

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S2 (6684/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024768 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 Statistics S2 6684 Mark Scheme

Ques		Scheme	Ma	ırks
Q1	(a)	A population is collection of all items	B1	(1)
	(b)	(A random variable) that is a function of the sample which contains no unknown quantities/parameters.	B1	(1)
	(c)	The voters in the town	B1	
		Percentage/proportion voting for Dr Smith	B1	4-1
	(d)	Probability Distribution of those voting for Dr Smith from all possible samples (of	B1	(2)
		size 100)		(1)
				[5]
		Notes		
	(a)	B1 – collection/group all items – need to have /imply all eg entire/complete/every		
	(b)	B1 – needs function/calculation(o.e.) of the sample/random variables/observations and unknown quantities/parameters(o.e.) NB do not allow unknown variables e.g. "A calculation based solely on observations from a given sample." B1 "A calculation based only on known data from a sample" B1 "A calculation based on known observations from a sample" B0 B1 – Voters	nly imp	
		Do not allow 100 voters.		
		B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone		
	(d)	B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith.		
		e.g "It is all possible values of the percentage and their associated probabilities." B0 no	contex	ĸt

Question Number	Scheme	Ма	rks
Q2 (a)	Let <i>X</i> be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1	
	$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382$ or $(0.2)^3 (0.8)^6 \frac{9!}{3!6!}$	M1	
	= 0.1762 = 0.1762 awrt 0.176	A1	(3)
(b)	$P(X \le 4) = 0.9804$ awrt 0.98	M1A1	(2)
(c)	Mean = 3 variance = 2.85, $\frac{57}{20}$	B1 B1	(2)
(d)	Po(3) poisson	M1	
	$P(X > 4) = 1 - P(X \le 4)$	M1	
	=1-0.8153		
	= 0.1847	A1	(3) [10]
	Notes		[]
(a)	B1 – writing or use of B(9, 0.2)		
	M1 for writing/using $P(X \le 3) - P(X \le 2)$ or $(p)^3 (1-p)^6 \frac{9!}{3!6!}$		
	A1 awrt 0.176		
(b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98		
(c)	B1 3 B1 2.85, or exact equivalent		
(d)	M1 for using Poisson M1 for writing or using $1 - P(X \le 4)$ NB $P(X \le 4)$ is 0.7254 Po(3.5) and 0.8912 Po(2. A1 awrt 0.185	5)	
	Special case :Use of Po(1.8) in (a) and (b)		
	(a) can get B1 M1 A0 – B1 if written B(9, 0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$ or awrt to 0.161		
	If B(9, 0.2) is not seen then the only mark available for using Poisson is M1. (b) can get M1 A0 - M1 for writing or using $P(X \le 4)$ or may be implied by awrt 0.964 Use of Normal in (d) Can get M0 M1 A0 for M1 they must write $1 - P(X \le 4)$ or get awrt 0.187		

Question Number		Scheme		Marks
Q3	Method 1	Method 2	Method 3	
	$P(X > 6) = \frac{1}{6}$	$P(4 < X < 6) = \frac{1}{3}$	$P(X > 6) = \frac{1}{6}$	B1 M1
	$P(X < 4) = \frac{1}{2}$		$Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$	A1
	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$1 - \frac{1}{3} = \frac{2}{3}$	$\cot a = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	M1dep B A1 (5)
				[5]
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on M1 for $P(X > 6)$ or $P(6 < X \le 1)$ Allow $\le and \ge 1$ signs A1 $\frac{1}{6}$; $or \frac{1}{2}$; $\frac{1}{3}$ must match the part of the second of th	probability statement 6)" and their " $P(X < 4)$ " or 1 ith U[3,9] 6 < 7) or $P(6 < Y < 9)$ obability statement	- their "P($4 < X < 6$)" dep	

