

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 1

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Βαθμοί, κύκλοι, μονοπάτια

1.8 (*) Προσδιορίστε τη μέση απόσταση δύο κορυφών του γραφήματος Q_r (δηλ. το μέσο όρο των αποστάσεων για όλα τα δυνατά ζεύγη διακεκριμένων κορυφών).

Απόδειξη. Ως γνωστόν οι κορυφές του υπερχύβου μπορούν να αριθμηθούν με δυαδικές συμβολοσειρές μήκους <math>r. Δύο κορυφές συνδέονται με αχμή ανν οι συμβολοσειρές τους διαφέρουν μόνο σε μία θέση.

Έστω μία κορυφή x. Το πλήθος των κορυφών που βρίσκονται σε απόσταση d είναι ίσο με το πλήθος των κορυφών που οι συμβολοσειρές τους διαφέρουν σε d ακριβώς θέσεις σε σχέση με την x. Δηλαδή υπάρχουν $\binom{r}{d}$ κορυφές σε απόσταση d.

Συνεπώς έχουμε:

$$E[d] = \frac{1}{\binom{n(G)}{2}} \sum_{u,v \in V(G): u \neq v} d(u,v)$$

$$= \frac{1}{\binom{2^r}{2}} \sum_{u \in V(G)} \sum_{v \in V(G): v \neq u} d(u,v)$$

$$= \frac{1}{\frac{2^r \cdot (2^r - 1)}{2}} \sum_{u \in V(G)} \sum_{k=1}^r k \cdot \binom{r}{k}$$

$$= \frac{2}{2^r (2^r - 1)} n(G) \sum_{k=1}^r r \binom{r-1}{k-1}$$

$$= \frac{2 \cdot 2^r \cdot r}{2^r (2^r - 1)} \sum_{k=0}^{r-1} \binom{r-1}{k}$$

$$= \frac{2 \cdot r \cdot 2^{r-1}}{2^r - 1}$$

$$= \frac{r \cdot 2^r}{2^r - 1}$$

 $1.9~(\star)$ Για κάθε θετικό ακέραιο α και για κάθε γράφημα G, το V(G) περιέχει περισσότερες από $\left(1-\frac{1}{\alpha}\right)\cdot n(G)$ κορυφές βαθμού αυστηρά μικρότερου του $2\alpha\delta^*(G)$.

Aπόδειξη. Σύμφωνα με τον ορισμό έχουμε ότι $\delta^*(G) = \max\{k \mid \exists H \subseteq G \text{ με } \delta(H) \geq k\}.$ Θέλουμε να δείξουμε ότι:

$$|\{u \mid u \in V(G) \land d(u) < 2\alpha \delta^*(G)\}| > \left(1 - \frac{1}{\alpha}\right)n(G)$$

Έστω λοιπόν, προς απαγωγή σε άτοπο ότι:

$$\begin{aligned} |\{u \mid u \in V(G) \land d(u) < 2\alpha \delta^*(G)\}| &\leq \left(1 - \frac{1}{\alpha}\right) n(G) \\ \Leftrightarrow n(G) - |\{u \mid u \in V(G) \land d(u) \geq 2\alpha \delta^*(G)\}| &\leq \left(1 - \frac{1}{\alpha}\right) n(G) \\ \Leftrightarrow |\{u \mid u \in V(G) \land d(u) \geq 2\alpha \delta^*(G)\}| &\geq \frac{1}{\alpha} n(G) \end{aligned}$$

Ισχύει όμως:

$$2m(G) = \sum_{u \in V(G)} d(u) \ge \sum_{u \in V(G): d(u) \ge 2\alpha\delta * (G)} d(u) \ge \frac{1}{\alpha} n(G) \cdot 2\alpha\delta * (G) = 2n(G)\delta^*(G)$$

$$m(G) \ge n(G) \cdot \delta^*(G) \Leftrightarrow \epsilon(G) \ge \delta^*(G)$$

Από το Πόρισμα 3.1 των σημειώσεων του μαθήματος γνωρίζουμε ότι $\delta^*(G) \geq \epsilon(G)$, συνεπώς θα έχουμε:

$$\epsilon(G) = \delta^*(G)$$

ΤΟΣΟ: Εδώ καταλήγουμε σε άτοπο γιατί αν ισχύει ισότητα τότε οι παραπάνω ανισότητες είναι αυστηρές και αυτό δεν μπορεί να ισχύει [...]

