### Chi-Square Distribution $\chi^2$

$$P(X^2 > \chi^2_{\alpha,k}) = \int_{\chi^2_{\alpha,k}}^{\infty} f(u) du = \alpha$$



**Figure 4-22** Percentage point  $\chi^2_{\alpha,k}$  of the  $\chi^2$  distribution.

### Inference on the Variance of a Normal Population

$$\frac{\sum (y_u - \overline{y})^2}{\sigma^2} \sim \chi_{n-1}^2 \sim \frac{(n-1) s^2}{\sigma^2}$$

Laboratory technicians in an hospital are expected to be able to perform highly reproducible blood cell counts.

An applicant for a technician position is tested. He is given blood in a test tube and he is asked to provide 20 random cell counts from that tube using a standard procedure. The 20 cells counts represent a random sample which has a sample variance  $s^2 = 15.3$  (cells)<sup>2</sup>. If the variance of the cell counts exceeds 10 (cells)<sup>2</sup>, the applicant will not be considered for the job. Is there evidence in the sample data to suggest that the applicant's laboratory skills are not satisfactory? Use  $\alpha$ =0.05 and assumes that the cell counts have a normal distribution.

### Inference on the Variance of a Normal **Population**

$$\frac{\sum (y_u - \overline{y})^2}{\sigma^2} \sim \chi_{n-1}^2 \sim \frac{(n-1) s^2}{\sigma^2}$$

#### Testing Hypotheses on the Variance of a Normal Distribution

Null hypothesis:  $H_0$ :  $\sigma^2 = \sigma_0^2$ 

 $\chi_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$ Test statistic:

#### **Alternative Hypotheses**

 $H_1: \sigma^2 < \sigma_0^2$ 

#### **Rejection Criterion**

$$H_1: \sigma^2 \neq \sigma_0^2$$
  $\chi_0^2 > \chi_{\alpha/2, n-1}^2 \text{ or } \chi_0^2 < \chi_{1-\alpha/2, n-1}^2$   
 $H_1: \sigma^2 > \sigma_0^2$   $\chi_0^2 > \chi_{\alpha, n-1}^2$   
 $H_1: \sigma^2 < \sigma_0^2$   $\chi_0^2 < \chi_{1-\alpha, n-1}^2$ 

 $\sum (y_u - \bar{y})^2$  = sum of squared residuals and  $\sigma^2/(n-1)$  is a scale factor

### **Chi-Square Distribution with n-1 d.f.**



Figure 4-23 Distribution of the test statistic for  $H_0$ :  $\sigma^2 = \sigma_0^2$  with critical region values for (a)  $H_1$ :  $\sigma^2 \neq \sigma_0^2$ , (b)  $H_0$ :  $\sigma^2 > \sigma_0^2$ , and (c)  $H_0$ :  $\sigma^2 < \sigma_0^2$ .

# Inference about the Variance of a Normal Population

$$\frac{\sum (y_u - \overline{y})^2}{\sigma^2} \sim \chi_{n-1}^2 \sim \frac{(n-1) s^2}{\sigma^2}$$

Laboratory technicians in an hospital are expected to be able to perform highly reproducible blood cell counts.

A job applicant for a technician position is tested. He is given blood in a test tube and he is asked to provide 20 random cell counts from that tube using a standard procedure. The 20 counts represent a random sample which has a sample variance  $s^2 = 153$  (cells)<sup>2</sup>. If the variance of the applicant's cell counts exceeds 100 (cells)<sup>2</sup>, he will not be considered for the job. Is there evidence in the sample data to suggest that the applicant's laboratory skills are not satisfactory? Use  $\alpha$ =0.05 and assumes that the cell counts have a normal distribution.

$$H_o$$
:  $\sigma^2 = 100$ 

$$H_1: \sigma^2 > 100$$

 $X_o^2$ = 29.07 and Tables (Appendix) show that  $X_{0.05,19}^2$ = 30.14, therefore cannot reject H<sub>o</sub> (no evidence that the applicant's skills are not satisfactory)

### The Test Procedure with F ratio

Let  $X_{11}, X_{12}, \ldots, X_{1n_1}$  be a random sample from a normal population with mean  $\mu_1$  and variance  $\sigma_1^2$ , and let  $X_{21}, X_{22}, \ldots, X_{2n_2}$  be a random sample from a second normal population with mean  $\mu_2$  and variance  $\sigma_2^2$ . Assume that both normal populations are independent. Let  $S_1^2$  and  $S_2^2$  be the sample variances. Then the ratio

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$$

has an F distribution with  $n_1 - 1$  numerator degrees of freedom and  $n_2 - 1$  denominator degrees of freedom.

