

Introduction to Data Mining

Jun Huang

Classification Summary

Introduction to Data Mining

Lecture3 Classification

Jun Huang

Anhui University of Technology

Spring 2018

huangjun_cs@163.com

KDD Process Data Mining-Core of Knowledge discovery process

Introduction to Data Mining

Jun Huang

Classification Summary Knowledge

Classification and Prediction

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Bayesian Classification

&NN Ensemble Methods

Prediction Evaluation

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Classification vs. Prediction

Introduction to Data Mining

Jun Huang

Classification

Classification and

Prediction

Decision Tree

Bayesian Classification

Ensemble Methods
Prediction

Summary

Classification

- Predict categorical class labels (discrete or nominal)
- Classify records (construct a model) based on the training set and the class labels in a classifying attribute and then use the rules to classify new records

Prediction

- Model continuous-valued functions, i.e., predict unknown or missing values
- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection
 - Intrusion detection

Classification A Two-Step Process

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree Bayesian Classification

Ensemble Methods
Prediction

- Model Construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is traning set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process(1): Model Construction

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian

Classification

Ensemble Methods

Prediction

Prediction Evaluation

Process(2): Using the model in Classification

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

kNN

Ensemble Methods

Prediction

Evaluation

Supervised vs. Unsupervised Learning

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree Bayesian Classification

kNN Ensemble Methods

Prediction Evaluation

- Supervised Learning (Classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised Learning (Clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, establish classes or clusters in the data

Issues Regarding Classification and Prediction 1 - Data Preparation

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree Bayesian

Classification kNN

Ensemble Methods Prediction

Evaluation
Summary

- Data Cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (Feature Selection)
 - Remove the irrelevant or redundant attributes
- Data Transformation
 - Generalize and/or nomalize data

Issues Regarding Classification and Prediction

2 - Evaluating Classification Methods

Introduction to Data Mining

Jun Huang

Classification Classification and

Decision Tree

Classification

Ensemble Methods Prediction

Evaluation Summary Accuracy

- Classifier Accuracy: Predicting Class Label
- Predictor Accuracy: Guessing value of predicted attributes
- Speed
 - Time to construct the model (training time)
 - Time to use the model (classification or prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - Understanding and insigh provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Classification by Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification

Decision Tree
Bayesian
Classification

&NN
Ensemble Methods
Prediction
Evaluation

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a splitting test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represents class distribution
- Decision tree generation two phases
 - Tree construction
 - At start, all the training examples are at the root
 - partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that relfect noise or outliers
- Use of decision tree: Classifying an unknown sample

Classification by Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification &NN

Ensemble Methods
Prediction
Evaluation

Summary

Generate_Decision_Tree(D,attribute_list)

- ① create a node N;
- \mathbf{Q} if tuples in D are all of the same class C, then
- or return N as a leaf node labeled with the class C;
- 4 if attribute_list is empty, then
- $oldsymbol{\circ}$ return N as a leaf node labeled with the majority class in D;// majority voting
- apply Attribute_selection_method(D, attribute_list) to find the highest information gain;
- label node N with test-attribute;
- **8** for each value a_i of test-attribute
- **o** Grow a branch from node N for test-attribute = a_i ;
- Let s_i be the set of samples in D for which test-attribute $= a_i$;
- $\mathbf{0}$ if s_i is empty then
- \square attach a leaf labeled with the majority class in D to node N;
- else attach the node returned by Generate_Decision_ Tree(s_i,attribute_list) to node N;
- end for

Decision Tree Induction: Training Dataset

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian

Classification

kNN

Ensemble Meth

Ensemble Methods Prediction Evaluation

age	income	student	credit_rating	buy_computer
<= 30	high	no	fair	no
<= 30	high	no	excellent	no
31 - 34	high	no	fair	yes
> 40	medium	no	fair	yes
> 40	low	yes	fair	yes
> 40	low	yes	excellent	no
31 - 40	low	yes	excellent	yes
<= 30	medium	no	fair	no
<= 30	low	yes	fair	yes
> 40	medium	yes	fair	yes
<= 30	medium	yes	excellent	yes
31 - 40	medium	no	excellent	yes
31 - 40	high	yes	fair	yes
> 40	medium	no	excellent	no

Decision Tree

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

Ensemble Methods

Prediction Evaluation

income	student	credit_rating	class
high	no	fair	no
high	no	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	excellent	yes

income	student	credit_rating	class
medium low low medium medium	no yes yes yes no	fair fair excellent fair excellent	yes yes no yes no

income	student	credit_rating	class
high low medium high	no yes no yes	fair excellent excellent fair	yes yes yes yes

Output: A Decision Tree for "buys_computer"

Introduction to Data Mining

Jun Huang

Classification

Classification and

Prediction

Decision Tree

Bayesian Classification

kNN.

