- 4.21 Some simple QCQPs. Give an explicit solution of each of the following QCQPs.
 - (a) Minimizing a linear function over an ellipsoid centered at the origin.

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & x^T A x \leq 1, \end{array}$$

where $A \in \mathbf{S}_{++}^n$ and $c \neq 0$. What is the solution if the problem is not convex $(A \notin \mathbf{S}_{+}^n)$?

Solution. If $A \succ 0$, the solution is

$$x^{\star} = -\frac{1}{\|A^{-1/2}c\|_2}A^{-1} \quad c, \qquad p^{\star} = -\|A^{-1/2}c\|_2 = -\sqrt{c^TA^{-1}c}.$$

This can be shown as follows. We make a change of variables $y = A^{1/2}x$, and write $\tilde{c} = A^{-1/2}c$. With this new variable the optimization problem becomes

$$\begin{array}{ll} \text{minimize} & \tilde{c}^T y \\ \text{subject to} & y^T y \leq 1, \end{array}$$

i.e., we minimize a linear function over the unit ball. The answer is $y^* = -\tilde{c}/\|\tilde{c}\|_2$. In the general case, we can make a change of variables based on the eigenvalue decomposition

$$A = Q \operatorname{diag}(\lambda) Q^{T} = \sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}.$$

We define y = Qx, b = Qc, and express the problem as

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n b_i y_i \\ \text{subject to} & \sum_{i=1}^n \lambda_i y_i^2 \leq 1. \end{array}$$

If $\lambda_i > 0$ for all i, the problem reduces to the case we already discussed. Otherwise, we can distinguish several cases.

- $\lambda_n < 0$. The problem is unbounded below. By letting $y_n \to \pm \infty$, we can make any point feasible.
- $\lambda_n = 0$. If for some $i, b_i \neq 0$ and $\lambda_i = 0$, the problem is unbounded below.
- $\lambda_n = 0$, and $b_i = 0$ for all i with $\lambda_i = 0$. In this case we can reduce the problem to a smaller one with all $\lambda_i > 0$.
- (b) Minimizing a linear function over an ellipsoid.

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & (x-x_c)^T A (x-x_c) \leq 1, \end{array}$$

where $A \in \mathbf{S}_{++}^n$ and $c \neq 0$.

Solution. We make a change of variables

$$y = A^{1/2}(x - x_c),$$
 $x = A^{-1/2}y + x_c,$

and consider the problem

The solution is

$$y^* = -(1/\|A^{-1/2}c\|_2)A^{-1/2}c, \qquad x^* = x_c - (1/\|A^{-1/2}c\|_2)A^{-1}c.$$

(c) Minimizing a quadratic form over an ellipsoid centered at the origin.

$$\begin{array}{ll} \text{minimize} & x^T B x \\ \text{subject to} & x^T A x \leq 1, \end{array}$$

where $A \in S_{++}^n$ and $B \in S_{+}^n$. Also consider the nonconvex extension with $B \notin S_{+}^n$. (See §B.1.)

Solution. If $B \succeq 0$, then the optimal value is obviously zero (since $x^T B x \geq 0$ for all x, with equality if x = 0).

In the general case, we use the following fact from linear algebra. The smallest eigenvalue of $B \in \mathbb{S}^n$, can be characterized as

$$\lambda_{\min}(B) = \inf_{x^T x = 1} x^T B x.$$

To solve the optimization problem

minimize
$$x^T B x$$

subject to $x^T A x \le 1$,

with A > 0, we make a change of variables $y = A^{1/2}x$. This is possible since A > 0, so $A^{1/2}$ is defined and nonsingular. In the new variables the problem becomes

$$\begin{array}{ll} \mbox{minimize} & y^T A^{-1/2} B A^{-1/2} y \\ \mbox{subject to} & y^T y \leq 1. \end{array}$$

If the constraint $y^T y \leq 1$ is active at the optimum $(y^T y = 1)$, then the optimal

$$\lambda_{\min}(A^{-1/2}BA^{-1/2}),$$

by the result mentioned above. If $y^Ty < 1$ at the optimum, then it must be at a point where the gradient of the objective function vanishes, i.e., By = 0 In that $p^* = \left\{ \begin{array}{ll} \lambda_{\min}(A^{-1/2}BA^{-1/2}) & \lambda_{\min}(A^{-1/2}BA^{-1/2}) \leq 0 \\ 0 & \text{otherwise.} \end{array} \right.$ ase any (normalize-1). case the optimal value is zero.

