

Mark Scheme (Results)

January 2016

International GCSE Further Pure Mathematics 4PM0/02

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask the Expert email service helpful.

www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

January 2016
Publications Code UG043229
All the material in this publication is copyright
© Pearson Education Ltd 2013

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners
  must mark the first candidate in exactly the same way as they
  mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

#### Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

## No working

If no working is shown then correct answers may score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

### With working

Always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses 2A (or B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

## Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question

## Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

General Principles for Further Pure Mathematics Marking (but note that specific mark schemes may sometimes override these general principles)

## Method mark for solving a 3 term quadratic equation:

#### 1. Factorisation:

$$(x^2 + bx + c) = (x + p)(x + q)$$
where $|pq| = |c|$ 
$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
where $|pq| = |c|$  and  $|mn| = |a|$ 

#### 2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to

#### 3. Completing the square:

Solving 
$$x^2 + bx + c = \left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$$
 where  $q \neq 0$ 

#### Method marks for differentiation and integration:

#### 1. <u>Differentiation</u>

Power of at least one term decreased by 1.

## 2. Integration:

Power of at least one term increased by 1.

#### Use of a formula:

Generally, the method mark is gained by:

**either** quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

**or**, where the formula is <u>not</u> quoted, the method mark can be gained by implicationfrom the substitution of <u>correct</u> values and then proceeding to a solution.

#### **Answers without working:**

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....

## **Exact answers:**

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

## Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.



# Jan 2016

# **4PM0** Further Pure Mathematics Paper 2

## **Mark Scheme**

| Question                 | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Number                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 1.                       | $2^{2(x-2)} = 2^{3(3x-1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                  |
|                          | $\Rightarrow 2(x-2) = 3(3x-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dM1A1               |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1cao               |
|                          | $x = -\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4)                 |
| M1<br>dM1<br>A1<br>A1cao | Attempt to change to powers of 2, 4 or 8 (both sides of equation) Equate powers Correct linear equation - unsimplified $x = -\frac{1}{7}$ (or equivalent fraction with integer numerator and denomination NB: $\log_4 8 = 1.5$ is exact and so allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ator)               |
| ALT 1                    | Alternatives for no 1  Take logs base 4 each side  Change log48 to 1.5  Correct linear equation 1.5 and any other non-rounded decimals allow $x = -\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1<br>dM1<br>wed A1 |
|                          | Correct solution $\frac{x^2-x^2}{7}$ decimals may have been used in working, properties the solution of the solut | orovided<br>A1cao   |
| ALT 2                    | $\log 4^{(x-2)} = \log 8^{(3x-1)}$ can be any base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                          | $\log 4^{(x-2)} = \log 8^{(3x-1)}$ can be any base $(x-2)\log 4 = (3x-1)\log 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1                  |
|                          | $(x-2) \times 2\log 2 = (3x-1) \times 3\log 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|                          | 2(x-2) = 3(3x-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dM1A1               |
|                          | $x = -\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1cao               |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |

