Classical Numerical Analysis, Chapter 06

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Chapter 06, Part 1 of 3 Linear Iterative Methods

Direct Versus Iterative Methods

As an alternative to the direct methods that we studied in the previous chapters, in the present chapter we will describe so called *linear* iteration methods for constructing sequences, $\{\mathbf{x}_k\}_{k=1}^{\infty} \subset \mathbb{C}^n$, with the desire that $\mathbf{x}_k \to \mathbf{x} = \mathsf{A}^{-1}\mathbf{f}$, as $k \to \infty$. The idea is that, given some $\varepsilon > 0$, we look for a $k \in \mathbb{N}$, such that

$$\|\mathbf{x} - \mathbf{x}_k\| \leq \varepsilon$$

with respect to some norm. In this context, ε is called the *stopping tolerance*.

Usually, we do not have a direct way of approximating the error. The residual is more readily available. Suppose that \mathbf{x}_k is an approximation of $\mathbf{x} = A^{-1}\mathbf{f}$. The error is $\mathbf{e}_k = \mathbf{x} - \mathbf{x}_k$ and the residual is $\mathbf{r}_k = \mathbf{f} - A\mathbf{x}_k = A\mathbf{e}_k$. Recall that,

$$\frac{\|\mathbf{e}_k\|}{\|\mathbf{x}\|} \leq \kappa(\mathsf{A}) \frac{\|\mathbf{r}_k\|}{\|\mathbf{f}\|}.$$

Thus, when $\kappa(A)$ is large, $\frac{\|\mathbf{r}_k\|}{\|\mathbf{f}\|}$, which is easily computable, may not be a good indicator of the size of the relative error $\frac{\|e_k\|}{\|x\|}$, which is not directly computable.

Linear Iterative Methods

Linear Iterative Methods •0000000

Iterative Method

Linear Iterative Methods 00000000

Definition

Let $A \in \mathbb{C}^{n \times n}$ with $det(A) \neq 0$ and $f \in \mathbb{C}^n$. An **iterative method** to find an approximate solution to Ax = f is a process to generate a sequence of approximations $\{\mathbf{x}_k\}_{k=1}^{\infty}$ via an iteration of the form

$$\mathbf{x}_k = \varphi(A, \mathbf{f}, \mathbf{x}_{k-1}, \dots, \mathbf{x}_{k-r}),$$

given the starting values $\mathbf{x}_0, \cdots \mathbf{x}_{r-1} \in \mathbb{C}^n$. Here

$$\varphi(\cdot,\cdot,\ldots,\cdot):\mathbb{C}^{n\times n}\times\mathbb{C}^n\times\cdots\times\mathbb{C}^n\to\mathbb{C}^n$$

is called the **iteration function**. If r = 1, we say that the process is a **two-layer** method, otherwise we say it is a multilayer method.

Consistent, Linear Iterative Methods

Definition

Let $A \in \mathbb{C}^{n \times n}$ with $det(A) \neq 0$ and $\mathbf{f} \in \mathbb{C}^n$. Set $\mathbf{x} = A^{-1}\mathbf{f}$. The two-layer iterative method

$$\mathbf{x}_k = \varphi(\mathsf{A}, \mathbf{f}, \mathbf{x}_{k-1}),$$

is said to be **consistent** iff $\mathbf{x} = \varphi(A, \mathbf{f}, \mathbf{x})$, i.e., $\mathbf{x} = A^{-1}\mathbf{f}$ is a fixed point of $\varphi(A, \mathbf{f}, \cdot)$. The method is **linear** iff

$$\varphi(\mathsf{A},\alpha\mathbf{f}_1+\beta\mathbf{f}_2,\alpha\mathbf{x}_1+\beta\mathbf{x}_2)=\alpha\varphi(\mathsf{A},\mathbf{f}_1,\mathbf{x}_1)+\beta\varphi(\mathsf{A},\mathbf{f}_2,\mathbf{x}_2),$$

for all $\alpha, \beta \in \mathbb{C}$ and $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{C}^n$.

