

Clustering Complex Zeros of Triangular Systems of Polynomials

R. Imbach^{1,3,4}, M. Pouget² and C. Yap¹

Courant Institute of Mathematical Sciences, New York University, USA

² INRIA Nancy - Grand Est, France

³ European Union's H2020 No. 676541 (OpenDreamKit)

 $^{^4}$ NSF Grants # CCF-1563942, # CCF-1564132 and # CCF-1708884

Triangular systems of polynomials:

$$\begin{cases} f_1(z_1) & = & 0 \\ f_2(z_1, z_2) & = & 0 \\ & \dots & \\ f_n(z_1, z_2, \dots, z_n) & = & 0 \end{cases}, deg_{z_i}(f_i) \geq 1$$

with: finite number of sols

Triangular systems of polynomials:

$$\begin{cases} p_1(z_1, z_2, \dots, z_n) &= 0 \\ p_2(z_1, z_2, \dots, z_n) &= 0 \\ \dots \\ p_n(z_1, z_2, \dots, z_n) &= 0 \end{cases}$$

rewriting step

$$\left\{\begin{array}{ccccc} & & \left\{\begin{array}{cccc} f_1(z_1) & = & 0 \\ f_2(z_1,z_2) & = & 0 \\ & \ddots & & , deg_{z_i}(f_i) \geq 1, & \dots \\ f_n(z_1,z_2,\dots,z_n) & = & 0 \end{array}\right\}$$

with: finite number of sols

$$\begin{cases} p_1(z_1, z_2, \dots, z_n) &= 0 \\ p_2(z_1, z_2, \dots, z_n) &= 0 \\ \dots \\ p_n(z_1, z_2, \dots, z_n) &= 0 \end{cases}$$

rewriting step

$$\left\{ \begin{array}{cccc} & \left\{ \begin{array}{cccc} f_1(z_1) & = & 0 \\ f_2(z_1, z_2) & = & 0 \\ & \ddots & & , deg_{z_i}(f_i) \geq 1, \end{array} \right. \\ \left. \begin{array}{cccc} f_n(z_1, z_2, \dots, z_n) & = & 0 \end{array} \right. \end{array} \right\}$$

with: finite number of sols

	Isolate RC, Maple		solve.lib, Singular		
type	symbolic	numeric $\mathbb R$	symbolic	numeric $\mathbb C$	
S_4	3.8	3.7	0.6	0.18	
\mathcal{S}_5	24.2	>1000	42.9	0.57	

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine asked precision: 53 bits

$$S_4 \left\{ \begin{array}{l} z1^4 - 57 * z1^2 * z2 - 86 * z1 * z2^2 - 160 * z2^3 + 95 * z2^2 * z3 + 35 * z1^2 - 106 * z3 \\ z2^4 - 64 * z2^3 - 190 * z1 * z2 + 186 * z1 * z3 - 119 * z2 * z3 + 188 * z3 + 93 \\ z3^4 + 116 * z1 * z2^2 - 168 * z1 * z2 * z3 + 135 * z1 * z3^2 + 29 * z3^3 - 8 * z1 * z3 + 119 * z2 * z3 \end{array} \right. = 0$$

Introduction

	Isolate RC, Maple		solve.lib, Singular		tcluster
type	symbolic	numeric $\mathbb R$	symbolic	numeric $\mathbb C$	numeric C
S_4	3.8	3.7	0.6	0.18	8.0
\mathcal{S}_5	24.2	>1000	42.9	0.57	6.8

seq. times in s on a Intel(R) Core(TM) i7-7600U CPU @ 2.80 GHz machine asked precision: 53 bits

$$S_4 \left\{ \begin{array}{l} z1^4 - 57 * z1^2 * z2 - 86 * z1 * z2^2 - 160 * z2^3 + 95 * z2^2 * z3 + 35 * z1^2 - 106 * z3 \\ z2^4 - 64 * z2^3 - 190 * z1 * z2 + 186 * z1 * z3 - 119 * z2 * z3 + 188 * z3 + 93 \\ z3^4 + 116 * z1 * z2^2 - 168 * z1 * z2 * z3 + 135 * z1 * z3^2 + 29 * z3^3 - 8 * z1 * z3 + 119 * z2 * z3 \end{array} \right. = 0$$

Introduction

Triangular systems of polynomials:

$$\begin{cases} f_1(z_1) & = & 0 \\ f_2(z_1, z_2) & = & 0 \\ & \dots & \\ f_n(z_1, z_2, \dots, z_n) & = & 0 \end{cases}, deg_{z_i}(f_i) \geq 1$$

with: finite number of sols possibly sols with multiplicity

Example

Introduction

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 = 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^{1} = (2^{-\sigma} , 0)$$

 $a^{2} = (2^{-\sigma} , 1)$
 $a^{3} = (-2^{-\sigma} , 1)$
 $a^{4} = (-2^{-\sigma} , 0)$
 $a^{5} = (-2^{-\sigma} , -2^{-\sigma})$
 $a^{6} = (2^{-\sigma} , -2^{-\sigma})$

$$a^2 = (2^{-\sigma}, 1)$$

$$a^3 = (-2^{-\sigma}, 1)$$

$$a^4 = (-2^{-\sigma}, 0)$$

$$a^5 = (-2^{-\sigma}, -2^{-\sigma})$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma})$$

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma}) (z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^{\sigma} z_1^2) (z_2 - 1) z_2 = 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^{1} = (2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{1}, \mathbf{f}) = 1
\mathbf{a}^{2} = (2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{2}, \mathbf{f}) = 1
\mathbf{a}^{3} = (-2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{3}, \mathbf{f}) = 1
\mathbf{a}^{4} = (-2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{4}, \mathbf{f}) = 1
\mathbf{a}^{5} = (-2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{5}, \mathbf{f}) = 1
\mathbf{a}^{6} = (2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{6}, \mathbf{f}) = 1$$

