Few-Shot Open-Set Recognition using Meta-Learning

Bo Liu, Hao Kang, Haoxiang Li, Gang Hua, Nuno Vasconcelos CVPR 2020

Few-shot open-set recognition

Few-shot classification

- Support set:
 - N class x K examples
- Query set:
 - N class x Q examples

Few-shot open-set recognition

- Support set
 - N class x K examples
- Query set:
 - N class x Q examples
 - M examples of undefined class

Our few-shot event detection

- Support set
 - N+1 class x K examples
- Query set:
 - N class x Q examples
 - 1 class x Q examples

Training with Open-set loss

$$h^* = \arg\min_{h} \left\{ \sum_{(x_k, y_k) \in \mathbb{T}_i^s | y_k \in \mathbb{C}_i^s} L_c[y_k, h'(x_k)] + \lambda \sum_{(x_k, y_k) \in \mathbb{T}_i^s | y_k \in \mathbb{C}_i^u} L_o[h'(x_k)] \right\}$$

Maximize the entropy of negative examples

$$L_o[\mathbf{x}] = \sum_{k \in \mathbb{C}_i^s} p(y = k | \mathbf{x}) \log p(y = k | \mathbf{x})$$

Euclidean vs Mahalanobis distances

Mahalanobis distance

$$d(f_{\phi}(\mathbf{x}), \mu_k) = [f_{\phi}(\mathbf{x}) - \mu_k]^T \Sigma_k^{-1} [f_{\phi}(\mathbf{x}) - \mu_k].$$

Precision matrix (Inverted covariance matrix)

$$A_k = \sum_{k=1}^{n-1} A_k = \frac{1}{|S_k|} \sum_{(\mathbf{x}_i, y_i) \in S_k} g_{\varphi}(\mathbf{x}_i).$$

Results

Model	Accuracy(%)	AUROC(%)
5-way 1-shot		
GaussianE + OpenMax	57.89 ± 0.59	58.92 ± 0.59
GaussianE + Counterfactual	57.89 ± 0.59	52.20 ± 0.61
Our basic	56.31±0.57	58.94 ± 0.60
Our basic + OpLoss	56.34 ± 0.57	60.94 ± 0.61
Our basic + GaussianE	57.89 ± 0.59	58.66 ± 0.60
Our basic + GaussianE + OpLoss	58.31±0.58	61.66±0.62
5-way 5-shot		
GaussianE + OpenMax	75.31 ± 0.76	67.54 ± 0.67
GaussianE + Counterfactual	75.31 ± 0.76	53.25 ± 0.59
Our basic	74.19 ± 0.75	66.00 ± 0.67
Our basic + OpLoss	74.14 ± 0.74	67.92 ± 0.68
Our basic + GaussianE	75.31 \pm 0.76	66.50 ± 0.67
Our basic + GaussianE + OpLoss	75.08 ± 0.72	69.85 ± 0.70

Table 3. Few-shot open-set recognition results. Comparison to several baselines and prior open-set methods.