Table 25

	Production	Properties	
		paint	of paint
Examples and Comparative Examples	Kinds of black iron- based particles	Kinds of resin	Viscosity (cP)
Example 199	Example 185	Aminoalkyd resin	717
Example 200	Example 186	Aminoalkyd resin	870
Example 201	Example 187	Aminoalkyd resin	666
Example 202	Example 188	Aminoalkyd resin	538
Example 203	Example 189	Aminoalkyd resin	845
Example 204	Example 190	Aminoalkyd resin	923
Example 205	Example 191	Aminoalkyd resin	666
Example 206	Example 192	Aminoalkyd resin	589
Example 207	Example 193	Aminoalkyd resin	742
Example 208	Example 194	Aminoalkyd resin	845
Example 209	Example 195	Aminoalkyd resin	640
Example 210	Example 196	Aminoalkyd resin	717
Example 211	Example 197	Aminoalkyd resin	870
Example 212	Example 198	Aminoalkyd resin	896
Comparative Example 79	Comparative Example 76	Aminoalkyd resin	512
Comparative Example 80	Comparative Example 77	Aminoalkyd resin	840
Comparative Example 81	Comparative Example 78	Aminoalkyd resin	2,944

Table 25 (continued)

Examples	Pı	coperties of	coating fi	lm
and	Gloss	Blackness	Acid res	sistance
Comparative Examples	(%)	(L* value) (-)	ΔG (%)	ΔL* value (-)
Example 199	100	15.7	7.3	0.8
Example 200	105	16.8	8.6	0.7
Example 201	98	16.6	7.1	0.8
Example 202	101	16.3	6.9	0.6
Example 203	91	17.8	8.1	0.8
Example 204	109	17.7	7.6	0.7
Example 205	113	17.7	7.1	0.7
Example 206	109	16.8	4.1	0.3
Example 207	108	16.8	3.6	0.3
Example 208	101	15.8	3.1	0.2
Example 209	106	16.4	2.8	0.2
Example 210	96	17.3	3.6	0.3
Example 211	131	17.1	1.3	0.3
Example 212	130	17.2	4.1	0.3
Comparative Example 79	78	22.1	11.1	1.5
Comparative Example 80	70	20.6	11.4	1.4
Comparative Example 81	43	19.4	12.8	1.3
	and Comparative Examples Example 199 Example 200 Example 201 Example 202 Example 203 Example 204 Example 205 Example 206 Example 207 Example 208 Example 209 Example 210 Example 211 Example 212 Comparative Example 80 Comparative	And Gloss Comparative Examples (%) Example 199 100 Example 200 105 Example 201 98 Example 202 101 Example 203 91 Example 204 109 Example 205 113 Example 206 109 Example 207 108 Example 208 101 Example 209 106 Example 210 96 Example 211 131 Example 212 130 Comparative Example 80 Comparative Example 80	And Comparative Examples (%) (%) (-) Example 199 100 15.7 Example 200 105 16.8 Example 201 98 16.6 Example 202 101 16.3 Example 203 91 17.8 Example 204 109 17.7 Example 205 113 17.7 Example 206 109 16.8 Example 207 108 16.8 Example 208 101 15.8 Example 209 106 16.4 Example 210 96 17.3 Example 211 131 17.1 Example 212 130 17.2 Comparative Example 80 70 20.6 Comparative Example 80 Comparative Example 80	And Gloss Blackness (L* value) AG (%) Example 199 100 15.7 7.3 Example 200 105 16.8 8.6 Example 201 98 16.6 7.1 Example 202 101 16.3 6.9 Example 203 91 17.8 8.1 Example 204 109 17.7 7.6 Example 205 113 17.7 7.1 Example 206 109 16.8 4.1 Example 207 108 16.8 3.6 Example 208 101 15.8 3.1 Example 209 106 16.4 2.8 Example 210 96 17.3 3.6 Example 211 131 17.1 1.3 Example 212 130 17.2 4.1 Comparative Example 80 70 20.6 11.4 Comparative Example 80 70 20.6 11.4