### F Distribution for Inference on the Ratio of Two Variances

### The F Distribution

We wish to test the hypotheses:

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1$$
:  $\sigma_1^2 \neq \sigma_2^2$ 

A student in bone engineering is interested in making a suspension of polymer microspheres. He found that two similar instruments in his lab can be used. One was designed by a company named Teckman and the other one by Abilent. The variability in the diameter of microspheres in the suspension is a critical characteristics and low variability is desirable for subsequent processing steps. Therefore the student is interested in determining if these instruments result in a significantly different microsphere diameter variability.

### The F Distribution

$$f_{1-\alpha,u,v} = \frac{1}{f_{\alpha,v,u}} \tag{5-20}$$



Figure 5-4 Probability density functions of two *F* distributions.



Figure 5-5 Upper and lower percentage points of the *F* distribution.

### The Test Procedure

#### Testing Hypotheses on the Equality of Variances of Two Normal Distributions

Null hypothesis: 
$$H_0$$
:  $\sigma_1^2 = \sigma_2^2$ 

Test statistic: 
$$F_0 = \frac{S_1^2}{S_2^2}$$
 (5-21)

#### **Alternative Hypotheses**

$$H_1: \sigma_1^2 \neq \sigma_2^2$$
  
 $H_1: \sigma_1^2 > \sigma_2^2$   
 $H_1: \sigma_1^2 < \sigma_2^2$ 

#### **Rejection Criterion**

$$f_0 > f_{\alpha/2,n_1-1,n_2-1} \text{ or } f_0 < f_{1-\alpha/2,n_1-1,n_2-1}$$
  
 $f_0 > f_{\alpha,n_1-1,n_2-1}$   
 $f_0 < f_{1-\alpha,n_1-1,n_2-1}$ 

The critical regions are shown in Fig. 5-6.

### The Test Procedure



Figure 5-6 The *F* distribution for the test of  $H_0$ :  $\sigma_1^2 = \sigma_2^2$  with critical region values for (a)  $H_1$ :  $\sigma_1^2 \neq \sigma_2^2$ , (b)  $H_1$ :  $\sigma_1^2 > \sigma_2^2$ , and (c)  $H_1$ :  $\sigma_1^2 < \sigma_2^2$ .

### Example for the use of the F distribution for a two-sample variance test

A student in bone engineering is interested in making a suspension of polymer microspheres. He found that two similar instruments in his lab can be used. One was designed by a company named Teckman and the other one by Abilent. The variability in the diameter of microspheres in the suspension is a critical characteristics and low variability is desirable for subsequent processing steps. Therefore the student is interested in determining if these instruments result in a significantly different microsphere diameter variability. To test this, the student prepares 16 microsphere suspensions with each instrument  $(n_1=n_2=16)$ . The sample standard deviations  $s_1=1.96$  microns and  $s_2=2.14$  microns. Use  $\alpha=0.05$ .

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_1: \sigma_1^2 \neq \sigma_2^2$ 
 $f_0 = s_1^2/s_2^2 = 0.85$ 

 $f_{0.975,15,15} = 0.35 < 0.85 < f_{0.025,15,15}^{=} 2.86$ , we cannot reject  $H_o$  (no strong evidence of differences between instruments in terms of variability in microsphere diameter)

#### F-test in JMP (fit Y by X) for BP example



we cannot reject H<sub>o</sub>
no strong evidence of difference in variance



F-test in JMP (fit Y by X) for nerve vs muscle fluo (ex.2.1 textbook)

F-test: we reject H<sub>o</sub> (evidence of difference in variance)

