

Ques	tions		JEE Main Crash Cours	зe
	The integral $\int_0^{\frac{\pi}{2}} \frac{1}{3+2\sin x + \cos x} dx$ is equal to:	/// mathongo /// mathongo /// mathongo (2) $\tan^{-1}(2) - \frac{\pi}{4}$		
	(3) $\frac{1}{2} \tan^{-1}(2) - \frac{\pi}{8}$ mathong we mathong mathong The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^{\frac{2}{3}} x \cdot \csc^{\frac{4}{3}} x dx$ is equal to	$\sqrt{4}$ $\frac{1}{2}$ athongo /// mathongo /// mathongo		
	(1) $3^{\frac{7}{6}} = 3^{\frac{5}{6}}$ (2) $3^{\frac{5}{6}} = 3^{\frac{2}{3}}$ (3) $3^{\frac{5}{6}} = 3^{\frac{2}{3}}$	(2) $3^{\frac{4}{3}} - 3^{\frac{1}{3}}$ (4) $3^{\frac{5}{3}} - 3^{\frac{1}{3}}$ (2) mathongo		
	Let $[t]$ denote the greatest integer function. If $\int_0^{2.4} \left[x^2 \right] dx = \alpha + \beta \sqrt{2} + \gamma \sqrt{3} + \delta \sqrt{5}, \text{ then } \alpha + \beta + \gamma + \delta \text{ is equal to}$ The value of $\int_0^{\pi} \frac{e^{\cos x} \sin x}{(1 + \cos^2 x) \left(e^{\cos x} + e^{-\cos x} \right)} dx \text{ is equal to}$			
	(1) $\frac{\pi^2}{4}$ mathongo mathongo mathongo mathongo	(2) $\frac{\pi}{4}$ thongo /// mathongo /// mathongo		
	$\int_0^{20\pi} (\sin x + \cos x)^2 dx \text{ is equal to:}$ $(1) \ 10(\pi + 4) $	(2) $10(\pi+2)$ $20(\pi+2)$ mathongo $20(\pi+2)$		
6.	For $m,\ n>0$, let $\alpha(m,n)=\int_0^2 t^m(1+3t)^ndt$. If ${,}11\alpha(10,6)+18\alpha(11,5)=$ The value of the integral $\int_{-\log_e 2}^{\log_e 2} e^x \left(\log_e \left(e^x+\sqrt{1+e^{2x}}\right)\right)dx$ is equal to			
	$\frac{(1)}{\log_e} \left(\frac{\sqrt{2}(2+\sqrt{5})^2}{\sqrt{1+\sqrt{5}}} \right) - \frac{\sqrt{5}}{2} $ mathongo	2		
	$\begin{array}{l} \text{(3)} \ \log_e\left(\frac{2\left(2+\sqrt{5}\right)}{\sqrt{1+\sqrt{5}}}\right) - \frac{\sqrt{5}}{2} \\ \text{mathons} \\ \text{Let } f: \boldsymbol{R} \to \boldsymbol{R} \text{ be a differentiable function such that } f\left(\frac{\pi}{4}\right) = \sqrt{2}, f\left(\frac{\pi}{2}\right) = \frac{1}{2} \end{array}$	$\log_e\left(\frac{\sqrt{2}(3-\sqrt{5})^2}{\sqrt{1+\sqrt{5}}}\right) + \frac{\sqrt{5}}{2}$ 0 and $f'\left(\frac{\pi}{t}\right) = 1$ and let $g(x) = \int^{\frac{\pi}{4}} (f'(t)\sec t + \tan t \sec t)$	$f(t)dt$ for $x \in \begin{bmatrix} \frac{\pi}{\tau}, \frac{\pi}{\tau} \end{bmatrix}$.	
