AMENDMENTS TO THE CLAIMS

The following listing of the claims will replace all prior versions and listings of the claims in the application:

Listing of Claims:

1. (Currently amended) An encryption method for dividing a first plaintext bit stream of length 2n into first and second sub-bit streams of length n, dividing a second plaintext bit stream of length 2n into third and fourth sub-bit streams of length n, and generating a ciphertext bit stream of length 2n from the first, second, third and fourth sub-bit streams using 2-rounds of encryption, the method comprising the steps of:

performing the first-round of encryption by encrypting the received the first and second sub-bit streams with predetermined first encryption codes an odd number of times[[,]] and outputting first and second ciphertext bit streams, encrypted again with a predetermined time delay right after the first ciphertext bit streams of length n are outputted, wherein the first ciphertext bit stream is encrypted a first number of times and the second ciphertext bit stream is encrypted a second number of times, the second number of times exceeding the first number of times;

generating a first operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first ciphertext bit stream and the third sub-bit stream at the same time of performing the first round of encryption;

generating a second operated ciphertext bit stream by performing a logical exclusive-OR operation on the second ciphertext bit stream and the fourth sub-bit stream; and

performing the second-round of encryption by encrypting the received first operated ciphertext bit stream and the second operated ciphertext bit stream, comprising the predetermined time delay, with predetermined second encryption codes an odd number of times[[,]] and concurrently outputting the third and fourth ciphertext bit streams of length n after once more encrypting the first operated ciphertext bit stream with predetermined second encryption codes, wherein the third ciphertext bit stream is encrypted a third number of times and the fourth ciphertext bit stream is encrypted the fourth number of times, the fourth number of times exceeding the third number of times,

wherein the last encryption for the second ciphertext bit stream in the first-round is performed at the same time of performing the first encryption of the first operated ciphertext bit stream in the second round of encryption.

- 2. (Previously presented) The encryption apparatus of claim 1, wherein the predetermined first encryption codes comprises at least one of KO_{1,1}, KO_{1,2}, KO_{1,3}, KI_{1,1}, KI_{1,2}, and KI_{1,3}.
- 3. (Previously presented) The encryption apparatus of claim 1, wherein the predetermined second encryption codes comprises at least one of KO_{2,1}, KO_{2,2}, KO_{2,3}, KI_{2,1}, KI_{2,2}, and KI_{2,3}.
- 4. (Previously presented) The encryption method of claim 2, wherein the first-round encryption step comprises the steps of:

generating a first signal by performing a logical exclusive-OR operation on the first sub-bit stream and the first encryption code KO_{1,1} to provide a first exclusive-OR operated bitstream, encrypting the first exclusive-OR-operated bit stream with the first encryption code KI_{1,1} to provide a first encrypted signal, and performing a logical exclusive-OR operation on the first encrypted signal and the second sub-bit stream delayed by time required for the encryption;

OR-operation on the second sub-bit stream and the first encryption code KO_{1,2}, to provide a second exclusive-OR operated bitstream[[,]] encrypting the second exclusive-OR-operated bit stream with the first encryption code KI_{1,2} to provide a second encrypted signal, and performing a logical exclusive-OR-operation on the second encrypted signal and the first signal;

generating the second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first signal and the first encryption code KO_{1,3} to provide a third exclusive-OR operated bitstream, encrypting the third exclusive-OR-operated bit stream with the first encryption code KI_{1,3}, and performing a logical exclusive-OR-operation on the encrypted signal with the first sub-bit stream delayed by time required for the encryption.

5. (Previously presented) The encryption method of claim 3, wherein the second-round encryption step comprises the steps of:

generating a second signal by performing a logical exclusive-OR-operation on the first operated ciphertext bit stream and the second encryption code KO_{2,1} to provide a fourth exclusive-OR operated bitstream, encrypting the fourth exclusive-OR-operated bit stream with the second encryption code KI_{2,1} to provide a third encrypted signal, performing a logical exclusive-OR-operation on the third encrypted signal and the second operated ciphertext bit stream to provide a fifth exclusive-OR operated bitstream;

OR-operation on the second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the second operated ciphertext bit stream and the second encryption code KO_{2,2}, encrypting the fifth exclusive-OR-operated bit stream with the second encryption code KI_{2,2} to provide a fourth encrypted signal, and performing a logical exclusive-OR-operation on the fifth encrypted signal and the second signal delayed by time required for the encryption; and

generating the fourth ciphertext bit stream by performing a logical exclusive-OR-operation on the second signal and the second encryption code KO_{2,3} encrypting the sixth exclusive-OR-operated bit stream with the second encryption code KI_{2,3}, and performing a logical exclusive-OR-operation on the encrypted signal with the third operated ciphertext bit stream.

