx)^1, (xx)^1, x^2\}$$

(b) Sub
$$((\lambda x. xx) (\lambda x. xx)) =$$

= $\{((\lambda x. xx) (\lambda x. xx))^1, (\lambda x. xx)^2, (xx)^2, x^4\}$

W powyższych przykładach użyliśmy standardowej notacji w górnym indeksie umieszczając krotność występowania elementu.

Definicja 3. (Zbiór FV zmiennych wolnych) Dla dowolnego pretermu M określamy zbiór FV(M) zmiennych wolnych w M w następujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest domknięty lub nazywamy M kombinatorem.

Przykład 3. (a) $FV(\lambda x. xy) = \{y\}$

- (b) $FV(x(\lambda x. xy)) = \{x, y\}$
- (c) $FV(\lambda xyz.xy) = \emptyset$

Definicja 4. (Podstawienie) Dla dowolnych M, N $\in \tilde{\Lambda}$ i $x \in V$ przez N[x/N] oznaczamy rezultat podstawienia termu N za wszystkie wolne wystąpienia zmiennej x w M, o ile w rezultacie podstawienia nie zostaną związane żadne zmienne wolne występujące w N. W takim wypadku *podstawienie* jest przekształceniem pretermów określonym w następujący sposób:

(S1)
$$x[x/N] = N$$

- (S2) y[x/N] = y, o ile $x \not\equiv y$
- (S3) (PQ)[x/N] = P[x/N]Q[x/N]
- (S4) $(\lambda y. P)[x/N] = \lambda y. P[x/N]$, gdzie $x \neq y$ i $y \notin FV(N)$
- (S5) $(\lambda x. P)[x/N] = \lambda x. P$

Zauważmy, że jest to funkcja częściowa w zbiorze $\tilde{\Lambda} \times V \times \tilde{\Lambda}$. Powiemy, że M[x/N] jest poprawnym podstawieniem, jeśli podstawienie M[x/N] jest określone w myśl Definicji 4.

Lemat 1. (O podstawieniu) Niech $M, N, L \in \tilde{\Lambda}$ i niech ponadto $x \not\equiv y$ oraz $x \not\in FV(L)$. Wówczas

$$M[x/N][y/L] \equiv M[y/L][x/N[y/L]]. \tag{1}$$

 $\mathbf{Dowód}$. Dowód przebiega przez indukcję strukturalną względem M. Rozważmy następujące przypadki:

- i) M jest zmienną. Wówczas:
 - a. Jeśli $M \equiv x$, to obie strony (1) po podstawieniu są postaci N[y/L].
 - b. Jeśli $M \equiv y$, to ponieważ $x \not\equiv y$ i $x \not\in FV(M)$, po wykonaniu podstawienia po lewej stronie (1) otrzymujemy $M[x/N][y/L] \equiv L$. Ponieważ $x \not\in FV(L)$, to po wykonaniu podstawienia po prawej stronie widzimy, że obydwie strony są identyczne.
 - c. Jeśli $M \equiv z$ i $z \not\equiv x$ oraz $z \not\equiv y$, to obydwie strony (1) sa identyczne.
- ii) $M\equiv PQ$ dla pewnych $P,\,Q\in\tilde{\bf\Lambda}.$ Wówczas korzystając z hipotezy indukcyjnej wnosimy, że

$$P[x/N][y/L] \equiv P[y/L][x/N[y/L]],$$

$$Q[x/N][y/L] \equiv Q[y/L][x/N[y/L]].$$

Mając na względzie (S'3) widzimy, że twierdzenie zachodzi i w tym przypadku.

iii) Jeśli $M \equiv \lambda z. P$ oraz $z \equiv x$ lub $z \equiv y$, to z (S'5) widzimy, że obydwie strony (1) sa identyczne. Przypuśćmy, że $z \not\equiv x$ i $z \not\equiv y$ i $z \not\in FV(L)$. Wówczas na podstawie hipotezy indukcyjnej mamy:

$$(\lambda z. P)[x/N][y/L] = \lambda z. P[x/N][y/L] =$$

$$= \lambda z. P[y/L][x/N[y/L]] =$$

$$= (\lambda z. P)[y/L][x/N[y/L]].$$

Wniosek 1. Jesli M[x/y] jest poprawnym postawieniem i $y \notin FV(M)$, to M[x/y][y/x] jest poprawnym podstawieniem oraz M[x/y][y/x] = M.

