1. Title of the first chapter

Definition 1 (Simple random walk in \mathbb{Z})

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed random variables with values in $\{-1,+1\}$, that $\forall n \in \mathbb{N}$ satisfy the conditions $P(X_n=1)=p \in (0,1)$ and $P(X_n=-1)=1-p=:q$.

Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. We call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$ Simple random walk in \mathbb{Z} .

In case that $p = q = \frac{1}{2}$ we call the pair $(\{S_n\}_{n=0}^{+\infty}, p)$ Symmetric simple random walk in \mathbb{Z} .

Remark. Very often we refer to n as time, X_i as i-th step and S_n as position in time n. In simple random walk in \mathbb{Z} we refer to $X_i = +1$ as i-th step was rightwards and to $X_i = -1$ as i-th step was leftwards. If not stated otherwise, we assume that $S_0 = 0$.

Definition 2 (Set of possible positions)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk. We call the set $A_n = \{z \in \mathbb{Z}; |z| \le n, \frac{z+n}{2} \in \mathbb{Z}\}$ set of all possible positions of random walk $(\{S_n\}_{n=0}^{+\infty}, p)$ in time n.

Theorem 1 (Probability of position x in time n)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk and A_n its set of possible positions.

$$P(S_n = x) = \begin{cases} \binom{n}{\frac{n+x}{2}} p^{\frac{n+x}{2}} q^{\frac{n-x}{2}} & \text{for } x \in A_n, \\ 0, & \text{for } x \notin A_n. \end{cases}$$

Proof. Let us define new variables $r_i = \mathbf{1}_{[X_i=1]}, l_i = \mathbf{1}_{[X_i=-1]}, R_n = \sum_{i=1}^n r_i, L_n = \sum_{i=1}^n l_i$. r_i can be interpreted as indicator wether i-th step was rightwards. Then R_n is number of rightwards steps and L_n is number of leftwards steps. We can easily see that $R_n + L_n = n$ and $R_n - L_n = S_n$. Therefore we get by adding these two equations $R_n = \frac{S_n + n}{2}$.

 r_i has alternative distribution with parameter p (Alt(p)). Therefore R_n as a sum of independent and identically distributed random variables with distribution Alt(p) has binomial distribution with parameters n and p (Bi(n,p)). Therefore we get $P(R_n = x) = \binom{n}{x} p^x q^{n-x}$. Where we define $\binom{a}{x} := 0$ for $a \in \mathbb{N}, x \in \mathbb{R} \setminus \mathbb{N}, x < 0$, x > n. Therefore we get $P(S_n = x) = P(R_n = \frac{x+n}{2}) = \binom{n}{x+n} p^{\frac{n+x}{2}} q^{\frac{n-x}{2}}$.

Lemma 2 (Spatial homogeneity)

Let
$$n \in \mathbb{N}$$
, $a, b, j \in \mathbb{Z}$. $P(S_n = j \mid S_0 = a) = P(S_n = j + b \mid S_0 = a + b) \forall b \in \mathbb{Z}$

Proof.
$$P(S_n = j \mid S_0 = a) = P\left(\sum_{i=1}^n X_i = j - a\right)$$

= $P\left(\sum_{i=1}^n X_i = (j+b) - (a+b)\right) = P(S_n = j+b \mid S_0 = a+b)$.

Lemma 3 (Temporal homogeneity)

Let
$$n, m \in \mathbb{N}, a, j \in \mathbb{Z}$$
. $P(S_n = j \mid S_0 = a) = P(S_{n+m} = j \mid S_m = a) \forall m \in \mathbb{N}$

Proof.
$$\mathsf{P}\left(S_n=j\mid S_0=a\right)=\mathsf{P}\left(\sum\limits_{i=1}^n X_i=j-a\right)=\mathsf{P}\left(\sum\limits_{i=m+1}^{m+n} X_i=j-a\right)=\mathsf{P}\left(S_{n+m}=j\mid S_m=a\right)$$
 . Where the second to last equation comes from identical distribution of $\{X_n\}_{n=1}^{+\infty}$.

Lemma 4 (Markov property)

Let $m, n \in \mathbb{N}, n \ge m \text{ and } a_i \in \mathbb{Z}, i \in \mathbb{N}$. Then $P(S_n = j \mid S_0 = a_0, S_1 = a_1, \dots, S_m = a_m) = P(S_n = j \mid S_m = a_m)$

Proof. Once S_m is known, then distribution of S_n depends only on steps $X_{m+1}, X_{m+2}, \ldots X_n$ and therefore cannot be dependent on any information concerning values $X_1, X_2, \ldots, X_{m-1}$ and accordingly $S_1, S_2, \ldots, S_{m-1}$.

Remark. check english -přepsat nějak líp In symmetric random walk, everything can be counted by number of possible paths from point to point.

Definition 3 (Number of possible paths)

Let $N_n(a,b)$ be number of posssible paths of random walk $(\{S_n\}_{n=0}^{+\infty}, p)$ from point (0,a) to point (n,b) and $N_n^x(a,b)$ be number of possible paths from point (0,a) to point (n,b) that visit point (z,x) for some $z \in \{1,2,\ldots,n\}$.

Theorem 5

Let
$$a, b \in \mathbb{Z}, n \in \mathbb{N}$$
 then $N_n(a, b) = \binom{n}{\frac{1}{2}(n+b-a)}$.

Proof. Let us choose a path from (0, a) to (n, b) and let α be number of rightwards steps and β be number of leftwards steps. Then $\alpha + \beta = n$ and $\alpha - \beta = b - a$. By adding these two equations we get that $\alpha = \frac{1}{2}(n+b-a)$. The number of possible paths is the number of ways of picking α rightwards steps from n steps. Therefore we get $N_n(a,b) = \binom{n}{\alpha} = \binom{n}{\frac{1}{2}(n+b-a)}$.

