FAST REED-SOLOMON INTERACTIVE ORACLE PROOFS of PROXIMITY

Tiago Martins

Formerly an Aerospace student @IST Currently, a Researcher @Three Sigma

Three Sigma

Venture builder firm focused on blockchain engineering, research, and investment.

Mission

Advance the adoption of blockchain technology. Contribute for the healthy development of crypto/web3.

PROBLEM SETTING

A non-necessarily honest prover wants to indirectly settle some data in the blockchain.

A verifier must check whether that data corresponds to honest computations and transactions.

PROBLEM SETTING

Both the prover and the verifier know that valid data corresponds to the evaluation table of a low-degree polynomial.

This happens because valid computations are very structured and follow strict low-degree constraints.

PROBLEM EXAMPLE

Trace index	Group element x	Trace polynomial $f(x)$
0	$x_0 = g^0$	3
1	$x_1 = g^1$	9
2	$x_2 = g^2$	81
3	$x_3 = g^3$	6561
4	$x_4 = g^4$	43046721
5	$x_5 = g^5$	1853020188851841

$$f(\underbrace{x_{k+1}}_{g x_k}) = (f(x_k))^2$$
 for $x_k \in \{x_0, x_1, x_2, x_3, x_4\}$

PROBLEM EXAMPLE

$$f(\underbrace{x_{k+1}}_{q x_k}) = (f(x_k))^2$$
 for $x_k \in \{x_0, x_1, x_2, x_3, x_4\}$

which implies that

$$f(gx) - (f(x))^2 = 0$$
 for $x \in \{x_0, x_1, x_2, x_3, x_4\}$

which in turn implies that

$$p_0(x) = \frac{f(gx) - (f(x))^2}{(x - x_0)(x - x_1)(x - x_2)(x - x_3)(x - x_4)}$$

is a polynomial of degree $deg(p_0) = 2 deg(f) - 5$.

POLYNOMIAL

$$p(x) = \sum_{n=0}^{N-1} c_n x^n$$

$$\underbrace{\begin{bmatrix} p(x_0) \\ p(x_1) \\ \vdots \\ p(x_{N-1}) \end{bmatrix}}_{\mathbf{p}} = \begin{bmatrix} 1 & x_0 & \dots & x_0^{N-1} \\ 1 & x_1 & \dots & x_1^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{N-1} & \dots & x_{N-1}^{N-1} \end{bmatrix} \underbrace{\begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{bmatrix}}_{\mathbf{c}}$$

FAST FOURIER TRANSFORM TO EVALUATE POLYNOMIALS

$$x \in \mathbb{G}$$

$$\mathbf{p} = \mathtt{FFT}(\mathbf{c})$$

$$\mathbf{c} = \mathtt{iFFT}(\mathbf{p})$$

FAST FOURIER TRANSFORM to EVALUATE POLYNOMIALS

HANDS-ON!

Files:

Base.ipynb

FFT for function evaluation.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

DEGREE RESPECTING PROJECTION

$$\mathbf{c} = [c_0, c_1, c_2, c_3, \dots, c_{N-2}, c_{N-1}]$$
 $\mathbf{c}_{\text{even}} = [c_0, c_2, \dots, c_{N-2}]$
 $\mathbf{c}_{\text{odd}} = [c_1, c_3, \dots, c_{N-1}]$

$$\operatorname{len}(\mathbf{c}) = N$$
 $\operatorname{len}(\mathbf{c}_{\operatorname{even}}) = N/2$
 $\operatorname{len}(\mathbf{c}_{\operatorname{odd}}) = N/2$

DEGREE RESPECTING PROJECTION

$$egin{array}{llll} {f c} = & [c_0, & c_1, & c_2, & c_3, & \ldots, & c_{N-2}, & c_{N-1} \ {f c}_{
m even} = & [c_0, & c_2, & \ldots, & c_{N-2} \ {f c}_{
m odd} = & [& c_1, & c_3, & \ldots, & c_{N-2} \ {f c}_{
m new} = & [c_0 z_{
m even} + & c_1 z_{
m odd}, & c_2 z_{
m even} + & c_3 z_{
m odd}, & \ldots, & c_{N-2} z_{
m even} + & c_{N-1} z_{
m odd} \] \end{array}$$

$$\operatorname{len}(\mathbf{c}_{\text{new}}) = N/2$$

$$\mathbf{c}_{\text{new}} = \mathbf{c}_{\text{even}} z_{\text{even}} + \mathbf{c}_{\text{odd}} z_{\text{odd}}$$

 $c_{new} = c[::2]*z_{even} + c[1::2]*z_{odd}$

Desmos

FRI COMMIT PHASE

For each FRI layer $i \geq 0$ such that $d_i > 1$:

- ▶ 1. the verifier selects random $z_{i,\text{even}}$ and $z_{i,\text{odd}}$,
 - 2. the prover defines $p_{i+1}(x)$ through the degree respecting projection $\mathbf{c}_{i+1} = \mathbf{c}_{i,\text{even}} z_{i,\text{even}} + \mathbf{c}_{i,\text{odd}} z_{i,\text{odd}}$,
 - 3. the prover commits to the polynomial evaluation $\mathbf{p}_{i+1} = \text{FFT}(\mathbf{c}_{i+1}),$
 - 4. the degree bound reduces as $d_{i+1} = d_i/2$.

At the end, the prover commits to a constant C allegedly equal to the last polynomial.

HANDS-ON!

Files:

FRI Commit.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

DRP wo/ COEFFICIENTS

$$p_i(x) = \sum_{n=0}^{N-1} c_{i,n} x^n$$
 $p_i(-x) = \sum_{n=0}^{N-1} (-1)^n c_{i,n} x^n$

$$p_{i+1}(x) = \sum_{n=0}^{N/2-1} c_{i+1,n} x^n \quad \text{where} \quad \mathbf{c}_{i+1} = \mathbf{c}_{i,\text{even}} z_{i,\text{even}} + \mathbf{c}_{i,\text{odd}} z_{i,\text{odd}}$$

$$p_{i+1}(x^2) = \underbrace{\frac{p_i(x) + p_i(-x)}{2}}_{g(x^2)} z_{i,\text{even}} + \underbrace{\frac{p_i(x) - p_i(-x)}{2x}}_{h(x^2)} z_{i,\text{odd}}$$

FRI QUERY PHASE

The verifier samples a random x. The verifier queries for $p_0(x)$, and, subsequently, for each FRI layer $i \geq 0$ such that $d_i > 1$:

- 1. the verifier queries for $p_i(-x)$ and $p_{i+1}(x^2)$,
- 2. the verifier computes $g(x^2)$ and $h(x^2)$ from $p_i(x)$ and $p_i(-x)$,
- 3. the verifier checks whether $p_{i+1}(x^2) = g(x^2) z_{i+1,\text{even}} + h(x^2) z_{i+1,\text{odd}}$,
- 4. set $x \leftarrow x^2$.

At the end, the verifier checks whether the last value equals the constant C.

HANDS-ON!

Files:

FRI Query.ipynb

https://github.com/tiagomartins-threesigma/SINFO2023FRI4STARKs

info@threesigma.xyz

threesigma.xyz

