Regularized Algorithms for Online Optimization and Learning

CS245: Online Optimization and Learning

Xin Liu SIST, ShanghaiTech University

2024 ACM A.M. Turing Award

Andrew Barto

Rich Sutton

Alan Turing: What we want is a machine that can learn from experience?

Answer: Reinforcement learning!

Keywords: Temporal difference learning, policy gradient methods,

RL book, AlphaGo, ChatGPT, RLHF

2024 ACM A.M. Turing Award

Richard S. Sutton

FOLLOWING

Keen, Amii, and University of Alberta Verified email at richsutton.com - <u>Homepage</u>

artificial intelligence reinforcement learning machine learning cognitive science computer science

TITLE	CITED BY	YEAR	
Reinforcement learning: An introduction RS Sulton, AG Barto MT press 1 (1), 9-11	79694	1998	
Policy gradient methods for reinforcement learning with function approximation RS Sutton, D McAllester, S Singh, Y Mansour Advances in noural information processing systems 12	9288	1999	
Learning to predict by the methods of temporal differences RS sulton Machine learning 3, 9-44	8383	1988	
Neuronlike adaptive elements that can solve difficult learning control problems AG Barb, RS altuth, CVM Anderson IEEE transactions on systems, ann, and cybernetics 13 (5), 834-846	5301	1983	
Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning RS Sutton, D Precup, S Singh Artificial Intelligence 112 (1-2), 181-211	4731	1999	
Integrated architectures for learning, planning, and reacting based on approximating dynamic programming RS Sutton Proceedings of the International Conference on Machine Learning, 216-224	C 2326	1990	

2024 ACM A.M. Turing Award

Richard S. Sutton

FOLLOWING

Keen, Amii, and University of Alberta Verified email at richsutton.com - Homepage

artificial intelligence reinforcement learning machine learning cognitive science computer science

TITLE	CITED BY	YEAR
Asynchronous Stochastic Approximation and Average-Reward Reinforcement Learning HYu, Y Wan, RS Sutton ArXiv preprint arXiv:2499.0915		2024
On Convergence of Average-Reward Q-Learning in Weakly Communicating Markov Decision Processes YWan, H Yu, RS Sutton arXiv preprint arXiv:2408.16262	1	2024
Loss of plasticity in deep continual learning S Dohare, JF Hernandez-Garcia, Q Lan, P Rahman, AR Mahmood, Nature 632 (8026), 788-774	60	2024
An Idiosyncrasy of Time-discretization in Reinforcement Learning K De Asis, RS Sutton arXiv preprint arXiv:2406.14951	1	2024
Off-Policy Prediction Learning: An Empirical Study of Online Algorithms S Ghlasslan, B Rafiee, RS Sutton LEEE Transaction on Neural Networks and Learning Systems	1	2024
Reward centering A Naik, Y Wan, M Tomar, RS Sutton arXiv preprint arXiv:2405.09999	9	2024

Review of Online Gradient Descent

Online Gradient Descent (OGD)

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$. For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the convex loss $f_t(\cdot)$.
- Update: $x_{t+1} = \prod_{\mathcal{K}} (x_t \eta_t \nabla f_t(x_t)).$

Review of Online Gradient Descent

Online Gradient Descent (OGD)

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• Update: $x_{t+1} = \prod_{\mathcal{K}} (x_t - \eta_t \nabla f_t(x_t))$.

The intuition of OGD is to solve "trust region optimization":

$$\min_{\mathbf{x} \in \mathcal{K}} f_t(\mathbf{x}_t) + \langle \mathbf{x} - \mathbf{x}_t, \nabla f_t(\mathbf{x}_t) \rangle$$

s.t. $\|\mathbf{x} - \mathbf{x}_t\| \le \delta$.

Review of Online Gradient Descent

Online Gradient Descent (OGD)

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• Update: $x_{t+1} = \prod_{\mathcal{K}} (x_t - \eta_t \nabla f_t(x_t))$.

The intuition of OGD is to minimize the first order approximation + regularization with ℓ_2 norm:

$$\hat{f}_{t+1}(x) = f_t(x_t) + \langle x - x_t, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} ||x - x_t||^2.$$

which is equavilent to

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg \, min}} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2.$$

Bregman Divergence

Definition 1 (Bregman Divergence)

Let $\psi: X \to R$ be strongly convex and continuously differentiable function. The Bregman divergence w.r.t. ψ is B_{ψ} is defined as

$$B_{\psi}(x; y) = \psi(x) - \psi(y) - \langle x - y, \nabla \psi(y) \rangle.$$

If ψ is twice differentiable, and by Taylor theorem

$$B_{\psi}(x; y) = \langle x - y, \nabla^2 \psi(z)(x - y) \rangle,$$

where z is a point between x and y.

Recall $\psi(\cdot)$ is α -strongly convex, we have a global property

$$B_{\psi}(x;y) \geq \frac{\alpha}{2} ||x-y||^2.$$

Bregman Divergence - properties

The properties of Bregman divergence:

Non-negative

$$B_{\psi}(x;y)\geq 0.$$

"Non"-symmetric

$$B_{\psi}(x;y) \neq B_{\psi}(y;x).$$

Three points identity:

$$B_{\psi}(z;x) + B_{\psi}(x;y) - B_{\psi}(z;y) = \langle \nabla \psi(y) - \nabla \psi(x), z - x \rangle.$$

Online gradient descent is

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg\,min}} \ \langle x, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2.$$

Online gradient descent is

$$x_{t+1} = \underset{x \in \mathcal{K}}{\arg\min} \ \langle x, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2.$$

Just change the "distance" metric to Bregman divergence w.r.t $\psi,$ and we have

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathcal{K}} \langle x,
abla f_t(x_t) \rangle + rac{1}{\eta_t} B_{\psi}(x; x_t).$$

Online gradient descent is

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg \, min}} \ \langle x, \nabla f_t(x_t) \rangle + \frac{1}{2\eta_t} \|x - x_t\|^2.$$

Just change the "distance" metric to Bregman divergence w.r.t $\psi,$ and we have

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathcal{K}} \langle x,
abla f_t(x_t) \rangle + rac{1}{\eta_t} B_{\psi}(x; x_t).$$

If K is \mathbb{R}^d , let $\psi(x) = \frac{1}{2}||x||^2$ gives us online gradient descent algorithm.

