Зачёт Сложности

July 24, 2024

- 1. Перечеислите изученные на занятиях классы сложностей, расскажите про отношения между ними
- 2. Рассмотрим двухленточные машины Тьюринга, которые на каждом шаге на каждой из лент либо и меняют символ, и сдвигают указатель, либо не меняют символа и остаются на месте (возможно, на разных лентах делают разное).
 - (а) Дайте формальное определение машин с таким свойством как кортежей определённого вида.
 - (b) Докажите, что на машине такого вида можно смоделировать классическую одноленточную машину Тьюринга с не более чем полиномиальным замедлением.
- 3. Пусть $A \in \mathbf{NP}$, при этом A понимается как множество натуральных чисел. Докажите, что множество чисел m, таких что для некоторого $k \in A$ верно $m:k^2$, также лежит в \mathbf{NP} .
- 4. Определим класс \mathbf{NP}' следующим образом: $A \in \mathbf{NP}'$ тогда и только тогда, когда существует V(x,s), вычислимый за время poly(|x|), со следующим условием:

$$x \in A \Leftrightarrow \exists s(V(x,s) = 1; s*)$$

*s является кодом графа, в котором есть клика размером в половину графа

(Произвольная строка интерпретируется как код графа так: дополняется нулями до строки с длиной, равной полному квадрату, полученная строка интерпретируется как матрица смежности. Возможные петли, т. е. единицы на диагонали, игнорируются. Размеры клики и графа считаются как число вершин). Докажите, что $\mathbf{NP'} = \mathbf{NP}$. (Не забудьте доказать оба включения).

- 5. Пусть **ONLY-ODD-DEGREES** = $\{k | \text{в разложение } k$ на простые множители все множители входят в нечётных степенях $\}$. Лежит ли этот язык в **P**, **NP**, **coNP**? Докажите утверждения, которые можете доказать, а догадки сформулируйте и поясните интуицию.
- 6. Пусть **HAMPATHCYCLE** = $\{(G, s, t)|$ в ориентированном графе G есть непересекающиеся путь и цикл, такие что s является началом пути, t его концом, а каждая вершина входит либо в путь, либо в цикл $\}$. Докажите, что этот язык является **NP**-полным.
- 7. Докажите, что язык $\mathbf{HALT} = \{n | \text{машина Тьюринга с номером } n$ (в некоторой фиксированной нумерации) останавливается на входе $n\}$ является \mathbf{NP} -трудным, но не является \mathbf{NP} -полным.