



### PROBABILITY THEORY

Julian Liersch AG Robotik, Universität Bremen

Prof. Dr. Dr. h.c. Frank Kirchner AG Robotik, Universität Bremen https://robotik.dfki-bremen.de/ robotik@dfki.de October 13, 2023 – Bremen, Deutschland





## General setup



#### General information

- ▶ Our goal is to have a common language and understanding of the relevant content.
- ▶ The crash course shall provide you an opportunity to identify knowledge gaps.
- If something is too fast, feel free to pause the video.



## Table of contents



- Probability spaces
- 2 Basic concepts
- 3 Random variables
- 4 Probability distributions
- **6** Additional concepts





# Probability spaces



## Content on probability spaces



### Content

- Definition of  $\sigma$ -algebras
- Definition of measure spaces
- Definition of probability spaces as measure spaces





## **Definition**: $\sigma$ -algebra

Let  $\Omega \neq \emptyset$  and  $A \subseteq \mathfrak{P}(\Omega) := \{A | A \subseteq \Omega\}$ . Then A is called a  $\sigma$ -algebra over  $\Omega$  if the following conditions hold:

- $ightharpoonup \Omega \in \mathcal{A}$
- $A \in \mathcal{A} \Rightarrow \Omega \backslash A \in \mathcal{A}$
- $A_n \}_{n \in \mathbb{N}} \subseteq \mathcal{A} \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$

### Corollary: Basic properties

Let  $\mathcal{A}$  be a  $\sigma$ -algebra over  $\Omega \neq \emptyset$ , then the following conditions hold:

- $\triangleright \varnothing \in \mathcal{A}$
- $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A} \land A \backslash B \in \mathcal{A}$





### General examples

The following sets are  $\sigma$ -algebras for every  $\Omega \neq \emptyset$ :

- ▶ The power set  $\mathfrak{P}(\Omega) := \{A | A \subseteq \Omega\}.$
- ▶ The set  $\{\emptyset, \Omega\}$ .
- ▶ For any  $\mathcal{M} \subseteq \mathfrak{P}(\Omega)$ , the set  $\sigma(\mathcal{M}) := \bigcap_{\mathcal{A} \in \mathcal{F}(\mathcal{M})} \mathcal{A}$  where  $\mathcal{F}(\mathcal{M}) := \{\mathcal{A} \subseteq \mathfrak{P}(\Omega) | \mathcal{M} \subseteq \mathcal{A} \land \mathcal{A} \text{ is } \sigma\text{-algebra} \}.$  This is called the  $\sigma\text{-algebra generated from } \mathcal{M}.$

### Specific examples

- $\qquad \qquad \textbf{For } \Omega := \{1,2\}, \ \mathcal{A} := \mathfrak{P}(\Omega) = \{\varnothing,\Omega,\{1\},\{2\}\}.$
- ▶ For  $\Omega := \mathbb{R}^m$ ,  $m \in \mathbb{N}$  and  $\tau(\Omega) := \{U \subseteq \Omega | U \text{ open}\}$ , the Borel  $\sigma$ -algebra  $\mathcal{B}(\Omega) := \sigma(\tau(\Omega))$ .





## **Definition**: Measurable space

Let  $\mathcal{A}$  be a  $\sigma$ -algebra over  $\Omega \neq \emptyset$ . Then the tuple  $(\Omega, \mathcal{A})$  is called a *measurable space*.

### **Definition**: Measures

Let  $(\Omega, \mathcal{A})$  be a measurable space. Then  $\mu : \mathcal{A} \to \mathbb{R}_0^+ \cup \{\infty\}$  is called a *measure*, if the following conditions hold:

- $\mu(\emptyset) = 0$
- $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$  pairwise disjoint  $\Rightarrow \mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu(A_n)$  ( $\sigma$ -additivity)





#### Remark

For the measurable space  $(\mathbb{R}, \mathfrak{P}(\mathbb{R}))$  there is **no** measure, as the  $\sigma$ -additivity can not be fulfilled! This is a reason to use the Borel  $\sigma$ -algebra for  $\Omega \subseteq \mathbb{R}^m$  instead.

