Fraction Physics: Ledger v1.4

A Minimal-Description-Length Program for the Constants

Evan Wesley

August 2025 (ledger frozen)

Contents

1	Hypothesis and Protocol	1
2	Ledger v1.3: Locks and Decimals (frozen)	1
3	Derived Identities and Checks	3
4	Muon $g-2$: QED Block (consistency)	3
5	Scoring and Model Selection	3

Abstract

We present a fixed ledger of exact rational "locks" for selected dimensionless (and select dimensionful) quantities across particle physics and cosmology. The hypothesis is a compression prior: nature prefers small rationals at fixed schemes/scales. We specify a simple description-length (DL) cost, pre-register the locks, and test them via a global score balancing accuracy and complexity. Derived identities include CKM/PMNS geometry, a compact QED g-2 block seeded by an exact α , rare-decay cores, electroweak mass-ratio checks, and a flat Λ CDM budget. The aim is auditability and falsifiability, not curve-fitting.

1 Hypothesis and Protocol

Hypothesis. At fixed renormalization scheme/scale, many low-energy inputs admit concise rational representations that jointly compress the data. Evidence for the hypothesis increases if one frozen ledger covers many sectors without retuning.

Protocol (anti-numerology guardrails).

- **R1**. Search space: primitive rationals p/q with low complexity.
- **R2**. Complexity (DL): for x = p/q (lowest terms),

$$L(x) = \lceil \log_2 p \rceil + \lceil \log_2 q \rceil$$
 bits. (1)

- **R3**. Scheme/scale tags: every lock declares scheme and μ ; comparisons never mix schemes silently.
- **R4**. Freeze & score: once published, integers are fixed. New data update only likelihood terms; DL never changes for a given lock.
- **R5**. Out-of-sample digits: crisp identities (e.g. $\sin 2\beta = \frac{119}{169}$) are declared and tracked.

2 Ledger v1.3: Locks and Decimals (frozen)

All fractions are exact; decimals are hard-coded for quick audit. Schemes/scales are part of the statement.

${\it QED}$ / Electroweak

Quantity	Exact	Decimal	Scheme/Scale	DL (bits)
Fine structure (inverse)	$\alpha^{-1} = \frac{361638}{2639}$	137.035998484	on-shell $(\alpha(0))$	31
Fine structure	$\alpha^{-1} = \frac{361638}{2639}$ $\alpha = \frac{2639}{361638}$	0.007297352601	on-shell $(\alpha(0))$	31
Weak mixing	$\sin^2 \theta_W = \frac{3}{13}$	0.2307692308	$\overline{\mathrm{MS}}$ at M_Z	6
Strong coupling	$\sin^2 \theta_W = \frac{3}{13}$ $\alpha_s(M_Z) = \frac{9953}{84419}$	0.117900000	$\overline{\mathrm{MS}}$ at M_Z	31

${\bf CKM\ (Wolfenstein-Buras-like)}$

Parameter/Observable	Exact	Decimal	DL (bits)
$\overline{\lambda}$	$\frac{2}{9}$	0.22222222	5
A	$\frac{21}{25}$	0.84	10
$ar{ ho}$	2 9 21 25 3 20 7 7 20	0.15	7
$ar{\eta}$	$\frac{7}{20}$	0.35	8
$\sin 2\beta$	119 169	0.704142012	15
$J_{ m CKM}$	$\frac{197,568}{6,643,012,500}$	2.97407×10^{-5}	42
$\frac{ V_{td} ^2}{ V_{ts} ^2}$	$\lambda^2[(1-\bar{\rho})^2+\bar{\eta}^2]$	0.0417283951	(derived)

PMNS (angles, phase, first row)

Lock	Exact	Decimal	DL (bits)
$\sin^2 \theta_{12}$	$\frac{7}{23}$	0.304347826	8
$\sin^2 \theta_{13}$	$\frac{\frac{7}{23}}{\frac{2}{89}}$	0.0224719101	8
$\sin^2 \theta_{23}$	$\frac{9}{16}$	0.5625	8
$\delta_{ m PMNS}$	$-\pi/2$	maximal	(fixed)
$ U_{e1} ^2$	$\frac{1392}{2047} \\ 609$	0.680019541	(derived)
$ U_{e2} ^2$	$\frac{609}{2047}$	0.297508549	(derived)
$ U_{e3} ^2$	$\frac{2}{89}$	0.0224719101	(derived)

Neutrino splittings (illustrative)

Quantity	Exact	Decimal
$\frac{\Delta m_{31}^2}{\Delta m_{21}^2}$	$\frac{\frac{1}{400}\mathrm{eV}^2}{\frac{1}{13600}\mathrm{eV}^2}$	$2.500 \times 10^{-3} \mathrm{eV}^2 \\ 7.352941 \times 10^{-5} \mathrm{eV}^2$

Cosmology (flat Λ CDM)

