PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-330212

(43)Date of publication of application: 13.12.1996

(51)Int.CI.

H01L 21/027 G03F 7/20 G03F 9/02

(21)Application number : 07-133789

(71)Applicant: NIKON CORP

(22)Date of filing:

31.05.1995

(72)Inventor: TANITSU OSAMU

(54) EXPOSURE DEVICE

(57)Abstract:

PURPOSE: To drastically reduce the difference of resolution between vertical and horizontal directions within an exposure surface.

within an exposure surface.

CONSTITUTION: An exposure dev

CONSTITUTION: An exposure device for exposing a photosensitive substrate W to a mask pattern is provided with a light source means 10 for supplying light, multiple light source image forming means 30 and 60 for forming a plurality of light source images by dividing light from the light source means into a plurality of parts, and a focusing optical system 6 for overlappingly lighting a mask M with a specific pattern by focusing light from the multiple light source image forming means. Then, aperture stops AS1 and AS2 are arranged at a light development position or near the light development position which is formed by the multiple light source image forming means and the length of the aperture of the aperture stop corresponding to a first direction and that of the aperture of the aperture stop corresponding to a second

aperture of the aperture stop corresponding to a second direction are allowed to differ to compensate the difference in resolution in the specific first direction (X direction) on the photosensitive substrate and the second direction (Y direction) which is vertical to the first direction.

LEGAL STATUS

[Date of request for examination]

10.05.2002

[Date of sending the examiner's decision of rejection]

BEST AVAILABLE CORV

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公閱番号

特開平8-330212

(43)公開日 平成8年(1996)12月13日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ				技術表示箇所
H 0 1 L 21/027			H01L	21/30	•	5 2 7	
G03F 7/20	5 2 1		G03F	7/20		5 2 1	
9/02				9/02			
			H01L	21/30		515D	
						515B	
		審査請求	未請求 請	求項の数3	OL	(全 8 頁)	最終頁に続く

(21)出願番号

特願平7-133789

(22)出願日

平成7年(1995)5月31日

(71)出願人 000004112

株式会社ニコン

東京都千代田区丸の内3丁目2番3号

(72)発明者 谷津 修

東京都千代田区丸の内3丁目2番3号 株

式会社ニコン内

(54) 【発明の名称】 露光装置

(57) 【要約】

【目的】露光面内における縦方向と横方向とでの解像度 の差を大幅に軽減する。

【構成】光を供給する光源手段(10)と、該光源手段からの光を複数に分割して複数の光源像を形成する多光源像形成手段(30,50)と、該多光源像形成手段からの光を集光して所定パターンを有するマスク(M)を重畳的に照明する集光光学系(6)とを有し、マスクのパターンを感光性基板(W)に露光する露光装置であって、多光源像形成手段により形成される光源像位置又は該光源像位置近傍に開口絞り(ASI, ASI)を配置し、感光性基板上での所定の第1方向(X方向)と該第1方向と垂直な第2方向(Y方向)における解像度の差を補正するために、前記第1方向に対応する前記開口絞りの開口部の長さとを異ならせしめる。

20

【特許請求の範囲】

[請求項1] 光を供給する光源手段と、該光源手段からの光を複数に分割して複数の光源像を形成する多光源像形成手段と、該多光源像形成手段からの光を集光して所定パターンを有するマスクを重畳的に照明する集光光学系とを有し、前記マスクのパターンを感光性基板に露光する露光装置において、

前記多光源像形成手段により形成される光源像位置又は 該光源像位置近傍に開口絞りを配置し、

前記感光性基板上での所定の第1方向と該第1方向と垂 10 直な第2方向における解像度の差を補正するために、前 記第1方向に対応する前記開口絞りの開口部の長さと前 記第2方向に対応する前記開口絞りの開口部の長さとを 異ならせしめたことを特徴とする露光装置。

【請求項2】前記開口絞りの開口部は、楕円形状を有していることを特徴とする請求項1記載の照明光学装置。

【請求項3】前記マスクと前記感光性基板との間に、前記マスクのパターン像を前記感光性基板上に転写する投影光学系を配置したことを特徴とする露光装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は被照明物体を均一に照明する照明光学装置に関するものであり、特に、半導体素子や液晶素子等の製造に好適な照明光学装置に関するものである。

