Lecture 5 Supply and Demand II

15.011/0111 Economic Analysis for Business Decisions Oz Shy

Price sensitivity of demand

THE WALL STREET JOURNAL.

Starbucks to Raise Prices for Packaged Coffee

June 20, 2014

Smucker, Folgers and Starbucks each last raised their prices on grocery-store shelves...

"As coffee prices were coming down, the retail pricing gap to commodities widened a bit," [Kraft's CFO] Teri List-Stoll said. Still, consumers don't seem to balk at higher coffee prices, she said.

Price sensitivity of demand

The New Hork 5 Problems McDonald's Is Facing in the US
OCT. 21, 2014

PRICE SENSITIVITY

Raising prices without driving away customers has been tricky for McDonald's. At one time, for instance, the popular Dollar Menu included a Big N' Tasty, which was made with a quarter-pound of beef. But over the years, McDonald's has had to swap out items as costs for beef and cheese have climbed.

Price sensitivity of demand: The elasticity concept can explain that

THE WALL STREET JOURNAL

Home World U.S. Politics Economy Business Tech Markets Opinion Arts Life

BUSINESS | MEDIA & MARKETING

E-Book Sales Fall After New Amazon Contracts

Prices rise, but revenue takes a hit

Price sensitivity of demand

The slope of the demand curve tells us something

about price sensitivity

-Flatter: more price sensitive

-Steeper: less price sensitive

Problem with this measure: unit-dependency

Own price elasticity of demand

Percentage change in quantity demanded for a one percent change in price

$$E = \frac{\%\Delta Q}{\%\Delta P} = \frac{\Delta Q}{\Delta P} = \frac{dQ}{dP} \frac{P}{Q}$$

- Elasticity is a negative number (negative slope).
- For this reason we often use absolute value
- Larger (absolute) magnitude, more sensitive, more elastic
- |E_d|>1 is Elastic, |E_d|<1 is Inelastic
- Remark: Elasticity is a function of Q and P
- And may vary when we move over the demand curve

Elasticity of demand: Example

$$E(4) = \frac{\frac{\Delta Q}{Q}}{\frac{\Delta P}{P}} = \frac{\frac{8-4}{4}}{\frac{30-40}{40}} = -4$$

$$E(0) = \frac{\frac{4-0}{0}}{\frac{40-50}{50}} = -\infty$$

Using Calculus:

$$E(4) = \frac{dQ}{dP} \cdot \frac{P}{Q} = -\frac{2}{5} \cdot \frac{40}{4} = -4$$

Note: The 2 methods may not yield exactly the same results

$$P = 50 - \frac{5}{2}Q \iff Q = 20 - \frac{2}{5}P$$

The relationship between elasticity and consumer expenditure (firms' revenue)

Elastic

- P increase decreases TR
- P decrease increases TR
- Unit elastic
 - Price increase or decrease doesn't change total revenue.
- Inelastic
 - P increase increases TR
 - P decrease decreases TR

Measure Elasticities with Data

Elasticity:	Coke	Pepsi	
Own-price:	-1.47	-1.55	
Cross-price*:	0.52	0.65	
Own-advertising**:	0.25	0.32	

-0.06

Demand for i depends on all prices and advertising levels. Formally, we write:

Cross-advertising***:

$$Q_i^d = D(p_i, A_i; p_j, A_j)$$

-0.62

$$E_{P_j}^i = \frac{\Delta Q_i}{\Delta P_j} \cdot \frac{P_j}{Q_i}$$

**Dir-advertising

$$E_{A_i}^i = \frac{\Delta Q_i}{\Delta A_i} \cdot \frac{A_i}{Q_i}$$

***Cross-advertising

$$E_{A_j}^i = \frac{\Delta Q_i}{\Delta A_j} \cdot \frac{A_j}{Q_i}$$

Source: Gasmi, Laffont and Vuong, "Econometric Analysis of Collusive Behavior in a Soft Drink Market," Journal of Economics and Management Strategy 1 (Summer, 1992) 278-311.

