MAT3007 - Assignment 3

Yohandi [SID: 120040025]

Problem 1.

Canonical form:

$$\begin{aligned} &\min & -x_1-2x_2-3x_3-8x_4\\ &\text{s.t.} & x_1-x_2+x_3+s_1=2\\ & x_3-x_4+s_2=1\\ & 2x_2+3x_3+4x_4+s_3=8\\ & x_1,x_2,x_3,x_4\geq 0 \end{aligned}$$

Initial tableau:

B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
	-1	-2	-3	-8	0	0	0	
$ s_1 $	1	-1	1	0	1	0	0	2
$ s_2 $	0	0	1	-1	0	1	0	1
s_3	0	2	3	4	0	0	1	8

We found that the maximum in the objective row is 8, so the entering variable is x_4 . The test gives for s_3 with minimum ratio 2 (for s_2 , it is -1 but we are going to ignore this as it is negative). So, the leaving variable is s_3 .

Pivot on the element in the x_4 column and s_3 row.

B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
	-1	2	3	0	0	0	2	
s_1	1	-1	1	0	1	0	0	2
s_2	0	$\frac{1}{2}$	$\frac{7}{4}$	0	0	1	0	3
x_4	0	$\frac{1}{2}$	$\frac{3}{4}$	1	0	0	$\frac{1}{4}$	2

We found that the maximum in the objective row is 1, so the entering variable is x_1 . The test gives for s_1 with minimum ratio 2. So, the leaving variable is s_1 .

Pivot on the element in the x_1 column and s_1 row.

B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
	0	1	4	0	1	0	2	
x_1	1	-1	1	0	1	0	0	2
s_2	0	$\frac{1}{2}$	$\frac{7}{4}$	0	0	1	0	3
x_4	0	$\frac{1}{2}$	$\frac{3}{4}$	1	0	0	$\frac{1}{4}$	2

Now, all coefficients are non-negative; hence, we are done.

Problem 2.

$$\begin{array}{ll} \min & x_1-x_2+2x_3\\ \text{s.t.} & 2x_1-x_2+2x_3 \leq -1\\ & x_1-x_2-x_3 \leq 4\\ & x_2-x_4=0\\ & x_1,x_2,x_3,x_4 \geq 0 \end{array}$$

As the first step for the Phase 1, we construct the auxiliary problem such that $b \ge 0$.

$$\begin{aligned} &\min \quad y_1+y_2\\ &\text{s.t.} \quad -2x_1+x_2-2x_3-s_1+y_1=1\\ &\quad x_1-x_2-x_3+s_2=4\\ &\quad x_2-x_4+y_2=0\\ &\quad x_1,x_2,x_3,x_4,s_1,s_2,y_1,y_2\geq 0 \end{aligned}$$

Solve the auxiliary problem using the simplex method.

B	x_1	x_2	x_3	x_4	s_1	s_2	y_1	y_2	RHS
	-2	2	-2	-1	-1	0	0	0	
y_1	-2	1	-2	0	-1	0	1	0	1
s_2	1	-1	-1	0	0	1	0	0	4
y_2	0	1	0	-1	0	0	0	1	0

We found that the maximum in the objective row is 2, so the entering variable is x_2 . The test gives for y_2 with minimum ratio 0. So, the leaving variable is y_2 .

Pivot on the element in the x_2 column and y_2 row.

B	x_1	x_2	x_3	x_4	s_1	s_2	y_1	RHS
	-2	0	-2	1	-1	0	0	
y_1	-2	0	-2	1	-1	0	1	1
s_2	1	0	-1	-1	0	1	0	4
x_2	0	1	0	-1	0	0	0	0

We found that the maximum in the objective row is 1, so the entering variable is x_4 . The test gives for y_1 with minimum ratio 1. So, the leaving variable is y_1 .

Pivot on the element in the x_4 column and y_1 row.

B	x_1	x_2	x_3	x_4	s_1	s_2	RHS
	0	0	0	0	0	0	
x_4	-2	0	-2	1	-1	0	1
s_2	-1	0	-3	0	-1	1	5
x_2	-2	1	-2	0	-1	0	1

Then, we obtain the new tableu accordingly and BFS of the original problem as x = (0, 1, 0, 1).

Phase 2 follows.

B	x_1	x_2	x_3	x_4	s_1	s_2	RHS
	1	0	0	0	1	0	
x_4	-2	0	-2	1	-1	0	1
s_2	-1	0	-3	0	-1	1	5
x_2	-2	1	-2	0	-1	0	1

Since all coefficients are non-negative; hence, we are done. The optimal solution is obtained with x = (0, 1, 0, 1) and the objective value is -1.

