

Convolutional Neural Networks

Strided convolutions

Strided convolution

If after taking the stride, the filter goes out of the boundary, then omit it. That's why we use the floor() operation.

	3	4	4	
	1	0	2	
	-1	0	3	
3+3				

*

	91	100	83
=	69	3	127
	4	7	7
		3 *	3

$$\frac{1}{s} + \frac{1}{s} + \frac{1}$$

Andrew Ng

Summary of convolutions

$$n \times n \text{ image}$$
 $f \times f \text{ filter}$ padding p stride s

$$\left[\frac{n+2p-f}{s}+1\right] \times \left[\frac{n+2p-f}{s}+1\right]$$

Technical note on cross-correlation vs.

convolution

cross-correlation doesn't need to perform the double-mirror flipping operation.

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	6°	94	8	7	4
T 3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

;	*	3	0	5	
		-1	9	7	
	7	2	5		
	q	O	4		(

$$(A \times B) \times C = A \times (B \times C)$$

Convolution needs this double-mirror flipping operation to enjoy the associativity.

Andrew Ng