Kapitel 6

Integration

I) a) Gegeben sei eine stetige Funktion $f:[a,b]\to\mathbb{R}$. Gesucht ist eine differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit

$$F'(t) = f(t), \forall t \in [a, b]$$

b) Für Naturwissenschaft und Technik ist die folgende Verallgemeinerung von a) wichtig:

Sei $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ gegeben. Gesucht ist eine differenzierbare Funktion $\varphi:[a,b]\to\mathbb{R}$ mit

$$\varphi'(t) = f(t, \varphi(t)), t \in [a, b]$$

Man nennt ein solches φ eine Lösung der Differentialgleichung

$$y' = f(x, y)$$

II) Viele in den Natur- und Ingenieurwissenschaften auftretenden Grössen benötigen zu ihrer exakten Definition einen Grenzprozess der folgenden Art:

Wirkt eine konstante Kraft f
 längs eines Weges der Länge s, und zwar längs der x-Achse vom Punkt a bis zum Punkt b:=a+s, so versteht man unter der von der konstanten Kraft f
 geleisteten Arbeit das Produkt f $\times s=f(b-a)$.

Ist die Kraft f jedoch örtlich variabel, d.h. $f:[a,b]\to\mathbb{R}$ ist eine Funktion des Ortes $x\in[a,b]$, so wird man folgendermassen vorgehen:

Zerlege das Intervall [a,b] in kleine Teilintervalle I_1,\ldots,I_n . Wähle in jedem Intervall $I_k:=[x_{k-1},x_k]$ einen Punkt ξ aus. Man wird dann die "Riemannsche Summe"

$$A \sim \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

als Näherung für die gesuchte Arbeit A ansehen. Hierzu wird man insbesondere dann berechtigt sein, wenn man mit jeder genügend feinen Zerlegung des Intervalls I, einem festen Wert A beliebig nahe kommt.

III) Sei $f:[a,b]\to [0,\infty]$ eine (stetige) Funktion. Gesucht ist eine vernünftige Definition des Flächeninhalts A des Gebietes zwischen der x-Achse und dem Graphen von f

Dies ist sehr einfach, wenn die Funktion f überall den konstanten Wert f(x)=c hat für eine feste reelle Zahl $c\in\mathbb{R}$. In diesem Fall ist die Fläche unter dem Graphen von f ein Rechteck und wir definieren dessen Flächeninhalt einfach als Breite mal Höhe, also das Produkt A=(b-a)c. Man beachte, dass die Zahl c auch negativ sein darf und dann ist auch A negativ.

Eine einfache Formel ergibt sich auch für eine Funktion, die sich aus konstanten Funktionen auf endlich vielen Teilintervalle von [a,b] zusammensetzen lässt.

Für allgemeine beschränkte Funktionen kann man nun wie in II) vorgehen.

Wir wählen eine Aufteilung (Zerlegung, Einteilung, Partition) des Intervalls I = [a, b] in endlich viele Teilintervalle.

Aus jedem dieser Teilintervalle I_k ersetzen wir f durch eine Funktion die auf diesem Teilintervall konstant ist und in einem noch zu klärenden Sinn nicht allzu stark von f abweicht. Dann bilden wir die Summe der Flächeninhalte der auf diese Weise erhaltenen Rechtecke. Diese Summe ist als Näherungswert für die gewünschte Fläche zu verstehen.

Um den genauen Wert der Fläche festzulegen, bilden wir immer feinere Zerlegungen des Intervalls. Es ist dann das Grenzwertverhalten dieser Summen zu untersuchen.

6.1 Riemann Integral: Definition, elementare Eigenschaften

1. Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion.

Definition 6.1

Eine Partition (oder Zerlegung, Einteilung, Unterteilung) eines Intervalls [a,b] ist eine endliche Menge $P=\{a=x_0,x_1,\ldots,x_n=b\}$ $x_0 < x_1 < x_2 < \cdots < x_n$

 $P(I) := \{P \subset I \mid a,b \in P, P \text{ ist endlich}\}$ die Menge alle Partitionen

Die Feinheit der Zerlegung P ist dabei definiert durch

$$\delta(P) := \max(x_i - x_{i-1}), 1 \le i \le n$$

d.h. $\delta(P)$ ist die Länge des grössten Teilintervalls $I_i:=[x_i,x_{i-1}], k=i,\dots,n$

2. Wahl ξ_i von Zwischenpunkten $x_{i-1} \leq \xi_i \leq x_i, 1 \leq i \leq n$. Jede Summe der Form

$$S(f, P, \xi) := \sum_{T=i}^{n} f(\xi_i)(x_i - x_{i-1})$$

nennt man eine **Riemannsche Summe** der Zerlegung P und ξ . Die Summe

$$U(f,P) := \sum_{i=1}^{n} (\inf_{[x_i,x_{i-1}]} f)(x_i - x_{i-1})$$

nennt man die **Untersumme** von f(x) zur Zerlegung P, und

$$O(f,P) := \sum_{i=1}^{n} f(\sup_{[x_{i-1},x_i]})(x_i - x_{i-1})$$

nennt man die **Obersumme** von f(x) zur Zerlegung P.

Bemerkung 6.2

Aus den Definitionen folgt direkt

- a) Für eine feste Zerlegung P gilt stets $U(f, P) \leq S(f, P, \xi) \leq O(f, P)$
- b) Für zwei Partitionen $P,Q\in P(I)$ gilt die Ungleichung $P\subset Q\Rightarrow U(f,P)\leq U(f,Q)\leq O(f,Q)\leq O(f,P).$

Beweis

Um dies zu verstehen, ist es nützlich, den Fall zu betrachten, dass die Zerlegung Q genau einen Punkt mehr enthält als P.

Sei $P = \{x_0, \ldots, x_N\}$ und $Q = P \cup \{\xi\}$, wobei ξ ein neuer Unterteilungspunkt, also nicht gleich einem der Elemente von P ist. Dann gibt es genau ein $l \in \{1, \ldots, N\}$, so dass $x_{l-1} < \xi < x_l$ ist. Damit erhält man

$$(\sup_{[x_{l-1},\xi]} f)(\xi - x_{l-1}) + (\sup_{[\xi,x_l]} f)(x_l - \xi) \le (\sup_{[x_{l-1},x_l]} f)(x_l - x_{l-1})$$

Addiert man dazu alle Summanden in

$$O(f, P) = \sum_{i} (\sup_{[x_{i-1}, x_i]} f)(x_i - x_{i-1})$$

mit $i \neq l$ so ergibt sich die Ungleichung

$$O(f,Q) \le O(f,P)$$

Ebenso beweist man $U(f,Q) \geq U(f,P)$. Damit ist b) für den Fall bewiesen, dass Q genau ein Element mehr als P enthält. Der allgemeine Fall lässt sich hierauf leicht durch vollständige Induktion zurückführen.

Lemma 6.3

Sei $f:I:=[a,b]\to\mathbb{R}$ eine beschränkte Funktion. Dann gilt

$$\sup_{P \in P(I)} U(f, P) \le \inf_{P \in P(I)} O(f, P)$$

Beweis

Aus

$$P \subset Q \Rightarrow U(f, P) \leq U(f, Q) \leq O(f, Q) \leq O(f, P)$$

folgt, dass die Zahl O(f,Q) für jede Partition $Q \in P(I)$ eine obere Schranke für die Menge $\{U(f,P) \mid P \in P(I)\}$ ist. Also folgt aus der Definition des Supremums als kleinste obere Schranke, dass sup $U(f,P) \leq O(f,Q)$ ist.

Diese Ungleichung gilt für jede Partition $Q \in P(I)$. Das heisst wiederum, dass die Zahl sup U(f,P) eine untere Schranke für die Menge $\{O(f,Q) \mid Q \in P(I)\}$ ist.

Also folgt aus der Definition der Infimums als grösste untere Schranke, dass die Gleichung $\sup_{P\in P(I)}U(f,P)\leq \inf_{Q\in P(I)}O(f,Q)$ ist. Damit ist Lemma 6.3 bewiesen.

Definition 6.4

1) Für beschränktes $f = [a, b] \to \mathbb{R}$ bezeichnen

$$\int\limits_{\underline{a}}^{b}fdx=\sup\{U(f,P):P\in P(I)\}$$

$$\int\limits_{a}^{\overline{b}}fdx=\inf\{O(f,P):P\in P(I)\}$$

das untere und obere Integral von f.

