Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики \mathbb{N}^2 3.2.1

Сдвиг фаз в цепи переменного тока

Автор:

Баранников Андрей Б01-001

Долгопрудный, 2021

Теория

В работе используются: генератор звуковой частоты(ЗГ), двухканальный электронный осциллограф (ЭО), магазин ёмкостей, магазин сопротивлений, эталонная катушка индуктивности, резисторы, универсальный измеритель импеданса (LCR - метр.)

Экспериментальная установка: Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на $puc.\ 1$ Эталонная катушка L, магазин ёмкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения звуковому генератору.

Рис. 1: Схема установки для исселдования сдвига фаз между током и напряжением

Сигнал, пропорциональный току, снимается сопротивления r, пропорциональный напряжению с генератора. Оба сигнала подаются на универсальный осциллограф, имеющий два канала вертикального отклонения. На экране ЭО ($puc.\ 1$) видны две синусоиды, смещённые друг относительно друга на расстояние x, зависящее от сдвига фаз между током и напряжением в цепи.

Измерение сдвига фаз удобно проводить следующим образом:

- 1) подобрать частоту развёртки, при которой на экране осциллогрфа укладывается чуть больше половины периода синусоиды;
 - 2) отцентрировать горизонтальную ось;
- 3) измерить расстояние x_0 (см. puc. 1) между нулевыми значениями одного из сигналов, что соответствует разности фаз π ;
- 4) измерить расстояние x между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi \cdot x/x_0$. На $puc.\ 1$ синусоиды на экране ЭО сдвинуты по фазе на $\pi/2$

На практике часто используются устройства, называемые ϕ азовращателями, которые позволяют изменять фазу напряжения в широких пределах $(0 < \psi < \pi)$.

Схема фазовращателя, применяемого в нашей работе, изображена на $puc.\ 2.$ Она содержит два одинаковых резистора R1, смонтированных на отдельной плате, магазин сопротивлений R и магазин емкостей C

Рис. 2 Схема установки для исследования фазовращателя

Найдём, как зависит сдвиг фаз между входным напряжением $U_{\rm Bx}=U_0\cos\omega t$ (точки 1 и 2 на puc.~2) и выходным напряжением $U_{\rm Bыx}$ (точки 3 и 4) от соотношения между импедансами сопротивления R и ёмкости C.

Комплексные амплитуды входного и выходного напряжений связаны соотношением:

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{2} \frac{R + \frac{i}{\omega C}}{R - \frac{i}{\omega C}}$$

Числитель и знаменатель полученного соотношения - комплексно-сопряжённые величины, модули которых одинаковы, поэтому амплитуда выходного напряжения не зависит от R и всегда равна $U_0/2$. Сдвиг фаз между входным и выходным напряжениями равен

$$\psi = arg \frac{U_{\text{\tiny BMX}}}{U_{\text{\tiny BX}}} = 2arctg \frac{1}{\omega RC}$$

Он может меняться от $\psi=\pi$ при $R\to 0$ до $\psi=0$ при $R\to \infty$

Обработка экспериментальных данных

1. Для RC-цепи построю график $ctg\psi=f(\omega CR_{\sum})$, где $R_{\sum}=R+r$ - суммарное активное сопротивление цепи

Рис. 2: График $ctg\psi=f(\omega CR_{\sum})$

2. Для RL-цепи построю график $ctg\psi=f(R_{\sum}/\omega L),$ где $R_{\sum}=R+r+R_L$

Рис. 3: График $ctg\psi=f(R_{\sum}/\omega L)$

3. Для ${\bf R}={\bf 0}$ и 100 Ом построю фазово-частотные характеристики контура:

Рис. 4: График $|\psi|=f(
u/
u_0)$ для ${
m R}=0$ Ом и ${
m R}=100$ Ом

По данным графика:

$$Q_{0 \text{ эксп}} = 22.3$$
 $Q_{100 \text{ эксп}} = 2.4$

4. Расчитаем добротность по теоретическим данным:

$$Q_{0 \text{ Teop}} = \frac{1}{R} \sqrt{\frac{L}{C}} \approx 25.5$$
 $Q_{100 \text{ Teop}} = 2.8$

По значениям видно, что теоритические данные отличаются от экспериментальных в пределах 16 %

5. Построю векторную диаграмму для фазовращателя. С помощью этой диаграммы проверю экспериментально полученное значение сопротивления R_M , при котором сдвиг фаз равен $\pi/2$

Рис. 5: Векторная диаграмма фозовращателя

Разность фаз равна $\pi/2$, когда медиана 3-4 является и высотой, т.е. когда Δ_{124} - равнобедренный треугольник.

$$U_C = U_R \quad \Rightarrow \quad |Z_C| = |Z_R| \quad \Rightarrow \quad R_{ ext{M reop}} = \frac{1}{2\pi\nu C} \approx 318 \text{ Om}$$

Измеренное значение с точностью до десятых совпадает с экспериментальным:

$$R_{M \text{ эксп}} = 318 \text{ Om}$$

6. Сведём результаты в таблицу:

ſ	$L_{\mathrm{кат}}$, м Γ н	R_M , OM	R_{\sum} , Om	Q		Фазовращ	
				Рез. кривая	f(LCR)	$R_M(\psi)$	$=\pi/2), {\rm Om}$
Ī	50	0	12,4	22,3	25,5	Эксп.	318
		100	112,4	2,4	2,8	Teop.	318