2014-2015 第一学期基物实验期末试题

一、单项选择题
1.在相同实验条件下,每次测量的误差大小和正负均无法确定的是
a.仪器误差 b.系统误差 c.随机误差 d.粗大误差
2. 利用自由落体运动,由公式 $h=\frac{1}{2}gt^2$ 我们可以测出重力加速度 g 的值。设测量环
境的温度为 $25~^{0}C$,现用一把在 $20~^{0}C$ 时校准的钢尺测量高度 h ,又知测量时间 t
的秒表比标准表走的稍快,若忽略其误差,则 g 的测量值有
a. 正误差 b. 负误差 c. 误差的正负不确定 d. 正负误差部分抵偿
3.某人用最小分度 1mm 的米尺测得物体甲的长度为 75.00cm,用精度为 0.02mm
的游标卡尺测得物体乙的长度变为 7.50mm, 用千分尺测得物体丙的长度为
0.750mm 对这三个测量结果,下列说法正确的是
a. 甲的测量准确度最高 b. 甲的测量准确度最低
c. 丙的测量准确度最高 d. 乙和丙的准确度相同
4. 对一物理量进行等精度多次测量,其算术平均值是
a. 真值 b. 最接近真值的值 c. 误差最大的值 d. 误差为零的值
5. 下列说法中错误的是
a. 在不同的实验条件下,系统误差和随机误差可以相互转换
b. 当测量条件改变之后,系统误差的大小和符号随之变换
c. 随机误差可以通过多次重复测量发现
d. 一组测量数据中,出现异常的值即为极大误差, 应予以剔除
6. 对满足正太分布的物理量进行多次测量,任取其中一次测量结果作为最终表述
结果 $x_1 \pm \sigma$ (x),则其置信概率
a. $> 68.3\%$ b. $\approx \frac{2}{3}$ c. =68.3% d. =99.73%
7. 用平均值表示测量结果 $ar{x}$ $\pm S$ $(ar{x})$ 置信概率
a. 高 b. 低 c. 相等 d. 不定
8 多量程由压夷 (1 级,3-7 5-15-30) 用于监测某由路两端由压,加里去 3V 挡

去测 3V 电压, 具相对精确度为
a. 0. 006 b. 0. 01 c. 0. 03 d. 0. 08
9. 某长度测量值为 2. 132cm 则所用仪器可能是
a. 毫米尺 b. 50 分度卡尺 c. 20 分度卡尺 d. 千分尺
10. 用卡尺测量某一物体的体积,已知 $\frac{\mu(V)}{V}$ =2%, 则测得 V=3. 4012 cm^3 ,则下列结
果正确的是
a. $V = (3.4012 \pm 0.0680) \ cm^3$ b. $V = (3.40 \pm 0.07) \ cm^3$
d. $V = (3.40 \pm 0.02) \ cm^3$ d. $V = (3.4012 \pm 0.0002) \ cm^3$
二、填空题
11. 由于测量系统偶然偏离所规定的测量条件和方法或在记录,计算数据是而出
现失误而产生的误差称
12(精密度,正确度,准确度)中表示测量结果中系统误差的大小。
13. 在满足正太分布的随机误差中,绝对值小的误差比绝对值大的误差出现的几
率
14. 如第 14 题图所示游标卡尺的读数为(cm),该游标的仪器误差
为Δ
15.按有效数字运算法则计算 $y = \frac{8.032}{6.508 - 6.506} + 131.54 =$
16.测得 10 个条纹间距的结果是 10d=2.2276mm,平均值的不确定度
μ (10d) =9.52 μm , d $\pm \mu$ (d), (\pm) mm
三、多项多选题
17.下列情况属于系统误差的是
a. 千分尺零点不准 b. 电源电压不稳引起的测量值起伏
c. 游标的分度不均匀 d. 磁电系电表永久磁铁的磁场减弱
18. 下列关于测量的说法正确的是
a. 测量是为确定被测对象的最值而进行的一组操作
b. 测量结果是真值的最佳估计
c. 在相同测量条件下,对同一被测量进行多次测量所得结果应具有一致性

d. 改变测量条件,对同一被测量进行多次测量所得结果的一致性称为测量结果的

一致性

19. 下列平均值的标准(偏)差 $S(\bar{x})$ 的计算公式中,______是正确的。

a.
$$\sqrt{\frac{\overline{x^2} - \bar{x}^2}{k-1}}$$

a.
$$\sqrt{\frac{\overline{x^2} - \overline{x}^2}{k-1}}$$
 b. $\sqrt{\frac{\sum (x_i - \overline{x})^2}{k-1}}$ c. $\sqrt{\frac{\overline{x^2} - \overline{x}^2}{k(k-1)}}$ d. $\sqrt{\frac{\overline{x^2} - \overline{x}^2}{k-1}}$

