Logică matematică CURS 9

Andrei Sipos

Facultatea de Matematică și Informatică, DL Mate, Anul I Semestrul II, 2023/2024

Deducție sintactică

Fie $\Gamma \subseteq E(Q)$. Definim mulțimea **consecințelor sintactice** ale lui Γ ca fiind cea mai mică submulțime A a lui E(Q) ce verifică următoarele proprietăți (definiția are sens, v. "mulțimi Moore"):

- \bullet $\Gamma \subseteq A$;
- pentru orice φ , ψ , $\chi \in E(Q)$, avem:
 - (A1) $\varphi \to (\psi \to \varphi) \in A$;
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \in A$;
 - (A3) $\neg \neg \varphi \rightarrow \varphi \in A$;
- (MP) pentru orice φ , $\psi \in E(Q)$ cu $\varphi \in A$ și $\varphi \to \psi \in A$, avem $\psi \in A$.

Această mulțime tocmai definită se notează cu $Thm(\Gamma)$. Pentru orice $\varphi \in E(Q)$, spunem că din Γ se deduce sintactic φ și scriem $\Gamma \vdash \varphi$ dacă $\varphi \in Thm(\Gamma)$.

Prescurtările (A1)-(A3), (MP) semnifică *Axioma 1-3*, respectiv *Modus (Ponendo-)Ponens*.

Teoreme formale

Definim mulțimea **teoremelor formale** ca fiind cea mai mică submulțime A a lui E(Q) ce verifică următoarele proprietăți (din nou, definiția are sens):

- pentru orice φ , ψ , $\chi \in E(Q)$, avem:
 - (A1) $\varphi \rightarrow (\psi \rightarrow \varphi) \in A$;
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \in A$;
 - (A3) $\neg \neg \varphi \rightarrow \varphi \in A$;
- (MP) pentru orice φ , $\psi \in E(Q)$ cu $\varphi \in A$ și $\varphi \to \psi \in A$, avem $\psi \in A$.

Această mulțime tocmai definită se notează cu Thm. Observăm că $Thm = Thm(\emptyset)$. Pentru orice $\varphi \in E(Q)$, notăm faptul că φ este teoremă formală (i.e. că $\varphi \in Thm = Thm(\emptyset)$, deci $\emptyset \vdash \varphi$) prin $\vdash \varphi$.

Acest mod de a defini deducția sintactică se numește îndeobște sistem deductiv Hilbert.

Inducție pe deducția sintactică

Precum în cazurile anterioare, modul de definire a mulțimii consecințelor sintactice conduce imediat la un principiu de inducție.

Principiul inducției pe deducția sintactică

Fie Γ , $B \subseteq E(Q)$ astfel încât:

- Γ ⊆ B;
- pentru orice φ , ψ , $\chi \in E(Q)$, avem:
 - $\varphi \to (\psi \to \varphi) \in B$;
 - $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \in B$;
 - $\neg \neg \varphi \rightarrow \varphi \in B$;
- pentru orice φ , $\psi \in E(Q)$ cu $\varphi \in B$ și $\varphi \to \psi \in B$, avem $\psi \in B$.

Atunci $Thm(\Gamma) \subseteq B$.

Nu avem, însă, nimic analog proprietății de citire unică, ca urmare nu vom avea niciun principiu de recursie corespunzător.

Corolar

Fie Γ , $\Delta \subseteq E(Q)$ cu $\Gamma \subseteq \Delta$. Atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, i.e. pentru orice $\varphi \in E(Q)$ cu $\Gamma \vdash \varphi$, avem $\Delta \vdash \varphi$.

Demonstrație

Se observă că $Thm(\Delta)$ satisface condițiile impuse pentru mulțimea B din enunțul Principiului inducției pe deducția sintactică.

Corolar

Fie $\Gamma \subseteq E(Q)$. Atunci $Thm \subseteq Thm(\Gamma)$, i.e. pentru orice $\varphi \in E(Q)$ cu $\vdash \varphi$, avem $\Gamma \vdash \varphi$.

$\vdash \varphi \rightarrow \varphi$

Propoziție

Pentru orice $\varphi \in E(Q)$, avem $\vdash \varphi \to \varphi$.

