- 2 半导体三极管及放大电路基础
- 2.1 半导体三极管
- 2.2 共射极放大电路的组成和工作原理
- 2.3 放大电路的静态分析
- 2.4 放大电路的动态分析
- 2.5 静态工作点的选择和稳定
- 2.6 共集电极和共基极放大电路
- 2.7 多级放大电路
- 2.8 放大电路的频率特性

2 半导体三极管及放大电路基础

2.1 半导体三极管

半导体三极管又称简称晶体管。

半导体三极管的放大作用和开关作用,促使了电子技术的飞跃。

半导体三极管图片

2.1.1 半导体三极管的结构

三极管的主要类型

- (1) 根据结构分: NPN型和PNP型
- (2) 根据使用的半导体材料分: 硅管和锗管
- 1. NPN型三极管结构示意图和符号

发射极E(e)

发射结Je

集电结Jc

集电极C(c)

发射区

 N^+

基区

P

集电区

N

基极B(b)

上页

下页

模拟电子技术基础 发射结Je 集电结Jc 集电极C(c) 发射极E(e) 发射区 集电区 基区 N^+ P N C(c) 基极B(b) NPN型三极管符号 **B** (b) L(e) 上页 后退 下页

2、PNP型三极管结构示意图和符号

上页

下页

- 3、三极管的内部结构特点(具有放大作用的内部条件):
 - (1)发射区小,掺杂浓度大。
 - (2) 集电区掺杂浓度低,集电区面积大。
 - (3) 基区掺杂浓度很低, 且很薄。

2.1.2 三极管工作原理(以NPN型管为例)

依据两个PN结的偏置情况

晶体管的工作状态

放大状态 饱和状态 倒置状态

上页 下页

1. 发射结正向偏置、集电结反向偏置——放大状态

(1) 电流关系

发射区向基区扩散电子

a. 发射区向基区扩散电子 形成发射极电流/_E

称扩散到基区的发射 区多子为非平衡少子

发射区向基区扩散电子

基区向发射区扩散空穴

下页

基区向发射区扩散空穴形成空穴电流。

上页

因为发射区的掺杂浓度远大于基区浓度, 空穴电流忽略不记。

非平衡少子在基区复合,形成基极电流/B

b. 基区电子扩散和复合

非平衡少子向 集电结扩散

C. 集电区收集从发射区扩散过来的电子 形成集电极电流/_C

非平衡少子到达集电区

形成反向饱和电流/CBO

少子相互漂移

集电区、基区少子相互漂移

三极管的电流分配关系动画演示

上页

下页

发射结回路为输入回路, 集电结回路为输出回路。

基极是两个回路的公共端,称三极管这种接法为共基极接法。

定义

$$\overline{\alpha} = \frac{I_{\rm C}}{I_{\rm E}}\Big|_{I_{\rm CRO}=0}$$

 $\overline{\alpha} = 0.99$ 理解为电流分配关系 则发射100个电子,扩散了99 个,复合1个

 $\overline{\alpha}$ 称为共基极直流电流放大系数

各电极电流之间的关系

$$I_{\mathrm{E}} = I_{\mathrm{C}} + I_{\mathrm{B}}$$

$$I_{\mathrm{C}} = \overline{\alpha} I_{\mathrm{E}} + I_{\mathrm{CBO}}$$

$$I_{\mathrm{B}} = (1 - \overline{\alpha})I_{\mathrm{E}} - I_{\mathrm{CBO}}$$

晶体管共射极接法

原理图

电路图

上页

下页

定义

$$\left. \overline{\beta} = \frac{I_{\rm C}}{I_{\rm B}} \right|_{I_{\rm CBO}=0}$$

