What is claimed is:

1. A compound selected from the group represented by Formula I:

$$\begin{array}{c|c}
R_4 & O & R_1 \\
R_4 & O & R_2 & R_2 & R_5 \\
\hline
T & T & N & R_3
\end{array}$$

Formula 1

wherein:

T and T' are independently a covalent bond or optionally substituted lower alkylene;

 R_1 is chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl;

 R_2 and R_2 are independently chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl; or R_2 and R_2 taken together form an optionally substituted 3- to 7-membered ring which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the ring;

 R_3 is chosen from hydrogen, optionally substituted alkyl-, optionally substituted aryl-, optionally substituted aralkyl-, optionally substituted heteroaryl-, optionally substituted heteroaralkyl-, -C(O)- R_6 , and -S(O)₂- R_{6a} ;

 R_4 and $R_{4^{\circ}}$ are independently chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl, or R_4 and $R_{4^{\circ}}$ together with the carbon to which they are attached form an optionally substituted alkylidene;

R₅ is chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and

optionally substituted heteroaralkyl;

or R_5 taken together with R_3 , and the nitrogen to which they are bound, form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle, which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the heterocycle ring;

or R_5 taken together with R_2 form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle, which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the heterocycle ring;

 R_6 is chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, R_7O - and R_8 -NH-;

 R_{6a} is chosen from optionally substituted alkyl, optionally substituted aryl, optionally substituted alkylaryl, optionally substituted heteroaryl, optionally substituted alkylheteroaryl, and R_8 -NH-;

R₇ is chosen from optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl; and

 R_8 is chosen from hydrogen, optionally substituted alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, and optionally substituted heteroaralkyl;

- a pharmaceutically acceptable salt of a compound of Formula I;
- a pharmaceutically acceptable solvate of a compound of Formula I; or
- a pharmaceutically acceptable solvate of a pharmaceutically acceptable salt of a compound of Formula I.
- 2. A compound of claim 1 comprising one or more of the following:

one of T and T' is a covalent bond and the other is a covalent bond or optionally substituted lower alkylene;

 R_1 is optionally substituted lower alkyl, optionally substituted aryl, or optionally substituted aralkyl;

 R_2 is optionally substituted C_1 - C_4 alkyl;

R₂ is hydrogen or optionally substituted C₁-C₄ alkyl;

 R_3 is $-C(O)R_6$;

R₄ and R₄, are independently chosen from hydrogen and optionally substituted lower alkyl;

 R_6 is chosen from optionally substituted C_1 - C_8 alkyl, optionally substituted aryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl, optionally substituted aryl, R_7 O- and R_8 -NH-;

 R_7 is optionally substituted $C_1\text{-}C_8$ alkyl or optionally substituted aryl;

 R_8 is chosen from hydrogen, optionally substituted C_1 - C_8 alkyl and optionally substituted aryl;

 R_5 is chosen from hydrogen; C_1 - C_4 alkyl; cyclohexyl; phenyl substituted with hydroxyl, C_1 - C_4 alkoxy or C_1 - C_4 alkyl; benzyl; and R_{16} -alkylene-; and

 R_{16} is hydroxyl, carboxy, $(C_1-C_4 \text{ alkoxy})$ carbonyl-, $di(C_1-C_4 \text{ alkyl})$ amino-, $(C_1-C_4 \text{ alkoxy})$ carbonylamino-, $C_1-C_4 \text{ alkoxy}$ -, or optionally substituted N-heterocyclyl-.

3. A compound of claim 2 comprising one or more of the following:

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, tolyl, dimethylphenyl, chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

R₂, is hydrogen;

at least one of R₄ and R₄, is hydrogen;

 R_6 is optionally substituted C_1 - C_8 alkyl, optionally substituted aryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl, or optionally substituted aryl;

R₅ is R₁₆-alkylene-; and

 R_{16} is amino, C_1 - C_4 alkylamino-, di(C_1 - C_4 alkyl)amino-, C_1 - C_4 alkoxy-, hydroxyl, or N-heterocyclyl.

4. A compound of claim 3 comprising one or more of the following:

R₁ is chosen from ethyl, propyl, methoxyethyl, naphthyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, and (ethoxycarbonyl)ethyl;

 R_2 is chosen from methyl, ethyl, propyl, butyl, methylthioethyl, methylthiomethyl, aminobutyl, (CBZ)aminobutyl, cyclohexylmethyl, benzyloxymethyl, methylsulfinylethyl, methylsulfinylmethyl, and hydroxymethyl;

 R_4 and $R_{4'}$ are hydrogen; R_6 is optionally substituted phenyl; and

A compound of claim 4 comprising one or more of the following:

R₁ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or

hydroxybenzyl;

R₂ is ethyl or propyl;

 R_{16} is amino.

