# Projeto Demonstrativo 2 - Calibração de Câmeras

### Frederico Guth (18/0081641)

Tópicos em Sistemas de Computação, , Turma TC - Visão Computacional (PPGI) Universidade de Brasília Brasília, Brasil fredguth@fredguth.com

Resumo—This document is a model and instructions for Lagarantees. This and the IEEE transcls file define the components of your paper [title, text, heads, etc.]. \*CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

## I. Introdução

Uma câmera faz um mapeamento geométrico do mundo 3D para o plano de uma imagem 2D. Conhecendo seus parâmetros intrínsecos, como distância focal e distorção da lente, e extrínsecos, sua rotação e translação no sistema de coordenadas do mundo real, é possível estimar a posição 3D de um objeto a partir de sua imagem [?].

Isto possibilita diversas aplicações: por exemplo, a mensuração da altura de pessoas registradas em vídeos de camêras de segurança ou a estimativas de posições de atletas em campo, entre outras.

## A. Objetivos

Os objetivos deste projeto são a aplicação prática da teoria de calibração de câmeras e o desenvolvimento de uma "régua visual", capaz de medir um objeto através da sua imagem.

Mais especificamente deseja-se que sejam desenvolvidos programas usando a biblioteca OpenCV capazes de:

- medir um segmento de reta em imagens através de cliques de mouse;
- realizar a calibração de uma câmera digital, armazenando os parâmetros intrísecos e os coeficientes de distorções em arquivos XML;
- realizar a calibração de uma câmera digital a partir de diferentes distâncias da câmera, calculando os parâmetros extrínsecos da mesma e avaliando a diferença dos resultados;
- medir um objeto através de sua imagem e comparar com suas dimensões reais;
- 5) analisar os resultados obtidos.

#### II. REVISÃO TEÓRICA

#### A. Câmera Estenopeica com Coordenadas Homogêneas

Se os pontos do mundo X e da imagem x são representados por coordenadas homogêneas, podemos expressar matematicamente a projeção da câmera como uma matriz [?]:

$$\lambda x = PX \tag{1}$$



Figura 1. Modelo de Câmera Estenopeica [?]

onde  $\lambda$  é um fator de escala e P é a matriz 3x4 de projeção, também chamada matriz de calibração.

P pode ser decomposto em duas entidades geométricas: os parâmetros intrísecos e extrísecos de calibração [?]

$$P = K[R|t] \tag{2}$$

$$t = -R\widetilde{C} \tag{3}$$

onde  $\widetilde{C}$  é a origem do sistema de coordenadas da câmera [?]. Os parâmetros intrísecos de calibração descrevem a transformação entre a imagem ideal e a imagem em pixels

$$K = \begin{pmatrix} f & s & c_x \\ 0 & \alpha f & c_y \\ 0 & 0 & 1 \end{pmatrix} \tag{4}$$

e os extrínsecos são a rotação R e translação t que transformam pontos no espaço do objeto para pontos no espaço da imagem e vice-versa  $\cite{rans}$ .

Como há 6 graus de liberdade nos parâmetros extrínsecos e 5 nos intrísecos, é necessário pelo menos 6 correspondências  $x_i \leftrightarrow X_i$  do mesmo ponto no espaço da imagem e no espaço do objeto para obter P [?].

Dado que há um erro inerente nas medidas experimentais, para melhorar a qualidade da estimativa é preciso usar n>6 correspondências (como será visto em III, usaremos 48 pontos) e, assim, não há uma única matriz P que resolve esse sistema de equações. Precisamos, portanto, adicionar restrições para encontrar uma solução única.

Um método comum é adicionar a restrição  $p_{34}=0$  [?], mas uma melhor abordagem [?] é:

$$P = \min_{P'} \sum_{i} d(x_i, P'X_i)^2$$
 (5)

onde  $d(x_i, P'X_i)$  é a distância euclidiana entre o ponto observado e o estimado.

#### B. Distorções

O modelo até aqui descrito descreve uma câmera ideal, mas as lentes das câmeras reais podem gerar distorções, que também são parâmetros intrínsecos que precisam ser considerados.

A distorção radial causa uma curvatura no mapeamento. (inserir imagem distorção)

A correção dessa distorção pode ser modelada da seguinte maneira [?]:

$$x_{retificado} = x(1 + k_1r^2 + k_2r^4 + k_3r^6)$$
  
 $y_{retificado} = y(1 + k_1r^2 + k_2r^4 + k_3r^6)$ 

Outra distorção comum é a tangencial, que ocorre quando o plano da lente não está alinhado perfeitamente em paralelo ao plano da imagem. Para corrigir:

$$x_{retificado} = x + [2p_1xy + p_2(r^2 + 2x^2)]$$
  
 $y_{retificado} = y + [p_1(r^2 + 2y^2) + 2p_2xy]$ 

Esses cinco parâmetros são conhecidos como coeficientes de distorção  $(k_1 \quad k_2 \quad p_1 \quad p_2 \quad k_3)$ .

#### III. METODOLOGIA

O modelo da câmera e seus parâmetros foram descritos na seção de Revisão Teórica. Nesta seção, descreve-se como estimá-los experimentalmente.

