An algebraic interpretation of the higher Stasheff–Tamari orders

arXiv:2007.12664

Nicholas Williams

University of Leicester

26th November 2020 ICRA/fd-seminar

Overview

Algebra		Convex geometry	
•	er Auslander alge- of type A	Cyclic polytopes	
Tiltin	g modules	2 <i>d</i> -dim triangulations	Oppermann– Thomas '12
Riedt order	mann–Schofield s	Higher Stasheff–Tamari orders	Buan-Krause '04 (<i>d</i> = 1), W '20
d-ma quend	ximal green se- ces	(2d+1)-dim triangulations	W '20
	rs on <i>d</i> -maximal sequences	Higher Stasheff–Tamari orders	W '20

Plan

1. The higher Stasheff-Tamari orders

2. Higher Auslander-Reiten theory

3. Results

Cyclic polytopes

The cyclic polytope $C(n, \delta)$ is the con-C(6, 2)vex hull of n points $\{p_{t_1},\ldots,p_{t_n}\}\subset\mathbb{R}^\delta$ on the curve $p_t = (t, t^2, \dots, t^{\delta}),$ where $\{t_1,\ldots,t_n\}\subset\mathbb{R}$. C(6,1)[ER96, Figure 2]

C(6,3)

Triangulations and sections

A triangulation of $C(n, \delta)$ is a subdivision of $C(n, \delta)$ into δ -simplices whose vertices are vertices of $C(n, \delta)$.

Triangulations \mathcal{T} give sections $s_{\mathcal{T}} \colon C(n, \delta) \to C(n, \delta + 1)$.

The second higher Stasheff–Tamari order $S_2(n, \delta)$

Defined by Edelman and Reiner.

Given $\mathcal{T}, \mathcal{T}'$ triangulations of $C(n, \delta)$,

$$\mathcal{T} \leqslant_2 \mathcal{T}' \iff s_{\mathcal{T}}(x)_{\delta+1} \leqslant s_{\mathcal{T}'}(x)_{\delta+1} \quad \forall x \in C(n,\delta).$$

The first higher Stasheff–Tamari order $S_1(n, \delta)$

Defined first by Kapranov and Voevodsky and then by Edelman and Reiner in a different way. Thomas showed the two definitions were the same.

We have that $\mathcal{T} \leqslant_1 \mathcal{T}'$ (\mathcal{T}' is an increasing flip of \mathcal{T}) if $\mathcal{T} \leqslant_2 \mathcal{T}'$ and the region bounded by $s_{\mathcal{T}}(C(n,\delta))$ and $s_{\mathcal{T}'}(C(n,\delta))$ is the interior of a $(\delta+1)$ -simplex.

Rambau's Theorem

$$\left\{ \begin{matrix} \mathsf{Triangulations} \ \mathsf{of} \\ \mathcal{C}(\mathit{n}, \delta+1) \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \mathsf{Maximal} \ \mathsf{chains} \ \mathsf{in} \\ \mathcal{S}_1(\mathit{n}, \delta) \end{matrix} \right\} \middle/ \sim$$

What is known and what is conjectured

Edelman and Reiner conjectured that $S_1(n, \delta) = S_2(n, \delta)$ in their 1996 paper.

This problem is still open, though Edelman and Reiner proved it for $\delta \leqslant 3$.

 $\mathcal{S}_1(n,\delta)$ and $\mathcal{S}_2(n,\delta)$ are known to be lattices for $\delta\leqslant 3$.

Edelman, Rambau, and Reiner found a counter-example to $S_2(n, \delta)$ always being a lattice.

A counter-example to $\mathcal{S}_1(n,\delta)$ always being a lattice was found in [Wil20].

Higher Auslander-Reiten theory

Introduced by Iyama as a higher-dimensional generalisation of classical Auslander–Reiten theory.

