Đại học Bách Khoa TP.HCM Khoa Điện – Điện Tử Bộ môn ĐKTĐ ---000---

ĐỀ KIỂM TRA HỌC KỲ 1. Nămhọc 2014-2015

Môn: Cơ sở tự động Ngày thi:28/12/2014

Thời gian làm bài: 120 phút

(Sinh viên không được phép sử dung tài liêu in hoặc photo)

Bài 1: (2điểm) Cho hệ thống có sơ đồ khối ở Hình 1. Biết rằng $G(s) = \frac{10(s+2)}{s^2(s+5)}$.

- a) Bằng phương pháp quỹ đạo nghiệm số hãy thiết kế $G_c(s)$ sao cho hệ kín sau khi hiệu chỉnh có $\xi = 0.707 \text{ và } \omega_n = 2.83.$
- b) Tính độ vọt lố (gần đúng) của hệ thống trước khi hiệu chỉnh $G_C(s) = 1$ và sau khi hiệu chỉnh.

Bài 2:(2.5điểm) Cho hệ thống có sơ đồ khối như Hình 1. Biết rằng $G(s) = \frac{1}{s(2s+1)(0.2s+1)}$.

- Hãy thiết kế khâu trễ pha $G_C(s)$ sao cho sau hiệu chỉnh hệ thống có Kv = 100 và độ dự trữ dự trữ pha lớn hơn 40° .
- Vẽ biểu đồ Bode hệ thống sau hiệu chỉnh và xác định độ dự trữ biên, dự trữ pha.

Bài 3:(2.5 điểm) Cho hệ thống điều khiển có sơ đồ khối như hình 2.

- Vẽ QĐNS khi $\mathbf{K} = 0 \div +\infty$. Tìm \mathbf{K} để hệ thống ổn định. a)
- Xác định K để hệ kín có POT = 4.3%. Tính sai số xác lập e_{xl} với e(k) = r(k) y(k) và r(k) = 10.

Bài 4: (2 điểm) Cho mô hình phi tuyến của động cơ DC kích từ phụ thuộc như sau:

$$\begin{cases} \dot{x}_1 = -2x_1 + u \\ \dot{x}_2 = -0.5x_1 + 2 - x_1 x_3 \\ \dot{x}_3 = 3x_1 x_2 \\ y = x_2 \end{cases}$$

Chú thích các biển

 x_1 : dòng điện kích từ

 x_2 : dòng điện phần ứng

 x_3 : tốc độ động cơ

u: điện áp điều khiển

- a) Thành lập phương trình trang thái tuyến tính hóa tại điểm làm việc tĩnh $\bar{u}=2$
- b) Để xây dựng bộ ước lượng trạng thái của hệ thống tại điểm làm việc tĩnh $\bar{u} = 4$, người ta sử dụng bộ quan sát:

$$\begin{cases} \dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L[y(t) - \hat{y}(t)] \\ \hat{y}(t) = C\hat{x}(t) \end{cases}$$

Trong đó,

$$A = \begin{bmatrix} -2 & 0 & 0 \\ -1.5 & 0 & -2 \\ 0 & 6 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = 0 \quad 0 \quad 1$$

Hãy tính độ lợi $L=\ l_1\quad l_2\quad l_3^{\ T}$ sao cho bộ quan sát trạng thái có các cực tại -2.

Bài 5: (1 điểm) Để xác định các tham số của bộ điều khiển *PID* điều khiển nhiệt độ lò nhiệt, ta thực hiện theo phương pháp Ziegler-Nichols vòng hở (Ziegler-Nichols 1). Cung cấp tín hiệu đầu vào u(t) = 0.2, ta được đáp ứng ngõ ra và đường tiếp tuyến như Hình 3.

