Until now, we have seen how logical reasoning could be used to discover new facts in a knowledge base (through logical entailment). The reasoning was done by hand, in a kind of informal manner.

We are looking for a procedure that can determine whether or not KB $\models \alpha$, where KB is a given knowledge base and α is a sentence.

Also, if $\beta[x_1,...,x_n]$ is a formula with free variables, we want a procedure that determines terms t_i , if they exist, such that $KB = \beta[t_1,...,t_n]$.

Until now, we have seen how logical reasoning could be used to discover new facts in a knowledge base (through logical entailment). The reasoning was done by hand, in a kind of informal manner.

We are looking for a procedure that can determine whether or not KB $\models \alpha$, where KB is a given knowledge base and α is a sentence.

Also, if $\beta[x_1,...,x_n]$ is a formula with free variables, we want a procedure that determines terms t_i , if they exist, such that $KB = \beta[t_1,...,t_n]$.

But there is no automated procedure to fully satisfy this requirement (in all cases).

We are looking for a procedure that does deductive reasoning in a manner as sound and complete as possible and in a language as close as possible to FOL.

A reasoning process is **logically sound** if whenever it produces α , the α is guaranteed to be a logical consequence (this would exclude the possibility of producing facts that may be true in the intended interpretation but are not strictly entailed).

A reasoning process is **logically complete** if it guarantees to produce α , whenever α is entailed (this would exclude the possibility of missing some entailments, for instance when their status is too difficult to determine).

If KB is a finite set of sentences $\{\alpha_1,...,\alpha_n\}$, the deductive reasoning can be formulated in several equivalent ways:

- 1. KB $\models \alpha$
- 2. $\models [(\alpha_1 \land ... \land \alpha_n) \supset \alpha]$
- 3. KB U $\{\neg\alpha\}$ is not satisfiable
- 4. KB U $\{\neg \alpha\} \models \neg \mathsf{TRUE}$

where TRUE is any valid sentence (for example, $\forall x.x=x$).

```
4→3 (reductio ad absurdum)
If there is \mathcal{I} so that \mathcal{I} \models \mathsf{KB} \ \mathsf{U} \ \{\neg \alpha\}
then \mathsf{KB} \ \mathsf{U} \ \{\neg \alpha\} \models \mathsf{TRUE} \ \mathsf{in} \ \mathcal{I} - \mathsf{contradiction} \ \mathsf{with} \ 4
```

If we have a procedure for testing the validity of sentences, or for testing the satisfiability of sentences, or for determining whether or not ¬TRUE is entailed, then that procedure can also be used to find entailments of a finite KB.

The propositional logic is a restricted form of formulas. Every formula α of propositional logic can be transformed into α' , a conjunction of disjunctions of literals (i.e. atoms or their negation), such that $\models (\alpha \equiv \alpha')$

 α' is in conjunctive normal form CNF

Example: $(p \lor q \lor \neg r) \land (p \lor \neg s \lor \neg q) \land (\neg q \lor r)$

Obs. Lowercase letters are used for propositional symbols to be consistent with common practice.

The procedure for conversion of any propositional formula to CNF:

- 1. Replace ⊃ and ≡ with the formulas they represent
- 2. Move ¬ inward so that it appears in front of an atom
 - $\models (\neg \neg \alpha \equiv \alpha)$
 - $\models \neg(\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$
 - $\models \neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$
- 3. Distribute ^ over V
 - $\models (\alpha \lor (\beta \land \gamma)) \equiv ((\beta \land \gamma) \lor \alpha) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma))$
- 4. Collect terms
 - $\models (\alpha \lor \alpha \equiv \alpha)$
 - $\models (\alpha \land \alpha \equiv \alpha)$

Obs. The result is a logically equivalent CNF formula which can be exponentially larger than the initial formula.

$$((p \supset q) \equiv r) \rightarrow (\neg (\neg p \lor q) \lor r) \land (\neg r \lor (\neg p \lor q))$$

$$((p \land \neg q) \lor r) \land (\neg r \lor \neg p \lor q)$$

$$(p \lor r) \land (\neg q \lor r) \land (\neg r \lor \neg p \lor q)$$
 CNF

We will write CNF using a shorthand representation.

A clause is a finite set of literals (understood as a disjunction of its literals).

A clausal formula is a finite set of clauses (understood as a conjunction of its clauses).

Notations:

- $\bar{\rho}$ is the complement of the literal ρ
- $\bar{\rho} \stackrel{\text{def}}{=} \neg \rho$ and $\neg \bar{\rho} = \rho$
- {set of clauses}
- [set of literals]

For example, $[p, \neg q, r]$ represents $p \lor \neg q \lor r$ { $[p, \neg q, r]$, [q]} represents ($p \lor \neg q \lor r$) $\land q$

A clause with a single literal is called a unit clause

Obs. If C_1 and C_2 are two clauses, by C_1 U C_2 is denoted the clause resulted from the disjunction of the elements of C_1 and the elements of C_2 .

```
Obs. { }≠{[ ]}
{ } – the empty clausal formula=conjunction of no constraints is a representation of TRUE
[ ] – disjunction of no possibilities – is a representation of ¬TRUE
{[ ]} stands for ¬TRUE
```

In order to determine whether or not KB $\models \alpha$, it is sufficient to do the following:

- 1. Convert the sentences in KB and $\neg \alpha$ into CNF;
- 2. Determine whether or not the resulting set of clauses is satisfiable.

