LARGE MATCHINGS WITH FEW COLORS

NEAL BUSHAW † , PETER CSORBA ‡ , LINDSAY ERICKSON $^\diamond$, DÁNIEL GERBNER ‡ , DIANA PIGUET § , AGO-ERIK RIET † , TAMÁS TERPAI ‡ , AND DOMINIK K. VU †

ABSTRACT. Let K_n^r denote the complete r-uniform hypergraph on n vertices. A matching M in a hypergraph is a set of pairwise vertex disjoint edges, and an s-colored matching is a matching using edges from at most s colors. Recent Ramsey-type results rely on lemmas about the size of monochromatic matchings in hypergraphs. A starting point for this study comes from a well-known result of Alon, Frankl, and Lovász 1, which states that any edge-coloring of the complete r-uniform hypergraph on n vertices with t colors contains a monochromatic matching of size k. A natural extension of this theorem would find the smallest n such that every t-coloring of K_n^r contains an s-colored matching of size k. It has been conjectured that in every coloring of the edges of K_n^r with 3 colors there is a 2-colored matching of size at least k provided that $n \ge kr + \left\lfloor \frac{k-1}{r+1} \right\rfloor$. The smallest non-trivial case is when r=3 and k=4. We prove that in every 3-coloring of the edges of K_{12}^3 there is a 2-colored matching of size 4.

Introduction

Throughout this paper we will rely on the following result of Alon, Frankl, and Lovász[1], solving a conjecture of Erdős from 1978[2].

Theorem 1 ([1]). Suppose that n = (t-1)(k-1) + kr. Then any edge-coloring with t colors of the complete r-uniform hypergraph on n vertices, K_n^r , induces a monochromatic matching of size at least k.

Extending this idea a bit further, Gyárfás, Sárközy, and Selkow[3] introduced an extra parameter $s \in \{1, 2, ..., t\}$. A matching in a hypergraph which uses edges from at most s colors is called an s-colored matching. It is natural to ask what is the smallest n such that every t-edge coloring of K_n^r contains a s-colored matching of size k? [4] states the following conjecture for certain values of $1 \le s \le t$ (in particular for t = 3, s = 2).

Conjecture 2 ([4]). Every t-coloring of the edges of K_n^r (a t-edge-coloring) contains an s-colored matching of size k provided that $n \ge kr + \left\lfloor \frac{(k-1)(t-s)}{1+r+r^2+\cdots r^{s-1}} \right\rfloor$. (We also note here that the case s=1 is 1; the case s=t is trivial.)

The case of s = t - 1, r = 2 is solved in [3]. The smallest open case of 2 is t = 3, s = 2, r = 3, k = 4. With this in mind, our main result is the following:

Theorem 3. Every 3-edge-coloring of the complete 3-uniform hypergraph on 12 vertices, K_{12}^3 , contains a perfect 2-colored matching.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C15, 05C65.

Key words and phrases. Hypergraph, Matching, Coloring.

The problems contained in this paper were presented to the authors by András Gyárfás at the first Emléktábla Workshop put on by the János Bolyai Mathematical Society and the Alfréd Rényi Institute of Mathematics. The work contained in this paper was done over the next several days of the work shop. We are grateful to the organizers of this workshop for their time and effort, and in particular, to András Gyárfás for his insightful comments.

PROOF OF MAIN RESULT

Throughout the following, we assume that \mathcal{H} is a 3-edge-colored K_{12}^3 without a 2-colored matching of size 4.

Definition 4. A set of 6 vertices from \mathcal{H} is called a B-set if one color is avoided by all edges induced by these vertices and no disjoint pair of edges is monochromatic.

Definition 5. Call a set of 7 vertices a B^+ set if every 6-vertex subset chosen out of it is a B-set avoiding the same color.

Lemma 6. \mathcal{H} contains no B^+ set.

Proof of Lemma 6. Suppose that we have a B^+ -set with vertex-set $\{v_1, v_2, \ldots, v_7\}$ with $\binom{B}{[3]}$ colored c_1 and c_2 . Assume without loss of generality that $\{v_1, v_2, v_3\}$ is c_1 , and so $\{v_4, v_5, v_6\}$ must be c_2 . Replace one vertex of one of the two matched edges by the left-over vertex. Then $\{v_5, v_6, v_7\}$ is c_2 , $\{v_2, v_3, v_4\}$ is c_1 , $\{v_6, v_7, v_1\}$ is c_2 , and so $\{v_3, v_4, v_5\}$ is also c_1 , a contradiction.