Demonstrație

(1)
$$\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$$

(A2) (cu $\varphi \mapsto \varphi, \ \psi \mapsto \varphi \to \varphi, \ \chi \mapsto \varphi$)

(2)
$$\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$$

(A1) (cu $\varphi \mapsto \varphi, \ \psi \mapsto \varphi \rightarrow \varphi$)

(3)
$$\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$$

(MP): (1), (2)

(4)
$$\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$$

(A1) (cu $\varphi \mapsto \varphi, \ \psi \mapsto \varphi$)

(5)
$$\vdash \varphi \rightarrow \varphi$$
 (MP): (3), (4)

Teorema deducției (sintactice)

Teorema deducției (sintactice)

Pentru orice $\Gamma \subseteq E(Q)$ și φ , $\psi \in E(Q)$, avem că $\Gamma \vdash \varphi \to \psi$ dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$.

Demonstrație

Demonstrăm întâi " \Rightarrow ". Fie $\Gamma \subseteq E(Q)$ și φ , $\psi \in E(Q)$. Presupunem că $\Gamma \vdash \varphi \to \psi$. Atunci avem $\Gamma \cup \{\varphi\} \vdash \varphi \to \psi$. Cum $\varphi \in \Gamma \cup \{\varphi\}$, avem $\Gamma \cup \{\varphi\} \vdash \varphi$, deci obținem, aplicând (MP), că $\Gamma \cup \{\varphi\} \vdash \psi$.

Pentru " \Leftarrow ", fie $\Gamma \subseteq E(Q)$ și $\varphi \in E(Q)$ și notăm $\Sigma := \{ \psi \in E(Q) \mid \Gamma \vdash \varphi \to \psi \}$. Ceea ce trebuie să demonstrăm este că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. O vom face prin inducție pe deducția sintactică.

Teorema deducției (sintactice)

Demonstrație (cont.)

Fie $\psi \in \Gamma \cup \{\varphi\}$. Distingem două subcazuri. Dacă $\psi \in \Gamma$, atunci $\Gamma \vdash \psi$. Din (A1), avem $\Gamma \vdash \psi \to (\varphi \to \psi)$, iar aplicând (MP) obţinem $\Gamma \vdash \varphi \to \psi$, deci $\psi \in \Sigma$. Dacă $\psi = \varphi$, atunci, din propoziţia anterioară, avem $\vdash \varphi \to \varphi$, deci $\Gamma \vdash \varphi \to \psi$, deci, din nou, $\psi \in \Sigma$.

Cazurile corespunzătoare axiomelor se tratează exact ca subcazul " $\psi \in \Gamma$ " de mai sus.

Rămâne cazul când avem $\psi \in \Sigma$ și $\psi \to \chi \in \Sigma$, deci avem $\Gamma \vdash \varphi \to \psi$, respectiv $\Gamma \vdash \varphi \to (\psi \to \chi)$, și vrem $\chi \in \Sigma$. Din (A2), avem

$$\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)),$$

iar aplicând (MP) de două ori, obținem $\Gamma \vdash \varphi \rightarrow \chi$, i.e. $\chi \in \Sigma$.

Propoziție

Pentru orice φ , ψ , $\chi \in E(Q)$,

$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)).$$

Demonstrație

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)
(5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (MP): (3), (4).

Aplicând apoi Teorema deducției de trei ori, obținem:

(6)
$$\{\varphi \to \psi, \psi \to \chi\}$$
 $\vdash \varphi \to \chi$

(7)
$$\{\varphi \to \psi\}$$
 $\vdash (\psi \to \chi) \to (\varphi \to \chi)$

(8)
$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$

Propoziție

Pentru orice $\Gamma \subseteq E(Q)$ și φ , ψ , $\chi \in E(Q)$ cu $\Gamma \vdash \varphi \to \psi$ și $\Gamma \vdash \psi \to \chi$, avem $\Gamma \vdash \varphi \to \chi$.

Demonstrație

Avem:

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 Ipoteză

(2)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$
 Prop. precedentă

(3)
$$\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$$
 (MP): (1), (2)

(4)
$$\Gamma \vdash \psi \rightarrow \chi$$
 Ipoteză

(5)
$$\Gamma \vdash \varphi \rightarrow \chi$$
 (MP): (3), (4).

Metoda reducerii la absurd

Propoziție

Pentru orice $\Gamma \subseteq E(Q)$ și $\varphi \in E(Q)$ cu $\Gamma \cup \{\neg \varphi\} \vdash \bot$, avem $\Gamma \vdash \varphi$.

