Transformação e Manipulação de Dados com R

Eric Scopinho

8/24/2022

Table of contents

Pr	eface		3
1	Intr	oduction	4
2	Sum	nmary	5
Re	eferer	nces	6
3	lmp	ortação de Dados com TIDYVERSE 3.0.1 Exemplos da Folha de Referência	7 8
		1	8
4	RE#	ADR	10
	4.1	Ler dados tabulados com readr	10
		4.1.1 Parâmetros Úteis	12
	4.2	Salvar dados com readr	15
	4.3	Especificação de colunas com readr	17
		4.3.1 READXL	20
	4.4	Ler arquivos do Excel	20
	4.5	Ler planilhas	20
	4.6	Especificação de colunas	22
	4.7	Outros pacotes	22
	4.8	Especificação de celulas	22
5	GO	OGLESHEETS4	24
	5.1	Ler planilhas	24
	5.2	Metadados das planilhas	25
	5.3	Gravar planilhar	26
	5.4	Especificação de colunas	27
	5.5	Especificação de celulas	28
	5.6	Operadores de arquivos	28

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1 + 1

[1] 2

2 Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2

References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111.
 https://doi.org/10.1093/comjnl/27.2.97.

3 Importação de Dados com TIDYVERSE

A seguir temos vários exemplos de importação de dados utilizando o pacote TIDYVERSE do R. O pacote tidyverse possui vários pacotes de importação de dados, aqui iremos cobrir três deles (readr, readxl e googlesheets4). Para saber mais sobre estes pacotes, acesse:

https://cran.r-project.org/package=tidyverse.

https://cran.r-project.org/package=readr.

https://cran.r-project.org/package=readxl.

https://cran.r-project.org/package=googlesheets4.

Warning

Para melhor utilizar este material, é importante que você tenha uma introdução à linguagem R e saiba carregar pacotes (packages) no R. Para mais informações acesse: https://education.rstudio.com/learn/beginner/.

Caso você precise trabalhar com outras formatos de arquivos que não sejam os vistos neste documento, pode buscar maiores informações sobre os pacotes a seguir:

Pacote	Formato
haven	Arquivos SPSS, Stata e SAS
DBI	Bancos de Dados
jsonlite	JSON
xml2	XML
httr	Web APIs
rvest	HTML (Web scraping)
${\tt readr::read_lines()}$	dados texto

Para os exemplos, iremos carregar os seguintes pacotes:

- tidyverse
- readxl
- googlesheets4

- gt
- openxlsx

```
library (tidyverse)
library (readxl)
library (googlesheets4)
library (gt)
library (openxlsx)
```

3.0.1 Exemplos da Folha de Referência

A maioria dos exemplos, visam ajudar na interpretação dos exemplos e funções encontradas na Folha de Referência de importação de dados com tidyverse disponível no site do RStudio.

Note

Em geral, ao final de cada comando, você verá a chamada à função gt(). Isto é apenas para a formatação da tabela de saída e não é necessário para que você entenda os comandos precedentes. Em alguns casos, onde o volume de dados de saída pode ser extenso, usamos também a função head() para mostrar apenas as linhas iniciais. Quando o exemplo possui muitas colunas de saída, eventualmente utilizamos a função select() para selecionar apenas algumas colunas.

3.0.2 Arquivos

Para a maioria dos exemplos utilizaremos os seguintes arquivos de dados:

Alguns desses arquivos são baseados nas tabelas **mtcars**, **storms** e **starwars** provenientes do pacote **datasets e dplyr e** também algumas tabelas (**Table1**, **2**, **3**, **4a**, **4b** e **5**) que vem com o pacote **tidyr**.

ARQUIVOS TABULADOS: (TXT, CSV, TSV e FWF):

Iremos criar os arquivos tabulados para que possamos usá-los posteriormente. Para isso, execute o código abaixo:

```
write_file("A|B|C\n1|2|3\n4|5|NA", file = "file.txt")
write_file("A,B,C\n1,2,3\n4,5,NA", file = "file.csv")
write_file("A;B;C\n1,5;2;3\n4,5;5;NA", file = "file2.csv")
write_file("A\tB\tC\n1\t2\t3\n4\t5\tNA\n", file = "file.tsv")
```

EXCEL_FILE.XLSX:

A seguir, você tem um link para o arquivo Excel utilizado nos exemplos.

