# Theoretical Computer Science Tutorial Week 12

Prof. Andrey Frolov

nnoboria

### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

- $(proposition) \rightarrow (noun)(verb)$
- (noun)  $\rightarrow$  a cat
- (noun)  $\rightarrow$  a dog
- (noun)  $\rightarrow$  a fish
- ...
- (verb)  $\rightarrow$  meows
- $\bullet$  (verb)  $\rightarrow$  barks
- (verb)  $\rightarrow$  swims
- ...

```
(proposition) \rightarrow (noun)(verb) \rightarrow a dog (verb) \rightarrow a dog swims (proposition) \rightarrow (noun)(verb) \rightarrow a cat (verb) \rightarrow a cat barks (proposition) \rightarrow (noun)(verb) \rightarrow a fish (verb) \rightarrow a fish meows
```

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$$

- $A \rightarrow \alpha_1$
- $A \rightarrow \alpha_2$
- ...
- $A \rightarrow \alpha_n$

#### Grammars

- $(proposition) \rightarrow (noun)(verb)$
- ullet (noun) o a cat | a dog | a fish |  $\cdots$
- ullet (verb) o meows | barks | swims |  $\cdots$

(proposition), (noun), (verb) are called **non-terminal** "a dog", "a cat", "meows", "barks", ... are called **terminal** 

- (proposition)  $\rightarrow$  (noun)(verb)
- ullet (noun) o a cat | a dog
- ullet (verb) o sleeps | runs
- ullet a cat (verb) o a cat meows
- ullet a dog (verb) o a dog barks

```
\begin{array}{l} (\mathsf{proposition}) \to (\mathsf{noun})(\mathsf{verb}) \to \mathsf{a} \,\, \mathsf{dog} \,\, (\mathsf{verb}) \to \mathsf{a} \,\, \mathsf{dog} \,\, \mathsf{barks} \\ (\mathsf{proposition}) \to (\mathsf{noun})(\mathsf{verb}) \to \mathsf{a} \,\, \mathsf{cat} \,\, (\mathsf{verb}) \to \mathsf{a} \,\, \mathsf{cat} \,\, \mathsf{meows} \end{array}
```

### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

### Alphabets:

- $V_N$  is the non-terminal alphabet;
- $V_T$  is the terminal alphabet;
- $V = V_N \cup V_T$  the alphabet;
- $V_N \cap V_T = \emptyset$ .

#### Rules:

•  $P \subseteq (V^* \cdot V_N \cdot V^*) \times V^*$  is the (finite) set of rewriting rules of production, where  $V = V_N \cup V_T$ 

A **production rule**  $\alpha \rightarrow \beta$  is an element of *P* where

- $\alpha \in V^* \cdot V_N \cdot V^*$  is a sequence of symbols including at least one non-terminal symbol;
- $\beta \in V^*$  is a (potentially empty) sequence of (terminal or non-terminal) symbols.

#### Initial:

•  $S \in V_N$  is called an initial symbol

#### Definition

A grammar is a tuple  $\langle V_N, V_T, P, S \rangle$ , where

- $V_N$  is the non-terminal alphabet;
- $V_T$  is the terminal alphabet;
- $P \subseteq (V^* \cdot V_N \cdot V^*) \times V^*$  is the (finite) set of rewriting rules of production, where  $V = V_N \cup V_T$ ;
- $S \in V_N$  is a particular element called axiom or initial symbol.

### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

### Right regular grammar

A right regular grammar is a formal grammar  $\langle V_N, V_T, P, S \rangle$  such that all the production rules in P are of one of the following forms:

- **1**  $A \rightarrow b$ , where  $A \in V_N$  and  $b \in V_T$ ;
- ②  $A \rightarrow bB$ , where  $A, B \in V_N$  and  $b \in V_T \cup \{\epsilon\}$ ;
- **3**  $A \rightarrow \epsilon$ , where  $A \in V_N$  and  $\epsilon$  denotes the empty string.

