MA2261 Linear Statistical Models

Chapter 1: Probability

Dr. Ting Wei

MA2261 Linear Statistical Models

Section 1.1: Concepts of probability

Question

► Can you think of an example of a random event?

Sample space

- A sample space is a list of outcomes of a random experiment, normally denoted by Ω .
- Examples:
 - a) Tossing a coin: $\Omega = \{H, T\}$.
 - b) Rolling a dice: $\Omega = \{1, 2, 3, 4, 5, 6\}.$
 - c) Tossing two coins: $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}.$

Question

- ► So the sample space is a set.
- ▶ For instance, when tossing a coin: $\Omega = \{H, T\}$.
- ▶ Lets consider the outcome 'head' that is the set {*H*}
- ▶ What is the relation between the two sets $\{H\}$ and $\{H, T\}$?

Basic rules of set operations

For any subsets $A, B \subseteq \Omega$,

- ▶ Commutative law: $A \cup B = B \cup A$, and $A \cap B = B \cap A$.
- Associative law: $(A \cup B) \cup C = A \cup (B \cup C)$, and $(A \cap B) \cap C = A \cap (B \cap C)$.
- Distributive law: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, and $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.
- ▶ De Morgan's rules: $(A \cup B)^c = A^c \cap B^c$, and $(A \cap B)^c = A^c \cup B^c$.

Elementary results

- $ightharpoonup A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A$,
- $ightharpoonup A \cap \emptyset = \emptyset$ and $A \cup \emptyset = A$,
- $ightharpoonup A \cap \Omega = A$ and $A \cup \Omega = \Omega$,
- $ightharpoonup A \cap A = A \cup A = A$,
- $ightharpoonup A \cap B \subseteq A$ and $A \cap B \subseteq B$,
- \triangleright $A \subseteq B \Rightarrow A \cap B = A$,
- $\blacktriangleright \ A \subseteq B^c \Rightarrow A \cap B = \emptyset,$
- $(A^c)^c = A,$
- ▶ $A \cup A^c = \Omega$, and $A \cap A^c = \emptyset$.

Events in a sample space

- ► An event is a subset of a sample space.
- Example: we toss a dice twice.

$$\Omega = \{(1,1), (1,2), (1,3)\dots, (5,6), (6,6)\}.$$

The event 'the second toss is 6' is

$$A = \{(1,6), (2,6), (3,6), (4,6), (5,6), (6,6)\}.$$

Question

- Suppose you are tossing a dice twice, so $\Omega = \{(1,1), (1,2), (1,3), \dots, (5,6), (6,6)\}.$
- Can you spot a difference between the pair of events (1,2), (4,5) and (1,2), (1,3) ?

Disjoint events

- ▶ Events $A_1, \dots A_n$ are disjoint if for all $i \neq j$, $A_i \cap B_j = \emptyset$.
- For instance if we toss a dice twice, the events (1,2), (4,5) are disjoint, but the events (1,2), (1,3) are not.

Sigma-algebras

- Intuition: given events A, B we want $A \cup B$ to be the event 'A or B'. We also want 'A does not happen' to be an event.
- ightharpoonup A sigma-algebra on a sample space Ω is a collection $\mathcal F$ of subsets of Ω such that
 - 1) $\Omega \in \mathcal{F}$.
 - 2) if $A \in \mathcal{F}$, $A^c \in \mathcal{F}$.
 - 3) If A_1, A_2, \ldots are in \mathcal{F} , $\bigcup_{i=1}^{\infty} A_i$ is in \mathcal{F} .

Example of a sigma-algebra

- \blacktriangleright { \emptyset , Ω }, is a σ -algebra.
- ▶ $\{A, A^c, \emptyset, \Omega\}$ is a σ -algebra.
- ► The collection of all subsets of Ω is a σ-algebra and called the power set of Ω, which is denoted by $\mathbb{P}(Ω)$.
- $\mathcal{F} = \mathbb{P}(\Omega)$ is the only σ -algebra we will consider from now on.

Probability spaces

- A probability function is a function $P : \mathcal{F} \to [0,1]$. This maps each event to its probability of occurrence.
- ▶ We also impose the probability axioms:
 - 1) $P(\emptyset) = 0$.
 - 2) $P(\Omega) = 1$.
 - (Countable additivity)
 If A₁, A₂, . . . ∈ F are disjoint

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i) .$$

▶ The triple (Ω, \mathcal{F}, P) is called a probability space.