2) Ein solches f heisst über [a, b] Riemann-integrierbar falls

$$\int_{a}^{b} f dx = \int_{a}^{\overline{b}} f dx$$

In diesem Fall heisst $A = \int_a^b f dx$ das Riemann-Integral von f über das Intervall [a,b]

Beispiel 6.5

1) Sei $c \in \mathbb{R}$, $f: I \to \mathbb{R}$ die konstante Funktion mit dem Wert c, das heisst $f(x) = c, \forall x \in I$. Dann gilt

$$U(f,P) = O(f,P) = (b-a)c, \forall P \in P(I)$$

 $\Rightarrow f$ ist Riemann integrierbar und

$$\int_{a}^{b} f dx = \int_{a}^{b} c dx = c(b - a)$$

In diesem einfachen Fall stimmt unsere Definition mit der Interpretation des Flächeninhalts als Breite mal Höhe überein. Man beachte, dass die Konstante c auch negativ sein darf.

2)
$$f(x) = \begin{cases} 0 & \text{für } x \neq x_0 \\ 1 & \text{für } x = x_0 \end{cases} x_0 \in [a, b]$$

Dann ist f integrierbar mit

$$\int_{a}^{b} f(x)dx = 0$$

denn es gilt U(f, P) = 0 und $0 < O(f, P) \le 2\delta(P), \forall P$.

O(f,P) kann durch geeignete Wahl der Partition beliebig klein gewählt werden. z.B. $P_n = \{a, a + \frac{(b-a)}{n}, \dots, b\} \Rightarrow \delta(P) = \frac{b-a}{n}, \inf_{P \in P(I)} O(f,P) = 0$

3)
$$f(x) := \begin{cases} 1 \text{ für } x \in [a, b] \setminus Q \\ 0 \text{ für } x \in [a, b] \cap Q \end{cases}$$

Dann gilt U(f, P) = 0 und $O(f, P) = 1, \forall P \in P(I)$ $\Rightarrow f$ ist nicht integrierbar. (f ist beschränkt aber nicht integrierbar)

Satz 6.6 (Riemannsches Kriterium für integrierbarkeit)

Sei $f:I\to\mathbb{R}$ eine beschränkte Funktion. Dann sind folgende Aussagen äquivalent

- 1. f(x) ist integrierbar über [a, b]
- 2. Für jedes $\varepsilon > 0$ existiert eine Partition $Q \in P(I)$ mit

$$O(f,Q) - U(f,Q) < \varepsilon$$

Beweis

(a) \Rightarrow (b) Sei f Riemann integrierbar, $A:=\int\limits_a^b f(x)dx=\sup U(f,P)=\inf O(f,P)$ Nach Definition von sup und inf folgt, dass zwei Partitionen $P_1,P_2\in P(I)$ existieren, so dass

- (i) $A \frac{\varepsilon}{2} < U(f, P_1)$
- (ii) $O(f, P_2) < A + \frac{\varepsilon}{2}$
- (iii) $U(f, P_1) \le U(f, Q) < O(f, Q) \le O(f, P_2)$

Definiere $Q := P_1 \cup P_2$. Dann ist $P_1 \subset Q$ und $P_2 \subset Q$. Nach Bemerkung 6.2b) folgt

$$(i), (ii), (iii) \Rightarrow A - \frac{\varepsilon}{2} < U(f, Q) \le O(f, Q) < A + \frac{\varepsilon}{2}$$

 $\Rightarrow O(f, Q) - U(f, Q) < \varepsilon$

(b) \Rightarrow (a) Für alle $P \in P(I)$

$$0 \le \int_{\underbrace{\underline{a}}}^{b} f(x)dx - \int_{\underbrace{a}}^{\overline{b}} f(x)dx \le O(f, P) - U(f, P)$$

$$\underbrace{\sup_{\underline{a} \in O(f, P)}}_{\sup U(f, P)}$$

Aus (b) folgt das $\forall \varepsilon > 0$

$$0 < \int_{a}^{\overline{b}} f(x)dx - \int_{a}^{b} f(x)dx < \varepsilon \Rightarrow \int_{a}^{\overline{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

 $\Rightarrow f$ ist integrierbar.

Satz 6.7

- 1. Jede stetige Funktion $f: I \to \mathbb{R}$ ist R. integrierbar.
- 2. Jede monotone Funktion ist R. integrierbar.

Beweis

1. $f: I \to \mathbb{R}$ stetig, I = [a, b] kompakt, $\Rightarrow f$ gleichmässig stetig. d.h. zu jedem $\varepsilon > 0$ gibt es $\delta > 0$ mit

$$|x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b-a}$$

Für ein $P \in P(I)$ mit Feinheit $\delta(P) < \delta$ gilt dann

$$O(f,P) - U(f,P) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} \right) (x_{i-1} - x_i)$$

$$\leq \sum_{i=1}^{n} \frac{\varepsilon}{b-a} (x_i - x_{i-1})$$

$$= \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon$$

Somit ist f nach dem Riemannschen Kriterium integrierbar.

2. Sei f monoton wachsend, $P \in P(I)$ eine uniforme Partition mit

$$x_i = a + \left(\frac{b-a}{n}\right)i, 0 \le i \le n$$

$$O(f, P) - U(f, P) = \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))(x_{i+1} - x_i)$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \varepsilon$$

Für jedes $\varepsilon > 0$, haben wir $\frac{(b-a)(f(b)-f(a))}{n} < \varepsilon$. Nach dem Riemannschen Kriterium ist f integrierbar. (monoton fallend ist analog)

Satz 6.8 (Riemannsche Summe)

Sei $f: I \to \mathbb{R}$ eine beschränkte Funktion. Folgende Aussagen sind äquivalent.

- I) f ist Riemann integrierbar und $A := \int_{a}^{b} f(x)dx$
- II) Für jedes $\varepsilon > 0$ existiert eine Zahl $\xi > 0$, so dass für jede Partition $P_i = \{x_0, x_1, \dots, x_N\}$ von I und alle $\xi_i, \dots, \xi_N \in \mathbb{R}$ gilt

$$\left. \begin{array}{l} \delta(P) < \delta \\ x_{k-1} \le \xi_k \le x_k, \forall k \end{array} \right. \Rightarrow \left| A - \sum_{k=1}^N f(\xi_k)(x_k - x_{k-1}) \right| < \varepsilon$$

Dieser Satz lässt sich auch so formulieren: Eine beschränkte Funktion $f:I\to\mathbb{R}$ ist genau dann Riemann integrierbar wenn der Grenzwert

$$\lim_{\substack{\delta(P) \to 0 \\ \xi_k \in [x_{k-1}, x_k]}} \sum_{k=1}^N f(\xi_k) (x_k - x_{k-1})$$

und dann haben wir

$$A = \int_{a}^{b} f(x)dx = \lim_{\delta(P) \to 0} S(f, P, \delta)$$

Beweis

Siehe D. Salomon: Das Riemannsche Integrale (Satz 3.1).

Korollar 6.8

Seien $f:[a,b]\to\mathbb{R}$ eine beschränkte und integrierbare Funktion, $\{P^{(n)}\}$ eine Folge von Partitionen der Intervalls [a,b] mit $\delta(P^{(n)})\to 0$ für $n\to\infty$ und $\{\xi^{(n)}\}$ eine Feste Wahl von Zwischenpunkten zur Partition $P^{(n)}$. Dann ist

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S(f, P^{(n)}, \xi^{(n)})$$

Beweis

Wegen Satz 6.8 existiert zu jedem $\varepsilon>0$, ein $\delta>0$ derart, das für alle Partitionen $\delta(P)<\delta$ die Ungleichung

$$\left| S(f, P, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

gilt und zwar bei beliebiger Wahl der Zwischenpunkte. Wegen $\delta(P^{(n)}) \to 0$ existiert ein $N \in \mathbb{N}$ mit $\delta(P^{(n)}) < \delta$ für alle $n \geq N$. Für jedes $n \geq N$ ist daher

$$\left| S(f, P^{(n)}, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

woraus sich die Behauptung unmittelbar ergibt.

