北京大学数学学院泛函分析二期末试题

2008-2009 学年第一学期

- 1. $(10 \, \mathcal{H})$ 设 Ω 为开区域. 算子 $Lu := \sum_{i,j=1}^{n} \partial_i (a_{ij}\partial_j u) + \sum_{j=1}^{n} b_j \partial_j u + cu$, 定义域为 $C_0^{\infty}(\Omega)$. 其中 a_{ij}, b_j, c 为实有界光滑函数.
 - (i) 求 L 在 $L^2(\Omega)$ 上的伴随算子 L^* .
 - (ii) 设 a_{ij} 满足强椭圆条件,证明L生成强连续算子半群.
- 2. (10 分) 设 $\mathcal{H} = L^2(\mathbb{R}^n)$. 定义算子 $T: u(x) \to |x|^2 u(x)$,其定义域为

$$D(T) := \{ u \in \mathcal{H} | \int_{\mathbb{R}^n} |x|^4 |u(x)|^2 \, \mathrm{d}x < \infty \},$$

证明 T 是无界算子, 且为闭算子.

- 3. (20 分) 设 A 为希尔伯特空间 \mathcal{H} 中的自伴算子, $\{E_{\lambda}, \mathbb{R}\}$ 为其谱族,证明:
 - (i) $e^{iAt} = \int_{\mathbb{R}} e^{i\lambda t} dE_{\lambda} 为一酉群.$
 - (ii) 若 $\mathcal{H} = L^2(\mathbb{R}^n)$, $A = -\Delta$, 写出对应酉群的积分核表达式.
- 4. (10 分) 设 A 为希尔伯特空间 \mathcal{H} 中的自伴算子, $\{E_{\lambda}, \mathbb{R}\}$ 为其谱族. 令 $A_n = \int_{-n}^{n} \lambda \, \mathrm{d}E_{\lambda}$. 证明 A_n 在强预解式意义下收敛到 A.
- 5. $(20 \, \text{分})$ 设 S^1 为周长 2π 的圆,Laplace 算子 $\Delta = \frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial \theta^2}$ 定义在 $C_0^\infty(S^1 \times \mathbb{R}) \subset L^2(S^1 \times \mathbb{R})$ 上.设 V 为 $S^1 \times \mathbb{R}$ 上紧支集光滑函数.令 $H = -\Delta + V$.证明本质谱 $\sigma_{\text{ess}}(H) = [0, \infty]$.
- 6. (10 分) 设 A 为希尔伯特空间上的严格正的对称算子,证明 A 本质自伴等价于 $\ker(A^*)=0$.
- 7. $(20 \, \mathcal{G})$ 设 $a_k \, (k=1,\cdots,n)$ 为 \mathbb{R}^n 上的实值函数, $a_k \in L^q_{\mathrm{loc}}(\mathbb{R}^n), \, q \geq 4, \, q > n, \, \nabla \cdot (a_1,\cdots,a_n) = 0$ (在分布意义下). 令 $\Delta_H = \sum_{j=1}^n (\partial_j ia_j)^2$. 证明:
 - (i) Kato 不等式: $\forall u \in L^1_{loc}, \Delta_H u \in L^2_{loc}$, 有

$$\Delta |u| \leq \operatorname{Re}(\operatorname{sgn} u \cdot \Delta_H u).$$

(ii) 若 $V \ge 0$, $V \in L^2_{loc}$,则 $-\Delta_H + V$ 为 $C_0^{\infty}(\mathbb{R}^n)$ 上本质自伴算子.