Examples of probability spaces

- Fair coin toss $\Omega = \{H, T\}$, $\mathcal{F} = \mathbb{P}(\Omega)$, P(H) = P(T) = 1/2, $P(\emptyset) = 0$, $P(\Omega) = 1$.
- Unfair coin toss: choose $0 \le p \le 1$ and put $\Omega\{(H, T)\}$, $\mathcal{F} = \mathbb{P}(\Omega)$, and define P by $P(\emptyset) = 0$, $P(\Omega) = 1$ and $P(\{H\}) = p$, $P(\{T\}) = 1 p$.
- ▶ 6-sided fair dice: $\Omega = \{1, 2, 3, 4, 5, 6\}$, $\mathcal{F} = \mathbb{P}(\Omega)$, P(A) = |A|/6, where |A| is the size of the subset A.
 - F(A) = |A|/0, where |A| is the size of the subset A.

Basic results on probability

One can prove the following properties

Let P be a probability function on a sigma-algebra $\mathcal F$ and let $A,B\in\mathcal F$. Then:

i)
$$P(A^c) = 1 - P(A)$$

ii) If
$$A \subseteq B$$
 then $P(A) \leq P(B)$

iii)
$$P(B \setminus A) = P(B) - P(B \cap A)$$

iv)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Independence

- ► Idea: two events are independent when there is no connection between them.
- ► For instance, if we toss a coin twice, it is natural to think that the result of the first toss is independent from, or does not affect, the result of the second.
- ► Two events A and B are called independent if

$$P(A \cap B) = P(A)P(B)$$
.

Example

- Consider the example of rolling a single 6-sided fair dice. Thus $\Omega=\{1,2,3,4,5,6\}$, $\mathcal{F}=\mathbb{P}(\Omega)$ and $P(\{\omega\})=1/6$ for all $\omega\in\Omega$.
- Let $E = \{2,4,6\}$ be the event that the roll is even and $T = \{2\}$ be the event that the roll is 2. Is E independent of T?

Mutual independence

- ▶ A collection of events are mutually independent if and only if the probability of any intersection is equal to the product of the probabilities of the events included in the intersection.
- Suppose that for each i in some set I we have an event A_i . The family of events $\{A_i : i \in I\}$ is called independent if for any n and any distinct elements i_1, \ldots, i_n of I we have

$$P(A_{i_1}\cap\cdots\cap A_{i_n})=\prod_{j=1}^n P(A_{i_j}).$$

Conditional probability: motivation

- ► Motivation: we want to measure the probability of an event *A* occurring given that another event *B* occurs.
- ► Example: In a customer survey we found that 60% of the customers used the brand Favorite (F), while 30% used the brand Super (S). 15% of the customers used both brands.
- ► How many percent of the Favorite users use Super, and how many percent of the Super users use Favorite?

Conditional probability: definition

- ▶ Idea: change the sample space to *B* and scale all the probabilities accordingly.
- ▶ Let *A* and *B* be events with $P(B) \neq 0$. The conditional probability of *A* given *B*, written P(A|B), is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Back to the example

- ▶ In a customer survey we found that 60% of the customers used the brand Favorite (*F*), while 30% used the brand Super (*S*). 15% of the customers used both brands. How many percent of the Favorite users use Super, and how many percent of the Super users use Favorite?
- ▶ We want to find P(S|F) and P(F|S).

Bayes' formula

Figure: Thomas Bayes (c. 1701 – 7 April 1761)

▶ Let *A* and *B* be events with nonzero probability. Then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Law of total probability

- Suppose $\mathcal{E} = \{E_1, \dots, E_n\}$ is a partition of the sample space Ω and A is any event. Then,
- $\triangleright P(A) = \sum_{i=1}^{n} P(A \cap E_i).$
- ▶ $P(A) = \sum_{i=1}^{n} P(A|E_i)P(E_i)$, where the sum is over all i such that $P(E_i) \neq 0$.

Bayes' Theorem

Theorem

Let $\mathcal{E} = \{E_1, \dots, E_n\}$ be a partition of Ω , and A be an event. Then

$$P(E_j|A) = \frac{P(E_j)P(A|E_j)}{\sum_{i=1}^n P(E_i)P(A|E_i)}$$

where $P(E_i) > 0$ for all $1 \le j \le n$ and P(A) > 0.

Example

- A computer centre has three printers: A, B, and C.
- ▶ Documents are routed to printers A, B, and C with probability 0.5, 0.3, and 0.2 respectively.
- Printers A, B, and C, jam with probability 0.04, 0.05, and 0.03, respectively.
- Now you find your program crashes because of printer jamming. What is the probability that printer A is the culprit?

Independence and conditional probability

- ▶ If $P(B) \neq 0$, then A and B are independent if and only if P(A|B) = P(A).
- Proof: If A and B are independent,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

If
$$P(A|B) = P(A)$$
 then

$$P(A \cap B) = P(A|B)P(B) = P(A)P(B)$$

so by definition A and B are independent.

