

截止区 $\left|V_{\mathrm{GS}}\right| < \left|V_{\mathrm{th}}\right|$ $I_{\mathrm{D}} = 0$

 $20\log |A_{vd}(f)|$

$$g_{\rm m} = \frac{\partial I_{\rm D}}{\partial V_{\rm GS}}$$
 $g_{\rm o} = \frac{\partial I_{\rm D}}{\partial V_{\rm DS}}$ $g_{m} \sim 0.0$

线性区
$$|V_{\rm GS}| > |V_{\rm th}| |V_{\rm DS}| < |V_{\rm od}|$$
 $g_{\rm m} = \frac{\sigma V_{\rm D}}{\partial V_{\rm GS}} g_{\rm o} = \frac{\partial V_{\rm D}}{\partial V_{\rm DS}} g_{\rm m} \sim 0.013 \ r_0 \sim 10 M_{\odot}$ $I_{\rm D} = \pm \frac{1}{2} \mu_{\rm s} C_{\rm or} \frac{W}{L} \left[2 (V_{\rm GS} - V_{\rm th}) V_{\rm DS} - V_{\rm DS}^2 \right] g_{\rm m} = \mu_{\rm n} C_{\rm or} \frac{W}{L} V_{\rm DS}$ 他和区 $|V_{\rm GS}| > |V_{\rm th}| |V_{\rm DS}| > |V_{\rm od}|$ $I_{\rm D} = \pm \frac{1}{2} \mu_{\rm s} C_{\rm or} \frac{W}{L} (V_{\rm GS} - V_{\rm th})^2 (1 \pm \lambda V_{\rm DS}) g_{\rm m} = \mu_{\rm n} C_{\rm or} \frac{W}{L} (V_{\rm GS} - V_{\rm th}) = \sqrt{2 \mu_{\rm n} C_{\rm or} \frac{W}{L} I_{\rm D}}$

开环差模电压增益A_{vd}

 $v_{\rm O} = A_{vd}(v_{\rm P} - v_{\rm N})$ 差模输入电阻Rid

3dB带宽f_H

> $A_{vd}(f) = A_{vd}/(1 + jf/f_H)$ > $\stackrel{\text{def}}{=} f_H B \dagger$, $20 \log(A_{vd}(f_H)) - 20 \log(A_{vd}) = -3 \text{dB}$

单位增益带宽GBW

➤ A_=1的频率

虚断: $I_N = I_P$

A_{vd}、f_H和GBW是运放的小信号频率参数

GBW是运放的最高工作频率 虚短: $V_N = V_P$

V_{12} R_1 R_F

 $g_{\rm m} = \frac{\partial I_{\rm D}}{\partial V_{\rm GS}} \quad g_{\rm o} = \frac{\partial I_{\rm D}}{\partial V_{\rm DS}} \quad g_{m} \sim 0.01S \quad r_{o} \sim 10 \, k\Omega$

摆率(Slew Rate) S_R > 定义: 大信号阶跃输入时 V_0 的最大变化率, S_R =d V_0 /dt $\big|_{\max}$

・ 在阶跃响应时,运放的输出级电流I_O对负载电容C_L进行充电和放电操作,即S_R=I_O/C_L
 ・ 提高S_R的方法:

extstyle e> S_B的物理意义:

渝入参考晚声电压V_n→ 从运放射输入端看进去的输入等效噪声电压

→ 反映了由运放本身所引入的噪声的大小,是的函数

相位裕度(Phase Margin) > 运放增益为1(f=GBW)时,输出相位与180度之差 > 反映了运放的频率稳定性,是价函数

- » 👺 🛦 ω_{z1}, ω_{z2}, ···, ω_{zz} 单极点系统
- √只有一个极点,该极点频率即为3dB带宽

单极点、单零点系统的波特图

$$\frac{I_{\text{copy}}}{I_{\text{REF}}} = \frac{\left(\frac{W}{L}\right)_{2} (1 + \lambda V_{\text{DS2}})}{\left(\frac{W}{L}\right)_{1} (1 + \lambda V_{\text{X}})} \quad r_{\text{o}} = \frac{1}{\lambda I_{\text{copy}}}$$