To summarize, the optimal value is

$$p^* = \begin{cases} \lambda_{\min}(A^{-1/2}BA^{-1/2}) & \lambda_{\min}(A^{-1/2}BA^{-1/2}) \le 0\\ 0 & \text{otherwise.} \end{cases}$$

In the first case any (normalized) eigenvector of $A^{-1/2}BA^{-1/2}$ corresponding to the smallest eigenvalue is an optimal y. In the second case y = 0 is optimal.

- 4.40 LPs, QPs, QCQPs, and SOCPs as SDPs. Express the following problems as SDPs.
 - (a) The LP (4.27).

Solution.

$$\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & \mathbf{diag}(Gx-h) \preceq 0\\ & Ax=b. \end{array}$$

(b) The QP (4.34), the QCQP (4.35) and the SOCP (4.36). Hint. Suppose $A \in \mathbf{S}^r_{++}$, $C \in \mathbf{S}^s$, and $B \in \mathbf{R}^{r \times s}$. Then

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0 \iff C - B^T A^{-1} B \succeq 0.$$

For a more complete statement, which applies also to singular A, and a proof, see $\S A.5.5.$

Solution.

(a) QP. Express $P = WW^T$ with $W \in \mathbf{R}^{n \times r}$.

minimize
$$t + 2q^T x + r$$

subject to
$$\begin{bmatrix} I & W^T x \\ x^T W & tI \end{bmatrix} \succeq 0$$

$$\mathbf{diag}(Gx - h) \preceq 0$$

$$Ax = b,$$

with variables $x, t \in \mathbf{R}$.

(b) QCQP. Express $P_i = W_i W_i^T$ with $W_i \in \mathbf{R}^{n \times r_i}$.

minimize
$$t_0 + 2q_0^T x + r_0$$
subject to
$$t_i + 2q_i^T x + r_i \le 0, \quad i = 1, \dots, m$$
$$\begin{bmatrix} I & W_i^T x \\ x^T W_i & t_i I \end{bmatrix} \succeq 0, \quad i = 0, 1, \dots, m$$
$$Ax = b,$$

with variables $x, t_i \in \mathbf{R}$.

(c) SOCP.

minimize
$$c^T x$$

subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A x_i + b_i)^T & (c_i^T x + d_i)I \end{bmatrix} \succeq 0, \quad i = 1, \dots, N$$

$$F x = q.$$

By the result in the hint, the constraint is equivalent with $||A_ix+b_i||_2 < c_i^T x+d_i$ when $c_i^T x+d_i>0$. We have to check the case $c_i^T x+d_i=0$ separately. In this case, the LMI constraint means $A_ix+b_i=0$, so we can conclude that the LMI constraint and the SOC constraint are equivalent.

(c) The matrix fractional optimization problem

minimize
$$(Ax+b)^T F(x)^{-1} (Ax+b)$$

where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$,

$$F(x) = F_0 + x_1 F_1 + \dots + x_n F_n,$$

with $F_i \in \mathbf{S}^m$, and we take the domain of the objective to be $\{x \mid F(x) \succ 0\}$. You can assume the problem is feasible (there exists at least one x with $F(x) \succ 0$). Solution.

minimize
$$t$$

subject to $\begin{bmatrix} F(x) & Ax + b \\ (Ax + b)^T & t \end{bmatrix} \succeq 0$

with variables $x, t \in \mathbf{R}$. The LMI constraint is equivalent to

$$(Ax + b)^T F(x)^{-1} (Ax + b) \le t$$

if $F(x) \succ 0$.