	Then $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x)$ is equal to math $x \to \left(\frac{\pi}{2}\right)^{-}$ mathongo mathongo mathongo	/// mathongo /// mathongo /// mathongo	,	
	(1) 2 (3) 4 If athongo /// mathongo /// mathongo /// mathongo	(2) 3 (4) -3 /// mathongo /// mathongo /// mathongo		
	$\int_0^1 \left(x^{21} + x^{14} + x^7\right) \left(2x^{14} + 3x^7 + 6\right)^{1/7} dx = \frac{1}{l} (11)^{m/n}$ where $l, \ m, n \in N$ The integral $16 \int_1^2 \frac{dx}{x^3 \left(x^2 + 2\right)^2}$ is equal to mathongo mathongo			
14	(1) $\frac{11}{6} + \log_e 4$ (3) $\frac{11}{12} - \log_e 4$ The integral $\int_1^2 e^{\mathbf{x}} \cdot \mathbf{x}^x \left(2 + \log_e \mathbf{x}\right) d\mathbf{x}$ equals :	(2) $\frac{11}{12} + \log_e 4$ (4) $\frac{11}{6} - \log_e 4$ /// mathongo /// mathongo		
	(1) $e(4e+1)$ (3) $e(4e-1)$ mathongo mathongo mathongo	(2) $4e^2 - 1$ (4) $e(2e - 1)$ mathongo /// mathongo		
13.	If $\int_{-0.15}^{0.15} 100x^2 - 1 dx = \frac{k}{3000}$, then k is equal to Let $[t]$ denote the greatest integer $\leq t$. Then $\frac{2}{\pi} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (8[\csc x] - 5[\cot x]) dx$	is equal to mathongo /// mathongo		
14.	Let [x] denote the greatest integer \leq x. Consider the function $f(x) = max\{$ (1) $\frac{5+4\sqrt{2}}{3}$ (3) $\frac{1+5\sqrt{2}}{2}$ (4) mathongo (4) mathongo (5) mathongo (6)	x^2 , $1 + \lfloor x \rfloor$ }. Then the value of the integral $\int_0^2 f(x) dx$ is:		
15.	Let $[t]$ denote the greatest integer less than or equal to t . Then, the value of	the integral $\int_0^1 \left[-8x^2 + 6x - 1 ight] dx$ is equal to		
	(1) -1 mathong mathong mathong (3) $\frac{\sqrt{17}-13}{8}$ The value of the integral $\int_{-2}^{2} \frac{ x^3+x }{(e^{x x }+1)} dx$ is equal to mathong (1) $5e^2$	8		
	(3) 4	(2) 3e ⁻² (4) 6 // mathongo // mathongo // mathongo		
	The value of the definite integral $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1+e^{x\cos x})(\sin^4 x + \cos^4 x)}$ is equal to : (1) $-\frac{\pi}{2}$	(2) $\frac{\pi}{2\sqrt{2}}$		
	(3) a $\pm \frac{\pi}{4}$ ngo /// mathongo /// mathongo /// mathongo	(4) $\frac{\pi}{\sqrt{2}}$ mothongo $\frac{\pi}{\sqrt{2}}$ mathongo		

		1 (4 m) 26 (4 m) 2 (4	
		d $g(4-x)+g(x)=0$, then the value of $\int_{-4}^4 f(x^2)dx$ is 100 mathons 110 m	
19.		egers and $[x]$ denotes the greatest integer less than or equal to x , then the value of	
	$\alpha + \beta + \gamma$ is equal to: mathongo mathongo mathongo (1) 0	/// mathongo /// mathongo /// mathongo /// mathongo /// n	
	(3) 25	(4) 10	
20.	Let $\{x\}$ and $[x]$ denote the fractional part of x and the greatest integer $\leq x$	x respectively of a real number x. if $\int_0^n \{x\} dx$, $\int_0^n [x] dx$ and mathons in	
	$10ig(n^2-nig), ig(n\in N, n>1ig)$ are three consecutive terms of a G.P. then n		
21.	Let $[t]$ denote the greatest integer less than or equal to t . Then the value of $(1)^{-52(1-e)}$		
	(1) $\frac{52(1-e)}{e}$	(2) $\frac{52}{e}$ (4) $\frac{104}{c}$	
22			
	()	$(x-t)f'(t)dt = \left(e^{2x} + e^{-2x}\right)\cos 2x + \frac{2}{a}x$, then $(2a+1)^5a^2$ is equal to	
25.	The function $f(x)$, that satisfies the condition $f\left(x\right) = x + \int_0^{\pi/2} \sin x \cos x$		
	(1) $x + \frac{\pi}{2}\sin x$ (3) $x + \frac{2}{3}(\pi - 2)\sin x$ mathongo mathongo	(4) $x + (\pi - 2) \sin x$ mathongo // mathongo //	
24.			
