Unit 7: Security

7.2. Windows Security Components and Concepts

Roadmap for Section 7.2.

- Windows Security Features
- Components of the Security System
- Windows Logon
- Kerberos Protocol Principles / Active Directory

Windows Security Mechanisms

- Permissions can be applied to all shareable resources
 - Including the NTFS file system
 - ...but not the FAT file system
- Encrypted File System protects data while OS is offline
 - Un-authorized physical access
- Native support for Kerberos authentication
- Public Key infrastructure to pass digital certificates
- IP Security to protect sensitive data traveling across the wire
- Crypto-APIs built into Windows
 - Hashing and encryption

The three hearts of Windows Security

- Local Security Authority (LSA) as a local usermode process
 - Heart of user authentication on local machine
- LSA on domain controller
 - Heart of user authentication on networked machines
- Security Reference Monitor as a component from executive (i.e. kernel-mode component)
 - Heart of object access protection

Security Components

- Local Security Authority
 - User-mode process (\Windows\System32\Lsass.exe) that implements policies (e.g. password, logon), authentication, and sending audit records to the security event log
 - LSASS policy database: registry key HKLM\SECURITY

LSASS Components

SAM Service

- A set of subroutines (\Windows\System32\Samsrv.dll) responsible for managing the database that contains the usernames and groups defined on the local machine
- SAM database: A database that contains the defined local users and groups, along with their passwords and other attributes. This database is stored in the registry under HKLM\SAM.
- Password crackers attack the local user account password hashes stored in the SAM
- Lab: look at SAM service
 - Open Lsass.exe process properties click on services tab
 - Click Find DLL search for Samsrv.dll

LSASS Components

Active Directory

- A directory service that contains a database that stores information about objects in a domain
- A domain is a collection of computers and their associated security groups that are managed as a single entity
- The Active Directory server, implemented as a service, \Windows\System32\Ntdsa.dll, that runs in the Lsass process

Authentication packages

- DLLs that run in the context of the Lsass process and that implement Windows authentication policy:
 - LanMan: \Windows\System32\Msvc1_0.dll
 - Kerberos: \Windows\System32\Kerberos.dll
 - Negotiate: uses LanMan or Kerberos, depending on which is most appropriate

LSASS Components

- Net Logon service (Netlogon)
 - A Windows service (\Windows\System32\Netlogon.dll) that runs inside Lsass and responds to Microsoft LAN Manager 2 Windows NT (pre-Windows 2000) network logon requests
 - Authentication is handled as local logons are, by sending them to Lsass for verification
 - Netlogon also has a locator service built into it for locating domain controllers

Security Components

- Logon process (Winlogon)
 - A user-mode process running \Windows\System32\Winlogon.exe that is responsible for responding to the SAS (i.e. Ctrl+Alt+Del sequence) and for managing interactive logon sessions
- Graphical Identification and Authentication (GINA)
 - A user-mode DLL that runs in the Winlogon process and that Winlogon uses to obtain a user's name and password or smart card PIN
 - Default is \Windows\System32\Msgina.dll

Security Reference Monitor

- Performs object access checks, manipulates privileges, and generates audit messages
- Group of functions in Ntoskrnl.exe
 - Some documented in DDK
 - Exposed to user mode by Windows API calls
- Lab: Open Ntoskrnl.exe with Dependency Walker and view functions starting with "Se"

Communication between SRM and LSA

- Communication via local procedure call (LPC)
 - SeLsaCommandPort/SeRmCommand port for initialization
 - Usage of private ports/shared memory when initialization is completed.

What Makes Logon Secure?

- Before anyone logs on, the visible desktop is Winlogon's
- Winlogon registers CTRL+ALT+DEL, the Secure Attention Sequence (SAS), as a standard hotkey sequence
- SAS takes you to the Winlogon desktop
- No application can deregister it because only the thread that registers a hotkey can deregister it
- When Windows' keyboard input processing code sees SAS it disables keyboard hooks so that no one can intercept it

Logon

- After getting security identification (account name, password), the GINA sends it to the Local Security Authority SubSystem (LSASS)
- LSASS calls an authentication package to verify the logon
 - If the logon is local or to a legacy domain, MSV1_0 is the authenticator. User name and password are encrypted and compared against the Security Accounts Manager (SAM) database
 - If the logon is to a AD domain the authenticator is Kerberos, which communicates with the AD service on a domain controller
- If there is a match, the SIDs of the corresponding user account and its groups are retrieved
- Finally, LSASS retrieves account privileges from the Security database or from AD

Logon

- LSASS creates a token for your logon session and Winlogon attaches it to the first process of your session
 - Tokens are created with the NtCreateToken API
 - Every process gets a <u>copy</u> of its parent's token
- SIDs and privileges cannot be added to a token
- A logon session is active as long as there is at least one token associated with the session
- Lab
 - Run "LogonSessions –p" (from Sysinternals) to view the active logon sessions on your system

