

Pochôdzky v grafoch

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

11. apríla 2011

Eulerovské sledy a eulerovské ťahy

Definícia

Hovoríme, že sled s(u, v) v súvislom grafe G = (V, H) je **eulerovský**, ak obsahuje všetky hrany grafu G.

Poznámka

Pretože ťah je špeciálnym prípadom sledu, je definíciou eulerovského sledu presne vymedzený pojem <mark>eulerovský ťah</mark> ako taký ťah t(u, v) v súvislom grafe G, ktorý obsahuje všetky hrany grafu G.

Keďže ťah obsahuje každú hranu grafu G práve raz, postupnosť vrcholov a hrán ťahu t(u, v) predstavuje postup, ako nakresliť diagram grafu G "jedným ťahom".

Definícia

Hovoríme, že graf G = (V, H) je **eulerovský**, ak v ňom existuje <u>uzavretý</u> eulerovský ťah.

Eulerova veta o existencii eulerovského ťahu

Veta

(Euler, 1736.) Súvislý graf G = (V, H) je eulerovský práve vtedy, keď stupne všetkých vrcholov grafu G sú párne.

Dôkaz.

- Ak v grafe G existuje uzavretý eulerovský ťah T, potom stupeň každého vrchola je párny, pretože počet hrán ktorými ťah T z každého vrchola v vyšiel sa rovná počtu hrán, ktorými sme do vrchola v vošli.
- ② Konštrukciu uzavretého eulerovského ťahu v súvislom grafe, ktorý má všetky vrcholy párneho stupňa popisuje nasledujúci algoritmus:

Algoritmus na konštrukciu eulerovského ťahu

Algoritmus

- **Krok 1.** Začni z ľubovoľného vrchola z, polož $\mathcal{T} = (z)$ a postupne predlžuj ťah \mathcal{T} pokiaľ sa dá. Ukončíš vo vrchole z.
- Krok 2. Nájdi prvý vrchol v ťahu T, ktorý má ešte aspoň jednu hranu nepoužitú

Ak taký vrchol v neexistuje, STOP.

Ťah T je hľadaným uzavretým eulerovským ťahom. ak taky vrchol existuje, pokracuj krokom 3

• Krok 3. Vytvor ťah S takto:

Polož S = (v) a postupne predlžuj ťah S doteraz nepoužitými hranami, pokiaľ sa dá. Ukončíš vo vrchole v.

• **Krok 4.** Rozdel ťah \mathcal{T} na z-v ťah \mathcal{T}_1 a v-z ťah \mathcal{T}_2 , t. j. $\mathcal{T} = \mathcal{T}_1 \oplus \mathcal{T}_2$.

Polož $\mathcal{T}=\mathcal{T}_1\oplus\mathcal{S}\oplus\mathcal{T}_2.$

GOTO Krok 2

Fleuryho algoritmus

Algoritmus

Fleuryho algoritmus na hľadanie uzavretého eulerovského ťahu v súvislom grafe G=(V,H), v ktorom majú všetky vrcholy párny stupeň.

- Krok 1. Začni v ľubovoľnom vrchole a do ťahu T zaraď ľubovoľnú s ním incidentnú hranu.
- Krok 2. Ak sú do ťahu T zaradené všetky hrany grafu G, STOP.
- **Krok 3.** Ako ďalšiu hranu zaraď do ťahu $\mathcal T$ takú hranu incidentnú s jeho posledným vrcholom, po vybratí ktorej sa podgraf grafu G

nerozpadne na

- dva netriviálne komponenty
- netriviálny komponent a izolovaný začiatok ťahu T.
- GOTO krok 2.

Algoritmus

Labyrintový algoritmus na hľadanie uzavretého eulerovského ťahu v súvislom grafe G=(V,H), v ktorom majú všetky vrcholy párny stupeň.

• Krok 1. Začni z ľubovoľného vrchola $u \in V$.

Nech sled S inicializačne pozostáva z jediného vrchola u.

Polož w := u – vrchol w je posledný vrchol doteraz vytvoreného sledu S

Labyrintový algoritmus – pokračovanie

🛾 Algoritmus (– pokračovanie)

• **Krok 2.** Ako d'alšiu hranu vyber podľa nižšie uvedených pravidiel do sledu S hranu $\{w, v\}$. Zaznač si smer použitia hrany $\{w, v\}$.

Ak doteraz vrchol v ešte nebol zaradený do sledu \mathcal{S} , označ hranu $\{w,v\}$ ako hranu prvého príchodu.