É um arquivo com três planilhas (S1, S2 e S3) e em cada uma delas um pequeno conjunto de dados.

E a primeira planilha (S1) possui algo como:

GOOGLE_SHEET: TBD

4 READR

O pacote readr possui diversas funções para ler dados tabulados (ex: .csv, .tsv, .txt, etc). Estas funções começam com read *().

Os parametros acima, são comuns à estas funções. Veja a seguir algumas delas. Digite **?read_delim** para obter maiores detalhes de como utilzá-las.

4.1 Ler dados tabulados com readr

4.1.0.1 read_delim

Use para ler um arquivo tabulado com qualquer delimitador. Se nenhum delimitador é especificado, a função tentará advinhar automaticamente.

Por exemplo, para ler um arquivo .TXT tabulado com o caractere "|" como delimitador, fazemos:

A	В	\mathbf{C}
1	2	3
4	5	NA

Para armazenar a leitura do arquivo em um objeto no R, podemos usar o operador <-.

```
meu_arquivo_csv <-read_delim("file.txt", delim = "|")
gt(meu_arquivo_csv)</pre>
```

A	В	С
1	2	3
4	5	NA

4.1.0.2 read_cvs

Use para ler um arquivo tabulado **separado por vírgula**. Esta função entende que casas decimais que usam o **ponto** (ex 1.00) como separador de **casas decimais**.

```
read_csv("file.csv") |>
  gt()
```

A	В	С
1	2	3
4	5	NA

4.1.0.3 read_cvs2

Use para ler um arquivo tabulado **separado por ponto-e-vírgula**. Esta função entende que casas decimais que usam a **vírgula** (ex: 1,00) como separador de **casas decimais**.

A	В	\mathbf{C}
1.5	2	3
4.5	5	NA

4.1.0.4 read_tsv

Use para ler um arquivo tabulado separado por tab.

```
read_tsv("file.tsv") |>
  gt()
```

A	В	С
1	2	3
4	5	NA

4.1.0.5 read_fwf

Use para ler um arquivo tabulado com tamanhos fixos de colunas.

Note

Veja que a largura das colunas deve ser passada como um vetor para a parametro col_positions = usando a função fwf_width().

```
read_fwf("file.tsv", fwf_widths(c(2,2,NA))) |>
gt()
```

X1	X2	Х3
A	В	С
1	2	3
4	5	NA

4.1.1 Parâmetros Úteis

Alguns parametros das funções read_*() são muito úteis durante o processo de leitura pois permitem controlar melhor o que iremos obter como resultado da leitura.

4.1.1.1 Sem cabeçalho

Use o parâmetro COL_NAMES para não trazer a primeira linha como nome das colunas.

```
read_csv2("file2.csv", col_names = FALSE) |>
  gt()
```

X1	X2	Х3
A	В	С
1,5	2	3
4,5	5	NA

4.1.1.2 Definir cabeçalho

Use o parâmetro COL_NAMES para definir manualmente os nomes das colunas.

```
read_csv("file.csv", col_names = c("X", "Y", "Z")) |>
   gt()
```

X	Y	Z
A	В	С
1	2	3
4	5	NA

4.1.1.3 Ler vários arquivos

Use o parametro ID para ler multiplos arquivos e armazená-los em uma mesma tabela.

```
write_file("A,B,C\n1,2,3\n4,5,NA", file = "f1.csv")
write_file("A,B,C\n6,7,8\n9,10,11", file = "f2.csv")
read_csv(c("f1.csv", "f2.csv"), id = "arq_origem") |>
   gt()
```

arq_origem	A	В	С
f1.csv	1	2	3
f1.csv	4	5	NA
f2.csv	6	7	8
f2.csv	9	10	11

Important

Observe que as colunas dos diversos arquivos devem corresponder, ou seja, ter o mesmo nome de colunas.

