Table 1: List of Major Notations Used in the Paper

Notations	Descriptions
$\mathcal{G}(\mathcal{V},\mathcal{E})$	the directed graph with nodes $\mathcal V$ and edges $\mathcal E$
\mathcal{V} \mathcal{E}	the set of nodes
${\cal E}$	the set of edges
\mathcal{C}	the impact on whole team's probability of arriving on time
${\cal R}$	the set of robots
$(\mathcal{O},\mathcal{D})$	the origin-destination pair of corresponding robot
${\mathcal T}$	time budget of task for corresponding robot
${\cal I}$	the importance of task for corresponding robot
$egin{array}{c} \mathcal{T} \ \mathcal{I} \ \phi \ \lambda_i \end{array}$	the set denoting all the possible policies
	the weight of importance
$\mathcal{P}_i(\boldsymbol{\phi})$	the impact on each agent's probability of arriving on time
$\mathbb{H}(X)$	information entropy of the map
w_i	the word is indexed as i in the dictionary
v_{i}	the center words
u_i	the context words
e_{ij}	the attention coefficient of neighbours
W	the learnable weight matrix used for linear transformations
\boldsymbol{a}	a vector used to calculate the attention coefficient
\mathcal{N}_i	the set of neighbouring vertices of node v_i
$\stackrel{lpha_{ij}}{(m{h}_i',m{h}_i''}$	the normalized attention coefficient
	feature representations
$ heta_{ij}$	the parameter vector of policy
$\pi_{\boldsymbol{\theta}}(a s)$	the policy under state s
$J_{\boldsymbol{\theta}}$	the objective function of our algorithm
G(au)	the cost function of robots
$J_{\mathbb{P}}$	the objective function of probability
$J_{\mathbb{H}}$	the objective function of information entropy