Álgebra Lineal

Soluciones al examen del 30 de noviembre de 2018

- **1.** Consideramos el subespacio vectorial $F = \langle (1,1,0,0), (0,-1,-2,3) \rangle$ de \mathbb{R}^4 .
- a) Halla, razonadamente, una base \mathcal{B} de \mathbb{R}^4/F .

Escribamos $\mathbf{v}_1 = (1, 1, 0, 0)$ y $\mathbf{v}_2 = (0, -1, -2, 3)$. Sea $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ la base estándar de \mathbb{R}^4 .

Hay que extender la base $\{\mathbf{v}_1, \mathbf{v}_2\}$ de F a una base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ de \mathbb{R}^4 , y entonces $\{[\mathbf{v}_3], [\mathbf{v}_4]\}$ será una base del cociente. A la matriz $A_0 = [\mathbf{v}_1 | \mathbf{v}_2]$, cuyas columnas son la base de F, hay que añadirle dos columnas más de modo que resulte una matriz 4×4 invertible. Para ello, buscamos una submatriz 2×2 de A_0 que sea invertible. Como la submatriz formada por las dos primeras filas de A_0 ya es invertible, podemos añadir los dos últimos vectores de la base estándar y así la matriz

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right),$$

es invertible. Luego $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3, \mathbf{e}_4\}$ es una base de \mathbb{R}^4 , lo que proporciona la siguiente base del cociente: $\{[\mathbf{e}_3], [\mathbf{e}_4]\} = \{[(0,0,1,0)], [(0,0,0,1)]\}.$

Por el mismo argumento, también son bases del cociente $\{[e_2], [e_4]\}, \{[e_2], [e_3]\}, \{[e_1], [e_4]\}$ y $\{[e_1], [e_3]\}$.

b) Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 dada por $f(\mathbf{x}) = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix} \mathbf{x}$. Definimos una aplicación:

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4/F$$
 , mediante la fórmula $g(\mathbf{x}) = \left[f(\mathbf{x})\right]$.

Demuestra que g es lineal.

Primer método. Es sabido que la proyección al cociente $p: \mathbb{R}^2 \to \mathbb{R}^4/F$ es lineal. Entonces $g = p \circ f$ es una compuesta de lineales, luego lineal.

Segundo método. Comprobamos directamente que se conservan suma y producto por escalar:

$$\begin{array}{lll} g(\mathbf{u}+\mathbf{v}) \ = \ \left[f\left(\mathbf{u}+\mathbf{v}\right) \right] \ = \ \left[f(\mathbf{u}) + f(\mathbf{v}) \right] \ = \ \left[f(\mathbf{u}) \right] + \left[f(\mathbf{v}) \right] \ = \ g(\mathbf{u}) + g(\mathbf{v}) \ , \\ g(a\mathbf{v}) \ = \ \left[f(a\mathbf{v}) \right] \ = \ \left[a \, f(\mathbf{v}) \right] \ = \ a \, g(\mathbf{v}) \ . \end{array}$$

c) Calcula la matriz de g usando la base estándar de \mathbb{R}^3 en salida y la base \mathcal{B} , que has hallado en el apartado a), en llegada.

Supongamos que hemos elegido $\mathcal{B} = \{[\mathbf{e}_3], [\mathbf{e}_4]\}$, siendo el método enteramente análogo para cualquier otra elección. Los transformados por f de la base estándar de \mathbb{R}^3 son las columnas de la matriz en la fórmula que nos dan para f, y hay que ponerlas (las tres columnas) como combinaciones lineales de

la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_3, \mathbf{e}_4\}$ de \mathbb{R}^4 , lo cual hacemos por Gauss simultáneo:

llegando a
$$\left(\begin{array}{c|ccc} I_4 & 0 & 1 & -1 \\ -1 & 0 & -3 \\ -2 & 0 & -5 \\ 5 & 1 & 10 \end{array}\right)$$
, que significa que:

