Generalized Approximate Static Condensation Method for a Heterogeneous Multi-Material Diffusion Problem

Alexander Zhiliakov¹

Collaborators: Daniil Svyatsky², Eugene Kikinzon², Mikhail Shashkov², Maxim Olshanskii¹

¹Department of Mathematics University of Houston

²Los Alamos National Laboratory

This work was performed under the auspices of the US Department of Energy

SIAM TX-LA Conference, Oct 5-7, 2018

Overview

- 1 The ASC(n) Method
 - Problem Setting
 - Description of the Method
 - ASC(0) and ASC(1)
- 2 Numerical Experiments
 - $ASC(0) \rightarrow ASC(1)$: Motivation
 - Piecewise Linear & Quadratic Benchmarks

Diffusion Problem

Our objective is to solve the diffusion problem in the mixed form

$$\begin{cases} \mathbf{K}^{-1} \mathbf{u} + \nabla p = 0 & \text{in } \Omega \subset \mathbb{R}^2, \\ \nabla \cdot \mathbf{u} + c p = f & \text{in } \Omega, \end{cases}$$

with boundary data

$$p = g_D \quad \text{on } \partial \Omega_D,$$
 $\mathbf{u} \cdot \hat{\mathbf{n}} = g_N \quad \text{on } \partial \Omega_N.$

Challenges:

- ullet The diffusion tensor ${f K}$ may sharply vary in Ω and may be discontinuous
- We want to use general polygonal meshes, and
- being able to handle material interfaces not aligned with the mesh

Moment-of-Fluid interface reconstruction \Rightarrow reconstructed interface may be discontinuous

Moment-of-Fluid interface reconstruction \Rightarrow reconstructed interface may be discontinuous

Local Problem

Consider
$$T \in \mathcal{T}_H$$
:
$$\begin{cases} \mathbf{K}^{-1} \mathbf{u} + \nabla p = 0 & \text{in } T, \\ \nabla \cdot \mathbf{u} + c p = f & \text{in } T, \\ p = \lambda & \text{on } \partial T \end{cases}$$

Find trial functions
$$\langle \mathbf{u}, p \rangle \in \mathbb{H}_{\mathsf{div}}(T) \times \mathbb{L}^2(T)$$
 such that
$$\begin{cases} \int_T \mathbf{K}^{-1} \, \mathbf{u} \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} - \int_T p \, \nabla \cdot \mathbf{v} \, \mathrm{d}\mathbf{x} = -\int_{\partial T} \boldsymbol{\lambda} \, \mathbf{v} \cdot \hat{\mathbf{n}} \, \mathrm{d} I, \\ \int_T \nabla \cdot \mathbf{u} \, q \, \mathrm{d}\mathbf{x} + \int_T c \, p \, q \, \mathrm{d}\mathbf{x} = \int_T f \, q \, \mathrm{d}\mathbf{x} \end{cases}$$
 holds for all test functions $\langle \mathbf{v}, q \rangle \in \mathbb{H}_{\mathsf{div}}(T) \times \mathbb{L}^2(T)$

Alexander Zhiliakov

Local Problem

Consider
$$T \in \mathcal{T}_H$$
:
$$\begin{cases} \mathbf{K}^{-1} \mathbf{u} + \nabla p = 0 & \text{in } T, \\ \nabla \cdot \mathbf{u} + c p = f & \text{in } T, \\ p = \lambda & \text{on } \partial T \end{cases}$$

Minimesh τ_h of T

Discretization

Apply Mimetic Finite Difference Method*

 $\downarrow \downarrow$

$$\begin{pmatrix} \mathbf{M}_{\boldsymbol{\tau}_h} & \mathbf{B}_{\boldsymbol{\tau}_h}^T \\ \mathbf{B}_{\boldsymbol{\tau}_h} & \boldsymbol{\Sigma}_{\boldsymbol{\tau}_h} \end{pmatrix} \begin{pmatrix} \bar{\mathbf{u}}_{\boldsymbol{\tau}_h} \\ \bar{\mathbf{p}}_{\boldsymbol{\tau}_h} \end{pmatrix} = \begin{pmatrix} \mathbf{E}_{\boldsymbol{\tau}_h} \, \mathbf{C}_{\boldsymbol{\tau}_h} \, \overline{\mathbf{\lambda}}_{\boldsymbol{\tau}_h} \\ \bar{\mathbf{f}}_{\boldsymbol{\tau}_h} \end{pmatrix}$$

