ক) দেখাও যে, c
$$3$$
osec $\sin^{-1}tansec^{-1}\frac{x}{y}=\frac{y}{\sqrt{x^2-y}}$

খ)
$$f(\theta)=rac{3}{4}$$
 হলে দেখাও যে, $\theta=\pm\sin^{-1}\left(rac{24}{25}
ight)$ 8

গ)
$$g(5 heta)=\sqrt{3}g(heta)=g(3 heta)$$
 সমীকরণটির সমাধান নির্ণয় কর।

 $8 \, \cap \, N = tan^{-1}(cosec tan^{-1} x - tan cot^{-1} x)$ এবং $f(\theta) = cos\theta$

ক) যদি
$$x = \frac{1}{2}\cos^{-1}\frac{3}{4}$$
 তবে $\tan x$ এর মান কত হবে?

খ) দেখাও যে,
$$N = \frac{1}{2} tan^{-1} x$$
 8

গ) সমাধান কর:
$$f(\theta) + f(2\theta) + f(3\theta) = 0$$
 যখন $-2\lambda \le \theta \le 2\lambda$

খ-বিভাগ: জ্যামিতি ও বলবিদ্যা

৫ ৷ (i) তিনটি বিন্দু
$$P(-1,3), Q(4,3), R(1,-1)$$

(ii) একটি সরলরেখার সমীকরণ x - 2y + 2 = 0

ক)
$$4x^2 + 5y^2 = 1$$
উপবৃত্তের উপকেন্দ্র নির্ণয় কর।

খ) (ii) এর P ও Q বিন্দুকে যথাক্রমে উপকেন্দ্র ও শীর্ষবিন্দু ধরে একটি পরাবৃত্তের সমীকরণ নির্ণয় কর। 8

গ) (i) সরলরেখাটি নিয়ামক ধরে R বিন্দুকে উপকেন্দ্র ধরে একটি উপবৃত্তের সমীকরণ নির্ণয় কর যার উৎকেন্দ্রিকতা $\frac{1}{\sqrt{2}}$

91

খ) (i) হতে প্রমাণ কর যে,
$$\mathrm{R}^2=Q(Q-P)$$

গ) (ii) এ ΔABC সমবাহু হলে বলগুলির লব্ধির মান ও দিক নির্ণয় কর।

i) $x^2 + 5y^2 = 5$

ক)
$$x = 5y^2 - 4y + 7$$
 পরাবৃত্তের অক্ষের সমীকরণ নির্ণয় কর।

- ক) বলের লম্বাংশ কি ব্যাখ্যা কর। ২
- খ) (i) $F_1lpha\;cosp$, $F_2\;lpha\;cos heta$ এবং F_1 , F_2 এ বল লব্ধি F হলে দেখাও

যে ,R
$$- \varphi = \frac{1}{2}(R + \varphi - P)$$
 8 গ) (ii) এ Q, R, S বল তিনটি সামাবস্থায় থাকলে দেখাও যে , $S^2 = R(R - Q)$ 8

গ) (ii) এ Q, R, S বল তিনটি সামাবস্থায় থাকলে দেখাও যে,
$$S^2=R(R-Q)$$