Seat No.	
----------	--

King Mongkut's University of Technology Thonburi Midterm Examination—2/2558 ChE 103 Material and Energy Balances 1st year student, Department of Chemical Engineering

Date:	29 FEB 2016, 13.00-16.00 pm
Notes	
2. 3. 4. 5.	This exam paper includes 6 problems (100 points) in a total of 12 pages. It is a closed-book/notes examination. A calculator is allowed. Students are not allowed to take any exam materials/papers out of the exam room. Write your answers on the examination sheets. Some useful data are given on pages 9-12 and Appendix B.
Stude	nt NameStudent ID
Writte Asst.	en by Prof. Dr. Ampai Chanachai
This e	xam paper has been evaluated and approved by the Department of Chemical Engineering's nittee.
	JE;
	(Assoc. Prof. Dr. Piyabutr Wanichpongpan)

Head of Department

Student Name	
Sindent Ivallie	

Student ID_____

1. (10 points) Ammonia is oxidized in a continuous reactor:

$$4\mathrm{NH_3}\left(\mathrm{g}\right)+5\mathrm{O}_2\left(\mathrm{g}\right) \to 4\mathrm{NO}\left(\mathrm{g}\right)+6\mathrm{H}_2\mathrm{O}\left(\mathrm{g}\right)$$

100 kg/h of NH₃ gas and oxygen with 10 % excess are fed to the reactor. The percentage conversion of NH₃ is 96 %. Determine the composition and molar flow rate of the exit gas.

Student Name		
Student Panic		

Student ID	

2. (20 points) Ammonia is oxidized in a continuous reactor:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

Air and 1,700 kg/h of NH $_3$ gas are fed to the reactor. The percentage conversion of NH $_3$ is 92 %. The composition of O $_2$ in the exit gas is 3 % mol (dry basis). Determine the molar flow rate of the air fed to the reactor.

3. (25 points) Acetylene is produced from methane in the reaction:

$$2CH_4(g) \rightarrow C_2H_2(g) + 3H_2(g)$$
 (3.1)

An undesired reaction is the decomposition of acetylene:

$$C_2H_2(g) \rightarrow 2C(s) + H_2(g)$$
 (3.2)

100 mol/s of methane is fed to a reactor. The %yield of acetylene is 80%. The mole fraction of C_2H_2 in the exiting gas is 0.208.

- 3.1 Draw a simplified flow chart. Label all unknowns.
- 3.2 Perform the degree of freedom analysis.
- 3.3 Determine the percentage conversion of methane.
- 3.4 Determine the mass of C (s) occurs.
- 3.5 Determine the extent of reaction (3.1) and (3.2).

Student Name	Student ID
--------------	------------

Student Name	Student ID
--------------	------------

4. (10 points) The product gas of hexane combustion composes of 75.4% N₂, 13.67 %CO₂, 1.87 % O₂ and the balance H₂O. The stack gas emerges at 760 mm Hg. Determine the dew point of the stack gas, taking the water to be the only condensable component.

Student Name		

Student ID			

5. (15 points) Liquid n-Hexane is stored in a cylindrical tank with 5 m in diameter and 10 m high. The pressure in the tank is controlled at 0.2 bar gauge. If the pressure is lower than 0.2 bar gauge, the N₂ gas is filled into the gas mixture over liquid but if it is higher than 0.2 bar gauge, the gas mixture over liquid will release through the vent line.

In one night, the temperature in the tank is at 25 °C and the liquid hexane volume is 80% of the tank volume. However, on the day time, the temperature in the tank increases to 35 °C leading to some gas venting through the vent line. Determine the hexane vapor loss due to an increasing of temperature from 25 °C to 35 °C. Assumed that the gas mixture over liquid is saturated with hexane vapor at that temperature.

Student Name	Student ID
--------------	------------

- 6. (20 points) Humid air with 90% relative humidity (%RH) at 100 °C and 2 atm is humidified by cooling and compressing air to 50 °C and 3 atm. Then, it is reheated and decompressed to the former condition (100 °C and 2 atm). For 1 kg of dry air (DA),
 - 6.1 Determine % condensation of water
 - 6.2 Determine %RH of the exit air at 100 °C and 2 atm.

