ASSIGNMENT-1

AI24BTECH11026 - Pendem nitesh sri satya*

- 16. Let a, b, c be real numbers, a $\neq 0$. If α is a root of $a^2x^2+bx+c=0$. β is the root of $a^2x^2-bx-c=0$ and $0<\alpha<\beta$, then the equation $a^2x^2+2bx+2c=0$ has a root γ that always satisfies
 - (a) $\gamma = \frac{\alpha + \beta}{2}$
 - (b) $\gamma = \alpha + \frac{\beta}{2}$
 - (c) $\gamma = \alpha$
 - (d) $\alpha < \gamma < \beta$
- 17. The number of solutions of the equation $sin(e)^x = 5^x + 5^- x$ is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) Infinitely many
- 18. Let α,β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$ Then the roots of the equation (x-a)(x-b)+c=0 are
 - (a) *a*, *c*
 - (b) b, c
 - (c) a, b
 - (d) a + c, b + c
- 19. The number of point of intersection of two curves $y=2\sin x$ and $y=5x^2+2x+3$ is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) ∞
- 20. If p, q, r are +ve and are in A.P., the roots of quadratic equation $px^2 + qx + r = 0$ are all real for
 - (a) $\left| \frac{r}{p} 7 \right| \ge 4\sqrt{3}$
 - (b) $\left| \frac{p}{r} 7 \right| \ge 4\sqrt{3}$
 - (c) all p and r
 - (d) no p and r
- 21. Let $p, q \in 1, 2, 3, 4$. The number ogf equations of the form $px^2 + qx + 1 = 0$ having real roots is
 - (a) 15
 - (b) 9
 - (c) 7
 - (d) 8
 - 22. If the roots of the equation $x^2 2ax + a^2 + a 3$
- = 0 are real and less than 3, then
 - (a) a < 2

- (b) $2 \le a \le 3$
- (c) $3 < a \le 4$
- (d) a > 4
- 23. If α and β ($\alpha < \beta$) are the roots of the equation $x^2 + bx + c = 0$, where c < 0 < b, then

1

- (a) $0 < \alpha < \beta$
- (b) $\alpha < 0 < \beta < |\alpha|$
- (c) $\alpha < \beta < 0$
- (d) $\alpha < 0 < |\alpha| < \beta$
- 24. If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b)(c + d) satisfies the relation
 - (a) both roots in (a, b)
 - (b) both roots in $(-\infty, a)$
 - (c) both roots in $(b, +\infty)$
 - (d) one root in $(-\infty, a)$ and the other in $(b, +\infty)$
- 25. If b > a, then the equation (x a)(x b)-1 = 0 has