

Caderno de Questões

Bimestre	Disciplina		Turmas	Período	Data da prova	P 163001
3.0	Física-Mecânica		1.a Série	М	12/09/2016	
Questões	Testes Páginas Professor(es)					
4	15	14	Dalton/Mariz/Zen			
Verifique cuidadosamente se sua prova atende aos dados acima e, em caso negativo, solicite, imediatamente, outro exemplar. Não serão aceitas reclamações posteriores.						
Aluno(a)	no(a) Turma N.o			N.o		
Nota Professor				Assinatura d	o Professor	

Instruções

- 1. Antes de resolver a prova, preencha com o seu nome, número e turma os espaços correspondentes do caderno de questões e da folha de respostas.
- 2. Nos testes, siga as instruções da folha de respostas.
- 3. As questões podem ser resolvidas a lápis, mas as respostas devem ser dadas a tinta, nos respectivos espaços.
- 4. As questões devem ser resolvidas com clareza, de forma **completa**, nos respectivos espaços, com caligrafia adequada.
- 5. As questões apenas com resposta, sem o devido desenvolvimento, não serão consideradas.
- 6. Não é permitido o porte de calculadoras, celulares ou outros eletrônicos de comunicação. Estes aparelhos, assim como os demais materiais escolares, devem ser colocados em frente da lousa, durante a prova.
- 7. Ao terminar a prova, entregue apenas as folhas de respostas. Guarde o caderno de questões e traga-o no primeiro dia de aula após a prova.
- 8. O gabarito desta prova será disponibilizado na internet.

Dados:

	30°	45°	60°	90°	120°	135°	150°	180°
sen	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tg	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

Observações:

- Quando se fala em velocidade vetorial (ou aceleração vetorial) e não se esclarece se é média ou instantânea, admite-se que se trata da instantânea.
- Quando se fala em velocidade (ou aceleração) e não se dá nenhuma outra informação, admite-se que se trata da velocidade (ou aceleração) vetorial.

Parte I: Testes (valor: 3,0)

01. (PUC-SP) Uma senhora sai de casa para fazer uma caminhada num circuito retangular cujos lados possuem 300 m e 400 m. Ela inicia a caminhada por uma das entradas do circuito que corresponde ao vértice do circuito.

Após completar 10,5 voltas, podemos dizer que a distância percorrida e o módulo do deslocamento vetorial foram, respectivamente, de:

- a. 14.700 m e 700 m
- b. 700 m e 14.700 m
- c. 14.700 m e 500 m
- d. 7.350 m e 700 m
- e. 700 m e 7.350 m
- 02. (UEL-PR) Um móvel executa um movimento em 5,0s de acordo com a trajetória indicada no esquema abaixo.

Aluno(a)	Turma	N.o	P 163001
			p 3

Os módulos das velocidades vetoriais médias nos intervalos de tempo de 0 a 3,0s e de 0 a 5,0s, em m/s, são, respectivamente,

- a. 1,0 e 15,0
- b. 5,0 e 1,0
- c. 5,0 e 10,0
- d. 6,0 e 10,0
- e. 7,0 e 1,0
- 03. Considere o *looping* mostrado na figura, constituído por um trilho inclinado seguido de um círculo.

Quando uma pequena esfera é abandonada no trecho inclinado do trilho, a partir de determinada altura, percorrerá toda a trajetória curva do trilho, sempre em contato com ele. Sendo \vec{v} a velocidade instantânea e \vec{a} a aceleração centrípeta da esfera, o esquema que melhor representa estes dois vetores no ponto mais alto da trajetória no interior do círculo é:

a.

d.

e.

04. (Esc. Naval-RJ) Uma partícula move-se ao longo de uma circunferência de raio igual a 1,0 m e, em certo instante, quando ela passa por um ponto ${\bf A}$, sua aceleração vetorial \vec{a} tem módulo 20 m/s² e orientação conforme representa a figura ao lado. Sabendo que sen $\theta=0,60$ e cos $\theta=0,80$, aponte a alternativa que traz o valor correto da relação entre o módulo da componente tangencial de \vec{a} e o módulo da velocidade da partícula no ponto ${\bf A}$ em s $^{-1}$:

- a. 12
- b. 4,0
- c. 3,0
- d. 2,0
- e. 1,5

05. Curvas com ligeiras inclinações em circuitos automobilísticos são indicadas para aumentar a segurança do carro a altas velocidades, como, por exemplo, no Talladega Superspeedway; um circuito utilizado para corridas promovidas pela NASCAR (National Association for Stock Car Auto Racing). Considere um carro como sendo um ponto material percorrendo uma pista circular, de centro C inclinada de um ângulo α e com raio R, constantes, como mostra a figura, que apresenta a frente do carro em um dos trechos da pista.

