

13.2 梯度下降法的优化

中国大学MOOC

梯度下降法: 求解函数极值的方法

■ 函数在某一点的梯度:向量

■ 梯度方向: 函数值变化最快的方向

二元函数

$$\nabla = \begin{pmatrix} \frac{\partial f(w,b)}{\partial w} \\ \frac{\partial f(w,b)}{\partial b} \end{pmatrix}$$

多元函数

$$\nabla Loss(W) = \begin{pmatrix} \frac{\partial Loss(W)}{\partial w_0} \\ \frac{\partial Loss(W)}{\partial w_1} \\ \dots \\ \frac{\partial Loss(W)}{\partial w_n} \end{pmatrix}$$

■ 沿着损失函数梯度方向更新权值

$$W = W - \eta \nabla Loss (W)$$

$$W^{(k+1)} = W^{(k)} - \eta \nabla Loss (W^{(k)})$$

■ 梯度为零时,停止迭代

驻点:导数为0的点

口非凸函数

鞍点

人工神经网络

多层神经网络使用梯度下降法, 无法保证一定可以收敛于全局最小值点

口小批量梯度下降法

一元线性回归

$$Loss = \frac{1}{2} \sum_{i=1}^{t} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{t} (y_i - (w_{x_i} + b))^2$$

$$w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss(w^{(k)}, b^{(k)})}{w^{(k)}}$$
$$b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss(w^{(k)}, b^{(k)})}{\partial b^{(k)}}$$

影响小批量梯度下降法的主要因素

- 小批量样本的选择
- 批量大小
- 学习率
- 梯度

■ 小批量样本的选择

$$Loss = \frac{1}{2} \sum_{i=1}^{t} (y_i - \hat{y}_i)^2 = \frac{1}{2} \sum_{i=1}^{t} (y_i - (wx_i + b))^2$$

在每轮训练之前, 打乱样本顺序

数据集的连续的样本之间有高度的相关性

	VBC	RBC	HGB	HCT	ICV	ICH	IICHC	PLT	LYMPHP	NEUTP	HONOF
1	7.3	4.7	151.0	45.6	92.6	31.7	342.0	215.0	32.1	57.2	9.1
2	9.0	4.0	151.8	44.0	8.5	30.6	356.6	266.9	32.6	5.7	5.1
3	6.5	4.0	153.9	50.5	9.3	33.0	337.4	207.7	33.9	5.2	4.9
4	7.7	4.9	150.5	41.8	8.6	32.6	343.7	273.9	34.6	6.3	5.3
5	7.3	4.0	149.1	42.7	8.6	31.6	350.7	221.0	34.2	6.4	4.7
6	7.5	4.6	151.1	45.1	9.2	32.4	363.8	289.1	31.6	5.2	5.3
7	8.8	4.2	145.7	47.3	8.7	31.6	357.4	262.7	31.5	5.7	5.5
8	7.8	5.0	151.7	44.1	8.6	30.9	354.0	284. 2	31.3	5.9	5.9
9	8.7	4.1	146.4	44.0	8.8	31.1	354.5	277.4	35.0	6.2	6.4
10	8.2	4.8	149.0	49.1	8.6	32.7	340.0	219.4	31.9	6.2	4.9
11	8. 2	4.2	153.8	43.4	8.8	31.4	363.3	255.9	31.1	5.6	5.5
12	8.4	4.7	150.1	48.3	8.8	32.6	352.7	261.5	29.9	6.1	4.7
13	9.0	4.7	145.1	45.2	8.9	31.5	345.2	294.8	34.2	5.4	5.7
14	7.9	4.7	148.8	41.1	9.4	30.1	352.0	256.0	30.6	5.5	5.1
15	8.5	4.0	152.3	41.6	8.5	32. 2	353.0	227.5	29.5	5.8	5.8
16	8.0	4.8	150.3	48.3	9.0	29.7	344.7	223.1	33.6	5.7	6.1
17	8.6	4.0	145.4	46.8	8.6	29. 2	360.3	287.7	28.5	5.2	5.6
18	8.6	4.2	145.1	40.7	8.5	30.5	344.1	247.0	31.8	5.9	6.4
19	7.7	4.3	150.6	47.5	9.3	29.1	361.8	212.1	32. 2	5.8	6.2
20	7.9	4.1	145.2	51.1	9.1	31.8	346.8	259.8	33.3	5.3	5.6
21	7.0	5.0	153.5	42.6	8.6	30.4	357.0	294. 4	31.6	5.2	5.7
22	7.5	4.1	146.4	46.9	8.5	29.1	342.9	294.9	28. 9	5.3	4.5
23	8. 2	4.8	145.9	40.8	8.6	30.9	339.8	292.1	29.7	6.5	6.5
24	8.2	4.2	147.5	44.1	9.3	32.8	339.9	200.6	28.7	6.0	6.1
25	8.6	4.1	148.3	51.1	8.9	31.5	338.6	202. 4	28.5	6.5	5.9
26	6.7	4.8	148.9	46.2	9.4	30.4	344.1	242.4	29.4	5.2	5.1
27	7.2	4.5	145.8	49.8	8.5	29.1	358.3	218.4	30.0	5.4	5.7
28	8.4	4.2	151.2	48.1	9.0	31.1	342.8	200.5	34.3	5.4	4.6
29	6.5	4.6	146.3	40.8	8.5	29.9	362.6	224.3	29. 2	5.8	5.7
30	6.7	4.2	150.1	40.2	8.5	32.6	364.3	244.9	32.5	6.2	5.4
31	7.1	4.0	147.6	40.2	8.7	32.3	345.7	281.0	29.8	6.5	5.3
32	6.8	4.2	148.1	49.8	8.8	29.0	340.7	219.1	29.4	5.5	5.2
33	6.9	4.0	149.2	42.7	9.1	32.1	345. 9	223.8	32.3	6.3	4.8
34	9.0	5.0	145.3	45.8	8.9	32.8	354.9	216.1	29.7	6.4	5.2
35	8.8	4.7	147.8	43.3	8.7	31.7	356.6	237.0	31.0	6.1	5.5
36	6.5	4.2	152.5	45.5	8.7	29.7	359.3	234. 3	34.9	5.7	4.7
37	7.0	4.3	150.3	50.1	8.8	32. 2	342.2	272.3	28.5	6.3	6.1
38	7.6	4.0	146.4	43.5	9.4	29.2	338.9	292.7	30.8	5.3	4.6
39	6.9	4.3	147.6	50.1	8.6	31.1	359.3	280.0	28.1	6.1	4.7