Demonstrație

Avem:

- (1) $\Gamma \cup \{\neg \varphi\} \vdash \bot$ Ipoteză
- (2) $\Gamma \vdash \neg \neg \varphi$ Teorema deducției
- (3) $\Gamma \vdash \neg \neg \varphi \to \varphi \quad (A3)$
- (4) $\Gamma \vdash \varphi$ (MP): (2), (3).

Rezultatele din următoarea propoziție se vor demonstra la seminar.

Propoziție

Fie φ , $\psi \in E(Q)$. Atunci avem:

- $\bullet \vdash \psi \rightarrow (\neg \varphi \rightarrow \neg (\psi \rightarrow \varphi));$
- $\bullet \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi);$
- $\bullet \vdash \neg \psi \rightarrow (\psi \rightarrow \varphi);$
- $\bullet \vdash (\neg \varphi \to \varphi) \to \varphi.$

Propoziție

Pentru orice $\Gamma \subseteq E(Q)$ și φ , $\psi \in E(Q)$ cu $\Gamma \cup \{\psi\} \vdash \varphi$ și $\Gamma \cup \{\neg \psi\} \vdash \varphi$, avem $\Gamma \vdash \varphi$.

Demonstrație

(1)	$\Gamma \cup \{\psi\}$	$\vdash \varphi$	lpoteză
(2)	Γ	$\vdash \psi \rightarrow \varphi$	Teorema deducției
(3)	$\Gamma \cup \{\neg \psi\}$	$\vdash \varphi$	lpoteză
(4)	Γ	$\vdash \neg \psi \rightarrow \varphi$	Teorema deducției
(5)	Γ	$\vdash (\psi \to \varphi) \to (\neg \varphi \to \neg \psi)$	Prop. precedentă
(6)	Γ	$\vdash \neg \varphi \rightarrow \neg \psi$	(MP): (2), (5)
(7)	Γ	$\vdash \neg \varphi \rightarrow \varphi$	P. ant.: (4), (6)
(8)	Γ	$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$	Prop. precedentă
(9)	Γ	$\vdash \varphi$	(MP): (7), (8).

Teorema de corectitudine

Apare acum problema firească de a determina legătura dintre semnele \vdash și \models , adică dintre deducția sintactică și deducția semantică. Un prim răspuns este dat de următorul rezultat.

Teorema de corectitudine

Pentru orice $\Gamma \subseteq E(Q)$ și $\varphi \in E(Q)$ cu $\Gamma \vdash \varphi$, avem $\Gamma \models \varphi$.

Demonstrație

Fie $\Gamma \subseteq E(Q)$ și notăm $\Sigma := \{ \varphi \in E(Q) \mid \Gamma \models \varphi \}$. Vom demonstra că $Thm(\Gamma) \subseteq \Sigma$ prin inducție pe deducția sintactică.

Dacă $\varphi \in \Gamma$, atunci, clar, pentru orice $e \in 2^Q$ cu $e \models \Gamma$, avem că $e \models \varphi$, deci $\Gamma \models \varphi$, i.e. $\psi \in \Sigma$.

Cazurile corespunzătoare axiomelor rămân ca exercițiu.

Teorema de corectitudine

Demonstrație (cont.)

Rămâne cazul când avem $\psi \in \Sigma$ și $\psi \to \chi \in \Sigma$, deci avem $\Gamma \models \psi$, respectiv $\Gamma \models \psi \to \chi$, și vrem $\chi \in \Sigma$, i.e. $\Gamma \models \chi$. Fie $e \in 2^Q$ cu $e \models \Gamma$. Atunci $e \models \psi$, deci $e^+(\psi) = 1$, și $e \models \psi \to \chi$, deci

$$1 = e^{+}(\psi \to \chi) = e^{+}(\psi) \to e^{+}(\chi) = 1 \to e^{+}(\chi).$$

Rezultă că $e^+(\chi) = 1$, i.e. $e \models \chi$, ceea ce trebuia demonstrat.

Corolar

Pentru orice $\varphi \in E(Q)$ cu $\vdash \varphi$, avem $\models \varphi$.

Mulțimi consistente

Spunem că $\Gamma \subseteq E(Q)$ este **consistentă** dacă $\Gamma \not\vdash \bot$, și **inconsistentă** dacă $\Gamma \vdash \bot$.

