Working with Graphs on Quantitative Data

Dr Tom Ilvento

Department of Food and Resource Economics

Data Sets used

- Measurement Standard 100 measurements of a international standard for grams, which weighed just under 10 grams (about the weight of two nickels)
- MPG the EPA's miles per gallon for 100 sub-compact cars
- Catalog Sales the amount spent in a year for 1,000 customers for a company that sells electric equipment through catalog sales
- Small data set on the operating costs of several cars
- Data set on the yield of various tomato plants
- State SAT data

Overview

- This lecture looks at strategies for graphing quantitative data
 - Histograms
 - Box Plots (a.k.a, Box and Whisker Plots)
 - Stem and Leaf Plots
 - Scatter Plots
- Excel will do some of these, others can be done by hand or using JMP

2

Histogram

- As strategy of collapsing the continuous data to show the distribution via a bar chart.
- Good visual depiction of the distribution of a variable, showing shape, modes, skew and outliers
- Can be graphed for both a small and large samples
- Most software programs (including Excel) provide an easy means to construct
- Requires decisions on the number and width of intervals
- Choices made by a user can distort the graph

.

Histogram Examples

5

7

Box and Whisker Plots

- Box Plots are based a "Five Number Summary" based on position, including the median and quartiles.
 - minimum
 - 1st Quartile (25th percentile)
 - median (50th percentile)
 - 3rd Quartile (75th percentile)
- maximum
- Good visual depiction of the distribution of a variable, showing shape, modes, skew and outliers
- Can be graphed for a small or large samples
- There is a fairly uniform approach to construct no user decisions
- Excellent approach for comparing the distribution of two or more sub-groups

6

Examples of Box Plots

Stem and Leaf Plot

- A Stem and Leaf plot actually uses the data itself to make the graph - the data are divided into stems and leafs
- Good visual depiction of the distribution of a variable, showing shape, modes, skew and outliers
- Limited to small and medium sized data sets difficult to produce when the sample size is over 150
- The user (or program) must make some decisions that can influence the shape of the graph

Stem and Leaf Plot

- This approach graphs the data using the data itself
- It provides a graphical picture of a variable
 - Distribution
 - Range
 - Skewness
 - Outliers

Stem and Leaf Plot

Stem and Leaf of MPG Data			
Stem	Leaf	Count	
44	9	1	
43			
42	1	1	
41	002	3	
40	0123557	7	
39	00345789	8	
38	0122345678	10	
37	000011122334456677899	21	
36	01233445566777888999	20	
35	01235667899	11	
34	024588	6	
33	126899	6	
32	5799	4	
31	8	1	
30	l o	1	

30|0 represents 30.0

10

Outliers and Stem and Leaf Plots

- This is a data set of measurements of an international measurement standard
- The standard is measured over many time periods and the measurement is recorded
- The measurement is the deviation below 10 g, multiplied by 10,000
- A measurement of 9.999591 is represented as 409

Stem and Leaf Plot

- Three simple steps!
 - 1. Sort the data
 - 2. Choose the Stems
 - 3. Add the Leaves

12

П

Step I: Sort the Date

- Sort the data from lowest to highest
- It just makes it easier
 - For decisions on choosing stems and leaves
 - For not making an error of missing an observation

13

Step 2: Choose the stems

- The Stems are the initial digit in the plot, such as
 - 1 in the number 10:
 - 10 in the number 10.6;
 - 2 in the number 215.
- It is helpful to look at the range of the variable to decide the appropriate stems.
- Stems can be 1, 2 or more digits for 215 it could be 2 or 21
- In our example, the stems will be the first two digits (the hundreds and tens digits)

14

16

Step 3: Add the Leaves

- The Leaves, or the following digits. In most cases it will be one digit, but it is possible to use more than one digit
- If doing by hand, make sure the distance between digits are
 - Uniform
 - Large enough to show the separate observations
- In our example the leaves are the ones digit.

Stem and Leaf Plots of Measurement Device

Stem and Leaf Plot

Stem and Leaf Plots

- Some statistical packages will create stem and leaf plots for us (JMP, SAS, Minitab, SPSS)
- Each program has unique aspects on how they do it and how it is labeled
- Stem and Leaf plots work best with moderate sized data sets (100 or less). Larger data sets may get unwieldy.

17

Let's do a Stem and Leaf Plot Together on the Driver's Age Data

16 17 18 20 24 28 34 44 53 73

17 18 19 24 28 34 42 52 73 88

• Sort the data

| 16 | 17 | 18 | 20 | 24 | 28 | 35 | 44 | 56 | 74 |
| Choose the Stems | 10's digit | 16 | 17 | 18 | 21 | 24 | 29 | 37 | 45 | 58 | 76 |

Add the Leaves	0ne's digit	16	17	18	21	25	30	37	45	65	77
16	17	18	18	21	26	30	38	45	69	81	
16	18	18	22	27	31	38	51	69	86		
16	18	18	18	23	27	31	38	51	70	87	
17	18	18	24	27	32	40	51	73	87		

Driver Age Stem and Leaf

Stem and Leaf		
Stem	Leaf	Count
8	6778	4
8	1	1
7	667	3
7	03334	5
6	599	3
6		
5	678	3
5	11123	5
4	5555	4
4	0244	4
3	5677888	7
3	0011244	7
2	5677788899	10
2	00011123444444	14
1	66666666777777788888888888888	30

1|6 represents 16

Scatterplots

- Scatter Plots are based on how two continuous variables vary together, particularly over time.
- Most spreadsheet programs provide an easy mechanism to make a scatter plot (also called XY scatterplot).
- In scatter plots we tend to think of the two variables have a function:
 - one of the variables as a dependent variable and label it Y and is on the vertical axis
 - The other variable, labeled X, is the independent variable and is on the horizontal axis
- It forms the basis for correlation and regression

20

18

21

Summary

- Graphs are very useful to help us view our data
- They help "tell the story"
- There are graphing techniques for continuous level data – histograms, box plots, stem and leaf, and scatterplots

SAT Example

