

D1-H Tina Linux LEDC 开发指南

版本号: 1.0

发布日期: 2021.04.09

PUTION

版本历史

	版本号	日期	制/修订人	内容描述			
.0.	^{ان 1.0}	2021.04.09	AWA1611	初始版本	OUT is.	outis.	outis.

gights gights

QU+i=

OUTIS

版权所有 © 珠海全志科技股份有限公司。保留一切权利

weitus.

i Outi

PUT

目 录

1 概述 1
161 编写目的
1.3 相关人员
2 模块介绍 2
2.1 相关术语说明2
2.2 源码结构说明
2.3 模块配置说明
2.3.1 内核配置
2.3.2 DTS 配置 4
2.3.2.1 DTS 路径 4
2.3.2.2 DTS 文件
3 接口描述 6
3.1 内部接口
, 3.2 外部接口
3.2.1 brightness 调节说明
3.2.2 led trigger 使用说明
3.2.3 debugfs 使用说明 7

neitus neitus neitus neitus neitus neitus neitus neitus neitus neitus

QU+;

1.1 编写目的

介绍全志 LEDC 驱动的使用方法,方便 LEDC 驱动维护和应用开发。

1.2 适用范围

表 1-1: 适用产品列表

0,,	0,	0,	0,	0,	0,	0,	0,	0,,
产品名称	weit	Neixi	内核版本	weit	Neixe	驱动文件。	neit	Weite
D1-H			Linux-5.4	1		leds-sunxi.c		

1.3 相关人员

LEDC 驱动和应用开发人员。

版权所有 © 珠海全志科技股份有限公司。保留一切权利

2. 模块介绍

2.1 相关术语说明

表 2-1: 术语说明表

术语	说明
LED	Light Emitting Diode
LEDC	Light Emitting Diode Controller

Washing Land

2.2 源码结构说明

本模块借助于标准 Linux LED 子系统。其代码路径为:

tina/lichee/linux5.4/drivers/leds/

主要包含以下部分代码:

led-core.c:为led子系统的核心文件。

ledtrigger-xxx.c: 为trigger相关的文件。

leds-sunxi.c: LEDC驱动实现代码。

leds-sunxi.h: 定义全志LEDC驱动数据结构。

2.3 模块配置说明

2.3.1 内核配置

在 tina 根目录下,执行 make kernel menuconfig, 配置路径如下:

Device Drivers └─>LED Support

└->LED support for Allwinner platforms

OUTIS OUTIS OUTIS

版权所有 © 珠海全志科技股份有限公司。保留一切权利

.ieitu9

outie,

2 6174

操作图示:

```
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc> to exit, <?> for Help, </> for Search. Legendy [*] built-in (*) excluded <M> module capable
                                                                                                                                                                                                                                LED support for LM3642 Chip
LED support for LM3692x Chips
LED driver for PCA9532 dimmer
LED Support for GPIO connected LEDs
LED Support for Sp344 (Fun Light) I2C chip
LED Support for TI LP39542 (Fun Light) I2C chip
LED Support for TI LP39542 (Fun Light) I2C chip
LED Support for TI LP39552 (LED driver chip
LED Support for TI LP3562 LED driver chip
LED Support for TI LP5562 LED driver chip
LED Support for TI LP8561 LED driver chip
LED Support for TI LP8561 LED driver chip
LED Support for PCA955x I2C chips
LED Support for PCA955x I2C chips
LED Support for DAC1245085 SPI DAC
PMM driven LED Support
LED driver for DAC1245085 SPI DAC
PMM driven LED Support
LED driver for BD2802 RGB LED
LED driver for TCA6507 I2C chip
LED driver for TCA59108 and TLC59116 controllers
LED Support for TCA59108 and TLC59116 controllers
LED Support for ISSI IS31FL319x I2C LED controller family
LED support for ISSI IS31FL319x I2C LED controller family
*** LED driver for blink(1) USB RGB LED is under Special HID drivers (HID_THINGM) ***
LED Support for the Mellanox switches management control
LSB support for the Mellanox switches management control
LSB support for TI LMU
*** LED driver for TI LMU
*** LED driver for TI LMU
*** LED driver for Allwinner platforms
LED Matrix support for Allwinner platforms
*** LSD Triverse*****
                                                                                                                                                                                                                                 LED Support for Allwinner platforms
LED Matrix support for Allwinner platforms
*** LED Triggers ***
LED Trigger support --->
                                                                                                                                                                                                 [*]
MID
                                                                                                                                                                                          PUS
                                                                                                                                                                                                                                      <Selectary < Exit > Help >
```

图 2-1: ledc 配置界面

如果需要用到 trigger 的话,需要选择相对应的配置项。 配置路径如下:

```
Device Drivers
└->LED Support
    └─>LED Trigger support
```

操作图示:

