아두이노

임성국

2 1 아두이노용 C 언어

- 세미콜론;

문장...끝;

```
{ } 안에서 ; 사용
```

```
void loop()
    digitalWrite(13, HIGH);
    delay(1000);
    digitalWrite(13, LOW);
    delay(1000);
```

{ } 안에서 ; 사용

```
void loop()
{
    digitalWrite(13, HIGH);    delay(1000);
    digitalWrite(13, LOW);    delay(1000);
}
```

2 2 아두이노용 C 언어

- 주석 /* */, //

/*

*/

/*
이곳은 설명을 위한 주석입니다.
이곳에 쓰는 모든 것은 볼 수는 있지만 프로그램과는 무관합니다.

* /

{ } 안에서 ; 사용

```
void loop()
    /*
        5번 LED 를 1초 동안 켜고
       다시 5번 LED 를 1초 동안 끄는 동작을
       반복하는 프로그램
    */
   digitalWrite(5, HIGH);
   delay(1000);
   digitalWrite(5, LOW);
   delay(1000);
```


{ } 안에서 ; 사용

```
void loop()
{

    // loop 함수 시작
    digitalWrite(5, HIGH); // 5번 LED 를 켠다 delay(1000); // 1초 기다린다 digitalWrite(5, LOW); // 5 번 LED 를 끈다 delay(1000); // 1초 기다린다 }
```

2 3 아두이노용 C 언어

- 변수

int value;

int value;
value = 5;

int value = 5;

전역변수 VS 지역변수

```
전역변수
 - 외부에서 만들어진 변수
int a;
void setup(){
 a = 0;
void loop(){
 a = 1;
```

```
지역변수
- 블럭 내부에서 만들어진 변수
void setup(){
 int b;
void loop(){
```


2 4 아두이노용 C 언어

- 변수의 종류

부호	이름	크기	범위
	bool	1	falues, true
	byte	1	0 ~ 255
(signed)	char	1	-128 ~ 127
unsigned	Cilai		0 ~ 255
(signed)	int	2	-32768 ~ 32767
unsigned	1111		0 ~ 65535
(signed)	long	4	-2,147,483,648 ~ 2,147,483,647
unsigned	long		0 ~ 4,294,967,295
	float	4	-3.4028235 × 10 ³⁸ ~ -3.4028235 × 10 ³⁸

BYTE

BYTE

unsigned char 1 byte = 8 bits

이진수	십진수	계산
0000 0000	0	$= 0 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$
0000 0001	1	$= 0 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$
0000 0010	2	$= 0 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
0000 0011	3	$= 0 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$
0000 0100	4	$= 0 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$
1111 1101	253	$= 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{4} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$
1111 1110	254	$= 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{4} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$
1111 1111	255	$= 1 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{4} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$

byte sample = 125;

byte sample = 255;

sample = sample + 1;

byte sample = 255;

sample = sample + 1;

+1

CHAR

CHAR

1byte = 8bits

```
void loop(){
  char sample = 'A';
  Serial.println(sample);
```

이진수		십진수					
xxxx xxxx		-128 ~ 127					
x ×2 ⁷ + x ×2 ⁶ + x ×2 ⁵ + x ×2	2 ⁴ + x ×2 ³ + x ×2 ² + x ×2 ¹ + x ×2 ⁰						
첫번째 비트가 0		첫번째 비트가 1					
이진수	십진수	이진수	십진수				
0000 0000	0	1000 0000	-128				
0000 0001	1	1000 0001	-127				
0000 0010	2	1000 0010	-126				
0000 0011	3	1000 0011	-125				
0111 1111	127	<mark>1</mark> 111 1111	-1				

2의 보수

ASCII TABLE

INT

INT

2byte = 16bits

LONG

LONG

4byte = 32bits

FLOAT

FLOAT

4byte = 32bits

부 고 지수부 가수부(소수부) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
\$\bar{2}\$	ᆌ															
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	호)								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

가수부(소수부)

31	1 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16										16				
부															
호	지수부 호														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
가수부(소수부)															

지수부 : 8 비트 0 ... 127 ... 256 표현범위 -126 ~ 128 (Bias 127)

소수부 : **23**비트 **0** ... **8,388,608** 표현범위 소수점이하 **6**번째 자리까지

표현범위 소수점이하 6번째 자리까지

String

```
void loop() {
  String sample = "Remember 0416 ";
  Serial.println(sample);
  delay(1000);
```

2 5 아두이노용 C 언어

- 2의 보수

2의 보수

10 에 -10 을 더하면 0

10 에 X 를 더했더니 결과가 0

X 는 10을 0 으로 만드는 수

십진수 10은 이진수로 1010

십진수 10은 8비트 이진수로

0000 1010

0000 1010

0000 1010 + X 가 0 이되게 하는 X 는?

