

Vapor Intrusion Assessment and Mitigation 2012

Robert Ettinger, M.S., P.E.,
Todd McAlary, M.Sc., P.Eng., P.G.
Geosyntec Consultants, Inc.

Donna Caldwell
US Navy

Tom McHugh, Ph.D., D.A.B.T.
GSI, Inc.

Environmental Monitoring and
Data Quality Workshop
La Jolla, CA
26 March 2012

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 26 MAR 2012	2. REPORT TYPE	3. DATES COVERED 00-00-2012 to 00-00-2012		
4. TITLE AND SUBTITLE Vapor Intrusion Assessment and Mitigation 2012			5a. CONTRACT NUMBER	5b. GRANT NUMBER
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	5e. TASK NUMBER
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Geosyntec Consultants, Inc,2002 Summit Blvd, NE Suite 885,Atlanta,GA,30319			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES Presented at the 9th Annual DoD Environmental Monitoring and Data Quality (EDMQ) Workshop Held 26-29 March 2012 in La Jolla, CA. U.S. Government or Federal Rights License				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 39
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified		

Contents

- What is Vapor Intrusion and why do we care? ([Ettinger](#))
 - Historic and Regulatory Perspectives and Updates
 - Typical Assessment Approaches and Common Challenges
- Methods to Distinguish Background Sources ([McHugh](#))
 - Significance
 - Compound-Specific Stable Isotope Analysis
 - Hapsite GC/MS
- Managing Spatial and Temporal Variability ([McAlary](#))
 - Passive Sampling to Manage Temporal Variability
 - High Purge Volume Sampling to Manage Spatial Variability
- Navy Web-Based Tool ([Caldwell](#))

2

Conceptual Model

Conditions vary according to the source (NAPL or not, above or below the water table, proximity, mass, compounds), pathway (porous and well-drained, or heterogeneous) and receptor (building design, quality, ventilation, pressure and occupancy)

There are no “one-size fits all” solutions.

Inhalation Dominates Dose

Drinking Water

Consume 2 L/day

MCL_(TCE) = 5 ug/L

Indoor Air

Inhale 20,000 L/day

10^{-6} _(TCE) = 0.0012 ug/L

Inhalation has much lower target levels (4200x)
This is the root cause of most of the challenges

4

If you remember nothing else: we inhale a very large volume of air compared to any other media we are exposed to (water, soil, etc.). So the concentrations must be MUCH lower. This make everything more challenging.

Historical Perspective

This is nothing new, but there wasn't much real data until the late 1990s and prior assessments were based mostly on modeling

Since around 2000, there's been a lot more sampling and analysis, and mostly we have learned that VI can happen more than previously thought, but we still don't understand the root causes well enough to predict it with much confidence.

Variability in Screening Levels

Table 3. Residential Screening Levels for Selected VOCs

State	Benzene			TCE			PCE		
	Ground Water	Soil Gas	Indoor Air	Ground Water	Soil Gas	Indoor Air	Ground Water	Soil Gas	Indoor Air
Alaska	5	3.1	0.31	5	0.22	0.022	5	8.1	0.81
California	NA	36.2	0.084	NA	528	1.22	NA	180	0.41
Colorado	15	NA	0.23	5	NA	0.016	5	NA	0.31
Connecticut	130	2,490	3.3	27	752	1	340	3,798	3
Indiana	95-850	250 - 1400; 25 - 140 ^a	2.5	4.6 - 700	120 - 2000; 2 - 200 ^a	1.2 - 4.1	7.4 - 1100	320 - 5200; 32 - 520 ^a	3.2 - 10
Louisiana	2,900	NA	12	10,000	NA	59	15,000	NA	110
Maine	NA	NA	10 ^b	NA	NA	NA	NA	NA	NA
Massachusetts	2,000	NA	0.3	30	NA	1.37	50	NA	0.04
Michigan	5,600	150	2.9	15,000	700	14	25,000	2,100	42
Minnesota	NA	1.3-4.5	1.3-4.5	NA	NA	NA	NA	NA	20
New Hampshire	2,000	95	1.9	50	54	1.1	80	68	1.4
New Jersey	15	16	2	1	27	3	1	34	3
New York	NA	NA	NA	NA	NA	5	NA	NA	100
Ohio	14	31	3.1	--	122	12.2	11	81	8.1
Oklahoma	5	3.1	0.27	5	0.17	0.017	5	0.33	0.33
Oregon	160	NA	0.27	66	NA	0.018	78	NA	0.34
Pennsylvania	3,500	NA	2.7	14,000	NA	12	42,000	NA	36

