การออกแบบจรวดให้พิสัยการยิงมากที่สุดในช่วงความเร็วต่ำกว่าเสียง สำหรับ รายการแข่งขัน Thailand CANSAT-ROCKET Competition 2022

ธรรศวริทธิ์ เครือคล้าย¹, ชินกฤต เหล่ากิตติชัย¹, วิศิษฎ์ วิพัฒน์เกษมสุข¹, พชร ภูมิประเทศ¹

^กโรงเรียนอัสสัมชัญ ^ขสถาบันเทคโนโลยีป้องกันประเทศ

ที่มาและความสำคัญ

ปัจจุบันการพัฒนาด้านวิศวกรรมการบิน และอวกาศของประเทศไทยยังคงอยู่ในช่วงเริ่มต้น โดยการยิง จรวดเพื่อการวิจัยทดสอบก่อนนำระบบไปใช้จริงนั้นเป็นหนึ่งในขั้นตอนสำคัญในการทำงาน ด้วยเหตุนี้จึงมีการ จัดการแข่งขัน Thailand CANSAT-ROCKET Competition 2022 ซึ่งเปิดโอกาสให้นักเรียนระดับมัธยมปลายได้ ออกแบบดาวเทียมจำลอง และจรวดเป็นของตนเอง โดยได้รับการสนับสนุนจากกระทรวงวิทยาศาสตร์ และ เทคโนโลยีแห่งชาติ (สวทช.) และสถาบันเทคโนโลยีป้องกันประเทศ (สทป.) การศึกษานี้จะศึกษาปัจจัยที่ส่งผลต่อ การออกแบบจรวดให้ลู่ลม เพื่อพิสัยการยิงสูงสุดของจรวด ภายใต้ข้อจำกัดของการแข่งขัน

ข้อจำกัดในการออกแบบจรวด

รายการแข่งขัน Thailand CANSAT TOCKET Competition 2022 กำหนดให้ใช้ท่อจรวดที่มีเส้นผ่าน ศูนย์กลางนอก 80 mm โดยมีความหนา 2 mm และใช้มอเตอร์จรวดที่มีการดลรวม 255 mS ในการขับเคลื่อน

ภาพที่ 1: กราฟแรงขับของมอเตอร์จรวดจากโปรแกรม Thrust Curve Tool

ระเบียบวิธีการวิจัย

1. การออกแบบหัวจรวด ทำการทดลองทดสอบอิทธิพลจากการใช้หัวจรวดทุกประเภทที่สามารถ Simulation ผ่านโปรแกรม OpenRocket ซึ่งได้แก่ LV-Haack, LD-Haack, 0.5 Parabola, 0.75 Parabola, Ellipsoid. Conical. Tangent Ogive และ Secant Ogive ที่ความยาวตั้งแต่ 1 – 30 cm ซึ่งรวมถึงช่วงความยาวใน อัตราส่วน 2 – 3 เท่าซึ่งเป็นช่วงที่เหมาะสมตามทฤษฎีการออกแบบหัวจรวด เมื่อเปรียบเทียบกับเส้นผ่าน ศูนย์กลางนอกของท้อจรวด โดยค่าที่พล็อตร่วมกับความยาวหัวจรวด คือข้อมูล Nose Cone Pressure Drag, Nose Cone Friction Drag และ Body Friction Drag ซึ่งนำเข้าข้อมูลจากแท็บ Drag Characteristic ของ หน้าต่าง Component Analysis จากโปรแกรม OpenRocket มาพล็อตเพื่อวิเคราะห์ในโปรแกรม Minitab

