MAT02025 - Amostragem 1

AAS: validade da aproximação normal ou o TCL para população finita

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

└─ Teorema Central do Limite para população finita

Teorema Central do Limite para população finita

- Quando as observações individuais Y₁, Y₂,..., Y_n não são normalmente distribuídas, os níveis de confiança aproximados dos intervalos de confiança usuais dependem da distribuição normal aproximada da média amostral ȳ.
- Se Y₁, Y₂,..., Y_n são uma sequência de variáveis aleatórias independentes e identicamente distribuídas com média e variância finitas, a distribuição de

$$\frac{\overline{y} - \overline{Y}}{\sqrt{\mathsf{Var}\left(\overline{y}\right)}}$$

aproxima-se de uma distribuição normal padrão à medida que *n* aumenta, pelo teorema central do limite (TCL).

 O resultado também é válido se a variância for substituída por um estimador razoável da variância.

- Quando uma população finita é amostrada usando amostragem aleatória simples com reposição, as n observações são de fato independentes e identicamente distribuídas, de modo que o TCL usual se aplica.
- No entanto, com a amostragem aleatória simples sem reposição, as observações da amostra não são independentes.
 - Selecionar uma unidade com um grande valor de Y no primeiro sorteio, por exemplo, remove essa unidade da lista de seleção, e portanto, reduz a probabilidade de obter um valor alto de Y nos sorteios subsequentes.

Uma versão especial do TCL se aplica à amostragem aleatória simples sem reposição de uma população finita¹²³.

¹Hajek, J. (1960). Limiting distributions in simple random sampling from a finite population. *Pub. Math. Inst. Hungarian Acad. Sci.*, 5, 361-374.

²Erdos, P., and Renyi, A. (1959). On the central limit theorem for samples from a finite population. *Pub. Math. Inst. Hungarian Acad. Sci.*, 4, 49-57.

³Madow, W. G. (1948). On the limiting distributions of estimates based on samples from finite universes. *Ann. Math. Stat.*, 19, 535-545.

- Para amostrar sem reposição de uma população finita, é necessário pensar em uma sequência de populações, com o tamanho da população N se tornando grande junto com o tamanho da amostra n.
- Para a população com um determinado tamanho N na sequência, seja \overline{Y}_N a média da população e \overline{y}_N a média amostral de uma amostra aleatória simples selecionada dessa população.

▶ De acordo com o teorema central do limite para população finita, a distribuição de

$$\frac{\overline{y}_N - \overline{Y}_N}{\sqrt{\mathsf{Var}\left(\overline{y}_N\right)}}$$

aproxima-se da distribuição normal padrão à medida que n e N-n se tornam grandes.

- ▶ O resultado também é válido para $Var(\overline{y}_N)$ substituída pela variância estimada $\widehat{Var}(\overline{y}_N)$ da média amostral de uma amostra aleatória simples de tamanho n de uma população de tamanho N.
- Uma condição técnica do teorema requer que, na progressão das populações hipotéticas de tamanho crescente, a contribuição (proporcional) de qualquer unidade na variância populacional não seja muito grande.

Comentário

▶ Por este resultado, e as demais propriedades dos estimadores, estudados nas aulas anteriores, para o esquema de amostragem aleatória simples, é possível contruir estimativas intervalares do tipo

$$\overline{y} \pm \frac{zs}{\sqrt{n}} \sqrt{1-f}$$
.

- ▶ É importante salientar que este é um intervalo de confiança aproximado, pois a distribuição do estimador é aproximada.
 - A qualidade da aproximação, como visto no TCL para populações finitas, depende do tamanho da amostra n e da relação N-n.

Alguns detalhes

- ▶ O TCL para população finita requer o conceito de uma sequência de populações $U_1, U_2, ...$
 - A N-ésima população na sequência tem N unidades e valores Y_{1N}, Y_{2N},..., Y_{NN}.
- ▶ O tamanho da amostra aleatória simples selecionada da *N*-ésima população, n_N , também depende de *N*, e a média (amostral) dessa amostra é $\overline{y}_N = \sum_{i=1}^{n_N} Y_{iN}/n_N$.

Alguns detalhes

Para qualquer constante $\epsilon > 0$, denote o conjunto de unidades com valores de Y mais distantes da média na N-ésima população por

$$A_N = \left\{i: |Y_{iN} - \overline{Y}_N| > \epsilon \sqrt{n_N(1 - f_N)S_N^2} \right\},$$

em que \overline{Y}_N , f_N e S_N^2 são, respectivamente, a média populacional, a fração de amostragem e a variância populacional na N-ésima população da sequência de populações.

Alguns detalhes

► Se a condição de Lindeberg-Hájek

$$\lim_{N\to\infty}\frac{\sum_{A_N}(Y_{iN}-\overline{Y}_N)^2}{(N-1)S_N^2}=0,$$

é satisfeita, então

$$\frac{\overline{y}_N - \overline{Y}_N}{\sqrt{\mathsf{Var}(\overline{y}_N)}} \stackrel{\mathcal{D}}{\longrightarrow} N(0,1),$$

conforme $n_N \to \infty$ e $(N - n_N) \to \infty$ quando $N \to \infty$.

