Percolation Phase Transitions on Dynamically Grown Graphs

Braden Hoagland Advised by Rick Durrett

September 17, 2021

Background

Dynamically grown graphs and percolation

Every t = 1/n units of time, sample m vertices.

Can only add edges between these *m* vertices.

Every t = 1/n units of time, sample m vertices.

Can only add edges between these *m* vertices.

Let $n \to \infty$.

Percolation

A *giant component*: finite fraction of graph.

Percolation is the emergence of a giant component.

Lots of different behaviors.

Explosive Percolation

Simple rules: linear.

Prioritize merging smaller clusters: explosive percolation.

Basic Results

Continuity of the phase transition and scaling behavior

Continuity of the Phase Transition

 ℓ -vertex rule: choose ℓ vertices i.i.d., and you're only required to add an edge if all ℓ of them are in distinct clusters.

Riordan, R., and Warnke, L. (2012): continuous phase transition.

Continuity of the Phase Transition

 ℓ -vertex rule: choose ℓ vertices i.i.d., and you're only required to add an edge if all ℓ of them are in distinct clusters.

Riordan, R., and Warnke, L. (2012): continuous phase transition.

Proof by contradiction...

Scaling Behavior

For rules with continuous phase transitions, we see *scaling* behavior.

Let $\delta=t-t_c$ and let P(s,t) be the probability that a randomly chosen vertex has cluster size s at time t. Then near t_c , there are constants τ and σ such that

$$P(s) = s^{1-\tau} f(s\delta^{1/\sigma}).$$

Scaling Behavior

For rules with continuous phase transitions, we see *scaling* behavior.

Let $\delta=t-t_c$ and let P(s,t) be the probability that a randomly chosen vertex has cluster size s at time t. Then near t_c , there are constants τ and σ such that

$$P(s) = s^{1-\tau} f(s\delta^{1/\sigma}).$$

From now on, we assume scaling behavior.

Scaling Behavior

Let S be the relative size of the giant component, and let

$$\chi_k(t) = \sum_{s} s^k P(s, t).$$

Then

$$\mathsf{S}pprox \delta^eta, \qquad \chi_1(t)pprox \delta^{-\gamma}, \qquad rac{\chi_{m{k}}(t)}{\chi_{m{k}-1}(t)}pprox \delta^{-\Delta}$$

These unknowns are called *critical exponents*.

Scaling Relations

Goal: determine all critical exponents in terms of one unknown.

Why is this useful?

Scaling Relations

Goal: determine all critical exponents in terms of one unknown.

Why is this useful?

What kinds of rules can we do this for?

Generalizing rules with useful properties

Erdős Rényi

Pick two random vertices and add an edge between them.

Erdős Rényi

Pick two random vertices and add an edge between them.

Percolation occurs after $t_c = 1/2$.

 $\beta = 1$, so S grows linearly near t_c .

da Costa

Minimizing rule with equal size groups.

Originally introduced to disprove Achlioptas' discontinuity conjecture.

Same as Erdős Rényi when m = 1. As $m \to \infty$,

$$\beta \to 0$$
, $t_c \to 1$.

Finding the Critical Exponents

For any 2-choice rule, the quantity $\partial_t S$ has a simple form that can be explicitly calculated.

Near t_c , it will look like

$$\delta^a + \delta^b + \delta^c + \cdots$$

Finding the Critical Exponents

Theorem

For any 2-choice rule, there will be two dominating terms of $\partial_t S$ with the same order.

Finding the Critical Exponents

Theorem

For any 2-choice rule, there will be two dominating terms of $\partial_t S$ with the same order.

For all 2-choice rules, we can solve for all critical exponents in terms of β .

We also get the growth rate of the average cluster size.

$$\begin{split} \gamma_{a} &= 1 + (b - 1)\beta, \\ \gamma_{b} &= 1 + (a - 1)\beta, \\ \gamma_{P} &= 1 + (a + b - 2)\beta, \\ \frac{1}{\sigma} &= 1 + (a + b - 1)\beta, \\ \tau &= \frac{\beta}{1 + (a + b - 1)\beta} + 2. \end{split}$$

Asymptotics for Minimizing Rules

$$\beta \to 0$$
 as $a, b \to \infty$.

Theorem

 $\mathbf{a}\beta,\mathbf{b}\beta o 0$ as $\mathbf{a},\mathbf{b} o \infty$.

Asymptotics for Minimizing Rules

 $\beta \to 0$ as $a, b \to \infty$.

Theorem

 $a\beta, b\beta \to 0$ as $a, b \to \infty$.

$$\gamma_{a} = \gamma_{b} = \gamma_{P} = \frac{1}{\sigma} = 1,$$
 $\tau = 2.$

Asymptotics for Minimizing Rules

 $\beta \to 0$ as $a, b \to \infty$.

Theorem

 $\mathbf{a}\beta, \mathbf{b}\beta \to 0$ as $\mathbf{a}, \mathbf{b} \to \infty$.

$$\gamma_a = \gamma_b = \gamma_P = \frac{1}{\sigma} = 1,$$
 $\tau = 2.$

 $Var(s) \rightarrow \delta^{-2}$.

Future Directions

Future Directions

- Erdős Rényi is nice. Can we relate other rules to it?
 - bounded size rules
 - Universality classes
- \triangleright When is t_c ?
 - Bohman-Frieze variant
- How fast is convergence to the asymptotic case?
- When does scaling behavior actually occur?