Neitus

```
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module <> module capable
                                                                                                                                           LED Trigger Support

LED Tymer Trigger

LED MTD (NAND/NOR) Trigger

LED backlight Trigger

LED Camera Flash/Torch Trigger

LED GPIO Trigger

LED GPIO Trigger

LED Dealt ON Trigger

LED Dealt ON Trigger

LED Dransient Trigger

LED Transient Trigger

LED Dransient Trigger

LED Dransient Trigger

LED Dranster Trigger

LED Dranter Trigger

LED Panter Trigger

LED Pattern Trigger

LED Pattern Trigger

LED Pattern Trigger

Audio Mute LED Trigger
```

图 2-2: trigger 配置界面

版权所有 © 珠海全志科技股份有限公司。保留一切权利 1/6 11

文档密级: 秘密

2.3.2 DTS 配置

2.3.2.1 DTS 路径 🔊

通过 cdts 命令可跳转到平台 dts 路径:

```
tina/lichee/linux-5.4/arch/riscv/boot/dts/sunxi/sun20iw1p1.dtsi
```

板极相关配置 dts 路径:

通过 cconfigs 命令可跳转到板级 linux 配置路径,

board.dts 就在板级 linux 配置路径下:

```
tina/device/config/chips/d1-h/configs/nezha/linux/board.dts
```

DTS 文件 2.3.2.2

平台 dts:

```
Majetan Radio
ledc: ledc@2008000 {
       #address-cells = <1>;
        \#size-cells = <0>;
        compatible = "allwinner,sunxi-leds";
        reg = <0\times0 0x02008000 0x0 0x400>;
        interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>;
        interrupt-names = "ledcirq";
        clocks = <&ccu CLK_LEDC>, <&ccu CLK_BUS_LEDC>;
        clock-names = "clk_ledc", "clk_cpuapb";
        dmas = <\&dma 42>, <\&dma 42>;
        dma-names = "rx", "tx";
        resets = <&ccu RST_BUS_LEDC>;
        reset-names = "ledc_reset";
        status = "disabled";
```

板级 dts:

```
&pio {
   . . . . . . . . . . . . . . / / 省略
    ledc_pins_a: ledc@0 {
            pins = "PC0";
            function = "ledc";
            drive-strength = <10>;
    };
    ledc_pins_b: ledc@1 {
            pins = "PCO";
            function = "gpio_in";
.....//省略
```

版权所有 ② 珠海全志科技股份有限公司。保留一切权利


```
};
&ledc {
        pinctrl-names = "default", "sleep";
        pinctrl-0 = <&ledc_pins_a>;
        pinctrl-1 = <&ledc_pins_b>;
        led count = <1>;
        output_mode = "GRB";
        reset_ns = <84>;
        t1h ns = <800>;
        t1l ns = <320>;
        t0h_ns = <300>;
        t0l ns = <800>;
        wait_time0_ns = <84>;
        wait_time1_ns = <84>;
        wait_data_time_ns = <600000>;
        status = "okay";
```

dts 的配置含义如下所示:

- pinctrl-names: 用于表示 0 和 1 的 pinctrl 哪个是默认和休眠状态。
- pinctrl-0:引脚配置,这里是默认使用的时候配置。
- pinctrl-1: 同上,这里是休眠时的配置。
- led count: LED 灯的数目,根据硬件配置。
- output mode: LED 灯输出模式,根据 LED 灯的 datasheet 进行配置。
- reset ns: LED 灯 reset 时间控制。
- t1h ns: 1 码高电平时间,根据 LED 灯的 datasheet 进行配置。
- t1l ns: 1 码低电平时间,根据 LED 灯的 datasheet 进行配置。
- t0h ns: 0 码高电平时间,根据 LED 灯的 datasheet 进行配置。
- t0l ns: 0 码低电平时间,根据 LED 灯的 datasheet 进行配置。
- wait time0 ns: 两个 LED 数据之间的等待时间,根据 LED 灯的 datasheet 进行配置。
- wait time1 ns: 帧数据之间的等待时间,根据 LED 灯的 datasheet 进行配置。
- wait data time ns: 内部 FIFO 等待数据时间,超过时间触发异常中断。
- status: 设备状态。

通常,如果想要使用一款新的 LEDC 灯,需要确认上述全部配置项都配置正确,比如说引脚配置 以及 LED 灯的参数配置(包括 01 码高低电平时间、reset 时间以及 wait 时间),全部配置正确才能成功点亮。

🛄 说明

板级 dts 是会覆盖平台 dts 中重复的参数,比如说平台 dts ledc 的 status 设置为 disabled,板级的 status 设置为 okay,最终生成出来的 dts 文件 ledc 的 status 是 okay。

euxia, euxia, etc

版权所有 © 珠海全志科技股份有限公司。保留一切权利

ol Xio

EITUS

5 situs

3.1 内部接口

LEDC 驱动主要的内部接口如下表所示:

表 3-1: 内部接口功能列表

内部接口功	能
sunxi_ledc_set_length	设置 LED 的数量
sunxi_ledc_set_output_mode	设置 LEDC 的输出模式(R、G、B 的排布顺序)
sunxi_ledc_set_cpu_mode	设置 CPU 的传输模式
sunxi_ledc_set_dma_mode	设置 DMA 的传输模式
sunxi_ledc_enable	使能 LEDC
sunxi_ledc_trans_data	设置 LEDC 相关寄存器;将 RGB 数据搬到 LEDC FIFO
	中,启动 LEDC
sunxi_ledc_set_time	模块初始化时设置 reset_ns、t1h_ns、t1l_ns 等的时间
sunxi_ledc_reset	将 transmitted_data 置为 0;释放系统资源;对 LEDC
	做 soft reset 操作
sunxi_set_led_brightness	设置 LED 亮度,范围为 0~255
sunxi_register_led_classdev	模块初始化时注册 led_classdev 设备
sunxi_unregister_led_classdev	7 模块卸载时注销 led_classdev 设备 ————————————————————————————————————

3.2 外部接口

3.2.1 brightness 调节说明

每个 RGB LED 在/sys/class/leds 目录下对应有 3 个 led_classdev 设备目录,分别如下:

/sys/class/leds/sunxi_led[n]r
/sys/class/leds/sunxi_led[n]g
/sys/class/leds/sunxi_led[n]b

其中 n 表示 LED 的编号, n 最小值为 0。

OUTis

🗓 说明

注意:从 LEDC PIN 端开始数,第一个 LED 的编号为 O,沿着远离 PIN 端的方向 LED 的编号依次递增。

例如,调节第 0 个 LED 的颜色为白光且最亮,操作如下:

echo 255 > /sys/class/leds/sunxi_led0r/brightness

echo 255 > /sys/class/leds/sunxi led0g/brightness

echo 255 > /sys/class/leds/sunxi led0b/brightness

r 代表设置红光, g 代表设置绿光, b 代表设置蓝光。

3.2.2 led trigger 使用说明

通过 "/sys/class/leds/[device]/trigger" 来设置 trigger 类型。

Trigger 类型有: backlight、camera、cpu、default-on、disk、gpio、heartbeat、mtd、oneshot、panic、timer、transient。

例如设置 trigger 类型为 timer,操作如下:

echo timer > /sys/class/leds/sunxi_led0r/trigger

♡ 技巧

注意:trigger 类型为 timer 时,默认亮 500ms,灭 500ms。可通过以下节点设置亮和灭持续的时间。

/sys/class/leds/[device]/delay_on

/sys/class/leds/[device]/delay_off

3.2.3 debugfs 使用说明

LEDC 相关的 debugfs 文件节点所在目录为/sys/kernel/debug/sunxi leds, 节点说明如下:

- reset_ns: 通过该节点可设置和读取 LED 的 reset 时间,范围为 80ns-327us。
- t1h ns: 通过该节点可设置和读取 1 码高电平时间,范围为 80ns-2560ns。
- t1l ns: 通过该节点可设置和读取 1 码低电平时间,范围为 80ns-1280ns。
- t0h ns: 通过该节点可设置和读取 0 码高电平时间,范围为 80ns-1280ns。
- tol ns: 通过该节点可设置和读取 1 码低电平时间,范围为 80ns-2560ns。
- wait_time0_ns:通过该节点可设置和读取相邻两个 LED 数据之间等待的时间,范围为 80ns-10us。

版权所有 © 珠海全志科技股份有限公司。保留一切权利

OUTio.

7 :4

- wait_time1_ns: 通过该节点可设置和读取相邻两帧数据之间等待的时间,范围为 80ns-85s。
- wait_data_time_ns: 通过该节点可设置和读取 LEDC 内部 FIFO 等待数据的时间容忍度, 范围为 80ns-655us。
- data: 通过该节点可读取 data buffer 中的数据,即所有 LED 对应的数据。
- output_mode:通过该节点可设置和读取当前输出的模式,输出模式有 GRB、GBR、RGB、 RBG、BGR 和 BRG。
- trans mode: 通过该节点可设置和读取当前的数据传输模式(CPU 或 DMA)。
- hwversion: 通过该节点可查看当前 LEDC 的硬件版本。

▲ 警告

- (1) 设置的时间必须在所说明的时间范围内,否则不会做任何操作。
- (2) 最终设置寄存器之后得到的时间均为 42ns 的整数倍,若通过节点设置的时间不遵循 42ns 的整数倍,则实际所设置的时间为小于该值的最大能够被 42ns 整除的数。例如通过 reset_ns 设置 90ns,则设置成功之后的 LED reset 时间为 84ns。

debugfs 使用举例如下:

echo 84 > /sys/kernel/debug/sunxi_leds/reset_ns
cat /sys/kernel/debug/sunxi_leds/data
echo RGB > /sys/kernel/debug/sunxi_leds/output_mode
cat /sys/kernel/debug/sunxi_leds/hwversion

版权所有 © 珠海全志科技股份有限公司。保留一切权利

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。

neitis neitis neitis neitis neitis neitis neitis neitis neitis

版权所有 © 珠海全志科技股份有限公司。保留一切权利

OUXis.