Chapter 6 Wireless and Mobile Networks

Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Chapter 6: Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers!
- computer nets: laptops, palmtops, PDAs,
 Internet-enabled phone promise anytime untethered Internet access
- □ two important (but different) challenges
 - * wireless: communication over wireless link

Chapter 6 outline

6.1 Introduction

6.9 Summary

Wireless

- 6.2 Wireless links, characteristics
- □ 6.3 IEEE 802.11 wireless LANs ("wi-fi")

- ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
- □ 6.3 IEEE 802.11 wireless LANs ("wi-fi")

Wireless Link Characteristics (1)

Differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- □ SNR versus BER tradeoffs
 - given physical layer:
 increase power -> increase
 SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

– – · QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- □ B, A hear each other
- □ B, C hear each other
- □ A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- □ B, A hear each other
- □ B, C hear each other
- A, C can not hear each other interfering at B

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
- □ 6.3 IEEE 802.11 wireless LANs ("wi-fi")

IEEE 802.11 Wireless LAN

- □ 802.11b
 - 2.4-2.5 GHz unlicensed spectrum
 - up to 11 Mbps
 - direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

- □ 802.11a
 - 5-6 GHz range
 - up to 54 Mbps
- □ 802.11*g*
 - 2.4-2.5 GHz range
 - up to 54 Mbps
- □ 802.11n: multiple antennae
 - 2.4-5 GHz range
 - up to 200 Mbps
- r all use CSMA/CA for multiple access
- r all have base-station and ad-hoc network versions

802.11 LAN architecture

- wireless host communicates with base station
 - base station = access
 point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- □ host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

Passive Scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent:H1 to selected AP
- (3) association Response frame sent: H1 to selected AP

Active Scanning

- (1) Probe Request frame broadcast from H1
- (2) Probes response frame sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: H1 to selected AP

IEEE 802.11: multiple access

- □ avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - * can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for DIFS then transmit entire frame (no CD)

2 if sense channel busy then
start random backoff time
timer counts down while channel idle
transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after SIFS (ACK needed due to hidden terminal problem)

Basic access in absence of collisions

Binary random backoff

□ initial counter state:

contention window size:

$$CW = \begin{cases} 2^k CW_{\min} k < \hat{k} \\ CW_{\max} k \ge \hat{k} \end{cases}$$

□ example: 802.11b DSSS

```
\begin{array}{ccc}
CW_{min} & 32 \\
\hat{k} & 5 \\
CW_{max} & 1024
\end{array}
```


Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

RTS/CTS access method

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

Address 2: MAC address of wireless host or AP transmitting this frame

802.11 frame: addressing

802.11 frame

802.11 frame: more

802.11: mobility within same subnet

- □ H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5):
 switch will see frame
 from H1 and
 "remember" which
 switch port can be
 used to reach H1

Chapter 6 Summary

Wireless

- wireless links:
 - capacity, distance
 - * channel impairments
- □ IEEE 802.11 ("wi-fi")
 - CSMA/CA reflects wireless channel characteristics