### page - I - NIVEAU: 1 SM

COURS N° 3

**APPLICATIONS** 



# I. GENERALITES:

## **A** Application :

### a. Activité:

- On considère les ensembles  $E = \{1, 2, 3, 4\}$  et  $F = \{11, 12, 13, 14, 15\}$ .
- On considère la relation f (ou g) qui associe élément de E par un élément de F voir figures

Cas N° 1



Cas N° 2



### Que remarquez vous?

### **b.** Vocabulaire:

- La relation f est appelée application de E vers F on note f ou g ou h.
- L'ensemble E est appelé ensemble de départ ( ou de source )
- L'ensemble F est appelé ensemble d'arrivé (ou de but)
- Elément de E on le note par x et on l'appelle antécédent.
- Elément de F on le note par y et on l'appelle image.
- L'application f qui associe x par y pour cela on note f(x) = y.
- On résume ce qui précède par :  $f: E \rightarrow F$

$$x \mapsto f(x) = y$$

# **Définition:**

Soient E et F deux ensembles non vides.

Toute relation f qui associe chaque élément x de E par un et un seul élément y de F est appelée

 $x \mapsto f(x) = y$  ou encore  $f: E \to F$ application de E vers F, on la note par :

### Remarque:

- Toute fonction est une application de son ensemble de définition  $\mathbf{D}_{\!\scriptscriptstyle \mathrm{f}}$  vers  $\mathbb R$  .
- Toute application  $f: E \rightarrow F$  est une fonction de  $f: E \rightarrow F$ .
- Si F = E on dit que f est une application dans E.
- Soient f et g deux applications tel que :

On note f = g

### e. Applications:

❖ On considère l'application : 
$$f: \mathbb{Z} \to \mathbb{N}$$
$$n \mapsto f(n) = |n|$$

**1.** Déterminer les images de 0 et -2 et 3.

### page - 2 - NIVEAU: 1 SM

COURS N° 3

#### **APPLICATIONS**



- **2.** Déterminer les antécédents de 1 et 0 et 3.
- **3.** Est-ce que l'implication  $f(n) = f(n') \Rightarrow n = n'$  est vraie?
  - \* On considère l'application :

$$f: \mathbb{N}^2 \to \mathbb{N}$$
  
 $(n,m) \mapsto f((n,m)) = n \times m$ 

- **1.** Déterminer les images de (1,0) et (2,-3) et (-6,1).
- **2.** Déterminer les antécédents de 1 et 6 et 0.
- **3.** Est-ce que pour tout (n,m) et (n',m') de  $\mathbb{N}^2$ , l'implication  $f((n,m)) = f((n',m')) \Rightarrow (n = n' \text{ et } m = m') \text{ est vraie }?$

$$f: \mathbb{R} \to \mathbb{R}$$

On considère les deux applications :

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = \frac{x^4 - 1}{x^2 + 1} \text{ et } g : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto g(x) = x^2 - 1$$

- **1.** Est-ce que f = g?
- **B.** L'image directe d'une partie A de l'ensemble de départ L'image réciproque d'une partie B de l'ensemble d'arrivé.
- a. Activité: on considère l'applications suivante:
- 1. déterminer la partie B de F tel que ses éléments sont : les images des éléments de A
- 2. déterminer la partie C de E tel que ses éléments sont : les antécédents des éléments de B





déterminer l'ensemble B dont ses éléments sont : les images des éléments de la partie A de E

### **b.** Réponse :





### page - 3 - NIVEAU : 1 SM

COURS N° 3

#### **APPLICATIONS**

3-

### c. Vocabulaire:

**1** la partie  $B = \{12,13\}$  est appelée l'image directe de la partie A de l'ensemble de départ E

et on note : 
$$\mathbf{B} = \mathbf{f}(\mathbf{A})$$
  
et on a  $\mathbf{f}(\mathbf{A}) = \{\mathbf{f}(\mathbf{x}) / \mathbf{x} \in \mathbf{A}\}$ 

2 la partie  $C = \{2,3,4,5,6\}$  est appelée l'image réciproque de la partie B de l'ensemble d'arrivé E et on note :  $C = f^{-1}(B)$ 

et on a : 
$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$

### d. Définitions :

**Définition 1 : (l'image directe)** 

 $f: E \rightarrow F$  est une application et A est une partie de  $E \ (A \subset E)$ .

