Aprendizagem de Máquina

a.k.a Machine Learning

Objetivo e Expectativa

Meu nome é ...

Eu trabalho ...

Meu objetivo com o curso é ...

Minha expectativa com a matéria é ...

Nasser Boan

- Cientista de Dador Sr. Falconi
- IBM Data Science Professional Certified
- Especialista em Inteligência Artificial 🤖
- + 50 projetos de Ciência de Dados
- 3 anos de experiência com Gerência de Projetos de Data Science
- Terrabolista
- 🔹 Vacinado 💉

Ementa

Conceitos básicos

- o Como uma máquina aprende
- Paradigmas de Aprendizagem
 - Aprendizagem Supervisionada
 - Aprendizagem Não Supervisionada
- Métodos de Validação
- Underfitting e Overfitting

• Classificação

- Métricas de Classificação
- Algoritmos
- Bases Desbalanceadas

Regressão

- Métricas de Regressão
- Algoritmos
- Séries Temporais

Ensemble

- RandomForest
- Bagging e Boosting
- Máquinas de Comitê
- Ensemble Regressors

• Seleção e Tuning de modelos

- Validação Cruzada
- GridSearchCV

Avaliação

- Trabalhos
 - Trabalho 001 Classificação
 - Trabalho 002 Regressão
 - Trabalho 003 Clusterização *

Agenda

	04/10	05/10	06/10	07/10	08/10	09/10	11/10	12/10	13/10	14/10	15/10	16/10	18/10
Aula	3H	4H	-										
Trab							Trab.						Trab. 02

Ferramentas

instalação do sklearn Installing scikit-learn — scikit-learn 0.24.2 documentation

instalação do imblearn https://imbalanced-learn.org/stable/

instalação do jupyter notebook <u>Project Jupyter | Installing the Jupyter Software</u>

google colab Welcome To Colaboratory - Colaboratory

tutorial rápido de git git - quia prático - sem complicação!

Referências

youtube <u>StatQuest with Josh Starmer</u> <u>3Blue1Brown</u> <u>PyData</u>

Documentações

<u>User guide: contents — scikit-learn 0.24.2 documentation</u> imbalanced-learn documentation — Version 0.8.0

Nosso repositório

https://github.com/nasserboan/corujas-cultas

Expectativa vs realidade

O cavalo é um animal ácero?

Como uma máquina aprende?

Não Áceros

Áceros

- **□** Ácero
- Não Ácero

- Não Ácero

Para cada X (foto) eu tenho um Y (classe) associada. Nós já temos as respostas, só precisamos das regras.

Temos um problema de aprendizagem supervisionada quando temos vários exemplos de resposta (y) para entregar ao nosso modelo.

A aprendizagem supervisionada possui 2 tarefas bem comuns:

É possível transformar um trabalho de regressão em um trabalho de classificação. Basta mudarmos o nosso Y no momento de treinamento, a técnica mais comum para isso é o binning (criação de grupos).

Dividir em dois grupos

Dividir em dois grupos

Não existe um valor Y associado a cada X, procuramos então, grupos parecidos. Ou seja, modelamos os padrões e não as respostas.

Temos um problema de aprendizagem não supervisionada quando não temos as respostas para treinamento de antemão.

A aprendizagem não supervisionada possui 2 tarefas bem comuns:

Redução de Dimensionalidade

Como uma máquina aprende?

Exemplos no Notebook

Métodos de Validação

Hold-out

Métodos de Validação

KFold

k-fold cross-validation

Underfitting e Overfitting

discover. shape. connect.