Proposition (general form)

Let $A \in \mathbb{C}^{n \times n}$ with $det(A) \neq 0$ and $f \in \mathbb{C}^n$. Any two-layer, linear, and consistent method can be written in the form

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathsf{Cr}(\mathbf{x}_k) = \mathbf{x}_k + \mathsf{C}(\mathbf{f} - \mathsf{A}\mathbf{x}_k), \tag{1}$$

for some matrix $C \in \mathbb{C}^{n \times n}$, where $\mathbf{r}(\mathbf{z}) = \mathbf{f} - A\mathbf{z}$ is the residual vector.

Proof.

Linear Iterative Methods 00000000

A two layer method is defined by an iteration function

$$\varphi(\cdot,\cdot,\cdot):\mathbb{C}^{n\times n}\times\mathbb{C}^n\times\mathbb{C}^n\to\mathbb{C}^n.$$

Given φ , define the operator

$$Cz = \varphi(A, z, 0).$$

This is a linear operator, due to the assumed linearity of the iteration function. Consequently, C can be identified as a square matrix.

Proof. Cont.

Linear Iterative Methods 00000000

It follows from this definition, using the consistency and linearity of φ , that

$$(I_n - CA)\mathbf{w} = \mathbf{w} - \varphi(A, A\mathbf{w}, \mathbf{0}) = \varphi(A, A\mathbf{w}, \mathbf{w}) - \varphi(A, A\mathbf{w}, \mathbf{0}) = \varphi(A, \mathbf{0}, \mathbf{w}).$$

Furthermore, by linearity, we can write

$$\mathbf{x}_{k+1} = \varphi(\mathsf{A}, \mathbf{f} + \mathbf{0}, \mathbf{0} + \mathbf{x}_k)$$

$$= \varphi(\mathsf{A}, \mathbf{f}, \mathbf{0}) + \varphi(\mathsf{A}, \mathbf{0}, \mathbf{x}_k)$$

$$= \mathsf{C}\mathbf{f} + (\mathsf{I}_n - \mathsf{C}\mathsf{A})\mathbf{x}_k$$

$$= \mathbf{x}_k + \mathsf{C}(\mathbf{f} - \mathsf{A}\mathbf{x}_k),$$

as we intended to show

Note: If C is invertible, we can, if we like, write

$$\mathsf{C}^{-1}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)+\mathsf{A}\mathbf{x}_{k}=\mathbf{f}.$$

Two-Layer Methods

Definition

Linear Iterative Methods 00000000

Let $A \in \mathbb{C}^{n \times n}$ with $det(A) \neq 0$ and $\mathbf{f} \in \mathbb{C}^n$. A method of the form

$$\mathsf{B}_{k+1}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)+\mathsf{A}\mathbf{x}_{k}=\mathbf{f},$$

where $B_{k+1} \in \mathbb{C}^{n \times n}$ is invertible is called an **adaptive two-layer method**. If $B_{k+1} = B$, where B is invertible and independent of k, then the method is called a **stationary two-layer method**. If $B_{k+1} = \frac{1}{\alpha_{k+1}} I_n$, where $\alpha_{k+1} \in \mathbb{C}_{\star}$, then we say that the adaptive two-layer method is **explicit**.

Consider a stationary two-layer method and assume that B is invertible, then

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathsf{B}^{-1}(\mathbf{f} - \mathsf{A}\mathbf{x}_k), \tag{2}$$

from this it follows that, if $\{\mathbf{x}_k\}_{k\geq 0}$ converges, then it must converge to $\mathbf{x} = \mathsf{A}^{-1}\mathbf{f}$. Of course, this form is equivalent to (1) with $\mathsf{C} = \mathsf{B}^{-1}$. The matrix B in the stationary, two-layer method is called the *iterator*.