Les images des éléments de la partie A de E constitue une partie B de F est appelée image directe de A et on note B = f(A) ou encore  $B = f(A) = \{f(x) \mid x \in A\} \subset F$ .

D'où: 
$$y \in f(A) \Leftrightarrow \exists x \in A, y = f(x)$$
.

**Définition 1 : ( l'image réciproque )** 

 $f: E \rightarrow F$  est une application et B est une partie de  $F(B \subset F)$ .

Les antécédents des éléments de la partie B de E constitue une partie C de E est appelée image réciproque de B ou encore  $f^{-1}(B) = \{x \in E / f(x) \in B\} \subset E$ .

D'où: 
$$x \in f^{-1}(B) \Leftrightarrow f(x) \in B$$
.

# e. Application :

 $f: \mathbb{N} \to \mathbb{N}$ 

• On considère l'application suivante : 
$$n \mapsto f(n) = 2n$$

**1** Déterminer 
$$f(\{0,1,2,5\})$$
 et  $f^{-1}(\{4,6,12\})$ .

**2.** Déterminer : 
$$f(\mathbb{N})$$
 et  $f^{-1}(\{0,2,4,\dots,2n,\dots\}) = f^{-1}(2\mathbb{N})$ .

**3.** Est-ce que l'implication suivante est vraie: 
$$\forall n, n' \in \mathbb{N} : f(n) = f(n') \Rightarrow n = n'$$
.

$$\mathbf{f}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

$$X=(a,b)\mapsto f(X)=f((a,b))=a$$

1. Déterminer 
$$f((2,1))$$
 et  $f((2,7))$ .

**2.** Ecrire en compréhension 
$$f^{-1}(\{2\})$$
 (c.à.d. ensemble des antécédents de 2):

$$\forall (a,b) \in \mathbb{N}^2, \forall (a',b') \in \mathbb{N}^2: f((a,b)) = f((a',b')) \Rightarrow (a,b) = (a',b').$$

# <u>f.</u> Propriétés :

- $f: E \rightarrow F$  est une application
- A et B deux parties d'un ensemble E ( de départ ) . C et D deux parties d'un ensemble F (d'arrivé

1. 
$$A \subset B \Rightarrow f(A) \subset f(B)$$
.

2. 
$$f(A \cup B) = f(A) \cup f(B)$$

3. 
$$f(A \cap B) \subset f(A) \cap f(B)$$
.

4. 
$$C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$$
.

5. 
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
.



- 6.  $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ .
- g. Démonstration :
  - 1. Montrons que:  $A \subset B \Rightarrow f(A) \subset f(B)$ .

On a  $A \subset B$  et on démontre que  $f(A) \subset f(B)$ .

Soit 
$$y_A \in f(A)$$

D'où 
$$y_A \in f(A) \Leftrightarrow \exists x_A \in A / y_A = f(x_A)$$
 (1)

Donc:  $(1) \Rightarrow \exists x_A \in B / y_A = f(x_A) (car A \subset B)$ .

Par suite:  $f(x_A) \in f(B)$ .

Conclusion:  $f(A) \subset f(B)$ .

- 2. Montrons que:  $f(A \cup B) = f(A) \cup f(B)$ .
- D'abord, on montre que :  $f(A \cup B) \subset f(A) \cup f(B)$ .

Soit y de  $f(A \cup B)$  donc il existe  $x \in A \cup B$  tel que : y = f(x).

