Advanced Encryption Standard (AES)

Dozent: Prof. Dr. Michael Eichberg

Kontakt: michael.eichberg@dhbw.de

Version: 1.0.8

Basierend auf: Cryptography and Network Security - Principles and Practice, William Stallings,

8th Edition, Pearson, 2023

NIST FIPS PUB 197, "Advanced Encryption Standard (AES)"

Folien: HTML: https://delors.github.io/sec-aes/folien.de.rst.html

PDF: https://delors.github.io/sec-aes/folien.de.rst.html.pdf

Kontrollaufgaben: https://delors.github.io/sec-aes/kontrollaufgaben.de.rst.html

Fehler melden: https://github.com/Delors/delors.github.io/issues

1. AES - Überblick

Wiederholung

Arithmetik endlicher Körper

- Ein Körper ist eine Menge, in der wir Addition, Subtraktion, Multiplikation und Division durchführen können, ohne die Menge zu verlassen.
- lacksquare Die Division ist mit der folgenden Regel definiert: $a/b=a(b^{-1})$.

Beispiel

Ein endlicher Körper (mit einer endlichen Anzahl von Elementen) ist die Menge Z_p , die aus allen ganzen Zahlen $\{0,1,\ldots,p-1\}$ besteht, wobei p eine Primzahl ist und in dem modulo p gerechnet wird.

Wiederholung

Arithmetik endlicher Körper

■ Der Einfachheit halber — und aus Gründen der Implementierungseffizienz — möchten wir mit ganzen Zahlen arbeiten, die genau in eine bestimmte Anzahl von Bits passen, ohne dass Bitmuster verschwendet werden.

Ganze Zahlen im Bereich 0 bis $2^n - 1$, die in ein n-Bit-Wort passen.

■ Wenn eine Operation des verwendeten Algorithmus die Division ist, dann müssen wir Arithmetik anwenden, die über einem (ggf. endlichen) Körper definiert ist.

Division erfordert, dass jedes nicht-null-Element ein multiplikatives Inverses hat.

Wenn wir modulare Arithmetik auf die Menge der ganzen Zahlen \mathbb{Z}_{2^n} (mit n>1) anwenden, dann erhalten wir keinen Körper!

Zum Beispiel hat die ganze Zahl 2 keine multiplikative Inverse in Z_{2^n} (mit n>1), d. h. es gibt keine ganze Zahl b, so dass $2b \mod 2^n=1$

lacksquare Ein endlicher Körper der 2^n Elemente enthält, wird als $GF(2^n)$ bezeichnet.

Hinweis

Jedes Polynom in $GF(2^n)$ kann durch eine n-Bit-Zahl dargestellt werden.

Arithmetik endlicher Körper in Hinblick auf AES

- Beim Advanced Encryption Standard (AES) werden alle Operationen mit 8-Bit-Bytes durchgeführt
- lacksquare Die arithmetischen Operationen: Addition, Multiplikation und Division werden über den endlichen Körper $GF(2^8)$ durchgeführt.

Definition

AES verwendet das irreduzible Polynom:

$$m(x) = x^8 + x^4 + x^3 + x + 1$$

AES Schlüsseleigenschaften

- AES verwendet eine feste Blockgröße von 128 Bit.
- AES arbeitet mit einem 4x4-Array von 16 Bytes/128 Bits in Spaltenhauptordnung (\blacksquare column-major order): b_0, b_1, \ldots, b_{15} genannt State (\blacksquare Zustand):

$$\begin{bmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_1 & b_5 & b_9 & b_{13} \end{bmatrix}$$
$$\begin{bmatrix} b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \end{bmatrix}$$

AES Verschlüsselungsprozess

AES Parameter

Schlüsselgröße (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Blockgröße (Block Size) (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Anzahl der Runden	10	12	14
Größe des Rundenschlüssels (RoundKeys) (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expandierte Schlüsselgröße (words/bytes)	44/176	52/208	60/240

