BCC202 - Estrutura de Dados I Aula 05: Análise de Algoritmos (Parte 2)

Reinaldo Fortes

Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM

> Website: www.decom.ufop.br/reifortes Email: reifortes@iceb.ufop.br

Material elaborado com base nos slides do Prof. Túlio Toffolo (curso de 2013/01).

2013/02

Conclusão

Conteúdo

- 1 Comportamento Assintótico de Funções
- 2 Dominação Assintótica
 - Notação O
 - Notação Ω (Ômega)
 - Notação Θ (Theta)
- 3 Conclusão
- 4 Exercícios

Conteúdo

- 1 Comportamento Assintótico de Funções
- 2 Dominação Assintótica
 - Notação O
 - Notação Ω (Ômega)
 - Notação Θ (Theta)
- 3 Conclusão
- 4 Exercícios

Comportamento Assintótico de Funções

Função de Complexidade

 Na aula passada aprendemos a calcular a função de complexidade f(n).

Dominação Assintótica

- Observações importantes:
 - Para valores pequenos de **n**, praticamente qualquer algoritmo custa pouco para ser executado.
 - Logo: a escolha do algoritmo tem pouquíssima influência em problemas de tamanho pequeno.

Comportamento Assintótico de Funções

Comportamento Assintótico

- A análise de algoritmos deve ser realizada para valores grandes de n.
- Para isso, estuda-se o comportamento assintótico das funções de custo.
 - Comportamento das funções para valores grandes de n.
- O comportamento assintótico de f(n) representa o limite do comportamento do custo quando n cresce.

Crescimento e Domínio Assintótico

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo, ou medida de complexidade, relata o crescimento assintótico da operação considerada.
- **Definição**: Uma função f(n) domina assintoticamente outra função g(n) se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| <= c|f(n)|.
- A próxima seção detalha esta definição...

Conclusão

Conteúdo

- Comportamento Assintótico de Funções
- 2 Dominação Assintótica
 - Notação O
 - Notação Ω (Ômega)
 - Notação Θ (Theta)
- 3 Conclusão
- 4 Exercícios

Dominação Assintótica

Dominação Assintótica

- f(n) domina assintoticamente g(n) se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| <= c|f(n)|.

Dominação Assintótica

••••••••

Exercícios

Dominação Assintótica

Dominação Assintótica: Exemplo

- Sejam $g(n) = (n+1)^2 e f(n) = n^2$.
- As funções g(n) e f(n) dominam assintoticamente uma à outra, desde que:

Dominação Assintótica

•
$$|(n+1)^2| <= 4|n^2|$$
, para $n>=1$. $|g(n)| <= c|f(n)|$ para $n>=m$; $c=4$ e $m=1$

•
$$|n^2| <= |(n+1)^2|$$
, para $n >= 0$.

$$|f(n)| <= c|g(n)|$$
para $n >= m$;
$$c = 1 \text{ e } m = 1$$

- Escrevemos g(n) = O(f(n)) para expressar que f(n) domina assintoticamente g(n).
 - Lê-se g(n) é da ordem de no máximo f(n).
- Exemplo:
 - Quando dizemos que o tempo de execução T(n) de um programa é $O(n^2)$, significa que existem constantes c e m tais que, para valores de n >= m, $T(n) <= cn^2$.

- Exemplo gráfico de dominação assintótica que ilustra a notação O.
 - Abaixo, a função f(n) domina assintoticamente a função g(n).

Notação O

- O valor da constante m mostrado é o menor valor possível, mas qualquer valor maior também é válido.
- **Definição**: uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que g(n) <= cf(n), para todo n >= m.

Operações

$$f(n)=O(f(n))$$
 $c*O(f(n))=O(f(n))$, c = constante
 $O(f(n))+O(f(n))=O(f(n))$
 $O(O(f(n)))=O(f(n))$
 $O(f(n))+O(g(n))=O(max(f(n),g(n)))$
 $O(f(n))*O(g(n))=O(f(n)*g(n))$

Exemplo 01:
$$g(n) = (n+1)^2$$
 e $f(n) = n^2$

- $g(n) \in O(n^2)$ quando $m = 1 \in c = 4$.
- Isto porque sabe-se que $(n+1)^2 <= 4n^2$.

Ou seja, existem as constantes positivas $c \in m$ tal que $g(n) \le cf(n)$, para $n \ge m$.

Exemplo 02:
$$g(n) = n e f(n) = n^2$$

- Sabemos que g(n) é $O(n^2)$, pois para n >= 1, $n >= n^2$.
- Entretanto f(n) não é O(n).
- Suponha que existam constantes $c \in m$ tais que para todo n >= m, $n^2 <= cn$.
- Se c >= n para qualquer n >= m, então deveria existir um valor para c que pudesse ser maior ou igual a n para todo n.

Portanto, não existe a constante positiva c tal que $g(n) \le cf(n)$, para n >= m.

Exemplo 03:
$$g(n) = 3n^3 + 2n^2 + n$$

- Sabemos que g(n) é $O(n^3)$.
- g(n) também é $O(n^4)$. Entretanto, esta afirmação é mais fraca do que dizer que g(n) é $O(n^3)$.

Dominação Assintótica

• g(n) também é $O(n^{40})$?

Sim! É fácil mostrar que existem as constantes positivas c e m tal que $g(n) \le cf(n)$, para n > = m.

Exemplo 04: $g(n) = log_5 n \in O(log n)$

 Recorrendo às propriedades logaritmicas, a mudança de base é definida por: $log_a x = \frac{log_b x}{log_b a}$.

