

ByteZip: Efficient Lossless Compression for Structured Byte Streams Using DNNs

Parvathy Ramakrishnan P and Satyajit Das

Department of Data Science, Indian Institute of Technology, Palakkad

July 1, 2024

Outline of the Presentation

- Introduction
 - Overview
 - Deep Learning in Lossless Data Compression
 - Related Works
 - Limitations
- 2 ByteZip
 - Proposed Method
 - Architecture
 - Experiments and Results
- Conclusion
- 4 References

• Science of representing information in a compact form.

Lossless and Lossy data compression

- Lossless and Lossy data compression
- Compression Ratio(size reduction) vs Compression Speed(runtime)

- Lossless and Lossy data compression
- Compression Ratio(size reduction) vs Compression Speed(runtime)
- Nature of the data being compressed, tolerance for loss, and requirements for speed and memory efficiency.

- Lossless and Lossy data compression
- Compression Ratio(size reduction) vs Compression Speed(runtime)
- Nature of the data being compressed, tolerance for loss, and requirements for speed and memory efficiency.
- Byte streams Binary representation of information transmitted or stored as a continuous stream of bytes.

Figure: An overview of different data compression techniques

Deep Learning in Lossless Data Compression

 Neural Data Compression¹ - Application of neural networks and other machine learning methods to data compression

¹Yang, Mandt, and Theis, "An introduction to neural data compression", 2022.

Deep Learning in Lossless Data Compression

- Neural Data Compression¹ Application of neural networks and other machine learning methods to data compression
- First build a probabilistic model of the data, and then feed its probabilities into an entropy coding scheme that converts data into compact bit-strings

¹Yang, Mandt, and Theis, "An introduction to neural data compression", 2022.

Deep Learning in Lossless Data Compression

- Neural Data Compression¹ Application of neural networks and other machine learning methods to data compression
- First build a probabilistic model of the data, and then feed its probabilities into an entropy coding scheme that converts data into compact bit-strings

Figure: Overview of Neural Data Compression

Parvathy Ramakrishnan P IJCNN 2024 July 1, 2024

¹Yang, Mandt, and Theis, "An introduction to neural data compression", 2022.

State of The Art Deep Learning Compressors

CMIX²

- Bitwise predictions using an ensemble of independent models
- Boosting over multiple compressor experts leads to improved performance
- Istm-compress and tensorflow-compress

NNCP³

- Bytewise predictions
- Improved compression ratio using multi-layer LSTMs and Transformer XL models

²Knoll, *Cmix*, 2014; Knoll, *Lstm-compress: data compression using LSTM*, 2019; Knoll, *Tensorflow-compress: lossless data compression using neural networks in TensorFlow*. 2020.

³Bellard, "Lossless data compression with neural networks", 2019; Bellard, "NNCP v2: Lossless Data Compression with Transformer", 2021.

State of The Art Deep Learning Compressors

TRACE⁴

- Addresses the execution time challenges associated with deep-learning-based compressors
- Single layer transformer architecture with reduced number of parameters and better GPU utilization
- 65% better compression ratio, but still is 1000x slower than Gzip

Parvathy Ramakrishnan P IJC

⁴Mao et al., "TRACE: A Fast Transformer-Based General-Purpose Lossless Compressor". 2022.

Limitations

Figure: Compression Time vs Compression Ratio for compressing 1 GB data.

Key Limitation- Very high runtime

- Key Limitation- Very high runtime
- 2 key factors
 - Complexity of the model used in probability modeling
 - Sequential nature of the overall compression process

- Key Limitation- Very high runtime
- 2 key factors
 - Complexity of the model used in probability modeling
 - Sequential nature of the overall compression process
- Sequential GPU/CPU/IO operations for each byte

- Key Limitation- Very high runtime
- 2 key factors
 - Complexity of the model used in probability modeling
 - Sequential nature of the overall compression process
- Sequential GPU/CPU/IO operations for each byte

Table: Average Compression and Decompression Speed

Model	Avg Comp Speed	Avg Decomp Speed		
	(MB/Min)	(MB/Min)		
TRACE_8	2.01	1.39		
FNN_8	2.92	1.73		
Uniform AE	3.31	1.83		

- Introduction
- 2 ByteZip
 - Proposed Method
 - Architecture
 - Experiments and Results
- Conclusion
- 4 References

Overview

- Hierarchical autoencoder-based approach⁵ to model probability for byte streams instead of existing autoregressive approaches.
- Instead of a forward pass per byte, a chunk of data is processed in one pass resulting in faster compression.
- Support for partial decompression

Figure: Overview of ByteZip compressor

⁵Mentzer et al., "Practical Full Resolution Learned Lossless Image Compression", 2019.

