PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization

Represent various image styles in a joint vision language space exploit text features

 Synthesize a variety of styles in a joint vision-language space via prompts to effectively tackle source-free domain generalization

*Style word vector is K = 80

Prompt-driven style generation

Learned style word vectors are used to synthesize style content features for training a classifier; these synthesized
features could simulate images of known contents with diverse unknown styles in the joint space

$$\mathcal{L}_{\text{style}} = \frac{1}{i-1} \sum_{j=1}^{i-1} \left| \frac{T(\mathcal{P}_i^{\text{ style}})}{\|T(\mathcal{P}_i^{\text{ style}})\|_2} \cdot \frac{T(\mathcal{P}_j^{\text{ style}})}{\|T(\mathcal{P}_j^{\text{ style}})\|_2} \right|$$

$$z_{imn} = \frac{T(\mathcal{P}_{i}^{\text{ style}} \circ \mathcal{P}_{m}^{\text{ content}})}{\|T(\mathcal{P}_{i}^{\text{ style}} \circ \mathcal{P}_{m}^{\text{ content}})\|_{2}} \cdot \frac{T(\mathcal{P}_{n}^{\text{ content}})}{\|T(\mathcal{P}_{n}^{\text{ content}})\|_{2}}$$

$$1 \sum_{i=1}^{N} \left(\exp(z_{imm}) \right)$$

$$\mathcal{L}_{\mathrm{content}} = -\frac{1}{N} \sum_{m=1}^{N} \log \left(\frac{\exp(z_{imm})}{\sum_{n=1}^{N} \exp(z_{imn})} \right)$$

Training a linear classifier using diverse styles

Results

• Comparison with the state-of-the-art domain generalization methods.

	Configuration		Accuracy (%)				
Method	Source Domain	Domain Description	PACS	VLCS	OfficeHome	DomainNet	Avg
T vitt nesse as room train	ResNet-	50 [22] with pre	e-trained weig	hts on Imag	geNet [6]	HELE CONTRACTOR STATE AND ASSESSMENT	
DANN [19]	/	-	83.6±0.4	78.6±0.4	65.9±0.6	38.3 ± 0.1	66.6
RSC [25]	/	_	85.2 ± 0.9	77.1 ± 0.5	65.5 ± 0.9	38.9 ± 0.5	66.7
MLDG [35]	/	-	84.9 ± 1.0	77.2 ± 0.4	66.8 ± 0.6	41.2 ± 0.1	67.5
SagNet [46]	/	_	86.3 ± 0.2	77.8 ± 0.5	68.1 ± 0.1	40.3 ± 0.1	68.1
SelfReg [28]	1	<u></u>	85.6 ± 0.4	77.8 ± 0.9	67.9 ± 0.7	42.8 ± 0.0	68.5
GVRT [44]	1	 8	85.1 ± 0.3	79.0 \pm 0.2	70.1 ± 0.1	44.1 ± 0.1	69.6
MIRO [5]	/	_	85.4 ± 0.4	79.0 \pm 0.0	70.5 \pm 0.4	44.3 ± 0.2	69.8
244000000000000000000000000000000000000	ResNet	-50 [22] with pre	e-trained weig	ghts from C.	LIP [50]		
ZS-CLIP (C) [50]	7. 3	=	90.6±0.0	76.0±0.0	68.6±0.0	45.6±0.0	70.2
CAD [53]	/	5 cos	90.0 ± 0.6	$81.2{\scriptstyle\pm0.6}$	70.5 ± 0.3	45.5 ± 2.1	71.8
ZS-CLIP (PC) [50]		/	90.7 ± 0.0	80.1 ± 0.0	72.0 ± 0.0	46.2 ± 0.0	72.3
PromptStyler	_	=	93.2±0.0	82.3 ± 0.1	73.6±0.1	49.5±0.0	74.7
	ViT-B/	16 [11] with pre	e-trained weig	hts from Cl	IP [50]		
ZS-CLIP (C) [50]	 :	-	95.7±0.0	76.4±0.0	79.9±0.0	57.8±0.0	77.5
MIRO [5]	/	_	95.6	82.2	82.5	54.0	78.6
ZS-CLIP (PC) [50]	-	/	96.1 ± 0.0	82.4±0.0	82.3±0.0	57.7±0.0	79.6
PromptStyler	-		97.2±0.1	82.9 ± 0.0	83.6±0.0	59.4 ±0.0	80.8
	ViT-L/	14 [11] with pre	-trained weig	hts from Cl	IP [50]		à
ZS-CLIP (C) [50]	-	 0	97.6±0.0	77.5±0.0	85.9 ± 0.0	63.3 ± 0.0	81.1
ZS-CLIP (PC) [50]	-	/	98.5 ± 0.0	82.4 ± 0.0	86.9 ± 0.0	64.0 ± 0.0	83.0
PromptStyler		-	98.6±0.0	82.4±0.2	89.1±0.0	65.5±0.0	83.9

t-SNE visualization results

- t-SNE visualization results for the target task VLCS (5 classes) using synthesized style-content features
 - 5 classes, 80 style word vectors

QnA

zaqxsw0526@gmail.com