FRACTURE MECHANICS

Piet Schreurs

Eindhoven University of Technology Department of Mechanical Engineering Materials Technology August 29, 2014

INDEX

back to index

- Introduction
- Fracture mechanisms
- Ductile/brittle
- Theoretical strength
- Experimental techniques
- Energy balance
- Linear elastic stress analysis
- Crack tip stresses
- Multi-mode loading
- Crack growth direction
- Crack growth rate
- Plastic crack tip zone
- Nonlinear fracture mechanics
- Numerical fracture mechanics
- Fatigue
- Engineering plastics

() 2 / 290

INTRODUCTION

back to index

Introduction

5 / 290

Continuum mechanics

() 6 / 290

Continuum mechanics

- volume / area
- base vectors
- position vector
- displacement vector
- strains
- compatibility relations
- equilibrium equations
- density
- load/mass
- boundary conditions
- material model

$$\begin{aligned} V_0, V & / A_0, A \\ \{\vec{e}_1, \vec{e}_2, \vec{e}_3\} \\ \vec{x}_0, \vec{x} \\ \vec{u} \\ \varepsilon_{kl} &= \frac{1}{2}(u_{k,l} + u_{l,k}) \\ \sigma_{ij,j} + \rho q_i &= 0 \\ \rho \\ q_i \\ p_i &= \sigma_{ii} n_i \end{aligned} ; \qquad \sigma_{ij} = \sigma_{ji}$$

7 / 290

 $\sigma_{ii} = N_{ii}(\varepsilon_{kl})$

Material behavior

8 / 290

Stress-strain curves

() 9 / 290

Fracture

() 10 / 290

Fracture mechanics

questions:

- ullet when crack growth ? (o crack growth criteria)
- crack growth rate ?
- residual strength ?
- life time ?
- inspection frequency ?
- repair required ?

fields of science:

- material science and chemistry
- theoretical and numerical mathematics
- experimental and theoretical mechanics

11 / 290

Overview of fracture mechanics

- LEFM (Linear Elastic Fracture Mechanics)
 - energy balance
 - crack tip stresses
 - SSY (Small Scale Yielding)
- DFM (Dynamic Fracture Mechanics)
- NLFM (Non-Linear Fracture Mechanics)
 EPFM (Elasto-Plastic Fracture Mechanics)
- Numerical methods : EEM / BEM
- Fatigue (HCF / LCF)
- CDM (Continuum Damage Mechanics)
- Micro mechanics
 - micro-cracks (intra grain)
 - voids (intra grain)
 - cavities at grain boundaries
 - rupture & disentangling of molecules
 - rupture of atomic bonds
 - dislocation slip

() 12 / 290

Experimental fracture mechanics

Linear elastic fracture mechanics

()

Dynamic fracture mechanics

Nonlinear fracture mechanics

- CTOD
- J-integral

() 16 / 290

Numerical techniques

Fatigue

() 18 / 290

Objectives

Insight in:

- crack growth mechanisms
- brittle / ductile
- energy balance
- crack tip stresses
- crack growth direction
- plastic crack tip zone
- crack growth speed
- nonlinear fracture mechanics
- numerical methods
- fatigue

() 19 / 290

FRACTURE MECHANISMS

back to index

Fracture mechanisms

- shear fracture
- cleavage fracture
- fatigue fracture
- crazing
- de-adhesion

() 21 / 290

Shearing

 $\mathsf{dislocations} \quad \to \quad \mathsf{voids} \quad \to \quad \mathsf{crack}$

 $\mathsf{dimples} \quad \to \quad \mathsf{load} \; \mathsf{direction}$

() 22 / 290

Dimples

() 23 / 290

Cleavage

- intra-granular
 - HCP-, BCC-crystal
 - ► T low
 - ἐ high
 - 3D-stress state
- inter-granular
 - weak grain boundary
 - environment (H₂)
 - ► T high

() 24 / 290

Fatigue

clam shell pattern

striations

Crazing

- stress whitening
- crazing materials : PS, PMMA

() 26 / 290

DUCTILE/BRITTLE

back to index

Ductile - brittle behavior

- surface energy : γ $\text{[Jm}^{-2}]$ solids : $\gamma \approx 1 \text{ [Jm}^{-2}]$
- independent from cleavage/shearing
- ex.: alloyed steels; rubber

() 28 / 290

Charpy v-notch test

Charpy Cv-value

- Impact Toughness
 Nil Ductility Temperature
- Nil Fracture Appearance Transition Temperature
- Nil Fracture Transition Plastic

NDT $FATT(T_t)$

FTP

() 30 / 290

THEORETICAL STRENGTH

back to index

Theoretical strength

$$f(x) = f_{max} \sin\left(\frac{2\pi x}{\lambda}\right)$$
; $x = r - a_0$
 $\sigma(x) = \frac{1}{5} \sum f(x) = \sigma_{max} \sin\left(\frac{2\pi x}{\lambda}\right)$

() 32 / 290

Energy balance

available elastic energy per surface-unity [N m⁻¹]

$$U_{i} = \frac{1}{S} \int_{x=0}^{x=\lambda/2} \sum_{x=0}^{f(x)} dx$$

$$= \int_{x=0}^{x=\lambda/2} \sigma_{max} \sin\left(\frac{2\pi x}{\lambda}\right) dx$$

$$= \sigma_{max} \frac{\lambda}{\pi} \qquad [Nm^{-1}]$$

required surface energy

$$U_a = 2\gamma$$
 [Nm⁻¹]

energy balance at fracture

$$U_i = U_a \qquad \rightarrow \qquad \lambda = \frac{2\pi\gamma}{\sigma_{max}} \qquad \rightarrow \ \sigma = \sigma_{max} \sin\left(\frac{x}{\gamma}\sigma_{max}\right)$$

() 33 / 290

Approximations

linearization

$$\sigma = \sigma_{max} \sin \left(\frac{x}{\gamma} \sigma_{max} \right) \approx \frac{x}{\gamma} \sigma_{max}^2$$

linear strain of atomic bond

$$\epsilon = \frac{x}{a_0} \qquad \rightarrow \qquad x = \epsilon a_0 \quad \rightarrow \quad \sigma = \frac{\epsilon a_0}{\gamma} \sigma_{\textit{max}}^2$$

elastic modulus

$$\begin{split} E &= \left. \left(\frac{d\sigma}{d\epsilon} \right) \right|_{x=0} = \left. \left(\frac{d\sigma}{dx} \, a_0 \right) \right|_{x=0} = \sigma_{max}^2 \, \frac{a_0}{\gamma} \\ \sigma_{max} &= \sqrt{\frac{E\gamma}{a_0}} \end{split}$$

theoretical strength

$$\sigma_{th} = \sqrt{\frac{E\gamma}{a_0}}$$

34 / 290

Discrepancy with experimental observations

	<i>a</i> ₀ [m]	E [GPa]	σ_{th} [GPa]	$\sigma_b \; [MPa]$	σ_{th}/σ_b
glass steel silica fibers iron whiskers silicon whiskers alumina whiskers ausformed steel piano wire	$3*10^{-10}$ 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-10}	60 210 100 295 165 495 200 200	14 45 31 54 41 70 45	170 250 25000 13000 6500 15000 3000 2750	82 180 1.3 4.2 6.3 4.7 15

discrepancy with experiments

35 / 290

Griffith's experiments

() 36 / 290

Crack loading modes

Mode I = opening mode Mode II = sliding mode Mode III = tearing mode

() 37 / 290

EXPERIMENTAL TECHNIQUES

back to index

Surface cracks

- dye penetration
 - small surface cracks
 - ▶ fast and cheap
 - on-site
- magnetic particles
 - lacks cracks ightarrow disturbance of magnetic field
 - surface cracks
 - for magnetic materials only
- eddy currents
 - impedance change of a coil
 - penetration depth : a few mm's
 - difficult interpretation

() 39 / 290

Electrical resistance

X-ray

orientation dependency

() 41 / 290

Ultrasound

() 42 / 290

Acoustic emission

registration "intern" sounds (hits)

Adhesion tests

ENERGY BALANCE

back to index

Energy balance

$$\begin{split} \dot{U}_{e} &= \dot{U}_{i} + \dot{U}_{a} + \dot{U}_{d} + \dot{U}_{k} \qquad [Js^{-1}] \\ \frac{d}{dt}(\cdot) &= \frac{dA}{dt} \frac{d}{dA}(\cdot) = \dot{A} \frac{d}{dA}(\cdot) \\ \frac{dU_{e}}{da} &= \frac{dU_{i}}{da} + \frac{dU_{a}}{da} + \frac{dU_{d}}{da} + \frac{dU_{k}}{da} \qquad [Jm^{-1}] \\ \hline \frac{dU_{e}}{da} &- \frac{dU_{i}}{da} &= \frac{dU_{a}}{da} + \frac{dU_{d}}{da} + \frac{dU_{k}}{da} \qquad [Jm^{-1}] \end{split}$$

() 46 / 290

Griffith's energy balance

- no dissipation
- no kinetic energy

$$\frac{dU_e}{da} - \frac{dU_i}{da} = \frac{dU_a}{da}$$

$$G = \frac{1}{B} \left(\frac{dU_e}{da} - \frac{dU_i}{da} \right) \quad [Jm^{-2}]$$

$$R = \frac{1}{B} \left(\frac{dU_a}{da} \right) = 2\gamma \quad [Jm^{-2}]$$

$$R = \frac{1}{B} \left(\frac{dU_a}{da} \right) = 2\gamma \qquad [Jm^{-2}]$$

Griffith's crack criterion

$$G=R=2\gamma$$

 $[\mathsf{Jm}^{-2}]$

Griffith's energy balance

() 48 / 290

Griffith stress

$$U_i = 2\pi a^2 B \frac{1}{2} \frac{\sigma^2}{E}$$
; $U_a = 4aB \gamma$ [Nm = J]
 $G = -\frac{1}{B} \left(\frac{dU_i}{da} \right) = \frac{1}{B} \left(\frac{dU_a}{da} \right) = R$ \rightarrow $2\pi a \frac{\sigma^2}{E} = 4\gamma$ [Jm⁻²]

Griffith stress

$$\sigma_{gr} = \sqrt{\frac{2\gamma E}{\pi a}}$$
 ; critical crack length $a_c = \frac{2\gamma E}{\pi \sigma^2}$

Griffith stress: plane stress

$$\sigma_{gr} = \sqrt{\frac{2\gamma E}{(1 - \nu^2)\pi a}}$$

Discrepancy with experimental observations

$$\sigma_{gr} \ll \sigma_c$$

reason remedy neglection of dissipation measure critical energy release rate G_c

$$\begin{array}{lll} \text{glass} & G_c = 6 & \text{[Jm$^{-2}$]} \\ \text{wood} & G_c = 10^4 & \text{[Jm$^{-2}$]} \\ \text{steel} & G_c = 10^5 & \text{[Jm$^{-2}$]} \\ \text{composite} & \end{array}$$

design problem / high alloyed steel / bone (elephant and mouse)

$$G = \frac{1}{B} \left(\frac{dU_e}{da} - \frac{dU_i}{da} \right) = R = G_c$$

critical crack length
$$a_c = \frac{G_c E}{2\pi\sigma^2}$$
 ; Griffith's crack crite- $G = G_c$

Compliance change

compliance : C = u/F

Compliance change: Fixed grips

fixed grips :
$$dU_e=0 \label{eq:dUe}$$

$$dU_i = U_i(a + da) - U_i(a)$$

$$= \frac{1}{2}(F + dF)u - \frac{1}{2}Fu$$

$$= \frac{1}{2}udF$$

$$(< 0)$$

Griffith's energy balance

$$G = -\frac{1}{2B}u\frac{dF}{da} = \frac{1}{2B}\frac{u^2}{C^2}\frac{dC}{da}$$
$$= \frac{1}{2B}F^2\frac{dC}{da}$$

Compliance change: Constant load

constant load

$$dU_e = U_e(a + da) - U_e(a) = Fdu$$

$$dU_i = U_i(a + da) - U_i(a) \qquad (>0)$$

$$= \frac{1}{2}F(u + du) - \frac{1}{2}Fu$$

$$= \frac{1}{2}Fdu$$

Griffith's energy balance

$$G = \frac{1}{2B} F \frac{du}{da}$$
$$= \frac{1}{2B} F^2 \frac{dC}{da}$$

Compliance change: Experiment

$$G = \frac{\text{shaded area}}{a_4 - a_3} \; \frac{1}{B}$$

no fixed grips AND no constant load BUT small deviation !!

Example

$$u = \frac{Fa^3}{3EI} = \frac{4Fa^3}{EBh^3} \qquad \rightarrow \qquad C = \frac{\Delta u}{F} = \frac{2u}{F} = \frac{8a^3}{EBh^3} \qquad \rightarrow \qquad \frac{dC}{da} = \frac{24a^2}{EBh^3}$$

$$G = \frac{1}{B} \left[\frac{1}{2} F^2 \frac{dC}{da} \right] = \frac{12F^2a^2}{EB^2h^3} \qquad [\text{J m}^{-2}]$$

$$G_c = 2\gamma$$
 \rightarrow $F_c = \frac{B}{a}\sqrt{\frac{1}{6}\gamma Eh^3}$

Example

question : which h(a) makes $\frac{dC}{da}$ independent from a?

$$C = \frac{\Delta u}{F} = \frac{2u}{F} = \frac{8a^3}{EBh^3} \rightarrow \frac{dC}{da} = \frac{24a^2}{EBh^3}$$
choice : $h = h_0 a^n \rightarrow u = \frac{Fa^3}{3(1-n)EI} = \frac{4Fa^3}{(1-n)EBh^3} = \frac{4Fa^{3(1-n)}}{(1-n)EBh_0^3}$

$$C = \frac{2u}{F} = \frac{8a^{3(1-n)}}{(1-n)EBh_0^3} \rightarrow \frac{dC}{da} = \frac{24a^{(2-3n)}}{EBh_0^3}$$

$$\frac{dC}{da} \text{ constant for } n = \frac{2}{3} \rightarrow h = h_0 a^{\frac{2}{3}}$$

LINEAR ELASTIC STRESS ANALYSIS

back to index

Deformation

$$x_{i} = X_{i} + u_{i}(X_{i})$$

$$x_{i} + dx_{i} = X_{i} + dX_{i} + u_{i}(X_{i} + dX_{i}) = X_{i} + dX_{i} + u_{i}(X_{i}) + u_{i,j}dX_{j}dx_{i}$$

$$= dX_{i} + u_{i,j}dX_{j} = (\delta_{ij} + u_{i,j})dX_{j}$$

$$ds = ||d\vec{x}|| = \sqrt{dx_{i}dx_{i}} \qquad ; \qquad dS = ||d\vec{X}|| = \sqrt{dX_{i}dX_{i}}$$

Strains

linear strains

$$ds^2 = dx_i dx_i = [(\delta_{ij} + u_{i,j}) dX_j][(\delta_{ik} + u_{i,k}) dX_k]$$

$$= (\delta_{ij} \delta_{ik} + \delta_{ij} u_{i,k} + u_{i,j} \delta_{ik} + u_{i,j} u_{i,k}) dX_j dX_k$$

$$= (\delta_{jk} + u_{j,k} + u_{k,j} + u_{k,j} u_{k,j}) dX_i dX_j$$

$$= (\delta_{ij} + u_{i,j} + u_{j,i} + u_{k,i} u_{k,j}) dX_i dX_j$$

$$= dX_i dX_i + (u_{i,j} + u_{j,i} + u_{k,i} u_{k,j}) dX_i dX_j$$

$$= dS^2 + (u_{i,j} + u_{j,i} + u_{k,i} u_{k,j}) dX_i dX_j$$

$$= dS^2 - dS^2 = (u_{i,j} + u_{j,i} + u_{k,i} u_{k,j}) dX_i dX_j$$

$$= 2\gamma_{ij} dX_i dX_j$$
Green-Lagrange strains
$$\gamma_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i} + u_{k,i} u_{k,j})$$
linear strains
$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

Compatibility

$$\begin{aligned} 2\epsilon_{12,12} - \epsilon_{11,22} - \epsilon_{22,11} &= 0 \\ 2\epsilon_{23,23} - \epsilon_{22,33} - \epsilon_{33,22} &= 0 \\ 2\epsilon_{31,31} - \epsilon_{33,11} - \epsilon_{11,33} &= 0 \\ \epsilon_{11,23} + \epsilon_{23,11} - \epsilon_{31,12} - \epsilon_{12,13} &= 0 \\ \epsilon_{22,31} + \epsilon_{31,22} - \epsilon_{12,23} - \epsilon_{23,21} &= 0 \\ \epsilon_{33,12} + \epsilon_{12,33} - \epsilon_{23,31} - \epsilon_{31,32} &= 0 \end{aligned}$$

Stress

unity normal vector stress vector Cauchy stress components stress cube $ec{n} = n_i ec{e}_i \ ec{p} = p_i ec{e}_i \ p_i = \sigma_{ij} n_j \$

Linear elastic material behavior

$$\sigma_{ij} = C_{ijkl} \varepsilon_{lk}$$

material symmetry $\ \ \rightarrow \ \$ isotropic material $\ \ \rightarrow \ \ 2$ mat.pars

() 63 / 290

Hooke's law for isotropic materials

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{23} \\ \varepsilon_{31} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{23} \\ \sigma_{31} \end{bmatrix}$$

Equilibrium equations

volume load force equilibrium moment equilibrium

$$\rho q_i
\sigma_{ij,j} + \rho q_i = 0
\sigma_{ij} = \sigma_{ji}$$
 $i = 1, 2, 3$

() 65 / 290

Plane stress

$$\sigma_{33} = \sigma_{13} = \sigma_{23} = 0$$

equilibrium $(q_i = 0)$ compatibility Hooke's law

$$\begin{array}{ll} \sigma_{11,1}+\sigma_{12,2}=0 & ; & \sigma_{21,1}+\sigma_{22,2}=0 \\ 2\epsilon_{12,12}-\epsilon_{11,22}-\epsilon_{22,11}=0 & \end{array}$$

$$\sigma_{ij} = \frac{E}{1+\nu} \left(\epsilon_{ij} + \frac{\nu}{1-\nu} \, \delta_{ij} \epsilon_{kk} \right) \; ; \; \epsilon_{ij} = \frac{1+\nu}{E} \left(\sigma_{ij} - \frac{\nu}{1+\nu} \, \delta_{ij} \sigma_{kk} \right) \quad i = 1,2$$

Hooke's law in matrix notation

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$$
$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1-\nu \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{bmatrix}$$
$$\varepsilon_{33} = -\frac{\nu}{E} (\sigma_{11} + \sigma_{22}) = -\frac{\nu}{1-\nu} (\varepsilon_{11} + \varepsilon_{22})$$
$$\varepsilon_{13} = \varepsilon_{23} = 0$$

