E2 212: Homework - 6

1 Topics

• LU factorization, Triangular factorizations and linear equations

2 Problems

- 1. (Applications of LU factorization): Suggest efficient algorithms to solve the following system of equations: Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be non-singular.
 - (a) $\mathbf{AX} = \mathbf{B}$, where \mathbf{X}, \mathbf{B} are $n \times k$.
 - (b) $\mathbf{A}^k \mathbf{x} = \mathbf{b}$. (The idea is to avoid matrix multiplications in computing \mathbf{A}^k explicitly).
- 2. Give an algorithm for computing a non-zero $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{U}\mathbf{x} = 0$ where $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular with $u_{nn} = 0$ and $u_{ii} \neq 0$ for all i = 1, 2, ..., n 1.
- 3. (Matrix forms of elementary row operations) Let \mathbf{x} be such that $\mathbf{x}_k \neq 0$. Write down the matrix \mathbf{M} that when multiplied with \mathbf{x} produces zeros on components [k+1:n]. Verify that \mathbf{M} can be written as $\mathbf{M} = \mathbf{I} \mathbf{t}\mathbf{e}_k^T$ and find the value of vector \mathbf{t} . In the above, \mathbf{e}_k is the k^{th} standard basis vector. What would be the form of \mathbf{M}^{-1} ?
- 4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array} \right]$$

Let \mathbf{A}_{11} be $r \times r$ and non-singular. Show that if \mathbf{A}_{11} has an LU factorization without pivoting, then after r-steps of Gaussian elimination without pivoting on \mathbf{A} , $\mathbf{A}(r+1:n,r+1:n)$ will contain the Schur's complement of \mathbf{A}_{11} , defined by $\mathbf{A}_{22} - \mathbf{A}_{21}\mathbf{A}_{11}^{-1}\mathbf{A}_{12}$.

- 5. Is the following statement correct: The multipliers for Gaussian elimination of matrix $\mathbf{A}^T \mathbf{A}$ are identical to the multipliers that orthogonalize the columns of \mathbf{A} . Why/Why not?
- 6. Show that
 - (a) The inverse of an upper triangular matrix is upper triangular.
 - (b) The product of two lower triangular matrices is lower triangular.
 - (c) The inverse of a unit upper triangular matrix is unit upper triangular.
 - (d) The product of two unit lower triangular matrices is unit lower triangular.
- 7. If **A** is diagonalizable and $f(\cdot)$ is a polynomial, show that $f(\mathbf{A})$ is diagonalizable.
- 8. Show that any 2×2 real symmetric matrix is diagonalizable.
- 9. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is both normal $(\mathbf{A}\mathbf{A}^H = \mathbf{A}^H\mathbf{A})$ and nilpotent $(\mathbf{A}^k = 0, \text{ for some } k)$, show that $\mathbf{A} = 0$.