- 6. (Original) The encryption method of claim 5, wherein each of the encryptions includes first and second sub-encryptions, and outputs from the first and second sub-encryptions are stored and simultaneously retrieved according to an external clock signal.
- 7. (Original) The encryption method of claim 5, wherein a 16-bit input bit stream is divided into a 9-bit stream and a 7-bit stream, a 9-bit ciphertext bit stream is generated from the 9-bit stream using a first equation, and a 7-bit ciphertext bit stream is generated from the 7-bit stream using a second equation in each of the sub-encryptions, wherein said first equation comprises

```
y( = (x0x2) \oplus x3 \oplus (x2x5) \oplus (x5x6) \oplus (x0x7) \oplus (x1x7) \oplus (x2x7) \oplus (x4x8) \oplus (x5x3) \oplus (x7x8) \oplus
```

and said second equation comprises

```
\(\rightarrow\) (\frac{1}{2} \text{sq}) (\frac{1} \text{sq}) (\frac{1}{2} \text{sq}) (\frac{1}{2} \tex
```

8. (Currently amended) An encryption apparatus for dividing a first plaintext bit stream of length 2n into first and second sub-bit streams of length n, dividing a second plaintext bit stream of length 2n into third and fourth sub-bit streams of length n, and generating a ciphertext bit stream of length 2n from the first, second, third and fourth sub-bit streams using 2-rounds of encryption, the apparatus comprising:

a first ciphering unit for receiving the first and second sub-bit streams, and generating first and second ciphertext bit streams of length n by encrypting the first and second sub-bit streams with predetermined first encryption codes KO_{1,1}, KO_{1,2}, KO_{1,3}, KI_{1,1}, KI_{1,2}, and KI_{1,3} an odd number of times, and the second ciphertext bit stream encrypted again with a predetermined time delay after the first ciphertext bit streams of length n are outputted, wherein the first ciphertext bit stream is encrypted a first number of times and the second ciphertext bit stream is encrypted a second number of times, the second number of times exceeding the first number of times;

an operating unit for generating a first operated ciphertext bit stream by performing a logical exclusive-OR-operation on the first ciphertext bit stream and the third sub-bit stream at the same time of performing the first round of encryption, and generating a second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the second ciphertext bit stream with the fourth sub-bit stream; and

a second ciphering unit for receiving the first operated ciphertext bit stream and the second operated ciphertext bit stream-comprising the predetermined time delay, generating third and fourth ciphertext bit streams of length n by encrypting the first operated ciphertext bit stream and the second operated ciphertext bit stream with predetermined second encryption codes KO_{2,1}, KO_{2,2}, KO_{2,3}, KI_{2,1}, KI_{2,2}, and KI_{2,3} an odd number of times, and concurrently outputting the third and fourth ciphertext bit streams after encrypting the first operated ciphertext bit stream again with predetermined second encryption codes, wherein the third ciphertext bit stream is encrypted a third number of times and the fourth ciphertext bit stream is encrypted the fourth number of times, the fourth number of times exceeding the third number of times,

wherein the last encyption for the second ciphertext bit stream in the first-round of encryption is performed at the same time of performing the first encyption for the first operated ciphertext bit stream in the second-round of encryption.

9. (Previously presented) The encryption apparatus of claim 8, wherein the first ciphering unit comprises:

a first block comprising a first exclusive-OR operator for performing a logical exclusive-OR operation on the first sub-bit stream and the first encryption code KO_{1,1}, a first sub-cipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,1}, and a second exclusive-OR operator for generating a first signal by performing a logical exclusive-OR operation on the encrypted signal with the second sub-bit stream being delayed to provide time for the encryption;

a second block comprising a third exclusive-OR operator for performing a logical exclusive-OR operation on the second sub-bit stream and the first encryption code KO_{1,2}, a second sub-cipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,2}, and a fourth exclusive-OR operator for generating the first operated

ciphertext bit stream by performing a logical exclusive-OR operation on the encrypted signal and the first signal; and

a third block comprising a fifth exclusive-OR operator for performing a logical exclusive-OR operation on the first signal and the first encryption code KO_{1,3}, a third subcipher for encrypting the exclusive-OR-operated bit stream with the first encryption code KI_{1,3}, and a sixth exclusive-OR operator for generating the second operated ciphertext bit stream by performing a logical exclusive-OR-operation on the encrypted signal and the first sub-bit stream delayed by time required for the encryption.