- a) Xác định K, T₁, T₂. Viết biểu thức hàm truyền lò nhiệt.
- b) Tìm hàm truyền bộ điều khiển PID rời rạc biết thời gian lấy mẫu T=0.1s

Hình 3. Đáp ứng ngõ ra và tiếp tuyến tại điểm uốn

Đáp án

Bài 1: (2 điểm)

a) Thiết kế $G_C(s)$:

Yêu cầu hiệu chỉnh đáp ứng quá độ nên giải bài toán theo phương pháp bù sớm pha.

Cặp cực quyết định:

$$s_{1,2}^* = -\xi \omega_n \pm j\omega_n \sqrt{1 - \xi^2} = -2 \pm j2$$
 (0.25d)

Góc pha cần bù: (0.25đ)

$$\phi^* = -180^0 + 2\arg(-2 + j2 - 0) + \arg(-2 + j2 + 5) - \arg(-2 + j2 + 2)$$
$$= -180^0 + 2(135^0) + (33.7^0) - 90^0 = 33.7^0$$

Cực & zero : (0.50đ)

$$OB = OP \frac{\sin\left(\frac{O\hat{P}x}{2} + \frac{\phi^*}{2}\right)}{\sin\left(\frac{O\hat{P}x}{2} - \frac{\phi^*}{2}\right)} = 2.83 \frac{\sin\left(\frac{135}{2} + \frac{33.7}{2}\right)}{\sin\left(\frac{135}{2} - \frac{33.7}{2}\right)} = 2.83 \frac{0.995}{0.773} = 3.64$$

$$OC = OP \frac{\sin\left(\frac{O\hat{P}x}{2} - \frac{\phi^*}{2}\right)}{\sin\left(\frac{O\hat{P}x}{2} + \frac{\phi^*}{2}\right)} = 2.83 \frac{\sin\left(\frac{135}{2} - \frac{33.7}{2}\right)}{\sin\left(\frac{135}{2} + \frac{33.7}{2}\right)} = 2.83 \frac{0.773}{0.995} = 2.2$$

$$G_C(s) = K_C \frac{s + 2.2}{s + 3.64}$$

Hệ số khuếch đại: (0.25đ)

$$\left| K_C \frac{s+2.2}{s+3.64} \cdot \frac{10(s+2)}{s^2(s+5)} \right|_{s=s_1^*} = K_C \left| \frac{(-2+j2+2.2) \cdot 10 \cdot (-2+j2+2)}{(-2+j2+3.64)(-2+j2)^2(-2+j2+5)} \right| = 1$$

$$K_C = 1.86$$

Vậy:
$$G_C(s) = 1.86 \frac{s + 2.2}{s + 3.64}$$

b. Tính độ vot lố

• Trước khi hiệu chỉnh:

Phương trình đặc trưng : 1+G(s)=0

$$s^{3} + 5s^{2} + 10s + 20 = 0$$

(s + 3.76)(s + 0.62 + j2.22)(s + 0.62 - j2.22) = 0

$$\rightarrow \begin{cases}
\xi = 0.27 \\
\omega_n = 2.3
\end{cases} \rightarrow POT = \exp\left(\frac{-\pi\xi}{\sqrt{1-\xi^2}}\right).100\% = 41.44\%$$
(0.5d)

• Sau khi hiệu chỉnh:

$$\begin{cases} \xi = 0.707 \\ \omega_n = 2.83 \end{cases} \rightarrow POT = 4.33\% \tag{0.25d}$$

Độ vọt lố giảm gần 10 lần.

Bài 2:

$$G(s) = \frac{1}{s(2s+1)(0.2s+1)}$$

Bộ điều khiển trể pha có dạng $G_c(s) = K_c \frac{\beta T s + 1}{T s + 1}; \beta < 1$

$$K_{\nu} = \lim_{s \to 0} sG(s) = \frac{1}{1.1} = 1$$

$$K_{\nu}^{*} = K_{c}.K_{\nu} = 100 \Longrightarrow K_{c} = 100$$
(0.25đ)

Bode của $G_1(s) = K_c.G(s)$

Bode biên độ

ω (rad/s)	< 0.5	<5	
1/s	-20	-20	-20
1/(2s+1)	0	-20	-20
1/(0.2s+1)	0	0	-20
G(s)	-20	-40	-60

