

透镜焦距测量与望远镜的设计

2022年5月20日

实验背景

透镜是光学系统中很重要的光学元件,它能把光线会聚或者发散。焦距则反映光学透镜特性的重要物理量,测定透镜焦距的方法其原理都是建立在透镜成像规律的基础上。

望远镜(telescope)是利用透镜或反射镜以及其他光学器件观测遥远物体的光学仪器。

人类一直都有往远看的强烈愿望,中国古代有"顺风耳"、"干里眼"的传说。

三星堆中的铜面具,双眼突出, 大约是新石器时代晚期的作品, 这可能是中国古人对望远镜的理 想与愿望!

实验背景

1608年荷兰米德尔堡眼镜师<u>汉</u> 斯·李波尔 (Hans Lippershey) 造出了世界上第一架望远镜。

1990年,哈勃太空望远镜是人类 第一座<mark>太空望远镜</mark>

哈勃望远镜见证恒星死亡的灿烂画面

哈勃望远镜拍摄的类星体

实验背景

最大光学望远镜ELT,口径39.3米,集光力是人类肉眼1亿倍

图为它和罗马斗兽场的大 小比较

世界最大射电望远镜 FAST,口径:口径达500 米;世界上单口径最大而 且最灵敏的射电望远镜;具 有中国的独立自主知识产 权(南仁东); 从2021年4月1日开始, 对外国的科学家开放,需 要通过申请

一 实验目的

- >了解透镜作为光学元件在光学系统中的作用
- ▶用位移法测凸透镜焦距
- ▶自组望远镜
- ▶测量凹透镜焦距

二 实验原理 2.1薄透镜成像公式

薄透镜成像公式

在近轴光束的条件下,薄透镜的成像公式为:

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{V}$$

u 为物距, V 为像距, f 为焦距。

实物、实像时, U, Y为正; 虚物、虚像时 U, Y为负。

凸透镜f为正; 凹透镜f为负。

二 实验原理 2.2位移法测凸透镜焦距

物像公式法、自准法都因透镜的中心位置不易确定而 在测量中引进误差,为避免这一缺点,可取物屏和像屏之 间的距离 D 大于四倍焦距(4f),且保持不变,沿光轴 方向移动透镜,则必能在像屏上观察到二次成像

二 实验原理 2.2位移法测凸透镜焦距

如图1所示,设物距为u₁时,得放大的倒立实像;物距为u₂时,得缩小的倒立实像,透镜两次成像之间的位移为d,根据透镜成像公式,可知

O₁姓:
$$\frac{1}{u_1} + \frac{1}{u_2} = \frac{1}{f}, \frac{1}{u_1} + \frac{1}{D - u_1} = \frac{1}{f}$$
 (1)

$$O_2$$
 ψ : $\frac{1}{u_2} + \frac{1}{v_2} = \frac{1}{f}, \frac{1}{u_1 + d} + \frac{1}{D - u_1 - d} = \frac{1}{f}$ (2)

由(1)(2)公式可以推出:

$$f = \frac{D^2 - d^2}{4D}$$

因此,只要测出D和d, 就可以求出焦距。

三实验仪器

导轨,LED灯,凹透镜(f=-50mm),凸透镜(f=100mm,f=150mm),白屏,带logo物屏,带分划板目镜组

四 实验内容及步骤 4.1位移法测凹透镜焦距

4.1 位移法测凸透镜焦距:

主要步骤:

- (1) 物AB与像屏的间距 D > 4f (f = 150) 时;
- (2) 透镜在间移动时可在像屏上成两次像,一次成放大的像 u_1 , 一次成缩小的像 u_2 , $d = u_2 u_1$, $f = \frac{D^2 d^2}{4R}$

注:测量时记录的是位置,而不是距离

四 实验内容及步骤 4.1位移法测凹透镜焦距

	物屏	透镜位置1	透镜位置2	像屏	D	d	f
1							
2							
3							
4							
5							
6							

四 实验内容及步骤 4.2自组望远镜并测量凹透镜焦距

4.2. 自组望远镜并测量凹透镜焦距:

主要步骤:

- (1) 物屏与透镜L₃ (f=100) 组平行光;
- (2) 透镜 L_1 (f=150)与目镜组成望远镜,通过望远镜观察物屏像(物屏logo),调节 l_1 与目镜距离,直到所观察的物屏像最清晰,记下此时 l_1 与目镜距离;

四 实验内容及步骤 4.2自组望远镜并测量凹透镜焦距

- (3) 用 L_3 成一缩小实像,记下实像位置a,如图放上凹透镜 L_2 ,调节 L_2 位置,直至通过望远镜能观察到最清晰的物屏像。记下此时 L_2 位置b,则 L_2 焦距数值为a-b
- (4) 改变实像位置a, 重复测量6次, 求平均值。

	L₁与目镜距离	实像位置a	L₂位置b	L ₂ 焦距(a-b)
1				
2				
3				
4				
5				
6				

五 实验报告要求

- 1、用位移法计算凸透镜焦距,评估不确定度
- 2、计算凹透镜焦距,评估不确定度

思考题

a利用位移法测凸透镜焦距有什么优点?

b共轴调节的具体方法。