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^{1} = (2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{1}, \mathbf{f}) = 2
\mathbf{a}^{2} = (2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{2}, \mathbf{f}) = 2
\mathbf{a}^{3} = (-2^{-\sigma} , 1) \leftarrow m(\mathbf{a}^{3}, \mathbf{f}) = 1
\mathbf{a}^{4} = (-2^{-\sigma} , 0) \leftarrow m(\mathbf{a}^{4}, \mathbf{f}) = 1
\mathbf{a}^{5} = (-2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{5}, \mathbf{f}) = 2
\mathbf{a}^{6} = (2^{-\sigma} , -2^{-\sigma}) \leftarrow m(\mathbf{a}^{6}, \mathbf{f}) = 4$$

$$\mathbf{a}^4 = (-2^{-\sigma}, \mathbf{a}^4, \mathbf{f}) = 1$$

 $\mathbf{a}^4 = (-2^{-\sigma}, \mathbf{a}^4, \mathbf{f}) = 1$

$$\mathbf{a}^{5} = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(\mathbf{a}^{5}, \mathbf{f}) = 2$$

$$\mathbf{a}^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(\mathbf{a}^5, \mathbf{f}) = 2$$

$$\mathbf{a}^6 = (2^{-\sigma} \quad , \quad -2^{-\sigma}) \quad \leftarrow \mathbf{m}(\mathbf{a}^6, \mathbf{f}) = 4$$

Example

Introduction

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^{1} = (2^{-\sigma})$$
, $(0) \leftarrow m(a^{1}, f) = 2$
 $a^{2} = (2^{-\sigma})$, $(1) \leftarrow m(a^{2}, f) = 2$
 $a^{3} = (-2^{-\sigma})$, $(1) \leftarrow m(a^{3}, f) = 1$
 $a^{4} = (-2^{-\sigma})$, $(1) \leftarrow m(a^{4}, f) = 1$
 $a^{5} = (-2^{-\sigma})$, $(1) \leftarrow m(a^{5}, f) = 2$
 $a^{6} = (2^{-\sigma})$, $(1) \leftarrow m(a^{6}, f) = 4$

Natural clusters:

$$(\Delta^1, 9)$$

 $(\Delta^2, 3)$


```
Input: a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim), a polybox B \subset \mathbb{C}^n, the Region of Interest (Rol), \epsilon > 0
```

Output:

Introduction

```
Notations: \mathbf{f} = (f_1, \dots, f_n), \mathbf{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
```

```
Input:
           a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim),
            a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI),
            \epsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

• the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,

```
Notations: \mathbf{f} = (f_1, \dots, f_n),
                 \boldsymbol{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
                 \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs
                 r(\mathbf{\Delta}^j) = max \ r(\mathbf{\Delta}^j_i)
```

```
Input:
           a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim),
            a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI),
            \epsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,
- $m^j = \#(\Delta^j, \mathbf{f}) = \#(3\Delta^j, \mathbf{f})$ for all $1 < i < \ell$, and

```
Notations: \mathbf{f} = (f_1, \dots, f_n),
                  \boldsymbol{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
                  \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs
                  r(\mathbf{\Delta}^j) = max \ r(\mathbf{\Delta}^j_i)
                  \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

```
Input:
           a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim),
            a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI),
            \epsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^{J} s are pairwise disjoint polydiscs of radius $r(\Delta^{j}) \leq \epsilon$,
- $m^j = \#(\Delta^j, \mathbf{f}) = \#(3\Delta^j, \mathbf{f})$ for all $1 < i < \ell$, and
- $Z(B, f) \subseteq \bigcup_{i=1}^{\ell} Z(\Delta^{j}, f) \subseteq Z(\delta B, f)$ for a small δ

```
Notations: \mathbf{f} = (f_1, \dots, f_n),
                   \boldsymbol{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
                   \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs
                   r(\mathbf{\Delta}^j) = max \ r(\mathbf{\Delta}^j_i)
                  \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
                   Z(S, \mathbf{f}): sols of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

```
Input:
           a polynomial map f: \mathbb{C}^n \to \mathbb{C}^n (assume f(z) = 0 is 0-dim),
            a polybox \mathbf{B} \subset \mathbb{C}^n, the Region of Interest (RoI),
            \epsilon > 0
```

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^{J} s are pairwise disjoint polydiscs of radius $r(\Delta^{j}) \leq \epsilon$,
- $m^j = \#(\Delta^j, \mathbf{f}) = \#(3\Delta^j, \mathbf{f})$ for all $1 < i < \ell$, and
- $Z(\boldsymbol{B}, \boldsymbol{f}) \subseteq \bigcup_{i=1}^{\ell} Z(\boldsymbol{\Delta}^{j}, \boldsymbol{f}) \subseteq Z(\delta \boldsymbol{B}, \boldsymbol{f})$ for a small δ

