# Long Term Calibration of a Pure Rotational Raman Lidar for Temperature Measurements Using Radiosondes and Solar Background

<u>Vasura Jayaweera</u> (1), Robert J. Sica(1), Alexander Haefele(1,2), Giovanni Martucci(1)

(1) Department of Physics and Astronomy, Western University, London, Canada.

(2) MeteoSwiss, Payerne (Switzerland)

Email: yjayawee@uwo.ca



## **Motivation and Objectives**

- The main goal of our project is to compute a long term relative humidity climatology and trend analysis in the free troposphere and the UTLS region over Payerne, Switzerland.
- For our project we will be using data obtained by the Raman Lidar for Meteorological Observations (RALMO) located at Payerne, Switzerland.
- Relative humidity can be retrieved directly from RALMO Raman-scattering backscatter measurements using an optimal estimation method (OEM)-based retrieval (Gamage et al., 2020\*).
- Retrieving relative humidity directly from lidar requires the calibration of temperature using an external temperature measurement.
- Our goal is to improve the temperature calibration and to produce a continuous temperature calibration time series.

<sup>\*</sup>Gamage, S. M., Sica, R., Martucci, G., and Haefele, A.: A 1D Var retrieval of relative humidity using the ERA5 dataset for the assimilation of Raman lidar measurements, Journal of Atmospheric and Oceanic Technology, 37, 2051-2064, 2020.

### **RALMO** Temperature retrieval





Temperature retrieval from RALMO measurements on 09 September 2011 along with the full uncertainty budget.

Mahagammulla Gamage, S., Sica, R. J., Martucci, G., and Haefele, A.: Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method, Atmospheric Measurement Techniques, 12, 5801-5816, 2019.

#### **Calibration of Temperature Measurements**

- External method: Uses an external reference instrument (i.e Radiosonde) for calibration.
- Internal method (background method): Uses the solar background taken through the lidar at a time corresponding to a 70° zenith angle.
- The trend derived from externally calibrated data is highly dependent on the trend of the external reference itself.
- Using the internal calibration method, the derived **trend** becomes independent from the external reference measurements.

#### **External and Background Calibration**



 Comparison between the temperature calibration time series obtained by the external method and the background calibration method.

#### Comparison of temperature profiles



- Figure shows the difference between the temperature profiles obtained using the calibration constant from external and background calibration methods.
- The agreement between the external and background calibration methods to the 2σ level is about 0.07 K, with a bias of 0.01 K.
- Comparison suggests that we will be able to use the background calibration technique as an alternative to the external calibration method.