# Analisis de embudo y comportamiento del cliente

### Flujo de trabajo:

- Se explican **terminologías clave**, asegurando que los hallazgos sean interpretables para usuarios técnicos y no técnicos.
- Se utilizó Python para la exploración inicial garantizando una comprensión profunda del dataset y generando insights generales.
- Se emplea BigQuery, para resolver preguntas a través de consultas SQL avanzadas.
- Los resultados se presentan en Looker Studio, facilitando la visualización de métricas clave, tendencias y flujos de conversión de manera intuitiva para stakeholders.

#### Conceptos Clave para el Análisis:

Para alinear conceptos y dar contexto al análisis, se definen algunos términos que utilizaremos a lo largo del estudio:

- **Lead**: contacto que muestra interés inicial en el producto o servicio, aunque no necesariamente se convierte en cliente.
- **Cohorte**: grupo de contactos que comparten una característica común en el tiempo (semana de creación). Analizar cohortes permite entender el comportamiento y la evolución de leads de forma comparativa.
- Conversión: paso en el que un lead avanza en el embudo de ventas, por ejemplo, desde contacto a cliente. La métrica principal es la tasa de conversión, calculada como:

(Numerototal deleads/Numero deconversiones) imes 100 = %

# Análisis exploratorio y descriptivo de datos

**Objetivo:** Comprender en detalle las características de los datos disponibles, detectar patrones, inconsistencias y posibles sesgos, con el fin de orientar la limpieza, transformación y posterior modelado.

## • Descripción de los datos:

**Dataset 1:** df\_contacts (518.666 registros)

| Columna       | Tipo de dato   | Descripción/ Observacion                                                                                                                                                                                                                                       |  |  |  |
|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| contact_id    | int            | Identificador único del contacto.                                                                                                                                                                                                                              |  |  |  |
| created_at    | object (fecha) | Fecha y hora en la que se creó el contacto.                                                                                                                                                                                                                    |  |  |  |
| utm_source    | object         | Fuente de adquisición de marketing . Valores unicos → 8 customer , instagram , web , google , facebook , tiktok , affiliate , call , employee , [nan]                                                                                                          |  |  |  |
| object_source | object         | Fuente técnica por la cual se creó el contacto ( interfaz CRM, formulario, API). Muy útil para segmentar origen. <b>Valores unicos</b> →13 crm_ui, meetings, 0 form, integration, conversations, email_integration, payments, extension, import, presentations |  |  |  |
| utm_medium    | object         | Medio de la campaña (campañas de pago, email, orgánico). Valores unicos → 9 referral , direct , paid , partner , outbound , organic , inbound , social , ppc , [nan]                                                                                           |  |  |  |

# **Dataset 2:** df\_events (23.866 registros)

| Columna         | Tipo de dato   | Descripción / Observacion                                                                                                                          |
|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| hs_object_id    | int            | Identificador único de cada contacto. Menor que el total de filas → un mismo contacto puede tener múltiples registros (diferentes modificaciones). |
| lastmodified_ts | object (fecha) | Última fecha de modificación del contacto. casi<br>único por fila.                                                                                 |

| Columna        | Tipo de dato | Descripción / Observacion                                |  |  |  |  |  |
|----------------|--------------|----------------------------------------------------------|--|--|--|--|--|
|                | object       | Categoría clave del análisis. <b>Valores unico</b> s → 5 |  |  |  |  |  |
| lifecyclestage |              | customer , lead , marketingqualifiedlead , subscriber ,  |  |  |  |  |  |
|                |              | 155548387, [nan] Hay un valor anómalo "155548387" .      |  |  |  |  |  |

#### Análisis de Valores Nulos

| Columna         | Nº de valores<br>nulos | Observación                                                               |  |  |  |  |
|-----------------|------------------------|---------------------------------------------------------------------------|--|--|--|--|
| hs_object_id    | 0                      | Sin valores nulos, identificador fiable.                                  |  |  |  |  |
| lastmodified_ts | 0                      | Fechas completas para todos los registros.                                |  |  |  |  |
| lifecyclestage  | 10.217                 | 2% de los contactos no tienen etapa definida.                             |  |  |  |  |
| contact_id      | 0                      | Sin valores nulos, confiable.                                             |  |  |  |  |
| created_at      | 0                      | Fechas completas.                                                         |  |  |  |  |
| utm_source      | 2.334                  | Casi un 10% sin fuente de campaña, puede afectar análisis de adquisición. |  |  |  |  |
| object_source   | 1                      | Prácticamente completo.                                                   |  |  |  |  |
| utm_medium      | 2.006                  | 8.40%. Faltan datos en medios de campaña.                                 |  |  |  |  |

# • Duplicados NO presentes

Análisis de distribución → variables utm\_source , utm\_medium , object\_source & lifecyclestage

*Objetivo:* Identificar cómo se distribuyen las variables categóricas y temporales, evaluando su frecuencia y relevancia en el dataset.