Local Logon

Remote Logon - Active Directory

If the logon is for a domain account, the encrypted credentials are sent to LSASS on the domain controller:

Kerberos Authentication

- Single account store in Active Directory
- Integrated Kerberos v5 logon
- Protected store for public key credentials

Industry standard network security protocols

(SSL - Secure Socket Layer, TLS - Transport Layer Security)

Cross-platform Strategy

Common Kerberos domain

(SSPI - Security Service Provider Interface, GSS - Global Security Service)

Kerberos Authentication Service

- Developed as part of MIT project Athena
- Kerberos implements an authentication procedure which verifies identity of communication partners
 - DES algorithm, symmetric key encryption
 - Authentication server (Kerberos Server)
 - TGS (Ticket Granting Service)
 - Client proves his identity by presenting an encrypted, servicespecific ticket (T_{c,s}) when issuing a request
- Kerberos server and Ticket Granting Service (TGS) are assumed to be secure (trusted hosts)

Kerberos principles

- Kerberos requires three main steps:
 - 1. Client identifies himself against Kerberos Server (Active Directory), it receives a master ticket the Ticket Granting Ticket (TGT)
 - 2. Client requests service-specific tickets and proves his identity with the TGT
 - 3. Client uses service-specific ticket to contact server
- Authentication is transparent from user's point of view
 - Windows login program acquires TGT
 - (Client) Applications transparently acquire service-specific tickets
 - TGS-issued tickets and TGT have a default lifetime of eight hours

Kerberos principles (contd.)

- 1. Client \rightarrow KDC: c, tgs, n
- 2. KDC \rightarrow Client: $\{K_{c,tgs},n\}K_c, \{T_{c,tgs}\}K_{tgs}$
- 3. Client \rightarrow TGS: $\{A_c\}K_{c,tgs}$, $\{T_{c,tgs}\}K_{tgs}$, s, n
- 4. TGS \rightarrow Client: $\{K_{c,s}, n\}K_{c,tgs}$, $\{T_{c,s}\}K_{s}$
- 5. Client \rightarrow Server: $\{A_c\}K_{c,s}$, $\{T_{c,s}\}K_s$

```
K_{c:} client's secret key K_{c,tgs:} key for communication between client and TGS \{T_{c,tgs}\}K_{tgs:} encrypted ticket for TGS K_{c,s:} key for client/service communication \{T_{c,s}\}K_{s:} encrypted ticket for service A_{c:} authentication info
```

Tickets and Authentication info

- Kerberos tickets contain the following data:
 - User name
 - Address of workstation
 - Time stamp
 - Lifetime of the ticket
 - Address of the host running the requested service
 - Session key for client/server communication
- Tickets are encrypted with the server's private key (K_s)
- Authentication info (A_c) contains the following data:
 - User name
 - Address of workstation
 - Time stamp
- Authentication info is encrypted with the session key K_{c,s}

Kerberos Version 5 - Windows

- Multiple supported encryption algorithms through Crypto-API foundation
- Keys carry info about encryption algorithm used
 - Can be re-used for different encryption algorithms
- Network addresses may have arbitrary formats
 - Server may specify all supported protocols/addresses in ticket
- Network data format and encryption are standardized
 - ASN.1 format (ISO 8824), no special format for multi-byte data
 - Encryption based on (ISO 8825)
- Tickets contain plaintext section
 - Server may support multiple personalities, actual role is chosen on plaintext info
- Tickets carry starting time and expiration time

Ticket Characteristics

- KDC returns special tickets on initial ticket exchange
 - Password can only changed with those special tickets
- Renewable tickets may carry two expiration dates
 - Only valid after first but before second date
- Tickets may be postdated
 - Interesting for batch processing
- Authorization data field
 - KDC copies authorization info from TGT into every newly generated ticket
 - Windows Kerberos supports public/private key for initial authentication (to obtain TGT via user-supplied private key)

Further Reading

- Pavel Yosifovich, Alex Ionescu, et al., "Windows Internals", 7th Edition, Microsoft Press, 2017.
 - Chapter 6 Security (from pp. 837)
 - Security system components (from pp. 840)
 - Logon (from pp. 983)
- John T.Kohl, B.Clifford Neumann, Theodore Y.Ts'o, The Evolution of the Kerberos Authentication Service, Proceedings of Spring 1991 EurOpen Conference, Tromsø, Norway.
- The Open Software Foundation, Introduction to DCE, Prentice-Hall, 1992.
- The Open Software Foundation, DCE User'sGuide and Reference, Prentice-Hall, 1992.