Dowód. Mając na uwadze Lemat 4 dowód przebiega przez indukcję strukturalną względem M.

1.1 Wyrażenia λ

Na ogół chcielibyśmy utożsamiać pretermy, które różnią się wyłącznie zmiennymi związanymi, tak jak w przypadku wyrażeń $\lambda x. zx$ i $\lambda y. zy$. W takim wypadku powiemy o nich, że są swoimi α -wariantami lub że są ze sobą w relacji α -konwersji.

Definicja 5. (Relacja α -konwersji) Relacją = $_{\alpha}$ (α -konwersji) nazywamy najmniejszy w sensie mnogościowym praporządek na $\tilde{\Lambda}$ taki, że

- (α 1) Jeśli $y \notin FV(M)$ oraz M[x/y] jest poprawnym podstawieniem, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$
- $(\alpha 2)$ Jeśli $M =_{\alpha} N$, to dla dowolnego $x \in V$ zachodzi $\lambda x. M =_{\alpha} \lambda x. N$
- ($\alpha 3$) Jeśli $M =_{\alpha} N$, to dla dowolnego $Z \in \tilde{\Lambda}$ zachodzi $MZ =_{\alpha} NZ$
- $(\alpha 4)$ Jeśli $M =_{\alpha} N$, to dla dowolnego $Z \in \tilde{\Lambda}$ zachodzi $ZM =_{\alpha} ZN$

Wniosek 2. $Relacja =_{\alpha} jest \ relacją \ równoważności.$

Dowód. Wystarczy, że pokażemy, że relacja = $_{\alpha}$ jest symetryczna. Dowód przebiega przez indukcję względem Definicji 5. Rozważmy następujące przypadki:

- i) Jeśli $M=_{\alpha}N$ w konsekwencji zwrotności $=_{\alpha}$, to $M\equiv N$, a zatem również $N\equiv M$. Stąd $N=_{\alpha}M$.
- ii) Jeśli $M =_{\alpha} N$ w konsekwencji przechodniości $=_{\alpha}$, to istnieje $L \in \Lambda$ takie, że $M =_{\alpha} L$ i $L =_{\alpha} N$. Wówczas z hipotezy indukcyjnej $N =_{\alpha} L$ i $L =_{\alpha} M$. Z przechodniości relacji $=_{\alpha}$ otrzymujemy spodziewaną tezę.
- iii) Przypuśćmy, że $M =_{\alpha} N$ w konsekwencji ($\alpha 1$) dla $M \equiv \lambda x$. M' i $N \equiv \lambda y$. M'[x/y]. Ponieważ $x \notin FV(M'[x/y])$, to ze względu na Wniosek 1 mamy, że M'[x/y][y/x] = M'. Zatem, na podstawie ($\alpha 1$):

$$\lambda y. M'[x/y] =_{\alpha} \lambda x. M'[x/y][y/x].$$

iv) Jeśli $M=_{\alpha}N$ w konsekwencji ($\alpha 2$), gdzie $M=\lambda x.\,M'$ i $N=\lambda x.\,N'$ dla $M'=_{\alpha}N'$, to z hipotezy indukcyjnej $N'=_{\alpha}M'$ i w konsekwencji ($\alpha 2$) mamy, że $N=_{\alpha}M$.

