Cryptanalysis using lattices

Prof. dr. ir. Frederik Vercauteren

COSIC, KU Leuven Computer Algebra for Cryptography (B-KUL-H0E74A)

2022-2023

Small decryption exponent RSA

Knapsack cryptosystems

Coppersmith's method and applications

Small decryption exponent RSA

Knapsack cryptosystems

Coppersmith's method and applications

The RSA Cryptosystem

- Find 2 primes p and q of at least 1024 bits and set $N = p \cdot q$
- Compute Euler Phi

$$\varphi(n)=(p-1)(q-1)$$

- ▶ Choose *e* co-prime to $\varphi(N)$ ($\neq \pm 1$)
- ightharpoonup Compute $d=e^{-1} \mod \varphi(N)$
- **public key**: (e, N), private key: (d, N) or (p, q)
- ▶ Encryption: $c = m^e \mod N$
- ▶ Decryption: $m = c^d \mod N$

Wiener's attack

Wiener '90: Let (N, e) be an RSA public key and d the corresponding private key. For

$$d \leq \frac{1}{3} \sqrt[4]{N}$$

the modulus N can be factored in time $O(\log^2 N)$

- ▶ Wiener: continued fractions, we will use lattices (with slightly worse constant)
- ► Idea: write RSA key equation:

$$ed = 1 + k\varphi(N) = 1 + k(N - p - q + 1)$$

and note $k = (ed - 1)/\varphi(N) < d$ (assume $e < \varphi(N)$)

Wiener's attack

Rewriting the equation gives

$$ed - kN = 1 - k(p + q - 1)$$

Consider the lattice

$$L = \begin{pmatrix} e & \lfloor \sqrt{N} \rfloor \\ N & 0 \end{pmatrix}$$

- ▶ Vector $\mathbf{v} = (ed kN, d \lfloor \sqrt{N} \rfloor)$ is in the lattice and has length $\approx \sqrt{5} \cdot d \cdot \sqrt{N}$
- ► Comparing to volume $\approx N^{3/2}$, **v** will likely be shortest vector if

$$\sqrt{5} \cdot d \cdot \sqrt{N} < \sqrt{\frac{1}{\pi e}} N^{3/4} \qquad \Leftarrow \qquad d \leq \frac{1}{7} \sqrt[4]{N}$$

- **Exercise:** show that putting $\approx \sqrt{N}$ on top right is essentially optimal
- **Exercise:** why does this attack not work for small **encryption** exponent?

Wiener's attack

```
► MAGMA example:
  > N :=
    1116870254237723980740312325116906288704452778201991357593077:
  > e :=
    413242649033832990992138470073336654191983167326431683364143:
  > L := Matrix(2, 2, [e, Floor(Sqrt(N)),
                       N. 0 1):
  >
  > L := Lattice(L); L; // remember automatically performs reduction
  Lattice of rank 2 and degree 2
  Basis:
  (221709358130224924315430604866231568188455835
      -296774407039952956905306295404939748856122033)
  (2609447248935733680487515160622378810325991443
      1830840997905463945367694048645954656848031032)
> print "Decryption exp is", -Basis(L)[1][2] / Floor(Sqrt(N));
```

Small decryption exponent RSA

Knapsack cryptosystems

Coppersmith's method and applications

- ▶ Merkle–Hellman (1978): Hiding information and signatures in trapdoor knapsacks
- Subset sum problem: given n different positive weights w_1, \ldots, w_n , and a target weight s (size of knapsack), decide whether there exist $x_i \in \{0,1\}$ such that

$$s = \sum_{i=1}^{n} x_i w_i$$

- **Exercise:** deciding the existence is the same as finding the x_i
- ▶ Can assume number of non-zero x_i is $\leq \lfloor n/2 \rfloor$ (replace s by $\sum_i w_i s$ if needed)
- Subset sum problem is NP-complete
- \triangleright Density of sequence w_1, \ldots, w_n is

$$d = \frac{n}{\log_2 \max_i \{w_i\}}$$

lacktriangle Rule of thumb: dpprox 1 is hardest case, low density and high density are easier

Solving low density subset sum with lattices

 \triangleright Given weights w_1, \ldots, w_n and target sum s, form lattice

$$\begin{pmatrix} 1 & 0 & \dots & Nw_1 \\ 0 & 1 & \dots & Nw_2 \\ \vdots & & & \vdots \\ 0 & \cdots & 1 & Nw_n \\ 0 & 0 & \cdots & Ns \end{pmatrix}$$

