Magični kvadrati

Prirejeno iz virov:

- http://mathworld.wolfram.com/MagicSquare.html
- http://en.wikipedia.org/wiki/Magic_square

Kazalo

height

1 Uvod

0

Definicija 1. $Magični \ kvadrat \ reda \ n$ je nabor n^2 različnih števil, ki so razvrščena v kvadratno tabelo tako, da vedno dobimo enako vsoto, če seštejemo vsa števila poljubne vrstice, vsa števila poljubnega stolpca ali vsa števila v katerikoli od glavnih diagonal.

Primer magičnega kvadrata reda 3 je prikazan v tabeli ?!?.

8	1	6
3	5	7
4	9	2

Definicija 2. Magični kvadrat reda n je normalen, če v njem nastopajo števila

$$1, 2, 3, \dots, n^2 - 1, n^2. \tag{1}$$

Magični kvadrat v tabeli ?!? je normalen. To je tudi najmanjši netrivialen normalen magični kvadrat. Poleg normalnih magičnih kvadratov so zanimivi tudi magični kvadrati praštevil.

2 Zgodovina

2.1 Kvadrat »Lo Shu«

Kitajska literatura iz časa vsaj 2800 let pred našim štetjem govori o legendi Lo Shu – »zvitek reke Lo«. V antični Kitajski je prišlo do silne poplave. Ljudje so skušali rečnemu bogu narasle reke Lo ponuditi daritev, da bi pomirili njegovo jezo. Iz vode se je prikazala želva z zanimivim vzorcem na oklepu: v tabeli velikosti tri krat tri so bila predstavljena števila, tako da je bila vsota števil v katerikoli vrstici, kateremkoli stolpcu in na obeh glavnih diagonalah enaka: 15. To število je tudi enako številu dni v 24 ciklih kitajskega sončnega leta. Ta vzorec so na določen način uporabljali upravljalci reke.

2.2 Kulturna pomembnost

Magični kvadrati so fascinirali človeštvo skozi vso zgodovino. Najdemo jih v številnih kulturah, npr. v Egiptu in Indiji, vklesane v kamen ali kovino, uporabljane kot talismane za dolgo življensko dobo in v izogib boleznim.

4	9	2
3	5	7
8	1	6

23	28	21
22	24	26
27	20	25

Kubera-Kolam je talna poslikava, ki se uporablja v Indiji, in je v obliki magičnega kvadrata reda 3. Ta je v bistvu enak kot kvadrat Lo Shu, vendar je vsako število povečano za 19.

Z magičnimi kvadrati so se ukvarjali tudi najbolj znani matematiki kot na primer Euler, glej [?].

2.3 Zgodnji kvadrati reda 4

Najzgodnejši znani magični kvadrat reda 4 je bil odkrit na napisu v Khajurahu v Indiji in v Enciklopediji Bratovščine Čistosti iz enajstega ali dvanajstega stoletja. Vrh vsega gre celo za »panmagični kvadrat«. V Evropi sta morda najbolj znana naslednja magična kvadrata reda 4:

Magični kvadrat v litografiji Melancholia I (glej sliko ?? za izsek s kvadratom) Albrechta Dürerja naj bi bil najzgodnejši magični kvadrat v evropski umetnosti. Zelo podoben je kvadratu Yang Huija, ki je nastal na Kitajskem približno 250 let pred Dürerjevim časom.

Vsoto 34 je mogoče najti pri seštevanju števil v vsaki vrstici, vsakem stolpcu, na vsaki diagonali, v vsakem od štirih kvadrantov, v sredinskih štirih poljih, v štirih kotih, v štirih sosedih kotov v smeri urinega kazalca (3+8+14+9), v štirih sosedih kotov v nasprotni smeri urinega kazalca (2+5+15+12), v dveh naborih simetričnih parov (2+8+9+15) in 3+5+12+14, in

Slika 1: Dürerjev magični Kvadrat

16	3	2
13		
5	10	11
8		
9	6	7
12		,
4	15	14
1		

Slika 2: Pasjonska fasada, Sagrada Família

še na nekaj drugih načinov. Števili na sredini spodnje vrstici tvorita letnico litografije: 1514.