Bode pha

$$\varphi(\omega) = -90 - \arctan(2\omega) - \arctan(0.2\omega)$$

ω	0.01	0.1	0.4	0.5	1	5	10	20	100
phi(<i>ω</i>)	-91.26	-102.46	-133.26	-140.74	-164.78	-219.35	-240.65	-254.62	-266.94

$$L(0.01) = 20\log(\frac{100}{0.01*1*1}) = 80$$
dB

Từ yêu cầu đề bài
$$\Rightarrow$$
 pha tại tần số cắt mới là $\varphi(\omega_c^*) = -180 + \phi M^* + \theta = -135 \ (\theta = 5)$
Tần số cắt mới khi có bộ trể pha $\omega_c^* \approx 0.4 rad / s$ (0.5đ)

Biên độ tại tần số cắt mới: $L_{\rm l}(\omega_c^*)=45dB$

Như vậy:
$$-20\log(\beta) = L_1(\omega_c^*) \implies \beta = 0.0052$$
 (0.5đ)

(Nếu SV tính giải tích, không dựa vào biểu đồ Bode vẫn được tính điểm)

Chọn zero và cực của bộ điều khiển $z_c = \frac{1}{\beta T} = \frac{\omega_c^*}{10} = 0.04$

$$p_c = \beta z_c = 0.00021$$

$$G_c(s) = 100 \frac{25s + 1}{4763s + 1} \tag{0.5d}$$

Bode sau hiệu chỉnh (0.5đ)

Biên độ

· ·					
w(rad/s)	< 0.0002	< 0.04	< 0.5	<5	
1/s	-20 dB	-20 dB	-20 dB	-20 dB	-20 dB
1/(4763s+1)	0 dB	-20 dB	-20 dB	-20 dB	-20 dB
25s+1	0 dB	0 dB	20 dB	20 dB	20 dB
1/(2s+1)	0 dB	0 dB	0 dB	-20 dB	-20 dB
(1/(0.2s+1)	0 dB	0 dB	0 dB	0 dB	-20 dB
G(s)	-20 dB	-40 dB	-20 dB	-40 dB	-60dB

Pha

w	0.01	0.1	0.4	0.5	1	5	10	20	100
phi(w)	-166.06	-124.15	-138.94	-145.29	-167.06	-219.81	-240.88	-254.73	-266.96

Độ dự trữ biên và pha sau hiệu chỉnh: (0.25đ)

$$GM \approx 20dB \ 20dB$$

$$\Phi M \approx 41dB$$

Bài 3:

a. Vẽ QĐNS khi $0 \le K \le +\infty$

Phương trình đặc trưng hệ kín:

$$1 + G(z) = 0$$

trong đớ:
$$G(z) = (1 = z^{-1}) \square \left\{ \frac{G(s)}{s} \right\} = K \frac{0.0368z + 0.0264}{(z - 1)(z - 0.368)}$$

$$\Rightarrow 1 + G(z) = 1 + K \frac{0.0368z + 0.0264}{(z - 1)(z - 0.368)} = 0$$
(0.5đ)

- Cực: $p_1 = 1$, $p_2 = 0.368$

Zero: $z_1 = -0.718$

- Tiệm cận:
$$\alpha = -\pi$$
 (0.25đ)

- Điểm tách nhập: Từ phương trình đặc trưng:

$$\Rightarrow K = -\frac{z^2 - 1.368z + 0.368}{0.0368z + 0.0264}$$

$$\Rightarrow \frac{dK}{dz} = 0 \Leftrightarrow z_1 = 0.648, z_2 = -2.09 \text{ (nhận cả 2 điểm)}$$
(0.5đ)

- Giao điểm QĐNS với vòng tròn đơn vị:

Phương trình đặc trưng hệ kín:

$$P(z) = 1 + G(z) = 1 + K \frac{0.0368z + 0.0264}{(z - 1)(z - 0.368)} = z^2 + (0.0368K - 1.368)z + 0.386 + 0.0264K = 0$$
(1)

Dùng tiêu chuẩn ổn định Jury xét ổn định:

$$1. a_0 > |a_n| \Rightarrow 1 > |0.368 + 0.0264K| \Rightarrow K < 23.9$$

2.
$$P(1) = 0.0632K > 0 \Rightarrow K > 0$$

3.
$$P(-1) = 2.736 - 0.0104K > 0 \Rightarrow K < 263$$

Điều kiện để hệ ổn định : 0 < K < 23.9

$$\Rightarrow$$
 Giao điểm của QĐNS với đường tròn đơn vị: $z = 0.246 \pm j0.967$ (0.25đ)

Hình QĐNS đúng, chú thích đầy đủ: (0.5đ)

b. Tìm K để độ vọt lố POT = 4.3%

$$POT = \exp\left(\frac{-\xi\pi}{\sqrt{1-\xi^2}}\right) = 4,3\% \Rightarrow \xi = 0.707$$

Phương trình đặc trưng hệ thống kín:

$$z^{2} + (0.0368K - 1.368)z + 0.386 + 0.0264K = 0$$
 (1)

PTĐT mong muốn: $z_{1,2}^* = r(\cos \varphi \pm j \sin \varphi) = e^{-0.0707\omega}(\cos(0.0707\omega) \pm j \sin(0.0707\omega))$

$$(z - z_1^*)(z - z_2^*) = 0$$

$$z^2 - 2r\cos\varphi \cdot z + r^2 = 0$$

$$z^2 - 2e^{-0.0707\omega}\cos(0.0707\omega)z + e^{-2*0.0707\omega} = 0$$

$$\text{Dăt } x = 0.0707\omega$$
(2)

Cân bằng (1) và (2):

$$\begin{cases}
-2e^{-x}\cos(x) = 0.0368 \,\mathrm{K} - 1.368 \\
e^{-2x} = 0.368 + 0.0264 \,K
\end{cases}$$

$$\Rightarrow x = \arccos[0.945e^{x} - 0.697e^{-x}]$$

$$\Rightarrow \begin{cases} x = 0.394 \\ K = 3.3 \end{cases} \tag{0.25d}$$

Tính sai số xác lập khi r(t) = 10: Do hệ hở có 1 khâu tích phân lý tưởng nên sai số khi tín hiệu vào là hàm nắc bằng 0 (0.25đ)

Bài 4:

a. Điểm dừng tương ứng với $\bar{u} = 2$ là nghiệm của phương trình:

$$\begin{cases}
-2\overline{x}_{1} + \overline{u} = 0 \\
-0.5\overline{x}_{1} + 2 - \overline{x}_{1}\overline{x}_{3} = 0
\end{cases} \Rightarrow \begin{cases}
\overline{x}_{1} = 1 \\
\overline{x}_{2} = 0 \\
\overline{x}_{3} = 1.5
\end{cases}$$
(0.25d)

Phương trình trạng thái tuyến tính quanh điểm dừng:

$$\begin{cases} \dot{\tilde{x}}(t) = A\tilde{x}(t) + B\tilde{u}(t) \\ \tilde{y}(t) = C\tilde{x}(t) \end{cases}$$

Trong đó: $\tilde{x}(t) = x(t) - \overline{x}, \tilde{u}(t) = u(t) - \overline{u}, \tilde{y}(t) = y(t) - \overline{y}$