| Question<br>Number      | Scheme                                                                                                                                                                                                            | Marks               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                         | $\frac{4^{x}}{4^{2}} = \frac{8^{3x}}{8} \Rightarrow \frac{4^{x}}{2} = 8^{3x}$ $4^{x} \times \frac{1}{2} = \left(8^{3}\right)^{x} \qquad \frac{1}{2} = \left(\frac{8^{3}}{4}\right)^{x}$                           | M1                  |
|                         | $\frac{1}{2} = 128^{x}$ $x = \frac{\log \frac{1}{2}}{\log 128} = \frac{-\log 2}{7 \log 2}  \text{(any base)}$ $x = -\frac{1}{7}$                                                                                  | dM1A1               |
|                         | $x = -\frac{1}{7}$                                                                                                                                                                                                | A1cao               |
| 2.                      | (i) $48 = \frac{1}{2}\theta r^2$ , $8 = \theta r$ or equivalent equations $\frac{\theta r^2}{\frac{2}{\theta r}} = \frac{48}{8} \Rightarrow r = 12$ (ii) $\theta = \frac{8}{12}, (=\frac{2}{3})$                  | B1B1  M1A1  A1  (5) |
| B1 B1<br>M1<br>A1<br>A1 | B1B1 Two correct equations; B1B0 One correct equation<br>Eliminate either variable and solve to obtain the other $r = 12$<br>$\theta = \frac{8}{12}$ oe Accept 0.667 or better (NB: decimal may be ignored rule.) | l under isw         |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                             |              |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| 3                  | $3y = 12 - 4x \Rightarrow y = 4 - \frac{4}{3}x$ OR $4x = 12 - 3y \Rightarrow x = 3 - \frac{3}{4}y$                                                                                                                                                                 | B1           |  |  |  |  |  |
|                    | J                                                                                                                                                                                                                                                                  |              |  |  |  |  |  |
|                    | $\left((x+1)^2 + (4 - \frac{4}{3}x - 2)^2 = 4\right) \left(3 - \frac{3}{4}y + 1\right)^2 + (y-2)^2 = 4$                                                                                                                                                            | M1           |  |  |  |  |  |
|                    | $\Rightarrow 25x^2 - 30x + 9 = 0 \text{ 3TQ} \qquad \Rightarrow 25y^2 - 160y + 256 = 0 \text{ 3TQ}$                                                                                                                                                                | M1A1         |  |  |  |  |  |
|                    | $(5x-3)(5x-3) = 0 \Rightarrow x = \frac{3}{5} \qquad (5y-16)(5y-16) = 0 \Rightarrow y = \frac{16}{5}$                                                                                                                                                              | M1A1         |  |  |  |  |  |
|                    | $3 \Rightarrow 25x^{2} - 30x + 9 = 0 3TQ$ $(5x - 3)(5x - 3) = 0 \Rightarrow x = \frac{3}{5}$ $y = 4 - \frac{4}{3} \times \frac{3}{5} = \frac{16}{5}$ $(5y - 16)(5y - 16) = 0 \Rightarrow y = \frac{16}{5}$ $x = 3 - \frac{3}{4} \times \frac{16}{5} = \frac{3}{5}$ | A1 (7)       |  |  |  |  |  |
| B1                 | Write the linear equation to read $x =$ or $y =$ May be seen explicit implied by subsequent working. (Equivalent forms accepted)                                                                                                                                   | tly or       |  |  |  |  |  |
| M1                 | Substitute to obtain a quad equation in one variable                                                                                                                                                                                                               |              |  |  |  |  |  |
| M1                 | Simplify to a 3 term quadratic - terms in any order - coeffs need not b                                                                                                                                                                                            | -            |  |  |  |  |  |
| A1                 | Correct 3 term quadratic - terms in any order - coeffs need not be inte                                                                                                                                                                                            | •            |  |  |  |  |  |
| M1                 | Their 3 term quadratic solved by any valid method. (Can still be earned discriminant is negative.)                                                                                                                                                                 | ed if the    |  |  |  |  |  |
| A1                 | Correct values for one variable                                                                                                                                                                                                                                    |              |  |  |  |  |  |
| A1                 | (B1 on e-pen) Correct values for the second variable                                                                                                                                                                                                               |              |  |  |  |  |  |
|                    | Equivalents accepted for both variables                                                                                                                                                                                                                            |              |  |  |  |  |  |
|                    | <b>NB</b> : Calculator solutions for the quadratic accepted <b>provided</b> both roots correct.                                                                                                                                                                    |              |  |  |  |  |  |
| 4                  |                                                                                                                                                                                                                                                                    |              |  |  |  |  |  |
|                    | $f'(x) = 2e^{2x}(x+1)^{0.5} + e^{2x} \frac{(x+1)^{-0.5}}{2}$                                                                                                                                                                                                       | M1A1A1       |  |  |  |  |  |
|                    | $f'(x) = e^{2x} \left( 2(x+1)^{0.5} + \frac{1}{2(x+1)^{0.5}} \right)$                                                                                                                                                                                              | dM1          |  |  |  |  |  |
|                    | $\Rightarrow e^{2x} \left( \frac{4(x+1)+1}{2(x+1)^{0.5}} \right) \Rightarrow \frac{e^{2x}(4x+5)}{2\sqrt{x+1}}  ***$                                                                                                                                                | dM1A1cso (6) |  |  |  |  |  |
| M1                 | Attempt to differentiate using the product rule. Must be the sum of tw both with $(x + 1)^{+/-0.5}$ and $e^{2x}$ . Constants may be incorrect                                                                                                                      |              |  |  |  |  |  |
|                    | If quotient rule is used the numerator must be the difference of two te with $(x + 1)^{+/-0.5}$ and $e^{2x}$ and the denominator must be $(x + 1)^{-1}$ .                                                                                                          | erms both    |  |  |  |  |  |
| A1A1               | with $(x + 1)^n$ and $e^{-x}$ and the denominator must be $(x + 1)^n$ .<br>A1A1 Both terms fully correct; A1A0 one term fully correct                                                                                                                              |              |  |  |  |  |  |
| dM1                | Extract a common factor of form $ke^{2x}$ where $k$ is an integer                                                                                                                                                                                                  |              |  |  |  |  |  |
| dM1                | Simplify the bracket by combining to a single term                                                                                                                                                                                                                 |              |  |  |  |  |  |
| divii              | The above steps may be carried out in either order but marks <b>must</b> be this order. These 2 M marks are dependent on the first M mark but no other.                                                                                                            |              |  |  |  |  |  |
| A1cso              | Obtain the GIVEN answer with no errors seen $(x+1)^{\frac{1}{2}}$ scores A0                                                                                                                                                                                        |              |  |  |  |  |  |

