AEEM 3042 – Aircraft Performance & Design

Engineering Plotting Techniques & Guidelines

Printing Suggestions

Goal: to arrange your Microsoft Excel printout into a <u>readable</u> document

Readable: concise, formatted, legible

Example – atmospheric table should fit on a single piece of paper!

Plots and graphs should be well formulated to show important data easily and clearly

Chart title, legend, gridlines, axes, and scales should all be consistent in format and readable without making the chart appear cluttered

The data shown is the most important attribute of the chart!

Microsoft Excel

Powerful plotting tool Many plotting options Has a few limitations

X-Y Scatter – good for engineering applications

Plotting options

X-Y Scatter – good for engineering applications

First steps: know what data you want to plot set up x-axis and y-axis format data table for easy plotting

- 3. Create the following three graphs in your Excel workbook:
 - Altitude (y-axis) vs Temperature (°R, °F, or °C) (x-axis)
 - Altitude (y-axis) vs Pressure (lbs/ft²) (x-axis)
 - Altitude (y-axis) vs Density (slugs/ft³) (x-axis)

First steps: know what data you want to plot

set up x-axis and y-axis format data table for easy plotting

ALTITUDE	TEMPF	TEMPR	TEMPC
0	59.0	518.7	15.0
500	57.2	516.9	14.0
1000	55.4	515.1	13.0
1500	53.6	513.3	12.0
2000	51.8	511.5	11.0
2500	50.1	509.8	10.0
3000	48.3	508.0	9.0
3500	46.5	506.2	8.0
4000	44.7	504.4	7.1
4500	42.9	502.6	6.1
5000	41.1	500.8	5.1

First steps: know what data you want to plot set up x-axis and y-axis format data table for easy plotting

ALTITUDE	TEMPF	TEMPR	TEMPC
0	59.0	518.7	15.0
500	57.2	516.9	14.0
1000	55.4	515.1	13.0
1500	53.6	513.3	12.0
2000	51.8	511.5	11.0
2500	50.1	509.8	10.0
3000	48.3	508.0	9.0
3500	46.5	506.2	8.0
4000	44.7	504.4	7.1
4500	42.9	502.6	6.1
5000	41.1	500.8	5.1
x-axis	s y-a	xis	

First steps: know what data you want to plot set up x-axis and y-axis

format data table for easy plotting

ALTITUDE	TEMPF	TEMPR	TEMPC	
0	59.0	518.7	15.0	
500	57.2	516.9	14.0	
1000	55.4	515.1	13.0	
1500	53.6	513.3	12.0	
2000	51.8	511.5	11.0	
2500	50.1	509.8	10.0	
3000	48.3	508.0	9.0	
3500	46.5	506.2	8.0	
4000	44.7	504.4	7.1	
4500	42.9	502.6	6.1	
5000	41.1	500.8	5.1	
x-axis v-axis				

Next steps: select data in data table select type of Excel chart move chart as a new sheet

Next steps: select data in data table

select type of Excel chart move chart as a new sheet

AL	TITUDE	TFMPF	TEMPR	TEMPC
	0	59.0	518.7	15.0
	500	57.2	516.9	14.0
	1000	55.4	515.1	13.0
	1500	53.6	513.3	12.0
	2000	51.8	511.5	11.0
	2500	50.1	509.8	10.0
	3000	48.3	508.0	9.0
	3500	46.5	506.2	8.0
	4000	44.7	504.4	7.1
	4500	42.9	502.6	6.1
	5000	41.1	500.8	5.1

Next steps: select data in data table

select type of Excel chart

move chart as a new sheet

Next steps: select data in data table select type of Excel chart

move chart as a new sheet

right-click on the chart, select "Move Chart"

Final steps: format the data contours format the axes scales and gridlines format the axes labels and legend

Plot Title – Brief description that identifies the plot information concisely

Axis Labels – Indicate clearly what is plotted on each axis and <u>include units</u>

Labels should align with the major gridlines
Use minimum number of digits needed, unless
convention dictates otherwise
(Examples: Mach Number should be X.XXX;
Drag Coefficient should be X.XXXX or X.XXX)

Axis Scales – Selected to make full use of the plot area Major divisions are labelled, minor divisions are not Scales should make interpolation easy

Gridlines – Helps the user read and interpolate the data Darker major gridlines, lighter minor gridlines

Legend – Add for multiple data sets
Use various colors to differentiate data sets
Locate so as to not obscure the data
Locate in an open area

Plot Symbols and Lines

Test data – use symbols with no line Calculated data – use smooth line with no symbols Trend Line – use only to show a pattern

Plot Area – Don't use dark colors – hides data

Quadratic Lagrange Interpolating Polynomials

Questions?