Given a finite-dimensional K-algebra Λ over a field K, a functorially finite subcategory $\mathcal M$ of mod Λ is called d-cluster-tilting if

$$\mathcal{M} = \{ X \in \operatorname{mod} \Lambda \mid \forall M \in \mathcal{M}, \operatorname{Ext}_{\Lambda}^{1,\dots,d-1}(X,M) = 0 \}$$
$$= \{ X \in \operatorname{mod} \Lambda \mid \forall M \in \mathcal{M}, \operatorname{Ext}_{\Lambda}^{1,\dots,d-1}(M,X) = 0 \}.$$

If add M is a d-cluster-tilting subcategory, then M is called a d-cluster-tilting module.

If Λ has a d-cluster-tilting module M and gl. dim $\Lambda \leqslant d$, then Λ is called d-representation-finite, following lyama—Oppermann. In this case, add M is unique.

The higher Auslander algebras of type A

 $A_n^1 :=$ path algebra of linearly oriented A_n .

 A_n^d has a unique basic d-cluster-tilting module $M^{(d,n)}$ and

$$\operatorname{End}_{A_n^d} M^{(d,n)} \cong A_n^{d+1}.$$

The results of Oppermann and Thomas

Oppermann and Thomas show that there are bijections

$$\begin{cases} \text{Basic tilting } A_n^d\text{-modules} \\ \text{in add } M^{(d,n)} \end{cases} \longleftrightarrow \begin{cases} \text{Triangulations of } \\ C(n+2d,2d) \end{cases},$$

$$\begin{cases} \text{Basic cluster-tilting } \\ \text{objects in } \mathcal{O}_{A_n^d} \end{cases} \longleftrightarrow \begin{cases} \text{Triangulations of } \\ C(n+2d+1,2d) \end{cases}.$$

 $\mathcal{O}_{A_n^d}$ is the (d+2)-angulated cluster category, defined analogously to the usual cluster category of Buan, Marsh, Reineke, Reiten, and Todorov.

We instead consider the subcategory $\mathcal{C}_{A_n^d} := \operatorname{add}(M^{(d,n)} \oplus A_n^d[d])$ of $\mathcal{D}^b(\operatorname{mod} A_n^d)$.

An object $T \in \mathcal{C}_{A_n^d}$ is cluster-tilting if $\operatorname{Hom}_{\mathcal{D}^b(\operatorname{mod} A_n^d)}(T, T[d]) = 0$ and T has as many isoclasses of indecomposable summands as A_n^d .

Even-dimensional orders

Theorem (W '20)

Let \mathcal{T} and \mathcal{T}' be triangulations of C(n+2d,2d) corresponding to tilting A_n^d -modules T and T'. We then have that

- 1. $T \leq_1 T'$ if and only if T' is a left mutation of T; and
- 2. $T \leq_2 T'$ if and only if $^{\perp}T \subseteq {^{\perp}T'}$.

Left mutation: $T = E \oplus X$, $T' = E \oplus Y$,

$$0 \to X \to E_1 \to \cdots \to E_d \to Y \to 0$$
,

where $E_i \in \operatorname{add} E$.

$$^{\perp}T = \{X \in \text{add } M^{(d,n)} \mid \text{Ext}^{i}(X,T) = 0 \ \forall i > 0\}.$$

(Analogous statement holds for triangulations of C(n+2d+1,2d) and cluster-tilting objects for A_n^d .)

Odd-dimensional triangulations

A *d-maximal green sequence* for A_n^d is a sequence of left mutations of cluster-tilting objects from A_n^d to $A_n^d[d]$ in the subcategory $\mathcal{C}_{A_n^d}$.

Given a d-maximal green sequence G, we write $\Sigma(G)$ for the set of indecomposable summands occurring in G.

We write $G \sim G'$ if $\Sigma(G) = \Sigma(G')$ and write $\mathcal{MG}_d(A_n^d)$ for the set of \sim -equivalence classes of d-maximal green sequences of A_n^d .

Theorem (W '20)

There is a bijection between $\widetilde{\mathcal{MG}}_d(A_n^d)$ and triangulations of C(n+2d+1,2d+1).

(Analogous statement holds for maximal chains of tilting modules.)

