TYPYBENCH: Evaluating LLM Type Inference for Untyped Python Repositories

Honghua Dong *12 Jiacheng Yang *12 Xun Deng *1 Yuhe Jiang *12 Gennady Pekhimenko 123 Fan Long 1 Xujie Si 123

Abstract

Type inference for dynamic languages like Python is a persistent challenge in software engineering. While large language models (LLMs) have shown promise in code understanding, their type inference capabilities remain underexplored. We introduce TYPYBENCH, a benchmark designed to evaluate LLMs' type inference across entire Python repositories. TYPYBENCH features two novel metrics: TYPESIM, which captures nuanced semantic relationships between predicted and ground truth types, and TYPECHECK, which assesses type consistency across codebases. Our evaluation of various LLMs on a curated dataset of 50 high-quality Python repositories reveals that, although LLMs achieve decent TYPESIM scores, they struggle with complex nested types and exhibit significant type consistency errors. These findings suggest that future research should shift focus from improving type similarity to addressing repository-level consistency. TYPY-BENCH provides a foundation for this new direction, offering insights into model performance across different type complexities and usage contexts. Our code and data are available at https://github.com/typybench/typybench.

1. Introduction

Type inference, the ability to automatically deduce the types of variables and expressions in a program, has been a long-standing challenge in programming language research (Raychev et al., 2015; Hellendoorn et al., 2018). In dynamically-typed languages like Python, where explicit type annotations are optional, type inference involves analyzing code to determine appropriate type annotations that could have been

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

written by developers. This capability has become increasingly important as codebases grow in size and complexity.

The significance of type information in modern software development cannot be overstated. Type annotations serve multiple crucial purposes: (1) they enhance code clarity by making developers' intentions explicit, (2) prevent type-related errors through early detection, (3) enable rich IDE features like autocompletion, and (4) facilitate maintenance and refactoring operations. The introduction of type hints through PEP 484¹ marked a pivotal moment for Python, acknowledging the growing importance of static typing in large-scale software development.

While the benefits of type annotations are clear, manually adding them to existing codebases is time-consuming and error-prone. This challenge has sparked interest in developing automatic type inference tools like Mypy (Lehtosalo et al.), Pyright (Microsoft) and MonkeyType (Instagram), as well as learning-based algorithms (Wei et al., 2020; Allamanis et al., 2020). Moreover, recent advances in large language models (LLMs) have shown promising results in code understanding tasks (Brown et al., 2020; Achiam et al., 2023; Chen et al., 2021), and in type inference tasks (Wei et al., 2023; Peng et al., 2023) with better performance than previous methods (Shivarpatna Venkatesh et al., 2024). Such tools can significantly reduce developer effort while improving code quality and maintainability.

Despite these advances, current evaluation benchmarks and approaches (Mir et al., 2021; Allamanis et al., 2020; Shivarpatna Venkatesh et al., 2024) for type inference methods face significant limitations. Traditional evaluation metrics rely heavily on exact matching (or up to parametric type (Allamanis et al., 2020)), which fails to capture important semantic and functional relationships between types—for instance, the functional similarity between List and Sequence, where developers may use them interchangeably. Furthermore, existing benchmarks often evaluate type inference in isolation, focusing on individual functions or files rather than considering type consistency across entire codebases. This disconnect between local correctness and global coherence makes it challenging to reliably assess the real-world effectiveness of type inference methods.

Equal contribution, alphabetically ordered. ¹University of Toronto ²Vector Institute ³CIFAR AI Chair. Correspondence to: Xujie Si <six@cs.toronto.edu>.

¹https://peps.python.org/pep-0484/

Figure 1. Overview of TYPYBENCH. We collect well-typed Python repositories and remove their typing information as the inputs. The outputs predicted by type inference methods are then evaluated using TYPESIM and TYPECHECK, where TYPESIM measures the functionality similarity between predicted and human-annotated types, and TYPECHECK evaluates type consistency across entire codebases through static type checking.

To address these challenges, we introduce two novel evaluation metrics, TYPESIM and TYPECHECK, as illustrated in Figure 1. TYPESIM measures the functional similarity between predicted and human-annotated types by incorporating both structural relationships and type hierarchies, providing a more nuanced evaluation than exact matching. Complementarily, TYPECHECK measures type consistency across entire codebases via static type checking², verifying that inferred types integrate coherently.

We then present TYPYBENCH, a benchmark of 50 highquality Python repositories selected based on their type coverage, complexity, and domain diversity. Unlike existing benchmarks (Pradel et al., 2020; Mir et al., 2021), TYPY-BENCH emphasizes repository-level evaluation, allowing the assessment of both local type accuracy and global type consistency.

Our extensive evaluation of state-of-the-art LLMs on TYPY-BENCH reveals key insights. While modern LLMs achieve decent TYPESIM scores (up to 0.80), most of them struggle with TYPECHECK, highlighting a gap between local type accuracy and global consistency compared to human annotations. The main contributions of this paper are:

- Two novel metrics for evaluating type inference: TYPE-SIM for measuring semantic similarity between types, and TYPECHECK for assessing repository-wide type consistency.
- TYPYBENCH: A comprehensive benchmark of 50

- high-quality Python repositories, designed to evaluate both local and global aspects of type inference.
- An extensive empirical study of state-of-the-art LLMs on type inference, revealing critical gaps between type prediction accuracy and consistency.

These contributions establish a foundation for future research in automated type inference, providing both the tools and insights needed to develop more effective type inference systems.

2. Related Work

2.1. Type Inference Methods

Conventional Methods. Traditional type inference relies on static analysis and runtime tracing, as implemented in tools like Mypy (Lehtosalo et al.), Pyright (Microsoft), and MonkeyType (Instagram). These approaches offer high precision but are limited in coverage and require explicit type annotations or runtime information.

Learning-based Methods. Early learning approaches like JSNice (Raychev et al., 2015) pioneered using probabilistic models to learn from existing codebases. This direction evolved to leverage various program representations, from natural language information (Malik et al., 2019) to graph structures (Hellendoorn et al., 2018; Wei et al., 2020; Allamanis et al., 2020; Cassano et al., 2023), though struggling to handle complex type structures and rare types.

LLM-based Methods. Recent work has shown that large language models can match or exceed traditional approaches

²We use the number of Mypy check errors to estimate the consistency of types.

in type inference tasks (Jesse et al., 2021; Wei et al., 2023; Peng et al., 2023). These methods benefit from pre-training on large code corpora and can leverage natural language understanding for improved type prediction.

2.2. Type Inference Benchmarks

Previous type inference benchmarks (Pradel et al., 2020; Mir et al., 2021; Allamanis et al., 2020) primarily relied on exact match accuracy for evaluation, with Typilus (Allamanis et al., 2020) introducing a relaxed "Match up to Parametric Type" metric that compares only the outermost type constructors. However, these metrics still fall short of capturing full semantic similarity between type annotations. Our benchmark advances this by (1) introducing semantic similarity metrics that better capture the hierarchical and structural relationships between types, and (2) evaluating practical usability through type checking. By requiring predictions in the form of PEP 484 stub files (.pyi), we enable direct validation using production-grade type checkers, providing a more realistic assessment of type inference quality.

2.3. Other Coding Benchmarks

The evolution of code-related benchmarks reflects a progression from isolated to context-dependent evaluations:

Function-level Benchmarks. Traditional benchmarks focused on self-contained programming tasks (Chen et al., 2021; Jain et al., 2024; Zhuo et al., 2024), evaluating specific capabilities like code generation and problem-solving.

Repository-level Benchmarks. Recent work has shifted toward repository-scale assessment, with each benchmark evaluating distinct aspects of code understanding: RepoBench (Liu et al., 2024b) focuses on code completion, SWE-bench (Jimenez et al., 2024) tests bug fixing capabilities, and RepoTransBench (Wang et al., 2024) evaluates cross-language translation. Our work contributes to this ecosystem by examining models' ability to perform consistent type inference across entire repositories, adding another crucial dimension to repository-level model evaluation.

3. Background

This section introduces key concepts in Python's type system and type inference that are fundamental to our work.

3.1. Gradual Typing in Python

Python supports gradual typing, allowing developers to incrementally add type annotations while maintaining compatibility with untyped code. Introduced in PEP 484, type hints enable specifying types for function parameters, return values, and variables:

```
def greet(name: str) -> str:
    return f"Hello, _ {name}!"
```

These optional annotations do not affect runtime behavior, serving primarily as documentation and enabling static analysis tools to catch type-related errors before execution.

3.2. Type Inference

Type inference is the process of automatically deducing appropriate type annotations for variables and expressions in a program. In our context, given a Python repository without type annotations, the goal is to infer types that could have been written by developers:

```
# Original untyped

⇒code

def greet(name):

return f"Hello, ...

⇔{name}!"

# After type inference

def greet(name: str)

→-> str:

return f"Hello, ...

⊹{name}!"
```

Here, the return type is str based on the returned value. The parameter name is likely to be str based on the semantic information, since the name of the variable is name and the function is greet.

3.3. Type Stub Files

Python uses .pyi stub files to separate type information from implementation. These files contain only function signatures and type definitions:

```
# greetings.pyi
def greet(name: str) -> str: ...
```

Stub files enable type checking without modifying source files and are commonly used in library distributions to provide type information.

3.4. Static Type Checking

Static type checking verifies type consistency before program execution. Tools like mypy³ analyze code to detect potential type errors, which include but are not limited to: (1) verifying type compatibility in assignments and function calls, (2) checking subtype relationships (e.g., List[int] is a subtype of Sequence[int]), (3) ensuring consistent usage of types across modules. In our example, mypy would detect errors like:

Mypy performs this analysis by constructing a type dependency graph and propagating type constraints through the program, identifying violations of type rules defined in PEP 484 and related specifications.

³https://mypy.readthedocs.io/

Figure 2. Examples of type similarity computation. Left: List-wise comparison for generic types, where arguments are compared in order. Right: Set-wise comparison for Union types, where an optimal matching is computed between members.

4. Metric Design

To effectively evaluate type inference systems, we introduce two complementary metrics: TYPESIM, which measures type prediction quality, and TYPECHECK, which assesses type coherence across codebases.

4.1. Type Similarity

Traditional evaluation methods for type inference rely on exact matching, which fails to capture the nuanced relationships between types. For example, Sequence[int] and Iterable[int] share most functionality but would receive a score of 0 under exact matching, even though both support iteration operations. Similarly, int and float would be considered completely different despite sharing most arithmetic operations. To solve this issue, we propose TYPESIM (Algorithm 1), a continuous similarity metric that considers both functional similarity and structural relationships.

4.1.1. BASE TYPE SIMILARITY

For non-generic types, we compute similarity based on their supported operations and methods. Given two types t and t', their similarity is:

$$s(t,t') = \frac{|attrs(t) \cap attrs(t')|}{|attrs(t) \cup attrs(t')|}$$

where attrs(t) represents the set of methods and operations supported by type t, excluding those common to all types that inherit from object (like __str__ or __init__). We then use the Jaccard index to measure functional similarity, where two types are similar if they share most of the same methods and operations. This approach captures the intuition that types supporting similar operations should be considered similar.

Consider Python's collection types hierarchy as an example:

• Iterable provides __iter__ for iteration, enabling for loops.

- Sequence adds index, count, and length operations to Iterable, supporting indexed access.
- List adds mutable operations like append, extend, pop to Sequence, enabling list modification.

This leads to meaningful similarities: s(Iterable, Sequence) = 0.92 as they share core iteration functionality, while s(Sequence, List) = 0.7 reflects their additional differences in mutability. Similarly, s(int, float) = 0.6 captures their shared arithmetic operations, while s(int, str) = 0.06 reflects their fundamental differences. See Appendix B for the TypeSIM between builtin types.

4.1.2. STRUCTURAL SIMILARITY

ListCompare. For generic types (e.g., List[int], Dict[str, int]), we compute similarity recursively through their type tree structure, as shown in Figure 2. This allows us to handle nested types of arbitrary depth while considering both the container types and their type arguments.

