The Hypercubic Manifold in Homotopy Type Theory

Dylan Laird

04/09/2023

Table of contents

- Intro
- A brief overview of HoTT/cubical type theory
 - Informal Type Theory
 - Basics
 - Identity types
 - HoTT/Cubical Type Theory
 - The homotopical interpretation
 - Transport, Fibrations and Univalence
 - Higher Inductive Types
- Some work done during the internship
 - Defining HM¹
 - A fiber calculation
- 4 Conclusion

Table of contents

- Intro
- A brief overview of HoTT/cubical type theory
 - Informal Type Theory
 - Basics
 - Identity types
 - HoTT/Cubical Type Theory
 - The homotopical interpretation
 - Transport, Fibrations and Univalence
 - Higher Inductive Types
- 3 Some work done during the internship
 - Defining HM¹
 - A fiber calculation
- 4 Conclusion

Intro (1): HoTT

Homotopy Type Theory

• Vladimir Voevodsky: proposed the "Univalence Axiom"

Intro (1): HoTT

Homotopy Type Theory

- Vladimir Voevodsky: proposed the "Univalence Axiom"
- Synthetic homotopy

Intro (1): HoTT

Homotopy Type Theory

- Vladimir Voevodsky: proposed the "Univalence Axiom"
- Synthetic homotopy
- Computer assisted proofs

Intro (1) : HoTT

Homotopy Type Theory

- Vladimir Voevodsky: proposed the "Univalence Axiom"
- Synthetic homotopy
- Computer assisted proofs
- "Univalent Foundations" as a foundational system for maths

Let X be a topological space and I the unit real interval [0, 1]

Let X be a topological space and I the unit real interval [0,1]

• Paths: continuous maps $p: I \to X$

Let X be a topological space and I the unit real interval [0,1]

- Paths: continuous maps $p: I \to X$
- Homotopy: describes the correct notion of "equality" for paths.

Let X be a topological space and I the unit real interval [0,1]

- Paths: continuous maps $p: I \to X$
- Homotopy: describes the correct notion of "equality" for paths.
- Two paths p and q are "homotopic" if there is "a continuous deformation" of p onto q

Let X be a topological space and I the unit real interval [0,1]

- Paths: continuous maps $p: I \to X$
- Homotopy: describes the correct notion of "equality" for paths.
- Two paths p and q are "homotopic" if there is "a continuous deformation" of p onto q
- Loops: a loop at point x is a path p such that p(0) = p(1) = x.

Paths operations

- inversion : given $p: x \to y$ there is a path $p^{-1}: y \to x$
- concatenation : given $p: x \to y$ and $q: y \to z$ there is a path $p \cdot q: x \to z$

Paths operations

- inversion : given $p: x \to y$ there is a path $p^{-1}: y \to x$
- concatenation : given $p: x \to y$ and $q: y \to z$ there is a path $p \cdot q: x \to z$

Fundamental group $\pi_1(X, x)$

Take a point x of X and consider loops at point x.

- Equality: homotopy (of loops)
- Composition: path concatenation (associative)
- Inverse element : inverse path
- Unit element : constant path at *x*

Two (path connected) homeormorphical spaces (more precisely, homotopically equivalent) have the same fundametal groups!

Higher homotopy groups

• Homotopy are themselves paths between paths

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...
- We can define higher homotopy groups $\pi_n(X, x)$ for any $n \in \mathbb{N}^*$ with n = 1 being the fundamental group.

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...
- We can define higher homotopy groups $\pi_n(X, x)$ for any $n \in \mathbb{N}^*$ with n = 1 being the fundamental group.

Natural questions

• Given a finite group G is there a (path-connected) space X such that $\pi_1(X) = G$?

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...
- We can define higher homotopy groups $\pi_n(X, x)$ for any $n \in \mathbb{N}^*$ with n = 1 being the fundamental group.

Natural questions

• Given a finite group G is there a (path-connected) space X such that $\pi_1(X) = G$? Answer: yes (cell-complexes)

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...
- We can define higher homotopy groups $\pi_n(X, x)$ for any $n \in \mathbb{N}^*$ with n = 1 being the fundamental group.

