

何宾 2018.03

## 串口2寄存器及工作模式 --串口2控制寄存器S2CON

| 名字    | 地址   | 复位值      | В7    | В6 | В5    | B4    | В3    | B2    | B1   | ВО   |
|-------|------|----------|-------|----|-------|-------|-------|-------|------|------|
| S2CON | 0x9A | 01000000 | S2SM0 | 1  | S2SM2 | S2REN | S2TB8 | S2RB8 | S2TI | S2RI |

#### **■ S2SM0**

口 该位确定串口2工作模式。当该位为0时,为8位UART,可变波特率模式;当该位为1时,为9位UART,可变波特率模式。

#### **■ S2SM2**

允许方式1多机通信控制位。如果S2SM2位为1且S2REN位为1时,则接收机处于地址帧选状态。此时可以利用接收到的第9位(即S2RB8)来筛选地址帧:

### 串口2寄存器及工作模式 --串口2控制寄存器S2CON

- 口 当S2RB8=1时,说明该帧为地址帧,地址信息可以进入S2BUF,并使得S2RI置1,进而在中断服务程序中再进行地址号比较;
- 口 当S2RB8=0时, 说明该帧不是地址帧, 应丢掉并保持S2RI=0。
- 注: (1) 在方式1中,如果S2SM2位为0且S2REN位为1,接收机处于禁止筛选地址帧状态。不论收到的S2RB8是否为1,均可使接收到的信息进入S2BUF,并使得S2RI=1,此时S2RB8通常为校验位。
  - (2) 方式0为非多机通信方式。在这种模式下,将S2SM2设置为0。

#### ■ S2REN

口 允许/禁止串口2接收控制位。当该位为1时,允许串行接收状态,可以 启动串行接收器RxD2,开始接收信息;当该位为0时,禁止串行接收 状态,禁止串行接收器RxD2。



#### **■ S2TB8**

当选择方式1时,该位为要发送的第9位数据,按需要由软件置1或者 清0。例如:可用作数据的校验位或者多机通信中表示地址帧/数据帧 的标志位。

#### **■ S2RB8**

山 当选择方式1时,该位为接收到的第9位数据,作为奇偶校验位或者地址帧/数据帧的标志位。

### 串口2寄存器及工作模式 --串口2控制寄存器S2CON

#### ■ S2TI

口 发送中断请求标志位。在停止位开始发送时由S2TI置1,向CPU发出中断请求。

注:当CPU响应中断后,必须由软件将该位清0。

#### ■ S2RI

口接收中断请求标志位。在接收到停止位的中间时刻由S2RI置1,向CPU发出中断请求。

注: 当CPU响应中断后,必须由软件将该位清0。

### 串口2寄存器及工作模式 --串口数据缓冲寄存器

- STC15系列单片机的串口2缓冲寄存器S2BUF地址为0x9B, 在该地址实际是两个缓冲寄存器。
  - 口 一个缓冲寄存器用于保存要发送的数据;
  - 口 另一个缓冲寄存器用于读取已经接收到的数据。
- 在串口的串行通道内,设置数据寄存器。
  - 口 在该串口所有工作模式中,在写入信号S2BUF的控制下,把数据加载到相同的9位移位寄存器中,前面8位为数据字节,最低位为移位寄存器的输出位。
  - 口 根据所设置的工作模式,自动将1或者S2TB8的值加载到移位寄存器的第9位,并进行发送。

### 串口2寄存器及工作模式 --串口数据缓冲寄存器

- 在串口的接收寄存器是一个输入移位寄存器。
  - 口 在方式0和方式1时,字长均为9位。
  - 口 当接收完一帧数据后,将移位寄存器中的串行字节数据加载到数据缓冲寄存器S2BUF中,将其第9位加载到S2CON寄存器的S2RB8位。如果由于S2SM2使得已经接收到的数据无效时,S2RB8和S2BUF中的内容不变。
- 由于在串行通道内设置了输入移位寄存器和S2BUF缓冲寄存器,从而在接收完一帧串行数据将其从移位寄存器加载到并行 S2BUF缓冲寄存器后,可以立即开始接收下一帧数据。

