Lista 02 de cálculo 3

- 1. Calcule a derivada direcional, usando a definição (não o gradiente), no ponto e direção indicados
 - (a) $f(x,y)=x^2-y^2$, no ponto P(1,2) e na direção de $\mathbf{v}(t)=2\,\mathbf{i}+2\,\mathbf{j}$ Sol. $-\sqrt{2}$
 - (b) f(x,y)=2x+3y, no ponto P(-1,2) e na direção da reta y=2x Sol. $\frac{8\sqrt{5}}{5}$
 - (c) $f(x,y) = 2 x^2 y^2$, no ponto P(1,1) e
- na direção do vetor tangente à curva C: $\mathbf{r}(t) = t\,\mathbf{i} + t^2\,\mathbf{j}$ no ponto (1,1) Sol. $-\frac{6\sqrt{5}}{5}$
- (d) f(x,y) = 2x+3y-z, no ponto P(1,1,-1) e na direção de **k** Sol. 3
- 2. Calcule o gradiente das seguintes funções
 - (a) $f(x,y) = \cos(x^2 + y)$ Sol. $-(2x \mathbf{i} + \mathbf{j}) \sin(x^2 + y)$
 - (b) $g(x,y) = xyz^{-3}$ **Sol.** $yz^{-3}\mathbf{i} + xz^{-3}\mathbf{j} - 3xyz^{-4}\mathbf{k}$
 - (c) $\phi(x, y, z) = 3x^2y y^2z^2$, no ponto (1, -2, -1)**Sol.** $-12\mathbf{i} - 9\mathbf{j} - 16\mathbf{k}$
 - (d) $\phi(x, y, z) = \ln |\mathbf{r}| e \phi(x, y, z) = \frac{1}{\mathbf{r}}$, se $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ Sol. $\mathbf{r}/|\mathbf{r}|^2 e - \mathbf{r}/|\mathbf{r}|^3$
 - (e) $w(x, y, z) = e^{-5x} \sec x^2 yz$ **Sol.** $e^{-5x} \sec(x^2 yz) [(2xyz \tan(x^2 yz) - 5)]$ i

- $+x^2z\tan(x^2yz)\mathbf{j} + x^2y\tan(x^2yz)\mathbf{k}$
- (f) $w(x, y, z) = y^2 z \tan^3 x$, no ponto $(\pi/4, -3, 1)$ Sol. $54 \mathbf{i} - 6 \mathbf{j} + 9 \mathbf{k}$
- (g) $z(x,y,z) = \frac{xy}{x^2+y^2}$ no ponto (-2,3) Sol. $15\mathbf{i} + 10\mathbf{j}$
- (h) $f(x,y) = e^{x+y}\cos z + (y+1)\sin^{-1}x$, no ponto $P(0,0,\pi/6)$ e na direção de $\mathbf{a} = 12\mathbf{i} + 5\mathbf{j}$ Sol. $\left(\frac{\sqrt{3}+2}{2}\right)\mathbf{i} + \frac{\sqrt{3}}{2}\mathbf{j} - \frac{1}{2}\mathbf{k}$
- 3. Calcule a derivada direcional de f, no ponto P, na direção de ${\bf a}$
 - (a) $f(x,y)=x^2+y^2$, P(1,2) e na direção de $\mathbf{a}=4\,\mathbf{i}+3\,\mathbf{j}$ Sol. 8,8
 - (b) $f(x,y) = x^2y^3$, P(1/6,3) e na direção de $\mathbf{a} = \mathbf{i} + \mathbf{j}$ Sol. $\frac{39}{4\sqrt{2}}$
 - (c) $f(x,y) = \tan^{-1}(xy)$, P(3,4) e na direção de $\mathbf{a} = 4\mathbf{i} + 3\mathbf{j}$ Sol. $\frac{7\sqrt{2}}{290}$
 - (d) $f(x,y)=xe^{-yz}, P(1,2,0)$ e na direção de $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{j}$ Sol. $-\frac{1}{\sqrt{3}}$

- (e) $f(x,y)=x^2+4y^2, P(3,2)$, na direção que aponta do ponto à origem. Sol. $-\frac{50}{4\sqrt{13}}$
- (f) $f(x,y)=\frac{x-y}{xy+2}$, P(1,-1) e na direção de $\mathbf{a}=12\,\mathbf{i}+5\,\mathbf{j}$ Sol. 21/13
- (g) $f(x,y) = \tan^{-1}(x/y) + \sqrt{3}\sin^{-1}(xy/2),$ P(1,1), na direção de $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j}$ Sol. $-\frac{2}{2\sqrt{13}}$
- (h) $f(x,y) = \cos(xy) + e^{yz} + \ln(zx)$, P(1,1,1/2), na direção de $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ Sol. 2

4. Encontre um vetor unitário na direção na qual f cresce mais rapidamente em P e obtenha a taxa de variação de f em P nessa direção.

