
Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=4; day=30; hr=20; min=16; sec=49; ms=897;]

Reviewer Comments:

SEQUENCE LISTING

<110> Hellström, Mats Wallgard, Elisabet Kalén, Mattias

Please remove the foreign accent marks in the first and third applicant's names; foreign accent marks are non-ACII characters, which cannot be processed.

<120> ANGIOGENESIS-AFFECTING POLYPEPTIDES, PROTEINS, AND COMPOSITIONS,
AND METHODS OF USE THEREOF

The above <120> response exceeds the Sequence Rules' required 72-character line limit: please adjust the line, by inserting hard returns.

(from the end of Sequence 52)
Ser Cys Ser Leu Glu Pro Ser Ala Pro Glu Asp Leu Leu
850
860

1

Please remove the "1" above, which appears at the end of the submitted file.

*****	*****	******	*****	****

Validated By CRFValidator v 1.0.3

Application No: 10581761 Version No: 1.0

Input Set:

Output Set:

Started: 2008-04-15 14:49:57.985

Finished: 2008-04-15 14:50:00.843

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 858 ms

Total Warnings: 30

Total Errors: 2

No. of SeqIDs Defined: 52

Actual SeqID Count: 52

Err	or code	Error Descrip	otion							
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(1)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(2)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(3)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(6)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(7)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(8)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(11)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(12)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(13)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(16)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(17)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(18)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(23)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(24)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(25)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(28)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(29)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(30)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(33)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(34)

Input Set:

Output Set:

Started: 2008-04-15 14:49:57.985

Finished: 2008-04-15 14:50:00.843

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 858 ms

Total Warnings: 30

Total Errors: 2

No. of SeqIDs Defined: 52

Actual SeqID Count: 52

Error code Error Description This error has occured more than 20 times, will not be displayed E 355 Empty lines found between the amino acid numbering and the No. of Bases conflict, this line has no nucleotides SEQID (52)

<211>

<212> DNA

736

<213> Murinae gen. sp.

<400> 1

gtgatccagg atccgaagag gcccggagca ggagcatggc gtcgtcgggg tcggtgcagc 60 120 agctgcccct ggtgctgctg atgttgctgt tggcgagtgc ggcacgggcc agactctact 180 tccgctcggg ccagacttgc taccatccca ttcgcgggga ccagctggct ctgctggggc 240 gcaggactta tcctcggccg catgagtacc tgtccccagc ggatctcccc aagaattggg 300 actggagaaa tgtgaacggt gtcaactatg ccagcgtcac caggaaccag cacatcccac 360 agtactgtgg ttcctgctgg gcccacggca gcaccagtgc catggcagac cgaatcaaca 420 tcaagaggaa aggtgcatgg ccctccatcc tgctgtccgt acagaatgtc attgactgtg 480 gcaatgctgg ctcttgtgaa gggggcaatg accttccggt gtgggagtat gcccacaagc 540 atggcatccc cgatgagacc tgcaacaact accaggcaag gaccaagact gtgacaagtt 600 taaccagtgt gggacctgca ctgaattcaa agagtgtcac accatccaga attacaccct 660 ctggagagtg ggtgattacg gtccctgtcc gggagggaga agatgatggc gagatctatg 720 ccaatggtcc catcagctgc gggataatgg gcaccagaga tgatgtctaa ctacactggg 736 ggcatctatg ctgagc

<210> 2

<211> 1404

<212> DNA

<213> Murinae gen. sp.

<400> 2

60 aaaggaccgg gcggggcgtc ccgagcgcgt gggcctgcgg gtcgggtcaa gaggtcgaag gtgctgcgcg tgatccagga tccgaattgg cccggagcag gagcatggcg tcgtcggggt 120 cggtgcagca gctgcccctg gtgctgctga tgttgctgtt ggcgagtgcg gcacgggcca 180 gactctactt ccgctcgggc cagacttgct accatcccat tcgcggggac cagctggctc 240 tgctgggggg caggacttat cctcggccgc atgagtacct gtccccagcg gatctcccca 300 360 agaattggga ctggagaaat gtgaacggtg tcaactatgc cagcgtcacc aggaaccagc acateceaca gtactgtggt teetgetggg eecaeggeag eaceagtgee atggeagaee 420 480 gaatcaacat caagaggaaa ggtgcatggc cctccatcct gctgtccgta cagaatgtca 540 ttgactgtgg caatgctggc tcttgtgaag ggggcaatga ccttccggtg tgggagtatg

