Multi-Time Attention Networks for Irregularly Sampled Time Series

Satya Narayan Shukla & Benjamin M. Marlin

Elliot Hill

Duke University

March, 2023

Overview

- Background and motivation
- Related work
- Multi-time attention networks
- Results and discussion

Time-series data poses significant challenges

- Irregular sampling: samples are not spaced at even time intervals
- Multivariate: outcome is condition on multiple features
- Misaligned sampling: features are measured at different time points
- Missing values: features may be only partially observed
- Sparsity: intervals between time-points may be long

Irregularly sampled data does not work out of the box for most deep learning architectures

RNNs, LSTMs, and transformers can use time-series data as their input, but they assume that the input is discrete and has a fixed length

A lot of approaches that have been developed to address irregularly sampled time-series for deep learning feel ad hoc

Binning/discretization is easy, but brittle

A common solution is to bin continuous values into fixed discrete values, but this loses valuable information and proliferates missing values

Recurrent architecture + masking + time-interval

Another idea is to use architectures that handle sequences naturally, like RNN, GRU, or LSTM and add masking (missing/non-missing) and time-intervals between observations to their input

ODE + RNN

Figure 2: The Latent ODE model with an ODE-RNN encoder. To make predictions in this model, the ODE-RNN encoder is run backwards in time to produce an approximate posterior over the initial state: $q(z_0|\{x_i,t_i\}_{i=0}^N)$. Given a sample of z_0 , we can find the latent state at any point of interest by solving an ODE initial-value problem. Figure adapted from Chen et al. [2018].

Attention base solutions have been proposed previously

Often, the positional encoding in transformers (Vaswani et al. 2017) will be replace with a encoding of time and model sequences using attention (e.g. Zhang et al., 2019)

For example, Xu et al. (2019) learn a time representation and concatenates it with the input event embedding to model time-event interactions

In Shukla & Marlin (2021), instead of concatenating the time representation with the input embedding, the model learns to attend to observations at different time points by computing a similarity weighting

mTAND: Multi-time attention networks

mTAND re-represents an irregularly sampled time-series as a fixed set of reference points that are used as queries in the attention mechanism and the observed values are used as the keys

A learned continuous-time embedding mechanism coupled with a time attention mechanism replaces the use of a fixed similarity kernel

Notation

 $\mathcal{D} = \{(s_n, y_n) | n=1,...,N\}$ represents a dataset containing N cases Where y_n is a target value and s_n is a D-dimensional, sparse and irregularly sampled multivariate time series

Time-series d for case n is $s_{dn}=(t_{dn},x_{dn})$ where $t_{dn}=[t_{1dn},...,t_{L_{dn}dn}]$ is a list of time points, $x_{dn}=[x_{1dn},...,x_{L_{dn}dn}]$ is the corresponding observations, and L_{dn} is the total number of observations for a given time-series

The goal of the time attention module is to embed continuous time points into a fixed-length vector space

The time embeddings replaces the transformer's positional encoding

$$\phi_h(t)[i] = \begin{cases} \omega_{0h} \cdot t + \alpha_{0h}, & \text{if } i = 0\\ \sin(\omega_{ih} \cdot t + \alpha_{ih}), & \text{if } 0 < i < d_r \end{cases}$$

where ω_{ih} and α_{ih} are learnable parameters. This time embedding component takes a continuous time point and embeds it into H different d_r -dimensional spaces. r is a reference point (described later),

The first term captures linear trends and the second term captures nonlinear seasonality

mTAN module

The multi-time attention module, mTAN(t, s), takes as input a query time point, t, and a time series, s, and outputs a J-dimensional embedding at time t

$$\begin{split} \textit{mTAN}(t,s)[j] &= \sum_{h=1}^{H} \sum_{d=1}^{D} \hat{x}_{hd}(t,s) \cdot \textit{U}_{hdj} \\ \hat{x}_{hd}(t,s) &= \sum_{i=1}^{L_d} \kappa_h(t,t_{id}) x_{id} \\ \kappa_h(t,t_{id}) &= \frac{\exp(\phi_h(t) \textit{w} \textit{v}^T \phi_h(t_{id})^T / \sqrt{d_k}}{\sum_{i'=1}^{L_d} \exp(\phi_h(t) \textit{w} \textit{v}^T \phi_h(t_{i'd})^T / \sqrt{d_k}} \end{split}$$

