Дистрибутивная семантика Векторное представление слова

Екатерина Черняк

Факультет компьютерных наук НИУ ВШЭ

June 7, 2018

- 1 Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- Оспользование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

- Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- ③ Использование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- **5** Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Представление слова

Word representation [TRB10]

A word representation is a mathematical object associated with each word, often a vector. Each dimension's value corresponds to a feature and might even have a semantic or grammatical interpretation, so we call it a word feature.

Word embedding

A word embedding is a vector in a low dimensional space, which represents each word.

Примеры (http://rusvectores.org, [KK16])

Примеры (http://rusvectores.org, [KK16])

Обозначения

- ullet $w\in V_W$ слова, всего слов $|V_W|$
- ullet $c \in V_C$ контексты, всего контекстов $|V_C|$
- ullet #(w, c) сколько раз слово w встретилось в контексте c
- ullet $(w,c)\in D$ наблюдаемые пары (слово, контекст), всего пар |D| $\sum_w\sum_c\#(w,c)=|D|$
- $oldsymbol{\epsilon} oldsymbol{\epsilon} \in \mathbb{R}^{|V_w| imes d}$ матрица эмбеддингов
- ullet d размерность эмбеддинга, $d \ll |V_W|$

Дистрибутивная семантика

Смысл слова [L. Wittgenstein]

Die Bedeutung eines Wortes liegt in seinem Gebrauch.

Distributional hypothesis [J.R.Firth]

You shall know a word by the company it keeps!

Дистрибутивная семантика

Векторная модель: матрица слово-контекст М

$$\mathbf{M}_{[i,j]}=f(w_i,c_j)$$

	c_1	<i>c</i> ₂	 $c_{ V_C }$
w_1	f_{11}	f_{12}	$f_{1 V_C }$
W_2	f_{21}	f_{22}	$f_{2 V_C }$
$w_{ V_W }$	$ f_{ V_W 1}$	$ f_{ V_W 2}$	$ f_{ V_W V_C }$

Дистрибутивная семантика

Векторная модель: матрица слово-контекст $\pmb{M} \in \mathbb{R}^{V_W \times V_C}$

$$\mathbf{M}_{[i,j]} = f(\mathbf{w}_i, \mathbf{c}_j)$$

Как определить $f(w_i, c_j)$?

- #(w, v)
- $P(w,c) = \frac{\#(w,v)}{|D|}$
- $PMI(w, c) = \log \frac{\#(w,c)|D|}{\#(w)\#(c)}$
- PPMI(w, c) = max(PMI(w, c), 0)

Как определить $f(w_i, c_i)$?

Векторная модель: матрица слово-контекст $\pmb{M} \in \mathbb{R}^{V_W imes V_C}$

$$\mathbf{M}_{[i,j]} = f(\mathbf{w}_i, \mathbf{c}_j)$$

$$\#(w,v)$$
 или $P(w,c) = \frac{\#(w,v)}{|D|}$

w_1 f_{11} f_{12}	ſ
$w_1 t_{11} t_{12}$	$ f_{1 V_C }$
cat f_{21} f_{22}	$f_{2 V_C }$
$ \begin{array}{c c} \dots & & \\ w_{ V_W } & f_{ V_W 1} & f_{ V_W 2} \end{array} $	$f_{ V_W V_C }$

Как определить $f(w_i, c_i)$?

Векторная модель: матрица слово-контекст М

$$\mathbf{M}_{[i,j]} = f(\mathbf{w}_i, \mathbf{c}_j)$$

$$\mathsf{PMI}(w,c) = \log \tfrac{\#(w,c)|D|}{\#(w)\#(c)}$$

	the	а	 cute
w_1	f_{11}	f_{12}	$f_{1 V_C }$
cat	f ₂₁	f ₂₂	$f_{2 V_C }$
$w_{ V_W }$	$f_{ V_W 1}$	$ f_{ V_W 2} $	$ f_{ V_W V_C }$

$$PMI(w,c) = |\#(w,c) = 0| = \log 0 = -\infty \Rightarrow$$

$$PPMI(w,c) = \max(PMI(w,c),0)$$

Как определить w, c?

