ИУ6 Компьютерные системы и сети

Вариант № ИМ.06.01

Bonpoc №1

Даны два операнда, числа со знаком (отрицательные – в дополнительном коде), в шестнадцатеричном формате:

A = 0xB6, B = 0x7C

Выполнить операции двоичного сложения и вычитания и определить флаги (признаки) результатов. Привести оценки операндов и результатов операций в десятичной системе счисления.

(8 баллов)

Bonpoc №2

При каких значениях булевых переменных a, b, c и d составное высказывание $\stackrel{-}{a} \lor b \to c \lor \stackrel{-}{d}$ будет истинно, а при каких – ложно?

(8 баллов)

Bonpoc №3

Деталь обрабатывается на заводе в 4 этапа. Вероятность получения бракованной детали на каждом этапе равна 0.5. X — дискретная случайная величина, равная числу этапов, пройденных деталей успешно. Найти ряд распределения случайной величины X.

(8 баллов)

Bonpoc №4

Задана следующая схема базы данных:

CUSTOMER(<u>ID</u>, CompanyName, LastName, FirstName, Address, City, Phone, Fax);

ORDERS(<u>ID</u>, IDcustomer, OrdersDate, ShipDate, PaidDate, Status);

 $\pmb{ITEM}(\underline{ID}, IDorders, IDstock, Quantity, Total);\\$

 $\textbf{STOCK}(\underline{ID}, UnitPrice, OnHand, Reoder, Description).$

{ **ПОКУПАТЕЛЬ**(IDпокупателя,

НаименованиеКомпании, ФамилияПокупателя, ИмяПокупателя, АдресПокупателя, Город, Телефон, Факс):

ЗАКАЗ(ІДзаказа, ІДпокупателя, ДатаЗаказа,

ДатаДоставкиЗакакза,

КрайняяДатаДоставкиЗаказа,

СтатусОплатаНаличнымиИлиВкредит);

ПУНКТЗАКАЗА(IDnунктаЗаказа, IDзаказа,

ІДтовара, Количество, СуммаПоПункту);

ЗАПАСТОВАРОВ(<u>IDтовара</u>, ЦенаЕдиницыТовара, НаличиеЕстьНет, ВозможнаяЗамена, Описание) }.

Из таблицы **ORDERS** выбрать заказы со сроком даты заказа (OrdersDate) более ранней, чем 31 мая 2014 года. Список отсортировать по номеру заказа.

(8 баллов)

Вопрос №5

Асинхронный одноступенчатый RS триггер на элементах ИЛИ-НЕ.

Нарисовать диаграмму выходных сигналов. "#" - инверсный сигнал.

(8 баллов)**Вопрос №6**

Определить IP-адрес для широковещательной рассылки дейтаграмм в подсети с заданным IP-адресом: 192.168.1.64/26

(8 баллов)

Bonpoc №7

Перечислите уровни эталонной модели OSI. Поясните, для чего предназначен каждый уровень.

(12 баллов)

Bonpoc № 8

Синтезировать схему управления (СУ) лампочками светофора с 4 состояниями, имеющую 2 входа управления на логических элементах 2И-ИЛИ, НЕ. Показать, что $R=\bar{G}$.

Состояния:

- 0 Красный (R) и желтый (Y) цвет;
- 1 Зеленый (G);
- 2 Зеленый (G) и желтый(Y);
- 3 Красный (R).

(12 баллов)

Bonpoc №9

Постройте схему сегментно-страничной структуризации и схему механизма преобразования виртуального адреса в физический адрес.

(12 баллов)

Bonpoc № 10

Дана матрица D(N,M), $N,M \le 10$, с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, для каждой строки матрицы определяет максимальный элемент и перемещает его на место последнего элемента этой строки. Вывести на экран исходную и полученную после перестановки матрицы. Максимальный элемент считать единственным.

(16 баллов)

*РЕШЕНИЯ*Вариант № ИМ.06.01

Bonpoc № 1

Даны два операнда, числа со знаком (отрицательные – в дополнительном коде), в шестнадцатеричном формате:

$$A = 0xB6$$
, $B = 0x7C$

Выполнить операции двоичного сложения и вычитания и определить флаги (признаки) результатов. Привести оценки операндов и результатов операций в десятичной системе счисления.

