

SEQUENCE LISTING

BEST AVAILABLE COPY

<110> Bott, Richard Kellis, James T. Morrison, Thomas B.

<120> High Throughput Mutagenesis Screening Method

<130> GC724

<140> US 10/091,912

<141> 2002-03-05

<160> 2

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 818

<212> DNA

<213> Pseudomonas mendocina

<400> 1

tgg	cggcctc	ttgcctgtcc	gtctgtgcca	ctgtcgcggc	ggctcccctg	ccggatacac	60
			gtcgccaatt				120
gcc	agagcga	ggggccgagc	tgtcgcatct	atcggccccg	cgacctgggt	caggggggcg	180
tgc	gtcatcc	ggtgattctc	tggggcaatg	gcaccggtgc	cgggccgtcc	acctatgccg	240
gct	tgctatc	gcactgggca	agccacggtt	tcgtggtggc	ggcggcggaa	acctccaatg	300
ccg	gtaccgg	gcgggaaatg	ctcgcctgcc	tggactatct	ggtacgtgag	aacgacaccc	360
cct	acggcac	ctattccggc	aagctcaata	ccgggcgagt	cggcacttct	gggcattccc	420
agg	gtggtgg	cggctcgatc	atggccgggc	aggatacgag	ggtgcgtacc	acggcgccga	480
tcc	agcccta	caccctcggc	ctggggcacg	acagcgcctc	gcagcggcgg	cagcaggggc	540
cga	tgttcct	gatgtccggt	ggcggtgaca	ccatcgcctt	tccctacctc	aacgctcagc	600
cgg	tctaccg	gcgtgccaat	gtgccggtgt	tctggggcga	acggcgttac	gtcagccact	660
tcg	agccggt	cggtagcggt	ggggcctatc	gcggcccgag	cacggcatgg	ttccgcttcc	720
agc	tgatgga	tgaccaagac	gcccgcgcta	ccttctacgg	cgcgcagtgc	agtctgtgca	780
			gagcgccgcg	•			818

<210> 2

<211> 272

<212> PRT

<213> Pseudomonas mendocina

<400> 2

Met Ala Ala Ser Cys Leu Ser Val Cys Ala Thr Val Ala Ala Ala Pro Leu Pro Asp Thr Pro Gly Ala Pro Phe Pro Ala Val Ala Asn Phe Asp 25 Arg Ser Gly Pro Tyr Thr Thr Ser Ser Gln Ser Glu Gly Pro Ser Cys Arg Ile Tyr Arg Pro Arg Asp Leu Gly Gln Gly Val Arg His Pro Val Ile Leu Trp Gly Asn Gly Thr Gly Ala Gly Pro Ser Thr Tyr Ala Gly Leu Leu Ser His Trp Ala Ser His Gly Phe Val Val Ala Ala Ala

85 Glu Thr Ser Asn Ala Gly Thr Gly Arg Glu Met Leu Ala Cys Leu Asp 105 Tyr Leu Val Arg Glu Asn Asp Thr Pro Tyr Gly Thr Tyr Ser Gly Lys 120 Leu Asn Thr Gly Arg Val Gly Thr Ser Gly His Ser Gln Gly Gly 135 Gly Ser Ile Met Ala Gly Gln Asp Thr Arg Val Arg Thr Thr Ala Pro 150 155 Ile Gln Pro Tyr Thr Leu Gly Leu Gly His Asp Ser Ala Ser Gln Arg 170 Arg Gln Gln Gly Pro Met Phe Leu Met Ser Gly Gly Gly Asp Thr Ile 180 185 Ala Phe Pro Tyr Leu Asn Ala Gln Pro Val Tyr Arg Arg Ala Asn Val 200 205 Pro Val Phe Trp Gly Glu Arg Arg Tyr Val Ser His Phe Glu Pro Val 215 Gly Ser Gly Gly Ala Tyr Arg Gly Pro Ser Thr Ala Trp Phe Arg Phe 230 235 Gln Leu Met Asp Asp Gln Asp Ala Arg Ala Thr Phe Tyr Gly Ala Gln 245 250 Cys Ser Leu Cys Thr Ser Leu Leu Trp Ser Val Glu Arg Arg Gly Leu 265

BEST AVAILABLE COPY