卒業研究

磁化トーラス上にコンパクト化した 超対称模型におけるモジュライ固定

安倍研究室 B4 宮根 一樹

2024年2月5日(月)

素粒子標準模型

- 実験により高い精度で検証
- 物質場は3世代・左右非対称

標準模型の問題点

- 量子重力が含まれていない
- 世代間の質量階層性

など

- → 高次元時空モデルの考案
- e.g. 超弦理論
 - 量子重力を含む
 - 10 次元で無矛盾な理論

現実的な模型を得るためには

- 余剰空間を観測と矛盾のない ように小さくコンパクト化
- 素粒子標準模型の世代数, 質量や結合定数などを再現

余剰空間と4次元有効理論の関係

$$rac{ ext{e.g.}}{\int ext{d}^{10} X \sqrt{-G} rac{1}{g^2} ext{Tr} \left[-rac{1}{4} F^{MN} F_{MN}
ight]
ightarrow \int ext{d}^4 x \underbrace{\left(\int ext{d}^6 y \sqrt{-G} rac{1}{g^2}
ight)}_{=rac{1}{g_{4 ext{D}}^2} ext{Tr} \left[-rac{1}{4} F^{\mu
u} F_{\mu
u}
ight]}_{=rac{1}{g_{4 ext{D}}^2}$$

余剰空間の幾何は4次元有効理論の結合定数を決定する

時空の計量は力学的な場

$$ds^{10} = g_{\mu\nu}(x,y)dx^{\mu}dx^{\nu} + g_{mn}(x,y)dy^{m}dy^{n}$$

ightarrow 真空期待値 $\langle g_{mn}
angle$ は $g_{mn}(x,y)$ の力学 (ポテンシャル) で決定される

- 余剰空間の計量 $g_{mn}(x)$:4 次元有効理論ではスカラー場 (モジュライ)
- ポテンシャルの (準) 安定点でモジュライが 真空期待値を獲得 (モジュライ固定)

- 余剰空間の計量 g_{mn}(x):4 次元有効理論ではスカラー場 (モジュライ)
- ポテンシャルの (準) 安定点でモジュライが 真空期待値を獲得 (モジュライ固定)

本研究の目的

標準模型の世代構造を再現する磁化トーラス模型 [2, 3] のモジュライ固定

→ 余剰空間の大きさが観測と整合するか?

トーラスコンパクト化

ullet 6 次元余剰空間 \to 3 つのトーラス T^2 にコンパクト化

ullet $\mathcal{A}^{(i)}(x)$ はモジュライ

磁束

・トーラス上の 2 種のゲージ場に $A_a^{(i)}$ を導入

$$(a=1,2)$$

← トーラスの面積

磁場ポテンシャルによる面積比の固定

磁場のポテンシャル
$$F^{MN}F_{MN}=F^{\mu
u}F_{\mu
u}+F^{mn}F_{mn}+\cdots$$
 」。

$$V^{(D)} = \pi^2 \prod_i \mathcal{A}^i imes \left\{ \underbrace{\left(\sum_i rac{M_1^{(i)}}{\mathcal{A}^{(i)}}
ight)^2}_{} + \underbrace{\left(\sum_i rac{M_2^{(i)}}{\mathcal{A}^{(i)}}
ight)^2}_{}
ight\}$$

それぞれがゼロのときに $\langle V^{(D)} \rangle = 0$ (最小)

$$rac{M_a^{(1)}}{\langle \mathcal{A}^{(1)}
angle} + rac{M_a^{(2)}}{\langle \mathcal{A}^{(2)}
angle} + rac{M_a^{(3)}}{\langle \mathcal{A}^{(3)}
angle} = 0 \quad ext{for } a=1,2$$

真空期待値 $\langle \mathcal{A}^{(1)} \rangle$, $\langle \mathcal{A}^{(2)} \rangle$, $\langle \mathcal{A}^{(3)} \rangle$ の関係

$$\begin{split} M_a^{(1)} + M_a^{(2)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} + M_a^{(3)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \quad \text{for } a = 1, 2 \\ & \qquad \qquad \downarrow \\ \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} &= \frac{M_1^{(3)} M_2^{(1)} - M_1^{(1)} M_2^{(3)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} , \quad \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= -\frac{M_1^{(2)} M_2^{(1)} - M_1^{(1)} M_2^{(2)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} \end{split}$$

面積の比は磁場のポテンシャルによって決定された

真空期待値 $\langle \mathcal{A}^{(1)} \rangle$, $\langle \mathcal{A}^{(2)} \rangle$, $\langle \mathcal{A}^{(3)} \rangle$ の関係

$$\begin{split} M_a^{(1)} + M_a^{(2)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} + M_a^{(3)} \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= 0 \quad \text{for } a = 1, 2 \\ & \qquad \qquad \downarrow \\ \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(2)} \rangle} &= \frac{M_1^{(3)} M_2^{(1)} - M_1^{(1)} M_2^{(3)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} \,, \, \frac{\langle \mathcal{A}^{(1)} \rangle}{\langle \mathcal{A}^{(3)} \rangle} &= -\frac{M_1^{(2)} M_2^{(1)} - M_1^{(1)} M_2^{(2)}}{M_1^{(2)} M_2^{(3)} - M_1^{(3)} M_2^{(2)}} \end{split}$$

