

Institute of Technology CSE Department B.E. 5th Semester ANALYSIS AND DESIGN OF ALGORITHMS SUBJECT CODE: 2150703

Unit (1 to 5) <u>Most Frequently Asked Questions</u>

Book 1	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson,		
	Ronald L. Rivest and Clifford Stein, PHI.		
Book 2	Fundamental of Algorithms by Gills Brassard, Paul Bratley, PHI.		
	Design Analysis and Algorithm. By Hari Mohan Pandey		
Book 3	Online Link:		
	http://www.adslwi-fi.com/aa.php?isbn=ISBN:8131803341&name=Design_Analysis_and_Algorithm		
Book 4	Introduction to Design and Analysis of Algorithms, Anany Levitin,		
DOOK 4	Pearson.		

	Question	Page No.	Book No.
1	What is an algorithm? Explain various properties of an algorithm.	1	3
2	Explain Asymptotic Notations. What do you mean by Case, Best Case & Average Case and time complexity and space complexity?	15,16,22,23,27	3
3	Explain the use of Divide and Conquer Technique for Binary Search Method. Give the algorithm for Binary Search Method. What is the complexity of Binary Search Method?	120,121,122,123 And Lecture Note	3
4	Explain Heap Sort with example and also discuss its complexity.	66 to 77, 77 to 81	3

5	Explain Quick Sort Method with example. Give its	Example and	
	Time Complexity.	Analysis :108 to 114	
		•	
		(Book No. 3)	
		For Algo: Lecture	
		Note	
6	Explain how divide and conquer method help	219,220,221	2
	multiplying two large integers.		
7	Explain merge sort with example and evaluate its	Lecture Note	
	complexity.		
8	Give and Explain the Prim's Algorithm to find out	196,197,198	2
	Minimum Spanning Tree with illustration.		_
9	Give and Explain the Kruskal's Algorithm to find	193,194,195	2
	out Minimum Spanning Tree with illustration.		
10	Explain Huffman code with example.	428 to 433	1
11	Explain Dijkstra's algorithm.	658,659,661,662	1
12	Compare Dynamic Programming Technique with		
	Greedy Algorithms.		
13	Explain how to find out Longest Common	390 to 395	1
	Subsequence of two strings using Dynamic		
	Programming method. Find any one Longest		
	Common Subsequence of given two strings using		
	Dynamic Programming.		
	S1=abbacdcba		
	S2=bcdbbcaac		
14	What is Principle of Optimality? Explain its use in	359,378,379	1
	Dynamic Programming Method.		
15	Solve making change problem using DP.	263 to 265	2
	(denominations:d1=1, d2=4, d3=6).		
	Give your answer for making change of Rs. 8.		
16	Solve the following 0/1 Knapsack Problem using	266 to 268	2
	Dynamic Programming.	Examples : Lecture	
	There are five items whose weights and values are	Note Folder	
	given in following arrays.		
	Weight w[] = $\{1,2,5,6,7\}$		
	Value v[] = { 1,6,18, 22, 28 }		
	Show your equation and find out the optimal		
	knapsack items for weight		
	capacity of 11 units.		
		270 . 277	1
17	Using algorithm find an optimal parenthesization	370 to 377	1
	of a matrix chain product whose sequence of		
	dimension is (5,10,3,12,5,50,6) (use dynamic		
	programming).		