$$f\left(\begin{bmatrix} 1\\0\\0\end{bmatrix}\right) = \begin{bmatrix} 0\\1\\0\\2\end{bmatrix} = \mathbf{0}\mathbf{v}_1 - \mathbf{1}\mathbf{v}_2 - \mathbf{2}\mathbf{e}_3 + \mathbf{5}\mathbf{e}_4 \in -2\mathbf{e}_3 + \mathbf{5}\mathbf{e}_4 + F,$$

$$f\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\1\end{bmatrix} = 1\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{e}_3 + 1\mathbf{e}_4 \in 0\mathbf{e}_3 + 1\mathbf{e}_4 + F,$$

$$f\left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \end{bmatrix} = -1\mathbf{v}_1 - 3\mathbf{v}_2 - 5\mathbf{e}_3 + 10\mathbf{e}_4 \in -5\mathbf{e}_3 + 10\mathbf{e}_4 + F.$$

Aplicando la proyección $p: \mathbb{R}^4 \to \mathbb{R}^4/F$ a esas tres igualdades, obtenemos:

$$g\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = -2[\mathbf{e}_3] + 5[\mathbf{e}_4] \quad , \quad g\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = 0[\mathbf{e}_3] + 1[\mathbf{e}_4] \quad , \quad g\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = -5[\mathbf{e}_3] + 10[\mathbf{e}_4] .$$

Por lo tanto la matriz de g, respecto de la base estándar de \mathbb{R}^3 en salida y la base $\{[\mathbf{e}_3], [\mathbf{e}_4]\}$ en llegada, es $\begin{pmatrix} -2 & 0 & -5 \\ 5 & 1 & 10 \end{pmatrix}$.

2. a) Sea $T : \mathbb{R}[x] \to \mathbb{R}[x]$ el endomorfismo dado por $T(\varphi(x)) = \varphi'(x)$. ¿Es T inyectivo? ¿Es suprayectivo?

Dado $\varphi(x) = a_0 + a_1 x + a_x^2 + \dots + a_n x^n$, se tiene $\varphi(x) = T\left(C + a_0 x + \frac{a_1}{2} x^2 + \frac{a_2}{3} x^3 + \dots + \frac{a_n}{n+1} x^{n+1}\right)$ para toda constante C. Es decir que cada elemento de $\mathbb{R}[x]$ tiene infinitas preimágenes por T. Luego T es suprayectivo pero no inyectivo.

b) Dados un espacio vectorial E, de dimensión finita n, y un endomorfismo $f: E \to E$, demuestra que f es inyectivo si y sólo si es suprayectivo.

Por definición, el endomorfismo f es suprayectivo si f(E) = E. El subespacio vectorial $f(E) \subseteq E$ coincide con E si y sólo si $n = \dim f(E) = n - \dim \ker f$, que equivale a dim $\ker f = 0$, que a su vez equivale a $\ker f = \{0\}$, y esto último a que f sea inyectivo.

3. Sea $L: \mathbb{R}[x]_{\leq 2} \to \mathbb{R}[x]_{\leq 2}$ el endomorfismo cuyo efecto sobre cada polinomio $\varphi(x) \in \mathbb{R}[x]_{\leq 2}$ es el siguiente:

$$L(\varphi(x)) = \varphi(1) + (2x - 1)\varphi'(x) + \varphi(t)\Big|_{t=1-x}.$$

a) Halla la matriz de L, usando la base estándar de $\mathbb{R}[x]_{\leq 2}$ en salida y en llegada.

