BOOK COVER TEMPLATE

Table of Contents

Introduction	1.1
Publishing on Github Pages	1.2
Chapter 1: Introduction to 3D for studio art and design	1.3
3D animation across academia and industry	1.3.1
History	1.3.2
Fundamentals of 3D	1.3.3
Survey of types of 3D software	1.3.4
Pipeline	1.3.5
Chapter 2: Getting started	1.4
Introduction to Blender	1.4.1
Chapter 3: Polygons	1.5
Introduction to poly gonal modeling	1.5.1
Modeling tools and techniques	1.5.2
Hard-surface modeling	1.5.3
Organic modeling	1.5.4
Chapter 4: Textures	1.6
Introduction to texturing	1.6.1
UV unwrapping tools and techniques	1.6.2
Physically Based Rendering (PBR)	1.6.3
Non-Photorealistic Rendering (NPR)	1.6.4
Chapter 5: Shaders	1.7
Chapter 6: Camera, lighting, rendering	1.8
Chapter 7: Animation	1.9
Chapter 8: Rigging	1.10
Chapter 9: Simulation	1.11
Chapter 10: Compositing	1.12
Exercises	1.13
Modeling	1.13.1
Beginner	1.13.1.1
Intermediate	1.13.1.2
Advanced	1.13.1.3
Texturing	1.13.2
Beginner	1.13.2.1
Intermediate	1.13.2.2
Advanced	1.13.2.3
Shaders	1.13.3
Beginner	1.13.3.1
Intermediate	1.13.3.2
Advanced	1.13.3.3

	Camera, lighting, rendering	1.13.4
	Beginner	1.13.4.1
	Intermediate	1.13.4.2
	Advanced	1.13.4.3
	Animation	1.13.5
	Beginner	1.13.5.1
	Intermediate	1.13.5.2
	Advanced	1.13.5.3
	Simulation	1.13.6
	Beginner	1.13.6.1
	Intermediate	1.13.6.2
	Advanced	1.13.6.3
	Compositing	1.13.7
	Beginner	1.13.7.1
	Intermediate	1.13.7.2
	Advanced	1.13.7.3
Re	esources	1.14
	Career	1.14.1
	Community	1.14.2
	3D Artists and Studios	1.14.3
Blender Plugins	1.14.4	
	Rendering Resources	1.14.5
	Rendering Photorealism	1.14.6

3D Digital Studio: Edition Two

In this book, I cover the theory, practice, and purpose related to the production of 3D animation and beyond. Included are projects, exercises, lectures, and tutorials meant to help students of the subject grow and be put on a pathway for mastery.

Hosting on Github Pages

- 1. Fork this repository
- 2. Create a branch called gh-pages
- 3. Enable Pages to deploy from gh-pages branch.
- 4. Make sure Actions have permission to run on this repo. gitbook_action.yml workflow will automatically publish a Gitbook on the gh-pages branch.

Updating a new book

Modify the following files:

- Configuration settings: book.json
- Table of contents: SUMMMARY.md
- cover.jpg, cover_small.jpg (cover.jpg is published as the cover image in the PDF export generated by .github/workflows/gitbook_action.yml)
- LICENSE.md

Installing gitbook cli

Requirements: NodeJS v4 and above

npm install -g gitbook-cli

Local development

Install local development dependencies: bundle install

Install gitbook plugins: gitbook install

Build the static website using: gitbook build

Build and serve on localhost: $gitbook \ serve$

Note: PDF and eBook files generate via github action, and not the Gitbook generator, therefore, PDF files will be unavailable in local development.

Career

Animation, VFX, and Game Industry

Talk to mentors: Getting development advice contacts list

Job Postings

Chris Mayne curates what might be the the most comprehensive job posting resource available. See his Google spreadsheet below.

- Animation, VFX, and Game Industry Job Postings curated by Chris Mayne
- Adobe Behance.net Jobs List
- SIGGRAPH 2021 Job Fair

Conferences

- SIGGRAPH North America
- SIGGRAPH Asia
- Game Developers Conference (GDC)
- VIEW Conference (Italy)

Job Resources

- Job titles in 3D Animation and VFX
- Why you are not getting a job in VFX, games, and animation

Magazines and Online Communities

- Blender.today
- Art Station
- Behance
- CG Society
- https://www.artofvfx.com/
- https://www.awn.com/vfxworld
- Animation World Network
- The Rookies
- Digital Art Live
- BlenderArt.org
- 3D Creative
- Imagine FX
- 3D Artist
- 3D World
- Character Design Quarterly

Industry Career Advice

- Asking for Feedback
- Becoming a VFX artist
- Working as a 3D FX Artist with Mattia Rodini
- Working as a Concept Artist with Gaëlle Seguillon
- Working as a 3D Animator with Ian Lade
- Working as an Environment Artist for a Game Studio with Enguerrand Michelin

- Working as a Lighting TD by Dennis Müller
- Working as a Character Artist on Fortnite at Epic Games
- Working as a CG Supervisor with Laura Hohman

Contests and Challenges

- https://cgboost.com/challenge/
- https://www.cgtrader.com/digital-art-competition
- https://www.artstation.com/contests
- https://renderman.pixar.com/challenges
- https://www.therookies.co/contests
- https://www.11secondclub.com/
- https://www.awn.com/call-entriesANimation

Themed Entertainment

- Themed Entertainment and Educational Resources managed by MK Haley
- Themed Entertainment Association

Multi-disciplinary and Product Design Resources

- Multidisciplinary Design Studios in the United States
- Core77 Industrial Design Online Magazine

Contests and Awards

• https://designawards.core77.com/

Community

Find your people!

