# IoT 4211: Sensor Technology

**Power Measurement** 

### Electrodynamometer Type Wattmeter



#### **Deflecting Torque**

Since coils are air-cored, the flux density produced is directly proportional to the current  $I_1$ .

In d.c. circuits, power is given by the product of voltage and current in amperes, hence torque is directly proportional to the power.

## Electrodynamometer Type Wattmeter



For a.c. supply, the value of instantaneous torque is given by  $T_{inst} \propto vi = Kvi$ where v = instantaneous value of voltage across the moving coili = instantaneous value of current through the fixed coils.

However, owing to the large inertia of the moving system, the instrument indicates the mean or average power.

 $\therefore$  Mean deflecting torque  $T_m \sim$  average value of vi

## Electrodynamometer Type Wattmeter



Let 
$$v = V_{max} \sin \theta$$
 and  $i = I_{max} \sin (\theta - \phi)$   $\therefore T_m \propto \frac{1}{2\pi} \int_0^{2\pi} V_{max} \sin \theta \times I_{max} \sin (\theta - \phi) d\theta$ 

$$\propto \frac{V_{max}}{\sqrt{2}} \cdot \frac{I_{max}}{\sqrt{2}} \cdot \cos \phi \propto VI \cos \phi$$

where V and I are the r.m.s. values.  $\therefore T_m \sim VI \cos \phi \sim \text{true power.}$ 

# Induction Type Wattmeter

### **Voltage Coil (Potential Coil)**

Winding Material: Fine wire with a high number of turns to increase inductance.

Location: Mounted on the voltage magnetic core.

Connection: Connected in parallel with the load. Includes a series resistor to limit the current through the coil.

Purpose: Produces a magnetic field proportional to the voltage across the load.

#### **Current Coil**

- •Winding Material: Thick wire with fewer turns to handle high current.
- •Location: Mounted on the current magnetic core.
- •Connection:
  - Connected in series with the load.
- •Purpose: Produces a magnetic field proportional to the current flowing through the load

#### **Aluminum Disc**

- •Material: A lightweight, non-magnetic aluminum alloy.
- •Shape: Circular and thin, mounted on a spindle.
- •Placement: Suspended in the air gap between the voltage and current magnetic fields.
- •Function:
  - The interaction of the magnetic fields induces eddy currents in the disc.
  - These eddy currents interact with the magnetic fields to produce a deflecting torque that rotates the disc.
  - The speed of rotation is proportional to the power being measured.



# Induction Type Wattmeter

### **Moving System**

- •Components:
  - **Aluminum Disc**: Mounted on a vertical spindle.
  - **Pointer**: Connected to the spindle to display the power on a calibrated scale.

#### •Function:

- The moving system rotates under the influence of the deflecting torque produced by the interaction of eddy currents and magnetic fields.
- The deflection of the pointer over the scale represents the measured power.

### **Controlling Mechanism**

- •Type: Spiral springs (also called control springs).
- •Function:
  - Provides a controlling torque to counteract the deflecting torque.
  - Ensures that the system reaches an equilibrium position where the reading is proportional to the power.

### **Damping Mechanism**

- •Type: Eddy current damping.
- •Construction:
  - A permanent magnet is placed near the edge of the rotating aluminum disc.

#### •Function:

- The motion of the disc in the magnetic field of the damping magnet induces eddy currents.
- These currents oppose the motion of the disc, providing a damping effect.
- Prevents oscillations and stabilizes the pointer for an accurate reading.



# Induction Type Wattmeter

#### **Scale**

- •**Type**: Graduated scale calibrated to display power (in watts, kilowatts, etc.).
- •Construction: Marked with fine divisions for precise readings.
- •Range: Depends on the wattmeter's design and application.



## **Torque Equation**

Let,

V = Voltage to be measured

I = Current to be measured

 $\varphi$  = Phase angle between current and voltage

 $\varphi$ se = Flux produced by series magnet

 $\varphi$ sh = Flux produced by shunt magnet

Esh = Emf induced in the disc by the shunt magnet flux

Ish = Eddy current in the disc caused by emf Esh

Ese = Emf induced in the disc by the series magnet flux

Ise = Eddy current in the disc caused by emf Ese

Assuming the disc is fully resistive. The eddy current  $I_{se}$  induced by the emf  $E_{se}$  will be in phase with it. So, we can see that eddy current  $I_{se}$  lags behind the current I by 90°. Thus there will be a phase difference of 90° between  $I_{se}$  and  $\varphi_{se}$ .

The flux  $\varphi_{sh}$  induces an emf  $E_{sh}$  in the disc, which lags behind the  $\varphi_{sh}$  by 90°. Since the disc is resistive, the eddy current  $I_{sh}$  caused by  $E_{sh}$  will be in phase with it. Thus there will be a phase difference of 90° between  $I_{sh}$  and  $\varphi_{sh}$ .



## Torque Equation

The torque produced by the interaction of current  $I_{se}$  and flux  $\phi_{sh}$  is,  $T_1 = K I_{se} \phi_{sh} \cos \phi$ 

The torque produced by the interaction of current  $I_{sh}$  and flux  $\phi_{se}$  is,

$$T_2 = K I_{sh} \phi_{se} \cos(180^\circ - \phi)$$

Therefore, the resultant torque produced is,

$$= K I_{se} \phi_{sh} \cos \phi - K I_{sh} \phi_{se} \cos(180^{\circ} - \phi)$$

$$= K [I_{se} \phi_{sh} \cos \phi + I_{sh} \phi_{se} \cos \phi]$$

$$= K [K_1 V I \cos \phi + K_2 V I \cos \phi]$$

$$= K V I \cos \phi [K_1 + K_2]$$

$$\therefore T_d \propto V I \cos \phi$$

Hence the deflecting torque produced is proportional to the ac power to be measured in the circuit.

# **Applications**

- •Measurement of power in industrial and household AC circuits.
- •Used in laboratories for educational and testing purposes.

Induction Type Single-phase Watt Hour

meter



- Construction is similar to Induction Type Wattmeter.
- Spring is replaced by brake magnet.
- Pointer is replaced by a spindle.

# Induction Type Single-phase Watt Hour

meter



$$T_B \propto \Phi_i$$
  $i = e/R$   $e \propto \Phi n$ 

The braking torque  $T_B \propto \Phi^2 N/R$ 

N is the speed of the rotating disk.

For constant magnetic flux and resistance:

$$T_B \propto N$$
.

$$T_d = T_B$$
 :  $N \propto \text{power } W$ 

Hence, in a given period of time, the total number of revolution  $\int_0^t N.dt$  is proportional to  $\int_0^t W.dt$  i.e., the electric energy consumed.