Expresiones Regulares

Es un equivalente algebraico para un autómata.

- Utilizado en muchos lugares como un lenguaje para describir patrones en texto que son sencillos pero muy útiles.
- Pueden definir exactamente los mismos lenguajes que los autómatas pueden describir: Lenguajes regulares
- Ofrecen algo que los autómatas no: Manera declarativa de expresar las cadenas que queremos aceptar

Expresiones Regulares

- Ejemplos de sus usos
 - Comandos de búsqueda, e.g., grep de UNIX
 - Sistemas de formateo de texto: Usan notación de tipo expresión regular para describir patrones
 - Convierte la expresión regular a un DFA o un NFA y simula el autómata en el archivo de búsqueda
 - Generadores de analizadores-léxicos. Como Lex o Flex.
 - Los analizadores léxicos son parte de un compilador.
 Dividen el programa fuente en unidades lógicas (tokens). Tokens como while, números, signos (+, -, <, etc.)
 - Produce un DFA que reconoce el token

Expresiones Regulares

Si E es una expresión regular, entonces L(E) denota el lenguaje que define E. Las expresiones se construyen de la manera siguiente:

- 1 Las constantes ϵ y \emptyset son expresiones regulares que representan a los lenguaje $L(\epsilon) = \{\epsilon\}$ y $L(\emptyset) = \emptyset$ respectivamente
- 2 Si a es un símbolo, entonces es una expresión regular que representan al lenguaje: $L(a) = \{a\}$

Operandos

- 1 Si E y F son expresiones regulares, entonces E + F también lo es denotando la unión de L(E) y L(F). $L(E + F) = L(E) \cup L(F)$.
- 2 Si E y F son expresiones regulares, entonces EF también lo es denotando la concatenación de L(E) y L(F). L(EF) = L(E)L(F).
- 3 Si E es una expresión regular, entonces E^* también lo es y denota la cerradura de L(E). Osea $L(E^*) = (L(E))^*$
- 4 Si E es una expresión regular, entonces (E) también lo es. Formalmente: L((E)) = L(E).

Precedencia

- 1 El asterisco de la cerradura tiene la mayor precedencia
- 2 Concatenación sigue en precedencia a la cerradura, el operador "dot". Concatenación es asociativa y se sugiere agrupar desde la izquierda (i.e. 012 se agrupa (01)2).
- 3 La unión (operador +) tiene la siguiente precedencia, también es asociativa.
- Los paréntesis pueden ser utilizados para alterar el agrupamiento

Ejemplos

- L(001) = 001.
- $L(0+10^*) = \{0, 1, 10, 100, 1000, \ldots\}.$
- L((0(0+1))*) = el conjunto de cadenas de 0's y 1's, de longitud par, de tal manera que cada posición impar tenga un 0.
- Expresión regular de cadenas que alterna 0's y 1's:
 - 1 $(01)^* + (10)^* + 0(10)^* + 1(01)^*$ (opción 1)
 - **2** $(\epsilon + 1)(01)^*(\epsilon + 0)$ (opción 2)

Ejemplos

- 1 Encuentra la expresión regular para el conjunto de cadenas sobre el alfabeto {a, b, c} que tiene al menos una a y al menos una b
- ② Encuentra la expresión regular para el conjunto de cadenas de 0's y 1's tal que cada par de 0's adyacentes aparece antes de cualquier par de 1's adyacentes

Soluciones

- 1 $c^*a(a+c)^*b(a+b+c)^* + c^*b(b+c)^*a(a+b+c)^*$ Osea, cuando la primera a esta antes que la primera bo cuando la primera b está antes de la primera a
- 2 $(10+0)^*(\epsilon+1)(01+1)^*(\epsilon+1)$ $(10+0)^*(\epsilon+1)$ es el conjunto de cadenas que no tienen dos 1's adyacentes. La segunda parte es el conjunto de cadenas que no tienen dos 0's adyacentes. De hecho $\epsilon+1$ lo podríamos eliminar porque se puede obtener el 1 de lo que sigue, por lo que podemos simplificarlo a: $(10+0)^*(01+1)^*(\epsilon+1)$

Equivalencia de Lenguajes de FA y Lenguajes RE

- Después, se mostrará que un RE puede describir el lenguaje de un DFA (la misma construcción funciona para un NFA).
- Los lenguajes aceptados por DFA, NFA, ε-NFA, RE son llamados lenguajes regulares.