4.1.1.4 Pular linhas

Use o prâmetro SKIP para pular as primeiras n linhas.

4.1.1.5 Ler um número máximo de linhas

Use o prâmetro **N_MAX** para ler um número máximo de linhas.

4.1.1.6 Ler valores como NA

Use o prâmetro **NA** para definir um ou mais valores como NA.

```
read_csv("file.csv", na = c("1")) |> gt()

A B C

NA 2 3
4 5 NA
```

4.1.1.7 Especificar caractere decimal

Use o prâmetro LOCALE para definir o caractere de casa decimais.

```
read_delim("file2.csv", locale = locale(decimal_mark = ",")) |>
  gt()
```

_ A	В	\mathbf{C}
1.5 4.5	2 5	3 NA
4.0	9	$\mathbf{N}\mathbf{A}$

4.2 Salvar dados com readr

Similar às funções descritas na seção "Ler dados tabulados com readr" usadas para ler os aqruivos de texto tabulados, temos o conjunto de funções **write_***() para gravar os arquivos correspondentes. Estas funções seguem o seguinte padrão:

```
write_*(x, file, na = "NA", append, col_names, quote, escape, eol, num_threads, progress) As principais funções são:
```

4.2.0.1 write_delim

Use para gravar um arquivo delimitado por algum caractere específico. O parametro delim=permite definir este caractere. O caracteres padrão é o espaço (" ").

Por exemplo, se quisermos gravar uma tabela (tibble) em um arquivo .txt delimitado por ponto-e-vírgula";", podemos usar:

4.2.0.2 write_csv

Use para gravar uma tabela em uma arquivo delimitado por "vírgula".

Podemos usar o arqumento **na** = para definirmos qual valor será usando para os valore ausentes, por padrão é utilizado "NA". No exemplo a seguir, iremos trocar por "NULL".

4.2.0.3 write_csv2

Use para gravar uma tabela em um arquivo delimitado por "ponto-e-vírgula".

Pode usar o parametro "**col_names** =" para incluir ou não os nomes das colunas no arquivo de saída. No exemplo a seguir, não iremos incluir os nomes das colunas:

4.2.0.4 write_tsv

Use para gravar uma tabela em um arquivo delimitado por "TAB":

4.3 Especificação de colunas com readr

Ao importar um arquivo com readr, podemos definir qual o tipo de coluna que determinado dado será importado. Por padrão, o readr irá gerar a especificação de cada coluna quando o arquivo form lido e gerará um resumo na saída.

Podemos usar o argumento **spec()** para extrair as especificações das colunas de um arquivo importato para um data frame.

Por exemplo:

```
arq <- read_csv2("file2.csv")
spec(arq)

cols(
   A = col_double(),
   B = col_double(),
   C = col_double()</pre>
```

Observe que as colunas "A", "B" e "C" são do formato double.

Há também uma mensagem de resumo ao importar um arquivo. Observe que ele informa o delimitador utilizado, mas também a especificação das colunas, neste caso, tipo double (**dbl**) para as colunas **A**, **B** e **C** conforme confirmamos com a função **spec()**.

Using "','" as decimal and "'.'" as grouping mark. Use read_delim() for more control. Rows: 2 Columns: 3 Column specification Delimiter: ";" dbl (3): A, B, C Use spec() to retrieve the full column specification for this data. Specify the column types or set show_col_types = FALSE to quiet this message. #READXL

Se quisermos omitir as especificações das colunas da mensagem de saída, usamos o parametro ${\bf show_col_types} = {\it FALSE}$

4.3.0.1 col_types

Se utilizarmos o parametro **col_types** = podemos definir, por exemplo, a coluna "B" como inteiro (integer). Veja:

```
arq <- read_csv2("file2.csv", col_types = "did")
spec(arq)

cols(
   A = col_double(),
   B = col_integer(),
   C = col_double()
)</pre>
```

Há uma letra definida para cada tipo de coluna que quisermos especificar, veja a lista abaixo:

```
• col_logical() - "l"
```

- col integer() "i"
- col double() "d"
- col number() "n"
- col_character() "c"
- col factor(levels, ordered = FALSE) "f"
- $col_datetime(format = "") "T"$
- col date(format = "") "D"
- col_time(format = "") -"t"
- col skip() "-", " "
- col quess() "?"