Plane strain

$$\varepsilon_{33} = \varepsilon_{13} = \varepsilon_{23} = 0$$

equilibrium $(q_i = 0)$ compatibility Hooke's law

$$\begin{array}{ll} \sigma_{11,1}+\sigma_{12,2}=0 & ; & \sigma_{21,1}+\sigma_{22,2}=0 \\ 2\epsilon_{12,12}-\epsilon_{11,22}-\epsilon_{22,11}=0 & \end{array}$$

$$\varepsilon_{ij} = \frac{1+\nu}{E} \left(\sigma_{ij} - \nu \delta_{ij} \sigma_{kk} \right) \; ; \; \sigma_{ij} = \frac{E}{1+\nu} \left(\varepsilon_{ij} + \frac{\nu}{1-2\nu} \, \delta_{ij} \varepsilon_{kk} \right) \quad i = 1, 2$$

Hooke's law in matrix notation

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & 1-2\nu \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix}$$

$$\begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{bmatrix} = \frac{1+\nu}{E} \begin{bmatrix} 1-\nu & -\nu & 0 \\ -\nu & 1-\nu & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$$

$$\sigma_{33} = \frac{E\nu}{(1+\nu)(1-2\nu)} (\epsilon_{11}+\epsilon_{22}) = \nu (\sigma_{11}+\sigma_{22})$$

$$\sigma_{13} = \sigma_{23} = 0$$

Displacement method

$$\sigma_{ij,j} = 0$$

$$\sigma_{ij} = \frac{E}{1+\nu} \left(\varepsilon_{ij} + \frac{\nu}{1-2\nu} \delta_{ij} \varepsilon_{kk} \right)$$

$$\frac{E}{1+\nu} \left(\varepsilon_{ij,j} + \frac{\nu}{1-2\nu} \delta_{ij} \varepsilon_{kk,j} \right) = 0$$

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

$$\frac{E}{1+\nu} \frac{1}{2} (u_{i,j} + u_{j,i}) + \frac{E\nu}{(1+\nu)(1-2\nu)} \delta_{ij} u_{k,kj} = 0$$

$$\text{BC's}$$

$$u_{i} \rightarrow \varepsilon_{ij} \rightarrow \sigma_{ij}$$

 ϵ

Stress function method

$$\begin{array}{lll} \psi(\textbf{x}_1,\textbf{x}_2) & \rightarrow & \sigma_{ij} = -\psi_{,ij} + \delta_{ij}\psi_{,kk} & \rightarrow & \sigma_{ij,j} = 0 \\ \varepsilon_{ij} = \frac{1+\nu}{E} \left(\sigma_{ij} - \nu\delta_{ij}\sigma_{kk}\right) & \\ \varepsilon_{ij} = \frac{1+\nu}{E} \left\{-\psi_{,ij} + (1-\nu)\delta_{ij}\psi_{,kk}\right\} \\ 2\varepsilon_{12,12} - \varepsilon_{11,22} - \varepsilon_{22,11} = 0 & \rightarrow \\ 2\psi_{,1122} + \psi_{,2222} + \psi_{,1111} = 0 & \rightarrow \\ (\psi_{,11} + \psi_{,22})_{,11} + (\psi_{,11} + \psi_{,22})_{,22} = 0 \\ \text{Laplace operator} & : & \nabla^2 = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} = (\)_{11} + (\)_{22} & \\ \text{bi-harmonic equation} & \nabla^2(\nabla^2\psi) = \nabla^4\psi = 0 \\ \text{BC's} & & \\ \psi & \rightarrow & \sigma_{ij} & \rightarrow & \varepsilon_{ji} & \rightarrow & u_i \end{array}$$

Cylindrical coordinates

vector bases

$$\{\vec{e}_1,\vec{e}_2,\vec{e}_3\} \qquad \rightarrow \qquad \{\vec{e}_r,\vec{e}_t,\vec{e}_z\}$$

$$\begin{split} \vec{e}_r &= \vec{e}_r(\theta) = \vec{e}_1 \cos \theta + \vec{e}_2 \sin \theta \\ \vec{e}_t &= \vec{e}_t(\theta) = -\vec{e}_1 \sin \theta + \vec{e}_2 \cos \theta \end{split}$$

$$\frac{\partial}{\partial \theta} \{ \vec{e}_r(\theta) \} = \vec{e}_t(\theta) \qquad \qquad ; \qquad \qquad \frac{\partial}{\partial \theta} \{ \vec{e}_t(\theta) \} = -\vec{e}_r(\theta)$$

Laplace operator

gradient operator

Laplace operator

two-dimensional

$$\vec{\nabla} = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_t \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_z \frac{\partial}{\partial z}$$

$$\nabla^2 = \vec{\nabla} \cdot \vec{\nabla} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

Bi-harmonic equation

bi-harmonic equation

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right)\left(\frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r}\frac{\partial \psi}{\partial r} + \frac{1}{r^2}\frac{\partial^2 \psi}{\partial \theta^2}\right) = 0$$

stress components

$$\begin{split} &\sigma_{rr} = \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} \\ &\sigma_{tt} = \frac{\partial^2 \psi}{\partial r^2} \\ &\sigma_{rt} = \frac{1}{r^2} \frac{\partial \psi}{\partial \theta} - \frac{1}{r} \frac{\partial \psi}{\partial r \partial \theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \right) \end{split}$$

Circular hole in 'infinite' plate

() 73 / 290

Load transformation

$$\sigma_{rr}(r = b, \theta) = \frac{1}{2}\sigma + \frac{1}{2}\sigma\cos(2\theta)$$

$$\sigma_{rt}(r = b, \theta) = -\frac{1}{2}\sigma\sin(2\theta)$$

two load cases

$$\begin{split} I. & \sigma_{rr}(r=a) = \sigma_{rt}(r=a) = 0 \\ & \sigma_{rr}(r=b) = \frac{1}{2}\sigma \quad ; \quad \sigma_{rt}(r=b) = 0 \\ II. & \sigma_{rr}(r=a) = \sigma_{rt}(r=a) = 0 \\ & \sigma_{rr}(r=b) = \frac{1}{2}\sigma\cos(2\theta) \quad ; \quad \sigma_{rt}(r=b) = -\frac{1}{2}\sigma\sin(2\theta) \end{split}$$

Load case I

$$\begin{split} &\sigma_{rr}(r=a)=\sigma_{rt}(r=a)=0\\ &\sigma_{rr}(r=b)=\frac{1}{2}\sigma\quad;\quad \sigma_{rt}(r=b)=0 \end{split}$$

Airy function

$$\psi = f(r)$$

stress components

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = \frac{1}{r} \frac{df}{dr} \; ; \quad \sigma_{tt} = \frac{\partial^2 \psi}{\partial r^2} = \frac{d^2 f}{dr^2} \; ; \quad \sigma_{rt} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \right) = 0$$

bi-harmonic equation

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr}\right)\left(\frac{d^2f}{dr^2} + \frac{1}{r}\frac{df}{dr}\right) = 0$$

Solution

$$\psi(r) = A \ln r + Br^2 \ln r + Cr^2 + D$$

stresses

$$\sigma_{rr} = \frac{A}{r^2} + B(1 + 2\ln r) + 2C$$

$$\sigma_{tt} = -\frac{A}{r^2} + B(3 + 2\ln r) + 2C$$

strains (from Hooke's law for plane stress)

$$\varepsilon_{rr} = \frac{1}{E} \left[\frac{A}{r^2} (1 + \nu) + B\{(1 - 3\nu) + 2(1 - \nu) \ln r\} + 2C(1 - \nu) \right]$$

$$\varepsilon_{tt} = \frac{1}{E} \frac{1}{r} \left[-\frac{A}{r} (1 + \nu) + B\{(3 - \nu)r + 2(1 - \nu)r \ln r\} + 2C(1 - \nu)r \right]$$

compatibility

$$\varepsilon_{rr} = \frac{du}{dr} = \frac{d(r \, \varepsilon_{tt})}{dr}$$

$$B = 0$$

2 BC's and $b \gg a \rightarrow A$ and $C \rightarrow$

$$\sigma_{rr} = \frac{1}{2}\sigma(1 - \frac{a^2}{r^2})$$
 ; $\sigma_{tt} = \frac{1}{2}\sigma(1 + \frac{a^2}{r^2})$; $\sigma_{rt} = 0$

76 / 290

0

Load case II

$$\begin{split} &\sigma_{rr}(r=a)=\sigma_{rt}(r=a)=0\\ &\sigma_{rr}(r=b)=\frac{1}{2}\sigma\cos(2\theta)\quad;\quad \sigma_{rt}(r=b)=-\frac{1}{2}\sigma\sin(2\theta) \end{split}$$

Airy function

$$\psi(r,\theta) = g(r)\cos(2\theta)$$

stress components

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} \qquad ; \qquad \sigma_{tt} = \frac{\partial^2 \psi}{\partial r^2}$$

$$\sigma_{rt} = \frac{1}{r^2} \frac{\partial \psi}{\partial \theta} - \frac{1}{r} \frac{\partial \psi}{\partial r \partial \theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \psi}{\partial \theta} \right)$$

bi-harmonic equation

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}\right) \left\{ \left(\frac{d^2g}{dr^2} + \frac{1}{r}\frac{dg}{dr} - \frac{4}{r^2}g\right)\cos(2\theta) \right\} = 0$$

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{4}{r^2}\right) \left(\frac{d^2g}{dr^2} + \frac{1}{r}\frac{dg}{dr} - \frac{4}{r^2}g\right)\cos(2\theta) = 0$$

Solution

$$g = Ar^{2} + Br^{4} + C\frac{1}{r^{2}} + D \rightarrow$$

$$\psi = \left(Ar^{2} + Br^{4} + C\frac{1}{r^{2}} + D\right)\cos(2\theta)$$

$$= -\left(2A + \frac{6C}{r^{2}} + \frac{4D}{r^{2}}\right)\cos(2\theta)$$

stresses

$$\sigma_{rr} = -\left(2A + \frac{6C}{r^4} + \frac{4D}{r^2}\right)\cos(2\theta)$$

$$\sigma_{tt} = \left(2A + 12Br^2 + \frac{6C}{r^4}\right)\cos(2\theta)$$

$$\sigma_{rt} = \left(2A + 6Br^2 - \frac{6C}{r^4} - \frac{2D}{r^2}\right)\sin(2\theta)$$

4 BC's and $b \gg a \rightarrow A,B,C$ and D

$$\begin{split} &\sigma_{rr} = \frac{1}{2}\sigma\left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2}\right)\cos(2\theta) \\ &\sigma_{tt} = -\frac{1}{2}\sigma\left(1 + \frac{3a^4}{r^4}\right)\cos(2\theta) \\ &\sigma_{rt} = -\frac{1}{2}\sigma\left(1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2}\right)\sin(2\theta) \end{split}$$

()

Stresses for total load

$$\sigma_{rr} = \frac{\sigma}{2} \left[\left(1 - \frac{a^2}{r^2} \right) + \left(1 + \frac{3a^4}{r^4} - \frac{4a^2}{r^2} \right) \cos(2\theta) \right]$$

$$\sigma_{tt} = \frac{\sigma}{2} \left[\left(1 + \frac{a^2}{r^2} \right) - \left(1 + \frac{3a^4}{r^4} \right) \cos(2\theta) \right]$$

$$\sigma_{rt} = -\frac{\sigma}{2} \left[1 - \frac{3a^4}{r^4} + \frac{2a^2}{r^2} \right] \sin(2\theta)$$

() 79 / 290

Special points

$$\begin{split} &\sigma_{rr}(r=a,\theta)=\sigma_{rt}(r=a,\theta)=\sigma_{rt}(r,\theta=0)=0\\ &\sigma_{tt}(r=a,\theta=\frac{\pi}{2})=3\sigma\\ &\sigma_{tt}(r=a,\theta=0)=-\sigma \end{split}$$

stress concentration factor

$$K_t = \frac{\sigma_{max}}{\sigma} = 3$$
 [-]

 K_t is independent of hole diameter!

Stress gradients

large hole : smaller stress gradient \longrightarrow larger area with higher stress \longrightarrow higher chance for critical defect in high stress area

Elliptical hole

$$\sigma_{yy}(x=a,y=0) = \sigma\left(1+2rac{a}{b}
ight) = \sigma\left(1+2\sqrt{a/
ho}
ight) \ pprox 2\sigma\sqrt{a/
ho}$$

stress concentration factor

$$K_t = 2\sqrt{a/\rho}$$

[-]

() 82 / 290

CRACK TIP STRESS

back to index

Complex plane


```
\begin{array}{lll} {\sf crack\ tip} = {\sf singular\ point} & \to \\ {\sf complex\ function\ theory} & \to \\ {\sf complex\ Airy\ function} & ({\sf Westergaard,\ 1939}) \end{array}
```

() 84 / 290

Complex variables

$$z = x_1 + ix_2 = re^{i\theta}$$
 ; $\bar{z} = x_1 - ix_2 = re^{-i\theta}$
 $x_1 = \frac{1}{2}(z + \bar{z})$; $x_2 = \frac{1}{2i}(z - \bar{z}) = -\frac{1}{2}i(z - \bar{z})$
 $\vec{z} = x_1\vec{e}_r + x_2\vec{e}_i = x_1\vec{e}_r + x_2i\vec{e}_r = (x_1 + ix_2)\vec{e}_r$

Complex functions

complex function

$$f(z) = \phi + i\zeta = \phi(x_1, x_2) + i\zeta(x_1, x_2) = f$$

$$f(\bar{z}) = \phi(x_1, x_2) - i\zeta(x_1, x_2) = \bar{f}$$

$$\phi = \frac{1}{2} \{ f + \bar{f} \} \qquad ; \qquad \zeta = -\frac{1}{2} i \{ f - \bar{f} \}$$

$$\nabla^2 \phi = \nabla^2 \zeta = 0 \qquad \text{appendix } !!$$

Laplace operator

complex function
$$g(x_1,x_2) = g(z,\bar{z})$$
 Laplacian
$$\nabla^2 g = \frac{\partial^2 g}{\partial x_1^2} + \frac{\partial^2 g}{\partial x_2^2}$$
 derivatives (see App. A)

$$\frac{\partial g}{\partial x_1} = \frac{\partial g}{\partial z} \frac{\partial z}{\partial x_1} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{z}}{\partial x_1} = \frac{\partial g}{\partial z} + \frac{\partial g}{\partial \bar{z}} \quad ; \quad \frac{\partial^2 g}{\partial x_1^2} = \frac{\partial^2 g}{\partial z^2} + 2 \frac{\partial g}{\partial z \partial \bar{z}} + \frac{\partial^2 g}{\partial \bar{z}^2}$$

$$\frac{\partial g}{\partial x_2} = \frac{\partial g}{\partial z} \frac{\partial z}{\partial x_2} + \frac{\partial g}{\partial \bar{z}} \frac{\partial \bar{z}}{\partial x_2} = i \frac{\partial g}{\partial z} - i \frac{\partial g}{\partial \bar{z}} \quad ; \quad \frac{\partial^2 g}{\partial x_2^2} = -\frac{\partial^2 g}{\partial z^2} + 2 \frac{\partial g}{\partial z \partial \bar{z}} - \frac{\partial^2 g}{\partial \bar{z}^2}$$

Laplacian
$$\nabla^2 g = \frac{\partial^2 g}{\partial x_1^2} + \frac{\partial^2 g}{\partial x_2^2} = 4 \frac{\partial g}{\partial z \partial \bar{z}} \longrightarrow$$

$$\nabla^2 = 4 \frac{\partial}{\partial z \partial \bar{z}}$$

Bi-harmonic equation

Airy function $\psi(z,\bar{z})$

bi-harmonic equation $\nabla^2 \left(\nabla^2 \psi(z, \bar{z}) \right) = 0$

Solution of bi-harmonic equation

real part of complex function f satisfies Laplace eqn.

$$\nabla^2 \left(\nabla^2 \psi(z, \bar{z}) \right) = \nabla^2 \left(\varphi(z, \bar{z}) \right) = 0 \quad \to \quad \varphi = f + \bar{f}$$
 choice Airy function

$$\nabla^2 \psi = 4 \frac{\partial \psi}{\partial z \partial \bar{z}} = \phi = f + \bar{f}$$

integration

$$\psi = \frac{1}{2} \left[\bar{z}\Omega + z\bar{\Omega} + \omega + \bar{\omega} \right]$$

unknown functions:

 Ω ; $\bar{\Omega}$; ω ; \bar{a}

Stresses

Airy function

$$\psi = \frac{1}{2} \left[\bar{z} \Omega + z \bar{\Omega} + \omega + \bar{\omega} \right]$$

stress components

$$\begin{split} & \sigma_{ij} = \sigma_{ij}(z,\bar{z}) = -\psi_{,ij} + \delta_{ij}\psi_{,kk} & \to \\ & \sigma_{11} = -\psi_{,11} + \psi_{,\gamma\gamma} = \psi_{,22} \\ & = \Omega' + \bar{\Omega}' - \frac{1}{2} \left\{ \bar{z}\Omega'' + \omega'' + z\bar{\Omega}'' + \bar{\omega}'' \right\} \\ & \sigma_{22} = -\psi_{,22} + \psi_{,\gamma\gamma} = \psi_{,11} \\ & = \Omega' + \bar{\Omega}' + \frac{1}{2} \left\{ \bar{z}\Omega'' + \omega'' + z\bar{\Omega}'' + \bar{\omega}'' \right\} \\ & \sigma_{12} = -\psi_{,12} \\ & = -\frac{1}{2}i \left\{ \bar{z}\Omega'' + \omega'' - z\bar{\Omega}'' - \bar{\omega}'' \right\} \end{split}$$

Displacement

definition of complex displacement

$$\begin{split} \vec{u} &= u_1 \vec{e}_1 + u_2 \vec{e}_2 = u_1 \vec{e}_r + u_2 \vec{e}_i \\ &= u_1 \vec{e}_r + u_2 \vec{e}_r = (u_1 + iu_2) \vec{e}_r \\ &= u \vec{e}_r & \to \\ u &= u_1 + iu_2 = u_1(x_1, x_2) + iu_2(x_1, x_2) = u(z, \bar{z}) \\ \bar{u} &= u_1 - iu_2 = \bar{u}(z, \bar{z}) \end{split}$$

