Psychology 454: Latent Variable Modeling

Using the lavaan package for latent variable modeling

Department of Psychology Northwestern University Evanston, Illinois USA

January, 2011

Outline

3 major structural modeling programs in R

- sem (by John Fox)
 - Uses ram notation for parameters
 - psych will work as a front end for developing parameters
 - Development work seems to have switched to OpenMx
 - Will not do multiple groups
- lavaan (by Yves Rosseel)
 - Uses a more compact notation than sem
 - Will work on multiple groups
 - Still under development
- OpenMx (by Michael Neal, Steve Boker and the OpenMx group)
 - Very powerful structural equation package
 - Based upon Mx (developed for behavioral geneticists)
 - Somewhat idiosyncratic syntax

Getting lavaan

- Beta version (0.4-5) may be downloaded from lavaan website.
 - Will handle covariance matrices objects to but will run correlations matrices

```
install.packages("lavaan", repos="http://www.da.ugent.be", type="source")
library(lavaan)
```

- R version on CRAN is 0.3-3. install.packages("lavaan") library(lavaan)
 - Will not handle covariance or correlation matrices
- Documentation is also available at http://users.ugent. be/~yrosseel/lavaan/lavaan_usersguide_0.3-1.pdf
- For more information about lavaan go to http://lavaan.ugent.be/

Using lavaan

- Confirmatory factoring models with cfa
 - Single group
 - Multiple group (factor invariance issues)
- Structural Equation Models with sem
 - Single group models
 - Regression models
 - Complex regression models
 - latent variable models

Confirmatory models for a Thurstone data set – Bechtoldt.1 and then Becholdt.2

- ? split a data set from ? into two equal parts (N=212, 213) to examine factor stability.
 - One set has become known as the "Thurstone" data set in SAS and in ?.
 - Both are available in the psych package and can be analyzed using cfa in lavaan
- The following script forms two subsets (b2 is equivalent to "Thurstone") and then does a cfa

```
\label{eq:data_bound} \begin{array}{lll} \text{data(bifactor)} \\ \text{b1} \leftarrow \text{Bechtoldt.1}[c(3:8,15:17),c(3:8,15:17)] \\ \text{b2} \leftarrow \text{Bechtoldt.2}[c(3:8,15:17),c(3:8,15:17)] \\ \text{Thurstone.mod} \leftarrow \text{ 'F1} = \text{`Sentences} + & \text{Vocabulary} + & \text{Completion} \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & &
```

lavaan output for a cfa - first a warning

likely wrong; see the following reference:

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105, 317-327.

matrices; the standard errors in the summary output will be most

Limited output unless requested

> summary(t.cfa.2) Lavaan (0.4-5) converged normally after 28	iterations
Number of observations	213
Estimator	ML
Minimum Function Chi-square	38.376
Degrees of freedom	24
P-value	0.032

More complete output

> summary(t.cfa.2,fit.measures=TRUE)				
Lavaan (0.4-5) converged normally after	r 28 iterations	Loglikelihood and Information Criteria:		
Number of observations	213	Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)		81.238 62.050
Estimator	ML	· ·		
Minimum Function Chi-square	38.376	Number of free parameters		21
Degrees of freedom	24	Akaike (AIC)	44	04.476
P-value	0.032	Bayesian (BIC)	44	75.063
		Sample-size adjusted Bayesian (BIC)	44	08.520
Chi-square test baseline model:				
		Root Mean Square Error of Approximation:		
Minimum Function Chi-square	1107.090			
Degrees of freedom	36	RMSEA		0.053
P-value	0.000	90 Percent Confidence Interval	0.016	0.083
		P-value RMSEA <= 0.05		0.404
Full model versus baseline model:				
		Standardized Root Mean Square Residual:		
Comparative Fit Index (CFI)	0.987			
Tucker-Lewis Index (TLI)	0.980	SRMR		0.044

