Лабораторная работа №1

Информационная безопасность

Леонтьева Ксения Андреевна | НПМбд-01-19

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Домашнее задание	26
4	Контрольные вопросы	29
5	Выводы	32

Список иллюстраций

2.1	Имя и тип ОС
2.2	Объем памяти
2.3	Установка жёсткого диска
2.4	Тип жёсткого диска
2.5	Формат хранения жёсткого диска
2.6	Имя и размер файла
2.7	Выбор оптического диска
2.8	Запуск машины
2.9	Запуск машины
2.10	Выбор языка
	Выбор языков раскладки
	Выбор дополнительного языка
2.13	Выбор программ
2.14	Отключение КDUMP
2.15	Место установки ОС 18
2.16	Сеть и имя узла
2.17	Пароль для root
2.18	Создание пользователя
2.19	Завершение установки
2.20	Вход в систему
2.21	Удаление устройства
	Подключение образа диска дополнений гостевой ОС 24
2.23	Запуск образ диска дополнений гостевой ОС
7 1	77
3.1	Komaндa sudo dmesg
3.2	Koмaндa sudo dmesg less
3.3	Koмaндa sudo dmesg less
3.4	Поиск информации с помощью grep
3.5	Поиск информации с помощью grep

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Для начала с официального сайта была скачана и установлена VirtualBox. Далее запускаем VirtualBox, выбираем "Создать". В появившемся окне указываем имя ОС (kaleontjeva) и тип ОС (Linux, Red Hat (64-bit)) (рис. 2.1).

Рис. 2.1: Имя и тип ОС

Указываем объём памяти - 2048 МБ (рис. 2.2).

Рис. 2.2: Объем памяти

Создаем новый динамический виртуальный жёсткий диск: задаем его тип - VDI, формат хранения - динамический и размер файла - 40 ГБ (рис. 2.3-2.6).

Рис. 2.3: Установка жёсткого диска

Рис. 2.4: Тип жёсткого диска

Рис. 2.5: Формат хранения жёсткого диска

Рис. 2.6: Имя и размер файла

Затем нажимаем "Настроить", переходим в раздел "Носители" и выбираем оптический диск - ранее скачанный с официального сайта дистрибутив "Rocky" (рис. 2.7).

Рис. 2.7: Выбор оптического диска

Теперь запускаем виртуальную машину ((рис. 2.8, 2.9).

Рис. 2.8: Запуск машины

Рис. 2.9: Запуск машины

Переходим к настройке машины. Выбираем английский язык (рис. 2.10).

Рис. 2.10: Выбор языка

Выбираем языки раскладки и комбинацию клавиш для переключения между ними(рис. 2.11).

Рис. 2.11: Выбор языков раскладки

Выбираем дополнительный язык - русский (рис. 2.12).

Рис. 2.12: Выбор дополнительного языка

Выбираем программы: базовое окружение Server with GUI и дополнение Development Tools (рис. 2.13).

Рис. 2.13: Выбор программ

Отключаем КDUMP (рис. 2.14).

Рис. 2.14: Отключение КDUMP

Место установки ОС оставляем без изменения (рис. 2.15).

Рис. 2.15: Место установки ОС

Включаем сетевое соединение и в качестве имени узла указываем kaleontjeva.localdomain (рис. 2.16).

Рис. 2.16: Сеть и имя узла

Устанавливаем пароль для root (рис. 2.17).

Рис. 2.17: Пароль для root

Создаем пользователя с правами администратора (рис. 2.18).

Рис. 2.18: Создание пользователя

Завершаем установку операционной системы, корректно перезагружаем виртуальную машину (рис. 2.19).

Рис. 2.19: Завершение установки

Теперь можно войти в систему, введя пароль (рис. 2.20).

Рис. 2.20: Вход в систему

Чтобы подключить образ диска дополнений гостевой ОС, сначала удаляем устройство в разделе "Носители" и оставляем диск пустым (рис. 2.21).

Рис. 2.21: Удаление устройства

Затем в разделе "Устройства" выбираем "Подключить образ диска дополнений гостевой ОС" (рис. 2.22).

Рис. 2.22: Подключение образа диска дополнений гостевой ОС

Запускаем образ диска дополнений гостевой ОС (рис. 2.23).

Рис. 2.23: Запуск образ диска дополнений гостевой ОС

После загрузки дополнений нажимаем Enter и корректно перезапускаем виртуальную машину.

Таким образом, установили операционную систему Linux с дистрибутивом Rocky, а также дополнения гостевой ОС, благодаря которым теперь не нужно нажимать хост-клавишу для переключения мышки между двумя ОС и можно настроить разрешение экрана.

3 Домашнее задание

Загружаем графическое окружение и открываем консоль. Анализируем последовательность загрузки системы, используя команду "sudo dmesg" и введя пароль (рис. 3.1).

```
© обвер □Терминал

Пг,9 сентября 21:56

© еп ♣ • П

kaleontjeva@kaleontjeva-15 sudo dmesg

sudo) пароль для kaleontjeva-15 sudo dmesg

sudo) naponb для kaleontjeva-16 sudo, naponbeg

sudo) naponbe
```

Рис. 3.1: Команда sudo dmesg

Смотрим вывод этой команды, выполнив "sudo dmesg | less" (рис. 3.2, 3.3). В данном случае после каждого нажатия клавиши "Enter" в консоли отображается только одна команда.