Schematic

Displacement derivatives

$$\begin{split} \frac{\partial u}{\partial \bar{z}} &= \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial \bar{z}} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial \bar{z}} = \frac{1}{2} \left\{ \frac{\partial u}{\partial x_1} + i \frac{\partial u}{\partial x_2} \right\} \\ &= \frac{1}{2} \left\{ \frac{\partial u_1}{\partial x_1} + i \frac{\partial u_2}{\partial x_1} + i \frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_2} \right\} = \frac{1}{2} \left\{ \epsilon_{11} - \epsilon_{22} + 2i\epsilon_{12} \right\} \\ \frac{\partial u}{\partial z} &= \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial z} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial z} = \frac{1}{2} \left\{ \frac{\partial u}{\partial x_1} - i \frac{\partial u}{\partial x_2} \right\} \\ &= \frac{1}{2} \left\{ \frac{\partial u_1}{\partial x_1} + i \frac{\partial u_2}{\partial x_2} - i \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_2} \right\} = \frac{1}{2} \left\{ \epsilon_{11} + \epsilon_{22} + i \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) \right\} \\ \frac{\partial \bar{u}}{\partial z} &= \frac{\partial \bar{u}}{\partial x_1} \frac{\partial x_1}{\partial z} + \frac{\partial \bar{u}}{\partial x_2} \frac{\partial x_2}{\partial z} = \frac{1}{2} \left\{ \frac{\partial \bar{u}}{\partial x_1} - i \frac{\partial \bar{u}}{\partial x_2} \right\} \\ &= \frac{1}{2} \left\{ \frac{\partial u_1}{\partial x_1} - i \frac{\partial u_2}{\partial x_2} - i \frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_2} \right\} = \frac{1}{2} \left\{ \epsilon_{11} - \epsilon_{22} - 2i\epsilon_{12} \right\} \\ \frac{\partial \bar{u}}{\partial \bar{z}} &= \frac{\partial \bar{u}}{\partial x_1} \frac{\partial x_1}{\partial \bar{z}} + \frac{\partial \bar{u}}{\partial x_2} \frac{\partial x_2}{\partial \bar{z}} = \frac{1}{2} \left\{ \frac{\partial \bar{u}}{\partial x_1} + i \frac{\partial \bar{u}}{\partial x_2} \right\} \\ &= \frac{1}{2} \left\{ \frac{\partial u_1}{\partial x_1} - i \frac{\partial u_2}{\partial x_2} - i \frac{\partial u_1}{\partial x_2} + i \frac{\partial \bar{u}}{\partial x_2} \right\} \\ &= \frac{1}{2} \left\{ \frac{\partial u_1}{\partial x_1} - i \frac{\partial u_2}{\partial x_2} + i \frac{\partial u_1}{\partial x_2} + i \frac{\partial u_2}{\partial x_2} \right\} = \frac{1}{2} \left\{ \epsilon_{11} + \epsilon_{22} - i \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) \right\} \end{aligned}$$

General solution

$$\frac{\partial u}{\partial \bar{z}} = \frac{1}{2} \left(\epsilon_{11} - \epsilon_{22} + 2i\epsilon_{12} \right)$$
Hooke's law (pl.strain)
$$\frac{\partial u}{\partial \bar{z}} = \frac{1}{2} \frac{1+\nu}{E} \left[\sigma_{11} - \sigma_{22} + 2i\sigma_{12} \right]$$

$$= -\frac{1+\nu}{E} \left[z\bar{\Omega}'' + \bar{\omega}'' \right]$$
Integration \rightarrow

$$u = -\frac{1+\nu}{E} \left[z\bar{\Omega}' + \bar{\omega}' + M \right]$$

94

Integration function

$$u = -\frac{1+\nu}{E} \left[z\bar{\Omega}' + \bar{\omega}' + M \right] \rightarrow \frac{\partial u}{\partial z} = -\frac{1+\nu}{E} \left[\bar{\Omega}' + M' \right]$$

$$\bar{u} = -\frac{1+\nu}{E} \left[\bar{z}\Omega' + \omega' + \bar{M} \right] \rightarrow \frac{\partial \bar{u}}{\partial \bar{z}} = -\frac{1+\nu}{E} \left[\Omega' + \bar{M}' \right]$$

$$\frac{\partial u}{\partial z} + \frac{\partial \bar{u}}{\partial \bar{z}} = -\frac{1+\nu}{E} \left[\bar{\Omega}' + \Omega' + M' + \bar{M}' \right]$$

$$\frac{\partial u}{\partial z} + \frac{\partial \bar{u}}{\partial \bar{z}} = \varepsilon_{11} + \varepsilon_{22} = \frac{1+\nu}{E} \left[(1-2\nu)(\sigma_{11} + \sigma_{22}) \right]$$

$$= \frac{(1+\nu)(1-2\nu)}{E} 2 \left[\Omega' + \bar{\Omega}' \right]$$

$$M' + \bar{M}' = -(3-4\nu) \left[\bar{\Omega}' + \Omega' \right] \rightarrow M = -(3-4\nu)\Omega = -\kappa \Omega$$

$$u = -\frac{1+\nu}{E} \left[z\bar{\Omega}' + \bar{\omega}' - \kappa \Omega \right]$$

Choice of complex functions

$$\begin{split} \Omega &= (\alpha + i\beta)z^{\lambda+1} = (\alpha + i\beta)r^{\lambda+1}e^{i\theta(\lambda+1)} \\ \omega' &= (\gamma + i\delta)z^{\lambda+1} = (\gamma + i\delta)r^{\lambda+1}e^{i\theta(\lambda+1)} \\ \bar{\Omega} &= (\alpha - i\beta)\bar{z}^{\lambda+1} = (\alpha - i\beta)r^{\lambda+1}e^{-i\theta(\lambda+1)} \\ \bar{\Omega}' &= (\alpha - i\beta)(\lambda + 1)\bar{z}^{\lambda} = (\alpha - i\beta)(\lambda + 1)r^{\lambda}e^{-i\theta\lambda} \\ \bar{\omega}' &= (\gamma - i\delta)\bar{z}^{\lambda+1} = (\gamma - i\delta)r^{\lambda+1}e^{-i\theta(\lambda+1)} \\ u &= \frac{1}{2\mu}r^{\lambda+1}\left[\kappa(\alpha + i\beta)e^{i\theta(\lambda+1)} - (\alpha - i\beta)(\lambda + 1)e^{i\theta(1-\lambda)} - (\gamma - i\delta)e^{-i\theta(\lambda+1)}\right] \\ \text{with} \qquad \mu &= \frac{E}{2(1+\gamma)} \end{split}$$

displacement finite \longrightarrow $\lambda > -1$

Displacement components

$$\begin{split} u &= \frac{1}{2\mu} r^{\lambda+1} \left[\kappa(\alpha + i\beta) e^{i\theta(\lambda+1)} - (\alpha - i\beta)(\lambda + 1) e^{i\theta(1-\lambda)} - (\gamma - i\delta) e^{-i\theta(\lambda+1)} \right] \\ e^{i\theta} &= \cos(\theta) + i \sin(\theta) \\ \\ u &= \frac{1}{2\mu} r^{\lambda+1} \\ & \left[\begin{array}{c} \kappa\alpha \cos(\theta(\lambda+1)) - \kappa\beta \sin(\theta(\lambda+1)) - \\ \alpha(\lambda+1) \cos(\theta(1-\lambda)) - \beta(\lambda+1) \sin(\theta(1-\lambda)) - \\ \gamma \cos(\theta(\lambda+1)) + \delta \sin(\theta(\lambda+1)) \end{array} \right] \\ &+ i \left\{ \begin{array}{c} \kappa\alpha \sin(\theta(\lambda+1)) + \kappa\beta \cos(\theta(\lambda+1)) - \\ \alpha(\lambda+1) \sin(\theta(1-\lambda)) + \beta(\lambda+1) \cos(\theta(1-\lambda)) + \\ \gamma \sin(\theta(\lambda+1)) + \delta \cos(\theta(\lambda+1)) \end{array} \right] \\ &= u_1 + i u_2 \end{split}$$

Mode I: displacement

displacement for Mode I

$$u_{1}(\theta > 0) = u_{1}(\theta < 0)$$

$$u_{2}(\theta > 0) = -u_{2}(\theta < 0)$$

$$\Omega = \alpha z^{\lambda+1} = \alpha r^{\lambda+1} e^{i(\lambda+1)\theta}$$

$$\omega' = \gamma z^{\lambda+1} = \gamma r^{\lambda+1} e^{i(\lambda+1)\theta}$$

98

Mode I: stress components

$$\begin{split} \sigma_{11} &= (\lambda + 1) \left[\alpha z^{\lambda} + \alpha \bar{z}^{\lambda} - \frac{1}{2} \left\{ \alpha \lambda \bar{z} z^{\lambda - 1} + \gamma z^{\lambda} + \alpha \lambda z \bar{z}^{\lambda - 1} + \gamma \bar{z}^{\lambda} \right\} \right] \\ \sigma_{22} &= (\lambda + 1) \left[\alpha z^{\lambda} + \alpha \bar{z}^{\lambda} + \frac{1}{2} \left\{ \alpha \lambda \bar{z} z^{\lambda - 1} + \gamma z^{\lambda} + \alpha \lambda z \bar{z}^{\lambda - 1} + \gamma \bar{z}^{\lambda} \right\} \right] \\ \sigma_{12} &= -\frac{1}{2} i (\lambda + 1) \left[\alpha \lambda \bar{z} z^{\lambda - 1} + \gamma z^{\lambda} - \alpha \lambda z \bar{z}^{\lambda - 1} - \gamma \bar{z}^{\lambda} \right] \\ & \text{with} \quad z = r e^{i\theta} \quad ; \quad \bar{z} = r e^{-i\theta} \quad \rightarrow \\ \sigma_{11} &= (\lambda + 1) r^{\lambda} \left[\alpha e^{i\lambda\theta} + \alpha e^{-i\lambda\theta} - \frac{1}{2} \left\{ \alpha \lambda e^{i(\lambda - 2)\theta} + \gamma e^{i\lambda\theta} + \alpha \lambda e^{-i(\lambda - 2)\theta} + \gamma e^{-i\lambda\theta} \right\} \right] \end{split}$$

$$\begin{split} \sigma_{11} &= (\lambda + 1) r^{\lambda} \left[\alpha e^{i\lambda \theta} + \alpha e^{-i\lambda \theta} - \frac{1}{2} \left\{ \alpha \lambda e^{i(\lambda - 2)\theta} + \gamma e^{i\lambda \theta} + \alpha \lambda e^{-i(\lambda - 2)\theta} + \gamma e^{-i\lambda \theta} \right\} \right] \\ \sigma_{22} &= (\lambda + 1) r^{\lambda} \left[\alpha e^{i\lambda \theta} + \alpha e^{-i\lambda \theta} + \frac{1}{2} \left\{ \alpha \lambda e^{i(\lambda - 2)\theta} + \gamma e^{i\lambda \theta} + \alpha \lambda e^{-i(\lambda - 2)\theta} + \gamma e^{-i\lambda \theta} \right\} \right] \\ \sigma_{12} &= -\frac{1}{2} i (\lambda + 1) r^{\lambda} \left[\alpha \lambda e^{i(\lambda - 2)\theta} + \gamma e^{i\lambda \theta} - \alpha \lambda e^{-i(\lambda - 2)\theta} - \gamma e^{-i\lambda \theta} \right] \end{split}$$

Mode I : stress components

$$\begin{split} & \text{with} \quad e^{i\theta} + e^{-i\theta} = 2\cos(\theta) \quad ; \quad e^{i\theta} - e^{-i\theta} = 2i\sin(\theta) \quad \rightarrow \\ & \sigma_{11} = 2(\lambda+1)r^{\lambda}\left[\alpha\cos(\lambda\theta) + \frac{1}{2}\left\{\alpha\lambda\cos((\lambda-2)\theta) + \gamma\cos(\lambda\theta)\right\}\right] \\ & \sigma_{22} = 2(\lambda+1)r^{\lambda}\left[\alpha\cos(\lambda\theta) - \frac{1}{2}\left\{\alpha\lambda\cos((\lambda-2)\theta) + \gamma\cos(\lambda\theta)\right\}\right] \\ & \sigma_{12} = (\lambda+1)r^{\lambda}\left[\alpha\lambda\sin((\lambda-2)\theta) + \gamma\sin(\lambda\theta)\right] \end{split}$$

Stress boundary conditions

$$\begin{split} &\sigma_{11} = 2(\lambda+1)r^{\lambda} \left[\alpha\cos(\lambda\theta) + \frac{1}{2}\left\{\alpha\lambda\cos((\lambda-2)\theta) + \gamma\cos(\lambda\theta)\right\}\right] \\ &\sigma_{22} = 2(\lambda+1)r^{\lambda} \left[\alpha\cos(\lambda\theta) - \frac{1}{2}\left\{\alpha\lambda\cos((\lambda-2)\theta) + \gamma\cos(\lambda\theta)\right\}\right] \\ &\sigma_{12} = (\lambda+1)r^{\lambda} \left[\alpha\lambda\sin((\lambda-2)\theta) + \gamma\sin(\lambda\theta)\right] \\ &\operatorname{crack surfaces are stress free} \qquad \longrightarrow \\ &\sigma_{22}(\theta=\pm\pi) = \sigma_{12}(\theta=\pm\pi) = 0 \qquad \longrightarrow \\ &\left[\begin{array}{c} (\lambda-2)\cos(\lambda\pi) & \cos(\lambda\pi) \\ \lambda\sin(\lambda\pi) & \sin(\lambda\pi) \end{array}\right] \left[\begin{array}{c} \alpha \\ \gamma \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \qquad \to \\ &\det \left[\begin{array}{c} (\lambda-2)\cos(\lambda\pi) & \cos(\lambda\pi) \\ \lambda\sin(\lambda\pi) & \sin(\lambda\pi) \end{array}\right] = -\sin(2\lambda\pi) = 0 \rightarrow 2\pi\lambda = n\pi \rightarrow \\ &\lambda = -\frac{1}{2}, \frac{n}{2}, \qquad \text{with} \qquad n=0,1,2,\dots \end{split}$$

Stress field

() 102 / 290

Mode I: stress intensity factor

definition stress intensity factor K ("Kies")

$$K_{I} = \lim_{r \to 0} \left(\sqrt{2\pi r} \, \sigma_{22}|_{\theta=0} \right) = 2\gamma \sqrt{2\pi} \quad \left[\text{ m}^{\frac{1}{2}} \, \text{N m}^{-2} \right]$$

$$[m^{\frac{1}{2}} N m^{-2}]$$

Mode I: crack tip solution

$$\begin{split} &\sigma_{11} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos(\frac{1}{2}\theta) \left\{ 1 - \sin(\frac{1}{2}\theta) \sin(\frac{3}{2}\theta) \right\} \right] \\ &\sigma_{22} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos(\frac{1}{2}\theta) \left\{ 1 + \sin(\frac{1}{2}\theta) \sin(\frac{3}{2}\theta) \right\} \right] \\ &\sigma_{12} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos(\frac{1}{2}\theta) \sin(\frac{1}{2}\theta) \cos(\frac{3}{2}\theta) \right] \end{split}$$

$$\begin{split} u_1 &= \frac{\mathcal{K}_I}{2\mu} \sqrt{\frac{r}{2\pi}} \left[\cos(\frac{1}{2}\theta) \left\{ \kappa - 1 + 2\sin^2(\frac{1}{2}\theta) \right\} \right] \\ u_2 &= \frac{\mathcal{K}_I}{2\mu} \sqrt{\frac{r}{2\pi}} \left[\sin(\frac{1}{2}\theta) \left\{ \kappa + 1 - 2\cos^2(\frac{1}{2}\theta) \right\} \right] \\ \kappa &= \frac{3 - \gamma}{1 + \gamma} \end{split}$$

plane stress plane strain

Mode II: displacement

displacements for Mode II

 $\omega' = i\delta z^{\lambda+1} = i\delta r^{\lambda+1} e^{i(\lambda+1)\theta}$

$$u_{1}(\theta > 0) = -u_{1}(\theta < 0)$$

$$u_{2}(\theta > 0) = u_{2}(\theta < 0)$$

$$\Omega = i\beta z^{\lambda+1} = i\beta r^{\lambda+1} e^{i(\lambda+1)\theta}$$

$$\longrightarrow \alpha = \gamma = 0$$

() 105 / 290

Mode II: stress intensity factor

definition stress intensity factor K ("Kies")

$$K_{II} = \lim_{r \to 0} \left(\sqrt{2\pi r} \, \sigma_{12}|_{\theta=0} \right) \qquad \left[\text{ m}^{\frac{1}{2}} \, \text{ N m}^{-2} \right]$$

$$[m^{\frac{1}{2}} N m^{-2}]$$

Mode II: crack tip solution

$$\begin{split} &\sigma_{11} = \frac{K_{II}}{\sqrt{2\pi r}} \left[-\sin(\frac{1}{2}\theta) \left\{ 2 + \cos(\frac{1}{2}\theta)\cos(\frac{3}{2}\theta) \right\} \right] \\ &\sigma_{22} = \frac{K_{II}}{\sqrt{2\pi r}} \left[\sin(\frac{1}{2}\theta)\cos(\frac{1}{2}\theta)\cos(\frac{3}{2}\theta) \right] \\ &\sigma_{12} = \frac{K_{II}}{\sqrt{2\pi r}} \left[\cos(\frac{1}{2}\theta) \left\{ 1 - \sin(\frac{1}{2}\theta)\sin(\frac{3}{2}\theta) \right\} \right] \end{split}$$

$$\begin{split} u_1 &= \frac{K_{II}}{2\mu} \sqrt{\frac{r}{2\pi}} \left[\sin(\frac{1}{2}\theta) \left\{ \kappa + 1 + 2\cos^2(\frac{1}{2}\theta) \right\} \right] \\ u_2 &= \frac{K_{II}}{2\mu} \sqrt{\frac{r}{2\pi}} \left[-\cos(\frac{1}{2}\theta) \left\{ \kappa - 1 - 2\sin^2(\frac{1}{2}\theta) \right\} \right] \\ \kappa &= \frac{3 - \nu}{1 + \nu} \end{split}$$

plane stress plane strain

Mode III: Laplace equation

$$\left.\begin{array}{ll} \epsilon_{31}=\frac{1}{2}\textit{u}_{3,1} & ; & \epsilon_{32}=\frac{1}{2}\textit{u}_{3,2} \\ \\ \text{Hooke's law} & \\ \\ \sigma_{31}=2\mu\epsilon_{31}=\mu\textit{u}_{3,1} & ; & \sigma_{32}=2\mu\epsilon_{32}=\mu\textit{u}_{3,2} \\ \\ \text{equilibrium} & \\ \end{array}\right\} \quad \rightarrow$$

$$\sigma_{31,1} + \sigma_{32,2} = \mu u_{3,11} + \mu u_{3,22} = 0 \rightarrow$$

$$\nabla^2 u_3 = 0$$

Mode III: displacement

general solution $u_3 = f + \bar{f}$

specific choice
$$f = (A + iB)z^{\lambda+1} \rightarrow \bar{f} = (A - iB)\bar{z}^{\lambda+1}$$