Linear Iterative Methods 00000000

Let us now consider an extreme case, namely B = A. In this case we obtain

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathsf{B}^{-1}(\mathbf{f} - \mathsf{A}\mathbf{x}_k) = \mathbf{x}_k + \mathsf{A}^{-1}(\mathbf{f} - \mathsf{A}\mathbf{x}_k) = \mathsf{A}^{-1}\mathbf{f},$$

that is, we get the exact solution after one step.

The previous observation shows that choice of an iterator comes with two conflicting requirements:

- 1 The iterator B should be easy/cheap to invert.
- 2 The iterator B should "approximate" the matrix A well.

In essence, the art of iterative methods is concerned with finding good iterators.

The Error Transfer Matrix

Definition

Linear Iterative Methods 00000000

> Let $A \in \mathbb{C}^{n \times n}$ be invertible and $\mathbf{f} \in \mathbb{C}^n$. Suppose that $\mathbf{x} = A^{-1}\mathbf{f}$ and consider the stationary two-layer method (2) defined by the invertible matrix $B \in \mathbb{C}^{n \times n}$. The matrix $T = I_n - B^{-1}A$ is called the **error transfer matrix** and satisfies

$$\mathbf{e}_{k+1} = \mathsf{T}\mathbf{e}_k$$
,

where $\mathbf{e}_k = \mathbf{x} - \mathbf{x}_k$ is the **error** at step k.

Here is our mission: we will seek to find conditions on T to guarantee that $\{\mathbf{e}_k\}_{k=0}^{\infty}$ converges to zero.

Theorem (convergence of linear methods)

Suppose that A, B $\in \mathbb{C}^{n \times n}$ are invertible, $\mathbf{f}, \mathbf{x}_0 \in \mathbb{C}^n$ are given, and $\mathbf{x} = A^{-1}\mathbf{f}$.

- **1** The sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ defined by the linear, two-layer, stationary iterative method (2) converges to \mathbf{x} for any starting point \mathbf{x}_0 iff $\rho(T) < 1$, where T is the error transfer matrix $T = I_n - B^{-1}A$.
- **2** A sufficient condition for the convergence of $\{\mathbf{x}_k\}_{k=1}^{\infty}$, for any starting point \mathbf{x}_0 , is the condition that $\|T\| < 1$, for some induced matrix norm.

Proof.

Before we begin the proof, observe that

$$\mathbf{e}_k = \mathsf{T}\mathbf{e}_{k-1} = \mathsf{T}^2\mathbf{e}_{k-2} = \cdots = \mathsf{T}^k\mathbf{e}_0.$$

Also, observe that $\mathbf{x}_k \to \mathbf{x} = A^{-1}\mathbf{f}$, as $k \to \infty$, iff $\mathbf{e}_k \to \mathbf{0}$, as $k \to \infty$.

Suppose that $\mathbf{x}_k \to \mathbf{x} = \mathsf{A}^{-1}\mathbf{f}$, as $k \to \infty$, for any \mathbf{x}_0 . Then $\mathbf{e}_k \to \mathbf{0}$, as $k \to \infty$, for any \mathbf{e}_0 .

Proof, Cont.

Set $\mathbf{e}_0 = \mathbf{w}$, where (λ, \mathbf{w}) is any eigenpair of T, with $\|\mathbf{w}\|_{\infty} = 1$. Then

$$\mathbf{e}_k = \lambda^k \mathbf{e}_0$$
,

and

$$|\lambda|^k = |\lambda|^k ||\mathbf{w}||_{\infty} = ||\mathbf{e}_k||_{\infty} \to 0.$$

It follows that $|\lambda| < 1$. Since λ was arbitrary, $\rho(T) < 1$.

