Natural Language Processing

Data Science Immersive

Agenda:

- Introduction / History
- Basic Theory
- Tokens / Pre-processing
- Stems vs Lems
- Stop words
- Bag of Words
- TF-IDF

Natural Language Processing

What is natural language?

"Any language that has evolved naturally in humans through use and repetition without conscious planning or premeditation."

- Wikipedia

Brief History

- NLP generally started in the 1950s, although work can be found from earlier periods. In 1950, Alan Turing published an article titled "<u>Computing Machinery and</u> <u>Intelligence</u>" which proposed what is now called the <u>Turing test</u> as a criterion of intelligence.
- Up to the 1980s, most NLP systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing.
- In the 2010s, deep neural network-style machine learning methods became widespread in NLP, due in part to a flurry of results showing that such techniques can achieve state-of-the-art results in many natural language tasks.

Natural Language Processing

- NLP is an area of machine learning focused on how to program computers for the processing and analyzation of large amounts of natural language data.
- With NLP, computers have the ability to understand, analyze, manipulate, and potentially generate human language.

- Final project idea?... Maybe you!
- https://github.com/AustinKrause/Mod_5_Text_Summarizer
- https://github.com/jeussantiago/Your-Next-Book

Some Data Science Use Cases

- <u>Text classification</u>
 - o Is this email Spam or Ham?
- Topic Modelling
 - Unsupervised Clustering
- Sentiment analysis
 - Brand Monitoring
 - Product Analysis
- Voice Assistants
 - Siri
 - Alexa
 - o etc...

Quiz:

Arrange these terms in order from smallest content to largest:

Document, Bi-gram, Corpus, Sentence, Word, Paragraph, Corpora, N-gram

Quiz Answers:

Arrange these terms in order from smallest content to largest:

Document, B-gram, Corpus, Sentence, Word, Paragraph, Corpora, N-gram

- 1) Word
- 2) Bi-gram
- 3) N-gram (can be bi-gram)
- 4) Sentence
- 5) Paragraph
- 6) Document
- 7) Corpus
- 8) Corpora

Parsing and Understanding

What to compare?

- Tokens
 - Individual "words" (can be full sentences)
 - Bi-grams = 2 word combinations
 - N-grams = combinations of "N" number of words
- Documents
 - Collections of sentences/paragraphs
- Corpus
 - A collection of documents
- Corpora
 - More than one corpus

Toolkits

- Natural Language Toolkit (NLTK)
- Textblob
- SpaCy
- GenSim
- Many more!

 $\frac{https://medium.com/activewizards-machine-learning-company/comparison-of-top-6-python-nlp-libraries-c4ce160237eb}{https://elitedatascience.com/python-nlp-libraries}$

Inputs for a normal machine learning model.

sepal length	sepal width	petal length	petal width	class
6.3	2.9	5.6	1.8	Iris-virginica
4.9	3.0	1.4	0.2	Iris-setosa
5.6	2.9	3.6	1.3	Iris-versicolor
6.0	2.7	5.1	1.6	Iris-versicolor
7.2	3.6	6.1	2.5	Iris-virginica

One-hot encoding for categorical data

sex	one-hot encoding	sex_female	sex_male
female	\rightarrow	1	0
male	\rightarrow	0	1
female	\rightarrow	1	0
male	\rightarrow	0	1
female	\rightarrow	1	0
•••	•••	•••	

Dealing with text

Doc_id	Document	Classificatio n
1	"The impeachment trial in the Senate will"	politics
2	"As of this afternoon, WeWork employees will no longer	not-politics
3	"The Democratic Presidential debate will take place"	politics
4	"Boeing is considering curbing production of the 737 Max"	not-politics

Turning text data into a vector of numbers

Doc_id	Document	Classificatio n
1	"The impeachment trial in the Senate will"	politics
2	"As of this afternoon, WeWork employees will no longer	not-politics

Doc_id	The	impeachment	trial	 employees	will	Politics
1	1	1	1	1	1	1
2	0	0	0	1	1	0

Comparing sentences

Create a term frequency matrix for the following sentences:

- 1. "He can talk to the teacher this afternoon."
- "This afternoon, he can talk to a teacher."

Stemming

- Stemming is the process of reducing inflection in words to their root forms, such as mapping a group of words to the same stem even if the stem itself is not a valid word in the Language.
- Stems are created by removing the suffixes or prefixes used with a word.

Stemming

Lemmatization

- Unlike Stemming, Lemmatization reduces the inflected words properly ensuring that the root word belongs to the language.
- In Lemmatization, the root word is called Lemma.
- A lemma (plural lemmas or lemmata) is the canonical form, dictionary form, or citation form of a set of words.

Lemmatization

Stemming and Lemmatization Visualized

original_word	stemmed_word		original_word	lemmatized_word
trouble	troubl	0	trouble	trouble
troubled	troubl	1	troubling	trouble
troubles	troubl	2	troubled	trouble
troublemsome	troublemsom	yal	troubles	trouble

STOP words / "Punctuation?!"

Stop Words:

Words which are filtered out before or after processing of natural language data. Though "stop words" usually refers to the most common words in a language, there is no single universal list of stop words used by all natural language processing tools, and not all tools even use such a list.

Punctuation:

Treat these characters similar to stop words. Can be removed in several different ways.

Bag of Words

- Bag of Words: (BoW for short) is a way of extracting features from text for use in modeling.
- A bag-of-words is a representation of text that describes the occurrence of words within a document. It involves two things:
 - A vocabulary of known words.
 - A measure of the presence of known words.
- Called a "bag" of words, because any information about the order or structure
 of words in the document is discarded. The model is only concerned with
 whether it knows if a word occurs in the document, not where in the document.

Term Importance

Question: When comparing the similarity of the documents below, which are most similar?

- "Apple juice concentrate"
- "Orange juice concentrate"
- "Lemon powder mix"
- "Orange powder mix"
- "Cranberry powder mix"
- "Lemon juice concentrate"

Which words are important?

• Term Frequency & Inverse Document Frequency (tf & idf)

Term Frequency

$$ext{tf}_{i,j} = rac{n_{i,j}}{\sum_k n_{k,j}}$$

Inverse Document Frequency

$$idf(w) = \log \frac{N}{df_t}$$

TF-IDF

Applying Term Frequency-Inverse Document Frequency (tf-idf):

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 tf_{ij} = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

Visualizing Your Tf-idf Matrix

Singular Value Decomposition

(aka: SVD)

Visualizing Your Tf-idf Matrix (Continued)

Where to start...

We've some got options! (is there ever just one method?)

- Rule Based Approach
 - Regular expressions
- "Traditional" Machine Learning
 - Probabilistic modeling, likelihood maximization, and linear classifiers.
 - "You shall know a word by the company it keeps" J. R. Firth 1957
- Deep Learning
 - Recurrent Neural Networks
 - LSTM (Long short-term memory)
 - https://skymind.ai/wiki/lstm

Traditional vs State of the Art

Questions to ponder:

- Why use "traditional" machine learning (or rule-based) approaches for NLP?

Why use deep learning over "traditional" machine learning?

Closing Thoughts

Natural Language constantly changes...
...so does Natural Language Processing!

Some Resources:

https://www.kdnuggets.com/2018/10/main-approaches-natural-language-processing-tasks.html
https://blog.insightdatascience.com/how-to-solve-90-of-nlp-problems-a-step-by-step-guide-fda605278e4e
https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://medium.com/@datamonsters/text-preprocessing-in-python-steps-tools-and-examples-bf025f872908
https://www.altexsoft.com/blog/business/sentiment-analysis-types-tools-and-use-cases/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/