Fractal Geometry

Alex Rutar* University of Waterloo

Winter 2020[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: January 9, 2020

Contents

Chapte	r I	Topics in Fractal Geometry
1	Dime	nsion Theory
	1.1	The Cantor Set
	1.2	Box Dimensions
	1.3	Constructing Measures in Metric Spaces
	1.4	Hausdorff Measure and Dimension
Chapte	er II	Stochastic Calculus
2	Marti	ngale Theory

I. Topics in Fractal Geometry

1 Dimension Theory

1.1 THE CANTOR SET

Define maps $f_i : \mathbb{R} \to \mathbb{R}$ for i = 1, 2 given by $f_1(x) = x/3$ and $f_2(x) = x/3 + 2/3$. Let $C_0 = [0, 1]$; given some C_k , define $C_{k+1} = f_1(C_k) \cup f_2(C_k)$; since the f_i are linear, C_k is compact. We thus define $C_{1/3} = \bigcap_{n=0}^{\infty} C_n$, the classical **Cantor set**.

If $x \in C_{1/3}$, then x is an accumulation point: given $\epsilon > 0$, get N so that $3^{-N} < \epsilon$ then and thus some endpoint of C_N disjoint from x is within distance ϵ of x. Thus $C_{1/3}$ is a perfect set and therefore uncountable. Another way to see that the Cantor set is uncountable is to note that $C_{1/3}$ is homeomorphic to $\{0,1\}^{\mathbb{N}}$ with the product topology (via ternary expansions). Moreover, since $\lambda(C_{1/3}) \leq \lambda(C_n) = \frac{2^n}{3^n}$ for any $n \in \mathbb{N}$ we see that $\lambda(C_{1/3}) = 0$.

More generally, we may define C_r where $r \in (0, 1/2)$ by the above process with the functions $f_1(x) = rx$ and $f_2(x) = rx + 1 - r$. Again, $C_r \cong \{0, 1\}^{\mathbb{N}}$ topologically and $\lambda(C_r) = 0$; but already, we see that our classical analytic perspectives (topological, Lebesgue-measure-theoretic, cardinality) are insufficient to distinguish the C_r for distinct r.

1.2 Box Dimensions

Definition. Let $E \subseteq \mathbb{R}^n$ be a bounded Borel set, and for each $\delta > 0$, let $N_{\delta}(E)$ be the least number of closed balls of diameter δ . We then define the **upper box dimension** of E

$$\overline{\dim}_B E = \limsup_{\delta \to 0} \frac{\log N_{\delta}(E)}{|\log \delta|}$$

and similarly $\underline{\dim}_B E$ (the **lower box dimension**) with a liminf in place of limsup. If $\underline{\dim}_B E = \overline{\dim}_B E$, then we define the **box dimension** to be this shared quantity.

If *I* is any interval, it is easy to see that $\dim_B I = 1$. [**TODO**: include proof of invariance on choice of ball] Note that if $N_{\delta}(E) \sim \delta^{-s}$, then $\dim_B E = S$.

Example. Let's show that the box dimension of $C_{1/3}$ exists, and compute it. Given some $\delta > 0$, let n be so that $3^{-n} \le \delta < 3^{-(n-1)}$. Certainly we can cover $C_{1/3}$ by Cantor intervals of level n, so that $N_{\delta}(C_{1/3}) \le 2^n$. Moreover, the endpoints of Cantor inversals of level n-1 are distance at least $3^{-(n-1)} > \delta$ apart. Thus $N_{\delta}(C_{1/3})$ is at least the number of endpoints of level n-1, i.e. $N_{\delta}(C_{1/3}) \ge 2^n$. Thus $N_{\delta}(C_{1/3}) = 2^n$, so that

$$\frac{\log 2}{\log 3} = \frac{\log 2^n}{\log 3^n} \le \frac{\log N_{\delta}(C_{1/3})}{|\log \delta|} \le \frac{\log 2^n}{\log 3^{n-1}} = \frac{n}{n-1} \cdot \frac{\log 2}{\log 3}$$

and, as $\delta \to 0$, $n \to \infty$ so that the $C_{1/3} = \frac{\log 2}{\log 3}$.

More generally, using the same technique, we may compute $C_r = \frac{\log 2}{\log 1/r}$.

However, the box dimension has poor properties: for example, we may verify $\dim_B\{0,1,1/2,1/3,\ldots\} = \frac{1}{2}$. But this is very concerning from a measure theoretic perspective, since this is a countable set with larger "dimension" than some uncountable sets (e.g. C_r for small r).

1.3 Constructing Measures in Metric Spaces

Let *X* be a metric space.

Definition. Given $A, B \subseteq X$, say $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\}$. Say A, B have **positive** separation if d(A, B) > 0.

If A, B are compact and disjoint, then they have positive separation. We say that an outer measure μ^* is a **metric outer measure** if $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$ when A, B have positive separation.

Example. The Lebesgue outer measure is a metric outer measure. [TODO: prove]

1.1 Theorem. μ^* is a metric outer measure if and only if every Borel set is μ^* -measurable (in the sense of Caratheodory).

