Semaine du 21/09 au 25/09

1 Cours

Systèmes linéaires

Notion de système linéaire Définition et exemples.

Résolution de systèmes linéaires Méthode du pivot de Gauss.

Structure de l'ensemble des solutions Système homogène associé à un système linéaire. L'ensemble des solutions d'un système linéaire est la somme d'une solution particulière et de la solution du système homogène associé.

Trigonométrie

Congruence Définition et propriétés.

Fonctions trigonométriques Définition de cos, sin, tan et propriétés de symétries.

Formules usuelles Addition/soustraction, duplication, linéarisation, factorisation.

Equations et inéquations trigonométriques Exemples.

Complexes

Corps des nombres complexes Partie réelle, partie imaginaire, module, conjugué et interprétation géométrique.

Groupe \mathbb{U} des nombres complexes de module 1 Définition, notation $e^{i\theta}$, relations d'Euler et formule de Moivre.

2 Méthodes à maîtriser

- ▶ Résolution d'un système par pivot de Gauss avec paramètre éventuel.
- ▶ Résolution de $\cos x = \cos a$, $\sin x = \sin a$, $\tan x = \tan a$.
- ▶ Savoir interpréter géométriquement des relations sur des complexes.

3 Questions de cours

- lackbox Démontrer l'inégalité triangulaire : $\forall (z_1,z_2) \in \mathbb{C}^2, \; |z_1+z_2| \leqslant |z_1|+|z_2|.$
- ▶ Résolution d'un système linéaire au choix de l'examinateur par la **méthode du pivot de Gauss**.
- \blacktriangleright Déterminer les complexes z non nuls tels que z, $\frac{1}{z}$ et z + 1 aient même module.
- $\blacktriangleright \ \, \mathrm{Montrer} \,\, \mathrm{que} \,\, \mathbb{U} = \big\{ e^{\mathfrak{i} \theta}, \,\, \theta \in \mathbb{R} \big\}.$