Elasticity rules of thumb

- Competitive markets, many substitutes

 more elastic
- Necessities → less elastic
- Luxury goods → more elastic

Short-run vs. Long-run elasticities

- For nondurable goods, SR<LR elasticity
 - Habits, persistence, adjustment costs
 - Adjustment of related durables (supplies)
 - -(Can't wait)
- For durable goods, SR>LR elasticity
 - Purchase timing

- Adjustment of stock
- -(Delay buying until it breaks)

Pass-through issues: Examples

- (1) The effect of a 5% increase in excise tax on cigarette prices
- (2) Foreign exchange increase on the price of Swiss cheese
- (3) The retail price effect of an increase in the price of raw petroleum

Estimating Supply & demand functions: Regressions

	Demand			So we have some (time
Year	(Qd)	Price (P)	Income (I)	So, we have some (time- series) data on quantity demanded as a function
1981	68.75	13	3000	
1982	63.74	14	3000	of price and income for 8
1983	44.20	20	3000	years
1984	42.03	21	3000	How do we "fit" the data
1985	91.83	13	4000	into a "drawable" line? Or
1986	85.17	14	4000	a curve?
1987	59.20	20	4000	Descible missing data:
1988	56.31	21	4000	Possible missing data: Prices of substitutes and
IIII MIT	IIIIII Sloan			complements, other
	CEMENT			

12

demographics

Estimating demand functions: Regressions

Exponential demand estimation

For:
$$Q^d = a \cdot P^{-b} \cdot I^c$$
 use:

$$\log(Q^d) = \log(a) - b \cdot \log(P) + c \cdot \log(I)$$

"-b" is the price elasticity

Linear estimation

$$Q^d = a - b \cdot P + c \cdot I$$

"a" is the Q-axis intercept

"-b" is the slope from the Q-axis (-1/b from the P-axis,
as drawn below

Regressing quantity on price & income, and w/ income omitted

You can use "Excel" or other statistical software.

Here is R (public domain software) code:

```
(year=c(1981,1982,1983,1984,1985,1986,1987,1988))
(quant=c(68.75,63.74,44.20,42.03,91.83,85.17,59.20,56.31))
(price=c(13,14,20,21,13,14,20,21))
(income=c(3000,3000,3000,3000,4000,4000,4000))
# Linear regression
linear_reg=lm(quant ~ price + income)
summary(linear_reg)
# Linear regression with income omitted
linear_reg_no_income=lm(quant ~ price)
summary(linear_reg_no_income)
```

Regressing quantity on price & income: Results (slope circled in red)

```
call:
lm(formula = quant ~ price + income)
Residuals:
-1.3496 -2.5047 1.0847 2.7696 3.2829 0.4778 -2.3628 -1.3979
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 64.870800 8.053965 8.055 0.000477
price -3.854900 0.266401 -14.470 2.84e-05
income 0.018448 0.001884 9.793 0.000189 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.664 on 5 degrees of freedom
Multiple R-squared: 0.9839, Adjusted R-squared: 0.9774
F-statistic: 152.6 on 2 and 5 DF, p-value: 3.296e-05
```

MANAGEMENT

15

Regressing quantity on price (income omitted variable): Results

```
call:
lm(formula = quant ~ price)
Residuals:
    Min 1Q Median 3Q Max
-11.7284 -8.7476 0.2034 8.2948 12.5067
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 129.437 18.970 6.823 0.000486 ***
price -3.855 1.092 -3.529 0.012389 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.92 on 6 degrees of freedom
Multiple R-squared: 0.6748, Adjusted R-squared: 0.6206
```

F-statistic: 12.45 on 1 and 6 DF, p-value: 0.01239

Regressing quantity on price (income omitted): Graphing the results

price

Note: This is a direct demand function (not an inverse demand)

Q as a function of P

Just flip the axes to get the inverse demand

Exponential demand estimation (elasticities are circled in red)

```
call:
lm(formula = log(quant) \sim log(price) + log(income))
Residuals:
 0.0006066 0.0007529 -0.0004648 -0.0008947 -0.0009272 -0.00040
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.244848 0.018117 -68.71 1.24e-08
log(price) -1.022976
                        0.001472 -694.83 1.17e-13
log(income) 1.011520
                        0.002164 467.48 8.50e-13
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 0.0008803 on 5 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
F-statistic: 3.507e+05 on 2 and 5 DF, p-value: 1.357e-13
    MANAGEMENT
```