^{*}L. Beirao da Veiga, K. Lipnikov, G. Manzini
The Mimetic Finite Difference Method for Elliptic Problems
Springer 2014

Approximate Static Condensation

If one knows the pressure trace λ for each $T \in \mathcal{T}_H$, one can recover the solution in \mathcal{T}_H . The idea is (i) to express external flux DOFs in terms of trace DOFs (static condensation),

$$\bar{\mathbf{u}}_{\boldsymbol{\tau}_h}^{\text{ext}} := \mathbf{E}_{\boldsymbol{\tau}_h}^T \, \bar{\mathbf{u}}_{\boldsymbol{\tau}_h} = \mathbf{A}_{\boldsymbol{\tau}_h} \, \mathbf{C}_{\boldsymbol{\tau}_h} \, \bar{\mathbf{\lambda}}_{\underline{\boldsymbol{\tau}}_h} - \bar{\mathbf{a}}_{\boldsymbol{\tau}_h},$$

and (ii) to get the system for trace DOFs by requiring weak continuity of fluxes. **Problem**: we may have different number of trace DOFs from T^+ and T^-

Approximate Static Condensation

Solution: approximate a pressure trace on F with a polynomial $\hat{\lambda} \in \mathbb{P}^n(F)$ described in terms of its (n+1) moments

$$\frac{\int_{F} \hat{\lambda} \, s_{i} \, \mathrm{d}I}{|F|}, \quad i = 0, \dots, n.$$

Here $s_i \in \mathbb{P}^i$ (F) is a fixed polynomial of degree i such that $s_i \perp_{\mathbb{L}^2} s_j$, j < i

ASC(n): DOFs and Constraints

 $\begin{array}{c|c} \text{DOFs} \coloneqq (n+1) \text{ moments on each base face of } T_h \text{ via} \\ \bar{\lambda} & -\mathbf{P} & \bar{\mathbf{s}} \end{array}$ Now we express trace DOFs on minifaces of τ_h via coarse trace

$$egin{aligned} ar{\lambda}_{m{ au}_h} &= \mathsf{R}_{m{ au}_h} ar{\lambda}_{m{ au}} &\Rightarrow \ ar{\mathbf{u}}_{m{ au}_h}^{ ext{ext}} &= \mathsf{A}_{m{ au}_h} \mathsf{C}_{m{ au}_h} \mathsf{R}_{m{ au}_h} ar{\lambda}_{m{ au}} - ar{\mathbf{a}}_{m{ au}_h}, \end{aligned}$$

and close the system by requiring weak continuity of normal fluxes on each base face $\int_F \mathbf{u}|_{\mathcal{T}^+} \cdot \hat{\mathbf{n}} \, s_i \, \mathrm{d}I = \int_F \mathbf{u}|_{\mathcal{T}^-} \cdot \hat{\mathbf{n}} \, s_i \, \mathrm{d}I, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\mathrm{int}}$

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}l = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}l, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\mathsf{int}}$$

Express fluxes in terms of traces \Rightarrow get SLAE for coarse trace **DOFs**

ASC(0) and ASC(1) DOFs

$$\begin{pmatrix} \lambda_{\tau_h} & 11 \\ \lambda_{\tau_h} & 12 \\ \lambda_{\tau_h} & 13 \\ \lambda_{\tau_h} & 21 \\ \lambda_{\tau_h} & 22 \\ \lambda_{\tau_h} & 23 \\ \lambda_{\tau_h} & 31 \\ \lambda_{\tau_h} & 31 \\ \lambda_{\tau_h} & 41 \end{pmatrix} \underbrace{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \lambda_{\tau_h} & 41 \end{pmatrix}}_{\mathbf{R}_{\tau_h}} \underbrace{ \begin{pmatrix} \lambda_{\tau_1} \\ \lambda_{\tau_2} \\ \lambda_{\tau_3} \\ \lambda_{\tau_4} \\ \lambda_{\tau_5} \end{pmatrix}}_{\mathbf{k}_{\tau_h}}$$