Notes:

1. Units are $\mu\text{g/L}$ for groundwater and $\mu\text{g/m}^3$ for soil gas and indoor air
2. See individual state guidance documents for additional information, including limitations and exceptions
3. Trigger or action levels for mitigation based on indoor air concentrations may be higher than the screening levels shown

^a Second range of values is for sub-slab soil gas.
^b Chronic exposure value.

(Eklund, 2007)

Depending on the assumed risk level and attenuation factor, screening levels vary considerably between jurisdictions. This indicates the level of uncertainty among regulators.

OSWER Guidance (2002)

CERCLA folks joined RCRA folks (Brownfields too, but not UST program) to provide draft Federal Guidance in 2002. Still has not been finalized almost a decade later, although a revision is promised for November 2012.

Public comments on the draft were over an inch thick.

Office of Inspector General, 2009

<http://www.epa.gov/oig/reports/2010/20091214-10-P-0042.pdf>

U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF INSPECTOR GENERAL

Catalyst for Improving the Environment

Evaluation Report

Lack of Final Guidance on Vapor Intrusion Impedes Efforts to Address Indoor Air Risks

Report No. 10-P-0042

December 14, 2009

8

OIG report has inspired OSWER to commit to a 2012 date for “final” guidance.

Several work products are either recently completed or nearly complete (next slides)

2008 USEPA VI Database

EPA has compiled a database of subsurface and indoor air data, filtered it to focus on higher concentrations (more clearly resolved signal compared to background) and reported order statistics for attenuation factors.

Most of the data is for chlorinated solvents in residential setting. This is not necessarily representative of Military facilities.

2008 USEPA Mitigation Guide

Engineering Issue

Indoor Air Vapor Intrusion Mitigation Approaches

Table of Contents

1 PURPOSE	1
2 INTRODUCTION	1
2.1 Subject and Intended Audience	1
2.2 Overview of Contaminant Entry into Structures and Mitigation	3
2.3 Vapor Intrusion into Various Building Types	6
2.4 Quality Assurance Considerations	8
3 AVAILABLE ENGINEERED CONTROL MEASURES	8
3.1 Active and Passive Sub-slab Ventilation	10
3.2 Sealing of Penetrations and Entryways	19
3.3 Passive Barriers (including Membranes)	22
3.4 Natural Ventilation and HVAC Modification	23
3.5 Air Cleaning using Adsorbents, Scrubbers or Photocatalytic Oxidation	25
3.6 Combinations of Multiple Technologies	28

1 PURPOSE

The U.S. Environmental Protection Agency (EPA) Engineering Issue is one in a new series of technology transfer documents that summarize the latest available information on selected treatment and site remediation technologies and related issues. The Engineering Issues are designed to help remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other site managers understand the type of data and site characteristics needed to evaluate a technology for potential applicability to their specific sites. Each Engineering Issue document is developed in conjunction with a small group of scientists inside the EPA and with outside consultants and relies on peer-reviewed literature, EPA reports, Web sources, current research, and other pertinent information. The purpose of this document is to present the "state of the science" regarding management and treatment of vapor intrusion into building structures.