If K is a probability simplex, let $\psi(x) = \sum_{i=1}^{d} x_i \log x_i$ gives us any algorithm?

Online Mirrored Descent (OMD)

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• Update: $x_{t+1} = \arg\min_{x \in \mathcal{K}} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta_t} B_{\psi}(x; x_t)$.

An alternative update is

$$y_{t+1} = \underset{x \in \mathbb{R}^d}{\arg \min} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta_t} B_{\psi}(x; x_t)$$
$$x_{t+1} = \underset{x \in \mathcal{K}}{\arg \min} B_{\psi}(x; y_{t+1})$$

Recall the regret of online gradient descent is $O(\sqrt{T})$. How about the regret of online mirrored descent?

Theorem 2

Let ψ be α -strongly convex function. Consider a fixed learning rate $\eta_t = \eta$. Online mirrored descent algorithm achieves

$$Regret(T) \leq \frac{B_{\psi}(x^*, x_1)}{\eta} + \frac{1}{2\alpha} \sum_{t=1}^{I} \eta \|\nabla f_t(x_t)\|^2.$$

OMD achieves $O(\sqrt{T})$ regret if:

Recall the regret of online gradient descent is $O(\sqrt{T})$. How about the regret of online mirrored descent?

Theorem 2

Let ψ be α -strongly convex function. Consider a fixed learning rate $\eta_t = \eta$. Online mirrored descent algorithm achieves

$$Regret(T) \leq \frac{B_{\psi}(x^*, x_1)}{\eta} + \frac{1}{2\alpha} \sum_{t=1}^{T} \eta \|\nabla f_t(x_t)\|^2.$$

OMD achieves $O(\sqrt{T})$ regret if:

• The feasible set and gradients are bounded.

Recall the regret of online gradient descent is $O(\sqrt{T})$. How about the regret of online mirrored descent?

Theorem 2

Let ψ be α -strongly convex function. Consider a fixed learning rate $\eta_t = \eta$. Online mirrored descent algorithm achieves

$$Regret(T) \leq \frac{B_{\psi}(x^*, x_1)}{\eta} + \frac{1}{2\alpha} \sum_{t=1}^{T} \eta \|\nabla f_t(x_t)\|^2.$$

OMD achieves $O(\sqrt{T})$ regret if:

- The feasible set and gradients are bounded.
- Learning rate is fixed with $O(1/\sqrt{T})$.

Recall the regret of online gradient descent is $O(\sqrt{T})$. How about the regret of online mirrored descent?

Theorem 2

Let ψ be α -strongly convex function. Consider a fixed learning rate $\eta_t = \eta$. Online mirrored descent algorithm achieves

$$Regret(T) \leq \frac{B_{\psi}(x^*, x_1)}{\eta} + \frac{1}{2\alpha} \sum_{t=1}^{T} \eta \|\nabla f_t(x_t)\|^2.$$

OMD achieves $O(\sqrt{T})$ regret if:

- The feasible set and gradients are bounded.
- Learning rate is fixed with $O(1/\sqrt{T})$.
- Time varying learning rate $O(1/\sqrt{t})$ or adaptive learning rate also work (verify by yourself).

Online Mirrored Descent - Proof

We use a "potential/Lyapunov drift" style of analysis: define

$$\phi_t = B_{\psi}(x^*; x_t)$$

= $\psi(x^*) - \psi(x_t) - \langle x^* - x_t, \nabla \psi(x_t) \rangle,$

and study the drift

$$\phi_{t+1} - \phi_t = B_{\psi}(x^*; x_{t+1}) - B_{\psi}(x^*; x_t)$$

= $-B_{\psi}(x_{t+1}; x_t) + \langle \nabla \psi(x_t) - \nabla \psi(x_{t+1}), x^* - x_{t+1} \rangle$

Online Mirrored Descent - Proof

Online Mirrored Descent - An Alternative Proof

We have the following lemma that make our analysis simple¹

Lemma 3 (A pushback lemma)

Suppose x_{t+1} minimizes the function F(x) such that

$$F(x) := \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta} B(x; x_t),$$

For any x, we have

$$F(x_{t+1}) \le F(x) - \frac{1}{\eta} B(x; x_{t+1}).$$

¹X. Wei, et al. Online Primal-Dual Mirror Descent under Stochastic Constraints. Sigmetrics 2020.

Online Mirrored Descent - An Alternative Proof

Why is called Mirrored descent?

Definition 4 (Fenchel Conjugate)

The Fenchel conjugate of a function f is

$$f^*(y) := \sup_{x \in \mathcal{K}} \langle y, x \rangle - f(x).$$

Theorem 5

The update of online mirrored descent

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg \, min}} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta_t} B_{\psi}(x; x_t)$$

is equivalent to

$$x_{t+1} = \nabla \psi_{\mathcal{K}}^* (\nabla \psi_{\mathcal{K}}(x_t) - \eta_t \nabla f_t(x_t)).$$

Let's consider the case of $\psi(x) = \frac{1}{2}||x||^2$, can we reduce it to online gradient descent?