With parameter estimates - notice that we fixed latent variances to 1

Expected

Standard

Parameter estimates: Standard Errors

Information

Standard Errors				Standard					
	Estimate	Std.err	Z-value	P(> z)					
Latent variables:					Variances:				
F1 =~						0.404	0.000	0.000	0.000
Sentences	0.903	0.054	16.727	0.000	Sentences	0.181	0.028	6.388	0.000
Vocabulary	0.912	0.054	17.005	0.000	Vocabulary	0.164	0.028	5.953	0.000
Completion	0.854	0.056	15.317	0.000	Completion	0.266	0.033	8.026	0.000
F2 =~					First_Letters	0.300	0.051	5.923	0.000
First_Letters	0.834	0.060	13.783	0.000	Four_letter_w	0.363	0.052	6.941	0.000
Four_letter_w	0.795	0.061	12.937	0.000	Suffixes	0.504	0.059	8.513	0.000
Suffixes	0.701	0.064	10.960	0.000	Letter_Series	0.388	0.059	6.594	0.000
F3 =~	0.701	0.004	10.300	0.000	Pedigrees	0.479	0.062	7.751	0.000
	0.779	0.064	12.173	0.000	Letter_Groupi	0.503	0.063	7.995	0.000
Letter_Series					F1	1.000			
Pedigrees	0.718	0.065	10.998	0.000	F2	1.000			
Letter_Groupi	0.702	0.066	10.679	0.000	F3	1.000			
Covariances:									
F1 ~~									
F2	0.643	0.050	12.755	0.000					
F3	0.670	0.051	13.153	0.000					
F2 ~~									
F3	0.637	0.058	10.900	0.000					

Alternative parameterization one variable path per latent set to 1

summary(t.cfa.2,fit.measures=TRUE)

	Estimate	Std.err	Z-value	P(> z)					
Latent variables:									
F1 =~									
Sentences	1.000								
Vocabulary	1.010	0.051	19.938	0.000	Variances:				
Completion	0.946	0.054	17.644	0.000	Sentences	0.181	0.028	6.388	0.000
F2 =					Vocabulary	0.164	0.028	5.953	0.000
First_Letters	1.000				Completion	0.266	0.033	8.026	0.000
Four_letter_w	0.954	0.082	11.668	0.000	First_Letters	0.300	0.051	5.923	0.000
Suffixes	0.841	0.081	10.326	0.000	Four_letter_w	0.363	0.052	6.941	0.000
F3 =~					Suffixes	0.504	0.059	8.513	0.000
Letter_Series	1.000				Letter_Series	0.388	0.059	6.594	0.000
Pedigrees	0.922	0.097	9.469	0.000	Pedigrees	0.479	0.062	7.751	0.000
Letter_Groupi	0.901	0.097	9.288	0.000	Letter_Groupi	0.503	0.063	7.995	0.000
-					F1	0.815	0.097	8.363	0.000
Covariances:					F2	0.695	0.101	6.891	0.000
F1 ~~					F3	0.607	0.100	6.087	0.000
F2	0.484	0.072	6.751	0.000					
F3	0.471	0.071	6.653	0.000					
F2 ~~									
F3	0.414	0.068	6.118	0.000					

Compare to the efa from psych and sem from sem

- This data set has been discussed before (many times, see e.g., Week 4)
 - We compared methods of factor extraction (minres and mle) and rotation (varimax and oblimin)
 - We compared EFA and SEM solutions
- Now compare those solutions to the lavaan solutions
- Both in ease of set up and in statistical modeling

create the sem commands by using psych

```
f3 <- fa(Thurstone,3,fm='mle')</pre>
mod3 <- structure.diagram(f3,cut=.45,errors=TRUE)</pre>
mod3
     Path
                 Parameter Value
 [1,] "ML1->V1" "F1V1"
                            NA
 [2,] "ML1->V2" "F1V2"
                            NA
 [3.] "ML1->V3" "F1V3"
                            NΑ
 [4,] "ML2->V4" "F2V4"
                            NA
 [5.] "ML2->V5" "F2V5"
                            NA
 [6,] "ML2->V6" "F2V6"
                            NA
 [7.] "ML3->V7" "F3V7"
                            NA
 [8.] "ML3->V8" "F3V8"
                            NA
 [9.] "ML3->V9" "F3V9"
                            NA
[10,] "V1<->V1" "x1e"
                            NA
[11,] "V2<->V2" "x2e"
                            NA
[18,] "V9<->V9" "x9e"
                            NA
[19,] "ML2<->ML1" "rF2F1"
                            NA
[20.] "ML3<->ML1" "rF3F1"
                            NA
[21.] "ML3<->ML2" "rF3F2"
                            NΑ
[22.] "ML1<->ML1" NA
                             "1"
[23.] "ML2<->ML2" NA
                             "1"
[24.] "ML3<->ML3" NA
                             "1"
```

