Functions and Graphs

Relation between Sets

- A relation R from A to B is a subset of the Cartesian product A x B.
- The domain of a relation R is the set of all the first members of the pairs (x, y) of R
- The range of a relation R is the set of all the second members of the pairs (x, y) of R.

Function

Let A and B be any two non-empty sets and f is a relation from A to B. Then, the relation f is called a function from A to B if f assigns each element of A to a unique element in B.

If f is a function from A to B, then we write $\ f{:}\ A o B$

The set A is called the domain of the function f, and the set B is called the co-domain of f. If the element x of A corresponds to y $(\in B)$ under the function f, then we say that y is the image of x under f and x is a pre-image of y under f and we write f(x) = y.

The subset of B containing the images of the elements of A is called the range of the function. The range of f is denoted by f(A).

In symbol, we write $f(A) = \{f(x) : x \in A\}$.

If f: A \rightarrow B is a function, then the subset $\{(x, f(x)): x \in A\}$ of A x B is called the graph of function f.

Example

(i)

$$f(1) = 4$$

$$f(2) = 5$$

$$f(3) = 6$$

Each element in A has unique image in B. So, f is a function.

(ii)

- f(a) = p
- f(b) = p
- f(c) = q

Every element of A has unique image in B. So, f is a function.

(iii)

f is not a function as the element c in A is associated to two different elements y and z of B.

Note:

(i) The sine, consine and tangents of the angles are the functions of an angle.

i.e
$$f(\theta) = \sin \theta$$

$$f(\theta) = \cos\theta$$

$$f(\theta) = \tan\theta \text{ etc.}$$

- (ii) The area of a square is a function of its side i.e. $f(x) = x^2$
- (iii) The economy of a country is a function of the number of good industries in the country.
- (iv) The temperature of a region recorded in a day time is shown below.

Time(T)	5 AM	9 AM	1 PM	3 PM	5 PM	9 PM
Temp. $(heta)$	20°C	22°C	23°C	21°C	21°C	18°C

Set of all ordered pairs (T, θ) for different values of T is the example of a function.

Equal functions

Let f and g be two functions from the set A to the set B. The functions f and g are said to be equal functions if f(x) = g(x) for all $x \in A$.

i.e.

(i) domain of f = domain of g

$$D_f = D_g$$

(ii) f(x) = g(x) for all $x \in D_f$.

Domain and Range of Trigonometric functions

functions	Domain	Range

sinx	R	[-1,1]
COSX	R	[-1,1]
tanx	R-(2n+1) $\dfrac{\pi}{2}$,n \in I	R
cotx	R-nπ, n∈I	R
secx	R-(2n+1) $\dfrac{\pi}{2}$,n \in I	R-(-1,1)
cosecx	R-n π , n \in I	R-(-1,1)

Domain and Range of Inverse Trigonometric functions

Inverse circular functions	Domain	Range
$y = \sin^{-1}x$	[-1, 1]	$[-\pi/2, \pi/2]$
$y = cos^{-1}x$	[-1,1]	$[0,\pi]$
$y = tan^{-1}x$	$(-\infty,\infty)$	$(-\pi/2, \pi/2)$
$y = \cot^{-1}x$	R	$(0,\pi)$
$y = cosec^{-1}x$	R - (-1, 1)	$[-\pi/2, \pi/2] - \{0\}$
$y = sec^{-1}x$	R - (-1, 1)	$[0,\pi]$ – $\{\pi/2\}$

Note:

The number of functions from a finite set A into a finite set B $(n(B))^{n(A)}$

Types of Function

One to one function or injective mapping

A function f: $A \rightarrow B$ is said to be one to one function if different elements in A have different images in B.

In symbol, for $x_1, x_2 \in A$

$$x_1 \neq x_2$$
 \Rightarrow $f(x_1) \neq f(x_2)$

or,
$$f(x_1) = f(x_2) \implies x_1 = x_2$$

Onto - function or surjective function

A function f: $A \rightarrow B$ is said to be an onto function if every element in B has at least one pre-image in A, otherwise it is said to be into.

In this case, f(A) = B. For into functions:

$$f(A) \subset B.$$
 (Proper)

Examples:

- (i) A constant function with singleton co-domain is an onto function.
- (ii) Every polynomial function f:R ightarrow R of degree odd is onto.

Bijective function

A function which is both one to one and onto i.e. both injective and surjective is known as a bijective function.

Many to one function

A function f: A ightarrow B is said to be many to one function if at least one element of B has more than one pre-images in A

Example:

A function f: $Z \rightarrow Z$ defined by f(x) = |x| is many to one function.

Constant function

A function $f: A \rightarrow B$ is a constant function if the range of the function is a **singleton set**. A function $f: R \rightarrow R$ defined by f(x) = c, for each $x \in R$ is a constant function;

Example:

 $f = \{(x, y) / x \text{ is a real number and } y = 3\}$

Identity function

Let A be any set A function f: $A \rightarrow A$ is said to be identity function if y = f(x) = x for all $x \in A$

Linear function

A function $f:R \to R$ defined by f(x)=ax+b, a. $b \in R$ where a and b are constants and $a \neq 0$ is called linear function.

