Ripasso classi Quarte: Equazioni Goniometriche

Esempi svolti ed esercizi

prof. Diego Fantinelli

September 20, 2024

Matematica per il Liceo Scientifico

Goniometriche

Introduzione alle Equazioni

Equazioni Goniometriche: Definizione

Cosa sono le equazioni goniometriche?

- Un'equazione goniometrica è un'equazione che coinvolge funzioni trigonometriche come sin, cos, tan, cot, sec, e csc.
- Queste equazioni compaiono spesso nello studio dei triangoli e nella modellizzazione di fenomeni periodici (onde, oscillazioni, etc.).
- Le soluzioni delle equazioni goniometriche corrispondono agli angoli che soddisfano l'equazione e si esprimono come multipli del periodo delle funzioni trigonometriche.

Esempio:

$$\sin x = \frac{1}{2}$$
 \Rightarrow $x = \frac{\pi}{6} + 2k\pi$ oppure $x = \frac{5\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$

Relazione con la Circonferenza Goniometrica

Circonferenza Goniometrica

- La circonferenza goniometrica ha raggio 1 ed è centrata nell'origine del piano cartesiano.
- Gli angoli (in radianti) corrispondono a punti sulla circonferenza, con:
 - Asse x: corrisponde al $\cos x$ (ascissa del punto sulla circonferenza).
 - Asse y: corrisponde al $\sin x$ (ordinata del punto sulla circonferenza).
- Le equazioni goniometriche possono essere risolte trovando i punti sulla circonferenza goniometrica che corrispondono ai valori richiesti.

Question time

Qual è, in generale, la differenza sostanziale tra le soluzione di una equazione e quelle di una disequazione?

equazioni e disequazioni goniometriche

Risposta

equazioni goniometriche

Le eventuali soluzioni di una equazione goniometrica sono rappresentate da punti sulla circonferenza goniometrica.

disequazioni goniometriche

Le eventuali soluzioni di una disequazione goniometrica sono rappresentate da intervalli sulla circonferenza goniometrica, sono quindi degli *archi di circonferenza*.

la circonferenza goniometrica

Proprietà delle Funzioni Goniometriche

Funzioni Goniometriche e la Circonferenza Goniometrica

- Periodicità: Tutte le funzioni goniometriche sono periodiche.
 - $\sin x = \cos x$ hanno periodo 2π : $f(x + 2\pi) = f(x)$.
 - $\tan x \in \cot x$ hanno periodo π : $f(x+\pi) = f(x)$.
- Parità:
 - $\sin x$ è una funzione dispari: $\sin(-x) = -\sin(x)$.
 - $\cos x$ è una funzione pari: $\cos(-x) = \cos(x)$.
- Simmetria rispetto alla circonferenza goniometrica:
 - Gli angoli simmetrici rispetto all'asse x e all'asse y danno valori uguali o opposti di $\sin x$ e $\cos x$.
- Identità fondamentali:

$$\sin^2 x + \cos^2 x = 1$$
 (Identità pitagorica)

Introduzione alle Equazioni

Goniometriche

Introduzione alle Equazioni Goniometriche

Le equazioni goniometriche sono equazioni che coinvolgono funzioni trigonometriche come seno, coseno e tangente.

- Esempi comuni: $\sin x = 0$, $\cos x = \frac{1}{2}$, $\tan x = 1$
- Risolverle significa trovare gli angoli che soddisfano l'equazione.

Esempi Svolti

Esempio 1: $\sin x = 0$

Equazione: $\sin x = 0$

Soluzione:

- L'equazione è soddisfatta per $x = 0 + k\pi$ dove $k \in \mathbb{Z}$.
- Soluzione generale: $x = k\pi, k \in \mathbb{Z}$.

Esempio grafico: $\sin x = 0$

Equazione: $\sin x = 0$

Soluzione: $x = k\pi \operatorname{con} k \in \mathbb{Z}$.

Le soluzioni sono i punti in cui $\sin(x) = 0$, cioè per x = 0, $x = \pi$, $x = 2\pi$.

Circonferenza goniometrica: $\sin x = 0$

Equazione: $\sin x = 0$

Soluzione: $x = 0 + k\pi \operatorname{con} k \in \mathbb{Z}$.