Running sem

```
> sem3 <- sem(mod3,Thurstone,N=213)</pre>
> summary(sem3,digits=2)
 Model Chisquare = 38 Df = 24 Pr(>Chisq) = 0.033
 Chisquare (null model) = 1102 Df = 36
 Goodness-of-fit index = 0.96
 Adjusted goodness-of-fit index = 0.92
 RMSEA index = 0.053 90% CI: (0.015, 0.083)
 Bentler-Bonnett NFI = 0.97
 Tucker-Lewis NNFT = 0.98
Bentler CFI = 0.99
 SRMR = 0.044
 BIC = -90
 Normalized Residuals
  Min. 1st Qu. Median Mean 3rd Qu. Max.
 -0.97 -0.42 0.00 0.04 0.09 1.63
```

> rownames(Thurstone) <- colnames(Thurstone) #to get the names to match the modl

rF3F2 0.64

0.059

With parameter estimates

Parameter Estimates Estimate Std Error z value Pr(>|z|)0.054 16.7 F1V1 0.90 0.0e+00 V1 <--- ML1 F1V2 0.91 0.054 17.0 0.0e+00 V2 <--- ML1 F1V3 0.86 0.056 15.3 0.0e+00 V3 <--- ML1 F2V4 0.84 0.061 13.8 0.0e+00V4 <--- ML2 F2V5 0.80 0.062 12.9 0.0e+00 V5 <--- ML2 F2V6 0.70 0.064 10.9 0.0e+00 V6 <--- ML2 F3V7 0.78 0.065 12.0 0.0e+00 V7 <--- ML3 F3V8 0.720.067 10.7 0.0e+00 V8 <--- ML3 F3V9 0.70 10.5 0.0e+00 0.067 V9 <--- ML3 x1e 0.18 0.028 6.4 1.7e-10 V1 <--> V1 x2e 0.16 0.028 5.9 3.0e-09 V2 <--> V2 хЗе 0.27 0.033 8.0 1.6e-15 V3 <--> V3 V4 <--> V4 x4e 0.30 0.051 5.9 2.7e-09 0.36 x5e 0.052 7.0 3.4e-12 V5 <--> V5 х6е 0.51 0.060 8.4 0.0e+00 V6 <--> V6 x7e 0.39 0.062 6.3 2.3e-10 V7 <--> V7 0.48 7.4 V8 <--> V8 x8e 0.065 1.8e-13 x9e 0.51 0.065 7.7 9.5e-15 V9 <--> V9 rF2F1 0.64 0.051 12.6 0.0e+00 ML1 <--> ML2 rF3F1 0.67 12.5 ML1 <--> ML3 0.054 0.0e+00

10.7

0.0e+00

ML2 <--> ML3

A direct comparison of statistical estimates

	Number of observations	21	.3
Model Chisquare = 38 Df = 24 Pr(>Chisq) = 0.	Estimator Minimum Function Chi-square Degrees of freedom 033 P-value	38.37	24
Chisquare (null model) = 1102 Df = 36 Goodness-of-fit index = 0.96	Chi-square test baseline model:		
Adjusted goodness-of-fit index = 0.92 RMSEA index = 0.053 90% CI: (0.015, 0.083) Bentler-Bonnett NFI = 0.97 Tucker-Lewis NNFI = 0.98	Minimum Function Chi-square Degrees of freedom P-value	1107.09 3 0.00	36
Bentler CFI = 0.99 SRMR = 0.044	Full model versus baseline model:		
BIC = -90 Normalized Residuals Min. 1st Qu. Median Mean 3rd Qu. Max.	Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Root Mean Square Error of Approximation:	0.98 0.98	
-0.97 -0.42 0.00 0.04 0.09 1.63	RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.05 0.016 0.08 0.40	33
	Standardized Root Mean Square Residual:		
	SRMR	0.04	4

