Quantum interference channels

Ivan Savov McGill University

ECSE 612 Multiuser communications

April 16 2010

Overview

- Definitions
- Best bounds on the classical Interference Channel
- Intro to Quantum Information Theory
- Quantum MAC
- Quantum Interference Channel

Definitions

Definition (Interference network)

A two party interference network $(\mathcal{X}_1 \otimes \mathcal{X}_2, p(y_1, y_2 | x_1, x_2), \mathcal{Y}_1 \otimes \mathcal{Y}_2)$ is general model for communication networks with two inputs, two outputs and a probability transistion matrix $p(y_1, y_2 | x_1, x_2)$.

Definition (Interference channel)

A two party interference channel is a particular use of an interference network $(\mathcal{X}_1 \otimes \mathcal{X}_2, p(y_1, y_2 | x_1, x_2), \mathcal{Y}_1 \otimes \mathcal{Y}_2)$ where messages M_1, M_2 are independently encoded into a codewords X_1, X_2 at rates (R_1, R_2) with Y_1, Y_2 being the intended receiver.

Han Kobayashi / Cheng Motani Garg inner bound

$$G_{HK} = G_{CMG} = \bigcup_{p(x_1|u_1)p(x_2|u_2)p(u_1)p(u_2)} \{ (R_1, R_2) | \text{ Eqn. (1) } \}$$

$$R_1 \leq I(X_1; Y_1|U_2Q)$$

$$R_2 \leq I(X_2; Y_2|U_1Q)$$

$$R_1 + R_2 \leq I(X_1U_2; Y_1|Q) + I(X_2; Y_2|U_1U_2Q)$$

$$R_1 + R_2 \leq I(X_1; Y_1|U_1U_2Q) + I(X_2U_1; Y_2|Q)$$

$$R_1 + R_2 \leq I(X_1U_2; Y_1|U_1Q) + I(X_2U_1; Y_2|U_2Q)$$

$$2R_1 + R_2 \leq I(X_1U_2; Y_1|Q) + I(X_1; Y_1|U_1U_2Q) + I(X_2U_1; Y_2|U_2Q)$$

$$2R_1 + R_2 \leq I(X_2; Y_2|U_1U_2Q) + I(X_2U_1; Y_2|Q) + I(X_1U_2; Y_1|U_1Q)$$

First outer bound

$$G_{Naive} \triangleq \text{conv} \cup_{p(x_1)p(x_2)} \{ (R_1, R_2) | \text{ Eqn. (3)} \}$$
 (2)

$$R_1 \le I(X_1; Y_2 | X_2)$$
 $R_2 \le I(X_2; Y_2 | X_1)$ (3)

Sato outer bound

$$G_{Sato} \triangleq \text{conv} \cup_{p(x_1)p(x_2)} \{ (R_1, R_2) | \text{ Eqn. (5)} \}$$
 (4)

$$R_{1} \leq I(X_{1}; Y_{2}|X_{2})$$

$$R_{2} \leq I(X_{2}; Y_{2}|X_{1})$$

$$R_{1} + R_{2} \leq I(X_{1}X_{2}; Y_{1}Y_{2})$$
(5)

Best outer bound

Consider the two random variables Z_1, Z_2 such that

 Y_1 is a degraded version of Z_1

$$Y_2$$
 is a degraded version of Z_2
 Y_2 is a degraded version of (X_1, Z_1)
 Y_1 is a degraded version of (X_2, Z_2)

$$G_{Carl} \triangleq \operatorname{conv} \cup_{p(x_1)p(x_2)} \{(R_1, R_2) | \text{ Eqn. (7) } \}$$

$$R_1 \leq I(X_1; Y_1 | X_2)$$

$$R_2 \leq I(X_2; Y_2 | X_1)$$

$$(7)$$

Ivan Savov () IC & quantum April 16 2010 7 / 28

 $R_1 + R_2 < \min\{I(X_1X_2; Z_1), I(X_1X_2; Z_2)\}$

Quantum mechanics

Popular view

In films and books by self-proclaimed life coaches:

- quantum mechanics is magic!
- stuff happens because you think about it ...