(a)
$$w(x, y, z) = e^{xy}$$
, no ponto $(2, 3)$
Sol. $\mathbf{u} = \frac{-\mathbf{i} - \mathbf{j}}{\sqrt{13}}$; $-\sqrt{13}e^6$

(c)
$$w(x, y, z) = \sqrt{\frac{x - y}{x + y}}$$
, no ponto $(3, 1)$
Sol. $\mathbf{u} = \left(\frac{\sqrt{2}}{16}\right)(\mathbf{i} - 3\mathbf{j}); -\frac{\sqrt{5}}{8}$

(b)
$$w(x, y, z) = \cos(3x - y)$$
, no ponto $(\pi/6, \pi/4)$
Sol. $\mathbf{u} = \frac{3\mathbf{i} - \mathbf{j}}{\sqrt{10}}$; $-\sqrt{5}$

(d)
$$w(x, y, z) = 4e^{xy}\cos z$$
, no ponto $(0, 1, \pi/4)$
Sol. $\mathbf{u} = -\left(\frac{\mathbf{i} + \mathbf{k}}{\sqrt{2}}\right)$; -4

5. Nos seguintes problemas encontre a equação da reta normal à superfície no ponto indicado

(a)
$$x^2 + y^2 - z^2 = 6$$
 no ponto $(3, -1, 2)$
Sol. $\frac{x-3}{3} = \frac{y+1}{-1} = \frac{z-2}{-2}$

(b)
$$y = e^x \cos z$$
 no ponto $(1, e, 0)$
Sol. $\frac{x-1}{e} = \frac{y-e}{-1}$; $z = 0$

(c)
$$z = e^{3x} \sin 3y$$
 no ponto $(0, \pi/6, 1)$

Sol.
$$\frac{x}{3} = \frac{z-1}{-1}$$
; $y = \pi/6$

(d)
$$x^2 = 12y$$
 no ponto $(6,3,3)$
Sol. $\frac{x-6}{1} = \frac{z-3}{-1}$; $z=3$

(e)
$$z = x^{1/2} + y^{1/2}$$
 no ponto $(1, 1, 2)$
Sol. $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-2}{-2}$

6. Existe uma direção, vista desde o ponto (1, -1, 1), na qual a temperatura descrita pela função T(x, y, z) = 2xy - yz (T é medido em °C e as distâncias em metros) tenha uma taxa de variação de -3°C/m?, justifique sua resposta.

Sol. Não já que
$$-\sqrt{6} > -3$$
.

7. Um insecto está inicialmente na posição (3,9,4) se desloca numa seguindo uma linha reta até o ponto (5,7,3). Qual é a taxa de variação da temperatura do insecto se esta está descrita pela função $T=xe^{y-z}$? (As unidades são °C e as distâncias em metros).

Sol.
$$\frac{e^5}{3}$$

8. Encontre a derivada direcional de $z=x\ln y$ no ponto (1,2) na direção de 30° com $\, {f i} \,$

Sol.
$$\frac{1}{2} \left(\sqrt{3} \ln 2 + \frac{1}{2} \right)$$

9. Se o potencial elétrico em qualquer ponto (x,y) está dado por $V=\ln\sqrt{x^2+y^2}$, encontre a taxa de variação em (3,4) na direção do ponto (2,6)

Sol.
$$\frac{\sqrt{5}}{25}$$

10. Se $f(x, y, z) = x^3 + y^3 - z$, encontre a taxa de variação de f no ponto (1, 1, 2) ao longo da linha $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-2}{-2}$, na direção de incremento de x.

Sol.
$$-\sqrt{17}^2$$

11. A densidade em qualquer ponto de uma placa retangular colocada no plano $xy \in \rho(x,y)$ quilogramas por metro quadrado, onde

$$\rho(x,y) = \frac{1}{\sqrt{x^2 + y^2 + 3}}$$

- (a) Calcule a taxa de variação da densidade no ponto (3,2) na direção do vetor unitário $\cos \frac{3\pi}{2} \mathbf{i} + \sin \frac{2\pi}{3} \mathbf{j}$
- (b) Determine a intensidade (módulo) da máxima taxa de variação de ρ em (3,2).

Sol. (a)
$$\frac{1}{64} (3 \mathbf{i} + 2 \mathbf{j}), (b) \frac{\sqrt{3}}{64}$$

12. Em qualquer ponto de um objeto tridimensional a temperatura está dada pela equação

$$T(x, y, z) = \frac{60}{x^2 + y^2 + z^2}$$

Aqui as distâncias estão medidas em polegas. (a) Calcule a taxa de variação da temperatura no ponto (3, -2, 2) na direção do vetor $-2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$. (b) Determine a intensidade da máxima taxa de variação no ponto (3, -2, 2).

Sol. (a)
$$\frac{36}{33}$$
, (b) $\frac{3\sqrt{17}}{10}$

13. Uma equação da superfície de uma montanha é

$$z = 1200 - 3x^2 - 2y^2$$

onde a distâncias são medidas em metros, o eixo x aponto para o leste e o eixo y para o norte. Uma alpinista se encontra no ponto (-10, 5, 850). (a) Qual é a direção de máxima inclinação? (b) Se a alpinista se desloca para o leste, estará ela descendo ou subindo e qual é a taxa? (c) Se a alpinista se desloca na direção sul-oeste estará ela descendo ou subindo e qual é a taxa?.

(d) Em qual direção a alpinista de se dirigir para permanecer sobre uma curva de nível.

Sol. (a) $\frac{-(3\mathbf{i}-\mathbf{j})}{\sqrt{10}}$, (b) sobe 60 metros por cada metro caminhado para o leste. (c) Desce

 $20\sqrt{20}$ metro por metro caminhado. (d) Aquela que é ortogonal à reta $\frac{\pm (3\mathbf{i} - \mathbf{j})}{\sqrt{10}}$