Convirtiendo una RE a un Autómata

Aplicación del teorema de Kleene

- ① Exactamente un estado de aceptación
- Sin arcos que lleguen al estado inicial
- 3 Sin arcos que salgan del estado de aceptación

Base: cumpliendo las condiciones 1, 2, y 3.

El lenguaje es ∈

El lenguaje es ø

El lenguaje es la RE a, y sólo contiene la cadena a

Inducción:

Ejemplo

Convertir la RE (0+1)*1(0+1) a un ϵ -NFA.

Método para obtener la Expresión regular que denota a un AF dado.

Cada ecuación de un sistema de ecuaciones lineales en expresiones regulares tiene la siguiente forma general X = rX + s

en la que r y s son expresiones regulares sobre un alfabeto Σ .

Solucion: $X = r^*s$.

- 1. Se asocia una variable a cada estado: $\forall q_i \in Q$, se le asocia X_i .
- 2. Las ecuaciones se construyen en función de las transiciones: si $q_j \in f(q_i, a)$, entonces en la ecuación de la variable X_i aparece el término aX_j en su parte derecha: $X_i = ... + aX_j + ...$
- 3. Además, se asocia el término λ a los estados finales: si $q_i \in F$, entonces en la ecuación de la variable X_i aparece λ en su parte derecha: $X_i = ... + \lambda + ...$

El lenguaje reconocido por el AF es la expresión regular de la variable asociada a su estado inicial.

$$X_0 = 0X_1 + 1X_1 + \lambda = (0+1)X_1 + \lambda$$

$$X_1 = 0X_2 + 1X_3 + \lambda$$

$$X_2 = 1X_2 + 0X_1$$

$$X_3 = 0X_3 + 1X_1$$

$$X_0 = 0X_1 + 1X_1 + \lambda = (0+1)X_1 + \lambda$$

$$X_1 = 0X_2 + 1X_3 + \lambda$$

$$X_2 = 1X_2 + 0X_1$$

$$X_3 = 0X_3 + 1X_1$$

la solución de la ecuación general, X = rX + s es $X = r^*s$.

$$X_3 = \underbrace{0}_r X_3 + \underbrace{1X_1}_s.$$
 $X_3 = 0*1X_1.$ $X_2 = \underbrace{1}_r X_2 + \underbrace{0X_1}_s.$ $X_3 = 0*1X_1.$

Se tienen X_2 y X_3 en función de X_1 . Al substituir en la ecuación de X_1 se obtiene

$$X_1 = 0X_2 + 1X_3 + \lambda = 01^*0X_1 + 10^*1X_1 + \lambda = (01^*0 + 10^*1)X_1 + \lambda$$

$$X_1 = \underbrace{(01^*0 + 10^*1)}_r X_1 + \underbrace{\lambda}_s, \qquad X_1 = (01^*0 + 10^*1)^*\lambda = (01^*0 + 10^*1)^*$$

al substituir en la ecuación de X_0 se obtiene finalmente,

$$X_0 = (0+1)X_1 + \lambda = (0+1)(01^*0 + 10^*1)^* + \lambda_1$$

$$X_1 = 0X_2 + 1X_3$$

$$X_2 = 0X_2 + 1X_3 + \lambda$$

$$X_3 = 1X_3 + 0X_2$$

$$X_3 = \underbrace{1}_r X_3 + \underbrace{0X_2}_s, \Rightarrow X_3 = 1^* 0X_2.$$

