2017-2018 学年第二学期《大学物理》期末考试标准答案

一、选择题

1, B; 2, B; 3, D; 4, E; 5, E; 6, B; 7, B; 8, A; 9, D; 10, D;

二、填空题

- 1、 作功仅与始末位置有关,与具体路径无关(3 分),保守力做功等于势能增量的负值 $A=-\Delta E_{p}$ (2 分);
- 2、 $(g/R)^{0.5}$ (3分)
- 3、 $mab\omega \vec{k}$ (3 分) ,0 (2 分)
- 4、 $3\omega_0$ (4分)
- 5、 5PV/2 (3分)
- 6、1:2:4(3分)
- 7、 E_k =(k-1) m_0c^2 (3 分)
- 8、500(2分),100(2分)

三、计算题

1、解:

由动量守恒,则: $m_A v_A \pm m_B v_B = 0$ (3 分) 由机械能守恒,则: $m_A v_A^2 / 2 + m_B v_B^2 / 2 - G m_A m_B / R = 0$ (3 分)

两式联立可以得

$$v_A = m_B [2G/(m_A + m_B)R]^{1/2}$$
 (1 $\%$)

$$v_B = m_A [2G/(m_A + m_B)R]^{1/2}$$
 (1分)

相对速度
$$v_r = |v_A| + |v_B| = [2G(m_A + m_B)/R]^{1/2}$$
 (2 分)

2、解:

(1) 以子弹和圆盘为系统, 角动量守恒:

$$mRv_0 = (mR^2 + MR^2/2)\omega \tag{2 \%}$$

$$\omega = \frac{mRv_0}{(mR^2 + MR^2/2)} = \frac{mv_0}{(mR + MR/2)}$$
 (1 $\%$)

(2) 圆盘受到的摩擦力矩为:

$$M' = -\int_0^R \mu \sigma 2\pi r g r dr = -\frac{2}{3} \mu M R g \tag{3 \%}$$

由转动定律得:
$$\beta = \frac{M'}{I}$$
 (3分)

$$t = \frac{\omega - \omega_0}{\beta} = \frac{J(\omega - \omega_0)}{M'} = \frac{3mv_0}{2\mu Mg}$$
 (3 \(\frac{\psi}{D}\))

- 3、解: 由图, p_A =300 Pa, p_B = p_C =100 Pa; V_A = V_C =1 m³, V_B =3 m³.
 - (1) $C \rightarrow A$ 为等体过程,据方程 $p_A/T_A = p_C/T_C$ 得

$$T_C = T_A p_C / p_A = 100 \text{ K}.$$
 (2 $\%$)

B→C 为等压过程,据方程 $V_B/T_B=V_C/T_C$ 得

$$T_{\rm B}=T_{\rm C}V_{\rm B}/V_{\rm C}=300~{\rm K}$$
. (2 分)

(2) 各过程中气体所作的功分别为

$$A \rightarrow B$$
: $W_1 = \frac{1}{2} (p_A + p_B)(V_B - V_C) = 400 \text{ J}.$ (2 $\%$)

$$B \to C$$
: $W_2 = p_B (V_C - V_B) = -200 \text{ J}$. (1分) $C \to A$: $W_3 = 0$ (1分) (1分) (1分) (1分) (2)整个循环过程中气体所作总功为 $W = W_1 + W_2 + W_3 = 200 \text{ J}$. 因为循环过程气体内能增量为 $\Delta E = 0$,因此该循环中气体总吸热 $Q = W + \Delta E = 200 \text{ J}$. (4分) (4分) 4、解: (1) 观测站测得飞船船身的长度为 $L = L_0 \sqrt{1 - (v/c)^2} = 54 \text{ m}$ (1分) (1分) (2)宇航员测得飞船船身的长度为 L_0 , 则 $\Delta t_2 = L_0 / v = 3.75 \times 10^{-7} \text{ s}$ (2分)