```
Notations: \mathbf{f} = (f_1, \dots, f_n),
                  \boldsymbol{B} = (B_1, \dots, B_n) where the B_i's are square complex boxes
                  \Delta^j = (\Delta^j_1, \dots, \Delta^j_n) where the \Delta^j_i's are complex discs
                  r(\mathbf{\Delta}^j) = \max_i r(\Delta_i^j)
                  \#(S, \mathbf{f}): nb. of sols (with mult.) of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
                  Z(S, \mathbf{f}): sols of \mathbf{f}(\mathbf{z}) = \mathbf{0} in S
```

Input: a polynomial map $f: \mathbb{C}^n \to \mathbb{C}^n$ (assume f(z) = 0 is 0-dim), a polybox $\mathbf{B} \subset \mathbb{C}^n$, the Region of Interest (RoI), $\epsilon > 0$

Output: a set of pairs $\{(\Delta^1, m^1), \dots, (\Delta^\ell, m^\ell)\}$ where:

- the Δ^j s are pairwise disjoint polydiscs of radius $r(\Delta^j) \leq \epsilon$,
- $m^j = \#(\Delta^j, \mathbf{f}) = \#(3\Delta^j, \mathbf{f})$ for all $1 < i < \ell$, and
- $Z(\boldsymbol{B}, \boldsymbol{f}) \subseteq \bigcup_{i=1}^{\ell} Z(\boldsymbol{\Delta}^{j}, \boldsymbol{f}) \subseteq Z(\delta \boldsymbol{B}, \boldsymbol{f})$ for a small δ

Definition: a pair (Δ, m) is called natural cluster (relative to f) when it satisfies:

$$m = \#(\Delta, f) = \#(3\Delta, f) \ge 1$$

if $r(\Delta) < \epsilon$, it is a natural ϵ -cluster

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^{1} = (2^{-\sigma}), \quad 0) \leftarrow m(a^{1}, f) = 2$$
 $a^{2} = (2^{-\sigma}), \quad 1) \leftarrow m(a^{2}, f) = 2$
 $a^{3} = (-2^{-\sigma}), \quad 1) \leftarrow m(a^{3}, f) = 1$
 $a^{4} = (-2^{-\sigma}), \quad 0) \leftarrow m(a^{4}, f) = 1$
 $a^{5} = (-2^{-\sigma}), \quad -2^{-\sigma}) \leftarrow m(a^{5}, f) = 2$
 $a^{6} = (2^{-\sigma}), \quad -2^{-\sigma}) \leftarrow m(a^{6}, f) = 4$

Natural clusters:

$$(\boldsymbol{\Delta}^1,9)$$

 $(\boldsymbol{\Delta}^2,3)$

 Δ^3 . Δ^4 are not natural clusters

Introduction Pellet's test natural ϵ -clusters and towers algorithms Implementation 4/16

Motivations for solutions clustering

Clustering can be done:

- ightarrow numerically with guarantee of results
- \rightarrow locally
- $\,\,
 ightarrow\,$ for systems of oracle polynomials
- \rightarrow with sols. with multiplicity

Let $\alpha \in \mathbb{C}$.

Introduction

Oracle for
$$\alpha$$
: function $\mathcal{O}_{\alpha}: \mathbb{Z} \to \square \mathbb{C}$
s.t. $\alpha \in \mathcal{O}_{\alpha}(L)$ and $w(\mathcal{O}_{\alpha}(L)) \leq 2^{-L}$

Notations: $\square \mathbb{C}$: set of complex interval

```
Let \alpha \in \mathbb{C}.
```

```
Oracle for \alpha: function \mathcal{O}_{\alpha}: \mathbb{Z} \to \mathbb{DC}
                                    s.t. \alpha \in \mathcal{O}_{\alpha}(L) and w(\mathcal{O}_{\alpha}(L)) < 2^{-L}
Let f \in \mathbb{C}[z_1, \ldots, z_n]
Oracle for f: function \mathcal{O}_f: \mathbb{Z} \to \mathbb{DC}[z_1, \dots, z_n]
                                   s.t. f \in \mathcal{O}_f(L) and w(\mathcal{O}_f(L)) < 2^{-L}
```

 \sim oracles for the coeffs of f

```
Notations: \square \mathbb{C}: set of complex interval
                 \square \mathbb{C}[z_1,\ldots,z_n]: polynomials with coefficients in \square \mathbb{C}
```

Oracle numbers and polynomials

```
Let \alpha \in \mathbb{C}.
Oracle for \alpha: function \mathcal{O}_{\alpha}: \mathbb{Z} \to \mathbb{DC}
                                    s.t. \alpha \in \mathcal{O}_{\alpha}(L) and w(\mathcal{O}_{\alpha}(L)) < 2^{-L}
Let f \in \mathbb{C}[z_1, \ldots, z_n]
Oracle for f: function \mathcal{O}_f: \mathbb{Z} \to \square \mathbb{C}[z_1, \dots, z_n]
                                   s.t. f \in \mathcal{O}_f(L) and w(\mathcal{O}_f(L)) < 2^{-L}
                                                                                    \sim oracles for the coeffs of f
Let \Box f \in \Box \mathbb{C}[z_1,\ldots,z_n] and (\Box \alpha_1,\ldots,\Box \alpha_{n-1}) \in \Box \mathbb{C}^n
Partial specialization of \Box f: \Box f(\Box \alpha_1, \dots, \Box \alpha_{n-1}) \in \Box \mathbb{C}[z_n]
```

Notations: $\square \mathbb{C}$: set of complex interval $\square \mathbb{C}[z_1,\ldots,z_n]$: polynomials with coefficients in $\square \mathbb{C}$ Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, d = deg(f) and $f_{\Delta} = f(c + rz)$.

If $\exists 0 \leq m \leq d$ s.t.

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

Notations: $(f)_m$: coeff. of the monomial of degree m of f

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, d = deg(f) and $f_{\Delta} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

If f has no root in this annulus $\rightarrow \exists m \text{ s.t. eq. } (1) \text{ holds.}$

Notations: $(f)_m$: coeff. of the monomial of degree m of f

The soft Pellet's test

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, d = deg(f) and $f_{\Lambda} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

PelletTest(Δ , f)

$//Output in \{-1, 0, 1, ..., d\}$

- **1.** compute f_{\wedge}
- 2. for m from 0 to d do
- 3. if $|(f_{\Delta})_m| > \sum_{i \in I} |(f_{\Delta})_i|$
- 4. return m
- 5. return -1

- //m roots (with mult.) in Δ
- //Roots near the boundary of Δ

The soft Pellet's test: for interval polynomials

Pellet's Theorem: Let Δ be a complex disc centered in c and radius r. Let $f \in \mathbb{C}[z]$, d = deg(f) and $f_{\Lambda} = f(c + rz)$.

If $\exists 0 < m < d \text{ s.t.}$

$$|(f_{\Delta})_m| > \sum_{i \neq k} |(f_{\Delta})_i| \tag{1}$$

then f has exactly m roots in Δ .

SoftCompare($\Box a, \Box b$)

 $//\square a$, $\square b$ are real intervals

Input: $\Box a$, $\Box b$ real intervals

Output: a number in $\{-2, -1, 1\}$ s.t.:

$$1 \Rightarrow \Box a > \Box b$$

 $-1 \Rightarrow \Box a < \Box b$ or $\Box a, \Box b$ are too close

$$-2 \Rightarrow \Box a \cap \Box b \neq \emptyset$$

(meant to be embedded in a loop to compare oracle numbers)

//Roots near the boundary of Δ

The soft Pellet's test: for interval polynomials

SoftPelletTest(Δ , $\Box f$) //Output in $\{-2, -1, 0, 1, \dots, d\}$ **1.** compute $\Box f_{\Delta}$ **2.** for *m* from 0 to *d* do $R \leftarrow \mathsf{SoftCompare}(|(\Box f_{\Delta})_m|, \sum\limits_{i \neq k} |(\Box f_{\Delta})_i|)$ 3. if $R \ge 0$ then return 4. //any $f \in \Box f$ has m roots // (with mult.) in Δ 5. if R = -2 then return -2 $//\Box f$ is too wide

SoftCompare($\Box a, \Box b$) $//\square a$, $\square b$ are real intervals