Underfitting e Overfitting

- Classificação binária
- Classificação multiclasse
- Classificação multilabel (ou multitarget)
- Classificação desbalanceada

- Classificação binária
- Classificação multiclasse
- Classificação multilabel (ou multitarget)
- Classificação desbalanceada

- Classificação binária
- Classificação multiclasse
- Classificação multilabel (ou multitarget)
- Classificação desbalanceada

- Classificação binária
- Classificação multiclasse
- Classificação multilabel (ou multitarget)
- Classificação desbalanceada

- Classificação binária
- Classificação multiclasse
- Classificação multilabel (ou multitarget)
- Classificação desbalanceada

Acurácia

	M_true	H_true
M_pred	300	100
H_pred	200	400

Matriz de Confusão

	M_true	H_true
M_pred	300	100
H_pred	200	400

acc = (400 + 300) / 1000 = 70%

• Precisão ("De tudo que eu previ, quanto eu acertei?")

	M_true	H_true
M_pred	300	100
H_pred	200	400

```
acc = (400 + 300) / 1000 = 70%
precisão (M) = 300 / (300+100) = 75%
precisão (H) = 400 / (200+400) = 66%
```


Revocação ("De tudo que existia, quanto eu acertei?")

	cov+_true	covtrue
cov+_pred	300	100
covpred	200	400

```
acc = (400 + 300) / 1000 = 70%

precisão (M) = 300 / (300+100) = 75%

precisão (H) = 400 / (200+400) = 66%

revocação (M) = 300 / (300+200) = 60%

revocação (H) = 400 / (100+400) = 80%
```


	M_true	H_true
M_pred	300	100
H_pred	200	400
	recall	recall

	M_true	H_true	
M_pred	300	100	precision
H_pred	200	400	precision

Filme	Ator	Categoria	Avaliação	Assistiu?
Bastador Inglórios	Brad Pitt	Ação	Mediana	Nāo
Porcos e Diamantes	Brad Pitt	Ação	Mediana	Nāo
Tróia	Brad Pitt	Ação	Baixa	Nāo
O curioso caso de Benjamin Button	Brad Pitt	Drama	Mediana	Nāo
Sr e Sra Smith	Brad Pitt	Romance	Baixa	Nāo
Era uma vez em Hollywood	Brad Pitt	Ação	Baixa	Nāo
Os sete magníficos	Denzel Washington	Ação	Mediana	Nāo
O livro de Eli	Denzel Washington	Ação	Baixa	Nāo
Decisão de Risco	Denzel Washington	Drama	Mediana	Nāo
Inferno	Tom Hanks	Drama	Baixa	Não
Mensagem para você	Tom Hanks	Romance	Baixa	Nāo
Clube da Luta	Brad Pitt	Ação	Mediana	Sim
Corações de Ferro	Brad Pitt	Drama	Mediana	Sim
O homem que mudou o jogo	Brad Pitt	Drama	Mediana	Sim
Aliados	Brad Pitt	Drama	Excepcional	Sim
Anjos e Demônios	Tom Hanks	Drama	Excepcional	Sim
Capitão Phillips	Tom Hanks	Drama	Mediana	Sim
Apollo 13	Tom Hanks	Drama	Excepcional	Sim
Forrest Gump	Tom Hanks	Drama	Excepcional	Sim
O Náufrago	Tom Hanks	Drama	Mediana	Sim
Sintonia de amor	Tom Hanks	Romance	Excepcional	Sim

Decision Tree

sim
 não

Decision Tree

$$I_H = -\sum_{j=1}^c p_j log_2(p_j)$$

p_j: proportion of the samples that belongs to class c for a particular node.

A entropia pode ser definida de várias formas, mas vamos considerar ela como uma medida de quanta informação está faltando!


```
[320] 1 ## demonstrando valores de entropia
2
3 from scipy.stats import entropy
4
5 data = []
6
7 for i in range(11):
8 | data.append(entropy([i/10,(10-i)/10],base=2))
```


