

Digital Integrated Circuits A Design Perspective

Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Glossary

VALUES OF MATERIAL AND PHYSICAL CONSTANTS

Name	Symbol	Value	Units
Room temperature	T	300 (= 27°C)	K
Boltzman constant	k	1.38×10^{-23}	J/K
Electron charge	q	1.6×10^{-19}	С
Thermal voltage	$\phi_T = kT/q$	26	mV (at 300 K)
Intrinsic Carrier Concentration (Silicon)	n_i	1.5×10^{10}	cm ⁻³ (at 300 K)
Permittivity of Si	$oldsymbol{arepsilon}_{si}$	1.05×10^{-12}	F/cm
Permittivity of SiO ₂	\mathcal{E}_{ox}	3.5×10^{-13}	F/cm
Resistivity of Al	$ ho_{Al}$	2.7×10^{-8}	Ω-m
Resistivity of Cu	ρ_{Cu}	1.7×10^{-8}	Ω-m
Magnetic permeability of vacuum (similar for SiO ₂)	μ_0	12.6×10^{-7}	Wb/Am
Speed of light (in vacuum)	c_0	30	cm/nsec
Speed of light (in SiO ₂)	c_{ox}	15	cm/nsec

Diode

$$I_D = I_S(e^{V_D/\phi_T} - 1) = Q_D/\tau_T$$

$$C_j = \frac{C_{j0}}{(1 - V_D/\phi_0)^m}$$

$$K_{eq} = \frac{-\phi_0^n}{(V_{kigh} - V_{low})(1 - m)} \times [(\phi_0 - V_{kigh})^{1 - m} - (\phi_0 - V_{low})^{1 - m}]$$

MOS Transistor

$$\begin{split} V_T &= V_{T0} + \gamma (\sqrt{-2\phi_F} + V_{SB}) - \sqrt{-2\phi_F}) \\ I_D &= \frac{k'_B W}{2 L} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \text{ (sat)} \\ I_D &= \upsilon_{EGF} C_{ON} W \bigg(V_{GS} - V_T - \frac{V_{DSAT}}{2} \bigg) (1 + \lambda V_{DS}) \\ \text{ (velocity sat)} \\ I_D &= k'_B \frac{W}{L} \bigg((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \bigg) \text{ (triode)} \\ I_D &= I_S \mathrm{e}^{\frac{V_{GS}}{nkT/q}} \bigg(1 - \mathrm{e}^{-\frac{V_{DS}}{kT/q}} \bigg) \text{ (subthreshold)} \end{split}$$

Deep Submicron MOS Unified Model

$$\begin{split} I_D &= 0 \quad \text{for} \quad V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \bigg(V_{GT} V_{mis} - \frac{V_{mis}^2}{2} \bigg) (1 + \lambda V_{DS}) \quad \text{for} \quad V_{GT} \geq 0 \\ \text{with} \quad V_{mis} &= \min(V_{GT}, V_{DS}, V_{DSAT}) \\ \text{and} \quad V_{GT} &= V_{GS} - V_{T} \end{split}$$

MOS Switch Model

$$\begin{split} R_{eq} &= \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \right) \\ &\approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right) \end{split}$$

Inverter

$$V_{OH} = f(V_{OL})$$

 $V_{OL} = f(V_{OH})$
 $V_M = f(V_M)$
 $t_p = 0.69R_{eq}C_L = \frac{C_L(V_{rwing}/2)}{I_{avg}}$
 $P_{dyx} = C_LV_{DD}V_{rwing}f$
 $P_{ver} = V_{DD}I_{DD}$

Static CMOS Inverter

$$\begin{split} V_{OH} &= V_{DD} \\ V_{OL} &= GND \\ V_{M} &\approx \frac{rV_{DD}}{1+r} \quad \text{with} \quad r = \frac{k_{p}V_{DSATp}}{k_{n}V_{DSATn}} \\ V_{IH} &= V_{M} - \frac{V_{M}}{g} \qquad V_{IL} = V_{M} + \frac{V_{DD} - V_{M}}{g} \\ \text{with} \quad g \approx \frac{1+r}{(V_{M} - V_{Tn} - V_{DSATn}/2)(\lambda_{n} - \lambda_{p})} \\ t_{p} &= \frac{t_{pHL} + t_{pLH}}{2} = 0.69 \, C_{L} \Big(\frac{R_{eqn} + R_{eqp}}{2}\Big) \\ P_{en} &= C_{L}V_{DD}^{2}f \end{split}$$

Interconnect

Lumped RC: $t_p = 0.69 RC$

Distributed RC: $t_p = 0.38 RC$

RC-chain:

$$\tau_N = \sum_{i=1}^{N} R_i \sum_{j=i}^{N} C_j = \sum_{i=1}^{N} C_i \sum_{j=1}^{i} R_j$$

Transmission line reflection:

$$\rho = \frac{V_{refl}}{V_{inc}} = \frac{I_{refl}}{I_{inc}} = \frac{R - Z_0}{R + Z_o}$$

MODELS FOR CMOS DEVICES

CMOS (0.25 µm) – Unified Model.

	$V_{70}\left(\mathbf{V}\right)$	$\gamma(V^{0.5})$	$V_{DSAT}(\mathbf{V})$	k' (A/V ²)	$\lambda(V^{-1})$
NMOS	0.43	0.4	0.63	115×10^{-6}	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

CMOS (0.25 μ m) – Switch Model (R_{eq})

$V_{DD}\left(\mathbf{V}\right)$	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

CMOS (0.25 µm) - BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/IcBook

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

$$\begin{split} F &= \frac{C_L}{C_{g1}} = \prod_1^N \frac{f_i}{b_i} \qquad G &= \prod_1^N g_i \qquad D &= t_{p0} \sum_{j=1}^N \left(p_j + \frac{f_j g_j}{\gamma} \right) \\ B &= \prod_1^N b_i \qquad H &= FGB \qquad D_{min} = t_{p0} \Biggl(\sum_{j=1}^N p_j + \frac{N(\sqrt[N]{H})}{\gamma} \Biggr) \end{split}$$

Wire area and fringe capacitances (for 0.25 μm CMOS process)

Rows represent the top plate of the capacitor, and columns represent the bottom plate. The area capacitances are expressed in aF/μm², while the fringe capacitances (given in the shaded rows) are in aF/μm.

	Field	Active	Poly	All	Al2	Al3	Al4
Poly	88						
	54						
All	30	41	57				
	40	47	54				
Al2	13	15	17	36			
	25	27	29	45			
Al3	8.9	9.4	10	15	41		
	18	19	20	27	49		
Al4	6.5	6.8	7	8.9	15	35	
	14	15	15	18	27	45	
Al5	5.2	5.4	5.4	6.6	9.1	14	38
	12	12	12	14	19	27	52

Sheet Resistance (for 0.25 µm CMOS process)

Material	Sheet Resistance (Ω/\Box)		
n- or p-well diffusion	1000 - 1500		
n^+ , p^+ diffusion	50 - 150		
n^+ , p^+ diffusion with silicide	3 – 5		
n^+ , p^+ polysilicon	150 - 200		
n^+ , p^+ polysilicon with silicide	4-5		
Aluminum	0.05 - 0.1		