Data Preprocessing

Transforms the input data into a form that is more easily compressible

 An autoencoder with a mixed-density network is employed to model probability

- An autoencoder with a mixed-density network is employed to model probability
- Three key modules Encoder, Decoder and Probability estimator

- An autoencoder with a mixed-density network is employed to model probability
- Three key modules Encoder, Decoder and Probability estimator
- Leverage the lower dimensional representation during decompression to calculate probability parameters

- An autoencoder with a mixed-density network is employed to model probability
- Three key modules Encoder, Decoder and Probability estimator
- Leverage the lower dimensional representation during decompression to calculate probability parameters
- Multiscale hierarchical Autoencoders- Reduce the size of latent variables,
 Capture complex dependencies

- An autoencoder with a mixed-density network is employed to model probability
- Three key modules Encoder, Decoder and Probability estimator
- Leverage the lower dimensional representation during decompression to calculate probability parameters
- Multiscale hierarchical Autoencoders- Reduce the size of latent variables, Capture complex dependencies
- Trained to minimize the sum of negative log-likelihood in all scales

Figure: Architecture details for a single scale

Figure: Architecture details for a single scale

Figure: Residual and Tail Blocks

Figure: Architecture details for a single scale

$$P(x|\pi, \mu, s) \sim \sum_{i=1}^{K} \pi_i \mathsf{logistic}(\mu_i, s_i)$$

Figure: Architecture details for a single scale

$$P(x|\pi,\mu,s) \sim \sum_{i=1}^K \pi_i ext{logistic}(\mu_i,s_i)$$
 $P(x|\pi,\mu,s) \sim \sum_{i=1}^K \pi_i \left[\sigma\left((x+b/2-\mu_i)/s_i
ight) - \sigma\left((x-b/2-\mu_i)/s_i
ight)
ight]$

Compression

Figure: Hierarchical Compression Framework

Decompression

Figure: Hierarchical Decompression Framework

Models considered for performance comparison:

Model	Туре	Pretraining Required	Parameter Updation During Compression	Support Partial Decompression	CPU/GPU
Gzip ⁶	Traditional	No	No	No	CPU
7z ⁷	Traditional	No	No	No	CPU
TRACE ⁸	Autoregressive	No	Yes	No	GPU
FNN	Autoregressive	No	Yes	No	GPU
ByteZip	Non Autoregressive	Yes	No	Yes	GPU

⁶Deutsch, GZIP file format specification version 4.3, 1996.

⁷7-Zip.

⁸Mao et al., "TRACE: A Fast Transformer-Based General-Purpose Lossless Compressor", 2022.

Models considered for performance comparison:

Model	Туре	Pretraining Required	Parameter Updation During Compression	Support Partial Decompression	CPU/GPU
Gzip ⁶	Traditional	No	No	No	CPU
7z ⁷	Traditional	No	No	No	CPU
TRACE ⁸	Autoregressive	No	Yes	No	GPU
FNN	Autoregressive	No	Yes	No	GPU
ByteZip	Non Autoregressive	Yes	No	Yes	GPU

Evaluation metrics:

• Average Compression Speed
$$=$$
 $\frac{\text{Data Size (MB)}}{\text{Total Compression Time (Min)}}$

$$\bullet \ \, \text{Compression Ratio} = \frac{\text{Original Size}}{\text{Compressed Size}}$$

$$\bullet \ \ \, \text{Compression Percentage} = \left(1 - \frac{\text{Compressed Size}}{\text{Original Size}}\right) \times 100$$

⁶Deutsch, GZIP file format specification version 4.3, 1996.

⁷ 7-Zip.

⁸Mao et al., "TRACE: A Fast Transformer-Based General-Purpose Lossless Compressor", 2022.

Hardware:

Single workstation with Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz, NVIDIA GeForce RTX3080 Ti GPU with 10240 cores and 12GB RAM

⁹Burtscher and Ratanaworabhan, "FPC: A High-Speed Compressor for Double-Precision Floating-Point Data", 2009.

¹⁰Burtscher and Ratanaworabhan, "FPC: A High-Speed Compressor for Double-Precision Floating-Point Data", 2009.

¹¹Choi et al., "Children's song dataset for singing voice research", 2020.

