Testing Hypotheses about a Single Population Parameter

Tyler Ransom

Univ of Oklahoma

Feb 7, 2019

Today's plan

- 1. Review reading topics
 - 1.1 Sampling distribution of OLS
 - 1.2 Hypothesis testing of single population parameter
 - p-values
 - confidence intervals
 - statistical vs. practical significance
- 2. In-class activity: Practice conducting hypothesis tests of population parameters

Quick review

What we've done so far

- Given the population regression model

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + u$$
,

- Show OLS is unbiased under assumptions 1-4
- Derive standard errors of $\hat{\beta}_i$ under homoskedasticity
- Assumptions 1-5 known as Gauss-Markov Assumptions
- Show that OLS is BLUE (Gauss-Markov Theorem)

What else we've done so far

- Compute direction of bias when $E(u|\mathbf{x}) = 0$ doesn't hold (omitted variable)
- Interpret meaning of $\hat{\beta}_i$ when x_i is transformed
- or when x_i contains qualitative information
- Interpret meaning of $\hat{\beta}_i$ when y is a dummy

Sampling distribution of OLS Estimators

Sampling distribution of OLS

- Now, we want to test hypotheses about the β_j 's
- i.e. hypothesize a value of β_i and use data to see if it's likely to be false
- To do so, need more than $E(\hat{eta}_j)$ or $Var(\hat{eta}_j)$
- Need to know what the whole distribution of $\hat{\beta}_i$ looks like
- Must make one more assumption: u is distributed iid $N(0, \sigma^2)$
 - iid: u's independent of x's; unit i's u is independent of unit k's u

The Classical Linear Model (CLM)

- This is our 6th assumption $[u \sim N(o, \sigma^2)]$
- Call the model under A1-A6 the Classical Linear Model (CLM)
- In other words,

- Normality is a crazy assumption
- But it is reasonable in large samples (see: Central Limit Theorem)

Normal Sampling Distributions

- Under CLM assumptions, we have

$$\hat{\beta}_j \sim N[\beta_j, Var(\hat{\beta}_j)]$$

where $Var(\hat{\beta}_i)$ is our formula from before

- Can re-write this as a standard normal distribution:

$$\frac{\hat{eta}_j - eta_j}{\mathsf{sd}(\hat{eta}_j)} \sim \mathsf{Normal}(\mathsf{0}, \mathsf{1})$$

- but $sd(\hat{\beta}_j)$ is a function of σ^2 , which is unknown

t Distribution for Standardized Estimators

- Since we don't know σ^2 we estimate it as $\hat{\sigma}^2$
- Then, use $se(\hat{\beta}_j)$ instead of $sd(\hat{\beta}_j)$:

$$rac{\hat{eta}_j - eta_j}{\mathsf{se}(\hat{eta}_j)} \sim \mathsf{t}_{n-k-1} = \mathsf{t}_{df}$$

- Using $\hat{\sigma}^2$ instead of σ^2 takes us to t distribution instead of Normal
- t with large df is indistinguishable from Normal
- In practice, will almost always have large enough df to use Normal

Hypothesis testing of single parameters

Example

- Consider a model of students' final grades:

$$final = \beta_0 + \beta_1 missed + \beta_2 priorGPA + \beta_3 ACT + u$$

where missed is # of classes missed during the semester

- We want to test the following hypothesis:

$$H_0: \beta_1 = 0$$

- This is a hypothesis that missing class does not affect final grade...
- once we control for prior performance (priorGPA) and cognition (ACT)

Example (cont'd)

- In R, we get the following table:

- Which means that $\hat{\beta}_1 = -0.079$ and $se(\hat{\beta}_1) = 0.035$

Example (cont'd)

- Plug these values (-0.079 and 0.035) into our formula:

$$\frac{-0.079 - 0}{0.035} = t_{676}$$
$$= -2.25$$

so our t-statistic is -2.25. Is that big enough to reject H_0 ?

- Need to specify a **significance level** which corresponds to a **critical value**

Review

- Need two things to conduct a hypothesis test:
 - Test statistic (T): Some function of the sample of data
 - 2. **Critical value (c):** Value of T such that we reject H_0 if, e.g. |T| > c
- c is implicitly a function of the significance level α

A two-sided test with $\alpha = 0.05$ (Wooldridge Fig. C.6)

Back to the Example

- t statistic = -2.25, with 676 degrees of freedom
- For two-sided test ($\alpha = .05$), need the 2.5th and 97.5th percentiles
- $-\frac{C=-1.96,1.96}{\text{(see http://ttable.org)}}$
- -2.25 < -1.96, so reject H_0
- "We reject the null hypothesis at the 5% significance level"
- Critical values for other significance levels:

$$c_{.10} = 1.645$$

$$c_{.01} = 2.576$$

Computing *t* **statistics automatically**

- R automatically reports t stats for hypothesis tests with $H_0 = 0$:

```
tidv(est)
# A tibble: 4 x 5
           estimate std.error statistic
 term
1 (Intercept) 12.4
                     1.17
                              10.6
2 missed
       -0.0793 0.0352
                              -2.25
3 priGPA
             1.92 0.373
                              5.14
4 ACT
             0.401
                     0.0532
                              7.54
```

- We can then choose our critical value based on our preferred α
- Can also conduct one-sided instead of two-sided tests

Conducting tests with non-zero null values

- Suppose we want to instead test

$$H_0: \beta_{missed} = -1$$

 $H_1: \beta_{missed} \neq -1$

- Need to plug it into the formula

$$t = \frac{\text{estimate} - \text{null}}{\text{std. err.}}$$
$$= \frac{-0.0793 - (-1)}{0.0352}$$
$$= 28.33$$

- Then compare with the appropriate critical value

p-values

- It's kind of a pain to look up a critical value and compare with test statistic
- Can instead use a p-value
- p-value: largest α level at which we could conduct test and fail to reject H_0
- if $\alpha = 0.05$, reject H_0 if p < 0.05
- if $\alpha = 0.01$, reject H_0 if p < 0.01
- -

Computing p-values automatically

- R automatically reports p-values for **2-sided tests** with $H_0 = 0$:

- β_{missed} has p = .0247, so reject at 5% (but not 1%) level
- For one-sided tests, halve the *p*-value

p-values with non-zero null values

- Suppose we want to compute p-value for test

$$H_0: \beta_{missed} = -1$$

 $H_1: \beta_{missed} \neq -1$

- Need to plug it into the formula as before

$$t = \frac{\text{estimate} - \text{null}}{\text{std. err.}}$$
$$= 28.33$$

- Then need to compute area under the t-distribution curve
- In R: 2*pt(-abs(t), df), where t is the t-stat with df deg. of freedom

Confidence intervals

- It's also useful to construct **confidence intervals** around the parameters
- CI is supposed to give a "likely" range of values for the parameter
- CIs are of the form

$$\hat{\beta}_j \pm c \cdot se(\hat{\beta}_j)$$

where c > o is chosen based on the **confidence level**

- Most common: 95% confidence level
- c comes from the 97.5 percentile of the t_{df} distribution

Computing CIs automatically

- R reports CIs using the confint() function:

```
confint(est)
2.5 % 97.5 %
(Intercept) 10.0719177 14.67415920
missed -0.1485216 -0.01015563
priGPA 1.1836741 2.64691420
ACT 0.2965542 0.50557363
```

- Remember: c comes from the **two-sided** $(1-\alpha)$ critical value
- Reject Ho if the null value is **outside** the CI