Gevorderd Kansrekenen

tuyaux.winak.be/index.php/Gevorderd_Kansrekenen

Gevorderde Kansrekening

Richting	<u>Wiskunde</u>
Jaar	<u>MWIS</u>

Januari 2016 - 2017

Theorie

Vraag 1 was verplicht op te lossen, daarna kreeg je de keuze tussen vraag 2 en 3.

- 1. Martingalen en convergentie:
 - Definieer het begrip submartingaal en geef een voorbeeld van een submartingaal die geen (gewone) martingaal is.
 - Formuleer en bewijs de convergentiestelling voor submartingalen. Het upcrossings-theorema werd gegeven en mocht je zonder bewijs gebruiken.
 - Beschouw een rij onafhankelijke variabelen (Xn)n≥0(Xn)n≥0 met E[Xn]=0E[Xn]=0. Veronderstel dat ∑n≥0E[X2n]∑n≥0E[Xn2] eindig is, gebruik dan de convergentiestelling om aan te tonen dat ∑n≥0Xn∑n≥0Xn bijna overal convergeert.
- 2. Centrale limietstelling van Linderberg:
 - o Formuleer de centrale limietstelling van Lindeberg.
 - Gebruik deze stelling om te bewijzen dat Snn√-→--dY~N(0,1)Snn→dY~N(0,1) als je weet dat (Xn)n≥0(Xn)n≥0 een rij onafhankelijke variabelen is met E[Xn]=0,E[X2n]=1,supnE[|Xn|94]<∞

E[Xn]=0,E[Xn2]=1,supnE[|Xn|94]<∞

- Bewijs het omgekeerde van de centrale limietstelling van Lindeberg (i.e. de stelling van Feller).
- 3. Karakteristieke functies:
 - Bewijs de continuïteitsstelling. De k-k-dimensionale dichtheid J σ J σ van Q σ =Q*N(0, σ 2I)Q σ =Q*N(0, σ 2I) werd hierbij gegeven.
 - Gebruik de continuïteitstelling om de uniciteitsstelling van de karakteristieke functie te bewijzen.

Oefeningen

1/2

- 1. Stel (Zn)n≥0(Zn)n≥0 een rij onafhankelijke variabelen met $E[Z0]=12, E[Z1]=1, P\{Zn=n\}=(n+1)-1, P\{Zn=1n\}=n(n+1)-1 \\ E[Z0]=12, E[Z1]=1, P\{Zn=n\}=(n+1)-1, P\{Zn=1n\}=n(n+1)-1$
 - Bewijs dat Xn≑∏nk=0ZkXn≑∏k=0nZk een martingaal is.
 - Bewijs dat er een integreerbare variabele X:Ω→RX:Ω→R bestaat zodat Xn→XXn→X b.o.
 - Bepaal de limietverdeling van deze variabele. (Hint: Bereken E[Xn---√]E[Xn])
- 2. Beschouw {Xn|n∈N}{Xn|n∈N} en {Yn|n∈n}{Yn|n∈n} twee rijen onafhankelijke en symmetrische variabelen. Er geldt dat |Xn|≤|Yn||Xn|≤|Yn| en de reeks ∑n≥0Yn∑n≥0Yn convergeert met positieve kans.
 - Bewijs dat ∑n≥0Xn∑n≥0Xn b.o. convergeert.
 - Geldt dit ook als je geen symmetrie veronderstelt? Bewijs of geef een tegenvoorbeeld.
- 3. Stel Zn,Z: $\Omega \rightarrow RZn$,Z: $\Omega \rightarrow R$ zodat Zn- $\rightarrow --dZZn \rightarrow dZ$
 - Bewijs dat voor elke rij cn→∞cn→∞ geldt dat P{|Zn|≥cn}→0als n→∞P{|Zn|≥cn}
 →0als n→∞ (Hint: Bewijs dat ∀ε>0,∃Kε>0:P{|Z|≥Kε}≤ε∀ε>0,∃Kε>0:P{|Z|≥Kε}≤ε.)
 - Stel an>0an>0 en bn>0bn>0 rijen zodat anbn→1anbn→1 en (Xn)n(Xn)n en
 YY variabelen. Gebruik dan het vorige resultaat en het lemma van Slutsky om aan te tonen dat

$$Xnan \rightarrow --dY \Leftrightarrow Xnbn \rightarrow --dY$$

 $Xnan \rightarrow dY \Leftrightarrow Xnbn \rightarrow dY$

- 4. Stel X:Ω→RX:Ω→R een stochastische variabele en -∞<a<b<+∞-∞<a<b<+∞
 - Bewijs dat

12
$$\pi$$
∫c-c1it(e-ita-e-itb) ϕ X(t)dt→P{a\pi∫-cc1it(e-ita-e-itb) ϕ X(t)dt→P{a

- Gebruik dit resultaat om de uniciteitsstelling voor 1-dimensionale karakteristieke functies te bewijzen.
- 5. Stel {Xn,k|1≤k≤n}{Xn,k|1≤k≤n} een array (*row-wise independent*) zodat Xn,k~Bernoulli(3n+3)Xn,k~Bernoulli(3n+3). Toon met karakteristieke functie aan dat

$$\sum k=1nXn,k-\rightarrow --dY \sim Poisson(3)$$

 $\sum k=1nXn,k\rightarrow dY \sim Poisson(3)$

Categorieën:

- Wiskunde
- MWIS