Decision Tree

Brad Pitt

Tom Hanks

Entropia(Brad Pitt) =
$$-(6/10 * log2(6/10)) - (4/10 * log2(4/10))$$

Entropia(Brad Pitt) =
$$-(-0.44) - (4/10 * log2(4/10))$$

Entropia(Brad Pitt) =
$$0.44 - (-0.52)$$

Entropia(Brad Pitt) =
$$0.44 + 0.52 = 0.97$$

Entropia(Tom Hanks) =
$$-(2/8 * log2(2/8)) - (6/8 * log2(6/8))$$

Entropia(Tom Hanks) =
$$-(-0.5) - (6/8 * log2(6/8))$$

Entropia(Tom Hanks) =
$$0.5 - (-0.32)$$

Entropia(Tom Hanks) =
$$0.5 + 0.32 = 0.82$$

Decision Tree

Denzel Washington

Entropia(DW) =
$$-(3/3 * log2(3/3)) - (0/3 * log2(0/3))$$

Entropia(DW) = $-(0) - (0)$
Entropia(DW) = 0

Decision Tree

Information Gain é a medida do decrescimento da entropia para subsets dos dados.

Information Gain é usado para que o algoritmo decida qual feature vai ser usada para dividir (split) o dataset e tomar suas decisões.

Decision Tree

Cor da roupa

Decision Tree

Cor da roupa (zero de ganho de informação)

Barba ? (máximo de ganho de informação)

Decision Tree

Information Gain = entropia(parent) - [média ponderada entropia(subsets)

Decision Tree

Information Gain(ator) = 1 - 0.77 Information Gain(ator) = 0.23

0.33 é bom ou ruim? Ator é uma feature boa para splitar nosso dataset de início? Para saber essas respostas temos que calcular o information gain para todas as features de um dataset. É exatamente isso que árvore de decisão faz.

Quanto maior for o information gain, menor vai ser a impureza do resultado do split.

Decision Tree

Information Gain(ator) = 1 - 0.77 Information Gain(ator) = 0.23

Information Gain(categoria) = 1 - 0.78 Information Gain(categoria) = 0.22

Information Gain(avaliação) = 1 - 0.47 Information Gain(avaliação) = 0.53

Decision Tree

Avaliação baixa?


```
ohe.get feature names()
[92]: array(['x0 Brad Pitt', 'x0 Denzel Washington', 'x0 Tom Hanks', 'x1 Ação',
             'x1 Drama', 'x1 Romance', 'x2 Baixa', 'x2 Excepcional',
             'x2 Mediana'], dtype=object)
[94]: dt.predict([[0,0,1,1,0,0,0,1,0]])
[94]: array([1])
[95]:
      dt.predict proba([[0,0,1,1,0,0,0,1,0]])
[95]: array([[0., 1.]])
                                                                   discover, shape, connect.
```

Titanic

Me: *uses machine learning*

Machine: *learns*

Me:

0 0.963552 1 0.036448

Name: target, dtype: float64

Under e OverSampling

0 0.963552 1 0.036448

Name: target, dtype: float64

Under e OverSampling

0 0.963552 1 0.036448

Name: target, dtype: float64

SMOTE

- Majority class samples
- Minority class samples
- igoplusRandomly selected minority class sample x_i
- \bigoplus 5 K-nearest neighbors of x_i
- Randomly selected sample \hat{x}_i from the 5 neighbors
- Generated synthetic minority instance

SMOTE

Predicted label

SMOTE

Random Under Sampler

```
[39]: x res,y res = RandomUnderSampler().fit resample(x,y)
[44]: pd.Series(y).value counts()
[44]: 0
        573518
           21694
      Name: target, dtype: int64
[41]: pd.Series(y res).value counts()
[41]: 0
        21694
           21694
      Name: target, dtype: int64
```


RandomUnderSampler

Predicted label

support

4389

4289

8678

8678

8678

Regressão

mesttra discover. shape. connect.

- Regressão Linear Simples
- Regressão Linear Múltipla
- Regressão Polinomial

- Regressão Linear Simples
- Regressão Linear Múltipla
- Regressão Polinomial

- Regressão Linear Simples
- Regressão Linear Múltipla
- Regressão Polinomial

- Regressão Linear Simples
- Regressão Linear Múltipla
- Regressão Polinomial

