Билет 1

1 Теорема единственности решения задачи Коши для уравнения теплопроводности.

Постановка задачи. $u_t = a^2 u_{xx} + f(x,t), (x,t) \in q$, (1) где $q = \{(x,t) : x \in R^1, t > 0\}, \overline{q} = \{(x,t) : x \in R^1, t \geq 0\}$ $u(x,0) = \varphi(x), x \in R^1$, (2) где $f(x,t), \varphi(x)$ непрерывны

Определение. Классическим решением задачи (1)-(2) называется функция u(x,t), определенная и непрерывная вместе с производными u_t и a^2u_{xx} в q, удовлетворяющая (1) в q, непрерывная в \overline{q} и удовлетворяющая условию (2).

Теорема единственности. Задача (1)-(2) может иметь только одно классическое решение, ограниченное в области \overline{q} .

Доказательство. Пусть \exists два ограниченных решения

 $u_i(x,t), i=1,2$, которые удовлетворяют (1)-(2). Введем функцию $v(x,t)=u_1(x,t)-u_2(x,t)$. В силу линейности задачи функция v(x,t) будет удовлетворять однородной задаче Коши:

$$v_t = a^2 v_{xx}, (x, t) \in q,$$
 (3)
 $v(x, 0) = 0, x \in R^1$ (4)

Условие ограниченности для функций $u_1(x,t)$ и $u_2(x,t)$ дает условие ограниченности для функции v(x,t): $|v(x,t)|=|u_1(x,t)-u_2(x,t)|\leq |u_1(x,t)|+|u_2(x,t)|\leq 2M$, где $|u_i(x,t)|\leq M,i=1,2$. Таким образом, v(x,t) - решение задачи (3)-(4) и ограничена в области \overline{q} . Покажем, что $v(x,t)\equiv 0, (x,t)\in q$. Выберем в полуплоскости q линии |x|=L и t=T и будем рассматривать ограниченную область q_L : $q_L=[-L,L]\times (0,T], \overline{q_L}=[-L,L]\times [0,T]$. Введем функцию $w(x,t)=\frac{4M}{L^2}(\frac{x^2}{2}+a^2t)$. Она удовлетворяет $w_t=a^2w_{xx}$. При t=0: $w(x,0)=\frac{2Mx^2}{L^2}\geq |v(x,0)|=0$. При $|x|=L:w(\pm L,t)=2M+\frac{4Ma^2t}{L^2}\geq 2M\geq |v(\pm L,t)|$. Так как q_L ограничена, v(x,t),w(x,t) удовлетворяют (1) и на границе $|v(x,0)|\leq v(x,0),|w(x,0)|\leq w(x,0)$, то к можно применить следствие из принципа максимума: $|v(x,t)|\leq w(x,t), (x,t)\in \overline{q_L}$, или $-\frac{4M}{L^2}(\frac{x^2}{2}+a^2t)\leq v(x,t)\leq \frac{4M}{L^2}(\frac{x^2}{2}+a^2t)$. Зафиксируем точку $(x,t)\in \overline{q_L}$ и перейдем к пределу: $\lim_{L\to\infty}v(x,t)=0$. В силу независимости от L и выбора точки, то в $\overline{q_L}$ $v(x,t)\equiv 0$. Значит, $u_1(x,t)\equiv u_2(x,t)$.

2 Интеграл энергии для уравнения колебаний.

Рассмотрим уравнение колебания $v_{tt} = a^2 v_{xx}, 0 < x < l, 0 < t < T, v(x,t) \in C^2\{[0;l] \times [0;T]\}$ с нулевыми начальными и граничными условиями. Функция $E(t) = \int\limits_0^l [(v_t(x,t))^2 + a^2(v_x(x,t))^2] dx$ называется **интегралом энергии**. В физической интерпретации с точностью до константы это полная энергия колебания.