As shown on the left of Figure 2, for non-union types T and T', their similarity is:

$$S(T,T') = \frac{1}{2}(s(root,root') + S_{list}(args(T),args(T'))),$$

where s(root, root') is the base type similarity, and S_{list} (Algorithm 2) compares type arguments in order:

$$S_{list}(L, L') = \frac{\sum_{i \le \min(|L|, |L'|)} S(L_i, L'_i)}{\max(|L|, |L'|)}.$$

For example, comparing List[int] with Sequence[float]:

- Base similarity: s(List, Sequence) = 0.7 (shared sequence operations)
- Argument similarity: S(int, float) = 0.6 (shared numeric operations)
- Overall: $S = \frac{1}{2}(0.7 + 0.6) = 0.65$

We choose to average the similarity of the root and the arguments instead of multiplying them to give more weight to root types. This design aligns with common development practices where developers often annotate only the root type (e.g., List) without specifying arguments, especially during initial typing efforts. For example, when computing

Algorithm 1 TYPESIM

```
Input: types T,T'

if At least one of T,T' is Union then

Return: SetCompare(as\_set(T), as\_set(T'))

end if

score = s(T.root, T'.root)

if Both T,T' have arguments then

score = \frac{1}{2}(score + \textbf{ListCompare}(T.args, T'.args))

else if One of T,T' has arguments then

score = \frac{score}{2}

end if
```

Algorithm 2 ListCompare

Return: score

```
Input: type lists L, L'

// List-wise comparison for generic type arguments S=0

for i=1 to \min(|L|,|L'|) do

S=S+ GetTypeSimilarity(L_i,L_i')

end for

Return: \frac{S}{\max(|L|,|L'|)}
```

 $S({\tt List}, {\tt List[int]})$, while the argument similarity is 0 due to the missing argument, the base similarity is 1 for matching root types. Averaging yields 0.5, acknowledging the partial correctness of the annotation, whereas multiplication would give 0, completely penalizing this common and often acceptable practice in gradual typing.

SetCompare. As shown on the right of Figure 2, we treat union types (e.g., Union[int, str]) as sets of possible types and compute an optimal matching between their members. This approach accounts for unordered union members and allows partial matches.

Given types T and T', where at least one is a union:

$$S(T,T') = S_{set}(as_set(T), as_set(T')),$$

where $as_set(T)$ converts a type to its member set:

$$as_set(T) = \begin{cases} \{T\} & \text{if T is not Union.} \\ \{T.args\} & \text{if T is Union.} \end{cases}$$

 S_{set} (Algorithm 3) finds the optimal matching between members:

$$S_{set}(A, B) = \frac{\sum_{(i,j) \in M} S(A_i, B_j)}{\max(|A|, |B|)}.$$

4.2. Type Consistency

While TYPESIM measures how close the predictions are to human annotations, TYPECHECK evaluates whether the

Algorithm 3 SetCompare

```
Input: type sets A, B

// Set-wise comparison for Union types

for i = 1 to |A| do

for j = 1 to |B| do

c_{ij} = \text{GetTypeSimilarity}(A_i, B_j)

end for

end for

Find optimal matching M using cost matrix C = [c_{ij}]

S = \sum_{(i,j) \in M} c_{ij}

Return: S = \sum_{\text{max}(|A|,|B|)} S
```

predicted types form a coherent system across the codebase. Since type annotations serve not only as documentation but also as a mechanism for early error detection and code maintenance, it is crucial that predicted types work together consistently across the entire codebase.

We use the number of mypy errors as a proxy for type consistency because these errors directly reflect what developers would need to fix before the type annotations become practically useful. For example, if a function is predicted to return List[int] but is used in a context expecting List[str], this inconsistency would prevent effective static type checking and IDE support – two key benefits of type annotations. Specifically, we focus on meaningful type errors that affect code correctness, such as incompatible return types and invalid argument types. These errors indicate real issues that would hinder code maintenance and refactoring. A complete list of counted error types is provided in Appendix C.2.

5. Dataset Curation

We curate a benchmark dataset containing 50 popular Python repositories from GitHub and PyPI to evaluate type inference capabilities. The dataset construction involves two key steps: repository selection and cleaning.

5.1. Repository Selection

We select candidate repositories from GitHub's trending repositories and frequently downloaded PyPI Packages. In the initial filtering stage, we enforce the constraints of a maximum of 1.5M tokens, a minimum of 30 Python files, at least 50% typed functions, and valid mypy configurations to ensure the suitability of type inference evaluation. We then define a quality score as below and rank the candidate repositories by their score:

$$S = \alpha S_{\text{coverage}} + \beta S_{\text{popularity}} + \gamma S_{\text{complexity}},$$

where S_{coverage} measures the percentage of typed functions, $S_{\text{popularity}}$ is calculated from the number of GitHub stars

Algorithm 4 Type Removal Process **Input:** Repository R with typed Python files **Output:** Repository R' with types removed **for** each Python file $f \in R$ **do** Parse AST of f to locate type annotations **for** each function/variable declaration d **do** if d has type annotation t then Remove t from d in f {e.g., def foo(x: int) \rightarrow def foo(x)end if if the docstring c contains type hint for the function arguments or returns (or variable annotations) then Remove the type hint end if end for Save modified file to R'end for Return: R'

Table 1. The total number of tokens, functions, and variables to be inferred for different splits.

	# Repos	# Tokens	# Functions	# Cases
Train	20	8403760	31161	59966
Validation	10	4037666	13988	20177
Test	20	4983025	25101	46166

and PyPI downloads, and $S_{\rm complexity}$ considers the depth and variety of type annotations. The top 50 repositories with the highest candidate scores are selected into the dataset.

5.2. Repository Cleaning

To ensure the best quality of type inference evaluation, we remove non-Python files, testing files, and irrelevant files, to only keep the Python files in the source folder containing the main functionality. To ensure the quality of type annotations, we run mypy check on the original repository, and manually resolve errors that stop the check from running.

After initial cleaning, as illustrated in Figure 1, we remove type annotations using scripts while preserving code functionality to create input and ground truth pairs for evaluation. The type removal algorithm handles function signatures, and variable declarations as shown in Algorithm 4.

To maximize consistency and similarity with the original repository, every single part of each Python program is kept unchanged except for the type annotation. We rebuild each processed repository to ensure that the modified code remains syntactically valid and the runtime behaviors are preserved.

Figure 3. Distribution of repository categories in our benchmark dataset, showing coverage across major Python application domains.

5.3. Benchmark Statistics

To facilitate the potential evaluation of learning-based methods, we split the 50 repositories into Train/Validation/Test splits, with 20/10/20 repositories correspondingly. The 20 test repositories are selected and further split into two sets with 10 repositories each based on the date created to estimate the level of data contamination.

Table 1 summarizes the number of tokens, functions, and variables to be inferred for different splits. We also depict the diversity of TYPYBENCH in Figure 3 by classifying the repositories into domains spanning Developer Tools, ML/AI, Web/API, and Security. For more comprehensive details about each repository, please refer to Appendix A.

6. Experiments

In this section, we conduct comprehensive experiments to answer the following key questions:

- Model Readiness: How well do current LLMs perform on type inference? Are SOTA models ready for production use on untyped repositories? What are their key limitations? Does a longer context length help mitigate the limitations?
- Metric Effectiveness: How do our proposed TYPE-SIM and TYPECHECK metrics compare to traditional exact matching? What additional insights do they provide?
- Performance Factors: How do factors like type complexity and repository age affect model performance?
 What do these patterns reveal about LLMs' type inference capabilities?

Figure 4. Comparison of TYPESIM and TYPECHECK metrics across models. SOTA models (CLAUDE-3.5-SONNET, DEEPSEEK-V3, GPT-40, GPT-40-MINI, and GROK-2) achieve similar high TYPESIM scores while varying in TYPECHECK, showing TYPECHECK's additional discriminative power. Small local-hosted models (LLAMA-3-8B, LLAMA-3.1-8B, QWEN-2.5-7B) perform poorly.

6.1. Experimental Setup

We evaluate type inference capabilities across a diverse set of SOTA LLMs, including API-accessed models and local-hosted small models. The API-based LLMs include GPT-40, GPT-40-MINI (Achiam et al., 2023), CLAUDE-3.5-SONNET (Anthropic, 2024), DEEPSEEK-V2.5, DEEPSEEK-V3 (Liu et al., 2024a), and GROK-2 (XAI, 2024). For local-hosted models, we evaluate popular models including LLAMA-3-8B, LLAMA-3.1-8B (Dubey et al., 2024), and QWEN-2.5-7B (Yang et al., 2024).

While our benchmark provides train/validation/test splits for future learning-based methods, we evaluate pre-trained LLMs on all repositories since fine-tuning is not performed on the training set. We separately analyze potential pre-training data contamination through temporal analysis (Section 6.3).

Since most repositories contain more number of tokens than the context length of most LLMs, LLMs are tested in a file-by-file method, where we require LLMs to infer the .pyi stub file from the type-removed file with the same prompt (see Figure 9 and Appendix C for more details).

6.2. Main Evaluation Analysis

As shown in Table 2, our analysis reveals both promising advances and concerning limitations in LLM-based type inference. While SOTA models achieve decent TYPESIM scores around 0.80, their non-negligible missing rates suggest systematic limitations in stably generating correct stub files. Moreover, as illustrated in Figure 4, the TYPECHECK metric reveals an interesting pattern in model consistency. While most models struggle with type checking, CLAUDE-3.5-SONNET is the best one to keep the type predictions consistent despite not having the highest TYPESIM. It is worth noting that CLAUDE-3.5-SONNET achieves a better

Table 2. Average TYPESIM and TYPECHECK scores of all repositories for various models. CLAUDE-3.5-SONNET shows the best TYPECHECK score while top models share similar TYPESIM scores. The ground truth has a TYPECHECK score of 141.8.

Model	ТүреСнеск↓	TypeSim ↑	TYPESIM WO MISSING ↑	Missing rate↓
LLAMA-3-8B	187.5	0.363	0.731	0.508
LLAMA-3.1-8B	465.7	0.603	0.804	0.261
QWEN-2.5-7B	411.0	0.604	0.787	0.238
GPT-40	366.0	0.804	0.893	0.099
GPT-4O-MINI	310.6	0.789	0.893	0.116
CLAUDE-3.5-SONNET	127.1	0.788	0.893	0.119
DEEPSEEK-V2.5	328.7	0.754	0.907	0.169
DEEPSEEK-V3	214.6	0.795	0.897	0.115
GROK-2	190.1	0.787	0.903	0.129

overall TYPECHECK score than the ground truth (141.8 errors on average), though it still performs worse than the ground truth on 29 repositories. This consistency could be particularly valuable when humans need to fix the type-checking errors manually.

6.3. Factors Analysis

Impact of Type Complexity. We first compare TYPESIM with exact match metrics for types with different depths. Table 3 reveals an increasingly widening gap at higher depths. While both metrics show declining trends, exact match scores drop more precipitously – nearly vanishing for types of depth 3 and above. In contrast, TYPESIM still captures semantically valid predictions that would be completely rejected by exact matching. This demonstrates TYPESIM's value in providing more nuanced evaluation, particularly for complex types where multiple valid type annotations may exist. As shown in Figure 5, model performance consistently slightly degrades as type complexity increases with increased variance. Even SOTA models struggle with deeper nested types (depth > 2), suggesting that

			TYPESIM ↑			Exact Match ↑				
Model	DEPTH1	DEРТН2	ДЕРТН3	DEPTH4	DEРТН5	DEPTH1	DEРТН2	ДЕРТН3	DEРТН4	DEРТН5
LLAMA-3-8B LLAMA-3.1-8B QWEN-2.5-7B	0.415 0.635 0.658	0.271 0.555 0.525	0.235 0.499 0.475	0.209 0.478 0.443	0.136 0.454 0.438	0.406 0.610 0.640	0.197 0.427 0.420	0.113 0.279 0.277	0.056 0.201 0.191	0.023 0.118 0.113
GPT-40 GPT-40-MINI CLAUDE-3.5-SONNET DEEPSEEK-V2.5 DEEPSEEK-V3 GROK-2	0.822 0.813 0.801 0.771 0.809 0.802	0.775 0.747 0.768 0.722 0.769 0.757	0.753 0.703 0.746 0.697 0.747 0.737	0.733 0.721 0.749 0.627 0.702 0.710	0.776 0.705 0.746 0.676 0.708 0.743	0.792 0.782 0.769 0.745 0.774 0.771	0.653 0.616 0.652 0.609 0.644 0.642	0.497 0.420 0.517 0.462 0.483 0.496	0.417 0.370 0.427 0.320 0.397 0.387	0.350 0.209 0.303 0.218 0.295 0.274
AVERAGE DIFF	0.725	0.654	0.621	0.597	0.598	0.699 - 0.026	0.540 - 0.114	0.394 - 0.228	0.307 - 0.289	0.211 - 0.387

Table 3. Compare TYPESIM and exact match by type depth, the difference increases with depth.

