

Redes de Computadores

Conceitos Básicos Introdução

Prof. Vagner Sacramento

Revisão

Objetivo:

- entender o contexto, visão geral e o que são redes
- maior profundidade, detalhes posteriormente no curso
- abordagem:
 - descritiva
 - uso da Internet como exemplo

Resumo:

- o que é a Internet
- o que é um protocolo?
- a borda da rede
- o núcleo da rede
- rede de acesso e meio físico
- desempenho: perda, atraso, etc
- camadas de protocolos, modelos de serviço
- backbones, NAPs, ISPs

O que é a Internet: visão dos componentes (I)

- Milhões de dispositivos de computação conectados: hosts, sistemas finais
 - workstations de PCs, servidores
 - telefones com PDA's rodando aplicações de rede
- Enlaces (canais) de comunicação
 - fibra, cobre, rádio, satélite
- Roteadores: encaminham pacotes de dados através da rede

O que é a Internet: visão dos componentes (II)

- Protocolos: controlam o envio e recepção de mensagens
 - ex., TCP, IP, HTTP, FTP,PPP
- Internet: "rede de redes"
 - livremente hierárquica
 - Internet pública versus intranet privada
- Padrões Internet
 - RFC: Request for comments
 - IETF: Internet Engineering
 Task Force

O que é a Internet: visão dos serviços

- A infra-estrutura de comunicação permite o uso de aplicações distribuídas:
 - WWW, email, jogos,
 e-comércio, bacos de dados, votações,
 compartilhamento de arquivos (ex.: MP3)
- Serviços de comunicação disponibilizados:
 - sem conexões
 - orientado a conexões

O que é um protocolo?

Protocolos humanos:

... msgs específicas são enviadas, segundo uma ordem pré-estabelecida

... ações específicas são realizadas quando as msgs são recebidas, ou acontecem outros eventos

Protocolos de rede:

- máquinas ao invés de pessoas
- todas as atividades de comunicação na Internet são governadas por protocolos

protocolos definem o formato e ordem das mensagens enviadas e recebidas pelas entidades da rede, bem como as ações tomadas quando da transmissão ou recepção destas mensagens

O que é um protocolo?

Um protocolo humano e um protocolo de rede:

Uma olhada mais de perto na estrutura da rede:

- Borda da rede: aplicações e hospedeiros (hosts)
- Núcleo da rede:
 - roteadores
 - rede de redes
- Redes de acesso, meio físico: enlaces de comunicação

A borda da rede

Sistemas finais (hosts):

- rodam programas de aplicação
- ex.: WWW, email
- na "extremidade da rede

Modelo cliente/servidor

- o host cliente faz pedidos que são atendidos pelos servidores
- ex.: cliente/ servidor WWW
 (browser); cliente/servidor de email

Modelo peer-to-peer :

- interação simétrica entre os hosts
- ex.: teleconferência,

Borda da rede: serviço orientado a conexões

Objetivo: transferência de dados entre *hosts*.

- handshaking: inicializa (prepara para) a transf. de dados
 - Alô,... alô (protocolo humano)
 - inicializa o "estado" em dois hosts que desejam se comunicar
- TCP Transmission Control Protocol
 - serviço orientado a conexão da Internet

serviço TCP [RFC 793]

- transferência de dados através de um fluxo de bytes ordenados e confiável
 - perda: tratata através de reconhecimentos e retransmissões
- controle de fluxo :
 - transmissor não inundará o receptor
- controle de congestionamento :
 - transmissor "diminui a taxa de transmissão" quando a rede está congestionada.

Borda da rede: serviço sem conexão

<u>Objetivo:</u> transferência de dados entre sistemas finais

- UDP User Datagram Protocol [RFC 768]: serviço sem conexão da Internet
 - transferência de dados não confiável
 - não controla o fluxo
 - nemcongestionamento

<u>Aplicações que usam</u> TCP:

 HTTP (WWW), FTP (transferência de arquivo), Telnet (login remoto), SMTP (email)

<u>Aplicações que usam</u> <u>UDP:</u>

 streaming media, teleconferência, telefonia Internet

O Núcleo da Rede

- Malha de roteadores interconectados
- A pergunta fundamental: como os dados são transferidos através da rede?
 - comutação de circuitos:
 circuito dedicado por
 chamada: rede telefônica
 - comutação de pacotes:
 os dados são enviados
 através da rede em
 pedaços discretos
 (Pacotes).

Núcleo da Rede: Comutação de Circuitos

Recursos fim a fim são reservados para a chamada.

 banda do enlace, capacidade dos comutadores

- recursos dedicados: sem compartilhamento
- desempenho garantido (como em um circuito físico)
- necessita estabelecimento de conexão

Núcleo da Rede: Comutação de Circuitos

Recursos da rede (ex., banda) são divididos em "pedaços"

- pedaços alocados às chamadas
- o pedaço do recurso fica ocioso se não for usado pelo seu dono (não há compartilhamento)
- como é feita a divisão da banda de um canal em "pedaços" (multiplexação):
 - divisão de frequência (FDM)
 - divisão de tempo (TDM)

TDM:

All slots labelled 2 are dedicated to a specific sender-receiver pair.

Comutação de Circuitos: FDM e TDM

Núcleo da Rede: Comutação de Pacotes

Cada fluxo de dados fim-a-fim é dividido em pacotes

- pacotes dos usuários A e B compartilham os recursos da rede
- cada pacote usa toda a banda do canal
- recursos são usados quando necessário

Divisão da banda em "pedaços" Alotação dedizada

Disputa por recursos:

- a demanda total pelos recursos pode superar a quantidade disponível
- congestionamento: pacotes são enfileirados, esperando para usar o enlace
- armazena e retransmite: pacotes se deslocam uma etapa (hop) por vez
 - transmite num enlace
 - espera a vez no próximo enlace

Núcleo da Rede: Comutação de Pacotes

Comutação de pacotes versus comutação de circuitos:

 existem outras analogias humanas? Ex: correios

Núcleo da Rede: Comutação de Pacotes

Comutação de pacotes: comportamento de armazenamento e retransmissão (store and forward)

- Quebra uma mensagem em pedaços menores (pacotes)
- Store-and-forward:
 comutador espera a
 chegada do pacote
 completo e o
 encaminha/roteia para o
 próximo comutador

Comutação de pacotes x comutação de circuitos

A comutação de pacotes permite que mais usuários usem a rede!

- Enlace de 1 Mbit
- cada usuário:
 - 100Kbps quando "ativo"
 - ativo 10% do tempo

• comutação por circuitos: Nusuários

- 10 usuários
- comutação por pacotes:
 - com 35 usuários,
 probabilidade > 10
 ativos menor que 0,004

Comutação de pacotes x comutação de circuitos

- A comutação de pacotes é sempre mais vantajosa?
- Ótima para dados em surtos/rajadas
 - compartilhamento dos recursos
 - não necessita estabelecimento de conexão
- Congestionamento excessivo: atraso e perda de pacotes
 - necessita de protocolos para transferência confiável de dados, controle de congestionamento
- P: Como fornecer um comportamento do tipo circuito?
 - São necessárias garantias de banda para aplicações de áudio e vídeo
-ainda.é.um.problema não resolvido

Classificação das Redes

- Redes Locais (LANs)
- Redes Metropolitanas (MANs)
- Redes Distribuídas (WANs)

Redes Locais (LAN)

- Uma rede local (Local Area Network LAN) é um conjunto de sistemas computacionais interconectados em uma área limitada, como uma sala, prédio ou campus
- Alta taxa de transmissão da ordem de Mbps (Megabits/seg) ou Gbps (Gigabits/seg)
- Normalmente tem baixas taxas de erro na transmissão
- O meio de transmissão é privado

Redes Locais (LAN)

Exemplos:

- Ethernet (a)
- Token Ring (b)

Redes Metropolitanas (MAN)

- Uma rede metropolitana (Metropolitan Area Network - MAN) pode ser entendida como uma rede local estendida, interconectando prédios, escritórios matriz/filial em uma cidade
 - Ex.: Uma rede dedicada a experimentos que interliga a PUC-Rio com a UFRJ.
- Alta taxa de transmissão da ordem de Mbps (Megabits/seg);
- Baixa taxa de erro na transmissão;

Redes Distribuídas (WAN)

- Uma rede distribuída (Wide Area Network WAN) permite conectar sistemas ou redes locais geograficamente distantes. Ex.: Comunicação entre estados ou paises;
- As taxas de transmissão são, geralmente da ordem de Kbps (Kilobits/seg), mas podem chegar a Mbps (Megabits/seg) ou Gbps;
- As taxas de erros na transmissão são maiores que nas LANs e MANs;
- Os meios de transmissão são geralmente públicos;
- Exemplo:
 - Internet

Redes Distribuídas (WAN)

 A redes WAN utilizam uma tecnologia de transmissão que permite interligar roteadores em distâncias arbitrariamente grandes.

Redes comutadas por pacotes: roteamento

- Objetivo: mover pacotes entre roteadores da origem até o destino
 - serão estudados diversos algoritmos de escolha de caminhos
- redes de datagrama:
 - o endereço do destino determina próxima etapa
 - rotas podem mudar durante a sessão
 - analogia: dirigir, pedindo informações

Redes de Datagrama

- Rota determinada para cada pacote individual
- Pacotes podem seguir rotas diferentes
- Tabela de rotas em cada roteador
 - indica a próxima etapa (hop) no caminho a ser seguida para se chegar a cada destino conhecido
 - com base no endereço de destino
 - endereços organizados de forma hierárquica
 - Ex.: rede + máquina
- Análogo ao sistema postal

Redes de Datagrama (cont.)

- Não é necessário tempo inicial de preparação da conexão
- Dados começam a ser transmitidos imediatamente

Redes de Circuitos Virtuais

- Redes de circuitos virtuais:
 - cada pacote contém uma marca (id. do circuito virtual), a qual determina a próxima etapa
 - caminho fixo determinado no estabelecimento da chamada, permanece fixo durante a chamada
 - roteadores mantêm estados para cada chamada
- Cada roteador mantém uma tabela de VCs:
 - Uma entrada para cada VC passando por ele
 - Indicando a interface de rede através da qual pacotes de cada VC devem ser encaminhados
- Cada VC recebe um número único no contexto de um roteador
 - O mesmo VC pode ser identificado através de números diferentes em roteadores (e links) distintos ao longo do caminho
- Pacotes são identificados pelo número do VC ao qual pertencem

Redes de Circuitos Virtuais (cont.)

- Protocolo de sinalização
 - Usado para o estabelecimento de circuitos virtuais
 - Antes que transferência de dados real possa ocorrer

Redes de Circuitos Virtuais: Exemplo

• De A para B

Tabela de VCs em PS1:

Incoming interface	Incoming VC #	Outgoing Interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
	•••		''' 35

Taxonomia de Redes de Computadores

- O fato de uma rede ser baseada em datagramas não implica em que ela seja orientada a conexões ou sem conexões
- A Internet oferece ambos os tipos de serviço às aplicações: orientado a conexões (TCP) e sem conexões

Acesso à rede e meios físicos

P: Como conectar os sistemas finais aos roteadores de borda?

- redes de acesso residencial
- redes de acesso institucional (escola, empresa)
- redes de acesso móvel

Considere:

- largura de banda (bits por segundo) da rede de acesso?
- compartilhada ou dedicada?

Acesso residencial: acesso ponto-a-ponto

Discado (*Dialup*) via modem

- acesso direto ao roteador; até 56Kbps (teoricamente)
- Inconveniente: não é possível utilizar o telefone ao mesmo tempo

RDSI/ISDN:

 rede digital de serviços integrados: conexão digital de 128Kbps ao roteador.

- ADSL: asymmetric digital subscriber line
 - até 1 Mbps casa-para-roteador (provedor)
 - 4KHz 50KHz
 - até 8 Mbps roteador-para-casa
 - 50KHz 1MHz
 - telefone: 0KHz 4KHz
 - FDM:
 - Ex.: Serviço Velox da Telemar

Redes de acesso sem fio (wireless)

- rede de acesso compartilhado sem fio conecta o sistema final ao roteador
- LANs sem fio:
 - ondas de rádio substituem os fios
 - 802.11b (WiFi): 11Mbps
- acesso sem fio com maior cobertura
 - WAP (Wireless Application Protocol)

Meios Físicos

 enlace físico: bit de dados transmitido se propaga através do enlace

meios guiados:

 os sinais se propagam em meios sólidos: cobre, fibra

meios não guiados:

 os sinais se propagam livremente (através do ar), ex. rádio

<u>Par Trançado (TP - Twisted Pair)</u>

- dois fios de cobre isolados
 - Categoria 3: fios tradicionais de telefonia, 10 Mbps Ethernet
 - Categoria 5 TP:100Mbps Ethernet

Meios físicos: cabo coaxial, fibra

Cabo coaxial:

- fio (transporta o sinal) dentro de outro fio (blindagem)
 - banda básica
 (baseband): canal
 único no cabo
 - banda larga
 (broadband): múltiplos
 canais num cabo
- bidirecional

Cabo de fibra óptica:

- fibra de vidro transporta pulsos de luz
- opera em alta velocidade:
 - Ethernet 100Mbps
 - transmissão ponto a ponto de alta velocidade (ex., 10 Gbps)
- baixa taxa de erros

Meios físicos: rádio

- sinal transportado em ondas eletromagnéticas
- não há "fio" físico
- bidirecional
- efeitos do ambiente de propagação:
 - reflexão
 - obstrução por objetos
 - interferência

Tipos de enlaces de rádio:

- microondas
 - ex.: canais de até 45 Mbps
- LAN (ex., IEEE 802.11b)
 - 2Mbps, 11Mbps
- longa distância (ex., celular)
 - 10's Kbps
- satélite
 - canal de até 50Mbps (ou múltiplos canais menores)
 - atraso fim a fim de 270
 mseg

Estrutura da Internet: rede de redes

- quase hierárquica
- provedores de backbones nacionais/internacionais (NBPs)
 - ex. Embratel, Banco Rural, Global One
 - interconecta com cada um dos outros de forma privada, ou em pontos de troca de tráfego públicos (PTTs)
- ISPs regionais
 - conectam a NBPs
- ISP local, empresa
 - conecta a um ISP regional

Provedor de Backbone Nacional

ex. Embratel

http://www.embratel.net.br/internet/index.html

Provedor de Backbone Nacional

A Internet no Brasil Backbone RNP em 2004

exibir siglas de estados

exibir nomes de cidades conectadas

A Internet no Brasil Backbone RNP em 2004

Internet: Topologia NSFNET em

Diagrama de Interconexão entre ISPs

Estrutura da Internet: rede de redes

• Um pacote passa através de várias redes!

Atraso em redes comutadas por pacotes

- os pacotes experimentam atraso no caminho fim a fim
- quatro fontes de atraso em cada etapa (roteador)

- Processamento no nó:
 - verificação de bits com erro
 - identif. do enlace de saída
- Enfileiramento:
 - tempo de espera no enlace de saída até a transmissão: depende do nível de congestionamento do roteador

Atraso em redes comutadas por pacotes

Atraso de transmissão:

- R=largura de banda do enlace (bps)
- L=compr. do pacote (bits)
- tempo para enviar os bits no enlace = L/R

Atraso de propagação:

- d = compr. do enlace
- s = velocidade de propagação no meio (~2x10⁸ m/seg)
- atraso de propagação = d/s

Atraso fim-a-fim

Atraso em um nó

$$d_{nodal} = d_{proc} + d_{queue} + d_{trans} + d_{prop}$$

Atraso fim-a-fim

$$d_{total} = N(d_{proc} + d_{trans} + d_{prop})$$

- assumindo que o atraso de enfileiramento é desprezível (rede sem congestionamento)
- pacote passa por N-1 roteadores intermediários

Atraso de transmissão X Atraso de propagação

- Transmissão: quanto tempo se gasta para o transmissor colocar todos os bits no meio
 - depende da taxa de transmissão do enlace, do tamanho do pacote e disponibilidade do meio (em redes ponto-multiponto)
- Propagação: quanto tempo um bit demora para chegar ao outro lado do enlace
 - depende da distância entre origem e destino
- P: Qual dos dois será o fator dominante?
- Analisar duas situações especiais:
 - pacotes muito longos e enlaces de curta distância

57

pacotes curtos e enlaces de longa distância

Atraso de transmissão X Atraso de propagação

- pacotes muito longos e enlaces de curta distância:
 - atraso de transmissão domina

- pacotes curtos e enlaces de longa distância:
 - atraso de propagação domina

Atraso de enfileiramento

average

- R=largura de banda do enlace (bps)
- L=compr. do pacote (bits)
- a=taxa média de chegada de pacotes

intensidade de tráfego = La/R

- La/R ~ 0: pequeno atraso de enfileiramento
- La/R > 1: chega mais "trabalho" do que a capacidade de atendimento, atraso médio infinito! (assumindo capac. de fila infinita!)

Perda de pacotes

- Na realidade: filas dos roteadores têm tamanho limitado
- O que acontece quando um pacote chega a um roteador cuja fila está cheia?
 - O pacote é descartado (i.e., perdido)!
- Taxa de perda de pacotes aumenta à medida que a intensidade do tráfego (La/R) aumenta
 - pacotes perdidos devem ser retransmitidos
- É uma medida de desempenho da rede (juntamente com o atraso fim-a-fim)

Atrasos e Rotas na Internet

- Como se mostram os atrasos e perdas na Internet?
- Programa Traceroute: realiza medidas de atraso da origem para cada roteador ao longo do caminho até o destino na Internet. Para todo i:
 - envia três pacotes que chegarão ao roteador j no caminho em direção ao destino (i.e., três experimentos distintos)
 - roteador j retornará pacotes de resposta à origem
 - origem mede o intervalo de tempo entre a transmissão dos pacotes e a recepção das respostas

Atrasos e Rotas na Internet

- Experimentar com o programa traceroute
 - N-1 roteadores intermediários
 - origem envia N pacotes especiais de "sondagem"
 - ao receber o n-ésimo pacote, o n-ésimo roteador suprime o pacote e envia uma mensagem de volta para a origem
 - ao receber tal mensagem, a origem registra:
 - o tempo gasto entre o envio do n-ésimo pacote a recepção da respectiva resposta – atraso de ida-e-volta para o n-ésimo roteador
 - nome e endereço do n-ésimo roteador
 - origem reconstrói a rota até o destino
- http://www.traceroute.org

traceroute: exemplo

traceroute: gaia.cs.umass.edu para www.eurecom.fr

- Três medidas distintas
- 1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
- 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
- 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
- 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
- 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
- 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms
- oceânico 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
- 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
- 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
- 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
- 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
- 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
- 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
- 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
- 16 194.214.211.25 (194.3 ighifida 5 en 4 esp. (poten sperdido, roteador não
- * * * responde)
- 18 * * *
- 19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

63

Referências

- [Kurose, 2004] Cap. 1
- [Soares, 1995] Cap. 1