Pasijonska fasada na katedrali Sagrada família v Barceloni (glej sliko ?? za fotografijo) vsebuje magični kvadrat reda 4.

1	14	14
4		
11	7	6
9	10	10
8 5	10	10
	0	2
13	2	3
15		

Vsota števil v vrsticah, stolpcih oziroma na diagonalah je 33 – Jezusova starost v času pasijona. Strukturno je kvadrat podoben Dürerjevemu, vendar so števila v štirih poljih zmanjšana za 1. Posledica je, da sta števili 10 in 14 podvojeni in zato kvadrat ni normalen.

3 Osnovne lastnosti

Definicija 3. Vsoto ene vrstice, enega stolpca ali ene od glavnih diagonal v magičnem kvadratu imenujemo *magična konstanta*.

Magična konstanta normalnega magičnega kvadrata reda!! je enaka

$$\mathcal{M}_2(n) = \frac{1}{2}n(n^2 + 1) \tag{2}$$

Dokaz. V normalnem magičnem kvadratu reda n je vsota vseh nastopajočih števil (glej (??) na strani ??) enaka $1+2+3+\cdots+n^2=\sum_{k=1}^{n^2}k=\frac{1}{2}n^2(n^2+1)$.

6	1	8
7	5	3
2	9	4

	točna vrednost , približek					
red	1	2	3	4	5	6
število kvadratov	1	0	1	880	275305224	!!

Ker imamo v kvadratu n vrstic z enako vsoto, je vsota števil v eni vrstici enaka številu $M_2(n)$.

Preprost račun pokaže, da je konstanti (??) analogna konstanta $M_2(n; A, D)$ za magični kvadrat, v katerem so nameščena števila $A, A+D, A+2D, \ldots, A+(n^2-1)D$, enaka !! Kvadratu v tabeli ?!? ustrezata konstanti A=20 in D=1.

Definicija 4. Če vsako od števil v normalnem magičnem kvadratu reda n odštejemo od števila $n^2 + 1$, dobimo nov magični kvadrat, ki je prvotnemu komplementaren.

Na primer, magičnemu kvadratu Lo Shu (glej tabelo ?!?) priredimo komplementarni kvadrat, prikazan v tabeli ?!?.

Vidimo, da je dobljeni kvadrat moč dobiti iz kvadrata Lo Shu tudi z zasukom za 180 stopinj okrog središča, kvadrat iz tabele ?!? pa je mogoče dobiti iz kvadrata Lo Shu z zrcaljenjem preko sredinske vodoravne črte.

Število različnih normalnih magičnih kvadratov

Definicija 5. Pravimo, da sta dva magična kvadrata *različna*, če enega ni mogoče dobiti iz drugega s pomočjo zasukov oziroma zrcaljenj.

Števila različnih normalnih magičnih kvadratov se nahajajo v tabeli ??. Vse normalne magične kvadrate reda 4 je oštevilčil Frénicle de Bessy leta 1693, glej [?], in jih je moč najti v knjigi [?] iz leta 1982. Število normalnih kvadratov reda 5 je izračunal R. Schroeppel leta 1973 (glej Gardner [?]). Natančno število vseh različnih normalnih magičnih kvadratov reda 6 ni znano. Avtorja navedenega približka sta Pinn in Wieczerkowski (glej [?]), ki sta za oceno uporabila simulacijo Monte Carlo in metode statistične mehanike.

4 Primeri

V tabelah ?!?, ?!? in ?!? so prikazani magični kvadrati redov 5, 6 in 9.

17	24	1
8	15	
23	5	7
14	16	
4	6	13
20	22	
10	12	19
21	3	
11	18	25
2	9	

6	32	3
34	35	1
7	11	27
28	8	30
19	14	16
15	23	24
18	20	22
21	17	13
25	29	10
9	26	12
36	5	33
4	2	31

47	58	69
80	1	12
23	34	45
57	68	79
9	11	22
33	44	46
67	78	8
10	21	32
43	54	56
77	7	18
20	31	42
53	55	66
6	17	19
30	41	52
63	65	76
16	27	29
40	51	62
64	75	5
26	28	39
50	61	72
74	4	15
36	38	49
60	71	73
3	14	25
37	48	59
70	81	2
13	24	35