```
Input:
            \Box a, \Box b real intervals
Output: a number in \{-2, -1, 1\} s.t.:
                 1 \Rightarrow \Box a > \Box b
              -1 \Rightarrow \Box a < \Box b or \Box a, \Box b are too close
              -2 \Rightarrow \Box a \cap \Box b \neq \emptyset
```

(meant to be embedded in a loop to compare oracle numbers)

6. return -1

SoftPelletTest(Δ , $\Box f$) $//Output in \{-2, -1, 0, 1, ..., d\}$

- **1.** compute $\Box f_{\Delta}$
- **2.** for *m* from 0 to *d* do

3.
$$R \leftarrow \mathsf{SoftCompare}(|(\Box f_{\Delta})_m|, \sum_{i \neq k} |(\Box f_{\Delta})_i|)$$

4. if $R \ge 0$ then return $//any f \in \Box f$ has m roots // (with mult.) in Δ

5. if R = -2 then return -2 $//\Box f$ is too wide

6. return -1//Roots near the boundary of Δ

[BSSY18] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap.

A near-optimal subdivision algorithm for complex root isolation based on Pellet test and Newton iteration

JSC 86:51-96, May-June 2018.

Univariate root clustering algorithm

[BSS+16]: solves the LCP in 1D SoftPelletTest embedded in a subdivision framework accepts oracle polynomials in input near optimal complexity (benchmark problem)

Implemented in [IPY18]

- [BSS+16] Ruben Becker, Michael Sagraloff, Vikram Sharma, Juan Xu, and Chee Yap. Complexity analysis of root clustering for a complex polynomial. In ISSAC 16, pages 71-78. ACM, 2016.
- [IPY18] Rémi Imbach, Victor Y. Pan, and Chee Yap. Implementation of a near-optimal complex root clustering algorithm. In Mathematical Software – ICMS 2018, pages 235–244, Cham, 2018.

LCP for triangular systems

Main tool: the T^* -test:

$T_*(\Delta, \Box f)$

Input: Δ complex disc, $\Box f \in \Box \mathbb{C}[z]$ with degree(f) = d**Output:** integer in $\{-2, -1, 0, 1, ..., d\}$ s.t.:

- $m \ge 1$: $\forall f \in \Box f$, $\#(\Delta, f) = \#(3\Delta, f) = m$ (natural cluster)
- 0 : $\forall f \in \Box f$, f has no root in Δ
- -1 : roots near the boundary of Δ (can not decide)
- -2: not enough precision on $\Box f$ (can not decide)

LCP for triangular systems

Main tool: the T^* -test:

$T_*(\Delta, \Box f)$

Input: Δ complex disc, $\Box f \in \Box \mathbb{C}[z]$ with degree(f) = d

Output: integer in $\{-2, -1, 0, 1, ..., d\}$ s.t.:

- $m \ge 1$: $\forall f \in \Box f$, $\#(\Delta, f) = \#(3\Delta, f) = m$ (natural cluster)
- 0 : $\forall f \in \Box f$, f has no root in Δ
- -1 : roots near the boundary of Δ (can not decide)
- -2: not enough precision on $\Box f$ (can not decide)

Specialization to the bivariate case: $\mathbf{f} = (f_1, f_2)$ f(z) = 0 be is triangular system.

Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha \in Z(\Delta_1, f_1), f_2(\alpha, z_2)$ has m_2 roots in Δ_2 with multiplicity

natural ϵ -clusters and towers

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha \in Z(\Delta_1, f_1)$, $f_2(\alpha, z_2)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proof: direct consequence of

Theorem [ZFX11]: Let $\alpha \in Z(\mathbb{C}^2, \mathbf{f})$, $\alpha = (\alpha_1, \alpha_2)$. Then

$$m(\boldsymbol{\alpha}, \boldsymbol{f}) = m(\alpha_2, f_2(\alpha_1, z_2)) \times m(\alpha_1, f_1)$$

[ZFX11] Zhihai Zhang, Tian Fang, and Bican Xia.

Real solution isolation with multiplicity of zero-dimensional triangular systems. *Science China Information Sciences*, 54(1):60–69, 2011.

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) = 0 \\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 = 0 \end{cases}$$

natural ϵ -clusters and towers

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^1 = (2^{-\sigma}, 0) \leftarrow m(a^1, f) = 2 = 1 \times 2$$

$$\mathbf{a}^2 = (2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$\mathbf{a}^{2} = (-2)^{2}$$
 , $\mathbf{a}^{3} = (-2)^{3}$, $\mathbf{a}^{4} = (-2)^{3}$, $\mathbf{a}^{5} = (-2)^{3}$

$$\mathbf{a}^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(\mathbf{a}^5, \mathbf{f}) = 2 - 2 \times 1$$

$$a^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^5, f) = 2 = 2 \times 1$$

$$a^6 = (2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^6, f) = 4 = 2 \times 2$$

Natural clusters:

$$(\Delta^1, 9)$$

$$(\mathbf{\Delta}^2,3)$$

Example

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

natural ϵ -clusters and towers

Solutions: f(z) = 0 has 6 solutions, all real:

$$a^1 = (2^{-\sigma}, 0) \leftarrow m(a^1, f) = 2 = 1 \times 2$$

 $a^2 = (2^{-\sigma}, 0) \leftarrow m(a^2, f) = 2 = 1 \times 2$

$$\mathbf{a}^2 = (2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$a^4 - (-2^{-\sigma})$$
 $(a^4 f) - 1 - 1 \times 1$

$$\mathbf{a}^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(\mathbf{a}^5, \mathbf{f}) = 2 = 2 \times 1$$

$$\mathbf{a}^{\mathbf{s}} = (-2 \quad , \quad -2 \quad) \quad \leftarrow m(\mathbf{a}^{\mathbf{s}}, \mathbf{r}) = 2 = 2 \times .$$

$$\mathbf{a}^6 = (2^{-\sigma}, -2^{-\sigma}) \leftarrow m(\mathbf{a}^6, \mathbf{f}) = 4 = 2 \times 2$$

Natural clusters:

$$(\Delta^1, 9) \leftarrow 9 = 3 \times 3$$

$$(\mathbf{\Delta}^2,3)\leftarrow 3=1\times 3$$

Number of solutions in a polydisc

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha \in Z(\Delta_1, f_1), f_2(\alpha, z_2)$ has m_2 roots in Δ_2 with multiplicity

natural ϵ -clusters and towers

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$

Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha \in Z(\Delta_1, f_1), f_2(\alpha, z_2)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity. Let $\Delta = (\Delta_1, \Delta_2)$ and $\mathbf{m} = (m_1, m_2)$.

Proposition 1: Suppose

- (i) f_1 has m_1 roots in Δ_1 with multiplicity
- (ii) $\forall \alpha \in Z(\Delta_1, f_1)$, $f_2(\alpha, z_2)$ has m_2 roots in Δ_2 with multiplicity

Then f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural ϵ -tower (relative to f) if

- (i) (Δ_1, m_1) is a natural ϵ -cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural ϵ -cluster relative to $f_2(\alpha, z_2)$

Corollary 2: If (Δ, m) is a natural tower, f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

System: Let $\sigma \geq 3$ and f(z) = 0 be:

$$\begin{cases} (z_1 - 2^{-\sigma})^2 (z_1 + 2^{-\sigma}) &= 0\\ (z_2 + 2^{\sigma} z_1^2)^2 (z_2 - 1) z_2 &= 0 \end{cases}$$

natural ϵ -clusters and towers

Solutions: f(z) = 0 has 6 solutions, all real:

$$\mathbf{a}^1 = (2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^1, \mathbf{f}) = 2 = 1 \times 2$$

$$\mathbf{a}^2 = (2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^2, \mathbf{f}) = 2 = 1 \times 2$$

 $\mathbf{a}^3 = (-2^{-\sigma}, 1) \leftarrow m(\mathbf{a}^3, \mathbf{f}) = 1 = 1 \times 1$
 $\mathbf{a}^4 = (-2^{-\sigma}, 0) \leftarrow m(\mathbf{a}^4, \mathbf{f}) = 1 = 1 \times 1$

$$\mathbf{a}^{2} = (-2)^{2}$$
 , $\mathbf{a}^{3} = (-2)^{3}$, $\mathbf{a}^{4} = (-2)^{3}$, $\mathbf{a}^{5} = (-2)^{3}$

$$a^5 = (-2^{-\sigma}, -2^{-\sigma}) \leftarrow m(a^5, f) = 2 = 2 \times 1$$

$$\mathbf{a}^{\mathbf{a}} = (-2 \circ , -2 \circ) \leftarrow m(\mathbf{a}^{\mathbf{a}}, \mathbf{r}) = 2 = 2 \times 1$$

$$\mathbf{a}^6 = (2^{-\sigma} \, , \, -2^{-\sigma}) \leftarrow m(\mathbf{a}^6, \mathbf{f}) = 4 = 2 \times 2$$

Natural clusters:

$$(\boldsymbol{\Delta}^1, 9) \leftarrow 9 = 3 \times 3$$

$$(\Delta^2,3)\leftarrow 3=1\times 3$$

Natural towers:

$$(\boldsymbol{\Delta}^1,(3,3))$$

$$(\Delta^2, (1,3))$$

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Definition: A pair (Δ, m) is a natural tower (relative to f) if

natural ϵ -clusters and towers

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose $f_1 \in \Box f_1$, $f_2 \in \Box f_2$ and

- (i) $T^*(\Delta_1, \Box f_1)$ returns $m_1 \geq 1$
- (ii) $T^*(\Delta_2, \Box f_2(\Box \Delta_1))$ returns $m_2 > 1$

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$
- $f(z) = \mathbf{0}$ has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose $f_1 \in \Box f_1$, $f_2 \in \Box f_2$ and

- (i) $T^*(\Delta_1, \Box f_1)$ returns $m_1 \geq 1$
- (ii) $T^*(\Delta_2, \Box f_2(\Box \Delta_1))$ returns $m_2 \geq 1$

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose $f_1 \in \Box f_1$, $f_2 \in \Box f_2$ and

- (i) $T^*(\Delta_1, \Box f_1)$ returns $m_1 \geq 1$
- (ii) $T^*(\Delta_2, \Box f_2(\Box \Delta_1))$ returns $m_2 > 1$

Definition: A pair (Δ, m) is a natural tower (relative to f) if

- (i) (Δ_1, m_1) is a natural cluster relative to f_1
- (ii) $\forall \alpha \in \Delta_1$, (Δ_2, m_2) is a natural cluster relative to $f_2(\alpha, z_2)$
- f(z) = 0 has $m_2 \times m_1$ solutions in Δ with multiplicity.

Proposition 3: Suppose $f_1 \in \Box f_1$, $f_2 \in \Box f_2$ and

- (i) $T^*(\Delta_1, \Box f_1)$ returns $m_1 \geq 1$
- (ii) $T^*(\Delta_2, \Box f_2(\Box \Delta_1))$ returns $m_2 \geq 1$

Geometry and subdivision

Containing polydisk of a polybox:

Geometry and subdivision

Containing polydisk of a polybox:

Splits of a polybox:

$$split_1(\mathbf{B}) = \{(B_1^1, B_2), \dots, (B_1^4, B_2)\}$$

Splits of a polybox:

$$\textit{split}_1(\bm{B}) = \{(B_1^1, B_2), \dots, (B_1^4, B_2)\} \quad \textit{split}_2(\bm{B}) = \{(B_1, B_2^1), \dots, (B_1, B_2^2)\}$$

11/16

(case where \mathbf{f} is known exactly)

Lift(\boldsymbol{f} , \boldsymbol{B} , ϵ)

a triangular system f(z) = 0, a polybox B, $\epsilon > 0$ Input:

Output: two sets R and Q

1. $(\Delta_1, \Delta_2) \leftarrow \Delta(\mathbf{B})$

2. $m_1 \leftarrow T^*(\Delta_1, f_1)$

 $//m_1 \ge -1$ since f_1 is known exactly

(case where \mathbf{f} is known exactly)

Lift(\boldsymbol{f} , \boldsymbol{B} , ϵ)

Input: a triangular system f(z) = 0, a polybox B, $\epsilon > 0$

Output: two sets R and Q

1. $(\Delta_1, \Delta_2) \leftarrow \Delta(\mathbf{B})$

2. $m_1 \leftarrow T^*(\Delta_1, f_1)$

 $//m_1 \ge -1$ since f_1 is known exactly

12/16

Lifting a polybox to a natural ϵ -tower

(case where f is known exactly)

Lift(\boldsymbol{f} , \boldsymbol{B} , ϵ)

Input: a triangular system f(z) = 0, a polybox B, $\epsilon > 0$ **Output:** two sets R and Q

- **1.** $(\Delta_1, \Delta_2) \leftarrow \Delta(\mathbf{B})$
- **2.** $m_1 \leftarrow \mathcal{T}^*(\Delta_1, f_1)$ $//m_1 \geq -1$ since f_1 is known exactly
- **3.** if $m_1 = 0$ then return \emptyset, \emptyset
- **4.** if $m_1 = -1$ or $r(\Delta_1) > \epsilon$ then return \emptyset , $split_1(B)$
- **5. else** $//m_1 \ge 1$ and $r(\Delta_1) \le \epsilon$: natural ϵ -cluster

(case where \mathbf{f} is known exactly)

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

Input: a triangular system f(z) = 0, a polybox B, $\epsilon > 0$ **Output:** two sets R and Q