# 串口2寄存器及工作模式 --中断允许寄存器2 (IE2)

| 名字  | 地址   | 复位值      | В7 | В6  | В5  | B4  | В3  | В2  | B1   | ВО  |
|-----|------|----------|----|-----|-----|-----|-----|-----|------|-----|
| IE2 | 0xAF | X0000000 |    | ET4 | ET3 | ES4 | ES3 | ET2 | ESPI | ES2 |

#### **■ ES2**

口 串口2中断允许位。当该位为1时,允许串口2中断;当该位为0时,禁止串口2中断。

# 串口2寄存器及工作模式 --中断优先级控制寄存器2 (IP2)

| 名字  | 地址   | 复位值      | В7 | В6 | В5 | B4  | В3     | B2   | B1   | В0  |
|-----|------|----------|----|----|----|-----|--------|------|------|-----|
| IP2 | 0xB5 | xxx00000 |    |    |    | PX4 | PPWMFD | PPWM | PSPI | PS2 |

#### ■ PS2

口 串口2中断优先级控制位。当该位为0时,串口2中断为最低优先级中断 (优先级为0);当该位为1时,串口2中断为最高优先级中断 (优先级1)。

# 串口2寄存器及工作模式 --引脚位置控制寄存器P\_SW2

| 名字    | 地址   | 复位值      | В7 | В6 | В5 | B4 | В3 | B2   | B1   | ВО   |
|-------|------|----------|----|----|----|----|----|------|------|------|
| P_SW2 | 0xBA | xxxxx000 |    |    |    |    |    | S4_S | S3_S | S2_S |

### ■ S4\_S

- 口 串口4引脚位置选择控制位。
- 口 当该位为0时,串口4的引脚位置在P0.2/RxD4和P0.3/TxD4;
- 口 当该位为1时,串口4的引脚位置在P5.2/RxD4\_2和P5.3/TxD4\_2。

# 串口2寄存器及工作模式 --引脚位置控制寄存器P\_SW2

- S3\_S
  - 口 串口3引脚位置选择控制位。
  - 口 当该位为0时,串口3的引脚位置在P0.0/RxD3和P0.1/TxD3;
  - 口 当该位为1时,串口3的引脚位置在P5.0/RxD3\_2和P5.1/TxD3\_2。
- **S2\_S** 
  - 口 串口2引脚位置选择控制位。
  - 口 当该位为0时,串口2的引脚位置在P1.0/RxD2和P1.1/TxD2;
  - 口 当该位为1时,串口2的引脚位置在P4.6/RxD2\_2和P4.7/TxD2\_2。

### 串口2工作模式 --串口2工作模式0

### 模式0为8位可变波特率UART工作方式。

- 在该模式下,10位数据通过RxD2/P1.0(Rx\_D2/ P4.6)接收,通过TxD2/P1.1(Tx\_D2/ P4.7)发送。
- 一帧数据包含: 一个起始位、8个数据位和一个停止位。
- 接收数据时,停止位进入S2CON寄存器的S2RB8位。
- 波特率由定时器2的溢出率确定。

### 串口2工作模式 --串口2工作模式1

### 模式1为9位可变波特率UART工作方式。

- 在该模式下,11位数据通过RxD2/P1.0(Rx\_D2/ P4.6)接收,通过TxD2/P1.1(Tx\_D2/ P4.7)发送。
- 一帧数据包含: 一个起始位、8个数据位、一个可编程的第9位 和一个停止位。
  - 口 发送时,第9位数据来自寄存器S2CON的S2TB8位。
  - 口 当接收数据时,第9位进入S2CON寄存器的S2RB8位。
- 波特率由定时器2的溢出率确定。

| 名字    | 地址   | 复位值     | В7    | В6    | В5    | B4    | ВЗ    | B2    | B1   | ВО   |
|-------|------|---------|-------|-------|-------|-------|-------|-------|------|------|
| S3CON | OxAC | 0000000 | S3SM0 | S3ST3 | S3SM2 | S3REN | S3TB8 | S3RB8 | S3TI | S3RI |

