

2021 HSC Mathematics Extension 2 Marking Guidelines

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	А
3	В
4	С
5	D
6	А
7	D
8	D
9	В
10	С

Section II

Question 11 (a)

Criteria	Marks
Provides correct solution	2
Finds the correct argument	1

Sample answer:

$$zw = (2 \times 6)e^{i\left(\frac{\pi}{2} + \frac{\pi}{6}\right)}$$
$$= 12e^{\frac{i2\pi}{3}}$$

Question 11 (b)

Criteria	Marks
Provides correct solution	2
Expands the notation and provides the correct expression with 5 terms	
OR	1
• Correctly evaluates i^3 or i^4 or i^5	

$$\sum_{n=1}^{n} (i)^{n} = i + (i)^{2} + (i)^{3} + (i)^{4} + (i)^{5}$$

$$= i - 1 - i + 1 + i$$

$$= i$$

Question 11 (c)

Criteria	Marks
Provides correct solution	3
Correctly finds the dot product and both magnitudes	
OR	2
• Uses the correct dot product or a correct magnitude in $a \cdot b = a b \cos \theta$	
Correctly finds the dot product of the two vectors	
OR	1
Correctly finds the magnitude of one vector	

Sample answer:

Dot product
$$\begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix} = -6 + 0 + 8$$
$$= 2$$

Magnitudes:

$$\begin{vmatrix} 2 \\ 0 \\ 4 \end{vmatrix} = \sqrt{2^2 + 0^2 + 4^2}$$

$$= \sqrt{20}$$

$$\begin{vmatrix} -3 \\ 1 \\ 2 \end{vmatrix} = \sqrt{(-3)^2 + 1^2 + 2^2}$$

$$= \sqrt{14}$$

$$\therefore \sqrt{20}\sqrt{14}\cos\theta = 2$$

$$\cos\theta = 0.1195...$$

$$\theta = 83.135^{\circ}...$$

 $\approx 83.1^{\circ}$ (1 decimal place)

Question 11 (d) (i)

Criteria	Marks
Provides correct solution	2
• Attempts to use the square of $(x + iy)$, or equivalent merit	
OR	
- Attempts to use the modulus/argument form of $-i$	1
OR	
ullet Plots $-i$ on an Argand diagram and attempts to locate the square roots	

Let
$$(x + iy)^2 = -i$$
 where $x, y \in \mathbb{R}$
 $\therefore x^2 - y^2 = 0$ and $2xy = -1$
 $\therefore y = \frac{-1}{2x}$

$$\therefore x^{2} - \left(\frac{-1}{2x}\right)^{2} = 0$$

$$4x^{4} - 1 = 0$$

$$x^{4} = \frac{1}{4}$$

$$x^{2} = \frac{1}{2} \quad (x \in \mathbb{R})$$

$$\therefore x = \pm \frac{1}{\sqrt{2}}$$

$$\therefore$$
 square roots are $\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$ and $\frac{-1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$

Question 11 (d) (ii)

Criteria	Marks
Provides correct answers	2
• Uses the quadratic formula to obtain $z = -1 \pm \sqrt{-i}$, or equivalent merit	1

Sample answer:

$$z^{2} + 2z + 1 + i = 0$$

$$\therefore z = \frac{-2 \pm \sqrt{(2)^{2} - 4(1)(1 + i)}}{2}$$

$$= \frac{-2 \pm 2\sqrt{1 - 1 - i}}{2}$$

$$= -1 \pm \sqrt{-i}$$

From part (i):

$$z = -1 + \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$$
 or $z = -1 - \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$

that is.

$$z = \frac{(1-\sqrt{2})}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$$
 or $z = \frac{-(1+\sqrt{2})}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$

Question 11 (e)

Criteria	Marks
Provides correct solution	2
• Identifies \overline{z} , or equivalent merit	1

$$z = 5 + i \qquad w = 2 - 4i$$

$$\therefore \overline{z} = 5 - i$$

$$\frac{\overline{z}}{w} = \frac{(5 - i)}{(2 - 4i)} \times \frac{(2 + 4i)}{(2 + 4i)}$$

$$= \frac{10 + 20i - 2i + 4}{4 + 16}$$

$$= \frac{14 + 18i}{20}$$

$$= \frac{14}{20} + \frac{18}{20}i$$

$$= \frac{7}{10} + \frac{9}{10}i$$

Question 11 (f)

Criteria	Marks
Provides correct solution	3
Evaluates one of the three coefficients	2
Provides a correct expression for the sum of fractions with unknown coefficients, or equivalent merit	1

Sample answer:

Let
$$\frac{3x^2 - 5}{(x - 2)(x^2 + x + 1)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + x + 1}$$
$$= \frac{A(x^2 + x + 1) + (Bx + C)(x - 2)}{(x - 2)(x^2 + x + 1)}$$

$$\therefore 3x^2 - 5 = A(x^2 + x + 1) + (Bx + C)(x - 2)$$

when x = 2

$$3(2)^2 - 5 = A(2^2 + 2 + 1)$$

 $7 = 7A$
 $A = 1$

Equating coefficients of x^2

$$3 = A + B$$

$$\therefore B = 2$$

Equating constants:

$$-5 = A - 2C$$
$$2C = 6$$

$$C = 3$$

$$\therefore \frac{3x^2 - 5}{(x - 2)(x^2 + x + 1)} = \frac{1}{x - 2} + \frac{2x + 3}{x^2 + x + 1}$$

Question 12 (a)

Criteria	Marks
Provides correct solution	3
Integrates one of the correct fractions	
OR	2
Writes the integrand as the correct sum of fractions and completes the square in a denominator, or equivalent merit	
Attempts to write the integrand as a sum of two suitable fractions, or equivalent merit	1

Sample answer:

$$\int \frac{2x+3}{x^2+2x+2} dx = \int \frac{2x+2}{x^2+2x+2} dx + \int \frac{1}{x^2+2x+2} dx$$
$$= \ln(x^2+2x+2) + \int \frac{1}{1+(x+1)^2} dx + C$$
$$= \ln(x^2+2x+2) + \tan^{-1}(x+1) + k$$

Question 12 (b) (i)

Criteria	Marks
States the converse	1

Sample answer:

The converse is 'If n is even, then n^2 is even'.

