Chapter 3: Arithmetic for Computers

Ngo Lam Trung

[with materials from Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2008, MK and M.J. Irwin's presentation, PSU 2008]

Chapter 3.1 NLT, SoICT, 2016

Content

- Integer representation and arithmetic
- □ Floating point number representation and arithmetic

Chapter 3.2 NLT, SoICT, 2016

Overview

- Computers store data as sequences of 1s and 0s
- □ How these sequences can be converted/displayed as audio, image, photo,...?

Chapter 3.3 NLT, SoICT, 2016

Numeral systems

- Mathematical notations to represent numbers
- Include:
 - Digits for representation
 - The rule to interpret written representation into corresponding number
- For example
 - Number $a_{n-1}a_{n-2}\dots a_2a_1a_0$ in base m

$$a_{n-1}a_{n-2}...a_2a_1a_0 = \sum_{i=0}^{n-1} a_i m^i$$

Chapter 3.4 NLT, SoICT, 2016

Common numeral systems

	Decimal	Binary	Hexa-decimal
Base	10	2	16
Digits	0,1,2,3,4,5,6,7,8,9	0,1	0,1,2,3,4,5,6,7,8,9 A,B,C,D,E,F
Used by	Human	Computer	Computer/Human for shorter number representation

Chapter 3.5 NLT, SoICT, 2016

Example

- $105_{10} = 1 * 10^2 + 0 * 10^1 + 5 * 10^0$
- $\square 101_2 = 1 * 2^2 + 0 * 2^1 + 1 * 2^0 = 5_{10}$
- What is the difference between the number's representation and value?

Chapter 3.6 NLT, SoICT, 2016

Converting decimal to binary

- Integral part: 2 methods
- Method 1: division by 2 and collect remainders
- Example: convert 105 into binary

105 : 2 =	52	remain	1	1
• 52:2 =	26	remain	0	
• 26:2 =	13	remain	0	
• 13:2 =	6	remain	1	
• 6:2 =	3	remain	0	
• 3:2 =	1	remain	1	
• 1:2 =	0	remain	1	

 \square Finally: $105_{(10)} = 1101001_{(2)}$

Chapter 3.7

Converting decimal to binary

Method 2: Analyze into sum of power of two

□ Eg:

$$\bullet$$
 105 = 64 + 32 + 8 +1 = 2^6 + 2^5 + 2^3 + 2^0

•
$$17000(10) = 16384 + 512 + 64 + 32 + 8$$

= $2^{14} + 2^9 + 2^6 + 2^5 + 2^3$

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1

Chapter 3.8 NLT, SoICT, 2016

Converting decimal to binary

- Fractional part: multiply by 2 and get the integral parts
- □ Eg: $0.6875_{(10)} \rightarrow xxx_{(2)}$
 - $0.6875 \times 2 = 1.375$
 - $0.375 \times 2 = 0.75$
 - $0.75 \times 2 = 1.5$
 - $0.5 \times 2 = 1.0$

- integral = 1
- integral = 0
- integral = 1
- integral = 1
- \square Finally 0.6875₍₁₀₎= 0.1011₍₂₎
- Then we have

105.687510 = 1101001.10112

Chapter 3.9 NLT, SoICT, 2016

Example

Convert decimal number into binary

$$68.25 = 1000100.01$$
 $75.2 =$

Chapter 3.10 NLT, SoICT, 2016

Conversion between binary and hexa-decimal

- □ It's difficult to read/write/remember binary numbers
- → Make it shorter by converting to base 16 numbers
 - Compact representation of bit strings
 - 4 bits per hex digit

0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	Ε	1110
3	0011	7	0111	В	1011	F	1111

□ Example: eca8 6420

• e c a 8 6 4 2 0

1110 1100 1010 1000 0110 0100 0010 0000

Chapter 3.11 NLT, SoICT, 2016

Unsigned Binary Integers

Using n-bit binary number to represent non-negative integer

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: 0 to +2ⁿ 1
- Example

0000 0000 0000 0000 0000 0000 0000 1011₂
=
$$0 + ... + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

