MINES PSI 2016

Notations

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Étant donnés deux entiers naturels n et p non nuls, on note $\mathcal{M}_{n,p}(\mathbb{K})$ l'espace vectoriel des matrices à n lignes et p colonnes et à coefficients dans \mathbb{K} et $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$. Pour $i, j \in [1; n]$, on note $E_{i,j}$ la matrice élémentaire de $\mathcal{M}_n(\mathbb{K})$ ayant exactement un coefficient non nul, situé en position (i,j) et de valeur 1. La transposée d'une matrice M sera notée tM .

Une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est dite **triangulaire supérieure stricte** lorsqu'elle est triangulaire supérieure à coefficients diagonaux tous nuls.

On note $S_n(\mathbb{K})$, $A_n(\mathbb{K})$ et $T_n^{++}(\mathbb{K})$ les sous-ensembles de $\mathcal{M}_n(\mathbb{K})$ constitués respectivement des matrices symétriques, antisymétriques et triangulaires supérieures strictes.

On rappelle la notation du symbole de Kronecker : pour x et y deux entiers,

$$\delta_{x,y} = \begin{cases} 1 & \text{si } x = y \\ 0 & \text{sinon.} \end{cases}$$

Définition 1 Etant donné un entier naturel non nul n, un sous-espace vectoriel V de $\mathcal{M}_n(\mathbb{K})$, et un élément j de [1;n], on note $C_j(V)$ l'ensemble des matrices de V dont toutes les colonnes sont nulles à l'exception éventuelle de la j-ème.

Pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$ avec $n \geq 2$, on notera $K(M) \in \mathcal{M}_{n-1}(\mathbb{K})$, $R(M) \in \mathcal{M}_{n-1,1}(\mathbb{K})$, $L(M) \in \mathcal{M}_{1,n-1}(\mathbb{K})$ et $a(M) \in \mathbb{K}$ la décomposition de M en blocs suivante :

$$M = \begin{bmatrix} K(M) & R(M) \\ \hline L(M) & a(M) \end{bmatrix}$$
 (1)

On a en particulier défini des fonctions $K: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_{n-1}(\mathbb{K})$ et $L: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_{1,n-1}(\mathbb{K})$, évidemment linéaires.

Objectifs

Définition 2 Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est quasi-nilpotente lorsqu'elle ne possède aucune valeur propre non nulle dans \mathbb{K} . Une partie V de $\mathcal{M}_n(\mathbb{K})$ est dite quasi-nilpotente lorsque tous ses éléments sont quasi-nilpotents.

On se propose d'étudier les sous-espaces vectoriels quasi-nilpotents de $\mathcal{M}_n(\mathbb{K})$. En particulier, le résultat principal que nous souhaitons établir s'énoncé comme suit.

Théorème (Dimension des espaces quasi-nilpotents Pour tout sous-espace vectoriel quasinilpotent N de $\mathcal{M}_n(\mathbb{K})$, on a

$$\dim(V) \leqslant \frac{n(n-1)}{2} \tag{QN}$$

La clé pour démontrer ce résultat réside dans le lemme suivant, démontré dans la partie C.

Lemme (Lemme des colonnes) Pour tout sous-espace vectoriel V de $\mathcal{M}_n(\mathbb{K})$, quasi-nilpotent, il existe un élément j de [1;n] tel que $C_j(V) = \{0\}$.

A. Exemples

Dans cette partie, n désigne un entier naturel supérieur ou égal à 2.

1. Montrer que la matrice $D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbb{R})$. Est-elle quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbb{C})$?

- **2.** Montrer que la matrice $B = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$ est quasi-nilpotente vue comme matrice de $\mathcal{M}_2(\mathbb{C})$.
- **3.** Montrer que $S_n(\mathbb{K})$, $A_n(\mathbb{K})$ et $T_n^{++}(\mathbb{K})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{K})$. Montrer que la dimension de $S_n(\mathbb{K})$ est n(n+1)/2.
- **4.** Montrer que $T_n^{++}(\mathbb{K})$ est quasi-nilpotent dans $\mathcal{M}_n(\mathbb{K})$. Vérifier que

$$\dim(T_n^{++}(\mathbb{K})) = \frac{n(n-1)}{2} \cdot$$

- **5.** Soit $A \in A_n(\mathbb{R})$. Montrer que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^tXAX = 0$. En déduire que $A_n(\mathbb{R})$ est quasi-nilpotent dans $\mathcal{M}_n(\mathbb{R})$.
- **6.** Montrer qu'il n'existe pas de matrice inversible $P \in GL_n(\mathbb{R})$ telle que

$$A_n(\mathbb{R}) = \{ PMP^{-1} / M \in T_n^{++}(\mathbb{R}) \}.$$

Indication : on pourra commencer par étudier le cas n = 2, en utilisant par exemple la matrice D introduite à la question 1.

B. Cas réel

Dans cette partie, n désigne un entier naturel non nul.