 $1.10~(\star\star)~$ Κάθε γράφημα G με τουλάχιστον 2 κορυφές και $\epsilon(G)\geq 2$, έχει περιφέρεια το πολύ $2\cdot\log_2(n)$.

Aπόδειξη. μπλα μπλα..

2 Άχυκλα γραφήματα

 $2.10 \ (\star)$ Σε κάθε δέντρο με n κορυφές και διάμετρο τουλάχιστον 2k-3 υπάρχουν τουλάχιστον n-k διαφορετικά μονοπάτια μήκους k.

Απόδειξη. *** Χρειάζεται Σχήμα (και ίσως αναδιατύπωση..) ***

Έστω u,v δύο αντιδιαμετρικοί κόμβοι με $d(u,v)=\mathrm{diam}(u,v)$ και έστω P το μονοπάτι που τους ενώνει. Ονομάζουμε w την κορυφή πάνω στο P που απέχει d(u,w)=k-1 από την u. Τέτοια κορυφή υπάρχει αφού $|P|=d(u,v)\geq 2k-3>k-1$.

Στο μονοπάτι P' από u στον w υπάρχουν ακριβώς k κορυφές. Θα δείξουμε ότι με αφετηρία κάθε μία από τις υπόλοιπες n-k κορυφές μπορούμε να δημιουργήσουμε διαφορετικά μονοπάτια μήκους k.

Έστω μια κορυφή x που δεν ανήκει στο P'. Θα δημιουργήσουμε ένα μονοπάτι T_x μήκους k διακρίνοντας δύο περιπτώσεις:

(α΄) Αν $w \in P(x,u)$ όπου P(x,u) το μονοπάτι από x σε w στο δέντρο τότε θέτουμε T_x το πρόθεμα μήχους k του μονπατιού (δηλαδή το T_x περιλαμβάνει την αφετηρία x και τους επόμενους k-1 κόμβους).

Τέτοιο πρόθεμα υπάρχει πάντα γιατί το $P(x, u) \ge P(x, w) + 1 = k$.

(β΄) Αν $w \notin P(x,u)$ τότε θεωρούμε το μονοπάτι P(x,v) για το οποίο ισχύει $w \in P(x,v)$ και θέτουμε T_x το πρόθεμα μήκους k αυτού του μονοπατιού.

Όπως πριν, εξασφαλίζουμε την ύπαρξη τέτοιου προθέματος από το γεγονός ότι $P(x,v) \ge P(w,v) + 2 \ge (2k-3) - (k-1) + 2 = k$

Τα παρακάτω λήμματα μας εξασφαλίζουν ότι τα μονοπάτια που προκύπτουν από την παραπάνω διαδικασία είναι όλα διαφορετικά μεταξύ τους.

Λήμμα 1. Έστω δύο μονοπάτια P_1, P_2 σε ένα δέντρο που έχουν προκύψει ώς πρόθεμα (προσανατολισμένων) μονοπατιών από την κορυφή x_1 στην u και από την x_2 στην u αντίστοιχα όπου οι x_1, x_2, u διαφορετικές μεταξύ τους κορυφές. Τότε $P_1 \neq P_2^1$

Απόδειξη. Από τον ορισμό των P_1, P_2 βλέπουμε ότι ο μόνος τρόπος να είναι το ίδιο μονοπάτι είναι αν έχουν ώς άχρα τις χορυφές x_1, x_2 .

Αυτό σημαίνει ότι $x_2 \in P(x_1, u), x_1 \in P(x_2, u)$ το οποίο είναι άτοπο άρα $P_1 \neq P_2$.

Λήμμα 2. Έστω δύο μονοπάτια T_{x_1}, T_{x_2} για $x_1 \neq x_2$ που έχουν προκύψει από τις περιπτώσεις (a'), (β') αντίστοιχα. Τότε $T_{x_1} \neq T_{x_2}$.

Απόδειξη. Έχουμε ότι $x_2 \notin P(x_1,u)$ γιατί διαφορετικά είτε θα είχαμε $x_2 \in P(x_1,w)$ και τότε η x_2 θα ήταν στην περίπτωση (α') είτε $x_2 \in P(w,u) = P'$ το οποίο δεν μπορεί να συμβαίνει αφού οι κορυφές του P' δεν είναι αφετηρίες μονοπατιών.