Summary

- The sample space Ω is the set of all outcomes, and an event is a subset of the sample space.
- A probability space is the triple (Ω, \mathcal{F}, P) where the probability function $P : \mathcal{F} \to [0, 1]$ satisfies certain axioms.
- ► Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- Mutual independence of collection of events.
- ► The conditional probability of A given B is $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- ▶ Bayes' rule: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$.
- Law of total probability.

MA2261 Linear Statistical Models

Section 1.2: Random variables, Part I

Question

► Can you make up an example of a random variable?

The idea of random variable

- Motivation: we wish to study the numbers which come as a result of random outcomes.
- Example : Let Ω be the sample space of outcomes from two rolls of a dice. Define a function $X(\omega_1, \omega_2) = \omega_1 + \omega_2$ where ω_1 is the result of the first roll and ω_2 is the result of the second roll. Any outcome of the two rolls leads to a real number.
- This example gives a function X on the sample space Ω leading to a real number. We call any such function a random variable.

Definition of random variable

- A random variable X is a function defined on the sample space Ω which returns a well defined real number from any outcome.
- ► The rigorous definition requires that the above function is 'measurable'. All the functions in this course will be, so we do not elaborate further.

Distribution of a random variable: motivation

▶ Consider a random variable $X: \Omega \to \mathbb{R}$. Say we want to know the probability that X takes a value less than x. In term of events we have

$$\{\omega: X(\omega) \le x\} \Leftrightarrow \omega \in X^{-1}((-\infty, x])$$

where X^{-1} is the inverse of the function X.

The probability of this event is denoted more briefly by $P(X \le x)$.

Distribution of a random variable

Let X be a random variable. The cumulative distribution function (CDF) or distribution function of X is the function $F_X : \mathbb{R} \to \mathbb{R}$ defined by

$$F_X(x) = P(X \le x).$$

PMF of discrete random variables

- Let X be a random variable. We say X is discrete if it is defined on a discrete sample space Ω with values in \mathbb{R} .
- Let X be a discrete random variable. The probability mass function or PMF or probability function of X is the function $p_X(x_i) = P(X = x_i), i = 1, 2, ..., n$.
- ▶ Obviously, $p_X(x_i) \ge 0$ and $\sum_{i=1}^n p_X(x_i) = 1$.

Infinite but discrete

- ▶ A discrete random variable can be infinite but discrete.
- ► Example: A coin is tossed until a head occurs. Can you draw the sample space and define a random variable on that?

Discussion questions

- Suppose that $\Omega = \{\omega_1, \omega_2, \omega_3\}$ and $P(X = \omega_1) = 0.2$, $P(X = \omega_2) = 0.1$, $P(X = \omega_3) = 0.7$. $X(\omega_1) = 1$, $X(\omega_2) = 2$, $X(\omega_3) = 3$.
- Can you draw the CDF ?
- Recall the CDF is $F_X(x) = P(X \le x)$ and the PMF is $p_X(x_i) = P(X = x_i), i = 1, 2, ..., n$.
- ▶ What is the relation between CDF and PMF for a discrete random variable X taking values x_i , $i \in \mathbb{N}$?

Expectation of a discrete random variable

- ► Idea: the expected value of a discrete random variable X is a weighted average of the values that X takes, each value is weighted according to its probability.
- Let X be a discrete random variable with a finite list $\{x_1,...,x_n\}$ of possible values. The expectation of X is defined by

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i).$$

Discrete uniform distribution

A discrete random variable X with n possible outcomes x_1, \ldots, x_n is said to have a discrete uniform distribution if the PMF of X is given by

$$P(X=x_i)=\frac{1}{n} \qquad i=1,\ldots,n.$$

- Example: if we roll a fair dice, the outcomes $1, \ldots, 6$ have equal probability of occurring, hence the random variable X 'number of dots observed on the upper face of the dice' has a uniform discrete distribution with PMF $P(X = i) = \frac{1}{6}$ $i = 1, \ldots, 6$.
- \triangleright $E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Bernoulli random variables

- ► The Bernoulli distribution is used to model an experiment with only two possible outcomes, often referred to as 'success' and 'failure', or 0 and 1.
- A discrete random variable X has a Bernoulli distribution with parameter $0 \le p \le 1$ if its probability mass function is

$$P(X = 1) = p,$$
 $P(X = 0) = 1 - p.$

We write $X \sim \text{Ber}(p)$ if X is a Bernoulli random variable with parameter p, and E(X) = p.

Binomial random variables

A random variable with PMF

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

k = 0, 1, ..., n is called a binomial random variable with parameters n and p.

We write $X \sim \text{Bin}(n, p)$ if X is a binomial random variable with parameters n and p, and E(X) = np.

