

C2.2 - Stochastik

1.1

	Н	\overline{H}	Σ
W	67 972	126 233	194 205
\overline{W}	80 047	241 427	321 474
Σ	148 019	367 660	515 679

$$^{1.2}$$
 $P_H(\overline{W}) = rac{80\,047}{148\,019} pprox 0,5408$

Die Wahrscheinlichkeit, dass die Person nicht weiblich ist, beträgt etwa 54,08%.

$$^{1.3} \quad P(W) + P(H) - P(W \cap H) = \frac{194\,205 + 148\,019 - 67\,972}{515\,679} \approx 0,532$$

Die Wahrscheinlichkeit , dass die Person weiblich ist oder eine Hochschul-/Fachhochschulreife besitzt, beträgt etwa $53,2\,\%$.

$$^{1.4}$$
 $P(W) = rac{194\,205}{515\,679} pprox 0,3766$

$$P_{\overline{H}}(W) = rac{rac{126\ 233}{515\ 679}}{rac{367\ 660}{515\ 679}}pprox 0,3433$$

Die Wahrscheinlichkeiten stimmen nicht überein.

Im Sachzusammenhang: Die Merkmale "hat keine Hochschul-/Fachhochschulreife" und "ist weiblich" sind stochastisch abhängig voneinander.

1.5 Es gibt fünf Möglichkeiten, wie die weiblichen Personen ausgewählt werden. Damit folgt:

$$5 \cdot \frac{30}{50} \cdot \frac{29}{49} \cdot \frac{28}{48} \cdot \frac{27}{47} \cdot \frac{20}{46} \approx 0,2587$$

Die Wahrscheinlichkeit, dass sich unter 5 zufällig ausgewählten Personen 4 weibliche Personen befinden, beträgt etwa 25,87%.

1.6 Die Zufallsvariable X beschreibt die Anzahl richtig geratener Fragen. X ist $B_{8;\;0,25}$ -verteilt. Dann folgt mit dem Taschenrechner:

$$P(X = 7) \approx 0,0004$$

Die Wahrscheinlichkeit, durch Raten 7 der 8 Fragen richtig zu beantworten, liegt bei etwa 0,04%.

Sein n die Menge verfügbarer Aufgaben und k=2 die Anzahl der gezogenen Aufgaben. 1.7

Es handelt sich um Ziehen ohne Zurücklegen und ohne Reihenfolge. Mit der entsprechenden Kombinationsformel folgt:

$$435 = \frac{n!}{k! \cdot (n-k)!}$$
 | k Einsetzen

$$435 = \frac{n!}{2 \cdot (n-2)!}$$

$$870 = \frac{1 \cdot \ldots \cdot (n-2) \cdot (n-1) \cdot n}{1 \cdot \ldots \cdot (n-2)} \quad | \text{ K\"{u}rzen}$$

$$870 = n^2 - n$$

$$0 = n^2 - n - 870$$
 | pq-Formel

$$n_{1,2} = rac{1}{2} \pm \sqrt{\left(rac{1}{2}
ight)^2 - (-870)}$$

$$n_1 = 30$$
 $n_2 = -29$

Im Sachzusammenhang ergibt $n_2=-29$ keinen Sinn. Daher befinden sich 30 verschiedene Aufgaben im Pool.

2

Die Zufallsvariable X beschreibt die Anzahl von Männern mit Hauptschulabschluss. X ist $B_{15:\;0.274}$ -2.1

$$P(A) = P(X = 4) \approx 0,2272$$

Die Zufallsvariable Y beschreibt die Anzahl von Männern mit Realschul- oder vergleichbaren Abschluss. Y ist $B_{100;\ 0.411}$ -verteilt.

$$P(B) = P(X \le 49) \approx 0,9553$$

Zufallsvariable Z beschreibt die Anzahl von Männern, die weder eine Hochschul-/ Fachhochschulreife besitzen, noch einen Abschluss im Ausland erworben haben. $oldsymbol{Z}$ $B_{200;\ 1-(0,249+0,022)}=B_{200;\ 0,729}$ -verteilt.

$$P(C) = P(142 \le Z \le 153) = P(Z \le 153) - P(Z \le 141) \approx 0,646$$

Das Ereignis lautet: Von 10 zufällig ausgewählten Personen hat mindestens eine Person Hochschul-/Fachhochschulreife, aber nicht alle Personen Hochschul-/Fachhochschulreife.

$$1 - (0, 249^{10} + 0, 751^{10}) \approx 0,9429$$

Die Wahrscheinlichkeit für das Ereignis beträgt etwa 94, 29%.

2.3 Sei X die Anzahl von Männern mit Hauptschulabschluss. X ist $B_{n;\;0,274}$ verteilt.

Gesucht ist die kleinste natürliche Zahl n, sodass Folgendes gilt:

$$P(X \ge 1) \ge 0.8$$

$$P(X=0) \leq 0,2$$

Durch systematisches Ausprobieren mit dem Taschenrechner folgt:

$$n = 5$$
: $P(X = 0) \approx 0,2017$
 $n = 6$: $P(X = 0) \approx 0,1464$

Es müssen mindestens 6 Männer befragt werden, um mit einer Wahrscheinlichkeit von mindestens 80% auf mindestens einen Mann mit Hauptschulabschluss zu treffen.

3

3.1 Es wird ein rechtsseitiger Hypothesentest durchgeführt:

$$H_0: p \le 0, 4$$
 $H_1: p > 0, 4$ $\alpha = 0, 1$

Die Zufallsvariable X beschreibt die Anzahl der Auszubildenden, die mit einer Hochschul-/Fachhochschulreife einen Ausbildungsvertrag im Bereich Industrie und Handel abgeschlossen haben. X ist im Extremfall $B_{150;\ 0,4}$ -verteilt.

Der Ablehnungsbereich wird durch $A = \{g; g+1; \ldots; 150\}$ beschrieben.

Gesucht ist die kleinste natürlich Zahl g, sodass Folgendes gilt:

$$P(X \geq g) \leq 0,1$$

$$P(X \leq g-1) \geq 0,9$$

Durch systematisches Ausprobieren mit dem Taschenrechner folgt:

$$P(X \le 67) \approx 0,8937$$

$$P(X \le 68) \approx 0,9210$$

Damit gilt für den Ablehnungsbereich: $A = \{69; \ldots; 150\}$.

Entscheidungsregel

Wenn mindestens **69** Auszubildende einen Ausbildungsvertrag im Bereich Industrie und Handel abgeschlossen haben, wird die Nullhypothese abgelehnt. Andernfalls wird sie nicht abgelehnt.

3.2 Fehler 2. Art im Sachzusammenhang

Obwohl mindestens 69 Auszubildende einen Ausbildungsvertrag im Bereich Industrie und Handel abgeschlossen haben, wird im Hypothesentest die Nullhypothese nicht abgelehnt.

Anteil p_1 berechnen

Aus der Entscheidungsregel ergibt sich folgender Annahmebereich für $H_0: A=\{0;\ldots;68\}$. Die Wahrscheinlichkeit für den Fehler 2. Art soll dabei maximal 30% betragen. Für n=150 muss also gelten:

$$P(X \le 68) \le 0,3$$

Durch systematisches Ausprobieren mit dem Taschenrechner folgt:

$$p = 0,478 : P(X \le 68) \approx 0,3008$$

 $p = 0,479 : P(X \le 68) \approx 0,2924$

Der zur Alternativhypothese H_1 gehörige Anteil p_1 müsste in Wirklichkeit mindestens 47,9% betragen.