```
1. (\Delta_1, \Delta_2) \leftarrow \Delta(\mathbf{B})
```

2.
$$m_1 \leftarrow T^*(\Delta_1, f_1)$$
 $//m_1 \ge -1$ since f_1 is known exactly

3. if
$$m_1 = 0$$
 then return \emptyset, \emptyset

4. if
$$m_1 = -1$$
 or $r(\Delta_1) > \epsilon$ then return \emptyset , $split_1(B)$

5. else
$$//m_1 \ge 1$$
 and $r(\Delta_1) \le \epsilon$: natural ϵ -cluster

(case where f is known exactly)

Lift(\boldsymbol{f} , \boldsymbol{B} , ϵ)

Input: a triangular system f(z) = 0, a polybox B, $\epsilon > 0$ **Output:** two sets R and Q

- 1. $(\Delta_1, \Delta_2) \leftarrow \Delta(\mathbf{B})$
- 2. $m_1 \leftarrow T^*(\Delta_1, f_1)$ $//m_1 \ge -1$ since f_1 is known exactly
- **3.** if $m_1 = 0$ then return \emptyset, \emptyset
- **4.** if $m_1 = -1$ or $r(\Delta_1) > \epsilon$ then return \emptyset , $split_1(B)$
- **5.** else $//m_1 \ge 1$ and $r(\Delta_1) \le \epsilon$: natural ϵ -cluster

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

