Задание 10.

Линейные преобразования A и B в некотором базисе имеют соответственно матрицы

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & -3 \\ -1 & 2 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ -5 & -3 & -2 \end{pmatrix}$$

Найти жордановы нормальные формы J_A и J_B матриц этих преобразований, а также матрицы перехода S_A и S_B к жорданову базису. Выполнить проверку, используя равенства $S_A J_A = A S_A$ и $S_B J_B = B S_B$.

Решение.

Преобразование А.

Первый этап.

Находим жорданову форму J_A матрицы A преобразования A.

- 1. Первый шаг алгоритма не нужен, так как матрица преобразования задана.
- 2. Составляем характеристический многочлен преобразования A:

$$\Delta_{A}(\lambda) = det(A - \lambda E) = \begin{vmatrix} 2 - \lambda & 2 & 3 \\ 1 & 1 - \lambda & -3 \\ -1 & 2 & 6 - \lambda \end{vmatrix} = -\lambda^{3} + 9\lambda^{2} - 27\lambda + 27 = 0$$

$$= (3 - \lambda)^3.$$

- 3. Находим корни характеристического уравнения $(3-\lambda)^3=0$. Уравнение имеет один корень $\lambda_1=3$ алгебраической кратности $n_1=3$. Этот действительный корень является собственным значением преобразования.
- 4. Для корня $\lambda_1=3$ алгебраической кратности $n_1=3$ находим ранги матриц $B=A-\lambda_1 E,\ B^2,\ B^3.$ Выполняя элементарные преобразования над строками, приводим матрицы $B_1,\ B^2,\ B^3$ к ступенчатому виду

$$B = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -2 & -3 \\ -1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B^{2} = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -2 & -3 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} -1 & 2 & 3 \\ 1 & -2 & -3 \\ -1 & 2 & 3 \end{pmatrix} = 0; B^{3} = 0.$$

Матрицы B^2 , B^3 — нулевые. Находим ранги: $r_1=rgB=1$, $r_2=rgB^2=0$, $r_3=rgB^3=0$. Значит, $m_1=2$, так как $r_2=r_3$.

- 5. Определяем количество $k_1=r_0-2r_1+r_2=3-2+0=1$ жордановых клеток 1-го порядка, количество $k_2=r_1-2r_2+r_3=1-0+0=1$ жордановых клеток 2-го порядка. Следовательно, жорданова форма имеет жордановы клетки $J_2(3)$ и $J_1(3)$.
- 6. Составляем искомую матрицу J_A блочно-диагонального вида, располагая найденные жордановы клетки на главной диагонали

$$J_A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}.$$

Жорданова форма матрицы получена.

Второй этап.

Находим матрицу перехода к жорданову базису.

1. Для собственного значения $\lambda_1=3$ алгебраической кратности $n_1=3$ по жордановой форме J_A определяем наибольший порядок $m_1=2$ жордановых клеток, соответствующих собственному значению $\lambda_1=3$. Составляем матрицу $B=A-\lambda_1 E$.

- 2. Матрица B была приведена к ступенчатому виду. Модифицированный ступенчатый вид $(B)_{\rm ct} = (1 2 3)^T$ получается удалением нулевых строк.
- 3. Так как B^2 нулевая матрица, то $S^{(1)} = (B)_{\text{ст}}^T = (1 2 3)^T$.

Вычисляем матрицу
$$BS^{(1)} = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -2 & -3 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} -14 \\ 14 \\ -14 \end{pmatrix},$$

составляем расширенную матрицу однородной системы уравнений $(\frac{(B)_{\text{ст}}}{(BS^{(1)})^T})x = o$ и приводим ее к упрощенному виду:

Выражаем базисные переменные через свободную: $x_1 = -5x_3$, $x_2 = -4x_3$. Полагая $x_3 = 1$, получаем ненулевое решение $\phi_1 = (-5 - 4 \ 1)^T$, которое образует фундаментальную систему. Значит, фундаментальная матрица состоит из одного столбца $\phi_1 = (-5 - 4 \ 1)^T$.

Составляем матрицу
$$S^{(0)} = (BS^{(1)}|\phi_1) = \begin{pmatrix} -14 & -5 \\ 14 & -4 \\ -14 & 1 \end{pmatrix}$$
.

Из столбцов матриц $S^{(0)}$ и $S^{(1)}$ составляем искомую матрицу $S^{(A)}$:

$$S^{(0)} = \begin{pmatrix} -14 & | & -5 \\ 14 & | & -4 \\ -14 & | & 1 \end{pmatrix}, S^{(1)} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \Rightarrow S^{(A)} = \begin{pmatrix} -14 & 1 & -5 \\ 14 & -2 & -4 \\ -14 & -3 & 1 \end{pmatrix},$$

записывая сначала первые столбцы матриц $S^{(0)}$, $S^{(1)}$, а затем второй столбец матрицы $S^{(0)}$. Матрица перехода к жорданову базису найдена. Выполняем проверку. Вычисляем:

$$S_{A}J_{A} = \begin{pmatrix} -14 & 1 & -5 \\ 14 & -2 & -4 \\ -14 & -3 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ \hline 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} -42 & -11 & -15 \\ 42 & 8 & -12 \\ -42 & -23 & 3 \end{pmatrix},$$

$$AS_A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & 1 & -3 \\ -1 & 2 & 6 \end{pmatrix} \begin{pmatrix} -14 & 1 & -5 \\ 14 & -2 & -4 \\ -14 & -3 & 1 \end{pmatrix} = \begin{pmatrix} -42 & -11 & -15 \\ 42 & 8 & -12 \\ -42 & -23 & 3 \end{pmatrix},$$

Равенство $S_{A}J_{A} = AS_{A}$ выполняется.

