CS499 Homework 9 (First Draft)

Intersteller

Exercise 9.1

We define $f_1:\mathbb{N}\to\mathbb{N}$

$$f_1(0) = 0, f_1(1) = 1, \dots, f_1(n) = n.$$

We define $f_2: \mathbb{N} \to \mathbb{N}^2$ based on this graph:

	0	/	2	う	4	5	13.3
0	(0,0)	(0 1)	(0,2)	(% 3)	(0,4)	(0,5)	, 1)
1	(1,0)	(K1)	(1/2)	(ルう)	(1/ 4)	(1,5)	111
2	(2)0)	(2/1)	(2,2)	(2,3)	(2,4)	(2,5)	114
3	(3.0)	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	eq.
:	Ę	Ę	ŧ	÷	Ē	11.	•,,

Figure 1:

$$f_2(0) = (0,0), f_2(1) = (0,1), f_2(2) = (1,0) \cdots$$

We define $f_3:\mathbb{N}\to\mathbb{N}^3$ based on this graph:

	0	/	2	3	4	5	13.1
£(0)=(0,0)	(0,0,0)	(0,0,1)	(0,0,2)	(0,0,3)	(0,0,4)	(0,0,5)	~1 }
f.(1)=(0,1)	(0,1,0)	(,1,0)	(9/1/2)	(0,1,3)	(0,1,4)	(O.1,5)	щ
f=(2)=(1,0)	(1,0,0)	(Ko))	(پسره دا)	(1,0/3)	(104)	(1,0,5)	111
f= (3)=(2,0)	(100,0)	(1,0,1)	(2,0,2)	(جرەر2)	(2,0,4)	(2,0,5)	(1)
:	E	""	n,	",	71.	11.1	'',

Figure 2:

$$f_2(0) = (0,0,0), f_2(1) = (0,0,1), f_2(2) = (0,1,0) \cdots$$

And so on, we can define $f_k, k \in \mathbb{N}$. Now we can define a bijection $\mathbb{N} \to \mathbb{N}^*$ base on this graph:

	0	/	2	3	4	5	11.1
f,	f,(0)	f (1)	f(2)	fico	f,(4)	f,(5)	×I)
f ₂	f. (0)	f.(1)	f,(2)	f_(J,)	f.(4)	£(5)	111
	f3(0)	f_(1)	f3(2)	f3(3)	f3(4)	f ₃ (5)	111
	f4(0)	f4(1)	£(2)	£(b)	£(4)	£(5)	171
į	;	Ę	,,,	",	1	1.11	'',

Figure 3:

We have $0 \to f_1(0)$, $1 \to f_1(1)$, $2 \to f_2(0) \cdots$. This is a bijection $\mathbb{N} \to \mathbb{N}^*$.

Exercise 9.2

We can define a bijection from $\{0,1\}^{\mathbb{N}}$ to $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$ as follows. Given $A=(a_1a_2a_3a_4\cdots,b_1b_2b_3b_4\cdots)$, we define $f(A)=a_1b_1a_2b_2a_3b_3a_4b_4\cdots$. To be more precisely,

$$f(A)[i] = \begin{cases} A[1][\frac{i+1}{2}], \ i \ is \ odd \ number \\ A[2][\frac{i}{2}], \ i \ is \ even \ number \end{cases}$$

Obviously, for each $A \in \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$, there is only one $f(A) \in \{0,1\}^{\mathbb{N}}$. For each $B \in \{0,1\}^{\mathbb{N}}$, there is only one $B = f^{-1}(B) \in \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Therefore, f is a bijection and $\{0,1\}^{\mathbb{N}} \cong \{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Using the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we can get $\mathbb{R} \cong \mathbb{R} \times \mathbb{R}$.

Exercies 9.3

We use the Cantor's method to proove that. For any $A \in (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$, we define that f(A) is the $\{0,1\}^{\mathbb{N}}$ sequence we get by following the blue line as follows.

