Aufgabe 3

a)

Sind $L, L' \in G$ nicht parallel, so haben sie einen eindeutigen Schnittpunkt.

Beweis. Seien $L, L' \in G$ nicht parallel. Es ist equivalent:

$$\neg L \parallel L' \quad \Leftrightarrow \quad \neg((L = L') \lor (L \cap L' = \emptyset)) \quad \Leftrightarrow \quad (L \neq L') \land \exists p \in P : p \lessdot L \land p \lessdot L'$$

Also gibt es mindestens einen Punkt p der auf beiden Geraden liegt. Angenommen es gäbe mehrere Punkte $p \neq q$, die auf beiden Geraden liegen, dann wären nach **Axiom** I_2 L und L' die gleiche Gerade. Das ist ein Widerspruch zu $(L \neq L')$, also ist p eindeutig. \square