### **Definition**: Measure space

Let  $(\Omega, \mathcal{A})$  be a measurable space and  $\mu : \mathcal{A} \to \mathbb{R}_0^+ \cup \{\infty\}$  be a measure. Then the triple  $(\Omega, \mathcal{A}, \mu)$  is called a *measure space*.

### **Definition**: Probability space

A measure space  $(\Omega, \mathcal{A}, \mu)$  with  $\mu(\Omega) = 1$  is called a *probability space*. In this case, the measure is usually called P instead of  $\mu$  and its co-domain is defined to be [0,1].





#### Remarks

- $P: \Omega \to [0,1]$  is well-defined, as  $A \subseteq \Omega \Rightarrow P(A) \leqslant P(\Omega) = 1$ .
- For probability spaces, elements of A are called *events*.

### Example: Dice throw

Consider two fair six sided dice. The possible values the dice can show are

 $Z := \{1, 2, 3, 4, 5, 6\}$ . By setting  $\Omega := Z \times Z$ ,  $\mathcal{A} := \mathfrak{P}(\Omega)$  and  $\mu : \mathcal{A} \to [0, 1]$ ,  $E \mapsto \frac{\#E}{\#\mathcal{A}}$  we are defining a probability space which models throwing the two dice.





# Basic concepts



## Content on basic concepts



### Content

- Conditional probability
- Visualization using Venn diagrams
- Bayes' theorem





## **Lemma**: Conditional probability space

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $B \in \mathcal{A}$  with P(B) > 0. Then defining

 $\mathcal{A}_B := \{A \cap B | A \in \mathcal{A}\}$  and  $P(\cdot | B) : \mathcal{A}_B \to [0, 1], P(A | B) := \frac{P(A \cap B)}{P(B)}$  yields a probability space  $(B, \mathcal{A}_B, P(\cdot | B))$ .

### Example

As before, consider throwing two fair six sided dice. The probability to throw a pair of sixes is  $P(\{(6,6)\}) = \frac{1}{36}$ . But this probability changes, if we already have thrown the first six.

- $E_{6.6} := \{(6,6)\} \cong \text{ both dice show a six }$
- $E_{6,x} := \{(6, w) | w \in \{1, 2, 3, 4, 5, 6\}\} =$  the first die shows a six
- $P(E_{6,6}|E_{6,x}) = \frac{P(E_{6,6})}{P(E_{6,x})} = \frac{1}{36} \cdot \frac{36}{6} = \frac{1}{6}$



# Visualization of conditional probability via Venn diagrams









Figure: The conditional probability relates the "area" of  $A \cap B$  with the "area" of B:  $P(A|B) = \frac{P(A \cap B)}{P(B)}$  similar as P(B) is relating the "area" of  $B \cap \Omega$  with the "area" of  $\Omega$ .



### Corollary: Chain rule

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $A, B \in \mathcal{A}$ . Then the following equality holds by definition of the conditional probability space:

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

## Corollary: Bayes' theorem

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $A, B \in \mathcal{A}$ . Then the following equality holds:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$





## Random variables



## Content on random variables



### Content

- Definition random variables
- Discrete and continuous random variables
- Arity of random variables





#### **Definition**: Measurable function

Let  $(\Omega, \mathcal{A}, \mu)$  be a measure space and  $(S, \Sigma)$  be a measurable space. Then a function  $X : \Omega \to S$  is called *measurable*, if the following implication holds:

$$E \in \Sigma \Rightarrow X^{-1}[E] \in \mathcal{A}$$

#### **Definition**: Random variable

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $(S, \Sigma)$  be a measurable space. Then a measurable function  $X : \Omega \to S$  is called a *random variable*.

- ▶ For  $s \in S$  we define the event, that X equals s as  $X = s := \{\omega \in \Omega | X(\omega) = s\}$ .
- ▶ Similarly we set  $X \in E := \{\omega \in \Omega | X(\omega) \in E\} = X^{-1}[E]$  for  $E \in \Sigma$ .





### **Definition**: Discrete random variable

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $(S, \Sigma)$  be a measurable space. Then the random variable  $X : \Omega \to S$  is called *discrete* if S is a discrete set.

