

本节总览

小题考点: 几种码的特性对比

最大的数怎么表示、最小的数怎么表示

真值0的表示

2

各种码的基本特性总结

n+1 bit	合法表示范围	最大的数	最小的数	真值0的表示
带符号整数:原码	$-(2^n-1) \leq x \leq 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,111111 = -(2 ⁿ -1)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
带符号整数:反码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -(2 ⁿ -1)	$[+0]_{\overline{\boxtimes}} = 0,000000$ $[-0]_{\overline{\boxtimes}} = 1,111111$
带符号整数: <mark>补码</mark>	$-2^n \le x \le 2^n - 1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -2 ⁿ	[0] _补 = 0 ,000000 真值0只有一种补码
无符号整数	$0 \le x \le 2^{n+1}-1$	$ 1111111 \\ = 2^{n+1}-1 $	0000000 = 0	0000000

原码和反码的合法表示范围完全相同,都有两种方法表示真值0补码的合法表示范围比原码多一个负数,只有一种方法表示真值0

常见考点:两个数A和B进行某种运算后,是否发生溢出?——手算做题可以带入十进制验证,是否超出合法范围 **王道考研/CSKAOYAN.COM**

2

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

- 微博:@王道计算机考研教育
- B站: @王道计算机教育
- 小红书: @王道计算机考研
- 知 知乎: @王道计算机考研
- 抖音: @王道计算机考研
- 淘宝: @王道论坛书店

4