8.3.0 Interval Estimation (Confidence Intervals)

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ that is to be estimated. Suppose that we have observed $X_1 = x_1, X_2 = x_2, \cdots, X_n = x_n$. So far, we have discussed point estimation for θ . The point estimate $\hat{\theta}$ alone does not give much information about θ . In particular, without additional information, we do not know how close $\hat{\theta}$ is to the real θ . Here, we will introduce the concept of **interval estimation**. In this approach, instead of giving just one value $\hat{\theta}$ as the estimate for θ , we will produce an interval that is likely to include the true value of θ . Thus, instead of saying

$$\hat{\theta}=34.25,$$

we might report the interval

$$[\hat{\theta}_l, \hat{\theta}_h] = [30.69, 37.81],$$

which we hope includes the real value of θ . That is, we produce two estimates for θ , a high estimate $\hat{\theta}_h$ and a low estimate $\hat{\theta}_l$. In interval estimation, there are two important concepts. One is the **length** of the reported interval, $\hat{\theta}_h - \hat{\theta}_l$. The length of the interval shows the precision with which we can estimate θ . The smaller the interval, the higher the precision with which we can estimate θ . The second important factor is the **confidence level** that shows how confident we are about the interval. The confidence level is the probability that the interval that we construct includes the real value of θ . Therefore, high confidence levels are desirable. We will discuss these concepts in this section.