## Example

Sum of the throw of two fair six-sided dice:

- $X: \{1, 2, 3, 4, 5, 6\}^2 \to S := \mathbb{N}, X: (x, y) \mapsto x + y$
- $P(X = 3) = P(\{(x, y) \in \{1, 2, 3, 4, 5, 6\}^2 | x + y = 3\}) = \frac{\#\{(1, 2), (2, 1)\}}{\#\{1, 2, 3, 4, 5, 6\}^2} = \frac{2}{36}$





#### **Definition**: Continuous random variable

Let  $(\Omega, \mathcal{A}, P)$  be a probability space and  $(S, \Sigma)$  be a measurable space. Then the random variable  $X : \Omega \to S$  is called *continuous* if S is a continuous space.

## Examples

- Height of a randomly selected person:  $S \subseteq \mathbb{R}^+$
- Runtime of the execution of a non-locking program in real time:  $S = \mathbb{R}_0^+$





### **Definition**: Arity of random variables

Let  $X : \Omega \to S$  be a random variable. The *arity of* X refers to the dimension of the co-domain of X. Especially:

- ▶ If *S* is "one-dimensional", *X* is called *univariate*.
- ▶ If S is "multi-dimensional". X is called multivariate.

## Examples

- Univariate random variable: Focussing on the height of a randomly selected person  $(S \subseteq \mathbb{R}^+)$
- Multivariate random variable: Jointly focussing on the height and weight of a randomly selected person  $(S \subseteq \mathbb{R}^+ \times \mathbb{R}^+)$





# Probability distributions



## Content on probability distributions



#### Content

- Definition probability distributions
- Mass, density functions and cumulative distribution function
- Common distributions





### Lemma: Probability distribution

Let  $X:\Omega\to S$  be a random variable for a probability space  $(\Omega,\mathcal{A},P)$  and a measurable space  $(S,\Sigma)$ . Then  $P_X:\Sigma\to [0,1], E\mapsto P(X\in E)$  is a probability measure for the measurable space  $(S,\Sigma)$ , thus making  $(S,\Sigma,P_X)$  a probability space. The probability measure  $P_X$  is called *the distribution of* X.

### Identity distribution

Let  $(\Omega, \mathcal{A}, P)$  be a probability space. Then id :  $\Omega \to \Omega, \omega \mapsto \omega$  is a random variable, making  $P_{\text{id}}$  the distribution of id. Thus each probability measure can be associated with a distribution.





## **Definition**: Probability mass function

Let S be countable and  $p: S \to [0,1]$  such that P(X = x) = p(x). The function p is called probability mass function and abbreviated as pmf.

## Lemma: Probability density function

Let  $S \subseteq \mathbb{R}^m$  be uncountable for  $m \in \mathbb{N}$ ,  $X : \Omega \to S$  be a uni- or multivariate random variable and  $P_X : \Sigma \to [0,1]$  be absolutely continuous relative to the m-dimensional Lebesgue-measure<sup>a</sup>, which is denoted as  $\lambda^m$ . Then there is a function  $p : S \to \mathbb{R}_0^+$  such that  $P_X(E) = \int_E p d\lambda^m$  for all  $E \in \Sigma$ . This function p is called *probability density function* and abbreviated as pdf.



<sup>&</sup>lt;sup>a</sup>This means each  $\lambda^m$ -null-set  $N \in \Sigma$  fulfills  $P(X \in N) = 0$ .



### **Definition**: Cumulative distribution function

Let  $(\Omega, \mathcal{A}, P)$  be a probability space,  $S \subseteq \mathbb{R}$  and  $X : \Omega \to S$  be a univariate random variable.

Then the function  $F: S \to [0,1], x \mapsto P(X \le x)$  is called *cumulative distribution function* and abbreviated as *cdf*. Here  $X \le x := \{\omega \in \Omega | X(\omega) \le x\}$ .

#### Remark

- ▶ The cdf is isotone.
- ▶ If *X* is discrete with pmf  $p: S \to \mathbb{R}$ , then  $F(x) = \sum_{y \in S, y \leq x} p(y)$ .
- ▶ If X is continuous with pdf  $p: S \to \mathbb{R}$ , then  $F(x) = \int_{v \in S, v \leq x} p(y) dy$ .





### Uniform distribution

For finite S with #S = n, the function  $p: x \mapsto \frac{1}{n}$  is the probability mass function of the uniform distribution on S.

Notation:  $X \sim U(S)$ 



Figure: Probability mass function of uniform distribution for throwing a fair six sided die.