Example

- ▶ Suppose we have a coin which has probability *p* of showing heads. We make *n* independent tosses of the coin, recording the result, and count the number of heads obtained in the *n* tosses.
- ► This is modelled by a binomial random variable with parameters *n* and *p*.

Poisson random variable

Let $\lambda > 0$. A random variable with PMF

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for k = 0, 1, 2, ... is called a Poisson random variable with parameter λ .

- ▶ We write $X \sim \mathsf{Pois}(\lambda)$ if X is a Poisson random variable with parameter λ , and $E(X) = \lambda$.
- ▶ Under certain independence assumptions it can be shown that the number of events happening in time *t* is a Poisson random variable, e.g. for the number of road accidents, industrial accidents in a given unit of time. Also, the number of calls received by a switchboard.

Example

► The number of industrial accidents at a particular manufacturing plant is found to average three per month, and it is likely to follow a Poisson distribution.

Geometric random variables

A random variable with PMF

$$P(X = k) = (1 - p)^{k-1}p$$

k = 1, ..., n is called a geometric random variable with parameters p.

- We write $X \sim \text{Geom}(p)$ if X is a geometric random variable with parameters p, and $E(X) = \frac{1}{p}$.
- ▶ Recall the example: A coin is tossed until a head occurs.

Summary

- ▶ Notion of random variable $X : \Omega \to \mathbb{R}$.
- ▶ Cumulative distribution function (*CDF*) $F_X(x) = P(X \le x)$.
- Probability mass function (PMF) of a discrete random variable.
- Examples of discrete random variables: Uniform, Bernoulli, Binomial, Poisson, Geometric.

MA2261 Linear Statistical Models

Section 1.3: Random variables, Part II

PDF of continuous random variables

A continuous random variable is a random variable X such that the CDF $F_X(x)$ satisfies

$$F_X(x) = P(X \leqslant x) = \int_{-\infty}^{x} f_X(y) dy$$

for some function $f_X : \mathbb{R} \to \mathbb{R}$.

- ▶ This function $f_X(x)$ is a non-negative integrable function called the probability density function or density function or PDF of X.
- ▶ By fundamental theorem of calculus: $\frac{dF_X(x)}{dx} = f_X(x)$.
- ▶ For all $x \in \mathbb{R}$, $f_X(x) \ge 0$.

PDF of continuous random variables, cont.

It follows that if X is a continuous random variable with PDF $f_X(x)$ we have

$$P(a \le X \le b) = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$$

for any a, b with $a \leq b$.

and

$$\int_{-\infty}^{\infty} f_X(x) dx = 1.$$

True or False?

From previous slide:

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

▶ Is it true or false that $P(X = a) = f_X(a)$?

Expectation of a continuous random variable

- Let X be a continuous random variable with PDF f(x).
- ightharpoonup We define the expected value E(X) as

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$

Continuous uniform random variable

▶ If X is a continuous variable with values in the interval [a, b], with density function

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b, \\ 0, & \text{otherwise} \end{cases}$$

Then X is called a continuous uniform random variable on the interval [a, b].

- ▶ We write $X \sim U(a, b)$ if X is a continuous uniform random variable with parameters a and b, and $E[X] = \frac{a+b}{2}$.
- ▶ The cumulative distribution function is

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Example of continuous uniform random variable

- Suppose a train arrives at a subway station regularly every 10 minutes.
- ▶ If a passenger arrives at the station without knowing the timetable, then the waiting time to catch the train is uniformly distributed.

Exponential random variable

▶ The positive random variable X with density

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

for some positive parameter λ is called an exponential random variable.

- ▶ We write $X \sim \operatorname{Exp}(\lambda)$ if X is an exponential random variable with parameters λ , and $E[X] = \frac{1}{\lambda}$.
- ▶ The cumulative distribution function is

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Example of exponential random variable

► The lifetime of a certain type of car batteries follows an exponential distribution. It is known that the average lifetime is 5 years. What's the probability that a particular battery of this type lasts for more than 7 years?

Normal (Gaussian) random variables

► A continuous random variable *X* is said to have a normal (Gaussian) distribution if its density is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

for some μ and positive $\sigma > 0$.

We write $X \sim N(\mu, \sigma^2)$ if X is a normal random variable with parameters μ and σ , and $E[X] = \mu$.

Normal distribution

► The standard normal random variable has PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

The graph of PDF is shown here for $\mu=0$ and $\sigma=1$ (in this case is N(0,1)).

Normal, cont.

► Thus

$$P(a \le X \le b) = \int_a^b \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

The probability that X is between a and b is hence equal to the area under the density function between a and b.

▶ It can be shown that

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1$$

Normal, cont.