[0002]

【従来の技術】従来においては、例えば、図7に示す如き照明光学装置を半導体製造用の露光装置に応用したものが知られている。図7の(a)に示す如く、水銀アーク灯等の光源1からの光束は楕円鏡2により集光された 30後、コリメータレンズ3により平行光束に変換される。そして、この平行光束は、図7の(b)に示す如く、断面が四角形のレンズ素子4aの集合体よりなるフライアイレンズ4を通過することにより、これの射出側に複数の光源像が形成される。この光源像位置には、円形状の開口部を有する開口絞り5が設けられている。この複数の光源像からの光束はコンデンサーレンズ6によって集光され、被照射物体としてのマスクMを重畳的に均一照明する。

【0003】以上の照明光学装置によりマスクM上の回 40 路パターンは、レンズ71及び72よりなる投影光学系7によって、ウエハW上に転写される。このウエハWは2次元的に移動するウエハステージWS上に載置されており、図14の露光装置では、ウエハ上での1ショット領域の露光が完了すると、次のショット領域への露光のために、順次、ウエハステージを2次元移動させる所謂ステップアンドリピート方式の露光が行われる。

[0004]

【発明が解決しようとする課題】ところで、近年においては、マスクMに対し長方形状又は円弧状の光束を照射 50

し、投影光学系に関して共役に配置されたマスクMとウエハWとを一定方向に走査することにより、高いスループットのもとでマスクMの回路パターンのウエハ上への転写しようとする走査露光方式が提案されている。

【0005】ここで、図7に示す如き照明光学装置を応用して走査露光方式とするには、例えば長方形状の光束をレチクルに照明する必要があり、このため、例えば、図7の(c)に示す如く、フライアイレンズ4を構成することが考えられる。即ち、フライアイレンズ4を構成する個々のレンズ素子からの光束がマスクM上を長方形状に重畳して照明させるために、図7の(c)に示す如く、フライアイレンズ4を構成するレンズ素子4aの断面を照射領域の形状と相似になるような長方形状に構成し、マスクM上の照明領域に対する照明光学系の開口数を等しくするために、この長方形状のレンズ断面を持つレンズ素子4aを全体として開口絞り5の円形形状の開口部が内接するように正方形に束ねて構成する。これにより、高い照明効率のもとでマスクMを長方形状に照明することができる。

[0006]しかしながら、図7の(c)に示す如き断面形状を有するフライアイレンズ4では、レンズ素子4aの断面を長方形状とした事により、縦方向と横方向において配置されるレンズ素子の数が大きく異なる。これにより、図7の(c)に示す如く、開口絞り5の円形形状の開口部5aの内部では光源像が均一に分布しておらず、縦(Y方向)と横(X方向)では光源像の光強度の密度等に差が生ずるという問題がある。ここで、開口絞りの形状は照明光学系系のコヒーレンスを決定する σ 校りの役割を担っており、光源像の光強度の密度が各方向において異なることは、 σ 値のばらつきの原因となる事を意味する。従って、縦と横の方向の光源像の光強度の密度差等が起因して縦と横の方向の光源像の光強度の密度差等が起因して縦と横の方向の水源像の光強度の密度差等が起因して縦と横の方向の水源像の光強度の密度差等が起因して縦と横の方向の水源像の光強度の密度差等が起因して縦と横の方向のの面値の違いが生ずる事により、最終的には、露光装置自体の縦方向と横方向とでの限界解像度が大きく異なるという問題がある。

【0007】そこで、本発明では、上記の問題を解決し、露光面内における縦方向と横方向とでの解像度の差、即ち各方向による解像度の差を大幅に軽減し得る高性能な露光装置を提供することを目的としている。

【10008】

【課題を解決するための手段】本発明は、上記目的を達成するために、光を供給する光源手段と、該光源手段からの光を複数に分割して複数の光源像を形成する多光源像形成手段と、該多光源像形成手段からの光を集光して所定パターンを有するマスクを重畳的に照明する集光光学系とを有し、前記マスクのパターンを感光性基板に露光する露光装置において、前記多光源像形成手段により形成される光源像位置又は該光源像位置近傍に開口絞りを配置し、前記感光性基板上での所定の第1方向と該第1方向と垂直な第2方向における解像度の差を補正するために、前記第1方向に対応する前記開口絞りの開口部