### Left regular grammar

A left regular grammar is a formal grammar  $\langle V_N, V_T, P, S \rangle$  such that all the production rules in P are of one of the following forms:

- **1**  $A \rightarrow b$ , where  $A \in V_N$  and  $b \in V_T$ ;
- ②  $A \rightarrow Bb$ , where  $A, B \in V_N$  and  $b \in V_T \cup \{\epsilon\}$ ;
- **3**  $A \rightarrow \epsilon$ , where  $A \in V_N$  and  $\epsilon$  denotes the empty string.



#### Fact

Right regular = Left regular = Regular

### Example 1

 $L_1 = \{s \in \{a, b\}^* \mid a \text{ and } b \text{ alternating}\}$ 

 $\circ$   $S \rightarrow A$ 

 $\bullet$   $A \rightarrow \epsilon$ 

 $\bullet$   $S \rightarrow B$ 

B → bA

 $\bullet$   $A \rightarrow aB$ 

•  $B \rightarrow \epsilon$ 

$$S o A o aB o abA o abaB o abae = aba$$

$$S o B o bA o baB o babA o babaB o baba$$

### Example 2

$$L_1 = \{a^{2n} \mid n \in \mathbb{N}\}$$

### Rules

• 
$$S \rightarrow aA$$

• 
$$S \rightarrow \epsilon$$

$$\bullet$$
  $A \rightarrow aS$ 

$$S 
ightarrow aA 
ightarrow aaS 
ightarrow aa$$

$$S 
ightarrow aA 
ightarrow aaS 
ightarrow aaaA 
ightarrow aaaaS 
ightarrow aaaa$$

### Example 2

$$L_1 = \{a^{2n} \mid n \in \mathbb{N}\}$$

#### Rules

$$ullet$$
  $S o aaS$ 

$$\bullet$$
  $S \rightarrow \epsilon$ 

$$S 
ightarrow aaS 
ightarrow aaaaS 
ightarrow aaaa$$

### Right regular grammar

A right regular grammar is a formal grammar  $\langle V_N, V_T, P, S \rangle$  such that all the production rules in P are of one of the following forms:

- **1**  $A \rightarrow b$ , where  $A \in V_N$  and  $b \in V_T$ ;
- ②  $A \rightarrow bB$ , where  $A, B \in V_N$  and  $b \in V_T \cup \{\epsilon\}$ ;
- **3**  $A \rightarrow \epsilon$ , where  $A \in V_N$  and  $\epsilon$  denotes the empty string.

### Right regular grammar

A right regular grammar is a formal grammar  $\langle V_N, V_T, P, S \rangle$  such that all the production rules in P are of one of the following forms:

- 1)  $A \rightarrow s$ , where  $A \in V_N$  and  $s \in V_T^*$ ;
- 2)  $A \rightarrow sB$ , where  $A, B \in V_N$  and  $s \in V_T^*$ ;

#### The same definitions?



#### Rules

- $\bullet$   $A \rightarrow a_1 A_1'$
- $A_1' \rightarrow a_2 A_2'$
- . . . .
- $A'_{k-1} \rightarrow a_k A'_k$
- $A'_k \to \epsilon B$

This rules equals to  $A \rightarrow sB$ , where  $s = a_1 a_2 \dots a_k$ .

$$A \rightarrow a_1 A_1' \rightarrow a_1 a_2 A_2' \rightarrow \cdots \rightarrow a_1 a_2 \dots a_k A_k' \rightarrow a_1 a_2 \dots a_k B = sB$$



### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

### Context-Free grammars (type 2)

### Context-Free grammar

Defined by rules of the form  $A \to \gamma$  where A is a non-terminal and  $\gamma$  is a string of terminals and non-terminals.

