WHAT IS CLAIMED IS:

1. A method of preparing an oligomeric compound having at least one moiety of formula:

5

$$X_{1} \longrightarrow P = X_{2}$$

$$X_{2} \longrightarrow P = X_{1}$$

$$X_{1} \longrightarrow P = X_{2}$$

$$X_{2} \longrightarrow P = X_{2}$$

$$X_{1} \longrightarrow P = X_{2}$$

$$X_{2} \longrightarrow P = X_{2}$$

$$X_{3} \longrightarrow P = X_{2}$$

$$X_{4} \longrightarrow P = X_{2}$$

$$X_{5} \longrightarrow P = X_{2}$$

$$X_{6} \longrightarrow P = X_{2}$$

$$X_{7} \longrightarrow P = X_{2}$$

$$X_{8} \longrightarrow P = X_{2}$$

$$X_{1} \longrightarrow P = X_{2}$$

$$X_{1} \longrightarrow P = X_{2}$$

$$X_{2} \longrightarrow P = X_{2}$$

$$X_{3} \longrightarrow P = X_{3}$$

$$X_{4} \longrightarrow P = X_{4}$$

$$X_{5} \longrightarrow P = X_{5}$$

$$X_{7} \longrightarrow P = X_{5}$$

$$X_{8} \longrightarrow P = X_{5}$$

$$X_{1} \longrightarrow P = X_{5}$$

$$X_{1} \longrightarrow P = X_{5}$$

$$X_{2} \longrightarrow P = X_{5}$$

$$X_{3} \longrightarrow P = X_{5}$$

$$X_{4} \longrightarrow P = X_{5}$$

$$X_{5} \longrightarrow P = X_{5}$$

$$X_{5$$

wherein:

 X_2 is 0 or S;

 $\rm X_1$ is Pg-O-, Pg-S-, $\rm C_1-C_{10}$ straight or branched chain alkyl, $\rm CH_3\,(CH_2)_{nn}-O-$, $\rm R_2R_3N-$ or a group remaining from coupling 10 a chiral auxiliary;

nn is from 0 to 10;

Pg is CH_3 , $-CH_2CH_2CN$, $-C(CH_3)(CH_3)-CCl_3$, $-CH_2-CCl_3$, $-CH_2CH=CH_2$, $CH_2CH_2SiCH_3$, 2-yl-ethyl phenylsulfonate, δ -cyanobutenyl, cyano p-xylyl, diphenylsilylethyl, 4-nitro-2-yl-

15 ethylbenzene, 2-yl-ethyl-methyl sulfonate, methyl-N-trifluoroacetyl ethyl, acetoxy phenoxy ethyl, or a blocking group;

each R_2 and R_3 is, independently, hydrogen, $C_1 - C_{10}$ alkyl, cycloalkyl or aryl;

or optionally, R₂ and R₃, together with the nitrogen atom to which they are attached form a cyclic moiety; each Bx is, independently, a heterocyclic base moiety

each Bx is, independently, a heterocyclic base moiety; and

each $R_{\rm l}$ is, independently, H, a blocked hydroxyl group, 25 or a sugar substituent group;

comprising the steps of:

(a) providing a 5'-0-protected compound of the formula:

$$T_1$$
—O R_1
 T_2
 Bx

wherein:

5

 T_1 is a hydroxyl protecting group; and

 T_2 is a covalent attachment to a support media, a nucleoside bound to a support media, a nucleotide, an oligonucleoside or an oligonucleotide;

- (b) treating said 5'-O-protected compound with a 10 deprotecting reagent for a time and under conditions effective to form a 5'-O-deprotected compound;
 - (c) coupling said 5'-O-deprotected compound with an activated phosphorus composition of the formula:

$$R_1$$
 R_2
 R_3
 R_4
 R_5

15 wherein:

 T_3 is a hydroxyl protecting group, a nucleoside, a nucleotide, an oligonucleoside or an oligonucleotide;

 R_4 is $N(L_1)L_2$.

each L_1 and L_2 is, independently, C_{1-6} straight or 20 branched alkyl, or a C_{5-7} cyclic aliphatic ring system;

or L_1 and L_2 are joined together to form a 4- to 13-membered heterocyclic ring system including the nitrogen atom to which L_1 and L_2 are attached; and