AES - Ver-/Entschlüsselungsprozess (Key Size 128bits ⇒ 10 Runden)

AES Detaillierter Aufbau

- Verarbeitet in jeder Runde den gesamten Datenblock als eine einzige Matrix unter Verwendung von Substitutionen und Permutationen.
- Der als Eingabe bereitgestellte Schlüssel bei 128 Bit Schlüsselgröße wird in ein Array von vierundvierzig 32-Bit-Wörtern expandiert (w[i]).
- Die Chiffre beginnt und endet mit der *AddRoundKey*-Operation.
- Man kann sich die Chiffre als abwechselnde Operationen zwischen
 - a. der XOR-Verschlüsselung (AddRoundKey) eines Blocks vorstellen, gefolgt von
 - b. der Verwürfelung des Blocks (die anderen drei Stufen), gefolgt von
 - c. der XOR-Verschlüsselung, und so weiter.
- Jede Stufe ist leicht umkehrbar.
- Der Entschlüsselungsalgorithmus verwendet den expandierten Schlüssel in umgekehrter Reihenfolge, wobei der Entschlüsselungsalgorithmus nicht mit dem Verschlüsselungsalgorithmus identisch ist.
- Der Zustand (*State*) ist sowohl bei der Verschlüsselung als auch bei der Entschlüsselung derselbe.
- Die letzte Runde sowohl der Verschlüsselung als auch der Entschlüsselung besteht aus nur drei Stufen.

AES verwendet vier verschiedene Stufen

Substitute Bytes: verwendet eine S-Box, um eine byteweise Ersetzung des Blocks vorzunehmen

ShiftRows: ist eine einfache Permutation

MixColumns: ist eine Substitution, mit Hilfe von Polynomarithmetik über $GF(2^8)$ ist ein einfaches bitweises XOR des aktuellen Blocks mit einem Teil des

expandierten Schlüssels

AES Substitute Byte Transformation

AES S-box

x^y	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	63	7 C	77	7В	F2	6 B	6F	С5	30	01	67	2B	FΕ	D7	ΑВ	76
1	СА	82	С9	7 D	FA	59	47	FO	AD	D4	A2	AF	9 C	A4	72	СО
2	В7	FD	9 3	26	36	3 F	F7	СС	34	Α5	E5	F1	71	D8	31	15
3	04	C 7	23	С3	18	96	05	9 A	07	12	8 0	E2	ЕВ	27	В2	75
4	09	83	2 C	1 A	1 B	6 E	5A	ΑO	52	3B	D6	ВЗ	29	ЕЗ	2 F	84
5	53	D1	0 0	ED	20	FC	В1	5В	6 A	СВ	BE	39	4 A	4 C	58	CF
6	DO	ΕF	AA	FΒ	43	4D	33	85	45	F9	02	7 F	50	3 C	9 F	A8
7	51	ΑЗ	40	8 F	92	9 D	38	F5	ВС	В6	DA	21	10	FF	F3	D2
8	CD	0 C	13	ЕC	5F	97	44	17	C4	Α7	7 E	3D	64	5D	19	73
9	60	81	4F	DC	22	2 A	9 0	88	46	ΕE	В8	14	DE	5E	0 B	DB
Α	ΕO	32	ЗА	0 A	49	06	24	5C	C2	DЗ	AC	62	91	9 5	E4	79
В	E7	C 8	37	6D	8 D	D5	4E	А9	6 C	56	F4	ΕA	65	7 A	ΑE	0 8
C	ВА	78	25	2 E	1 C	А6	В4	С6	E8	DD	74	1 F	4B	BD	8 B	8 A
D	70	3E	В5	66	48	03	F6	0 E	61	35	57	В9	86	C1	1D	9 E
Ε	E1	F8	98	11	69	D9	8 E	94	9 B	1 E	87	Е9	СЕ	55	28	DF
F	8 C	A1	89	OD	BF	Е6	42	68	41	99	2D	OF	ВО	54	ВВ	16

Jedes einzelne Byte des Zustands (*State*) wird auf folgende Weise auf ein neues Byte abgebildet: Die äußersten linken 4 Bits des Bytes werden als Zeilenwert und die äußersten rechten 4 Bits als Spaltenwert verwendet. Diese beiden Werte dienen als Indizes in der S-Box.

