代数学1,理解度チェック(余りの問題)の解答

担当:那須

- $\boxed{1}$ (部分群) 次の群 G と部分集合 $H \subset G$ に対し, H が G の部分群になることを示せ.
 - (1) 対称群 $G = S_n$ において、偶置換の全体の集合 $H = A_n$
 - (2) 乗法群 $G = GL(2,\mathbb{R})$ (実数を成分とする 2次正則行列全体) と $H = SL(2,\mathbb{R})$ (実数を成分とする 2次正方行列で行列式が 1 に等しいもの)
 - (3) 加法群 $G = \mathbb{R}^2$ (ベクトル空間 \mathbb{R}^2) と原点を通る傾き 2 の直線 $H = \{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$.

解答) 部分集合 H が G の部分群であることを示すには、

- (i) H が G の演算で閉じていること,
- (ii) H の任意の元の逆元が H に含まれること.

の2つを示せば良い.

- (1) (i) $\sigma, \tau \in A_n$ とする. σ, τ はともに偶数個の互換の積として表されるので、積 $\sigma\tau$ も偶数個の互換の積として表される. 従って $\sigma\tau \in A_n$.
 - (ii) $\sigma \in A_n$ とする. σ は偶数個の互換 $\tau_1, \ldots, \tau_{2n}$ の積として, $\sigma = \tau_1 \cdots \tau_{2n}$ と表される.

$$\sigma^{-1} = \tau_{2n}^{-1} \cdots \tau_1^{-1} = \tau_{2n} \cdots \tau_1$$

より, $\sigma^{-1} \in A_n$ となる.

- (2) (i) $A,B \in SL(2,\mathbb{R})$ とする. 仮定より A,B の行列式の値は共に 1 に等しい. 従って、積 AB の行列式の値は $|AB| = |A||B| = 1^2 = 1$ となり, $AB \in SL(2,\mathbb{R})$ となる.
 - (ii) $A \in SL(2,\mathbb{R})$ とする. A^{-1} を A の逆行列とする $(E = AA^{-1} = A^{-1}A)$. このとき, $1 = |E| = |A||A^{-1}| = 1 \cdot |A^{-1}| = |A^{-1}|$ より, A^{-1} の行列式の値は 1 に等しい. 従って, $A^{-1} \in SL(2,R)$ となる.
- (3) (i) 任意のHの元(x,y) は実数tを用いて,(x,y)=(t,2t) と表される. $(s,2s),(t,2t)\in H$ に対し, $(s,2s)+(t,2t)=(s+t,2(s+t))\in H$ より,(s,2s) と(t,2t)の和もHの元になる.
 - (ii) 任意の H の元 (t,2t) に対し、 $-t \in \mathbb{R}$ より、G における逆元 (-t,-2t) = (-t,2(-t)) も H の元である.
- [2] (置換, 対称群) 次の 4 次置換 $\sigma, \tau \in S_4$ に対し, (a) \sim (d) の元を計算せよ.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$

(a) $\sigma \tau$ (b) $\tau \sigma$ (c) σ^3 (d) τ^{-1}

解答) 答えのみ記す.

(a)
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$
 (b) $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ (c) $\sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ (d)
$$\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

③ (1) 置換 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 3 & 1 & 8 & 5 & 7 & 9 & 2 \end{pmatrix} \in S_9$ をサイクルの分離積として表せ.

(2) σ を互換の積の形で表せ.

解答) (1)
$$\sigma = (1\ 4)(2\ 6\ 5\ 8\ 9)$$
 (2) $\sigma = (1\ 4)(2\ 6)(6\ 5)(5\ 8)(8\ 9)$

- 4 次の置換の等式を示せ.
 - (1) 任意のi, j $(i, j \neq 1)$ かつ $i \neq j$ に対し(ij) = (1i)(1j)(1i)
 - (2) 任意の $i, j (i, j \neq 1, 2$ かつ $i \neq j$) に対し,

$$(1i)(12) = (12i), (12)(1j) = (1j2) = (12j)^2, (1i)(1j) = (12i)(12j)^2$$

解答) 2つの置換 σ, τ が等しい $(\sigma = \tau)$ という意味は, σ と τ が写像として等しい, すなわち任意の $k = 1, \ldots, n$ に対し, $\sigma(k) = \tau(k)$ が成り立つという意味である (問題 (1)). また $(a \ b \ c) = (a \ b)(b \ c)$ を用いて, 一方から他方へ式変形をして示しても良い (問題 (2)).

