# Activité : mesurer le temps

## 1 Cadrans solaires

#### **Point historique**

Les **cadrans solaires** sont des outils pour mesurer le temps. Leur première apparition date d'il y a environ 2400 ans!

# Comment ça fonctionne?



Lorsqu'il y a du soleil, l'aiguille fait de l'ombre sur le cadran : cette ombre indique l'heure qu'il est.

#### Vocabulaire: Schéma

Un **schéma** est une représentation simpifiée d'un objet.

On a schématisé un cadran solaire ci dessous :



- 1. Compte le nombre de grandes graduations : à quoi correspondent-elles ? (indice : le cadran solaire ne fonctionne que de jour).
- 2. On imagine que là où ce cadran est placé, le soleil se lève à droite du cadran à 8 heures, et se couche à gauche à 20 heures. Indique sur le schéma les heures de la journée.
- 3. À quoi correspondent les petites graduations?

4. Quelle heure est indiquée sur ce cadran? Précise les minutes.

# 2 L'horloge hydraulique

# 3 Sabliers

# 4 Aujourd'hui : l'horloge atomique

## **Point historique**

La première horloge atomique a été inventée en 1948. Elles sont aujourd'hui utilisée lorqu'on a besoin de mesurer très précisément le temps (c'est-à-dire souvent!).

TODO: temps international?

### **Comment ça fonctionne?**

La plupart de ces horloges utilisent du **césium**, un type de métal.

Le césium bouge (il "oscille") de manière régulière : 9 192 631 770 fois **par seconde**! L'horloge compte donc ces mouvements pour suivre l'évolution du temps.

| 1. | Le nombre de d'oscillations du césium est-il proportionnel au temps en se condes?                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Est-il proportionnel au temps en minutes?                                                                                                                                            |
| 2. | Une horloge atomique se trompe de temps en temps : une très bonne horloge gagne $\frac{2}{10^{16}}$ seconde de décalage <b>chaque seconde</b> ( $10^{16}$ = un 1 suivi de 16 zéros). |
|    | Au bout de combien d'années une telle horloge aura-elle gagné 1 seconde de décalage?                                                                                                 |
|    |                                                                                                                                                                                      |