TIP: 1111 1111 + 1

TIP: 1111 1111 + 1 1 0000 0000

TIP: 1111 1111 + 1

0000 1010 + X 가 0 이되게 하는 X 는?

+ ???? ???? -----

1111 1111

0000 1010 + 1111 0101

1111 1111

1111 1111

1111 1111

+ 1

1 0000 0000

3. 결과에 1을 더함

1 0000 0000

2의 보수 만들기

- 1. 10진수를 2진수로 변환
- 2. 2진수의 1과 0을 모두 바꿈
- 3. 결과에 1을 더함

2의 보수 만들기

- 1. 10진수를 2진수로 변환
- 2. 2진수의 1과 0을 모두 바꿈
- 3. 결과에 1을 더함

10 의 2의 보수

- 2. 1111 0101
- 3. 1111 0110

2의 보수 만들기

- 1. 10진수를 2진수로 변환
- 2. 2진수의 1과 0을 모두 바꿈
- 3. 결과에 1을 더함

10 의 2의 보수

- 1. (십진수)10 = (이진수)0000 1010
- 2. 1111 0101
- 3. 1111 0110

2 6 아두이노용 C 언어

- 아스키코드 ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	п	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	I
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Decimal	Hex	Char	Decimal	Hex	Char	_[Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	у
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	Ť
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22	II	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	С
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	М	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Р	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	Т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	Χ	120	78	х
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	1	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

0x30 - '0'

0x41 - 'A'

0x61 - 'a'

```
void loop() {
0x30 - '0'
                            char a = 0x30;
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                              Serial.println(a);
                              a++;
                            delay(1000);
```

```
void loop() {
0x30 - '0'
                            char a = 0x30;
0x41 - 'A'
                             for (int i =0; i<10; i++)
0x61 - 'a'
                                                                    0
                               Serial.println(a); □
                               a++;
                                                                    6
                            delay(1000);
                                                                    9
```

```
void loop() {
0x30 - '0'
                            char a = '0';
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                              Serial.println(a);
                              a++;
                           delay(1000);
```

```
void loop() {
0x30 - '0'
                            char a = '0';
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                                                                   0
                              Serial.println(a);
                              a++;
                                                                   6
                            delay(1000);
                                                                   9
```

0x30 - '0'

0x41 - 'A'

0x61 - 'a'

```
0x30 - '0'
0x41 - 'A'
0x61 - 'a'
```

```
void loop(){
  char a = 'A'; // char a = 0x41
  for (int i =0; i<10; i++)
    Serial.println(a);
    a++;
  delay(1000);
```

```
void loop(){
0x30 - '0'
                            char a = 'A'; // char a = 0x41
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                                                                  В
                              Serial.println(a); □
                                                                  D
                              a++;
                            delay(1000);
```

```
char a = '0';
char a = 0;
```

[NIIII]

Decimal Hex Char

				0	U	[NULL]	32	20	[SPACE]	64	40	@	96	60	
				1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
				2	2	[START OF TEXT]	34	22	II .	66	42	В	98	62	b
				3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
				4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
				5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
				6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
				7	7	[BELL]	39	27	1	71	47	G	103	67	g
				8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
•			^	9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
char	a	=	0;	10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
			·	11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
				12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
- 1	_		101	13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
char	a	=	' ' ' ;	14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
				15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
				16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
				17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
				18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
				19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
				20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
				21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
				22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
				23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
				24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
				25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
				26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
				27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
				28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	T.
				29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D]	125	7D	}
				30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
				31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]
							-			-			ı		

