Noções "muito" básicas de complexidade de algoritmos...

Para comparar o desempenho de algoritmos, pode-se realizar vários testes de execução (com diferentes entradas) e comparar os tempos de execução. Neste caso, vai haver uma dependência do processador usado, da memória disponível, etc. Uma outra forma (independente de máquina) é estimar o tempo, através da contagem do número de operações que o algoritmo precisa executar no pior, médio e/ou melhor caso. Através dessas estimativas, podemos avaliar a complexidade dos algoritmos.

Definição: a **complexidade** de **tempo** de um algoritmo, ou simplesmente **complexidade**, é a quantidade de trabalho executada pelo algoritmo.

Determinação da complexidade de um algoritmo: é escolhida uma (ou mais) operação do algoritmo, chamada de **operação fundamental**: é uma operação *chave* - por exemplo, para os algoritmos de ordenação, pode ser a operação de troca. A complexidade é baseada na contagem do número de operações fundamentais realizada pelo algoritmo durante sua execução. Exemplos: comparações ou trocas em um algoritmo de classificação.

- Normalmente a complexidade é uma função do tamanho (ou da quantidade de itens) da entrada: n
- **Notação O:** função que estima o tempo de execução, considerando n entradas: O(f(n))

Exemplo: se a complexidade de um algoritmo é definida por O(n), isso significa que o tempo de busca para n elementos é proporcional ao número de entradas do algoritmo. Assim, se o número de entradas aumenta três vezes, o tempo de busca triplica.

Busca-se obter algoritmos onde f(n) seja a "menor" função possível:

O(1) é melhor que

O(log n) é melhor que

O(n) é melhor que

O(n log n) é melhor que

 $O(n^2)$ é melhor que

O(2ⁿ) é melhor que

 $O(3^n)$ etc...

Os primeiros 5 casos são de algoritmos **polinomiais**, os dois últimos são de algoritmos **exponenciais**. Normalmente considera-se algoritmos polinomiais como tratáveis em tempo razoável e algoritmos exponenciais como intratáveis.

Exemplos de tempos necessários para executar algoritmos com diferentes funções de complexidade, em um mesmo computador:

tamanho n

	10	20	30	40	50
função de complexidade					
n	0.00001	0.00002	0.00003	0.00004	0.00005
	seg.	seg.	seg.	seg.	seg.
n ²	0.0001	0.0004	0.0009	0.0016	0.0025
	seg.	seg.	seg.	seg.	seg.
n ³	0.001	0.008	0.027	0.064	0.125
	seg.	seg.	seg.	seg.	seg.

2 ⁿ	0.001	1.0	17.9	12.7	35.7
	seg.	seg.	min.	dias	anos