| Question     | Scheme                                                                                                                                                 | Marks                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Number 5 (a) | 52 10                                                                                                                                                  | M1A1cso               |
| <i>5</i> (a) | $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \Rightarrow \alpha\beta = \frac{5^2 - 19}{2} = 3 \text{ cso } ***$                             | (2)                   |
| (b)          | $\Rightarrow \frac{c}{a} = 3 \text{ and } -\frac{b}{a} = 5 \text{ let } a = 1 \Rightarrow x^2 - 5x + 3 = 0 \text{ oe}$                                 | M1A1 (2)              |
| (c)          | $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\alpha^2 + \beta^2}{\alpha \beta}, = \frac{19}{3}$                                                | (-)                   |
|              | · · · · · · · · · · · · · · · · · · ·                                                                                                                  | M1,A1                 |
|              | $\frac{\beta}{\alpha} \times \frac{\alpha}{\beta} = 1$                                                                                                 | B1                    |
|              | $x^2 - \frac{19}{3}x + 1 = 0$ , $3x^2 - 19x + 3 = 0$ oe                                                                                                | M1,A1                 |
|              | $\frac{x-\sqrt{3}x+1(-0)}{3}$ , $3x-19x+3=0.06$                                                                                                        | (5) (9)               |
| (a)M1        | Obtain an expression for $\alpha\beta$ in terms of $\alpha + \beta$ and $\alpha^2 + \beta^2$                                                           |                       |
| A1cso        | Correct value for $\alpha\beta$                                                                                                                        |                       |
| ALT:         | Solve the given equations for $\alpha$ and $\beta$ M1 Fully correct to given a                                                                         | nswer A1              |
| (b)M1        | Use $x^2 - (\text{sum of roots})x + \text{product of roots} (=0)$                                                                                      |                       |
| A1           | A correct <b>equation</b> - any integer multiple of the one shown                                                                                      |                       |
| (c)M1        | Write the sum of the roots as a single fraction. Algebra to be correct for the                                                                         | is mark.              |
| A1           | Correct value for the sum of the roots                                                                                                                 |                       |
| B1<br>M1     | Product = 1 Seen explicitly or used                                                                                                                    |                       |
|              | Use $x^2 - (\text{sum of roots})x + \text{product of roots} (= 0)$                                                                                     |                       |
| A1ft         | Correct equation. Follow through their sum and product. Any integer accepted.                                                                          | multiple              |
| 6 (a)        | $\sin(2x) = \sin x \cos x + \cos x \sin x = 2\sin x \cos x *$                                                                                          | B1                    |
| (b)          | $\cos(2x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x *$                                                                                     | B1 (2)                |
| (c)          | $\frac{\sin 2x}{\cos x} = \frac{2\sin x \cos x}{\cos x}$                                                                                               | M1                    |
|              | $\frac{1+\cos 2x}{1+(\cos^2 x-\sin^2 x)}$                                                                                                              | M1                    |
|              | $2\sin x\cos x$                                                                                                                                        | dM1A1                 |
|              | $= \frac{1}{\cos^2 x + \sin^2 x + \cos^2 x - \sin^2 x}$                                                                                                |                       |
|              | $= \frac{2\sin x \cos x}{2\cos^2 x} = \tan x  ***$                                                                                                     |                       |
|              | $\frac{1}{2\cos^2 x}$                                                                                                                                  | A1cso (4) (6)         |
| (a)B1        | For the correct result. Award only if evidence of use of the given form                                                                                | ` ′                   |
| (b)B1        | As for (a)                                                                                                                                             |                       |
| (c)M1        | Use the above identities to change "2x"s to "x"s                                                                                                       |                       |
| dM1          | Use $\cos^2 x + \sin^2 x = 1$ to eliminate $\sin^2 x$                                                                                                  |                       |
|              | Min evidence is $(1-\sin^2 x)$ changed to $\cos^2 x$ or $(1-\sin^2 x) + \cos^2 x$                                                                      | $=2\cos^2 x$          |
|              | Denominator $1 + c^2 - s^2$ changed to either $c^2+c^2$ or $2c^2$ is NOT sufficient But $1 - s^2 + c^2$ changed to $c^2 + c^2$ or $2c^2$ is sufficient | ent                   |
|              | Correct (unsimplified) fraction, as shown or equivalent (no trig function)                                                                             | ions of $2x$ )        |
| A1           | <b>Both</b> M marks must be gained for this A mark to be awarded                                                                                       | 10110 01 <i>2</i> 11) |
| A1cso        | Obtain the GIVEN result with no errors seen                                                                                                            |                       |
| 711050       |                                                                                                                                                        |                       |