Theorem 6 (Reflection principle)

Let a, b > 0, then $N_n^0(a, b) = N_n(-a, b)$.

Proof. Each path from (0, -a) to (n, b) has to intersect y = 0-axis at least once at some point. Let k be the time of earliest intersection with x-axis. By reflexing the segment from (0, -a) to (k, 0) in the x-axis and letting the segment from (k, 0) to (n, b) be the same, we get a path from point (0, a) to (n, b) which visits 0 at point k. Because reflection is a bijective operation on sets of paths, we get the correspondence between the collections of such paths.

Definition 4 (Return to origin)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk. Let $k \in \mathbb{N}$. We say a return to origin occurred in time 2k if $S_{2k} = 0$. The probability that in time 2k occurred a return to origin shall be denoted by u_{2k} . We say that in time 2k occurred first return to origin if $S_1, S_2, \ldots S_{2k-1} \neq 0$ and $S_{2k} = 0$. The probability that in time 2k occurred first return to origin shall be denoted by f_{2k} . By definition $f_0 = 0$. Let $\alpha 2n(2k)$ denote $u_{2k}u_{2(n-k)}$

Theorem 7 (Ballot theorem)

Let $n, b \in N$ Number of paths from point (0,0) to point (n,b) which do not return to origin is equal to $\frac{b}{n}N_n(0,b)$

Proof. Let us call N the number of paths we are referring to. Because the path ends at point (n,b), the first step has to be rightwards. Therefore we now have $N = N_{n-1}(1,b) - N_{n-1}^0(1,b) \stackrel{T6}{=} N_{n-1}(1,b) - N_{n-1}(-1,b)$.

Therefore we now have:
$$N_{n-1}(1,b) = N_{n-1}(1,b) = N_{n-1}(1,b$$

Remark. The name Ballot theorem comes from the question: In a ballot where candidate A receives p votes and candidate B receives q votes with p > q, what is the probability that A will be strictly ahead of B throughout the count?

Definition 5

$$M_n^+ = \max\{S_i, i \in \{1, 2, \dots, n\}\}, M_n^- = \max\{-S_i, i \in \{1, 2, \dots, n\}\}, M_n^A = \max\{M_n^+, M_n^-\}$$

Theorem 8 (Probability of maximum up to time n) Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk.

$$P(M_n^+ \ge r, S_n = b) = \begin{cases} P(S_n = b) & \text{for } b \ge r, \\ P(S_n = 2r - b) \left(\frac{q}{p}\right)^{r-b}, & \text{for otherwise.} \end{cases}$$

Proof. Let us firstly consider the easier case in which $b \ge r$. Because we defined M_n^+ as $\max\{S_i, i \in \{1, 2, ..., n\}\}$ we get that $M_n^+ \ge b \ge r$ therefore $[M_n^+ \ge r] \subset [S_n = b]$ therefore we get $\mathsf{P}(M_n^+ \ge r, S_n = b) = \mathsf{P}(S_n = b)$.

Now let $r \geq 1, b < r$. $N_n^r(0,b)$ stands for number of paths from point (0,0) to point (n,b) which reach up to r. Let $k \in \{1,2,\ldots,n\}$ denote the first time we reach r. By reflection principle (6), we can reflex the segment from (k,r) to (n,b) in the axis:y = r. Therefore we now have path from (0,0) to (n,2r-b) and we get that $N_n^r(0,b) = N_n(0,2r-b)$. P $(S_n = b, M_n^+ \geq r) = N_n^r(0,b) \, p^{\frac{n+b}{2}} q^{\frac{n-b}{2}} = N_n(0,2r-b) \, p^{\frac{n+(2r-b)}{2}} q^{\frac{n-(2r-b)}{2}} p^{\frac{n+b}{2}} q^{\frac{n-b}{2}} p^{b-r} q^{r-b} = \left(\frac{q}{p}\right)^{r-b} \mathsf{P}\left(S_n = 2r-b\right)$.

Definition 6 (Walk reaching new maximum at particular time) Let b > 0. $f_b(n)$ denotes the probability that we reach new maximum b in time n. $f_b(n) = P(M_{n-1} = S_{n-1} = b - 1, S_n = b)$

Theorem 9 (Probability of reaching new maximum b in time n) Let b > 0 then $f_b(n) = \frac{b}{n} P(S_n = b)$.

$$\begin{split} & Proof. \ \ f_b = \mathsf{P} \left(M_{n-1} = S_{n-1} = b - 1, S_n = b \right) = \mathsf{P} \left(M_{n-1} = S_{n-1} = b - 1, X_n = +1 \right) = \blacksquare \\ & p \, \mathsf{P} \left(M_{n-1} = S_{n-1} = b - 1 \right) \\ & \stackrel{*}{=} p \left(\mathsf{P} \left(M_{n-1} \geq b - 1, S_{n-1} = b - 1 \right) - \mathsf{P} \left(M_{n-1} \geq b, S_{n-1} = b - 1 \right) \right) \\ & \stackrel{\mathbb{T}8}{=} p \left(\mathsf{P} \left(S_{n-1} = b - 1 \right) - \frac{q}{p} \, \mathsf{P} \left(S_{n-1} = b + 1 \right) \right) \\ & = p \, \mathsf{P} \left(S_{n-1} = b - 1 \right) - q \, \mathsf{P} \left(S_{n-1} = b + 1 \right) \\ & = \left(\frac{n-1}{2 + \frac{b}{2} - 1} \right) p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} - \left(\frac{n-1}{2 + \frac{b}{2}} \right) p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} = p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} \left(\frac{(n-1)!}{\left(\frac{n}{2} + \frac{b}{2} \right)! \left(\frac{n}{2} - \frac{b}{2} - 1 \right)!} \right) = \blacksquare \\ & p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} \left(\frac{(n-1)!}{\left(\frac{n}{2} + \frac{b}{2} \right)! \left(\frac{n}{2} - \frac{b}{2} \right)!} \right) \left(\frac{1}{\frac{n}{2} - \frac{b}{2}} - \frac{1}{\frac{n}{2} + \frac{b}{2}} \right) = p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} \frac{b}{n} \left(\frac{n!}{\left(\frac{n}{2} + \frac{b}{2} \right)! \left(\frac{n}{2} - \frac{b}{2} \right)!} \right) \end{split}$$