50

5

55

Table 26

	Droduc	Properties	
D	Produc	of paint	
Examples	7. 1		
and	Kind of	Kind of resin	Viscosity
Comparative	black		(CP)
Examples	iron-	·	
	based		
	particles		
Example 213	Example	Water-soluble alkyd resin	870
	185	Water-soluble melamine resin	
Example 214	Example	Water-soluble alkyd resin	923
	186	Water-soluble melamine resin	
Example 215	Example	Water-soluble alkyd resin	794 -
	187	Water-soluble melamine resin	
Example 216	Example	Water-soluble alkyd resin	870
	188	Water-soluble melamine resin	
Example 217	Example	Water-soluble alkyd resin	923
	189	Water-soluble melamine resin	
Example 218	Example	Water-soluble alkyd resin	923
_	190	Water-soluble melamine resin	
Example 219	Example	Water-soluble alkyd resin	794
	191	Water-soluble melamine resin	
Example 220	Example	Water-soluble alkyd resin	819
	192	Water-soluble melamine resin	<u> </u>
Example 221	Example	Water-soluble alkyd resin	768
	193	Water-soluble melamine resin	
Example 222	Example	Water-soluble alkyd resin	717 ~
2.1.02.1.2	194	Water-soluble melamine resin	, 1,
Example 223	Example	Water-soluble alkyd resin	666
Diampre 223	195	Water-soluble melamine resin	
Example 224	Example	Water-soluble alkyd resin	819
DAMIDIC 224	196	Water-soluble melamine resin	017
Example 225	Example	Water-soluble alkyd resin	973
Example 223	197	Water-soluble melamine resin	9/3
Example 226	Example	Water-soluble alkyd resin	845
Example 226	198	1	845
0		Water-soluble melamine resin	212
Comparative	Comp.	Water-soluble alkyd resin	717
Example 82	Ex. 76	Water-soluble melamine resin	
Comparative	Comp.	Water-soluble alkyd resin	896
Example 83	Ex. 77	Water-soluble melamine resin	
Comparative	Comp.	Water-soluble alkyd resin	3,584
Example 84	Ex. 78	Water-soluble melamine resin	

-315

Table 26 (continued)

Examples	Properties of coating film			
and	Gloss Blackness Acid resistan			
Comparative	-	(L* value)	ΔG	ΔL* value
Examples	(%)	(-)	(%)	(–)
Example 213	93	16.8	8.4	0.6
Example 214	96	17.7	7.8	0.7
Example 215	93	17.2	8.0	0.7
Example 216	98	17.6	6.8	0.8
Example 217	90	18.3	8.4	0.6
Example 218	106	17.6	8.1	0.7
Example 219	110	17.6	7.4	0.7
Example 220	100	17.8	3.8	0.3
Example 221	103	17.8	4.6	0.3
Example 222	101	17.8	4.1	0.4
Example 223	98	16.9	3.8	0.3
Example 224	96	18.5	3.2	0.2
Example 225	116	17.4	3.9	0.2
Example 226	113	17.8	3.6	0.3
Comparative Example 82	64	23.2	12.7	2.1
Comparative Example 83	60	21.6	13.6	2.1
Comparative Example 84	44	20.9	14.6	1.9

Table 27

5	

Examples	Production of resin composition		
	Tradection of real composition		
and	Black iron-based particles		
Comparative	Kinds	Amount (part by	
Examples		weight)	
Example 227	Example 185	5.0	
	Example 186		
Example 228		5.0	
71- 226	Example 187	5.0	
Example 229	D1-100	5.0	
Example 230	Example 188	5.0	
	Example 189		
Example 231		5.0	
Evample 232	Example 190	5.0	
Example 232	Example 191	5.0	
Example 233	evanhie 131	5.0	
	Example 192		
Example 234		5.0	
	Example 193		
Example 235	B	5.0	
Example 236	Example 194	5.0	
EXAMPLE 250	Example 195	3.0	
Example 237	Draing 10 100	5.0	
	Example 196		
Example 238		5.0	
7 1 - 226	Example 197		
Example 239	Data 1 100	5.0	
Example 240	Example 198	5.0	
Comparative	Comparative		
Example 85	Example 76	5.0	
Comparative	Comparative	_	
Example 86	Example 77	5.0	
Comparative	Comparative		
Example 87	Example 78	5.0	

Table 27 (continued)

10	
15	
20	
25	
30	
35	
40	

Examples	Production of resin composition			
and	Resin			
Comparative	Kinds	Amount (part by		
Examples		weight)		
Example 227	Polyvinyl chloride resin	95.0		
Example 228	Polyvinyl chloride resin	95.0		
Example 229	Polyvinyl chloride resin	95.0		
Example 230	Polyvinyl chloride resin	95.0		
Example 231	Polyvinyl chloride resin	95.0		
Example 232	Polyvinyl chloride resin	95.0		
Example 233	Polyvinyl chloride resin	95.0		
Example 234	Polyvinyl chloride resin	95.0		
Example 235	Polyvinyl chloride resin	95.0		
Example 236	Polyvinyl chloride resin	95.0		
Example 237	Polyvinyl chloride resin	95.0		
Example 238	Polyvinyl chloride resin	95.0		
Example 239	Polyvinyl chloride resin	95.0		
Example 240	Polyvinyl chloride resin	95.0		
Comparative Example 85	Polyvinyl chloride resin	95.0		
Comparative Example 86	Polyvinyl chloride resin	95.0		
Comparative Example 87	Polyvinyl chloride resin	95.0		

Table 27 (continued)

