Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

1 (Murphy 12.5 - Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.

(a) Prove that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j \right\|^2 = \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that $\mathbf{v}_i^T \mathbf{v}_j$ is 1 if i = j and 0 otherwise. Recall that $z_{ij} = \mathbf{x}_i^T \mathbf{v}_j$.

(b) Now show that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j \right) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that $\mathbf{v}_j^T \Sigma \mathbf{v}_j = \lambda_j \mathbf{v}_j^T \mathbf{v}_j = \lambda_j$.

(c) If k = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$.

(a) With the help of section 12.2.2 of Murphy, we know that

$$\left\|\mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right\|^2 = \left(x_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right)^T \left(x_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j\right)$$
$$= x_i^T x_i - x_i^T \sum_{j=1}^k z_{ij} \mathbf{v}_j - x_i \sum_{j=1}^k z_{ij} \mathbf{v}_j^T + \left(\sum_{j=1}^k z_{ij} \mathbf{v}_j\right)^T \left(\sum_{j=1}^k z_{ij} \mathbf{v}_j\right).$$

Rearranging using transpose properties,

$$=x_i^Tx_i-2\sum_{j=1}^kz_{ij}\mathbf{v}_j^Tx_i+\sum_{j=1}^k\mathbf{v}_j^Tz_{ij}^Tz_{ij}\mathbf{v}_j.$$

Since $\mathbf{v}_i^T \mathbf{v}_j$ is 1 if i = j and 0 otherwise and $z_{ij} = x_I^T \mathbf{v}_j$,

$$= x_i^T x_i - 2 \sum_{j=1}^k z_{ij} \mathbf{v}_j^T x_i + \sum_{j=1}^k \mathbf{v}_j^T x_i x_i^T \mathbf{v}_j$$

$$= x_i^T x_i - 2 \sum_{j=1}^k \mathbf{v}_j^T x_i x_i^T \mathbf{v}_j + \sum_{j=1}^k \mathbf{v}_j^T x_i x_i^T \mathbf{v}_j$$

$$\left\| \mathbf{x}_i - \sum_{j=1}^k z_{ij} \mathbf{v}_j \right\|^2 = x_i^T x_i - \sum_{j=1}^k \mathbf{v}_j^T x_i x_i^T \mathbf{v}_j._{QED}$$

(b) By definition, it is true that

$$J_k = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}_i^T \mathbf{x}_i - \sum_{j=1}^k \mathbf{v}_j^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{v}_j \right)$$
$$= \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{i=1}^k \mathbf{v}_j^T \frac{1}{n} \left(\sum_{j=1}^n \mathbf{x}_i \mathbf{x}_i^T \right) \mathbf{v}_j$$
$$= \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{i=1}^k \mathbf{v}_j^T \Sigma \mathbf{v}_j$$

Since $\mathbf{v}_{i}^{T} \Sigma \mathbf{v}_{j} = \lambda_{j}$,

$$J_k = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{i=1}^k \lambda_{j \cdot QED}$$

(c) And from part (b), we know that $J_k = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{i=1}^k \lambda_j$. Additionally, we can partition $\sum_{j=1}^d \lambda_j$ such that

$$\sum_{j=1}^{d} \lambda_j = \sum_{j=1}^{k} \lambda_j + \sum_{j=k+1}^{d} \lambda_j.$$

If we rearrange this equation, we get

$$\sum_{j=1}^k \lambda_j = \sum_{j=1}^d \lambda_j - \sum_{j=k+1}^d \lambda_j.$$

We can substitute this into the equation of J_k , so

$$J_k = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^T \mathbf{x}_i - \sum_{i=1}^d \lambda_j + \sum_{i=k+1}^d \lambda_j$$

If $J_d = 0$, then it must be true that

$$\sum_{k=1}^{d} \lambda_j = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i^T \mathbf{x}_i.$$

Therefore,

$$J_k = \sum_{i=k+1}^d \lambda_{j \cdot QED}$$

2 (ℓ_1 -Regularization) Consider the ℓ_1 norm of a vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|\mathbf{x}\|_1 = \sum_i |\mathbf{x}_i|.$$

Draw the norm-ball $B_k = \{\mathbf{x} : \|\mathbf{x}\|_1 \le k\}$ for k = 1. On the same graph, draw the Euclidean norm-ball $A_k = \{\mathbf{x} : \|\mathbf{x}\|_2 \le k\}$ for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand).

Show that the optimization problem

minimize:
$$f(\mathbf{x})$$
 subj. to: $\|\mathbf{x}\|_p \le k$

is equivalent to

minimize:
$$f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$$

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_1 regularization (adding a $\lambda \|\mathbf{x}\|_1$ term to the objective) will give sparser solutions than using ℓ_2 regularization for suitably large λ .

The graph can be seen in **Figure 1** on the next page. The optimization problem of minimizing $f(\mathbf{x})$ subject to $||x||_p \le k$ is the same as the following optimization problem:

$$\inf_{x} \sup_{\lambda \geq 0} \mathcal{L}(\mathbf{x}, \lambda) = \inf_{x} \sup_{\lambda \geq 0} f(\mathbf{x}) + \lambda(||\mathbf{x}||_{p} - k).$$

By switching the supremums and infemums, we can an equivalent of

$$\sup_{\lambda \geq 0} \inf_{x} \mathcal{L}(\mathbf{x}, \lambda) = \sup_{\lambda \geq 0} \inf_{x} f(\mathbf{x}) + \lambda(||\mathbf{x}||_{p} - k).$$

Because the term λk does not depend on \mathbf{x} , minimizing all of $f(\mathbf{x}) + \lambda(||\mathbf{x}||_p - k)$ is equivalent to minimizing $f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$. Therefore, the two optimization problems are equivalent. OED

Figure 1: ℓ_1 Norm-Ball and Euclidean Norm-Ball