Mathematisches Seminar Prof. Dr. Jan Kallsen Henrik Valett

Risk Management

Exercise Sheet 4

C-Exercise 12 (2 points)

(a) Write a *Python* function

which simulates n i.i.d. standard normal random variables and plots the corresponding cdf. Test the function for n = 10, n = 100 and n = 1000 each and plot the cdf of a standard normal distribution in the same graphics in order to compare it to its empirical cdfs.

(b) Compute the empirical value at risk and the empirical expected shortfall at level $\alpha = 90\%$ and $\alpha = 97.5\%$ of your generated data and compare them to their theoretical values.

Please comment your solution.

Useful Python commands: numpy.sort

T-Exercise 13 (4 points)

Suppose that losses L_n , n = 1, ..., 250 are i.i.d. with continuous cdf F. Determine the minimal threshold t such that

$$\mathbb{P}(\max\{L_1, \dots, L_{250}\} > t) < 0.05.$$

Determine t more explicitly if the L_n are

- (a) normally distributed with mean 0 and variance $\sigma^2 > 0$,
- (b) exponentially distributed with parameter $\lambda > 0$.

T-Exercise 14M (for mathematicians only) (4 points)

Let $(L_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. random variables with $E(L_1^2) < \infty$ and strictly increasing, continuous cdf F. Denote by F_n the empirical cdf of $L_1, ..., L_n$. Show that for all $\alpha \in (0,1)$ we have

$$\mathrm{ES}_{\alpha}(F_n) \stackrel{P}{\longrightarrow} \mathrm{ES}_{\alpha}(L_1)$$
 as $n \to \infty$.

C-Exercise 15 (6 points)

In this exercise we want to use a ARCH(2) model to estimate value at risk and expected shortfall of a portfolio loss. For this purpose we assume that our one dimensional risk factor changes $(X_n)_{n\in\mathbb{N}}$ follow the ARCH(2) model:

$$X_n = \sigma_n Y_n,$$

 $\sigma_n^2 = \alpha_0 + \alpha_1 X_{n-1}^2 + \alpha_2 X_{n-2}^2,$

with parameters $\vartheta = (\alpha_0, \alpha_1, \alpha_2) \in \Theta := (0, \infty)^3$ and iid standard normal random variables $(Y_n)_{n \in \mathbb{N}}$. We write

$$f_{\vartheta,X_1,X_2}^{(X_3,\ldots,X_n)}:\mathbb{R}^n\to\mathbb{R}$$

for the common pdf of (X_3, \ldots, X_n) under the probability measure P_{ϑ} .

(a) Write a *Python* -function

which returns the log likelihood function

$$L_n(\vartheta, x) = \log \left(f_{\vartheta, X_1, X_2}^{(X_3, \dots, X_n)}(x_3, \dots, x_n) \right)$$

evaluated at the parameter $\vartheta = (\alpha_0, \alpha_1, \alpha_2)$ and given historical risk factor changes $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

(b) Write a *Python* -function

theta_hat=estimates_ARCH2(x),

which computes the Maximum Likelihood estimates $\widehat{\vartheta}$ for given historical risk factor changes $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ in the ARCH(2) model.

Hint: Use scipy.optimize.minimize on $(0,5]^4$. As initial guess use $(\alpha_0, \alpha_1, \alpha_2) = [0.01, 0.2, 0.8]$ and the empirical standard deviation for σ_1 .

(c) Write a *Python* -function

$$[VaR,ES] = VaR_ES_ARCH2_MC(k,m,l,alpha,x),$$

that computes the value at risk and expected shortfall estimates for the k-period loss operator $l: \mathbb{R} \to \mathbb{R}$, level $\alpha \in (0,1)$ and given historical risk factor changes $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ using the Monte-Carlo method with $m \in \mathbb{N}$ simulations.

(d) Compute the logarithmic returns (x_2, \ldots, x_{8368}) of the DAX time series, that we use as risk factor changes. Compute for the last trading day in the time series the 5 day ahead estimates of value at risk and expected shortfall at level $\alpha = 0.98$ using k = 1000 simulations.

Please comment your solution.

Please comment your solution. Please include your name(s) as comment in the beginning of the file.

Submit until: Wednesday, 23.11.2022, 12:00

Discussion in tutorial: Monday, 28.11.2022 and Tuesday, 29.11.2022