Ensemble Methods

Prediction

1 rediction

Evaluation Summary

age? 31..40 credit rating? student? yes excellent fair nó no yes no

Algorithm for Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification
Classification and

Prediction
Decision Tree

Classification
&NN
Ensemble Methods
Prediction
Evaluation

Evaluation

- Basic Algorithm (A greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical(if continuous-valued, they are discretized in advance)
 - Examples are partioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain, Gini index)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Information Gain (ID3/C4.5)

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Bayesian Classification

Ensemble Methods
Prediction
Evaluation

Summary

• Select the attribute with the highest information gain

$$Info(\mathcal{D}) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

$$Info_A(\mathcal{D}) = \sum_{j=1}^{v} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} Info(\mathcal{D}_j)$$

- where the dataset has m class labels, and the attribute A has v different values
- ullet Assume there two classes. P and N
 - \bullet Let the set of examples ${\mathcal D}$ contain p elements of class P and n elements of class N
 - The amount of information, needed to classify sample

$$Info(\mathcal{D}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification
Classification and

Prediction

Decision Tree

Decision Tree

Bayesian Classification &NN

Ensemble Methods
Prediction
Evaluation

Summary

- Assume that attribute A have v distinct values $\{a_1, a_2, ..., a_v\}$
- Training set $\mathcal D$ will be partitioned into sets $\{\mathcal D_1, \mathcal D_2, ..., \mathcal D_v\}$
 - If \mathcal{D}_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information based on partitioning into subsets by attribute A is

$$Info_A(\mathcal{D}) = \sum_{i=1}^{v} \frac{p_i + n_i}{p+n} Info(\mathcal{D}_i)$$

ullet Information gain of A

$$Gain(A) = Info(\mathcal{D}) - Info_A(\mathcal{D})$$

Attribute Selection by Information Gain Computation

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Decision Tre

Classification &NN

Ensemble Methods Prediction

Prediction Evaluation

- class P: buys_computer = "yes"
- class N: buys_computer = "no"
- $Info(\mathcal{D}) = 0.940$
- Compute the entropy for age:

age	p_i	n_i	$Info_{\sf age}(\mathcal{D}_i)$
<= 30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

- $Info_{age}(\mathcal{D}) = \frac{5}{14}Info_{age}(\mathcal{D}_1) + \frac{4}{14}Info_{age}(\mathcal{D}_2) + \frac{5}{14}Info_{age}(\mathcal{D}_3)$
- Hence $Gain(age) = Info(\mathcal{D}) Info_{age}(\mathcal{D}) = 0.246$

Exercise

Introduction to Data Mining

Jun Huang

Classification

Prediction

Decision Tree

Bayesian Classification

Classification &NN Ensemble Methods

Prediction Evaluation

Summary

• Please calculate the information gain of income, student, and credit_rating, respectively.

- Gain(income) = 0.029
- Gain(student) = 0.151
- $Gain(credit_rating) = 0.048$

Problem of Infomation Gain

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

&NN

Ensemble Methods

Prediction

Evaluation

Summary

$$Info(\mathcal{D}) = -\sum_{i=1}^{m} p_{i} \log_{2}(p_{i})$$

$$Info_{A}(\mathcal{D}) = \sum_{j=1}^{v} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} Info(\mathcal{D}_{j})$$

$$Gain(A) = Info(\mathcal{D}) - Info_{A}(\mathcal{D})$$

What is disadvantage(s) of Information Gain?

Problem of Infomation Gain

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Bayesian Classification

kNN

Ensemble Methods

Prediction Evaluation

Summary

$Info(\mathcal{D}) = -\sum_{i=1}^{v} p_i \log_2(p_i)$ $Info_A(\mathcal{D}) = \sum_{j=1}^{v} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} Info(\mathcal{D}_j)$ $Gain(A) = Info(\mathcal{D}) - Info_A(\mathcal{D})$

What is disadvantage(s) of Information Gain?

- Attribute is selected with the highest information gain
- Information gain measure is biased towards attributes with a large number of values

Gain Ratio for Attribute Selection(C4.5)

Introduction to Data Mining

Jun Huang

Classification and

Decision Tree

Bayesian Classification

Ensemble Methods
Prediction
Evaluation

Summary

• C4.5(a successor of ID3), uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(\mathcal{D}) = -\sum_{j=1}^{v} \frac{|\mathcal{D}_j|}{|\mathcal{D}|} \times \log_2(\frac{|\mathcal{D}_j|}{|\mathcal{D}|})$$

- $SplitInfo_A(\mathcal{D}) = -\frac{4}{14} \times \log_2(\frac{4}{14}) \frac{6}{14} \times \log_2(\frac{6}{14}) \frac{4}{14} \times \log_2(\frac{4}{14}) = 0.926$
- GainRatio(A) = Gain(A)/SplitInfo(A), e.g., gain_ratio
 (income) = 0.029/0.926 = 0.031
- The attribute with the **maximum gain ratio** is selected as the splitting attribute

Problem of Gain Ratio

Introduction to Data Mining

Jun Huang

Classification

Classification and

Prediction

Decision Tree

Bayesian Classification

kNN

Ensemble Methods

Prediction

Evaluation Summary

$$\begin{array}{ccc} SplitInfo_{A}(\mathcal{D}) & = & -\sum_{j=1}^{v} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \times \log_{2}(\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|}) \\ GainRatio(A) & = & Gain(A) \\ \hline SplitInfo(A) \end{array}$$

What is disadvantage(s) of Gain Ratio?