| Question<br>Number | Scheme                                                                                                                                                         | Marks         |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| 7 (a)              | $x = \frac{3}{2}$ (or eg $2x = 3$ , $x - \frac{3}{2} = 0$ )                                                                                                    | B1 (1)        |  |  |
| (b)                | $\frac{dy}{dx} = \frac{(2x-3)(2x) - (x^2 - 2)(2)}{(2x-3)^2} = \left(\frac{2x^2 - 6x + 4}{(2x-3)^2}\right)$                                                     | M1A1A1 (3)    |  |  |
| (c)                | $\frac{dy}{dx} = 0 \Rightarrow \frac{(2x-3)(2x) - (x^2 - 2)(2)}{(2x-3)^2} = 0$                                                                                 | M1            |  |  |
|                    | $\Rightarrow 2x^2 - 6x + 4 = 0 \Rightarrow (x - 1)(x - 2) = 0 \Rightarrow x = 1, x = 2$                                                                        | M1A1A1        |  |  |
|                    | x = 1, y = 1 (1,1) $x = 2, y = 2$ (2,2)                                                                                                                        | A1 (5) (9)    |  |  |
| (a)<br>B1          | For a correct equation for the asymptote. NB $x \neq \frac{3}{2}$ scores B0                                                                                    |               |  |  |
| (b)<br>M1          | Attempt to differentiate by quotient rule. Denominator must be corre<br>Numerator must be the difference of two terms of the appropriate for                   |               |  |  |
| A1<br>A1           | NB M1 on e-PEN First term correct                                                                                                                              |               |  |  |
| ALT:               | Second term correct Use the product rule. M1 for the attempt, using $(x^2-2)(2x-3)^{-1}$                                                                       |               |  |  |
| (c)                | A1,A1 one for each correct term                                                                                                                                |               |  |  |
| M1<br>M1           | Equate their derivative to 0                                                                                                                                   |               |  |  |
| A1 A1              | Solve their quadratic (numerator) by any valid method.<br>A1A1 two correct values for <i>x</i> from a correct equation; A1A0 for or value Ignore extra values. | ne correct    |  |  |
| A1                 | NB B1 on e-PEN Find the corresponding y values. Coordinate brace not be shown. Give A0 if more than 2 stationary points shown.                                 | ckets need    |  |  |
|                    | NB: Quadratic solved on a calculator: correct values for <i>x</i> , M1A1A1 One or both values incorrect, or only one value shown: M0A0A0                       | l             |  |  |
|                    | <b>Special Case for (c): Both c</b> orrect answers only shown, Award B1B two marks on e-PEN.                                                                   | 31 - in first |  |  |

