EXPERIMENT 8

AIM: Execute any two ML Algorithms using Apache Spark MLlib and compare the results.

THEORY:

Spark MLlib:

Spark MLlib is Apache Spark's Machine Learning component. MLlib consists of popular algorithms and utilities. MLlib in Spark is a scalable Machine learning library that discusses both high-quality algorithm and high speed. The machine learning algorithms like regression, classification, clustering, pattern mining, and collaborative filtering. Lower level machine learning primitives like generic gradient descent optimization algorithm are also present in MLlib.

spark.mllib contains the original API built on top of RDDs. It is currently in maintenance mode.

spark.ml provides higher level API built on top of DataFrames for constructing ML pipelines. spark.ml is the primary Machine Learning API for Spark at the moment.

Spark MLlib Tools:

- ML Algorithms: ML Algorithms form the core of MLlib. These include common learning algorithms such as classification, regression, clustering and collaborative filtering.
- **Featurization:** Featurization includes feature extraction, transformation, dimensionality reduction and selection.
- **Pipelines:** Pipelines provide tools for constructing, evaluating and tuning ML Pipelines.
- **Persistence:** Persistence helps in saving and loading algorithms, models and Pipelines.
- **Utilities:** Utilities for linear algebra, statistics and data handling.

MLlib Algorithms:

The popular algorithms and utilities in Spark MLlib are:

- Basic Statistics
- Regression
- Classification
- Recommendation System
- Clustering
- Dimensionality Reduction
- Feature Extraction
- Optimization

CODE:

```
# install pyspark
!pip install pyspark

# initialise session
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from pyspark.sql import SQLContext
sc = SparkContext('local')
spark = SparkSession(sc)
sqlContext = SQLContext(sc)
```

1) Regeression

```
df = sqlContext.read.format('com.databricks.spark.csv').options(header = 'true', inferschema= 'true').load('healthcare-dataset-stroke-data.csv')
df.take(1)

pd_df = df.toPandas()
print(pd_df)

pd_df.dtypes

df.cache()
df.printSchema()
df.cache()
df.printSchema()
df.head()

from pyspark.ml.feature import VectorAssembler
vectorAssembler = VectorAssembler(inputCols = ['age', 'avg_glucose_level', 'hypertension', 'heart_disease', 'stroke'], outputCol = 'features')
tdf = vectorAssembler.transform(df)
```

```
print(tdf)
tdf = tdf.select(['features', 'stroke'])
tdf.show(3)
splits = tdf.randomSplit([0.7, 0.3])
train df = splits[0]
test df = splits[1]
from pyspark.ml.regression import LinearRegression
lr = LinearRegression(featuresCol = 'features', labelCol='stroke', maxIter=10, regParam=0.3,
elasticNetParam=0.8)
lr model = lr.fit(train df)
print("Coefficients: " + str(lr_model.coefficients))
print("Intercept: " + str(lr_model.intercept))
trainingSummary = lr_model.summary
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
2) Classification
df = sqlContext.read.format('com.databricks.spark.csv').options(header = 'true', inferschema =
'true' ).load( 'salary.csv' )
df.take(1)
df.cache()
df.printSchema()
df.dtypes
from pyspark.ml.feature import StringIndexer
indexer0 = StringIndexer(inputCol="workclass", outputCol="workclassEncoded")
indexed0 = indexer0.fit(df).transform(df)
indexer1 = StringIndexer(inputCol="education", outputCol="educationEncoded")
indexed1 = indexer1.fit(indexed0).transform(indexed0)
indexer2 = StringIndexer(inputCol="occupation", outputCol="occupationEncoded")
indexed2 = indexer2.fit(indexed1).transform(indexed1)
indexer3 = StringIndexer(inputCol="sex", outputCol="sexEncoded")
indexed3 = indexer3.fit(indexed2).transform(indexed2)
indexer4 = StringIndexer(inputCol="native-country", outputCol="countryEncoded")
indexed4 = indexer4.fit(indexed3).transform(indexed3)
indexer5 = StringIndexer(inputCol="salary", outputCol="salaryEncoded")
indexed5 = indexer5.fit(indexed4).transform(indexed4)
indexed5.show()
```

```
from pyspark.ml.feature import VectorAssembler
vectorAssembler
                          VectorAssembler(inputCols
                                                                        'workclassEncoded',
                    =
                                                         =
                                                              ['age',
'educationEncoded', 'occupationEncoded', 'sexEncoded', 'countryEncoded', 'education-num',
'capital-gain', 'hours-per-week', 'capital-loss'], outputCol = 'features')
tdf = vectorAssembler.transform(indexed5)
print(tdf)
tdf = tdf.select(['features', 'salaryEncoded'])
tdf.show(3)
train, test = tdf.randomSplit([0.7, 0.3], seed = 2018)
print("Training Dataset Count: " + str(train.count()))
print("Test Dataset Count: " + str(test.count()))
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.classification import LinearSVC
lsvc = LinearSVC(featuresCol = 'features', labelCol = 'salaryEncoded', maxIter=10,
regParam=0.1)
lr = LogisticRegression(featuresCol = 'features', labelCol = 'salaryEncoded', maxIter=10)
lsvcModel = lsvc.fit(train)
lrModel = lr.fit(train)
print("Coefficients: " + str(lsvcModel.coefficients))
print("Intercept: " + str(lsvcModel.intercept))
import matplotlib.pyplot as plt
trainingSummary = lrModel.summary
roc = trainingSummary.roc.toPandas()
plt.plot(roc['FPR'],roc['TPR'])
plt.ylabel('False Positive Rate')
plt.xlabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
print('Training set areaUnderROC: ' + str(trainingSummary.areaUnderROC))
```

