

Portfolio sampling with K-means

Fabrice Riva

fabrice.riva@dauphine.psl.eu

Motivation

- Investors should hold a diversified portfolio
- Financial theory strongly supports diversification:
 - Diversification allows to eliminate idiosyncratic risk (more on this in next slides)
 - 15 stocks are enough on average to eliminate idiosyncratic risk
 - Number of stocks depends on country stock exchange characteristics and time periods
 - CAPM: no compensation in expected returns for idiosyncratic risk
 - Two-fund separation theorem (Tobin, 1958): for an investor, the optimal portfolio is a mix of the risk-free asset and the market portfolio
- The rise of ETFs (Exchange-Traded Funds) supports the view that investors seek to diversify their portfolios:
 - First ETF (SPY) launched in the United States in 1993. As of October 2022, 10,127 ETFs available worldwide (source : etfgi.com)
 - ETF assets under management (AuM) around \$9,847 bn in October 2023

Issues and proposed solution

- Well-diversified portfolios ⇒ investors should hold a large number of stocks
- Issue: a well-diversified portfolio entails investors to manage a large number of assets. Management costs increase with the number of assets, which decreases the benefits of diversification

Questions:

- Is it possible to replicate the returns of a large portfolio with a small subset of its constituents?
- How to select stocks within a portfolio in order to achieve best replication of that portfolio?
- How many stocks should be selected?

Proposed solution: K-means

- Identification of clusters within the initial portfolio, i.e. groups of stocks whose return timeseries are "similar"
- For each cluster, identification of the stock that is the most representative of the whole cluster, i.e. identification of each cluster's centroid
- Investment in the portfolio built from the various centroid stocks

Data - I

- CRSP database
- Monthly data over June 2007 December 2020: 168 months / 14 years
- 300 randomly chosen stocks that match the following criteria:
 - Data available from beginning to end of period
 - No change in activity sector of a firm over the period: used only to test if clusters match firm activity sectors
- Objective: replicate as closely as possible, with only a few stocks, the return time series of the 300-stock equally-weighted portfolio
- Train set: January 2007 February 2018, i.e. 80% of the whole period. 134 months including 2008 global financial crisis
- Test set: March 2018 December 2020, i.e. 20% of the whole period. 34 months including Covid 19 period

Data - II

Partial view of the data (first 5 observations)

PERMNO	date	TICKER	RET	vwretd	sector_1dgt
10104	2007-01-31	ORCL	0.001167	0.019387	7
10104	2007-02-28	ORCL	-0.042541	-0.014006	7
10104	2007-03-30	ORCL	0.103469	0.012954	7
10104	2007-04-30	ORCL	0.036955	0.039834	7
10104	2007-05-31	ORCL	0.030851	0.038953	7

300 stocks \times 168 months = 50,400 observations in total

Implementation

- Python + pandas
- matplotlib library for plots
- Scikit-learn API for K-means implementation (in reality K-means ++)
 - Computation of clusters
 - For each cluster, identification of cluster's centroid

Agenda

- Stock, portfolio and risk basics
- K-means baseline algorithm
- K-means ++
- How to determine the number of clusters
- **Applications**
 - Iris dataset
 - Stock clustering: portfolio sampling with small number of stocks

Stock and portfolio basics

Stocks

- $P_{i,t}$: stock i price at date t
- $R_{i,t}$: stock i discrete return from date t-1 to date t. Ignoring dividends:

$$R_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}}$$

Also, continuous return:

$$r_{i,t} = \log(1 + R_{i,t})$$

- Stock prices, and therefore returns, are highly unpredictable $\Rightarrow R_{i,t}$ is modeled as the outcome of a random variable
- For tractability reasons, returns are often modeled as the outcome of a stationary normal distribution:

$$R_{i,t} \sim \mathcal{N}(\mu_i, \sigma_i)$$

Random behavior of stock returns: ORCL

Random behavior of stock returns: ORCL

Risk and portfolios

- One way to measure stock i risk is σ_i . In finance, σ_i (expressed on an annual basis) is called the volatility of stock i
- Investors can reduce the risk they bear by holding a portfolio of stocks instead of a single individual stock
- A portfolio is a combination of assets. In finance, portfolios are represented by a vector of weights $x = [x_1 \ x_2 \ \cdots x_n]^T$, where x_j represents the weight of asset j in portfolio x:
 - Weight x_j corresponds to the dollar amount invested in stock j divided by the total dollar amount invested in portfolio x
 - A portfolio must be feasible, which implies $\sum_{j=1}^{n} x_j = 1$
 - Weights can be **negative** if **short selling** is allowed: in that case, the investor borrows the stock to a lender (broker) and sells it to a trader. The investor will later purchase the asset in order to return it to the lender. If the price has fallen (increased) in the meantine, the investor will make a profit (loss) equal to the price drop (increase)

