

Linear Algebra for Machine Learning in Python

Dr. Moritz Wolter

August 11, 2022

High Performance Computing and Analytics Lab

Overview

Introduction

Essential operations

Linear curve fitting

Regularization

Introduction

Motvating linear algebra

TODO

Matrices

 $\mathbf{A} \in \mathbb{R}^{m,n}$ is a real-valued Matrix with m rows and n columns.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, a_{ij} \in \mathbb{R}.$$
 (1)

3

Essential operations

Addition

To matrices $\mathbf{A} \in \mathbf{R}^{m,n}$ and $\mathbf{B} \in \mathbf{R}^{m,n}$ can be added by adding their elements.

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$
(2)

4

Multiplication

Multiply $\mathbf{A} \in \mathbb{R}^{m,n}$ by $\mathbf{B} \in \mathbb{R}^{n,p}$ produces $\mathbf{C} \in \mathbb{R}^{m,p}$,

$$\mathbf{AB} = \mathbf{C}.\tag{3}$$

To compute C the elements in the rows of A are multiplied with the column elements of C and the products added,

$$c_{ik} = \sum_{j=1}^{m} a_{ij} \cdot b_{jk}. \tag{4}$$

Linear Algebra for Machine Learning in Python —Essential operations

 \square Multiplication

Multiplication

Multiply $\mathbf{A} \in \mathbb{R}^{n,n}$ by $\mathbf{B} \in \mathbb{R}^{n,p}$ produces $\mathbf{C} \in \mathbb{R}^{n,p}$, $\mathbf{AB} = \mathbf{C}$ (3)

To compute \mathbf{C} the elements in the rane of \mathbf{A} are multiplied with the column elements of \mathbf{C} and the produces abbid, $\mathbf{ca} = \sum_{j=1}^{n} q_j \cdot \delta_{j,i}$. (4)

Define on the board:

- Dot product $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$ for two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$.
- Row times column view [Str+09]:

The identity matrix

$$\mathbf{I} = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \tag{5}$$

The identity matrix $I = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \tag{S}$

Demonstrate multiplication with the inverse by hand. TODO $\,$

Matrix inverse

The inverse Matrix \mathbf{A}^{-1} undoes the effects of \mathbf{A} , or in mathematical notation,

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.\tag{6}$$

The process of computing the inverse is called gaussian elimination.

Essential operations

└─Matrix inverse

Matrix inverse

The inverse Matrix A^{-1} undoes the effects of A, or in mathematical notation, $\Delta \Delta^{-1} = I$

The process of computing the inverse is called gaussian elimination.

Example on the board:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \tag{7}$$

$$\rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 3 & -\frac{1}{2} & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{6} & \frac{1}{3} \end{pmatrix} \tag{8}$$

Test the result:

$$\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 \cdot \frac{1}{2} + 0 \cdot -\frac{1}{6} & 2 \cdot 0 + 0 \cdot \frac{1}{3} \\ 1 \cdot \frac{1}{2} + 3 \cdot -\frac{1}{6} & 0 \cdot 0 + 3 \cdot \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(9)

The Transpose

The transpose operation flips matrices along the diagonal, for example in \mathbb{R}^2 ,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 (10)

Motivation of the determinant

TODO

Computing determinants in two or three dimensions

The two dimensional case:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \tag{11}$$

(12)

Computing the determinant of a three dimensional matrix.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$(13)$$

Linear Algebra for Machine Learning in Python

—Essential operations

Computing determinants in two or three dimensions

Computing distributions in two or three dimensions. The two dimensional case: $\begin{vmatrix} a_{11} & a_{21} \\ a_{21} & a_{21} \end{vmatrix} = a_{21} \cdot a_{22} - a_{21} \cdot a_{22} = a_{21} \cdot a_{21}$ (21) (22) Comparing the determinant of a three dimensional matrix: $\begin{vmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{vmatrix} = a_{21} \begin{vmatrix} a_{21} & a_{21} \\ a_{22} & a_{22} \end{vmatrix} = a_{21} \begin{vmatrix} a_{21} & a_{21} \\ a_{22} & a_{22} \end{vmatrix} = a_{21} \begin{vmatrix} a_{21} & a_{21} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{21} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22} \\ a_{22} & a_{22} \end{vmatrix} = a_{22} \begin{vmatrix} a_{21} & a_{22$

(14)

Draw the sign pattern on the board:

The determinant can be expandend along any column as long as the sign pattern is respected.

Determinants in n-dimensions

$$\begin{vmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix} + a_{21} \begin{vmatrix} a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix}$$

$$-a_{m1}\begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \end{vmatrix}$$

Linear curve fitting

What is the best line connecting measurements?

The Pseudoinverse

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T} \tag{15}$$

(23)

 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{x}$

Regularization

Eigenvalue-Decomposition

TODO

Singular-Value-Decomposition

TODO

Literature

References

[Str+09] Gilbert Strang, Gilbert Strang, Gilbert Strang, and Gilbert Strang. Introduction to linear algebra. Vol. 4. Wellesley-Cambridge Press Wellesley, MA, 2009.