### Example of rules

- **1**  $A \rightarrow b$ , where  $A \in V_N$  and  $b \in V_T$  Yes
- 2  $A \rightarrow Bb$ , where  $A, B \in V_N$  and  $b \in V_T$  Yes
- **3**  $A \rightarrow BbB$ , where  $A, B \in V_N$  and  $b \in V_T$  Yes
- **5**  $AB \rightarrow Bb$ , where  $A, B \in V_N$  and  $b \in V_T$  **NO**

# Context-Free grammars (type 2)

### Example

$$L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$$

### Rules

$$S \rightarrow \epsilon$$

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

$$S \rightarrow aSb \rightarrow ab$$

$$S o aSb o aaSbb o \cdots a^nSb^n o a^nb^n$$

### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

# Context-Sensitive grammars (type 1)

The rules of the form  $s_1As_2 \rightarrow s_1\gamma s_2$ , where A is a non-terminal and  $s_1$ ,  $s_2$  and  $\gamma$  are strings of terminals and non-terminals.

### Example

Generate language  $\{a^nb^nc^n|n>0\}$ 

$$\circ$$
 S  $\rightarrow$  aBC

$$\mathbf{2} S \rightarrow \mathsf{a} SBC$$

$$oldsymbol{o}$$
  $aB o ab$ 

$$\mathbf{o}$$
 c $C \rightarrow cc$ 

$$CB \rightarrow CZ \rightarrow WZ \rightarrow WC \rightarrow BC$$



# Context-Sensitive grammars (type 1)

The rules of the form  $s_1As_2 \rightarrow s_1\gamma s_2$ , where A is a non-terminal and  $s_1$ ,  $s_2$  and  $\gamma$  are strings of terminals and non-terminals.

### Example

Generate language  $\{a^nb^nc^n|n>0\}$ 

$$\circ$$
  $S \rightarrow aBC$ 

$$3 S \rightarrow aSBC$$

$$oldsymbol{o}$$
  $aB o ab$ 

$$\mathbf{o}$$
 c $C \rightarrow cc$ 

$$S o aSBC o aaBCBC o aaBBCC o aabBCC o aabbCC o aabbcC$$

### Agenda

- Computational linguistics
- Chomsky Hierarchy
  - Regular grammars (type 3)
  - Context-Free grammars (type 2)
  - Context-Sensitive grammars (type 1)
  - Unrestricted grammars (type 0)

# Unrestricted grammars (type 0)

### Unrestricted grammar (type 0)

A Unrestricted grammar is a formal grammar without any limitation on production rules.

The rules of the form  $\alpha \to \beta$ , where  $\alpha$  and  $\beta$  are strings of non-terminals and terminals.

### Example 1

Generate language  $\{a^nb^nc^n \mid n>0\}$ 

$$\circ$$
  $S \rightarrow aBC$ 

$$\mathbf{2} S \rightarrow \mathsf{a} SBC$$

$$aB \rightarrow ab$$

$$\bullet B \rightarrow bb$$

$$\mathbf{0} \ \mathsf{b} C \to \mathsf{bc}$$

$$cC \rightarrow cc$$

# Unrestricted grammars (type 0)

### Example 2

Generate language  $\{a^nb^nc^nd^n \mid n>0\}$ 

- $\circ$  S  $\rightarrow$  aBCD
- $\circled{2}$   $S \rightarrow aSBCD$
- $\bigcirc$  DB  $\rightarrow$  BD
- $oldsymbol{0}$  aB o ab

- $oldsymbol{o}$  bB o bb
- $\mathbf{0}$  b $C \rightarrow bc$
- $\circ$  c $C \rightarrow cc$
- $\mathbf{0}$  c $D \to \mathsf{cd}$

S o aSBCD o aaBCDBCD o aaBCBDCD o aaBBCDCD o aaBBCCDD o

### Chomsky Hierarchy

Classification of grammars by Chomsky: four types according to the form of production rules.

- (type 3) Regular grammars
- (type 2) Context-Free grammars
- (type 1) Context-Sensitive grammars
- (type 0) Unrestricted grammars



# Grammars, languages and automata

| Chomsky hierarchy | Grammars          | Languages              | Minimal automaton |
|-------------------|-------------------|------------------------|-------------------|
| Type-0            | Unrestricted      | Recursively enumerable | Turing machine    |
| Type-1            | Context-sensitive | Context-sensitive      | LBA               |
| Type-2            | Context-free      | Context-free           | NDPDA             |
| Type-3            | Regular           | Regular                | FSA               |

Thank you for your attention!