Design Space Exploration for Power-Efficient Mixed-Radix Ling Adders

Chung-Kuan Cheng

Computer Science and Engineering Depart. University of California, San Diego

- Prefix Adder Problem
 - Background & Previous Work
 - Extensions: High-radix, Ling
- Our Work
 - Area/Timing/Power Models
 - Mixed-Radix (2,3,4) Adders
 - ILP Formulation
- Experimental Results
- Future Work

Prefix Adder - Challenges

Increasing impact of physical design and concern of power.

Binary Addition

- **Input:** two n-bit binary numbers... a_1a_0 and $b_{n-1}...b_1b_0$, one bit carry 4n
- **Output:** n-bit sum $n-1 \cdots S_1 S_0$ and one bit carry, out
- Prefix Addition: Carry generation & propagation

```
Generate: g_i = a_i b_i

Propagate: p_i = a_i \oplus b_i

c_{i+1} = g_i + p_i \cdot c_i

s_i = c_i \oplus (a_i \oplus b_i)
```


Prefix Addition - Formulation

Pre-processing:

$$g_i = a_i b_i$$
 $p_i = a_i \oplus b_i$

Prefix Computation:

$$G_{[i:k]} = G_{[i:j]} + P_{[i:j]}G_{[j-1:k]}$$

$$P_{[i:k]} = P_{[i:j]}P_{[j-1:k]}$$

Postprocessing:

$$c_{i+1} = G_{[i:0]} + P_{[i:0]} \cdot c_0$$
$$s_i = p_i \oplus c_i$$

Prefix Adder – Prefix Structure Graph

Previous Works – Classical prefix adders

Wire tracks: 1

Wire tracks: 1

Wire tracks: n/2

- Each cell has more than two fanin's
- Pros: less logic levels
 - 6 levels (radix-2) vs. 3 levels (radix-4) for 64-bit addition
- Cons: larger delay and power in each cell

Radix-3 Sklansky & Kogge-Stone Adder

Prefix

Ling

Preprocessing:

$$g_i = a_i b_i$$

$$g_i = a_i b_i$$
 $p_i = a_i \oplus b_i$

$$g_i = a_i b_i, p_i = a_i + b_i$$
$$t_i = a_i \oplus b_i$$

Prefix

$$G_{[i:k]} = G_{[i:j]} + P_{[i:j]}G_{[j-1:k]}$$

Computation:
$$P_{[i:k]} = P_{[i:j]}P_{[j-1:k]}$$

$$G_{[i:i-1]}^* = g_i + g_{i-1}, P_{[i:i-1]}^* = p_i \bullet p_{i-1}$$

$$G_{[i:k]}^* = G_{[i:j]}^* + P_{[i-1:j-1]}^* G_{[j-1:k]}^*$$

$$P_{[i:k]}^* = P_{[i:j]}^* P_{[j-1:k]}^*$$

Postprocessing:

$$c_i = G_{[i-1:0]} + P_{[i-1:0]} \cdot c_0$$

$$s_i = p_i \oplus c_i$$

$$c_i = p_{i-1} \cdot G^*_{[i-1:0]}$$

$$S_i = \overline{G_{[i-1:0]}^*} \times t_i + G_{[i-1:0]}^* \times (t_i \oplus p_{i-1})$$

An 8-bit Ling Adder

Area Model

 Distinguish physical placement from logical structure, but keep the bit-slice structure.

Physical view

Compact placement

Timing Model

Cell delay calculation:

$$d = f + p$$
Effort Delay Intrinsic Delay
$$f = g \bullet h$$
Logical Effort Electrical Effort = Cout/Cin = (fanouts+wirelength) / size

Intrinsic properties of the cell

Power Model

- Total power consumption: Dynamic power + Static Power
- Static power: leakage current of device $P_{sta} = \lambda^* \# cells$
- Dynamic power: current switching capacitance

$$P_{dyn} = \rho \times C_{load}$$

ρ is the switching probability

$$\rho = j$$
 (j is the logical level*)

$$P_{total} = P_{dvn} + P_{sta} = j \cdot C_{load} + \lambda \cdot \# cells$$

^{*} Vanichayobon S, etc, "Power-speed Trade-off in Parallel Prefix Circuits"

ILP Formulation Overview

Integer Linear Programming (ILP)

- ILP: Linear Programming with integer variables.
- Difficulties and techniques:
 - Constraints are not linear
 - Linearize using pseudo linear constraints
 - Search Space too large
 - Reduce search space
 - Search is slow
 - Add redundant constraints to speedup

ILP – Integer Linear Programming

- Linear Programming: linear constraints, linear objective, fractional variables.
- Integer Linear Programming: Linear Programming with integer variables.

ILP - Pseudo-Linear Constraint

A constraint is called pseudo-linear if it's not effective until some integer variables are fixed.

Problem:

Minimize: x_3

Subject to: $x_1 \ge 300$

 $x_2 \ge 500$

 $\mathbf{x}_3 = \min(\mathbf{x}_1, \mathbf{x}_2)$

LP objective: 0

ILP objective: 300

ILP formulation:

Minimize: x_3

Subject to: $x_1 \ge 300$

 $x_2 \ge 500$

 $X_3 \leq X_1$

 $X_3 \leq X_2$

 $x_3 \ge x_1 - 1000 b_1 \tag{1}$

 $X_3 \ge X_2 - 1000 (1 - b_1)$ (2)

*b*₁ is binary

- Pseudo-linear constraints mostly arise from IF/ELSE scenarios
 - binary decision variables are introduced to indicate true or false.

