Electronic Structure Calculations in Quantum Chemistry

Alexander B. Pacheco

User Services Consultant LSU HPC & LONI sys-help@loni.org

REU HPC Training Louisiana State University Baton Rouge July 6, 2011

Outline

- Introduction
- 2 Ab Initio Methods
- Density Functional Theory
- Semi-empirical Methods
- Basis Sets
- Molecular Mechanics
- Quantum Mechanics/Molecular Mechanics (QM/MM)
- Computational Chemistry Programs
- Tips for Quantum Chemical Calculations

What is Computational Chemistry

- Computational Chemistry is a branch of chemistry that uses computer science to assist in solving chemical problems.
- Incorporates the results of theoretical chemistry into efficient computer programs.
- Application to single molecule, groups of molecules, liquids or solids.
- Calculates the structure and properties of interest.
- Computational Chemistry Methods range from
 - Highly accurate (Ab-initio, DFT) feasible for small systems
 - Less accurate (semi-empirical)
 - Very Approximate (Molecular Mechanics) large systems

Theoretical Chemistry can be broadly divided into two main categories

- Static Methods ⇒ Time-Independent Schrödinger Equation
 - ◆ Quantum Chemical/Ab Initio /Electronic Structure Methods
 - Molecular Mechanics
- ② Dynamical Methods ⇒ Time-Dependent Schrödinger Equation
 - Classical Molecular Dynamics
 - Semi-classical and Ab-Initio Molecular Dynamics

Tutorial Goals

- Provide a brief introduction to Electronic Structure Calculations in Quantum Chemistry to REU students.
 - Overview of Quantum Chemical methods.
 - What kind of calculations can we carry out?
 - What experimental properties can we study/understand?
 - How to create input files?
 - Tips and Tricks to run calculations?

Ab Initio Methods

- Ab Initio meaning "from first principles" methods solve the Schrödinger equation and does not rely on empirical or experimental data.
- Begining with fundamental and physical properties, calculate how electrons and nuclei interact.
- The Schrödinger equation can be solved exactly only for a few systems
 - Particle in a Box
 - Rigid Rotor
 - Harmonic Oscillator
 - Hydrogen Atom
- For complex systems, Ab Initio methods make assumptions to obtain approximate solutions to the Schrödinger equations and solve it numerically.
- "Computational Cost" of calculations increases with the accuracy of the calculation and size of the system.

What can we predict with Ab Initio methods?

- Molecular Geometry: Equilibrium and Transition State
- Dipole and Quadrupole Moments and polarizabilities
- Thermochemical data like Free Energy, Energy of reaction.
- Potential Energy surfaces, Barrier heights
- Reaction Rates and cross sections
- Ionization potentials (photoelectron and X-ray spectra) and Electron affinities
- Frank-Condon factors (transition probabilities, vibronic intensities)
- Vibrational Frequencies, IR and Raman Spectra and Intensities
- Rotational spectra
- NMR Spectra
- Electronic excitations and UV-VIS spectra
- Electron density maps and population analyses
- Thermodynamic quantities like partition function

Ab Initio Theory

- Born-Oppenheimer Approximation: Nuclei are heavier than electrons and can be considered stationary with respect to electrons. Also know as "clamped nuclei" approximations and leads to idea of potential surface
- Slater Determinants: Expand the many electron wave function in terms of Slater determinants.
- Basis Sets: Represent Slater determinants by molecular orbitals, which are linear combination of atomic-like-orbital functions i.e. basis sets

Born-Oppenheimer Approximation

Solve time-independent Schrödinger equation

$$\hat{H}\Psi = E\Psi$$

For many electron system:

$$\hat{H} = \underbrace{-\frac{\hbar^2}{2} \sum_{\alpha} \frac{\nabla_{\alpha}^2}{M_{\alpha}}}_{\hat{T}_n} - \underbrace{\frac{\hbar^2}{2m_e} \sum_{i} \nabla_{i}^2}_{\hat{T}_e} + \underbrace{\sum_{\alpha > \beta} \frac{e^2 Z_{\alpha} Z_{\beta}}{4\pi \epsilon_0 R_{\alpha\beta}}}_{\hat{V}_{nn}} - \underbrace{\sum_{\alpha, i} \frac{e^2 Z_{\alpha}}{4\pi \epsilon_0 R_{\alpha i}}}_{\hat{V}_{en}} + \underbrace{\sum_{i > j} \frac{e^2}{4\pi \epsilon_0 r_{ij}}}_{\hat{V}_{ee}}$$

