MA 102 (Mathematics II) IIT Guwahati

Tutorial Sheet No. 1 Linear Algebra January 10, 2019

- 1. Let **u** and **v** be vectors in \mathbb{R}^n . Prove or disprove the following statements.
 - (a) The equality $\langle \mathbf{u}, \mathbf{v} \rangle = \frac{1}{4}(\|\mathbf{u} + \mathbf{v}\|^2 \|\mathbf{u} \mathbf{v}\|^2)$ holds.
 - (b) The equality $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} \mathbf{v}\|$ holds if and only if \mathbf{u} and \mathbf{v} are orthogonal.
 - (c) There exist \mathbf{u} and \mathbf{v} such that $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 2$ and $\langle \mathbf{u}, \mathbf{v} \rangle = 3$.
- 2. Let **u** and **v** be vectors in \mathbb{R}^n . Show that $\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$. What does this say about parallelogram in \mathbb{R}^2 ? Further, show that $|\langle \mathbf{u}, \mathbf{v} \rangle| = \|\mathbf{u}\| \|\mathbf{v}\|$ if and only if $\mathbf{u} = \alpha \mathbf{v}$ for some scalar α .

Solution: First part is easy. For the second part, suppose that $\|\mathbf{v}\| \neq 0$. Define $a := \langle \mathbf{u}, \mathbf{v} \rangle / \|\mathbf{v}\|^2$ and $\mathbf{w} = \mathbf{u} - \mathbf{a}\mathbf{v}$. Then $\mathbf{v} \perp \mathbf{w}$ and $\mathbf{u} = \mathbf{w} + a\mathbf{v} \Rightarrow \|\mathbf{u}\|^2 = |a|^2 \|\mathbf{v}\|^2 + \|w\|^2$. Since $|a| = \|\mathbf{u}\| / \|\mathbf{v}\|$, it follows that $\mathbf{w} = 0$.

3. Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} , where

(a)
$$\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$;

(b)
$$\mathbf{u} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 2 \\ 9 \end{bmatrix}$.

Solution: (a) Put $\begin{bmatrix} 2 \\ 6 \end{bmatrix} = \mathbf{w} = a\mathbf{u} + b\mathbf{v} = \begin{bmatrix} a+b \\ -a+b \end{bmatrix}$ which gives a = -2, b = 4, thus $\mathbf{w} = -2\mathbf{u} + 4\mathbf{v}$. Similarly, (b) $\mathbf{w} = 2\mathbf{u} + 3\mathbf{v}$.

- 4. True or False? Give justifications.
 - (a) If \hat{A} is the matrix obtained from A by replacing the ith column \mathbf{a}_i of A by $2\mathbf{a}_i$ then the systems $\hat{A}\mathbf{x} = \mathbf{0}$ and $A\mathbf{x} = \mathbf{0}$ are equivalent.
 - (b) If the rref of a 5×5 matrix A has the third column as $[1, 2, 0, 0, 0]^{\top}$ then $[-1, -2, 1, 0, 0]^{T}$ is a solution of $A\mathbf{x} = \mathbf{0}$.
 - (c) For an $n \times n$ matrix A, the systems $A\mathbf{x} = \mathbf{0}$ and $A^{\top}\mathbf{x} = \mathbf{0}$ are equivalent.

Solution: a) False. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ then $[1, -1]^T$ is a solution of $A\mathbf{x} = \mathbf{0}$ but not of $\hat{A}\mathbf{x} = \mathbf{0}$. b) True. Observation: The first two columns are leading columns and the third is not. Hence the first three rows of the rref of A are [1, 0, 1, *, *], [0, 1, 2, *, *], [0, 0, 0, *, *].

c) False. Consider
$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$
 or $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

5. The *trace* of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of its diagonal entries and is denoted by tr(A), i.e. $tr(A) = a_{11} + \cdots + a_{nn}$.

Prove the following: if A and B are $n \times n$ matrices and α is scalar, then

- 1. tr(A + B) = tr(A) + tr(B);
- 2. $tr(\alpha A) = \alpha tr(A)$;
- 3. $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Solution: Easy.

6. Suppose that \mathbf{x} and \mathbf{y} are two distinct solutions of the system $A\mathbf{x} = \mathbf{b}$. Prove that there are infinitely many solutions to this system. Interpret your findings geometrically.

Solution: Show that for each $\lambda \in \mathbb{R}$, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ is also a solution. This means that for the case when A is a 3×3 matrix the entire line passing through the points \mathbf{x} and \mathbf{y} is in the set of solutions.

