HW5 Solutions STAT431 Spr19

February 2019

Contents

1	1 Exchangeability					
	1.1 Exchangeable priors	1				
	1.2 Independence of Y_1 and Y_2	2				
2 Heart attack biomarker analysis						
	2.1 Directed Acyclic Graph	2				
	2.2 JAGS model	2				
	2.3 Amount of burn-in needed for convergence	3				
	2.4 Results	4				
3	GRADUATE SECTION ONLY - predicting efficacy of a new					
	study					
	3.1 Results	6				
	3.2 Probability that a new study finds a significant results	6				
1	1 Exchangeability					
	7 1 (0.1)	(1)				
	· · · /	(1)				
	$\epsilon_1 \sim \mathcal{N}\left(0, \sigma_1^2 ight)$	(2)				
	$\epsilon_2 \sim \mathcal{N}\left(0, \sigma_2^2\right)$	(3)				
	$Y_1 = Z + \epsilon_1$	(4)				
	$Y_2 = Z + \epsilon_2$	(5)				

and $Z, \epsilon_1, \epsilon_2$ are all mutually independent.

1.1 Exchangeable priors

 Y_1 and Y_2 are exchangeable if the joint distribution for (Y_1,Y_2) is the same as for (Y_2,Y_1) .

$$P(Y_1, Y_2) = P(Z + \epsilon_1, Z + \epsilon_2) \tag{6}$$

This is equal to $P(Z + \epsilon_2, Z + \epsilon_1)$ if and only if the distributions for ϵ_1 and ϵ_2 are identical, i.e. if $\sigma_1^2 = \sigma_2^2$. In other words, if the σ^2 's are equal, Y_1 and Y_2 will be conditionally iid given Z, hence exchangeable.

1.2 Independence of Y_1 and Y_2

$$Cov (Y_1, Y_2) = Cov (Z + \epsilon_1, Z + \epsilon_2)$$

$$= Cov (Z, Z) + Cov (Z, \epsilon_2) + Cov (\epsilon_1, Z) + Cov (\epsilon_1, \epsilon_2)$$

$$= Cov (Z, Z)$$

$$= 1$$

$$(7)$$

$$(8)$$

$$(9)$$

$$(10)$$

Under no conditions are Y_1 and Y_2 independent, as their covariance is never nonzero due to the fact that they are both constructed from the same random variable Z.

2 Heart attack biomarker analysis

2.1 Directed Acyclic Graph

Figure 1: Directed acyclic graph of our model. Squares represent constant nodes, while circles represent random variables. Double arrows represent a deterministic assignment, while single arrows represent a stochastic relationship.

2.2 JAGS model

model {

```
for (i in 1:length(psihat)) {
    psihat[i] ~ dnorm(psi[i], tausq[i])
    psi[i] ~ dnorm(psi0, tausq0)
    tausq[i] <- 1 / sigma[i]^2
}

psi0 ~ dnorm(0, 0.001)

tausq0 ~ dgamma(0.001, 0.001)

sigmasq0 <- 1 / tausq0
}</pre>
```

2.3 Amount of burn-in needed for convergence

We ran a preliminary run of the algorithm to assess how many burn-in samples we require to reach an equilibrium state. We ran three separate chains, with initial values

We used the Gelman-Rubin statistic for assessing convergence, where the Gelman-Rubin statistic is a ratio of the across-chain variance against the within-chain variance. Values below 1.05 can be considered as converged. See Figure 2 for Gelman-Rubin statistics evaluated for a preliminary run of 5,000 iterations. Based on these diagnostic plots, we recommend at least 3,000 iterations for burn-in.

Figure 2: Gelman-Rubin statistic for assessing convergence.

2.4 Results

After a burnin of 5,000 samples, we ran the algorithm for 100,000 iterations. Below is a summary of our posterior samples for ψ_0 , σ_0^2 .

```
Iterations = 5001:105000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1e+05
```

 Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
        Mean
        SD
        Naive SE
        Time-series SE

        psi0
        0.2022
        0.1199
        0.0002189
        0.0003892

        sigmasq0
        0.1100
        0.1002
        0.0001830
        0.0004309
```

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5% psi0 -0.015293 0.12340 0.19474 0.2737 0.4599 sigmasq0 0.007547 0.04647 0.08419 0.1418 0.3673
```


Figure 3: Posterior density plots

3 GRADUATE SECTION ONLY - predicting efficacy of a new study

Continuing with the set-up in Problem 2, we now assume that a new case-control study is to be conducted. We assume that the log-odds standard error σ_{new} is known to be 0.4. We will use the same data from the previous problem to predict $\hat{\psi}_{new}$ for the new study. Our model is slightly modified,

```
model {
  for (i in 1:length(psihat)) {
    psihat[i] ~ dnorm(psi[i], tausq[i])
    psi[i] ~ dnorm(psi0, tausq0)
    tausq[i] <- 1 / sigma[i]^2
}

psihat_new ~ dnorm(psi_new, tausq_new)
  psi_new ~ dnorm(psi0, tausq0)
  tausq_new <- 1 / 0.4^2

psi0 ~ dnorm(0, 0.001)

tausq0 ~ dgamma(0.001, 0.001)

sigmasq0 <- 1 / tausq0
}</pre>
```

3.1 Results

Iterations = 5001:105000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1e+05

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

Mean	SD	Naive SE	Time-series	SE
0.2015109	0.5337977	0.0009746	0.00100	67

2. Quantiles for each variable:

Figure 4: A scatter plot of the observed data, σ on the X-axis vs. $\hat{\psi}$ on the Y-axis. The point coloured in red represents our predicted $\hat{\psi}_{new}$ for a new study with standard deviation assumed to be $\sigma_{new} = 0.4$.

The 95% interval for $\hat{\psi}_{new}$ is very wide and covers 0.

3.2 Probability that a new study finds a significant results

mean((out %>% unlist()) > 2*0.4)

We estimate the probability that a new study finds a significant results, through the probability that the new estimated log-odds ratio $\hat{\psi}_{new}$ will be at least twice as large as its standard error σ_{new} , which is **0.12682**.