If $\rho(T) < 1$, appealing to a Theorem from Chapter 3,

$$\lim_{k\to\infty}\mathbf{e}_k=\lim_{k\to\infty}\mathsf{T}^k\mathbf{e}_0=\mathbf{0},$$

for any \mathbf{e}_0 . Hence, $\mathbf{x}_k \to \mathbf{x} = A^{-1}\mathbf{f}$, as $k \to \infty$, for any \mathbf{x}_0 .

Proof, Cont.

Suppose now that ||T|| < 1 for some induced matrix norm. Since, for any induced matrix norm,

$$\rho(\mathsf{T}) \leq \|\mathsf{T}\|$$
,

it follows that $\rho(T) < 1$. Again, by the Theorem from Chapter 3,

$$\lim_{k\to\infty}\mathbf{e}_k=\lim_{k\to\infty}\mathsf{T}^k\mathbf{e}_0=\mathbf{0},$$

for any \mathbf{e}_0 .

Theorem (error estimate)

Let A, B $\in \mathbb{C}^{n \times n}$ be invertible, \mathbf{x}_0 , $\mathbf{f} \in \mathbb{C}^n$ are given, and $\mathbf{x} = A^{-1}\mathbf{f}$. Let $\{\mathbf{x}_k\}_{k=1}^{\infty}$ be the sequence generated by the linear, two-layer, stationary method (2). Assume that, for some induced norm, $\|T\| < 1$. Then, the following estimates hold

$$\|\mathbf{x} - \mathbf{x}_{k}\| \le \|\mathbf{T}\|^{k} \|\mathbf{x} - \mathbf{x}_{0}\|,$$

 $\|\mathbf{x} - \mathbf{x}_{k}\| \le \frac{\|\mathbf{T}\|^{k}}{1 - \|\mathbf{T}\|} \|\mathbf{x}_{1} - \mathbf{x}_{0}\|.$

Proof.

It follows, that $\mathbf{e}_k = \mathsf{T}^k \mathbf{e}_0$. By using the consistency and sub-multiplicativity of the induced matrix norm, we find

$$\|\mathbf{e}_{k}\| \leq \|T^{k}\| \|\mathbf{e}_{0}\| \leq \|T\|^{k} \|\mathbf{e}_{0}\|$$
,

which proves the first estimate.

Proof, Cont.

To see the second, observe that, $\mathbf{e}_k = \mathsf{T}^{k-1}\mathbf{e}_1$, and thus $\mathsf{T}\mathbf{e}_k = \mathsf{T}^k\mathbf{e}_1$. Subtracting the last expression from $\mathbf{e}_k = \mathsf{T}^k \mathbf{e}_0$, we find $(I_n - T) \mathbf{e}_k = T^k (\mathbf{x}_1 - \mathbf{x}_0)$. Since ||T|| < 1, a theorem guarantees that $I_n - T$ is invertible, and

$$\|(I_n - T)^{-1}\| \le \frac{1}{1 - \|T\|}.$$

Hence,

$$\mathbf{e}_k = (\mathsf{I}_n - \mathsf{T})^{-1} \, \mathsf{T}^k \, (\mathbf{x}_1 - \mathbf{x}_0)$$

and using the consistency and sub-multiplicativity of the norm, we get

$$\left\|\boldsymbol{e}_{k}\right\| \leq \left\|\left(\boldsymbol{I}_{n}-\boldsymbol{T}\right)^{-1}\right\|\left\|\boldsymbol{T}\right\|^{k}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\| \leq \frac{1}{1-\left\|\boldsymbol{T}\right\|}\left\|\boldsymbol{T}\right\|^{k}\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{0}\right\|.$$

The result is proven.