- The wave function $\Psi(R, r)$ of the many electron molecule is a function of nuclear (R) and electronic (r) coordinates.
- Motion of nuclei and electrons are coupled.
- However, since nuclei are much heavier than electrons, the nuclei appear fixed or stationary.

 Born-Oppenheimer Approximation: Separate electronic and nuclear motion:

$$\Psi(R,r) = \psi_e(r;R)\psi_n(R)$$

Solve electronic part of Schrödinger equation

$$\hat{H}_e\psi_e(r;R) = E_e\psi_e(r;R)$$

10 / 51

 BO approximation leads to the concept of potential energy surface

$$V(R) = E_e + V_{nn}$$

Potential Energy Surfaces

- The potential energy surface (PES) is multi-dimensional (3N 6) for non-linear molecule and 3N - 5 for linear molecule)
- The PES contains multiple minima and maxima.
- Geometry optimization search aims to find the global minimum of the potential surface.
- Transition state or saddle point search aims to find the maximum of this potential surface, usually along the reaction coordinate of interest.

Wavefunction Methods

• The electronic Hamiltonian (in atomic units, $\hbar, m_e, 4\pi\epsilon_0, e=1$) to be solved is

$$\hat{H}_e = -\frac{1}{2} \sum_i \nabla_i^2 - \sum_{\alpha,i} \frac{Z_\alpha}{R_{i\alpha}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{\alpha>\beta} \frac{Z_\alpha Z_\beta}{R_{\alpha\beta}}$$

Calculate electronic wave function and energy

$$E_e = \frac{\langle \psi_e \mid \hat{H}_e \mid \psi_e \rangle}{\langle \psi_e \mid \psi_e \rangle}$$

 The total electronic wave function is written as a Slater Determinant of the one electron functions, i.e. molecular orbitals, MO's

$$\psi_e = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(1) & \phi_2(1) & \cdots & \phi_N(1) \\ \phi_1(2) & \phi_2(2) & \cdots & \phi_N(2) \\ \cdots & \cdots & \cdots & \cdots \\ \phi_1(N) & \phi_2(N) & \cdots & \phi_N(N) \end{vmatrix}$$

 MO's are written as a linear combination of one electron atomic functions or atomic orbitals (AO's)

$$\phi_i = \sum_{\mu=1}^N c_{\mu i} \chi_{\mu}$$

 $c_{\mu i} \Rightarrow MO$ coefficients

 $\chi_{\mu} \Rightarrow$ atomic basis functions.

- Obtain coefficients by minimizing the energy via Variational Theorem.
- Variational Theorem: Expectation value of the energy of a trial wavefunction is always greater than or equal to the true energy

$$E_e = \langle \psi_e \mid \hat{H}_e \mid \psi_e \rangle \ge \varepsilon_0$$

 Increasing N ⇒ Higher quality of wavefunction ⇒ Higher computational cost

Ab Initio Methods

The most popular classes of ab initio electronic structure methods:

- Hartree-Fock methods
 - Hartree-Fock (HF)
 - Restricted Hartree-Fock (RHF): singlets
 - Unrestricted Hartree-Fock (UHF): higher multiplicities
 - Restricted open-shell Hartree-Fock (ROHF)
- Post Hartree-Fock methods
 - Møller-Plesset perturbation theory (MPn)
 - Configuration interaction (CI)
 - Coupled cluster (CC)
- Multi-reference methods
 - Multi-configurational self-consistent field (MCSCF)
 - Multi-reference configuration interaction (MRCI)
 - n-electron valence state perturbation theory (NEVPT)
 - Complete active space perturbation theory (CASPTn)