Se a velocidade do carro tem módulo constante, é correto afirmar que o carro

- a. não possui aceleração vetorial.
- b. possui aceleração com módulo variável, direção radial e no sentido para o ponto C.
- c. possui aceleração com módulo variável e tangente à trajetória circular;
- d. possui aceleração com módulo constante, direção radial e no sentido para o ponto C.
- e. possui aceleração com módulo constante e tangente à trajetória circular.
- 06. (EsPCEx-SP) Um bote de assalto deve atravessar um rio de largura igual a 800 m, numa trajetória perpendicular à sua margem, num intervalo de tempo de 1 minuto e 40 segundos, com velocidade constante.

Desenho ilustrativo

Considerando o bote como uma partícula, desprezando a resistência do ar e sendo constante e igual a 6 m/s a velocidade da correnteza do rio em relação à sua margem, o módulo da velocidade do bote em relação à água do rio deverá ser de:

- a. 4 m/s
- b. 6 m/s
- c. 8 m/s
- d. 10 m/s
- e. 14 m/s

Aluno(a)	Turma	N.o	P 163001
			p 5

07. Considere um rio de margens paralelas e cuja correnteza tem velocidade constante de módulo v_C . Uma lancha tem velocidade relativa às águas constante e de módulo 10 m/s. A lancha parte do ponto $\bf A$ e atinge a margem oposta no ponto $\bf B$, indicado na figura, gastando um intervalo de tempo de 100 s. O valor de v_C é:

- a. 2,0 m/s.
- b. 4,0 m/s.
- c. 6,0 m/s.
- d. 8,0 m/s.
- e. 10 m/s.
- 08. (FUVEST-SP) Num vagão ferroviário que se move com velocidade $|\vec{v}_0| = 3,0$ m/s com relação aos trilhos, estão dois meninos $\bf A$ e $\bf B$ que correm um em direção ao outro, cada um com velocidade v=3 m/s com relação ao vagão.

As velocidades dos meninos **A** e **B**, com relação aos trilhos, serão respectivamente:

- a. 6 m/s e 0 m/s
- b. 3 m/s e 3 m/s
- c. 0 m/s e 9 m/s
- d. 9 m/s e 0 m/s
- e. 0 m/s e 6 m/s
- 09. (PUC-BA) Entre as cidades **A** e **B** existem sempre correntes de ar que vão de **A** para **B** com uma velocidade de 50 km/h. Um avião, voando em linha reta, com uma velocidade de 150 km/h em relação ao ar, demora 4 h para ir de **B** até **A**. Qual é a distância entre as duas cidades?
 - a. 200 km
 - b. 400 km
 - c. 600 km
 - d. 800 km
 - e. 1000 km

- 10. (UF-PI) Um barco, navegando a favor da correnteza de um rio, tem velocidade de 6 m/s e, contra a correnteza, sua velocidade é 2 m/s, ambas em relação à Terra. Podemos afirmar corretamente que a velocidade da correnteza, em relação à Terra, e a velocidade do barco, em relação à correnteza, são, respectivamente:
 - a. 4 m/s e 2 m/s
 - b. 2 m/s e 4 m/s
 - c. 1 m/s e 2 m/s
 - d. 2 m/s e 1 m/s
 - e. 6 m/s e 4 m/s
- 11. (Mackenzie-SP) um motorista, dirigindo a $100\sqrt{3}\,$ km/h sob uma tempestade, observa que a chuva deixa nas janelas laterais marcas inclinas de 60° com a vertical. Ao parar o carro, ele nota que a chuva cai verticalmente. Podemos afirmar que a velocidade da chuva relativamente ao carro, quando ele estava em movimento, era:
 - a. 200 km/h
 - b. $100\sqrt{3} \text{ km/h}$
 - c. $200\sqrt{3} \text{ km/h}$
 - d. $180\sqrt{3}$ km/h
 - e. n.d.a.
- 12. (UF-PE) Em uma revendedora de peças de automóveis, um vendedor lança uma pequena caixa sobre o balcão para ser recolhida por seu ajudante. Este, distraído, não vê o pacote, que escorrega para fora do balcão e atinge o chão a 1,5 m da base do balcão, como mostra a figura. Se a altura do balcão é de 1,25 m, a velocidade com que o pacote deixou o balcão vale, em m/s:

