

GRAPH ATTENTION NETWORKS(ICLR, 2018)

JuHyeong Kim

Input 1: [1, 0, 1, 0] Input 2: [0, 2, 0, 2] Input 3: [1, 1, 1, 1]

Key	Query	Value	
[[0, 0, 1], [1, 1, 0],	[[1, 0, 1], [1, 0, 0],	[[0, 2, 0], [0, 3, 0],	these weights are usually small numbers, initialised randomly using an appropriate random distribution like Gaussian,
[0, 1, 0],	[0, 0, 1],	[1, 0, 3],	Xavier and Kaiming distributions. This initialisation is done
[1, 1, 0]]	[0, 1, 1]]	[1, 1, 0]]	once before training.

		Key	Query	Value
Input 1: [1, 0, 1, 0]		[[0, 0, 1],	[[1, 0, 1],	[[0, 2, 0],
Input 2: [0, 2, 0, 2]	×	[1, 1, 0],	[1, 0, 0],	[0, 3, 0],
Input 3: [1, 1, 1, 1]	/ \	[0, 1, 0],	[0, 0, 1],	[1, 0, 3],
	Dot Product	[1, 1, 0]]	[0, 1, 1]]	[1, 1, 0]]

Self-attention

INTRODUCTION

- this paper introduce an attention-based architecture to perform node classification of graph-structured data.
- The idea is to compute the hidden representations of each node in the graph, by attending over its neighbors, following a self-attention strategy.

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
6 4-5 1 3-2	$ \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} $	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

INTRODUCTION

- The attention architecture has several interesting properties
 - (1) the operation is efficient, since it is parallelizable across node neighbor pairs;
 - (2) it can be applied to graph nodes having different degrees by specifying arbitrary weights to the neighbors;
 - (3) the model is directly applicable to inductive learning problems, including tasks where the model has to generalize to completely unseen graphs.

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
(6)	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \end{pmatrix}$
4)-(5)-(1)	0 0 2 0 0 0	0 1 0 1 0 0	0 -1 2 -1 0 0
	0 0 0 3 0 0	0 0 1 0 1 1	0 0 -1 3 -1 -1
(3)-(2)	0 0 0 0 3 0	1 1 0 1 0 0	$\begin{bmatrix} -1 & -1 & 0 & -1 & 3 & 0 \end{bmatrix}$
	(0 0 0 0 0 1)	(0 0 0 1 0 0)	\ 0 0 0 -1 0 1/

input : set of node features

$$\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$$

- N is the number of nodes, and F is the number of features in each node
- output : when produces a new set of node features in layer

$$\mathbf{h}' = \{\vec{h}'_1, \vec{h}'_2, \dots, \vec{h}'_N\}, \vec{h}'_i \in \mathbb{R}^{F'}$$

- as an initial step, a shared linear transformation, parametrized by a weight matrix
 - $\mathbf{W} \in \mathbb{R}^{F' imes F}$ is applied to every node
- attentional mechanism computes attention coefficients

$$e_{ij} = a(\mathbf{W} \vec{h}_i, \mathbf{W} \vec{h}_j)$$
 masked attention

attention mechanism

- In its most general formulation, the model allows every node to attend on every other node, dropping all structural information.
- that is masked attention
 - This means that the e_{ij} value is calculated only for edges where connections exist on the Adjacency matrix.

Labeled graph	Adjacency matrix		×			
	(0	1	0	0	1	0\
$\binom{6}{2}$	1	0	1	0	1	0
(4)-(3)	0	1	0	1	0	0
7	0	0	1	0	1	1
(3)-(2)	1	1	0	1	0	0
	/0	0	0	1	0	0/

lacksquare α_{ij} : normalized attention

$$\alpha_{ij} = \operatorname{softmax}_{j}(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_{i}} \exp(e_{ik})}$$
normalize

• α_{ij} : normalized attention

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_k]\right)\right)}$$
 concatenation operation nonlinearity (0.2)

