

Proposta de teste de avaliação Matemática A 11.º ANO DE ESCOLARIDADE Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura, está representada, num referencial o.n. xOy, a reta r, definida pela equação y = -2x - 4

Sabe-se que a reta r interseta os eixos Ox e Oy nos pontos A e B, respetivamente.

- Defina por uma equação a circunferência de diâmetro $\lceil AB \rceil$.
- 1.2. Para um certo número real a, diferente de zero, a reta s definida pela equação vetorial $(x, y) = (2a, a-5) + k(a, a-9), k \in \mathbb{R}$ é paralela à reta r.

Qual é o valor de a?

- **(A)** 1 **(B)** $\frac{5}{2}$ **(C)** 3
- Considere a sucessão (u_n) definida por $\begin{cases} u_1 = 2 \\ u_{n+1} = u_n n + 1, \ \forall n \in \mathbb{N} \end{cases}$ 2.
 - **2.1.** Justifique que (u_n) é decrescente em sentido lato.
 - 2.2. Qual é, em graus, a inclinação da reta AB, sabendo que, num referencial ortonormado xOy, os pontos A e B tem coordenadas $(0, u_1)$ e $(1, u_3)$, respetivamente?
- Considere as sucessões (a_n) e (b_n) definidas por $\begin{cases} a_1 = 10 \\ a_{n+1} = \frac{2}{3} a_n + 1, \ \forall n \in \mathbb{N} \end{cases}$ e $b_n = a_n 3$. 3.
 - Sabendo que $a_n > 3$, qualquer que seja $n \in \mathbb{N}$, mostre que (b_n) é uma progressão geométrica de razão $\frac{2}{3}$.
 - A soma dos primeiros vinte termos de (b_n) , com arredondamento às décimas, é igual a:
 - 21,0 A)
- 30,0 **(B)**
- 70.0
- 266,7 **(D)**

4. Seja (v_n) uma progressão aritmética de razão 2 cujo segundo termo é $v_2 = 5$.

Qual é o centésimo termo da sucessão (v_n) ?

- **(A)** 101
- **(B)** 201
- **(C)** 301
- **(D)** 401
- **5.** Na figura, está representada a circunferência trigonométrica. Sabe-se que:
 - os pontos A e B tem coordenadas (1,0) e (0,1), respetivamente;
 - o ponto P se desloca ao longo do arco AB e que o ponto Q se desloca ao longo do eixo Oy, de tal forma que QP é sempre paralelo ao eixo Ox.

Para cada posição do ponto P, seja α a amplitude do ângulo $AOP\left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$.

Qual das seguintes expressões dá a área do trapézio [OAPQ], em função de α ?

$$(\mathbf{A}) \quad \frac{\cos\alpha\left(2+\sin\alpha\right)}{2}$$

(B)
$$\frac{(1+\cos\alpha)\sin\alpha}{2}$$

(C)
$$\frac{3\cos\alpha\sin\alpha}{2}$$

(D)
$$\frac{(1+\sin\alpha)\cos\alpha}{2}$$

- 6. Na figura está representada, num referencial ortonormado Oxyz, a pirâmide triangular [OABC].
 Sabe-se que:
 - a face [ABC] está contida no plano α definido, para determinado número real k, pela equação x + 2y + 3z = k.
 - A, B e C são os pontos de interseção do plano α com os eixos Ox, Oy e Oz, respetivamente;

- O plano α contém o ponto D de coordenadas (1, 1, 1).
- **6.1.** Mostre que:
 - a) k = 6;
 - **b)** A, B e C têm coordenadas (6,0,0), (0,3,0) e (0,0,2), respetivamente.
- **6.2.** Calcule a amplitude do ângulo BAC.

 Apresente o resultado em gaus com aredondamento às décimas.
- **6.3.** Calcule a distância da origem do referencial ao plano α .

- Sendo θ um ângulo obtuso, a que quadrante pertence o ângulo de amplitude $\frac{5\pi}{2} \theta$? 7.
 - **(A)** Primeiro quadrante
- **(B)** Segundo quadrante

- **(C)** Terceiro quadrante
- **(D)** Quarto quadrante
- O limite da sucessão (u_n) , definida por $u_n = \frac{\sqrt{4n^2 1}}{3 2n}$, é: 8.
 - (A) −∞
- **(B)**
- (C) -2 (D) -1
- 9. De uma progressão aritmética (u_n) sabe-se que o primeito termo é igual a 95 e que a soma dos vinte primeiros termos é igual a 0.

