

- 1. Determine whether each of the following sentences is a statement.
  - a) In 2003 George W. Bush was the president of the United States.
  - **b**) x + 3 is a positive integer.
  - c) Fifteen is an even number.
  - **d)** If Jennifer is late for the party, then her cousin Zachary will be quite angry.
  - e) What time is it?
  - **f**) As of June 30, 2003, Christine Marie Evert had won the French Open a record seven times.
  - 2. Identify the primitive statements in Exercise 1.
    - 1. a, c, d and f are statements.
    - 2. a, c and f are primitive statements.

3. Let p, q, r, s denote the following statements:

p: I finish writing my computer program before lunch.

q: I shall play tennis in the afternoon.

r: The sun is shining.

s: The humidity is low.

Write the following in symbolic form.

- a) If the sun is shining, I shall play tennis this afternoon.
- **b)** Finishing the writing of my computer program before lunch is necessary for my playing tennis this afternoon.
- c) Low humidity and sunshine are sufficient for me to play tennis this afternoon.

a) 
$$r \rightarrow q$$

b) 
$$q \rightarrow p$$

c) 
$$(s \land r) \rightarrow q$$

4. Construct a truth table for each of the following compound statements, where p, q, r denote primitive statements.

a) 
$$[p \land (p \rightarrow q)] \rightarrow q$$

b) 
$$q \leftrightarrow (\neg p \lor \neg q)$$

5. Which of the compound statements in Exercise 4 are tautologies?

**4.** a)

| p | $\boldsymbol{q}$ | $p \rightarrow q$ | $p \wedge (p \rightarrow q)$ | $[p \land (p \rightarrow q)] \rightarrow q$ |
|---|------------------|-------------------|------------------------------|---------------------------------------------|
| 0 | 0                | 1                 | 0                            | 1                                           |
| 0 | 1                | 1                 | 0                            | 1                                           |
| 1 | 0                | 0                 | 0                            | 1                                           |
| 1 | 1                | 1                 | 1                            | 1                                           |

b)

| p | q | $\neg p$ | $\neg q$ | $(\neg p \lor \neg q)$ | $q \leftrightarrow (\neg p \lor \neg q)$ |
|---|---|----------|----------|------------------------|------------------------------------------|
| 0 | 0 | 1        | 1        | 1                      | 0                                        |
| 0 | 1 | 1        | 0        | 1                      | 1                                        |
| 1 | 0 | 0        | 1        | 1                      | 0                                        |
| 1 | 1 | 0        | 0        | 0                      | 0                                        |

**5.** (a) is tautology.

6. Use the substitution rules to verify that each of the following is a tautology. (Here p, q, and r are primitive statements.)

$$[(p \lor q) \to r] \leftrightarrow [\neg r \to \neg (p \lor q)]$$

For primitive statements s, t, we have shown that  $(s \to t) \Leftrightarrow (\neg t \to \neg s)$ 

(NOTE: contrapositive) thus,  $(s \rightarrow t) \leftrightarrow (\neg t \rightarrow \neg s)$  is tautology.

Replace each S by  $(p \rightarrow q)$ , and each t by r.

By First Substitution Rule, we may conclude that  $[(p \lor q) \to r] \leftrightarrow [\neg r \to \neg (p \lor q)]$  is also a tautology.

7. Give the reasons for each step in the following simplifications of compound statements.

$$(p \rightarrow q) \wedge [\neg q \wedge (r \vee \neg q)] \qquad \textbf{Reasons}$$

$$\iff (p \rightarrow q) \wedge \neg q \qquad \qquad (Commutation Law and) \text{ Absorption Law}$$

$$\iff (\neg p \vee q) \wedge \neg q \qquad \qquad (p \rightarrow q) \Leftrightarrow (\neg p \vee q)$$

