(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-7961 (P2000-7961A)

(43)公開日 平成12年1月11日(2000.1.11)

(51) Int.Cl.⁷ C 0 9 D 11/00 識別記号

FI C09D 11/00 テーマコード(参考) 4 J O 3 9

審査請求 未請求 請求項の数8 OL (全 7 頁)

(21)出願番号

特願平10-171423

(22)出願日

平成10年6月18日(1998.6.18)

(71)出願人 000002886

大日本インキ化学工業株式会社 東京都板橋区坂下3丁目35番58号

(72)発明者 田林 勲

埼玉県久喜市本町6-2-15

(72)発明者 井上 定広

埼玉県戸田市美女木8-16-15-101

(72)発明者 尾島 治

埼玉県北足立郡伊奈町寿3-78-301

(72)発明者 野川 京子

埼玉県幸手市北1-1-7

(74)代理人 100088764

弁理士 高橋 勝利

最終頁に続く

(54) 【発明の名称】 水性インク組成物

(57)【要約】

【課題】 皮膜形成性樹脂によって着色剤が内包された 着色樹脂粒子が水性媒体中に分散している,分散安定性 に優れ,ノズル目詰まりがなく,かつ普通紙等の被記録 材上で滲みが少なく,高濃度の記録が可能な水性インク を得る。

【解決手段】 少なくとも、水、乾燥防止剤からなる水性媒体に、ガラス転移温度が60℃以上の酸価を有する合成樹脂(a)からなる皮膜形成性樹脂(A)によって着色剤(B)が内包された着色樹脂粒子が水性媒体中に分散している水性インク中に、ガラス転移温度が10℃以上60℃未満の樹脂粒子(C)をインク中に5質量%未満含有することを特徴とする水性インク組成物。

【特許請求の範囲】

【請求項1】 少なくとも、水、乾燥防止剤からなる水 性媒体に、ガラス転移温度が60℃以上の酸価を有する 合成樹脂(a)からなる皮膜形成性樹脂(A)によって 着色剤(B)が内包された着色樹脂粒子が分散している 水性インク中に、インク中の含有量が5質量%未満の、 ガラス転移温度が10℃以上60℃未満の樹脂粒子

(C) を含むことを特徴とする水性インク組成物。

【請求項2】 ガラス転移温度が60℃以上の酸価を有 する合成樹脂(a)及びガラス転移温度が10℃以上6 10 O℃未満の樹脂粒子 (C) がスチレンー (メタ) アクリ ル酸系樹脂であることを特徴とする請求項1記載の水性 インク組成物。

【請求項3】 乾燥防止剤がグリセリンであることを特 徴とする請求項1、2記載の水性インク組成物。

【請求項4】 インクのpHが7~9の範囲にあること を特徴とする請求項1~3記載の水性インク組成物。

【請求項5】 着色剤(B)が顔料であることを特徴と する請求項1~4記載の水性インク。

ことを特徴とする請求項1~5記載の水性インク組成 物。

【請求項7】 インク中の浸透剤 (D) として10質量 %以下の一般式で表されるプロピレンオキシド誘導体を 含有していることを特徴とする請求項6記載の水性イン ク組成物。

【化1】

(式中、Rは炭素数 $1\sim4$ のアルキル基、 $n=1\sim3$) 【請求項8】 インクがインクジェット記録用である請 求項1~7記載の水性インク組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は水性インク,特にイ ンクジェット記録用水性インクに関し、被膜形成樹脂に よって内包された着色剤を含有する着色樹脂粒子が水性 媒体中に分散された、記録媒体の表面に高濃度でかつ滲 みが少ないインクジェット記録を可能にする水性インク 組成物に関する。

[0002]

【従来の技術】インクジェット記録用インクは大別する と油性インクと水性インクがあるが、油性インクは臭気 ・毒性の点で問題があり、水性インクが主流となりつつ ある。

【0003】しかしながら、従来の水性インクの多くは 着色剤として水溶性染料を用いているため耐水性や耐光 性が悪いという欠点を有していた。また、染料が分子レ ベルで溶解しているため、オフィスで一般に使用されて 50 いるコピー用紙などのいわゆる普通紙に印刷すると髭状 のフェザリングと呼ばれるブリードを生じて著しい印刷 品質の低下を招いていた。