为三极管共射极直 流电流放大系数

$\overline{\alpha}$ 由 $\overline{\beta}$ 的关系式

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

及 $\overline{\alpha}$ 与 $\overline{\beta}$ 的定义

$$\overline{\beta} = \frac{\overline{\alpha}}{1 - \overline{\alpha}}$$

$$\overline{\alpha} = \frac{\overline{\beta}}{1 + \overline{\beta}}$$

$$\overline{\alpha} = 0.95 \sim 0.995$$

$$\overline{\beta} = 20 \sim 200$$

当输入回路电压

$$U'_{\mathrm{BE}} = U_{\mathrm{BE}} + \Delta U_{\mathrm{BE}}$$

那么

$$I'_{\rm B} = I_{\rm B} + \Delta I_{\rm B}$$

$$I'_{\rm C} = I_{\rm C} + \Delta I_{\rm C}$$

$$I'_{\rm E} = I_{\rm E} + \Delta I_{\rm E}$$

如果 $\Delta U_{\mathrm{BE}} > 0$,那么 $\Delta I_{\mathrm{B}} > 0$, $\Delta I_{\mathrm{C}} > 0$, $\Delta I_{\mathrm{E}} > 0$

如果 $\Delta U_{\mathrm{BE}} < 0$,那么 $\Delta I_{\mathrm{B}} < 0$, $\Delta I_{\mathrm{C}} < 0$, $\Delta I_{\mathrm{E}} < 0$

定义

$$\alpha = \frac{\Delta I_{\rm C}}{\Delta I_{\rm E}}$$

 $\alpha = \frac{\Delta I_{\rm C}}{\Delta I_{\rm E}}$ 共基极交流电流放大系数

$$\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$

 $\beta = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$ 共射极交流电流放大系数

 α 与 β 的关系

$$\alpha = \frac{\beta}{1+\beta}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

一般可以认为:
$$\overline{\alpha} \approx \alpha$$
, $\overline{\beta} \approx \beta$

符号的意义

电流: $I_{\rm B}$ $I_{\rm b}$ i_{B} $\dot{l}_{
m b}$ (一个下标) • 电压: $U_{\scriptscriptstyle
m RE}$ $U_{\scriptscriptstyle
m he}$ $u_{\scriptscriptstyle
m be}$ $u_{{}_{\mathrm{BE}}}$ (二个下标) 直流 交流 交流 交流十

瞬时值 有效值

直流

(2) 放大原理

设输入信号 $u_i = U_{im} Sin \omega t V$

那么

$$u_{\mathrm{BE}} = u_{\mathrm{be}} + U_{\mathrm{BE}}$$

$$i_{\mathrm{B}} = i_{\mathrm{b}} + I_{\mathrm{B}}$$

$$i_{\rm C} = i_{\rm c} + I_{\rm C}$$

$$u_{\rm CE} = u_{\rm ce} + U_{\rm CE}$$

$$u_{\rm ce} = -i_{\rm c}R_{\rm C}$$

$$U_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C}$$

曲
$$u_{\text{CE}} = u_{\text{ce}} + U_{\text{CE}}$$
 $u_{\text{ce}} = -i_{\text{c}}R_{\text{C}}$

可知

- a. 在 R_{C} 两端有一个较大的交流分量可供输出。
- b. 交流信号的传递过程

$$u_{\rm i} \rightarrow i_{\rm b} \rightarrow i_{\rm c} \rightarrow i_{\rm c} R_{\rm c}$$

• 晶体管放大的条件:

内部条件:发射区掺杂浓度高,面积小; 基区掺杂浓度低且很薄; 集电区掺杂浓度低,面积大。

• 外部条件:发射结正偏,集电结反偏

2. 发射结正向偏置、集电结正向偏置—-饱和状态

饱和状态的特点

- (1) U_{CB} (= U_{CE} - U_{BE}) ≤ 0 。 集电结零偏或正偏
- $(2)I_C \neq \beta I_B, I_B$ 失去了对 I_C 的控制。

(3) 集电极饱和电压降 U_{CES} 较小

小功率硅管0.3~0.5V。

(4) 饱和时集电极电流

$$I_{\rm CS} = (V_{\rm CC} - U_{\rm CES}) / R_{\rm C}$$

(5) U_{CE} 对 I_{C} 的影响大, $3U_{CE}$ 增大, I_{C} 将随之增加。

当UCE增大使集电结从正偏往零偏变化过程中,UCE越大,到达集电区的非平衡少子就越多,Ic将随着UCE增大而增加。

3. 发射结反向偏置、集电结反向偏置—截止状态

截止状态的特点:

(1) U_{BE} 小于死区电压。

 $(2) I_{\rm C} = I_{\rm CBO}, I_{\rm B} = -I_{\rm CBO}$

4. 发射结反向偏置、集电结正向偏置—倒置状态

特点:

- (1) 集电区扩散到基区的多子较少。
- (2)发射区收集基区的非平衡少数载流子的能力小。
- (3) 电流放大系数很小。

总结

	放大	饱和	截止	倒置
发射结	Œ	正	反	反
集电结	反	正	反	正

上页

下页

放大 饱和 截止 倒置
 发射结 正 正 反 反
 集电结 反 正 反 正

上页

下页

放大状态下晶体管各极电位关系

7V 2.3V 2V • NPN管: U_C >> U_B > U_E

$$|U_{\rm BE}| = 0.7 \text{V} - \text{Si}$$
 $|U_{\rm BE}| = 0.3 \text{V} - \text{Ge}$

•NPN管: $U_{\rm C} >> U_{\rm B} > U_{\rm E}$

•PNP管: $U_{\rm C} << U_{\rm B} < U_{\rm E}$

$$|U_{
m BE}|$$
=0.7V----Si
 $|U_{
m BE}|$ =0.3V-----Ge

2.1.3 半导体三极管共射极接法的伏安特性曲线

三极管共射极接法

1. 共射极输入特性

$$|i_{\mathrm{B}} = f(u_{\mathrm{BE}})|_{U_{\mathrm{CE}} - \Xi}$$

共射极输入特性

上页

下页

输入特性的特点:

- (1) 输入特性是非线性的,有死区。
- (2) 当 u_{BE} 不变, u_{CE} 从零增大, i_{B} 减小。

(3) 当 $u_{CE} \ge 1V$,输入特性曲线几乎重合在一起, u_{CE} 对输入特性几乎无影响。

2. 共射极输出特性

$$i_{\rm C} = f(u_{\rm CE})\Big|_{I_{\rm B}-\hat{\mathbb{Z}}}$$

输出特性曲线

上页

下页

各区的特点:

- (1) 饱和区
- a. $U_{\text{CE}} \leq U_{\text{BE}}$
 - b. $I_{\rm C} < \beta I_{\rm B}$
- c. U_{CE}增大, I_C增大。

上页

下页

(2) 放大区

a.
$$U_{\rm CE} > U_{\rm BE}$$

b.
$$I_{\rm C} = \beta I_{\rm B}$$

c. I_{C} 与 U_{CE} 无关

a. U_{RE} < 死区电压

b.
$$I_{\rm B} \approx 0$$

c. $I_{\rm C} \approx 0$

上页

下页

NPN管与PNP型管的区别

NPN管电路

PNP管电路

 $i_{\rm B}$ 、 $u_{\rm BE}$ 、 $i_{\rm C}$ 、 $i_{\rm E}$ 、 $u_{\rm CE}$ 的极性二者相反

硅管与锗管的区别:

(1) 死区电压约为 { 硅管 0.5 V 锗管 0.1 V

(2) 导通压降|u_{BE}| { 硅管 0.7 V 锗管 0.3 V

(3) 锗管的 I_{CBO} 比硅管大

上页 下页

- 2.1.4 半导体三极管的主要电参数
- 1. 直流参数
- (1) 共基极直流电流放大系数 $\overline{\alpha}$ $\overline{\alpha} = \frac{I_{\rm C}}{I_{\rm E}}\Big|_{I_{\rm CBO}=0}$
- (2) 共射极直流电流放大系数 $\overline{\beta}$ $\overline{\beta} = \frac{I_{\rm C}}{I_{\rm R}}\Big|_{I_{\rm CBO}=0}$
- $I_{ ext{CBO}}$ (3)发射极开路,集电极——基极间反向饱和电流 $I_{ ext{CBO}}$
- $I_{ ext{CEO}}$ $I_{ ext{CEO}}$

2. 交流参数

(1) 共基极交流电流放大系数 α

$$\alpha = \frac{\Delta i_{\rm C}}{\Delta i_{\rm E}}$$

(2) 共射极交流电流放大系数 β

$$eta = rac{\Delta i_{\mathrm{C}}}{\Delta i_{\mathrm{B}}} \neq 常数$$

β值与ic的 关系曲线

上页

下页

$$\overline{\beta} = \frac{I_{CQ}}{I_{BQ}} = \frac{1.5 \text{mA}}{40 \mu \text{A}} = 37.5$$
 $\beta = \frac{\Delta i_{C}}{\Delta i_{B}} = \frac{2.3 - 1.5}{60 - 40} = 40$