Hartree-Fock

Wavefunction is written as a single determinant

$$\Psi = det(\phi_1, \phi_2, \cdots \phi_N)$$

2 The electronic Hamiltonian can be written as

$$\hat{H} = \sum_{i} h(i) + \sum_{i>j} v(i,j)$$

where
$$h(i) = -\frac{1}{2}\nabla_i^2 - \sum_{i,\alpha} \frac{Z_{\alpha}}{r_{i\alpha}}$$
 and $v(i,j) = \frac{1}{r_{ij}}$

The electronic energy of the system is given by:

$$E = \langle \Psi | \hat{H} | \Psi \rangle$$

The resulting HF equations from minimization of energy by applying of variational theorem:

$$\hat{f}(x_1)\chi_i(x_1) = \varepsilon_i\chi_i(x_1)$$

where ε_i is the energy of orbital χ_i and the Fock operator f, is defined as

$$\hat{f}(x_1) = \hat{h}(x_1) + \sum_{j} \left[\hat{J}_j(x_1) - \hat{K}_j(x_1) \right]$$

① $\hat{J}_j \Rightarrow$ Coulomb operator \Rightarrow average potential at x due to charge distribution from electron in orbital χ_i defined as

$$\hat{J}_{j}(x_{1})\chi_{i}(x_{1}) = \left[\int \frac{\chi_{j}^{*}(x_{2})\chi_{j}(x_{2})}{r_{12}}dx_{2}\right]\chi_{i}(x_{1})$$

② $\hat{K}_j \Rightarrow \text{Exchange operator} \Rightarrow \text{Energy associated with exchange of electrons} \Rightarrow \text{No classical interpretation for this term.}$

$$\hat{K}_{j}(x_{1})\chi_{i}(x_{1}) = \left[\int \frac{\chi_{j}^{*}(x_{2})\chi_{i}(x_{2})}{r_{12}}dx_{2}\right]\chi_{j}(x_{1})$$

The Hartree-Fock equation are solved numerically or in a space spanned by a set of basis functions (Hartree-Fock-Roothan equations)

$$\chi_{i} = \sum_{\mu=1}^{K} C_{\mu i} \tilde{\chi}_{\mu}$$

$$S_{\mu\nu} = \int dx_{1} \tilde{\chi}_{\mu}^{*}(x_{1}) \tilde{\chi}_{\nu}(x_{1})$$

$$\sum_{\nu} F_{\mu\nu} C_{\nu i} = \varepsilon_{i} \sum_{\nu} S_{\mu\nu} C_{\nu i}$$

$$F_{\mu\nu} = \int dx_{1} \tilde{\chi}_{\mu}^{*}(x_{1}) \hat{f}(x_{1}) \tilde{\chi}_{\nu}(x_{1})$$

$$FC = SC\varepsilon$$

- The Hartree-Fock-Roothan equation is a pseudo-eigenvalue equation
- C's are the expansion coefficients for each orbital expressed as a linear combination of the basis function.
- Starting with an initial guess orbitals, the HF equations are solved iteratively or self consistently (Hence HF procedure is also known as self-consistent field or SCF approach) obtaining the best possible orbitals that minimize the energy.

SCF procedure

- Specify molecule, basis functions and electronic state of interest
- Form overlap matrix S
- Guess initial MO coefficients C
- Form Fock Matrix F
- Solve $FC = SC\varepsilon$
- Use new MO coefficients C to build new Fock Matrix F
- \bigcirc Repeat steps 5 and 6 until C no longer changes from one iteration to the next.

SCF Flow Chart

- Methods that improve the Hartree-Fock results by accounting for the correlation energy are known as Post Hartree-Fock methods
- The starting point for most Post HF methods is the Slater Determinant obtain from Hartree-Fock Methods.
- Configuration Interaction (CI) methods: Express the wavefunction as a linear combination of Slater Determinants with the coeffcients obtained variationally

$$|\Psi\rangle = \sum_i c_i |\Psi_i\rangle$$

Many Body Perturbation Theory: Treat the HF determinant as the zeroth order solution with the correlation energy as a pertubation to the HF equation.

