							, ,					
		FLAT T	UTORIA	112	1913						600042	10015
							-11		1	633	Medua	shah
											A2	
					CAS		1			7		
	81.	convert NFA with Epsilon to equivalent DFA										
			76		Qa							
			0)-	$\stackrel{\epsilon}{\longrightarrow}$	(21) -	€	$\longrightarrow (($	92)	- 0		-3/3	
			6		~	a	1		op		-2	
0							/	- 6	2.0		+3	
					6			13	1	13	17	
		x		Y - G	ceosur	e(x)	1	804,	a) (& cy, k	,)
				0							31/3/11	
	A	2 204		₹ 20	, 2, 19	123	1013	12	, }	1933	£203	
	13	१११		> (211923	EP .	13	2 2	13	× 7 3 7	£ 20 3	1
						11 -17	3	T.	1 200	197,		
		3/0	or	Ь		201	As	the	tora	nsil	cion	
		A+	B	A	4						re and	las
		B*	13	(A (1	60	th	of H	iem	are	funal	
ñ				1(0.1	et it.	الما	ntes	1	1 2 B	ce	ur be	muged.
		1000	1320	10,123	300	10118	1 321	111-3				
		2/2	a	b	01880	55)	3 5 3 750	2/1				
		A *	A	A	Col	1551		5	-			
		.: D	PA	tran	silion	1 d	igra	m		(1)	28 32	
				(1- (9.33	9					
		(610	500	6	()0	dip		11033	-			
				(A				03.5-				
								10				

FOR EDUCATIONAL USE

Sundaram

Henre,

92

93

E-closure(90) = {90,91,933

9

P

21

22

0

23

E-closure (91) = {21,93}

£ - closure (92) = {923

E-closur (93) 2 E933

8 (90,0) = t-Closure (\$ (8 (90, €),0)) = t-Closure (8 (90,9,9,3),0))

93

Ф

= E-clon (8(90,0) V 8(9,0) V 8(9,0)}

= E closure (20022093)

= { 90,91,92193}

& (2011) = 6 - closure (& (8/8° (2016), 1))

= 6-closure (8(q0,9193) 31)

= e-closure (8(qv,1) v8(q1,1) v (q2,11))

= & - closure (pupup)

203

```
8(21,0) = E-Closure (8'(8 (a1,E1,0))
               + + closure ( & (91,93), 0)
                = t-llosure (8(21,0) U 8(23,0))
                = E-Mosure (92 0 93)
                = { 92, 93}
       8 (a111) = t-closure (8^(8(911E), $))
                 - + crosure ( & (2,193),1)
0
                  = f-chosure ( s(a,11) U 8(93,1))
                  = f-cusure ( d v d)
                  = \{ \phi \}
       8(92,0) = E-closing (8^(8(92/E); 1))
                 = &- closure ( & (92), 0))
                 = Ecocosture ED3
       8(9211) = E-CLOSURE (8^(8 (921E), 1)
                  = 6-closure (8(91),10)
                  = E- Mosure (91)
                     8911933
       8 (93,0) = +-closure (8(8(93,E),0)
                  = (closure (8(93), 0)
                  = E-CLOSURE ( & (9310))
                  = 6-Closure (93)
                   = { 933
```

state transition diagram

Teransition diagram

state transition equation is given as

substituting (3) ii (2)

92= 91.6+92.6+92.0.0

R = a + RP & Arden's theorem's: 92 = 9,6 (b+aa)* . . . (4)

Sub. eq @ vi O

91 = E + 91. a + 91. b (b+aa) * a

q,=E+(a+b(b+aa)*a)q

R=Q+RP

: 9,= (a+b(b+aa)+. a)+6) & Arden's

sub 6 in (1)

92 = (a+b(b+aa) * · a) * b(b+aa) * ... (6)

Sub 6 wi 3

9 = cathebraat. ast be braa)t. a

04)

	Designation of the second second second	
3/0	a	b
90	21	92
aj	94	23
92	9,	92
93	9,	94
24*	91	22

for (90,91)

check

$$8(9010) = 91$$
 \times $8(910) = 93$ \times $8(910) = 91$

for (90,92)

$$8(90,0) = 91$$
 \times $8(92,0) = 91$ \times $8(92,0) = 91$ \times

connot be marked.

```
- for carran)
   8 (911a) = 91 x 8(911b) = 95
8 (921b) = 91
   : (q.193) aviit markes (9, 923) => (4, 95)
-) for (20193)
   8(90,0) = 91
8(93,0) = 91
8(93,0) = 91
   Now (azi94) h marked as 1
   : (90,93) +2
 - for (21193)
   8(93,9) = 91 J 8(93,6) = 92
8(93,9) = 91 J 8(93,6) = 94
    (92194) is marked.
   : marking (93,94) as 2
   Now again cheesing for .
-1 (ao, 91)
 8 (90,01) = 91 8 (90,0) = 93 8 (91,0) = 93
   .: marked. we mark (90,9,1) as 3
   for (90,92)
   8 (90,92)
    8(90,92) = 91 ] x 8(90,6) = 92 ] x
8(92,0) = 91 ] x
      cannot be marked -
```

for $(a_1, 9_2)$ $S(q_1, a) = q_1$ $S(a_1, b) = 9_3$ $S(q_2, a) = 9_1$ $S(a_2, b) = 9_2$

· (92,95) is marked marking (91,92) as 3

Mergeing (90,92)

: minimized DPA