A direct comparison of parameter estimates

sem										
Para	meter Est	imates				lavaan				
F1V1 F1V2 F1V3 F2V4 F2V5 F2V6 F3V7 F3V8		Std Error 0.054 0.054 0.056 0.061 0.062 0.064 0.065 0.067	z value 16.7 17.0 15.3 13.8 12.9 10.9 12.0 10.7	Pr(> z) 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00	V1 < ML1 V2 < ML1 V3 < ML1 V4 < ML2 V5 < ML2 V6 < ML2 V7 < ML3 V8 < ML3	Latent variables: F1 = " Sentences Vocabulary Completion F2 = " First_Letters Four_letter_w	0.903 0.912 0.854 0.834 0.795	0.054 0.054 0.056 0.060 0.061	16.727 17.005 15.317 13.783 12.937	0.000 0.000 0.000 0.000
F3V9 x1e x2e x3e x4e	0.72 0.70 0.18 0.16 0.27 0.30	0.067 0.028 0.028 0.033 0.051	10.7 10.5 6.4 5.9 8.0 5.9	0.0e+00 0.0e+00 1.7e-10 3.0e-09 1.6e-15 2.7e-09	V9 < ML3 V1 <> V1 V2 <> V2 V3 <> V3 V4 <> V4	Suffixes F3 =~ Letter_Series Pedigrees Letter_Groupi	0.701 0.779 0.718 0.702	0.064 0.064 0.065 0.066	10.960 12.173 10.998 10.679	0.000 0.000 0.000 0.000
rF3F1	0.36 0.51 0.39 0.48 0.51 0.64 0.67	0.052 0.060 0.062 0.065 0.065 0.051 0.054 0.059	7.0 8.4 6.3 7.4 7.7 12.6 12.5	3.4e-12 0.0e+00 2.3e-10 1.8e-13 9.5e-15 0.0e+00 0.0e+00	V5 <> V5 V6 <> V6 V7 <> V7 V8 <> V9 ML1 <> ML2 ML1 <> ML3 ML2 <> ML3	Covariances: F1 ~~ F2 F3 F2 ~~ F3	0.643 0.670 0.637	0.050 0.051 0.058	12.755 13.153 10.900	0.000 0.000 0.000

lavaan.diagram

Currently, *lavaan* does not draw structural diagrams. But, it is not hard to form a simple function to draw lavaan diagrams from lavaan output using tools from *psych*.

This function is not ready for prime time because it does not yet draw sem (just cfa) diagrams.

lavaan diagam for the Thurstone (Bechtoldt.2) data set

Structural model

Confirmatory factor structures across groups

- When comparing measures across age or across genders, it is important to make sure that the factor structures are in fact the same.
 - When measuring change, we want to make sure that our measure is the same for different ages.
 - When comparing ethnic groups, gender, genetic relationships, want to make sure that the measures are invariant across the groups
- This can be done by doing multiple group cfa.
- Possible to do in OpenMx and lavaan, but not in sem

Comparing Bechtoldt1 and Bechtoldt2

```
two.mod <- cfa(Thurstone.mod, sample.cov=list(b1,b2),
                    sample.nobs=list(212,213),std.lv=TRUE)
> summary(two.mod,fit.measures=TRUE)
Model converged normally after 26 iterations using ML
                                             74.045
  Minimum Function Chi-square
  Degrees of freedom
                                                 48
  P-value
                                             0.0093
Chi-square for each group:
                                             35.669
  Group 1
  Group 2
                                             38.376
Chi-square test baseline model:
                                           2205.154
  Minimum Function Chi-square
  Degrees of freedom
                                                 63
  P-value
                                             0.0000
```

Does not seem to work with lavaan beta-need to use the old

Residual variances:

0 173

0.028

6 137

Santancas

Loadings for two groups

```
Group 1 [Group 1]:
                                                          Group 2 [Group 2]:
                              Std.err Z-value
                                                 P(>|z|)
                                                                              Estimate Std.err Z-value P(>|z|)
Latent variables:
                                                          Latent variables:
  F1 =~
                                                           F1 =~
                       0.907
                                 0.054
                                         16.800
                                                    0.000
    Sentences
                                                              Sentences
                                                                                 0.903
                                                                                           0.054
                                                                                                   16.727
                                                                                                              0.000
    Vocabulary
                       0.913
                                 0.054
                                         16,992
                                                    0.000
                                                                                 0.912
                                                                                           0.054
                                                                                                   17.005
                                                                                                              0.000
                                                              Vocabulary
    Completion
                       0.840
                                 0.056
                                         14.890
                                                    0.000
                                                              Completion
                                                                                 0.854
                                                                                           0.056
                                                                                                   15.317
                                                                                                              0.000
  F2 = ^{\circ}
                                                           F2 =~
                       0.829
                                 0.064
                                         12.939
                                                    0.000
    First_Letters
                                                        0.000 First_Letters
                                                                                 0.834
                                                                                           0.060
                                                                                                   13.783
                                                                                                              0.000
    Four_letter_words
                           0.731
                                     0.066
                                              11.126
                                                                                     0.795
                                                                                               0.061
                                                                                                        12.937
                                                                                                                  0.000
                                                              Four_letter_words
    Suffixes
                       0.650
                                 0.067
                                          9.668
                                                    0.000
                                                              Suffixes
                                                                                 0.701
                                                                                           0.064
                                                                                                   10.960
                                                                                                              0.000
  F3 =~
                                                           F3 =~
                                                    0.000
    Letter Series
                       0.847
                                 0.060
                                         14.206
                                                                                 0.779
                                                              Letter_Series
                                                                                           0.064
                                                                                                   12,173
                                                                                                              0.000
                       0.788
                                 0.061
                                         12.872
                                                    0.000
    Pedigrees
                                                              Pedigrees
                                                                                 0.718
                                                                                           0.065
                                                                                                   10.998
                                                                                                              0.000
    Letter_Grouping
                         0.711
                                   0.063
                                           11.202
                                                      0.000
                                                              Letter Grouping
                                                                                   0.702
                                                                                             0.066
                                                                                                     10.679
                                                                                                                0.000
Latent covariances:
                                                          Latent covariances:
  F1 ~~
                                                            F1 ~~
                       0.565
                                 0.058
                                          9.668
                                                    0.000
    F2
                                                                                           0.050
                                                                                                   12.755
                                                                                                              0.000
                                                                                 0.643
    F3
                       0.700
                                 0.045
                                         15.528
                                                    0.000
                                                              F3
                                                                                 0.670
                                                                                           0.051
                                                                                                   13.153
                                                                                                              0.000
  F2 ~~
                                                           F2 ~~
    F3
                       0.570
                                 0.062
                                          9.137
                                                    0.000
                                                              F3
                                                                                 0.637
                                                                                           0.058
                                                                                                   10.900
                                                                                                              0.000
Latent variances:
                                                          Latent variances:
                       1.000
                                                              F1
                                                                                 1 000
    F2
                       1.000
                                                                                 1.000
    F3
                       1.000
                                                              F3
                                                                                 1.000
```

0 000 Residual variances:

Constrain the two groups to be equal

```
two.mod <- cfa(Thurstone.mod,sample.cov=list(b1,b2),
                     sample.nobs=list(212,213).std.lv=TRUE.
                     group.constraints=c("loadings"))
summary(two.mod,fit.measures=TRUE)
Model converged normally after 25 iterations using ML
 Minimum Function Chi-square
                                             76.128
 Degrees of freedom
                                                 57
 P-value
                                             0.0461
Chi-square for each group:
 Group 1
                                             36.700
 Group 2
                                             39.428
Chi-square test baseline model:
 Minimum Function Chi-square
                                           2205 154
 Degrees of freedom
                                                 63
 P-value
                                             0.0000
Full model versus baseline model:
 Comparative Fit Index (CFI)
                                             0.991
 Tucker-Lewis Index (TLI)
                                             0.990
```