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} \end{bmatrix}_{\substack{|x=\overline{x} \\ u=\overline{u}}} = \begin{bmatrix} -2 & 0 & 0 \\ -0.5 - \overline{x}_3 & 0 & -\overline{x}_1 \\ 3\overline{x}_2 & 3\overline{x}_1 & 0 \end{bmatrix}_{\substack{|x=\overline{x} \\ u=\overline{u}}} = \begin{bmatrix} -2 & 0 & 0 \\ -2 & 0 & -1 \\ 0 & 3 & 0 \end{bmatrix}$$
 (0.25d)

$$B = \begin{bmatrix} \frac{\partial f_1}{\partial u} \\ \frac{\partial f_2}{\partial u} \\ \frac{\partial f_3}{\partial u} \end{bmatrix}_{\substack{x = \overline{x} \\ u = \overline{u}}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \frac{\partial h}{\partial x_3} \end{bmatrix}_{\substack{x = \overline{x} \\ u = \overline{u}}} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
 (0.25d)

b. Phương trình đặc trung bộ quan sát trạng thái

$$\det(sI - A + LC) = 0$$

$$\Rightarrow \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -2 & 0 & 0 \\ -1.5 & 0 & -2 \\ 0 & 6 & 0 \end{bmatrix} + \begin{bmatrix} l_1 \\ l_2 \\ l_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} -2 & 0 & 0 \\ -1.5 & 0 & -2 \\ 0 & 6 & 0 \end{bmatrix} + \begin{bmatrix} l_1 \\ l_2 \\ l_1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \det \begin{bmatrix} s+2 & 0 & l_1 \\ 1.5 & s & l_2+2 \\ 0 & -6 & s+l_3 \end{bmatrix} = 0$$

$$\Rightarrow s(s+2)(s+l_3) - 9l_1 + 6(s+2)(l_2+2) = 0$$

$$\Rightarrow s^3 + (l_3+2)s^2 + (2l_3+6l_2+12)s - 9l_1 + 12l_2 + 24 = 0 \qquad (1)$$
(0.5d)

Phương trình đặc trưng mong muốn:

$$(s+2)^3 = 0$$

$$\Rightarrow s^3 + 6s^2 + 12s + 8 = 0$$
 (2) (0.25đ)

Cân bằng phương trình (1) và (2), suy ra:

$$\begin{cases} l_3 + 2 = 6 \\ 2l_3 + 6l_2 + 12 = 12 \\ -9l_1 + 12l_2 + 24 = 8 \end{cases} \Rightarrow \begin{cases} l_1 = 0 \\ l_2 = -4/3 \\ l_3 = 4 \end{cases}$$
 (0.5đ)

Kết luận: $L = \begin{bmatrix} 0 & -4/3 & -4 \end{bmatrix}^T$

Bài 5:

a. Từ đồ thị ta có:

$$T_1 \approx 15, T_2 \approx 170 \text{ (giây)}$$

$$y_{xl} = 30$$
 \Rightarrow $K = \frac{y_{xl}}{u_{xl}} = \frac{30}{0.2} = 150$

Hàm truyền gần đúng của lò nhiệt là :
$$G(s) = \frac{Ke^{-T_1 s}}{T_2 s + 1} = \frac{150e^{-15 s}}{170s + 1}$$
 (0.5đ)

(sinh viên tìm ra hàm truyền khác gần đúng như trên cũng được tính điểm)

b. Thiết kế bô điều khiển PID:

Bộ điều khiển PID liên tục:
$$G_{PID}(s) = K_P \left(1 + \frac{1}{T_I s} + T_D s \right)$$

Theo phương pháp Zeigler-Nichol, ta có:

$$K_P = 1.2 \frac{T_2}{T_1 K} = 1.2 \frac{170}{15 \times 150} \approx 0.09$$

$$T_I = 2T_1 = 30$$

$$T_D = 0.5T_1 = 7.5$$

$$\Rightarrow$$
 $G_{PID}(s) = 0.09 + \frac{0.003}{s} + 0.675s$

Hàm truyền bộ điều khiển PID rời rạc:

$$G_{PID}(z) = K_P + \frac{K_I T}{2} \frac{z - 1}{z + 1} + \frac{K_D}{T} \frac{z - 1}{z} = 0.06 + 0.00015 \frac{z - 1}{z + 1} + 6.75 \frac{z - 1}{z}$$
 (0.5d)