# Plan du chapitre 2

- Opération sur les matrices
  - Notation matricielle
  - Multiplication matricielle
  - Méthode alternative
  - Propriétés des opérations matricielles
  - Transposition
- L'inverse d'une matrice
  - Inverse d'une matrice 2 × 2
- Caractérisations des matrices inversibles

- Application linéaire inversible
- 4 Elements sur les espaces vectoriels
  - Définitions
  - Vect(A) et ker(A)
  - Base d'un s.e.v.
- 5 Dimension et rang
  - Coordonnées sur une base
  - La dimension d'un sous-espace
  - Théorème du rang



### Notation matricielle

#### **Défintions**

Il y a deux façons de noter une matrice A de taille  $m \times n$ :

• à partir de ses colonnes

$$(\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n)$$

• à partir de ses coefficients

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix}$$

- les éléments  $a_{11}, a_{22}, \ldots$  sont appelés les éléments diagonaux
- la matrice nulle, notée O, est la matrice dont tous les éléments sont nuls.

# Opérations sur les matrices

## Propriétés

Soient A, B, et C des matrices de même taille,  $\mathbf{0}$  la matrice nulle de même taille que A, B, C et r et s des réels. Alors

- A + B = B + A
- $\bullet$  (A + B) + C = A + (B + C)
- A + 0 = A
- r(A+B) = rA + rB
- (r+s) A = rA + sA
- r(sA) = (rs) A

### Définition : produit matriciel

Soient A une matrice de taille  $n \times k$  et B une matrice de taille  $k \times p$ . On définit le produit AB par

$$AB = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p)$$

On a en bien  $A(B\mathbf{x}) = (AB)\mathbf{x}$ . En effet

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \cdots + x_p\mathbf{b}_p$$

donc

$$A(B\mathbf{x}) = A(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p)$$

$$= A(x_1\mathbf{b}_1) + A(x_2\mathbf{b}_2) + \dots + A(x_p\mathbf{b}_p)$$

$$= x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$

- Calculer AB quand  $A = \begin{pmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & -3 \\ 6 & -7 \end{pmatrix}$ .
- Exprimer  $A\mathbf{b}_1$  et  $A\mathbf{b}_2$  comme combinaisons linéaires des colonnes de A.

## Propriété

Chaque colonne de AB est une combinaison linéaire des colonnes de A avec des poids des colonnes correspondantes de B.

Si A est de taille  $4 \times 3$  et B de taille  $3 \times 2$ , quelles sont les tailles de AB et BA?

### Propriété

Soient A une matrice de taille  $n \times k$  et B une matrice de taille  $k \times p$  alors AB a la taille  $n \times p$ .

# Autre méthode pour calculer AB

## Propriété du produit matriciel

Soient A une matrice de taille  $n \times k$  et B une matrice de taille  $k \times p$ . Chaque élément  $(AB)_{ij}$  du produit AB est donné par

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.$$

$$\begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \begin{pmatrix} & b_{1j} & \\ & b_{2j} & \\ & \vdots & \\ & b_{nj} & \end{pmatrix} = \begin{pmatrix} & (AB)_{ij} & \\ & & \end{pmatrix}$$

$$A = \begin{pmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{pmatrix}$$
,  $B = \begin{pmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{pmatrix}$ . Calculer  $AB$  et  $BA$ , s'ils sont définis.

# Propriétés de la somme et du produit matriciel

Soient A de taille  $m \times n$  et B et C dont les tailles permettent les sommes et produits suivants alors

- $\bullet$  A(BC) = (AB)C
- $\bullet$  A(B+C)=AB+AC
- (B + C) A = BA + CA
- r(AB) = (rA)B = A(rB) pour tout réel r
- $I_m A = A = A I_n$

## Propriétés de la somme et du produit matriciel

Soient A de taille  $m \times n$  et B et C dont les tailles permettent les sommes et produits suivants alors

- $\bullet$  A(BC) = (AB)C
- A(B+C) = AB + AC
- $\bullet (B+C)A = BA + CA$
- r(AB) = (rA)B = A(rB) pour tout réel r
- $I_m A = A = A I_n$

Toutes les propriétés vraies pour les nombres réels ne sont pas vraies pour les matrices. Par exemple

- AB n'est, en général, pas égal à BA
- Même si AB = AC, alors B peut ne pas être égal à C.
- Il est possible que AB = 0 même si  $A \neq 0$  et  $B \neq 0$ .

## Puissances d'une matrice carré

## Propriété: puissance

Si A est une matrice carrée alors

$$A^k = \underbrace{A \cdots A}_k$$

Soit 
$$A = \begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$$
. Que vaut  $A^3$ ?

