МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА

Механико-математический факультет

a

б

В

Γ

1 Булевы функции

1.1 Определение булевой функции.

Обозначим за E множество $\{0,1\}$.

Определение. $f(x_1, \ldots, x_n) \in E$ — функция алгебры логики **(булева функция)**, где $x_i \in E \ \forall i = 1, \ldots, n$ — это отображение $f \colon E^n \to E$. Его можно проиллюстрировать таблицей возможных значений f на различных наборах переменных:

x_1 0 0	_	$ \begin{array}{c} x_{n-1} \\ 0 \\ 1 \end{array} $		$f(x_1,\ldots,x_n) \ 0$ или 1 0 или 1
1	1	 1	1	 0 или 1

Определение. P_2 — множество всех булевых функций от произвольного конечного множества переменных. $P_2(n)$ — множество всех булевых функций от n переменных.

Определение.
$$E^n = \{(\sigma_1, \dots, \sigma_n) | \sigma_i \in E; i = 1, \dots, n\}$$

Утверждение **1.1.** $|P_2(n)| = 2^{2^n}$.

□ Очевидно. ■

1.2 Существенные и фиктивные переменные.

Определение. Пусть $f(x_1, \ldots, x_n)$ — булева функция. Тогда x_i называется **существенной** переменной для f, если: $\exists \sigma_1, \sigma_2, \ldots \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_n \in \{0,1\}$, такие, что:

 $f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 0, \sigma_{i+1}, \dots, \sigma_n) \neq f(\sigma_1, \sigma_2, \dots, \sigma_{i-1}, 1, \sigma_{i+1}, \dots, \sigma_n)$. В противном случае переменная называется фиктивной (пример придумать не очень сложно).

- 1. Пусть x_i фиктивная переменная для f. Рассмотрим функцию $g(x_1,x_2,\ldots,x_{i-1},x_{i+1},\ldots,x_n),$ $g(\sigma_1,\sigma_2\ldots\sigma_{i-1},\sigma_{i+1},\ldots,\sigma_n)=f(\sigma_1,\sigma_2\ldots\sigma_{i-1},0,\sigma_{i+1},\ldots,\sigma_n)=f(\sigma_1,\sigma_2\ldots\sigma_{i-1},1,\sigma_{i+1},\ldots,\sigma_n).$ Тогда говорят, что g получена из f удалением фиктивной переменной x_i .
- 2. Пусть $f(x_1, \ldots, x_n)$ булева функция. Также, пусть имеется $y \neq x_1, \ldots, x_n$. Рассмотрим функцию $h(x_1, \ldots, x_n, y), \ h(\sigma_1, \ldots, \sigma_n, \sigma) = f(\sigma_1, \ldots, \sigma_n)$. Тогда говорим, что h получена из f добавлением фиктивной переменной y.

Определение. Две булевы функции называются **равными**, если они могут быть получены друг из друга с помощью некоторого числа операций добавления или удаления фиктивных переменных.

1.3 Элементарные функции:

1. От одной переменной.

x	0	x	\bar{x}	1
0	0	0	1	1
1	0	1	0	1

2. От двух переменных:

x	y	xy	$x \vee y$	$x \oplus y$	$x \sim y$	$x \to y$	x y	$x \downarrow y$
0	0	0	0	0	1	1	1	1
0	1	0	1	1	0	1	1	0
1	0	0	1	1	0	0	1	0
1	1	1	1	0	1	1	0	0

3. От трех переменных (функция "медиана"):

x	y	z	f(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

1.4 Формула над системой булевых функций.

 $\Phi = \{f_1(x_1, x_2, ..., x_{n_1}); f_2(x_1, x_2, ..., x_{n_2}); ...; f_n(x_1, x_2, ..., x_{n_n})\} \subseteq P_2$ — некоторое множество булевых функций, таких что каждой булевой функции $f_i(x_1, x_2, ..., x_{n_i})$ сопоставляем функциональный символ f_i .

Определение.

 Φ ормулой над Φ называется строка символов, состоящая из любых символов-переменных, обозначающих $f_1, ..., f_n$ и вспомогательных символов "(",")", ", определяемое индуктивным образом:

База индукции: символ любой переменной — правильная формула над Ф.

Индуктивное предположение: пусть $F_1, F_2, ..., F_{n_i}$ — некоторые формулы над Φ , тогда $f_i(F_1, F_2, ..., F_{n_i})$ — тоже формула над Φ .

Пример 4.1.
$$((\overline{x \lor y})\&(z \to y))$$
 — формула над $\{x \lor y; x\&y, x \to y, \overline{x}\}$

Конъюнкция имеет приоритет над дизъюнкцией.

Значения формулы на наборе значений переменных, входящих в формулу, определяется индуктивным образом.

База индукции: если f — тривиальная, то все очевидно.

Индуктивное предположение: пусть F_1, F_2, \ldots, F_n — формулы, для которых данное понятие уже определено.

$$F = f_i(F_1, F_2, \dots, F_{n_i});$$

 x_1, \ldots, x_n — все переменные, содержащиеся в F.

 $\Omega = (\sigma_1, \dots, \sigma_n)$ — набор значений x_1, \dots, x_n .

 Ω_i — поднабор значений из Ω для переменных, содержащихся в формуле F_i .

 b_j — значение функции F_j на наборе Ω_j .

Тогда значение F на наборе Ω равно $f_i(b_1,\ldots,b_{ni})$

Пусть F — формула над Φ , содержащая символы переменных x_1, \ldots, x_n . Тогда F реализует функцию $f(x_1, \ldots, x_n)$, т.ч для любого набора $(\sigma_1, \ldots, \sigma_n)$ значений x_1, \ldots, x_n значение $f(\sigma_1, \ldots, \sigma_n)$ равно значению формулы F на $\sigma_1, \ldots, \sigma_n$.

f получается из Φ с помощью операции суперпозиции, если F реализуется некоторой нетривиальной формулой над Φ .

Определение. Две формулы F_1 и F_2 называются **эквивалентными**, если они реализуют одинаковые функции.

Пусть $*\in \{\lor, \&, \oplus, \sim\}$ — некоторая операция.

1.
$$x * y = y * x$$
 (коммутативность)

2.
$$x * (y * z) = (x * y) * z$$
 (ассоциативность)

3.
$$x(y \lor z) = xy \lor xz$$

 $x(y \oplus z) = xy \oplus xz$
 $x \lor (y \& z) = (x \lor y) \& (x \lor z)$

 $x \lor (y \sim z) = (x \lor y) \sim (x \lor z)$ (дистрибутивность)

4.
$$x \lor xy = x$$
 (поглощение)

5.
$$\overline{\overline{x}} = x$$
 (двойное отрицание)

6.
$$\overline{x \lor y} = \overline{x} \& \overline{y}$$
 $\overline{x} \& \overline{y} = \overline{x} \lor \overline{y}$ (закон де Моргана)

7.
$$x\overline{x} = 0$$
, $x \vee \overline{x} = 1$, $x \oplus \overline{x} = 1$, $x \sim \overline{x} = 0$

$$xx = x, \ x \vee x = x, \ x \oplus x = 0, \ x \sim x = 1$$

$$x\&1 = x, \ x \vee 1 = 1, \ x \oplus 1 = \overline{x}, \ x \sim 1 = x$$

$$x\&0 = 0, \ x \vee 0 = x, \ x \oplus 0 = x, \ x \sim 0 = \overline{x}$$