```
Input: a triangular system f(z) = 0, a polybox B, \epsilon > 0
Output: two sets R and Q
 1. (\Delta_1, \Delta_2) \leftarrow \Delta(\boldsymbol{B})
 2. m_1 \leftarrow T^*(\Delta_1, f_1)
                                                  //m_1 \ge -1 since f_1 is known exactly
                                     then return \emptyset, \emptyset
 3. if m_1 = 0
 4. if m_1 = -1 or r(\Delta_1) > \epsilon then return \emptyset, split_1(B)
 5. else
                                          //m_1 \geq 1 and r(\Delta_1) \leq \epsilon: natural \epsilon-cluster
 7. m_2 \leftarrow T^*(\Delta_2, f_2(\square \Delta_1))
 8. if m_2 = -2
                                 then return \emptyset, split<sub>1</sub>(B)
 9.
         if m_2 = 0
                               then return \emptyset,\emptyset
10.
                if m_2 = -1 or r(\Delta_2) > \epsilon then return \emptyset, split<sub>2</sub>(B)
11.
                else
                                          //m_2 \ge 1 and r(\Delta_2) \le \epsilon: natural \epsilon-cluster
12.
                         return \{(\Delta(\boldsymbol{B}), (m_1, m_2))\}, \emptyset
```

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

```
Input: a triangular system f(z) = 0, a polybox B, \epsilon > 0
Output: two sets R and Q
 1. (\Delta_1, \Delta_2) \leftarrow \Delta(\boldsymbol{B})
 2. m_1 \leftarrow T^*(\Delta_1, f_1)
                                                   //m_1 \ge -1 since f_1 is known exactly
                                      then return \emptyset, \emptyset
 3. if m_1 = 0
 4. if m_1 = -1 or r(\Delta_1) > \epsilon then return \emptyset, split_1(B)
 5. else
                                           //m_1 \geq 1 and r(\Delta_1) \leq \epsilon: natural \epsilon-cluster
 7. m_2 \leftarrow T^*(\Delta_2, f_2(\square \Delta_1))
 8. if m_2 = -2 then return \emptyset, split<sub>1</sub>(\boldsymbol{B})
 9.
         if m_2 = 0
                               then return \emptyset,\emptyset
10.
                if m_2 = -1 or r(\Delta_2) > \epsilon then return \emptyset, split<sub>2</sub>(B)
11.
                else
                                           //m_2 \ge 1 and r(\Delta_2) \le \epsilon: natural \epsilon-cluster
12.
                          return \{(\Delta(\boldsymbol{B}), (m_1, m_2))\}, \emptyset
```

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

