LCD1602简述

通信1601

常锡媛

主要内容

- 1602简介
- · 与STC连接
- 重要指令
- 操作时序
- 代码讲解

- 1、1602液晶是一种专门用来显示数字,字母,符号的点阵型液晶模块(不可显示汉字)
- 2、名字由来:叫1602是因为,该液晶每行可显示16个字符,一共可显示2行
- 3、它是由若干个5*8或者5*10的点阵字符位组成,每个点阵字符位都可以用于显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,这样使得显示时具有一定的字符间距和行间距。
- 4、优点: 抗干扰能力强, 简单编程即可驱动。

1602内部RAM结构图

00	01	02	03	04	05	06	07	08	09	0A	0B	00	OD	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

每 行 存 储 器 地 址 范 围

与STC的连接

STC学习板J12插座引脚号	信号名字	1602LCD引脚号	信号名字
1	GND	1	VSS
2	VCC	2	VCC
3	V0	3	V0
4	RS	4	RS
5	R/W	5	R/W
6	Е	6	E
7	DB0	7	DB0
8	DB1	8	DB1
9	DB2	9	DB2
10	DB3	10	DB3
11	DB4	11	DB4
12	DB5	12	DB5
13	DB6	13	DB6
14	DB7	14	DB7
15	PSB	15	LEDA
16	N.C	16	LEDK
17	/RST		
18	VOUT		
19	Α		
20	K		

1、清屏指令

长人叶松		指令编码										
指令功能	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
清屏	0	0	0	0	0	0	0	0	0	1		

功能:

- 1、清除液晶屏显示器,将20H(表示"空白"的ASCII码)写入DDRAM区。
- 2、光标撤回到液晶显示屏的左上方。
- 3、将地址寄存器 (AC) 的值设置为0。

2、输入模式设置

45 A TH 46	指令编码											
指令功能	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO		
进入模式设置	0	0	9	9	0	0	0	1	I/D	S		

功能: 分配光标移动的方向

1、I=0: 写入新数据后光标左移, I=1: 写入数据后光标右移

2、S=0: 关闭整个移动, S=1: 写入数据后显示屏整体右移一个字符

3、显示打开/关闭控制

北人大社	指令编码										
指令功能	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO	
显示开关控制	0	0.	0	0	9	0	1	D	С	В	

功能:设置显示(D)、光标(C)和光标闪烁(B)打开/关闭控制。

1、D=0:显示关闭; D=1: 打开显示

2、C=0: 关闭光标; C=1: 打开光标

3、B=0: 关闭闪烁; B=1: 打开闪烁

4、功能设置

七人叶华		指令编码										
指令功能	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB9		
功能设定	0	9	9	0	1	DL)H	F	x	х		

功能: 设置接口数据宽度和显示行的个数

1、DL=1: 8位宽度; DL=0: 4位宽度

2、N=0:显示1行;N=1:显示2行

3、F=0: 5*8字符字体; F=1: 5*10字符字体

教材367页图13.13写操作时序

- 1、将R/W信号拉低。同时,给出RS信号,该信号为1或者0,用于区分数据(1)和指令(0)。
- 2、将E信号拉高。当E信号拉高后,STC单片机将写入1602字符LCD的数据放在DB7~DB0数据线上。当数据有效一段时间后,首先将E信号拉低。然后,数据继续维持一段时间 t_{H2} 。这样,数据就写到1602字符LCD中。
- 3、撤出R/W信号。

p.+ rtr. 40, 86	77.0		单位	测量复杂			
时序参数	符号	最小值	典型值	最大值	中江	测试条件	
E 信号周期	to	400	-	-	ns		
E 脉冲宽度	tpw	150	-	-	ns	引脚E	
E 上升沿/下降沿时间	tR, tF	-	-	25	ns		
地址建立时间	tsP1	30	-	-	ns	PIRME DO DA	
地址保持时间	THD1	10	-	-	ns	引脚 E、RS、R/W	
数据建立时间(读操作)	to	-	-	100	ns		
数据保持时间(读操作)	tHD2	20	-	-	ns	引脚 DBO~DB7	
数据建立时间(写操作)	tsp2	40	-	-	ns	ו פטי שמו לישור	
数据保持时间(写操作)	tHD2	10	-	-	ns		