Examples	Production of resin composition		
and Comparative Examples	Additives Kinds	Amount (part by weight)	Kneading temperature (°C)
Example 227	Calcium stearate	1.0	160
Example 228	Calcium stearate	1.0	160
Example 229	Calcium stearate	1.0	160
Example 230	Calcium stearate	1.0	160
Example 231	Calcium stearate	1.0	160
Example 232	Calcium stearate	1.0	160
Example 233	Calcium stearate	1.0	160
Example 234	Calcium stearate	1.0	160
Example 235	Calcium stearate	1.0	160
Example 236	Calcium stearate	1.0	160
Example 237	Calcium stearate	1.0	160
Example 238	Calcium stearate	1.0	160
Example 239	Calcium stearate	1.0	160
Example 240	Calcium stearate	1.0	160
Comparative Example 85	Calcium stearate	1.0	160
Comparative Example 86	Calcium stearate	1.0	160
Comparative Example 87	Calcium stearate	1.0	160

Table 27 (continued)

Examples	Properties of resin composition				
and	Dispers-	Blacknes	Percentage of area of		
Comparative	ing	s (L*	deteriorated and		
Examples	condition	value)		red porti	
				ted at 19	
			(S/S	$50) \times 100$	
			30	60	90
	(–)	(-)	minutes	minutes	minutes
Example 227	4	17.6	0 .	5	5
Example 228	4	18.8	0	5	10
Example 229	5	18.6	0	5	5
Example 230	5	18.7	0	0	5
Example 231	4	19.7	0	5	10
Example 232	4	18.8	0	5	10
Example 233	4	18.7	0	5	5
Example 234	5	18.5	0	0	0
Example 235	5	18.6	0	0	0
Example 236	5	17.2	0	0	5
Example 237	5	18.3	0	0	5
Example 238	5	18.2	0	0	0
Example 239	5	18.3	0	5	5
Example 240		18.1	0	0	0
Comparative Example 85	3	24.4	10	15	20
Comparative Example 86	3	22.9	10	20	30
Comparative Example 87	3	21.8	10	25	35

Table 28

			
		Production of bla	-
Examples		based composite particle	
and	Kind of core	or black iron-	
Comparative	particles	particles	
Examples		Addition o	_
		fluoroalkylsi	
		Additives	
		Kinds	Amount
			added
			(part by
			weight)
Example 245	Core particles 1	TSL-8257	2.0
Example 246	Core particles 2	TSL-8233	4.0
Example 247	Core particles 3	TSL-8262	3.0
Example 248	Core particles 4	TSL-8257	1.0
Example 249	Core particles 5	TSL-8233	10.0
Example 250	Core particles 6	TSL-8262	2.0
Example 251	Core particles 7	TSL-8257	3.0
Example 252	Core particles 8	TSL-8257	6.0
Example 253	Core particles 9	TSL-8233	4.0
Example 254	Core particles 10	TSL-8262	0.5
Example 255	Core particles 11	TSL-8257	1.5
Example 256	Core particles 12	TSL-8233	2.0
Example 257	Core particles 13	TSL-8262	0.8
Example 258		TSL-8257	4.0
Comparative Example 88	Core particles 1	TSL-8257	2.0
Comparative Example 89	Core particles 3	TSL-8257	30
Comparative Example 90	Core particles 3	TSL-8257	0.005

Table 28 (continued)

	Production of black iron-based composite				
Examples	particles or black iron-based particles				
and	Additio	on of fluoroalky	lsilane		
Comparative Examples	Edge runne Linear load	r treatment Time	Coating amount (calculated as Si)		
	(Kg/cm)	(min)	(wt. %)		
Example 245	60	30	0.13		
Example 246	60	30	0.21		
Example 247	60	15	0.48		
Example 248	60	20	0.07		
Example 249	60	60	0.54		
Example 250	30	30	0.32		
Example 251	60	60	0.20		
Example 252	75	30	0.40		
Example 253	60	15	0.21		
Example 254	60	20	0.08		
Example 255	45	60	0.10		
Example 256	30	30	0.11		
Example 257	30	30	0.13		
Example 258	60	30	0.26		
Comparative Example 88	60	20	0.13		
Comparative Example 89	60	30	0.2		
Comparative Example 90	60	30	3.3×10^{-4}		

Table 28 (continued)

r				
Examples	Production of black iron-based composite particles or black iron-based particles			
and		black fine particles		
Comparative Examples	Kinds	fine particles Amount added		
Examples	KIIIGS	(part by weight)		
Example 245	A	8.0		
Example 246	A	6.0		
Example 247	A	5.0		
Example 248	В	13.0		
Example 249	В	18.0		
Example 250	<u> </u>	15.0		
Example 251	С	15.0		
Example 252	A	10.0		
Example 253	A	10.0		
Example 254	A	18.0		
Example 255	В	16.0		
Example 256	В	9.0		
Example 257	С	16.0		
Example 258	С	15.0		
Comparative Example 88	-	-		
Comparative Example 89	A	0.01		
Comparative Example 90	В	5.0		

Table 28 (continued)