【0004】上記欠点を改良するためにいわゆる水性の 顔料インクが過去に様々に提案されており、例えばバイ ンダー兼分散剤として水溶性樹脂を用いてカーボンブラ ックや有機顔料を分散させた樹脂溶解型のインクやポリ マーラテックスあるいはマイクロカプセルとして着色剤 を内包する樹脂分散型のインクが各種提案されている。

【0005】樹脂溶解型の顔料分散インクは、インクの 水分蒸発に伴いノズル付近のインク粘度上昇による異常 噴射や、最悪ノズル目詰まりを生じ易かった。また、水 溶性樹脂を用いているために記録紙上での滲みが大き く、耐水性が十分とはいえなかった。

【0006】染料インクや樹脂溶解型の顔料分散インク の滲みを防止するためにアルギン酸やその誘導体、カル ボキシメチルセルロースやアラビアゴム等の高分子系の 増粘剤が提案されているが,染料インクでは滲み防止効 果は小さく、樹脂溶解型の顔料分散インクでは溶解して 【請求項6】 インク中に浸透剤(D)を含有している 20 いる水溶性樹脂の乾燥が遅いため滲み防止効果が少な く、またノズル目詰まりが必ずしも避けられなかった。

> 【0007】樹脂分散型の水性インクは、インクの水分 蒸発に伴う粘度上昇は比較的少なく、また耐水性に優れ るという利点がある。具体的には、特開昭58-452 72号公報では染料を含有したウレタンポリマーラテッ クスを含むインク組成物、特開昭62-95366号公 報では水不溶性有機溶媒中にポリマーと油性染料を溶解 し, さらに表面(界面)活性剤を含む水溶液と混合して 乳化させた後に溶媒を蒸発してポリマー粒子中に内包さ 30 れた染料を含むインクが提案され、特開昭62-254 833号公報ではカプセル化時の有機溶媒と水との間の 界面張力を10ダイン以下にすることによる着色料水性 懸濁液の製造法が提案され、特開平1-170672号 公報では同様にマクロカプセル化した色素を含有する記 録液等が提案されている。

【0008】しかしながら、着色樹脂粒子と記録媒体 (例えば記録紙の繊維) との密着が十分でなく、またイ ンクの表面張力が小さい場合には記録紙の繊維に沿って インクの分散媒と共に着色樹脂粒子が流れることによっ てフェザリングが生じたり、記録した画像濃度が低下す る傾向があった。

【0009】特開平03-79678号公報では超微粒 子のエマルジョンを含有してなるインクが、特開平04 -332774号公報では顔料と樹脂エマルジョンを含 み、かつ着色剤成分の平均粒径が一定範囲であるインク が、特開平06-145570号公報では顔料と高分子 分散剤と水と水に不要な樹脂エマルジョンを含むインク が提案されているが、滲みのない高品位な印字が得られ るが、ノズルの目詰まりが生じやすいという問題点が解 決されなかった。

[0010]

【発明が解決しようとする課題】本発明が解決しようと する課題は、従来の樹脂溶解型の顔料インクや樹脂分散 型の顔料インクや、顔料にエマルジョンを併用したイン クを用いても得られない、分散安定性に優れ、かつノズ ル目詰まりもなく、かつ高濃度で滲みの少ないインクジ エット記録用水性インクを提供することにある。

[0011]

【課題を解決するための手段】本発明者等は、上記の課 題を解決するために鋭意研究を重ねた結果, 本発明を解 10 決するに至った。

【0012】即ち本発明は、少なくとも、水、乾燥防止 剤からなる水性媒体に、ガラス転移温度が60℃以上の 酸価を有する合成樹脂(a)からなる皮膜形成性樹脂

(A) によって着色剤 (B) が内包された着色樹脂粒子 が分散している水性インク中に、インク中の含有量が5 質量%未満の、ガラス転移温度が10℃以上60℃未満 の樹脂粒子(C)を含むことを特徴とする水性インク組 成物。