| Scheme                                                                                                                                                                                                                               | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $a = 2$ $2 = 1$ $d = 2$ $(1 = 2\pi, 2)$                                                                                                                                                                                              | B1B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a = 2 - 3 = -1 $a = 2$ $(t = 2n - 3)$                                                                                                                                                                                                | BIBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uses $S_n = \frac{n}{2}(a+l)$ , $S_n = \frac{n}{2}(-1+(2n-3))$ $S_n = \frac{n}{2}(n-2)$ ***  OR $S_n = \frac{n}{2}(2\times-1+(n-1)2) \Rightarrow S_n = \frac{n}{2}(2n-4) \Rightarrow S_n = n(n-2)$ *** $5(2n+4-3) = 3(n-3)((n-3)-2)$ | M1A1cso<br>(4)<br>M1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $3n^2 - 34n + 40 = 0$ 3TQ $\Rightarrow (3n - 4)(n - 10) = 0 \Rightarrow n = 10$                                                                                                                                                      | M1<br>dM1A1<br>(5)<br>(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a = -1 No working needed - need not be shown explicitly                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $d=2$ No working needed or if $S_n = \frac{\pi}{2}(a+l)$ used, give B1 for correct sub                                                                                                                                               | ostitution if no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| value shown anywhere for d                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Using either formula for $S_n$ with their $a$ and $d$                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Obtaining the GIVEN result with no errors seen                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                      | nulae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 1                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NB A1 on e-pen Factorising their quadratic or correct use of formula/cor                                                                                                                                                             | npleting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cao $n = 10$ Award A0 if single correct answer not identified.                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| If final answers shown without working (implying calculator solution) gi                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                      | Uses $S_n = \frac{n}{2}(a+l)$ , $S_n = \frac{n}{2}(-1+(2n-3))$ $S_n = \frac{n}{2}(n-2)$ ***  OR $S_n = \frac{n}{2}(2\times-1+(n-1)2) \Rightarrow S_n = \frac{n}{2}(2n-4) \Rightarrow S_n = n(n-2)$ *** $5(2n+4-3) = 3(n-3)((n-3)-2)$ $3n^2 - 34n + 40 = 0$ 3TQ $\Rightarrow (3n-4)(n-10) = 0 \Rightarrow n = 10$ $a = -1$ No working needed or if $S_n = \frac{n}{2}(a+l)$ used, give B1 for correct subvalue shown anywhere for $d$ Using either formula for $S_n$ with their $a$ and $d$ Obtaining the GIVEN result with no errors seen  Using the GIVEN $t_n$ and $S_n$ in the equation or start from correct basic for Correct unsimplified equation Obtaining a three term quadratic, terms in any order NB A1 on e-pen Factorising their quadratic or correct use of formula/corsquare. Cao $n = 10$ Award A0 if single correct answer not identified. If final answers shown without working (implying calculator solution) gif both correct answers to the quadratic are shown. A1 then for identifying |