_				
5	B 1		f black iron-bas	
	Examples	particles or	black iron-bas	ed particles
	and	Addi	tion of carbon h	olack
10	Comparative	Edge runner	treatment	Amount
	Examples		,	adhered
		Linear load	Time	(calculated
		(Kg/cm)	(min)	as C) (wt. %)
15	Essent 0 245	30		
	Example 245		60	7.42
	Example 246	60	30	5.68
20	Example 247	45	30	4.78
20	Example 248	60	60	11.53
	Example 249	45	75	15.16
	Example 250	30	40	13.03
25	Example 251	45	45	13.04
	Example 252	60	45	9.01
	Example 253	60	60	9.09
30	Example 254	30	30	15.18
	Example 255	30	20	13.81
	Example 256	60	60	8.26
35	Example 257	30	20	13.76
	Example 258	60		12.99
	Comparative Example 88	-	-	_
40	Comparative Example 89	60	30	0.01
	Comparative Example 90	60	30	4.76

45

50

Table 29

Examples	Properties of black iron-based composite particles or black iron-based particles			
and	Average	Average	Aspect	Geometrical
Comparative	major axis	minor axis		standard
Examples	diameter	diameter	(-)	deviation
	(average	(µm)		(–)
	particle			
	size) (µm)			
Example 245	0.32		-	1.47
Example 246	0.18	_	_	1.41
Example 247	0.28			1.53
Example 248	0.23			1.35
Example 249	0.40	0.051	7.8	1.53
Example 250	0.28	0.038	7.3	1.38
Example 251	0.20	0.030	6.7	1.41
Example 252	0.32		-	1.48
Example 253	0.19	_	_	1.41
Example 254	0.29			1.52
Example 255	0.24	-	_	1.35
Example 256	0.41	0.053	7.8	1.53
Example 257	0.29	0.040	7.3	1.38
Example 258	0.20	0.030	6.7	1.41
Comparative Example 88	0.33	-	-	1.47
Comparative Example 89	0.32	-	-	1.48
Comparative Example 90	0.28	-	_	1.51

Table 29 (continued)

	Proporti	og of black	inon board	
Examples	Properties of black iron-based composite particles or black iron-based particles			composite
and	BET	Mn content		Carbon
Comparative	specific		(L* value)	black
Examples	surface			desorption
	area			percentage
	(m²/g)	(wt. %)	(–)	(%)
Example 245	5.0	12.1	16.4	7.1
Example 246	7.4	14.7	18.0	8.6
Example 247	5.3		17.2	6.9
Example 248	13.0	_	16.6	5.8
3 040	15.0		10.0	3.8
Example 249	21.6	-	17.7	5.9
Example 250	89.7	14.5	17.9	6.9
Example 251	46.6	11.8	17.5	7.5
Example 252	4.8	11.5	16.6	3.6
Example 253	8.9	12.9	16.9	2.8
Example 254	13.8	-	15.8	0.6
Example 255	15.8	_	16.3	1.8
Example 256	23.6	_	17.3	3.2
Example 257	83.1	14.4	17.2	4.6
Example 258	47.1	11.5	17.2	4.8
Comparative	1.5.5	10 0		
Example 88	16.6	12.0	21.3	68.3
Comparative	4.7	13.1	23.0	
Example 89	4./	13.1	23.0	-
Comparative Example 90	5.6	_	21.4	_
Evampre 30			21.3	

Table 30

	Production	Properties	
	paint		of paint
Examples and Comparative Examples	Kinds of black iron- based particles	Kinds of resin	Viscosity (cP)
Example 259	Example 245	Aminoalkyd resin	666
Example 260	Example 246	Aminoalkyd resin	793
Example 261	Example 247	Aminoalkyd resin	614
Example 262	Example 248	Aminoalkyd resin	666
Example 263	Example 249	Aminoalkyd resin	768
Example 264	Example 250	Aminoalkyd resin	845
Example 265	Example 251	Aminoalkyd resin	896
Example 266	Example 252	Aminoalkyd resin	614
Example 267	Example 253	Aminoalkyd resin	712
Example 268	Example 254	Aminoalkyd resin	712
Example 269	Example 255	Aminoalkyd resin	538
Example 270	Example 256	Aminoalkyd resin	640
Example 271	Example 257	Aminoalkyd resin	845
Example 272	Example 258	Aminoalkyd resin	712
Comparative Example 91	Comparative Example 88	Aminoalkyd resin	538
Comparative Example 92	Comparative Example 89	Aminoalkyd resin	845
Comparative Example 93	Comparative Example 90	Aminoalkyd resin	4,096

Table 30 (continued)