- ▶ Vector $(x_1, ..., x_n, 0)$ is in lattice and length is $\leq \sqrt{n/2}$
- Choosing $N > \sqrt{n/2}$ forces last entry of shortest vector to be 0
- ▶ Lagarias–Odlyzko: for random weights w_i of size $2^{\beta n}$ with $\beta = 1.5473$ (density < 0.6463), really shortest vector
- ► Heuristically:

$$\sqrt{n/2} < \sqrt{\frac{n+1}{2\pi e}} \mathrm{vol}(L)^{\frac{1}{n+1}} \quad ext{ with } \mathrm{vol}(L) = \mathit{Ns} pprox \mathit{N}(n/2) 2^{\beta n}$$

Coster et al.: replace last row by (1/2, 1/2, ..., Ns), then density can grow to < 0.9408

Solving low density subset sum with lattices

```
\blacktriangleright MAGMA example (for density 1/2):
  > n := 10:
  > w := []:
  > for i in [1..n] do
  > w cat:= [Random([1..2^(2*n)])]; // density 1/2
  > end for:
  > ind := Random(Subsets({1..n}, Floor(n/2)));
  > s := &+[w[i] : i in ind]:
  > print "Weights are", w;
  > print "Target is", s, "with weight indices", ind;
  > L := IdentityMatrix(Integers(), n + 1);
  > for i in [1..n] do L[i][n + 1] := N*w[i]; end for;
  > L[n + 1][n + 1] := Ceiling(Sqrt(n/2))*s;
  > ShortestVectors(Lattice(L)):
```

▶ Subset sum is easy for superincreasing sequences, where

$$w_i > \sum_{k=1}^{i-1} w_k$$

Example: $w_i = 2^i$ is superincreasing, the x_i are the bits of s

▶ Subset sum is easy for superincreasing sequences, where

$$w_i > \sum_{k=1}^{i-1} w_k$$

- **Example:** $w_i = 2^i$ is superincreasing, the x_i are the bits of s
- ▶ Merkle–Hellman idea: try to hide a superincreasing sequence $\{w_i\}$ as follows
 - ► Choose modulus $N > \sum_{i=1}^{n} w_i$, a random multiplier W and a permutation π of the integers $\{1, \ldots, n\}$
 - Hide the superincreasing sequence by giving out sequence

$$a_i = Ww_{\pi(i)} \mod N$$

- ▶ Public key: sequence a_1, \ldots, a_n
- Private key: $W, \pi, N, w_1, \ldots, w_n$
- ▶ Encryption: given message of n bits m_1, \ldots, m_n simply compute

$$c = \sum_{i=1}^{n} m_i a_i$$

▶ Decrypt: multiply by $W^{-1} \mod N$, solve subset sum problem using w_1, \ldots, w_n and invert permutation π

Knapsack cryptosystems: attack

- ▶ Goal: to find multiplier $U = W^{-1} \mod N$ and modulus N such that $Ua_i \mod N$ are elements of superincreasing sequence
- ► Assume there is no permutation, then

$$Ua_i - k_i N = w_i$$

and $w_i < N/2^{n-i}$ (for small i very small compared to N)

- \blacktriangleright Like Wiener attack on RSA but now do not know k_i or N
- **Exercise:** show that

$$|a_i k_1 - a_1 k_i| < N/2^{n-i-1}$$

which again is very small (compared to $a_i k_1$ and $a_1 k_i$)

- $ightharpoonup \Rightarrow U = k_1$ and $N = a_1$ good candidate for superincreasing Ua_i mod N
- Likely not equal to original *U* and *N* but still useful

Knapsack cryptosystems: attack

▶ Build lattice (for small ℓ)

$$egin{pmatrix} \lambda & a_2 & \dots & a_\ell \ 0 & -a_1 & \dots & 0 \ dots & & dots \ 0 & \cdots & & -a_1 \end{pmatrix}$$

- ► Vector $[\lambda k_1, k_1 a_2 k_2 a_1, ..., k_1 a_\ell k_\ell a_1]$ is short
- Choose λ such that λk_1 similar size as other entries
- ▶ Use $U = k_1$ and $N = a_1$, hopefully Ua_i mod N superincreasing
- lacktriangle Already good enough in practice to take $\ell=5$, so only very small lattices involved
- ▶ Try all ℓ -element sequences in turn to find correct permutation: $O(n^5)$ tries
- Conclusion: knapsack cryptosystems completely broken

Knapsack cryptosystems: attack example (without π)