Portfolio risk - I

• Denoting $\mu = [\mu_1 \ \mu_2 \ \cdots \ \mu_n]^T$ the vector of individual stocks mean returns, portfolio x mean (or expected) return is computed as:

$$\mu_x = x^T \mu$$

- What about the risk of portfolio x?
- It is assumed that individual stock returns are correlated and that their cross-sectional dependance can be modeled using variance-covariance matrix Σ :

$$\Sigma = \left[egin{array}{cccc} \sigma_{1,1} & \sigma_{1,2} & \cdots & \sigma_{1,n} \\ \sigma_{2,1} & \sigma_{2,2} & \cdots & \sigma_{2,n} \\ dots & dots & \ddots & dots \\ \sigma_{n,1} & \sigma_{n,2} & \cdots & \sigma_{n,n} \end{array}
ight]$$

where $\sigma_{i,j}$ denotes the covariance of asset i and asset j returns

Portfolio risk - II

 Using Σ, the variance of the returns of portfolio x is given by the following expression:

$$\sigma_x^2 = x^T \Sigma x$$

The above expression is equivalent to:

$$\sigma_x^2 = \sum_{i=1}^n x_i^2 \sigma_{i,i} + \sum_{i=1}^n \sum_{\substack{j=1\\j \neq i}}^n x_i x_j \sigma_{i,j}$$
(1)

 The (a) term is the sum of the individual variances while the (b) term is (twice) the sum of cross covariances

Variance of an equally-weighted portfolio

- Equally-weighted portfolio means $x_1 = x_2 = \dots = x_n = \frac{1}{n}$
- Assuming that none of the stocks has an infinite variance, $\lim_{n\to\infty}(a)=0$ in (1) \Rightarrow individual variances vanish in a well-diversified portfolio
- Let $\bar{\sigma}$ be the average covariance of the *n* stocks. Clearly:

$$\bar{\sigma} = \frac{\sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} \sigma_{i,j}}{n(n-1)}$$

- (b) in (1) can be rewritten as $\frac{n(n-1)\overline{\sigma}}{n^2}$, so that $\lim_{n\to+\infty}(b)=\overline{\sigma}$
- Conclusion: the variance of portfolio x tends to approach the average covariance of stocks in x
- Portfolio risk of an asset: covariances matter more than variances

Market model - I

- The market model (Sharpe, 1963) aims at decomposing an asset's returns
- According to the model, changes in an asset prices, hence in its returns, are the outcome of:
 - Marketwide information (e.g. macroeconomic events, business climate, etc.) . Marketwide information has a systematic impact, hence affects stocks as a whole. However, each stock reacts differently based on its own sensitivity to this type of information
 - Company specific (idiosyncratic, non-systematic) information. These are stock specific
 movements which are not correlated with the rest of the market
- From the above, the return on stock i at date t can be decomposed as:

Market model - II

- Estimating parameters α_i and β_i requires isolating the two components of the stock's returns, i.e. one component correlated with the market and the other independent / orthogonal to the market
- This is achieved by using OLS, where the rate of return on the stock is regressed on the market rate of return (practically a general stock market index)

Risk decomposition from market model

The variance of the returns of a stock based on market model is given by:

$$\sigma_i^2 = \sigma^2(\alpha_i + \beta_i R_m + \epsilon_i)$$
$$= \beta_i^2 \sigma_m^2 + \sigma_{\epsilon_i}^2$$

- The $\beta_i^2 \sigma_m^2$ term corresponds to (square of) systematic risk
- The $\sigma_{\epsilon_i}^2$ term corresponds to the (square of) idiosyncratic or diversifiable risk

Elimination of idiosyncratic risk - I

• The β of a n-stock portfolio is given by:

$$\beta_x = \frac{cov(R_x, R_m)}{\sigma_m^2} = \frac{cov(\sum_{i=1}^n x_i R_i, R_m)}{\sigma_m^2} = \sum_{i=1}^n x_i \frac{cov(R_i, R_m)}{\sigma_m^2}$$
$$= \sum_{i=1}^n x_i \beta_i$$

