1 Triazole-linked autoinducer-antibiotic conjugates

1.1 Synthesis of autoinducer-antibiotic conjugate 74

Test reactions using N_3 - C_2 -HSL 57 and the alkynyl ciprofloxacin derivative 70 were performed to find conditions for the click reactions between the azido autoinducers and the alkynyl antibiotics (see Table 1 and Scheme 3).

Stirring at r.t. had no effect even with an extended reaction time. Heating to 50 °C did lead to slow formation of the product, but a mixture of the 1,4 **74** and 1,5 **75** isomers was observed in an approximately 4:1 ratio by LCMS (see Scheme 2). Use of the ligand tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) **76** (see Scheme 1) lead to some conversion at room temperature, however the reaction stopped before completion, probably due to oxidation of the Cu(I) catalytic species. When degassed solvent and an argon atmosphere were used the reaction proceeded to completion at room temperature in around 3 h.

Scheme 1: Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (THPTA) 76.

Scheme 2: 1,4 (left) and 1,5 (right) triazoles.

Conditions	Outcome
$CuSO_4 \cdot H_2O$, sodium ascorbate,	No reaction
$\rm H_2O,\ \emph{t}\text{-}BuOH,\ air,\ r.t.,\ 7\ d.$	
$\text{CuSO}_4 \cdot \text{H}_2\text{O}$, sodium ascorbate,	1,3-Triazole product 74 and 1,5
$\rm H_2O,\ \emph{t}\text{-}BuOH,\ air,\ 50\ ^{\circ}C,\ 5\ d.$	triazole impurity 75 4:1
$\text{CuSO}_4 \cdot \text{H}_2 \text{O}$, sodium ascorbate,	1,3-Triazole product 74 and
THPTA 76 , H_2O , t -BuOH, air,	starting materials 57 and 70
r.t., 3 h.	
$\text{CuSO}_4 \cdot \text{H}_2 \text{O}$, sodium ascorbate,	1,3-Triazole product 74
THPTA 76 , H_2O , t -BuOH, Ar,	
r.t., 3 h.	

Table 1: Conditions attempted for the synthesis of **74** (see Scheme 3).

Scheme 3: Synthesis of 74. For conditions see Table 1.

1.2 Synthesis of the initial triazole-linked library

Once conditions had been found for the click reaction, the synthesis of other conjugates was attempted. Two additional azides were kindly donated by members of the Spring Group: the azido derivative of 3-oxo-C₁₂-HSL 77 was synthesised by Ryan Howard, a master's student under my supervision¹ and the tail azide derivative of PQS 78 was synthesised by Ysobel Baker² (see Figure 1).

Figure 1: Further azido autoinducer derivatives synthesised by Howard¹ 77 and Baker² 78.

Synthesis of the conjugates proved more difficult than expected; HSL derivatives hydrolysed upon HPLC purification, the 3-oxo-C₁₂-HSL conjugates degraded, and the reaction was highly air-sensitive which led to stalling. The most reliable procedure was determined over the course of several reactions, and is shown in ??.

Nonetheless, several conjugates were produced for testing. The results of the reactions are shown in Table 2, Table 3, Table 4 and Table 5. It was intended that the failed reactions would be repeated, but as preliminary biological testing proved unpromising it was decided that attention should be focused elsewhere.

ref

$$R_1 \sim N_3 + R_2 \xrightarrow{a)} R_1 \sim N_1 \sim N_2 \sim N_2$$

Scheme 4: General scheme for the click reaction, where R_1 - N_3 is an azido autoinducer derivative and R_2 - \equiv is an alkynyl antibiotic derivative a) CuSO₄, sodium ascorbate, THPTA, H_2O , t-BuOH.

Starting materials	Product	Outcome	Yield
57 and 70	Б О N N N N N N N N N N Та	✓ Reaction complete by LCMS in 3 h. Purified by column chromatography (SiO ₂ , 0 - 20 % MeOH/CH ₂ Cl ₂).	29.6 %
60 and 70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction complete by LCMS in 3 h. Purified by column chromatography (SiO ₂ , 0 - 20 % MeOH/CH ₂ Cl ₂).	46.8 %
63 and 70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction complete by LCMS in 3 h. Purified by column chromatography (SiO ₂ , 0 - 20 % MeOH/CH ₂ Cl ₂).	38.0 %
77 and 70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	X Reaction complete by LCMS in 3.5 h, but product degraded when subjected to column chromatography (SiO ₂ , 20 % MeOH/CH ₂ Cl ₂).	

Table 2: Click reactions attempted.

Starting materials	Product	Outcome	Yield
40 and 70	F O O O O O O O O O O O O O O O O O O O	✓ Reaction complete by LCMS in 1.5 h. Purified by prep. HPLC.	27.0 %
51 and 70	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$	X Reaction did not go to completion by LCMS. Attempted purification by prep. HPLC but unsuccess- ful.	
78 and 70	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No reaction seen by LCMS.	

Table 3: Click reactions attempted.

Starting materials	Product	Outcome	Yield
57 and 73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction complete by LCMS in 2 h, but lactone hydrolysed on prep. HPLC column.	
60 and 73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction complete by LCMS in 2 weeks (stalled). Purified by column chromatography (SiO ₂ , 20 % MeOH/CH ₂ Cl ₂).	16.8 %
63 and 73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reaction complete by LCMS in 2 weeks (stalled). Purified by column chromatography (SiO ₂ , 20 % MeOH/CH ₂ Cl ₂).	26.8 %
77 and 73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Degraded during reaction.	