Рис. 3.2: Команда sudo dmesg | less

Рис. 3.3: Команда sudo dmesg | less

Далее получаем следующую информацию (рис. 3.4, 3.5).

- 1. Версия ядра Linux: dmesg | grep -i "Linux version". Ответ: 5.14.0-70.13.1.el9 0.x86 64
- 2. Частота процессора: dmesg | grep -i "Mhz". Ответ: 2419.204 MHz
- 3. Модель процессора: dmesg | grep -i "CPU0". Ответ: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
- 4. Объём доступной оперативной памяти: dmesg | grep -i "Memory". Ответ: 2096696K
- 5. Тип обнаруженного гипервизора: dmesg | grep -i "Hypervisor detected". Ответ: KVM

6. Тип файловой системы корневого раздела и последовательность монтирования файловых систем: dmesg | grep -i "Mount". Ответ: XFS

Рис. 3.4: Поиск информации с помощью grep

```
© 61 pp. 01 pp. 01 pp. 01 pp. 01 pp. 01 pp. 02 pp.
```

Рис. 3.5: Поиск информации с помощью grep

4 Контрольные вопросы

1. Учетная запись пользователя - это необходимая для системы информация о пользователе, которая хранится в специальных файлах. Вся информация о пользователе обычно хранится в файлах /etc/passwd и /etc/group. Учетная запись пользователя содержит: имя пользователя (user name), идентификационный номер группы (GID), идентификационный номер пользователя (UID), пароль (password), полное имя (full name), домашний каталог (home directory), начальную оболочку (login shell).

2. Команды терминала:

- 1. Для получения справки по команде: man команда. Например, команда "man ls" выведет справку о команде "ls".
- 2. Для перемещения по файловой системе: cd путь. Например, команда "cd newdir" осуществляет переход в каталог newdir.
- 3. Для просмотра содержимого каталога: ls опции путь. Например, команда "ls -a ~/newdir" отобразит имена скрытых файлов в каталоге newdir.
- 4. Для определения объёма каталога: du опция путь. Например, команда "du -k ~/newdir" выведет размер каталога newdir в килобайтах.
- 5. Для создания / удаления каталогов / файлов: mkdir опции путь / rmdir опции путь / rm опции путь. Например, команда "mkdir -p ~/newdir1/newdir2" создаст иерархическую цепочку подкаталогов, создав каталоги newdir1 и newdir2; команда "rmdir -v ~/newdir" удалит каталог newdir; команда "rm -r ~/newdir" так же удалит каталог newdir.

- 6. Для задания определённых прав на файл / каталог: chmod опции путь. Например, команда "chmod g+r ~/text.txt" даст группе право на чтение файла text.txt.
- 7. Для просмотра истории команд: history опции. Например, команда "history 5" покажет список последних 5 команд.
- 3. Файловая система имеет два значения: с одной стороны это архитектура хранения битов на жёстком диске, с другой это организация каталогов в соответствии с идеалогией Linux. Файловая система это архитектура хранения данных в системе, хранение данных в оперативной памяти и доступа к конфигурации ядра. В физическом смысле файловая система Linux представляет собой пространство раздела диска, разбитое на блоки фиксированного размера. Их размер кратен размеру сектора: 1024, 2048, 4096 или 8120 байт. Примеры файловых систем:
 - 1. XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимущества: высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. Недостатки: невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.
 - 2. Ext2, Ext3, Ext4 или Extended Filesystem стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.
 - 3. JFS или Journaled File System разработана в IBM в качестве альтернативы для файловых систем ext. Сейчас используется там, где необходима высокая стабильность и минимальное потребление ресурсов (в первую очередь в многопроцессорных компьютерах). В журнале хранятся толь-

ко метаданные, что позволяет восстанавливать старые версии файлов после сбоев.

- 4. Команда "findmnt" или "findmnt –all" будет отображать все подмонтированные файловые системы или искать файловую систему.
- 5. Команда "kill -сигнал pid_процесса" позволяет удалить зависший процесс, где PID уникальный идентификатор процесса. Сигналы могут быть следующие:
 - 1. SIGINT самый безобидный сигнал завершения, означает Interrupt. Он отправляется процессу, запущенному из терминала с помощью сочетания клавиш Ctrl+C. Процесс правильно завершает все свои действия и возвращает управление
 - 2. SIGQUIT сигнал, который отправляется с помощью сочетания клавиш, программе, запущенной в терминале. Он сообщает ей, что нужно завершиться, и программа может выполнить корректное завершение или проигнорировать сигнал. В отличие от предыдущего, она генерирует дамп памяти. Сочетание клавиш Ctrl+/
 - 3. SIGHUP сообщает процессу, что соединение с управляющим терминалом разорвано, отправляется, в основном, системой при разрыве соединения с интернетом.
 - 4. SIGTERM немедленно завершает процесс, но обрабатывается программой, поэтому позволяет ей завершить дочерние процессы и освободить все ресурсы
 - 5. SIGKILL тоже немедленно завершает процесс, но, в отличие от предыдущего варианта, он не передается самому процессу, а обрабатывается ядром. Поэтому ресурсы и дочерние процессы остаются запущенными

5 Выводы

В ходе выполнения данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину и настройки минимально необходимых для дальнейшей работы сервисов.