Differential Entropy Definition Let X be a random variable with cumulation $F(x) = \Pr(X \le x)$. If F(x) is continuous

Let X be a random variable with cumulative distribution function (CDF) $F(x)=\Pr(X\leq x)$. If F(x) is continuous, the random variable is continuous. Let f(x)=F'(X) when the derivative is defined. If $\int_{-\infty}^{+\infty} f(x)=1$, f(x) is called the probability density function (pdf) for X. The set of x where f(x)>0 is called the support set of the X.

Definition

The differential entropy h(X) of a continuous random variable X with density f(x) is defined as

$$h(X) = -\int_{\mathcal{S}} f(x) \log f(x) dx = h(f),$$

where $\ensuremath{\mathcal{S}}$ is the support set of the random variable.

Example: Uniform distribution

- $\bullet \ f(x) = \frac{1}{a}, x \in [0, a]$
- The differential entropy is:

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a \text{ bits}$$

• for a<1, $h(X)=\log a<0$, differential entropy can be negative! (unlike discrete entropy)

Example: Normal distribution

- $X \sim \phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-x^2}{2\sigma^2}), x \in \mathbb{R}$
- Differential entropy:

$$h(\phi) = \frac{1}{2} \log 2\pi e \sigma^2$$
 bits

Calculation:

$$h(\phi) = -\int \phi \log \phi dx = -\int \phi(x) \left[-\frac{x^2}{2\sigma^2} \log e - \log \sqrt{2\pi\sigma^2} \right] dx$$
$$= \frac{\mathbb{E}(X^2)}{2\sigma^2} \log e + \frac{1}{2} \log 2\pi\sigma^2 = \frac{1}{2} \log e + \frac{1}{2} \log 2\pi\sigma^2$$
$$= \frac{1}{2} \log 2\pi e\sigma^2$$

AEP for continuous random variables • Discrete world: for a sequence of i.i.d. random variables

1

$$\frac{1}{n}\log p(X_1,X_2,\dots,X_n)\to H(X).$$

 • Continuous world: for a sequence of i.i.d. random variables

1

$$-\frac{1}{n}\log f(X_1,X_2,\ldots,X_n) \to \mathbb{E}[-\log f(X)] = h(X)$$
 in probability Proof follows from the weak law of large numbers.

Typical set

Discrete case: number of typical sequences

$$\left|A_{\epsilon}^{(n)}\right| \approx 2^{nH(X)}$$

• Continuous case: The volume of the typical set

$$Vol(A) = \int_A dx_1 dx_2 \dots dx_n, \ A \subset \mathbb{R}^n.$$

Definition

For $\epsilon>0$ and any n, we define the typical set $A^{(n)}_\epsilon$ with respect to f(x) as follows:

$$A_{\epsilon}^{(n)} = \left\{ (x_1, x_2, \dots, x_n) \in \mathcal{S}^n : \left| -\frac{1}{n} \log f(x_1, x_2, \dots, x_n) - h(X) \right| \le \epsilon \right\},\,$$

where $f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$.

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

- 1. $\Pr(A_{\epsilon}^{(n)}) > 1 \epsilon$ for n sufficiently large.
- 2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}$ for all n.
- 3. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

Proof. 1

Similar to the discrete case.

By definition, $-\frac{1}{n}\log f(X^n) = -\frac{1}{n}\sum \log f(X_i) \to h(X)$ in probability.

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}$ for all n.

Poof. 2.

$$\begin{split} 1 &= \int_{\mathcal{S}^n} f(x_1, x_2, \dots, x_n) \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ &\geq \int_{A_{\epsilon}^{(n)}} f(x_1, x_2, \dots, x_n) \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ &\geq \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X) + \epsilon)} \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n = 2^{-n(h(X) + \epsilon)} \int_{A_{\epsilon}^{(n)}} \mathrm{d}x_1 \mathrm{d}x_2 \dots \mathrm{d}x_n \\ &= 2^{-n(h(X) + \epsilon)} \mathsf{Vol}(A_{\epsilon}^{(n)}). \end{split}$$