Local Events

Happy Valley Animation Festival

Conference Volunteering

- SIGGRAPH SV Program
- IDGA

Groups

- Penn State University Park: Penn State Digital Media Group
- Penn State World Campus: DMD Program Club
- Meetup.com
- 3D Modeling and Animation Facebook Group
- ACM SIGGRAPH Facebook Group
- SIGGRAPH S3 Facebook Group

Animation societies

- ASIFA International
- ASIFA South

Underrepresented groups

- Women in Animation:
- http://greatwomenanimators.com/
- Black Women Animate Studios
- Trans, Non-binary Motion Graphics Artist Directory

3D artists and studios

- M_Plummer-Fernández
- Universal Everything
- Zeitguised
- Al and Al
- Albert Omoss
- Alex McLeod
- Barry Doupe
- Claudia Hart
- Chris Landreth
- Cool 3D World
- Dave Fothergill
- Dave Stewart
- El Popo Sangre
- Eva Papamargariti
- Filip Tarczewski
- Geoffrey Lillemon
- Jacolby Satterwhite
- Jesse Kanda
- John Butler
- Jonathan Monaghan
- Jun Seo Hahm
- Kim Laughton
- Kouhei Nakama
- LuYang
- Mike Pelletier
- Pussykrew
- Rick Silva
- Flavourcel Animation Collective

Recommended Plugins

Hard surface modeling

HardOps/Boxcutter + Fluent

Texturing

- PBR Bridge
- UV Packmaster
- UV Squares
- Node Wrangler(included),

Simulation

- HumanGen
- Simply Cloth
- Flip Fluids
- RBD Lab

Rendering resources for Blender

Rendering can take a very long time depending on and number of variables including your scene's complexity, lighting, software version, the number of shots you have to render, whether you've optimized your scene or not, etc.

If you have more than one computer available to use, it's best to split the rendering task into separate frame ranges. If all computers are equally performant, you can equally divide the number of frames you have by the number of computers. Open the scene up on each computer, set the frame range in the render settings, and run the renders. If you have access to a computer lab, at night they are typically empty, so you can spit the frames up by as many computers as there are available. 720 frames divided by 20 computers equals 36 frames per computer. If it takes 3 minutes per frame to render, that would be 108 minutes, or 1.8 hours. If you were to render this on one computer, it would take 36 hours!

Optimize your scene

Do everything you can to lower render times. Always use the latest version of Blender, render times typically improve from version to version. I recommend using **EEVEE** to shorten render times. If using EEVEE, your scene will render much faster, though it may lose some visual quality compared to Cycles. If using Cycles, try to take advantage of the image **denoising** feature in the render settings. Balance the quality of the denoising with the **samples quality**. Typically, you can get a fairly low-samples render (128 or less) to look pretty good with denoising.

Further reading

Rendering in Cycles: [https://docs.blender.org/manual/en/latest/render/cycles/optimizations/index.html]
(https://docs.blender.org/manual/en/latest/render/cycles/optimizations/index.html
"https://docs.blender.org/manual/en/latest/render/cycles/optimizations/index.html"

Use more than one computer (Render farms)

Split renders up and **use multiple computers** you have physical access to. CPU render will give more consistent render results across computers, but GPU will render more quickly. You may notice visual differences between images rendered with the GPU from the CPU on the same computer. You will have to manually retrieve the frames from those computers, so it might be best for them to render directly to a shared cloud folder. Be very organized if you do this, it's easy to get confused with so many files.

To take the burden off of managing files, you can use a paid **add-on** called Crowd Render. This plugin will ask you to enter the IP address of your computers to use them as a render node. The images will be automatically sent to your computer when completed. This only works with computers that you own.

Another solution is to use an **online render farm**. Render farms have been expensive in the past, but have since come down in price and at the same time render engines have become more performant. What used to cost \$150 to render a 30 second animation should now cost ~\$20. I recommend looking at a range of rendering companies, starting with Concierge Render.

If you have the budget and plan to do CGI in the future, it makes sense to **invest in hardware** like an nVidia RTX 30xx or 40xx series graphics card, which perform the best/\$ at the time of this writing.

Cloud rendering companies

- https://www.conciergerender.com/
 - Cycles and EEVEE
 - o Cost-effective cloud rendering solution
 - \$5 free credits
- Blendgrid
- https://render.st/
 - Cycles only

• Unlimited \$50/month

Network rendering plugin

• https://www.crowd-render.com/

Rendering for photorealism

To achieve photo-realistic rendering, you should follow a physically-based rendering (PBR) workflow. This typically requires the use of a render engine that supports PBR surface shader materials such as the Principled BSDF material available in Blender 2.8+. Physically based materials use real-world measurements of a material's various properties. If you use these properties to configure your materials in 3D, you will theoretically get accurate rendering results. Here is a repository of materials property measurements you can use as a reference:

Physically based material library: A database of physically based values for CG artists

There are a great many considerations for achieving realism within renders. Will Gibbons has put together an extensive list of ways to improve the realism of renders on his website, https://www.willgibbons.com/realistic-rendering/.

Textures and texture packs

- CC0 Textures
- FreePBR.com
- CG Bookcase
- 3D Textures
- Textures.com

HDRI lighting environment textures

• HDRI environment textures