Natural questions

- Given a finite group G is there a (path-connected) space X such that $\pi_1(X) = G$? Answer: yes (cell-complexes)
- Is there a (path-connected) space such that $\pi_1(X) = G$ and $\pi_n(X) = 1$ for any $n \ge 2$?

Higher homotopy groups

- Homotopy are themselves paths between paths
- We can then take a look at fundamental groups based at a certain loop γ and elements of this group will be homotopies between γ and itself and so on...
- We can define higher homotopy groups $\pi_n(X, x)$ for any $n \in \mathbb{N}^*$ with n = 1 being the fundamental group.

Natural questions

- Given a finite group G is there a (path-connected) space X such that $\pi_1(X) = G$? Answer: yes (cell-complexes)
- Is there a (path-connected) space such that $\pi_1(X) = G$ and $\pi_n(X) = 1$ for any $n \ge 2$? Answer: yes, the **Eilenberg Mac-Lane** space of G

We manipulate types A, B and terms a: A of some certain type.

We manipulate types A, B and terms a: A of some certain type.

The inductive type of natural integers

- 0 : N
- suc : $\mathbb{N} \to \mathbb{N}$

We manipulate types A, B and terms a: A of some certain type.

The inductive type of natural integers

- 0 : N
- suc : $\mathbb{N} \to \mathbb{N}$

Equality

We distinguish between **definitional equality** ≡ used when defining objects and **propositional equality** which is a type theoretical concept.

We manipulate types A, B and terms a: A of some certain type.

The inductive type of natural integers

- 0 : N
- $suc : \mathbb{N} \to \mathbb{N}$

Equality

We distinguish between **definitional equality** ≡ used when defining objects and **propositional equality** which is a type theoretical concept.

Propositional Equality

Given a type A and terms a, b : A there is a type $a =_A b$. We say that elements a and b are (propositionally) equal when there exists some element:

$$p: a =_A b$$

Types	Topology
A	a space A
a : A	a is a point of A
$p: x =_A \gamma$	p is a path from x to y in the space A

Types	Topology
A	a space A
a : A	a is a point of A
$p: x =_A y$	p is a path from x to y in the space A

Types	Topology
A	a space A
a : A	a is a point of A
$p: x =_A y$	p is a path from x to y in the space A

Synthetic homotopy

This connection is at the core of synthetic homotopy theory which allows us to define every object we previously talked about in the synthetic framework of type theory.

Intro (8): The Hypercubic Manifold HM¹

Figure: The hypercubic manifold HM¹ (analysis-situs)

Goals

• We know how to define Eilenberg Mac-Lane spaces for finite groups in HoTT but the construction is not well understood

Goals

- We know how to define Eilenberg Mac-Lane spaces for finite groups in HoTT but the construction is not well understood
- We would like to achieve a "nicer" construction that would yield a handy induction principle

Goals

- We know how to define Eilenberg Mac-Lane spaces for finite groups in HoTT but the construction is not well understood
- We would like to achieve a "nicer" construction that would yield a handy induction principle
- This would open up to define "Higher Group" actions and computer checked cohomology calculations.

Goals

- We know how to define Eilenberg Mac-Lane spaces for finite groups in HoTT but the construction is not well understood
- We would like to achieve a "nicer" construction that would yield a handy induction principle
- This would open up to define "Higher Group" actions and computer checked cohomology calculations.
- It turns out that $\pi_1(\mathbb{HM}^1) = Q$ and that by computing the "homotopy fiber" of a certain map my advisors have a way to provide such a "nice" construction in the case of the group Q.

Table of contents

- Intro
- 2 A brief overview of HoTT/cubical type theory
 - Informal Type Theory
 - Basics
 - Identity types
 - HoTT/Cubical Type Theory
 - The homotopical interpretation
 - Transport, Fibrations and Univalence
 - Higher Inductive Types
- 3 Some work done during the internship
 - Defining HM¹
 - A fiber calculation
- 4 Conclusion

Some constructions on types

Function types

Given types A, B one has a type $A \rightarrow B$ of functions from A to B.

Some constructions on types

Function types

Given types A, B one has a type $A \rightarrow B$ of functions from A to B.

Product types

Given types A, B one has a product type $A \times B$.

Some constructions on types

Function types

Given types A, B one has a type $A \rightarrow B$ of functions from A to B.

