Práctica 6: Determinantes

Comisión: Rodrigo Cossio-Pérez y Gabriel Romero

- 1. Calcular los siguientes determinantes Δ . Se puede utilizar cualquier método, tal como el de Sarrus y el de Laplace.

 - Resolución por Matemáticas profe Alex

- $=\frac{7}{2}$. Resolución por
 - Matemáticas profe Alex

- ** $\Delta = -217$. Resolución por Matemáticas profe Alex
- Resolución por Álgebra para Todos

- - = -12. Resolución por Álgebra para Todos
- ** $\Delta = -272$. Resolución por Ktipio
- 2. Averiguar si las siguientes matrices son inversibles y, en caso de que lo sean, hallar la inversa.
 - (a) $A = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix}$ ** det(A) = -1 por lo que $\exists A^{-1} = \begin{pmatrix} 5 & -3 & -3 \\ -3 & 2 & 2 \\ 32 & -19 & -20 \end{pmatrix}.$ (e) $C = \begin{pmatrix} 1 & 3 & 2 \\ -2 & 3 & 3 \\ -1 & 15 & 12 \end{pmatrix}$ $\begin{pmatrix} \frac{3}{5} & \frac{-1}{5} \\ \frac{-4}{5} & \frac{3}{5} \end{pmatrix}.$ $\begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$ ** det(C) = 0 por lo que
 - $\begin{pmatrix} \frac{3}{5} & \frac{-1}{5} \\ \frac{-4}{5} & \frac{3}{5} \end{pmatrix}.$ $(d) B = \begin{pmatrix} 2 & 4 & 1 \\ -5 & 4 & 5 \\ 3 & 1 & -1 \end{pmatrix}$ ** det(B) = 0 por lo que $\nexists B^{-1}$.

 (e) $A = \begin{pmatrix} 2 & 3 & 0 \\ -4 & 4 & 1 \\ 7 & 1 & -1 \end{pmatrix}$ ** det(B) = 5 por lo que $\exists B^{-1} = 0$ (f) $D = \begin{pmatrix} 4 & 14 & -17 & 1 \\ 0 & 1 & 23 & 1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 12 \end{pmatrix}$ ** det(D) = 0 por lo que $\nexists D^{-1}$.
- - ** det(D) = 0 por lo que $\nexists D^{-1}$.
- 3. Hallar para qué valor/es (en C) de la incógnita dada el determinate toma el valor indicado.
 - (a) $\begin{vmatrix} 3 \lambda & 0 \\ 8 & -1 \lambda \end{vmatrix} = 0$

- (b) $\begin{vmatrix} 4 & 2x 2 & 0 \\ 3 & 5 & 1 \\ 1 & 4 & x \end{vmatrix} = 14$
- ** $\lambda = 3$ o $\lambda = -1$. Resolución por Roberto Pintos
- ** x = 2 o $x = \frac{8}{3}$. Resolución por Mate Profesor

(c)
$$\begin{vmatrix} 2 & x & x+1 \\ x+2 & 2 & 8 \\ 2 & 1 & 3 \end{vmatrix} = 0$$

**
$$x = \frac{9 \pm \sqrt{33}}{4}$$
. Resolución por Profe Online

(d)
$$\begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = 0$$

** $\lambda=0,\,\lambda=1$ o $\lambda=2.$ Resolución por Matemático Compulsivo

4. Hallar para qué valor/es (en \mathbb{C}) de la incógnita dada la matriz M es invertible.

(a)
$$\begin{pmatrix} k^3 & 2 \\ 8 & k \end{pmatrix}$$

** M es invertible cuando $det(M) \neq 0$, es decir, para $k \in \mathbb{C} - \{2, -2, 2i, -2i\}.$

(b)
$$\begin{pmatrix} 2 & \alpha & \alpha + 1 \\ \alpha + 2 & 2 & 8 \\ 2 & 1 & 3 \end{pmatrix}$$

** M es invertible cuando $det(M) \neq 0$, es decir, para $\alpha \neq \frac{9 \pm \sqrt{33}}{4}$. Resolución por Profe Online.

(c)
$$\begin{pmatrix} 1 & 1-x & -1 \\ x+1 & 1 & -1 \\ 1 & 1 & x+2 \end{pmatrix}$$

** M es invertible cuando $det(M) \neq 0$, es decir, para $x \neq 0$ y $x \neq -2$, o bien $x \in \mathbb{C} - \{0, -2\}$. Resolución por Profe Córdoba.

(d)
$$\begin{pmatrix} 1 & 1 & \lambda \\ \lambda & 2 & -1 \\ 3 & 1 & 1 \end{pmatrix}$$

** M es invertible cuando $det(M) \neq 0$, es decir, para $\lambda \in \mathbb{C} - \{0, 7\}$. Resolución por Yo Soy Tu Profe.

5. Utilizar el determinante para calcular los productos vectoriales indicados.

(a) $\vec{u} \times \vec{v}$ con $\vec{u} = (2, -1, 1)$ y $\vec{v} = (-3, 1, 1)$.

**
$$\vec{u} \times \vec{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 1 \\ -3 & 1 & 1 \end{vmatrix} = (-2, -5, -1)$$
. Resolución por lasmatematicas.es

(b) $\vec{a} \times \vec{b}$ con $\vec{a} = 3\hat{i} + 5\hat{j} - 2\hat{k}$ y $\vec{b} = 2\hat{i} - 4\hat{j} + 3\hat{k}$.

**
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 5 & -2 \\ 2 & -4 & 3 \end{vmatrix} = 7\hat{\imath} - 13\hat{\jmath} - 22\hat{k}$$
. Resolución por Matemáticas Edgar Navia

(c) $\vec{m} \times \vec{n}$ con $\vec{m} = -3\hat{\imath} - 2\hat{\jmath} + 5\hat{k}$ y $\vec{n} = 6\hat{\imath} - 10\hat{\jmath} - \hat{k}$.

**
$$\vec{m} \times \vec{n} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -3 & -2 & 5 \\ 6 & -10 & -1 \end{vmatrix} = 52\hat{\imath} + 27\hat{\jmath} + 42\hat{k}$$
. Resolución por Julio
Profe

(d) $(1,2,3) \times (-1,3,0)$.

**
$$(1,2,3) \times (-1,3,0) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 3 & 0 \end{vmatrix} = (-9,-3,5)$$
. Resolución por Seletube

6. Resolver los siguientes ejercicios integradores

(a) Dada la matriz simétrica
$$A=\begin{vmatrix}1&a+b&0\\2&5&a\\b&c&3\end{vmatrix}$$
 calcular $det(A)$.

- ** Por la simetría $a=2,\,b=0$ y c=2; y det(A)=-1. Resolución por Ing. E Darwin
- (b) Dada la matriz $B=\begin{vmatrix}x&3&1\\x+1&4&2\\x&2-x^2&1\end{vmatrix}$ tal que det(2B)=160, calcular $x\in\mathbb{C}.$
- ** Como det(2B)=160, entonces det(B)=20. Obteniendo el determinante se obtiene $x^3-x^2+x-21=0$, con soluciones $x=3,\ x=-1+\sqrt{6}i$ y $x=-1-\sqrt{6}i$. Resolución por Mates con Andrés