Por isso, usamos string "did" para definir um double, um inteiro e outro double para as colunas que importamos.

Podemos também passar a especificação das colunas como uma lista mesclando as funções e os caracteres correspondentes na lista acima.

Por exemplo:

```
spec(arq)
cols(
 A = col_double(),
 B = col_integer(),
 C = col_double()
)
```


Use ".default =" na lista de especificações para definir o tipo padrão para as colunas, caso as mesmas não sejam explicitamente definidas.

4.3.0.2 col_select

Para selecionarmos apenas algumas colunas para importar do arquivo, utilzamos o parametro $col_select = passanto um vetor com o nomes das colunas.$

Por exemplo, para importar apenas as colunas "A" e "C", podemos fazer:

```
read_csv("file.csv", col_select = c("A", "C"))
# A tibble: 2 x 2
      Α
  <dbl> <dbl>
1
      1
            3
2
      4
           NA
```

4.3.0.3 guess_max

Para definirmos o número máximo de linhas do arquivo para advinhar o tipo da coluna (guess), utilizamos o parametro **guess_max** =. O padrão são as primeiras 1000 linhas.

```
read_csv("file.csv",guess_max = 2)
```

```
# A tibble: 2 x 3

A B C

<dbl> <dbl> <dbl> 3

1 1 2 3

2 4 5 NA
```

4.3.1 READXL

Para lermos arquivos do Microsoft Excel, podemos usar o pacote readxl.

4.4 Ler arquivos do Excel

Apesar do pacote readxl ser instalado quando instalamos o pacote tidyverse, ele não é carregado quando carregamos o tidyverse. É por isso, que tivemos o código "library (readxl) na seção [Introdução]

4.4.0.1 read_excel

Use para ler um arquivo do Excel (.xls ou .xlsx) baseado na extensão do arquivo.

Se preferir, pode utilizar as funções read_xls() e read_xlsx() para ler um arquivo com .xls ou .xlsx independente da extensão do arquivo.

read_excel("excel_file.xlsx")

4.5 Ler planilhas

Sabemos que um arquivo Excel (workbook), pode conter uma ou mais planilhas (worksheets). Para definirmos as planilhas que precisamos importar, podemos utilizar o parametros **sheet** = da função read_excel(). Podemos passar uma string com o nome a planilha (ex: "S1") ou um índice númerico pela ordem de criação da planilha (ex: 1). Se nada for especificado, padrão é trazer a primeira planilha.

```
read_excel("excel_file.xlsx", sheet = "S1")
```

Para obter os nomes das planilhas presentes no arquivo, utilizamos a função excel_sheets()

```
excel_sheets("excel_file.xlsx")
```

[1] "S1" "S2" "S3"

Para lermos **múltiplas planilhas** podemos obter os nomes das planilhas usando a função excel_sheets(), pois definimos os nomes do vetor iguais aos nomes das planilhas e finalmente utilizamos a função purrr::map_dfr() para importar os arquivos no data frame.

```
arq <- "excel_file.xlsx"
arq |>
  excel_sheets() |>
  set_names() |>
  map_dfr(read_excel, path = arq)
```

```
# A tibble: 6 x 15
           x2 x3
                        x4
                                                                             z2 z3
                               x5 y1
                                            y2 y3
                                                         y4
                                                                y5 z1
  <chr> <dbl> <chr>
1 x
           NAz
                          8
                               NA <NA>
                                            NA <NA>
                                                         NA
                                                                NA <NA>
                                                                             NA <NA>
            7 <NA>
                          9
                               10 <NA>
                                            NA <NA>
                                                                NA <NA>
                                                                             NA <NA>
2 y
                                                         NA
3 <NA>
           NA <NA>
                        NA
                               NA x
                                            NA z
                                                          8
                                                                NA <NA>
                                                                             NA <NA>
4 <NA>
           NA <NA>
                                             7 <NA>
                                                                10 <NA>
                                                                             NA <NA>
                        NA
                               NA y
                                                          9
5 <NA>
           NA <NA>
                        NA
                               NA <NA>
                                            NA <NA>
                                                         NA
                                                                NA x
                                                                             NA z
6 <NA>
           NA <NA>
                        NA
                               NA <NA>
                                            NA <NA>
                                                         NA
                                                                NA y
                                                                              7 <NA>
# ... with 2 more variables: z4 <dbl>, z5 <dbl>
# i Use `colnames()` to see all variable names
```

