Practice Questions: CRLB and MLE EE 223: Data Analysis and Interpretation EE Department, IIT Bombay

1. Let $Y_1, ..., Y_n$ be random samples from the distribution:

$$f_Y(y) = \frac{2y}{\theta^2} \qquad 0 < y < \theta$$

Can the Cramer-Rao bound be applied to the estimator $\hat{\theta} = \frac{3}{2}\bar{Y}$?

- 2. Consider the problem of estimating the mean μ of a Gaussian random variable from n i.i.d. samples. The variance σ^2 is known. What is the minimum possible variance of an unbiased estimator? Does the sample mean achieve this bound? Repeat for estimating μ^2 .
- 3. Consider the problem of estimation of the phase ϕ of a signal embedded in additive Gaussian noise, $N(0, \sigma^2)$.

$$x[n] = A\cos(2\pi f n + \phi) + w[n]$$
 $n = 0, 1, ..., N - 1$

Here the amplitude A and the frequency f of the sinusoid are known. Find the Cramer-Rao bound for variance of an unbiased estimator. Repeat for estimation of the frequency f while the phase ϕ is known.

- 4. Suppose $X_1, X_2, ..., X_n$ are i.i.d. Bernoulli samples. Find MLEs of the mean and variance.
- 5. Let X_i , for i = 1, ..., n, be n i.i.d. random variables having a uniform distribution in $[0, \theta]$. Find the MLE and UMVUE for θ . Which one among MLE and UMVUE has lower variance? What about the MSE? How does the problem change if the pdf is uniform in the open interval $(0, \theta)$?
- 6. Consider one sample X from the distribution:

$$f_X(x) = \begin{cases} cx(\theta - x) & \text{for } 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

- (a) Find c such that $f_X(.)$ is a valid pdf.
- (b) Find the MLE and UMVUE for θ , θ^2 and $\sqrt{\theta}$. Compare the variance in all 3 cases. Is the UMVUE always the least variance estimator?
- 7. The Pareto distribution has been used as a model for a density function with a slowly decaying tail:

$$f(x|x_0,\theta) = \frac{\theta x_0^{\theta}}{x^{\theta+1}}$$
 $x \ge x_0$ $\theta > 1$

Assume that $x_0 > 0$ is given and that $X_1, X_2, ..., X_n$ are i.i.d. samples. Find the MLE for θ .

8. A 1-bit signal X taking value either 0 or 1 is transmitted via a noisy channel. The noise of the channel can be modelled as a zero-mean Gaussian random variable with variance σ^2 . Design a receiver that outputs the MLE of the signal. Repeat for the case when the noise variance is σ_1^2 if the signal is 1 and is σ_0^2 if the signal is 0.

- 9. Suppose that $X_1,...,X_n$ are normal with mean μ_1 ; $Y_1,...,Y_n$ are normal with mean μ_2 ; and $W_1,...,W_n$ are normal with mean $\mu_1 + \mu_2$. Assuming that all 3n random variables are independent with a common variance, find the MLEs for μ_1 and μ_2 .
- 10. It is known that the lifetime of a bulb is an exponential random variable. Its mean is to be estimated through a burn-in test as follows. n independent samples of the bulb are turned on and the test continues till r, r < n, of these fail. Let x_k be the time of the k-th failure for k = 1, ..., r. Note that (n-r) bulbs have not failed when the experiment stops at x_r . This means that if X_k is the random k-th failure time, then $X_k > x_r$ for k = r + 1, ... n and it is not observed. Find the MLE for λ , the mean lifetime of a bulb. This should involve all the n failure times.