MA 109 D2 T1 Week One Extra Recap

Siddhant Midha

https://siddhant-midha.github.io/

November 13, 2022

Logistics!

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$,

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon>0$, there exists $N_0\in\mathbb{N}$

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that,

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon > 0$, there exists $N_0 \in \mathbb{N}$ such that,

$$|a_n - L| < \epsilon$$
 whenever $n > N_0$

Definition (Convergence)

A real sequence $\{a_n\}_n$ is said to converge to a real number L , if $\forall \epsilon>0$, there exists $N_0\in\mathbb{N}$ such that,

$$|a_n - L| < \epsilon$$
 whenever $n > N_0$

A sequence which does not converge is said to diverge, or be non-convergent.

Proposition

Proposition

Let a_n and b_n be real convergent sequences.

1 The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.

Proposition

- The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).

Proposition

- The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- **5** $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .

Proposition

- **1** The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- **5** $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- **1** If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **3** Sandwich Property: If $a_0 = b_0$ and there is a sequence f_n such that

Proposition

- The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **Sandwich Property**: If $a_0 = b_0$ and there is a sequence f_n such that

$$a_n \leq f_n \leq b_n \ \forall n$$

Proposition

Let a_n and b_n be real convergent sequences.

- ① The sequences converge to unique real numbers. Denote them as a_0 , and b_0 respectively.
- ② a_n and b_n are bounded (that is, both lower and upper bounded).
- **3** The sequence $p_n := |a_{n+1} a_n|$ converges to 0.
- $c_n := a_n \pm b_n$ is convergent, and converges to $a_0 \pm b_0$.
- \bullet $d_n := a_n \times b_n$ is convergent, and converges to $a_0 \times b_0$.
- If $b_n \neq 0 \ \forall n$, then $e_n := a_n/b_n$ is convergent, and converges to a_0/b_0 .
- **Sandwich Property**: If $a_0 = b_0$ and there is a sequence f_n such that

$$a_n \leq f_n \leq b_n \ \forall n$$

then f_n converges, and the limit is $f_0 = a_0 = b_0$.

November 13, 2022

One has to be careful about the nature of implications and their use.

• If, $A \implies B$ holds, then B is a necessary condition for A.

- If, $A \implies B$ holds, then B is a necessary condition for A.
- The implication $A \Longrightarrow B$ is equivalent to $\neg B \Longrightarrow \neg A$.

- If, $A \Longrightarrow B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \implies$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!

One has to be careful about the nature of implications and their use.

- If, $A \Longrightarrow B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \implies$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!
- If $A \implies B$ holds, then A is a sufficient condition for A.

5/7

- If, $A \Longrightarrow B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \Longrightarrow$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!
- If $A \implies B$ holds, then A is a sufficient condition for A.
- The implication $A \Longrightarrow B$ does not mean that $B \Longrightarrow A$ too!

- If, $A \implies B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \implies$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!
- If $A \implies B$ holds, then A is a sufficient condition for A.
- The implication $A \Longrightarrow B$ does not mean that $B \Longrightarrow A$ too!
- Example 2: Boundedness is necessary for convergence, but it is not sufficient!

- If, $A \implies B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \implies$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!
- If $A \implies B$ holds, then A is a sufficient condition for A.
- The implication $A \implies B$ does not mean that $B \implies A$ too!
- Example 2: Boundedness is necessary for convergence, but it is not sufficient! For example,

One has to be careful about the nature of implications and their use.

- If, $A \Longrightarrow B$ holds, then B is a necessary condition for A.
- The implication $A \implies B$ is equivalent to $\neg B \implies \neg A$.
- Example 1: Convergence of $a_n \implies$ boundedness of $\{a_n\}$. Boundedness of $\{a_n\}$ is necessary for convergence. Further, unboundedness of $\{a_n\}$ implies a_n is **not** convergent!
- If $A \implies B$ holds, then A is a sufficient condition for A.
- The implication $A \implies B$ does not mean that $B \implies A$ too!
- Example 2: Boundedness is necessary for convergence, but it is not sufficient! For example,

The sequence $a_n := (-1)^n$ does not converge. Proof?

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

That is, for a monotonically increasing sequence,

boundedness ⇔ **convergence**

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

That is, for a monotonically increasing sequence,

 $boundedness \Leftrightarrow convergence$

Exercises.

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

That is, for a monotonically increasing sequence,

boundedness \Leftrightarrow **convergence**

Exercises.

Show that

$$a_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

does not converge to any real number.

Theorem (Monotone Convergence)

An upper bounded (lower bounded) real sequence a_n which is monotonically increasing (decreasing) converges. Further,

$$\lim_{n\to\infty}a_n=\sup\{a_n\}\;\big(\inf\{a_n\}\big)$$

That is, for a monotonically increasing sequence,

boundedness \Leftrightarrow **convergence**

Exercises.

Show that

$$a_n := 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

does not converge to any real number.

Show that

$$b_n := 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
 does converge.

• We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.

- We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.
- An interesting equivalence. Show that, a real sequence a_n converges to $L \in \mathbb{R}$ if and only if it has the property that every neighbourhood $N_r(L)$ contains all but finitely many points of a_n . Note that we define neighbourhoods as

$$N_r(L) := \{x \in \mathbb{R} \mid |x - L| < r\}$$

- We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.
- An interesting equivalence. Show that, a real sequence a_n converges to $L \in \mathbb{R}$ if and only if it has the property that every neighbourhood $N_r(L)$ contains all but finitely many points of a_n . Note that we define neighbourhoods as

$$N_r(L) := \{x \in \mathbb{R} \mid |x - L| < r\}$$

- [Tutorial] Let a_n and b_n be real sequences. Do the following properties guarantee the convergence of $c_n := a_n b_n$?
 - $\mathbf{0}$ a_n is convergent

- We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.
- An interesting equivalence. Show that, a real sequence a_n converges to $L \in \mathbb{R}$ if and only if it has the property that every neighbourhood $N_r(L)$ contains all but finitely many points of a_n . Note that we define neighbourhoods as

$$N_r(L) := \{x \in \mathbb{R} \mid |x - L| < r\}$$

- [Tutorial] Let a_n and b_n be real sequences. Do the following properties guarantee the convergence of $c_n := a_n b_n$?
 - $\mathbf{0}$ a_n is convergent
 - a_n is convergent and b_n is bounded

- We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.
- An interesting equivalence. Show that, a real sequence a_n converges to $L \in \mathbb{R}$ if and only if it has the property that every neighbourhood $N_r(L)$ contains all but finitely many points of a_n . Note that we define neighbourhoods as

$$N_r(L) := \{x \in \mathbb{R} \mid |x - L| < r\}$$

- [Tutorial] Let a_n and b_n be real sequences. Do the following properties guarantee the convergence of $c_n := a_n b_n$?
 - $\mathbf{0}$ a_n is convergent
 - a_n is convergent and b_n is bounded

- We talk about sequences 'going to infinity'. How do we make this definition precise? Use the format of the $\epsilon-N$ definitions to think about this.
- An interesting equivalence. Show that, a real sequence a_n converges to $L \in \mathbb{R}$ if and only if it has the property that every neighbourhood $N_r(L)$ contains all but finitely many points of a_n . Note that we define neighbourhoods as

$$N_r(L) := \{x \in \mathbb{R} \mid |x - L| < r\}$$

- [Tutorial] Let a_n and b_n be real sequences. Do the following properties guarantee the convergence of $c_n := a_n b_n$?
 - \bigcirc a_n is convergent
 - 2 a_n is convergent and b_n is bounded