 $= \frac{b}{n} p^{\frac{n}{2} + \frac{b}{2}} q^{\frac{n}{2} - \frac{b}{2}} \binom{n}{\frac{n}{2} + \frac{b}{2}} = \frac{b}{n} \, \mathsf{P} \, (S_n = b) \, . \, \text{Where} * \text{comes from the fact that the event} \\ [M_{n-1} \ge b - 1] \, \text{can be split into two disjoint events:} \, [M_{n-1} \ge b - 1] = [M_{n-1} \ge b] \cup \\ [M_{n-1} = b - 1]. \, \text{Therefore} \, \mathsf{P} \, (M_{n-1} \ge b - 1) = \mathsf{P} \, (M_{n-1} \ge b) + \mathsf{P} \, (M_{n-1} = b - 1) \, . \\ \text{Hence:} \, \, \mathsf{P} \, (M_{n-1} = b - 1) = \mathsf{P} \, (M_{n-1} \ge b - 1) - \mathsf{P} \, (M_{n-1} \ge b) \, . \, \text{The same applies} \\ \text{for the probability} \, \mathsf{P} \, (M_{n-1} = b - 1, S_{n-1} = b - 1) \, . \, \, \Box$

Theorem 10 (XXXMean number of visits to b before returning to origin in symmetric random walk)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetric random walk. Mean number μ_b of visits of the walk to point b before returning to origin is equal to 1.

Proof. aa
$$\Box$$

Lemma 11 (Binomial identity)

Let
$$n, k \in \mathbb{N}, n > k : \binom{n-1}{k} - \binom{n-1}{k-1} = \frac{n-2k}{n} \binom{n}{k}$$

$$\begin{array}{l} Proof. \ \binom{n-1}{k} - \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-k-1)!} - \frac{(n-1)!}{(k-1)!(n-k)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{k} - \frac{1}{n-k}\right) \\ = \frac{1}{n} \frac{n!}{(k-1)!(n-k-1)!} \frac{n-2k}{k(n-k)} = \frac{n-2k}{n} \frac{n!}{k!(n-k)!} = \frac{n-2k}{n} \binom{n}{k} \end{array} \quad \Box$$

Lemma 12 (Main lemma)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetrical random walk. Then $P(S_1, S_2, \dots, S_{2n} \neq 0) = P(S_{2n} = 0)$.

Proof.
$$P(S_1, S_2, ..., S_{2n} \neq 0) \stackrel{LTP}{=} \sum_{i=-\infty}^{+\infty} P(S_1, S_2, ..., S_{2n} \neq 0, S_{2n} = 2i) = \sum_{i=-n}^{n} P(S_1, S_2, ..., S_{2n} \neq 0, S_{2n} = 2i) = \sum_{i=-n}^{n} P(S_1, S_2, ..., S_{2n} \neq 0, S_{2n} = 2i) \stackrel{T7}{=} 2 \sum_{i=1}^{n} \frac{2i}{2n} P(S_{2n} = 2i) = 2 \sum_{i=1}^{n} \frac{2i}{2n} \binom{2n}{n+i} 2^{-2n} \stackrel{L11}{2} \stackrel{1}{=} 2^{-2n} \sum_{i=1}^{n} \binom{2n-1}{n-i} - \binom{2n-1}{n-i-1} \stackrel{**}{=} 2 \cdot 2^{-2n} \binom{2n-1}{n} = 2^{-2n} \frac{2n}{n} \binom{2n-1}{n} = 2^{-2n} \frac{2n(2n-1)!}{m(m-1)!m!} = 2^{-2n} \frac{(2n)!}{m!m!} = 2^{-2n} \binom{2n}{n} = P(S_2n = 0)$$
. Where * comes from the fact that the random walk is symmetric and ** comes from the fact that the positive part of *i*-th term cancels against the negative part of *i* + 1-st term.

Theorem 13

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetric random walk. The probability that the last return to origin up to time 2n occurred in time 2k is $P(S_{2k} = 0) P(S_{2(n-k)} = 0)$.

Proof.
$$\alpha 2n(2k) = u_{2k}u_{2(n-k)} = P(S_{2k} = 0) P(S_{2k+1}, S_{2k+2}, \dots, S_{2n} \neq 0 \mid S_{2k} = 0) = P(S_{2k} = 0) P(S_{2k} = 0) P(S_{2k-1}, S_{2k-2}, \dots, S_{2n} \neq 0) = P(S_{2k} = 0) P(S_{2k-1}, S_{2n-2}, \dots, S_{2n} \neq 0) = P(S_{2k-1}, S_{2n-2}, \dots, S_$$

Theorem 14

Let
$$b \in Z$$
. $P(S_1, S_2, ..., S_n \neq 0, S_n = b) = \frac{|b|}{n} P(S_n = b)$.

