Unicamp Mecânica dos Fluidos Mazza

Mecânica dos Fluidos

Erik Yuji Goto

Campinas 2021

Sumário

1	Con	ceitos	Fundamentais		2						
	1.1	Tensão	0		. 2						
		1.1.1	Tensão de Deformação		. 2						
		1.1.2	Tensão x Deformação		. 2						
2	Esta	ática d	los Fluidos		4						
	2.1	Lei de	e Stervin		. 4						
3	Teo	rema d	de Transporte de Reynolds		5						
	3.1		ervação de Massa		. 5						
	3.2	Consei	ervação de Quantidade de Movimento - Referencial Inercial		. 5						
	3.3		ervação de Quantidade de Movimento - Referencial Não Inercial .								
	3.4		ervação do Momento da Quantidade de Movimento								
	3.5		ervação de Energia								
	3.6		lho da Bomba								
	3.7		e Bernoulli								
		-									
4		nálise Dimensional 6									
	4.1		tipo x Modelo								
	4.2		nsões de Algumas Grandezas Físicas								
	4.3	Teoren	ma dos π de Buckingham								
		4.3.1	Matriz Dimensional								
		4.3.2	Formando os π 's		. 7						
		4.3.3	Cuidados		. 8						
		4.3.4	Procedimento		. 8						
5	Sem	elhang	ça		8						
6	Esce	oament	ato Interno		9						
	6.1	Compi	orimento de Desenvolvimento		. 10						
	6.2	_	de Velocidade num Tubo								
	6.3		ciente de Energia Cinética								
	6.4		de Carga Distribuída								
	0	6.4.1	Rugosidade Relativa								
		6.4.2	Diagrama de Moody								
	6.5		de Carga Localizada								
	0.0	6.5.1	Contrações e Expansões								
		6.5.2	Curvas, Válvulas, etc								
		6.5.3			. 16						

1 Conceitos Fundamentais

Fluido: É uma substância que se deforma continuamento quando submetida a uma tensão de cisalhamento, não importa o quão pequena essa tensão.

Composição do fluido: Inúmeras moléculas em movimento. Vamos tratar o fluido como contínuo.

Referencial Lagrangiano: Acompanha elementos de massa identificáveis.

Referencial Euleriano: Focaliza a atenção sobre as propriedades do escoamento num determinado ponto do espaço como função do tempo.

1.1 Tensão

Tensão: Força de superfície com duas componentes:

- Normal, também chamada de pressão;
- Cisalhamento, única que causa deformação no fluido.

1.1.1 Tensão de Deformação

É a variação de um ponto N em relação ao tempo. É um fenômeno local.

Figura 1: Tensão de Deformação

1.1.2 Tensão x Deformação

Para fluidos Isaac Newton propôs:

$$au = rac{d\mu}{dy}$$

 $\mu[\frac{N.s}{m^2}]$ viscosidade dinâmica

Fluido Newtoniano: A viscosidade só poderá ser alterada com a temperatura; A relação $\tau = \frac{\mu du}{dy}$ é um modelo.

Cisalhamento Simples: É quando a deformação é constante:

$$\frac{du}{dy} = cte \to u = a.y + b$$

Condição de não deslizamento: O fluido não desliza na interface com uma fronteira sólida, mas fica derido a ela.

Tensão Superficial: É a força por unidade de comprimento devido à atração molecular ao longo de qualquer linha de interface.

2 Estática dos Fluidos

Trata do estado de forças no fluido na ausência de movimento relativo entre suas partículas. Implica na existência de somente tensões normais.

2.1 Lei de Stervin

"A diferença de pressão entre dois pontos de massa de um líquido em equilíbrio é igual à diferença de nível entre os pontos, multiplicada pelo peso específico do líquido". Temos isso para **um mesmo fluido e mesma altura**.