Theorem 5 – Proof

By definition of online mirror descent, we have

$$\begin{split} x_{t+1} &= \underset{x \in \mathcal{K}}{\text{arg min}} \ \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta_t} B_{\psi}(x; x_t) \\ &= \underset{x \in \mathcal{K}}{\text{arg min}} \ \eta_t \langle x, \nabla f_t(x_t) \rangle + B_{\psi}(x; x_t) \\ &= \underset{x \in \mathcal{K}}{\text{arg min}} \ \eta_t \langle x, \nabla f_t(x_t) \rangle + \psi(x) - \langle x, \nabla \psi(x_t) \rangle \\ &= \underset{x \in \mathcal{K}}{\text{arg min}} \ \langle x, \eta_t \nabla f_t(x_t) - \nabla \psi(x_t) \rangle + \psi(x) \\ &= \underset{x \in \mathcal{K}}{\text{arg max}} \ \langle x, \nabla \psi(x_t) - \eta_t \nabla f_t(x_t) \rangle - \psi(x) \end{split}$$

Let's define $y = \nabla \psi(x_t) - \eta_t \nabla f_t(x_t)$, and we have

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg max}} \langle y, x \rangle - \psi(x).$$

Theorem 5 – Proof

Let's first consider $K = \mathbb{R}^d$. Note x_{t+1} is maximizing

$$\langle x, y \rangle - \psi(x),$$

we have

$$\nabla \psi^*(y) = \frac{\partial \left(\max_x \langle x, y \rangle - \psi(x) \right)}{\partial y},$$

$$= \frac{\partial \left(\langle x_{t+1}, y \rangle - \psi(x_{t+1}) \right)}{\partial y}$$

$$= x_{t+1},$$

which means

$$x_{t+1} = \nabla \psi^*(y) = \nabla \psi^*(\nabla \psi(x_t) - \eta_t \nabla f_t(x_t)).$$

We are done. Please verify the case of the general ${\cal K}.$

Why is called Mirrored descent?

Let's understand online mirrored descent $(\mathcal{K} = \mathbb{R}^d)$

$$x_{t+1} = \nabla \psi^* (\nabla \psi(x_t) - \eta_t \nabla f_t(x_t))$$

in three steps:

- Mirror x_t from primal space to dual $\theta_t = \nabla \psi(x_t)$.
- Take gradient descent in dual space $\theta_{t+1} = \theta_t \eta_t \nabla f_t(x_t)$.
- Mirror θ_{t+1} back to $\nabla \psi^*(\theta_{t+1})$.

Review of Expert problem

Expert problem:

Initialization: *N* experts/models.

For each day $t = 1, \dots, T$:

- **Learner:** Obtain predictions from N experts/models and sample an expert i from a probability simplex x_t .
- **Environment:** Observe the loss of each model $\ell_t \in [0,1]^N$.

Objective: Find the best expert in hindsight, which is equivalent to minimize regret:

$$\mathcal{R}(T) := \mathbb{E}\left[\sum_{t=1}^T \ell_t(i) - \sum_{t=1}^T \ell_t(i^*)\right] = \sum_{t=1}^T \langle x_t, \ell_t \rangle - \sum_{t=1}^T \langle x^*, \ell_t \rangle$$

Expert problem: Hedge

Hedge - "weighted" version:

Initialization: $w_1(i) = 1, \forall i \in [N].$

For each day $t = 1, \dots, T$:

- **Learner:** Sample an expert $i : p_t(i) = w_t(i) / \sum_i w_t(i)$.
- Environment: Observe the error $\ell_t \in [0,1]^N$.
- Update: $w_{t+1} = w_t \cdot e^{-\eta \ell_t(i)}, \forall i \in [N].$

Hedge - "prob" version:

Initialization: $x_1 = [1/d, \cdots, 1/d]$ and η .

For each day $t = 1, \dots, T$:

- **Learner:** Sample an expert i according to x_t .
- **Environment:** Observe the error $\ell_t \in [0,1]^N$.
- Update: $x_{t+1,i} = x_{t,i} e^{-\eta \ell_t(i)} / \sum_{i=1}^d x_{t,i} e^{-\eta \ell_t(i)}, \forall i \in [N].$

Exponentiated Gradient - Hedge

Exponentiated Gradient:

Initialization: $x_1 = [1/d, \cdots, 1/d]$ and η .

For each day $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the loss $f_t(\cdot)$.
- **Update:** $x_{t+1,i} = x_{t,i} e^{-\eta \nabla f_{t,i}(x_t)} / \sum_{i=1}^d x_{t,i} e^{-\eta \nabla f_{t,i}(x_t)}$.

How it is related to Hedge - "prob" version?

- No sampling operator from x_t .
- The loss is $f_t(x_t) = \langle x_t, \ell_t \rangle$.
- Regret is equivalent to the "expected" regret of Hedge!

Exponentiated Gradient – Online Mirrored Descent

Online Mirrored Descent:

Initialization: $x_1 = [1/d, \cdots, 1/d]$ and η .

For each day $t = 1, \dots, T$:

- **Learner:** submit x_t .
- **Environment:** Observe the loss $f_t(\cdot)$.
- Update: $x_{t+1} = \operatorname{arg\,min}_{\mathcal{K}} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta} B_{\psi}(x; x_t).$

Since x in the prob simplex, can we try $\psi(x) = \sum_{i=1}^{d} x_i \log x_i$ in the Bregman divergence and show x_{t+1} is equivalent to that in Exponentiated Gradient?

Exponentiated Gradient – Online Mirrored Descent

Online Mirrored Descent:

Initialization: $x_1 = [1/d, \cdots, 1/d]$ and η .