Problem of Gain Ratio

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Bayesian Classification

kNN Ensemble Methods

Ensemble Method

Prediction Evaluation

Summary

$$SplitInfo_{A}(\mathcal{D}) = -\sum_{j=1}^{v} \frac{|\mathcal{D}_{j}|}{|\mathcal{D}|} \times \log_{2}(\frac{|\mathcal{D}_{j}|}{|\mathcal{D}|})$$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

What is disadvantage(s) of Gain Ratio?

- Attribute is selected with the highest gain ratio
- Gain ratio tends to prefer unbalanced splits in which one partition is much smaller than the other

Gini Index (CART, IBM Intelligent Miner)

Introduction to Data Mining

Jun Huang

Classification Classification and

Prediction

Bayesian Classification

&NN Ensemble Methods

Prediction
Evaluation
Summary

• If a data set $\mathcal D$ contains examples from n classes, gini index, $gini(\mathcal D)$ is defined as

$$gini(\mathcal{D}) = 1 - \sum_{j=1}^{n} p_j^2$$

- where p_i is the relative frequency of class j in \mathcal{D} .
- If a data set \mathcal{D} is split into two subsets \mathcal{D}_1 and \mathcal{D}_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index of the spit is defined as

$$gini_{split}(\mathcal{D}) = \frac{N_1}{N}gini(\mathcal{D}_1) + \frac{N_2}{N}gini(\mathcal{D}_2)$$

• The attribute provides the **smallest** $gini_{split}(\mathcal{D})$ is chosen to split the node (need to enumerate all possible splitting points for each attribute)

Gini index (CART, IBM IntelligentMiner)

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

Ensemble Methods Prediction

Evaluation Summary

- The lowest is the best
- All attributes are assumed continuous-valued
- Can be modified for categorical attributes
- Ex. \mathcal{D} has 9 tuples in bus_computer = "yes" and 5 in "no", $gini(\mathcal{D})=1-(\frac{9}{14})^2-(\frac{5}{14})^2=0.459$
- Suppose the attribute income partitions $\mathcal D$ into 10 in $\mathcal D_1$:{medium, high} and 4 in $\mathcal D_2$

$$gini_{income \in \{medium, high\}}(\mathcal{D}) = \frac{10}{14}gini(\mathcal{D}_1) + \frac{4}{14}gini(\mathcal{D}_2)$$
$$= \frac{10}{14}(1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14}(1 - (\frac{1}{4})^2 - (\frac{3}{4})^2)$$
$$= 0.450$$

Problem of Gini Index

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

L'NN

Ensemble Methods

Prediction

Evaluation

Summary

$$\begin{array}{ccc} & & \\ & gini(\mathcal{D}) & = & 1 - \sum_{j=1}^{n} p_{j}^{2} \\ & & \\ & gini_{split}(\mathcal{D}) & = & \frac{N_{1}}{N}gini(\mathcal{D}_{1}) \end{array}$$

What is disadvantage(s) of Gini Index?

Problem of Gini Index

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Bayesian Classification

kNN Ensemble Methods

Prediction

Evaluation

Summary

$$gini(\mathcal{D}) = 1 - \sum_{j=1}^{n} p_j^2$$

 $gini_A(\mathcal{D}) = \sum_{i=1}^{v} \frac{|\mathcal{D}_i|}{|\mathcal{D}|} gini(\mathcal{D}_i)$

What is disadvantage(s) of Gini Index?

- Attribute is selected with the lowest Gini index
- Gini index is biased towards multivalued attributes
- Gini index has difficulty when # of classes is large
- Gini index tends to favor tests that result in equal-sized partitions and purity in both partitions

Extracting Classification Rules from Trees

Introduction to Data Mining

Jun Huang

Classification and

Decision Tree

Bayesian Classification

Ensemble Methods
Prediction

Prediction
Evaluation
Summary

- Represent the knowledge in the form of If-Then rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class distribution
- Rules are easier for humans to understand
- Example
 - If age = "<=30" AND student = "no" THEN buys_computer = "no"
 - If age = "<=30" AND student = "yes" THEN buys_computer = "yes"
 - IF age =">40" AND credit_rating = "excellent" THEN buys computer = "no"
 - IF age = "<=30" AND credit_rating = "fair" THEN buys_computer = "yes"

