Algorithm Theory, Tutorial 1 Improving the QLever Search Engine

Johannes Kalmbach

University of Freiburg johannes.kalmbach@gmail.com

October 2018

General Hints

- Contact tutor (johannes.kalmbach@gmail.com) for questions concerning corrections etc.
- Contact forum (daphne.informatik.uni-freiburg.de) for everything else
- Suggestion: Submit in groups of two (better for understandable algorithms)
- Submit readable solutions (LaTeX as pdf, CLEAN handwriting (+ good scan if necessary))
- Spend enough time on exercise sheets and writeup (you and I have to understand your submission).

Algorithm Writeups

- Pseudocode, limit to important aspects
- Reader must be able to understand and implement it.
- E.g "Split Array A in two evenly-sized halves L and R"

Ex 1a: Prove or disprove: $n! \in \Omega(n^2)$

Ex 1b: Prove or disprove: $\sqrt{n^3} \in O(n \log n)$

Ex 1b: Prove or disprove: $\sqrt{n^3} \in O(n \log n)$

Ex 1b: Prove or disprove: $\sqrt{n^3} \in O(n \log n)$

Ex 1c: Prove or disprove: $2^{\sqrt{\log_2 n}} \in \Theta(n)$

Ex 1c: Prove or disprove: $2^{\sqrt{\log_2 n}} \in \Theta(n)$

Ex 1c: Prove or disprove: $2^{\sqrt{\log_2 n}} \in \Theta(n)$

Sort by asymptotic growth

n^2	\sqrt{n}	$2^{\sqrt{n}}$	$\log(n^2)$
$2^{\sqrt{\log_2 n}}$	$\log(n!)$	$\log(\sqrt{n})$	$(\log n)^2$
log n	$10^{100}n$	n!	n log n
$2^n/n$	n ⁿ	$\sqrt{\log n}$	n

Sort by asymptotic growth

Sort by asymptotic growth

Ex 3: Master Theorem

See master solution, just table lookup

Ex 4: Peak Elements

You are given an array $A[1 \dots n]$ of n integers and the goal is to find a peak element, which is defined as an element in A that is equal to or bigger than its direct neighbors in the array. Formally, A[i] is a peak element if $A[i-1] \leq A[i] \geq A[i+1]$. To simplify the definition of peak elements on the rims of A, we introduce sentinal-elements $A[0] = A[n+1] = -\infty$.

- **©** Give an algorithm with runtime $O(\log n)$ (measured in the number of read operations on the array) which returns the position i of a peak element.
- Prove that your algorithm always returns a peak element, give a recurrence relation for the runtime and use it to prove the runtime.

Why/When do peak elements exist?

Claim: If A[0] < A[1] and A[n] > A[n+1] then $A[1 \dots n]$ contains a peak element.

Prove by contradition: Assume that $A[1 \dots n]$ contains no peak, then

Constructing the algorithm

Idea: Make the considered array smaller while ensuring that it still contains a peak element:

Constructing the algorithm

Proof of correctness

Two parts: Algorithm always terminates and only looks at arrays that contain peak elements.

Proof of correctness

Proof of correctness

Ex 5, Frequent Numbers

You are given an Array A[0...n-1] of n integers and the goal is to determine frequent numbers which occur at least n/3 times in A. There can be at most three such numbers, if any exist at all.

- © Give an algorithm with runtime $O(n \log n)$ (measured in number of array entries that are read) based on the divide and conquer principle that outputs the frequent numbers (if any exist).
- Argue why your algorithm is correct, give a recurrence relation for the runtime and use it to prove the runtime.

First Try: HashMap

Divide and Conquer

Sorting and Counting