For each day $t = 1, \dots, T$:

• **Learner:** submit x_t .

• **Environment:** Observe the loss $f_t(\cdot)$.

• Update: $x_{t+1} = \operatorname{arg\,min}_{\mathcal{K}} \langle x, \nabla f_t(x_t) \rangle + \frac{1}{\eta} B_{\psi}(x; x_t)$.

Since x in the prob simplex, can we try $\psi(x) = \sum_{i=1}^{d} x_i \log x_i$ in the Bregman divergence and show x_{t+1} is equivalent to that in the Exponentiated Gradient:

$$x_{t+1,i} = \frac{x_{t,i}e^{-\eta \nabla f_{t,i}(x_t)}}{\sum_{i=1}^{d} x_{t,i}e^{-\eta \nabla f_{t,i}(x_t)}}.$$

Exponentiated Gradient as Online Mirrored Descent

The update of Bragman divergence

$$\min_{\mathbf{x} \in \mathcal{K}} \eta \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \sum_{i=1}^d x_i \log \frac{x_i}{x_{t,i}}$$
s.t.
$$\sum_{i=1}^d x_i = 1, \quad x_i \ge 0.$$

Let's consider (partial) Lagrangian function:

$$L(x,\lambda) = \eta \langle x, \nabla f_t(x_t) \rangle + \sum_{i=1}^d x_i \log \frac{x_i}{x_{t,i}} + \lambda (1 - \sum_{i=1}^d x_i)$$

Exponentiated Gradient as Online Mirrored Descent

Hedge as Online Mirrored Descent

Hedge as Online Mirrored Descent:

Initialization: $x_1 = [1/d, \dots, 1/d]$ and η_t . For each day $t = 1, \dots, T$:

- **Learner:** Sample an expert i from x_t .
- **Environment:** Observe the error $\ell_t(\cdot)$.
- Update: $x_{t+1} = \arg\min_{\mathcal{K}} \langle x, \ell_t \rangle + \frac{1}{\eta} B_{\psi}(x; x_t)$.

Hedge \longrightarrow Exponentiated Gradient \longrightarrow OMD!

OMD is a strong and general framework to design online algorithms!

Hedge as Online Mirrored Descent – Regret

Theorem 6 (Restate Theorem 2)

Let ψ be α -strongly convex function in B_{ψ} . Let fixed learning rate $\eta_t = \eta$. Online mirrored descent algorithm achieves

$$Regret(T) \leq \frac{B_{\psi}(x^*, x_1)}{\eta} + \frac{\eta}{2\alpha} \sum_{t=1}^{T} \|\nabla f_t(x_t)\|^2.$$

In Hedge, we have

- $\psi(x) = \sum_{i=1}^{d} x_i \log x_i$ is 1-strongly convex,
- $B_{\psi}(x^*, x_1) = \sum_{i=1}^{d} x_i^* \log \frac{x_i^*}{x_{1,i}} \le \log N$,

which implies the regret of Hedge is

$$Regret(T) = O(\sqrt{T \log N}).$$

LLM Finetuning

"Reinforcement learning from human feedback" for LLM finetuning²:

- Learn a base/ref policy from supervise learning
- Learn reward models via human/AI feedback
- Policy optimization based on reward models

²Long Ouyang, etc,. "Training language models to follow instructions with human feedback". NeurIPS, 2022.

RLHF Finetuning as (Online) Mirrored Descent

RLHF³ as (Online) Mirrored Descent:

Initialization: A pretrained reward model r and policy π_{ref} .

FineTuning: Find a policy such that

$$\pi_{ heta}^* = rg \max \mathbb{E}_{c \sim \mathcal{D}, a \sim \pi_{ heta}(a|c)} \left[r(c, a) \right] - rac{1}{\eta} \mathsf{KL}(\pi_{ heta}; \pi_{ref}).$$

³OpenAI. Training language models to follow instructions with human feedback. NeurIPS 2022.

Consider a linear function

$$f_t(x) = \langle \ell_t, x \rangle.$$

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Learner: Given a prediction $\hat{\ell}_t$ and submit x_t .
- **Environment:** Observe the cost ℓ_t .

Consider a linear function

$$f_t(x) = \langle \ell_t, x \rangle.$$

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- **Learner:** Given a prediction $\hat{\ell}_t$ and submit x_t .
- **Environment:** Observe the cost ℓ_t .
- u predict weather tomorrow in shanghai
- As an Al language model, I cannot predict the weather with certainty. However, based on bitorical weather data and current trends, I can suggest that the weather in Shanghai tomorrow is likely to be partly cloudy with a chance of scattered showers. The temperature is expected to range from around 10 to 18 degrees Celsius, with a moderate breeze from the east-northeast. However, I would recommend checking the latest weather forestat for Shanghaid on eath more accurate information.
- list three top papers on this topic with just titles
- Sure, here are three top papers on online learning and optimization with just their titles:
- "Online Learning and Online Convex Optimization" by Elad Hazan.
 - "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization" by John Duchi, Elad Hazan, and Yoram Singer.
- "Follow-the-Regularized-Leader and Mirror Descent: Equivalence Theorems and L1 Regularization" by Peter Bartlett, Elad Hazan, and Alexander Rakhlin.