OUTPUT:

1) Regression

•	id	gender	age	hypertensi	ion	heart_disease	ever_	married	\	
0	9046	Male	67.0		0	1		Yes		
1	51676	Female	61.0		0	0		Yes		
2	31112	Male	80.0		0	1		Yes		
3	60182	Female	49.0		0	0		Yes		
4	1665	Female	79.0		1	0		Yes		
5105	18234	Female	80.0		1	0		Yes		
5106	44873	Female	81.0		0	0		Yes		
5107	19723	Female	35.0		0	0		Yes		
5108	37544	Male	51.0		0	0		Yes		
5109	44679	Female	44.0		0	0		Yes		
	wo	rk_type	Reside	nce_type a	avg_	glucose_level	bmi	smokin	g_status	\
0		Private		Urban		228.69	36.6	formerl	y smoked	
1	Self-e	mployed		Rural		202.21	N/A	neve	r smoked	
2		Private		Rural		105.92	32.5	neve	r smoked	
3		Private		Urban		171.23	34.4		smokes	
4	Self-e	mployed		Rural		174.12	24	neve	r smoked	
5105		Private		Urban		83.75	N/A	neve	r smoked	
5106	Self-e	mployed		Urban		125.20	40	neve	r smoked	
5107	Self-e	mployed		Rural		82.99	30.6	neve	r smoked	
5108		Private		Rural		166.29	25.6	formerl	y smoked	
5109	G	ovt_job		Urban		85.28	26.2		Unknown	

id	int32	
gender	object	
age	float64	
hypertension	int32	
heart_disease	int32	
ever_married	object	
work_type	object	
Residence_type	object	
avg_glucose_level	float64	
bmi	object	
smoking_status	object	
stroke	int32	
dtype: object		

```
root
|-- id: integer (nullable = true)
|-- gender: string (nullable = true)
|-- age: double (nullable = true)
|-- hypertension: integer (nullable = true)
|-- heart_disease: integer (nullable = true)
|-- ever_married: string (nullable = true)
|-- work_type: string (nullable = true)
|-- Residence_type: string (nullable = true)
|-- avg_glucose_level: double (nullable = true)
|-- bmi: string (nullable = true)
|-- smoking_status: string (nullable = true)
|-- stroke: integer (nullable = true)
```

4	3	2	1	0	
max	min	stddev	mean	count	summary
72940	67	21161.72162482715	36517.82935420744	5110	id
Other	Female	None	None	5110	gender
82.0	0.08	22.61264672311348	43.226614481409015	5110	age
1	0	0.296606674233791	0.0974559686888454	5110	hypertension
1	0	0.22606298750336554	0.05401174168297456	5110	heart_disease
Yes	No	None	None	5110	ever_married
children	Govt_job	None	None	5110	work_type
Urban	Rural	None	None	5110	Residence_type
271.74	55.12	45.28356015058193	106.14767710371804	5110	avg_glucose_level
N/A	10.3	7.85406672968016	28.893236911794673	5110	bmi
smokes	Unknown	None	None	5110	smoking_status
1	0	0.21531985698023753	0.0487279843444227	5110	stroke