Observăm că $\{\bot\} \vdash \bot$, deci $\{\bot\}$ este inconsistentă și că $\bot \in E(Q)$, deci $E(Q) \vdash \bot$ și, prin urmare, E(Q) este inconsistentă.

Presupunem că am avea $\vdash \bot$. Atunci Teorema de corectitudine ne spune că $\models \bot$. Luând $e \in 2^Q$ oarecare, obţinem $e \models \bot$, contradicție. Așadar, $\emptyset \not\vdash \bot$ și deci \emptyset este consistentă.

Teorema de corectitudine – versiunea 2

Orice mulțime satisfiabilă este consistentă.

Demonstrație

Fie $\Gamma \subseteq E(Q)$ satisfiabilă. Atunci $\Gamma \not\models \bot$, deci $\Gamma \not\models \bot$, i.e. Γ este consistentă.

Notație,

Pentru orice $v \in Q$ și $e : Q \rightarrow 2$, vom defini

$$v^e := egin{cases} v, & \mathsf{dac} \check{a} \; e(v) = 1, \
eg v, & \mathsf{dac} \check{a} \; e(v) = 0, \end{cases}$$

şi, clar, $e^+(v^e)=1$. În plus, pentru orice $W\subseteq Q$ şi $e:Q\to 2$, notăm $W^e:=\{v^e\mid v\in W\}$.

O propoziție ajutătoare

Rezultatul care urmează arată o primă legătură în sens opus, de la \models la \vdash .

Propoziție

Fie $e: Q \to 2$ și $\varphi \in E(Q)$. Atunci:

- dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$;
- dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Demonstratie

Demonstrăm prin inducție pe formule.

Fie $v \in Q$ și demonstrăm pentru $\varphi := v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$. Dacă e(v) = 1, atunci $v^e = v$, deci $\{v^e\} \vdash v$. Dacă e(v) = 0, atunci $v^e = \neg v$, deci $\{v^e\} \vdash \neg v$.

O propoziție ajutătoare

Demonstrație (cont.)

Demonstrăm acum pentru $\varphi := \bot$. Cum $e^+(\varphi) = 0$ și $Var(\varphi) = \emptyset$, trebuie să arătăm că $\vdash \bot \to \bot$, lucru pe care îl știm.

Fie acum ψ , χ formule pentru care este adevărată concluzia. Vom demonstra că este adevărată și pentru $\varphi := \psi \to \chi$. Avem $Var(\varphi) = Var(\psi) \cup Var(\chi)$, deci $Var(\psi)^e \subseteq Var(\varphi)^e$ și $Var(\chi)^e \subseteq Var(\varphi)^e$.

Dacă $e^+(\psi \to \chi) = 0$, atunci $e^+(\psi) = 1$ și $e^+(\chi) = 0$. Din ipoteza de inducție pentru ψ și $Var(\psi)^e \subseteq Var(\varphi)^e$, avem $Var(\varphi)^e \vdash \psi$. Similar, avem $Var(\varphi)^e \vdash \neg \chi$. Dar dintr-o propoziție anterioară, avem $\vdash \psi \to (\neg \chi \to \neg (\psi \to \chi))$. Aplicând (MP) de două ori, obținem $Var(\varphi)^e \vdash \neg (\psi \to \chi)$, i.e. $Var(\varphi)^e \vdash \neg \varphi$, ceea ce trebuia demonstrat.

O propoziție ajutătoare

Demonstrație (cont.)

Dacă
$$e^+(\psi \to \chi) = 1$$
, atunci $e^+(\psi) = 0$ sau $e^+(\chi) = 1$.

In primul caz, obţinem, din ipoteza de inducţie pentru ψ , $Var(\psi)^e \vdash \neg \psi$. Dintr-o propoziţie anterioară, avem $\vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$, deci, aplicând (MP), avem $Var(\psi)^e \vdash \psi \rightarrow \chi$, deci $Var(\varphi)^e \vdash \psi \rightarrow \chi$.

În al doilea caz, obținem, din ipoteza de inducție pentru χ , $Var(\chi)^e \vdash \chi$. Din (A1), avem $\vdash \chi \to (\psi \to \chi)$, deci, aplicând (MP), avem $Var(\chi)^e \vdash \psi \to \chi$, deci $Var(\varphi)^e \vdash \psi \to \chi$.

