Grau en Enginyeria Informàtica Facultat d'Informàtica de Barcelona

${\bf Matemàtiques}\ 1$

Part I: Teoria de Grafs

Exercicis i problemes

Setembre 2016

Departament de Matemàtica Aplicada 2 Universitat Politècnica de Catalunya

Els problemes d'aquesta col·lecció han estat recopilats per Anna de Mier i Montserrat Maureso. En part provenen de reculls de problemes elaborats pels membres del Departament de Matemàtica Aplicada 2 per a les diverses assignatures que s'han impartit al llarg dels anys. D'altres provenen de la bibliografia de l'assignatura o d'altres llibres, i n'hi ha que són de nova collita.
Aprofitem per fer constar i agrair la tasca del becari docent Gabriel Bernardino en la redacció de les solucions.
Anna de Mier Montserrat Maureso Setembre 2011
Versió revisada, setembre 2016

Índex

1	Concep	tes básics de grafs	1				
	1.1	Tipus de grafs	1				
	1.2	Subgrafs. Operacions amb grafs	2				
	1.3	Exercicis	4				
2	Recorre	guts, connexió i distància	7				
3	Grafs eulerians i hamiltonians						
4	Arbres		14				
Fχ	Exercicis de renàs i consolidació						

1 Conceptes bàsics de grafs

1.1 Tipus de grafs

Els següents són grafs destacats que emprarem tot sovint. Siguin n un enter positiu i $V = \{x_1, x_2, \dots, x_n\}$.

El graf nul d'ordre n, que denotem per N_n , és el graf d'ordre n i mida 0. Al graf N_1 se l'anomena graf trivial.

El graf complet d'ordre n, que denotem per K_n , és el graf d'ordre n que té totes les arestes possibles. Observem que K_1 és també el graf trivial.

El graf trajecte d'ordre n, que denotem per $T_n = (V, A)$, és el graf que té per conjunt d'arestes $A = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_n\}$.

El graf cicle d'ordre $n \geq 3$, que denotem per $C_n = (V, A)$, és el graf amb conjunt d'arestes $A = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_n, x_nx_1\}.$

El graf roda d'ordre $n \geq 4$, que denotem per $W_n = (V, A)$, és el graf amb conjunt d'arestes $A = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_1\} \cup \{x_nx_1, x_nx_2, \dots, x_nx_{n-1}\}.$

Siguin r i s enters positius.

Un graf és r-regular si tots els vèrtexs tenen grau r.

Un graf G = (V, A) és bipartit si hi ha dos subconjunts no buits V_1 i V_2 tals que $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ i de forma que, per a tota aresta $uv \in A$, es té que $u \in V_1$ i $v \in V_2$, o viceversa. És a dir, no hi ha arestes uv amb $u, v \in V_1$ o $u, v \in V_2$. Els conjunts V_1 i V_2 s'anomenen les parts estables de G. En cas que cada vèrtex de V_1 sigui adjacent a tots els vèrtexs de V_2 , direm que el graf és bipartit complet i el denotarem per $K_{r,s} = (V, A)$, on $|V_1| = r$ i $|V_2| = s$. Al graf $K_{1,s}$ se l'anomena graf estrella.

Nota: aquestes definicions les interpretem com a definicions de *classes d'isomorfisme* de grafs. Per exemple, direm que un graf és el graf trajecte si és isomorf al graf trajecte que hem definit aquí; és a dir, els noms dels vèrtexs que hem fet servir a la definició són irrellevants.

- **1.1** Per a cadascun dels grafs N_n , K_n , T_n , C_n i W_n , doneu-ne:
 - 1) una representació gràfica per a n = 4 i n = 6;
 - 2) la matriu d'adjacència per a n = 5;
 - 3) l'ordre, la mida, el grau màxim i el grau mínim en funció de n.
- 1.2 Per a cadascun dels enunciats següents, doneu un graf amb la propietat que es demana, explicitant-ne la llista d'adjacències i una representació gràfica.
 - 1) Un graf 3-regular d'ordre com a mínim 5.
 - 2) Un graf bipartit d'ordre 6.
 - 3) Un graf bipartit complet d'ordre 7.
 - 4) Un graf estrella d'ordre 7.
- **1.3** Esbrineu si els grafs complet, trajecte i cicle d'ordre n, amb $n \ge 1$ o $n \ge 3$ segons el cas, són bipartits i/o regulars.
- 1.4 Doneu la mida:
 - 1) d'un graf r-regular d'ordre n;
 - 2) del graf bipartit complet $K_{r,s}$.

1.2 Subgrafs. Operacions amb grafs

Subgrafs

Considerem un graf G = (V, A).

Un graf G' = (V', A') és un subgraf de G si $V' \subseteq V$ i $A' \subseteq A$. Si V' = V, se l'anomena subgraf generador de G.