Peso devido a coluna de água:

$$(P_B - P_A) = \varphi.g.h$$

3 Teorema de Transporte de Reynolds

3.1 Conservação de Massa

$$0 = \frac{\delta}{\delta t} \int_{VC} \varphi dV + \int_{SC} \varphi \vec{V} \vec{n} dA$$

O termo $\vec{V}.\vec{n}$

Figura 2: Conservação Massa

3.2 Conservação de Quantidade de Movimento - Referencial Inercial

$$\begin{array}{l} \frac{\delta}{\delta t} \int_{vc} \vec{V}.\varphi dV + \int_{sc} \vec{V}.\varphi.\vec{V_r}.\vec{n} dA = \\ \int_{vc} \varphi.\vec{g} dV + \int_{sc} (-\vec{n}.P) dA + \int_{sc} \vec{n}.\tau dA + \vec{F_{mec}} \end{array}$$

Figura 3: Quantidade de Movimento

Por ser uma equação vetorial ela pode ser decomposta nas três direções (x, y, z)

3.3 Conservação de Quantidade de Movimento - Referencial Não Inercial

$$\frac{\delta}{\delta t} \int_{vc} \vec{v_{xyz}} \cdot \varphi dV + \int_{vc} \vec{v_{xyz}} \varphi \cdot \vec{V_r} \cdot \vec{n} dA = \sum F_{ext} - \int_{vc} \vec{a_{ref}} \cdot \varphi dV$$

3.4 Conservação do Momento da Quantidade de Movimento

$$\int_{sc} (\vec{r_{xyz}} \times \vec{v_{xyz}}) \varphi . \vec{V_r} . \vec{n} dA = \dot{T}_{eixo} - \int_{sc} \varphi . (\vec{r_{xyz}} \times \vec{a_{rel}}) dV$$
Aceleração relativa:
$$\vec{a_{rel}} = \vec{\omega} \times (\vec{\omega} \times \vec{r_{xyz}}) + 2\vec{\omega} \times \vec{V_{xyz}}$$

3.5 Conservação de Energia

$$\dot{Q_{vc}} - \dot{W_{vc}} = \frac{\delta}{\delta t} \int_{vc} \varphi(u + \frac{V_I^2}{2} + g.z) dV + \int_{sc} (\mathbf{u} + \mathbf{P.v} + \frac{V_I^2}{2} + g.z) \varphi \vec{V_r} \cdot \vec{n} dA$$

* Entalpia - h

3.6 Trabalho da Bomba

O papel da bomba é transferir energia para os termos mecânicos e também para as irreversibilidades.

$$w_{shaft} = (\frac{V_I^2}{2} + g.z + \frac{P}{\varphi})_{in} - [(\frac{V_I^2}{2} + g.z + \frac{P}{\varphi})_{out} + w_{irr}] \text{ ou}$$
$$\frac{w_{shaft}}{g} = (\frac{V_I^2}{2g} + z + \frac{P}{\varphi.g})_{in} - (\frac{V_I^2}{2g} + z + \frac{P}{\varphi.g})_{out} - h_{irr}$$

3.7 Eq. de Bernoulli

Considerando um processo:

- Reversível $\longrightarrow s_{ger} = 0;$
- Sem transferência de Calor $\longrightarrow s_{in} = s_{out}$;
- $\bullet \,$ Sem realização de trabalho $\longrightarrow W_{shaft} = 0.$

$$0 = (\frac{V_I^2}{2} + g.z + u + \frac{P}{\varphi})_{in} - (\frac{V_I^2}{2} + g.z + u + \frac{P}{\varphi})_{out}$$

4 Análise Dimensional

4.1 Protótipo x Modelo

Protótipo: Tamanho real, custo elevado e nem sempre é possível de ser realizado;

Modelo: Tamanho escalado, custo reduzido, mas necessita de formas de inferir os resultados ao tamanho real;

4.2 Dimensões de Algumas Grandezas Físicas

4.3 Teorema dos π de Buckingham

O Teorema dos π diz quantas variáveis adimensionais são requeridas para um dado conjunto de variáveis dimensionais de um dado problema.

Grandeza	Símbolo	Dimensões (M, L, T)
Comprimento	1	L
Tempo	t	T
Massa	m	M
Força	F	MLT ⁻²
Velocidade	V	LT^{-1}
Aceleração	а	LT^{-2}
Área	A	L^2
Vazão	Q	$L^{3}T^{-1}$
Pressão ou queda de pressão	$\tilde{\Delta}_{P}$	$ML^{-1}T^{-2}$
Aceleração da gravidade	g	LT^{-2}
Massa específica	ρ	ML^{-3}
Peso específico	7	$ML^{-2}T^{-2}$
Viscosidade dinâmica	μ	$ML^{-1}T^{-1}$
Viscosidade cinemática	ν	L^2T^{-1}
Tensão superficial	σ	MT^{-2}
Módulo de elasticidade volumétrica	K	$ML^{-1}T^{-2}$

Figura 4: Dimensões

	F 1 1 -2	D	٧	ρ	μ
M	1	0	0	1	1
L	1	1	1	-3	-1
Т	-2	0	-1	0	-1

Figura 5: Matriz Dimensional

4.3.1 Matriz Dimensional

É formada listando os expoentes (a, b, c, d, etc) das dimensões primárias (M, L e T) de cada variável. O propósito da matriz dimensional é checar a independência linear das variáveis dimensionais em termos das dimensões primárias escolhidas (M, L, T).