の長さと前記第2方向に対応する前記開口絞りの開口部 の長さとを異ならせしめた構成としたものである。

【0009】そして、この場合、前記開口絞りの開口部は、楕円形状を有する構成とすることが望ましい。また、以上の構成に基づいて、前記マスクと前記感光性基板との間に、前記マスクのパターン像を前記感光性基板上に転写する投影光学系を配置した構成としても良い。 【0010】

【作 用】本発明では、感光性基板上の露光面内における各方向による解像度のばらつきを軽減するために、露 10 光装置中の照明光学系における複数の光源像が形成される光強度分布、光強度の密度等の各方向でのばらつきを開口絞りの開口部の形状を変形させることに着目したものである。

[0011]

【実施例】図1は本発明による第1実施例の照明光学装 置を半導体製造用の露光装置に応用した例を示すもので ある。図1における(a)は第1実施例の装置を真上か ら見た時の構成を示す図であり、(b)は(a)の装置 を横方向から見た時の断面構成を示す図である。以下、 この図1を参照しながら第1実施例について詳述する。 【0012】図1に示す如く、光束断面が長方形状の平 行光束を供給する光源手段は、平行光束供給部10と光 東整形部20とで構成されており、平行光東供給部とし てエキシマレーザー等の光源10からは、248nm(KrF)又 は192nm(ArF)の波長光の平行光束が出力され、この時の 平行光束の断面形状は矩形状となっている。この光源1 0からの平行光束は、所定の断面形状の光束に整形する 光束整形部としてのピーム整形光学系20に入射する。 このピーム整形光学系20は、図1の(a)の紙面と垂 30 直方向(図1の(b)の紙面方向)に屈折力を持つ2つ のシリンドリカルレンズ (21, 22) で構成されてお り、光源側のシリンドリカルレンズ21は、正の屈折力・ を有し、図1の(b)の紙面方向の光束を集光する一 方、被照明面側のシリンドリカルレンズ22は、負の屈 折力を有し、光源側のシリンドリカルレンズ21からの 集光光束を発散させて平行光束に変換する。従って、ビ ーム整形光学系20を介した光源1からの平行光束は、 図1の(b)の紙面方向の光束幅が縮小されて光束断面 が長方形状に整形される。なお、ビーム整形光学系20 40 としては、正の屈折力を持つシリンドリカルレンズを組 み合わせたものでも良く、さらにはアナモルフィックブ リズム等でも良い。

【0013】さて、ビーム整形光学系20からの整形された光束は、直線状に3列配列された複数の光源像を形成する第1多光源像形成手段としてのオプティカルインテグレータ30に入射する。このオプティカルインテグレータ30は、図2(a)に示す如く、ほぼ正方形状のレンズ断面を有する複数の両凸形状のレンズ素子30aが複数(3列×9行=27個)配置されて構成されてお50

り、オプティカルインテグレータ30全体としては長方形状の断面を有している。そして、各々の両凸形状のレンズ素子30aは、図1の(a)の紙面方向と図1の(b)の紙面方向とで互いに等しい曲率(屈折力)を有している。

している。 【0.014】このため、オプティカルインテグレータ3 0を構成する個々のレンズ素子30aを通過する平行光 束は、それぞれ集光されて、各レンズ素子30aの射出 側には光源像が形成される。従って、オブティカルイン テグレータ30の射出側位置A1には、レンズ素子30 aの数に相当する複数 (3列×9行=27個) の光源像 が形成され、ここには実質的に2次光源が形成される。 【0015】オプティカルインテグレータ30によって 形成された複数の2次光源からの光束は、リレー光学系 40によって集光されて、さらに複数の光源像を形成す る第2多光源像形成手段としてのオプティカルインテグ レータ50に入射する。このオプティカルインテグレー タ50は、図2(b)に示す如く、長方形状のレンズ断 面を有する複数の両凸形状のレンズ素子50 a が複数 (9列×3行=27個) に配置されて構成されており、 このレンズ素子50aは、この素子50aの断面形状 (縦横比)がオプティカルインテグレータ30の断面形 状(縦横比)と相似となるように構成されている。そし て、オプティカルインテグレータ50全体としては正方 形状の断面を有している。また、各々のレンズ素子50 aは、図1の(a)の紙面方向と図1の(b)の紙面方 向とで互いに等しい曲率(屈折力)を有している。 【0016】このため、オプティカルインテグレータ5 0を構成する個々のレンズ素子50aを通過するオプテ ィカルインテグレータ30からの光束は、それぞれ集光 されて、各レンズ素子30aの射出側には光源像が形成 される。従って、オプティカルインテグレータ30の射 出側位置A,には、正方形状に配列された複数の光源像 が形成され、ここには実質的に3次光源が形成される。 【0017】ここで、オプティカルインテグレータ50 により形成される正方形状に配列された複数の光源像の 数は、オプティカルインテグレータ30を構成するレン ズ素子30aの数をN個とし、オプティカルインテグレ ータ50を構成するレンズ素子50aの数をM個とする とき、N×M個形成される。すなわち、オプティカルイ ンテグレータ30により形成される複数の光源像が、リ レー光学系40によってオプティカルインテグレータ5 0を構成する各々のレンズ素子50aの光源像位置に形

