THE KULLBACK-LEIBLER DIVERGENCE

Viktor Glombik

Seminar Optimal Transport Institute for Mathematics, TU Berlin 30.04.2021

INTRODUCTION: WHAT IS THE KL DIVERGENCE AND WHY DO WE NEED IT?

- KL divergence (or relative entropy) measures discrepancy between measures (but is not a distance).
- Regularises optimal transport problems ("Entropic Regularization").¹
- Is a Bregman distance and a φ -divergence.
- Connected to total variation norm: for $\mu, \nu \in \mathcal{M}^+(X)$

$$\|\mu - \nu\|_{\text{TV}}^2 \le 2 \, \text{KL}(\mu, \nu).$$
 (PINSKER's inequality)

¹G. Peyré, M. Cuturi: "Computational Optimal Transport", Foundations and Trends in Machine Learning, 2019

DEFINITION: GENERAL SETTING

Let X be a polish space.

DEFINITION (KL DIVERGENCE)

The KL divergence is

KL:
$$\mathcal{M}(X)^+ \times \mathcal{M}(X)^+ \to [0, \infty],$$

$$(\mu, \nu) \mapsto \begin{cases} \int_X \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) \mathrm{d}\mu + \nu(X) - \mu(X), & \text{if } \nu \ll \mu, \\ +\infty, & \text{else,} \end{cases}$$

where $\frac{d\mu}{d\nu} \in L^1(X,\nu)$ is the RADON-NYKODYM derivative.

 $[^]a\mathrm{Beier}$ et al.: "Unbalanced Multi-Marginal Optimal Transport", $arXiv\ preprint,$ 2021

SPECIAL CASE: PROBABILITY MEASURES

For distributions U and V of an absolutely continuous random variable, with densities u and v (with respect to the LEBESGUE measure m on \mathbb{R}) this simplifies to

$$\mathrm{KL}(U,V) \coloneqq \int_{\mathbb{R}} u(x) \log \left(\frac{u(x)}{v(x)} \right) \mathrm{d}m(x),$$

as the last two terms cancel for probability measures.

KL DIVERGENCE OF GAUSSIANS

Consider two random variables $P \sim \mathcal{N}(m, \sigma_1^2)$ and $Q \sim \mathcal{N}(m, \sigma_2^2)$ with $\sigma_1^2, \sigma_2^2 > 0$. Then²

$$2 \operatorname{KL}(P, Q) = \frac{\sigma_1^2}{\sigma_2^2} - 1 + \log \left(\frac{\sigma_2^2}{\sigma_1^2} \right) \xrightarrow{\sigma_2^2 \searrow 0} \infty.$$

As $\sigma_2^2 \searrow 0$, $N(m, \sigma_2^2)$ degenerates to a DIRAC measure δ_m .

 \sim "Singular Gaussians are infinitely far away from all other Gaussians" ³.

²Costa, Santos, and Strapasson: "Fisher information distance: A geometrical reading", Discrete Applied Mathematics, 2015

³G. Peyré, M. Cuturi: "Computational Optimal Transport", Foundations and Trends in Machine Learning, 2019

KL DIVERGENCE OF GAUSSIANS: ANIMATION

Fig. 1: The KL divergence of two Gaussians, where the variance of one varies.

Properties of the KL divergence

- Nonnegative: $KL(\mu, \nu) \ge 0$, $(\varphi$ -div, Bregman)
- Positive definite: $KL(\mu, \nu) = 0$ if and only if $\mu = \nu$ almost everywhere, $(\varphi\text{-div})$
- Unsymmetric: $KL(\mu, \nu) \neq KL(\nu, \mu)$, (Bregman)
- $\operatorname{KL}(\mu, \nu) \nleq \operatorname{KL}(\mu, \xi) + \operatorname{KL}(\xi, \nu),$ (Bregman)
- jointly convex, strictly convex in first entry. 4 (φ -div)

 $^{^4\}mathrm{Beier}$ et al.: "Unbalanced Multi-Marginal Optimal Transport", $arXiv\ preprint,$ 2021

Thank you for your attention!

References I

- [1] F. Beier et al. "Unbalanced Multi-Marginal Optimal Transport". In: arXiv preprint (2021).
- [2] S. Costa, S. Santos, and J. Strapasson. "Fisher information distance: A geometrical reading". In: Discrete Applied Mathematics 197 (2015). Distance Geometry and Applications, pp. 59–69.
- [3] G. Peyré, M. Cuturi. "Computational Optimal Transport". In: Foundations and Trends in Machine Learning 11.5-6 (2019), pp. 355–607.