- 1. **Gráfico 1: Distribución de** utm\_source → **Cantidad d**e contactos según la fuente de adquisición (tráfico o canal de marketing).
- Facebook es, con diferencia, la fuente principal (10.000 registros).
- Google y affiliate también aportan bastante volumen (3.000).
- Canales como tiktok, whatsapp y call tienen relevancia media.

<u>Conclusión</u>: La captación está fuertemente concentrada en Facebook, lo que puede indicar dependencia de un solo canal.



2. **Gráfico 2: Distribución de utm\_medium** → Medio publicitario o de captación.

- Paid domina claramente con más de 14.000 registros, lo que refleja una fuerte apuesta por campañas pagadas.
- Partner y outbound (4.000 cada uno) tienen presencia secundaria, pero significativa.

<u>Conclusión:</u> Existe **alta dependencia del canal de pago**, lo que puede implicar mayor costo de adquisición, Los canales partner y outbound pueden representar oportunidades de crecimiento si se optimizan, dado que ya aportan volumen relevante.



- 3. **Gráfico 3: Distribución de** object\_source → Describe el origen
- **Form** aporta la mayor cantidad (12.000), lo que indica que la mayoría de contactos entran a través de formularios.
- Integration (8.000) también es fuerte, lo que refleja uso de integraciones externas (CRM, APIs).



- 4. **Gráfico 4: Distribución de** lifecyclestage → Contactos según su etapa en el ciclo de vida del cliente.
- **Customer** (200.000) es la categoría dominante. Le siguen marketing qualified lead (MQL) y lead con grandes volúmenes (150.000 y 140.000).
- Existe un valor atípico 155548387, que parece un error de datos o mal codificación con 202 registros.

**Conclusión:** La base de datos contiene una gran proporción de clientes activos, lo cual es bueno para estudios de retención.

# Análisis temporal → variables created\_at & lastmodified\_ts

*Objetivo:* Permite evaluar la **antigüedad de los registros** (transformación de fechas en variables temporales), lo que permite segmentar cohortes y analizar comportamiento reciente vs. histórico.



<u>Interpretación:</u> Hay un aumento **muy significativo** de nuevos contactos de un mes al siguiente (más del doble).

#### Esto puede indicar:

- Una campaña de captación efectiva en septiembre.
- Incremento en la actividad comercial.
- Posible estacionalidad o eventos especiales que impulsaron el registro de contactos.

# Interpretación: Picos irregulares:



<u>Interpretación:</u> Se observa un **incremento de 35%** en eventos modificados de agosto a septiembre.

#### Esto puede reflejar:

Mayor actividad de actualización o seguimiento de los eventos existentes.

- El histograma no es suave → algunas semanas se modificaron muchos contactos, otros menos. Esto puede deberse a campañas de captación, promociones o actividades comerciales específicas.
- Optimización de datos por parte del equipo (por ejemplo, completando información faltante).

#### Análisis de conversión semanal

 Crear una tabla que muestre el número total de contactos y la tasa de conversión a cliente por semana.

```
Ejecutar
Consulta sin título
                                       O Programa
                                                                                            Abrir en ▼
 -- creacion de las semanas
 WITH contacts_weekly AS (
  SELECT
    contact_id.
    FORMAT_DATE('%Y-%W', DATE(created_at)) AS year_week
  FROM 'bigdataarchitecture-453018.453018.contacts'
 -- Uso de customer como conversión = Booleano
 conversion_status AS (
  SELECT
    hs_object_id AS contact_id,
    MAX(CASE WHEN lifecyclestage = 'customer' THEN 1 ELSE 0 END) AS is_customer
  FROM 'bigdataarchitecture-453018.453018.events'
  GROUP BY contact_id
 SELECT
  contacts_weekly.year_week,
  COUNT(contacts_weekly.contact_id) AS total_contacts,
  SUM(conversion_status.is_customer) AS total_customers,
 SAFE_DIVIDE(SUM(conversion_status.is_customer), COUNT(contacts_weekly.contact_id)) * 100 AS conversion_rate
 FROM contacts_weekly
LEFT JOIN conversion_status
  ON contacts_weekly.contact_id = conversion_status.contact_id
 GROUP BY year_week
ORDER BY conversion_rate DESC;
```