Quantity	Exact	Decimal	DL (bits)
Matter fraction	$\Omega_m = \frac{63}{200}$	0.315	12
Dark energy	$ \Omega_m = \frac{63}{200} \Omega_\Lambda = \frac{137}{200} $	0.685	15
Split ratio	$\Omega_b:\Omega_c=14.75$	_	10
Hubble	$H_0 = \frac{337}{5} \mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$	67.4	12
Implied Ω_b	$\frac{14}{89}\Omega_m$	0.04955	(derived)
Implied Ω_c	$\frac{75}{89}\Omega_m$	0.26545	(derived)

Electroweak / mass-ratio checks

Ratio	Exact	Decimal	DL (bits)
M_W/M_Z	$\begin{array}{r} 901479375 \\ \hline 1022701703 \\ 1219404375 \end{array}$	0.881468538	60
m_t/M_Z	1219404375 643896907 17807	1.893788216	62
M_W/v	17807 54547	0.326452417	31
Custodial snapshot	$1 - (M_W/M_Z)^2$	0.223013216	(derived)

3 Derived Identities and Checks

CKM geometry. With $(\lambda, A, \bar{\rho}, \bar{\eta}) = (\frac{2}{9}, \frac{21}{25}, \frac{3}{20}, \frac{7}{20}),$

$$\tan \beta = \frac{7}{17}$$
, $\sin 2\beta = \frac{119}{169} = 0.704142012$, $J_{\text{CKM}} = 2.97407 \times 10^{-5}$.

Rare-decay cores. Using compact short-distance placeholders $X_t = \frac{37}{25}$, $P_c = \frac{2}{5}$ (for display),

$$\operatorname{Core}(K_L) = (A^2 \bar{\eta} X_t)^2 \approx 0.133590835, \qquad \operatorname{Core}(K^+) = \operatorname{Core}(K_L) + [P_c + A^2 (1 - \bar{\rho}) X_t]^2 \approx 1.791619966.$$

PMNS complementarity. With $\theta_C = \arcsin(2/9) \approx 12.78^{\circ}$ and $\theta_{12}^{(\nu)} \approx 33.4^{\circ}$, one finds $\theta_C + \theta_{12}^{(\nu)} \approx 46^{\circ}$.

4 Muon q-2: QED Block (consistency)

Seeding the 5-loop QED series with $\alpha = \frac{2639}{361638}$ yields partial sums

Replacing α with CODATA shifts the QED total by 5.917×10^{-12} ; known hadronic pieces dominate any remaining tension.

5 Scoring and Model Selection

For an observable \mathcal{O} with measurement $\mathcal{O}_{\text{exp}} \pm \sigma$ and prediction $\mathcal{O}_{\text{pred}}$,

$$z(\mathcal{O}) = \frac{\left|\mathcal{O}_{\text{pred}} - \mathcal{O}_{\text{exp}}\right|}{\sigma}.$$
 (2)

A one-parameter MDL ranking is

$$S = -\frac{1}{2} \sum z^2 - \kappa \sum L; \qquad \kappa \in \{0.5, 1.0\} \text{ reported.}$$
 (3)

Scoreboard (fill-in measurements)

Observable	Prediction	Measured	σ	\overline{z}
α^{-1} (on-shell)	137.035998484	fill	fill	$-\frac{1}{ \cdot /\sigma}$
$\sin 2\beta$	0.704142012	fill	fill	$ \cdot /\sigma$
$ V_{us} $	0.22222222	fill	fill	$ \cdot /\sigma$
$J_{ m CKM}$	2.97407×10^{-5}	fill	fill	$ \cdot /\sigma$
$ U_{e3} ^2$	0.0224719101	fill	fill	$ \cdot /\sigma$
Ω_m	0.315	fill	fill	$ \cdot /\sigma$
H_0	$67.4 \mathrm{km s^{-1} Mpc^{-1}}$	fill	fill	$ \cdot /\sigma$
M_W/M_Z	0.881468538	fill	fill	$ \cdot /\sigma$
$\alpha_s(M_Z)$	0.117900000	fill	fill	$ \cdot /\sigma$

Graveyard (transparency)

Candidates rejected either by the DL budget or by data:

- $\lambda = 1/4$ (low DL but off current $|V_{us}|$ centers).
- $\sin^2 \theta_{13} = 1/64$ (overestimates $|U_{e3}|^2$ vs reactor data).

Notes on Running and Schemes

When comparing at other μ , use standard QED/QCD/EW β -function running in the stated schemes without retuning ledger integers. Scheme conversions must be explicit and documented alongside any comparison.

References (indicative)

References

- [1] Particle Data Group (2024), *The Review of Particle Physics*, Prog. Theor. Exp. Phys. 083C01.
- [2] Planck Collaboration (2020), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6.
- [3] T. Aoyama et al. (2020), The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887, 1–166.
- [4] A. J. Buras (2015), Kaon theory: $K \to \pi \nu \bar{\nu}$ in the Standard Model, JHEP 1511, 033.