- Private key:
 - N = 2609,
 - V = 2525 (so U = 528),
 - $v_1 = 7, w_2 = 20, w_3 = 35, w_4 = 71, w_5 = 140, w_6 = 307, w_7 = 651, w_8 = 1301$
- ► Public kev:
 - $ightharpoonup a_1 = 2021, a_2 = 929, a_3 = 2278, a_4 = 1863, a_5 = 1285, a_6 = 302, a_7 = 105, a_8 = 294$
- ▶ Build lattice for $\ell = 3$ with $\lambda = 1/8$:

$$\begin{pmatrix} \frac{1}{8} & 929 & 2278 \\ 0 & -2021 & 0 \\ 0 & 0 & -2021 \end{pmatrix} \quad \text{with LLL-reduction} \quad \begin{pmatrix} \frac{409}{8} & 13 & 21 \\ \frac{63}{8} & -82 & 23 \\ \frac{385}{8} & -52 & -84 \end{pmatrix}$$

- Guess $U = k_1 = 409$, $N = a_1 = 2021$
- ▶ Note: wrong guess, yet *Ua*; mod *N* yields

which is superincreasing, so can be used to decrypt (except m_1 , can be guessed)

Small decryption exponent RSA

Knapsack cryptosystems

Coppersmith's method and applications

- Coppersmith '96: find small roots of a modular polynomial
- ► Setup:
 - ▶ integer N of unknown factorisation (e.g. RSA modulus)
 - degree d polynomial $f(x) = x^d + f_{d-1}x^{d-1} + \cdots + f_1x + f_0$
 - ightharpoonup some bound B > 0
- Problem: find all integers x₀ with

$$|x_0| < B$$
 and $f(x_0) \equiv 0 \mod N$

- ▶ If *N* is prime power: foot finding algorithms (see Lecture 8)
- ▶ If factorization of *N* is known: Chinese Remainder Theorem
- Power of method lies in fact that factorization of N need not be known

Coppersmith's method: bound B

- B depends on degree d and on N
- ▶ for d > 1, cannot have $B \approx N$ since then could solve

$$x^3 - c \equiv 0 \bmod N$$

▶ Note: RSA equation easy to solve when $m < N^{1/3}$, since then

$$x^3 - c = 0$$
 over \mathbb{Z}

Coppersmith: can find in time polynomial in (log N, d, $1/\epsilon$) all roots x_0 of $f(x) \equiv 0 \mod N$ with $|x_0| \leq \frac{1}{2}N^{1/d-\epsilon}$

- ightharpoonup Finding roots of a polynomial over $\mathbb Z$ is easy
- ▶ Idea: build polynomial F(x) over \mathbb{Z} with same roots x_0

- ightharpoonup Finding roots of a polynomial over $\mathbb Z$ is easy
- ▶ Idea: build polynomial F(x) over \mathbb{Z} with same roots x_0
- Assume that $F(x_0) \equiv 0 \mod N^m$ for some $m \ge 1$ and $|F(x_0)| < N^m$, then $F(x_0) = 0$ over integers.

- ightharpoonup Finding roots of a polynomial over $\mathbb Z$ is easy
- ▶ Idea: build polynomial F(x) over \mathbb{Z} with same roots x_0
- Assume that $F(x_0) \equiv 0 \mod N^m$ for some $m \ge 1$ and $|F(x_0)| < N^m$, then $F(x_0) = 0$ over integers.
- ▶ Problem: only have a bound B on x_0 , not actual value!
- Let $F(x) = \sum_{i=0}^{n-1} F_i x^i$, then clearly

$$|F(x_0)| \leq \sum_{i=0}^{n-1} |F_i| B^i$$

► Cauchy-Schwartz: on vectors $[|F_i|B^i]_i$ and $[1, \dots, 1]$

$$|F(x_0)| \leq \sqrt{n} \cdot ||F(xB)||$$

Howgrave-Graham's lemma

Let F(x) be a polynomial with n monomials and

$$F(x_0) \equiv 0 \mod N^m \quad \text{with} \quad |x_0| < B$$

$$||F(xB)|| < \frac{N^m}{\sqrt{n}}$$

▶ Then $F(x_0) = 0$ over the integers

▶ Given $f(x_0) \equiv 0 \mod N$, for $g_{i,j}(x) = N^{m-i}x^jf(x)^i$

$$g_{i,j}(x_0) \equiv 0 \mod N^m$$

- ightharpoonup Also holds for every linear combination of the $g_{i,j}$
- ► Search for linear combination satisfying H-G lemma
- ▶ In other words: look for linear combination F with

$$||F(xB)|| < \frac{N^m}{\sqrt{n}}$$

- ▶ Order the polynomials $g_{i,j}(x) = N^{m-i}x^jf(x)^i$ for $0 \le i \le m$ and $0 \le j < d$ by degree
- ▶ Build the lattice *L* with rows coefficient vectors of $g_{i,j}(xB)$
- $ightharpoonup \dim(L) = (m+1)d$ and is the number of monomials n of lin. comb. F
- **Exercise:** volume of *L* is given by

$$\operatorname{vol}(L) = B^{n(n-1)/2} N^{nm/2}$$

▶ LLL returns vector F(xB) with norm

$$||F(xB)|| \le 2^{(n-1)/4} \operatorname{vol}(L)^{1/n} = 2^{(n-1)/4} B^{(n-1)/2} N^{m/2}$$

