

Лекция 2

Матрица линейного оператора

Содержание лекции:

В настоящей лекции мы рассмотрим представление оператора в линейном пространстве с заданным базисом. Мы покажем, что произвольный линейный оператор в этом случае моно представить прямоугольной матрицей соответствующих размеров. Также будет обсуждаться вопрос преобразования матрицы оператора при замене базисов пространств.

Ключевые слова:

Матрица линейного оператора, базис размерность пространства линейных операторов, преобразование матрицы оператора, преобразование подобия.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

2.1 Матрица линейного оператора

Пусть $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ - линейный оператор и $\{e_i\}_{i=1}^n,\ \{g_j\}_{j=1}^m$ - базисы пространств X и Y соответственно.

Матрицей линейного оператора φ в паре базисов $\{e_i\}_{i=1}^n$ и $\{g_j\}_{j=1}^m$ называется матрица $A = \|\alpha_i^j\|$ по столбцам которой находятся координаты образов векторов базиса $\{e_i\}_{i=1}^n$ в базисе $\{g_j\}_{j=1}^m$:

$$\varphi(e_i) = \sum_{j=1}^m \alpha_i^j g_j.$$

Пример 2.1. Примеры:

1. $\Theta: X \to Y$:

$$A_{\Theta} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

2. $\mathcal{I}: X \to X$:

$$A_{\mathcal{I}} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

3. $\mathcal{P}_{L_1}^{\parallel L_2}: X \to X$:

$$A_{\mathcal{P}_{L_1}^{||L_2}} = \begin{pmatrix} A_{\mathcal{I}} & 0\\ 0 & A_{\Theta} \end{pmatrix},$$

так как

$$\mathcal{P}_{L_1}^{\parallel L_2} x = x, \quad \forall x \in L_1,$$

$$\mathcal{P}_{L_1}^{\parallel L_2} x = 0, \quad \forall x \in L_2.$$

4. $D: \mathcal{P}_n \to \mathcal{P}_n$:

$$A_{\mathcal{D}} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & n \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

в базисе $\{1, t, t^2, \dots, t^n\}$.

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

Теорема 2.1. Задание линейного оператора φ эквивалентно заданию его матрицы A в фиксированной паре базисов.

▶

⇒ Очевидно.

 \Leftarrow Пусть $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ - линейный оператор и $\{e_i\}_{i=1}^n, \{g_j\}_{j=1}^m$ - базисы пространств X и Y соответственно. Рассмотрим элементы $x \in X$ и $y \in Y$, такие что:

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad y = \sum_{j=1}^{m} \eta^{j} g_{j}, \quad \varphi(x) = y.$$

Рассмотрим действие оператора на элемент x:

$$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \xi^{i} e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \varphi\left(e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} \alpha_{i}^{j} g_{j} = \sum_{j=1}^{m} \eta^{j} g_{j},$$

Откуда следует, что

$$\eta^j = \sum_{i=1}^n \xi^i \alpha_i^j.$$

4

Теорема 2.2. Набор операторов $\{^i_j \varepsilon\}$, действующих на произвольный вектор $x \in X$ по правилу

$$_{j}^{i}\varepsilon(x) = \xi^{i}g_{j}, \quad x = \sum_{i=1}^{n} \xi^{i}e_{i},$$

образует базис пространства $\operatorname{Hom}_{\Bbbk}(X,Y)$

▶

Необходимо показать, что набор операторов $\{^i_k \varepsilon\}$ является полным и линейно независимым в $\operatorname{Hom}_{\Bbbk}(X,Y)$:

ПН: пусть $\varphi \in \operatorname{Hom}_{\mathbb{k}}(X,Y)$, тогда

$$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \xi^{i} e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} a_{i}^{j} g_{j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \xi^{i} a_{i}^{j} g_{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{j=1}^{i} \varepsilon(x) a_{i}^{j}, \quad \forall x \in X$$

Откуда следует, что

$$\varphi = \sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon a_{i}^{j}, \quad \forall \varphi \in \operatorname{Hom}_{\mathbb{k}}(X, Y).$$

ЛНЗ: положим, рассмотрим линейную комбинацию векторов набора $\{^i_j \varepsilon\}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon \beta_{i}^{j} = \Theta,$$

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

и применим обе части операторного равенства к базисному элементу e_k пространства X. Получим:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon(e_{k}) \beta_{i}^{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{k}^{i} g_{j} \beta_{i}^{j} = \sum_{j=1}^{m} g_{j} \beta_{k}^{j} = 0_{Y}$$

Но набор $\{g_j\}_{j=1}^m$ - линейно-независимый (как базис Y) следовательно $\beta_k^j=0, \forall k$. Применяя полученное выражение ко всем элементам базиса $\{e_k\}_{k=1}^n$ получим что все коэффициенты β_k^j равны нулю.

•

Nota bene Пространство $\operatorname{Hom}_{\Bbbk}(X,Y)$ изоморфно пространству K_n^m $m \times n$ матриц.

Nota bene Размерность линейного пространства $\operatorname{Hom}_{\Bbbk}(X,Y)$ равна

$$\dim \operatorname{Hom}_{\mathbb{k}}(X,Y) = \dim_{\mathbb{k}} K_n^m = \dim_{\mathbb{k}} X \cdot \dim_{\mathbb{k}} Y = m \cdot n.$$

Теорема 2.3. Пусть $\varphi \in \operatorname{End}(X)$ имеет в базисах $\{e_i\}_{i=1}^n$ и $\{\tilde{e}_j\}_{j=1}^n$ соответственно матрицы A и \tilde{A} . Тогда

$$\tilde{A} = S \cdot A \cdot T, \quad S = T^{-1}.$$

ightharpoons

Вычислим образ $\varphi(\tilde{e}_k)$ двумя способами:

$$\varphi(\tilde{e}_k) = \sum_{j=1}^n \tilde{a}_k^j \tilde{e}_j = \sum_{j=1}^n \sum_{i=1}^n \tilde{a}_k^j \tau_j^i e_i.$$

$$\varphi(\tilde{e}_k) = \varphi\left(\sum_{j=1}^n \tau_k^j e_j\right) = \sum_{j=1}^n \tau_k^j \varphi\left(e_j\right) = \sum_{j=1}^n \sum_{i=1}^n \tau_k^j a_j^i e_i.$$

Доказательство следует из равенства правых частей полученных выражений.

4

Преобразованием подобия матрицы А называется преобразование вида:

$$A \mapsto T^{-1} \cdot A \cdot T$$
, $\det T \neq 0$.

Nota bene Преобразование матрицы произвольного оператора $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ с матрицами перехода T_X и T_Y имеет вид:

$$\tilde{A} = T_Y^{-1} \cdot A \cdot T_X.$$

 $Nota\ bene$ При замене базиса матрица A линейного оператора φ подвергается преобразованию подобия.