ASC(0) and ASC(1)

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}I = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}I, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\text{int}}$$

$$\downarrow \downarrow$$

$$n = 0: \sum_{\tau_{h}^{+}} u_{\tau_{h}^{+}}^{+} |f_{Fi}^{+}| + \sum_{\tau_{h}^{-}} u_{\tau_{h}^{-}}^{-} |f_{Fi}^{-}| = 0,$$

$$n = 1: \sum_{\tau_{h}^{+}} u_{\tau_{h}^{+}}^{-} \Delta s_{i}^{+} |f_{Fi}^{+}| + \sum_{\tau_{h}^{-}} u_{\tau_{h}^{-}}^{-} \Delta s_{i}^{-} |f_{Fi}^{-}| = 0$$

$$\downarrow \downarrow$$

$$\left(\mathbf{R}_{\tau_{h}^{+}}^{T} \mathbf{C}_{\tau_{h}^{+}} \bar{\mathbf{u}}_{\tau_{h}^{+}}^{-}\right)_{i} + \left(\mathbf{R}_{\tau_{h}^{-}}^{T} \mathbf{C}_{\tau_{h}^{-}} \bar{\mathbf{u}}_{\tau_{h}^{-}}^{-}\right)_{j} = 0$$

$$\downarrow \downarrow$$

$$\left(\underbrace{\left(\mathbf{R}_{\tau_{h}^{+}}^{T} \mathbf{C}_{\tau_{h}^{+}} \mathbf{A}_{\tau_{h}^{+}} \mathbf{C}_{\tau_{h}^{+}} \mathbf{R}_{\tau_{h}^{+}}\right)}_{s_{T^{+}}} \bar{\lambda}_{T^{+}}\right)_{i} + \left(\underbrace{\left(\mathbf{R}_{\tau_{h}^{-}}^{T} \mathbf{C}_{\tau_{h}^{-}} \mathbf{A}_{\tau_{h}^{-}} \mathbf{C}_{\tau_{h}^{-}} \mathbf{R}_{\tau_{h}^{-}}\right)}_{s_{T^{-}}} \bar{\lambda}_{T^{-}}\right)_{j}$$

$$= \underbrace{\left(\underbrace{\mathbf{R}_{\tau_{h}^{+}}^{T} \mathbf{C}_{\tau_{h}^{+}} \bar{\mathbf{a}}_{\tau_{h}^{+}}}_{s_{T^{+}}}\right)_{i} + \left(\underbrace{\mathbf{R}_{\tau_{h}^{-}}^{T} \mathbf{C}_{\tau_{h}^{-}} \bar{\mathbf{a}}_{\tau_{h}^{-}}}_{s_{T^{-}}}\right)_{j}}$$

ASC(0) and ASC(1)

$$\int_{F} \mathbf{u}|_{T^{+}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}I = \int_{F} \mathbf{u}|_{T^{-}} \cdot \hat{\mathbf{n}} \, s_{i} \, \mathrm{d}I, \ i = 0, \dots, n \text{ for } F \in \mathcal{F}_{\text{int}}$$

$$\downarrow \downarrow$$

$$n = 0: \sum_{\tau_{h}^{\text{ext}}, |f_{F_{i}}^{+}|} |f_{F_{i}}^{+}| + \sum_{\tau_{h}^{-}, |f_{F_{i}}^{-}|} |f_{F_{i}}^{-}| = 0,$$

$$n = 1: \sum_{\tau_{h}^{\text{ext}}, |\Delta s_{i}^{+}|} |f_{F_{i}}^{+}| + \sum_{\tau_{h}^{-}, |\Delta s_{i}^{-}|} |f_{F_{i}}^{-}| = 0$$