Definition 7. Call $A \subseteq V(H)$, |A| = 6 an A-set, if A contains a monochromatic perfect matching. **Lemma 8.** The complement of an A-set is a B-set.

Proof of Lemma 8. Let A be an A-set containing a monochromatic perfect matching M_1 of color c_1 . Observe that if the complement $B := V(\mathcal{H}) \setminus A$ is an A-set, then \mathcal{H} contains a 2-colored perfect matching consisting of M_1 and the monochromatic perfect matching in B. So any perfect matching in B is 2-colored, and does not contain the color c_1 , otherwise again it would induce together with M_1 a 2-colored perfect matching in \mathcal{H} . This implies that B is a B-set in colors c_2 and c_3 .

Lemma 9. In any balanced partition of $V(\mathcal{H}) = Y \dot{\cup} Z$, at least one of the partition classes is a B-set.

Proof of Lemma 9. We may assume that neither Y nor Z is an A-set, otherwise by Lemma 8 the complement is a B-set. Suppose that Y is not a B-set. Then there is a 2-colored matching M_1 in Y, say in c_1 and c_2 , and another 2-colored matching M_2 in Y, say in c_2 and c_3 . If Z has a matching M_3 with the same colors as M_1 or as M_2 , the matchings $M = M_3 \dot{\cup} M_1$, or $M = M_3 \dot{\cup} M_2$, respectively, induces a 2-colored perfect matching in \mathcal{H} . This implies that the edges of any matching M_3 in Z have two distinct colors, c_1 and c_3 . Thus Z is a B-set.

Lemma 10. \mathcal{H} contains no K_5^3 using all of $\{c_1, c_2, c_3\}$.

Proof of Lemma 10. Suppose that there is a K_5^3 using colors c_1, c_2, c_3 spanning a vertex set $X \subseteq V(\mathcal{H})$. Take an arbitrary vertex $v \in V(\mathcal{H}) \setminus X =: Y$. Then the set $X \cup \{v\}$ is not a B-set, implying, by Lemma 9, that $Y \setminus \{v\}$ is a B-set. As the choice of vertex v was arbitrary, the same holds for any vertex $v \in Y$. We label the vertices of Y by pairs of colors in the following way: a vertex $v \in Y$ is assigned label $\chi(v) = \{c_1, c_2\}$ if the triples in the B-set, $Y \setminus \{v\}$, are colored by c_1 or c_2 .

First we show that only two of the three possible color pairs may occur. To see this, suppose we have vertices $v_1, v_2, v_3 \in Y$ with $\chi(v_1) = \{c_1, c_2\}$, $\chi(v_2) = \{c_1, c_3\}$, and $\chi(v_3) = \{c_2, c_3\}$. As $|Y \setminus \{v_1, v_2, v_3\}| = 4$ there is an edge in $Y \setminus \{v_1, v_2, v_3\}$ and its color should be either c_1 or c_2 , and either c_1 or c_3 , and either c_2 or c_3 , a contradiction.

Now, assume, without loss of generality, that there is a set $U \subseteq Y$ with vertices labeled $\{c_1, c_2\}$ and a set $W \subseteq Y$ with vertices labeled $\{c_1, c_3\}$, and that |U| > |W|. First assume that $W = \emptyset$. In this case Y = U is a B^+ -set, a contradiction by Lemma 6. Thus $W \neq \emptyset$, so pick a vertex $w \in W$. Then in any partition of $Y \setminus \{w\}$ into two disjoint edges, there is one edge, say e, that is colored c_3 . As $|U| \geq 4$ there is a vertex $u \in U \setminus e$. By definition, any edge in $Y \setminus \{u\}$ is colored either c_1 or c_2 , a contradiction with the fact that e is c_3 . Thus there is no K_5^3 in \mathcal{H} using all three colors.

Lemma 11. For any pair of vertices $u, v \in V(\mathcal{H})$ there exists a monochromatic $K_6^3 \subset \mathcal{H}$ containing u and v.

Proof of Lemma 11. Considering any pair of vertices $x, y \in \mathcal{H}$, we know from Lemma 10 that x and y are not contained in any K_5^3 using all of $\{c_1, c_2, c_3\}$. Thus the edges containing x and y are of at most two colors. As in the proof of Lemma 10, label the pair $\{x, y\}$ by the pair of colors it induces. If all edges containing x and y are of the same color, then choose an arbitrary color to complete the pair. This defines a coloring of the edges of the complete graph K_{12}^2 .