$$X_2 = 0X_2 + 1X_3 + \lambda = 0X_2 + 11^*0X_2 + \lambda = \underbrace{0 + 11^*0}_{} X_2 + \underbrace{\lambda}_{}, \Rightarrow X_2 = (0 + 11^*0)^*.$$

$$X_1 = 0X_2 + 1X_3 = 0(0 + 11^*0)^* + 11^*0X_2 = 0(0 + 11^*0)^* + 11^*0(0 + 11^*0)^*$$

$$X_1 = (0 + 11^*0)(0 + 11^*0)^* = ((\lambda + 11^*)0)((\lambda + 11^*)0)^* = 1^*0(1^*0)^* = (1^*0)^*1^*0 = (1 + 0)^*0.$$

Lema de Pumping

Si L es un lenguaje regular, entonces existe una constante n tal que cada cadena $w \in L$, de longitud n o más, puede ser escrita como w = xyz, donde:

- $|xy| \leq n$
- 3 Para toda $i \ge 0$, wy^iz también está en L. Notese que $y^i = y$ repetida i veces; $y^0 = \epsilon$.

Lo que dice es que si tenemos una cadena con una longitud mayor al número de estados del autómata, entonces una cadena no vacía y puede ser repetida (pumped) un número arbitrario de veces.

Prueba del Lema de Pumping

- Como se da por hecho que L es regular, debe existir un DFA A tal que L = L(A). Si A tiene n estados; escogemos esta n para el lema de pumping.
- Sea w una cadena de longitud $\geq n$ en L, e.g., $w = a_1 a_2 \dots a_m$, donde $m \geq n$.
- Sea q_i el estado en que A esta después de leer los primeros i símbolos de w.
- q_0 = estado de inicio, $q_1 = \delta(q_0, a_1), q_2 = \delta'(q_0, a_1 a_2),$ etc.

Prueba del Lema de Pumping

- Como sólo hay n estados diferentes, dos de q₀, q₁,..., q_n deben ser los mismos; digamos q_i = q_j, donde 0 ≤ i < j ≤ n.
- Sea x = a₁ ... a_i; y = a_{i+1} ... a_j; z = a_{j+1} ... a_m.
 Entonces, si repetimos el ciclo desde q_i a q_i con la etiqueta a_{i+1} ... a_j cero o más veces, se puede probar que xyⁱz es aceptado por A.

Lema de Pumping

Uso del Lema de Pumping

El Lema de Pumping se utiliza para mostrar que un lenguaje L no es regular.

- Se inicia supomiendo que L es regular.
- Luego, debe haber alguna n que sirva como la constante de PL (puede que no sepamos el valor de n)
- Escogemos una w que sabemos que está en L (normalmente w depende de n)
- Aplicando el PL, sabemos que w puede descomponerse en xyz, satisfaciendo las propiedades del PL (de nuevo, puede que no sepamos como descomponer w, así que utilizamos x, y, z como parámetros)
- Derivamos una contradicción escogiendo i (la cual puede depender de n, x, y, y/ó z) tal que xyⁱz no está en L.

Ejemplo

 Considere el lenguaje de cadenas con el mismo número de 0's y 1's. Por el pumping lemma, w = xyz, |xy| ≤ n, y ≠ ε y xy^kz ∈ L

$$w = \underbrace{000\ldots y}_{x} \underbrace{0111\ldots 11}_{z}$$

• En particular, $xz \in L$, pero xz tiene menos 0's que 1's

Ejemplo 2

- Supongamos que $L = 1^p$: p es primo es regular
- Sea n el parámetro del pumping lemma y seleccionemos un primo p ≥ n + 2.

$$W = \underbrace{111 \dots 11}_{X} \underbrace{111 \dots 11}_{Z}$$

- Sea |y| = m y |xz| = p m. Ahora $xy^{p-m}z \in L$ $|xp^{p-m}z| = |xz| + (p-m)|y| = p - m + (p-m)m = (1+m)(p-m)$
- Que no es un número primo, a menos que uno de los factores sea 1
- Pero: $y \neq \epsilon \Rightarrow 1 + m > 1$ y $m = |y| \le |xy| \le n, p \ge n + 2 \Rightarrow p m \ge n + 2 n = 2$

Problemas

Problema 1: Considere el problema 0ⁿ10ⁿ y demuestre que no es regular.

