Efficient Parallel RSA Decryption Algorithm for Many-core GPUs with CUDA

Yu-Shiang Lin, Chun-Yuan Lin, Der-Chyuan Lou
Department of Computer Science and Information Engineering
Chang Gung University
Taoyuan 333, Taiwan, ROC
coldfunction@gmail.com, {cyulin, dclou}@mail.cgu.edu.tw

Outline

- RSA method
- Pollard's p-1 factorization
- Introduce GPU and CUDA
- GPU-based Pollard's p-1 Factorization Algorithm
- Build Custom Integer System (CIS)
- Analysis & Results

RSA method

- Key Generation
- Select p, q

p, q both prime, p≠q

- Calculate n = p*q
- Calculate $\Phi(n) = (p-1)*(q-1)$
- Select integer e

 $gcd(\Phi(n), e) = 1; 1 < e < \Phi(n)$

- Calculate d
- Public key
- Private key

- $KU=\{e, n\}$
- $KR = \{d, n\}$

Encryption: M < n (M is plaintext) C = M^e(mod n)

Decryption: M = C^d(mod n)

p-1 factorization

- In 1974y, Pollard's p-1 Factorization Method
- Based on the Fermat's little theorem
- It can be subdivided into independent iterations

$$a^{p-1} \equiv 1 \pmod{p}$$
 $K = a^{p-1} - 1 \equiv 0 \pmod{p}$
 $\gcd(K, N) = p \quad p-1 \mid m'$
 $a^{m'} - 1 = a^{(p-1)^c} - 1 = 1^c \equiv 0 \pmod{p}$

$$gcd(a^m - 1, N) = p$$

CPU-p-1 factorization algorithm (CPFA)

```
//object: to find one factor of integer N
//Load prime table to main memory from disk
for (integer i from 1 to T<sub>c</sub>)
```

- 1. Choose an integer a_c , it could be 2 or random generate.
- 2. Find prime *p* from *prime table* which are smaller than *B*.
- 3. Compute:

$$e = \prod_{\substack{\text{p prime} \\ 2 \le p \le B}} p^{\lfloor logB/logp \rfloor}$$

- 4. Let $b = a_c^e \mod N$, if $1 \le gcd(b-1, n) \le N$, then return the value of greatest common divisor gcd(b-1,N).
 - 5. Follow step 4, if gcd(b-1, N) equal 1 or N, then go to step 2.
 - 6. If finding prime p over B, then execute the next iteration.

Sequential P-1

Parallel P-1

GPU

- SIMT
- Many cores
- Many kinds of memory
- More cheaper

CUDA

CUDA

Let GPU easy...

GPU-p-1 factorization algorithm

//object: to find one factor //Load prime table from m Inter-task parallelization

```
//gridDim.x is the built-in variable which represent the size of grid (number of blocks in one grid).
// blockDim.x is the built-in variable which represent the size of block (number of threads in one block).
//blockIdx.x is the built-in variable which represent the 1 D block index within the grid.
//threadIdx.x is the built-in variable which represent the 1 D thread index within the grid.
int linearID = blockDim.x*blockIdx x+threadIdx.x;
int total num of thread = gridDim.x*blockDim.x;
int a_g = 2+linearID;
for (integer i from blockIdx.x*blockDim.x to blockIdx.x*blockDim.x+T<sub>g</sub>-1)
     //pr(j) is the j-th prime number in the prime table.
     for(unsigned int j = \text{linearID}; pr(j) < B; j + = \text{total num of thread})
           step 3 of CPU-p-1. Compute:
           step 4. Let b = a_a^e \mod N, if 1 \le gcd(b-1, n) \le N, then return the value of greatest common
divisor gcd(b-1,N) to global memory.
           step 5 of CPU-p-1. Follow step 4, if gcd(b-1, N) equal 1 or N, then continue.
     a_{\sigma} = a_{\sigma} * a_{\sigma} %RAND MAX+i+linearID;
```