ILP Solver Search Procedure

Interval Adjacency Constraint

Linearization for Interval Adjacency Constraint

$$y_{(i,h)}^{R} = y_{(k,l)}^{L} + 1 \quad \text{if} \quad wl(i,j,h) = wr1(i,j,k,l) = 1$$

$$[y_{(i,h)}^{L}, y_{(i,h)}^{R}] [y_{(k,l)}^{L}, y_{(k,l)}^{R}] [y_{(k,l)}^{L}, y_{(k,l)}^{R}] [y_{(k,l)}^{L}, y_{(k,l)}^{R}] = i$$

$$= \sum_{(k,l)}^{R} k \cdot wr1(i,j,k,l) + 1 \quad \text{if} \quad wl(i,j,h) = 1$$

$$\downarrow \quad \text{Linearize}$$

$$y_{(i,h)}^{R} \ge \sum_{(k,l)} k \cdot wr1(i,j,k,l) - n \cdot (1 - wl(i,j,h)) + 1$$

$$y_{(i,h)}^{R} \le \sum_{(k,l)} k \cdot wr1(i,j,k,l) + n \cdot (1 - wl(i,j,h)) + 1$$

$$y_{(i,h)}^{R} \le \sum_{(k,l)} k \cdot wr1(i,j,k,l) + n \cdot (1 - wl(i,j,h)) + 1$$

$$Pseudo \ Linear \quad 21$$

- Ling's adder: separate odd and even bits
- Double the bitwidth we are able to search

Redundant Constraints

- Cell (i,j) is known to have logic level j before wire connection
- Assume load is MinLoad (fanout=1 with minimum wire length):

$$P_{(i,j)} \ge j \cdot MinLoad + \lambda$$

- Cell (i,j) has a path of length j-1
- Assume each cell along the path has MinLoad

$$T_{(i,j)} \ge j \cdot (PD + LE \cdot MinLoad)$$

Experiments – 16-bit Uniform Timing

Experiments – 16-bit Uniform Timing

Radix	Delay	Power	CPU	Radix	Delay	Power	CPU
	(D_{FO4})	(P_{FO4})	(sec)		(D_{FO4})	(P_{FO4})	(sec)
2	11.6	45.5	1	2,3,4	20	28	10
2	11.4	48	1	2,3,4	17	28.5	21
2	10.6	50.5	3	2,3,4	16	30.5	68
2	10	53.25	11	2,3,4	15	31	125
				2,3,4	14	31.5	200
2,4	18	29.75	10	2,3,4	13	33.25	541
2,4	16	32.75	67	2,3,4	12	34.25	2850
2,4	14	33.75	232	2,3,4	11	38.75	5647
2,4	13	35.75	613	2,3,4	10	41	71687
2,4	12	40	1806	B-K	15	41.5	-
2,4	11	44.25	6187	Sklansky	11	45.5	-
2,4	10	49	32576	K-G	12.5	55.75	-

Min-Power Radix-2 Adder

(delay = 22, power = 45.5FO4)

Min-Power Radix-2&4 Adder (delay=18, power = 29.75F04)

Radix-2 Cell

Radix-4 Cell

Min-Power Mixed-Radix Adder (delay=20, power = 28.0F04)

Radix-3 Cell Radix-4 Cell

Radix-2 Cell

Case	Power (Prefix)	Power (Ling)	Improvement
	(P_{FO4})	(P_{FO4})	
Increasing Arrival Time	35.5	27.0	23.9%
Decreasing Arrival Time	34.5	30.5	11.6%
Convex Arrival Time	35.9	32.4	9.7%
Increasing Required Time	34.5	30.5	11.6%
Decreasing Required Time	36.5	32.5	11.0%
Convex Required Time	36.5	32.5	11.0%

ILP is able to handle non-uniform timings
Ling adders are most superior in increasing
arrival time

faster carries

Increasing Arrival Time

(delay=35.5, power = 27.0FO4)

Decreasing Arrival Time

(delay=34.5, power = 30.5FO4)

Convex Arrival Time

(delay=35.9, power = 32.4FO4)

Increasing Required Time

(delay=34.5, power = 30.5FO4)

Decreasing Required Time

(delay=36.5, power = 32.5FO4)

Convex Required Time

(delay=36.5, power = 32.5FO4)

Experiments – 64-bit Hierarchical Structure (Mixed-Radix)

- Handle high bit-width applications
- 16x4 and 8x8

Experiments – 64-bit Hierarchical Structure

TSL: a 64-bit high-radix three-stage Ling adder

Oklobdzija and B. Zeydel, "Energy-Delay Characteristics of CMOS Adders", *High-Performance Energy-Efficient Microprocessor Design*, pp. 147-170, 2006

ASIC Implementation - Results

- 64-bit hierarchical design (mixed-radix) by ILP vs. fast carry look-ahead adder by Synopsys Design Compiler
- TSMC 90nm standard cell library was

Method	$Area(nm^2)$	Delay (ns)	Power (mW)
DC	4473 (1)	1.1656(1)	2.74(1)
ILP	3833 (0.86)	0.9425 (0.81)	2.54 (0.93)
ILP	3636 (0.81)	0.9607 (0.82)	2.35 (0.86)
ILP	3114 (0.70)	1.1278 (0.97)	1.97 (0.72)

- ILP formulation improvement
 - Expected to handle 32 or 64 bit applications without hierarchical scheme
- Optimizing other computer arithmetic modules
 - Comparator, Multiplier

Thank You!