Proof [TODO: prove this (homework), and find a proof of the converse? (may not be true)]

Suppose $A \subseteq \mathcal{B}$ are both covers of X containing \emptyset and $\mathcal{C} : \mathcal{B} \to [0, \infty]$ with $\mathcal{C}(\emptyset)$. Let μ_A^* and μ_B^* be the corresponding extensions of \mathcal{C} and $\mathcal{C}|_A$. Then by definition, $\mu_B^*(E) \le \mu_A^*(E)$ for all $E \in \mathcal{P}(X)$.

Let X be a metric space, \mathcal{A} cover X containing \emptyset . Suppose for each $x \in X$ and $\delta > 0$, there exists $A \in \mathcal{A}$ such that $x \in A$ and $A \leq \delta$. Let $\mathcal{C} : \mathcal{A} \to [0,\infty]$ with $\mathcal{C}(\emptyset) = 0$. Set $\mathcal{A}_{\epsilon} = \{A \in \mathcal{A} : (A) \leq \epsilon\}$, and define μ_{ϵ}^* by extending $\mathcal{C}|_{\mathcal{A}_{\epsilon}}$. In particular, as ϵ decreases, μ_{ϵ}^* increases, and define

$$\mu^*(E) = \sup_{\epsilon} \mu_{\epsilon}^*(E) = \lim_{\epsilon \to 0} \mu_{\epsilon}^*(E)$$

1.2 Theorem. As defined above, μ^* is a metric outer measure.

Proof [TODO: prove this, homework]

Example. The Lebesgue measure arises this way; in fact, the μ_{ϵ}^* are all the same outer measure.

1.4 Hausdorff Measure and Dimension

For the remainder of this chapter, if X is a metric space and $U \subseteq X$, we denote |U| = (U). **Definition.** A δ -cover of a set $F \subseteq X$ is any countable collection $\{U_n\}_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} U_n \supseteq F$ and $|U_n| \le \delta$.

Let $A = \mathcal{P}(X)$, and $A_{\delta} = \{A \subseteq X : |A| \le \delta\}$. For $\delta \ge 0$, put $\mathcal{C}_s(A) = |A|^s$. Then for $s \ge 0$, $\delta > 0$, and $E \subseteq$, we define

$$H_{\delta}^{s}(E) = \inf \left\{ \sum_{n=1}^{\infty} |U_{n}|^{s} : \{U_{n}\} \text{ is a } \delta \text{-cover of } E \right\}$$
$$= \inf \left\{ \sum_{n=1}^{\infty} C_{s}(U_{n}) : \bigcup_{n=1}^{\infty} U_{n} \supseteq E, U_{n} \in \mathcal{A}_{\delta} \right\}$$

This is the outer measure as constructed in **??** with covering family A_{δ} and function C_s . In particular, as $\delta \to 0$, H^s_{δ} increases; in particular, by Theorem 1.2, $H^s(E) = \sup_{\delta} H^s_{\delta}(E)$ is a

metric outer measure. Then apply Caratheodory (??) to get the s-dimensional Hausdorff measure, which is a complete Borel measure.

xample. (i) H^0 is the counting measure on any metric space. (ii) Take $X = \mathbb{R}$ and s = 1. Then H^1 is the Lebesgue measure (on Borel sets). To see this, we have

$$\lambda(E) = \inf \left\{ \sum_{n=1}^{\infty} |I_n| : \bigcup_{n=1}^{\infty} I_n \supseteq E, |I_n| \le \delta \right\}$$

$$\ge H_{\delta}^{1}(E)$$

for any $\delta > 0$; and conversely, take any δ -cover of E, say $\{U_n\}_{n=1}^{\infty}$ and set $I_n = \overline{\operatorname{conv} U_n}$ so $|I_n| = |U_n| \le \delta$. Thus $\sum_{n=1}^{\infty} |U_n| = \sum_{n=1}^{\infty} |I_n| \ge \lambda(E)$ for any such cover, so $\lambda(E) = H_{\delta}^1(E)$ for any $\delta > 0$. Thus $\lambda(E) = H^1(E)$ for any Borel set E.

(iii) More generally, if $X = \mathbb{R}^n$ and s = n, then $\lambda = \pi_n \cdot H^n$ where π_n is the n-dimensional volume of the ball of diameter 1. [TODO: this is annoying exercise]

Suppose s < t. Then $H^s(E) \ge H^t(E)$.

II. Stochastic Calculus

Definition. Given a measure space $(\Omega, \mathcal{F}, \mathbb{P})$, a measurable function $f : \Omega \to \mathbb{R}$ is called a **random variable**.

Definition. A **stochastic process** $X = \{X_t\}_{t \in T}$ is a collection of random variables defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Typically $t \in \mathbb{Z}^+$ or $t \in \mathbb{R}^+$ (including 0); t is a discrete or continuous time parameter. Given some $\omega \in \Omega$ the map $t \mapsto X_t(\omega)$ is called a **realization** or **path** of this process. We will regard $\{X_t\}_{t\geq 0}$ as a random element in some path space, equipped with a proper σ -algebra and probability.