Product types

Given types A, B one has a product type $A \times B$.

Dependant pair Types

If B is a type family over a type A (that is a function $B: A \to \mathcal{U}$) we have a type of dependant pairs $\sum_{x:A} B(x)$.

Some constructions on types

Function types

Given types A, B one has a type $A \rightarrow B$ of functions from A to B.

Product types

Given types A, B one has a product type $A \times B$.

Dependant pair Types

If B is a type family over a type A (that is a function $B: A \to \mathcal{U}$) we have a type of dependant pairs $\sum_{x:A} B(x)$.

Coproduct types

Give types A, B one has a coproduct type A + B given by the constructors :

- inl : $A \rightarrow A + B$
- inr : $B \rightarrow A + B$

Manipulating types

Introduction rules

They encapsulate how to build an element of a certain type.

- To build an element of $f: A \to B$ one needs an expression $\phi(x)$ such that $a: A \vdash \phi(a): B$ and to set $f: \equiv \lambda x.\phi(x)$
- To build an element of $A \times B$ one needs elements a : A and b : B to form $(a, b) : A \times B$

Manipulating types

Introduction rules

They encapsulate how to build an element of a certain type.

- To build an element of $f:A\to B$ one needs an expression $\phi(x)$ such that $a:A\vdash\phi(a):B$ and to set $f:\equiv\lambda x.\phi(x)$
- To build an element of $A \times B$ one needs elements a : A and b : B to form $(a, b) : A \times B$

Induction principles

They encapsulate how to build **dependent** functions from a source type A.

• To build a function of type $f: \prod_{x:A\times B} P(x)$ one only needs to give its value on pairs (a, b).

A working example: product types (1)

Projections

We can define projections $\operatorname{pr}_1: A \times B \to A$ and $\operatorname{pr}_2: A \times B \to B$ by the **induction** principle for product types by setting $\operatorname{pr}_1((a,b)) :\equiv a$ and $\operatorname{pr}_2((a,b)) :\equiv b$.

Definition

Given a type A and elements a, b: A there exists a type $a =_A b$ called the identity type of a and b. We say that "a is equal to b" if there exists some element $p: a =_A b$

Definition

Given a type A and elements a, b: A there exists a type $a =_A b$ called the identity type of a and b. We say that "a is equal to b" if there exists some element $p: a =_A b$

Reflexivity

For any type A and point x : A there is an element refl_x : $x =_A x$

Path induction

To prove a predicate that depends on x, y: A and p: $x =_A y$ one only needs to prove it in the case where $x \equiv y$ and $p \equiv \text{refl.}$

Path induction

To prove a predicate that depends on x, y: A and p: $x =_A y$ one only needs to prove it in the case where $x \equiv y$ and $p \equiv \text{refl.}$

Example (Functions preserve equals)

For any $f: A \rightarrow B$, x, y: A and $p: a =_A b$ there is an element

$$f(p): f(a) =_B f(b)$$

Sketch of proof:

Sketch of proof:

• By path induction suppose that $x \equiv y$ and $p \equiv \text{refl}$

Sketch of proof:

- By path induction suppose that $x \equiv y$ and $p \equiv \text{refl}$
- We then have to provide an element of $f(x) =_B f(x)$

Sketch of proof:

- By path induction suppose that $x \equiv y$ and $p \equiv \text{refl}$
- We then have to provide an element of $f(x) =_B f(x)$
- We conclude by setting $f(\operatorname{refl}_x) := \operatorname{refl}_{f(x)}$

HoTT: The homotopical interpretation of Type Theory (1)

Types	Topology
A	a space A
a : A	a is a point of A
$p: x =_A y$	p is a path from x to y in the space A

HoTT: The homotopical interpretation of Type Theory (1)

Types	Topology
A	a space A
a : A	a is a point of A
$p: x =_A y$	p is a path from x to y in the space A

Figure: two points x, y : A, two paths $p, q : x =_A y$ and a homotopy $r : p =_{x =_A y} q$

HoTT: The homotopical interpretation of Type Theory (2)

Equality	Homotopy
reflexivity	constant path
symmetry	path inversion
transitivity	concatenation of paths

HoTT: The homotopical interpretation of Type Theory (2)

Equality	Homotopy
reflexivity	constant path
symmetry	path inversion
transitivity	concatenation of paths

- **Symmetry**: Given a path $p: x =_A y$, one has an inverse path $p^{-1}: y =_A x$ such that for any x, $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$.
- Transitivity: Given paths $p: x =_A y$ and $q: y =_A z$ one has a concatenated path $p \cdot q: x =_A z$ such that for any x, $\operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$.

