Question 4.

Let us consider the relationship between the natural logarithm of GDP, GDP, and the lagged long-term interest rates $rate_t$, and $rate_{t-1}$.

(a) (10 points) \square Assume that GDP_t and $rate_t$ are difference stationary, or they are integrated of order 1: $GDP_t \in I(1)$, $rate_t \in I(1)$. What does it mean? How to test that a time series is I(1)?

 \Box What is cointegration? How to test whether time series GDP_t and $rate_t$ are cointegrated.

Order of internation Un comb. which is stationary

Z+= a+ a, 6 bp+ a, 2+

$$60 P_{t} = \frac{2t}{\alpha_{1}} - \frac{\alpha_{2}}{\alpha_{1}} \cdot 1t - \frac{\alpha_{2}}{\alpha_{1}}$$

I(1)

ADF test for Ex

(b) (10 points) \square If GDP_t and $rate_t$ are not co-integrated, what are the properties of an OLS estimator in the regression of *GDP*, on *rate*,?

Sprious ryrission: 2 = 0

GDP+ = d, + L, 2+ Ex

=7. & violates

GPP+ = d, + d2 7+ + E4

d2 = 0

2, biased

will be rejorted (follsly) with higher prob.

	\Box Discuss the implications of the existence of cointegration between GDP_t and $rate_t$ on the short-run and long-run relationship of two variables.
	Koych Teans J. PAN
	ΔEM
C	o'int. relationship = UR relationship Ut TI-TI
	(c) (20 points) Consider the following regression model, where ε_t has mean zero and is uncorrelated with
ARDL (GDP_{t-1} , GDP_{t-2} , $rate_t$, and $rate_{t-1}$, where $GDP_t \in I(1)$, $rate_t \in I(1)$ and are conintegrated:
μρус	Derive the Error Correction Model (ECM) representation of the equation, and discuss the long-run equilibrium relation for GDP_t and $rate_t$. $Q_0 + Q_1 - G_0 + Q_2$
も	cm: 5600_{t} > rate, $\frac{2}{7}t-1$
	SR LR now windreds
	s 6 PP t Leon 6 DP rate
	GPF-CPPF-1 = 2+(B1-1) GPF+-1 +
	,7
	B2 6DPt-2 + 9,2+ 92 1/2-1 + 4
	660Pt = 2+ 91 Du + (92+91)2t-1
	+ (b,-1+B2).6DP4-1 +
	V
	- Br & 6DP t-1 + Gr (6DP x-1 6DV x-2)
	06PP+ = - Bi 6 6PD+-, * (T) 676 +