Hardware:

Single workstation with Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz, NVIDIA GeForce RTX3080 Ti GPU with 10240 cores and 12GB RAM

Dataset:

Table: Description of datasets along with the parameters used

Name	Dataset Size	Description	chunk size	k	scale
Sonar	25 GB	Ocean acoustic data collected using sonar arrays	64 * 1504	3	3
obs_info ⁹	500 MB	Latitude and Longitude information of the observation points of a weather satellite	256 * 256	3	4
obs_spitzer ¹⁰	1.1 GB	Spitzer Space Telescope data with 64-Bit Double-Precision Floating-Point values	256 * 256	2	4
CSD ¹¹	1.5 GB	Children's Song Dataset for Singing Voice Research	256 * 256	3	4

⁹Burtscher and Ratanaworabhan, "FPC: A High-Speed Compressor for Double-Precision Floating-Point Data", 2009.

¹⁰Burtscher and Ratanaworabhan, "FPC: A High-Speed Compressor for Double-Precision Floating-Point Data", 2009.

¹¹Choi et al., "Children's song dataset for singing voice research", 2020.

Runtime Improvements

Figure: Compression Time

Figure: Decompression Time

Runtime Improvements

Figure: Compression Time

Figure: Decompression Time

Table: Average Compression and Decompression Speed

	Model	Avg Comp Speed (MB/Min)	Avg Decomp Speed (MB/Min)
Traditional	Gzip	1756	10974
	7z	191	1895
Non-Autoregressive	ByteZip(Ours)	20	18
Autoregressive	FNN_64	2.89	1.76
	TRACE_8	2.01	1.34
	TRACE_64	0.31	0.28

Size Reduction

Figure: Compression percentage on different filesizes

Size Reduction

Figure: Compression percentage on different filesizes

Table: Average compression ratio

	Model	obs_info	obs_spitzer	CSD	Sonar
Traditional	Gzip	1.15	1.06	1.51	1.20
	7z	1.22	1.13	2.19	1.30
Non-Autoregressive	ByteZip(Ours)	2.17	1.21	3.01	1.65
Autoregressive	FNN_64	2.09	1.19	1.67	1.57
	TRACE_8	2.01	1.18	2.92	1.40
	TRACE_64	2.81	1.28	3.08	1.84

Compression Time vs Compression Ratio

Figure: Compression Time vs Compression Ratio for compressing 1 GB bytestream data

- 1 Introduction
- 2 ByteZip
- 3 Conclusion
- 4 References

Conclusion

- Autoregressive bytewise prediction-based lossless compression models have limitations in improving runtime
- Our proposed method ByteZip balances the higher compression ratio achieved by autoregressive neural network models with the practicality of attaining a reasonable compression speed
- Future Scope:
 - Reduce the computational requirements of the neural network compressor to create a more practical compressor.
 - Support the incorporation of domain-specific knowledge into the compressor when available.

Thank You.

References I

Yang, Yibo, Stephan Mandt, and Lucas Theis. "An introduction to neural data compression". In: arXiv preprint arXiv:2202.06533 (2022).

Knoll, Bryon. Cmix. https://www.byronknoll.com/cmix.html. 2014.

https://github.com/byronknoll/lstm-compress. 2019.

Lstm-compress: data compression using LSTM.

— .Tensorflow-compress: lossless data compression using neural networks in

TensorFlow. https://github.com/byronknoll/tensorflow-compress. 2020.

Bellard, Fabrice. "Lossless data compression with neural networks". In: *URL:* https://bellard. org/nncp/nncp. pdf (2019).

— . "NNCP v2: Lossless Data Compression with Transformer". In: (2021).

Mao, Yu et al. "TRACE: A Fast Transformer-Based General-Purpose Lossless Compressor". In: *Proceedings of the ACM Web Conference 2022*. ACM, 2022, 1829–1838. ISBN: 9781450390965.

Mentzer, F. et al. "Practical Full Resolution Learned Lossless Image Compression". In: CVPR. 2019.

References II

Deutsch, Peter. GZIP file format specification version 4.3. Tech. rep. 1996.

7-Zip.

Burtscher, Martin and Paruj Ratanaworabhan. "FPC: A High-Speed Compressor for Double-Precision Floating-Point Data". In: IEEE Transactions on Computers 58.1 (2009), pp. 18–31. DOI: 10.1109/TC.2008.131.

Choi, Soonbeom et al. "Children's song dataset for singing voice research". In: International Society for Music Information Retrieval Conference (ISMIR). 2020.