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}'; \varepsilon_i = E_i^{(0)} + \lambda E_i^{(1)} + \lambda^2 E_i^{(2)} + \cdots$$
$$|\Psi_i\rangle = |\Psi_i^{(0)}\rangle + \lambda |\Psi_i^{(1)}\rangle + \lambda^2 |\Psi_i^{(2)}\rangle \cdots$$

Coupled Cluster Theory: The wavefunction is written as an exponential ansatz

$$|\Psi\rangle = e^{\hat{T}}|\Psi_0\rangle$$

where $|\Psi_0\rangle$ is a Slater determinant obtained from HF calculations and \hat{T} is an excitation operator which when acting on $|\Psi_0\rangle$ produces a linear combination of excited Slater determinants.

Scaling

Scaling Behavior	Method(s)
N ⁴	HF
N^5	MP2
N^6	MP3, CISD, CCSD, QCISD
N^7	MP4, CCSD(T), QCISD(T)
N_8	MP5, CISDT, CCSDT
N^9	MP6
N ¹⁰	MP7, CISDTQ, CCSDTQ

• N = Number of Basis Functions

Density Functional Theory

- Density Functional Theory (DFT) is an alternative to wavefunction based electronic structure methods of many-body systems such as Hartree-Fock and Post Hartree-Fock.
- In DFT, the ground state energy is expressed in terms of the total electron density.

$$\rho_0(r) = \langle \Psi_0 | \hat{\rho} | \Psi_0 \rangle$$

 We again start with Born-Oppenheimer approximation and write the electronic Hamiltonian as

$$\hat{H} = \hat{F} + \hat{V}_{ext}$$

where \hat{F} is the sum of the kinetic energy of electrons and the electron-electron interaction and \hat{V}_{ext} is some external potential.

- Modern DFT methods result from the Hohenberg-Kohn theorem
 - The external potential V_{ext} , and hence total energy is a unique functional of the electron density $\rho(r)$

Energy =
$$\frac{\langle \Psi \mid \hat{H} \mid \Psi \rangle}{\langle \Psi \mid \Psi \rangle} \equiv E[\rho]$$

The ground state energy can be obtained variationally, the density that minimizes the total energy is the exact ground state density

$$E[\rho] > E[\rho_0], \text{ if } \rho \neq \rho_0$$

If density is known, then the total energy is:

$$E[\rho] = T[\rho] + V_{ne}[\rho] + J[\rho] + E_{nn} + E_{xc}[\rho]$$

where

$$E_{nn}[
ho]=\sum_{A>B}rac{Z_AZ_B}{R_{AB}} \qquad \qquad V_{ne}[
ho]=\int
ho(r)V_{ext}(r)dr \ J[
ho]=rac{1}{2}\intrac{
ho(r_1)
ho(r_2)}{r_1 2}dr_1dr_2$$

- If the density is known, the two unknowns in the energy expression are the kinetic energy functional $T[\rho]$ and the exchange-correlation functional $E_{xc}[\rho]$
- To calculate $T[\rho]$, Kohn and Sham introduced the concept of Kohn-Sham orbitals which are eigenvectors of the Kohn-Sham equation

$$\left(-\frac{1}{2}\nabla^2 + v_{\text{eff}}(r)\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$

Here, ε_i is the orbital energy of the corresponding Kohn-Sham orbital, ϕ_i , and the density for an "N"-particle system is

$$\rho(r) = \sum_{i}^{N} |\phi_i(r)|^2$$

The total energy of a system is

$$E[
ho] = T_s[
ho] + \int dr \, v_{
m ext}(r)
ho(r) + V_H[
ho] + E_{
m xc}[
ho]$$

 T_s is the Kohn-Sham kinetic energy which is expressed in terms of the Kohn-Sham orbitals as

$$T_s[\rho] = \sum_{i=1}^N \int dr \, \phi_i^*(r) \left(-\frac{1}{2}\nabla^2\right) \phi_i(r)$$

 $v_{\rm ext}$ is the external potential acting on the interacting system (at minimum, for a molecular system, the electron-nuclei interaction), V_H is the Hartree (or Coulomb) energy,

$$V_{H} = \frac{1}{2} \int dr dr' \frac{\rho(r)\rho(r')}{|r - r'|}$$

and E_{xc} is the exchange-correlation energy.

