

Fonctionnement de l'UC

- L'ordinateur fait une boucle de traitement avec une opération exécutée dans chaque boucle.
 - Compteur de programmes l'adresse de l'instruction à exécuter
 - après l'exécution, on l'incrémente
 - · Registre d'instruction

11

Fonctionnement de l'UC

- / ■//Types d'opérations
 - // le mouvement
 - · le calcul
 - · le branchement conditionnel
 - · l'appel de procédure
 - · les entrées/sorties

OS: définition

• Ensemble de programmes nécessaires au fonctionnement de l'ordinateur, indépendants des programmes d'applications mais indispensables à leur mise en œuvre.

• Chargé en mémoire centrale au démarrage
• Fonctions
• Gestion des ressources (ex. mémoire)
• Gestion des entrées-sorties
• Gestion des fichiers
• Gestion des programmes
• Assurer l'interface avec l'utilisateur

OS: noyau

3/for/ctions principales
1. Allocation du CPU
2. Gestion d'interruptions
3. Gestion de processus

Le noyau doit résider entièrement en mémoire centrale. Code soigné.

OS: noyau: Allocation du CPU

Gérée par 2 sous systèmes

- / Allocateur (dispatcher) responsable de la répartition du temps CPU
- Planificateur (scheduler) gère la file d'attente des processus par priorité

OS: noyau: Gestion d'interruptions

Déterminer la source d'interruption et activer la procédure de service

- # types d'interruptions
- internes (horloge, erreur, logicielle)
- externes (clavier, disque, modem)

Classement par priorité

20

OS: noyau: Gestion de processus

- Processus = programme en exécution/
- Dépendance entre processus (ex. : producteur/consommateur, partage de périphérique)
- État d'un processus
 - · Running : le processus est exécuté
 - Ready : le processus est prêt pour être exécuté et attend le processeur
 - Waiting : processus attend quelque chose pour pouvoir être exécuté
 - Zombie : processus mort

OS: Gestion de périphériques

Problèmes de périphériques :

- Diversité fonctionnelle (imprimantes disques)
- Différentes vitesses (claviers vs. disque, spools)
- Diversité de informations partagées (texte, vidéo)
- Modes d'accès (direct, séquentiel)
- Partages de périphériques (droits)

OS: Gestion de périphériques

Solution

Pour l'OS tous les périphériques sont égaux, il les traite pareillement et puis appelle un programme spécifique à chaque périphérique (driver, pilot) pour traiter les détails

Ex: carte graphique avec mémoire

23

OS: Gestion de fichiers

- Un grand nombre de fichiers -> besoin d'une granisation
- Permettre de créer / supprimer des fichiers
- Noms symboliques
- Droits d'accès
- Opérations (fusion, concaténation, reproduction)

OS: Gestion de fichiers

Un grand nombre de fichiers -> besoin d'une organisation

- ■/Gestion efficace de l'espace disque
- Organisation compréhensible
 - arborescence
- Transparence
- Protection contre des erreurs et l'accès non autorisés

25

Quelques caractéristiques

- [™]Mølti-Tâche
- Multiprocesseurs
- Temps Réel
- Distribués

26

OS Multi-Tâche

- Multitasking
- OS fait ou fait semblant de faire plusieurs processus en même temps (en parallèle)
- En réalité il fait partager le processeur par petits lots de temps (timeslicing)
 - · Sérialisation de tâches
 - Scheduling

27

OS Multi-processeurs

- Plusieurs processeurs -> un vrai multitasking
- √Un seul processus par processeur

28

OS Multi-utilisateurs

- * Différents utilisateurs sur un même ordinateur en même temps
- Solution
 - terminal (écran + clavier)
 - accès à distance (ex. : telnet tuxa.sme.utc)
- Donner l'impression que chaque utilisateur est le seul sur l'ordinateur (partage temps CPU, périphériques, etc)
- Gestion des droits (fichiers et processus)

29

OS Temps réel

- Temps réel : la réponse doit arriver dans un intervalle de temps limité
- Notions de priorités
- Interruptions
- Scheduling

Types de fichiers

- [°] ■/3 #ypes de fichiers
 - Fichiers ordinaires (data.txt)
 - · Répertoires (/usr/stroumpfette)
 - · Fichiers spéciaux (périphériques, ...)
- TOUT est fichier
- chaque fichier a un nom unique
- l'extension (ex : .txt) n'est que virtuelle, pour le système elle n'a pas de sens

Processus Programme : une suite statique d'instructions compréhensible par l'ordinateur Processus : programme en action Interaction entre processus, OS et environnement contraintes de disponibilité de ressources (CPU, spool, accès disque, accès mémoire, 53 disponibilité mémoire)

État de processus O running S - sleeping (en attente de quelque chose) R - runable (placé dans la file d'exécution) Z - zombie T - terminated

