Question III.8) - version longue complexité

Pour une liste 1 de taille $n \in \mathbb{N}^*$, l'appel tri_fusion 1 effectue :

- un appel à la fonction separe en $\mathcal{O}(n)$
- \bullet deux appels récursifs sur des listes de tailles $\left\lfloor \frac{n}{2} \right\rfloor$ et $\left\lceil \frac{n}{2} \right\rceil$
- un appel à fusionne en $\mathcal{O}(n)$.

En notant, pour tout $n \in \mathbb{N}$, C(n) la complexité dans le pire cas d'un appel tri_fusion 1 où |1| = n,

$$C(n) = C\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + C\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)$$

Pour tout $p \in \mathbb{N}$, on a donc :

$$\begin{split} &C(2^{p+1}) = 2C(2^p) + \mathcal{O}(2^{p+1})\\ &\text{donc} \qquad \frac{C(2^{p+1})}{2^{p+1}} = \frac{C(2^p)}{2^p} + \mathcal{O}(1)\\ &\text{d'où} \qquad \frac{C(2^p)}{2^p} = \mathcal{O}(p)\\ &\text{puis} \qquad C(2^p) = \mathcal{O}(p2^p) \end{split}$$

De plus, si
$$n = 2^p, p = \log_2 n$$

En supposant de plus que la complexité est croissante, on a pour n quelconque

$$C(n) = \mathcal{O}(n\log(n))$$

1