Proof. Let us without loss of generality assume that b > 0. In that case, first step has to be rightwards $(X_1 = +1)$. Now we have path from point (1,1) to point (n,b) that does not return to origin. By Ballot theorem 7 there are $\frac{b}{n}N_n(0,b)$ such paths. Each path consists of $\frac{n+b}{2}$ rightwards steps and $\frac{n-b}{2}$ leftwards steps. Therefore $P(S_1 \cdot S_2 \cdot, \ldots, S_n \neq 0, S_n = b) = \frac{b}{n}N_n(0,b) p^{\frac{n+b}{2}} q^{\frac{n-b}{2}} = \frac{b}{n} P(S_n = b)$. Case b < 0 is identical.

Lemma 15

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetric random walk. $P(S_1, S_2, \dots, S_{2n} > 0) = \frac{1}{2} P(S_{2n} = 0) = 0$ $\frac{1}{2}u_{2n}$.

Proof. Because $S_i > 0 \forall i \in \mathbb{N}$ the first step has to be rightwards $(X_1 = S_1 = 1)$.

Therefore we get $P(S_1, S_2, ..., S_{2n} > 0) = \sum_{r=1}^{n} P(S_1, S_2, ..., S_{2n} > 0, S_{2n} = 2r).$

The r-th term follows equation: $P(S_1, S_2, \dots, S_{2n}) > 0, S_{2n} = 2r$

$$= P(X_1 = 1, S_2, \dots, S_{2n} > 0, S_{2n} = 2r)$$

$$=\frac{1}{2} P(S_2, S_3, \dots, S_{2n} > 0, S_{2n} = 2r \mid S_1 = 1)$$

$$= \frac{1}{2} \left(\mathsf{P} \left(S_{2n} = 2r \right) - \mathsf{P} \left(S_2 \cdot S_3 \cdot \ldots \cdot S_{2n} = 0, S_{2n} = 2r \right) \right)$$

$$= \frac{1}{2} \left(\frac{1}{2}^{2n-1} N_{2n-1} \left(1, 2r \right) - \frac{1}{2}^{2n-1} N_{2n-1}^0 \left(1, 2r \right) \right)$$

$$= \frac{1}{2} \left(\frac{1}{2}^{2n-1} N_{2n-1} (1, 2r) - \frac{1}{2}^{2n-1} N_{2n-1}^{0} (1, 2r) \right)$$

$$= \frac{1}{2} \frac{1}{2}^{2n-1} \left(N_{2n-1} \left(1, 2r \right) - N_{2n-1}^{0} \left(1, 2r \right) \right)$$

$$=\frac{1}{2}\frac{1}{2}^{2n-1}(N_{2n-1}(1,2r)-N_{2n-1}(-1,2r))$$

 $= \frac{1}{2} \frac{1}{2}^{2n-1} \left(N_{2n-1} \left(1, 2r \right) - N_{2n-1} \left(-1, 2r \right) \right)$ $= \frac{1}{2} \frac{1}{2}^{2n-1} \left(\binom{2n-1}{n+r-1} - \binom{2n-1}{n+r} \right). \text{ Because of the fact that the negative parts of } r\text{-th}$ terms cancel against the positive parts of (r+1)-st terms and the sume reduces to just $\frac{1}{2}\frac{1}{2}^{2n-1}\binom{2n-1}{n} = \frac{1}{2}\cdot 2\cdot \frac{1}{2}^{2n}\binom{2n-1}{n} = \frac{1}{2}\frac{1}{2}^{2n}\frac{2(2n-1)!}{n!(n-1)!} = \frac{1}{2}\frac{1}{2}^{2n}\frac{2n}{n!n!} = \frac{1}{2}\frac{1}{2}^{2n}\binom{2n}{n} = \frac{1}{2}\frac{1}{2}^{2n}\binom{2n}{n}$

to just
$$\frac{1}{2} \frac{1}{2}^{2n-1} {2n-1 \choose n} = \frac{1}{2} \cdot 2 \cdot \frac{1}{2}^{2n} {2n-1 \choose n} = \frac{1}{2} \frac{1}{2}^{2n} \frac{2(2n-1)!}{n!(n-1)!} = \frac{1}{2} \frac{1}{2}^{2n} \frac{2(2n)!}{n!n!} = \frac{1}{2} \frac{1}{2}^{2n} {2n \choose n} = \frac{1}{2} P(S_{2n} = 0) = \frac{1}{2} u_{2n}.$$

Theorem 16 (No return=return)

$$P(S_1, S_2, \dots, S_{2n} \neq 0) = P(S_{2n} = 0) = u_{2n}$$

Proof. The event $[S_1, S_2, \ldots, S_{2n} \neq 0]$ can be split into two disjoint events: = $[S_1, S_2, \dots, S_{2n} < 0] \cup [S_1, S_2, \dots, S_{2n} > 0]$. By previous theorem (15) we get that probability of both of them is $\frac{1}{2}u_{2n}$. Because the the events are disjoint we can sum their probabilities and we get the result.

