## Part 1

## **Hyperparameters:**

K was given 3 different values: 3, 4, 5

Distance metrics were: Cosine similarity, Minkowski, Mahalanobis

This makes 3\*3 = 9 configurations in total.

# Accuracies and confidence intervals for each configuration:

K: 3

distance\_metric: cos mean accuracy: 0.95

confidence interval: ('0.91', '0.99')

K: 3

distance\_metric: minkowski

mean\_accuracy: 0.94

confidence\_interval: ('0.88', '1.00')

K: 3

distance\_metric: mahalanobis

mean\_accuracy: 0.90

confidence\_interval: ('0.84', '0.96')

K: 4

distance\_metric: cos mean accuracy: 0.94

confidence\_interval: ('0.89', '0.99')

K: 4

distance\_metric: minkowski

mean accuracy: 0.93

confidence\_interval: ('0.88', '0.99')

K: 4

distance\_metric: mahalanobis

mean\_accuracy: 0.90

confidence interval: ('0.83', '0.97')

K: 5

distance\_metric: cos mean accuracy: 0.94

confidence\_interval: ('0.88', '1.00')

K: 5

distance\_metric: minkowski

mean\_accuracy: 0.94

confidence\_interval: ('0.88', '0.99')

K: 5

distance\_metric: mahalanobis

mean\_accuracy: 0.88

confidence\_interval: ('0.81', '0.96')

## **Best hyperparameter values:**

K = 3

Distance metric = Cosine similarity

I chose these as the best hyperparameter values because they resulted in the best mean accuracy(0.95) with a 95% confidence interval of (0.91, 0.99).

## Part 2

## **K versus Loss Graphs**

## **KMeans**

### Dataset1



## Dataset2



## **KMedoids**

### **Dataset 1**



### **Dataset 2**



## **Comments**

For the KMeans algorithm, the K-Loss graph for dataset 1 indicates a **K value of 5** is best suited when the Elbow Method is used(at K = 5, we no longer see substantial loss decrease, and the graph takes the shape of an elbow).

For dataset 2, following a similar logic, **K equal to 3** is the best choice.

For the KMedoids algorithm, following the same logic as KMeans, the best choice for **K for dataset 1 is 5**.

For dataset 2, it is 3.

## **Dimensionality Reduction Graphs**

## **KMeans**

### **Dataset 1**

**UMAP** 



## Metric: Cosine



t-SNE



## Metric: Cosine



PCA



## Dataset 2

**UMAP** 



## Metric: Cosine



t-SNE



## Metric: Cosine



PCA



## **KMedoids**

### **Dataset 1**

**UMAP** 



## Metric: Cosine



t-SNE



## Metric: Cosine



PCA



## Dataset 2

UMAP





t-SNE







## **Comments**

#### **Best Results**

I didn't notice too much difference between the methods I employed.

t-SNE and UMAP dimensionality reduction methods gave good results.

The same is true for which metrics I used as well(Cosine and Euclidean).

All dimensionality reduction methods and hyperparameters resulted in good clusters. However, I noticed that the PCA method would sometimes produce not-so-distinct clusters.

So, in conclusion, I would employ t-SNE and UMAP instead of PCA for dimensionality reduction.

#### **Number of Clusters**

I identified K as 5 for dataset 1, and the visualized points obtained by using the dimensionality reduction methods confirmed K = 5 as the best choice.

However, for dataset 2, the visualization showed that K = 4 should've been the correct choice(I chose 3 instead).

### **Worst-case Running Time Analysis**

#### KMeans:

Computing distance between a data point and a cluster center across d dimensions, which is O(d).

Repeating this for N data points is O(N \* d).

For K centers, it is O(N \* K \* d).

For I iterations, it is

O(I \* N \* K \* d)

#### KMedoids:

Computing distance for all dimensions d from a medoid to N other data points is O(N \* d).

There can be at most N many potential medoids. Then, complexity becomes O(N \* N \* d).