Overfitting and Tree Pruning

Introduction to Data Mining

Jun Huang

Classification
Classification and

Prediction
Decision Tree

Classification &NN Ensemble Methods

Prediction
Evaluation

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Summary of Decision Tree

Introduction to Data Mining

Jun Huang

Classification and

Prediction

Bayesian Classification

Ensemble Methods
Prediction
Evaluation

Summary

ID3

- Select the attribute with the **highest information gain**
- Information Gain is biased towards attributes with a large number of values
- C4.5
 - Select the attribute with the **highest** gain ratio
 - Gain ratio tends to prefer unbalanced splits in which one partition is much smaller than the other
- CART
 - Select the attribute with the **lowest gini index**
 - Gini index is biased towards multivalued attributes
 - Gini index has difficulty when # of classes is large
 - Gini index tends to favor tests that result in equal-sized partitions and purity in both partitions

Summary of Decision Tree

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction

Decision Tree

Bayesian Classification

Ensemble Methods
Prediction
Evaluation

- The maximum number of leaf nodes in tree is N, where N is the number of examples in the training dataset
- The maximum length of the tree is <u>a</u>, where <u>a</u> is the number of attributes in the training dataset
- The maximum number of nodes in the tree is N+a

Evaluating Classifier Accuracy

Introduction to Data Mining

Jun Huang

Classification

Prediction

Decision Tree

Bayesian Classification

kNN Ensemble Methods

Prediction Evaluation

- Holdout
 - Train on 2/3
 - Test on 1/3
- Cross validation: k-fold cross validation
 - Partition data set into k parts
 - Train on random (k-1) parts, test on 1 part
 - Repeat k times, or more
 - Average accuracy

Comment on Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Classification

kNN

Ensemble Methods

Ensemble Method Prediction Evaluation

- Relatively faster learning speed(than other classification methods)
- Convertible to simple and easy to understand classification rules
- Comparable classification accuracy with other methods
- Comparably scalable to large database

Enhancements to Basic Decision Tree Induction

Introduction to Data Mining

Jun Huang

Classification Classification and

Decision Tree

Classification
&NN
Ensemble Methods
Prediction

Prediction Evaluation

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
- Attribute construction
 - Create new attributes based on existing ones

Bayesian Classification

Introduction to Data Mining

Jun Huang

Classification
Classification and

Prediction
Decision Tree

Bayesian Classification

kNN kNN

Ensemble Methods Prediction

Evaluation

Summary

A statistical classifier

- Perform probabilistic prediction, i.e., predict class membership probabilities
- Foundation
 - Based on Bayes' Theorem
- Assumption
 - The effect of an attribute on a given class is independent of other attributes
- Performance
 - A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers

Bayesian Theorem: Basics

Introduction to Data Mining

Jun Huang

Classification and Prediction

Decision Tree Bayesian Classification

kNN Ensemble Methods

Prediction Evaluation

Summary

Classification

ullet Let X be a data sample, class label is unknown

- ullet Let H be a hypothesis, e.g., X belongs to class C
- ullet Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- P(H): the initial probability
 - ullet E.g., X will buy computer, regardless of age, income,...
- \bullet P(X): probability that sample data is observed
- P(X|H): the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that *X* will buy computer, what is the prob. that *X* is 31..40?

Bayesian Theorem

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction

Prediction Decision Tree

Bayesian Classification

kNN

Ensemble Methods
Prediction
Evaluation

Summary

• Given training data X, probability of a hypothesis H, P(H|X) follows the Bayesian Theorem

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

- Predict X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Naïve Bayesian Classifier

Introduction to Data Mining

Jun Huang

Classification

Prediction
Decision Tree
Bayesian

Classification

Ensemble Methods
Prediction

- Let \mathcal{D} be a training set of tuples and their associated class labels, and each tuple is represented by an n- dimensional attribute vector $X = (x_1, x_2, ..., x_n)$
- Suppose there are m classes $C_1, C_2, ..., C_m$
- \bullet Classification is to derive the maximum posteriori, i.e., the maximal $P(\,C_i|X)$
- This can be derived from Bayes Theorem

$$P(C_i|X) = \frac{P(X|C_i)P(C_i)}{P(X)}$$

- Since P(X) is constant for all classes, only $P(C_i|X) = P(X|C_i)P(C_i) \text{ needs to be maximized}$
- $P(C_i)$ can be obtained from training data set s_i/s

Derivation of Naïve Bayes Classifier

Introduction to Data Mining

Jun Huang

Classification Classification and Prediction

Prediction Decision Tree

Bayesian Classification

kNN Ensemble Methods

Prediction
Evaluation

Summary

• Assumption: attribute are conditionally independent (i.e., no dependence relation between attributes), $X = (x_1, x_2, ..., x_n)$

$$P(X|C_i) = \prod_{k=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If attribute A_k is **categorical**, $P(x_k|C_i) = \frac{s_{ik}}{s_i}$, count the distribution