| Question        | Scheme                                                                                                                                                                                                                                                           | Marks                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Number          |                                                                                                                                                                                                                                                                  |                      |
| 9 (a)           | $ \overline{\overrightarrow{AB}} = -\mathbf{a} + \mathbf{b} $ $ \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} \Rightarrow \overrightarrow{OC} = 2\mathbf{b} - 2\mathbf{a} = 2(\mathbf{b} - \mathbf{a}) (= 2\overrightarrow{AB}) \text{ (oe)} $ | B1<br>M1,            |
|                 | (i) Hence, $\overrightarrow{OC}$ and $\overrightarrow{AB}$ are in same direction                                                                                                                                                                                 | A1                   |
|                 | (ii) And, $\overrightarrow{OC}$ is twice the length of $\overrightarrow{AB}$                                                                                                                                                                                     | A1                   |
|                 | Conclusions required *                                                                                                                                                                                                                                           |                      |
|                 | -                                                                                                                                                                                                                                                                | (4)                  |
| <b>(b)</b>      | $\frac{\text{area of triangle }ODC}{\text{area of triangle }OBC} = \frac{0.5 \times \text{height} \times 2}{0.5 \times \text{height} \times 5} = \frac{2}{5}$                                                                                                    |                      |
|                 | area of triangle $OBC$ $0.5 \times \text{height} \times 5$ 5                                                                                                                                                                                                     | M1A1                 |
|                 | $\frac{\text{area of triangle } OAB}{\text{area of triangle } OBC} = \frac{0.5 \times \text{height} \times 1}{0.5 \times \text{height} \times 2} = \frac{1}{2}$                                                                                                  | M1A1                 |
|                 | area of triangle $OBC = \frac{5}{2} \times \text{ area of triangle } ODC$ , and,                                                                                                                                                                                 |                      |
|                 | area of triangle $OBC = 2 \times$ area of triangle $OAB$                                                                                                                                                                                                         |                      |
|                 |                                                                                                                                                                                                                                                                  |                      |
|                 | Therefore, $\frac{\text{area of triangle } ODC}{\text{area of triangle } OAB} = \frac{4}{5}$                                                                                                                                                                     | 13.61.4.1            |
|                 | area of triangle $OAB = 5$                                                                                                                                                                                                                                       | dM1A1cso             |
|                 | {Or given as ratio, area of triangle $ODC$ ; area of triangle $OAB = 4:5$ }                                                                                                                                                                                      | (6)<br>( <b>10</b> ) |
|                 |                                                                                                                                                                                                                                                                  |                      |
| (a)             | a →                                                                                                                                                                                                                                                              |                      |
| B1<br>M1        | Correct expression for $AB$                                                                                                                                                                                                                                      |                      |
|                 | Obtaining $OC$ in terms of <b>a</b> and <b>b</b>                                                                                                                                                                                                                 |                      |
| (i)A1<br>(ii)A1 | Using correct expressions for $\overrightarrow{OC}$ and $\overrightarrow{AB}$ to deduce that they are parallel NP P1 on a PEN Deducing the GIVEN ratio $\overrightarrow{AB} : OC \rightarrow \overrightarrow{AB}$ are                                            | avidad alaan         |
| (II)A1          | NB B1 on e-PEN Deducing the GIVEN ratio $AB : OC$ or $OC : AB$ prowhich is intended. No vector arrows here.                                                                                                                                                      | ovided clear         |
|                 | Accept shown or # or similar as a conclusion provided clear which part it                                                                                                                                                                                        | refers to.           |
| (b)             |                                                                                                                                                                                                                                                                  |                      |
| M1              | Finding the ratio of the areas of triangles <i>ODC</i> and <i>OBC</i> , either order                                                                                                                                                                             |                      |
| A1              | Correct ratio (or fraction), triangles in either order                                                                                                                                                                                                           |                      |
| M1<br>A1        | Finding the ratio of the areas of triangles <i>OAB</i> and <i>OBC</i> , either order Correct ratio (or fraction), triangles in either order                                                                                                                      |                      |
| dM1             | Eliminating area of triangle <i>OBC</i> to obtain a value for the required ratio (                                                                                                                                                                               | or fraction)         |
| <b>3</b> 2.22   | Depends on both the preceding M marks.                                                                                                                                                                                                                           | (                    |
| A1cso           | Correct ratio or fraction (any equivalent). Triangles to be in the correct of Ratio can be in one of forms 1:1.25, 1:5/4, 0.8: 1, 4/5:1                                                                                                                          | rder.                |
|                 | <b>NB</b> : b - a (whether bold, underlined or neither) is a vector, not the length M marks only can be awarded.                                                                                                                                                 | of a line.           |

|       | Alternatives for 9(b)                                                                                                                        |                              |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| ALT 1 | Area $\triangle OAB = \frac{1}{2}AB \times OB \sin OBA$                                                                                      | M1 (area either triangle)    |
|       | Area $\triangle ODC = \frac{1}{2}OD \times OC \sin DOC$                                                                                      | A1 (both areas correct)      |
|       | $2 \overrightarrow{AB}  =  \overrightarrow{OC}  \text{ or } 2AB = OC, \qquad \frac{2}{5} \overrightarrow{OB}  =  \overrightarrow{OD} $       | M1 (either)                  |
|       | $\angle OBA = \angle DOC$ correct or used correctly)                                                                                         | A1 (all 3 statements         |
|       | $\therefore \triangle ODC : \triangle OAB = \left(\frac{1}{2}\right)AB \times OB : \left(\frac{1}{2}\right) \times 2AB \times \frac{2}{5}OB$ | dM1 (their ratio of lengths) |
|       | =4:5                                                                                                                                         | A1                           |
| ALT 2 | If $\frac{1}{2} \times \text{base} \times \text{height used}$ :                                                                              |                              |
|       | Area $\triangle OAB = \frac{1}{2}AB \times h$                                                                                                | M1                           |
|       | Area $\triangle ODC = \frac{1}{2}OC \times h'$                                                                                               | A1                           |
|       | $h' = \frac{2}{5}h \ OC = 2AB$                                                                                                               | M1A1                         |
|       | $\Delta OCD : \Delta OAB = AB \times \frac{2}{5}h : \frac{1}{2}AB \times h  dM1$                                                             |                              |
|       | =4:5 oe                                                                                                                                      | A1                           |
|       | M1A1 areas of triangles (M1 either correct, A1 b M1A1 ratio of bases and ratio of heights (M1 either correct) dM1A1 correct completion       | *                            |
|       |                                                                                                                                              |                              |