上页

下页

3. 极限参数

- (1) 集电极开路时发射极——基极间反向击穿电压 $U_{(BR)\ EBO}$
- (2) 发射极开路时集电极——基极间反向击穿电压 $U_{(BR) CBO}$
- (3) 基极开路时集电极——发射极间反向击穿电压 $U_{(\mathrm{BR})\,\mathrm{CEO}}$
- (4) 集电极最大允许电流 I_{CM}

(5) 集电极最大允许功率耗散 $P_{\rm CM}$

晶体管的安全工作区

上页

下页

2.1.5 温度对管子参数的

1. 对β的影响

$$\left| rac{\Delta oldsymbol{eta}}{oldsymbol{eta}} \middle/\! \Delta
ight|$$

2. 对 I_{CBO} 的影响

$$I_{
m CB}$$

3. 对 $U_{\rm RE}$ 的影响

$$\frac{\Delta U_{\rm BE}}{\left|U_{\rm BE}\right|} = -(2 \sim 2.5) \,\mathrm{mV}/^{\circ}C$$

思考题

- 1. 晶体管为什么有电流放大作用? 它是如何实现信号放大的?
- 2. 晶体管的发射极和集电极是否可以调换使用?
- 3. 为什么晶体管基区掺杂浓度小而且做的很薄?
- 4. 晶体管在输出特性曲线的饱和区工作时,其电流放大系数和在放大区工作时是否一样大?

- 2.2 共射极放大电路的组成和工作原理
- 2.2.1 放大电路概述
- 1. 放大电路的用途: 把微弱的电信号不失真地放大到负载所需的数值。

上页

下页

模拟电子技术基础

说到放大你 最关心什么? 对信号源影响有多大?

放大多大?

象不象?

D

带负载能力如何?

 R_0

上页下页

2.2.2 共射极放大电路的组成及其工作原理

1. 共射极放大电路的组成

电路存在的问题:

- (1)信号源与放大电路相互影响。
 - (2) 放大电路与负载相互影响。

上页 下页 后退

改进的共射 极放大电路

各元器件的作用:

T——放大器件

耦合电容 C_1 、 C_2

隔离放大电路对信号源和负载的直流影响。

沟通信号源、放大电路、负载之间的信号传递通道。

上页下页

 $V_{
m BB}$ 、 $R_{
m B}$ $\left\{egin{array}{c} {
m 为T提供Je正偏电压}U_{
m BE} \ {
m 提供基极偏置电流}I_{
m B} \end{array}
ight.$

 $V_{\rm CC}$ $\left\{egin{array}{ll} eta T提供Jc反偏电压<math>U_{
m CE} \ eta$ 为电路提供能量

上页 下页 后退

 $R_{\rm C}$

使集电极有合适的电流IC

转换集电极电流信号为电压信号,实现电压放大

(1) 电路的简化

只用一个电源, 减少电源数。

(2) 电路画法

不画电源符号, 只写出电源正极 对地的电位。

放大电路的两种工作状态:

静态—当输入信号为零时电路的工作状态。

静态时放大电路只有直流分量。

动态--有输入信号时电路的工作状态。

动态时电路中的信号为交直流分量的叠加。

注: 不同书写体字母的含义

 U_{BE} I_{B} — 大写字母,大写下标,表示直流量。

ube—小写字母,小写下标,表示交流瞬时值。

u_{BE}—小写字母,大写下标,表示交、直混合量。

 U_{be} —大写字母,小写下标,表示交流分量有效值。

信号的传递过程

$$u_{\mathrm{BE}} = U_{\mathrm{BEQ}} + u_{\mathrm{i}}$$

$$i_{\mathrm{B}} = I_{\mathrm{BQ}} + i_{\mathrm{b}}$$

$$i_{\rm C} = I_{\rm CQ} + i_{\rm c}$$

$$u_{\rm CE} = U_{\rm CEQ} + u_{\rm ce}$$

2.3 放大电路的静态分析

上页 下页 后退

2.3 放大电路的静态分析

 $R_{\rm B}$ $R_{\rm C}$ C_2 C_1 C_1 C_2 C_1 C_2 C_1 C_2 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_8 C_9 $C_$

静态分析——就是通过放大电路的直流通路求解静态工作点值 I_{BQ} 、 I_{CQ} 、 U_{CEQ} .

