CMSC 474, Game Theory

9. Social Choice

Dana Nau
University of Maryland

Social Choice

- Suppose you're voting in an election, and there are 4 candidates: a, b, c, d
- Suppose that out of 100 voters,
 - 8: first choice is a
 - 44: first choice is b
 - 46: first choice is c
 - 2: first choice is d
 - > Who should win?

Simple Plurality

- **Simple plurality** (First Past the Post):
 - > Each voter votes for one candidate; highest number of votes wins
- Suppose that out of 100 voters,
 - \triangleright 8: 1st choice a, 2nd choice b
 - > 44: 1st choice *h*
 - \triangleright 46: 1st choice c
 - \triangleright 2: 1st choice d, 2nd choice c
- Each votes for 1st choice
 - \succ c wins

- If a and d weren't available, the votes would be
 - *b*: 44+8 = 52
 - c: 46+2=48
 - > b would win
- Who *should* win?
 - ➤ How to vote if you prefer *a*?
 - > How to vote if you prefer d?

Simple Plurality

- **Simple plurality** (First Past the Post):
 - > Each voter votes for one candidate; highest number of votes wins
- Suppose that out of 100 voters,
 - \triangleright 8: 1st choice a, 2nd choice b
 - > 44: 1st choice *b*
 - \triangleright 46: 1st choice c
 - \triangleright 2: 1st choice d, 2nd choice c
- Each votes for 1st choice
 - $\succ c$ wins

- If a and d weren't available, the votes would be
 - *b*: 44+8 = 52
 - c: 46+2 = 48
 - > b would win
- Who *should* win?
 - > How to vote if you prefer *a*?
 - ➤ How to vote if you prefer *d*?
- "Spoiler" candidates in US presidential elections
 - > 2000: Bush (Rep), Gore (Dem), Nader (Green)
 - > 1980: Reagan (Rep), Carter (Dem), Anderson (Independent)
 - > 1912: Taft (Rep), Roosevelt (Rep), Wilson (Dem)

Runoff Method

- Each voter votes for one candidate
- If no candidate has a majority
 - ➤ Hold an election between top two candidates
 - 100 voters
 - \triangleright 8: 1st choice a, 2nd choice b
 - > 44: 1st choice *b*
 - \triangleright 46: 1st choice c
 - \triangleright 2: 1st choice d, 2nd choice c
 - Each votes for 1st choice
 - No majority
 - > Top two choices: b and c

- Runoff election
 - *b*: 44+8 = 52
 - c: 46+2=48
 - > b wins

Rank-Order Voting Systems

- Rather than voting for a single candidate, each voter specifies a total ordering of the candidates
- 100 voters

$$\triangleright$$
 8: 1st choice a

• 8:
$$a > b > c > d$$

• 22:
$$b > a > c > d$$

$$\triangleright$$
 46: 1st choice c

• 23:
$$c > b > d > a$$

• 22: h > c > a > d

• 23:
$$c > d > b > a$$

$$\triangleright$$
 2: 1st choice d

•
$$2: d > c > b > a$$

Many voting methods that use this

Hare System

- Australia uses the **Hare system** (Instant Runoff Voting)
- Each voter specifies a total ordering of the candidates
 - 8: a > b > c > d
 - 22: b > a > c > d
 - 22: b > c > a > d
 - 23: c > b > d > a
 - 23: c > d > b > a
 - 2: d > c > b > a
- loop until one candidate has a majority:
 - remove the candidate with the smallest number of 1st-choice votes
 - > recount the votes using the remaining preferences

Hare System

Initial orderings:

After eliminating *a*:

8:
$$a > b > c > d$$

22:
$$h > a > c > d$$

22:
$$b > c > a > d$$

23:
$$c > b > d > a$$

23:
$$c > d > b > a$$

2:
$$d > c > b > a$$

8:
$$a > b > c$$

22:
$$b > a > c$$

22:
$$b > c > a$$

23:
$$c > b > a$$

23:
$$c > b > a$$

2:
$$c > b > a$$

8:
$$b > c$$

22:
$$b > c$$

22:
$$c > b$$

d has 2 votes

a has 8 votes

b has 44 votes

c has 46 votes

a has 8 votes

b has 44 votes

c has 48 votes

b has 52 votes

c has 48 votes

b has majority

Borda Count

- Translate each voter's preferences into utility values
 - ➤ If there are *n* alternatives,
 - 1^{st} one gets n points,
 - 2^{nd} one gets n-1 points,
 - •
 - *n*th one gets 1 point

- Compute total number of points for each alternative:
 - Highest number => winner

8: $a > b > c > d$	_
22: $b > a > c > d$	2
22: $b > c > a > d$	2
23: $c > b > d > a$	2
23: $c > d > b > a$	2
2: $d > c > b > a$	

		Poir	its:		Totals:
	4	3	2	1	
8	a	b	\mathcal{C}	d	a 190 points
22	b	a	\mathcal{C}	d	b 319 points
22	b	\mathcal{C}	a	d	c 316 points
23	c	b	d	a	d 175 points
23	c	d	b	a	
2	d	c	b	a	b wins

Condorcet Winner

- A Condorcet winner is a candidate w such that wins oneon-one comparisons to all other candidates
 - \triangleright For every candidate $v \neq w$, a majority prefers w to v

8:
$$a > b > c > d$$

22:
$$b > a > c > d$$

22:
$$b > c > a > d$$

23:
$$c > b > d > a$$

23:
$$c > d > b > a$$

2:
$$d > c > b > a$$

- All pairs of candidates:
 - \rightarrow a vs. b: 8 prefer a, 92 prefer b
 - \rightarrow a vs. c: 30 prefer a, 70 prefer c
 - > a vs. d: 52 prefer **a**, 48 prefer d
 - *b* vs. *c*: 52 prefer *b*, 48 prefer *c*
 - *b* vs. *d*: 75 prefer *b*, 25 prefer *c*
- Condorcet winner: *b*
- At most one Condorcet winner
 - > if x wins all one-on-one comparisons, every $y\neq x$ loses at least one of them
- Sometimes no Condorcet winner

Condorcet's Paradox

- Consider an election with three candidates: a, b, and c
 - 1/3 prefer a > b > c
 - 1/3 prefer b > c > a
 - 1/3 prefer c > a > b
 - ➤ How to choose a winner?
 - If a wins, 2/3 would have preferred c to a
 - If b wins, 2/3 would have preferred a to b
 - If c wins, 2/3 would have preferred b to c
- Condorcet cycle: for every candidate x, there's another candidate y such that a majority of the voters would prefer y to x

Updated 10/27/16

Peaks in Preferences

- Suppose the alternatives have a natural linear ordering $a \le b \le c$
 - cost, time, risk, return on investment, left-to-right politics, ...
- 1/3 prefer a > b > c 1/3 prefer b > c > a 1/3 prefer c > a > b
 - Graph preferences as utilities:

- The third set of preferences has two **peaks**
 - > Rather than b, these voters prefer things on both sides of it
- Suggests something might be a little odd
 - Maybe some other ordering matters more?

Single-Peaked Preferences

• The voters' preferences are **single-peaked** if no voter ranks a choice lower than its two nearest neighbors

- If there exists a linear ordering of the alternatives such that the voters' preferences are single-peaked, then there's no Condorcet cycle
- If there's no Condorcet cycle
 - Then there's a Condorcet winner (unless two candidates are tied with each other)

Condorcet Winner

Our previous example (Condorcet winner b) is single-peaked

Condorcet Methods

- A **Condorcet method** is any voting method that chooses the Condorcet winner if it exists
- Examples
 - Black method
 - Choose Condorcet winner if it exists
 - Otherwise use Borda count
 - > Copeland method
 - Choose candidate with highest score, where score = # of pairwise victories # of pairwise defeats
- Several others

Discussion

- We discussed
 - Plurality vote
 - Runoff method
 - > Hare system
 - Borda count
 - Condorcet methods
- In the example, plurality chose c; all of the others chose b
- There are cases where all five would choose different winners
 - http://www.eprisner.de/MAT107/Voting/Voting1.html

What's Fair?

