DM 2 : Référentiels non galiléens Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	
Bonus	exercice supplémentaire	0.5	

N°	Elts de rép.		
	•		
01-02	Sismographe		
1	ref du bati non-galileen, syst. M, bilan des forces : poids, entrainement, rappe frottement. Puis PFD et $m\ddot{H} = -kH - \lambda \dot{H} + m\omega^2 S_0 \cos(\omega t)$, donc $\ddot{H} + \frac{\omega_0}{Q} \dot{H}$		
	$\omega_0^2 H = \omega^2 S_0 \cos(\omega t)$ avec ω_0 pulsation propre, et Q le facteur de qualité.		
2	en notation complexe $(-\omega^2 + \frac{\omega_0}{Q}j\omega + \omega_0^2)\underline{H}e^{j\omega t} = \omega^2 S_0 e^{j\omega t}$ donc $\left \frac{\underline{H}}{\underline{S}}\right $ c'est la		
	fonction de transfert. Pour avoir une réponse uniforme il faut avoir la courbe la plus plate possible on peut choisir $Q = \frac{1}{\sqrt{2}}$ et se placer à une pulsation telle		
	que $\omega \gg \omega_0$ donc il faut que $\omega_0 \ll 0,63 \text{ rad.s}^{-1}$. Comme $\omega_0 = \frac{k}{m}$ il faut avoir une masse élevée pour avoir ω_0 faible.		
N°	Elts de rép.		
03-03	Différence d'appui sur les rails		
3	On complète les shémas avec les forces d'inerties. On fait les produits vectoriels.		
	Et on en déduit qu'il y a un appui latéral de la roue sur le rail de droite. La		
	norme de la force de Coriolis est $2m\Omega v \sin(\lambda) = 2, 6.10^3 \text{ N}$		
N°	Elts de rép.		
04-04	Régulateur à boules		
4	On exprime la relation géométrique $4d = z + 2d\cos(\theta)$ donc $z = 4d - 2d\cos(\theta)$		
	L'énergie potentielle du système est la somme de toutes les énergies po-		
	tentielles $E_p = E_{p_{ie}} + E_{p_p} + E_{p_{el}}$, soit $E_p = -2\frac{1}{2}m\Omega^2 d^2\sin(\theta)^2 + mgz +$		
	$2mg(z+d\cos(\theta))+\frac{1}{2}k(z-2d)^2$ soit en fonction de la seule variable $\theta:E_p(\theta)=$		
	$2d \left[6mg + kd - \frac{1}{2}m\Omega^{2}d - (2mg + kd)\cos(\theta) + (kd + \frac{1}{2}m\Omega^{2}d)\cos(\theta)^{2} \right].$		
	A l'équilibre $\frac{dE_p}{d\theta}$ = 0, soit calculs		
	$\sin(\theta) \left[2mg + kd - (m\Omega^2 d + 2kd)\cos(\theta) \right] = 0 \text{ soit } \sin(\theta) = 0 \text{ ou}$		
	$\cos(\theta) = \frac{2mg + kd}{m\Omega^2 d + 2kd}$		