<http://www.epa.gov/nrmrl/pubs/600r08115/600r08115.pdf>

10

Conventional mitigation methods are summarized in this document.
(later in this presentation, improvement/optimization options are discussed)

2011 USEPA Background Data

Compound	Number of Studies	Number of Samples	Range % Detect	Total % Detects	RL Range	Range of 50th%	N*	Range of 75th%	N	Range of 90th%	N	Range of 95th%	N
Benzene	14	2,615	31–100	91.1	0.05–1.6	<RL–4.7	14	1.9–7.0	9	5.2–15	11	9.9–29	5
Carbon tetrachloride	6	1248	1–100	53.5	0.15–1.3	<RL–0.68	6	<RL–0.72	3	<RL–0.94	5	<RL–1.1	2
Chloroform	11	2,278	9–100	68.5	0.02–2.4	<RL–2.4	11	<RL–3.4	7	<RL–6.2	9	4.1–7.5	5
Dichloroethane, 1,1-	2	682	1	1	0.08–0.25	<RL	2	<RL	2	<RL	2	<RL	2
Dichloroethane, 1,2-	7	1,432	1–25	13.8	0.08–2.0	<RL	7	<RL–0.08	6	<RL–0.4	7	<RL–0.2	4
Dichloroethylene, 1,1-	2	475	7–45	13	0.01–0.25	<RL	2	<RL–0.37	2	<RL–0.8	2	0.7	1
Dichloroethylene, cis 1,2-	3	875	1–9	4.9	0.25–2.0	<RL	3	<RL	3	<RL	3	<RL–1.2	3
Ethylbenzene	10	1,484	26–100	85.7	0.01–2.2	1–3.7	10	2–5.6	5	4.8–13	7	12–17	3
Methyl tert-butyl ether (MTBE)	4	502	9–70	54.5	0.05–1.8	0.025–3.5	4	0.03–11	4	0.03–41	4	71–72	2
Methylene chloride	8	1,724	29–100	79.1	0.12–3.5	0.68–61	8	1.0–8.2	6	2.0–510	8	2.9–45	4
Tetrachloroethylene	13	2,312	5–100	62.5	0.03–3.4	<RL–2.2	13	<RL–4.1	8	<RL–7	10	4.1–9.5	5
Toluene	12	2,065	86–100	96.4	0.03–1.9	4.8–24	12	12–41	7	25–77	9	79–144	4
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	3	600	1–56	37.5	0.25–3.8	<RL–0.5	3	<RL–1.1	3	<RL–1.8	3	<RL–3.4	2
Trichloroethane, 1,1,1-	9	1,877	4–100	53.4	0.12–2.7	<RL–5.9	9	<RL–7	7	<RL–68	8	3.4–28	5
Trichloroethylene	14	2503	1–100	42.6	0.02–2.7	<RL–1.1	14	<RL–1.2	9	<RL–2.1	11	0.56–3.3	5
Vinyl chloride	4	1484	0–25	9.2	0.01–0.25	<RL	4	<RL	4	<RL–0.04	4	<RL–0.09	4
Xylene, m/p-	10	1,920	52–100	92.9	0.4–2.2	1.5–14	10	4.6–21	7	12–56	9	21–63.5	4
Xylene, o-	12	2,004	31–100	89.0	0.11–2.2	1.1–3.6	12	2.4–6.2	7	5.5–16	9	13–20	4

<https://iavi.rti.org/OtherDocuments.cfm?PageID=documentDetails&AttachID=369>

11

EPA compiled indoor air quality data to help establish expectations for background concentrations. Several compounds have background concentrations that are within or above the typical screening levels (benzene, carbon tetrachloride, chloroform, tetrachloroethylene, 1,2-dichloroethane).

The Johnson and Ettinger (1991) Model was coded into a spreadsheet many years ago, and a recent update was made to incorporate the recommendations in the Johnson (2002) Critical Parameters paper.

Forthcoming OSWER CSM Report

Abreu for OSWER, in prep

13

Lilian Abreu wrote a 3-D model for her PhD thesis, and EPA commissioned her to develop a range of simulations to help formulate expectations for subsurface vapor distributions and the effect of a range of processes and mechanisms.

Forthcoming Radon Lessons

Daily radon variation in Example house

Temporal distribution is approximately log-normal

COVs for EXAMPLE house for different periods
 1 d ~70% 2 d ~45% 7d ~40%

Most other houses in a wider survey showed more temporal variation than this house

<https://iavi.rti.org/WorkshopsAndConferences.cfm?PageID=documentDetails&AttachID=469>

14

EPA commissioned Dan Steck (a Radon expert) to prepare a report on Lessons learned in the radon field that might help us all manage vapor intrusion for VOCs.