#### Resultados de la consulta

| Información del trabajo |             | Resultados | Visualización     | n JSON           | Detalles de la ejec  |  |
|-------------------------|-------------|------------|-------------------|------------------|----------------------|--|
| Fila //                 | year_week ▼ | / total_   | contacts 🕶 🦯 tota | al_customers 🕶 / | conversion_rate ▼ // |  |
| 1                       | 2025-35     |            | 3562              | 698              | 19.59573273441       |  |
| 2                       | 2025-32     |            | 1802              | 348              | 19.31187569367       |  |
| 3                       | 2025-37     |            | 4093              | 778              | 19.00806254580       |  |
| 4                       | 2025-34     |            | 2779              | 473              | 17.02051097517       |  |
| 5                       | 2025-33     |            | 2309              | 390              | 16.89042875703       |  |
| 6                       | 2025-36     |            | 4842              | 810              | 16.72862453531       |  |
| 7                       | 2025-38     |            | 4479              | 624              | 13.93168117883       |  |

- La semana con mayor tasa de conversión es la 2025-35 (19,6%).
- La **mínima tasa se da en la semana 2025-38 (13,9%)**, a pesar de ser una semana con alto volumen de contactos.
- La semana 2025-32 (19.31%), presenta buena conversión(comparativamente) con contactos y customers bajos.
- La semana con mayor volumen no fue la mas eficiente 2025-36 (16.73%), sugiere campañas que atrajeron contactos de menos calidad

#### Hipótesis para tasa de conversión mayor:

- Campañas efectivas: puede coincidir con el lanzamiento de una campaña de marketing o promoción que atrajo clientes con mayor intención de compra.
- Acciones comerciales: quizás hubo refuerzo en follow-ups del equipo de ventas.

#### Hipótesis para tasa de conversión menor:

- Efecto estacional o temporal: semana con festivos que afectan la disposición de compra
- Capacidad de gestión: el equipo de ventas pudo verse saturado con tantos contactos y no dar seguimiento adecuado.

#### Análisis de cohortes

- 1. Crear una tabla de análisis de cohortes que muestre la conversión a cliente e identifica en qué semana la tasa de conversión a los 7 días es mayor y en qué semana la tasa de conversión a los 14 días es mayor. Es decir:
- Agrupar contactos según la semana de creación → cohorte.
- Calcular si ese contacto se convirtió en customer a los 7 días y a los 14 días desde su creación.
- Obtener la tasa de conversión por cohorte (semana).

```
-- preparar los cohortes por semana
WITH contacts_cohort AS (

SELECT

contact_id,

DATE(created_at) AS created_date,

FORMAT_DATE('%Y-%W', DATE(created_at)) AS cohort_week

FROM 'bigdataarchitecture-453018.453018.contacts'
)
```

```
-- conversion desde primera vez que aparecn como customer
 conversion AS (
  SELECT
    hs_object_id AS contact_id,
    MIN(DATE(lastmodified_ts)) AS conversion_date
  FROM 'bigdataarchitecture-453018.453018.events'
  WHERE lifecyclestage = 'customer'
  GROUP BY contact_id
 -- diferencias entre dias de creacion y conversion
 cohort_analysis AS (
  SELECT
    contacts_cohort.cohort_week,
    contacts_cohort.contact_id,
   contacts_cohort.created_date,
   conversion.conversion_date,
   DATE_DIFF(conversion.conversion_date, contacts_cohort.created_date, DAY) AS days_to_convert
  FROM contacts_cohort
  LEFT JOIN conversion
  ON contacts_cohort.contact_id = conversion.contact_id
 SELECT
  cohort_week,
  COUNT(DISTINCT contact_id) AS total_contacts,
   -- primeros 7 dias
  COUNT(CASE WHEN days_to_convert BETWEEN 0 AND 7 THEN contact_id END) AS converted_7d,
   -- primeros 14 dias
   COUNT(CASE WHEN days_to_convert BETWEEN @ AND 14 THEN contact_id END) AS converted_14d,
   ROUND(SAFE_DIVIDE(COUNT(CASE WHEN days_to_convert BETWEEN 0 AND 7 THEN contact_id END),
          COUNT(contact_id)) * 100,2) AS conversion_rate_7d,
   ROUND(SAFE_DIVIDE(COUNT(CASE WHEN days_to_convert BETWEEN 0 AND 14 THEN contact_id END),
   COUNT(contact_id)) *100,2) AS conversion_rate_14d
 FROM cohort_analysis
 GROUP BY cohort_week
 ORDER BY cohort_week
```