Table 4: Click reactions attempted.

Starting materials	Product	Outcome	Yield
40 and 73	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	✓ Reaction complete by LCMS in 1.5 h. Purified by prep. HPLC.	41.0 %
51 and 73	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	X Reaction did not go to completion by LCMS. Attempted purification by prep. HPLC but unsuccess- ful.	
78 and 73	$0 \\ OH \\ OH \\ N=N$ $0 \\ N=N$ $N \\ NH_2$ 91	Reaction complete by LCMS in 3 h. Purified by column chromatography (SiO ₂ , 20 % MeOH/CH ₂ Cl ₂).	18.3 %

Table 5: Click reactions attempted.

1.3 4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol 71

Hydrobromic acid (48 % w/w, aq., 50 ml) was heated to 100 °C. Trimethoprim **30** (5.00 g, 17.2 mmol) was added, and the suspension was stirred for 40 min under Ar. The mixture was removed from the heat, and NaOH (50 % w/w, aq., 15 ml) was added dropwise. The reaction mixture was then cooled slowly to 0 °C, and the resulting crystals were filtered out and washed with cold water. The crystals were then dissolved in hot water (80 ml), neutralized with NH₄OH (sat., aq.) and cooled slowly to 0 °C. The resulting crystals were filtered out, washed with cold water and dried under vacuum. **71** was obtained as pale pink prisms (2.06 g, 7.46 mmol, 43.4 %).

TLC $R_f = 0.04 \ (5 \% \text{ MeOH/CHCl}_2)$

mp $T / {^{\circ}C} = 238 \text{ (H}_2O, \text{ decomposes)}$

IR (neat) ν_{max} / cm⁻¹ = 3314.0 (N-H), 3137.4 (N-H), 3045.3 (C-H), 3000.9 (C-H), 2938.1 (C-H), 2838.7 (C-H), 1662.9 (pyrimidine), 1645.2 (pyrimidine), 1626.6 (pyrimidine)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.21 (s, 1 H, C<u>H</u>N), 6.54 (s, 2 H, meta to OCH₂), 4.87 (br s, 5 H, OH, NH₂ × 2), 3.82 (s, 6 H, OC<u>H</u>₃), 3.63 (s, 2 H, CC<u>H</u>₂C)

¹³C NMR (101 MHz, MeOD) δ / ppm = 166.4 (CH₂CCNH₂), 162.0 (CHNCNH₂), 156.2 (CHNCNH₂), 149.8 (*ipso* to OCH₃), 135.9 (*ipso* to OH), 128.2 (*para* to OH), 111.7 (CH₂CCNH₂), 107.5 (*meta* to OH), 57.0 (OCH₃), 33.9 (CCH₂C)

HRMS (ESI⁺) m/z / Da = 277.1295, [M+H]⁺ found, [C₁₃H₁₇N₄O₃]⁺ requires 277.1301

The data are consistent with the literature.³

1.4 5-(4-(Hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine 73

$$0 \longrightarrow N \longrightarrow NH_2$$

$$NH_2$$

$$NH_2$$

4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol **71** (1.00 g, 3.62 mmol, 1 eq.), 6-chloro-1-hexyne **72** (0.524 ml, 0.420 g, 4.34 mmol, 1.2 eq.), Cs_2CO_3 (2.36 g, 7.24 mmol, 2 eq.) and anhydrous DMF (30 ml) were stirred at 70 °C for 7 h. The solvent was removed under reduced pressure, then CH_2Cl_2 (30 ml) was added and the mixture filtured. The filtrate was concentrated under reduced pressure and purified by column chromatography using a Combiflash (SiO_2 , 5 % $MeOH/CH_2Cl_2$). **73** was obtained as a pale cream amorphous solid (0.253 g, 0.709 mmol, 19.6 %).

weigh

TLC $R_f = 0.14 \ (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3451.4 (alkyne C-H), 3313.4 (N-H), 3136.7 (N-H), 3113.9 (N-H), 2944.2 (C-H), 2839.0 (C-H), 1635.1 (pyrimidine)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.77 (s, 1 H, C<u>H</u>N), 6.37 (s, 2 H, meta to OCH₂), 4.83 (br s, 2 H, CHNCN<u>H</u>₂), 4.63 (br s, 2 H, CH₂CCN<u>H</u>₂), 3.95 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.79 (s, 6 H, OC<u>H</u>₃), 3.65 (s, 2 H, CC<u>H</u>₂C), 2.28 (td, J = 7.1, 2.6 Hz, 2 H, HC \equiv CC<u>H</u>₂), 1.94 (t, J = 2.7 Hz, 1 H, <u>H</u>C \equiv C), 1.81 - 1.90 (m, 2 H, C<u>H</u>₂CH₂O), 1.71 - 1.80 (m, 2 H, C<u>H</u>₂CH₂CH₂O)

¹³C NMR (101 MHz, MeOD) δ / ppm = 162.7 (CH₂CCNH₂), 162.0 (CHNCNH₂), 156.4 (CHNCNH₂), 153.8 (*ipso* to OCH₃), 136.0 (*ipso* to OCH₂), 133.6 (*para* to OCH₂), 106.5 (CH₂CCNH₂), 105.0 (*meta* to OCH₂), 84.5 (HC≡C), 72.6 (CH₂O), 68.3 (HC≡C), 56.1 (OCH₃), 34.7 (CCH₂C), 29.1 (CH₂CH₂O), 24.9 (CH₂CH₂CH₂O),

 $18.0 \text{ (HC} \equiv \text{CCH}_2)$

HRMS (ESI⁺) m/z / Da = 357.1920, [M+H]⁺ found, [C₁₉H₂₅N₄O₃]⁺ requires 357.1927

The compound has not been reported previously.