Sigui $S \subseteq V$, $S \neq \emptyset$. S'anomena subgraf generat o induït pels vèrtexs de S al graf $\langle S \rangle = (S, A')$ tal que $A' = \{uv \in A : u, v \in S\}$.

Sigui $B \subseteq A$, $B \neq \emptyset$. S'anomena subgraf generat o induït per les arestes de B, al graf $\langle B \rangle = (V', B)$ tal que V' és el conjunt de vèrtexs incidents a alguna aresta de B.

1.5 Siguin $V = \{a, b, c, d, e, f\}$, $A = \{ab, af, ad, be, de, ef\}$ i G = (V, A). Determineu tots els subgrafs de G d'ordre 4 i mida 4.

- **1.6** Sigui $V = \{a, b, c, d\}$ i $A = \{ab, ac, ad, dc\}$. Determineu, llevat d'isomorfismes, tots els subgrafs del graf G = (V, A).
- **1.7** Els cinc apartats següents fan referència al graf G definit com segueix. El conjunt de vèrtexs és $V = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$, i dos vèrtexs u i v són adjacents si $u v \pmod 9$ és 1, 4, 5, o 8. Determineu l'ordre i la mida dels subgrafs de G següents:
 - 1) El subgraf induït pels vèrtexs parells.
 - 2) El subgraf induït pels vèrtexs senars.
 - 3) El subgraf induït pel conjunt $\{0, 1, 2, 3, 4\}$.
 - 4) El subgraf generat per les arestes que uneixen vèrtexs amb etiquetes consecutives.
 - 5) El subgraf generat per les arestes que uneixen un vèrtex parell i un de senar.

GRAFS DERIVATS D'UN GRAF

Considerem un graf G = (V, A).

El graf complementari de G, que denotem per G^c , és el graf amb conjunt de vèrtexs V i conjunt d'arestes $A^c = \{uv | uv \notin A\}$. Un graf isomorf al seu complementari és diu autocomplementari.

Sigui $S \subset V$. El graf que s'obté per eliminació o supressió dels vèrtexs de S, que denotem per G - S, és el graf que té per conjunt de vèrtexs $V \setminus S$ i per arestes les de G que no són incidents a cap vèrtexs de S. En cas que $S = \{v\}$, el denotem per G - v.

Sigui $S \subset A$. El graf que s'obté per eliminació o supressió de les arestes de S, que denotem per G - S, és el graf que s'obté de G suprimint totes les arestes de S. És a dir, $G - S = (V, A \setminus S)$. En cas que $S = \{a\}$, el denotem per G - a.

Siguin u, v vèrtexs de G no adjacents. El graf que s'obté per l'addició de l'aresta uv és el graf $G + uv = (V, A \cup \{uv\})$.

- **1.8** Considereu un graf G = (V, A) amb $V = \{1, 2, 3, 4, 5\}$ i $A = \{12, 13, 23, 24, 34, 45\}$. Doneu el conjunt d'arestes, les matrius d'incidència i adjacència, i una representació gràfica dels grafs G^c , G 4, G 45 i G + 25.
- **1.9** Considereu un graf G = (V, A) d'ordre n i mida m. Siguin v un vèrtex i a una aresta de G. Doneu l'ordre i la mida de G^c , G v i G a.

OPERACIONS ENTRE GRAFS

Considerem dos grafs $G_1 = (V_1, A_1)$ i $G_2 = (V_2, A_2)$.

El graf unió de G_1 i G_2 , que denotem per $G_1 \cup G_2$, és el graf que té per conjunt de vèrtexs $V_1 \cup V_2$ i per conjunt d'arestes $A_1 \cup A_2$.

El graf producte de G_1 i G_2 , que denotem per $G_1 \times G_2$, és el graf que té per conjunt de vèrtexs $V_1 \times V_2$ i les adjacències vénen donades per

$$(u_1, u_2) \sim (v_1, v_2) \Leftrightarrow (u_1 v_1 \in A_1 \text{ i } u_2 = v_2) \text{ o } (u_1 = v_1 \text{ i } u_2 v_2 \in A_2).$$

- **1.10** Doneu el conjunt d'arestes i una representació gràfica dels grafs $K_3 \cup T_3$ i $T_3 \times K_3$, suposant que els conjunts de vèrtexs de K_3 i de T_3 són disjunts.
- **1.11** Considereu els grafs $G_1=(V_1,A_1)$ i $G_2=(V_2,A_2)$. Doneu l'ordre, el grau dels vèrtexs i la mida de $G_1\times G_2$ en funció dels de G_1 i G_2 .
- 1.12 Proveu o refuteu les afirmacions següents:
 - 1) Si G_1 i G_2 són grafs regulars, aleshores $G_1 \times G_2$ és regular.
 - 2) Si G_1 i G_2 són grafs bipartits, aleshores $G_1 \times G_2$ és bipartit.