AES Inverse S-box

x^y	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	52	09	6 A	D5	30	36	Α5	38	BF	40	АЗ	9 E	81	FЗ	D7	FΒ
1	7 C	ЕЗ	39	82	9 B	2 F	FF	87	34	8 E	43	44	C4	DE	E9	СВ
2	54	7В	94	32	Аб	C 2	23	3D	EE	4C	9 5	0 B	42	FA	С3	4 E
3	0 8	2 E	A1	66	28	D9	24	В2	76	5В	A2	49	6 D	8 B	D1	25
4	72	F8	F6	64	86	68	98	16	D4	Α4	5C	СС	5D	65	В6	92
5	6 C	70	48	50	FD	ED	В9	DA	5E	15	46	57	Α7	8 D	9 D	84
6	9 0	D8	AВ	0 0	8 C	ВС	DЗ	0 A	F7	E4	58	05	В8	ВЗ	45	06
7	DO	2 C	1 E	8 F	СА	3 F	OF	02	C1	AF	BD	03	01	13	8 A	6 B
8	ЗА	91	11	41	4F	67	DC	ΕA	97	F2	CF	СЕ	FO	В4	Е6	73
9	9 6	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1 C	75	DF	6 E
Α	47	FΙ	1 A	71	1D	29	С5	89	6 F	В7	62	0 E	AA	18	BE	1 B
В	FC	56	ЗЕ	4B	С6	D2	79	20	9 A	DB	СО	FE	78	CD	5A	F4
С	1 F	DD	A 8	33	88	07	C7	31	В1	12	10	59	27	8 0	ЕC	5F
D	60	51	7 F	Α9	19	В5	4A	OD	2D	E5	7A	9 F	9 3	С9	9 C	EF
Ε	Α0	ΕO	3B	4D	AE	2 A	F5	ВО	C 8	ЕВ	ВВ	3C	83	53	99	61
F	17	2 B	04	7 E	ВА	77	D6	26	E1	69	14	63	55	21	0 C	7 D

Beispiel

Der (Hex)Wert $0 \times \mathbb{A} = \mathbb{A}$ und y = 3) wird von der S-Box auf den (Hex)Wert $0 \times 0 \mathbb{A}$ abgebildet. Die inverse S-Box bildet den Wert $0 \times 0 \mathbb{A}$ (x = 0 und $y = \mathbb{A}$) wieder auf den ursprünglichen Wert ab.

S-Box Design Grundlagen

- Die S-Box ist so konzipiert, dass sie gegen bekannte kryptoanalytische Angriffe resistent ist.
- Die Rijndael-Entwickler suchten nach einem Design, das eine geringe Korrelation zwischen Eingabe- und Ausgabebits aufweist und die Eigenschaft hat, dass die Ausgabe keine lineare mathematische Funktion der Eingabe ist.
- Die Nichtlinearität ist auf die Verwendung der multiplikativen Inversen bei der Konstruktion der S-Box zurückzuführen.

Shift Row Transformation

Shift Row Transformation - Begründung

- Wesentlicher als es auf den ersten Blick scheint!
- Der Zustand (*State*) wird ebenso wie die Chiffrierein- und -ausgabe als Array aus vier 4-Byte-Spalten behandelt.
- Bei der Verschlüsselung werden die ersten 4 Bytes des Klartextes in die erste Spalte vom Zustands (*State*) kopiert, und so weiter.
- Der Rundenschlüssel wird spaltenweise auf den Zustand (*State*) angewendet.
- Bei einer Zeilenverschiebung wird also ein einzelnes Byte von einer Spalte in eine andere verschoben, was einem linearen Abstand von einem Vielfachen von 4 Byte entspricht.
- Die Transformation sorgt dafür, dass die 4 Bytes einer Spalte auf vier verschiedene Spalten verteilt werden.