Science view

• quantum mechanics is linear algebra and probability

Science view

- quantum mechanics is linear algebra and probability
- replace bits⁰¹ with qubits
- ullet qubits live in a two dimensional complex vector space \mathcal{H} :

$$|x\rangle = \alpha|0\rangle + \beta|1\rangle \qquad \alpha, \beta \in \mathbb{C}$$
 (8)

- don't be fooled by the $|.\rangle$ notation... $|\psi\rangle\equiv \vec{\psi}$ it is just a neat notational trick for dot products...
- Good for systems with finite degrees of freedom like electron spin, and light polarization
- Another representation exists for continuous systems via wave function

- A quantum source mixture of qubits $\{p(x), |\sigma_x\rangle\}$, where state $|\sigma_x\rangle$ is produced by the source with probability p(x).
- We represent it as a density matrix

$$\rho = \sum_{x} p(x) |\sigma_x\rangle \langle \sigma_x| \tag{9}$$

- Models both classical uncertainty p(x) (which quantum state did the source produce?)
- and quantum uncertainty (given that the sate produced was $|x\rangle$ the probability of finding $|0\rangle$ if measure is $|\alpha|^2$)

Examples

• Pure quantum state $|x\rangle = \alpha |0\rangle + \beta |1\rangle$ has a density matrix

$$\rho_x = |x\rangle\langle x| = \begin{bmatrix} |\alpha|^2 & \beta^*\alpha \\ \alpha^*\beta & |\beta|^2 \end{bmatrix}.$$
 (10)

• Specific example $|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ becomes

$$\rho_+ = \left[\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right].$$

• A mixed state $\rho=\{p(x),|\sigma_x\rangle\}$ with $p(0)=\frac{1}{4},|\sigma_0\rangle=|0\rangle$ and $p(1)=\frac{3}{4},|\sigma_1\rangle=|1\rangle$ gives a density matrix:

$$\rho = \frac{1}{4} |0\rangle\langle 0| + \frac{3}{4} |1\rangle\langle 1| = \frac{1}{4} \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + \frac{3}{4} \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} \frac{1}{4} & 0 \\ 0 & \frac{3}{4} \end{array} \right].$$

Density matrices are positive and have unit trace

Quantum channel

• A quantum channel $\mathcal{N}: \mathcal{H}^A \to \mathcal{H}^B$ takes states to states

$$\mathcal{N}(\sigma^A) = \rho^B \tag{11}$$

- Completely positive, trace preserving (CPTP) map
- Analogue of cond. probability of a classical channel p(y|x)

April 16 2010 Ivan Savov () IC & quantum 13 / 28

Quantum channel

Encoding

We can use a quantum channel to send either classical or quantum data.

For classical data, the encoding operation will be $\mathcal{E} \colon \mathcal{X} \to \mathcal{H}^A$,

$$\mathcal{E}(x) = |\sigma_x\rangle^A \tag{12}$$

where $|\sigma\rangle_x$ is some predetermined set of "signal states" that will be send over the channel.

To encode some quantum data ρ we can do any quantum operation $\mathcal{E} \colon \mathcal{H}^S \to \mathcal{H}^A$,

$$\mathcal{E}(\rho^S) = \sigma^A. \tag{13}$$

Ivan Savov () IC & quantum April 16 2010 15 / 28

Decoding classical data

We want to extract the classical message from the received quantum state.

Measurements act on density matrices to produce a classical output as well as a possibly modified quantum state. Measurements are sets of projection operators $\{M_i\}$.

The probability of outcome m occurring when the input system is ρ is

$$p(m) = \operatorname{Tr}(M_m^{\dagger} \rho M_m)$$
.

Our example from earlier

$$\Pr\{\text{measure } x=0\} = \operatorname{Tr}\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} |\alpha|^2 & \beta^*\alpha \\ \alpha^*\beta & |\beta|^2 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]\right) = |\alpha|^2$$

Decoding quantum data

In the error criterion for classical information theory protocols is of the form $P_e=Pr\{M_1\neq \hat{M}_1\}$. We need an analogous criterion for quantum protocols.