1.3 Exercicis

- **1.13** Doneu tots els grafs que tenen $V = \{a, b, c\}$ com a conjunt de vèrtexs i representeu-los gràficament.
- 1.14 Calculeu el nombre de grafs que tenen conjunt de vèrtexs [7] i mida 16.
- **1.15** Sigui V un conjunt de cardinal n. Calculeu el nombre de grafs que tenen V com a conjunt de vèrtexs.
- **1.16** Demostreu que en tot graf d'ordre $n \geq 2$ hi ha almenys dos vèrtexs del mateix grau.
- 1.17 Per a cadascuna de les seqüències següents, esbrineu si existeixen grafs d'ordre 5 de forma que els graus dels vèrtexs siguin els valors donats. Si existeixen, doneu-ne un exemple.
 - 1) 3, 3, 2, 2, 2.
- 3) 4, 3, 3, 2, 2.
- 5) 3, 3, 3, 3, 2.

- 2) 4, 4, 3, 2, 1.
- 4) 3, 3, 3, 2, 2.
- 6) 5, 3, 2, 2, 2.
- 1.18 Demostreu que si un graf és regular de grau senar, aleshores té ordre parell.
- **1.19** Demostreu que si $G = (V_1 \cup V_2, A)$ és un graf bipartit, aleshores

$$|A| = \sum_{v \in V_1} g(v) = \sum_{v \in V_2} g(v).$$

1.20 Demostreu que si un graf és d'ordre senar i regular de grau $d \ge 1$, aleshores no és bipartit.

1.3. Exercicis 5

- **1.21** Demostreu que en un graf bipartit d'ordre n la mida és menor o igual que $n^2/4$.
- **1.22** Sigui G un graf d'ordre 9 tal que tots els vèrtexs tenen grau 5 o 6. Proveu que hi ha un mínim de 5 vèrtexs de grau 6 o un mínim de 6 vèrtexs de grau 5.
- 1.23 La Maria i la seva parella organitzen una festa on es reuneixen un total de 5 parelles. Es produeixen un cert nombre de salutacions però, com és natural, ningú no saluda la pròpia parella. A la sortida la Maria pregunta a tothom quantes persones ha saludat i rep nou respostes diferents. Quantes persones ha saludat la Maria i quantes la seva parella?

Indicació: Descriviu un graf que modeli la situació. Esbrineu quantes salutacions fa cada membre d'una parella.

- 1.24 Determineu, llevat d'isomorfismes, tots els grafs d'ordre quatre i mida dos.
- 1.25 Classifiqueu per classes d'isomorfia els grafs de la figura 1.1.

- **1.26** Siguin G = (V, A) i H = (W, B) dos grafs. Demostreu que G i H són isomorfs, si i només si, G^c i H^c són isomorfs.
- 1.27 Determineu el nombre de grafs no isomorfs d'ordre 20 i mida 188.

- **1.28** Esbrineu si el complementari d'un graf regular és regular. En cas afirmatiu, demostreu-ho; en cas negatiu, doneu un contraexemple.
- **1.29** Un graf és *autocomplementari* si és isomorf al seu graf complementari. Demostreu que no hi ha grafs autocomplementaris d'ordre 3, però sí d'ordres 4 i 5.
- **1.30** Demostreu que un enter $n \geq 1$ és l'ordre d'un graf autocomplementari si, i només si, n és congruent amb 0 o amb 1 mòdul 4.
- **1.31** Demostreu que si G és un graf d'ordre $n \geq 6$, aleshores G o G^c conté un cicle de longitud 3.

2

Recorreguts, connexió i distància

 ${f 2.1}$ Trobeu en els grafs següents, si és possible, camins de longitud 9 i 11, i cicles de longitud ${f 5,6,8}$ i 9.

- **2.2** Determineu el nombre de camins de longitud ℓ entre dos vèrtexs diferents dels grafs K_6 i $K_{3,3}$, per a $\ell \in \{2,3,4,5,6\}$.
- **2.3** Demostreu que si G és un graf de grau mínim d, aleshores G conté un camí de longitud d.
- $\bf 2.4$ Un graf té ordre 13 i 3 components connexos. Demostreu que un dels components té un mínim de 5 vèrtexs.
- **2.5** Useu l'algorisme DFS per esbrinar si els grafs següents, representats mitjançant la seva llista d'adjacències, són connexos, i en cas contrari determineu-ne els components connexos. Considereu que el conjunt de vèrtexs està ordenat alfabèticament.

