MeshWalker: Deep Mesh Understanding by Random Walks

Authors: Alon Lahav, Ayellet Tal

Technion

SIGGRAPH ASIA 2020

Presented by: Itay Levy

Goals

Finding a mesh representation for DL

► Utilizing it for mesh analysis tasks

Tasks

Shape classification

Classify a mesh it into one of pre-defined classes

Semantic Segmentation

Determine for every vertex, the segment it belongs to

Benefits of working with meshes

Most popular representation of 3D shapes in computer graphics

Adaptive

Notion of neighborhoods and connectivity

Applying DL to meshes is hard!

Unordered data

```
12 v 0.513448 -0.044450 -0.056321
v -0.811377 0.265665 -0.022433
v -0.802689 0.314672 -0.061038
v 0.336913 -0.373204 -0.169275
16
17 f 146 142 174
18 f 105 95 114
19 f 121 114 126
20 f 126 134 121
21 f 168 162 185
22 f 76 84 104
23 f 174 161 167
```

Example of .obj file

Applying DL to meshes is hard!

Unordered data

- ► Irregularity & non-uniformity
 - ► Each vertex has a different number of neighbors, at different distances

- Small datasets
 - ► Hard to obtain clean data

Other Approaches

(Almost) all use CNN

Transforming the input

- ► Multi-view 2D projections [Su et al. 2015]
- ► Voxel grid [Maturana and Sherer 2015]

Or

Redefining the basic operations (convolution & pooling)

- FeaStNet [Verma et al. 2018]
- ► MeshCNN [Hanocka et al. 2019]

MeshWalker - Key Ideas

Random walks on the mesh's surface

- Explore the mesh's local and global geometry
- ► Impose regularity on the mesh
- ► Root cause for data efficiency

Feeding the walk to RNN

Methods

What is a walk?

Walk Generation

- ► Get random starting point
- ► Iteratively adding vertices
 - ▶ next vertex ← randomly chosen from the unvisited adjacent vertices
 - ► If none exist, go back
 - ▶ If stuck, jump to a new random vertex

What is a walk?

Walk Generation

- ► Get random starting point
- ► Iteratively adding vertices
 - ▶ next vertex ← randomly chosen from the unvisited adjacent vertices
 - ▶ If none exist, go back
 - ▶ If stuck, jump to a new random vertex

Walk representation

▶ 3D translation

Recurrent Neural Network (RNN)

"Remember" and accumulate knowledge over the entire walk

RNNs are not confined to fixed-length inputs

Architecture

Prediction

- Each walk produces a vector of probabilities to belong to the different classes
 - ► Easily parallelable!
- ► These vectors are averaged to produce the final result

Handling symmetries

Inherent Invariance

- ► Vertex Ordering choosing starting point at random
- ► Translation walk representation
- ► Different Triangulations random walks vary greatly anyhow

Handling symmetries

Inherent Invariance

- ► Vertex Ordering choosing starting point at random
- ► Translation walk representation
- ▶ Different Triangulations random walks vary greatly anyhow

Remedies

- Rotation data augmentation
 Adding diversity by rotating the models
- Scaling normalization to unit-sphere
- ► Mesh Resolution mesh simplification as pre-processing

More details

Softmax Cross Entropy Loss

- ► Classification
 - only the last step of the walk
- Segmentation
 - ► Each step, starting from the second half of the walk

Accuracy

- ► Edge based segmentation
 - ▶ the node label with the higher prediction is chosen

Results

Classification

Table 1. Classification on SHREC11 [Lian et al. 2011]. Split-16 and Split-10 are the number of training models per class (out of 20 models in the class). In both cases our method achieves state-of-the-art results, yet it is most advantageous for a small training dataset (Split-10). (We have not found point cloud-based networks that were tested on SHREC11).

Method	Input	Split-16	Split-10
MeshWalker (ours)	Mesh	98.6%	97.1%
MeshCNN [Hanocka et al. 2019]	Mesh	98.6%	91.0%
GWCNN [Ezuz et al. 2017]	Mesh	96.6%	90.3%
SG [Bronstein et al. 2011]	Mesh	70.8%	62.6%

Table 2. Classification on Cube Engraving [Hanocka et al. 2019]. Our results outperform those of state-of-the-art algorithms.

Method	Input	accuracy
MeshWalker (ours)	Mesh	98.6%
MeshCNN [Hanocka et al. 2019]	Mesh	92.16%
PointNet++ [Qi et al. 2017b]	Point cloud	64.26%

Semantic Segmentation

Table 4. **Human-body segmentation results on [Maron et al. 2017].** The accuracy is calculated on edges of the simplified meshes.

Method	Edge Accuracy	
MeshWalker	94.8%	
MeshCNN	92.3%	

Results stability

Number of walks	Standard deviation
1	2.5%
32	0.4%

Ablations

Effect of walks amount & length

Data-efficiency

Human body segmentation performance

#Training	MeshWalker	MeshCNN
381 (Full)	94.8%	92.3%
16	92.0%	55.7%
4	84.3%	48.3%
2	80.8%	42.4%

T-SNE of internal layers

Colored by human-body segmentation labels

Limitations & Derivative Works

Limitations

Many iterations till convergence

▶ 500K - Much more than MeshCNN

Limitations

Many iterations till convergence

▶ 500K - Much more than MeshCNN

Handling large meshes

▶ long walks → time and memory issues

Walk generation heuristic is quite simplistic

▶ Decide where to go based on all the information gathered so far

Bad generalization to higher resolution meshes at test time

▶ Despite RNN's length extrapolation ability

Derivative Works

- AttWalk
 - ▶ [Ben Izhak et al. 2021]
 - Attention instead of simple averaging

- ► CloudWalker
 - ► [Mesika et al. 2021]

Conclusion

Main benefits

Simplicity

Works well for extremely small datasets

► We can produce many random walks for each mesh

Can handle "dirty" triangular meshes

Mesh need not be watertight or have a single connected component

Conclusion

► Random walks are used to represent the mesh

Accumulating walk knowledge using RNN

Data-efficient and parallelizable framework for mesh analysis