Beispiel

$$\int\limits_{0}^{1} (x^2 - x) dx = ?$$

$$f(x) = x^2 - x$$
 stetig $\Rightarrow f$ integrierbar

Wir wenden Korollar 6.8 an. Wir betrachten die Folge $\{P^{(n)}\}$ von äquidistanten Partitionen des Intervalls [0,1] mit

$$x_k^{(n)} := \frac{k}{n}, \quad \forall k = 0, 1, \dots, n$$

Dann $\delta(P^{(n)})=\frac{1}{n}\to 0$ für $n\to \infty.$ Wir wählen die Zwischenpunkte

$$\xi_k^{(n)} := \frac{k}{n}, \quad \forall k = 1, \dots, n$$

Die $\xi_k^{(n)}$ sind die rechten Endpunkte der Teilintervalle $I_{k-1}:=[\frac{k-1}{n},\frac{k}{n}]$. Hiermit folgt

$$\begin{split} S(f,P^{(n)},\xi^{(n)}) &= \sum_{k=1}^n f(\xi_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)}) \\ &= \sum_{k=1}^n \left(\frac{k^2}{n^2} - \frac{k}{n}\right) \left(\frac{k}{n} - \frac{k-1}{n}\right) \\ &= \frac{1}{n} \sum_{k=1}^n \left(\frac{k^2}{n^2} - \frac{k}{n}\right) = \frac{1}{n^3} \sum_{k=1}^n k^2 - \frac{1}{n^2} \sum_{k=1}^n k \\ &= \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) - \frac{1}{n^2} \left(\frac{n(n+1)}{2}\right) \\ &\to \frac{2}{6} - \frac{1}{2} = -\frac{1}{6} \\ &\Rightarrow \int_0^1 (x^2 - x) dx = -\frac{1}{6} \end{split}$$

Eigenschaften des Integrals

Satz 6.9

Seien a < c < b und $\alpha, \beta \in \mathbb{R}$ und $f, g : I = [a, b] \to \mathbb{R}$ zwei Reimann integrierbare Funktionen. Dann gilt folgendes:

1. Die Funktion $\alpha f + \beta g$ ist integrierbar mit

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. Wenn f,g die Ungleichung $f(x) \leq g(x), \forall x \in [a,b]$ erfüllen, dann gilt

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

3. |f| ist R. integrierbar und

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

4. Das Produkt fg ist integrierbar.

Bemerkung 6.10

Wir bezeichnen die Menge aller Riemann integrierbaren Funktionen $f:I\to\mathbb{R}$ mit $R(I):=\{f:I\to\mathbb{R}\mid f$ R. integrierbar $\}$. Nach Satz 6.9 i), ist dies ein reeller Vektorraum. R(I) ist ein Unterraum des Vektorraumes aller reellwertigen Funktionen

$$F(I) := \{ f : I \to \mathbb{R} \}$$

$$C(I) := \{ f : I \to \mathbb{R} \mid f \text{ stetig} \}$$

ist ein Unterraum von R(I)

$$C(I) \subset R(I) \subset F(I)$$

Beweis 6.9

1. Setze $h := \alpha f + \beta g$ und sei $\varepsilon > 0$ beliebig gegeben. Da f und g integrierbar sind, existieren wegen Riem. Kriterium (Satz 6.6). Partitionen P_1 und $P_2 \in P(I)$ mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

und

$$O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

Aus der Definition von h folgt zunächst

$$|h(x) - h(y)| \le |\alpha||f(x) - f(y)| + |\beta||g(x) - g(y)|$$

Mit der verfeinerten Partition $P := P_1 \cup P_2$ ergibt sich unter Verwendung von (*), wobei

$$\sup_{x \in I} h(x) - \inf_{x \in I} h(x) = \sup\{h(x) - h(y) \mid x, y \in I\}$$

Für beschränkte Funktion h auf einen Intervall I gilt

$$O(h, P) - U(h, P) = \sum_{k=1}^{n} \left(\sup_{[x_{k-1}, x_k]} - \inf_{[x_{k+1}, x_k]} \right) (x_k - x_{k-1})$$

$$\stackrel{*}{=} \sum_{x, y \in I_k} \sup |h(x) - h(y)| (x_k - x_{k-1})$$

$$\leq |\alpha| \sum_{x, y \in I_k} \sup |f(x) - f(y)| (x_k - x_{k-1})$$

$$+ |\beta| \sum_{x, y \in I_k} \sup |g(x) - g(y)| (x_k - x_{k-1})$$

$$= |\alpha| \sum_{k=1}^{n} (\sup f - \inf f) (x_k - x_{k-1})$$

$$+ |\beta| \sum_{k=1}^{n} (\sup g - \inf g) (x_k - x_{k-1})$$

$$= |\alpha| [O(f, P) - U(f, P)] + |\beta| [O(g, P) - U(g, P)]$$

$$< |\alpha| \frac{\varepsilon}{(|\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{(|\alpha| + |\beta|)} = \varepsilon$$

Nach Bmk. 6.2 $P_1 \subset P$

$$\Rightarrow U(f, P_1) < U(f, P)$$

und

$$O(f, P) < O(f, P_1)$$

dann

$$-U(f,P) < -U(f,P_1)$$

und

$$O(f,P) - U(f,P) < O(f,P_1) - U(f,P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

2. Seien $f,g:I\to\mathbb{R}$ integrierbar mit $f(x)\leq g(x), \forall x\in I$. Die Funktion h:=g-f ist wegen (1.) integrierbar. Sei nur $P=\{x_0,x_1,\ldots,x_n\}$ eine beliebige Partition von [a,b]. Dann folgt inf $h(x)\geq 0, \forall k=0,1,\ldots,n$ und daher

$$U(h, P) = \sum_{P} (\inf h)(x_k - x_{k-1}) \ge 0$$

Was wiederum $\int_{\underline{a}}^{b} h(x)dx = \sup U(h, P) \ge 0$ impliziert.

Da h aber integrierbar ist, folgt hieraus

$$0 \le \int_{a}^{b} h(x)dx = \int_{a}^{b} h(x)dx$$

$$= \int_{a}^{b} (g(x) - f(x))dx = \int_{a}^{b} g(x)dx - \int_{a}^{b} f(x)dx \ge 0$$

Dies liefert die Behauptung

3. Nun gilt $-|f(x)| \le f(x) \le |f(x)|, \forall x \in I$ Nach (2) folgt daraus die Ungleichung

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x) dx|$$

Diese Ungleichung ist äquivalent zu

$$\left| \int_{a}^{b} f(x) dx \right| < \int_{a}^{b} |f(x)| dx$$

4. Als integrierbare Funktionen sind f und g beschränkt. Also existieren die Konstanten

$$\alpha := \sup_{x \in [a,b]} \lvert f(x) \rvert \text{ und } \beta := \sup_{x \in [a,b]} \lvert g(x) \rvert$$

Wegen dem Riem. Kriterium (Satz 6.6) gibt es Partitionen P_1, P_2 mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(\alpha + \beta)}$$
$$O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(\alpha + \beta)}$$

Setzen wir h := fg so gilt

$$|h(x) - h(y)| \le |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)|$$

$$\le \alpha |g(x) - g(y)| + \beta |f(x) - f(y)|, \forall x, y \in [a, b]$$

Sei $P = P_1 \cup P_2$.

Wie im Beweis von (1.) ergibt sich unter Verwendung von

$$\sup_{x \in I} h - \inf_{x \in I} h = \sup \left\{ |h(x) - h(y)| x, y \in I \right\}$$

dann

$$O(h, P) - U(h, P) = \sum_{k=1}^{n} (\sup h - \inf h)(x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} \sup_{x,y \in I_k} |h(x) - h(y)|(x_k - x_{k-1})$$

$$\leq |\beta| \sum_{I_k} \sup_{I_k} |f(x) - f(y)|(x_k - x_{k-1})$$

$$+|\alpha| \sum_{I_k} \sup_{I_k} |g(x) - g(y)|(x_k - x_{k-1})$$

$$= |\beta| \sum_{I_k} (\sup_{I_k} f - \inf_{I_k} f)(x_k - x_{k-1})$$

$$+|\alpha| \sum_{I_k} (\sup_{I_k} g - \inf_{I_k} g)(x_k - x_{k-1})$$

$$= |\beta| [O(f, P) - U(f, P)] + |\alpha| [O(g, P) - U(g, P)] < \varepsilon$$

Satz 6.10 (Standardabschätzungen)

Sei f integrierbar über [a, b]. Dann gelten die Abschätzungen

$$(b-a)\inf_{[a,b]} f \le \int_{a}^{b} f(x)dx \le (b-a)\sup_{[a,b]} f$$

Beweis

Für die Partition $P = \{a, b\}$ von [a, b] folgt sofort

$$(b-a)\inf_{[a,b]} f = U(f,P) \le \int_a^b f(x)dx < O(f,P) = (b-a)\sup_{[a,b]} f$$

Satz 6.11

Sei $f:[a,b]\to\mathbb{R}$ integrierbar. Dann ist f auch auf jedem Teilintervall $[c,d]\subseteq [a,b]$ integrierbar.