Matrix Splitting Methods

Here we present some methods that are based on the idea of matrix splitting. Namely, we assume that we can *split* the coefficient matrix A as

Matrix Splitting Methods 0000000000000

$$A = M + N$$
,

where M is invertible and, hopefully, easy to invert. Since $A\mathbf{x} = \mathbf{f}$ iff Mx + Nx = f, the strategy that we follow is then to construct a method of the form

$$\mathsf{M}\mathbf{x}_{k+1} + \mathsf{N}\mathbf{x}_k = \mathbf{f}.$$

Let $A = [a_{i,i}] \in \mathbb{C}^{n \times n}$ have non-zero diagonal elements, and consider the following splitting of A:

$$A = L + D + U,$$

Matrix Splitting Methods 0000000000000

where D = diag $(a_{1,1}, \ldots, a_{n,n})$ is the diagonal part of A, L is the strictly lower triangular part of A, and U, its strictly upper triangular part. Then the splitting method is

$$\mathsf{D}\mathbf{x}_{k+1} + (\mathsf{L} + \mathsf{U})\mathbf{x}_k = \mathbf{f}.$$

In other words.

$$\mathbf{f} = D\mathbf{x}_{k+1} + (A - D)\mathbf{x}_k$$
$$= D(\mathbf{x}_{k+1} - \mathbf{x}_k) + A\mathbf{x}_k$$

so that

$$\mathbf{x}_{k+1} - \mathbf{x}_k = \mathsf{D}^{-1} \mathbf{r}(\mathbf{x}_k).$$

In other words, the Jacobi Method is a stationary two-layer method with the iterator

$$B = B_J = D$$
.

The Error Transfer Matrix for the Jacobi Method

In this case, the error transfer matrix is

$$T = T_{J} = I_{n} - B_{J}^{-1}A = I_{n} - D^{-1}A,$$
(3)

Matrix Splitting Methods 00000000000000

so that

$$\mathsf{T}_{\mathrm{J}} = - \begin{bmatrix} 0 & \frac{a_{1,2}}{a_{1,1}} & \cdots & \frac{a_{1,n}}{a_{1,1}} \\ \frac{a_{2,1}}{a_{2,2}} & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \frac{a_{n-1,n}}{a_{n-1,n-1}} \\ \frac{a_{n,1}}{a_{n,n}} & \cdots & \frac{a_{n,n-1}}{a_{n,n}} & 0 \end{bmatrix}.$$

Alternatively, we may write the Jacobi method in component form via

$$x_{i,k+1} = [\mathbf{x}_{k+1}]_i = \frac{f_i - \sum_{\substack{j=1 \ j \neq i}}^n a_{i,j} x_{j,k}}{a_{i,i}},$$

where $x_{i,k} = [\mathbf{x}_k]_{:.}$

Theorem (convergence)

Let $A = [a_{i,i}] \in \mathbb{C}^{n \times n}$ be strictly diagonally dominant (SDD) of magnitude $\delta > 0$, and $\mathbf{f} \in \mathbb{C}^n$. Then, the Jacobi iteration method for approximating the solution to $A\mathbf{x} = \mathbf{f}$ is convergent.

Matrix Splitting Methods 0000000000000

Proof.

Since A is SDD of magnitude $\delta > 0$, it follows that D is invertible, and $T_{\rm J}$, given in (3), is well-defined. Then

$$\begin{split} \|\mathsf{T}_{\mathsf{J}}\|_{\infty} &= \max_{1 \leq i \leq n} \sum_{j=1}^{n} \left| \delta_{i,j} - \frac{1}{a_{i,i}} a_{i,j} \right| \\ &= \max_{1 \leq i \leq n} \sum_{j=1 \atop j \neq i}^{n} \left| \frac{a_{i,j}}{a_{i,i}} \right| \\ &= \max_{1 \leq i \leq n} \frac{1}{|a_{i,i}|} \sum_{j=1 \atop i \neq i}^{n} |a_{i,j}| \, . \end{split}$$

Hence $\|T_J\|_{\infty} < 1$. By a previous theorem the method converges.