Figure 5. TYPESIM scores v.s. type complexity. Models achieve consistent high scores for simple types (depths 1) but show degraded performance and increased variance for more complex types (depths 2+).

complex type inference remains a significant challenge in some cases.

Impact of Type Frequency. As pointed out in previous work (Allamanis et al., 2020), predicting rare types that are less frequent in the repository is a challenge. As shown in Table 2, we still observe a gap between the TYPESIM scores on all types and the scores on rare types, but the gap is not that large overall. However, when it comes to specific repositories, as shown in Figure 6, the drop is significant in many repositories, indicating predicting rare types is still challenging for LLMs. An interesting observation is that TYPESIM on rare types could also be higher than the overall TYPESIM in a minority of repositories.

Impact of Repo-Level Context. To reduce the TYPE-CHECK errors in the predicted types, the most straightfor-

Figure 6. Overall TYPESIM scores v.s. TYPESIM scores on rare types. A Scatter plot of average TYPESIM score on rare types and all types for each repository. A clear drop on the score is observed on 40 out of 50 repositories (under the red line).

ward way is to use the whole repository as the context given to LLMs. However, this approach faces two major challenges, long context length and long output length, due to the size of the whole repository. Nevertheless, we tested this approach with GPT-40 on 3 repositories with total number of tokens smaller than 64k. As shown in Table 4, the TYPECHECK errors do decrease significantly with the whole repository context, with the cost of worse TYPESIM scores, potentially due to harder to exact the correct information from the long context and harder to generate all the predictions in the correct format. This suggests that more context is helpful for enhancing the type consistency, but the long input and output challenges need to be addressed.

Impact of Data Contamination. As observed in previous work (Roberts et al., 2023), data contamination is a potential issue when evaluating the performance of LLMs. To verify

Table 4. Comparision between full repo context and single file context with GPT-40. The TYPECHECK errors decrease significantly with the whole repository context, but the TYPESIM scores also decrease significantly on some repositories.

		FUL	L REPO	SINGLE FILE		
MODEL	REPO	TYPESIM ↑	ТүреСнеск \downarrow	TYPESIM ↑	ТүреСнеск ↓	
	GPTME	0.966	15	0.877	84	
GPT-40	PRIVATE-GPT	0.601	4	0.855	17	
	SCREENSHOT-TO-CODE	0.696	0	0.915	6	

Figure 7. TYPESIM scores v.s. repository creation dates. Better performance observed on older repositories (pre-2024 avg: 0.705) compared to newer ones (2024+ avg: 0.649), indicating potential data contamination effects.

this, we compare the TYPESIM scores of repositories created in different years. As shown in Figure 7, the TYPESIM scores of repositories created in 2024 and after are lower than that of repositories created before 2024, suggesting potential data contamination effects. So we suggest that future work should use the test set that contains relatively recent repositories when comparing the performance of different models, and we include the results of the test set in Table 8 in Appendix D.

7. Conclusion

We present TYPYBENCH, a comprehensive benchmark for evaluating LLMs' Python type inference capabilities. Our evaluation reveals that while SOTA models achieve promising TYPESIM scores, they still face significant challenges: poor handling of complex nested types, and substantial type consistency errors. The proposed TYPESIM and TYPECHECK metrics provide complementary insights, with TYPESIM capturing semantically valid predictions and TYPECHECK revealing critical consistency issues. The experimental finding suggests that the focus of type inference should turn to the repo-level consistency since the similarity is already high. We further find that increased context length improves type consistency but creates challenges in handling long inputs and outputs, suggesting the need for more efficient context handling mechanisms. We hope

TYPYBENCH will facilitate progress in LLM-based type inference by providing a standardized evaluation framework and highlighting key areas for improvement.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning and Software Engineering. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

Acknowledgments

We thank Jialiang Sun for his valuable contributions to data collection and curation, Shiwen Wu for her insightful discussion, and Chris J. Maddison for his support on this project. This research project has benefitted from the Microsoft Accelerate Foundation Models Research (AFMR) grant program.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typilus: Neural type hints. In *Proceedings of the 41st acm sigplan conference on programming language design and implementation*, pp. 91–105, 2020.

Anthropic. Claude 3.5 sonnet, 2024. Available at: https://www.anthropic.com/news/claude-3-5-sonnet.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33: 1877–1901, 2020.

Cassano, F., Yee, M.-H., Shinn, N., Guha, A., and Holtzen, S. Type prediction with program decomposition and fillin-the-type training, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

Dong, H., Su, Q., Gao, Y., Li, Z., Ruan, Y., Pekhimenko, G., Maddison, C. J., and Si, X. Appl: A prompt programming language for harmonious integration of programs and large language model prompts. *arXiv preprint arXiv:2406.13161*, 2024.

- Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A., et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Hellendoorn, V. J., Bird, C., Barr, E. T., and Allamanis, M.
 Deep learning type inference. In *Proceedings of the 2018*26th acm joint meeting on european software engineering conference and symposium on the foundations of software engineering, pp. 152–162, 2018.
- Instagram. Monkeytype: A python library that
 generates static type annotations by collecting runtime types. https://github.com/Instagram/
 MonkeyType.
- Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T., Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Livecodebench: Holistic and contamination free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.
- Jesse, K., Devanbu, P. T., and Ahmed, T. Learning type annotation: Is big data enough? In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1483–1486, 2021.
- Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press, O., and Narasimhan, K. R. Swe-bench: Can language models resolve real-world github issues? In *The Twelfth International Conference on Learning Representations*, 2024.
- Lehtosalo, J., van Rossum, G., Levkivskyi, I., and Sullivan, M. J. mypy. http://mypy-lang.org/. Available at http://mypy-lang.org/.
- Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., et al. Deepseekv3 technical report. arXiv preprint arXiv:2412.19437, 2024a.
- Liu, T., Xu, C., and McAuley, J. Repobench: Benchmarking repository-level code auto-completion systems. In *The Twelfth International Conference on Learning Representations*, 2024b.
- Malik, R. S., Patra, J., and Pradel, M. Nl2type: Inferring javascript function types from natural language information. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 304–315. IEEE, 2019.
- Microsoft. Pyright: Static type checker for python. https://github.com/microsoft/pyright.

- Mir, A. M., Latoškinas, E., and Gousios, G. Manytypes4py: A benchmark python dataset for machine learning-based type inference. In 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pp. 585–589. IEEE, 2021.
- Peng, Y., Wang, C., Wang, W., Gao, C., and Lyu, M. R. Generative type inference for python. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 988–999. IEEE, 2023.
- Pradel, M., Gousios, G., Liu, J., and Chandra, S. Typewriter: Neural type prediction with search-based validation. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 209–220, 2020.
- Raychev, V., Vechev, M., and Krause, A. Predicting program properties from" big code". *ACM SIGPLAN Notices*, 50 (1):111–124, 2015.
- Roberts, M., Thakur, H., Herlihy, C., White, C., and Dooley, S. Data contamination through the lens of time. *arXiv preprint arXiv:2310.10628*, 2023.
- Shivarpatna Venkatesh, A. P., Sabu, S., Wang, J., M. Mir, A., Li, L., and Bodden, E. Typeevalpy: A microbenchmarking framework for python type inference tools. In *Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings*, pp. 49–53, 2024.
- Wang, Y., Wang, Y., Wang, S., Guo, D., Chen, J., Grundy, J., Liu, X., Ma, Y., Mao, M., Zhang, H., et al. Repotransbench: A real-world benchmark for repository-level code translation. *arXiv preprint arXiv:2412.17744*, 2024.
- Wei, J., Goyal, M., Durrett, G., and Dillig, I. Lambdanet: Probabilistic type inference using graph neural networks. In *International Conference on Learning Representations*, 2020.
- Wei, J., Durrett, G., and Dillig, I. Typet5: Seq2seq type inference using static analysis. In *The Eleventh International Conference on Learning Representations*, 2023.
- XAI. Grok-2 beta release, 2024. Available at: https://x.ai/blog/grok-2.
- Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.
- Zhuo, T. Y., Vu, M. C., Chim, J., Hu, H., Yu, W., Widyasari, R., Yusuf, I. N. B., Zhan, H., He, J., Paul, I., et al. Bigcodebench: Benchmarking code generation with diverse function calls and complex instructions. arXiv preprint arXiv:2406.15877, 2024.

A. Repository Information

The statistics of all repositories are shown in Table 5. We use the tokenizer tiktoken_cll00k_base to count the number of tokens.

A.1. TypeCheck Results

Table 6 shows the results of running mypy check in the original repository for all repositories (except the ones are slow running mypy). We still include some repositories that have a few mypy errors making room for improvement.

B. Basic Type Similarities

We illustrate the TYPESIM between builtin types in Figure 8, and list the TYPESIM scores for some similar types in Table 7.

Figure 8. TYPESIM scores between builtin types.

C. Experimental Settings

We use Python version 3.12 and Mypy version 1.11.1 for all our experiments. For API models with multiple versions, we use GPT-40-2024-08-06, GPT-40-MINI-2024-07-18, CLAUDE-3-5-SONNET-20240620, GROK-2-1212, and DEEPSEEK-V3 (12-26 VERSION).

We use APPL (Dong et al., 2024) to implement the evaluation for LLMs.

C.1. Prompt

Figure 9 illustrates the prompt used for single-file type inference in our experiment. The prompt includes a Python file along with its corresponding .pyi file as an example. Additionally, it specifies the expected answer format and emphasizes that the generated output must be free of syntax errors.

Table 5. The statistics of all repositories in TYPYBENCH, including the total number of tokens, functions, variables to be inferred, the ratio of functions being annotated, the category, and the date created. The test sets are further split into two test1 and test2 based on the date created to test the data contamination issue.

REPOSITORY	# Tokens	# Func	# CASES	FUNC. ANNOT.	AVG Depth	CATEGORY	Date Createi
			Tr	AIN			
PRE-COMMIT-HOOKS	16268	105	810	1.00	1.57	DEVELOPER TOOLS	2014/03/13
FLAKE8	34684	209	747	1.00	1.4	DEVELOPER TOOLS	2014/09/13
VNPY	47762	415	909	0.99	1.11	DATA SCIENCE	2015/03/02
GHUNT	63135	284	2185	0.62	1.91	SECURITY	2020/10/02
SPOTIFY-DOWNLOADER	89384	232	2143	0.90	1.32	OTHERS	2016/07/06
DEEPFACE	90831	194	3263	0.57	1.4	OTHERS	2020/02/08
URLLIB3	98963	551	1844	1.00	1.49	DEVELOPER TOOLS	2011/09/18
FASTAPI	137361	307	1983	0.93	1.7	WEB/API	2018/12/08
POETRY	153087	1022	3556	1.00	1.32	DEVELOPER TOOLS	2018/02/28
HAYSTACK	209305	775	2035	0.87	1.57	ML/AI	2019/11/14
RICH	244573	948	518	0.95	1.21	DEVELOPER TOOLS	2019/11/10
PYDANTIC	359486	1780	565	0.98	1.26	DEVELOPER TOOLS	2017/05/03
РНІДАТА	552011	1799	2687	0.93	1.23	DEVELOPER TOOLS	2022/05/04
PILLOW	607377	3460	3923	0.99	1.35	DATA SCIENCE	2012/07/24
SPHINX	612272	4647	10285	1.00	1.27	DEVELOPER TOOLS	2015/01/02
FACESWAP	732572	3352	441	0.75	1.46	OTHERS	2017/12/19
STREAMLIT	806972	3236	3991	0.83	1.34	WEB/API	2019/08/24
GRADIO	874060	1845	1400	0.62	1.88	WEB/API	2018/12/19
PIP	1176602	5369	4789	0.62	1.36	DEVELOPER TOOLS	2011/03/06
BLACK	1497055	631	11892	0.99	1.28	DEVELOPER TOOLS	2018/03/14
			VALID	ATION			
TYPER	38236	167	1588	0.96	1.16	DEVELOPER TOOLS	2019/12/24
PRE-COMMIT	50380	345	2391	1.00	1.42	DEVELOPER TOOLS	2014/03/13
FLASK	73148	364	834	1.00	1.51	WEB/API	2010/04/06
PDM	172537	1291	532	0.98	1.37	DEVELOPER TOOLS	2019/12/27
MANIM	179218	1733	415	0.82	1.29	DATA SCIENCE	2020/05/19
NICEGUI	206638	1217	6018	0.98	1.09	WEB/API	2021/05/07
OPENAI-PYTHON	274146	1085	263	1.00	1.35	ML/AI	2020/10/25
TAIPY	403846	2356	2064	0.75	1.41	WEB/API	2022/02/18
OPENBB	1290501	3771	3137	0.70	1.8	DATA SCIENCE	2020/12/20
CAPA	1349016	1659	2935	0.64	1.53	SECURITY	2020/06/16
			TE	ST1			
PRIVATE-GPT	45562	197	257	0.98	1.36	ML/AI	2023/05/02
GPTME	58715	319	512	0.79	1.51	ML/AI	2023/03/24
PAPER-QA	73284	353	764	0.95	1.64	ML/AI	2023/02/05
PANDAS-AI	127754	996	1145	0.66	1.21	ML/AI	2023/04/22
SUPERVISION	150793	505	1101	0.90	1.49	DATA SCIENCE	2022/11/28
GPT4FREE	168395	679	808	0.76	1.11	ML/AI	2023/03/29
AUTOGPT	306046	1797	2235	0.78	1.34	ML/AI	2023/03/16
MLC-LLM	384359	1698	3182	0.83	1.25	ML/AI	2023/04/29
DB-GPT	817402	5329	9732	0.82	1.26	ML/AI	2023/04/13
VLLM	1037766	5271	12064	0.88	1.22	ML/AI	2023/02/09
			TE	sт2			
SCREENSHOT-TO-CODE	44482	60	102	0.73	1.58	OTHERS	2023/11/14
EXO	69991	406	721	0.61	1.28	OTHERS	2024/06/24
TEN-AGENT	71448	412	1076	0.76	1.07	OTHERS	2024/06/19
GPT-PILOT	94918	516	1101	0.82	1.19	ML/AI	2023/08/16
APPWORLD	156441	1125	2185	0.90	1.42	OTHERS	2024/06/23
AGENTS	156679	966	1956	0.88	1.14	OTHERS	2023/10/19
LEROBOT	183740	612	1068	0.57	1.69	OTHERS	2024/01/26
LLAMA-FACTORY	194043	520	1778	0.88	1.52	ML/AI	2023/05/28
COMPOSIO	345846	1059	1963	0.90	1.44	DATA SCIENCE	2024/02/23
UNSTRACT	495361	2281	2416	0.89	1.13	DATA SCIENCE	2024/02/21