The fidelity between two pure quantum states is the square of their inner product

$$F(|\varphi\rangle, |\psi\rangle) = |\langle \varphi | \psi \rangle|^2$$
 (14)

Two states that are very similar have fidelity close to 1. Success criterion is

$$F(|M\rangle, |\hat{M}\rangle) \ge 1 - \epsilon.$$
 (15)

Quantum information theory

Quantum information theory

- Came from classical information theory
- Replace Shannon entropy with von Neumann entropy

Definition (von Neumann Entropy)

A quantum system described by the density matrix ρ has von Neumann entropy $S(\rho)$ given by the expression:

$$S(\rho) = -\text{Tr}(\rho \log \rho) \tag{16}$$

from classical import mutual_information,
 Fano_inequality, random_coding,
 channel_capacity, compression, etc..

Classical capacity of quantum channel

Holevo, Schumacher and Westmoreland found a multiletter formula for the classical capacity [H98,SW97].

Theorem

The classical capacity of a quantum channel $\mathcal N$ is given by $\mathcal C(\mathcal N)=\frac{1}{n}\cup_{n=1}^\infty C^{(1)}(\mathcal N^{\otimes n})$ where

$$C^{(1)}(\mathcal{N}) = \max_{\rho} I(A; B) \tag{17}$$

where ρ is the output state

$$\rho = \sum_{x} p(x)|x\rangle\langle x|_A \otimes \mathcal{N}(\sigma_x)_B.$$
 (18)

and $\{p(x), \sigma_x\}$ is the input distribution.

Limitations of these results

Not single letter ...

Quantum multiple access channel

Definition

The quantum multiple access channel (QMAC) is a map

$$\mathcal{M}^{A'B'\to C} \tag{19}$$

where systems A' and B' are the inputs and C is the output.

Three different capacities

- \bullet C: classical info
- Q: quantum info
- C_E or Q_E : with additional resource *entanglement*

Classical capacity of QMAC

Theorem (Winter 01)

The capacity of the quantum MAC \mathcal{M} to carry classical information is $\mathcal{C}_{QMAC}(\mathcal{M}) = \frac{1}{n} \cup_{n=1}^{\infty} \mathcal{C}_{QMAC}^{(1)}(\mathcal{M}^{\otimes n})$ where

$$C_{QMAC}^{(1)} = \text{conv} \cup_{p(x_1)p(x_2)\sigma_x} \{ (R_1, R_2) | \text{ Eqn. (21)} \}$$
 (20)

$$R_1 \leq I(A; C|B)_{\theta},$$

$$R_2 \leq I(B; C|A)_{\theta},$$

$$R_1 + R_2 \leq I(AB; C)_{\theta},$$
(21)

where mutual informations are calculated with respect to

$$\theta = \sum p(x_1)p(x_2)|x_1\rangle\langle x_1|_A \otimes |x_2\rangle\langle x_2|_B \otimes \mathcal{M}(\sigma_{x_1} \otimes \sigma_{x_2})_C.$$
 (22)

Quantum interference channel

Definition

The quantum interference channel is a map

$$\mathcal{N}^{A_1'A_2' \to B_1 B_2} \tag{23}$$

Open problem.

can adapt some of the classical results...

Entanglement assisted

thanks for your attention!

Physicist's view

Very similar to what we learn in signals and systems

Physicist's view

- Very similar to what we learn in signals and systems
- A quantum state (signal) is represented by a wavefunction

$$\psi \colon \mathbb{R}^3 \to \mathbb{C} \tag{24}$$

• The wave function of Hydrogen's ground state (n=1 ℓ =0)

$$\psi(r, \vartheta, \varphi) = \sqrt{\frac{1}{\pi a^3}} \exp\left(\frac{-r}{a}\right),$$
 (25)

in the *position* basis. Apply Fourier transform to get the *momentum* basis

Physicist's view (continued)

The power of the signal is a probability density

$$\Pr\{\text{finding electron at } \vec{r}\} = |\psi(\vec{r})|^2$$
 (26)

Verify that it is well normalized

$$P_{total} = \iiint |\psi(\vec{r})|^2 d^3 \vec{r}$$

$$= \int_0^\infty \int_0^{2\pi} \int_0^\pi |\psi(r, \vartheta, \varphi)|^2 r^2 \sin \varphi d\varphi d\vartheta dr$$

$$= \int_0^\infty \frac{4}{a^3} \exp\left(\frac{2r}{a}\right) r^2 dr = 1$$
(27)