- - все слова
 - только существительные
 - именованные сущности
- Оправодника в пример приме
 - документы, абзацы, предложения
 - слова в пределах окна $(\pm k \text{ слов слева и справа от } w)$
 - ▶ глаголы по связям nsubj, dobj, iobj

Оценка близости между словами

• Мера Жаккара:

$$jc(u,i) = \frac{\sum_{i} \min(u_i, v_i)}{\sum_{i} \max(u_i, v_i)}$$

• Евклидово расстояние:

$$d(u,v) = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$

• Косинусная мера близости:

$$cos(u, v) = \frac{u \cdot v}{||u||_2 ||v||_2} = \frac{\sum_i u_i v_i}{\sqrt{\sum_i u_i^2} \sqrt{\sum_i v_i^2}}$$

- Введение
- 2 Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- 3 Использование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Факторизация матрицы терм-контекст

Снижение размерности матрицы слово-контекст $M \in \mathbb{R}^{V_W \times V_C}$:

$$M' = W \times V^{\top}, W \in \mathbb{R}^{V_W \times d}, V \in \mathbb{R}^{V_C \times V_d}$$

M' – лучшее приближение ранга d к M по L_2 .

Факторизация матрицы терм-контекст

Сингулярное разложение матрицы слово-контекст $\pmb{M} \in \mathbb{R}^{V_W \times V_C}$:

$$M = U\Sigma D^{\top}$$

Факторизация матрицы терм-контекст

Апроксимация ранга d матрицы слово-контекст $M \in \mathbb{R}^{V_W \times V_C}$:

$$M_d' = U_d \Sigma_d D_d^{\top}$$

Искомое разложение M:

$$W = U_d \sqrt{\Sigma_d}, V^{\top} = \sqrt{\Sigma_d} D_d^{\top}$$

Примеры

- Туториал M. Baroni
- Kypc A. Copestake и A. Herbelot

- 🚺 Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- 3 Использование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- **5** Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

SENNA [CW08]

Предсказываем слово w по его левому и правому контексту $c_{1:k}$:

$$P(c_1c_2\ldots w\ldots c_{k-1}c_{k-2}).$$

 $v_w(w)$ – вектор слова w

 $v_c(w)$ — вектора контекста c

$$s(w, c_{1:k}) = g(xU) \cdot v$$

$$x = [v_c(c_1), \dots, v_c(c_k), v_w(w)], \ U \in \mathbb{R}^{(k+1)d_{emb} \times d_h}, v \in \mathbb{R}^{d_h}$$

Margin-based ranking loss:

$$L(w, c, w') = \max(0, 1 - d(w, c_{1:k}) - s(w', c_{1:k}))$$

Для каждой пары $(w, c_{1:k}$ сэмплируем случайное слово из словаря w'.

◄□▶
◄□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Word2Vec [MCCD13]

- Две архитектуры:
 - Continuous bag-of-words model (CBOW)
 - skip-gram
- 2 Два критерия оптимизации:
 - ► Hierarchical softmax
 - ▶ Negative-sampling: для каждой пары $(w,c) \in D$ найти k слов, таких что $(w_k,c) \in \bar{D}$
- D множество наблюдаемых пар слово-контекст
- $ar{D}$ множество ненаблюдаемых пар слово-контекст

Вероятность
$$(w,c) \in D: P(D=1|w,c) = \frac{1}{1+e^{-s(w,c)}}$$

Оптимизационная задача:

$$L(\Theta, D, \bar{D}) = \sum_{(w,c) \in D} P(D = 1|w,c) + \sum_{(w,c) \in \bar{D}} P(D = 0|w,c)$$

Continuous bag-of-words model (CBOW) [MCCD13]

- Входной слой: контекст слова $(+, -\frac{k}{2}$ слова слева и справа)
- Слой проекции: линейный
- Выходной слой: вектор слова

$$P(D=1|w,c_{1:k}) = \frac{1}{1+e^{-(w\cdot c_1+w\cdot c_2+...+w\cdot c_k)}}, c = \sum_{i=1}^k c_i$$

skip-gram [MCCD13]

- Обратная задача: предсказание векторов контекста по данному слову
- Выходной слой: вектор слов
- Все контексты независимы: $(w, c_1), \ldots, (w, c_k)$

$$P(D=1|w,c_i) = \frac{1}{1+e^{-(w\cdot c_i)}}$$

$$P(D = 1|w, c_{1:k}) = \prod_{i=1}^{k} P(D = 1|w, c_i) = \prod_{i=1}^{k} \frac{1}{1 + e^{-(w \cdot c_i)}}$$

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

- Введение
- 2 Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- ③ Использование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Дистрибутивная семантика и Word2Vec [LG14b]

Результат Word2Vec: два матрицы, $E^W \in \mathbb{R}^{V_W \times d}$ и $E^C \in \mathbb{R}^{V_C \times d}$ Пусть $M' = E^W \times E^C$.