#### **■ S3SM0**

口 该位确定串口3工作模式。当该位为0时,为8位UART,可变波特率模式;当该位为1时,为9位UART,可变波特率模式。

#### **■ S3ST3**

□ 串口3选择定时器3作为波特率发生器控制位。当该位为0时,串口3选择定时器2作为其波特率发生器;当该位为1时,串口3选择定时器3作为其波特率发生器。

**■ S3SM2** 

允许方式1多机通信控制位。如果S3SM2位为1且S3REN位为1时,则接收机处于地址帧选状态。此时可以利用接收到的第9位(即S3RB8)来筛选地址帧:

- □ 当S3RB8为1时,说明该帧为地址帧,地址信息可以进入S3BUF,并使得S3RI置1,进而在中断服务程序中再进行地址号比较;
- 口 当S3RB8为0时,说明该帧不是地址帧,应丢掉并保持S3RI为0。
- 注: (1) 在方式1中,如果S3SM2位为0且S3REN位为1,接收机处于禁止筛选地址帧状态。不论收到的S3RB8是否为1,均可使接收到的信息进入S3BUF,并使得S3RI=1,此时S3RB8通常为校验位。
  - (2) 方式0为非多机通信方式。在这种模式下,将S3SM2设置为0。

#### ■ S3REN

口 允许/禁止串口3接收控制位。当该位为1时,允许串行接收状态,可以 启动串行接收器RxD3,开始接收信息;当该位为0时,禁止串行接收 状态,禁止串行接收器RxD3。

#### **■ S3TB8**

□ 当选择方式1时,该位为要发送的第9位数据,按需要由软件置1或者清0。例如:可用作数据的校验位或者多机通信中表示地址帧/数据帧的标志位。

#### **■ S3RB8**

口 当选择方式1时,该位为接收到的第9位数据,作为奇偶校验位或者地址帧/数据帧的标志位。

#### ■ S3TI

口 发送中断请求标志位。在停止位开始发送时由S3TI置1,向CPU发出中断请求。

注: 当CPU响应中断后,必须由软件将该位清0。

#### ■ S3RI

口接收中断请求标志位。在接收到停止位的中间时刻由S3RI置1,向CPU 发出中断请求。

注: 当CPU响应中断后,必须由软件将该位清0。

### 串口3寄存器及工作模式 --串口数据缓冲寄存器

- STC15系列单片机的串口3缓冲寄存器S3BUF地址为0xAD,在该地址实际是两个缓冲寄存器。
  - 口 一个缓冲寄存器用于保存要发送的数据;
  - 口 另一个缓冲寄存器用于读取已经接收到的数据。
- 在串口的串行通道内,设置数据寄存器。
  - 口 在该串口所有工作模式中,在写入信号S3BUF的控制下,把数据加载到相同的9位移位寄存器中,前面8位为数据字节,最低位为移位寄存器的输出位。根据所设置的工作模式,自动将1或者S3TB8的值加载到移位寄存器的第9位,并进行发送。

# 串口3寄存器及工作模式---串口数据缓冲寄存器

- 在串口的接收寄存器是一个输入移位寄存器。
  - 口 在方式0和方式1时,字长均为9位。当接收完一帧数据后,将移位寄存器中的串行字节数据加载到数据缓冲寄存器S3BUF中,将其第9位加载到S3CON寄存器的S3RB8位。如果由于S3SM2使得已经接收到的数据无效时,S3RB8和S3BUF中的内容不变。
  - 口由于在串行通道内设置了输入移位寄存器和S3BUF缓冲寄存器,从 而在接收完一帧串行数据将其从移位寄存器加载到并行S3BUF缓冲 寄存器后,可以立即开始接收下一帧数据。