The rule of inference called resolution is the following:

Given a clause $C_1 \cup \{\rho\}$, where ρ is a literal, and a clause $C_2 \cup \{\bar{\rho}\}$, then $C_1 \cup C_2$ is inferred (C_1 or C_2 may be empty).

We say that $C_1 \cup C_2$ is a resolvent of the two input cluses with respect to ρ .

For example, [p,q,r] and $[q,\neg p,s]$

[q,r,s] is a resolvent with respect to p.

[p,q] and $[\neg p, \neg q]$ have two resolvents:

[q, ¬q] with respect to p

 $[p, \neg p]$ with respect to q

Obs. The only way to get [] is by resolving two complementary unit clauses like [p] and [¬p].

Def. A resolution derivation of a clause c from a set of clauses S is a sequence of clauses $c_1, ..., c_n$, where c_n =c and each c_i is either an element of S or a resolvent of two prior clauses in the derivation.

We write $S \vdash c$ if there is a derivation of c from S.

The resolution derivations are important because these symbol-level operation on finite sets of literals is directly connected to knowledge-level logical interpretations.

Prop. The resolvent is always the logical consequence of the two input clauses $\{C_1 \cup \{p\}, C_2 \cup \{\neg p\}\}\} \models C_1 \cup C_2$

Let \mathcal{J} be an interpretation so that $\mathcal{J} \models C_1 \cup \{p\}$ and $\mathcal{J} \models C_2 \cup \{\neg p\}$ If $\mathcal{J} \models p$ then $\mathcal{J} \not\models \neg p$ but $\mathcal{J} \models C_2 \cup \{\neg p\}$, it follows that $\mathcal{J} \models C_2$, therefore $\mathcal{J} \models C_1 \cup C_2$

If $\mathcal{J} \not\models p$ but $\mathcal{J} \models C_1 \cup \{p\}$, it follows that $\mathcal{J} \models C_1$, therefore $\mathcal{J} \models C_1 \cup C_2$

Prop. Any clause derivable by resolution from S is logically entailed by S, that is if $S \vdash c$ then $S \models c$

Proof - by induction on the length of the derivation, we show that for every c_i it follows that $S \models c_i$

S \vdash c if $\exists c_1,...,c_n = c$ so that either $c_i \in S$ or c_i is the resolvent of two prior clauses in the derivation.

If $c_i \in S$ then $S \models c_i$

If c_i is the resolvent of c_i and c_k , then $\{c_i, c_k\} \models c_i$

From the induction hypothesis, $S \models c_i$ and $S \models c_k \Rightarrow S \models c_i$

Prop. Any clause derivable by resolution from S is logically entailed by S, that is if $S \vdash c$ then $S \models c$

Proof - by induction on the length of the derivation, we show that for every c_i it follows that $S \models c_i$

S \vdash c if $\exists c_1,...,c_n = c$ so that either $c_i \in S$ or c_i is the resolvent of two prior clauses in the derivation.

If $c_i \in S$ then $S \models c_i$

If c_i is the resolvent of c_j and c_k , then $\{c_j, c_k\} \models c_i$

From the induction hypothesis, $S \models c_j$ and $S \models c_k \Rightarrow S \models c_i$

The converse does not hold – we can have $S \models c$ without $S \vdash c$.

For example, $S=\{[\neg p]\}$ and $c=[\neg q,q]$

 $S \models c$ but $c \notin S$ and there are no resolvents, therefore $S \not\vdash c$.

Obs. The resolution derivations are not logically complete (do not guarantee to produce α whenever $S \models \alpha$).

Obs. But resolution is both sound and complete when c=[]S \vdash [] iff S \models [] (S is unsatisfiable)

Thus, the problem of determining the satisfiability of any set of clauses is reduced to the search for a derivation of the empty clause.

The entailment procedure

We want to determine whether or not KB $\models \alpha$ (equivalent to KB U $\{\neg \alpha\}$ is unsatisfiable).

Let S be the set of clauses obtained by converting KB U $\{\neg\alpha\}$ in CNF. We check if S is unsatisfiable by searching for a derivation of the empty clause.

The nondeterministic procedure:

Input: a finite set S of propositional clauses

1. If ([]∈S) then return unsatisfiable else if (there are two clauses in S that can resolve to produce a new clause (not already in S) then (add the new resolvent clause to S and go to Step 1) else return satisfiable

Output: satisfiable or unsatisfiable

The entailment procedure

Obs. The procedure terminates because each added clause is a resolvent of previous clauses and contains only literals from the initial set of clauses S (a finite number) – eventually nothing new can be added.

Obs. The procedure can be made deterministic – we set a strategy for choosing the pair of clauses to produce a new resolvent – e.g. the first pair encountered; the pair that produces the shortest resolvent.

If we are interested in returning the derivation, for each resolvent we should store pointers to its input clauses.