 The Kohn-Sham equations are found by varying the total energy expression with respect to a set of orbitals to yield the Kohn-Sham potential as

$$v_{\rm eff}(r) = v_{\rm ext}(r) + \int \frac{\rho(r')}{|r - r'|} dr' + \frac{\delta E_{\rm xc}[\rho]}{\delta \rho(r)}$$

where the last term $v_{xc}(r) \equiv \frac{\delta E_{xc}[\rho]}{\delta \rho(r)}$ is the exchange-correlation potential.

- The exchange-correlation potential, and the corresponding energy expression, are the only unknowns in the Kohn-Sham approach to density functional theory.
- There are many ways to approximate this functional E_{xc} , generally divided into two separate terms

$$E_{\rm xc}[\rho] = E_{\rm x}[\rho] + E_{\rm c}[\rho]$$

where the first term is the exchange functional while the second term is the correlation functional.

- Quite a few research groups have developed the exchange and correlation functionals which are fit to empirical data or data from explicity correlated methods.
- Popular DFT functionals (according to a recent poll)
 - PBE0 (PBEPBE), B3LYP, PBE, BP86, M06-2X, B2PLYP, B3PW91, B97-D. M06-L. CAM-B3LYP
 - http://www.marcelswart.eu/dft-poll/index.html
 - http://www.ccl.net/cgi-bin/ccl/message-new?2011+02+16+009

DFT Flow Chart

Semi-empirical Methods

- Semi-empirical quantum methods:
 - Represents a middle road between the mostly qualitative results from molecular mechanics and the highly computationally demanding quantitative results from ab initio methods.
 - Address limitations of the Hartree-Fock claculations, such as speed and low accuracy, by omitting or parametrizing certain integrals
- integrals are either determined directly from experimental data or calculated from analytical formula with ab initio methods or from suitable parametric expressions.
- Integral approximations:
 - ◆ Complete Neglect of Differential Overlap (CNDO)
 - Intermediate Neglect of Differential Overlap (INDO)
 - Neglect of Diatomic Differential Overlap (NDDO) (Used by PM3, AM1, ...)

Semi-empirical methods are fast, very accurate when applied to molecules that are similar to those used for parametrization and are applicable to very large molecular systems.

Heirarchy of Methods

Basis Sets

 Slater type orbital (STO) or Gaussian type orbital (GTO) to describe the AO's

$$\chi^{\text{STO}}(r) = x^{l} y^{m} z^{n} e^{-\zeta r}$$
$$\chi^{\text{GTO}}(r) = x^{l} y^{m} z^{n} e^{-\xi r^{2}}$$

where L=l+m+n is the total angular momentun and ζ,ξ are orbital exponents.

Why STO

- Correct cups at $r \to 0$
- Desired decay at $r \to \infty$
- Correctly mimics H orbitals
- Natural Choice for orbitals
- Computationally expensive to compute integrals and derivatives.

Why GTO

- Wrong behavior at $r \to 0$ and $r \to \infty$
- Gaussian × Gaussian = Gaussian
- Analytical solutions for most integrals and derivatives.
- Computationally less expensive than STO's

Pople family basis set

- Minimal Basis: STO-nG
 - Each atom optimized STO is fit with n GTO's
 - Minimum number of AO's needed
- Split Valence Basis: 3-21G,4-31G, 6-31G
 - Contracted GTO's optimized per atom.
 - Valence AO's represented by 2 contracted GTO's
- Polarization: Add AO's with higher angular momentum (L)
 - 3-21G* or 3-21G(d),6-31G* or 6-31G(d),6-31G** or 6-31G(d,p)
- Diffuse function: Add AO with very small exponents for systems with diffuse electron densities
 - ♦ 6-31+G*, 6-311++G(d,p)

Correlation consistent basis set

- Family of basis sets of increasing sizes.
- Can be used to extrapolate basis set limit.
- cc-pVDZ: Double Zeta(DZ) with d's on heavy atoms, p's on H
- cc-pVTZ: triple split valence with 2 sets of d's and 1 set of f's on heavy atom, 2 sets of p's and 1 set of d's on H
- cc-pVQZ, cc-pV5Z, cc-pV6Z
- can be augmented with diffuse functions: aug-cc-pVXZ (X=D,T,Q,5,6)