KL DIVERGENCE OF GAUSSIANS: ANIMATION

Fig. 2: The KL divergence of two Gaussians, where the mean of one varies.

KL divergence as a φ -divergence

For $\mu, \nu \in \mathcal{M}^+(X)$ with $\nu \ll \mu$ we have [3]

$$\mathrm{KL}(\mu,\nu) = D_{\varphi_{\mathrm{KL}}}(P,Q) \coloneqq \int_X \varphi\left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) \mathrm{d}\nu,$$

where

$$\varphi_{\mathrm{KL}}(s) \coloneqq \begin{cases} s \log(s) - s + 1, & \text{for } s > 0, \\ 1, & \text{for } s = 0, \\ +\infty, & \text{otherwise,} \end{cases}$$

as $\varphi_{KL} \in \Gamma_0(\mathbb{R})$ with $\varphi_{KL}(1) = 0$.

$$\int_X \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \mathrm{d}\nu - \int_X \frac{\mathrm{d}\mu}{\mathrm{d}\nu} \mathrm{d}\nu + \int_X 1 \, \mathrm{d}\nu = \int_X \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\right) \mathrm{d}\mu - \mu(X) + \nu(X).$$

THE SHANNON-BOLTZMANN ENTROPY FUNCTION

KL DIVERGENCE FOR GAUSSIANS - DERIVATION

First, recall that the KL divergence between two distributions P and Q is defined as

$$D_{KL}(P||Q) = \mathcal{E}_P\left[\log\frac{P}{Q}\right].$$

Also, the density function for a multivariate Gaussian (normal) distribution with mean μ and covariance matrix Σ is

$$p(x) = \frac{1}{(2\pi)^{n/2} \det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Now, consider two multivariate Gaussians in \mathbb{R}^n , P_1 and P_2 . We have

$$\begin{split} &D(P_1||P_2)\\ &= \quad \mathbb{E}_{P_1}[\log P_1 - \log P_2]\\ &= \quad \frac{1}{2}\mathbb{E}_{P_1}\left[-\log \det \Sigma_1 - (x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1) + \log \det \Sigma_2 + (x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2)\right]\\ &= \quad \frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1} + \frac{1}{2}\mathbb{E}_{P_1}\left[-(x-\mu_1)^T\Sigma_1^{-1}(x-\mu_1) + (x-\mu_2)^T\Sigma_2^{-1}(x-\mu_2)\right]\\ &= \quad \frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1} + \frac{1}{2}\mathbb{E}_{P_1}\left[-\operatorname{tr}(\Sigma_1^{-1}(x-\mu_1)(x-\mu_1)^T) + \operatorname{tr}(\Sigma_2^{-1}(x-\mu_2)(x-\mu_2)^T)\right]\\ &= \quad \frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1} + \frac{1}{2}\mathbb{E}_{P_1}\left[-\operatorname{tr}(\Sigma_1^{-1}\Sigma_1) + \operatorname{tr}(\Sigma_2^{-1}(xx^T - 2x\mu_2^T + \mu_2\mu_2^T))\right]\\ &= \quad \frac{1}{2}\log \frac{\det \Sigma_2}{\det \Sigma_1} - \frac{1}{2}n + \frac{1}{2}\operatorname{tr}(\Sigma_2^{-1}(\Sigma_1 + \mu_1\mu_1^T - 2\mu_2\mu_1^T + \mu_2\mu_2^T))\\ &= \quad \frac{1}{2}\left(\log \frac{\det \Sigma_2}{\det \Sigma_1} - n + \operatorname{tr}(\Sigma_2^{-1}\Sigma_1) + \operatorname{tr}(\mu_1^T\Sigma_2^{-1}\mu_1 - 2\mu_1^T\Sigma_2^{-1}\mu_2 + \mu_2^T\Sigma_2^{-1}\mu_2)\right)\\ &= \quad \frac{1}{2}\left(\log \frac{\det \Sigma_2}{\det \Sigma_1} - n + \operatorname{tr}(\Sigma_2^{-1}\Sigma_1) + (\mu_2 - \mu_1)^T\Sigma_2^{-1}(\mu_2 - \mu_1)\right) \end{split}$$