Análisis II – Análisis matemático II – Matemática 3

Práctica 0: Repaso de integración y cambio de variables.

1. Principio de Cavalieri.

Ejercicio 1. Considerar un cuerpo que ocupa una región Ω en el espacio comprendida entre los planos z = a y $z = \ell$. Deduzca que el volumen del cuerpo se puede calcular como

$$V = \int_{a}^{\ell} A(t) dt,$$

donde A(t) es el área de la sección del cuerpo obtenido al intersecarlo con el plano z = t.

Ejercicio 2. Calcular el volumen de una región cilíndrica. Verificar que la fórmula resultante coincide con la fórmula empírica superficie de la base por altura.

Ejercicio 3. Calcular el volumen de la región encerrada por el paraboloide de ecuación $z = x^2 + y^2$ y el plano z = 2.

2. Fubini.

Ejercicio 4. Sea R el rectángulo $R = [-1, 1] \times [0, 1]$. Evaluar las siguientes integrales dobles:

(a)
$$\iint_R x^2 y \, dA$$
,

(b)
$$\iint_B x \cos(xy) dA$$
.

Ejercicio 5. Sea R el rectángulo arbitrario $[a,b] \times [c,d]$. Expresar mediante integrales simples la integral doble $\iint_R F(x,y) dA$ cuando F(x,y) está dada por

- (a) F(x,y) = f(x)g(y).
- (b) F(x,y) = f(x) + g(y).

3. Descripción de Regiones.

Ejercicio 6. Sea T el triángulo de vértices (0,0), (2,3) y (3,5). Describirlo como una región de tipo 1. Describirlo como una región de tipo 2. Hallar el área.

Ejercicio 7. Para cada una de las siguientes descripciones, graficar la región correspondiente y calcular el área respectiva.

- (a) $-1 \le x \le 1 + y$; $-1 \le y \le 1$, (b) $0 \le y \le \sqrt{1 x^2}$; $0 \le x \le 1$,

Ejercicio 8. Sea \mathcal{P} la pirámide cuyos vértices son (0,0,0),(1,0,0),(0,1,0) y (0,0,1). Describirla analíticamente. Hallar el volumen.

4. Aplicaciones de la integral.

Ejercicio 9. Valor medio: hallar el valor medio de la función $f(x,y) = x^2y$ en la región triangular de vértices (1,1), (2,0) y (0,1).

Ejercicio 10. Masa: hallar la masa de la región esférica de ecuación $x^2 + y^2 + (z - R)^2 = R^2$ sabiendo que la densidad de masa es proporcional a la componente z, digamos $\rho = \lambda z$.

Ejercicio 11. Campo gravitatorio: consideremos un cuerpo material con densidad $\rho(x,y,z)$ que ocupa la región $\Omega \subseteq \mathbb{R}^3$. A partir de las leyes de Newton, se sabe que el **vector** campo gravitatorio que aparece en el punto de coordenadas cartesianas (x, y, z) está dado por la siguiente integral, escrita en forma vectorial con $\mathbf{r} = (x, y, z)$, las coordenadas del punto donde queremos medir el campo, $\mathbf{r}' = (x', y', z')$, las coordenadas de un punto genérico del cuerpo y G una constante universal:

$$E(\mathbf{r}) = -G \iint_{\Omega} \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} \, \varrho(\mathbf{r}') \, dV(\mathbf{r}') \,.$$

Supongamos que el cuerpo ocupa una región acotada en el espacio, digamos $\Omega \subset B_R(0)$ y observemos que $||E(\mathbf{r})|| \sim \frac{1}{||\mathbf{r}||^2}$ cuando $||\mathbf{r}|| \to \infty$.