1.5 Optimised general procedure for the click reaction

Azide (1 eq.) and alkyne (1 eq.) were dissolved in 50 % t-BuOH/water in a round-bottomed flask with a stirrer bar, closed with a new septum. The mixture was degassed by bubbling through N_2 . The mixture was placed under positive pressure of Ar using a balloon. Equimolar amounts of $CuSO_4 \cdot 5 H_2O$ and THPTA 76 were dissolved in similar water to make a 50 mM solution and similarly degassed. Sodium ascorbate was dissolved in water to make a 100 mM solution and similarly degassed. The Cu/THPTA solution (0.05 eq.) was added to the reaction mixture, followed by the sodium ascorbate solution (0.1 eq.). The mixture was stirred for 2 h and monitored using LCMS. HL derivative conjugates were dry-loaded onto SiO_2 and purified by column chromatography (SiO_2 , 0-20 % $MeOH/CH_2Cl_2$). Other conjugates were purified by preparatory HPLC (5-95 % acetonitrile (0.1 % TFA)/water (0.05 % TFA) over 20 min).

1.6 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(2-oxo-2-((2-oxotetrahydrofuran-3-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 74

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-2-azido-N-(2-oxotetrahydrofuran-3-yl)acetamide **57** (9.2 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h. On observation that the reaction had stalled, the reaction was degassed again, and a further portion of cataylst solution (50 μ l) was added. After a further 3 h the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **74** was obtained as a white amorphous solid (8.8 mg, 14.8 μ mol, 29.6 %).

IR (neat) ν_{max} / cm⁻¹ = 3266.3 (N-H), 2949.0 (C-H), 2934.8 (C-H), 2827.2 (C-H), 1778.0 (lactone C=O), 1724.9 (carboxylic acid C=O), 1665.0 (amide C=O), 1625.5 (quinolone C=O)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 15.23 (s, 1 H, C(=O)O<u>H</u>), 8.84 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.3 Hz, 1 H, ortho to F), 7.82 (s, 1 H, C<u>H</u>=CCH₂), 7.57 (d, J = 7.6

Hz, 1 H, meta to F), 5.13 (s, 1 H, C(=O)C<u>H</u>HN), 5.12 (s, 1 H, C(=O)CH<u>H</u>N), 4.64 (ddd, J = 10.9, 9.0, 7.8 Hz, 1 H, C<u>H</u>NH), 4.36 (td, J = 8.9, 1.7 Hz, 1 H, OC<u>H</u>H), 4.23 (ddd, J = 10.6, 8.8, 6.4 Hz, 1 H, OCH<u>H</u>), 3.83 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br s, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.67 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.58 (br t, J = 5.0 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.42 - 2.49 (m, 1 H, OCH₂C<u>H</u>H), 2.40 (t, J = 7.1 Hz, 1 H, CH=CCH₂CH₂CH₂CH₂C_H2), 2.17 (dtd, J = 11.7, 10.8, 10.8, 9.0 Hz, 1 H, OCH₂CH<u>H</u>), 1.66 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂C<u>H</u>2), 1.53 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂C, 1.28 - 1.35 (m, 1 H, NCH(C<u>H</u>H)₂)), 1.16 - 1.21 (m, 1 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 174.9 (O \underline{C} (=O)), 166.0 (\underline{C} (=O)OH), 165.9 (NH \underline{C} (=O)), 153.1 (d, J = 250.8 Hz, ipso to F), 148.0 (\underline{C} H=CC(=O)OH), 146.6 (CH= \underline{C} CH₂), 145.3 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 123.4 (\underline{C} H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.7 (\underline{C} C(=O)OH), 106.4 (d, J = 3.2 Hz, ortho to C=O and ortho to F), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 51.2 (C(=O) \underline{C} H₂N), 49.5 (CH₂CH₂CH₂N(CH₂ \underline{C} H₂)CH₂CH₂), 49.5 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.2 (\underline{C} HNH), 35.9 (N \underline{C} H(CH₂)), 28.2 (\underline{C} H₂CHNH), 26.8 (CH=CCH₂ \underline{C} H₂), 25.7 (CH=CCH₂CH₂CH₂CH₂), 24.9 (CH=CCH₂), 7.6 (NCH(\underline{C} H₂))

 ${\bf HRMS}~({\rm ESI^+})~m/z~/~{\rm Da} = 596.2627,~[{\rm M+H}]^+~{\rm found},~[{\rm C}_{29}{\rm H}_{35}{\rm FN}_7{\rm O}_6]^+~{\rm requires}~596.2633$

$$[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = \text{-}3.5 \ (c \ / \ \mathrm{g}(100 \ \mathrm{ml})^{-1} = 0.0575 \ , \ \mathrm{MeOH})$$

1.7 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(4-(4-(4-oxo-4-((2-oxotetrahydrofuran-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 79

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-4-azido-N-(2-oxotetrahydrofuran-3-yl)butanamide **60** (10.6 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **79** was obtained as a white amorphous solid (14.6 mg, 23.4 μ mol, 46.8 %).

