17 Задача линейного программирования в каноническом виде. Прямой симплексный метод решения задач линейного программирования

1.1 задача линейного программирования в общем виде

$$\sum\limits_{j=1}^n c_j x_j o \max$$

 c_i — коэффициенты целевой функции.

$$\sum\limits_{j=1}^{n}a_{ij}x_{j}\leq b_{i}\;(i=1,\;\ldots,\;m_{1})$$

$$\sum\limits_{j=1}^{n}a_{ij}x_{j}\geq b_{i}$$
 ($i=m_{1}+1,\;\ldots,\;m_{1}+m_{2}$)

$$\sum\limits_{j=1}^{n}a_{ij}x_{j}=b_{i}\;(i=m_{1}+m_{2}+1,\;\ldots,\;m_{1}+m_{2}+m_{3})$$

всего ограничений — $m_1 + m_2 + m_3$.

 a_{ij} — коэффициенты матрицы ограничений.

 b_i — правые части ограничений.

множество переменных N может быть разбито на три части:

$$N=N_1\cup N_2\cup N_3$$

 N_1 — переменные, которые ≥ 0 .

 N_2 — переменные, которые < 0.

 N_3 — переменные, которые могут иметь любой знак.

(температура, например)

1.2 задача линейного программирования в каноническом виде

вопрос заключается в том, чтобы любую задачу привести к вот такому виду:

$$\sum_{j=1}^n c_j x_j o \min$$
 $\sum_{j=1}^n a_{ij} x_j = b_i$ $x_j \geq 0$ $b_i > 0$

1.3 приведение задачи ЛП к каноническому виду (алгоритм, общий вид таблицы)

1. если $f o \max$

просто умножить все c_j на -1. было $2x_1-3x_2 o\max$ стало $-2x_1+3x_2 o\min$

2. если множество M_1 ограничений не пусто

(имеются в виду ограничения $g(x) \ge 0$)

вводятся дополнительные переменные.

$$x \ge b$$

новая переменная x'>0

$$x - x' = b$$

пример: b - заявка, x - реальный выпуск, x' - перевыпуск

(нам сказали сделать не менее чем b, мы сделали на x^\prime больше.)

⋆ помимо дополнительных переменных есть еще искусственные. я уже забыла, чем они отличаются.

3. если множество M_2 ограничений не пусто

(имеются в виду ограничения $g(x) \le 0$)

 $x \leq b$

новая переменная x'>0

$$x + x' = b$$

пример: b - заявка, x - реальный выпуск, x' - недовыпуск (нам сказали сделать не более чем b, мы сделали на x' меньше.)

4. если N_2 не пусто

производится замена переменных.

 $x \in N_2$

x' = -x

 $x' \geq 0$

5. если N_3 не пусто

производится замена переменных.

 $x \in N_3$

 $x^+, x^- > 0$

 $x = x^+ - x^-$

6. если есть $b_i < 0$

просто домножить ограничение (неравенство) на -1, чтобы изменить знак.

алгоритм прямого симплексного метода

или метод последовательного улучшения плана.

для того чтобы использовать этот метод, важно наличие двух условий:

- 1. канонический вид задачи ЛП (то, что в правой части ограничений, должно быть больше нуля)
- 2. должен быть начальный базис, от которого нужно отталкиваться, и соответствующее ему БДР (базисное допустимое решение).

$$egin{aligned} \sum c_j x_j &
ightarrow \min \ \sum a_{ij} x_j &= b_i \ x_j &\geq 0 \end{aligned}$$

		c_1 , c_2 c_m	$c_{m+1} c_n$
--	--	---------------------	---------------

базис	бдр	x_1 , x_2 x_m	$x_{m+1} \dots \ x_n$
x_1	b_1	1	
x_2	b_2	1	a_{rs}
x_n	b_n	1	
z	Δ_0	$\Delta_1\Delta_2\Delta_m$	$\Delta_{m+1}\Delta_n$

