Linguagens de Programação: História das Linguagens

Prof. Arnaldo Candido Junior

UNESP – IBILCE

São José do Rio Preto, SP

Popularidade das Linguagens

- Neste tópicos, discutiremos a evolução das linguagens de programação
- Mas antes, vamos dar uma olhada nas linguagens mais populares
- Existem rankings que medem a popularidade das linguagens segundo diferentes métricas
- Veremos três rankings

Popularidade das Linguagens (2)

1. Tiobe

https://tiobe.com/tiobe-index/

2. RedMonk

https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/https://redmonk.com/rstephens/2021/08/05/top-20-june-2021/

• 3. PYPL

https://pypl.github.io/PYPL.html

4. StackOverflow

https://survey.stackoverflow.co/2022/#most-loved-dreaded-and-wanted-language-love-dread

Exercício: três pontos chaves

- Descrever três pontos chaves / curiosidades / coisas legais de uma linguagem do ranking Tiobe
- Para alunos presentes na aula, o exercício poderá ser feito em dupla
- Para alunos entregando a atividade posteriormente, o exercício é individual
- A linguagem recebida será feita por sorteio

Exercício: estruturas

- Para a linguagem escolhida, mostrar quatro programas
 - 1. "Hello World"
 - 2. Subprograma para calcular a média entre dois valores (escolher inteiros ou reais)
 - 3. If para checar se um número é par ou impar
 - 4. Laço (ou recursão) para contar de 1 até 10

Exercício: estruturas (2)

- Enviar print da tela mostrando os 4 programas rodando
- Pode ser: Google Docs; documento Office; documento LibreOffice; ou um zip com imagens
- Usar compiladores online ou local para compilar a linguagem escolhida
- Se n\u00e3o encontrar um compilador dispon\u00edvel, fazer a atividade com a linguagem seguinte do ranking Tiobe

Exercício: estruturas (3)

- Compiladores online
 - https://replit.com/
 - https://rextester.com/
 - https://www.tutorialspoint.com/codingground.htm
 - https://www.onlinegdb.com/
 - https://www.programiz.com/

Computação antes das linguagens

- Ábaco (séc. III d.C.): usa discos para efetuar cálculos
- Pascalina (1642): operações aritméticas simples por discos interligados
- Calculadora de Leibniz (1673): trazendo multiplicação e divisão
- Tear de Jacquard (1982): cartões perfurados lidos em uma máquina de tear

Computação antes das linguagens (2)

- Máquina Diferencial (1822) de Charles Babbage: calculava funções trigonométricas e logarítmicas
- Máquina Analítica (1833/1834) de Charles Babbage: executava as quatro operações aritméticas e trazia o conceito de memória

Ada Lovelace

- Considerada pelos historiadores como a primeira programadora
- Interessou-se pelo trabalho de Babbage, a máquina máquina analítica em 1834
- Ao traduzir um artigo de francês para inglês adicionou várias notas que mostraram que ela entendeu o funcionamento da máquina

Ada Lovelace (2)

- Conceito de procedimento: sequência de cartões (programa) independente dos valores operados
- Noção de símbolos e variáveis de memória
- Noção da atribuição de valores a variáveis
- Escreveu uma sequência como calcular os números de Bernoulli - é considerado pelos historiadores da computação como o primeiro programa de computador (1843)

Ada Lovelace (3)

- Foi homenageada por uma linguagem de mesmo nome na década de 80
- https://www.celebratingada.com/

Ada Lovelace (4)