IR (neat) ν_{max} / cm⁻¹ = 3286.7 (N-H), 2949.7 (C-H), 2820.6 (C-H), 2778.0 (C-H), 1778.1 (lactone C=O), 1725.6 (carboxylic acid C=O), 1663.7 (amide C=O), 1625.8 (quinolone C=O)

¹**H NMR** (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH),

8.40 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.88 (d, J = 13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.5 Hz, 1 H, meta to F), 4.53 (ddd, J = 10.9, 9.0, 8.1 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.9, 1.8 Hz, 1 H, OC<u>H</u>H), 4.31 (t, J = 7.0 Hz, 2 H, C<u>H</u>₂NCH=C), 4.20 (ddd, J = 10.5, 8.8, 6.5 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br. t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.64 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br. t, J = 5.0, 5.0 Hz, 2 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 - 2.42 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂), 2.09 - 2.19 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>₂), 2.02 (quin, J = 7.2 Hz, 2 H, C(=O)CH₂C<u>H</u>₂), 1.64 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂C), 1.52 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂), 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.21 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 175.4 (O $\underline{\mathbf{C}}$ (=O)), 171.2 (NH $\underline{\mathbf{C}}$ (=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 248.6 Hz, ortho to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.8 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.7 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ CC(=O)OH), 106.3 (d, J = 3.2 Hz, meta to C=O and meta to F), 65.3 (O $\underline{\mathbf{C}}$ H₂), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂), 49.5 (CH₂CH₂CH₂N(CH₂CH₂), 49.4 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.6 ($\underline{\mathbf{C}}$ H₂NCH=C), 47.9 (OC(=O) $\underline{\mathbf{C}}$ HNH), 35.9 (N $\underline{\mathbf{C}}$ H(CH₂), 31.7 (NHC(=O) $\underline{\mathbf{C}}$ H₂), 28.2 ($\underline{\mathbf{C}}$ H₂CHNH), 26.9 (CH=CCH₂ $\underline{\mathbf{C}}$ H₂), 25.8 (NHC(=O)CH₂ $\underline{\mathbf{C}}$ H₂ and CH=CCH₂CH₂ $\underline{\mathbf{C}}$ H₂), 24.9 (CH=C $\underline{\mathbf{C}}$ H₂), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

HRMS (ESI⁺) m/z / Da = 624.2928, [M+H]⁺ found, [C₃₁H₃₉FN₇O₆]⁺ requires 624.2946

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -10.6 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.094 \text{ , MeOH})$$

1.8 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(6-oxo-6-((2-oxotetrahydrofuran-3-yl)amino)hexyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 80

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide **63** (12.0 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min) The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **80** was obtained as a white amorphous solid (12.4 mg, 19.0 μ mol, 38.0 %).

TLC $R_f = 0.30 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3301.8 (N-H), 2939.7 (C-H), 2857.5 (C-H), 1784.6 (lactone C=O), 1728.5 (carboxylic

acid C=O), 1658.2 (amide C=O), 1625.5 (quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.32 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.89 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 4.51 (ddd, J = 10.9, 9.1, 7.9 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.8, 1.8 Hz, 1 H, OC<u>H</u>H), 4.28 (t, J = 7.1 Hz, 2 H, C<u>H</u>₂NCH=C), 4.19 (ddd, J = 10.5, 8.7, 6.6 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br t, J = 4.5, 4 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.33 - 2.41 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂CH₂), 2.06 - 2.16 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>₂), 1.79 (quin, J = 7.4 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂CH₂), 1.63 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂), 1.45 - 1.56 (m, 4 H, C(=O)CH₂C<u>H</u>₂ and CH=CCH₂CH₂CH₂), 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.19 - 1.25 (m, 2 H, C(=O)CH₂CH₂CH₂C), 1.15 - 1.19 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 175.4 ($\underline{\mathbf{O}}$ C(=O)), 172.1 (NH $\underline{\mathbf{C}}$ (=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 250.2 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.8 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.6 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 8.0 Hz, para to piperazine), 110.9 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ C(=O)OH), 106.3 (d, J = 2.1 Hz, meta to C=O and meta to F), 65.3 ($\underline{\mathbf{O}}$ CH₂), 57.4 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (CH₂CH₂CH₂N(CH₂CH₂), 49.0 ($\underline{\mathbf{C}}$ H₂NCH=C), 47.8 ($\underline{\mathbf{C}}$ HNH), 35.9 ($\underline{\mathbf{N}}$ CH(CH₂), 34.8 (NHC(=O)CH₂), 29.5 ($\underline{\mathbf{C}}$ H₂CH₂NCH=C), 28.3 ($\underline{\mathbf{C}}$ H₂CHNH), 26.9 (CH=CCH₂CH₂), 25.7 (CH=CCH₂CH₂CH₂), 25.4 (NHC(=O)CH₂CH₂CH₂), 24.9 (CH=CCH₂), 24.5 (NHC(=O)CH₂CH₂CH₂), 7.6 (NCH($\underline{\mathbf{C}}$ H₂))

HRMS (ESI⁺) m/z / Da = 652.3254, [M+H]⁺ found, [C₃₃H₄₃FN₇O₆]⁺ requires 652.3248

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = -8.5 \ (c / \mathrm{g}(100 \ \mathrm{ml})^{-1} = 0.106 \ \mathrm{, MeOH})$$

1.9 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(2-heptyl-4-oxo-1,4-dihydroquinolin-6-yl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 82

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **70** (4.1 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptylquinolin-4(1*H*)-one **40** (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC (50-100 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃

(aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 82 was obtained as a white amorphous solid (8.6 mg, 2.7 μ mol, 27.0 %).