Toddler

KB

Toddler⊃Child

Child^Male⊃Boy

Infant⊃Child

Child^Female⊃Girl

Female

Question: Girl

KB ⊨ Girl iff KB U {¬Girl} is unsatisfiable

KB + the negated question:


```
Sun⊃Mail

KB (Rain∨Sleet)⊃Mail

Rain∨Sun
```

Question 1: Rain

Question 2: Mail

KB ⊨ Rain iff KB U {¬Rain} is unsatisfiable

KB:

⇒ KB ⊭ Rain

We transform formulas into an equivalent clausal form:

- 1. Replace ⊃ and ≡ with the formulas they represent
- 2. Move ¬ inward so that it appears in front of an atom

$$\models (\neg \neg \alpha \equiv \alpha)$$

$$\models \neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta$$

$$\models \neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$$

$$\models \neg \forall x. \alpha \equiv \exists x. \neg \alpha$$

$$\models \neg \exists x. \alpha \equiv \forall x. \neg \alpha$$

3. Rename variables (if necessary) so that the variables in two input clauses of resolution are distinct

4. Move universals outside the scope of \land and \lor using the following equivalences (provided that x does not occur free in α)

```
\models (\alpha \land \forall x.\beta) \equiv \forall x.(\alpha \land \beta)\models (\alpha \lor \forall x.\beta) \equiv \forall x.(\alpha \lor \beta)
```

5. Distribute ^ over V

$$\models (\alpha \lor (\beta \land \gamma)) \equiv ((\beta \land \gamma) \lor \alpha) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma))$$

6. Collect terms

$$\models (\alpha \lor \alpha \equiv \alpha)$$

$$\models (\alpha \land \alpha \equiv \alpha)$$

For the beginning, we consider the case where no existentials appear. We drop the quantifiers (they are all universals).

For example, the clausal formula

$$\{[P(x,y),\neg R(a,f(b,x))],[Q(y),T(x,g(a)]\}$$

represents the CNF formula

$$\forall x \forall y.([P(x,y) \lor \neg R(a,f(b,x))] \land [Q(y) \lor T(x,g(a)])$$

Def. A substitution θ is a finite set of pairs $\{x_1/t_1, ..., x_n/t_n\}$ where x_i are distinct variables and t_i are terms.

If θ is a substitution, ρ literal, we write by $\rho\theta$ the literal that results from simultaneously replacing each x_i in ρ by t_i .

For example,

$$\theta = \{x/f(a,y), y/g(x,z)\}$$

$$\rho = P(h(x,b,y),z)$$

$$\rho\theta = P(h(f(a,y),b,g(x,z)),z)$$

If c is a clause, $c\theta$ is the clause resulting from making substitution on each literal.

We say that a term, literal or clause is ground if it contains no variables.

We say that ρ is an instance of ρ' if there is θ so that $\rho = \rho'\theta$.

First-order resolution

Since the clauses with variables are universally quantified, we want to allow resolution to be applied to any of their instances.

For example

[P(x,f(a))] and [¬P(g(b,z),y),¬Q(z,f(b))]

$$x/g(b,z)$$
 $y/f(a)$
[P(g(b,z),f(a))] and [¬P(g(b,z),f(a)),¬Q(z,f(b))]

The resolvent is $[\neg Q(z,f(b))]$.

First-order resolution

The general rule of resolution is defined as following:

We are given the clauses C_1 U $\{\rho_1\}$ and C_2 U $\{\bar{\rho}_2\}$, where ρ_1 and ρ_2 are literals.

We rename the variables in the two clauses if necessary, so that each clause has distinct variables.

Suppose that there is a substitution θ such that $\rho_1\theta = \rho_2\theta$.

Then we can infer the clause $(C_1 \cup C_2)\theta$.

We say that θ is a unifier of ρ_1 and ρ_2 .

With this general rule of resolution, it is the case that $S \vdash []$ iff $S \models []$.

```
      ∀x.GradStudent(x)⊃Student(x)

      KB
      ∀x.Student(x)⊃HardWorker(x)

      GradStudent(sue)
```

KB ⊨ HardWorker(sue)

The three-block problem

KB: On(a,b), On(b,c), Green(a), ¬Green(c)

Question: $\exists x \exists y . Green(x) \land \neg Green(y) \land On(x,y)$

Example 5 — The necessity of renaming variables

Question: ∃u.Plus(2,3,u)

Plus(x,y,z) represents x+y=z succ(succ(succ(zero))) represents 3

Example 5 — The necessity of renaming variables

We can identify the value of u: u is bound to succ(v); v is bound to succ(w); w is bound to $3 \Rightarrow u=5$

To Do

- KB
 Anybody who passes some exam studies or is brilliant or is lucky.
 Anybody who takes a 5 passes some exam.
 No FMI student is lucky.
 Anyone who drinks beer does not study.

 - 5. (Question) Every FMI student who takes a 5 and drinks beer is brilliant.
 - a) Represent 1.-4. in FOL, using a vocabulary that you will define.
 - b) Prove that 5. is logically entailed from 1.-4., by applying Resolution.