Problem 3.

$$\begin{array}{ll} \min & x_1+3x_2+x_4-2x_5\\ \text{s.t.} & x_1+2x_2+4x_4+x_5=2\\ & x_1+2x_2-2x_4+x_5=2\\ & -x_1-4x_2+3x_3=1\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

As the first step for the Phase 1, we construct the auxiliary problem such that $b \ge 0$.

$$\begin{aligned} &\min \quad y_1+y_2+y_3\\ &\text{s.t.} \quad x_1+2x_2+4x_4+x_5+y_1=2\\ &\quad x_1+2x_2-2x_4+x_5+y_2=2\\ &\quad -x_1-4x_2+3x_3+y_3=1\\ &\quad x_1,x_2,x_3,x_4,x_5,y_1,y_2,y_3\geq 0 \end{aligned}$$

Solve the auxiliary problem using the simplex method.

B	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3	RHS
	1	0	3	2	2	0	0	0	
y_1	1	2	0	4	1	1	0	0	2
y_2	1	2	0	-2	1	0	1	0	2
y_3	-1	-4	3	0	0	0	0	1	1

We found that the maximum in the objective row is 3, so the entering variable is x_3 . The test gives for y_3 with minimum ratio $\frac{1}{3}$. So, the leaving variable is y_3 .

Pivot on the element in the x_3 column and y_3 row.

B	x_1	x_2	x_3	x_4	x_5	y_1	y_2	RHS
	2	4	0	2	2	0	0	
y_1	1	2	0	4	1	1	0	2
y_2	1	2	0	-2	1	0	1	2
x_3	$-\frac{1}{3}$	$-\frac{4}{3}$	1	0	0	0	0	$\frac{1}{3}$

We found that the maximum in the objective row is 4, so the entering variable is x_2 . The test gives for y_1 with minimum ratio $\frac{1}{2}$. So, the leaving variable is y_1 .

Pivot on the element in the x_2 column and y_1 row.

B	x_1	x_2	x_3	x_4	x_5	y_2	RHS
	0	0	0	-6	0	0	
x_2	$\frac{1}{2}$	1	0	2	$\frac{1}{2}$	0	1
y_2	Ō	0	0	-6	$\bar{0}$	1	0
x_3	$\frac{1}{3}$	0	1	$\frac{8}{3}$	$\frac{2}{3}$	0	$\frac{5}{3}$

Then, we obtain the new tableu accordingly and BFS of the original problem as $x = (0, 1, \frac{5}{3}, 0, 0)$.

Phase 2 follows.

B	x_1	x_2	x_3	x_4	x_5	RHS
	$\frac{1}{2}$	0	0	5	$\frac{7}{2}$	
x_2	$\frac{1}{2}$	1	0	2	$\frac{1}{2}$	1
x_3	$\frac{1}{3}$	0	1	$\frac{8}{3}$	$\frac{\overline{2}}{3}$	$\frac{5}{3}$

We found that the maximum in the objective row is 5, so the entering variable is x_4 . The test gives for x_2 with minimum ratio $\frac{1}{2}$. So, the leaving variable is x_2 .

Pivot on the element in the x_4 column and x_2 row.

B	x_1	x_2	x_3	x_4	x_5	RHS
	$-\frac{3}{4}$	$-\frac{5}{2}$	0	0	$\frac{9}{4}$	
x_4	$\frac{1}{4}$	$\frac{1}{2}$	0	1	$\frac{1}{4}$	$\frac{1}{2}$
x_3	$-\frac{1}{3}$	$-\frac{4}{3}$	1	0	0	$\frac{1}{3}$

We found that the maximum in the objective row is $\frac{9}{4}$, so the entering variable is x_5 . The test gives for x_4 with minimum ratio 2. So, the leaving variable is x_4 .

Pivot on the element in the x_5 column and x_4 row.

	B	x_1	x_2	x_3	x_4	x_5	RHS
		-3	-7	0	- 9	0	
İ	x_5	1	2	0	4	1	2
l	x_3	$-\frac{1}{3}$	$-\frac{4}{3}$	1	0	0	$\frac{1}{3}$

Since all coefficients are non-negative; hence, we are done. The optimal solution is obtained with $x = (0, 0, \frac{1}{3}, 0, 2)$ and the objective value is -4.

Problem 4.

- 1. $\beta \geq 0$. For the tableau to be an acceptable initial tableau, the values in the rightmost column (under 0) for the basic variables should be non-negative.
- 2. Achieved when $\alpha \geq 0$ and $\beta < 0$. This is infeasible as all coefficients and variables are positive; consequently, β cannot be negative.
- 3. One of the $\delta < 0, \, \gamma < 0, \, \text{or} \, \xi < 0$ must be true. $\beta \geq 0$ to make the tableau acceptable.
- 4. $(\alpha < 0 \text{ and } \delta < 0)$ or $(\alpha = 0 \text{ and } \delta < 0)$, which is equivalent to $\alpha \le 0$ and $\delta < 0$ (to make all elements in the 4-th column becomes less than or equal to 0). $\beta \ge 0$ to make the tableau acceptable.
- 5. $\frac{3}{2} < \frac{2}{\eta}$ (to make x_3 become the minimum ratio) and $\eta > 0$ (to make the ratio positive). $\beta \geq 0$ to make the tableau acceptable. And lastly, $\gamma < 0$ (will be $\gamma < \min(0, \delta, \xi)$ if x_6 is a variable that for sure enter B, not only a candidate).