

目录

- 1 以太网协议介绍
- 2 以太网帧介绍
- 3 以太网交换机介绍
- 4 同网段数据通信全过程

以太网协议

以太网是当今现有局域网(Local Area Network, LAN)采用的最通用的通信协议标准,定义了局域网中采用的电缆类型和信号处理方法。

以太网是建立在CSMA/CD (Carrier Sense Multiple Access/Collision Detection,载 波监听多路访问/冲突检测)机制上的广播型网络。

冲突域

• 冲突域是指连接在同一共享介质上的所有节点的集合。

广播域

• 广播报文所能到达的整个访问范围称为二层广播域,简称广播域。

以太网卡

• 网络接口卡 (Network Interface Card, NIC)也称为"网卡"。

• 网络接口

- □ 简称"网口"或"接口"或"端口"。
- 网卡
 - 每个网口都有一块网卡与之对应。
 - 计算机或交换机通过网卡来转发数据。

目录

- 1 以太网协议介绍
- 2 以太网帧介绍
 - 以太网帧介绍
- 3 以太网交换机介绍
- 4 同网段数据通信全过程

以太网帧格式

- 以太网技术所使用的帧称为以太网帧 (Ethernet Frame),或简称以太帧。
- 以太帧的格式有两个标准: Ethernet_II格式和IEEE 802.3格式。

什么是MAC地址

- MAC (Media Access Control)地址在网络中唯一标识一个网卡。
- 一块网卡的MAC地址是具有全球唯一性的。

MAC地址

如同每个人都有身份证号码 来标识自己一样,每块网卡 也拥有一个用来标识自己的 号码,即MAC地址。

IP地址 vs MAC地址

IP地址的特点:

- 。 IP地址是唯一的
- □ IP地址可变
- □ 基于网络拓扑进行IP地址分配

MAC地址的特点:

- □ MAC地址是唯一的
- □ MAC地址不可变
- □ 基于制造商进行MAC地址分配

MAC地址表示

• 一个MAC地址有48 bit, 6 Byte。

如: 00-1E-10-DD-DD-02, 或 001E-10DD-DD02

十六进制		00		1E		10	D	D	C	D	02	6 Byte
二进制	000	0 0000	00	01 1110	00	001 0000	1101	1101	1101	1101	0000 0010	48 bit
				-								
		幂	2 ³	2 ²	2 ¹	20	2 ³	2 ²	2 ¹	20		
十六进制		TT	8	4	2	1	8	4	2	1		
进制的转	兴	/ ->-										
		位	0	0	0	1	1	1	1	0		
			= 1				= 8+4+	+2=14=	E			

MAC地址构成及分类

- OUI(Organizationally Unique Identifier):厂商代码,由IEEE分配,3 Byte,24 bit。
- 制造商分配: 3 Byte, 24 bit

OUI制造商分配

MAC地址分类:

单播以太帧

广播以太帧

组播以太帧

目录

- 1 以太网协议介绍
- 2 以太网帧介绍
- 3 以太网交换机介绍
 - · 交换机MAC地址学习
 - 交换机转发过程
- 4 同网段数据通信全过程

园区网典型架构

以太网二层交换机

以太网二层交换机转发数据的 端口都是以太网口,并且只能 够针对数据的二层头部 (以太 网数据帧头) 中的MAC地址进 行寻址并转发数据。

交换机的工作原理

MAC地址表

• 每台交换机中都有一个MAC地址表,存放了MAC地址与交换机端口编号之间的映射关系。

交换机的MAC地址学习 (1)

交换机的MAC地址学习 (2)

主机1发出的数据帧

源MAC: MAC1

目的MAC: MAC2

(注:假设主机1已知主机2的MAC地址)

交换机查MAC地址表

MAC地址	Port

2

- 主机1发送数据帧给主机2。
- 交换机GE0/0/1口接收到数据帧后, 在MAC地址表中查询该帧的目的 MAC地址,发现没有对应表项,则 收到的数据帧是"未知单播帧"。

交换机的MAC地址学习(3)

交换机的MAC地址学习 (4)

交换机的MAC地址学习 (5)

- 交换机在MAC地址表中查到了对应表项,则交换机对该单播帧执行转发操作, 将数据帧从GE0/0/1口转发出去。
- 同时,交换机学习该数据帧的源MAC地址,并创建对应的MAC地址表项,与接收口GE0/0/2关联。

