Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a V-a

Problema 1. Fie numărul natural $n = 7 + 7^2 + 7^3 + + 7^{2017}$. a) Arătați că 7^{2018} dă prin împărțire la 6 și prin împărțire la 48 același rest. b) Aflați ultimele două cifre ale numărului $6n$.
Soluţie. a) $7n = 7^2 + 7^3 + 7^4 + \dots + 7^{2017} + 7^{2018}$, de unde $6n = 7n - n = 7^{2018} - 7$ 1p Rezultă $7^{2018} = 6n + 7 = 6(n + 1) + 1$, ceea ce arată că restul împărţirii la 6 a numărului 7^{2018} este 1
Problema 2. Aflaţi câte numere naturale scrise în baza zece îndeplinesc simultan condiţiile: i) Numărul are şase cifre. ii) Produsul cifrelor nenule ale numărului este 84. iii) Patru dintre cifrele numărului sunt 2, 0, 1, 7. Soluţie.
Cum $\frac{84}{2 \cdot 1 \cdot 7} = 6$, deosebim următoarele cazuri:
dacă prima cifră este 2, 6 sau 7. În acest caz sunt 240 de numere
dacă prima cifră este 6 sau 7. Dacă prima cifră este 1 se obțin 120 de numere. În total, în acest caz sunt 300 de numere
(3) Cifrele sunt $2,0,1,7,2,3$ Dacă prima cifră este $1,3$ sau 7 , se obțin $3\cdot 60=180$ de numere, iar dacă prima cifră este 2 se obțin 120 de numere. În total, în acest caz sunt 300 de numere

Problema 3. Fie $n \geq 2$ un număr natural. Spunem că numărul natural $\overline{a_1 a_2 ... a_n}$ are proprietatea (P) dacă

$$\overline{a_1 a_2 \dots a_n} = a_1 \cdot a_2 \cdot \dots \cdot a_n + a_1 + a_2 + \dots + a_n.$$

Găsiți toate numerele naturale $\overline{a_1 a_2 ... a_n}$ care au proprietatea (P).

Solutie.

Problema 4. Se consideră cifrele a, b, c, d, e, f nenule distincte. Determinați numerele naturale x cu proprietatea că x divide oricare număr de șase cifre distincte scris cu cifrele a, b, c, d, e, f.

Solutie.

Oricum am alege 6 cifre nenule diferite, cel puţin două dintre ele sunt consecutive.

Notăm cu m și n, m > n două cifre consecutive dintre cifrele a, b, c, d, e, f, iar cu p, q, r, s cele patru cifre rămase.

Dacă $3 \nmid a+b+c+d+e+f$, atunci x=1. Dacă $3 \mid a+b+c+d+e+f$ şi $9 \nmid a+b+c+d+e+f$, atunci x=1 sau x=3. Dacă $9 \mid a+b+c+d+e+f$, atunci x=1, x=3 sau x=9......**2p**