Pseudopotentials or Effective Core Potentials

- All Electron calculations are prohibitively expensive.
- Only valence electrons take part in bonding interaction leaving core electrons unaffected.
- Effective Core Potentials (ECP) a.k.a Pseudopotentials describe interactions between the core and valence electrons.
- Only valence electrons explicitly described using basis sets.
- Pseudopotentials commonly used
 - Los Alamos National Laboratory: LanL1MB and LanL2DZ
 - Stuttgard Dresden Pseudopotentials: SDDAll can be used.
 - Stevens/Basch/Krauss ECP's: CEP-4G,CEP-31G,CEP-121G
- Pseudopotential basis are "ALWAYS" read in pairs
 - Basis set for valence electrons
 - Parameters for core electrons

Molecular Mechanics

- The potential energy of all systems in molecular mechanics is calculated using force fields.
- Molecular mechanics can be used to study small molecules as well as large biological systems or material assemblies with many thousands to millions of atoms.
- All-atomistic molecular mechanics methods have the following properties:
 - Each atom is simulated as a single particle
 - Each particle is assigned a radius (typically the van der Waals radius), polarizability, and a constant net charge (generally derived from quantum calculations and/or experiment)
 - Bonded interactions are treated as "springs" with an equilibrium distance equal to the experimental or calculated bond length
- The exact functional form of the potential function, or force field, depends on the particular simulation program being used.

General form of Molecular Mechanics equations

$$E = E_{\text{bond}} + E_{\text{angle}} + E_{\text{torsion}} + E_{\text{vdW}} + E_{\text{elec}}$$

$$= \frac{1}{2} \sum_{\text{bonds}} K_b (b - b_0)^2 \qquad \text{Bond}$$

$$+ \frac{1}{2} \sum_{\text{angles}} K_\theta (\theta - \theta_0)^2 \qquad \text{Angle}$$

$$+ \frac{1}{2} \sum_{\text{dihedrals}} K_\phi \left[1 + \cos(n\phi) \right]^2 \qquad \text{Torsion}$$

$$+ \sum_{\text{nonbonds}} \left\{ \begin{bmatrix} \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \end{bmatrix} \text{ van der Waals} \\ + \frac{q_1 q_2}{p_2} \end{bmatrix} \right\}$$
Electrostatics

Picture taken from http://en.wikipedia.org/wiki/Molecular mechanics

Commonly used force fields: AMBER, CHARMM, Drieding, UFF, TIP3P,

TIP4P

- What do we do if we want simulate chemical reaction in large systems?
- Quantum Mechanics(QM): Accurate, expensive $(\mathcal{O}(N^4))$, suitable for small systems.
- Molecular Mechanics(MM): Approximate, does not treat electrons explicitly, suitable for large systems such as enzymes and proteins, cannot simulate bond breaking/forming
- Methods that combine QM and MM are the solution.
- Such methods are called Hybrid QM/MM methods.
- The basic idea is to partition the system into two (or more) parts
 - The region of chemical interest is treated using accurate QM methods eg. active site of an enzyme.
 - The rest of the system is treated using MM or less accurate QM methods such as semi-empirical methods or a combination of the two.

$$\hat{H}_{\text{Total}} = \hat{H}_{\text{QM}} + \hat{H}_{\text{MM}} + \hat{H}_{\text{QM-MM}}^{\text{int}}$$

QM/MM

ONIOM: Divide the system into a real (full) system and the model system. Treat the model system at high and low level. The total energy of the system is given by

$$E = E(low, real) + E(high, model) - E(low, model)$$

Empirical Valence Bond: Treat any point on a reaction surface as a combination of two or more valence bond structures

$$H(\mathbf{R}, \mathbf{r}) = \left| egin{array}{ccc} H_{11}(\mathbf{R}, \mathbf{r}) & H_{12}(\mathbf{R}, \mathbf{r}) \\ H_{21}(\mathbf{R}, \mathbf{r}) & H_{22}(\mathbf{R}, \mathbf{r}) \end{array} \right|$$

Effective Fragment Potential: Divide a large system into fragments and perform *ab initio* or DFT calculations of fragments and their dimers and including the Coulomb field from the whole system.