IR (neat) ν_{max} / cm⁻¹ = 2927.0 (C-H), 2865.5 (C-H), 1715.5 (carboxylic acid C=O), 1631.0 (ciprofloxacin quinolone C=O and HHQ C=O)

¹H NMR (500 MHz, DMSO d₆) 15.12 (br s, $\underline{\mathbf{C}}(=O)$ OH), 11.79 (s, 1 H, N $\underline{\mathbf{H}}$), 8.75 (s, 1 H, NC $\underline{\mathbf{H}}=$ CCH₂), 8.71 (s, 1 H, ortho to C(=O)OH), 8.40 (d, J=2.7 Hz, 1 H, ortho to C(=O) and ortho to N), 8.18 (dd, J=8.9, 2.6 Hz, 1 H, para to C(=O) and ortho to N), 7.99 (d, J=13.0 Hz, 1 H, ortho to F), 7.75 (d, J=9.0 Hz, 1 H, meta to C(=O) and meta to N), 7.62 (d, J=7.8 Hz, 1 H, meta to F), 6.02 (s, 1 H, NHC=C $\underline{\mathbf{H}}$ C(=O)), 3.85 (tt, J=7.0, 4.0 Hz, 1 H, NC $\underline{\mathbf{H}}$ (CH₂)₂), 3.23 - 3.30 (m, 6 H, C $\underline{\mathbf{H}}$ 2N(C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2)C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2), 2.82 (t, J=5.9 Hz, 2 H, NCH=CC $\underline{\mathbf{H}}$ 2), 2.63 (t, J=7.9 Hz, 2 H, C $\underline{\mathbf{H}}$ 2C=CHC(=O)), 1.76 - 1.81 (m, 4 H, NCH=CCH₂C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2, 1.70 (quin, J=7.2 Hz, 2 H, C $\underline{\mathbf{H}}$ 2C=CHC(=O)), 1.15 - 1.38 (m, 12 H, CH₃C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2, NCH(C $\underline{\mathbf{H}}$ H)₂ and NCH(CH $\underline{\mathbf{H}}$ 1)₂), 0.87 (t, J=6.9 Hz, 3 H, C $\underline{\mathbf{H}}$ 3)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 176.3 (CH \underline{C} (=O)), 165.8 (\underline{C} (=O)OH), 154.3 (CCH \underline{C} (=O)), 152.9 (d, J = 240.1 Hz, ipso to F), 148.3 (\underline{C} H=CC(=O)OH), 147.5 (NCH \underline{C} CH₂), 143.3 (d, J = 8.5 Hz, ortho to F and ipso to N), 139.6 (ipso to NH), 139.0 (para to F), 132.0 (para to NH), 124.9 (ipso to C(=O) and ortho to NH), 123.6 (para to C(=O) and meta to NH), 120.5 (N \underline{C} H=CCH₂), 120.0 (meta to C(=O) and meta to N), 119.6 (d, J = 9.6 Hz, ipso to C(=O) and para to N), 115.1 (ortho to C(=O) and ortho to N), 111.3 (d, J = 28.8 Hz, ortho to F and ortho to C(=O)), 107.9 (meta to F and meta to C(=O)), 107.2 (\underline{C} HC(=O)), 106.9 (\underline{C} C(=O)OH), 55.4 (CH=CCH₂CH₂CH₂CH₂CH₂N), 50.6 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 46.5 (CH₂CH₂CH₂N(CH₂CH₂), 46.5 (CH₂CH₂CH₂CH₂CH₂N(CH₂CH₂), 36.0 (N \underline{C} H(CH₂)₂), 33.2 (\underline{C} H₂CNH), 31.2 (CH₃CH₂CH₂), 28.3 - 28.5 (CH₃CH₂CH₂CH₂CH₂CH₂CH₂), 25.6 (CH=CCH₂CH₂), 24.4 (CH=CCH₂), 22.7 (CH=CCH₂CH₂CH₂CH₂), 22.0 (CH₃CH₂), 13.9 (\underline{C} H₃), 7.6 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 696.3667, [M+H]⁺ found, [C₃₉H₄₇FN₇O₄]⁺ requires 696.3668

1.10 (S)-4-(4-(4-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)butyl)-1H-1,2,3-triazol-1-yl)-N-(2-oxotetrahydrofuran-3-yl)butanamide 86

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine **73** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-4-azido-N-(2-oxotetrahydrofuran-3-yl) butanamide **60** (15.9 mg, 75.0 μ mol, 1.5 eq.). Similarly degassed solutions of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in water (50 μ l) were then added. An extra portion of **60** (10.6 mg, 50.0 μ mol, 1 eq.) was added after 4 d. Extra portions of the catalysts were added after 9 d. After 2 weeks, the reaction mixture was extracted with CH₂Cl₂ (6×10 ml) then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **86** was obtained as a pale brown gum (4.8 mg, 8.4 μ mol, 16.8 %).