#### Bernoulli distribution

Notation:  $X \sim \mathcal{B}(p)$ 

For  $S = \{0,1\}$  and parameter  $p \in [0,1]$ , the function  $f(\cdot | p) : x \mapsto p^x (1-p)^{1-x}$  is the probability mass function of the Bernoulli distribution with probability p.



Figure: Probability mass function of Bernoulli distribution for flipping a loaded coin. "Head" may for example be represented by 0, and "tails" by 1.





### Uniform distribution

For  $S \subseteq \mathbb{R}$  with  $\lambda^1(S) \in \mathbb{R}^+$ , the function  $p: x \mapsto \frac{1}{\lambda(S)}$  is the probability density function of the uniform distribution on S.

Notation:  $X \sim U(S)$ 



Figure: Probability density function of uniform distribution in S = [0.6, 1.0].





### Normal distribution

For  $S=\mathbb{R},\ \mu\in\mathbb{R}$  and  $\sigma\in\mathbb{R}^+$ , the function  $p:x\mapsto \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$  is the probability density function of the Gaussian / normal distribution with mean  $\mu$  and standard deviation  $\sigma$ . For  $\mu=0$  and  $\sigma=1$ ,  $P_X$  is called *standard normal distribution*. Notation:  $X\sim\mathcal{N}(\mu,\sigma)$ 





Figure: Probability densitiy function of normal distribution with  $\mu=2$  and  $\sigma=2$ .



# Additional concepts



## Content on additional concepts



### Content

- Transformations
- Moments
- Joint and marginal distributions
- Multivariate normal distribution
- Independence





### Lemma: Transformation

Let  $X:\Omega\to\mathbb{R}$  be a continuous random variable and  $g:X[\Omega]\to S$  be measurable with a measurable space  $(S,\Sigma)$ . Then  $Y:=g\circ X:\Omega\to S$  is a continuous random variable with  $P(Y\in B)=P(X\in g^{-1}[B])$  for

 $B \in \Sigma$ .

## Examples

- Let  $X \sim U([0,1])$ ,  $a,b \in \mathbb{R}$  and  $g: x \mapsto (b-a)x + a$ , then  $g \circ X \sim U([a,b])$
- ▶ Let  $X \sim \mathcal{N}(\mu, \sigma)$  and  $g: x \mapsto \frac{x-\mu}{\sigma}$ , then  $g \circ X \sim \mathcal{N}(0, 1)$



Figure: Transforming the random variable  $X \sim \mathcal{N}(3,2)$  using  $g: x \mapsto \frac{x-3}{2}$  normalizes it and  $g \circ X \sim \mathcal{N}(1,0)$ . The corresponding pdfs can be seen in the figure.





## **Definition**: First moment

Let S be a vector space and  $X:\Omega\to S$  be a random variable. The first moment of X is defined as

$$\mathbb{E}(X) := \begin{cases} \sum_{x \in S} x p(x) & \text{if } X \text{ is discrete and the series converges absolutely} \\ \int_{S} x p(x) dx & \text{if } X \text{ is continuous and has a probability density function } p \end{cases}$$

The first moment of a random variable is also called its *expected value* and noted as  $\mu := \mathbb{E}(X)$ .

### Example

For  $X \sim \mathcal{N}(\mu_0, \sigma_0)$  is  $\mathbb{E}(X) = \mu = \mu_0$ .





### **Definition**: *n*-th central moment

Let  $X:\Omega\to\mathbb{R}$  be a random variable with expected value  $\mu:=\mathbb{E}(X)\in\mathbb{R}$  and  $n\in\mathbb{N}$ . If it exists, the *n-th central moment of X* is defined as

$$\mu_n := \mathbb{E}\left[ (X - \mu)^n \right]$$

The second central moment of a random variable is also called its *variance* and denoted as  $Var(X) := \mu_2$ .

## **Definition**: Standard deviation

Let  $X: \Omega \to \mathbb{R}$  be a random variable with variance Var(X). Then  $\sigma := \sqrt{Var(X)}$  is called the *standard deviation* of X.

## Example

• For  $X \sim \mathcal{N}(\mu_0, \sigma_0)$  is  $\sigma = \sigma_0$ .





