Cade	erno de Funçõ	ões Diferenc	iáveis e Sér	ies

Sumário

1	Seq	Sequências Numéricas			
	1.1	Introdução	5		
	1.2	Limites	5		
	1.3	Propriedades Algébricas dos Limites	6		

4 SUMÁRIO

Capítulo 1

Sequências Numéricas

1.1 Introdução

<u>Definição:</u> Lista infinita de números reais (ou complexos, inteiros). Formalmente é uma função:

$$f: \mathbb{N} \to \mathbb{R}$$
, onde $a_n = f(n)$.

Notação: $\{a_N\}_{n\in\mathbb{N}}, \{a_n\}_{n=1}^{\infty}, (a_n)_{n=1}^{\infty}, \dots$

1.2 Limites

Definição: $\{a_n\}_{n=1}^{\infty}$ tem limite finito $L \in \mathbb{R}$, e escrevemos $\lim_{n\to\infty} a_n = L$ ou $a_n \to L$, se dado $\epsilon > 0$ existe N tal que:

$$n \ge \Rightarrow |a_n - L| < \epsilon$$

<u>Teorema:</u> Suponhamos que uma sequência $\{a_n\}$ é dada por $a_n = f(n)$, onde $f: [1, +\infty] \to \mathbb{R}$. Se

$$\lim_{x\to\infty} f(x) = L$$
 então $\lim_{n\to\infty} a_n = L$.

<u>Definição:</u> Dizemos que $\{a_n\}$ diverge para $+(-)\infty$, e escrevemos $\lim_{n\to\infty} a_n = +(-)\infty$, se dadoa M>0, existe N tal que $N\geq n\Rightarrow a_n>M(<-M)$. Se o limite da sequência quando $n\to\infty$ não existe, também dizemos que $\{a_n\}$ é divergente.

1.3 Propriedades Algébricas dos Limites

- $lim(a_n + b_n) = lim(a_n) + lim(b_n)$
- $lim(ca_n) = clim(a_n), c \in \mathbb{R}$
- $lim(a_nb_n) = lim(a_n)lim(b_n)$
- $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim(a_n)}{\lim(b_n)}$, se $\lim(b_n) \neq 0$

Caso os limites do lado direito existam.

1.4 Outras Propriedades

Se f é uma função contínua, então:

$$lim(f(a_n)) = f(lim(a_n)).$$

<u>Definição(Teorema do Confronto):</u> Se $a_n \leq b_n \leq a_n, \forall n \in a_n \to L, c_n \to L$ então $b_n \to L$.

<u>Definição:</u> $\{a_n\}$ é crescente se $a_{n+1} \ge a_n$ e estritamente crescente se $a_{n+1} > a_n$ (definido analogamente para decrescente). $\{a_n\}$ é monotônica se é crescente ou decrescente.

<u>Definição:</u> $\{a_n\}$ é limitada superiormente (inferiormente) se $\exists M$ tal que $a_n \leq (\geq)M$, $\forall n$.