面積の比は磁場のポテンシャルによって決定された

全体の因子は不定 ―― 磁場とは異なる起源をもつポテンシャルを導入する

3. 全体の因子の決定

全体の因子を決定するモジュライ:T \longleftrightarrow $\langle \mathcal{A}^{(1)} \rangle \,,\, \langle \mathcal{A}^{(2)} \rangle \,,\, \langle \mathcal{A}^{(3)} \rangle \propto \langle T \rangle$

T の有効ポテンシャル

- 有効理論は超対称性 (ボゾンとフェルミオンの対称性) をもつ
- ullet 超対称作用はスーパーポテンシャル W とケーラーポテンシャル K で決定 [5]
- 本研究では以下のポテンシャルを用いる [6]:

$$egin{cases} W = w_0 - Ae^{-aT} + BX \ K = -\ln(T + ar{T}) + |X|^2 \end{cases}$$

X は新たに導入したスカラー場, w_0, A, B, a は実パラメター

4. 結果

$$W = w_0 - Ae^{-aT} + BX$$
, $K = -\ln(T + \bar{T}) + |X|^2$

プランクスケール $M_{
m Pl}(\sim 2.4 imes 10^{18}~{
m GeV}) = 1$ の単位系

スカラーポテンシャル

$$egin{aligned} V^{(F)} &= e^K (K^{Iar{J}}(D_IW)(D_{ar{J}}ar{W}) - 3|W|^2) \ & \left\{ egin{aligned} D_IW &\equiv \partial_IW + (\partial_IK)W \ K^{Iar{J}} \colon \partial_I\partial_{ar{J}}K & \mathcal{O}$$
逆行列 \end{aligned} \end{aligned} $(I = X, T)$

パラメター:
$$w_0 \sim 2.17 \times 10^{-18} \; , \; a = 4\pi^2 \; , \; A = 1 \; , \; B = e^{-4\pi^2}$$

ightarrow $\langle T
angle \sim 1.085$ に固定

4. 結果

磁場の値は先行研究 [3] の値 ← 標準模型の世代構造を再現

$$\{M_1^{(1)},M_2^{(1)}\} = \{7,-7\}\;,\; \{M_1^{(2)},M_2^{(2)}\} = \{1,0\}\;,\; \{M_1^{(3)},M_2^{(3)}\} = \{0,-1\}$$

第1トーラスの面積
$$\langle \mathcal{A}^{(1)}
angle \sim (10^{-35} \; extsf{m})^2 \ \sim (10^{19} \; extsf{GeV})^{-2}$$

実験による制限 (参考 [7])

$$R_{6D} < \mathcal{O}(10^{-6} \text{ m})$$
 (6次元万有引力への制限)

 $M_{\mathsf{KK}} > \mathcal{O}(10^3 \; \mathsf{GeV})$ (KK 粒子生成の制限)

5. まとめ・展望

まとめ

- 磁化トーラス模型におけるモジュライ (トーラスの面積) の固定を議論
- ullet 面積比は磁場のポテンシャル $V^{(D)}$ のみで決定 (ただし,全体の因子は不定)
- ullet 磁場とは異なる起源をもつポテンシャル $V^{(F)}$ により全体の因子を決定

展望

- ullet より一般的なポテンシャル $V^{(F)}$ によるモジュライ固定
- 超対称性の自発的破れ,超対称粒子の質量などについて議論

付録

A. 背景磁場

真空期待値を次のように決定

$$\langle A_i
angle = rac{\pi}{{
m Im}\, au_i} M^{(i)} ar{z}_i \;, \quad M^{(i)} {=} egin{pmatrix} M_1^{(i)} & 0 & \cdots & 0 \ 0 & M_2^{(i)} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & M_N^{(i)} \end{pmatrix}$$

- M_a⁽ⁱ⁾ は整数
- ullet $M^{(i)}$ はトーラス上の磁場 $ightarrow F_{45} = \pi M^{(1)}$ など
- ブロック対角化でより小さいゲージ対称性

$$U(N) \to U(N_1) \times U(N_2) \times \cdots \times U(\tilde{N})$$

B. F-term uplifting

$$\left\{ egin{aligned} W &= w_0 - Ae^{-aT} \ K &= -\ln(T + ar{T}) \end{aligned}
ight.$$

$$egin{cases} W = w_0 - Ae^{-aT} + BX \ K = -\ln(T + ar{T}) + |X|^2 \end{cases}$$

参考文献

- Hiroyuki Abe, Tatsuo Kobayashi, Hiroshi Ohki, Akane Oikawa, and Keigo Sumita.
 Phenomenological aspects of 10D SYM theory with magnetized extra dimensions.
- [2] Hiroyuki Abe, Tatsuo Kobayashi, Hiroshi Ohki, and Keigo Sumita.
 Superfield description of 10D SYM theory with magnetized extra dimensions.
- [3] Hiroyuki Abe, Tatsuo Kobayashi, Keigo Sumita, and Shohei Uemura.
 Kähler moduli stabilization in semi-realistic magnetized orbifold models.
- [4] D. Cremades, L. E. Ibanez, and F. Marchesano. Computing Yukawa Couplings from Magnetized Extra Dimensions.

参考文献

- [5] Julius Wess and Jonathan Bagger.Supersymmetry and Supergravity.
- [6] Hiroyuki Abe, Tetsutaro Higaki, Tatsuo Kobayashi, and Yuji Omura.
 Moduli stabilization, F-term uplifting and soft supersymmetry breaking terms.