

NTE54 (NPN) & NTE55 (PNP) Silicon Complementary Transistors High Frequency Driver for Audio Amplifier

Description:

The NTE54 (NPN) and NTE55 (PNP) are silicon complementary transistors in a TO220 type case designed for use as a high frequency driver in audio amplifier applications.

Features:

DC Current Gain Specified to 4A:

 $h_{FE} = 40 \text{ Min } @ I_C = 3A$ = 20 MIn @ $I_C = 4A$

- Collector–Emitter Sustaining Voltage: V_{CEO(sus)} = 150V Min
- High Current Gain

 Bandwidth Product: f_T = 30MHz Min @ I_C = 500mA

Absolute Maximum Ratings:

Collector–Emitter Voltage, V _{CEO}	
Collector–Base Voltage, V _{CBO}	
Emitter–Base Voltage, V _{EB)}	5V
Collector Current, I _C	
Continuous	8A
Peak	16A
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D	50W
Derate Above 25°C	0.04W/°C
Total Power Dissipation (T _A = +25°C), P _D	2W
Derate Above 25°C	0.016W/°C
Operating Junction Temperature, T _J	–65° to +150°C
Storage Temperature Range, T _{stq}	–65° to +150°C
Thermal Resistance, Junction-to-Case, R _{thJC}	+2.5°C/W
Thermal Resistance, Junction–to–Ambient, R _{thJA}	

Note 1. Matched complementary pairs are available upon request (NTE55MCP). Matched complementary pairs have their gain specification (h_{FE}) matched to within 10% of each other.

<u>Electrical Characteristics</u>: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF Characteristics	•		•	•	•	•
Collector–Emitter Sustaining Voltage	V _{CE(sus)}	$I_C = 10 \text{mA}, I_B = 0, \text{Note 2}$	150	_	_	V
Collector Cutoff Current	I _{CEO}	V _{CE} = 150V, I _B = 0	_	_	0.1	mA
	I _{CBO}	$V_{CE} = 150V, I_{E} = 0$	_	_	10	μΑ
Emitter Cutoff Current	I _{EBO}	$V_{CE} = 150V, I_{C} = 0$	_	_	10	μΑ
ON Characteristics (Note 2)	•		•		•	
DC Current Gain	h _{FE}	$V_{CE} = 2V, I_{C} = 0.1A$	40	_	_	
		$V_{CE} = 2V$, $I_C = 2A$	40	_	_	
		V _{CE} = 2V, I _C = 0.1A	40	_	_	
		$V_{CE} = 2V, I_{C} = 0.1A$	20	_	_	
DC Current Gain Linearity	h _{FE}	V _{CE} from 2V to 20V, I _C from 0.1A to 3A	-	2	_	
		NPN to PNP	_	3	_	
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 1A, I _B = 0.1A	_	_	0.5	V
Base–Emitter ON Voltage	V _{BE(on)}	V _{CE} = 2V, I _C = 1A	-	_	1	V
Dynamic Characteristics	•	•				
Current Gain-Bandwidth Product	f _t	V_{CE} = 10V, I_{C} = 500mA, f_{test} = 10MHz, Note 3	30	_	_	MHz

Note 2. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.

Note 3. $f_T = |h_{fe}| \bullet f_{test}$