C.
$$\sqrt{\frac{\overline{x^2} - \bar{x}^2}{k(k-1)}}$$

d.
$$\sqrt{\frac{\bar{x}^2 - \bar{x}^2}{k-1}}$$

- 20. 下列关于仪器误差的叙述中()是错误的(按照物理实验课的简化要求)
- a. 千分尺的仪器误差等于最小分度的一半
- b. 游标卡尺的仪器误差等于游标精度的一半
- c. 磁电式仪器的仪器误差=等级%×测量值
- d. 箱式电桥 Δ_{α} =等级%(测量值+基准值/10)
- 21. 对物理量 $A = \frac{xy}{x-y}$,下列公式中正确的是(

a. u (A) =
$$\sqrt{\frac{y^2u^2(x)}{(x-y)^2} + \frac{x^2u^2(y)}{(x-y)^2}}$$

a. u (A) =
$$\sqrt{\frac{y^2 u^2(x)}{(x-y)^2} + \frac{x^2 u^2(y)}{(x-y)^2}}$$
 b. u (A) = $\sqrt{\left(\frac{1}{x} - \frac{1}{x-y}\right)^2 u^2(x) + \left(\frac{1}{y} + \frac{1}{x-y}\right)^2 u^2(y)}$

d.
$$\frac{u(A)}{A} = \sqrt{\frac{y^4 u^2(x)}{(x-y)^4} + \frac{x^4 u^2(y)}{(x-y)^4}}$$

d.
$$\frac{u(A)}{A} = \sqrt{\frac{y^4 u^2(x)}{(x-y)^4} + \frac{x^4 u^2(y)}{(x-y)^4}}$$
 d. $\frac{u(A)}{A} = \sqrt{\left(\frac{1}{x} - \frac{1}{x-y}\right)^2 u^2(x) + \left(\frac{1}{y} + \frac{1}{x-y}\right)^2 u^2(y)}$

四、实验类题

22. (单选题)用霍尔位置传感器测金属弹性模量时, 要有一个均匀梯度的磁场,同时将霍尔元件置于适 当位置,下图中()可产生正确的磁场,并将霍 尔元件摆放到正确位置。

23. (单项选择题) 在测定水的溶解热实验中, 也可采用如图 23 所 示的散热修正方法,该方法的修正要点是()

- a. 使系统从外面吸收的热量和向外界散失的热量相互抵消
- b. 使系统向外界散热的时间变为无限短, 从而不散失热量。
- c. 利用量热气形成孤立系统,因此没有热量散失
- d. 要保证合适的初温和末温使 $T_2 \theta = \theta T_3$
- 24. (单项选择题)用示波器观察李萨如图形时,若看到的图形不稳定,应调节

()

- a. 信号发生器频率的细调旋钮 b. 示波器 V O L I T / D I V 的档位
- c. 示波器的水平或垂直位移旋钮 d. 示波器的电平旋钮
- 25. (单项选择题) 在题 25 图所示的李萨如图形中, 如果 x 轴和 y 轴均为输入正弦信号, 且 x 轴输入信号频率为 150Hz 那么 y 轴方 向的输入频率是()

- a. 150Hz b. 50Hz c. 450Hz d. 300Hz
- 26. (单项选择题)单电桥不适合测低电阻的原因是()
- a. 由于导线电阻太大,造成测量灵敏度太低
- b. 由于接触电阻太大,造成测量灵敏度太低
- c. 由于附加电阻和待测电阻等量级, 使测量结果出现较大的正误差
- d. . 由于附加电阻大于待测电阻, 使测量结果出现较大的负误差
- 27. (单项选择题)在第 27 题图所示的四端钮电阻中,
- ()端是电压端(用于接电压表)
- a. AB 端 b. CD 两端 c. AC 两端 d. BD 两端

