- 1.7 DEFINICION. Sean U y V espacios vectoriales sobre un campo K. Una función f: U → V se llama lineal o también homomorfismo de espacios vectoriales si
 - (i) f(u + v) = f(u) + f(v) y
- (ii) $f(\alpha v) = \alpha f(v)$; $u, v \in U$; $\alpha \in K$.

Obsérvese que el + de u + v se refiere a la suma de U y que el + de f(u) + f(v) se refiere a la suma de V. Lo mismo que αv denota la multiplicación escalar de U y $\alpha f(v)$ la de V.

Si en (ii) tomamos $\alpha = 0 \in K$, tenemos que f(0v) = f(O) = 0, luego f(O) = O, i.e., todo homomorfismo de espacios vectoriales (o función lineal) envía el vector cero del dominio en el vector cero del codominio.

Es obvio que las condiciones (i) y (ii) de la definición 1.7 son equivalentes a la siguiente:

$$f(\alpha u + \beta v) = \alpha f(u) + \beta f(v); \quad \alpha, \beta \in K; u, v \in U.$$

También se suele llamar a una función lineal f, aplicación lineal o transformación lineal. Utilizaremos cualquiera de estas denominaciones.

Nota. Por abuso de notación se acostumbra escribir 0 en lugar de O.

1.8 EJEMPLO. Sea $U = \mathbb{R}^3$ y $V = \mathbb{R}$ con la suma y multiplicación escalar usuales. Definamos $f: U \longrightarrow V$ mediante la regla f(x, y, z) = 3x - 2y + 2z. Veamos que f es lineal. Como

$$f((x_1, y_1, z_1) + (x_2, y_2, z_2)) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

 $= 3(x_1 + x_2) - (y_1 + y_2) + 2(z_1 + z_2)$
 $f(x_1, y_1, z_1) + f(x_2, y_2, z_2) = (3x_1, -2y_1 + 2z_1) + (3x_2 - 2y_2 + 2z_2),$

claramente se cumple la condición (i) de 1.7. También, $f(\alpha(x,y,z)) = f(\alpha x, \alpha y, \alpha z)$ = $3\alpha x - 2\alpha y + 2\alpha z = \alpha(3x - 2y + 2z) = \alpha f(x,y,z)$, por lo que se cumple (ii) de 1.7.

- 1.9 EJEMPLO. Sea U = V = R². Definamos f:U → V mediante f(x, y) = (x + 2, y + 3). Como f(0, 0) = (2, 3) ≠ (0, 0), f no es lineal pues todo homomorfismo de espacios vectoriales envía el vector cero del dominio en el vector cero del codominio.
- 1.10 PROPOSICION. La composición de dos homomorfismos de espacios vectoriales sobre un campo K es un homomorfismo de espacios vectoriales sobre K.

Demostración. Sean $f: U \longrightarrow V$ y $g: V \longrightarrow W$ funciones lineales. Luego

$$(g \circ f)(u + v) = g(f(u + v))$$

$$= g(f(u) + f(v))$$

$$= g(f(u)) + g(f(v))$$

$$= (g \circ f)(u) + (g \circ f)(v)$$

Además, $(g \circ f)(\alpha u) = g(f(\alpha u)) = g(\alpha f(u)) = \alpha g(f(u)) = \alpha (g \circ f)(u)$. Por lo tanto $(g \circ f)$ es una función lineal.

1.11 **DEFINICION.** Sea $f: U \longrightarrow V$ un homomorfismo (o función lineal o aplicación lineal) de espacios vectoriales sobre un campo K. Diremos que f es un isomorfismo, y escribiremos $f: U \stackrel{\cong}{\longrightarrow} V$, si existe un homomorfismo $g: V \longrightarrow U$ tal que $g \circ f = 1_U$ y $f \circ g = 1_V$.

Es fácil comprobar (problema 1.9) que, si g existe, está determinada en forma única; la denotaremos con f^{-1} y se llama inverso de f. Así, $f:U \longrightarrow V$ es isomorfismo si, y sólo si, es biyectiva. Diremos que dos espacios U y V sobre un campo K son isomorfos si existe un isomorfismo $f:U \xrightarrow{\cong} V$ y escribiremos $U \cong V$.