A medida que $\|\mathbf{r}\| \to \infty$, la dirección del vector \mathbf{r} - \mathbf{r} ' con \mathbf{r} ' $\in \Omega$ se parece más y más a la dirección

Esto hace suponer para puntos lejanos, el campo puede aproximarse por el campo gravitatorio que se obtiene al concentrar la masa total M en el origen: $E_0(\mathbf{r}) = -MG \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$

Probar que esto es realmente así. Es decir, probar que

$$\lim_{\|\mathbf{r}\| \to \infty} \|\mathbf{r}\|^2 \|E(\mathbf{r}) - E_0(\mathbf{r})\| = 0.$$

Nota: hemos usado la notación $\langle \mathbf{x}, \mathbf{y} \rangle$ para el producto escalar de los vectores. La idea del último ejercicio es aprovechar para hablar de integrar vectores y de la desigualdad $\| \int \mathbf{f} \| \leq \int \|\mathbf{f}\|$

5. Cambio de Variables.

Ejercicio 12. Sean $T(u,v) = T(x(u,v),y(u,v)) = (a_{11}u + a_{12}v,a_{21}u + a_{22}v)$ con $a_{ij} \in \mathbb{R}$. Sea D^* el rectángulo $[0,3] \times [1,3]$.

- (a) Hallar $D = T(D^*)$. ¿Es biyectiva T? Observar que D es un paralelogramo y hallar su área.
- (b) Describir el área de D en términos de una integral sobre D^* . Indicar que función hay que integrar y que relación tiene con T.

Ejercicio 13. Sea D el paralelogramo de vértices (1,2), (5,3), (2,5), (6,6). Calcular

- (a) $\int_D xy \, dx dy$
- (b) $\int_D (x-y) dxdy$

Sugerencia: plantear las integrales como integrales sobre el cuadrado $D^* = [0, 1] \times [0, 1]$.

Ejercicio 14. Sean $D^* = \{(r, \theta) : 0 \le r \le 1; \ 0 \le \theta \le 2\pi\}, \ D = \{(x, y) : x^2 + y^2 \le 1\}$ y P la transformación de coordenadas polares a cartesianas, es decir, $P(r, \theta) = (x(r, \theta), y(r, \theta)) = (r \cos \theta, r \sin \theta)$.

- (a) Mostrar que $P(D^*) = D$. Es bivectiva P?
- (b) ¿En qué transforma P el rectángulo $[r, r + \Delta r] \times [\theta, \theta + \Delta \theta]$?
- (c) Calcular la matriz $DP(r,\theta)$. ¿En qué transforma la aplicación dada por esta matriz al rectángulo dado en (b)? ¿Y en el caso r=0?
- (d) Escribir la demostración de la fórmula de cambio de variables en este caso (haciendo los dibujos correspondientes).

Ejercicio 15. Sean $D_1 = \{(r, \theta) : 0 \le r \le 1, 0 \le \theta \le 4\pi\}$ y P la transformación del ejercicio anterior.

- (a) Hallar $D = P(D_1)$.
- (b) Calcular $\int_D (x^2 + y^2) dxdy$ y $\int_{D_1} r^2 J drd\theta$ siendo J el jacobiano de la transformación polar. ¿Dan igual las dos integrales? ¿Por qué?

Ejercicio 16. Hallar el área acotada por la curva dada por la ecuación $(x^2 + y^2)^2 = 2a^2(x^2 - y^2)$. Esta curva se llama lemniscata.

Ejercicio 17. Calcular $\int_B z \, dx \, dy \, dz$ donde B es la región sobre el plano xy dentro del cilindro de ecuación $x^2 + y^2 \le 1$ y debajo del cono de ecuación $z = (x^2 + y^2)^{1/2}$.

Ejercicio 18. Sea E el elipsoide dado por $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1$.

- (a) Hallar el volumen de E.
- (b) Calcular $\int_E [(x^2/a^2) + (y^2/b^2) + (z^2/c^2)] dx dy dz$.

Ejercicio 19. Hallar el centro de masa del cilindro de ecuación $x^2 + y^2 \le 1$, $1 \le z \le 2$, si la densidad es $\rho = (x^2 + y^2)z^2$.

Ejercicio 20. Si un sólido W tiene densidad uniforme ρ , el momento de inercia alrededor del eje x está definido por,

$$I_x = \int_W \rho (y^2 + z^2) dx dy dz$$

y análogamente se definen I_y e I_z . Sea ahora W el sólido con densidad constante acotado por arriba por el plano z=a y por debajo por el cono descripto en coordenadas esféricas por $\phi=k$, donde k es una constante tal que $0 < k < \pi/2$. Dar una integral para su momento de inercia alrededor del eje z.