

Supervised: Ingredients

Outline

Concept

How close are the predictions?

How can we quantify the difference?

How can we quantify the difference?

$$\mathcal{L}_{w}(\mathbf{v},\mathbf{v})$$

Problem statement

Minimize $\mathcal{L}(w)$

Loss landscape

Gradient descent

Idea

• Start with a random w.

Algorithm

• Calculate the derivative $\frac{\partial \mathcal{L}}{\partial w}$.

• Start with a random w.

• Update $w \to w - \eta \frac{\partial \mathcal{L}}{\partial w}$.

• Calculate the derivative $\frac{\partial \mathcal{L}}{\partial w}$.

• Repeat

• Update $w \to w - \eta \frac{\partial \mathcal{L}}{\partial w}$.

 η : Learning rate

Repeat

How does it work?

How does it work?

What if there is a local minimum?

Batch Optimization

Reminder

$$\mathcal{L}(w)$$

Batch Optimization

Hyper-parameter

Batch-size

Learning rate

How does it look like?

How does batch optimization help?

Faster

• Can scape the local minimum

What happens if Ir is small?

What happens if Ir is big?

What happens if Ir is small?

What is a good choice for the Ir?

Variable learning rate

Decaying learning rate

$$\bullet \ \eta(t) = \frac{1}{\sqrt{t}} \eta_0$$

•
$$\eta(t) = e^{-kt}\eta_0$$

t is the number of itr. $\eta_0 \& k$ are a hyper-parameter.

Staircase

Can we do better?

Adaptive learning rate

Imagine ...

Momentum

Momentum

Update rule:

$$\mathbf{w} \to \mathbf{w} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$$

$$\mathbf{w} \to \mathbf{w} - \eta \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \right)_{avg}$$

What kind of average?

$$\left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t+1} = \beta \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t} + (1 - \beta) \left(\frac{\partial \mathcal{L}}{\partial w}\right)^{t+1}$$

Exponentially weighted average

$$\left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t+1} = \beta \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t} + (1 - \beta) \left(\frac{\partial \mathcal{L}}{\partial w}\right)^{t+1}$$

Momentum

$$w \to w - \eta \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}$$

$$\left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t+1} = \beta \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^{t} + (1 - \beta) \left(\frac{\partial \mathcal{L}}{\partial w}\right)^{t+1}$$

How could make it increase the Ir?

Variance

Variance

Update rule:

$$\mathbf{w} \to \mathbf{w} - \eta \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$$

$$\mathbf{v} \to \mathbf{w} - \frac{\eta}{\sqrt{ms}} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \right)$$

ms: Mean of squared of the gradients.

Average of variance

$$(\mathbf{ms})_{avg}^{t+1} = \boldsymbol{\beta}(\mathbf{ms})_{avg}^{t} + (\mathbf{1} - \boldsymbol{\beta}) \left(\left(\frac{\partial \mathcal{L}}{\partial w} \right)^{2} \right)^{t+1}$$

RMS prop

$$w \to w - \frac{\eta}{\sqrt{ms + \epsilon}} \left(\frac{\partial \mathcal{L}}{\partial w} \right)$$

$$(\mathbf{ms})_{avg}^{t+1} = \mathbf{\beta}'(\mathbf{ms})_{avg}^{t} + (\mathbf{1} - \mathbf{\beta}') \left(\left(\frac{\partial \mathcal{L}}{\partial w} \right)^{2} \right)^{t+1}$$

Now let's put both of them together ...

Adam

$$w \to w - \frac{\eta}{\sqrt{ms + \epsilon}} \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}$$

$$\left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg} = \beta_1 \left(\frac{\partial \mathcal{L}}{\partial w}\right)_{avg}^t + (1 - \beta_1) \left(\frac{\partial \mathcal{L}}{\partial w}\right)^{t+1}$$

$$ms = \beta_2(ms)_{avg}^t + (1 - \beta_2) \left(\left(\frac{\partial \mathcal{L}}{\partial w} \right)^2 \right)^{t+1}$$

Hyper parameters

So far ...