Capítulo I Conceptos fundamentales

2.6 PROPOSICION. Sea $f: U \longrightarrow V$ un homomorfismo (función lineal) de espacios vectoriales sobre un campo K. Entonces, si U' es un subespacio de U, f(U') es un subespacio de V y, si V' es un subespacio de V, $f^{-1}(V')$ es un subespacio de U.

Demostración. Veamos que $f(U') = \{f(u)|u \in U'\}$ es un subespacio de V. Sean $v, w \in f(U')$, luego, existen $u, u' \in U'$ tales que f(u) = v, f(u') = w. Como U' es subespacio de U, $u + u' \in U'$ y $\alpha u \in U'$. Como f es lineal,

$$f(O) = O \in f(U'),$$

$$v + w = f(u) + f(u') = f(u + u') \in f(U'),$$

$$\alpha v = \alpha f(u) = f(\alpha u) \in f(U').$$

Por lo tanto, f(U') es un subespacio de V.

28

Veamos que $f^{-1}(V') = \{u \in U | f(u) \in V'\}$ es un subespacio de U. Sean $u, u' \in f^{-1}(V')$, entonces f(u) y f(u') están en V'. Como V' es un subespacio de V y f es lineal,

$$f(O) = O \in V'$$

$$f(u+u') = f(u) + f(u') \in V'$$

$$f(\alpha u) = \alpha f(u) \in V', \quad \alpha \in K.$$

Luego, $f^{-1}(V')$ es un subespacio de U.

2.7 COROLARIO. Sea $f: U \longrightarrow V$ lineal. Entonces im f es un subespacio de V y ker f es un subespacio de U.

Demostración. Inmediata de 2.6 tomando U' = U y V' = 0.

2.13 COROLARIO. Sean $f: U \longrightarrow V$ $g: V \longrightarrow W$ funciones lineales entre espacios vectoriales sobre un campo K tales que $g \circ f$ es isomorfismo. Entonces $V \cong \operatorname{im} f \oplus \ker g$.

Demostración. Veamos que $im\ f+ker\ g=V$. Sea $v\in V$ y $g(v)\in W$. Como $gf\colon U\longrightarrow W$ es un isomorfismo, existe $u\in U$ tal que gf(u)=g(v). Sea $v'=f(u)\in im\ f$ y v''=v-v'. Entonces g(v'')=g(v-v')=g(v)-g(v')=gf(u)-g(f(u))=0. Luego $v''\in ker\ g$ y, por lo tanto, $v'+v''\in im\ f+ker\ g$ pues v era arbitraria.

Veamos que $im\ f \cap ker\ g = \{0\}$. Sea $v \in im\ f \cap ker\ g$. Entonces, como $v \in im\ f$, existe $u \in U$ tal que f(u) = v. Como $v \in ker\ g$, g(v) = 0. Luego gf(u) = g(v) = 0. Como gf es un isomorfismo, u = 0. Luego f(u) = 0 y, por lo tanto, v = 0. Por 2.12, $V \cong im\ f \oplus ker\ g$.

A continuación estableceremos una propiedad, llamada universal, de la suma directa.

2.14 TEOREMA. Sea V un espacio vectorial sobre un campo K, $\varphi_i \colon V_i \to V$, i=1,2 funciones lineales de espacios vectoriales e $\imath_i \colon V_i \longrightarrow V_1 \oplus V_2$, i=1,2 las inclusiones naturales. Entonces existe una función lineal única $\varphi \colon V_1 \oplus V_2 \longrightarrow V$ tal que $\varphi \circ \imath_i = \varphi_i$, i=1,2.

Demostración. La afirmación del enunciado puede representarse en el siguiente diagrama:

$$V$$
 $\psi_1 \neq 0$
 $\downarrow \psi$
 $V_1 \xrightarrow{t_1} V_1 \oplus V_2 \xrightarrow{t_2} V_2$

§ 2 Subespacios vectoriales

contiene a S.