 R_5 is X_1 ;

or R_4 and R_5 together with the phosphorus atom to which R_4 and R_5 are attached form a chiral auxiliary;

for a time and under conditions effective to form an extended compound having the formula:

5

$$R_{5}$$
 R_{5}
 R_{1}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}

- (d) treating said extended compound with a mixture comprising an oxidizing reagent and a capping reagent for a time and under conditions effective to form said oligomeric compound.
- 2. The method of claim 1 further comprising treating said oligomeric compound with a reagent for a time and under conditions effective to remove said blocking groups thereby forming a deblocked oligomeric compound.
- The method of claim 2 wherein said reagent is
 effective to cleave the oligomeric compound from the support media.
 - 4. The method of claim 3 wherein said reagent is aqueous ammonium hydroxide.
- 5. The method of claim 2 further comprising treating 20 said oligomeric compound with a further reagent for a time

and under conditions effective to cleave the oligomeric compound from the support media.

- 6. The method of claim 1 further comprising treating said oligomeric compound with a deprotecting reagent for a 5 time and under conditions effective to deprotect the T_3 hydroxyl protecting group.
 - 7. The method of claim 1 wherein said mixture comprises from 0.02M to 0.2M oxidizing reagent.
- 8. The method of claim 7 wherein said mixture 10 comprises from 0.1M to 0.2M oxidizing reagent.
 - 9. The method of claim 1 wherein said oxidizing reagent transfers an oxygen atom.
- 10. The method of claim 9 wherein said oxidizing reagent is iodine, m-chloroperbenzoic acid, iodobenzene 15 diacetate, tetra-n-butylammonium periodate, tert-butyl hydroperoxide, di-tert-butyl hydroperoxide, cumene hydroperoxide, hydrogen peroxide; bis-trimethylsilyl peroxide; dinitrogen tetroxide, oxone, molecular oxygen, (1S)-(+)-(10-camphorsulfonyl)oxaziridine or a peracid.
- 20 11. The method of claim 10 wherein said oxidizing reagent is iodine, m-chloroperbenzoic acid, iodobenzene diacetate, tert-butyl hydroperoxide, di-tert-butyl hydroperoxide, hydrogen peroxide, oxone, molecular oxygen or a peracid.
- 25 12. The method of claim 1 wherein said oxidizing reagent transfers a sulfur atom.

- 13. The method of claim 12 wherein said oxidizing reagent is 3-amino-1,2,4-dithiazole-5-thione; 3-ethoxy-1,2,4-dithiazoline-5-one; 1,2,4-dithiazolidine-3,5-dione; 3-methyl-1,2,4-dithiazolin-5-one; or dimethylthiuram disulfide.
- 5 14. The method of claim 13 wherein said oxidizing reagent is dimethylthiuram disulfide.
- 15. The method of claim 1 wherein said capping reagent comprises about one part by volume of either acetic anhydride in acetonitrile or tetrahydrofuran; or chloroacetic anhydride 10 in acetonitrile or tetrahydrofuran; added to about one part by volume of either N-methylimidazole and pyridine in acetonitrile or tetrahydrofuran; or t-butylphenoxyacetic anhydride in acetonitrile or tetrahydrofuran.
- 16. The method of claim 15 wherein said capping reagent comprises about one part by volume of 20% acetic anhydride in acetonitrile mixed with about one part by volume of a solution having 20% N-methylimidazole, 30% pyridine and 50% acetonitrile.
- 17. The method of claim 1 wherein said mixture 20 comprises dimethylthiuram disulfide, acetic anhydride, acetonitrile, N-methyl imidazole and pyridine.
- 18. The method of claim 1 wherein said mixture comprises from about 0.05M to 0.2M dimethylthiuram disulfide, about 10% acetic anhydride, about 10% N-methyl imidazole and 25 about 15% pyridine in a suitable solvent.
 - 19. The method of claim 18 wherein said solvent is acetonitrile, toluene, ethyl acetate, tetrahydrofuran,

dichloromethane, dichloroethane, dioxane, dimethylacetamide and dimethylformamide.