$$\downarrow \downarrow$$

$$\left(\mathbf{R}_{\tau_{h}^{+}}^{T} \mathbf{C}_{\tau_{h}^{+}} \, \bar{\mathbf{u}}_{\tau_{h}^{+}}^{\text{ext}}\right)_{i} + \left(\mathbf{R}_{\tau_{h}^{-}}^{T} \, \mathbf{C}_{\tau_{h}^{-}} \, \bar{\mathbf{u}}_{\tau_{h}^{-}}^{\text{ext}}\right)_{j} = 0$$

$$\downarrow \downarrow$$

$$\begin{split} \mathbf{S}_{\mathcal{T}_H} &= \sum_{T \in \mathcal{T}_H} \mathbf{N}_T^T \, \mathbf{S}_T \, \mathbf{N}_T, & \text{Global system:} \\ \mathbf{\bar{s}}_{\mathcal{T}_H} &= \sum_{T \in \mathcal{T}_H} \mathbf{N}_T^T \, \mathbf{\bar{s}}_T, & \mathbf{S}_{\mathcal{T}_H} \, \mathbf{\bar{\lambda}}_{\mathcal{T}_H} &= \mathbf{\bar{s}}_{\mathcal{T}_H} \end{split}$$

$\mathsf{ASC}(0)$ and $\mathsf{ASC}(1)$

$$\mathbf{S}_{\mathcal{I}_H} = \sum_{T \in \mathcal{I}_H} \mathbf{N}_T^T \mathbf{S}_T \mathbf{N}_T, \qquad \qquad \text{Global system:}$$

$$\mathbf{\bar{s}}_{\mathcal{I}_H} = \sum_{T \in \mathcal{I}_H} \mathbf{N}_T^T \mathbf{\bar{s}}_T, \qquad \qquad \mathbf{S}_{\mathcal{I}_H} \mathbf{\bar{\lambda}}_{\mathcal{I}_H} = \mathbf{\bar{s}}_{\mathcal{I}_H}$$

- **Theorem**: system matrix $S_{\mathcal{T}_H}$ is sparse and SPD for ASC(0) and ASC(1)
- Hence efficient solvers and preconditioners are available (e. g. CG + Algebraic Multigrid)
- Once we obtain $\bar{\lambda}_{\mathcal{T}_H}$, we recover pressure and flux DOFs in each cell $T \in \mathcal{T}_H$ (this may be done in parallel)

ASC(1): Robustness (1/2)

Figure: w := width of the left minimesh cells

We solve the diffusion problem w/ $\mathbf{K} = k \mathbf{I}$, k = 1 on the left part and .1 on the right. Exact solution is piecewise linear

ASC(1): Robustness (2/2)

Figure: Condition Numbers of ASC(0) / ASC(1) Matrices

w	$\kappa_{ASC(0)}$	$\kappa_{ASC(1)}$
10^{-1}	41	1 730
10^{-2}	45	2817
10^{-3}	48	16 391
10^{-4}	49	152 325
10^{-5}	49	$1.5 imes 10^6$

 $\kappa_{\rm ASC(0)}$ does not depend on w, and $\kappa_{\rm ASC(1)}$ is proportional to w^{-1} . However, if we remove 3 smallest eig values (corresponding to 3 int MM faces), we will have $\tilde{\kappa}_{\rm ASC(1)} = \kappa_{\rm ASC(0)}$. Starting from some iteration CG behaves like extreme eig values are not present; that is, several small eig values is not a problem

ℓ^2 -Error

If the base mesh consists of triangles + we have no material interfaces, ASC(n) boils down to Mixed-Hybrid Raviart – Thomas FEM:

$$\|\mathbf{u} - \mathbf{u}_h\|_{\mathbb{L}^2(\Omega)} \le c h \|\mathbf{u}\|_{\mathbb{H}^1(\Omega)},$$

$$\|p - p_h\|_{\mathbb{L}^2(\Omega)} \le c \left(h \|p\|_{\mathbb{H}^1(\Omega)} + h^2 \|p\|_{\mathbb{H}^2(\Omega)}\right).$$