In other words, let A and B be any two sets, then a function f: $A \rightarrow B$ defined by, y = f(x) = mx + c for $x \in A$ where m and c are constants and $m \neq 0$ is called linear function:

Exponential function

For every real number a > 0, (a \neq 1) the exponential function f with base a is defined by;

$$y = f(x) = a^x, x \in R$$

e^x is a typical exponential function

where e =
$$\lim_{n o \infty} \left(1 + \frac{1}{n}\right)^n$$
 = $\lim_{n o \infty} (1 + h)^{\frac{1}{h}}$

Quadratic function

A function f: A \rightarrow B is said to be quadratic if y = f(x) = ax² + bx +c (a \neq 0) for x \in A and a, b, c are constants.

Cubic function

A function f:R \rightarrow R defined by f(x) = $ax^3 + bx^2 + cx + d$ where a, b, c, d are constants and a \neq 0 is called a cubic function.

Polynomial function

A function f : A ightarrow B defined by

y = f(x) =
$$a_0x^n + a_1x^{n-1} + ----- + a_n$$
 ($a_0 \neq 0$) and n is non-negative integer.

is called polynomial function of degree n, where a_0 , a_1 , a_2 , a_n are constants.

Logarithmic function

The inverse of an exponential function is called a logarithmic function.

If
$$y = a^x$$
, $a \neq 1$, $a > 0$ then its inverse is $x = a^y$

Or,
$$y = \log_a x$$

Absolute value function

A function f(x) defined by f(x) = |x| is said to be an absolute value function and written as,

$$f(x) = |x| = \left\{egin{array}{ll} x & ext{if } x \geq 0 \ -x & x < 0 \end{array}
ight.$$

Domain (D_f) = R = $(-\infty,\infty)$

Range (R_f) = set of all non-negative real number s

$$=[0,\infty)$$

Signum function

A function f: R ightarrow R is called signum function if

$$f(x) = \left\{ egin{array}{ll} rac{|x|}{x} & ext{if } x
eq 0 \ 0 & ext{if } x = 0 \end{array}
ight.$$

Domain of $f(D_f) = R$ i.e. $(-\infty, \infty)$

Range of $f = \{1, -1, 0\}$

Reciprocal function

A function y = f(x) = 0, $x \neq 0$ is called reciprocal function.

Domain of $f(D_f) = R - \{0\}$

Range of $f(R_f) = R - \{0\}$

Note: $y = \frac{1}{x}$ is a rectangular hyperbola xy = 1

Greatest integer function i.e. [x]

A function f: $R \to R$ defined by f(x) = [x] is the greatest integer function less or equal to x.

Greatest integer function [x] means the greatest integer not exceeding x.

Inverse function

If function f: A \to B bijective, then there exists a function f^{-1} : B \to A is called inverse function of. Then, f_0f^{-1} is identity function on B and $f^{-1}f_0$ is identity function on A.

Inverse function of f exists if the function is one to one and onto.

Even and Odd functions

A function $f: R \to R$ is said to be (i) even if f(-x) = f(x) and (ii) odd if f(-x) = -f(x) for all $x \in R$.

e.g. x^2 , $\cos x$, $x^2 + |x| - \sin^2 x$ etc. are even functions and $x^3 - 3x$, $\tan x + \sin^3 x$ etc. are odd functions, whereas $x^2 + x$ is neither even nor odd.

Composite function

Let f: $A \rightarrow B$ and g: $B \rightarrow C$, then the composite of f and g denoted by gof is a function from A to C.

i.e. (gof): $A \rightarrow C$, defined by (gof) (x) = g(f(x))

for all $x \in A$.

Table for Domain and Range

Function f(x)	Domain	Range
1. y = sinx	R	[-1, 1]
2. y = cosx	R	[-1, 1]
3. y = tanx	$R-(2n+1)\frac{\pi}{2}$	R
4. y = cotx	R - np	R
5. y = secx	$R-(2n+1)\frac{\pi}{2}$	[-∞,-1]∪[1,∞)
6. y = cosecx	R - np	(-∞,-1]∪[1,∞)
7. y = c	R	{c}

8. $y = x^2$	R	$[0,\infty)$
9. $y = \frac{1}{x^2}$	R - {0}	$(0,\infty)$
10. y = $\sqrt{a^2-x^2}$, $a>0$	[-a, a]	[0, a]
11. $y = \frac{1}{\sqrt{a^2 - x^2}}$	(-a, a)	[1/a, ∞)
12. y = x	R	$[0,\infty)$
13. $y = e^x$	R	$(0,\infty)$
14. $y = a^x$	R	$(0,\infty)$, $\alpha \neq 1$
15. y = logx	(0, ∞)	R
16. y = [x]	R	

