Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z Laboratorium 1

Dominik Jeżów

GR NR 4

Specyfikacje sprzętowe urządzenia:

• System: 80SM (LENOVO_MT_80SM_BU_idea_FM_Lenovo ideapad 310-15ISK)

• Procesor: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• Pamięć RAM: 8GB

• Środowisko: Jupyther Notebook

Ćwiczenie zrealizowane w języku Julia 1.8.5, wraz z wykorzystaniem pakietu Plots oraz PrettyTables

0. Opis Ćwiczenia:

Ćwiczenie polegało na wykonaniu obliczeń funkcji $f(x) = (x-1)^8$ dla wartości bliskich 1, przy wykorzystaniu różnych precyzji oraz różnych postaci funkcji f(x)

1. Wartości badanych argumentów funkcji

W ćwiczeniu obliczałem wartości funkcji f(x) dla 101 argumentów, których wartości były równoodległymi od siebie liczbami z przedziału [0.99;1.01]. Funkcja w tych miejscach ma wartości bardzo bliskie zeru, co może powodować tak zwany "underflow"

2. Badane realizacje zadanej funkcji

Wartości wyliczałem korzystając z 4 różnych postaci funkcji f(x)

•
$$f(x) = x^8 - 8x^7 + 28x^6 - 56x^5 + 70x^4 - 56x^3 + 28x^2 - 8x + 1$$

•
$$f(x) = \left(\left(\left(\left(((x-8)x+28)x-56\right)x+70\right)x-56\right)x+28\right)x-8\right)x+1\right)$$

• $f(x) = \left(\left(\left(\left(((x-8)x+28)x-56\right)x+70\right)x-56\right)x+28\right)x-8\right)x+1\right)$

•
$$f(x) = (x-1)^8$$

•
$$f(x) = e^{8\ln(|x-1|)}$$

Te różne sposoby obliczania wartości wprowadzają inne niepewności pochodzące od wykonywanych działań/operacji na liczbach.

3. Połowiczna precyzja – Float16

Połowiczna precyzja poradziła sobie najgorzej ze wszystkich, nie był w stanie nawet utworzyć 101 argumentów z podanego przedziału, dla trzeciej i czwartej reprezentacji funkcji zwracał tylko i wyłącznie wartość zero.

X	f1	f2	f3	f4
0.99	0.03125	0.01758	0.0	0.0
0.99	0.03125	0.01758	0.0	0.0
0.99	0.03125	0.01758	0.0	0.0
0.9907	-0.03516	0.021	0.0	0.0
0.9907	-0.03516	0.021	0.0	0.0
0.991	-0.02344	0.00879	0.0	0.0
0.991	-0.02344	0.00879	0.0	0.0

Tab.1 tabela Pierwszych 7 wyników dla 4 realizacji funkcji w połowicznej precyzji

Dla pierwszej i drugiej reprezentacji funkcji przedstawionej na wykresie kolejne punkty układają chaotycznie, występują wartości ujemne:

Wyk.1 wykres przedstawiający wyniki obliczeń dla pierwszej funkcji, korzystając z połowicznej precyzji

4. Pojedyncza precyzja - Float32

Tutaj dla pierwszych dwóch realizacji obliczania wielomianu uzyskaliśmy podobnie, chaotycznie rozmieszczone punkty. Dla trzeciej i czwartej postaci funkcji punkty na wykresie układały się w parabole.

Wyk.2 wyniki pojedyncza precyzja funkcja druga

Wyk.3 wyniki pojedyncza precyzja funkcja czwarta

Można zauważyć, że dla czwartej realizacji funkcji liczby na osi Y są podawane z większą dokładnością (10e-16), niż dla drugiej.

5. Podwójna precyzja – Float64

Dla pierwszej i drugiej postaci funkcji nadal otrzymujemy chaotyczne wyniki, jednak pierwsze cyfry znaczące pokazują się już od 14 miejsca po przecinku, czyli ponad dwa razy dalej niż przy pojedynczej precyzji, dla trzeciej i czwartej realizacji funkcji są nie do odróżnienia gołym okiem a wartości różnią się na około 21 miejscu po przecinku.

Wyk.4 wyniki podwójna precyzja funkcja pierwsza

Float32	Float64		
8.50775e-17	8.50763e-17		
7.21380e-17	7.21390e-17		
6.09574e-17	6.09569e-17		
5.13209e-17	5.13219e-17		
4.30468e-17	4.30467e-17		
3.59644e-17	3.59635e-17		
2.99217e-17	2.99218e-17		
2.47881e-17	2.47876e-17		
2.04412e-17	2.04414e-17		
1.67775e-17	1.67772e-17		
1.37009e-17	1.37011e-17		
1.11305e-17	1.11303e-17		
8.99172e-18	8.99195e-18		
7.22206e-18	7.22204e-18		
5.76499e-18	5.76480e-18		

Tab.2 Porównanie wyników trzeciej funkcje dla pojedynczej i podwójnej precyzji

6. Precyzja Arbitralna – BigFloat

Dla precyzji arbitralnej niezależnie od użytej metody otrzymujemy wykres paraboliczny, w porównaniu do podwójnej precyzji wyniki różnią się na około 33 miejscu po przecinku.

7. Podsumowanie

Tabela informuje dla których kombinacji otrzymaliśmy wykres paraboliczny, a co za tym idzie względnie dokładne wyniki:

Precyzja	Float16	Float32	Float64	BigFloat
f1	NIE	NIE	NIE	TAK
f2	NIE	NIE	NIE	TAK
f3	NIE	TAK	TAK	TAK
f4	NIE	TAK	TAK	TAK

Tab.3 podsumowanie otrzymanych wykresów

8. Wnioski

O ile nie używamy precyzji arbitralnej to wybrana realizacji rozwiązywania problemów ma wielki wpływ na dokładność naszych wyników.

Połowiczna precyzja nie jest wystarczająca dla tego problemu.