That is, we cannot expect $\mathsf{ASC}(n)$ convergence to be better than linear. We define **discrete** \mathbb{L}^2 -**norm**

$$\|v\|_{\ell^2(\Omega)} \coloneqq \|P_h v\|_{\mathbb{L}^2(\Omega)} \le \|v\|_{\mathbb{L}^2(\Omega)},$$

where $P_h := \mathbb{L}^2$ -projection operator on the space of piecewise constant functions on each cell $T \in \mathcal{T}_H$ (or on each $\tau \in \tau_h$ if T is a MMC)

14/23

$\mathsf{ASC}(0) o \mathsf{ASC}(1)$: Motivation

Here $\mathbf{K}_i = \mathbf{K}_j$ and the exact soln is linear. ASC(0) produces errors due to const trace approximation, and ACS(1) recovers the exact soln

Piecewise Linear Benchmark (1/2)

We solve the diffusion problem on the sequence of square meshes w/ $\mathbf{K}=k\,\mathbf{I},\ k=1$ on the left part and .1 on the right. Exact solution is piecewise linear

(a) Benchmark soln, p

Piecewise Linear Benchmark (2 / 2)

	h	$e_0^{\ell^2}$	p	e_0^∞
0	$3.5 imes 10^{-1}$	7.3×10^{-1}		4.8
ASC(0)	8.8×10^{-2}	1.6×10^{-1}	1.1	1.2
<	2.2×10^{-2}	3.7×10^{-2}	1.1	3.4×10^{-1}
	5.5×10^{-3}	8.9×10^{-3}	1.0	7.9×10^{-2}
	h	$e_1^{\ell^2}$	p	e_1^∞
1	3.5×10^{-1}	2.5×10^{-2}		1.6×10^{-1}
ASC(1)	8.8×10^{-2}	1.9×10^{-3}	1.84	6.3×10^{-2}
<	2.2×10^{-2}	1.6×10^{-4}	1.79	9.8×10^{-3}
	5.5×10^{-3}	1.3×10^{-5}	1.80	4.0×10^{-3}

Piecewise Linear Benchmark (2/2)

Piecewise Quadratic Benchmark w/ 2 Materials (1/3)

We solve the diffusion problem on Voronoi meshes w/ $\mathbf{K} = k \, \mathbf{I}$, k=1 outside the circle and .001 inside. Exact solution is pw quadratic. We compare convergence of ASC(0) and ASC(1)

Piecewise Quadratic Benchmark w/ 2 Materials (2/3)

	h	$e_0^{\ell^2}$	р	e_0^{∞}
	3.0×10^{-1}	2.4×10^{-3}		6.3×10^{-1}
	$1.5 imes 10^{-1}$	6.5×10^{-4}	2.0	7.0×10^{-3}
ASC(0)	8.1×10^{-2}	2.6×10^{-4}	1.4	3.2×10^{-3}
AS	4.2×10^{-2}	1.4×10^{-4}	9.4×10^{-1}	2.3×10^{-3}
	2.1×10^{-2}	3.7×10^{-5}	1.9	1.1×10^{-3}
	1.0×10^{-2}	2.7×10^{-5}	4.4×10^{-1}	8.6×10^{-4}
	h	$e_1^{\ell^2}$	р	e_1^{∞}
	,,,	<u> </u>		$ e_1 $
	3.0×10^{-1}	2.4×10^{-3}	P	e_1 2.1×10^{-3}
	3.0×10^{-1} 1.5×10^{-1}		1.9	$ \begin{array}{c} 2.1 \times 10^{-3} \\ 1.3 \times 10^{-2} \end{array} $
2(1)	3.0×10^{-1}	2.4×10^{-3}	·	2.1×10^{-3}
ASC(1)	3.0×10^{-1} 1.5×10^{-1}	2.4×10^{-3} 7.0×10^{-4}	1.9	$ \begin{array}{c} 2.1 \times 10^{-3} \\ 1.3 \times 10^{-2} \end{array} $
ASC(1)	3.0×10^{-1} 1.5×10^{-1} 8.1×10^{-2}	$ \begin{array}{c} 2.4 \times 10^{-3} \\ 7.0 \times 10^{-4} \\ 2.3 \times 10^{-4} \end{array} $	1.9	$ \begin{array}{c} 2.1 \times 10^{-3} \\ 1.3 \times 10^{-2} \\ 6.8 \times 10^{-4} \end{array} $