Table 6. Repositories and their TypeCheck Errors. The repositories with slow mypy speed are reported with N/A.

Train		Dev	Dev Test1		Test2		
Repo	Errors	Repo	Errors	Repo	Errors	Repo	Errors
pre-commit-hooks	0	pre-commit	0	gptme	0	screenshot-to-code	0
flake8	0	flask	0	private-gpt	14	composio	0
urllib3	0	nicegui	2	paper-qa	24	agents	6
haystack	0	typer	4	AutoGPT	48	unstract	62
rich	0	OpenBB	4	mlc-llm	63	TEN-Agent	87
black	0	openai-python	8	supervision	136	exo	89
fastapi	1	taipy	52	pandas-ai	452	LLaMA-Factory	182
Pillow	1	pdm	76	vllm	466	gpt-pilot	332
poetry	2	capa	151	gpt4free	795	lerobot	N/A
spotify-downloader	9	manim	N/A	DB-GPT	1222	appworld	N/A
faceswap	11						
streamlit	13						
deepface	24						
phidata	34						
vnpy	137						
pip	165						
sphinx	218						
pydantic	339						
GHunt	589						
gradio	846						
Average	119.45	Average	33.0	Average	322.0	Average	94.75

Table 7. A list of similar type pairs. It can be seen that the TYPESIM score reasonably exhibits the similarity between the two types.

Original	Predicted	TypeSim
list[Any] None	list[str] None	0.75
dict[Any, Any] None	dict[str, Any] None	0.875
dict[str, tuple[Any,]] None	dict[str, tuple[int,]] None	0.9375
Any dict[str, dict[Any, Any]]	Any dict[str, Any]	0.875
<pre>dict[str, list[int]]</pre>	<pre>dict[str, Union[tuple[int,], Any]]</pre>	0.8385
<pre>float np.ndarray[Any, Any]</pre>	np.ndarray[Any, Any]	0.5
pathlib.Path None	str pathlib.Path None	0.6667

Figure 10 illustrates the prompt used for full-repo context type inference in our experiment. We first input the structure of the repository and followed by the content of the source code. Additionally, we specifies the expected answer and path format.

C.2. TYPECHECK Score Calculation

We classify the following Mypy error types as indicators of consistency score: attr-defined, assignment, arg-type, union-attr, and index.

D. Supplementary Experimental Results

D.1. Results on Test Set

We further summarize the results for the test set in Table 8.

Figure 9. Prompt Template for Single File Context

Figure 10. Prompt Template for Whole Repo Context

D.2. Results for Each Model

We present the detailed results in Table 9 - 17 for each model on all repositories.

Table 8. Average TYPESIM scores and TYPECHECK scores of the repositories in the test set for various models.

MODEL	Түре C не c к \downarrow	TypeSim \uparrow	TYPESIM WO MISING ↑	Missing rate \downarrow
LLAMA-3-8B	150.6	0.396	0.747	0.470
LLAMA-3.1-8B	400.2	0.634	0.815	0.225
QWEN-2.5-7B	405.7	0.649	0.817	0.207
GPT-40	367.9	0.787	0.883	0.108
GPT-40-MINI	251.7	0.779	0.882	0.117
CLAUDE-3.5-SONNET	173.3	0.790	0.876	0.098
DEEPSEEK-V2.5	301.4	0.748	0.893	0.161
DEEPSEEK-V3	192	0.793	0.889	0.107
GROK-2	199.5	0.769	0.885	0.131

Table 9. TYPECHECK and TYPESIM scores for GPT-40 on each repository.

REPO	Түре	Түре	TypeSim	Missing		TYP	ESIM BY DE	ЕРТН	
KEFO	Снеск	SIM	WO MISSING	RATIO	D EPTH1	DEPTH2	ДЕРТН3	ДЕРТН4	DEPTH5
AGENTS	202	0.774	0.883	0.123	0.766	0.814	0.694	0.000	
APPWORLD	N/A	0.835	0.897	0.068	0.876	0.747	0.729	0.742	1.000
AUTOGPT	235	0.755	0.801	0.057	0.746	0.786	0.728	0.794	0.809
BLACK	131	0.807	0.898	0.101	0.822	0.771	0.692	0.888	
CAPA	546	0.883	0.902	0.021	0.922	0.786	0.781	0.817	
COMPOSIO	107	0.646	0.665	0.029	0.602	0.722	0.819	0.908	
DB-GPT	2482	0.803	0.874	0.081	0.808	0.792	0.822	0.790	0.781
DEEPFACE	4	0.898	0.963	0.068	0.886	0.940	0.875	0.990	1.000
EXO	66	0.746	0.928	0.196	0.729	0.810	0.666	0.875	0.750
FACESWAP	67	0.829	0.973	0.149	0.863	0.745	0.595	0.600	0.737
FASTAPI	290	0.810	0.876	0.075	0.893	0.746	0.782	0.917	0.930
FLAKE8	16	0.793	0.936	0.153	0.824	0.720	0.765	1.000	
FLASK	70	0.876	0.931	0.059	0.903	0.863	0.576	0.424	
GHUNT	1	0.755	0.860	0.122	0.734	0.732	0.975	0.997	
GPT-PILOT	267	0.813	0.885	0.082	0.828	0.812	0.692	0.851	
GPT4FREE	413	0.835	0.898	0.071	0.873	0.691	0.695	0.965	
GPTME	84	0.877	0.926	0.053	0.875	0.869	0.963	0.705	0.984
GRADIO	1161	0.655	0.836	0.216	0.715	0.629	0.546	0.457	0.709
HAYSTACK	335	0.692	0.910	0.239	0.675	0.696	0.755	0.437	0.707
LEROBOT	N/A	0.785	0.903	0.131	0.778	0.806	0.761	0.730	0.892
LLAMA-FACTORY	168	0.820	0.903	0.092	0.858	0.740	0.789	0.783	1.000
MANIM	N/A	0.835	0.943	0.072	0.887	0.691	0.562	0.573	0.000
MLC-LLM	59	0.739	0.919	0.114	0.692	0.874	0.858	0.886	0.742
NICEGUI	426	0.828	0.863	0.170	0.844	0.786	0.726	0.871	0.403
OPENAI-PYTHON	434	0.626	0.783	0.110	0.744	0.633	0.720	0.167	0.403
OPENBB	45	0.840	0.783	0.020	0.744	0.853	0.791	0.775	0.963
PANDAS-AI	209	0.729	0.787	0.020	0.737	0.833	0.663	0.776	1.000
PAPER-QA	143	0.729	0.787	0.073	0.737	0.731	0.726	0.776	0.943
PDM	380	0.880	0.932	0.041	0.911	0.840	0.720	0.823	0.943
PHIDATA	1333	0.883	0.895	0.030	0.920	0.773	0.734	0.839	0.818
PILLOW	217	0.883	0.877	0.014	0.754	0.611	0.514	0.770	0.323
	976	0.713	0.936		0.754	0.720	0.686	0.330	0.323
PIP	970	0.864	0.930	$0.128 \\ 0.097$	0.831	0.720	0.663	0.709	0.857
POETRY	33	0.864			0.909	0.742	0.663	0.431	0.938
PRE-COMMIT		0.900	0.910 0.942	0.011	0.910	0.872	0.931		
PRE-COMMIT-HOOKS	1 17	0.942	0.942	0.000	0.934	0.943	0.973		
PRIVATE-GPT	1143	0.833	0.924	0.075	0.846	0.886	0.801	0.701	0.000
PYDANTIC				0.081					0.000
RICH	45	0.785	0.957	0.179	0.794	0.756	0.688	0.969	
SCREENSHOT-TO-CODE	6	0.915	0.915	0.000	1.000	0.847	0.611	1.000	0.500
SPHINX	1668	0.643	0.836	0.231	0.631	0.708	0.718	0.697	0.588
SPOTIFY-DOWNLOADER	59	0.876	0.911	0.039	0.887	0.837	0.947	0.913	
STREAMLIT	29	0.804	0.882	0.089	0.807	0.708	0.941	0.051	0.015
SUPERVISION	47	0.872	0.971	0.102	0.865	0.876	0.900	0.851	0.917
TAIPY	804	0.742	0.883	0.159	0.779	0.671	0.706	0.787	0.875
TEN-AGENT	113	0.698	0.833	0.163	0.683	0.776	0.720	0.802	
TYPER	94	0.701	0.937	0.252	0.761	0.625	0.617	0.000	
UNSTRACT	251	0.812	0.867	0.064	0.827	0.788	0.779	0.475	
URLLIB3	117	0.819	0.901	0.091	0.877	0.723	0.749	0.962	1.000
VLLM	1770	0.759	0.885	0.143	0.764	0.758	0.704	0.681	0.972
VNPY	46	0.907	0.909	0.002	0.904	0.933	0.976	0.583	

Table 10. TYPECHECK and TYPESIM scores for GPT-40-MINI on each repository.

