射电天文工具-第四版 (2019最新为第六版) 姜碧沩译 Reading Note

Renkun Kuang

September 26, 2019

Contents

1	射电	L天文学基础
	1.1	射电天文在天体物理中的地位
	1.2	射电窗口
	1.3	一些基本定义
	1.4	辐射转移
	1.5	黑体辐射和亮温度
	1.6	Nyquist原理和噪声温度
2	电磁	核波传播基础
	2.1	麦克斯韦方程组
	2.2	能量守恒和坡印亭矢量
	2.3	复数场矢量
	2.4	波动方程
	2.5	绝缘介质中的平面波
	2.6	波包和群速度
	2.7	耗散介质中的平面波
	2.8	稀薄等离子体的频散量

译者序

译者:北京师范大学 关于射电天文比较好的书:《射电望远镜》陈建生译,《射电天体物理学》王绶译,分别就射电仪器和射电天文进行系统阐述,译文准确流畅,但不能反映此后射电天文日新月异的发展。

第4版前言

孔径综合现在是观测天文中最重要的成像技术,提供了适用于各波段的获取极高分辨率和质量图像的唯一方法。

CONTENTS 2

旧版前言

这本书描述了射电天文学家完成他们的工作所需要的工具。一方面,这些工具包括了作为分析射电信号所需要的射电望远镜和不同种类的接受机;另一方面,包括了连续谱和谱线辐射的物理机制。

Chapter 1

射电天文学基础

1.1 射电天文在天体物理中的地位

1931年之前,地面的观测主要在光学波段,1930年有了紫外红外波段,其他波段因大气阻挡或探测器的缺失在地面不能进行。1931年,Jansky用一个方向敏感的天线在14.6米波长处接收到了来自地球之外、非太阳的辐射。

二战期间在开发高灵敏度、高效率雷达设备方面所做的努力带来了无线电物理的长足进步。

战后研究者开始注意来自地外的无线电"噪声"。

射天天文改变着我们对许多天体的看法,因为射电观测的结果需要与光学天文中经常用到的解释完全不同的新的机制:天体的光学辐射经常是热辐射,可以用热物理来解释;而在射电波段,绝大部分辐射是非热辐射,必须用不同的物理机制。

不仅天文学不同分支的波长不同,发射这些波段辐射的天体也不同:有些天体只在某些窗口可见,如:弥漫的冷气体只能从它所发射的21厘米超精细结构禁线被探测到,任何其他方式都不可以;比较稠密的气体几乎只有 CO 可以示踪,它们只能由原子或者分子谱线和宽带尘埃辐射探测。

今天几乎没有射电天文学家自己做望远镜和接收机了,一般来讲,现在的研究者始于某个科学问题,然后寻求能够解决问题的观测方式,而在早期,研究往往始于采集数据的仪器,而观测的结果常常奇怪而令人激动,必须发展新的理论来解释。

今天,射电天文学是使用仪器收集数据并且分析它们的性质,优势和限制的 科学,不再是简单的数据收集,天文学家的主要任务是以挑剔的眼光监视仪器 的功能。虽然使用者不用独自提高仪器的功能,知道仪器是怎样工作的以及它 们的限制是什么对研究是有益的。

1.2 射电窗口

射电窗口大致从低频限 15 MHz(20m) 到高频限 1300 GHz(0.3mm)。高频端截断源自对流层中分子的最低转动带的共振吸收。

射电天文学家总是热衷于把高频截断尽可能地推向更高的频率,因为星际分子吸收和发射的强线在较高的频率范围内。

鉴于决定这一截断频率之一是水蒸气分子,在空气中水蒸汽含量少的地方进行观测可以扩展观测频率的范围。而对 O_2 所引起的吸收在地球上几乎无能为力。对星际氧分子和水蒸气分子谱线的观测最好使用地球大气以外的卫星。

在低频端, 地球大气由于电离层的自由电子吸收低于等离子体频率 ν_p 的电磁辐射而变得不透明, 之后将证明(见2.8), 这一等离子体频率为:

$$\frac{\nu_p}{kHz} = 8.97\sqrt{\frac{N_e}{cm^{-3}}}$$

因此,射电窗口的低频限在晚上接近 4.5MHz, 在白天接近 11MHz, 而且电离层的电子密度依赖于太阳活动。 kHz频率范围的射电天文必须在地球电离层之上用卫星来完成。

近些年来,对射电天文另一个有害的效应来自人为的电磁干扰,从工业到通讯 信号,卫星通讯系统的干扰等等。

1.3 一些基本定义

亮度 I_{ν} 的定义,辐射流量密度,源的辐射总流量 S_{ν} ,辐射能量密度 u_{ν}

1.4 辐射转移

 I_{ν} 的变化由辐射转移方程描述,在几种极限情形下,辐射转移方程的解是特别简单的。

在光学厚的情况下观测到的亮度等于Plank亮度,不依赖于物质。

1.5 黑体辐射和亮温度

热动平衡态下的辐射能谱分布由 Plank 公式给出

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

它给出单位频率范围内的功率。 积分可得黑体辐射的总亮度:

$$B(T) = \sigma T^4, \sigma = \frac{2\pi^4 k^4}{15c^2 h^3}$$

此即Stefan-Boltzman定律,在Plank辐射定律之前,1879年从实验中发现,1884年由LBoltzman从理论推导出来。

此外,对 $B_{\nu}(T)$ 求导并分析可得 $B_{\nu}(T)$ 的极大值:

$$\left(\frac{\lambda_{max}}{cm}\right)\left(\frac{T}{K}\right) = 0.28978$$

此即韦恩位移定律。

如果 $x = h\nu/kT$ 远离极大值,Plank辐射定律公式可以由更简单的表达式近似:

