

Fecha: TECNOLÓGICO DE ESTUDIOS SUPERIORES DE CHALCO ING. EN SISTEMAS COMPUTACIONES PRÁCTICA

PROFESOR:

INTEGRANTE:

Espinosa Sánchez Daniel Antonio.

ING. EN SISTEMAS COMPUTACIONALES

CARRERA	PLAN DE ESTDIO	CLAVE ASIGNATURA	NOMBRE DE LA ASIGNATURA
Ingeniería en Sistemas Computacionales		SCC-1023	Sistemas Programables

PRÁCTICA No.	LABORATORIO	SALÓN DE CLASE	DURACIÓN (HORA)
3	Sensor de Temperatura	4701	2:00 HRS

1 INTRODUCCIÓN

Continuando con el desarrollo de la unidad uno, se nos ha pedido programar el funcionamiento de un sensor de temperatura utilizando el software Arduino y Proteus, este tendrá que mostrar en la pantalla LCD la temperatura que ha sido asignada (medida) por el sensor.

2 OBJETIVO (COMPETENCIA)

 Realiza una práctica en Proteus utilizando un sensor de temperatura que nos arroje la medición en una pantalla LCD 16x2.

3

```
#include<OneWire.h>
#include<DallasTemperature.h>
#include<LiquidCrystal.h>
#define ONE WIRE BUS 8
/*inicializar las librerias*/
OneWire oneWire (ONE_WIRE_BUS);
DallasTemperature sensor (&oneWire);
const int rs=12, en=11, d4=5, d5=4, d6=3, d7=2;
/*declarar las variables*/
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);
void setup() {
Serial.begin(9600);
sensor.begin();
lcd.begin(16,2);
void loop() {
sensor.requestTemperatures(); // requerimos la
temperatura medida por el sensor
lcd.clear(); // limpiamos pantalla lcd
lcd.setCursor(0,0); // indicacion de la
coprdenada dende vamos a escribir
lcd.print("Temperatura (C)");
                              // escribimos
temperatura (C) en la pantalla lcd
lcd.setCursor(7,1);
lcd.print(sensor.getTempCByIndex(0)); //
escribimos el valor obtenido en el sensor
delay (500);
```

4 PROCEDIMIENTO (DESCRIPCIÓN)

EQUIPO NECESARIO

- Computadora o laptop
- SO: Windows 8 o superior
- Software Proteus 8
- Software Arduino 1.8

MATERIAL DE APOYO

Video tutorial

1. Realizar la configuración del código

- ➤ Tendremos que abrir el programa "Arduino", posteriormente procederemos a implementar los complementos (librerías) necesarios para el correcto funcionamiento del sensor.
- Una vez agregados dichos complementos procederemos a llamarlos y a su vez agregaremos la declaración de las variables.
- ➤ Por ultimo realizamos la configuración y programado sobre las acciones que realizara dichos complementos, en este caso: sensor de temperatura y LCD.

2. Realizar el modelado en proteus

- Primero ejecutaremos el software; posteriormente le daremos "click" en el apartado de "esquemas", ahí procederemos agregar los siguientes competes: una resistencia (330 ohmz), un simulino SMD, una tierra, 2 de energía, un LCD y sensor de temperatura.
- A continuación, procederemos a colocar cada uno de los componentes con una cierta distancia entre cada uno, esto con el fin de simplificar los enlaces (conexiones).
- Por último, daremos doble click en simulino SDM, buscaremos el apartado "program file" y ahí pegaremos la dirección. HEX que copiamos del software arduino.

3. Ejecución del programa

Por ultimo nos posicionaremos en la parte inferior derecha del programa, ahí nos encontraremos con un icono de "Play" lo presionamos; con eso ya estaríamos ejecutando el programa donde podremos observar su funcionamiento

C CÁLCULOS Y REPORTE

Respecto a esta práctica, no ha sido necesario realizar algún agregado o modificación al mismo, dado que la misma está bien desarrollada y complementada.

RESULTADOS Y CONCLUSIONES

Como se puede observar en la captura de pantalla, dicho programa cumple con los parámetros establecidos al inicio de la práctica, demostrando su correcto funcionamiento a través del simulador "Proteus". A si mismo se puede observar los componentes necesarios que dicho software solicita para poder ejecutar las acciones programadas.

Conclusión:

5

Dicha práctica nos ayuda a familiarizarnos con el software Arduino, aprendiendo a configurar cada uno de los apartados y permitiéndonos desarrollar nuevas acciones para una misma problemática. Por ultimo cabe agregar que cada vez es más entendible el lenguaje y configuración de los diferentes parámetros y complementos.