- 小批量中样本的数量 (mini-batch size)
 - □ 批量中的**样本数量越多**, 梯度方向越准确, 迭代次数越少

批量梯度下降法: 小批量样本=整个数据集

□ 批量中的**样本数量越少,随机性越大**, 迭代次数越多

随机梯度下降法: 小批量样本数=1

□ 充分利用处理器资源,进行并行计算

2的幂数: 32、64、128、256

■ 学习率

$$w^{(k+1)} = w^{(k)} - \frac{\partial Loss(w^{(k)}, b^{(k)})}{w^{(k)}}$$
$$b^{(k+1)} = b^{(k)} - \frac{\partial Loss(w^{(k)}, b^{(k)})}{\partial b^{(k)}}$$

口 固定学习率

学习率设置<mark>过小</mark>,收敛速度慢; 学习率设置<mark>过大</mark>,震荡,无法收敛

□ 动态调整学习率: 在训练过程中, 动态的调整学习率

13.2 梯度下降法的优化

- 学习率衰减 (Learning Rate Decay) /学习率退火 (Learning Rate Annealing)
 - · 开始训练时,设置较大学习率,加快收敛速度
 - · **迭代过程**中,学习率随着迭代次数**逐渐减小**,避免震荡

- 调节学习率——非凸函数
 - □ 周期性的增大学习率
 - □ 自适应调整学习率
 - □ 自适应调整每个参数的学习率

$$w^{(k+1)} = w^{(k)} - \frac{\partial Loss(w^{(k)}, b^{(k)})}{w^{(k)}}$$
$$b^{(k+1)} = b^{(k)} - \frac{\partial Loss(w^{(k)}, b^{(k)})}{\partial b^{(k)}}$$

- 自适应学习率算法
 - AdaGrad
 - 全局学习率 η
 - 各个参数自适应的调整学习率 $\sqrt{\sum_{r=1}^{t}(grad_r)^2 + \varepsilon}$
 - 学习率随着迭代次数的增加而单调减小
 - RMSprop、和AdaDelta
 - 改进了AdaGrad算法调整学习率的方法
 - 各参数的学习率不是单调递减的

■ 梯度估计

$$w^{(k+1)} = w^{(k)} - \eta \frac{\partial Loss(w^{(k)}, b^{(k)})}{w^{(k)}}$$
$$b^{(k+1)} = b^{(k)} - \eta \frac{\partial Loss(w^{(k)}, b^{(k)})}{\partial b^{(k)}}$$

□ 动量梯度下降法 (Momentum)

动量=质量×速度

在更新参数时,可以在一定程度上保留之前的更新方向

当前梯度 历史梯度

 $\begin{cases} W^{(k+1)} = W^{(k)} + v^{(k+1)} \\ v^{(k+1)} = \alpha v^{(k)} - \eta \nabla Loss (W^{(k+1)}, X^{(i)}, Y^{(i)}) \end{cases}$

梯度方向不变:步长更大,收敛加快梯度方向改变:步长变小,更新变慢

- 牛顿加速梯度算法 (Nesterov Accelerated Gradient, NAG)
 - · 根据**当前更新方向**,估算**下一步**的梯度方向
 - · 在新位置计算梯度,修正梯度方向

$$\begin{cases} W^{(k+1)} = W^{(k)} + v^{(k+1)} \\ v^{(k+1)} = \alpha v^{(k)} - \eta \nabla Loss(W^{(k+1)} - \mu v^{(k)}, X^{(i)}, Y^{(i)}) \end{cases}$$

13.2 梯度下降法的优化

■ 自适应学习率+梯度估计