	The integral $\int_0^1 \frac{1}{7^{\left(\frac{1}{x}\right)}} dx$, where $[\cdot]$ denotes the greatest integer function, is	mathon $\binom{6}{7}$ /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo	
	\(\frac{1}{2}\)		
111	(3) $1 - 7 \ln \left(\frac{6}{7}\right)$	(4) $1 + 7 \ln \left(\frac{6}{7}\right)$	
		est integer $\leq t$. Then $\int_0^{10} f(x)dx + \int_0^{10} \left(f(x)\right)^2 dx + \int_0^{10} f(x) dx$ is equal to	
20.	Consider the integral $I = \int_0^{10} \frac{[x]e^{[x]}}{e^{x-1}} dx$ where $[x]$ denotes the greatest int		
	(1) $9(e-1)$ mathongo mathongo mathongo (3) $45(e-1)$	(2) $45(e+1)$ // mathongo // mathongo // mathongo // n (4) $9(e+1)$	
27.	For any real number x , let $[x]$ denote the largest integer less than or equal		
		///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. n	
	Then, the value of $\frac{\pi^2}{10} \int_{-10}^{10} f(x) \cos \pi x dx$ is (1) 4 ongo // mathongo // mathongo // mathongo	(2) 2athongo /// mathongo /// mathongo /// n	
		(2) Zathongo M. Mathongo M. Mathongo M. Mathongo M. M	
	(3) 1	(4) 0	
28.	(3) 1	(4) 0	
28.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$	(4) 0	
	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$	(4) 0 $ \cdot, x \in (0,1). \text{ Then the integral } \int_0^\alpha \frac{t^{50}}{1-t} dt \text{ is equal to} $ (2) $-(\beta + P_{50}(\alpha))$ (4) $\beta + P_{50}(\alpha)$	
29.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sum of the second $a_n = \frac{1}{2} \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx$	(4) 0 $t, x \in (0,1). \text{ Then the integral } \int_0^\alpha \frac{t^{50}}{1-t} dt \text{ is equal to}$ $(2) -(\beta + P_{50}(\alpha))$ $(4) \beta + P_{50}(\alpha)$ $\text{ um of all the elements of the set } \{n \in \mathbb{N} : a_n \in (2,30)\} \text{ is } \underline{\hspace{1cm}}$	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the substituting $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$	(4) 0 $x, x \in (0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t} dt$ is equal to $(2) -(\beta + P_{50}(\alpha))$ $(4) \ \beta + P_{50}(\alpha)$ um of all the elements of the set $\{n \in \mathbb{N} : a_n \in (2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the substituting $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$	(4) 0 $t, x \in (0,1). \text{ Then the integral } \int_0^\alpha \frac{t^{50}}{1-t} dt \text{ is equal to}$ $(2) -(\beta + P_{50}(\alpha))$ $(4) \beta + P_{50}(\alpha)$ $\text{ um of all the elements of the set } \{n \in \mathbb{N} : a_n \in (2,30)\} \text{ is } \underline{\hspace{1cm}}$	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the substituting $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\lim_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$	(4) 0 $x, x \in (0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t} dt$ is equal to $(2) -(\beta + P_{50}(\alpha))$ $(4) \ \beta + P_{50}(\alpha)$ um of all the elements of the set $\{n \in \mathbb{N} : a_n \in (2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulfactor $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$	(4) 0 $ \cdot, x \in (0,1). \text{ Then the integral } \int_0^\alpha \frac{t^{50}}{1-t} dt \text{ is equal to } $ $ (2) -(\beta + P_{50}(\alpha)) $ $ (4) \beta + P_{50}(\alpha) $ $ \text{um of all the elements of the set } \{n \in \mathbb{N} : a_n \in (2,30)\} \text{ is } \underline{\hspace{1cm}} $ $ = \alpha_1 + \alpha_2 \log_e \left(\frac{8}{15}\right), \text{ then } \alpha_1 + \alpha_2 \text{ is equal to } \underline{\hspace{1cm}} $ $ \text{mathongo } \text{ mathongo } $	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulfactor $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$	(4) 0 $x, x \in (0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t} dt$ is equal to $(2) -(\beta + P_{50}(\alpha))$ $(4) \ \beta + P_{50}(\alpha)$ um of all the elements of the set $\{n \in \mathbb{N} : a_n \in (2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^{n} \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulfit Let $\max_{0 \leqslant x \leqslant 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \leqslant x \leqslant 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo mathongo mathongo mathongo mathongo mathongo	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^{n} \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulfit Let $\max_{0 \leqslant x \leqslant 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \leqslant x \leqslant 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo mathongo mathongo mathongo mathongo mathongo	(4) 0 $ \cdot, x \in (0,1). \text{ Then the integral } \int_0^\alpha \frac{t^{50}}{1-t} dt \text{ is equal to } $ $ (2) -(\beta + P_{50}(\alpha)) $ $ (4) \beta + P_{50}(\alpha) $ $ \text{um of all the elements of the set } \{n \in \mathbb{N} : a_n \in (2,30)\} \text{ is } \underline{\hspace{1cm}} $ $ = \alpha_1 + \alpha_2 \log_e \left(\frac{8}{15}\right), \text{ then } \alpha_1 + \alpha_2 \text{ is equal to } \underline{\hspace{1cm}} $ $ \text{mathongo } \text{ mathongo } $	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulface $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo β mathon	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulface $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo β mathon	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the sulface $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo β mathon	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30. ///.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the st Let $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo /// mathong	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30. ///.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the st Let $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo /// mathong	(4) 0 \cdot , $x \in (0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t} dt$ is equal to $(2) - (\beta + P_{50}(\alpha))$ (4) $\beta + P_{50}(\alpha)$ um of all the elements of the set $\{n \in \mathbb{N} : a_n \in (2,30)\}$ is	
29. 30. ///. ///. ///.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the stated $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo /// mathongo /	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^{\alpha}\frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	
29. 30. ///. ///. ///.	(3) 1 Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the stated $\max_{0 \le x \le 2} \left\{\frac{9-x^2}{5-x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max}\left\{\frac{9-x^2}{5-x}, x\right\} dx$ mathongo /// mathongo /	(4) 0 \cdot , $x \in (0,1)$. Then the integral $\int_0^\alpha \frac{t^{50}}{1-t} dt$ is equal to $(2) - (\beta + P_{50}(\alpha))$ (4) $\beta + P_{50}(\alpha)$ um of all the elements of the set $\{n \in \mathbb{N} : a_n \in (2,30)\}$ is	
29. 30. ///. ///. ///.	Let $\alpha \in (0,1)$ and $\beta = \log_e(1-\alpha)$. Let $P_n(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^n}{n}$ (1) $\beta - P_{50}(\alpha)$ (3) $P_{50}(\alpha) - \beta$ Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \ldots + \frac{x^{n-1}}{n}\right) dx$ for every $n \in N$. Then the stated $\max_{0 \le x \le 2} \left\{\frac{9 - x^2}{5 - x}\right\} = \alpha$ and $\min_{0 \le x \le 2} \left\{\frac{9 - x^2}{5 - x}\right\} = \beta$. If $\int_{\beta - \frac{8}{3}}^{2\alpha - 1} \operatorname{Max} \left\{\frac{9 - x^2}{5 - x}, x\right\} dx$ mathongo ///	(4) 0 $x,x\in(0,1)$. Then the integral $\int_0^{\alpha}\frac{t^{50}}{1-t}dt$ is equal to $(2)-(\beta+P_{50}(\alpha))$ (4) $\beta+P_{50}(\alpha)$ um of all the elements of the set $\{n\in\mathbb{N}:a_n\in(2,30)\}$ is	