4.6 Especificação de colunas

Para especificar os tipos das colunas no data frame após a importação do arquivo, usamos o parametro col_types =, similar ao que fizemos para arquivos tabulados na seção Especificação de colunas com readr.

Os tipos de colunas podemos ser:

"skip", "guess", "logical", "numeric", "date", "text" ou "list".

Tip

Use uma coluna de lista (list-column) descrita no pacote tidyr para trabalhar com colunas com vários tipos.

4.7 Outros pacotes

Além do pacote readxl, há outros pacotes muito úteis para criar arquivos do MS Excel, tais como:

- openxlsx
- writexl

Para trabalhar com dados do Excel de forma não tabular, veja o pacote:

• tidyxl

4.8 Especificação de celulas

Use os argumentos range = para a função read excel() ou googlesheets4::read sheet() no caso de planilhas do Google para ler um subconjunto de células de uma planilha.

Por exemplo, se quiser ler apenas o range de células de "A1" até "B3" da planilha "S2" do arquivo excel de exemplo, por fazer:

```
read excel("excel file.xlsx", range = "S2!A1:B3")
```

```
# A tibble: 2 x 2
  y1     y2
     <chr> <dbl>
1 x     NA
2 y     7
```

O parametro range = , possui alguns argumentos que ajudam a melhor definir o range a ser importado. Veja ?'cell-specification' para maiores detalhes de como $\mathbf{cell_cols}()$, $\mathbf{cell_rows}()$, $\mathbf{cell_limits}()$ e $\mathbf{anchored}()$. Por exemplo, usando $\mathbf{cell_cols}$, podemos definir que iremos importar apenas as celulas que das colunas "B" até "D":

5 GOOGLESHEETS4

5.1 Ler planilhas

5.1.0.1 read_sheet

Use para ler **planilhas do Google** a partir de uma **URL**, um IDde planilha ou um objeto do tipo "**dribble**" que é retornado pelo pacote googledrive. Esta função é um "apelido" para a função **range_read**() que é mais utilizada no contexto do pacote googlesheets4.

Diversos argumtos vistos para as funções read_* são aplicadas aqui também, como col_types = , sheet =, range = , guess_max = . Veja mais detalhes na seção do **readr** descrita anteriormente.

No exemplo a seguir iremos ler uma planilha do Google de exemplo. Para isso, recebemos o seguinte URL. Veja que a partes em negrito corresponde ao ID do arquivo e o ID da planilha respectivamente:

 $https://docs.google.com/spreadsheets/d/{\bf 1}_aRR_9UcMytZqjID0BkJ7PW29M1kt1_x2HxhBZOlFN8/eUsamos então a função read_sheet():$

```
googlesheets4::read_sheet("1_aRR_9UcMytZqjID0BkJ7PW29M1kt1_x2HxhBZ01FN8", sheet = "Sheet1"
```

```
# A tibble: 5 x 3
      A B
               С
  <dbl> <chr> <chr>
      1 A
1
               XX
2
      2 B
               YY
      3 C
               ZZ
      4 D
               WW
4
5
      5 E
               AA
```

Danger

A primeira vez que executar este comendo, haverá um processo de autenticação da sua conta do Google e seeão do R. Reponda "Yes" para a pergunta "Is it OK to cache OAuth access credentials in the folder ~/.cache/gargle between R sessions?"