Beweis

f ist auf [a, b] integrierbar wegen Satz 6.6. Zu jedem $\varepsilon > 0$ existiert eine Partition P' von [a, b] mit

$$O(f, P') - U(f, P') < \varepsilon$$

Wir betrachten dann die Verfeinerung

$$P'' := P' \cup \{c, d\}$$

Wegen Bmk. 6.2 haben wir

$$O(f, P'') - U(f, P'') < \varepsilon$$

Sei nun $P:=P''\cap [c,d]$ die Restriktion der Partition P'' auf [c,d]. Dann gilt mit $g:=f|_{[c,d]}$ die Abschätzung

$$O(g, P) - U(g, P) = \sum_{P} (M_k(g) - m_k(g))(x_k - x_{k-1})$$

$$= \sum_{P} (M_k(f) - m_k(f))(x_k - x_{k-1})$$

$$\leq \sum_{P''} (M''_k(f) - m''_k(f))(x_k - x_{k-1})$$

$$O(f,P'') - U(f,P'') < \varepsilon$$

wobei

$$M_k(f) := \sup_{I_k \subset P} f$$
 $m_k(f) := \inf_{I_k \subset P} f$

und analog

$$M_{k}^{"}\left(f\right) = \sup_{I_{k} \in P''} f$$

Satz 6.12

Seien $a \leq b \leq c$. Die Funktion $f:[a,c] \to \mathbb{R}$ ist genau dann integrierbar, falls beide Einschrankungen $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar sind. In diesem Fall gilt

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Konvention 6.13

1) Sei f integrierbar auf einem Intervall I. Für $a \leq b$ in I definiert man

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Mit dieser Konvention gelten alle bisherigen Eigenschaften. z.B.

$$\forall a, b, c \in I : \int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

$$\int_{a}^{a} f(x)dx = 0$$

6.2 Differentiation und Integration

In diesem Kapitel wird der Zusammenhang zwischen Differentiation und Integration hergestellt. Zu diesem Zweck beginnen wir mit dem folgenden Satz, dem Mittelwertsatz der Integralrechnung.

Satz 6.14 (Mittelwertsatz der Integralrechnung)

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Dann existiert ein $\xi\in[a,b]$ mit

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

Geometrisch:

Beweis

Wir setzen

$$\begin{split} m :&= \min\{f(x) \mid x \in [a,b]\} = f(x_-) \\ M :&= \max\{f(x) \mid x \in [a,b]\} = f(x_+) \end{split}$$

Wegen Satz 6.10

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

$$f(x_{-}) = m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M = f(x_{+})$$

Also $\frac{1}{b-a}\int\limits_a^b f(x)dx\leq M$ für ein $M\in[m,M].$ Da f stetig ist, gibt es wegen des

Zwischenwertsatzes $\xi \in [a, b]$ mit $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$. Nun kommt der erste Hauptsatz der Differential- und Integralrechnung.

Satz 6.15 (Hauptsatz A)

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Definiere für jedes $x\in[a,b]$

$$F(x) := \int_{a}^{b} f(t)dt$$

Dann ist $F: I \to \mathbb{R}$ differenzierbar und $F'(x) = f(x), \forall x \in [a, b].$

Beweis

Für jedes $h \neq 0$ ist

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{-\infty}^{x+h} f(t)dt - \int_{-\infty}^{x} f(t)dt \right] \stackrel{6.12}{=} \frac{1}{h} \int_{-\infty}^{x+h} f(t)dt$$

Nach dem MWS der Integralrechnung existiert zu jedem solchen $h \neq 0$ ein Zwischenpunkt $\xi_h \in [x,x+h]$ (bzw. $\xi_h \in [x+h,x]$ falls h < 0) mit

$$\int_{a}^{x+h} f(t)dt = (h)f(\xi_h)$$

Nun ist $\xi_h \to x$ für $h \to 0$. Da f stetig ist

$$f(\xi_h) \to f(x)$$
 für $h \to 0$

Damit erhalten wir

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt = \lim_{h \to 0} \frac{1}{h} (hf(\xi_h)) = f(x)$$

Folgender Begriff ist dann naheliegend:

Definition 6.16

Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Eine Stammfunktion von f (auf [a,b]) ist eine differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit F'(x)=f(x).

Wegen Satz 6.15 hat jede stetige Funktion mindestens eine Stammfunktion. Mit Ausnahme einer additiven Konstante, die beim Differenzieren ja wegfällt, ist die Stammfunktion auch eindeutig bestimmt. Dies ist der Inhalt des folgenden Satzes.

Satz 6.17

Seien $I \subset \mathbb{R}$ ein beliebiges Intervall und $F: I \to \mathbb{R}$ eine Stammfunktion von $f: I \to \mathbb{R}$. Dann gelten:

- (a) Die Funktion F+c ist für jede Konstante $c\in\mathbb{R}$ ebenfalls eine Stammfunktion von f.
- (b) Ist $G:I\to\mathbb{R}$ eine weitere Stammfunktion von f, so gibt es eine Konstante $c\in\mathbb{R}$ mit G=F+c

Beweis

- (a) Offenbar ist mit F auch F+c differenzierbar und es gilt (F+c)'=F'=f
- (b) Da F und G Stammfunktionen von f sind, gilt F' = f, G' = f. Also (F G)' = 0 und F G = konstante Funktion.

Definition 6.18

Eine Stammfunktion von f heisst auch unbestimmtes Integral von f und wird mit $\int f(x)dx$ bezeichnet. Mittels einer Stammfunktion lässt sich das Integral einer gegebenen Abbildung sehr leicht berechnen. Dies ist der Inhalt des Hauptsatzes B.

Satz 6.19 (Hauptsatz der Diff- und Integralberechnung, Version B)

Sei $f:I\to\mathbb{R}$ eine stetige Funktion und F eine beliebige Stammfunktion von f. Dann gilt

$$\int_{a}^{b} f(x)dx = F(b) - F(a) := F(x)|_{a}^{b}, \quad \forall a, b \in I$$

Beweis

Für $x \in I$ definieren wir

$$F_0(x) := \int_{a}^{x} f(t)dt$$

Dann ist $F_0:I\to\mathbb{R}$ wegen Satz 6.15 eine (spezielle) Stammfunktion von fmit

$$F_0(0) = 0$$
 $F_0(b) = \int_{c}^{b} f(t)dt$

Für die beliebige Stammfunktion F gilt somit $F-F_0=c$ für eine Konstante $c \in \mathbb{R}$. Deshalb ist

$$F(b) - F(a) = F_0(b) - F_0(a) = F_0(b) = \int_a^b f(t)dt$$

womit alles bewiesen ist. Der Satz 6.19 ist das zentrale Ergebnis und zur Berechnung konkreter Integrale. Man Benötigt nur eine Stammfunktion und hat limenet: A verb is misvon dieser lediglich die Differenz der Funktionswerte zwischen den beiden Endpunkten des Intervalls [a, b] zu bilden. Insbesondere spielt es keine Rolle, welche Werte die Stammfunktion im Inneren des Intervalls [a, b] annimmt.

sing here. Ideas??

Beispiele von Stammfunktionen

Beispiel 6.20

Definitions Bereich	Funktion f	Stammfunktion F
$(0,\infty)$	$x^{\alpha}, \ \alpha \in \mathbb{R}$	$\frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1$
		$\log x + c, \alpha = -1$
R	$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + c, n \in \mathbb{N}$
\mathbb{R}	e^x	$e^x + c$
\mathbb{R}	$\sin x$	$-\cos x + c$
R	$\cos x$	$\sin x + c$
(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + c$
(-1,1)	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x + c$
\mathbb{R}	$\frac{1}{1+x^2}$	$\arctan x + c$
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\tan x$	$-\ln \cos x + c$
$(0,\pi)$	$\cot x$	$\ln \sin x + c$
R	$\sinh x$	$\cosh x + c$
R	$\cosh x$	$\sinh x + c$
R	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arcsinh} x + c$
$(1,\infty)$	$\frac{1}{\sqrt{x^2-1}}$	$\operatorname{arccosh} x + c$
[-1, 1]	$\frac{1}{1-x^2}$	$\operatorname{arctanh} x + c$

Beispiel

$$F(x) = -\ln|\cos x| = -\frac{1}{2}\ln(\cos x)^2$$

und die Ableitung ist (nach Kettenregel):

$$F'(x) = -\frac{1}{2} \frac{1}{\cos(x)^2} (2\cos x)(-\sin x) = \frac{\sin x}{\cos x} = \tan x$$

6.3 Partielle Integration

Da die Integration die Umkehrung von differenzieren ist, liefert jede Ableitungsregel eine für das Integrieren.