【0013】本発明において、着色樹脂粒子は、ガラス 20 転移温度が60℃以上で、かつ酸価を有する合成樹脂

- (a) からなる皮膜形成性樹脂 (A) によって着色剤
- (B) が内包されたものである。

【0014】着色樹脂粒子を構成する皮膜形成性樹脂 (A) において、特に当該樹脂の種類の制限はないが、 例えば、自己水分散性の皮膜形成性樹脂が挙げられる。 アニオン性の皮膜形成性樹脂 (A) としては、酸価が5 0以上280以下の合成樹脂 (a) が好ましく, その少 なくとも一部が塩基(b)で中和されてなる自己水分散 性樹脂の場合は、特に優れた分散安定性を維持すること 30 が出来、しかもより耐水性に優れた画像の印刷が出来 る。

【0015】このような樹脂としては、特に制限はない が、例えばアクリル酸樹脂、マレイン酸樹脂、ポリエス テル樹脂等が挙げられる。皮膜形成性樹脂 (A) として 上記した、好ましい自己水分散性樹脂を得るための、酸 価を有する合成樹脂(a)は、最も一般的にはスチレン - (メタ) アクリル酸系樹脂である。尚、本発明で(メ タ) アクリルとは、アクリルとメタアクリルとの両方を 包含する。

【0016】スチレンー(メタ)アクリル酸系樹脂と は、スチレン系モノマーを必須成分として、(メタ)ア クリル酸系モノマー、例えば(メタ)アクリル酸及び/ 又は(メタ)アクリル酸エステル、を共重合させた樹脂

【0017】当該樹脂(a)としては、例えばスチレン あるいは α -メチルスチレンのような置換スチレン、ア クリル酸メチルエステル,アクリル酸エチルエステル, アクリル酸ブチルエステル、アクリル酸2-エチルヘキ

チルエステル、メタクリル酸エチルエステル、メタクリ ル酸ブチルエステル,メタクリル酸2-エチルヘキシル 等のメタクリル酸エステルから選ばれる少なくとも一つ 以上のモノマー単位と、アクリル酸、メタクリル酸から 選ばれる少なくとも一つ以上のモノマー単位を含む共重 合体である。

【0018】これらの共重合体は、ガラス転移温度が6 0℃以上、好ましくは70~130℃となるようにモノ マー成分を選択する必要があり、少なくともその一部が 共有結合性の架橋や多価金属によるイオン架橋されてい ても良い。

【0019】ガラス転移温度が10℃以上60℃未満の 樹脂粒子(C)もこの条件を満たすものであれば、いず れも使用可能であるが、上記モノマー成分から選ばれる ものを単独重合または共重合することで得ることが出来 る。尚、この樹脂粒子(C)は、後述する様な着色剤

(B) を内包していてもよいが、本発明の効果の上で は、着色剤を含まない樹脂粒子のほうが好ましい。また 条件を満たす市販のエマルジョンを用いても良い。

【0020】樹脂粒子(C)のインク中での含有量は、 特に限定されるものではないが、前記着色樹脂微粒子よ りも少ない量、好ましくは0質量%を越えて5質量%未 満,より安定性を高めるには0質量%を越えて3質量% 未満が好ましい。

【0021】本発明においては、着色樹脂粒子を構成す る、ガラス転移温度が60℃以上の酸価を有する合成樹 脂(a)及び樹脂粒子(C)を構成する、ガラス転移温 度が10℃以上60℃未満の樹脂が、いずれも、スチレ ンー(メタ)アクリル酸系樹脂であることが好ましい。

【0022】前記合成樹脂(a)を用いて自己水分散性 樹脂として用いる場合には、その酸基の少なくとも一部 が塩基(b)で中和すればよい。塩基、即ちアルカリ性 中和剤による中和は、得られる自己水分散性樹脂が水に 溶解しない程度に中和すればよい。

