NIA

1 (1.5 points). Please fill the gaps in the following human eye representation

1	RETINA
2	VITREOUS BODY
3	CONJUNCTIVA
4	IRIS
5	CORNEA
6	PUPIL

2 (1 point). Is the following sentence true? If it is not the case, can you explain why?

"The greater focal distance, the larger the field of view"

FALSE

"THE GREATER FOCAL DISTANCE, THE LESS THE FIELD OF VIEW"

Less part of the scene is covered with less angle

3 (1 point). Please provide a brief explanation of the following concepts: sampling and quantization. Which order of values should we have (low, mid, high) if we want to have a highly detailed image with reasonable size?

- Sampling: discretization in space. This happens because of acquiring a continuous signal from real world with a discrete sensor.
- Quantization: discretization in amplitude / weight. It is generated as we store the information in a digital format (8 bits, 16 bits)
- High sampling, mid quantization

4 (1 point). What do logarithm and look up table operations have in common? Please provide a brief explanation of both operations. Include what they are used commonly for.

- Non linear transformations
- Logarithmic: enhancement of dark pixels without saturating bright pixels
- LUT:
 - LUT defines a vector whose values indicate the expected output for a given input value.
 - Pixel values of the original input image index the new values

5 (1 point) What is image subtraction? Please provide a case of use of image subtraction different than the one we used at class.

- Subtracting two images
- Used for:
 - Movement (or absence of it) detection
 - Remove the part of the image that does not change
 - Reduce information, sequence compression
- 6. (1 point) Perform the following convolution operation. Calculate only the values of the positions marked in the original matrix.

3	3	2	5	1
4	3	4	6	3
4	6	7	2	5
7	2	2	4	2
3	4	5	6	6

2	1	4
5	3	7
6	2	8

34	67	80	62	65
67	135	156	133	106
79	177	159	158	101
86	177	147	164	90
55	130	117	119	96

7 (1 point) What is correlation? Why do we use it in image processing? What's its relationship with convolution operator?

- A linear system
- Similar to convolution but without reflecting the h kernel
- Used to see similarity between images and images with respect to patches

8 (1.5 points). Perform closing operation over the following binary image using the following structure element

-

9 (1 point) Explain what watersheds are. Why do we use them? What are their biggest drawbacks? How do we solve them?

- Lines that separate the different catchment basins
- Image segmentation
- Oversegmentation
- Morphological gradient, Watershed with markers

EXTRA (1 point) Complete the following picture depicting the parts of a camera

1	FOCUS
2	FILTERS
3	EXTENSORS
4	SENSORS
5	DIAFRAGM
6	MOUNT