= $0 + ... + 8 + 0 + 2 + 1 = 11_{10}$

Data range using 32 bits

0 to
$$2^{32}$$
-1 = 4,294,967,295

Chapter 3.12 NLT, SoICT, 2016

Eg: 32 bit Unsigned Binary Integers

Hex	Binary	Decimal
0x00000000	00000	0
0x0000001	00001	1
0x00000002	00010	2
0x00000003	00011	3
0x00000004	00100	4
0x0000005	00101	5
0x00000006	00110	6
0x0000007	00111	7
0x00000008	01000	8
0x00000009	01001	9
0xFFFFFFC	11100	2 ³² -4
0xFFFFFFD	11101	2 ³² -3
0xFFFFFFE	11110	2 ³² -2
0xFFFFFFF	11111	2 ³² -1

Chapter 3.13 NLT, SoICT, 2016

Convert to 32 bit integers

25 = 0000 0000 0000 0000 0000 0000 0001 1001

 $125 = 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0111\ 1101$

255 = 0000 0000 0000 0000 0000 0000 1111 1111

Convert 32 bit integers to decimal value

 $0000\ 0000\ 0000\ 0000\ 0000\ 1100\ 1111 = 207$

 $0000\ 0000\ 0000\ 0000\ 0001\ 0011\ 0011 = 307$

Chapter 3.14 NLT, SoICT, 2016

Signed binary integers

 Using n-bit binary number to represent integer, including negative values

$$\begin{split} x &= x_{n-1} x_{n-2} ... x_1 x_0 \\ &= -x_{n-1} 2^{n-1} + x_{n-2} 2^{n-2} + \dots + x_1 2^1 + x_0 2^0 \end{split}$$

- □ Range: -2^{n-1} to $+2^{n-1} 1$
- Example

□ Using 32 bits

$$-2,147,483,648$$
 to $+2,147,483,647$

Chapter 3.15 NLT, SoICT, 2016

Signed integer negation

- □ Given $x = xn_{1}x_{n2}$ $x_{1}x_{0}$, how to calculate -x?
- □ Let $\bar{x} = 1$'s complement of x

$$\bar{x} = 1111 \dots 11_2 - x$$

(1 \rightarrow 0, 0 \rightarrow 1)

Then

$$\bar{x} + x = 1111 \dots 112 = -1$$

$$\rightarrow \qquad \bar{x} + 1 = -x$$

Example: find binary representation of -2

$$+2 = 0000 \ 0000 \dots 0010_2$$

 $-2 = 1111 \ 1111 \dots \ 1101_2 + 1$
 $= 1111 \ 1111 \dots \ 1110_2$

Signed binary negation

	$-2^{3} =$
	$-(2^3 - 1) =$
complement	all the bits
0101	1011
and add a 1	and add a 1
0110	1010
	complement all the bits
Chapter 3.17	2 ³ - 1 =

2'sc binary	decimal
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
→ 0110	6
0111	7

NLT, SoICT, 2016

Find 16 bit signed integer representation of

```
16 = 0000\ 0000\ 0001\ 0000
```

-16 = 1111 1111 1111 0000

100 = 0000 0000 0110 0100

-100 = 1111 1111 1001 1100

Chapter 3.18 NLT, SoICT, 2016

Sign extension

- □ Given n-bit integer $x = xn_{-1}x_{n-2}$ x_1x_0
- □ Find corresponding m-bit representation (m > n) with the same numeric value

$$x = xm_{-1}x_{m-2}$$
 x_1x_0

- □ → Replicate the sign bit to the left
- □ Examples: 8-bit to 16-bit
 - +2: 0000 0010 => 0000 0000 0000 0010
 - -2: 1111 1110 => 1111 1111 1111 1110

Chapter 3.19 NLT, SoICT, 2016

Addition and subtraction

- Addition
 - Similar to what you do to add two numbers manually
 - Digits are added bit by bit from right to left
 - Carries passed to the next digit to the left
- Subtraction
 - Negate the second operand then add to the first operand

Chapter 3.20 NLT, SoICT, 2016

Examples

□ All numbers are 8-bit signed integer

$$122 + 8 =$$

$$122 + 80 =$$

Chapter 3.21 NLT, SoICT, 2016

Dealing with Overflow

- Overflow occurs when the result of an operation cannot be represented in 32-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit
 - When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur

Operation	Operand A	Operand B	Result indicating overflow
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A - B	≥ 0	< 0	< 0
A - B	< 0	≥ 0	≥ 0

Chapter 3.22 NLT, SoICT, 2016

Adder implementation

N-bit ripple-carry adder

Performance depends on data length

→ Performance is low

Chapter 3.23 NLT, SoICT, 2016

Making addition faster: infinite hardware

- Parallelize the adder with the cost of hardware
- Given the addition:

$$a_{n-1}a_{n-2} \dots a_1a_0 + bn_{-1}b_{n-2} \dots b_1b_0$$

 \Box Let c_i is the carry at bit i

$$c2 = (b1.c1) + (a1.c1) + (a1.b1)$$

 $c1 = (b0.c0) + (a0.c0) + (a0.b0)$

Find c2 from a0, b0, c0?