- 20. The method of claim 1 wherein said coupling of the 5'-O-deprotected compound with the activated phosphorus5 composition is performed in the presence of an activating agent.
 - 21. The method of claim 20 wherein said activating agent is 1-H-tetrazole or 4,5-dicyanoimidazole.
- 22. The method of claim 1 where said cyclic moiety is 10 morpholino or phthalimido.
 - 23. The method of claim 1 wherein each L_1 and L_2 is C_{1-6} alkyl.
 - 24. The method of claim 23 wherein each L_1 and L_2 is isopropyl.
- 15 25. The method of claim 1 wherein L_1 and L_2 are joined together to form a heterocyclic ring system including the nitrogen atom to which said L_1 and L_2 are attached, wherein said ring system optionally includes at least one additional heteroatom selected from 0, N and S.
- 26. The method of claim 25 wherein said heterocyclic ring system is morpholino.
- 27. The method of claim 1 wherein each of said substituent groups is, independently, C₁-C₂₀ alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₅-C₂₀ aryl, O-alkyl, O-alkenyl, O-alkynyl, O-aryl, O-aralkyl, O-alkylamino, O-alkylaminoalkyl (O-alkyl-N(H)alkyl), O-alkylaminodialkyl (O-alkyl-N-

(alkyl)₂), O-alkylalkoxy (O-alkyl-O-alkyl), O-alkyl (N-imidazole), thiol, S-alkyl, S-alkenyl, S-alkynyl, NH alkyl, NH-alkenyl, NH-alkynyl, N-dialkyl, S-aryl, NH-aryl, S aralkyl, NH-aralkyl, N-phthalimido, halogen keto, carboxyl,
 nitro, nitroso, nitrile, trifluoromethyl, trifluoromethoxy,
 N-imidazole, azido, hydrazino, hydroxylamino, isocyanato,
 sulfoxide, sulfone, sulfide, disulfide, silyl, heterocycle,
 carbocycle, polyamine, polyamide, polyalkylene glycol, or
 polyether;

or, alternatively, one or more substituent groups has one of formula I or II:

$$-Z_{0} = \left\{ (CH_{2})_{q1} - O\left(\begin{matrix} R_{1} \\ I \end{matrix} \right)_{q2} \right\}_{q3} (CH_{2})_{q4} - J - E$$

$$-Z_{0} = \left(\begin{matrix} Z_{1} \end{matrix} \right)_{q5} (CH_{2})_{q4} - J - E$$

$$Z_{4} = \left(\begin{matrix} Z_{1} \end{matrix} \right)_{q5} (CH_{2})_{q5} - III$$

wherein:

 Z_0 is O, S or NH;

J is a single bond, 0 or C(=0);

E is C_1-C_{10} alkyl, $N(R_1)\,(R_2)$, $N(R_1)\,(R_5)$, $N=C\,(R_1)\,(R_2)$, $N=C\,(R_1)\,(R_5)$ or has one of formula III or IV;

each R_6 , R_7 , R_8 , R_9 and R_{10} is, independently, hydrogen, 20 $C(0)R_{11}$, substituted or unsubstituted C_1-C_{10} alkyl, substituted or unsubstituted C_2-C_{10} alkenyl, substituted or unsubstituted C_2-C_{10} alkynyl, alkylsulfonyl, arylsulfonyl, a chemical functional group or a conjugate group, wherein the

substituent groups are selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl;

or optionally, R_7 and R_8 , together form a phthalimido 5 moiety with the nitrogen atom to which they are attached;

or optionally, R_9 and R_{10} , together form a phthalimido moiety with the nitrogen atom to which they are attached;

each R_{11} is, independently, substituted or unsubstituted C_1-C_{10} alkyl, trifluoromethyl, cyanoethyloxy, methoxy, ethoxy,

10 t-butoxy, allyloxy, 9-fluorenylmethoxy, 2-(trimethylsilyl)-ethoxy, 2,2,2-trichloroethoxy, benzyloxy, butyryl, iso-butyryl, phenyl or aryl;

 R_5 is T-L,

T is a bond or a linking moiety;