Связь исходной матрицы слово-контекст M и M':

$$w \cdot c = \mathbf{M'}_{[w,c]} = PMI(w,c) - \log k,$$

где k — число отрицательных контекстов

- Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- Оспользование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- **5** Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Сравнение моделей эмбеддингов [SLMJ15]

- Внутренние (intrinsic) задачи
 - ▶ Определение похожих слов
 - ▶ Определение аналогий
 - Категоризация слов
 - Определение лишнего слова
 - ▶ Определение объектов глаголов
- 2 Внешние (extrinsic) задачи
 - Классификация текстов
 - Извлечение именованных сущностей
 - Расширение запроса

Результаты зависят от использованного корпуса для обучения, гиперпараметров обучения, корпуса для тестирования. Невозможно определить модель эмбеддингов, превосходящую остальные.

- Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- Оправние представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Word2Vec-f (dependency embeddings) [LG14a]

Выбор контекста: синтаксически зависимые слова.

Результат: функциональные зависимости.

andibile Sabreninoein.					
Target Word	BoW5	BoW2	Deps		
batman	nightwing	superman	superman		
	aquaman	superboy	superboy		
	catwoman	aquaman	supergirl		
	superman	catwoman	catwoman		
	manhunter	batgirl	aquaman		
hogwarts	dumbledore	evernight	sunnydale		
	hallows	sunnydale	collinwood		
	half-blood	garderobe	calarts		
	malfoy	blandings	greendale		
	snape	collinwood	millfield		
turing	nondeterministic	non-deterministic	pauling		
	non-deterministic	finite-state	hotelling		
	computability	nondeterministic	heting		
	deterministic	buchi	lessing		
	finite-state	primality	hamming		
florida	gainesville	fla	texas		
	fla	alabama	louisiana		
	jacksonville	gainesville	georgia		
	tampa	tallahassee	california		
	lauderdale	texas	carolina		
object-oriented	aspect-oriented	aspect-oriented	event-driven		
	smalltalk	event-driven	domain-specific		
	event-driven	objective-c	rule-based		
	prolog	dataflow	data-driven		
	domain-specific	4gl	human-centered		
dancing	singing	singing	singing		
	dance	dance	rapping		
	dances	dances	breakdancing		
	dancers	breakdancing	miming		
	tap-dancing	clowning	busking		

Насколько похожи два предложения (абзаца)? [LM14]

Как найти вектор-предложения (абзаца) ?

- ① Усреднить вектора слов, входящих в каждое предложение (с tf idf весами)
- Doc2vec: что word2vec, только для предложений (абзацев)

Global Vectors [PSM14]

$$w \cdot c + b_{|w|} + b_{|c|} = \log(w, c) \ \forall (w, c) \in D,$$

 $b_{|w|}, b_{|c|}$ – обучаемые сдвиги для слов и контекстов

FastText [BGJM16]

Слово w представляем символьными n-грамами:

$$n=3$$
, $G_{where}=_wh$, whe , her , $re_$, $_where_$ $sim_{w2v}(u,v)=< u,v> sim_{ft}(u,v)=\sum_{e\in G_u}\sum_{g\in G_v}< e,v>$ git

StarSpace [WFC⁺17]

Находит вектора для различных сущностей:

$$\sum_{(a,b^+)\in E^+,b^-\in E^-} L^{\textit{batch}}(\textit{sim}(a,b^+),\textit{sim}(a,b_1^-),\ldots,\textit{sim}(a,b_k^-))$$

- E+- генератор положительных (наблюдаемых) пар, зависит от задачи
- E- генератор отрицательных (ненаблюдаемых) пар
- sim функция близости, косинусная или Евклидова
- L функция потерь

Сценарии использования:

- Классификация текстов: a документы, b метки классов
- Поиск по запросу: а запрос, b документы

git

AdaGram [BKOV16]