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

3. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

Proof. 3.

$$1 - \epsilon \le \int_{A_{\epsilon}^{(n)}} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

$$\le \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X) - \epsilon)} dx_1 dx_2 \dots dx_n$$

$$= 2^{-n(h(X) - \epsilon)} \int_{A_{\epsilon}^{(n)}} dx_1 dx_2 \dots dx_n$$

$$= 2^{-n(h(X) - \epsilon)} \text{Vol}(A_{\epsilon}^{(n)}).$$

 $\Theta = \int_{Cn} f(x_1, x_2, ..., x_n) dx_1 dx_2 - dx_n$ $\geq \int_{\Omega(n)} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \cdots dx_n$ $|\Xi| = \{(x_1, ..., x_n) | |-\frac{1}{n} \log f(x_1, ..., x_n) - h(x)| \leq \xi$ $|\pi_{\Gamma}(x_1, ..., x_n)| = \frac{1}{n} [h(x) + \varepsilon] \leq f(x_1, ..., x_n) \leq \frac{1}{n} [h(x) - \varepsilon]$ $\frac{1}{2} \int_{A^{(m)}} \frac{1}{2} - n[L(x) + \varepsilon] dx_1 dx_2 ... dx_n$ $\Rightarrow 2^n [L(x) + \varepsilon] \ge \int_{A(x)} dx_1 ... dx_n$ $PVol(A_c^{(n)}) \leq 2^{n[hix)+\epsilon}$ BP(A(n)) > 1- & for sufficiently large n. $Pr[A_{\epsilon}] = \int_{A(n)} f(x_1...x_n) dx_1...dx_n$ $\leq \int_{A_{00}} 2^{-n} [h(x) - \varepsilon] dx_1 ... dx_n$ = 2-N[KX)-E] Vol(A[n]) \Rightarrow Vol $(A_{\epsilon}^{(n)}) \ge (1-\epsilon) 2^{n} [\lambda(x) - \epsilon]$ for sufficiently large n E是无容小,由来通得Vol(A(M))≈2nh(X)

An interpretation

- The volume of the smallest set that contains most of the probability is approximately $2^{nh(X)}$.
- ullet For an n-dim volume, this means that each dim has length $(2^{nh(X)})^{\frac{1}{n}} = 2^{h(X)}$.

Mean value theorem (MUT)

If a function f is continuous on the closed interval $\left[a,b\right]$, and differentiable on (a, b), then there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

X~f (PDF) X~P (PMF) H(X) = H(P)h(x)=h(f)=-zplogp $=-\int_{S} f(x) \log f(x) dx$ =-E[logp]

Relation of differential entropy to discrete entropy

• Consider a random variable X with pdf f(x). We divide the range of X into bins of length Δ .

= - E[logfixi]

• MVT: there exists a value $x_i \in (i\Delta, (i+1)\Delta)$ within each bin such

AIN可想象的一个容器,其体积的2mh(x) 若该容器是n维的,则其边代的2h(x)

• Define the quantized random variable as $X^{\Delta}=x_i$ if $i\Delta \leq X \leq (i+1)\Delta$ with pmf

$$p_i = \Pr[X^{\Delta} = x_i] = \int_{i\Delta}^{(i+1)\Delta} f(x) \mathrm{d}x = f(x_i)\Delta.$$

 ${\color{red} \bullet}$ The entropy of X^{Δ} is

$$H(X^{\Delta}) = -\sum_{-\infty}^{+\infty} p_i \log p_i = -\sum_{i} \Delta f(x_i) \log f(x_i) - \log_{i} \Delta.$$

• If f(x) is is Riemann integrable, as $\Delta \to 0$,

$$H(X^{\Delta}) + \log \Delta \to h(f) = h(X)$$

Joint and conditional entropy

Definition

The joint differential entropy of $X_1, X_2, ..., X_n$ with pdf $f(x_1, x_2, ..., x_n)$ is

$$h(X_1, X_2, \dots, X_n) = -\int f(x^n) \log f(x^n) dx^n.$$

Definition

If X, Y have a joint pdf f(x,y), the conditional differential entropy h(X|Y) is

$$h(X|Y) = -\int f(x,y)\log f(x|y)dxdy = h(X,Y) - h(Y).$$

Entropy of a multivariate Gaussian

Definition (Multivariate Gaussian Distribution)