- **2.6** Demostreu que si un graf té exactament dos vèrtexs de grau senar, aleshores existeix un camí que va d'un a l'altre.
- **2.7** Sigui G un graf tal que el grau de cada vèrtex és ≥ 2 . Demostreu que G té algun cicle.
- 2.8 Demostreu que si tots els vèrtexs d'un graf tenen grau dos, aleshores tots els seus components connexos són cicles.
- **2.9** Sigui G un graf d'ordre n que té exactament dos components connexos i tots dos són grafs complets. Demostreu que la mida de G és, almenys, $(n^2 2n)/4$.
- **2.10** Sigui G un graf d'ordre n amb exactament k components connexos. Demostreu que la mida de G és més gran o igual que n-k.
- **2.11** Sigui G un graf d'ordre n amb exactament k+1 components connexos. En aquest exercici volem trobar una fita superior per la mida de G. Per a fer-ho definim el graf auxiliar H d'ordre n amb k+1 components connexos, $k \geq 1$: k són isomorfs a K_1 i un component és isomorf a K_{n-k} .
 - 1) Calculeu la mida de H.
 - 2) Demostreu que la mida de H és més gran o igual que la mida de G.
- **2.12** Sigui uv una aresta pont d'un graf connex d'ordre > 2. Demostreu que u o v és un vèrtex de tall.
- 2.13 Demostreu que un graf 3-regular té un vèrtex de tall si, i només si, té alguna aresta pont.
- **2.14** Trobeu el més petit n tal que existeix un graf 3-regular d'ordre n que té una aresta pont.
- **2.15** Sigui G = (V, A) un graf connex i $z \notin V$. Sigui G + z el graf que té $V \cup \{z\}$ com a conjunt de vèrtexs i $A \cup \{zv : v \in V\}$ com a conjunt d'arestes. Demostreu que G + z és 2-connex.
- **2.16** Siguin G = (V, A) un graf i v un vèrtex de G. Proveu que
 - 1) si G és no connex, aleshores G^c és connex;
 - 2) $(G-v)^c = G^c v$;

- 3) si v és un vèrtex de tall de G, aleshores v no és un vèrtex de tall de G^c .
- Esbrineu si algun dels grafs següents és 2-connex.

- Considereu els grafs de l'exercici 2.5. Doneu la distància dels vèrtexs a i b a tots els vèrtexs del component connex on es troben aplicant l'algorisme BFS.
- Trobeu el diàmetre dels grafs següents.
 - 1) K_n .

3) $K_{r.s.}$

5) W_n .

- 2) Grafs de l'exercici 2.1.
- 4) C_n .

- 6) T_n .
- Per a cadascuna de les relacions següents, doneu un graf G = (V, A) connex i un vèrtex $u \in V$ que les satisfacin.

1)
$$D(G) = D(G - u)$$
. 2) $D(G) < D(G - u)$. 3) $D(G) > D(G - u)$.

2)
$$D(G) < D(G-u)$$

3)
$$D(G) > D(G - u)$$

Nota: D(G) representa el diàmetre del graf G.

- **2.21** Sigui G = (V, A) un graf connex i $v \in V$. Considereu els conceptes següents:
 - ightharpoonup L'excentricitat del vèrtex v, e(v), és el màxim de les distàncies de v a qualsevol vèrtex del graf, és a dir, $e(v) = \max\{d(v, x) : x \in V\}.$
 - \blacktriangleright El radi de G, r(G), és el mínim de les excentricitats dels vèrtexs de G, és a dir, r(G) = $\min\{e(v):v\in V\}.$
 - ▶ Un vèrtex central de G és un vèrtex u tal que e(u) = r(G).

Responeu les questions seguents.

- 1) Trobeu l'excentricitat dels vèrtexs, el radi i els vèrtexs centrals de: a) els grafs de l'exercici 2.1; b) $G = ([8], \{12, 14, 15, 23, 34, 38, 46, 47, 56, 67, 78\}).$
- 2) Doneu un exemple d'un graf amb el radi i el diàmetre iguals.
- 3) Doneu un exemple d'un graf tal que el diàmetre sigui el doble del radi.

- 4) Proveu que, per a qualsevol graf G, $r(G) \leq D(G) \leq 2r(G)$, on D(G) és el diàmetre de G.
- **2.22** Sigui G un graf d'ordre $n \geq 2$ tal que cada vèrtex té grau $\geq (n-1)/2$. Demostreu que G té diàmetre ≤ 2 .
- **2.23** Demostreu que un graf autocomplementari d'ordre $n \ge 4$ té diàmetre 2 o 3. (*Indicació*: podeu començar demostrant que per tot graf G, si $D(G) \ge 3$ aleshores $D(G^c) \le 3$.)