Chapter 3.24 NLT, SoICT, 2016

Making addition faster: Carry Lookahead

- Approach
 - Make hardwired 4 bit adder → fast and simple enough
 - Develop a carry lookahead unit to calculate the carry bit before finishing the addition
- □ At bit i

$$ci + 1 = (bi \cdot ci) + (ai \cdot ci) + (ai \cdot bi)$$
$$= (ai \cdot bi) + (ai + bi) \cdot ci$$

Denote

$$gi = ai \cdot bi$$

 $pi = ai + bi$

Then

$$ci + 1 = gi + pi \cdot ci$$

Carry lookahead

With 4-bit adder

$$c1 = g0 + (p0 \cdot c0)$$

$$c2 = g1 + (p1 \cdot g0) + (p1 \cdot p0 \cdot c0)$$

$$c3 = g2 + (p2 \cdot g1) + (p2 \cdot p1 \cdot g0) + (p2 \cdot p1 \cdot p0 \cdot c0)$$

$$c4 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$+ (p3 \cdot p2 \cdot p1 \cdot p0 \cdot c0)$$

- All carry bits can be calculated after 3 gate delay
- → All result bits can be calculated after maximum of 4 gate delay

→ How to implement bigger adder?

Chapter 3.26 NLT, SoICT, 2016

Carry lookahead

□ For 16-bit adder → fast C1, C2, C3, C4 is needed

Chapter 3.27 NLT, SoICT, 2016

Carry lookahead

Denote

$$P0 = p3 \cdot p2 \cdot p1 \cdot p0$$

$$G0 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$P1 = p7 \cdot p6 \cdot p5 \cdot p4$$

$$G1 = g7 + (p7 \cdot g6) + (p7 \cdot p6 \cdot g5) + (p7 \cdot p6 \cdot p5 \cdot g4)$$

$$P2 = p11 \cdot p10 \cdot p9 \cdot p8$$

$$G2 = g11 + (p11 \cdot g10) + (p11 \cdot p10 \cdot g9) + (p11 \cdot p10 \cdot p9 \cdot g8)$$

$$P3 = p15 \cdot p14 \cdot p13 \cdot p12$$

$$G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$$

Then big-carry bits can be calculated fast

$$C1 = G0 + (P0 \cdot c0)$$

$$C2 = G1 + (P1 \cdot G0) + (P1 \cdot P0 \cdot c0)$$

$$C3 = G2 + (P2 \cdot G1) + (P2 \cdot P1 \cdot G0) + (P2 \cdot P1 \cdot P0 \cdot c0)$$

$$C4 = G3 + (P3 \cdot G2) + (P3 \cdot P2 \cdot G1) + (P3 \cdot P2 \cdot P1 \cdot G0) + (P3 \cdot P2 \cdot P1 \cdot P0 \cdot c0)$$

Chapter 3.28 NLT, SoICT, 2016

16-bit Adder

Chapter 3.29 NLT, SoICT, 2016

□ Dertermine g_i , pi, G_i , Pi when adding the two 16-bit numbers

$$a = 0001 \ 1010 \ 0011 \ 0011$$

 $b = 1110 \ 0101 \ 1110 \ 1011$

□ Calculate *c*₁₅

Chapter 3.30 NLT, SoICT, 2016

$$\begin{array}{c} \exists p_i,g_i \\ pi=ai+bi \\ a: \\ b: \\ 1110 \ 0101 \ 1110 \ 1011 \\ gi: \\ 0000 \ 0000 \ 0010 \ 0011 \\ pi: \\ 1111 \ 1111 \ 1111 \ 1011 \\ \end{array} \begin{array}{c} gi=ai\cdot bi \\ P3=1\cdot 1\cdot 1\cdot 1=1 \\ P2=1\cdot 1\cdot 1\cdot 1=1 \\ P1=1\cdot 1\cdot 1\cdot 1=1 \\ P0=1\cdot 0\cdot 1\cdot 1=0 \\ \end{array}$$