$$\iff \neg q \wedge (\neg p \vee q) \qquad \qquad Commutation Law$$

$$\iff (\neg q \wedge \neg p) \vee (\neg q \wedge q) \qquad \qquad \text{Distributive Law}$$

$$\iff (\neg q \wedge \neg p) \vee F_0 \qquad \qquad \text{Inverse Law}$$

$$\iff \neg q \wedge \neg p \qquad \qquad \text{Identity Law}$$

$$\iff \neg (q \vee p) \qquad \qquad \text{DeMorgan's Laws}$$

8. For primitive statements p, q, r, and s, simplify the compound statement

$$[[[(p \land q) \land r] \lor [(p \land q) \land \neg r]] \lor \neg q] \to s.$$

| $\left[\left[\left[\left(p \wedge q\right) \wedge r\right] \vee \left[\left(p \wedge q\right) \wedge \neg r\right]\right] \vee \neg q\right] \rightarrow s$ | Reasons                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| $\Leftrightarrow \big[ [(p \land q) \land (r \lor \neg r)] \lor \neg q \big] \to s$                                                                         | Distributive Law                            |
| $\Leftrightarrow \big[ [(p \land q) \land T_0] \lor \neg q \big] \to s$                                                                                     | Inverse Law                                 |
| $\Leftrightarrow [(p \land q) \lor \neg q] \to s$                                                                                                           | Identity Law                                |
| $\Leftrightarrow [\neg q \lor (p \land q)] \to s$                                                                                                           | Commutation Law                             |
| $\Leftrightarrow [(\neg q \lor p) \land (\neg q \lor q)] \to s$                                                                                             | Distributive Law                            |
| $\Leftrightarrow (\neg q \lor p) \to s$                                                                                                                     | Inverse Law and Identity Law                |
| $\Leftrightarrow$ Or $(q \to p) \to s$                                                                                                                      | $(q \to p) \Leftrightarrow (\neg q \lor p)$ |
| $\Leftrightarrow$ Or $(\neg p \land q) \lor s$                                                                                                              |                                             |

9. Show that each of the following arguments is invalid by providing a counterexample

$$p \leftrightarrow q$$

$$q \rightarrow r$$

$$r \lor \neg s$$

$$\neg s \rightarrow q$$

$$\therefore s$$

## A counterexample

p: 1 q: 1 r: 1 s: 0

10. Establish the validity of the following arguments.

$$p \to (q \to r)$$

$$p \lor s$$

$$t \to q$$

$$rac{\neg s}{\therefore \neg r \to \neg t}$$

## Steps Reasons

## OR

11. Let p(x), q(x), and r(x) denote the following open statements.

$$p(x)$$
:  $x^2 - 8x + 15 = 0$ 

$$q(x)$$
: x is odd

$$r(x)$$
:  $x > 0$ 

For the universe of all integers, determine the truth or falsity of each of the following statements. If a statement is false, give a counterexample.

a) 
$$\forall x [p(x) \rightarrow q(x)]$$
 b)  $\forall x [q(x) \rightarrow p(x)]$ 

**b**) 
$$\forall x [q(x) \rightarrow p(x)]$$

c) 
$$\exists x [p(x) \rightarrow q(x)]$$

d) 
$$\forall x [(p(x) \lor q(x)) \rightarrow r(x)]$$

e) 
$$\exists x [r(x) \rightarrow p(x)]$$

- a) True
- b) False, e.g. x = 1
- True
- d) False, e.g. x = -1
- True

13. Negate and simplify each of the following.

$$\exists x [(p(x) \lor q(x)) \to r(x)]$$

$$\neg \exists x [(p(x) \lor q(x)) \to r(x)]$$

$$\Leftrightarrow \forall x \neg [(p(x) \lor q(x)) \to r(x)]$$

$$\Leftrightarrow \forall x \neg [\neg (p(x) \lor q(x)) \lor r(x)]$$

$$\Leftrightarrow \forall x (\neg \neg (p(x) \lor q(x)) \land \neg r(x))$$

$$\Leftrightarrow \forall x ((p(x) \lor q(x)) \land \neg r(x))$$



1. Let p, q, r denote the following statements about a particular triangle ABC.

p: Triangle ABC is isosceles.

q: Triangle ABC is equilateral.

r: Triangle ABC is equiangular.