15 L is a chemical functional group, a conjugate group or a support media;

each R_1 and R_2 is, independently, H, a nitrogen protecting group, substituted or unsubstituted C_1 - C_{10} alkyl, substituted or unsubstituted C_2 - C_{10} alkenyl, substituted or unsubstituted C_2 - C_{10} alkynyl, wherein said substitution is OR_3 , SR_3 , NH_3 ⁺, $N(R_3)$ (R_4), guanidino or acyl where said acyl is an acid amide or an ester;

or R_1 and R_2 , together, are a nitrogen protecting group or are joined in a ring structure that optionally includes an 25 additional heteroatom selected from N and O;

or R_1 , T and L, together, are a chemical functional group;

each R_3 and R_4 is, independently, H, C_1 - C_{10} alkyl, a nitrogen protecting group, or R_3 and R_4 , together, are a 30 nitrogen protecting group;

or R_3 and R_4 are joined in a ring structure that optionally includes an additional heteroatom selected from N and O;

 Z_4 is OX, SX, or $N(X)_2$;

each X is, independently, H, C_1 - C_8 alkyl, C_1 - C_8 haloalkyl, $C(=NH)N(H)R_5$, $C(=O)N(H)R_5$ or $OC(=O)N(H)R_5$; R_5 is H or C_1 - C_8 alkyl;

- Z₁, Z₂ and Z₃ comprise a ring system having from about 4
 5 to about 7 carbon atoms or having from about 3 to about 6 carbon atoms and 1 or 2 hetero atoms wherein said hetero atoms are selected from oxygen, nitrogen and sulfur and wherein said ring system is aliphatic, unsaturated aliphatic, aromatic, or saturated or unsaturated heterocyclic;
- Z_5 is alkyl or haloalkyl having 1 to about 10 carbon atoms, alkenyl having 2 to about 10 carbon atoms, alkynyl having 2 to about 10 carbon atoms, aryl having 6 to about 14 carbon atoms, $N(R_1)$ (R_2) OR_1 , halo, SR_1 or CN;

each q_1 is, independently, an integer from 1 to 10; 15 each q_2 is, independently, 0 or 1; q_3 is 0 or an integer from 1 to 10; q_4 is an integer from 1 to 10;

 q_5 is from 0, 1 or 2; and provided that when q_3 is 0, q_4 is greater than 1.

- 28. The method of claim 1 wherein said X_1 is Pg-O-, Pg-S-, CH₃-, CH₃-O-, morpholino or R_2R_3N where each R_2 and R_3 is, independently, hydrogen or C_1 - C_{10} alkyl.
- 29. The method of claim 1 wherein said Pg is CH_2CH_2CN , diphenylsilylethyl, δ -cyanobutenyl, cyano p-xylyl, methyl-N-25 trifluoroacetyl ethyl or acetoxy phenoxy ethyl.
- 30. The method of claim 1 wherein said heterocyclic base moiety is adenine, N⁶-benzoyladenine, cytosine, N⁴-benzoylcytosine, 5-methylcytosine, N⁴-benzoyl-5-methylcytosine, thymine, uracil, guanine, N²-isobutyrylguanine or 2-aminoadenine.

- 31. The method of claim 1 wherein said support media bound nucleoside, nucleotide, oligonucleoside or oligonucleotide is blocked at reactive sites.
- 5 32. The method of claim 1 wherein said blocking groups are acid stable.
 - 33. The method of claim 1 wherein said blocking groups are base labile.
- 34. The method of claim 1 wherein said deprotecting 10 reagent is acidic, neutral or basic.
- 35. The method of claim 32 wherein said deprotecting reagent is dichloroacetic acid, trichloroacetic acid, zinc bromide, AlCl₃, TiCl₄, (Et)AlCl, (*I*-Bu)₂AlCl, ceric ammonium nitrate, 1,1,1,3,3,3-hexafluoro-2-propanol or diethyloxo-15 malonate.
 - 36. The method of claim 35 wherein said deprotecting reagent is 2-5% dichloroacetic acid in dichloromethane or dichloroethane.
- 37. The method of claim 1 wherein said deprotecting 20 reagent is a fluoride moiety.
 - 38. The method of claim 37 wherein said fluoride moiety is BF_3 -etherate.
- 39. The method of claim 1 wherein said oligomeric 25 compound comprises from 5 to about 50 nucleosides.
 - 40. The method of claim 1 wherein said oligomeric compound comprises from 8 to about 30 nucleosides.