Esempio 2: $\cos x = \frac{1}{2}$

Equazione: $\cos x = \frac{1}{2}$

Soluzione:

- Si risolve l'equazione trovando gli angoli corrispondenti: $x = \pm \frac{\pi}{3} + 2k\pi$ con $k \in \mathbb{Z}$.
- Soluzione generale: $x = \frac{\pi}{3} + 2k\pi$ oppure $x = -\frac{\pi}{3} + 2k\pi$.

Esempio grafico: $\cos x = \frac{1}{2}$

Equazione: $\cos x = \frac{1}{2}$

Soluzione: $x = \pm \frac{\pi}{3} + 2k\pi \text{ con } k \in \mathbb{Z}.$

Le soluzioni sono i punti in cui $\cos(x) = \frac{1}{2}$, cioè per $x = \frac{\pi}{3}$ e $x = \frac{5\pi}{3}$.

Circonferenza goniometrica: $\cos x = \frac{1}{2}$

Equazione: $\cos x = \frac{1}{2}$

Soluzione: $x = \pm \frac{\pi}{3} + 2k\pi \text{ con } k \in \mathbb{Z}.$

Esempio 3: $\tan x = 1$

Equazione: $\tan x = 1$

Soluzione:

- L'equazione è soddisfatta per $x = \frac{\pi}{4} + k\pi$ con $k \in \mathbb{Z}$.
- Soluzione generale: $x = \frac{\pi}{4} + k\pi$.

Esempio grafico: $\tan x = 1$

Equazione: $\tan x = 1$

Soluzione: $x = \frac{\pi}{4} + k\pi \operatorname{con} k \in \mathbb{Z}$.

Le soluzioni sono i punti in cui $\tan(x) = 1$, cioè per $x = \frac{\pi}{4}$ e $x = -\frac{3\pi}{4}$.

Circonferenza goniometrica: $\tan x = 1$

Equazione: $\tan x = 1$

Soluzione: $x = \frac{\pi}{4} + k\pi$ con $k \in \mathbb{Z}$.

Esempio: Pannelli solari

ESEMPIO: Pannelli solari

L'efficienza di un pannello solare dipende dall'angolo x di inclinazione rispetto a un piano orizzontale e da altri parametri legati, per esempio, alla latitudine a cui ci si trova. In un modello semplificato, possiamo studiare l'efficienza di un pannello rivolto a sud con la funzione:

$$c(x) = \sin(ax + b)$$

In una città italiana sono stati calcolati i parametri:

$$a = 0.84$$
 e $b = 64^{\circ}$

Angolo di massima efficienza del pannello solare

Qual è l'angolo x che dà la massima efficienza in quella città?

La funzione diventa
$$e(x) = \sin(0.84x + 64^{\circ})$$
 e ha valore massimo 1 quando $\sin(0.84x + 64^{\circ}) = 1$. Poniamo $0.84x + 64^{\circ} = t$ e risolviamo: $\sin t = 1 \rightarrow t = 90^{\circ} + k360^{\circ}$.

L'unica soluzione che ci interessa è $t=90^{\circ}$. Ricaviamo x:

$$0.84x + 64^{\circ} = 90^{\circ} \quad \Rightarrow \quad x = \frac{90^{\circ} - 64^{\circ}}{0.84} \simeq 31^{\circ}$$

L'angolo che dà maggiore efficienza è di circa 31° .

Principali tipologie di equazioni goniometriche

Equazioni goniometriche elementari

- Equazioni del tipo sin(x) = k
- Equazioni riconducibili a elementari

Equazioni goniometriche complesse

- Equazioni lineari in tan(x) = k
- Equazioni lineari in seno e coseno $a \sin x + b \cos x + c = 0$, $\cos a, b, c \in \mathbb{R}, a \neq 0 \text{ e } b \neq 0$
- Equazioni omogenee di secondo grado in seno e coseno $a \sin^2 x + b \sin x \cos x + c \cos^2 x = 0$
- Equazioni riconducibili a omogenee di secondo grado in seno e coseno $a \sin^2 x + b \sin x \cos x + c \cos^2 x + d = 0$

