지능화 캡스톤 프로젝트

프로젝트 #1 중간 발표

2022. 5. 25

충북대학교 산업인공지능학과 [20-8조] 고정재, 유용주

수행방법 및 기여도

수행방법

- 같은 회사에 재직중이나 팀이 달라 일과 시간 이후에 프로젝트 수행.
- 회사 업무가 전공분야가 아니라, 코딩 방법, CNN에 대해 공부를 하면서 진행 함.
- 코딩을 할 수 있는 능력이 안되어 최대한 논문을 참고하여 유사하게 수행 할려고 함.

업무분장 및 기여도

이름	비중	수행내용	비고
고정재	50%	데이터 증량데이터 전처리성능 평가발표	
유용주	50%	 Kaggle dataset 활용법, colab 사용법, CNN에 대한 공부 자료 수집 발표 자료 작성 발표 	

데이터셋

Dataset

- Kaggle에 있는 wm811k-wafer-map을 활용
- Total 811,457개의 WM Data 구성

진행 흐름도

Colab을 활용하여 실행

Opcv를 활용

데이터셋(Augmentation)

- Data 전처리를 하여 Class 불균형 해결

With Label 172,950 (21.3%)

None	147,431(18.17%)		
Center	4,294 (0.53%)		
Donut	555 (0.07%)		
Edge-Loc	5189 (0.64%)		
Edge-Ring	9680 (1.19%)		
Local	3593 (0.44%)		
Random	866 (0.11%)		
Scratch	1193 (0.15%)		
Near-full	149 (0.02%)		

논문 증강 기법 적용

10°의 무작위 회전 : 20% 좌우 대칭 및 너비 이동 : 20% 놀이 이동 : 15%

표이 이동 : 13% 전단 범위 : 10%

채널 이동 및 확대/축소 :10%

100% 비율로 맞출 예정

None	10,000	
Center	10,000	
Donut	10,000	
Edge-Loc	10,000	
Edge-Ring	10,000	
Local	10,000	
Random	10,000	
Scratch	10,000	
Near-full	10,000	

데이터셋

데이터 구성

- Kaggle wm811k-wafer-map

Train: Validation: Test = 65: 20: 15 Train: Validation: Test = 65: 20: 15

CNN 구조

CNN 구조

- 그림/표/모델정보(실행화면)로 표현 (논문과 동일? 다르면 어떤 부분이 다른지 등)

*Note: IN denotes input layer; C convolutional layer; P pooling layer; DO dropout layer; FC fully connected layer; OUT output layer; and BN batch normalization

C2	Convolution2	16	111×111	3×3	Yes	ReLU
C3	Convolution3	32	111×111	3×3	Yes	ReLU
P2	Max Pooling2	32	55×55	2×2	No	_
C4	Convolution4	32	55×55	3×3	Yes	ReLU
C5	Convolution5	64	55×55	3×3	Yes	ReLU
P3	Max Pooling3	64	27×27	2×2	No	_
C6	Convolution6	64	27×27	3×3	Yes	ReLU
C7	Convolution7	128	27×27	3×3	Yes	ReLU
P4	Max Pooling4	128	13×13	2×2	No	_
C8	Convolution8	128	13×13	3×3	Yes	ReLU
P5	Max Pooling5	128	6×6	2×2	No	_
FC1	Fully-Connected1	1	4608	_	_	ReLU
FC2	Fully Connected2	1	512	_	_	ReLU
OUT	Output	1	9	-	_	Softmax

과적합을 방지하기 위한 규제화(regulation)

- Batch Normalization(정규화)
- Spatial Dropout = 0.2

CNN 구조

주요 코드 및 실행 결과

- 현재까지는 Kaggle에 있는 Dataset을 다운로드 한 후 colab에 데이터 로딩

```
[1] 1 from google.colab import drive
     2 drive.mount('/content/drive')
    Mounted at /content/drive
     1 !cp '/content/drive/MyDrive/tmp/archive.zip' ./
    1 !unzip archive.zip
    Archive: archive.zip
      inflating: LSWMD.pkl
    1 !Is -alh
    total 2.1G
    drwxr-xr-x 1 root root 4.0K May 24 23:28 .
    drwxr-xr-x 1 root root 4.0K May 24 23:26 ...
    -rw----- 1 root root 150M May 24 23:28 archive.zip
    drwxr-xr-x 4 root root 4.0K May 17 13:38 .config
    drwx----- 6 root root 4.0K May 24 23:28 drive
    -rw-r--r-- 1 root root 2.0G Sep 27 2019 LSWMD.pkl
    drwxr-xr-x 1 root root 4.0K May 17 13:39 sample_data
    1 import numpy as np
     2 import pandas as pd
     3 import matplotlib.pyplot as plt
    1 df=pd.read_pickle("LSWMD.pkl")
    1 df.head()
```

CNN 구조

주요 코드 및 실행 결과

- 현재까지는 Kaggle에 있는 Dataset을 다운로드 한 후 colab에 데이터 로딩

		waferMap	dieSize	lotName	waferIndex	trianTestLabel	failureType	7.
0	[[0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	1683.0	lot1	1.0	[[Training]]	[[none]]	
1	[[0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	1683.0	lot1	2.0	[[Training]]	[[none]]	
2	[[0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	1683.0	lot1	3.0	[[Training]]	[[none]]	
3	[[0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	1683.0	lot1	4.0	[[Training]]	[[none]]	
4	[[0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0,	1683.0	lot1	5.0	[[Training]]	[[none]]	
Ra Da # 0 1 2 3 4 5 dt	<pre>1 df.info() <pre> <class 'pandas.core.frame.dataframe'=""> RangeIndex: 811457 entries, 0 to 811456 Data columns (total 6 columns): # Column</class></pre></pre>							

학습 방법

딥러닝 학습 조건

- 노트북 PC 사양, 학습시간

CPU: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz 2.59 GHz

RAM: 8GB

GPU: Intel(R)HD Graphics 520

- 하이퍼파라미터 : epoch수, 학습률, batch size, optimizer, loss 함수 등
- 학습추이 그래프 등
- 학습 중 알게 된 내용 등 ... 학습률/optimzer에 따른 학습추이 비교 등...

감사합니다