

3-TERMINAL ADJUSTABLE REGULATOR**DESCRIPTION**

The M5237 is a semiconductor integrated circuit which is designed for variable output voltage regulator and is low power dissipation type with input-output voltage difference are quite low.

Housed in its 3-pin package are Reference voltage generator circuit, Differential amplifier and Drive circuit.

FEATURES

- Wide operating supply voltage range.
 $V_{IN} = 3.5V \sim 36V$. $V_O = 1.5V \sim 33V$
- The input-output voltage differences can be small moved by the external PNP transistors.
($T_R: V_{CE(sat)}$ state)
 $V_{I-O(min)} \approx 0.2V$
- The output voltage can be freely adjusted by the external resistors.
- Built in Over-current protection circuit (Drooping fold-back unit), ASO protection circuit and Thermal protection circuit.
- Its possible Taping (Automatic insert) and Lead forming.

APPLICATION

Car stereos, radio cassettes, portable stereos, and other general usage electronic power supplies

RECOMMENDED OPERATING CONDITIONS

Supply voltage range $V_{IN} = 3.5V \sim 30V$
Output voltage range $V_O = 1.5V \sim 25V$

PIN CONFIGURATION**Outline SOT-89(ML)****Outline TO-92L(L)****ELECTRODE CONNECTIONS**

- ① INPUT
- ② GROUND
- ③ OUTPUT

BLOCK DIAGRAM

3-TERMINAL ADJUSTABLE REGULATOR**ABSOLUTE MAXIMUM RATINGS** ($T_a = 25^\circ\text{C}$, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V_{IN}	Input voltage	36	V
I_D	Drive current	30	mA
$V_I - V_O$	Input/output voltage difference	30	V
P_d	Internal power dissipation	900(L)/500(ML)	mW
T_{opr}	Operating ambient temperature	-20 ~ +75	°C
T_{stg}	Storage temperature	-55 ~ +150	°C

ELECTRICAL CHARACTERISTICS(measurement circuit (a) is used with $T_a = 25^\circ\text{C}$, $V_I = 15\text{V}$, $V_O = 12\text{V}$, $I_L = 200\text{mA}$, $C_{REF} = 1\mu\text{F}$, $R_1 = 4.3\text{k}\Omega$)

Symbol	Parameter	Test condition	Limits			Unit
			Min	Typ	Max	
V_{IN}	Input voltage	(between Pin 1 and Pin 2)	3.5		36	V
V_O	Output voltage	$R_2 \approx 0.82\text{k}\Omega \sim 108\text{k}\Omega$	1.5		33	V
$V_I - V_O$	Minimum input/output voltage difference			0.2		V
V_{REF}	Reference voltage	(between Pin 2 and Pin 3)	1.20	1.26	1.32	V
Reg-in	Input voltage regulation	$V_I = 15 \sim 20\text{V}$		0.02	0.1	%/V
Reg-L	Loading voltage regulation	$I_L = 10 \sim 200\text{mA}$		0.02	0.1	%
I_B	Bias current	$I_L = 0$ (disregarding the current in resistors R_1 , R_2)		1.7	3.0	mA
TC_{VO}	Output voltage thermal coefficient	$T_a = 0 \sim 75^\circ\text{C}$		0.02		%/°C
RR	Ripple rejection	$f = 120\text{Hz}$ (measured with circuit (b))		68		dB
V_{NO}	Output noise voltage	$f = 20\text{Hz} \sim 100\text{kHz}$		25		μVrms

TEST CIRCUIT**(a) Standard test circuit**

$$V_O = V_{REF}(1 + \frac{R_2}{R_1}) \approx 1.26 \times (1 + \frac{R_2}{4.3}) \quad (\text{V})$$

$$R_2 = R_1(\frac{V_O}{V_{REF}} - 1) \approx 4.3 \times (\frac{V_O}{1.26} - 1) \quad (\text{k}\Omega)$$

$$(R_1 = 4.3\text{k}\Omega, V_{REF} \approx 1.26\text{V})$$

(b) Ripple rejection test circuit

3-TERMINAL ADJUSTABLE REGULATOR**TYPICAL CHARACTERISTICS****THERMAL DERATING****OUTPUT VOLTAGE VS.
INPUT VOLTAGE****BIAIS CURRENT VS.
INPUT VOLTAGE****RIPPLE REJECTION RATIO VS.
FREQUENCY****DRIVE CURRENT VS.
INPUT VOLTAGE****OUTPUT VOLTAGE VS.
VOLTAGE ADJUSTING RESISTANCE**

3-Terminal Adjustable Regulator**APPLICATION CIRCUIT****1. Standard application circuit**

$$V_o = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) V$$

$$V_{REF} = 1.26V$$

*1. $R_1 = 180 \sim 220\Omega$

Note: Please use the capacitor not to depend on the ambient temperature.

2. Maximum drive current controller application circuit

Fig. 1 MAXIMUM DRIVE CURRENT

**Fig. 2 DRIVE CURRENT VS.
INPUT VOLTAGE**

3-Terminal Adjustable Regulator**3. Output voltage ON/OFF controller**

Set control circuit resistor R so that voltage of point A is more than 1.5V and less than 5V.

LOAD CHARACTERISTICS

REFERENCE VOLTAGE VS.
LOADING CURRENTOUTPUT VOLTAGE VS.
LOADING CURRENT

3-Terminal Adjustable Regulator**REFERENCE VOLTAGE VS.
AMBIENT TEMPERATURE****OUTPUT VOLTAGE VS.
AMBIENT TEMPERATURE****OUTPUT NOISE VOLTAGE VS.
AMBIENT TEMPERATURE****DRIVE CURRENT VS.
AMBIENT TEMPERATURE****RIPPLE REJECTION RATIO VS.
AMBIENT TEMPERATURE****BIAS CURRENT VS.
AMBIENT TEMPERATURE**