Лекцие 9

Бесконечине пределы:

1)
$$\lim_{x\to x_0} f(x) = +\infty$$
 $\lim_{x\to x_0} f(x) = +\infty$
 $\lim_{x\to x_0} f(x) = \delta(x)$

2) $\lim_{x\to x_0} f(x) = A \infty$
 $\lim_{x\to$

38: 3c: 4x e Üs (xa) 1 (x)14c	
[]N Yn>N Xn & Ug(xa) 19(x) 1 < C => g(xn) - orp.]	
$f(x_n) \cdot g(x_n) - \delta_{-m}$. $\lim_{x \to x_0} (f(x_n) \cdot g(x_n)) = 0$	
Односторониие предели	
Onp: $\lim_{x\to x_0+0} f(x) = A$ und $\forall \varepsilon > 0$ $\exists \delta = \delta(\varepsilon) \ \forall x : 0 < x - x_0 < \delta$	
1f(x)-A < £	
yrb: lim f(x) = A ←> lim(t)= lim f(x) = A x → x. x → x. x → x.	
Dox-bo: 3 oyeb (ecnu gas bx, ro u gas orp. Kon-ba x)	
€ 4€>0: 38, 1 4x: 0 <x-x0<8,< td=""><td></td></x-x0<8,<>	
$\exists S_2: \forall x: o < x_0 - x < S_2$	
$\delta = \min \{ \delta_i, \delta_2 \} \forall x \in \mathcal{V}_{\delta}(x_0)$	
ACUMNTOTAL	
1) Beptukanonne: 1!	
la x=a	
	Mayn
	apgue-
you $y = f(x)$, ean lim $f(x) = \pm - u / u / u$	
$\lim_{x \to a^{-}} f(x) = \pm \infty$	

$$f(x) - kx - b = \delta, M. \quad npn \quad x \rightarrow too$$

$$f(x) - k = \frac{b}{x} + \delta, M. \quad x \rightarrow too$$

$$\lim_{x \rightarrow too} (f(x) - k) = 0 \quad ; \quad \lim_{x \rightarrow too} (f(x)) = k$$

$$\lim_{x \rightarrow too} (f(x) - kx) \implies \lim_{x \rightarrow too} (f(x) - kx - b) = 0 \quad \text{a.r.g.}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. Her}$$

$$\lim_{x \rightarrow too} f(x) = 0 \implies \text{rop. accumnt. He$$