HoTT: The homotopical interpretation of Type Theory (2)

Equality	Homotopy
reflexivity	constant path
symmetry	path inversion
transitivity	concatenation of paths

- **Symmetry**: Given a path $p: x =_A y$, one has an inverse path $p^{-1}: y =_A x$ such that for any x, $\operatorname{refl}_x^{-1} \equiv \operatorname{refl}_x$.
- Transitivity: Given paths $p: x =_A y$ and $q: y =_A z$ one has a concatenated path $p \cdot q: x =_A z$ such that for any x, $\operatorname{refl}_x \cdot \operatorname{refl}_x \equiv \operatorname{refl}_x$.

There are additional properties that one can prove such as

$$p \cdot p^{-1} = \text{refl}$$

that justify this whole interpretation.

Transports

Equalities and dependent functions

Take $f: \prod_{x:A} P(x)$, x, y:A and p:x=y. Note that we can't have a path between f(x):P(x) and f(y):P(y).

Transports

Equalities and dependent functions

Take $f: \prod_{x:A} P(x)$, x, y: A and p: x = y.

Note that we can't have a path between f(x) : P(x) and f(y) : P(y).

Transport

By path induction, for any x, y and p : x = y one can define :

transport^P:
$$\prod_{a,b:A} \prod_{p:a=A} P(a) \rightarrow P(b)$$

We may write transport P(a, b, p) as p_* if the context is clear.

Transports

Equalities and dependent functions

Take $f: \prod_{x:A} P(x), x, y:A$ and p: x = y.

Note that we can't have a path between f(x) : P(x) and f(y) : P(y).

Transport

By path induction, for any x, y and p : x = y one can define :

transport^P:
$$\prod_{a,b:A} \prod_{p:a=A} P(a) \rightarrow P(b)$$

We may write transport P(a, b, p) as p_* if the context is clear.

Example

The map p_* encapsulates how are transported elements of the "fiber" P(x) to the fiber P(y) by going along the path p: x = y.

Fibrations (1)

Fibration

Take a continuous map $p: E \to B$. It is called a fibration if it has a certain path lifting property from the **base space** B to the **total space** E.

Fibrations (1)

Fibration

Take a continuous map $p: E \to B$. It is called a fibration if it has a certain path lifting property from the **base space** B to the **total space** E.

Fibrations in HoTT

Take a type family B over A (that is $B: A \to \mathcal{U}$).

Then, the type $\sum_{x:A} B(x)$ equipped with its first projection pr₁ is a fibration.

Fibrations (1)

Fibration

Take a continuous map $p: E \to B$. It is called a fibration if it has a certain path lifting property from the **base space** B to the **total space** E.

Fibrations in HoTT

Take a type family B over A (that is $B: A \to \mathcal{U}$).

Then, the type $\sum_{x:A} B(x)$ equipped with its first projection pr₁ is a fibration.

More precisely:

Given x : A and u : P(x), for any y : A and p : x = y, one has a path

$$lift(p, u) : (x, u) = (\gamma, p_*(u))$$

such that $pr_1(lift(p, u)) = p$.

Fibrations (2)

Fibrations (3)

Paths over paths

Now, given $f: \prod_{x:A} B(x)$ and p: x = y there is a natural identification between points f(x) and $p_*(f(x))$.

Fibrations (3)

Paths over paths

Now, given $f: \prod_{x:A} B(x)$ and p: x = y there is a natural identification between points f(x) and $p_*(f(x))$.

A path lying over p should then factor through this path and consist of a path between $p_*(f(x))$ and a certain point u : P(y).

Fibrations (3)

Paths over paths

Now, given $f: \prod_{x:A} B(x)$ and p: x = y there is a natural identification between points f(x) and $p_*(f(x))$.

A path lying over p should then factor through this path and consist of a path between $p_*(f(x))$ and a certain point u: P(y).

