

Pedestrian tracking

VUT FIT POVa

Task Inspiration

- Marauder's Map from Harry Potter
 - Magic parchment that reveals the current location of anyone on Hogwarts grounds

http://harrypotter.wikia.com/wiki/Marauder%27s Map

Task definition

- 1. Multiple people walking in a scene
- 2. Multiple stationary cameras
 - ✓ Initial calibration
- 3. Individual path tracking

Front camera

Side camera

Front camera

Image Provider

Side camera

Human Detection in 2D

- OpenPose deep neural network
- Pretrained model with COCO dataset

Multi-person key point detection

Person View Matching

Similar torso histograms → same person

Side person views

Front person views

Person View Matching

Similar torso histograms → same person

PersonTimeFrame A

PersonTimeFrame B

PersonTimeFrame C

Triangulation

Average person's torso → distance from camera

$$y = 3 \text{ m}$$

$$y = 6 \text{ m}$$

Triangulation

Average person's torso → distance from camera

y = 3 m

y = 6 m

Triangulation

Intersection of distance planes \rightarrow person's position

Person 1

Person 1

Person 1

Person 2

Visualisation

- Paths of all tracked people, positions of cameras
- Interactive 3D model

Testing Data

- Own images and videos
- COCO dataset for OpenPose

Human Detection Time

^{*} GPU binary start-up time: $2.1 \mathrm{\ s}$, CPU binary start-up time: $3.4 \mathrm{\ s}$.

Human Detection Time

^{*} GPU binary start-up time: $2.1~\mathrm{s},$ CPU binary start-up time: $3.4~\mathrm{s}.$

Image preprocessing → stable matcher and tracker

Front original

Image preprocessing \rightarrow stable matcher and tracker

 $Front\ preprocessed$

- Matching torso (t-shirt) based
- Triangulation
 worst case less than 35 cm
 error in 600 cm space.
- Tracking similarity threshold

Pedestrian tracking

Thank you for your attention.

Speeded up for illustration.