Algebra of Real valued Functions

Let f: R \rightarrow R and g : R \rightarrow R be two real valued functions and k \in R. Then,

- (i) $(f \pm g)(x) = f(x) \pm g(x)$
- (ii) (f + k)(x) = f(x) + k
- (iii) (fg)(x) = f(x)g(x)

(iv)
$$\left(\frac{f}{g}\right)$$
(x) = $\frac{f(x)}{g(x)}$; g(x) \neq 0

(v) (|f|) (x) = |f(x)|

E.e. if $f : R \to R$ and $g : R \to R$ are given by f(x) = x + 3 and $g(x) = x^2$, then (i) $(fg + 3)(x) = f(x)g(x) + 3 = (x + 3)x^2 + 3 = x^3 + 3x^2 + 3$.

Logarithms

• Functions which are not algebraic are transcendental functions viz. exponential, logarithmic, trigonometric, inverse trigonometric functions.

Exponential function

For every real number a >0, a \neq 1 the exponential function f with base a is defined by y = f(x) = a^x , x \in R. It is bijective.

e^x is a typical exponential function,

where
$${\sf e}$$
 = $\displaystyle \lim_{n o \infty} \left(1 + \dfrac{1}{n}
ight)^n$

$$y = f(x) > 0$$
, Domain = R, Range = $(0, \infty)$

Logarithmic function

Let $y = a^x$ (a > 0, $a \ne 1$) be an exponential function. Then its inverse $x = a^y$ is the logarithmic function to the base a. It is also written as $y = \log_a x$.

Common logarithms and natural logarithms

Logarithms to the base 10 are called common logarithms. Log₁₀x is called common logarithm.

Logarithm to the base e is called **natural logarithm**. It is denoted by $\ln(x)$ or $\log_{e}x$.

Note

i.
$$2^3 = 8 \Leftrightarrow 3 = \log_2 8$$

 $4^3 = 64 \Leftrightarrow 3 = \log_4 64$
 $5^2 = 25 \Leftrightarrow 2 = \log_5 25$
 $10^1 = 10 \Leftrightarrow 1 = \log_{10} 10$
ii. $\log_{10} x = (0.4343) \ln x$
 $\ln x = (2.3026) \log_{10} x$

Characteristic and mantissa

The integral part of a common logarithm is called characteristic and fractional part when expressed as decimal is called mantissa.

The characteristic of the logarithms of a positive number > 1 is less by one then the number of digits in its integral part and is non-negative.

Examples:

Characteristic of log 613 \rightarrow (3 - 1) = 2

Characteristic of log 527 ightarrow 2

Characteristic of log 98.275 \rightarrow (2 - 1) = 1

Characteristic of log 28.538 ightarrow 1

Characteristic of log 3349 \rightarrow (4 - 1) = 3

Characteristic of log 6234 .78 \rightarrow (4 - 1) = 3

The characteristic of the logarithms of a positive decimal fraction less than one is negative and one more than the number of consecutive zeros immediately after the decimal part.

Examples:

Characteristic of log (0.7892) ightarrow -1

Characteristic of log (0.632) ightarrow -1

Characteristic of log (0.0234) ightarrow -2

Characteristic of log (0.07892) ightarrow -2

Characteristic of log (0.00325) ightarrow -3

Characteristic of log $(0.000382) \rightarrow -4$

Principal Properties of Logarithm

(We Always Take Base > 0, \neq 1)

i.
$$\log_a a = 1$$
, $\log_a 1 = 0$ ($a > 0$, $a \ne 1$)
ii. $\log_a b = \frac{1}{\log_b a}$ (base > 0 and $\ne 1$)

iii.
$$\log_a b = \log_c b . \log_a c = \frac{\log_c b}{\log_c a}$$

II. For x > 0, y > 0, base > 0, $\neq 1$, we have :

i.
$$\log_{\alpha}(xy) = \log_{\alpha}x + \log_{\alpha}y$$

ii. $\log_{\alpha}(x/y) = \log_{\alpha}x - \log_{\alpha}y$
iii. $\log_{\alpha}(x^n) = n \log_{\alpha}x$
iv. $\log_{\alpha}(x) = 1/n \log_{\alpha}x$
v. $\log_{\alpha}(x^m) = \log_{\alpha}x$

III. More generally, we have:

i.
$$\log_a(xy) = \log_a |x| + \log_a |y|$$
, $(xy > 0)$
ii. $\log_a(x/y) = \log_a |x| - \log_a |y|$, $(xy > 0)$
iii. $\log_a x^{2k} = 2k \log_a |x|$, $(x \neq 0, k \text{ any integer})$
iv. $\log_{a2k}(x) = \frac{1}{2k} \log_{|a|} x$, $(a \neq 0, |a| \neq 1, k \neq 0, x > 0)$