

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Hunedoara, 09-15 aprilie 2007

Proba de baraj – subiectul II - soluție

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică

Hunedoara, 09-15 aprilie 2007

Proba de baraj – subiectul II - soluție

II. Pompă de căldură

(9puncte)

O casă cu capacitatea calorică C_c pierde căldură în mediul exterior cu viteza de răcire $A(T_c - T_e)$, unde A este o constantă iar T_c și T_e sunt temperaturile casei, respectiv mediului exterior acesteia. O pompă ideală de căldură, acționată electric, preia căldura de la un rezervor foarte mare care are temperatura T_e și transmite radiatoarelor din casă căldură la temperatura constantă $T_r > T_e$. Radiatoarele transferă casei căldură cu viteza $B(T_r - T_c)$, unde B este o constantă. Inițial casa are temperatura T_e .

- a. Care este eficiența (E) a pompei de căldură?
- **b.** Determină consumul inițial de putere (W_i) al pompei de căldură.
- c. Determină viteza inițială de încălzire a casei (dT_c/dt)_i.
- **d.** Stabileşte temperatura de echilibru (T_c)_{echilibru} din interiorul casei, după o perioadă îndelungată de functionare a pompei de căldură.
- e. Reprezintă grafic temperatura T_c a casei în funcție de timp.
- **f.** Stabileşte expresia puterii pe care o consumă pompa ($W_{echilibru}$), pentru a asigura temperatura de echilibru a casei, în functie de A, B, T_f și T_e .

Notă: Se acordă un punct din oficiu.

Subiect propus de lector universitar dr. Marian NEGREA, Universitatea din Craiova

ONF2007 Proba de Baraj Pagina 1 din 3

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Hunedoara, 09-15 aprilie 2007

Hunedoara, 09-15 aprilie 2007Proba de baraj – subiectul II - soluție

Baraj

Solutie

- **a.** Pompa primeşte căldură de la mediul exterior cu viteza P_e şi o cedează radiatoarelor casei cu viteza P_r .În același timp pompa primeşte lucru mecanic cu viteza W. Din legea conservării energiei avem: $P_e + W = P_r$. Deoarece pompa este ideală (pompă Carnot) avem: $P_r / T_r = P_e / T_e$. Combinând cele două relații obținem $P_r (1-T_e / T_r) = W$. Eficiența pompei se defineşte astfel: $E = P_r / W$ şi devine $E = (1-T_e / T_r)^{-1}$. (1.5 puncte).
- **b**. Inițial casa are temperatura T_e și prin urmare viteza de transmitere a căldurii de la radiatoare către casă este $B(T_r T_e)$. Căldura corespunzătoare este dată de pompa de căldură și prin urmare avem: $P_r = B(T_r T_e)$ iar puterea inițială consumată de pompă pentru aceasta este $W_i = P_r/E = B(T_r T_e)$ (1- T_e/T_e) $T_r/T_e = B(T_r T_e)^2/T_r$. (1.5 puncte).
- c. Inițial, deoarece casa este la temperatura T_e , viteza de disipare spre exterior este nulă și prin urmare viteza de modificare inițială a temperaturii casei este $(dT_c/dt)_i = B(T_r T_e)/C_c$ și este datorată doar căldurii primite de la pompă. (1.5 puncte).
- d. După un timp suficient de mare, adică după stabilirea echilibrului termic, viteza de primire a căldurii de la pompă este egală cu viteza de disipare a căldurii spre exterior. Prin urmare, $B(T_r T_c) = A(T_c T_e)$, de unde se extrage temperatura de echilibru a casei, $(T_c)_{echilibru} = (AT_e + BT_r)/(A + B)$. (1.5 puncte).
- e. Temperatura intermediară din casă, $(T_c)_{int}$ (adică o temperatură între valoarea inițială T_e şi temperatura de echilibru obținută la punctul precedent) se obține ținând cont de viteza de primire a căldurii de la radiatoare, $B[(T_r (T_c)_{int}]$ precum şi de viteza de disipare a căldurii din casă spre exterior, $A[(T_c)_{int} T_e]$. Prin urmare viteza de modificare a temperaturii casei este: $d(T_c)_{int}$ /dt= $d(T_c)_{int}$ /dt= $d(T_c)_{int}$ /dt= $d(T_c)_{int}$ /c. Soluția acestei ecuații diferențiale este: $d(T_c)_{int}$ + $d(T_c)_{echilibru}$ (vezi figura alăturată). (1.5 puncte).
- **f**. La echilibru termic, căldura primită de la pompă trebuie să fie egală cu căldura necesară pentru obținerea temperaturii de echilibru, adică $B[(T_r (T_c)_{int}] = AB(T_r T_e)/(A+B)$. Puterea consumată de pompă pentru a genera această viteză de încălzire este atunci: $W_{echilibru} = AB(T_r T_e)^2/(A + B) T_r$. (1.5 puncte).

Te (T_c)_{int}

Se acordă din oficiu 1 punct. Punctajul total este $6 \times 1.5 + 1 = 10$ puncte.

Lect. univ. dr. Marian Negrea Facultatea de Fizică , Universitatea din Craiova

Ministerul Educației, Cercetării și Tineretului Olimpiada Națională de Fizică Hunedoara, 09-15 aprilie 2007

Baraj

Proba de baraj – subiectul II - soluție

ONF2007 Proba de Baraj Pagina 3 din 3