Derivation of Naïve Bayes Classifier

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction

Decision Tree Bayesian

Classification

&NN Ensemble Methods

Prediction Evaluation

Summary

• If attribute A_k is **continuous-valued**, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard derivation σ ,

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

• Then, $P(x_k|C_i)$ is calculated by

$$P(x_k|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

• The mean μ and standard derivation σ can be easily estimated according the training data

Exercise

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction Decision Tree

Bayesian

Classification &NN

Ensemble Methods
Prediction
Evaluation

age	income	student	credit_rating	buy_computer		
<= 30	high	no	fair	no		
<= 30	high	no	excellent	no		
31 - 34	high	no	fair	yes		
> 40	medium	no	fair	yes		
> 40	low	yes	fair	yes		
> 40	low	yes	excellent	no		
31 - 40	low	yes	excellent	yes		
<= 30	medium	no	fair	no		
<= 30	low	yes	fair	yes		
> 40	medium	yes	fair	yes		
<= 30	medium	yes	excellent	yes		
31 - 40	medium	no	excellent	yes		
31 - 40	high	yes	fair	yes		
> 40	medium	no	excellent	no		

- Predict what class does the data sample X = (age <= 30, Income = medium, Student = yes, Credit_rating = Fair) belong to?</p>
- Class: C_1 -buys_computer = "yes", C_2 -buys_computer = "no"

Solution

Introduction to Data Mining

Jun Huang

Classification Classification and Prediction

Decision Tree

Bayesian Classification

Classificatio &NN

Ensemble Methods

Prediction Evaluation

Summary

• Compute $P(C_i)$:

- $P(buys_computer = "yes") = 9/14 = 0.643$
- $P(buys_computer = "no") = 5/14 = 0.357$
- Compute $P(X|C_i)$ for each class:
- $P(age = " \le 30" | buys_computer = "yes") = 2/9 = 0.222$
- $P(age = " \le 30" | buys_computer = "no") = 3/5 = 0.6$
- $P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444$
- $P(income = "medium" | buys_computer = "no") = 2/5 = 0.4$
- $P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667$
- $P(student = "yes" | buys_computer = "no") = 1/5 = 0.2$
- $P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667$
- $\bullet \ \ P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4$

Solution

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification

L'NN

Ensemble Methods
Prediction
Evaluation

- Test example: $X = (age \le 30, Income = medium, Student = yes, Credit_rating = Fair)$
- Compute $P(X|C_i)$:
- $P(X|buys_computer = "yes") = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$
- $P(X|buys_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$
- Compute $P(C_i|X) = P(X|C_i) * P(C_i)$:
- $P(X|buys_computer = "yes") \times P(buys_computer = "yes") = 0.028$
- $P(X|buys_computer = "no") \times P(buys_computer = "no") = 0.007$
- Therefore, X belongs to class "buys_computer = yes"

Naïve Bayesian Classifier: Comments

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification

Classification &NN

Ensemble Methods
Prediction
Evaluation

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies do exist among variables
 - E.g., hospitals: patients; profile: age, family history, etc; symptoms:fever, cough etc; disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

k Nearest Neighbors Algorithm

Introduction to Data Mining

Jun Huang

Classification

Classification an Prediction Decision Tree

Classification

kNN Ensemble Methods

Prediction Evaluation

- ullet All instances correspond to points in the \mathbb{R}^D space
- The nearest neighbor is defined in terms of Euclidean distance, $dist(X_1, X_2)$, or other distance measures
- Target function could be discrete-valued or real-valued
- ullet For discrete-valued, k-NN returns the most common value among the k training examples nearest to X_q

Exercise

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree Bavesian

Classification

Ensemble Methods

Prediction Evaluation

Summary

• Consider the one-dimensional data set. Please classify the data point x = 5.0 according to its 1-, 3-, and 5-nearest neighbors (using majority vote).

\boldsymbol{x}	y
0.5	-
3.0	-
4.5	+
4.6	+
4.9	+
5.2	-
5.3	-
5.5	+
7.0	-
9.5	-

Exercise

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction Decision Tree

Bayesian Classification

Ensemble Methods
Prediction
Evaluation

Summary

ullet Consider the one-dimensional data set. Please classify the data point x=5.0 according to its 1-, 3-, and 5-nearest neighbors (using majority vote).

\boldsymbol{x}	y	$dis\left(x_1-x_2 \right)$
0.5	-	4.5
3.0	-	2
4.5	+	0.5
4.6	+	0.4
4.9	+	0.1
5.2	-	0.2
5.3	-	0.3
5.5	+	0.5
7.0	-	2
9.5	_	4.5

How about k=4 ?