Grafs eulerians i hamiltonians

3.1 Per a cadascun dels grafs següents, trobeu-ne un circuit eulerià, o demostreu-ne la no existència.

- 3.2 Demostreu que un graf connex amb tots els vèrtexs de grau parell no té arestes pont.
- **3.3** Esbrineu si és possible posar en successió totes les fitxes d'un dòmino de forma que coincideixen les puntuacions dels extrems en contacte i que els dos extrems lliures tinguin la mateixa puntuació. Si és possible, expliciteu una solució.
- **3.4** Trobeu els valors de r i s tals que el graf bipartit complet $K_{r,s}$ és eulerià.
- **3.5** El graf n-cub Q_n té per conjunt de vèrtexs $\{0,1\}^n$ i dos vèrtexs $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n)$ són adjacents si difereixen en exactament una coordenada.
 - 1) Representeu Q_i per $1 \le i \le 4$.
 - 2) Determineu l'ordre, la mida i la seqüència de graus de Q_n .
 - 3) Trobeu els valors de n tals que Q_n és eulerià.
- **3.6** Sigui G un graf que té exactament dos components connexos que són eulerians. Trobeu el mínim nombre d'arestes que cal afegir per obtenir un graf eulerià.

3.7 Esbrineu si els dibuixos següents es poden dibuixar sense aixecar el llapis del paper i sense repetir cap línia

3.8 Trobeu el mínim nombre de vegades que s'ha d'aixecar el llapis del paper per dibuixar cadascuna de les figures sense repetir cap línia.

- **3.9** Sigui G = (V, A) un graf connex. Demostreu que A admet una partició en exactament k senderons sense extrems comuns si, i només si, G conté exactament 2k vèrtexs de grau senar.
- **3.10** A cadascun del grafs de l'exercici 3.1 trobeu-hi un cicle hamiltonià, o demostreu-ne la no existència.
- **3.11** Sigui $n \geq 3$ enter. Calculeu el nombre cicles $x_1, x_2, \dots, x_n, x_1$ que són cicles hamiltonians de K_n .
- **3.12** Demostreu que si un graf bipartit és hamiltonià, aleshores les parts estables tenen el mateix cardinal.
- **3.13** Demostreu que un graf bipartit $K_{r,s}$ d'ordre ≥ 3 és hamiltonià si, i només si, r=s.
- **3.14** En Joan i en Pere són companys de facultat que han llogat un pis per compartir. El dia de la inauguració, entre els dos conviden 10 companys a sopar. En el grup de 12 persones, cadascuna en coneix almenys 6. Demostreu que es poden seure els 12 al voltant d'una taula rodona de forma que tothom conegui a les dues persones que té assegudes al costat.

A l'última hora arriba un company que també coneix almenys 6 de les persones que hi ha al sopar. Podeu ara assegurar que es poden seure seguint la condició anterior?

3.15 Sigui G un graf hamiltonià que no és un graf cicle. Demostreu que G té almenys dos vèrtexs de grau ≥ 3 .

- **3.16** Sigui G un graf d'ordre $n \geq 2$ tal que cada vèrtex té grau $\geq (n-1)/2$. Demostreu que G té un camí hamiltonià.
- **3.17** Sigui G un graf d-regular d'ordre $\geq 2d+2$, amb $d\geq 1$. Demostreu que el complementari de G és hamiltonià.
- ${f 3.18}$ Sigui G un graf que té exactament dos components connexos que són grafs hamiltonians. Trobeu el mínim nombre d'arestes que cal afegir per obtenir un graf hamiltonià.

4 Arbres

4.1 Per a cada enter $n \ge 1$, sigui a_n el nombre d'arbres no isomorfs d'ordre n. Demostreu els valors de la taula següent:

- **4.2** Proveu que tot arbre d'ordre $n \geq 2$ és un graf bipartit.
- **4.3** Proveu que per a $n \ge 4$ hi ha un únic arbre d'ordre n i grau màxim n-2, llevat d'isomorfismes.
- **4.4** Proveu que per a $n \ge 6$, hi ha exactament tres arbres d'ordre n i grau màxim n-3, llevat d'isomorfismes.
- **4.5** Sigui T_1 un arbre d'ordre n i mida 17 i T_2 un arbre d'ordre 2n. Calculeu n i l'ordre i la mida de T_2 .
- **4.6** Calculeu el nombre de camins de longitud ≥ 1 que hi ha en un arbre d'ordre $n \geq 2$.
- **4.7** Sigui T un arbre d'ordre 12 que té exactament 3 vèrtexs de grau 3 i exactament un vèrtex de grau 2.
 - 1) Trobeu la sequència de graus de T.
 - 2) Trobeu dos arbres no isomorfs amb aquesta seqüència de graus.
- **4.8** Trobeu un graf connex tal que tot vèrtex de grau ≥ 2 sigui de tall però no sigui arbre.
- **4.9** Sigui T un arbre d'ordre $n \geq 2$.
 - 1) Proveu que el nombre de fulles de T és