Parameter estimates

```
Model estimates:
Group 1 [Group 1]:
                                                          Group 2 [Group 2]:
                   Estimate Std.err Z-value P(>|z|)
                                                                              Estimate Std.err Z-value P(>|z|)
Latent variables:
                                                          Latent variables:
 F1 =~
                                                            F1 =~
    Sentences
                      0.903
                                0.038
                                        23.705
                                                   0.000
                                                                                 0.903
                                                              Sentences
    Vocabulary
                      0.911
                                0.038
                                        24.046
                                                   0.000
                                                              Vocabulary
                                                                                 0.911
                      0.846
                                0.040
                                        21.362
                                                   0.000
    Completion
                                                              Completion
                                                                                 0.846
 F2 =~
                                                            F2 =~
    First Letters
                      0.831
                                0.044
                                        18.943
                                                   0.000
                                                              First Letters
                                                                                 0.831
    Four_letter_words
                          0.767
                                    0.045
                                           17.120
                                                       0.000
                                                              Four letter words
                                                                                     0.767
    Suffixes
                      0.679
                                0.046
                                        14.674
                                                   0.000
                                                              Suffixes
                                                                                 0.679
 F3 = "
                                                            F3 =~
    Letter Series
                      0.816
                                0.044
                                        18.752
                                                   0.000
                                                              Letter Series
                                                                                 0.816
                      0.756
                                0.045
                                        16.976
                                                   0.000
    Pedigrees
                                                                                 0.756
                                                              Pedigrees
    Letter Grouping
                        0.705
                                  0.046
                                          15.465
                                                     0.000
                                                              Letter_Grouping
                                                                                   0.705
Latent covariances:
                                                          Latent covariances:
 F1 ~~
                                                            F1 ~~
    F2
                       0.565
                                0.056
                                        10.044
                                                   0.000
                                                              F2
                                                                                 0.641
                                                                                          0.049
                                                                                                  13.108
                                                                                                             0.000
    F3
                      0.697
                                0.044
                                        15.746
                                                   0.000
                                                              F3
                                                                                 0.672
                                                                                          0.048
                                                                                                  13.939
                                                                                                             0.000
 F2 ~~
                                                            F2 ~~
    F3
                       0.569
                                0.061
                                         9.304
                                                   0.000
                                                              F3
                                                                                 0.633
                                                                                          0.057
                                                                                                             0.000
                                                                                                  11.145
Latent variances:
                                                          Latent variances:
    F1
                       1.000
                                                              F1
                                                                                 1.000
    F2
                      1.000
                                                              F2
                                                                                 1.000
                                                                                                             24 / 1
                      1 000
```

Compare goodness of fits

Because the models are in fact samples from the same data, they should agree.

Model converged normally after 26 ite	rations using ML	Model converged normally after 25 i	terations using !
Minimum Function Chi-square	74.045	Minimum Function Chi-square	76.128
Degrees of freedom	48	Degrees of freedom	57
P-value	0.0093	P-value	0.0461
Chi-square for each group:		Chi-square for each group:	
Group 1	35.669	Group 1	36.700
Group 2	38.376	Group 2	39.428
Chi-square test baseline model:		Chi-square test baseline model:	
Minimum Function Chi-square	2205.154	Minimum Function Chi-square	2205.154
Degrees of freedom	63	Degrees of freedom	63
P-value	0.0000	P-value	0.0000
Full model versus baseline model:		Full model versus baseline model:	
Comparative Fit Index (CFI)	0.988	Comparative Fit Index (CFI)	0.991
Tucker-Lewis Index (TLI)	0.984	Tucker-Lewis Index (TLI)	0.990

Descriptive statistics of their data set

> describe(HolzingerSwineford1939)

	var	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
id	1	301	176.55	105.94	163.00	176.78	140.85	1.00	351.00	350.00	-0.01	-1.35	6.11
sex	2	301	1.51	0.50	2.00	1.52	0.00	1.00	2.00	1.00	-0.06	-2.01	0.03
ageyr	3	301	13.00	1.05	13.00	12.89	1.48	11.00	16.00	5.00	0.69	0.25	0.06
agemo	4	301	5.38	3.45	5.00	5.32	4.45	0.00	11.00	11.00	0.09	-1.21	0.20
school*	5	301	1.52	0.50	2.00	1.52	0.00	1.00	2.00	1.00	-0.07	-2.01	0.03
grade	6	300	7.48	0.50	7.00	7.47	0.00	7.00	8.00	1.00	0.09	-2.00	0.03
x1	7	301	4.94	1.17	5.00	4.96	1.24	0.67	8.50	7.83	-0.25	0.36	0.07
x2	8	301	6.09	1.18	6.00	6.02	1.11	2.25	9.25	7.00	0.47	0.38	0.07
x3	9	301	2.25	1.13	2.12	2.20	1.30	0.25	4.50	4.25	0.38	-0.89	0.07
x4	10	301	3.06	1.16	3.00	3.02	0.99	0.00	6.33	6.33	0.27	0.12	0.07
х5	11	301	4.34	1.29	4.50	4.40	1.48	1.00	7.00	6.00	-0.35	-0.53	0.07
x6	12	301	2.19	1.10	2.00	2.09	1.06	0.14	6.14	6.00	0.86	0.88	0.06
x7	13	301	4.19	1.09	4.09	4.16	1.10	1.30	7.43	6.13	0.25	-0.27	0.06
x8	14	301	5.53	1.01	5.50	5.49	0.96	3.05	10.00	6.95	0.53	1.24	0.06
x9	15	301	5.37	1.01	5.42	5.37	0.99	2.78	9.25	6.47	0.20	0.34	0.06

cfa syntax

Because we are using a covariance analysis, we need to standardize the observed variables to express the loadings as correlations.

```
HS.model <- '
visual = x1 + x2 + x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9
'

fit <- cfa(HS.model, data = HolzingerSwineford1939,std.lv=TRUE,std.ov=TRUE)
summary(fit)
lavaan.diagram(fit,cut=.2,digits=2)</pre>
```