目录

- 1 以太网协议介绍
- 2 以太网帧介绍
- 3 以太网交换机介绍
 - · 交换机MAC地址学习
 - 交换机转发过程
- 4 同网段数据通信全过程

交换机的3种数据帧处理行为

• 交换机对于从传输介质进入某一端口的帧的处理行为一共有3种:

泛洪

1 主机1发出的数据帧

源MAC: MAC1

目的MAC: MAC2

或

源MAC: MAC1

目的MAC: FF-FF-FF-FF-FF

MAC 1: 0050-5600-0001

2 交换机查MAC地址表

MAC地址	Port
MAC 1	GE0/0/1

3 交换机处理数据帧行为

MAC 2: 0050-5600-0002

未知 单播帧

- 未知单播帧:
 - 1.查询MAC地址表
 - 2.泛洪
- 如果接收的是广播帧:
 - 1. 泛洪

转发

1 主机1发出的数据帧

源MAC: MAC1

目的MAC: MAC2

2 交换机查MAC地址表

MAC地址	Port
MAC 1	GE0/0/1
MAC 2	GE0/0/2

3 交换机处理数据帧行为

• 如果接收的是单播帧:

1.查询MAC地址表

2.转发

丢弃

1 主机1发出的数据帧

源MAC: MAC1

目的MAC: MAC2

2 交换机2查MAC地址表

MAC地址	Port
MAC 2	GE0/0/1

3 交换机处理数据帧行为

• 如果接收的是单播帧:

1.查询MAC地址表

2.丢弃

目录

- 1 以太网协议介绍
- 2 以太网帧介绍
- 3 以太网交换机介绍
- 4 同网段数据通信全过程
 - 同网段数据通信全过程

同网段数据通信全过程

• 场景描述:

□ 任务: 主机1想要访问主机2

□ 主机:初始化状态,仅知道本机IP地址和MAC地址(假设已获取对端IP地址)

。 交换机:刚上电,初始化状态

数据封装过程

- 需要封装:
- 源MAC地址
- 目的MAC地址

初始状态

主机1的ARP缓存表

Host 1>arp -a	
Internet Address	Physical Address Type

交换机的MAC地址表

[Switch]display mac-address verbose MAC address table of slot 0:						
MAC Address	Port	Type				

泛洪数据帧

主机1发出的ARP Request

源MAC: MAC 1 目的N	MAC: FF-FF-FF-FF-FF
-----------------	---------------------

源IP: IP 1 目的IP: IP 2

操作类型: ARP Request

发送端MAC: MAC 1

发送端IP: IP 1

目的端MAC: 00-00-00-00-00

目的端IP: IP 2

交换机的MAC地址表

[Switch]display r			
MAC Address	Port	Type	
			-

学习MAC地址

主机1发出的ARP Request

ili MIAC I │ 日的MAC I FF-FF-FF-FF-FF	源MAC: MAC 1	目的MAC: FF-FF-FF-FF-FF
-------------------------------------	-------------	-----------------------

源IP: IP 1 目的IP: IP 2

操作类型: ARP Request

发送端MAC: MAC 1

发送端IP: IP 1

目的端MAC: 00-00-00-00-00

目的端IP: IP 2

交换机的MAC地址表

[Switch]display mac-address verbose MAC address table of slot 0:					
MAC Address	Port	Туре			
0050-5600-0001	GE0/0/1	dynamic			

目标主机回复

交换机的MAC地址表

, ,	[Switch]display mac-address verbose MAC address table of slot 0:						
MAC Address	Port	Туре					
0050-5600-0001 0050-5600-0002	GE0/0/1 GE0/0/2	dynamic dynamic					

主机2发出的ARP Reply

源MAC: MAC 2	目的MAC: MAC 1
源IP: IP 2	目的IP: IP 1
操作类型: ARP Reply 发送端MAC: MAC 2 发送端IP: IP 2 目的端MAC: MAC 1 目的端IP: IP 1	

本章总结

- 以太网协议的基本概况
- 以太网帧格式和MAC地址
- 二层交换机的工作原理:在收到数据帧后,交换机学习帧的源MAC地址,然后在MAC地址表中查询该帧的目的MAC地址,并将帧从对应的端口转发出去。
- 同网段数据通信