| Question<br>Number          | Scheme                                                                                                                                                                                                                                                                                                                                | Marks                                 |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 10 (a)                      | $f(2) = 2 \times 2^{3} - p \times 2^{2} - 13 \times 2 - q = -20  (\Rightarrow 10 = 4p + q)$ $f(3) = 2 \times 3^{3} - p \times 3^{2} - 13 \times 3 - q = 0  (\Rightarrow 15 = 9p + q)$ Solves simultaneous equations by elimination or substitution; $\Rightarrow 5 = 5p \Rightarrow p = 1,$ so $q = 6$                                | M1A1<br>M1A1<br>M1<br>A1<br>A1<br>(7) |
| (b)                         | $(2x^{3} - x^{2} - 13x - 6) \div (x - 3) = 2x^{2} + 5x + 2$ $(2x^{3} - x^{2} - 13x - 6) = (x - 3)(2x + 1)(x + 2) \text{ (Factorises } 2x^{2} + 5x + 2)$ $x = 3, -\frac{1}{2}, -2 \text{ (all three roots)}$                                                                                                                           | M1A1<br>M1<br>A1A1<br>(5)<br>(12)     |
| (a)<br>M1<br>A1<br>M1<br>A1 | Substitute $\pm 2$ in $f(x)$<br>Correct equation using remainder $-20$ Need not be simplified<br>Substitute $\pm 3$ in $f(x)$<br>Correct equation using remainder 0 Need not be simplified<br>First 4 marks can be given for long division:<br>Divide by $(x\pm 2)$ M1 Equate correct remainder to $-20$ A1                           |                                       |
| M1<br>A1<br>A1<br>(b)<br>M1 | Divide by $(x\pm 3)$ M1 Equate correct remainder to 0 A1 Solve the simultaneous equations, any valid method $p$ or $q$ correct Second unknown correct  Obtain the quadratic factor by division or inspection. Factor need not be correct but must be of form $2x^2 + kx \pm \frac{\text{their } q}{3}$ If by division, remainded be 0 | e fully<br>er need not                |
| A1<br>M1<br>A1A1            | Correct quadratic factor Attempt to factorise their quadratic factor A1A1 all three roots correct; A1A0 two roots correct                                                                                                                                                                                                             |                                       |

| Question<br>Number                      |                                                                  |                                                                                           |                                                                                  | Schen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne                    |                     |            | Marks                             |
|-----------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|------------|-----------------------------------|
| 11(a)                                   | х                                                                | -2                                                                                        | -1                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                     | 2                   | 3          | B1B1<br>(2)                       |
|                                         | f(x)                                                             | 2.05                                                                                      | 2.14                                                                             | 2.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                     | 4.72                | 9.39       |                                   |
| (b)                                     | Correct po                                                       | ints plot                                                                                 | ted and g                                                                        | raph draw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'n                    |                     |            | B1ftB1ft (2)                      |
| (c)                                     | $4 = e^{(x-1)} =$ Line $y = 6$                                   |                                                                                           | •                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     |            | M1<br>A1                          |
| ( <b>d</b> )                            |                                                                  |                                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     |            | (2)                               |
|                                         | $\ln(4x-4) = 3$ $\Rightarrow 4x-2 = 3$ $y = 4x-2$ accept $x = 3$ | = e <sup>(x-1)</sup> + drawn o                                                            | 2                                                                                | $= e^{(x-1)},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                     |            | M1,A1<br>A1ft<br>dM1<br>A1cso(5)  |
|                                         | ассері л —                                                       | 1.3/1.4                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     |            | (11)                              |
| (a)<br>B1B1                             | NB Read r<br>B1B1 thre                                           | _                                                                                         |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     |            |                                   |
| (b)<br>B1ft<br>B1ft                     | Plot their p<br>Draw a sm<br>points/grap                         | ooth cui                                                                                  | rve throug                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oints. –2             | 2 ≤ <i>x</i> ≤ 3 or | nly needed | - ignore any                      |
| (c)<br>M1                               | should be s                                                      | seen                                                                                      |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                     |            | on, $y = 4 \pm 2$                 |
| A1                                      | _                                                                | ark is ga<br>e line be                                                                    | nined and<br>ing draw                                                            | y = 6 or $6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $e^{(x-1)} + 2$       | = 6 is seen         | this mark  | ed (2.3862) can be given ard M1A1 |
| (d)<br>M1<br>A1<br>A1ft<br>dM1<br>A1cso | Change eq<br>Correct ex<br>Add 2 to ea<br>Draw their             | uation from the ponential ach side the one ach or one | rom log to<br>al equation<br>of their e<br>their graph<br>1.4 Mus<br>rrect lines | o exponents of equation of the state of the | tial forr<br>unless a | n                   |            | 55) Correct                       |