- 41. The method of claim 1 wherein said oligomeric compound comprises from 15 to about 25 nucleosides.
- 42. A method of preparing an oligomeric compound having at least one moiety of formula:

5

$$X_1 \longrightarrow P = S$$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$
 $X_1 \longrightarrow P = S$
 $X_2 \longrightarrow P = S$

wherein:

 X_1 is Pg-O-, Pg-S-, C_1 - C_{10} straight or branched chain alkyl, CH_3 (CH_2) $_{nn}$ -O-, R_2R_3N - or a group remaining from coupling a chiral auxiliary;

10 nn is from 0 to 10;

Pg is CH_3 , $-CH_2CH_2CN$, $-C(CH_3)(CH_3)-CCl_3$, $-CH_2-CCl_3$, $-CH_2CH=CH_2$, $CH_2CH_2SiCH_3$, 2-yl-ethyl phenylsulfonate, $\delta-$ cyanobutenyl, cyano p-xylyl, diphenylsilylethyl, 4-nitro-2-yl-ethylbenzene, 2-yl-ethyl-methyl sulfonate, methyl-N-trifluoroacetyl ethyl, acetoxy phenoxy ethyl, or a blocking

15 trifluoroacetyl ethyl, acetoxy phenoxy ethyl, or a blocking group;

each R_2 and R_3 is, independently, hydrogen, $C_1\text{-}C_{10}$ alkyl, cycloalkyl or aryl;

or optionally, R_2 and R_3 , together with the nitrogen 20 atom to which they are attached form a cyclic moiety that may include an additional heteroatom selected from O, S and N;

each Bx is, independently, a heterocyclic base moiety; and

each R_1 is, independently, H, a blocked hydroxyl group, or a sugar substituent group; comprising the steps of:

(a) providing a 5'-O-protected compound of the formula:

5

$$T_1$$
 O Bx O R_1 T_2

wherein:

 T_1 is a hydroxyl protecting group; and

 T_2 is a covalent attachment to a support media, or a support media bound nucleoside, nucleotide, oligonucleoside 10 or oligonucleotide;

- (b) treating said 5'-O-protected compound with a deprotecting reagent for a time and under conditions effective to form a 5'-O-deprotected compound;
- (c) coupling said 5'-O-deprotected compound with an 15 activated phosphorus composition of the formula:

$$R_4$$
 R_5 R_5

wherein:

 T_3 is a hydroxyl protecting group, a nucleoside, a nucleotide, an oligonucleoside or an oligonucleotide;

20 R_4 is $N(L_1)L_2$

each L_1 and L_2 is, independently, C_{1-6} straight or branched alkyl, or a C_{5-7} cyclic aliphatic ring system;

or $L_{\rm 1}$ and $L_{\rm 2}$ are joined together to form a 4- to 13- membered heterocyclic ring system including the nitrogen atom

to which L_1 and L_2 are attached, wherein said ring system optionally includes at least one additional heteroatom selected from O, N and S; and

 R_5 is X_1 ;

or R_4 and R_5 together with the phosphorus atom to which R_4 and R_5 are attached form a chiral auxiliary;

for a time and under conditions effective to form an extended compound having the formula:

10 (d) treating said extended compound with dimethylthiuram disulfide in a solvent thereby forming a sulfurized compound having the formula:

$$R_{5}$$
 R_{5}
 R_{1}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}
 R_{5}