cccacaagca	tggcatcccc	gatgagacct	gcaacaacta	ccaggccaag	gaccaagact	600
gtgacaagtt	taaccagtgt	gggacctgca	ctgaattcaa	agagtgtcac	accatccaga	660
attacaccct	ctggagagtg	ggtgattacg	gctccctgtc	cgggagggag	aagatgatgg	720
ccgagatcta	tgccaatggt	cccatcagct	gcgggataat	ggcaacagag	atgatgtcta	780
actacactgg	gggcatctat	gctgagcacc	aggaccaggc	cgttatcaac	cacatcatct	840
ctgtagctgg	ctggggtgtc	agcaacgatg	gcatcgagta	ctggattgtc	cgaaattcat	900
ggggcgaacc	ctggggtgag	aaaggctgga	tgaggatcgt	gaccagcacc	tacaagggag	960
gcacaggtga	cagctacaac	cttgccatcg	agagtgcctg	cacatttggg	gaccccattg	1020
tttaggtaga	tgtctctgga	agcagcgctg	tgaaccatga	cagggagggg	tgattaatta	1080
ctgacactgg	acatgtccag	acagctataa	acagtgcttg	tggacatgag	gaccagagtg	1140
tggactgcat	cccgagagga	gacggtaaag	gatgaaacac	aactgcactg	ggaccctccg	1200
ccgtaccctc	caggcctgcc	tcctccacca	ctgagccctc	caggcctgcc	tcctcttcta	1260
cagtgcttgc	cttcagccac	ccggagaaga	gagctatggt	ttaggacagc	tcaacttatc	1320
accagatctg	gagccctgga	atccatggga	ggggggaaca	agtccagact	gcttaagaaa	1380
tgagtaaaat	atctggcttc	ccac				1404

<211> 306

<212> PRT

<213> Murinae gen. sp.

<400> 3

Met Ala Ser Ser Gly Ser Val Gln Gln Leu Pro Leu Val Leu Leu Met 1 5 10 15

Leu Leu Leu Ala Ser Ala Ala Arg Ala Arg Leu Tyr Phe Arg Ser Gly 25 30

Gln Thr Cys Tyr His Pro Ile Arg Gly Asp Gln Leu Ala Leu Leu Gly 35 40 45

Arg Arg Thr Tyr Pro Arg Pro His Glu Tyr Leu Ser Pro Ala Asp Leu 50 55 60

Pro Lys Asn Trp Asp Trp Arg Asn Val Asn Gly Val Asn Tyr Ala Ser 65 70 75 80

Val Th	Arg Asr	n Gln His 85	Ile Pro	Gln Tyr 90	Cys Gly	Ser Cys	Trp Ala 95
His Gly	y Ser Thi	s Ser Ala	Met Ala	Asp Arg 105	Ile Asn	Ile Lys 110	Arg Lys
Gly Ala	a Trp Pro	Ser Ile	Leu Leu 120		Gln Asn	Val Ile 125	Asp Cys
Gly Ası		y Ser Cys	Glu Gly 135	Gly Asn	Asp Leu 140	Pro Val	Trp Glu
Tyr Ala	a His Ly:	His Gly 150		Asp Glu	Thr Cys	Asn Asn	Tyr Gln 160
Ala Ly:	s Asp Glr	n Asp Cys 165	Asp Lys	Phe Asn 170	_	Gly Thr	Cys Thr 175
Glu Phe	e Lys Gli 180	ı Cys His	Thr Ile	Gln Asn 185	Tyr Thr	Leu Trp 190	Arg Val
Gly Ası	Tyr Gly	y Ser Leu	Ser Gly 200	_	Lys Met	Met Ala 205	Glu Ile
Tyr Ala		y Pro Ile	Ser Cys	Gly Ile	Met Ala 220	Thr Glu	Met Met
Ser Ası 225	n Tyr Thi	g Gly Gly 230	_	· Ala Glu	His Gln 235	Asp Gln	Ala Val 240
Ile Ası	n His Ile	e Ile Ser 245	Val Ala	Gly Trp 250	_	Ser Asn	Asp Gly 255
Ile Glı	ı Tyr Trı 260	o Ile Val	Arg Asn	Ser Trp 265	Gly Glu	Pro Trp 270	Gly Glu
Lys Gly	7 Trp Met 275	Arg Ile	Val Thr 280		Tyr Lys	Gly Gly 285	Thr Gly
Asp Set		n Leu Ala	Ile Glu 295	ser Ala	Cys Thr 300	Phe Gly	Asp Pro