Consider $X_t(\omega)$ as a function $X:[0,\infty)\times\Omega\to\mathbb{R}$ equipped with the product σ -algebra.

Definition. The **distribution** of a stochastic process is the collection of all its finite-dimensional distributions.

Two processes *X* and *Y* can be "the same" in different senses:

Definition. Two process $X = \{X_t\}_{t \geq 0}$ and $Y = \{Y_t\}_{t \geq 0}$ are called **distinguishable** if almost all their sample paths agree; in other words, $\mathbb{P}(X_t = Y_t, 0 \leq t < \infty) = 1$. We say that Y is a **modification** of X if for each $t \geq 0$ we have $\mathbb{P}(X_t = Y_t) = 1$. Finally, X and Y are said to have the **same distribution** if all the finite dimensional distributions agree. In other words, if for all $n \in \mathbb{N}$ and $0 \leq t_1 < t_2 < \cdots < t_n < \infty$, we have $(X_{t_1}, \dots, X_{t_n}) \stackrel{d}{=} (Y_{t_1}, \dots, Y_{t_n})$.

Example. Let X be a continuous stochastic process and N a Poisson point process on $[0, \infty)$. Then define

$$Y_t := \begin{cases} X_t & : t \notin N \\ X_t + 1 & : t \in N \end{cases}$$

Thus $\mathbb{P}(X_t = Y_t) = 1$ for all t, so X is a modification of Y. However, $\mathbb{P}(X_t = Y_t, t \ge 0) = 0$, so that X and Y are not indistinguishable.

A filtration formalizes the idea of "information acquired over time".

Definition. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A **filtration** is a non-decreasing family $\{\mathcal{F}_t\}_{t\geq 0}$ of sub- σ -algebras of \mathcal{F} so that $\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}$ for $0 \leq s < t < \infty$. We write $F_{\infty} = \sigma(\bigcup_{t>0} \mathcal{F}_t)$.

Let $\{X_t\}_{t\geq 0}$ be a stochastic process. The filtration generated by $\{X_t\}_{t\geq 0}$ is $\{\sigma(X_s:0\leq s\leq t)\}_{t\geq 0}$, in other words \mathcal{F}_t is the smallest σ -algbra which makes X_s measurable for all $s\in [0,t]$.

Definition. A stochastic process $\{X_t\}_{t\geq 0}$ is called **adapted** to a filtration $\{\mathcal{F}_t\}_{t\geq 0}$ if X_t is \mathcal{F}_t -measurable for every $t\geq 0$.

The filtration generated by $\{X_t\}_{t\geq 0}$ is the smallest filtration which makes $(X_t)_{t\geq 0}$ adapted.

A filtration $\{\mathcal{F}_t\}_{t\geq 0}$ is said to satisfy the "usual condition" if

- 1. It is right-continuous: $\lim_{s\to t^+} := \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_t$
- 2. \mathcal{F}_0 contains all the \mathbb{P} -null events in \mathcal{F} .

2 Martingale Theory

Consider a filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in S})$ where $S = \mathbb{N}$ or $S = \mathbb{R}^+$.

Definition. A random time T is called a stopping time if $\{T \leq t\} \in \mathcal{F}_t$ ("we know it happens when it happens").

Example. (i) Constants are trivial stopping times.

- (ii) Last hit a constant before *N* is not a stopping time
 - **2.1 Proposition.** If S, T are stopping times, $T \vee S$, $T \wedge S$, T + S are stopping times.

PROOF That $T \wedge S$ and $T \vee S$ are stopping times are trivial. For T + S, $\{T + S > t\} = \{T = 0, S > t\} \cup \{0 < T \le t, T + S > t\} \cup \{T > t\}$. It suffices to prove that

$$\{0 < T \le t < T + S > t\} = \bigcup_{\substack{r \in \mathbb{Q}^+ \\ 0 < r < t}} \{r < T \le t, S > t - r\}.$$

If there exists r with $r < T \le t$, then S > t = r and S + T > r + (t - r) = t, so \supseteq holds. Conversely, if $0 < T \le t$ and $T + S \ge t$; then there exists $r \in \mathbb{Q}$ such that r < T and r + S > t. Hence $r < T \le t$ and S > t - r.

Definition. The σ -algebra generated by a stopping time T is the collection of all the events A for which $A \cap \{T \leq t\} \in \mathcal{F}_t$ for every $t \geq 0$. This is the "information you collect until the stopping time".

Exercise: show that the collection given in the definition above is actually a σ -algebra.

We write $X_{T \wedge t}$ is a random variable evaluated at time $T \wedge t$ (or T); in other words, $(X_{T \wedge t})(\omega) = X_{T \wedge t}(\omega)$. Then $\{T_{T \wedge t}\}_{t \geq 0}$, or X^T , is a stochastic process stopped at time t.