Question 12 (b) (ii)

Criteria	Marks
Provides correct proof	1

Sample answer:

If *n* is even then n = 2k for some integer *k*, then $n^2 = (2k)^2 = 2(2k^2)$ which is also even.

Question 12 (c)

Criteria	Marks
Provides correct solution	3
• Finds the value of p or μ	2
Evaluates the dot product of the direction vectors	
OR	
• Recognises that $\mathbf{r}_1 \cdot \mathbf{r}_2 = 0$	1
OR	
- Equates component(s) of ${f r}_1$ and ${f r}_2$	

Sample answer:

$$\mathbf{r}_1 = \begin{pmatrix} -2\\1\\3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\2 \end{pmatrix} \qquad \mathbf{r}_2 = \begin{pmatrix} 4\\-2\\q \end{pmatrix} + \mu \begin{pmatrix} p\\3\\-1 \end{pmatrix}$$

They are perpendicular $\therefore \mathbf{r}_1 \cdot \mathbf{r}_2 = 0$

$$1 \times p + 0 \times 3 + 2 \times -1 = 0$$
$$p - 2 = 0$$
$$p = 2$$

They intersect : components are equal

①
$$-2 + \lambda = 4 + p\mu$$

②
$$1 = -2 + 3\mu$$
 $\Rightarrow 3 = 3\mu$ so $\mu = 1$

$$3 + 2\lambda = q - \mu$$

Substitute $\mu = 1$ and p = 2 into ①

$$-2 + \lambda = 4 + 2 \times 1$$
$$\lambda = 8$$

Substitute $\lambda = 8$ and $\mu = 1$ into ③

$$3 + 2 \times 8 = q - 1$$
$$19 = q - 1$$
$$q = 20$$

$$\therefore p = 2$$
 and $q = 20$.

Question 12 (d)

Criteria	Marks
Provides correct solution	3
• Shows that $p(k) \Rightarrow p(k+1)$ is a true statement, or equivalent merit	2
Establishes initial case, or equivalent merit	1

Sample answer:

$$\sqrt{n!} > 2^n, \quad n \ge 9$$

Prove it's true for n = 9

$$\sqrt{9!} = 602.39...$$

$$2^9 = 512$$

$$\therefore \sqrt{9!} > 2^9$$

 \therefore It's true for n = 9

Assume it's true for n = k: Assume $\sqrt{k!} > 2^k$

Prove it's true for n = k + 1: Required to prove $\sqrt{(k+1)!} > 2^{k+1}$

LHS =
$$\sqrt{(k+1)!}$$

= $\sqrt{k!} \times \sqrt{(k+1)}$
> $2^k \times \sqrt{(k+1)}$ using the assumption
> $2^k \times 2$ because $\sqrt{k+1}$ is greater than 2 for $k \ge 9$
= 2^{k+1}
= RHS

$$\therefore \sqrt{(k+1)!} > 2^{k+1}$$
 as required

∴ By principle of mathematical induction, the inequality is true for $n \ge 9$.

Question 12 (e) (i)

Criteria	Marks
Provides correct solution	1

Sample answer:

Consider the square base

$$\overrightarrow{HA} = /$$
 $\overrightarrow{HB} = /$

$$\overrightarrow{HC} = \overrightarrow{HD} = \overrightarrow{HD}$$

As *H* is the midpoint of *AC* and *BD*, when you add them head to tail, you end up back where you started.

$$\therefore \overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} + \overrightarrow{HD} = 0$$

Question 12 (e) (ii)

Criteria	Marks
Provides correct solution	2
• Writes $\overrightarrow{GA} = \overrightarrow{GH} + \overrightarrow{HA}$, or equivalent merit	1

Sample answer:

$$\overrightarrow{GA} = \overrightarrow{GH} + \overrightarrow{HA}$$

$$\overrightarrow{GB} = \overrightarrow{GH} + \overrightarrow{HB}$$

$$\overrightarrow{GC} = \overrightarrow{GH} + \overrightarrow{HC}$$

$$\overrightarrow{GD} = \overrightarrow{GH} + \overrightarrow{HD}$$

Adding these

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = 4\overrightarrow{GH} + \overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} + \overrightarrow{HD}$$
$$-\overrightarrow{GS} = 4\overrightarrow{GH} + 0$$
$$\therefore 4\overrightarrow{GH} + \overrightarrow{GS} = 0$$

Question 12 (e) (iii)

Criteria	Marks
Provides correct solution	1

$$4\overrightarrow{GH} + \overrightarrow{GS} = 0$$

$$4\overrightarrow{GH} + \overrightarrow{GH} + \overrightarrow{HS} = 0$$

$$5\overrightarrow{GH} + \overrightarrow{HS} = 0$$

$$\overrightarrow{HS} = -5\overrightarrow{GH}$$

$$= 5\overrightarrow{HG}$$

$$\overrightarrow{HG} = \frac{1}{5}\overrightarrow{HS}$$

$$\therefore \lambda = \frac{1}{5}$$

Question 13 (a)

Criteria	Marks
Provides appropriate sketch	2
Indicates one correct argument	
OR	1
Indicates correct modulus	

Sample answer:

 $\boldsymbol{z}_1, \boldsymbol{z}_2$, \boldsymbol{z}_3 and \boldsymbol{z}_4 represent the fourth roots.