Corollary.
$$P(S_1, S_2, ..., S_{2n} \ge 0) = P(S_{2n} = 0) = u_{2n}$$

Proof.
$$\frac{1}{2}u_{2n} = P(S_1, S_2, \dots, S_{2n} > 0) = P(X_1 = 1, S_2, S_3, \dots, S_{2n} \ge 1)$$

$$= \frac{1}{2} P(S_2, S_3 \dots, S_{2n} \ge 1 \mid S_1 = 1)$$

$$=\frac{1}{2} P(S_1, S_2 \dots, S_{2n-1} \ge 1 \mid S_0 = 1)$$

$$=\frac{1}{2} P(S_1, S_2 \dots, S_{2n-1} \ge 0)$$

$$= \frac{1}{2} \mathsf{P}(S_1, S_2 \dots, S_{2n-1} \ge 1 \mid S_1 = 1)$$

$$= \frac{1}{2} \mathsf{P}(S_1, S_2 \dots, S_{2n-1} \ge 1 \mid S_0 = 1)$$

$$= \frac{1}{2} \mathsf{P}(S_1, S_2 \dots, S_{2n-1} \ge 0)$$

$$= \frac{1}{2} \mathsf{P}(S_1, S_2 \dots, S_{2n} \ge 0). \text{ Therefore } \mathsf{P}(S_1, S_2 \dots, S_{2n} \ge 0) = u_{2n}.$$

Theorem 17

$$f_{2n} = u_{2n-2} - u_{2n}$$

Proof. The event $[S_1, S_2, \dots S_{2n-1} \neq 0]$ can be split into two disjoint events: $[S_1, S_2, \dots S_{2n-1} \neq 0, S_{2n} = 0]$ and $[S_1, S_2, \dots S_{2n-1} \neq 0, S_{2n} \neq 0]$. Therefore $P(S_1, S_2, \dots S_{2n-1} \neq 0) = P(S_1, S_2, \dots S_{2n-1} \neq 0, S_{2n} = 0) + P(S_1, S_2, \dots S_{2n-1} \neq 0, S_{2n} \neq 0).$ Therefore we get $f_{2n} = P(S_1, S_2, \dots S_{2n-1} \neq 0, S_{2n} = 0) = P(S_1, S_2, \dots S_{2n-1} \neq 0) - \blacksquare$ $P(S_1, S_2, ..., S_{2n} \neq 0)$. Because 2n - 1 is odd. $P(S_{2n-1} = 0) = 0$. Therefore the first term is equal to $P(S_1, S_2, \dots S_{2n-2} \neq 0)$ which is by 16 equal to u_{2n-2} . Second term is by 16 equal to u_{2n} . Therefore we get the result.

Corollary.
$$f_{2n} = \frac{1}{2n-1}u_{2n}$$

Proof.
$$u_{2n-2} = \frac{1}{2}^{2n-2} {2n-2 \choose n-1} = 4 \cdot \frac{1}{2}^{2n} \frac{(2n-2)!}{(n-1)!(n-1)!} = \frac{4n^2}{(2n)(2n-1)} \frac{1}{2}^{2n} {2n \choose n} = \frac{2n}{2n-1} u_{2n}.$$
Therefore $u_{2n-2} - u_{2n} = u_{2n} \left(\frac{2n}{2n-1} - 1 \right) = u_{2n} \frac{1}{2n-1}.$

Theorem 18 (Arcsine law for last visits)

Let $k, n \in \mathbb{N}, k < n$. The probability that up to time 2n a return to origin occurred in time 2k is given by $\alpha_{2n}(2k) = u_{2n}u_{2(n-k)}$.

Proof. The probability involved can be rewritten as:

$$P(S_{2k+1}, S_{2k+2}, ..., S_{2n} \neq 0, S_{2k} = 0)$$

$$= * * * P(S_{2k+1}, S_{2k+2}, ..., S_{2n} \neq 0 \mid S_{2k} = 0) P(S_{2k} = 0)$$

$$= * P(S_1, S_2, ..., S_{2(n-k)} \neq 0) P(S_{2k} = 0)$$

$$= * * u_{2(n-k)} u_{2k}$$

Definition 7 (Time spend on the positive and negative sides)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk. We say that the walk spent τ time units of n on the positive side if $\sum_{i=1}^{n} \mathbf{1}_{[S_i>0\vee S_{i-1}>0]} = \tau$. Let $\beta_n(\tau)$ denote the probability of such an event. We say that the walk spent ζ time units of n on the negative side $if \sum_{i=1}^{n} \mathbf{1}_{[S_i < 0 \lor S_{i-1} < 0]} = \zeta.$

Theorem 19 (Arcsine law for sojourn times-OWN PROOF) Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetric random walk. Then $\beta_{2n}(2k) = \alpha_{2n}(2k)$.

Proof. Firstly let us start with degenerate cases. ${}^*f\beta_{2n}(2n)$

$$= P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = 2n\right) = P\left(S_1, S_2, \dots, S_{2n} \ge 0\right) = *u_{2n}.$$

By symmetry $\beta_{2n}\left(0\right) = \beta_{2n}\left(2n\right) = u_{2n}$. Let $1 \le k \le v - 1$, where $0 \le v \le n$.

For such
$$k$$
 stands equation: $\beta_{2n}(2k) = \mathsf{P}\left(\sum_{i=1}^{n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = 2k\right)$

$$\stackrel{LTP}{=} \sum_{r=1}^{n} P\left(\sum_{i=1}^{n} \mathbf{1}_{[S_{i}>0 \lor S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} \neq 0, S_{2r} = 0\right)$$

$$= *b \sum_{r=1}^{n} P\left(\sum_{i=1}^{n} \mathbf{1}_{[S_{i}>0 \lor S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0\right)$$

$$+ \sum_{r=1}^{n} \mathsf{P}\left(\sum_{i=1}^{n} \mathbf{1}_{[S_{i}>0 \lor S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1}>0, S_{2r}=0\right)$$

$$= *c \sum_{r=1}^{n} \mathsf{P} \left(\sum_{i=1}^{n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k \mid S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0 \right)$$