- a. 2
- b. 1
- c. 3
- d. 4
- e. 6

Aluno(a)	Turma	N.o	P 163001
			p 7

13. Uma cooperativa de reciclagem decidiu adquirir uma esteira rolante automatizada para melhorar a eficiência na separação de latas de alumínio de formato muito semelhante, mas com massas diferentes (12 g, 14,5 g e 17 g).

O método consiste em colocar as latas misturadas na esteira, que manterá sempre determinada velocidade, e ao final dela dispor os recipientes A, B e C posicionados de acordo com o esquema acima.

Do ponto de vista científico, esse procedimento

- a. Funcionará e trará rapidez ao processo de reciclagem porque as latas de menor massa cairão no recipiente A.
- b. Funcionará e facilitará o processo de reciclagem porque as latas de menor massa cairão no recipiente C.
- c. Funcionará apenas se a velocidade da esteira estiver devidamente calibrada para que cada lata atinja o seu recipiente.
- d. Não funcionará porque todas as latas, independentemente de sua massa, cairão em um único recipiente.
- e. Não funcionará porque as latas, independentemente de sua massa, cairão em recipientes aleatórios.
- 14. Uma partícula é lançada com velocidade horizontal \vec{v}_0 , cujo módulo é $v_0 = 25$ m/s, de um ponto O situado a 120 m acima do solo, numa região onde a aceleração da gravidade tem módulo g = 10 m/s². A partícula atinge um muro vertical situado a 100 m do ponto O. Determine a altura **h** do ponto **B** onde a partícula atinge o muro. (Despreze os efeitos do ar)

- a. 10 m
- b. 20 m
- c. 30 m
- d. 40 m
- e. 50 m

15. (UNB-DF) Especialistas em tiro ao alvo frequentemente treinam em alvos em movimento. A figura mostra um desses momentos. No instante em que o atirador disparou o projétil, o alvo (fruta) desprendeu-se da árvore e ambos, alvo e projétil emitido pela arma, começaram a cair. Com base nessas informações, julgue os itens seguintes, considerando-se que: a resistência do ar é desprezível, a aceleração gravitacional \vec{g} é constante e com módulo igual a 10 m/s², a altura do alvo h = 20 cm, a distância horizontal percorrida pelo projétil d = 100 m e o módulo da velocidade inicial horizontal do projétil $v_0 = 400$ m/s. Despreze o tempo gasto pelo projétil ao se deslocar no interior da arma.

- 1. Após um intervalo de tempo T, o projétil percorrerá a mesma distância vertical que o alvo.
- 2. De acordo com os dados apresentados, o atirador acertou o alvo.
- 3. O tempo de queda T da fruta, na vertical, pode ser corretamente calculado pela relação

$$T = \sqrt{\frac{h_2}{g}}$$

4. A distância percorrida pelo alvo até ser atingido pelo projétil vale 31,25 cm.

Somente está correto o que se afirmou em:

- a. 1, 2 e 4
- b. 1 e 2
- c. 2 e 4
- d. 3
- e. 1 e 3

Aluno(a)	Turma	N.o	P 163001
			p 9

Parte II: Questões (valor: 7,0)

01. (valor: 2,0) Em um bairro, onde todos os quarteirões são quadrados e as ruas paralelas distam 100 m uma da outra, um menino faz o percurso de P a Q em 100 s, pela trajetória representada no esquema a seguir.

Determine, para o percurso:

- a. O módulo do deslocamento escalar.
- b. O módulo do deslocamento vetorial.
- c. O módulo da velocidade escalar média.
- d. O módulo da velocidade vetorial média.