Isto é feito determinando-se o 'rank' da matriz.

O rank é o **determinante** de todas possíveis submatrizes quadradas começando-se pela maior até encontrar uma cujo determinante é não nulo.

A quantidade de parâmetros adimensionais necessário para expressar a dependência funcional será de n-r variáveis (r é o rank):

$$\pi_1 = f(\pi_2, \pi_3, \pi_4...\pi_{n-r})$$

4.3.2 Formando os π 's

Os π 's são formados escolhendo-se uma base de repetição A base contém 'r' variáveis dimensionais do total de 'n' que contenha entre elas as 'r' dimensões.

As 'r' variáveis da base não podem ser linearmente dependentes uma das outras. A sub-matriz dos seus expoentes dimensionais tem que ser não nulo.

4.3.3 Cuidados

- Evitar variáveis que possam serem derivadas da outra por uma produto de potências:
 - Combinação entre comprimento, L, velocidade LT-1 e aceleração LT-2 é linearmente dependente. Pode-se combiná-las de forma que o resultado seja adimensional!
 - Combinação entre comprimento, L, densidade ML-3 e velocidade LT-1 é linearmente independente. Pode formar uma base porque qualquer que seja o produto entre elas nunca será adimensional!
- Evitar duas propriedades físicas para compor a base.
 - Ex: Viscosidade e densidade.

4.3.4 Procedimento

- 1. Liste todos os parâmetros envolvidos;
- 2. Selecione um conjunto de dimensões fundamentais;
- 3. Liste as dimensões de todos os parâmetros em termos das dimensões primárias;
- 4. Selecione da lista um número dos parâmetros que se repetem;
- 5. Estabeleça equações adimensionais combinando os parâmetros;
- 6. Verifique se os parâmetros são adimensionais.

5 Semelhança

As leis de escala podem ser aplicadas desde que haja semelhança entre modelo e protótipo.

Os testes no modelo são semelhantes ao protótipo quando:

$$\pi_{2m} = \pi_{2m}; \pi_{3m} = \pi_{3m}; ...; \pi_{km} = \pi_{km}$$

Usando o número de Reynolds como exemplo: Precisamos garantir que o Re do modelo e do protótipo sejam iguais para assegurar a semelhança.

Nem sempre é possível garantir a semelhança completa. Ao invés de se falar em semelhança ou similaridade completa, fala-se de tipos particulares de semelhança:

- Geométrica Um modelo e um protótipo são geometricamente similares se todas as dimensões do corpo possuírem a mesma razão linear;
- Cinemática A similaridade cinemática requer que as velocidades, nas três direções coordenadas, no modelo e no protótipo tenham a mesma razão linear;
- Dinâmica A similaridade dinâmica existe quando o modelo e protótipo possuem a mesma razão de comprimento, tempo e força;
- Térmica.

6 Escoamento Interno

Escoamento Laminar x Turbulento: Escoamentos laminares são altamente ordenados, com cada partícula do fluido seguindo umas as outras de forma ordeira.

Escoamentos turbulentos são altamente desordenados, sendo difícil definir as posições das partículas instante a instante. Diz-se que o escoamento é de alguma forma caótico

Figura 6: Escoamento Laminar e Turbulento

Figura 7: Experimento de Osborne Reynolds (1841-1912)

Reynolds mostrou que para tubos as instabilidades começam quando $\mathbf{Re} = \mathbf{2.300}$ e que acima de 10^4 o escoamento é completamente turbulento. Entre 2.300 e 10^4 há a **transição** do escoamento e pode haver regime laminar, turbulento ou ambas.

Valores de Re aceitos para transição em tubos:

- Laminar $Re_D < 2300$
- Turbulento $Re_D > 4000$

• Transição $2300 < Re_D < 4000$

Figura 8: Definição de Reynolds

6.1 Comprimento de Desenvolvimento

Enquanto que próximo da entrada o perfil de velocidades pode ser plano, a atuação da viscosidade desacelera o fluido próximo da parede.

