18.Sept.2019

- Umgebung aufsetzen
 - ► Linux
 - ▶ git repo
- ▶ BeagleBoneWireless verbinden mit Host
 - per USB
 - serielle Schnittstelle
 - ► Internet
 - per WLAN
- ▶ sich auf dem BeagleBoneWireless zurechtfinden

25.Sept.2019

- Alles ist ein File
 - sshfs mount
 - ▶ mount SD-Karte
- Netzwerk
 - ► Host als Proxy
 - ► Host als Gateway/Router
 - **BBW** via WiFi

- ▶ **BBW** kleines Image auf SD-Karte
- ► Zugriff via serielle Schnittstelle
- via USB am lokalen Netz
 - ssh & sshfs
- via Wi-Fi am Internet

- ▶ init script für BBW
- ► 5-kernel
 - basic config
 - ► USB Gadget
 - ▶ WiFi & firmware

- ► 6-crossdevelopment
 - ► Programme in src auf Host & BBW
 - Vergleich Zeit von primes auf Host & BBW

- 6-crossdevelopment Zugriff auf die Hardware
 - via Skript /sys/class/gpio
 - led-enable.sh, led-blink.sh
 - ▶ via C++ /sys/class/gpio
 - led-enable.cc, led-blink.cc
 - ▶ direkt src/mem.h|cc
 - led-direct-0.cc, led-direct-1.cc

- ► 6-crossdevelopment Zugriff auf die andere Hardware
 - ightharpoonup SWITCH ightharpoonup LED
- ► 4-u-boot
 - Herstellung
 - Installation

6.Nov.2019

Zugriff auf die Hardware via Internet

- ► HTTP Server lighttpd
- CGI Common Gateway Interface

13.Nov 2019

Build von Grund auf

- bestehendes rootfs nicht verlieren
- einfache toolchain *)
- kernel *)
- ► test mit src/s-bare-init.s
- ▶ glibc *POSIX*
- volle toolchain *)
- test mit src/cpp-hello-world.cc
- busybox
- ► ssh
- wpa
- *) fakultativ

20.Nov.2019 Build,rootfs flavours

- build
 - ► ssh
 - wifi
- roofs flavours
 - nano
 - mini
 - ► full

4.Dez.2019

Auteilung target-root

- einen Teile auf dem *Host* bzw. **BeagleBoneWireless**
 - einfaches C-Programm
 - einfaches C++-Programm
 - ▶ komplexes C++-Programm

11.Dez.2019

Konsolidierung/Kernel-Userspace

- Konsolidierung
 - aktuelle Toolchain
 - aktueller Kern
 - mit WiFi
 - aktueller rootfs
 - ssh
 - ▶ WiFi
- ► Kernel-Userspace
 - hotplug
 - socket NETLINK KOBJECT UEVENT