D'où: 
$$x \in A \cup B \Rightarrow (x \in A \text{ et } x \in B)$$

$$\Rightarrow$$
  $(f(x) \in f(A) \text{ et } f(x) \in f(B))$ 

$$\Rightarrow$$
 y = f(x)  $\in$  f(A) $\cup$  f(B)

Conclusion 1:  $f(A \cup B) \subset f(A) \cup f(B)$ 

• Montrons que:  $f(A) \cup f(B) \subset f(A \cup B)$ .

On a:  $A \subset A \cup B \Rightarrow f(A) \subset f(A \cup B)$  (d'après 1).

$$B \subset A \cup B \Rightarrow f(B) \subset f(A \cup B)$$

donc:  $f(A) \cup f(B) \subset f(A \cup B)$ 

Conclusion 2:  $f(A) \cup f(B) \subset f(A \cup B)$ 

Conclusion:  $f(A \cup B) = f(A) \cup f(B)$ .

3. Montrons que :  $f(A \cap B) \subset f(A) \cap f(B)$ 

Soit y de  $f(A \cap B)$  donc il existe  $x \in A \cap B$  tel que : y = f(x).

$$x \in A \cap B \Rightarrow x \in A \text{ et } x \in B$$

$$\Rightarrow f(x) \in f(A) \text{ et } f(x) \in f(B)$$

$$\Rightarrow$$
 y = f(x)  $\in$  f(A) $\cap$ f(B)

Conclusion:  $f(A \cap B) \subset f(A) \cap f(B)$ 

4. Montrons que :  $C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D)$ .

Soit: 
$$x de f^{-1}(C)$$

$$x \in f^{-1}(C) \Rightarrow f(x) \in C$$

$$\Rightarrow f(x) \in D$$
 ;  $(C \subset D)$ 

$$\Rightarrow x \in f^{-1}(D)$$

Conclusion:  $f^{-1}(C) \subset f^{-1}(D)$ .

### page **- 5 -** NIVEAU : 1 SM

COURS N° 3

**APPLICATIONS** 



- 5. Montrons que :  $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$
- D'abord, on montre que :  $f^{-1}(C \cap D) \subset f^{-1}(C) \cap f^{-1}(D)$

$$\operatorname{On} a: \frac{A \cap B \subset A \Rightarrow f^{^{-1}}\big(A \cap B\big) \subset f^{^{-1}}\big(A\big)}{A \cap B \subset B \Rightarrow f^{^{-1}}\big(A \cap B\big) \subset f^{^{-1}}\big(B\big)} \quad \operatorname{donc}: f^{^{-1}}\big(A \cap B\big) \subset f^{^{-1}}\big(A\big) \cap f^{^{-1}}\big(B\big) \;.$$

Montrons que:  $f^{-1}(C) \cap f^{-1}(D) \subset f^{-1}(C \cap D)$ 

Soit x de  $f^{-1}(C) \cap f^{-1}(D)$ .

$$x \in f^{-1}(C) \cap f^{-1}(D) \Rightarrow x \in f^{-1}(C) \text{ et } x \in f^{-1}(D).$$

- $\Rightarrow f(x) \in C \text{ et } f(x) \in D$
- $\Rightarrow f(x) \in C \cap D$
- $\Rightarrow x \in f^{-1}(C \cap D)$

 $D'où: f^{-1}(C) \cap f^{-1}(D) \subset f^{-1}(C \cap D)$ 

Conclusion:  $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$ .

- 6. Montrons que:  $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$
- D'abord, on montre que :  $f^{-1}(C) \cup f^{-1}(D) \subset f^{-1}(C \cup D)$

$$On \ a: \frac{A \subset A \cup B \Rightarrow f^{-1}\big(A\big) \subset f^{-1}\big(A \cup B\big)}{B \subset A \cup B \Rightarrow f^{-1}\big(B\big) \subset f^{-1}\big(A \cup B\big)} \quad donc: f^{-1}\big(A\big) \cup f^{-1}\big(B\big) \subset f^{-1}\big(A \cup B\big)$$

Conclusion 1:  $f^{-1}(A) \cup f^{-1}(B) \subset f^{-1}(A \cup B)$ 

Montrons que:  $f^{-1}(C \cup D) \subset f^{-1}(C) \cup f^{-1}(D)$ .