Ďalej zaznamenaj tzv. **spätnú postupnosť** — poradie hrán, v ktorom sa v slede S vyskytujú po druhýkrát.

Pri výbere hrany dodržuj nasledujúce pravidlá:

- (L1): Každú hranu možno v jednom smere použiť iba raz
- (L2): Poradie zaraďovania hrán:
 - nepoužité hrany
 - hrany použité raz
 - hrana prvého príchodu (ak niet inej možnosti)
- Krok 3. Ak taká hrana neexistuje STOP. Spätná postupnosť určuje hľadaný eulerovský ťah.
- Krok 4. Inak polož w := v a pokračuj krokom 2.

Úloha čínskeho poštára

Chinese postman problem

Slovná formulácia úlohy čínskeho poštára:

Poštár má vyjsť z pošty, prejsť všetky ulice svojho rajónu a vrátiť sa na poštu tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy čínskeho poštára.

V súvislom hranovo ohodnotenom grafe nájsť uzavretý eulerovský sled najmenšej dĺžky.

Úloha čínskeho poštára

Poznámka

- Model cestnej siete poštára súvislý hranovo ohodnotený graf G = (V, H, c).
- Keby mal graf G všetky vrcholy párneho stupňa, stačilo by nájsť v G uzavretý eulerovský ťah.
- Ak má graf G vrcholy nepárneho stupňa, je ich 2t (párny počet).
- Pridaním fiktívnych hrán typu {nepárny, nepárny} s dĺžkou rovnajúcou sa vzdialenosti príslušných vrcholov v G možno z G vyrobiť eulerovský graf alebo multigraf.
- Uzavretý eulerovský ťah v rozšírenom grafe predstavuje trasu poštára, pričom fiktívne hrany predstavujú najkratšie cesty medzi ich koncovými vrcholmi a tieto cesty poštár prejde naprázdno – bez roznášania pošty.
- Čím meší súčet dĺžok pridaných fiktívnych hrán, tým lepšie výsledné riešenie.

Definícia

Nech G = (V, H, c) je hranovo ohodnotený graf.

Párenie v grafe G je taký jeho podgraf P, v ktorom má každý vrchol stupeň 1.

Cena párenia P je súčet ohodnotení jeho hrán.

Hovoríme, že párenie P je **maximálne párenie** v grafe G, ak P <mark>nie je podgrafom</mark> žiadneho iného párenia v G.

Párenie P je **najpočetnejšie párenie** v grafe G ak P má zo všetkých párení **najväčší** počet hrán.

Párenie P je **úplné párenie** v G, ak P je <mark>faktorovým podgrafom</mark> grafu G (P obsahuje všetky vrcholy grafu G).

- a) Maximálne párenie, ktoré nie je ani najpočetnejšie, ani úplné
 - b) Najpočetnejšie párenie, ktoré nie je úplné.
 - c) Úplné párenie v K₆

Algoritmus

Edmondsov algoritmus na hľadanie najkratšieho uzavretého eulerovského sledu v súvislom hranovo ohodnotenom grafe G = (V, H, c).

- Krok 1. V grafe G nájdi všetky vrcholy nepárneho stupňa. Tých je párny počet 2t.
 Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}. Jeho hrany ohodnoť
 v pôvodnom grafe G.
- Krok 2. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- **Krok 3.** Hrany párenia pridaj k hranovej množine pôvodného grafu G. Dostaneš tak multigraf \overline{G} , v ktorom majú všetky vrcholy párny stupeň. V multigrafe \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- **Krok 4.** Hrany párenia v ťahu T nahraď príslušnými najkratšími cestami v grafe G a označ ich ako prejdené naprázdno. Dostaneš tak najkratší eulerovský uzavretý sled v grafe G.

Hamiltonovský sled, hamiltonovský cyklus

Definícia

Sled v grafe G sa nazýva **hamiltonovský sled** v grafe G, ak obsahuje všetky vrcholy grafu G.

Poznámka

Predchádzajúca definícia definuje i hamiltonovskú cestu i hamiltonovský cyklus, pretože obe sú špeciálnym prípadom hamiltonovského sledu.

Definícia

Hovoríme, že graf G je **hamiltonovský**, ak v ňom existuje <u>hamiltonovský</u> cyklus.

Neexistuje jednoduché kritérium na zixstenie toho, či je daný graf hamiltonovský.

Máme niekoľko hrubých postačujúcich podmienok:

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi pre každé dva také vrcholy vrcholy u, v, ktoré nie sú susedné, platí

$$\deg(u) + \deg(v) \ge |V|.$$

Potom je G hamiltonovský graf.