กราฟที่ 6: ความยาวหัวจรวด Ellipsoid - แรงฉุด

กราฟที่ 5: ความยาวหัวจรวด 0.75 Parabola – แรงฉุด

กราฟที่ 7: ความยาวหัวจรวด Conical – แรงฉุด

กราฟที่ 8: ความยาวหัวจรวด Secant Ogive - แรงฉุด

จะเห็นได้ว่าลักษณะของกราฟนั้นแบ่งออกเป็น 2 ประเภท ประเภทแรกคือกราฟที่มี แรงฉุดจากความดันต่อหัว จรวด (Nose Cone Pressure Drag) ใกล้เคียงกับ 0 คือกราฟที่ 1 – 5 ซึ่งได้แก่หัวจรวดทรง Von Karman, LV-Haack, 0.5 Parabola, Tangent Ogive และ 0.75 Parabola และประเภทที่ 2 คือกราฟที่ 6 – 8 คือประเภทที่มี แรงฉุดจากความดันต่อหัวจรวดต่ำลงตามความยาวของหัวจรวด ซึ่งตามทฤษฎีทางอากาศพลศาสตร์ แนวโน้มของ แรงฉุดความดันต่อหัวจรวดควรเป็นเหมือนกราฟประเภทที่ 2 คือแรงฉุดจากความดันจะมีค่ามากเมื่อหัวจรวดมี ลักษณะทู่ และต่ำลงเมื่อหัวมีลักษณะแหลมมากขึ้น ดังนั้นผู้ศึกษาจึงตั้งสมมติฐานเพื่อเลือกความยาวที่เหมาะสม ของหัวจรวดว่าแท้จริงแล้วแรงฉุดจากความดันของกราฟประเภทแรก ย่อมต้องเป็นไปในทิศทางเดียวกับกราฟ ประเภทที่ 2 และโดยภาพรวม ตัวแปรที่มีความผันแปรมากที่สุดตามความยาวของหัวจรวด คือแรงฉุดจากความดัน ต่อหัวจรวด โดยจากกราฟ อัตราการลดลงของแรงฉุดจากความดันต่อหัวจรวดจะลดลงเมื่อมีหัวจรวดมีความยาว มากขึ้น ความสูงของจรวดนั้นขึ้นอยู่กับ 2 ปัจจัยหลัก คือมวลของจรวด และแรงฉุดรวมต่อจรวด ซึ่งความยาวของ หัวจรวดส่งผลต่อทั้ง2 ปัจจัย ผู้ศึกษาจึงต้องหาจุดสมดุลระหว่างอิทธิพลของทั้ง 2 ปัจจัยเพื่อเลือกความยาวหัวจรวด ที่มีความเหมาะสมที่สุด แต่ด้วยข้อจำกัดด้านเวลา ผู้ศึกษาเลือกใช้หัวจรวดความยาว 12 เซนติเมตร ซึ่งเป็นความ ยาวที่ผู้ศึกษาเห็นว่าหลังจากพ้นค่านี้ไปแล้ว การเพิ่มความยาวของหัวจรวดจะลดปริมาณแรงฉุดเพียงเล็กน้อย

สำหรับการคัดเลือกรูปร่างหัวจรวด ผู้ศึกษาใช้การคัดเลือกจากการทบทวนวรรณกรรม และใช้หัวจรวดทรง Von Karman ซึ่งเป็นทรงหัวจรวดที่ถูกออกแบบขึ้นมาเพื่อลดแรงฉุดโดยเฉพาะ โดยสมการเพื่อกำหนดรูปร่างของหัว จรวดทรง Von Karman คือ

$$y = \frac{1}{\sqrt{\pi}} \sqrt{\theta - \frac{1}{2} \sin{(2\theta)}}$$

สมการที่ 1: เส้นโค้ง Von Karman

เมื่อ $\theta = cos^{-1}(1-2x)$

จึงนำสมการดังกล่าวไปเขียนโปรแกรมในโปรแกรม Matlab ดังภาพที่ 9 โดยกำหนดให้เส้นผ่านศูนย์กลางของหัว จรวดเท่ากับ 80 และความยาวหัวจรวดเท่ากับ 120 ซึ่งจากการเพิ่มค่าความยาวหัวจรวดในลูปของโปรแกรมแต่ละ ครั้ง ครั้งละ 0.1 ทำให้ได้พิกัดเพื่อสร้างเส้นโค้ง Von Karman ทั้งหมด 1200 พิกัด โดยได้ทำการพล็อตทดสอบดัง ภาพที่ 10 จากนั้นนำเข้าพิกัดเข้าสู้โปรแกรม SolidWorks ทำการ Offset 2 เซนติเมตร แล้ว Revolve รอบแกนให้ หัวจรวด Von Karman มีความหนา 2 เซนติเมตร จากนั้นสร้าง Shoulder โดยกำหนดให้มีเส้นผ่านศูนย์กลางนอก เล็กกว่าท่อจรวด 0.5 เซนติเมตร และมีความยาว 5 เซนติเมตร เพื่อให้สามารถเสียบหัวจรวดเข้ากับท่อจรวดได้พอดี

2.การออกแบบครีบจรวด เนื่องจากผู้ศึกษามีความสนใจในการออกแบบครีบจรวดแบบสี่เหลี่ยมคางหมู การศึกษา นี้จึงมุ่งศึกษาปัจจัยที่ส่งผลต่อความสูงของครีบจรวดแบบสี่เหลี่ยมคางหมู ซึ่งตัวแปรที่สำคัญที่สุดในการออกแบบ ครีบแบบสี่เหลี่ยมคางหมู คือความยาวคอร์ดปลายครีบ โดยความยาวคอร์ดปลายครีบจะส่งผลต่อสมดุล และความ สูงการยิงของจรวดในการจำลอง ซึ่งการเลือกความยาวคอร์ดปลายครีบที่เหมาะสมที่สุด ควรเลือกจากจุดสมดุล ระหว่างความสูงการยิง และความสมดุล ซึ่งสามารถคำนวณได้จากสมการที่ 2 ซึ่งจากกราฟที่ 4 จะเห็นได้ว่าจุดสมดลอยู่ที่ความยาวคอร์ดปลายครีบราว 1.8 cm แต่เพื่อความสะดวกในการผลิต ครีบจรวดจริงจึงใช้ความยาวคอร์ด ปลายครีบ 2 cm ซึ่งเป็นจำนวนเต็มที่อยู่ใกล้ 1.8 cm มากที่สุด

```
NoseCone.m × +
 1
         nose long=120;
         nose_cone_length=80;
 2
          step_size=.1;
         k=0;
         for X = 0:step_size:nose_long
          k = k + 1;
         x=X/nose_long;
          theta=acos(1-2*x);
         r(k) = sqrt((theta-(1/2)*sin(2*theta))/pi);
10
         r(k)=r(k)*(nose_cone_length/2);
11
         plot(r)
```

