16

# **Environmental Chemistry**

# **Pollutant**

Substance which cause pollution is known as pollutant.



Troposheric pollution occurs due to presence of undesirable solid or gaseous particles in air.

#### **Gaseous Pollutant**

**SO<sub>2</sub>:** Cause resipiratory diseases of asthma, bronchitis emphysema etc & irrataling to eyes.

NO2: Form by fossil fuel burn, Damage lungs.

Higer concentration of NO<sub>2</sub> damage the leaves of plant and retard rate of photoshynthesis.

**Hydrocarbon:** Form by incomplete combustion of fuel of automobile, Carcinogenic.

## Oxide of Carbon

**CO:** Blocks the delivery of oxygen to organs and tissues.

Carboxy hemoglobin is 300 times more stable then oxy hemoglobin about 3-4% of carboxy hemoglobin the oxygen carrying capacity is highly reduced.

CO<sub>2</sub>: Main source is respiration, burning of fossil fuels, demposition of lime stone in cement industry.

Increase of CO<sub>2</sub> cause global warming.

# **Global Warming and Green House Effect**

Some of the gases such as CO<sub>2</sub>, CH<sub>4</sub>,O<sub>3</sub> CFC(s) and water vapour tapped the heat and does not radiates back to the atmosphere. This cause global warming.

#### **Acid Rain**

- ❖ Normally the pH of rain water is 5.6 due to the reaction between rain water and CO₂.
- ❖ When pH less then 5.6 then it is called acid rain.
- \* Source: Burning of fuel (contain N & S) form SO<sub>2</sub> & NO<sub>2</sub>.
- Harmful to agriculture, tree and plants.
- Taj Mahal is affected by acid rain.

# **Particulate Pollutant**



**Smoke:** Solid/mixture of solid and liquid particles formed from burning of fossil fuel, oil smoke etc.

**Dust:** Find solid particle over  $1\mu m$  diameter, produced by crushing, grinding etc.

**Mist:** Mist are produced by particle of spray liquid condensation of vapours, eg. herbicides, mist etc.

Note: Pb is major air pollutant.

#### Smog (Smoke + Fog)

**Classical smog:** (Smoke + fog + CO<sub>2</sub>) also called reducing smog **Photochemical smog:** 

hydrocarbon: NO 
$$\xrightarrow{hv}$$
 NO + O
$$O + O_2 \xrightarrow{hv} NO + O$$

$$O + O_3 \xrightarrow{hv} O_3$$
NO + O<sub>3</sub>  $\xrightarrow{hv} O_2 + O_2$ 

$$\longrightarrow contribute of Haze$$

$$(NO_2 + O_2) + hydrocarbon$$

$$CH_2O$$
formaldelyde
or
$$CH_2 = CHCHO$$
Acrolein
or
$$CH_3COONO_2$$
peroxy acetyl nitrate (PAN)

# **Stratospheric Pollution**

Formation & decomposition of ozone.

$$O_2(g) \xrightarrow{UV} O(g) + O(g)$$

$$O_2(g) + O(g) \stackrel{UV}{\rightleftharpoons} O_3$$

Ozone is thermodynimcally unstable and thus dynamic equilibrium exist between production.

## **Ozone Hole**

The main reason of ozone layer depletion the release of CFC(s) (also called as freons).

# **Reaction of Ozone Depletion**

$$\begin{split} & \operatorname{CF_2Cl_2(g)} \stackrel{\operatorname{UV}}{\longrightarrow} \dot{\operatorname{Cl}}(g) + \dot{\operatorname{CF_2Cl}}(g) \\ & \dot{\operatorname{Cl}}(g) + \operatorname{O_3(g)} \longrightarrow \dot{\operatorname{ClO}}(g) + \operatorname{O_2(g)} \\ & \dot{\operatorname{ClO}}(g) + \operatorname{NO_2(g)} \longrightarrow \dot{\operatorname{ClONO_2(g)}} \\ & \dot{\operatorname{Cl}}(g) + \operatorname{CH_4(g)} \longrightarrow \dot{\operatorname{CH_3(g)}} + \operatorname{HCl(g)} \\ & \operatorname{ClONO_2(g)} + \operatorname{H_2O(g)} \longrightarrow \operatorname{HOCl(g)} + \operatorname{HNO_3(g)} \\ & \operatorname{ClONO_2(g)} + \operatorname{HCl(g)} \longrightarrow \operatorname{Cl(g)} + \operatorname{HNO_3(g)} \\ & \operatorname{HOCl} \stackrel{\operatorname{hv}}{\longrightarrow} \dot{\operatorname{OH}}(g) + \dot{\operatorname{Cl}}(g) \\ & \operatorname{Cl_2(g)} \longrightarrow 2\dot{\operatorname{Cl}}(g) \end{split}$$

# Water pollution

## **Cause of Water Pollution**

- (i) Pathogen
- (ii) Organic waste
- (iii) Organic waster

**BOD:** The amount of oxygen required by bacteria to break down the organic matter present in a certain volume of a sample of water, is called Biochemical **Oxygen Demand** 

**(BOD)**. Clean water would have BOD value of less than 5 ppm where as highly polluted water could have a BOD value of 17 ppm or more.

**Fluoride:** Soluble fluoride is often added to drinking water to bring its concentration upto 1 ppm or 1 mg dm<sup>-3</sup>.

However, F<sup>-</sup> ion concentration above 2 ppm causes brown mottling of teeth. At the same time, excess fluoride (over 10 ppm) causes harmful effect to bones and teeth.

**Lead:** The prescribed upper limit concentration of lead in drinking water is about 50 ppm. Lead can damage kidney, liver, reproductive system etc.

**Sulphate:** Excessive sulphate (>500 ppm) in drinking water causes laxative effect, otherwise at moderate levels it is harmless.

**Nitrate:** The maximum limit of nitrate in drinking water is 50 ppm. Excess nitrate in drinking water can cause disease such as methemoglobinemia ('blue baby' syndrome).

**Table:** Maximum Prescribed Concentration of Some Metals in Drinking Water

| Metal | Maximum concentration (ppm or mg dm <sup>-3</sup> ) |
|-------|-----------------------------------------------------|
| Fe    | 0.2                                                 |
| Mn    | 0.05                                                |
| Al    | 0.2                                                 |
| Cu    | 3.0                                                 |
| Zn    | 5.0                                                 |
| Cd    | 0.005                                               |

4 🚱