Useful information:

% excess =
$$\frac{(n_i)_{\text{fed}} - (n_i)_{\text{theoretical}}}{(n_i)_{\text{theoretical}}} \times 100\%$$

$$\xi = \frac{\left| \mathbf{n}_{i,\text{out}} - \mathbf{n}_{i,\text{in}} \right|}{v_i} \qquad \qquad \xi = \text{extent of reaction}$$

moles of desired product formed

Yield = moles desired product formed if there were no side reactions and the limiting reactant had reacted completely

 $overall conversion = \frac{mole \ reactant \ input \ toprocess - mole \ reactant \ output \ from \ process}{mole \ reactant \ input \ toprocess}$

Single pass conversion = $\frac{\text{mole reactant input to reactor - mole reactant output from reactor}}{\text{mole reactant input to reactor}}$

$$p_i(=y_iP)=x_ip_i^*$$

$$s_r(h_r) = \frac{y_i}{y_i^*} = \frac{p_i}{p_i^*} = \frac{\rho_i}{\rho_i^*} = \frac{V_i^*}{V_i}$$

$$s_a(h_a) = \frac{\text{mass of vap or}}{\text{mass of dry gas}} = \frac{m_i}{m_{\text{dry gas}}} = \frac{p_i(MW)_i}{p_{\text{dry}}(MW)_{\text{dry}}} = \frac{p_i(MW)_i}{(P - p_i)(MW)_{\text{dry}}}$$

$$s_p(h_p) = \frac{s_m}{s_m} \times 100\% = \frac{p_i/(P - p_i)}{p_i^*/(P - p_i^*)} = \left(\frac{p_i}{p_i^*}\right) \left(\frac{P - p_i^*}{P - p_i}\right)$$

ATOMIC WEIGHTS AND NUMBERS

Atomic weights apply to naturally occurring isotopic compositions and are based on an atomic mass of $^{12}C=12$

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight
Actinium	Ac	89		Iridium	lr.	77	192.2
Aluminum	Al	13	26.9815	Iron	Fe	26	55.847
Americium	Am	95		Krypton	Kr	36	83.80
Antimony	Sb	51	121.75	Lanthanum	La	57	138.91
Argon	Ar	18	39.948	Lawrencium	Lr	103	_
Arsenic	As	33	74.9216	Lead	Pb	82	207.19
Astatine	At	85		Lithium	Li	3	6.939
Barium	Ba	56	137.34	Lutetium	Lu	71	174.97
Berkelium	Bk	97	-thursa	Magnesium	Mg	12	24.312
Beryllium	Be	4	9.0122	Manganese	Mn	25	54.9380
Bismuth	Bi	83	208.980	Mendelevium	Md	101	
Boron	В	5	10.811	Mercury	Hg	80	200.59
Bromine	Br	35	79.904	Molybdenum	Mo	42	95.94
Cadmium	Cd	48	112.40	Neodymium	Nd	60	144.24
Calcium	Ca	20	40.08	Neon	Ne	10	20.183
Californium	Cf	98		Neptunium	Np	93	
Carbon	C	6	12.01115	Nickel	Ni	28	58.71
Cerium	Сe	58	140.12	Niobium	Nb	41	92,906
Cesium	Cs	55	132,905	Nitrogen	N	7	14.0067
Chlorine	ČI	17	35.453	Nobelium	No	102	
Chromium	Cr	24	51.996	Osmium	Os	75	190.2
Cobalt	Co	27	58.9332	Oxygen	0	8	15.9994
Copper	Cu	29	63.546	Palladium	Pd	46	106.4
Curium	Cm	96		Phosphorus	P	15	30.9738
Dysprosium	Dy	66	162.50	Platinum	Pt	78	195.09
Einsteinium	És	99		Plutonium	Pu	94	_
Erbium	Er	68	167.26	Polonium	Po	84	_
Europium	Eu	63	151.96	Potassium	K	19	39.102
Fermium	Fm	100		Praseodymium	Pr	59	140.907
Fluorine	F	9	18.9984	Promethium	Pm	61	
Francium	Fr	87		Protactinium	Pa	91	
Gadolinium	Gd	64	157.25	Radium	Ra	88	
Gallium	Ga	31	69.72	Radon	Rn	86	_
Germanium	Ge	32	72.59	Rhenium	Re	75	186.2
Gold	Au	79	196.967	Rhodium	Rh	45	102.905
Hafnium	Hf	72	178.49	Rubidium	Rb	37	84.57
Helium	He	2	4.0026	Ruthenium	Ru	44	101.07
Holmium	Ho	67	164.930	Samarium	Sm	62	150.35
Hydrogen	H	1	1.00797	Scandium	Sc	21	44.956
Indium	In	49	114.82	Selenium	Se	34	78.96
lodine	Ī	53	126.9044	Silicon	Si	14	28.086

