ZADATCI:

- 1. Oslobodena energija pri alfa raspadu 213-84Po = ? ako je Ealfa = 8,34 MeV
- 2. Banana ima 600mg kalija. Udio radioaktivnog kalija 40K je 0,012% s vremenom poluraspada T = 1,25 * 10exp9 godina, molarna masa kalija je 339.102 g/mol. Aktivnost (A(0)) banane u Bg = ?

elektrona, kut rasprsenog elektrona = ?

- 3. Comptonski rasprsena gama cestica s pocetnom en. 2 MeV promijeni se deltalambda = 0,2. Kin. en. rasprsenog
- 4. Debljina folije kadmija 113Cd = ? koja ce reducirati fluks 50 puta. Udarni presjek = 15000 barna, izotropska ucestalost = 12,26%, gustoca = 8,65 * 10exp3, molarna masa = 112,41 g/mol
- 5. Pocetna energija elektrona = ? ako je energija nakon prolaska kroz olovnu plocu 207-82Pb gustoce 11300 i debljin 5mm jednaka 80 MeV.
- 6. Snaga u reaktoru = ? u kojem se gubi 1 gram 235U na dan, ako se u 1 fisiji oslobodi 200 MeV i 2,5 neutrona
- 7. Granicna energija ispod koje se moze vidjeti Cerenkovo zracenje = ? indeks loma = 1,000293
- 8. H = 1 Sv, broj alfa zraka energije 4,4 MeV apsorbirane u tkivu = ? ako je Q = 11

1.	Za detekciju ionizirajućeg zračenja u radnom mediju kojeg izazivaju nabijene čestice standardno se koriste scintilatorski detektori.	TOČNO	NETOČNO
2.	Energiju praga definiramo za egzoergične nuklearne reakcije kao onu minimalnu kinetičku energiju čestice-projektila koja je potrebna da bi se izazvala promatrana reakcija.	TOČNO	NETOČNO
3.	Efektivni faktor multiplikacije neutrona $k_{\it eff}$ definiran je omjerom proizvedenih i izgubljenih neutrona u reaktoru beskonačnih dimenzija.	TOČNO	NETOČNO
4.	Ako je fisijska lančana reakcija $N(t)=N_0 \exp{[(rac{k-1}{ au})t]}$ u reaktoru divergentna, tada je brojnik (k-1) jednak nuli.	TOČNO	NETOČNO
5.	Manje vrijednosti energije vezanja po nukleonu za lagane jezgre posljedica su slabijeg vezanja nukleona na površini.	TOČNO	NETOČNO
6.	Nuklearna se fisija u nekih lakih jezgara (nuklida) odvija spontano, kao posebni oblik radioaktivnog raspada.	TOČNO	NETOČNO
7.	Različiti tipovi ionizirajućeg zračenja mogu unijeti istu količinu energije po jedinici mase u tijelo, no neće imati jednaki biološki efekt.	TOČNO	NETOČNO
8.	Najveći dio oslobođene energije fisije otpada na kinetičku energiju neutrona koji nastavljaju lančanu reakciju u reaktorima.	TOČNO	NETOČNO
9.	Za uspješan rad termonuklearnog fuzijskog reaktora potrebna je velika gustoća čestica, visoka temperatura plazme i kratki vremenski interval ograničenja plazme.	TOČNO	NETOČNO
10.	Doseg elektrona u nekom materijalu odgovara njegovom prosječnom putu do zaustavljanja i kraći je od efektivne dubine prodiranja elektrona.	TOČNO	NETOČNO
11.	Tijekom procesa fuzije dolazi do oslobađanja energije jer produkti reakcije fuzije imaju zajednički manju nuklearnu masu od nuklearne mase polaznog para čestica.	TOČNO	NETOČNO
12.	Vjerojatnost raspada nekog radionuklida je potpuno je neovisna o trenutku njegovog formiranja.	TOČNO	NETOČNO
13.	Sve jezgre prirodnih radioaktivnih nizova nastaju sukcesivnim alfa i beta raspadima koji počinju od jezgre najdužeg vremena poluraspada u nizu.	TOČNO	NETOČNO