<211> 1480

<212> DNA

<213> Homo sapiens

<400> 4

<400 <i>></i> 4						
ctgggccgag	gccgaggccg	gggcgggatc	cagagcggga	gccggcgcgg	gatctgggac	60
tcggagcggg	atccggagcg	ggacccagga	gccggcgcgg	ggccatggcg	aggcgcgggc	120
cagggtggcg	gccgcttctg	ctgctcgtgc	tgctggcggg	cgcggcgcag	ggcggcctct	180
acttccgccg	gggacagacc	tgctaccggc	ctctgcgggg	ggacgggctg	gctccgctgg	240
ggcgcagcac	atacccccgg	cctcatgagt	acctgtcccc	agcggatctg	cccaagagct	300
gggactggcg	caatgtggat	ggtgtcaact	atgccagcat	cacccggaac	cagcacatcc	360
cccaatactg	cggctcctgc	tgggcccacg	ccagcaccag	cgctatggcg	gatcggatca	420
acatcaagag	gaagggagcg	tggccctcca	ccctcctgtc	cgtgcagaac	gtcatcgact	480
gcggtaacgc	tggctcctgt	gaagggggta	atgacctgtc	cgtgtgggac	tacgcccacc	540
agcacggcat	ccctgacgag	acctgcaaca	actaccaggc	caaggaccag	gagtgtgaca	600
agtttaacca	atgtgggaca	tgcaatgaat	tcaaagagtg	ccacgccatc	cggaactaca	660
ccctctggag	ggtgggagac	tacggctccc	tctctgggag	ggagaagatg	atggcagaaa	720
tctatgcaaa	tggtcccatc	agctgtggaa	taatggcaac	agaaagactg	gctaactaca	780
ccggaggcat	ctatgccgaa	taccaggaca	ccacatatat	aaaccatgtc	gtttctgtgg	840
ctgggtgggg	catcagtgat	gggactgagt	actggattgt	ccggaattca	tggggtgaac	900
catggggcga	gagaggctgg	ctgaggatcg	tgaccagcac	ctataaggat	gggaagggcg	960
ccagatacaa	ccttgccatc	gaggagcact	gtacatttgg	ggaccccatc	gtttaaggcc	1020
atgtcactag	aagcgcagtt	taagaaaagg	catggtgacc	catgaccaga	ggggatccta	1080
tggttatgtg	tgccaggctg	gctggcagga	actggggtgg	ctatcaatat	tggatggcga	1140
ggacagcgtg	gcactggctg	cgagtgttcc	tgagagttga	aagtgggatg	acttatgaca	1200
cttgcacagc	atggctctgc	ctcacaatga	tgcagtcagc	cacctggtga	agaagtgacc	1260
tgcgacacag	gaaacgatgg	gacctcagtc	ttcttcagca	gaggacttga	tattttgtat	1320
ttggcaactg	tgggcaataa	tatggcattt	aagaggtgaa	agagttcaga	cttatcacca	1380
ttcttatgtc	actttagaat	caagggtggg	ggagggaggg	agggagttgg	cagtttcaaa	1440

<211> 303

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Arg Arg Gly Pro Gly Trp Arg Pro Leu Leu Leu Val Leu 1 5 10 15

Leu Ala Gly Ala Ala Gln Gly Gly Leu Tyr Phe Arg Arg Gly Gln Thr
20 25 30

Cys Tyr Arg Pro Leu Arg Gly Asp Gly Leu Ala Pro Leu Gly Arg Ser 35 40 45

Thr Tyr Pro Arg Pro His Glu Tyr Leu Ser Pro Ala Asp Leu Pro Lys 50 55 60

Ser Trp Asp Trp Arg Asn Val Asp Gly Val Asn Tyr Ala Ser Ile Thr 65 70 75 80

Arg Asn Gln His Ile Pro Gln Tyr Cys Gly Ser Cys Trp Ala His Ala 85 90 95

Ser Thr Ser Ala Met Ala Asp Arg Ile Asn Ile Lys Arg Lys Gly Ala 100 105 110

Trp Pro Ser Thr Leu Leu Ser Val Gln Asn Val Ile Asp Cys Gly Asn 115 120 125

Ala Gly Ser Cys Glu Gly Gly Asn Asp Leu Ser Val Trp Asp Tyr Ala 130 135 140

His Gln His Gly Ile Pro Asp Glu Thr Cys Asn Asn Tyr Gln Ala Lys
145 150 155 160

Asp Gln Glu Cys Asp Lys Phe Asn Gln Cys Gly Thr Cys Asn Glu Phe 165 170 175

Lys Glu Cys His Ala Ile Arg Asn Tyr Thr Leu Trp Arg Val Gly Asp 180 185 Tyr Gly Ser Leu Ser Gly Arg Glu Lys Met Met Ala Glu Ile Tyr Ala 195 200 205