Discussion on the k-NN Algorithm

Introduction to Data Mining

Jun Huang

Classification

Classification an Prediction Decision Tree

Classification

Ensemble Methods

Prediction Evaluation

- k-NN for real-value prediction for a given unknown tuple
 - Returns the mean value of the k nearest neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Distance between neighbors could be dominated by the irrelevant attributes
 - To overcome it, eliminate irrelevant attributes
- Lazy-learner
 - Not build a classifier
 - Store all the training samples
 - High computational cost for each new tuple

Issues to kNN Algorithm

Introduction to Data Mining

• The choice of k

- If k is too small, then the resut can be sensitive to noise points
- If k is too large, then the neighborhood may include too many points from other classes

Combing the nearest neighbors class labels

- Maiority vote
- The nearest neighbors may vary widely in their distance, and the closer neighbors more reliably indicate the class of the object
- Weights each object's vote by its distance

The choice of distance measure

• Euclidean distance, cosine similarity, Manhattan distance, Metric Learning, .etc

High computation

- Find the k nearest neighbors for each test example
- Make use of structure of data, e.g., nearest neighbor graphs, minimum spanning trees, relative neighborhood graphs, Delaunay triangulations, and Gabriel graphs,...

Jun Huang

Classification

Decision Tree Classification

Ensemble Methods

Prediction Evaluation

Ensemble Methods:Increasing the Accuracy Bagging and Boosting

Introduction to Data Mining

Jun Huang

Classification Decision Tree

Classification

Ensemble Methods

Prediction Evaluation

Summary

Ensemble methods

- Use a combination of models to increase accuracy
- Combine a series of k learned models, $M_1, M_2, ..., M_k$, with the aim of creating an improved model M^*
- Popular ensemble methods
 - Bagging
 - Boosting

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction Decision Tree

Bayesian Classification &NN

Ensemble Methods

Prediction Evaluation

Summary

Analogy:Diagnosis based on multiple doctors' majority vote

- Training
 - Give a data set $\mathcal D$ of N samples, at each iteration i, a training set $\mathcal D_i$ is sampled with replacement from $\mathcal D$
 - ullet A classifier model M_i is learned for each training set \mathcal{D}_i
- ullet Classification: classify an unknown data sample X
 - ullet Each classifier M_i returns its class prediction
 - \bullet The bagged classifier M^* counts the votes and assigns the class with the most votes to X

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

Ensemble Methods

Prediction Evaluation

•
$$M^*(x) = maxcount_t M_t(x)$$

Bagging: Bootstrap Aggregation

Introduction to Data Mining

Jun Huang

Classification

Classification and Decision Tree

Classification

Ensemble Methods

Prediction Evaluation

Summary

 Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple

- Accuracy
 - Often significant better than a single classifier derived from
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Exercise

Introduction to Data Mining

Jun Huang

Classification and

Decision Tree
Bayesian
Classification

kNN
Ensemble Methods
Prediction
Evaluation

Summary

ining

Х	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
у	1	1	1	-1	-1	-1	-1	1	1	1

Examples chosen for training in each round are shown below:

Following is a data set to construct a bagging classifier

Х	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9
У	1	1	1	1	-1	-1	-1	-1	-1	- 1
Cla	Classifier: ① $x \le 0.35 - y = 1$, ② $x > 0.35 - y = -1$									
X	0.1	0.2	0.3	0.5	0.5	0.8	0.9	1	1	1
У	1	1	1	-1	-1	1	1	1	1	1
Cla	Classifier: ① $0.4 <= x <= 0.55 -> y=-1$, ② $x>0.55 -> y=1$, ③ $x<0.4 -> y=1$									
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	0.8	0.9
У	1	1	1	-1	-1	-1	-1	-1	1	1
Cla	Classifier: ① $x <= 0.35 -> y = 1$, ② $0.35 <= x <= 0.75 -> y = -1$, ③ $x > 0.75 -> y = 1$									

Please predict the class label for x = 0.38?

Boosting

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification &NN

Ensemble Methods

Evaluation

- Analogy: Consult several doctors, based on a combination of weighted diagnoses - weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier M_{i+1} pay more attention to the training tuples that were misclassified by M_i
 - ullet A series of k classifiers are iteratively learned
 - \bullet The final M^* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy

Boosting

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree

Bayesian Classification

Ensemble Methods

Prediction Evaluation

•
$$M^*(x) = \operatorname{argmax}_{M_c} \sum_{t}^{k} w_t M_t(x)$$

Boosting

Introduction to Data Mining

Jun Huang

Classification
Classification and

Decision Tree Bayesian

Classification kNN

Ensemble Methods

Prediction Evaluation

- The boosting algorithm can be extended for the prediction of continuous values
- Comparing with bagging: boosting tends to achieve greater accuracy, but it also risks overfitting the model to the misclassified data

Bagging vs. Boosting

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Bayesian Classification

Ensemble Methods

Prediction Evaluation

Summary

Model training:

Bagging: random sampling, independent classifiers

ullet Boosting: subsequent classifier M_{i+1} pay more attention to the training tuples that were misclassified by M_i

Model usage:

Bagging: equal weight

Boosting: different weights assigned

Random Forest Tree bagging

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Bayesian Classification

Ensemble Methods

Prediction Evaluation

Summary

• Given a training set $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$, $x_i \in \mathbb{R}^d$, and y_i is the corresponding class label.