Dominação Assintótica

• Assim, observa-se que $log_5 n = log_5 2 * log n$. Logo, $log_5 2$ é a constante \boldsymbol{c} , e será fácil encontrar um \boldsymbol{m} que comprove que $g(n) \in O(\log n)$.

Generalizando

 $log_b n = log_b c * log_c n$. Logo, a constante c será $log_b c$ e deverá ser definida a constante m que comprove que $log_h n$ é $O(log_c n)$.

Exemplo 05: Ordem de complexidade do MaxMin1

```
int MaxMin1(int* A, int n, int* pMax, int* pMin) {
  int i;
  *pMax = A[0];
  *pMin = A[0];
  for(i = 1; i < n; i++)
    if(*pMax < A[i]) // Comparação envolvendo os elementos
    *pMax = A[i];
  if(*pMin > A[i]) // Comparação envolvendo os elementos
    *pMin = A[i];
}
```

- Como vimos anteriormente, f(n) = 2(n-1) para n > 0, para o melhor caso, pior caso e caso médio.
- Então, $MaxMin1 \in O(n)$.

Exemplo 06: Operações com a notação O

- Regra da soma O(f(n)) + O(g(n)).
- Suponha três trechos cujos tempos de execução são O(n), $O(n^2)$ e $O(n \log n)$.
- O tempo de execução dos dois primeiros trechos é $O(max(n, n^2))$, que é $O(n^2)$.
- O tempo de execução de todos os três trechos é então $O(max(n, n^2, n \log n))$, que é $O(n^2)$.

Notação Ω (Ômega)

Notação Ω (Ômega)

- Especifica um limite inferior para g(n).
- **Definição**: Uma função g(n) é $\Omega(f(n))$ se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| >= c |f(n)|.
- Exemplo:
 - Quando dizemos que o tempo de execução T(n) de um programa é $\Omega(n^2)$, significa que existem constantes c e m tais que, para valores de n >= m, T(n) >= c n^2 .

Notação Ω (Ômega)

Exemplo gráfico

 Na figura abaixo, a função f(n) é dominada assintoticamente pela função g(n).

Notação Ω (Ômega)

Exemplos

- Para mostrar que $g(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 > = n^3$ para n > = 0.
- Seja g(n) = n, para n impar (n >= 1) e $g(n) = n^2$ para npar $(n \ge 0)$. Neste caso $g(n) \in \Omega(n^2)$, bastando considerar c=1 e m=2,4,6,...

Notação ⊖ (Theta)

- Especifica um limite assintótico firme para g(n).
- **Definição**: Uma função g(n) é $\Theta(f(n))$ se:
 - Existem três constantes positivas c_1 , c_2 e m, tais que, para n >= m, temos: $0 <= c_1 f(n) <= g(n) <= c_2 f(n)$
- Isto é, para todo n >= m, a função g(n) é igual a f(n) a menos de uma constante.

Exemplo gráfico

• Na figura abaixo, a função f(n) é um limite assintótico firme para a função g(n).

Relação com O e Ω

• Para uma função ser $\Theta(f(n))$ ela deverá ser, ao mesmo tempo, O(f(n)) e $\Omega(f(n))$.

Exemplo: Algoritmos MinMax

• Relembre as funções de complexidade:

Algoritmo	Melhor caso	Pior caso	Caso médio
MaxMin1	2 (n-1)	2 (n-1)	2 (n-1)
MaxMin2	n - 1	2 (n-1)	3 n/2 - 3/2
MaxMin3	3 n/2 - 2	3 n/2 - 2	3 n/2 - 2

- Observe que todos os algoritmos tem a mesma complexidade assintótica.
- Todos são O(n) e $\Omega(n)$. Portanto, são $\Theta(f(n))$.

Conclusão

Conteúdo

- Comportamento Assintótico de Funções
- 2 Dominação Assintótica
 - Notação O
 - Notação Ω (Ômega)
 - Notação Θ (Theta)
- 3 Conclusão
- 4 Exercícios

Conclusão

Conclusão

- Nesta aula aprendemos a estudar o comportamento assintótico das funções de custo através da dominação assintótica.
- Foco principal para as notações \boldsymbol{O} , Ω e Θ .
- Próxima aula: Análise de Algoritmos (Parte 3) Classes de Problemas.
- Dúvidas?

Conteúdo

- Comportamento Assintótico de Funções
- 2 Dominação Assintótica
 - Notação O
 - Notação Ω (Ômega)
 - Notação Θ (Theta)
- Conclusão
- 4 Exercícios

Exercício 01

- Obtenha a função de complexidade f(n) dos algoritmos abaixo.
- Considere apenas as operações envolvendo as variáveis x e y.
- Para cada algoritmo, responda:
 - O algoritmo é $O(n^2)$? É $\Omega(n^3)$? É $\Theta(n^3)$.

```
1 void Procedimento1(int n) {
2    int i, j, x, y;
3    x = y = 0;
4    for(i = 1; i <= n; i++) {
5        for(j = i; j <= n; j++)
6        x = x + 1;
7    for(j = 1; j < i; j++)
8        y = y + 1;
9    }
10 }</pre>
```

```
void Procedimento2() {
  int i, j, k, x;
  x = 0;
  for(i = 1; i <= n; i++) {
    for(j = 1; j <= n; j++)
      for(k = 1; k <= j; k++)
            x = x + j + k;
  x = i;
}</pre>
```