Let us choose two arbitrary vertices $u, v \in \mathcal{H}$. By Theorem 1 there is a monochromatic matching M of size 3 consisting of the 2-edges $\{e_1, e_2, e_3\}$ in the graph induced by the ten vertices $V(\mathcal{H}) \setminus \{u, v\}$, K_{10}^2 . Suppose that M is colored by the color-pair $\{c_1, c_2\}$. We claim that $V(\mathcal{H}) \setminus V(M)$ induces a monochromatic K_6^3 colored in c_3 in the original hypergraph. If this were not the case, there would exist a 3-edge E of \mathcal{H} with color either c_1 or c_2 . Let $\{v_1, v_2, v_3\}$ be the set $V(\mathcal{H}) \setminus (V(M) \cup E)$. Then the perfect matching $\{E, e_1 \cup v_1, e_2 \cup v_2, e_3 \cup v_3\}$ would not contain the color c_3 , contradicting our assumption on \mathcal{H} . Thus, u and v are contained in the monochromatic K_6^3 colored in c_3 on the vertex set $V(\mathcal{H}) \setminus V(M)$.

Lemma 12. Any two monochromatic $K_6^3 \subset \mathcal{H}$ intersecting in at most 4 vertices have different colors.

Proof of Lemma 12. Consider two distinct monochromatic $K_6^3 \subset \mathcal{H}$, X_1, X_2 , of the same color, say c_1 , with $|V(X_1) \cap V(X_2)| \leq 4$. If $|V(X_1) \cap V(X_2)| \leq 3$, then they span at least 9 vertices and we would have 3 disjoint edges of the same color. Therefore, we may assume that $|V(X_1) \cap V(X_2)| = 4$. Consider then the 4 vertices not contained in either $V(X_1)$ or $V(X_2)$, $\bar{X} = V(\mathcal{H}) \setminus (V(X_1) \cup V(X_2))$. Observe that no edge e with $|e \cap \bar{X}| = 1$ is c_1 , otherwise we would have 9 vertices forming three disjoint edges colored in c_1 . Therefore any such e must be colored either c_2 or c_3 , and as $|\bar{X}| = 4$ they induce a perfect matching colored only in c_2 and c_3 which is forbidden in \mathcal{H} . Thus the two distinct monochromatic K_6^3 must have different colors.

Lemma 13. Any two distinct monochromatic K_6^3 of different colors intersect in exactly 2 vertices.

Proof of Lemma 13. First, observe that trivially two monochromatic K_6^3 , of different colors, say a c_1 , X_1 and a c_2 , X_2 cannot meet in more than 2 vertices. Otherwise any edge contained in their intersection must be of both colors. Also, X_1 and X_2 must intersect, otherwise $V(X_1) \cup V(X_2)$ induces a 2-colored perfect matching. This produces a contradiction with the structure of \mathcal{H}

It remains to show that X_1 and X_2 cannot intersect in only one vertex. If this were the case, then by Lemma 11 any vertex $v \in V(\mathcal{H}) \setminus (V(X_1) \cup V(X_2))$ is covered by a monochromatic K_6^3 , X. As $|V(X) \cap (V(X_1) \cup V(X_2))| = 5$, the complete hypergraph X intersects X_1 or X_2 in at least 3 vertices, hence its color is either c_1 or c_2 , say c_1 . Then $|X \cap X_1| \geq 5$ by Lemma 12. We choose two edges colored c_2 from X_2 , and an edge colored c_1 containing v from x. One can easily see that the remaining vertices are in x_1 , hence the edge containing them is x_2 . This yields a 2-colored matching, which is a contradiction.

Definition 14. Call an edge-colored 3-uniform hypergraph a *disk* if it contains three monochromatic complete subgraphs on six vertices, X_1 , X_2 , X_3 , each colored a different color such that $|V(X_i) \cap V(X_j)| = 2$ for i, j = 1, 2, 3 and $V(X_1) \cap V(X_2) \cap V(X_3) = \emptyset$.

Lemma 15. \mathcal{H} is a disk.

