

REPUBLIQUE DU BENIN

ASSOCIATION DES PROFESSEURS DE MATHEMATIQUES DU BENIN

Enregistrée sous le n°96-59 MISAT/DC/DAI/SAAP-Assoc. du 13 mai 1996

TEST APMB EDITION 2023 CLE ET GRILLE DE CORRECTION EPREUVE DE MATHEMATIQUES: TERMINALES A_1

N°	Éléments de réponses	Capacité Analysée	Capacité	Capacité Opérée	Total
			Mathématisée		
	Problème 1	Le candidat identifie	Le candidat utilise	Le candidat trouve	
1-	Justifions que $S=4$	$ullet$ $\overline{100}^2$	•une méthode de	$\bullet 1 \times 2^2 + 0 \times 2 + 0$	8pts
	On a $S = \overline{100}^2 = 1 \times 2^2 + 0 \times 2 + 0 = 4$.		décomposition	●4	
	Donc $S=4$	2pts	2pts	4 pts	
2-a.	Exprimons U_{n+1} en fonction de U_n	•le taux d'intérêt	•une méthode de	●0,04	8pts
	L'intérêt calculé est $4 \times 1\% = 0,04$.		démonstration	$U_{n+1} = U_n + 0,04$	
	Puisque le compte est à intérêt simple alors $0,04$ mil-		pour trouver la rela-		
	lion s'ajoute chaque mois. Donc on a		tion		
	$U_{n+1} = U_n + 0,04$	2pts	2 pts	4 pts	
2-b.	Démontrons que la suite (U_n) est arithmétique	$\bullet U_{n+1} = U_n + 0,04$	•une méthode de	$\bullet(U_n)$ est une suite	10pts
	On a: $\forall n \in \mathbb{N}$,		démonstration pour	arithmétique	
	$U_{n+1} - U_n = U_n + 0,04 - U_n$		trouver qu'une suite	premier terme	
	= 0,04		est arithmétique	$U_o = 4$ et raison	
	Donc la suite (U_n) est une suite arithmétique premier	2 pts		r = 0,04	
	terme $U_o = 4$ et de raison $r = 0,04$.	, -	4 pts	4 pts	

2-c.	Déterminons (U_n) en fonction de n	$ullet U_n$ comme étant	•la formule de	$\bullet U_n = 4 + 0,04n$	8pts
	On a: $\forall n \in \mathbb{N}$,	une suite	détermination du		
	$U_n = U_o + 0,04(n-0) = 4+0,04n$	arithmétique	terme général d'une		
			suite arithmétique		
		2 pts	2 pts	4 pts	
3.	Déterminons le montant que Korogui doit ramasser à	●30	•une méthode de	$\bullet U_{30} = 5.200.000$	8pts
	la fin du contrat.		calcul		
	À la fin du contrat, il son avoir aura fait 30 mois après			11.4.	
	son dépôt, donc il ramassera	2 pts	2 pts	4 pts	
	$U_{30} = (4+0,04\times30)\times1.000.000 = 5.200.000$ FCFA				
	Récapitulatif problème 1	$5Ca \leftrightarrow 10pts$	$6Cm \leftrightarrow 12pts$	$10Co \leftrightarrow 20pts$	42pts
	Problème 2				
4-a.	$\grave{\mathbf{A}}$ partir du tableau de variation de f , précisons	•le tableau de varia-	•une méthode pour	$\bullet b = 2$	8pts
	la valeur de b .	tion de f	reconnaitre que f		
	D'après le tableau de variation, f n'est pas définie en		n'est pas définie en		
	2. Donc $D = \mathbb{R} \setminus \{2\}$. Ainsi $b = 2$.		2		
		2 pts	2 pts		
4-b.	les limites aux bornes et les asymptotes à la	●le tableau de varia-	 une méthode pour 	$\bullet \lim_{x \to +\infty} f(x) = -1$	10pts
	courbe (C) .	tion de f	reconnaitre les lim-	$\det_{x \to -\infty}^{x \to +\infty} f(x) = -1$	
	D'après le tableau de variation, on a:		ites aux bornes de		
	$\lim_{x \to -\infty} f(x) = -1 \text{ et } \lim_{x \to +\infty} f(x) = -1.$		D.	$ \oint \lim_{\substack{x \to 2 \\ x < 2}} f(x) = +\infty \text{ et} $	
	La droite d'équation $y = -1$ est asymptote à la courbe			$\lim_{\substack{x \to 2 \\ x > 2}} f(x) = -\infty$	
	(C) au voisinage de $-\infty$ et de $+\infty$	2 pts	 4 pts	$\begin{vmatrix} x \rightarrow 2 \\ x > 2 \end{vmatrix}$	
	$\lim_{\substack{x\to 2\\x<2}} f(x) = +\infty \text{ et } \lim_{\substack{x\to 2\\x>2}} f(x) = -\infty$			4 pts	
	W/4	1	1	1	