$$\Delta_0 = \sum\limits_{i=1}^m c_i b_i$$

$$\Delta_j = \sum\limits_{i=1}^m c_i a_{ij} - c_j$$

алгоритм

- 0. построение начальной симплекс таблицы
- 1. проверка всех Δ_j (кроме Δ_0): если все $\Delta_j \leq 0$, то найдено оптимальное решение. конец алгоритма.
- 2. среди всех оценок $\Delta>0$ выбираем наибольшую, и соответствующий ей столбец объявляем ведущим столбцом.
- 3. просматриваем элементы ведущего столбца. если все элементы ≤ 0 , значит функция не ограничена и оптимального решения не существует.
- 4. для всех $a_{is}>0$ находим отношения $\dfrac{b_i}{a_{is}}$. берем минимальное из них. R ведущая строка. (R мощность строки.)
- 5. пересчет симплексной таблицы при помощи преобразования Жордана-Гаусса. в строке R записываем S, для всех элементов матрицы a: $a_{ij} = \frac{a_{ij} \cdot a_{rs} a_{rj} \cdot a_{is}}{a_{rs}}$

то есть для строки с номером R все значения делятся на опорное значение S.

6. возвращаемся к шагу 1.

пример

$$egin{aligned} 1x_1+2x_2+0x_3+3x_4 &
ightarrow \min \ 1x_1+0x_2+2x_3+1x_4=4 \ 4x_1+1x_2+6x_3+0x_4=14 \ x_i \geq 0 \end{aligned}$$

можно ли использовать симплекс-метод?

1. все элементы справа больше нуля.

2. нужен начальный базис. количество базисных переменных равно количеству ограничений. надо, чтобы они образовывали единичную матрицу. можно менять переменные местами. (грубо говоря, x_4 это теперь x_1 , а x_1 это x_4 .) в конкретном примере можно построить матрицу по переменным x_4 и x_2 .

рисуем таблицу.

базис	бдр	x_1	x_2	x_3	x_4
3 x_4	4	1	0	2	1
$2 x_2$	14	4	1	6	0

$$egin{aligned} 1 \cdot 0 + 0 \cdot x_2 + 2 \cdot 0 + 1 \cdot x_4 &= 4 \ 4 \cdot 0 + 1 \cdot x_2 + 6 \cdot 0 + 0 \cdot x_4 &= 14 \end{aligned}$$
 $egin{aligned} 0 \cdot x_2 + 1 \cdot x_4 &= 4 \Rightarrow x_4 &= 4 \ 1 \cdot x - 2 + 0 \cdot x_4 &= 14 \Rightarrow x_2 &= 14 \end{aligned}$

z

теперь столбец x_3 ведущий. S=3 анализируем ведущий столбец: если все элементы ≤ 0 , то задача не решаема. это не так, поэтому считаем отношения бдр к коэффициентам в ведущем столбце.

базис	бдр	x_1	x_2	x_3	x_4	
3 x_4	4	1	0	2	1	$\frac{4}{2}$
$2 x_2$	14	4	1	6	0	$\frac{14}{6}$
z	40	10	0	18	0	

строка с наименьшим отношением становится ведущий. элемент на пересечении ведущей строки и ведущего столбца - опорный.

1	2	0	3	
-				

базис	бдр	x_1	x_2	x_3	x_4	
$0\;x_3$	2	0.5	0	1	0.5	$\frac{2}{0.5}$
2 x_2	2**	1	1	0	-3	$\frac{2}{1}$
z	4	1	0	0	-9	

**
$$\frac{14 \cdot 2 - 4 \cdot 6}{2}$$

_	_	_	_
1	2	0	3

базис	бдр	x_1	x_2	x_3	x_4
x_3	1	0	-0.5	1	2

базис	бдр	x_1	x_2	x_3	x_4
x_1	2	1	1	0	-3
z	2	0	-1	0	-6

текущее решение является оптимальным:

$$x_1=2$$

$$x_2 = 0$$

$$x_3=1$$

$$x_4 = 0$$

$$z^* = 2$$