TLC $R_f = 0.30 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3340.5 (N-H), 3303.3 (N-H), 3182.5 (N-H), 2933.8 (C-H), 1774.2 (lactone C=O), 1659.7 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.43 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.80 (s, 1 H, NC<u>H</u>=CCH₂), 7.46 (s, 1 H, C<u>H</u>N=CNH₂), 6.68 (br s, 2 H, CH₂CCN<u>H</u>₂), 6.53 (s, 2 H, meta to CH₂), 6.21 (br s, 2 H, CHN=CN<u>H</u>₂), 4.49 (dt, J = 10.7, 8.6 Hz, 1 H, C<u>H</u>NH), 4.32 (td, J = 8.7, 1.6 Hz, 1 H, C<u>H</u>HOC(=O)), 4.29 (t, J = 6.8 Hz, 2 H, C<u>H</u>₂N), 4.19 (ddd, J = 10.6, 8.7, 6.5 Hz, 1 H, CH<u>H</u>OC(=O)), 3.79 (t, J = 6.2 Hz, 2 H, CH₂CH₂C<u>H</u>₂O), 3.68 (s, 6 H, C<u>H</u>₃), 3.53 (br s, 2 H, CC<u>H</u>₂C), 2.63 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.37 (dddd, J = 12.2, 8.9, 6.7, 1.8 Hz, 1 H, C<u>H</u>HCHNH), 2.08 - 2.15 (m, 3 H, CH<u>H</u>CHNH and C(=O)C<u>H</u>₂), 2.00 (quin, J = 7.2 Hz, 2 H, C<u>H</u>₂CH₂N), 1.72 (quin, J = 7.3 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.61 (quin, J = 6.7 Hz, 2 H, C<u>H</u>₂CH₂O)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 175.8 (OC=O), 171.9 (NHC=O), 163.1 (CC(NH₂)N), 159.7 (br s, NC(NH₂)N), 153.2 (ipso to OCH₃), 150.5 (br s, CHNC(NH₂)N), 147.3 (NCH=CCH₂CH₂CH₂), 135.2 (para to CH₂O), 135.0 (ipso to CH₂O), 122.1 (CH=CCH₂CH₂), 107.3 (CH₂CC(NH₂)=N), 106.2 (meta to CH₂O), 72.3 (CH₂CH₂CH₂O), 65.7 (OCH₂CH₂CHNH), 56.2 (OCH₃), 48.9 (CH₂N), 48.3 (CHNH), 32.9 (CCH₂C), 32.0 (C(=O)CH₂), 29.3 (CH₂CH₂CH₂O), 28.4 (OCH₂CH₂CHNH), 26.0 (CH₂CH₂N), 25.7 (CH=CCH₂CH₂), 24.9 (CH=CCH₂CH₂)

HRMS (ESI⁺) m/z / Da = 569.2834, [M+H]⁺ found, [C₂₇H₃₇N₈O₆]⁺ requires 569.2836

$$[\alpha]_D^{20}$$
 / °10⁻¹cm²g⁻¹ = -4.6 (c / g(100 ml)⁻¹ = 0.0433 , MeOH)

1.11 (S)-6-(4-(4-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy) butyl)-1H-1,2,3-triazol-1-yl)-N-(2-oxotetrahydrofuran-3-yl)hexanamide 87

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine **73** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetra hydrofuran-3-yl)hexanamide **63** (18.0 mg, 75.0 μ mol, 1.5 eq.). Similarly degassed solutions of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in water (50 μ l) were then added. An extra portion of **63** (12.0 mg, 50.0 μ mol, 1 eq.) was added after was added after 4 d. Extra portions of the catalysts were added after 9 d. After 2 weeks, the After 2 weeks, the reaction mixture was extracted with CH₂Cl₂ (6×10 ml) then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **87** was obtained as a clear gum $(8.0 \text{ mg}, 13.4 \mu\text{mol}, 26.8 \%).$

