Xiao Mao (Last update: November 21, 2023)

Phone: +1 617 955 7652

Email: matthew99a@gmail.com

xiaomao@stanford.edu

Website: matthew99a.github.io

Education

Stanford University

2022 to Present

Ph.D

- Field: Theoretical Computer Science

Massachusetts Institute of Technology

2021 to 2022

M.Eng.

- Thesis Supervisor: Virginia Vassilevska Williams

Massachusetts Institute of Technology

B.S. in Computer Science and Engineering and in Mathematics

2017 to 2021

Research and Work Experience

Stanford University

Sep. 2022 to present

Ph.D. currently advised by Prof. Aviad Rubenstein

- Focus on algorithms and complexity.

Massachusetts Institute of Technology

Sep. 2021 to Sep. 2022

M.Eng. with thesis supervised by Prof. Virginia Vassilevska Williams

- Focus on algorithms and complexity.

Massachusetts Institute of Technology

Feb. 2020 to Dec. 2020

UROP advised by Professor Michael Sipser

- Research projects on algorithms and complexity. Finished two manuscripts.

Microsoft Corporation, Bellevue, WA

Summer 2019

Intern

- Studied Hopscotch Hashing and its performance, both theoretical and practical.

Pony.ai, Inc., Fremont, CA

Summer 2018

Intern

 Migrated the build tool from Bash to a 1000-line standardized Python script with improved functionality.

Publications

- [1] Xiao Mao. Breaking the Cubic Barrier for (Unweighted) Tree Edit Distance. In *Proceedings of the 62nd IEEE Symposium on Foundations of Computer Science (FOCS)*, 2021. (Machtey Award for Best Student Paper)
- [2] Xiao Mao Mingyang Deng, Ce Jin. Approximating Knapsack and Partition via Dense Subset Sums. In *Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, 2023.
- [3] Ziqian Zhong Mingyang Deng, Xiao Mao. On Problems Related to Unbounded SubsetSum: A Unified Combinatorial Approach. In *Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms* (SODA), 2023.
- [4] Xiao Mao. (1ϵ) -approximation of knapsack in nearly quadratic time, 2023. arXiv:2308.07004.
- [5] Xiao Mao. Fully-dynamic all-pairs shortest paths: Likely optimal worst-case update time, 2023. arXiv: 2306.02662.

Older Manuscripts

- [1] Xiao Mao. Shortest non-separating st-path on chordal graphs. 2020
- [2] Xiao Mao. A natural extension to the convex hull problem and a novel solution. 2020

Selected Awards and Scholarships

• 45th ICPC World Finals1
Gold medal, 1st place

November 2022

FOCS 2021
Best Student Paper (Machtey Award)

2021

• International Olympiad in Informatics
Silver medal

July to August 2017

National Olympiad in Informatics, China Gold medal, 1st place

July 2016

Talks

• Breaking the Cubic Barrier for (Unweighted) Tree Edit Distance

– FOCS 2021 Feb 2022

– Yao Class seminar Sep 2021

Approximating Knapsack and Partition via Dense Subset Sums

– SODA 2023 Jan 2023

Service

Conference Reviewing: ITCS 2022, SWAT 2022, MCFS 2022, SODA 2024