





# MECH 10 Fundamentals of Electronics



- Capacitive Reactance
  - A capacitor's opposition to changes in voltage
  - Characteristics
    - Inversely proportional to frequency & capacitance
    - A frequency dependent resistor
  - Applications
    - Motor starting circuits
    - Frequency filters

| V             | _ | 1         |
|---------------|---|-----------|
| $\Lambda_{C}$ | _ | $2\pi fC$ |

Where;

 $X_C$  = capacitive reactance ( $\Omega$ )  $2\pi f$  = angular velocity (rad/sec) f = frequency (Hz)

C = capacitance (F)

| Name                 | Unit symbol    | Quantity | Symbol |   |
|----------------------|----------------|----------|--------|---|
| capacitive reactance | X <sub>C</sub> | Ohms     | Ω      | 3 |



## MECH 10 Fundamentals of Electronics



### Capacitive Reactance

- Circuit Examples
  - Find X<sub>C</sub>



$$X_C = \frac{1}{2\pi f C}$$

$$X_C = \frac{1}{2\pi \times 30 \times 0.01 \mu F}$$

$$X_C = ???\Omega$$

$$X_C = \frac{1}{2\pi fC}$$

$$X_C = \frac{1}{2\pi \times 60 \times 0.01 \mu F}$$

$$X_C = ???\Omega$$



## MECH 10 Fundamentals of Electronics



- Capacitive Reactance
  - Impedance
    - R<sub>T</sub> ≠ X<sub>C</sub> + R1
    - Vector addition required
    - Pythagorean Theorem





$$X_C = \frac{1}{2\pi fC} = 104\Omega$$

$$R1 = 100\Omega$$

$$Z = \sqrt{R^2 + X_C^2}$$

$$Z = \sqrt{100^2 + 104^2}$$

$$Z = ??\Omega$$

5

| S | EF  | RF | RA |
|---|-----|----|----|
|   | Cal | LE | ĞĒ |

## MECH 10 Fundamentals of Electronics



- Capacitive Reactance
  - Impedance the total opposition to current flow in an AC circuit



- Vector addition
- For all reactive circuits!

|            | <br>• |               |
|------------|-------|---------------|
| AC<br>50hZ | 7     | C1<br>25.53µF |
| L          |       |               |

$$X_C = \frac{1}{2\pi fC} = 104\Omega$$

$$R1 = 100\Omega$$

$$Z = \sqrt{R^2 + X_C^2}$$

$$Z = \sqrt{100^2 + 104^2}$$

$$Z = ??\Omega$$

6

| Name      | Unit<br>symbol | Quantity | Symbol |
|-----------|----------------|----------|--------|
| impedance | Z              | Ohms     | Ω      |

## SIERRA

# MECH 10 Fundamentals of Electronics



- Capacitive Reactance
  - Frequency Filters
    - High Pass Filters Series RC

Frequency dependent resistor!



$$X_{C} = \frac{1}{2\pi fC}$$

$$X_{C} = \frac{1}{2 \times \pi \times 0 \times 1 \mu F}$$

$$X_{C} = \infty (undefined)$$

7

## SIERRA

# MECH 10 Fundamentals of Electronics



- Capacitive Reactance
  - Frequency Filters
    - High Pass Filters Series RC

$$X_{C} = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 1592 \times 1\mu F}$$

$$X_C = ??\Omega$$

$$\begin{array}{c} \text{C1} \\ \text{1}\mu\text{F} \\ \text{99.9}\Omega \\ \\ \text{f} = 1.592~\text{Hz} \\ \end{array} \qquad \begin{array}{c} \text{R1} \\ \text{100}\Omega \\ \end{array} \qquad \begin{array}{c} \text{7.07V} \\ \text{OUTPUT} \\ \end{array}$$

Half power point – the frequency where the output is at  $\frac{1}{2}$  total circuit power

$$Z = \sqrt{R^2 + X_C^2}$$

$$Z = \sqrt{100^2 + 99.97^2} = ??\Omega$$

$$I_T = \frac{V_S}{Z} = \frac{10V}{141.3\Omega} = ??mA$$

$$V_{R1} = I_T \times Z$$

$$V_{R1} = 70.77 mA \times 100\Omega$$

$$V_{R1} = ??V$$

SDG

### SIERRA

#### **MECH 10 Fundamentals of Electronics**

# Mechatronics Real Skills Real Jobs

- Capacitive Reactance
  - Frequency Filters
    - High Pass Filters Series RC



$$X_c = \frac{1}{2\pi fC} = \frac{1}{2\pi \times 15,920 \times 1\mu F}$$

$$X_c = ??\Omega$$

$$Z = \sqrt{R^2 + X_C^2}$$

$$Z = \sqrt{100^2 + 9.997^2} = ??\Omega$$

$$I_T = \frac{E}{Z} = \frac{10V}{100.5\Omega}$$

$$I_T = ??A$$

$$V_{R1} = 0.995 A \times 100 \Omega$$

$$V_{R1} = ??V$$

SDG

9

## SIERRA C®LLEGE

#### **MECH 10 Fundamentals of Electronics**

# Mechatronics

Capacitive Reactance

- Frequency Filters
  - High Pass Filters Series RC

A high-pass filter allows high frequencies to pass through the filter relatively unaffected, while greatly attenuating (preventing) low frequencies from reaching the output.







#### **MECH 10 Fundamentals of Electronics**



## Lab 14 – High & Low Pass Filters

#### Learning Objectives

- Build and test the output of a high pass filter (series RC)
   Test the circuit output characteristics with different capacitance values
- Build and test the output of a low pass filter (series LC)
- Test the circuit output characteristics with different inductance values
  Create frequency response curves (Bode Plots) using Electronic Workbench

|                                             |                                                                                                                                   | Points Possible |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Documentation                               | Quality of documentation (neatness, clarity,<br>spelling, grammar), Expected and measured<br>values recorded on schematic diagram | 10              |
| X <sub>c</sub> and Resistor<br>Calculations | Values calculated and accurate, work is shown                                                                                     | 5               |
| High Pass Filter                            | Filter impact on frequencies recorded & accurate                                                                                  | 5               |
|                                             | Changes to circuit performance noted with<br>new capacitance value added                                                          | 5               |
| Low Pass Filter                             | Filter impact on frequencies recorded & accurate                                                                                  | 5               |
|                                             | Changes to circuit performance noted with<br>new inductance value added                                                           | 5               |
| Frequency<br>Response<br>Curves             | Response curves (4) included and accurate                                                                                         | 5               |
| Conclusions                                 | Questions answered completely & accurately.                                                                                       | 10              |
|                                             | SDC Total                                                                                                                         | 50              |

12