# 串口3寄存器及工作模式 --中断允许寄存器2 (IE2)

| 名字  | 地址   | 复位值      | В7 | В6  | В5  | B4  | В3  | B2  | B1   | ВО  |
|-----|------|----------|----|-----|-----|-----|-----|-----|------|-----|
| IE2 | 0xAF | X0000000 |    | ET4 | ET3 | ES4 | ES3 | ET2 | ESPI | ES2 |

#### **■ ES3**

口 串口3中断允许位。当该位为1时,允许串口3中断;当该位为0时,禁止串口3中断。

# 串口3工作模式 --串口3工作模式0

### 模式0为8位可变波特率UART工作方式。

- 在该模式下, 10位数据通过RxD3/P0.0(RxD3\_2/ P5.0)接收, 通过TxD3/P0.1(TxD3\_2/ P5.1)发送。
- 一帧数据包含: 一个起始位、8个数据位和一个停止位。
- 接收数据时,停止位进入S3CON寄存器的S3RB8位。
- 波特率由定时器2或者定时器3的溢出率确定。

## 串口3工作模式 --串口3工作模式1

### 模式1为9位可变波特率UART工作方式

- 在该模式下, 11位数据通过RxD3/P0.0(RxD3\_2/ P5.0)接收, 通过 TxD3/P0.1(TxD3\_2/ P5.1)发送。
- 一帧数据包含: 一个起始位、8个数据位、一个可编程的第9位和
  - 一个停止位。
    - 口 发送时,第9位数据来自特殊功能寄存器S3CON的S3TB8位。
    - 口 当接收数据时,第9位进入S3CON寄存器的S3RB8位。
- 波特率由定时器2/3的溢出率确定。

## 串口4寄存器及工作模式 --串口4控制寄存器S4CON

| 名字    | 地址   | 复位值      | В7    | В6    | В5    | B4    | ВЗ    | B2    | B1   | ВО   |
|-------|------|----------|-------|-------|-------|-------|-------|-------|------|------|
| S4CON | 0x84 | 00000000 | S4SM0 | S4ST4 | S4SM2 | S4REN | S4TB8 | S4RB8 | S4TI | S4RI |

#### **■ S4SM0**

口 该位确定串口4工作模式。当该位为0时,为8位UART,可变波特率模式;当该位为1时,为9位UART,可变波特率模式。

#### **■** S4ST4

□ 串口4选择定时器4作为波特率发生器控制位。当该位为0时,串口4选择定时器2作为其波特率发生器;当该位为1时,串口4选择定时器4作为其波特率发生器。

### 串口4寄存器及工作模式 --串口4控制寄存器S4CON

■ \$4\$M2

允许方式1多机通信控制位。如果S4SM2位为1且S4REN位为1时,则接收机处于地址帧选状态。此时可以利用接收到的第9位(即S4RB8)来筛选地址帧:

- 当S4RB8位为1时,说明该帧为地址帧,地址信息可以进入S4BUF, 并使得S4RI置1,进而在中断服务程序中再进行地址号比较;
- 口 当S4RB8位为0时,说明该帧不是地址帧,应丢掉并保持S4RI=0。
- 注: (1) 在方式1中,如果S4SM2位为0且S4REN位为1,接收机处于禁止筛选地址帧状态。不论收到的S4RB8是否为1,均可使接收到的信息进入S4BUF,并使得S4RI=1,此时S4RB8通常为校验位。
  - (2) 方式0为非多机通信方式。在这种模式下,将S4SM2设置为0。

### 串口4寄存器及工作模式 --串口4控制寄存器S4CON

#### ■ S4REN

口 允许/禁止串口4接收控制位。当该位为1时,允许串行接收状态,可以 启动串行接收器RxD4,开始接收信息;当该位为0时,禁止串行接收 状态,禁止串行接收器RxD4。

