Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №7 "Анализ точности систем управления" Вариант - 2

Выполнил	Алякин С.	(подпись)	
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
""	20 <u>_17</u> г.	Санкт-Петербург,	20 <u>17</u> г.
Работа выполнена	а с оценкой		
Лата зашиты "	"	20 17 r	

Цель работы

Исследование точностных свойств систем управления.

Исходные данные

Таблица 1 – Исходные данные

W(s)	Параметры сигнала задания		
$\frac{3}{2,5s+1}$	2	2t	$0,5t^{2}$

1 Исследование системы с астатизмом нулевого порядка

Рисунок 1 – Структурная схема моделируемой системы

Задана замкнутая система, представленная на рисунке 1, с регулятором H(s)=k и передаточной функцией разомкнутого контура $W(s)=\frac{3}{2,5s+1}$, схема моделирования которой представлена на рисунке 2.

Рисунок 2 – Схема моделирования системы с астатизмом нулевого порядка

1.1 Исследование стационарного режима работы: g(t) = 2.

Рассчисаем предельное значение установившейся ошибки:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + H(s)W(s)} G(s) = \lim_{s \to 0} s \frac{1}{1 + \frac{3k}{2.5s + 1}} \cdot \frac{2}{s} = \lim_{s \to 0} \frac{5s + 2}{2, 5s + 3k + 1} = \frac{2}{1 + 3k}$$
(1)

При
$$k=1: \varepsilon=0,5$$

При $k=5: \varepsilon=0,125$
При $k=10: \varepsilon=\frac{2}{31}\approx 0,065$

По полученным графикам, представленным на рисунке 3, видно, что полученные при моделировании значения ошибки равны рассчитанным аналитически.

1.2 Исследование режима движения с постоянной скоростью: g(t) = 2t

Так как система статична, то ошибка при линейном входном воздействии должна стремиться $\kappa \infty$, что и показанно эксперементально на рисунке 4.

Рисунок 3 — Переходные процессы при g(t)=2

Рисунок 4 — Переходные процессы при g(t)=2t

2 Исследование системы с астатизмом первого порядка

Структурная схема моделируемой системы представлена на рисунке 1, где $H(s)=\frac{k}{s}, W(s)=\frac{3}{2,5s+1}.$

Рисунок 5 – Схема моделирования системы с астатизмом первого порядка

2.1 Исследование стационарного режима работы: g(t)=2

Аналитически рассчитанное значение установившейся ошибки равно

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + H(s)W(s)} G(s) = \lim_{s \to 0} \frac{2}{1 + \frac{W(s)}{s}} = \lim_{s \to 0} \frac{2s(2, 5s + 1)}{s(2, 5s + 1) + 3} = \frac{0}{3} = 0,$$
 (2)

что и показанно эксперементально на рисунке 6.

Рисунок 6 — Переходные процессы при g(t)=2

2.2 Исследование режима движения с постоянной скоростью: g(t) = 2t

Рассчитаем предельное значение ошибки для системы при g(t) = 2t:

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + H(s)W(s)} G(s) = \lim_{s \to 0} \frac{s}{1 + \frac{3k}{s(2,5s+1)}} \cdot \frac{2}{s^2} = \lim_{s \to 0} \frac{2(2,5s+1)}{2,5s^2 + s + 3k} = \frac{2}{3k}$$
(3)

При
$$k=1: \varepsilon=\frac{2}{3}\approx 0,67$$

При $k=5: \varepsilon=\frac{2}{15}\approx 0,13$
При $k=10: \varepsilon=\frac{1}{15}\approx 0,067$

По полученным графикам, представленным на рисунке 7, видно, что полученное при симуляции значения ошибки равны рассчитанным аналитически.

2.3 Исследование режима движения с постоянным ускорением: $g(t) = 0,5t^2$

При движении с постоянным ускорением ошибка для системы с астатизмом первого порядки должна стремиться к ∞ , что и показанно на рисунке 8, на котором представленны результаты работы математической модели соответствующей системы.

Рисунок 7 — Переходные процессы при g(t)=2t

Рисунок 8 — Переходные процессы при $g(t) = 0,5t^2$

3 Исследование влияний внешних возмущений

Схема моделирования возмущённой системы представлена на рисунке 9, где $W(s)=\frac{3}{2,5s+1},$ $f_1=0,5,f_2=0,5.$

Рисунок 9 – Структурная схема возмущённой системы

Схема моделированя соответствующей возмущённой системы представленна на рисунке 10.