- (e) treating said sulfurized compound with a capping reagent for a time and under conditions effective to form said oligomeric compound.
- 43. The method of claim 42 further comprising treating 5 the oligomeric compound with a reagent for a time and under conditions effective to remove said blocking groups thereby forming a deblocked oligomeric compound.
- 44. The method of claim 43 wherein said reagent is also effective to cleave the oligomeric compound from the support 10 media.
 - 45. The method of claim 44 wherein said reagent is aqueous ammonium hydroxide.
- 46. The method of claim 43 further comprising treating said oligomeric compound with a further reagent for a time 15 and under conditions effective to cleave the oligomeric compound from the support media.
- 47. The method of claim 42 further comprising treating said oligomeric compound with a deprotecting reagent for a time and under conditions effective to deprotect the T_3 20 hydroxyl protecting group.
- 48. The method of claim 42 wherein said capping reagent comprises about one part by volume of either acetic anhydride in acetonitrile or tetrahydrofuran; or chloroacetic anhydride in acetonitrile or tetrahydrofuran; added to about one part 25 by volume of either N-methylimidazole and pyridine in acetonitrile or tetrahydrofuran; or t-butylphenoxyacetic anhydride in acetonitrile or tetrahydrofuran.

- 49. The method of claim 48 wherein said capping reagent comprises about equal volumes of 20% acetic anhydride in acetonitrile mixed with a solution having 20% N-methylimidazole, 30% pyridine and 50% acetonitrile.
- 50. The method of claim 42 wherein said solvent is acetonitrile, toluene, ethyl acetate, tetrahydrofuran, dichloromethane, dichloroethane, dioxane, dimethylacetamide and dimethylformamide.
- 51. The method of claim 42 wherein said coupling of the 10 5'-O-deprotected compound with the activated phosphorus composition is performed in the presence of an activating agent.
 - 52. The method of claim 51 wherein said activating agent is 1-H-tetrazole or 4,5-dicyanoimidazole.
- 15 53. The method of claim 42 where said cyclic moiety is morpholino or phthalimido.
 - 54. The method of claim 42 wherein each $\rm L_1$ and $\rm L_2$ is, independently, $\rm C_{1-6}$ alkyl.
- 55. The method of claim 54 wherein each L_1 and L_2 is 20 isopropyl.
- 56. The method of claim 42 wherein L_1 and L_2 are joined together to form a heterocyclic ring system including the nitrogen atom to which said L_1 and L_2 are attached, wherein said ring system optionally includes at least one additional 25 heteroatom selected from O, N and S.

- 57. The method of claim 42 wherein said X_1 is Pg-O-, Pg-S-, -CH₃, CH₃-O-, morpholino or -NR₂R₃ where each R₂ and R₃ is, independently, hydrogen or C₁-C₁₀ alkyl.
- 58. The method of claim 42 wherein said Pg is CH_2CH_2CN , 5 diphenylsilylethyl, δ -cyanobutenyl, cyano p-xylyl, methyl-N-trifluoroacetyl ethyl or acetoxy phenoxy ethyl.
- 59. The method of claim 42 wherein said heterocyclic base moiety is adenine, N⁶-benzoyladenine, cytosine, N⁴-benzoylcytosine, 5-methylcytosine, N⁴-benzoyl-5-methyl10 cytosine, thymine, uracil, guanine, N²-isobutyrylguanine or 2-aminoadenine.
 - 60. The method of claim 42 wherein said dimethylthiuram disulfide is from about 0.02M to about 0.2M in said solvent.
- 61. The method of claim 60 wherein said dimethylthiuram 15 disulfide is from about 0.1M to about 0.2M in said solvent.
 - 62. A method of preparing an oligomeric compound having at least one moiety of one of the formulas:

wherein

 X_2 is 0 or S;

 X_1 is Pg-O-, Pg-S-, C_1 - C_{10} straight or branched chain alkyl, $CH_3(CH_2)_{nn}$ -O-, R_2R_3N - or a group remaining from coupling a chiral auxiliary;

5 nn is from 0 to 10;