1: Yes

2: No

Depois o navegador será aberto solicitando o acesso aos arquivo do Google. Selecoine o checkbox e click em "Continue".

5.2 Metadados das planilhas

5.2.0.1 gs4_gets

Use para obter os metadados do arquivo:

```
gs4_get("1_aRR_9UcMytZqjID0BkJ7PW29M1kt1_x2HxhBZ01FN8")
Spreadsheet name: tydiverse_sample
              ID: 1_aRR_9UcMytZqjID0BkJ7PW29M1kt1_x2HxhBZ01FN8
          Locale: en_US
      Time zone: America/Sao_Paulo
     # of sheets: 9
(Sheet name): (Nominal extent in rows x columns)
      Sheet1: 1000 x 26
          df: 4 x 2
      Sheet2: 4 x 2
      Sheet3: 4 x 2
      Sheet4: 4 x 2
      Sheet5: 4 x 2
      Sheet6: 4 x 2
      Sheet7: 4 x 2
      Sheet8: 4 x 2
```

5.2.0.2 gs4_find

Use para localizar suas planilhas do Google no drive. Ela retorna um objeto dibble, que é um "tibble" com uma linha por arquivo. E informa o ID dos arquivos.

sheet_properties("1_aRR_9UcMytZqjIDOBkJ7PW29M1kt1_x2HxhBZ01FN8")

```
# A tibble: 9 x 8
 name index
                     id type visible grid_rows grid_columns data
 <chr> <int>
                  <int> <chr> <lgl>
                                        <int>
                                                    <int> <list>
1 Sheet1 0
                     O GRID TRUE
                                         1000
                                                       26 <NULL>
2 df
           1 1125179472 GRID TRUE
                                                        2 <NULL>
                                           4
3 Sheet2
           2 1251368119 GRID TRUE
                                                        2 <NULL>
4 Sheet3 3 1983355079 GRID TRUE
                                           4
                                                       2 <NULL>
                                                       2 <NULL>
5 Sheet4
          4 801422320 GRID TRUE
                                           4
6 Sheet5 5 1405654832 GRID TRUE
                                           4
                                                       2 <NULL>
7 Sheet6
           6 772870347 GRID TRUE
                                           4
                                                       2 <NULL>
8 Sheet7
           7 1763203995 GRID TRUE
                                           4
                                                       2 <NULL>
9 Sheet8
           8 761411920 GRID TRUE
                                                        2 <NULL>
```


Você pode usar a função **sheet_names**() para obter os nomes da planilha dentro do arquivo.

5.3 Gravar planilhar

O pacote googlesheets4 tem várias maneiras de gravar dados em uma planilha.

5.3.0.1 write_sheet

Use esta função para salvar um data frame em uma planilha no arquivo do Google Sheets. Se a planilha não existir, ele cria uma planilha co mum nome aleatório através da função gs4_create().

5.3.0.2 gs4_create

Use para criar uma nova planilha do Google. Você pode fornecer o nome, mas caso não o faça o Google irá atribuir um nome aleatorio ao seu arquivo.

5.4 Especificação de colunas

Para especificar os tipos das colunas no data frame após a importação da planilha do Google, usamos o parametro **col_types** = como argumento da função **read_sheet/range_read()**, similar ao que fizemos para arquivos tabulados na seção Especificação de colunas com readr.

Os tipos de colunas aceitos são:

- skip " " ou "-"
- guess "?"
- logical "l"
- integer "i"
- double "d"
- numeric "n"
- date "D"
- datetime "T"
- character "c"
- list-column "L"
- cell "C" Retorna uma lista bruta dos dados das células.

5.5 Especificação de celulas

Ver seção Especificação de celulas

5.6 Operadores de arquivos

O pacote googlesheets4 oferece várias forma de manipular os aspectos da planilha como congelar linhas, definir largura das colunas, etc. Acesse googlesheets4.tydeverse.org para mais informações.

Para operções de arquivos (ex: renomear, compartilhar, mover para outra pasta, etc), veja o pacote googledrive no link: googledrive.tidyverse.org.