Veta

Nech v grafe G = (V, H) s aspoň troma vrcholmi platí pre každý vrchol $v \in V$

$$\deg(v) \geq \frac{1}{2}.|V|.$$

Potom je G hamiltonovský graf.

Úloha obchodného cestujúceho

Travelling Salesman Problem - TSP

Úloha obchodného cestujúceho – TSP

Slovná formulácia úlohy obchodného cestujúceho:

Obchodný cestujúci má navštíviť všetkých svojich zákazníkov a vrátiť sa domov tak, aby sa čo najmenej nachodil.

Matematická formulácia úlohy obchodného cestujúceho:

Ak dovoľujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho môžeme formulovať nasledovne:

V súvislom hranovo ohodnotenom grafe nájsť najkratší uzavretý hamiltonovský sled.

Ak zakazujeme navštíviť to isté miesto viackrát, úlohu obchodného cestujúceho formulujeme takto:

V súvislom hranovo ohodnotenom grafe nájsť najkratší hamiltonovský cyklus.

Úloha obchodného cestujúceho – TSP

 \forall úplnom grafe \overline{G} už každá permutácia vrcholov definuje hamiltonovský cyklus.

Ak fixujeme prvý vrchol, potom máme (n-1)! rôznych hamiltonovských cyklov.

Pre exaktné hľadanie najkratšieho hamiltonovského cyklu niet podstatne lepšieho algoritmu, ako systematické prehľadanie všetkých (n-1)! permutácií.

Doba výpočtu pri prekontrolovaní 109 permutácií/sec.

n	(n-1)!	sekundy	minúty	dni	roky
10	3,6E+05	0,36 ms	-	-	-
15	8,7E+10	87,17	1,45	-	-
20	1,2E+17	1,2E+08	2000000	1400	3,9
25	6,2E+23	6,2E+14	1,0E+13	7,2E+09	2,0E+07
30	8,8E+30	8,8E+21	1,5E+20	1,0E+17	2,8E+14
35	3,0E+38	3,0E+29	4,9E+27	3,4E+24	9,4E+21
40	2,0E+46	2,0E+37	3,4E+35	2,4E+32	6,5E+29
45	2,7E+54	2,7E+45	4,4E+43	3,1E+40	8,4E+37
50	6,1E+62	6,1E+53	1,0E+52	7,0E+48	1,9E+46

Doba od Veľkého Tresku 1,4 * 10¹⁰ rokov.

Najkratší hamilt. cyklus v úplnom grafe s \triangle nerovnosťou

Dôsledok: Nutnosť používať algoritmy, ktoré dávajú dostatočne dobré, ale nie zaručene optimálne riešenie – suboptimálne algoritmy, heuristiky.

Algoritmus

Pažravá metóda – Greedy Algorithm. Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G=(V,H,c) s aspoň tromi vrcholmi a s trojuholníkovou nerovnosťou.

- Krok 1. Začni v ľubovoľnom vrchole a do (budúceho) hamiltonovského cyklu vlož najlacnejšiu hranu incidentnú s týmto vrcholom.
- Krok 2. Ak je vybratých n-1 hrán, uzavri cyklus. STOP
- Krok 3. Inak vyber takú najlacnejšiu nevybranú hranu incidentnú s posledným vrcholom doteraz vybranej postupnosti, ktorá nie je incidentná so žiadnym iným vrcholom vybranej postupnosti.
 GOTO Krok 2.

Algoritmus

Metóda zdvojenia kostry. (Kim – 1975). Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- **Krok 2.** V kostre K zostroj uzavretý sled S, ktorý obsahuje každú hranu práve dvakrát. (Použi napr. Tarryho algoritmus).
- Krok 3. Z uzavretého sledu S vytvor hamiltonovský cyklus takto: Postupne prechádzaj sledom S a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Veta

Nech G = (V, H, c) je úplný graf, v ktorom platí trojuholníková nerovnosť. Nech c(MZK) je dĺžka hamiltonovského cyklu získaného metódou zdvojenia kostry, nech c(OPT) je dĺžka najkratšieho hamiltonovského cyklu v grafe G. Potom

$$\frac{c(MZK)}{c(OPT)} < 2.$$

Naviac posledný odhad už nemožno zlepšiť – pre každé $\varepsilon>0$ existuje taký graf G_{ε} , že preň je $c(MZK)/c(OPT)>2-\varepsilon$.

Algoritmus kostry a párenia.