Partielle Integration ist eine Umkehrung der Leibnizschen Produktregel und besagt für das unbestimmte bzw. bestimmte Integral:

$$(uv)' = u'v + uv'$$

$$\Rightarrow \int uv' = uv - \int u'v + c$$

Satz 6.21 (Partielle Integration)

Seien $f,g:[a,b]\to\mathbb{R}$ zwei stetig differenzierbare Funktionen. Dann gilt

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

und

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Beispiel 6.22

1.
$$\int \underbrace{x}_{u} \underbrace{e^{x}}_{v'} dx = xe^{x} - \int 1e^{x} dx = xe^{x} - e^{x} \begin{cases} f(x) = x & g'(x) = e^{x} \\ f'(x) = 1 & g(x) = e^{x} \end{cases}$$

2.
$$\int \underbrace{x^n}_u \underbrace{e^x}_{v'} dx = x^n e^x - \int nx^{n-1} e^x dx$$

Durch Induktion über $n \in \mathbb{Z}^{\geq 0}$ folgert man daraus das Resultat

$$\int x^n e^x dx = (-1)^n n! \sum_{k=0}^n \frac{(-x)^k}{k!} e^x + c$$

3. Partielle Integration eignet sich gut dazu, logarithmische Terme zu eliminieren.

Manchmal muss man dazu den Integranden erst künstlich als Produkt schreiben

$$\int \log x dx = \int \underbrace{(\log x)}_{u} \underbrace{(1)}_{v'} dx$$

$$= (\log x)x - \int \frac{1}{x}xdx = x\log x - x + c$$

4. Manchmal führt wiederholte partielle Integration auf den ursprünglichen Ausdruck zurück. Mit Glück kann man dann nach diesem auflösen

$$\int \sin^2 x dx = \int \underbrace{(\sin x)}_{u} \underbrace{(\sin x)}_{v'} dx$$

$$= -\sin x \cos x + \int \cos^2 x dx$$

$$= -\sin x \cos x + \int (1 - \sin^2 x) dx$$

$$= -\sin x \cos x + x - \int \sin^2 x dx$$

$$\Rightarrow 2 \int \sin^2 x dx = x - \sin x \cos x$$

$$\Rightarrow \int \sin^2 x dx = \frac{1}{2} (x - \sin x \cos x)$$

Andere Möglichkeit:

$$\cos 2x = 1 - 2\sin^2 x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

mit

$$\cos 2x = \left(\frac{\sin 2x}{2}\right)'$$

Dann:

$$\int \sin^2 x = \frac{1}{2} \int 1 - \cos 2x dx$$
$$= \frac{1}{2} \left[x - \int \cos 2x dx \right]$$
$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right] + c$$
$$\sin 2x = 2 \sin x \cos x$$

Beispiel 6.23

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \int_{0}^{\pi/2} \underbrace{(\sin x)^{k}}_{u} \underbrace{(\sin x)}_{v'} dx$$

$$= \underbrace{(\sin x)^{k}}_{u} \underbrace{(-\cos x)}_{v} \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} \underbrace{k(\sin x)^{k-1}(\cos x)}_{u'} \underbrace{(-\cos x)}_{v} dx$$

$$= 0 + k \int_{0}^{\pi/2} (\sin x)^{k-1} \left[1 - \sin^{2} x\right] dx$$

$$= k \int_{0}^{\pi/2} (\sin x)^{k-1} - k \int_{0}^{\pi/2} (\sin x)^{k+1} dx$$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \frac{k}{(1+k)} \int_{0}^{\pi/2} (\sin x)^{k-1} dx$$

Falls k + 1 = 2n:

$$\int_{0}^{\pi/2} (\sin x)^{2n} dx = \frac{2n-1}{2n} \int_{0}^{\pi/2} (\sin x)^{2(n-1)} dx$$

$$= \frac{2n-1}{2n} \frac{2n-3}{2n-2} \dots \frac{1}{2} \int_{0}^{\pi/2} 1 dx$$

$$= \frac{(2n)(2n-1)(2n-2) \dots 1}{[(2n)(2n-2) \dots 2]^2} \frac{\pi}{2}$$

$$= \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$

Analog:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx = \frac{(2^{n} n!)^{2}}{(2n+1)!}$$

Beachte: der π -Term kommt im zweiten Fall nicht vor!

Dies benutzen wir wie folgt um ein "Formel" für π aufzustellen.

Für $0 \le x \le \pi/2$:

$$(\sin x)^k - (\sin x)^{k+1} = (\sin x)^k [1 - \sin x] \ge 0$$

 $\Rightarrow (\sin x)^k \ge (\sin x)^{k+1}$ $(k \ge 0, 0 \le x \le \pi/2)$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx \le \int_{0}^{\pi/2} (\sin x)^{2n} dx \le \int_{0}^{\pi/2} (\sin x)^{2n-1} dx$$

d.h.

$$\frac{(2^n n!)^2}{(2n+1)!} \le \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2} \le \frac{(2^{n-1}(n-1)!)^2}{(2n-1)!}$$

Also:

$$\frac{(2^{n}n!)^{4}}{(2n+1)!} \cdot \frac{2}{(2n)!} \le \pi \le \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \cdot \frac{2}{2n}$$

$$\frac{(2^{n}!)^{4}}{(2n+1)} \cdot \frac{2}{((2n)!)^{2}} \le \pi \le \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \cdot \frac{2}{2n}$$

$$\Rightarrow \pi = \lim_{n \to \infty} \frac{1}{n} \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \quad \text{Wallische Formel.}$$

Beispiel 6.24 (Stirlingsche Formel)

Für $n \ge 2$ sei $\ln(n!) = \sum_{k=2}^n \ln(k)$. Wir zeigen dass man $\ln|k|$ sehr gut durch $\int\limits_{k-1/2}^{k+1/2} \ln x dx$ approximieren kann.

Da

$$x \ln x - x$$

Stammfunktion von ln(x) ist, folgt

$$\int_{k-1/2}^{k+1/2} \ln x dx = x \ln x - x \Big|_{k-1/2}^{k+1/2}$$

Darin kommen also l
n $\left(k+\frac{1}{2}\right)$ sowie l
n $\left(k-\frac{1}{2}\right)$ vor. Wir benutzen nun Taylor:

Falls $g(x) = \ln(x)$ sei

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{g''(x_0)}{2!}(x - x_0)^2 + \frac{g^{(3)}(\xi)}{3!}(x - x_0)^3$$

mit ξ zwischen x und x_0 .

Auf $x = k + \frac{1}{2}$ $x_0 = k$ angewendet ergibt:

$$\ln\left(k + \frac{1}{2}\right) = \ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k$$

wobei

$$t_k = \frac{2}{\xi^3} \frac{1}{3!} \left(\frac{1}{2}\right)^3 = \frac{1}{24\xi^3}$$

$$VI-23$$

$$|t_k| \le \frac{1}{24k^3} \qquad \quad \xi \in \left[k, k + \frac{1}{2}\right]$$

Analog:

$$\ln\left(k - \frac{1}{2}\right) = \ln k - \frac{1}{2k} - \frac{1}{8k^2} + t'_k$$

$$|t_k'| \le \frac{1}{24(k - \frac{1}{2})^3}$$

Also:

$$\int_{k-1/2}^{k+1/2} x \ln -x dx = \left(k + \frac{1}{2}\right) \left(\ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k\right) - \left(k + \frac{1}{2}\right)$$
$$-\left[\left(k - \frac{1}{2}\right) \left(\ln k - \frac{1}{2k} - \frac{1}{8k^2} + t_k'\right) - \left(k - \frac{1}{2}\right)\right]$$
$$= \ln k - \frac{1}{8k^2} + \left(k + \frac{1}{2}\right) t_k - \left(k - \frac{1}{2}\right) t_k'$$
$$= \ln k + r_k \qquad |r_k| \le \frac{c}{k^2}$$

Mit

$$(*) = \left(\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx = \ln k + r_k \right)$$

folgt, dass:

$$\ln n! = \sum_{k=2}^{n} \ln k \overset{(*)}{=} \sum_{k=2}^{n} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx - \sum_{k=2}^{n} r_k$$

$$= \underbrace{\int_{1}^{n+\frac{1}{2}} \ln x dx}_{(*)} - \int_{1}^{\frac{3}{2}} \ln x dx - \sum_{k=2}^{n} r_k$$

$$(*) = \int_{1}^{n+\frac{1}{2}} \ln x dx = x \ln x - x \Big|_{1}^{n+\frac{1}{2}}$$

$$= \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - \left(n + \frac{1}{2}\right) + 1$$

$$= \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - n + \frac{1}{2}$$

Ersetzen wir $\ln\left(n+\frac{1}{2}\right) = \ln n + \frac{1}{2n} - \frac{1}{8n^2} + t_n$, so folgt:

$$\begin{split} (*) &= \left(n + \frac{1}{2}\right) \ln n - n + \left(n + \frac{1}{2}\right) \left\{\frac{1}{2n} - \frac{1}{8n^2} + t_n\right\} + \frac{1}{2} \\ &= \left(n + \frac{1}{2}\right) \ln n - n + \frac{1}{2} - \frac{1}{8n^2} + nt_n + \frac{1}{4n} - \frac{1}{16n^2} + \frac{1}{2}t_n + \frac{1}{2} \\ &= \left(n + \frac{1}{2}\right) \ln n - n + 1 + \frac{1}{8n} + nt_n - \frac{1}{16n^2} + \frac{1}{2}t_n \end{split}$$

Also:

$$\ln(n!) = n \ln n + \frac{1}{2} \ln n - n + a_n$$

wobei

$$a_n = \frac{1}{4n} + \left(n + \frac{1}{2}\right) \left(-\frac{1}{8n^2} + t_n\right) + \sum_{k=2}^n r_k - \int_1^{\frac{3}{2}} \ln x dx$$

und $|r_k| \leq \frac{c}{k^2} \Rightarrow \sum_{k=2}^n r_k$ konvergiert.

