

TX-CNN: Detecting Tuberculosis(TB) in Chest X-ray Images Using Convolutional Neural Network

Chang Liu¹, Yu Cao¹, Marlon Alcantara¹, Benyuan Liu¹, Maria Brunette², Jesus Peinado³, Walter Curioso⁴ {cliu, ycao, bliu}@cs.uml.edu, maria brunette@uml.edu, jpeinado_ses@pih.org, {marlonmfa, waltercurioso}@gmail.com

Problems and Solutions

Challenges:

- Persistent social inequalities in health,
- Limited number of local healthcare professionals,
- Weak healthcare infrastructure found in resource-poor settings.

Solutions:

- Convolutional Neural Network(CNN) based method,
- Transfer learning and fine-tuning strategy,
- An unbalanced, less-category, and large scale TB dataset,
- Achieved 85.68% accuracy for classifying TB manifestation,
- Deployed system in Low and Middle-Income Countries(LMICs) healthcare facilities to speed up TB diagnosis, especially in Perú

Approach

Convolutional Neural Network(CNN)

- Adopt AlexNet and GoogLeNet,
- Use softmax classifier to output probability,
- > ReLU and dropout are applied in the models.

Transfer Learning(Fine-tuning)

- Use image preprocessing to crop and rescale training images,
- Pre-trained from ImageNet dataset,
- \triangleright AlexNet: $\ell = 0.01$, $\eta = 0.9$, w = 0.0005
- \triangleright GoogLeNet: $\ell = 0.001$, $\eta = 0.9$, w = 0.0002
- > Cross validation and model average are used to increase accuracy.

Shuffle Sampling

- Remove scarce categories(MI, GH)
- Data augmentation for unbalanced data.

Fig. 2. Illustration of shuffle sampling and data augmentation

Data Augmentation Category(Name of TB Manifestation) Total Image Miliary Disease(MI) Cavitation(CA) 1182 Lympahadenopathy(LI) Ghon Focus(GH) 2252 Alveolar Infiltrates(AI)

Tab. 1. Data distribution in TB dataset

560

Algorithms:

Choose maximum number as flag to match

Other(OT)

- > Randomly generate integers to index each training image
- \triangleright Recalculate the mod value as final indexing value

Fig. 1. Illustration of CNN models for TB manifestation classification

Results **Precision** Set Recall F1-score Miss rate Class name 0.94 CA 0.90 0.92 0.060.870.99 0.93 0.01 Train 0.91 0.95 1.00 0.91 0.09AI 0.980.94 CA 0.87 0.93 0.90 0.07 OT 0.90 1.00 0.95 **Test** 0.98 0.020.91 0.94 0.100.970.90 0.93 **AI**

Evaluation

- Improvement of shuffle sampling is stable and significant in various models.
- Average accuracy plateaus as iteration goes, but fluctuates in early stages when fine-tuning with small epochs and training images.

- Every model is stable when chosen right hyper parameters.
- GoogLeNet is working best for classifying all TB manifestations.
- AlexNet is finely tailored for detecting abnormal TB images.

Contact

Chang Liu¹, Yu Cao¹, Marlon Alcantara¹, Benyuan Liu¹, Maria Brunette², Jesus Peinado³, Walter Curioso⁴

{cliu, ycao, bliu}@cs.uml.edu, maria_brunette@uml.edu, jpeinado_ses@pih.org, {marlonmfa, waltercurioso}@gmail.com

- ¹ Department of Computer Science, University of Massachusetts Lowell, USA
- ² Department of Work Environment, University of Massachusetts Lowell, USA
- ³ Partners in Health Perú
- ⁴ Department of Biomedical and Health Informatics, University of Washington, Seattle, USA

References

- [1] Cao, Yu, et al. "Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities." IEEE First International Conference on Connected Health:
- Applications, Systems and Engineering Technologies (CHASE), 2016.
- [2] Shin, Hoo-Chang, et al. "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning." IEEE transactions on medical imaging 35.5 (2016): 1285-1298. [3] Zhou, S. Kevin, Hayit Greenspan, and Dinggang Shen, eds. "Deep Learning for Medical Image Analysis." Academic Press, 2017.
- [4] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- [5] Xu, Tao, et al. "Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs." EURASIP Journal on Image and Video Processing 2013.1 (2013): 3.