Numerical Method

National Cheng Kung University

Department of Engineering Science Instructor: Chi-Hua Yu

$$\rm HW~6$$ Programming, Due 09:00, Wednesday, April $20^{\rm th}$, 2022

注意事項:

- 1. Homework 的時間為公布題目後至下次上課前結束(上課當天 09:00)。
- 2. 請在規定的時段內完成作業,並用你的學號與 HW number 做一個檔案夾 (e.g., N96091350_HW3), 將你的全部 ipynb 檔放入檔案夾,壓縮後上傳至課程網站 (e.g., N96091350_HW3.zip),超過期限後不予補交。

Homework Submission Procedure (請仔細閱讀)

1. You should submit your Jupyter notebook and Python script (*.py, in Jupyter, click File, Download as, Python (*.py)).

- 2. Name a folder using your student id and lab number (e.g., n96081494_HW1), put all the pdf and all the Jupyter notebooks and python scripts into the folder and zip the folder (e.g., n96081494_HW1.zip).
- 3. Submit your lab directly through the course website.

Numerical Method

National Cheng Kung University

Department of Engineering Science Instructor: Chi-Hua Yu

- 1. (20%) Name your pdf file HW6_student id (e.g., HW6_n96081494.pdf). Please state the details and derivations in a professional format and submit a pdf file to Moodle. Taking the Taylor series of f around $a = x_j$ and compute the series at $x = x_{j-2}$, x_{j-1} , x_{j+1} , x_{j+2} . Show that the resulting equations can be combined to form an approximation for $f'(x_j)$ which is $O(h^4)$.
- 2. (40%) Name your Jupyter notebook central_difference.ipynb and Python script central_difference.py. Consider the function $f(x) = \cos(x)$. We know that the derivative of $\cos(x)$ is $-\sin(x)$. Write a Python program to differentiate $f(x) = \cos(x)$ without using the function np.diff. Please write a function which name my_central_diff to complete the differentiation. Plot the difference and print the value of maximum error between the aforementioned numerical differentiation methods and their accuracy.

Below is the running example:

The wide of the blue line is 8

The wide of the orange line is 4

The maximum error is 0.0016657056915946322

Instructor: Chi-Hua Yu

3. (40%) Name your Jupyter notebook iterate_step_size.ipynb and Python script iterate_step_size.py. Continue the previous question, compute the numerical derivative of $f(x) = \cos(x)$ using the central-difference formula for decreasing step size, h. Please plot the maximum error between the approximated derivative and the true derivative versus h.

Below is the running example:

The number of iterations is 15

The decreasing size of step is h/2