Dependent functions yield such paths:

$$\operatorname{apd}_f: \prod_{p:x=Ay} p_*(f(x)) = f(y)$$

Equivalences and Univalence

Equivalences

We can build them from quasi-equivalences. Two types are quasi-equivalent if there exists maps $f:A\to B$ and $g:B\to A$ such that :

$$\prod_{x:A} g(f(x)) = x \quad \text{and} \quad \prod_{y:B} f(g(y)) = y$$

Equivalences and Univalence

Equivalences

We can build them from quasi-equivalences. Two types are quasi-equivalent if there exists maps $f:A\to B$ and $g:B\to A$ such that :

$$\prod_{x:A} g(f(x)) = x \quad \text{and} \quad \prod_{y:B} f(g(y)) = y$$

Univalence

One has:

$$(A \simeq B) \simeq (A = B)$$

Higher Inductive Types

Idea

When dealing with HITs we allow ourselves to use paths constructors, paths between paths constructors and so on.

Higher Inductive Types

Idea

When dealing with HITs we allow ourselves to use paths constructors, paths between paths constructors and so on.

The circle \mathbb{S}^1

The circle \mathbb{S}^1 is defined by the following HIT:

- base : \mathbb{S}^1
- loop: base =_{S1} base

HITs: Induction Principle

We have a problem

When dealing with paths constructors and higher paths constructors, induction principles can become very hard to manipulate.

HITs: Induction Principle

We have a problem

When dealing with paths constructors and higher paths constructors, induction principles can become very hard to manipulate.

The case of \mathbb{S}^1

To define a map $f: \prod_{x:\mathbb{S}^1} P(x)$, one needs to specify its value f (base): P(base). Then, what should you send loop to?

HITs: Induction Principle

We have a problem

When dealing with paths constructors and higher paths constructors, induction principles can become very hard to manipulate.

The case of \mathbb{S}^1

To define a map $f: \prod_{x:\mathbb{S}^1} P(x)$, one needs to specify its value f (base): P(base). Then, what should you send loop to? Recall that by transport:

$$P(\text{base}) \stackrel{\text{loop}_*}{\simeq} P(\text{base})$$

Since f is a dependent function, it should send loop to a dependent path between loop, (f(base)) and f(base).

Some other HITs (1)

Coequalizers

Given types B, A and maps $f, g: B \to A$ the (homotopy) **coequalizer** type CoEq(f, g) is given by the HIT:

- $c: A \to CoEq(f, g)$
- $\bullet \ p: \prod_{b:B} c(f(b)) = c(g(b))$

$$B \xrightarrow{g \atop f} A \xrightarrow{c} \operatorname{CoEq}(f,g)$$

Some other HITs (1)

Coequalizers

Given types B, A and maps f, $g: B \to A$ the (homotopy) **coequalizer** type CoEq(f, g) is given by the HIT:

- $c: A \to CoEq(f, g)$
- $\bullet \ p: \prod_{b:B} c(f(b)) = c(g(b))$

$$B \xrightarrow{g \atop f} A \xrightarrow{c} \operatorname{CoEq}(f,g)$$

The circle as a coequalizer

$$1 \xrightarrow{1 \atop 1} 1 \xrightarrow{c} CoEq(1,1) \simeq \mathbb{S}^1$$

Cubical Type Theory: Completing Squares

Filling property

Given an incomplete square of paths

$$\begin{array}{ccc}
 a & \xrightarrow{p} & b \\
 q \downarrow & & \downarrow r \\
 c & & d
\end{array}$$

Then there is a unique path s from c to d that completes the square by making it commute, that is:

$$q \cdot s = p \cdot r$$

Some other HITs (2): The torus \mathbb{T}^2

Figure: The torus \mathbb{T}^2 and its presentation as a cell complex (Hatcher)

Some other HITs (2): The torus \mathbb{T}^2

Figure: The torus \mathbb{T}^2 and its presentation as a cell complex (Hatcher)

This leads to the following HIT definition of \mathbb{T}^2 :

- $p: \mathbb{T}^2$
- \bullet a: p = p
- \bullet b: p = p
- fill : $a \cdot b = b \cdot a$

Some other HITs (3): The Torus \mathbb{T}^2

In cubical type theory (and cubical) agda, we fill squares!