Mix Column Transformation

Inverse Mix Column Transformation

Mix Colum Transformation - Beispiel

Gegeben

Ergebnis

87	F2	4D	9 7
6 E	4 C	9 0	ЕC
46	E7	4 A	С3
Аб	8 C	D8	95

Beispiel für die Berechnung von $S'_{0,0}$:

Hilfsrechnungen

$$\begin{array}{rcl} (02\times87) & = & (0000\,1110) \oplus (0001\,1011) = & (0001\,0101) \\ 03\times6E & & & & \\ = 6E \oplus (02\times6E) & = & (0110\,1110) \oplus (1101\,1100) = & (1011\,0010) \\ 46 & = & & & (0100\,0110) \\ A6 & = & & & (1010\,0110) \\ \hline & & & & & \hline \end{array}$$

Achtung!

 $(03 imes 6E)=6E\oplus (02 imes 6E)$ und **ist nicht** $6E\oplus 6E\oplus 6E$, da wir hier Polynomarithmetik in $GF(2^8)$ nutzen und 03 dem Polynom: x+1 entspricht.

Mix Column Transformation - Begründung

- Die Koeffizienten einer Matrix, die auf einem linearen Code mit maximalem Abstand zwischen den Codewörtern basiert, gewährleisten eine gute Mischung zwischen den Bytes jeder Spalte.
- Die Mix Column Transformation (~ Vermischung der Spalten) kombiniert mit der Shift Row Transformation (■ Zeilenverschiebung) stellt sicher, dass nach einigen Runden alle Ausgangsbits von allen Eingangsbits abhängen.

AddRoundKey Transformation

- Die 128 Bits des Zustands (*State*) werden bitweise mit den 128 Bits des Rundenschlüssels XOR-verknüpft.
- Die Operation wird als spaltenweise Operation zwischen den 4 Bytes einer Spalte des Zustands (*State*) und einem Wort des runden Schlüssels betrachtet.
- Kann auch als eine Operation auf Byte-Ebene betrachtet werden.

Designbegründung

- Die *AddRoundKey* Transformation ist so einfach wie möglich und betrifft jedes Bit des Zustands.
- Die Komplexität der runden Schlüsselexpansion plus die Komplexität der anderen Stufen von AES sorgen für Sicherheit!

Eingabe für eine einzelne AES-Verschlüsselungsrunde

AES Schlüsselexpansion

- Nimmt als Eingabe einen (hier: 128-Bit) Schlüssel mit vier Wörtern (16 Byte) und erzeugt ein lineares Array mit 44 Wörtern (176 Byte).
- Dies liefert einen vier Worte umfassenden Rundenschlüssel für die initiale *AddRoundKey*-Stufe sowie für jede der folgenden 10 Runden der Chiffre.
- Der Schlüssel wird in die ersten vier Wörter des erweiterten Schlüssels kopiert.
- Der Rest des expandierten Schlüssels wird in Blöcken von jeweils vier Wörtern aufgefüllt.
- lacksquare Jedes hinzugefügte Wort w[i] hängt vom unmittelbar vorangehenden Wort w[i-1] und dem vier Positionen zurückliegenden Wort w[i-4] ab.
- In drei von vier Fällen wird ein einfaches XOR verwendet.
- lacksquare Für ein Wort dessen Position im Array w ein Vielfaches von 4 ist, wird die komplexere Funktion g angewandt.

