Stwierdzenie 1. Przeliczalna ilość zbiorów miary Lebesgue'a zero jest też zbiorem miary Lebesgue'a zero.

Dowód. Weźmy rodzinę zbioru $X_n \in \mathbb{R}^n, n \in \mathbb{N}_+, X_n$ - zbiór miary Lebesgue'a zero. Weźmy rodzinę kostek P_n , gdzie P_i - kostka z \mathbb{R}^n taka, że

$$|P_i| < \frac{\varepsilon}{2^i}.$$

(możemy tak zrobić, bo X - miary Lebesgue'a zero) wówczas $X\subset P=P_1\cup P_2\cup\ldots$

$$|P| = |P_1 \cup P_2 \cup \ldots| \le \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = \varepsilon.$$

Pytanie 2. Jak pociąć prostokąt?

będzie trzeba wprowadzić język. weźmy kostkę z \mathbb{R}^n . Wtedy

$$P = [a_1, b_1] \times \ldots \times [a_n, b_n],$$

niech Π_i - podział przedziału $[a_i, b_i], i = 1, ..., n$. Zatem podział kostki P wyznaczy kolekcja podziałów

$$\Pi = \{\Pi_1, \Pi_2, \dots, \Pi_n\}.$$

W takim razie P możemy przedstawić jako sumę

$$P = \bigcup_{i=1}^k Q_i, \text{ gdzie } Q_i = \left[a_1^{i_1}, b_1^{i_1}\right] \times \ldots \times \left[a_n^{i_n}, b_n^{i_n}\right].$$

 $\left[a_j^{i_j},b_j^{i_j}\right]$ - jeden z elementów podziału odcinka $[a_1,b_1]$ przy podziale Π_1,\ldots , itp. Wówczas zauważmy, że jeżeli zdefiniujemy

$$int(Q_i) = \left[a_1^{i_1}, b_1^{i_1}\right] \times \dots,$$

to wtedy

$$int(Q_i) \wedge int(Q_j) = \phi.$$

Poza tym

$$|Q_i| \stackrel{\text{def}}{=} |b_1^{i_1} - a_1^{i_1}| \cdot \ldots \cdot |b_n^{i_n} - a_n^{i_n}|.$$

W związku z tym

$$|P| = \sum_{i} |Q_i|.$$

Uwaga: czasami zamiast pisać $\Pi = \{\Pi_1, \ldots\}$, piszemy $\Pi = \{Q_1, \ldots\}$

Definicja 1. Rozważmy dwa podziały:

$$\Pi_1 = \{Q_1, \dots, Q_k\}$$

$$\Pi_2 = \{R_1, \dots, R_s\}.$$

Podział Π_2 nazywamy drobniejszym, jeżeli dla $\Pi_1 \neq \Pi_2$

$$\forall j, j \in \{1, \dots, k\}$$
 $\exists 1, \dots, R_{m_j}, Q_j = R_{m_1} \cup \dots \cup R_{m_j}.$

Definicja 2. Suma górna dla $f: P \subset \mathbb{R}^n \to \mathbb{R}$

$$\overline{S}(f,\Pi) = \sum_{Q_i \in \Pi} \sup_{x \in Q_i} f(x) \cdot |Q_i|,$$

oraz suma dolna

$$\underline{S}(f,\Pi) = \sum_{Q_i \in \Pi} \inf_{x \in Q_i} f(x) \cdot |Q_i|.$$

Definicja 3. Całka górna:

$$\overline{\int_p} f = \inf_{\Pi} \overline{S}(f, \Pi),$$

oraz

$$\int_{p} f = \sup_{\Pi} \underline{S}(f, \Pi).$$

Obserwacja 1. Jeżeli Π_2 - podział drobniejszy, niż Π_1 , to

$$\underline{S}(f,\Pi_1) \leqslant \underline{S}(f,\Pi_2) \leqslant \overline{S}(f,\Pi_2) \leqslant \overline{S}(f,\Pi_1).$$

- Pytanie 3. Czym to się właściwie różni od całki na \mathbb{R} ?
- Pytanie 4. Czy całkę na np. \mathbb{R}^2 możemy policzyć przy pomocy dwóch całek na \mathbb{R} ?

