CIS770 Homework 2

Andre Gregoire

February 16, 2016

Problem1

1.1.

1.2.

Proof by cases:

I first choose 5 strings that all go to different states:

$$w1 = \text{abba where } q_0 \xrightarrow{w1}_M A$$

 $w2 = \text{a where } q_0 \xrightarrow{w2}_M B$
 $w3 = \text{b where } q_0 \xrightarrow{w3}_M C$
 $w4 = \text{ab where } q_0 \xrightarrow{w4}_M D$
 $w5 = \text{abb where } q_0 \xrightarrow{w5}_M E$

 $w1 \notin L$, however $w2 \in L$, $w3 \in L$, $w4 \in L$, $w5 \in L$

 $B \neq C$ consider bbb $w2bb \in L$, $w3bbb \notin L$

 $B \neq D$ consider $bb \ w2bb \in L$, $w4bb \notin L$

 $B \neq E$ consider $bb \ w2bb \in L, \ w5bb \notin L$

 $C \neq D$ consider bb $w3bb \in L$, $w4bb \notin L$

C \neq E consider b
bw3bb \in L, w5bb \notin L

D \neq E consider a w4bb \in L, w5a \notin L

Since w1, w2, w3, w4, w5 must all go to unique states there must be at least 5 states for a DFA to recognize the language L

Problem 2

2.1.

$$\begin{split} M &= (Q, \Sigma, \delta, q_0, F) \\ M^{\mathrm{R}} &= (Q^{\mathrm{R}}, \Sigma^{\mathrm{R}}, \delta^{\mathrm{R}}, q_0^{\mathrm{R}}, F^{\mathrm{R}}) \\ Q^{\mathrm{R}} &= 2^{\mathrm{Q}} \\ q_0^{\mathrm{R}} &= F \\ F^{\mathrm{R}} &= \{ \mathbf{S} \subseteq \mathbf{Q} \mid q_0 \in \mathbf{S} \ \} \\ \delta^{\mathrm{R}}(\mathbf{S}, \, \mathbf{s}) &= \{ \mathbf{q} \in \mathbf{Q} \mid \delta(\mathbf{q}, \mathbf{s}) \in \mathbf{S} \ \} \end{split}$$

2.2.

Note: Come back to this

Forward transition:

$$\delta_R(q_1, \mathbf{x}\mathbf{a}) = \delta_R(\delta_R(q_1, \mathbf{x}), \mathbf{a})$$

Reverse transition:

$$\delta_R(q_2, ax) = \delta_R(\delta_R(q_2, x), a)$$

$$\delta(q_1, \mathbf{x}) = q_2 \Leftrightarrow \delta_R(q_2, \mathbf{x}) = q_1$$
 given the string \mathbf{x}

Problem 3

3.1.

An all-NFA M accepts w iff there is $q \in F$ such that $q_0 \xrightarrow{w}_M q$ and for every q' if $q_0 \xrightarrow{w}_M q'$ then $q' \in F$.

The language recognized by M:

$$L(M) = \{ w \in \Sigma^* | M \text{ accepts } w \}$$

3.2.

DFA dfa(M) =
$$(2^{Q}, \Sigma, \delta', q_0', F')$$

 $q_0' = \hat{\delta}_M \ (q_0, \epsilon)$
 $F' = 2^{F} \setminus \{\emptyset\}$ Note: all subsets of F minus the empty sets, wasnt sure if it was denoted right $\delta'(S, s) = \bigcup_{q \in S} \hat{\delta}_M(q, s)$

Problem 4

4.1.a.

The set of all binary strings.

4.1.b.

The set of all binary strings with a leading 0 and ending 1

4.1.c.

The set of all binary strings that no 0 can follow a 01 sequence. i.e. 010 is impossible

4.2.a.

$$1^*(0 \cup \epsilon)1^*(0 \cup \epsilon)1^*(0 \cup \epsilon)1^*$$
4.2.b.

$$(01 \cup 10)^*(0 \cup 1 \cup \epsilon)$$
4.2.c.

$$(1 \cup 01 \cup 001)^*000(1 \cup 10 \cup 100)^*$$