# **COMP 251**

Algorithms & Data Structures (Winter 2021)

Graphs – Flow Network 1

School of Computer Science
McGill University

Slides of (Comp321,2021), Langer (2014), Kleinberg & Tardos, 2005 & Cormen et al., 2009, Jaehyun Park' slides CS 97SI, Topcoder tutorials, T-414-AFLV Course, Programming Challenges books, slides from D. Plaisted (UNC) and Comp251-Fall McGill.

#### Announcements

- Final exam.
  - April 22, 2021 at 2:00 PM April 25, 2021 at 2:00 PM
- Assignment 3.
  - It will be released just after the lecture.

#### Comp 251: Assignment 3

Answers must be submitted online by April 1st (11:55:00 pm), 2021. *Note: we will be accepting submissions without penalty until April 8th, 11:55 pm.* 

- 3 questions.
  - Topics needed to solve the assignment are already covered (after finishing todays lecture).

## Outline

- Graphs.
  - Introduction.
  - Topological Sort. / Strong Connected Components
  - Network Flow 1.
    - Introduction
    - Ford-Fulkerson
  - Network Flow 2.
  - Shortest Path.
  - Minimum Spanning Trees.
  - Bipartite Graphs.

#### Flow Network

G = (V, E) directed.

Each edge (u, v) has a *capacity*  $c(u, v) \ge 0$ .

If  $(u,v) \notin E$ , then c(u,v) = 0.

**Source** vertex s, **sink** vertex t, assume  $s \sim v \sim t$  for all  $v \in V$ .

c(u,v) is a non-negative integer. If  $(u,v) \in E$ , then  $(u,v) \notin E$ . No incoming edges in source. No outcoming edges in sink.



#### Flow Network - Definitions

**Positive flow:** A function p :  $V \times V \rightarrow \mathbf{R}$  satisfying:

**Capacity constraint:** For all  $u, v \in V$ ,  $0 \le p(u, v) \le c(u, v)$ 



Flow conservation: For all  $u \in V - \{s, t\}$ ,  $\sum_{v \in V} p(v, u) = \sum_{v \in V} p(u, v)$ 



Flow in: 0 + 2 + 1 = 3

Flow out: 2 + 1 = 3

## Flow Network - Example



- Flow in == Flow out
- Source s has outgoing flow
- Sink t has ingoing flow
- Flow out of source s == Flow in the sink t

#### The value of the

**flow:** the total flow out of the source minus the flow into the source

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

|f|is also equal to the total net flow into the target vertex *t* 

#### Maximum-Flow Problem

Given *G*, *s*, *t*, and *c*, find a flow whose value is maximum.



#### Maximum-Flow Problem - Applications



8M-1972 10-24-55 SECRET -35-

Fig. 7 — Traffic pattern: entire network available

Legend:

- International boundary

B) Railway operating division

Capacity: 12 each way per day.
Required flow of 9 per day toward
destinations (in direction of arrow)
with equivalent number of returning
trains in opposite direction

All capacities in victors of tons each way per day

Origins: Divisions 2, 3W, 3E, 25, 13N, 13S, 12, 52(USSR), and Roumania

Pestinations: Divisions 3, 6, 9 (Poland);
B (Czechoslovavakia); and 2, 3 (Austria)

Alternative destinations: Germany or East
Germany

Note IIX at Division 9, Poland

```
Initialize f = 0
While true {
     if (\exists path P from s to t such that all
edges have a flow less than capacity)
     then
           increase flow on P up to max
capacity
     else
          break
```

```
Initialize f = 0
While true {
      if (\exists a path P from s to t s.t. all
edges e \in P f(e) < c(e)
      then {
            \beta = \min\{ c(e) - f(e) \mid e \in P \}
            for all e \in P \{ f(e) += \beta \}
      } else { break }
```







$$|f|=4$$



$$|f|=5$$

Example where algorithm fails!



Example where algorithm fails!



# Maximum-Flow – Algorithm - Challenges

How to choose paths such that:

- We do not get stuck.
  - We need a way to 'un-do' actions.
- We guarantee to find the maximum flow
- The algorithm is efficient!

# Maximum-Flow – A better Algorithm

Motivation: If we could subtract flow, then we could find it.



#### Maximum-Flow – A better Algorithm

Motivation: If we could subtract flow, then we could find it.



