МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Курс: "Введение в архитектуру вычислительных систем"

Домашнее задание №1 Вариант 4

Полный сумматор двух 3-битных входов.

Автор:

Голенских Никита Алексеевич golenskikh.na@phystech.edu

гр. Б01-205

Назначение схемы. Принцип работы

Полный сумматор используется для сложения двоичных чисел заданного размера. В рассматриваемой схеме мы подаем на вход два 3-битных числа и получаем их сумму, причем переполнение свидетельствует о смене знака. Его можно пронаблюдать в явном виде, если оставить саггу для последнего разряда: если возвращается единица, то смена произошла, если же вернулся ноль, то знак остался прежним. Поскольку в данном варианте мы работаем с 3-битными числами, то было бы странно получать 4 бита, поэтому саггу сумматора последнего разряда мы убрали.

Сумматоры первого и третьего битов немного отличаются от наиболее общей реализации, поскольку к первому мы не передаём саггу ($C^0_{in} \equiv 0$), а последнему саггу некуда передавать ($C^2_{out} \to ?$). Поэтому рассмотрим более подробно только второй бит, его одноразрядный полный сумматор состоит из трех блоков: $\operatorname{sum}(A \oplus B)$, $\operatorname{sum}(S \oplus C_{in})$ и C^1_{out} .

- 1. $sum(A \oplus B)$ это ничто иное, как XOR, который нельзя использовать в данной работе, потому представляем его в виде NAND, OR и AND.
- 2. $sum(S \oplus C_{in})$ тот же самый XOR, но здесь мы складываем результат $sum(A \oplus B)$ с поданным от сумматора прошлого разряда C_{in} и получаем окончательный результат вычисления бита.
- 3. C_{out}^1 состоит из двух AND и одного OR. Этот блок проверяет два случая: 1) $A \cdot B = 1, 2$) $(A \oplus B) \cdot C_{in}^1 = 1$, если хотя бы один из них выполняется, то на C_{in}^2 сумматора следующего разряда подается 1, иначе 0.

Разные состояния схемы

$$000 + 000 = 000 \iff 0 + 0 = 0$$

$$101 + 011 = 000 \iff -3 + 3 = 0$$

$$111 + 111 = 110 \iff -1 + (-1) = -2$$

$$011 + 011 = 110 \iff 3 + 3 = -2$$

Критический путь

Примерное количество транзисторов

 ${
m NAND-4}$ транзистора, ${
m NOT-2}$ транзистора, ${
m AND=NOT+NAND-6}$ транзисторов, ${
m OR}$ 4 транзистора ${
m UTOFO:}$ 5 ${
m NAND+6}$ OR + 8 AND = **92 транзистора**

Источники

- 1. Презентации 3 и 4 по курсу
- 2. Sarah L. Harris, David Harris Digital Design and Computer Architecture: RISC-V Edition. P. 87, 112, 237-244.