If the joint pdf of X_1, X_2, \ldots, X_n satisfies

$$f(\mathbf{x}) = f(x_1, \dots, x_n) = \frac{1}{(\sqrt{2\pi})^n |K|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T K^{-1}(\mathbf{x} - \mu)\right),$$

then X_1, X_2, \ldots, X_n are multivariate/joint Gaussian/normal distributed with mean μ and covariance matrix K. Denote as $(X_1, X_2, \ldots, X_n) \sim \mathcal{N}_n(\mu, K)$.

Theorem (Entropy of a multivariate normal distribution)

Let X_1, X_2, \ldots, X_n have multivariate normal distribution with mean μ and covariance matrix K . Then

$$h(X_1, X_2, \dots, X_n) = h(\mathcal{N}_n(\mu, K)) = \frac{1}{2} \log(2\pi e)^n |K|$$
 bits,

where |K| denotes the determinant of K.

entropy differential entropy $H(X^0) = h(X) - log 0$ 连续随机变量的信息量是无穷大的 因此要比较用相对量differential entropy (这也是为什么 differential entropy 可以为意) $\overrightarrow{X} = \begin{pmatrix} X_1 \\ \times z \\ \overrightarrow{x} \end{pmatrix}$, $\overrightarrow{X} = \begin{pmatrix} X_1 \\ \times z \\ \overrightarrow{x} \end{pmatrix}$, $(\lambda = E \begin{pmatrix} X_1 \\ \times z \\ \times z \end{pmatrix})$ $K = E[(\vec{x} - \mu)(\vec{x} - \mu)^T]$ X~N, (U,K) $h(\overline{X}) = h(X_1, X_2, \dots, X_n)$ = $-\int f(x^n) \log f(x^n) dx^n$ =- f(xn) [-log((122/n/k/2)-(loge)=(x-m) k1(2-m))dxn = log[(2x)"|K[2]+ \(\frac{1}{2}\loge \) f(x") (\(\hat{z} - \mu)^T \(\hat{z} - \mu)\) dx" E[1x-m] K1(x-m)] FI(X-WTKT(X-M)] tr(ABC)=tr(CAB) = E[tr((x-4))TK-(x-4)] = E[tr((x-4)(x-4)[K])] = tr(E[(x-\mu)(x-\mu)] K1) =tr (KK-1) = tr(In) = n h(x)=log[ex/1/K/2)+ 2logen

= \frac{1}{2} log[(27e)^{N[K]}]

Relative entropy and mutual information

The relative entropy D(f||g) between two pdfs f and g is

$$D(f||g) = \int f \log \frac{f}{g}.$$

Note: D(f||g) is finite only if the support set of f is contained in the support set of g.

The mutual information I(X;Y) between two random variables with joint pdf f(x, y) is

$$I(X;Y) = \int f(x,y) \log \frac{f(x,y)}{f(x)f(y)} dxdy.$$

By definition, it is clear that

$$I(X;Y) = h(X) - h(X|Y) = h(Y) - h(Y|X) = h(X) + h(Y) - h(X,Y).$$

$$I(X;Y) = D\Big(f(x,y)\Big|\Big|f(x)f(y)\Big).$$

Mutual information between correlated Gaussian v.v.s

• Let $(X,Y) \sim \mathcal{N}(0,K)$, where

$$K = \left[\begin{array}{cc} \sigma^2 & \rho \sigma^2 \\ \rho \sigma^2 & \sigma^2 \end{array} \right].$$

- $h(X) = h(Y) = \frac{1}{2} \log(2\pi e) \sigma^2$
- $h(X,Y) = \frac{1}{2}\log(2\pi e)^2|K| = \frac{1}{2}\log(2\pi e)^2\sigma^4(1-\rho^2)$
- $I(X;Y) = h(X) + h(Y) h(X,Y) = -\frac{1}{2}\log(1-\rho^2)$

if $\rho = 0$, X and Y are independent, the mutual information is 0.

if $\rho \pm 1$, X and Y are perfectly correlated, the mutual information is infinite.