Problemas

Problema 2: Considere que el conjunto de cadenas de 0's cuya longitud es un cuadrado perfecto; formalmente $L = \{0^i | i \text{ es un cuadrado}\}.$

- Suponemos que L es regular. Entonces hay una n constante que satisface las condiciones del PL.
- Considere $w = 0^{n^2}$, que seguramente estará en L.
- Entonces w = xyz, donde $|xy| \le n$ y $y \ne \epsilon$
- Por PL xyyz está en L. Pero la longitud de xyyz es más grande que n^2 y no más grande que $n^2 + n$.
- Sin embargo, el próximo cuadrado perfecto después de n^2 es $(n+1)^2 = n^2 + 2n + 1$.
- Así, xyyz no es de longitud cuadrada y no está en L, por lo que por "prueba por contradicción" L no es regular.

Propiedades de Cerradura

Algunas operaciones sobre lenguajes regulares garantizan producir lenguajes regulares:

- Unión: L∪ M lenguajes con cadenas en L, M o en ambos.
- Intersección: $L \cap M$ lenguajes con cadenas en ambos.
- Complemento: L cadenas que no están en L.
- Diferencia: $L \setminus M$ o L M.
- Inversión: $L^R = \{ w^R : w \in L \}$ (R = al revés)
- Cerradura: L*
- Concatenación: L.M
- Homomorfismo (substitución): $h(L) = \{h(w) \in L\}h$ es un homomorfismo.
- Homomorfismo inverso (substitución inversa):
 h⁻¹(L) = {w ∈ Σ : h(w) ∈ L, h : Σ →} es un homomorfismo.

- Unión: la unión de lenguajes regulares es regular. Sea L = L(E) y M = L(F). Entonces L(E + F) = L ∪ M, por la definición de "+" en RE.
- Complemento: Si L es un lenguaje regular sobre Σ, entonces tambi´en lo es L = Σ* - L. Todos los estados son de aceptaci´on excepto los F.

• **Ejemplo**: Sea *L* definido por el siguiente DFA

- Intersección: Si L y M son regulares, entonces también $L \cap M$. Usando las leyes de Morgan: $L \cap M = \overline{L} \cup \overline{M}$.
- Para esto también se puede construir un autómata que simula A_L y A_M en paralelo y llega a un estado de aceptación si A_L y A_M también lo hacen.

 L_1, L_2 regulares $\Rightarrow L_1 = L(A_1), L_2 = L(A_2)$ con $A_i = (Q_i, \Sigma, \delta_i, q_i, F_i), i = 1, 2.$ Construimos $A = (Q, \Sigma, \delta, q_0, F)$ con:

$$-Q = Q_1 \times Q_2$$

$$-q_0 = [q_1, q_2]$$

$$-F = F_1 \times F_2$$

-
$$\delta([p_1, p_2], a) = [\delta_1(p_1, a), \delta_2(p_2, a)],$$

 $\forall p_1 \in Q_1, \forall p_2 \in Q_2, \forall a \in \Sigma$

- **Diferencia**: $L \setminus M$ lenguaje en L pero no en $M, L \setminus M = L \cap \overline{M}$.
- Inversión: w^R es la cadena invertida w. Ejemplo: $0010^R = 0100$.
- Inversión de un lenguaje L es el lenguaje con todas las cadenas de L invertidas. Por ejemplo:

$$L = \{001, 10, 111\}, L^R = \{100, 01, 111\}.$$

Se puede probar que $L(E^R) = (L(E))^R$.