Figure 4:

It is obvious that for any $B \in \{0,1\}^{\mathbb{N}}$, we can get to $f^{-1} \in (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$ by writing it down following the blue line. Therefore, f is a bijection and $\{0,1\} \cong (\{0,1\}^{\mathbb{N}})^{\mathbb{N}}$. Using the fact that $\mathbb{R} \cong \{0,1\}^{\mathbb{N}}$, we can get $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$.

Exercise 9.4

We know that one continuous function can be expressed by an infinite sequence of real numbers. Thus we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}}$. According to **Exercise 9.3**, $\mathbb{R} \cong \mathbb{R}^{\mathbb{N}}$. So we have $\mathcal{F} \cong \mathbb{R}^{\mathbb{N}} \cong \mathbb{R}$.

Exercise 9.5

 $000\cdots,100\cdots,1100\cdots,11100\cdots$ According to this rule, the first n bits of the n_{th} sequence are 1, and the remaining bits are 0. Obviously, these sequences constitute a countably infinite chain.

Exercise 9.6

 $100\cdots,0100\cdots,00100\cdots,000100\cdots$ According to this rule, the n_{th} bit of the n_{th} sequence is 1, and the remaining bits are 0. Obviously, these sequences constitute a countably infinite antichain.

Exercise 9.7

We can define A using a bijection f from $\{0,1\}^{\mathbb{N}}$ to A, which is a subset of $\{0,1\}^{\mathbb{N}}$ as follows.

Assuming a string s is an element of $\{0,1\}^{\mathbb{N}}$ and f(s)=t, let s_k determines t_{2k-1} and t_{2k} by the following rule.

If $s_k = 0$, then $t_{2k-1} := 0$, $t_{2k} := 1$. If $s_k = 1$, then $t_{2k-1} := 1$, $t_{2k} := 0$.

For example:

$$s = 1011010......$$

$$f(s) = 10, 01, 10, 10, 01, 10, 01,$$

Obviously, f is a bijection and A is uncountable. Also, any two elements t_a, t_b of A is not comparable since "01" and "10" is not comparable. Thus, A is an required antichain.

Exercise 9.8

We can define A using a bijection f from $\{0,1\}^{\mathbb{N}}$ to A, which is a subset of $\{0,1\}^{\mathbb{N}}$ as follows. Assuming $s \in \{0,1\}^{\mathbb{N}}$ and f(s) = t, the first k digit of s (we call it $s_{1:k}$) determines $t_{(2^k+1):(2^{k+1})}$ by the following rule.

Consider the $s_{1:k}$ as a binary number a_k , then $t_{(2^k+1):(2^k+a_k)} := 1$ and the $t_{(2^k+a_k+1):(2^{k+1})} := 0$. Specially, we define that the first 2 digits of t are always 0.

For example:

Obviously, f is a bijection and A is uncountable. Also, any two elements $t_a, t_b \in A$ is comparable. Assuming that two elements s_a, s_b is different, their first different digit is the k_{th} digit and the k_{th} digit of s_a is 1, then for any m such that $m \geq k$, the binary number of the first m digit of s_a is greater than that of s_b , which leads to the conclusion that string t_a is "greater" than t_b . Thus, A is the required chain.

Exercise 9.9

For every sequence of $\{0,1\}^{\mathbb{N}}$, form a set $x_i=s_1,s_2,s_3,...$ with all its prefixion as follow: assume that its first n digit is $a_1,a_2,...,a_n,s_n=\sum_{i=1}^N(a_i+1)\times 3^{i-1}$. Apparently every set x_i is infinite and $x_i\in 2^N$. Call such bijection from a sequence of $\{0,1\}^N$ to a set f. Then we get a set $X=\{f(x)|x\in\{0,1\}^N\}$ which satisfy the demand. As $\{0,1\}^N$ is uncountable, X is uncountable. And f(x) is infinite. Whenever distinct $x,y\in X(x=\{s_{x_1},s_{x_2},...\})$, suppose $m=f^{-1}(x), n=f^{-1}(y)$ and assume the first different digit between m and n is the k-th digit. Then $x\cap y=s_{x_1},s_{x_2},...,s_{x(k-1)}$, which is finite.

question

How to prove that R is smaller than 2^R .