Theorem (convergence)

Suppose that $A \in \mathbb{C}^{n \times n}$ is column—wise strictly diagonally dominant (SDD) of magnitude $\delta > 0$, i.e.,

$$|a_{j,j}|-\delta\geq\sum_{\substack{i=1\i\neq j}}^n|a_{i,j}|,\quad j=1,\ldots,n,$$

and $\mathbf{f} \in \mathbb{C}^n$ is given. Then the sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ generated by the Jacobi iteration method converges, for any starting value \mathbf{x}_0 , to the vector $\mathbf{x} = A^{-1}\mathbf{f}$.

Proof.

It will suffice to prove that

$$\rho(\mathsf{T}_{\mathsf{J}}) < 1$$
,

where T_{I} is given by (3). Since $A \in \mathbb{C}^{n \times n}$ is column—wise strictly diagonally dominant of magnitude $\delta > 0$, A^H is row-wise SDD of magnitude $\delta > 0$. Therefore, by the last theorem,

$$\rho\left(I_n-D^{-H}A^H\right) \leq \left\|I_n-D^{-H}A^H\right\|_{\infty} < 1.$$

Proof, Cont.

Define $\tilde{T} = I_n - D^{-H}A^H$. Then

$$\tilde{\mathsf{T}}^{\mathsf{H}} = \mathsf{I}_n - \mathsf{A}\mathsf{D}^{-1},$$

Matrix Splitting Methods 0000000000000

and

$$D^{-1}\tilde{T}^{H}D = I_{n} - D^{-1}A = T_{J}.$$

Therefore

$$\sigma(\mathsf{T}_{\mathsf{J}}) = \sigma(\tilde{\mathsf{T}}^{\mathsf{H}}) = \overline{\sigma(\tilde{\mathsf{T}})},$$

and

$$\rho(\mathsf{T}_{\mathsf{J}}) = \rho(\tilde{\mathsf{T}}) < 1.$$

The Gauss-Seidel Method

Recall that Jacobi method can be written in the form

$$\sum_{j=1}^{i-1} a_{i,j} x_{j,k} + a_{i,i} x_{i,k+1} + \sum_{j=i+1}^{n} a_{i,j} x_{j,k} = f_i.$$

Matrix Splitting Methods 0000000000000

However, at this stage, we have already computed new approximations for components x_m , $m = 1, \dots, i-1$, which we are not using. The Gauss-Seidel method uses these newly computed approximations to obtain the method

$$\sum_{j=1}^{i} a_{i,j} x_{j,k+1} + \sum_{j=i+1}^{n} a_{i,j} x_{j,k} = f_i,$$

As before, we require $a_{i,i} \neq 0$, for all i = 1, ..., n, so that the method is well-defined

The Error Transfer Matrix for the Gauss-Seidel Method

Recall the splitting A = L + D + U. Choosing the iterator matrix as

$$\mathsf{B} = \mathsf{B}_{\mathrm{GS}} = \mathsf{L} + \mathsf{D}$$

Matrix Splitting Methods

results in the so-called Gauss-Seidel method. The linear iteration process for the Gauss-Seidel method may be expressed as

$$(L+D)\mathbf{x}_{k+1}+U\mathbf{x}_k=\mathbf{f}.$$

Therefore, assuming that D is invertible,

$$\mathbf{x}_{k+1} = -(\mathsf{L} + \mathsf{D})^{-1} \mathsf{U} \mathbf{x}_k + (\mathsf{L} + \mathsf{D})^{-1} \mathbf{f}.$$

The error transfer matrix may be expressed as

$$T_{GS} = I_n - B_{GS}A = -(L + D)^{-1}U = -(A - U)^{-1}U.$$
 (4)

Theorem (convergence)

Suppose that $A = [a_{i,i}] \in \mathbb{C}^{n \times n}$ is strictly diagonally dominant (SDD) and $\mathbf{f} \in \mathbb{C}^n$. Then for any starting value \mathbf{x}_0 , the sequence generated by the Gauss–Seidel method converges to $\mathbf{x} = A^{-1}\mathbf{f}$.

Matrix Splitting Methods 0000000000000

Proof.

