Linear and Logistic Regression

Housing Prices

Price (in 1000s of dollars)

Training	set	of
housing	pric	ces
(Portland	d, C	R)

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
	•••

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

How do we represent *h* ?

Linear regression with one variable. Univariate linear regression.

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's?

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x)$$

(for fixed θ_0 , θ_1 this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

Linear regression with one variable

Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

 $h_{\theta}(x)$ (for fixed $\theta_0, \theta_{i\!1}$ this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

 $h_{\theta}(x)$ (for fixed $\theta_0, \theta_{\rm I}$ this is a function of x)

 $h_{\theta}(x)$ (for fixed $\theta_0, \theta_{i\!1}$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

 $h_{\theta}(x)$ (for fixed $\theta_0, \theta_{\rm A}$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

 $h_{\theta}(x)$ (for fixed $\theta_0, \theta_{\rm I}$ this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1 \text{)} } Derivative *Alpha = learning rate
```

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Gradient descent algorithm

repeat until convergence {

$$\begin{array}{l} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) & \text{update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} & \text{simultaneously} \end{array}$$

Question

- Suppose you are the CEO of a restaurant franchise and are considering different cities for opening a new outlet.
- The chain already has trucks in various cities and you have data for profits and populations from the cities.
- You would like to use this data to help you select which city to expand to next.
- The first column is the population of a city and the second column is the profit of a food truck in that city.

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate $\, lpha$.

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$, 0.1, , 1, \dots$$

Gradient Descent

Normal equation: Method to solve for θ analytically.

Examples: m = 4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1 1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\theta = (X^TX)^{-1}X^Ty$$

$$(X^TX)^{-1} \text{ is inverse of matrix } X^TX$$

Octave: pinv(X'*X)*X'*y

mtraining examples, n features.

Gradient Descent

- Need to choose α
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Logistic Regression

CLASSIFICATION PROBLEMS

Classification

Email: Spam / Not Spam?

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

$$y \in \{0, 1\}$$

0: "Negative Class" (e.g., benign tumor)

1: "Positive Class" (e.g., malignant tumor)

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Classification: y = 0 or 1

$$h_{\theta}(x)$$
 can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
 if $h_{\theta}(x) < 0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "
$$y = 1$$
" if $-3 + x_1 + x_2 \ge 0$

Non-linear decision boundaries

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Want $\min_{\theta} J(\theta)$:

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 $\}$ (simultaneously update all θ_j)

Algorithm looks identical to linear regression!

References

- Machine Learning, Stanford University Taught by: Andrew Ng, at Courcera
- http://adit.io/posts/2016-02-20-Linear-Regression-in-Pictures.html
- http://adit.io/posts/2016-03-13-Logistic-Regression.html#non-linear-classification