ภาพที่ 2: โค้ด Matlab สำหรับพล็อตเส้นโค้ง Von Karman

ภาพ 4: หัวจรวด Von Karman ของ NuageRocket

ภาพที่ 3: เส้นโค้ง Von Karman

กราฟที่ 9: จุดสมดุลของความสมดุล และความสูงการยิง

3.ผลจากการจำลอง จากการจำลองในโปรแกรม OpenRocket การใช้หัวจรวด Von Karman ที่ความยาว 12 cm และครีบจรวดแบบสี่เหลี่ยมคางหมูที่มีความยาวคอร์ดปลายครีบ 2 cm จะทำให้จรวดยิงขึ้นไปเป็นความสูง สูงสุดที่ 652 m ดังแสดงในกราฟที่ 10

กราฟที่ 10: กราฟความสูงการยิงจรวดตลอดการทำงาน

การทดสอบจรวด

ในการแข่งขันจริง จากการสังเกตลักษณะ CanSat ของทีมที่ทำการยิงจรวดก่อนหน้า พบว่ามีหลายทีมที่ไฟ จาก Delay Charge ลามขึ้นไปเผา CanSat, ร่มชูชีพ และส่วนประกอบอื่น ๆ ที่ผู้เข้าแข่งขันใส่ไวในจรวด ซึ่งการวาง CanSat แบบเดิมอาจทำให้ร่มชูชีพถูกเผาไหม้ จึงเปลี่ยนทิศทางการวางของร่มชูชีพให้อยู่ห่างจาก Delay Charge มากขึ้นเพื่อตัดปัญหา โดยการสลับตำแหน่งดังกล่าวทำให้ค่า Static Margin เพิ่มขึ้นจาก 1.62 Calibers เป็น 1.73 Calibers ซึ่งยังอยู่ในช่วง 1 – 2 คือเป็นจรวดที่มีความสมดุลอยู่ นอกจากนี้ได้พันผ้าสักหลากที่ลูกสูบเพื่อกันไม่ให้ไฟ ลามขึ้นไปเผาส่วนประกอบอื่น ๆ และจากการยิงจรวด ความสูงการยิงของจรวดของผู้ศึกษาจรวดเป็นกลุ่มที่ยิงขึ้น ไปได้สูงที่สุดที่ 577 m ซึ่งน้อยกว่าที่จำลองไว้ แต่มากกว่าค่าเฉลียเลขคณิตของทุกทีมคือ 390.8 m ที่ 186.2 m อย่างไรก็ตาม การจำลองจรวดเพื่อเลือกความยาวที่เหมาะสมของหัวจรวดของการศึกษานี้ตั้งอยู่บนสมมติฐานว่า แรงฉุดจากความดันต่อหัวจรวดของกราฟประเภทที่ 1 น่าจะมีค่าใกล้เคียงกับค่าในกราฟประเภทที่ 2 โดยเป็น สมมติฐานที่ยังไม่ถูกทดสอบ ซึ่งการคำนวณตามทฤษฎีที่โปรแกรม OpenRocket ใช้งานจะต้องถูกตรวจสอบต่อไป

ภาพ 5: จรวดถูกยิงออกจากแท่น

ภาพ 6: จรวดขณะอยู่กลางท้องฟ้า

บรรณานุกรม

Thitasirivit, Vivatsathorn & Ngamdeevilaisak, Bhavat & Vongbunsin, Chayakorn. (2018). Agricultural Exploration Assistant Satellite: Thailand CanSat Competition 2018 Preliminary Proposal.

DOI: 10.13140/RG.2.2.11933.38882

M. Ostaszewski, K. Dzierzek, Ł. Magnuszewski (2018). "Analysis of data collected during CanSat mission." In 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, pp. 1-4. DOI: 10.1109/CarpathianCC.2018.8399591

Abate, M. T., Anandapadmanaban, E., Bao, L., Challani, S., Gaughan, J., Jiang, A., ... Zorn, S. E. (2014). Correlation between simulated, calculated, and measured model rocket flight. Retrieved from https://www.semanticscholar.org/paper/CORRELATION-BETWEEN-SIMULATED-%2C-CALCULATED-%2C-AND-Abate-

Anandapadmanaban/f1273cf8d5df09aa30bc7d80c9ef3b260b1a4f53

Crowell, G. A. (n.d.). The Descriptive Geometry of Nose Cone. Retrieved from https://www.scribd.com/doc/60921375/the-descriptive-geometry-of-nosecone