【0023】塩基(b)たるアルカリ性中和剤として は、例えば水酸化ナトリウム、水酸化カリウム、水酸化 リチウム等のアルカリ金属の水酸化物, アンモニア, ト リエチルアミン, モルホリン等の塩基性物質の他, 特に トリエタノールアミン, ジエタノールアミン, N-メチ ルジエタノールアミン等のアルコールアミンが、インク ジェット記録用水性インクとして好ましい。

40

【0024】本発明での着色剤(B)は、特に限定され るものではなく、例えばモノアゾ系、ジスアゾ系、金属 錯塩系、アントラキノン系、トリアリルメタン系等の水 性あるいは油性染料や分散染料等の染料や、カーボンブ ラック, チタンブラック, チタンホワイト, 硫化亜鉛, ベンガラ等の無機顔料やフタロシアニン顔料、モノアゾ 系、ジスアゾ系等のアゾ顔料、フタロシアニン顔料、キ ナクリドン顔料等の有機顔料がある。染料は耐光性が必 シルエステル等のアクリル酸エステル、メタクリル酸メ 50 ずしも十分ではなく、耐光性の点で顔料が好ましい。

5

【0025】かかる着色剤(B)の使用量(含有量)は、特に規定されないが、最終的に得られる水性インキ中で0.5~10重量%となるような量が好ましい。

【0026】本発明の皮膜形成性樹脂(A)によって着色剤(B)が内包された着色樹脂粒子を作製する方法は特に限定されるものではないが、より好ましい具体的な例は、下記工程にて得ることが出来る。

【0027】(1)酸価を有する合成樹脂(a)に,少なくとも着色剤(B)を分散または溶解して固形着色コンパウンドを得る樹脂着色工程。

10

【0028】(2)少なくとも、水、合成樹脂(a)を溶解する有機溶媒、塩基(b)、前記樹脂着色工程で得られた固形着色コンパウンドを混合し、分散によって少なくとも樹脂の一部が溶解している着色剤懸濁液を得る懸濁工程。

【0029】(3)前記懸濁工程で得られた着色剤懸濁液中の着色剤表面に溶解樹脂成分を沈着させる再沈殿工程。

【0030】(1)の樹脂着色工程は、酸価を有する合成樹脂(a)に、少なくとも着色剤(B)を分散または20溶解して固形着色コンパウンドを得る工程である。この工程は、例えば従来知られているロールやニーダーやビーズミル等の混練装置を用いて、溶液や加熱溶融された状態で、着色剤(B)を、酸価を有する合成樹脂(a)に均一に溶解または分散させ、最終的に固体混練物(固形着色コンパウンド)として取り出すことにより行うことが出来る。

【0031】(2)の懸濁工程は、少なくとも、水、合成樹脂(a)を溶解する有機溶媒、塩基(b)、前記樹脂着色工程で得られた固形着色コンパウンドを混合し、分散によって少なくとも樹脂の一部が溶解している着色剤懸濁液を得る工程である。(1)の樹脂着色工程で得られた固形着色コンパウンドを、分散媒として水、酸価を有する合成樹脂(a)を溶解する有機溶媒、塩基

(b) を必須とする混合溶媒に加えて、均一に分散する様に撹拌することによって、固形着色コンパウンド表面から、着色剤(B)を包含する酸価を有する合成樹脂

(a)が、有機溶媒と塩基の助けを借りて、溶解または 自己乳化し、いずれの場合も少なくとも当該樹脂の一部 が溶解している着色剤懸濁液が得られる。

【0032】懸濁液を得るための攪拌方法としては、公知慣用の手法がいずれも採用でき、例えば従来の1軸のプロペラ型の攪拌翼の他に、目的に応じた形状の攪拌翼や攪拌容器を用いて容易に懸濁可能である。

【0033】懸濁液を得るに当たって、せん断力がない 或いは相対的に小さい、単なる混合攪拌のみで、或い は、着色剤(B)が比較的凝集しやすい場合には、それ に加えて更に、次いで高せん断力下において、より分散 を安定させてもよい。この場合の分散機としては、高圧 ホモジナイザーや商品名マイクロフルイダイザーやナノ 50 マイザーで知られるビーズレス分散装置等を用いるのが、着色剤(B)の再凝集が少なく好ましい。