▶ The CDF of the normal random variable *X* is

$$F_X(x) = \int_{-\infty}^x \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$

There is no explicit formula to solve this integral, it can only be solved by numerical methods.

Find probabilities of standard normal

We usually use $\Phi(x)$ to denote the CDF of a standard normal random variable,

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$$

- ▶ It can be shown that $\Phi(1.96) \approx 0.975$. Thus if $X \sim N(0,1)$, $P(X \le 1.96) \approx 0.975$.
- $P(a \le X \le b) = \Phi(b) \Phi(a).$
- $\Phi(x) = 1 \Phi(-x).$
- Find $\Phi(x)$ using standard normal table or programming.

Question

▶ Let $X \sim N(\mu, \sigma^2)$. How to find $P(X \leq x)$ from the statistical table?

Answer

- ▶ If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$.
- **Example**: Assume $X \sim N(10, 4)$, find P(8 < X < 11).

Variance

ightharpoonup The variance var(X) of a random variable X is defined by

$$var(X) = E\left[(X - E[X])^2\right]$$

- ► The variance is a measure of the deviation from the expected value.
- The standard deviation $\sigma(X)$ of a random variable X is defined as $\sigma(X) = \sqrt{\text{var}(X)}$.

Properties of expectation and variance

Let X, Y be random variables and $a, b, c \in \mathbb{R}$. Then

- E(aX + bY + c) = aE(X) + bE(Y) + c.
- ▶ $var(aX + bY + c) = a^2 var(X) + 2ab cov(X, Y) + b^2 var(Y)$ where cov(X, Y) is the covariance between X and Y.
- We will return to the covariance cov(X, Y) later. For now just note that the variance is not linear.
- $ightharpoonup var(X) = E(X^2) E(X)^2.$

Summaries of expectation and variance

- If X follows a discrete uniform distribution, $E(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i E(X))^2$.
- $ightharpoonup X \sim \operatorname{Ber}(p), \ E(X) = p \ \operatorname{and} \ \operatorname{var}(X) = p(1-p).$
- $ightharpoonup X \sim \text{Bin}(n,p), \ E(X) = np \ \text{and} \ \text{var}(X) = np(1-p)$
- ▶ $X \sim \text{Pois}(\lambda)$, $E(X) = \lambda$ and $\text{var}(X) = \lambda$
- $ightharpoonup X \sim \operatorname{Geom}(p), \ E(X) = \frac{1}{p} \ \operatorname{and} \ \operatorname{var}(X) = \frac{1-p}{p^2}$

Summaries of expectation and variance

►
$$X \sim U(a, b)$$
, $E(X) = \frac{a+b}{2}$ and $var(X) = \frac{(b-a)^2}{12}$

•
$$X \sim \operatorname{Exp}(\lambda)$$
, $E(X) = \frac{1}{\lambda}$ and $\operatorname{var}(X) = \frac{1}{\lambda^2}$

$$\blacktriangleright$$
 $X \sim N(\mu, \sigma^2)$, $E(X) = \mu$ and $var(X) = \sigma^2$

Functions of random variables

- Motivating question: given a (reasonably nice) function f and a random variable X whose distribution is known, what is the distribution of f(X)?
- Suppose g is differentiable and strictly increasing or strictly decreasing and X is a continuous random variable with density function f_X . Then the density function of Y = g(X) is

$$f_Y(y) = \left| \frac{dg^{-1}}{dy} \right| f_X(g^{-1}(y))$$

Expectation of functions of random variables

Let X be a discrete random variable and g be a function such that E[g(X)] exists. Then

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i) .$$

Let X be a continuous random variable with density function f_X . Suppose g is a function and E[X], E[g(X)] exist. Then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

Example

▶ A process for refining sugar yields up to 1 ton of pure sugar per day, but the actual amount produced *X* is a random variable because of machine breakdowns. Suppose that *X* has density function given by

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

- ▶ The company is paid at the rate of £ 300 per ton for the refined sugar, but it has also has a fixed overhead cost of £ 100 per day. Thus the daily profit, in hundreds of pounds, is Y = 3X 1.
- Find the probability density function of *Y*.

Summary

- Probability density function (PDF) of continuous random variables.
- Examples of continuous random variables: Uniform, Exponential, Normal.
- Expectation and variance.
- Functions of random variables.

MA2261 Linear Statistical Models

Section 1.4: Independence and joint distributions

Jointly distributed random variables

- ▶ Idea: when we study two random variables X and Y, we first make a list of all possible values X and Y can have. Then we consider all the possible combinations that can occur, and figure out the probability of such combinations.
- Two random variables on the same sample space are called jointly distributed.