Question 13 (b)

Criteria	Marks
Provides correct solution	3
Obtains correct primitive OR correct definite integral in terms of <i>u</i> , or equivalent merit	2
Attempts to use a suitable substitution	1

$$I = \int_{\sqrt{10}}^{\sqrt{13}} x^3 \sqrt{x^2 - 9} \, dx$$

$$= \int_{\sqrt{10}}^{\sqrt{13}} x^2 (x^2 - 9) \frac{x}{\sqrt{x^2 - 9}} \, dx$$

$$= \int_{1}^{2} (u^2 + 9) u^2 \, du$$

$$= \left[\frac{u^5}{5} + 3u^3 \right]_{1}^{2}$$

$$= \frac{2^5}{5} + 3 \times 2^3 - \left(\frac{1}{5} + 3 \right)$$

$$= \frac{32}{5} - \frac{1}{5} + 24 - 3$$

$$= \frac{31}{5} + 21$$

$$= \frac{136}{5}$$

Let
$$u = \sqrt{x^2 - 9}$$

 $du = \frac{x}{\sqrt{x^2 - 9}} dx$
and $u^2 = x^2 - 9$
When $x = \sqrt{10}$, $u = \sqrt{10 - 9} = 1$
When $x = \sqrt{13}$, $u = \sqrt{13 - 9} = 2$

Question 13 (c) (i)

Criteria	Marks
Provides correct solution	2
Uses integration by parts, or equivalent	1

$$I_n = \int_1^e (\ln x)^n \, dx, \qquad n \ge 0$$

Let
$$u = (\ln x)^n$$
 and $v' = 1$

$$\therefore u' = \frac{n(\ln x)^{n-1}}{x} \qquad v = x$$

$$\therefore I_n = \left[x(\ln x)^n \right]_1^e - \int_1^e n(\ln x)^{n-1} dx$$

$$= e(\ln e)^n - (\ln 1)^n - nI_{n-1}$$

$$= e - 0 - nI_{n-1}$$

$$= e - nI_{n-1}$$

Question 13 (c) (ii)

Criteria	Marks
Provides correct solution	4
- Shows $V_B=\pi$, or equivalent	3
- Obtains volume ${\cal V}_{\!{\cal A}}$	
- Writes volume ${\cal V}_{\!A}$ or ${\cal V}_{\!B}$ as a difference of volumes involving an integral	2
expression	
States volume of a relevant sphere OR hemisphere OR cylinder	
OR	1
Provides correct integral expression for a relevant volume	

$$V_{A} = \pi \int_{0}^{1} (1)^{2} - (1 - x^{2}) dx$$

$$= \pi \int_{0}^{1} x^{2} dx$$

$$= \pi \left[\frac{x^{3}}{3} \right]_{0}^{1}$$

$$= \frac{\pi}{3}$$

$$V_{B} = \pi \int_{1}^{e} (1)^{2} - (\ln x)^{2} dx$$

$$= \pi (e - 1) - \pi I_{2}$$
Now
$$I_{2} = e - 2I_{1}$$

$$I_{1} = e - I_{0}$$

$$= \left[x \right]_{1}^{e} 1 dx$$

$$= \left[x \right]_{1}^{e}$$

$$= e - 1$$

$$\therefore I_{2} = e - 2[e - (e - 1)] = e - 2$$

$$\therefore V_{B} = \pi(e - 1) - \pi(e - 2)$$

$$= \pi$$

$$\therefore V_{A} : V_{B} = \frac{\pi}{3} : \pi$$

$$= 1 : 3$$

Question 13 (d) (i)

Criteria	Marks
Provides correct solution	2
States the amplitude of the motion, or equivalent merit	1

Sample answer:

$$\ddot{x} = -4(x-3)$$
∴ $n^2 = 4$, centre is $x = 3$

$$n = 2$$
period = $\frac{2\pi}{2} = \pi$

$$v^2 = n^2 (a^2 - (x-c)^2)$$
when $v = 8, x = 0$

$$64 = 4(a^2 - (0-3)^2)$$

$$16 = a^2 - 9$$

$$a^2 = 25$$

 \therefore The particle oscillates between

$$x = 3 + 5$$
 and $x = 3 - 5$
= 8 = -2

a = 5

Question 13 (d) (ii)

Criteria	Marks
Provides correct solution	2
Finds the displacement function, or equivalent merit	1

Sample answer:

Consider
$$x = a\cos(nt + \alpha) + c$$
, where

$$a = 5$$
, $n = 2$, $c = 3$

$$\therefore x = 5\cos(2t + \alpha) + 3$$

When
$$t = 0$$
, $x = 5.5$

$$5.5 = 5\cos\alpha + 3$$

$$\frac{2.5}{5} = \cos \alpha$$

$$\therefore \quad \alpha = \cos^{-1}\left(\frac{2.5}{5}\right)$$
$$= 1.04719... \text{radians}$$

$$0 = 5\cos(2t + 1.04719...) + 3$$

$$\cos(2t + 1.04719...) = \frac{-3}{5}$$

$$2t + 1.04719... = 2.214... \text{ radians}$$

$$2t = 1.167...$$

$$t = 0.583...$$

 \therefore First value of t when x = 0 is t = 0.58 seconds (2 decimal places).