AES Schlüsselexpansion - Visualisiert

AES Round Constant Berechnung

$$egin{array}{lcl} r_i & = & (r_{c_i}, 00, 00, 00) \ r_{c_1} & = & 01 \ r_{c_{i+1}} & = & xtime(r_{c_i}) \end{array}$$

xtime Funktion

$$y_7y_6y_5y_5y_4y_3y_2y_1y_0 = xtime(x_7x_6x_5x_5x_4x_3x_2x_1x_0) \hspace{0.5cm} (x_i,y_i \in \{0,1\}) \ y_7y_6y_5y_5y_4y_3y_2y_1y_0 = egin{cases} x_6x_5x_5x_4x_3x_2x_1x_00, & if\ x_7 = 0\ x_6x_5x_5x_4x_3x_2x_1x_00 \oplus 00011011, & if\ x_7 = 1 \end{cases}$$

Die Round Constant Werte

$$egin{aligned} r_{c_1} &= 01, r_{c_2} = 02, r_{c_3} = 04, r_{c_4} = 08, r_{c_5} = 10 \ &r_{c_6} = 20, r_{c_7} = 40, r_{c_8} = 80, r_{c_9} = 1B = 00011011, r_{c_{10}} = 36 \end{aligned}$$

Die xtime Funktion ist eine Multiplikation im endlichen Körper $GF(2^8)$ und ist die Polynommultiplikation mit dem Polynom x.

AES Schlüsselexpansion - Beispiel (Runde 1)

lacksquare Der erste Rundenschlüssel ist: $w[4] \quad || \quad w[5] \quad || \quad w[6] \quad ||$

```
Gegeben: w[0] = (54, 68, 61, 74) w[1] = (73, 20, 6D, 79) w[2] = (20, 4B, 75, 6E) w[3] = (67, 20, 46, 75) g(w[3]): \text{zirkul\"are Linksverschiebung von } w[3] \text{: } (20, 46, 75, 67) \text{Bytesubstitution mit Hilfe der s-box: } (B7, 5A, 9D, 85) \text{Addition der Rundenkonstante } (01, 00, 00, 00) \Rightarrow g(w[3]) = (B6, 5A, 9D, 85) w[4] = w[0] \oplus g(w[3]) = (E2, 32, FC, F1) w[5] = w[4] \oplus w[1] = (91, 12, 91, 88) w[6] = w[5] \oplus w[2] = (B1, 59, E4, E6) w[7] = w[6] \oplus w[3] = (D6, 79, A2, 93)
```

w[7]

AES Schlüsselexpansion - Begründung

- Die Rijndael-Entwickler haben den Expansionsschlüssel-Algorithmus so konzipiert, dass er gegen bekannte kryptoanalytische Angriffe resistent ist.
- Die Einbeziehung einer rundenabhängigen Rundenkonstante beseitigt die Symmetrie, die sonst bei der Erzeugung der Rundenschlüssel in den verschiedenen Runden entstehen würde.

Designziele

- Kenntnis eines Teils des Chiffrierschlüssels oder des Rundenschlüssels ermöglicht nicht die Berechnung vieler anderer Bits des Rundenschlüssels
- Eine invertierbare Transformation
- Performance auf einer breiten Palette von CPUs
- Verwendung von Rundenkonstanten zur Beseitigung von Symmetrien
- Diffusion der Chiffrierschlüsselunterschiede in die Rundenschlüssel
- Ausreichende Nichtlinearität, um die vollständige Bestimmung von Rundenschlüsselunterschieden nur aus Chiffrierschlüsselunterschieden zu verhindern
- Einfachheit der Beschreibung

Lawineneffekt in AES: Änderung im Klartext

Runde		# unterschiedlicher Bits
	0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c ec093dfb7c45343d6890175070485e62	59
4	f867aee8b437a5210c24c1974cffeabc 43efdb697244df808e8d9364ee0ae6f5	61
5	721eb200ba06206dcbd4bce704fa654e 7b28a5d5ed643287e006c099bb375302	68
6	0ad9d85689f9f77bc1c5f71185e5fb14 3bc2d8b6798d8ac4fe36ald891ac181a	64
7	db18a8ffa16d30d5f88b08d777ba4eaa 9fb8b5452023c70280e5c4bb9e555a4b	67
8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40	6.5
9	cca104a13e678500f£59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205	61
10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0	58