REPO	Түре	Түре	TYPESIM	MISSING		TYP	ESIM BY DE	РТН	
KEFO	Снеск	SIM	WO MISSING	RATIO	D EPTH1	DEPTH2	ДЕРТН3	D EРТН4	ДЕРТН5
AGENTS	53	0.756	0.887	0.148	0.751	0.793	0.599	0.000	
APPWORLD	N/A	0.571	0.921	0.380	0.626	0.429	0.512	0.496	1.000
AUTOGPT	77	0.786	0.848	0.073	0.802	0.763	0.687	0.679	0.807
BLACK	157	0.731	0.881	0.171	0.759	0.635	0.615	0.913	
CAPA	332	0.762	0.806	0.055	0.793	0.732	0.644	0.817	
COMPOSIO	98	0.732	0.779	0.061	0.738	0.724	0.663	0.983	
DB-GPT	2033	0.815	0.886	0.080	0.819	0.809	0.815	0.803	0.818
DEEPFACE	9	0.894	0.949	0.058	0.898	0.898	0.876	0.990	0.688
EXO	74	0.730	0.901	0.190	0.713	0.783	0.699	0.859	0.719
FACESWAP	91	0.835	0.978	0.146	0.867	0.755	0.632	0.583	0.571
FASTAPI	722	0.777	0.861	0.098	0.872	0.725	0.688	0.824	0.922
FLAKE8	28	0.776	0.923	0.159	0.837	0.656	0.501	1.000	
FLASK	19	0.784	0.922	0.150	0.833	0.704	0.565	0.236	
GHUNT	0	0.750	0.854	0.122	0.735	0.717	0.966	0.944	
GPT-PILOT	66	0.866	0.907	0.045	0.895	0.849	0.712	0.942	
GPT4FREE	341	0.796	0.886	0.102	0.836	0.643	0.655	0.975	
GPTME	28	0.888	0.917	0.031	0.897	0.860	0.888	0.776	0.984
GRADIO	1088	0.629	0.834	0.246	0.684	0.612	0.510	0.397	0.580
HAYSTACK	448	0.707	0.915	0.227	0.694	0.699	0.799	0.660	0.000
LEROBOT	N/A	0.752	0.896	0.160	0.767	0.777	0.623	0.577	0.892
LLAMA-FACTORY	119	0.802	0.865	0.074	0.834	0.751	0.709	0.738	0.994
MANIM	N/A	0.799	0.926	0.137	0.849	0.670	0.450	0.502	0.000
MLC-LLM	124	0.730	0.919	0.207	0.681	0.878	0.817	0.748	0.756
NICEGUI	318	0.831	0.898	0.075	0.859	0.741	0.683	0.862	0.482
OPENAI-PYTHON	633	0.726	0.807	0.100	0.704	0.760	0.691	0.500	0.102
OPENBB	277	0.898	0.914	0.018	0.881	0.700	0.774	0.809	0.946
PANDAS-AI	170	0.731	0.804	0.010	0.732	0.760	0.623	0.786	1.000
PAPER-OA	21	0.811	0.881	0.080	0.850	0.769	0.741	0.863	0.948
PDM	230	0.859	0.909	0.055	0.030	0.707	0.640	0.642	0.540
PHIDATA	1552	0.899	0.916	0.033	0.950	0.829	0.822	0.729	0.768
PILLOW	218	0.720	0.918	0.016	0.772	0.561	0.527	0.723	0.766
PIP	718	0.768	0.928	0.210	0.801	0.673	0.624	0.717	0.835
POETRY	67	0.768	0.928	0.173	0.907	0.712	0.561	0.513	0.835
PRE-COMMIT	19	0.879	0.900	0.101	0.907	0.712	0.881	0.515	0.623
PRE-COMMIT-HOOKS	12	0.905	0.905	0.024	0.920	0.730	0.808		
PRIVATE-GPT	79	0.903	0.905	0.000	0.920	0.930	0.690		
PYDANTIC	765	0.699	0.879	0.204	0.829	0.594	0.620	0.472	0.000
RICH	86	0.742	0.879	0.204	0.749	0.594	0.620	0.719	0.000
SCREENSHOT-TO-CODE	3	0.742	0.927	0.200	0.760	0.855	0.616	1.000	
SPHINX	1157	0.903	0.808	0.000	0.622	0.635	0.610	0.475	0.525
SPOTIFY-DOWNLOADER	52	0.837	0.902	0.227	0.822	0.860	0.027	0.473	0.323
STREAMLIT	21	0.837	0.902	0.073	0.820	0.763	0.919	0.936	
SUPERVISION	56	0.796	0.932	0.000	0.848	0.703	0.726	0.854	0.301
TAIPY	704	0.760	0.878	0.173	0.809	0.727	0.720	0.834	0.813
TEN-AGENT	28	0.716	0.838	0.134	0.809	0.743	0.712	0.784	0.013
	132	0.716	0.838	0.143	0.713	0.743	0.840	0.383	
TYPER	91	0.902 0.807	0.932	0.032	0.955	0.830	0.840	0.958	
UNSTRACT	91 70	0.807							1 000
URLLIB3			0.909	0.097	0.876	0.737	0.727	0.655	1.000
VLLM	1136	0.677	0.874	0.226	0.671	0.710	0.605	0.521	0.394
VNPY	75	0.934	0.934	0.000	0.931	0.933	0.973	1.000	

Table 11. TYPECHECK and TYPESIM scores for CLAUDE-3.5-SONNET on each repository.

REPO	Түре	Түре	TypeSim	MISSING		Түрі	ESIM BY DE	ЕРТН	
REIO	СНЕСК	SIM	WO MISSING	RATIO	DEPTH1	DEPTH2	ДЕРТН3	ДЕРТН4	DEPTH5
AGENTS	21	0.646	0.852	0.242	0.643	0.673	0.514	0.000	
APPWORLD	N/A	0.660	0.927	0.287	0.725	0.502	0.584	0.512	0.000
AUTOGPT	60	0.769	0.856	0.102	0.749	0.821	0.793	0.752	0.604
BLACK	14	0.767	0.925	0.171	0.785	0.741	0.531	0.888	
CAPA	61	0.887	0.915	0.031	0.898	0.836	0.879	0.821	
COMPOSIO	12	0.578	0.684	0.155	0.569	0.581	0.634	0.960	
DB-GPT	1767	0.797	0.870	0.084	0.809	0.777	0.809	0.802	0.806
DEEPFACE	10	0.930	0.955	0.027	0.934	0.941	0.886	0.990	1.000
EXO	36	0.825	0.897	0.080	0.810	0.869	0.799	0.984	0.930
FACESWAP	17	0.824	0.965	0.146	0.848	0.770	0.651	0.650	0.571
FASTAPI	137	0.780	0.887	0.120	0.851	0.732	0.770	0.754	1.000
FLAKE8	5	0.830	0.903	0.080	0.858	0.774	0.709	1.000	
FLASK	17	0.889	0.948	0.062	0.909	0.858	0.758	0.757	
GHUNT	11	0.853	0.853	0.000	0.920	0.703	0.975	0.993	
GPT-PILOT	93	0.848	0.886	0.043	0.856	0.848	0.765	0.973	
GPT4FREE	267	0.835	0.887	0.058	0.877	0.690	0.641	0.960	
GPTME	17	0.906	0.915	0.010	0.907	0.891	0.969	0.700	0.984
GRADIO	150	0.722	0.846	0.147	0.774	0.701	0.629	0.518	0.700
HAYSTACK	462	0.726	0.889	0.147	0.708	0.705	0.876	0.788	0.700
LEROBOT	N/A	0.822	0.916	0.103	0.819	0.833	0.788	0.867	0.892
LLAMA-FACTORY	73	0.746	0.874	0.147	0.771	0.697	0.697	0.797	1.000
MANIM	N/A	0.752	0.934	0.195	0.779	0.687	0.560	0.423	0.750
MLC-LLM	8	0.699	0.901	0.173	0.688	0.759	0.576	0.569	0.730
NICEGUI	123	0.806	0.870	0.224	0.822	0.782	0.567	0.843	0.369
OPENAI-PYTHON	187	0.519	0.804	0.355	0.522	0.782	0.603	0.799	0.507
OPENBB	8	0.866	0.875	0.010	0.871	0.871	0.770	0.787	0.967
PANDAS-AI	105	0.759	0.773	0.010	0.800	0.708	0.770	0.787	0.969
PAPER-QA	7	0.830	0.897	0.015	0.860	0.804	0.758	0.907	0.943
PDM	89	0.763	0.870	0.073	0.389	0.692	0.701	0.777	0.545
PHIDATA	339	0.703	0.870	0.122	0.769	0.887	0.701	0.777	0.827
PHIDATA	20	0.754	0.939	0.012	0.776	0.682	0.680	0.522	0.827
PIP	264	0.734	0.910	0.178	0.770	0.725	0.661	0.820	0.857
POETRY	31	0.863	0.921	0.122	0.892	0.723	0.722	0.820	0.825
PRE-COMMIT	4	0.884	0.900	0.102	0.892	0.779	0.722	0.734	0.823
PRE-COMMIT-HOOKS	1	0.884	0.913	0.000	0.884	0.864	0.883		
PRIVATE-GPT	7	0.879	0.914	0.000	0.857	0.934	0.866		
PYDANTIC	433	0.684	0.868	0.070	0.680	0.702	0.675	0.324	0.000
RICH	10	0.760	0.952	0.212	0.760	0.767	0.669	0.324	0.000
	0	0.700	0.932	0.202	0.700	0.707	0.611	1.000	
SCREENSHOT-TO-CODE	178	0.937	0.937	0.000	0.970	0.924	0.725	0.652	0.582
SPHINX	1/8	0.845	0.872			0.704	0.723		0.382
SPOTIFY-DOWNLOADER	5	0.843	0.896	0.057	0.841	0.836	0.937	0.938	
STREAMLIT				0.380	0.530			0.026	0.660
SUPERVISION	26	0.884	0.964	0.084	0.895	0.861	0.896	0.926	0.660
TAIPY	160	0.652	0.887	0.265	0.694	0.574	0.589	0.767	0.563
TEN-AGENT	0	0.799	0.841	0.049	0.801	0.810	0.728	0.531	
TYPER	40	0.674	0.862	0.218	0.713	0.616	0.669	0.000	
UNSTRACT	11	0.803	0.833	0.036	0.814	0.788	0.763	0.525	1 000
URLLIB3	30	0.817	0.927	0.119	0.857	0.734	0.890	0.954	1.000
VLLM	615	0.743	0.891	0.166	0.733	0.774	0.733	0.637	0.797
VNPY	28	0.928	0.928	0.000	0.925	0.930	0.970	1.000	

Table 12. TYPECHECK and TYPESIM scores for DEEPSEEK-V3 on each repository.

REPO	Түре	Түре	TYPESIM	MISSING		Түр	ESIM BY DE	ЕРТН	
KEIO	Снеск	SIM	WO MISSING	RATIO	D EPTH1	ДЕРТН2	ДЕРТН3	ДЕРТН4	ДЕРТН5
AGENTS	33	0.728	0.885	0.178	0.719	0.778	0.534	0.000	
APPWORLD	N/A	0.721	0.910	0.208	0.798	0.503	0.755	0.572	0.500
AUTOGPT	61	0.788	0.825	0.046	0.781	0.800	0.827	0.764	0.656
BLACK	114	0.899	0.929	0.032	0.914	0.891	0.640	0.975	
CAPA	133	0.817	0.869	0.059	0.875	0.740	0.614	0.773	
COMPOSIO	95	0.717	0.766	0.064	0.718	0.721	0.664	0.903	
DB-GPT	1705	0.816	0.895	0.088	0.828	0.797	0.831	0.761	0.839
DEEPFACE	16	0.829	0.951	0.128	0.807	0.907	0.818	0.656	0.500
EXO	41	0.739	0.898	0.178	0.720	0.802	0.699	0.859	0.734
FACESWAP	62	0.857	0.982	0.127	0.881	0.797	0.694	0.650	0.737
FASTAPI	591	0.433	0.772	0.439	0.424	0.495	0.339	0.073	0.680
FLAKE8	8	0.824	0.931	0.115	0.856	0.751	0.763	1.000	
FLASK	18	0.856	0.927	0.077	0.882	0.829	0.639	0.528	
GHUNT	14	0.743	0.846	0.122	0.742	0.678	0.981	1.000	
GPT-PILOT	76	0.865	0.908	0.048	0.879	0.855	0.787	0.963	
GPT4FREE	376	0.810	0.881	0.080	0.851	0.664	0.650	0.913	
GPTME	23	0.895	0.926	0.033	0.884	0.930	0.888	0.713	0.984
GRADIO	1518	0.681	0.842	0.033	0.723	0.673	0.567	0.503	0.691
HAYSTACK	142	0.738	0.935	0.130	0.723	0.726	0.827	0.881	0.091
LEROBOT	N/A	0.736	0.933	0.210	0.727	0.720	0.795	0.676	0.892
LLAMA-FACTORY	29	0.790	0.910	0.131	0.783	0.821	0.793	0.070	1.000
	N/A	0.767	0.907	0.009		0.615	0.813	0.712	0.000
MANIM			0.944		0.815	0.636			
MLC-LLM	105	0.749		0.195	0.700		$0.811 \\ 0.710$	0.840	0.693
NICEGUI	86	0.837	0.907	0.078	0.851	0.801		0.884	0.643
OPENAI-PYTHON	381	0.665	0.822	0.190	0.627	0.716	0.668	0.799	0.072
OPENBB	63	0.883	0.929	0.050	0.912	0.876	0.789	0.913	0.973
PANDAS-AI	151	0.718	0.792	0.093	0.721	0.722	0.652	0.846	0.969
PAPER-QA	19	0.867	0.915	0.052	0.913	0.817	0.799	0.896	0.958
PDM	100	0.858	0.920	0.067	0.906	0.731	0.702	0.642	0.050
PHIDATA	1372	0.931	0.948	0.018	0.976	0.866	0.860	0.844	0.853
PILLOW	53	0.828	0.924	0.104	0.865	0.709	0.721	0.672	0.756
PIP	482	0.803	0.936	0.142	0.836	0.736	0.686	0.254	0.839
POETRY	24	0.876	0.966	0.094	0.916	0.770	0.670	0.458	0.825
PRE-COMMIT	35	0.897	0.908	0.012	0.911	0.855	0.954		
PRE-COMMIT-HOOKS	0	0.912	0.923	0.012	0.898	0.910	0.977		
PRIVATE-GPT	15	0.825	0.910	0.093	0.826	0.830	0.801		
PYDANTIC	253	0.701	0.861	0.187	0.711	0.667	0.739	0.757	0.000
RICH	63	0.754	0.939	0.197	0.754	0.762	0.662	0.719	
SCREENSHOT-TO-CODE	2	0.927	0.927	0.000	1.000	0.872	0.611	1.000	
SPHINX	374	0.621	0.780	0.203	0.611	0.668	0.724	0.761	0.527
SPOTIFY-DOWNLOADER	35	0.865	0.921	0.060	0.854	0.882	0.916	0.950	
STREAMLIT	12	0.882	0.934	0.056	0.886	0.769	0.993		
SUPERVISION	137	0.826	0.967	0.146	0.866	0.762	0.822	0.807	0.301
TAIPY	492	0.775	0.879	0.119	0.799	0.722	0.784	0.815	0.625
TEN-AGENT	5	0.631	0.832	0.242	0.628	0.651	0.670	0.406	
TYPER	106	0.675	0.815	0.171	0.737	0.579	0.675	0.000	
UNSTRACT	207	0.803	0.861	0.067	0.810	0.782	0.843	0.875	
URLLIB3	26	0.846	0.922	0.082	0.878	0.805	0.767	0.641	1.000
VLLM	391	0.719	0.908	0.209	0.698	0.767	0.735	0.702	0.947
VNPY	43	0.897	0.911	0.015	0.896	0.918	0.970	0.375	0., .,