Question 14 (a)

Criteria	Marks
Provides correct solution	4
Applies partial fraction to the correct integral, or equivalent merit	3
Completes <i>t</i> -substitution, including the limits of integration, or equivalent merit	2
Attempts to use a <i>t</i> -substitution, or equivalent merit	1

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{3+5\cos x} dx \quad \text{let } t = \tan\frac{x}{2} \quad \therefore \cos x = \frac{1-t^2}{1+t^2}$$
when $x = 0$, $t = 0$

$$x = \frac{\pi}{2}, \quad t = 1$$

$$dt = \frac{1}{2}\sec^2\left(\frac{x}{2}\right) dx$$

$$= \frac{1}{2}(1+t^2) dx$$

$$\therefore dx = \frac{2}{1+t^2} dt$$

$$\therefore \text{Integral} = \int_0^1 \frac{1}{3 + \frac{5(1 - t^2)}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt$$

$$= \int_0^1 \frac{2}{3 + 3t^2 + 5 - 5t^2} dt$$

$$= \int_0^1 \frac{2}{8 - 2t^2} dt$$

$$= \int_0^1 \frac{1}{4 - t^2} dt$$

$$= \int_0^1 \frac{1}{(2 - t)(2 + t)} dt$$

$$= \frac{1}{4} \int_0^1 \frac{1}{2 - t} + \frac{1}{2 + t} dt$$

$$= \frac{1}{4} \left[\ln \left| \frac{2 + t}{2 - t} \right| \right]_0^1$$

$$= \frac{1}{4} (\ln 3 - \ln 1) = \frac{1}{4} \ln 3$$

Question 14 (b) (i)

Criteria	Marks
Provides correct solution	2
Finds appropriate component of force due to gravity	
OR	1
Provides appropriate diagram, or equivalent merit	

Sample answer:

Resultant force down slope = $5g\cos 30^{\circ} - 2v - 2v^2$

$$= \frac{5\sqrt{3}}{2}g - 2v - 2v^2$$

Question 14 (b) (ii)

Criteria	Marks
Provides correct solution	2
- States that the resultant force is $ \underline{0} ,$ or equivalent merit	1

Sample answer:

Constant speed \Rightarrow Resultant force = 0

$$\therefore \frac{5\sqrt{3}}{2}g = 2v + 2v^2$$

$$g = 10 \quad \therefore 25\sqrt{3} = 2v + 2v^2$$

$$2v^2 + 2v - 25\sqrt{3} = 0$$

$$\therefore v = \frac{-2 \pm \sqrt{4 + 4(2)(25\sqrt{3})}}{4}$$

$$= 4.1798...$$
 or $-5.1798...$

∴ speed = 4.1798... as moving down the slope

$$\approx 4.2 \text{ m s}^{-1}$$
 (1 decimal place)

Question 14 (c) (i)

Criteria	Marks
Provides correct solution	3
Expands using binomial theorem	
AND	2
Expands using De Moivre's theorem	
Expands using binomial theorem	
OR	1
Expands using De Moivre's theorem	

Sample answer:

Using De Moivre:

$$(\cos\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$$

Using binomial expansion

$$(\cos\theta + i\sin\theta)^5 = (\cos\theta)^5 + 5(\cos\theta)^4 (i\sin\theta)$$

$$+10(\cos\theta)^3 (i\sin\theta)^2$$

$$+10(\cos\theta)^2 (i\sin\theta)^3$$

$$+5(\cos\theta)(i\sin\theta)^4$$

$$+(i\sin\theta)^5$$

$$= \cos^5\theta + 5\cos^4\theta\sin\theta i$$

$$-10\cos^3\theta\sin^2\theta$$

$$-10\cos^2\theta\sin^3\theta i$$

$$+5\cos\theta\sin^4\theta$$

$$+\sin^5\theta i$$

Equating real parts:

$$\cos 5\theta = \cos^{5}\theta - 10\cos^{3}\theta \sin^{2}\theta + 5\cos\theta \sin^{4}\theta$$

$$= \cos^{5}\theta - 10\cos^{3}\theta (1 - \cos^{2}\theta) + 5\cos\theta (1 - \cos^{2}\theta)^{2}$$

$$= \cos^{5}\theta - 10\cos^{3}\theta + 10\cos^{5}\theta + 5\cos\theta (1 - 2\cos^{2}\theta + \cos^{4}\theta)$$

$$= \cos^{5}\theta - 10\cos^{3}\theta + 10\cos^{5}\theta + 5\cos\theta - 10\cos^{3}\theta + 5\cos^{5}\theta$$

$$= 16\cos^{5}\theta - 20\cos^{3}\theta + 5\cos\theta$$

Question 14 (c) (ii)

Criteria	Marks
Provides correct solution	3
Finds the solutions to the degree 5 polynomial, or equivalent merit	2
• Uses $\theta = \frac{\pi}{10}$ in the equation from part (i), or equivalent merit	1

Sample answer:

$$\operatorname{Re}\left(e^{i\frac{\pi}{10}}\right) = \operatorname{Re}\left(\cos\frac{\pi}{10} + i\sin\frac{\pi}{10}\right)$$
$$= \cos\frac{\pi}{10}$$