【0018】なお、リレー光学系40は、オプティカルインテグレータ30の入射面位置B,とオプティカルインテグレータ50の入射面位置B,とを共役にすると共に、オプティカルインテグレータ30の射出面位置A,とオプティカルインテグレータ50の射出面位置A,と

成されるため、オプティカルインテグレータ50の射出

側位置A,には、合計N×M個の光源像が形成される。

30

を共役にしている。この3次光源が形成される位置A, もしくはその近傍位置には、後述する所定形状の開口部 を有する開口絞りAS」が設けられており、この開口絞 りAS,により円形状に形成された3次光源からの光束 は、集光光学系としてのコンデンサー光学系60により 集光されて被照明物体としてのマスクM上をスリット状 (長辺と短辺を有する長方形状) に均一照明する。

【0019】マスクMは、マスクステージMSに保持さ れ、感光性基板としてのウエハWはウエハステージに保 持されている。そして、マスクステージMSに保持され 10 たマスクMとウエハステージWSに載置されたウエハW とは投影光学系80に関して共役に配置されており、ス リット状に照明されたマスクMの回路パターン部分が投 影光学系80によってウエハW上に投影される。

【0020】以上の構成による実際の露光においては、 マスクステージMSとウエハステージWSとは図1

(b) に示す如く矢印方向へ互いに反対方向へ移動し て、レチクル上の回路パターンがウエハW上に転写され る。さて、次に、本実施例による開口絞りについて詳述 する。本実施例では、図1に示す第2オプティカルイン 20 テグレータにより形成される光源像位置A,もしくは、 図3 (a) に示す如く、X方向での開口絞りAS₁の開 口部Anの長さΦnとX方向と直交するY方向での開口 絞り AS_1 の開口部 A_{PI} の長さ Φ_{TI} とが異なる(Φ_{II} < Φ_{n})、あるいは、図3(b)に示す如く、X方向での 開口絞りAS,の開口部Anの長さΦnとX方向と直交 するY方向での開口絞りAS,の開口部Anの長さΦn とが異なる (Φ_{12} > Φ_{12})、即ち楕円形状の開口部 (A ri又はAri)を持つ開口絞り(ASi又はASi)が設 けられている。

【0021】ここで、図4(a)は、第2オプティカル インテグレータ50により形成される光源像の位置に円 形開口部Anoを持つ開口絞りを配置した場合に、第2オ プティカルインテグレータ50の射出側から円形開口部 Amを持つ開口絞りを見た時の各レンズエレメント50 aに形成される光源像 I nの様子を示しており、図 4

(b) は、第2オプティカルインテグレータ50により 形成される光源像の位置に図3(a)に示す楕円形状の 開口部A」を持つ開口絞りAS」を配置した場合に、第 2オプティカルインテグレータ50の射出側から楕円形 40 状の開口部Anを持つ開口絞りASnを見た時の各レン ズエレメント50aに形成される光源像1mの様子を示 している。また、図4 (c)は、第2オプティカルイン テグレータ50により形成される光源像の位置に図3