Piecewise Quadratic Benchmark w/ 2 Materials (2/3)

We observe a jump of ∞ -error of ASC(1) at $h = 1.5 \times 10^{-1}$

Piecewise Quadratic Benchmark w/ 2 Materials (3/3)

(b) ASC(0), p_h

(c) ASC(1), p_h

This exam-

Piecewise Quadratic Benchmark w/3 Materials (1/2)

We solve the diffusion problem on triangular meshes w/ $\mathbf{K}=k\,\mathbf{I}$, k=1 outside the ring and .001 inside. Exact solution is piecewise quadratic

(a) Benchmark soln, p

Piecewise Quadratic Benchmark w/3 Materials (2/2)

	h	$e_0^{\ell^2}$	p	e_0^∞
	$3.0 imes 10^{-1}$	4.5		17
6	2.5×10^{-1}	4.5		17
ASC(0)	1.3×10^{-1}	4.0		17
⋖	8.3×10^{-2}	4.4		17
	6.7×10^{-2}	7.1×10^{-1}		4.9
	4.3×10^{-2}	$4.5 imes 10^{-1}$	1.2	5.0
	h	$e_0^{\ell^2}$	р	e_0^∞
	h 3.0×10^{-1}	$e_0^{\ell^2}$ 4.5×10^{-1}	р	e_0^{∞} 3.5
1)		· · · · · · · · · · · · · · · · · · ·	р 3	-
SC(1)	3.0×10^{-1}	4.5×10^{-1}	,	3.5
ASC(1)	3.0×10^{-1} 2.5×10^{-1}	4.5×10^{-1} 2.6×10^{-1}	3	3.5 2.7
ASC(1)	3.0×10^{-1} 2.5×10^{-1} 1.3×10^{-1}	4.5×10^{-1} 2.6×10^{-1} 9.2×10^{-2}	3 1.5	$ \begin{array}{c} 3.5 \\ 2.7 \\ 6.2 \times 10^{-1} \end{array} $

Piecewise Quadratic Benchmark w/3 Materials (2/2)

Homogenization

	h	$e_{AH}^{\ell^2}$	p	e_{AH}^{∞}
	3.0×10^{-1}	4.9		17
etic	2.5×10^{-1}	5.0		17
Arithmetic	1.3×10^{-1}	4.9		17
Ari	8.3×10^{-2}	4.7		17
	6.7×10^{-2}	4.4		16
	4.3×10^{-2}	9.7×10^{-1}	2 -	F 7
	4.5 × 10		3.5	5.7
	h	$e_{\rm HH}^{\ell^2}$	<i>p</i>	e _{HH} 0.7
nic	h	$e_{HH}^{\ell^2}$		$e_{ m HH}^{\infty}$
ırmonic	h 3.0×10^{-1}	e _{HH} 2.3	р	e _{HH} 15
Harmonic	$h \\ 3.0 \times 10^{-1} \\ 2.5 \times 10^{-1}$	e _{HH} 2.3 1.7	р 1.6	e _{HH} 15 16
Harmonic	h 3.0×10^{-1} 2.5×10^{-1} 1.3×10^{-1}	$\begin{array}{c} e_{HH}^{\prime 2} \\ 2.3 \\ 1.7 \\ 7.3 \times 10^{-1} \end{array}$	p 1.6 1.2	e _{HH} 15 16 12

Piecewise Quadratic Benchmark w/ 3 Materials (2/2)

Before $h = 6.7 \times 10^{-2}$ we have cells / faces with 3 materials, and after this mesh level we have only 2 material MMCs

Summary

Results:

- ASC(n) is able to efficiently handle unfitted material interfaces
- 2^{nd} order ℓ^2 -convergence for ASC(1)
- Effective condition number seems to be uniformly bounded w.r.t. an interface position
- The underline matrix is SPD and sparse; its pattern does not depend on mini meshes

TODO List:

- Mixed formulation: convergence for fluxes?
- Time-dependent benchmarks
- Anisotropic diffusion: homogenization is not applicable; what about ASC(n)?