En particular, $E^R = E$ para \emptyset conjunto vacío y a.

Si
$$E = F + G$$
, entonces, $E^R = F^R + G^R$

Si $E = F \cdot G$, entonces $E^R = G^R \cdot F^R$

Ejemplo

- Por ejemplo, $L(E_1) = \{01, 111\}$ y $L(E_2) = \{00, 10\}$.
- $L(E_1)L(E_2) = \{0100, 0110, 11100, 11110\}$
- $L^R(E_1) = \{10, 111\} \text{ y } L^R(E_2) = \{00, 01\}$
- $L^R(E_1)L^R(E_2) = \{0010, 00111, 0110, 01111\} = (L(E_1)L(E_2))^R$
- Si $L = (0+1)0^*, L^R = (0^*)^R(0+1)^R = 0^*(0+1)^R$
- Si $E = F^*$, entonces $E^R = (F^R)^*$

Homomorfismo

- Un homomorfismo sobre Σ es una función h : Σ* → Θ*, donde Σ y Θ son alfabetos.
- Sea w = a₁a₂...a_n ∈ Σ. Entonces
 h(w) = h(a₁)h(a₂)...h(a_n) y h(L) = {h(w) ∈ L}.
- Ejemplo: sea h: {0,1}* → {a,b}* definido como h(0) = ab, y h(1) = ε. Entonces h(0011) = abab y h(L(10*1)) = L((ab)*). h(L) es regular si L es regular. Sea L = L(A) para un FA A, queremos probar que h(L(A)) es regular.

Homomorfismo

Homomorfismo Inverso

Sea $h : \Sigma^* \to \Theta^*$ un homomorfismo. Sea $L \subseteq \Theta^*$, entonces $h^{-1}(L) = \{w | w \in \Sigma^* : h(w) \in L\}.$

Ejemplo

- Sea L el lenguaje de la expresión regular (00 + 1)*.
 Sea h un homomorfismo definido por: h(a) = 01 y h(b) = 10.
- En particular: h⁻¹(L) = (ba)* (que combinación de a's y b's me dan el mismo lenguaje?)
- h(ba) = 1001 y h(w) que son n repeticiones de 1001 están en L.
- Por otro lado, si w empieza solo con a (01), termina con b (10), tiene dos a's seguidas (0101) o dos b's seguidas (1010), no se cumple

Homomorfismo Inverso

- Sea h: Σ* → Θ* un homomorfismo. Sea L ⊆ Θ* un lenguaje regular, entonces h⁻¹(L) es regular.
- El DFA del homomorfismo inverso usa los estados del DFA original, pero cambia los símbolos de entrada de acuerdo a la función h antes de decidir el siguiente estado.

$$L = L((00 \cup 1)^*). \ h(a) = 01, \ h(b) = 10.$$

$$L = L((00 \cup 1)^*). \ h(a) = 01, \ h(b) = 10.$$

$$L = L((00 \cup 1)^*). \ h(a) = 01, \ h(b) = 10.$$

Propiedades de decisión

- Algunas de las preguntas que nos podemos hacer acerca de lenguajes son si el lenguaje es vacío, si una cadena particular pertenece al lenguaje o si dos descripciones definen el mismo lenguaje.
- También podemos cuestionarnos acerca del costo computacional requerido para resolver estas preguntas o por ejemplo el requerido para hacer la conversión entre una representación a otra.

Análisis de Complejidad

Transformar un ϵ -NFA a un DFA:

 Para cada símbolo y cada subconjunto el calcular la función de transición para todos los estados, requiere a lo más n³ pasos, lo cual nos da una complejidad total de O(n³2n²).

Análisis de Complejidad

Otras Transformaciones:

- Transformar un DFA a un NFA: Sólo se requiere poner corchetes a los estados, lo cual nos da O(n).
- Transformar un FA a una RE: $O(n^34^n)$. Es todavía peor si el FA es NFA. Si lo convertimos primero a un DFA nos da: $O(n^34^{n^32^n})$.
- Transformar de una RE a un FA: se puede construir un autómata en n pasos. Si eliminamos transiciones ε toma O(n³). Si se requiere un DFA puede tomar un número exponencial de pasos.