6

【0034】(3)の再沈殿工程は、前記懸濁工程で得られた着色剤懸濁液中の着色剤表面に、当該溶解樹脂成分を沈着させる工程である。本発明において「再沈殿」とは、着色剤、或いは当該溶解樹脂が着色剤表面に吸着した着色剤を懸濁液の液媒体から、分離沈降させることを意味するものではない。従って、この工程で得られるものは、固形成分と液体成分とが明らか分離した単なる混合物ではなく、当該溶解樹脂が着色剤表面に吸着した着色剤が懸濁液の液媒体に安定的に分散した着色樹脂粒子水性分散液である。

【0035】この(2)の懸濁工程の着色剤懸濁液中の着色剤表面へ溶解樹脂の沈着は、例えば、①少なくとも一部当該樹脂が溶解している着色剤懸濁液に、当該樹脂に対して貧溶媒として機能する水または水性媒体を加えて行うか、及び/又は、②着色剤懸濁液から有機溶媒を除去して行うことによって容易に行うことが出来る。

【0036】この様にして得られた着色樹脂粒子水分散 液から共存している有機溶媒を更に除いて,皮膜形成性 樹脂(A)によって着色剤(B)が内包された着色樹脂 粒子の安定な水分散液を得る。

【0037】本製造方法において、酸価を有する合成樹脂(a)を溶解する有機溶媒が用いられるが、これは当該樹脂に対して良溶媒として機能するものである。当該有機溶媒としては、当該樹脂に対して適宜選択することが出来、例えばアセトン、ジメチルケトン、メチルエチルケトン等のケトン系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、クロロコールのでの表示溶媒、がンゼン、トルエン等の芳香族系溶媒、酢酸エチルエステル等のエステル系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶媒、アミド類等樹脂を溶解させるものであれば使用可能である。

【0038】当該合成樹脂(a)が、例えばスチレン、置換スチレン、(メタ)アクリル酸エステルからなる群から選ばれる少なくとも一つのモノマーと、(メタ)アクリル酸とを含む組成物の共重合体の場合には、メチルエチルケトン等のケトン系溶媒を主として、助溶媒としてイソプロピルアルコール等のアルコール系溶媒から選ばれる少なくとも1種類以上の組み合わせが良い。

【0039】上記製造工程は本発明の樹脂粒子(C)の製造にも応用することが出来る。即ち工程(2)において、工程(1)で得られた着色コンパウンドの代わりに合成樹脂(a)を用いることにより同様にして樹脂粒子を得ることが出来る。この時、顔料を含んでいない樹脂粒子(C)の場合には、顔料凝集の心配がないため懸濁液の再分散は通常必要ない。

【0040】また、上記水性媒体には、本発明のガラス

7

転移温度が10以上60℃未満の樹脂粒子(C)以外に、必要に応じて添加剤類を添加することができる。

【0041】乾燥防止剤は、インクジェット記録用水性インク組成物に限らず、添加される場合が多い。インクジェット記録用水性インク組成物においては、インクジェットの噴射ノズルロでのインクの乾燥を防止する効果を与えるものであり、通常水の沸点以上の沸点を有するものが使用される。

【0042】このような乾燥防止剤としては、特に限定されるものではなく、従来知られているエチレングリコ 10 ール、ジエチレングリコール、ポリエチレングリコール、グリセリン等の多価アルコール類、Nーメチルー2ーピロリドン、2ーピロリドン等のピロリドン類、アミド類、ジメチルスルホオキサイド、イミダゾリジノン等が使用可能であるが、特にグリセリンがメインの乾燥防止剤の場合に最も優れた乾燥防止効果を示し、他の乾燥防止剤類はグリセリンと併用する場合は少量に止めたほうがよい。

【0043】乾燥防止剤の使用量は、種類によって異なるが、通常水100重量部に対して1~150重量部の20範囲から適宜選択されるが、グリセリン及びそれに他の乾燥防止剤を併用したものを使用する場合には10~50重量部が好適である。

