WHAT IS CLAIMED IS:

1. A process for the hydrogenation and/or asymmetric hydrogenation of an imine of Formula (I) to an amine of Formula (II):

5

wherein

R¹ is selected from the group consisting of aryl and heteroaryl, which two groups are optionally substituted;

10 R² is selected from the group consisting of hydrogen, aryl, heteroaryl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkenyl and C₃₋₁₀heterocyclo, which latter eight groups are optionally substituted; and

 R^3 is selected from the group consisting of optionally substituted C_1 to C_2 alkyl and optionally substituted C_{3-10} cycloalkyl;

or R¹ and R² or R² and R³ are linked to form an optionally substituted ring; wherein the optional substituents of R¹ and R² are independently selected from one or more of the group consisting of halo, NO₂, OR⁴, NR⁴₂ and R⁴, in which R⁴ is independently selected from one or more of the group consisting of hydrogen, aryl, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cy cloalkyl and C₃₋₆cy cloalkenyl;

the optional substituents of R³ are independently selected from one or more of the group consisting of halo, NO₂, OR⁵, NR⁵₂ and R⁵, in which R⁵ is independently selected from the group consisting of C₁₋₆alky l, C₂₋₆alkeny l and C₂₋₆alky ny l; and one or more of the carbon atoms in the alky l, alkeny l and/or alky ny l groups of R¹, R² and/or R³ is optionally replaced with a heteroatom selected from the group consisting of

O, S, N, P and Si, which, where possible, is optionally substituted with one or more C₁. 6alkyl groups,

said process comprising the steps of reacting imines of Formula (I) in the presence of H_2 , and a catalytic system in which the catalytic system includes a base and a ruthenium complex comprising (1) a diamine and (2) a diphosphine ligand or monodentate phosphine ligands.

2. A process for the hydrogenation and/or asymmetric hydrogenation of an imine of Formula (III) to an amine of Formula (IV):

10

15

20

25

5

wherein

 R^4 and R^5 represent simultaneously or independently hydrogen, aryl, heteroaryl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkenyl or C_{3-10} heterocyclo, which latter eight groups are optionally substituted, or

 ${\rm R}^4$ and ${\rm R}^5$ are linked together to form an optionally substituted ring;

 R^6 is selected from the group consisting of H, aryl, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl and C_{3-10} cycloalkenyl, which latter six groups are optionally substituted; wherein the optional substituents of R^4 , R^5 and R^6 are independently selected from one or more of the group consisting of halo, NO_2 , OR^7 , NR^7_2 and R^7 , in which R^7 is independently selected from the group consisting of C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl; and

one or more of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R⁴, R⁵ and/or R⁶ are optionally replaced with a heteroatom selected from the group consisting of

10

- O, S, N, P and Si, which, where possible, is optionally substituted with one or more C₁. 6alkyl groups,
- said process comprising the steps of reacting imines of Formula (III) in the presence of H₂, and a catalytic system in which the catalytic system includes a base and a ruthenium complex comprising (1) a diamine and (2) a diphosphine ligand or monodentate phosphine ligands.
- 3. The process according to claim 1, wherein the amine of Formula (II) or its opposite enantiomer, is produced in enantiomerically enriched form.
- 4. The process according to claim 2, wherein the amine of Formula (IV) or its opposite enantiomer, is produced in enantiomerically enriched form.
- 5. The process according to claim 1 or 3, wherein R¹ is optionally substituted ary l.
- 6. The process according to claim 5, wherein R¹ is optionally substituted phenyl,
- 7. The process according to claim 6, wherein R¹ is unsubstituted phenyl.
- 8. The process according to any one of claims 5-7, wherein R² is selected from the group consisting of hydrogen, aryl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cy cloalkyl and C₃₋₆cy cloalkenyl, which latter six groups are optionally substituted.
- 9. The process according to claim 8, wherein R^2 is selected from the group consisting of hydrogen, aryl and C_{1-6} alkyl, which latter two groups are optionally substituted.

WO 2005/056513 PCT/CA2004/002130 37

- 10. The process according to claim 9, wherein R^2 is selected from the group consisting of hydrogen, phenyl, and C_{1-6} alkyl, which latter two groups are optionally substituted.
- 11. The process according to claim 10, wherein R² is selected from the group consisting of hydrogen, unsubstituted phenyl and methyl.
 - 12. The process according to any one of claims 5-11, wherein R^3 is selected from the group consisting of optionally substituted C_1 to C_2 alkyl and optionally substituted C_3 . 6cy cloalky l.

