Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Отчет

по лабораторной работе №3 по дисциплине «Основы систем мобильной связи» Тема: «Корреляция дискретных сигналов»

Вариант 1

Выполнил:

студент гр. ИА-232

Артеменко Егор Константинович

GitHub: github.com/nequs17/Mobile-Network-Basics

Содержание

ЦЕЛЬ	3
` ЗАДАЧИ	
ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	
ИСХОДНЫЕ ДАННЫЕ	
ЭТАПЫ ВЫПОЛНЕНИЯ РАБОТЫ	
КОНТРОЛЬНЫЕ ВОПРОСЫ	
ВЫВОД	13

Цель работы

Получить представление о том, какие существуют псевдослучайные двоичные последовательности, какими корреляционными свойствами они обладают и как используются для синхронизации приемников и передатчиков в сетях мобильной связи.

Теоретические сведенья

Псевдослучайные двоичные последовательности (PN-sequences – Pseudo-Noise) – это частный случай псевдослучайных последовательностей, элементами которой являются только 2 возможных значения (1 и 0 или -1 и +1). Такие последовательности очень часто используются в сетях мобильной связи. Возможные области применения: - оценка вероятности битовой ошибки (BER – Bit Error Rate). В этом случае передатчик передает приемнику заранее известную Р\последовательность бит, а приемник анализируя значения бит на конкретных позициях, вычисляет количество искаженных бит и вероятность битовой ошибки в текущих радиоусловиях, что затем может быть использовано для работы алгоритмов, обеспечивающих помехозащищенность системы; - временная синхронизация между приемником и передатчиком. Включаясь абонентский терминал начинает записывать сигнал, дискретизируя его с требуемой частотой, в результате чего формируется массив временных отсчетов и требуется понять, начиная с какого элемента в этом массиве собственно содержатся какие-либо данные, как именно структурирована ось времени, где начинаются временные слоты. Используя заранее известную синхронизирующую РМпоследовательность (синхросигнал), приемник сравнивает полученный сигнал с этой последовательностью на предмет «сходства» - корреляции. И если фиксируется корреляционный пик, то на стороне приема можно корректно разметить буфер с отсчетами на символы, слоты, кадры и пр. - расширение спектра. Используется для повышения эффективности передачи информации с помощью модулированных сигналов через канал с сильными линейными искажениями (замираниями), делая систему устойчивой к узкополосным помехам (например, в 3G WCDMA). Псевдослучайная битовая последовательность должна обладать следующими свойствами, чтобы казаться почти случайной: 1) Сбалансированность (balance), то есть число единиц и число нулей на любом интервале последовательности должно отличаться не более чем на одну. 2) Цикличность. Циклом в данном случае является последовательность бит с одинаковыми значениями. В каждом фрагменте псевдослучайной 2 битовой последовательности примерно половину составляли циклы длиной 1, одну четверть – длиной 2, одну восьмую – длиной 3 и т.д. 3) Корреляция. Корреляция оригинальной битовой последовательности с ее сдвинутой копией должна быть минимальной. Автокорреляция этих последовательностей – это практически дельта-функция во временной области, как для аддитивного белого гауссовский шума AWGN (Additive white Gaussian noise), а в частотной области – это константа.

Как можно сгенерировать последовательность, обладающую вышеперечисленными свойствами? Для этого можно использовать, например, линейный четырехразрядный регистр сдвига с обратной связью, сумматора по модулю 2 и контуром обратной связи со входом регистра [3]. Работа регистра тактируется синхроимпульсами и с каждым новым тактом осуществляется сдвиг битовой последовательности вправо, а содержимое регистров 3 и 4 суммируется по модулю два, при этом результат суммирования подается на вход регистра 1, как показано на рисунке 4.1.

Четырехразрядный регистр сдвига

Рис. 4.1. Пример способа формирования псевдослучайной битовой последовательности.

Рассмотрим пример формирования псевдослучайной битовой последовательности с помощью схемы, показанной на рисунке 4.1, при условии, что регистр проинициализирован последовательностью 1 0 0 0. На каждом такте эта последовательность будет сдвигаться на одну позицию вправо, при этом на выходе будут появляться биты псевдослучайной последовательности. В таблице 4.1 показаны состояния разрядов регистра на каждом такте и выходные биты.

Табл. 4.1. Формирование псевдослучайной битовой последовательности.