Some other HITs (3): The Torus \mathbb{T}^2

In cubical type theory (and cubical) agda, we fill squares! This gives another definition of the Torus with an already built-in "filled square Type".

```
data Torus2 : Type where p : Torus2 a : p \equiv p b : p \equiv p fill : Square b b a a
```

Table of contents

- Intro
- 2 A brief overview of HoTT/cubical type theory
 - Informal Type Theory
 - Basics
 - Identity types
 - HoTT/Cubical Type Theory
 - The homotopical interpretation
 - Transport, Fibrations and Univalence
 - Higher Inductive Types
- 3 Some work done during the internship
 - Defining HM¹
 - A fiber calculation
- 4 Conclusion

The Hypercubic Manifold HM¹

Figure: The hypercubic manifold HM¹ (analysis-situs)

Defining $\mathbb{H}\mathbb{M}^1$ (1)

The HIT/CW-complex correspondence

A first step is to notice that defining HITs and CW-complex is pretty much the same (as seen for the Torus).

Defining $\mathbb{H}\mathbb{M}^1$ (1)

The HIT/CW-complex correspondence

A first step is to notice that defining HITs and CW-complex is pretty much the same (as seen for the Torus).

To begin with, we will name the vertex constructors b^V and w^V (for blue and white vertex) and the edge constructors b^E , r^E , g^E , γ^E .

Defining $\mathbb{H}\mathbb{M}^1$ (1)

The HIT/CW-complex correspondence

A first step is to notice that defining HITs and CW-complex is pretty much the same (as seen for the Torus).

To begin with, we will name the vertex constructors b^V and w^V (for blue and white vertex) and the edge constructors b^E , r^E , g^E , γ^E .

Challenges

- Identifying opposite sides under a quater of a turn rotation
- Filling the cube

The Hypercubic Manifold HM¹

Figure: The hypercubic manifold HM¹ (analysis-situs)

Defining HM¹ (2): Rotation

Begin with a filled square, that is a commutative diagram of paths:

Defining HM¹ (2): Rotation

Begin with a filled square, that is a commutative diagram of paths:

This in tantamount to having : $p \cdot s = r \cdot q$

Defining $\mathbb{H}\mathbb{M}^1$ (2): Rotation

Begin with a filled square, that is a commutative diagram of paths:

This in tantamount to having: $p \cdot s = r \cdot q$ Let's rewrite it: $r^{-1} \cdot p = q \cdot s^{-1}$

Defining $\mathbb{H}M^1$ (2): Rotation

Begin with a filled square, that is a commutative diagram of paths:

This in tantamount to having: $p \cdot s = r \cdot q$ Let's rewrite it: $r^{-1} \cdot p = q \cdot s^{-1}$ Yielding us the following filled square:

Defining $\mathbb{H}M^1$ (2): Rotation

Begin with a filled square, that is a commutative diagram of paths:

$$p \uparrow \xrightarrow{s} \uparrow q$$

This in tantamount to having: $p \cdot s = r \cdot q$ Let's rewrite it: $r^{-1} \cdot p = q \cdot s^{-1}$ Yielding us the following filled square:

$$r^{-1}$$
 \xrightarrow{p} $\uparrow_{S^{-1}}$

We have just defined a map:

rot : Square $p \neq r s \rightarrow \text{Square } \overline{r} = \overline{s} \neq p$

Defining HM¹ (3): Result

Figure: Synthetic description of the hypercubic manifold as a cubical HIT in cubical agda

Homotopy fibers

Homotopy fiber

Given a map $f: A \to B$ and b: B the fiber of f over b is given by :

$$\operatorname{fib}_f(b) := \sum_{x:A} f(x) =_B b$$

Homotopy fibers

Homotopy fiber

Given a map $f: A \to B$ and b: B the fiber of f over b is given by :

$$\operatorname{fib}_f(b) := \sum_{x:A} f(x) =_B b$$

The final goal of the internship was to compute such a fiber, it has not yet been computed but we will look at an instructive example instead.

For a group G, BG denotes the Eilenberg Mac-lane space of G.

