

Scaling up MATLAB Analytics

Marta Wilczkowiak, PhD Senior Applications Engineer MathWorks

Agenda

- Giving access to your analytics to more users
- Handling larger problems

When Scalability is a Challenge

- You have great functionality, yet people do not have access to it
- You have purchased more computers, yet you can not execute much more functions
- You hired more people, yet software gets developed at the same scale

Examples

- Increase number of Monte Carlo simulations
- Share portfolio, risk or trading apps with a few traders
- Deploy pricing functions into an enterprise pricing platform serving front, middle and back offices
- Update prices nightly, or intraday, in an enterprise database
- Add strategies to a trading platform

More computational power
$$f(x)$$
 — More access

Multi-tier Architecture

Logic (Algorithm)

Data

What We Are Looking at in This Session

More access

More computational power

Enabling Access to MATLAB Algorithms (Deployment)

What Is Application Deployment?

- Sharing MATLAB apps or native files with other MATLAB users
- Sharing MATLAB programs with people who do not have MATLAB

Tools

Deployment options

Live MATLAB

- Apps
- MATLAB Complier

- Standalone applications
- Software modules
- MATLAB Production Server

Deployment options

Live MATLAB

- Apps
- MATLAB Complier

- Standalone applications
- Software modules
- MATLAB Production Server

MATLAB Apps

MATLAB Apps: Custom interactive applications running in MATLAB

- Easy to package, install and find
- Support full MATLAB language
- Require MATLAB to run

Deployment options

Live MATLAB

- Apps
- MATLAB Complier

- Standalone applications
- Software modules
- MATLAB Production Server

What is MATLAB Compiler?

Software that let's you to:

- Package your MATLAB code so that it does not require MATLAB license
- Encrypt your intellectual property

MATLAB Compiler Runtime

Typical deployment process for desktop applications

- 1. Create MATLAB code
- 2. Package the code
- 3. Share the installer

4. Install the application and MCR

Desktop Applications Potential scalability challenges

- Distributing software updates to multiple users
- Installing application in uncontrolled IT setup (admining rights, different OS, etc.)
- Slow data transfer from a remote location
- Hardware resources on the client machines inadequate to application demands
- Distributing MCR updates to multiple users

Scaling Up: Demand for Server Analytics

Client

 Less need for processing power and memory

Server

- Simplified code management
- Optimal access to data and hardware resources
- Security

Challenge:

Giving access to MATLAB to multiple requesters (single threaded MCR)

Deployment options

Live MATLAB

- Apps
- MATLAB Complier

- Standalone applications
- Software modules
- MATLAB Production Server

What is MATLAB Production Server?

Enterprise class framework for running packaged MATLAB programs

Runtime libraries

Execute algorithms

Manages algorithms & worker pool

Lightweight client library *Requests execution of algorithms*

Integrating with IT Systems

MATLAB Production Server Scalable and reliable way for giving access to MATLAB algorithms

Centralised library of algorithms

Simultaneous access to multiple users

Simple management

- Let MPS manage the worker pool, algorithms and MCRs
- Update the algorithms automatically
- Separate the development and execution of application and algorithmic code

Execution efficiency

- · Access immediately
- Execute with optimised hardware and access to the data

Ease of access

- Use with different clients: web, database & application servers
- Integrate easily with application software using the lightweight client library
- Call using native data types

Deploying Enterprise Applications

Deploying Your Code To a Server Considerations

Server Deployment: Main Considerations

Will Clients Call the Algorithm Simultaneously?

Client

- What Interfaces the Client Can Use?
- What Should the Input / Output Be ?

- What are Other Dependencies of the Algorithm?
- How to Keep the Algorithm Available?
- What is the Response Time?

Data

Will Clients Call the Algorithm Simultaneously?

Database/web/application server

Providing access to multiple MCRs

- Using MPS
- Using 3rd party or proprietary solutions (watch MCR start up and development time)

What Interfaces the Client Can Use

Web application

? (x)

What "language" does the client speak?

Bottom line: MATLAB components can be called from any application that

has external interfaces

What Should Be the Input/Output?

What Should Be the Input/Output? Example 1

Deploy pricing functions into an enterprise pricing platform

What Should Be the Input/Output? Example 2

Add algorithms to a trading platform

What Should Be the Input/Output? Example 3

Update prices nightly, or intraday, in an enterprise database

What Should Be the Input/Output? Summary

Main considerations

- What is needed
- Data types
- Is data on the client anyway?
- Need/want to use of existing enterprise I/O functions
- Marshalling time

What are Other Dependencies of the Algorithm?

State/persistent data


```
function out = getNextNumber
persistent n;
if isempty(n)
    n = 0;
end
n = n+1;
out = n;
```


What are Other Dependencies of the Algorithm?

```
function out = getNextNumber
persistent n;
if isempty(n)
    n = 0;
end
n = n+1;
out = n;
```

```
function out = getNextNumber(n)
out = n+1;
```

Removing state/persistent data

- Refactor
- Store state in

Database

MAT files

In-memory storage

Config files

Make sure they will be present in the production environment

How to Keep the Algorithm Available

Imagine

function makeExit
exit

 \checkmark

Monitor and maintain the worker(s)

What is the Response Time

If the algorithm is not fast enough for the client

- Accelerate your code
- Warn the client
- Minimize call overhead
 - Reduce data marshalling

- MCR start-up time
- Algorithm closer to data

Off the Shelf Product Features for Server-Side Deployment

	MATLAB Compiler +Builders	MATLAB Production Server
Code locked	\checkmark	\checkmark
Logic out of process		\checkmark
Reduced MCR start up time		\checkmark
Simultaneous access		\checkmark
Monitor and maintain the worker(s)		\checkmark

Creating Production Ready MATLAB Algorithms

Internal collaboration
MathWorks Consulting Services

Using More Computational Power (Parallel Computing)

Parallel Computing Tools Address...

Task-Parallel

Long computations

Multiple independent iterations

```
parfor i = 1 : n
% do something with i
end
```

Series of tasks

Task 1 Task 2 Task 3 Task 4

Parallel Computing Toolbox for the Desktop

- Speed up parallel applications
- Take advantage of GPUs
- Prototype code for your cluster

Scale Up to Clusters and Clouds

Main Considerations for Scalability

- Data transfer
- Resource contention
- Other overheads

Resource Contention

Speedup vs. num. Concurrent Processes

Performance

a = bigMatrix

a*a

fft(a)

sum(a)

Effect of number of concurrent processes on resource contention and speedup

Speedup vs. num. Concurrent Processes

Performance

a = bigMatrix

a*a

fft(a)

sum(a)

Effect of number of concurrent processes on resource contention and speedup

What We Have Seen

More access

More computational power

More Data

Scaling Up MATLAB Analytics

- Rapid prototyping of ideas
- Scalable algorithms
 - using more computational power
 - with wide access