		- 5	- 3
14.	Gama-raspadom jezgre emitira se tzv. "tvrdo" elektromagnetsko zračenje, uslijed kojeg redni broj jezgre (Z) ostaje isti dok se izotopska masa jezgre $M(A,Z)$ smanjuje zbog emisije gama-kvanta.	TOČNO	NETOČNO
15.	Teške nabijene čestice pri prolasku kroz materiju gube energiju vršeći lokalnu ionizaciju putem sudara i radijaktivnog zračenja.	TOČNO	NETOČNO
16.	Doseg teške nabijene čestice kroz neki materijal ne odgovara njezinoj efektivnoj dubini prodiranja.	TOČNO	NETOČNO
17.	Kod prodiranja elektromagnetskog zračenja kroz materiju energija se ne gubi postepeno i zato elektromagnetsko zračenje ima određeni doseg.	TOČNO	NETOČNO
18.	Gotovo sva energija brzih beta čestica gubi se putem kulonske interakcije (sudarima) s atomskim elektronima.	TOČNO	NETOČNO
19.	Snop fotona ne gubi energiju dok prolazi kroz materiju, samo gubi na intezitetu.	TOČNO	NETOČNO
20.	Fuzijska D-D reakcija (između jezgara $\stackrel{2}{\Box}H$) oslobađa više energije (Q -vrijednost) nego D-T reakcija (između jezgara $\stackrel{2}{\Box}H$ i $\stackrel{3}{\Box}H$) jer se radi o lakšim izotopima vodika.	TOČNO	NETOČNO
21.	Prvu nuklearnu reakciju ostvario je Rutherford bombardirajući jezgre dušika α -česticama pri čemu je dobio sljedeći rezultat: ${}^4_\square He + {}^{14}_\square N \to {}^{17}_\square O + e^-$	TOČNO	NETOČNO
22.	Apsorbirana doza je energija apsorbirana od strane jediničnog volumena tvari, neovisno o vrsti ionizirajućeg zračenja koje ulazi u taj volumen.	TOČNO	NETOČNO
23.	Nuklearne reakcije u kojima je kinetička energija čestica produkata reakcije veća od kinetičke energije polaznih čestica su tzv. Endoergične nuklearne reakcije.	TOČNO	NETOČNO

			1
26.	Alfa zrake visokih energija (E > 10 MeV) zaustavljaju tek materijali visokog rednog broja Z i velike gustoće, npr. Olovo ili teški beton.	TOČNO	NETOČNO
27.	Ekvivalentna doza je definirana kao produkt apsorbirane doze i faktora kvalitete zračenja, stoga ne ovisi o tzv. LET-parametru $\left(\frac{-dE}{dx}\right)$.	TOČNO	NETOČNO
28.	Jedini način smanjenja nefisijske apsorpcije neutrona u gorivu reaktora $\binom{238}{\Box}U$ jest dodavanje moderatorskog materijala.	TOČNO	NETOČNO
29.	Vrijeme potrebno da se raspadne $\frac{1}{4}$ početnog broja radionuklida N_0 iznosi $\frac{2\ln 2}{\lambda}$.	TOČNO	NETOČNO
30.	Alfa-raspad jezgre A_ZM možemo simbolički pisati kao reakciju: ${}^A_ZM o {}^{A-2}_{Z-2}M + {}^4_2He$.	TOČNO	NETOČNO
31.	Tvorba parova je proces u kojem foton nestaje na račun stvaranja para elektron-pozitron, te se može odvijati i u električnom polju atomskog elektrona.	TOČNO	NETOČNO
5	2. Našišite Weizsaeckerovu semiempirijsku relaciju za energiju vezanja jezgre i dajte detaljno fizikalno od članova u relaciji! Nacrtajte i objasnite krivulju $\frac{E_b}{A}$. Korištenjem spomenute relacije izračunati enizotop urana $^{238}_{92}U$. (6 bodova)		

Aktivnost uzorka od 1 Bq predstavlja 3,7 radioaktivnih raspada po sekundi.

energetski ekvivalent odgovara energiji vezanja.

Razlika mase složene jezgre i njezinih slobodnih konstituenata je tzv. Defekt mase jezgre čiji

24.

25.

TOČNO

TOČNO

NETOČNO

NETOČNO