Calculus and Probability Assignment 1

 $\begin{array}{c} \hbox{Christoph Schmidl} \\ \hbox{s4226887} \\ \hbox{Master Computing Science} \end{array}$

April 16, 2018

Exercise 6

a)

$$x - x^3 = 0$$

= $x(1 - x^2) = 0$
 $\rightarrow x_1 = -1, x_2 = 0, x_3 = 1$

Values x for which $f(x) = 0 \rightarrow \{-1, 0, 1\}$

b)

$$x - x^3 > 0$$

= $x(1 - x^2) > 0$
 $\rightarrow (0, 1), (-\infty, -1)$

Values x for which $f(x) > 0 \rightarrow (0,1), (-\infty, -1)$

Exercise 7

... ...

Exercise 8

- a)
- b)

Exercise 9

- $a)\ \dots\ \dots$
- b)

Exercise 10

- a)
- b)

Exercise 11

a)

$$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+3)}$$
$$= \lim_{x \to 2} \frac{1}{(x+3)}$$
$$= \frac{1}{5}$$

$$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \frac{1}{5}$$

b)

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x - 3)}{(x + 2)(x - 1)}$$
$$= \lim_{x \to 1} \frac{(x - 3)}{(x + 2)}$$
$$= -\frac{2}{3}$$

$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{x^2 + x - 2} = -\frac{2}{3}$$

Answer Form Assignment 1

Name	Christoph Schmidl
Student Number	s4226887

Question Answer		Answer
6a	(1pt)	Values x for which $f(x) = 0 \rightarrow \{-1, 0, 1\}$
6b	(1pt)	Values x for which $f(x) > 0 \to (0,1), (-\infty, -1)$
7	(1pt)	
8a	(0.5pt)	
8b	(0.5pt)	
9a	(1pt)	
9b	(1pt)	
10a	(1pt)	
10b	(1pt)	
11a	(1pt)	$\lim_{x \to 2} \frac{x-2}{x^2 + x - 6} = \frac{1}{5}$
11b	(1pt)	$\lim_{x \to 1} \frac{x^2 + x - 0}{x^2 + x - 2} = -\frac{2}{3}$