More generally, let

$$f_0(x) = (Ax + b)^T F(x)^{-1} (Ax + b), \quad \text{dom } f_0(x) = \{x \mid F(x) > 0\}.$$

We have

$$\mathbf{epi}\,f_0 = \left\{ (x,t) \, \left| \, F(x) \succ 0, \, \left[\begin{array}{cc} F(x) & Ax + b \\ (Ax + b)^T & t \end{array} \right] \succeq 0 \right\}.$$

Then $cl(epi f_0) = epi g$ where g is defined by

$$\begin{aligned} & \operatorname{epi} g &=& \left\{ (x,t) \; \left| \; \left[\begin{array}{cc} F(x) & Ax+b \\ (Ax+b)^T & t \end{array} \right] \succeq 0 \right. \right\} \\ & g(x) &=& \inf \left\{ t \; \left| \; \left[\begin{array}{cc} F(x) & Ax+b \\ (Ax+b)^T & t \end{array} \right] \succeq 0 \right. \right\}. \end{aligned}$$

We conclude that both problems have the same optimal values. An optimal solution for the matrix fractional problem is optimal for the SDP. An optimal solution for the SDP, with F(x) > 0, is optimal for the matrix fractional problem. If F(x) is singular at the optimal solution of the SDP, then the optimum for the matrix fractional problem is not attained.

$$x_1F_1 + \cdots + x_nF_n + G \leq 0$$

where F_1, \ldots, F_n , G are complex $n \times n$ Hermitian matrices, *i.e.*, $F_i^H = F_i$, $G^H = G$, and $x \in \mathbb{R}^n$ is a real variable. A complex SDP is the problem of minimizing a (real) linear function of x subject to a complex LMI constraint.

Complex LMIs and SDPs can be transformed to real LMIs and SDPs, using the fact that

$$X\succeq 0\iff \left[\begin{array}{cc}\Re X & -\Im X\\ \Im X & \Re X\end{array}\right]\succeq 0,$$

where $\Re X \in \mathbf{R}^{n \times n}$ is the real part of the complex Hermitian matrix X, and $\Im X \in \mathbf{R}^{n \times n}$ is the imaginary part of X.

Verify this result, and show how to pose a complex SDP as a real SDP.

Solution. For a Hermitian matrix $\Re X=(\Re X)^T$ and $\Im X=-\Im X^T$. Now let z=u+iv, where u,v are real vectors, and $i=\sqrt{-1}$. We have

$$\begin{split} z^H X z &= (u - iv)^T (\Re X + i \Im X) (u + iv) \\ &= u^T \Re X u + v^T \Re X v - u^T \Im X v + v^T \Im X u \\ &= \begin{bmatrix} u^T & v^T \end{bmatrix} \begin{bmatrix} \Re X & -\Im X \\ \Im X & \Re X \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}. \end{split}$$

Therefore $z^H X z \ge 0$ for all z if and only if the $2n \times 2n$ real (symmetric) matrix above is positive semidefinite.

Thus, we can convert a complex LMI into a real LMI with twice the size. The conversion is linear, a complex LMI becomes a real LMI, of twice the size.

4.50 Bi-criterion optimization. Figure 4.11 shows the optimal trade-off curve and the set of achievable values for the bi-criterion optimization problem

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(\|Ax - b\|^{2}, \|x\|_{2}^{2}),$

for some $A \in \mathbf{R}^{100 \times 10}$, $b \in \mathbf{R}^{100}$. Answer the following questions using information from the plot. We denote by x_{ls} the solution of the least-squares problem

minimize
$$||Ax - b||_2^2$$
.

- (a) What is $||x_{ls}||_2$?
- (b) What is $||Ax_{ls} b||_2$?
- (c) What is $||b||_2$?
- (d) Give the optimal value of the problem

minimize
$$||Ax - b||_2^2$$

subject to $||x||_2^2 = 1$.

(e) Give the optimal value of the problem

(f) Give the optimal value of the problem

minimize
$$||Ax - b||_2^2 + ||x||_2^2$$
.

(g) What is the rank of A?

Solution.

- (a) $||x_{ls}||_2 = 3$.
- (b) $||Ax_{ls} b||_2^2 = 2$.
- (c) $||b||_2 = \sqrt{10}$.
- (d) About 5.
- (e) About 5.
- (f) About 3+4.
- (g) $\operatorname{\mathbf{rank}} A = 10$, since the LS solution is unique.