When
$$\theta = \frac{\pi}{10}$$
, $\cos 5\theta = \cos \frac{\pi}{2} = 0$

$$\therefore \cos \frac{\pi}{10} \text{ is a root of } 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta = 0$$

$$16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta = 0$$

$$\cos \theta (16\cos^4 \theta - 20\cos^2 \theta + 5) = 0$$

$$\cos \frac{\pi}{10} \neq 0$$

$$\therefore \cos\frac{\pi}{10} \text{ is a root of } 16\cos^4\theta - 20\cos^2\theta + 5 = 0$$

$$\therefore \cos^2 \theta = \frac{20 \pm \sqrt{400 - 4(16)(5)}}{32}$$

$$= \frac{20 \pm 4\sqrt{5}}{32}$$

$$= \frac{5 \pm \sqrt{5}}{8}$$

$$\therefore \cos \frac{\pi}{10} = \pm \sqrt{\frac{5 \pm \sqrt{5}}{8}}$$

But roots of $\cos 5\theta = 0$ are:

$$5\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \frac{9\pi}{2}$$
$$\therefore \theta = \frac{\pi}{10}, \frac{3\pi}{10}, \frac{\pi}{2}, \frac{7\pi}{10}, \frac{9\pi}{10}$$

so roots of $16\cos^5\theta - 20\cos^3\theta + 5\cos\theta = 0$ are $\cos\frac{\pi}{10}, \cos\frac{3\pi}{10}, \cos\frac{\pi}{2} = 0, \cos\frac{7\pi}{10}$ and $\cos\frac{9\pi}{10}$

From the graph of $y = \cos x$, we see that $\cos \frac{\pi}{10}$ is the largest of these.

$$\therefore \cos \frac{\pi}{10} = \sqrt{\frac{5 + \sqrt{5}}{8}}$$

$$\therefore \operatorname{Re}\left(e^{i\frac{\pi}{10}}\right) = \sqrt{\frac{5+\sqrt{5}}{8}}$$

Question 15 (a) (i)

Criteria	Marks
Provides correct solution	2
 Attempts to use appropriate expressions for x and y 	1

Sample answer:

$$\sqrt{abc} = \sqrt{(ab)c} \le \frac{ab+c}{2}$$
 using the result provided
$$= \frac{\sqrt{a^2b^2}+c}{2}$$

$$\le \frac{a^2+b^2}{2}+c$$
 using the same result a second time
$$= \frac{a^2+b^2+2c}{4}$$

Answers could include:

Let
$$x = \frac{a^2 + b^2}{2}$$
 and $y = c$

Let
$$m = a^2c$$
 and $n = b^2c$

$$\therefore \sqrt{mn} = \sqrt{a^2c \cdot b^2c} = \sqrt{a^2b^2c^2} = abc$$

$$\sqrt{\frac{m+n}{2}} = \frac{a^2c + b^2c}{2}$$

$$\therefore abc \le \frac{a^2c + b^2c}{2}$$

$$\therefore \sqrt{abc} \le \sqrt{\frac{a^2c + b^2c}{2}} \le \frac{a^2 + b^2 + 2c}{4}$$

Question 15 (a) (ii)

Criteria	Marks
Provides correct solution	2
Permutes the result in (i), or equivalent merit	1

Sample answer:

$$\sqrt{abc} \le \frac{a^2 + b^2 + 2c}{4}$$

$$\sqrt{acb} \le \frac{a^2 + c^2 + 2b}{4}$$

$$\sqrt{bca} \le \frac{b^2 + c^2 + 2a}{4}$$

Adding

$$3\sqrt{abc} \le \frac{2a^2 + 2b^2 + 2c^2 + 2a + 2b + 2c}{4}$$

$$3\sqrt{abc} \le \frac{a^2+b^2+c^2+a+b+c}{2}$$

$$\therefore \sqrt{abc} \le \frac{a^2 + b^2 + c^2 + a + b + c}{6}$$
 as required

Question 15 (b) (i)

Criteria	Marks
Provides correct solution	2
- Attempts to use an expression for an odd number in the formula for $t_{\it n}$, or equivalent merit	1

Sample answer:

$$t_n = \frac{n(n+1)}{2}$$
 $h_n = 2n^2 - n$

The odd numbers 1, 3, 5, ... can be expressed as 2m-1 where m is an integer.

 \therefore the odd triangular numbers are t_{2m-1}

$$\begin{split} t_{2m-1} &= \frac{(2m-1)(2m-1+1)}{2} \\ &= \frac{(2m-1)2m}{2} \\ &= m(2m-1) \\ &= 2m^2 - m \\ &= h_m \end{split}$$

:. The odd triangular numbers are hexagonal.

Question 15 (b) (ii)

Criteria	Marks
Provides correct solution	1

Sample answer:

The even numbers 2, 4, 6 ... can be expressed as 2m where m is an integer.

$$t_{2m} = \frac{2m(2m+1)}{2}$$
$$= m(2m+1)$$
$$= 2m^2 + m$$

Use proof by contradiction to show it is not hexagonal. Assume it is hexagonal.

$$2m^{2} + m = 2k^{2} - k$$
 where k is an integer

$$m + k = 2k^{2} - 2m^{2}$$

$$m + k = 2(k^{2} - m^{2})$$

$$m + k = 2(k - m)(k + m)$$

$$\therefore 1 = 2(k - m)$$
 since $k + m \neq 0$

So, 1 is even, which is not true \therefore the original statement is false.

