OUTILS FONDAMENTAUX

POUR LA ROBOTIQUE

Viviane CADENAT. Enseignant-chercheur à l'UPS. LAAS-CNRS, équipe Robotique, action, perception.

UPSSITECH - 1A SRI - Université P. Sabatier

Matrices de transformation

- Rotation seule → Changement de base
 - Deux repères orthonormés directs $R(O, \underline{x}, \underline{y}, \underline{z})$ et $R'(O, \underline{x'}, \underline{y'}, \underline{z'})$ (même origine)
 - □ Un vecteur v de composantes (a,b,c) dans R et (a',b',c') dans R'

Représentation de la situation de l'organe terminal R,: REPÈRE LIÉ À L'ORGANE TERMINAL Définition

Matrices de transformation

■ Rotation + translation → Changement de repère

Matrices de transformation

Matrice de passage homogène

Définition

$$T = \begin{bmatrix} R & P = OO'_{(R)} \\ r_{11} & r_{12} & r_{13} & X \\ r_{21} & r_{22} & r_{23} & Y \\ r_{31} & r_{32} & r_{33} & Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Fournit une première information de situation de R' par rapport à R

Expression des coordonnées homogènes d'un point M

UPSSITECH - 1A SRI - Université P. Sabatier

Représentation de la situation de l'organe terminal

Représentation de la position

- Coordonnées cartésiennes

→ x_p = (X Y Z)^T

- Coordonnées cylindriques

Coordonnées cylindriques

 $\rightarrow x_p = (\rho \theta Z)^T$

Coordonnées sphériques

 $\rightarrow \mathbf{x}_{p} = (\mathbf{r} \ \mathbf{\theta} \ \mathbf{\phi})^{T}$

ON PEUT DÉDUIRE LES COORDONNÉES CYLINDRIQUES ET SPHÉRIQUES DES COORDONNÉES CARTÉSIENNES.

UNIVERSITÉ TOULOUSE III PAUL SABATIER

Matrice de transformation

Matrice de passage homogène

Définition

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} & X \\ r_{21} & r_{22} & r_{23} & Y \\ r_{31} & r_{32} & r_{33} & Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Unification des différents cas possibles :
 - Si rotation seule, P est nul et R définit la rotation effectuée
 - Si translation seule, R = Id et P non nul définit la translation effectuée
 - Si rotation et translation, R ≠ Id et P non nul

UPSSITECH - 1A SRI - Université P. Sabatier

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Attacher à l'organe terminal un repère R_n

⇒ L'orientation est donnée par les vecteurs de R_n / Repère fixe (ici R₀)

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Première paramétrisation :
 - Composantes de \overrightarrow{x}_0 , \overrightarrow{y}_0 , \overrightarrow{z}_0 dans R_0
 - → Matrice de rotation R_{on}
 - → Cosinus directeurs complets / partiels → 6 ou 9 paramètres
 - Autres solutions → ne sont calculables qu'à partir de R_{on}
 - Systèmes de trois angles :
 - → Angles de Bryant, Angles d'Euler, ...
 - → Représentation minimale → Problème de singularités
 - 1 axe de rotation r et 1 angle θ
 - \rightarrow Quaternions (se déduisent de r et θ)
 - → Représentation non minimale → Pas de singularité

UPSSITECH - 1A SRI - Université P. Sabatier

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Idée : Décomposer la rotation « complexe » effectuée par l'organe terminal en trois rotations « simples »
 - Angles de Bryant (ou angles de Cardan) $\rightarrow X_p = (\lambda_p, \mu_p, \nu)^T$
 - \rightarrow 1 rotation autour de x d'angle $\lambda \rightarrow \mathcal{R}_{\lambda}(\lambda, x_{\lambda}, y_{\lambda}, z_{\lambda})$
 - \rightarrow 1 rotation autour de y d'angle $\mu \rightarrow$
 - \rightarrow 1 rotation autour de z d'angle $\vee \rightarrow \mathcal{R}_{\omega}(v,x_{\omega},y_{\omega},z_{\omega})$

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles

Question: Peut-on décomposer cette rotation « complexe » en trois rotations « simples » ?

