Taller de práctica Prueba 2

V.A.C: Función de densidad de probabilidad (Sección 2.4.1)
V.A.C: Función de distribución acumulada (Sección 2.4.2)
Distribución exponencial y Distribución normal (Secciones 2.4.3.2 y 2.4.3.3)

1. El riesgo real de incumplimiento de un determinado tipo de crédito puede ser considerado como una variable aleatoria continua X con función de densidad de probabilidad

$$f(x) = \begin{cases} k[1 - (x-3)^2] & 2 \le x \le 4 \\ 0 & \text{en otro caso} \end{cases}$$

- a) Determine el valor de k.
- b) ¿Cuál es la probabilidad de que el riesgo de incumplimiento sea mayor a 2.7%?
- c) ¿Cuál es la probabilidad de que el riesgo de incumplimiento sea menor a 3.2%?
- d) ¿Cuál es la probabilidad de que el el riesgo de incumplimiento esté entre 2.3 % y 3.8 %?
- e) Determine una expresión para $P(X \le x)$.
- 2. Sea X una variable aleatoria continua con función de distribución acumulativa

$$F(x) = \begin{cases} 0 & x \le 0\\ \frac{x}{4} \left[1 + \ln\left(\frac{4}{x}\right) \right] & 0 < x \le 4\\ 1 & x \ge 4 \end{cases}$$

Determinar:

- $a) P(X \le 1)$
- b) $P(1 \le X \le 3)$
- c) La función de densidad de probabilidad de X.
- 3. Una familia de funciones de densidad de probabilidad que ha sido utilizada para aproximar la distribución del ingreso, el tamaño de la población de una ciudad y el tamaño de firmas es la familia Pareto. La familia tiene dos parámetros, k y θ , ambos > 0 y la función de densidad de probabilidad es

$$f(x; k, \theta) = \begin{cases} \frac{k\theta^k}{x^{k+1}} & x \ge \theta \\ 0 & x < \theta \end{cases}$$

Verifique que el área total bajo la curva es igual a 1.

4. Los dos conjuntos de datos están relacionados con las variantes tinto (link) y blanco (link) del vino portugués "Vinho Verde". Debido a cuestiones de privacidad y logística, sólo están disponibles variables fisicoquímicas (entradas) y sensoriales (salidas) (por ejemplo, no hay datos sobre tipos de uva, marca de vino, precio de venta del vino, etc.).

Las columnas de las bases de datos son las siguientes:

- fixed.acidity (g/L): cantidad de la mayoría de los ácidos involucrados con el vino o fijos o no volátiles (no se evaporan fácilmente).
- volatile.acidity (g/L): cantidad de ácido acético en el vino, que en niveles demasiado altos puede provocar un sabor desagradable a vinagre
- lacktriangle citric.acid (g/L): cantidad de ácido cítrico, que se encuentra en pequeñas cantidades, el cual, puede añadir "frescura" y sabor a los vinos.
- residual.sugar (g/L): cantidad de azúcar que queda después de que se detiene la fermentación. Es raro encontrar vinos con menos de 1 gramo/litro y los vinos con más de 45 gramos/litro se consideran dulces.
- chlorides (g/L): cantidad de sal en el vino.

- free.sulfu.dioxide (ppm): cantidad de la forma libre de SO2 existe en equilibrio entre el SO2 molecular (como gas disuelto) y el ion bisulfito; previene el crecimiento microbiano y la oxidación del vino.
- total.sulfur.dioxide (ppm): cantidad de formas libres y ligadas de S02; En concentraciones bajas, el SO2 es prácticamente indetectable en el vino, pero en concentraciones de SO2 libre superiores a 50 ppm, el SO2 se vuelve evidente en la nariz y el sabor del vino.
- density (g/cm^3) : densidad del agua dependiendo del porcentaje de alcohol y contenido de azúcar.
- pH: describe qué tan ácido o básico es un vino en una escala de 0 (muy ácido) a 14 (muy básico); la mayoría de los vinos tienen entre 3 y 4 en la escala de pH.
- sulphates (mg/L): cantidad de aditivo del vino que puede contribuir a los niveles de dióxido de azufre (S02), que actúa como antimicrobiano y antioxidante.
- alcohol (ABV, Alcohol por volumen): el porcentaje de alcohol del vino.
- quality: variable de salida (basada en datos sensoriales, puntuación entre 0 y 10), un número cercano a 10 indica un vino de mayor calidad.

A continuación, se utiliza la base de datos asociada a los datos del vino tinto para los enunciados siguientes. Además, en cada uno de los enunciados de probabilidad, especifique la variable aleatoria, la distribución de la variable aleatoria, la probabilidad a calcular y la tabla utilizada.

- a) Suponiendo que la cantidad de ácido cítrico distribuye normal con media 0.27 y varianza 0.037, calcule lo siguiente.
 - I. La probabilidad de que la cantidad de ácido cítrico de un vino no sea menor a $0.301 \ g/L$.
 - II. La probabilidad de que la cantidad de ácido cítrico de un vino esté entre 0.26 y 0.32 (inclusive) g/L.
 - III. La probabilidad de que la cantidad de ácido cítrico de un vino no esté entre 0.27 y 0.3 (inclusive ambos) g/L.

Tabla 1: Distribución Normal Media 0.27 y Varianza 0.037

Tabla 2: Distribución Normal Media 0.27 y Desviación estándar 0.037

Cuantil	Prob
0.260	0.4792693
0.270	0.5000000
0.300	0.5619687
0.301	0.5640168
0.320	0.6025441
0.680	0.9834755
0.699	0.9871351
0.700	0.9873065
0.730	0.9916085
0.740	0.9927255

Cuantil	Prob
0.260	0.3934762
0.270	0.5000000
0.300	0.7912628
0.301	0.7989391
0.320	0.9117085
0.680	1.0000000
0.699	1.0000000
0.700	1.0000000
0.730	1.0000000
0.740	1.0000000

- b) El porcentaje de alcohol en el vino depende del tiempo de fermentación. En particular, el tiempo de fermentación del vino sigue una distribución exponencial con una tasa promedio de 4 horas. Calcule lo siguiente.
 - I. La probabilidad de que el tiempo de fermentación de un vino sea menor a 3.2 horas.
 - II. La probabilidad de que el tiempo de fermentación de un vino sea no menor a un cuarto de día.
 - III. La probabilidad de que el tiempo de fermentación de un vino esté entre 2.9 (inclusive) y 4.1 horas.

Tabla 3: Distribución Exponencial, lambda = 1/4 Tabla 4: Distribución Exponencial, lambda = 1/24

Cuantil	Prob
2.5	0.4647386
2.6	0.4779542
2.7	0.4908436
2.8	0.5034147
2.9	0.5156754
3.0	0.5276334
3.1	0.5392962
3.2	0.5506710
3.3	0.5617650
3.4	0.5725851
3.5	0.5831380
3.6	0.5934303
3.7	0.6034686
3.8	0.6132590
3.9	0.6228076
4.0	0.6321206
4.1	0.6412035
4.2	0.6500623
4.3	0.6587022
4.4	0.6671289
4.5	0.6753475
4.6	0.6833632
4.7	0.6911810
4.8	0.6988058
4.9	0.7062423
5.0	0.7134952
5.1	0.7205690
5.2	0.7274682
5.3	0.7341970
5.4	0.7407597
5.5	0.7471604
5.6	0.7534030
5.7	0.7594915
5.8	0.7654297
5.9	0.7712213
6.0	0.7768698
6.1	0.7823789