• $\overrightarrow{h'_i}$: output

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j) \quad \text{masked attention mechanism}$$

$$\alpha_{ij} = \operatorname{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \mathcal{N}_i} \exp(e_{ik})}$$

$$\det$$

$$\det$$

$$\Delta_{ij} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_i]\right)\right)}$$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_k]\right)\right)}$$

concatenation $\overrightarrow{\mathbf{W}}\overrightarrow{h_i}$ and $\overrightarrow{\mathbf{W}}\overrightarrow{h_j}$ $\mathbf{F} + \mathbf{F}$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

a weight vector $\, ec{\mathbf{a}} \in \mathbb{R}^{2F'} \,$

$$\alpha_{ij} = \frac{\exp\left(\mathbb{L}eakyReLU\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i || \mathbf{W}\vec{h}_j]\right) \right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathbb{L}eakyReLU\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i || \mathbf{W}\vec{h}_i]\right) \right)}$$

LeakyReLU
$$f(x) = \begin{cases} x, & x \ge 0 \\ 0.2x, & x < 0 \end{cases}$$

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$
normalization

• $\overrightarrow{h'_i}$: output

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

• $\overrightarrow{h'_i}$: output

$$\alpha_{ij} = \frac{\exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\text{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_i]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

GAT ARCHITECTURE - MULTI-HEAD ATTENTION

- Multi-head attention
 - Query, Key and Value are different attention values(independent).
 - K is the number of Multi-head attention
- Then, output is follows:

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right) \longrightarrow \text{ averaging and delay applying the final nonlinearity}$$

GAT ARCHITECTURE – RESULT

Dataset – Cora, Citeseer, Pubmed, PPI

Table 1: Summary of the datasets used in our experiments.

	Cora	Citeseer	Pubmed	PPI
Task	Transductive	Transductive	Transductive	Inductive
# Nodes	2708 (1 graph)	3327 (1 graph)	19717 (1 graph)	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

GAT ARCHITECTURE – RESULT

Summary of results in terms of classification accuracy

Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed. GCN-64* corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive					
Method	Cora	Citeseer	Pubmed		
MLP	55.1%	46.5%	71.4%		
ManiReg (Belkin et al., 2006)	59.5%	60.1%	70.7%		
SemiEmb (Weston et al., 2012)	59.0%	59.6%	71.7%		
LP (Zhu et al., 2003)	68.0%	45.3%	63.0%		
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%		
ICA (Lu & Getoor, 2003)	75.1%	69.1%	73.9%		
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%		
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%		
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%		
MoNet (Monti et al., 2016)	$81.7 \pm 0.5\%$	_	$78.8 \pm 0.3\%$		
GCN-64*	$81.4 \pm 0.5\%$	$70.9 \pm 0.5\%$	79.0 \pm 0.3%		
GAT (ours)	$83.0 \pm 0.7\%$	$72.5 \pm 0.7\%$	79.0 \pm 0.3%		

GAT ARCHITECTURE – RESULT

Summary of results in terms of micro-averaged F1-scores

Table 3: Summary of results in terms of micro-averaged F₁ scores, for the PPI dataset. GraphSAGE* corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture. Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive

Method	PPI
Random	0.396
MLP	0.422
GraphSAGE-GCN (Hamilton et al., 2017)	0.500
GraphSAGE-mean (Hamilton et al., 2017)	0.598
GraphSAGE-LSTM (Hamilton et al., 2017)	0.612
GraphSAGE-pool (Hamilton et al., 2017)	0.600
GraphSAGE*	0.768
Const-GAT (ours)	0.934 ± 0.006
GAT (ours)	0.973 ± 0.002

GAT ARCHITECTURE - RESULT

it's pre-trained GAT model for Cora dataset

Figure 2: A t-SNE plot of the computed feature representations of a pre-trained GAT model's first hidden layer on the Cora dataset. Node colors denote classes. Edge thickness indicates aggregated normalized attention coefficients between nodes i and j, across all eight attention heads $\mathbb{E}_{K-1} \times \mathbb{E}_{K-1} \times$