Approximation Methods CHEM 361B: Introduction to Physical Chemistry

Dr. Michael Groves

Department of Chemistry and Biochemistry California State University, Fullerton

Lecture 14

Table of contents

- Secular Determinants
- 2 Variational Principle

Learning Objective: To apply the variational principle to determine the ground state energy of quantum systems using trial wavefunctions

References:

• McQuarrie Math Chapter F and §8.1 - §8.3

Solving Systems of Equations

Consider a series of equations that share a common set of variables (say \times and y):

$$a_{11}x + a_{12}y = d_1$$
$$a_{21}x + a_{22}y = d_2$$

where the a's and d's are constants. If we multiply the top equation by a_{22} and the bottom by a_{12}

$$a_{11}a_{22}x + a_{12}a_{22}y = d_1a_{22}$$

 $a_{12}a_{21}x + a_{12}a_{22}y = d_2a_{12}$

and then subtract the two equations

$$(a_{11}a_{22}x + a_{12}a_{22}y) - (a_{12}a_{21}x + a_{12}a_{22}y) = d_1a_{22} - d_2a_{12}$$

we can then rearrange and solve for x

$$x = \frac{d_1 a_{22} - d_2 a_{12}}{a_{11} a_{22} - a_{12} a_{22}}$$

The Determinant

We can do a similar procedure to solve for y:

$$y = \frac{d_1 a_{21} - d_2 a_{11}}{a_{11} a_{22} - a_{12} a_{21}}$$

The thing to notice is that the denominator is the same in both cases. This denominator has a special name: a **determinant** and it is denoted as

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

The notation on the left expresses the constants as a matrix (2×2) in our case) and the determinant is determined by multiplying the elements along the two diagonals and subtracting them.

The Secular Determinant

We are going to solve systems of equations that are homogeneous meaning that the d's are going to equal zero:

$$a_{11}x + a_{12}y = 0$$
$$a_{21}x + a_{22}y = 0$$

This means that the solutions for x and y look like

$$(a_{11}a_{22} - a_{12}a_{21})x = (0)a_{22} - (0)a_{12}$$

$$(a_{11}a_{22} - a_{12}a_{21})y = (0)a_{21} - (0)a_{11}$$

For x and y to yield non-trivial solutions, the determinant of our matrix of constants must equal zero.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = 0$$

This is known as a **Secular Determinant**.

Secular Determinant Example

We will later use secular determinants to solve for the ground state energy of a system. This is illustrated in the following example. Given the following system of equations:

$$(1 - E)x + (4 - E)y = 0$$
$$(2 - E)x + (3 - E)y = 0$$

Invoke the fact that there must be a secular determinant and solve for E.

The Ground State Energy of a System

Consider the ground state of some arbitrary system. The Schrödinger Equation can be expressed with its wavefunction ψ_0 and energy E_0 :

$$\hat{H}\psi_0 = E_0\psi_0$$

If we multiply both sides by ψ_0^* and integrate we get

$$\begin{split} & \int \psi_0^* \hat{H} \psi_0 \ dV = \int \psi_0^* E_0 \psi_0 \ dV \\ & \int \psi_0^* \hat{H} \psi_0 \ dV = E_0 \int \psi_0^* \psi_0 \ dV \\ & \frac{\int \psi_0^* \hat{H} \psi_0 \ dV}{\int \psi_0^* \psi_0 \ dV} = E_0 \end{split}$$

where dV represents the appropriate volume element. The denominator is left unevaluated as we leave open the possibility that ψ_0 is not normalised.

The Variational Principle

Pretend that we do not actually know ψ_0 . We attempt to approximate it using a trial wavefunction ϕ . We can calculate the energy of this wavefunction using the same procedure:

$$\frac{\int \phi^* \hat{H} \phi \ dV}{\int \phi^* \phi \ dV} = E_{\phi}$$

The Variational Principle states that

$$E_{\phi} \geq E_0$$

where the equality holds when $\phi = \psi_0$. If ϕ is dependent on some parameters (called **variational parameters**) then

$$E_{\phi}(\alpha, \beta, \gamma, \dots) \geq E_0$$

We can now minimize E_{ϕ} with respect to each variational parameter and approach E_{0}

Variational Principle Example

Apply the Variational Principle using a simple Gaussian function

$$\phi(r) = e^{-\alpha r^2}$$

where α is the only variational parameter to determine the ground state energy of the hydrogen atom.

Linear Combinations of Trial Wavefunctions

A trail wavefunction ϕ can also be a linear combination (meaning a sum) of functions (f_n) weighted by variational parameters (c_n) :

$$\phi = \sum_{n=1}^{N} c_n f_n$$

Furthermore, the functions (f_n) can also have variational parameters.

Ground State Energy of the Hydrogen Atom Revisited

With this in mind we could have used multiple Gaussian functions to guess the ground state energy of the Hydrogen Atom using a trial wavefunction of the form

$$\phi = \sum_{n=1}^{N} c_n e^{-\alpha_n r^2}$$

where the c_n 's and the α_n 's are treated as variational parameters. We have to solve this problem numerically because ϕ does not vary linearly with respect to α_n , however, with just four terms (N=4), we come to within 99.9% of the correct ground state value.

With multiple terms in our trial wavefunction, we will need to calculate secular determinants in order to solve for unknown variational parameters.

Summary

- When solving homogeneous systems of equations the determinant must be equal to zero in order for there to be a non-trivial solution for the unknown quantities
- The variational principle uses a trial wavefunction of the form:

$$\phi = \sum_{n=1}^{N} c_n f_n$$

to approximate the actual wavefunction.

ullet The energy of the trial wavefunction, ϕ is

$$E_{\phi} = \frac{\int \phi^* \hat{H} \phi \ dV}{\int \phi^* \phi \ dV}$$

By minimizing the variational parameters of ϕ , we move closer to the actual ground state energy of a quantum system such that

$$E_{\phi} \geq E_0$$

