Assignment:- 2

AI1110: Probability and Random Variables Indian Institute of Technology, Hyderabad

Dudekula Dheeraj CS22BTECH11019

NCERT(12.13.1.12)

Question: Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that

- (1) at least one is a girl
- (2) the youngest is a girl

Solution: Lets assume two independent random variables, X_1 and X_2 , which represent the gender of the first and second child in a family. We define the variables as follows:

X_i	Gender of <i>i</i> -th child
1	Girl
0	Boy

Both X_1 and X_2 have an equal probability of $\frac{1}{2}$ of being a boy or a girl.

Now, let's address the two parts separately:

(1) We want to find the probability that both children are girls, given that at least one of them is a girl ($X_1 = 1$ or $X_2 = 1$). We can use the law of total probability to calculate this. The probability can be expressed as:

$$\Pr(X_1 = 1 \land X_2 = 1 | X_1 = 1 \lor X_2 = 1) = \frac{\Pr(X_1 = 1 \land X_2 = 1)}{\Pr(X_1 = 1 \lor X_2 = 1)} = \frac{\frac{1}{4}}{\frac{1}{2} + \frac{1}{2} - \frac{1}{4}} = \frac{1}{3}.$$
(1)

Therefore, the conditional probability that both children are girls, given that at least one of them is a girl, is $\frac{1}{3}$.

(2) We want to find the probability that both children are girls, given that the older child is a girl ($X_1 = 1$). Using the definition of conditional probability, we have:

$$\Pr(X_1 = 1 \land X_2 = 1 | X_1 = 1) = \frac{\Pr(X_1 = 1 \land X_2 = 1)}{\Pr(X_1 = 1)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}.$$

Therefore, the conditional probability that both children are girls, given that the older child is a girl, is $\frac{1}{2}$.