Proof of Lemma 15. Choose any pair of vertices $u_1, v_1 \in V(\mathcal{H})$. By Lemma 11, there is a monochromatic complete hypergraph X_1 of size six covering u_1 and v_1 . Choose a pair of vertices $u_2, v_2 \in V(\mathcal{H}) \setminus V(X_1)$. By Lemma 11, there is a monochromatic complete hypergraph X_2 covering u_2, v_2 . By Lemma 12, the complete hypergraphs X_1 and X_2 have different colors, and by Lemma 13, we have $|V(X_1) \cap V(X_2)| = 2$. Thus $|V(\mathcal{H}) \setminus (V(X_1) \cup V(X_2))| = 2$. Let u_3, v_3 be the two vertices from $V(\mathcal{H}) \setminus (V(X_1) \cup V(X_2))$. Again, by Lemma 11, there is a monochromatic complete hypergraph X_3 covering u_3, v_3 . By Lemma 12, the color of the edges of X_3 is different from the color of X_1 and of X_2 . By Lemma 13, the hypergraphs X_3 and $X_i, i = 1, 2$, intersect in exactly two vertices, hence \mathcal{H} is a disk.

Lemma 16. Any disk, \mathcal{D} , contains a K_5^3 using all three colors.

Proof of Lemma 16. Since \mathcal{D} is a disk, it contains X_1, X_2 and X_3 colored c_1, c_2 and c_3 , respectively. Let $v_1, v_2 \in V(X_1) \cap V(X_2), v_3, v_4 \in V(X_2) \cap V(X_3)$ and $v_5 \in V(X_1) \cap V(X_3)$. Then the edge $\{v_1, v_2, v_5\}$ is of color c_1 , the edge $\{v_1, v_2, v_3\}$ is of color c_2 , and the edge $\{v_3, v_4, v_5\}$ is of color c_3 . Thus the complete 3-uniform hypergraph induced on $\{v_1, \ldots, v_5\}$ uses all three colors. \square

Proof of Theorem 3. Let \mathcal{H} be any edge-colored K_{12}^3 which does not contain a perfect matching using at most two colors. By Lemma 15, \mathcal{H} is a disk. Thus by Lemma 16 \mathcal{H} contains a K_5^3 using all three colors. This is a contradiction to Lemmas 10, thus no such \mathcal{H} exists. This proves Theorem 3

Theorem 17. In every edge-coloring of a 3-uniform hypergraph K_{16}^3 on 16 vertices in three colors, there is a 2-colored matching of size 5.

Proof of Theorem 17. Let χ be a given edge-coloring of $\mathcal{H} = K_{16}^3$ by 3 colors. Set r = 3, t = 3 and k = 3. Then $16 \geq 13 = (t-1)(k-1) + kr$ implying \mathcal{H} contains matching M_1 of size 3 that is monochromatic, say in c_1 . If the induced subgraph \mathcal{H}' on $V(\mathcal{H}) \setminus V(M_1)$ contains a c_1 edge e, then $M_1 \cup e$ together with any edge from the remaining 4 vertices form a matching of size 5 colored with two colors, and we are done. So we may assume that there is no c_1 -colored edge in \mathcal{H}' .

By Lemma 6, $V(\mathcal{H}')$ is not a B^+ -set and thus contains a monochromatic matching M_2 . Then $M = M_1 \cup M_2$ leads to the desired 2-colored matching of size 5.

Theorem 18. In every 3-edge-coloring of a 3-uniform hypergraph K_{19}^3 on 19 vertices, there is a 2-colored matching of size 6.

Proof of Theorem 18. This proof follows the proof of Theorem 17. Theorem 1 leads to a monochromatic matching M of size 4 and in the reaming 7 vertices either we find an edge of the same color as M or a monochromatic pair of edges.

References

- [1] N. Alon, P. Frankl, L. Lovász, The chromatic number of Kneser hypergraphs, *Transactions of the American Mathematical Society* 298 (1986), pp. 359-370.
- [2] P. Erdős, Problems and results in combinatorial analysis, Colloq. Internat. Theor. Combin. Rome 1973, Acad. Naz. Lincei, Rome (1976), pp. 3-17.
- [3] A. Gyárfás, G. Sárközy, S. Selkow, Coverings by few monochromatic pieces a transition between two Ramsey problems, submitted.
- [4] A. Gyárfas, Large matchings with few colors, Booklet of First Emlektabla Workshop 1 (2010), pp. 4-7.

 $^{^\}ddagger R$ ÉNYI INSTITUTE

[§]CHARLES UNIVERSITY

[♦]NORTH DAKOTA STATE UNIVERSITY