() 109 / 290

Mode III: stress components

$$\begin{split} &\sigma_{31}=2(\lambda+1)r^{\lambda}\{A\cos(\lambda\theta)-B\sin(\lambda\theta)\}\\ &\sigma_{32}=-2(\lambda+1)r^{\lambda}\{A\sin(\lambda\theta)+B\cos(\lambda\theta)\}\\ &\sigma_{32}(\theta=\pm\pi)=0 \quad \rightarrow \\ &\left[\begin{array}{ccc} \sin(\lambda\pi) & \cos(\lambda\pi) \\ \sin(\lambda\pi) & -\cos(\lambda\pi) \end{array}\right] \left[\begin{array}{c} A \\ B \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \quad \rightarrow \\ &\det \left[\begin{array}{ccc} \sin(\lambda\pi) & \cos(\lambda\pi) \\ \sin(\lambda\pi) & -\cos(\lambda\pi) \end{array}\right] = -\sin(2\pi\lambda) = 0 \quad \rightarrow \quad 2\pi\lambda = n\pi \quad \rightarrow \\ &\lambda = -\frac{1}{2}, \frac{n}{2}, \dots \qquad \text{with} \qquad n=0,1,2,\dots \\ &\operatorname{crack\ tip\ solution} \quad \lambda = -\frac{1}{2} \quad \rightarrow \quad A=0 \quad \rightarrow \\ &\sigma_{31} = Br^{-\frac{1}{2}}\{\sin(\frac{1}{2}\theta)\} \qquad ; \qquad \sigma_{32} = -Br^{-\frac{1}{2}}\{\cos(\frac{1}{2}\theta)\} \end{split}$$

Mode III: Stress intensity factor

definition stress intensity factor

$$K_{III} = \lim_{r \to 0} \left(\sqrt{2\pi r} \, \sigma_{32}|_{\theta=0} \right)$$

() 111 / 290

Mode III: crack tip solution

stress components

$$\sigma_{31} = \frac{K_{III}}{\sqrt{2\pi r}} \left[-\sin(\frac{1}{2}\theta) \right]$$
$$\sigma_{32} = \frac{K_{III}}{\sqrt{2\pi r}} \left[\cos(\frac{1}{2}\theta) \right]$$

displacement

$$u_3 = \frac{2K_{III}}{\mu} \sqrt{\frac{r}{2\pi}} \left[\sin(\frac{1}{2}\theta) \right]$$

() 112 / 290

Crack tip stress (mode I, II, III)

$$\sigma_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{Iij}(\theta) \quad ; \quad \sigma_{ij} = \frac{K_{II}}{\sqrt{2\pi r}} f_{IIij}(\theta) \quad ; \quad \sigma_{ij} = \frac{K_{III}}{\sqrt{2\pi r}} f_{IIIij}(\theta)$$

crack intensity factors (SIF)

$$K_I = \beta_I \sigma \sqrt{\pi a}$$
 ; $K_{II} = \beta_{II} \tau \sqrt{\pi a}$; $K_{III} = \beta_{III} \tau \sqrt{\pi a}$

() 113 / 290

K-zone

() 114 / 290

$$\begin{split} \mathcal{K}_{I} &= \sigma \sqrt{a} \left[\ 1.12 \sqrt{\pi} - 0.41 \frac{a}{W} + \right. \\ & \left. 18.7 \left(\frac{a}{W} \right)^2 - 38.48 \left(\frac{a}{W} \right)^3 + \right. \\ & \left. 53.85 \left(\frac{a}{W} \right)^4 \ \right] \\ & \approx 1.12 \sigma \sqrt{\pi a} \qquad \text{small } \frac{a}{W} \end{split}$$

$$K_{I} = \sigma \sqrt{a} \left[1.12\sqrt{\pi} + 0.76 \frac{a}{W} - 8.48 \left(\frac{a}{W} \right)^{2} + 27.36 \left(\frac{a}{W} \right)^{3} \right]$$
$$\approx 1.12\sigma \sqrt{\pi a}$$

plots are made with 'Kfac.m'.

$$K_{I} = \frac{PS}{BW^{3/2}} \left[2.9 \left(\frac{a}{W} \right)^{\frac{1}{2}} - 4.6 \left(\frac{a}{W} \right)^{\frac{3}{2}} + 21.8 \left(\frac{a}{W} \right)^{\frac{5}{2}} - 37.6 \left(\frac{a}{W} \right)^{\frac{7}{2}} + 37.7 \left(\frac{a}{W} \right)^{\frac{9}{2}} \right]$$

() 119 / 290

$$K_{I} = \frac{P}{BW^{1/2}} \left[29.6 \left(\frac{a}{W} \right)^{\frac{1}{2}} - 185.5 \left(\frac{a}{W} \right)^{\frac{3}{2}} + 655.7 \left(\frac{a}{W} \right)^{\frac{5}{2}} - 1017 \left(\frac{a}{W} \right)^{\frac{7}{2}} + 638.9 \left(\frac{a}{W} \right)^{\frac{9}{2}} \right]$$

$$K_I = p\sqrt{\pi a}$$

p per unit thickness

plots are made with 'Kfac.m'.

() 122 / 290

K-based crack growth criteria

$$K_I = K_{Ic}$$
 ; $K_{II} = K_{IIc}$; $K_{III} = K_{IIIc}$

- $K_{Ic} = Fracture Toughness$
- calculate K_I, K_{II}, K_{III}
 - analytically
 - literature
 - relation K G
 - numerically (EEM, BEM)
- experimental determination of K_{Ic} , K_{IIc} , K_{IIIc}
 - normalized experiments (exmpl. ASTM E399)
 - correlation with C_v (KAN p. 18 : $\frac{K_{lc}^2}{E} = mC_v^n$)

() 123 / 290

Relation $G - K_I$

$$\begin{array}{ll} \text{crack length} & a & \sigma_{yy}(\theta=0,r=x-a) = \frac{\sigma\sqrt{a}}{\sqrt{2(x-a)}} & ; \qquad u_y=0 \\ \text{crack length} & a+\Delta a & \sigma_{yy}(\theta=\pi,r=a+\Delta a-x) = 0 \\ & u_y = \frac{(1+\nu)(\kappa+1)}{E} \, \frac{\sigma\sqrt{a+\Delta a}}{\sqrt{2}} \, \sqrt{a+\Delta a-x} \end{array}$$

plane stress : $\kappa = \frac{3-\nu}{1+\nu}$; plane strain : $\kappa = 3-4\nu$

() 124 / 290

Relation $G - K_I$ (continued)

accumulation of elastic energy

$$\Delta U = 2B \int_{a}^{a+\Delta a} \frac{1}{2} \sigma_{yy} \ dx \ u_y = B \int_{a}^{a+\Delta a} \sigma_{yy} u_y \ dx = B f(\Delta a) \ \Delta a$$

energy release rate

$$G = \frac{1}{B} \lim_{\Delta a \to 0} \left(\frac{\Delta U}{\Delta a} \right) = \lim_{\Delta a \to 0} f(\Delta a) = \frac{(1+\nu)(\kappa+1)}{4E} \sigma^2 a \pi = \frac{(1+\nu)(\kappa+1)}{4E} \kappa_I^2$$

plane stress
$$G = \frac{K_l^2}{E}$$

plane strain
$$G = (1 - v^2) \frac{K_I^2}{F}$$

() 125 / 290

Multi mode load

$$G = \frac{1}{E} \left(c_1 K_I^2 + c_2 K_{II}^2 + c_3 K_{III}^2 \right)$$

plane stress
$$G=\frac{1}{E}(K_I^2+K_{II}^2)$$
 plane strain
$$G=\frac{(1-\gamma^2)}{E}(K_I^2+K_{II}^2)+\frac{(1+\gamma)}{E}K_{III}^2$$

The critical SIF value

$$K_{Ic} = \sigma_c \sqrt{\pi a}$$

$$B_c = 2.5 \left(\frac{K_{lc}}{\sigma_y}\right)^2$$

() 127 / 290

K_{lc} values

Material	σ_{v} [MPa]	K_{lc} [MPa $\sqrt{\rm m}$]
steel, 300 maraging	1669	93.4
steel, 350 maraging	2241	38.5
steel, D6AC	1496	66.0
steel, AISI 4340	1827	47.3
steel, A533B reactor	345	197.8
steel, carbon	241	219.8
Al 2014-T4	448	28.6
AI 2024-T3	393	34.1
AI 7075-T651	545	29.7
Al 7079-T651	469	33.0
Ti 6Al-4V	1103	38.5
Ti 6Al-6V-2Sn	1083	37.4
Ti 4Al-4Mo-2Sn-0.5Si	945	70.3

() 128 / 290

MULTI-MODE LOADING

back to index

Multi-mode crack loading

() 130 / 290

Multi-mode crack loading

crack tip stresses	s_{ij}
Mode /	$s_{ij} = rac{\mathcal{K}_I}{\sqrt{2\pi r}} f_{lij}(heta)$
Mode //	$s_{ij} = \frac{K_{II}}{\sqrt{2\pi r}} f_{IIij}(\theta)$
Mode $I + II$	$s_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{lij}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{llij}(\theta)$

Stress component transformation

$$\begin{split} \vec{e}_1^* &= \cos(\theta) \vec{e}_1 + \sin(\theta) \vec{e}_2 = c \vec{e}_1 + s \vec{e}_2 \\ \vec{e}_2^* &= -\sin(\theta) \vec{e}_1 + \cos(\theta) \vec{e}_2 = -s \vec{e}_1 + c \vec{e}_2 \end{split}$$

stress vector and normal unity vector

$$\vec{p} = p_1 \vec{e}_1 + p_2 \vec{e}_2 = p_1^* \vec{e}_1^* + p_2^* \vec{e}_2^* \longrightarrow \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} p_1^* \\ p_2^* \end{bmatrix} \longrightarrow \begin{bmatrix} p_1^* \\ p_2^* \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \longrightarrow$$

$$\tilde{\varrho} = \underline{T} \, \tilde{\varrho}^* \quad \rightarrow \quad \tilde{\varrho}^* = \underline{T}^T \tilde{\varrho}$$
idem : $\tilde{\eta}^* = \underline{T}^T \tilde{\eta}$

() 132 / 290

Transformation stress matrix

$$\begin{bmatrix} \sigma_{11}^* & \sigma_{12}^* \\ \sigma_{21}^* & \sigma_{22}^* \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$

$$= \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} c\sigma_{11} + s\sigma_{12} & -s\sigma_{11} + c\sigma_{12} \\ c\sigma_{21} + s\sigma_{22} & -s\sigma_{21} + c\sigma_{22} \end{bmatrix}$$

$$= \begin{bmatrix} c^2\sigma_{11} + 2cs\sigma_{12} + s^2\sigma_{22} \\ -cs\sigma_{11} + (c^2 - s^2)\sigma_{12} + cs\sigma_{22} \\ -cs\sigma_{11} + (c^2 - s^2)\sigma_{12} + cs\sigma_{22} \end{bmatrix}$$

() 133 / 290

Cartesian to cylindrical transformation

$$ec{e}_r = c \, ec{e}_1 + s \, ec{e}_2$$

 $ec{e}_t = -s \, ec{e}_1 + c \, ec{e}_2$

$$\begin{bmatrix} \sigma_{rr} & \sigma_{rt} \\ \sigma_{tr} & \sigma_{tt} \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$$

$$= \begin{bmatrix} c^{2}\sigma_{xx} + 2cs\sigma_{xy} + s^{2}\sigma_{yy} \\ -cs\sigma_{xx} + (c^{2} - s^{2})\sigma_{xy} + cs\sigma_{yy} \\ -cs\sigma_{xx} + (c^{2} - s^{2})\sigma_{xy} + cs\sigma_{yy} \\ s^{2}\sigma_{xx} - 2cs\sigma_{xy} + c^{2}\sigma_{yy} \end{bmatrix}$$

Crack tip stresses: Cartesian

$$\begin{split} \sigma_{xx} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{lxx}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{llxx}(\theta) \\ \sigma_{yy} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{lyy}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{llyy}(\theta) \\ \sigma_{xy} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{lxy}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{llxy}(\theta) \end{split}$$

$$\begin{split} f_{l\!x\!x}(\theta) &= \cos(\frac{\theta}{2}) \left[1 - \sin(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right] & f_{l\!l\!x\!x}(\theta) &= -\sin(\frac{\theta}{2}) \left[2 + \cos(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right] \\ f_{l\!y\!y}(\theta) &= \cos(\frac{\theta}{2}) \left[1 + \sin(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right] & f_{l\!l\!y\!y}(\theta) &= \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2}) \\ f_{l\!x\!y}(\theta) &= \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2}) & f_{l\!l\!x\!y}(\theta) &= \cos(\frac{\theta}{2}) \left[1 - \sin(\frac{\theta}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \sin(\frac{\theta}{2}) \sin(\frac{\theta}$$

$$\begin{split} f_{llxx}(\theta) &= -\sin(\frac{\theta}{2}) \left[2 + \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2}) \right] \\ f_{llyy}(\theta) &= \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2}) \\ f_{llxy}(\theta) &= \cos(\frac{\theta}{2}) \left[1 - \sin(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right] \end{split}$$

Crack tip stresses: cylindrical

$$\begin{split} \sigma_{rr} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{Irr}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{Ilrr}(\theta) \\ \sigma_{tt} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{Itt}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{Iltt}(\theta) \\ \sigma_{rt} &= \frac{K_{I}}{\sqrt{2\pi r}} f_{Irt}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{Ilrt}(\theta) \end{split}$$

$$f_{Irr}(\theta) = \left[\frac{5}{4}\cos(\frac{\theta}{2}) - \frac{1}{4}\cos(\frac{3\theta}{2})\right]$$

$$f_{Itt}(\theta) = \left[\frac{3}{4}\cos(\frac{\theta}{2}) + \frac{1}{4}\cos(\frac{3\theta}{2})\right]$$

$$f_{Irt}(\theta) = \left[\frac{1}{4}\sin(\frac{\theta}{2}) + \frac{1}{4}\sin(\frac{3\theta}{2})\right]$$

$$\begin{split} f_{IIrr}(\theta) &= \left[-\frac{5}{4} \sin(\frac{\theta}{2}) + \frac{3}{4} \sin(\frac{3\theta}{2}) \right] \\ f_{IItt}(\theta) &= \left[-\frac{3}{4} \sin(\frac{\theta}{2}) - \frac{3}{4} \sin(\frac{3\theta}{2}) \right] \\ f_{IIrt}(\theta) &= \left[\frac{1}{4} \cos(\frac{\theta}{2}) + \frac{3}{4} \cos(\frac{3\theta}{2}) \right] \end{split}$$

() 136 / 290

Multi-mode load

$$\begin{bmatrix} \sigma_{11}^* & \sigma_{12}^* \\ \sigma_{21}^* & \sigma_{22}^* \end{bmatrix} = \begin{bmatrix} c^2\sigma_{11} + 2cs\sigma_{12} + s^2\sigma_{22} \\ -cs\sigma_{11} + (c^2 - s^2)\sigma_{12} + cs\sigma_{22} \\ -cs\sigma_{11} + (c^2 - s^2)\sigma_{12} + cs\sigma_{22} \\ s^2\sigma_{11} - 2cs\sigma_{12} + c^2\sigma_{22} \end{bmatrix}$$
 crack tip stresses
$$s_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{lij}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{Ilij}(\theta)$$
 with
$$K_I = \beta \ \sigma_{22}^* \sqrt{\pi a} \ ; \qquad K_{II} = \gamma \ \sigma_{12}^* \sqrt{\pi a}$$

 σ_{11}^* "does not do anything"

Example multi-mode load

$$\begin{split} \sigma_{11}^* &= c^2 \sigma_{11} + 2 c s \sigma_{12} + s^2 \sigma_{22} = c^2 k \sigma + s^2 \sigma \\ \sigma_{22}^* &= s^2 \sigma_{11} - 2 c s \sigma_{12} + c^2 \sigma_{22} = s^2 k \sigma + c^2 \sigma \\ \sigma_{12}^* &= -c s \sigma_{11} + (c^2 - s^2) \sigma_{12} + c s \sigma_{22} = c s (1 - k) \sigma \end{split}$$

crack tip stresses

$$s_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{lij}(\theta) + \frac{K_{II}}{\sqrt{2\pi r}} f_{llij}(\theta)$$

$$K_I = \beta_I \ \sigma_{22}^* \sqrt{\pi a} = \beta_I \ (s^2 k + c^2) \sigma \sqrt{\pi a}$$

$$K_{II} = \beta_{II} \ \sigma_{12}^* \sqrt{\pi a} = \beta_{II} \ cs(1 - k) \sigma \sqrt{\pi a}$$

Example multi-mode load

$$\begin{split} \sigma_t &= \frac{pR}{t} = \sigma \quad ; \qquad \sigma_a = \frac{pR}{2t} = \frac{1}{2}\sigma \qquad \to \qquad k = \frac{1}{2} \\ \sigma_{22}^* &= s^2 \frac{1}{2} \, \sigma + c^2 \sigma \quad ; \qquad \sigma_{12}^* = cs(1 - \frac{1}{2})\sigma = \frac{1}{2} \, cs \, \sigma \\ K_I &= \sigma_{22}^* \sqrt{\pi a} = (\frac{1}{2} s^2 + c^2) \sigma \sqrt{\pi a} = (\frac{1}{2} s^2 + c^2) \frac{pR}{t} \sqrt{\pi a} \\ K_{II} &= \sigma_{12}^* \sqrt{\pi a} = \frac{1}{2} \, cs \, \sigma = \frac{1}{2} \, cs \, \frac{pR}{t} \sqrt{\pi a} \end{split}$$

CRACK GROWTH DIRECTION

back to index

Crack growth direction

criteria for crack growth direction:

- maximum tangential stress (MTS) criterion
- strain energy density (SED) criterion

requirement : crack tip stresses in cylindrical coordinates

Maximum tangential stress criterion

Erdogan & Sih (1963)

Hypothesis: crack growth towards local maximum of σ_{tt}

$$\frac{\partial \sigma_{tt}}{\partial \rho} = 0$$

$$\frac{\partial \sigma_{tt}}{\partial \theta} = 0$$
 and $\frac{\partial^2 \sigma_{tt}}{\partial \theta^2} < 0$

$$\theta_{c}$$

$$\sigma_{tt}(\theta = \theta_c) = \sigma_{tt}(\theta = 0) = \frac{K_{lc}}{\sqrt{2\pi r}} \rightarrow \text{crack growth}$$