Sei $a := \lim a_n$, $b = e^a$ und $b_n = e^{a_n}$. Also:

$$\log n! = \left(n + \frac{1}{2}\right) \log n - n + a_n = \log n^{n + \frac{1}{2}} - n + a_n$$

folgt

$$n! = n^{n + \frac{1}{2}} e^{-n} e^{a_n} = \sqrt{n} n^n e^{-n} e^{a_n} \Rightarrow b_n = \frac{n!}{\sqrt{n} n^n e^{-n}}$$

Wir möchten jetzt $b := e^a$ bestimmen:

$$b = \lim b_n = \lim_{n \to \infty} \frac{b_n^2}{b_{2n}} = \lim \left(\frac{n!}{\sqrt{n}n^n e^{-n}}\right)^2 \left(\frac{\sqrt{2n}(2n)^{2n}e^{2n}}{(2n)!}\right)$$
$$= \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} \frac{(2n)^{2n}}{n^{2n}} = \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} 2^{2n} = \lim_{n \to \infty} \frac{(2^n n!)^n}{(2n)!} \cdot \frac{\sqrt{2}}{\sqrt{n}}$$
$$= \sqrt{2\pi}$$

Also $b = \sqrt{2\pi}$ womit

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
 Stirlings Formel

Beispiel: Der Satz von Taylor

Die Taylorentwicklung einer Funktion $f \in C^{n+1}$ um x_0 erhält man durch n-fache partielle Integration:

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt = \int_{x_0}^x \underbrace{(x-t)^0}_{v'} \underbrace{f'(t)}_{u} dt$$

$$= (x-x_0)f'(x_0) + \int_{x_0}^x \underbrace{(x-t)'}_{v'} \underbrace{f''(t)}_{u} dt$$

$$= (x-x_0)f'(x_0) + \frac{(x-x_0)^2}{2} f''(x_0) + \frac{1}{2} \int_{x_0}^x (x-t)^2 f'''(t) dt$$

$$\vdots$$

$$= \sum_{k=1}^n (x-x_0)^k \frac{f^{(k)}(x_0)}{k!} + \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt$$

Aus dem Mittelwertsatz der Integralrechnung bekommt man die Lagrange Restgliedformel.

$$\frac{1}{n!} \int_{x_0}^{x} (x-t)^n f^{(n+1)}(t) dt = \frac{1}{(n+1)!} f^{n+1}(\xi) (x-x_0)^{n+1} \text{ für ein } \xi \in [x_0, x]$$

6.4 Methode der Substitution

Methode der Substitution ist eine Umkehrung der Kettenregel.

Satz 6.25 (Substitutionsregel)

Sei

- $f:[a,b]\to\mathbb{R}$ stetig
- $g: [\alpha, \beta] \to \mathbb{R}$ der Klasse C'

Sowie $t_0 \le t_1$ in $[\alpha, \beta]$, so dass $g([t_0, t_1]) \subset [a, b]$. Dann gilt

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = \int_{t_0}^{t_1} f(g(t)) g'(t) dt$$

Beweis

Sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion für f. Dann gilt (nach Hauptsatz B)

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = F(g(t_1)) - F(g(t_0))$$

Mit der Kettenregel haben wir

$$(F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t)$$

d.h. $F \circ g$ ist eine Stammfunktion für f(g(t))g'(t). Woraus mit dem Hauptsatz B folgt

$$\int_{t_0}^{t_1} f(g(t))g'(t)dt = (F \circ g)(t_1) - (F \circ g)(t_0)$$

$$= F(g(t_1)) - F(g(t_0))$$

$$= \int_{g(t_0)}^{g(t_1)} f(x)dx$$

Korollar 6.26

$$\int f(x)dx = \int f(g(t))g'(t)dt + C$$

Dies Formel bedeutet folgendes: Die linke Seite als Funktion von x ist gleich der rechten Seite als Funktion von t vermöge der Relation

$$x = g(t)$$
$$dx = g'(t)dt$$

Für die Substitutionsregel

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt = \int_{g(t_0)}^{g(t_1)} f(x) dx$$

gibt es im Prinzip zwei Lesarten. Mann kann sie entweder von links nach rechts oder von rechts nach links anwenden:

1. (links \rightarrow rechts) Liegt ein Integral explizit in der Form

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt$$

vor, so können wir die Substitutionsregel von links nach rechts anwenden

Beispiel

(a)
$$\int_{0}^{1} (1+t^{2})^{4} (2t) dt$$

Setzt man $f(x) := x^4$ und $g(t) := 1 + t^2$, so folgt:

$$\int_{0}^{1} (1+t^{2})^{4}(2t)dt = \int_{0}^{1} f(g(t)) g'(t)dt$$

$$= \int_{g(0)}^{g(1)} f(x)dx = \int_{1}^{2} x^{4}dx = \left[\frac{1}{5}x^{5}\right]_{1}^{2}$$

$$= \frac{32}{5} - \frac{1}{5} = \frac{31}{5}$$

(b) $\int \sin^3 t \cos t dt$

Die Substitution $x = \sin t$ mit $\frac{dx}{dt} = \cos t \Rightarrow dx = \cos t dt$ liefert

$$\int x^3 dx = \frac{x^4}{4} + C = \frac{\sin^4 t}{4} + C$$

 $\int \tan t dt = \int \frac{\sin t}{\cos t} dt$

Die Substitution $x = \cos t \frac{dx}{dt} = -\sin t, dx = -\sin t dt$

$$\int \tan t dt = -\int \frac{1}{\cos t} (-\sin t) dt$$
$$= -\int \frac{1}{x} dx = -\log|x| + C$$
$$= -\log|\cos t| + C$$

2. (rechts \rightarrow links)

Liegt ein Integral der Gestalt $\int_{\alpha}^{\beta} f(x)dx$ mit gewissen Grenzen $\alpha, \beta \in \mathbb{R}$ vor, das schwer zu berechnen scheint, versucht man dann mittels geeigneter Substitution x = g(t) dieses Integral umzuformulieren, so dass die Substitutionsregel anwendbar ist, wobei $g(t_0) = \alpha$ und $g(t_1) = \beta$ gelten muss.

Beispiel 6.26

(a) $\int_{0}^{1} \sqrt{1-x^2} dx$

Also $f(x) = \sqrt{1-x^2}$. Mit den Substitutionen $x = g(t) = \sin t, t \in [0, \pi/2], dx = \cos t dt$ ist dann $g(0) = 0, g(\frac{\pi}{2}) = 1$ und

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{g(0)}^{g(\pi/2)} f(x) dx = \int_{0}^{\pi/2} f(g(t)) g'(t) dt$$

$$= \int_{0}^{\pi/2} \sqrt{1 - \sin^{2} t} \cos t dt$$

$$\stackrel{(*)}{=} \int_{0}^{\pi/2} \cos^{2} dt = \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\pi/2} = \frac{1}{2} (t + \sin t \cos t) \Big|_{0}^{\pi/2} = \frac{\pi}{2}$$

mit

$$(*) \qquad \qquad \cos^2(t) = \frac{1 + \cos 2t}{2}$$

(b)
$$\int \frac{x}{\sqrt{2x-3}} dx \quad \begin{cases} u = \sqrt{2x-3} \\ du = \frac{1}{2} (2x-3)^{-1/2} 2 dx = \frac{dx}{\sqrt{2x-3}} \\ u^2 = 2x-3 \\ \frac{u^2+3}{2} = x \end{cases}$$

$$\int \frac{x}{\sqrt{2x-3}} dx = \int \left(\frac{u^2+3}{2}\right) du = \frac{1}{2} \int (u^2+3) du$$
$$= \frac{1}{2} \left(\frac{u^3}{3} + 3u\right) = \frac{u}{2} \left(\frac{u^2}{3} + 3\right)$$
$$= \frac{\sqrt{2x-3}}{2} \left[\frac{2x-3}{3} + 3\right] + C$$
$$= \sqrt{2x-3} \left(\frac{x}{3} + 1\right) + C$$

Beispiel: Flächeninhalt einer Ellipse

mit x = au, dx = adu

$$F = 4 \int_0^1 b\sqrt{1 - u^2} a du$$
$$= 4ab \int_0^1 \sqrt{1 - u^2} du$$

 $mit u = \sin t, du = \cos t dt$

$$4ab \int_0^{\pi/2} \sqrt{1 - \sin^2 t} \cos t dt = 4ab \int_0^{\pi/2} \cos^2 t dt$$
$$= \frac{4ab}{2} (t + \sin t \cos t) \Big|_0^{\pi/2}$$
$$= \pi ab$$

6.5 Integration Rationaler Funktionen (Partialbruchzerlegung)

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion, d.h. P,Q sind Polynome mit reellen Koeffizienten. Die Partialbruchzerlegung ist eine Darstellung von R(x) als Summe von "elementaren" rationalen Funktionen. Sie basiert auf einem Korollar des fundamentalen Satzes der Algebra, das besagt, dass jedes reelle Polynom ein Produkt von linearen und quadratischen Polynomen mit \mathbb{R} Koeffizienten ist.

