BAMS1623 DISCRETE MATHEMATICS

ASSIGNMENT

Academic Year 2020/21

Session 202005

Submission date: 28.8.2020

- Q1. a) Use mathematical induction to prove that $1 + 6 + 6^2 + \dots + 6^{n-1} = \frac{6^{n-1}}{5}$ for all integers $n \ge 1$. (13 marks)
 - b) (i) Let a = 368 and b = 224. Find the greatest common divisor of a and b and express it in the form of ma + nb, where $m, n \in \mathbb{Z}$. Hence, find the least common multiple of a and b. (10 marks)
 - (ii) Determine whether 368 and 224 are relatively prime. Justify your answer. (2 marks)

[Total: 25 marks]

- Q2. a) The relation R on $A = \{2, 3, 4, 8, 9, 12\}$ is defined by x R y if and only if x is a multiple of y.
 - (i) List the ordered pairs of relation R. (4 marks)
 - (ii) Determine the domain and range of the relation R. (4 marks)
 - (iii) Find the in-degree and out-degree of each vertex. (4 marks)
 - b) Let $A = \{1, 2, 3, 4, 5\}$ and R be the relation on A where $R = (1,1), (1,4), (2,3), (3,2), (3,5), (4,1), (5,5)\}$. Use Warshall's algorithm to compute the matrix of transitive closure of R. (13 marks)

[Total: 25 marks]

- Q3. a) Given $f(x) = 5 + 2e^{-x}$ is a function from \mathbb{R} to \mathbb{R} , where \mathbb{R} is the set of real numbers.
 - (i) Find the domain and range of the function f. (3 marks)
 - (ii) Determine whether the function is everywhere defined, injective, surjective and/or bijective. Justify each of your answers. (10 marks)

BAMS1623 DISCRETE MATHEMATICS

ASSIGNMENT

Academic Year 2020/21

Session 202005

Submission date: 28.8.2020

Q3.(Continued)

- b) Let $A = \{1, 2, 3, 4, 5, 6\}$, the permutation $\rho_1 = (1, 4, 3, 6)$ and $\rho_2 = (2, 5, 4)$
 - (i) Compute ρ_1^2 and ρ_2^{-1} . (6 marks)
 - (ii) Compute $\rho_2^{-1} \circ \rho_1^2$ and write the result as a product of disjoint cycles and as a product of transpositions. (5 marks)
 - (iii) Determine whether the permutation $\rho_2^{-1} \circ \rho_1^2$ is even or odd. (1 mark)

[Total: 25 marks]

- Q4. a) Let $A = (p \land r) \lor (q \rightarrow r)$.
 - (i) Complete the truth table given below and determine whether *A* is a tautology, contradiction or contingency. (7 marks)

p	q	r	$p \wedge r$	$q \rightarrow r$	$(p \land r) \lor (q \to r)$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- (ii) Write the Principal Disjunctive Normal Form (PDNF) and Principal Conjunctive Normal Form (PCNF) of *A* and ~*A* by using the truth table obtained in part a)(i). (6 marks)
- b) Let $x \in \{2, 4\}$ and $y \in \{6, 8\}$, consider a predicate P(x, y) is defined as P(x, y): x is a factor of y. Rewrite the expression $\exists y [\forall x P(x, y)]$ by eliminating the quantifiers. Hence, determine the truth value of the statement. (6 marks)
- Use the laws of algebra of propositions, show that $[(a \rightarrow b) \land (c \rightarrow b)]$ and $[(a \lor c) \rightarrow b]$ are logically equivalent. (6 marks)

[Total: 25 marks]