Συνεπώς, το T_{x_1} που είναι υποσύνολο του $P(x_1,u)$ δεν μπορεί να περιέχει την x_2 , άρα τα T_{x_1}, T_{x_2} έχουν τουλάχιστον μία χορυφή διαφορετική και έτσι είναι διαφορετικά.

Σε κάθε περίπτωση λοιπόν τα n-k μονοπάτια που δημιουργήσαμε είναι όλα διαφορετικά μεταξύ τους. \Box

3 Συνεκτικότητα

 $3.10~(\star\star)$ Για κάθε k κορυφές ενός k-συνεκτικού γραφήματος, υπάρχει κύκλος που να τις περιέχει όλες.

Απόδειξη. Έστω k κορυφές του γραφήματος G και C κύκλος που περιέχει όσο το δυνατόν περισσότερες από τις k κορυφές. Έστω S το σύνολο των k κορυφών. Αν |C|=k, τελειώσαμε. Διαφορετικά, έστω |C|=l και u μία από τις k κορυφές, η οποία δεν βρίσκεται στον κύκλο. Από το Λήμμα 1, υπάρχουν min(|C|,k) εσωτερικώς διακεκριμένα μονοπάτια από το u προς τις κορυφές του κύκλου, και κανένα δεν τελειώνει στην ίδια κορυφή του κύκλου. Έστω v_i μία απαρίθμηση των κορυφών του κύκλου (με τη σειρά που εμφανίζονται πάνω στον κύκλο) οι οποίες αποτελούν άκρο κάποιου μονοπατιού από τα παραπάνω και P_i τα αντίστοιχα μονοπάτια. Επίσης έστω F_i το μονοπάτι από την v_i στην v_{i+1} το οποίο δεν περιέχει καμία άλλη από τις v_j . (Έχουμε θεωρήσει ότι $v_{min(|C|,k)+1} \equiv v_1$). Αν ο κύκλος έχει μήκος l, τότε περιέχει μόνο κορυφές από το S. Ο κύκλος $v_1, P_1, u, P_2, v_2, v_3, ..., v_l, v_1$

¹Ορίσαμε τα P_1, P_2 ώς πρόθεμα προσανατολισμένων μονοπατιών, δηλαδή μονοπατιών με συγχεχριμένη αφετηρία και πέρας όμως από τη στιγμή που τα ορίζουμε τα θεωρούμε πλέον μη-προσανατολισμένα και έτσι έχει νόημα η σύγχριση $P_1 \neq P_2$.

περιέχει l+1 στοιχεία του S, άτοπο. Αν έχει μήκος >l, τότε οι κορυφές v_i είναι τουλάχιστον l+1. Αυτό σημαίνει ότι υπάρχουν τουλάχιστον l+1 διαφορετικά μονοπάτια F_i . Άρα θα υπάρχει ένα F_i το οποίο δεν περιέχει στο εσωτερικό του καμία κορυφή του S. Τότε, ο κύκλος $v_1, F_1, v_2, ..., v_i, P_i, u, P_{i+1}, v_{i+1}, F_{i+1}, ..., v_1$ έχει l+1 στοιχεία του S, άτοπο. Άρα για κάθε σύνολο k κορυφών, υπάρχει κύκλος που τις περιέχει όλες.

Λήμμα 1: Έστω k-συνεκτικό γράφημα, κύκλος του με τουλάχιστον l κορυφές με l < k και τυχαία κορυφή u εκτός του κύκλου. Τότε υπάρχουν l κορυφές του κύκλου $v_1, v_2, ..., v_l$ και εσωτερικώς διακεκριμένα μονοπάτια $P_i = u...v_i$ για κάθε $1 \le i \le l$.

Απόδειξη. Έστω μία νέα χορυφή v που συνδέεται με αχμή με όλες τις χορυφές του χύχλου. Δηλαδή θεωρούμε γράφημα G με $V(G') = V(G) \cup \{v\}$ χαι $E(G') = E(G) \cup \{(v,x)|x \in C\}$. Το G είναι l-συνεκτικό: Αν σβήσουμε l-1 χορυφές και σε αυτές περιέχεται η v, τότε οι χορυφές που απομένουν συνδέονται λόγω της k-συνεκτικότητας του αρχικού γραφήματος. Σε διαφορετική περίπτωση, θα σβηστούν το πολύ l-1 χορυφές του χύχλου και συνεπώς θα μείνει τουλάχιστον μία άχμή από την v προς μια χορυφή του χύχλου, άρα το γράφημα θα παράμείνει συνεκτικό. Αφού το γράφημα είναι l-συνεκτικό, θα υπάρχουν l εσωτερικώς διαχεκριμένα μονοπάτια από την χορυφή u στην χορυφή v. Κάθε ένα από αυτά τα μονοπάτια περνάει από τουλάχιστον μία χορυφή του χύχλου. Για χάθε μονοπάτι P=u...v, θεωρούμε την πρώτη φορά που περνάει από μία χορυφή του χύχλου. Έστω ότι αυτή είναι η x_i . Το σύνολο των μονοπατιών $\{P_i=u...x_i\}$ είναι το ζητούμενο, αφού τα μονοπάτια είναι εσωτεριχώς διαχεκριμένα χαι χαταλήγουν σε l διαφορετιχές χορυφές του χύχλου.