- 28. (单项选择题)用双电桥测低值电阻时,通过电阻的电流通常比较大,从而 产生大量焦耳热。由于电路各部分结构不均匀,于是产生附加热电动势,造成各 部分温度不均匀,于是产生附加热电动势,为了消除附加热电动势对测量结果的 影响,实验中应当()
- a. 多测几组数据
- b. 电流正反向测量去平均值
- c. 关掉电源, 过一会再测 d. 用其他方法测量
- 29. (单项选择题)在电位差计实验中,环境温度的改变主要对()产生影 响,从而影响实验结果。
- a. 标准电池的电动势 b. 待测电池的电动势 c. 检流计内测 d. 检流计灵敏度
- 30. (单项选择题)在平行光管法测凸透镜实验中,玻罗分划板每对刻度线的间 距分别为 20、10、4、2、1 (mm) 若对各玻罗分划板线对的像进行单次测量,

则()

- a. y=1mm 的刻线对的测量误差最小 b. y=20mm 的刻线对的测量误差最小
- c. v=4mm 的刻线对的测量误差最小 d. 各刻线对的测量误差相等

31. (单项选择题)已知劈尖干涉测细丝直径的公式为 $d=\frac{L}{l}\cdot\frac{\lambda}{2}$,下列关于劈尖干 涉说法中错误的是() a. 劈尖干涉和牛顿环都是等厚干涉 b. 测细丝直径的公式中 1 是干涉条纹间距 c. 上式中的 L 是细丝到玻璃缝隙末端的距离 d. 上式说明细丝直径与波长成正比 32. (多项选择题) 光杠杆法测弹性模量实验中,弹性模量最终可表示为 $E=\frac{16FLH}{\pi R^2 hc}$ 下列各物理量中描述错误的是 () a. b 是光杠杆前后足间距离 b. H 是光杠杆镜面到望远镜间距离 c. L 是两卡具之间钢丝的长度 d. C 是拉力为 F 作用下钢丝的伸长量 33. (多项选择题)测圆筒的转动惯量时,若仅摆动几个周期就停下不摆了,下 面叙述中原因正确的是() a. 圆筒与圆盘之间有相对滑动。 b. 圆筒没有放正, 使其中心轴与仪器转轴不平行。 c. 圆盘与转轴的紧固螺钉没有钉紧。 d. 没有问题这是正常现象, 少测几个周期即可。 34. (多项选择题)下列关于"稳态法测不良导体热导率实验"的说法中,正确 的是() a. 所谓稳态法,就是使待测样品内部形成恒定的均匀温度场 b. 利用本实验的实验装置也可以测金属的热导率, 只要将样品换成金属材料即可 c. 当传热达到稳定状态时,通过样品盘上表面的热流强度 $\frac{\delta Q}{\delta t}$ 与下盘的散热速率相 d. 测量冷却速率 $\frac{\delta Q}{\delta t}$ 时,要让下铜盘单独散热,不能将样品放在上面。 37. (选择填空题)在最小偏向法测三棱镜折射率实验中, 最小偏向角的定义 是 与 (入射光,反射光,入射面法线,出射面法线)之间夹 角的最小值,实验中应测量_____与____与(绿十字,谱线,平行光管狭 缝)之间夹角。 39. (选择填空题)双棱镜实验中各元件位置固定,用氦氖激光器(λ=632.8nm

代替半导体激光器 (λ=650nm) 虚光源的间距将_____(增大,减小,不变)

43. 利用分光仪测量平板玻璃的折射率实验的数据如下表所示

$$\emptyset_{0 \neq \pm} = 182^{\circ}10'$$
 $\emptyset_{0 \neq \pm} = 2^{\circ}12'$ d=5.090nm $\lambda = 583.9$ nm

k	5	10	15	20	25	30	35	40	45	50
Ø _k 痃	176°39′	176°55′	177°11′	177°30′	177°50′	178°09′	178°33′	178°59′	179°29′	180°05′
Ø _{k右}	356°41′	356°57′	357°12′	357°31′	357°52′	358°11′	358°33′	359°00′	359°30′	360°06′

