Goals

- ⇒ Introduce concepts of
 - Covariance
 - Correlation
- ⇒ Develop computational formulas

Covariance

- ⇒ Variables may change in relation to each other
- Covariance measures how much the movement in one variable predicts the movement in a corresponding variable

Smoking and Lung Capacity

- ⇒ Example: investigate relationship between cigarette smoking and lung capacity
- Data: sample group response data on smoking habits, and measured lung capacities, respectively

Smoking v Lung Capacity Data

N	Cigarettes (X)	Lung Capacity (Y)		
1	0	45		
2	5	42		
3	10	33		
4	15	31		
5	20	29		

Smoking and Lung Capacity

Smoking v Lung Capacity

- Observe that as smoking exposure goes up, corresponding lung capacity goes down
- ⇒ Variables covary inversely

Covariance

- ⇒ Variables that covary inversely, like smoking and lung capacity, tend to appear on opposite sides of the group means
 - When smoking is above its group mean, lung capacity tends to be below its group mean.
- Average product of deviation measures extent to which variables covary, the degree of linkage between them

The Sample Covariance

⇒ Similar to variance, for theoretical reasons, average is typically computed using (N-1), not N. Thus,

$$S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})$$

Calculating Covariance

Cigs (X)	Lung Cap (Y)	
0 /	45	
5	42	
10	33	
15	31	
20	29	

 $\bar{X} = 10$

 $\overline{Y} = 36$

Calculating Covariance

Cigs (X)	$(X-\overline{X})$	$(X-\overline{X})(Y-\overline{Y})$	$(Y-\overline{Y})$	Cap (<i>Y</i>)
0	-10	-90	9	45
5	-5	-30	6	42
10	0	0	-3	33
15	5	-25	-5	31
20	10	-70	-7	29

 $\Sigma = -215$

Covariance Calculation

(2)

Evaluation yields,

$$S_{xy} = \frac{1}{4}(-215) = -53.75$$

Covariance under Affine Transformation

Let
$$L_i=aX_i+b$$
 and $M_i=cY_i+d$. Then, $\left(\Delta l\right)_i=a\left(\Delta x\right)_i$, $\left(\Delta m\right)_i=c\left(\Delta y\right)_i$, where, $\left(\Delta u\right)_i\equiv u_i-\overline{u}$.

Evaluating, in turn, gives,

$$S_{LM} = \frac{1}{N-1} \sum_{i=1}^{N} (\Delta l)_i (\Delta m)_i$$

Covariance under Affine Transf (2)

Evaluating further,

$$S_{LM} = \frac{1}{N-1} \sum_{i=1}^{N} (\Delta l)_i (\Delta m)_i$$
$$= \frac{1}{N-1} \sum_{i=1}^{N} a(\Delta x)_i c(\Delta y)_i$$
$$= ac \frac{1}{N-1} \sum_{i=1}^{N} (\Delta x)_i (\Delta y)_i$$

$$\therefore S_{LM} = acS_{xy}$$

(Pearson) Correlation Coefficient r_{xy}

⇒ Like covariance, but uses Z-values instead of deviations. Hence, invariant under linear transformation of the raw data.

$$r_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} z x_i z y_i$$

Alternative (common) Expression

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

Computational Formula 1

$$S_{xy} = \frac{1}{N-1} \left[\sum_{i=1}^{N} X_i Y_i - \frac{\sum_{i=1}^{N} X_i \sum_{i=1}^{N} Y_i}{N} \right]$$

Computational Formula 2

$$r_{xy} = \frac{N\sum XY - \sum X\sum Y}{\sqrt{\left(N\sum X^2 - \left(\sum X\right)^2\right)\left(N\sum Y^2 - \left(\sum Y\right)^2\right)}}$$

Table for Calculating r_{xy}

Cigs (X)	X^2	XY	Y^2	Cap (<i>Y</i>)
0	0	0	2025	45
5	25	210	1764	42
10	100	330	1089	33
15	225	465	961	31
20	400	580	841	29

$\sum =$	50	750	1585	6680	180

Computing r_{xy} from Table

$$r_{xy} = \frac{5(1585) - 50(180)}{\sqrt{(5(750 - 50^2))(5(6680) - 180^2)}}$$

$$= \frac{7925 - 9000}{\sqrt{(3750 - 2500)(33400 - 32400)}}$$

Computing Correlation

$$r_{xy} = \frac{-1075}{\sqrt{(1250)(1000)}}$$

$$r_{xy} = -0.9615$$

$$r_{xy} = -0.96$$
 Conclusion

 $\Rightarrow r_{xy}$ = -0.96 implies almost certainty smoker will have diminish lung capacity

⇒ Greater smoking exposure implies greater likelihood of lung damage

End Covariance & Correlation Notes