4 Εμβαπτίσεις

5 Δομές σε γραφήματα

 $5.9~(\star)~{\rm Kάθε}$ γράφημα περιέχει τουλάχιστον $\frac{m(G)(4m(G)-n^2(G))}{3n(G)}$ τρίγωνα.

Απόδειξη. Έστω μια αχμή $\{u,v\}$. Η ιδέα είναι να βρούμε το ελάχιστο πλήθος τριγώνων στα οποία μπορεί να ανήχει αυτή η αχμή χαι έτσι μετά αθροίζοντας χατάλληλα να μπορέσουμε να φράξουμε από χάτω το συνολιχό πλήθος των τριγώνων του γραφήματος.

Ορίζουμε $U=N_G(u)\backslash v, V=N_G(v)\backslash u$. Ισχύει ότι |U|+|V|=d(u)+d(v)-2. Επίσης, $|U\cup V|\leq n(G)-2$ αφού δεν υπάρχουν πάνω από n(G)-2 κορυφές που να απομένουν στο γράφημα.

Άρα, έχουμε:

$$|U \cap V| = |U| + |V| - |U \cup V| \ge d(u) + d(v) - n(G)$$

Κάθε κορυφή που ανήκει στο $U\cap V$ δημιουργεί τρίγωνο με τις κορυφές u,v. Άρα το πλήθος των τριγώνων $|T_{\{u,v\}}|$ που μπορεί να ανήκει η ακμή $\{u,v\}$ είναι τουλάχιστον d(u)+d(v)-n(G).

Αν συμβολίσουμε με T το σύνολο των τριγώνων του G έχουμε:

$$3|T| = \sum_{\{u,v\} \in E(G)} T_{\{u,v\}}$$

επειδή κάθε τρίγωνο περιέχει 3 ακμές.

Συνεπώς:

$$\begin{split} |T| &\geq \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v) - n(G)) \\ &= \frac{1}{3} \sum_{\{u,v\} \in E(G)} (d(u) + d(v)) - \frac{n(G)m(G)}{3} \\ &= \frac{1}{3} \sum_{u \in V(G)} d^2(u) - \frac{n(G)m(G)}{3} \\ &\geq \frac{1}{3n(G)} \left(\sum_{u \in V(G)} d(u) \right)^2 - \frac{n(G)m(G)}{3} \\ &= \frac{4m^2(G)}{3n(G)} - \frac{n(G)m(G)}{3} \\ &= \frac{m(G)(4m(G) - n^2(G))}{3n(G)} \end{split}$$

Όπου το 4ο βήμα προχύπτει από την ανισότητα Cauchy-Schwarz:

$$d(u_1)\cdot 1 + d(u_2)\cdot 2 + \ldots + d(u_n)\cdot 1 \le (d^2(u_1) + \ldots + d^2(u_n))\cdot (1 + \ldots + 1) = (d^2(u_1) + \ldots + d^2(u_n))\cdot n$$

5.10 (**) THELEI FTIAKSIMO Δείξτε ότι ένα πολυγράφημα είναι σειριακό-παράλληλο αν είναι 2-συνεκτικό και δεν περιέχει καμία υποδιαίρεση του K_4 ως ελάσσον. Ένα γράφημα καλείται σειριακό-παράλληλο αν μπορεί να προκύψει από το K_2 μετά από σειρά υποδιαιρέσεων ακμών ή διπλασιασμών ακμών (δηλαδή αντικατάσταση μιας ακμής από μια διπλής πολλαπλότητας με τα ίδια άκρα).

