Lecture 8 Notes

Reed Meyerson

April 14, 2021

Contents

1	Last time	1
2	Fundamental Set of Solutions	2
3	Goal for Today 3.1 Recall	2
4	How to compute k and l ?	3
5	Using real fundamental set of solutions to solve IVP	4
1	Last time	

- Complex Eigenvalues
- Complex "looking" solution

$$x(t) = (3 - 4i)e^{(-2+i)t} \begin{pmatrix} 1\\i \end{pmatrix} + (3 + 4i)e^{(-2-i)t} \begin{pmatrix} 1\\-i \end{pmatrix}$$

Let

$$f(t) = (3 - 4i)e^{(-2+i)t} \begin{pmatrix} 1\\i \end{pmatrix}$$
$$g(t) = (3 + 4i)e^{(-2-i)t} \begin{pmatrix} 1\\-i \end{pmatrix}$$

Then $g(t) = \overline{f(t)}$, so $x(t) = f(t) + \overline{f(t)}$ is real

2 Fundamental Set of Solutions

Let x' = Ax be a 2×2 system. Then there will be two linearly independent solutions $f_1(t), f_2(t)$ that span the set of solutions. In such a situation, we say $\{f_1, f_2\}$ is a **fundamental set of solutions** for x' = Ax.

• For example, if λ_1, λ_2 are distinct eigenvalues of A with eigenvectors v_1, v_2 . Then $\{e^{\lambda_1 t}v_1, e^{\lambda_2 t}v_2\}$ is a fundamental set of solutions.

Claim: if $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible, then $\{af_1 + bf_2, cf_1 + df_2\}$ is a fundamental set of solutions if and only if $\{f_1, f_2\}$ is a fundamental set of solutions.

Proof: Try this on your own. Idea: anything I can write as a sum of f_1, f_2 , I can also write as a sum of $(af_1 + bf_2)$ and $(cf_1 + df_2)$, and vice versa.

Example: $\{e^{\lambda_1 t}v_1 + e^{\lambda_2 t}v_2, e^{\lambda_1 t}v_1 - e^{\lambda_2 t}v_2\}$ is a fundamental set of solutions because $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is invertible.

3 Goal for Today

Let $h(t) = e^{(-2+i)t} \begin{pmatrix} 1 \\ i \end{pmatrix}$ and $j(t) = e^{(-2-i)t} \begin{pmatrix} 1 \\ -i \end{pmatrix}$ Take $\{h(t), j(t)\}$ and transform into a *real* fundamental set of solution.

3.1 Recall

If z = a + bi, then

$$a = \frac{1}{2}z + \frac{1}{2}\overline{z}$$
$$b = \frac{-i}{2}z + \frac{i}{2}\overline{z}$$

In particular a and b are real. It follows that if

$$k(t) = \frac{1}{2}h(t) + \frac{1}{2}j(t)$$

$$l(t) = \frac{-i}{2}h(t) + \frac{i}{2}j(t)$$

then k, l are real vector valued functions because $\overline{h(t)} = j(t)$.

Exercise: Check that

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{-i}{2} & \frac{i}{2} \end{pmatrix}$$

is invertible.

We conclude that $\{k(t), l(t)\}$ forms a real fundamental set of solutions.

4 How to compute k and l?

Observe that from formulas above with a and b, we know that $k(t) = \mathbb{R}e(h(t))$ and $l(t) = \mathbb{I}m(h(t))$. So we compute

$$h(t) = e^{(-2+i)t} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= e^{-2t} e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= e^{-2t} (\cos t + i \sin t) \begin{pmatrix} 1 \\ i \end{pmatrix}$$

$$= e^{-2t} \begin{pmatrix} \cos t + i \sin t \\ i \cos t + i^2 \sin t \end{pmatrix}$$

$$= e^{-2t} \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix}$$

$$= e^{-2t} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + i e^{-2t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

So we conclude that

$$k(t) = e^{-2t} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$$
$$l(t) = e^{-2t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

Exercise: compute k and l manually, using formulas from the previous section, and verify.

5 Using real fundamental set of solutions to solve IVP

x' = Ax with same A as last lecture. Solve x' = Ax, x(0) = (5,1). Then I know

$$x(t) = c_1 k(t) + c_2 l(t)$$

$$x(0) = c_1 k(0) + c_2 l(0)$$

$$= c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

So, $c_1 = 5$, $c_2 = 1$. So the solution is

$$x(t) = 5e^{-2t} \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + 1e^{-2t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$