Table 13. TYPECHECK and TYPESIM scores for DEEPSEEK-V2.5 on each repository.

	TYPE CHECK 120 N/A 161 53 382 32 2153 15 90 111 462 20 28 47	0.715 0.542 0.764 0.749 0.823 0.671 0.776 0.932 0.811 0.802 0.533 0.832	TYPESIM WO MISSING 0.894 0.918 0.796 0.937 0.886 0.757 0.899 0.965 0.935	0.200 0.409 0.040 0.201 0.071 0.114 0.137 0.034	0.720 0.608 0.763 0.788 0.841 0.683 0.778	0.720 0.385 0.774 0.612 0.750 0.659	0.550 0.438 0.735 0.614 0.798	0.000 0.440 0.791 0.879	0.000 0.754
APPWORLD AUTOGPT BLACK CAPA COMPOSIO DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	N/A 161 53 382 32 2153 15 90 111 462 20 28	0.542 0.764 0.749 0.823 0.671 0.776 0.932 0.811 0.802 0.533	0.918 0.796 0.937 0.886 0.757 0.899 0.965 0.935	0.409 0.040 0.201 0.071 0.114 0.137	0.608 0.763 0.788 0.841 0.683	0.385 0.774 0.612 0.750	0.438 0.735 0.614 0.798	0.440 0.791 0.879	
AUTOGPT BLACK CAPA COMPOSIO DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	161 53 382 32 2153 15 90 111 462 20 28	0.764 0.749 0.823 0.671 0.776 0.932 0.811 0.802 0.533	0.796 0.937 0.886 0.757 0.899 0.965 0.935	0.040 0.201 0.071 0.114 0.137	0.763 0.788 0.841 0.683	0.774 0.612 0.750	0.735 0.614 0.798	0.791 0.879	
BLACK CAPA COMPOSIO DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	53 382 32 2153 15 90 111 462 20 28	0.749 0.823 0.671 0.776 0.932 0.811 0.802 0.533	0.937 0.886 0.757 0.899 0.965 0.935	0.201 0.071 0.114 0.137	0.788 0.841 0.683	0.612 0.750	$0.614 \\ 0.798$	0.879	0.754
CAPA COMPOSIO DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	382 32 2153 15 90 111 462 20 28	0.823 0.671 0.776 0.932 0.811 0.802 0.533	0.886 0.757 0.899 0.965 0.935	0.071 0.114 0.137	$0.841 \\ 0.683$	0.750	0.798		
COMPOSIO DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	32 2153 15 90 111 462 20 28	0.671 0.776 0.932 0.811 0.802 0.533	0.757 0.899 0.965 0.935	0.114 0.137	0.683			0.004	
DB-GPT DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	2153 15 90 111 462 20 28	0.776 0.932 0.811 0.802 0.533	0.899 0.965 0.935	0.137		0.659		0.894	
DEEPFACE EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	15 90 111 462 20 28	0.932 0.811 0.802 0.533	0.965 0.935		0.778		0.569	0.813	
EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	90 111 462 20 28	0.811 0.802 0.533	0.935	0.034		0.774	0.768	0.730	0.837
EXO FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	90 111 462 20 28	0.811 0.802 0.533	0.935		0.925	0.972	0.906	0.741	1.000
FACESWAP FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	111 462 20 28	0.802 0.533		0.133	0.816	0.814	0.649	0.833	0.710
FASTAPI FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	462 20 28	0.533	0.969	0.172	0.838	0.716	0.561	0.467	0.737
FLAKE8 FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	20 28		0.961	0.445	0.498	0.650	0.336	0.073	0.680
FLASK GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	28	U.832	0.950	0.125	0.870	0.748	0.749	1.000	
GHUNT GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK		0.799	0.940	0.150	0.843	0.735	0.545	0.257	
GPT-PILOT GPT4FREE GPTME GRADIO HAYSTACK	- T /	0.766	0.880	0.129	0.742	0.751	0.974	1.000	
GPT4FREE GPTME GRADIO HAYSTACK	129	0.871	0.911	0.045	0.894	0.856	0.754	0.947	
GPTME GRADIO HAYSTACK	615	0.759	0.898	0.155	0.787	0.654	0.649	0.903	
GRADIO HAYSTACK	54	0.739	0.924	0.133	0.787	0.900	0.883	0.903	0.984
HAYSTACK	1728	0.574	0.855	0.328	0.603	0.574	0.883	0.481	0.772
	477	0.708	0.833	0.328	0.700	0.708	0.736	0.431	0.772
	N/A	0.682	0.949	0.254	0.700	0.708	0.757	0.873	0.892
	30	0.803	0.923	0.202		0.729	0.737	0.493	0.892
LLAMA-FACTORY					0.828				
MANIM	N/A	0.635	0.870	0.270	0.687	0.481	0.398	0.493	0.000
MLC-LLM	169	0.575	0.951	0.396	0.537	0.696	0.574	0.698	0.601
NICEGUI	685	0.801	0.901	0.111	0.797	0.822	0.767	0.851	0.623
OPENAI-PYTHON	748	0.571	0.819	0.302	0.568	0.573	0.606	0.625	0.750
OPENBB	193	0.790	0.927	0.148	0.836	0.778	0.707	0.671	0.758
PANDAS-AI	182	0.746	0.817	0.087	0.737	0.789	0.658	0.803	1.000
PAPER-QA	32	0.641	0.885	0.275	0.653	0.631	0.634	0.506	0.943
PDM	156	0.765	0.865	0.116	0.814	0.638	0.592	0.637	
PHIDATA	1050	0.883	0.939	0.059	0.914	0.848	0.810	0.823	0.443
Pillow	201	0.630	0.857	0.265	0.666	0.530	0.471	0.387	0.484
PIP	694	0.788	0.925	0.148	0.820	0.724	0.664	0.253	0.741
POETRY	53	0.876	0.970	0.097	0.914	0.773	0.682	0.463	0.958
PRE-COMMIT	40	0.943	0.953	0.011	0.965	0.887	0.960		
PRE-COMMIT-HOOKS	7	0.952	0.960	0.008	0.983	0.907	0.871		
PRIVATE-GPT	44	0.751	0.923	0.186	0.764	0.736	0.686		
PYDANTIC	751	0.667	0.912	0.268	0.714	0.562	0.631	0.431	0.000
RICH	291	0.618	0.934	0.339	0.631	0.563	0.659	0.719	
SCREENSHOT-TO-CODE	6	0.887	0.887	0.000	0.980	0.813	0.611	0.833	
SPHINX	666	0.498	0.840	0.407	0.476	0.625	0.610	0.513	0.590
SPOTIFY-DOWNLOADER	32	0.861	0.910	0.053	0.856	0.858	0.973	0.900	
STREAMLIT	98	0.910	0.980	0.071	0.916	0.782	1.000		
SUPERVISION	172	0.803	0.969	0.171	0.847	0.747	0.756	0.762	0.315
TAIPY	773	0.790	0.897	0.120	0.810	0.750	0.775	0.783	0.875
TEN-AGENT	18	0.590	0.869	0.322	0.584	0.621	0.631	0.469	
TYPER	112	0.676	0.903	0.252	0.736	0.581	0.678	0.000	
UNSTRACT	84	0.812	0.872	0.068	0.823	0.793	0.788	0.738	
URLLIB3	50	0.848	0.933	0.091	0.896	0.776	0.790	0.641	1.000
VLLM	1372	0.661	0.874	0.244	0.660	0.669	0.646	0.573	0.576
VNPY									

Table 14. TYPECHECK and TYPESIM scores for GROK-2 on each repository.

Repo	Түре	Түре	TypeSim	Missing	TypeSim by Depth					
KEFO	Снеск	SIM	WO MISSING	RATIO	D EPTH1	DEPTH2	ДЕРТН3	ДЕРТН4	D EPTH5	
AGENTS	37	0.700	0.900	0.222	0.695	0.742	0.493	0.000		
APPWORLD	N/A	0.535	0.931	0.426	0.596	0.395	0.413	0.491	0.000	
AUTOGPT	81	0.755	0.803	0.060	0.756	0.752	0.762	0.773	0.750	
BLACK	22	0.825	0.925	0.107	0.847	0.807	0.489	0.958		
CAPA	89	0.905	0.924	0.021	0.936	0.794	0.851	0.852		
COMPOSIO	35	0.482	0.593	0.188	0.454	0.563	0.445	0.897		
DB-GPT	2066	0.820	0.898	0.086	0.834	0.805	0.789	0.764	0.841	
DEEPFACE	5	0.868	0.961	0.096	0.862	0.915	0.808	0.990	1.000	
EXO	49	0.778	0.928	0.161	0.763	0.838	0.696	0.875	0.750	
FACESWAP	64	0.885	0.973	0.091	0.904	0.833	0.784	0.817	0.737	
FASTAPI	707	0.659	0.940	0.299	0.751	0.646	0.468	0.577	0.979	
FLAKE8	5	0.917	0.938	0.023	0.930	0.884	0.903	1.000		
FLASK	22	0.900	0.935	0.037	0.933	0.847	0.692	0.861		
GHUNT	12	0.751	0.894	0.160	0.732	0.735	0.921	1.000		
GPT-PILOT	20	0.839	0.891	0.059	0.843	0.841	0.777	0.948		
GPT4FREE	342	0.839	0.883	0.050	0.879	0.690	0.705	0.917		
GPTME	22	0.908	0.937	0.031	0.907	0.912	0.894	0.717	0.984	
GRADIO	328	0.695	0.861	0.192	0.739	0.677	0.612	0.569	0.630	
HAYSTACK	514	0.747	0.933	0.199	0.712	0.773	0.837	0.867	0.050	
LEROBOT	N/A	0.851	0.922	0.077	0.866	0.860	0.764	0.704	0.892	
LLAMA-FACTORY	48	0.837	0.889	0.059	0.864	0.785	0.797	0.775	0.987	
MANIM	N/A	0.650	0.872	0.255	0.667	0.619	0.461	0.641	0.000	
MLC-LLM	32	0.734	0.946	0.224	0.703	0.819	0.837	0.790	0.905	
NICEGUI	36	0.772	0.871	0.114	0.765	0.815	0.688	0.750	0.576	
OPENAI-PYTHON	208	0.693	0.814	0.114	0.690	0.691	0.776	0.713	0.570	
OPENBB	14	0.864	0.928	0.070	0.854	0.875	0.764	0.713	0.967	
PANDAS-AI	86	0.741	0.928	0.070	0.834	0.759	0.642	0.738	1.000	
PAPER-QA	15	0.857	0.903	0.053	0.743	0.739	0.791	0.828	0.838	
PDM	86	0.870	0.903	0.051	0.904	0.303	0.791	0.688	0.030	
PHIDATA	1234	0.870	0.920	0.033	0.919	0.741	0.701	0.682	0.443	
PILLOW	38	0.818	0.943	0.047	0.863	0.688	0.629	0.533	0.443	
PIP	240	0.814	0.923	0.114	0.842	0.765	0.029	0.333	0.848	
	38	0.814	0.930	0.130	0.842	0.763	0.704	0.179	0.825	
POETRY PRE-COMMIT	2	0.886	0.946	0.098	0.895	0.732	0.032	0.319	0.823	
	2	0.880	0.940	0.003	0.888	0.838	0.952			
PRE-COMMIT-HOOKS	4	0.903	0.903	0.000	0.609	0.924	0.932			
PRIVATE-GPT	564	0.816	0.939	0.313	0.811	0.712	0.724	0.551	0.500	
PYDANTIC									0.300	
RICH	16	0.628	0.856	0.266	0.628	0.630 0.904	$0.601 \\ 0.616$	0.719		
SCREENSHOT-TO-CODE	1	0.936	0.936	0.000	0.990			0.833	0.504	
SPHINX	243	0.638	0.803	0.205	0.633	0.679	0.639	0.531	0.594	
SPOTIFY-DOWNLOADER	21	0.868	0.920	0.057	0.864	0.867	0.969	0.788		
STREAMLIT	42	0.954	0.979	0.025	0.967	0.769	0.993	0.700	0.201	
SUPERVISION	24	0.852	0.967	0.119	0.904	0.795	0.779	0.708	0.301	
TAIPY	528	0.737	0.875	0.158	0.763	0.687	0.712	0.797	0.875	
TEN-AGENT	2	0.468	0.912	0.487	0.475	0.425	0.561	0.323		
TYPER	175	0.690	0.923	0.252	0.744	0.608	0.689	0.000		
UNSTRACT	33	0.809	0.877	0.078	0.818	0.791	0.807	0.738	1.000	
URLLIB3	30	0.854	0.910	0.062	0.902	0.774	0.862	0.608	1.000	
VLLM	696	0.732	0.869	0.158	0.717	0.754	0.809	0.731	0.972	
VNPY	56	0.860	0.913	0.057	0.871	0.600	0.976	1.000		