- The procedures of Tree bagging is summarized as following:

 - Sample, with replacement, n training examples from \mathcal{D} , call $\mathcal{D}_b = \{x_i, y_i\}_{i=1}^n$;
 - **3** Train a classification or regression tree f_b on \mathcal{D}_b ;
 - End
- Predictions for unseen samples x' can be made by taking the majority vote in the case of classification trees.
- ullet or by averaging the predictions from all the individual regression trees on x'

$$\hat{f} = \frac{1}{B} f_b(x')$$

Random Forest

Introduction to Data Mining

Jun Huang

Classification Classification and Prediction Decision Tree

Bayesian Classification kNN

Ensemble Methods

Prediction Evaluation

- Random forests differ in only one way from Tree Bagging
 - They use a modified tree learning algorithm that selects, at each candidate split in the learning process, a random subset of the features.

 - Sample, with replacement, n training examples with p features from \mathcal{D} , call $\mathcal{D}_b = \{x_i, y_i\}_{i=1}^n, x_i \in \mathbb{R}^p$;
 - **3** Train a classification or regression tree f_b on \mathcal{D}_b ;
 - End
- Typically, for a classification problem with d features, \sqrt{d} (rounded down) features are used in each split.
- For regression problems the inventors recommend d/3 (rounded down) with a minimum node size of 5 as the default. (The Elements of Statistical Learning, 2nd ed.)

Random Forest

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification

Ensemble Methods

Prediction Evaluation

- Decision trees are a popular method for various machine learning tasks. Tree learning comes closest to meeting the requirements for serving as an off-the-shelf procedure for data mining
- It is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features
- Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks
- Random decision forests correct for decision trees' habit of overfitting to their training set

What is Prediction?

Introduction to Data Mining

Jun Huang

Classification

Decision Tree

Classification

Ensemble Methods

Prediction Evaluation

- Numerical prediction is similar to classification
 - Construct a model
 - Use model to predict continuous or ordered value for a given input
- Prediction is different from classification.
 - Classification refers to predict categorical class label
 - Prediction models continuous valued functions
- Major method for prediction: regression
 - Model the relationship between one or more independent or predictor variables and a dependent or response variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees, logistic regression ◆ロト ◆倒 ト ◆ 重 ト ◆ 重 ・ 夕 Q (*)

Linear Regression

Introduction to Data Mining

Jun Huang

Classification

Classification and Decision Tree

Classification **kNN**

Ensemble Methods

Prediction

Evaluation Summary

- Linear regression: a response variable y and a single predictor variable x, $y = w_0 + w_1 x$, where w_0 and w_1 are regression
- Method of least squares: estimate the best-fitting straight line, $w_1 = \frac{\sum_{i=1}^{|D|} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{|D|} (x_i - \bar{x})^2}$, and $w_0 = \bar{y} - w_1 \bar{x}$

Linear Regression Multiple linear regression

Introduction to Data Mining

Jun Huang

Classification

Classification and Decision Tree

Classification

Ensemble Methods

Prediction Evaluation

- Multiple linear regression: more than one predictor variable
 - Training data is of the form $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_{|D|}, y_{|D|})$

$$\mathbf{A} [\mathbf{A}_1, g_1], (\mathbf{A}_2, g_2), \dots, (\mathbf{A}_{|D|}, g_{|D|})$$

$$\mathbf{A} [\mathbf{A}_1, \mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3] \in \mathbb{R}^{d \times n} \mathbf{Y} = [y_1, y_2, y_3]$$

- Let $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n] \in \mathbb{R}^{d \times n}, \mathbf{y} = [y_1, y_2, ..., y_n]^T$
- Linear regression: $y = \mathbf{x}^T \mathbf{w} + w_0$
- where $\mathbf{w} = [w_1, w_2, ..., w_d]^T \in \mathbb{R}^d$ is the regression coefficients, the bias w_0 can be absorbed into w when the constant value 1 is added as an additional dimension for each data $\mathbf{x}_i (1 \leq i \leq n)$, so we can obtain $\mathbf{y} = \mathbf{x}^T \mathbf{w}$
- Apply the least square loss:

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{w} - y_{i})^{2}$$

$$= \frac{1}{2} \|\mathbf{X}^{T} \mathbf{w} - \mathbf{y}\|_{2}^{2}$$

$$= \frac{1}{2} (\mathbf{X}^{T} \mathbf{w} - \mathbf{y})^{T} (\mathbf{X}^{T} \mathbf{w} - \mathbf{y})$$