#### **Definition**: Joint distribution

Let  $X_i:\Omega\to S_i$  be random variables mapping into probability spaces  $(S_i,\Sigma_i,P_{X_i})$  for  $i\in\{1,2\}$ . Then we can define the *joint probability space*  $(S,\Sigma,P_{X_1,X_2})$  with  $S:=S_1\times S_2$ ,  $\Sigma:=\sigma(\Sigma_1\times\Sigma_2)$  and  $P_{X_1,X_2}:(E_1,E_2)\mapsto P(X_1\in E_1\cap X_2\in E_2)$ . The probability measure  $P_{X_1,X_2}:\Sigma\to[0,1]$  is called the *joint distribution of*  $X_1$  and  $X_2$ .

#### Remarks

- ▶ This definition can be extended canonically to an arbitrary finite number of random variables.
- ▶ The expression  $P(X_1 \in E_1 \cap X_2 \in E_2)$  is often written as  $P(X_1 \in E_1 \wedge X_2 \in E_2)$  or abbreviated as  $P(X_1 \in E_1, X_2 \in E_2)$ .





### **Definition**: Marginal distribution

For  $S=\mathbb{R}^m$  with  $m\in\mathbb{N}\setminus\{1\}$  and a multivariate continuous random variable  $X:\Omega\to S$  with pdf  $p:S\to\mathbb{R}^+_0$  we can define marginal distributions  $P_{X^i}(E):=\int_E p^id\lambda^{m-1}$  using marginal pdfs

$$p^{i}(\tilde{x}^{i}) := \int_{-\infty}^{\infty} p((x_{j})_{j=1}^{m}) d\lambda^{1}(x_{i})$$

for all  $i \in \{1, ..., m\}$  and  $\tilde{x}^i \in \mathbb{R}^{m-1}$ .

### Remark

▶ By changing the integration to a summation, the definition can also by applied to discrete random variables





#### Multivariate normal distribution

For  $\mu \in \mathbb{R}^m$  and  $C \in \mathbb{R}^{m \times m}$  symmetric and positive definite we can define the multivariate normal distribution through its pdf

$$p(x) := (2\pi)^{-\frac{m}{2}} \det(C)^{-\frac{1}{2}} \exp(-\frac{1}{2}(x-\mu)^T C^{-1}(x-\mu))$$

This corresponds to a continuous random variable  $X: \Omega \to \mathbb{R}^m$  with  $P(X \in E) = \int_E p d\lambda^m$  for  $E \in \Sigma$ .

### Remark

• Usually the matrix C is notated as  $\Sigma$  instead.





Figure: Realizations of multivariate normal distribution and corresponding marginal distributions.



### **Definition**: Independence

Let  $(\Omega, \mathcal{A}, P)$  be a probability space,  $n \in \mathbb{N} \setminus \{1\}$  and for  $i \in \{1, \ldots, n\}$  the tuples  $(S_i, \Sigma_i)$  be measurable spaces and  $X_i : \Omega \to S_i$  be random variables. Then the  $X_i$  are called

- ▶ Pairwise independent if each pair  $X_j \neq X_k$  is independent, i. e.  $P((X_j \in E_j) \cap (X_k \in E_k)) = P(X_j \in E_j) \cdot P(X_k \in E_k)$  for all  $E_j \in \Sigma_j$ ,  $E_k \in \Sigma_k$ .
- Mutually independent if for all  $(E_i)_{i=1}^n \in \times_{i=1}^n \Sigma_i$  the equation  $P(\bigcap_{i=1}^n (X_i \in E_i)) = \prod_{i=1}^n P(X_i \in E_i)$  holds.

## **Collorary**

If a set of random variables is mutually independent, it is also pairwise independent.

### Examples for independence

Consider throwing two fair six sided dice. This can be modeled using two random variables  $X_1, X_2 \sim U(\{1, 2, 3, 4, 5, 6\})$  which can be assumed to be independent.





### We recapped

- Basic definitions of probability theory,
- Conditional probability & Bayes theorem,
- ▶ Random variables, distributions & density functions,
- ▶ Transformation & independence of random variables,
- ▶ (Central) moments,
- Joint & marginal distributions.
- ▶ Important examples of distributions, including multivariate normal distributions.





# Thank You!

Feel free to ask questions in the forums!

