

Machine Learning

Recommender Systems

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	→ ****
Love at last	5	5	0	6	
Romance forever	5	34.5	(3)0	0	$\rightarrow n_u$ = no. users
Cute puppies of love	?)5	4	0	(3)0	$n_m = \text{no. movie}$
Nonstop car chases	0				r(i,j) = 1 if user j
Swords vs. karate	10			(3) /r =	rated movie $y^{(i,j)} = \text{rating give}$
			2		$\frac{g}{}$ user j to mo
$n_{\alpha} =$	4	n _m = 5		l	(defined on
·				6,	r(i,j) = 1

 $\rightarrow n_m$ = no. movies r(i,j) = 1 if user j has rated movie i= rating given by user j to movie i(defined only if r(i,j) = 1

Machine Learning

Content-based recommendations

Content-based recommender systems

rating movie
$$i$$
 with $(\theta^{(j)})^T x^{(i)}$ stars. $\subseteq \Theta^{(i)} \in \mathbb{R}^{n}$

$$\chi^{(3)} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right] \longleftrightarrow \begin{array}{c} \Theta^{(i)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{array} \right] \left(\begin{array}{c} \Theta^{(i)} \end{array} \right)^T \chi^{(3)} = 5 \times 0.99$$

$$= 4.95$$

Problem formulation

- r(i,j) = 1 if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- \rightarrow $\theta^{(j)}$ = parameter vector for user j
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- ightharpoonup For user j , movie i , predicted rating: $(\theta^{(j)})^T(x^{(i)})$

- $m^{(j)}$ = no. of movies rated by user j
- To learn $\theta^{(j)}$:

$$\min_{\Theta_{(i)}} \frac{1}{2 \sqrt{2}} \sum_{i:r(i,j)=1}^{n} \frac{\left((\Theta_{(i)})^{T} (\chi_{(i)}) - y_{(i,j)} \right)^{2} + \frac{1}{2 \sqrt{2}} \sum_{k=1}^{n} (\Theta_{(k)}^{(i)})^{2}}{\left((\Theta_{(i)}^{(i)})^{T} (\chi_{(i)}) - y_{(i,j)} \right)^{2} + \frac{1}{2 \sqrt{2}} \sum_{k=1}^{n} (\Theta_{(i)}^{(i)})^{2}}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn
$$\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$$
:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

2(P(1) ... P(Nn))

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

Andrew Ng

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	,	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

i robiem n	, iotivat				V		X ₀ =
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	7 5	7 5	<u> </u>	7 0	1.1.0	A 0-1	<u> </u>
Romance forever	5	;	;	0	?	ý	x0= [10]
Cute puppies of love	?	4	0	?	?	?	(0.0)
Nonstop car chases	0	0	5	4	?	?	~(1)
Swords vs. karate	0	0	5	?	?	?	~1 (1)
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$, $\theta^{(2)}$	$\mathbf{C}^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	(e) (e)	(8)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5) (8,0)1,×(1,5)

Optimization algorithm

Given $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $\underline{x^{(1)},\dots,x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Given
$$\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

$$\Rightarrow$$
 Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:

$$= \sum_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

$$= \sum_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{k=1}^n \sum_{k=1}^n (x_$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1 \\ x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j = 1, ..., n_u, i = 1, ..., n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta}^T x$.

$$\left(\boldsymbol{\varsigma}^{(i)} \right)^{\mathsf{T}} \left(\boldsymbol{\varsigma}^{(i)} \right)$$

XOCI XER, OER"

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	^	^	1	1

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

Collaborative filtering

$$(Q_{\partial J})_{\perp}(x_{(i,j)})$$

$$\begin{bmatrix} 0 \\ 0 \\ ? \end{bmatrix}$$

$$\begin{array}{c}
T(x^{(1)}) \\
T(x^{(2)}) \\
\vdots
\end{array}$$

$$(\theta^{(2)})^T(x^{(1)}) \dots (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(2)})^T(x^{(2)}) \dots (\theta^{(n_u)})^T(x^{(2)})$$

$$[\theta^{(1)}]^T (x^{(n_m)}) \quad [\theta^{(2)}]^T (x^{(n_m)}) \quad \dots \quad [\theta^{(n_u)}]^T (x^{(n_m)})]$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2r)})^{T} \\ -(x^{(2r)})^{T} \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(1)})^{T} - \\ -(o^{(2)})^{T} - \\ -(o^{(n_{1})})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(1)})^{T} - \\ -(o^{(n_{1})})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(1)})^{T} - \\ -(o^{(2)})^{T} - \\ -(o^{(2)})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(o^{(2)})^{T} - \\ -(o^{(2)})^{T} - \\$$

Andrew Ng

Finding related movies

For each product i , we learn a feature vector $\underline{x^{(i)}} \in \mathbb{R}^n$.

How to find movies j related to movie i?

small
$$\| \times^{(i)} - \times^{(j)} \| \rightarrow \text{movie } j \text{ and } i \text{ one "similar"}$$

5 most similar movies to movie i: Find the 5 movies j with the smallest $\|x^{(i)} - x^{(j)}\|$.

Machine Learning

Implementational detail: Mean

normalization

Users who have not rated any movies

	•		-		V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		Г~	L	0	0	
→ Love at last	5	5	0	0	3,0		5	5	0	0	?
Romance forever	5	?	?	0		V	$\begin{bmatrix} 5 \\ 2 \end{bmatrix}$			0	9
Cute puppies of love	?	4	0	?	5 D	Y =		4	U	: 1	
Nonstop car chases	0	0	5	4	S □			0	6 5	$\frac{4}{0}$	· 2
Swords vs. karate	0	0	5	?	? D		Lo	U	3	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{$$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ \hline 0 & 0 & 5 & 0 \\ ? \end{bmatrix}$$

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y =$$

For user j, on movie i predict:

$$\Rightarrow (O^{(i)})^{T}(x^{(i)}) + \mu_{i}$$

User 5 (Eve):