直流通路

上页

下页

2.3.1 图解法在放大电路静态分析中的应用

1. 输入回路

列写输入回路方程

$$V_{\rm CC} = i_{\rm B}R_{\rm B} + u_{\rm BE}$$

上页

下页

方程 $V_{\rm CC} = i_{\rm B}R_{\rm B} + u_{\rm BE}$

在iR、URE坐标系上是一条直线

三极管输入 特性曲线

称为输入回路的直流负载线

直流负载线与三极管输入特性曲线的交点,即为放大电路的输入静态工作点 Q_i 。

上页 下页 后退

2. 输出回路

输出回路方程

$$V_{\rm CC} = i_{\rm C} R_{\rm C} + u_{\rm CE}$$

在ic、uCE坐标系上是一条直线

称为输出回路的直流负载线

直流负载线与晶体管输出特性曲线的交点,即为放大电路的输出静态工作点 Q_0 。

上页

下页

2.3.2 估算法在放大电路静态分析中的应用

由输入回路方程

$$V_{\rm CC} = I_{\rm BQ} R_{\rm B} + U_{\rm BEQ}$$

得

三步法!

$$I_{\mathrm{BQ}} = \frac{V_{\mathrm{CC}} - U_{\mathrm{BEQ}}}{R_{\mathrm{B}}}$$

式中, $|U_{\rm BEO}|$ 硅管可取为0.7V,锗管0.3V

$$I_{\rm CO} = \overline{\beta} I_{\rm BO}$$
 (2)

$$U_{\text{CEQ}} = V_{\text{CC}} - I_{\text{CQ}} R_{\text{C}} \qquad (3)$$

晶体管工作状态判别:

当发射极正偏:

$$\frac{R_{\rm B}}{R_{\rm C}} = \beta$$
 临界饱和

$$\frac{R_{\rm B}}{R_{\rm C}} < \beta$$
 饱和

$$\frac{R_{\rm B}}{R_{\rm C}} > \beta$$
 放大

2.4 放大电路的动态分析

在静态分析基础上,分析电路中的交流分量之间 关系。主要求出各种动态参数。

常用的分析方法 { 微变等效电路法

2.4.1 图解法在放大电路动态分析中的应用

设输入信号 $u_i = U_{im} \sin \omega V$

1. 当 R_L =∞时

在输入回路

$$u_{\text{BE}} = U_{\text{BEQ}} + u_{\text{i}}$$

u_{BE}波形图

上页

下页

(1) i_B 的形成过程

上页 下页

上页 下页 后退

小结:

已知输入信号

输出信号波形

输出电压u。与输入电压ui相位相反

上页

下页

(2) 如果静态工作点 Q太低

上页 下页 后退

(3) 如果静态工作点Q太高

上页

下页

小结:

静态工作点不合适,将使工作点进入非线性区而产生非线性失真(饱和失真、截止失真)。

工作点合适就一定不会失真?

(4) 如果输入信号太大

上页

下页

上页 下页 后退

(5) 放大电路的动态范围(忽略 U_{CES} 和 I_{CBO})

a. 如果
$$U_{\text{CEQ}} = I_{\text{CQ}} R_{\text{C}} = V_{\text{CC}}/2$$

上页

下页

上页 下页 后退

C. 如果 $U_{\text{CEQ}}>I_{\text{CQ}}R_{\text{C}}$

上页 下页 后退

基本共射极放大电路的波形分析动画演示

上页

下页

上页 下页 后退

结论:

- (1) 共射极放大电路有电压放大能力。
- (2) u_0 与 u_i 的相位相反。
- (3) u_i的幅度过大或静态工作点不合适,将产生非线性失真(饱和失真、截止失真)。
- (4) 放大电路信号

$$u_{\mathrm{BE}} = U_{\mathrm{BE}} + u_{\mathrm{i}}$$
 $i_{\mathrm{B}} = I_{\mathrm{B}} + i_{\mathrm{b}}$
 $i_{\mathrm{C}} = I_{\mathrm{C}} + i_{\mathrm{c}}$
 $u_{\mathrm{CE}} = U_{\mathrm{CE}} + u_{\mathrm{ce}}$