Maximum tangential stress criterion

$$\begin{split} \frac{\partial \sigma_{tt}}{\partial \theta} &= 0 \quad \rightarrow \\ \frac{3}{2} \frac{K_I}{\sqrt{2\pi r}} \left[-\frac{1}{4} \sin(\frac{\theta}{2}) - \frac{1}{4} \sin(\frac{3\theta}{2}) \right] + \frac{3}{2} \frac{K_{II}}{\sqrt{2\pi r}} \left[-\frac{1}{4} \cos(\frac{\theta}{2}) - \frac{3}{4} \cos(\frac{3\theta}{2}) \right] = 0 \quad \rightarrow \\ K_I \sin(\theta) + K_{II} \{ 3 \cos(\theta) - 1 \} &= 0 \end{split}$$

$$\begin{split} &\frac{\partial^2 \sigma_{tt}}{\partial \theta^2} < 0 \quad \rightarrow \\ &\frac{3}{4} \frac{K_I}{\sqrt{2\pi r}} \left[-\frac{1}{4} \cos(\frac{\theta}{2}) - \frac{3}{4} \cos(\frac{3\theta}{2}) \right] + \frac{3}{4} \frac{K_{II}}{\sqrt{2\pi r}} \left[\frac{1}{4} \sin(\frac{\theta}{2}) + \frac{9}{4} \sin(\frac{3\theta}{2}) \right] < 0 \\ &\sigma_{tt}(\theta = \theta_c) = \frac{K_{Ic}}{\sqrt{2\pi r}} \quad \rightarrow \end{split}$$

$$\frac{1}{4}\frac{K_{I}}{K_{Ic}}\left[3\cos(\frac{\theta_{c}}{2})+\cos(\frac{3\theta_{c}}{2})\right]+\frac{1}{4}\frac{K_{II}}{K_{Ic}}\left[-3\sin(\frac{\theta_{c}}{2})-3\sin(\frac{3\theta_{c}}{2})\right]=1$$

() 143 / 290

Mode I load

$$\begin{split} & \mathcal{K}_{II} = 0 \\ & \frac{\partial \sigma_{tt}}{\partial \theta} = \mathcal{K}_{I} \sin(\theta) = 0 \qquad \rightarrow \qquad \theta_{c} = 0 \\ & \frac{\partial^{2} \sigma_{tt}}{\partial \theta^{2}} \bigg|_{\theta_{c}} < 0 \\ & \sigma_{tt}(\theta_{c}) = \frac{\mathcal{K}_{Ic}}{\sqrt{2\pi r}} \qquad \rightarrow \qquad \mathcal{K}_{I} = \mathcal{K}_{Ic} \end{split}$$

() 144 / 290

Mode II load

$$K_I = 0$$

$$\begin{split} \frac{\partial \sigma_{tt}}{\partial \theta} &= K_{II}(3\cos(\theta_c) - 1) = 0 \qquad \rightarrow \qquad \theta_c = \pm \arccos(\frac{1}{3}) = \pm 70.6^o \\ \frac{\partial^2 \sigma_{tt}}{\partial \theta^2} \bigg|_{\theta_c} &< 0 \qquad \rightarrow \qquad \theta_c = -70.6^o \\ \sigma_{tt}(\theta_c) &= \frac{K_{Ic}}{\sqrt{2\pi r}} \qquad \rightarrow \qquad K_{IIc} = \sqrt{\frac{3}{4}} K_{Ic} \end{split}$$

() 145 / 290

Multi-mode load

$$\begin{split} & \mathcal{K}_{I}[-\sin(\frac{\theta}{2})-\sin(\frac{3\theta}{2})] + \mathcal{K}_{II}[-\cos(\frac{\theta}{2})-3\cos(\frac{3\theta}{2})] = 0 \\ & \mathcal{K}_{I}[-\cos(\frac{\theta}{2})-3\cos(\frac{3\theta}{2})] + \mathcal{K}_{II}[\sin(\frac{\theta}{2})+9\sin(\frac{3\theta}{2})] < 0 \\ & \mathcal{K}_{I}[3\cos(\frac{\theta}{2})+\cos(\frac{3\theta}{2})] + \mathcal{K}_{II}[-3\sin(\frac{\theta}{2})-3\sin(\frac{3\theta}{2})] = 4\mathcal{K}_{Ic} \end{split}$$

$$-K_{I}f_{1} - K_{II}f_{2} = 0$$

$$-K_{I}f_{2} + K_{II}f_{3} < 0$$

$$K_{I}f_{4} - 3K_{II}f_{1} = 4K_{Ic}$$

$$-\left(\frac{K_{I}}{K_{Ic}}\right)f_{1} - \left(\frac{K_{II}}{K_{Ic}}\right)f_{2} = 0$$

$$-\left(\frac{K_{I}}{K_{Ic}}\right)f_{2} + \left(\frac{K_{II}}{K_{Ic}}\right)f_{3} < 0$$

$$\left(\frac{K_{I}}{K_{Ic}}\right)f_{4} - 3\left(\frac{K_{II}}{K_{Ic}}\right)f_{1} = 4$$

() 146 / 290

Multi-mode load

Strain energy density (SED) criterion

Sih (1973)

$$U_i = \text{Strain Energy Density (Function)} = \int_0^{\varepsilon_{ij}} \sigma_{ij} d\varepsilon_{ij}$$

 $S = \text{Strain Energy Density Factor} = rU_i = S(K_I, K_{II}, \theta)$

Hypothesis: crack growth towards local minimum of SED

$$\frac{\partial S}{\partial \theta} = 0 \qquad \text{ and } \qquad \frac{\partial^2 S}{\partial \theta^2} > 0 \qquad \qquad \rightarrow \qquad \theta_c$$

$$S(\theta = \theta_c) = S(\theta = 0, \text{pl.strain}) = S_c \rightarrow \text{crack growth}$$

() 148 / 290

SED

$$\begin{split} U_{i} &= \frac{1}{2E} (\sigma_{xx}^{2} + \sigma_{yy}^{2} + \sigma_{zz}^{2}) - \frac{\nu}{E} (\sigma_{xx}\sigma_{yy} + \sigma_{yy}\sigma_{zz} + \sigma_{zz}\sigma_{xx}) + \frac{1}{2G} (\sigma_{xy}^{2} + \sigma_{yz}^{2} + \sigma_{zx}^{2}) \\ \sigma_{xx} &= \frac{K_{I}}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \left[1 - \sin(\frac{\theta}{2})\sin(\frac{3\theta}{2}) \right] - \frac{K_{II}}{\sqrt{2\pi r}} \sin(\frac{\theta}{2}) \left[2 + \cos(\frac{\theta}{2})\cos(\frac{3\theta}{2}) \right] \\ \sigma_{yy} &= \frac{K_{I}}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \left[1 + \sin(\frac{\theta}{2})\sin(\frac{3\theta}{2}) \right] + \frac{K_{II}}{\sqrt{2\pi r}} \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})\cos(\frac{3\theta}{2}) \end{split}$$

 $\sigma_{yy} = \frac{\kappa_{I}}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \left[1 + \sin(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right] + \frac{\kappa_{II}}{\sqrt{2\pi r}} \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2})$ $\sigma_{xy} = \frac{\kappa_{I}}{\sqrt{2\pi r}} \sin(\frac{\theta}{2}) \cos(\frac{\theta}{2}) \cos(\frac{3\theta}{2}) + \frac{\kappa_{II}}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \left[1 - \sin(\frac{\theta}{2}) \sin(\frac{3\theta}{2}) \right]$

() 149 /

SED factor

$$\begin{split} S &= rU_i = S(K_I, K_{II}, \theta) = a_{11}k_I^2 + 2a_{12}k_Ik_{II} + a_{22}k_{II}^2 \\ &\text{with} \qquad a_{11} = \frac{1}{16G}(1 + \cos(\theta))(\kappa - \cos(\theta)) \\ &a_{12} = \frac{1}{16G}\sin(\theta)\{2\cos(\theta) - (\kappa - 1)\} \\ &a_{22} = \frac{1}{16G}\{(\kappa + 1)(1 - \cos(\theta)) + (1 + \cos(\theta))(3\cos(\theta) - 1)\} \\ &k_i = K_i/\sqrt{\pi} \end{split}$$

$$\frac{\partial S}{\partial \theta} &= 0 \qquad \rightarrow \\ \frac{k_I^2}{16G}\{2\sin(\theta)\cos(\theta) - (\kappa - 1)\sin(\theta)\} + \frac{k_Ik_{II}}{16G}\{2 - 4\sin^2(\theta) - (\kappa - 1)\cos(\theta)\} + \\ \frac{k_{II}^2}{16G}\{-6\sin(\theta)\cos(\theta) + (\kappa - 1)\sin(\theta)\} = 0 \end{split}$$

$$\frac{\partial^2 S}{\partial \theta^2} > 0 \qquad \rightarrow \\ \frac{k_I^2}{16G}\{2 - 4\sin^2(\theta) - (\kappa - 1)\cos(\theta)\} + \frac{k_Ik_{II}}{16G}\{-8\sin(\theta)\cos(\theta) + (\kappa - 1)\sin(\theta)\} + \\ \frac{k_{II}^2}{16G}\{-6 + 12\sin^2(\theta) + (\kappa - 1)\cos(\theta)\} > 0 \end{split}$$

() 150 / 290

Mode I load

$$\begin{split} S &= a_{11} k_I^2 = \frac{\sigma^2 a}{16G} \{1 + \cos(\theta)\} \{\kappa - \cos(\theta)\} \\ &\frac{\partial S}{\partial \theta} = \sin(\theta) \{2 \cos(\theta) - (\kappa - 1)\} = 0 \quad \rightarrow \\ &\theta_c = 0 \quad \text{or} \quad \arccos\left(\frac{1}{2}(\kappa - 1)\right) \\ &\frac{\partial^2 S}{\partial \theta^2} = 2 \cos(2\theta) - (\kappa - 1) \cos(\theta) > 0 \quad \rightarrow \quad \theta_c = 0 \\ &S(\theta_c) = \frac{\sigma^2 a}{16G} \left\{2\} \{\kappa - 1\} = \frac{\sigma^2 a}{8G} \left(\kappa - 1\right) \\ &S_c = S(\theta_c, \text{pl.strain}) = \frac{(1 + \nu)(1 - 2\nu)}{2\pi E} \; K_{lc}^2 \end{split}$$

() 151 / 290

Mode II load

$$S = a_{22}k_{II}^{2}$$

$$= \frac{\tau^{2}a}{16G} [(\kappa + 1)\{1 - \cos(\theta)\} + \{1 + \cos(\theta)\}\{3\cos(\theta) - 1\}]$$

$$\frac{\partial S}{\partial \theta} = \sin(\theta) [-6\cos(\theta) + (\kappa - 1)] = 0$$

$$\frac{\partial^{2}S}{\partial \theta^{2}} = 6 - \cos^{2}(\theta) + (\kappa - 1)\cos(\theta) > 0$$

$$\theta_{c} = \pm \arccos\left(\frac{1}{6}(\kappa - 1)\right)$$

$$S(\theta_{c}) = \frac{\tau^{2}a}{16G} \{\frac{1}{12}(-\kappa^{2} + 14\kappa - 1)\}$$

$$S(\theta_{c}) = S_{c} \rightarrow \tau_{c} = \frac{1}{\sqrt{a}}\sqrt{\frac{192GS_{c}}{-\kappa^{2} + 14\kappa - 1}}$$

() 152 / 290

Multi-mode load; plane strain

Multi-mode load; plane stress

Multi-mode load; plane strain

$$\begin{split} k_I &= \sigma \sqrt{a} \sin^2(\beta) \qquad ; \qquad k_{II} &= \sigma \sqrt{a} \sin(\beta) \cos(\beta) \\ S &= \sigma^2 a \sin^2(\beta) \left\{ a_{11} \sin^2(\beta) + 2 a_{12} \sin(\beta) \cos(\beta) + a_{22} \cos^2(\beta) \right\} \\ \\ \frac{\partial S}{\partial \theta} &= (\kappa - 1) \sin(\theta_c - 2\beta) - 2 \sin\{2(\theta_c - \beta)\} - \sin(2\theta_c) = 0 \\ \\ \frac{\partial^2 S}{\partial \theta^2} &= (\kappa - 1) \cos(\theta_c - 2\beta) - 4 \cos\{2(\theta_c - \beta)\} - 2 \cos(2\theta_c) > 0 \end{split}$$

From Gdoutos

DYNAMIC FRACTURE MECHANICS

back to index

Dynamic fracture mechanics

- impact load
- (quasi)static load \rightarrow fast fracture
 - kinetic approach
 - static approach

() 157 / 290

Crack growth rate

Mott (1948)

$$\frac{dU_e}{da} - \frac{dU_i}{da} = \frac{dU_a}{da} + \frac{dU_d}{da} + \frac{dU_k}{da}$$

158 / 290

Kinetic energy

$$\begin{aligned} &U_k = \frac{1}{2}\rho B \int_{\Omega} \left(\dot{u}_x^2 + \dot{u}_y^2\right) dx dy \\ &\text{material velocity} \qquad \dot{u}_x \ll \dot{u}_y = \frac{du_y}{dt} = \frac{du_y}{da} \frac{da}{dt} = \frac{du_y}{da} s \end{aligned}$$

$$\begin{aligned} &U_k = \frac{1}{2}\rho s^2 B \int_{\Omega} \left(\frac{du_y}{da}\right)^2 dx dy \\ &\text{assumption} \qquad \frac{ds}{da} = 0 \end{aligned}$$

$$\begin{aligned} &\frac{dU_k}{da} = \frac{1}{2}\rho s^2 B \int_{\Omega} \frac{d}{da} \left(\frac{du_y}{da}\right)^2 dx dy \\ &u_y = 2\sqrt{2} \frac{\sigma}{E} \sqrt{a^2 - ax} \qquad \rightarrow \qquad \frac{du_y}{da} = \sqrt{2} \frac{\sigma}{E} \frac{2a - x}{\sqrt{a^2 - ax}} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} &\frac{dU_k}{da} = \rho s^2 B \left(\frac{\sigma}{E}\right)^2 a \int_{\Omega} \frac{1}{a^3} \frac{x^2 (x - 2a)}{(a - x)^2} dx dy = \rho s^2 B \left(\frac{\sigma}{E}\right)^2 a k(a) \end{aligned}$$

159 / 290

Energy balance

$$\frac{2\pi a\sigma^{2}}{E} = 4\gamma + \rho s^{2} \left(\frac{\sigma}{E}\right)^{2} ak \rightarrow$$

$$s = \left(\frac{E}{\rho}\right)^{\frac{1}{2}} \left(\frac{2\pi}{k}\right)^{\frac{1}{2}} \left(1 - \frac{2\gamma E}{\pi a\sigma^{2}}\right)^{\frac{1}{2}} \qquad \left(\rightarrow \frac{ds}{da} \neq 0 \text{ !!}\right)$$

$$\sqrt{\frac{2\pi}{k}} \approx 0.38 \qquad ; \qquad a_{c} = \frac{2\gamma E}{\pi \sigma^{2}} \qquad ; \qquad c = \sqrt{\frac{E}{\rho}}$$

() 160 / 290

Experimental crack growth rates

-					
	steel	copper	aluminum	glass	rubber
E [GPa]	210	120	70	70	20
$\rho \; [kg/m^2]$	7800	8900	2700	2500	900
γ	0.29	0.34	0.34	0.25	0.5
c [m/sec]	5190	3670	5090	5300	46
s [m/sec]	1500			2000	
s/c	0.29			0.38	

$$0.2 < \frac{s}{c} < 0.4$$

() 161 / 290

Elastic wave speeds

$$C_0$$
 = elongational wave speed = $\sqrt{\frac{E}{\rho}}$
 C_1 = dilatational wave speed = $\sqrt{\frac{\kappa+1}{\kappa-1}}\sqrt{\frac{\mu}{\rho}}$
 C_2 = shear wave speed = $\sqrt{\frac{\mu}{\rho}}$
 C_R = Rayleigh velocity = 0.54 C_0 á 0.62 C_0

Corrections

Dulancy & Brace (1960)
$$s = 0.38 \ C_0 \left(1 - \frac{a_c}{a}\right)$$
 Freund (1972)
$$s = C_R \left(1 - \frac{a_c}{a}\right)$$

() 162 / 290

Crack tip stress

Yoffe (1951):
$$\sigma_{Dij} = \frac{K_D}{\sqrt{2\pi r}} \; f_{ij}(\theta, r, s, E, \nu)$$

163 / 290

Crack branching

Yoffe (1951)

$$\sigma_{Dij} = \frac{K_{ID}}{\sqrt{2\pi r}} f_{ij}(\theta, r, s, E, \nu)$$

Source: Gdoutos (1993) p.245

Fast fracture and crack arrest

$$K_D \ge K_{Dc}(s, T)$$
 o crack growth

$$K_D < \min_{0 < s < C_R} K_{Dc}(s, T) = K_A$$
 \rightarrow crack arrest

165 / 290

Experiments

Source: KAN1985 p.210

• High Speed Photography : 10⁶ frames/sec

• Robertson : CA Temperature (CAT) test (KAN1985 p.258)

() 166 / 290

PLASTIC CRACK TIP ZONE

back to index

Von Mises and Tresca yield criteria

Von Mises
$$W^d=W^d_c$$

$$(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2=2\sigma_y^2$$

$$\tau_{max}=\tau_{max_c}$$

$$\sigma_{max}-\sigma_{min}=\sigma_y$$

() 168 / 290

Yield surfaces in principal stress space

() 169 / 290

Principal stresses at the crack tip

plane stress state

$$\sigma_{zz} = \sigma_{zx} = \sigma_{zy} = 0$$

$$\underline{\sigma} = \left[\begin{array}{ccc} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{xy} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$$\det(\underline{\sigma} - \sigma \underline{I}) = 0$$

characteristic equation

$$\sigma \left[\sigma^2 - \sigma (\sigma_{xx} + \sigma_{yy}) + (\sigma_{xx} \sigma_{yy} - \sigma_{xy}^2) \right] = 0 \qquad \qquad -$$

$$\sigma_1 = \frac{1}{2}(\sigma_{xx} + \sigma_{yy}) + \left\{\frac{1}{4}(\sigma_{xx} - \sigma_{yy})^2 + \sigma_{xy}^2\right\}^{1/2}$$

$$\sigma_2 = \frac{1}{2}(\sigma_{xx} + \sigma_{yy}) - \left\{\frac{1}{4}(\sigma_{xx} - \sigma_{yy})^2 + \sigma_{xy}^2\right\}^{1/2}$$

$$\sigma_3 = 0\,$$

plane strain state

$$\sigma_3 = \nu(\sigma_1 + \sigma_2)$$

() 170 / 290

Principal stresses at crack tip

crack tip stresses
$$\sigma_{ij} = \frac{K_I}{\sqrt{2\pi r}} f_{iij}(\theta)$$

$$\sigma_{1(+),2(-)} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos(\frac{\theta}{2}) \pm \sqrt{\frac{1}{4} \left\{ -2\cos(\frac{\theta}{2})\sin(\frac{\theta}{2})\sin(\frac{3\theta}{2}) \right\}^2 + \left\{ \sin(\frac{\theta}{2})\cos(\frac{3\theta}{2})\cos(\frac{3\theta}{2}) \right\}^2} \right]$$

$$\sigma_1 = \frac{K_I}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \{1 + \sin(\frac{\theta}{2})\}$$

$$\sigma_2 = \frac{K_I}{\sqrt{2\pi r}} \cos(\frac{\theta}{2}) \{1 - \sin(\frac{\theta}{2})\}$$

$$\sigma_3 = 0 \qquad \text{or} \qquad \sigma_3 = \frac{2\nu K_I}{\sqrt{2\pi r}} \cos(\frac{\theta}{2})$$

171 / 290

Principal stresses at crack tip

plane stress plane strain

$$\begin{aligned} &\sigma_1>\sigma_2>\sigma_3\\ &\sigma_1>\sigma_2>\sigma_3 & \text{or} & \sigma_1>\sigma_3>\sigma_2 \end{aligned}$$

() 172 / 290

Von Mises plastic zone

$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 = 2\sigma_y^2$$

plane stress

$$\sigma_3 = 0$$

$$(\sigma_1 - \sigma_2)^2 + \sigma_2^2 + \sigma_1^2 = 2\sigma_y^2$$

$$\frac{K_I^2}{2\pi r_y} \cos^2(\frac{\theta}{2}) \left[6 \sin^2(\frac{\theta}{2}) + 2 \right] = 2\sigma_y^2$$

$$r_{y} = \frac{K_{I}^{2}}{2\pi\sigma_{y}^{2}}\cos^{2}(\frac{\theta}{2})\left[1 + 3\sin^{2}(\frac{\theta}{2})\right] = \frac{K_{I}^{2}}{4\pi\sigma_{y}^{2}}\left[1 + \cos(\theta) + \frac{3}{2}\sin^{2}(\theta)\right]$$

plane strain

$$\sigma_3 = \nu(\sigma_1 + \sigma_2)$$

$$(v^{2} - v + 1)(\sigma_{1}^{2} + \sigma_{2}^{2}) + (2v^{2} - 2v - 1)\sigma_{1}\sigma_{2} = \sigma_{y}^{2}$$

$$\frac{K_{I}^{2}}{2\pi r_{y}}\cos^{2}(\frac{\theta}{2})\left[6\sin^{2}(\frac{\theta}{2}) + 2(1 - 2v)^{2}\right] = 2\sigma_{y}^{2}$$

$$\sum_{r=0}^{K_{I}^{2}}\left[(1 - 2v)^{2}(1 + \cos(\theta)) + \frac{3}{2}\sin^{2}(\theta)\right]$$

 $r_y = \frac{K_I^2}{4\pi\sigma_y^2} \left[(1 - 2\nu)^2 \{ 1 + \cos(\theta) \} + \frac{3}{2}\sin^2(\theta) \right]$

173 / 290

Von Mises plastic zone

Plot made with 'plazone.m'.