Soit x de  $f^{-1}(C \cup D)$ 

$$x \in f^{-1}(C \cup D) \Rightarrow f(x) \in C \cup D$$

$$\Rightarrow$$
 f(x)  $\in$  C et f(x)  $\in$  D

 $1^{er} \operatorname{cas} f(x) \in C$ 

Donc:  $x \in f^{-1}(C)$  et on sait que  $f^{-1}(C) \subset f^{-1}(C) \cup f^{-1}(D)$ .

 $2^{ieme}$  cas:  $f(x) \in D$ 

Donc:  $x \in f^{-1}(D)$  et on sait que  $f^{-1}(D) \subset f^{-1}(C) \cup f^{-1}(D)$ .

Pour les deux cas on a :  $x \in f^{-1}(C) \cup f^{-1}(D)$ .

Par suite:  $f^{-1}(C \cup D) \subset f^{-1}(C) \cup f^{-1}(D)$ .

Conclusion 2:  $f^{-1}(C \cup D) \subset f^{-1}(C) \cup f^{-1}(D)$ 

Conclusion:  $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ 

Remarque: on peut démontrer que par les équivalences successives.

 $\underline{\mathbf{C}}$  Restriction d'une fonction – prolongement d'une fonction :

a. Activité : On considère les deux applications :

$$x \mapsto f(x) = |x| - 5x^{-6}$$

- $\mathbb{R} \to \mathbb{R}$   $x \mapsto f(x) = |x| 5x$ et  $g : [0, +\infty[ \to \mathbb{R}]$   $x \mapsto f(x) = -4x$
- **1.** Simplifier l'expression de f(x) sur  $[0,+\infty]$

COURS N° 3

**APPLICATIONS** 

3-

**2.** Quelle relation relie les deux fonctions .

Réponse pour la 2ième

**Relations:** 

- $[0,+\infty[\subset\mathbb{R}]$ .
- $\forall x \in [0,+\infty[,g(x)=f(x)]$

### **b.** Vocabulaire:

- L'application g restreint à donner les images des x de  $\left[0,+\infty\right[$ ; pour cela l'application g est appelé restriction de f sur  $\left[0,+\infty\right[$ .
- l'application f est appelé prolongement de g sur  $\mathbb{R}$  . (f continue à donner les images x de ] $-\infty$ ,0[ car g est définie juste sur  $[0,+\infty[$  ).

### c. définition 1:

 $f: E \rightarrow F$  est une application et B est une partie de  $F (B \subset F)$ .

Toute application g tel que:

- 1. Ensemble de départ est une partie A de E (  $A \subset E$  ).
- 2.  $\forall x \in A : g(x) = f(x)$ .

l'application g est appelée restriction de f sur A . donc :  $g:A\ \big(A\subset E\big)\to F$   $x\mapsto g\big(x\big)=f\big(x\big)$ 

# d. définition 2 :

 $f: E \rightarrow F$  est une application et B est un ensemble tel que  $E \subset B$ .

Toute application h tel que:

- 3. Ensemble de départ est B avec ( $E \subset B$ ).
- 4.  $\forall x \in E, h(x) = f(x)$ .

l'application h est appelée prolongement de f sur B . donc :  $\begin{cases} x \in E \ , \ h(x) = f(x) \\ x \in B \setminus E \ , \ h(x) = h(x) \end{cases} .$ 