- (5) 动态范围(忽略 I_{CEO} 和 U_{CES})
 - (a) Q_0 点在负载线的中点

$$U_{\rm CEQ} = I_{\rm CQ} R_{\rm C} = V_{\rm CC}/2$$

$$U_{\rm OPP} = 2 \times U_{\rm CEQ} = 2I_{\rm CQ} R_{\rm C} = V_{\rm CC}$$

(b) Q。点在负载线中点下方

$$U_{\rm CEQ} > I_{\rm CQ} R_{\rm C}$$

$$U_{\text{o pp}} = 2I_{\text{CQ}}R_{\text{C}}$$

下页

(c) Q。点在负载线中点上方

$$U_{\text{CEQ}} < I_{\text{CQ}} R_{\text{C}}$$
 $U_{\text{opp}} = 2 U_{\text{CEQ}}$

(d) U_{opp} 的一般表示式 $U_{\mathrm{opp}} = 2 \times \min[\ U_{\mathrm{CEO}}, \ I_{\mathrm{CO}}R_{\mathrm{C}}]$

(6) 非线性失真的特点:

饱和失真:输出电压波形的下半部被削平。

截止失真:输出电压波形的上半部被削平。

- 2. 当 R_L ≠∞时
 - (1) 放大电路的交流通路

下页

交流通路 画法: 耦合电容短路

V_{CC}如何处理?

模拟电子技术基础 $igwedge U_{BE}$ h $u_{\rm BE}$ $\Lambda^{u_{\mathrm{be}}}$ $U_{
m BEQ}$ $U_{
m BEQ}$ $\bigwedge I_{c}$ $I_{c\varrho}$ $I_{c\varrho}$ V_{cc} V_{cc} 后退 耦合电容短路

交流通路 画法:

直流电压源短路(接地)

交流通路 $R_{\rm B} R_{\rm C} C_{\rm 2} C_{\rm 2} C_{\rm 1} C_{\rm 2} C_{\rm 2} C_{\rm 1} C_{\rm 2} C_{\rm 2} C_{\rm 1} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 1} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 4} C_{\rm 2} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 4} C_{\rm 4} C_{\rm 2} C_{\rm 3} C_{\rm 4} C_{\rm 4$

上页

下页

由放大电路的交流通路可知

$$u_{\rm o} = u_{\rm ce} = -i_{\rm c}R_{\rm L} // R_{\rm C}$$

$$= -i_{\rm c}R_{\rm L}'$$

式中

$$R'_{\rm L} = R_{\rm C}//R_{\rm L}$$

(2) 交流负载线

由于
$$u_{\mathrm{CE}} = U_{\mathrm{CEQ}} + u_{\mathrm{ce}}$$
 + u_{ce} +

$$u_{\mathrm{CE}} = U_{\mathrm{CEQ}} - (i_{\mathrm{C}} - I_{\mathrm{CQ}}) R_{\mathrm{L}}'$$

$$= U_{\mathrm{CEQ}} + I_{\mathrm{CQ}} R_{\mathrm{L}}' - i_{\mathrm{C}} R_{\mathrm{L}}'$$

$$= V_{\mathrm{CC}}' - i_{\mathrm{C}} R_{\mathrm{L}}'$$

式中
$$V'_{\text{CC}} = U_{\text{CEQ}} + I_{\text{CQ}} R'_{\text{L}}$$

式 $u_{\rm CE} = V'_{\rm CC} - i_{\rm C} R'_{\rm L}$

在U_{CE}和i_c的坐标中,也表示一条直线 该直线称为放大电路的交流负载线。

上页下页

交流负载线及放大电路波形分析

上页

下页

交流负载线的特点:

- a. 斜率为 1/R'_L
- b. 经过静态工作点Q
- c. 与横轴的交点为 $U_{\text{CEQ}}+I_{\text{CQ}}R'_{\text{L}}$
- d. 电路的工作点沿交流负载线移动。

e. 动态范围

- (a) 比电路空载时小。
- (b) $U_{\text{OPP}} = 2 \times \min[U_{\text{CEQ}}, I_{\text{CQ}}R'_{\text{L}}]$
- (c) 当考虑UCES时

$$U_{\text{OPP}} = 2 \times \min(U_{\text{CEQ}} - U_{\text{CES}}, I_{\text{CQ}} R'_{\text{L}})$$