Question 15 (c) (i)

Criteria	Marks
Provides correct solution	3
• Integrates to obtain an expression for t in terms of v , or equivalent merit	2
Provides an expression for the resultant force, or equivalent merit	1

Sample answer:

Force =
$$-mg - kv^2$$

 $ma = -mg - kv^2$
 $a = -g - \frac{kv^2}{m}$
 $a = -g - kv^2$ given $m = 1$
 $\frac{dv}{dt} = -g - kv^2$ need t in terms of v , so use $a = \frac{dv}{dt}$
 $\frac{dt}{dv} = -\frac{1}{g + kv^2}$
 $t = -\frac{1}{\sqrt{gk}} \tan^{-1} \left(v \sqrt{\frac{k}{g}} \right) + c$

When
$$t = 0$$
, $v = u$

$$0 = -\frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right) + c$$

$$c = \frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$$

$$\therefore t = \frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right) - \frac{1}{\sqrt{gk}} \tan^{-1} \left(v \sqrt{\frac{k}{g}} \right)$$

Max height,
$$v = 0$$
 : $t = \frac{1}{\sqrt{gk}} \tan^{-1} \left(u \sqrt{\frac{k}{g}} \right)$ as required.

(Either notation, arctan or tan⁻¹, is acceptable.)

Question 15 (c) (ii)

Criteria	Marks
Provides correct solution	3
• Integrates to obtain an expression for x in terms of v , or equivalent merit	2
• Provides an integral expression for x in terms of v , or equivalent merit	1

Sample answer:

$$v\frac{dv}{dx} = -g - kv^2$$

$$\frac{dv}{dx} = -\frac{g + kv^2}{v}$$

$$\frac{dx}{dv} = -\frac{v}{g + kv^2}$$

$$x = -\frac{1}{2k}\ln(g + kv^2) + c$$
When $x = 0$, $v = u$

$$0 = -\frac{1}{2k}\ln(g + ku^2) + c$$

$$c = \frac{1}{2k}\ln(g + ku^2)$$

$$\therefore x = \frac{1}{2k}\left(\ln(g + ku^2) - \ln(g + kv^2)\right) = \frac{1}{2k}\ln\frac{g + ku^2}{g + kv^2}$$

Maximum height, sub in v = 0

$$\therefore \text{ maximum height } x = \frac{1}{2k} \ln \left(\frac{g + ku^2}{g} \right)$$

Question 15 (d)

Criteria	Marks
Provides correct solution	2
• Writes $5^n = (2+3)^n$ or equivalent merit	1

$$5 = 2 + 3$$
so
$$5^{n} = (2 + 3)^{n}$$

$$= 2^{n} + 3^{n} + {n \choose 1} 2 \times 3^{n-1} + \text{other terms}$$

$$> 2^{n} + 3^{n}$$
so
$$2^{n} + 3^{n} \neq 5^{n} \quad \text{if } n \ge 2$$

Question 16 (a) (i)

Criteria	Marks
Provides correct solution	2
• States that \overrightarrow{OP} is a unit vector, or equivalent merit.	1

Sample answer:

Point *P* is on the unit sphere so

$$1 = |\overrightarrow{OP}|$$

$$= |x\underline{i} + y\underline{j} + z\underline{k}|$$

$$\leq |x\underline{i}| + |y\underline{j} + z\underline{k}| \qquad \text{(triangular inequality)}$$

$$\leq |x\underline{i}| + |y\underline{j}| + |z\underline{k}| \qquad \text{(triangular inequality)}$$

$$= |x| + |y| + |z| \qquad \underline{i}, \underline{j}, \underline{k} \text{ unit vectors}$$
so $|x| + |y| + |z| \ge 1$

Answers could include:

$$|x|^{2} + |y|^{2} + |z|^{2} = 1$$
But $|x| \le 1$, $|y| \le 1$ and $|z| \le 1$

$$|x|^{2} \le |x|$$
, $|y|^{2} \le |y|$ and $|z|^{2} \le |z|$

$$|x|^{2} + |y|^{2} + |z|^{2}$$

$$|x| + |y| + |z|$$

P is on the unit sphere $\therefore \sqrt{x^2 + y^2 + z^2} = 1$

Question 16 (a) (ii)

Criteria	Marks
Provides correct solution	3
• Obtains $ a_1b_1 + a_2b_2 + a_3b_3 = \sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2} \cos\theta \dots$	2
Attempts to apply the dot product, or equivalent merit	1

$$\begin{aligned}
\underline{a} \cdot \underline{b} &= |\underline{a}| |\underline{b}| \cos \theta \\
a_1 b_1 + a_2 b_2 + a_3 b_3 &= |\underline{a}| |\underline{b}| \cos \theta \\
-1 &\leq \cos \theta \leq 1 \\
-|\underline{a}| |\underline{b}| &\leq a_1 b_1 + a_2 b_2 + a_3 b_3 \leq |\underline{a}| |\underline{b}| \\
\text{so} & |a_1 b_1 + a_2 b_2 + a_3 b_3| \leq |\underline{a}| |\underline{b}| \\
&= \sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}
\end{aligned}$$

Question 16 (a) (iii)

Criteria	Marks
Provides correct solution	2
Chooses one suitable vector to use with the result from part (ii), or equivalent merit	1

Sample answer:

If P(x, y, z) is on the unit sphere $x^2 + y^2 + z^2 = 1$, $|x|^2 + |y|^2 + |z|^2 = 1$. Hence Q(|x|, |y|, |z|) is on the unit sphere.