| Question<br>Number    | Scheme                                                                                                                                                                                                                                                            | Marks                  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| 12(a)                 | $BM = \sqrt{8^2 - 4^2}, = 4\sqrt{3} \text{ (oe eg } \sqrt{24} \times \sqrt{2} \text{)}$<br>p = 4 $q = 3$                                                                                                                                                          | M1,A1A1<br>(3)         |  |  |  |  |
| <b>(b)</b>            | $\cos BAM = \frac{4}{8} \Rightarrow BAM = 60^{\circ}$                                                                                                                                                                                                             | M1A1                   |  |  |  |  |
| (c)                   | $EM = \sqrt{12^2 + 20^2}  \left( = \sqrt{544} = 4\sqrt{34} \right)$                                                                                                                                                                                               | (2)<br>M1A1            |  |  |  |  |
|                       | $MEB = \tan^{-1} \left( \frac{4\sqrt{3}}{4\sqrt{34}} \right) = 16.5437$ $\Rightarrow MEB = 16.5^{\circ}$                                                                                                                                                          | dM1A1(4)               |  |  |  |  |
| (d)                   | Angle between plane <i>BCEH</i> and <i>ADEH</i> = $\tan^{-1} \left[ \frac{4\sqrt{3}}{20} \right] = 19.1066 = 19.1^{\circ}$                                                                                                                                        | M1<br>dM1A1<br>(3)     |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                   | (12)                   |  |  |  |  |
| (a)<br>M1<br>A1<br>A1 | Use Pythagoras Must have minus sign A1A1 for correct <i>p</i> and <i>q</i> equivalent values allowed as long as one is prime. A1A0 for one correct. Values need not be shown explicitly.                                                                          |                        |  |  |  |  |
| (b)<br>M1             | Use any trig function correctly (eg sin = $\frac{\text{opp}}{\text{hyp}}$ ) to find $\angle BAM$ If cos or tan                                                                                                                                                    |                        |  |  |  |  |
| A1                    | used then AM must = 4 or working for length AM must be see used  Correct answer. 60° without working scores M1A1                                                                                                                                                  | en. Their <i>BM</i> if |  |  |  |  |
| (c)<br>M1             | Use Pythagoras to find length <i>EM</i> . Must have + sign. If <i>BE</i> found without first finding <i>EM</i> this mark requires a complete method.  Award M1 for $EM^2 = 16^2 + 20^2$ provided this is stated to be <i>EM</i> or implied by subsequent working. |                        |  |  |  |  |
|                       | T DV SHDSECHETH WOLKING.                                                                                                                                                                                                                                          |                        |  |  |  |  |
| A1<br>dM1<br>A1       | Correct length <i>EM</i> (need not be simplified) (or $BE = 24.33$ Use any trig function correctly with their values to find $\angle ME$ Correct answer. Must be to nearest $0.1^{\circ}$                                                                         |                        |  |  |  |  |
| dM1                   | Correct length $EM$ (need not be simplified) (or $BE = 24.33$<br>Use any trig function correctly with their values to find $\angle ME$                                                                                                                            | EΒ                     |  |  |  |  |