10. (Previously presented) The encryption apparatus of claim 8, wherein the second ciphering unit comprises:

a fourth block comprising a seventh exclusive-OR operator for exclusive-OR-operating the first operated ciphertext bit stream with the second encryption code KO_{2,1}, a fourth sub-cipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,1}, and an eighth exclusive-OR operator for generating a second signal by performing a logical exclusive-OR-operation on the encrypted signal and the second operated ciphertext bit stream;

a fifth block comprising a ninth exclusive-OR operator for exclusive-OR-operating the second operated ciphertext bit stream with the second encryption code KO_{2,2}, a fifth subcipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,2}, and a tenth exclusive-OR operator for generating the third ciphertext bit stream by performing a logical exclusive-OR-operation on the encrypted signal and the second signal delayed by time required for the encryption; and

a sixth block comprising an eleventh exclusive-OR operator for performing a logical exclusive-OR operation on the second signal with the second encryption code KO_{2,3}, a sixth sub-cipher for encrypting the exclusive-OR-operated bit stream with the second encryption code KI_{2,3}, and a twelfth exclusive-OR operator for generating the fourth ciphertext bit stream by performing a logical exclusive-OR operation on the encrypted signal and the third ciphertext bit stream.

11. (Previously presented) The encryption apparatus of claim 10, wherein each of the first to sixth sub-ciphers includes first and second sub-ciphering units, and a register for

storing the outputs of the first and second sub-ciphering units and simultaneously retrieving the outputs according to an external clock signal.

12. (Original) The encryption apparatus of claim 11, wherein each of the first and second sub-ciphering units divides a 16-bit input bit stream into a 9-bit stream and a 7-bit stream, and generates a 9-bit ciphertext bit stream from the 9-bit stream using a third equation, and a 7-bit ciphertext bit stream from the 7-bit stream using a fourth equation, said third equation comprising

```
y( = (x0x2) \oplus x3 \oplus (x2x5) \oplus (x5x6) \oplus (x0x7) \oplus (x1x7) \oplus (x2x7) \oplus (x4x8) \oplus (x5x1) \oplus (x7x8) \oplus (1'; \\ y1 = x1 \oplus (x0x3) \oplus (x2x5) \oplus (x0x4) \oplus (x1x4) \oplus (x0x5) \oplus (x5x5) \oplus (x4x7) \oplus (x5x7) \oplus (x5x8) \oplus (1'; \\ y2 = x1 \oplus (x0x3) \oplus (x3x4) \oplus (x0x5) \oplus (x2x6) \oplus (x3x6) \oplus (x5x6) \oplus (x4x7) \oplus (x5x2) \oplus (x6x7) \oplus x8 \oplus (x0x8) \oplus (1'; \\ y3 = x0 \oplus (x1x2) \oplus (x0x3) \oplus (x2x4) \oplus x5 \oplus (x0x6) \oplus (x1x6) \oplus (x4x7) \oplus (x0x8) \oplus (x1x8) \oplus (x1x8) \oplus (x1x8); \\ y4 = (x0x1) \oplus (x1x3) \oplus x1 \oplus (x0x5) \oplus (x3x6) \oplus (x0x7) \oplus (x6x7) \oplus (x6x7) \oplus (x2x3) \oplus (x3x8); \\ y5 = x2 \oplus (x1x4) \oplus (x4x5) \oplus (x0x6) \oplus (x1x6) \oplus (x3x7) \oplus (x4x7) \oplus (x6x7) \oplus (x5x3) \oplus (x6x8) \oplus (x7x0) \oplus (1'; \\ y6 = x0 \oplus (x2x3) \oplus (x1x5) \oplus (x2x5) \oplus (x4x5) \oplus (x3x6) \oplus (x5x6) \oplus x7 \oplus (x1x8) \oplus (x3x8) \oplus (x5x8) \oplus (x7x8); \\ y7 = (x0x1) \oplus (x0x2) \oplus (x1x2) \oplus x3 \oplus (x0x3) \oplus (x2x3) \oplus (x4x5) \oplus (x3x6) \oplus (x3x3) \oplus (x2x7) \oplus (x5x7) \oplus x8 \oplus (1'; \\ y8 = (x0x1) \oplus x0x2 \oplus (x1x2) \oplus (x3x4) \oplus (x1x5) \oplus (x2x5) \oplus (x4x5) \oplus (x4x6) \oplus (x3x6) \oplus (x3x3) \oplus (x2x7) \oplus (x5x7) \oplus x8 \oplus (1'; \\ y8 = (x0x1) \oplus x0x2 \oplus (x1x2) \oplus (x3x4) \oplus (x1x5) \oplus (x2x5) \oplus (x1x6) \oplus (x1x6) \oplus (x1x6) \oplus (x1x8) \oplus (x3x8); \\ \end{cases}
```

and said fourth equation comprising