```
Input: a triangular system f(z) = 0, a polybox B, \epsilon > 0
Output: two sets R and Q
 1. (\Delta_1, \Delta_2) \leftarrow \Delta(\boldsymbol{B})
 2. m_1 \leftarrow T^*(\Delta_1, f_1)
                                                  //m_1 \ge -1 since f_1 is known exactly
                                       then return \emptyset, \emptyset
 3. if m_1 = 0
 4. if m_1 = -1 or r(\Delta_1) > \epsilon then return \emptyset, split_1(B)
 5. else
                                          //m_1 > 1 and r(\Delta_1) < \epsilon: natural \epsilon-cluster
 7. m_2 \leftarrow T^*(\Delta_2, f_2(\Box \Delta_1))
                                 then return \emptyset, split_1(B)
 8. if m_2 = -2
 9.
         if m_2 = 0
                                                  then return \emptyset, \emptyset
10.
               if m_2 = -1 or r(\Delta_2) > \epsilon then return \emptyset, split<sub>2</sub>(B)
11.
                else
                                          //m_2 \ge 1 and r(\Delta_2) \le \epsilon: natural \epsilon-cluster
12.
                         return \{(\Delta(\boldsymbol{B}), (m_1, m_2))\}, \emptyset
```

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

```
Input: a triangular system f(z) = 0, a polybox B, \epsilon > 0
Output: two sets R and Q
 1. (\Delta_1, \Delta_2) \leftarrow \Delta(\boldsymbol{B})
 2. m_1 \leftarrow T^*(\Delta_1, f_1)
                                                   //m_1 \ge -1 since f_1 is known exactly
                                      then return \emptyset, \emptyset
 3. if m_1 = 0
 4. if m_1 = -1 or r(\Delta_1) > \epsilon then return \emptyset, split_1(B)
 5. else
                                           //m_1 > 1 and r(\Delta_1) < \epsilon: natural \epsilon-cluster
 7. m_2 \leftarrow T^*(\Delta_2, f_2(\Box \Delta_1))
 8. if m_2 = -2
                                 then return \emptyset, split<sub>1</sub>(B)
 9.
         if m_2 = 0
                                                   then return \emptyset, \emptyset
10.
                if m_2 = -1 or r(\Delta_2) > \epsilon then return \emptyset, split<sub>2</sub>(B)
11.
                else
                                           //m_2 \ge 1 and r(\Delta_2) \le \epsilon: natural \epsilon-cluster
12.
                          return \{(\Delta(\boldsymbol{B}), (m_1, m_2))\}, \emptyset
```