#### **■ S4TB8**

□ 当选择方式1时,该位为要发送的第9位数据,按需要由软件置1或者清0。例如:可用作数据的校验位或者多机通信中表示地址帧/数据帧的标志位。

#### **■ S4RB8**

口 当选择方式1时,该位为接收到的第9位数据,作为奇偶校验位或者地址帧/数据帧的标志位。



#### ■ S4TI

口 发送中断请求标志位。在停止位开始发送时,由S4TI置1,向CPU发出中断请求。

注: 当CPU响应中断后,必须由软件将该位清0。

#### ■ S4RI

口接收中断请求标志位。在接收到停止位的中间时刻由S4RI置1,向CPU 发出中断请求。

注: 当CPU响应中断后,必须由软件将该位清0。

### 串口4寄存器及工作模式 ---串口数据缓冲寄存器

- STC15系列单片机的串口4缓冲寄存器S4BUF地址为0x85,在 该地址实际是两个缓冲寄存器。
  - 口 一个缓冲寄存器用于保存要发送的数据;
  - 口 而另一个缓冲寄存器用于读取已经接收到的数据。
- 在串口的串行通道内,设置数据寄存器。
  - 口 在该串口所有工作模式中,在写入信号S4BUF的控制下,把数据加载到相同的9位移位寄存器中,前面8位为数据字节,最低位为移位寄存器的输出位。根据所设置的工作模式,自动将1或者S4TB8的值加载到移位寄存器的第9位,并进行发送。

### 串口4寄存器及工作模式 ---串口数据缓冲寄存器

- 在串口的接收寄存器是一个输入移位寄存器。
  - 口 在方式0和方式1时,字长均为9位。当接收完一帧数据后,将移位寄存器中的串行字节数据加载到数据缓冲寄存器S4BUF中,将其第9位加载到S4CON寄存器的S4RB8位。如果由于S4SM2使得已经接收到的数据无效时,S4RB8和S4BUF中的内容不变。
  - 由于在串行通道内设置了输入移位寄存器和S4BUF缓冲寄存器,从而在接收完一帧串行数据将其从移位寄存器加载到并行S4BUF缓冲寄存器后,可以立即开始接收下一帧数据。

# 串口4寄存器及工作模式 --中断允许寄存器2 (IE2)

| 名字  | 地址   | 复位值      | В7 | В6  | В5  | B4  | В3  | В2  | B1   | В0  |
|-----|------|----------|----|-----|-----|-----|-----|-----|------|-----|
| IE2 | 0xAF | x0000000 |    | ET4 | ЕТЗ | ES4 | ES3 | ET2 | ESPI | ES2 |

#### **■ ES4**

口 串口4中断允许位。当该位为1时,允许串口4中断;当该位为0时,禁止串口4中断。

### 串口4工作模式 --串口4工作模式0

### 模式0为8位可变波特率UART工作方式。

- 在该模式下, 10位数据通过RxD4/P0.2(RxD4\_2/ P5.2)接收, 通过TxD4/P0.3(TxD4\_2/ P5.3)发送。
- 一帧数据包含: 一个起始位、8个数据位和一个停止位。
- 接收数据时,停止位进入S4CON寄存器的S4RB8位。
- 波特率由定时器2/4的溢出率确定。

### 串口4工作模式 --串口4工作模式1

### 模式1为9位可变波特率UART工作方式。

- 在该模式下,11位数据通过RxD4/P0.2(RxD4\_2/ P5.2)接收,通过TxD4/P0.3(TxD4\_2/ P5.3)发送。
- 一帧数据包含: 一个起始位、8个数据位、一个可编程的第9位 和一个停止位。
  - 口 发送时,第9位数据来自特殊功能寄存器S4CON的S4TB8位。
  - 口 当接收数据时,第9位进入S4CON寄存器的S4RB8位。
- 波特率由定时器2或者定时器4的溢出率确定。