بسمه تعالى

دانتگاہ نعتی شریف	

۲۰ نمره

عماری کامپیوتر (۴۰–۴۰) آزمون میان ترم و*انگاهِ عَی شریف* یمسال اول ۹۵–۹۶ ۱۷ آبان ماه ۱۳۹۵ دانشکده ی مهندسی کامپیوتر

زمان: ۹۰ دقیقه

نام و نام خانوادگی: شمارهی دانشجویی:_____

ساختار مسیردادهی شکل پشت صفحه برای پردازندهی موردنظر ما داده شده است. بخشهای دیگری که نشان داده نشدهاند، مشابه کامپیوتر پایه هستند. فرمت کلمه ی اول دستورالعمل بشکل زیر است:

 15
 14
 13
 10
 9
 0

 a1
 a0
 opcode
 Address (or rest of opcode)

جدول زیر دسته بندی دستورالعملها را نشان می دهد. دستورات حافظه دارای یک کلمه ی دیگر نیز هستند که ۱۹ بیت یایین آدرس را ارایه می دهند. (۱۰ بیت بالای آدرس در همان کلمه ی اول دستورالعمل هست.)

a1,a0	Opcode	Instruction category
Addressing mode as below	0x0 to 0xE	Memory-reference instructions
10, 11	0xF	Register-reference instructions
00,01	0xF	I/O instructions

و این جدول هم مودهای آدرسدهی در این پردازنده است:

a1, a0	Symbol	Addressing mode	
11	(empty)	Direct addressing	
10	I Indirect addressing		
01	AI	Auto-increment	
00	AD	Auto-decrement	

روشهای آدرس دهی auto-increment و auto-decrement بدین صورت عمل می کنند که ابتدا آدرس داده شده را بعنوان آدرس غیرمستقیم (indirect) استفاده می کنند و بعد مقدار آن آدرس را بترتیب یک واحد افزایش و کاهش می دهند. مثلا اگر در خانه شماره 100 AD حافظه مقدار 200، و در خانه شماره 200 مقدار 5 ثبت شده باشد، دستور AD ابتدا مقدار 5 را به AC اضافه می کند و بعد مقدار خانه شماره 100 را به 199 تغییر می دهد.

برای فراخوانی زیربرنامه در این پردازنده، آدرس بازگشت در ثبات ویـژهی Return Address Register) RAR) ذخیـره می شود و مکانیزم وقفه هم از همان ثبات استفاده می کند.

به سوالات زير پاسخ دهيد.

سوال 1. الف. نمودار چرخه دستورالعمل را، همراه سیکل وقفه، در این پردازنده رسم نمایید.

ب. بلوک دیاگرام اجزای داخلی واحد کنترل، با روش سیمبندی شده، را رسم کنید.

سوال ۲. ریزعملیات واکشی (Fetch)، کدگشایی (Decode)، و محاسبه Effective Addresss را در کمترین کلاک ارائمه ۳۰ نمره دهید.

سوال ۳. ریزعملیات بخش اجرای دو دستور زیر را ارائه دهید. هر دستور باید حداکثر ٤ کلاک طول بکشد.

Ī	Symbol	Opcode	Symbolic Function	Description
	BTCL	1100	$M[EA] \leftarrow \overline{M[EA]} \wedge AC$	Bit Clear
Ī	BPNZ	0110	If AC>0 then PC←EA	Branch if positive and non-zero

بسمه تعالى

آزمون میان ترم ۱۷ آبانماه ۱۳۹۵ دانشکدهی مهندسی کامپیوتر

معماری کامپیوتر (۳۲۳–۴۰) نیمسال اول ۹۵–۹۶

۲۰ نمره

سوال ٤. الف. ريزعمليات فاز اجراي دستور Branch and Save Return Address) BSA) را ارائه دهيد.

ب. ریزعملیات سیکل وقفه را ارائه دهید. همانند کامپیوتر پایه، در این پردازنده روتین وقف در آدرس صفر حافظه قرار دارد.

سوال ٥. ثبات RAR چه ورودیهای کنترلی باید داشته باشد؟ تابع منطقی آن سیگنالهای کنترلی را ارائه دهید. 10 نمره

موفق باشيد

گودرزی

ثباتها می توانند از هریک از انواع مورداستفاده در طراحی کامپیوتر پایه انتخاب شوند.

عملیاتی که ALU پشتیبانی می کند عبارتند از:

ADD, AND, OR, NAND, NOR of its two inputs, **INCREMENT**, **COMPLEMENT** (bitwise **NOT**) of either of its inputs

هرجا نیاز به اطلاعات یا فرضیات بیشتری هست، می توانید به انتخاب خود، فرض معقولی انجام دهید. توجـه کنیـد کـه حتمـا ایـن فرض خود را در پاسخنامه بنویسید.