$$2 + \sum_{g(u) \ge 3} (g(u) - 2).$$

2) Sigui Δ el grau màxim de Ti sigui n_i el nombre de vèrtexs de grau i de T. Demostreu que

$$n_1 = 2 + \sum_{i=2}^{\Delta} (i-2)n_i.$$

4.10 Sigui G un graf connex, de grau màxim Δ i amb n_i vèrtexs de grau i, per a tot i. Demostreu que si es compleix la igualtat

$$n_1 = 2 + \sum_{i=2}^{\Delta} (i-2)n_i,$$

aleshores G és un arbre.

- **4.11** Sigui G un graf connex que només té vèrtexs de grau 1 i de grau 4. Sigui k el nombre de vèrtexs de grau 4. Demostreu que G és un arbre si, i nomes si, el nombre de fulles és 2k + 2.
- **4.12** Sigui T un arbre d'ordre $n \geq 2$ i de grau màxim Δ . Proveu que T té un mínim de Δ fulles.
- **4.13** Demostreu que les afirmacions següents són equivalents per a un arbre T d'ordre $n \geq 3$:
 - a) T és isomorf al graf estrella $K_{1,n-1}$.
 - b) T té exactament n-1 fulles.
 - c) T té grau màxim n-1.
 - d) T té diàmetre igual a 2.
- **4.14** Sigui G un graf d'ordre n i mida m. Demostreu que les propietats següents són equivalents:
 - a) El graf G és connex i té un únic cicle.
 - b) Existeix una aresta a de G tal que G a és un arbre.
 - c) El graf G és connex i n=m.
- **4.15** Volem demostrar que una seqüència d'enters positius $d_1 \geq d_2 \geq \cdots \geq d_n \geq 1$ és la seqüència de graus d'un arbre d'ordre $n \geq 2$ si, i només si, es compleix $d_1 + \cdots + d_n = 2(n-1)$. Una implicació és conseqüència directa del lema de les encaixades (comproveu-ho!). Per a demostar l'altra implicació, ho farem per inducció sobre n, seguint els passos següents:
 - 1) Escriviu la implicació que no és conseqüència del lema de les encaixades. Comproveu el cas n=2. Escriviu la hipòtesi d'inducció per a n-1.
 - 2) Sigui $n \ge 3$. Demostreu que si $d_1 + \cdots + d_n = 2(n-1)$ i $d_i \ge 1$ per tot i, aleshores $d_n = 1$ i $d_1 > 1$.

16 Capítol 4. Arbres

- 3) Apliqueu la hipòtesi d'inducció a d_1-1,d_2,\ldots,d_{n-1} i deduïu-ne el resultat desitjat.
- **4.16** Calculeu el nombre d'arbres generadors diferents del graf cicle C_n i del graf bipartit complet $K_{2,r}$.
- **4.17** A l'aplicar l'algorisme BFS a un graf G d'ordre $n \ge 4$ amb vèrtex inicial v s'obté un graf estrella $K_{1,n-1}$ del que v n'és una fulla. Doneu almenys dos grafs no isomorfs amb aquesta propietat
- **4.18** Considereu el graf complet K_n . Quants arbres no isomorfs es poden obtenir en aplicar l'algorisme DFS segons quin sigui el vèrtex inicial?
- **4.19** Demostreu que tot graf connex d'ordre ≥ 2 té almenys dos vèrtexs que no són vèrtexs de tall.
- 4.20 Trobeu les seqüències de Prüfer dels arbres següents:

```
T_1 = ([6], \{12, 13, 14, 15, 56\}).

T_2 = ([8], \{12, 13, 14, 18, 25, 26, 27\}).

T_3 = ([11], \{12, 13, 24, 25, 36, 37, 48, 49, 5 10, 5 11\}).
```

4.21 Trobeu els arbres que tenen les seqüències de Prüfer següents:

```
1) \ (4,4,3,1,1), \qquad \qquad 2) \ (6,5,6,5,1), \qquad \qquad 3) \ (1,8,1,5,2,5), \qquad \qquad 4) \ (4,5,7,2,1,1,6,6,7).
```

- **4.22** Determineu els arbres que tenen següències de Prüfer de longitud 1.
- **4.23** Determineu els arbres que tenen seqüències de Prüfer constants.

Exercicis de repàs i consolidació

A.1 Trobeu la matriu d'adjacència i la d'incidència del graf G = (V, A) on $V = \{a, b, c, d, e\}$ i $A = \{ab, ac, bc, bd, cd, ce, de\}$.