Determine uma expressão do termo geral de (u_n) .

- Num referencial o.n. Oxyz, considere: 10.
 - a reta r que contém a origem do referencial e tem a direção do vetor $\vec{r} = (1, 2, -3)$;
 - o plano α definido pela equação x + y + z = 0.

A interseção da reta r com o plano α é:

- **(A)** a origem do referencial.
- **(B)** a reta r.
- **(C)** o conjunto vazio.
- o ponto de coordenadas (1, 1, -2).

Formulário

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $S_n = \frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $S_n = b_1 \times \frac{1 - r^n}{1 - r}$

COTAÇÕES

	Item															
	Cotação (em pontos)															
1.1.	1.2.	2.1.	2.2	3.1.	3.2.	4.	5.	6.1.a)	6.1.b)	6.2.	6.3.	7.	8.	9.	10.	
15	10	15	15	15	10	10	10	10	15	15	15	10	10	15	10	100
	TOTAL (Caderno1 + Caderno2)														200	

Proposta de resolução

1.
$$r: y = -2x - 4$$

1.1. Ponto
$$A: 0 = -2x - 4 \Leftrightarrow 2x = -4 \Leftrightarrow x = -2$$

 $A(-2, 0)$

Ponto
$$B: y = -2 \times 0 - 4 = -4$$

$$B(0,-4)$$

O centro da circunferência é C, ponto médio de $\begin{bmatrix} AB \end{bmatrix}$.

$$C\left(\frac{-2+0}{2}, \frac{0-4}{2}\right)$$
, ou seja, $C(-1, -2)$

Raio:
$$r = \overline{AC} = \sqrt{(-2+1)^2 + (0+2)^2} = \sqrt{1+4} = \sqrt{5}$$

Equação da circunferência de diâmetro [AB]:

$$(x+1)^2 + (y+2)^2 = 5$$

O declive da reta $r \in -2$.

O declive da reta $s \notin \frac{a-9}{a}$.

$$\frac{a-9}{a} = -2 \Leftrightarrow a-9 = -2a \Leftrightarrow 3a = 9 \Leftrightarrow a = 3$$

Resposta: (C)

2.
$$(u_n)$$
:
$$\begin{cases} u_1 = 2 \\ u_{n+1} = u_n - n + 1, \ \forall n \in \mathbb{N} \end{cases}$$

2.1.
$$u_{n+1} = u_n - n + 1 \Leftrightarrow u_{n+1} - u_n = -n + 1$$

$$u_{n+1} - u_n = 0$$
 se $n = 1$ e $u_{n+1} - u_n < 0$ se $n > 1$

Como $u_{n+1} - u_n \le 0$, $\forall n \in \mathbb{N}$, podemos concluir que (u_n) é decrescente em sentido lato.

2.2.
$$u_1 = 2$$

$$u_2 = u_1 - 1 + 1 = 2 - 1 + 1 = 2$$

$$u_3 = u_2 - 2 + 1 = 2 - 2 + 1 = 1$$

$$A(0,u_1) \Leftrightarrow A(0,2)$$

$$B(1, u_3) \Leftrightarrow B(1, 1)$$

Declive de
$$AB = m_{AB} = \frac{1-2}{1-0} = -1$$

Se α é a inclinação de AB então $\tan \alpha = -1 \land 90^{\circ} < \alpha < 180^{\circ}$, pelo que $\alpha = 180^{\circ} - 45^{\circ} = 135^{\circ}$.

3.
$$(a_n): \begin{cases} a_1 = 10 \\ a_{n+1} = \frac{2}{3}a_n + 1, \forall n \in \mathbb{N} \end{cases}$$
; $b_n = a_n - 3$

3.1.
$$b_n = a_n - 3$$

$$\frac{b_{n+1}}{b_n} = \frac{a_{n+1} - 3}{a_n - 3} = \frac{\frac{2}{3}a_n + 1 - 3}{a_n - 3} = \frac{\frac{2}{3}a_n - 2}{a_n - 3} = \frac{\frac{2a_n - 6}{3}}{a_n - 3} = \frac{\frac{2(a_n - 3)}{3}}{a_n - 3} = \frac{2(a_n - 3)}{3(a_n - 3)}$$

Dado que $a_n \neq 3$, qualquer que seja $n \in \mathbb{N}$, podemos concluir que:

$$\frac{b_{n+1}}{b_n} = \frac{2(a_n - 3)}{3(a_n - 3)} = \frac{2}{3}, \ \forall n \in \mathbb{N}$$

Portanto, $(b_{\scriptscriptstyle n})$ é uma progressão geométrica de razão $\frac{2}{3}$.

