ding to $T(t_0)$ and τ_1 , τ_2 , then $\sigma(A)$ splits into closed subsets σ_1 , σ_2 and P is the corresponding spectral projection for T and σ_1 , σ_2 .

<u>Proof.</u> The spectral projection P of $T(t_0)$ is obtained by integrating $R(\lambda,T(t_0))$ (see e.g. [Dunford-Schwartz (1958), Section VII.3]). Since every T(t), $t \ge 0$, commutes with $T(t_0)$ it must commute with $R(\lambda,T(t_0))$, hence with P. The statement on the decomposition $\sigma(A) = \sigma_1 \cup \sigma_2$ follows from the Spectral Inclusion Theorem 6.2 below.

This decomposition can be applied as follows to the study of the asymptotic behavior of \mathcal{T} : In the situation of Cor.3.5 assume

$$\sup \{|\lambda| : \lambda \in \tau_2\} < \alpha < \inf \{|\lambda| : \lambda \in \tau_1\}.$$

If we set β := $(\log \alpha)/t_0$ and use [Pazy(1984),Chap.I,Thm.6.5] we obtain $\omega(T_2) < \beta$ and $\omega(T_1^{-1}) < \beta$ by Prop.1.1. Therefore we have constants m , M \geq 1 such that

$$\begin{split} & \| \mathbf{T}(t) \, \mathbf{f} \| \, \leq \, M \cdot \mathbf{e}^{\beta t} \| \mathbf{f} \| \quad \text{for } \mathbf{f} \, \in \, \mathbf{E}_2 \ , \\ & \| \mathbf{T}(t) \, \mathbf{f} \| \, \geq \, m \cdot \mathbf{e}^{\beta t} \| \mathbf{f} \| \quad \text{for } \mathbf{f} \, \in \, \mathbf{E}_1 \ . \end{split}$$

As nice as they might look results of this type are unsatisfactory: we need information on the semigroup in order to estimate its asymptotic behavior. In Chapter IV we will try to obtain such results by exploiting information about the generator only.

3.6 <u>Isolated</u> singularities and poles.

In case that $^{\lambda}_{\text{O}}$ is an isolated point of $^{\sigma}(A)$ the holomorphic function $^{\lambda}$ + R(\(^{\lambda},A\)) can be expanded as a Laurent series $\text{R($\lambda$,A$)} = \sum_{n=-\infty}^{+\infty} \text{U}_n \left(^{\lambda} - \frac{\lambda}{\text{O}}\right)^n \quad \text{for} \quad 0 < \left|^{\lambda} - \frac{\lambda}{\text{O}}\right| < \delta \quad \text{and some} \quad \delta > 0 \text{ .}$ The coefficients U_n are bounded linear operators given by

(3.1)
$$U_n = \frac{1}{2\pi i} \int_{\Gamma} (z - \lambda_0)^{-(n+1)} R(z,A) dz$$
, $n \in \mathbb{Z}$,

where $\Gamma = \{z \in \mathbb{C} : |z - \lambda_0| = \delta/2\}$.

The coefficient U_1 is the spectral projection corresponding to the spectral set $\{\lambda_0^{}\}$ (see Def.3.1), it is called the residue of R(·,A) at $\lambda_0^{}$, and will be denoted by P . From (3.1) one deduces

(3.2)
$$U_{-(n+1)} = (A - \lambda_0)^n \circ P$$
 and $U_{-(n+1)} \circ U_{-(m+1)} = U_{-(n+m+1)}$ for $n, m \ge 0$.