Pg is CH₃, -CH₂CH₂CN, -C(CH₃)(CH₃)-CCl₃, -CH₂-CCl₃, -CH₂CH=CH₂, CH₂CH₂SiCH₃, 2-yl-ethyl phenylsulfonate, δ-cyanobutenyl, cyano p-xylyl, diphenylsilylethyl, 4-nitro-2-ylethylbenzene, 2-yl-ethyl-methyl sulfonate, methyl-N-tri-fluoroacetyl ethyl, acetoxy phenoxy ethyl, or a blocking group;

each R_2 and R_3 is, independently, hydrogen, $C_1\text{-}C_{10}$ alkyl, cycloalkyl or aryl;

or optionally, R_2 and R_3 , together with the nitrogen 15 atom to which they are attached form a cyclic moiety that may include an additional heteroatom selected from O, S and N;

each Bx is, independently, a heterocyclic base moiety; and

each R_1 is, independently, H, a blocked hydroxyl group, 20 or a sugar substituent group; comprising the steps of:

(a) providing a 5'-O-protected compound having one of the formulas:

or

wherein:

 T_1 is a hydroxyl protecting group; and

 T_2 is a covalent attachment to a support media, or a support media bound nucleoside, nucleotide, oligonucleoside or oligonucleotide;

- (b) treating said 5'-O-protected compound with a 5 deprotecting reagent for a time and under conditions effective to form a 5'-O-deprotected compound;
 - (c) coupling said 5'-O-deprotected compound with an activated phosphorus composition of the formula:

$$R_1$$
 O B_X R_4 R_5

10 wherein:

 T_3 is a hydroxyl protecting group, a nucleoside, a nucleotide, an oligonucleoside or an oligonucleotide;

 R_4 is $N(L_1)L_2$;

each L_1 and L_2 is, independently, C_{1-6} straight or 15 branched alkyl, or a C_{5-7} cyclic aliphatic ring system;

or L_1 and L_2 are joined together to form a 4- to 13-membered heterocyclic ring system including the nitrogen atom to which L_1 and L_2 are attached, wherein said ring system optionally includes at least one additional heteroatom

20 selected from O, N and S; and

 R_5 is X_1 ;

or R_4 and R_5 together with the phosphorus atom to which R_4 and R_5 are attached form a chiral auxiliary;

for a time and under conditions effective to form an 25 extended compound having one of the formulas:

and

- (d) treating said extended compound with a mixture comprising an oxidizing reagent and a capping reagent for a 5 time and under conditions effective to form said oligomeric compound.
 - 63. A synthetic process comprising:
- adding methylamine, carbon disulfide and an organic solvent to a basic aqueous solution, thereby forming a
 mixture;
 - adding ice and acid to said mixture, thereby forming an acidified mixture;
 - adding an oxidizing agent to said acidified
 mixture, thereby forming an oxidized mixture;
- 15 adding a non-polar solvent to said oxidized mixture, thereby forming a precipitate;
 - isolating said precipitate; and
 - washing said precipitate with aqueous acid and a non-polar organic solvent.
- 20 64. The process of claim 63 wherein said basic aqueous solution is maintained at about 0°C during said addition of methylamine, carbon disulfide and organic solvent.

- 65. The process of claim 63 wherein said acidified mixture is maintained at about 0°C to about 5°C during said addition of said oxidizing agent.
- 66. The process of claim 63 wherein said basic aqueous 5 solution is aqueous sodium hydroxide.
 - 67. The process of claim 66 wherein said sodium hydroxide has a concentration of about 2 to about 6 molar.
 - 68. The process of claim 66 wherein the concentration of said sodium hydroxide is about 4 molar.
- 10 69. The process of claim 63 wherein said methylamine is added as an aqueous solution having a concentration of methylamine of about 1 to about 3M.
 - 70. The process of claim 69 wherein said concentration of the methylamine is about 2M.
- 15 71. The process of claim 63 wherein said organic solvent is tetrahydrofuran.
 - 72. The process of claim 63 wherein said acid is glacial acetic acid.
- 73. The process of claim 63 wherein said acid is added 20 to give a final pH of about 1 to about 6.
 - 74. The process of claim 63 wherein said oxidizing agent comprises aqueous hydrogen peroxide.
 - 75. The process of claim 74 wherein said hydrogen peroxide has a concentration of about 10 to about 30%.

- 76. The process of claim 75 wherein the concentration of said hydrogen peroxide is about 30%.
- 77. The process of claim 63 wherein said non-polar organic solvent is hexanes or heptane.
- 5 78. The process of claim 63 wherein said aqueous acid is trichloroacetic acid.