TLC $R_f = 0.35 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3336.0 (N-H), 3208.7 (N-H), 2941.1 (C-H), 2869.2 (C-H), 1775.2 (lactone C=O), 1657.3 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.34 (d, J = 8.0 Hz, 1 H, N $\underline{\text{H}}$), 7.83 (s, 1 H, NC $\underline{\text{H}}$ =CCH₂), 7.50 (s, 1 H, C $\underline{\text{H}}$ N=CNH₂), 6.54 (s, 2 H, meta to CH₂), 6.17 (br s, 2 H, CH₂CCN $\underline{\text{H}}$ ₂), 5.77 (br s, 2 H, CHN=CN $\underline{\text{H}}$ ₂), 4.51 (ddd, J = 11.0, 9.0, 8.1 Hz, 1 H, C $\underline{\text{H}}$ NH), 4.33 (td, J = 8.8, 1.9 Hz, 1 H, C $\underline{\text{H}}$ HOC(=O)), 4.27 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}$ ₂N), 4.19 (ddd, J = 10.5, 8.7, 6.5 Hz, 1 H, CH $\underline{\text{H}}$ OC(=O)), 3.80 (t, J = 6.3 Hz, 2 H, CH₂CH₂CH₂O), 3.70 (s, 6 H, C $\underline{\text{H}}$ ₃), 3.52 (s, 2 H, CC $\underline{\text{H}}$ ₂C), 2.64 (t, J = 7.5 Hz, 2 H, CH=CC $\underline{\text{H}}$ ₂), 2.36 (dddd, J = 12.1, 8.9, 6.7, 1.8 Hz, 1 H, C $\underline{\text{H}}$ HCHNH), 2.06 - 2.16 (m, 3 H, CH $\underline{\text{H}}$ CHNH and C(=O)C $\underline{\text{H}}$ ₂), 1.78 (quin, J = 7.4 Hz, 2 H, C $\underline{\text{H}}$ ₂CH₂N), 1.73 (quin, J = 7.7 Hz, 2 H, CH=CCH₂C $\underline{\text{H}}$ ₂), 1.63 (quin, J = 6.8 Hz, 2 H, C $\underline{\text{H}}$ ₂CH₂O), 1.52 (quin, J = 7.5 Hz, 2 H, C(=O)CH₂CH₂), 1.17 - 1.27 (m, 2 H, C(=O)CH₂CH₂CH₂)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 175.4 (O \underline{C} =O), 172.0 (NH \underline{C} =O), 162.2 (C \underline{C} (NH₂)N), 161.8 (N \underline{C} (NH₂)N), 154.8 (\underline{C} HNC(NH₂)N), 152.8 (ipso to OCH₃), 146.7 (CH= \underline{C} CH₂CH₂CH₂), 135.5 (para to CH₂O), 134.8 (ipso to CH₂O), 121.6 (\underline{C} H=CCH₂CH₂), 105.9 (CH₂ \underline{C} C(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 65.2 (O \underline{C} H₂CH₂CHNH), 55.8 (O \underline{C} H₃), 49.0 (\underline{C} H₂N), 47.8 (\underline{C} HNH), 34.8 (C(=O) \underline{C} H₂), 32.9 (C \underline{C} H₂C), 29.4 (\underline{C} H₂CH₂N), 29.1 (CH₂ \underline{C} H₂O), 28.2 (OCH₂ \underline{C} H₂CHNH), 25.5 (CH=CCH₂ \underline{C} H₂), 25.3 (C(=O)CH₂CH₂CH₂CH₂), 24.4 (C(=O)CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 597.3149, [M+H]⁺ found, [C₂₉H₄₁N₈O₆]⁺ requires 597.3144

 $[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -3.6 \ (c / \text{g}(100 \text{ ml})^{-1} = 0.11 \text{, MeOH})$

1.12 6-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)buty l)-1H-1,2,3-triazol-1-yl)-2-heptylquinolin-4(1H)-one 89

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **73** (3.6 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptylquinolin-4(1H)-one **40** (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in water (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-100 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **89** was obtained as a clear gum (2.6 mg, 4.1 μ mol, 41.0

%).

TLC $R_f = 0.17 \ (20 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2927.7 (C-H), 2855.5 (C-H), 1664.1 (pyrimidine), 1645.4 (pyrimidine and HHQ C=O),

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 11.80 (s, 1 H, N<u>H</u>), 8.69 (s, 1 H, NC<u>H</u>=CCH₂), 8.41 (d, J = 2.7 Hz, 1 H, ortho to C=O), 8.17 (dd, J = 9.0, 2.6 Hz, 1 H, para to C=O), 7.73 (d, J = 9.0 Hz, 1 H, ortho to NH), 7.51 (br s, 4 H, NH₂), 7.41 (s, 1 H, C<u>H</u>N=CNH₂), 6.61 (s, 2 H, meta to CH₂), 6.02 (d, J = 1.8 Hz, 1 H, C(=O)C<u>H</u>), 3.86 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.73 (s, 6 H, OC<u>H</u>₃), 3.57 - 3.62 (m, 2 H, CC<u>H</u>₂C), 2.78 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.63 (t, J = 7.3 Hz, 2 H, HNCC<u>H</u>₂), 1.85 (quin, J = 7.5 Hz, 2 H, CH=CCH₂C<u>H</u>₂C), 1.61 - 1.78 (m, 4 H, HNCCH₂C<u>H</u>₂ and CH=CCH₂CH₂C<u>H</u>₂), 1.31 - 1.40 (m, 4 H, HNCCH₂CH₂C<u>H</u>₂C<u>H</u>₂), 1.25 - 1.31 (m, 4 H, CH₃C<u>H</u>₂C<u>H</u>₂), 0.86 (t, J = 7.2 Hz, 3 H, C<u>H</u>₃CH₂)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} =O), 164.1 (\underline{C} C(NH₂)N), 154.3 (HNC), 154.2 (NC(NH₂)N), 153.1 (ipso to OCH₃), 148.3 (CH= \underline{C} CH₂CH₂), 140.2 (\underline{C} HNC(NH₂)N), 139.6 (ipso to NH), 135.4 (ipso to CH₂O), 132.8 (para to CH₂O), 132.1 (para to NH), 124.9 (ipso to C=O), 123.7 (para to C=O), 120.3 (\underline{C} H=CCH₂CH₂), 120.0 (meta to C=O and ortho to NH), 115.1 (ortho to C=O and meta to NH), 109.0 (CH₂CC(NH₂)=N), 108.0 (C(=O)CH), 106.3 (meta to CH₂O), 72.0 (CH₂CH₂CH₂O), 56.0 (OCH₃), 33.3 (HNCCH₂), 32.1 (CCH₂C), 31.2 (CH₃CH₂CH₂), 29.1 (\underline{C} H₂CH₂O), 28.3 - 28.6 (CH₃CH₂CH₂CH₂CH₂CH₂), 25.3 (\underline{C} H₂CH₂CH₂O), 24.7 (CH=CCH₂), 22.1 (CH₃CH₂), 14.0 (\underline{C} H₃CH₂)