- Therefore, portfolio x's β is the **weighted sum** of the β s of portfolio x constituents
- From market model, the variance of the returns of portfolio x is given by:

$$\sigma_x^2 = \sigma^2 \left[\sum_{i=1}^n x_i R_i \right]$$

$$= \sigma^2 \left[\sum_{i=1}^n x_i (\alpha_i + \beta_i R_m + \epsilon_i) \right]$$

$$= \sigma^2 \left[\sum_{i=1}^n x_i \beta_i R_m \right] + \sigma^2 \left[\sum_{i=1}^n x_i \epsilon_i \right]$$

Elimination of idiosyncratic risk - II

- $\lim_{n \to +\infty} \sum_{i=1}^{n} x_i \beta_i = \beta_m = 1 \Rightarrow \lim_{n \to +\infty} \sigma^2 \left[\sum_{i=1}^{n} x_i \beta_i R_m \right] = \sigma_m^2$
- Assuming that the various ϵ_i s are not cross-correlated, that each of them has a small variance, and that the x_i weights are not too different, i.e. $x_i \approx \frac{1}{n} \forall i$:

$$\lim_{n \to +\infty} \sigma^2 \left[\sum_{i=1}^n x_i \epsilon_i \right] \approx \lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^n \sigma_{\epsilon_i}^2 \approx 0$$

 Conclusion: for a well-diversified portfolio, the stock (company) idiosyncratic risk vanishes (hence its name diversifiable risk) and the variance (or volatility) of the portfolio converges to the variance (volatility) of the market portfolio

CAPM

- CAPM (Capital Asset Pricing Model) is one of the most fundamental relationships in finance
- Discovered independently by Sharpe (Nobel Prize), Lintner and Mossin in the 60's
- CAPM establishes the relationship that connects the expected (future) return of an asset to its risk:

$$\mathbb{E}(R_i) = R_f + \beta_i \mathbb{E}(R_m - R_f)$$

where R_f is the return of a risk-free asset (typically a long-term Government bond) and $\mathbb{E}(R_m)$ is the expected return of the market

• Takeaway for this course: Idiosyncratic risk does not show up in CAPM since β_i matters only \Rightarrow useless risk since it is not compensated by extra return

K-means

Baseline algorithm

What is K-means?

K-means clustering is an unsupervised method that aims at partitioning n observations into K clusters. Each observation belongs to the cluster with the nearest mean, serving as a prototype to the cluster

Definitions and notations

- $x_i \in \mathbb{R}^p$, $i \in \{1, ..., n\}$ are the observations we want to partition
- $\mu_k \in \mathbb{R}^p, k \in \{1, ..., K\}$ are the means, where μ_k is the center (or centroid) of cluster k. We will denote M the associated matrix
- z_i^k are indicator variables associated to x_i such that $z_i^k = 1$ if x_i belongs to cluster k and $z_i^k = 0$ otherwise. We will denote \mathbf{Z} the matrix whose components are equal to z_i^k
- Finally we define the distorsion J(M, Z) by:

$$J(\mathbf{M}, \mathbf{Z}) = \sum_{k=1}^{K} \sum_{i=1}^{n} z_i^k ||x_i - \mu_k||^2$$

where
$$||x_i - \mu_k||^2 = \sqrt{\sum_{j=1}^p (x_{i,p} - \mu_{k,p})^2}$$

• Identifying the clusters means finding the M and Z matrices that minimize J(M,Z)

Example - I

We make the following assumptions:

•
$$x_1 = (5.1, 3.5, 1.4, 0.2), x_2 = (4.9, 3.0, 1.4, 0.2), x_3 = (7.0, 3.2, 4.7, 1.4)$$

- At some iteration *j*:
 - $\mu_1 = (5.7 \ 3.8, 4.7, 1.2), \mu_2 = (5.0, 3.4, 1.5, 0.2)$
 - x_1 and x_3 are assigned to cluster 1, and x_2 to cluster 2
- Expression of x:

$$\mathbf{X} = \begin{pmatrix} 5.1 & 3.5 & 1.4 & 0.2 \\ 4.9 & 3.0 & 1.4 & 0.2 \\ 7.0 & 3.2 & 4.7 & 1.4 \end{pmatrix}$$

• Expression of *M*:

$$\mathbf{M} = \begin{pmatrix} 5.7 & 3.8 & 4.7 & 1.2 \\ 5.0 & 3.4 & 1.5 & 0.2 \end{pmatrix}$$