3.2.
$$b_1 = a_1 - 3 = 10 - 3 = 7$$

$$S_{20} = b_1 \times \frac{1 - \left(\frac{2}{3}\right)^{20}}{1 - \frac{2}{3}} = 7 \times \frac{1 - \left(\frac{2}{3}\right)^{20}}{1 - \frac{2}{3}} \approx 20,99 \approx 21,0 \qquad \left| S_n = b_1 \times \frac{1 - r^n}{1 - r} \right|$$

Resposta: (A)

4.
$$v_2 = 5 \text{ e } r = 2$$

 $v_n = v_2 + (n-2) \times r \Leftrightarrow v_n = 5 + (n-2) \times 2 \Leftrightarrow v_n = 5 + 2n - 4 \Leftrightarrow v_n = 2n + 1$
 $v_{100} = 2 \times 100 + 1 = 201$

Resposta: (B)

5. Seja R o ponto de [OA] tal que $PR \perp Ox$.

Tem-se:

$$\sin \alpha = \overline{PR} \text{ e } \cos \alpha = \overline{OR} = \overline{QP}$$

$$A_{[OAPQ]} = \frac{\overline{OA} + \overline{QP}}{2} \times \overline{PR} = \frac{1 + \cos \alpha}{2} \times \sin \alpha = \frac{(1 + \cos \alpha)\sin \alpha}{2}$$

Resposta: (B)

$$6. \qquad \alpha: x + 2y + 3z = k$$

6.1. a)
$$D(1,1,1) \in \alpha$$

 $1 + 2 \times 1 + 3 \times 1 = k \iff k = 6$

b)
$$\alpha : x + 2y + 3z = 6$$

$$A(a, 0, 0)$$
: $a + 0 + 0 = 6 \Leftrightarrow a = 6$ $A(6, 0, 0)$

$$B(0,b,0): 0+2b+0=6 \Leftrightarrow b=3$$
 $B(0,3,0)$

$$C(0,0,c): 0+0+3c=6 \Leftrightarrow c=2$$
 $C(0,0,2)$

6.2. $B\widehat{A}C = (\overrightarrow{AB}, \overrightarrow{AC})$

$$\overrightarrow{AB} = B - A = (0, 3, 0) - (6, 0, 0) = (-6, 3, 0)$$

$$\overrightarrow{AC} = C - A = (0, 0, 2) - (6, 0, 0) = (-6, 0, 2)$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = (-6, 3, 0) \cdot (-6, 0, 2) = -6 \times (-6) + 0 + 0 = 36$$

$$\|\overrightarrow{AB}\| = \sqrt{(-6)^2 + 3^2 + 0^2} = \sqrt{36 + 9} = \sqrt{45}$$

$$\|\overrightarrow{AC}\| = \sqrt{(-6)^2 + 0^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40}$$

$$\cos(\widehat{BAC}) = \cos(\overline{AB}, \overline{AC}) = \frac{\overline{AB} \cdot \overline{AC}}{\|\overline{AB}\| \times \|\overline{AC}\|} = \frac{36}{\sqrt{45} \times \sqrt{40}}$$

Se
$$\cos(\widehat{BAC}) = \frac{36}{\sqrt{45} \times \sqrt{40}}$$
, então $\widehat{BAC} \approx 31.9^{\circ}$.