Definamos $\varphi(v_1, v_2) = \varphi_1(v_1) + \varphi_2(v_2)$. Es fácil comprobar que $\varphi: V_1 \oplus V_2 \longrightarrow V$ es la única función lineal tal que el diagrama anterior commuta, i.e., $\varphi \circ i_i = \varphi_i$, i = 1, 2.Problema 2.9•

31

El teorema precedente caracteriza a la suma directa y se puede generalizar făcilmente a n sumandos con solamente considerar $i=1,2,\ldots,n$. El diagrama correspondiente es

$$V$$
 ψ_{j}
 \downarrow^{ψ}
 V_{j}
 $\stackrel{\lambda_{j}}{\longrightarrow}$
 $\bigoplus_{i=1}^{n} V_{i}$

donde i_j denota la inclusión natural de V_j en $\bigoplus_{i=1}^n V_i$.

2.15 DEFINICION. Decimos que un vector v de un espacio vectorial V sobre un campo K es una combinación lineal de elementos de un subconjunto S de V si existe un número finito de elementos {v_i}ⁿ_{i=1} de S tal que v = α₁v₁ + ··· + α_nv_n, α_i ∈ K. Las α_i se llaman coeficientes.

Para simplificar la notación, y cuando no haya posibilidad de confusión, quitaremos los límites del conjunto. Por ejemplo escribiremos $\{v_j\}$ en lugar de $\{v_j\}_{j=1}^n$.

2.16 TEOREMA. El conjunto de todas las combinaciones lineales $\langle S \rangle$ de un subconjunto no vacío S del espacio vectorial V sobre un campo K es un

subespacio de V que contiene a S y es el subespacio más pequeño de V que

Demostración. Sea $v \in S$, como v = 1v entonces $v \in \langle S \rangle$ y es inmediato comprobar que $O \in \langle S \rangle$. Si $u, v \in \langle S \rangle$ entonces $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$ y $v = \beta_1 v_1 + \cdots + \beta_m v_m$; $\alpha_i, \beta_j \in K$; $u_i, v_j \in S$. Entonces $u + v = \alpha_1 u_1 + \cdots + \alpha_n u_n + \beta_1 v_1 + \cdots + \beta_m v_m$ y $\alpha u = \alpha(\alpha_1 u_1 + \cdots + \alpha_n u_n) = \alpha \alpha_1 u_1 + \cdots + \alpha \alpha_n u_n$. Luego u + v y αu pertenece a $\langle S \rangle$. Así, $\langle S \rangle$ es un subespacio de V.

Supongamos que U es un subespacio de V que contiene a S y supongamos que $u_1, \ldots, u_n \in S \subset U$. Entonces $\alpha_1 u_1, \ldots, \alpha_n u_n \in U$ con $\alpha_i \in K$. Esto significa que U contiene a todas las combinaciones lineales de S, i.e., U contiene a $\langle S \rangle$.

2.17 DEFINICION. El subespacio más pequeño de un espacio vectorial V

32

Capítulo I Conceptos fundamentales

sobre un campo K que contiene a un subconjunto S de V se llama subespacio generado por S.

Por el teorema 2.16, $\langle S \rangle$ es el subespacio generado por un subconjunto S de V. Además, observe que como es el subespacio más pequeño de V que contiene a S, $\langle S \rangle$ es igual a la intersección de todos los subespacios que contienen a S. Si $\langle S \rangle = V$, todo elemento de V es una combinación lineal de elementos de S. En este caso, diremos que V está generado por el subconjunto S de V.

2.18 EJEMPLO. Sea $S = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ un subconjunto de \mathbb{R}^4 . Considere las combinaciones lineales de elementos de S, i.e., expresiones de la forma

$$\alpha_1(1,0,0,0) + \alpha_2(0,1,0,0) + \alpha_3(0,0,1,0) + \alpha_4(0,0,0,1).$$

Es claro que cualquier vector de \mathbb{R}^4 puede escribirse como combinación lineal de vectores de S; luego $\langle S \rangle = \mathbb{R}^4$.