■ TABLE 8.2 Loss Coefficients for Pipe Components $\left(h_L = K_L \frac{V^2}{2g}\right)$ (Data from Refs. 5, 10, 27)

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	V
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	
b. 180° return bends		V
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	101
Line flow, threaded	0.9	
Branch flow, flanged	1.0	
Branch flow, threaded	2.0	
Branch flow, threated	2.0	
d. Union, threaded	0.08	ν
*e. Valves		\rightarrow
Globe, fully open	10	
Angle, fully open	2	- 11
Gate, fully open	0.15	V
Gate, $\frac{1}{4}$ closed	0.26	
Gate, $\frac{1}{2}$ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	V
Swing check, forward flow	2	V
Swing check, backward flow	∞	
Ball valve, fully open	0.05	
Ball valve, $\frac{1}{3}$ closed	5.5	
Ball valve, $\frac{2}{3}$ closed	210	

^{*}See Fig. 8.32 for typical valve geometry.