Grenzwerte bei Funktionen

 $D \subseteq IR$ and $X_0 \in IR$. X_0 ist Häckursponkt von D, when $E: X_0 \in IR$ in $D \setminus \{x_0\}$ existint mit $X_0 \longrightarrow X_0$

Xo : of HP von 0 (=) YE >0: UE(xo) n (D\ {xo}) Z Ø

 $D_{\delta} := \mathcal{U}_{\delta}(x_{o}) \cap (D \setminus \{x_{o}\})$ fig: D -> R Fullationer

Grenzuete

I s g and M, rem silt: f(x) s g(x) (x & M).

 $\lim_{X\to X_0} f(x) = \alpha$ ←> ∀€>0 ∃\$>0 ∀x € Os(x₀): $|f(x) - \alpha| < \varepsilon$.

(im f(x) existint $(\Rightarrow F\"{ur} \text{ sede Folse } (x_n) \text{ in } 0 \setminus \{x_0\} \text{ mit}$ $x_n \to x_0 \text{ ist } f(x_n) \text{ loonvesset}$

Cauchykriterium $(=) \forall \varepsilon > 0 \exists \delta > 0 \forall x_1, x_2 \in D_{\delta}(x_0):$ $|f(x_1) - f(x_2)| \langle \varepsilon$

Sei DEIR, x. Härtryspulkt von D und 5: D -> IR eine Funktion

 $\lim_{x\to x_0} g(x) = \infty \quad (=) \quad \text{For jede Folge} \quad (x_n) \text{ in } D \setminus \{x_0\} \text{ mit}$ $x_n \to x_0 \quad g(t) : g(x_n) \to \infty$