- 7. Déterminer l'ensemble des matrices de $S_n(\mathbb{R})$ qui sont quasi-nilpotentes dans $\mathcal{M}_n(\mathbb{R})$. Le résultat obtenu tient-il si on remplace \mathbb{R} par \mathbb{C} ?
- 8. Soit V un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, quasi-nilpotent dans $\mathcal{M}_n(\mathbb{R})$. Déduire de la question précédente que

$$\dim(V) \leqslant \frac{n(n-1)}{2} \cdot$$

C. Lemme des colonnes

On se propose ici de démontrer le lemme des colonnes par récurrence sur l'entier n.

9. Justifier que le lemme des colonnes est vrai dans le cas n=1.

Dans la suite, on fixe un entier naturel $n \ge 2$ et on suppose le lemme des colonnes vrai pour l'entier n-1. On se donne un sous-espace vectoriel quasi-nilpotent V de $\mathcal{M}_n(\mathbb{K})$. On raisonne par l'absurde en supposant que $C_j(V) \ne \{0\}$ pour tout $j \in [1;n]$. On introduit le sous-ensemble V' de V constitué de ses matrices de dernière colonne nulle. Toute matrice M de V' s'écrit donc par blocs comme suit

$$M = \begin{bmatrix} & & & 0 \\ & K(M) & \vdots \\ & & 0 \\ \hline & L(M) & 0 \end{bmatrix}$$

- **10.** Montrer que l'ensemble $K(V') = \{K(M) \mid M \in V'\}$ est un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_{n-1}(\mathbb{K})$.
- **11.** En déduire qu'il existe un entier $j \in [1; n]$ tel que $E_{n,j} \in V$.

Soit σ une bijection de [1; n] dans lui même. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n . On considère l'application linéaire u_{σ} de \mathbb{K}^n dans \mathbb{K}^n définie sur la base canonique par

$$\forall j \in [1; n], \ u_{\sigma}(e_j) = e_{\sigma(j)}$$

On considère la matrice P_{σ} de $\mathcal{M}_n(\mathbb{K})$:

$$P_{\sigma} = (\delta_{i,\sigma(j)})_{1 \leqslant i,j \leqslant n}.$$

12. Vérifier que u_{σ} est inversible et préciser son inverse.

- 13. Vérifier que P_{σ} est la matrice de u_{σ} dans la base canonique de \mathbb{K}^n . Montrer que P_{σ} est inversible et préciser les coefficients de son inverse.
- **14.** Pour $M \in \mathcal{M}_n(\mathbb{K})$, préciser les coefficients de $P_{\sigma}^{-1}MP_{\sigma}$ en fonction de ceux de M et de σ . On pourra utiliser un changement de base.
- 15. Montrer que l'ensemble

$$V^{\sigma} = \{ P_{\sigma}^{-1} M P_{\sigma} \mid M \in V \}$$

est un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_n(\mathbb{K})$ et que $C_j(V^{\sigma}) \neq \{0\}$ pour tout $j \in [1; n]$.

16. En déduire que pour tout $j \in [1; n]$ on peut choisir un $f(j) \in [1; n] \setminus \{j\}$ tel que $E_{j, f(i)} \in V$. On obtient ainsi une fonction

$$f : [1; n] \to [1; n].$$

17. En considérant les images successives de 1, montrer qu'il existe une suite finie (j_1, \ldots, j_p) d'éléments deux à deux distincts de [1; n] telle que

$$\forall k \in [1; p-1], \ f(j_k) = j_{k+1} \ \text{et} \ f(j_p) = j_1$$

- 18. Ecrire un algorithme qui permet d'identifier une telle suite connaissant les valeurs de f.
- 19. Démontrer que 1 est valeur propre de la matrice $N = \sum_{k=1}^{p} E_{j_k, f(j_k)}$ et conclure.

D. Cas général

On va ici prouver l'inégalité (QN) par récurrence sur n. Le cas n=1 est trivialement vrai. On fixe donc un entier naturel $n \ge 2$ et on suppose l'inégalité (QN) établie au rang n-1. Soit V un sous-espace vectoriel quasi-nilpotent de $\mathcal{M}_n(\mathbb{K})$.

On rappelle qu'on peut écrire toute matrice $M \in \mathcal{M}_n(\mathbb{K})$, et en particulier de V, sous la forme (1) et qu'en particulier, les applications $K: V \to \mathcal{M}_{n-1}(\mathbb{K})$ et $L: V \to \mathcal{M}_{1,n-1}(\mathbb{K})$ sont linéaires. On introduit le sous-espace vectoriel :

$$W = \{ M \in V \mid L(M) = 0 \}.$$

Jusqu'à la question 21 incluse, on suppose que $C_n(V) = \{0\}$.

- **20.** Montrer que $\dim(V) \leq \dim(K(W)) + (n-1)$.
- **21.** En déduire que $\dim(V) \leqslant \frac{n(n-1)}{2}$.

On ne suppose plus désormais que $C_n(V) = \{0\}$.

22. Démontrer que $\dim(V) \leqslant \frac{n(n-1)}{2}$.