其中, \emptyset_{0} \underline{c} 、 \emptyset_{0} \underline{c} 分别为望远镜对准玻璃法线时左、右窗的读数; $\emptyset_{k\underline{c}}$ $\emptyset_{k\underline{c}}$ $\emptyset_{k\underline{c}}$ $\emptyset_{k\underline{c}}$ $\emptyset_{k\underline{c}}$ 为望远镜第 k 条谱线时左右窗的读数,d 为玻璃板的厚度,仅用千分尺测量了一次, λ 为入射光波长。试由公式 $\mathbf{n} = \frac{d}{N\lambda}$ $(\sin^2\theta_{k+s} - \sin^2\theta_k)$ 利用逐差法计算玻璃的折射率 n 及其不确定度 \mathbf{u} (\mathbf{n})。(提示: 为确保不影响最后结果,中间过程应多保留几位有效数字)

解:根据公式:
$$n=\frac{d}{N\lambda}$$
 $(\sin^2\theta_{k+s}-\sin^2\theta_k)$,可设 $\sin^2\theta_k=\frac{n_1\lambda}{d}$ k 若令 $y=\sin^2\theta_k$ $x=k$,则有 $n=\frac{d}{\lambda}\frac{\Delta y}{\Delta x}$ \emptyset_0 $\underline{\pi}=182^o10'$ \emptyset_0 $\underline{\pi}=2^o12'$ d=5.090nm $\lambda=583.9$ nm

k	5	10	15	20	25	30	35	40	45	50
Ø _{k左}	176°39′	176°55′	177°11′	177°30′	177°50′	178°09′	178°33′	178°59′	179°29′	180°05′
Ø _{k右}	356°41′	356°57′	357°12′	357°31′	357°52′	358°11′	358°33′	359°00′	359°30′	360°06′
θ_k										
$y(\times 10^{-3})$	9. 242	8. 373	7. 571	6.643	5. 709	4. 907	4. 016	3. 100	2. 205	1. 332

逐差结果:

i	1	2	3	4	5	平均
$\Delta x = N$	25	25	25	25	25	25
y_i	0. 009242	0. 008373	0. 007571	0. 006643	0. 005709	/
y_{i+N}	0. 004907	0.004016	0.003100	0. 002205	0.001332	/
Δу						0. 004396

于是
$$n = \frac{d}{\lambda} \frac{\Delta y}{\Delta x} = \frac{5.09}{589.3 \times 10^{-3}} = \frac{0.004396}{25} = 1.5188$$

不确定度:
$$u_a$$
 (Δy) = $\sqrt{[\Delta y^2 - (\Delta y)^2]/(5*4)}$ =0.0000255

$$u_b(\Delta\theta) = \sqrt{u_b^2(\theta_k) + u_b^2(\theta_{k-N})} = \sqrt{2} * 1'/\sqrt{3} = \sqrt{2}/(60 * \sqrt{3}) = 0.0136^{\circ}$$
, 其中

$$u_b (\theta_k) = u_b (\theta_{k-N}) = \frac{\Delta t \ell}{\sqrt{3}}$$

$$u_b~(\Delta y) = \sin 2\bar{\theta} u_b~(\Delta \theta) = \sin (2 \times 4^o 2.35') \times 0.0136 = 0.00191$$

则
$$u(\Delta y) = \sqrt{u_a^2(\Delta y) + u_b^2(\Delta y)} = \sqrt{0.0000255^2 + 0.00191^2} = 0.00191$$

$$\mathbb{X}$$
 $\underline{\mathbf{u}}(\mathbf{d}) = \underline{\mathbf{u}}_b(d) = \underline{\Delta} / \underline{\hat{\mathbf{v}}} / 5\sqrt{3} = 0.005 / 5\sqrt{3} = 0.000577$ (mm)

则有

$$u (n) /n = \sqrt{(u (d)/d)^2 + (u (\Delta y)/\Delta y)^2} =$$

$$\sqrt{(0.000577/5.090)^2 + (0.00191/0.004396)^2} = 0.434$$

u (n)=n·u (n)/
$$n$$
=1.5188× 0.0434 = 0.0659