EE2000 Logic Circuit Design

Lecture 2 – Karnaugh Map and Quine-McCluskey (QM) Method

hackthedeveloper.com

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

$$f(a,b,c,d) = \sum m(1,3,4,6,11) + \sum d(0,8,10,12,13)$$

$$f = a'bd' + a'b'd + b'cd$$

$$f = a'bd' + a'b'c' + b'cd$$

$$f = a'bd' + a'b'd + ab'c$$

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

$$f = (b' + d')(b + d)$$

 $(a' + c)(a'+b')$

$$f = (b' + d')(b + d)$$

 $(a' + c)(a'+d)$

Exercise (Don't Care Case)

Step 5-6: Reduce PI chart & express the Boolean Function

PI	Minterms	abcd	4	8	9	10	12	15
PI_1	m_8, m_9, m_{12}, m_{13}	1-0-		X	X		X	
PI ₂	m_2, m_6	0-10						
PI ₃	m_2, m_{10}	-010				Х		
PI ₄	m_4, m_6	01-0	Х					
PI ₅	m_4, m_{12}	-100	Х				Х	
PI ₆	m_8, m_{10}	10-0		Х		Х		
PI ₇	m_{13}, m_{15}	11-1						X

PI	Minterms	abcd	4	10
PI ₃	m_2, m_{10}	-010		Х
PI ₄	m_4, m_6	01-0	Х	
PI ₅	m_4, m_{12}	-100	Х	
PI ₆	m_8, m_{10}	10-0		Х

$$f(a,b,c,d) = PI_1 + PI_3 + PI_4 + PI_7 = ac' + b'cd' + a'bd' + abd$$

$$= PI_1 + PI_3 + PI_5 + PI_7 = ac' + b'cd' + bc'd' + abd$$

$$= PI_1 + PI_4 + PI_6 + PI_7 = ac' + a'bd' + ab'd' + abd$$

$$= PI_1 + PI_5 + PI_6 + PI_7 = ac' + bc'd' + ab'd' + abd$$