32

20

|Decimal Hex Char |Decimal Hex Char |Decimal Hex Char

						Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
						0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
					/	1	1	[START OF HEADING]	33	21	!	65	41	Α	97	61	a
					/	2	2	[START OF TEXT]	34	22	II	66	42	В	98	62	b
					/	3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
					/	4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
				/	/	5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
				/		6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
				/		7	7	[BELL]	39	27		71	47	G	103	67	g
				/		8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
char	_	_	Λ	• /		9	9	[HORIZONTAL TAB]	41	29)	73	49		105	69	
CHar	a	_	U	, /		10	A	[LINE FEED]	42	2A	*	74	4A	J.	106	6A	j
00000						11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
						12	С	[FORM FEED]	44	2C	,	76 77	4C	L	108	6C	1
char	a	=	V	01.		13 14	D E	[CARRIAGE RETURN] [SHIFT OUT]	45 46	2D 2E	•	77	4D 4E	M N	109 110	6D 6E	m
CIIGI	u			• ,		15	<u> </u>	[SHIFT IN]	40 47	2E 2E	,	79	4E 4F	O	111	6F	n
						16	10	[DATA LINK ESCAPE]	48	30	0	80	4r 50	P	112	70	0
						17	11	[DEVICE CONTROL 1]	49	31	1	81	51	0	113	71	р
						18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	q
						19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
						20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
						21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	Ü	117	75	u
						22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
						23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
						24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
						25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	٧
						26	1A	[SUBSTITUTE]	58	3A	1	90	5A	Z	122	7A	z
						27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
						28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	1
						29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
						30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
						31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

```
void loop() {
0x30 - '0'
                            char a = 0;
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                              Serial.println(a); □
                              a++;
                            delay(1000);
```

??

```
void loop() {
0x30 - '0'
                            char a = '0';
0x41 - 'A'
                            for (int i =0; i<10; i++)
0x61 - 'a'
                                                                   0
                              Serial.println(a);
                              a++;
                                                                   6
                            delay(1000);
                                                                   9
```

2 7 아두이노용 C 언어

- 연산/비교/논리

a = b

a는 b와 같다.

a는 b와 같다.

a는 b와 같다.

$$a = b$$

a = b

a에 b를 넣어라


```
x = x + 10;

x += 10;
```

X++

$$x = x+1$$
 $x+=1$
 $x++$

기본 수학연산 (+, -, *, /, %)

result = result + a; result = result - a; result = result * a; result = result / a; result = result % a;

result += a; result -= a; result *= a; result /= a; result %= a; 변수 result 에 a 를 더해서 저장합니다 변수 result 에 a 를 빼서 저장합니다 변수 result 에 a 를 곱해서 저장합니다 변수 result 를 a 로 나누고 저장합니다 변수 result 를 a 로 나눈 나머지를 저장합니다

H I

x == y

논

```
&& : 논리곱
|| : 논리합
! 부정
```

&& 논리곱

A	В	A && B
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

|| 논리곱

A	В	A B
Т	Т	T
Т	F	Т
F	Т	T
F	F	F

! 부정

A	! A
Т	F
F	Т

&& 논리곱

A	В	A&&B
Т	Т	T
Т	F	F
F	Т	F
F	F	F

|| 논리곱

А	В	A B
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

! 부정

А	!A
Т	F
F	Т

```
( x>0 && x<5)
( x>10 | | x <5)
( !x)</pre>
```

if (x > 0) & (x < 10)

H

NOT& ANDOR

^ XOR

<< Shift Left
>> Shift Right

NOT & AND

OR

^ XOR

22.01

<< Shift Left >> Shift Right

~ NOT

~ NOT

byte A = 10;

$$//$$
 A = 0000 1010 $//$ ~A => 1111 0101

~	NOT
&	AND
	OR
^	XOR
<<	Shift Left

Shift Right

>>

NOT **AND** &

OR

 \wedge XOR

Shift Left << Shift Right >>

A & B =>

```
A = 10, B = 8 이라면
A & B => 0000 1010
& 0000 1000
===========
```

~	NOT
&	AND
	OR
^	XOR
<<	Shift Left

Shift Right

>>

NOT \sim AND & OR

 \wedge XOR

Shift Left <<

Shift Right >>

A | B =>

$$A = 10$$
, $B = 7$ 이라면

```
A = 10, B = 7 이라면
A \mid B = > 0000 1010
        & 0000 0111
          0000 1111
```

| OR

```
A = 10, B = 1 이라면
A \mid B = > 0000 1010
        | 0000 0001
          0000 1011
```

```
A = 10, B = 1 이라면
A \mid B = > 0000 1010
       0000 0001
         0000 1011
```

~	NOT	
&	AND	
	OR	
^	XOR	
<<	Shift	Left
>>	Shift	Right

```
~ NOT & AND OR
```

^ XOR

<<

>>

Shift Left

Shift Right

```
A = 10, B = 3 이라면
A ^B = > 0000 1010
       ^ 0000 0011
         0000 1001
```

~	NOT	
&	AND	
	OR	
^	XOR	
<<	Shift	Left
>>	Shift	Right

- ~ NOT & AND
- | OR
- ^ XOR
- << Shift Left
- >> Shift Right

- << Shift Left
- >> Shift Right

```
<< Shift Left
```

>> Shift Right

A = 10, A<<2 라면?

