SP 2019

Q1)

(a) By a solution of a system of linear egns. in x, ..., x,

(b) Two systems are equivalent if they have the same solns set. This happens iff they can be obtained for each other using EROs.

(c) An elementary nxn matrix is this obtained from the identity matrix In using a Single elementa. vow sparation.

(92)

(a)
$$\begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 3 & | & & -2 & | & 5 \\ 2 & 2 & | & | & 4 \end{bmatrix} \xrightarrow{R_3 - 3R_1 \to R_2} \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & | & 7 & | & 11 \\ 0 & 2 & 7 & | & 8 \end{bmatrix}$$

augmented matrix

$$R_{3}-2R_{5}\rightarrow R_{5}$$

$$\begin{bmatrix} 1 & 0 & -3 & | -2 \\ 0 & 1 & 7 & | 11 \\ 0 & 0 & | 7 & | 11 \\ 0 & 0 & | 7 & | 11 \\ 0 & 0 & | 7 & | 11 \\ 0 & 0 & | 7 & | 11 \\ 0 & 0 & | 7 & | 11 \\ 0 & 0 & | 7 & | 7 \\ 0 & 0 & | 7 & |$$

(b) Matrix notation
$$AX = B$$

$$A X = B$$

$$A = \begin{bmatrix} 1 & 0 & -3 & 7 \\ 3 & 1 & -2 & 7 \\ 2 & 2 & 1 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & -3 \\ 3 & 1 & -2 \\ 2 & 2 & 1 \end{bmatrix}, \quad \underline{X} = \begin{bmatrix} x \\ y \\ \overline{z} \end{bmatrix}, \quad \underline{B} = \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}$$

3×3 Coeff. matrix

Var. ables Column Vector

(c)
$$|A| = \begin{vmatrix} 1 & 0 & -3 & 1 \\ 3 & 1 & -2 & 3 \\ 2 & 2 & 1 & 2 \end{vmatrix}$$

$$= 1 + 0 + (-18) - (-6) - (-4) - 0$$

$$= 1 - 18 + 6 + 4 = -7 \neq 0$$

(d) The unique Soln. A the system is given by
$$X = \begin{bmatrix} x \\ y \\ 7 \end{bmatrix} = A B = \frac{1}{7} \begin{bmatrix} -5 & 6 & -3 \\ 7 & -7 & 7 \\ -4 & 2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}$$

$$= \frac{1}{7} \begin{bmatrix} 10 + 30 - 12 \\ -14 - 35 + 28 \\ 8 + 10 - 4 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 28 \\ -21 \\ 14 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$$

$$32 \quad X = 4 \quad , \quad y = -3 \quad , \quad Z = 2$$

$$C_{13} = R_{1,A}$$
, $C_{3,B} = [123] 4 = (0(1) + (0(4) + (3)(1))$
= $1 + 8 + 3 = 12$

(b)
$$D = BA = (d_{ij})_{i,j}$$

 $(d_{2i}) = R_{2,B} \cdot C_{i,A} = [454] \begin{bmatrix} 1\\4 \end{bmatrix}$
 $= 4 + 20 + 28 = 52$

(c)
$$R = AB^2 = (r_{ij})_{i,j}$$

$$R = (AB)B$$

$$R = \begin{bmatrix} AB \end{bmatrix}B$$

$$R = \begin{bmatrix} 20 & 18 & 12 \end{bmatrix}\begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$R = \begin{bmatrix} 13 & 14 \\ 14 & 14 \end{bmatrix}$$

$$R = \begin{bmatrix} 20 & 18 & 12 \end{bmatrix}\begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$= 20 + 72 + 12 = 104$$

(d)
$$M_{23} = \begin{vmatrix} 1/2 \\ 7/8 \end{vmatrix} = 8-14 = -6$$

$$\bigcirc$$

Elementar y matrix

 $E_1 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$

 $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$

 $E_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

$$S_0 \quad I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = E_3 E_7 E_1 A$$

$$A' = E_3 E_7 E_1$$

$$A = (E_{3} E_{5} E_{1}) = E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}$$

$$= \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Q7) Out B be the matrix obtained from A 59 opplying the ERO R; -R; -R; However, the jth sow of B consists entirely of zeros. Hence, 1B1=0, which was to be shown. $33 B^{t} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B^{-1} = \frac{1}{|B|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $=\frac{1}{-1}\begin{bmatrix}0&-1\\-1&0\end{bmatrix}$ $= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 30 Bt = B-1
30 B orthogonal. (b) C = [1 -17] $C^{t} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, $\overline{C}' = \frac{1}{1CI} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ = + [: 1] + ct

(C) Suppose that A is althogrand

3. $A^{-1} = A^{t}$ 3. $A = A^{t} = I$ 3. $|A = A^{t}| = |I| = |I|$ 3. $|A = A^{t}| = |I| = |I|$ 3. $|A = A^{t}| = |I|$