- e. Remarque: prolongement n'est pas unique
- **<u>f.</u>** Application :
  - On considère les deux applications :  $f: \mathbb{R} \to \mathbb{R}$   $x \mapsto f(x) = |x| 5x$  et  $g: [0, +\infty[ \to \mathbb{R} ]$   $x \mapsto f(x) = -4x$
  - **1.** Est-ce que l'application g est une restriction de f sur  $[0,+\infty[$ 
    - $\begin{tabular}{ll} \bullet & \text{On considère les applications}: & f: [-1,+\infty[ \to \mathbb{R} \\ & x \mapsto f\left(x\right) = 2x^3 \end{tabular} \begin{tabular}{ll} g: [0,+\infty[ \to \mathbb{R} \\ & x \mapsto f\left(x\right) = -4x \end{tabular}$
  - **2.** Est-ce que l'application g est un prolongement de f sur  $\mathbb{R}$ ?

avec:  $g: \mathbb{R} \to \mathbb{R}$  $x \mapsto g(x) = -2x^4 + 2x^3 |x+1|$ 

II. APPLICATION: INJECTIVE - SURJECTIVE - BIJECTIVE ET LA BIJECTION R2CIPROQUE:

### page - 7 - NIVEAU: 1 SM

COURS N° 3

**APPLICATIONS** 

3

### **A.** APPLICATION INJECTIVE

<u>a.</u> Définition :

 $f: E \rightarrow F$  est une application.

f est appelée application injective ( ou f est une injection ) si et seulement si pour chaque élément y de F a au plus un antécédent x de l'ensemble de départ E.

Ou encore: (f est injective)  $\Leftrightarrow$   $(\forall x, x' \in E : f(x) = f(x') \Rightarrow x = x')$ 

**<u>b.</u>** exemple : On considère les deux applications suivantes :





 $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ 

<u>c.</u> Application : On considère l'applications :

$$(x,y)\mapsto f((x,y))=(x,0)$$

1. Est-ce que l'application f est injective ?

# **B.** APPLICATION SURJECTIVE :

a. Définition :

 $f: E \rightarrow F$  est une application.

f est appelée application surjective ( ou f est une surjection ) si et seulement si pour chaque élément y de F a au moins un antécédent x de l'ensemble de départ E .

Ou encore: (f est surjective)  $\Leftrightarrow$   $(\forall y \in F, \exists x \in E : y = f(x))$ 

<u>a.</u> exemple : On considère les deux applications suivantes :





b. Remarque:

• Pour démontrer que f est surjective, il suffit de démontrer que l'équation  $x \in E : f(x) = y$  admet au moins une solution x

### page - 8 - NIVEAU : 1 SM

COURS N° 3

#### **APPLICATIONS**

dans E pour tout y de F. (l'inconnue est x mais y représente les éléments de F).

- (f est surjective)  $\Leftrightarrow$  f(E)=F.
  - **c.** Application:
    - $f: \mathbb{R} \to \mathbb{R}$ On considère l'application suivante :

$$x \mapsto f(x) = 3|x|$$

- **1.** Est-ce que f est surjective?
- **2.** Est-ce que g la restriction de f sur  $[0,+\infty[$  surjective tel que :  $g:[0,+\infty[\to\mathbb{R}]]$   $x\mapsto g(x)=3x|x+1|-3x^2$

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$

On considère l'application suivante :

$$(x,y)\mapsto f((x,y))=(x,0)$$

**1.** Est-ce que f est surjective?

$$f: \mathbb{R} \to \mathbb{R}$$

**On considère l'application suivante :** 

$$x \mapsto f(x) = x^2 - 2x$$

**1.** Est-ce que f est surjective?

# **C.** APPLICATION BIJECTIVE L'APPLICATION RECIPROQUE:

**Définition:** 

 $f: E \rightarrow F$  est une application.

f est appelée application bijective ( ou f est une bijection ) si et seulement si pour chaque élément v de F a un et un seul antécédent x de l'ensemble de départ E.

Ou encore: (f est bijective) 
$$\Leftrightarrow$$
  $(\forall y \in F, \exists! x \in E : y = f(x))$ .

