Naben_Verbindung

May 14, 2024

1 Pass- und Scheibenfederverbindungen

1.0.1 Pass- und Scheibenfederverbindungen sind gebräuchliche Formschlussverbindungen für Riemenscheiben, Zahnräder, Kupplungen u. dgl. mit Wellen bei vorwiegend einseitig wirkenden Drehmomenten (Passfederverbindungen mit Einschränkung auch bei wechselnden oder stoßbehafteten Drehmomenten). Sie sind einfach montier- bzw. demontierbar.

geeignet, wenn gefordert							V	Vell	e-N	lab	e-V	/er	bin	duı	nge	n						
	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	p	q	r	S	t	u	v
Übertragung großer einseitiger Drehmomente	4	4	4	3	4	4	2	3	0	0	2	2	4	2	4	4	4	2	1	3	4	4
 wechselnder und stoßhafter Drehmomente 	4	4	4	3	4	4	2	3	0	0	2	2	3	2	3	3	4	0	0	1	4	4
Aufnahme hoher Axialkräfte	4	4	4	2	3	3	2	3	1	1	2	2	4	0	0	0	0	0	1	3	4	4
Nabe axial zu verschieben ¹⁾	0	0	0	0	0	0	0	0	0	0	0	0	2	4	4	2	2	0	0	0	0	0
Nabe axial unter Last zu verschieben ¹⁾	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	2	2	0	0	0	0	0
Nabe in Drehrichtung versetzbar	3	3	4	4	4	4	4	4	4	4	4	0	0	0	2	2	2	0	0	0	0	0
Verbindung nachstellbar	0	0	4	4	4	4	4	0	4	4	4	1	3	0	0	0	0	0	0	0	0	0
geringer Fertigungsaufwand	4	4	2	2	2	2	3	4	4	4	2	2	1	3	1	1	1	2	2	3	3	2
geringer Montageaufwand	2	2	4	4	4	4	4	4	4	4	3	3	4	3	3	3	3	3	4	2	2	2
gute Wiederverwendbarkeit	1	1	4	4	4	4	4	4	4	4	4	2	3	4	4	4	4	2	2	2	2	0
Selbstzentrierung der Verbindung	4	4	4	0	4	4	0	4	0	0	2	0	3	3	4	4	4	4	4	2	2	2
geringe Unwucht	4	4	4	2	3	3	1	3	0	0	0	0	3	2	3	3	4	1	1	3	3	3
geringe Kerbwirkung auf Welle ²⁾	1	1	2	2	3	3	2	2	3	4	1	0	1	1	1	1	1	1	0	4	4	1

(4) sehr gut geeignet ... (0) nicht geeignet bzw. entfällt

Reibschlüssige Verbindungen

- a Querpressverband
- b Längspressverband
- c Kegelpressverband
- d Kegelspannring e Kegelspannsatz
- f Schrumpfscheibe
- g Sternscheibe
- g Sternscheibe
- h Druckhülse
- i hydraulische Spannbuchse
- j Toleranzring
- k Klemmverbindung
- 1 Keilverbindung
- m Kreiskeilverbindung

Formschlüssige Verbindungen

- n Pass- und Gleitfeder
- o Keilwelle
- p Zahnwelle
- q Polygonprofil
- r Längsstift
- s Querstift

Stoffschlüssige Verbindungen

- t Klebverbindung
- u Lötverbindung
- v Schweißverbindung

1.1 Hier kann abgelesen werden 'dass bei höher Belastung die Keilverbindung am besten geeingt ist.

2 Keilwellenverbindungen

- 2.0.1 Keilwellenprofile werden als drehstarre Verbindungen von Welle und Nabe (z. B. bei Antriebswellen von Kraftfahrzeugen) und als längsbewegliche Verbindungen (z. B. Verschieberädergetriebe von Werkzeugmaschinen) überall dort eingesetzt, wo aufgrund der zu übertragenden größeren, wechselnden und stoßartigen Drehmomente der Einsatz von Pass- und Gleitfedern nicht in Betracht kommt.
- 2.0.2 Im Maschinenbau (einschl. Kfz-Bau) werden Keilwellenprofile nach DIN ISO 14 (leichte und mittlere Reihe) sowie DIN 5464 (schwere Reihe) eingesetzt
- 2.1 Können große Drehmoment übertragen. -Sind axial verschiebbar.

3 Berechnung

3.0.1 Eine Berechnung von Keilwellenverbindungen ist bei ausreichendem Wellendurchmesser (maßgebend ist der Kerndurchmesser) und normalen Nabenabmessungen (s. TB 12-1) nicht erforderlich. Nur bei sehr kurzen Naben ist eine Nachprüfung der Flächenpressung an den "Keil"-Flächen zweckma" ßig. Mit der Annahme, dass durch nicht zu vermeidende Herstellungsungenauigkeiten nur circa 75% der "Keile" tragen, wird die vorhandene mittlere Flächenpressung

$$p_m = \frac{2 \cdot T}{d_m \cdot L \cdot h^{'} \cdot K \cdot n} \leq p_{zul}$$

T zu übertragendes Drehmoment; bei dynamischer Belastung T = K_{A} T_{nenn} \$, bei statischer Belastung T = T_{max}

 K_A Anwendungsfaktor nach TB3-5

 d_m mittlerer Profildurchmesser aus $d_m = \frac{(D+d)}{2}$ mit D und d nach TB 12-3a

