Realizacja automatów w FPGA. Realizacja automatu w strukturze pamięć rejestr.

Data wykonania 06.12.2020

Zadanie 2. Automat opisany jest przy użyciu tablic: przejść i wyjść. Wybierz pozycje odpowiadające Twojemu numerowi indeksu-odpowiednio ostatnia cyfra i przedostatnia cyfra.

Wybrano wariant 3, 8.

Tablica przejść:

	3 X	
	0	1
S0	S1	S0
S1	S3	S2
S2	S2	S3
S3	S0	S4
S4	S4	S1

	8
S0	11110
S1	11100
S2	11000
S3	10000
S4	00000

1. Narysuj graf przejść tego automatu.

Zdjęcie 1: Graf przejść automatu dla X=0 oraz X=1

2. Zrealizuj automat w układzie FPGA.

```
1 library IEEE;
 2 use IEEE.STD LOGIC 1164.ALL;
 3 entity aut2 is
 4 port (X, CLK100: in std logic;
 5 Z: out std logic vector (4 downto 0));
 6 end aut2;
   architecture Behavioral of aut2 is
 8 component ck divider
      Port (
9
        CK IN : in STD LOGIC;
10
         CK OUT : out STD LOGIC);
11
12 end component;
13 type state t is (SO, S1, S2, S3, S4);
14 signal state, nextstate: state_t;
   signal CLK1 : std_logic; -- output of clock divider
15
16 begin
   clock : ck divider port map (
17
        CK IN => CLK100,
18
         CK OUT => CLK1);
19
20
   --combinational circuit
21 process (state, X, CLK1)
22
   begin
23
   case state is
24
   when SO =>
25
   if X='0' then nextstate <= S1; Z<= "11100";
26 else nextstate <= S0;Z<="11110"; end if;</pre>
27 when S1 =>
28 if X='0' then nextstate <= S3; Z<= "10000";
   else nextstate <= S2;Z<="11000"; end if;
29
30 when S2 =>
31 if X='0' then nextstate <= S2; Z<= "11000";
32 else nextstate <= S3; Z<="10000"; end if;
33 when 53 =>
34 if X='0' then nextstate <= S0; Z<= "11110";</pre>
35 else nextstate <= $4;2<="000000"; end if;
36 when S4 =>
37 if X='0' then nextstate <= S4; Z<= "000000";
38 else nextstate <= S1; Z<="11100"; end if;
39
40 end case;
41 if rising edge (CLK1) then
           state <= nextstate;
42
43
            end if:
44 end process;
45
46
47 end Behavioral;
```

Zrzut ekranu 1: Kod źródłowy automatu zrealizowany w języku VHDL

3. Korzystając z symulatora będącego częścią ISE zaobserwuj działanie układu.

Zrzut ekranu 2: Przebieg symulacji dla stałego X=0.

Zrzut ekranu 3: Przebieg symulacji dla stałego X=1.

Zrzut ekranu 4: Przebieg symulacji dla zmiennego $X=\{0,1\}$ z okresem 200ns