The parameters \mathbf{w} and \mathbf{v} are each $d_r \times d_k$ matrices where $d_k \leq d_r$, $\kappa_h(t,t_{id})$ are the interpolation weights for the kernel smoother $\hat{x}_{hd}(t,s)$, and parameters U_{hdi} are learnable weights

Encoder-decoder framework

The encoder takes time-series as input and outputs a fixed-length latent representation for each reference point

(b) Inference Network (Encoder)

$$egin{aligned} oldsymbol{h}_{TAN}^{enc} &= mTAND^{enc}(oldsymbol{r}, oldsymbol{s}) \ oldsymbol{h}_{RNN}^{enc} &= RNN^{enc}(oldsymbol{h}_{RNN}^{enc}) \ oldsymbol{z}_k &\sim q_{\gamma}(oldsymbol{z}_k | oldsymbol{\mu}_k, oldsymbol{\sigma}_k^2) \ oldsymbol{\mu}_k &= f_{\mu}^{enc}(oldsymbol{h}_{k,RNN}^{enc}) \ oldsymbol{\sigma}_k^2 &= exp(f_{\sigma}^{enc}(oldsymbol{h}_{k,RNN}^{enc})) \end{aligned}$$

where $z_k = [z_1, ..., z_K]$ is a set of latent states at K reference points

The decoder uses the latent representations to produce reconstructions conditioned on the observed time points

(a) Generative Model (Decoder)

$$egin{aligned} m{z}_k &\sim p(m{z}_k) \ m{h}_{RNN}^{dec} &= RNN^{dec}(m{z}) \ m{h}_{TAN}^{dec} &= mTAND^{dec}(m{t}, m{h}_{RNN}^{dec}) \ x_{id} &\sim \mathcal{N}(x_{id}; f^{dec}(m{h}_{i,TAN}^{dec})[d], \sigma^2 m{I}) \end{aligned}$$

This generates a time-series $\hat{s} = (t, x)$ with all data dimensions observed

mTAN uses a modified VAE loss

Unsupervised loss

$$\begin{split} \mathcal{L}_{\text{NVAE}}(\theta, \gamma) &= \sum_{n=1}^{N} \frac{1}{\sum_{d} L_{dn}} \Big(\mathbb{E}_{q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s}_{n})} [\log p_{\theta}(\mathbf{x}_{n} | \mathbf{z}, \mathbf{t}_{n})] - D_{\text{KL}}(q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z})) \Big) \\ D_{\text{KL}}(q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z})) &= \sum_{i=1}^{K} D_{\text{KL}}(q_{\gamma}(\mathbf{z}_{i} | \mathbf{r}, \mathbf{s}_{n}) || p(\mathbf{z}_{i})) \\ \log p_{\theta}(\mathbf{x}_{n} | \mathbf{z}, \mathbf{t}_{n}) &= \sum_{d=1}^{D} \sum_{i=1}^{L_{dn}} \log p_{\theta}(x_{jdn} | \mathbf{z}, t_{jdn}) \end{split}$$

Supervised loss

$$\mathcal{L}_{\text{supervised}}(\theta, \gamma, \delta) = \mathcal{L}_{\text{NVAE}}(\theta, \gamma) + \lambda \mathbb{E}_{q_{\gamma}(\mathbf{z} | \mathbf{r}, \mathbf{s}_n)} \log p_{\delta}(y_n | \mathbf{z})$$

mTAND beats SOTA methods for some interpolation tasks

Table 1: Interpolation performance versus percent observed time points on PhysioNet

