

Example: the At behal speed will blood flow him tushelad in artery with
$$r = 2 \text{ mm}^2$$
 $p = 1060 \text{ kg/m}^3$, $p = 2.08 \times 10^{-3} \text{ Re. A}$
 $N_R = 3000 = 2 \text{ pr. V} - V = \frac{N_R m}{2 \text{ pr. }}$
 $V = \frac{(3000)(2.08 \times 10^{-3} \text{ Re. A})}{2(1060 \text{ kg/m}^3)(0.002 \text{ m})} = 3.0 \text{ m/s}$

Typical blood flow speed in pulmonary artery is 1.3 m/s

4 General expression $N_R = \text{gv.L}$ $2r = \text{L}$ for tube

L is any characteristic length scale

Example: Taccoma Mt Narrows bridge:

At what speed will a cable (21' clienter) cause furbulence?

 $N_R = \text{fv.L}$ $V = \frac{N_R m}{\text{gl.}} = \frac{(3000)(10^{-3} \text{ Re. s})}{(1.29 \text{ kg/m}^3)(21 \text{ inch})}$
 $V = \text{fm/s}$, $V = \text{mph}$

for O2 in H2O: 1.0 × 10⁻⁹ m².) smaller (6H12O6) in H2O: 0.7 × 10⁻⁹ m²) smaller molecule hemoglobri in H2O: 0.07 × 10⁻⁹ m²

DNA in H2O: 0.0013 × 10⁻⁹ m² Breathing cycle: how far will Or diffuser in 1/20 for I second breathing cycle? Red blood cell: $t = \frac{2c_{RMS}}{2D_{hemoglobin}} = 0.5s$ Amoeba : $t = \frac{2c_{RMS}}{2D_{Qin}H_{20}} = \frac{(500 \times 10^{-6} \text{m})^2}{2(1.0 \times 10^{-9} \text{m})} = 100\text{A}$ Short distances are ruled by diffusion
Longer distance require an active transport mechanism

— pumps, molecular motors, ATP flagella