Sampling

None are perfect, some less than others

Groundwater

Bulk Soil

Near-Slab Soil Gas

Sub-Slab Soil Gas

Indoor Air 15

Outdoor Air

Every sample has some potential sources of bias and variability. Some more than others.

Samples specific to VI assessment will be discussed next.

Summa Canister and TO-15

Complex procedure, requires special training (\$)

Must be cleaned and certified (\$)

Bulky (\$) to ship and handle

Maximum ~24 hour samples

Costly: \$150 to \$300+/sample, depending on reporting limit, can rental, flow controller rental, certification level, reporting details

Not useful for analytes heavier than naphthalene (poor recovery)

16

This is the most common method for indoor, outdoor and soil vapor samples for VOCs for VI assessment. The data quality is usually pretty good, but there are several limitations.

Automatic Thermal Desorption Tubes / TO-17

Typically customized for each application – high level of training required

Allows longer than 24-hour samples, but the pump must run reliably throughout the sampling period

Capable of a larger list of analytes

Typically <\$200/sample, depending on analyte list

Potential for breakthrough and competition in high concentration zones

Challenging to get sufficient sample volume in low permeability soils

17

This method is most common for industrial hygiene, sick building assessment and much more commonly used in Europe. Still not without limitations.

Conventional Sub-Slab Sampling

(EPA, 2006)

Usually the sample is 1L, occasionally up to 6 L

Subslab samples are mostly all collected by this method. Really only tells you what the concentration is at that specific location, and if the building breathes both ways (most do), you may collect a sample with an unknown amount of indoor air. It is also fairly common for the probes to leak.

Conventional Soil Gas Sampling

Slam-Bar

Hand Auger

Geoprobe™/Direct Push

Lots of options

Not all the same

Selection depends on DQOs

There are lots of ways to collect soil gas samples. The method needs to be commensurate with the data quality objectives.

Matrix for Guidance on Selection of Soil Gas Sampling Methods with Compatible DQO Results

(GeoProbe Systems, Technical Bulletin No. MK3098, May 2006)

Downhole Sampling System		Sample Collection Method			
		Syringe	Tedlar Bag	Glass Bulbs	Summa Canister
	Increase Quality				
Direct Sampling		Low/Low			Low/High
PRT System					
Implants					
Gas Wells	High/Low				High/High

Geoprobe wrote a good guide to soil gas sampling.

QA/QC Considerations

- Probe Design
- Materials & Seals
- Shut-in Test
- Helium Tracer Test
- Purgung rate, volume, vacuum and permeability
- Field Screening
- TO-15, TO-17, TO10A, etc.

Collecting reliable soil gas samples is at least as much work as groundwater sampling. Although there are few guidance documents that spell out all the QA/QC steps in sufficient detail to avoid the common biases (leaks, equipment blank contamination, adsorptive losses).

Soil Gas Data Quality

High concentrations of both benzene and oxygen in the same soil gas sample is unexpected.

Were there leaks?

(Courtesy API)

22

This is “typical” soil gas data. Where oxygen concentrations are high, benzene degrades very rapidly, so high concentrations of both is not likely. However, a sample with a leak can have both.

Soil Gas versus Indoor Air

Do you see a correlation here? Why not?

Data variability limits our ability to predict indoor air concentrations from subsurface concentrations. Regulators respond by asking for a lot of data and setting very cautious screening levels, both of which are costly.

Pros and Cons of Different Media

Media Investigated	Evaluation Method	Principal Issues
Groundwater	Attenuation factor or modeling based on site-specific conditions used to predict indoor air concentration	Imprecision of attenuation factors or modeling requires very conservative assumptions. Henry's law must be corrected for the aquifer temperature.
Soil gas	Attenuation factor or modeling based on site-specific conditions used to predict indoor air concentration	Fewer pathway assumptions required than groundwater, but the accuracy and representativeness of measurements may be an issue
Subslab soil gas	Attenuation factor estimated or measured (e.g., using radon) to predict indoor air concentration	Fewest pathway assumptions required, but intrusive and attenuation factors may still be conservative for many buildings.
Indoor air	Indoor air concentrations directly measured	Intrusive, and background sources may confound data interpretation. Seasonal variations are also an issue.

