帆船的物理 與本主題相關的工程與產品

一、帆船與風浪板轉向原理

How to Sail - How to tack (turn around) a one person sailboat

https://www.youtube.com/embed/gMEOex9GQWU

帆船與風浪板雖然前進的原理是相同的,但是構造上的差異導致了其不同的操作模式與轉向原理。首先簡單分析一下兩者之間構造差別。

	示意圖	尾舵操縱	帆面操作
帆船	Centerboard Visitifials.com Daggerboard	主動控制	依風向被動 控制
風浪板		固定,僅供 平衡使用	使用者可主 動控制

如圖,可以看見風浪板操作者可以以雙手控制帆的方向,而沒 有餘力操控尾舵。而帆船選手卻恰恰相反得以使用延伸的操縱 桿控制尾舵,但卻只能使用操帆繩使帆固定。但其實無論是哪 一種載具僅關乎力矩的控制,愈讓整個船體往哪個方向旋轉即 施予相應的力矩即可。

	往上風前進	往下風前進
帆船	推舵	拉舵
風浪板	帆向後傾	帆向前傾

在帆船的情況中,若我們推舵柄可以發現舵會往下風處打,而 船尾會受到向下風處的 力矩,船頭便會往上風處前進。同樣 的,若我們拉舵柄可以發現舵會往傷風處打,而 船尾會受到 向上風處的力矩,船頭便會往下風處前進。

而在風浪板的情形則比較簡單,將帆向後傾斜會使風壓中心靠 近船尾,使船尾力矩朝 向上風。而相同的,將帆向前傾斜會 使風壓中心靠近船頭,使船受力矩朝向下風。

二、尾舵的作用和原理

尾舵無論是對漁船或是飛機,它的功能就像是剎車一般,當 推舵時他可以產生極大的阻力(空氣阻力或是水流所造成的阻力),使船身轉向阻力大的地方。例如說假設當尾舵左側受到 阻力時,船尾就會偏向阻力較小,也就是右邊的地方,因此 相對於船尾,船首就會在左邊,這就代表船會偏向左邊(阻力 較大的地方)。

當船的速度較慢時,則尾舵所產生的效應會比較小;相反的,若船的速度較快的話則尾舵的效應就會比較大。

因為當船的速度較慢時,相對於水流,水流的速度就會比較慢,所以當水流打在尾舵面的時候所產生的力就會比較小。船速快的時候就相反。