Lawineneffekt in AES: Änderung im Schlüssel

Runde		# unterschiedlicher Bits
	0123456789abcdeffedcba9876543210 0123456789abcdeffedcba9876543210	0
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c5a9ad090ec7ff3fc1e8e8ca4cd02a9c	22
2	5c7bb49a6b72349b05a2317ff46d1294 90905fa9563356d15f3760f3b8259985	58
3	7115262448dc747e5cdac7227da9bd9c 18aeb7aa794b3b66629448d575c7cebf	67
4	f867aee8b437a5210c24c1974cffeabc f81015f993c978a876ae017cb49e7eec	63
5	721eb200ba06206dcbd4bce704fa654e 5955c91b4e769f3cb4a94768e98d5267	81
6	0ad9d85689f9f77bc1c5f71185e5fb14 dc60a24d137662181e45b8d3726b2920	7 (
7	db18a8ffa16d30d5f88b08d777ba4eaa fe8343b8f88bef66cab7e977d005a03c	74
8	f91b4fbfe934c9bf8f2f85812b084989 da7dad581d1725c5b72fa0f9d9d1366a	6.7
9	cca104a13e678500ff59025f3bafaa34 Occb4c66bbfd912f4b511d72996345e0	59
10	ff0b844a0853bf7c6934ab4364148fb9 fc8923ee501a7d207ab670686839996b	53

Äquivalente inverse Chiffre

Beobachtung

AES-Entschlüsselung ist nicht identisch mit der Verschlüsselung.

- Die Abfolge der Umwandlungen ist unterschiedlich, obwohl die Schlüsselableitung die gleiche ist.
- Dies hat den Nachteil, dass für Anwendungen, die sowohl Verschlüsselung als auch Entschlüsselung erfordern, zwei separate Software- oder Firmware-Module benötigt werden.

Zwei unabhängige, separate Änderungen sind erforderlich, um die Entschlüsselungsstruktur mit der Verschlüsselungsstruktur in Einklang zu bringen:

- 1. Die ersten beiden Stufen der Entschlüsselungsrunde müssen vertauscht werden.
- 2. Die zweiten beiden Stufen der Entschlüsselungsrunde müssen vertauscht werden.

Vertausch von InvShiftRows und InvSubBytes

InvShiftRows: beeinflusst die Reihenfolge der Bytes im Zustand (State), ändert aber nicht

den Inhalt der Bytes und ist nicht vom Inhalt der Bytes abhängig, um seine

Transformation durchzuführen.

InvSubBytes: beeinflusst den Inhalt von Bytes im Zustand (State), ändert aber nicht die

Byte-Reihenfolge und hängt nicht von der Byte-Reihenfolge ab, um seine

Transformation durchzuführen.

Diese beiden Operationen sind kommutativ und soweit vertauschbar.

Vertausch von AddRoundKey und InvMixColumns

- Die Transformationen *AddRoundKey* und *InvMixColumns* ändern die Reihenfolge der Bytes im Zustand (*State*) nicht.
- Betrachtet man den Schlüssel als eine Folge von Wörtern, so wirken sowohl *AddRoundKey* als auch *InvMixColumns* jeweils nur auf eine Spalte des Zustands (*State*).
- Diese beiden Operationen sind linear in Bezug auf die gegebene Spalte.

Das heißt, für einen bestimmten Zustand S_i und einen bestimmten Rundenschlüssel w_i :

 $InvMixColumns(S_i \oplus w_j) = InvMixColumns(S_i) \oplus InvMixColumns(w_j)$

Äquivalente Inverse Chiffre

Aspekte der Umsetzung auf 8-bit Prozessoren

AES kann sehr effizient auf einem 8-Bit-Prozessor implementiert werden:

AddRoundKey: ist eine byteweise XOR-Operation.