#### Resultados de la consulta

| Inform | mación del trabajo | Resultados  | Visualiza | ción JSON         | Detalles de la     | ejecución Gr       | áfico de ejecución         |
|--------|--------------------|-------------|-----------|-------------------|--------------------|--------------------|----------------------------|
| Fila   | cohort_week ▼      | / total_con | ntacts -  | converted_7d ▼ // | converted_14d ▼ // | conversion_rate_7d | ▼ conversion_rate_14d ▼ // |
| 1      | 2025-32            |             | 1802      | 249               | 294                | 13.82              | 16.32                      |
| 2      | 2025-33            |             | 2309      | 292               | 335                | 12.65              | 14.51                      |
| 3      | 2025-34            |             | 2779      | 377               | 434                | 13.57              | 15.62                      |
| 4      | 2025-35            |             | 3562      | 554               | 641                | 15.55              | 18.0                       |
| 5      | 2025-36            |             | 4842      | 707               | 789                | 14.6               | 16.29                      |
| 6      | 2025-37            |             | 4093      | 735               | 778                | 17.96              | 19.01                      |
| 7      | 2025-38            |             | 4479      | 624               | 624                | 13.93              | 13.93                      |



- La semana 37 destaca como la más eficiente en términos de rapidez y volumen de conversiones.
- Analizar en profundidad la Semana 37. ¿Qué campañas estaban activas? ¿Qué canales de adquisición se utilizaron? ¿Hubo ofertas o promociones especiales?
- Volatilidad en la Calidad: A pesar de tener el mayor volumen (Semana 36), esta cohorte no fue la más rápida en convertirse (14,60% en 7 días).
- Anomalía en Semana 38: Las tasas de conversión a 7 y 14 días son idénticos (13,93%) .analisis incompleto, aun está ocurriendo
- Velocidad de la Conversión: La mayoría de las cohortes logran la mayor parte de sus conversiones en los primeros 7 días .

El porcentaje promedio de incremento en la conversión de clientes de semana a semana es aproximadamente del 13.79% →

indicador directo del rendimiento del equipo de ventas.

# Matriz de transición (número de contactos) & (tiempo de transición)

1. Crear una matriz de transición donde cada fila represente una etapa anterior y cada columna una etapa posterior y los valores deben representar el número de contactos que pasaron de una etapa a otra. Es decir:

#### Formato de la matriz:

- Filas ( from\_stage ) → etapa de origen.
- Columnas ( lead , marketingqualifiedlead , subscriber , customer ) → etapa de destino.
- Cada celda → número de contactos que pasaron de la etapa de origen a la etapa de destino.

- NULL significa que no había etapa anterior registrada para estos contactos.
- La matriz cuenta solo los contactos que tuvieron un cambio de etapa registrado en el periodo analizado.

```
WITH ordered_events AS (
  SELECT
    hs_object_id,
    lifecyclestage AS from_stage,
    lastmodified_ts,
   LEAD(lifecyclestage) OVER (PARTITION BY hs_object_id ORDER BY lastmodified_ts) AS to_stage
FROM 'bigdataarchitecture-453018.453018.events'
SELECT *
FROM (
  SELECT
   from_stage,
   to_stage,
  COUNT(hs_object_id) AS num_contacts
 FROM ordered_events
  WHERE to_stage IS NOT NULL
  GROUP BY from_stage, to_stage
PIVOT(
SUM(num_contacts) FOR to_stage IN
 ('lead', 'marketingqualifiedlead', 'subscriber', 'customer'))
ORDER BY from_stage
```