1. $h\nu \ll kT$:瑞利-金斯定律,由 $e^{h\nu/kT}$ 的级数展开得到。

$$B_R J(\nu, T) = \frac{2\nu^2}{c^2} kT$$

此式为Plank定律的经典近似。在毫米和亚毫米范围内,人们常常定义辐射温度J(T)为(将上面的公式里的 T 算出来即可):

$$J(T) = \frac{c^2}{2k\nu^2}I = \frac{h\nu}{k} \frac{1}{e^{h\nu/kT} - 1}$$

 $h\nu \ll kT$ 中代入h,k的值,可以得到瑞利-金斯定律适用的频率范围为:

$$\frac{\nu}{GHz} \ll 20.84 \frac{T}{K}$$

因此它可以应用于所有的热射电源,除了在毫米或亚毫米波段的低温情况。

 $2. h\nu \gg kT$:维恩定律,此时 $e^x \gg 1.$ 所以

$$B_W(\nu, T) = \frac{2h\nu^3}{c^2} e^{-h\nu/kT}$$

这个极限在可见和紫外波段对恒星的测量非常有用,在射电天文中相关性 不大。

瑞丽-金斯定律的一个重要特征是辐射黑体的亮度和热力学温度严格地成正比,这个特征非常有用,使得在射电天文中人们习惯使用亮温度 T_b 来度量展源的亮度。把亮温度 T_b 代入瑞丽-金斯公式中就会得到给定的亮度 B_{ν} :

$$T_b = \frac{c^2}{2k} \frac{1}{\nu^2} B_{\nu} = \frac{\lambda^2}{2k} B_{\nu}$$

如果 B_{ν} 是黑体发出的辐射,并且 $h\nu \ll kT$,那么上式实际上就是源的热力学温度,不依赖于频率。但如果其他过程对辐射有贡献, T_b 就会依赖于频率。 在辐射转移方程中引入亮温度的概念也是很方便的。

1.6 Nyquist原理和噪声温度

把电功率和温度联系起来。Johnson噪声,假设电阻R与一个线性放大器的输入端相连,电阻的电子热运动将会产生电流i(t),成为放大器的随机输入。虽然这个电流的平均值为0,它的 RMS 值却不会为0。由于 $<i^2>\neq 0$ 代表了功率不为0,电阻给放大器提供了功率输入。如果维持热平衡状态,这个功率一定是由温度决定的。这就是Johnson噪声。

H Nyquist在1929年研究了这个现象,他证明这个问题类似包含摩擦项的布朗运动中一个粒子的随机行走现象。

P=kT 的推导,电阻的噪声功率正比于它的温度,噪声温度 T_N ,不依赖于电阻值R。在整个射电波段,噪声谱是白噪声谱的,即它的功率不依赖于频率。但是噪声源的阻抗必须与放大器的阻抗相匹配,这样的噪声源只能在有限的带宽范围内使用。

不是所有的电路元件都能用热噪声来表征,比如,一个产生 1 mW信号功率的 微波设备等价于温度 $7 \times 10^{16} K$,但它的物理温度只有300 K,显然这是个非热过程。

Chapter 2

电磁波传播基础

2.1 麦克斯韦方程组

用电磁场分量随时间和空间的变化描述电磁场。

- 2.2 能量守恒和坡印亭矢量
- 2.3 复数场矢量
- 2.4 波动方程

麦氏方程组给出了电磁场的时间和空间变化的联系,不过由于方程组包含了不同的场矢量,比较复杂,电场和磁场各自的性质不容易分析。把方程重写,使得每个方程只包含一个矢量,场的行为可以看得更加清楚,这就是引入波动方程的原因。

2.5 绝缘介质中的平面波

2.6 波包和群速度

能量和信息一般都以群速度传播,但是,在耗散介质中的传播情形是相当复杂的。论文:Sommerfield(1959),Brillouin(1914)

2.7 耗散介质中的平面波

耗散介质中的平面波的波数方程:

$$k^2 = \frac{\epsilon \mu \omega^2}{c^2} (1 + i \frac{4\pi\sigma}{\omega\epsilon})$$

