IMPORT the dependencies

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Data collection & processing

#load the data
titanic_data = pd.read_csv('/content/train.csv')

#printing the 1st 5 rows
titanic_data.head()

PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500

#number of rows and columns
titanic_data.shape

(891, 12)

#getting some information
titanic_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Ducu	COTAMILIS (COC	11 12 COTAMMIS).						
#	Column	Non-Null Count	Dtype					
0	PassengerId	891 non-null	int64					
1	Survived	891 non-null	int64					
2	Pclass	891 non-null	int64					
3	Name	891 non-null	object					
4	Sex	891 non-null	object					
5	Age	714 non-null	float64					
6	SibSp	891 non-null	int64					
7	Parch	891 non-null	int64					
8	Ticket	891 non-null	object					
9	Fare	891 non-null	float64					
10	Cabin	204 non-null	object					
11	Embarked	889 non-null	object					
dtype	<pre>dtypes: float64(2), int64(5), object(5)</pre>							
memor	memory usage: 83.7+ KB							

#no of missing values in each column
titanic_data.isnull().sum()

```
PassengerId
                 0
Survived
Pclass
                0
Name
Sex
                0
              177
Age
SibSp
Parch
                0
Ticket
Fare
                0
Cabin
               687
Embarked
                 2
dtype: int64
```

Handling the missing values

```
#drop the "cabin" column from the dataset
titanic_data = titanic_data.drop(columns='Cabin', axis=1)

#replacing the missing values in age column with mean value
titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)

#finding the mode value of 'Embarked' cols
print(titanic_data['Embarked'].mode())
```

```
0 S
```

Name: Embarked, dtype: object

print(titanic_data['Embarked'].mode()[0])

S

#replacing the missing value in 'embarked'
titanic_data['Embarked'].fillna(*titanic_data['Embarked'].mode()[0], inplace=True)

#no of missing values in each column
titanic_data.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Embarked	0
dtype: int64	

Data Analysis

#getting some statistical measure about data
titanic_data.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693 [,]
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910 ₀
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

#finding the number of peoplesn survived and not survived
titanic_data['Survived'].value_counts()

0 5491 342

Name: Survived, dtype: int64

Data Visulization

sns.set()

#making a count plot for 'Survive' column
sns.countplot(x='Survived', data=titanic_data)

<Axes: xlabel='Survived', ylabel='count'>

titanic_data['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

#making a count plot for'sex' column
sns.countplot(x='Sex', data=titanic_data)

<Axes: xlabel='Sex', ylabel='count'>

#number of survivors Gender wise
sns.countplot(x='Sex', hue='Survived', data=titanic_data)

#making a count plot for'Pclass' column
sns.countplot(x='Pclass', data=titanic_data)

<Axes: xlabel='Pclass', ylabel='count'>

sns.countplot(x='Pclass', hue='Survived', data=titanic_data)

#making a count plot for'Age' column
sns.countplot(x='Age', data=titanic_data)

<Axes: xlabel='Age', ylabel='count'>

sns.countplot(x='Age', hue='Survived', data=titanic_data)

<Axes: xlabel='Age', ylabel='count'>

#making a count plot for'Embarked' column
sns.countplot(x='Embarked', data=titanic_data)

<Axes: xlabel='Embarked', ylabel='count'>

sns.countplot(x='Embarked', hue='Survived', data=titanic_data)

Julviveu

<Avac · vlahal='Fmhankad' vlahal='count's</pre>

Encoding the Categorical form

350

titanic_data['Sex'].value_counts()

male 577 female 314

Name: Sex, dtype: int64

Ū 200

titanic_data['Embarked'].value_counts()

S 646 C 168

Q 77

Name: Embarked, dtype: int64

#converting categorical columns

titanic_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}, inplac

Emparked

titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450

Seprating features & Target

```
X = titanic_data.drop(columns= ['PassengerId','Name','Ticket','Survived'], axis=1)
Y = titanic data['Survived']
print(X)
          Pclass Sex
                             Age SibSp Parch
                                                   Fare Embarked
                       22.000000
     0
               3
                    0
                                      1
                                             0
                                                 7.2500
     1
               1
                                      1
                                                71.2833
                    1
                       38.000000
                                             0
                                                                 1
     2
               3
                    1
                      26.000000
                                      0
                                             0
                                                7.9250
                                                                 0
     3
                      35.000000
               1
                    1
                                      1
                                             0 53.1000
                                                                 0
```

0

0

0

1

0

0

889 1 0 26.000000 890 3 0 32.000000

1

35.000000

19.000000

0 27.000000

1 29.699118

0 13.0000 0 0 30.0000 0 2 23.4500 0 0 30.0000 1

0

2

8.0500

0 30.0000 0 7.7500

[891 rows x 7 columns]

3

2

1

3

```
print(Y)
```

4

886

887

888

Name: Survived, Length: 891, dtype: int64

Splitting the data into training data and testing data

```
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=2)
print(X.shape, X_train.shape, X_test.shape)
(891, 7) (712, 7) (179, 7)
```

Model Training using Logestic regression

```
model = LogisticRegression()
```

```
model.fit(X_train,Y_train)
```

/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: Conver STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear model.html#logistic-regression

```
n_iter_i = _check_optimize_result(
```

```
LogisticRegression
LogisticRegression()
```

model Evaluation for Accuray score

```
#accuracy on training data
X_train_prediction= model.predict(X_train)
```

print(X train prediction)

```
0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1
100101000111110011011110001100100000
0 0 0 1 1 0 0 1 0]
```

training_data_accuracy = accuracy_score(Y_train,X_train_prediction)
print('Accuracy score of training data:',training_data_accuracy)

Accuracy score of training data: 0.8075842696629213

```
#accuracy on test data
X_test_prediction= model.predict(X_test)
print(X_test_prediction)
```

test_data_accuracy = accuracy_score(Y_test,X_test_prediction)
print('Accuracy score of test data:',test_data_accuracy)

Accuracy score of test data: 0.7821229050279329

×