Indian Institute of Space Science and Technology Thiruvananthapuram

${\bf B. Tech \ \textbf{-} \ 2nd \ Semester, \ 2017} \\ {\bf MA121 \ \textbf{-} \ Vector \ Calculus \ and \ Differential \ Equations}$

Quiz-I

Date: 13th March, 2017

Time: 9:00am to 10:00am

(Answer all questions; each of 3 marks. Total marks 15.)

- 1. (a) Define directional derivative of a function $f:D\longrightarrow \mathbb{R}$ at a point $P_0\in D\subset \mathbb{R}^2$ along a unit vector \vec{v} . [1]
 - (b) Let $f: \mathbb{R}^2 \longrightarrow R$ be given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & if (x,y) \neq (0,0) \\ 0 & otherwise \end{cases}$$

Suppose $\vec{v} = (v_1, v_2)$ be an unit vector in \mathbb{R}^2 such that $v_1 \neq 0 \neq v_2$.

- i. Check whether $D_x f|_{(0,0)}$, $D_y f|_{(0,0)}$ and $D_{\vec{v}} f|_{(0,0)}$ exist.
- ii. If $D_{\vec{v}}f|_{(0,0)}$ exists, is it possible to express $D_{\vec{v}}f|_{(0,0)}$ in terms of the linear combination $D_x f|_{(0,0)}$ and $D_y f|_{(0,0)}$?
- iii. Is f is differentiable at (0,0)? Justify your answer.

[4]

- 2. (a) Let $C:=\gamma(t),\ t\in [a,b]$ be a C^1 -type curve. Show that -C is also of C^1 -type. [2]
 - (b) Let C be a curve given by the cartesian equation

$$x^2 = y$$
, $z^2 = y$, $x \ge 0$, $z \ge 0$.

Parametrize the curve with initial point (0,0,0). Find the arc length function of the given curve with initial point (0,0,0). [3]

- 3. (a) Let $f:D\longrightarrow \mathbb{R}$ be a continuous scalar field where $D\subset \mathbb{R}^2$. Let $C:=\gamma(t),\ t\in [a,b]$ be a C^1 -type curve. Show that $\int_C f=\int_{-C} f$. [2]
 - (b) Let $\vec{F}:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ be given by $\vec{F}(x,y,z)=(yz,zx,x^2+y^2)$ for all $(x,y,z)\in\mathbb{R}^3$, and C be a curve given by $C:\gamma(t)=(\cos t,\sin t,5),\ t\in[0,\pi].$ Does $\int_C \vec{F}$ exists? If yes, find the value of $\int_C \vec{F}.$ [3]