Находит k смыслов слова. Обозначим смыслы через Z – все возможные смыслы всех слов, всего их N:

$$p(C, Z, \beta | X, \alpha, \theta) = \prod_{w \in V_w} \prod_{k}^{\infty} p(\beta_{wk} | \alpha) \prod_{i=1}^{N} [p(z_i | x_i, \beta) \prod_{c \in V_c} p(c | z_i, x_i, \theta)]$$

Демо

- Введение
- Счетные и нейронные модели представления слова
 - Факторизация матрицы терм-контекст
 - Word2Vec
 - Word2Vec как факторизация матрицы sPMI
- Использование представлений слова
- Другие модели
 - Word2Vec-f
 - Doc2Vec
 - GloVe
 - FastText
 - StarSpace
 - AdaGram
- Другое
 - Двуязычные представления слов
 - HistWords
 - Составления предметных словарей эмоционально-окрашенных слов

Двуязычные эмбедденги [ZSCM13]

Дан (выровненный) параллельный корпус. Контекст слова: перевод этого слова на другой язык.

Двуязычные эмбедденги [CLR⁺17]

- Дано два невыровненных пространства слов
- Adversarial learning для определения матрицы поворота W
- ullet Прокрустово преобразование для уточнения W
- lacktriangledown M NN-подобный метод для окончательного выравнивания

HistWords [HLJ16]

Диахронические эмбеддинги: Прокрустово преобразование для поворота пространства эмбеддингов из периода t-1 в t

Составления предметных словарей эмоционально-окрашенных слов [HCLJ16]

- Граф близости на словах
- Случайное блуждание для распространения метки

a. Run random walks from seed words.

b. Assign polarity scores based on frequency of random walk visits.

Источники І

- Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov, Enriching word vectors with subword information, arXiv preprint arXiv:1607.04606 (2016).
- Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, and Dmitry Vetrov, *Breaking sticks and ambiguities with adaptive skip-gram*, Artificial Intelligence and Statistics, 2016, pp. 130–138.
- Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou, *Word translation without parallel data*, arXiv preprint arXiv:1710.04087 (2017).
- Ronan Collobert and Jason Weston, *A unified architecture for natural language processing: Deep neural networks with multitask learning*, Proceedings of the 25th international conference on Machine learning, ACM, 2008, pp. 160–167.

Источники II

William L Hamilton, Kevin Clark, Jure Leskovec, and Dan Jurafsky, *Inducing domain-specific sentiment lexicons from unlabeled corpora*, Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing, vol. 2016, NIH Public Access, 2016, p. 595.

William L Hamilton, Jure Leskovec, and Dan Jurafsky, *Diachronic word embeddings reveal statistical laws of semantic change*, arXiv preprint arXiv:1605.09096 (2016).

Andrey Kutuzov and Elizaveta Kuzmenko, Webvectors: a toolkit for building web interfaces for vector semantic models, International Conference on Analysis of Images, Social Networks and Texts, Springer, 2016, pp. 155–161.

Источники III

- Omer Levy and Yoav Goldberg, *Dependency-based word embeddings*, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, 2014, pp. 302–308.
 - _____, Neural word embedding as implicit matrix factorization, Advances in neural information processing systems, 2014, pp. 2177–2185.
- Quoc Le and Tomas Mikolov, *Distributed representations of sentences and documents*, International Conference on Machine Learning, 2014, pp. 1188–1196.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, *Efficient estimation of word representations in vector space*, arXiv preprint arXiv:1301.3781 (2013).

Источники IV

Jeffrey Pennington, Richard Socher, and Christopher Manning, *Glove: Global vectors for word representation*, Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543.

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims, *Evaluation methods for unsupervised word embeddings*, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 298–307.

Joseph Turian, Lev Ratinov, and Yoshua Bengio, *Word representations:* a simple and general method for semi-supervised learning, Proceedings of the 48th annual meeting of the association for computational linguistics, Association for Computational Linguistics, 2010, pp. 384–394.

Источники V

L. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, and J. Weston, *Starspace: Embed all the things!*, arXiv preprint arXiv:1709.03856 (2017).

Will Y Zou, Richard Socher, Daniel Cer, and Christopher D Manning, *Bilingual word embeddings for phrase-based machine translation*, Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 1393–1398.