

teaching@ths.rwth-aachen.de https://ths.rwth-aachen.de/teaching/

Satisfiability Checking - WS 2023/2024 Series 1

Exercise 1

Let $AP = \{a, b\}$ be a set of propositions and let

$$\varphi_1 := ((a \oplus \neg b) \to b) \vee (\neg a \leftrightarrow \neg b)$$

 $\varphi_2 := (((b \to \neg a) \oplus \neg b))$

 $\varphi_3 := (\varphi_2 \wedge (a \vee \neg b))$

be formulas over AP.

a) What are the truth tables for the above formulas?

b) What are $sat(\varphi_1)$, $sat(\varphi_2)$ and $sat(\varphi_3)$?

c) Which of the above formulas are satisfiable, which are unsatisfiable, and which are tautologies?

Solution:

	a	b	$a \oplus \neg b$	$(a \oplus \neg b) \rightarrow b$	$\neg a \leftrightarrow \neg b$	φ_1
a)	0	0	1	0	1	1
	0	1	0	1	0	1
	1	0	0	1	0	1
	1	1	1	1	1	1

a	b	$b \rightarrow \neg a$	$\neg b$	φ_2	$a \vee \neg b$	φ_3
0	0	1	1	0	1	0
0	1	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	0	1	0

b) • $sat(\varphi_1) = Assign$

• $sat(\varphi_2) = {\alpha}$, with $\alpha(a) = 0$ and $\alpha(b) = 1$ and

• $sat(\varphi_3) = \emptyset$

c) • Satisfiable: φ_1 , φ_2

• Unsatisfiable: φ_3

• Tautology: φ_1

Exercise 2

Let $AP = \{a, b\}$ be a set of propositions and let $\alpha, \beta \in Assign$ with $\alpha(a) = 1$, $\alpha(b) = 1$ and $\beta(a) = 0$, $\beta(b) = 1$. Do the following hold?

1.
$$\alpha \models a \lor \neg b$$

2.
$$\beta \not\models \neg a \land \neg b$$

1

- **3.** $\{\alpha, \beta\} \models a \land b$
- **4.** $\{\alpha, \beta\} \models a \rightarrow b$
- 5. $a \lor b \models a \oplus b$
- 6. $sat(a \leftrightarrow b) \subseteq sat(a \rightarrow b)$

Solution:

- 1. $\alpha \models a \lor \neg b$ is true
- 2. $\beta \not\models \neg a \land \neg b$ is true
- 3. $\{\alpha, \beta\} \models a \land b$ is false
- 4. $\{\alpha, \beta\} \models a \rightarrow b$ is true
- 5. $a \lor b \models a \oplus b$ is false
- 6. $sat(a \leftrightarrow b) \subseteq sat(a \rightarrow b)$ is true

Exercise 3

Let $AP := \{a, b\}$ be a set of propositions and let $\varphi := (a \leftrightarrow b)$ be a formula over AP. Give a formula equivalent to φ that contains only propositions from AP and

- 1. the operators \neg and \land ,
- 2. the operators \neg and \lor ,
- 3. or the operator ↑ (called NAND).

(The binary operator \uparrow has the following semantics: $\alpha \models (a \uparrow b) \leftrightarrow \alpha \models (\neg(a \land b))$ for all $a, b \in AP$ and $\alpha \in Assigns$.)

Solution:

1. Operators \neg and \wedge :

$$(a \leftrightarrow b)$$

$$\stackrel{1}{\equiv} (a \to b) \land (b \to a)$$

$$\stackrel{2}{\equiv} (\neg a \lor b) \land (\neg b \lor a)$$

$$\stackrel{3}{\equiv} \neg (a \land \neg b) \land \neg (b \land \neg a)$$

2. Operators \neg and \lor :

$$(a \leftrightarrow b)$$

$$\stackrel{1.-2.}{\equiv} (\neg a \lor b) \land (\neg b \lor a)$$

$$\equiv \neg(\neg(\neg a \lor b) \lor \neg(\neg b \lor a))$$

3. Operator \uparrow : We show that the operators \neg and \land can be expressed by \uparrow .

$$\neg a \equiv (a \uparrow a)$$
$$(a \land b) \equiv (a \uparrow b) \uparrow (a \uparrow b)$$

Then:

$$(a \leftrightarrow b)$$

$$\stackrel{1.-3.}{\equiv} \neg (a \land \neg b) \land \neg (b \land \neg a)$$

$$\equiv \neg (a \land (b \uparrow b)) \land \neg (b \land (a \uparrow a))$$

$$\equiv (a \uparrow (b \uparrow b)) \land (b \uparrow (a \uparrow a))$$

$$\equiv ((a \uparrow (b \uparrow b)) \uparrow (b \uparrow (a \uparrow a))) \uparrow ((a \uparrow (b \uparrow b)) \uparrow (b \uparrow (a \uparrow a)))$$