<http://www.itrcweb.org/Documents/VI-1.pdf>

24

Each of the sample types has certain benefits, and certain limitations. They are not all the same. This is why it is often best to make decisions using more than one line of evidence, there's less risk of making a bad decision.

Decision Matrices

Decision Flow Chart for Vapor Intrusion Pathway

Remediation Decision Matrix - Stage 8

New Jersey DEP, 2005

		Indoor Air Concentrations (for COCs)	
		< IASL	>IASL
Sub-Slab Gas Concentrations (for COCs)	<SGSL	No Action	No Action * (if no other subsurface source)
	>SGSL to 10X SGSL	No Action or Monitor	Investigate further or Mitigate
	>10X SGSL	Monitor or Mitigate	Mitigate

New York DOH, 2006

Soil Vapor/Indoor Air Matrix 1
October 2006

SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)			
	< 0.25	0.25 to < 1	1 to < 5.0	5.0 and above
< 5	1. No further action	2. Take reasonable and practical actions to identify source(s) and reduce exposures	3. Take reasonable and practical actions to identify source(s) and reduce exposures	4. Take reasonable and practical actions to identify source(s) and reduce exposures
5 to < 50	5. No further action	6. MONITOR	7. MONITOR	8. MITIGATE
50 to < 250	9. MONITOR	10. MONITOR / MITIGATE	11. MITIGATE	12. MITIGATE
250 and above	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

25

Where concentrations are high inside and below a building, there's a stronger indication that vapor intrusion is occurring. If concentrations are low in either media, then something else may be going on.

Background Indoor Air Quality

Risk-based target concentrations below "background" levels

Compound	1E-6 Risk Level for Indoor Air (ug/m ³)	50 th %-ile	95 th %-ile
PCE	0.41	0.9	7.4
CTET	0.41	0.5	1.1
CF	0.11	1.1	6.0
Benzene	0.31	2.5	17
12DCA	0.094	0.1	0.8
Methylene Chloride	5.2	1.1	20
TCE	0.25	0.3	1.6

The good news is:

- 1) it's only a handful of compounds
- 2) at 1E-5 risk level, its seldom a problem

This is one of the most common challenges. But it becomes much less of a challenge if the acceptable risk level is 1E-5 instead of 1E-6.

(Mickunas, 2004)

Building almost always have internal sources of VOCs. If you collect indoor air or sub-slab samples, you will very often detect them.

Off-gassing from Buildings

PCE caused persistent indoor air quality issues, even after mitigation

PCE was off-gassing from wooden beams (former Drycleaner)

28

Historic uses can cause contamination of building materials that emit VOCs for a very long time.

If samples are collected over a shorter time period, the variability is even greater. This plot shows data collected by Arizona State university at the Layton house as part of their SERDP research project. There's seasonal variability in addition to daily variability.

Typical Pressure Fluctuations

30

Build pressure fluctuates and varies with wind-speed, barometric pressure and temperature. Sometimes, the pressure can be net-positive or negative, and sometimes it just fluctuates. This contributed to vapor entry, but also indoor air sources can migrate to the subsurface.

Falling Water Table

Seasonal (or longer-term) changes in the water table can cause changes in the soil vapor concentrations.

Spatial Variability (Soil Vapor)

Variability is not just temporal, spatial variability can be very significant too. These plots show vertical and horizontal variability.

How Many Sub-Slab Samples?

In large buildings (much of the military building stock), how many samples is enough?

Thankfully, these are only 1L canisters

When you get into a large sampling program, the logistics and costs can really add up.