Examples	Pı	coperties of	coating fi	lm
and	Gloss	Blackness	Acid res	sistance
Comparative Examples	(%)	(L* value)	ΔG	ΔL* value
Examples		(–)	(୫)	(-)
Example 259	105	15.9	7.8	0.7
Example 260	109	16.8	9.2	0.8
Example 261	98	16.5	8.6	0.9
Example 262	106	16.3	7.4	0.6
Example 263	93	17.3	7.3	0.6
Example 264	118_	17.4	6.9	0.7
Example 265	122	17.1	8.1	0.8
Example 266	110	16.5	4.1	0.3
Example 267	111	16.6	4.6	0.3
Example 268	106	15.8	2.3	0.4
Example 269	103	15.9	1.8	0.3
Example 270	94	16.9	3.4	0.2
Example 271	128	17.2	3.2	0.4
Example 272	123	17.4	3.7	0.3
Comparative Example 91	81	22.1	11.3	1.7
Comparative Example 92	73	20.7	11.6	1.8
Comparative Example 93	48	19.8	12.5	1.6

Table 31

			Properties
	Produc	ction of water-based paint	of paint
Examples			
and	Kinds of	Kinds of resin	Viscosity
Comparative	black	i	(CP)
Examples	iron-		
	based	•	
	particles		
Example 273	Example	Water-soluble alkyd resin	845
	245	Water-soluble melamine resin	
Example 274	Example	Water-soluble alkyd resin	896
	246	Water-soluble melamine resin	
Example 275	Example	Water-soluble alkyd resin	717
	247	Water-soluble melamine resin	
Example 276	Example	Water-soluble alkyd resin	896
	248	Water-soluble melamine resin	
Example 277	Example	Water-soluble alkyd resin	922
	249	Water-soluble melamine resin	
Example 278	Example	Water-soluble alkyd resin	870
	250	Water-soluble melamine resin	
Example 279	Example	Water-soluble alkyd resin	794
	251	Water-soluble melamine resin	
Example 280	Example	Water-soluble alkyd resin	973
	252	Water-soluble melamine resin	
Example 281	Example	Water-soluble alkyd resin	640
	253	Water-soluble melamine resin	- 1
Example 282	Example	Water-soluble alkyd resin	870
	254	Water-soluble melamine resin	: #
Example 283	Example	Water-soluble alkyd resin	768
	255	Water-soluble melamine resin	
Example 284	Example	Water-soluble alkyd resin	845
	256	Water-soluble melamine resin	
Example 285	Example	Water-soluble alkyd resin	896
	257	Water-soluble melamine resin	
Example 286	Example	Water-soluble alkyd resin	666
	258	Water-soluble melamine resin	
Comparative	Comp.	Water-soluble alkyd resin	717
Example 94	Ex. 88	Water-soluble melamine resin	
Comparative	Comp.	Water-soluble alkyd resin	922
Example 95	Ex. 89	Water-soluble melamine resin	
Comparative	Comp.	Water-soluble alkyd resin	2,560
Example 96	Ex. 90	Water-soluble melamine resin	

Table 31 (continued)

Examples	Properties of coating film			
and	Gloss	Blackness	Acid res	sistance
Comparative		(L* value)	ΔG	Δ L* value
Examples	(%)	(-)	(%)	(-)
Example 273	92	16.6	8.6	0.7
Example 274	96	17.1	8.7	0.8
Example 275	93	17.4	8.2	0.7
Example 276	98	17.6	7.2	0.8
Example 277	90	18.3	8.3	0.7
Example 278	106	17.5	8.1	0.8
Example 279	111	17.3	7.8	0.9
Example 280	96	17.5	4.3	0.3
Example 281	99	17.3	4.0	0.3
Example 282	98	16.8	3.9	0.2
Example 283	97	17.3	2.1	0.2
Example 284	91	18.1	3.6	0.3
Example 285	113	17.5	2.8	0.4
Example 286	113	17.7	2.6	0.3
Comparative Example 94	66	23.6	14.1	2.5
Comparative Example 95	63	22.0	14.8	2.0
Comparative Example 96	46	21.0	14.6	1.9

Examples	Production of resin composition			
and	Black iron-based particles			
Comparative Examples	Kinds	Amount (part by weight)		
Example 287	Example 245	5.0		
Example 288	Example 246	5.0		
Example 289	Example 247	5.0		
Example 290	Example 248	5.0		
Example 291	Example 249	5.0		
Example 292	Example 250	5.0		
Example 293	Example 251	5.0		
Example 294	Example 252	5.0		
Example 295	Example 253	5.0 42		
Example 296	Example 254	5.0		
Example 297	Example 255	5.0		
Example 298	Example 256	5.0		
Example 299	Example 257	5.0		
Example 300	Example 258	5.0		
Comparative Example 97	Comparative Example 88	5.0		
Comparative Example 98	Comparative Example 89	5.0		
Comparative Example 99	Comparative Example 90	5.0		

Table 32 (continued)