• Expression of z:

$$\mathbf{Z} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

Example - II

Computing initial distorsion

	А	В	С	D	Е	F	G	Н	ı	J	К	L	М
1	x	5.1	3.5	1.4	0.2		Z	1	0	1			
2		4.9	3.0	1.4	0.2			0	1	0			
3		7.0	3.2	4.7	1.4								
4													
5													
6	М	5.7	3.8	4.7	1.2								
7		5.0	3.4	1.5	0.2								
8													
9						Distors	ion						z _i ^k
10	Cluster 1	0.36	0.09	10.89	1.00	=(E1-E\$6)^2		3.51	=SQRT	(SUM(B1	0:E10))		1
11		0.64	0.64	10.89	1.00	=(E2-E\$6)^2		3.63	=SQRT	(SUM(B1	1:E11))		0
12		1.69	0.36	0.00	0.04	=(E3-E\$6)^2		1.45	=SQRT	(SUM(B1	2:E12))		1
13	Cluster 2	0.01	0.01	0.01	0.00	=(E1-E\$7)^2		0.17	=SQRT	(SUM(B1	3:E13))		0
14		0.01	0.16	0.01	0.00	=(E2-E\$7)^2		0.42	=SQRT	(SUM(B1	4:E14))		1
15		4.00	0.04	10.24	1.44	=(E3-E\$7)^2		3.96	=SQRT	(SUM(B1	5:E15))		0
16													
17		Total disto	orsion					5.3828	=SUMF	PRODUCT	(H10:H15;N	110:M15)	

The algorithm

- It is possible to show that minimizing I(M, Z) can be achieved using the following algorithm (see for example Baukhage, 2015: https://arxiv.org/pdf/1512.07548.pdf):
 - Step 0: randomly initialize M by selecting randomly K datapoints in the sample
 - Step 1: minimize J with respect to \mathbf{Z} : $z_i^k = 1$ if $||x_i \mu_k||^2 = \min_{s} ||x_i \mu_s||^2$. In other words, x_i must be associated to the nearest center μ_k
 - Step 2: minimize *J* with respect to μ : $\mu_k = \frac{\sum_i z_i^k x_i}{\sum_i z_i^k}$
 - Step 3: come back to step 1 until convergence

Example - III

 Assignment to appropriate cluster based on previous distorsions and computation of new distorsion

	А	В	С	D	E	F	G	Н	I	J	K	L	М	N
19	Assignment to nearest cluster -> ne													
20														
21		Z	0 0		1	cluster 1								
22			1	1	0	0 cluster 2								
23														
24	z _i ^k				New ce	ntroid values								
25	0		Cluster 1 7 3.2			4.7	1.4	=SUM	PRODUCT	(E1:E3;\$A\$2	25:\$A\$27)/S	SUM(\$A\$25:	\$A\$27)	
26	0		Cluster 2		5	3.25	1.4	0.2	=SUM	PRODUCT	(E1:E3;\$A\$2	28:\$A\$30)/S	UM(\$A\$28:	\$A\$30)
27	1													
28	1													
29	1													
30	0													
31														
32						Distorsi								
-	Cluster 1	3.61	0.09	10.89		=(B1-E\$25)^2				(SUM(B3				
34		4.41		10.89		=(B2-E\$25)^2				(SUM(B3				
35		0.00		0.00		=(B3-E\$25)^2				(SUM(B3				
-	Cluster 2	0.01	0.06	0.00		=(B1-E\$26)^2				(SUM(B3				
37		0.01	0.06	0.00		=(B2-E\$26)^2		0.27	=SQRT	(SUM(B3	7:E37))			
38		4.00	0.00	10.89	1.44	=(B3-E\$26)^2		4.04	=SQRT	(SUM(B3	8:E38))			
39														
40		Total dist	torsion					0.5385	=SUM	PRODUCT	(H33:H38;A	25:A30)		

K-means in action: Iris dataset - I

K-means in action: Iris dataset - II

K-means++

Allocation to wrong cluster - I

Hypothetical dataset:

 Assume we randomly choose the following 3 centroids at step 0:

 Assignment of examples to clusters based on distances

New centroid values

Total variation within clusters:

Allocation to wrong cluster - II

Same dataset as before

 Assume the randomly chosen centroids at step 0 are as follows

 Assignment of examples to clusters based on distances

New centroid values:

Total variation within clusters:

K-means++

- One way to avoid the previous issue is to run the K-means algorithm several times and to keep the clustering that achieves the lowest variation within clusters
- Yet, a nice solution to overcome bad initialization of the centroids is to use K-means++
- The K-means++ algorithm is as follows:
 - 1.a: Choose an initial centroid c_1 at random (with uniform distribution) from X
 - 1.b: Choose the next centroid c_i , selecting $c_i = x'$ from X with probability $\frac{D(x')^2}{\sum_{x \in X} D(x')^2}$, where D(x) denotes the shortest distance from a data point x to the closest centroid already chosen
 - 1.c: repeat step 1.b until the K centroids are chosen
 - 2. Proceed as with the standard K-means algorithm