【0044】インクジェット記録用水性インク組成物に限らず、水性インク組成物の被印刷媒体への浸透をより良好とするために、公知慣用の浸透剤(D)の必要量を用いることが好ましい。

【0045】ジェット噴射して付着したインクを紙によりよく浸透させるために、浸透剤(D)として、記録紙への浸透性付与効果を示す、エタノール、イソプロピル 30アルコール等の低級アルコール、ジエチレングリコールーNーブチルエーテル等のグリコールエーテル、プロピレングリコール誘導体等の水溶性有機溶媒や界面活性剤を加えてもよい。

【0046】これら漫透剤を使用すると、記録紙への浸透が促進される一方で滲みも大きくなるが、本発明のガラス転移温度が10℃以上60℃未満の樹脂粒子を併用することにより滲みの少ない速乾性のインクを得ることが出来る。

【0047】但し、これらの浸透剤のうち浸透効果の高 40 い溶剤系浸透剤は、本発明の、ガラス転移温度が60℃以上の酸価を有する合成樹脂(a)からなる皮膜形成性樹脂(A)によって着色剤(B)が内包された着色樹脂粒子や、特にガラス転移温度が10℃以上60℃未満の樹脂粒子(C)を膨潤あるいは溶解させ易いため、インク中の浸透剤(D)として以下の一般式で表されるプロピレンオキシド誘導体がより好ましい。

[0048]

【化2】

(式中、Rは炭素数 $1\sim4$ のアルキル基、 $n=1\sim3$) 【0049】上記一般式の中でも $R=C_3H_7$ 、n=1が 好ましく、本浸透剤のインク中での含有量は10質量%以下,出来れば0質量%を越えて8質量%以下,更には0質量%を越えて5質量%以下が安定性の点で好ましい。

【0050】ガラス転移温度が10℃以上60℃未満の 樹脂粒子(C)と上記一般式の浸透剤とを併用した場合 の大きな改善効果は、従来のと異なる、マイクロカプセ ルという特異の構造の着色樹脂微粒子を選択して本発明 で用いていることによる。

【0051】本発明の、水、乾燥防止剤、当該着色樹脂 粒子、樹脂粒子(C)を含む水性インク組成物は、pH 7~9の範囲とすることが好ましい。

【0052】また、インクのpHが7より小さいと、本発明のガラス転移温度が60℃以上の酸価を有する合成樹脂(a)からなる皮膜形成性樹脂(A)によって着色剤(B)が内包された着色樹脂粒子を分散している水性インク中に、ガラス転移温度が10℃以上60℃未満の樹脂粒子(C)の安定性を損ねる場合がある。

【0053】一方pHが9を越えると樹脂粒子(C)の 膨潤溶解が促進され、ノズル目詰まりを生じやすくなり、さらにpH10以上になると皮膜形成樹脂が溶解し、従来の樹脂溶解型の顔料インクと同様に分散安定性 やノズル目詰まりの原因となる場合が多い。

【0054】インクのpH調整剤として,pHを上げるには前述の塩基(b)が使用可能であり、逆にpHを下げるには一般に知られている種々の酸、即ち酢酸等のカルボン酸、グリコール酸や乳酸等のヒドロキシカルボン酸、炭酸、燐酸、硫酸等が使用可能である。

【0055】その他,必要に応じて水溶性樹脂,防腐剤,キレート剤等の添加剤を加えることができる。

【0056】本発明の水性インク組成物は、そのままでも使用できるが、好適には、 1μ m以上の粗大粒子を含まない様に、さらに好適には 0.5μ mを越える粗大粒子を含まない様に、濾過を行うことによりサブミクロンオーダーの着色樹脂微粒子を主体としたものがインクジェット記録用水性インクとしては好ましい。

【0057】本発明の水性インク組成物は、公知慣用の 被印刷媒体に適用できるが、滲みの点において、特に普 通紙に適用した場合の効果において優れている。

[0058]