# Transposée d'une matrice

### Définition : transposée

Si A est une matrice de taille  $m \times n$ , la **transposée** de A est la matrice de taille  $n \times m$ , notée  $A^T$ , dont les lignes sont formées des colonnes de A.

## Exemple

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 8 \\ 7 & 6 & 5 & 4 & 3 \end{pmatrix} \qquad \Longrightarrow \qquad A^{T} = \begin{pmatrix} 1 & 6 & 7 \\ 2 & 7 & 6 \\ 3 & 8 & 5 \\ 4 & 9 & 4 \\ 5 & 8 & 3 \end{pmatrix}$$

Soit 
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix}$$
, et  $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{pmatrix}$ . Calculer  $AB$ ,  $(AB)^T$ ,  $A^TB^T$  et  $B^TA^T$ .

# Règle sur la transposition

## Propriétés de la transpostion

Soient A et B deux matrices dont les tailles permettent les sommes et produits suivants. Alors

- $\bullet (A+B)^T = A^T + B^T$
- Pour tout réel r,  $(rA)^T = rA^T$
- $\bullet (AB)^T = B^T A^T$

### Exercice

Soient  $A = \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}$  et  $x = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$  deux matrices de taille  $2 \times 2$  et  $2 \times 1$ . Calculer  $(Ax)^{\top}$ ,  $x^{\top}A^{\top}$ ,  $xx^{\top}$ ,  $x^{\top}x$  et  $A^{\top}x^{\top}$  quand c'est possible.



## Définition et propriété : inverse d'une matrice carrée

• Une matrice A de taille  $n \times n$  est dite **inversible** s'il existe une matrice, notée  $A^{-1}$  de taille  $n \times n$  telle que

$$A^{-1}A = AA^{-1} = I_n$$

où  $I_n$  est la matrice identité de taille  $n \times n$ .  $A^{-1}$  est appelée inverse de A.

• Quand elle existe, l'inverse d'une matrice est unique.

Attention toutes les matrices carrées ne sont pas inversible. Une matrice non-inversible est dite **singulière**.

Soient 
$$A = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix}$$
 et  $C = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix}$ . Montrer que  $C$  est l'inverse de  $A$ .

## Théorème pour les matrices de taille $2 \times 2$

• Soit  $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ . Si  $ad - bc \neq 0$ , alors A est inversible et

$$A^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

• Si ad - bc = 0, alors A est singulière (non-inversible).

### Déterminant d'une matrice 2 × 2

Si 
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,  $ad - bc \neq 0$  est son **déterminant**, noté  $det(A)$ 

#### Exercice

Trouver l'inverse de la matrice  $A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$ 

# Inversibilité et systèmes linéaires

### Théorème

Si A est une matrice  $n \times n$  inversible, alors pour tout  $\mathbf{b}$  dans  $\mathbf{R}^n$ , l'équation  $A\mathbf{x} = \mathbf{b}$  a la solution unique  $\mathbf{x} = A^{-1}\mathbf{b}$ .

Utiliser l'inverse de 
$$A = \begin{pmatrix} -7 & 3 \\ 5 & -2 \end{pmatrix}$$
 pour résoudre  $\begin{cases} -7x_1 + 3x_2 = 2 \\ 5x_1 - 2x_2 = 1 \end{cases}$ 

# Propriétés des inverses

Si A et B sont inversibles, alors

- a.  $A^{-1}$  est inversible et  $(A^{-1})^{-1} = A$  (i.e. A est l'inverse de  $A^{-1}$ ).
- b. AB est inversible et  $(AB)^{-1} = B^{-1}A^{-1}$
- c.  $A^T$  est inversible et  $(A^T)^{-1} = (A^{-1})^T$



#### Théorème sur les matrices inversibles

Soit A une matrice carré de taille  $n \times n$  alors toutes les énoncés suivants sont équivalents.

- A est une matrice inversible
- 2 A est ligne-équivalente à In.
- $\bullet$  A a *n* pivots.
- L'équation Ax = 0 admet seulement la solution triviale.
- Les colonnes de A sont linéairement indépendantes.
- **1** L'équation  $A\mathbf{x} = \mathbf{b}$  a une solution pour chaque  $\mathbf{b}$  dans  $\mathbf{R}^n$ .
- ① Les colonnes de A engendrent  $\mathbb{R}^n$ .
- 1 Il existe une matrice C de taille  $n \times n$  telle que  $CA = I_n$ .
- 1 l existe une matrice D de taille  $n \times n$  telle que  $AD = I_n$ .
- $\bullet$   $A^T$  est une matrice inversible.

