Carnot Heat Engine

Raj Pala,

rpala@iitk.ac.in

Department of Chemical Engineering,
Associate faculty of the Materials Science Programme,
Indian Institute of Technology, Kanpur.

Previous lecture: Kelvin and Absolute T

Carnot Heat Engine

$$\eta_{\rm th} = 1 - \frac{Q_L}{Q_H}$$

$$\eta_{\text{th,rev}} = 1 - \frac{T_L}{T_H}$$

$$egin{aligned} egin{aligned} < & \eta_{ ext{th,rev}} \ = & \eta_{ ext{th,rev}} \ > & \eta_{ ext{th,rev}} \end{aligned}$$

 $\eta_{\text{th,rev}}$ irreversible heat engine $\eta_{\text{th,rev}}$ reversible heat engine $\eta_{\text{th,rev}}$ impossible heat engine

Comparing efficiencies of Heat Engine

Analysis of a Carnot Heat Engine

$$\eta_{\text{th,rev}} = 1 - \frac{T_L}{T_H} = 1 - \frac{(30 + 273) \text{ K}}{(652 + 273) \text{ K}} = \textbf{0.672}$$

$$Q_{L,\text{rev}} = \frac{T_L}{T_H} Q_{H,\text{rev}} = \frac{(30 + 273) \text{ K}}{(652 + 273) \text{ K}} (500 \text{ kJ}) = 164 \text{ kJ}$$

Quality of Energy

$$\eta_{\text{th,rev}} = 1 - \frac{T_L}{T_H}$$

What's next?

• Carnot refrigerator and heat pump