Consider a linear function

$$f_t(x) = \langle \ell_t, x \rangle.$$

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- Learner: Given a prediction $\hat{\ell}_t$ and submit x_t .
- **Environment:** Observe the cost ℓ_t .
- You

predict weather tomorrow in shanghai

ChatGPT

I'm sorry for any confusion, but as an AI, I don't have access to real-time data or the ability to predict the weather. For accurate and up-to-date weather forecasts for Shanghai or any other location, I recommend checking a reliable weather forecasting website or app, or tuning in to a local weather report. These sources typically provide the most accurate and timely information about weather conditions. 1 You

list three top papers on this topic with just titles

- ChatGPT
 - "Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems" by Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
 - "Follow the Regularized Leader and Mirror Descent: Equivalence Theorems and L1 Regularization" by Elad Hazan, Amit Agarwal, and Satyen Kale.
 - 3. "Online Learning: A Survey" by Shai Shalev-Shwartz.

Consider a linear function

$$f_t(x) = \langle \ell_t, x \rangle.$$

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta_t\}$.

For $t = 1, \dots, T$:

- **Learner:** Given a prediction $\hat{\ell}_t$ and submit x_t .
- **Environment:** Observe the cost ℓ_t .

How to utilize the prediction to improve the online learning algorithms?

- For perfect predictions $\hat{\ell}_t = \ell_t$, the regret is smaller than $O(\sqrt{T})$?
- For bad predictions, the regret should not be worse than $O(\sqrt{T})!$

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta\}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the cost ℓ_t .

• Prediction: The cost $\hat{\ell}_{t+1}$.

• **Update:** $x_{t+1} = Alg(x_1, \dots, x_t, \ell_1, \dots, \ell_t, \hat{\ell}_{t+1}).$

 $\mathsf{Alg}(x_1, \dots, x_t, \ell_1, \dots, \ell_t, \hat{\ell}_{t+1})$ could be $\mathsf{Alg}(x_t, \ell_t, \hat{\ell}_{t+1})$ like online gradient/mirrored descent:

$$x_{t+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \langle x, \ell_t \rangle + rac{1}{\eta} \; B_{\psi}(x; x_t)$$

How to incorporate the prediction $\hat{\ell}_{t+1}$?

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta\}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the cost ℓ_t .

• Prediction: The cost $\hat{\ell}_{t+1}$.

• **Update:** $x_{t+1} = Alg(x_1, \dots, x_t, \ell_1, \dots, \ell_t, \hat{\ell}_{t+1}).$

Online gradient/mirrored descent:

$$y_{t+1} = \operatorname*{arg\,min}_{y \in \mathbb{R}^d} \langle y, \ell_t \rangle + rac{1}{\eta} B_{\psi}(y; y_t)$$

How to incorporate the prediction $\hat{\ell}_{t+1}$?

Online Mirrored Descent with Prediction

Online Learning with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta\}$.

For $t = 1, \dots, T$:

- **Learner:** Submit x_t .
- **Environment:** Observe the cost ℓ_t .
- Prediction: The cost $\hat{\ell}_{t+1}$.
- **Update:** $x_{t+1} = Alg(x_1, \dots, x_t, \ell_1, \dots, \ell_t, \hat{\ell}_{t+1}).$

Online gradient/mirrored descent with prediction:

$$\begin{aligned} y_{t+1} &= \operatorname*{arg\,min}_{y \in \mathbb{R}^d} \ \langle y, \ell_t \rangle + \frac{1}{\eta} \ B_{\psi}(y; y_t) \\ x_{t+1} &= \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \ \langle x, \hat{\ell}_{t+1} \rangle + \frac{1}{\eta} \ B_{\psi}(x; y_{t+1}) \end{aligned}$$

Online Mirrored Descent with Prediction

Online Mirrored Descent with Prediction

Initialization: $x_1 \in \mathcal{K}$ and $\{\eta\}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the loss ℓ_t .

• Prediction: The cost $\hat{\ell}_{t+1}$.

• Update: $y_{t+1} = \arg\min_{y \in \mathbb{R}^d} \langle y, \ell_t \rangle + \frac{1}{\eta} B_{\psi}(y; y_t)$ $x_{t+1} = \arg\min_{x \in \mathbb{R}^d} \langle x, \hat{\ell}_{t+1} \rangle + \frac{1}{\eta} B_{\psi}(x; y_{t+1})$

Intuition:

- Online mirrored descent guarantees "not too bad" even with unreliable predictions.
- Decrease the cost further if $\hat{\ell}_{t+1}$ is reliable.

The regret of OMD with prediction⁴ is as follows.

Theorem 7

Let ψ be 1-strongly convex function in B_{ψ} . Let fixed learning rate $\eta_t = \eta$. Given a prediction sequence of $\{\hat{\ell}_t\}$, online mirrored descent achieves

$$Regret(T) \le \frac{B(x^*, x_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{I} \|\hat{\ell}_t - \ell_t\|^2.$$

"Almost" the best of two worlds:

⁴Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. COLT. 2013

The regret of OMD with prediction⁴ is as follows.

Theorem 7

Let ψ be 1-strongly convex function in B_{ψ} . Let fixed learning rate $\eta_t = \eta$. Given a prediction sequence of $\{\hat{\ell}_t\}$, online mirrored descent achieves

$$Regret(T) \le \frac{B(x^*, x_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\hat{\ell}_t - \ell_t\|^2.$$

"Almost" the best of two worlds:

• If the predictions are "perfect", the regret is constant!

⁴Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. COLT. 2013

The regret of OMD with prediction⁴ is as follows.

Theorem 7

Let ψ be 1-strongly convex function in B_{ψ} . Let fixed learning rate $\eta_t = \eta$. Given a prediction sequence of $\{\hat{\ell}_t\}$, online mirrored descent achieves

$$Regret(T) \leq \frac{B(x^*, x_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\hat{\ell}_t - \ell_t\|^2.$$

"Almost" the best of two worlds:

- If the predictions are "perfect", the regret is constant!
- If the predictions are "bad", the regret can be $O(\sqrt{T})$.