 R_6 is tolyl, halophenyl, methylhalophenyl, hydroxymethyl-phenyl, halo(trifluoromethyl)phenyl-, methylenedioxyphenyl, formylphenyl or cyanophenyl; and

R₅ is aminoethyl, aminopropyl, aminobutyl, aminopentyl, aminohexyl, methylaminoethyl, methylaminopropyl, methylaminobutyl, methylaminopentyl, methylaminopropyl, dimethylaminobutyl, dimethylaminopropyl, dimethylaminopropyl, dimethylaminopropyl, ethylaminobutyl, ethylaminobutyl, ethylaminobutyl, diethylaminobutyl, diethylaminopentyl, diethylaminopentyl, diethylaminopentyl, or diethylaminohexyl.

A compound of claim 5 comprising one or more of the following:
 R₁ is benzyl; and

R₂ is i-propyl.

7. A compound of claim 1 comprising one or more of the following:

one of T and T' is a covalent bond and the other is a covalent bond or optionally substituted lower alkylene;

 $R_{\rm l}$ is optionally substituted lower alkyl, optionally substituted aryl, or optionally substituted aralkyl;

R₂ is optionally substituted C₁-C₄ alkyl;

R₂, is hydrogen or optionally substituted C₁-C₄ alkyl;

 R_3 is $-C(O)R_6$;

 R_4 and $R_{4'}$ together with the carbon to which they are attached form an optionally substituted alkylidene; and

 R_6 is chosen from optionally substituted C_1 - C_8 alkyl, optionally substituted aryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl- C_1 - C_4 -alkyl-, optionally substituted heteroaryl, optionally substituted aryl, R_7 O- and R_8 -NH-; and

R₇ is optionally substituted C₁-C₈ alkyl or optionally substituted aryl;

 R_8 is chosen from hydrogen, optionally substituted $C_1\text{-}C_8$ alkyl and optionally substituted aryl.

8. A compound of claim 7 comprising one or more of the following:

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, tolyl, dimethylphenyl, chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

R₂ is hydrogen;

R₄ and R₄, form an isopropylidene or an ethylidene group; and

 R_6 is optionally substituted C_1 - C_8 alkyl, optionally substituted aryl- C_1 - C_4 -alkyl, optionally substituted heteroaryl- C_1 - C_4 -alkyl, optionally substituted heteroaryl, or

optionally substituted aryl.

9. A compound of claim 8 comprising one or more of the following:

R₁ is chosen from ethyl, propyl, methoxyethyl, naphthyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, and (ethoxycarbonyl)ethyl;

 R_2 is chosen from methyl, ethyl, propyl, butyl, methylthioethyl, methylthiomethyl, aminobutyl, (CBZ)aminobutyl, cyclohexylmethyl, benzyloxymethyl, methylsulfinylethyl, methylsulfinylmethyl, and hydroxymethyl; and

R₆ is optionally substituted phenyl.

10. A compound of claim 9 comprising one or more of the following:

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

 R_2 is ethyl or propyl; and

R₆ is tolyl, halophenyl, methylhalophenyl, hydroxymethyl-phenyl, halo(trifluoromethyl)phenyl-, methylenedioxyphenyl, formylphenyl or cyanophenyl.

11. A compound of claim 10 comprising one or more of the following:

R₁ is benzyl; and

 R_2 is i-propyl.

12. A compound of claim 1 comprising one or more of the following:

one of T and T' is a covalent bond and the other is a covalent bond or optionally substituted lower alkylene;

 R_1 is optionally substituted lower alkyl, optionally substituted aryl, or optionally substituted aralkyl;

R₂ is optionally substituted C₁-C₄ alkyl;

R₂, is hydrogen or optionally substituted C₁-C₄ alkyl;

R₃ taken together with R₅, and the nitrogen to which they are bound, form an

optionally substituted 5- to 12-membered nitrogen-containing heterocycle, which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the heterocycle ring; and

 R_4 and $R_{4^{\prime}}$ are independently selected from hydrogen and optionally substituted lower alkyl.

13. A compound of claim 12 comprising one or more of the following:

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, tolyl, dimethylphenyl, chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

R₂, is hydrogen;

at least one of R4 and R4 is hydrogen; and

 R_3 taken together with R_5 and the nitrogen to which they are bound, forms an optionally substituted imidazolyl ring.

14. A compound of claim 12 comprising one or more of the following:

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, tolyl, dimethylphenyl, chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

R₂, is hydrogen;

at least one of R4 and R4 is hydrogen; and

··· : .