HRMS (ESI⁺) m/z / Da = 641.3557, [M+H]⁺ found, [C₃₅H₄₅N₈O₄]⁺ 641.3558

1.13 2-(6-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)bu tyl)-1H-1,2,3-triazol-1-yl)hexyl)-3-hydroxyquinolin-4(1H)-one 91

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **73** (14.2 mg, 39.8 μ mol, 1 eq.) and 2-(6-azidohexyl)-3-hydroxyquinolin-4(1H)-one **19** (11.4 mg, 39.8 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (1.25 mg, 5 μ mol, 0.125 eq. 50 mM), THPTA (2.18 mg, 5 μ mol, 0.125 eq. 50 mM) and sodium ascorbate (1.98 mg, 10 μ mol, 0.25 eq., 100 mM) in water (100 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then MeOH (1 ml) was added and the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **91** was obtained as a pale brown amorphous solid (4.7 mg, 7.3 μ mol, 18.3 %).

TLC $R_f = 0.21 \ (20 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2924.8 (C-H), 2853.4 (C-H), 1660.0 (pyrimidine), 1638.8 (pyrimidine and PQS C=O),

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 11.53 (br s, 1 H, N<u>H</u>), 8.09 (d, J = 8.0 Hz, 1 H, ortho to C=O), 7.83 (s, 1 H, NC<u>H</u>=CCH₂), 7.48 - 7.57 (m, 3 H, para to C=O, ortho to NH and C<u>H</u>N=CNH₂), 7.21 (ddd, J = 8.0, 6.3, 1.5 Hz, 1 H, para to NH), 6.55 (s, 2 H, meta to CH₂), 4.28 (t, J = 7.1 Hz, 2 H, C<u>H</u>₂N), 3.80 (t, J = 6.2 Hz, 2 H, C<u>H</u>₂O), 3.70 (s, 6 H, C<u>H</u>₃), 3.53 (d, J = 0.3 Hz, 2 H, CC<u>H</u>₂C), 2.73 (t, J = 7.5 Hz, 2 H, HNCC<u>H</u>₂), 2.64 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 1.80 (quin, J = 7.4 Hz, 2 H, C<u>H</u>₂CH₂N), 1.73 (quin, J = 7.5 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.66 (quin, J = 7.2 Hz, 2 H, HNCCH₂C<u>H</u>₂), 1.62 (quin, J = 6.8 Hz, 2 H, C<u>H</u>₂CH₂O), 1.33 - 1.40 (m, 2 H, HNCCH₂CH₂C), 1.27 - 1.32 (m, 2 H, HNCCH₂CH₂CH₂CH₂C

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 168.9 (\underline{C} =O), 162.5 (\underline{C} C(NH₂)N), 162.5 (NC(NH₂)N), 152.9 (\underline{C} HNC(NH₂)N), 152.8 (ipso to OCH₃), 146.8 (CH= \underline{C} CH₂CH₂CH₂), 137.7 (\underline{C} OH), 137.3 (para to OH), 135.4 (HNC), 135.1 (para to CH₂O), 134.8 (ipso to CH₂O), 129.9 (para to C=O), 124.4 (ortho to C=O and meta to NH), 122.1 (ipso to C=O), 121.5 (para to NH), 121.4 (\underline{C} H=CCH₂CH₂), 117.7 (meta to C=O and ortho to NH), 106.2 (CH₂CC(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 55.8 (OCH₃), 49.0 (\underline{C} H₂N), 32.8 (CCH₂C), 29.5 (\underline{C} H₂CH₂N), 29.0 (\underline{C} H₂CH₂O), 28.1 (HNCCH₂CH₂CH₂), 27.9 (HNCCH₂), 27.6 (HNCCH₂CH₂), 25.6 (\underline{C} H₂CH₂CH₂N), 25.4 (\underline{C} H₂CH₂CH₂O), 24.6 (CH= \underline{C} CH₂CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 643.3365, [M+H]⁺ found, [C₃₄H₄₃N₈O₅]⁺ requires 643.3351

2 References

- [1] R. Howard. The synthesis of an azido analogue of N-(3-oxododecanoyl)-l-homoserine lactone and an alkynyl analogue of linezolid for use in the synthesis of a library of antibiotic-quorum sensing molecule conjugates. PhD thesis, University of Cambridge. 2015.
- [2] Y. R. Baker. Investigating quinolone based quorum sensing in Pseudomonas aeruginosa using a chemical proteomics approach. PhD thesis, University of Cambridge. 2015.
- [3] C. Jing and V. W. Cornish. A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. ACS Chemical Biology, 8(8):1704–12. 2013.

Todo list

ref								 			 											 			2
weigh								 			 											 			7