

Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

ANTENAS

20 de Junio de 2007

Fecha notas revisadas:

Fecha notas provisionales: 28 Junio

Periodo de alegaciones: 28 Junio a 3 Julio

5 Julio

Profesores: S. Blanch, A. Cardama, L. Jofre, J. M. Rius.

Informaciones adicionales:

- Duración 120 minutos.
- Las respuestas de los diferentes ejercicios se entregarán en hojas separadas.
- · No se permiten libros ni apuntes.

Ejercicio 1) Una antena está formada por dos dipolos de media onda, alimentados con corrientes en contrafase $(I_2 = -I_I)$, separados 0.5 λ entre si y a una distancia, el primero de ellos, de 0.25 λ de un plano conductor, tal como indica la figura.

$$\begin{pmatrix} \hat{r} \\ \hat{\theta} \\ \hat{\phi} \end{pmatrix} = \begin{pmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix}$$

$$\vec{N}(\hat{r}) = \hat{z} \, 2 \, I_m \frac{\cos(kH\cos\theta) - \cos(kH)}{k \, \sin^2\theta}$$

Encontrar:

- a) Impedancia de entrada en cada dipolo.
- b) Expresión analítica de los campos radiados.
- c) Identificar la dirección del máximo del diagrama de radiación y los planos principales del diagrama (plano E y plano H)
- d) Representar el diagrama en el plano E, indicando claramente máximos y nulos (si los hubiere).
- e) Representar el diagrama en el plano H, indicando claramente máximos y nulos (si los hubiere).
- f) La directividad de la antena.

d (λ)	Z_{12} dip. paralelos (Ω)	d (λ)	Z_{12} dip. paralelos (Ω)
0	73 + j 42	1.25	15 – j 3
0.25	41 – j 28	1.5	-2-j 12
0.5	-12-j30	1.75	-11 + j1
0.75	-23 + j 7	2.0	1+j9
1.0	4 + j 18	2.25	8-j1

Ejercicio 2) Se desea diseñar una agrupación con radiación longitudinal que concentre su radiación en el semiespacio z>0, con el máximo en la dirección $\theta_{max}=0^{\circ}$ y un pequeño lóbulo trasero en la dirección $\theta=180^{\circ}$. Para ello se decide colocar dos grupos de ceros triples en el plano z, sobre el círculo de radio unidad, en las posiciones $\psi_c=\pm 120^{\circ}$ (en total 6 ceros), con espaciado entre elementos $d=\lambda/4$ y fase progresiva $\alpha=-90^{\circ}$.

- a) Calcular los coeficientes de la alimentación a_n.
- b) Dibujar $FA(\psi)$ y $FA(\theta)$
- c) Calcular la relación delante / atrás.
- d) Calcular la directividad del factor de la agrupación.
- e) Calcular el ancho de haz entre ceros, $\Delta\theta_c$
- f) Calcular el ancho de haz a -3dB, $\Delta\theta_{-3dB}$.
- g) Si la antena básica son dipolos en $\lambda/2$ perpendiculares al eje de la agrupación, dibujar los diagrama en plano E y en plano H.

Ejercicio 3) Un reflector parabólico de 50cm de diámetro y 21,6cm de distancia focal va a alimentarse a 30GHz con una bocina cónica.

- Diseñar una bocina cónica óptima (s=3/8) que produzca un decaimiento en el borde del plano H del reflector de 20dB con respecto a la iluminación en el centro. Obtener para la bocina, utilizando las gráficas adjuntas:
 - a) El diámetro d_m de la apertura de la bocina
 - b) El máximo error de fase Φ en la boca de la bocina
 - c) La directividad D_c
 - d) El ancho de haz a -3dB, $\Delta\theta_{-3dB}$
- Para el reflector alimentado por esta bocina
 - e) Si el diagrama de radiación de la bocina, en el cono que ilumina el paraboloide, puede aproximarse por $D(\theta)=20\cos^{10}\theta,\ 0\leq\theta\leq\beta$, calcular la eficiencia de desbordamiento, η_s .
 - f) Suponiendo que el campo en la apertura del reflector sigue una ley cuadrática $(E_a \sim (1-\alpha \rho^2), 0 \le \rho \le D_a/2)$, calcular la eficiencia de iluminación η_{il} .
 - g) Calcular la directividad del reflector.

$$y' = 2f \tan(\theta/2)$$
$$z' = f (1 - \tan^2(\theta/2))$$
$$r' = f/\cos^2(\theta/2)$$

Intensidad relativa de campo en plano H de una bocina cónica