【発明の実施の形態】本発明は次の好適な実施形態を含む。

1. 下記工程にて、着色樹脂粒子水分散液を得る着色樹脂粒子水分散液を製造する。

0 【0059】(1)ガラス転移温度が70~120℃の

10

合成樹脂(a) (スチレンーアクリル酸ーメタクリル酸 樹脂)と着色剤(B)(顔料)を二本ロールで分散して 固形着色コンパウンドを得る樹脂着色工程。

【0060】(2)少なくとも,水,合成樹脂(a)を 溶解する有機溶媒(メチルエチルケトン・イソプロピル アルコール), 塩基(b) (アルコールアミン), 前記 樹脂着色工程で得られた固形着色コンパウンドを混合 し、分散攪拌機を用いて分散して着色剤懸濁液を得る懸 濁工程。

【0061】(3)前記懸濁工程で得られた着色剤懸濁 10 液に水を添加して、着色剤表面に溶解樹脂成分を沈着さ せる再沈殿工程。

【0062】2. (3) の再沈殿工程後に脱溶剤を行っ て水分散物を得る。

【0063】3. 得られた水分散液を、本発明のガラス 転移温度が10~55℃の樹脂粒子(C)を含むインク 調整用薬剤の水溶液に徐々に加え、樹脂粒子(C)の含 有量を2質量%にして濃度・物性を調整した後、ろ過を 行いインクジェット記録用水性インクとする。

[0064]

【実施例】次に実施例及び比較例を挙げて本発明を更に 具体的に説明する。尚,以下の実施例中における「部」 は『質量部』を表わす。

【0065】 (実施例1) カーボンブラック20部とス チレンーアクリル酸ーメタクリル酸樹脂(スチレン/ア クリル酸/メタクリル酸=77/10/13;分子量5 万・酸価160、ガラス転移温度107℃)20部の二 本ロール混練物を、水210部、グリセリン35部、ト リエタノールアミン8部、メチルエチルケトン90部、 イソプロピルアルコール40部の混合溶液に入れ、室温 30 で3時間攪拌し着色剤懸濁液を得た。

【0066】得られた懸濁液に攪拌しながら、グリセリ ン30部と水210部の混合液を毎分5mlの速度で滴 下し、黒色着色樹脂粒子水分散液を得た。得られたカプ セル液をロータリーエバポレーターを用いてメチルエチ ルケトンとイソプロピルアルコールと水の一部を留去 し, 顔料分8質量%の最終の黒色着色樹脂粒子水分散液 を得た。

【0067】ジョンソンポリマー製ジョンクリル 1-8 40 (不揮発分43質量%, ガラス転移温度16℃) を 40 4質量%,グリセリン5質量%,プロピレングリコール プロピルエーテル2質量%の混合水溶液50部に前期黒 色着色樹脂粒子水分散液50部を撹拌しながら徐々に加 え, 0. 5 μ m フィルターを用いてろ過を行い, インク ジェット記録用水性インクとした。得られたインクのp Hは8. 4であった。

【0068】得られた水性インクは凝集物もなく長期に わたって安定な分散を示し、ピエゾ式インクジェットプ リンターを用いた普通紙への印刷はノズル目詰まりもな

めて高い黒色度を示した。

【0069】(比較例1)実施例1のジョンクリルJー 840を除いたインクを作製し、同様に評価を行った結 果、安定性は優れていたが、滲み(フェザリング)が若 干認められ、僅かに黒色度も低かった。

【0070】(比較例2)実施例1のジョンクリルJー 840に代わり、実施例1で使用したガラス転移温度1 07℃の樹脂を用いて樹脂粒子(C)を作製, 固形分相 当で同量加えたインクを作製し、同様に評価を行った結 果,安定性は優れていたが、滲み(フェザリング)が若 干認められ、僅かに黒色度も低かった。

【0071】(比較例3)実施例1のジョンクリルJ-840を15質量%含む、マイクロカプセル型の顔料分 散型インクを作製し、同様に評価を行った結果、滲み (フェザリング) は認められず、黒色度も高かったが、 ノズル目詰まりを非常に生じやすかった。