Απόδειξη. Αρχικά, αν ένα γράφημα περιέχει κάποια υποδιαίρεση του K_4 ως ελάσσον, τότε περιέχει και το K_4 ως ελάσσον, αφού η διάλυση κορυφής είναι η αντίστροφη πράξη της υποδιαίρεσης ακμής και γνωρίζουμε ότι η σύνθλιψη ακμής μπορεί να προσομοιώσει την διάλυση κορυφής. Θα δείξουμε κάτι πιο ισχυρό, δηλαδή ότι αν ένα πολυγράφημα είναι συνεκτικό και δεν περιέχει το K_4 ως ελάσσον, τότε είναι σειριακό-παράλληλο. Για 2 κορυφές ισχύει, αφού έχουμε το K_2 που είναι σειριακό-παράλληλο. Για 3 κορυφές επίσης ισχύει. Αν έχουμε το P_3 , τότε προκύπτει από το K_2 με μία υποδιαίρεση ακμής. Αν έχουμε το K_3 , αυτό μπορεί να προκύψει από την εξής ακολουθία κινήσεων: K_2 ->διπλασιασμός ακμής, υποδιαίρεση της μίας ακμής. Θεωρούμε το γράφημα G με τον ελάχιστο αριθμό κορυφών, το οποίο είναι συνεκτικό και δεν περιέχει το K_4 ως ελάσσον και δεν είναι σειριακό-παράλληλο. Από το Λήμμα I, το γράφημα I δεν μπορεί να είναι I-συνεκτικό. Αν το I0 δεν είναι I2-συνεκτικό, τότε έχει κορυφή τομής. Έστω Έστω ένας I2-διαχωριστής I2, I3 και I4 με I4 με I4 με I4 να κορυφών I5 να και I5 μετά τη διαγραφή των κορυφών I6. Έστω γράφημα I7 με I8 μετά τη διαγραφή των κορυφών I8 να και I9 μετά τη διαγραφή των κορυφών I8 να και I9 μετά τη διαγραφή των κορυφών I8 να και I9 μετά τη διαγραφή των κορυφών I1 να χεια I1 μετά τη διαγραφή των κορυφών I3 να και I1 και I1 μετά τη διαγραφή των κορυφών I1 να και I1 και I1 μετά τη διαγραφή των κορυφών I1 να και I1 και I1 μετά τη διαγραφή των κορυφών I1 να και I1 και I1 μετά τη διαγραφή των κορυφών I1 να και I1 και I1 μετά τη διαγραφή των κορυφών I2 να και I3 και I4 με I4 με I4 με I4 με I5 να και I5 να και I5 και I5 να κα

 $E(H) = (x,y)|x \in V(H), y \in V(H), (x,y) \in G, (x,y) \neq (u,v).$ Το γράφημα H είναι συνεκτικό, διότι σε διαφορετική περίπτωση κάποια από τις κορυφές u,v θα αποτελούσε κορυφή τομής. Αν το H δεν είναι 2-συνεκτικό, τότε λόγ ω του Λήμματος 2 είναι και σειριακό-παράλληλο με άχρα τα u, v. Αν είναι 2-συνεχτικό αλλά ότι 3-συνεχτικό, τότε λόγω του Λήμματος 3 και της υπόθεσης ελαχιστότητας είναι σειριαχό-παράλληλο με άχρα τα u, v. Λόγω του Λήμματος 3, το Η δεν μπορεί να είναι 3 συνεκτικό. Θεωρούμε λοιπόν το γράφημα 2. Έστω x το πλήθος των συνεχτιχών συνιστωσών που προχύπτουν στο G μετά τη διαγραφή των u, v. Αν στο G υπάρχει η αχμή (u,v), τότε διπλασιάζουμε x φορές την αχμή του K_2 . Διαφορετικά τη διπλασιάζουμε x-1 φορές. Τώρα, εφόσον έχουμε αποδείξει ότι κάθε συνιστώσα, μαζί με τις χορυφές u,v είναι σειριαχό-παράλληλο γράφημα με άχρα τα u,v, μπορεί να προχύψει με μια σειρά διπλασιασμών και υποδιαιρέσεων ακμών από το K_2 , δηλαδή από μία από τις ακμές που προέχυψαν από το διπλασιασμό. Αν επαναλάβουμε αυτή τη διαδιχασία για χάθε συνιστώσα, θα προχύψει το γράφημα G. Αυτό σημαίνει ότι το G είναι σειριαχό-παράλληλο, το οποίο είναι άτοπο. Άρα η υπόθεση δεν ισχύει και κάθε 2-συνεκτικό γράφημα που δεν περιέχει το K_4 ως ελάσσον είναι σειριαχό-παράλληλο. Παρατήρηση: Η συνθήχη ότι ένα γράφημα δεν περιέχει το K_4 ως ελάσσον, με την προϋπόθεση ότι είναι συνεκτικό, είναι ικανή για την απόδειξη του ότι είναι σειριακό-παράλληλο.

