HW4_boyuj

Boyu Jiang

10/16/2021

Part A

```
library(dplyr)
library(tidyr)
library(reshape)
# import data
pa <- read.delim("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/ThicknessGauge.dat",
                     header = FALSE, skip = 2, sep=" ")
# rename the columns
colnames(pa) <- c("part",</pre>
                   "operator1.1st", "operator1.2nd",
                   "operator2.1st", "operator2.2nd",
                   "operator3.1st", "operator3.2nd")
# rearrange the data frame so that observations are distinguished by operator and measurement
pa <- melt(pa, id.vars = "part")</pre>
# separate operator and measurement into 2 columns
pa <- separate(data = pa, col = 'variable',</pre>
                into = c("operator", "measurement"))
pa$part <- factor(pa$part)</pre>
pa$operator <- factor(pa$operator)</pre>
pa$measurement <- factor(pa$measurement)</pre>
# show the table of data (first 6 observations)
knitr::kable(head(pa), caption = "Measurements of the part's wall thickness (partial)")
```

Table 1: Measurements of the part's wall thickness (partial)

part	operator	measurement	value
1	operator1	1st	0.953
2	operator1	1st	0.956
3	operator1	1st	0.956
4	operator1	1st	0.957
5	operator1	1st	0.957
6	operator1	1st	0.958

```
# show the summary table of data
knitr::kable(summary(pa), caption="Summary of variables")
```

Table 2: Summary of variables

part	operator	measurement	value
1:6	operator1:20	1st:30	Min. :0.9520
2:6	operator2:20	2nd:30	1st Qu.:0.9550
3:6	operator3:20	NA	Median $:0.9570$
4:6	NA	NA	Mean $:0.9561$
5:6	NA	NA	3rd Qu.:0.9570
6:6	NA	NA	Max. $:0.9580$
(Other):24	NA	NA	NA

Part B

Figure 1: Measurements of wall thickness by three operators

```
# show the table of data (first 6 observations)
knitr::kable(head(pb), caption = "Body and brain weight (partial)")
```

Table 3: Body and brain weight (partial)

BodyWt	BrainWt
3.385	44.5
0.480	15.5
1.350	8.1
465.000	423.0
36.330	119.5
27.660	115.0

```
# show the summary table of data
knitr::kable(summary(pb), caption="Summary of variables")
```

Table 4: Summary of variables

BodyWt	BrainWt
Min.: 0.005	Min.: 0.10
1st Qu.: 0.600	1st Qu.: 4.25
Median: 3.342	Median: 17.25
Mean: 198.790	Mean: 283.13
3rd Qu.: 48.202	3rd Qu.: 166.00
Max. $:6654.000$	Max. $:5712.00$

Part C

Figure 2: Body weight and brain weight

```
# rename the columns
colnames(pc) <- rep(c("year", "long jump"), 4)

# rearrange data frame to 2 columns
pc <- rbind(pc[,1:2], pc[,3:4], pc[,5:6], pc[1:4, 7:8])
pc$year <- pc$year + 1900

# show the table of data (first 6 observations)
knitr::kable(head(pc), caption = "Gold Medal performance for Olympic Men's Long Jump (partial)")</pre>
```

Table 5: Gold Medal performance for Olympic Men's Long Jump (partial)

year	long jump
1896	249.75
1900	282.88
1904	289.00
1908	294.50
1912	299.25
1920	281.50

```
# show the summary table of data
knitr::kable(summary(pc), caption="Summary of variables")
```

Table 6: Summary of variables

year	long jump
Min. :1896	Min. :249.8
1st Qu.:1921	1st Qu.:295.4
Median :1950	Median :308.1
Mean :1945	Mean :310.3
3rd Qu.:1971	3rd Qu.:327.5
Max. :1992	Max. :350.5

```
# scatter plot and fitted simple linear model
plot(pc, col = "red", lwd = 3,
     type = 'l',
     xlab = 'Year',
     ylab = 'Gold Medal performance for Men's Long Jump (inch)')
```

Part D

```
library(dplyr)
library(tidyr)
library(reshape)
```


Figure 3: Gold Medal performance for Olympic Men's Long Jump

```
library(data.table)
# import data
pd <- fread("https://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat",</pre>
                     header = FALSE, skip = 0, sep = " ", sep2 = ",")
# rename the columns
colnames(pd) <- c("category", "10k", "20k", "30k")</pre>
# separate columns
pd <- separate(data = pd, col = '10k',
               into = c("10k.1", "10k.2", "10k.3"),
               remove = TRUE, sep = ',')
pd <- separate(data = pd, col = '20k',
               into = c("20k.1", "20k.2", "20k.3"),
               remove = TRUE, sep = ',')
pd <- separate(data = pd, col = '30k',
               into = c("30k.1", "30k.2", "30k.3"),
               remove = TRUE, sep = ',')
# melt tomato categories so that observations are distinguished by Planting Density and measurement
pd <- melt(pd, id.vars = "category")</pre>
# separate columns to Planting Density and measurement
pd <- separate(data = pd, col = 'variable',</pre>
               into = c("PlantingDensity", "measurement"),
               remove = TRUE)
pd$category <- factor(pd$category)</pre>
pd$PlantingDensity <- factor(pd$PlantingDensity)</pre>
pd$measurement <- factor(pd$measurement)</pre>
pd$value <- as.numeric(pd$value)</pre>
# show the table of data (first 6 observations)
knitr::kable(head(pd), caption = "Measurements of tomato yield (partial)")
```

Table 7: Measurements of tomato yield (partial)

category	PlantingDensity	measurement	value
Ife#1	10k	1	16.1
PusaEarlyDwarf	10k	1	8.1
Ife#1	10k	2	15.3
PusaEarlyDwarf	10k	2	8.6
Ife#1	10k	3	17.5
${\bf Pusa Early Dwarf}$	10k	3	10.1

```
# show the summary table of data
knitr::kable(summary(pd), caption="Summary of variables")
```

Table 8: Summary of variables

category	PlantingDensity	measurement	value
Ife#1 :9	10k:6	1:6	Min.: 8.10
PusaEarlyDwarf:9	20k:6	2:6	1st Qu.:12.95
NA	30k:6	3:6	Median :15.35
NA	NA	NA	Mean $:15.07$
NA	NA	NA	3rd Qu.:17.88
NA	NA	NA	Max. $:21.00$

Part E

Figure 4: Measurements of tomato yield

Table 9: Larvae counts at two ages (partial)

Block	age	treatment	value
1	Age1	Treatment1	13
2	Age1	Treatment1	29
3	Age1	Treatment1	5
4	Age1	Treatment1	5
5	Age1	Treatment1	0
6	Age1	Treatment1	1

```
# show the summary table of data
knitr::kable(summary(pe), caption="Summary of variables")
```

Table 10: Summary of variables

Block	age	treatment	value
1:10	Age1:40	Treatment1:16	Min.: 0.00
2:10	Age 2:40	Treatment2:16	1st Qu.: 2.75
3:10	NA	Treatment3:16	Median: 5.50
4:10	NA	Treatment4:16	Mean $:10.50$
5:10	NA	Treatment5:16	3rd Qu.:13.00
6:10	NA	NA	Max. :61.00
(Other):20	NA	NA	NA

Figure 5: Larvae counts in different blocks