10

- 13. The process according to claim 12, wherein R³ is methyl, ethyl, i-propyl, cyclopropyl, cyclopentyl or cyclohexyl, which latter four groups are unsubstituted.
- 15 14. The process according to claims 1 or 3, wherein R² and R³, including the atoms to which they are attached, are linked to form an optionally substituted 5- or 6-membered ring.
- 15. The process according to claim 14, wherein R² and R³, including the atoms to which they are attached, are linked to form an unsubstituted 5- or 6-membered ring.
 - 16. The process according to any one of claims 5-15, wherein the optional substituents for R^1 and R^2 in the compounds of Formula I, are independently selected from one or more of the group consisting of halo, NO_2 , OR^4 , NR^4_2 and R^4 , in which R^4 is independently selected from one or more of the group consisting of hydrogen, aryl and C_{1-4} alkyl, and the optional substituents of R^3 are independently selected from one or

PCT/CA2004/002130

WO 2005/056513

25

more of the group consisting of halo, NO_2 , OR^5 , NR^5_2 and R^5 , in which R^5 is independently selected from the group consisting of C_{1-4} alky l.

- 17. The process according to claim 16, wherein the optional substituents for R¹ and R² in the compounds of Formula I, are independently selected from one or more of the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂, CH₃ and phenyl and the optional substituents of R³ are independently selected from one or more of the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂ and CH₃.
- 18. The process according to any one of claims 5-17, wherein one to three of the carbon atoms in the alky l, alkeny l and/or alky ny l groups of R¹, R² and/or R³ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 19. The process according to claim 18, wherein suitably one of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R¹, R² and/or R³ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 20. The process according to claim 2 or 4, wherein R⁴ and R⁵ represent simultaneously or independently hydrogen, aryl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₆cycloalkyl or C₃₋₆cycloalkenyl, which latter six groups are optionally substituted.
 - 21. The process according to claim 20, wherein R^4 and R^5 represent simultaneously or independently hydrogen, anyl or C_{1-6} alkyl, which latter two groups are optionally substituted.

- 22. The process according to claim 21, wherein R^4 and R^5 represent simultaneously or independently hydrogen, phenyl, and C_{1-6} alkyl, which latter two groups are optionally substituted.
- 5 23. The process according to claim 22, wherein R⁴ and R⁵ represent simultaneously or independently hydrogen, unsubstituted phenyl or methyl.
 - 24. The process according to claim 2 or claim 4, wherein R⁴ and R⁵, including the atoms to which they are attached, are linked to form an optionally substituted, suitably unsubstituted, 5- or 6-membered ring.
 - 25. The process according to any one of claims 20-24, wherein R^6 is selected from the group consisting of H, aryl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkenyl, which latter six groups are optionally substituted.
 - 26. The process according to claim 25, wherein R^6 is selected from the group consisting of H and $C_{1\text{--}4}$ alky l
 - 27. The process according to claim 26, wherein R^6 is H.

15

20

25

28. The process according to any one of claims 20-27, wherein the optional substituents for R^4 , R^5 and R^6 , are independently selected from one or more of the group consisting of halo, NO_2 , OR^7 , NR^7_2 and R^7 , in which R^7 is independently selected from one or more of the group consisting of C_{1-4} alkyl.

WO 2005/056513 PCT/CA2004/002130 40

- 29. The process according to claim 28, wherein the optional substituents for R⁴, R⁵ and R⁶ in the compounds of Formula III, are independently selected from one or more of the group consisting of halo, NO₂, OH, OCH₃, NH₂, N(CH₃)₂ and CH₃,
- The process according to any one of claims 20-29, wherein one to three, of the carbon atoms in the alky l, alkeny l and/or alky ny l groups of R⁴, R⁵ and/or R⁶ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 10 31. The process according to claim 30, wherein one of the carbon atoms in the alkyl, alkenyl and/or alkynyl groups of R⁴, R⁵ and/or R⁶ is optionally replaced with a heteroatom selected from the group consisting of O, S, N, NH and N-CH₃.
- 32. The process according to any one of claims 1 to 31, wherein said ruthenium complex has the general Formula RuXY(PR₃)₂(NH₂-Z-NH₂) (III) or RuXY(R₂P-Q-PR₂)(NH₂-Z-NH₂) (IV), where Z and Q represent a chiral or achiral linker; the ancilliary ligands PR₃ and R₂P-Q-PR₂ represent monodentate and bidentate phosphines, respectively; and the ligands X and Y represent an anionic ligand.
- 20 33. The process according to claim 32, wherein the ligand PR₃:

represents a chiral or achiral monodentate phosphine ligand in which R is simultaneously or independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and

WO 2005/056513 PCT/CA2004/002130

branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded.

5

20

25

34. The process according to claim 32, wherein the ligand R₂P-Q-PR₂:

represents a bidentate ligand in which R is simultaneously or independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring 15 having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded; and Q is selected from the group consisting of linear and cyclic C₂-C₇ alkylene,

optionally substituted metallocenediyl and optionally substituted C₆-C₂₂ arylene.

- 35. The process according to claim 34, wherein the ligand R₂P-Q-PR₂ is chiral and includes atropisomeric bis-tertiary phosphines, in which the two phosphorus atoms are linked by a biaryl backbone.
- 36. The process according to claim 35, wherein the ligand R₂P-Q-PR₂ is selected from the group consisting of BINAP, BIPHEP and BIPHEMP.