Utiliser le théorème précédent pour déterminer si  $A = \begin{pmatrix} 1 & -3 & 0 \\ -4 & 11 & 1 \\ 2 & 7 & 3 \end{pmatrix}$  est inversible.

#### Exercice

Supposons que H est une matrice de taille  $5 \times 5$  et qu'il existe un vecteur  $\mathbf{v}$  dans  $\mathbf{R}^5$  qui n'est pas combinaison linéaire des colonnes de H. Que peut-on en déduire sur le nombre de solution de  $H\mathbf{x} = \mathbf{0}$ ?

Pour une matrice inversible

$$A^{-1}Ax = x$$
 pour tout x dans  $\mathbf{R}^n$ 

et

$$AA^{-1}\mathbf{x} = \mathbf{x}$$
 pour tout  $\mathbf{x}$  dans  $\mathbf{R}^n$ .

## Définition : application linéaire inversible

Une application linéaire  $T: \mathbf{R}^n \to \mathbf{R}^n$  est dite **inversible** s'il existe une fonction  $S: \mathbf{R}^n \to \mathbf{R}^n$  telle que

$$S(T(\mathbf{x})) = \mathbf{x}$$
 pour tout  $\mathbf{x}$  dans  $\mathbf{R}^n$ 

et

$$T(S(\mathbf{x})) = \mathbf{x}$$
 pour tout  $\mathbf{x}$  dans  $\mathbf{R}^n$ .

#### Théorème:

Soit  $T: \mathbf{R}^n \to \mathbf{R}^n$  une application linéaire et A la matrice standard de T. Alors T est inversible si et seulement si A est une matrice inversible. Dans ce cas, l'application linéaire S définie par  $S(\mathbf{x}) = A^{-1}\mathbf{x}$  est l'unique application qui satisfait :

$$S(T(x)) = x$$
 pour tout x dans  $R^n$ 

et

$$T(S(x)) = x$$
 pour tout x dans  $\mathbb{R}^n$ .

## Exercice

Soit  $T_1$  et  $T_2$  deux transformations de  $\mathbb{R}^2$  dans  $\mathbb{R}^2$  définies par

$$T_1(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2)$$
  

$$T_2(x_1, x_2) = (2x_1 - 8x_2, -2x_1 + 7x_2)$$

- Sont-elles des applications linéaires?
- Sont-elles inversibles?
- 3 Si oui, trouver leurs inverses.



## Définition : sous-espace vectoriel de $\mathbb{R}^n$

Un sous-ensemble H de  $\mathbb{R}^n$  est un sous-espace vectoriel (s.e.v.) s'il a les 3 propriétés :

- 0 ∈ H
- Pour tous  $\mathbf{u}, \mathbf{v}$  dans  $H, \mathbf{u} + \mathbf{v} \in H$
- Pour tous  $\mathbf{u} \in H$  et c réel,  $c\mathbf{u} \in H$ .

## Exemple

Si  $\mathbf{v}_1$  et  $\mathbf{v}_2$  sont 2 vecteurs de  $\mathbb{R}^n$  alors  $H = \text{Vect}(\mathbf{v}_1, \mathbf{v}_2)$  est un s.e.v.

Voici 4 sous-ensembles de  $\mathbb{R}^n$ , dire dans chaque cas s'il s'agit d'un s.e.v. de  $\mathbb{R}^n$ 

1.



2.







## Définition/propriété : image d'une application linéaire

L'espace image d'une application linéaire de matrice A de taille  $n \times p$ , noté  $\operatorname{Im}(A)$  ou  $\operatorname{Vect}(A)$  est l'ensemble de toutes les combinaisons linéaires de ses colonnes. C'est un s.e.v. de  $\mathbb{R}^n$ .

Soit 
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
 et  $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$  Est ce que  $\mathbf{b} \in \text{Vect}(A)$ ?

## Définition/propriété : noyau d'une application linéaire

Le noyau de l'applicaiton linéaire de matrice A de taille  $n \times p$ , noté  $\ker(A)$  est l'ensemble des solutions de l'équation homogène  $A\mathbf{x} = \mathbf{0}$ . C'est un s.e.v. de  $\mathbb{R}^p$ .

Décrire ker(A) quand 
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
.

## Définition : base d'un s.e.v.

Une base d'un s.e.v. H de  $\mathbb{R}^n$  est un ensemble de vecteurs linéairement indépendants qui engendrent H.

#### Exercice

Trouver deux bases de  $\mathbb{R}^2$ .

