ระบบดิจิทัล การทดลองที่ 7 Digital Counters

1. วัตถุประสงค์

1.1 เพื่อให้เกิดความรู้ความเข้าใจเกี่ยวกับวงจรนับ

2. การทดลอง

วงจรนับ คือ เกิดจากการนำเอาฟลิปฟล็อปที่ต่อกันเป็นวงจรมาใช้งาน นับจำนวนคล๊อก (Clock) หรือพัลซ์ (Pulse) ที่ป้อนเข้าทางอินพุต หรือบางที่อาจเรียกว่าวงจรหารความถี่ หลักการทำงาน ของวงจรส่วนใหญ่ จะเป็นวงจรการนับแบบเลขฐานสอง วงจรนับสามารถแบ่งออกเป็น 2 แบบใหญ่ๆ คือ

1. วงจรการนับแบบไม่เข้าจังหวะ (Asynchronous Counter หรือ Ripple Counter)

โดยพื้นฐานจะใช้ J-K Flip Flop มาต่อเรียงกันดังวงจรในรูปข้างล่าง สถานะเอาต์พุตของ ฟลิปฟลอ ปแต่ละตัว ขึ้นอยู่กับสถานะเอาต์พุตของฟลิปฟลอปตัวก่อนหน้า คือ ฟลิปฟลอปตัวแรกจะส่งสัญญาณ (Pulse) จาก Q ไปกระตุ้น (Trigger) ที่ Clk ของฟลิปฟลอปตัวที่สอง และฟลิปฟลอปตัวที่สองจะส่งสัญญาณไปกระตุ้น (Trigger) ที่ Clk ของฟลิปฟลอปตัวที่สาม ไปเรื่อย ๆ ตามขั้นตอนการทำงานของวงจรแบบนี้มีลักษณะไหลเป็น ระลอก จึงทำให้มีชื่ออีกอย่างหนึ่งว่า วงจรนับแบบริบเปิล (Ripple Counter) วงจรนับแบบไม่เข้าจังหวะ (Asynchronous Counter) ใช้ได้ดีกับความถี่ต่ำ ๆ เนื่องจากปัญหาความล่าช้าของสัญญาณเอาต์พุตหรือเกิดเวลา หน่วงในการส่งข้อมูลจากอินพุตไปยังเอาต์พุต ของฟลิปฟลอปแต่ละตัว

รูปที่ 6.1 วงจรการนับแบบไม่เข้าจังหวะ (ก) up (ข) down

ตารางค่าความจริง

	UP			
CK	Q_1	Q_2	~Q ₁	~Q ₂
0				
1				
2				
3				
4				

DOWN				
CK	Q_1	Q_2	~Q ₁	~Q ₂
0				
1				
2				
3				
4				

2. วงจรการนับแบบเข้าจังหวะ (Synchronous Counter หรือ Parallel Counter)

การทำงานของวงจรนับที่ความถี่สูง ๆ จำเป็นที่จะต้องให้ฟลิปฟลอปหลาย ๆ ตัวต่อกัน ได้รับสัญญาณ กระตุ้นไปพร้อมๆ กัน เพื่อหลีกเลี่ยงปัญหาที่เกิดจากการหน่วงเวลาของฟลิปฟลอป เป็นวงจรนับที่เอาต์พุตของฟลิบฟลอป ที่เปลี่ยนแปลงพร้อมๆกันตามสัญญาณคล๊อก (Clock) วงจรนับชนิดนี้เรียกว่า วงจรนับแบบเข้าจังหวะ (Synchronous Counter)

รูปที่ 6.2 วงจรการนับแบบเข้าจังหวะ (ก) up (ข) down

ตารางค่าความจริง

UP $CK \mid Q_1 \mid Q_2 \mid Q_3$ Q_4 $\sim Q_2$ $\sim Q_3$ $\sim Q_1$ $\sim Q_4$ 0 1 3 4 5 6 7 9 10 11 12 13 14 15 16

DOWN								
CK	Q_1	Q_2	Q_3	Q_4	~Q ₁	~Q ₂	~Q ₃	~Q ₄
0								
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								

- 1. ให้นักศึกษาออกแบบวงจรนับลงแบบไม่เข้าจังหวะ 4 บิต โดยใช้ J-K flip-flops
- 2. ให้นักศึกษาออกแบบวงจรนับขึ้นแบบเข้าจังหวะ 6 บิต โดยใช้ D flip-flops
- 3. ให้นักศึกษาต่อวงจรในข้อ 2 ให้แสดงผลโดย 7-segment

จงอภิปรายผลการทดลอง