O ponto O' é a interseção com α da reta r que passa em O e é perpendicular a α Vetor diretor da reta r: $\vec{r} = (1, 2, 3)$

Equação vetorial de $r: (x, y, z) = (0, 0, 0) + k(1, 2, 3), k \in \mathbb{R}$

Ponto genérico da reta $r: R(k, 2k, 3k), k \in \mathbb{R}$

Substituido as coordenadas de R na equação de α , obtemos:

$$k + 2 \times 2k + 3 \times 3k = 6 \Leftrightarrow k + 4k + 9k = 6 \Leftrightarrow 14k = 6 \Leftrightarrow k = \frac{6}{14} \Leftrightarrow k = \frac{3}{7}$$

As coordenadas de O', interseção de r com α , obtêm-se substituindo k por $\frac{3}{7}$ em R:

$$O'\left(\frac{3}{7}, 2 \times \frac{3}{7}, 3 \times \frac{3}{7}\right) = O'\left(\frac{3}{7}, \frac{6}{7}, \frac{9}{7}\right)$$

$$d(O,\alpha) = \overline{OO'} = \sqrt{\left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2 + \left(\frac{9}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{81}{49}} = \sqrt{\frac{126}{49}} = \frac{3\sqrt{14}}{7}$$

7.
$$\frac{\pi}{2} < \theta < \pi \Leftrightarrow -\pi < -\theta < -\frac{\pi}{2} \Leftrightarrow$$

$$\Leftrightarrow \frac{5\pi}{2} - \pi < \frac{5\pi}{2} - \theta < \frac{5\pi}{2} - \frac{\pi}{2} \Leftrightarrow$$

$$\Leftrightarrow \frac{3\pi}{2} < \frac{5\pi}{2} - \theta < 2\pi$$

O ângulo de amplitude $\frac{5\pi}{2} - \theta$ pertence ao quarto quadrante.

Resposta: (D)

8.
$$\lim (u_n) = \lim \frac{\sqrt{4n^2 - 1}}{3 - 2n} = \lim \frac{\sqrt{n^2 \left(4 - \frac{1}{n^2}\right)}}{3 - 2n} = \lim \frac{n\sqrt{4 - \frac{1}{n^2}}}{n\left(\frac{3}{n} - 2\right)} = \lim \frac{n\sqrt{4 - \frac{1}{n^2}}}{n\left(\frac{3}{n} - 2\right)} = \lim \frac{\sqrt{4 - \frac{1}{n^2}}}{n\left(\frac{3}{n} - 2\right)} = \lim \frac{\sqrt{4 - \frac{1}{n^2}}}{n\left(\frac{3}{n} - 2\right)} = \lim \frac{n\sqrt{4 - \frac{1}{n^2}}}{n\left(\frac{3}{$$

Resposta: (D)

9.
$$u_1 = 95$$
; $S_{20} = 0$
 $S_{20} = \frac{u_1 + u_{20}}{2} \times 20 \Leftrightarrow 0 = \frac{95 + u_{20}}{2} \times 20 \Leftrightarrow 95 + u_{20} = 0 \Leftrightarrow u_{20} = -95$ $\left| S_n = \frac{u_1 + u_n}{2} \times n \right|$
 $u_{20} = u_1 + (20 - 1) \times r \Leftrightarrow -95 = 95 + 19r \Leftrightarrow -95 - 95 = 19r \Leftrightarrow \left| u_n = u_k + (n - k) \times r \right|$
 $\Leftrightarrow -190 = 19r \Leftrightarrow r = -10$
 $u_n = u_1 + (n - 1) \times r \Leftrightarrow u_n = 95 + (n - 1) \times (-10) \Leftrightarrow u_n = 95 - 10n + 10 \Leftrightarrow u_n = -10n + 105$
 $u_n = -10n + 105$

10. $\vec{r} = (1, 2, -3)$ é um vetor diretor da reta r.

 $\vec{u} = (1, 1, 1)$ é um vetor perpendicular a α .

$$\vec{r} \cdot \vec{u} = (1, 2, -3) \cdot (1, 1, 1) = 1 + 2 - 3 = 0$$
.

Como $\vec{r} \cdot \vec{u} = 0$, os vetores \vec{r} e \vec{u} são perpendiculares pelo que a reta r é paralela ao plano α .

Dado que 0+0+0=0, o ponto (0,0,0), a origem do referencial, pertence ao plano α .

Atendendo a que a reta r passa na origem, este ponto é comum à reta e ao plano.

Portanto, se a reta r é paralela ao plano α e têm um ponto comum, então a reta está contida no plano.

Logo, a interseção da reta r com o plano α é a reta r.

Resposta: (B)

