

Central Limit Theorem

1 Why

The sum of several independent and identically distributed random variables have a

2 Result

Proposition 1. Let (X, \mathcal{A}, μ) be a probability space. Let $\{f_n\}_n$ be a sequence of independent and identically distributed real-valued random variables on X with $\mathbf{E}(f_n) = \mu < \infty$ and $\mathbf{var}(f_n) = \sigma^2 < \infty$ for all n. Define $s_n = \sum_{i=1}^n f_i$. For all real numbers t,

$$\lim_{n \to \infty} \mu \left(\left\{ x \in X \mid \frac{s_n(x) - n\mu}{\sigma \sqrt{n}} \le t \right\} \right) = \Phi(t).$$