Theorem

 $D(f||g) \ge 0$ with equality iff f = g almost everywhere

Let ${\mathcal S}$ be the support set of f. Then

$$\begin{split} -D(f||g) &= \int_{\mathcal{S}} f \log \frac{g}{f} \\ &\leq \log \int_{\mathcal{S}} f \frac{g}{f} \quad \text{(by Jensen's inequality)} \\ &= \log \int_{\mathcal{S}} g \\ &\leq \log 1 = 0 \end{split}$$

Properties of differential entropy

- $I(X;Y) \ge 0$ with equality iff X and Y are independent.
- $h(X|Y) \le h(X)$ with equality iff X and Y are independent.

Theorem (Chain rule for differential entropy)

$$h(X_1, X_2, ..., X_n) = \sum_{i=1}^n h(X_i|X_1, X_2, ..., X_{i-1}).$$

• $h(X_1, X_2, \dots, X_n) \leq \sum h(X_i)$, with equality iff X_1, X_2, \dots, X_n are independent.

h(x/Y) () h(Y/x) hex) (YI)

1(x; Y) ≥0

$$K = E[(X)(XY)] = E[X^2 XY Y^2]$$

	Random variable X , estimator \hat{X} . The expected prediction error $\mathbf{E}(X-\hat{X})^2$.													E	(x	- ∕x̂) ²	-m	în	E١	X-	a)2															
T	Theorem (Estimation error and differential entropy)																_	- m	în.	F	(X2	- 20	· χ -+	a^2													
– Fo	– For any random variable X and estimator $\hat{X},$ –																	- 6	i																		
	$\mathbb{F}(\mathbf{v} = \hat{\mathbf{v}})^2 \sim \frac{1}{2\pi i m} \left(2L(\mathbf{v}) \right)$																=	mi	n	EX	2-2	a E	χ -	f at													
	$\mathbb{E}(X - \hat{X})^2 \ge \frac{1}{2\pi e} \exp\left(2h(X)\right),$														->	F	Х +	2a	=(Exi	⇒	a=	-E	X													
	with equality iff X is Gaussian and \hat{X} is the mean of X .																					_															
	roof.																						- E														
	e ha																			-	= Vc	2r(X)												2		
I	$\mathbb{E}(X - \hat{X})^2 \ge \min_{\hat{Y}} \mathbb{E}(X - \hat{X})^2$													柱	7 60	x)	< ⋅	J.	09	(2/1	er	·IK] m	得	, 7		- 81	13	有	T	变_	重り	لا, x (ا	(i)			
	$X = \mathbb{E}(X - \mathbb{E}(X))^2$ mean is the best estimator													to	L	(X)		_ ·	O O	7 (2 1/		x IJ	~	• 1	מרו	χı	· > -	i,	o.x.s	(2)	Lix	11				
	= Var(X)													<i>□</i> 2	, IV	(\(\cdot\)		3 J	pyl.	2700	V		^\J			<i>w</i>	(1)	- 2	re'	2.07			′′				
			\geq	$\frac{1}{2\pi e}$	exp	(2h((X)	. т	he G	aussi	an h	as m	axim	ium e	entro	ру	6	L	E	X-	X)-	>	Te	ex	P (2	<u>ን</u> ሊ(ን	(1)										
	$\geq rac{1}{2\pi e} \exp\Big(2h(X)\Big).$ The Gaussian has maximum entropy																																				
	c.																																				
	ی ر		m	an	1									- 11																							
•	Disc	rete	r.v.	\Rightarrow	conti	nuou	ıs r.v	<i>'</i> .																													
	● entropy ⇒ differential entropy.																																				
•	 Many things similar: mutual information, relative entropy, AEP, chain- rule, 																																				
	Some things different: $h(X)$ can be negative, maximum entropy																																				
			ion i																																		