Linear Regression Multiple linear regression

Introduction to Data Mining

Jun Huang

Classification

Classification and

Prediction

Decision Tree

Classification

kNN Ensemble Methods

Prediction

Evaluation

Summary

$$J(\mathbf{w}) = \frac{1}{2} (\mathbf{X}^T \mathbf{w} - \mathbf{y})^T (\mathbf{X}^T \mathbf{w} - \mathbf{y})$$
$$= \frac{1}{2} (\mathbf{w}^T \mathbf{X} \mathbf{X}^T \mathbf{w} - \mathbf{w}^T \mathbf{X} \mathbf{y} - \mathbf{y}^T \mathbf{X}^T \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

• Solving \mathbf{w} : Setting the derivative of $J(\mathbf{w})$ with respect to \mathbf{w} to zero

$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{X} \mathbf{X}^T \mathbf{w} - \mathbf{X} \mathbf{y} = 0$$
$$\mathbf{w} = (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \mathbf{y}$$

• Note: $\mathbf{X} \in \mathbb{R}^{(d+1) \times n}$, $\mathbf{w} \in \mathbb{R}^{d+1}$

Nonlinear Regression

Introduction to Data Mining

Jun Huang

A polynomial regression model can be transformed into linear regression model. For example

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

• It can be convert to linear with new variables:

$$x_1 = x, x_2 = x^2, x_3 = x^3$$

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

- There are many nonlinear regression models, e.g., Exponential, power, and log functions
- $y = \beta_0 e^{\beta_1 x}$: let $y' = \ln y$, $\beta'_0 = \ln \beta_0$, x' = x, than it can be convert to a linear model $y' = \beta'_0 + \beta_1 x'$

Classification and Prediction Decision Tree

Bayesian Classification

kNN Ensemble Methods

Prediction

Evaluation Summary

Classifier Accuracy Measures

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification

kNN Ensemble Methods

Prediction

Summary

Evaluation

- ullet Accuracy of a classifier M: percentage of test samples that are correctly classified by the model M
 - Given m classes, $CM_{i,j}$ is an entry in a **confusion matrix** and it indicates # of samples in class i that are labeled by the classifier as class j
 - Accuracy = (t-pos + t-neg)/(pos + neg)
 - ullet Error rate (misclassification rate) of M=1 Accuracy

		Predict		
		C_1	C_2	Total
Actual	C_1	True positive	False negative	pos
class	C_2	Flase positive	True negative	neg
	Total	t-pos + f-pos	t-neg + f-neg	pos+neg

Classifier Accuracy Measures

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction
Decision Tree

Bayesian Classification

Ensemble Methods

Prediction Evaluation

- Alternative accuracy measures
- sensitivity = t-pos/pos, true positive recognition rate, also called "recall"
- specificity = t-neg/neg, true negative recognition rate
- precision = t-pos/(t-pos + f-pos)
- recall = t-pos/(t-pos + f-neg)
- accuracy = (t-pos + t-neg)/(pos + neg)
- $f_1 = (1+\alpha^2) \times \operatorname{precision} \times \operatorname{recall} / (\alpha^2 \operatorname{precision} + \operatorname{recall}) = 2 \times \operatorname{t-pos}/(2 \times \operatorname{t-pos} + \operatorname{f-neg} + \operatorname{f-pos}), \alpha \text{ is usually set to be } 1$

ROC and AUC

Introduction to Data Mining

Jun Huang

Classification
Classification and
Prediction

Decision Tree Bayesian

Classification kNN

Ensemble Methods Prediction

Evaluation Summary

- The ROC (Receiver Operating Characteristic) curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
- true positive rate (TPR): t-pos/pos, recall, sensitivity
- false positive rate (FPR): f-pos/neg, 1-specificity

ROC and AUC Example

Introduction to Data Mining

Jun Huang

Classification

Classification and Prediction

Decision Tree Bayesian

Classification

Ensemble Methods

Prediction Evaluation

ROC and AUC Key points

Introduction to Data Mining

Jun Huang

Classification and

Decision Tree Bayesian Classification

kNN Ensemble Methods

Prediction

- (0,0): f-pos=0, t-pos=0. It means that all the tuples are classified as negative.
- (0,1): f-pos=0, t-pos=pos. It indicates that all the tuples are correctly classified.
- (0,1): f-pos=neg, t-pos=0. It indicates that all the tuples are incorrectly classified.
- (1,1): f-pos=neg, t-pos=pos. It indicates that all the tuples are classified as positive.

ROC and AUC

Introduction to Data Mining

Jun Huang

Classification

Classification and

Decision Tree

Classification

Ensemble Methods

Prediction

Evaluation

Summary

 AUC: Area under ROC curve, the AUC value is equivalent to the probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example

Summary

Introduction to Data Mining

Jun Huang

Classification

- Bagging and Boosting can be used to increase overall accuracy by learning and combing a series of individual models
- No single methods has been found to be superior over all others for all data sets
- Issues such as accuracy, training time, robustness, interpretability, and scalability must be considered
- *k*-fold cross validation is a recommended method for accuracy estimation