23.09.2019 Lab3_bonus

Прокопенко Тимофей

Задача 2.

Решение:

Рассматриваемое множество функций - H = { $h_{ heta}=\lceil 0.5 sin(heta x)
ceil: heta \in \mathbb{R}$ }.

Оценим значения $\lceil 0.5 sin(\theta x) \rceil$:

$$-1 \leq sin(\theta x) \leq 1 => -0.5 \leq 0.5sin(\theta x) \leq 0.5 => \lceil 0.5sin(\theta x) \rceil = \{0,1\}$$

В качестве C примем множество $\{2^{-m}|m\in\mathbb{N}\}$. Докажем, что любое его конечное подмножество может быть раскрашено H.

Предположим, что при $heta = -\pi(1+\sum\limits_{i=1}^m 2^i*y_i)$ выборка $\{x_i,y_i\}$ будет всегда правильно

классифицироваться для любого набора лейблов y_i .

$$egin{aligned} heta * x_j &= heta * 2^{-j} = -\pi * 2^{-j} * (1 + \sum_{i=1}^m 2^i * y_i) = -\pi * (2^{-j} + \sum_{i=1}^{j-1} 2^{i-j} * y_i + y_j + \sum_{i=1}^{m-j} 2^i * y_i) = \ &* (2^{-j} + \sum_{i=1}^{j-1} 2^{-i} * y_i + y_j + \sum_{i=1}^{m-j} 2^i * y_i) = -\pi * (\sum_{i=1}^{j} 2^{-i} * y_i + y_j + \sum_{i=1}^{m-j} 2^i * y_i) \end{aligned}$$

Слагаемое $(-\pi*(\sum\limits_{i=1}^{m-j}2^i*y_i))$ может быть опущено, так как оно лишь задает периодичность

синусоиды (-2 π k). Ограничим ($-\pi*(\sum\limits_{i=1}^{j}2^{-i}*y_{i}+y_{j})$) снизу и сверху:

$$-\pi*(\sum_{i=1}^{j}2^{-i}*y_i+y_j)<-\pi*y_j \ -\pi*(\sum_{i=1}^{j}2^{-i}*y_i+y_j)>-\pi*(1+y_j)$$

$$-\pi*(1+y_j)< heta*x_j<-\pi*y_j$$

Допустим y_j = 1:

$$-2\pi < heta * x_j < -\pi => 0 < sin(heta * x_j) < 1 => \lceil 0.5 sin(heta x)
ceil = 1$$

При y_j = 0:

$$-\pi < heta * x_j < 0 => -1 < sin(heta * x_j) < 0 => \lceil 0.5 sin(heta x)
ceil = 0$$

Таким образом при любом конечном m H раскрашивает C={ $2^{-m}|m\in\mathbb{N}$ }. Таким образом dim(H)= ∞ .