上页 下页

图解法的特点:

- (1) 便于观察。
- (2)作图烦琐,U,很小时难以作图。
- (3) 放大电路一些性能指标无法由图解法求得。

- 2.4.2 微变等效电路法在放大电路动态分析中的应用
 - 1. 晶体管的H参数微变等效电路
 - (1) 晶体管线性化的条件: 电路工作在小信号状态。
 - (2) 晶体管可线性化的主要依据:
 - a. $\Delta i_{\rm B}$ 与 $\Delta u_{\rm BE}$ 之间具有线性关系
 - b. β 值恒定

晶体管共射极接法线性化原理

晶体管

NPN型或PNP型

等效图

晶体管线性等效电路的H参数描述

$$\begin{cases} u_{\text{be}} = h_{\text{ie}}i_{\text{b}} + h_{\text{re}}u_{\text{ce}} \\ i_{\text{c}} = h_{\text{fe}}i_{\text{b}} + h_{\text{oe}}u_{\text{ce}} \end{cases}$$

$$h_{\text{ie}} = \frac{\partial u_{\text{BE}}}{\partial i_{\text{B}}} \Big|_{U_{\text{ce}}=0} = \frac{\Delta u_{\text{BE}}}{\Delta i_{\text{B}}} \Big|_{\Delta U_{\text{CE}}=0} \qquad h_{\text{re}} = \frac{\partial u_{\text{BE}}}{\partial u_{\text{CE}}} \Big|_{I_{\text{b}}=0} = \frac{\Delta u_{\text{BE}}}{\Delta u_{\text{CE}}} \Big|_{\Delta i_{\text{B}}=0}$$

$$h_{\rm re} = \frac{\partial u_{\rm BE}}{\partial u_{\rm CE}} \Big|_{I_{\rm b}=0} = \frac{\Delta u_{\rm BE}}{\Delta u_{\rm CE}} \Big|_{\Delta i_{\rm B}=0}$$

$$h_{\mathrm{fe}} = \frac{\partial i_{\mathrm{C}}}{\partial i_{\mathrm{B}}} \Big|_{U_{\mathrm{ce}}=0} = \frac{\Delta i_{\mathrm{C}}}{\Delta i_{\mathrm{B}}} \Big|_{\Delta u_{\mathrm{CE}}=0}$$

$$h_{\text{fe}} = \frac{\partial i_{\text{C}}}{\partial i_{\text{B}}} \Big|_{U_{\text{ce}}=0} = \frac{\Delta i_{\text{C}}}{\Delta i_{\text{B}}} \Big|_{\Delta u_{\text{CE}}=0} \qquad h_{\text{oe}} = \frac{\partial i_{\text{C}}}{\partial u_{\text{CE}}} \Big|_{I_{\text{b}}=0} = \frac{\Delta i_{\text{C}}}{\Delta u_{\text{CE}}} \Big|_{\Delta i_{\text{B}}=0}$$

由
$$\begin{cases} u_{be} = h_{ie}i_b + h_{re}u_{ce} \\ i_c = h_{fe}i_b + h_{oe}u_{ce} \end{cases}$$
 可画出等效电路

晶体管的微变等效电路

hro-反向传输电压比

$$\beta = h_{\rm fe}$$
 电流放大系数

图中

1/hoe uce 称为晶体管的输入电阻

$$_{-\circ}$$
 式中 $r_{\mathrm{bb'}} = 300\Omega$

称为晶体管的基区体电阻

$$h_{\text{oe}} = \frac{1}{r_{\text{ce}}} = \frac{\left|I_{\text{CQ}}\right|}{U_{\text{A}}}$$

称为晶体管共射极输出电导

 h_{re} 、 h_{oe} 一般比较小,可忽略不计

晶体管微变等 效简化电路

上页下了

2. 微变等效电路法在放大电路动态分析中的应用

(1) 画出放大电路的交流通路

交流通路

上页

下页

(2) 将晶体管微变等效

放大电路的微变等效电路

上页 下页

微变等效电路画法:

先中间,后两边

上页 下页 后退

$$u_{be} = i_{b}r_{bb'} + (1+\beta)i_{b}r_{b'e} \qquad r_{D} = \frac{U_{T}}{I_{D}}$$

$$r_{be} = \frac{u_{be}}{i_{b}} = r_{bb'} + (1+\beta)r_{b'e} \qquad r_{b'e} = \frac{U_{T}}{I_{EQ}}$$

$$J_{e} \qquad J_{e} \qquad J_{e} \qquad \delta$$

上页 下页 后退

当信号很小时,将输入特性在小范围内近似线性。

$$r_{\rm be} = \frac{\Delta u_{\rm be}}{\Delta i_{\rm b}}$$

对输入的小交流信号而言, 三极管相当于电阻 r_{he} 。

$$r_{\text{be}} = r_{\text{bb}} + (1+\beta) \frac{U_T}{|I_{\text{EQ}}|}$$

$$= 300\Omega + (1+\beta) \frac{26(\text{mV})}{|I_{\text{EQ}}|(\text{mA})}$$

 $r_{\rm be}$ 的量级从几百欧到1~ $2k\Omega$ 。

例: 判断下图所示电路是否具有电压放大作用

图(a)由于 C_1 隔直流的作用,无输入直流通路。

图(b)由于没有R_c,只有信号电流,无信号电压输出,或者说输出信号电压无法取出。

图(c)发射结没有正向偏置电压。

2. 放大电路的主要性能指标

放大器性能指标测量原理方框图

上页

下页

(1) 放大倍数 A

电压放大倍数 \dot{A}_u $\dot{A}_u = \frac{\dot{U}_o}{\dot{U}_i}$

电流放大倍数 \dot{A}_i $\dot{A}_i = \frac{\dot{I}_o}{\dot{I}_i}$

互阻放大倍数 \dot{A}_r $\dot{A}_r = \frac{U_o}{\dot{I}_i}$

互导放大倍数 \dot{A}_g $\dot{A}_g = \frac{I_o}{\dot{U}_i}$

上页 下页 后退

(2) 输入电阻R

$$R_{\rm i} = \frac{U_{\rm i}}{I_{\rm i}}$$

a. 由于
$$U_{\rm i} = \frac{R_{\rm i}}{R_{\rm S} + R_{\rm i}} U_{\rm S}$$

 R_i 越大, U_i 也就越大,电路的放大能力越强。

b. R_i越大,输入电流i_i越小,信号源的负载越小。

(3) 输出电阻 R_0

定义:

$$R_{\mathbf{0}} = \frac{U}{I} \Big|_{\substack{U_{\mathbf{s}} = 0 \\ R_{\mathbf{L}} = \infty}}$$

对输出电压的电路由于

$$u_{\rm o} = \frac{R_{\rm L}}{R_{\rm L} + R_{\rm o}} A_{\rm u0} u_{\rm i}$$

$$R_{\rm O} \rightarrow 0$$
 $u_{\rm o} \rightarrow A_{\rm u_{\rm O}} u_{\rm i}$

即Ro越小,输出电压越稳定,电路带载能力越强。

测量R₀的一种方法

$$R_{\rm o} = (\frac{U_{\rm o\infty}}{U_{\rm oL}} - 1)R_{\rm L}$$

 U_{oL} ——带负载时的输出电压

 U_{∞} ——负载开路时的输出电压

上页下页

(4) 全谐波失真度D

$$D = \frac{\sqrt{\sum_{n=2}^{\infty} U_n^2}}{U_1}$$

即谐波电压总有效值与基波电压有效值之比

(5) 动态范围*U*_{0 p-p}

使输出电压u。的非线性失真度达到某一规定数值时的u。的峰—峰值。

也称为最大不失真输出电压。

(6) 频带宽度 $f_{\rm bw}$

由
$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = |\dot{A}_{u}| \angle \varphi$$
 得 $\frac{A_{um}}{A_{um}/\sqrt{2}}$

幅频特性

$$|\dot{A}_{u}| = |\dot{A}_{u}(f)|$$

相频特性

$$\varphi = \varphi(f)$$

相频特性曲线

幅频特性曲线