GPU-p-1 factorization algorithm (GPFA)

```
//object: to find one factor of integer N
//Load prime table from main memory of CPU to Global memory of GPU.

//gridDim.x is the built-in variable which represent the size of grid (number of blocks in one grid).

// blockDim.x is the built-in variable which represent the size of block (number of threads in one block).

//blockIdx.x is the built-in variable which represent the 1 D block index within the grid.

//threadIdx.x is the built-in variable which represent the 1 D thread index within the grid.

int linearID = blockDim.x*blockIdx.x+threadIdx.x;
int total_num_of_thread = gridDim.x*blockDim.x;
int a<sub>g</sub> = 2+linearID;

for (integer i from blockIdx.x*blockDim.x to blockIdx.x*blockDim.x+T<sub>g</sub>-1)
{
```

$a_g = a_g * a_g \%RAND_MAX+i+linearID;$

```
e = \prod_{\substack{p \text{ prime} \\ 2 \leq p \leq B}} p^{\lfloor logB/logp \rfloor} step 4. Let b = a_g^e \mod N, if 1 < gcd(b-1, n) < N, then return the value of greatest common divisor gcd(b-1, N) to global memory. step 5 of CPU-p-1. Follow step 4, if gcd(b-1, N) equal 1 or N, then continue. \begin{cases} a_g = a_g * a_g \% \text{RAND\_MAX+} i + \text{linearID}; \end{cases}
```

GPU memory allocate

Figure 3. In CUDA, memory allocate scenario: (a)Pre-allocate *prime table* in texture memory before execute kernel function. (b) Store the large number N and a in registers. (c) Store the result to global memory.

CIS (Custom Integer System)

An example of integer representation in CIS

Figure 1. *CSBI*: The black area is the first half of the unsigned integer, such as the storage space of a large integer (totally 128 bit), the white area is the latter half of unsigned integer, such as the additional carry binary space (totally 128 bit).

The addition and subtraction operations in CIS

Figure 2. (a): It take the sum of each element of a and b array, and temporarily store into c', then refresh the dditional carry binary space added to the higher binary space sequentially. (b): The principle of large integer btraction much like (a), it take the subtraction of each element of a and b array, if a[i] < b[i], then you need to borrow 1 from a[i+1].

Why use CIS

- Our *GPFA* is applicable to *inter-task parallelization*
- Unnecessary for the individual operator of large integers in parallel
- Mod operation cost is expensive per thread on GPU

Test Environments

Test Platform

CPU	Intel Core2 Quad Q8200 2.33GHz	
Memory	4 GB RAM	
GPU	C2050, S1070, GTX-260	
OS	Linux	

Bbenchmark

	N	р	q
RSA-41	0x12B1F259795	0x721F7	0x29EFD3
RSA-44	0x89FD383381B	0x120FC7	0x7A3D0D
RSA-46	0x3CF5F89ED5F5	0xC50069	0x4F37AD
RSA-47	0x600FF385C031	0xFF52D9	0x605119
RSA-48	0x878D4C7D68E9	0xABB039	0xCA1E31
RSA-56	0xB8C8CBD2DAEE7D	0xD985797	0xD978D0B
RSA-64	0x6926C73F919FA3E7	0x79E6711B	0xDCD39125

Analysis & Results

$$speedup = \frac{Time(CPFA)}{Time(GPFA)} = \frac{(\frac{B}{\ln B}u)t_c}{(s \times (\frac{B}{\ln B} \times (gridDim.x \times blockDim.x)}))t_g}$$

$$= (\frac{u \times t_c}{s \times t_g}) \times (\text{gridDim.x} \times \text{blockDim.x})$$

-- C2050 (configure) -- C2050 (nonconfig) -- S1070 -- GTX-260 -- (Tc/Tg)*100

Figure 5. The speedup compare with CPFA in CPU, which test data from RSA-41 to RSA-64, and y-axis is

the scale of logarithm to base 10.

Thank You For Your Listening...