Joint cumulative distribution function

Let X and Y be jointly distributed random variables. The joint CDF $F_{X,Y}$ of X and Y is the function

$$F_{X,Y}(x,y) = P(X \le x \text{ and } Y \le y).$$

▶ This is the probability of the event

$$X^{-1}((-\infty,x]) \cap Y^{-1}((-\infty,y])$$
.

Independent random variables

Imposing the condition that these two events are independent we find

$$F_{X,Y}(x,y) = P(X^{-1}(-\infty,x] \cap Y^{-1}(-\infty,y]) =$$

= $P(X^{-1}(-\infty,x])P(Y^{-1}(-\infty,y]) = F_X(x)F_Y(y)$.

► In this case, the jointly distributed random variables *X* and *Y* are called independent

Overview

Given a random variables X and Y,

CDF $P(X \le x)$			
DISCRETE CONTINOUS			
PMF	Density		
P(X=x)	f(x)		

Joint CDF $P(X \le x \text{ and } Y \le y)$			
DISCRETE CONTINOUS			
Joint PMF	Density		
	f(x,y)		

Can you guess what goes in place of the dots?

Jointly distributed discrete random variables

- ▶ Discrete random variables on the same sample space are called jointly discrete if they are both discrete.
- ▶ Let X and Y be jointly distributed discrete random variables. The joint probability mass function or joint PMF of X and Y is

$$p_{X,Y}(x,y) = P(X = x \text{ and } Y = y).$$

Example

- ▶ In a town there are two different firms with about the same number of customers. Let *X* denote which firm is chosen by a randomly selected customer, and *Y* the number of days it takes to process an order.
- ► The joint PMF is

	Y=1	Y = 2	Y = 3
X = 1	0.1	0.1	0.3
X = 2	0.2	0.1	0.2

Marginal distributions: discrete case

- Let X, Y be jointly distributed discrete random variables with joint PMF p_{X,Y}.
- ► The marginal probability mass function of *X* is

$$p_X(x_i) = P(X = x_i) = \sum_j P(X = x_i \text{ and } Y = y_j).$$

Fact: X and Y are independent if and only if $p_{X,Y}(x,y) = p_x(x)p_Y(y)$.

Example and Question

▶ In the previous example the marginals are

	Y = 1	<i>Y</i> = 2	<i>Y</i> = 3	P(X = x)
X = 1	0.1	0.1	0.3	0.5
X = 2	0.2	0.1	0.2	0.5
P(Y = y)	0.3	0.2	0.5	

Question: are X and Y independent?

Jointly distributed continuous random variables

▶ Random variables X and Y on the same sample space are called jointly continuous if there is a function $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$ such that

$$F_{X,Y}(u,v) = \int_{-\infty}^{u} \int_{-\infty}^{v} f_{X,Y}(x,y) dx dy.$$

In this case we call $f_{X,Y}$ the joint density function or joint PDF of X and Y.

We can recover the joint PDF from the joint CDF by differentiation: at points at which $f_{X,Y}$ is continuous we have

$$f_{X,Y} = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}.$$

Marginal distributions: continuous case

- Let X, Y be jointly continuous random variables with joint density function $f_{X,Y}$.
- ► The marginal density function of *X* is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

Fact: jointly continuous random variables are independent if and only if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

Example. The bivariate normal distribution

► Two random variables X and Y are said to have a bivariate normal distribution if their joint probability density function is given by

$$\begin{split} f_{X,Y}(x,y) &= \\ &= \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[\frac{-1}{2(1-\rho^2)} \left\{ \left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho \left(\frac{x-\mu_X}{\sigma_X}\right) \left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right\} \right] \end{split}$$

for $-\infty < x, y < \infty$, where ρ is the correlation between X and Y.

▶ There are five parameters: μ_x , μ_y , σ_x , σ_y , ρ .

The bivariate normal distribution

A vertical cross-section through the surface at $x = x_0$ or at $y = y_0$ is a normal density curve.

Example

▶ Let X, Y have the bivariate normal distribution with joint PDF as on slide of previous example

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left[\frac{-1}{2(1-\rho^2)} \left\{ \left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right\} \right]$$

- The marginal distributions of X and Y are normal with means μ_X, μ_Y and variances σ_X^2 and σ_Y^2 .
- ▶ If $\rho = 0$ then $f_{X,Y}(x,y) = f_X(x)f_Y(y)$, so X and Y are independent.

Conditional distributions: discrete case

Let X, Y be discrete random variables.