A.2 Doneu la llista d'adjacència i una representació gràfica del graf G=([5],A) que té matriu d'adjacència

$$\left(\begin{array}{ccccc} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}\right).$$

A.3 Demostreu que si un graf és d'ordre múltiple de 4 i mida senar, aleshores no és regular.

A.4 Si un graf té grau mínim 1, grau màxim k i ordre n>2k, aleshores G té almenys 3 vèrtexs amb el mateix grau.

A.5 Sigui G un graf d'ordre ≥ 7 tal que tots els vèrtexs tenen grau > 5. Demostreu que G té mida ≥ 21 .

A.6 Siguin $n \ge 3$ i $0 \le k \le n$ enters i considereu el graf complet K_n amb [n] com a conjunt de vèrtexs.

- 1) Calculeu la mida del subgraf induït per [k].
- 2) Calculeu quantes arestes hi ha que tinguin un extrem a [k] i l'altre a $[n] \setminus [k]$.
- 3) Calculeu la mida del subgraf induït per $[n] \setminus [k]$.
- 4) Emprant els resultats anteriors, demostreu que

$$\binom{n}{2} = \binom{k}{2} + k(n-k) + \binom{n-k}{2}.$$

A.7 Trobeu, llevat d'isomorfismes, tots els grafs 4-regulars d'ordre 7.

18 Exercicis de consolidació

A.8 Sigui G un graf autocomplementari d'ordre n, $n \equiv 1 \pmod{4}$. Demostreu que hi ha un nombre senar de vèrtexs de grau (n-1)/2 i, per tant, que G conté, com a mínim, un vèrtex de grau (n-1)/2.

- **A.9** Considerem el graf G = (V, A) on $V = \{1, 2, ..., 15\}$ i dos vèrtexs i, j són adjacents si, i només si, el seu màxim comú divisor és diferent de 1. Digueu quants components connexos té G i doneu un camí de longitud màxima.
- **A.10** Sigui G un graf d'ordre n i mida m que no té cap cicle de longitud 3.
 - 1) Demostreu que si u i v són vèrtexs de G adjacents, aleshores $g(u) + g(v) \le n$.
 - 2) Proveu que si n=2k, aleshores $m \leq k^2$. Indicació: Inducció sobre $k \geq 1$.

que podeu construir un camí més llarg que els de partida.

pont.

- A.11 Demostreu que en un graf connex dos camins de longitud màxima tenen com a mínim un vèrtex en comú, però no necessàriament una aresta comuna.
 Indicació: Suposeu que dos camins de longitud màxima no tenen cap vèrtex en comú i veieu
- **A.12** Sigui G un graf bipartit, connex, d-regular i d'ordre $n \geq 3$. Proveu que G no té arestes
- **A.13** Sigui G un graf connex no bipartit. Demostreu que entre cada dos vèrtexs qualssevol de G existeixen un recorregut de longitud senar i un de longitud parella. *Indicació:* pot ser útil el teorema de caracterització dels grafs bipartits.
- A.14 Demostreu que si un graf és regular d'ordre parell i mida senar, aleshores no és eulerià.
- **A.15** Sigui G un graf d'ordre senar tal que G i G^c són connexos. Demostreu que G és eulerià si, i només si, G^c és eulerià.
- **A.16** En cadascun dels casos següents, esbrineu si és possible dibuixar una línia contínua tancada que talli exactament una vegada cada segment interior del rectangle.

- **A.17** Sigui G un graf bipartit que té un camí hamiltonià i siguin V_1 i V_2 les parts estables. Demostreu que $||V_1| |V_2|| \le 1$.
- **A.18** Demostreu que si $n \ge 1$ i m = n + 1, aleshores el graf bipartit complet $K_{m,n}$ té un camí hamiltonià.

Exercicis de consolidació 19

A.19 Set persones que assisteixen a un congrés volen dinar juntes en una taula rodona els tres dies que dura el congrés. Per conèixer-se millor decideixen seure de manera que dues persones seguin l'una al costat de l'altra com a molt un sol dia. Poden aconseguir el seu propòsit? I si el congrés dura 5 dies?

