Scaling data and KNN Regression

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

Feature selection: remove weekdays

```
print(feature_names)
```

```
print(feature_names[:-4])
```

```
['10d_close_pct',
 '14-day SMA',
 '14-day RSI',
 '200-day SMA',
 '200-day RSI',
 'Adj_Volume_1d_change',
 'Adj_Volume_1d_change_SMA',
 'weekday_1',
 'weekday_2',
 'weekday_3',
 'weekday_4']
```

```
['10d_close_pct',
  '14-day SMA',
  '14-day RSI',
  '200-day SMA',
  '200-day RSI',
  'Adj_Volume_1d_change',
  'Adj_Volume_1d_change_SMA']
```

Remove weekdays

```
train_features = train_features.iloc[:, :-4]
test_features = test_features.iloc[:, :-4]
```


$$D(A,B) = \sum_{i} (|(a_i - b_i)|)^{(1/p)}$$

Scaling options

Scaling options:

- min-max
- standardization
- median-MAD
- map to arbitrary function (e.g. sigmoid, tanh)

sklearn's scaler

```
from sklearn.preprocessing import scaler

sc = scaler()
scaled_train_features = sc.fit_transform(train_features)
scaled_test_features = sc.transform(test_features)
```


Making subplots

```
# create figure and list containing axes
f, ax = plt.subplots(nrows=2, ncols=1)
# plot histograms of before and after scaling
train_features.iloc[:, 2].hist(ax=ax[0])
ax[1].hist(scaled_train_features[:, 2])
plt.show()
```

Scale data and use KNN!

MACHINE LEARNING FOR FINANCE IN PYTHON

Neural Networks

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

Neural networks have potential

Neural nets have:

- non-linearity
- variable interactions
- customizability

10d_close_future_pct predictions

$$\sum_{i} w_{i} x_{i} + b$$

10d_close_pct 14-day RSI 14-day SMA

Implementing a neural net with keras

```
from keras.models import Sequential
from keras.layers import Dense
```


Implementing a neural net with keras

```
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(50,
                input_dim=scaled_train_features.shape[1],
                activation='relu'))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='linear'))
```

Fitting the model

```
plt.plot(history.history['loss'])
plt.title('loss:' + str(round(history.history['loss'][-1], 6)))
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
```


Checking out performance

```
from sklearn.metrics import r2_score

# calculate R^2 score
train_preds = model.predict(scaled_train_features)
print(r2_score(train_targets, train_preds))
```

0.4771387560719418

Plot performance

```
# plot predictions vs actual
plt.scatter(train_preds, train_targets)
plt.xlabel('predictions')
plt.ylabel('actual')
plt.show()
```


Make a neural net!

MACHINE LEARNING FOR FINANCE IN PYTHON

Custom loss functions

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

MSE with directional penalty

If prediction and target direction match:

•
$$\sum (y-\hat{y})^2$$

If not:

•
$$\sum (y - \hat{y})^2$$
 * penalty

Implementing custom loss functions

import tensorflow as tf

Creating a function

```
import tensorflow as tf
# create loss function
def mean_squared_error(y_true, y_pred):
```

Mean squared error loss

```
import tensorflow as tf

# create loss function

def mean_squared_error(y_true, y_pred):
    loss = tf.square(y_true - y_pred)
    return tf.reduce_mean(loss, axis=-1)
```

Add custom loss to keras

```
import tensorflow as tf

# create loss function

def mean_squared_error(y_true, y_pred):
    loss = tf.square(y_true - y_pred)
    return tf.reduce_mean(loss, axis=-1)

# enable use of loss with keras
import keras.losses
keras.losses.mean_squared_error = mean_squared_error
```

```
# fit the model with our mse loss function
model.compile(optimizer='adam', loss=mean_squared_error)
history = model.fit(scaled_train_features, train_targets, epochs=50)
```

Checking for correct direction

```
tf.less(y_true * y_pred, 0)
```

Correct direction:

- neg * neg = pos
- pos * pos = pos

Wrong direction:

- neg * pos = neg
- pos * neg = neg

Using tf.where()

Tying it together

```
# create loss function
def sign_penalty(y_true, y_pred):
    penalty = 100.
    loss = tf.where(tf.less(y_true * y_pred, 0),
                    penalty * tf.square(y_true - y_pred),
                    tf.square(y_true - y_pred))
    return tf.reduce_mean(loss, axis=-1)
# enable use of loss with keras
keras.losses.sign_penalty = sign_penalty
```

Using the custom loss

```
# fit the model with our custom 'sign_penalty' loss function
model.compile(optimizer='adam', loss=sign_penalty)
history = model.fit(scaled_train_features, train_targets, epochs=50)
```


The bow-tie shape

```
train_preds = model.predict(scaled_train_features)
# scatter the predictions vs actual
plt.scatter(train_preds, train_targets)
plt.xlabel('predictions')
plt.ylabel('actual')
plt.show()
```


Create your own loss function!

MACHINE LEARNING FOR FINANCE IN PYTHON

Overfitting and ensembling

MACHINE LEARNING FOR FINANCE IN PYTHON

Nathan George
Data Science Professor

Simplify your model

Complex net overfits

Simpler net prevents overfitting

Neural network options

Options to combat overfitting:

- Decrease number of nodes
- Use L1/L2 regulariation
- Dropout
- Autoencoder architecture
- Early stopping
- Adding noise to data
- Max norm constraints
- Ensembling

Dropout

33% dropout

no dropout

Dropout in keras

Test set comparison

 R^2 values on AMD without dropout:

• train: 0.91

• test: -0.72

With dropout:

• train: 0.46

• test: -0.22

Ensembling

Implementing ensembling

```
# make predictions from 2 neural net models

test_pred1 = model_1.predict(scaled_test_features)

test_pred2 = model_2.predict(scaled_test_features)

# horizontally stack predictions and take the average across rows

test_preds = np.mean(np.hstack((test_pred1, test_pred2)), axis=1)
```


Comparing the ensemble

Model 1 R² score on test set:

• -0.179

model 2:

• -0.148 ensemble (averaged predictions):

• -0.146

Dropout and ensemble!

MACHINE LEARNING FOR FINANCE IN PYTHON