⁴Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. COLT, 2013

The regret of OMD with prediction⁴ is as follows.

Theorem 7

Let ψ be 1-strongly convex function in B_{ψ} . Let fixed learning rate $\eta_t = \eta$. Given a prediction sequence of $\{\hat{\ell}_t\}$, online mirrored descent achieves

$$Regret(T) \leq \frac{B(x^*, x_1)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\hat{\ell}_t - \ell_t\|^2.$$

"Almost" the best of two worlds:

- If the predictions are "perfect", the regret is constant!
- If the predictions are "bad", the regret can be $O(\sqrt{T})$.
- If the predictions are "good", the regret can be $o(\sqrt{T})$.

⁴Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. COLT, 2013

Review: OMD without Prediction - Proof

According to the pushback lemma, suppose x_{t+1} minimizes the function F(x) such that

$$F(x) := \langle x, \ell_t \rangle + \frac{1}{\eta} B(x; x_t).$$

For any x, we have

$$F(x_{t+1}) \leq F(x) - \frac{1}{\eta} B(x; x_{t+1}).$$

Therefore, we have

$$\eta\langle x_{t+1}, \ell_t \rangle + B(x_{t+1}; x_t) \leq \eta\langle x^*, \ell_t \rangle + B(x^*; x_t) - B(x^*; x_{t+1}).$$

which implies

$$\eta\langle x_t - x^*, \ell_t \rangle + \eta\langle x_{t+1} - x_t, \ell_t \rangle + B(x_{t+1}; x_t) \leq B(x^*; x_t) - B(x^*; x_{t+1}).$$

OMD with Prediction - Proof

Step one:

$$y_{t+1} = \operatorname*{arg\,min}_{y \in \mathbb{R}^d} \langle y, \ell_t \rangle + rac{1}{\eta} \; B_{\psi}(y; y_t).$$

By pushback lemma, we have

$$\eta\langle y_{t+1}, \ell_t \rangle + B(y_{t+1}; y_t) \le \eta\langle x^*, \ell_t \rangle + B(x^*; y_t) - B(x^*; y_{t+1}).$$

Step two:

$$x_t = rg \min_{x \in \mathbb{R}^d} \ \langle x, \hat{m{\ell}_t}
angle + rac{1}{\eta} \ B_{\psi}(x; y_t).$$

By pushback lemma, we have for any x

$$\eta\langle x_t, \hat{\ell}_t \rangle + B(x_t; y_t) \leq \eta\langle x, \hat{\ell}_t \rangle + B(x; y_t) - B(x; x_t).$$

OMD with Prediction - Proof

Why Online Gradient/Mirrored Descent?

Online Learning Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the cost ℓ_t .

• **Update:** $x_{t+1} = Alg(x_1, \dots, x_t, \ell_1, \dots, \ell_t)$.

We design online learning algorithms to achieve small regret:

• Online gradient/mirrored descent is based on the current x_t and ℓ_t as

$$\mathsf{Alg}(\mathsf{x}_t,\ell_t).$$

Why Online Gradient/Mirrored Descent?

Online Learning Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the cost ℓ_t .

• **Update:** $x_{t+1} = Alg(x_1, \dots, x_t, \ell_1, \dots, \ell_t)$.

We design online learning algorithms to achieve small regret:

• Online gradient/mirrored descent is based on the current x_t and ℓ_t as

$$Alg(x_t, \ell_t).$$

• Can we use all information to design online algorithms?

$$x_{t+1} = \mathsf{Alg}(x_1, \cdots, x_t, \ell_1, \cdots, \ell_t).$$

Follow-The-Leader (FTL) Algorithm

Follow-The-Leader (FTL) Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• Update: $x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x)$.

Intuition of Follow-The-Leader (FTL) algorithm:

- A batch/offline learning problem to use all history info.
- Minimize the "regret" for the next round

$$\sum_{s=1}^{t} f_s(x_{t+1}) \leq \sum_{s=1}^{t} f_s(x^*).$$

Follow-The-Leader (FTL) Algorithm

Follow-The-Leader (FTL) Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• Update: $x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x)$.

Follow-The-Leader (FTL) algorithm seems to work!?

What is the regret of FTL algorithms?

$$\mathcal{R}(T) := \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x).$$

Follow-The-Leader (FTL) Algorithm – Regret

Theorem 8

Under Follow-The-Leader algorithm, we have the sequence of actions $\{x_t\}$ which satisfies

$$\mathcal{R}(T) := \sum_{t=1}^{T} f_t(x_t) - \min_{x \in \mathcal{K}} \sum_{t=1}^{T} f_t(x)$$

$$\leq \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x_{t+1}).$$

Intuitively, we have a small regret if it is "stable":

 x_t is close to x_{t+1} .

Follow-The-Leader (FTL) Algorithm – Proof

Follow-The-Leader (FTL) Algorithm – Caveat

Follow-The-Leader (FTL) Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• **Learner:** Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• **Update:** $x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x)$.

Let's consider a counter example as follows

$$\mathcal{K} = [-1, 1],$$

$$\{f_1, f_2, f_3, f_4, f_5, \cdots, f_T\} = \{0.5x, -x, x, -x, x, \cdots, x\}.$$

What is the regret of FTL algorithms?

Follow-The-Leader (FTL) Algorithm – Caveat

Follow-The-Regularized-Leader (FTRL) Algorithm

We need to make FTL algorithm stable:

$$FTL + Regularization = FTRL.$$

Follow-The-Regularized-Leader (FTRL) Algorithm

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

- Learner: Submit x_t .
- **Environment:** Observe the convex loss $f_t(\cdot)$.
- Update: $x_{t+1} = \operatorname{arg\,min}_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x) + R_{t+1}(x)$.