UPSSITECH - 1A SRI - Université P. Sabatier

11

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles de Bryant (ou angles de Cardan) → X_p= (λ, μ, ν)^T
 - \rightarrow 1 rotation autour de x, $\rightarrow \mathcal{R}_{\lambda}(\lambda, \mathbf{x}_{\lambda}, \mathbf{y}_{\lambda}, \mathbf{z}_{\lambda})$
 - \rightarrow 1 rotation autour de $y_{_{\parallel}} \rightarrow \mathcal{R}_{_{u}}(\mu, \mathbf{x}_{_{u}}, \mathbf{y}_{_{u}}, \mathbf{z}_{_{u}})$
 - \rightarrow 1 rotation autour de z_v $\rightarrow \mathcal{R}_{v}(v,x_{v},y_{v},z_{v})$

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles de Bryant (ou angles de Cardan) $\rightarrow X_R = (\lambda, \mu, \nu)^T$

UPSSITECH - 1A SRI - Université P. Sabatier

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles de Bryant (ou angles de Cardan) $\rightarrow X_p = (\lambda, \mu, \nu)^T$

$$\begin{array}{lll} Si & r_{13} & \neq & \pm 1 & alors \\ \lambda & = & Atan2(-r_{23},r_{33}) \\ \mu & = & \arcsin(r_{13}) \\ v & = & Atan2(-r_{12},r_{11}) \end{array}$$

Hors singularité

$$Si \quad r_{13} = \pm 1 \quad alors$$

$$\mu = \pm \frac{\pi}{2}$$

$$r_{13}\lambda + \nu = Atan 2(-r_{21}, r_{22})$$

Singularité : λ et ν ne peuvent pas être calculés indépendamment

→ Choix arbitraire

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles de Bryant (ou angles de Cardan) → X_p= (λ, μ, ν)^T

$$R_{0\lambda} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \lambda & -\sin \lambda \\ 0 & \sin \lambda & \cos \lambda \end{pmatrix} \qquad R_{\lambda\mu} = \begin{pmatrix} \cos \mu & 0 & \sin \mu \\ 0 & 1 & 0 \\ -\sin \mu & 0 & \cos \mu \end{pmatrix} \qquad R_{\mu\nu} = \begin{pmatrix} \cos \nu & -\sin \nu & 0 \\ \sin \nu & \cos \nu & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} \cos \mu \cos \nu & -\cos \mu \sin \nu & \sin \mu \\ \sin \lambda \sin \mu \cos \nu + \cos \lambda \sin \nu & -\sin \lambda \sin \mu \sin \nu + \cos \lambda \cos \nu & -\sin \lambda \cos \mu \\ -\cos \lambda \sin \mu \cos \nu + \sin \lambda \sin \nu & \cos \lambda \sin \mu \sin \nu + \sin \lambda \cos \nu & \cos \lambda \cos \mu \end{pmatrix}$$

 \rightarrow Les valeurs de λ , μ , ν sont obtenues en identifiant les éléments de R et R_{on} = [r_{ii}]

UPSSITECH - 1A SRI - Université P. Sabatie

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Idée : Décomposer la rotation « complexe » effectuée par l'organe terminal en trois rotations « simples »
 - Angles d'Euler → X_p= (ψ, θ, φ)^T
 - \rightarrow 1 rotation autour de z d'angle $\psi \rightarrow \mathcal{R}_{\mu}(\psi, \mathbf{x}_{\mu}, \mathbf{y}_{\mu}, \mathbf{z}_{\mu})$
 - \rightarrow 1 rotation autour de x d'angle $\theta \rightarrow \mathcal{R}_{a}(\theta, \mathbf{x}_{a}, \mathbf{y}_{a}, \mathbf{z}_{a})$
 - \rightarrow 1 rotation autour de z d'angle $\varphi \rightarrow \mathcal{R}_{m}(\varphi, \mathbf{x}_{m}, \mathbf{y}_{m}, \mathbf{z}_{m})$

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles d'Euler $\rightarrow X_p = (\psi, \theta, \phi)^T$
 - \rightarrow 1 rotation autour de z d'angle $\psi \rightarrow \mathcal{R}_{\psi}(\psi, \mathbf{X}_{\psi}, \mathbf{y}_{\psi}, \mathbf{z}_{\psi})$
 - \rightarrow 1 rotation autour de x d'angle $\theta \rightarrow \mathcal{R}_{\theta}(\theta, \mathbf{x}_{\theta}, \mathbf{y}_{\theta}, \mathbf{z}_{\theta})$
 - ightarrow 1 rotation autour de z d'angle $\varphi
 ightarrow \mathcal{R}_{\varphi}(\varphi, \mathbf{X}_{\varphi}, \mathbf{y}_{\varphi}, \mathbf{z}_{\varphi})$

