Ex No. 12	Construction of Dougsian Deliaf Naturally
Date:	Construction of Bayesian Belief Network

Aim

To construct a Bayesian belief network on heart disease data set to predict whether a patient is affected by heart disease based on maximum likelihood estimation.

Data set

heart.csv (https://github.com/kb22/Heart-Disease-Prediction/blob/master/dataset.csv)

Definition

Bayesian Belief Network

Bayesian Belief Network is a graphical representation of different probabilistic relationships among random variables in a particular set. It is a classifier with no dependency on attributes i.e it is condition independent. Due to its feature of joint probability, the probability in Bayesian Belief Network is derived, based on a condition — $\underline{P}(\text{attribute/parent})$ i.e probability of an attribute, true over parent attribute.

Procedure

Open PyCharm Community Edition.

Go to File menu → New Project → Specify the project name → Press "Create" button.

Right Click on Project name \rightarrow New \rightarrow Python File \rightarrow Specify the file name \rightarrow Press Enter.

Type the following codes. Right click on file name or coding window → Select "Run" to view the result.

BBN.py

```
import numpy as np
import pandas as pd
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianNetwork
#read Heart Disease data
data = pd.read_csv("C:/Users/lab4/Downloads/heart.csv")
data = data.replace('?',np.nan)
#display the data
print('Few examples from the dataset are given below')
print(data.head())
print('\n Attributes and datatypes')
print(data.dtypes)
#Model Bayesian Belief Network
model = BayesianNetwork([('age', 'target'), ('sex', 'target'), ('cp', 'target'), ('trestbps', 'target'), ('chol',
'target'),('fbs', 'target'),('restecg', 'target'),('thalach', 'target'),('exang', 'target'),('oldpeak', 'target'),('slope',
'target'),('ca', 'target'),('thal', 'target')])
#Learning CPDs using Maximum Likelihood Estimators
cpd restecg = MaximumLikelihoodEstimator(model, data).estimate cpd('restecg')
print(cpd_restecg)
cpd_cp = MaximumLikelihoodEstimator(model, data).estimate_cpd('cp')
print(cpd_cp)
cpd oldpeak = MaximumLikelihoodEstimator(model, data).estimate cpd('oldpeak')
print(cpd_oldpeak)
cpd_exang = MaximumLikelihoodEstimator(model, data).estimate_cpd('exang')
print(cpd_exang)
cpd_age = MaximumLikelihoodEstimator(model, data).estimate_cpd('age')
print(cpd_age)
cpd chol = MaximumLikelihoodEstimator(model, data).estimate cpd('chol')
print(cpd chol)
```

Output

Few examples from the dataset are given below

age sex cp trestbps chol fbs ... exang oldpeak slope ca thal target 0 63 1 3 145 233 1 ... 0 2.3 0 0 1 1 1 37 1 2 130 250 0 ... 3.5 0 0 1 2 41 0 1 130 204 0 ... 0 1.4 2 0 2 1 3 56 1 1 120 236 0 ... 0 0.8 2 0 2 1 4 57 0 0 120 354 0 ... 1 0.6 2 0 2 1

[5 rows x 14 columns]

Attribut	es and datatypes	++	++
age	int64	restecg(0) 0.485149	oldpeak(0.0) 0.326733
sex	int64	++	++
cp	int64	restecg(1) 0.50165	oldpeak(0.1) 0.0231023
trestbps	int64	++	++
chol	int64	restecg(2) 0.0132013	oldpeak(0.2) 0.039604
fbs	int64	++	++
restecg	int64	++	oldpeak(0.3) 0.00990099
thalach	int64	cp(0) 0.471947	++
exang	int64	++	oldpeak(0.4) 0.029703
oldpeak	float64	cp(1) 0.165017	++
slope	int64	++	$\mid oldpeak(0.5) \mid 0.0165017 \mid$
ca	int64	cp(2) 0.287129	++
thal	int64	++	oldpeak(0.6) 0.0462046
target	int64	cp(3) 0.0759076	++
dtype: ol	bject	++	oldpeak(0.7) 0.00330033

++	++	++
oldpeak(0.8) 0.0429043	oldpeak(2.2) 0.0132013	oldpeak(3.8) 0.00330033
++	++	++
oldpeak(0.9) 0.00990099	oldpeak(2.3) 0.00660066	oldpeak(4.0) 0.00990099
++ oldpeak(1.0) 0.0462046	++ oldpeak(2.4) 0.00990099	++ oldpeak(4.2) 0.00660066
++	++	++
oldpeak(1.1) 0.00660066	oldpeak(2.5) 0.00660066	oldpeak(4.4) 0.00330033
++ oldpeak(1.2) 0.0561056	++ oldpeak(2.6) 0.019802	++ oldpeak(5.6) 0.00330033
++	++	++
oldpeak(1.3) 0.00330033	oldpeak(2.8) 0.019802	oldpeak(6.2) 0.00330033
++ oldpeak(1.4) 0.0429043	++ oldpeak(2.9) 0.00330033	++
++	++	exang(0) 0.673267
oldpeak(1.5) 0.0165017	oldpeak(3.0) 0.0165017	++
++	++	exang(1) 0.326733
oldpeak(1.6) 0.0363036	oldpeak(3.1) 0.00330033	++
++	++	++
oldpeak(1.8) 0.0330033	oldpeak(3.2) 0.00660066	age(29) 0.00330033
++	++	++
oldpeak(1.9) 0.0165017	oldpeak(3.4) 0.00990099	age(34) 0.00660066
++	++	++
oldpeak(2.0) 0.029703	oldpeak(3.5) 0.00330033	age(35) 0.0132013
++	++	++
oldpeak(2.1) 0.00330033	oldpeak(3.6) 0.0132013	age(37) 0.00660066

++	age(50) 0.0231023	++
age(38) 0.00990099	++	age(63) 0.029703
++	age(51) 0.039604	++
age(39) 0.0132013	++	age(64) 0.0330033
++	age(52) 0.0429043	++
age(40) 0.00990099	++	age(65) 0.0264026
++	age(53) 0.0264026	++
age(41) 0.0330033	++	age(66) 0.0231023
++	age(54) 0.0528053	++
age(42) 0.0264026	++	age(67) 0.029703
++	age(55) 0.0264026	++
age(43) 0.0264026	++	age(68) 0.0132013
++	age(56) 0.0363036	++
age(44) 0.0363036	++	age(69) 0.00990099
++	age(57) 0.0561056	++
age(45) 0.0264026	++	age(70) 0.0132013
++	age(58) 0.0627063	++
age(46) 0.0231023	++	age(71) 0.00990099
++	age(59) 0.0462046	++
age(47) 0.0165017	++	age(74) 0.00330033
++	age(60) 0.0363036	++
age(48) 0.0231023	++	age(76) 0.00330033
++	age(61) 0.0264026	++
age(49) 0.0165017	++	age(77) 0.00330033
++	age(62) 0.0363036	++

Process finished with exit code 0

Result

Thus, a Bayesian belief network has been successfully constructed on heart disease data set to predict the heart disease based on maximum likelihood estimation.