以上时间的单位都是ns,说明操作是很迅速的

涉及的主要自定义子函数

```
void lcdwait();
void lcdwritecmd(unsigned char cmd);
void lcdwritedata(unsigned char dat);
void lcdinit();
void lcdsetcursor(unsigned char x, unsigned char y);
void lcdshowstr(unsigned char x, unsigned char y, unsigned char x, unsigned char x,
```


写指令函数

```
//写指令到1602函数
void lcdwritecmd(unsigned char cmd)
                                  //等待LCD不忙
 lcdwait();
                                  //空操作延迟
 _nop_();
 _nop_();
 _nop_();
 nop_();
                                  //将LCD1602的RS信号拉低, 写指令
 LCD1602 RS=0;
                                  //将LCD1602的RW信号拉低
 LCD1602 RW=0;
                                  //将指令控制码的cmd放到PO端口
 LCD1602 DB=cmd;
                                  //将LCD1602的使能信号E拉高
 LCD1602 E=1;
 _nop_();
 nop_();
 _nop_();
 nop ();
                                  //将LCD1602的E信号拉低
 LCD1602 E=0;
```


写数据函数

```
// 写数据到1602函数
void lcdwritedata(unsigned char dat)
                                   //等待LCD不忙
 lcdwait();
                                   //空操作延迟
 _nop_();
 _nop_();
 nop_();
 _nop_();
                                   //将LCD1602的RS信号拉高, 写数据
 LCD1602 RS=1;
                                   //将LCD1602的RW信号拉低
 LCD1602 RW=0;
                                   //将数据dat放到PO端口
 LCD1602 DB=dat;
                                   //将LCD1602的E信号拉高
 LCD1602 E=1;
 nop_();
 nop_();
 nop_();
  _nop_();
                                   //将LCD1602的E信号拉低
 LCD1602 E=0;
```


数据存取函数

```
void lcdsetcursor(unsigned char x, unsigned char y) // //设置显示RAM的地址, x和y表示在1602的列和行参数
                                 //声明无符号char型变量address
 unsigned char address;
 if (y==0)
                                 //存续平其地址以0x00开始
  address=0x00+x;
 else
                                 //存储器地址以0x40开始
   address=0x40+x;
                                 //写存储器地址指令
 lcdwritecmd(address|0x80);
void lcdshowstr (unsigned char x, unsigned char y,
                                //在液晶制定的x和v位置,显示字符
            unsigned char *str)
                                 //设置显示RAM的地址
 lcdsetcursor(x, y);
                                 //如果不是字符串的结尾. 则继续
 while((*str)!='\0')
                                 //发写数据指令,在LCD上显示数据
   lcdwritedata(*str);
                                 //指针加1, 指向下一个地址
   str++;
```

(05) 代码讲解 void lcdwait()

```
LCD1602_DB=0xFF;
_nop_();
_nop_();
_nop_();
_nop_();
LCD1602_RS=0;
LCD1602_RW=1;
LCD1602_E=1;
while(LCD1602_DB & 0x80);
LCD1602_E=0;
```

```
void lcdinit()

{
    lcdwritecmd(0x38);
    lcdwritecmd(0x0c);
    lcdwritecmd(0x06);
    lcdwritecmd(0x01);
}
```

等待函数

```
//等待函数,判断LCD是否忙,是否可读写
//先将PO端口设置为FF
//空操作延时

//将LCD1602的RS信号拉低
//将LCD1602的RW信号拉高
//将LCD1602的E信号拉高
//等待标志位BF为低时
//将LCD1602的E信号拉低

初始化函数

//发指令0x38,2行模式,5*8点阵,8位宽度
//发指令0x06,打开显示,关闭光标
//发指令0x06,文字不移动,地址自动加1
```

//发指令0x01, 清屏