1	2	3	4	Выход
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
1	0	0	1	1

На выход всегда идут биты из 4-го разряда регистра. Очевидно, что длина полученной последовательности равна 2 m -1=15 – максимальное число различных состояний нашего регистра, где m=4 – число разрядов в сдвиговом регистре, используемом для формирования последовательности, а затем, начиная с 16-го бита, значения на выходе начинают последовательности циклически повторяться. Такие еше называются последовательностями (от англ.слова maximum - последовательности максимальной длины). Важно заметить, что инициализирующая битовая последовательность (или полином) не может быть нулевой, так как из всех нулей невозможно создать последовательность, содержащую единицы, способом. Проанализируем данным последовательность, полученную в таблице 4.1 с точки зрения наличия свойств псевдослучайных битовых последовательностей: 1) Сбалансированность: 8 единиц и 7 нулей. 2) Цикличность: нет циклов длиннее 4х (1 цикл из 4-х единиц, 1 цикл из 3-х нулей, 2 цикла из нулей и единиц, и 4 цикла длиной, равной одному). 3) Корреляция: автокорреляционная функция периодического сигнала x(t) с периодом T0 в нормированной форме (4.1) - (4.2)

$$R_{x}(\tau) = \frac{1}{K} \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) x(t+\tau) dt, \tag{4.1}$$

где
$$K = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x^2(t) dt$$
 (4.2)

Для примера, определим значение автокорреляции последовательности из таблицы 4.1 со сдвигом на 1 элемент

000100110101111

100010011010111

0 C C O O C O C O O O O C C C

о – отличаются;

с – совпалают.

Число совпадений: 7; Число несовпадений: 8. Следовательно,

$$R_x(\tau=1) = \frac{1}{15}(7-8) = -\frac{1}{15}$$

Автокорреляция для любого сдвига будет равна -1/15, и лишь в момент полного совпадения всех элементов будет наблюдаться пик корреляционной функции Rx ($\tau=0$) = +1. На рисунке 4.2 показана автокорреляционная функция псевдослучайной бинарной последовательности.

Рис. 4.2. Автокорреляционная функция псевдослучайной бинарной последовательности в зависимости от величины задержки

Чем длиннее последовательность, тем выше пик ее автокорреляционной функции, и тем больше напоминает дельта-функцию. Такого типа автокорреляцией характеризуется и белый гауссовский шум, поэтому в англоязычной литературе такие последовательности называют pseudo noise sequences. Чем острее автокорреляционный пик (то есть чем длиннее последовательность), тем удобней использовать данные последовательности для решения проблем синхронизации в сетях мобильной связи. Действительно, абонентский терминал при начальном включении должен засинхронизировать начало своих временных слотов на временной оси приемника и передатчика. Поэтому обычно базовые станции периодически отправляют специальные синхронизирующие последовательности, в качестве которых часто используются именно m-последовательности, и терминал вычисляет автокорреляцию этой заранее известной последовательности с полученным записанным сигналом, и в тот момент, когда фиксируется автокорреляционный пик, абонент отмечает начало слота на своей оси времени (а точнее номер отсчета в буфере, начиная с которого идет передаваемый базовой станцией слот с данными).

Стоит отметить, что даже в случае наличия ошибок в принятой синхропоследовательности, возникших вследствие помех, присутствующих в канале связи, приемник все равно достаточно легко обнаружит явный корреляционный пик. На рисунке 4.3 представлены варианты реализации схемы синхронизации с помощью последовательного и параллельного поиска. Разновидности псевдо-шумовых битовых последовательностей М-последовательности — не единственные PN-последовательности, используемые в системах мобильной связи. Существуют также коды Баркера, коды Голда, коды Касами, коды Уолша-Адамара. Коды Голда формируются путем суммирования по модулю 2 двух Мпоследовательностей одинаковой длины. Коды Касами также формируются из М-последовательностей путем взятия периодических выборок из этих последовательностей и суммированием их по модулю два. Данные коды обладают очень хорошими взаимокорреляционными свойствами.

Процесс параллельного поиска сигнала синхронизации

Рис. 4.3. Синхронизация с помощью последовательного и параллельного поиска

Этапы выполнения работы

1) Выведите получившуюся последовательность на экран.

gold sequence: 1100011100011000001101100001000

2) Сделайте поэлементный циклический сдвиг последовательности и посчитайте автокорреляцию исходной последовательности и сдвинутой. Сформируйте таблицу с битовыми значениями последовательностей, в последнем столбце которой будет

вычисленное значение автокорреляции, как показано в примере ниже.

shift	sequence	autocorrelation
Θ	1000111000110000011011000010001	0.225806
1	0001110001100000110110000100011	-0.290323
2	0011100011000001101100001000110	-0.290323
3	0111000110000011011000010001100	-0.0322581
4	1110001100000110110000100011000	0.225806
5	1100011000001101100001000110001	0.225806
6	1000110000011011000010001100011	-0.0322581
7	0001100000110110000100011000111	-0.290323
8	0011000001101100001000110001110	-0.0322581
9	0110000011011000010001100011100	0.225806
10	1100000110110000100011000111000	0.225806
11	1000001101100001000110001110001	-0.0322581
12	0000011011000010001100011100011	-0.0322581
13	0000110110000100011000111000110	-0.0322581
14	0001101100001000110001110001100	0.225806
15	0011011000010001100011100011000	0.225806
16	0110110000100011000111000110000	-0.0322581
17	1101100001000110001110001100000	-0.0322581
18	1011000010001100011100011000001	-0.0322581
19	0110000100011000111000110000011	0.225806
20	1100001000110001110001100000110	0.225806
21	1000010001100011100011000001101 0000100011000111000110000011011	-0.0322581 -0.290323
22 23	000100011000111000110000011011	-0.296323 -0.0322581
23	001000110001110001100000110110	0.225806
25	010001100011100011000001101100	0.225806
26	1000110001110001100000110110000	-0.0322581
27	0001100011100011000001101100001	-0.290323
28	0011000111000110000011011000010	-0.290323
29	0110001110001100000110110000100	0.225806
30	1100011100011000001101100001000	1