A : 0000 1010

```
<< Shift Left
```

>> Shift Right

```
A = 10, A<<2 라면?
```

A : 0000 1010 (왼쪽 2칸 이동)

A<<2: 0010 1000

```
<< Shift Left
```

>> Shift Right

```
A = 10, A<<2 라면?
```

A : 0000 1010 (왼쪽 2칸 이동)

A<<2: 0010 1000

2 8 아두이노용 C 언어

- 상수

#define

#define SIZE 1024

const int SIZE 1024;

상수 VS 변수

<pre>int LED = 13; digitalWrite(LED, HIGH);</pre>	<pre>#define LED 13 digitalWrite(LED, HIGH);</pre>	<pre>const int LED = 13; digitalWrite(LED, HIGH);</pre>
변수	상수 - 추천	
	변수 메모리할당 없음	

т

т

<pre>int LED = 13; digitalWrite(LED, HIGH);</pre>	<pre>#define LED 13 digitalWrite(LED, HIGH);</pre>	<pre>const int LED = 13; digitalWrite(LED, HIGH);</pre>
변수 - 비추천	상	수
변수 메모리할당		

<pre>int LED = 13; digitalWrite(LED, HIGH);</pre>	<pre>#define LED 13 digitalWrite(LED, HIGH);</pre>	<pre>const int LED = 13; digitalWrite(LED, HIGH);</pre>	
변수 - 비추천	상수		
변수 메모리할당			

nt LED = 13;	#define LED 13	const int LED = 13;	
<pre>igitalWrite(LED, HIGH);</pre>	<pre>digitalWrite(LED, HIGH);</pre>	<pre>digitalWrite(LED, HIGH);</pre>	
변수 - 비추천	상수 - 추천		
변수 메모리할당	변수 메모리할당 없음		

2 9 아두이노용 C 언어

- 조건문

참과거짓

1은 참 0은 거짓

```
if (a == 12)
{
할일;
```



```
if (a == 12)
{
할일;
}
```



```
if ( 0 )
{
할일;
}
```

HIGH 는 1 LOW 는 0

digitalWrite(13, 0);

digitalWrite(13, 1);

```
digitalWrite(13, HIGH);
digitalWrite(13, LOW);
```

if

```
if ( 조건 ) // 조건부분
{
    // 조건이 참이면(1이면) 이 부분을 실행합니다.
    // 조건이 거짓이면 이 부분을 건너뜁니다.
}
```

```
int condition =0; // 전역변수를 만들고 값을 0으로 만든다.
void setup() {
   Serial.begin(9600);
void loop() {
 condition ++; // 전역변수의 값을 1 증가
 if ((condition % 5)==0) {
   Serial.print("condition = ");
   Serial.println(condition); // 값을 화면에 프린트
```

if, else

```
if ( 조건 )
 // 조건이 참이면 이 부분을 실행합니다.
else
 // 조건이 거짓이면 이 부분을 실행합니다.
```

```
int condition =0; // 전역변수를 만들고 값을 0으로 만든다.
void setup() {
   pinMode (13, OUTPUT);
void loop() {
 condition ++; // 전역변수의 값을 1 증가
 if ((condition % 5)==0) {
   digitalWrite(13, HIGH); delay(100);
 else {
```

digitalWrite(13,LOW); delay(100);

3 이 아두이노용 C 언어

- for 반복문

for

```
for ( 초기화 ; 조건 ; 증감표현)
{
  반복할 일들 ;
}
```

```
for ( int i = 0 ; i<20 ; i++ )
{
    digitalWrite(13, HIGH);
    delay(500);
    digitalWrite(13, LOW);</pre>
```

delay(500);

```
for ( int i = 0 ; i<20 ; i++ )
{
    digitalWrite(13, HIGH);
    delay(500);
```

digitalWrite(13, LOW);

delay(500);

```
void setup(){
     pinMode(13, OUTPUT);
     for (int i =0; i<20; i++)
         digitalWrite(13, HIGH);
         delay(500);
         digitalWrite(13, LOW);
         delay(500);
 void loop() {
```

3 1 아두이노용 C 언어

- while 반복문

while

```
while (조건)
{
 반복할일들;
```

```
while (i<20) {
    digitalWrite(13, HIGH); delay(500);
    digitalWrite(13, LOW); delay(500);
    i++;
}</pre>
```

```
int i = 0;
void setup(){
    pinMode (13, OUTPUT);
    while (i<20) {
        digitalWrite(13, HIGH); delay(500);
        digitalWrite(13, LOW); delay(500);
        i++;
void loop() {
```