Teorema de completitudine

Teorema de completitudine (slabă)

Pentru orice $\varphi \in E(Q)$ cu $\models \varphi$, avem $\vdash \varphi$.

Demonstrație

Fie φ o tautologie. Din propoziția precedentă, avem că există $W\subseteq Q$ finită (am luat $W:=Var(\varphi)$) astfel încât, pentru orice $e\in 2^Q$, avem $W^e\vdash \varphi$ (*). Luăm W de cardinal **minim** cu proprietatea (*) și vom arăta $W=\emptyset$, de unde va rezulta concluzia.

Presupunem că $W \neq \emptyset$ și, deci, există U și x cu $W = U \cup \{x\}$ și $x \notin U$. Vom arăta că U satisface proprietatea (*), ceea ce va contrazice minimalitatea lui W.

Teorema de completitudine

Demonstrație (cont.)

Fie $e \in 2^Q$. Trebuie să arătăm că $U^e \vdash \varphi$. Considerăm evaluarea $f: Q \to 2$, definită, pentru orice $v \neq x$, prin f(v) := e(v), iar $f(x) := \neg e(x)$. Rezultă că, pentru orice $v \in U$, $v^f = v^e$ și

$$x^f = \begin{cases} \neg x, & \text{dacă } x^e = x, \\ x, & \text{dacă } x^e = \neg x. \end{cases}$$

Aplicând proprietatea (*) a lui W, pe rând, pentru e și f, obținem $U^e \cup \{x\} \vdash \varphi$ și $U^e \cup \{\neg x\} \vdash \varphi$. Aplicăm acum o propoziție anterioară pentru a concluziona că $U^e \vdash \varphi$.

Acest argument se datorează lui Kalmár (1935).

Teorema de completitudine medie

Teorema de completitudine medie

Pentru orice $\Delta \subseteq E(Q)$ finită și $\varphi \in E(Q)$ cu $\Delta \models \varphi$, avem $\Delta \vdash \varphi$.

Demonstrație

Demonstrăm prin inducție după cardinalul lui Δ . Cazul $|\Delta|=0$, i.e. $\Delta=\emptyset$, este exact Teorema de completitudine slabă.

Presupunem acum că există $n \in \mathbb{N}$ astfel încât $|\Delta| = n^+$. Atunci există $\Gamma \subseteq E(Q)$ și $\psi \in E(Q)$ cu $|\Gamma| = n$ și $\Delta = \Gamma \cup \{\psi\}$. Cum $\Gamma \cup \{\psi\} \models \varphi$, avem $\Gamma \models \psi \to \varphi$. Din ipoteza de inducție, avem $\Gamma \vdash \psi \to \varphi$. Aplicând Teorema deducției, obținem $\Gamma \cup \{\psi\} \vdash \varphi$, i.e. $\Delta \vdash \varphi$.

Teorema de completitudine extinsă (tare)

Teorema de completitudine tare

Pentru orice $\Gamma \subseteq E(Q)$ și $\varphi \in E(Q)$ cu $\Gamma \models \varphi$, avem $\Gamma \vdash \varphi$.

Demonstrație

Din Teorema de compacitate, există $\Delta \subseteq \Gamma$ finită cu $\Delta \models \varphi$. Din Teorema de completitudine medie, avem $\Delta \vdash \varphi$, deci $\Gamma \vdash \varphi$.

Teorema de completitudine tare – versiunea 2

Orice mulțime consistentă este satisfiabilă.

Demonstrație

Fie $\Gamma \subseteq E(Q)$ consistentă. Atunci $\Gamma \not\vdash \bot$, deci, din Teorema de completitudine tare, $\Gamma \not\models \bot$. Ca urmare, Γ este satisfiabilă.

A se observa (din nou) că numai în Teorema de completitudine tare s-a folosit Axioma alegerii (în forma mai slabă a Teoremei de existență a ultrafiltrului, via apelul la Teorema de compacitate).

Teorema generală

În unele cărți, prin Teorema de completitudine se înțelege enunțul cumulat al Teoremei de corectitudine și al Teoremei de completitudine tare.

Teorema de completitudine – sumar

• Pentru orice $\Gamma \subseteq E(Q)$ și $\varphi \in E(Q)$, avem

$$\Gamma \vdash \varphi \Leftrightarrow \Gamma \models \varphi.$$

 O mulțime este consistentă dacă și numai dacă este satisfiabilă.