

Universidad Champagnat

Statiscal learning and portfolio optimizacion under skewness probability distribution

Santiago Emiliano Eguren

Rodri

Cristian

July 2022

1 Introduction

The aim of this paper is comprobate if is possible to optimize effectively portfolios under the assuption skewness probability distribution function.

2 Basic Concepts

2.1 Multivariate Normal Variance Mixtures

A random vector $\mathbf{Z} = [Z_1, Z_2, ..., Z_n]$ follows a normal variance mixture, if:

$$\mathbf{Z} = \mu + \sqrt{W}AU\tag{1}$$

or

Where:

 $\mu \in \mathbb{R}^n$, is the location vector.

W is a non-negative random variable independent of U.

 $A \in \mathbb{R}^{nxn}$ denotes the scale matrix. Where $\Sigma = AA^T$ is the covarince matrix and $\Sigma \in \mathbb{R}^{nxn}$:

 $\mathbf{U} \in \mathbb{R}^n$ denotes a standard normal random vector:

2.2 Expected Shortfall

Expected Shortfall is defined as the average loss beyond VaR:

$$ES_{\varepsilon}[Z_t] = E[-Z_t| - Z_t > VaR_{\varepsilon}[Z_t]] \tag{5}$$

ES is also know as Expected Tail Loss (ETL) or Conditional Value-at-Risk (CVAR). Usually ε is equal to 0,01 or 0,05. ES is a convex function weights and hence is usefull to optimizate portfolios (see Rockafellar and Uryasev [1]).

3 Portfolio Optimizacion

To optimize, we consider daily return data from the S&P 500 index between 2008-01-01 and 2018-01-01. We fit marginal ARMA(1, 1)-GARCH(1, 1) and then fit normal variance mixture models to the resulting standardized residuals.

We consider the inverse-gamma distribution for W. The portfolio will contain 3 random stock.

4 Conclusion

References

[1] Rockafellar, R.T. and Uryasev, S., *Optimization of conditional value-at-risk*, Journal of Risk 3, 21-41,2000.

Contents

1	Introduction	1
2	Basic Concepts2.1 Multivariate Normal Variance Mixtures2.2 Expected Shortfall	
3	Portfolio Optimizacion	2
4	Conclusion	3