3 2 아두이노용 C 언어

- 아두이노 함수

pinMode()

```
pinMode(13, OUTPUT);
pinMode(12, INPUT);.
pinMode(11, INPUT PULLUP);
```


LED전류

LED1 **I = ?** $V_{LED} = 2V$ VCC = 5V R = 200

$$V = I - R$$
 $I = V / R$
 $= (5-2)/200$
 $= 0.015 A$
 $= 15 mA$

LED1 I = 5mA $V_{LED} = 2V$ VCC = 5V R = ?

$$V = I - R$$
 $R = V / I$
 $= (5-2)/0.005$
 $= 600 \text{ ohm}$

digitalRead()

pinMode(13, INPUT);

digitalRead(13);

```
pinMode(13, INPUT);
digitalRead(13);
                           0 또는 1 을 반환
```

```
pinMode(13, INPUT);
value = digitalRead(13);
                           0 또는 1 을 반환
```

```
pinMode(13, INPUT);
if (digitalRead(13))
                                        0 또는 1 을 반환
```

digitalWrite()

```
pinMode(13, OUTPUT);
digitalWrite(13, HIGH);
digitalWrite(13, LOW);
```

analogRead()

value = analogRead(A0);

샘플링 & 양자화

analogWrite()

analogWrite(3,127);

PWM 출력 가능한 핀 UNO (3,5,6,9,10)

analogWrite(3,127);

delay()

```
시간 (mili-second)
delay(1000);
```

milis()

unsigned long value; value = milis();

```
unsigned long previousMillis = 0;
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= 1000) {
    previousMillis = currentMillis;
    if (ledState == LOW) { ledState = HIGH; }
    else { ledState = LOW; }
```

3 아두이노용 C 언어

- Sampling, Quantization

analogRead()

value = analogRead(A0);

샘플링 & 양자화

샘플링 간격: 시간(T) or 주파수(f = 1/T) 양자화(Quantization) 정도: 비트

Question:

온도에 민감한 고감도 필름을 보관하고 있으며 이 장소에 대한 온도를 측정하려고 한다. 사용하는 센서는 -20 도에서 +130 도까지 측정가능하고, 이때 0V 에서 5V 사이의 아날로그 전압을 출력한다. 아두이노 우노를 사용할 때 0.1 도의 온도차이를 측정할 수 있을까? 측정가능한 온도차이가 얼마인지를 계산하시오.

Solution:

- 1. 양자화 온도 범위 : -20 ~ 130, 130-(-20) = 150
- 2. 아두이노 ADC 10Bits , 1024 단계
- 3. 범위: 0.146 도 = 150/1024

** 측정가능한 최소차이는 0.146도로 0.1 도의 온도차이는 측정할 수 없다.

*** -20 도에서 130도 까지 0.146 도의 차이로 판별할 수 있다.

3 4 아두이노용 C 언어

- 수학함수


```
min(a,b);
max(a,b);
randomSeed(value);
random(max);
```

random (min, max);

```
int number;
randomSeed(analogRead(A0));
number = random(1000);
number = random(50,200);
```

```
#undef max
#define max(a,b) ((a)>(b)?(a):(b))
```

```
#undef min
#define min(a,b) ((a)>(b)?(b):(a))
```

```
#undef min
#define min(a,b) ((a)>(b)?(b):(a))
#undef max
#define max(a,b) ((a)>(b)?(a):(b))
```

기타 수학함수들

```
abs(x)
             sin(x)
                          asin()
ceil(x)
             \cos(x)
                          acos()
floor(x)
             tan(x)
                          atan()
                          atan2(x,y)
exp(x)
log(x)
sqrt(x)
pow(x)
```

3 5 아두이노용 C 언어

- 디버깅

DEBUG

```
void setup()
{
    Serial.begin(9600);
}
```

Serial.print(data);
Serial.println(data);

```
loop(){
...

// 의심되는 부분
Serial.println(의심되는 데이터);
...
```

```
int pushButton =2;
void setup() {
    Serial.begin(9600);
    pinMode(pushButton, INPUT PULLUP);
    pinMode(13, OUTPUT);
void loop() {
    int buttonState = digitalRead(pushButton);
    Serial.print("buttonState = ");
    Serial.println(buttonState);
    if (buttonState) {
    digitalWrite(13, HIGH);
    Serial.println("Push SW ON");
    else {
    digitalWrite(13, LOW);
    Serial.println("Push SW OFF");
    delay(1);
```

3 7 아두이노용 C 언어

- millis() 함수

millis()

```
01: unsigned long previousMillis = 0;
02: unsigned long currentMillis = millis();
03:
04: if (currentMillis - previousMillis >= 1000) {
```

previousMillis = currentMillis;

else { ledState = LOW; }

if (ledState == LOW) { ledState = HIGH; }

05:

06:

07:

08:

1초 기다린다.

