Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Solutions to Exercise Sheet no.6

Analysis for CS

(G 15)

- 1) Bare in mind that $V \in \vartheta(\alpha)$ (where $\alpha \in \mathbb{R}$) $\iff \exists r > 0$ such that $(\alpha r, \alpha + r) \subseteq V$.
- a) $[-1,1) \in \vartheta(0)$ (take for example r=1).
- b) $\mathbb{Q} \notin \vartheta(0)$. Assume by contradiction that $\mathbb{Q} \in \vartheta(0)$. Thus, $\exists r > 0$ such that $(-r, r) \subseteq \mathbb{Q}$. From the density property of $\mathbb{R}\setminus\mathbb{Q}$, we know that there exists $p\in\mathbb{R}\setminus\mathbb{Q}$ such that -r ,which contradicts $(-r,r) \subseteq \mathbb{Q}$. Therefore, $\mathbb{Q} \notin \vartheta(0)$.
- c) We have that $\bigcap_{n\in\mathbb{N}^*}\left[-\frac{1}{n},\frac{1}{n}\right]=\{0\}$. For this observe that, on the one hand, $0\in\bigcap_{n\in\mathbb{N}^*}\left[-\frac{1}{n},\frac{1}{n}\right]$, and, on the other hand, if $x\in\bigcap_{n\in\mathbb{N}^*}\left[-\frac{1}{n},\frac{1}{n}\right]$, then $-\frac{1}{n}\leq x\leq\frac{1}{n}$, \forall $n\in\mathbb{N}^*$, thus x=0 (by the

Sandwich Theorem). Thus $\bigcap_{n\in\mathbb{N}^*} \left[-\frac{1}{n}, \frac{1}{n}\right] \notin \vartheta(0)$, since $\{0\}$ doesn't contain an open interval centered at 0.

2) a)
$$A = [0, 1] \Rightarrow M = (0, 1)$$
.

b)
$$A = (-\infty, -1) \Rightarrow M = A$$
.

c)
$$A = (0,1] \cup [2,3] \Rightarrow M = (0,1) \cup (2,3)$$
.

d)
$$A = \mathbb{R} \Rightarrow M = A$$
.

e)
$$A = \mathbb{N} \Rightarrow M = \emptyset$$
.

- 3) Bare in mind that $A' = \{x \in \overline{\mathbb{R}} \mid \forall V \in \vartheta(x), V \cap (A \setminus \{x\}) \neq \emptyset\}.$
- a) $A = \mathbb{Q} \Rightarrow A' = \overline{\mathbb{R}}$.

b)
$$A = (-\infty, 1) \cup (2, +\infty) \Rightarrow A' = [-\infty, 1] \cup [2, +\infty].$$

c)
$$A = \mathbb{Z} \Rightarrow A' = \{-\infty, +\infty\}.$$

Let us take a closer look to a), where $A = \mathbb{Q}$. Let $\alpha \in \mathbb{R}$ and let $V \in \vartheta(\alpha)$ be an arbitrary neighborhood of α . Then, there exists r>0 such that $(\alpha-r,\alpha+r)\subset V$. It is easy to remark that $(\alpha - r, \alpha + r) \cap (\mathbb{Q} \setminus \{\alpha\}) \neq \emptyset$ (by the density property of \mathbb{Q}) and hence $V \cap (\mathbb{Q} \setminus \{\alpha\}) \neq \emptyset$. Therefore $\alpha \in A'$. Hence $\mathbb{R} \subseteq A'$.

For $\alpha = -\infty$ let $V \in \vartheta(\alpha)$ be an arbitrary neighborhood of $-\infty$. Then, there exists $t \in \mathbb{R}$ such that $[-\infty,t)\subseteq V$. It is easy to remark that $[-\infty,t)\cap(\mathbb{Q}\setminus\{-\infty\})\neq\emptyset$ and hence $V \cap (\mathbb{Q} \setminus \{-\infty\}) \neq \emptyset$. Therefore $-\infty \in A'$. For $\alpha = \infty$ the proof is similar to the one for $-\infty$. Thus we come to the conclusion that $\mathbb{Q}' = \overline{\mathbb{R}}$.

4) We now finish the proof of **L1** in the 6th lecture.