$$P(S_1, S_2, \dots, S_{2r-1} < 0, S_{2r} = 0)$$

$$\begin{array}{ll}
 & P\left(S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0\right) \\
 & + \sum_{r=1}^{n} P\left(\sum_{i=1}^{n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k \mid S_{1}, S_{2}, \dots, S_{2r-1} > 0, S_{2r} = 0\right) \\
 & P\left(S_{1}, S_{2}, \dots, S_{2r-1} > 0, S_{2r} = 0\right)
\end{array}$$

$$P(S_1, S_2, \dots, S_{2r-1} > 0, S_{2r} = 0)$$

$$= *d \sum_{r=1}^{n} \frac{1}{2} f_{2r} \, \mathsf{P} \left(\sum_{i=2r+1}^{2n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = 2k \, \middle| \, S_{2r} = 0 \right)$$

$$+\sum_{r=1}^{n} \frac{1}{2} f_{2r} \, \mathsf{P} \left(\sum_{i=2r+1}^{n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = 2k - 2r \, \middle| \, S_{2r} = 0 \right)$$

$$= *e \sum_{r=1}^{n} \frac{1}{2} f_{2r} \mathsf{P} \left(\sum_{i=1}^{2n-2r} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k \right) + \sum_{r=1}^{n} \frac{1}{2} f_{2r} \mathsf{P} \left(\sum_{i=1}^{2n-2r} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k - 2r \right) = 0$$

 $\sum_{r=1}^{n} \frac{1}{2} f_{2r} \beta_{2n-2r} (2k) + \sum_{r=1}^{n} \frac{1}{2} f_{2r} \beta_{2n-2r} (2k-2r)$ Now let us proceed by induction.

Case for v=1 is trivial because it implies degenerous case from *f. Let the statuent be true for $v \leq n-1$, then $\sum_{r=1}^{n} \frac{1}{2} f_{2r} \beta_{2n-2r} (2k) + \sum_{r=1}^{n} \frac{1}{2} f_{2r} \beta_{2n-2r} (2k-2r)$

$$= *g \sum_{r=1}^{n} \frac{1}{2} f_{2r} \alpha_{2n-2r} (2k) + \sum_{r=1}^{n} \frac{1}{2} f_{2r} \alpha_{2n-2r} (2k-2r)$$

$$= *h \sum_{r=1}^{n} \frac{1}{2} f_{2r} u_{2k} u_{2n-2r-2k} + \sum_{r=1}^{n} \frac{1}{2} f_{2r} u_{2k-2r} u_{2n-2k}$$

$$= *i \frac{1}{2} u_{2k} \sum_{r=1}^{n} f_{2r} u_{2n-2r-2k} + \frac{1}{2} u_{2n-2k} \sum_{r=1}^{n} f_{2r} u_{2k-2r} u_{2n-2k}$$

$$= *j \frac{1}{2} u_{2n-2k} u_{2k} + \frac{1}{2} u_{2n-2k} u_{2k} = u_{2n-2k} u_{2k}$$

$$= *h \alpha_{2n} (2k)$$

Definition 8 (Change of a sign)

Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a random walk. We say that in time n occurred a change of sign if if $S_{n-1} \cdot S_{n+1} = -1$ in other words if $(S_{n-1} = +1 \land S_{n+1} = -1) \lor$ $(S_{n-1} = -1 \wedge S_{n+1} = +1)$. We shall denote the probability that up to time n occured r changes of sign by $\xi_{r,n}$.

Theorem 20 (Change of a sign)

Let
$$(\{S_n\}_{n=0}^{+\infty}, p)$$
 be a symmetric random walk. The probability $\xi_{r,2n+1} = 2P(S_{2n+1} = 2r + 1)$
Proof. Feller

1.1Problem chapter 9 Feller

Definition 9 (δ, ε)

Let
$$(\{S_n\}_{n=0}^{+\infty}, p)$$
 be a symmetric random walk. $\delta_n(k)$ shall denote $P(\sum_{i=1}^n \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = k, S_n = \varepsilon_n^r(k)$ shall denote $P(\sum_{i=1}^n \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = k, S_1, S_2, \dots, S_{r-1} \neq 0, S_r = 0, S_n = 0)$, $\varepsilon_n^{r,+}(k)$ shall denote $P(\sum_{i=1}^n \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = k, S_1, S_2, \dots, S_{r-1} > 0, S_r = 0, S_n = 0)$, $\varepsilon_n^{r,-}(k)$ shall denote $P(\sum_{i=1}^n \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = k, S_1, S_2, \dots, S_{r-1} < 0, S_r = 0, S_n = 0)$.

Lemma 21 (Factorization of $\delta_{2n}(2k)$)

$$\delta_{2n}(2k) = \frac{1}{2} \sum_{r=1}^{n} (f_{2r} \delta_{2n-2r} (2k-2r) + f_{2r} \delta_{2n-2r} (2r)).$$

Proof. Because $S_{2n} = 0$ a return to origin must have happened. Let 2r the time of first return to origin, where $r \in \{1, 2, \dots, n\}$. By the law of total probability: $\delta_{2n}\left(2k\right)$

$$= P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = k, S_{2n} = 0\right)$$

$$=\sum_{r=1}^n\mathsf{P}\left(\sum_{i=1}^{2n}\mathbf{1}_{[S_i>0\vee S_{i-1}>0]}=2k,S_1,S_2,\ldots,S_{2r-1}\neq 0,S_{2r}=0S_{2n}=0\right)\text{ which can be again by the law of total probability factorized as:}$$

$$\sum_{r=1}^{n} P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i}>0\vee S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} \neq 0, S_{2r} = 0S_{2n} = 0\right)$$

$$= \sum_{r=1}^{n} P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i}>0\vee S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} > 0, S_{2r} = 0S_{2n} = 0\right)$$

