CS492: Probabilistic Programming Amortised Inference

Hongseok Yang KAIST

- I. Generate $(w_1,r_1), ..., (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

 $w_1 = 1$

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = 1 * p(.4)/q(.4)

r_1 = .4
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4

w_2 = .144 * p(.6)/q(.6)

r_2 = .6
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4

w_2 = .144 * p(.6)/q(.6)

r_2 = .6
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4

w_2 = .144 * p(.6)/q(.6)

r_2 = .6
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

How to find good q?

```
w_1 = .096 * p(.4)/q(.4)

r_1 = .4

w_2 = .144 * p(.6)/q(.6)

r_2 = .6
```

- I. Generate $(w_1,r_1), \ldots, (w_n,r_n)$ by running prog.
- 2. Estimate $\mathbb{E}_{p(r|a,b,c)}[f(r)] \approx \sum_i f(r_i)^*(w_i/\sum_j w_j)$.

How to find good q? Use amortised inference!

Amortised inference.

Amortised inference. I) Learn a proposal q(x; y) parameterized by obs. y via preprocessing.

Amortised inference. I) Learn a proposal q(x; y) parameterized by obs. y via preprocessing. 2) Use $q(x;y_0)$ for any actual observation y_0 later.

Amortised inference. I) Learn a proposal $q(x; y) \leftarrow$ parameterized by obs. y via preprocessing. 2) Use $q(x;y_0)$ for any actual observation y_0 later.

neural nets

Amortised inference. I) Learn a proposal $q(x; y) \leftarrow$ parameterized by obs. y via preprocessing. 2) Use $q(x;y_0)$ for any actual observation y_0 later.

neural nets

Model for non-linear regression [Paige et al., ICML16]

Model for non-linear regression [Paige et al., ICML16]

Observed ımages

more preprocessing

Samples

W4kgvQ WA4rjvQ Woxewd9 BKvu2Q

uV7EeWB MqhnpT uV7FeWB MypppT mTTEMMm **RIrpES** C9QDsoN rS5FP2B

less preprocessing

Captcha solving [Le et al., AISTATS 16]

Learning outcome

Can describe how amortised inference works for models written in math.

Can explain key ideas behind implementing amortised inference for probabilistic programs.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Specified by p(x) and p(y|x). Interested in p(x|y). But specific y not given yet.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Find θ such that $q_{\theta}(x;y)$ is good for most y.

Differentiable wrt. θ for fixed x,y. E.g. $q_{\theta}(x;y) = normal(x; f_{\theta}(y), g_{\theta}(y))$ for neural nets f,g.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Proposal learning problem

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Find θ such that $q_{\theta}(x;y)$ is good for most y.

Proposal learning problem tackled by amortised inf.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Find θ such that $q_{\theta}(x;y)$ is good for most y.

Proposal learning problem tackled by amortised inf.

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Find θ such that $q_{\theta}(x;y)$ is good for most y.

Proposal learning problem tackled by amortised inf.

Given:

y sampled from p(y)

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.

Find θ such that $q_{\theta}(x;y)$ is good for most y.

Small KL divergence from p(x|y) to $q_{\theta}(x;y)$. KL[p(x|y) || $q_{\theta}(x;y)$]= $\mathbb{E}_{p(x|y)}$ [$log(p(x|y)/q_{\theta}(x;y))$].

Proposal learning problem

argmin_{θ} $\mathbb{E}_{p(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

Solve this by stochastic gradient descent.

inf.

y sampled from p(y)

Given:

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.
- Find θ such that $q_{\theta}(x;y)$ is good for most y.

Small KL divergence from p(x|y) to $q_{\theta}(x;y)$. KL[p(x|y) || $q_{\theta}(x;y)$]= $\mathbb{E}_{p(x|y)}$ [$log(p(x|y)/q_{\theta}(x;y))$].

Proposal learning problem

argmin_{θ} $\mathbb{E}_{p(y)}[KL[p(x|y)|| q_{\theta}(x;y)]].$ Solve this by stochastic gradient descent.

inf.