ShiftRows: ist eine einfache Byte-Verschiebeoperation.

SubBytes: arbeitet auf Byte-Ebene und benötigt nur eine Tabelle von 256 Bytes.

 ${f MixColumns:} \hspace{1.5cm} {f erfordert\ eine\ Matrixmultiplikation\ im\ K\"{o}rper\ } GF(2^8),$ was bedeutet, dass alle

Operationen mit Bytes durchgeführt werden.

Aspekte der Umsetzung auf 32-bit Prozessoren

AES kann effizient auf einem 32-Bit-Prozessor implementiert werden:

- Die einzelnen Schritte können so umdefiniert werden, dass sie 32-Bit-Wörter verwenden.
- Es ist möglich 4 Tabellen für die *MixColumns* Transformation mit je 256 Wörtern vorzuberechnen.
 - Dann kann jede Spalte in jeder Runde mit 4 Tabellen-Lookups + 4 XORs berechnet werden.
 - Die Kosten für die Speicherung der Tabellen belaufen sich auf "4Kb".
- Die Entwickler glauben, dass die Möglichkeit einer effizienten Implementierung ein Schlüsselfaktor für die Wahl der AES-Chiffre zum neuen Standard war.

Motor x fire Mis Columns (60 12 bit of 12 bit

2.1. Formeln für die Berechnung des RoundKey aufstellen

Sei der folgende RoundKey gegeben:

$$rk_1 = w[4] \mid\mid w[5] \mid\mid w[6] \mid\mid w[7] = \ -w[4] ----- -w[5] ----- -w[6] ----- -w[7] -----$$
 E2 32 FC F1 91 12 91 88 B1 59 E4 E6 D6 79 A2 93

In Hinblick auf die Berechnung von rk_2 ; d. h. den Rundschlüssel (*Roundkey*) für die zweite Runde, führe folgende Schritte durch.

Bevor Sie die konkrete Berechnung durchführen, schreiben Sie zunächst die Formeln für: $w[8]=\ldots\oplus\ldots\quad w[9]=\ldots\oplus\ldots\quad w[11]=\ldots\oplus\ldots$ auf.

$$oxed{2.2.}$$
 Berechne $w[8]$ und $w[9]$

Nehmen wir an, dass der Zustand (State) folgendermaßen sei:

```
00 3C 6E 47
1F 4E 22 74
0E 08 1B 31
54 59 0B 1A
```

2.3. Führen Sie den Substitute Bytes Schritt durch (Anwendung der S-box Transformation)

2.4. Führen Sie die *Shift Rows Transformation* auf dem Ergebnis des vorherigen Schrittes durch.

2.5. Mix Columns Transformation

Nehmen wir an, dass der Zustand (State) folgendermaßen sei:

6A 59 CB BD 4E 48 12 A0 98 9E 30 9B 8B 3D F4 9B

Führen Sie die ${\it Mix}$ ${\it Columns}$ ${\it Transformation}$ durch für das fehlende Feld ($S_{0,0}'$):

?? C9 7F 9A CE 4D 4B CB 89 71 BE 86 65 47 97 CA

2.6. RoundKey Anwendung

Wenden Sie den folgenden RoundKey:

```
-w[x] ----- -w[x+1] ---- -w[x+2] ---- -w[x+3] ---- D2 60 0D E7 15 7A BC 68 63 39 E9 01 C3 03 1E FB
```

auf die folgende Zustandsmatrix (State):

AA 65 FA 88 16 0C 05 3A 3D C1 DE 2A B3 4B 5A 0A

2.7. Nachgehakt

Fragen Sie sich, was passiert, wenn Sie einen Block, der nur aus 0×0.0 Werten besteht, mit einem Schlüssel verschlüsseln, der ebenfalls nur aus 0×0.0 Werten besteht?