Para conservar massa o núcleo deve ser acelerado!

Este conjunto de fatores faz com que seja estabelecido um perfil de velocidades a jusante da entrada cujo máximo é no centro e o mínimo é na parede

Figura 9: Diferença entre laminar e tubulento

O perfil de velocidades e a pressão variam ao longo da direção axial do tubo.

O comprimento da região de entrada é denominado por Le.

Para distâncias superiores a Le, diz-se que o escoamento está hidrodinamicamente desenvolvido. O termo 'Desenvolvido' significa que o perfil não mais varia ao longo da

Figura 10: Escoamento Desenvolvido

direção axial do escoamento.

Quando o escoamento está completamente desenvolvido o vetor de velocidades é unidimensional, com apenas uma componente na direção r que depende da distância da parede.

A pressão varia ao longo do escoamento, mas não varia transversalmente à ele, P = P(x). Em qualquer seção transversal a pressão é uniforme.

6.2 Perfil de Velocidade num Tubo

A velocidade não está distribuída uniformemente ao longo do tubo, mas apresenta um perfil:

$$\frac{V(r)}{U_{\text{max}}} = \left(1 - \left[\frac{r}{R}\right]\right)^{\frac{1}{n}} \quad \text{(se turbulento)}$$

$$\frac{V(r)}{U_{\text{max}}} = \left(1 - \left[\frac{r}{R}\right]^{2}\right) \quad \text{(se laminar)}$$

Figura 11: Perfil de Velocidade

Num tubo a velocidade máxima, U_{max} , ocorre no centro (r=0). A relação entre a velocidade média e a máxima é uma função do perfil de velocidades:

$$\frac{\overline{V}}{U_{\text{max}}} = \frac{2n^2}{(n+1) \cdot (2n+1)}$$
 (se turbulento)
ou
$$= \frac{1}{2}$$
 (se laminar)

Figura 12: Relação entre Velocidades

6.3 Coeficiente de Energia Cinética

$$\alpha = \left(\frac{U_{\text{max}}}{\overline{V}}\right)^3 \cdot \frac{2n^2}{(2n+3)(n+3)}$$

Figura 13: Coeficiente de Energia Cinética

Para escoamentos em regime turbulento em dutos frequentemente assume-se que o coeficiente α é igual a 1.

Para regime laminar entretanto é necessário o uso da correção de E.K. pois coeficiente α é igual a 2

• Laminar: $\alpha = 2$

• Turbulento: $\alpha = 1$

A conservação de energia é escrita como:

$$(\alpha \frac{\bar{V}^2}{2g} + z + \frac{P}{\varphi g})_{out} - (\alpha \frac{\bar{V}^2}{2g} + z + \frac{P}{\varphi g})_{in} = -h_L - w_{eixo}$$

6.4 Introdução Perda de Carga Localizada e Distribuída

As perdas de carga tem origem no atrito que a parede exerce no fluido e na mudança de padrão do escoamento.

Desta forma, associa-se a perda de carga à uma parcela distribuída (hf) ao longo de toda tubulação e outra localizada (hm) em acessórios (curva, restrição, válvula, etc).

$$h_L = h_f + \sum h_m$$

6.5 Perda de Carga Distribuída

$$h_f = 8.f \frac{LQ^2}{\pi^2 D^5 g}$$
$$h_f = 8.f \frac{LQ^2}{\pi^2 D^5}$$

fé determinado pelo Diagrama de Moody.

6.5.1 Rugosidade Relativa

		6		
Material	Condition	ft	mm	Uncertainty, 9
Steel	Sheet metal, new	0.00016	0.05	± 60
	Stainless, new	0.000007	0.002	± 50
	Commercial, new	0.00015	0.046	± 30
	Riveted	0.01	3.0	± 70
	Rusted	0.007	2.0	± 50
Iron	Cast, new	0.00085	0.26	± 50
	Wrought, new	0.00015	0.046	± 20
	Galvanized, new	0.0005	0.15	± 40
	Asphalted cast	0.0004	0.12	± 50
Brass	Drawn, new	0.000007	0.002	± 50
Plastic	Drawn tubing	0.000005	0.0015	± 60
Glass	_	Smooth	Smooth	
Concrete	Smoothed	0.00013	0.04	± 60
	Rough	0.007	2.0	± 50
Rubber	Smoothed	0.000033	0.01	± 60
Wood	Stave	0.0016	0.5	± 40

