Some potentially useful formulas

• Finite sums of powers

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

• Binomial formula: For all $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$

$$\sum_{i=0}^{n} \binom{n}{i} x^{i} y^{n-i} = (x+y)^{n}$$

• Geometric series: For $a, r \in \mathbb{R}$ and |r| < 1 we have

$$\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$$

• Geometric sum: For $r \neq 1$

$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$

• Gamma function

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$
 for $\alpha > 0$

$$-\Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1),$$
 if n is an integer: $\Gamma(n)=(n-1)!,$ and $\Gamma(0.5)=\sqrt{\pi}$

• Taylor series for e^x :

$$e^{\lambda} = \sum_{x=0}^{\infty} \frac{\lambda^x}{x!}$$

• Bayes Theorem: If A_1, A_2, \ldots, A_n is a partition of the sample space then for any event B:

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{j=1}^{n} P(B \mid A_j)P(A_j)}$$

• If random variable X has pdf $f_X(x)$ that is continuous on $\mathcal{X} = \{x : f(x) > 0\}$ and Y = g(X) where g(x) is a monotone function, and if $g^{-1}(y)$ has a continuous derivative on $\mathcal{Y} = \{y : \exists x \in \mathcal{X} \text{ such that } y = g(x)\}$, then

1

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$
 for $y \in \mathcal{Y}$

Distribution	Jpd/Jmd	Support	E(X)	$\operatorname{Var}(X)$	$M_X(t)$	Parameter space
$\operatorname{Binomial}(n,p)$	$f(x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, 1, \dots, n$	du	np(1-p)	$\left(pe^t + (1-p)\right)^n$	$0 \le p \le 1, n = 0, 1, 2, \dots$
$\operatorname{Discr}\operatorname{Uniform}(N)$	$f(x\mid N) = \frac{1}{N}$	$x = 1, 2, \dots, N$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$		$N \in 0,1,2,\dots$
$\mathrm{Geometric}(p)$	$f(x \mid p) = p(1-p)^{x-1}$	$x = 1, 2, 3, \dots$	<u>1</u> – <i>p</i>	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$	$0 \le p \le 1$
$\operatorname{NegBinomial}(r,p)$	$f(x\mid r,p) = \binom{r+x-1}{x} p^r (1-p)^x$	$x = 0, 1, 2, \dots$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1-(1-p)e^t}\right)^r$	$0 \le p \le 1, r = 1, 2, 3 \dots$
$\mathrm{Poisson}(\lambda)$	$f(x \mid \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$	$x = 0, 1, 2, \dots$	~	K	$e^{\lambda(e^t-1)}$	$\lambda > 0$
$\mathrm{Uniform}(a,b)$	$f(x \mid a, b) = \frac{1}{b - a}$	$a \le x \le b$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b - a)t}$	a < b
$\mathrm{Beta}(\alpha,\beta)$	$f(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{(\alpha - 1)} (1 - x)^{\beta - 1}$	$0 \le x \le 1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$		$\alpha > 0$, $\beta > 0$
$\operatorname{Exponential}(\beta)$	$f(x \mid \beta) = \frac{1}{\beta} e^{-x/\beta}$	$x \ge 0$	$\boldsymbol{\beta}$	β^2	$\frac{1}{1-\beta t}$	$\beta > 0$
	cdf: $F(x) = 1 - e^{-x/\beta}$ for $x \ge 0$					
$\mathrm{Gamma}(\alpha,\beta)$	$f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{(\alpha-1)} e^{-x/\beta}$	$x \ge 0$	αeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}$	$\alpha > 0$, $\beta > 0$
$\mathrm{N}(\mu,\sigma^2)$	$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$x \in \mathbb{R}$	η	σ^2	$e^{\mu t + \sigma^2 t/2}$	$\mu \in \mathbb{R}$, $\sigma^2 > 0$