【0072】(比較例4)実施例1のジョンクリル」-840に代わり、ジョンクリルJ711 (不揮発分42 質量%,ガラス転移温度0℃)を固形分相当で同量加え 20 たインクを作製し、同様に評価を行った結果、滲み (フ ェザリング) は認められず、黒色度も高かったが、ノズ ル目詰まりを生じやすかった。

【0073】 (実施例2) 顔料 (ブラック:カーボンブ ラック、シアン:フタロシアニン、マゼンタ:キナクリ ドン,イエロー:ベンズイミダゾロン) 40部とスチレ ンーアクリル酸-メタクリル酸樹脂(スチレン/アクリ ル酸/メタクリル酸=77/10/13;分子量5万・ 酸価160) 40部の二本ロール混練物を、水250 部、グリセリン22部、トリエタノールアミン8部、メ チルエチルケトン90部、イソプロピルアルコール40 部の混合溶液に入れ、室温で3時間攪拌し混練物が溶解 したところで、衝突式分散機ナノマイザー (ナノマイザ ー社製)を用いて98MPaの圧力で分散を行いブラッ ク,シアン,マゼンタ,イエローの各着色剤懸濁液を得 た。

【0074】得られた各着色剤懸濁液に攪拌しながら、 グリセリン22部と水250部の混合液を毎分5mlの 速度で滴下し、着色樹脂粒子分散液を得た。得られたカ プセル液をロータリーエバポレーターを用いてメチルエ チルケトンとイソプロピルアルコールと水の一部を留去 し、最終の各色着色樹脂粒子水分散液(顔料濃度ブラッ ク8質量%、シアン4質量%、マゼンタ8質量%、イエ ロー8質量%)を得た。

【0075】ジョンクリルJ-537(不揮発分46質 量%, ガラス転移温度49℃) 4質量%, グリセリン1 0質量%,プロピレングリコールプロピルエーテル5質 量%、エチレングリコールヘキシルエーテル 0.2質量 %の混合水溶液50部に前記各色着色樹脂粒子水分散液 5 0 部を撹拌しながら徐々に加え、 0. 5 μmフィルタ く安定しており、得られた印刷物は滲みがなく、かつ極 50 一を用いてろ過を行い、フルカラーインクジェット記録

用水性インクとした。得られたインクのpHはブラック 8. 3, シアン8. 2, マゼンタ8. 4, イエロー8. 3であった。

【0076】得られた水性インクは凝集物もなく長期に わたって安定な分散を示し、ピエゾ式インクジェットプ リンターを用いた普通紙へのフルカラー印刷はノズル目 詰まりもなく安定しており、得られた印刷物は滲みがほ とんどなく、かつ極めて鮮やかなフルカラー発色を示し

537を除いた各色インクを作製し、同様に評価を行っ た結果, 安定性は優れていたが、普通紙での滲み(各色 のフェザリングに加えて異なる色間のブリード)が若干 認められ、フルカラーの発色もやや劣っていた。

*【0078】尚、実施例の水性インクは、いずれも皮膜 形成性樹脂(A)によって着色剤(B)が内包された着 色樹脂粒子と、樹脂粒子 (C) を含む、マイクロカプセ

12

ル顔料分散型水性インクであった。

[0079]

【発明の効果】本発明によると、ガラス転移温度が60 ℃以上の酸価を有する合成樹脂 (a) からなる皮膜形成 性樹脂(A)によって着色剤(B)が内包された着色樹 脂粒子を分散している水性インク中に、ガラス転移温度 【0077】 (比較例5) 実施例2のジョンクリル J- 10 が10℃以上60℃未満の樹脂粒子 (C) を組み合わせ て得られる水性インク組成物は、これまでにない、分散 安定性に優れ、かつノズル目詰まりもなく、かつ普通紙 に対して高濃度で滲みの少ない印刷を可能にする。

フロントページの続き

(72)発明者 土井 律子 埼玉県上尾市上尾村1089-307 Fターム(参考) 4J039 AD03 AD09 AD10 AD14 AE06

BA04 BA06 BA18 BA31 BA35

BC07 BC08 BC13 BC15 BC40

BC41 BC60 BD04 BE01 BE06

BE07 BE08 BE22 CA06 EA44

EA46 EA47 GA24