_						Data.		Working Variables.											Result Variables.			
Nature of Operation	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	14,0001	14.000 a	¥*0004	\$*0000 [\$ 0000	F-00000	\$7,0000	00000	\$*0000 [\$30000 [*Yn O 0 0 0	**************************************	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B, in a Ode of the design of the state of th	B is a decimal Og of fraction.	By the to a decimal Og fraction.	P. 0000 Br	
-	V4 - V1	1.03	(IV. = IV.	- 2 - 1	- 1	2		2n 2n-1	2.	2.												
+	*V ₂ + *V ₁ *V ₄ + *V ₄ *V ₁₁ + *V ₉	εγ ₃₁		$ \begin{array}{l} = 2a + 1 \\ = 2a - 1 \\ = 2a + 1 \end{array} $ $ \begin{array}{l} = 2a - 1 \\ = 2a - 1 \end{array} $				•	0						2n-1 2n+1 1 2n-1 2 2n+1							
-	V ₁₁ -2V ₁₁	ıv ₁₉	$\begin{cases} {}^{3}V_{11} = {}^{3}V_{11} \\ {}^{3}V_{12} = {}^{1}V_{12} \\ {}^{3}V_{1} = {}^{3}V_{1} \\ {}^{3}V_{1} = {}^{3}V_{1} \end{cases}$	$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$	1									 n – 1	•	*******	$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$					
	V ₂ + 2V ₇	rv,	1V4 = 1V4 0V4 = 5V4	= 2 + 0 = 2 $= \frac{2n}{2} = \Delta_1$		2	-		-	24	2 3	_	_	_	2 n - A1							
+	V ₁₀ + 2V ₁₁ V ₁₀ + 2V ₁₁	PV 33	{ "V" = "V" }	$= B_1 \cdot \frac{2n}{2} = B_1 A_1 \dots $ $= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{3n}{2} \dots$ $= n-2(-2) \dots$	1	-	-	-	-	-	-	-			2 n - A1	B ₁ . 2 n - B ₁ A ₁	$\left\{-\frac{1}{2},\frac{2n-3}{2n+1}+B_1,\frac{2n}{2}\right\}$	Bı				
[-	V ₆ - V ₁		{ 'Va = "Va }	= 2x - 1 = 2 + 1 = 3	1			***		2 n — 1	-							-				
+	V ₈ +3V ₇	PV	{ *V, = *V, }	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-			-	3 n - 1		2n-1 3 0	_		2n 2n-1 7-3							
-	V ₄ -1V ₁	rv,		-20-2	1	-				2 - 2												
	V ₆ × eV ₂₁	v ₁₁	{ *V, = *V, } { *V, = *V, } { *V, = *V, }	$= \frac{2 \times -2}{4} = \frac{2 \times 2 \times -1}{2} \cdot \frac{2 \times -2}{4} = \lambda_1$						24-2	4		2n-2	***	$ \left\{ \begin{array}{ccc} 2n & 2n-1 & 2n-2 \\ 2 & 3 & 3 \\ & & -\Lambda_2 \end{array} \right\} $							
+	V ₂₀ × ⁴ V ₁₁ V ₁₂ + ² V ₁₀ V ₁₀ - ¹ V ₁	v ₁₃	{ *V ₁₁ = *V ₁₂ } { *V ₁₁ = *V ₁₂ } *V ₁₁ = *V ₁₂ } *V ₁₁ = *V ₁₂ }	$= B_3 \cdot \frac{2 \cdot \cdot}{2} \cdot \frac{2 \cdot -1}{3} \cdot \frac{2 \cdot \cdot -2}{3} = B_3 \wedge_3$ $= \Lambda_3 + B_1 \wedge_1 + B_3 \wedge_3 \dots$ $= -3 (=1) \dots$	***			***	***						•	B ₂ A ₃	$\left\{ \Lambda_{8} + B_{1} \Lambda_{1} + B_{8} \Lambda_{8} \right\}$		P.			

História das Linguagens

Fonte: https://en.wikipedia.org/wiki/Timeline_of_programming_languages

História das Linguagens (2)

História das Linguagens (3)

- Há divergência nas datas de criação de algumas linguagens
 - Alguns autores citam o projeto e a concepção
 - Outros a publicação do primeiro compilador
 - Seguiremos as definições do livro texto

Plankalkul

- Proposta em 1946 por Konrad Zuse
 - Construtor das máquinas Z1, Z2, Z3 (calculadores mecânicas de ponto flutuante)
- Linguagem que permitiria um nível de abstração mais alto
- Não chegou a ser implementada até 1975

Plankalkul (2)

- Considerada por Zuze como um exercício mental
- Primeira concepção de um compilador: leria comandos nessa linguagem e automaticamente perfuraria cartões com os comandos em linguagem de máquina

Plankalkul (3)

```
atribuição
                                                Plankalkül
                           P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) \rightarrow R0[:8.0]
                           max(V0[:8.0],V1[:8.0]) \rightarrow Z1[:8.0]
                           max(Z1[:8.0], V2[:8.0]) \rightarrow R0[:8.0]
subrotina
                           END
                           P2 max (V0[:8.0],V1[:8.0]) \rightarrow R0[:8.0]
                           V0[:8.0] \rightarrow Z1[:8.0]
                           (Z1[:8.0] < V1[:8.0]) \rightarrow V1[:8.0] \rightarrow Z1[:8.0]
                           Z1[:8.0] \rightarrow R0[:8.0]
                           END
                                             condicional
```

Década de 1940

- Computadores ficam mais avanços, baseados em válvulas
- 1943: Mark I, o primeiro computador eletromecânico
- 1943: criado para quebrar códigos alemães ultrasecretos.
- 1946: ENIAC Computador e Integrador Numérico Eletrônico
- A programação é feita em código de máquina