Atomic weights apply to naturally occurring isotopic compositions and are based on an atomic mass of $^{12}C=12$

Element	Symbol	Atomic Number	Atomic Weight	Element	Symbol	Atomic Number	Atomic Weight
Silver	Ag	47	107.868	Tin	Sn	50	118.69
Sodium	Na	11	22.9898	Titanium	Ti	22	47.90
Strontium	Sr	38	87.62	Tungsten	W	74	183.85
Sulfur	S	16	32.064	Uranium	U	92	238.03
Tantalum	Та	73	180.948	Vanadium	V	23	50.942
Technetium	Tc	43		Xenon	Xe	54	131.30
Tellurium	Te	52	127.60	Ytterbium	Yb	70	173.04
Terbium	ТЪ	65	158.924	Yttrium	Y	39	88.905
Thallium	Tl	81	204.37	Zinc	Zn	30	65.37
Thorium	Th	90	232.038	Zirconium	Zr	40	91.22
Thulium	Tm	69	168.934				

THE GAS CONSTANT

8.314 m³-Pa/(mol·K)

0.08314 L-bar/(mol·K)

0.08206 L-atm/(mol·K)

62.36 L·mm Hg/(mol·K)

0.7302 ft3 -atm/(lb-mole-°R)

10.73 ft3-psia/(lb-mole-°R)

8.314 J/(mol·K)

1.987 cal/(mol·K)

1.987 Btu/(lb-mole · R)

Student Name		

Student ID_____

FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values		
Mass	I kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz I lb _m = 16 oz = 5×10^{-4} ton = 453.593 g = 0.453593 kg		
Length	1 m = 100 cm = 1000 mm = 10^6 microns (μ m) = 10^{10} angstroms (Å) = 39.37 in. = 3.2808 ft = 1.0936 yd = 0.0006214 mile 1 ft = 12 in. = $1/3$ yd = 0.3048 m = 30.48 cm		
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$ = 35.3145 ft ³ = 220.83 imperial gallons = 264.17 gal = 1056.68 qt $1 \text{ ft}^3 = 1728 \text{ in.}^3 = 7.4805 \text{ gal} = 0.028317 \text{ m}^3 = 28.317 \text{ L}$ = 28.317 cm ³		
Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dynes} = 10^5 \text{ g} \cdot \text{cm/s}^2 = 0.22481 \text{ lb}_f$ $1 \text{ lb}_f = 32.174 \text{ lb}_m \cdot \text{ft/s}^2 = 4.4482 \text{ N} = 4.4482 \times 10^5 \text{ dynes}$		
Pressure	1 atm = $1.01325 \times 10^5 \text{ N/m}^2 \text{ (Pa)} = 101.325 \text{ kPa} = 1.01325 \text{ bar}$ = $1.01325 \times 10^6 \text{ dynes/cm}^2$ = $760 \text{ mm Hg at 0°C (torr)} = 10.333 \text{ m H}_2\text{O at 4°C}$ = $14.696 \text{ lb}_t/\text{in.}^2 \text{ (psi)} = 33.9 \text{ ft H}_2\text{O at 4°C}$ = $29.921 \text{ in. Hg at 0°C}$		
Energy	$1 \text{ J} = 1 \text{ N} \cdot \text{m} = 10^7 \text{ ergs} = 10^7 \text{ dyne cm}$ = 2.778 × 10 ⁻⁷ kW·h = 0.23901 cal = 0.7376 ft-lb _f = 9.486 × 10 ⁻⁴ Btu		
Power	$1 \text{ W} = 1 \text{ J/s} = 0.23901 \text{ cal/s} = 0.7376 \text{ ft·lb1/s} = 9.486 \times 10^{-4} \text{ Btu/s}$ = 1.341 × 10 ⁻³ hp		

Example: The factor to convert grams to lb_m is $\left(\frac{2.20462\ lb_m}{1000\ g}\right)$.