PTC3314 - Ondas e Linhas

3º Exercício de Simulação Computacional Data para entrega: 24 de novembro de 2024

Este exercício computacional contará como um dos testes da disciplina.

A folha de respostas com a listagem completa e os gráficos solicitados deverão ser entregues na data acima impreterivelmente.

As simulações solicitadas podem ser feitas utilizando-se o programa Matlab, Scilab ou outro programa similar.

1) Como visto em classe, para fazer o casamento (eliminar-se a reflexão) entre dois dielétricos, numa determinada frequência, insere-se entre eles uma camada de um outro dielétrico com impedância intrínseca $\eta_2 = \sqrt{\eta_1 \eta_f}$ e de espessura $\lambda_2/4$. Considere o problema de se efetuar o casamento entre o ar e um dielétrico com $\varepsilon = 16 \varepsilon_0$ na frequência de 1,mnp GHz, de acordo com os 3 últimos algarismos do seu número USP (exemplo: nusp=2264123 => f_0 =1,123 GHz). Este trabalho poderá ser realizado em grupos de no máximo 3 alunos (**todos de uma mesma turma** de PTC3314) e, neste caso, o número USP do primeiro aluno, em ordem alfabética, deverá ser o utilizado para a escolha dos parâmetros

- a) (1,0) determine a constante dielétrica e a espessura mínima de um dielétrico para efetuar o casamento entre esses materiais na frequência f_0 ;
- b) (2,0) com os parâmetros do item (a) (mantendo o valor d fixo em mm), calcule **o módulo ao quadrado** do coeficiente de reflexão no ar, $|\rho_1|^2$, para frequências entre f_0 500 MHz e f_0 + 500 MHz (com passo de 0,5 MHz) e **plote seu gráfico**. Interprete o resultado. Explicite os valores de $|\rho_1|^2$ nas frequências f_0 500 MHz, f_0 e f_0 + 500 MHz.
- c) (1,0) Determine a largura de banda (*BW*) desse casamento para $|\rho_1|^2 \le 0,001$. Obtenha esse valor a partir da tabela de valores obtidos (e não a partir do gráfico) com **precisão de 1 MHz**.

2) Considere, agora, o casamento utilizando-se duas camadas de um quarto de comprimento de onda com: $\eta_2 = \eta_0 / \sqrt{2}$ e $\eta_3 = \eta_0 / \sqrt{8}$:

- a) (2,0) determine as constantes dielétricas e as espessura dos dielétricos para efetuar o casamento entre esses materiais na frequência f_0 ;
- b) (3,0) com os parâmetros do item (a) (mantendo os valores d_2 e d_3 fixos em mm), calcule o **módulo ao quadrado** do coeficiente de reflexão no ar, $|\rho_1|^2$, para frequências entre f_0 500 MHz e f_0 + 500 MHz (com passo de 0,5 MHz) e plote seu gráfico. Explicite os valores de $|\rho_1|^2$ nas frequências f_0 500 MHz, f_0 e f_0 + 500 MHz.
- c) (1,0) Determine a largura de banda desse casamento para $|\rho_1|^2 \le 0,001$. Obtenha esse valor a partir da tabela de valores obtidos (e não a partir do gráfico) com **precisão de 1 MHz**. Compare com (1) e interprete o resultado em termos de largura de banda do casamento.

FOLHA DE RESPOSTAS

PTC3314 – 3º Exercício de Simulação Computacional

Turma: Professor:	
Nome: Nome: Nome:	NUSP: NUSP: NUSP:
Questão 1 – Uma camada dielétrica:	
1a) (1,0) $\varepsilon_2 = \underline{\qquad} \varepsilon_0 d_2 = \underline{\qquad} mm$	
1b) (2,0) $ \rho(f_0 - 500 \text{ MHz}) ^2 = [\rho(f_0)]^2 = [\rho(f_0)]^2 = [\rho(f_0)]^2$	$ \rho(f_0 + 500 \text{MHz}) ^2 =$
1c) (1,0) largura de banda para $ \rho_1 ^2 \le 0.001$: $BW =$	MHz
Questão 2 – Duas camadas dielétricas:	
2a) (2,0) $\varepsilon_2 = \underline{\qquad} \varepsilon_0 d_2 = \underline{\qquad} mm$	
$\varepsilon_3 = \underline{\qquad} \varepsilon_0 d_3 = \underline{\qquad} \text{mm}$	
2b) (3,0) $ \rho(f_0-500 \text{ MHz}) ^2 = [\rho(f_0)]^2 = [\rho(f_0)]^2$	$ \rho(f_0 + 500 \text{MHz}) ^2 =$
gráfico anexo	12. 12. 1
2c) (1,0) largura de banda para $ \rho_1 ^2 \le 0.001$: $BW = $	MHz
Análise do resultado:	