OXIDATION NUMBER

RULES TO ASSIGN OXIDATION NUMBER

- 1) Oxidation number of an element in free elemental state or Uncombined state zera
- 2) In polyatomic ion, the algebraic sum of all the oxidation numbers of atoms of the ion must equal the charge on the ion
- 3) The oxidation number of oxygen in most of the compounds is -2 In peroxides -1 In superoxides -1/2In O₂ F₂ +1 In OF₂ +2
- 4) Oxidation number of hydrogen is +1 in most of its compounds(In metal hydrides -1)
- 5) Oxidation number of fluorine is always -1 in its compounds
- 6) Alkali metals have oxidation number +1 and alkaline earth metals have oxidation number +2 always in its compounds
- 7) The algebraic sum of the oxidation number of all the atoms in a compound must be zero.

 $KMnO_{\lambda}^{-1}$ 1 + x + 4x(-2) = 0 \implies x = +7

OXIDATION: Increase in the

oxidation number

REDUCTION: Decrease in the oxidation number

Highest O.S— Undergoes Reduction—Oxidising agent

Lowest O.5 — Undergoes Oxidation—Reducing agent

Intermediate O.S — Oxidation & Reduction

-Oxidising Agent & Reducing Agent

OXIDISING AGENT (OXIDANTS):

A reagent which can increase the oxidation number.

REDUCING AGENT (REDUCTANTS):

A reagent which can decrease the oxidation number.

PHYSICS WALLAH

REDOX REACTIONS:

Reactions which involve change in oxidation number of the interacting species

BALANCING OF REDOX REACTION

- 1) Identify oxidation and reduction
- 2) Make total increase and total decrease in O.N equal
- 3) Balance atoms except O & H

١١		
"	ACIDIC	BASIC
	Balance	Balance
	- Oxygen with H ₂ O	- Charge with OH-
	- Hydrogen with H ⁺	- Oxygen with H ₂ O

REDOX REACTION

TYPES OF REDOX REACTIONS

POINTS TO REMEMBER

Tribromooctaoxide $0 = \frac{\| \cdot \cdot \cdot \|_{\cdot \cdot \cdot \cdot}}{\| \cdot \cdot \cdot \cdot \|_{\cdot \cdot \cdot}} = 0$ 0 0

COMBINATION REACTION

A redox reaction in the form $A+B\rightarrow C$

Either A and B or both A and B must be in the elemental form for such a reaction to be a redox reaction.

eg: $H_2 + Cl_2 \rightarrow 2HCl$

DECOMPOSITION REACTION

Reaction leads to the breakdown of a compound into two or more components at least one of which must be in the elemental state.

eg: $H_2O \rightarrow H_2 + O_2$

DISPLACEMENT REACTION

An ion (or an atom) in a compound is replaced by an ion (or an atom) of another element.

 $X + YZ \rightarrow XZ + Y$

METAL DISPLACEMENT

A metal in a compound can be displaced by another metal in the uncombined state.

eg: $CuSO_4$ + $Zn \rightarrow Cu$ + $ZnSO_4$

NON-METAL DISPLACEMENT

Non-metal in a compound can be displaced by a metal or a non-metal

eg: $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Na + H_2O \rightarrow NaOH + H_2$

DISPROPORTIONATION REACTIONS

In a disproportionation reaction an element in one oxidation state is simultaneously oxidised and reduced.

It always contains an element that can exist in at least three oxidation states.

eg: $2H_2O_2 \rightarrow 2H_2O + O_2$

Comproportionation reaction:

A reaction in which an element in a higher oxidation state reacts with the same element in a lower oxidation state to give the element in an intermediate oxidation state

eg: Pb + PbO₂ + $2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$