Let us define

$$\gamma = \max_{i=1}^{n} \left\{ \frac{\sum_{j=i+1}^{n} |a_{i,j}|}{|a_{i,i}| - \sum_{j=1}^{i-1} |a_{i,j}|} \right\}.$$

Owing to the fact that A is SDD,

$$|a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}| = \sum_{j=1}^{i-1} |a_{i,j}| + \sum_{j=i+1}^{n} |a_{i,j}| \implies |a_{i,i}| - \sum_{j=1}^{i-1} |a_{i,j}| > \sum_{j=i+1}^{n} |a_{i,j}|,$$

and thus $\gamma \in [0,1)$. We will show convergence of the Gauss-Seidel method by proving that $\|T_{GS}\|_{\infty} < \gamma$.

Proof, Cont.

Let A = L + D + U be the usual decomposition into lower triangular, diagonal, and upper triangular parts, respectively, and set $y = T_{GS}x$, i.e., (L + D)y = -Ux. We have

Matrix Splitting Methods 0000000000000

$$\sum_{j=1}^{i-1} a_{i,j} y_j + a_{i,i} y_i = -\sum_{j=i+1}^n a_{i,j} x_j, \quad 1 \le i \le n.$$

Let *i* be such that $|y_i| = ||\mathbf{y}||_{\infty}$. By the triangle inequality,

$$\left| \sum_{j=1}^{i-1} a_{i,j} y_j + a_{i,i} y_i \right| \ge |a_{i,i}| |y_i| - \sum_{j=1}^{i-1} |a_{i,j}| |y_j| \ge \left(|a_{i,i}| - \sum_{j=1}^{i-1} |a_{i,j}| \right) \|\mathbf{y}\|_{\infty}.$$

Also, we have

$$\left|\sum_{j=i+1}^n a_{i,j} x_j\right| \leq \sum_{j=i+1}^n |a_{i,j}| \|\mathbf{x}\|_{\infty}.$$

Proof, Cont.

Consequently,

$$\|\mathsf{T}_{\mathrm{GS}}\mathbf{x}\|_{\infty} = \|\mathbf{y}\|_{\infty} \le \frac{\sum_{j=i+1}^{n} |a_{i,j}|}{|a_{i,i}| - \sum_{j=1}^{i-1} |a_{i,j}|} \|\mathbf{x}\|_{\infty} \le \gamma \|\mathbf{x}\|_{\infty}.$$

This implies that, for all $\mathbf{x} \in \mathbb{C}^n_+$,

$$\frac{\|\mathsf{T}_{\mathrm{GS}}\mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \leq \gamma,$$

which shows that

$$\|\mathsf{T}_{\mathrm{GS}}\|_{\infty} \leq \gamma < 1.$$

The Faster Convergence of Gauss-Seidel

Theorem (SDD matrices)

Suppose that $A = [a_{i,i}] \in \mathbb{C}^{n \times n}$ is strictly diagonally dominant (SDD) of magnitude $\delta > 0$ and $\mathbf{f} \in \mathbb{C}^n$. Then

$$\|T_{\mathrm{GS}}\|_{\infty} \leq \|T_{\mathrm{J}}\|_{\infty} < 1,$$

Matrix Splitting Methods 0000000000000

where T_{GS} and T_J denote, respectively, the error transfer matrices of the Gauss-Seidel and Jacobi methods. In particular, for any starting value \mathbf{x}_0 , the sequences generated by the Jacobi and the Gauss-Seidel methods both converge to $\mathbf{x} = A^{-1}\mathbf{f}$.

Theorem (tridiagonal matrices)

Let $A \in \mathbb{C}^{n \times n}$ be tridiagonal with non–zero diagonal elements. Denote by T_J and T_{GS} the error transfer matrices of the Jacobi and Gauss–Seidel methods, respectively. Then we have

$$\rho(\mathsf{T}_{\mathrm{GS}}) = \rho(\mathsf{T}_{\mathrm{J}})^2.$$

In particular, one method converges iff the other method converges.

