Modelos de Computación: Relación de problemas 6

David Cabezas Berrido

Ejercicio 13. Encuentra una gramática libre de contexto en forma normal de Chomsky que genere siguiente lenguaje:

$$L = \{ucv \ : \ u,v \in \{0,1\}^+ \ {\rm y} \ {\rm n}^{\rm o} \ {\rm subcadenas} \ {\rm `01'} \ {\rm en} \ {\rm u} = {\rm n}^{\rm o} \ {\rm subcadenas} \ {\rm `10'} \ {\rm en} \ {\rm v}\}$$

Comprueba con el algoritmo CYK si la cadena 010c101 pertenece al lenguaje generado por la gramática.

$S \to XcY$	$X \to 1A$	$Y \to 0B$
$S \to AHB$	$X \to 0A'$	$Y \to 1B'$
$H \rightarrow 01ATB10$	$A \rightarrow 1A$	$B \to 0B$
$T \to H$	$A \to A'$	$B \to B'$
$T \to c$	$A' \to 0A'$	$B' \to 1B'$
	$A' \to \varepsilon$	$B' \to \varepsilon$

Una gramática en forma normal de Chomsky equivalente es:

$S \to D_{Xc}Y$	$X \to C_1 A$	$D_{Xc} \to XC_c$
$S \to D_{AH}B$	$X \to C_0 A'$	$D_{AH} \to AH$
$S \to AH$	$X \to 0$	$D_{01} \to C_0 C_1$
$S \to HB$	$X \to 1$	$D_{10} \to C_1 C_0$
$S \to E_{01AT} E_{B10}$	$A \to C_1 A$	$D_{AT} \to AT$
$S \to E_{01AT}D_{10}$	$A \to C_0 A'$	$D_{TB} \to TB$
$S \to E_{01TB}D_{10}$	$A \rightarrow 1$	
$S \to E_{01T} D_{10}$	$A \to 0$	$E_{01AT} \to D_{01}D_{AT}$
	$A' \to C_0 A'$	$E_{B10} \to BD_{10}$
$H \to E_{01AT} E_{B10}$	$A' \to 0$	$E_{01TB} \to D_{01}D_{TB}$
$H \to E_{01AT}D_{10}$		$E_{01T} \to D_{01}T$
$H \to E_{01TB}D_{10}$	$Y \to C_0 B$	
$H \to E_{01T}D_{10}$	$Y \to C_1 B'$	$C_c \to c$
	$Y \rightarrow 1$	$C_0 \to 0$
$T \to E_{01AT} E_{B10}$	$Y \to 0$	$C_1 \to 1$
$T \to E_{01AT}D_{10}$	$B \to C_0 B$	
$T \to E_{01TB}D_{10}$	$B \to C_1 B'$	
$T \to E_{01T}D_{10}$	$B \to 0$	
$T \to c$	$B \to 1$	
	$B' \to C_1 B'$	
	$B' \to 1$	

Ahora aplicaré el algoritmo CYK sobre la palabra 010c101:

0	1	0	С	1	0	1
X, A, A'	X, A, Y	X, A, A'		X, A, Y	X, A, A'	X, A, Y
Y, B, C_0	B, B', C_1	Y, B, C_0	T, C_c	B, B', C_1	Y, B, C_0	B, B', C_1
Y, B, D_{01}	X, A, D_{10}	D_{Xc}, D_{AT}	D_{TB}	X, A, D_{10}	Y, B, D_{01}	
E_{B10}	D_{Xc}, D_{AT}	S	Ø	Ø		•
E_{01AT}	S	Ø	Ø			
Ø	Ø	Ø				
S, H, T	Ø		•			
S, D_{TB}		•				

S aparece en la última casilla, por tanto la palabra es generada.

Ejercicio 15. Encuentra una gramática libre de contexto en forma normal de Chomsky que genere los siguientes lenguajes sobre $\{a, 0, 1\}$:

$$L_1 = \{auava \mid u, v \in \{0, 1\}^+ \text{ y } u^{-1} = v\}$$

$$S \to aHa$$

$$H \to 1T1$$

$$T \to 0T0$$

$$T \to a$$

Gramática equivalente en forma normal de Chomsky:

$$S \to D_{aH}C_a \qquad T \to D_{1T}C_1 \qquad D_{aH} \to C_aH \qquad C_a \to a$$

$$H \to D_{1T}C_1 \qquad T \to D_{0T}C_0 \qquad D_{1T} \to C_1T \qquad C_0 \to 0$$

$$H \to D_{0T}C_0 \qquad T \to a \qquad D_{0T} \to C_0T \qquad C_1 \to 1$$

Comprueba con el algoritmo CYK si a0a0a pertenece a L_1 :

a	0	a	0	a
C_a, T	C_0	C_a, T	C_0	C_1, T
Ø	D_{0T}	Ø		
Ø	Н	Ø		
D_{aH}	Ø		,	
S		•		

 ${\cal S}$ aparece en la última casilla, por tanto la palabra pertenece al lenguaje.

$$L_2 = \{uvu \mid u \in \{0, 1\}^+ \text{ y } u^{-1} = v\}$$

Este lenguaje no es independiente del contexto, lo probaré con el lema de bombeo. Sea $n \in \mathbb{N}$ arbitrario.