L Nabenlänge gleich tragende Keillänge

h' tragende Keilhöhe; unter Berücksichtigung der Fase f
 wird $h=\frac{(D-d)}{2-2\cdot f}=0.4\cdot (D-d)$

n Anzahl der Keile aus TB 12-3a

 p_{zul} zulässige Flächenpressung des "schwächeren" Werkstoffes (meist Nabe). Anhaltswerte für pzul nach TB 12-1

K \$ \$ Tragfaktor =0.75 bei Innenzentrierung,0.9 bei Flankenzentrierung

3.1 TB 12-1

b) Zulässige Fugenpressung p_{Fzul}

Verbindungsart	Nabenwerkstoff					
	Stahl, GS $p_{\rm Fzul} = R_{\rm e}/S_{\rm F}$	$\begin{array}{c} \text{GJL} \\ p_{\text{Fzul}} = R_{\text{m}}/S_{\text{B}} \end{array}$				
Passfeder ¹⁾	$S_{\rm F}\approx 1,1\ldots 1,5$	$S_{\rm B}\approx 1,5\ldots 2,0$				
Gleitfeder ²⁾ und Keile	3,0 4,0	3,0 4,0				
Polygonverbindung	1,5 2,0	2,0 3,0				
Profilwelle ²⁾ einseitig, stoßfrei	1,3 1,5	1,7 1,8				
wechselnd, stoßhaft	2,7 3,6	3,4 4,0				
Pressverband ³⁾	(1,0) 1,1 1,3	2,0 3,0				
Kegelpressverband ³⁾	(1,0) 1,1 1,3	2,0 3,0				
Spannverbindung, Keilverbindung	1,5 3,0	2,0 3,0				

3.2 TB3-5

c) für Schweiß-, Niet-, Stift- und Bolzenverbindungen

Betriebsart	Art der Maschinen bzw. der Bauteile (Beispiele)	Art der Stöße	Anwendungs- faktor K _A
gleichförmige umlaufende Bewegungen	elektrische Maschinen, Schleifmaschinen, Dampf- und Wasserturbinen, umlaufende Verdichter	leicht	1,0 1,1
gleichförmige hin- und her- gehende Bewegungen	Dampfmaschinen, Verbrennungskraftmaschinen, Hobel- und Drehmaschinen, Kolbenverdichter	mittel	1,2 1,4
umlaufende bzw. hin- und her- gehende stoßüberlagerte Bewegungen	Kunststoffpressen, Biege- und Richtmaschinen, Walzwerksgetriebe	mittelstark	1,3 1,5
stoßhafte Bewegungen	Spindelpressen, hydraulische Schmiedepressen, Abkantpressen, Profilscheren, Sägegatter	stark	1,5 2,0
schlagartige Beanspruchung	Steinbrecher, Hämmer, Walzwerkskaltscheren, Walzenständer, Brecher	sehr stark	2,0 3,0

3.3 TB 12-3a

a) Abmessungen (n =Anzahl der Keile)

Maße in mm

Leichte Reihe DIN ISO 14 (Auszug)								
Zentrierung	n	d	D	b				
Innen- Zentrierung	6	23 26 28	26 30 32	6 6 7				
Innen- oder Flanken zentrierung	8	32 36 42 46 52 56 62	36 40 46 50 58 62 68	6 7 8 9 10 10 12				
	10	72 82 92 102 112	78 88 98 108 120	12 12 14 16 18				

Bezeichnungsbeispiel Nabe:
Keilnaben-Profil DIN ISO 14-8 × 62 × 72
Bezeichnungsbeispiel Welle:
Keilwellen-Profil DIN ISO $14-8 \times 62 \times 72$

Mittlere Reihe DIN ISO 14 (Auszug)								
Zentrierung	n	d	D	b				
Innen- zentrierung	6	11 13 16 18 21 23 26 28	14 16 20 22 25 28 32 34	3 3,5 4 5 6 6 7				
Innen- oder Flanken- zentrierung	8	32 36 42 46 52 56 62	38 42 48 54 60 65 72	6 7 8 9 10 10 12				
	10	72 82 92 102 112	82 92 102 112 125	12 12 14 16 18				

Schwere Reihe DIN 5464 (Auszug)									
Zentrierung	n	d	D	b					
Innen- oder Flanken- zentrierung	10	16 18 21 23 26 28 32 36 42 46	20 23 26 29 32 35 40 45 52 56	5					
Flanken- zentrerierung	16	52 56 62 72	60 65 72 82	5 5 6 7					
	20	82 92 102 112	92 102 115 125	6 7 8 9					

3.3.1 Daraus folgt folgende Werte:

3.3.2
$$K_A = 1.1$$

3.3.3
$$p_{zul} = 3$$

$$\textbf{3.3.4} \quad T = T_{nen} \cdot K_A = 1840000000.0 \ N - mm \cdot 1.1 = 2024000000.000 \ N - mm$$

3.3.5
$$d_m = \frac{D+d}{2} = \frac{125 \ mm + 112 \ mm}{2} = 118.5 \ mm$$

$$3.3.6 L = 400 mm$$

3.3.7
$$h' = 0.4 \cdot (D - d) = 0.4 \cdot (125 \ mm - 112 \ mm) = 5.2 \ mm$$

3.3.8 Bei Flankenzentrerierung und bei d=112 mm , D=125 mm , n=20

3.4 Darus flogt

$$p_m = \frac{2 \cdot 2024000000.00~Nmm}{118.5~mm \cdot 400~mm \cdot 5.2~mm \cdot 0.9 \cdot 20} = 912.40 \frac{N}{mm^2} = 912.40~MPa$$