Asn Gly Pro Ile Ser Cys Gly Ile Met Ala Thr Glu Arg Leu Ala Asn 210 220

Tyr Thr Gly Gly Ile Tyr Ala Glu Tyr Gln Asp Thr Thr Tyr Ile Asn 225 230 235 240

His Val Val Ser Val Ala Gly Trp Gly Ile Ser Asp Gly Thr Glu Tyr
245 250 255

Trp Ile Val Arg Asn Ser Trp Gly Glu Pro Trp Gly Glu Arg Gly Trp
260 265 270

Leu Arg Ile Val Thr Ser Thr Tyr Lys Asp Gly Lys Gly Ala Arg Tyr 275 280 285

Asn Leu Ala Ile Glu Glu His Cys Thr Phe Gly Asp Pro Ile Val 290 295 300

<210> 6

<211> 646

<212> DNA

<213> Murinae gen. sp.

<400> 6

tcctttccta gtctgtcttc agatgaaacc tattctctgc ttgtacaaga accagtagcc 60 gtcctcaagg ccaacagcgt tggggagcgt tacgaggttt agagacgttt agccagttag 120 tttaccaaga ctctttcggg actttcacca tcaatgaatc cagtatagct gattctccaa 180 gattccctca tagaggaatt ttaattgata catctagaca cttcctgcct gtgaagacaa 240 ttttaaaaac tctggatgcc atggctttta ataagtttaa tgttcttcac tggcacatag 300 tggacgacca gtctttccct tatcagagta ccacttttcc tgagctaagc aataagggaa 360 gctactcttt gtctcatgtc tatacaccaa acgatgtccg gatggtgctg gagtacgccc 420 ggctccgagg gattcgagtc ataccagaat ttgatacccc tggccataca cagtcttggg 480 540 gcaaaggaca gaaaaacctt ctaactccat gttacaatca aaaaactaaa actcaagtgt ttgggcctgt agacccaact gtaaacacaa cgtatgcatt ctttaacaca tttttcaaag 600

<211> 1805

<212> DNA

<213> Murinae gen. sp.

<400> 7

60 ggatgctttc ttcccagcga cccagactgg aaggttggtc caaagactgc ctagccagac 120 tcgcggagca gtcatgccgc agtccccgcg tagcgccccc gggctgctgc tgctgcaggc gctggtgtcg ctagtgtcgc tggccctagt ggccccggcc cgactgcaac ctgcgctatg 180 240 gcccttcccg cgctcggtgc agatgttccc gcggctgttg tacatctccg cggaggactt cagcatcgac cacagtccca attccacagc gggcccttcc tgctcgctgc tacaggaggc 300 gtttcggcga tattacaact atgtttttgg tttctacaag agacatcatg gccctgctag 360 420 atttcgagct gagccacagt tgcagaagct cctggtctcc attaccctcg agtcagagtg cgagtccttc cctagtctgt cttcagatga aacctattct ctgcttgtac aagaaccagt 480 540 agccgtcctc aaggccaaca gcgtttgggg agcgttacga ggtttagaga cgtttagcca gttagtttac caagactctt tcgggacttt caccatcaat gaatccagta tagctgattc 600 tccaagattc cctcatagag gaattttaat tgatacatct agacacttcc tgcctgtgaa 660 gacaatttta aaaactctgg atgccatggc ttttaataag tttaatgttc ttcactggca 720 780 catagtggac gaccagtctt tcccttatca gagtaccact tttcctgagc taagcaataa 840 gggaagctac tctttgtctc atgtctatac accaaacgat gtccggatgg tgctggagta 900 cgcccggctc cgagggattc gagtcatacc agaatttgat acccctggcc atacacagtc 960 ttggggcaaa ggacagaaaa accttctaac tccatgttac aatcaaaaaa ctaaaactca 1020 agtgtttggg cctgtagacc caactgtaaa cacaacgtat gcattcttta acacattttt 1080 caaagaaatc agcagtgtgt ttccagatca gttcatccac ttgggaggag atgaagtaga atttcaatgt tgggcatcaa atccaaacat ccaaggtttc atgaagagaa agggctttgg 1140 1200 cagcgatttt agaagactag aatcctttta tattaaaaag attttggaaa ttatttcatc 1260 cttaaagaag aactccattg tttggcaaga agtttttgat gataaggtgg agcttcagcc 1320 gggcacagta gtcgaagtgt ggaagagtga gcattattca tatgagctaa agcaagtcac 1380 aggetetgge tteeetgeea teetttetge teettggtae ttagaeetga teagetatgg 1440 gcaagactgg aaaaactact acaaagttga gccccttaat tttgaaggct ctgagaagca

