Nous innovons pour votre réussite!

Contrôle en Analyse 3

Durée (1 h: 30 mn)

Prof. A.Ramadane, Ph.D.

1. Exercice (5 points)

- a. Rappeler le test de divergence et faire la démonstration
- b. Rappeler les tests de comparaison (deux tests) et faire la démonstration
- **c.** Que pouvez-vous dire de la série $\sum_{k=0}^{\infty} u_k$ dans les cas suivants :

i.
$$\lim_{k \to \infty} \left| \frac{u_k}{u_{k+1}} \right| = 8$$

ii.
$$\lim_{k\to\infty} \left| \frac{u_{k+1}}{u_k} \right| = 0.8$$

iii.
$$\lim_{k \to \infty} \left| \frac{u_{k+1}}{u_k} \right| = 1$$

- d. Répondre par vrai ou faux. Justifier vos choix
 - i. Si $\sum_{k=0}^{\infty} c_k 6^k$ est absolument convergente alors $\sum_{k=0}^{\infty} c_k 2^k$ est convergente
 - ii. Si $\sum_{k=0}^{\infty} c_k \ 6^k$ est convergente alors $\sum_{k=0}^{\infty} c_k \ (-2)^k$ est convergente
 - iii. Si u_k est positive, décroissante et converge vers 0 alors $\sum_{k=0}^{\infty} (-1)^k (e^{u_k} 1)$ converge

2. Exercice (4 points)

- a) Faire un rappel sur le test de l'intégrale pour la convergence d'une série.
- b) Montrer graphiquement que le reste R_n d'une série est compris entre

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx$$

c) Montrer théoriquement le résultat en b)

Nous innovons pour votre réussite!

d) Application:

- ✓ Trouver la somme partielle S_6 de la série $\sum_{n=1}^{\infty} \frac{1}{n^5}$
- ✓ Estimez l'erreur R₆
- ✓ Trouver une valeur de n qui assure que l'erreur d'approximation soit inférieure à 10⁽⁻¹⁵⁾.
- ✓ Estimer la somme $\sum_{n=1}^{\infty} \frac{1}{n^5}$

3. Exercice (3 points)

Estimer la somme des séries avec trois décimales exactes

a)
$$\sum_{n=3}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$$

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n!}$$

4. Exercice (4 points)

Étudier la convergence des séries :

a)
$$\sum_{n=0}^{\infty} \sin(\frac{1}{n^2+9n+20})$$

b)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{n^p}$$

c)
$$\sum_{n=0}^{\infty} \frac{1}{n \ln(n)}$$