Figura 14: Rugosidade

$$[rugosidade \cdot relativa] = \frac{\varepsilon}{d} = \frac{[rugosidade - mm]}{[diametro - tubo - mm]}$$

6.5.2 Diagrama de Moody

Figura 15: Diagrama de Moody

6.6 Perda de Carga Localizada

Toda a perda de carga localizada é modelada como sendo uma parcela da energia cinética, sendo determinada como:

$$h_m = K.\frac{\bar{V}^2}{2}$$
 ou $h_m = f.(\frac{L_e}{D}).\frac{\bar{V}^2}{2}$

 $\frac{L_e}{D}, f$ e Ksão encontrados em tabelas

6.6.1 Contrações e Expansões

Figura 16: Contrações e Expansões

6.6.2 Curvas, Válvulas, etc

Tabela 7-2 Coeficiente de perda de carga , $K = \frac{h_m}{V_A^2/2g}$ para válvulas abertas, cotovelos e tês.

	Conexão com rosca			Conexão com flange					
Diâmetro nominal, cm (in.)	1,3 (0,5) 2,5 (1,0)	5,0 (2,0) 10	10 (4,0)	2,5 (1,0)	5 (2,0)	10 (4,0)	20 (8,0)	50 (20)	
Válvulas (totalmente a	abertas);			-3	DIA.	SLE			
Globo	14,0	8,2	6,9	5,7	13,0	8,5	6,0	5,8	5,5
Gaveta	0,30	0,24	0,16	0,11	0,80	0,35	0,16	0,07	0,03
Giratória	5,1	2,9	2,1	2,0	2,0	2,0	2,0	2,0	2,0
Ångulo	9,0	4,7	2,0	1,0	4,5	2,4	2,0	2,0	2,0
Cotovelos:									
45° comum	0,39	0,32	0,30	0,29					
45" raio longo		-	,		0,21	0,20	0,19	0,16	0,14
90° comum	2,0	1,5	0,95	0,64	0,50	0,39	0,30	0,26	0,21
90° raio longo	1,0	0,72	0,41	0,23	0,40	0,30	0,19	0,15	0,10
180° comum	2,0	1,5	0,95	0,64	0,41	0,35	0,30	0,25	0,20
180° raio longo	9117				0,40	0,30	0,21	0,15	0,10
Tês:									
Em linha	0,90	0,90	0,90	0,90	0,24	0,19	0,14	0,10	0,07
Perpendicular	2,4	1,8	1,4	1,1	1,0	0,80	0,64	0,58	0,41

Figura 17: Coeficiente K

	mprimento Equivalente,	
Tipo de Acessório	L,/D	<u> </u>
Válvulas (completamente abertas)		
Válvula gaveta	8	
Válvula globo	340	
Válvula angular	150	
Válvula de esfera	3	
Válvula de retenção: tipo globo	600	
: tipo angular	55	
Válvula de pé com crivo: disco guia	do 420	
: disco artic		
Cotovelo padrão: 90°	30	
: 45°	16	
Curva de retorno (180°), configuração	curta 50	
Tê padrão: escoamento principal	20	
: escoamento lateral	60	
Baseado em $h_{t_n} = f \frac{L_e}{D} \frac{\overline{V}^2}{2}$.		Tabela 7-3 Perdas de v
- Dascado em n _{i.} - J - D - 2		P:

L_{c} V^{2}	Tab	Tabela 7-3 Perdas de válvulas parcialmente abertas.				
^a Baseado em $h_{t_u} = f \frac{L_e}{D} \frac{V^2}{2}$.	Condição	Razão K/K (condição aberta) Válvula da porta Válvula Globo				
	Aberta Fechada, 25%	1,0 3,0-5,0	1,0 1,5-2,0			
	50%	12-22	2,0-3,0			
	75%	70-120	6,0-8,0			

Figura 18: Coeficiente $\frac{L_e}{D}$

6.6.3 Entradas e Saídas

Tipo de Entrada	Coeficie	Coeficiente de Perda Localizada, Ka					
Reentrante				0,	78		
Borda-viva			0,5				
Arredondado		$r \stackrel{D}{\downarrow}$	r/D	0,02	0,06	≥ 0,15	
	\rightarrow	<u> </u>	K	0,28	0,15	0,04	

"Baseado em $h_{lo}=k(\nabla^2/2,$ em que ∇ e a velocidade média no tubo. Fonte: Dados da Referência [11].

Figura 19: Entradas e Saídas