

Artificial Intelligence: A Modern Approach

Fourth Edition, Global Edition

Chapter 10

Knowledge Representation

Lecture Presentations: Artificial Intelligence

Adapted from:

"Artificial Intelligence: A Modern Approach, Global Edition", 4th Edition by Stuart Russell and Peter Norvig © 2021 Pearson Education.

Adapted for educational use at ACE Engineering College. Some slides customized by Mr. Shafakhatullah Khan Mohammed, Assistant Professor @ ACE Engineering College. For instructional use only. Not for commercial distribution.

Outline

© 2022 Pearson Education Ltd.

- ♦ Ontological Engineering
- ♦ Categories and Objects
- **♦** Events
- Mental Objects and Modal Logic
- ♦ Reasoning Systems for Categories
- ♦ Reasoning with Default Information

Ontological Engineering

- Ontological Engineering: General and flexible representations for complex domains.
- Upper ontology: The general framework of concepts
- Example of ontology of the world:

Categories and Objects

- The organization of objects into categories is a vital part of knowledge representation
- Categories for FOL can be represented by predicates and objects.
- Physical composition: one object can be part of another is a familiar one
 - Eg: Romania is part of Bucharest. PartOf(Bucharest, Romania)

© 2022 Pearson Education Ltd.

- Measurements: values that we assign for properties of objects
 - Eg: $Length(L_1)=Inches(1.5)=Centimeters(3.81)$

Categories and Objects

- Stuff: a significant portion of reality that seems to defy any obvious individuation—division into distinct objects
- **Intrinsic**: they belong to the very substance of the object, rather than to the object as a whole.
- Extrinsic: weight, length, shape
- Substance: a category of objects that includes in its definition only intrinsic properties (mass noun).
- Count noun: class that includes any extrinsic properties

Events

- Event calculus: events, fluents, and time points
 - Fluents (eg): At(Shankar, Berkeley)
 - Events (eg): Event E₁ of Shankar flying from San Francisco to DC
 - E₁ ∈ Flyings ∧ Flyer (E₁, Shankar) ∧ Origin(E₁, SF) ∧ Destination(E₁, DC)
 - Flyings is the category of all flying events.
- Categories for FOL can be represented by predicates and objects.
- Physical composition: one object can be part of another is a familiar one
 - Eg: Romania is part of Bucharest. PartOf(Bucharest, Romania)
- Measurements: values that we assign for properties of objects
 - Eg: $Length(L_1)=Inches(1.5)=Centimeters(3.81)$

Mental Objects and Modal Logic

Mental objects are knowledge in someone's head (or KB)

Propositional attitudes that an agent can have toward mental objects

• Eg: Believes, Knows, Wants, and Informs

Lois knows that Superman can fly: Knows(Lois, CanFly(Superman))

Sentences can sometimes be verbose and clumsy. Regular logic is concerned with a single modality, the modality of truth.

Modal logic addresses this, with special modal operators that take sentences (rather than terms) as arguments

"A knows P" is represented with the notation \mathbf{K}_A P, where \mathbf{K} is the modal operator for knowledge. It takes two arguments, an agent (written as the subscript) and a sentence.

The syntax of modal logic is the same as first-order logic, except that sentences can also be formed with modal operators

Mental Objects and Modal Logic

Agents are able to draw conclusions. If an agent knows *P* and knows that *P* implies *Q*, then the agent knows *Q*:

$$(K_aP \wedge K_a(P \Rightarrow Q)) \Rightarrow K_aQ$$

Logical agents (but not all people) are able to introspect on their own knowledge.

If they know something, then they know that they know it:

$$K_aP \Rightarrow K_a (K_aP)$$

Reasoning Systems for Categories

Semantic networks

- convenient to perform inheritance reasoning
- Eg: Mary inherits the property of having two legs. Thus, to find out how many legs Mary has, the inheritance algorithm follows the *MemberOf* link from *Mary* to the category she belongs to and then follows *SubsetOf* links up the hierarchy until it finds a category for which there is a *boxed* Legs link

Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories. Relations are denoted by labeled links.

Reasoning Systems for Categories

Description logics

- notations that are designed to make it easier to describe definitions and properties of categories
- evolved from semantic networks in response to pressure to formalize what the networks mean while retaining the emphasis on taxonomic structure as an organizing principle
- Principal inference tasks:
 - Subsumption: checking if one category is a subset of another by comparing their definitions
 - Classification: checking whether an object belongs to a category
- The CLASSIC language (Borgida et al., 1989) is a typical description logic
 - Eg: bachelors are unmarried adult males
 - Bachelor = And(Unmarried, Adult, Male)

Reasoning with Default Information

Circumscription and default logic

- Circumscription can be seen as a more powerful and precise version of the closed-world assumption.
 - Specify particular predicates that are assumed to be "as false as possible"
 - It is an example of a model preference logic
- Default logic is a formalism in which default rules can be written to generate contingent nonmonotonic conclusions
 - Eg: Bird(x) : Flies(x)/Flies(x)
 - This rule means that if *Bird*(*x*) is true, and if *Flies*(*x*) is consistent with the knowledge base, then *Flies*(*x*) may be concluded by default.

Reasoning with Default Information

Truth maintenance systems

- Belief revision: inferred facts will turn out to be wrong and will have to be retracted in
- Truth maintenance systems, or TMSs, are designed to handle complications of any additional sentences that inferred from a wrong sentence.
- Justification-based truth maintenance system (JTMS)
 - Each sentence in the knowledge base is annotated with a justification consisting of the set of sentences from which it was inferred
 - Justifications make retraction efficient
 - Assumes that sentences that are considered once will probably be considered again

Summary

- Upper ontology based on categories and the event calculus
- Special-purpose representation systems, such as semantic networks and description logics, have been devised to help in organizing a hierarchy of categories
- Nonmonotonic logics, such as circumscription and default logic, are intended to capture default reasoning in general.
- Truth maintenance systems handle knowledge updates and revisions efficiently