(b) に示す楕円形状の開口部Anを持つ開口絞りAS ,を配置した場合に、第2オプティカルインテグレータ 50の射出側から楕円形状の開口部Anを持つ開口絞り AS,を見た時の各レンズエレメント50aに形成され る光源像 I nの様子を示している。なお、図4におい て、第2オプティカルインテグレータ50の各レンズエ 50 レメント50a中に示した斜線の光源像Imは、各レン ズエレメント50aの射出側にて再結像される第1オブ ティカルインテグレータ全体の光源像の様子を簡略的に 示している。

[0022] 図4の(a)~(c)の比較より、図4 (a) ではX方向及びY方向で光源像 Inの数の相違に より、光源像の光強度分布又は光密度分布がX方向及び Y方向で違う事が解る。しかしながら、図4の(b)及 び(c)に示す如く、本実施例の楕円形状の開口部(A ri又はAri)を持つ開口絞り(ASi又はASi)を配 置した場合には、X方向及びY方向で光源像Imの数の 相違に伴って楕円形状の開口部のX方向での長さΦnと Y方向での長さΦηとが異ならせしめているため、光源 像の光強度分布又は光密度分布をX方向とY方向とでほ ば等しくできることが解る。

【0023】この事を換言して説明すると、通常開口絞 り $(\sigma 絞 b)$ の開口径 Φ は以下の式で求められる。

 $\Phi = 2 f \cdot \sigma \cdot NA/\beta$

ここで、fはコンデンサー光学系60の焦点距離、NA は投影光学系ΡLの開口数、βは投影光学系ΡLの倍率 である。なお、視野絞りをリレー光学系を用いてマスク 面に結像させる光学系においては上記(1)式にそのり レー光学系の倍率を乗じたものとなる。通常NAは主光 線に対して軸対称であるから開口絞りは円になる。しか し、開口絞りの内側で光源像の分布に違いがあればNA は軸対称ではなくなる。従って、図4(a)に示す図を 見ると明らかに光源像Ⅰ₂の分布が縦横で違う事が解 る。この光源像の密度の違いに伴って、開口内において 縦横で密度が同じになるような図3に示す開口絞り(A S,又はAS,)を図3に示すようにオプティカルイン テグレータ5の光源像を形成する側A, に配置すること によって、ウエハW上での露光面内における各方向によ る解像度のばらつきを軽減することができる。なお、開 口絞り(AS,又はAS,)の開口部(An又はAn) の最適形状は、σ値により光源像を切る位置により変化 する点、光源像Imが一様ではない点、及び照明光学系 の諸々の収差の影響を受ける点等を十分に考慮して決定 することが望ましいが、実際には、試し露光を行なう か、あるいはシミュレーションを行なう事によって容易 に開口絞り (AS₁又はAS₂)の Φ_{11} 、 Φ_{11} の最適な 値又はΦ1,、Φ1,の最適な値を決定することができる。

【0024】なお、図1に示す第1実施例では平行光束 供給部として平行光束を供給するエキシマレーザー等と しているが、これに限るものではなく、例えば、g線 (436nm)又は i 線 (365nm)等の波長光を出力する水銀ア ーク灯とこの水銀アーク灯からの光を集光する楕円鏡と この楕円鏡により集光された光束を平行光束に変換する コリメータレンズ系とを用いて平行光束供給部を構成し ても良い。また、本実施例での投影光学系80は、屈折 型光学系、反射型光学系または反射屈折型光学系で構成

Q

して良いことは言うまでもない。

【0025】さて、次に図5及び図6を参照しながら第 2実施例について説明する。図5は図7(a)にて示し た従来技術の構成と類似しているが、図5では図7

(a)とは、オプティカルインテグレータ4、の構成と開口絞り(AS, 又はAS,)との構成が異なる。まず、図5でのオプティカルインテグレータ4、は、図6に示す如く、長辺と短辺を有する長方形状のレンズ断面を持つレンズエレメント4a、が5列×6行(30個)で配列され、オプティカルインテグレータ4、全体とし10で正方形となるように構成されている。この図5のオプティカルインテグレータ4、では、レンズエレメント4a、が正方形より若干ずれた縦横比を有し、全体の個数は縦と横で異なっている。このため、開口絞りとして通常の円形開口絞りを使用すると開口内部の光源像の分布が縦と横で異なり、σ値ならびに投影レンズの開口数が若干縦と横で異なることになり、解像力の差が生じる。