Translate each of the following into an English sentence.

a) 
$$q \rightarrow p$$

**b**) 
$$\neg p \rightarrow \neg q$$

c) 
$$q \leftrightarrow r$$

**d**) 
$$p \wedge \neg q$$

e) 
$$r \rightarrow p$$

- a) If triangle ABC is equilateral, then it is isosceles.
- b) If triangle ABC is not isosceles, then it is not equilateral.
- c) Triangle ABC is equilateral if and only if it is equiangular.
- d) Triangle ABC is isosceles but it is not equilateral.
- e) If triangle ABC is equiangular, then it is isosceles.

2. The integer variables m and n are assigned the values 3 and 8, respectively, during the execution of a program (written in pseudocode). Each of the following *successive* statements is then encountered during program execution. [Here the values of m, n following the execution of the statement in part (a) become the values of m, n for the statement in part (b), and so on, through the statement in part (e).] What are the values of m, n after each of these statements is encountered?

- a) if n m = 5 then n := n 2
- **b)** if  $((2 * m = n) \text{ and } (\lfloor n/4 \rfloor = 1))$  then n := 4 \* m 3
- c) if  $((n < 8) \text{ or } (\lfloor m/2 \rfloor = 2))$  then n := 2 \* m else m := 2 \* n
- **d)** if ((m < 20) and  $(\lfloor n/6 \rfloor = 1))$  then m := m n 5
- e) if  $((n = 2 * m) \text{ or } (\lfloor n/2 \rfloor = 5))$  then m := m + 2

a) 
$$m = 3, n = 6$$

b) 
$$m = 3, n = 9$$

c) 
$$m = 18, n = 9$$

d) 
$$m = 4, n = 9$$

e) 
$$m = 4, n = 9$$



pVq

Figure 2.1



Figure 2.2

**3.** Simplify  $(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$ 

 $p \wedge q$ 

$$(p \lor q \lor r) \land (p \lor t \lor \neg q) \land (p \lor \neg t \lor r)$$
  
$$\iff p \lor [(q \lor r) \land (t \lor \neg q) \land (\neg t \lor r)]$$

$$\Leftrightarrow p \vee [(q \vee r) \wedge (\neg t \vee r) \wedge (t \vee \neg q)]$$
  
$$\Leftrightarrow p \vee [((q \wedge \neg t) \vee r) \wedge (t \vee \neg q)]$$

$$\iff p \vee [((q \wedge \neg t) \vee r) \wedge (\neg \neg t \vee \neg q)]$$

$$\iff p \vee [((q \wedge \neg t) \vee r) \wedge \neg (\neg t \wedge q)]$$

$$\iff p \vee [\neg(\neg t \wedge q) \wedge ((\neg t \wedge q) \vee r)]$$

$$\iff p \vee [(\neg(\neg t \wedge q) \wedge (\neg t \wedge q)) \vee (\neg(\neg t \wedge q) \wedge r)]$$

$$\iff p \vee [F_0 \vee (\neg(\neg t \wedge q) \wedge r)]$$

$$\Leftrightarrow p \vee [(\neg(\neg t \wedge q)) \wedge r]$$

$$\Leftrightarrow p \vee [r \wedge \neg (\neg t \wedge q)]$$

$$\iff p \vee [r \wedge (t \vee \neg q)]$$



(b)

## Reasons

Distributive Law of ∨ over ∧

Commutative Law of  $\land$ 

Distributive Law of ∨ over ∧

Law of Double Negation

DeMorgan's Law

Commutative Law of ∧ (twice)