~115 Compounds of Concern

Acenaphthene	1,2-Dibromo-3-chloropropane	Methylene chloride
Acetaldehyde	1,2-Dibromoethane (ethylene dibromide)	Methylketone (2-butanone)
Acetone	1,3-Dichlorobenzene	Methylisobutylketone
Acetonitrile	1,4-Dichlorobenzene	Methylmethacrylate
Acetophenone	Dichlorodifluoromethane	2-Methylnaphthalene
Acrolein	1,1-Dichloroethane	MTBE
Acrylonitrile	1,2-Dichloroethane	m-Xylene
Aldrin	1,1-Dichloroethylene	Naphthalene
alpha-HCH (alpha-BCH)	1,2-Dichloropropane	n-Butylbenzene
Benzaldehyde	1,3-Dichloropropane	Nitrobenzene
Benzene	Dieldrin	2-Nitropropane
Benz(a)fluoranthene	Endosulfan	N,N-dimethyl-n-butylamine
Benzyl chloride	Epidichlorohydrin	n-Propylbenzene
beta-Chloronaphthalene	Ethyl ether	o-Nitrotoluene
Biphenyl	Ethyl acetate	o-Xylene
Bis(2-chloroethyl)ether	Ethylbenzene	p-Xylene
Bis(2-chloroisopropyl)ether	Ethylene oxide	Polychlorinated biphenyls (PCBs)
Bis(chloromethyl)ether	Ethylmethacrylate	Pyrene
Bromodichloromethane	Fluorene	sec-Butylbenzene
Bromoform	Furan	Styrene
1,3-Butadiene	gamma-HCH (Lindane)	tert-Butylbenzene
Carbon disulfide	Heptachlor	1,1,1,2-Tetrachloroethane
Carbon tetrachloride	Hexachloro-1,3-butadiene	1,1,2,2-Tetrachloroethane
Chlordane	Hexachlorobenzene	Tetrachloroethylene (perchloroethylene)
2-Chloro-1,3-butadiene (chloroprene)	Hexachlorocyclopentadiene	Toluene
Chlorobenzene	Hexachloroethane	trans-1,2-Dichloroethylene
1-Chlorobutane	Hexane	1,1,2-Trichloro-1,2,2-trifluoroethane
Chlorodibromomethane	Hydrogen cyanide	1,2,4-Trichlorobenzene
Chlorodifluoromethane	Isobutanol	1,1,2-Trichloroethane
Chloroethane (ethyl chloride)	Mercury (elemental)	1,1,1-Trichloroethane
Chloroform	Methylacrylonitrile	Trichloroethylene
2-Chlorophenol	Methylchloroform	Trichlorofluoromethane
2-Chloropropane	Methyl iodide	1,2,3-Trichloropropane
Chrysene	Methyl acetate	1,2,3,4-Tetrachlorobenzene
cis-1,2-Dichloroethylene	Methyl acrylate	1,3,5-Tribromobenzene
Crotonaldehyde (2-butenal)	Methyl bromide	Vinyl acetate
Cumene	Methyl chloride (chloromethane)	Vinyl chloride (chloroethene)
DDE	Methylcyclohexane	
Dibenzofuran	Methylene bromide	

35

Most people only look at VOCs (e.g. EPA Method TO-15), but that leaves out more than half the compounds that could potentially be a concern.

How Many Analyses is Enough?

Up to 80 VOCs via TO-15/Summa canister
(fewer in bulbs, bags, syringes)

87 VOCs & SVOCs via TO-17/ATD

11 PAHs via TO-13A/PUF-XAD

2 Aldehydes via TO-11

Mercury via OSHA ID 140 / Hopcalite

11 Pesticides & PCBs via TO-10/4A / PUF

36

If you really want to analyze for all the compounds that could be a concern, you'd have to do several different analysis, and there would still be a dozen or so compounds left out.

Cost Factors

- **Scope:** All compounds in all media at all buildings on multiple occasions with specified frequency?
- Risks assessed on small data sets (95th UCL or max = mean)
 - Variability is the enemy
- Conservative screening levels and elevated background
 - Lots of false positive outcomes
- Guilty until proven innocent
- Lack of stakeholder confidence
- Media, legal, public interests and other third parties

37

Lots of these common features make assessing vapor intrusion costly.

Summary of Challenges

Challenges	Indoor Air	Soil Gas	Groundwater
Background>RBSL			
Temporal Variability			
Access/Disruption			
Spatial Variability			
Inconsistent Methods			
Regulatory Trust			
Extrapolation			
Conservative RBSLs			
Cost			

38

This should be just a recap. Note that the limitations are not the same for all lines of evidence, which is a key reason to use more than one.

Questions/Comments?

tmcalary@geosyntec.com