La base estándar de $\mathbb{R}[x]_{\leq 2}$ es $\mathcal{B}_{st} = \{1, x, x^2\}$. Hallamos las imágenes de sus elementos:

(1)
$$L(1) = 1 + (2x - 1) \cdot 0 + 1 = 2,$$

$$L(x) = 1 + (2x - 1) \cdot 1 + 1 - x = 1 + x,$$

$$L(x^2) = 1^2 + (2x - 1) \cdot 2x + (1 - x)^2 = 2 - 4x + 5x^2.$$

La matriz pedida tiene por columnas las coordenadas de esas imágenes en la base \mathcal{B}_{st} , luego es:

$$A = \left(\begin{array}{ccc} 2 & 1 & 2 \\ 0 & 1 & -4 \\ 0 & 0 & 5 \end{array}\right) .$$

b) Halla una base \mathcal{B} de $\mathbb{R}[x]_{\leq 2}$ tal que la matriz de L, usando \mathcal{B} en salida y en llegada, sea una matriz diagonal (la base \mathcal{B} tiene que estar formada por polinomios).

Al ser A triangular superior, los autovalores de A (y de L) son 2,1,5. La base diagonalizante estará formada por tres polinomios $\mathcal{B} = \{\varphi_1(x), \varphi_2(x), \varphi_3(x)\}$ que sean autovectores de L con esos autovalores respectivos, es decir

$$L(\varphi_1(x)) = 2 \cdot \varphi_1(x)$$
 , $L(\varphi_2(x)) = 1 \cdot \varphi_2(x)$, $L(\varphi_3(x)) = 5 \cdot \varphi_3(x)$.

Una solución del sistema $(A-2\cdot I_3)\mathbf{x}=\mathbf{0}$ es $\mathbf{x}_1=\begin{bmatrix} 1\\0\\0\end{bmatrix}$, luego podemos tomar como $\varphi_1(x)$ el polinomio que tiene coordenadas (1,0,0) en la base estándar, es decir $\varphi_1(x)\equiv 1$.

Una solución del sistema $(A - 1 \cdot I_3)\mathbf{x} = \mathbf{0}$ es $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, luego podemos tomar como $\varphi_2(x)$ el polinomio que tiene coordenadas (1, -1, 0) en la base estándar, es decir $\varphi_2(x) \equiv 1 - x$.

Una solución del sistema $(A - 5 \cdot I_3)\mathbf{x} = \mathbf{0}$ es $\mathbf{x}_3 = \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}$, luego podemos tomar como $\varphi_3(x)$ el polinomio que tiene coordenadas (1, -3, 3) en la base estándar, es decir $\varphi_3(x) \equiv 1 - 3x + 3x^2$.

Antes de continuar, comprobamos que los tres polinomios obtenidos son, efectivamente, autovectores de L. En el caso de $\varphi_1(x) \equiv 1$, es la igualdad (1) arriba indicada. Para los otros dos, calculamos:

$$L(1-x) = 2 - (1+x) = 1 \cdot (1-x) ,$$

$$L(1-3x+3x^2) = 2 - 3(1+x) + 3(2-4x+5x^2) = 5 - 15x + 15x^2 = 5 \cdot (1-3x+3x^2) .$$

Queda comprobado que la matriz de L en la base $\{\varphi_1(x), \varphi_2(x), \varphi_3(x)\}$ es $\begin{pmatrix} 2 & & \\ & 1 & \\ & & 5 \end{pmatrix}$.

c) Calcula explícitamente el iterado $L^{20}(3x^2)$.

Escribimos el vector $3x^2$ como combinación lineal de los autovectores:

$$3x^2 = 2 \cdot 1 - 3 \cdot (1 - x) + 1 \cdot (1 - 3x + 3x^2)$$
.

Entonces, para todo n tenemos $L^n(3x^2) = 2 \cdot 2^n \cdot 1 - 3 \cdot 1^n \cdot (1-x) + 1 \cdot 5^n \cdot (1-3x+3x^2)$, en particular $L^{20}(3x^2) = 2^{21} - 3 \cdot (1-x) + 5^{20} \cdot (1-3x+3x^2) = (2^{21}-3+5^{20}) + 3(1-5^{20})x + 3 \cdot 5^{20}x^2$.