Worksheet on

The McKay Correspondence

Written by Louan Mol

Last update on June 28, 2022.

Contents

1	Mc	IcKay correspondence				
	1.1	Classical correspondence	1			
	1.2	Geometrical McKay correspondence	3			

1 | McKay correspondence

1.1 Classical correspondence

$\Gamma \subset \mathrm{SU}(2)$	Platonic solids	McKay graph	Algebraic variety
\mathbb{Z}_n		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$z^n + xy = 0$
$2\mathcal{D}_n$	<i>n</i> -polygon	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x^2 + y^2 z + z^{n-1} = 0$
2 <i>T</i>	tetrahedron	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x^2 + y^3 + z^4 = 0$
20	cube octahedron	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^2 + y^3 + yz^3 = 0$
$2\mathcal{I}$	icosahedron dodecahedron	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x^2 + y^3 + z^5 = 0$

Table 1: Binary polyhedral groups and their McKay graphs. Labels over the vertices are the dimension of the representation. We erase the arrow ends if they go in both directions and erase the label if it is equal to 1.

Simple	Simply laced	Dynkin diagram		
Lie algebra		Extended Dybkin diagram $A_n: \circ - \circ - \circ (n \text{ nodes})$		
$\mathfrak{sl}(n+1,\mathbb{C}), n \ge 1$	yes	\widetilde{A}_n : $(n+1 \text{ nodes})$		
	no	$B_n: \circ - \circ - \circ - \circ (n \text{ nodes})$		
$\mathfrak{so}(2n+1,\mathbb{R}), n \ge 2$		$\widetilde{B}_n:$ $(n+1 \text{ nodes})$		
$\mathfrak{sp}(2n,\mathbb{C}), n \geq 3$	no	$C_n: \circ - \circ - \circ (n \text{ nodes})$		
$\mathfrak{sp}(2n,\mathbb{C}), n \geq 3$		$\widetilde{C}_n:$ \longrightarrow $(n+1 \text{ nodes})$		
	yes	$D_n: \circ - \circ - \circ (n \text{ nodes})$		
$\mathfrak{so}(2n,\mathbb{R}), n \geq 4$		\widetilde{D}_n : $(n+1 \text{ nodes})$		
		**		
	yes	$E_6: \bigcirc \bigcirc$		
\mathfrak{e}_6		•		
		\widetilde{E}_6 : \circ		
	yes	$E_7:$ \bigcirc		
\mathfrak{e}_7		φ		
		\widetilde{E}_7 : \bullet \circ		
	yes	$E_8:$ \bigcirc		
\mathfrak{e}_8		φ		
		\widetilde{E}_8 : \circ		
£.	no	$F_4: \circ \longrightarrow \circ \longrightarrow \circ $ (4 nodes)		
f 4		\widetilde{F}_4 : \bullet \circ		
_	no	$G_2: \iff (2 \text{ nodes})$		
\mathfrak{g}_2		\widetilde{G}_2 : \bullet \longrightarrow \bigcirc (3 nodes)		

Figure 1: Simple Lie algebras and their (extended) Dynkin diagrams. The first four algebras are the classical simple Lie algebras and the last five are the exceptional simple Lie algebras.

Finally, we can see the following correspondence between the extended Dynkin diagrams and the McKay graphs.

Simply Lie	Simply laced	Extended	Finite subgroup	Finite subgroup
group	Lie algebra	Dybkin diagram	of SO(3)	of SU(2)
SU(n+1)	$\mathfrak{sl}(n+1,\mathbb{C})$	\widetilde{A}_n	\mathbb{Z}_{n+1}	\mathbb{Z}_{n+1}
SO(2n), Spin(2n)	$\mathfrak{so}(2,\mathbb{R})$	\widetilde{D}_n	$\mathcal{D}_{2(n-2)}$	$2\mathcal{D}_{2(n-2)}$
E6	\mathfrak{e}_6	$\widetilde{E_6}$	\mathcal{T}	$2\mathcal{T}$
E7	\mathfrak{e}_7	$\widetilde{E_7}$	О	20
E8	\mathfrak{e}_8	$\widetilde{E_8}$	\mathcal{I}	$2\mathcal{I}$

Figure 2: Classical McKay correspondence.

1.2 Geometrical McKay correspondence

The geometrical McKay correspondence is the bijection between the exeptional graph of the blow up of orbifolds \mathbb{C}^2/Γ ($\Gamma \subset \mathrm{SU}(2)$) and the McKay graphs of Γ .