(1) $k \neq 1, i, j$ のとき、あきらかに (ij)(k) = (1i)(1j)(1i)(k) = k が成り立つ. 一方, $i, j \neq 1$ より、

$$(1i)(1j)(1i)(1) = (1i)(1j)(i) = (1i)(i) = 1$$
$$(1i)(1j)(1i)(i) = (1i)(1j)(1) = (1i)(j) = j$$
$$(1i)(1j)(1i)(j) = (1i)(1j)(j) = (1i)(1) = i$$

が成り立つ. したがって任意の k = 1, ..., n に対し, (1i)(1j)(1i)(k) = (ij)(k) が成り立つ.

(2) 一般に互いに異なる $i_1, \ldots, i_k \in \{1, \ldots, n\}$ に対し、長さ r のサイクル $(i_1 i_2 \ldots i_r)$ は、

$$(i_1 \ i_2 \ \cdots \ i_r) = (i_1 \ i_2)(i_2 \ i_3) \cdots (i_{r-1} \ i_r)$$

と隣接互換の積で表される (教科書 p.5 参照). 特に $(a \ b \ c) = (a \ b)(b \ c)$ が成り立つ. したがって、最初の等式については、

$$(1 \ i)(1 \ 2) = (i \ 1)(1 \ 2) = (i \ 1 \ 2) = (1 \ 2 \ i).$$

2つ目の等式については、 $(1\ 2)(1\ j) = (2\ 1)(1\ j) = (2\ 1\ j) = (1\ j\ 2)$ と

$$(1\ 2\ j)^2 = (j\ 1\ 2)(1\ 2\ j) = (j\ 1)(1\ 2)(1\ 2)(2\ j) = (j\ 1)e(2\ j) = (1\ j\ 2)$$

から従う. 両者より

$$(1\ 2\ i)(1\ 2\ j)^2=(1\ i)(1\ 2)(1\ 2)(1\ j)=(1\ i)(1\ 2)^2(1\ j)=(1\ i)e(1\ j)=(1\ i)(1\ j)$$
 となり、3つ目が従う.

[5] (同型) 正三角形の対称群 $\operatorname{Sym}(\Delta)$ と 3 次対称群 S_3 が同型であること示せ. (両者の群表を書き, 一致することを示せばよい.)

解答) 3次対称群 S_3 の元を次のように定める.

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \rho_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \rho_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

 $f: \mathrm{Sym}(\Delta) \to S_3$ を f(I) = e, $f(R_i) = \rho_i$ (i = 1, 2), $f(T_j) = \tau_j$ (j = 1, 2, 3) で定めると, 以下の表より, f は $\mathrm{Sym}(\Delta)$ から S_3 への準同型写像となる. 明らかに全単射であるため, f は同型である.

(a) S_3										
a b	e	ρ_1	ρ_2	$ au_1$	$ au_2$	$ au_3$				
e	e	ρ_1	ρ_2	$ au_1$	$ au_2$	$ au_3$				
$ ho_1$	ρ_1	ρ_2	e	$ au_3$	$ au_1$	$ au_2$				
$ ho_2$	ρ_2	e	ρ_1	$ au_2$	$ au_3$	$ au_1$				
$ au_1$	τ_1	$ au_2$	τ_3	e	ρ_1	ρ_2				
$ au_2$	$ au_2$	$ au_3$	$ au_1$	ρ_2	e	ρ_1				
$ au_3$	τ_3	$ au_1$	$ au_2$	ρ_1	ρ_2	e				

(b) $\operatorname{Sym}(\triangle)$										
a b	I	R_1	R_2	T_1	T_2	T_3				
I	I	R_1	R_2	T_1	T_2	T_3				
R_1	R_1	R_2	I	T_3	T_1	T_2				
R_2	R_2	I	R_1	T_2	T_3	T_1				
T_1	T_1	T_2	T_3	I	R_1	R_2				
T_2	T_2	T_3	T_1	R_2	I	R_1				
T_3	T_3	T_1	T_2	R_1	R_2	I				

6 同型

$$GL(2,\mathbb{R})/SL(2,\mathbb{R}) \simeq \mathbb{R}^{\times}$$

を示せ. ただし,

$$GL(2,\mathbb{R}) = \left\{ A \mid A \text{ は 2 次正方行列 } \text{で} \det(A) \neq 0 \right\},$$
 $SL(2,\mathbb{R}) = \left\{ A \mid A \text{ は 2 次正方行列 } \text{で} \det(A) = 1 \right\},$ $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}.$

とする.

