Venti

Presented By 陈子旸

Outline Abstract

Vent

venti

Data
Organization[Organization]

Application Example

Venti: a new approach to archival storage¹

Presented By: 陈子旸

Fudan University

13307130148@fudan.edu.cn

January 2, 2015

¹powered by X⊐LATEX

Venti

Outline

- Outline
 - Abstract
 - Background
- tion[Organization] 2 Venti

 - Application Example

Abstract

Venti

Presented By 陈子旸

Outline

Abstract

Background

.

Vent

Data Organization[Organization]

- Venti: A network storage system intended for archival data
- A building block for a variety of storage applications
 - logical backup
 - physical backup
 - snapshot file systems
- A block is identified by a unique hash of it's contents
- Enforce a write-once policy
- Duplicate copies of a block can be coalesced

Archival Storage

Venti

Presented By 陈子旸

Outline Abstract

Background

Vent

Data Organization[Organization]

Application Example

Purpose

- Store data for long periods of time (forever)
- Data may not be needed frequently, but when it is needed it is often crucial

Prevalent Form

Venti

Presented By 陈子旸

Outline Abstract

Background

Vent

Data
Organization[Organization]

Application Example

Tape backup

- Backup data to magnetic tape
- (tar, ufsdump...)
- Full backup vs Incremental backup
- To provide backup as a central service for a number of client machines

Prevalent Form

Venti

Presented By 陈子旸

Outline

Abstract

Background

Vent

Data Organization[Organization]

Applicatioi Example _{Vac}

Snapshot

- A snapshot is a consistent read-only view of the file system at some point in the past.
- Each snapshot is a complete file system tree, much like a full backup.
- A snapshot only requires additional storage for the blocks that have changed, like a incremental backup.
- Always available and easy to access
- Plan 9, WAFL, AFS...

Venti

Venti

tion[Organization]

2 Venti

- 3 Data Organization[Organization]
- Application Example

Venti Archival Storage

Venti

Presented By 陈子旸

Outline

Abstract

Background

Venti

Data
Organization[Organization]

- Goal: To provide a write-once archival reponsitory than can be shared by mutiple client machines and applications.
- Block level network storage system
 - Actually a backend storage for client apps
- Blocks addressed by hash of their contents
 - Use SHA-1 algorithm
 - Use hash value as its unique 'fingerprint'
- Write-Once policy
 - Block once written, never modified
 - Modified blocks will have new address

Why SHA-1?

Venti

Presented By 陈子旸

Outline Abstract Backgroun

Venti

Data
Organization[Organization]

Application Example _{Vac} • SHA-1 hash function is developed by NIST

- Output 160 bit hash values(20 bytes)
- Probability that there will be one or more collisions:

$$p \le \frac{n(n-1)}{2} \times \frac{1}{2^b}$$

- Consider a large storage system contains 10^{18} byte of data stored as 8 Kbyte blocks($\sim 10^{14}$ blocks), the probability is less then 10^{-20} .
- Variants of SHA-1 can produce 256, 384 and 512 bit results for future use.

Venti Archival Storage

Venti

Presented By 陈子旸

Outline
Abstract

Venti

Data
Organization[Organization]

Application Example • Multiple clients can Share a Venti server

- Hash function gives an unversal namespace
- Duplication increases the utility rate of space
- Inherent integrity checking for data
- Caching is simplified
- Uses magnetic disk as storage technology
 - Access time comparable to non-archival data

Venti

Presented By 陈子旸

Outline Abstract

Backgrou

Vent

Data Organization[Organizatio

Application Example 1 Outline

2 Venti

- 3 Data Organization[Organization]
- 4 Application Example

Data Organization

Venti

Presented By 陈子旸

Outline Abstract

Vent

Data Organiza-

tion[Organization

Example _{Vac}

- Data is divided into blocks and written to the server
- Pack the fingerprints into additional blocks, called pointer blocks, that are also written to the server
- Until a single fingerprint is obtained
- Applications can use such a structure to store a single file or to mimic the behavior of a physical device such as a tape or a disk drive

Data Organization

Venti

Presented By 陈子旸

Outline Abstract

Vent

Data Organization[Organization

Figure 1. A tree structure for storing a linear sequence of blocks

DataOrganization

Venti

Presented By 陈子旸

Outline Abstract Backgroun

Data
Organization[Organization

- Venti does not allow such a tree to be modified
- But new versions of the tree can be generated efficiently by storing the new or modified data blocks and reusing the unchanged sections
- By mixing data and fingerprints in a block, more complex data structures can be constructed.
- For example, a structure for storing a file system may include three types of blocks:
 - Directory
 - Pointer
 - Data.

DataOrganization

Venti

Presented By 陈子旸

Outline Abstract

17....

Data Organization[Organization

Figure 2. Build a new version of the tree.

Venti

tion[Organization]

- - Application Example
 - Vac

Venti

Presented By 陈子旸

Outline Abstract Backgroun

Data Organiza-

Organization[Organization]

Applicatio Example Vac

- Vac is an application similar to tar and zip
 - With vac, Selected files will be stored as a tree of blocks on Venti server.
 - The output is always 45 bytes long, included a 20 byte root fingerprint.
 - 'unvac' enables user to estore files from a vac archive.
- Vac writes each file as a seperated collection of Venti blocks, which can coalesce duplicate copies of a file
- Incremental backups options can improve performance