

Final Presentation

Data Analysis Project, 4. FS MoBi Cedric Leonhard Marquard Emily Locke Melissa Ringeis Gabriel Tulcan

Supervisors: PD Dr. Karl Rohr, Christian Ritter

Tutor: Marie Becker

Overview

Input data

Ground truth images

Cell Nuclei

NIH3T3

BBBC

Methods

- Noise Reduction, Bright Spots RemovalRGB, LAB, HSV, YCbCrImage Segmentation
- **04** Retouch and improvement of results
- **05** Evaluation of segmentation algorithm

Methods - K-Means

Methods - Colour Space Conversion

Results - Colour Spaces

Results - Preprocessing

Results - Distances

Results - Run-time

Results - Position

Results - Best Combinations

Yeast Cells: Unprocessed + YCbCr + Manhattan

88,6%

ground truth image

Cell Nuclei: Gauss + RGB + Euclidean

96,4%

ground truth image

Results - Grayscale images

NIH3T3

BBBC images

Challenges in grayscale images

Morphological operations

No improvement for coloured images

Dilation increased Dice Score for NIH3T3 grayscale images

NIH3T3 data set

Morphological operations - Example

33,7% Dice Score

Image 46, clustered

63,4% Dice Score

Image 46, clustered and dilated

88% improvement

Image 46, ground truth image

Dilation is generally a good method to retouch the clustered images and improve the Dice Scores

Comparison with OpenCV

	Our algorithm	OpenCV algorithm
Cell Nuclei (unprocessed, RGB, Euclidean)	96,4%	96,4%
Yeast Cells (unprocessed, RGB, Euclidean)	87,6 %	87,2 %
Dna-0 (NIH3T3)	89,4%	84,8%
Dna-32 (NIH3T3)	4,22%	2,62%

Comparison with Otsu Thresholding

Preprocessing methods - NIH3T3

NIH3T3 after applying K-Means clustering

NIH3T3 after applying Otsu Thresholding (results from Group 04)

Conclusion

Colour Spaces and Minkowski Distances had no significant impact on results

Manually created ground truth images distort dice score

Morphological operations improved the output more than Preprocessing

K-Means
clustering
led to similar
results as
OpenCV and
Otsu

Further improvement could be achieved using **Soft K-Means**

No perfect "recipe" could be determined

Thank you for your attention!