Satz 6.27

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion. Dann

$$R(x) = P_1(x) + \sum_{i=1}^{n} R_i(x) + \sum_{j=1}^{m} S_j(x)$$

wobei $P_1 = \text{Polynom}$

$$R_i(x) = \frac{a_{i1}}{(x - x_i)} + \frac{a_{i2}}{(x - x_i)^2} + \dots + \frac{a_{ir_i}}{(x - x_i)^{r_i}}$$

$$S_{j}(x) = \frac{b_{j1}x + d_{j1}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)} + \frac{b_{j2}x + d_{j2}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{2}} + \dots + \frac{b_{jm_{j}}x + d_{jm_{j}}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{m_{j}}}$$

Die Terme $\frac{1}{(x-a)}$, $\frac{bx+d}{((x-\alpha)^2+\beta^2)^m}$ werden "elementare rationale Funktionen" genannt und wir wollen dafür Stammfunktionen bestimmen.

Bemerkung

- 1. Das Polynom $P_1(x)$ tritt nur auf, falls $\deg P > \deg Q$. In diesem Fall berechnet man $P_1(x)$ mit Polynomdivision und es gilt $p(x) = P_1(x) Q(x) + P_2(x)$ mit $\deg P_2 < \deg Q$
- 2. Das Nennerpolynom Q(x) besitze

- \bullet Die reellen Nullstellen x_i mit Vielfachheit r_i
- Die komplexen Nullstellen $z_j = \alpha_j + i\beta_j$ mit Vielfachheit m_j und damit komplex-konjugierte Nullstellen $\overline{z_j} = \alpha_j i\beta_j$
- 3. Unbekannte Parameter, die bestimmt werden müssen

$$a_{ik}$$
 $k = 1, \dots, r_i$ $i = 1, \dots, n$
$$\beta_{jl}, \alpha_{jl}$$
 $l = 1, \dots, m_j$ $j = 1, \dots, m$

Diese Parameter werden durch Koeffizientenvergleich berechnet, die rechte Seite wird dabei auf den Hauptnenner gebracht.

Beispiel

 $R(x) = \frac{1-x}{x^2(x^2+1)}$ Ansatz:

$$R(x) = \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{b_1 x + d_1}{x^2 + 1}$$

$$\Rightarrow 1 - x = x(x^2 + 1)a_1 + a_2(x^2 + 1) + x^2(b_1 x + d_1)$$

Ausmultiplizieren:

$$1 - x = (a_1 + b_1)x^3 + (a_2 + d_1)x^2 + a_1x + a_2$$

Koeffizientenvergleich:

$$a_1 + b_1 = 0$$
 $a_2 + d_1 = 0$ $a_1 = -1$ $a_2 = 1$

Partialbruchzerlegung:

$$\frac{1-x}{x^2(x^2+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{x-1}{x^2+1}$$

Grundtypen der Integration rationaler Funktionen

• Typ O: Polynom:

$$\int \sum a_n x^n dx = \sum a_n \frac{x^{n+1}}{n+1} + c$$

• Typ I: Inverse Potenzen

$$\int \frac{dx}{(x-x_0)^r} = \begin{cases} \log|x-x_0| + c & \text{für } = 1\\ \frac{1}{(1-r)} \frac{1}{(x-x_0)^{r-1}} & \text{für } \ge 2 \end{cases}$$

• Typ II:

$$\int \frac{bx+d}{\left[\left(x-\alpha\right)^2+\beta^2\right]^m}dx$$

Substitution: $x - \alpha = \beta t$, $dx = \beta dt$ ergibt

$$\int \frac{b[\beta t + \alpha] + d}{(t^2 + 1)^m \beta^{2m}} \beta dt$$

$$VI-31$$

Dies hat die allgemeine Form

$$\int \frac{ct+b}{(t^2+1)^m} dt = c \int \frac{t}{(t^2+1)^m} dt + \int \frac{b}{(t^2+1)^m} dt$$

$$\int \frac{t}{(t^2+1)^m} dt \qquad \text{mit } t^2+1=u, 2t dt = du$$

$$= \frac{1}{2} \int \frac{du}{u^m} = \begin{cases} \frac{u^{-m+1}}{2(1-m)} &, m \geq 2\\ \frac{1}{2} \ln|u| &, m = 1 \end{cases} = \begin{cases} \frac{1}{2(1-m)} \frac{1}{(t^2+1)} (1-m) &, m \geq 2\\ \frac{1}{2} \ln|1+t^2| &, m = 1 \end{cases}$$
Sei

Sei

$$I_m := \int \frac{dt}{(t^2 + 1)^m}$$

– Für m=1:

$$I_1 = \int \frac{dt}{(t^2 + 1)} = \arctan t + C$$

– Für $m \geq 1$:

$$I_m := \int \frac{dt}{(t^2 + 1)^m}$$

Partielle Integration ergibt:

$$I_m := \int \underbrace{\underbrace{t}_{v'} \cdot \underbrace{\left(t^2 + 1\right)^m}_{u}} dt = \frac{t}{(t^2 + 1)^m} + \int \frac{t \cdot 2m \cdot t}{\left(t^2 + 1\right)^{m+1}} dt$$

$$= \frac{t}{(t^2 + 1)^m} + 2m \int \frac{t^2 + 1 - 1}{(t^2 + 1)^{m+1}} dt$$

$$= \frac{t}{(t^2 + 1)^m} + 2m \int \frac{1}{(t^2 + 1)^m} dt - 2m \int \frac{1}{(t^2 + 1)^{m+1}} dt$$

$$\Rightarrow I_m = \frac{t}{(t^2 + 1)^m} + 2m \{I_m - I_{m+1}\}$$

woraus

$$I_{m+1} = \frac{1}{2m} \left[\frac{t}{(t^2+1)^m} + \left(\frac{2m-1}{2m} \right) I_m \right]$$

z.B.

$$I_2 = \int \frac{dt}{(t^2 + 1)^2} = \frac{1}{2} \left[\frac{t}{(t^2 + 1)} + \frac{1}{2} I_1 \right]$$
$$= \frac{1}{2} \left[\frac{t}{(t^2 + 1)^2} + \frac{1}{2} \arctan t \right] + C$$

Beispiel 6.28

1.

$$\frac{1}{x^2 - 3x - 4} = \frac{1}{(x - 4)(x + 1)} = \frac{A}{x - 4} + \frac{B}{x + 1}$$
$$\Rightarrow A(x + 1) + B(x - 4) = 1$$

$$x = 4 \Rightarrow A \cdot 5 = 1 \Rightarrow A = \frac{1}{5}$$

$$x = -1 \Rightarrow B \cdot (-5) = 1 \Rightarrow B = -\frac{1}{5}$$

$$\int \frac{1}{x^2 - 3x - 4} dx = \frac{1}{5} \int \left(\frac{1}{x - 4} - \frac{1}{x + 1}\right) dx = \frac{1}{5} \ln \left|\frac{x - 4}{x + 1}\right| + c$$
2.
$$\frac{9}{x^3 - 3x - 2} = \frac{9}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{Bx + C}{(x + 1)^2}$$

$$A(x + 1)^2 + (Bx + C)(x - 2) = 9$$

$$x = -1 \Rightarrow (-B + C)(-3) = 9$$

$$x = 2 \Rightarrow A(9) = 9 \Rightarrow A = 1$$

$$x = 0 \Rightarrow A + C(-2) = 9 \Rightarrow -2C = 8 \Rightarrow C = -4$$

$$(-B + C) = -3 \Rightarrow B = C + 3 = -1$$

$$\Rightarrow \frac{9}{x^3 - 3x - 2} = \frac{1}{x - 2} + \frac{-x - 4}{(x + 1)^2}$$

$$\int \frac{9}{x^3 - 3x - 2} dx = \int \left(\frac{1}{x - 2} + \frac{-x - 1}{(x + 1)^2} - \frac{3}{(x + 1)^2}\right) dx$$

$$= \ln|x - 2| - \ln|x + 1| + \frac{3}{x + 1} + c$$

$$= \ln\left|\frac{x - 2}{x + 1}\right| + \frac{3}{x + 1} + c$$

6.6 Das Uneigentliche Integral

Sei f eine unbeschränkte Funktion. Dann ist f nicht R. integrierbar, z.B. $\int_0^1 \frac{1}{\sqrt{x}} dx$ hat keinen Sinn. Aber $\forall \varepsilon > 0$ ist $\frac{1}{\sqrt{x}} \in [\varepsilon, 1]$ stetig, also integrierbar. Der Wert des Integrals ist

$$\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{\varepsilon}^{1} = 2 - 2\sqrt{\varepsilon}$$

also existiert

$$\lim_{\varepsilon \searrow 0} \int_{0}^{1} \frac{1}{\sqrt{x}} dx = 2$$

Dies ist ein Beispiel eines uneigentlichen R. Integral.

