Université Paul Sabatier I.U.T. Informatique S1 - 21 Novembre 2008

Examen d'Algèbre linéaire

Durée 2h

Documents et calculatrices <u>non autorisés</u>. Tout résultat non justifié ne sera pas pris en compte. Le barème est donné à titre indicatif.

Exercice 1 (4 points)

Calculer le déterminant suivant : $\Delta = \begin{vmatrix} 1 & 2 & -3 \\ 2 & 1 & 3 \\ 1 & 3 & 0 \end{vmatrix}$

- 1. En développant par rapport à une ligne ou une colonne.
- 2. En faisant apparaître des zéros.

Exercice 2 (5 points)

Soit la matrice $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

- 1. Calculer A^2 puis $A^2 2A + I_2$.
- 2. En déduire que A est inversible et donner A^{-1} en fonction de A et de I_2 . Ecrire explicitement A^{-1} .

Exercice 3 (6 points)

On considère le système linéaire suivant :

$$\begin{cases} x + 2y + 3z = 5 \\ 2x + 5y + 7z = -1 \\ -2x - 4y - 5z = 2 \end{cases}$$

- 1. Résoudre le système linéaire par la méthode de Cramer.
- 2. Résoudre le système linéaire par la méthode de Gauss.

Exercice 4 (5 points)

1. Montrer que les vecteurs $u_1 = (0, 1, 1)$, $u_2 = (1, 0, 1)$ et $u_3 = (1, 1, 0)$ forment une base de \mathbb{R}^3 .

1

2. Trouver les composantes dans cette base du vecteur v = (1, 2, 3).