- We push 10 units of flow along (s, v).
  - this now results in too much flow coming into v.
- So we "undo" 10 units of flow on (u, v).
  - this restores the conservation condition at v but results in too little flow leaving u.
- So, finally, we push 10 units of flow along (u, t).
  - restoring the conservation condition at *u*.
- We now have a valid flow, and its value is 30.

#### Maximum-Flow – A better Algorithm

Motivation: If we could subtract flow, then we could find it.



- This is a more general way of pushing flow: We can push forward on edges with leftover capacity, and we can push backward on edges that are already carrying flow, to divert it in a different direction.
  - Residual graphs provides a systematic way to search for forward-backward operations such as this. A flow in a residual network provides a roadmap for adding flow to the original flow network.

# Maximum-Flow – Residual graphs

Given a flow network G=(V,E) with edge capacities c and a given flow f, define the *residual graph*  $G_f$  as:

- G<sub>f</sub> has the same vertices as G
- The edges E<sub>f</sub> have capacities c<sub>f</sub> (called residual capacities) that allow us to change the flow f, either by:
  - Adding flow to an edge e ∈ E (forward edge)
    - For each edge e = (u, v) of G on which f(e) < c<sub>e</sub>, there are c<sub>e</sub> f(e)
       "leftover" units of capacity on which we could try pushing flow forward.
  - Subtracting flow from an edge ∈ E (backward edge)
    - For each edge e = (u, v) of G on which f (e) > 0, there are f (e) units of flow that we can "undo" if we want to, by pushing flow backward.
- The edges in E<sub>f</sub> are either edges in E or their reversals.

$$|E_f| \le 2 |E|$$

## Maximum-Flow – Residual graphs

```
for each edge e = (u, v) \in E
       if f(e) < c(e)
       then {
              put a forward edge (u,v) in E<sub>f</sub>
              with residual capacity c_f(e) = c(e) - f(e)
       }
       if f(e) > 0
       then {
              put a backward edge (v,u) in E<sub>f</sub>
              with residual capacity c_f(e) = f(e)
```

# Residual graphs – Example 1/3



# Residual graphs – Example 2/3



# Residual graphs – Example 3/3



# Residual graphs – Example 3/3



# Augmenting path

An augmenting path is a path from the source s to the sink t in the residual graph  $G_f$  that allows us to increase the flow.



Q: By how much can we increase the flow using this path?

# Augmenting path - Example



# Augmenting path - Example

Residual graph G<sub>f</sub>

Augmented path in G<sub>f</sub> (value of the flow is the bottleneck value)



# Augmenting path - Example



McGill

# Methodology

- Compute the residual graph G<sub>f</sub>
- Find a path P
- Augment the flow f along the path P
  - 1. Let  $\beta$  be the bottleneck (smallest residual capacity  $c_f(e)$  of edges on P)
  - 2. Add  $\beta$  to the flow f(e) on each edge of P.

Q: How do we add  $\beta$  into G?

# Augmenting a path

```
f.augment(P) {
       \beta = \min \{ c_f(e) \mid e \in P \}
       for each edge e = (u,v) \in P \{
               if e is a forward edge {
                       f(e) += \beta
               } else { // e is a backward edge
                       f(e) = \beta
```

# Ford-Fulkerson algorithm

```
Max-Flow
  Initially f(e) = 0 for all e in G
  While there is an s-t path in the residual graph G_f
    Let P be a simple s-t path in G_f
    f' = \operatorname{augment}(f, P)
    Update f to be f'
    Update the residual graph G_f to be G_{f'}
  Endwhile
  Return f
```

# Ford-Fulkerson algorithm



# Ford-Fulkerson algorithm



# Ford-Fulkerson algorithm - complexity

• Let 
$$C = \sum_{\substack{e \in E \\ outgoing \\ from s}} c(e)$$

- Finding an augmenting path from s to t takes O(|E|)
   (e.g. BFS or DFS).
- The flow increases by at least 1 at each iteration of the main while loop.
- The algorithm runs in O(C · |E|)

## Outline

- Graphs.
  - · Introduction.
  - Topological Sort. / Strong Connected Components
  - Network Flow 1.
    - Introduction
    - Ford-Fulkerson
  - Network Flow 2.
  - Shortest Path.
  - Minimum Spanning Trees.
  - · Bipartite Graphs.