## A. Materiais

Foram utilizados:

- Uma tábua de compensado
- Papel contact
- Fita adesiva
- Um padrão de calibração xadrez impresso em papel A4
- Uma trena
- Uma régua
- Computador MacBook Pro (Retina, 13-inch, Early 2015),
   Processador Intel Core i5 2,7 GHz, 8GB de RAM
- Python 3.6.3 :: Anaconda custom (64-bit)
- OpenCV 3.4.0
- sete programas em python especialmente desenvolvidos para o projeto. Todos estão disponíveis no repositório: git@github.com:fredguth/unb-cv-3183.git

#### B. Preparação

- Imprime-se o padrão de calibração em folha A4 e o cola à tábua de compensado usando o Papel Contact.
- 2) Com o programa requisito 1.py, abre-se uma imagem jpg e com cliques do mouse desenha-se um segmento de reta sobre a imagem entre o primeiro e o segundo clique, registrando-se a distância ||p2-p1||<sub>2</sub> na própria imagem aberta.

## C. Obtenção dos parâmetros intrínsecos

- Executa-se o programa requisito2.capture.py que abre um stream de vídeo e grava a imagem sempre que detecta os cantos dos quadrados no padrão de calibração de tabuleiro de xadrez. O programa pede o número do experimento e grava as imagens capturadas no diretório do mesmo. Foram feitos 8 experimentos que geraram entre 25 e 70 imagens cada.
- 2) Executa-se o programa requisito2.calibrate.py para cada experimento. O programa detecta os cantos dos quadrados do padrão de calibração xadrez e refina essa deteção para obter os parâmetros intrínsecos K e os coeficientes de distorção. É importante mover o quadrado no campo de captura da câmera em diversas orientações e posições, em diferentes distâncias. Os parâmetros intrínsecos e coeficientes de distorção são automaticamente armazenados em arquivos xml nos diretórios dos respectivos experimentos.
- 3) Dado que já temos os coeficientes de distorção, com o programa requisito2.measure.py retificamos as imagens da câmera e permitimos medir distâncias na imagem retificada em pixels.
- Após todos os experimentos executados, executa-se o programa requisito2.analyse.py que gera a média e o desvio parão dos parâmetros intrísecos, salvando-os no diretório /textit./exp-0/.

## D. Obtenção dos parâmetros extrínsecos

- Executa-se o programa requisito3.py, que computa a correspondencia entre pontos da imagem e do espaço do objeto, atribuindo como origem do sistema de coordenadas do mundo, o ponto de intersecção do canto superior esquerdo do tabuleiro e através da função solvePnP da OpenCV [?], obtem os parâmetros extrínsecos R e t.
- Quando o programa pede o número do experimento, escolhe-se 0, uma vez que queremos usar os parâmetros intrísecos médios, medidos na etapa anterior.
- Deixa-se a câmera em um ponto marcado pela fita adesiva, tentando colocá-la ortogonal ao plano da sua base.
- 4) Com a câmera posicionada, posiciona-se o tabuleiro na distância mais próximo possível da câmera em que o padrão de calibração tem seus cantos detectados (os cantos ficam marcados com pontos coloridos no *stream* da câmera), marcando com a fita adesiva este ponto como  $d_{min}$ .

- 5) Repete-se o passo anterior, tentando encontrar a distância mais afastada da câmera em que os cantos do padrão de calibração ainda são detectáveis. Marcase este ponto com fita adesiva como  $d_{max}$ ; e um ponto intermediário entre  $d_{min}$  e  $d_{max}$ , que chamamos  $d_{med}$ .
- 6) Medimos a distância da câmera à origem do padrão de calibração usando a trena. Para cada distância, obtemos três vezes os valores de R e t.
- Com todos os pontos marcados e a câmera posicionada, acionamos o modo de captura apertando a tecla espaço
- 8) Leva-se o tabuleiro de xadrez para  $d_{min}$  e após algumas capturas (identificação do padrão xadrez na imagem *stream* da câmera), apertamos a tecla *espaço* novamente para sair do modo captura.
- 9) Repete-se os últimos dois passos para as distâncias  $d_{med}$  e  $d_{med}$ . As imagens captadas com as respectivas distâncias medidas são gravadas no diretório do experimento selecionado (no caso, ./exp-0/).
- E. Obtenção da altura de um objeto através da sua imagem

Com os parâmetros intrínsecos e extrínsecos, é possível medir um objeto no mundo real a partir da sua imagem. Neste projeto, entretanto, não se obteve êxito em desenvolver essa funcionalidade no programa *requisito4.py* 

#### IV. RESULTADOS

- A. Medição em pixels de segmentos de imagens
- B. Obtenção dos parâmetros intrínsecos
- C. Obtenção dos parâmetros extrínsecos

## V. DISCUSSÃO E CONCLUSÕES

## REFERÊNCIAS

- T. de Campos, "3d visual tracking of articulated objects and hands," Ph.D. dissertation, University of Oxford, 2014.
- [2] OpenCV, "Opencv: Camera calibration and 3d reconstruction," Dezembro 2017, [Online; Generated on Fri Dec 22 2017 22:15:38]. [Online]. Available: https://docs.opencv.org/3.4.0/d9/d0c/group\_\_calib3d.html
- [3] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.
- [4] G. Bradski, "The OpenCV Library," Dr. Dobb's Journal of Software Tools, 2000.