$$+ \sum_{r=1}^{n} P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i}>0\vee S_{i-1}>0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0S_{2n} = 0\right)$$

$$= \sum_{r=1}^{n} \varepsilon_{2n}^{2r,+} (2k) + \sum_{r=1}^{n} \varepsilon_{2n}^{2r,-} (2k).$$
Now let us calculate $\varepsilon_{2n}^{2r,+} (2k)$

$$= P\left(\sum_{i=1}^{2n} \mathbf{1}_{[S_i > 0 \lor S_{i-1} > 0]} = 2k, S_1, S_2, \dots, S_{2r-1} > 0, S_{2r} = 0S_{2n} = 0\right)$$

$$= *a \mathsf{P} \left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k, S_{2n} = 0 \mid S_{1}, S_{2}, \dots, S_{2r-1} > 0, S_{2r} = 0 \right)$$

$$\mathsf{P} \left(S_{1}, S_{2}, \dots, S_{2r-1} > 0, S_{2r} = 0 \right)$$

$$= \mathsf{P} \left(\sum_{i=2r+1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k - 2r, S_{2n} = 0 \mid S_{2r} = 0 \right) \frac{1}{2} f_{2r}$$

$$= *b \mathsf{P} \left(\sum_{i=1}^{2n-2r} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k - 2r, S_{2n-2r} = 0 \right) \frac{1}{2} f_{2r}$$

$$= *c \delta_{2n-2r} \left(2k - 2r \right) \frac{1}{2} f_{2r}. \text{ Similarly } \varepsilon_{2n}^{2r,-} \left(2k \right)$$

$$= \mathsf{P} \left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k, S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0 S_{2n} = 0 \right)$$

$$= *a \mathsf{P} \left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k, S_{2n} = 0 \mid S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0 \right)$$

$$\mathsf{P} \left(S_{1}, S_{2}, \dots, S_{2r-1} < 0, S_{2r} = 0 \right)$$

$$= \mathsf{P} \left(\sum_{i=2r+1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k, S_{2n} = 0 \mid S_{2r} = 0 \right) \frac{1}{2} f_{2r}$$

$$= *b \mathsf{P} \left(\sum_{i=1}^{2n} \mathbf{1}_{[S_{i} > 0 \lor S_{i-1} > 0]} = 2k, S_{2n-2r} = 0 \right) \frac{1}{2} f_{2r} = *c \delta_{2n-2r} \left(2k \right) \frac{1}{2} f_{2r}.$$

$$\mathsf{Therefore } \delta_{2n} \left(2k \right) = \frac{1}{2} \sum_{r=1}^{n} f_{2r} \delta_{2n-2r} \left(2k - 2r \right) + \frac{1}{2} \sum_{r=1}^{n} f_{2r} \delta_{2n-2r} \left(2k \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \left(f_{2r} \delta_{2n-2r} \left(2k - 2r \right) + f_{2r} \delta_{2n-2r} \left(2r \right) \right)$$

Theorem 22 (Equidistributional theorem-ALMOST COMPLETE OWN PROOF) Let $(\{S_n\}_{n=0}^{+\infty}, p)$ be a symmetric random walk and $n \in \mathbb{N}$, then $\forall k, l \in \{0, 1, 2, ..., n\}$: $\delta_{2n}\left(2k\right) = \delta_{2n}\left(2l\right) = \frac{u_{2n}}{n+1}$

Proof. Let us prove this statement by induction in n. In case that n=1 we have two options for k. Either k = 0 or k = 1. $\delta_2(0) = P(S_1 < 0, S_2 = 0) = \frac{1}{2}f_2 = 0$ $*a_{\frac{1}{2}}u_{2}\frac{1}{2-1} = \frac{u_{2}}{2}\delta_{2}(2) = P(S_{1} > 0, S_{2} = 0) = \frac{1}{2}f_{2} = \frac{u_{2}}{2}.$

Let the statement be true for all $l \leq n-1$. In that case $\delta_{2(n-l)}(2k) = \frac{u_{2(n-l)}}{n-l+1}$ We want to show that $\delta_{2n} = \frac{u_{2n}}{n+1}$.

Let us calculate
$$\delta_{2n}$$
. $\delta_{2n} = *b_{\frac{1}{2}} \sum_{r=1}^{n} \left(f_{2r} \delta_{2n-2r} \left(2k - 2r \right) + f_{2r} \delta_{2n-2r} \left(2r \right) \right) = \frac{1}{2} \sum_{r=1}^{n} \left(f_{2r} u_{2n-2r} \frac{1}{n-r+1} + f_{2r} u_{2n-2r} \frac{1}{n-r+1} \right) = \sum_{r=1}^{n} \left(\frac{f_{2r} u_{2n-2r}}{n-r+1} \right) = ? \frac{u_{2n}}{n+1} \text{ Because???}$

Lemma 23
$$\sum_{r=1}^{n} \left(\frac{1}{n-r+1} \left(2^{-(2r-2)} {2r-2 \choose r-1} - 2^{-2r} {2r \choose r} \right) 2^{-(2n-2r)} {2n-2r \choose n-r} \right) = \frac{1}{n+1} 2^{-2n} {2n \choose n}$$

Proof.

2. Multi dimensional random walk

Definition 10 (Type II random walk in \mathbb{Z}^m)

Let $m \in \mathbb{N}$. $\forall n \in \mathbb{N}$, let $X_n = \begin{pmatrix} x_n^1 & x_n^2 & \dots & x_n^m \end{pmatrix}^T$, where $\{x_n^i\}_{i=1}^m$ are $\forall n \in \mathbb{N}$ independent. **check english** NEVÍM JAK TO NAPSAT LÍP Let $\forall i \in \{1, 2, \dots, m\}x_n^i$ have values in $\{-1, +1\}$ with probabilities $P(x_n^i = +1) = p_i \in (0, 1)$ and $P(x_n^i = -1) = q_i = 1 - p_i \in (0, 1)$.