Odd-dimensional orders

Theorem (W '20)

Let $\mathcal{T}, \mathcal{T}'$ be triangulations of C(n+2d+1,2d+1) corresponding to equivalence classes of d-maximal green sequences $[G], [G'] \in \widetilde{\mathcal{MG}}_d(A_n^d)$. We then have that

- 1. $\mathcal{T} \lessdot_1 \mathcal{T}'$ if and only if there are equivalence class representatives $\widehat{G} \in [G]$ and $\widehat{G}' \in [G']$ such that \widehat{G}' is an increasing elementary polygonal deformation of \widehat{G} ; and
- 2. $\mathcal{T} \leqslant_2 \mathcal{T}'$ if and only if $\Sigma(G) \supseteq \Sigma(G')$.

Increasing elementary polygonal deformations:
$$\bullet \longrightarrow \cdots \longrightarrow \bullet$$

Corollary (W '20)

The two orders on $\widetilde{\mathcal{MG}}_1(A_n)$ are equal and are lattices.

Thank you for listening!

References I

[BDP14] Thomas Brüstle, Grégoire Dupont, and Matthieu Pérotin.
 On maximal green sequences.
 Int. Math. Res. Not. IMRN, (16):4547–4586, 2014.

[BK04] Aslak Bakke Buan and Henning Krause. Tilting and cotilting for quivers of type \tilde{A}_n .

J. Pure Appl. Algebra, 190(1-3):1–21, 2004.

[BMR+06] Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov.
 Tilting theory and cluster combinatorics.
 Adv. Math., 204(2):572-618, 2006.

[ER96] Paul H. Edelman and Victor Reiner. The higher Stasheff–Tamari posets. Mathematika, 43(1):127–154, 1996.

References II

[ERR00] Paul H. Edelman, Jörg Rambau, and Victor Reiner.
On subdivision posets of cyclic polytopes.
volume 21, pages 85–101. 2000.
Combinatorics of polytopes.

[GM19] Alexander Garver and Thomas McConville.
Lattice properties of oriented exchange graphs and torsion classes.

Algebr. Represent. Theory, 22(1):43–78, 2019.

[HI19] Stephen Hermes and Kiyoshi Igusa.
The no gap conjecture for tame hereditary algebras.

J. Pure Appl. Algebra, 223(3):1040–1053, 2019.

[HU05] Dieter Happel and Luise Unger.
On a partial order of tilting modules.

Algebr. Represent. Theory, 8(2):147–156, 2005.

References III

[IO11] Osamu Iyama and Steffen Oppermann.

n-representation-finite algebras and n-APR tilting.

Trans. Amer. Math. Soc., 363(12):6575–6614, 2011.

[Iya07a] Osamu Iyama. Auslander correspondence. Adv. Math., 210(1):51–82, 2007.

[Iya07b] Osamu Iyama.
Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories.

Adv. Math., 210(1):22–50, 2007.

[lya11] Osamu lyama.
Cluster tilting for higher Auslander algebras.

Adv. Math., 226(1):1–61, 2011.

References IV

[KV91]

[Kel11] Bernhard Keller.
On cluster theory and quantum dilogarithm identities.
In Representations of algebras and related topics, EMS
Ser. Congr. Rep., pages 85–116. Eur. Math. Soc.,
Zürich. 2011.

Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results).

volume 32, pages 11–27. 1991.

International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990).

M. M. Kapranov and V. A. Voevodsky.

[OT12] Steffen Oppermann and Hugh Thomas.
Higher-dimensional cluster combinatorics and representation theory.

J. Eur. Math. Soc. (JEMS), 14(6):1679–1737, 2012.

References V

[Ram97] Jörg Rambau.

Triangulations of cyclic polytopes and higher Bruhat orders.

Mathematika, 44(1):162–194, 1997.

[RS91] Christine Riedtmann and Aidan Schofield.
On a simplicial complex associated with tilting

modules.

Comment. Math. Helv., 66(1):70-78, 1991.

[Tho03] Hugh Thomas.

Maps between higher Bruhat orders and higher Stasheff–Tamari posets.

In Formal Power Series and Algebraic Combinatorics. Linköping University, Sweden, 2003.

References VI

[Wil20] Nicholas J. Williams.

New interpretations of the higher Stasheff–Tamari orders.

arXiv preprint arXiv:2007.12664, 2020.