LED1을 끈다

1초 기다린다.

버튼을 누르는 동안

LED2 를 켜고 싶다.

LED1을 켠다

걸리는 시간 아주 짧음

1초 기다린다.

LED1을 끈다

1초 기다린다.

1초 기다린다.

delay(1000); 걸리는 시간 1초 - 아주 길다.

LED1을 끈다

1초 기다린다.

버튼 입력

LED1을 켠다

1초 기다린다.

LED1을 끈다

1초 기다린다.

버튼이 눌려졌으면

YES NO

LED2 ON

LED2 OFF

1 초 간격으로 LED 1 을 끄고 켠다

2 단계

버튼이 눌려졌을때만 LED2 를 켠다


```
const int LED1 = 6;
void setup() {
 pinMode(LED1, OUTPUT);
void loop() {
  digitalWrite(LED1, HIGH);
  delay(1000);
  digitalWrite(LED1, LOW);
  delay(1000);
```

```
LED1을 켠다
      1초 기다린다.
       LED1을 끈다
      1초 기다린다.
        버튼 입력
     버튼이 눌려졌으면
 YES
                 NO
LED2 ON
               LED2 OFF
```

```
const int LED2 = 7;
const int SW = 10;
void setup() {
 pinMode(LED2, OUTPUT);
 pinMode(SW, INPUT);
void loop() {
if(digitalRead(SW)) digitalWrite(LED2, HIGH);
 else digitalWrite(LED2, LOW);
```

```
LED1을 켠다
      1초 기다린다.
       LED1을 끈다
      1초 기다린다.
        버튼 입력
     버튼이 눌려졌으면
 YES
                  NO
LED2 ON
                LED2 OFF
```

```
const int LED1 = 6;
const int LED2 = 7;
const int SW = 10;
void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(SW, INPUT);
void loop() {
 digitalWrite(LED1, HIGH);
 delay(1000);
 digitalWrite(LED1, LOW);
 delay(1000);
 if(digitalRead(SW)) digitalWrite(LED2, HIGH);
 else digitalWrite(LED2, LOW);
```


1 초 간격으로 LED 1 을 끄고 켠다

2 단계

버튼이 눌려졌을때만 LED2 를 켠다

1 초 간격으로 LED 1 을 끄고 켠다

1 초 간격으로 LED 1 을 끄고 켠다


```
01: unsigned long previousMillis = 0;
02: unsigned long currentMillis = millis();
03:
04: if (currentMillis - previousMillis >= 1000) {
```

else { ledState = LOW; }

previousMillis = currentMillis;

if (ledState == LOW) { ledState = HIGH; }

05:

06:

07:

08:

```
unsigned long previousMillis = 0;
```

```
1초가 지났는지 검사한다
        1초가 지났으면
           YES
     LED1이 OFF면
                   NO
    YES
LED1 - ON
            LED1 - OFF
          다음으로
```

```
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= 1000)
   previousMillis = currentMillis;
   if (ledState == LOW) {
       ledState = HIGH;
   else {
         ledState = LOW;
```


1초가 지났는지 검사한다

```
1초가 지났으면
    YES
                          NO
     LED1이 OFF면
  YES
                 NO
             LED1 - OFF
LED1 - ON
           다음으로
           버튼 입력
       버튼이 눌려졌으면
   YES
                     NO
                   LED2 OFF
  LED2 ON
```

```
const int LED1 = 6;
const int LED2 = 7;
const int SW = 10;
int ledState = LOW;
unsigned long previousMillis = 0;
void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(SW, INPUT);
void loop() {
 unsigned long currentMillis = millis();
 if (currentMillis - previousMillis >= 1000) {
  previousMillis = currentMillis;
  if (ledState == LOW) ledState = HIGH;
  else ledState = LOW;
  digitalWrite(LED1, ledState);
 if(digitalRead(SW)) digitalWrite(LED2, HIGH);
 else digitalWrite(LED2, LOW);
```

END