Question Number	Scheme	Mar	ks
Q4 (a)	$\frac{4}{9}(m^2 + 2m - 3) = 0.5$	M1	
	$m^{2} + 2m - 4.125 = 0$ $m = \frac{-2 \pm \sqrt{4 + 16.5}}{2}$ $m = 1.26, -3.264$	M1	
	(median =) 1.26	A1	(3)
(b)	Differentiating $\frac{d\left(\frac{4}{9}\left(x^2 + 2x - 3\right)\right)}{dx} = \frac{4}{9}\left(2x + 2\right)$	M1 A1	
	$f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5\\ 0 & \text{otherwise} \end{cases}$	B1ft	(3)
(c)	$P(X \ge 1.2) = 1 - F(1.2)$ = 1 - 0.3733	M1	
	$=\frac{47}{75}$, 0.6267 awrt 0.627	A1	(2)
(d)	$(0.6267)^4 = 0.154$ awrt 0.154 or 0.155	M1 A1	(2)
			[10]
	<u>Notes</u>		
(a)	 M1 putting F(x) = 0.5 M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root. If they use Trial and improvement they have to get the correct answer to gain the second 	ond M n	nark
(b)	M1 attempt to differentiate. At least one $x^n \to x^{n-1}$ A1 correct differentiation		
(c)	B1 must have both parts- follow through their F'(x) Condone < M1 finding/writing $1 - F(1.2)$ may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) dx$ or $1 - \int_{1}^{1.2} \frac{8}{9}(x+1) dx$	1	
	or $\int_{1.2}^{1.5}$ "their f (x)" dx . Condone missing dx		
(d)	A1 awrt 0.627 M1 (c) ⁴ If expressions are not given you need to check the calculation is correct to 2sf. A1 awrt 0.154 or 0.155		

Question	Scheme	Marks
Number		
Q5 (a) (b) (i) (ii)	Connecting occurs at random/independently, singly or at a constant rate Po (8) $P(X = 0) = 0.0003$ $P(X \ge 4) = 1 - P(X \le 3)$ $= 1 - 0.0424$	B1 (1) B1 M1A1 M1 A1 (5)
(c)	N(48,48) Method 1 $P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right)$ $= P(Z \ge 1.66)$ $= 1 - 0.9515$ Method 2 $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$	B1 M1 A1 M1 M1 A1
		M1 A1 ft (9) [15]
(a) (b) (i) (ii) (c)	Notes B1 Any one of randomly/independently/singly/constant rate. Must have context of connection/logging on/fail B1 Writing or using Po(8) in (i) or (ii) M1 for writing or finding $P(X = 0)$ A1 awrt 0.0003 M1 for writing or finding $1 - P(X \le 3)$ A1 awrt 0.958 B1 both hypotheses correct. Must use λ or μ M1 identifying normal A1 using or seeing mean and variance of 48	
	These first two marks may be given if the following are seen in the standardisation formula: 48 and $\sqrt{48}$ or awrt 6.93 M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$) M1 for standardising using their mean and their standard deviation and using either Method 1 [59.5, 60 or 60.5. accept \pm z.] Method 2 [($x\pm0.5$) and equal to a $\pm z$ value) A1 correct z value awrt ±1.66 or $\pm\frac{59.5-48}{\sqrt{48}}$, or $\frac{x-0.5-48}{\sqrt{48}}$ =1.6449	
	 A1 awrt 3 sig fig in range 0.0484 – 0.0485, awrt 59.9 M1 for "reject H_{0"} or "significant" maybe implied by "correct contextual comment" If one tail hypotheses given follow through "their prob" and 0.05, p < 0.5 If two tail hypotheses given follow through "their prob" with 0.025, p < 0.5 If one tail hypotheses given follow through "their prob" and 0.95, p > 0.5 If two tail hypotheses given follow through "their prob" with 0.975, p > 0.5 If no H₁ given they get M0 A1 ft correct contextual statement followed through from their prob and H₁ need the number of failed connections/log ons has increased o.e. Allow "there are more failed connections" 	words