Richardson's Method

Let $A \in \mathbb{C}^{n \times n}$ be invertible and $\mathbf{f} \in \mathbb{C}^n$ be given. Let us consider now what is known as Richardson's method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \left(\mathbf{f} - A \mathbf{x}_k \right).$$

Clearly, this is a stationary two-layer method that results from choosing

$$B = B_{R} = \frac{1}{\alpha} I_{n},$$

where $\alpha \in \mathbb{C}_{+}$. In this case, $T_{R} = I_{n} - \alpha A$.

Theorem (convergence)

Let $A \in \mathbb{C}^{n \times n}$ be HPD, $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$, with $0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$. Assume that $\alpha \in \mathbb{R}_*$. Then, Richardson's method converges iff $\alpha \in (0, 2/\lambda_n)$. In this case we have the estimate

$$\|\mathbf{e}_k\|_2 \le \rho^k \|\mathbf{e}_0\|_2$$
, $\rho = \rho(\alpha) = \max\{|1 - \alpha\lambda_n|, |1 - \alpha\lambda_1|\}$.

From this, it follows that setting

$$\alpha = \alpha_{\mathrm{opt}} := \frac{2}{\lambda_1 + \lambda_n}$$
,

one obtains the smallest possible value of ρ , and

$$ho_{
m opt} =
ho(lpha_{
m opt}) = rac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} = rac{\kappa_2(\mathsf{A}) - 1}{\kappa_2(\mathsf{A}) + 1}.$$

Proof of Convergence of Richardson's Method.

Since A is HPD, we know that the eigenvalues of A are positive real numbers and

$$\lambda_n = \|A\|_2$$
.

Notice also that $T_R = I_n - \alpha A = T_R^H$, which implies that the eigenvalues of T_R are real. Observe that $(\lambda_i, \mathbf{w}_i)$ is an eigenpair of A iff $(\nu_i = 1 - \alpha \lambda_i, \mathbf{w}_i)$ is an eigenpair of T_R . Assume that $0 < \alpha < 2/\lambda_n$. Then

$$0 < \lambda_i \alpha < 2 \frac{\lambda_i}{\lambda_n}, \quad i = 1, \ldots, n,$$

which implies

$$1>1-\lambda_i\alpha>1-2\frac{\lambda_i}{\lambda_n}\geq -1, \quad i=1,\ldots,n.$$

It follows that

$$1 > \nu_1 > \cdots > \nu_n > -1$$
, $\nu_i = 1 - \alpha \lambda_i$.

This guarantees that $\|T_R\|_2 = \rho(T_R) < 1$, which implies convergence.

Conversely, if $\alpha \notin (0, 2/\lambda_n)$, then $\rho(T_R) \geq 1$, and the method does not converge.

By consistency.

$$\|\mathbf{e}_{k}\|_{2} = \|\mathsf{T}_{\mathrm{R}}^{k}\mathbf{e}_{0}\|_{2} \le \rho^{k}\|\mathbf{e}_{0}\|_{2}.$$

Of course, it is easy to see that

$$\rho = \rho(\mathsf{T}_{\mathrm{R}}) = \mathsf{max}\{|\nu_1|, |\nu_n|\} = \mathsf{max}\{|1 - \alpha \lambda_n|, |1 - \alpha \lambda_1|\}.$$

Finally, showing optimality amounts to minimizing ρ . See the figure on the next slide. From this we see that the minimum of ρ is attained when

$$|1 - \alpha \lambda_1| = |1 - \alpha \lambda_n|$$

or

$$1 - \alpha \lambda_n = \alpha \lambda_1 - 1$$

which implies

$$\alpha_{\rm opt} = \frac{2}{\lambda_1 + \lambda_n}.$$

Figure: The curve $\rho(T_R)$ (in solid black) as a function of α .