Algoritmus

Algoritmus kostry a párenia. (Christofides – 1976.) Heuristika na hľadanie suboptimálneho riešenia úlohy obchodného cestujúceho v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. V grafe G zostroj najlacnejšiu kostru K.
- Krok 2. V kostre K nájdi všetky vrcholy nepárneho stupňa. Tých je 2t.
- Krok 3. Z vrcholov nepárneho stupňa zostroj úplný graf K_{2t}, jeho hrany ohodnoť ohodnoteniami príslušných hrán v pôvodnom grafe G.
- Krok 4. V grafe K_{2t} nájdi úplné párenie s minimálnou cenou.
- Krok 5. Hrany párenia dodaj k hranovej množine najlacnejšej kostry K. Dostaneš tak graf (multigraf) \overline{G} , ktorý má všetky vrcholy párneho stupňa.
- Krok 6. V grafe (resp. multigrafe) \overline{G} zostroj uzavretý eulerovský ťah \mathcal{T} .
- Krok 7. Z uzavretého ťahu T vytvor hamiltonovský cyklus takto: Postupne prechádzaj ťahom T a keď narazíš na taký vrchol, alebo úsek niekoľkých vrcholov za sebou, ktoré sa už v slede vyskytujú, premosti takýto vrchol alebo úsek priamou hranou.

Algoritmus kostry a párenia.

Veta

Nech G=(V,H,c) je úplný graf, v ktorom platí trojuholníková nerovnosť. Nech c(MKP) je dĺžka hamiltonovského cyklu získaného metódou kostry a párenia, nech c(OPT) je dĺžka najkratšieho hamiltonovského cyklu v grafe G. Potom

$$\frac{c(MKP)}{c(OPT)} < \frac{3}{2}.$$

Naviac posledný odhad už nemožno zlepšiť – pre každé $\varepsilon > 0$ existuje taký graf G_{ε} , že preň je $c(MKP)/c(OPT) > 3/2 - \varepsilon$.

Poznámka

Nie je známy polynomiálny algoritmus ALG, pre ktorý by bol zaručený lepší pomer c(ALG)/c(OPT) než 3/2.

Algoritmus

Vkladacia heuristika na konštrukciu suboptimálneho hamiltonovského cyklu v úplnom grafe G = (V, H, c) s trojuholníkovou nerovnosťou.

- Krok 1. Do cyklu zaraď hranu $h = \{u, v\}$ s najmenšou cenou. Nájdi vrchol $w \in V$, pre ktorý je súčet $c\{u, w\} + c\{w, v\}$ najmenší. Vytvor cyklus $C = \{u, \{u, w\}, w, \{w, v\}, v, \{v, u\}, u\}$.
- **Krok 2.** Ak cyklus C obsahuje všetky vrcholy grafu G, STOP. Inak pokračuj krokom 3.
- Krok 3. Pre každú hranu $h = \{u, v\}$ cyklu C vypočítaj

$$z(h) = \min\{c\{u, w\} + c\{w, v\} - c\{u, v\} \mid w \in V - C\}.$$

Vezmi hranu $\mathbf{h} = \{u, v\}$ s minimálnym $z(\mathbf{h})$ a w vrchol, pre ktorý nastalo minimum Vytvor cyklus C' tak, že nahradíš hranu $\{u, v\}$ dvojicou hrán $\{u, w\}$, $\{w, v\}$. Polož C := C'.

Algoritmus prehľadávania okolí

Algoritmus

Algoritmus prehľadávania okolí.

- Krok 1. Za počiatočný hamiltonovský cyklus C vezmi ľubovoľný hamiltonovský cyklus (dostať ho môžeš náhodným generátorom alebo ako výsledok niektorej vytvárajúcej heuristiky).
- Krok 2. Hľadaj $C' \in \mathcal{O}(C)$ také, že c(C') < c(C). Ak pre všetky $C' \in \mathcal{O}(C)$ $c(C') \ge c(C)$, STOP, C je suboptimálny hamiltonovský cyklus. Inak pokračuj krokom 3.
- Krok 3. Vezmi $C' \in \mathcal{O}(C)$ také, že c(C') < c(C) a polož C := C'. Goto Krok 2

Algoritmus prehľadávania okolí

Cyklus C a niekoľko prvkov jeho okolia.

Nebezpečenstvo algoritmu prehľadávania okolí:

Algoritmus uviazne v takom zlom riešení, v okolí ktorého niet lepšieho riešenia.

Riešenie:

Viacnásobné spustenie algoritmu s rôznymi štartovacími riešeniami.