| Resultados de la consulta |                                                                                    |                        |    |        |       |                   |              |            |  |
|---------------------------|------------------------------------------------------------------------------------|------------------------|----|--------|-------|-------------------|--------------|------------|--|
| Inf                       | Información del trabajo Resultados Visualización JSON Detalles de la ejecución Gra |                        |    |        |       |                   |              |            |  |
| Fila                      | //                                                                                 | from_stage ▼           | // | lead ▼ | //    | marketingqualifie | subscriber ▼ | customer ▼ |  |
|                           | 1                                                                                  | null                   |    |        | 136   | 534               | 23           | 39         |  |
|                           | 2                                                                                  | 155548387              |    |        | null  | null              | null         | null       |  |
|                           | 3                                                                                  | customer               |    |        | 1     | null              | null         | 5674       |  |
|                           | 4                                                                                  | lead                   |    |        | 15260 | 5802              | null         | 51         |  |
|                           | 5                                                                                  | marketingqualifiedlead |    |        | 174   | 11919             | null         | 4007       |  |
|                           | 6                                                                                  | subscriber             |    |        | 1386  | 37                | 1358         | 6          |  |

contactos se iniciaron directamente como subscriber y 3 contactos se iniciaron directamente como customer. Campañas que saltan en las primeras etapa.



#### **1** a tomar en cuenta:

- retroceso/ fuga de MQLa Lead .
- estancamiento masivo de lead a lead .
- retroceso significativo de subscriber a lead .Este movimiento podría indicar desinterés o la activación de alguna regla de descalificación por inactividad.
- customer a customer: No es una transicion sino un evento de actualizacion o repeticion de compra.

# **V**rutas exitosas:

- Transición lead → MQL
- Transición MQL → Customer principal vía de ingresos.
- Transición subscriber → customer: Solo 6 conversiones. El suscriptor es una base de bajo rendimiento para la conversión final
- 2. Crea otra matriz de transición con la misma estructura (filas = etapa anterior, columnas = etapa posterior) y en lugar de números, cada valor debe representar el percentil 80 del tiempo que tarda en pasar de una etapa a otra.
  - Cada celda → percentil 80 del tiempo (en días) que tardaron los contactos en pasar de una etapa a otra.
  - Definición de percentil 80 → el 80% de los contactos tardó menos o igual que este valor en pasar de una etapa a otra.

```
WITH ordered_events AS (
 SELECT
   hs_object_id,
   lifecyclestage AS from_stage,
   lastmodified_ts,
   LEAD(lifecyclestage) OVER (PARTITION BY hs_object_id ORDER BY lastmodified_ts) AS to_stage,
  LEAD(lastmodified_ts) OVER (PARTITION BY hs_object_id ORDER BY lastmodified_ts) AS next_ts
 FROM 'bigdataarchitecture-453018.453018.events'
transition_times AS (
 SELECT
   from_stage,
   to_stage,
   DATE_DIFF(DATE(next_ts), DATE(lastmodified_ts), DAY) AS days_to_next
 FROM ordered_events
 WHERE to_stage IS NOT NULL
SELECT *
FROM (
 SELECT
   from_stage,
   to_stage,
   APPROX_QUANTILES(days_to_next, 5)[OFFSET(4)] AS p80_days
 FROM transition_times
 GROUP BY from_stage, to_stage)
PIVOT(MAX(p80_days) FOR to_stage IN ('lead', 'marketingqualifiedlead', 'subscriber', 'customer'))
ORDER BY from_stage;
```

#### Resultados de la consulta

| Información del trabajo |                        | Resultados | Visualiza | ación JSON        | Detalles de la | ejecución Gráfi |
|-------------------------|------------------------|------------|-----------|-------------------|----------------|-----------------|
| Fila /                  | from_stage ▼           | / lead ▼   | //        | marketingqualifie | subscriber ▼   | customer ▼      |
| 1                       | null                   |            | 0         | 0                 | 2              | 3               |
| 2                       | 155548387              |            | null      | null              | null           | null            |
| 3                       | customer               |            | 0         | null              | null           | 0               |
| 4                       | lead                   |            | 0         | 0                 | null           | 1               |
| 5                       | marketingqualifiedlead |            | 3         | 1                 | null           | 0               |
| 6                       | subscriber             |            | 0         | 0                 | 0              | 2               |

Para los contactos que comenzaron sin etapa:



- Tardaron hasta 2 días en llegar a subscriber y 3 días en llegar a customer.
- Entrada de Alta Calidad (O días): El80% de los contactos que inician como lead o marketingqualifiedlead lo hacen el mismo día de su creación (O días)
- Entrada Ligeramente Retrasada: El80% de los contactos que inician como subscriber o customer tardan2y3días, respectivamente.
- Velocidad Impresionante ( lead → MQL ): El80%de los leads se convierte en MQL el mismo día (0 días)

# Tarea 4: Visualizaciones

Enlace iterativo