Software	QB	Eric	Louie	Oliver	Painter	Poseidon	Philip	Tezpur
CPMD	✓	✓	✓	✓	✓	✓		✓
GAMESS	✓	✓	✓	✓	✓	✓	✓	✓
Gaussian		✓	✓	✓	✓		✓	✓
NWCHEM	✓	✓	✓	✓	✓	✓		✓

Software	Bluedawg	Ducky	Lacumba	Neptune	Zeke	Pelican	Pandora
CPMD GAMESS	✓	✓	✓	✓	✓		√ ✓
Gaussian	✓	✓	✓		✓	✓	✓
NWCHEM	✓	✓	✓	✓	\checkmark	✓	✓

Computational Chemistry Programs

- Commercial Software: Q-Chem, Jaguar, CHARMM
- GPL/Free Software: ACES, ABINIT, Octopus
- http://en.wikipedia.org/wiki/Quantum_ chemistry_computer_programs
- http://www.ccl.net/chemistry/links/ software/index.shtml
- http://www.redbrick.dcu.ie/~noel/ linux4chemistry/

Job Types and Keywords

Gaussian	GAMESS	NWCHEM	
# keyword	runtyp=	task	
sp	energy	energy	
force	gradient	gradient	
opt	optimize	optimize	
opt=ts	sadpoint	saddle	
freq	hessian	frequencies, freq	
scan	surface	✓	
✓	✓	✓	
irc	irc	✓	
admp, bomd	drc	dynamics, Car-Parrinello	
рор	рор	✓	
prop	√	✓	
✓	✓	✓	
✓	✓	✓	
oniom	✓	qmmm	
	# keyword sp force opt opt=ts freq scan irc admp, bomd pop prop	# keyword runtyp= sp energy force gradient opt optimize opt=ts sadpoint freq hessian scan surface irc irc admp, bomd drc pop prop y y y y y runtyp= energy gradient optimize sadpoint hessian surface y irc irc odrc pop pop prop y y y y y	

Using Gaussian on LONI/LSU HPC Systems

- Site specific license
 - Gaussian 03 and 09
 - LSU Users: Eric, Pandora, Pelican, Philip, Tezpur
 - Latech Users: Painter, Bluedawg
 - Gaussian 03
 - ULL Users: Oliver, Zeke
 - Tulane Users: Louie, Ducky
 - Southern Users: Lacumba
 - UNO Users: No License
- Add +gaussian-03/+gaussian-09 to your .soft file and resoft
- If your institution has license to both G03 and G09, have only one active at a given time.

Input Files

- Input files for GAMESS, GAUSSIAN and NWCHEM are written in free format.
- Molecule description in either Z-Matrix format or Cartesian Coordinates.
- Gaussian: Need to specify number of processors to be used in input file %NProcShared

43 / 51

Sample Input

r1 1.05

```
%chk=h2o-opt-freq.chk
%mem=512mb
%NProcShared=4

#p b3lyp/6-31G opt freq
H2O OPT FREQ B3LYP

0 1
0
H 1 r1
H 1 r1 2 a1
```

Input Description

checkpoint file amount of memory number of smp processors blank line Job description blank line Job Title blank line Charge Multiplicity Molecule Description 7-matrix format with variables blank line variable value

blank line

GAMESS Input

44 / 51

Sample Input

```
SCONTRI SCFTYP=RHF RUNTYP=OPTIMIZE
   COORD=ZMT NZVAR=0 $END
 $STATPT OPTTOL=1.0E-5 HSSEND=.T. $END
$BASTS GBASTS=N31 NGAUSS=6
   NDFUNC=1 NPFUNC=1 $END
SDATA
H2O OPT
Cnv 2
```

```
1 rOH
H 1 rOH 2 aHOH
```

