A Theory of Auditability for Allocation Mechanisms

By Aram Grigoryan and Markus Möller

- Allocation Environment:
 - Individuals: \mathcal{I}
 - Types: $\Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$
 - Outcomes: $\Omega \subseteq \times_{i \in \mathcal{I}} \Omega_i$

- Allocation Environment:
 - Individuals: \mathcal{I}
 - Types: $\Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$
 - Outcomes: $\Omega \subseteq \times_{i \in \mathcal{I}} \Omega_i$

A (deterministic) DRM is a map $\phi: \Theta \to \Omega$.

1

- Allocation Environment:
 - Individuals: \mathcal{T}
 - Types: $\Theta \subseteq \times_{i \in \mathcal{T}} \Theta_i$
 - Outcomes: $\Omega \subseteq \times_{i \in \mathcal{I}} \Omega_i$

A (deterministic) DRM is a map $\phi: \Theta \to \Omega$.

Fix ϕ and a group $I \subseteq \mathcal{I}$ with type profile θ_I . Group I does not detect a deviation $\omega \in \Omega$ iff

$$\exists \ \theta_{-I}$$
 such that

$$(\theta_I, \theta_{-I}) \in \Theta$$

$$\exists \ \theta_{-I} \text{ such that} \qquad (\theta_I, \theta_{-I}) \in \Theta \qquad \text{ and } \qquad \omega(i) = \phi(\theta_I, \theta_{-I})(i)$$

- Allocation Environment:
 - Individuals: \mathcal{I}
 - Types: $\Theta \subseteq \times_{i \in \mathcal{T}} \Theta_i$
 - Outcomes: $\Omega \subseteq \times_{i \in \mathcal{I}} \Omega_i$

A (deterministic) DRM is a map $\phi: \Theta \to \Omega$.

Fix ϕ and a group $I \subseteq \mathcal{I}$ with type profile θ_I . Group I does not detect a deviation $\omega \in \Omega$ iff

$$\exists \ \theta_{-I}$$
 such that

$$(\theta_I, \theta_{-I}) \in \Theta$$

$$\exists \ \theta_{-I} \text{ such that} \qquad (\theta_I, \theta_{-I}) \in \Theta \qquad \text{and} \qquad \omega(i) = \phi(\theta_I, \theta_{-I})(i)$$

Auditability Measure for Mechanism ϕ

Smallest N such that, for every type profile $\theta \in \Theta$ and deviation $\omega \in \Omega$ with $\omega \neq \phi(\theta)$, there is a group of size $n \leq N$ that can detect it.

- Environment:
 - $\Theta_i \subseteq \mathbb{R}_+$.
 - $\Omega_i = \{0,1\} \times \mathbb{R}$.
 - Single-object: for any $\omega \in \Omega$ the object is allocated exactly to one individual.

- Environment:
 - $\Theta_i \subseteq \mathbb{R}_+$.
 - $\Omega_i = \{0,1\} \times \mathbb{R}$.
 - Single-object: for any $\omega \in \Omega$ the object is allocated exactly to one individual.
- Three mechanisms: Agents bid θ_i .
 - FPA: Agent with the highest bid gets the object and pays the bid.
 - APA: Agent with highest bid gets the object, everyone pays their bid.
 - SPA: Agents with the highest bid gets the object and pays the 2nd-highest bid.

- Environment:
 - $\Theta_i \subseteq \mathbb{R}_+$.
 - $\Omega_i = \{0,1\} \times \mathbb{R}$.
 - Single-object: for any $\omega \in \Omega$ the object is allocated exactly to one individual.
- Three mechanisms: Agents bid θ_i .
 - FPA: Agent with the highest bid gets the object and pays the bid.
 - APA: Agent with highest bid gets the object, everyone pays their bid.
 - SPA: Agents with the highest bid gets the object and pays the 2nd-highest bid.

- Environment:
 - $\Theta_i \subseteq \mathbb{R}_+$.
 - $\Omega_i = \{0,1\} \times \mathbb{R}$.
 - Single-object: for any $\omega \in \Omega$ the object is allocated exactly to one individual.
- Three mechanisms: Agents bid θ_i .
 - FPA: Agent with the highest bid gets the object and pays the bid.
 - APA: Agent with highest bid gets the object, everyone pays their bid.
 - SPA: Agents with the highest bid gets the object and pays the 2nd-highest bid.

Propositions 7 and 8

#FPA and #APA are equal to two. #SPA is equal to the size of \mathcal{I} .

Overall Impression

Very nice paper!

- General approach to study auditability.
- Well-motivated. Many important applications:
 - School choice
 - College admisions
 - House allocation
 - Auctions
 - Voting
 - Affirmative action
- Polished and carefully executed.
- My comments: interpretation and some limitations.

Comment I: Interpretation

- Interpretation of type report $\theta_i \in \Theta_i$.
 - Appears to represent private information.
 - Could alternatively be framed as strategies in a (potentially indirect) mechanism.
 - Under this interpretation, it is unclear how to handle $\Theta \subseteq \times_{i \in \mathcal{I}} \Theta_i$.

Comment I: Interpretation

- Interpretation of type report $\theta_i \in \Theta_i$.
 - Appears to represent private information.
 - Could alternatively be framed as strategies in a (potentially indirect) mechanism.
 - Under this interpretation, it is unclear how to handle $\Theta \subsetneq \times_{i \in \mathcal{I}} \Theta_i$.

 The auditability measure seems independent of truthtelling, but paper would benefit from explicitly apply a version of the Revelation Principle.

• The paper focuses on deterministic mechanisms $\phi:\Theta\to\Omega$.

- The paper focuses on deterministic mechanisms $\phi: \Theta \to \Omega$.
- How to extend to stochastic outcomes $\phi:\Theta\to\Delta(\Omega)$ is unclear.
 - $\bullet\,$ This extension seems especially important for allocation mechanisms.

- The paper focuses on deterministic mechanisms $\phi: \Theta \to \Omega$.
- How to extend to stochastic outcomes $\phi:\Theta\to\Delta(\Omega)$ is unclear.
 - $\bullet\,$ This extension seems especially important for allocation mechanisms.

- The paper focuses on deterministic mechanisms $\phi: \Theta \to \Omega$.
- How to extend to stochastic outcomes $\phi: \Theta \to \Delta(\Omega)$ is unclear.
 - This extension seems especially important for allocation mechanisms.

Alternative:

Group I does not detect a deviation $\omega \in \Omega$ iff $\exists \theta_{-I}$ and $\hat{\omega}$ such that

- $(\theta_I, \theta_{-I}) \in \Theta$.
- $\hat{\omega}(i) = \omega(i)$ for all $i \in I$.
- $\hat{\omega}$ in the support of $\phi(\theta_I, \theta_{-I})$.

Comment III: Incentives

- Agnostic approach about principal's deviation incentives.
 - All deviations are treated symmetrically.
 - This is elegant, but in some applications it might make sense to put more weight in some deviations.
 - $\bullet\,$ First vs Second Price Auction.

Comment III: Incentives

- Agnostic approach about principal's deviation incentives.
 - All deviations are treated symmetrically.
 - This is elegant, but in some applications it might make sense to put more weight in some deviations.
 - First vs Second Price Auction.

- Agnostic approach about agent's incentives to identify deviations.
 - If the deviation is convenient, an agent might not contribute to the detection.
 - First Price Auction example.

Conclusion