Symmetric Matrix (3 of 9)

- Hence $(\lambda_1 \lambda_2) \mathbf{v}_1 \cdot \mathbf{v}_2 = 0$
- But $\lambda_1 \lambda_2 \neq 0$, so $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$
- An $n \times n$ matrix A is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P (with $P^{-1} = P^T$) and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1} \tag{1}$$

- Such a diagonalization requires n linearly independent and orthonormal eigenvectors.
- When is this possible?
- If A is orthogonally diagonalizable as in (1), then

$$A^{T} = (PDP^{T})^{T} = P^{TT}D^{T}P^{T} = PDP^{T} = A$$