() 174 / 290

Tresca plastic zone

$$\sigma_{\textit{max}} - \sigma_{\textit{min}} = \sigma_{\textit{y}}$$

plane stress

$$\{\sigma_{\textit{max}}, \sigma_{\textit{min}}\} = \{\sigma_1, \sigma_3\}$$

$$\frac{K_I}{\sqrt{2\pi r_v}} \left[\cos(\frac{\theta}{2}) + \left| \cos(\frac{\theta}{2}) \sin(\frac{\theta}{2}) \right| \right] = \sigma_y$$

$$r_y = \frac{K_I^2}{2\pi\sigma_y^2} \left[\cos(\frac{\theta}{2}) + \left| \cos(\frac{\theta}{2})\sin(\frac{\theta}{2}) \right| \right]^2$$

plane strain I

$$\sigma_1 > \sigma_2 > \sigma_3 \quad \rightarrow \quad \{\sigma_{\textit{max}}, \sigma_{\textit{min}}\} = \{\sigma_1, \sigma_3\}$$

$$r_{y} = \frac{K_{I}^{2}}{2\pi\sigma_{v}^{2}} \left[(1 - 2v)\cos(\frac{\theta}{2}) + \left|\cos(\frac{\theta}{2})\sin(\frac{\theta}{2})\right| \right]^{2}$$

plane strain II

$$\sigma_1 > \sigma_3 > \sigma_2 \quad \rightarrow \quad \{\sigma_{\textit{max}}, \sigma_{\textit{min}}\} = \{\sigma_1, \sigma_2\}$$

$$r_y = \frac{K_I^2}{2\pi\sigma_y^2}\sin^2(\theta)$$

()

Tresca plastic zone

Plot made with 'plazone.m'.

() 176 / 290

Influence of the plate thickness

$$B_c > \frac{25}{3\pi} \left(\frac{K_{lc}}{\sigma_v}\right)^2 > 2.5 \left(\frac{K_{lc}}{\sigma_v}\right)^2$$

() 177 / 290

Shear planes

Source: Gdoutos p.60/61/62; Kanninen p.176

Irwin plastic zone correction

$$\begin{array}{ll} \theta=0 & \rightarrow & \sigma_{xx}=\sigma_{yy}=\frac{K_I}{\sqrt{2\pi r}} \\ \\ \text{yield} & \sigma_{xx}=\sigma_{yy}=\sigma_y & \rightarrow & r_y=\frac{1}{2\pi}\left(\frac{K_I}{\sigma_y}\right)^2 \end{array}$$

equilibrium not satisfied \rightarrow

correction required \rightarrow shaded area equal

Irwin plastic zone correction

$$\sigma_{y}r_{p} = \int_{0}^{r_{y}} \sigma_{yy}(r) dr = \frac{K_{I}}{\sqrt{2\pi}} \int_{0}^{r_{y}} r^{-\frac{1}{2}} dr = \frac{2K_{I}}{\sqrt{2\pi}} \sqrt{r_{y}} \rightarrow$$

$$r_{p} = \frac{2K_{I}}{\sqrt{2\pi}} \frac{\sqrt{r_{y}}}{\sigma_{y}} \rightarrow r_{p} = \frac{1}{\pi} \left(\frac{K_{I}}{\sigma_{y}}\right)^{2} = 2 r_{y}$$

() 180 / 290

Dugdale-Barenblatt plastic zone correction

load
$$\sigma$$
 $K_I(\sigma) = \sigma \sqrt{\pi(a + r_p)}$ $K_I(\sigma_y) = 2\sigma_y \sqrt{\frac{a + r_p}{\pi}} \arccos\left(\frac{a}{a + r_p}\right)$ singular term $= 0$ \rightarrow $K_I(\sigma) = K_I(\sigma_y)$ \rightarrow $r_p = \frac{\pi K_I^2}{8\sigma_y^2}$

Plastic constraint factor

$$\begin{split} &\sqrt{\frac{1}{2}\{(\sigma_1-\sigma_2)^2+(\sigma_2-\sigma_3)^2+(\sigma_3-\sigma_1)^2\}} = \\ &\left[\sqrt{1-n-m+n^2+m^2-mn}\;\right]\sigma_{\text{max}} = \sigma_y \\ &\text{PCF} = \frac{\sigma_{\text{max}}}{\sigma_y} = \frac{1}{\sqrt{1-n-m+n^2+m^2-mn}} \end{split}$$

PCF at the crack tip

pl.sts
$$\begin{aligned} n &= \left[1-\sin(\frac{\theta}{2})\right] / \left[1+\sin(\frac{\theta}{2})\right] &; \quad m &= 0 \\ pl.stn & n &= \left[1-\sin(\frac{\theta}{2})\right] / \left[1+\sin(\frac{\theta}{2})\right] &; \quad m &= 2\nu / \left[1+\sin(\frac{\theta}{2})\right] \end{aligned}$$

PCF at the crack tip in the crack plane

pl.sts
$$n=1\;;\;m=0 \to \mathsf{PCF}=1$$
 pl.stn $n=1\;;\;m=2\nu \to \mathsf{PCF}=\frac{1}{\sqrt{1-4\nu+4\nu^2}}$

() 182 / 290

Plastic zones in the crack plane

criterion	state	r_y or r_p	$\frac{r_y r_p}{(K_I/\sigma_y)^2}$
Von Mises	plane stress	$\frac{1}{2\pi} \left(\frac{K_I}{\sigma_y} \right)^2$	0.1592
Von Mises	plane strain	$\frac{1}{18\pi} \left(\frac{K_I}{\sigma_y} \right)^2$	0.0177
Tresca	plane stress	$\frac{1}{2\pi} \left(\frac{K_I}{\sigma_y} \right)^2$	0.1592
Tresca	plane strain $\sigma_1 > \sigma_2 > \sigma_3$	$\frac{1}{18\pi} \left(\frac{K_I}{\sigma_y} \right)^2$	0.0177
Tresca	plane strain $\sigma_1 > \sigma_3 > \sigma_2$	0	0
Irwin	plane stress	$\frac{1}{\pi} \left(\frac{K_I}{\sigma_y} \right)^2$	0.3183
Irwin	plane strain (PCF $=$ 3)	$\frac{1}{\pi} \left(\frac{K_I}{3\sigma_y} \right)^2$	0.0354
Dugdale	plane stress	$\frac{\pi}{8} \left(\frac{K_I}{\sigma_y} \right)^2$	0.3927
Dugdale	plane strain (PCF $=$ 3)	$\frac{\pi}{8} \left(\frac{K_I}{3\sigma_y} \right)^2$	0.0436

Small Scale Yielding

- LEFM & SSY
- ullet correction ullet effective crack length $a_{\it eff}$
- Irwin / Dugdale-Barenblatt correction
- SSY : outside plastic zone : $K_I(a_{eff})$ -stress

$$a_{eff} = a + (r_y|r_p) \quad \leftrightarrow \quad K_I = \beta_I(a_{eff})\sigma\sqrt{\pi a_{eff}}$$

() 184 / 290

NONLINEAR FRACTURE MECHANICS

back to index

Crack-tip opening displacement

crack tip displacement

$$u_{y} = \frac{\sigma\sqrt{\pi a}}{2\mu}\sqrt{\frac{r}{2\pi}}\left[\sin(\frac{1}{2}\theta)\left\{\kappa + 1 - 2\cos^{2}(\frac{1}{2}\theta)\right\}\right]$$

displacement in crack plane $\theta = \pi$; r = a - x

$$\label{eq:uy} u_y = \frac{(1+\nu)(\kappa+1)}{E} \; \frac{\sigma}{2} \; \sqrt{2a(a-x)}$$

Crack Opening Displacement (COD)

$$\delta(x) = 2u_y(x) = \frac{(1+\nu)(\kappa+1)}{E} \ \sigma \sqrt{2a(a-x)}$$

Crack Tip Opening Displacement (CTOD)

$$\delta_t = \delta(x = a) = 0$$

() 186 / 290

CTOD by Irwin

effective crack length

$$a_{eff} = a + r_y = a + \frac{1}{2\pi} \left(\frac{K_I}{\sigma_y}\right)^2$$

() 187 / 290

CTOD by Irwin

$$\begin{split} \delta(x) &= \frac{(1+\nu)(\kappa+1)}{E} \, \sigma \sqrt{2a_{eff}(a_{eff}-x)} \\ &= \frac{(1+\nu)(\kappa+1)}{E} \, \sigma \sqrt{2(a+r_y)(a+r_y-x)} \\ \delta_t &= \delta(x=a) = \frac{(1+\nu)(\kappa+1)}{E} \, \sigma \sqrt{2(a+r_y)r_y} \\ &= \frac{(1+\nu)(\kappa+1)}{E} \, \sigma \sqrt{2ar_y+2r_y^2} \\ &\approx \frac{(1+\nu)(\kappa+1)}{E} \, \sigma \sqrt{2ar_y} \end{split}$$

plane stress :
$$\delta_t = \frac{4}{\pi} \frac{K_l^2}{E \sigma_y} = \frac{4}{\pi} \frac{G}{\sigma_y}$$
plane strain :
$$\delta_t = \left[\frac{1}{\sqrt{3}}\right] \frac{4(1 - v^2)}{\pi} \frac{K_l^2}{E \sigma_y}$$

() 188 / 290

CTOD by Dugdale

effective crack length

$$a_{eff} = a + r_p = a + \frac{\pi}{8} \left(\frac{K_I}{\sigma_y}\right)^2$$

() 189 / 290

CTOD by Dugdale

displacement from requirement "singular term = 0" : $\bar{u}_y(x)$

$$\begin{split} \bar{u}_y(x) &= \frac{(a+r_p)\sigma_y}{\pi E} \left[\frac{x}{a+r_p} \ln \left\{ \frac{\sin^2(\hat{\gamma}-\gamma)}{\sin^2(\hat{\gamma}+\gamma)} \right\} + \cos(\hat{\gamma}) \ln \left\{ \frac{\sin(\hat{\gamma}) + \sin(\gamma)}{\sin(\hat{\gamma}) - \sin(\gamma)} \right\}^2 \right] \\ \gamma &= \arccos \left(\frac{x}{a+r_p} \right) \quad ; \quad \hat{\gamma} = \frac{\pi}{2} \frac{\sigma}{\sigma_y} \end{split}$$

Crack Tip Opening Displacement

$$\left. \begin{array}{l} \delta_t = \lim_{x \longrightarrow a} 2\bar{u}_y(x) = \frac{8\sigma_v a}{\pi E} \, \ln \left\{ \sec \left(\frac{\pi}{2} \, \frac{\sigma}{\sigma_y} \right) \right\} \\ \text{series expansion} \quad \& \quad \sigma \ll \sigma_y \end{array} \right\} \, \rightarrow \,$$

plane stress :
$$\delta_t = \frac{K_I^2}{E\sigma_y} = \frac{G}{\sigma_y}$$

plane strain :
$$\delta_t = \left[\frac{1}{2}\right] (1-v^2) \, \frac{\mathcal{K}_l^2}{E \, \sigma_y}$$

() 190 / 290

CTOD crack growth criterion

- $\delta_t \sim (G, K_I)$ at LEFM
- δ_t = measure for deformation at crack tip (LEFM)
- δ_t = measure for (large) plastic deformation at crack tip (NLFM)

criterion

$$\delta_t = \delta_{tc}(\dot{\varepsilon}, T)$$

- δ_t calculate or measure
- δ_{tc} experimental determination (ex. BS 5762)

J-integral

$$\begin{split} J_k &= \int\limits_{\Gamma} \left(W n_k - t_i \frac{\partial u_i}{\partial x_k}\right) \, d\Gamma \qquad ; \qquad W = \text{specific energy} = \int_0^{\mathcal{E}_{pq}} \sigma_{ij} \, d\varepsilon_{ij} \\ J &= J_1 = \int \left(W n_1 - t_i \frac{\partial u_i}{\partial x_1}\right) \, d\Gamma \end{split}$$

() 192 / 290

Integral along closed curve

$$J_k = \int\limits_{\Gamma} \left(W \delta_{jk} - \sigma_{ij} u_{i,k}\right) n_j \, d\Gamma$$
 inside Γ no singularities \rightarrow Stokes (Gauss in 3D)
$$\int\limits_{\Omega} \left(\frac{dW}{d\varepsilon_{mn}} \, \frac{\partial \varepsilon_{mn}}{\partial x_j} \, \delta_{jk} - \sigma_{ij,j} u_{i,k} - \sigma_{ij} u_{i,kj}\right) \, d\Omega$$
 homogeneous hyper-elastic
$$\sigma_{mn} = \frac{\partial W}{\partial u_{i,k}}$$

$$\sigma_{mn} = \frac{\partial W}{\partial \varepsilon_{mn}}$$

$$\varepsilon_{mn} = \frac{1}{2}(u_{m,n} + u_{n,m})$$

$$\sigma_{ij,j} = 0$$

$$\int_{\Omega} \left\{ \frac{1}{2} \sigma_{mn} (u_{m,nk} + u_{n,mk}) - \sigma_{ij} u_{i,kj} \right\} d\Omega =$$

$$\int_{\Omega} \left(\sigma_{mn} u_{m,nk} - \sigma_{ij} u_{i,kj} \right) d\Omega = 0$$

Path independency

$$\int_{\Gamma_A} f_1 d\Gamma + \int_{\Gamma_B} f_1 d\Gamma + \int_{\Gamma^-} f_1 d\Gamma + \int_{\Gamma^+} f_1 d\Gamma = 0$$

no loading of crack faces : $n_1=0$; $t_i=0$ on Γ^+ and Γ^-

$$\left. \begin{array}{l} \int_{\Gamma_A} f_1 \, d\Gamma + \int_{\Gamma_B} f_1 \, d\Gamma = 0 \\ \int_{\Gamma_A} f_1 \, d\Gamma = J_{1_A} \quad ; \quad \int_{\Gamma_B} f_1 \, d\Gamma = -J_{1_B} \end{array} \right\} \rightarrow J_{1_A} - J_{1_B} = 0 \rightarrow$$

() 194 / 290

Relation $J \sim K$

lin. elast. material :
$$W = \frac{1}{2}\sigma_{mn}\varepsilon_{mn} = \frac{1}{4}\sigma_{mn}(u_{m,n} + u_{n,m})$$

$$J_{k} = \int_{\Gamma} \left(\frac{1}{4} \sigma_{mn} (u_{m.n} + u_{n,m}) \delta_{jk} - \sigma_{ij} u_{i,k} \right) n_{j} d\Gamma$$
$$= \int_{\Gamma} \left(\frac{1}{2} \sigma_{mn} u_{m,n} \delta_{jk} - \sigma_{ij} u_{i,k} \right) n_{j} d\Gamma$$

Model + II + III

$$\sigma_{ij} = \frac{1}{\sqrt{2\pi r}} [K_I f_{Iij} + K_{II} f_{IIij} + K_{III} f_{IIIij}]$$

$$u_i = u_{Ii} + u_{IIi} + u_{IIIi}$$

substitution and integration over $\Gamma = \text{circle}$

$$\begin{split} J_1 &= \frac{(\kappa+1)(1+\nu)}{4E} \left(\mathcal{K}_I^2 + \mathcal{K}_{II}^2 \right) + \frac{(1+\nu)}{E} \mathcal{K}_{III}^2 \\ J_2 &= -\frac{(\kappa+1)(1+\nu)}{2E} \mathcal{K}_I \mathcal{K}_{II} \end{split}$$

() 195 / 290

Relation $J \sim G$

$$J_1 = J = \frac{(\kappa + 1)(1 + \nu)}{4E} K_I^2 = G$$

$$\kappa + 1 = \frac{3 - \nu}{1 + \nu} + \frac{1 + \nu}{1 + \nu} = \frac{4}{1 + \nu}$$
 \rightarrow $J = \frac{1}{E} K_I^2$

$$\kappa + 1 = 4 - 4\nu$$
 \rightarrow $J = \frac{(1 - \nu^2)}{E} K_I^2$

Relation $J \sim \delta_t$

Irwin
$$J = \frac{\pi}{4} \sigma_y \delta_t$$

Dugbale $J = \sigma_v \delta_t$

Irwin
$$J = \frac{\pi}{4} \sqrt{3} \sigma_y \delta_t$$
Dugbale $J = 2\sigma_y \delta_t$

