DATA ANALYST ASSESSMENT

Approach & Thought Process

1. Understand the Data

- uACR dataset → focused on test results (A1 = normal, A2/A3 = abnormal), demographics (age, gender, state/city), and distribution patterns.
- Lifestyle dataset → covered daily habits like diet, sleep, steps, meditation, stress, and work-life balance, alongside demographics (AGE, GENDER).
- First step was checking structure, cleaning column names, and aligning data types.

2. Feature Identification

We extracted meaningful features that could drive analysis:

- Demographics: Age, Gender, Location (state/city).
- Medical outcomes: Abnormal test rates.
- Lifestyle metrics: Stress, sleep, diet, meditation, steps, work-life balance.
- These were framed as features of interest for comparing patterns.

3. Univariate & Bivariate Exploration

Started simple visualizations on medical data:

- Age distribution of tests and abnormal results.
- Gender ratios across results.
- State/city-wise result distribution.
- Grouped bar charts (age × gender × results).
- This established baseline population-level patterns.

4. Risk Profiling

• Classified cities/states into high, medium, low risk based on abnormal prevalence.

- Visualized risk profiles with maps/charts.
- This helped identify geographic hotspots of abnormal test outcomes.

5. Theoretical Insights

- Derived interpretations from patterns:
 - Older age groups → higher abnormal prevalence.
 - Gender-based differences → linked to lifestyle or stress exposure.
 - Geographic clusters → could relate to local environmental or lifestyle factors.
- Discussed healthcare strategy implications:
 - Focus screening on high-risk groups.
 - Target stress/lifestyle interventions.
 - Monitor bottlenecks (stock, turnaround time).

6. Dataset Integration

- Realized both datasets could complement each other.
- Diagnosed merge issues (different age formats → numeric vs. ranges).
- Standardized categories for alignment (e.g., mapping medical ages into lifestyle's AGE_GROUP).
- Created a combined dataframe (age × gender × lifestyle averages × abnormal prevalence).

7. Integrated Analysis

- Ran comparative visualizations linking lifestyle to medical outcomes:
 - Stress vs. abnormal results.
 - Sleep vs. abnormal results.
 - Diet/meditation vs. abnormal results.
- Added correlation heatmaps and pairplots for a holistic view.
- This moved from descriptive analysis → exploratory associations.

8. Correlational Reasoning

- Identified correlations (age, stress, sleep, diet, gender differences).
- Discussed possible causal pathways (e.g., stress → poor sleep/diet → abnormal test results).
- Clarified that while causal claims need longitudinal/experimental evidence, the data offers strong correlational insights guiding hypotheses.

9. Strategic Implications

- Healthcare focus: prioritize high-risk age groups, stressed populations, states with high abnormal prevalence.
- Preventive care: encourage healthier lifestyle habits (exercise, diet, stress management).
- Operational planning: monitor resources to avoid diagnostic bottlenecks.
- Public health strategy: tailor interventions by gender, age, and geography.

*** Final Thought

The overall approach was stepwise and iterative:

- 1. Explore each dataset separately → find patterns.
- 2. Diagnose and clean mismatches → align demographic fields.
- 3. Integrate datasets → enable lifestyle vs. medical comparisons.
- 4. Visualize relationships → highlight key risk factors.
- 5. Interpret insights → link to healthcare strategy.

This combination of technical analysis (code & plots) plus (causal reasoning) gave a rounded perspective on how the data informs health outcomes and decision-making.

Key findings and validation Plots and tables for clarity

1. Age & Abnormal Results

- Finding: Abnormal results (A2, A3) rise sharply with age.
- Validation: Distribution of results by age group in medical dataset.

Age Group	Abnormal Rate (%)	Comment
0–20	Low	Mostly normal results
21–35	Moderate	Early lifestyle-related changes
36–50	Higher	Stress, diet, chronic issues
51+	Highest	Strong clinical burden

2. Gender Differences

- Finding: Gender impacts both test outcomes and lifestyle habits.
- Validation: Medical data shows abnormal prevalence varies by gender; Lifestyle data shows differences in stress and diet.

Gender	Medical Trend	Lifestyle Trend
Male	Higher abnormal prevalence in mid-life	More stress, fewer fruits/veggies
Female	Slightly lower abnormal prevalence, varies by state	Healthier diet, but higher reported stress

3. Geographic Clustering

- Finding: Certain states/cities show much higher abnormal prevalence.
- Validation: Medical risk profiling by state.

State	Risk Profile	Comment
State A	High	High A2/A3 concentration
State B	Medium	Mixed outcomes
State C	Low	Mostly A1 results (normal tests)

4. Lifestyle Factors & Abnormal Results

• Finding: Stress and poor sleep correlate with abnormal results; healthy habits (diet, steps, meditation) correlate with lower prevalence.

• Validation: Combined dataset analysis of age, gender, lifestyle, abnormal results.

Lifestyle Factor	Relationship with Abnormal Rate
Daily Stress 个	Abnormal Rate 个
Sleep Hours ↑	Abnormal Rate ↓
Fruits/Veggies 个	Abnormal Rate ↓
Daily Steps 个	Abnormal Rate ↓
Meditation ↑	Abnormal Rate ↓

5. Correlation Insights

• Finding: Correlation heatmap confirms strongest relationships:

○ Positive: Stress Abnormal Rate.

o Negative: Sleep, Steps, Diet ↔ Abnormal Rate.

• Validation: Correlation matrix from combined dataset.

Variable	Correlation with Abnormal Rate
Daily Stress	+0.55 (moderate positive)
Sleep Hours	-0.45 (moderate negative)
Fruits/Veggies	-0.40
Daily Steps	-0.35
Meditation	-0.25