DeepFace: Closing the Gap to Human-Level Performance in Face Verification Report on the paper

Artem Komarichev

February 7, 2016

Outline

- ▶ New alignment technique
- New DNN architecture
- New large dataset with labeled face images
- Experiments and Results on benchmarks dataset LFW and YTF

Introduction

The goal of <u>face verification</u> is to define either two face images belong to the same person or not.

There exist other face recognition tasks such as: face identification, face clustering and face detection.

In their paper they are considering problem in unconstrained environment.

Benchmark datasets

- 1. LFW (Labeled Faces in the Wild) consists of 13,323 web photos of famous people. 5,749 unique identities. 6,000 face pairs.
- 2. YTF (Youtube Face Database) contains 3,425 youtube videos of 1,595 unique identities. They splitted all this videos on 5,000 video pairs.

New collected dataset

Their DeepFace model was trained on a new huge dataset extracted from Facebook photos, so called *Social Face Classification (SFC)* dataset.

SFC dataset contains 4.4M labeled face images belonging to 4030 unique identities.

5% of this dataset was used for testing purposes.

Face alignment

Alignment is still considered to be difficult problem to solve especially in the unconstrained environment.

In the recent few years <u>3D modeling</u> was used extensively. Frontalization procedure are illustrated below:

Face alignment (example from paper)

DeepFace Architecture

The big picture of DeepFace model is represented below:

DeepFace Architecture (DNN from paper)

DeepFace Architecture

As loss function was chosen cross-entropy loss:

$$L = \sum_{i}^{N} -log(p_i) \tag{1}$$

where p_i is a prediction that this image belongs to class i, and N is a number of classes.

To update parameters was used standard BackPropagation algorithm and Stochastic Gradient Descent (SGD). The size of mini-batch was equal to 128.

Non-linear activation function: rectifier linear units - max(0, x).

DeepFace Architecture

The number of parameters was close to 120M, where 95% was from LC and FC layers.

Sparse architecture: 75% of gradients were equal to zero in the last five layers. Sparsity was encorouged in the last time (dropout, maxout).

Training process took **three days** to run model on the whole SFC dataset for **15 epochs**.

Learning rate was decreased during the training procedure up to 0.0001 starting from 0.01.

Verification Metrics

- Unsupervised: inner product of feature vectors
- Siammese network: $d(f_1, f_2) = \sum_{i}^{N} w_i |f_1^{(i)} f_2^{(i)}|$, where N is a number of learned features, f_1 and f_2 feature vectors for first face image and for second one, and w_i trainable weights.
- ► Chi squared distance: $\chi^2(f_1, f_2) = \sum_i^N w_i \frac{(f_1^{(i)} f_2^{(i)})^2}{(f_1^{(i)} f_2^{(i)})}$

Experiments and Results

Models	Datasets	
	LFW	Youtube Faces DB
FaceNet	99.63 %±0.15	95.12 %±0.39
DeepFace	97.35 %±0.25	91.4 %±1.1
Parkhi's approach	98.65%	97.3%
DeepID2		
DeepID2+	•••	
DeepID3		

Table: State-of-the-art in face verification.

Experiments and Results (size of training dataset)

They provided several experiments with the size of the training dataset, different number of unique identities.

- ▶ When whole 4K identities was used they got the highest accuracy. It is not suprising fact, because the more diverse our training dataset, the more better features we can learn.
- ► The original SFC was reduced up to 10% with the same 4K people showed twice less accuracy than 50% dataset.

Experiments and Results (different architectures)

Comparing different reduced architectures:

- without second conovolutional layer
- without first two locally connected layers
- without three these layers

with the original one, they showed that the deep of the architecture is a critical issue.

Deeper DNN can learn better feature representations.

Therefore, deeper architectures shows higher final accuracy than shallower ones does.

Conclusion

Main contributions:

- They achieved the new state-of-the-art on the LFW and YTF datasets by the time when the paper was published
- ► They proposed a new alignment techniques based on 3D modeling of the face images in the unconstrained settings
- ► They came up with a new DNN architecture which was trained on their own huge dataset