Рисунок 10 – Схема моделирования возмущённой системы

Функция ошибки равна

$$e = \frac{g - f_1 W(s) - f_2 W(s) \frac{1}{s}}{1 + W(s) \frac{1}{s}} = \frac{g - f_1 \frac{3}{2, 5s + 1} - f_2 \frac{3}{(2, 5s + 1)s}}{1 + \frac{3}{(2, 5s + 1)s}} = \frac{g(2, 5s^2 + s) - 3sf_1 - 3f_2}{2, 5s^2 + s + 3}, \quad (4)$$

тогда предельное значение ошибки при g(t) = 1

$$\varepsilon = \lim_{s \to 0} \frac{2,5s^2 + s - 3sf_1 - 3f_2}{2,5s^2 + s + 3} = \frac{-3f_2}{3} = -f_2.$$
 (5)

Получается, что при постоянных возмущениях $f_1(t)$ и $f_2(t)$ ошибка будет равняться $-f_2$.

3.1 Полагаем $f_2(t) = 0$ и g(t) = 1(t)

Исходя из аналитически рассчитанного выражения для ошибки, предельное значение ошибки при заданных параметрах должно равнятся 0. Что и продемонстрированно на графике, представленном на рисунке 11.

Рисунок 11 – График переходного процесса с возмущением f_1

3.2 Полагаем $f_1 = 0$ и g(t) = 1(t)

По рассчитанному ранее значению выражению для ошибки, установившееся значение ошибки должно быть равно $-f_2$, что и показывают результаты математического моделирования, представленные на рисунке 12.

Рисунок 12 – График переходного процесса с возмущением
 f_2

4 Исследование установившейся ошибки при произвольном входном воздействии

Структурная схема представлена на рисунке 1, где $H(s)=1, W(s)=\frac{3}{2,5s+1},$ а задающее воздействие $g(t)=0,2t^2+\sin 0,5t.$

4.1 Результаты моделирования

В результате моделирования заданной системы был получен график, представленный на рисунке 14. Из него видно, что предельное значение ошибки стремится к ∞ . Схема моделирования системы представленна на рисунке 13.

Рисунок 13 – Схема моделирования системы с производным входным воздействием

Рисунок 14 — Результат работы системы при входном воздействи
и $g(t)=0, 2t^2+\sin 0, 5t$

4.2 Получение приближенного выражения для ошибки

Разложим передаточную функцию замкнутой системы $\Phi_e(s) = \frac{1}{1+W(s)}$ в ряд Тейлора, сохранив только первые 3 члена.

$$\Phi_e(s) = \frac{2,5s+1}{2,5s+4} \approx \frac{1}{4} + 0,47s - 0,29s^2,\tag{6}$$

тогда получаем выражение установившейся ошибки при произвольном входном воздействии

$$e_y(t) = 0.25g(t) + 0.47\frac{d}{dt}g(t) - 0.29\frac{d^2}{dt^2}g(t).$$
 (7)

Найдём производные g(t):

$$g(t) = 0, 2t^2 + \sin 0, 5t, \tag{8}$$

$$\frac{d}{dt}g(t) = 0, 4t + 0, 5\cos 0, 5t,\tag{9}$$

$$\frac{d^2}{dt^2}g(t) = 0, 4 - 0, 25\sin 0, 5t,\tag{10}$$

тогда выражение ошибки $e_y(t)$ принимает вид

$$e_y(t) = 0,05t^2 + 0,25\sin 0,5t + 0,188t + 0,235\cos 0,5t - 0,116 + 0,0725\sin 0,5t =$$

$$= 0,05t^2 + 0,188t - 0,116 + 0,3225\sin 0,5t + 0,235\cos 0,5t$$
(11)

Из полученного выражения видно, что, с течением времени, ошибка стремится к ∞ . Чтобы определить, совпадает ли расчитанная ошибка с моделированной, построим их на одном графике, еоторый представлен на рисунке 15.

Рисунок 15 — Значения ошибок при произвольном входящем воздействии, где e(t) — получена при моделировании, E(t) — рассчитана аналитически

Вывод

В данной работе были исследованны способы повышения точности исследуемой системы. Было показанно, что на значение установившейся ошибки можно повлиять, изменяя степень астатизма системы и/или коэффициент усиления разомкнутой системы.

Кроме того было показанно, что порядок астатизма системы по входящему воздействию может не соответсвовать порядку астатизма по возмущению.

Так же было полученно и расчитанно аналитически значение ошибки системы при произвольном входном воздействии.