Intuition of Follow-The-Regularized-Leader:

- The regularization term $R_{t+1}(x)$ prevents x_{t+1} going too far from x_t .
- FTRL is FTL with the initial regularization $f_0(x) = R(x)$.

FTRL Algorithm - Regret

Let's consider the linear costs and the quadratic regularizar:

$$f_t(x) = \langle \ell_t, x \rangle, \forall t, \quad R(x) = \frac{1}{2\eta} ||x||^2.$$

Theorem 9 (linear losses and quadratic regularizar)

Assume $||x - y|| \le D$, $\forall x, y \in \mathcal{K}$ $||\nabla f_t(x)|| \le G$, $\forall x \in \mathcal{K}$. Under Follow-The-Regularized-Leader algorithm, we have the sequence of actions $\{x_t\}$ which satisfies

$$\mathcal{R}(T) \leq DG\sqrt{2T}$$
.

We recover the good result of $O(\sqrt{T})$, which is similar as online gradient descent.

We can also get similar result for a convex loss and other types of regulazizar.

Since FTRL and OMD both have regularization terms, any connection between these two algorithms?

FTRL is

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg \, min}} \sum_{s=1}^{t} f_s(x) + \frac{R(x)}{s}.$$

OMD is

$$x_{t+1} = \underset{x \in \mathcal{K}}{\operatorname{arg \, min}} \langle x, \nabla f_t(x) \rangle + \frac{1}{\eta} B_{\psi}(x; x_t).$$

Let's consider two examples corresponding to two type of gradient algorithms:

- Online gradient descent.
- Exponentiated gradient.

Let's consider the linear costs and the quadratic regularizar:

$$f_t(x) = \langle \ell_t, x \rangle, \forall t, \quad R(x) = \frac{1}{2\eta} ||x||^2.$$

Let's consider the expert problem with linear costs and the negative entropy regularizar:

$$f_t(x) = \langle \ell_t, x \rangle, \forall t, \quad R(x) = \frac{1}{\eta} \sum_i x_i \log x_i.$$

FTRL with the linear losses and adaptive regularization are

$$\begin{aligned} x_{t+1} &= \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x) + R_{t+1}(x) \\ &= \arg\min_{x \in \mathcal{K}} \left\langle \sum_{s=1}^{t} \ell_s, x \right\rangle + R_{t+1}(x) \\ &= \arg\max_{x \in \mathcal{K}} \left\langle -\sum_{s=1}^{t} \ell_s, x \right\rangle - R_{t+1}(x) \end{aligned}$$

Recall the conjugate definition $f^*(y) = \sup_x \langle y, x \rangle - f(x)$. Therefore, we have

$$x_{t+1} = \nabla R_{t+1}^* \left(-\sum_{s=1}^t \ell_s \right)$$

Let's define $\theta_{t+1} = -\sum_{s=1}^t \ell_s$ and $\theta_{t+1} = \theta_t - \ell_t$. FTRL updates as

$$\theta_{t+1} = \theta_t - \ell_t$$
$$x_{t+1} = \nabla R_{t+1}^* (\theta_{t+1})$$

Recall OMD updates as

$$\theta_{t+1} = \nabla \psi(x_t) - \eta_t \ell_t$$
$$x_{t+1} = \nabla \psi^* (\theta_{t+1})$$

FTRL v.s. OMD:

- FTRL takes "gradient" directly in dual space. Unlike in OMD, it first "mirrors" from x_t to $\theta_t = \nabla \psi(x_t)$.
- ullet FTRL treats losses equally & OMD weights losses by $\eta_t.$

Follow-The-Regularized-Leader Algorithm

Follow-The-Regularized-Leader (FTRL) Algorithm

Initialization: $x_1 \in \mathcal{K}$. For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the convex loss $f_t(\cdot)$.

• **Update:** $x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x) + R_{t+1}(x)$.

We have already got the intuition on how the regularization helps stabilize the algorithm.

FTRL is a powerful framework to design online algorithms and the adaptive regulazier plays an important role.

- $R_t(x) = \sqrt{t} ||x||^2.$
- $R_t(x) = \sqrt{t} \sum_i x_i \log x_i$.

FTRL Algorithm - Regret

Let's consider the convex costs $f_t(x)$ and the adaptive regularizar $R_t(x)$ that is "increasing" as time t and α_t -strongly convex.

Theorem 10 (convex losses and adaptive regularizar)

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K} ||\nabla f_t(x)|| \le G, \forall x \in \mathcal{K}$. Under Follow-The-Regularized-Leader algorithm, we have the sequence of actions $\{x_t\}$ which satisfies

$$\mathcal{R}(T) \leq R_{T+1}(x^*) - \min R_1(x) + \sum_{t=1}^{T} \frac{\|\nabla f_t\|^2}{2\alpha_t}.$$

We recover the good result of $O(\sqrt{T})$ (e.g., the regularizar $R_t(x) = \sqrt{t} ||x||^2$). It is similar as FTRL with the fixed regularizar.

We want to study

$$\mathcal{R}(T) = \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(x^*).$$

Denote $F_t(x) = \sum_{s=1}^{t-1} f_s(x) + R_t(x)$ and we have

$$F_{T+1}(x^*) = \sum_{s=1}^{T} f_s(x^*) + R_{T+1}(x^*).$$

Therefore, we have

$$\mathcal{R}(T) = \sum_{t=1}^{T} f_t(x_t) - F_{T+1}(x^*) + R_{T+1}(x^*).$$

We need to connect $f_t(x_t)$ with $F_t(x_t)$.