Década de 1950

- Nesta década, válvulas começam a ser substituídas por transistores
- Surgem as primeiras linguagens de programação de alto nível.
- Entre elas, Fortran, Cobol, Lisp
 - Precursoras dos paradigmas Imperativo, Funcional e Lógico
 - Nichos diferentes

Década de 1950 (2)

- Surgem as primeiras linguagens de montagem, a época conhecidas como pseudocodes
- Surgem dois paradigmas, em forma ainda rudimentar
 - Imperativo: Fortran, Cobol, Algol 58
 - Funcional: Lisp
- Aplicações iniciais: classificação de padrões, sistemas especialistas, processamento de língua natural, entre outras

Pseudocodes

- Fim de 1940: as primeiras linguagens de montagem eram conhecidas como pseucodes
- A palavra evoluiu e não tem mais o mesmo significado que na época
- Exemplos: short code; speedcoding; Univac "compiling"
- Detalhes no livro texto

Fortran

- Foco foco em aplicações científicas: realização de cálculos matemáticos complexos com baixo custo para o computador
- Aplicado na engenharia e em aplicativos científicos para a resolução de cálculos matemáticos amplos.
- Introduziu conceitos como variáveis, vetores, estruturas de seleção e estruturas de repetição primitivas.

Cobol

- Foco aplicações comerciais. Permitia produção de relatórios elaborados
- Aplicado no gerenciamento empresarial para realizar análises de dados ou controle de finanças
- Expandiu os conceitos com mais variáveis decimais, estruturas aninhadas e menos foco em eficiência
- Predecessora das planilhas eletrônicas e dos Sistemas de Gerenciamento de Bancos de Dados (SGBD)

LISP

- Foco aplicações de Inteligência Artificial
- Computação simbólica (ao invés da numérica)
- Introduziu manipulação de informações utilizando listas e não vetores
- Manipulação de listas por meio de recursão

Década de 1960

- Período foi marcado pela evolução e refinamento das linguagens de programação
- Surge a linguagem Algol 60, intensamente debatida, mas acabou não se popularizando
 - Influenciou outras linguagens como C e Pascal
- Simula 67: extensão do Algol 60 com foco em abstração de dados
 - Conceito usado posteriormente para a criação das linguagens orientadas à objetos

Década de 1960 (2)

- PL/I (Programing Language I): proposta pela IBM
 - Primeira tentativa em larga escala para a criação de uma linguagem multi-nicho
 - Acabou não atingindo a popularidade esperada
- Surge a primeira versão da linguagem Basic
- No final da década surge a linguagem C

Década de 1970

- Paradigma funcional continua evoluindo com Scheme e Common Lisp sendo derivadas do Lisp
- Paradigma lógico surge com a criação da linguagem Prolog
- Paradigma orientado a objetos começa a tomar forma. Na virada da década, surge a linguagem Smalltalk
- Paradigma imperativo se consolida como o mais popular: Algol 68, Basic, Pascal, C

Década de 1970 (2)

- Pascal: foco em simplificidade
- Linguagens orientadas a usuário: apoiam o programador a desenvolver algoritmos
 - Tipos de dados bem definidos (int, float, char).
 - Estruturas de Seleção (if) e Repetição (for, while)
 - Tipos Abstratos de Dados

Linguagem C (2)

- Projetada por Dennis Richie, em 1972
- Linguagem de sistemas portável
- Grande quantidade de rotinas pré-compiladas em bibliotecas disponível para programadores
- Linguagem de médio nível (combina alto e baixo nível)

Linguagem C (2)

- Alto nível em C: elementos de uma linguagem imperativa tradicional
 - Tipagem de Dados, criação de variáveis, estruturas de dados, estruturas de controle, entrada e saída de dados.
- Baixo Nível em C: instruções em Assembly para otimizar desempenho do código.

Linguagem C (3)

- Principais Aplicações:
 - Ensino de Programação
 - Sistemas multi-plataforma
 - Jogos de computador
 - Sistema Operacional Unix
 - Base dos Sistemas Operacionais Modernos: Windows, Linux, IOS, Android.

Linguagem C (4)

- A linguagem C é predecessora de várias linguagens de programação:
 - C#
 - Java
 - JavaScript
 - Entre varias outras

BASIC

- Beginner's All-purpose Symbolic Instruction Code
- Foco: fácil para estudantes que não são de computação
- Prioriza o tempo do usuário mais que o tempo da máquina
 - Estratégia acertada considerando-se que a computação se tornaria mais barata
- Muito popular no final da década de 70

Prolog

- Usa notação lógica como forma de se comunicar com a máquina
 - Oficialmente, é a mesma notação da área de Cálculo de Predicados
- Abordagem: não focar em como resolver o problema. Foca em definir o que é o problema
 - Cabe a máquina como resolvê-lo

• Foco:

- Abstração (Funções, Subprogramas).
- Correção de programas: verificação de tipos, exceções.
- Programação concorrente e distribuída em tempo real.
- Tipos Abstratos de Dados (TADs).