In part (ii) let
$$\underline{a} = \begin{pmatrix} |x| \\ |y| \\ |z| \end{pmatrix}$$

And
$$b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Then

$$||x| + |y| + |z|| \le \sqrt{|x|^2 + |y|^2 + |z|^2} \sqrt{1^2 + 1^2 + 1^2}$$
$$= \sqrt{3}$$

|x|, |y| and |z| are not negative, so $|x|+|y|+|z|=||x|+|y|+|z|| \le \sqrt{3}$

Answers could include:

P(x, y, z) on unit sphere so $x^2 + y^2 + z^2 = 1$.

Choose b_1 to be 1 or -1 so that $xb_1 \ge 0$ so $xb_1 = |x|$, and similarly choose b_2 and b_3

so
$$yb_2 \ge 0$$
 and $zb_3 \ge 0$.

Let
$$a = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

By part (ii)

$$|xb_1 + yb_2 + zb_3| \le \sqrt{x^2 + y^2 + z^2} \sqrt{b_1^2 + b_2^2 + b_3^2}$$

$$= 1 \times \sqrt{1 + 1 + 1}$$

$$= \sqrt{3}$$

$$||x| + |y| + |z|| \le \sqrt{3}$$

|x|, |y|, |z| are not negative so

$$|x| + |y| + |z| \le \sqrt{3}$$

Question 16 (b)

Criteria	Marks
Provides correct solution, with justification	5
Shows that the relevant times are positive	
OR	4
Shows that the relevant times occur before the particle lands, or equivalent merit	7
Obtains a quadratic that will identify all possible angles, or equivalent merit	3
Uses the fact that the dot product of the two vectors is 0, or equivalent merit	2
Obtains velocity vector, or equivalent merit	1

Sample answer:

Position
$$\dot{z}(t) = \begin{pmatrix} ut\cos\theta \\ -\frac{gt^2}{2} + ut\sin\theta \end{pmatrix}$$
 Velocity
$$\dot{z}(t) = \begin{pmatrix} u\cos\theta \\ -gt + u\sin\theta \end{pmatrix}$$

If position vector is perpendicular to velocity vector then

$$0 = \underline{r}(t) \cdot \dot{\underline{r}}(t)$$

$$= \begin{pmatrix} ut \cos \theta \\ -\underline{gt^2} + ut \sin \theta \end{pmatrix} \cdot \begin{pmatrix} u \cos \theta \\ -gt + u \sin \theta \end{pmatrix}$$

$$= u^2 t \cos^2 \theta + \left(-\frac{gt^2}{2} + ut \sin \theta \right) (-gt + u \sin \theta)$$

$$= u^2 t \cos^2 \theta + \frac{g^2 t^3}{2} - \frac{gt^2 u}{2} \sin \theta - gt^2 u \sin \theta + u^2 t \sin^2 \theta$$

$$= u^2 t - \frac{3ugt^2 \sin \theta}{2} + \frac{g^2 t^3}{2}$$

$$= \frac{t}{2} (g^2 t^2 - 3ugt \sin \theta + 2u^2)$$

During time of flight t > 0 so above can only be zero when $g^2t^2 - 3ugt\sin\theta + 2u^2 = 0$.

 $y = g^2 t^2 - 3ugt \sin \theta + 2u^2$ is the graph of a concave up parabola where y is a function of t.

Want two zeros so
$$\triangle = b^2 - 4ac > 0$$
 and we also know $0 < \theta < \frac{\pi}{2}$

$$9u^2g^2\sin^2\theta - 4 \times g^2 \times 2u^2 > 0$$

$$u^2g^2(9\sin^2\theta - 8) > 0$$

$$9\sin^2\theta - 8 > 0 \quad \text{as } u^2g^2 > 0$$

$$\sin^2\theta > \frac{8}{9}$$

$$\sin\theta > \frac{\sqrt{8}}{3} \quad \left(0 < \theta < \frac{\pi}{2} \text{ so } \sin\theta > 0\right)$$

$$\theta > 1.23 \quad (2 \text{ decimal places})$$

$$(70.52^\circ)$$

This shows that we may have two points during the time of flight if $\frac{\pi}{2} > \theta > 1.23$

$$t = \frac{3ug\sin\theta \pm ug\sqrt{9\sin^2\theta - 8}}{2g^2} = \frac{u}{2g} \left(3\sin\theta \pm \sqrt{9\sin^2\theta - 8}\right)$$
$$9\sin^2\theta - 8 < 9\sin^2\theta = (3\sin\theta)^2$$
$$\text{so } t > 0$$

so both points occur after projection.

If we ignore the ground, and consider points on the trajectory below the point of projection.

Both $\underline{r}(t)$ and $\dot{\underline{r}}(t)$ point into the 4th quadrant so the angle between them is less than $\frac{\pi}{2}$. Thus the two points must occur after projection but before the projectile lands.

Question 16 (c)

Criteria	Marks
Provides correct sketch	3
 Considers inequalities involving xtan(x) AND has included or excluded at least one section of the Argand plane Obtains the region below <diag></diag> 	2
States that a nominated section of the Argand plane is included in the required region	4
 OR States that a nominated section of the Argand plane is excluded from the required region 	ı

Sample answer:

If
$$z = x + iy$$
 and $Arg(z) = \theta$

then
$$-\pi < \theta \le \pi$$

$$\tan \theta = \frac{y}{x}$$
 when $x \neq 0$

$$Re(z) = x$$

In 2nd quadrant Re(z) = $x < 0 < \frac{\pi}{2} < Arg(z)$ so 2nd quadrant not in region

In 4th quadrant Re(z) > 0 > Arg(z) so 4th quadrant included in region

In 1st quadrant $Arg(z) < \frac{\pi}{2}$ so if $x \ge \frac{\pi}{2}$ then z is included in region

In 3rd quadrant $-\pi < Arg(z) < -\frac{\pi}{2}$ so $x < -\pi$ excluded and $x > -\frac{\pi}{2}$ included.