Definition 6.29

Sei f eine Funktion auf einem offenen Intervall (a,b), deren Einschränkung auf jedes kompakte Teilintervall [a',b'] integrierbar ist. Dann ist das uneigentliche Integral von f von a bis b definiert als

$$\int_{a}^{b} f(x)dx := \lim_{a' \searrow a} \lim_{b' \nearrow b} \int_{a'}^{b'} f(x)dx$$

falls diese Grenzwerte existieren (a und b können $\pm \infty$ sein)

Bemerkung 6.30

- 1. Ist f schon auf [a, b] definiert und integrierbar, so existiert das uneigentliche Integral und stimmt mit dem üblichen, bestimmten Integral überein.
- 2. Ist f schon auf [a, b) definiert und auf jedem kompakten Teilintervall der Form [a, b'] integrierbar, so gilt schon

$$\int_{a}^{b} f(x)dx = \lim_{b' \nearrow b} \int_{a}^{b} f(x)dx$$

Beispiel

$$\int_{0}^{\infty} e^{-x} = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx = \lim \left(-e^{-x} \Big|_{0}^{b} \right) = \lim_{b \to \infty} \left(-e^{-b} + 1 \right) = 1$$

3. Vorsicht: Die beiden Grenzwerte müssen im Allgemeinen unabhängig voneinander genommen werden.

Beispiel

$$\int_{-b}^{b} x dx = 0 \qquad \forall b > 0, \text{ und daher}$$

$$\lim_{b \to \infty} \int_{-b}^{b} x dx = \lim \left(\frac{b^2}{2} - \frac{b^2}{2} \right) = \lim_{b \to \infty} 0 = 0$$

Die einzelnen Grenzwerte von $\int_a^b x dx$ für $b \to \infty$ und $a \to -\infty$ existieren hingegen nicht

$$\left(\int_{a}^{b} x dx = \left. \frac{x^{2}}{2} \right|_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2} \right)$$

und somit auch nicht das uneigentliche Integral $\int_{-\infty}^{\infty} x dx$

4. Alle Grundeigenschaften und Integrationstechniken für das bestimmte Integral gelten ebenso für das uneigentliche Integral.

Als Beispiel beweisen wir folgendes nützliches Konvergenzkriterium für Reihen

Satz 6.30

Sei $f:[1,\infty)\to\mathbb{R}_+$ monoton fallend. Dann konvergiert $\sum\limits_{k=1}^\infty f(k)$ genau dann wenn $\int\limits_1^\infty f(x)dx$ existiert. In diesem Fall gilt:

$$0 \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x)dx \le f(1)$$

Beweis

$$f(1) + f(2) + \dots + f(n-1) \ge \int_{1}^{n} f(x)dx \ge f(2) + \dots + f(n)$$
$$\sum_{k=1}^{n} f(k) - f(n) = \sum_{k=1}^{n-1} f(x) \ge \int_{1}^{n} f(x)dx \ge \sum_{k=1}^{n-1} f(k+1) = \sum_{k=1}^{n} f(x) - f(1)$$

(*)
$$\sum_{k=1}^{n} f(k) - f(n) \ge \int_{1}^{n} f(x) dx \ge \sum_{k=1}^{n} f(k) - f(1)$$

$$\Rightarrow 0 < f(n) \le \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x)dx \le f(1)$$

Aus

$$\sum_{k=1}^{n-1} f(k) \ge \int_{1}^{n} f(x) dx$$

folgt, dass

$$\sum_{k=1}^{\infty} f(k) < \infty \Rightarrow \int_{1}^{\infty} f(x) dx < \infty$$

und aus

$$\int_{1}^{n} f(x)dx \ge \sum_{k=1}^{n-1} f(k+1)$$

folgt, dass

$$\int_{1}^{\infty} f(x)dx < \infty \Rightarrow \sum_{k=1}^{\infty} f(k) < \infty$$

Aus (*) folgt:

$$0 < f(n) \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x) dx \le f(1)$$

Beispiel 6.31

1. $\sum (s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$ existiert für alle s > 1

$$\int_{1}^{\infty} \frac{1}{x^{s}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-s} dx = \lim_{s \to \infty} \begin{cases} \log|b| & s = 1 \\ \frac{x^{-s+1}}{1-s} \Big|_{1}^{b} & s > 1 \end{cases}$$

$$= \begin{cases} \text{divergent falls } s = 1 \\ \text{konvergent gegen } \frac{1}{s-1} \end{cases}$$

und

$$0 \le \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} f(x)dx \le f(1) = 1$$
$$\Rightarrow \frac{1}{s-1} \sum_{n=1}^{\infty} n^{-s} \le 1 + \frac{1}{s-1} = \frac{s}{s-1}$$

2.

$$\int_{-\infty}^{\infty} |x|e^{-x^2} dx = -\int_{-\infty}^{0} xe^{-x^2} dx + \int_{0}^{\infty} xe^{-x^2} dx = 2\int_{0}^{\infty} xe^{-x^2} dx$$

$$\int_{0}^{b} xe^{-x^2} dx = \frac{1}{2} \int_{0}^{b^2} e^{-u} du \qquad \text{mit } u = x^2, du = 2xdx$$

$$= \frac{1}{2} \left(1 - e^{-b^2} \right) \to \frac{1}{2} \text{ für } b \to \infty$$

Somit gilt

$$\int_{-\infty}^{\infty} |x|e^{-x^2}dx = 1$$

3. Wir haben die folgende einfachen aber wichtigen Beispiele

(a)

$$\int_{a}^{\infty} \frac{dx}{x^{s}} = \begin{cases} \frac{a^{1-s}}{s-1} & \text{für } s > 1\\ \infty & \text{für } s \le 1 \end{cases}$$

(b) Für alle a < b und $s \in \mathbb{R}$ gilt

$$\int_{a}^{b} \frac{dx}{(x-a)^{s}} = \begin{cases} \frac{(b-a)^{1-s}}{1-s} & \text{für } s < 1 \\ \infty & \text{für } s \ge 1 \end{cases}$$

Satz 6.32 (Majorantenkriterium)

a) Sei $f:[a,\infty)\to\mathbb{R}$ stetig. Dann gilt

$$\forall x : |f(x)| < g(x)$$

und $\int\limits_a^\infty g(x)$ konvergent $\Rightarrow \int f(x) dx$ (absolut) konvergent.

b) Weiterhin gilt folgende Umkehrung: $\forall x: 0 \leq g(x) \leq f(x)$ und $\int_{a}^{\infty} g(x)$ divergent $\Rightarrow \int_{a}^{\infty} f(x)$ divergent.

Beispiel 6.33

1.

$$\int_{0}^{\infty} \frac{t^2}{(1+6t^2)^{5/3}} dt < \int_{0}^{\infty} \frac{t^2}{(6t^2)^{5/3}} dt < \int \frac{c}{t^{4/3}} dt < \infty$$

$$\Rightarrow \int_{0}^{\infty} \frac{t^2}{(1+6t^2)^{5/2}} dt \text{ konvergient}$$

2.

$$\int\limits_0^\infty \frac{t^2}{(1+6t^2)^{3/2}}dt$$

$$\frac{t^2}{(1+6t^2)^{3/2}} > \frac{t^2}{(12t^2)^{3/2}} > \frac{c}{t} \qquad t \geq 1$$

$$\Rightarrow \int\limits_0^\infty \frac{t^2}{(1+6t^2)^{5/2}}dt \text{ divergient weil } \int\limits_0^\infty \frac{c}{t}dt \text{ divergient}$$

3. Exponentialintegral:

$$E_i(x) := \int_{-\infty}^{x} \frac{e^t}{t} dt \text{ für } x < 0$$

Da $\lim_{t\to -\infty}te^t=0,$ gibt es c>0 mit $|te^t|\leq c,\,\forall t\in [-\infty,x],$ und somit gilt

$$\left| \frac{e^t}{t} \right| = \left| \frac{te^t}{t^2} \right| \le \frac{c}{t^2}$$

Mit der Konvergenz des Integrals $\int\limits_{-\infty}^x \frac{1}{t^2} dt$ folgt die (absolute) Konvergenz von $E_i(x)$ für alle x<0