Década de 1980 (2)

- Consolidação do Paradigma Orientado a Objetos: classe e objeto; polimorfismo; encapsulamento; herança
- Duas linguagens dinâmicas pioneiras são propostas: APL e Snobol

Década de 1980 (3)

- Evolução de linguagens dos anos 60 e 70:
 - C++ (Originado da linguagem C)
 - Object Pascal (Originado da linguagem Pascal)
 - Common Lisp (Originado da linguagem Lisp)

SmallTalk

- Primeira linguagem a oferecer suporte completo à programação OO
- Tudo na linguagem é tratado como objetos, mesmo constantes inteiras
- Traz o conceito de classes originalmente proposto pela linguagem Simula 67

C++

- Desenvolvida nos laboratórios Bell por Bjarne Stroustrup, em 1985
 - Utilizou a estrutura da linguagem C e adicionou os principais elementos de Orientação a Objeto
 - Principais Modificações: Classe, Encapsulamento, Herança, Tratamento de Exceções.
 - Código C pode ser mesclado com código C++

C++ (2)

- Híbrida, permitindo programação Procedural e Orientada a Objetos
- Principais Aplicações:
- Produtividade: office, editores de imagens, de vídeos
- Entretenimento: Jogos
- Navegadores: Internet Explorer (Microsoft), Google Chrome (Google), Mozilla Firefox

ADA

- Grande esforço para projeto de uma linguagem de programação poderosa
 - Teve por traz o Departamento de Defesa dos EUA
- Gerou muita atenção quando foi proposta
- Principal problema: proposta muito ambiciosa.
 Acabou resultando em uma linguagem muito grande e complexa

- Influências: gerenciamento de sistemas complexos e, posteriormente, a "Era da Internet"
- Popularização de Orientação a Objetos: tornandose o paradigma dominante até os dias de hoje
- Linguagens de script: Perl, Javascript, Lua
- Diversas linguagens OO, com destaque à Java

Década de 1990 (2)

- Principais Aplicações:
 - Sistemas embarcados (em seu início)
 - Desenvolvimento de aplicações para internet
 - Sistemas Empresariais
 - Programação de rede
 - Aplicativos Android

Java

- Desenvolvida pela empresa Sun Microsystems, sob a coordenação de James Gosling em 1995.
 - Em seu início, puramente OO (simplificou muito o projeto da linguagem)
 - Tem referência, mas não ponteiros
 - Tem Suporte para programação concorrente
 - Usa Garbage Collector

Java (2)

- Máquina Virtual Java:
 - Altera o processo de compilação através de uma máquina virtual que auxilia o processo de tradução
 - Permite que aplicações Java sejam executadas em qualquer local (Sistema Operacional ou Dispositivo)

- Explosão da Web
- Avanços nas linguagens de script:
 - PHP: uma das primeiras a surgir bastante utilizada na Web 1.0 e 2.0
 - Python e Ruby: aparecem como linguagens de script simples e poderosas

Década de 2000 (2)

- Aprimoramento nas linguagens compiladas: C# como alternativa ao Java
- Linguagens híbridas (programação e marcação): JSP, XSLT

Década de 2000 (3)

- Novos Domínios:
 - Integração com Bases de Dados.
 - Programação Mobile.
 - Frameworks para desenvolvimento web.
 - Realidade virtual e aumentada
 - Além de evoluções nos domínios já conhecidos.

- Não é descrita na edição que usamos do livro texto
- Explosão de linguagens, bibliotecas e frameworks
- Amadurecimento das técnicas de programação e boas práticas
- SOLID; Clean Code; Padrões de projeto;
 Arquiteturas (ex.: MVC); entre outros
 - Veja material complementar

- Em muitos nichos, alguns trade-offs começam a predominar
 - Simplicidade (facilidade de manutenção) sobre desempenho bruto
 - Preferência por linguagens com tipagem forte e estática (final da década de 2010)
 - Detecção de erros em tempo de compilação

Referências Créditos

- Parcialmente adaptado pelo material gentilmente cedido pelos professores
 - Alessandra Bortoletto Garbelotti Hoffmann (UTFPR – PR)
 - Paulo Ricardo Knob (UTFPR PR)
 - Matheus Bainy (UTFPR PR)