rOH = 1.05aHOH = 104.5\$END

Input Description

Job control data

geometry search control 6-31G** basis set

molecular data control Title Symmetry group and axis

molecule description in z-matrix

variables

end molecular data control

45 / 51

Sample Input

```
title "H2O"
echo
charge 0
geometry
zmatrix
H 1 r1
H 1 r1 2 a1
variables
r1 1.05
a1 104.5
end
end
basis noprint
 * library 6-31G
end
dft
XC b3lvp
m111 + 1
end
task dft optimize
task dft energy
```

task dft freq

Input Description

```
Job title
echo contents of input file
charge of molecule
geometry description in
z-matrix format

variables used with values
end z-matrix block
end geometry block
basis description
```

```
dft calculation options
```

job type

Choice of Basis Set

- STO-3G is too small.
- 6-31G* and 6-31G** give reasonable results.
- For greater accuracy, use correlation consistent basis sets e.g. cc-pVTZ
- For anions and probably excited states, use basis sets with diffuse functions (aug, +). e.g. 6-31+G*, aug-cc-pVTZ

GAMESS Basis Sets

- In GAMESS, you can create a file containing basis sets that you want to use
- Define EXTBAS variable which points to the basis set file
- See pseudo basis example
- In input line, if you name your basis set as STTGRD, then add \$BASIS EXTFIL=.T. GBASIS=STTGRD \$END

Choice of Method

- Always pick DFT over HF
- In general: HF < DFT ~ MP2 < CCSD < CCSD(T)</p>
- Pay attention to scaling behavior

SCF Convergence Issues

- Has SCF (HF and DFT) really converged? Important if you use iop(5/13) in Gaussian route card.
- If SCF doesn't converge:
 - Increase maximum number of SCF iterations.
 - GAMESS: max 200 SCF iterations cannot be increased further.
 - Use smaller basis set as an initial guess.
 - Try level shifting
 - Use forced convergence method:
 - Gaussian: SCF=QC, XQC or DM and item 1 above
 - GAMESS: SOSCF

Geometry Optimizations

- Many problems in computational chemistry are optimization problems: i.e., finding the "stationary points" where a multidimensional function has vanishing gradients.
- The energy as a function of nuclear coordinates. Minima, transition states may be of interest.
- Make sure that the geometry optimization actually converges.
- Run a frequency calculation to check whether the geometry is a local minima (zero imaginary frequencies) or a transition state (only one imaginary frequency)
- Tighten convergence criterion to remove unwanted imaginary frequencies.
- Having more than 3N-6 (3N-5 for linear) frequencies implies that you are not at a minimum. Double check and tighten convergence if necessary.

On LONI Linux Systems

High Performance Computing @ Louisiana State University - http://www.hpc.lsu.edu

Useful Links

- Amber:http://ambermd.org
- Desmond: http: //www.deshawresearch.com/resources_desmond.html
- DL POLY:http: //www.cse.scitech.ac.uk/ccg/software/DL_POLY
- Gromacs:http://www.gromacs.org
- LAMMPS:http://lammps.sandia.gov
- NAMD:http://www.ks.uiuc.edu/Research/namd
- CPMD: http://www.cpmd.org
- GAMESS: http://www.msg.chem.iastate.edu/gamess
- Gaussian: http://www.gaussian.com
- NWCHEM: http://www.nwchem-sw.org
- PINY MD:http: //homepages.nyu.edu/~mt33/PINY_MD/PINY.html
- Basis Set: https://bse.pnl.gov/bse/portal

Further Reading

- David Sherill's Notes at Ga Tech: http://vergil.chemistry.gatech.edu/notes/index.html
- David Young's Notes on CCL: http://www.ccl.net/cca/documents/dyoung/
- Mark Tuckerman's Notes at NYU: http://www.nyu.edu/classes/tuckerman/quant.mech/index.html
- Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, A. Szabo and N. Ostlund
- Introduction to Computational Chemistry, F. Jensen
- Essentials of Computational Chemistry Theories and Models, C. J. Cramer
- Exploring Chemistry with Electronic Structure Methods, J. B. Foresman and A. Frisch
- Modern Electronic Structure Theory, T. Helgaker, P. Jorgensen and J. Olsen (Highly advanced text, second quantization approach to electronic structure theory)