$$G0 = g3 + (p3 \cdot g2) + (p3 \cdot p2 \cdot g1) + (p3 \cdot p2 \cdot p1 \cdot g0)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 0 \cdot 1) + (1 \cdot 0 \cdot 1 \cdot 1) = 0 + 0 + 0 + 0 + 0 = 0$$

$$G1 = g7 + (p7 \cdot g6) + (p7 \cdot p6 \cdot g5) + (p7 \cdot p6 \cdot p5 \cdot g4)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 1) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 1 + 0 = 1$$

$$G2 = g11 + (p11 \cdot g10) + (p11 \cdot p10 \cdot g9) + (p11 \cdot p10 \cdot p9 \cdot g8)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 0 + 0 = 0$$

$$G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$$

$$= 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0) = 0 + 0 + 0 + 0 = 0$$

Chapter 3.31 NLT, SoICT, 2016

 $ightharpoonup c_{15}$ is actually C_4

$$C4 = G3 + (P3 \cdot G2) + (P3 \cdot P2 \cdot G1) + (P3 \cdot P2 \cdot P1 \cdot G0) + (P3 \cdot P2 \cdot P1 \cdot P0 \cdot c0) = 0 + (1 \cdot 0) + (1 \cdot 1 \cdot 1) + (1 \cdot 1 \cdot 1 \cdot 0) + (1 \cdot 1 \cdot 1 \cdot 0 \cdot 0) = 0 + 0 + 1 + 0 + 0 = 1$$

Chapter 3.32 NLT, SoICT, 2016

Compare performance of 16-bit ripple carry and 16-bit carry lookahead adders, assuming delay of all logic gates are equal?

Chapter 3.33 NLT, SoICT, 2016

Multiply

 Binary multiplication is just a bunch of right shifts and adds

n-bit multiplicand and multiplier → 2*n-bit product*

Chapter 3.34 NLT, SoICT, 2016

Example

Multiplicand		1000_{ten}
Multiplier	X	1001_{ten}
		1000
		0000
		0000
		1000
Product		1001000 _{ten}

Chapter 3.35 NLT, SoICT, 2016

Add and Right Shift Multiplier Hardware

Chapter 3.37

MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product (2 x 32 bit)

- Two additional registers: hi and lo
- Low-order word of the product is stored in processor register
 lo and the high-order word is stored in register
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file

Chapter 3.38 NLT, SoICT, 2016

How to make it faster?

- Add more hardware
- 5 stages addition using carry save adders

Chapter 3.39 NLT, SoICT, 2016

Division

 Division is just a bunch of quotient digit guesses and left shifts and subtracts

dividend = quotient x divisor + remainder

Chapter 3.40 NLT, SoICT, 2016

Left Shift and Subtract Division Hardware

Chapter 3.42 NLT, SoICT, 2016

MIPS Divide Instruction

Divide (div and divu) generates the reminder in hi and the quotient in lo

- Instructions mfhi rd and mflo rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- □ As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0.

Chapter 3.43 NLT, SoICT, 2016

Representing Big (and Small) Numbers

- Encoding non-integer value?
 - Earth mass: (5.9722±0.0006)×1024 (kg)

 - PI number

- Problem: how to represent the above numbers?
- → We need reals or floating point numbers!
- → Floating point numbers in decimal:
 - **→** 1000
 - $\rightarrow 1 \times 10^3$
 - $\rightarrow 0.1 \times 10^4$

Chapter 3.44 NLT, SoICT, 2016

Floating point number

■ In decimal system

$$2013.1228 = 201.31228 * 10$$

$$= 20.131228 * 10^{2}$$

$$= 2.0131228 * 10^{3}$$

$$= 20131228 * 10^{-4}$$

What is the "standard" form?

$$2.0131228 * 10^3 = 2.0131228E + 03$$

mantissa

exponent

- □ In binary $X = \pm 1.xxxxx * 2^{yyyy}$
- Sign, mantissa, and exponent need to be represented

Chapter 3.45 NLT, SoICT, 2016

Floating point number

Floating point representation in binary

$$(-1)^{sign} \times 1.F \times 2^{E-bias}$$

- Still have to fit everything in 32 bits (single precision)
- Bias = 127 with single precision floating point number

