5 הרצאה

אלגוריתמים חמדניים

הקדמה

לעיתים קרובות אפשר לייצג בעיות אופטימזציה כקבוצה של אלמנטים כאשר פתרון חוקי הוא תת קבוצה של אלמנטים שמקיימת תכונות מסויימות. למשל, עץ פורש מינימלי. בדרך כלל יש פונקציית מחיר / רווח לכל תת קבוצה והמטרה שלנו היא למזער / למקסם את הערך הזה.

אלגוריתם חמדן, באופן לא פורמלי, הוא כזה שבונה פתרון (תת קבוצה של אלמנטים) באופן איטרטיבי ובכל שלב מוסיף / מסיר מהקבוצה

קבוצת אינטרוולים בלתי תלויה בגודל מקסימלי

נתונים n אינטרוולים (a_i) את אמן ב- (a_i) , את אמן ההתחלה של האינטרוול a_i וב- (a_i) את אמן הסיום שלו. את המונים a_i אינטרוול מתקיים ש- (a_i) את המונים אוכן (a_i) את המונים אוכן אוכן (a_i) אוכן אוכן אוכן אוכן (a_i) אוכן אוכן אוכן ב- (a_i) אוכן אוכן ב- (a_i) אחד התנאים מתקיים: (a_i) אחד התנאים ב- (a_i) אום ב- (a_i) אוכן ב- (a_i) אחד התנאים מתקיים: (a_i) אוכן ב- (a_i)

אלגוריתם חמדן:

$$ar{e} \leftarrow 0$$
 , $I \leftarrow \emptyset$.1

e(a) עבור כל אינטרוול בסדר a בסדר אינטרוול 2.

$$s(a) \geq ar{e}$$
 אם (א)

$$I \leftarrow I \cup \{a\}$$
 i.

$$\bar{e} \leftarrow e(a)$$
 ii.

לפני שנוכיח נכונות נראה דוגמאות לגישות חמדניות שלא עובדות:

לבחור את האינטרוול עם זמן התחלה הכי מוקדם

בחור את האינטרוול הכי קצר											

לבחור את האינטרוול שנחתך עם הכי מעט אינטרוולים

הוכחת נכונות: נוכיח את הטענה הבאה, בכל צעד של האלגוריתם קיימת קבוצה בגודל מקסימלי, I' כך ש-I רישא שלה ביחס למיון ע"פ ערכי e.

בסיס: באתחול טריוויאלי

:צעד: נבחן את הקבוצות I ו-I בצעד ה-i+1. לפי הנחת האינדוקציה הקבוצות, ממוינות על פי ערכי e נראות כך

$$I = \{\alpha_1, \dots, \alpha_i, \alpha_{i+1}\}$$

$$I' = \{\alpha_1, \dots, \alpha_i, \beta_1, \dots, \beta_k\}$$

נסתכל על הפתרון

$$I'' = \{\alpha_1, \dots, \alpha_i, \boldsymbol{\alpha_{i+1}}, \dots, \beta_k\}$$

מכיוון שהאלגוריתם α_{i+1} למעט אולי α_{i+1} למעט אולי ב-"ז למעט אולי שם זרים בזוגות ולכן גם האינטרוולים ב-"ז למעט אולי מכיוון שהאלגוריתם מרקיים ש- α_{i+1} אולי בונה פתרון חוקי אז אנחנו יודעים ש- α_{i+1} זר ל- α_{i+1} זר ל- α_{i+1} ובגלל האופי החדמני של האלגוריתם מתקיים ש- α_{i+1} בונה פתרון חוקי אז אנחנו יודעים ש- α_{i+1} זר ל- α_{i+1} פתרון בגודל מקסימלי כך ש- α_{i+1} רישא שלו.

שיבוץ משימות

נתונות a_i משימות $d(a_i)$ - גסמן ב- $d(a_i)$ את הזמן הנדרש לביצוע משימה a_i וב- $d(a_i)$ - גסמן ב- $d(a_i)$ - גסמן ב- $d(a_i)$ - גסמן ב- $d(a_i)$ - גסמן ב- $d(a_i)$ - גסמן משימה ביצוע המשימות (פרמוטציה) $d(a_i)$ - גסמן ב- $d(a_i)$ - גס

$$\delta(a_i) = \sum_{i \le \pi(a_i)} t(\pi^{-1}(i))$$

נסמן ב- $\delta(a_i) = \delta(a_i) - d(a_i)$ את האיחור בביצוע משימה a_i רוצים למצוא את האיחור המקסימלי, כלומר

$$\arg\min_{\pi}\{\max_{i}l(a_{i})\}$$

האלגוריתם החמדן יבצע את המשימות בסדר לא יורד של זמני הסיום הרצויים.

הוכחת נכונות

נוכיח באינדוקציה את הטענה הבאה:

. לכל i קיים פתרון אופטימלי שמבצע את המשימות הראשונות לפי זמני הסיום שלהן.

בסיס: טריוויאלי

צעד: נסתכל על המשימה, a, שזמן הסיום שלה הוא ה-i+1 לפי סדר לא יורד. אם הפתרון האופטימלי מבצע את המשימה i+1 אותה בזמן i+1 סיימנו, אחרת הוא מבצע אותה בזמן j>i+1 נסתכל על סדר ביצוע המשימות מזמן i+1 עד זמן i+1

$$b_{i+1}, \ldots, b_{i-1}, a$$

נבחן פתרון שמבצע את המשימות הללו בסדר הבא:

$$a, b_{i+1}, \ldots, b_{i-1}$$

נבדוק את האיחור המקסימלי של משימות אלו (האיחור המקסימלי של יתר המשימות לא השתנה) ונניח בשלילה שהוא גדל נבדוק את האיחור המקסימלי של משימות אלו האיחור ב-b. נסמן אותה ב-b. נסמן אותה ב-b. נסמן את זמן הסיום אדל זה חייב להיות בגלל אחת מהמשימות b. b. ולכן b. b. ולכן b. b. אנחנו יודעים אבל ש-b. b. וגם ש-b. וגם ש-b. ולכן b. אנחנו יודעים אבל ש-b. אנחנו יודעים אבל ש-b.