Case 2: $x = -\infty$, $y \in \mathbb{R}$. Since $y \in \mathbb{R}$, y - 1 < y. Take $U := [-\infty, y - 1) \in \vartheta(-\infty)$ and $V := (y - 1, y + 1) \in \vartheta(y)$. Then $U \cap V = \emptyset$.

Case 3: $x \in \mathbb{R}$, $y = \infty$. Since $x \in \mathbb{R}$, x < x + 1. Take $U := (x - 1, x + 1) \in \vartheta(x)$ and $V := (x + 1, \infty) \in \vartheta(\infty)$. Then $U \cap V = \emptyset$.

Case 4: $x = -\infty$, $y = \infty$. Take $U := [-\infty, -1) \in \vartheta(-\infty)$ and $V := (1, \infty] \in \vartheta(\infty)$. Then $U \cap V = \emptyset$.

(G 16)

(1) The one-sided limits of f at 1 are

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} e^{\frac{1}{x^2 - 1}} = 0 \text{ and } \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} e^{\frac{1}{x^2 - 1}} = \infty.$$

(2) The one-sided limits of f at 1 are

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} e^{\frac{x^2 - 2}{x - 1}} = \infty \text{ and } \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} e^{\frac{x^2 - 2}{x - 1}} = 0.$$

(3) The one-sided limits of f at 1 are

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} e^{1 + \frac{2}{|x - 1|}} = \infty \text{ and } \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} e^{1 + \frac{2}{|x - 1|}} = \infty$$

(4) The one-sided limits of f at 1 are

$$\lim_{\substack{x \to 1 \\ x \neq 1}} f(x) = \lim_{\substack{x \to 1 \\ x \neq 1}} \frac{|x| - 1}{x - 1} = \lim_{\substack{x \to 1 \\ x \neq 1}} \frac{x - 1}{x - 1} = 1 \text{ and } \lim_{\substack{x \to 1 \\ x \neq 1}} f(x) = \lim_{\substack{x \to 1 \\ x \neq 1}} \frac{|x| - 1}{x - 1} = \lim_{\substack{x \to 1 \\ x \neq 1}} \frac{x - 1}{x - 1} = 1.$$

(G 17)

We get

$$f(x) = \begin{cases} 1, & \text{if } x > 0\\ \frac{1}{2}, & \text{if } x = 0\\ 0, & \text{if } x < 0. \end{cases}$$

The function f is continuous at all points $x \in \mathbb{R} \setminus \{0\}$, and 0 is a jump discontinuity.

We have

$$g(x) = \begin{cases} 0, & \text{if } x > 1\\ x, & \text{if } -1 < x \le 1\\ 0, & \text{if } x < -1. \end{cases}$$

The function g is continuous at all points $x \in \mathbb{R} \setminus \{-1, 1\}$, the points -1 and 1 are both jump discontinuities.

Homework:

(H 17)

$$(1) \lim_{x \to 4} (-x^3 + 5x) = -44.$$

$$(2) \lim_{x \to -\infty} (-x^3 + 2x) = \infty.$$

(3) We have $\frac{x^2-9}{(x+3)^2} = \frac{x-3}{x+3}$ for all $x \in \mathbb{R} \setminus \{-3\}$. Since

$$\lim_{\substack{x \to -3 \\ x > -3}} \frac{x-3}{x+3} = -\infty \text{ and } \lim_{\substack{x \to -3 \\ x < -3}} \frac{x-3}{x+3} = \infty,$$

we conclude that the limit $\lim_{x\to -3} \frac{x^2-9}{(x+3)^2}$ doesn't exist.

(4)
$$L := \lim_{x \to \infty} \frac{3x^k + 5}{8x^3 - 2} = \lim_{x \to \infty} \frac{3x^k}{8x^3}$$
, hence

$$L = \begin{cases} 0, & \text{if } k < 3\\ \infty, & \text{if } k > 3\\ \frac{3}{8}, & \text{if } k = 3. \end{cases}$$

$$(5) \lim_{x \to 0} \frac{e^{2x} - 1}{x} = 2.$$

(6)
$$\lim_{x \to 0} \left(\frac{1 + 4x + x^2}{1 + x} \right)^{\frac{1}{x}} = \lim_{x \to 0} \left(1 + \frac{3x + x^2}{1 + x} \right)^{\frac{1}{x}} = e^3.$$