Given:

y sampled from p(y)

- I. joint dist. p(x,y) for latent x and observed y,
- 2. IS proposal $q_{\theta}(x;y)$ parameterized by θ & y.
- Find θ such that $q_{\theta}(x;y)$ is good for most y.

Small KL divergence from p(x|y) to $q_{\theta}(x;y)$. KL[p(x|y) || $q_{\theta}(x;y)$]= $\mathbb{E}_{p(x|y)}$ [$log(p(x|y)/q_{\theta}(x;y))$].

Initialise θ

Initialise θ $\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)}[KL[p(x|y)||q_{\theta}(x;y)]]$

Initialise θ

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

```
Initialise \theta
```

```
\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

```
Initialise \theta
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)}[KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

• • •

(until θ doesn't change much)

```
Initialise \theta
\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{p(y)}[KL[p(x|y)||q_{\theta}(x;y)]]
\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{p(y)}[KL[p(x|y)||q_{\theta}(x;y)]]
\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{p(y)}[KL[p(x|y)||q_{\theta}(x;y)]]
...
(until \theta doesn't change much)
```

```
Initialise \theta

\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

• • •

Can't compute, but can approximate.

```
Initialise \theta
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

. . .

Can't compute, but can approximate.

Sample $(x_1,y_1), ..., (x_n,y_n)$ from p(x,y).

```
Initialise \theta
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

• • •

Can't compute, but can approximate.

Sample $(x_1,y_1), ..., (x_n,y_n)$ from p(x,y).

```
\nabla_{\theta} \mathbb{E}_{P(y)} [\mathsf{KL}[p(x|y)||q_{\theta}(x;y)]] \approx -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i).
```

```
Initialise \theta
\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{p(y)}[KL[p(x|y)||q_{\theta}(x;y)]]
\theta \leftarrow \theta - 0.
Hard to sample x from p(x|y) for given y, but easy to sample (x,y) from p(x,y).

Thus, no problem in sampling.
```

```
Can't compute, but can approximate. Sample (x_1,y_1), ..., (x_n,y_n) from p(x,y). \nabla_{\theta}\mathbb{E}_{p(y)}[\mathsf{KL}[p(x|y)||q_{\theta}(x;y)]] \approx -1/n * \sum_{i=1..n}\nabla_{\theta} \log q_{\theta}(x_i;y_i).
```

Initialise θ

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

• • •

Exists since $q_{\theta}(x_i;y_i)$ is differentiable.

Can't compute, but can approximate.

Sample
$$(x_1,y_1), ..., (x_n,y_n)$$
 from $p(x,y)$.

$$\nabla_{\theta} \mathbb{E}_{p(y)} [\mathsf{KL}[p(x|y)||q_{\theta}(x;y)]] \approx -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i).$$

```
Initialise \theta
```

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

$$\theta \leftarrow \theta - 0.01 * \nabla_{\theta} \mathbb{E}_{P(y)} [KL[p(x|y)||q_{\theta}(x;y)]]$$

[Q] Prove that this is an unbiased estimator.

```
Can't compute, but can approximate.
Sample (x_1,y_1), ..., (x_n,y_n) from p(x,y).
```

$$\nabla_{\theta} \mathbb{E}_{p(y)} [\mathsf{KL}[p(x|y)||q_{\theta}(x;y)]] \approx -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i).$$

Initialise θ

Repeat the following until θ doesn't change much:

- I. Sample $(x_1,y_1), ..., (x_n,y_n)$ from p(x,y)
- 2. $G \leftarrow -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i)$
- 3. $\theta \leftarrow \theta 0.01 * G$

Using stochastic gradient descent, solve:

argmin_{θ} $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

Using stochastic gradient descent, solve:

argmin_θ $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_0)]$ for a given y_0 .

Using stochastic gradient descent, solve:

argmin_{θ} $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_{\theta})]$ for a given y_{θ} .

(a) KL[true||approx] vs KL[approx||true].

Using stochastic gradient descent, solve:

```
argmin<sub>θ</sub> \mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].
```

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_{\theta})]$ for a given y_{θ} .

(a) KL[true||approx] vs KL[approx||true].

Choice consistent with IS's condition on q_{θ} 's support.

Using stochastic gradient descent, solve:

```
argmin<sub>\theta</sub> \mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].
```

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_{\theta})]$ for a given y_{θ} .

(a) KL[true||approx] vs KL[approx||true].

Choice consistent with IS's condition on q_{θ} 's support.

Lets us avoid sampling from posterior $p(x|y_0)$.

Using stochastic gradient descent, solve:

argmin_θ $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_0)]$ for a given y_0 .

(a) KL[true||approx] vs KL[approx||true].

Using stochastic gradient descent, solve:

```
argmin<sub>θ</sub> \mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].
```

- [Q] Differences from stochastic variational inf.?
- SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_0)]$ for a given y_0 .
- (a) KL[true||approx] vs KL[approx||true].
- (b) Generated y vs given y₀.

Learning IS proposal qu(x;y)

Lets us avoid sampling x from posterior $p(x|y_0)$ for given y_0 . Just need to sample (x,y) from joint p(x,y).

Using stochastic gradient descent, solve:

argmin_θ $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_0)]$ for a given y_0 .

- (a) KL[true||approx] vs KL[approx||true].
- (b) Generated y vs given y₀.

Using stochastic gradient descent, solve:

argmin_θ $\mathbb{E}_{P(y)}[KL[p(x|y) || q_{\theta}(x;y)]].$

[Q] Differences from stochastic variational inf.?

SVI: $argmin_{\theta} KL[q_{\theta}(x) || p(x|y_0)]$ for a given y_0 .

- (a) KL[true||approx] vs KL[approx||true].
- (b) Generated y vs given y₀.

What about probabilistic programs?

Initialise θ

Repeat the following until θ doesn't change:

- I. Sample $(x_1,y_1), \ldots, (x_n,y_n)$ from p(x,y)
- 2. $G \leftarrow -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i)$
- 3. $\theta \leftarrow \theta 0.01 * G$

Initialise θ

Repeat the following until θ doesn't change:

- I. Sample $(x_1,y_1), \ldots, (x_n,y_n)$ from p(x,y)
- 2. $G \leftarrow -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i)$
- 3. $\theta \leftarrow \theta 0.01 * G$

Initialise θ

Repeat the following until θ doesn't change:

- I. Sample $(x_1,y_1), ..., (x_n,y_n)$ from p(x,y)
- 2. $G \leftarrow -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i)$
- 3. $\theta \leftarrow \theta 0.01 * G$

How to sample y?

Sample/observe duality

To sample observations, just replace sample by observe.

Sample/observe duality

To sample observations, just replace sample by observe.

Initialise θ

Repeat the following until θ doesn't change:

- I. Sample $(x_1,y_1), \ldots, (x_n,y_n)$ from p(x,y)
- 2. $G \leftarrow -1/n * \sum_{i=1..n} \nabla_{\theta} \log q_{\theta}(x_i;y_i)$

3. θ ← θ - 0.01 * G Compute during execution. Similar to the SVI case. Just a new rule for sample.

Last remark

People also use "amortised inference" to mean parameter sharing via neural net in a distr.

Silly example:

1.
$$q(x_1,x_2;\theta_1,\theta_2) = q(x_1;\theta_1)q(x_2;\theta_2)$$

2.
$$q(x_1,x_2;\theta) = q(x_1;f_{\theta}(1))q(x_2;f_{\theta}(2))$$

where f_{θ} is a neural net.

References

- Inference networks for sequential Monte Carlo in graphical models. Paige et al. ICML'16.
- 2. Inference compilation and universal probabilistic programming. Le et al. AISTATS'17.