Let $\{X_n\}_{n=0}^{+\infty}$ be a sequence of independent and identically distributed random variables. Let $S_0 = \mathbf{0}$ and $\forall n \in \mathbb{N} : \mathbf{S_n} = \sum_{i=1}^n X_i$ and $\mathbf{p} = (p_1, p_2, \dots, p_m)^{\mathbf{T}}$. Then the pair $(\{\mathbf{S_n}\}_{n=0}^{+\infty}, \mathbf{p})$ is called Type II random walk in \mathbb{Z}^m .

If $\forall i \in \{1, 2, ..., m\}$: $p_i = q_i = \frac{1}{2}$ we call the **check english** element $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ Symmetric type II random walk \mathbb{Z}^m .

Remark. Type II random walk can be interpreted as m simple random walks in \mathbb{Z} happening at a time, each of them parallel to an axis of \mathbb{Z}^m .

Theorem 24

Let $m \in \mathbb{N}$ and $(\{\mathbf{S_n}\}_{n=0}^{+\infty}, \mathbf{p})$ be a Type II random walk in \mathbb{Z}^m . Let $\mathbf{y} = (y_1, y_2, \dots, y_m)^T \in \mathbb{Z}^m$. Then following equation stands:

$$P(S_n = x) = \begin{cases} \prod_{i=1}^m {n \choose \frac{y_i + n}{2}} p_i^{\frac{n + y_i}{2}} q_i^{\frac{n - y_i}{2}}, & if \ \forall i \in \{1, 2, \dots, m\} : y_i \in A_n, \\ 0, & if \ \exists i \in \{1, 2, \dots, m\} : y_i \notin A_n. \end{cases}$$

Proof.
$$P(\mathbf{S_n} = \mathbf{y}) = P(S_n^1 = y_1, S_n^2 = y_2, \dots, S_n^m = y_m) \stackrel{\perp}{=} \prod_{i=1}^m P(S_n^i = y_i)$$

 $=\prod_{i=1}^m {n\choose y_i+n} p_i^{n+y_i\over 2} q_i^{n-y_i}$. The second equation comes from the independency of $\{\mathbf{S_i}\}_{i=1}^m$ which comes easily from independency of X_n^i . The second equation comes from the theorem of probability of position and time from the first chapter (1). \square

Remark. Due to the the aim of this thesis which is reasearching occupation time of a set of random walks we are going to concern only on symmetric random walks.

Definition 11 (Orthant)

Let $m \in \mathbb{Z}$. Then $O \subset \mathbb{Z}^m$ is called an open orthant in \mathbb{Z}^m if $\forall o \in O, \forall i \in \{1, 2, ..., m\} : o = <math>(o_1, o_2, ..., o_m)^T : o_i \varepsilon_i > 0$, where $\varepsilon_i \in \{-1, +1\}$. $C \subset \mathbb{Z}^m$ is called a closed orthant in \mathbb{Z}^m if $\forall c \in C, \forall i \in \{1, 2, ..., m\} : o = <math>(o_1, o_2, ..., o_m)^T : o_i \varepsilon_i \geq 0$, where $\varepsilon_i \in \{-1, +1\}$.

Remark. The statement $\mathbf{x} > \mathbf{y}$ will mean $\forall i \in \{1, 2, ..., m\} : x_i > y_i$. Same applies to $<, \leq, \geq$.

Theorem 25 (Probability of being in an open orthant)

Let $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ be a Symmetric type II random walk in \mathbb{Z}^m . Let O be an open orthant in \mathbb{Z}^m . $P(\mathbf{S_n} \in C) = \left(\frac{1}{2}u_{2n}\right)^m$.

Proof. Without loss of generality we can assume that in the definition of C we choose $\forall i \in \{1, 2, ..., m\} \varepsilon_i := +1$ then: $\mathsf{P}\left(\mathbf{S_n} \in O\right) = \mathsf{P}\left(S_n^1 > 0, S_n^2 > 0, ..., S_n^m > 0\right) = \prod_{i=1}^m \mathsf{P}\left(S_n^i > 0\right) = \left(\mathsf{P}\left(S_n^i > 0\right)\right)^m = \left(\frac{1}{2}u_{2n}\right)^m$. Where the last two equations come from the identical distribution of S_n^i and Lemma 15.

Theorem 26 (Probability of being in a closed orthant) Let $\{\mathbf{S_n}\}_{n=0}^{+\infty}$ be a Symmetric type II random walk in \mathbb{Z}^m . Let C be a closed orthant in \mathbb{Z}^m . $P(\mathbf{S_n} \in C) = (u_{2n})^m$.

Proof. Without loss of generality we can again assume that in the definition of C we choose $\forall i \in \{1, 2, ..., m\} \varepsilon_i := +1$ then: $\mathsf{P}\left(\mathbf{S_n} \in C\right) = \mathsf{P}\left(S_n^1 \geq 0, S_n^2 \geq 0, ..., S_n^m \geq 0\right) = \prod_{i=1}^m \mathsf{P}\left(S_n^i \geq 0\right) = \left(\mathsf{P}\left(S_n^i \geq 0\right)\right)^m = (u_{2n})^m$. Where the last two equations come from the identical distribution of S_n^i and Lemma 1.

Theorem 27 (Zákon iterovaného logaritmu) *Věta 60. Beneš*