For a group G, BG denotes the Eilenberg Mac-lane space of G. A famous result in homotopy theory is that :

$$B\mathbb{Z} = \mathbb{S}^1$$

For a group G, BG denotes the Eilenberg Mac-lane space of G. A famous result in homotopy theory is that :

$$B\mathbb{Z} = \mathbb{S}^1$$

Let now m be a nonnegative integer and $r \in \mathbb{Z}_m^{\times}$ (the integers mod m). Then we have a short exact sequence of groups :

$$\mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \xrightarrow{1 \mapsto \bar{r}} \mathbb{Z}_m$$

For a group G, BG denotes the Eilenberg Mac-lane space of G. A famous result in homotopy theory is that:

$$B\mathbb{Z} = \mathbb{S}^1$$

Let now m be a nonnegative integer and $r \in \mathbb{Z}_m^{\times}$ (the integers mod m). Then we have a short exact sequence of groups :

$$\mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \xrightarrow{1 \mapsto \bar{r}} \mathbb{Z}_m$$

Which, for topological reasons, yields a fibration of Eilenberg Mac-Lane spaces:

$$\mathbb{S}^1 \xrightarrow{\text{base} \mapsto \text{base}, \quad \text{loop} \mapsto \text{loop}^m} \mathbb{S}^1 \xrightarrow{g} \mathbf{B}\mathbb{Z}_m$$

This is in fact a fibration whose base space is $B\mathbb{Z}_m$, of total space \mathbb{S}^1 , and for which the fiber of g over the canonical element * of $B\mathbb{Z}_m$ should be \mathbb{S}^1 .

By definition, the fundamental group at * in \mathbb{BZ}_m is \mathbb{Z}_m , we choose a presentation of it as the powers of s_m the successor mod m. Then the map g is given by :

$$g(\text{base}) := *, \quad \text{ap}_g(\text{loop}) := \text{ua}(s_m^r)$$

By definition, the fundamental group at * in $\mathbb{B}\mathbb{Z}_m$ is \mathbb{Z}_m , we choose a presentation of it as the powers of s_m the successor mod m. Then the map g is given by :

$$g(base) := *, ap_g(loop) := ua(s_m^r)$$

We can now begin!

A fiber calculation (3) : diagrams

If $P : \mathbb{BZ}_m \to \mathcal{U}$ is defined by $P :\equiv x \mapsto x = s_m$ then we have a fibration over \mathbb{S}^1 given by $P \circ g$ whose total space is by definition:

$$\sum_{x:\mathbb{S}^1} P \circ g(x) := \sum_{x:\mathbb{S}^1} (g(x) = s_m) := \mathrm{fib}_g(s_m)$$

A fiber calculation (3): diagrams

If $P : \mathbb{BZ}_m \to \mathcal{U}$ is defined by $P :\equiv x \mapsto x = s_m$ then we have a fibration over \mathbb{S}^1 given by $P \circ g$ whose total space is by definition:

$$\sum_{x:\mathbb{S}^1} P \circ g(x) :\equiv \sum_{x:\mathbb{S}^1} (g(x) = s_m) :\equiv \mathrm{fib}_g(s_m)$$

Recalling that \mathbb{S}^1 is obtained as a coequalizer type, we obtain the following commutative diagram :

A fiber calculation (4): The flattening lemma

Flattening Lemma

Suppose given a fibration over a coequalizer type:

$$B \xrightarrow{f} A \xrightarrow{c} W \xrightarrow{P} \mathcal{U}$$

Then, one has a coequalizer diagram between the total spaces:

$$\sum_{b:B} P \circ c \circ f(a) \xrightarrow{(b,x) \mapsto (g(b),p_b^*(x))} \sum_{a:A} P \circ c(a) \longrightarrow \sum_{w:W} P(w)$$

In our case, the lemma yields the following coequalizer diagram:

$$s_m = s_m \xrightarrow{\text{Id}} s_m = s_m \longrightarrow \text{fib}_g(s_m)$$

In our case, the lemma yields the following coequalizer diagram:

$$s_m = s_m \xrightarrow{\text{Id}} s_m = s_m \longrightarrow \text{fib}_g(s_m)$$

Given that:

$$(s_m = s_m) \simeq (s_m \simeq s_m) \simeq \langle s_m \rangle \simeq \mathbb{Z}_m$$