4-c.	le sens de variation.	•le tableau de varia-	•une méthode pour	ullet f est strictement	6pts
	D'après le tableau de variation, f est strictement crois-	tion de f	déterminer le sens	croissante sur cha-	
	sante sur chacun des intervalles $]-\infty;2[$ et $]2;+\infty[$.		de variation de la	cun des intervalles	
		2 pts	fonction f	$]-\infty;2[$ et $]2;+\infty[.$	
	<i>m</i> 1		2 pts	2 pts x = 1	
5.	Justifions que $\forall x \in D, f(x) = \frac{x-1}{-x+2}$.	ulletl'expression de f et	•une méthode pour		10pts
	1 $-x+z$ 1 1 1 1 1 1 1 1 1 1	les limites de f à	déterminer a une	-x+z	
	On a $f(x) = a + \frac{1}{-x+b}$ et $\lim_{x\to\infty} f(x) = -1$, or	l'infini	méthode pour écrire		
	$\lim_{x \to \infty} a + \frac{1}{-x+b} = a \operatorname{car} \lim_{x \to \infty} \frac{1}{-x+b} = 0 \operatorname{donc}$		$ \operatorname{que}_{1} f(x) = -1 +$		
	$x \to \infty$ $-x + b$ $x \to \infty$ $-x + b$ $x \to \infty$ $-x + b$				
		2pts	-x+2 4pts	4pts	
	$f(x) = -1 + \frac{1}{-x+2} = \frac{x-1}{-x+2}$				
6-a.	Déterminons l'intersection de la courbe (C) avec	ullet f et les axes de co-	•une méthode pour	$ullet A\left(0,-rac{1}{2} ight)$ et	10pts
	les deux axes.	ordonnées	déterminer	B(1,0)	
	Ainsi l'intersection de la courbe (C) de f avec l'axe		l'intersection d'une	D(1,0)	
	des ordonnées est le point d'abscisse 0. Donc on a		courbe avec les axes		
	$f(0) = \frac{0-1}{-0+2} = -\frac{1}{2}$. D'où l'intersection de la		de coordonnées		
	courbe C de f avec l'axe des ordonnées est le points				
		l 2 nts	 	 4pts	
	$A\left(0, -\frac{1}{2}\right)$	2 pts	4pts	4pts	
		2 pts	4pts	4pts	
	$A\left(0,-\frac{1}{2}\right)$ L'intersection de la courbe C de f avec l'axe des abscisses est le point d'ordonnée 0 . Donc $f(x)=0$	2 pts	4pts	4pts	
	$A\left(0,-\frac{1}{2}\right)$ L'intersection de la courbe C de f avec l'axe des ab-	2 pts	4pts	4pts	
	$A\left(0,-\frac{1}{2}\right)$ L'intersection de la courbe C de f avec l'axe des abscisses est le point d'ordonnée 0 . Donc $f(x)=0$	2 pts	4pts	4pts	

6-b.	Construisons le courbe C de f . $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		◆trace un repère orthonormé 2pts	•l'allure de la courbe	4pts
	Récapitulatif Problème 2.	$5Ca \leftrightarrow 10pts$	$9Cm \leftrightarrow 18pts$	$10Co \leftrightarrow 20pts$	48pts
	Total.	$10Ca \leftrightarrow 20pts$	$15Cm \leftrightarrow 30pts$	$20Co \leftrightarrow 40pts$	90pts
		$1Ca \leftrightarrow 2pts$	$1Cm \leftrightarrow 2pts$	$1Co \leftrightarrow 2pts$	

Recommandations Générales

- Noter dans la marge pour chaque question Ca+Cm+Co
- Noter N=... pour la note sur 90
 - $\bullet \ \operatorname{Pour} \ N < 40 \ \operatorname{donner} \ CP = 0;$
 - \bullet Pour $40 \leq N < 60$ donner $CP = k, k \in [0, 5];$
 - $\bullet \ \operatorname{Pour} \ N \geq 60 \ \operatorname{donner} \ CP = k, k \in [0, 10];$
- Ecrire $T = \frac{N + CP}{100}$