112 學年度第一學期五專(資工二乙)數學期中考

一、單一選擇題(共70分,每題10分)

1. (C) 設
$$a = \log_3 2 \cdot b = \log_3 5$$
,試利用 $a \cdot b$ 表示,則 $\log_4 75 = (A) \frac{b+1}{2a}$ (B) $\frac{2b+1}{a}$

(C)
$$\frac{2b+1}{2a}$$
 (D) $\frac{b+1}{a}$

解析:
$$\log_4 75 = \frac{\log_3 75}{\log_3 4} = \frac{\log_3 3 + \log_3 25}{2\log_3 2} = \frac{2b+1}{2a}$$

2. (C)
$$\text{Lfi} \frac{(\cos 12^\circ + i \sin 12^\circ)^{12} \times (\cos 2^\circ + i \sin 2^\circ)^5}{(\cos 10^\circ + i \sin 10^\circ)^4 \times (\cos 3^\circ + i \sin 3^\circ)^8} = (A)1 \quad (B)-1 \quad (C)i \quad (D)-i$$

2. (C) 化簡
$$\frac{(\cos 12^{\circ} + i \sin 12^{\circ})^{12} \times (\cos 2^{\circ} + i \sin 2^{\circ})^{5}}{(\cos 10^{\circ} + i \sin 10^{\circ})^{4} \times (\cos 3^{\circ} + i \sin 3^{\circ})^{8}} =$$
 (A)1 (B) -1 (C) i (D) $-i$ 解析: 原式 = $\frac{(\cos 144^{\circ} + i \sin 144^{\circ}) \times (\cos 10^{\circ} + i \sin 10^{\circ})}{(\cos 40^{\circ} + i \sin 40^{\circ}) \times (\cos 24^{\circ} + i \sin 24^{\circ})} = \frac{\cos 154^{\circ} + i \sin 154^{\circ}}{\cos 64^{\circ} + i \sin 64^{\circ}} = \cos(154^{\circ} - 64^{\circ}) + i \sin(154^{\circ} - 64^{\circ}) = \cos 90^{\circ} + i \sin 90^{\circ} = i$

3. (A) 若
$$\sin \theta + \cos \theta = \frac{1}{4}$$
,則 $\sin 2\theta = ?$ (A) $-\frac{15}{16}$ (B) $-\frac{1}{16}$ (C) $\frac{1}{16}$ (D) $\frac{15}{16}$

解析:
$$\sin \theta + \cos \theta = \frac{1}{4} \stackrel{\text{平方}}{\Rightarrow} (\sin \theta + \cos \theta)^2 = (\frac{1}{4})^2 \Rightarrow 1 + 2\sin \theta \cos \theta = \frac{1}{16}$$
 ∴ $\sin 2\theta = -\frac{15}{16}$

4. (A) 化簡
$$\log 2 + \log \sqrt{15} - \frac{1}{2} \log 0.6 =$$
 (A)1 (B)0 (C)10 (D)2

解析: 原式 = log 2 + log
$$\sqrt{15}$$
 - log $\sqrt{\frac{6}{10}}$ = log $\frac{2 \times \sqrt{15}}{\sqrt{\frac{6}{10}}}$ = log 10 = 1

5. (B)
$$f(x) = \sin \theta - \sqrt{3} \cos \theta - 5$$
 之最大值 M ,最小值 m ,則 $3M - m = ?$ (A) -1 (B) -2 (C) -3 (D) -4

解析:
$$-\sqrt{1^2 + (\sqrt{3})^2} \le \sin \theta - \sqrt{3} \cos \theta \le \sqrt{1^2 + (\sqrt{3})^2}$$

 $\Rightarrow -2 \le \sin \theta - \sqrt{3} \cos \theta \le 2 \Rightarrow -7 \le$ 原式 $\le -3 \therefore M = -3, m = -7$

6. (A) 設
$$0 < \alpha < \frac{\pi}{2}, \frac{\pi}{2} < \beta < \pi$$
,且 $\sin \alpha = \frac{3}{5}, \sin \beta = \frac{7}{25}$,則 $\sin(\alpha - \beta)$ 之值 (A) $\frac{-4}{5}$ (B) $-\frac{3}{5}$ (C) $\frac{44}{125}$ (D) $\frac{33}{125}$

解析:
$$\sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta = \frac{3}{5} \cdot \frac{-24}{25} - \frac{4}{5} \cdot \frac{7}{25} = \frac{-100}{125} = -\frac{4}{5}$$
 (正弦差角公式)

7. (B)
$$Z = -\sqrt{3} + 3i$$
 ,則 Z 的主幅角為何? (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) π (D) $\frac{4}{3}\pi$

解析:
$$|Z| = \sqrt{(-\sqrt{3})^2 + 3^2} = 2\sqrt{3}$$
, $Z = -\sqrt{3} + 3i$
= $2\sqrt{3}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\sqrt{3}\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ Z的主幅角為 $\frac{2\pi}{3}$

二、計算與證明題(共30分,每題10分)

1.
$$2^{2x} - 3 \times 2^{x-1} - 1 = 0$$
,試求 x 之值。

2. 小明在A點處觀測熱氣球在其正東方且仰角為 60° ;小明往正南方前進100公尺後到達B點,發現熱氣球仰角為 45° ,則熱氣球的高度為多少公尺?

答案:如圖所示,設熱氣球的高度 \overline{CD} 為h公尺

$$\triangle DAC(30^{\circ} - 60^{\circ} - 90^{\circ})$$
 $\frac{\overline{AC}}{\overline{CD}} = \cot 60^{\circ} \Rightarrow \overline{AC} = \frac{1}{\sqrt{3}}h$

$$\triangle BDC(45^{\circ}-45^{\circ}-90^{\circ})$$
 $\overline{BC}=\overline{CD}=h$

$$\therefore \triangle ABC$$
 為直角三角形 $\therefore \overline{BC}^2 = \overline{AC}^2 + \overline{AB}^2$

$$\Rightarrow h^2 = \frac{1}{3}h^2 + 100^2 \Rightarrow h = 50\sqrt{6}$$
 故熱氣球的高度為 $50\sqrt{6}$ 公尺

3. 設
$$z_1 = (2+i)^2 (1+3i)^2$$
、 $z_2 = (1-i)^4 (6-8i)$,試求 $\left| \frac{z_1}{z_2} \right|$ 之值。

答案:
$$\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|} = \frac{\left| (2+i)^2 (1+3i)^2 \right|}{\left| (1-i)^4 (6-8i) \right|} = \frac{\left| 2+i \right|^2 \left| 1+3i \right|^2}{\left| 1-i \right|^4 \left| 6-8i \right|} = \frac{(\sqrt{5})^2 \times (\sqrt{10})^2}{(\sqrt{2})^4 \times \sqrt{100}} = \frac{5}{4}$$