```
Lift(\boldsymbol{f}, \boldsymbol{B}, \epsilon)
```

```
Input: a triangular system f(z) = 0, a polybox B, \epsilon > 0
Output: two sets R and Q
 1. (\Delta_1, \Delta_2) \leftarrow \Delta(\boldsymbol{B})
 2. m_1 \leftarrow T^*(\Delta_1, f_1)
                                                   //m_1 \ge -1 since f_1 is known exactly
                                        then return \emptyset, \emptyset
 3. if m_1 = 0
 4. if m_1 = -1 or r(\Delta_1) > \epsilon then return \emptyset, split_1(B)
 5. else
                                           //m_1 \geq 1 and r(\Delta_1) \leq \epsilon: natural \epsilon-cluster
 7. m_2 \leftarrow T^*(\Delta_2, f_2(\Box \Delta_1))
 8. if m_2 = -2
                                   then return \emptyset, split<sub>1</sub>(B)
 9.
         if m_2 = 0
                                                   then return \emptyset, \emptyset
                if m_2 = -1 or r(\Delta_2) > \epsilon then return \emptyset, split_2(\mathbf{B})
10.
11.
                else
                                           //m_2 > 1 and r(\Delta_2) < \epsilon: natural \epsilon-cluster
12.
                          return \{(\Delta(\boldsymbol{B}), (m_1, m_2))\}, \emptyset
```

Implementation

ClusterTri($\mathbf{f}, \mathbf{B}_0, \epsilon$)

Input: a triangular system f(z) = 0, a Rol B_0 , $\epsilon > 0$

Output: a set of natural ϵ -towers solving the LCP

- 1. $R \leftarrow \emptyset$
- **2.** $Q \leftarrow \{B_0\}$
- **3.** while Q is not empty do
- **4.** $\mathbf{B} \leftarrow Q.pop()$
- 5. $R', Q' \leftarrow Lift(\mathbf{f}, \mathbf{B}, \epsilon)$
- **6.** $R \leftarrow R \cup R'$
- 7. $Q \leftarrow Q \cup Q'$
- **8.** remove duplicates from *R*
- 9. return R

Implementation

ClusterTri($\mathbf{f}, \mathbf{B}_0, \epsilon$)

Input: a triangular system f(z) = 0, a Rol B_0 , $\epsilon > 0$ **Output:** a set of natural ϵ -towers solving the LCP

- 1. $R \leftarrow \emptyset$
- **2.** $Q \leftarrow \{B_0\}$
- **3. while** *Q* is not empty **do**
- **4.** $\mathbf{B} \leftarrow Q.pop()$
- 5. $R', Q' \leftarrow Lift(\mathbf{f}, \mathbf{B}, \epsilon)$
- **6.** $R \leftarrow R \cup R'$
- 7. $Q \leftarrow Q \cup Q'$
- **8.** remove duplicates from *R*
- 9. return R

Solving the LCP problem for triangular systems

ClusterTri($\mathbf{f}, \mathbf{B}_0, \epsilon$)

Input: a triangular system f(z) = 0, a Rol B_0 , $\epsilon > 0$ **Output:** a set of natural ϵ -towers solving the LCP

- 1. $R \leftarrow \emptyset$
- **2.** $Q \leftarrow \{B_0\}$
- **3.** while Q is not empty do
- **4.** $\mathbf{B} \leftarrow Q.pop()$
- 5. $R', Q' \leftarrow Lift(\mathbf{f}, \mathbf{B}, \epsilon)$
- **6.** $R \leftarrow R \cup R'$
- 7. $Q \leftarrow Q \cup Q'$
- **8.** remove duplicates from *R*
- 9. return R

Ccluster: library in C based on

- FLINT¹: arithmetic for the geometric algorithm
- (S(s)) Arb²: arbitrary precision floating arithmetic with error bounds

Available at https://github.com/rimbach/Ccluster

<code>Ccluster.jl:</code> package for **julia** 3 based on $\mathbb{N}e^m\mathcal{O}^4$

- interface for Ccluster
- tcluster: implementation of ClusterTri

Available at https://github.com/rimbach/Ccluster.jl

¹https://github.com/wbhart/flint2

²http://arblib.org/

³https://julialang.org/

⁴http://nemocas.org/

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \leq i \leq n$

Table: for each type, average on 5 random dense sys. seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine.

	II			1		1	1	ı		
type										
Systems with only sim	Systems with only simple solutions									
(9,9,9)										
(6,6,6,6)										
(9,9,9,9)										
(6,6,6,6,6)										
(9,9,9,9,9)										
(2,2,2,2,2,2,2,2,2)										
Systems with multiple	solutions	·			•					
(9,9)										
(6,6,6)										
(9,9,9)										
(6,6,6,6)										

Benchmark: local vs global comparison

Type of a triangular system:

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \le i \le n$

Table: for each type, average on 5 random dense sys.

seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine.

	tcluster local tcluster glob		bal	ll l		
type	(#Sols:#Clus)	t (s)	(#Sols:#Clus)	t (s)		
Systems with only sim	ple solutions					
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.43		
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	2.21		
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	14.6		
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	13.8		
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	130		
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.92		
Systems with multiple	solutions					
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.17		
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.26		
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.10		
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.29		

tcluster local : $\mathbf{B} = ([-1,1] + \mathbf{i}[-1,1], \ldots), \epsilon = 2^{-53}$ tcluster global: $\mathbf{B} = (([-5,5] + \mathbf{i}[-5,5]) \times 10^5, \ldots), \epsilon = 2^{-53}$

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \le i \le n$

Table: for each type, average on 5 random dense sys.

seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine.

	tcluster local		tcluster global		HomCont.jl		
type	(#Sols:#Clus)	t (s)	(#Sols:#Clus)	t (s)	#Sols	t (s)	
Systems with only sim	ple solutions						
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.43	729	4.21	
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	2.21	1296	4.70	
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	14.6	6561	14.0	
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	13.8	7776	11.5	
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	130	59049	116	
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.92	1024	4.84	
Systems with multiple	solutions						
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.17	33.6	3.27	
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.26	53.2	2.75	
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.10	159	28.4	
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.29	134	8.06	

tcluster local : $\mathbf{B} = ([-1,1] + \mathbf{i}[-1,1], \ldots), \epsilon = 2^{-53}$ tcluster global: $\mathbf{B} = (([-5,5] + \mathbf{i}[-5,5]) \times 10^5, \ldots), \epsilon = 2^{-53}$

HomCont.jl: HomotopyContinuation.jl

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \le i \le n$

Table: for each type, average on 5 random dense sys.

seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine.

	tcluster local		tcluster global		HomCont.jl				
type	(#Sols:#Clus)	t (s)	(#Sols:#Clus)	t (s)	#Sols	t (s)			
Systems with only sim	Systems with only simple solutions								
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.43	729	4.21			
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	2.21	1296	4.70			
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	14.6	6561	14.0			
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	13.8	7776	11.5			
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	130	59049	116			
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.92	1024	4.84			
Systems with multiple	solutions								
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.17	33.6	3.27			
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.26	53.2	2.75			
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.10	159	28.4			
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.29	134	8.06			

tcluster **local** :
$$oldsymbol{B}=(\ [-1,1]+oldsymbol{i}[-1,1] \ ,\ldots),\ \epsilon=2^{-53}$$

tcluster local : $\mathbf{B} = ([-1,1] + \mathbf{i}[-1,1], \ldots), \epsilon = 2^{-53}$ tcluster global: $\mathbf{B} = (([-5,5] + \mathbf{i}[-5,5]) \times 10^5, \ldots), \epsilon = 2^{-53}$

HomCont.jl: HomotopyContinuation.jl

f(z) = 0 has type (d_1, \ldots, d_n) if f_i has degree d_i in z_i , $\forall 1 \le i \le n$

Table: for each type, average on 5 random dense sys.

seq. times on a Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz machine.

	tcluster local		tcluster global		HomCont.jl		triang_	solve
type	(#Sols:#Clus)	t (s)	(#Sols:#Clus)	t (s)	#Sols	t (s)	#Sols	t (s)
Systems with only sim	Systems with only simple solutions							
(9,9,9)	(149 : 149)	0.24	(729 : 729)	1.43	729	4.21	729	0.37
(6,6,6,6)	(63.4 : 63.4)	0.10	(1296 : 1296)	2.21	1296	4.70	1296	0.93
(9,9,9,9)	(559 : 559)	1.06	(6561 : 6561)	14.6	6561	14.0	6561	8.57
(6,6,6,6,6)	(155 : 155)	0.37	(7776 : 7776)	13.8	7776	11.5	7776	19.1
(9,9,9,9,9)	(1739 : 1739)	4.83	(59049 : 59049)	130	59049	116	59049	702
(2,2,2,2,2,2,2,2,2)	(0:0)	0.13	(1024 : 1024)	2.92	1024	4.84	1024	3.9
Systems with multiple	solutions							
(9,9)	(23.8: 13.6)	0.03	(81 : 45)	0.17	33.6	3.27	45	0.03
(6,6,6)	(35.2: 8.80)	0.05	(216 : 54)	0.26	53.2	2.75	54	0.05
(9,9,9)	(113 : 37.6)	0.22	(729 : 225)	1.10	159	28.4	225	0.23
(6,6,6,6)	(81.6: 10.2)	0.21	(1296: 162)	1.29	134	8.06	162	0.15

tcluster local : $\mathbf{B} = ([-1,1] + \mathbf{i}[-1,1], \ldots), \epsilon = 2^{-53}$ tcluster global: $\mathbf{B} = (([-5,5] + \mathbf{i}[-5,5]) \times 10^5, \ldots), \epsilon = 2^{-53}$

HomCont.jl: HomotopyContinuation.jl

triang_solve: Singular solver for triangular systems

Pellet's test natural ϵ -clusters and towers algorithms **Implementation**16/16

Conclusion and future works

Contributions in MCS paper:

- definition of the Local complex solutions Clustering Problem
- algorithm for solving the LCP for triangular systems
- termination based on error analysis of partial substitution
- numerical experiments

Implementation:

- available for **julia**
- efficient

Future work:

• complexity analysis

Thank you for your attention!