Lecture 9: Intro to Trigonometric Integrals

Zachariah Pence

Purdue University

Sections Covered: 8.3

Basics

Basic Idea

Tangent and Secant

Basic Idea

We want to integrate functions like:

- $\int \sin^3 dx$

The main idea: Use trig identities to simplify the integrand until we can use u-substitution.

Compute $\int \sin^3 x \ dx$

Compute $\int \cos^5 x \ dx$

Power Reduction Formulas

Problem 3

Compute $\int \sin^4 x \ dx$

When sine has an odd power

Problem 4

Compute $\int \sin^5 x \cos^2 x \ dx$

Compute $\int \sin^{-\frac{3}{2}} x \cos^3 x \ dx$

Compute $\int \sin^4 x \cos^2 x \ dx$

General Strategy

$\int \sin^m x \cos^n x \ dx$	Strategy
m odd and positive, n real	Split off $\sin x$, rewrite the resulting
	even power of $\sin x$ in terms of $\cos x$,
	then use $u = \cos x$.
n odd and positive, m real	Split off $\cos x$, rewrite the resulting
	even power of $\cos x$ in terms of $\sin x$,
	then use $u = \sin x$.
m and n are both even, non-	Use half-angle formulas to trans-
negative integers	form the integrand into a polynomial
	of $\cos 2x$, then apply the preceding
	strategies once again to powers of
	$\cos 2x$ greater than 1.
	•

Reduction Formula (for sine) Derivation

Problem 7

Recursively compute $\int \sin^n x \ dx$

Reduction Formulas

Theorem 8

Assume n is a positive integer:

$$\int \sin^n x \ dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \ dx$$

$$\int \tan^n x \ dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \ dx, \ provided \ n \neq 1$$

$$\int \sec^n x \ dx = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \ dx, \ provided \ n \neq 1$$

Compute $\int \tan^3 x \ dx$

Factoring out $sec^2 x$

Problem 10

Compute $\int \tan^6 x \sec^4 x \ dx$

Odd power of sec *x*

Problem 11

Compute $\int \tan^5 x \sec^7 x \ dx$

General Strategy

$\int \tan^m x \sec^n x \ dx$	Strategy
n even, m real	Split off $sec^2 x$, rewrite the resulting
	even power of $\sec x$ in terms of $\tan x$,
	then use $u = \tan x$.
m odd and positive, n real	Split off $\sec x \tan x$, rewrite the result-
	ing even power of $tan x$ in terms of
	$\sec x$, then use $u = \sec x$.
m even and positive, n odd	Rewrite the even power of $tan x$ in
and positive	terms of $\sec x$ to produce a polyno-
	mial of $\sec x$, then apply Reduction
	Formula 4 to each term.

Cotangent

Similar strategies can be used when the integrand is powers of cotangent and cosecant.

Problem 12

Compute $\int \cot^4 x \ dx$

Square Roots

Problem 13

Compute
$$\int \sqrt{1-\sin x} \ dx$$

Powers of Secant

Problem 14

Compute $\int \sec^3 x \ dx$

Product to Sum Formulas

Theorem 15

- $\sin A \cos B = \frac{1}{2} [\sin(A-B) + \sin(A+B)]$
- $\sin A \sin B = \frac{1}{2} [\cos(A-B) \cos(A+B)]$
- $\cos A \cos B = \frac{1}{2} [\cos(A B) + \cos(A + B)]$

Compute $\int \sin 4x \cos 5x \ dx$