▶ The conditional probability mass function $p_{X|Y}$ is

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x \text{ and } Y = y)}{P(Y = y)}.$$

This function only makes sense for y such that $P(Y = y) \neq 0$, since otherwise the conditional probability isn't defined.

ightharpoonup The conditional expectation of X given Y is

$$E(X|Y=y) = \sum_{i} x_i p_{X|Y}(x_i|y).$$

Example

▶ In the previous example:

	Y = 1	Y = 2	<i>Y</i> = 3	P(X=x)
X = 1	0.1	0.1	0.3	0.5
X = 2	0.2	0.1	0.2	0.5
P(Y = y)	0.3	0.2	0.5	

Find $p_{X|Y}(1|1)$, $p_{X|Y}(1|2)$, $p_{X|Y}(1|3)$, $p_{X|Y}(2|1)$, $p_{X|Y}(2|2)$, $p_{X|Y}(2|3)$.

Conditional distributions: continuous case

Let X, Y be continuous random variables.

► The conditional density function is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

► The conditional expectation of *X* given *Y* is

$$E(X|Y=y) = \int_{-\infty}^{\infty} x \, f_{X|Y}(x|y) dx.$$

Summary

- Jointly distributed random variables and their joint CDF.
- Independent random variables.
- Joint PMF of jointly discrete random variables,
- Joint PDF of jointly continuous random variables.
- Marginal distributions.
- Conditional distributions and expectations.

MA2261 Linear Statistical Models

Section 1.5: Random sampling

Question

- ▶ We obtain a dataset of ten elements by tossing a fair coin ten times and recording the result of each toss.
- Can you model this experiment by a sequence of random variables?
- ▶ If so, what are they and which characteristics do they have?

Random sample: the idea

- ▶ Often the elements of a dataset are repeated measurements of the same quantity.
- We interpret the outcome of an experiment as a realization of some random variables.
- ▶ If the measurements are obtained under the same experimental conditions, it is justified to assume that the underlying probability distributions are the same.
- ▶ If the successive measurements do not influence each others, we can assume that the random variables are mutually independent.

Random sample definition

▶ A random sample is a collection of random variables X₁,...,X_n that have identical probability distributions and are mutually independent.

Sample statistic: the idea

- ▶ Given a dataset $x_1, ..., x_n$, many empirical summaries can be written, such as the mean $(x_1 + \cdots + x_n)/n$.
- ▶ Such summaries are functions $h(x_1, ..., x_n)$.
- Since datasets are modelled as realization of a random sample X_1, \ldots, X_n , an object $h(x_1, \ldots, x_n)$ is a realization of the corresponding random variable $h(X_1, \ldots, X_n)$.

Example

- Consider the random sample associated to rolling a fair dice 3 times.
- ▶ Suppose in an experiment we obtain the dataset $\{2, 6, 4\}$.
- We are interested in the mean of the first two rolls.
- What is the numerical summary and the corresponding statistics?

Sample statistic: definition

- A statistic is a function of the sample random variables.
- ► Thus a statistic is itself a random variable. The distribution of a statistic is called its sampling distribution.
- ▶ If a statistical model adequately describes the dataset at hand, then the sample statistics corresponding to the empirical summaries should reflect the corresponding features of the model distribution.

Example

- 1. The sample mean is $\bar{X} = \frac{1}{n}(X_1 + \cdots + X_n)$.
- 2. The sample variance is $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$.

Sample mean from normal population

- Let X_1, \ldots, X_n be a random sample from a normal population $N(\mu, \sigma^2)$.
- ▶ The expectation of the sample mean is

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

ightharpoonup Since X_i are independent,

$$\operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}(X_{i}) = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n}$$

Sample variance from a normal random sample

- ► Recall the sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$.
- It can be proved that the following important relationship holds:

$$(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$$
.

▶ This can be considered as an example of a χ^2 random variable.

Connecting the t, F and normal distributions

- Let X_1, \ldots, X_n be n independent and identically normally distributed variables with distribution $N(\mu_X, \sigma_X^2)$.
- Let Y_1, \ldots, Y_m be m independent and identically normally distributed variables with distribution $N(\mu_Y, \sigma_Y^2)$. Suppose each X_i is independent of each Y_j .
- ► Then the following relationships hold

-
$$\bar{X} \sim N(\mu_X, \sigma_X^2/n)$$
.

$$- \frac{\bar{X} - \mu_X}{S_X/\sqrt{n}} \sim t_{n-1}.$$

-
$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{n-1,m-1}$$
.

Convergence in distribution

- Suppose we have a sequence of random variables $X_1, X_2, ...$ with CDFs F_{X_1}, F_{X_1} , and X is a random variable with CDF F_X .
- ▶ We say the X_i converge in distribution to X as $n \to \infty$ and write

$$X_n \stackrel{D}{\to} X$$
 as $n \to \infty$

if
$$F_{X_n}(x) \to F_X(x)$$
 as $n \to \infty$ for all $x \in \mathbb{R}$.

