

LOW VOLTAGE AUDIO POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2113 is an audio power amplifier designed for telephone application, such as in speakerphones. Coupling capacitors to the speaker are not required, as it has differential speaker outputs.

The closed loop gain is set with two external resistors.

A CD pin permit powering down with muting the input signal.

■ FEATURES

 Wide Operating Voltage (2~16V)• Low Operating Current (2.7mA Typ.)

CD Input to Power Down the IC with Mute

• Low Power-Down Operating Current (72µA Typ.)

 Output Power Exceeds 250mW $(V^{+}=6V,R_{L}=32\Omega)$

 Gain Adjustable $(G_{VD}=0~43dB,Voice Band)$

 Package Outline DMP8, DIP8, SOP8 JEDEC 150mil

SIP8, SSOP8, VSP8

Bipolar Technology

■ PACKAGE OUTLINE

NJM2113D (DIP8)

NJM2113M (DMP8)

NJM2113E (SOP8)

NJM2113R

(VSP8)

NJM2113V (SSOP8)

NJM2113L (SIP8)

■ RECOMMENDED OPERATING CONDITIONS

 Load Impedance R_{l} 8~200Ω

• Differential Gain G_{VD} 0~43dB (5kHz bandwidth)

 Input Voltage at CD V_{CD} 0~V⁺Vdc

■ PIN CONFIGURATION

PIN FUNCTION CD

1.

2. **V**REF

3. $+V_{\text{IN}}$ $-V_{IN}$

5. V_{OUT}1

6.

GND 7.

V_{OUT}2

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	+18	V
Output Peak Current	I_{OP}	± 250	mA
Input Voltage Range	VIN	(1~4pin)-0.3 to V ⁺ +0.3 (5,8pin)-0.3 to V ⁺ +0.3 (when Power-Down)	V
Power Dissipation	P_{D}	(DIP8) 500 (note1) (SIP8) 800 (note1) (DMP8) 500 (note2) (SSOP8) 360 (note2) (VSP8) 320 (note1) (SOP8) 300 (note1)	mW
Operating Temperature Range	T_{opr}	-20~+75	°C
Storage Temperature Range	T_{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=6V,Ta=25°C,unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC} 1	V ⁺ =3.0V,R _L =∞,1pin=0.8V	-	2.7	4.0	mA
(no signal)	lcc2	V ⁺ =16.0V,R _L =∞,1pin=0.8V	-	3.4	5.0	mA
	I _{CCD}	V ⁺ =3.0V,R _L =∞,1pin=2.0V	-	72	100	μA
Open Loop Gain	A _V 1	Amplifier#A,f<100Hz	77	83	-	dB
Closed Loop Gain	A _V 2	Amplifier#B,f=1kHz,R _L =32Ω	-0.35	0	+0.35	dB
Output Power	P _o 1	V ⁺ =3.0V,R _L =16Ω,THD≤10%	55	-	-	mW
(note3)	Po2	V ⁺ =6.0V,R _L =32Ω,THD≤10%	250	-	-	mW
	P _o 3	V ⁺ =12.0V,R _L =100Ω,THD≤10% (note4)	400	-	-	mW
Total Harmonic Distortion	THD1	$V^{+}=6V,R_{L}=32\Omega,P_{O}=125mW,G_{VD}=34dB$	-	0.5	1.0	%
(f=1kHz)	THD2	$V^{+} \ge 3V$, $R_L = 8\Omega$, $P_O = 20$ mW, $G_{VD} = 12$ dB	-	0.5	-	%
, ,	THD3	V ⁺ ≥12V,R _L =32Ω,P _O =200mW,G _{VD} =34dB	-	0.6	-	%
Power Supply Rejection Ratio	PSRR1	C1=∞,C2=0.01µF,DC	50	-	-	dB
$(V^{+}=6.0V_{\Delta}V^{+}=3.0V)$	PSRR2	C1=0.1µF,C2=0,f=1kHz	-	12	-	dB
,	PSRR3	C1=1.0µF,C2=5.0µF,f=1kHz	-	52	-	dB
Mute Attenuation	MAT	f=1kHz~20kHz,1pin=2.0V	-	70	-	dB
Output Voltage	V _O 1	$V^{+}=3.0V,R_{L}=16\Omega$	1.00	1.18	1.25	V
(R _{f=} 75kΩ,DC)	V _O 2	V ⁺ =6.0V	-	2.68	-	V
	V _O 3	V ⁺ =12.0V	-	5.71	-	V
Output High Level	V _{OH}	I _{OUT} =-75mA,V ⁺ =2.0~16.0V	-	V ⁺ -1.1	-	V
Output Low Level	V_{OL}	I _{OUT} =75mA,V [†] =2.0~16.0V	-	0.21	-	V
Output DC Offset	ΔV_{O}	$R_{\rightleftharpoons}75k\Omega,R_{L}=32\Omega,5pin~8pin$	-30	0	+30	mV
Input Bias Current	lΒ	4pin	-	-30	-200	nA
Equivalent Resistance	R _{+IN}	3pin	100	150	220	kΩ
	R _{REF}	2pin	18	25	40	kΩ
CD Input Voltage H	V _{CDH}	1pin	2.0	-	V ⁺	V
CD Input Voltage L	V_{CDL}	1pin	0.0	-	0.8	V
CD Input Resistance	R _{CD}	V _{CD} =16.0V,1pin	50	75	175	kΩ

⁽ note3) NJM2113M,NJM2113V : At on PC Board (note4) Not specified for NJM2113V,NJM2113R

⁽ note1) Device itself. (note2) Mounted on PC Board.

■ APPLICATION CIRCUIT

(note)

- The NJM2113 is active mode during the CD terminal is Low level (<0.8V) and it is stand-by mode during the CD terminal is High level (>2.0V)
- 2. C1 and C2 improve power supply rejection ratio. In case of C1 is enough large,C2 is unnecessary.
- 3. Please note that the C1 and C2 make slow power rise up to the NJM2113 regardless the external power supply condition.
- 4. Input current flow on the internal resistor shown in the equivalent circuit of CD terminal.
- No snubber resistor and capacitor are required normally.
 But the snubber resistor and capacitor are required if the NJM2113 oscillates by Condition of PCB layout, stray capacitor and speaker wire length.

■ TYPICAL CHARACTERISTICS

Power Dissipation vs. Output Power $(R_L\!=\!8\Omega,~f\!=\!1kHz)$ Power Dissipation 1000 800 V' = 12V $V^{\scriptscriptstyle \parallel} = 6V$ 600 \mathbf{P}_{D} (mW) 400 200 ٥l 100 150 0 Output Power Po (mW)

■ TYPICAL CHARACTERISTICS

Operating Current vs. Supply Voltage

CD Terminal Sink Current vs. Apply Voltage

Power Supply Rejection Ratio vs. Frequency

Power Supply Rejection Ratio vs. Frequency

Frequency f (Hz)

Power Supply Rejection Ratio vs. Frequency

Power Supply Rejection Ratio vs. Frequency

Frequency f (Hz)

■ TYPICAL CHARACTERISTICS

Total Harmonic Distortion vs. Output Power

Total Harmonic Distortion vs. Output Power

Total Harmonic Distortion vs. Output Power

lotal Harmonic Distortion vs. Output Fower

Operating Current vs. Ambient Temperature

Operating Current vs. Ambient Temperature at Power Down Mode

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.