解答) 群 $GL(2,\mathbb{R})$ から群 \mathbb{R}^{\times} への写像 Φ を

$$\Phi: GL(2,\mathbb{R}) \longrightarrow \mathbb{R}^{\times}, \qquad A \longmapsto \det A$$

により定める. ただし $\det A$ は A の行列式を表す. 2 次正則行列 A, B に対し,

$$\Phi(AB) = \det(AB) = \det(A)\det(B) = \Phi(A)\Phi(B).$$

よって Φ は準同型写像となる. さらに Φ は全射である. 実際, 任意の $a \neq 0 \in \mathbb{R}$ に対し,

$$\Phi\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}\right) = \det\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = a.$$

である. 明らかに $\ker \Phi = \big\{A \in GL(2,\mathbb{R}) \ \big| \ \det A = 1 \big\} = SL(2,\mathbb{R})$. よって、準同型定理より $GL(2,\mathbb{R})/SL(2,\mathbb{R}) \simeq \mathbb{R}^{\times}.$

|7| (1) 次の合同方程式を解け.

$$x^2 \equiv 1 \mod 35$$

(2) p,q を異なる2つの素数とする. 合同方程式

$$x^2 \equiv 1 \mod pq$$

の解を全て求めよ.

解答)

(1) $x^2 - 1 = (x - 1)(x + 1) = 0$ mod $5 \cdot 7$ は次の 4 つの連立合同方程式と同値である:

$$\begin{cases} x \equiv 1 \mod 5 \\ x \equiv 1 \mod 7 \end{cases} \begin{cases} x \equiv 1 \mod 5 \\ x \equiv -1 \mod 7 \end{cases} \begin{cases} x \equiv -1 \mod 5 \\ x \equiv 1 \mod 7 \end{cases} \begin{cases} x \equiv -1 \mod 5 \\ x \equiv -1 \mod 7 \end{cases}$$

それぞれから, $x \equiv 1, x \equiv 6, x \equiv 29, x \equiv 34$ を得る.

(2) (1) と同様に, $x^2 \equiv 1 \mod pq$ は次の4つの合同方程式

$$\begin{cases} x \equiv 1 \mod p & \begin{cases} x \equiv 1 \mod p \\ x \equiv 1 \mod q \end{cases} \begin{cases} x \equiv -1 \mod p \\ x \equiv -1 \mod q \end{cases} \begin{cases} x \equiv -1 \mod p \\ x \equiv 1 \mod q \end{cases}$$

と同値である. $p \ge q$ は互いに素であるから、拡張されたユークリッドの互除法により

$$pt_2 + qt_1 = 1$$

を満たす整数の組 (t_1,t_2) が存在する.

$$x = \pm 1 \cdot q \cdot t_1 \pm 1 \cdot p \cdot t_2 = \pm qt_1 \pm pt_2 \qquad (複合任意)$$

と置けば, $x \mod pq$ が求める解である.

8 (1) 合同方程式

$$19x^2 + 12x + 11 \equiv 0 \mod 21$$

を解け.

(2) 方程式 $7x^2 - 6y^2 = -1$ が整数解 (x, y) を持たない事を示せ. (ヒント:3 を法として $\mathbb{Z}/3\mathbb{Z}$ の世界で考えてみよう.)

解答)

(1) 21 = 3.7 より, 与えられた合同方程式は $19x^2 + 12x + 11 \equiv 0 \mod 3$ または $19x^2 + 12x + 11 \equiv 0 \mod 7$ と同値である。まず 3 を法として考えると、 $(19 \equiv 1, 12 \equiv 0, 11 \equiv -1$ より)

$$19x^{2} + 12x + 11 \equiv x^{2} - 1 = (x+1)(x-1) \equiv (x-2)(x-1) = 0.$$

よって $x \equiv 1,2 \mod 3$. 一方、7を法として考えると、

$$19x^{2} + 12x + 11 \equiv 5x^{2} - 2x - 3 = (5x + 3)(x - 1) \equiv 5(x + 2)(x - 1) \equiv 5(x - 5)(x - 1).$$

よって $x \equiv 1,5 \mod 7$. 前問と同様に 4 つの連立合同方程式を解けば, $x \equiv 1,5,8,19 \mod 21$ を得る.

(2) $7x^2 - 6y^2 \equiv x^2 \mod 3$ より, $7x^2 - 6y^2 = -1$ が整数解 (x,y) を持てば, 法 3 の下での還元

$$x^2 = 2 \mod 3$$

も $\mathbb{Z}/3\mathbb{Z}$ で解を持つ. しかし, 任意の $x\in\mathbb{Z}/3\mathbb{Z}$ に対し, $x^2\equiv 0,1\mod 3$ であるから, これは矛盾.

0※この講義に関する情報はホームページを参照. https://fuji.ss.u-tokai.ac.jp/nasu/2024/alg1.html