Example - IV

In this example, the objective is to assign the instances of a small dataset to 3 clusters

	Α	В	С	D	E	F	G	Н	I
1						/	=(A7-C7)^2	+(B7-D7)	^ 2
2									
3									=E7/\$E\$13
4									
5	×		c ₁		$D(x,c_1)^2$	$D(x,c_1)^2$ prob			
6	7	4	7	4	-	-			
7	8	3	7	4	2	0.02	0.02		
8	5	9	7	4	29	0.28	0.30	=G7+F8	
9	3	3	7	4	17	0.17	0.47		
10	1	3	7	4	37	0.36	0.83	C ₂	
11	10	1	7	4	18	0.17	1		
12									
13				Total	103	=SUM(E7:I	E11)		
14									_
15	Unifor	rmly dis	tributed r	andom	number	0.78	=RAND()		

Example - V

	А	В	С	D	Е	F	G	Н	I	J	К	П
17	×	_	c ₁		C ₂	2	$D(x,c_1)^2$		$min(D(x,c_i)^2)$	prob	cum prod	<u> </u>
18	7	4	7	4	1	3	-	-				
19	8	3	7	4	1	3	2	49	2	0.04	0.04	
20	5	9	7	4	1	3	29	52	29	0.55	0.58	c ₃
21	3	3	7	4	1	3	17	4	4	0.08	0.66	
22	1	3	7	4	1	3	-	-			0.66	
23	10	1	7	4	1	3	18	85	18	0.34	1.00	
24												
25								Total	53			
26												
27	7 Uniformly distributed random number						=RAND()					

• Once the 3 clusters are initialized, the standard *K*-means algorithm is ran with centroids (7,4), (1,3) and (5,9)

How many clusters?

Metrics

- As K-means is an unsupervised method, the actual number of clusters is unknown
- However, a variety of measures (currently around 30) have been proposed for evaluating clustering results and determine the appropriate number of clusters
- We will cover two of them only
 - The "Elbow" method
 - The silhouette statistic (Rousseeuw, JCAM 1987)

The "Elbow" method

The "Elbow" method: plot the within clusters sum of squared distances
against the number of clusters. A rule of thumb if to set the optimal K as the
one such that the slope of the graph goes from steep to shalow (elbow)

The silhouette coefficient - I

- Assume the examples have been clustered via any technique (e.g. K-means) into K clusters
- For sample $i \in C_i$, let define a(i) such that:

$$a(i) = \frac{1}{n_i - 1} \sum_{j \in C_i, i \neq j} D(i, j)$$

where n_k is the number of samples in cluster i and D(i,j) is the distance between samples i and j. So, a(i) is the mean distance between i and all other samples within the same cluster.

• Next, let define b(i) such that:

$$b(i) = \min_{k \neq i} \frac{1}{n_k} \sum_{j \in C_k} D(i, j)$$

• b(i) is the mean distance of i to the cluster with the smallest mean distance (neighboring cluster)

The silhouette coefficient - II

• The silhouette coefficient s(i) of sample i is given by:

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

- From the definition of s(i), it is clear that $-1 \le s(i) \le 1$.
 - s(i) close to 1 requires that $a(i) \ll b(i)$
 - A low a(i) means that i is well matched to its own cluster
 - A large b(i) means that it is badly matched with its neighboring cluster
 - So s(i) close to 1 means that sample i is appropriately clustered.
 - s(i) close to -1 requires that $a(i) \gg b(i)$
 - A high a(i) means that sample i is not well matched to its own cluster
 - A small b(i) means that it matches well with its neighboring cluster
 - Therefore, *i* should be assigned to its neighboring cluster
 - Finally, s(i) = 0 means that the sample is on the border of two clusters

The silhouette coefficient - III

- The mean s(i) over all samples within a cluster measures how tightly grouped all the points in the cluster are
- The mean s(i) over all samples in the dataset is a measure of how appropriately the data have been clustered

Silhouette plot examples

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

Source: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

Use cases

Jupyter notebooks and data

- Iris example:
 - Data: iris_data.txt
 - Features: Sepal Length, Sepal Width, Petal Length, Petal Width
 - Labels: Iris-setosa, Iris-versicolor, Iris-virginica
 - Jupyter notebook: iris-solution.ipynb
- Portfolio sampling:
 - Data: stocks.csv
 - Jupyter notebook: Stock sampling using k-means tutorial version.ipynb

