COM 599200 Statistical Learning Homework #4

(Due June 11, 2018 at the beginning of class.)

Note: Detailed derivations are required to obtain a full score for each problem. (Total 80%)

- 1. (6%) Problem 5 of Chapter 8.
- 2. (10%) Suppose you wish to carry out a linear discriminant analysis (two classes) using a vector of transformations of the input variables $\phi(x)$. Since $\phi(x)$ is high-dimensional, you will use a regularized within-class covariance matrix $\mathbf{W}_{\phi} + \gamma \mathbf{I}$. Show that the model can be estimated using just the inner products $K(x, x') = \langle \phi(x), \phi(x') \rangle$. Hence, the kernel property of support vector machines is also shared by regularized linear discriminant analysis.
- 3. (4%+8%+6%+4%+8%) Suppose you are given 6 one-dimensional points: 3 with negative labels $x_1 = -1$, $x_2 = 0$, $x_3 = 1$ and 3 with positive labels $x_4 = -3$, $x_5 = -2$, $x_6 = 3$. Note that the data cannot be perfectly separated in \mathbb{R} , but, by applying the following feature map $\phi(x) = (x, x^2)$ (which transforms points in \mathbb{R} to points in \mathbb{R}^2), a linear separator can perfectly separate the points in the new \mathbb{R}^2 feature space induced by ϕ .
 - (a) Find the kernel K(x, x') that corresponds to the feature map ϕ .
 - (b) Construct a maximal margin separating hyperplane in the new feature space. This hyperplane will be a line in \mathbb{R}^2 , which can be parameterized by its normal equation, i.e. $w_1Y_1 + w_2Y_2 + c = 0$ for appropriate choices of w_1 , w_2 , and c. Here, $(Y_1, Y_2) = \phi(X)$ is the result of applying the feature map ϕ to the original feature X. Give the values for w_1 , w_2 , and c, and compute the margin for your hyperplane. (Hint: You do not need to solve any optimization problem to find the maximum margin hyperplane. Note that the line must pass somewhere between (-2,4) and (-1,1). There will only be two support vectors in this case.)
 - (c) Apply ϕ to the data and plot the points in the new \mathbb{R}^2 feature space. On the plot of the transformed points, plot the separating hyperplane and the margin, and circle the support vectors.
 - (d) Draw the decision boundary of the separating hyperplane in the original \mathbb{R} feature space.
 - (e) Suppose that the point $x_7 = 4$ is added to the negative class. Find the support vector classifier for C = 4.

- **4.** (12%) Problem 2 (a)-(d) of Chapter 10 in the textbook with the value 0.8 replaced with 0.6.
- 5. (12%) Consider Problem 3 of Chapter 10 in the textbook with Observation 2 changed to $(X_1, X_2) = (1, 2)$ and Observation 4 changed to (5, 3). Initialize by taking the first 3 observations as the first cluster and the other 3 observations as the second cluster. Plot the observations and their class labels at the initialization and also after each iteration of the K-means clustering algorithm.
- 6. (10%) Consider a special case of the Gaussian mixture model in which the covariance matrices Σ_k of the components are all constrained to have a common value Σ . Derive the EM equations for maximizing the likelihood function under such a model.