Class 3: Integrated models and ARIMA

Andrew Parnell andrew.parnell@ucd.ie

Learning outcomes

- Understand how differencing works to help make data stationary
- Know the basics of the ARIMA(p, d, q) framework
- ► Understand how to fit an ARIMA(p, d, q) model in a realistic setting

Reminder: stationarity

- A time series is said to be weakly stationary if:
 - ▶ The mean is stable
 - ► The variance is stable
 - The autocorrelation doesn't depend on where you are in the series

Reminder: ARMA models

- Combine the autoregressive and the moving average framework into one
- ► The general equation for an ARMA(p, q) model is:

$$y_t = \alpha + \sum_{i=1}^{p} \beta_i y_{t-i} + \sum_{j=1}^{q} \theta_j \epsilon_{t-j} + \epsilon_t$$

Combining ARMA with the random walk to produce ARIMA

► There is one other time series model we have already met, that of the random walk:

$$y_t = y_{t-1} + \epsilon_t$$

where $\epsilon_t \sim N(0, \sigma^2)$

We could re-write this as:

$$y_t - y_{t-1} = \epsilon_t$$

i.e. the differences are random normally-distributed noise

Differencing

- Differencing is a great way of getting rid of a trend
- ▶ If $y_t \approx y_{t-1} + b$ then there will be an increasing linear slope in the time series
- ► Creating $y_t y_{t-1}$ will remove it and all values will hover around the value b
- ▶ Even when the trend is non-linear differencing might help
- Differencing twice will remove a quadratic trend for the same reasons
- You can do even higher levels of differencing but this starts to cause problems
- The twice differenced series is:

$$(y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) = y_t - 2y_{t-1} + y_{t-2}$$

Idea: combine differencing into the ARMA framework

- We can combine these ideas into the ARMA framework to produce an ARIMA model (the I stands for integrated, i.e. differenced)
- An ARIMA model isn't really stationary as the differences are actually removing part of the trend
- ► The ARIMA model is written as ARIMA(p,d,q) where p and q are as before and d is the number of differences

Example: the ARIMA(1,1,1) model

If we want to fit an ARIMA(1,1,1) model we first let $z_t = y_t - y_{t-1}$ then fit the model:

$$z_t \sim N(\alpha + \beta z_{t-1} + \theta \epsilon_{t-1}, \sigma^2)$$

- ▶ This is equivalent to an ARMA model on the first differences
- Note that by default forecast does not include the term α in the model. You need to add include.drift = TRUE

Fitting an ARIMA(1, 1, 1) model to the wheat data

- ► Recall that the ARMA(2,1) fit wasn't very good to the wheat data
- ► Instead try an ARIMA(1, 1, 0) model (i.e. AR(1) on the first differences)

```
## Series: wheat$wheat
## ARIMA(1,1,0) with drift
##
## Coefficients:
## ar1 drift
## -0.0728 529.4904
## s.e. 0.1503 401.5639
##
## sigma^2 estimated as 9945763: log likelihood=-491.7<sub>9/23</sub>
```

General format: the ARIMA(p,d,q) model

- ▶ First take the dth difference of the series y_t , and call this z_t
- If you want to do this by hand in R you can use the diff function, e.g. diff(y, differences = 2)
- Then fit the model:

$$z_t \sim N\left(\alpha + \sum_{i=1}^p \beta_i z_{t-i} + \sum_{j=1}^q \theta_j \epsilon_{t-j}, \sigma^2\right)$$

Choosing p, d and q

- ► It's much harder to have an initial guess at all of p, d and q in one go
- ▶ We can usually guess at the number of differences d from the time series and ACF plots. If there is a very high degree of autocorrelation it's usually a good idea to try a model with d=1 or 2
- ► I've never met a model where you needed to difference more than twice. Beware of over-differencing

Revisiting the real-world example

Steps in an ARIMA time series analysis

- 1. Plot the data and the ACF/PACF
- Decide if the data look stationary or not. If not, perform a suitable transformation and return to 1. If the data has a strong trend or there is a high degree of autocorrelation try 1 or 2 differences
- 3. Guess at values of p, d, and q for an ARIMA(p, d, q) model
- 4. Fit the model
- 5. Try a few models around it by increasing/decreasing p, d and q and checking the AIC (or others)
- 6. Check the residuals
- 7. Forecast into the future

A real example: wheat data

► Plot reminder

```
wheat = read.csv('../../data/wheat.csv')
plot(wheat$year, wheat$wheat, type = 'l')
```


ACF and PACF

```
par(mfrow = c(1, 2))
acf(wheat$wheat)
pacf(wheat$wheat)
```


Suggest looking at first differences

Plot of first differences

```
plot(diff(wheat$wheat), type = 'l')
```


ACF/PACF of first differences

```
par(mfrow = c(1, 2))
acf(diff(wheat$wheat))
pacf(diff(wheat$wheat))
```


▶ Interesting peaks in ACF at lag 2, and PACF at lag 2.

First model

```
Arima(wheat$wheat, order = c(0, 1, 0),
    include.drift = TRUE)
```

```
## Series: wheat$wheat
## ARIMA(0,1,0) with drift
##
## Coefficients:
## drift
## 546.4265
## s.e. 429.8333
##
## sigma^2 estimated as 9795708: log likelihood=-491.81
## ATC=987.63 AICc=987.87 BIC=991.53
```

► This is just a random walk model. Can also get these from forecast with the function naive

Next models

- Try ARIMA(1, 1, 1), ARIMA(1, 1, 0), ARIMA(0, 1, 1)

```
Arima(wheat$wheat, order = c(1, 1, 1),
      include.drift = TRUE)$aic
## [1] 979.1519
Arima(wheat$wheat, order = c(1, 1, 0),
      include.drift = TRUE) $aic
## [1] 989.3936
Arima(wheat$wheat, order = c(0, 1, 1),
      include.drift = TRUE) $aic
## [1] 981.2407
```

▶ Best one seems to be ARIMA(1, 1, 1). (though BIC suggests others)

Check residuals

Check the residuals of this model

Forecast into the future

Forecasts from ARIMA(1,1,1) with drift

Why do we need to the drift term?

- Without the drift term the forecast will stabilise at or near the first few values of the series
- ► The MA part of the model is obviously flat (as previously discussed) because there are no further errors to correct
- ▶ The AR part of the model reverts back to the estimated mean of the last data point because the β parameter is less than 1 it dampens out the future predictions and stops them from going crazy
- ▶ The drift keeps the values going up into the future
- forecast doesn't seem to like including the drift/mean when there are multiple differences and AR terms too (not sure why)

Summary

- ARIMA models extend the ARMA framework to further add in differencing
- ▶ ARIMA models are no longer stationary as soon as d > 0
- A single difference will remove a linear trends, a second difference quadratic trends
- Can spot the need for differencing from the time series plot and the ACF
- Do not over-difference your data!