Question |.

(a) $O(n^2)$ (b) To prove $f(n) = 9n + 3n^2 + 3n \log n + 3 \pi \sin 0 Cn^2$, we show that there exsists a contant C that $\forall n \ge n_0$, $n_0 \in \mathbb{Z}^+$, $9n + 3n^2 + 3n \log n + 3 \pi \sin 2 Cn^2$ As $9n \le 9n^2$, $3n^2 \le 3n^2$, $2n \log n \le 2n^2$, $3\pi n \le 3n^2$, $\forall n \ge 1$ Then $9n + 3n^2 + 2n \log n + 3 \pi \sin 2 n \sin 2 n \cos 2$

Secondly, After $2027C_{1}^{h}$) time, we finish each half sequence sorting, we need to combine them. For each $\frac{n}{2}$ sequence, we compare them from the lowest each: like the figure.

As the two sequence is ordered, each operation we can consider it as choose one to put in the n-sequence according to the comparison. We need to do this step n operation, in sum: n, this is conquer step.

In all, n>2, $7cn)=27c\frac{n}{2}$) + n, we need to combine all the operations n=1, 7c1)=1

```
(b) We will use mathmatical induction to first prove:
           Yn >2, ne≥+, Ton) ≤ 2n logn
  \mathbb{O} n = 2, Tcn) = a CTC \frac{n}{2} 1 + n
              T(2) = 2 T(1) + 2 = 4 & 4 log 2 = 2 - 2 log 2 comes true.
 D Assume ∃k, n=k, kezt, Tck) = 2k logk
we will not prove n = k + 1 but n = 2k cas the time complexity to T_{(2k)} is correspoing to T_{(2k)}, the other from k + 1 to 2k - 1 can be considered the weak same in operations to be nowled.
demonstration coming from TC2k) demonstration) then n=2k, TC2k)=2TCk)+2k \le 4k \log k+2k
     2. cak) Gog 2k = 4k Gog 2k = 4klog k + 4klog 2 = 4klog k + 4k.
    as ak = 4k, yk>1 => 4k Cogk+2k = 4k Cogk+4k.
                             => 2 Tck)+2k = 4k logk+4k = 2. c2k) log2k
                              => TC2k) < 4k Gog 2k comes true.
 We have proved & n>2, nezt, Ton) = 2n logn
     2 is a constant, then n>2, Tcn) = Ocn Gogn).
 T(1) = 1 \Rightarrow O(1) = T(1)  And O(n \log n) = O(1) at n = 1
 Tooot n=1, Tc1) = 0 (nlogn)
  Combine n=1 and n> > we can get Ton) = Ocn Cogn), yn
```

Question 3

(a) 2, 4, 6, 2, 4, 6 swap 2, 4, 2, 6, 4, 6 2, 2, 4, 6, 4, 6 2, 2, 4, 6, 6 3.

In all, 3 swap operations

(b) As in each i=0 to n-2 and with $j=n-1\rightarrow i+1$, a key comparison handled, we just calculate this numer Operations

$$j=0$$
 $j=n-1 \rightarrow 1$ Operations $n-1$

$$\hat{i} = 1 \quad \hat{j} = n - 1 \rightarrow 2 \quad n - 2$$

$$i = n - 1$$
 $j = n - 1 \rightarrow n - 1$

$$Sum = (n-1) + (n-2) + \cdots + 1 = \frac{n \cdot cn - 1}{2}$$

In this question, $n = 6 \Rightarrow Sum = \frac{6 \times 5}{2} = 15$

In all 15 comparisons needed to sort the numbers

Question 4.

(a) adjacency matrix.

(b) Let e, = (a, b), e2 = ca, e), e3 = (b, c), e4 = (b, f), e5 = (c, g), e = (c,d), e = (e,f), e = (f,g), e = (g;h)

incidence matrix

incidence list.

Question J

(a) By Prim's algorithm, the order in which the vertices are selected is as follows: a, e, f, b, g, c, d, h con h, g according to your setting in

						1 0	, 10	4
Order selected	aco,-)	bc-,∞)	cc-,\(\infty\)	[dc-, 00)	ec-,∞)	fc-100)	gc-,∞)	nc-,no)
aco,-)	HIM		CC-,100)		e ca, 1)	fc-,00)	gc-100)	hc-,00)
eca, 1)	male	b ca.4)	cc-,∞)	dc-, 20)		fce, 2)		
f ce, 2)	K-EL-	b cf, 3)	ccf,10)	dc-,∞)	, 1 30		g cf. 5)	
b cf, 3)		Bist-	ccb,6	d c-, ∞)	0 1	0 0 1	gcf.r	
g cf, J)				d c9,10				hcg,71
C (9, 1)				d c c . 7				hcg,7)
d cc, 7)						100000		hcq.7)
hcg.7)				7 1 1 1 1 1 1	(7,3	919	(do 1-2) -	

The MST is as follows:

The MST drawn is not unique according to the initial vertice you choose The This is the only MST that can be drawn.