Решение

Оценки операндов: $A = 1011\ 0110\ (-74)$, $B = 0111\ 1100\ (+124)$.

Сложение A + B: 1011 0110

0111 1100 0011 0010 (+50)

Флаги: $\mathbf{C}(\text{перенос}) = 1$, $\mathbf{N}(\text{знак}) = 0$, \mathbf{Z} (признак нуля) = 0, \mathbf{H} (межтетрадный перенос) = 0, $\mathbf{V}(\text{переполнение}) = 0$, \mathbf{S} ($\mathbf{N} \oplus \mathbf{V}$) = 0 (знак вне зависимости от переполнения)

Вычитание А – В: 1011 0110

+ <u>1000 0100</u> 0011 1010 (+58) [-В]доп

Флаги: \mathbf{C} (заем) =0, \mathbf{N} (знак) = 0, \mathbf{Z} (признак нуля) = 0, \mathbf{H} (межтетрадный заем) = 1, \mathbf{V} (переполнение) = 1, \mathbf{S} (N \oplus V) = 1 (знак вне зависимости от переполнения)

Bonpoc № 2

При каких значениях булевых переменных a, b, c и d составное высказывание $a \lor b \to c \lor d$ будет истинно, a при каких – ложно?

			J , ,		, 1			
a	b	С	d	$\neg a$	$\neg d$	^	>	\rightarrow
0	0	0	0	1	1	0	1	1
0	0	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	0	1	1	1	0	0	0	0
0	1	0	0	1	1	0	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	1	1	1	1	1
0	1	1	1	1	0	1	1	1
1	0	0	0	0	1	0	1	1
1	0	0	1	0	0	0	0	1
1	0	1	0	0	1	0	1	1
1	0	1	1	0	0	0	0	1
1	1	0	0	0	1	0	1	1
1	1	0	1	0	0	0	0	1
1	1	1	0	0	1	1	1	1
1	1	1	1	0	0	1	1	1

Bonpoc № 3

Закон распределения случайной величины X имеет вид:

i x 0 1 2 3 4 i p 0,5 0,25 0,125 0,0625 0,0625

Расчеты произведены правильно, так как сумма $\Sigma p = 1$.

Bonpoc № 4

SELECT * FROM orders
WHERE ordersdate < '31-MAY-14'
ORDER BY id:

Bonpoc № 5

Нарисовать диаграмму выходных сигналов."#" - инверсный сигнал.

Bonpoc № 6

Определить IP-адрес для широковещательной рассылки дейтаграмм в подсети с заданным IP-адресом: 192.168.1.64/26

Ответ: 192.168.34.127/26

Bonnoc No 7

Bonpoc 312 /						
Уровень	Назначение					
Прикладной	Обеспечивает связь программ пользователя с					
	объектами сети					
Представления	Определяет синтаксис данных, управляет их					
	отображением					
Сеансовый	Управление ведением диалога между объектами сети					
Транспортный	Обеспечивает прозрачность передачи данных между					
	абонентами сети, то есть между отдельными					
	процессами на удаленных компьютерах					
Сетевой	Определяет маршрутизацию и связь между сетями					
Канальный	Передача данных по каналу, контроль ошибок,					
	синхронизация данных					
Физический	Установка и поддержка физического соединения,					
	работа с физической средой					

X_1	X_0	R	G	Y
0	0	1	0	1
0	1	0	1	0
1	0	0	1	1
1	1	1	0	0

$$\begin{aligned} & \overline{\mathbf{R}} = \overline{X}_1 \overline{X}_0 \vee X_1 X_0 \\ & \overline{\mathbf{G}} = \overline{X}_1 X_0 \vee X_1 \overline{X}_0 \\ & \overline{\mathbf{Y}} = \overline{X}_1 \overline{X}_0 \vee X_1 \overline{X}_0 = \overline{X}_0 \end{aligned}$$

Bonpoc № 9

Постройте схему сегментно-страничной структуризации и схему механизма преобразования виртуального адреса в физический адрес.