S	E (exponent)	F (fraction)
1 sign bi	t 8 bits	23 bits

- Defined by the IEEE 754-1985 standard
 - Single precision: 32 bit
 - Double precision: 64 bit
 - Correspond to float and double in C

Chapter 3.46 NLT, SoICT, 2016

Examples

Ex1: convert X into decimal value

 $X = 1100\ 0001\ 0101\ 0110\ 0000\ 0000\ 0000\ 0000$

```
sign = 1 \rightarrow X is negative

E = 1000 0010 = 130

F = 10101100...00

\rightarrow X = (-1)<sup>1</sup> x 1.101011000..00 x 2<sup>130-127</sup>

= -1.101011 x 2<sup>3</sup> = -1101.011

= -13.375
```

Chapter 3.47 NLT, SoICT, 2016

Example

Ex2: find decimal value of X

 $X = 0011 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$

sign = 0
e = 0111 1111 = 127
m = 000...0000 (23 bit 0)
$$X = (-1)^0 \times 1.00...000 \times 2^{127-127} = 1.0$$

Chapter 3.48 NLT, SoICT, 2016

Example

Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

Converting X to plain binary

$$9_{10} = 1001_2$$

$$\rightarrow$$
 9.6875₁₀ = 1001.1011₂

Chapter 3.49 NLT, SoICT, 2016

Example

■ Ex3: find binary representation of X = 9.6875 in IEEE 754 single precision

$$X = 9.6875_{(10)} = 1001.1011_{(2)} = 1.0011011 \times 2^{3}$$

Then
$$S = 0$$

$$e = 127 + 3 = 130_{(10)} = 1000 \ 0010_{(2)}$$

$$m = 001101100...00 \ (23 \ bit)$$

Finally

 $X = 0100\ 0001\ 0001\ 1011\ 0000\ 0000\ 0000\ 0000$

Chapter 3.50 NLT, SoICT, 2016

Examples

- \square 1.0₂ x 2⁻¹ =
- □ 100.75₁₀ =

Chapter 3.51 NLT, SoICT, 2016

Some special values

- □ Largest+: 0 11111110 1.1111111111111111111111 = $(2-2^{-23}) \times 2^{254-127}$

Chapter 3.52 NLT, SoICT, 2016

Too large or too small values

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

- Reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two MIPS words

s E (exponent)		F (fraction)				
1 bit	11 bits	20 bits				
F (fraction continued)						
32 bits						

Chapter 3.53 NLT, SoICT, 2016

Reduce underflow with the same bit length?

De-normalized number

Chapter 3.54 NLT, SoICT, 2016

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for invalid operations such as 0/0
 - True zero is the bit string all zero

Single Pre	cision	Double Precision		Object
E (8)	F (23)	E (11)	F (52)	Represented
0000 0000	0	0000 0000	0	true zero (0)
0000 0000	nonzero	0000 0000	nonzero	± denormalized number
0111 1111 to +127,-126	anything	01111111 to +1023,-1022	anything	± floating point number
1111 1111	+ 0	1111 1111	- 0	± infinity
1111 1111	nonzero	1111 1111	nonzero	not a number (NaN)

Chapter 3.55 NLT, SoICT, 2016

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Chapter 3.56 NLT, SoICT, 2016

Floating Point Addition Example

- □ Add: 0.5 + (-0.4375) = ? $(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$
 - Step 0: Hidden bits restored in the representation above
 - Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
 - Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
 - Step 3: Normalize the sum, checking for exponent over/underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
 - Step 4: The sum is already rounded, so we're done
 - Step 5: Rehide the hidden bit before storing

Chapter 3.58 NLT, SoICT, 2016

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 – 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift
 F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Chapter 3.59 NLT, SoICT, 2016

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1 -2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Chapter 3.61 NLT, SoICT, 2016

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operations of the ISA

```
add, addi, addiu, addu sub, subu mult, multu, div, divu \frac{B}{32} and, andi, nor, or, ori, xor, xori beq, bne, slt, sltiu, sltu
```


- With special handling for
 - sign extend addi, addiu, slti, sltiu
 - zero extend andi, ori, xori
 - overflow detection add, addi, sub

Chapter 3.63 NLT, SoICT, 2016