 R_3 taken together with R_5 and the nitrogen to which they are bound, forms an optionally substituted imidazolinyl ring.

A compound of claim 12 comprising one or more of the following: 15.

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, dimethylphenyl, tolyl, chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

 R_2 is hydrogen;

at least one of R4 and R4 is hydrogen; and

R₃ taken together with R₅ and the nitrogen to which they are bound, forms an optionally substituted diazepinone ring.

1 Miller Jack Comme

A compound of claim 12 comprising one or more of the following: 16.

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, ethoxyphenyl, tolyl, methoxyphenyl, dimethylphenyl. chorofluorophenyl, methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl; But the way to be

R₂, is hydrogen;

at least one of R_4 and $R_{4^{\flat}}$ is hydrogen; and

R₃ taken together with R₅ and the nitrogen to which they are bound, forms an optionally substituted piperazine- or diazepam ring.

A compound of any of claims 12 to 16 comprising one or more of the following: 17.

R₁ is chosen from ethyl, propyl, methoxyethyl, naphthyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl. dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, and (ethoxycarbonyl)ethyl;

R₂ is chosen from methyl, ethyl, propyl, butyl, methylthioethyl, methylthiomethyl, aminobutyl, (CBZ)aminobutyl, cyclohexylmethyl, benzyloxymethyl, methylsulfinylethyl,

methylsulfinylmethyl, and hydroxymethyl; and

R₄ and R₄, are hydrogen.

18. A compound of claim 17 comprising one or more of the following:

But the granders

 $R_{\rm l}$ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl; and

R₂ is ethyl or propyl!

19. A compound of claim 18 comprising one or more of the following:

R₁ is benzyl; and

R₂ is i-propyl.

20. A compound of claim 1 comprising one or more of the following:

one of T and T' is a covalent bond and the other is a covalent bond or optionally substituted lower alkylene;

 R_1 is optionally substituted lower alkyl, optionally substituted aryl, or optionally substituted aralkyl;

R₂ is optionally substituted C₁-C₄ alkyl;

R₂, is hydrogen or optionally substituted C₁-C₄ alkyl;

 R_4 and R_4 together with the carbon to which they are attached form an optionally substituted alkylidene; and

R₃ taken together with R₅, and the nitrogen to which they are bound, form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle, which optionally incorporates from one to two additional heteroatoms, selected from N, O, and S in the heterocycle ring.

21. A compound of claim 20 comprising one or more of the following:

3,

T and T' are each a covalent bond;

R₁ is ethyl, propyl, methoxyethyl, naphthyl, phenyl, bromophenyl, chlorophenyl, methoxyphenyl, ethoxyphenyl, tolyl, dimethylphenyl, chorofluorophenyl,

methylchlorophenyl, ethylphenyl, phenethyl, benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, hydroxybenzyl, dichlorobenzyl, dimethoxybenzyl, naphthylmethyl, or (ethoxycarbonyl)ethyl;

R₂, is hydrogen;

R₄ and R₄, form an isopropylidene or an ethylidene group.

22. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂ is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 is $-C(O)R_6$;

R₆ is optionally substituted phenyl;

 R_4 and $R_{4^{\prime}}$ are independently chosen from hydrogen and optionally substituted lower alkyl;

R₅ is R₁₆-alkylene-; and

 R_{16} is amino, C_1 - C_4 alkylamino-, di(C_1 - C_4 alkyl)amino-, C_1 - C_4 alkoxy-, hydroxyl, or N-heterocyclyl.

23. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂, is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 is $-C(O)R_6$;

R₆ is optionally substituted phenyl;

 R_4 and R_4 , together with the carbon to which they are attached form an optionally substituted alkylidene;

R₅ is R₁₆-alkylene-; and

 R_{16} is amino, C_1 - C_4 alkylamino-, $di(C_1$ - C_4 alkyl)amino-, C_1 - C_4 alkoxy-, hydroxyl, or N-heterocyclyl.

24. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂, is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

R₃ taken together with R₅, and the nitrogen to which they are bound, form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle; and

R₄ and R₄, are independently chosen from hydrogen and optionally substituted lower alkyl.

25. A compound of claim 1 wherein

T and T' are each a covalent bond;

 $R_{\rm l}$ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

 R_{2} , is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

R₃ taken together with R₅, and the nitrogen to which they are bound, form an optionally substituted 5- to 12-membered nitrogen-containing heterocycle; and

R₄ and R₄, together with the carbon to which they are attached form an optionally substituted alkylidene.

26. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

1 . 30

R₂, is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted imidazole ring; and

 R_4 and $R_{4^{\prime}}$ are independently chosen from hydrogen and optionally substituted lower alkyl.