(7)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x+1)(x-1)}{(x-1)(x+2)} = \frac{2}{3}.$$

$$(8) \lim_{\substack{x \to 1 \\ x > 1}} \left(\frac{1}{1-x} - \frac{1}{x^3 - 1} \right) = \lim_{\substack{x \to 1 \\ x > 1}} \left(\frac{1}{1-x} + \frac{1}{1-x^3} \right) = -\infty.$$

(9)
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 1}) = \lim_{x \to \infty} \frac{1}{x + \sqrt{x^2 - 1}} = 0.$$

$$(10) \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to \infty} \frac{x}{x\sqrt{1 + \frac{1}{x^2}}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = 1.$$

$$(11) \lim_{x \to -\infty} \frac{x}{\sqrt{x^2 + 1}} = \lim_{x \to -\infty} \frac{x}{-x\sqrt{1 + \frac{1}{x^2}}} = -\lim_{x \to -\infty} \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = -1.$$

(12)
$$\lim_{x \to 1} \frac{x^3 + x^2 - x - 1}{x^2 - 1} = \lim_{x \to 1} \frac{x(x^2 - 1) + x^2 - 1}{x^2 - 1} = \lim_{x \to 1} (x + 1) = 2.$$

$$(13) \lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2} = \lim_{x \to 0} \frac{(1 + \sqrt{1 - x^2})(1 - \sqrt{1 - x^2})}{(1 + \sqrt{1 - x^2})x^2} = \lim_{x \to 0} \frac{x^2}{(1 + \sqrt{1 - x^2})x^2} = \frac{1}{2}.$$

(14) Since $\left|\frac{x^2}{|x|}\right| = |x|$ for all $x \in \mathbb{R}^*$, we get that $\lim_{x \to 0} \frac{x^2}{|x|} = 0$. The same result follows from the equalities

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{x^2}{|x|} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{x^2}{x} = \lim_{\substack{x \to 0 \\ x > 0}} x = 0 \text{ and } \lim_{\substack{x \to 0 \\ x < 0}} \frac{x^2}{|x|} = \lim_{\substack{x \to 0 \\ x < 0}} \frac{x^2}{-x} = \lim_{\substack{x \to 0 \\ x < 0}} -x = 0.$$

$$(15) \lim_{x \to \infty} \sqrt{x} (\sqrt{x+1} - \sqrt{x}) = \lim_{x \to \infty} \frac{\sqrt{x} (\sqrt{x+1} - \sqrt{x}) (\sqrt{x+1} + \sqrt{x})}{(\sqrt{x+1} + \sqrt{x})} = \lim_{x \to \infty} \frac{\sqrt{x}}{(\sqrt{x+1} + \sqrt{x})} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x} + 1}} = \frac{1}{2}.$$

(16) Since

$$\left| \frac{(-1)^{[x]}}{x} \right| = \frac{1}{x}$$
, for all $x > 0$,

we get
$$\lim_{x \to \infty} \frac{(-1)^{[x]}}{x} = 0.$$

$$(17) \lim_{x \to -\infty} e^{\frac{|x|+1}{x-1}} = \lim_{x \to -\infty} e^{\frac{-x+1}{x-1}} = \frac{1}{e}.$$

(18) We get

$$\lim_{x \to -\infty} \left(\frac{x^2 + x + 1}{x^2 - x + 1} \right)^{\sqrt{-x}} = \lim_{x \to -\infty} \left(1 + \frac{2x}{x^2 - x + 1} \right)^{\sqrt{-x}} = \lim_{x \to -\infty} \left(\left(1 + \frac{2x}{x^2 - x + 1} \right)^{\frac{x^2 - x + 1}{2x}} \right)^{\frac{2x\sqrt{-x}}{x^2 - x + 1}} = \lim_{x \to -\infty} \left(\left(1 + \frac{2x}{x^2 - x + 1} \right)^{\frac{x^2 - x + 1}{2x}} \right)^{\frac{2x\sqrt{-x}}{x^2 - x + 1}}$$

(19) We get

$$\lim_{x \to 0} \frac{\sqrt[3]{1+x} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt[3]{1+x} - 1)(\sqrt[3]{(1+x)^2} + \sqrt[3]{1+x} + 1)}{x(\sqrt[3]{(1+x)^2} + \sqrt[3]{1+x} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt[3]{(1+x)^2} + \sqrt[3]{1+x} + 1} = \frac{1}{3}.$$