Du Bois singularities in families (joint work with Takumi Murayama)

Charles Godfrey

University of Washington

October 3rd, 2020

Properties of Du Bois singularities

Du Bois singularities are defined for schemes of finite type over fields of characteristic zero.

- Semi-log-canonical (slc) singularities are Du Bois (Kollár and Kovács 2010).
- If $f: X \to B$ is flat and projective with Du Bois fibers, $R^i f_* \mathcal{O}_X$ is locally free and compatible with base change for all i (Du Bois and Jarraud 1974).

Application: If f is a KSB-stable family, $\omega_{X/B}$ is flat over B + compatible with base change.

Examples of Du Bois singularities

• Du Bois singularities are semi-normal (Saito 2000).

For curves,

Du Bois \iff X semi-normal \iff singularities analytic-locally isomorphic to unions of coordinate axes in \mathbb{A}^n

Examples of Du Bois singularities – continued

• For any smooth projective variety X over \mathbb{C} , there is an embedding

$$X \subseteq \mathbb{P}^N$$
 so that $C(X) \subseteq \mathbb{A}^{N+1}$

has Du Bois singularities (Bhatt, Schwede, and Takagi 2016, Lem. 2.14, Ma 2015, Thm. 4.4).

- Example: for X a curve of genus g>1, can use $\mathcal{O}_X(1)\simeq\omega_X^2$.
- C(X) is only log canonical if $-K_X \sim_{\mathbb{Q}} rH$ for some $r \in \mathbb{Q}_{\geq 0}$ $(H \in |\mathcal{O}_X(1)|)$

Du Bois and F-injective singularities

- Singularities of dense *F*-injective type are Du Bois (Schwede 2009).
- Cool fact: There is a "common definition" of Du Bois and *F*-injective singularities (Bhatt, Schwede, and Takagi 2016, Thm. 4.8)

Permanence properties

Results that guarantee a class of singularities is preserved under some natural algebro-geometric construction. Example:

Theorem (see e.g. Matsumura 1989, Thm. 23.7)

Let $f: Y \to X$ be a flat morphism of locally noetherian schemes.

- 1. If f is faithfully flat and Y is regular, then X is regular, and
- 2. if X and all of the fibers $Y_x := f^{-1}(x)$ are regular then Y is regular.

Descent and ascent for Du Bois singularities

We can replace "regular" with "Du Bois."

Theorem (G.-Murayama)

Let $f: Y \to X$ be a flat morphism of separated schemes of finite type over a field k of characteristic zero.

- 1. If f is faithfully flat and Y has Du Bois singularities, then so does X.
- 2. If both X and the fibers of f have Du Bois singularities, then Y has Du Bois singularities.

Recovers a result of Doherty 2008: if X, Z are Du Bois, then so is $Y := X \times_k Z$ (special case of item 2).

Slogan: having Du Bois singularities is a fppf-local condition.

Application: openness of the Du Bois locus

For a morphism $f: Y \to X$, define

$$U_{\mathsf{DB}}(f) \coloneqq \{x \in X \mid Y_x \text{ has Du Bois singularities}\} \subseteq X$$

Question

If f is flat and proper, is $U_{\mathsf{DB}}(f)$ open?

- Known for X smooth (Kovács and Schwede 2016, Cor. 4.2)
- Analogous result for rational singularities is a theorem of Elkik 1978 (generalized to pairs in Erickson 2014)

Can be proved in two steps (Hartshorne Ex. II.3.18):

 $U_{\mathrm{DB}}(f)$ is constructible Follows proof of Kovács and Schwede 2016

 $U_{\mathrm{DB}}(f)$ is stable under generization. Uses the general framework in Murayama 2020 together with the above permanence properties

Openness of the Du Bois locus - continued

Theorem (G.-Murayama)

Let $f: Y \to X$ be a flat, proper morphism between separated schemes of finite type over a field of characteristic zero. Then, the locus

$$U_{\mathsf{DB}}(f) \coloneqq \{x \in X \mid Y_x \text{ has Du Bois singularities}\} \subseteq X$$

is open.

Thank you!

Common definition of F-injective and Du Bois singularities

Definition (Bhatt, Schwede, and Takagi 2016, Thm. 4.8)

Let $x \in X$ be a point on a reduced scheme of finite type X over k. For every proper hypercovering with smooth terms $\pi_{\bullet}: X_{\bullet} \to X$, there are natural maps

$$H_x^i(\mathcal{O}_X) \to \mathbb{H}_x^i(R\pi_{\cdot *}\mathcal{O}_{X_{\cdot}}) \text{ for } i \in \mathbb{N}$$
 (1)

char k=0 X has Du Bois singularities at $x \iff$ the maps (1) are injective for all π_{\bullet} .

char k=p>0, k F-finite X has F-injective singularities at $x\iff$ the maps (1) are injective for all π_{\bullet} .