Distributive Law of ∧ over ∨

 $\neg s \land s \iff F_0$ , for any statement s

 $F_0$  is the identity for  $\vee$ 

Commutative Law of  $\wedge$ 

DeMorgan's Law and the Law of Double Negation

- 4. For primitive statements p, q,
  - a) verify that  $p \to [q \to (p \land q)]$  is a tautology.
  - **b)** verify that  $(p \lor q) \to [q \to q]$  is a tautology by using the result from part (a) along with the substitution rules and the laws of logic.
  - c) is  $(p \lor q) \to [q \to (p \land q)]$  a tautology?

a)

| p | $\boldsymbol{q}$ | $p \wedge q$ | $q \to (p \land q)$ | $p \to [q \to (p \land q)]$ |
|---|------------------|--------------|---------------------|-----------------------------|
| 0 | 0                | 0            | 1                   | 1                           |
| 0 | 1                | 0            | 0                   | 1                           |
| 1 | 0                | 0            | 1                   | 1                           |
| 1 | 1                | 1            | 1                   | 1                           |



tautology

b) By first substitution rule, since  $p \to [q \to (p \land q)]$  is tautology, replace each occurrence of p by  $p \lor q$ ,

 $(p \lor q) \rightarrow [q \rightarrow [(p \lor q) \land q]]$  will also be a tautology.

$$(p \lor q) \rightarrow [q \rightarrow [(p \lor q) \land q]] \Leftrightarrow (p \lor q) \rightarrow [q \rightarrow q]$$
  
because  $(p \lor q) \land q \Leftrightarrow q$ .

| <u>c)</u> |                  |            |              |                     |                                      |           |
|-----------|------------------|------------|--------------|---------------------|--------------------------------------|-----------|
| p         | $\boldsymbol{q}$ | $p \lor q$ | $p \wedge q$ | $q \to (p \land q)$ | $(p \lor q) \to [q \to (p \land q)]$ |           |
| 0         | 0                | 0          | 0            | 1                   | 1                                    |           |
| 0         | 1                | 1          | 0            | 0                   | 0                                    |           |
| 1         | 0                | 1          | 0            | 1                   | 1 Not a                              | tautology |
| 1         | 1                | 1          | 1            | 1                   | 1                                    |           |

p is not logically equivalent to  $p \vee q$ .

- \

5. Establish the validity of the argument

$$p \to q$$

$$q \to (r \land s)$$

$$\neg r \lor (\neg t \lor u)$$

$$p \land t$$

$$\therefore u$$

| Steps                            | Reasons                                                 |
|----------------------------------|---------------------------------------------------------|
| 1) $p \rightarrow q$             | Premise                                                 |
| $2)  q \to (r \land s)$          | Premise                                                 |
| 3) $p \to (r \land s)$           | Steps (1) and (2) and the Law of the Syllogism          |
| 4) $p \wedge t$                  | Premise                                                 |
| <b>5</b> ) p                     | Step (4) and the Rule of Conjunctive Simplification     |
| 6) $r \wedge s$                  | Steps (5) and (3) and the Rule of Detachment            |
| 7) r                             | Step (6) and the Rule of Conjunctive Simplification     |
| 8) $\neg r \lor (\neg t \lor u)$ | Premise                                                 |
| 9) $\neg (r \wedge t) \vee u$    | Step (8), the Associative Law of ∨, and DeMorgan's Laws |
| <b>10</b> ) t                    | Step (4) and the Rule of Conjunctive Simplification     |
| 11) $r \wedge t$                 | Steps (7) and (10) and the Rule of Conjunction          |
| <b>12)</b> ∴ <i>u</i>            | Steps (9) and (11), the Law of Double Negation, and the |
|                                  | Rule of Disjunctive Syllogism                           |

