Discrete Dynamics Control Theory, Lecture 6

by Sergei Savin

Spring 2022

CONTENT

- Discrete Dynamics
- Stability of the Discrete Dynamics
- Discretization
 - ▶ Finite difference
 - ▶ Finite difference in an autonomous LTI
- Zero order hold
- ZOH and other types of discretization
 - Zero order hold vs First order hold
 - Exact discretization
- Read more

DISCRETE DYNAMICS

The following dynamical system is called *discrete*:

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i + \mathbf{B}\mathbf{u}_i \tag{1}$$

Note that those:

- have no derivatives in the equation;
- are easily simulated.

The affine control for this system can be given as:

$$\mathbf{u}_i = -\mathbf{K}\mathbf{x}_i + \mathbf{u}_i^* \tag{2}$$

Real eigenvalues

Let us consider stability of the discrete dynamical system where matrix $\bf A$ has purely real eigenvalues:

$$\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i \tag{3}$$

With eigendecomposition $\mathbf{A} = \mathbf{V}^{-1}\mathbf{D}\mathbf{V}$ (where \mathbf{D} is a diagonal matrix with eigenvalues λ_j of \mathbf{A} on its diagonal) and introducing notation $\mathbf{z}_i = \mathbf{V}\mathbf{x}_i$ we get:

$$\mathbf{x}_{i+1} = \mathbf{V}^{-1} \mathbf{D} \mathbf{V} \mathbf{x}_i \tag{4}$$

$$\mathbf{z}_{i+1} = \mathbf{D}\mathbf{z}_i \tag{5}$$

Meaning that the dynamics became a system of independent scalar equations $z_{j,i+1} = \lambda_j z_{j,i}$.

Real eigenvalues

Thus, with $z_{j,i+1} = \lambda_j z_{j,i}$ we can find now the absolute value of the scalars z_j will dwindle with time iff $|\lambda_j| < 1$:

$$\left| \frac{z_{j,i+1}}{z_{j,i}} \right| = |\lambda_j| \tag{6}$$

2x2 system

Let us consider stability of the discrete dynamical system with a 2-by-2 matrix A:

$$\begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix}$$
 (7)

Let us find norms of $\begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix}$ and $\begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix}$:

$$\left\| \begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix} \right\|^2 = x_{1,i}^2 + x_{2,i}^2 \tag{8}$$

$$\left\| \begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix} \right\|^2 = (\alpha^2 + \beta^2)(x_{1,i}^2 + x_{2,i}^2) \tag{9}$$

2x2 system

We can find the ratio of the norms of $\begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix}$ and $\begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix}$: $\left\| \begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix} \right\|^2 / \left\| \begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix} \right\|^2 = \alpha^2 + \beta^2$ (10)

Remembering that eigenvalues of the system are $\lambda = \alpha \pm j\beta$, we can rewrite teh expression above as:

$$\left\| \begin{bmatrix} x_{1,i+1} \\ x_{2,i+1} \end{bmatrix} \right\|^2 / \left\| \begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix} \right\|^2 = |\lambda| \tag{11}$$

We can see that the norm of the variable \mathbf{x} will dwindle with time iff $|\lambda| < 1$.

General stability criterion is given below:

Stability criterion

In general, discrete systems $\mathbf{x}_{i+1} = \mathbf{A}\mathbf{x}_i$ are stable as long as the eigenvalues of \mathbf{A} are smaller than 1 by absolute value: $|\lambda_i(\mathbf{A})| \leq 1$, $\forall i$. This is true for complex eigenvalues as well.

Finite difference

Consider linear time-invariant autonomous system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{12}$$

The time derivative $\dot{\mathbf{x}}$ can be replaces with a finite difference:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t + \Delta t) - \mathbf{x}(t)) \tag{13}$$

Note that we could have also used other definitions of a finite difference:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t + 0.5\Delta t) - \mathbf{x}(t - 0.5\Delta t)) \tag{14}$$

or

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}(t) - \mathbf{x}(t - \Delta t)) \tag{15}$$

Finite difference notation

We can introduce notation:

$$\begin{cases}
\mathbf{x}_0 = \mathbf{x}(0) \\
\mathbf{x}_1 = \mathbf{x}(\Delta t) \\
\mathbf{x}_2 = \mathbf{x}(2\Delta t) \\
\dots \\
\mathbf{x}_n = \mathbf{x}(n\Delta t)
\end{cases}$$
(16)

We say that \mathbf{x}_i is the value of \mathbf{x} at the time step i. Then the finite difference can be written, for example, as follows:

$$\dot{\mathbf{x}} \approx \frac{1}{\Delta t} (\mathbf{x}_{i+1} - \mathbf{x}_i) \tag{17}$$

Finite difference in an autonomous LTI

We can rewrite our original autonomous LTI as follows:

$$\frac{1}{\Delta t}(\mathbf{x}_{i+1} - \mathbf{x}_i) = \mathbf{A}\mathbf{x}_i \tag{18}$$

Isolating \mathbf{x}_{i+1} on the left hand side, we get:

$$\mathbf{x}_{i+1} = (\mathbf{A}\Delta t + \mathbf{I})\mathbf{x}_i \tag{19}$$

Or alternatively:

$$\frac{1}{\Delta t}(\mathbf{x}_{i+1} - \mathbf{x}_i) = \mathbf{A}\mathbf{x}_{i+1} \tag{20}$$

Isolating \mathbf{x}_{i+1} on the left hand side, we get:

$$\mathbf{x}_{i+1} = (\mathbf{I} - \mathbf{A}\Delta t)^{-1}\mathbf{x}_i \tag{21}$$

Zero order hold

Defining discrete state space matrix $\bar{\mathbf{A}}$ and discrete control matrix $\bar{\mathbf{B}}$ as follows:

$$\bar{\mathbf{A}} = \mathbf{A}\Delta t + \mathbf{I} \tag{22}$$

$$\bar{\mathbf{B}} = \mathbf{B}\Delta t \tag{23}$$

We get discrete dynamics:

$$\mathbf{x}_{i+1} = \bar{\mathbf{A}}\mathbf{x}_i + \bar{\mathbf{B}}\mathbf{u}_i \tag{24}$$

This way of defining discrete dynamics is called zero order hold (ZOH).

ZOH AND OTHER TYPES OF DISCRETIZATION

Zero order hold vs First order hold

Graphically, we can understand what zero order hold is, by comparing it to the first order hold:

Figure 1: Different types of discretization

ZOH AND OTHER TYPES OF DISCRETIZATION

Exact discretization

Let the discrete state \mathbf{x}_i correspond to continuous state \mathbf{x} at the moment of time t_i . Then, we can say that the discretization is exact the following holds for any solution $\mathbf{x}(t)$

$$\mathbf{x}_0 = \mathbf{x}(t_0) \to \mathbf{x}_i = \mathbf{x}(t_i), \ \forall i$$
 (25)

We can compute the exact discretization as follows:

$$\bar{\mathbf{A}} = e^{\mathbf{A}\Delta t} \tag{26}$$

$$\bar{\mathbf{A}} = e^{\mathbf{A}\Delta t} \tag{26}$$

$$\bar{\mathbf{B}} = \mathbf{B} \int_{t_0}^{t_0 + \Delta t} e^{\mathbf{A}s} ds \tag{27}$$

READ MORE

■ Automatic Control 1 Discrete-time linear systems, Prof. Alberto Bemporad, University of Trento

THANK YOU!

Lecture slides are available via Moodle.

You can help improve these slides at: github.com/SergeiSa/Control-Theory-Slides-Spring-2021

Check Moodle for additional links, videos, textbook suggestions.