02. (valor: 1,5) Uma partícula P move-se em trajetória circular de centro 0, no sentido horário, tendo velocidade escalar $v_0=8.0$ m/s no instante t=0 s. No instante t=1.0 s a aceleração vetorial instantâneo \vec{a} tem módulo 20 m/s 2 e está representada no desenho.

Lembrete:

$$V_y = V \cdot \text{sen } \theta$$

 $V_x = V \cdot \cos \theta$

Sabendo que sen $\theta = 0.60$ e cos $\theta = 0.80$.

- a. Representar na posição P os vetores velocidade, aceleração tangencial e aceleração centrípeta;
- b. Calcule o módulo da aceleração escalar, o módulo da aceleração centrípeta no instante t = 1,0 s;
- c. Calcule o raio da trajetória.

Aluno(a)	Turma	N.o	P 163001
			p 11

- 03. (valor: 2,0) As águas de um rio correm com velocidade \vec{v}_0 em relação às margens, sendo $|\vec{v}_0|=6$,0 m/s. As margens do rio são paralelas e separadas por uma distância de 24 m. Uma lancha sai de uma das margens em direção à outra, com velocidade \vec{v}_1 em relação à água, de modo que seu eixo fique perpendicular à correnteza. Sabendo que $|\vec{v}_1|=8$,0 m/s, calcule:
 - a. O módulo da velocidade da lancha em relação às margens;
 - b. O intervalo de tempo de travessia;
 - c. O deslocamento rio abaixo;
 - d. O deslocamento em relação às margens.

04. (valor: 1,5) Uma bolinha rola com velocidade de módulo constante v=5 m/s sobre uma mesa horizontal de altura h=1,25 m e, com essa velocidade, abandona a borda da mesa.

(Adote
$$g = 10 \text{ m/s}^2$$
)

- a. Localize o ponto em que a bolinha toca o chão calculando seu deslocamento na direção horizontal a partir do instante em que abandona a borda da mesa.
- b. Calcule o módulo da velocidade com que a bolinha chega ao chão.
- c. Represente a variação de velocidade vetorial durante o percurso e calcule o módulo da aceleração vetorial média.

Folha de Respostas

Bimestre 3.o	Disciplina Física-Mecânica			Data da prova 12/09/2016	P 163001 p 13
26 27 28 29	05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ano 1	Grupo A B C OOO	Turma 1 2 3 4	
Aluno(a)		Assina	atura do f	Professor	Nota

Parte I: Testes (valor: 3,0)

Quadro de Respostas

Obs.: 1. Faça marcas sólidas nas bolhas sem exceder os limites.

2. Rasura = Anulação.

Parte II: Questões Dissertativas (valor: 7,0)

R =

02. (valor: 1,5)

03. (valor: 2,0)

a. | b | c. | d. |

04. (valor: 1,5)

a.

b.

v =

C.

 $|\vec{a}_{m}| =$

P 163001G 1.a Série Física - Mecânica Dalton/Mariz/Zen 12/09/2016

BBandeirantes

c. $v_m = 7 \text{ m/s}$

d. $|\vec{v}_m| = 5 \text{ m/s}$

c. $\Delta S_{BC} = 18 \text{ m}$

d. $\Delta S_{AC} = 30 \text{ m}$

Parte I: Testes (valor: 3,0)

- 01. c 09. b
- 02. b 10. b
- 03. a 11. a
- 04. с 12. c
- 05. d 13. d
- 06. d 14. d
- 07. b 15. a
- 08. a

Parte II: Questões (valor: 7,0)

- 01. (valor: 2,0)
- a. $\Delta s = 700 \text{ m}$
- b. $|\vec{d}| = 500 \text{ m}$
- 02. (valor: 1,5)
- a. Ver figura na sala de aula.
- b. $a_t = 12 \text{ m/s}^2 \text{ e } a_{cp} = 16 \text{ m/s}^2$
- c. R = 25 m
- 03. (valor: 2,0)
- a. $V_{res} = 10 \text{ m/s}$
- b. $\Delta t = 3s$
- 04. (valor: 1,5)
- a. x = 2.5 m
- b. $v = 5\sqrt{2} \text{ m/s}$
- c. Ver figura na sala de aula.
- $|\vec{a}_{m}| = 10 \text{ m/s}^2$ (aceleração da gravidade)