5			
10			
15			
20			
25			
30			
<i>35</i>			

0

Examples	Production of resin composition		
and	Resin		
Comparative	Kinds	Amount (part by	
Examples		weight)	
Example 287	Polyvinyl chloride resin	95.0	
Example 288	Polyvinyl chloride resin	95.0	
Example 289	Polyvinyl chloride resin	95.0	
Example 290	Polyvinyl chloride resin	95.0	
Example 291	Polyvinyl chloride resin	95.0	
Example 292	Polyvinyl chloride resin	95.0	
Example 293	Polyvinyl chloride resin	95.0	
Example 294	Polyvinyl chloride resin	95.0	
Example 295	Polyvinyl chloride resin	95.0	
Example 296	Polyvinyl chloride resin	95.0	
Example 297	Polyvinyl chloride resin	95.0	
Example 298	Polyvinyl chloride resin	95.0	
Example 299	Polyvinyl chloride resin	95.0	
Example 300	Polyvinyl chloride resin	95.0	
Comparative Example 97	Polyvinyl chloride resin	95.0	
Comparative Example 98	Polyvinyl chloride resin	95.0	
Comparative Example 99	Polyvinyl chloride resin	95.0	

Table 32 (continued)

Examples	Production of	resin compos	ition
and	Additives	Kneading	
Comparative Examples	Kinds	Amount (part by weight)	temperature (°C)
Example 287	Calcium stearate	1.0	160
Example 288	Calcium stearate	1.0	160
Example 289	Calcium stearate	1.0	160
Example 290	Calcium stearate	1.0	160
Example 291	Calcium stearate	1.0	160
Example 292	Calcium stearate	1.0	160
Example 293	Calcium stearate	1.0	160
Example 294	Calcium stearate	1.0	160
Example 295	Calcium stearate	1.0	160
Example 296	Calcium stearate	1.0	160
Example 297	Calcium stearate	1.0_	160
Example 298	Calcium stearate	1.0	160
Example 299	Calcium stearate	1.0	160
Example 300	Calcium stearate	1.0	160
Comparative Example 97	Calcium stearate	1.0	160
Comparative Example 98	Calcium stearate	1.0	160
Comparative Example 99	Calcium stearate	1.0	160

Table 32 (continued)

Examples	Pro	operties of	resin co	ompositio	n	
and	Dispers-	Blackness	Percentage of area of			
Comparative	ing	(L*	deteriorated and			
Examples	condition	value)	discolored portions wh			
			hea	ted at 19	90°C	
			(S/S	$50) \times 100$	(୫)	
			30	60	90	
	(-)	(-)	minutes	minutes	minutes	
Example 287	5	17.6	0	5	5	
Example 288	5	18.6	0	5	10	
Example 289	5	18.1	0	5	5	
Example 290	4	18.8	0	0	5	
Example 291	4	19.1	0	5	10	
Example 292	4	18.6	0	5	10	
Example 293	5	18.7	0	5	5	
Example 294	5	18.3	0	0	5	
Example 295	5	18.5	0	00	0	
Example 296	5	17.5	0	0	5	
Example 297	5	17.9	0	0	0	
Example 298	5	18.4	0	0	0	
Example 299	5	18.1	0	0	5	
Example 300	5	18.2	0	0	0	
Comparative Example 97	3	24.5	10	15	.25	
Comparative Example 98	3	22.9	15	20	30	
Comparative Example 99	. 3	22.1	15	20	35	

55 Claims

1. Black iron-based composite particles comprising:

- (ii) a coating layer on the surface of said particles, said coating layer comprising an organosilicon compound which is:
 - (1) an organosilane compound obtainable by drying or heat-treating an alkoxysilane compound,
 - (2) a polysiloxane or modified polysiloxane, or
 - (3) a fluoroalkyl organosilane compound obtainable by drying or heat-treating a fluoroalkylsilane compound; and
- (iii) carbon black fine particles having an average particle size of 0.005 to $0.05 \,\mu m$, adhered on at least a part of said coating layer,

the amount of said carbon black fine particles adhered being 1 to 30 parts by weight based on 100 parts by weight of said particles (i).

- Composite particles according to claim 1, which further comprise an underlayer formed between said particle (i)
 and said coating layer (ii), comprising a hydroxide of aluminum, oxide of aluminum, hydroxide of silicon or oxide
 of silicon.
- 3. Composite particles according to claim 2, wherein the amount of said hydroxide of aluminum or silicon, or oxide of aluminum or silicon is 0.01 to 50 % by weight, calculated as AI or SiO₂, based on the weight of said black iron oxide particles or black iron oxide hydroxide particles.
- 4. Composite particles according to any one of the preceding claims, wherein said modified polysiloxane is
 - (A) a polysiloxane modified with a polyether, polyester or epoxy compound: or
 - (B) a polysiloxane whose molecular terminal is modified with a carboxylic acid group, alcohol group or a hydroxyl group.
- 5. Composite particles according to claim 4, wherein said polysiloxane (A) is of formula (III), (IV) or (V):

wherein R^3 is -(-CH₂-)_h-; R^4 is -(-CH₂-)_i-CH₃; R^5 is -OH, -COOH, -CH=CH₂, -CH(CH₃)=CH₂ or -(-CH₂-)_j-CH₃; R^6 is -(-CH₂-)_k-CH₃: g and h are each independently an integer of from 1 to 15: i, j and k are each independently an integer of from 0 to 15; e is an integer of from 1 to 50: and f is an integer of from 1 to 300:

wherein R^7 , R^8 and R^9 are each -(-CH₂-)_q- and may be the same or different: R^{10} is -OH, -COOH, -CH=CH₂, -CH