Model	Mean Squared Error $(\times 10^{-3})$						
RNN-VAE L-ODE-RNN L-ODE-ODE mTAND-Full	13.418 ± 0.008 8.132 ± 0.020 6.721 ± 0.109 4.139 ± 0.029	12.594 ± 0.004 8.140 ± 0.018 6.816 ± 0.045 4.018 ± 0.048	11.887 ± 0.005 8.171 ± 0.030 6.798 ± 0.143 4.157 ± 0.053	11.133 ± 0.007 8.143 ± 0.025 6.850 ± 0.066 4.410 ± 0.149	11.470 ± 0.006 8.402 ± 0.022 7.142 ± 0.066 4.798 ± 0.036		
Observed %	50%	60%	70%	80%	90%		

mTAND matches or exceeds the performance of other SOTA methods and is much faster

Table 2: Classification Performance on PhysioNet, MIMIC-III and Human Activity dataset

Model	AUC Score		Accuracy	time
	PhysioNet	MIMIC-III	Human Activity	per epoch
RNN-Impute	0.764 ± 0.016	0.8249 ± 0.0010	0.859 ± 0.004	0.5
$RNN ext{-}\Delta_t$	0.787 ± 0.014	0.8364 ± 0.0011	0.857 ± 0.002	0.5
RNN-Decay	0.807 ± 0.003	0.8392 ± 0.0012	0.860 ± 0.005	0.7
RNN GRU-D	0.818 ± 0.008	0.8270 ± 0.0010	0.862 ± 0.005	0.7
Phased-LSTM	0.836 ± 0.003	0.8429 ± 0.0035	0.855 ± 0.005	0.3
IP-Nets	0.819 ± 0.006	0.8390 ± 0.0011	0.869 ± 0.007	1.3
SeFT	0.795 ± 0.015	0.8485 ± 0.0022	0.815 ± 0.002	0.5
RNN-VAE	0.515 ± 0.040	0.5175 ± 0.0312	0.343 ± 0.040	2.0
ODE-RNN	0.833 ± 0.009	$\bf0.8561 \pm 0.0051$	0.885 ± 0.008	16.5
L-ODE-RNN	0.781 ± 0.018	0.7734 ± 0.0030	0.838 ± 0.004	6.7
L-ODE-ODE	0.829 ± 0.004	$\bf 0.8559 \pm 0.0041$	0.870 ± 0.028	22.0
mTAND-Enc	0.854 ± 0.001	0.8419 ± 0.0017	$\boldsymbol{0.907 \pm 0.002}$	0.1
mTAND-Full	$\boldsymbol{0.858 \pm 0.004}$	$\bf 0.8544 \pm 0.0024$	$\boldsymbol{0.910 \pm 0.002}$	0.2

mTAND has a lot of benefits

- Can handle sparse, irregularly sampled time-series with partially observed features
- Leverages a time attention mechanism to learn temporal similarity from data instead of using fixed kernels
- Meets or exceeds the performance of other SOTA methods on some time-series tasks
- Faster than other SOTA methods
- Could swap the VAE approach used here for any generative model

References

- Afshine Amidi. Recurrent neural networks cheatsheet. URL https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks.
- Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time series. CoRR, abs/1907.03907, 2019. URL http://arxiv.org/abs/1907.03907.
- Satya Narayan Shukla and Benjamin M. Marlin. A survey on principles, models and methods for learning from irregularly sampled time series: From discretization to attention and invariance. CoRR, abs/2012.00168, 2020. URL https://arxiv.org/abs/2012.00168.
- Satya Narayan Shukla and Benjamin M. Marlin. Multi-time attention networks for irregularly sampled time series. CoRR, abs/2101.10318, 2021. URL https://arxiv.org/abs/2101.10318.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.
- Da Xu, Chuanwei Ruan, Sushant Kumar, Evren Körpeoglu, and Kannan Achan. Self-attention with functional time representation learning. CoRR, abs/1911.12864, 2019. URL http://arxiv.org/abs/1911.12864.
- Yifan Zhang and Peter J. Thorburn. Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128:63–72, 2022. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2021.09.033. URL https://www.sciencedirect.com/science/article/pii/S0167739X21003794.
- Yuan Zhang, Xi Yang, Julie Ivy, and Min Chi. Attain: Attention-based time-aware Istm networks for disease progression modeling. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 4369–4375. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/607. URL https://doi.org/10.24963/ijcai.2019/607.