При данном способе структуризации выполняют следующие шаги:

- Исходное пространство структурируют фиксированными страницами;
- Сегмент рассматривается уже как некоторая непрерывная последовательность номеров страниц. Размер сегмента это количество страниц;
- Каждый сегмент имеет свой уникальный номер s;
- В пределах каждого сегмента происходит перенумерация страниц, начиная с 0 в возрастающем порядке;
- Сегменту назначается базовый адрес $A S_0$.

В итоге адрес указывается с помощью 4-х координат: s - номер сегмента; A S_0 - базовый адрес; R` - номер страницы в пределах сегмента и R - смещение в пределах страницы.

Базовый адрес страницы в составе сегмента определяется:

$$A_{RB} = As_0 + R^I * L$$

Далее, если размер страницы был кратен 2, к базовому адресу страницы применяют операцию конкатенации - присоединяют значение смещения.

Механизм преобразования виртуального адреса в физический:

Для каждого сегмента создается своя таблица страниц.

Для каждого процесса создается своя таблица сегментов. Адрес таблицы загружается в специальный регистр процессора, когда процесс становится активным.

1. Схема взаимодействия файловой системы. Описание уровней.

На уровне идентификации могут выполняться следующие действия:

- по символьному имени файла определяется его уникальное имя. Это в тех ОС, где один файл может иметь несколько символьных имен. (В старых ОС одно символьное имя, которое является и уникальным.).
- по уникальному имени определяются атрибуты файла. В разных файловых системах в качестве атрибутов могут использоваться следующие характеристики, например: информация о разрешенном доступе, пароль для доступа к файлу, владелец файла, создатель файла, признаки ("только для чтения", "скрытый файл", "системный файл", "архивный файл", "двоичный/символьный", "временный") , длина записи, времена создания, последнего доступа и последнего изменения, текущий размер файла, максимальный размер файла и др.
- сравниваются полномочия пользователя или процесса с правами доступа к файлу.

На логическом уровне определяются координаты логической записи в файле. С логической организацией файла имеет дело программист. Алгоритм работы зависит от конкретной логической модели организации файла. Файл представляется в виде определенным образом организованных логических записей. Логическая запись - это наименьший элемент данных, которым может оперировать программист при обмене с внешним устройством. Записи могут быть фиксированной длины или переменной длины. Записи могут быть расположены в файле последовательно или с использованием индексных таблиц.

На физическом уровне определяется номер физического блока, который содержит требуемую логическую запись. Физическая организация файла описывает правила расположения файла на диске. Файл состоит из блоков. Блок - наименьшая единица данных, которая доступна для обмена между устройствами внешней и оперативной памяти. Блоки могут быть размещены последовательно и образовывать единый сплошной участок дисковой памяти. Размещение может быть в виде связанного списка блоков дисковой памяти или в виде связанного списка индексов. простого перечисления Номера блоков, занимаемых этим файлом могут просто перечисляться.

Bonpoc № 10

 $\{$ Дана матрица $D(N,M),\ N,M \le 10,\$ с элементами вещественного типа. Написать программу на языке Паскаль или Си (консольный режим), которая вводит матрицу, для каждой строки матрицы определяет максимальный элемент и перемещает его на место последнего элемента этой строки. Вывести на экран исходную и полученную после перестановки матрицы.

```
Максимальный элемент считать единственным.}
program Project2; {$APPTYPE CONSOLE}
Uses SysUtils;
Var
     D:array[1..10,1..10] of real;
      max:real;
      i, j, jmax, n, m:integer;
begin
   WriteLn('Enter n,m'); ReadLn(n,m);
   WriteLn('Enter elements:');
   For i:=1 to n do
   begin
     for j:=1 to m do Read(D[i,j]);
     ReadLn;
    WriteLn('Inputed Matrix:');
   For i:=1 to n do
   Beain
     For j:=1 to m do Write(D[i,j]:6:2);
     WriteLn;
   end;
   For i:=1 to n do
   begin
    max:=D[i,1];
     jmax:=1;
     For j:=2 to m do
       if D[i,j] > max then
         max:=D[i,j];
     D[i,m]:=max;
   end;
   WriteLn('Result Matrix:');
   For i:=1 to n do
   begin
     For j:=1 to m do Write(D[i,j]:6:2);
     WriteLn;
   end;
   Readln:
```

end.