Repeating this for K clusters: O(K \* N^2 \* d)

For I iterations:

O(I \* K \* N^2 \* d)

## Part 3

## **Dendrograms**

Linkage: Single & Metric: Euclidean



## Linkage: Single & Metric: Cosine



## Linkage: Complete & Metric: Euclidean



## Linkage: Complete & Metric: Cosine



## Silhouette Analysis

The best configurations are highlighted in bold text below:

For linkage: single, metric: euclidean, K: 2 the average silhouette score is:

0.49462610483169556

For linkage: single, metric: euclidean, K: 3 the average silhouette score is:

0.5929003953933716

For linkage: single, metric: euclidean, K: 4 the average silhouette\_score is:

0.7720839977264404

For linkage: single, metric: euclidean, K: 5 the average silhouette score is: 0.670854389667511

For linkage: single, metric: cosine, K: 2 the average silhouette\_score is: 0.49462610483169556 For linkage: single, metric: cosine, K: 3 the average silhouette\_score is: 0.5929003953933716

For linkage: single, metric: cosine, K: 4 the average silhouette\_score is:

0.7720839977264404

For linkage: single, metric: cosine, K: 5 the average silhouette\_score is: 0.6814747452735901

For linkage: complete, metric: euclidean, K: 2 the average silhouette\_score is:

0.47934556007385254

For linkage: complete, metric: euclidean, K: 3 the average silhouette\_score is:

0.5894443392753601

For linkage: complete, metric: euclidean, K: 4 the average silhouette\_score is: 0.7720839977264404

For linkage: complete, metric: euclidean, K: 5 the average silhouette\_score is: 0.6800521016120911

For linkage: complete, metric: cosine, K: 2 the average silhouette\_score is:

0.49462610483169556

For linkage: complete, metric: cosine, K: 3 the average silhouette score is:

0.5929003953933716

For linkage: complete, metric: cosine, K: 4 the average silhouette\_score is: 0.7720839977264404

For linkage: complete, metric: cosine, K: 5 the average silhouette\_score is: 0.6800521016120911

For all the configurations, **K = 4** attains the highest average silhouette score.

## **Silhouette Graphs**

Silhouette analysis, Linkage = complete, Metric = cosine, K = 2





Silhouette analysis, Linkage = complete, Metric = cosine, K = 3





Silhouette analysis, Linkage = complete, Metric = cosine, K = 4





#### Silhouette analysis, Linkage = complete, Metric = cosine, K = 5



#### Silhouette analysis, Linkage = complete, Metric = euclidean, K=2



#### Silhouette analysis, Linkage = complete, Metric = euclidean, K=3



#### Silhouette analysis, Linkage = complete, Metric = euclidean, K = 4



#### Silhouette analysis, Linkage = complete, Metric = euclidean, K=5







#### Silhouette analysis, Linkage = single, Metric = cosine, K = 3



#### Silhouette analysis, Linkage = single, Metric = cosine, K = 4



#### Silhouette analysis, Linkage = single, Metric = cosine, K = 5



#### Silhouette analysis, Linkage = single, Metric = euclidean, K = 2



#### Silhouette analysis, Linkage = single, Metric = euclidean, K = 3





## **Comments**

0.4 0.6 The silhouette coefficient values

As can be seen from the graphs, the silhouette average score is highest for K = 4. Other metrics and linkages do not contribute to this score much, if at all.

-0.25 0.00 0.25 Feature space for the 1st feature

From the cluster visualization to the right of the silhouette graphs, it is obvious that there are 4 clusters.

## **Dimensionality Reduction**

## t-SNE

### **Euclidean**

Dim Reduction for Method = TSNE, Metric = euclidean, K = 4



## Cosine

## Dim Reduction for Method = TSNE, Metric = cosine, K = 4



## **UMAP**

Euclidean

Dim Reduction for Method = UMAP, Metric = euclidean, K = 4



## Cosine

### Dim Reduction for Method = UMAP, Metric = cosine, K = 4



## **Comments**

As it is clear from the dimensionality reduction graphs, the K = 4 value seems to be the correct choice, which was also the case when we plotted their average silhouette scores.

## **Worst-case Running Time Analysis**

### **HAC**

At each iteration, the distance between clusters is computed, which can be at worst O(N^2). In each iteration, the closest clusters are merged, thus, there can at most be N-1 iterations. Distance computation between two points in D-dimensional space is O(D).

The final complexity is:

O(N<sup>3</sup> \* D)

### K-Means or HAC

The worst-case running time complexity for the K-Means algorithm would be:

O(K \* N \* D) where K is the number of clusters.

Therefore, I would prefer to use K-Means for such large amounts of data with high-dimensional data points since its running time complexity is better.