2.8 稀薄等离子体的频散量

耗散介质的最简单的模型是稀薄等离子体。在等离子体中,自由电子和离子均匀分布,总的空间电荷密度为0。这个模型首先由 Drude(1900) 为了解释透明介质中紫外光的传播给出来,后来应用到稀薄等离子体中射电电磁横波的传播。从自由电子被电场加速的运动方程出发(电场力提供加速动力),电子的运动会产生电流,电流密度可以计算出来,也就可以得到等离子体的电导率:

$$\sigma = i \frac{Ne^2}{m_e \omega}$$

将其代入上一节中推导的: 在耗散介质中的平面波的波数方程, 得到

$$k^2 = \frac{\omega^2}{c^2} (1 - \frac{\omega_p^2}{\omega^2})$$

其中, $\omega_p^2 = \frac{4\pi Ne^2}{m_e}$,亦即之前在1.2中看到的:

$$\frac{\nu_p}{kHz} = 8.97 \sqrt{\frac{N}{cm^{-3}}}$$

对于 $\omega>\omega_p,\,k$ 是实数,由相速度v的定义: $v=\omega/k$ 可得到相速度。因而对于 $\omega>\omega_p,\,\,fv>c.$ 而由群速度定义: $v_g=\frac{d\omega}{dk},$ 可得到

$$v_g = c\sqrt{1 - \frac{\omega_p^2}{\omega^2}}$$

对于 $\omega > \omega_p$,有 $v_g < c$ 相速度与群速度的关系:

$$vv_g = c^2$$

综上所述, v,v_g 都依赖于 $\omega, \le \omega_p$, $v_g = 0$,使得在等离子体中频率低于 ω_p 的波是不可能传播的。

电磁脉冲的传播速度是群速度,随频率而变化,导致等离子体中脉冲传播

的色散,这个特点在 1967 年射电脉冲星的检测中十分重要。脉冲星脉冲到达的时间依赖于观测的频率:观测的频率越低,到达的时间越晚,这个行为很容易用波在稀薄等离子体中的传播来解释。

下面进行证明:

星际介质的等离子体频率远低于观测频率:在星际介质中, $\frac{\nu_p}{kHz}=8.97\sqrt{\frac{N}{cm^{-3}}}$ 中 N 的典型值为 $10^{-3}cm^{-3}\sim 10^{-1}cm^{-3}$),所以 ν_p 的范围为 $2.85kHz\sim 0.285kHz$, 而为了能够穿越地球的电离层,观测频率必须满足 $\nu>10MHz$. 利用 $v_g=c\sqrt{1-\frac{\omega_p^2}{\omega^2}}$ 的级数展开得到关于 v_g 的高精度表达式:

$$\frac{1}{v_q} = \frac{1}{c} \left(1 + \frac{1}{2} \frac{\nu_p^2}{\nu^2} \right)$$

因而接收到距离为 L 的脉冲星发出的脉冲时延为:

$$\tau_D = \int_0^L \frac{dl}{v_a} \approx \frac{1}{c} \int_0^L (1 + \frac{1}{2} \frac{v_p^2}{v^2}) dl = \frac{1}{c} \int_0^L (1 + \frac{e^2}{2\pi m_e} \frac{1}{v^2} N(l)) dl$$

整理得

$$\tau_D = \frac{L}{c} + \frac{e^2}{2\pi m_e} \frac{1}{\nu^2} \int_0^L N(l) dl$$

在两个不同频率 ν_1, ν_2 处测得的脉冲到达时间的差别为:

$$\Delta \tau_D = \frac{e^2}{2\pi m_e} \left[\frac{1}{\nu_1^2} - \frac{1}{\nu_2^2} \right] \int_0^L N(l) dl$$

积分量 $\int_0^L N(l)dl$ 是在观测者和脉冲星之间的电子柱密度。因为在天文中距离的单位是秒差距,人们已经习惯用 cm^{-3} 量度 N(l), 而用 pc 度量 dl, 这个积分被称为**频散量** DM (Dispersion Measure):

$$DM = \int_0^\infty \left(\frac{N}{cm^{-3}}\right) d\left(\frac{l}{pc}\right)$$

所以有:

$$\frac{\Delta \tau_D}{\mu s} = \dots$$

因为时延和观测频率都可以精确测量,所以可以计算出某个脉冲星的频散量的 精确值。

如果脉冲星的距离 L 已知,这就很好地计算出脉冲星和观测者之间的平均电子密度。但因为 L 一般只是近似地知道,这种方式只能得到 N 的粗略估计值。常见的是:从合理的对 N 的估计,以及测量到的频散量,可以得到脉冲星的未知距离的信息。

星际介质的频散量以及脉冲具有一定的宽度限制了可分辨的脉冲精细结构的极限。脉冲到达时间对频率的依赖可以从

$$\tau_D = \frac{L}{c} + \frac{e^2}{2\pi m_e} \frac{1}{\nu^2} \int_0^L N(l) dl$$

中的 τ_D 得到,这就给定了分辨时间特征 τ 所需要的带宽 b(也就是当 $\tau_1 - \tau_2 = \tau, 求 \nu_1 - \nu_2 = 3$ σ):

$$\frac{b}{MHz} = 1.205 \times 10^{-4} \frac{1}{[\frac{DM}{cm^{-3}pc}]} [\frac{\nu}{MHz}]^3 \frac{\tau}{\mu s}$$