Row(id=9046, gender='Male', age=67.0, hypertension=0, heart_disease=1, ever_married='Yes', work_type='Private', Residence_type='Urban', avg_glucose_level=228.69, bmi='36.6', smoking_status='formerly smoked', stroke=1)

```
[('id', 'int'),
  ('gender', 'string'),
  ('age', 'double'),
  ('hypertension', 'int'),
  ('heart_disease', 'int'),
  ('ever_married', 'string'),
  ('work_type', 'string'),
  ('Residence_type', 'string'),
  ('avg_glucose_level', 'double'),
  ('bmi', 'string'),
  ('smoking_status', 'string'),
  ('stroke', 'int')]
```

Final Predictions

Coefficients: [0.0,0.0,0.0,0.0,0.0]

Intercept: 0.04802021903959562

RMSE: 0.213809

r2: -0.000000

2) Classification

```
[Row(age=39, workclass=' State-gov', fnlwgt=77516, education=' Bachelors', education-num=13, marital-status=' Never-married', occupation=' Adm-clerical', relationship=' Not-in-family', race=' White', sex=' Male', capital-gain=2174, capital-loss=0, hours-per-week=40, native-country=' United-States', salary=' <=50K')]
```

```
root
|-- age: integer (nullable = true)
|-- workclass: string (nullable = true)
|-- fnlwgt: integer (nullable = true)
|-- education: string (nullable = true)
|-- education-num: integer (nullable = true)
|-- marital-status: string (nullable = true)
|-- occupation: string (nullable = true)
|-- relationship: string (nullable = true)
|-- race: string (nullable = true)
|-- sex: string (nullable = true)
|-- capital-gain: integer (nullable = true)
|-- capital-loss: integer (nullable = true)
|-- hours-per-week: integer (nullable = true)
|-- native-country: string (nullable = true)
|-- salary: string (nullable = true)
```

age	workclass fnlwgt	education educa	tion-num	marital-status	occupation	relationship	race	sex ca	apital-gain cap	ital-loss hours-	-per-
week nati	ve-country salary worko			ed occupationEncoded							
, ,							+				
39	State-gov 77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	2174	0	40
Jnited-St	ates <=50K	4.0	2.0	3.0	0.0 0.0	0.0					
50 Sel [.]	f-emp-not-inc 83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	0	0	13
Jnited-St	ates <=50K	1.0	2.0	2.0	0.0 0.0	0.0					
38	Private 215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	0	0	40
Jnited-St	ates <=50K	0.0	0.0	9.0	0.0 0.0	0.0					
53	Private 234721	11th		Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	0	0	40
Jnited-St	ates <=50K	0.0	5.0	9.0	0.0 0.0	0.0					
28	Private 338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	0	0	40
Cuba <=50	0K 0.0	2.0		0.0 1.0	9.0	0.0					
37	Private 284582	Masters	14	Married-civ-spouse	Exec-managerial	Wife	White	Female	0	0	40
nited-St	ates <=50K	0.0	3.0	2.0	1.0 0.0	0.0					
49	Private 160187	9th	5	Married-spouse-a	Other-service	Not-in-family	Black	Female	0	0	16
Jamaica •	<=50K 0.0	10.0		5.0 1.0	11.0	0.0					

Training Dataset Count: 22828

Test Dataset Count: 9733

Final Predictions

Coefficients:

[0.009679140612290072,0.01342892012614891,0.02288921743340083,-0.02078106627747353,-0.2950315 05,0.008667393334614108,0.0003678549301454241]

Intercept: -2.5735276509983613

Training set areaUnderROC: 0.8475822185984571

CONCLUSION:

Thus in the experiment, we explored and learnt about pySpark's machine learning library – MLlib which supports Basic Statistics, Regression, Classification, Recommendation System, Clustering and many more. We implemented Linear Regression algorithm on stroke healthcare dataset having an RSME of 0.213 and an R² of 0.0 suggesting overfitting. We also implemented Classification on salary dataset giving us an AUC score of 0.847 suggesting a good fit. Thus, in this experimented we have implemented 2 ML algorithms supported by MLlib. The outputs were observed and attached above.