5

10

15

20

25

30

35

40

45

50

(CH₃)=CH₂ or-(-CH₂-)_r-CH₃; R¹¹ is -(-CH₂-)_s-CH₃; n and q are each independently an integer of from 1 to 15; r and s are each independently an integer of from 0 to 15; e' is an integer of from 1 to 50; and f' is an integer of from 1 to 300; or

- wherein R¹² is -(-CH₂-)_v-; v is an integer of from 1 to 15; t is an integer of from 1 to 50; and u is an integer of from 1 to 300.
- 6. Composite particles according to claim 4 or 5, wherein said polysiloxane (B) is of formula (VI):

$$R^{13} - \begin{array}{c} CH_{3} & CH_{3} & CH_{3} \\ Si - O + CH_{3} & CH_{3} & CH_{3} & CH_{3} \end{array}$$

$$CH_{3} + CH_{3} + CH$$

- wherein R¹³ and R¹⁴ are each -OH, R¹⁶OH or R¹⁷COOH and may be the same or different; R¹⁵ is -CH₃ or -C₆H₅; R¹⁶ and R¹⁷ are each independently -(-CH₂-)_y-; y is an integer of from 1 to 15; w is an integer of from 1 to 200; and x is an integer of from 0 to 100.
- 7. Composite particles according to any one of the preceding claims, wherein said alkoxysilane compound is of formula (I):

$$R^{1}_{a}SiX_{4-a} \tag{I}$$

- wherein R^1 is $C_6H_{5^-}$, $(CH_3)_2CHCH_2$ or n- C_mH_{2m+1} (wherein m is an integer of from 1 to 18): X is CH_3O or C_2H_5O -; and a is an integer of from 0 to 3.
- 40 8. Composite particles according to claim 7, wherein said alkoxysilane compound is methyl triethoxysilane, dimethyl diethoxysilane, tetraethoxysilane, phenyl triethoxysilane, diphenyl diethoxysilane, methyl trimethoxysilane, dimethyl dimethoxysilane, isobutyl trimethoxysilane, diphenyl dimethoxysilane, isobutyl trimethoxysilane or decyl trimethoxysilane.
- 9. Composite particles according to any one of the preceding claims wherein said polysiloxane is of formula (II):

$$CH_{3} - \stackrel{C}{\text{Si}} - O - \left(- \stackrel{R^{2}}{\text{Si}} - O - \stackrel{CH_{3}}{\text{CH}_{3}} \right) CH_{3}$$

$$CH_{3} - \stackrel{C}{\text{Si}} - O - \left(- \stackrel{C}{\text{Si}} - O - \stackrel{C}{\text{CH}_{3}} \right) CH_{3}$$

$$CH_{3} - \stackrel{C}{\text{CH}_{3}} - CH_{3}$$

$$CH_{3} - \stackrel{C}{\text{CH}_{3}} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_$$

- wherein R² is H- or CH₃-, and d is an integer of from 15 to 450.
- 10. Composite particles according to claim 9, wherein said polysiloxane has methyl hydrogen siloxane units.

55

5

10

15

20

25

$$CF_3(CF_2)_zCH_2CH_2(R^{18})_a.SiX_{4-a}$$
 (VII)

wherein R^{18} is CH_3^- , $C_2H_5^-$, CH_3O - or C_2H_5O -: X is CH_3O - or C_2H_5O -: and z is an integer of from 0 to 15; and a' is an integer of from 0 to 3.

- 10 12. Composite particles according to any one of the preceding claims which have:
 - a blackness (L* value) of 15 to 18, and/or a particle size of 0.082 to 1.05 μm, and/or
 - a BET specific surface area value of 1 to 200 m²/g, and/or a geometrical standard deviation of particle sizes of 1.01 to 1.8.
 - 13. Composite particles according to any one of the preceding claims wherein said particles (i) are magnetite particles, manganese-containing hematite particles or manganese-containing goethite particles.
 - 14. Composite particles according to any one of the preceding claims, wherein the amount of said coating organosilicon compound (ii) is 0.02 to 5.0 % by weight, calculated as Si, based on the total weight of the organosilicon compound (ii) and said particles (i).
- 15. A process for producing black iron-based composite particles as claimed in any one of the preceding claims, which process comprises:
 - (a) mixing and stirring said particles (i) together with a silicon-containing compound which is:
 - (1) an alkoxysilane compound,
 - (2) a polysiloxane or modified polysiloxane, or
 - (3) a fluoroalkylsilane compound using an edge runner, thereby coating the surface of said particles (i) with said compound:
 - (b) adding carbon black fine particles having an average particle size of 0.005 to 0.05 μ m in an amount of 1 to 30 parts by weight based on 100 parts by weight of said particles (i), thereby obtaining mixed particles: and (c) mixing and stirring said mixed particles using an edge runner, followed by
 - (d) drying or heat-treating, thereby adhering said carbon black fine particles on the surface of a coating layer comprising the organosilicon compound.
 - 16. A process according to claim 15, wherein said particles (i) have been coated with a hydroxide of aluminum, oxide of aluminum, hydroxide of silicon or oxide of silicon.
 - 17. A paint comprising:

5

15

20

30

35

40

45

said black iron-based composite particles as claimed in any one of claims 1 to 14 or as produced by a process according to claims 15 or 16; and a paint base material.

- 18. A paint according to claim 17, wherein the amount of said composite particles is 1.0 to 100 parts by weight based on 100 parts by weight of said paint base material.
 - 19. A rubber or resin composition comprising:
- said black iron-based composite particles as claimed in any one of claims 1 to 14 or as produced by a process according to claims 15 or 16; and a base material for a rubber or resin composition.

20. A rubber or resin composition according to claim 19, wherein the amount of said composite particles is 0.5 to 200 parts by weight based on 100 parts by weight of said base material.

FIG.1

(×20000)

FIG.2

(×20000)

FIG.3

(×20000)

FIG.4

(×20000)

(11) EP 0 913 431 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 06.10.1999 Bulletin 1999/40

(51) Int Cl.6: **C09C 1/24**, C09D 5/00

(43) Date of publication A2: 06.05.1999 Bulletin 1999/18

(21) Application number: 98308925.1

(22) Date of filing: 30.10.1998

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 31.10.1997 JP 31615097 10.03.1998 JP 7651998

(71) Applicant: TODA KOGYO CORP. Hiroshima-shi Hiroshima-ken (JP) (72) Inventors:

Hayashi, Kazuyuki
 Hiroshima-shi, Hiroshima-ken (JP)

Tanaka, Yasuyuki
 Onoda-shi, Yamaguchi-ken (JP)

• Morii, Hiroko Hiroshima-shi, Hiroshima-ken (JP)

(74) Representative: Sexton, Jane Helen
 J.A. KEMP & CO.
 14 South Square
 Gray's Inn
 London WC1R 5LX (GB)

- (54) Black iron-based composite particles, process for producing the same, paint and rubber or resin composition containing the same
- (57) Black iron-based composite particles of the present invention comprise:
 - (i) black iron oxide particles or black iron oxide hydroxide particles having an average particle size of 0.08 to 1.0 μm_i
 - (ii) a coating layer formed on the surface of said particles(i) said coating layer comprising an organosition compound which is:
 - an organosilane compound obtainable by drying or heat-treating an alkoxysilane compound,
 - (2) a polysiloxane or modified polysiloxane, or

- (3) a fluoroalkyl organosilane compound obtainable by drying or heat-treating a fluoroalkyl-silane compound; and
- (iii) carbon black fine particles having an average particle size of 0.005 to 0.05 μm , adhered on at least a part of said coating layer. Such composite particles have excellent dispersibility in a vehicle, or a rubber or resin composition on the basis of a small amount of the carbon black fine particles which are desorbed from the surface of the composite particles. They also have a high blackness substantially identical to a blackness of carbon black fine particles used alone, even when carbon black is contained therein only in a small amount.

EUROPEAN SEARCH REPORT

Application Number EP 98 30 8925

	DOCUMENTS CONSIDERE Citation of document with indicati		Relevant	CLASSIFICATIO	
Category	of relevant passages		to claim	APPLICATION	
A	FR 2 030 604 A (PFIZER) 13 November 1970 (1970- * page 4, line 15-28; c examples 2,3 *	-11-13)	1,15,17, 1 9	C09C1/24 C09D5/00	
A	GB 1 178 050 A (PFIZER) 14 January 1970 (1970-0) * claims 1-21; examples	01-14)	1,15		
				TECHNICAL FI SEARCHED	ELDS (Int.Cl.5)
				C09C C09D	
	The present search report has been	drawn up for all claims			
Place of search		Date of completion of the search	<u> </u>	Examiner	
	THE HAGUE	12 August 1999	Dro	ouot, M-C	
X:pai X:pai dox A:ted O:no	CATEGORY OF CITED DOCUMENTS ricularly relevant if taken alone ricularly relevant if combined with another rument of the same category mological background n-written disclosure ermediate document	T: theory or principl E: earlier patient do after the filling da D: document ched i L: document cated f 8: member of the sidocument	cument, but pub te n the application or other reasons	lished on, of	

FP OF CORNA 1503 KB CF

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 30 8925

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-08-1999

	Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
FR 2030604 A		13-11-1970	NONE				
		1178050	Α	14-01-1970	US	3619227 A	09-11-1971
		•					

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

THIS PAGE BLANK (USPTO)