Predicting Heart Disease

— Alex Zieky & Amin Nazerzadeh — —

Data

- Kaggle (Originated from UCI, Machine Learning Repository)
- 1025 Observations
 - Hungarian Institute of Cardiology. Budapest
 - University Hospital, Zurich, Switzerland
 - University Hospital, Basel, Switzerland
 - V.A. Medical Center, Long Beach
 - Cleveland Clinic Foundation
- Target Variable: Heart Disease
 - **Arrhythmia**: Heart rhythm abnormality
 - Atherosclerosis: Harding of the arteries
 - o **Cardiomyopathy**: Heart muscles harden or grow weak
 - Congenital Heart Defects: Heart irregularities that are present at birth
 - o **Coronary Artery Disease**: Caused by the buildup of plaque in the heart's arteries
 - Heart Infections: Heart infections may be caused by bacteria, viruses, or parasites

Features

- 1. Age
- 2. Sex
- 3. Chest Pain
 - a. Typical Angina
 - b. Atypical Angina
 - c. Non-Anginal Pain
 - d. Asymptomatic
- 4. Resting Blood Pressure
- 5. Cholesterol
- 6. Fasting Blood Sugar
 - a. Test is done in the morning to determine how much glucose (sugar) is in a blood sample after an overnight fast.

- 7. Resting Electrocardiographic Results
- 8. Maximum Heart Rate Achieved
- 9. Exercise Induced Angina
- 10. Oldpeak
 - a. ST Depression induced by exercise relative to rest
- 11. Slope
 - a. Slope of the peak exercise ST segment
- 12. Number of Major Vessels
 - a. Fluoroscopy is used to help the healthcare provider see the flow of blood through the coronary arteries to check for arterial blockages.
- 13. Thalassemia
 - a. Blood Disorder

Business Questions

- 1. Which features should doctors look at when trying to predict Heart Disease?
- 2. Can we help everyday people determine if they need to start monitoring their heart?
- 3. Can our model confidently predict if a patient has a Heart Disease?

Metrics

- Recall
 - Goal: Limit False Negatives

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

- F1 Score
 - o Goal: Further evaluate our model

$$F_1 = 2 * \frac{Precision * Recall}{Precision + Recall}$$

Business Question 1: Most Important Features

Thalassemia

- Hereditary blood disorder in which the body makes an abnormal form or inadequate amount of Hemoglobin (the protein in red blood cells that carries oxygen)
- The disorder results in large number of red blood cells being destroyed, which leads to anemia

Business Question 1: Most Important Features

Max Heart Rate

- Heart rate is the speed of the heartbeat measured by the number of contractions of the heart per minute
- Healthy Patients vs Patients with Heart Disease
- Max Heart Rate vs Age

Business Question 1: Most Important Features

Oldpeak

- ST depression test refers to a finding on an electrocardiogram, wherein the trace in the ST segment is abnormally low below the baseline.
- Scoring Scale

Business Question 2: Common Features

Age & Gender

- When to start monitoring your heart
- Male vs Female
- Age Groups

Business Question 2: Common Features

Chest Pain

- Angina is chest pain or discomfort caused when your heart muscle doesn't get enough oxygen-rich blood.
- Two Types
 - Typical
 - Heaviness, pressure, weight, vise-like aching, burning, tightness.
 - Relatively Predictable
 - Lasts 3-15 min
 - Atypical
 - Sharp Pain
 - Random Onset
 - Lasts seconds

Business Question 3: Predicting Heart Disease

Model Goal

Applications

Suggestion 1: Both male and female above 40 do regular checking for heart diseases so it can preventable at early stages.

Suggestion 2: When a patient is checking in, measure the importance features to identify any heart diseases.

Suggestion 3: Patients with Max Heart Rate above 160 should schedule regular check-ins with their doctor.

Further Analysis

To continue this project, we would suggest:

- Find similar data sets that have lot more features to work with
- Re-collecting data as more becomes available
- Automating collection and analysis methods to always have up to date information
- Consult with a healthcare expert to gain more knowledge about the dataset and features

Thank You

Any Questions?