MATH 2111 Matrix Algebra and Applications

Week 6 Tutorial

1. Let
$$A = \begin{bmatrix} x+y & x-y & 4 \\ 3 & 0 & x+z \\ 2x-y+z & 1 & x+y \end{bmatrix}$$
. Find suitable x,y,z such that: (i) A is symmetric;

- 2. Let A be an $m \times n$ matrix. Do we always have (i) $A^T A$ (ii) AA^T being symmetric?
- 3. Let A be a 2×2 orthogonal matrix. Show that there exists a suitable θ such that:

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad \text{or} \quad A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

- 4. Let $A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}$. Show that $C = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$ is the inverse of B. Find a matrix D such that DB = A.
- 5. Let A be an $n \times n$ matrix. Find A^{-1} (if exists) when A satisfies:

(i)
$$(A-I)(A+I) = O$$
 (ii) $A^5 - A^3 + A^2 = 4I$ (iii) $A^2 = A$ but $A \neq I$.

- 6. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Suppose that n < m. Can the matrix product AB (of size $m \times m$) be invertible?
- 7. Let A, B, C be $n \times n$ invertible matrices. Solve the following matrix equations for X.
 - (i) ABC = AXC.
 - (ii) $CXB^{-1} = C(BC)^{-1}$.
 - (iii) $(ABC^{-1})^{-1}ABXBC(A^{-1}BC)^{-1} = CBA.$
- 8. Let $\lambda_i \neq 0$ for $i = 1, \dots, n$. Is diag $(\lambda_1, \dots, \lambda_n)$ invertible? If yes, what is its inverse?
- 9. Consider an invertible $n \times n$ matrix A, and an arbitrary $n \times k$ matrix B. Suppose that by a suitable sequence of EROs one can transform the combined matrix $[A \mid B]$ to $[I_n \mid C]$. What should C be?

Answers for checking:

1. (i)
$$(x, y, z) = (1 - s, -2 - s, s)$$
, where s is free – (ii) $(x, y, z) = (-\frac{3}{2}, \frac{3}{2}, \frac{1}{2})$.

- 2. Yes for both.
- 3. Solve directly from definition $A^T A = I_2$.

4.
$$D = \begin{bmatrix} -5 & -4 \\ 5 & 3 \\ -1 & -1 \end{bmatrix}$$
.

5. (i)
$$A$$
 (ii) $\frac{1}{4}(A^4 - A^2 + A)$ (iii) not exist.

6. Never.

7. (i)
$$B$$
 (ii) C^{-1} (iii) B

8. Yes. diag
$$(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})$$
.

9.
$$C = A^{-1}B$$
.