So far

If $0 \le x < \frac{\pi}{2}$ then $\tan x$ is an increasing function $\operatorname{Re}(z) \ge Arg(z)$

$$x \ge \theta$$

$$\tan x \ge \tan \theta = \frac{y}{x}$$
 (tan increases on $\left[0, \frac{\pi}{2}\right]$)

$$x \tan x \ge y \qquad (x > 0)$$

If $-\pi < x < \frac{-\pi}{2}$ tan also increasing

$$Arg(z) = \arctan\left(\frac{y}{x}\right) - \pi$$

$$x \ge \arctan\left(\frac{y}{x}\right) - \pi$$

$$x + \pi \ge \arctan\left(\frac{y}{x}\right)$$

$$\tan(x+\pi) \ge \frac{y}{x}$$

$$x \tan(x) \le y$$

as
$$tan(x + \pi) = tan x$$
 and $x < 0$

Also, if
$$z = 0$$
 and if $y = 0$, $x < 0$, $Arg(z) = \pi > x$

∴ not included.

2021 HSC Mathematics Extension 2 Mapping Grid

Section I

Question	Marks	Content	Syllabus outcomes
1	1	MEX V1 Further work with vectors	MEX 12 3
2	1	MEX C1 Further integration	MEX 12-5
3	1	MEX V1 Further work with vectors	MEX 12-3
4	1	MEX P1 The nature of proof	MEX 12-2
5	1	MEX P1 The nature of proof	MEX 12-1
6	1	MEX N2 Using complex numbers	MEX 12-4
7	1	MEX V1 Further work with vectors	MEX 12-3
8	1	MEX M1 Applications of calculus to mechanics	MEX 12-6
9	1	MEX P1 The nature of proof	MEX 12-2
10	1	MEX N2 Using complex numbers	MEX 12-4

Section II

Question	Marks	Content	Syllabus outcomes
11(a)	2	MEX N1 Introduction to complex numbers	MEX 12-4
11 (b)	2	MEX P2 Further proof by mathematical induction MEX N1 Introduction to complex numbers	MEX 12–1
11 (c)	3	MEX V1 Further work with vectors	MEX 12-3
11 (d) (i)	2	MEX N2 Using complex numbers	MEX 12-4
11 (d) (ii)	2	MEX N2 Using complex numbers	MEX 12-4
11 (e)	2	MEX N1 Introduction to complex numbers	MEX 12-4
11 (f)	3	MEX C1 Further integration	MEX 12-1
12 (a)	3	MEX C1 Further integration	MEX 12-5
12 (b) (i)	1	MEX P1 The nature of proof	MEX 12–2
12 (b) (ii)	1	MEX P1 The nature of proof	MEX 12-2
12 (c)	3	MEX V1 Further work with vectors	MEX 12-3
12 (d)	3	MEX P2 Further proof by mathematical induction	MEX 12-2
12 (e) (i)	1	MEX V1 Further work with vectors	MEX 12-3
12 (e) (ii)	2	MEX V1 Further work with vectors	MEX 12-3

Question	Marks	Content	Syllabus outcomes
12 (e) (iii)	1	MEX V1 Further work with vectors	MEX 12-3
13 (a)	2	MEX N2 Using complex numbers	MEX 12-4
13 (b)	3	MEX C1 Further integration	MEX 12-5
13 (c) (i)	2	MEX C1 Further integration	MEX 12-5
13 (c) (ii)	4	MEX C1 Further integration	MEX 12-5
13 (d) (i)	2	MEX M1 Application of calculus to mechanics	MEX 12-6
13 (d) (ii)	2	MEX M1 Application of calculus to mechanics	MEX 12-6, MEX 12-7
14 (a)	4	MEX C1 Further integration	MEX 12-5
14 (b) (i)	2	MEX M1 Application of calculus to mechanics	MEX 12-6
14 (b) (ii)	2	MEX M1 Application of calculus to mechanics	MEX 12-6, MEX 12-7
14 (c) (i)	3	MEX N2 Using complex numbers	MEX 12-4
14 (c) (ii)	3	MEX N2 Using complex numbers	MEX 12-4
15 (a) (i)	2	MEX P1 The nature of proof	MEX 12-2
15 (a) (ii)	2	MEX P1 The nature of proof	MEX 12-2
15 (b) (i)	2	MEX P1 The nature of proof	MEX 12-1, MEX 12-2
15 (b) (ii)	1	MEX P1 The nature of proof	MEX 12-1, MEX 12-2
15 (c) (i)	3	MEX M1 Application of calculus to mechanics	MEX 12-6
15 (c) (ii)	3	MEX M1 Application of calculus to mechanics	MEX 12-6
15 (d)	2	MEX P1 The nature of proof	MEX 12-2
16 (a) (i)	2	MEX P1 The nature of proof	MEX 12-2
16 (a) (ii)	3	MEX V1 Further work with vectors	MEX 12-3
16 (a) (iii)	2	MEX V1 Further work with vectors	MEX 12-3
16 (b)	5	MEX M1 Application of calculus to mechanics	MEX 12-6, MEX 12-7
16 (c)	3	MEX N1 Introduction to complex numbers	MEX 12-4