6. Give the reasons for the steps verifying the following argument.

$$(\neg p \lor q) \to r$$

$$r \to (s \lor t)$$

$$\neg s \land \neg u$$

$$\neg u \to \neg t$$

$$\therefore p$$

**6.** 

| Steps                                            | Reasons                                                                                       |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1)¬s ∧ ¬u                                        | Premise                                                                                       |
| 2) ¬ <i>u</i>                                    | Step (1) and the Rule of Conjunctive Simplification                                           |
| $3) \neg u \rightarrow \neg t$                   | Premise                                                                                       |
| $4) \neg t$                                      | Step (1), (3) and the Rule of Detachment                                                      |
| 5) ¬s                                            | Step (1) and the Rule of Conjunctive Simplification                                           |
| $6) \neg s \wedge \neg t$                        | Step (4), (5) and the Rule of Conjunctive                                                     |
| $7) r \rightarrow (s \lor t)$                    | Premise                                                                                       |
| $8) \neg (s \lor t) \rightarrow \neg r$          | Step (7) and $[r \rightarrow (s \lor t)] \Leftrightarrow [\neg(s \lor t) \rightarrow \neg r]$ |
| 9)( $\neg s \land \neg t$ ) $\rightarrow \neg r$ | Step (8) and DeMorgan's Laws                                                                  |
| 10) ¬ <i>r</i>                                   | Step (6), (9) and the Rule of Detachment                                                      |
| $11)(\neg p \lor q) \to r$                       | Premise                                                                                       |
| $12) \neg r \rightarrow \neg (\neg p \lor q)$    | Step (11) and $[(\neg p \lor q) \to r] \Leftrightarrow [\neg r \to \neg(\neg p \lor q)]$      |
| $13) \neg r \rightarrow (p \land \neg q)$        | Step (12) and DeMorgan's Laws and Double Negation                                             |
| 14) $p \land \neg q$                             | Step (10), (13) and the Rule of Detachment                                                    |
| 15)∴ <i>p</i>                                    | Step (14) and the Rule of Conjunctive Simplification                                          |

7. For the universe of all integers, let p(x), q(x), r(x), s(x), and t(x) be the following open statements.

p(x): x > 0

q(x): x is even

r(x): x is a perfect square

s(x): x is (exactly) divisible by 4

t(x): x is (exactly) divisible by 5

- a) Write the following statements in symbolic form.
  - i) At least one integer is even.
  - ii) There exists a positive integer that is even.
  - iii) If x is even, then x is not divisible by 5.
  - iv) No even integer is divisible by 5.
  - v) There exists an even integer divisible by 5.
  - vi) If x is even and x is a perfect square, then x is divisible by 4.

- **b)** Determine whether each of the six statements in part (a) is true or false. For each false statement, provide a counterexample.
- c) Express each of the following symbolic representations in words.

i) 
$$\forall x [r(x) \rightarrow p(x)]$$
 ii)  $\forall x [s(x) \rightarrow q(x)]$ 

iii) 
$$\forall x [s(x) \rightarrow \neg t(x)]$$
 iv)  $\exists x [s(x) \land \neg r(x)]$ 

**d**) Provide a counterexample for each false statement in part (c).

```
a)

i \exists x \ q(x)

ii \exists x \ [p(x) \land q(x)]

iii \forall x \ [q(x) \rightarrow \neg t(x)]

iv \forall x \ [q(x) \rightarrow \neg t(x)]

v \exists x \ [p(x) \land t(x)]

vi \forall x \ [(q(x) \land t(x)) \rightarrow s(x)]
```

b) Statements (i), (ii), (v), and (vi) are true. Statements (iii) and (iv) are false: x = 10 provides a counterexample for either statement.

c)

- i. If x is a perfect square, then x > 0.
- ii. If x is divisible by 4, then x is even.
- iii. If x is divisible by 4, then x is not divisible by 5.
- iv. There exists an integer that is divisible by 4 but it is not a perfect square.

d)(i) Let 
$$x = 0$$
. (iii)Let  $x = 20$