7. Decide whether the following pairs are row-equivalent:

(a)
$$\begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 1 \\ 5 & -1 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \\ 2 & 0 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 4 & 3 & -1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 10 \end{bmatrix}$

Solution: (a) No, first one has row-rank one and the other two.

- (b) Both are row equivalent to the row reduced echelon form $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}$. So they are row-equivalent.
- (c) No, two matrices must have the same size, in order to be row equivalent.
- 8. Find all the solutions of the linear system with the augmented matrix $[A \mid \mathbf{b}]$ as given below:

$$\left[\begin{array}{ccc|cccc}
1 & 2 & 3 & 4 & 2 \\
5 & 6 & 7 & 8 & 5 \\
9 & 10 & 11 & 12 & 8
\end{array}\right]$$

- (a) Find $\hat{\mathbf{b}}$ such that $A\mathbf{x} = \hat{\mathbf{b}}$ does not have a solution.
- (b) By changing exactly one entry of A, find an \hat{A} such that $\hat{A}\mathbf{x} = \mathbf{b}$ will be consistent for all $\mathbf{b} \in \mathbb{R}^3$.

Solution: Solution set
$$= \left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{5}{4} \\ 0 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} | \alpha, \beta \in \mathbb{R} \right\}.$$

- a) Since $R_3 = 2R_2 R_1$, where R_i is the *i*th row of A, take \mathbf{b}' such that $b_3' \neq 2b_2' b_1'$.
- b) Since $R_3 = 2R_2 R_1$, and no two rows are LD, change any one entry of A then the rows of A will be LI or rank(A) = 3.

9. Determine the reduced row echelon form and the rank of the following matrices

$$(a) \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad (b) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \quad (c) \begin{bmatrix} 2 & 4 & 6 & 2 & 4 \\ 1 & 2 & 3 & 1 & 1 \\ 2 & 4 & 8 & 0 & 0 \\ 3 & 6 & 7 & 5 & 9 \end{bmatrix}$$

Solution: (c)
$$rref(A) = \begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution: Find the values solving a+b+c=1, -a+b-c=5, 4a+2b+c=1 applying Gaussian elimination.

10. If A and B are $m \times n$ matrices such that $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent, then show that A and B are row equivalent.

Solution: Answer: Note that the above statement is true if and only if $R^A x = 0$ and $R^B x = 0$ are equivalent implies $R^A = R^B$, where R^A and R^B are the RREF's of A and B respectively. Let us assume $R^A x = 0$ and $R^B x = 0$ are equivalent, to show $R^A = R^B$.

If the first column of R^A is not equal to that of R^B , then one of R^A or R^B , say R^A must have the first column as the zero column and for the other it will be $[1, 0, ..., 0]^T$.

Then $[1,0,...,0]^T$ will be a solution of $R^Ax = 0$ but not of $R^Bx = 0$, which is not possible. So let us assume that the first k columns of R^A and R^B are equal and $R^A_{(k+1)} \neq R^B_{(k+1)}$ where $R^A_{(k+1)}$ and $R^B_{(k+1)}$ are the (k+1) th columns of R^A and R^B respectively. Then both $R^A_{(k+1)}$ and $R^B_{(k+1)}$ cannot be leading columns, WLOG let $R^A_{(k+1)}$ not be a leading column.

Let s be the number of leading columns in the first k columns of R^A and R^B . If the (k+1)th column of either R^A or R^B is the zero column, then by the previous argument, we get a contradiction. Hence assume that the (k+1) th column is nonzero for both R^A and R^B . Then there exists an $i \in \{1, 2, ..., s\}$ such that $R^A_{(i,k+1)} \neq R^B_{(i,k+1)}$.

Note that
$$-R_{(1,k+1)}^A e_1 - R_{(2,k+1)}^A e_2 - \dots - R_{(s,k+1)}^A e_s + \begin{vmatrix} R_{(1,k+1)}^A \\ \vdots \\ 0 \end{vmatrix} = \mathbf{0}$$
, where e_i is the i th

column of I_m .

Take $\mathbf{u} = [u_1, u_2, ...u_k, 1, 0, ..., 0]^T$, where for i = 1, 2, ..., k,

 $u_i = 0$ if the i th column of \mathbb{R}^A is not a leading column and

 $u_i = -R_{(j,k+1)}^A$ if the i th column has the leading entry of the j th row of R^A .

Then check that $R^A \mathbf{u} = \mathbf{0}$ but $R^B \mathbf{u} \neq \mathbf{0}$.

**** End ****