IN THE CLAIMS

Please amend the claims as follows:

1. (currently amended) A method of moulding materials in which a mould is used having a plurality of mould components with moulding surfaces together defining a moulding cavity, said method comprising the step of forming at least part of the mould components of a polymerisable material and polymerising said material under polymerisation conditions, characterized in that, the said_starting material before polymerisation is a polymerisable compound of the formula: Z-X-Y, wherein Y and Z are the same or different polymerisable groups selected from the group consisting of

wherein R=CH3, H, Cl, F, CN

wherein n=0-3

wherein n=0-3, R=phenyl, CH3;

 $\frac{\text{wherein } \mathbf{x=} \quad X \text{ is a polymerisable group having the formula}}{R,R'=H,\text{ alkyl}; n,m=0-3,} \quad \frac{\text{wherein } \mathbf{x=} \quad (CRR')_m, \quad \text{wherein } \mathbf{x=} \quad$

wherein A=CnF 2n, linear or branched, n=4-20; or

A= a combination of perfluorinated aromatic and aliphatic stru structures such as:

and

wherein n,m=0-4.

wherein Z and Y independently represent polymerisable groups.

- 2. (original) A method according to claim 1, characterized in that said polymerisable groups Z and Y are independently chosen from the groups consisting of polymerisable (meth)acrylate, oxetane, glycidylether, allylether, epoxy, vinylether and vinylester, or mixtures thereof, wherein Z or Y can be also a thiol group in combination with other radically polymerisable monomers in such a way that crosslinked polymers are obtained.
- 3. (previously presented) A method according to Claim 1, characterized in that the starting material is 2,2'-(2,2,3,3,4,4,5,5-octafluoro 1,6-hexanyloxymethyl)diepoxide, wherein both Y and Z are glycidylether groups.
- 4. (previously presented) A method according to Claim 1, characterized in that the starting material is 2,2,3,3,4,4,5,5-octafluoro 1,6-hexanediol-dimethacrylate wherein both Y and Z are methacrylate groups.
- 5. (currently amended) A method according to Claim 1, characterized in that the F/C-ratio (Fluoro-Carbon ratio) of said polymerisable compound should be is higher than or equal to 8/14
- 6. (currently amended) A method according to Claim 1, characterized in that the moulding cavity being is shaped for moulding an optical component therein.
- 7. (currently amended) A method of moulding materials in which a mould is used having a plurality of mould components with moulding surfaces together defining a moulding cavity, said method comprising the step of forming at least part of the mould components of a polymerisable material, polymerising said material for forming the mould, filling the moulding cavity with a mixture of moulding material, applying UV-light or heat to said moulding material in the mould to set or cure the moulding material, continuing the UV-light or heat treatment until sufficient stiffness has developed in the moulded article and removing the moulded article thus made from the mould, wherein said mould is made of the polymerization product of polymerising a polymerisable compound of the formula:Z-X-Y₂ wherein Y and Z are the same or different polymerisable groups selected from the group consisting of

Y,Z =

wherein R=CH3, H, Cl, F, CN

wherein n=0-3

wherein n=0-3, R=phenyl, CH3;

wherein X= X is a polymerisable group having the formula (CRR')_n, A(CRR')_m, wherein R,R'=H, alkyl; n,m=0-3,

wherein A=C_nF_{2n}, linear or branched, n=4-20; or

A= a combination of perfluorinated aromatic and aliphatic stru structures such as:

and

$$C_nF_{2m} = \underbrace{ C_F_{2m} }_F = \underbrace{ C_nF_{2m} }_F$$

wherein n,m=0-4.

wherein Z and Y independently represent polymerisable groups.

8. (original) A method according to claim 7, characterized in that said polymerisable groups Z and Y are independently chosen from the groups consisting of (meth)acrylate, oxetane, glycidylether, allylether, epoxy, vinylether and vinylester, or mixtures thereof, wherein Z or Y can be also a thiol group in combination with other radically polymerisable monomers in such a way that crosslinked polymers are obtained.

 (previously presented) A method according to Claim 7, characterized in that the starting material is 2,2,3,3,4,4,5,5-octafluoro 1,6-hexanediol-dimethacrylate wherein both Y and Z are methacrylate groups.

10. (previously presented) A method according to Claim 7, characterized in that the starting material is 2,2¹-(2,2,3,3,4,4,5,5-octafluoro 1,6-hexanyloxymethyl)diepoxide wherein both Y and Z are glycidylether groups.

11. (previously presented) A method according to Claim 7, characterized in that the F/C-ratio (Fluoro-Carbon ratio) of said polymerisable compound should be is higher than or equal to 8/14.

 (previously presented) Optical components obtained according to a method as disclosed in Claim 7.

13.(currently amended) A mould for making optical components comprising a plurality of mould components with moulding surfaces together defining a moulding cavity, wherein said mould is obtained by polymerising a mixture comprising, as a main constituent thereof, a polymerisable compound of the formula: Z-X-Y_x X,Z= wherein Y and Z are the same or different polymerisable groups selected from the group consisting of:

wherein A=CnF 2n, linear or branched, n=4-20; or

A= a combination of perfluorinated aromatic and aliphatic stru structures such as:

and

wherein n,m=0-4.

wherein Z and Y independently represent polymerisable groups.

14.(original) A mould according to claim 13, characterized in that said polymerisable groups Z and Y are chosen from the group consisting of (meth)acrylate, oxetane, glycidylether, allylether, epoxy, vinylether and vinylester, or mixtures thereof, wherein Z or Y can be also a thiol group in combination with other radically polymerisable monomers in such a way that crosslinked polymers are obtained.

15.(previously presented) A mould according to claim 13, characterized in that the starting material is 2,2,3,3,4,4,5,5-octafluoro 1,6-hexanediol-dimethacrylate wherein both Y and Z are methacrylate groups.

16.(previously presented) A mould according to Claim 13, characterized in that the starting material is 2,2'-(2,2,3,3,4,4,5,5-octafluoro 1,6-hexanyloxymethyl)diepoxide wherein both Y and Z are glycidylether groups.

17.(currently amended) A mould according to Claim 13, characterized in that the F/C-ratio (Fluoro-Carbon ratio) of said polymerisable compound should be is higher than or equal to 8/14.

18.(currently amended) A mould according to Claim 13, characterized in that the shape of the mould being is spherical or a-spherical and is made of said polymerisable material, wherein the aspect ratio of the layer thickness made of said material ean be as large as about 50 or less.

9