6 Χρωματισμοί και άλλα

 $6.9~(\star\star)$ Ένα γράφημα λέγεται άρτιο αν όλες οι κορυφές έχουν άρτιο βαθμό. Δείξτε ότι αν το G είναι συνεκτικό γράφημα, τότε $|\{H\subseteq_{\pi\alpha}G|H$ είναι άρτιο $\}|=2^{m(G)-n(G)+1}$.

Απόδειξη. Θεωρούμε $S=\{H\subseteq_{\pi\alpha}G|H$ άρτιο}. Θα ορίσουμε μία 1-1 και επί συνάρτηση f από το σύνολο $A=\{H|H\subseteq_{\pi\alpha}G\}$, δηλαδή το σύνολο των παραγόμενων γραφημάτων του G, στο $B=S\times\{X\subseteq V(G)||X|mod2=0\}$, δηλαδή το καρτεσιανό γινόμενο του συνόλου των άρτιων παραγόμενων γραφημάτων με την οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο. Το σύνολο των παραγόμενων γραφημάτων του G έχει πληθάριθμο $2^{m(G)}$, αφού κάθε ακμή μπορεί να υπάρχει ή να μην υπάρχει στο παραγόμενο υπογράφημα. Επίσης η οικογένεια υποσυνόλων του V(G) με άρτιο πληθάριθμο έχει πληθάριθμο $2^{n(G)-1}$, αφού έχουμε G0 επιλογές για κάθε κορυφή (θα μπει ή δεν θα μπει στο υποσύνολο), εκτός από την τελευταία, της οποίας η τοποθέτηση καθορίζεται μοναδικά από το αν το υποσύνολο έχει άρτιο ή περιττό αριθμό κορυφών. Λόγω του λήμματος G1, η G2 είναι 1-1 και επί, άρα έχουμε ότι G3 εG4 εG5 είναι το ζητούμενο.

Λήμμα 1: Υπάρχει 1-1 και επί συνάρτηση από το σύνολο A στο σύνολο B.

Aπόδειξη. Για κάθε ζευγάρι κορυφών i, j με $i \neq j$, ορίζουμε P_{ij} ένα μονοπάτι μεταξύ τους στο G. Αυτό προφανώς υπάρχει, αφού το G είναι συνεκτικό. Ορισμός f: Έστω $Z \in A$ και T το σύνολο των κορυφών του Z με περιττό βαθμό. Είναι γνωστό ότι |Z| mod 2 = 0. Διαμερίζουμε τις κορυφές του Z σε ζευγάρια (a_i, b_i) (με κάποιο μονοσήμαντο τρόπο, πχ

αριθμούμε τις χορυφές του Z $u_1, u_2, ..., u_k$ χαι βάζουμε τα ζευγάρια $(u_1, u_2), ..., (u_{k-1}, u_k))$ χαι για χάθε ζευγάρι θεωρούμε το μονοπάτι $P_{a_ib_i}$. Για χάθε αχμή πάνω σε αυτό το μονοπάτι, αν υπάρχει στο Z τότε την αφαιρούμε, ενώ αν δεν υπάρχει την προσθέτουμε. Είναι εύχολο να δούμε ότι αυτός ο μετασχηματισμός διατηρεί την αρτιότητα των βαθμών των ενδιάμεσων χόμβων, χαι επίσης πλέον οι a_i, b_i έχουν άρτιο βαθμό. Κάνοντας αυτό το μετασχηματισμό για χάθε ζευγάρι, θα χαταλήξουμε με ένα άρτιο γράφημα U. Ορίζουμε $f(Z) = U \times T$. Ουσιαστιχά η f μετασχηματίζει ένα γράφημα σε άρτιο, αλλά επιστρέφει χαι την πληροφορία του ποιοι χόμβοι ήταν περιττοί. Αντίστροφα, αν έχουμε ένα άρτιο γράφημα U χαι ένα υποσύνολο U του U(G) με άρτιο πληθάριθμο, θεωρούμε τη διαμέριση του U σε ζευγάρια χαι για χάθε ζευγάρι εφαρμόζουμε τον ίδιο μετασχηματισμό που ορίσαμε παραπάνω. Έτσι θα πάρουμε ξανά το γράφημα U με U0 με U1 με τον ίδιο μετασχηματισμό που ορίσαμε παραπάνω. Έτσι θα πάρουμε ξανά το γράφημα U2 με U3 U4 τον U4 τον U4 τον U4 τον U4 τον U5 τον U6 τον U6