3) Сформируйте еще одну последовательность Голда, используя свою схему (рис.4.4 или 4.5), такую что x=x+1, а y=y-5.

new gold sequence: 1100011100011000001101100001000

4) Вычислите значение взаимной корреляции исходной и новой последовательностей и выведите в терминал.

correlation between original and new sequences: -0.0322581

5) Проделайте шаги 1-5 в Matlab. Используйте функции хсогг() и autocorr() для вычисления соответствующих корреляций. Сравните результаты, полученные в Matlab и C/C++.

	utocorrelation table:				
shift	sequence	autocorrelation			
0	0110001110001100000110110000100	1.0000			
1	0011000111000110000011011000010	0.2258			
2	0001100011100011000001101100001	-0.2903			
3	1000110001110001100000110110000	-0.2903			
4	0100011000111000110000011011000	-0.0322			
5	0010001100011100011000001101100	0.2258			
6	0001000110001110001100000110110	0.2258			
7	0000100011000111000110000011011	-0.0322			
8	1000010001100011100011000001101	-0.2903			
9	1100001000110001110001100000110	-0.0322			
10	0110000100011000111000110000011	0.2258			
11	1011000010001100011100011000001	0.2258			
12	1101100001000110001110001100000	-0.0322			
13	0110110000100011000111000110000	-0.0322			
14	0011011000010001100011100011000	-0.0322			
15	0001101100001000110001110001100	0.2258			
16	0000110110000100011000111000110	0.2258			
17	0000011011000010001100011100011	-0.0322			
18	1000001101100001000110001110001	-0.0322			
19	1100000110110000100011000111000	-0.0322			
20	0110000011011000010001100011100	0.2258			
21	0011000001101100001000110001110	0.2258			
22	0001100000110110000100011000111	-0.0322			
23	1000110000011011000010001100011	-0.2903			
24	1100011000001101100001000110001	-0.0322			
25	1110001100000110110000100011000	0.2258			
26	0111000110000011011000010001100	0.2258			
27	0011100011000001101100001000110	-0.0322			
28	0001110001100000110110000100011	-0.2903			
29	1000111000110000011011000010001	-0.2903			
30	1100011100011000001101100001000	0.2258			

6) Выведите на график в Matlab функцию автокорреляции в зависимости от величины задержки (lag).

Контрольные вопросы

1) Для чего в мобильных сетях могут использоваться псевдослучайные последовательности?

Псевдослучайные последовательности (PN-последовательности) используются в мобильных сетях для разделения сигналов абонентов и базовых станций, а также для синхронизации и кодирования сигналов. В таких системах, как CDMA (Code Division Multiple Access), они помогают различать сигналы, передаваемые разными пользователями, даже если они используют один и тот же частотный диапазон.

2) Что значит положительная корреляция сигналов?

Положительная корреляция сигналов означает, что два сигнала (или функции) изменяются схожим образом – когда один сигнал увеличивается, другой также увеличивается.

3) Что такое корреляционный прием сигналов?

Корреляционный прием сигналов — это метод обработки сигнала, при котором принимаемый сигнал умножается на эталонный (опорный) сигнал, а затем происходит усреднение результатов.

4) Как вычисление корреляционных функций помогает синхронизироваться приемникам и передатчика в сетях мобильной связи?

Вычисление корреляционных функций позволяет приемникам определять момент, когда сигнал передатчика совпадает с ожидаемым образцом (опорным сигналом). Это важно для синхронизации, поскольку, если два сигнала синхронизированы, корреляционная функция будет иметь максимум, позволяя приемнику точно определить начало и конец передаваемого символа или пакета.

- 5) Какими свойствами обладают псевдослучайные битовые последовательности?
 - Длинный период: они повторяются только через достаточно большой интервал.
 - Автокорреляционные свойства: автокорреляция близка к нулю для сдвигов, отличных от нуля, что упрощает идентификацию сигнала.
 - **Кросскорреляционные свойства**: имеют низкую взаимную корреляцию, что помогает разделять сигналы разных пользователей в сетях с множественным доступом
 - Псевдослучайность: они кажутся случайными, но воспроизводимы, что важно для синхронизации.
- 6) Какие разновидности РN-последовательностей вам известны?
 - М-последовательности (максимальные последовательности): они генерируются с помощью регистров сдвига и обладают длинным периодом и хорошими корреляционными свойствами.
 - **Голд-коды**: они создаются с помощью комбинации двух Мпоследовательностей и используются в сетях CDMA.
 - Каскадные последовательности: позволяют получить еще более сложные структуры путем наложения нескольких М-последовательностей.