- v) Jeśli $M =_{\alpha} N$ w konsekwencji (α 3) dla $M \equiv M'Z$ i $N \equiv N'Z$ takich, że $M' =_{\alpha} N'$, to z hipotezy indukcyjnej oczywiście $N' =_{\alpha} M'$, a zatem z (α 3) $N =_{\alpha} M$.
- vi) Jeśli $M =_{\alpha} N$ w konsekwencji ($\alpha 3$), to postępujemy jak w przypadku (v). \square

Definicja 6. (Zbiór Λ λ-termów) Każdą klasę abstrakcji relacji =_α nazywamy λ-termem. Zbiór wszystkich λ-termów Λ to zbiór ilorazowy relacji α-konwersji:

$$\mathbf{\Lambda} = \left\{ [M]_{=_{\alpha}} \mid M \in \tilde{\mathbf{\Lambda}} \right\}$$

Konwencja. Wprowadzamy następujące konwencje notacyjne:

$$x = [x]_{=\alpha},$$

$$PQ = [M'N']_{=\alpha}, \quad gdzie \quad M = [M']_{=\alpha} \quad i \quad N = [N']_{=\alpha},$$

$$\lambda x. \quad M = [\lambda x. M']_{=\alpha}, \quad gdzie \quad N = [N']_{=\alpha}.$$

Na zbiór Λ przenoszą się pojęcia podtermu, zmiennych wolnych i operacji podstawienia definiowane uprzednio dla pretermów. Operacja podstawienia wymaga jednak pewnej delikatności. Rozważmy następującą relację:

$$\lambda x. zx =_{\alpha} \lambda y. zy$$

Zauważmy, że traktując operację podstawienia w sposób naiwny, otrzymujemy, że $(\lambda x. zx)[z/x] \neq_{\alpha} (\lambda y. zy)[z/x]$, a więc tracimy porządaną własność niezmienniczości α -konwersji względem podstawienia. Stąd w Definicji 4 wymóg, aby poprawne podstawienie nie prowadziło do uszczuplenia zbioru zmiennych wolnych. Precyzyjniejszym rozwiązaniem jest określenie podstawienia, które prowadziłoby do abstrachowania po wcześniej nie występujacych zmiennych, czyli

$$(\lambda x. M)[y/N] = \lambda x'. M[x/x'][y/N],$$

w przypadku, gdy $x \neq y$, gdzie $x' \notin FV(M)$ i $x' \notin FV(N)$. Rozstrzygnięcie takie przytacza się w [HS08]. Precyzyjnie tę rzecz ujmuje Definicja 4'.

Definicja 4'. (Podstawienie')

- (S'1) $x[x/N] \equiv N$
- (S'2) $y[x/N] \equiv y$, o ile $x \not\equiv y$
- $(S'3) (PQ)[x/N] \equiv P[x/N]Q[x/N]$
- (S'4) $(\lambda y. P)[x/N] \equiv \lambda y. P[x/N], gdzie <math>x \not\equiv y \ i \ y \not\in FV(N)$
- $(S'5) (\lambda x. P)[x/N] \equiv \lambda x. P$

Szerszą dyskusję na ten temat można prześledzić w [Che13]. Nasze rozważania opierają się w tej materii przeważająco na [SU06]. Samo podejście do definiowania λ -termow przez operację α -konwersji nie jest powszechne w literaturze przedmiotu. Analogiczną konstrukcję należałoby powtarzać wprowadzając każdy kolejny system, dlatego w dalszej części tej pracy będziemy poprzestawali na nieformalnym traktowaniu wyrażeń danego systemu jako odpowiednich klas α -konwersji.

Definicja 7. (Multizbiór Sub podtermów λ -termu) Dla dowolnego λ -termu $M = [M']_{=\alpha}$ okreslamy

$$Sub(M) = Sub(M'),$$

gdzie Sub(M') jest multizbiorem podwyrażeń pretermu M' zdefiniowanym w myśl Definicji 2.

Definicja 8. (Zbiór zmiennych wolnych FV) Dla dowolnego λ -termu $M = [M']_{=\alpha}$ określamy zbiór FV(M) zmiennych wolnych w M

$$FV(M) = FV(M'),$$

gdzie FV(M') jest zbiorem zmiennych wolnych pretermu M' zdefiniowanym w myśl Definicji 3.