 $6.10 \ (\star\star)$ Δείξτε ότι υπάρχει θετική σταθερά c, τέτοια ώστε αν για κάποιο γράφημα G ισχύει ότι $\delta(G) \geq k$, τότε το G περιέχει $c \cdot k^2$ ακμοδιακεκριμένους κύκλους.

Απόδειξη. Έστω $\delta(G) \geq k \geq 4$. Λόγω του λήμματος 2, έχουμε $\geq \lfloor \frac{k-1}{3} \rfloor$ εσωτερικώς διακεκριμένους κύκλους. Διαγράφουμε τις ακμές όλων αυτών των κύκλων. Στο γράφημα G' που θα προκύψει έχουμε $\delta(G) \geq k-2$. Εφαρμόζουμε επαναληπτικά την ίδια διαδικασία, έως ότου το γράφημα που απόμένει έχει $\delta(G') < 4$. Συνολικά αυτή η διαδικασία θα επαναληφθεί τουλάχιστον $\lfloor \frac{k}{2} \rfloor - 1$ φορές. Οι ακμοδιακεκριμένοι κύκλοι που θα έχουμε συνολικά λοιπόν θα είναι τουλάχιστον $\lfloor \frac{k-3}{3} \rfloor + \lfloor \frac{k-3}{3} \rfloor + \ldots + 1 + 0 = \Theta(k^2)$.

Λήμμα 1: Αν $\delta(G) \geq 4$, υπάρχει κύκλος με μήκος $\leq 2 \cdot log_2 n$.

Aπόδειξη. Έχουμε $m \geq \frac{\delta(G) \cdot n}{2} \geq 2n$, άρα η πυχνότητα είναι τουλάχιστον 2. Αυτό που μένει έχει αποδειχθεί στην άσχηση 1.10.

Λήμμα 2: Σε κάθε γράφημα G με $\delta(G) \geq k \geq 4$ υπάρχουν τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ εσωτερικώς διακεκριμένοι κύκλοι.

Απόδειξη. Έστω ένας ελάχιστος χύχλος C. Αυτος λόγω του λήμματος 1 θα έχει μήκος το πολύ $2 \cdot log_2 n$. Επίσης χαμία χορυφή $u \in G - C$ δεν μπορεί να έχει πάνω από 3 αχμές προς χορυφές του G. Αν είχε, τότε έστω δύο από αυτές χαι οι αντίστοιχες χορυφές του χύχλου. Αυτές θα είχαν απόσταση $\leq \lfloor \frac{|C|}{2} \rfloor$ στον C, άρα χρησιμοποιώντας αυτές τις δύο αχμές, θα υπήρχε χύχλος με μέγεθος το πολύ $\lfloor \frac{|C|}{2} \rfloor + 2$, το οποίο για $|C| \geq 5$ είναι άτοπο αφού δημιουργεί χύχλο μιχρότερο από τον ελάχιστο. Για |C| = 3, είναι προφανές ότι δεν μπορούμε να έχουμε πάνω από 3 αχμές από χάποια χορυφή προς τις χορυφές του C, ενώ για |C| = 4 αν είχαμε 4 αχμές προς χορυφές το C, θα σχηματιζόταν χύχλος μήχους 3, άτοπο. Από το παραπάνω συμπεραίνουμε ότι το εναγόμενο γράφημα G' του G με σύνολο χορυφών το G - C θα έχει $\delta(G') \geq k - 3$. Εφαρμόζοντας επαναληπτιχά την ίδια διαδιχασία στο εναγόμενο γράφημα, μέχρι ο ελάχιστος βαθμός του αντίστοιχου εναγόμενου γραφήματος να γίνει μιχρότερος από 4, έχουμε συνολιχά τουλάχιστον $\lfloor \frac{k-1}{3} \rfloor$ εσωτεριχώς διαχεχριμένους χύχλους.