Instructions: Write-up complete solutions to the following problems and submit answers on Gradescope. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A rubric for homework problems appears on the final page of this assignment.

• Unless otherwise noted, problem numbers are taken from the 2nd edition of Blitzstein and Hwang's Intro to Probability.

Monday 11/7

Chapter 7

65, 67

Additional Problem

- AP1. (This is inspired by, but slightly different from, Problem 7.71). In humans (and many other organisms), genes come in pairs. Consider a gene of interest, which comes in two types (alleles): type a and type A. The genotype of a person for that gene is the type of the two genes in the pair: AA, Aa, or aa (aA is equivalent to Aa). According to the Hardy-Weinberg law, for a population in equilibrium the frequencies of AA, Aa, aa will be p^2 , 2p(1-p), $(1-p)^2$, respectively, for some p with 0 . Suppose that the Hardy-Weinberg law holds, and that <math>n people are drawn randomly from the population, independently with replacement. Let X_1, X_2, X_3 be the number of people in the sample with genotypes AA, Aa, aa respectively.
 - (a) What is the joint PMF of X_1, X_2, X_3 ?
 - (b) Find the correlation between X_1 and X_2 .
 - (c) Suppose that our observations can't distinguish between AA and Aa. That is, we can only determine whether or not someone has at least one A (in genetics terms, AA and Aa have the same *phenotype*, and we are only able to observe phenotypes, not genotypes). Let Y be the number of people in the sample with AA or Aa. What is the distribution of Y? Give the name of the distribution as well as its paraemters.
 - (d) Suppose our sample consists of an even number of people, with n = 2m, and that either through chance or design, we have $X_3 = m$. What is the conditional distribution of X_1 given $X_3 = m$?
 - (e) Finally, suppose that instead of using a sample of size n, the size of the sample is $N \sim \text{Pois}(\lambda)$. Find the joint distribution of X_1, X_2, X_3 .

Wednesday 11/16

Chapter 8

1, 15, 17

Additional Problem

- AP2. Suppose X and Y are iid $\text{Expo}(\lambda)$. In this problem, we will find the joint distribution of X + Y and $\frac{X}{X+Y}$, as well as the marginal distribution of $\frac{X}{X+Y}$.
 - (a) Define a function $g: \mathbb{R}^2 \to \mathbb{R}^2$ by $(u, v) = g(x, y) = \left(x + y, \frac{x}{x + y}\right)$. Find a formula for the inverse transformation $g^{-1}(u, v)$ and use it calculate the Jacobian of g^{-1} .
 - (b) Let U = X + Y and $V = \frac{X}{X+Y}$. Use the change-of-variables formula to express the joint PDF $f_{U,V}$ of U,V in terms of the joint PDF $f_{X,Y}$ of X,Y.
 - (c) Based on your previous answer, are U and V independent?
 - (d) Find a formula for the marginal PDF of $U = \frac{X}{X+Y}$. What named distribution is this?

Due 11:59pm Monday, November 21

Name:

Friday 11/18

Chapter 8

Additional Problem

AP3. Let $X \sim \text{Gamma}(a, \lambda)$ and $Y \sim \text{Gamma}(b, \lambda)$ be independent. Show that $X + Y \sim \text{Gamma}(a + b, \lambda)$ in two ways:

- (a) Using continuous LotP (Theorem 7.1.18)
- (b) Using MGFs

Name:

General Rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key justification for why the solution is valid. Alternatively, the solution is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant component of the problem or makes a significant mistake. Alternatively, in a multi-part problem, a majority of the solutions are correct and well-written, but one part is missing or is significantly incorrect
2	The solution is either correct but not adequately written, or it is adequately written but overlooks a significant component of the problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Alternatively, the solution briefly indicates the correct answer, but provides no further justification
0	Either the solution is missing entirely, or the author makes no non-trivial progress toward a solution (i.e. just writes the statement of the problem and/or restates given information)
Notes:	For problems with multiple parts, the score represents a holistic review of the entire problem. Additionally, half-points may be used if the solution falls between two point values above.