Central limit theorem (CLT)

▶ Central Limit Theorem (CLT): Let $X_1, X_2, ...$ be independent and identically distributed random variables with mean μ and variance σ^2 . Let \bar{X}_n be the sample mean of $X_1, ..., X_n$. Then

$$rac{ar{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{D}{ o} extsf{N}(0,1) \quad ext{ as } n o \infty \ .$$

► This is useful because of its generality: it implies that the sample mean of an independent sample from any distribution with finite mean and variance has approximately the $N(\mu, \sigma^2/n)$ distribution for large n.

Central limit theorem (CLT), cont.

- ▶ Let $S_n = X_1 + \cdots + X_n$, so $\bar{X}_n = S_n/n$.
- ► Thus $E(S_n) = n\mu$, $var(S_n) = n\sigma^2$.
- ▶ We note that

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{S_n/n - \mu}{\sigma/\sqrt{n}} = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - E(S_n)}{\sqrt{\mathsf{var}(S_n)}}.$$

► Thus by the CLT

$$\frac{S_n - E(S_n)}{\sqrt{\operatorname{var}(S_n)}} \xrightarrow{D} N(0,1).$$

Example

▶ Assume that 400 customers come to a shop every day and that their purchases are independent. They often buy milk, and we assume that the number of liters bought by each customer is a random variable *X* with distribution

$$P(X = 0) = 0.3$$
 , $P(X = 1) = 0.5$, $P(X = 2) = 0.2$.

► Find an approximate value for the probability that the shop sells between 341 and 390 liters.

Example: solution (fill gaps)

lacktriangle We call the total number of liters sold S= We need to compute

$$P(341 \le S \le 390) = P(\underline{\hspace{1cm}}) - P(\underline{\hspace{1cm}}).$$

- We can find approximate values for these probabilities from the central limit theorem, but we need to know E(S) and var(S).
- ▶ We first compute E(X) and var(X):

$$E(X) = \underline{\hspace{1cm}}$$

$$E(X^2) =$$

$$var(X) = \underline{\hspace{1cm}}$$

Therefore

$$E(S) =$$

Example: solution, cont.

 \triangleright Since X_1, \ldots, X_{400} are independent we have

$$var(S) =$$
 hence $\sigma =$.

As n = 400 is large, by the CLT,

$$\frac{S-E(S)}{\sqrt{\operatorname{var}(S)}} \sim N(0,1).$$

► We calculate

$$P(S \le 390) - P(S \le 340) \approx \Phi(___) - \Phi(__) =$$

The probability that the customers buy between 341 and 390 liters of milk is hence about 91%.

Normal approximations

▶ Let $B \sim \text{Bin}(n, p)$. Then

$$\frac{B-np}{\sqrt{np(1-p)}} \stackrel{D}{\to} N(0,1)$$

as $n \to \infty$.

▶ Note that a binomial distribution can always be viewed as a sum of *n* independent Bernoulli distributions, and the central limit theorem can be applied directly to the distribution.

Continuity correction

- Continuity correction should be applied for normal approximations of binomial probabilities.
- ▶ Let $B \sim \text{Bin}(n, p)$ and $Y \sim N(np, np(1-p))$, continuity correction states
 - $P(B \le x) \approx P(Y \le x + 0.5)$
 - $P(B < x) \approx P(Y \le x 0.5)$
 - $P(B > x) \approx P(Y ≥ x + 0.5)$
 - $P(B \ge x) \approx P(Y \ge x 0.5)$
- ► For *n* sufficiently large, the following result holds

$$P(B \le x) \approx \Phi\left(\frac{x + 0.5 - np}{\sqrt{np(1-p)}}\right)$$

Example (fill gaps)

- ▶ A fair coin is tossed 1000 times. Find the probability P that heads occur exactly 531 times.
- Let B be the random variable counting the number of heads, so $B \sim \text{Bin}(1000, 1/2)$. We then have an exact expression for this probability:

$$P(B = 531) =$$

Unfortunately $\binom{1000}{531}$ is nearly 10^{300} , too large to deal with directly on an ordinary calculator. Instead (from the context of the rest of the question) we should try to use a normal approximation.

Example, cont.

▶ The normal approximation says that $P(B \le x) \approx P(Y \le x + 0.5)$ where $Y \sim N(500, 250)$. Thus the probability we want is

$$P(B = 531) = P(B \le 531) - P(B \le 530)$$

 $\approx P(\underline{\hspace{1cm}}) - P(\underline{\hspace{1cm}})$
 $= \underline{\hspace{1cm}}$

Summary

- Random sample.
- Statistic and sampling distributions.
- Samples from a normal population.
- Connecting the t, F and normal distributions.
- Central limit theorem and normal approximations.