Exercise 4.1

	$w \in L$	$w \notin L$
(a)	0011	0
	1001	10

(c)
$$w \in L \quad w \notin L$$

 $0001 \quad 1$
 $0011 \quad 10$

$$(d) \begin{array}{c|c} w \in L & w \notin L \\ \hline \emptyset & 1 \\ 0 & 10 \end{array}$$

Exercise 4.2

The language L is defined by the regular expression: $(b^*ab^*ab^*)^*|b^*|$

Exercise 4.3

Figure 1: NFA for the regular expression $\gamma = (a|ab)^*b$

Exercise 4.4

(a) Proof. The language $L = \{ a^n b^m c^{n+m} \mid n, m \in \mathbb{N}_0 \}$ is not regular.

Assume L is regular. Then let p be a pumping number for L.

The word $x = a^p b^{2p} c^{p+2p}$ is in L and has length $\geq p$.

Let x = uvw be a split with the properties of the pumping lemma.

Then the word $x' = uv^2w$ is also in L. Since $|uv| \le p$, uv consists only of symbols a and $x' = a^{p+|v|}b^{2p}c^{p+2p}$.

Since $|v| \ge 1$ it follows that $(p + |v|) + 2p \ne p + 2p$ and thus $x' \notin L$.

Example:

$$u = a^{i} \qquad v = a^{j} \qquad w = a^{n-i-j}b^{m}c^{n+m}$$

$$v = v^{2} \rightarrow v^{2} = a^{2j}$$

The word is then: x = uvvw

$$uvvw = a^{i}a^{2j}a^{n-i-j}b^{m}c^{n+m} = a^{j+n}b^{m}c^{n+m}$$

$$n=2 \qquad m=3 \qquad j=4 \qquad \qquad \rightarrow \qquad \qquad x=aaaaaabbbccccc$$