Lavaan diagram of Holzinger-Swineford 1939 cfa

Structural model

Now do multiple groups

summary(fit.2g)

G

Number of observations per group

asteur	156
rant-White	145

Estimator ML
Minimum Function Chi-square 115.851
Degrees of freedom 48
P-value 0.000

Chi-square for each group:

Pasteur	64.309
Grant-White	51.542

Parameter estimates:

Information	Expected
Standard Errors	Standard

Compare the parameters for both schools

Group 1 [Pasteur]:					Group 2 [Grant-White]:						
	Estimate	Std.err	Z-value	P(> z)		Estimate	Std.err	Z-value	P(> z)		
Latent variables:					Latent variables:						
visual =~					visual =~						
x1	0.884	0.111	7.934	0.000	x1	0.674	0.090	7.525	0.000		
x2	0.335	0.089	3.753	0.000	x2	0.515	0.091	5.642	0.000		
x3	0.513	0.093	5.525	0.000	x3	0.691	0.090	7.711	0.000		
textual =~					textual =~						
x4	0.821	0.069	11.927	0.000	x4	0.863	0.070	12.355	0.000		
х5	0.854	0.068	12.604	0.000	x5	0.826	0.071	11.630	0.000		
x6	0.836	0.068	12.230	0.000	x6	0.823	0.071	11.572	0.000		
speed =~					speed =~						
x7	0.545	0.098	5.557	0.000	x7	0.657	0.084	7.819	0.000		
x8	0.679	0.104	6.531	0.000	x8	0.793	0.083	9.568	0.000		
х9	0.550	0.098	5.596	0.000	x9	0.698	0.084	8.357	0.000		
Covariances:					Covariances:						
visual ~~					visual ~~						
textual	0.484	0.086	5.600	0.000	textual	0.541	0.085	6.355	0.000		
speed	0.299	0.109	2.755	0.006	speed	0.523	0.094	5.562	0.000		
textual ~~					textual ~~						
speed	0.325	0.100	3.256	0.001	speed	0.336	0.091	3.674	0.000		
Variances:					Variances:						
x1	0.212	0.165	1.286	0.198	x1	0.538	0.095	5.675	0.000		
x2	0.881	0.104	8.464	0.000	x2	0.728	0.099	7.339	0.000		
х3	0.731	0.100	7.271	0.000	x3	0.515	0.095	5.409	0.000		
x4	0.320	0.052	6.138	0.000	x4	0.249	0.051	4.870	0,000		
_					_				3071		

Constrain the two schools to have equal loadings

(This works on lavaan 0.3.3 but not the beta version 0.4-5)

Model converged normally after 27 iterations using $\ensuremath{\text{ML}}$

Minimum	Function Chi-square	122.862
Degrees	of freedom	57
P-value		0.0000

Chi-square for each group:

Grant-White	54.264
Pasteur	68.598

Show more fit statistics

<pre>> summary(fit.2g,fit.measures=TRUE)</pre>				
		Full model versus baseline model:		
Model converged normally after 27 ites	rations using	ML		
•		Comparative Fit Index (CFI)		0.926
Minimum Function Chi-square	122.862	Tucker-Lewis Index (TLI)		0.919
Degrees of freedom	57			
P-value	0.0000	Loglikelihood and Information Crite	ria:	
Chi-square for each group:		Loglikelihood user model (HO)	-34	117.421
		Loglikelihood unrestricted model	(H1) -33	355.990
Grant-White	54.264			
Pasteur	68.598	Akaike (AIC)	69	900.841
		Bayesian (BIC)	70	23.176
Chi-square test baseline model:				
		Root Mean Square Error of Approximation:		
Minimum Function Chi-square	957.769			
Degrees of freedom	63	RMSEA		0.088
P-value	0.0000	90 Percent Confidence Interval	0.066	0.109
		Standardized Root Mean Square Residual:		
		SRMR		0.084