- **A.20** Sigui G un graf hamiltonià que no és un cicle. Demostreu que si G té dos vèrtexs no adjacents de grau 3, aleshores té almenys un altre vèrtex de grau ≥ 3 .
- **A.21** Demostreu que si G és un graf d'ordre n i mida $\geq {n-1 \choose 2} + 2$, aleshores G és hamiltonià. *Indicació*: useu el teorema d'Ore.
- **A.22** Trobeu tots els grafs G tals que G i G^c són arbres.
- ${\sf A.23}$ Calculeu el nombre d'arestes que cal afegir a un bosc de k component connexos per a obtenir un arbre.
- ${\sf A.24}$ Sigui T un arbre d'ordre 7 amb un mínim de tres vèrtexs de grau 1 i un mínim de dos vèrtexs de grau 3.
 - 1) Trobeu la seqüència de graus de T.
 - 2) Trobeu, llevat d'isomorfismes, tots els arbres que tenen aquesta seqüència de graus.
- **A.25** Demostreu que si G és un graf d'ordre ≥ 2 que té exactament un vèrtex de grau 1, aleshores G té algun cicle.
- **A.26** Demostreu que les afirmacions següents són equivalents per a un arbre T d'ordre $n \geq 3$:
 - a) T és isomorf al graf trajecte T_n .
 - b) T té grau màxim 2.
 - c) T té exactament 2 fulles.
 - d) T té diàmetre igual a n-1.
- **A.27** Sigui G un graf que no és arbre d'ordre n i mida m = n 1.
 - 1) Proveu que G té almenys un component connex que és arbre i almenys un que no ho és.
 - 2) Proveu que si G té exactament dos components connexos, aleshores el que no és arbre té exactament un cicle.
- **A.28** Considereu el graf roda W_n d'ordre $n \geq 4$. Doneu tots els arbres no isomorfs que es poden obtenir en aplicar l'algorisme BFS segons quin sigui el vèrtex inicial.
- **A.29** Indiqueu quina seqüència de Prüfer correspon a cadascun dels arbres que tenen el conjunt [4] com a conjunt de vèrtexs.

20 Exercicis de consolidació

- **A.30** Determineu els arbres que tenen seqüències de Prüfer amb tots els termes diferents.
- **A.31** Siguin S un conjunt i \mathcal{C} un conjunt finit de subconjunts de S. El graf intersecció $I(\mathcal{C})$ és el graf que té \mathcal{C} com a conjunt de vèrtexs i dos vèrtexs $A, B \in \mathcal{C}$ són adjacents si $A \cap B \neq \emptyset$.
 - 1) Siguin S = [6] i $C = \{\{1, 2\}, \{2, 4\}, \{1, 2, 3\}, \{3, 4, 5\}, \{5, 6\}\}$. Representeu gràficament el graf I(C).
 - 2) Considereu el graf G que té [4] com a conjunt de vèrtexs i arestes 12, 23, 34 i 41. Per a cada $i \in [4]$, considereu el conjunt S_i format pel vèrtex i i les dues arestes incidents amb i: $S_1 = \{1, 12, 41\}, S_2 = \{2, 12, 23\}, S_3 = \{3, 23, 34\}, S_4 = \{4, 41, 34\}$. Siguin $S = S_1 \cup S_2 \cup S_3 \cup S_4$ i $C = \{S_1, S_2, S_3, S_4\}$. Demostreu que I(C) és isomorf a G.
 - 3) Demostreu que si G és un graf, aleshores existeixen un conjunt S i un conjunt finit C de subconjunts de S tals que G és isomorf al graf intersecció I(C).
- **A.32** Siguin $G_1 = (V_1, A_1)$ i $G_2 = (V_2, A_2)$ dos grafs amb $V_1 \cap V_2 = \emptyset$. Demostreu,
 - 1) Si G_1 i G_2 són connexos, aleshores $G_1 \times G_2$ és connex.
 - 2) Si G_1 i G_2 són eulerians, aleshores $G_1 \times G_2$ és eulerià.
 - 3) Si $G_1 \times G_2$ és eulerià, aleshores G_1 i G_2 són eulerians o bé tenen ordre parell.
 - 4) Si G és hamiltonià, aleshores $G \times K_2$ és hamiltonià.
- **A.33** Si G_1 és un graf connex i G_2 no ho és, ho és el producte $G_1 \times G_2$?
- **A.34** Sigui G = (V, A) un graf. El graf línia de G, LG és el graf que té per vèrtexs les arestes de G i dos vèrtexs de LG són adjacents si, com a arestes de G, són incidents.
 - 1) Doneu el graf línia de $K_{1,3}$, de C_5 i de $G = (\{1, 2, 3, 4, 5\}, \{12, 23, 24, 25, 34, 35, 45\}).$
 - 2) Doneu l'ordre i el grau dels vèrtexs de LG en funció dels paràmetres de G.
 - 3) Proveu que si G és eulerià, aleshores LG és hamiltonià.
 - 4) Trobeu un graf G tal que LG sigui hamiltonià però que G no sigui eulerià.
 - 5) Proveu que si G és eulerià, aleshores LG és eulerià.
 - 6) Trobeu un graf G tal que LG sigui eulerià, però G no.
 - 7) Proveu que si G és hamiltonià, aleshores LG és hamiltonià.
 - 8) Trobeu un graf G tal que LG sigui hamiltonià, però G no.