FPGA Documentation

Lecture 05

Josh Brake
Harvey Mudd College

Outline

- Documentation Overview
- FPGA documentation Bingo
- Manual design mapping exercise
- Quick basic testbench review

Learning Objectives

By the end of this lecture you should be able to...

- Find basic specs in the FPGA documentation to answer questions about your system like DC logic levels, max clock speed, etc.
- Determine the number of logic cells required by simple Verilog modules.
- Recall how to write a Verilog testbench

Lattice iCE40UP Documentation

Documentation

Quick Reference			Technical Resources	Inform	Information Resources		Downloads	
Key Documents			Reference Design	Produc	Product Brochure		IBIS Model	
Data Sheet		et	Product Change Notification	Quality	Quality Assurance			
Application Note		n Note	Schematic	White F	White Paper			
Pin	Pin & Package							
User Manual		ual						
⊠ [*]	\downarrow	TITLE ~		NUMBER	VERSION	DATE	FORMAT	SIZE
		iCE40 UltraPlus Family Data	sheet ↓	FPGA-DS-020	08 2.0	9/20/2021	PDF	1.1 MB
		Memory Usage Guide for iC	E40 Devices ↓	FPGA-TN-020	02 1.7	10/14/2020	PDF	954.3 KB
		iCE40 I2C and SPI Hardened	d IP Usage Guide ↓	FPGA-TN-020	10 1.7	9/11/2020	PDF	1.3 MB
		iCE40 SPRAM Usage Guide	↓	FPGA-TN-020	22 1.3	4/16/2021	PDF	912.9 KB
		iCE40 Hardware Checklist	↓	FPGA-TN-020	06 2.0	3/10/2022	PDF	355.4 KB
		iCE40 Oscillator Usage Guid	de ↓	FPGA-TN-020	08 1.7	1/25/2021	PDF	675 KB
		iCE40 sysCLOCK PLL Design	and User Guide 🗼	FPGA-TN-020	52 1.4	4/30/2022	PDF	1.3 MB
		iCE40 LED Driver User Guid	e 🎵	FPGA-TN-020	21 1.5	11/29/2021	PDF	2 MB

Lattice iCE40UP Documentation

- Info on FPGA chip itself
 - DC logic levels
 - Timing information
 - Package dimensions
 - Pinout information
 - Block diagrams of internal components

iCE40 UltraPlus Family Data Sheet

Package Diagrams

Data Sheet

Data Sheet

FPGA-DS-02008-2.0

FPGA-DS-02053-6.8

UPduino Documentation

Specs specific to the UPduino board

- Schematics
- Supporting hardware
- Programming instructions

UPduino Documentation %

tinyVision.ai

UPDuino v3.0: PCB Design Files, Designs, Documentation

The UPDuino v3.0 is a small, low-cost FPGA board. The board features an on-board FPGA programmer, flash and LED with _all_ FPGA pins brought out to easy to use 0.1" header pins for fast prototyping.

The tinyVision.ai UPduino v3.0 Board Features:

- Lattice UltraPlus ICE40UP5K FPGA with 5.3K LUTs, 1Mb SPRAM, 120Kb DPRAM, 8 Multipliers
- FTDI FT232H USB to SPI Device
- _ALL_ 32 FPGA GPIO on 0.1" headers
- _ALL_ FTDI pins brought to test points
- 4MB SPI Flash
- RGB LED
- On board 3.3V and 1.2V Regulators, can supply 3.3V to your project
- Open source schematic and layout using KiCAD design tools
- Integrated into the open source APIO toolchain

FPGA Documentation Bingo

Bingo Card

#	Question	Answer	Reference
1	Recommended operating voltage for VCCIO	1.71-3.46 V	Table 4.2, p. 29
2	I/O pin input capacitance	C1 = 6 pF	Table 4.5, p. 32
3	3.3 V LVCMOS Logic Levels	VIL (-0.3, 0.7) VIH (2.0, VCCIO + 0.2), VOL 0.4, VOH 0.4	Table 4.18, p. 34
4	Recommended core input voltage	1.14-1.26 V	Table 4.2, p. 29
5	Maximum speed of sysI/O buffer	250 MHz	Table 4.19, p. 36
6	Maximum PLL output frequency	275 MHz	Table 4.22, p. 38
7	Maximum output current	+/- 8 mA	Table 4.13, p. 34
8	Operating temperature range	-65-125 °C	Table 4.1, p. 29
9	Input leakage current	III, IIH = 10 μA	Table 4.5, p. 32
10	What FPGA device is on the UPduino v3.1 board?	ICE40UP5K-SG48ITR	UPduino schematic
11	Major elements in a Logic Cell (LC)	4-input LUT, 1-bit DFF, Carry logic	Figure 3.2, p. 12
12	What is the range of clock frequencies for the high speed internal oscillator?	48 MHz, +/-20%	Table 4.11, p. 34
13	How many logic element are on our FPGA?	5280	Table 2.1, p. 9; multiple

Bingo Card

#	Question	Answer	Reference
14	How many EBR memory blocks?	30,120 Kbits total	Table 2.1, p. 9
15	How many SPRAM memory blocks?	4, 1024 Kbits total	Table 2.1, p. 9
16	What is the difference between EBR and SPRAM?	EBR can be configured at boot, SPRAM cannot.	
17	How many I/O banks?	3 (0, 1, 2)	Figure 3.9, p. 24
18	Data buss skew across a bank of I/Os?	510 ps	Table 4.21, p. 37
19	Propagation delay through 4-input LUT?	9 ns	Table 4.21, p. 37
20	PIO input register setup time	-0.5 ns	Table 4.21, p. 37
21	PIO input register hold time	5.55 ns	Table 4.21, p. 37
22	PIO output register clock to output (Q)	10 ns	Table 4.21, p. 37
23	Number of multipliers in the FPGA	Single 16-bit x 16-bit or two 8-bit x 8- bit	Section 3.1.7, p. 18
24	Package for our FPGA chip	SG48 (48-pin QFN 0.50 mm pin pitch)	UPduino Documentation
25	How many user I/Os does the FPGA chip have?	39	Table 2.1, p. 9; multiple
26	What is the area of the FPGA package?	7 mm x 7 mm	Package Diagrams document, p. 36
27	What voltage does the FPGA core run on?	1.2 V	Table 4.2, p. 29

Manual Design Mapping

Going from Verilog HDL to logic cells

- 2-input AND: 1 LE
- 4-input AND: 1 LE
- 5-input AND: 2 LE
- 16-input AND: 5 LEs
- Arbitrary function of 5 inputs: 3 LEs (f(0), f(1), select between)
- Arbitrary function of 6 inputs: 7 LEs (4 functions of 4 inputs, two levels of 2:1 mux to choose output from the four individual 4-input LUT.)
- 2 inverters: 2 LEs
- Divide by 3 counter: 2 LEs (2 flops + 2 functions of 2 inputs)

Wrap up

- FPGA documentation contains important information like logic levels and timing specs
- Learning to navigate the documentation is a skill that must be practiced. Try to browse instead of search.
- As a hardware designer, you should be able to explain how many logic cells