Algumas avaliações empíricas

Algumas avaliações empíricas

- ➤ A população⁴ de 53940 diamantes (objeto diamonds no pacote ggplot2 do R) pode ser usada para ilustrar o TCL para população finita.
- Distribuição do peso em quilates (Y) dos diamantes na própria população.

⁴Para fins ilustrativos, vamos supor que este conjunto de dados forma uma população de diamantes.

- Observe que a variável de interesse na população não tem distribuição normal, tendo uma forma assimétrica e acidentada.
- ► Em seguida, vamos apresentar distribuições da média amostral, obtidas pela repetição da seleção da amostra, utilizando amostragem amostragem aleatória simples sem reposição, nesta população de tamanho N = 53940, com tamanhos de amostra $n \in \{1, 5, 20, 50, 100, 1000\}$.

▶ Os histogramas dos slides anteriores mostram que conforme o tamanho da amostra n aumenta, a distribuição de \overline{y} torna-se cada vez mais próxima da normal, desde que N-n também seja suficientemente grande.

10.5 Ilustração numérica

Nesta seção, vamos ilustrar o comportamento da aproximação normal para a distribuição da média amostral \bar{y} . Conforme visto na Seção 10.1 com relação à AASs, a distribuição de $\sqrt{n}(\bar{y} - \mu)/\sqrt{(1-f)s^2}$ é aproximadamente N(0,1). Portanto, a probabilidade de cobertura do intervalo de confiança para a média populacional μ ,

(10.9)
$$\left(\overline{y} - z_{\alpha}\sqrt{(1-f)\frac{s^2}{n}}, \overline{y} + z_{\alpha}\sqrt{(1-f)\frac{s^2}{n}}\right),$$

deve ser próxima de $\gamma=1-\alpha$ em grandes amostras. Para $\gamma=0,95$ ($z_{\alpha}=1,96$) devemos ter cobertura próxima de 95%, ou seja, para cada 100 intervalos construídos, aproximadamente 95% devem conter o verdadeiro valor da média populacional μ . Para demonstrar este fato empiricamente, simulamos populações de tamanho

N=1.000 a partir das distribuições normal, t-Student (4 graus de liberdade), gama e Gumbel com média 400 e desvio padrão 150. Para cada população, foram retiradas 100.000 amostras, segundo a AASs, de tamanhos $n=10,\,20,\,30,\,40,\,50,\,100$ e 200. Para cada amostra retirada foi calculado o intervalo (10.9) e verificado se contém ou não a média populacional μ para cada uma das distribuições. Estas probabilidades de coberturas estimadas (empíricas) estão apresentadas na Tabela 10.1. Pode-se notar claramente que mesmo para n pequenos as probabilidades de cobertura estimadas estão relativamente próximas das correspondentes probabilidades teóricas de cobertura e que a medida que n cresce, elas vão ficando mais próximas ainda.

Exemplo 2_{Tabela 10.1: Probabilidades de coberturas estimadas (em porcentagem)}

γ	n	$_{normal}$	t_4	gama	Gumbel
	10	86,5	86,6	85,9	85,7
	20	88,4	88,1	88,0	87,8
	30	88,9	89,0	88,7	88,5
90%	40	89,2	89,2	89,0	88,9
	50	89,2	89,1	89,1	89,0
	100	89,7	89,5	89,7	89,5
	200	89,9	89,6	89,6	89,9
95%	10	91,8	92,2	91,1	90,7
	20	93,5	93,6	93,1	92,7
	30	94,0	94,0	93,8	93,4
	40	94,4	94,3	94,0	93,8
	50	94,4	94,4	94,2	94,1
	100	94,8	94,7	94,6	94,5
	200	95,0	94,9	94,9	94,8
99%	10	97,1	97,3	96,2	96,1
	20	98,1	98,3	97,7	97,5
	30	98,5	98,5	98,2	98,1
	40	98,5	98,7	98,4	98,3
	50	98,7	98,7	98,5	98,4
	100	98,9	98,9	98,7	98,7
	200	98,9	98,9	98,9	98,8
médias populacionais (μ)		403,9	384,9	393,4	398,8
desvios padrões pop. (S)		148,1	145,9	144,8	146,3

Para casa

- Revisar os tópicos discutidos nesta aula.
- ► Ler o capítulo 10 do Livro "Elementos de amostragem" (disponível no Sabi+).

⁵Bolfarine, H. e Bussab, W. O. Elementos de amostragem, Blucher, 2005.

Próximas aulas

- ► Atividade de Avaliação II.
- Estimativa de proporções e percentagens.

Por hoje é só!

Bons estudos!