Análisis de Complejidad

- Decidir si un lenguaje es vacío: el probar si existe un camino entre un estado inicial a uno final o de aceptación, es simplemente un problema de ver si un nodo está conectado en un grafo, lo cual tiene una complejidad de O(n²).
- Probar por pertenencia a un lenguaje regular: ver si una cadena es miembro del lenguaje. Si la cadena w es de longitud n para un DFA, esto es de complejidad O(n). Si es un NFA de s estados, entonces la complejidad es: O(ns²). Si es un ε-NFA entonces la complejidad es O(ns³).

```
Algoritmo Detectar-ciclos (primera parte)
[1] inicio
                                                                 Detección de ciclos
[2] Alcanzables \leftarrow {q _o} y _o no marcado
[3] Visitados ← Ø
[4] Ciclo ← falso
[5] mientras (Ciclo = falso) y (haya un estado no marcado q \in Alcanzables)
[6] hacer
           Marcar el estado q
[7]
           Visitados \leftarrow Visitados \cup \{q\}
[8]
           Auxiliar \leftarrow \{q' \mid \exists \sigma \in \Sigma \land \delta(q, \sigma) = q'\}
[9]
[10]
         si Visitados ∩ Auxiliar≠ Ø
                       entonces Ciclo ← verdadero
[11]
[12]
                       si no
[13]
                                   para q ∈ Auxiliar - Alcanzables hacer
                                               Alcanzables \leftarrow Alcanzables \cup \{q\} y q no marcado
[14]
[15]
                                   fin para
[16]
           fin si
[17] fin mientras
[18] si (Ciclo = falso)
             entonces escribir "Autómata sin ciclos"
[19]
             si no escribir "Autómata con ciclos"
[20]
[21] fin si
[22] fin
```


Paso	Alcanzables	Visitados	Auxiliar	$Visitados \cap Auxiliar$
0	$\{q_0\}$	Ø	Ø	Ø
1	$\{\underline{q}_{0}\}$	$\{q_0\}$	$\{q_1, q_2\}$	Ø
2	$\{\underline{q}_0,\underline{q}_1,q_2\}$	$\{q_0, q_1\}$	$\{q_2, q_3\}$	Ø
3	$\{\underline{q}_0,\underline{q}_1,\underline{q}_2\}$	$\{q_0,q_1,q_2\}$	$\{q_3, q_4\}$	Ø
4	$\{\underline{q}_0,\underline{q}_1,\underline{q}_2,\underline{q}_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_1,q_4\}$	$\{q_1\}$

Equivalencia y minimización de autómatas

- Lo que queremos saber es si dos autómatas diferentes definen el mismo lenguaje.
- Primero definiremos lo que son estados equivalentes.
- Dos estados p y q dentro de un autómata son equivalentes:

$$p \equiv q \Leftrightarrow \forall w \in \Sigma^* : \hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F.$$

 Si no, entonces se dice que son distinguibles. Osea que p y q son distinguibles si:

 $\exists w : \hat{\delta}(p, w) \in F \land \hat{\delta}(q, w) \notin F$ o viceversa.

Prueba de equivalencia entre lenguajes regulares

- Sea L y M dos lenguajes regulares (dados en alguna forma).
- Convierte L y M a DFA's
- Junta los dos DFA's
- Prueba si los dos estados iniciales son equivalentes, en cuyo caso L = M. Si no son equivalentes, entonces L ≠ M.

Ejemplo

Lo que nos deja los siguientes pares de estados equivalentes: $\{A, C\}, \{A, D\}, \{C, D\}$ y $\{B, E\}$. Como A y C son equivalentes, entonces los dos autómatas son equivalentes.

© CanStockPhoto.com - csp68910584