- L'application g de F vers E qui associe à chaque élément y de F par l'unique élément x de E tel que f(x) = y est appelée application réciproque de l'application f et on note  $g = f^{-1}$
- **b.** Exemple : On considère les deux applications suivantes :





- - ( f est une application bijective )  $\Leftrightarrow$  ( f est injective et surjective ).
  - L'application réciproque f<sup>-1</sup> s'écrit de la façon suivante :

### page - 9 - NIVEAU: 1 SM

# COURS N° 3

#### **APPLICATIONS**



- Relation entre f et  $f^{-1}$  est : x = f(x)  $\Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in F \end{cases}$ .
- Pour démontrer que f est bijective, il suffit de démontrer que l'équation  $x \in E$ : f(x) = y admet une solution unique x dans E pour tout y de F. (l'inconnue est x mais y représente les éléments de F).

### c. Application:

- **1.** Est-ce que f est bijective?
- **2.** Si oui déterminer l'application réciproque  $f^{-1}$  de l'application f.
  - ❖ On considère l'application suivante :  $f: \mathbb{R} \to \mathbb{R}$  $x \mapsto f(x) = x^2 2x$
- **1.** Est-ce que f est surjective ?

\* On considère l'application suivante : 
$$f: \mathbb{R} \to \mathbb{R}$$
 
$$x \mapsto f(x) = x^2 - 2x$$

- **1.** Est-ce que f est bijective?
- 2. Si oui déterminer l'application réciproque f<sup>-1</sup> de l'application f.

# III. COMPOSEE DES APPLICATIONS :

#### a. Définition :

On considère les deux applications :  $f : E \rightarrow F$  et  $g : F \rightarrow G$ .

L'application  $h: E \to G$  définie par :  $\forall x \in E : h(x) = g(f(x))$  est appelée la composée de f et g dans cet ordre , et on note par :  $g \circ f$  .

$$h = g \circ f : E \to G$$

Donc:

$$x \mapsto h(x) = g \circ f(x) = g(f(x))$$

### b. Eclaircis:



#### c. Remarques:

- La composée de deux applications n'est pas toujours commutative :  $f \circ g \neq g \circ f$  ( en général )
- La composée des applications est associative  $(\mathbf{f} \circ \mathbf{g}) \circ \mathbf{h} = \mathbf{f} \circ (\mathbf{g} \circ \mathbf{h})$  on peut écrire  $\mathbf{f} \circ \mathbf{g} \circ \mathbf{h}$

### page - 10 - NIVEAU: 1 SM

COURS N° 3

#### **APPLICATIONS**



- ${\bf f}$  est une application bijective et  ${\bf f}^{-1}$  l'application réciproque de  ${\bf f}$  on a :
- 1.  $\forall x \in F : f \circ f^{-1}(x) = x$  donc  $f \circ f^{-1} = Id_F$  (  $Id_F$  application identique sur F).
- 2.  $\forall x \in E : f^{-1} \circ f(x) = x$  donc  $f^{-1} \circ f = Id_E$  (  $Id_E$  application identique sur E).
- 3. Explication pour la dernière remarque :

25. Explication pour la dernière remarque :
$$E \xrightarrow{f} F \xrightarrow{f^{-1}} E$$

$$x \mapsto f(x) = y \mapsto f^{-1}(y) = f^{-1}(f(x)) = x$$

$$f^{-1} \circ f = Id_{E}$$

$$E \xrightarrow{f^{-1}} F \xrightarrow{f^{-1}} F$$

### **d.** Application:

**1.** Déterminer :  $g \circ f$  puis  $f \circ g$ .

$$f:[0;2]\rightarrow[0;2]$$

On considère l'application suivante :  $x \mapsto f(x) = (\sqrt{2} - \sqrt{x})^2$ 

- 1. Montrer que f est une application bijective .
- **2.** Calculer  $f \circ f(x)$  puis on déduit l'application réciproque  $f^{-1}$  de l'application f.