Equazioni lineari in seno e coseno

Equazioni lineari in seno e coseno

- Equazioni lineari: sono della forma $a \sin x + b \cos x + c = 0$, con $a \neq 0$ e $b \neq 0$.
- Metodo di risoluzione algebrico
 - Caso c = 0: si dividono i membri dell'equazione per $\cos x \neq 0$ e si risolve l'equazione in tangente.
 - Caso $c \neq 0$:
 - Si determinano eventuali soluzioni del tipo $x = \pi + 2k\pi$.
 - Si utilizzano le formule parametriche per $x \neq \pi + 2k\pi$:

$$\sin x = \frac{2t}{1+t^2}$$
 e $\cos x = \frac{1-t^2}{1+t^2}$

con $t = \tan \frac{x}{2}$, risolvendo l'equazione in t.

Metodo di risoluzione grafico e dell'angolo aggiunto

Metodo di risoluzione grafico

- Si eseguono le sostituzioni $\sin x = Y = \cos x = X$.
- Si risolve il sistema tra l'equazione della retta aY + bX + c = 0 e $X^2 + Y^2 = 1$, equazione della circonferenza goniometrica.
- Le soluzioni del sistema sono i punti di intersezione tra la retta e la circonferenza.

Metodo di risoluzione dell'angolo aggiunto

• Si considera:

$$a\sin x + b\cos x = r\sin(x+\alpha)$$
, con $r = \sqrt{a^2 + b^2}$ e $\tan \alpha = \frac{b}{a}$.

• Si sostituisce nell'equazione $a \sin x + b \cos x + c = 0$:

$$r\sin(x+\alpha) + c = 0 \implies \sin(x+\alpha) = -\frac{c}{r},$$

che è un'equazione elementare.

Esercizi Svolti

Esercizio 1: Risolvi $\sin x = \frac{\sqrt{3}}{2}$

Soluzione:

• $\sin x = \frac{\sqrt{3}}{2}$ corrisponde a $x = \frac{\pi}{3} + 2k\pi$ oppure $x = \frac{2\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$.

Esercizio 2: Risolvi $\cos x = -1$

Soluzione:

• $\cos x = -1$ è soddisfatta per $x = \pi + 2k\pi$ con $k \in \mathbb{Z}$.

Esercizio 3: Risolvi $\tan x = \sqrt{3}$

Soluzione:

• $\tan x = \sqrt{3}$ corrisponde a $x = \frac{\pi}{3} + k\pi$ con $k \in \mathbb{Z}$.

Esercizi da svolgere

Risolvi l'equazione $\sin x = \frac{1}{2}$.

Risolvi l'equazione $\cos x = 0$.

Risolvi l'equazione $\tan x = -1$.

Risolvi l'equazione $\sin 2x = 0$.

Esercizi Avanzati

Esercizio 5: Equazione combinata

Risolvi l'equazione $\sin x + \cos x = 1$.

Esercizio 5: Equazione combinata

Equazione: Risolvi l'equazione $\sin x + \cos x = 1$.

Svolgimento:

- Elevo al quadrato entrambi i lati: $(\sin x + \cos x)^2 = 1^2$
- Ottengo: $\sin^2 x + 2\sin x \cos x + \cos^2 x = 1$
- Semplifico con l'identità $\sin^2 x + \cos^2 x = 1$: $1 + 2\sin x \cos x = 1$
- Questo si riduce a $2 \sin x \cos x = 0$, ovvero $\sin(2x) = 0$
- Risolvendo $\sin(2x) = 0$: $2x = k\pi \implies x = \frac{k\pi}{2}, k \in \mathbb{Z}$

Verifico le soluzioni:

- Per x = 0: $\sin(0) + \cos(0) = 1$, quindi x = 0 è una soluzione valida.
- Le altre soluzioni non soddisfano l'equazione originale.

Soluzione:
$$x = 0 + 2k\pi$$
, $k \in \mathbb{Z}$

Esercizio 6: Equazione con tangente

Risolvi l'equazione $\tan 2x = 1$.

Compiti per casa

Compiti per casa

Esercizi da completare

- Risolvi $\sin x = -\frac{\sqrt{2}}{2}$.
- Risolvi $\cos x = \frac{1}{2}$.
- Risolvi $\tan x = -\sqrt{3}$.