Przykład 1.

$$\begin{split} p &= [0,1] \times [0,2] \,, \quad f(x,y) = xy^2 \,. \\ \int_p xy^2 &\stackrel{\text{??}}{=} \int_0^1 dx \int_0^2 dy \cdot xy^2 \stackrel{\text{??}}{=} \int_0^2 dy \int_0^1 dx \cdot xy^2 \,. \\ \int_0^1 dx \left[\frac{xy^3}{3} \right]_0^2 &= \left[\frac{x^2 \cdot 2^3}{2 \cdot 3} \right]_0^1 = \frac{4}{3} \,. \\ \int_0^2 dy \left[\frac{x^2y^2}{2} \right]_0^1 &= \left[\frac{y^3}{2 \cdot 3} \right]_0^2 = \frac{4}{3} \,. \end{split}$$

Pytanie 5. Co robimy ze zbiorami, które nie są prostokątami?

Przykład 2. niech $A \subset P \subset \mathbb{R}^n$, wprowadźmy funkcję

$$X_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases},$$

 $w\'owczas\ je\'zeli$

$$f: P \to \mathbb{R}, A \subset P,$$

to

$$\int_{A} f \stackrel{def}{=} \int_{P} f \cdot X_{A}.$$

Jeżeli f - takie, że $f: A \to \mathbb{R}$, to definiujemy funkcję

$$\tilde{f}(x) = \begin{cases} f & x \in A \\ 0 & x \notin A \end{cases}$$

 $i \ wtedy$

$$\int_A f = \int_P \tilde{f}.$$

Konsekwencją takiego podejścia jest konieczność radzenia sobie z całkami z funkcji nieciągłych. Oznacza to, że warunek na całkowalność punktu musi być związany z nieciągłością. W tym celu wprowadzamy kilka nowych pojęć:

Definicja 4. Wahanie funkcji:

niech $f: A \subset \mathbb{R}^n \to \mathbb{R}$, niech $x_0 \in \int(A)$. Wahaniem funkcji w punkcie x_0 nazywamy wielkość

$$O(f, x_0) \stackrel{def}{=} \lim_{r \to 0} \left| \sup_{K(x_0, r)} f(x) - \inf_{K(x_0, r)} f(x) \right|.$$

Stwierdzenie 2. Niech A - domknięty, $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}$.

$$A_{\varepsilon} = \{ x \in A : O(f, x) \geqslant \varepsilon \},$$

wówczas A_{ε} teże jest zbiorem domkniętym.

Dowód. Pokażemy, że zbiór A'_{ε} jest zbiorem otwartym.

Mamy dwa przypadki:

- 1. $x \in A'_{\varepsilon}, x \notin A$, czyli $x \in A'$ więc $\exists K(x,r) \in A'$ (bo A' jest otwarty)
- 2. $x \in A, x \in A'_{\varepsilon}$, czyli $O(f, x) < \varepsilon$

Chcemy pokazać, że

$$\exists_{r>0} \quad \forall_{y\in K(x,r)} O(f,y) < \varepsilon.$$

czyli znajdziemy takie otoczenie $x\in A_\varepsilon'$, że wszystkie elementy z tego otoczenia też należą do A_ε' czyli A_ε' jest otwarty.

Wiemy, że

$$\lim_{r \to 0} \left| \sup_{x' \in K(x,r)} f(x') - \inf_{x' \in K(x,r)} f(x') \right| = c < \varepsilon.$$

Z definicji granicy oraz warunku wyżej wiemy, że

$$\exists \left| \sup_{x' \in K(x,r)} f(x) - \inf_{x' \in K(x,r)} f(x) \right| < \varepsilon,$$

zatem dla dowolnego $y \in K(x,r)$ mamy

$$\exists r' = r - ||x - y|| : \bigvee_{y' \in K(y,r)} |\sup f(y') - \inf f(y')| < \varepsilon,$$

czyli

$$O(f, y') < \varepsilon \to \forall y' \in K(y, r') \subset K(x, r),$$

co oznacza, że punktxjest punktem wewnętrznym $A_\varepsilon',$ czyli A_ε' jest otwarty, więc A_ε -domkniety. \qed