Table 15. TYPECHECK and TYPESIM scores for LLAMA-3-8B on each repository.

REPO AGENTS	TYPE CHECK	TYPE Sim	TYPESIM	Missing					TypeSim by Depth					
		SIM	WO MISSING	RATIO	DEPTH1	D EРТН2	ДЕРТН3	ДЕРТН4	ДЕРТН5					
	119	0.415	0.809	0.487	0.426	0.408	0.154	0.000	_					
APPWORLD	N/A	0.177	0.901	0.804	0.194	0.131	0.176	0.168	0.000					
AUTOGPT	82	0.451	0.749	0.398	0.500	0.370	0.180	0.227	0.000					
BLACK	30	0.186	0.805	0.769	0.201	0.133	0.142	0.388						
CAPA	161	0.235	0.606	0.612	0.246	0.147	0.258	0.219						
COMPOSIO	115	0.382	0.573	0.333	0.458	0.218	0.198	0.068						
DB-GPT	1032	0.317	0.604	0.476	0.381	0.228	0.266	0.289	0.216					
DEEPFACE	14	0.231	0.630	0.634	0.298	0.141	0.107	0.000	0.000					
EXO	52	0.377	0.782	0.519	0.390	0.343	0.341	0.208	0.458					
FACESWAP	42	0.326	0.867	0.624	0.374	0.180	0.092	0.250	0.323					
FASTAPI	1792	0.054	0.754	0.928	0.089	0.032	0.062	0.000	0.000					
FLAKE8	28	0.573	0.815	0.297	0.649	0.441	0.181	0.250						
FLASK	15	0.346	0.764	0.547	0.392	0.242	0.259	0.257						
GHUNT	21	0.481	0.849	0.434	0.543	0.338	0.690	0.005						
GPT-PILOT	68	0.574	0.768	0.253	0.620	0.523	0.438	0.828						
GPT4FREE	168	0.543	0.809	0.329	0.579	0.418	0.343	0.892						
GPTME	36	0.567	0.827	0.315	0.613	0.491	0.196	0.072	0.000					
GRADIO	772	0.227	0.576	0.605	0.326	0.169	0.130	0.018	0.150					
HAYSTACK	166	0.308	0.558	0.448	0.320	0.109	0.034	0.018	0.130					
LEROBOT	N/A	0.308	0.754	0.448	0.403	0.114	0.133	0.188	0.000					
	60	0.210	0.734	0.714	0.309	0.325	0.147	0.079	0.828					
LLAMA-FACTORY	N/A	0.300	0.730	0.498		0.323	0.223	0.100	0.020					
MANIM					0.335	0.198	0.103							
MLC-LLM	108	0.243	0.738	0.670	0.260	0.200		0.243	0.000					
NICEGUI	272	0.514	0.811	0.367	0.527		0.269	0.424	0.100					
OPENAI-PYTHON	296	0.317	0.668	0.525	0.358	0.270	0.213	0.354	0.250					
OPENBB	102	0.298	0.589	0.495	0.473	0.237	0.129	0.194	0.350					
PANDAS-AI	87	0.471	0.585	0.196	0.558	0.396	0.205	0.250	0.000					
PAPER-QA	37	0.286	0.715	0.601	0.352	0.201	0.255	0.197	0.000					
PDM	268	0.413	0.781	0.472	0.477	0.246	0.187	0.116	0.000					
PHIDATA	636	0.443	0.629	0.296	0.593	0.236	0.173	0.117	0.000					
PILLOW	26	0.382	0.885	0.569	0.427	0.254	0.181	0.142	0.053					
PIP	253	0.440	0.861	0.489	0.478	0.356	0.245	0.058	0.134					
POETRY	98	0.600	0.873	0.312	0.662	0.433	0.224	0.344	0.492					
PRE-COMMIT	65	0.584	0.851	0.314	0.634	0.447	0.761							
PRE-COMMIT-HOOKS	19	0.649	0.887	0.269	0.657	0.737	0.500							
PRIVATE-GPT	13	0.410	0.814	0.497	0.386	0.440	0.513							
PYDANTIC	223	0.113	0.652	0.826	0.140	0.051	0.091	0.111	0.000					
RICH	49	0.170	0.664	0.744	0.191	0.091	0.173	0.000						
SCREENSHOT-TO-CODE	5	0.532	0.952	0.441	0.633	0.456	0.306	0.000						
SPHINX	229	0.097	0.620	0.844	0.097	0.096	0.083	0.103	0.207					
SPOTIFY-DOWNLOADER	15	0.395	0.631	0.374	0.459	0.255	0.294	0.654						
STREAMLIT	237	0.079	0.232	0.658	0.077	0.111	0.059							
SUPERVISION	48	0.203	0.644	0.685	0.260	0.114	0.189	0.142	0.000					
TAIPY	144	0.357	0.589	0.394	0.501	0.129	0.088	0.029	0.188					
TEN-AGENT	80	0.393	0.827	0.525	0.412	0.307	0.287	0.139						
TYPER	72	0.300	0.917	0.673	0.314	0.265	0.369	0.000						
UNSTRACT	182	0.573	0.759	0.245	0.638	0.435	0.518	0.763						
URLLIB3	27	0.462	0.837	0.448	0.537	0.362	0.281	0.079	0.000					
VLLM	413	0.185	0.531	0.651	0.214	0.132	0.112	0.072	0.169					
VNPY	37	0.590	0.772	0.235	0.652	0.117	0.079	0.000	0.107					

Table 16. TYPECHECK and TYPESIM scores for LLAMA-3.1-8B on each repository.

REPO	Түре	Түре	TypeSim	Missing	TypeSim by Depth					
KEPO	CHECK	SIM	WO MISSING	RATIO	D EPTH1	DEPTH2	DEPTH3	D EРТН4	DEPTH5	
AGENTS	153	0.636	0.809	0.214	0.634	0.669	0.410	0.000		
APPWORLD	N/A	0.347	0.789	0.560	0.381	0.258	0.326	0.392	0.000	
AUTOGPT	273	0.676	0.783	0.137	0.698	0.629	0.604	0.679	0.500	
BLACK	189	0.518	0.782	0.338	0.554	0.398	0.345	0.763		
CAPA	497	0.574	0.816	0.297	0.588	0.575	0.498	0.906		
COMPOSIO	283	0.580	0.693	0.163	0.626	0.495	0.377	0.847		
DB-GPT	2591	0.642	0.769	0.165	0.685	0.586	0.595	0.571	0.605	
DEEPFACE	38	0.716	0.923	0.224	0.753	0.680	0.612	0.616	1.000	
EXO	147	0.734	0.938	0.218	0.708	0.812	0.732	0.943	0.714	
FACESWAP	199	0.710	0.908	0.219	0.745	0.629	0.427	0.533	0.722	
FASTAPI	2260	0.275	0.573	0.519	0.231	0.359	0.175	0.008	0.000	
FLAKE8	40	0.757	0.882	0.142	0.813	0.653	0.488	0.750		
FLASK	85	0.639	0.772	0.173	0.687	0.556	0.363	0.444		
GHUNT	221	0.755	0.863	0.126	0.749	0.717	0.964	0.672		
GPT-PILOT	398	0.799	0.854	0.065	0.814	0.789	0.706	0.951		
GPT4FREE	608	0.747	0.885	0.156	0.782	0.621	0.588	0.957		
GPTME	106	0.586	0.850	0.311	0.607	0.531	0.504	0.707	0.984	
GRADIO	2414	0.456	0.593	0.231	0.552	0.404	0.299	0.249	0.296	
HAYSTACK	450	0.243	0.721	0.663	0.274	0.212	0.183	0.288	0.2>0	
LEROBOT	N/A	0.537	0.830	0.352	0.694	0.337	0.446	0.150	0.250	
LLAMA-FACTORY	280	0.628	0.794	0.209	0.650	0.597	0.574	0.389	0.961	
MANIM	N/A	0.681	0.833	0.183	0.738	0.524	0.360	0.440	0.000	
MLC-LLM	208	0.569	0.856	0.336	0.543	0.661	0.553	0.448	0.423	
NICEGUI	213	0.579	0.824	0.297	0.573	0.612	0.557	0.652	0.507	
OPENAI-PYTHON	906	0.539	0.702	0.233	0.572	0.504	0.405	0.608	0.507	
OPENBB	237	0.599	0.839	0.286	0.607	0.607	0.479	0.339	0.200	
PANDAS-AI	431	0.670	0.779	0.230	0.673	0.723	0.507	0.601	0.200	
PAPER-QA	135	0.595	0.742	0.141	0.675	0.486	0.592	0.376	0.948	
PDM	422	0.601	0.800	0.176	0.671	0.427	0.306	0.160	0.540	
PHIDATA	1412	0.751	0.868	0.249	0.800	0.427	0.656	0.100	0.136	
PILLOW	138	0.731	0.784	0.155	0.550	0.329	0.030	0.342	0.136	
PIP	1161	0.594	0.831	0.285	0.631	0.505	0.275	0.294	0.272	
	241	0.754	0.831	0.283	0.031	0.633	0.473	0.201	0.272	
POETRY PRE-COMMIT	46	0.734	0.922	0.182	0.799	0.640	0.499	0.371	0.938	
PRE-COMMIT-HOOKS	22	0.813	0.885	0.074	0.884	0.800	0.555			
PRIVATE-GPT	69	0.750	0.809	0.000	0.852	0.559	0.542			
PYDANTIC	786	0.730	0.565	0.073	0.358	0.339	0.342	0.111	0.000	
RICH	309	0.290	0.705	0.480	0.338	0.142	0.198	0.111	0.000	
	309 7	0.438	0.930		0.464	0.433	0.521	0.230		
SCREENSHOT-TO-CODE	319	0.912	0.537	0.020 0.959	0.900	0.030	0.016	0.833	0.000	
SPHINX	133	0.022	0.891		0.021	0.030	0.016	0.629	0.000	
SPOTIFY-DOWNLOADER				0.189		0.743		0.600		
STREAMLIT	327	0.593	0.885	0.330	0.569	0.722	0.980	0.652	0.000	
SUPERVISION	306 834	0.508	0.875	0.420 0.256	0.465	0.562	0.559 0.405	0.653	0.000	
TAIPY		0.571	0.769		0.623			0.663	0.438	
TEN-AGENT	135	0.655	0.778	0.158	0.652	0.690	0.551	0.486		
TYPER	458	0.508	0.889	0.429	0.555	0.446	0.460	0.000		
UNSTRACT	263	0.709	0.821	0.137	0.743	0.647	0.633	0.650	1 000	
URLLIB3	129	0.702	0.812	0.136	0.761	0.621	0.535	0.515	1.000	
VLLM	858	0.326	0.634	0.485	0.337	0.313	0.273	0.186	0.175	
VNPY	150	0.827	0.924	0.105	0.828	0.788	0.939	0.375		

Table 17. TYPECHECK and TYPESIM scores for QWEN-2.5-7B on each repository.