Question Number	Scheme	Mar	ks
Q6 (a)	2 outcomes/faulty or not faulty/success or fail	B1	
(- /	A constant probability	B1	
	Independence		
	Fixed number of trials (fixed <i>n</i>)		(2)
(b)	$X \sim B(50, 0.25)$	M1	
	$P(X \le 6) = 0.0194$		
	$P(X \le 7) = 0.0453$		
	$P(X \ge 18) = 0.0551$		
	$P(X \ge 19) = 0.0287$		
	$CR X \le 6$ and $X \ge 19$	A1 A1	(3)
	$CKA \leq 0$ and $A \geq 19$	AIAI	(3)
(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)
(0)	0.0171 0.0207 - 0.0401		\ - /
(d)	8(It) is not in the Critical region or 8(It) is not significant or $0.0916 > 0.025$;	M1;	
(4)	There is evidence that the probability of a faulty bolt is 0.25 or the company's claim	A1ft	
	is correct.		(2)
(e)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1B1	
(-)	$P(X \le 5) = 0.0070$ or $CR X \le 5$	M1A1	
	0.007 < 0.01,	101.171.1	
	5 is in the critical region, reject H_0 , significant.	M1	
	There is evidence that the probability of faulty bolts has decreased	A1ft	6)
	There is evidence that the probability of faulty boits has decreased		[15]
	Notes		[10]
(a)	B1 B1 one mark for each of any of the four statements. Give first B1 if only one correc	t stateme	ent
(-)	given. No context needed.	· statelli	0110
(b)	$\mathbf{M1}$ for writing or using B(50,0.25) also may be implied by both CR being correct. Con	done us	e of
	P in critical region for the method mark.		
	A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept $P(X \le 6)$		
	A1 (X) \geq 19 o.e. [19,50] DO NOT accept P(X \geq 19)		
(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5		
	A1 awrt 0.0481		
(d)	M1 one of the given statements followed through from their CR.		
	A1 contextual comment followed through from their CR.		
	NB A correct contextual comment <u>alone</u> followed through from their CR.will get M1 A	11	
(e)	B1 for H_0 must use p or π (pi)		
	B1 for H_1 must use p or π (pi)		
	M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct c	ritical re	gion
	A1 awrt $0.007/CR X \le 5$		
	M1 correct statement using their Probability and 0.01 if one tail test		
	or a correct statement using their Probability and 0.005 if two tail test.	1!41	41a - !
	The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatible.	oie with	ıneır
	H ₁ . If no H ₁ given M0 A1 correct contextual statement follow through from their prob and H ₁ . Need faulty bold	lte and	
	decreased.	us allu	
	NB A correct contextual statement <u>alone</u> followed through from their prob and H ₁ get I	М1 А1	
NB A correct contextual statement atome followed through from their prob and 111 get W1 A1			

Que: Num	stion nber	Scheme	Mari	KS
Q7	(ai)	$f(y) \ge 0 \text{ or } f(3) \ge 0$	M1	
		$ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$		
		$a \ge 3$	A1 cso	
	(ii)	$\int_{0}^{3} k(ay - y^{2})dy = 1$ integration	N/1	
		$\int_{0}^{3} k(ay - y^{2})dy = 1$ integration	M1	
		$\left[k\left(\frac{ay^2}{2} - \frac{y^3}{3}\right)\right]_0^3 = 1$ answer correct	Λ1	
		$\left[k \left(\frac{3}{2} - \frac{3}{3} \right) \right]_0 = 1$ answer correct	A1	
		$k\left(\frac{9a}{2} - 9\right) = 1$ answer = 1	M1	
		(-)	IVII	
		$k\left[\frac{9a-18}{2}\right]=1$		
		$k = \frac{2}{9(a-2)} *$	A1 cso	6)
	(b)	$\int_0^3 k(ay^2 - y^3) dy = 1.75$ Int $\int x f(x)$	M1	
			A1	
		$\left[k\left(\frac{ay^3}{3} - \frac{y^4}{4}\right)\right]_0^3 = 1.75$ Correct integration $\int xf(x) = 1.75 \text{ and limits } 0.3$	M1dep	
		L \ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		
		$k\left(9a - \frac{81}{4}\right) = 1.75$		
		$2\left(9a - \frac{81}{4}\right) = 15.75(a - 2)$ subst k	Madon	
			M1dep	
		$2.25a = -31.5 + \frac{81}{2}$		
		a = 4 *	A1cso	
		$k = \frac{1}{9}$	B1	(6)
		$\frac{\kappa-\overline{9}}{9}$	DI	(6)

Question Number	Scheme	Ма	rks
(c)		B1 B1	(2
(d)	mode = 2	B1	(1)
(a) (i)	Notes M1 for putting $f(y) \ge 0$ or $f(3) \ge 0$ or $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-y) \ge 0$ or $(a-y) \ge 0$ or state in words the probability can not be negative o.e. A1 need one of $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$ and $a \ge 3$		[15 ≥ 0
(ii)	M1 attempting to integrate (at least one $y^n o y^{n+1}$) (ignore limits) A1 Correct integration. Limits not needed. And equals 1 not needed. M1 dependent on the previous M being awarded. Putting equal to 1 and have the correct limits. Limits do not need to be substituted. A1 cso		
(b)	M1 for attempting to find $\int yf(y) dy$ (at least one $y^n \to y^{n+1}$) (ignore limits) A1 correct Integration M1 $\int yf(y) = 1.75$ and limits 0,3 dependent on previous M being awarded		
(c)	M1 subst in for k. dependent on previous M being awarded A1 cso 4 B1 cao 1/9 B1 correct shape. No straight lines. No need for patios.		
(6)	B1 completely correct graph. Needs to go through origin and the curve ends at 3. Special case: If draw full parabola from 0 to 4 get B1 B0 Allow full marks if the portion $x = 3$ and $x = 4$ is dotted and the rest of the curve solid.	n betw	een .

(d) **B1** cao 2

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH