Study of Near-Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments

(NASA-CR-166295) STUDY OF NEAR-THRESHOLD FATIGUE CRACK PROPAGATION IN PIPELINE STEELS IN HIGH PRESSURE ENVIRONMENTS Final Report (Rockwell International Science Center) CSCL 11F G3/31 09278 133 P HC AC7/MF AC1

N82-19388

Unclas

M. Mitchell

CONTRACT NAS2-10312 November 1981

NASA CONTRACTOR REPORT 166295

Study of Near-Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments

M. Mitchell Rockwell International Science Center Thousand Oaks, California 91360

Prepared for Ames Research Center under Contract NAS2-10312

Ames Research Center Motheth's etal Conforma 94035

TABLE OF CONTENTS

	•											Page
INTRODUCTION									¥	٠.		1
Vac; R = 0.1												28
Vac; R = 0.5												39
Vac; R = 0.8		٠										50
Air; R = 0.1												65
Air; R = 0.5												77
Air; $R = 0.8$												88
$H_2; R = 0.1$												95
H_2 ; R = 0.5			·									106
H_2 ; $R = 0.8$	٠											117

INTRODUCTION

This is the final in a series of reports on Near Threshold Fatigue Crack Propagation in Pipeline Steels in High Pressure Environments.

OBJECTIVES

The objective of the program was to determine the level of threshold stress intensity for fatigue crack growth rate behavior in a high strength low alloy (HSLA) X60 pipeline-type steel. Complete results have been generated for gaseous hydrogen at ambient pressure, laboratory air at ambient pressure and approximately 60% relative humidity as well as vacuum of 6.7 \times 10⁻⁵ Pa (\lesssim 5 \times 10⁻⁷ torr) at R-ratios = K_{min}/K_{max} of 0.1, 0.5 and 0.8. A concurrent part of the program was to determine fatigue crack growth rate behavior in gaseous hydrogen, methane, and methane plus 10 percent hydrogen at 6.89 MPa (1000 psi).

APPROACH

Material and Specimen Design

Material for use in the program was procurred from Kaiser Steel Corporation in the form of a 1 m \times 1 m \times 2 cm (\sim 3 ft \times 3 ft \times 0.75 inch) thick plate. The steel conformed to the requirements of API-5LX-60 high strength low alloy steel (HSLA) and had the composition given in Table 1. Fatigue crack growth specimens of the design shown in Fig. 1 were machined from the plate in the LT direction. Monotonic tension and low cycle fatigue specimens of the design shown in Fig. 2 were also machined from the plate in both the longitudinal and transverse directions. Metallography of samples of the plate revealed a fine, equiaxed grain structure \sim 10 μ m in diameter with "banded" ferrite.

Experimental Procedure

In order to monitor crack growth rates at near threshold stress intensity levels (operationally defined as the stress intensity level at a growth rate of 10^{-6} mm/cycle (4 × 10^{-7} in/cycle), a D.C. elactrical potential system was constructed. Such a crack monitoring system involves a very stable D.C. power supply, current leads mounted to the front face of the fatigue crack propagation (FCP) samples, a set of voltage probes matching the test material composition and a high gain amplifier/digital nanovoltmeter. With such a crack monitoring technique, accuracies of at least 0.1 mm (0.004 inches on absolute crack length are attainable.

To perform the threshold stress intensity level tests, the fatigue crack propagation (FCP) specimens were electrically insulated from the clevistype gripping system with a set of 6-6 nylon washers and the current leads were securely screwed in place. Voltage leads were secured a priori to the front face of the FCP specimens by spot welding. All testing, including monotonic tension and strain-controlled fatigue tests, was performed in a 140 MPa (20 kip) electrohydraulic closed loop test machine. The test procedure for determining the threshold stress intensity levels was in conformance with ASTM E647-78T.

Special precautions were taken to establish the environments in the case of the vacuum and hydrogen FCP-threshold tests. In the case of the vacuum tests, the test chamber, shown in Fig. 3, was first evacuated with a mechanical roughing pump and back-flushed with ultra-pure argon gas. This procedure was repeated three times. The chamber was then mechanically pumped and diffusion pumped for at least twenty four hours to establish the test vacuum of 1.33×10^{-4} Pa ($<10^{-6}$ torr), typically 4×10^{-5} Pa (3×10^{-7} torr) as well as equilibration of the electrical potential crack monitoring system.

In the case of the hydrogen environment, he same pump/purge with ultra-pure argon procedure was performed. The test chamber, while being pumped with the mechanical pump, was filled with ultrapure gaseous hydrogen that was first filtered through an oil/water filter, an oxygen filter and an

 ${\rm LN_2}$ cold trap. This procedure was repeated at least three times to establish the test environment for all hydrogen tests.

RESULTS

Ambient Pressure Tests

Monotonic Tension and Low Cycle Fatigue

The monotonic and cyclic stress/strain curves for this steel are shown in Fig. 4. Note that the curves are presented for the longitudinal specimens because no significant difference was apparent from the transverse specimen monotonic results. The cyclic stress/strain curve shown in Fig. 4 was obtained from companion specimen, constant strain amplitude fatigue tests, the results of which are given in Table 2. All monotonic tension and fatigue tests were conducted in a laboratory air environment. It is apparent that cyclic strain softening* occurs at strains less than approximately 0.0045 while cyclic strain hardening occurs at greater strains.

The strain-life fatigue curves obtained from the companion specimen tests are shown in Figs. 5 and 6, respectively, for the longitudinal and transverse rolling directions. Table 3 gives both the monotonic material property data as well as the fatigue property data obtained from these tests.

For comparison to the present results, Table 4 and Fig. 7 show similar data as well as cyclic and strain-life curves for another high strength low alloy (HSLA) steel of approximately comparable hardness. For all practical purposes, the X60 pipeline steel behaves as anticipated and is not unlike similar HSLA steels of comparable hardness.

^{*}The stress required to enforce the strain is less compared to the monotonic response.

Threshold stress Intensity Levels

Table 5 gives the results of threshold stress intensity ranges, ΔK_{th} , for X60 pipeline-type steel in vacuum 4×10^{-5} Pa $(3\times 10^{-7}$ torr), air $(1\times 10^{-5}$ Pa) and gaseous hydrogen $(1\times 10^{-5}$ Pa) for R-ratios of 0.1, 0.5 and 0.8. Complete plots of da/dN vs ΔK are shown in the Appendix as are complete tabular results of each test. For convenience, tabs with test environment and R-ratio are provided.

Figure 8 shows a plot of threshold stress intensity range, ΔK_{th} , vs R-ratio = K_{min}/K_{max} of all test results, including three generated at M.I.T. as companion tests.* Note that at low R-ratios there is an obvious decrease in ΔK_{th} from vacuum to air to hydrogen. At intermediate R-ratios (approximately 0.5) there is a decrease in ΔK_{th} from vacuum to air and hydrogen. For practical purposes, the hydrogen and air results are the same. Finally note, at high R-ratios (0.8) that there is again a decrease in ΔK_{th} in air and hydrogen as compared with vacuum but as at R = 0.5 the air and hydrogen threshold stress intensity range are essentially the same.

A replot of these data as $K_{th,max} = \frac{\Delta K_{th}}{1-R}$ vs R-ratio is shown in Fig. 9. Table 6 gives the values of $K_{th,max}$ at the various R-ratios in the three environments. Note that $K_{th,max}$ remains constant as the R-ratio increases to approximately 0.5. Above R = 0.5, $K_{th,max}$ increases abruptly approaching in the limit $K_{max} = K_{critical}$. These trends for this moderately low strength steel are consistent with previously published results and are explained in the Discussion section as follows.

^{*}Prof. R. O. Ritchie, Mass. Inst. Tech., Dept. of Material Science, acted as consultant on this project. S. Suresh supplied the test results. Both are presently with University of California, Dept. of Material Science, Berkeley, Calif.

High Pressure Tests

Three threshold tests were performed by Rocketdyne Division at the Santa Susana Field Laboratory. The first test was performed to check test equipment. Both the potential drop measurement system and the high pressure chamber performed with no apparent problems. The second test was performed at R = 0.1 in 6.89 MPa (1000 psi) hydrogen. Analysis of results from this test gave an unexpectedly high threshold value approximately 1.3 times greater than the value in an air environment. Close examination of the system revealed that the high pressure, teflon sliding seals on the hydraulic actuator produced a frictional force in excess of 140 kg (3000 lbs). As a result, frictional forces were greater than specimen loads particularly near threshold levels. Further examination showed that the frictional loads also varied with time as well as in a non-repeatable fashion from seal to seal. Several different seal materials were installed in order to rectify the problem of seal extrusion at the relatively high test frequencies (i.e., 30 Hz). Even seals made of Vespel, a graphite impregnated polyimide that exhibited plastic set, exerted an unpredictable frictional load that varied with time. A final attempt was made to replace sliding pressure seals with high pressure bellows. Many manufacturers were contacted and bellows were ordered with Corporate funds. A third tests was performed in the interim period to ascertain if the test results could be adjusted as a function of time varying frictional forces. Loads were adjusted as a function of time on a test at R = 0.1 in 6.89 MPa (1000 psi) hydrogen. As the test progressed, the friction loads decreased in addition to the intentional decrease in machine loads. The decrease in frictional loads (i.e., an increase in specimen loads) offset the decrease in machine loads and the crack growth rate remained steady. A plot of crack growth rate versus stress intensity range is shown in Fig. 10. At low values of ΔK , the growth rate in hydrogen deviates from expected threshold type behavior due to the decreased frictional loads. If, however, the curve is extrapolated (dashed line in figure) to lower growth rates the hypothetical threshold stress intensity range is 2 MPa \sqrt{m} (5.5 ksi $\sqrt{\ln n}$). This value is approximately that expected in a valid high pressure hydrogen test. Although

this procedure allows one to surmise a "reasonable" threshold stress intensity range, it is not the recommended procedure because of the potential for large errors.

All high pressure sliding seals were eventually replaced with bellows and the test system was checked. This, however, occurred long after contract funds were exhausted. The system has been employed subsequently with success for threshold testing of turbine material used in the Space Shuttle Main Engine.

DISCUSSION

From the results presented, Fig. 8, it is apparent that at mid and high R-ratios (i.e., 0.5 and 0.8), where plasticity-induced crack closure and fretting oxidation mechanisms are essentially absent, there is little differences between the values of threshold stress intensity range, ΔK_{th} , for X60 pipeline steel determined in ambient air and gaseous hydrogen. Conversely, at low R-ratios (i.e., R = 0.1), where closure and fretting oxidation are prevalent, the threshold stress intensity range in ambient humidity air is greater than that for gaseous hydrogen. At all R-ratios, both the air and hydrogen threshold stress intensity ranges are less than those gathered in the vacuum environment.

The present results are compatible with results of Suresh, et al (1), for an ASTM A542 Class 2 and 3 (2-1/4 Cr-1 Mo) steel of similar cyclic yield strength to the X60. For a bainitic microstructure, they observed at R = 0.05 that the value of ΔK_{th} in dry H_2 was 5.2 MPa \sqrt{m} (4.7 ksi \sqrt{in}) compared with 7.7 MPa \sqrt{m} (7.0 ksi \sqrt{in}) in moist air, an increase of 32%. Also similar to the present results, Suresh, et al. found that at R = 0.75 the value of ΔK_{th} in moist air was 3.2 MPa \sqrt{m} (2.9 ksi \sqrt{in}) and 3.3 MPa \sqrt{m} (30 ksi \sqrt{in}) in dry H_2 . Thus, there is a marked acceleration of near-threshold growth rates in H_2 environments at low R-ratios while at high R-ratios H_2 appears to have little influence on crack growth rates in comparison with air environment results.

Figure 11 shows results of yet additional tests on SA516 70 pipeline steel (2). Note in this figure that at low R-ratios and high R-ratios, the behavior of this high strength low alloy steel is exactly the same as the present X60 pipeline steel results.

In the study by Suresh, et al., results were also shown for a normalized bainitic/ferritic, 2-1/4Cr-1Mo steel with a yield strength of 769 MPa (112 ksi) fatigued in a dry helium atmosphere. Threshold stress intensity ranges at R = 0.05 were 7.1 MPa \sqrt{m} (6.5 ksi \sqrt{in}) for the moist air environment and 4.9 MPa \sqrt{m} (4.5 ksi \sqrt{in}) in the dry helium environment, a decrease of 31%. However, at an R-ratio of 0.75, the threshold stress intensity range was 2.8 MPa \sqrt{m} (2.5 ksi $\sqrt{\ln}$) and 2.7 MPa \sqrt{m} (2.5 ksi $\sqrt{\ln}$) in moist air and dry helium, respectively. This is precisely the same trend in behavior exhibited in laboratory air and dry hydrogen. Conventional hydrogen embrittlement effects would therefore appear minimal in comparison to other controlling mechanisms in lower strength steels. Such behavior appears explainable in terms of oxide induced crack closure, a model proposed by Ritchie, et al. (3) and Stewart (R4). In "plasticity induced closure," the crack tip of the material being fatigued is plastically deformed. Because of the constraint of the surrounding elastic material, some closure of crack surfaces can occur at positive R-ratios. If the crack remains partially closed the effective stress intensity range, $\Delta K_{\mbox{\footnotesize{eff}}},$ is reduced by the amount of the closure stress intensity, K_{C1} (i.e., $\Delta K_{eff} = K_{max} - K_{C1}$). But, as the R-ratio is increased, the crack will remain open for a larger portion of the cycle and the effect of plasticity induced closure diminishes. Similarly, in an oxidizing atmosphere, such closure at low R-ratios can provide a mechanism for enhancement of corrosion devices within the crack due to repeated breaking/compaction of the oxide. At high R-ratios such fretting/oxidation mechanisms are absent. As a consequence, at the low R-ratios the excess debris formed will further reduce the threshold stress intensity range because of an "earlier" contact between the cracked surfaces (i.e., K_{Cl} increases thereby reducing ΔK_{eff}).

Although each vacuum threshold stress intensity level is greater than that of air at all R-ratios, the vacuum test results of X60 pipeline steel indicate a pronounced R-ratio effect (i.e., ΔK_{th} decreases monotonically with increase R). This behavior in ΔK_{th} decreasing with R-ratio is in contrast to results observed by Cooke, et al. (R5) for a medium strength, Sy = 1275 MPa (185 ksi), En 24 steel for which $\Delta K_{\mbox{th}}$ remained independent of R-ratio. In the test by Cooke, et al., fatigue precracking was done in air and tests were performed "in vacuo" at a frequency of 100 Hz. There is mention in their test technique that a conventional rotary backing pump, an all diffusion pump and an LN₂ cold trap were employed to produce a vacuum of better than 1.33 \times 10⁻³ Pa (10⁻⁵ torr). This, they considered, adequate "for removal of agressive environmental constituents." Perhaps the difference in the two results lies principally in the establishment of "a vacuum." As may be recalled, the present results for X60 pipeline steel were generated "in vacuo" by backflushing with ultrapure argon. According to Ritchie (6), the typical impurity content of argon is approximately 20-50 ppm water vapor with oxygen, nitrogen and hydrogen being of lesser quantity. This could result in a partial pressure of water vapor constituting a poor vacuum, thus contributing to possible oxide formation.

ACKNOWLEDGEMENTS

This work was supported under NASA Contract No. NAS2-10312.

Dr. N. E. Paton, Rockwell International Science Center, acted as program manager for this research. His suggestions, technical discussions, and particularly his patience, are affably acknowledged. Mr. N. Q. Nguyen, presently with Lawrence Laboratories, Livermore, Calif. was responsible for construction of the electrical potential crack monitoring system and initial test results. His support is kindly acknwoledged. Ms. D. Armijo, Ms. M. Spriggs and Mr. A. Murphy were responsible for the test results generated in H₂ and vacuum as well as all final data analysis and reduction. They are gratiously acknowledged.

Prof. R. O. Ritchie, University of California, Berkeley, California, acted as consultant on this program. His valuable and constructive criticism and advice is amiably acknowledged. Mr. J. C. Chesnutt is sincerely thanked for suggestions and technical advice and discussions on methods for improving the testing techniques.

Table 1
Composition of Plate, Weight Percent

C = 0.147	Va = 0.006
Mn = 1.400	Ci = 0.049
P = 0.008	Nb = 0.047
S = 0.012	Al = 0.029
Si = 0.255	Co = 0.014
Cr = 0.008	Mg = 0.003
Mo = 0.240	Ca = 0.010

Table 2
Strain-Life Results for X60 Steel
Transverse and Longitudinal Specimens

Transverse Specimens							
Spec. No.	Strain Amplitude, Δε/2	Reversals to Failure, 2N _f	Steady-State Stress, σ MPa (ksi)	Elastic Strain ε _e ≖σ/E	Plastic Strain ε _p =ε-σ/E		
X60-T1	0.010	. 1 84	465.4 (67.5)	0.00225	0.00775		
X60-T2	0.005	8.760	396.5 (57.5)	0.00192	0.00308		
X60-T3	0.003	34,750	344.7 (50.0)	0.00167	0.00133		
X60-T4	0.002	174,160	310.3 (45.0)	0.00150	0.00050		
		Longitudinal	Specimens				
X60-L1	0.010	2,126	473.7 (68.7)	0.00229	0.00771		
X60-L2	0.005	12,048	405.4 (58.8)	0.00196	0.00304		
X60-L3	0.003	67,340	351.6 (51.0)	0.00170	0.00130		
X60-L4	0.002	299,460	317.2 (46.0)	0.00150	0.00050		

Table 3

Monotonic and Cyclic Material Property Data For X60 Pipeline Steel

Monotonic Properties

Brinell Hardness	≠ 190 HB
Mod. of Elast., E	$= 206.8 \times 10^3 \text{ MPa} (30 \times 10^3 \text{ ksi})$
Yield Strength, 0.2% S	= 386.1 MPa (56 ksi)
Ultimate Strength, S _u	= 551.6 MPa (80 ksi)
Red. in Area, % RA	= 65.9
True Fract. Duct., ef	= 1.08
True Fract. Strength, of (corrected for necking)	= 973.5 MPa (141.2 ksi)
Strain Hardening Exp. n	= 0.15
Strength Coeff., K	= 896.3 MPa (130 ksi)

Cyclic Properties (Long./Trans.)

Yield Strength, 0.2% S _v '	= 368.9/368.9 MPa (53.5/53.5 ksi)
Fatigue Strength Coeff., of	= 868.7/806.7 MPa (126/117 ksi)
Fatigue Ductility Coeff., $\epsilon_{\mathbf{f}}$	= 0.54/0.49
Fatigue Strength Exp., b	= -0.085/-0.080
Fatigue Ductility Exp., c	= 0.55/-0.57
Transition Fatigue Life, 2N _t	$= 3.4 \times 10^4/2.0 \times 10^4 \text{ rev's}$
Strain Hardening Exp. n'	= 0.146
Strength Coeff., of	= 903.2 MPa (131 ksi)

Table 4

Material Property Data Sheet

Material:

Gainex*

Condition:

Hot rolled, 3.56 mm (0.140") sheet (150 HB)

Test Cond.:

Room Temp.

Monotonic Properties (Long./Trans.)

Mod. of Elast., E	$201.3 \times 10^3 \text{ MPa} (29.2 \times 10^3 \text{ ksi})$
Tield Strength, 0.2% S _v	393.0/399.9 MPa (57/58 ksi)
Ultimate Strength, S _u	510.2/530.9 MPa (74/77 ksi)
Red. in Area, % RA	64/58
True Frac. Strength, σ	813.6/806.7 MPa (118/117 ksi)
True Frac. Ductility, ef	1.02/0.86
Strain Hard, Exp. n	0.20

Cyclic Properties (Long./Trans.)

Yield Strength, 0.2% Sy'	376.5 MPa (54.58 ksi)
Strain Hard. Exp., n'	0.11
Strength Coeff., K'	786.0 MPa (114 ksi)
Fatigue Strength Coeff., σ_f	806.7 MPa (117 ksi)
Fatigue Ductility Coeff., $\epsilon_{\mathbf{f}}$ '	0.86
Fatigue Strength Exp., b	-0.071
Fatigue Ductility Exp., c	-0.65
Transition Fat. Life, 2N _t	$1.3 \times 10^4 \text{ rev.}$

Composition (w/o)

<u>C</u>	Mn	<u> </u>	<u> </u>	<u>Şi</u>	Cu	<u>N1</u>	Cr	Mo	<u>N</u>
0.16	0.90	0.038	0.027	0.04	0.10	0.01	0.01	0.01	0.017

*Trade Name of Armco Steel

Table 5 Threshold Stress Intensity Range, $\Delta K_{\mbox{th}}$ of X60 Pipeline type Steel (LT Orientation)

R Env.	Vacuum	Air	Hydrogen
	6.7 × 10 ⁻⁵ Pa	1 × 10 ⁵ Pa	1 × 10 ⁵ Pa
0.1	10.2 MPa √m	7.9 MPa √m	5.6 MPa √m
	(9.3 ksi √in)	(7.2 ksi √1n)	(5.2 ksi √in)
	Spec. No. X60-13	Spec. No. X60-05	Spec. No. X60-24
0.5	6.1	3.1	3.7
	(5.6)	(2.8)	(3.4)
	X60-14	X60-04	X60-26
0.8	6.6	2.5	3.3
	(6.1)	(2.3)	(3.0)
	X60-22	X60-06	X60-23

Table 6 $K_{\mbox{th,max}}$ Values for X60 Pipeline Type Steel

$$K_{th,max} = \left[\frac{\Delta K_{th}}{1-R}\right]$$

Euv.	Vacuum	Air	Hydrogen
	6.7 × 10 ⁻⁵	1 × 10 ⁵ pa	1 × 10 ⁵ Pa
0.1	11.3 MPa √m	8.8 MPa √m	6.2 MPa √m
	(10.3 ksi √in)	(8.0 ksi /1n)	(5.7 ksi √1n)
0.5	12.2	6.2	/.4
	(11.2)	(5.6)	(6.8)
0.8	33.0	12.5	16.5
	(30.5)	(11.5)	(15.0)

REFERENCES

- Suresh, S., Zamiski, G.F. and Ritchie, R.O., "Oxide Induced Crack Closure: An Explanation for Near-Threshold Corrosion Fatigue Crack Growth Behavior," Met. Trans. A, vol. 12a, Aug. 1981, pp. 1435-1443.
- 2. Wachob, H. and Nelson, H.G., "Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen," Proc. Int. Conf. on Hydrogen, Jackson Lake, Wyoming, edited by A.W. Thompson and I. Bernstein, TMS, AIME, Warrendale, PA, 1981, p. 703.
- 3. Ritchie, R.O., Suresh, S and Moss, C.M., "Near-Threshold Fatigue Crack Growth in 2-1/4Cr-1Mo Pressure Vessel Steel in Air and Hydrogen," J. Eng. Mater. Technol. Trans, ASME, H. Series, 1980, vol. 102, pp. 293-299.
- 4. Stewart, A.T., "The Influence of Environment and Stress Ratio on Fatigue Crack Growth at Near-Threshold Stress Intensities in Low-Alloy Steels," Engrg. Fract. Mech, vol. 13, 1980, pp. 463-378.
- 5. Cooke, R.J., Irving, P.E., Booth, G.S. and Beevers, C.J., "The Slow Fatigue Crack Growth and Threshold Behavior of a Medium Carbon Alloy Steel in Air and Vacuum," Eng. Fract. Mech., 1975, Vol. 7, pp. 69-77.
- 6. Ritchie, R.O., "Near-threshold Fatigue-Crack Propagation in Steels," International Metals Review, 1979, Nos. 5 and 6, pp. 205-230.

Fig. 1 Fatigue crack growth specimen.

Fig. 2 Tension and fatigue specimen design.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

SC5230.17FR

Fig. 3 Test chamber.

SC5230.17FR

Fig. 5 Strain-life curve for X60 oipeline steel (longitudinal).

Fig. 6 Strain-life curve for X60 pipeline steel (transverse).

MATERIAL: GAINEX CONDITION: HOT ROLLED, 3.56 mm (0.140")'SHEET (150 HB)

Fig. 7 Monotonic, cyclic and strain-life curves for Gainex* steel.
*Trade name of Armco steel.

Fig. 8 Threshold stress intensity range vs R-ratio for X60 pipeline steel.

Fig. 9 Kth,max vs R-ratio for X60 pipeline steel.

Fig. 10 da/dN vs &K at high pressure for X60 pipeline steel.

13

Fig. 11 da/dN vs &K for a Grade 70 pipeline steel.

Vac; R = 0.1

SC5230. 175p

SPECIMEN NO.: X60 DIMENSION (INCH):	B = .	5	W = 2
R-RATIO = 1 @ TEST ENVIRONMENT:	2H = 2 35 H2. VACUUM	. 4	A(N) = 7
DATA FILE : 16013	***************************************	G.O .	NUMBER: 5230

OBS. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
12345678911123456789112314567890	1.00000E+06 1.00000E+06 1.00000E+06 1.00000E+06 1.00000E+06 500000 150000 150000 150000 75000 75000 50000 50000 50000	175 .181 .19 .225 .292 .334 .36 .375 .393 .413 .435 .451 .466 .486 .515 .515 .532 .571	1.2 1.5 1.1 1.1 1.1	.055 6.00000E-03 9.00000E-03 .035 .042 .026 .015 .018 .02 .015 .015 .015 .015 .015 .015 .017

21 22 23 24 25 26 27 28	20000 15000 15000 15000 15000 10000 5000	.604 .619 .635 .655 .678 .695 .72 .733	1 1 1 1 1 1	.015 .017 .02 .023 .017 .025 .013
28	5000	. 733	1	.013
29	5000	. 75		.017
30	5000	. 767		.018

W = 2 A(H) = .7

SPECIMEN NUMBER: X60-13 DIMENSION (INCH): B = .5 2H = 2.4 R-RATIO = .1 @ .35 HZ. R-RATIO = 1 @ 35 HZ TEST ENVIRONMENT: VACUUM DATA FILE : X6013

G.O. NUMBER: 5238

OBS. HUHBER		ELTA-A (INCH)	A CHOHID	DELTA-K KSI*SORT(INCH)	DA/DH INCH/CYCLE
1	1.00000E+06	. 055	. 847	11.844	5.54459E-08
2	1.00000E+06	6.00000E-0	3 .878	10.294	€.03790E-09
2	1.00009E+07	9.00000E-0	3 .985	9.361	8.80800E-10
4	2.00000E+05	.035	. 907	19.725	1.74886E-08
5	1.90600E+06		. 958	11.546	3.52963E-68
4 5 6 7	500000	.042	1.013	12.543	8 41366E-66
7	250000	.026	1 047	13.235	1.02260E-07
8	150000	.015	1 067	13 687	1.03267E-07
8 9	150000	.018	1.084	14.073	1.18514E-07
10	150000	.02	1.103	14.534	1.33373E-07
11	150000	.022	1.124	15.081	1 47897E-07
12	100000	.016	1.143	15.614	1.64948E-97
13	75000	.015	1.159	16.069	1.97680E-07
14	?5000	.019	1.176	16.593	2.58400E-07
15	5 8000	.014	1.193	17.131	2.77420E-07
16	℃900	.015	1.207	17.627	3.85579E-07
17	50000	. 018	1.224	18.217	3.52440E-07
18	50000	.024	1.244	19.005	4.70940E-07
19	25000	.015	1.264	19.799	6.05240E-07
20	25000	.017	1.28	20.51	6.94282E-07

20000

7.66006E-07 9.85730E-07 1.10220E-06 1.30260E-06 1.55447E-06 1.73310E-06 2.49431E-06 2.57879E-06 3.34840E-06 3.51640E-06

SPECIMEN NO.: $\times 60^{-13}$ DIMENSION (METER): B = .0127 $\mu = .0508$ 2H = .06096 A(H) = .01778 R-RATIO = .1 @ .35 HZ. TEST EHUIRONMENT: UACUUM DATA FILE: $\times 6013$ G.O. NUMBER 5230 18-JUNE-1980

1 1.00000E+06 4.445 5328 2 1.00000E+06 4.539 4440 3 1.00000E+07 4.822 3396 4 2.00000E+06 5.711 4440 5 1.50000E+06 7.414 4440 6 500000 8.483 4440 7 250000 9.132 4440 8 150000 9.526 4440 9 150000 9.577 4440 10 150000 10.485 4440 11 150000 11.049 4440 12 100000 11.468 4440 13 75000 11.844 4440	1 408
13 75006 11 844 4440 14 75000 12 336 4440 15 50000 12 669 4440 16 50000 13 077 4440 17 50000 13 524 4440 18 50000 14 123 4440 19 25000 14 507 4440 20 25000 14 948 4440	.224 .888 1 703 1 869 .649 .393 .458 .563 .419 .377 .492 .358 .448 .598 .384 .441

21 22 23 24 25 27 28 29 30	20000 15000 15000 15000 15000 10000 5000 5000	15.337 15.712 16.132 16.629 17.221 17.661 18.295 18.622 19.494	4440 4440 4440 4440 4440 4440 4440 444	.389 .376 .42 .496 .592 .44 .634 .328 .425
--	--	--	---	--

B = .01272H = .06096 35 H2. A(H) = 91778

R-RATIO = 1 @ 35 HZ TEST ENVIRONMENT: VACUUM DATA FILE: X6013

G.O. NUMBER: 5230

OBS.	DEL,TA-N	DELTA-A	A	DELTA-K	DAZDN
HUMBER		(MM)	(MM)	MPA#SORT(METER)	(MMZCYCLE)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.00000E 1.00000E 1.00000E 2.00000E 1.90000 250000 150000 150000 150000 150000 150000 75000	1.408 1.408 1.406 1.224 1.66 1.703 1.069 1.49 1.508 1.563 1.419 1.49 1.49	21 521 22 302 22 491 23 647 24 342 25 728 26 587 27 109 27 531 28 547 29 038 29 436 29 87	12.9901 11.2907 10.2669 11.7635 12.6638 13.7571 14.5161 15.012 15.4354 15.9415 16.5409 17.1252 17.6246 18.1992	1.40830E-06 1.53340E-07 2.23723E-08 4.44195E-07 8.96526E-07 2.13705E-06 2.59740E-06 2.62297E-06 3.01024E-06 3.75633E-06 4.18947E-06 5.02107E-06 6.56336E-06
15	50000	.352	30 293	18.7891	7.04647E-06
16	50000	.388	30 663	19.3335	7.76171E-06
17	50000	.448	31 081	19.9811	8.95197E-06
18	50000	.598	31 603	20.8449	1.19619E-05
19	25000	.384	32 095	21.7156	1.53731E-05
20	25000	.441	32 507	22.4955	1.76348E-05

S
C
្រែ
ဣ
0
_
~
m
~;

				•	
21 22 23	20000 15000	.389 . 376	32.922 33.305	23.3287 24.1432	1.94564E-05 2.50375E-05
23	15000	. 42	33.702	25.0423	2.79959E-05
24	15000	. 496	34.16	26.1491	3.30860E-05
25	15000	592	34.705	27.5734	3 94835E-05
26	10000	44	35,221	29.0469	4 40207E-05
27	10000	. 634	35.758	30.7221	6 33554E-05
28	5000	328	36.238	32.3603	6 55014E-05
29	5000	425	36.615	33.7457	8.50491E-05
30	5000	447	37.051	35.4751	8 93166E-05
		. • • •	J 051	99. 11 91	9 33100L 03

Vac; R = 0.5

SPECIMEN NO.: X60-14 DINENSION (INCH): B = .5 2H = 2.3 35 H2. UACUUM W = 2A(N) = .7R-RATIO = .5 @ TEST ENVIRONMENT: DATA FILE : X6014 7-JULY-1980 G.O. NUMBER 5230

085. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
123456789111234567890 112345678911234567890	350000 500000 1 00000E+06 1 02000E+06 2 00000E+06 2 00000E+06 2 00000E+06 5 00000E+06 3 85000E+06 2 00000E+06 1 00000E+06 350000 350000 350000 100000 100000 75000	179 219 254 275 306 314 321 331 351 37 393 495 421 441 452 464 477	98536 19889 111223344	.029 .04 .035 .021 .031 8.00000E-03 6.00000E-03 1.00000E-03 .01 .019 .014 9.00000E-03 .011 .015 .012 9.00000E-03

21 22 23 24 25 27 28 30 31 32 33	75000	495	A A	
22	75000 50000 50000 25000 25000 20000 20000 15000 15000 10000	.492 .505 .523 .55 .565 .579 .596 .636 .636 .636 .699	1 4	.015 .013 .018 .027 .015 .014 .019 .021 .019 .025 .019
27	50000	, ວັບວ	1.5	913
24	20000	. 5 23	1.5	010
24	50000	.55	1.6	.010
25	25000	565	1.0	. 627
26	26000	570	1.6	915
27	20000	. 317	1.6	.014
2-2	20000	. ପ୍ରହ୍ର	1.6	BIE
20	20000	.615	1.6	919
29	26666	636	iέ	.017
<i>3</i> 0	15888	696	1.6	. 021
31	15000	. 6.56	1.6	.019
70	10000	. 58	1.6	925
77	10000	. 699	1.6	919
3.5	16666	.723	ίĕ	01.7
		.,	1.6	. 824

OBS.	DELTA-H	DELTA-A	A	DELTA-K	DAZDN
NUMBER		(INCH)	CHONI)	KSI#SQRT(INCH)	TNCHZCYCLE
123456769101234567890 112345678910123	350000 500000 1.00000E 1.00000E 2.00000E 2.00000E 5.00000E 5.00000E 3.00000E 1.00000E 350000 350000 300000 100000 75000 75000	06 .021 06 .031 06 8 .00000E 06 6 .00000E 06 1 .00000E 06 .01 06 .021 06 .019	-03 1 017 -03 1 021 1 026 1 041 1 061 1 077 3 1 089 1 099 1 112 1 125	10.673 10.601 9.318 8.413 7.806 6.938 6.314 5.642 6.845 6.77 7.732 8.674 8.823 9.846 10.081 11.13 11.336 12.472 12.773	8.15886E-68 7.91560E-68 3.50730E-08 2.02539E-08 1.56600E-08 8.36200E-09 1.66404E-10 1.98740E-09 1.44780E-09 1.44780E-08 2.51257E-08 3.18171E-08 5.00533E-00 5.89650E-08 9.37900E-08 1.665240E-07 1.74680E-07

Ñ
S
23
Ö
_
7
Tri .

21 75000 .015 1.184 13.113 23 50000 .013 1.198 14.43 24 50000 .018 1.214 14.832 25 25000 .027 1.236 16.623 26 20000 .015 1.258 17.375 27 20000 .014 1.272 17.93 28 20000 .016 1.288 18.546 29 20000 .021 1.306 19.312 30 15000 .021 1.326 20.238 31 15000 .025 1.368 22.434 32 10000 .019 1.39 23.721 33 10000 .024 1.411 .25.113	1.94280E-07 2.59539E-07 3.64660E-07 5.43780E-07 6.01518E-07 7.12502E-07 8.23349E-07 9.71401E-07 1.04510E-06 1.29414E-06 1.64446E-06 1.87310E-06 2.40580E-06
---	---

SPECIMEN NO.: $\times 60^{-14}$ DIMENSION (METER): B = .0127 M = .0508 2H = .05842 A(N) = .01778 R-RATIO = .5 Q 35 HZ. TEST ENUIRONMENT: VACUUM DATA FILE: $\times 6014$ G.O NUMBER: 5230 7-JULY-1980

OBS. NO.	DELTA-N	CRACK LENGTH	P-MAX (NENTOHS)	DELTA-A
1	350000	4.555	8436	.725
23456789	500000	5.56	7992	1 665
उ	1.00000E+06		6660	891
4	1 02000E+06	6 976	5772	525
5	2.00000E+06	7 771	5150.4	.796
6	1.00000E+06	7.984	4440	212
7	2.00000E+06		3996	. 148
8	5.00000E+06	8 153	3552	.021
9	5.00000E+06	8,405	3774	. 252
10	3.85660E+06	8,926	3996	.521
11	2.00000E+06	9,401	3996	. 474
12	1 00000E+06		4446	.368
13	350000	9.992	4984	. 223
14	350000	10 275	4884	.283
15	300000	10.656	5328	.381
18	200000	10.955	5328	. 299
17	100000	11 193	5772	.238
18	100000	11.47	5772	.277
19	75000	11.785	6216	.315
20	75000	12.118	6216	. 333

SC5230.17FR	

21 22 23 24 25 27 28 28 31 32 33 33	75000 50000 50000 50000 25000 20000 20000 15000 15000 10000	12.488 12.817 13.281 13.971 14.353 14.715 15.133 15.627 16.158 16.651 17.277 17.753 18.364	6216 6660 6660 7104 7104 7104 7104 7104 7104 7104 710	.37 .33 .463 .691 .382 .362 .418 .493 .531 .493 .627 .476 .611
--	--	--	---	--

*** SECANT METHOD ***

SPECIMEN NUMBER: $\times 60-14$ DIMENSION (METER): B=.0127 $\mu=.0508$ 2H=.05842 A(N)=.01778 R-RATIO = .5 @ 35 HZ. TEST ENVIRONMENT: VACUUM G.O. NUMBER: 5230

OBS NUMBER	DELTA-H	DELTA-A	A (MM)	DELTA-K MPA*SORT(METER)	DAZDH (MMZCYCLE)
HUMBER 1 234567891011231451671819	350000 500000 1 00000E 1 02000E 2 00000E 2 00000E 5 00000E 5 00000E 3 85000E 3 85000E 3 85000E 3 85000 1 00000E 1 00000E 1 00000E 1 00000E 3 85000 1 00000E	725 1 005 +06	21 972 22 838 23 786 24 494 25 154 25 658 25 828 26 446 26 344 27 66 27 66 27 245 28 586 28 854 29 112 29 408 29 731	11 7067 11 6278 10 22 9 227 6 5617 7 60969 6 92497 6 1978 6 63057 7 19314 7 42591 8 48186 9 5141 9 6775 10 7992 11 0572 12 2074 12 4337 13 6798 14 0093	2.07235E-06 2.01056E-06 8.90854E-07 5.14449E-07 3.97764E-07 2.12394E-07 7.39901E-08 4.22668E-03 5.04799E-08 1.35366E-07 2.37084E-07 3.67741E-07 6.38193E-07 1.27135E-06 1.49619E-06 2.38227E-06 2.76732E-06 4.19711E-06 4.43686E-06

S
C
ഗ
\sim
w
0
•
_
7
71
∞

21	75000	.37	30.083	14.3827	4.93472E-06
22	50000	. 33	30.433	15.8266	6.59229E-06
23	50000	463	30.829	16.3224	9.26237E06
24	50000	.691	31 406	18.2321	1.38120E-05
25	25000	.382	31 942	19.0566	1.52785E-95
26	20000	362	32,314	19 6663	1.80975E-05
27	20000	418	32,704	20.3419	2 09131E-05
28	20000	493	33 16	21 1821	2.46736E-05
29	20000	531	33,672	22,1976	2.65455E-05
30	15000	. 493	34.184	23, 2967	3.28710E-05
31	15000	.627	34.744	24 . 6055	4.17694E-05
32	10000	. 476	35, 295	26.0173	4.75767E-05
33	10000	ϵ 11	35.839	27.5448	6.11974E-95

E-03

Vac; R = 0.8

PRECEDING PAGE BLANK NOT FILMED

	:=.5 W=2
2H R-RATIO ≈ .8 @ 30 TEST ENUIRONMENT: UACU	
DATA FILE : X6022 4-0ECEMBER-1980	G.O. NUMBER: 5230

085 NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
12345678911123456789 1112345678912	23000 850000 450000 200000 150000 250000 300000 300000 300000 300000 300000 705000 310000 270000 730000	.036 .066 .078 .091 .105 .118 .143 .143 .143 .161 .177 .193 .287 .287 .287 .281 .275 .233 .335 .36	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	036 013 013 013 014 012 016 016 014 023 023 024 017 011

•				
21	3000 00	.371	2.8	.011
22	1.02550E+06	. 38 6	2.52	.914
24	325000	. 397	2.52	.014 .011
つよ	400000	469	2)52 2,52	012
6.T 신덕	750500	423	2 27	013
21 22 23 24 25 26 27 28 29		435	2.27 2.27 2.27 2.045	012
20	355000 555000	448	5 57	013
€(555000		5 G15	013
28	<u> </u>	.461	2.040	
29	300090	.472	2.645	.911
30	400000	. 486	2 045	.614
31	2.83500E+06	527	1 845	.041
75	1.50000E+06	.567	1.75	.64
3 2 3 3	490000	588	1 <i>6</i> 5	.021
34	410000	.527 .567 .588 .598	1.65	01
3 5	1.00000E+06	622	1.5	025
		654	1.5	632
36	567000	. 5 0.044		612
37	310000	.665	1.35	
3 3	490000	683	1.35	.017
39	1 .00000E+06	. 703	12	.021
40	500000	. 703 .727	1.2	.024
	., . . <u>-</u>			•

41 1 80000E+06 .744 1	.017
42 1 69100E+06 765 .9	.021
43 6 00000E+06 .79 .8 44 400000 .609 .9	. 025
44 400000 .609 .9	.019
45 285000 .82 1 .9	.012
46 250000 .831 .9	.61
47 670000 .849 .9	.017
46 265000 961 9 49 150000 877 9	.013
49 150000 .877 .9	.015
50 150000 .691 .9	.015
	.013
51 150000 .904 .9 52 125000 .919 .9 53 115000 .934 .9 54 115000 .949 .9	. 915
53 115000 .934 9	.015
54 115000 949 9	015
55 890 .987 9	.638

*** SECANT METHOD ***

SPECIMEN NUMBER: X6022 DIMENSION (INCH): B B = .5 2H = 2.4H = 2 H(H) = 7

R-RATIO = 8 @ 30 H2 TEST ENVIRONMENT, VACUUM DATA FILE : X6022 30 HZ

G.O. HUMBER: 5236

DES NUMBER	DELTA-N	DELTA-A (THCH)	A (INCH)	DELTA-K KSI#SØRT(INCH)	DAZON INCHZOYOLE
1234567899111213	23060 856666 456666 266666 156666 256666 366666 366666 366666	.036 .03 .013 .013 .014 .012 .013 .018 .016 .016 .014	718 751 772 785 798 812 824 837 852 865 917	11.895 16.613 16.912 16.969 10.266 10.452 9.571 9.731 9.934 9.034 9.238	1 56187E-06 3 53561E-06 2 78600E-08 6 64855E-66 9 25800E-08 4 01168E-08 4 25467E-66 2 87154E-08 5 25834E-66 5 46733E-68 4 59509E-08
14 15 16 17 18 19 20	400000 815000 310000 270000 730000 670000 250500	.023 .025 .025 .014 .021 .017	. 939 . 963 . 966 1 . 005 1 . 022 1 . 041 1 . 055	8.702 8.98 8.783 9.097 8.529 8.767 8.16 8.346	2.95234E-08 5.71200E-08 3.04184E-08 7.13322E-08 5.30110E-08 2.85768E-08 4.37485E-08

22345678901234567890	300000 011 1 02550E+06 014 325000 011 400000 012 750500 013 355000 013 555000 013 300000 013 400000 014 2 83500E+06 041 1 50000E+06 025 567000 032 310000 017 1 00000E+06 021 490000 017 1 00000E+06 021 500000 021	1.066 1.079 1.092 1.103 1.116 1.129 1.141 1.154 1.166 1.179 1.206 1.247 1.293 1.338 1.338 1.338 1.36 1.374 1.393 1.415	8.498 7.811 7.884 7.675 7.675 7.675 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.7777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.777 7.7777 7.77	3.63100E-09 1.40673E-09 3.52763E-09 3.52763E-09 1.79321E-09 3.37351E-09 2.39946E-09 1.46854E-09 3.70601E-09 3.46050E-09 1.45503E-09 2.45630E-09 3.77451E-09 3.77451E-09 3.38706E-09 4.75960E-09
----------------------	---	---	--	---

41	1 80000E+06	.017	1 435	6.719	9.40889E09
42	1.89100E+06	021	1.454	6.383	1 09138E-08
43	6 00000E+06	. 025	1.477	6.078	4.19799E-09
44	499999	019	1 . 499	7.326	4.73350E-08
45	285000	012	1.515	7.70 9	4.38245E-08
46	25900 0 . (01	1.526	8. 00 8	4.14240E-08
47		0i7	1.54	8.395	2.56 0 90E-08
48		013	1 555	8. 8 5	4.83169E-98
49		015	1.569	9.314	1.01333E-07
50		015	1.584	9.85	9.72398E-08
51		013	1.598	10.397	8.78266E-98
52		015	1.612	11	1.19806E-07
53		015	1.627	11.708	1 36785E-07
54		015	1.642	12.5	1.32139E-67
55	ନ ନନ	938 938	1 668	14 164	4 69888E-85

SPECIMEN NO.: $\times 6022$ DIMENSION (METER): B = .0127 M = .0508 2H = .06096 A(N) = .01778 R-RATIO = .8 @ 30 HZ. TEST ENVIRONMENT: UACLUM DATA FILE: $\times 6022$ G.O. NUMBER: 5230 4-DECEMBER-1980

085. NO.	DELTA-N	CRACK LENGTH	P-MAX (NEWTOH3)	DELTA-A (MH)
1234567899112345	23000 850000 450000 200000 150000 250000 300000 300000 300000 300000 705000 815000			
16 17 18 19 20	310000 270000 730000 670000 250500	7.555 7.918 8.448 8.878 9.157	15096 13764 13764 12432 12432	.562 .364 .53 .43 .278

S
C
က္သ
23
မ္
-
7
71
ᄁ

.277

.366

291

.308

342

.304 .338

319

352

1.048

1 006 537

.26

£24

861

. 297

.421 .529 .604

12432

11188.8

11168 8

9079.8 8191.8 7770

732€

7326

6660

300000 1 02550E+06 325000

400000

750500

355000 555000 855000

300000

400000

499999

410000

567000

430000

500000

2.83500E+06 1.50000E+06

1 00000E+06

1 00000000000

222245678901233456789

9.433

10.091 10.399

10.741

11.383 11.702 11.984 12.336 13.384

14.39 14.927 15.187

17 86 18 464

045

9.8

41	1.80000E+06	18.894	4440	.43
42	1 89100E+06	19.418	3996	524
42 43 44	6.00000E+06	20.058	3552	.64
44	400000	20.539	3996	481
45	285000	20.856	3996	.317
46	250000	21 119	3996	263
47	670000	21.555	3996	436
46	265000	21.88	3996	. 325
49	150000	22.26 <i>e</i>	3996	. 386
50	150000	22.637	3996	.37
51	150000	22.972	3996	. 335
52 53	125000	23.349	3996	
53	115000	23.731		.378
54	115000	24.117	3996 3006	.382
55	800		3996	.386
	Oth	25.07	3996	.953

*** SECANT METHOD ***

SPECIMEN NUMBER: X6022 DIMENSION (METER): E B = .0127 M = .0508 2H = .06096 A(N) = .01778 R-RATIO = .8 Q 30 HZ. TEST ENVIRONMENT: VACUUM DATA FILE : X6022 G O M

088.	DELTA-H	DELTA-A	A	DELTA-K	DA/DN
HUMBER		(MM)	(14M)	MPA*SORT(METER)	(MM/CYELE)
1	23000	.912	18,226	12, 1691	3.96714E-05
Ž	850000	763	19 064	11 6407	8 98945E-07
3	450000	318	19 605	11 968	7.07644E-07
$\tilde{4}$	200000	338	19.933	11 0656	1.68873E-96
5	150000	334	29 269	11.2E01	2.22822E~0€
23456789	150000	353	20 612	11 4637	2 35153E-06
Ž	250000	306	20.941	10.4972	1 222156-06
8	300000	.324	21 256	10.6735	1 08069E-06
Э	615090	449	21.643	10 8956	7.29372E-07
10	300000	461	22 067	9.96699	1 33562E-06
11	300000	417	22.476	10.1319	1 38870E-UE
12	300000	. 35	22.859	10.3481	1 16713E-0€
13	705000	529	23,299	9.54434	7.49894E-07
14	400000	. 56	23.853	9.84899	1 45085E-06
15	815000	.63	24.458	9.6329	7.72628E-07
16	310000	.562	25.054	9.97802	1.81184E-06
17	270000	364	25.516	9.35502	1.34648E-06
18	730000	.53	25.963	9.6153	7.25850E-07
19	670000	. 43	26.443	8.94993	6.42240E-07
20	250500	. 278	26.798	9.1545	1.11121E-06

S
\mathbf{c}
52
ည
õ
•
7

21	300000	.277	27.075	9.32032	9 22273E-07
22	1.02550E+06		27.3 9 7	8.56703	3.57309E-07
23	325000	. 291	27.725	8.75662	8.96034E-07
24	400000	. 308	28.025	8 93557	7.69174E-07
25		. 342	28.35	8 23039	4.55475E-07
26		. 304	28.673	8.41774	
27					8.56872E-07
		. 336	28.994	8.6114	6 09463E-07
28		.319	29.322	7 . 94352	3 73008E-07
29	300000	. 282	29.623	8 12017	9.41327E-07
30	400000	. 352	29.94	8.31381	8.78966E-07
31	2.83500E+06	1.048	30.64	7.91253	3.69576E-07
32	1.50000E+06	1.006			
.D.C.			31.667	8.14867	6.70900E-07
33		. 537	32.438	8 19945	1.09588E-06
34	410000	. 26	3 2.837	8.48944	<i>6</i> 33763E-07
35	1.90000E+06	.624	33.279	8 02305	6 24407E-07
36		801	33.992	8.57723	1.41232E-06
37		297	34.541	8 13912	
					9.58726E-07
38	490000	.421	34.9	8.4345	8.59299E-97
3 9	1.00000E+06	. 529	35.375	7.8697	5 29261E-07
49	500000	. 604	35, 942	8 35533	1 208945-06

41	1.80000E+0	6 .43	36,459	7.3691	2.38985E-97
42	1 89100E+0		36.936	7.00146	2.77211E-97
43	6.00000E+0		37.518	6.66592	1.06629E-07
44	400000	. 481	38 079	8.93492	1.20231E-06
45	285000	317	38.478	8.45533	1.11314E-06
46	250030	.263	38.768	8.76374	1.05217E-06
47	670000	436	39.117	9.20738	6.50468E-07
48	265000	.325	39.498	9.70734	1.22725E-06
49	150000	. 38 6	39.853	10.2153	2.57387E-06
50	150000	.37	40.232	10.8041	2.46930E-06
5ī	150000	. 335	40.584	11.4035	2.23060E-06
52	125000	378	40.34	12.0651	3.02269E-06
53	115000	. 382	41.32	12.841	3.31996E-66
54	115000	386	41.704	13.7098	3.25632E-06
55	800	953	42 374	15.4697	1.19148E-63

•

•

Air; R = 0.1

08S. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
123456?8911234567890	2.62564E+06 4.78035E+06 1.08263E+07 686763 483188 397479 292732 300380 145574 127702 207809 170362 120829 89057 57356 31838 27453 16225 7424 4221	.217 .25 .272 .293 .313 .333 .353 .382 .403 .423 .466 .507 .548 .59 .672 .712 .755 .788 .823	.721375 .651206 .577915 .685748 .68528 .693272 .698202 .704111 .702515 .681001 .665663 .672452 .668343 .650897 .633151 .648422 .6044898 .608444 .616746 .637387	.031 .033 .022 .022 .02 .02 .029 .021 .02 .042 .042 .042 .042 .043 .032 .035

363630.1755

SPECIMEN HUMBER: $\times 60-005$ DIMENSION (INCH): B=.5 $\mathcal{U}=2$ $2\mathcal{H}=2.4$ A(N)=.7 R-RATIO = .1 @ 20 HZ. TEST ENVIRONMENT: AIR DATA FILE: $\times 600005$ G.O. NUMBER: 5232

2	OBS. NUMBER	DELTA-N	DELTA-A (INCH)	A (INCH)	DELTA-K KSI*SQRT(INCH)	DA/DH INCH/CYCLE
18 16225 .043 1.434 18.31 2.66700E-0	123456789111234567	4.78035E+86 1.08283E+07 686763 483188 397479 292732 300380 145574 127702 207809 170362 120829 89057 57356 31838 27453 16225	.031 .033 .022 .02 .02 .029 .021 .042 .042 .042 .042 .043	.902 .934 .961 .982 1.003 1.043 1.068 1.093 1.113 1.144 1.186 1.228 1.269 1.31	7.675 7.252 6.7 8.207 8.5 8.833 9.185 9.644 10.038 10.038 10.417 11.382 12.275 13.908 15.701 16.25 18.31	1.19220E-08 6.84615E-09 2.04557E-09 2.96944E-08 4.19175E-08 5.08026E-08 6.84756E-08 9.72767E-08 1.45369E-07 1.56200E-07 2.03105E-07 2.44433E-07 3.37973E-07 4.73270E-07 7.00171E-07 1.31038E-06 1.45751E-06 2.66700E-06 4.36019E-06

.034

1,539

27.385

1.14315E-05

69

SC5230.17FR

OBS. NO.	DELTA-N	CRACK LENGTH (MM)	P-MAX (NENTOHS)	DELTA-A (MM)
123456789011234567890	2.62564E+06 4.78035E+06 1.08283E+07 686763 483188 397479 292732 300380 145574 127702 207809 170362 120829 89057 57356 31838 27453 16225 7424	5.519 6.351 6.913 7.431 7.946 8.459 8.968 9.71 10.248 10.754 11.826 12.884 13.921 14.992 16.012 17.072 18.088 19.187 20.009 20.894	3202.91 2891.35 2565.94 3044.72 3057.06 3078.13 3100.02 3126.25 3119.17 3023.64 2955.54 2985.69 2967.44 2889.98 2811.19 2878.99 2685.75 2701.49 2738.35 2830	.795 .831 .563 .518 .514 .513 .509 .742 .538 .507 1.072 1.058 1.037 1.02 1.06 1.099 .822 .884

70

```
OBS.
           DELTA-N
                           DELTA-A
                                                        DELTA-K
                                                                              DA/DN
HUMBER
                            (MM)
                                         (MM)
                                                     MPA*SQRT(METER)
                                                                           (MM/CYCLE)
            2.62564E+06
                             .795
                                          22.902
23.715
                                                         8.41792
                                                                          3.02820E-07
            4.78035E+66
                             .831
                                                          7.95429
                                                                            .73892E-07
              .08283E+07
                             .563
                                          24.412
                                                          7.3483
                                                                          5.19574E-08
            686763
                             .518
                                          24.952
                                                         9.0015
                                                                          7.54237E-07
            483188
                             .514
                                          25,469
                                                         9.32296
9.68798
                                                                            06470E-06
            397479
                                          25.982
26.493
                                                                          1.29039E-06
            292732
                             .509
                                                         10.0747
                                                                            73928E-06
   .
9
10
            300380
                             .742
                                          27.119
                                                         10.5772
                                                                          2.47083E-06
3.69238E-06
            145574
                             .538
                                          27.759
                                                         11.0097
            127702
                             507
                                          28.281
                                                         11.0585
                                                                            96748E-06
                            1.072
1.058
            207869
                                          29.07
30.135
                                                         11.4258
                                                                          5.15886E-06
            170362
                                                         12.4843
                                                                         6.20858E-06
            120829
                            1.037
                                          31.183
                                                         13.4636
                                                                         8.58453E-06
   14
                                          32.237
33.282
34.322
35.36
            89057
                             .071
                                                         14.3057
                                                                         1.20210E-05
   15
16
17
            57356
                            1.02
                                                         15.2547
17.2207
17.8233
                                                                         1.77843E-05
3.32838E-05
            31838
                             . 06
            27453
                            1.016
                                                                         3.70207E-05
   18
            16225
                            1.099
                                          36.417
                                                         20.0831
                                                                         6.77416E-05
   19
           7424
                            .822
                                          37.378
                                                         22.7398
                                                                          1.10749E-04
   20
           4221
                            . 884
                                          38.231
                                                         26.1066
                                                                         2.09519E-04
```

B = .0127

= .06096

2H

. 0508

A(N) = .01778

G.O. NUMBER: 5232

SPECIMEN NUMBER: X60-005

DIMENSION (METER):

TEST ENVIRONMENT: AIR DATA FILE : X60005

21 2955

. 858

39.103

30.0363

2.90359E-04


```
SPECIMEN NO: \times 60-006
DIMENSION (INCH): B = .5 W = 2
2H = 2.4 A(N) = .7
R-RATIO = .8 @ 30 HZ.
TEST ENVIRONMENT: AIR
DATA FILE: \times 60006 G.O. NUMBER: 5232
```

08S. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	304532 312014 408764 572658 695190 974400 2.34265E+06 1.17550E+06 3.15967E+06 1.00000E+07 81791 106524 103252 56715 37948 30405	.24 .276 .313 .352 .386 .423 .452 .464 .483 .493 .503 .522 .544 .562 .579	2.24306 2.00317 1.75678 1.4986 1.26879 1.0688 .851771 .739267 .664241 .580776 1.46646 1.56737 1.64918 1.81078 1.86868 1.9824	.046 .036 .037 .038 .035 .036 .029 .013 .019 .01 .01 .02 .018 .017

ORIGINAL PAGE IS

```
SPECIMEN NO.: X60-004 DIMENSION (INCH): B = .5 W = 2 2H = 2.4 A(N) = .7 R-RATIO = .5 @ 30 HZ. TEST ENVIRONMENT: AIR DATA FILE: X60004 G.O. NUMBER: 5232 6-JAN-80
```

OBS. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
123456789011234567890 11123456789120	222706 188930 316694 273143 446405 378322 580359 535650 869591 737598 1.40224E+06 1.33359E+06 4.60064E+06 3.66291E+06 6.72723E+06 2.37521E+06 2.37521E+06 2.33132E+06 1.81132E+06 276729 192164	.207 .228 .248 .268 .285 .309 .33 .349 .37 .39 .411 .431 .455 .478 .502 .525 .548 .57 .587	.903734 .903908 .781342 .784195 .673235 .675088 .579425 .57884 .479059 .479272 .387721 .386808 .31717 .288409 .293692 .290772 .289104 .435459 .507267	.02 .021 .021 .021 .021 .021 .021 .024 .023 .024 .023 .023 .023 .023

21	133092	.629	.566512	.021
22	77059	.648	.615275	.02
23	69209	.667	.657797	.019
24	36373	.689	.773509	.022
25	19580	.707	.851569	.018
26	21948	.725	.850032	.018

SPECIMEN NUMBER: X60-004 DIMENSION (INCH): B=.5 W=2 2H=2.4 A(H)=.7 R-RATIO = .5 Q 30 HZ. TEST ENVIRONMENT: AIR DATA FILE: X60004 G.O. NUMBER: 5232

OBS.	DELTA-N	DELTA-A	A	DELTA-K	DA/DN
NUMBER		(INCH)	(INCH)	KSI*SQRT(INCH)	INCH/CYCLE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	222706 188930 316694 273143 446405 378322 580359 535650 869591 737598 1.40224E+06 1.33359E+06 4.60064E+06 3.66291E+06 2.37521E+06 2.37521E+06 2.37521E+06 2.37521E+06	.02 .021 .021 .021 .021 .021 .021 .021	.897 .918 .938 .958 .978 .999 1.019 1.04 1.06 1.08 1.101 1.121 1.143 1.166 1.19 1.213 1.236 1.259	5.309 5.464 4.864 5.029 4.45 4.603 4.079 4.207 3.598 3.723 3.119 3.225 2.777 2.731 2.912 3.021 3.148	9.20047E-08 1.06362E-07 6.49018E-08 7.33242E-08 4.59336E-08 5.38748E-08 3.55849E-08 3.68953E-08 2.37457E-08 2.68832E-08 1.51230E-08 1.48426E-08 5.20232E-09 6.33977E-09 3.54588E-09 9.69053E-09 9.81030E-09 1.22104E-08
18	1.81132E+06	.022	1.259	3.148	1.22104E-08
19	276729	.017	1.279	4.949	6.25882E-08
20	192164	.021	1.298	6.016	1.09402E-07

1.54292E-07 2.53105E-07 2.72927E-07 5.91399E-07 9.22371E-07 8.37251E-07

ORIGINAL FACE IS OF POOR QUALITY

SPECIMEN NO.: X60-004DIMENSION (METER): B = .0127 W = .05082H = .06096 A(N) = .01778R-RATIO = .5 @ 30 HZ. TEST ENUIRONMENT: AIR DATA FILE: X60004 G.O. HUMBER: 5232 6-JAN-80

OBS. NO.	DELTA-N	CRACK LENGTH (MM)	P-MAX (NEWTONS)	DELTA-A
12345678901234567890	222706 188930 316694 273143 446405 378322 580359 535650 869591 737598 1.40224E+06 1.33359E+06 4.60064E+06 3.66291E+06 6.72723E+06 2.37521E+06 2.37521E+06 2.33132E+06 1.81132E+06 276729 192164	5.27 5.781 6.303 7.811 7.332 7.85 8.877 9.401 9.905 10.443 10.946 11.554 12.75 13.334 12.75 13.334 13.915 14.477 14.917	4012.58 4013.35 3469.16 3481.83 2989.16 2997.39 2572.65 2570.05 2127.97 1721.48 1717.43 1408.23 1361.6 1280.54 1303.99 1291.03 1283.62 1933.44 2252.27	.52 .5129 .529 .529 .529 .524 .533 .508 .508 .508 .508 .508 .508 .508 .508

15.973 16.468 16.948 17.494 17.953 18.42 2515.31 2731.82 2920.62 3434.38 3780.97 3774.14 .522 .495 .48 .546 .459 .467

ဟ
റ
ິທ
Ň
ັພ
Ö
•
_
~

ORIGINAL PAGE IS OF POOR QUALITY

SPECIMEN NUMBER: $\times 60-004$ DIMENSION (METER): B = .0127 M = .0508 2H = .06096 A(N) = .01778 R-RATIO = .5 @ 30 HZ. TEST ENVIRONMENT: AIR DATA FILE: $\times 60004$ G.C. NUMBER: 5232

OBS.	DELTA-N	DELTA-A	Á	DELTA-K	DA/DN
NUMBER		(MM)	(MM)	MPA*SQRT(METER)	(MM/CYCLE)
12345678911234567890	222706 188930 316694 273143 446405 378322 580359 535650 869591 737598 1.40224E+06 1.33359E+06 4.60064E+06 3.66291E+06 2.37521E+06 2.37521E+06 2.33132E+06 1.81132E+06 276729 192164	.52 .512 .529 .529 .521 .525 .524 .534 .539 .508 .581 .581 .562 .44 .534	22.79 23.305 23.822 24.852 25.371 25.892 26.406 26.919 27.954 28.475 29.629 30.822 31.405 31.976 32.964	5.82265 5.99342 5.33447 5.51541 4.88035 5.0484 4.47335 4.61451 3.94638 4.08312 3.4205 3.53669 3.0158 3.0158 3.0158 3.19407 3.19407 3.31307 3.45317 5.42791 6.59876	2.33692E-06 2.70160E-06 1.64851E-06 1.86243E-06 1.16671E-06 1.36842E-06 9.03855E-07 9.37141E-07 6.03141E-07 6.82832E-07 3.84123E-07 3.77002E-07 1.32139E-07 1.32139E-07 9.00655E-08 2.46139E-07 2.49182E-07 3.10145E-07 1.58974E-06 2.77880E-06

33.492 34.488 35.001 35.503 35.966

.522 .495 .48 .546 .459 7.72954 8.80281 9.86351 12.2056 14.1498 14.8355 3.91901E-06 6.42887E-06 6.93234E-06 1.50216E-05 2.34281E-05 2.12662E-05

U	1
c	2
U	١
r	3
L	2
C	١
•	
-	ė
-	1
7	i
×	i

Air; R = 0.8

SPECIMEN NO.: $\times 60-006$ DIMENSION (METER): B = .0127 M = .0508 2H = .06096 A(N) = .01778 R-RATIO = .8 @ .30 HZ. TEST ENVIRONMENT: AIR DATA FILE: $\times 60006$ G.O. NUMBER: 5232 26-JAN-80

085. NO.	DELTA-H	CRACK LENGTH (MM)	P-MAX (NEWTONS)	DELTA-A (MM)
1 2 3 4 5 6 7 8 9 9 11 12 13 14 15 16	304532 312014 408764 572658 695190 974400 2.34265E+06 1.17550E+06 3.15967E+06 1.00000E+07 81791 106524 103252 56715 37948 30405	6.099 7.012 7.958 8.931 9.812 10.733 11.47 11.791 12.261 12.515 12.769 13.826 14.272 14.714 15.168	9959.19 8894.07 7800.1 6653.78 5633.43 4745.47 3781.86 3282.35 2949.23 2578.65 6511.08 6959.12 7322.36 8039.86 8296.94 8801.86	1.172 .913 .946 .973 .88 .922 .737 .321 .47 .254 .253 .501 .556 .447 .441

SC5230.17FF

SPECIMEN NUMBER: X60-006 DIMENSION (METER): B=.0127 W=.0508 2H=.06096 A(N)=.01778 R-RATIO = .8 @ .30 HZ. TEST ENVIRONMENT: AIR DATA FILE: X60006 G.O. NUMBER: 5232

OBS.	DELTA-N	DELTA-A	A	DELTA-K	DA/DN
HUMBER		(MM)	(MM)	MPA*SQRT(METER)	(MM/CYCLE)
12345678910112345616	304532 312014 408764 572658 695190 974400 2.34265E+06 1.17550E+06 3.15967E+06 1.00000E+07 81791 106524 103252 56715 37948 30405	1.172 .913 .946 .973 .88 .922 .737 .321 .47 .254 .253 .501 .556 .447 .441	23.293 24.336 25.265 26.225 27.152 28.052 28.882 29.411 29.806 30.168 30.422 30.799 31.328 31.829 32.273	5.94507 5.63501 5.22148 4.72471 4.24452 3.79695 3.20556 2.89005 2.67355 2.40212 6.18405 6.90627 7.46955 8.54564 9.15518 10.0961	3.84705E-06 2.92600E-06 2.31491E-06 1.69914E-06 1.26625E-06 9.45852E-07 3.14528E-07 2.72928E-07 1.48887E-07 2.54001E-08 3.09709E-06 4.70522E-06 5.38174E-06 7.87370E-06 1.16337E-05 1.49451E-05

 H_2 ; R = 0.1

SPECIMEN NO.: $\times 60-24$ DIMENSION (INCH): B = .5 W = 2 2H = 2.4 R(N) = .7R-RATIO = .1 @ 30 HZ.
TEST ENVIRONMENT: GH2
DATA FILE: $\times 6024$ G.O. NUMBER: 5230
2-23-81

0BS NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (INCH)
12345678911123456789111234567891112345678911123456789111234567891112345678911123456789111123456789111123456789111123456789111123456789111123456789111123456789111123456789111111111111111111111111111111111111	120000 257700 590000 750000 1.55000E+06 630000 1.00000E+06 652000 1.03000E+06 2.68000E+06 2.30000E+06 2.35000E+06 2.66000E+06 2.66000E+06	922 942 96 986 119 141 165 195 218 254 283 31 342 367 389 409	1.5 1.3 1.15 1.05 .95 .85 .85 .625 .625 .55 .45 .425	.022 .026 .026 .023 .022 .024 .035 .025 .025 .022 .023
19 20	4.02700E+06 3.03000E+06	. 482 . 503	.35 .35 .33 .31 .31	.029 .02 .021

.

•

•

and the second s

		·	•		
21	2.50000E+06	527	3	. 025	
22	830000	. 527 . 548 . 568	်ဥ ိ 9	921	
22 23	500000	568	. 29	.021 .021	
24	850000	589	29	02	
24 25 26 27	700000	.589 .611 .633 .657	. 29	. 02 . 023 . 022	
26	270000	633	. 29	.022	
27	300000	. €57	. 29	.024	
26 29	350000	682	.29	.025	
29	250000	. 715	.29	.033	
30	150000	.739	.29	.024	
31	100000	.769	29	.03	
31 32 33	59000	.739 .769 .79	.29	.021	
3 3	60000	.613	.29	023	
34	25000	835	.29	022	
35	20000	855	29	.02	
36	20000	877	.3 999999999999999999999999999999999999	.022	

•

·

*** SECANT METHOD ***

SPECIMEN NUMBER: X60-24 DIMENSION (INCH): B = B = .5 2H = 2.4 30 HZ. И = 2 A(H) = .7

R-RATIO = 1 Q 30 TEST ENVIRONMENT: GH2 DATA FILE : X6024 G.O. NUMBER: 5230

063. HUMBER		ELTA-A (INCH)	(INCH)	DELTA-K KST*SØRT(THCH)	DAZDH INCHZCYCLE
1	120000	032	.711	12.374	1.88806E-67
2	257700	.02	. 73 2	11.615	7.72316E-08
23	590000	018	. 751	9.987	3.08475E-08
	750660	026	. 773	9.305	3.46667E-08
4567	1 55000E+06		. 862	ଟ ଟ୍ରେଟ	2.14194E-00
ē	630000	022	. 83	8.196	3.523811-98
7	860000	024	. 853	7.463	3 050000-06
S	1.00000E+06	63	.88	6.454	2 9600 0 6-96
8 9	652600	.023	. 367	€.698	3 58896E-08
10	1 03000E+06		.93€	6.148	3.4456 0E -08
11	2.06690E+06		.968	5.859	1.43000E-06
12	2.68009E+06		.996	5.5	1.01492E-68
13	2 30000E+96		1.026	5.443	1.42174E-08
14	1.92690E+06		1 055	5.365	1 . 296 86E-98
15	2.25000E+06	622	1.078	5.227	9.60000E99
16	3.98000E+06		1.039	5.054	5.02512E-09
17	2.66000E+06	. 023	1.121	5.247	8.64662E-09
18	2.50000E+66		1.147	5.185	1.1760 0 E-06
19	4.02700E+06		1.172	5.101	5.06581E-09
20	3.03000E+06	. 021	1.192	5.306	6.83169E -0 9

.025

.02

2.50009E+06 830000

500000 650000

215

258

278

13 355

9.87999E-99

2.46988E-88

4 10000E-08 2 41176E-08

8 07497E-08 8 00000E-08

7.11429E-98

. 32400E-07

69999E-9?

65966E-07

19999E-97

3.75667E-07

8 38000E-97

1.01000E-05 1.10000E-05

21429E-08


```
SPECIMEN NO.: X60-24

DIMENSION (METER): B = .0127 W = .0508

2H = .06096 A(N) = .01778

R-RATIO = .1 Q 30 HZ.

TEST ENVIRONMENT: GH2

DATA FILE: X6024 G.O. HUMBER: 5230

2-23-81
```

085. NO.	DELTA-N	CRACK LENGTH	P-MAX (NEWTONS)	DELTA-A (NM)
1	120000	.549	6660	.549
? .	257700	1 054	5772	. 505
3	590000	1 516	5106	.462
4	750000	2.177	4652	5€
5	1 55000E+06		4218	.343
Ē	630000	3.584	3774	564
Ž	899999	4 2614	3330	.62
Ŕ	1 60000E+86	4 956	2775	.752
でかったのでする	652000	5.55	2775	.594
10	1 63000E+66	6.452	2442	.902
11	2 00000E+06	7.178	2550	.726
11 12	2 68000E+06	7.869	1998	.691
13 .	2.30000E+06	8 699	1667	,831
14	1 92000E+0E	9.332	1776	632
เร้	2.25000E+06	9.881	1665	549
îĕ	3 98000E+06	10.389	1554	.508
17	2 66000E+06	10.973	1554	.584
18	2.50000E+06	11.72	1465.2	.747
19	4.02700E+06	12.238	1376.4	.518
20	3.03000E+06	12.763	1376.4	.526

\sim
င္သ
N
ၶ
* .
. 7
77
~

21	2.50000E+06	13.391	1332	.627
2 2	830000	13.912	1287.6	521
23	500000	14.432	1287.6	521
24	850600	14 953	1287.6	521
25	700000	15.524	1287.6	572
26	270000	16.078	1287.6	.554
27	300000	16.688	1287.€	.61
28	350000	17.32	1287.6	632
23	250000	18 161	1287 €	.641
28 23 30	156000	18.771	1287.6	.61
31	100000	19.545	1287.6	775
32	50000	20.066	1287 6	521
33	60000	20.64	1287.6	.574
34	25000	21, 204	1287 6	564
35	20000	21.717	1287.6	513
3 6	20000	22.276	1287 6	559

*** SECANT METHOD ***

SPECIMEN NUMBER: $\times 60-24$ DIMENSION (METER): $\times 8 = .0127$ $\times 4 = .0508$ $\times 2H = .06096$ $\times 4(N) = .01778$ R-RATIO = 1 & 30 HZ. TEST ENUIRONMENT: GH2 DATA FILE: $\times 6024$ G.O. NUMBER: 5230

OBS. HUMBER	DELTA-H	DELTA-A (MM)	(M4)	DELTA-K MPA#SORT(METER)	DAZDN (MMZCYCLE)
1 2	120000	549	18 954	13.5718	4 57200E-06
	257700	.505	18 58 1	12.081	1.96143E-06
234567	590000	. 462	19.065	10 9538	7.83525E-97
	750000	. 66	19.627	10 2932	8.80533E-97
	1 55000E+1	86 - 843	20.378	9 68256	5.44051E-97
(G) F (c)	639000 800000	. 564 62	21 082 21 674	8 98916 8 18541 7 07692	8 95047E-07 7 74700E-07 7 51846E-07
5 9 10	1 .00000E+1 652000 1 .03000E+1	. 594 96 . 9 9 2	22,36 23,033 23,781	7.34649 6.74325	9.11595E-07 8.75436E-07
11	2 00000E+(B€ .€91	24.595	6 42597	3.63220E-07
12	2 68000E+(25.303	6 03258	2.57791E-67
13	2 30000E+(26.064	5 9694	3.61122E-07
14	1.92000E+(86 632	26.796	5.88436	3.29407E-07
15	2.25000E+(86 549	27.386	5.73295	2.43840E-97
16 17 18	3.99000E+ 2.66000E+ 2.50000E+	96 584 96 747	27.915 28.461 29.126	5 5431 5 75466 5 6871	1.27638E-07 2.19624E-07 2.96704E-07
19	4.02700E+		29.759	5.59503	1.28672E-07
2 0	3.03000E+		30.281	5.81928	1.73525E-07

2 50000E+06

830000

500000

850000

250000 150000 100000

50000 60000 25000

20000 20000

.627

.521 .521

521

. 572

.554

.632

841

61

.775

.521 .574

.564

513

.559

.61

30.657

31.431

31.952 32.473 33.019

33.581 34.163

34.784

35.521 36.246

36 938 37 586

133

.702

776

.24

38

38

39

5.88909

5.96048

6.22231

6.50417

6.82364

7.18123 7.58504 8.05953 8.68919

9.33212

16.1541

18.9627

11.7309

12.6258

13.5797

14.6475

S	
C	
ູ້ຕຸ	
B	
õ	
•	
7	

2.50952E-07

6.27349E-07

6 12587E-07 8 16430E-97

2.05082E-06 2.03199E-06

80703E-06

36296E-06

66460E-06

74698E-06

04140E-05

56736E-96

2 25552E-95 2 56540E-95 2 79400E-65

04140E-06

SPECIMEN NO.: X60-26DIMENSION (INCH): B = .5 M = 22H = 2.4 A(H) = .7R-RATIO = .5 \oplus 30 H2. TEST ENVIRONMENT: H2 DATA FILE: X6026 G.O. NUMBER: 5230 4-22-81

OBS. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (THCH)
1	303000	.691 .117	1 5 1 3	925 926
2	495000 560000	144	i i	927
4	500000	.17	1 3	02 6
5	766660	. 197 . 215	. 9 . 8	.027 .019
23456789	765000 865000	. 237	725	.021
; S	1 22000E+06	. 26	. <i>6</i> 5	023 022
	1.46000E+06	. 282 . 305	6 55	024
10 11	2.00000E+06 3.6000GE+06	.332	. 55 . 5	0.27
12	2.50000E+06	. 357	. 475	.025
13	2.70000E+06	.377	. 4 5 . 8	. 0 2 . 0 36
14 15	1 24000E+06 2 20000E+06	.414 .582	. 7	. 169
16	150000	. 604	. 55	. 022 . 047
17	395600	.651 .674	. 55 . 45	023
18 19	200000 350000	.699	. 35	.025
2ó	500000	.71	.3	.012

*** SECANT METHOD ***

SPECIMEN NUMBER: 60-26DIMENSION (INCH): B = .5 M = 22H = 2.4 A(H) = .7R-RATIO = .5 @ 30 HZ. TEST ENVIRONMENT: H2 DATA FILE: 6026 G.O. NUMBER: 5230

OBS NUMBER	DELTA-N	DELTA-A (INCH)	(INCH)	DELTA-K KSI#SØRT(INCH)	DAZDN INCHZCYCLE
1	303000	.025	.779	7.5 65	8.22914E-08
2	405000	.026	. 804	6.727	5.46477E-68
3	560000	.027	. 83	5 896	4.73258E-98
4	500000	. 025	. 857	5.553	5.19400E-08
5	700000	027	. 883	5.184	3.87000E-96
23 45 67	765000	013	. 906	4.758	2.42614E-96
	865000	021	926	4.436	2.48197E-08
5	1 22000E		. 948	4.189	1 92385E-96
9	1 46999E		.971	3.922	1.47719年-68
10	2 00000E		394	3.72	1 17560E-96
11	3.60000E		1.019	3.516	7.46445E-09
12	2.50000E	196 . 925	1 045	3.481	9 99399E-99
13	2 79999E		1.067	3.422	7 52371E-09
14	1.24000E		1 098	6.382	2.94073E-08
15	2.20000E		1.198	€.735	7 66082E-08
16	160000	.022	1.293	6.459	1.36425E-07
17	305000	. 047	1.328	6.988	1.52580E-07
18	200000	. 823	1.362	6 .22	1.1 3645E- 07
19	350000	.025	1.386	5.142	7.13030E-08
20	500000	.012	1.404	4.627	2.37080E-08

1.50000E+06 .083 598000 .033 2.50000E+06 .125

1 .452 1 .509 1 .588 4.4 4.207 4.174

5.50067E-06 5.51304E-08 4.99292E-08

S
່ຕ໌
N
ω
9
_
7
꾸


```
SC5230.17FR
```

SPECIMEN NO.: X60-26 DIMENSION (METER): B = .0127 M = .0508 2H = .06096 A(N) = .01778 R-RATIO = .5 @ 30 HZ. TEST ENVIRONMENT: H2 DATA FILE: X6026 G.O. NUMBER: 5230 4-22-81

OBS NO.	DELTA-N	CRACK LENGTH	P-MAX (NEUTONS)	DELTA-A (MM)
į	303000	2.311	6669 5772	. 63 3 . 66 5
2	405000 560000	2.976 3.649	4884	673
1 3 4 5 6 7	500000	4.369	4440	86
5	700000	4.997	3996	628
Ĕ.	765000	5.468	3552	.471
7	865000	6.014	3219	. 545
ઇ	1 22000E+BE		2886	.596 540
ġ	1.46000E+06	7.158	2664	. 54 9
10	2 00000E+06		2442	597
11	3.60000E+06		2220	.693
12	2 50000E+06		2109 199 8	.635 .516
13	· 2.70000E+06		3552	.926
14	1.24000E+06		3108	4.281
15	2.20000E+06 169000	15.35	2442	554
16 17	305000	15.532	2442	1.182
18	200000	17.109	1998	.577
19	350000	17.743	1554	.634
20	500000	18.044	1332	. 301

S
C
52
ເນັ
0
•
7

2.096 .837 3.171

1110 988 666

20.14 20.977 24.148

1 50000E+06 598000 2 50000E+06

SC520.17FR

*** SECANT METHOD ***

SPECIMEN NUMBER: X60-26 DIMENSION (METER): B = .0127 M = .0508 2H = .06096 A(H) = .01778 R-RATIO = .5 @ 30 HZ. TEST ENVIRONMENT: H2 DATA FILE: X6026 G.O. NUMBER: 5230

OBS. HUMBER	DELTA-N	DELTA-A (MM)	(MM)	DELTA-K MPA*SORT(METER)	DAZDN (MMZCYCLE)
1 3	303000 405000	.633 665	19.774 20.424	8 2317 7 37638	2.09020E-06 1.64205E-06
3	560000	673	21 093	6 46646	1.20210E-06 1.31928E-06
4 5	500000 700000	. 66 . 68 8	21 759 22 433	5 68588	9.62980E-07
2 3 4 5 6 7	765000 865000	471 .545	23 013 23 521	5 21837 4 86595	6 16240E-07 6 30419E-07
8	1.22000E	+06 .596	24 892	4 50711	4.86658E-97 3.75297E-97
9 10	1.46000E 2.00000E	+06 597	24 664 25 236	4 07967	2 98653E-07
11 12	3.60000E 2.50000E		25, 876 26, 535	3.85637 3.81787	1 89597E-07 2 93848E-67
13	2.76000E	+06 .516	27 11 27 831	3.75336 6.99936	1.91102E-67 7.46944E-97
14 15	1.24000E 2.20000E	+06 4.281	30.435	7 387	1.94585E-06
16 17	160000 305000	554 1.182	32.852 33.721	7.0343 7.6649	3.46519E-06 3.87554E-06
18 19	200000 350000	.577 .634	34.6 35.206	6.82261 5.63933	2.86658E-06 1.81110E-06
20	500000	.301	35.673	5.07473	6.02180E-07

•

•

		SC5230.17F
		2 0

21	1.50000E+06 2.096	36,872	4.82621	1.39717E-06
22	598000 .837	38.338	4.61374	1.49931E-06
23	2.50000E+06 3.171	40.342	4.57783	1.26820E-0€

.

•

S
C
က္
23
õ
_
2
77

		CIMEN NO.: X BENSION (INCH		W = 2 A(N) = .		
	TES DAT	ATIO = .8 T ENVIRONMEN A FILE : %60 22-80	9 30 HZ T HYDROGEN	O. NUMBER: 53	•	
n.c.	A SC:	DE1 72. 11	ENGL LEHET	1	DEL TA	

·

085. NO.	DELTA-N	CRACK LENGTH (INCH)	P-MAX (KIPS)	DELTA-A (THCH)
1	900000	.986	4.5	.643
2	475000	. 135	4 1	649
3	420000	175	3.5	044
4	465000	.217	3 15	.633
5	600000	25	2 825	033
Ē	700000	.25 23	7 54	64
Ž	950000	. 334	5 3	.044
Ś	340000	375	2	641
∺ಬರು415ುರ್-ಇರ	1.39600E+06	. 421	2 54 2 3 2 1 7	046
ÎŪ	2.36000E+05	. 441	1.45	62
i i	800969	.462	13	.02
îâ	790000	. 492	1.17	.02
iš.	2.07500E+06	562	1 025	.021
14	1.30000E+06	523	.975	.021
iš	2 12039E+06	.552	.88	023
16	2 58500E+05	. 573	.82	.621
iř	3 87600E+06	593	.74	.02
រ៉ង់	4.30090E+06	.62	.7	.027
19	1.08430E+06	.642	.665	.022
20	1.98260E+66	658	.62	.016
20	x . 20200£ · 00	. 400		.UIU

.

2.90000E+06 1.79060E+06 3.00000E+06 2.80200E+06 6.22000E+06 800000 2.05000E+06 1.35000E+06 1.00000E+06 1.00000E+06 500000 465000 350000 350000 350000 120000

. 675

718

778

1 039 1 061

1 683 1 108

.022

S
റ
ဟ
N
ယ
0
•
7

S
\mathbf{c}
S
Ň
ũ
5
_
•
_
7
ח
70

41	70000	1 . 129 1 . 152	. 42 . 42	. 021 . 022
42 43 44	40000 40000 35000	1.176 1.199	.42	. 025
45	25000	1.242	.42	. 044

*** SECONT NETHOD ***

7.96834E-69	3.352	SE'I		1 9859 06	50
2.02020E-68	30 to 5	155.1		1 084306	61
69-361646.3	985 E	386	750. 30+3	30609E b	81
60- 3 22660 'S	262 E	1 283	ZO 90+3	306878 E	21
69-328131 8	862 E	7 295	120' 99+3	30958C.S	91
89-3ES+SE 1	₱99 E	1 535	620° 90+3	S 15060E	SI
1 26498E-69	3,862	1 213	170 9 9+ 3	30009E T	ÞĪ
69-305636 E	8 63 E	261 1		306570, 5	ΣĪ
S 24235E-98	4 58	1.172	20 .	999962	21
S 23100E-08	85.4	1.152	50 .	009098	11
EU-396229 13	₹ 353	121 1		S 36000E	91
3 58843E-66	2.442	860 1	969 98+	300068 1	5
90-3699ts b	96 €	1 022	140	000305	8
33-356F59 Þ	101 3	Sio. i	p\$9°	009056	<u>.</u>
90-300\$24 S	2 2 9 9	26	† 0	900002	68.1994871
2 23600E-03	65 3	456°	ี ซีซี ซี ซี	009309	Š
80-354968 8	206 2	368	820	0003596	Ď
26-326920 1	822 2	726	440	456000	Š:
20-380210	ëss ë	18	5 +0	909521	2
80-301592 0	18 8	Þ92°	210	000060	Ì
90-34132C Y	VO 0	YJU	t W	00000	,
INCHNOACTE	KRIXROBLCINGH)	(THCH)	CHONID		HOMBEK
HQ/HQ	3-91730	IJ	A-ATJ30	H-AT130	\$80
	, , , , , , , , , , , , , , , , , , , ,				
	NONBER: 5230	.0. 2		JIA ATAO -	
		NECEN			
		ZH	02 8 =	R-EHT10	
	2 = (N)b	1 = 2 4	招		
	2 = M		H (INCH):		
		£7	NUMBER: X60-2	SPECIMEN	

.90000E+06

1.79060E+06

3.00000E+06

2 80200E+06 6 22000E+06

2.05000E+06

1.35000E+06

1.00000E+06

1.00000E+06

800000

500000

465000

450000

345000

350000

350000

350000

120000

100000

100000

2234552229901333355378940

.017

019

.024

.021

021

02

02

019

025

019

.021

021

.021

022

. 923

. 628

.041

022

.022

025

1.366

1 384

406

429

45

489

. 528

1.55

1.573

1 594 1 615

1 637

1.659

1 684 1 719

1 75 1 772

1.795

469

509

3.24

3.159

3.096 3.032 2.939 3.114

3.306

3.524

3.76 4.059

4.414

4.786

5 208

5 702 6 297 7 113

8 524

10 24 11 897

13,985

Ñ
C
ပ္ပာ
N
ယ
0
•
_
7
71
71

94345E-99

.53603E-03

1.04468E-08

8.14035E-09

3.31126E-09

2.33000E-08

9.89074E-03

2.47830E-08

4 26899E-08

4 49997E-08 4 70934E-08

6 23912E-68

6.48290E-08

8.02371E-08 1.16317E-97

809995-07

2.21100E-07 2.52200E-07 #

46459E-03

.92586E-68


```
DATA FILE: X6023
                                       G.O. NUMBER: 5230
        12-22-80
085 NO.
            DELTH-N
                          CRACK LENGTH
                                             P-MAX
                                                         DELTA-A
                              (MM)
                                              (NENTOHS)
                                                          (141)
            900000
                              2 17E
                                               19989
                                                            (15:9
   2345676919
            475000
                              3.434
                                               18264
                                                           1.257
            420000
                              4.54
                                               15540
                                                           1 186
            465000
                              5.509
                                               13986
                                                            369
            €00000
                               353
                                               12543
                                                           344
                              7.371
            700000
                                               11277.€
                                                          1.618
            950666
                             8.434
                                               10212
                                                          1.123
            900000
                              9.533
                                               9889
                                                           1 639
            1 39000E+06
                              10,694
                                               7548
                                                          1 161
            2.38000E+06
                                 213
                                               6438
                                                           .518
   11
12
13
            600000
                                 727
                                               5772
            799000
                              12 238
                                               5194.8
            2.07500E+06
                                 763
                                               4551
   14
            1.30000E+06
                                               4329
                              13.286
                                                           523
   15
16
17
            2.12666E+06
                              14.016
                                               3907.2
            2.58500E+06
                              14.553
                                               3640 . 8
                                                           537
            3.87800E+06
                             15.055
                                               3285.6
                                                           502
   18
                              15.749
            4.30090E+06
                                               3108
                                                           .694
   19
            1.08430E+06
                              16.365
                                               2952.6
                                                           .556
```

16.706

0127

A(H) =

2752.8

.401

01778

2H = .06036

30 HZ

HYDROGEN

SPECIMEN NO.: X60-23 DIMENSION (METER):

TEST ENVIRONMENT:

1.98260E+06

20

R-RATIO = .3

S
\ddot{c}
iń
Ň
ເມັ
Ö
•
_
7
77]

21	2.90000E+06	17.144	2575.2	438
22	1.79060E+06	17.619	2397 €	.475
	3 00000E+06	18.24	2220	.62
23			2042.4	536
24	2.80200E+06	18.776		
25	6.22000E+06	19.299	1864.8	.523
26	800000	19.773	1864.8	.473
27	2.05000E+06	20.268	1864.8	.515
28	1 35000E+06	26.79	1864.8	. 502
29	1 00000E+06	21.279	1864 8	. 489
30	1 00000E+06	21.308	1864.8	629
		22.451	1864 8	542
31	500000			.53
32	465000	22.981	1864.8	
33	45 <u>6</u> 000	23.519	1864.8	538
34	34500 0	24.066	1864 8	547
35	356969	24.E42	1864.8	.576
36	350000	25.356	1864.8	.713
37	350000	26.39	1664.8	1.034
		26.941	1864.8	55.7
38	120000			.552 .562
39	160600	27.503	1864.8	
46	100099	28.143	1864 8	641
-143	4 Branchista			

S
\Box
ហ
N
ũ
õ
~
'n
Ti.

365630.1758

*** SECAHT METHOD ***

SPECIMEN NUMBER: X60-23DIMENSION (METER): B = .0127 M = .05002H = .06096 A(N) = .01770R-RATIO = .8 @ 30 HZ. TEST ENVIRONMENT: HYDROGEN DATA FILE: X6023 G.O. NUMBER: 5230

OBS. NUMBER	DELTA-N	DELTA-A (MM)	A (MM)	DELTA-K MPA#SØRT(METER)	DAZDN (MMZCYCLE)
i	900000	1 089	19.412	9 69548	1 21035E-06
Ž	475000	1 257	29.585	9 38694	2 64688E-06
3	420000	1 106	21.7 <i>E</i> 7	8 53104	2.63359E-06
23456789	465000	. 969	22.865	8 12455	2 08444E-65
5	6 00 600	. 844	23 711	7. 6663 2	1.40614E-06
€	700000	1.018	24.642	7 27427	1.45415E95
7	950000	1.123	25.712	7.02445	1.18236E-96
ទ	ିମେଡିଡିଡି	1.039	26 794	6.53728	1.15466E-96
9	1.39699E+		27.894	5 97458	8 35276E-07
10	2.39000E+	·66 .518	28 733	5.4	2 17778E-97
11	800000	.514	29.25	5.62313	5.42874E-07
1.2	79 000 0	.511	29.762	4.69386	6.46639E07
13	2. 0 7500E+		30.28	4 27575	2.53228E-07
14	1.30000E+		30.805	4 23569	4.02355E-07
15	2.12909E+		31.431	4.01921	3.44051E-07
16	2.58500E+		32.064	3.94688	2.07618E-67
17	3.87500E+		32.584	3.72394	1.29528E-07
18	4.30090E+		33.182	3.71414	1.61268E-07
19	1.08430E+		33.807	3.73698	5.13130E-07
20	1.9826 0E +	-06 .401	34 . 286	3 .64639	2.02396E-07

21	2 90000E+06 438	34.705	3.55407	1.5 0963 E-07
22	1.79060E+06 .475	35 162	3.46453	2.65348E-97
2 3	3.00009E+06 .62	35,709	3 39605	2.06765E-97
24	2 80200E+06 .536	36, 288	3.32596	1.91416E-97
25	6 22000E+06 523	36 817	3 22392	8.41058E-8E
26	800000 473	37.316	3.41585	5.91819E-07
27	2 05900E+06 .515	37.81	3.6263	2.51225E-97
	1.35000E+06 .502	38.319	3.86568	3.72006E-07
28		38.814	4 12453	4.89153E-07
29	1 00000E+06 489		4.45178	6.29490E-07
30	1.00000E+06 .629	39.374		1.08432E-06
31	500000 542	39.959	4 84169	. . .
32	465000 . 5 3	40.496	5.24909	1 14671E-BE
33	4 50000 . 538	41.03	5 7126	1 19617E-0€
34	345000 .547	41.573	6 25413	1 56474E-0€
35	350000 . 5 76	42.134	6 30574	1.64643E-66
36	356000 .713	42.779	7.80165	2 93802E-06
37	350000 1.034	43 653	9.3437	2.9544EE-06
38	120000 552	44,445	11 2311	4 59738E-06
39	100000 562	45 002	12.9496	5 61594E-06
40	10000 641	45.683	15 3385	6 405652-06 4
40	TENNERORY C. A.T.	マジンないご		The state of the second of the

536 .569 .628 .566 1 .11 46 .191 46 .744 47 .342 47 .939 48 .777 18.4563 22.4502 28.6517 38.2306 64.6496

S
\mathbf{c}
ഗ
~
w
0
٠
~1
71