【0027】ここで、図6(a)は、図5のオプティカ 30 ルインテグレータ4'により形成される光源像の位置に 円形開口部Anoを持つ開口絞りを配置した場合に、オプティカルインテグレータ4'の射出側から円形開口部Anoを持つ開口絞りを見た時の各レンズエレメント4a'に形成される光源像 In'の様子を示しており、図6

(b) は、図5のオプティカルインテグレータ4、により形成される光源像の位置に図3 (a) に示す楕円形状の開口部 A_n を持つ開口絞り AS_1 を配置した場合に、オプティカルインテグレータ4、の射出側から楕円形状の開口部 A_n を持つ開口絞り AS_1 を見た時の各レンズエレメント4 a、に形成される光源像 I_a 、の様子を示している。また、図6 (c) は、図5のオプティカルインテグレータ4、により形成される光源像の位置に図3 (b) に示す楕円形状の開口部 A_n を持つ開口絞りAS

、を配置した場合に、オプティカルインテグレータ4'の射出側から楕円形状の開口部Anを持つ開口絞りAS,を見た時の各レンズエレメント4a'に形成される光源像 I 20の様子を示している。

【0028】図6の(a)~(c)の比較より、図6

(a) ではX方向及びY方向で光源像 I ...の数の相違に

より、光源像の光強度分布又は光密度分布がX方向及びY方向で違う事が解る。しかしながら、図6の(b)及び(c)に示す如く、本実施例の楕円形状の開口部(An又はAn)を持つ開口絞り(ASI又はASI)を配置した場合には、X方向及びY方向で光源像 I_n の数の相違に伴って楕円形状の開口部のX方向での長さ Φ_n とY方向での長さ Φ_n とが異ならせしめているため、光源像の光強度分布又は光密度分布をX方向とY方向とでほぼ等しくできることが解る。

【0029】このように、正方形より若干ずれた縦横比を有するレンズエレメント4a'を複数束ねられて構成されたオプティカルインテグレータ4'を1つ用いた場合においても、楕円開口絞り(AS,又はAS,)を用いることにより、開口の内部の光源像の密度を縦と横で一定にすることが出来る。

[0030]

【発明の効果】以上の如く、本発明によれば、露光面内における縦方向と横方向とでの解像度の差、即ち各方向による解像度のばらつきを大幅に軽減することができる。従って、高性能な露光装置の実現が可能となる。

【図面の簡単な説明】

【図1】(a)は本発明による第1実施例の露光装置の構成を示す図であり、(b)は(a)の露光装置を横方向から見た時の構成を示す図である。

【図2】(a)は図1の第1オプティカルインテグレータ30の断面形状の様子を示す図であり、(b)は図1の第2オプティカルインテグレータ50の断面形状の様子を示す図である。

【図3】(a)はX方向での開口部 A_n の長さ Φ_n をY方向での開口部 A_n の長さ Φ_n よりも短くした時の楕円形状の開口部を持つ開口絞り AS_1 を様子を示す平面図であり、(b)はX方向での開口部 A_n の長さ Φ_n をY方向での開口部 A_n の長さ Φ_n よりも長くした時の楕円形状の開口部を持つ開口絞り AS_1 を様子を示す平面図である。

【図4】図1に示した第2オプティカルインテグレータ 50の射出側に各形状の開口絞りを配置した場合での光 源像分布と開口絞りの開口部との関係を示す図である。

【図5】本発明による第1実施例の露光装置の構成を示す図である。

【図6】図5に示したオプティカルインテグレータ4'の射出側に各形状の開口絞りを配置した場合での光源像分布と開口絞りの開口部との関係を示す図である。

【図7】従来の露光装置の構成を示す図である。

【主要部分の符号の説明】

10 · · · · エキシマレーザー

20 · ・・・・ ピーム整形光学系

4', 30, 50 · · · · オブティカルインテグレータ

40 · · · · リレー光学系

50

60・・・・・ コンデンサー光学系

* * P L · · · · · 投影光学系

[図1]

【図2】

}

【図3】

10

AS_a

(b)

[図4]

【図5】

BEST AVAILABLE COPY

【図6】

【図7】

フロントページの続き

(51) Int. Cl. 6

識別記号

庁内整理番号

FΙ

H01L 21/30

技術表示箇所

5 1 8