REPO	Түре	Түре	TYPESIM	MISSING	TypeSim by Depth					
KEIO	Снеск	SIM	WO MISSING	RATIO	D EPTH1	ДЕРТН2	ДЕРТН3	ДЕРТН4	DEPTH5	
AGENTS	158	0.695	0.865	0.196	0.706	0.683	0.507	0.000	_	
APPWORLD	N/A	0.462	0.921	0.498	0.502	0.380	0.350	0.368	0.000	
AUTOGPT	252	0.680	0.784	0.132	0.703	0.633	0.596	0.626	0.750	
BLACK	101	0.491	0.651	0.247	0.543	0.292	0.411	0.325		
CAPA	511	0.576	0.757	0.240	0.589	0.402	0.656	0.793		
COMPOSIO	108	0.546	0.655	0.167	0.639	0.358	0.211	0.636		
DB-GPT	2245	0.596	0.693	0.141	0.702	0.460	0.440	0.508	0.481	
DEEPFACE	36	0.492	0.840	0.415	0.528	0.582	0.214	0.323	0.000	
EXO	176	0.682	0.881	0.226	0.669	0.713	0.747	0.708	0.714	
FACESWAP	89	0.643	0.844	0.238	0.748	0.329	0.151	0.229	0.380	
FASTAPI	863	0.191	0.484	0.605	0.315	0.118	0.155	0.065	0.690	
FLAKE8	35	0.662	0.887	0.253	0.715	0.546	0.571	0.750		
FLASK	116	0.715	0.836	0.145	0.797	0.560	0.400	0.167		
GHUNT	67	0.696	0.851	0.183	0.701	0.613	0.959	0.998		
GPT-PILOT	489	0.776	0.872	0.110	0.778	0.805	0.623	0.739		
GPT4FREE	646	0.795	0.900	0.116	0.821	0.702	0.701	0.500		
GPTME	105	0.652	0.847	0.231	0.680	0.583	0.529	0.500	1.000	
GRADIO	2008	0.459	0.613	0.251	0.580	0.394	0.248	0.260	0.177	
HAYSTACK	330	0.326	0.528	0.383	0.493	0.136	0.078	0.296	0.177	
LEROBOT	N/A	0.438	0.752	0.417	0.581	0.150	0.283	0.289	0.000	
LLAMA-FACTORY	251	0.608	0.789	0.230	0.644	0.555	0.537	0.236	0.000	
MANIM	N/A	0.732	0.877	0.230	0.806	0.522	0.337	0.220	0.000	
	114	0.732	0.877	0.100	0.585	0.322	0.319	0.778	0.000	
MLC-LLM	640	0.327	0.882	0.322		0.388	0.232	0.338		
NICEGUI	218	0.790	0.882	0.103	0.811 0.617	0.733	0.319	0.712	0.325	
OPENAI-PYTHON									0.246	
OPENBB	294	0.409	0.453	0.097	0.776	0.260	0.352	0.359	0.346	
PANDAS-AI	462	0.721	0.793	0.090	0.720	0.791	0.518	0.719	1.000	
PAPER-QA	67	0.583	0.776	0.249	0.588	0.597	0.490	0.704	0.833	
PDM	603	0.723	0.891	0.188	0.776	0.580	0.566	0.765	0.261	
PHIDATA	1713	0.804	0.894	0.100	0.856	0.741	0.671	0.850	0.361	
PILLOW	100	0.574	0.841	0.318	0.634	0.402	0.300	0.390	0.417	
PIP	1143	0.717	0.902	0.206	0.761	0.615	0.550	0.166	0.804	
POETRY	132	0.854	0.932	0.084	0.903	0.708	0.619	0.676	0.958	
PRE-COMMIT	83	0.854	0.916	0.068	0.869	0.828	0.752			
PRE-COMMIT-HOOKS	8	0.921	0.958	0.039	0.927	0.890	0.934			
PRIVATE-GPT	45	0.485	0.873	0.444	0.459	0.534	0.546			
PYDANTIC	606	0.383	0.789	0.514	0.445	0.269	0.201	0.111	0.000	
RICH	255	0.579	0.834	0.305	0.587	0.545	0.667	0.750		
SCREENSHOT-TO-CODE	14	0.756	0.918	0.177	0.837	0.683	0.616	0.833		
SPHINX	421	0.373	0.669	0.443	0.377	0.373	0.255	0.274	0.393	
SPOTIFY-DOWNLOADER	31	0.429	0.637	0.327	0.497	0.286	0.386	0.167		
STREAMLIT	195	0.287	0.426	0.326	0.246	0.528	0.882			
SUPERVISION	288	0.554	0.827	0.331	0.645	0.392	0.562	0.612	0.315	
TAIPY	853	0.487	0.704	0.308	0.600	0.328	0.225	0.046	0.000	
TEN-AGENT	72	0.686	0.808	0.152	0.683	0.726	0.532	0.472		
TYPER	328	0.472	0.891	0.470	0.493	0.454	0.417	0.000		
UNSTRACT	216	0.796	0.859	0.073	0.812	0.767	0.779	0.650		
URLLIB3	118	0.662	0.794	0.167	0.755	0.524	0.522	0.231	1.000	
VLLM	1631	0.513	0.673	0.238	0.569	0.400	0.389	0.299	0.750	
VNPY	82	0.816	0.841	0.030	0.857	0.808	0.140	0.000		

D.3. Type Inference Examples

We a code snippet from the repo DB-GPT to demonstrate the type inference accuracy of each LLM. We have conducted necessary code formatting for better visualization.

SOURCE CODE

```
class RerankEmbeddings(ABC):
 2
3
4
5
       @abstractmethod
       def predict(self, query: str, candidates: List[str]) -> List[float]:
       async def apredict(self, query: str, candidates: List[str]) -> List[float]:
10
    class Embeddings(ABC):
11
       @abstractmethod
12
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
13
14
15
       @abstractmethod
16
       def embed_query(self, text: str) -> List[float]:
17
18
19
       async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
20
21
22
       async def aembed_query(self, text: str) -> List[float]:
```

GPT-40 (SCORE: 0.874)

```
class RerankEmbeddings(ABC):
       @abstractmethod
2
3
4
5
6
7
8
9
       def predict(self, query: Any, candidates: List[Any]) -> List[float]:
       async def apredict(self, query: Any, candidates: List[Any]) -> List[float]:
10
    class Embeddings(ABC):
11
       @abstractmethod
12
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
13
14
15
       @abstractmethod
16
       def embed_query(self, text: str) -> List[float]:
18
      async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
20
       async def aembed_query(self, text: str) -> List[float]:
```

GPT-40-MINI (SCORE: 0.886)

```
class RerankEmbeddings(ABC):
2
       @abstractmethod
       def predict(self, query: Any, candidates: List[Any]) -> List[float]:
5
       async def apredict(self, query: Any, candidates: List[Any]) -> List[float]:
    class Embeddings(ABC):
10
       @abstractmethod
11
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
12
13
14
      @abstractmethod
15
      def embed_query(self, text: str) -> List[float]:
16
17
      async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
18
19
20
21
      async def aembed_query(self, text: str) -> List[float]:
```

CLAUDE-3.5-SONNET (SCORE: 0.870)

```
class RerankEmbeddings(ABC):
       @abstractmethod
3
       def predict(self, query: Any, candidates: List[Any]) -> List[float]:
4
5
6
7
8
       async def apredict(self, query: Any, candidates: List[Any]) -> List[float]:
    class Embeddings(ABC):
10
       @abstractmethod
11
      def embed_documents(self, texts: List[str]) -> List[List[float]]:
12
13
14
      @abstractmethod
15
      def embed_query(self, text: str) -> List[float]:
16
17
18
     async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
19
20
21
       async def aembed_query(self, text: str) -> List[float]:
```

DEEPSEEK-V3 (SCORE: 0.898)

```
class RerankEmbeddings(ABC):
       @abstractmethod
3
       def predict(self, query: str, candidates: List[str]) -> List[float]:
4
5
6
7
8
       async def apredict(self, query: str, candidates: List[str]) -> Awaitable[List[float]]:
10
    class Embeddings(ABC):
11
       @abstractmethod
12
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
13
14
15
       @abstractmethod
16
       def embed_query(self, text: str) -> List[float]:
17
18
19
       async def aembed_documents(self, texts: List[str]) -> Awaitable[List[List[float]]]:
20
21
       async def aembed_query(self, text: str) -> Awaitable[List[float]]:
22
```

DEEPSEEK-V2.5 (SCORE: 0.899)

```
class RerankEmbeddings(ABC):
2
       @abstractmethod
       def predict(self, query: str, candidates: List[str]) -> List[float]:
5
       async def apredict(self, query: str, candidates: List[str]) -> List[float]:
10
    class Embeddings(ABC):
11
       @abstractmethod
12
      def embed_documents(self, texts: List[str]) -> List[List[float]]:
13
14
15
      @abstractmethod
      def embed_query(self, text: str) -> List[float]:
16
17
18
19
      async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
20
21
22
       async def aembed_query(self, text: str) -> List[float]:
```

GROK-2 (SCORE: 0.898)

```
class RerankEmbeddings(ABC):
       @abstractmethod
       def predict(self, query: str, candidates: List[str]) -> List[float]:
 4
5
6
       def apredict(self, query: str, candidates: List[str]) -> asyncio.Future[List[float]]:
 7
8
    class Embeddings(ABC):
10
       @abstractmethod
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
11
12
13
14
       @abstractmethod
15
       def embed_query(self, text: str) -> List[float]:
16
17
18
       def aembed_documents(self, texts: List[str]) -> asyncio.Future[List[List[float]]]:
19
20
21
       def aembed_query(self, text: str) -> asyncio.Future[List[float]]:
22
```

LLAMA-3-8B (SCORE: 0.604)

```
class RerankEmbeddings(ABC):
 2
       @abstractmethod
       def predict(self, query: object, candidates: List[object]) -> object:
 4
5
6
       async def apredict(self, query: object, candidates: List[object]) -> Awaitable[object]:
 8
    class Embeddings (ABC):
10
       @abstractmethod
11
       def embed_documents(self, texts: List[object]) -> List[object]:
12
13
14
       @abstractmethod
15
       def embed_query(self, text: object) -> object:
16
17
18
       async def aembed_documents(self, texts: List[object]) -> Awaitable[List[object]]:
19
20
21
       async def aembed_query(self, text: object) -> Awaitable[object]:
```

LLAMA-3.1-8B (SCORE: 0.769)

```
class RerankEmbeddings(ABC):
2
       @abstractmethod
       def predict(self, query: Any, candidates: List[Any]) -> Any:
4
5
       async def apredict(self, query: Any, candidates: List[Any]) -> Awaitable[Any]:
    class Embeddings(ABC):
10
       @abstractmethod
11
       def embed_documents(self, texts: List[Any]) -> List[Any]:
12
13
14
      @abstractmethod
15
      def embed_query(self, text: Any) -> Any:
16
17
18
      async def aembed_documents(self, texts: List[Any]) -> Awaitable[List[Any]]:
19
20
21
      async def aembed_query(self, text: Any) -> Awaitable[Any]:
```

QWEN-2.5-7B (SCORE: 0.693)

```
class RerankEmbeddings(ABC):
       @abstractmethod
2
3
4
5
6
7
8
9
       def predict(self, query: str, candidates: List[str]) -> List[float]:
       async def apredict(self, query: str, candidates: List[str]) -> List[float]:
10
    class Embeddings (ABC):
11
       @abstractmethod
12
13
       def embed_documents(self, texts: List[str]) -> List[List[float]]:
14
15
       @abstractmethod
16
       def embed_query(self, text: str) -> List[float]:
17
18
19
       async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
20
21
22
       async def aembed_query(self, text: str) -> List[float]:
23
```