Common Machine Learning Algorithms

https://www.vpnsrus.com/

CONTENTS

Linear Models

Regularized Linear Models

3 **Linear Support Vector Machines**

LINEAR MODELS

LINEAR MODELS – FUNCTIONALITY

SUPERVISED

REGRESSION | CLASSIFICATION

PARAMETRIC

WHITE-BOX

General idea Represent target as function of linear predictor $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$

Hypothesis space

$$\mathcal{H} = \{f : \mathcal{X} o \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x})\}, \text{ with suitable transformation } \phi(\cdot), \text{ e.g.,}$$

- Identity $\phi(\theta^{\top}\mathbf{x}) = \theta^{\top}\mathbf{x} \Rightarrow \text{linear regression}$
- Logistic sigmoid function $\phi(\theta^T \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})} =: \pi(\mathbf{x} \mid \theta) \Rightarrow$ (binary) logistic regression
 - Probability $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ of belonging to one of two classes
 - Separating hyperplane via decision rule (e.g., $\hat{y} = 1 \Leftrightarrow \pi(\mathbf{x}) > 0.5$)

Linear regression hyperplane

Logistic function for bivariate input and loss-minimal $oldsymbol{ heta}$

Corresponding separating hyperplane

LINEAR MODELS – FUNCTIONALITY

Empirical risk

- Linear regression
 - Typically, based on quadratic loss: $\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \left(y^{(i)} f\left(\mathbf{x}^{(i)} \mid \theta \right) \right)^2$ \Rightarrow corresponding to ordinary-least-squares (OLS) estimation
 - Alternatives: e.g., absolute or Huber loss (both improving robustness)
- Logistic regression: based on Bernoulli/log/cross-entropy loss

$$\Rightarrow \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \right) \right) - (1-y^{(i)}) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \right) \right)$$

Optimization

- For **OLS**: analytically with $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ (with $\mathbf{X} \in \mathbb{R}^{n \times p}$: matrix of feature vectors)
- For other loss functions: numerical optimization

Hyperparameters None

LINEAR MODELS - PRO'S & CON'S

Advantages

- + Simple and fast implementation
- + Analytical solution
- + **Cheap** computation
- $+\,$ Applicable for any **dataset size**, as long as number of observations \gg number of features
- Flexibility beyond linearity with polynomials, trigonometric transformations etc.
- + Intuitive **interpretability** via feature effects
- $+\,\,$ Statistical hypothesis **tests** for effects available

Disadvantages

- Nonlinearity of many real-world problems
- Further restrictive assumptions: linearly independent features, homoskedastic residuals, normality of conditional response
- Sensitivity w.r.t. outliers and noisy data (especially with L2 loss)
- Risk of overfitting in higher dimensions
- Reature interactions must be handcrafted, so higher orders practically infeasible
- No handling of missing data

Simple method with good interpretability for linear problems, but with strong assumptions and limited complexity

LINEAR MODELS - PRACTICAL HINTS

Implementation

- R: mlr3 learner LearnerRegrLM, calling stats::lm() / mlr3 learner LearnerClassifLogReg, calling stats::glm()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

REGULARIZED LINEAR MODELS

REGULARIZED LM – FUNCTIONALITY

General idea

- Unregularized LM: risk of **overfitting** in high-dimensional space with only few observations
- Goal: find compromise between model fit and generalization

Empirical risk

- Empirical risk function **plus complexity penalty** $J(\theta)$, controlled by shrinkage parameter $\lambda > 0$: $\mathcal{R}_{\text{reg}}(\theta) := \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot J(\theta)$.
- Popular regularizers
 - Ridge regression: L2 penalty $J(\theta) = \|\theta\|_2^2$
 - ullet LASSO regression: L1 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_1$

Optimization

- Ridge: analytically with $\hat{\boldsymbol{\theta}}_{\mathsf{Ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$
- LASSO: numerically with, e.g., (sub-)gradient descent

Hyperparameters Shrinkage parameter λ

REGULARIZED LM – PRACTICAL HINTS

Choice of regularization parameter

- Standard hyperparameter optimization problem
- E.g., choose λ with minimum mean cross-validated error (default in R package glmnet)

Ridge vs. LASSO

- Ridge
 - ullet Overall smaller, but still dense heta
 - Suitable with many influential features present, handling correlated features by shrinking their coefficients equally
- LASSO
 - Actual variable selection
 - Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Neither overall better compromise: elastic net
 - → weighted combination of Ridge and LASSO regularizers

Implementation

- R: mlr3 learners LearnerClassifGlmnet / LearnerRegrGlmnet, calling glmnet::glmnet()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

LINEAR SUPPORT VECTOR MACHINES

LINEAR SVM - FUNCTIONALITY

SUPERVISED

CLASSIFICATION

PARAMETRIC

BLACK-BOX

General idea

- Find linear decision boundary (separating hyperplane) that best separates classes
 - Hard-margin SVM: maximize distance (margin $\gamma > 0$) to closest members (support vectors, SV) on each side of decision boundary
 - Soft-margin SVM: relax separation to allowing margin violations → maximize margin while minimizing violations
- 3 types of training points
 - non-SVs with no impact on decision boundary
 - SVs located exactly on decision boundary
 - margin violators

Hypothesis space $\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0 \}$ separater intercept notwendig?

LINEAR SVM – FUNCTIONALITY

Hard-margin SVM: margin is maximized by boundary on the right

Dual problem

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \mathbf{y}^{(i)} \mathbf{y}^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$$

s.t.
$$0 \le \alpha_i \le C \ \, \forall i \in \{1,\ldots,n\} \ \, (\textit{C} = \infty \ \, \text{for hard-margin SVM}),$$

$$\sum_{i=1}^n \alpha_i y^{(i)} = 0$$

LINEAR SVM – FUNCTIONALITY

Empirical risk

Soft-margin SVM also interpretable as **L2-regularized ERM**:

$$\frac{1}{2}\|\boldsymbol{\theta}\|^2 + C\sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

with

- $\bullet \|\boldsymbol{\theta}\| = 1/\gamma,$
- C > 0: penalization for missclassified data points
- L(y, f) = max(1 yf, 0): hinge loss
 → other loss functions applicable (e.g., Huber loss)

Optimization

- Typically, tackling dual problem (though feasible in corresponding primal) via quadratic programming
- Popular: sequential minimal optimization → iterative algorithm based on breaking down objective into bivariate quadratic problems with analytical solutions

Hyperparameters Cost parameter C

LINEAR SVM - PRO'S & CON'S

Advantages

- + Often **sparse** solution
- Robust against overfitting (regularized);
 especially in high-dimensional space
- + **Stable** solutions, as non-SV do not influence decision boundary

Disadvantages

- Costly implementation; long training times
- Limited scalability to larger data sets ??
- Confined to linear separation
- Poor interpretability

Very accurate solution for high-dimensional data that is linearly separable

LINEAR SVM - PRACTICAL HINTS

Preprocessing

Features must be rescaled before applying SVMs.

Tuning

Cost parameter C must be tuned and has strong influence on resulting separating hyperplane.

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling svm() from libsvm
- Python: sklearn.svm.SVC from package scikit-learn/package libSVM