Преобразование В.

Первый этап.

Находим жорданову форму J_{B} матрицы B преобразования B.

- 1. Первый шаг алгоритма не нужен, так как матрица преобразования задана.
- 2. Составляем характеристический многочлен преобразования В:

$$\Delta_B(\lambda) = det(B - \lambda E) = \begin{vmatrix} 3 - \lambda & 2 & 1 \\ -1 & -1 - \lambda & 0 \\ -5 & -3 & -2 - \lambda \end{vmatrix} = -\lambda^3.$$

- 3. Находим корни характеристического уравнения $-\lambda^3=0$. Уравнение имеет один корень $\lambda_1=0$ алгебраической кратности $n_1=1$. Этот действительный корень является собственным значением преобразования.
- 4. Для корня $\lambda_1 = 0$ кратности $n_1 = 1$ находим ранг матрицы $C = B \lambda_1 E$. Выполняя элементарные преобразования над строками, приводим матрицу C к ступенчатому виду

$$C = B - \lambda_1 E = \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ -5 & -3 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Следовательно, $r_1=rg(B-\lambda_1 E)=2$. Тогда геометрическая кратность собственного значения $\lambda_1=0$ равна единице $(n-r_1=1)$. Это наименьшее значение геометрической кратности. Поэтому можем воспользоваться упрощенной процедурой приведения к каноническому виду. Собственному значению $\lambda_1=0$ соответствует жорданова клетка третьего порядка $J_3(0)$. Так как других собственных значений нет, то искомая матрица J_B совпадает с этой клеткой

$$J_B = J_3(0) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Находим столбцы матрицы S перехода к жорданову базису. Составляем расширенную матрицу однородной системы $(B-\lambda_1 E)s_1=o$ и приводим ее к упрощенному виду

$$(B - \lambda_1 E | o) = \begin{pmatrix} 3 & 2 & 1 & 0 \\ -1 & -1 & 0 & 0 \\ -5 & -3 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Выражаем базисные переменные через свободную $x_1 = -x_3, x_2 = x_3$. При $x_3 = 1$ получаем ненулевое решение $s_1 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}^T$ — собственный вектор матрицы B. Составляем расширенную матрицу однородной системы $(B - \lambda_1 E) s_1^{(2)} = s_1$ и приводим ее к упрощенному виду

$$(B - \lambda_1 E | s_1^{(1)}) = \begin{pmatrix} 3 & 2 & 1 & | & -1 \\ -1 & -1 & 0 & | & 1 \\ -5 & -3 & -2 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | & -1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Выражаем базисные переменные через свободную $x_1 = -x_3 + 1, x_2 = x_3 - 2.$ При $x_3 = 0$ получаем $s_1^{(1)} = \begin{pmatrix} 1 & -2 & 0 \end{pmatrix}^T$ — присоединенный вектор первого

порядка. Составляем расширенную матрицу неоднородной системы $(B-\lambda_1 E)s_1^{(2)}=s_1^{(1)} \text{ и приводим ее к упрощенному виду}$

$$(B - \lambda_1 E) s_1^{(1)} = \begin{pmatrix} 3 & 2 & 1 & 1 \\ -1 & -1 & 0 & -2 \\ -5 & -3 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Выражаем базисные переменные через свободную $x_1 = -x_3 - 3$, $x_2 = x_3 + 5$. При $x_3 = 0$ получаем $s_1^{(2)} = (-3 \ 5 \ 0)^T$ — присоединенный вектор второго порядка. Из полученных столбцов составляем искомую матрицу

$$S_B = (s_1 \quad s_1^{(1)} \quad s_1^{(2)}) = \begin{pmatrix} -1 & 1 & -3 \\ 1 & -2 & 5 \\ 1 & 0 & 0 \end{pmatrix}.$$

Поскольку жорданова форма данной матрицы B определяется однозначно (она состоит из одной жордановой клетки), то можно проверить равенство $S_B J_B = B S_B$, равносильное преобразованию $J_B = S^{-1} B S$ подобия. Вычисляем

$$S_B J_B = \begin{pmatrix} -1 & 1 & -3 \\ 1 & -2 & 5 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$BS_B = \begin{pmatrix} 3 & 2 & 1 \\ -1 & -1 & 0 \\ -5 & -3 & -2 \end{pmatrix} \begin{pmatrix} -1 & 1 & -3 \\ 1 & -2 & 5 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 1 & 0 \end{pmatrix}$$

Равенство $S_B J_B = BS_B$ выполняется.

Ответ: а) для преобразования
$$A$$
: $J_A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ \hline 0 & 0 & 3 \end{pmatrix}$, $S = \begin{pmatrix} -14 & 1 & -5 \\ 14 & -2 & -4 \\ -14 & -3 & 1 \end{pmatrix}$;

б) для преобразования
$$B$$
: $J_B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $S = \begin{pmatrix} -1 & 1 & -3 \\ 1 & -2 & 5 \\ 1 & 0 & 0 \end{pmatrix}$.