Rank-65839 over GF(2)

January 15, 2021

The equation

The equation of the surface is :

$$X_2^3 + X_3^3 + X_0^2 X_2 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65839

General information

Number of lines	1
Number of points	7
Number of singular points	0
Number of Eckardt points	0
Number of double points	0
Number of single points	3
Number of points off lines	4
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3
Type of lines on points	$1^3, 0^4$

Singular Points

The surface has 0 singular points:

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

Rank of lines: (0)

Rank of points on Klein quadric: (0)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 3 single points:

The single points on the surface are:

0 : $P_0 = (1,0,0,0)$ lies on line ℓ_0

 $1: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0

The single points on the surface are:

2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

Points on surface but on no line

The surface has 4 points not on any line:

The points on the surface but not on lines are:

 $0: P_6 = (1,0,1,0)$

 $1: P_7 = (0, 1, 1, 0)$

 $2: P_8 = (1, 1, 1, 0)$

 $3: P_{12} = (0, 0, 1, 1)$

Line Intersection Graph

 $\frac{0}{0}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line in point

2

The surface has 7 points:

The points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$

 $3: P_6 = (1,0,1,0)$

 $6: P_{12} = (0, 0, 1, 1)$

 $1: P_1 = (0, 1, 0, 0)$

 $4: P_7 = (0, 1, 1, 0)$

 $2: P_5 = (1, 1, 0, 0)$

 $5: P_8 = (1, 1, 1, 0)$