Trouver une base de ker(A) quand 
$$A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4. \end{pmatrix}$$

Trouver une base de Vect(B) quand 
$$B = \begin{pmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

### **Propriétés**

Les colonnes des pivots d'une matrice forment une base du s.e.v. engendré par ses colonnes (son Vect).

Soient  $\mathbf{v}_1 = \begin{pmatrix} 1 & 3 & -4 \end{pmatrix}^\top$ ,  $\mathbf{v}_2 = \begin{pmatrix} -2 & -3 & 7 \end{pmatrix}^\top$  et  $\mathbf{w} = \begin{pmatrix} -3 & -3 & 10 \end{pmatrix}^\top$ . Est ce que  $\mathbf{w}$  est dans le s.e.v. de  $\mathbb{R}^3$  engendré par  $\mathbf{v}_1$  et  $\mathbf{v}_2$ .

## Exercice

Déterminer si les ensembles de vecteurs suivants forment des bases de  $\mathbb{R}^2$ .

- $\bullet \begin{pmatrix} 4 \\ -2 \end{pmatrix}, \begin{pmatrix} 16 \\ -3 \end{pmatrix}$



- Vérifier que  $\mathbf{b}_1=\begin{pmatrix}1\\0\end{pmatrix}$ ,  $\mathbf{b}_2=\begin{pmatrix}1\\-1\end{pmatrix}$  est une base de  $\mathbb{R}^2$ .
- $\textbf{ 2 Ecrire} \begin{pmatrix} 4 \\ -10. \end{pmatrix} \text{ comme une combinaison linéaire de } \textbf{b}_1, \textbf{b}_2.$

#### Définition : coordonnées

Soit  $\mathcal{B} = (\mathbf{b}_1, \dots, \mathbf{b}_p)$  une base d'un s.e.v. H de  $\mathbb{R}^n$ . Pour tout  $\mathbf{x} \in H$ , les **coordonnées de**  $\mathbf{x}$  sur la base  $\mathcal{B}$  sont les poids  $c_1, \dots, c_p$  tels que

$$\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_p \mathbf{x}_p$$

et le vecteur

$$[\mathbf{x}]_{\mathcal{B}}: \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_p \end{pmatrix}$$

est le vecteur des coordonnées de x relativament à la base  $\mathcal{B}$ .

Soient  $\mathbf{v}_1 = \begin{pmatrix} 1 & 3 & -4 \end{pmatrix}^\top$ ,  $\mathbf{v}_2 = \begin{pmatrix} -2 & -3 & 7 \end{pmatrix}^\top$  et  $\mathbf{w} = \begin{pmatrix} -3 & -3 & 10 \end{pmatrix}^\top$ . On sait que  $\mathbf{w}$  est dans le s.e.v. de  $\mathbb{R}^3$  engendré par  $\mathbf{v}_1$  et  $\mathbf{v}_2$ .

- Est ce que  $\mathbf{v}_1, \mathbf{v}_2$  forment une base de  $Vect(\mathbf{v}_1, \mathbf{v}_2)$ ?
- ② Si oui, trouver les coordonnées de  $\mathbf{w}$  relativement à la base  $(\mathbf{v}_1, \mathbf{v}_2)$ .

## Définition : dimension d'un s.e.v.

La dimension  $(\dim(H))$  d'un s.e.v. H non-nul est le nombre des vecteurs de n'importe laquelle de ses bases.

La dimension du s.e.v. nul 0 est 0.

Quelle est la dimension de 
$$\ker(A)$$
 quand  $A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix}$ ?

## Définition : rang d'une matrice

Le rang d'une matrice A, noté rang(A), est la dimension du s.e.v. engendré par ses colonnes.

Déterminer le rang de la matrice 
$$A = \begin{pmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{pmatrix}$$

## Théorème du rang

Si la matrice A a p colonnes, alors  $p = \operatorname{rang}(A) + \operatorname{dim}(\ker(A))$ . En particulier  $\operatorname{rang}(A) \leq p$ .

#### Théorème de la base

Soit H un s.e.v. de dimension p. Tout ensemble de p vecteurs linéairement indépendants est automatiquement une base de H.

### Conditions d'inversibilité

Soit A une matrice de taille  $n \times p$ . Alors les assertions suivantes sont équivalentes

- A est une matrice inversible.
- **2** Les colonnes de A engendrent  $\mathbb{R}^p$ : Vect $(A) = \mathbb{R}^n$ .
- **3** Les colonnes de A forment une base de  $\mathbb{R}^p$ .
- $\bullet$  dim(Vect(A)) = p.
- **6**  $\ker(A) = \mathbf{0}$ .
- $0 \text{ dim}(\ker(A)) = 0$

Dans les 2 cas suivants, trouver sur le plan le vecteur x.