La palabra $z=0^n1^n1^n0^n0^n1^n$ pertenece a L_2 y tiene longitud $6n\geq n$. Tomaremos $c_1=c_3=0^n1^n,\,c_2=1^n0^n,\,$ luego $z=c_1c_2c_3.$

Para toda descomposición z = uxvyw, $\alpha = xvy$ con $|\alpha| \le n$ y $|xy| \ge 1$.

- $\alpha = 0^k 1^l$ n > k + l, k, l > 1
 - Si son de c_1 , al hacer $ux^2vy^2w=z'=c_1'c_2c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.
 - Si son de c_3 , al hacer $ux^2vy^2w=z'=c_1c_2c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
- $\alpha = 1^k 0^l$ $n \ge k + l, k, l \ge 1$
 - Deben ser de c_2 , al hacer $ux^2vy^2w=z'=c_1c_2'c_3$ tendré $c_1^{-1}\neq c_2'$, luego $z'\notin L_2$.
- - Si alguno es de c_1 (aunque otros sean de c_2), al hacer $ux^2vy^2w=z'=c_1'c_2'c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.
 - Si alguno es de c_2 (aunque otros sean de c_1), al hacer $ux^2vy^2w=z'=c_1'c_2'c_3$ tendré $c_2'\neq c_3^{-1}$, luego $z'\notin L_2$.
 - Si son de c_3 , al hacer $ux^2vy^2w=z'=c_1c_2c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
- - Si alguno es de c_2 (aunque otros sean de c_3), al hacer $ux^2vy^2w=z'=c_1c_2'c_3'$ tendré $c_1^{-1}\neq c_2$, luego $z'\notin L_2$.
 - Si alguno es de c_3 (aunque otros sean de c_2), al hacer $ux^2vy^2w=z'=c_1c_2'c_3'$ tendré $c_1\neq c_3'$, luego $z'\notin L_2$.
 - Si son de c_1 , al hacer $ux^2vy^2w=z'=c_1'c_2c_3$ tendré $c_1'\neq c_3$, luego $z'\notin L_2$.

Ejercicio 21. Si L_1 y L_2 son lenguajes sobre el alfabeto A, entonces se define el cociente $L_1/L_2 = \{u \in A^* \mid \exists w \in L_2 \text{ tal que } uw \in L_1\}$. Demostrar que si L_1 es independiente del contexto y L_2 regular, entonces L_1/L_2 es independiente del contexto.

Existirá un autómata no determinista con pila que acepte L_1 por el criterio de estados finales

$$M = (Q, A, B, \delta, q_0, R, F)$$

Defino el autómata

$$M' = (Q \cup \{q_f\}, A, B, \delta', q_0, R, \{q_f\})$$

Donde δ' es un extensión de δ , añadiendo transiciones a algunas configuraciones

$$\delta'(q, \varepsilon, H) = \delta(q, \varepsilon, H) \cup \{(q_f, H)\}$$

 $\forall q \in Q, H \in B \text{ tales que } \exists w \in L_2 \text{ cumpliendo } \delta^*(q, w, H) \cap F \times B^* \neq \emptyset$

En otras palabras, M' acepta (por estados finales) únicamente las palabras u que al leerse completamente llevan a una configuración para la que existe una palabra $w \in L_2$ que lleva esa configuración a un estado final de M. Es decir, palabras u tales que existe $w \in L_2$ cumpliendo $uw \in L_1$.

Ejercicio 22. Si L es un lenguaje sobre $\{0,1\}$, sea SUF(L) el conjunto de los sufijos de palabras de L: $SUF(L) = \{u \in \{0,1\}^* \mid \exists v \in \{0,1\}^*, \text{ tal que } vu \in L\}$. Demostrar que si L es independiente del contexto, entonces SUF(L) también es independiente del contexto.

Existirá un autómata no determinista con pila que acepte L por el criterio de estados finales

$$M = (Q, A, B, \delta, q_0, R, F)$$

Defino el autómata

$$M'=(Q\cup\{q_0'\},A,B,\delta',q_0',R,F)$$

Donde δ' es una extensión de δ , añadiendo las siguientes transiciones:

$$\delta'(q_0',\varepsilon,R) = \{(q,H) \mid \exists v \in \{0,1\}^*, \text{ tal que } (q,H) \in \delta^*(q_0,v,R)\}$$

Las palabras u aceptadas por este autómata son las que llegan a un estado final partiendo de cualquier configuración accesible desde (q_0, R) por medio de una palabra $v \in \{0, 1\}^*$. Es decir, palabras u tales que existe v cumpliendo $vu \in L$.