37. The process according to claim 32, wherein the bidentate phosphine is a chiral or achiral ligand of the type R₂P-NR⁸-Z-NR⁸-PR₂:

R₂P-NR⁸-Z-NR⁸-PR₂

5

10

15

wherein each R, taken separately, is independently selected from the group consisting of optionally substituted linear and branched alkyl containing 1 to 8 carbon atoms, optionally substituted linear and branched alkenyl containing 2 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; or two R groups bonded to the same P atom are bonded together to form a ring having 5 to 8 atoms and including the phosphorous atom to which said R groups are bonded; each R⁸, taken separately, is independently selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl, optionally substituted aryl, OR and NR₂; and Z is optionally substituted linear and cyclic C₂-C₇ alkylene, optionally substituted metallocenediyl and optionally substituted C₆-C₂₂ arylene.

38. The process according to claim 37, wherein the ligand R₂P-NR⁸-Z-NR⁸-PR₂ is selected from the group consisting of DPPACH and DCYPPACH.

20

39. The process according to any one of claims 1 to 38, wherein the diamine ligand has the Formula NH₂-Z-NH₂:

WO 2005/056513 PCT/CA2004/002130 43

wherein Z is selected from the group consisting of optionally substituted linear and cyclic C_2 - C_7 alkylene, optionally substituted metallocenediyl and optionally substituted C_6 - C_{22} arylene.

5 40. The process according to claim 39, wherein the diamine ligand is chiral and includes (1) compounds in which at least one of the amine-bearing centers is stereogenic, (2) compounds in which both of the amine-bearing centers are stereogenic and (3) atropisomeric bis-tertiary diamines, in which the two nitrogen atoms are linked by a biaryl backbone.

10

- 41. The process according to claim 39, wherein the diamine ligand NH_2 -Z- NH_2 is selected from the group consisting of CYDN and DPEN.
- 42. The process according to any one of claims 1 to 38, wherein the diamine is a bidentate ligand of the Formula D-Z-NHR⁹ in which Z is selected from the group consisting of optionally substituted linear and cyclic C₂-C₇ alkylene, optionally substituted metallocenediyl and optionally substituted C₆-C₂₂ arylene; D is an amido group donor or a chalcogenide radical selected from the group consisting of O, S, Se and Te; NHR⁶ is an amino group donor in which R⁹ is selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl and optionally substituted aryl.
 - 43. The process according to claim 42, wherein D is NR^{10} , wherein R^{10} is selected from the group consisting of $S(O)_2R^{10}$, $P(O)(R^{10})_2$, $C(O)R^{10}$, $C(O)N(R^{10})_2$ and $C(S)N(R^{10})_2$, in which R^{10} is independently selected from the group consisting of hydrogen, optionally substituted linear and branched alkyl and alkenyl containing 1 to 8 carbon atoms, optionally substituted cycloalkyl and optionally substituted aryl.

WO 2005/056513 PCT/CA2004/002130

44. The process according to claim 42, wherein the diamine is chiral and includes (1) compounds in which the amine-bearing center is stereogenic, (2) compounds in which both the donor-bearing (D) and amine-bearing centers are stereogenic.

5

- 45. The process according to claim 44, wherein the diamine is CH₃C₆H₄SO₃NCHPhCHPhNH₂.
- 46. The process according to any one of claims 1 to 45, wherein the ligands X and Y is selected from the group consisting of Cl, Br, I, H, hydroxy, alkoxy and acyloxy.
 - 47. The process according to any one of claims 1 to 46, wherein the base is an alcoholate or an hydroxide salt selected from the group consisting of compounds of the Formula $(R^{12}O)_2M'$ and $R^{12}OM''$, in which M' is an alkaline-earth metal, M'' is an alkaline metal and R^{12} is selected from the group consisting of hydrogen, C_1 to C_6 linear and branched alkyl.
 - 48. The process according to any one of claims 1-47, wherein the base is an organic non-coordinating base.

20

- 49. The process according to claim 48, wherein the base is selected from the group consisting of DBU, NR₃ and phosphazene.
- 50. The process according to any one of claims 1 to 49, wherein the hydrogenation is carried out in the absence of a solvent.

- 51. The process according to any one of claims 1 to 49, wherein the hydrogenation reaction is carried out in the presence of a solvent.
- 52. The process according to claim 51, wherein the solvent is selected from the group consisting of benzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, primary and secondary alcohols, and mixtures thereof.
 - 53. The process according to claim 51, wherein the hydrogenation is carried out in an amine solvent.
 - 54. A process for the preparation of amines of Formula V from the amine of the Formula IV, or the opposite enantiomer thereof:

25

- wherein R^4 , R^5 and R^6 are as defined in any one or claims 2, 4 and 20-31, comprising reacting compounds of Formula IV under conditions for the selective removal of the CH_2 -C=C- R^6 group.
- 20 55. The process according to claim 54, wherein the conditions for the selective removal of the CH₂-C≡C-R⁶ group comprise TiCl₃ and lithium.
 - 56. The process according to claim 54 or 55 wherein the compound of Formula IV is enantiomericly enriched.