We have

$$\mathcal{R}(T) = \sum_{t=1}^{T} f_t(x_t) - F_{T+1}(x^*) + R_{T+1}(x^*)$$

$$= \sum_{t=1}^{T} (F_t(x_t) - F_{t+1}(x_{t+1}) + f_t(x_t))$$

$$+ F_{T+1}(x_{T+1}) - F_1(x_1) - F_{T+1}(x^*) + R_{T+1}(x^*)$$

$$= \sum_{t=1}^{T} (F_t(x_t) - F_{t+1}(x_{t+1}) + f_t(x_t))$$

$$+ F_{T+1}(x_{T+1}) - F_{T+1}(x^*) + R_{T+1}(x^*) - \min R_1(x)$$

The key is to quantify $F_t(x_t) - F_{t+1}(x_{t+1}) + f_t(x_t)$.

Lemma 11 (One-step difference)

Let F_t be α_t -strongly convex function, FTRL algorithm has

$$F_t(x_t) - F_{t+1}(x_{t+1}) + f_t(x_t) \le \frac{\|\nabla f_t\|^2}{2\alpha_t} + R_t(x_{t+1}) - R_{t+1}(x_{t+1}).$$

Optimistic FTRL

Optimistic Follow-The-Regularized-Leader (FTRL)

Initialization: $x_1 \in \mathcal{K}$. For $t = 1, \dots, T$:

- Learner: Submit x_t .
- **Environment:** Observe the convex loss $f_t(\cdot)$.
- Prediction: The cost $\hat{f}_{t+1}(\cdot)$.
- Update:

$$x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x) + \hat{f}_{t+1}(x) + R_{t+1}(x).$$

Intuition:

- FTRL guarantees "not too bad" even with unreliable predictions.
- Decrease the cost further if $\hat{f}_{t+1}(\cdot)$ is reliable.

Optimistic FTRL - Regret

Theorem 12 (Optimistic FTRL)

Assume $||x - y|| \le D, \forall x, y \in \mathcal{K} ||\nabla f_t(x)|| \le G, \forall x \in \mathcal{K}$. $R_t(x)$ that is "increasing" as time t and α_t -strongly convex. Under Optimistic Follow-The-Regularized-Leader algorithm, we have the sequence of actions $\{x_t\}$ which satisfies

$$\mathcal{R}(T) \leq R_{T+1}(x^*) - \min R_1(x) + \sum_{t=1}^T \frac{\|\nabla f_t - \nabla \hat{f}_t\|^2}{2\alpha_t}.$$

As in OMD with prediction, we have a few observations:

- If the predictions are "perfect", the regret is constant!
- If the predictions are "bad", the regret can be $O(\sqrt{T})$.
- If the predictions are "good", the regret can be $o(\sqrt{T})$.

Optimistic FTRL – Proof

Online Learning with Delayed Feedback

Online Learning with Delayed Feedback

Initialization: $x_1 \in \mathcal{K}$. For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the convex loss $f_{t-d}(\cdot)$.

• **Update:** $x_{t+1} = Alg(f_1, f_2, \dots, f_{t-d}).$

A few examples:

- Subseasonal prediction: the prediction correct or not will be known in 2~6 weeks.
- Medical treatment: the treatment effective or not will be observed a few days or weeks.
- Dynamic pricing: the promotion working or not will be revealed a few days or weeks.

FTRL with Delayed Feedback

FTRL with Delayed Feedback

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

• Learner: Submit x_t .

• **Environment:** Observe the convex loss $f_{t-d}(\cdot)$.

• **Update:** $x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t-d} f_s(x) + R_{t+1}(x)$.

Observations of FTRL with delayed feedback:

- Use all revealed feedback seen at time t.
- Large delay degrades the performance because of missing feedback $\sum_{s=t-d+1}^{t} f_s(x)$.

What is the regret of the algorithms?

Delay as Optimism in FTRL

Delay is "optimistism"!!!

Delay as Optimism in FTRL

Initialization: $x_1 \in \mathcal{K}$.

For $t = 1, \dots, T$:

- Learner: Submit x_t .
- **Environment:** Observe the convex loss $f_t(\cdot)$.
- Prediction: The cost $\hat{f}_{t+1}(\cdot) = -\sum_{s=t-d+1}^{t} f_s(x)$.
- Update:

$$x_{t+1} = \arg\min_{x \in \mathcal{K}} \sum_{s=1}^{t} f_s(x) + \hat{f}_{t+1}(x) + R_{t+1}(x).$$

Delayed FTRL \longrightarrow Optimistic FTRL.

Optimistic FTRL is a powerful framework that can handle the prediction and delay!

Delayed FTRL - Regret

Theorem 13 (Delayed FTRL)

Assume $\|x-y\| \leq D, \forall x,y \in \mathcal{K} \|\nabla f_t(x)\| \leq G, \forall x \in \mathcal{K}.$ $R_t(x)$ that is "increasing" as time t and α_t -strongly convex. Under Follow-The-Regularized-Leader algorithm, we have the sequence of actions $\{x_t\}$ which satisfies

$$R(T) \le R_{T+1}(x^*) - \min R_1(x) + \sum_{t=1}^{T} \frac{\|\nabla f_t - \nabla \hat{f}_t\|^2}{2\alpha_t},$$

where
$$\nabla \hat{f}_t = -\sum_{s=t-d+1}^t \nabla f_s$$
.

The effect caused by the delay:

$$\|\nabla f_t\|^2 \longrightarrow \|\nabla f_t + \sum_{s=t-d+1}^t \nabla f_s\|^2$$
.

Let $\alpha_t = O(1/d\sqrt{T})$. Delayed FTRL achieves the regret of $O(d\sqrt{T})$, where the delay hurts the regret!

