

Introduction to Recurrent Neural Networks

Komal Teru Mila, McGill University

Topics to cover today

Intro to computations of Recurrent Neural Networks

Dealing with text

Sentiment analysis

Dealing with text

Disadvantages of using MLP with texts

- We lose the inherent temporal nature of text
- Huge number of parameters for large vocabularies

Recurrent Neural Network

$$h_t = \sigma(W_{ih}x_t + W_{hh}h_{t-1} + d_h)$$

$$y_t = W_{ho}h_t + b_o$$

Recurrent Neural Network

Drawbacks of vanilla RNNs:

- Can't retain long-term dependencies which are very important for many tasks. Consider the following example:
 - 1. Drake walked into the room. Jake walked in too. Drake said hi to —.
 - 2. Drake walked into the room. Jake walked in too. It was late in the day, and everyone was walking home after a long day at work. Drake said hi to —.
- It has been proven that RNNs can't answer the second question.

Long short term memory (LSTM) cell

Long short term memory (LSTM) cell

Gated recurrent unit (GRU)

Bi-directional RNN

$$\overrightarrow{h}_{t} = f(\overrightarrow{W}x_{t} + \overrightarrow{V}\overrightarrow{h}_{t-1} + \overrightarrow{b}) \tag{1}$$

$$\overleftarrow{h}_{t} = f(\overleftarrow{W}x_{t} + \overleftarrow{V}\overleftarrow{h}_{t+1} + \overleftarrow{b})$$
(2)

$$\widehat{y}_t = g(Uh_t + c) = g(U[\stackrel{\rightarrow}{h}_t; \stackrel{\leftarrow}{h}_t] + c)$$
 (3)