In our case, the lemma yields the following coequalizer diagram:

$$s_m = s_m \xrightarrow{\text{Id}} s_m = s_m \longrightarrow \text{fib}_g(s_m)$$

Given that:

$$(s_m = s_m) \simeq (s_m \simeq s_m) \simeq \langle s_m \rangle \simeq \mathbb{Z}_m$$

We get that $fib_g(s_m)$ is equivalent to the HIT W defined by the following constructors :

- $c : \operatorname{Fin} m \mapsto W$
- $p: \prod_{x: \text{Fin } m} (c(x) = c(s_m^r(x)))$

Since r is coprime to m, it turns out that s_m^r is of order m so the orbit of c(0) under the action of the group $\langle s_m^r \rangle$ is the whole type W.

45/49

Since r is coprime to m, it turns out that s_m^r is of order m so the orbit of c(0) under the action of the group $\langle s_m^r \rangle$ is the whole type W.

Since r is coprime to m, it turns out that s_m^r is of order m so the orbit of c(0) under the action of the group $\langle s_m^r \rangle$ is the whole type W.

Hence:

$$\mathrm{fib}_g(s_m)\simeq \mathbb{S}^1$$

A fiber calculation (7): sketch of proof

The idea is that the general case should come from the case r = 1.

A fiber calculation (7): sketch of proof

The idea is that the general case should come from the case r = 1. For r = 1, we have that :

$$p_0 \cdot p_1 \cdot \ldots \cdot p_m : c(0) = c(0)$$

and we can successively contract each path:

$$p_i:c(i)\to c(\overline{i+1}_r)$$

to end up with a type with a constructor c(0) and a path $p_0: c(0) = c(0)$, which is the circle.

A fiber calculation (8): An extension

Let's consider the case where r and m are not coprime. In that case, let δ be the gcd of r and m, then s_m^r is now only of order $\frac{m}{\delta}$.

A fiber calculation (8): An extension

Let's consider the case where r and m are not coprime. In that case, let δ be the gcd of r and m, then s_m^r is now only of order $\frac{m}{\delta}$. Hence, our type is now composed of δ disjoint orbits of size $\frac{m}{\delta}$, each orbit looking like the types we were previously looking at.

A fiber calculation (8): An extension

Let's consider the case where r and m are not coprime.

In that case, let δ be the gcd of r and m, then s_m^r is now only of order $\frac{m}{\delta}$. Hence, our type is now composed of δ disjoint orbits of size $\frac{m}{\delta}$, each orbit looking like the types we were previously looking at.

We then naturally obtain:

$$\mathsf{fib}_g(s_m) = \bigoplus_{i=1}^{\delta} \mathbb{S}^1$$

Table of contents

- Intro
- 2 A brief overview of HoTT/cubical type theory
 - Informal Type Theory
 - Basics
 - Identity types
 - HoTT/Cubical Type Theory
 - The homotopical interpretation
 - Transport, Fibrations and Univalence
 - Higher Inductive Types
- 3 Some work done during the internship
 - Defining HM¹
 - A fiber calculation
- Conclusion

Towards \mathbb{HM}^1 as $\mathbb{S}^3/Q \curvearrowright \mathbb{S}^3$

Towards \mathbb{HM}^1 as $\mathbb{S}^3/Q \curvearrowright \mathbb{S}^3$

$$\mathbb{HM}^1 \xrightarrow{f} \mathbb{B}Q$$

Towards \mathbb{HM}^1 as $\mathbb{S}^3/Q \subset \mathbb{S}^3$

$$\mathbb{HM}^{1} \xrightarrow{f} BQ$$

$$Q \curvearrowright fib_{f}(*) := \sum_{x: \mathbb{HM}^{1}} f(x) = *$$

Towards \mathbb{HM}^1 as $\mathbb{S}^3/Q \curvearrowright \mathbb{S}^3$

$$\mathbb{HM}^{1} \xrightarrow{f} BQ$$

$$Q \curvearrowright \text{fib}_{f}(*) := \sum_{x: \mathbb{HM}^{1}} f(x) = *$$

$$\mathbb{HM}^{1} \simeq \text{fib}_{f}(*) Q \curvearrowright \text{fib}_{f}(*)$$