- How do we decide whether a voting method's choices are fair?
- Arrow's criteria
 - ➤ Unanimity. If every voter prefers alternative X over alternative Y, then the method prefers X over Y
 - Alternatives. If some of the voters' preferences change but their preferences between X and Y remain unchanged, then the method's preference between X and Y will remain unchanged
 - No dictators. No single voter will always determine the method's preference

$$>$$
 30: $b > a > c > d$

$$\triangleright$$
 22: $b > c > a > d$

$$\triangleright$$
 23: $c > b > d > a$

$$\triangleright$$
 23: $c > d > b > a$

$$\triangleright$$
 2: $d > c > b > a$

• prefer
$$b > a$$

$$>$$
 30: $b > a > c > d$

$$\triangleright$$
 22: $b > c > a > d$

$$\triangleright$$
 23: $c > b > d > a$

$$\triangleright$$
 25: $c > d > b > a$

• still prefer
$$b > a$$

Social Choice

- Arrow's criteria
 - ➤ Unanimity. If every voter prefers alternative X over alternative Y, then the method prefers X over Y
 - ➤ Independence of Irrelevant Alternatives. If some of the voters' preferences change but their preferences between X and Y remain unchanged, then the method's preference between X and Y will remain unchanged
 - ➤ **No dictators**. No single voter will always determine the method's preference
- **Arrow's Impossibility Theorem**: If there are more than 2 candidates, no rank-order voting system satisfies all three of the criteria.
 - ➤ For details (including a proof), download Arrows_Theorem.zip from the General Resources section of the Resources page on Piazza

Tactical Voting

- Change the outcome toward something that one prefers, by voting differently from one's true preferences
- e.g., Borda count: the voters who prefer c > b can make c win

True preferences:	Tactical voting:			
4 3 2 1	4 3 2 1			
$8 \mid a b c d$	$8 \mid a b c d$			
$22 \mid b \mid a \mid c \mid d$	$22 \mid b \mid a \mid c \mid d$			
$22 \mid b c a d$	$22 \mid b c a d$			
$23 \mid c b d a$	$23 \mid c \mid d \mid a \mid b$			
$23 \mid c \mid d \mid b \mid a$	$23 \mid c \mid d \mid a \mid b$			
$2 \mid d c b a$	$2 \mid c \mid d \mid a \mid b$			
a 190 points	a 238 points			
b 342 points $\rightarrow b$ wins	b 248 points			
c 293 points	c 318 points $\rightarrow c$ wins			
d 175 points	d 196 points			

Tactical Voting

- Change the outcome toward something that one prefers, by voting differently from one's true preferences
- **Gibbard–Satterthwaite theorem**: if there are more than 2 candidates, every rank-order voting system has one of the following properties:
 - The system is dictatorial
 - there is a single individual who can choose the winner
 - There's is some candidate who can never win, regardless of voters' preferences
 - > The rule is susceptible to tactical voting

Score Voting

- Also called range voting
- Not a rank-order method
 - > each voter assigns a numeric score to each candidate
 - highest average score wins
- Satisfies all three of Arrow's criteria; Arrow's impossibility theorem doesn't apply
- Drawbacks
 - Doesn't satisfy Condorcet's criterion; majority may prefer a candidate other than the winner
 - > Practical complication
 - Tactical voting has a bigger effect, e.g.,
 - true preferences: c > b > d > a
 - tactical (rank-order voting): c > d > a > b
 - tactical (range voting): 100 for c, 50 for d, 0 for a, 0 for b

Updated 10/27/16