Conversão Direta

É possível efetuar conversão direta de binário para octal e vice-versa (octal para binário), bem como de binário para hexadecimal e vice-versa (hexadecimal para binário).

Observe as tabelas abaixo:

Octal e Binário:

Tabela comparativa entre os algarismos da base octal e seus equivalentes em binário (descrição textual da tabela mais abaixo).

Decimal	Binário	Octal
-	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7

```
0 (octal) = 000 (binário)
1 (octal) = 001 (binário)
2 (octal) = 010 (binário)
3 (octal) = 011 (binário)
4 (octal) = 100 (binário)
5 (octal) = 101 (binário)
6 (octal) = 110 (binário)
7 (octal) = 111 (binário)
```

Observando as bases binária e octal podemos verificar que elas se "encaixam" perfeitamente, ou seja, um algarismo octal é equivalente a exatamente três dígitos em binário. Isso se deve à seguinte propriedade matemática: $2^3 = 8$ (ou seja, base binária com 3 dígitos é equivalente à base octal).

Hexadecimal e Binário:

Tabela comparativa entre os algarismos da base hexadecimal e seus equivalentes em binário (descrição textual da tabela mais abaixo).

Decimal	Binário	Hexadecimal
•	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

```
0 (hexadecimal) = 0000 (binário)
1 (hexadecimal) = 0001 (binário)
2 (hexadecimal) = 0010 (binário)
3 (hexadecimal) = 0011 (binário)
4 (hexadecimal) = 0100 (binário)
5 (hexadecimal) = 0101 (binário)
6 (hexadecimal) = 0110 (binário)
7 (hexadecimal) = 0111 (binário)
8 (hexadecimal) = 1000 (binário)
9 (hexadecimal) = 1001 (binário)
A (hexadecimal) = 1010 (binário)
B (hexadecimal) = 1011 (binário)
C (hexadecimal) = 1100 (binário)
D (hexadecimal) = 1101 (binário)
E (hexadecimal) = 1110 (binário)
F (hexadecimal) = 1111 (binário)
```

Observando as bases binária e hexadecimal podemos verificar que elas se "encaixam" perfeitamente, ou seja, um dígito hexadecimal é equivalente a exatamente quatro dígitos em binário. Isso se deve à seguinte propriedade matemática: $2^4 = 16$ (ou seja, base binária com 4 dígitos é equivalente à base hexadecimal).

Conversão Direta: Octal para Binário

Exemplo 1: Converter 2165₈ (octal) para binário

Cada dígito octal deve ser convertido no seu equivalente em binário (com 3 bits)

 $2=010_2$, $1=001_2$, $6=110_2$, $5=101_2$

Juntar os números binários: 010 001 110 101

Logo: 2165_8 (octal) = 010001110101_2 (binário)

Conversão Direta: Hexadecimal para Binário

Exemplo 2: Converter 6B3E₁₆ (hexadecimal) para binário

Cada dígito hexadecimal deve ser convertido no seu equivalente em binário (com 4 bits)

6=0110, B=1011, 3=0011, E=1110

Juntar os números binários: 0110 1011 0011 1110

Logo: $6B3E_{16}$ (hexadecimal) = 0110101100111110_2 (binário)

Conversão Direta: Binário para Octal

Exemplo 3: Converter 10001110101₂ (binário) para Octal

Agrupar os dígitos binários em grupos de 3 (os grupos devem começar pela direita)

10 001 110 101

Para facilitar, preencher com zeros a esquerda (se necessário). Neste caso, foi colocado um zero à esquerda do primeiro número (10 ficou 010).

E os grupos ficaram: 010 001 110 101

Converter cada grupo para o equivalente em octal

010=2, 001=1, 110=6, 101=5

Logo: 10001110101_2 (binário) = 2165_8 (octal).

Conversão Direta: Binário para Hexadecimal

Exemplo 4: Converter 1101011001111110₂ (binário) para hexadecimal

Agrupar os dígitos em grupos de 4 (os grupos devem começar pela direita)

110 1011 0011 1110

Para facilitar, preencher com zeros a esquerda (se necessário). Neste caso, foi colocado um zero à esquerda do primeiro número (110 ficou 0110).

E os grupos ficaram:

0110 1011 0011 1110

Converter cada grupo para o equivalente em hexadecimal

0110=6, 1011=11 (onze, que em hexa=B), 0011=3, 1110=14 (quatorze, que em hexa=E)

Logo: 110101100111110_2 (binário) = $6B3E_{16}$ (hexadecimal)

Resumo - Conversão Direta

- Binário para Octal e Octal para Binário: cada dígito octal é equivalente a 3 bits (binário).
- Binário para Hexadecimal e Hexadecimal para binário: cada dígito hexadecimal é equivalente a 4 bits (binário).