Plastic constraint factor

$$J = m \sigma_y \delta_t$$

$$m = -0.111 + 0.817 \frac{a}{W} + 1.36 \frac{\sigma_u}{\sigma_y}$$

Ramberg-Osgood material law

$$\frac{\varepsilon}{\varepsilon_{y0}} = \frac{\sigma}{\sigma_{y0}} + \alpha \left(\frac{\sigma}{\sigma_{y0}}\right)^n$$

$$egin{aligned} n & & & \\ n & = 1 & & \\ n & \to \infty & & \end{aligned}$$

strain hardening parameter $(n \geq 1)$ linear elastic ideal plastic

HRR-solution

$$\begin{split} \sigma_{ij} &= \sigma_{y0} \, \beta \, \, r^{-\frac{1}{n+1}} \, \, \tilde{\sigma}_{ij}(\theta) \qquad ; \qquad u_i = \alpha \epsilon_{y0} \, \beta^n \, \, r^{\frac{1}{n+1}} \, \, \tilde{u}_i(\theta) \\ \text{with} : \qquad \qquad \beta &= \left[\frac{J}{\alpha \sigma_{y0} \epsilon_{y0} \, I_n} \right]^{\frac{1}{n+1}} \qquad (I_n \, \, \text{from num. anal.}) \end{split}$$

() 199 / 290

J-integral crack growth criterion

- LEFM : $J_k \sim G \sim (K_I, K_{II}, K_{III})$
- criterion

$$J=J_c$$

- calculate J
- J_{lc} from experiments e.g. ASTM E813

NUMERICAL FRACTURE MECHANICS

back to index

Numerical fracture mechanics

- MethodsEEM ; BEM
- Calculations
 - ► G
 - ▶ K
 - $ightharpoonup \delta_t$
- Simulation crack growth

Quadratic elements

isoparametric coordinates $: \quad -1 \leq \xi_i \leq 1$ shape functions for each node n $\psi_n(\xi_1,\xi_2) = \text{quadratic in } \xi_1 \text{ and } \xi_2$

() 203 / 290

Crack tip mesh

- bad approximation stress field
- $1/\sqrt{r}$

• results are mesh-dependent

Special elements

- enriched elements
 - crack tip field added to element displacement field
 - structure \underline{K} and \underline{f} changes
 - transition elements for compatibility
- hybrid elements
 - modified variational principle

Quarter point elements

Distorted Quadratic Quadrilateral

 $(1/\sqrt{r})$

Distorted Quadratic Triangle

 $(1/\sqrt{r})$

Collapsed Quadratic Quadrilateral

 $(1/\sqrt{r})$

Collapsed Distorted Linear Quadrilateral

(1/r)

good approximation stress field

- $(1/\sqrt{r} \text{ or } 1/r)$
- bad approximation non-singular stress field
- standard FEM-programs can be used

() 206 / 290

Crack tip rozet

- Quarter Point Elements: 8x
- Transition Elements : number is problem dependent
- Buffer Elements

() 207 / 290

One-dimensional case

position

$$x = \frac{1}{2}\xi(\xi - 1)x_1 + \frac{1}{2}\xi(\xi + 1)x_2 - (\xi^2 - 1)x_3$$

= $\frac{1}{2}\xi(\xi + 1)L - (\xi^2 - 1)x_3$

displacement and strain

$$\begin{split} u &= \tfrac{1}{2}\xi(\xi-1)u_1 + \tfrac{1}{2}\xi(\xi+1)u_2 - (\xi^2-1)u_3 \\ \frac{du}{d\xi} &= (\xi-\tfrac{1}{2})u_1 + (\xi+\tfrac{1}{2})u_2 - 2\xi u_3 \quad \rightarrow \\ \frac{du}{dx} &= \frac{du}{d\xi} \frac{d\xi}{dx} = \frac{du}{d\xi} / \frac{dx}{d\xi} \end{split}$$

() 208 / 290

Mid point element

mid-point element:

$$x_3 = \frac{1}{2}L$$

$$x = \frac{1}{2}\xi(\xi+1)L - (\xi^2 - 1)\frac{1}{2}L = \frac{1}{2}(\xi+1)L \qquad \Rightarrow$$

$$\frac{dx}{d\xi} = \frac{1}{2}L$$

$$\frac{du}{dx} = \frac{\frac{du}{d\xi}}{\frac{1}{2}L} \quad \to \quad \frac{du}{dx}\Big|_{\substack{\xi=0\\ \xi=-1}} = \left(\frac{2}{L}\right)\left\{\left(-\frac{3}{2}\right)u_1 + \left(\frac{1}{2}\right)u_2 + 2u_3\right\}$$

Quarter point element

quarter-point element :

$$x_3 = \frac{1}{4}L$$

$$x = \frac{1}{2}\xi(\xi+1)L - (\xi^2 - 1)\frac{1}{4}L = \frac{1}{4}(\xi+1)^2L \quad \to \quad \xi + 1 = \sqrt{\frac{4x}{L}} \quad \Rightarrow$$

$$\frac{dx}{d\xi} = \frac{1}{2}(\xi+1)L = \sqrt{xL}$$

$$\frac{du}{dx} = \frac{\frac{du}{d\xi}}{\sqrt{xL}} \quad \to \quad \frac{du}{dx}\Big|_{\xi=-1}^{x=0} = \infty$$
singularity
$$\frac{1}{\sqrt{x}}$$

() 210 / 290

Virtual crack extension method (VCEM)

$$\begin{array}{ll} \text{fixed grips} & \rightarrow & \frac{dU_{\text{e}}}{da} = 0 & \Rightarrow \\ G = -\frac{1}{B}\,\frac{dU_{i}}{da} \approx -\frac{1}{B}\,\frac{U_{i}(a+\Delta a) - U_{i}(a)}{\Delta a} \end{array}$$

() 211 / 290

VCEM: stiffness matrix variation

$$BG = -\frac{dU_i}{da} = -\frac{1}{2}\underline{u}^T \frac{\Delta \underline{C}}{\Delta a}\underline{u}$$
 with $\Delta \underline{C} = \underline{C}(a + \Delta a) - \underline{C}(a)$

$$\Delta \underline{C} = \underline{C}(a + \Delta a) - \underline{C}(a)$$

- G from analysis crack tip mesh only
- nodal point displacement : \pm 0.001 * element size
- not possible with crack tip in interface
- unloaded crack plane
- no thermal stresses

Stress intensity factor

- \bullet calculate G_I and G_{II} with VCEM
- calculate K_I and K_{II} from

$$\mathcal{K}_I^2=E'G_I$$
 ; $\mathcal{K}_{II}^2=E'G_{II}$ plane stress $E'=E$ plane strain $E'=E/(1-v^2)$

difficult for crack propagation study

SIF: stress field

$$\mathcal{K}_{I} = \lim_{r \to 0} \left(\sqrt{2\pi r} \ \sigma_{22}|_{\theta=0} \right) \quad ; \quad \mathcal{K}_{II} = \lim_{r \to 0} \left(\sqrt{2\pi r} \ \sigma_{12}|_{\theta=0} \right)$$

extrapolation to crack tip

questions:

- which elements?
- how much elements?
- which integration points?

() 214 / 290

SIF: displacement field

crack tip displacement

y-component

$$u_y = \frac{4(1-v^2)}{E} \sqrt{\frac{r}{2\pi}} K_I g_{ij}(\theta) \rightarrow$$

$$K_I = \lim_{r \to 0} \left[\frac{E}{4(1-v^2)} \sqrt{\frac{2\pi}{r}} u_y(\theta = 0) \right]$$

more accurate than SIF from stress field

J-integral

$$J = \int_{\Gamma} \left(W n_1 - t_i \frac{\partial u_i}{\partial x_1} \right) d\Gamma \qquad \text{with} \quad W = \int_{0}^{\varepsilon} \sigma_{ij} d\varepsilon_{ij}$$

() 216 / 290

J-integral: Direct calculation

$$\begin{split} J &= 2 \int\limits_{y} \left[W - \left(\sigma_{xx} \frac{\partial u_{x}}{\partial x} + \sigma_{yx} \frac{\partial u_{y}}{\partial x} \right) \right] \, dy - 2 \int\limits_{x} \left[\left(\sigma_{xy} \frac{\partial u_{x}}{\partial x} + \sigma_{yy} \frac{\partial u_{y}}{\partial x} \right) \right] \, dx \\ W &= \frac{E}{2(1 - v^{2})} (\varepsilon_{xx}^{2} + 4v\varepsilon_{xx}\varepsilon_{yy} + 2(1 - v)\varepsilon_{xy}^{2} + \varepsilon_{yy}^{2}) \end{split}$$

 \Rightarrow path through integration points

 \Rightarrow no need for quarter point elements

() 217 / 290

J-integral : Domain integration

$$J = \int_{\Omega} \frac{\partial q}{\partial x_j} \left(\sigma_{ij} \frac{\partial u_i}{\partial x_1} - W \delta_{1j} \right) d\Omega$$

interpolation

$$q^{e} = N^{T}(\xi) q^{e}$$

() 218 / 290

De Lorenzi J-integral : VCE technique

$$J = \int_{\Omega} \frac{\partial q}{\partial x_{j}} \left(\sigma_{ij} \frac{\partial u_{i}}{\partial x_{1}} - W \delta_{1j} \right) d\Omega -$$

$$\int_{\Gamma_{s}} q \rho_{i} \frac{\partial u_{i}}{\partial x_{1}} d\Gamma - \int_{\Omega} q (\rho q_{i} - \rho \ddot{u}_{i}) \frac{\partial u_{i}}{\partial x_{1}} d\Omega + \int_{\Omega} q \sigma_{ij} \frac{\partial \varepsilon_{ij}^{o}}{\partial x_{1}} d\Omega$$

- rigid region
 - elongation Δa of crack
 - translation δx_1 of internal nodes
 - ▶ fixed position of boundary
- $q = \frac{\delta x_1}{\Delta a} = \text{shift function } (0 < q < 1)$

Crack growth simulation

- Node release
- Moving Crack Tip Mesh
- Element splitting
- Smeared crack approach

() 220 / 290

Node release

node collocation technique

() 221 / 290

Moving Crack Tip Mesh

() 222 / 290

Element splitting

() 223 / 290

Smeared crack approach

() 224 / 290

FATIGUE

back to index

Teletekst Wo 3 oktober 2007

Van de 274 stalen bruggen in ons land kampen er 25 met metaalmoeheid. Dat is de uitkomst van een groot onderzoek van het ministerie van Verkeer. Bij twaalf bruggen zijn de problemen zo groot dat noodmaatregelen nodig zijn.

Ook de meer dan 2000 betonnen bruggen en viaducten zijn onderzocht. De helft daarvan moet nog nader worden bekeken. Ze gaan mogelijk minder lang mee dan was berekend, maar de veiligheid komt volgens het ministerie niet in gevaar.

Verkeersbeperkende maatregelen zijn dan ook niet nodig. Die werden in april wel getroffen voor het vrachtverkeer over de Hollandse Brug bij Almere.

() 226 / 290

Fatigue

- ullet \pm 1850 (before Griffith !) : cracks at diameter-jumps in axles carriages / trains
- failure due to cyclic loading with small amplitude
- Wöhler : systematic experimental examination

cyclic loading:

- variable mechanical loads
- vibrations
- pressurization / depressurization
- thermal loads (heating / cooling)
- random external loads

Crack surface

- clam shell markings (beach marks)
 - irregular crack growth
 - crack growth under changing conditions
- striations
 - sliding of slip planes
 - plastic blunting / sharpening of crack tip
 - regular crack growth

() 228 / 290

Experiments

- full-scale testing a.o.
 - train axles
 - airplanes
- laboratory testing
 - ► harmonic loading
 - constant force/moment
 - strain/deflection
 - ► SIF

() 229 / 290

Train axle


```
1 rev = \pi D = \pi \times 0.75 \approx 2.25 [m]

1 km = 1000 m = \frac{1000}{2.25} = \frac{4000}{9} \approx 445 [c(ycles)]

1 day Maastricht - Groningen = 2.5 \times 333 [km] = 1000 [km]

1 day Maastricht - Groningen = 445 \times 10^3 [c]

1 year = 300 \times 445 \times 10^3 [c] = 1335 \times 10^5 [c] \approx 1.5 \times 10^8 [c]
```

frequency : 100 [km/h] = 445
$$imes$$
 10² [c/h] = $\frac{44500}{3600}$ = 12.5 [c/sec] = 12.5 [Hz]

() 230 / 290

Fatigue load

(stress controlled)

no influence frequency for \pm 5000 [c/min] (metals)

Fatigue limit

$$(\sigma_{th})$$

$$\sigma < \sigma_{th}$$

no increase of damage

materials with fatigue limit

- mild steel
- low strength steels
- Ti / Al / Mg -alloys

materials without fatigue limit

- some austenitic steels
- high strength steels
- most non-ferro alloys
- Al / Mg-alloys

()

(S-N)-curve

$$S = \sigma_{\textit{max}}$$

:
$$R=-1$$
 and $\sigma_m=0$ \rightarrow $\sigma_{max}={1\over 2}\Delta\sigma$

:
$$N_f$$
 at $\sigma_{max}(=S)$

:
$$\sigma_{th}(=\sigma_{fat})$$
 \rightarrow $N_f=\infty(\pm 10^9)$

:
$$\sigma_e = \sigma_{max}$$
 when $N_f \approx 50 \times 10^6$

:
$$\sigma_{th} \approx \frac{1}{2}\sigma_b$$

(S_a-N) -curve

B.S. 3518 part I 1984 :
$$S_a = \frac{1}{2}\Delta\sigma = \sigma_a$$

$$S_a = \frac{1}{2}\Delta\sigma = \sigma_a$$

reference

:
$$R=-1$$
 and $\sigma_m=0$ \rightarrow $\sigma_a=\sigma_{max}$

$$(S_a - N)$$
 curve $= (S - N)$ curve

Examples

() 235 / 290

Influence of average stress

() 236 / 290

Correction for average stress

Gerber (1874)
$$\frac{\sigma_a^*}{\sigma_a} = 1 - \left(\frac{\sigma_m}{\sigma_u}\right)^2$$
Goodman (1899)
$$\frac{\sigma_a^*}{\sigma_a} = 1 - \frac{\sigma_m}{\sigma_u}$$
Soderberg (1939)
$$\frac{\sigma_a^*}{\sigma_a} = 1 - \frac{\sigma_m}{\sigma_{y0}}$$

 σ_u : tensile strength

 σ_{y0} : initial yield stress

(P-S-N)-curve

() 238 / 290

High/low cycle fatigue

high cycle fatigue

- $N_f > \pm 50000$
- ullet low stresses ullet LEFM + SSY
- stress-life curve
- Basquin relation

$$K_{\text{max}} = \beta \sigma_{\text{max}} \sqrt{\pi a}$$
 ; $K_{\text{min}} = \beta \sigma_{\text{min}} \sqrt{\pi a}$; $\Delta K = \beta \Delta \sigma \sqrt{\pi a}$

() 239 / 290

High/low cycle fatigue

low cycle fatigue

- $N_f < \pm 50000$
- strain-life curve
- Manson-Coffin relation

() 240 / 290

Basquin relation

$$\begin{array}{cccc} \frac{1}{2}\Delta\sigma = \sigma_a = \sigma_f'(2N_f)^{\color{red}b} & \rightarrow & \Delta\sigma N_f^{-b} = \text{constant} \\ & \sigma_f' = \text{fatigue strength coefficient} \\ & \approx \sigma_b \quad (\text{monotonic tension}) \\ & \color{red}b & = \text{fatigue strength exponent} \\ & (\text{Basquin exponent}) \end{array}$$

Manson-Coffin relation

$$\begin{array}{cccc} \frac{1}{2}\Delta \varepsilon^{p} = \frac{\varepsilon_{f}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{f}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{-c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}^{c} = \text{constant} \\ & \frac{\varepsilon_{b}'}{(2N_{f})^{c}} & \rightarrow & \Delta \varepsilon^{p}N_{f}$$

() 242 / 290

Total strain-life curve

$$\begin{split} \frac{\Delta \varepsilon}{2} &= \frac{\Delta \varepsilon^e}{2} + \frac{\Delta \varepsilon^p}{2} \\ &= \frac{1}{E} \sigma_f' (2N_f)^b + \varepsilon_f' (2N_f)^c \end{split}$$

() 243 / 290

Influence factors

- load spectrum
- stress concentrations
- stress gradients
- material properties
- surface quality
- environment

() 244 / 290

Load spectrum

- sign / magnitude / rate / history
- ullet multi-axial ullet lower f.limit than uni-axial

() 245 / 290

Stress concentrations

$$\Delta \sigma_{th}({
m notched}) = rac{1}{K_f} \, \Delta \sigma_{th}({
m unnotched}) \quad ; \qquad \qquad 1 < K_f < K_t$$

fatigue strength reduction factor (effective stress concentration factor)

$$\mathit{K_f} = 1 + \mathit{q}(
ho)(\mathit{K_t} - 1)$$
 $\mathit{q}(
ho) = \mathsf{notch}$ sensitivity factor

Peterson :
$$q = \frac{1}{1 + \frac{a}{2}}$$
 with $a =$ material parameter

Peterson :
$$q=rac{1}{1+rac{a}{
ho}}$$
 with $a=$ material parameter
Neuber : $q=rac{1}{1+\sqrt{rac{b}{
ho}}}$ with $b=$ grain size parameter

Stress gradients

full-scale experiments necessary

() 247 / 290

Material properties

```
ullet grain size/structure : small grains 	o higher f.limit at low temp. large grains 	o higher f.limit at high temp. (less grain boundaries 	o less creep)
```

- texture
- inhomogeneities and flaws
- residual stresses
- fibers and particles

() 248 / 290

Surface quality

- $\bullet \ \, \text{surface} \quad \to \quad \text{extrusions \& intrusions} \quad \to \quad \text{notch} \, + \, \text{inclusion of } \, \mathsf{O}_2 \, \, \text{etc.}$
- ullet bulk defect ullet internal surfaces
- ullet internal grain boundaries / triple points (high T) o voids
- ullet manufacturing ullet minimize residual tensile stresses
- ullet surface finish ullet minimize defects (roughness)
- ullet surface treatment (mech/temp) \to residual pressure stresses
- ullet high σ_{y0} \longrightarrow more resistance to slip band formation

Environment

- ullet temperature ullet creep fatigue
- low temperature : ships / liquefied gas storage
- elevated temperature $(T > 0.5T_m)$: turbine blades
- creep mechanism:
 diffusion / dislocation movement / migration of vacancies / grain boundary
 sliding →
 grain boundary voids / wedge cracks
- ullet chemical influence ullet corrosion-fatigue

() 250 / 290

Crack growth

 $\begin{array}{llll} \text{I:} & \textit{N} < \textit{N}_i & - & \textit{N}_i = \text{fatigue crack initiation life} \\ & - & \textit{a}_i = \text{initial fatigue crack} \\ \text{II:} & \textit{N}_i < \textit{N} < \textit{N}_f & - & \text{slow stable crack propagation} \\ & - & \textit{a}_1 = \text{non-destr. inspection detection limit} \\ \text{III:} & \textit{N}_f < \textit{N} & - & \text{global instability} \end{array}$

- towards catastrophic failure

- $a = a_c$: failure

$$rac{N_r}{N_f} = 1 - rac{N}{N_f}$$
 $N_r = ext{rest life}$

Crack growth models

•
$$\frac{da}{dN} \sim \text{striation spacing } \sim 6 \left(\frac{\Delta K}{E}\right)^2$$
 (Bates, Clark (1969))

