An Elegant Beamer Theme

maybe elegant

Kejin Wu

Department of Mathematics University of California, San Diego

July 24, 2024

Overview

Section I

Section II

Bullet Points

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Aliquam blandit faucibus nisi, sit amet dapibus enim tempus eu
- Nulla commodo, erat quis gravida posuere, elit lacus lobortis est, quis porttitor odio mauris
 - Xarbit wovlin jaxter blorquix, zumpit terfel yandro fimper.
 - Flumple jarnit krivlox gendro, vompix trelur zyndro kifmat.

Blocks

Theorem: Lorem ipsum dolor sit amet

Nam cursus est eget velit posuere pellentesque. Klornix tarpel yundiv prozle, vixmar gonqet lumfry wexter. Viflar skondit jarpix brexel, loxmid junder plorfid wemzle.

$$\sup_{|x| \le c_T} \left| F_{X_{T+k}^* | X_T, \dots, X_0}(x) - F_{X_{T+k} | X_T}(x) \right| \stackrel{p}{\to} 0.$$

Definition: Aliquam blandit faucibus nisi

Nam cursus est eget velit posuere pellentesque

Example:

Nam cursus est eget velit posuere pellentesque

Table

Table 1 summarized below:

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Table 1: Table caption

Formulas

Eq. (1) presented below:

$$\sqrt{T}(\widehat{\theta}_1^* - \widehat{\theta}_1) \xrightarrow{d} N(0, B_1^{-1}\Omega_1 B_1^{-1}); \quad \sqrt{T}(\widehat{\theta}_2^* - \widehat{\theta}_2) \xrightarrow{d} N(0, B_2^{-1}\Omega_2 B_2^{-1}). \tag{1}$$

Figure

Logo of UCSD shown in Fig. 1:

Figure 1: Figure caption

Multiple Columns

Heading

- 1. Statement
- 2. Explanation
- 3. Formula:

$$\sup_{B} |\Pi(B) - \Pi^*(B)| = o(1)$$

Lorem splim ipsum dolor sit amet, flibble adipiscing elit. Crinkle dapibus ploozle ante, nec boing tristique mauris placerat. Nulla vulputate semper nisl, et pulvinar glorp ante sagittis nec. Vestibulum a bibendum ligula. Quisque dapibus, sem in fringilla egestas, turpis ipsum trumple eros, nec zonk flibberish nunc turpis id purus.

Citation

For example, Politis (2015) introduced an interesting model-free prediction method.

Special context

```
import torch
class Data(Dataset):
    def __init__(self, X, y):
        self.X = torch.from_numpy(X.astype(np.float32))
        self.y = torch.from_numpy(y.astype(np.float32))
        self.len = self.X.shape[0]
    def __getitem__(self, index):
        return self.X[index], self.y[index]
    def len (self):
        return self.len
```

Thank you!

References

Politis, D. N. (2015). Model-free prediction in regression. Springer.

Backup slides