Definicja 9. (Podstawienie) Niech $M = [M']_{=\alpha}$ i $N = [N']_{=\alpha}$ i niech M'[x/N'] będzie poprawnym podstawieniem w myśl Definicji 4. Wówczas

$$M[x/N] = [M'[x/N']]_{=_{\alpha}}.$$

Notowanie serii podstawień prędko staje się niezręczne, dlatego na gruncie Definicji 9 potrzebujemy okreslić nieco więcej cukru syntaktycznego.

Definicja 10. (Podstawienie jednoczesne) Dla dowolnego $M \in \Lambda$, ciągu λ -zmiennych \vec{x} i ciągu λ -termów \vec{N} określamy:

- $(\vec{s}1)$ $x_i[\vec{x}/\vec{N}] = N_i \text{ dla } i \in \mathbb{N}.$
- $(\vec{s}2)\ y[\vec{x}/\vec{N}]=y$ o ile dla dowolnego $i\in\mathbb{N},\ y\not\equiv x_i.$
- $(\vec{s}3)~(PQ)[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}]$
- $(\vec{s}4)$ $(\lambda y. P)[\vec{x}/\vec{N}] = \lambda y'. P[y/y'][\vec{x}/\vec{N}]$, gdzie y' jest wcześniej nie występującą zmienną, $y \not\equiv x_i$ dla wszystkich $i \in \mathbb{N}$ i $y \not\in \bigcup_{i \in \mathbb{N}} FV(N_i)$.

Przykład 4. Porównajmy następujące podstawienia:

(a) Niech $\vec{x}=id$ i niech \vec{N} będzie ciągiem stałym o wyrazie

1.2 Redukcja

Sens obliczeniowy λ -termom nadajemy przez określenie na Λ operacji β - i η -redukcji. Pożądane jest, żeby operacje te wykonywane na podtermach pozostowały w zgodzie ze strukturą całego λ -termu.

Definicja 11. (Relacja zgodna) Relację binarną \mathcal{R} na zbiorze Λ nazywamy zgodną, jeśli dla dowolnych $M, N, P \in \Lambda$ zachodza następujące warunki:

- (c1) Jeśli $M\mathcal{R}N$, to $(\lambda x. M)\mathcal{R}(\lambda x. N)$ dla dowolnej λ -zmiennej x.
- (c2) Jeśli $M\mathcal{R}N$, to $(MP)\mathcal{R}(NP)$.
- (c3) Jeśli $M\mathcal{R}N$, to $(PM)\mathcal{R}(PN)$.

Przez domknięcie relacji \mathcal{R}_1 będziemy rozumieli najmniejszą (w sensie mnogościowym) relację \mathcal{R}_2 taką, że $\mathcal{R}_1 \subset \mathcal{R}_2$. Z pewnego rodzaju domknięciami, ze względu na ich szczególną rolę, wiążemy następującą notację:

- (a) Przez \mathcal{R}^+ oznaczamy przechodnie domknięcie relacji \mathcal{R} .
- (b) Przez \mathcal{R}^* oznaczamy zwrotnie domknięcie relacji \mathcal{R}^+ .
- (c) Przez = $_{\mathcal{R}}$ oznaczamy symetryczne domknięcie relacji \mathcal{R}^* .

Dla lepszego zrozumienia powyższych operacji warto zauważyć, że (b) wyznacza praporzadek, który w odniesieniu do redukcji określonych na Λ można rozumieć jako graf skierowany (w przypadku Λ być może nieskończony) w którym krawędzie odpowiadają możliwym krokom obliczenia, zaś (c) – kongruencję, która znów w szczególnym odniesieniu do λ -termów, będzie dokonywała podziału w Λ ze względu na rezultat obliczenia.

Definicja 12. (Redukcja)

Literatura

- [Che13] George Cherevichenko. "New definitions of contexts and free variables for lambda-calculi with explicit substitutions". In: CoRR abs/1303.5039 (2013). arXiv: 1303.5039. URL: http://arxiv.org/abs/1303.5039.
- [HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An Introduction. 2nd ed. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521898854, 9780521898850.
- [SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA: Elsevier Science Inc., 2006. ISBN: 0444520775.