Howgrave-Graham's condition finally gives

$$2^{(n-1)/4}B^{(n-1)/2}N^{m/2}<\frac{N^m}{\sqrt{n}}$$

 \triangleright Given f and N, for every choice of m, obtain bound B for which method works

$$B<\frac{N^{m/(n-1)}}{\sqrt{2}n^{1/(n-1)}}$$

- ▶ Since n = (m+1)d, obtain the asymptotic bound $N^{1/d}$ for $n \to \infty$
- Note that LLL suffices, no need for SVP oracle

Attack on RSA with small e and stereotyped m

- Assume (N, e) is an RSA public key with e small
- Assume the encrypted message is stereotyped, i.e.

$$m=M2^k+x_0$$

where M is known and $x_0 < 2^k$ unknown

- ▶ Coppersmith: if $|x_0| < N^{1/e}$, then can find x_0 in polynomial time in $(\log N, e)$
- ▶ Apply Coppersmith to $f(x) = (M2^k + x)^e c \equiv 0 \mod N$
- **Exercise:** what if unknown part is not the least significant part?

Attack on RSA with small e and stereotyped m in MAGMA

```
repeat
  p := RandomPrime(1024 : Proof := false);
   q := RandomPrime(1024 : Proof := false);
until GCD((p-1)*(q-1), 3) eq 1; // not efficient but to save space
N := p*q; ZN := Integers(N);
e := 3; // encryption exponent
k := 256; // key length we want to encrypt
M := Random(2^760); // fixed random padding of length 760 bits
key := Random(2^256); // key we want to transport
c := Integers() ! (ZN ! (key + 2^k*M))^e; // encryption of the key
                                           // using the fixed padding
```

Attack on RSA with small e and stereotyped m in MAGMA

```
Zx<x> := PolynomialRing(Integers());
f := (x + 2^k*M)^e - c; // polynomial used in encryption
time s := SmallRoots(f, N, 2^256); // Coppersmith on f with bound 2^256
----> Time: 0.000
s[1] eq key;
----> true
```

Attack on RSA with partial knowledge of secret key

Coppersmith (general): Let N be an integer of unknown factorization, with unknown divisor $b \ge N^{\beta}$. Then for f(x) a monic polynomial of degree d, can find in polynomial time in (log $N, d, 1/\epsilon$) all roots x_0 of

$$f(x) \equiv 0 \mod b$$
 with $|x_0| \leq \frac{1}{2} N^{\beta^2/d - \epsilon}$

Assume you know a good approximation \tilde{p} to p, i.e.

$$ilde{p} = p + \Delta$$
 with $|\Delta| < N^{1/4}$

Note that the degree 1 polynomial $x - \tilde{p}$ has zero Δ modulo p, so can apply general Coppersmith with $\beta = 1/2$

Attack on RSA with partial knowledge of secret key in MAGMA

```
repeat
   p := RandomPrime(1024 : Proof := false);
   q := RandomPrime(1024 : Proof := false);
until GCD((p-1)*(q-1), 3) eq 1; // not efficient but to save space
\mathbb{N} := p*q;
beta := Log(N, p) - 0.01; // this is around 0.5
Zx<x> := PolynomialRing(Integers());
ptilde := p + Random(2^460); // differing lowest 460 bits
f := x - ptilde;
time s := SmallRoots (f, N, 2^460 : Beta:=beta); // beta explicit
---> Time: 10.750 // closer to 512, the longer it takes
p eq (ptilde - s[1]);
                                                     4 D > 4 A > 4 B > 4 B > B 900
```

Other applications in cryptanalysis

- Factoring $N = p^r q$ for large r
- ► Hidden Number Problem
- Attacks on digital signature schemes
- ► Attacks on Approximate Common Divisor problem
- ► Attacks on (Short) Principal Ideal Problem
- Attacks on NTRU and LWE cryptosystems (see next week)

Reading material

- Chapters 16 to 19 of Steven Galbraith's book: https: //www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
- ▶ Public key cryptanalysis by Phong Q. Nguyen: See Toledo
- ▶ A deterministic algorithm for finding r-power divisors by David Harvey and Markus Hittmeir
 - https://arxiv.org/pdf/2202.12401.pdf