•
$$\frac{da}{dN} \sim f(\sigma, a) \sim \sigma^m a^n$$
 ; $m \approx 2 - 7$; $n \approx 1 - 2$

•
$$\frac{da}{dN} \sim \delta_t \sim \frac{(\Delta K)^2}{E \sigma_y}$$
 (BRO263)

$$\bullet \qquad \qquad \frac{da}{dN} \sim \Delta K \quad \rightarrow \quad \frac{da}{dN} \sim \frac{\Delta K}{E}$$

Source: HER1976a p515

Paris law :
$$\frac{da}{dN} = C(\Delta K)^n$$

Paris law

$$\begin{split} \frac{da}{dN} &= C(\Delta K)^m &\to \log\left(\frac{da}{dN}\right) = \log(C) + m \log(\Delta K) \\ \log(\Delta K) &= 0 \to \log(C) = \log\left(\frac{da}{dN}\right) = -8.7 \to C = 2 \times 10^{-9} \quad \frac{[\text{mm}]}{[\text{MPa}\sqrt{\text{m}}]^m} \\ m &= \frac{(-2) - (-4)}{(2) - (1.5)} = 4 \end{split}$$

() 253 / 290

Limits of Paris law

- $\Delta K \approx \Delta K_{th}$ \Rightarrow roughness induced crack closure
- $\Delta K < \Delta K_{th} \Rightarrow \text{growth very short cracks} \quad (10^{-8} \text{ mm/cycle})$ $\rightarrow \quad \text{dangerous overestimation of fatigue life}$
- $\bullet \ \sigma_m \uparrow \quad \to \quad R \uparrow (\tfrac{7}{9} {\to} \tfrac{10}{12} {\to} \tfrac{100}{102} {\to} 1)$

() 254 / 290

Paris law parameters

idem in sea water 1.0 - 1.5 3.3 1.6	material	$\Delta K_{th} \; [{ m MNm}^{-3/2}]$	m[-]	C×10 ⁻¹¹ [!]
aluminium 1.0 - 2.0 2.9 4.50 aluminium alloy 1.0 - 2.0 2.6 - 3.9 3 - 19 copper 1.8 - 2.8 3.9 0.34 titanium 2.0 - 3.0 4.4 68.8	structural steel idem in sea water aluminium aluminium alloy copper	2.0 - 5.0 1.0 - 1.5 1.0 - 2.0 1.0 - 2.0 1.8 - 2.8	3.85 - 4.2 3.3 2.9 2.6 - 3.9 3.9	0.07 - 0.11 1.6 4.56 3 - 19 0.34

() 255 / 290

Conversion

$$\frac{d\mathbf{a}}{d\mathbf{N}} = C \, (\Delta \sigma \, \sqrt{\pi \mathbf{a}})^m \qquad \rightarrow \qquad C = \frac{\frac{d\mathbf{a}}{d\mathbf{N}}}{(\Delta \sigma \, \sqrt{\pi \mathbf{a}})^m}$$

[in] and [ksi] \rightarrow [m] and [MPa]

$$1 \frac{[\text{in}]}{[\text{ksi}\sqrt{\text{in}}]^m} = \frac{0.0254 [\text{m}]}{\{6.86 [\text{MPa}]\sqrt{0.0254 [\text{m}]}\}^m}$$
$$= \left(\frac{0.0254}{(1.09)^m}\right) \frac{[\text{m}]}{[\text{MPa}\sqrt{\text{m}}]^m}$$

[m] and [MPa] $\quad \rightarrow \quad$ [mm] and [MPa]

$$1 \frac{[m]}{[MPa\sqrt{m}]^m} = \frac{10^3 [mm]}{\{[MPa]\sqrt{10^3} [\sqrt{mm}]\}^m}$$
$$= \left(\frac{10^3}{\{\sqrt{10^3}\}^m}\right) \frac{[mm]}{[MPa\sqrt{mm}]^m}$$

() 256 / 290

Fatigue life: analytical integration

integration Paris law \rightarrow fatigue life N_f

end

$$N_f - N_i = \frac{(\Delta \sigma)^{-m}}{\beta^m C(\sqrt{\pi})^m (1 - \frac{m}{2})} a_f^{(1 - \frac{m}{2})} \left[1 - \left(\frac{a_i}{a_f} \right)^{(1 - \frac{m}{2})} \right]$$

numerical procedure

set
$$\Delta \sigma$$
, ΔN , a_c
initialize $N=0$, $a=a_0$
while $a < a_c$

$$\Delta K = \beta \, \Delta \sigma \sqrt{\pi * a}$$

$$\frac{da}{dN} = C * (\Delta K)^m \quad \rightarrow \quad \Delta a = \frac{da}{dN} * \Delta N$$

$$a = a + \Delta a$$

$$N = N + \Delta N$$

Initial crack length

; $\Delta \sigma = 50$ [MPa] mild steel

Fatigue load

$$a_f = a_c = rac{2\gamma}{\pi} rac{E}{\Delta \sigma^2} \qquad o \qquad N_f$$

aluminum

$$\begin{array}{ll} C = 4.56e - 11 & ; & m = 2.9 \\ E = 70 \; \text{[GPa]} & ; & \gamma = 1 \; \text{[J/m}^2 \text{]} \end{array}$$

$\Delta\sigma$ [MPa]	25	50	75	100
<i>a</i> ₀ [mm]	0.1	0.1	0.1	0.1
a_c [mm]	56	28	12.5	7
N_f [c]	35070000	4610000	1366000	572000

Erdogan (1963)

(general empirical law)

$$\frac{d\mathbf{a}}{dN} = \frac{C(1+\beta)^m (\Delta K - \Delta K_{th})^n}{K_{\mathit{I_c}} - (1+\beta)\Delta K} \qquad \text{with} \quad \beta = \frac{K_{\mathit{max}} + K_{\mathit{min}}}{K_{\mathit{max}} - K_{\mathit{min}}}$$

Broek & Schijve (1963)

$$\frac{da}{dN} = CK_{max}^2 \Delta K$$

() 260 / 290

$$(K_{max} \rightarrow K_c)$$

$$\frac{da}{dN} = \frac{C(\Delta K)^n}{(1 - R)K_c - \Delta K} \quad \text{with} \quad R = \frac{K_{min}}{K_{max}}$$

$$=\frac{K_{min}}{K_{max}}$$

Donahue (1972)

$$(\Delta K \rightarrow \Delta K_{th})$$

(influence R)

$$\frac{da}{dN} = C(\Delta K - \Delta K_{th})^m \quad \text{with} \quad \Delta K_{th} = (1 - R)^{\gamma} \Delta K_{th} (R = 0)$$

ith
$$\Delta \mathcal{K}_{th} = (1$$

$$\frac{da}{dN} = C \left\{ \frac{\Delta K}{(1-R)^n} \right\}^m$$

with
$$m = 0.4$$
 ; $n = 0.5$

Priddle (1976)
$$(\Delta K \rightarrow \Delta K_{th} \& K_{max} \rightarrow K_c)$$

$$\frac{da}{dN} = C \left(\frac{\Delta K - \Delta K_{th}}{K_{I_c} - K_{max}} \right)^m$$
with $\Delta K_{th} = A(1 - R)^{\gamma}$ and $\frac{1}{2} \le \gamma \le 1$ [Schijve (1979)]

$$\begin{split} \frac{\textit{da}}{\textit{dN}} &= \frac{\textit{A}}{\textit{E}\,\sigma_{\textit{v}}} (\Delta \textit{K} - \Delta \textit{K}_{\textit{th}})^2 \left(1 + \frac{\Delta \textit{K}}{\textit{K}_{\textit{I}_{\textit{c}}} - \textit{K}_{\textit{max}}}\right) \\ & \text{with} \quad \Delta \textit{K}_{\textit{th}} = \sqrt{\frac{1 - \textit{R}}{1 + \textit{R}}} \Delta \textit{K}_0 \\ & \textit{A}, \Delta \textit{K}_0 \quad \sim \quad \text{influence environment} \end{split}$$

() 262 / 290

NASA / FLAGRO program (1989)

$$\begin{split} \frac{da}{dN} &= \frac{C(1-R)^m \Delta K^n (\Delta K - \Delta K_{th})^p}{[(1-R)K_{lc} - \Delta K]^q} \\ m &= p = q = 0 \quad \rightarrow \quad \text{Paris} \\ m &= p = 0, \, q = 1 \quad \rightarrow \quad \text{Forman} \\ p &= q = 0, \, m = (m_w - 1)n \quad \rightarrow \quad \text{Walker} \end{split}$$

Crack growth at low cycle fatigue

$$\begin{split} \frac{da}{dN} &= \frac{3 - \sin^{-2}(\theta)\cos^{-2}(\frac{\theta}{2})}{9\sin(\theta)} \frac{K}{E\sigma_{v}} \left(1 - \beta\gamma^{-\frac{1}{2}}\right) \frac{K_{max}^{2}}{\{1 - (1 - \lambda)\frac{\sigma_{max}}{\sigma_{v}}\}} \\ \theta &= \cos^{-1}\left(\frac{1}{3}\right) \\ \frac{\beta}{\sqrt{\gamma}} &= 0.5 + 0.1R + 0.4R^{2} \end{split} \right\} \quad \rightarrow \\ \frac{da}{dN} &= \frac{7}{64\sqrt{2}} \frac{K}{E\sigma_{v}} \left(1 - 0.2R - 0.8R^{2}\right) \frac{K_{max}^{2}}{\{1 - (1 - \lambda)\frac{\sigma_{max}}{\sigma_{v}}\}} \end{split}$$

() 264 / 290

Crack growth at low cycle fatigue

J-integral based Paris law

$$\frac{da}{dN} = C^* \left(\Delta J\right)^{m^*}$$
with
$$\Delta J = \int_{\Gamma} \left\{ W^* n_1 - \Delta t_i \frac{\partial \Delta u_i}{\partial x_1} \right\} d\Gamma \quad ; \qquad W^* = \int_{\epsilon_{pq}}^{\epsilon_{pq_{max}}} \Delta \sigma_{ij} d\epsilon_{ij}$$

() 265 / 290

Load spectrum

$$\sum_{i=1}^{L} \frac{n_i}{N_{if}} = 1$$

Palmgren-Miner (1945) law

- \Rightarrow life time by piecewise integration $\frac{da}{dN} \sim f(\Delta K, K_{max})$
- \Rightarrow no interaction
- $\Rightarrow \qquad \text{interaction} \quad \rightarrow \quad \mathsf{Palmgren\text{-}Miner} \; \mathsf{no} \; \mathsf{longer} \; \mathsf{valid}$

$$\sum_{i=1}^{L} \frac{n_i}{N_{if}} = 0.6 - 2.0$$

() 266 / 290

Miner's rule

$$\begin{array}{cccc}
1 & \to & & 1 - \frac{n_1}{N_{1f}} \\
2 & \to & & \left(1 - \frac{n_1}{N_{1f}}\right) - \frac{n_2}{N_{2f}} \\
3 & \to & & \left(1 - \frac{n_1}{N_{1f}} - \frac{n_2}{N_{2f}}\right) - \frac{n_3}{N_{3f}} \\
4 & \to & & \left(1 - \frac{n_1}{N_{1f}} - \frac{n_2}{N_{2f}} - \frac{n_3}{N_{3f}}\right) - \frac{n_4}{N_{4f}} = 0
\end{array}$$

() 267 / 290

Random load

- cyclic counting procedure
 - (mean crossing) peak count
 - range pair (mean) count
 - rain flow count
- $\bullet \ \ \mathsf{statistical} \ \ \mathsf{representation} \quad \to \quad \mathsf{load} \ \mathsf{spectrum}$

() 268 / 290

Measured load histories

- instrumentation with strain gages at critical locations
- measure load history
- ullet continuous monitoring during service ullet update spectrum
- standard spectra

() 269 / 290

Tensile overload

() 270 / 290

Crack retardation

Al 2024-T3 (Hertzberg, 1976)

ΔK	% P _{max}	nr. P_{max}	delay
$[MPa\sqrt{m}]$	[-]	[-]	[10 ³ cycles]
15	53	1	6
15	82	1	16
15	109	1	59
16.5	50	1	4
16.5	50	10	5
16.5	50	100	9.9
16.5	50	450	10.5
16.5	50	2000	22
16.5	50	9000	44
23.1	50	1	9
23.1	75	1	55
23.1	100	1	245

() 271 / 290

Plastic zone residual stress

() 272 / 290

Crack retardation models

Willenborg (1971)

$$\begin{split} \mathcal{K}_R &= \varphi \left[(\mathcal{K}_{\textit{max}})_{\textit{OL}} \left[\sqrt{1 - \frac{\Delta a}{r_y}} \, \right] - \mathcal{K}_{\textit{max}} \right] & ; \quad \Delta a < r_y \\ \mathcal{K}_R &= \text{ residual SIF} \quad ; \quad \mathcal{K}_R = 0 \quad \rightarrow \quad \text{delay distance} \\ \varphi &= [1 - (\mathcal{K}_{\textit{th}}/\mathcal{K}_{\textit{max}})] (S-1)^{-1} \quad ; \quad S = \text{shut-off ratio} \end{split}$$

() 273 / 290

Crack retardation models

Johnson (1981)

$$R^{eff} = \frac{K_{min} - K_R}{K_{max} - K_R}$$
; $r_y = \frac{1}{\beta \pi} \left(\frac{(K_{max})_{OL}}{\sigma_v} \right)^2$
 $\beta = \text{ plastic constraint factor}$

() 274 / 290

Crack retardation models

Elber (1971)

$$\Delta K_{eff} = U \Delta K$$
 ; $U = 0.5 + 0.4R$ with $-0.1 \le R \le 0.7$

Schijve (1981)

$$U = 0.55 + 0.33R + 0.12R^2$$
 with $-1.0 < R < 0.54$

Design against fatigue

- infinite life design
- safe life design
- damage tolerant design
- fail safe design

() 276 / 290

Infinite life design

$$\sigma < \sigma_{th}$$
 $(\sigma < \sigma_e)$

- \Rightarrow no fatigue damage
- \Rightarrow sometimes economically undesirable

() 277 / 290

Safe life design

```
\Rightarrow \qquad \text{determine load spectra} \\ \Rightarrow \qquad \text{empirical rules / numerical analysis / laboratory tests} \qquad \rightarrow \\ \qquad \qquad \text{fatigue life} \qquad : \qquad (S-N)\text{-curves} \\ \Rightarrow \qquad \text{apply safety factors} \\ \Rightarrow \qquad \text{sometimes safety factors are undesirable (weight)} \\ \Rightarrow \qquad \text{stress-life design} \qquad \text{or} \qquad \text{strain-life design}
```

() 278 / 290

Stress/strain life design

Basquin Manson-Coffin combination

$$\frac{1}{2}\Delta\sigma = \sigma'_f(2N_f)^b \longrightarrow \frac{1}{2}\Delta\varepsilon^e = \frac{1}{E}\sigma'_f(2N_f)^b$$

$$\frac{1}{2}\Delta\varepsilon^p = \varepsilon'_f(2N_f)^c$$

$$\Delta\varepsilon = \Delta\varepsilon^e + \Delta\varepsilon^p \longrightarrow$$

$$\frac{1}{2}\Delta\varepsilon = \frac{1}{2}\sigma'_f(2N_f)^b + \varepsilon'_f(2N_f)^c$$

Damage tolerant design

```
\begin{array}{ll} \Rightarrow & \text{dangerous situations not acceptable} \\ & \text{safety factors undesirable} \\ \Rightarrow & \text{determine load spectra} \\ \Rightarrow & \text{periodic inspection (insp. schedules)} & \rightarrow & \text{monitor cracks} \\ \Rightarrow & \text{NDT important} \\ \Rightarrow & \text{calculate safe rest life} \\ & \text{(integrate appropriate } \frac{da}{dN}\text{-growth law )} \\ \Rightarrow & \text{repair when necessary} \end{array}
```

() 280 / 290

Fail safe design

 \Rightarrow design for safety : crack arrest / etc.

() 281 / 290

ENGINEERING PLASTICS

back to index

Engineering plastics (polymers)

acrylonitrilbutadieenstyreen high-impact polystyrene low-density polythene	EM TP TP
polycarbonate	ΤP
polymethylemethacrylate (plexiglas)	TP
polypropylene	ΤP
polyfenyleneoxide	ΤP
polystyrene	ΤP
polysulfone	ΤP
polytetrafluorethene (teflon)	ΤP
polyvinylchloride	ΤP
polyvinylfluoride	ΤP
polyvinylidieenfluoride	ΤP
	high-impact polystyrene low-density polythene polycarbonate polymethylemethacrylate (plexiglas) polypropylene polyfenyleneoxide polystyrene polysulfone polytetrafluorethene (teflon) polyvinylchloride polyvinylfluoride

() 283 /

Mechanical properties

- (nonlinear) elastic
- visco-elastic
- thermal influences
- anisotropy

() 284 / 290

Damage

- shearing (shear yielding) no change in density
- crazing (normal yielding) change in density: 40 - 60 % decrease

Properties of engineering plastics

	AC	CZ	K_{lc}	
PMMA	а	+	13.2	
PS	а	+	17.6	
PSF	а	-	low	
PC	а	-	high	main chain segmental motions $\;\; ightarrow\;\;$ energy dissipation
Nylon 66	cr	-		main chain segmental motions \rightarrow energy dissipation crystalline regions \rightarrow crack retardation
PVF2	sc			, ,
PET	sc			amorphous $ ightarrow$ strain induced crystallization at crack tip
CPLS		-		cross-linked $ ightarrow$ suppressed crazing
HIPS		+		μ -sized rubber spheres $ ightarrow$ enhanced crazing
ABS				blending
		A	C : a	= amorphous
		Λ.	٠. ٢	- cnystalling

```
AC: a = anino phous

AC: c = crystalline

AC: sc = semicrystalline

AC: cr = crystalline regions

CZ = crazing

K_{lr} = fracture toughness in MPa\sqrt{m}
```

() 286 / 290

Fatigue

- ullet amorphous \leftrightarrow crystalline
- $\bullet \ \, \mathsf{high} \, \leftrightarrow \mathsf{low} \,\, \mathsf{molecular} \,\, \mathsf{weight}$
- main chain motions
- toughening

() 287 / 290

FCP for polymers

1 : PMMA 5 Hz crazing

2 : LDPE 1 Hz 3 : ABS 10 Hz

4 : PC 10 Hz no crazing

5 : Nylon 10 Hz crystalline regions

FCP for polymers : crystalline versus amorphous

1 : PS 5 : PC 2 : PMMA 6 : Nylon 6.6 3 : PSF 7 : PVF2

3 : PSF / : PVF2 4 : PPO 8 : PET

9 : PVC

FCP polymers: toughening

1 : CLPS 2 : PS 3 : HIPS 4 : ABS