CLAIMS

What is claimed is:

I	1. An article comprising:			
2	a plurality of first heat transfer structures disposed in a matrix of a			
3	second heat transfer structure;			
4	a solder preform disposed on the matrix; and			
5	a transition between the matrix and the solder preform, wherein the			
5	transition is selected from an interface and a concentration gradient.			
l	2. The article according to claim 1, wherein the matrix is a polymer,			
2	and wherein the plurality of first heat transfer structures is selected from graphite,			
3	diamond powder, inorganic dielectric particles, and metal particles.			
1	3. The article according to claim 1, further including:			
2	a middle heat transfer structure disposed between the matrix and the			
3	solder preform, wherein the middle heat transfer structure includes a			
4	composition that is transitional between the composition of the matrix and			
5	the composition of the solder preform.			
1	4. The article according to claim 1, further including:			
2	a middle heat transfer structure disposed between the matrix and the			
3	solder preform, wherein the middle heat transfer structure includes a			
4	composition that is transitional between the composition of the matrix and			
5	the composition of the solder preform, wherein the transition between the			
5	matrix and the solder preform includes a first interface between the solder			
7	preform and the middle heat transfer structure and a second interface			
3	between the middle heat transfer structure and the matrix.			

1	5.	The article according to claim 1, jurther including:	
2		at least one particulate material in the matrix in addition to the	
3	plurality of first heat transfer structures.		
1	6.	The article according to claim 1, wherein the plurality of first heat	
2	transfer struct	ures includes a concentration region in a portion of the matrix.	
1	7.	A package comprising:	
2		a heat spreader;	
3		a die disposed below the heat spreader; and	
4		a heat transfer composite disposed above and on the die and below	
5	and on the heat spreader, wherein the heat transfer composite includes:		
6		a plurality of first heat transfer structures disposed in a matrix	
7		of a second heat transfer structure, wherein the matrix is a polymer,	
8		and wherein the matrix is disposed on the die; and	
9		a solder preform disposed on the matrix, wherein the solder	
10		preform is disposed on the heat spreader.	
1	8.	The package according to claim 8, wherein the heat spreader includes	
2	a cladding layer selected from nickel, nickel-copper, and gold.		
1	9.	The package according to claim 8, wherein the die includes a	
2	cladding layer	selected from nickel, nickel-copper, and gold.	
1	10.	The package according to claim 8, wherein the die includes an active	
2		backside surface, the package further including:	
3		a mounting substrate, and wherein the die is electrically coupled at	
4	the act	ive surface to the mounting substrate	

1	11. A process of forming a heat transfer composite, comprising:			
2	laminating a solder preform to a matrix to form a heat transfer			
3	susbsytem; and			
4	bonding the matrix to the solder preform, wherein the matrix is			
5	formed by a process selected from:			
5	co-extruding and singulating a plurality of first heat transfer			
7	structures and a second heat transfer structure; and			
8	mixing, casting, curing, and singulating a plurality of first			
9	heat transfer structures and a second heat transfer structure.			
1	12. The process according to claim 11, wherein the matrix includes a			
2	polymer, and wherein bonding includes a process selected from cold stamping and			
3	pressing under a heat load.			
1	13. The process according to claim 11, wherein the matrix includes a			
2	polymer, and wherein bonding achieves the heat transfer composite with a transition			
3	between the matrix and the solder preform, wherein the transition is selected from			
4	an interface and a concentration gradient.			
1	14. The process according to claim 11, wherein bonding includes			
2	supplying the solder preform material, selected from a base solder alloyed with an			
3	active element material, indium, tin, tin-indium, silver, tin-silver, tin-silver-indium,			
4	lead, tin-lead, lead-free solder, and combinations thereof.			
1	15. The process according to claim 11, wherein bonding is carried out in			
2	a pressure range from about 200 pounds force to about 400 pounds force.			
1	16. A method comprising:			
2	disposing a heat transfer subsystem between a die and a heat			
3	spreader: and			

4	bonding the heat transfer subsystem to the die and the heat spreader			
5	to form a heat transfer composite from the heat transfer subsystem, whereir			
6	the heat transfer composite includes:			
7	a plurality of first heat transfer structures disposed in a matrix			
8	of a second heat transfer structure;			
9	a solder preform disposed on the matrix; and			
10	a transition between the matrix and the solder preform,			
11	wherein the transition is selected from an interface and a			
12	concentration gradient.			
1	17. The method according to claim 16, further including:			
2	before disposing the heat transfer subsystem between the die and the			
3	heat spreader, heating the heat spreader above ambient, wherein bonding is			
4	carried out for the heat transfer subsystem at a temperature of about (TTIM-			
5	Тамв)/2, wherein Ттім is the melting Centigrade temperature of the solder			
6	preform, and wherein TAMB is the Centigrade ambient temperature.			
1	18. The method according to claim 16, wherein bonding includes			
2	reflowing the plurality of first heat transfer structures against the die, wherein the			
3	plurality of first heat transfer structures is selected from a base solder alloyed with			
4	an active element material, indium, tin, silver, tin-silver, tin-indium, silver-indium,			
5	tin-silver-indium, and combinations thereof.			
1	19. The method according to claim 16, further including:			
2	disposing the die on a mounting substrate to form a package.			
1	20. The method according to claim 16, further including:			
2	coupling the die with at least one of an input device and an output			
3	device.			

Ţ	21.	The method according to claim 16, further including:	
2		coupling the die with a computing system included in one of a	
3	computer, a wireless communicator, a hand-held device, an automobile, a		
4	locomotive, an aircraft, a watercraft, and a spacecraft.		
	-		
1	22.	A computing system comprising:	
2		a heat spreader;	
3		a die disposed below the heat spreader;	
4		a heat transfer composite disposed above and on the die and below	
5	and on the heat spreader, wherein the heat transfer composite includes:		
6		a plurality of first heat transfer structures disposed in a	
7		polymer matrix of a second heat transfer structure, wherein the	
8		polymer matrix is disposed on the die; and	
9		a solder preform disposed on the polymer matrix, wherein the	
10	•	solder preform is disposed on the heat spreader; and	
11		at least one of an input device and an output device.	
1	23.	The computing system according to claim 22, wherein the computing	
2	system is disposed in one of a computer, a wireless communicator, a hand-held		
3	device, an automobile, a locomotive, an aircraft, a watercraft, and a spacecraft.		
1	24.	The computing system according to claim 22, wherein the die is	
2	selected from a data storage device, a digital signal processor, a micro controller, an		
3	application specific integrated circuit, and a microprocessor.		