27. A compound of claim 1 wherein

T and T' are each a covalent bond;

 $R_{\rm l}$ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂, is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted imidazole ring; and

 R_4 and $R_{4^{\circ}}$ together with the carbon to which they are attached form an optionally substituted alkylidene.

28. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂· is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

R₃ taken together with R₅, and the nitrogen to which they are bound, form an optionally substituted imidazoline ring; and

 R_4 and $R_{4'}$ are independently chosen from hydrogen and optionally substituted lower alkyl.

29. A compound of claim 1 wherein

T and T' are each a covalent bond;

 $R_{\rm l}$ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R_{2'} is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted imidazoline ring; and

 R_4 and $R_{4^{\prime\prime}}$ together with the carbon to which they are attached form an optionally substituted alkylidene.

30. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂, is hydrogen;

 R_2 is optionally substituted C_1 - C_4 alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted diazepinone ring; and

 R_4 and $R_{4^{\prime\prime}}$ are independently chosen from hydrogen and optionally substituted lower alkyl.

31. A compound of claim 1 wherein.

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂, is hydrogen;

 R_2 is optionally substituted C_1 - C_4 alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted diazepinone ring; and

 R_4 and $R_{4^{\circ}}$ together with the carbon to which they are attached form an

optionally substituted alkylidene.

32. A compound of claim 1 wherein

T and T' are each a covalent bond;

 $R_{\rm l}$ is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂ is hydrogen;

R₂ is optionally substituted C₁-C₄ alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted piperazine or diazepam ring; and

 R_4 and $R_{4^{\prime}}$ are independently chosen from hydrogen and optionally substituted lower alkyl.

33. A compound of claim 1 wherein

T and T' are each a covalent bond;

 R_1 is benzyl, chlorobenzyl, methylbenzyl, methoxybenzyl, cyanobenzyl, or hydroxybenzyl;

R₂ is hydrogen;

 R_2 is optionally substituted C_1 - C_4 alkyl;

 R_3 taken together with R_5 , and the nitrogen to which they are bound, form an optionally substituted piperazine or diazepam ring; and

 R_4 and $R_{4^{\prime\prime}}$ together with the carbon to which they are attached form an optionally substituted alkylidene.

34. A compound of claim 1 that is

N-(3-amino-propyl)-N-[1-(4-benzyl-5-oxo-5,6-dihydro-4H-[1,2,4]oxadiazin-3-yl)-2-methyl-propyl]-4-methyl-benzamide;

N-(3-amino-propyl)-N-[1-(4-benzyl-6-isopropylidene-5-oxo-5,6-dihydro-4H-[1,2,4]oxadiazin-3-yl)-2-methyl-propyl]-4-methyl-benzamide; or

N-(3-Amino-propyl)-N-[1-(4-benzyl-6-ethylidene-5-oxo-5,6-dihydro-4H-

[1,2,4]oxadiazin-3-yl)-2-methyl-propyl]-4-methyl-benzamide,

or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable solvate thereof, or a pharmaceutically acceptable solvate of a pharmaceutically acceptable salt thereof.

- 35. A compound of any of the above claims wherein the stereogenic center to which R_2 and R_2 is attached is of the R configuration.
- 36. A composition comprising a pharmaceutical excipient and a compound, salt, or solvate thereof of any one of claims 1-34.
- 37. A composition according to claim 36, wherein said composition further comprises a chemotherapeutic agent other than a compound of Formula I or a pharmaceutical salt or solvate thereof.
- 38. A composition according to claim 37 wherein said chemotherapeutic agent is a taxane, a vinca alkaloid, or a topoisomerase I inhibitor.
- 39. A method of modulating KSP kinesin activity which comprises contacting said kinesin with an effective amount of a compound according to any one of claims 1 to 34, or a pharmaceutically acceptable salt or solvate thereof.
- 40. A method of inhibiting KSP which comprises contacting said kinesin with an effective amount of a compound according to any one of claims 1 to 34, or a pharmaceutically acceptable salt or solvate thereof.
- 41. A method for the treatment of a cellular proliferative disease comprising administering to a patient in need thereof a compound according to any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof.

42. A method for the treatment of a cellular proliferative disease comprising administering to a patient in need thereof a composition according to any one of claims 36-38.

- 43. A method according to claim 41 or claim 42 wherein said disease is selected from cancer, hyperplasias, restenosis, cardiac hypertrophy, immune disorders, and inflammation.
- 44. The use, in the manufacture of a medicament for treating cellular proliferative disease, of a compound according to any one of claims 1-34, or a pharmaceutically acceptable salt or solvate thereof
- 45. The use of a compound as defined in claim 44 for the manufacture of a medicament for treating a disorder associated with KSP kinesin activity.