Some essential ingredients

Splitting criteria Having Du Bois singularities is equivalent to the splitting of a certain map

$$\mathcal{O}_X \xrightarrow{\zeta^{-}} \underline{\Omega}_X^0 \tag{2}$$

Faithful flatness and splittings

Lemma (Antieau and Datta 2020, Prop. 2.4.3, 2.4.7)

Let $g: Y \to X$ be a faithfully flat morphism of affine schemes, with X coherent, and let $\sigma: \mathcal{F} \to \mathcal{G}$ be a morphism in $D^b_{\mathsf{coh}} X$. Then σ splits in $D^b_{\mathsf{coh}} X$ if and only if the induced morphism

$$f^*\sigma: f^*\mathcal{F} \to f^*\mathcal{G} \text{ splits in } D^b_{\mathsf{coh}} Y$$

Permanence properties --> stability under generization

Theorem (Murayama 2020, Thm. A, paraphrased)

Let R be a property of noetherian local rings satisfying

- ascent,
- descent,
- · lifting from Cartier divisors and
- localization,

such that regular local rings satisfy R. Let $f: Y \to X$ be a flat morphism of noetherian schemes. If f is closed and the local rings of X have geometrically R formal fibers, then

$$U_{\mathsf{R}}(f) \coloneqq \{x \in X \mid f^{-1}(x) \text{ is geometrically } \mathsf{R} \text{ over } k(x)\}$$

is stable under generization.

References I

- Antieau, Benjamin and Rankeya Datta (Feb. 3, 2020). "Valuation Rings Are Derived Splinters". In: arXiv: 2002.01067 [math].
- Bhatt, Bhargav, Karl Schwede, and Shunsuke Takagi (Mar. 17, 2016). "The Weak Ordinarity Conjecture and F-Singularities". In: arXiv: 1307.3763 [math].
- Doherty, Davis C. (2008). "Singularities of Generic Projection Hypersurfaces". In: *Proceedings of the American Mathematical Society* 136.7, pp. 2407–2415. ISSN: 0002-9939.
- Du Bois, Philippe and Pierre Jarraud (1974). "Une Propriété de Commutation Au Changement de Base Des Images Directes Supérieures Du Faisceau Structural". In: C. R. Acad. Sci. Paris Sér. A 279, pp. 745–747. ISSN: 0302-8429.
- Elkik, Renée (June 1, 1978). "Singularites rationnelles et deformations". In: *Inventiones mathematicae* 47.2, pp. 139–147. ISSN: 1432-1297.

References II

- Erickson, Lindsay (2014). "Deformation Invariance of Rational Pairs". ProQuest LLC, Ann Arbor, MI, p. 65. arXiv: 1407.0110.
- Kollár, János and Sándor J. Kovács (2010). "Log Canonical Singularities Are Du Bois". In: *Journal of the American Mathematical Society* 23.3, pp. 791–813. ISSN: 0894-0347. arXiv: 0902.0648.
- Kovács, Sándor J. and Karl Schwede (2016). "Du Bois Singularities Deform". In: *Minimal Models and Extremal Rays (Kyoto, 2011)*. Vol. 70. Adv. Stud. Pure Math. Math. Soc. Japan, [Tokyo], pp. 49–65.
- Ma, Linquan (Sept. 15, 2015). "F-Injectivity and Buchsbaum Singularities". In: arXiv: 1308.0149 [math].
- Matsumura, Hideyuki (1989). *Commutative Ring Theory*. 2nd ed. Vol. 8. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, pp. xiv+320. ISBN: 0-521-36764-6.

References III

- Murayama, Takumi (Apr. 14, 2020). "A Uniform Treatment of Grothendieck's Localization Problem". In: arXiv: 2004.06737 [math].
- Saito, Morihiko (2000). "Mixed Hodge Complexes on Algebraic Varieties". In: *Mathematische Annalen* 316.2, pp. 283–331. ISSN: 0025-5831. arXiv: math/9906088.
- Schwede, Karl (2009). "F-Injective Singularities Are Du Bois". In: *American Journal of Mathematics* 131.2, pp. 445–473. ISSN: 0002-9327.