UPSSITECH - 1A SRI - Université P. Sabatier

LAAS

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles d'Euler $\rightarrow X_p = (\psi, \theta, \phi)^T$

$$R_{0,\psi} = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R_{\psi,\theta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \qquad R_{\theta,\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} \cos \psi \cos \varphi - \sin \psi \cos \theta \sin \varphi & -\cos \psi \sin \varphi - \sin \psi \cos \theta \cos \varphi & \sin \psi \sin \theta \\ \sin \psi \cos \varphi + \cos \psi \cos \theta \sin \varphi & -\sin \psi \sin \varphi + \cos \psi \cos \theta \cos \varphi & -\cos \psi \sin \theta \\ \sin \theta \sin \varphi & \sin \theta \cos \varphi & \cos \theta \end{pmatrix}$$

→ Les valeurs de ψ, θ, φ sont obtenues en identifiant les éléments de R et R_m = [r_{ii}]

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles d'Euler $\rightarrow X_p = (\psi, \theta, \phi)^T$

UPSSITECH - 1A SRI - Université P. Sabatier

19

Représentation de la situation de l'organe terminal

- Représentation de l'orientation
 - Systèmes de trois angles
 - Angles d'Euler → X_p= (ψ, θ, φ)¹

$$Si \quad r_{33} \neq \pm 1 \quad alors$$

$$\psi = Atan 2(r_{13}, -r_{23})$$

$$\theta = \arccos(r_{33})$$

$$\varphi = Atan 2(r_{31}, r_{32})$$

Hors singularité

$$\begin{aligned} &Si \quad r_{33} = \pm 1 \quad alors \\ &\theta = \pm \frac{\pi}{2} \\ &r_{33} \, \varphi \, + \, \psi = \, Atan2(r_{21}, r_{11}) \end{aligned}$$

Singularité : φ et ψ ne peuvent pas être calculés indépendamment

→ choix arbitraire

Représentation de la situation de l'organe terminal

- Représentation de l'orientation : Bilan
 - □ Si on connaît $R_{0n} = [r_{ij}]$ on peut calculer X_{R}
 - Représentations minimales → Attention aux singularités !

	Angles de Bryant $\rightarrow X_R = (\lambda, \mu, \nu)^T$	Angles d'Euler $\rightarrow X_R = (\psi, \ \theta, \ \phi)^T$
lors singularité	$Si r_{13} \neq \pm 1 alors$ $\lambda = Atan2(-r_{23}, r_{33})$ $\mu = \arcsin(r_{13})$ $\nu = Atan2(-r_{12}, r_{11})$	$Si r_{33} \neq \pm 1 alors$ $\psi = Atan2(r_{13}, -r_{23})$ $\theta = \arccos(r_{33})$ $\varphi = Atan2(r_{31}, r_{32})$
En singularité	Si $r_{13} = \pm 1$ alors $\mu = \pm \frac{\pi}{2}$ $r_{13}\lambda + \nu = Atan2(-r_{21}, r_{22})$	Si $r_{33} = \pm 1$ alors $\theta = \pm \frac{\pi}{2}$ $r_{33}\varphi + \psi = Atan2(r_{21}, r_{11})$

Représentation de l'orientation : Bilan Si l'on connaît x_R, on peut aussi calculer R_{on}

■ Angles de Bryant $\rightarrow X_R = (\lambda, \mu, \nu)^T$

de l'organe terminal

$$\mathsf{R}_{0\mathsf{n}}(\lambda,\mu,\nu) = \begin{pmatrix} \cos\mu\cos\nu & -\cos\mu\sin\nu & \sin\mu \\ \sin\lambda\sin\mu\cos\nu + \cos\lambda\sin\nu & -\sin\lambda\sin\mu\sin\nu + \cos\lambda\cos\nu & -\sin\lambda\cos\mu \\ -\cos\lambda\sin\mu\cos\nu + \sin\lambda\sin\nu & \cos\lambda\sin\mu\sin\nu + \sin\lambda\cos\nu & \cos\lambda\cos\mu \end{pmatrix}$$

Représentation de la situation

Angles d'Euler → X_R= (ψ, θ, φ)^T

$$\mathsf{R}_{\mathsf{On}}(\psi,\theta,\varphi) = \left(\begin{array}{ccc} \cos\psi\cos\varphi - \sin\psi\cos\theta\sin\varphi & -\cos\psi\sin\varphi - \sin\psi\cos\theta\cos\varphi & \sin\psi\sin\theta \\ \sin\psi\cos\varphi + \cos\psi\cos\theta\sin\varphi & -\sin\psi\sin\varphi + \cos\psi\cos\theta\cos\varphi & -\cos\psi\sin\theta \\ \sin\theta\sin\varphi & \sin\theta\cos\varphi & \cos\theta \end{array} \right)$$

UPSSITECH - 1A SRI - Université P. Sabatier

