Q9

Q13

Homework 1

Total: 20 points

Due: Wed 1 Oct 2014 at the beginning of class

If a question is taken from the textbook, the refence is given on the right of the page.

1. REVIEW

- (a) Compute the following derivatives:
 - i. $\frac{d}{dx} 3e^{-5x}$
 - ii. $\frac{d}{dx} \frac{x \arctan(x)}{\tan(x)}$
- (b) Compute the following indefinite integrals:
 - i. $\int x^{-\frac{2}{3}} dx$
 - ii. $\int \frac{3x}{x^2+1} dx$
 - iii. $\int xe^x dx$
- (c) Compute the following definite integral using partial fractions. Keep your answer exact, and simplify as much as possible.

$$\int_{-1}^{2} \frac{x-2}{x^2 - 3x - 10} \ dx$$

- (d) Sketch rough graphs of the following functions, including points where the curves intercept the axes, minima and maxima:
 - i. $y = 3\cos(2x \frac{\pi}{4})$
 - ii. $y = xe^{-x^2}$

2. SEPARABLE EQUATIONS

(a) Find the general solution for the following differential equations. Solve for y if possible:

i.
$$y' = \frac{x^2}{y(1+x^3)}$$
 Boyce 2.2 Q2

ii.
$$y' = \frac{3x^2 - 1}{3 + 2y}$$

ii.
$$y' = \frac{3x^2 - 1}{3 + 2y}$$
 Q4
iii. $xy' = (1 - y^2)^{1/2}$

(b) Consider the initial value problem

$$y' - y^2 + 2xy^2 = 0$$
, $y(0) = -\frac{1}{6}$

- i. Find the solution to the differential equation in explicit form.
- ii. Plot the graph of the solution.
- iii. Determine the interval in which the solution is defined.
- (c) Consider the initial value problem

 $y' = \frac{2x}{y + x^2y}, \quad y(0) = -2$

- i. Find the solution to the differential equation in explicit form.
- ii. Plot the graph of the solution.
- iii. Determine the interval in which the solution is defined.
- (d) Solve the initial value problem and determine where the solution attains its minimum value: Q23

$$y' = 2y^2 + xy^2, \quad y(0) = 1$$

NB: More questions overleaf!

3. METHOD OF INTEGRATING FACTORS

Find the solutions to the initial value problems below:

(a)
$$y' - y = 2te^{2t}$$
, $y(0) = 1$ Boyce 2.1 Q13

(b)
$$ty' + 2y = t^2 - t + 1$$
, $y(1) = \frac{1}{2}$, $t > 0$

(c)
$$y' + 2\frac{y}{t} = \frac{\cos(t)}{t^2}$$
, $y(\pi) = 0$, $t > 0$

(d)
$$ty' + 2y = \sin(t), \quad y(\frac{\pi}{2}) = 1, \ t > 0$$

(e)
$$ty' + (t+1)y = t$$
, $y(\ln 2) = 1$, $t > 0$