gaaacaactt	gttattggtg	gagaagcttg	cctgtgggga	gaatttgtgg	atgcaactaa	1500
ccttactcca	agattatggc	ctcgagcaag	cgctgttggt	gagagactct	ggagccctaa	1560
aactgtcact	gacctagaaa	atgcctacaa	acgactggcc	gtgcaccgct	gcagaatggt	1620
cagccgtgga	atagctgcac	aacctctcta	tactggatac	tgtaactatg	agaataaaat	1680
atagaagtga	cagacgtcta	cagcattcca	gctatgatca	tgttgattct	gaaatcatgt	1740
aaattaagat	ttgttaggct	gtttttttt	taaataaacc	atcttttat	tgattgaatc	1800
tttct						1805

<211> 536

<212> PRT

<213> Murinae gen. sp.

<400> 8

Met Pro Gln Ser Pro Arg Ser Ala Pro Gly Leu Leu Leu Gln Ala 1 5 10

Leu Val Ser Leu Val Ser Leu Ala Leu Val Ala Pro Ala Arg Leu Gln
20 25 30

Pro Ala Leu Trp Pro Phe Pro Arg Ser Val Gln Met Phe Pro Arg Leu 35 40 45

Leu Tyr Ile Ser Ala Glu Asp Phe Ser Ile Asp His Ser Pro Asn Ser 50 55 60

Thr Ala Gly Pro Ser Cys Ser Leu Leu Gln Glu Ala Phe Arg Arg Tyr 65 70 75 80

Tyr Asn Tyr Val Phe Gly Phe Tyr Lys Arg His His Gly Pro Ala Arg 85 90 95

Phe Arg Ala Glu Pro Gln Leu Gln Lys Leu Leu Val Ser Ile Thr Leu 100 105 110

Glu Ser Glu Cys Glu Ser Phe Pro Ser Leu Ser Ser Asp Glu Thr Tyr 115 120 125

Ser Leu Leu Val Gln Glu Pro Val Ala Val Leu Lys Ala Asn Ser Val 130 135 140

Trp Gly	√ Ala Le	eu Arg	Gly 150	Leu	Glu	Thr	Phe	Ser 155	Gln	Leu	Val	Tyr	Gln 160
Asp Sei	Phe Gl	ly Thr 165	Phe	Thr	Ile	Asn	Glu 170	Ser	Ser	Ile	Ala	Asp 175	Ser
Pro Aro	g Phe Pi 18	ro His 80	Arg	Gly	Ile	Leu 185	Ile	Asp	Thr	Ser	Arg 190	His	Phe
Leu Pro	Val Ly 195	ys Thr	Ile	Leu	Lys 200	Thr	Leu	Asp	Ala	Met 205	Ala	Phe	Asn
Lys Phe	e Asn Va	al Leu	His	Trp 215	His	Ile	Val	Asp	Asp 220	Gln	Ser	Phe	Pro
Tyr Glr 225	n Ser Th	hr Thr	Phe 230	Pro	Glu	Leu	Ser	Asn 235	Lys	Gly	Ser	Tyr	Ser 240
Leu Sei	: His Va	al Tyr 245	Thr	Pro	Asn	Asp	Val 250	Arg	Met	Val	Leu	Glu 255	Tyr
Ala Aro	g Leu Ai 20	rg Gly 60	Ile	Arg	Val	Ile 265	Pro	Glu	Phe	Asp	Thr 270	Pro	Gly
His Th	Gln Se	er Trp	Gly	Lys	Gly 280	Gln	Lys	Asn	Leu	Leu 285	Thr	Pro	Cys
Tyr Ası 290	ı Gln Ly	ys Thr	Lys	Thr 295	Gln	Val	Phe	Gly	Pro 300	Val	Asp	Pro	Thr
Val Asr 305	n Thr Th	hr Tyr	Ala 310	Phe	Phe	Asn	Thr	Phe 315	Phe	Lys	Glu	Ile	Ser 320
Ser Val	. Phe Pi	ro Asp 325	Gln	Phe	Ile	His	Leu 330	Gly	Gly	Asp	Glu	Val 335	Glu
Phe Glr	n Cys Ti 34	rp Ala 40	Ser	Asn	Pro	Asn 345	Ile	Gln	Gly	Phe	Met 350	Lys	Arg
Lys Gly	7 Phe Gl 355	ly Ser	Asp	Phe	Arg 360	Arg	Leu	Glu	Ser	Phe 365	Tyr	Ile	Lys

Gln Glu Val Phe Asp Asp Lys Val Glu Leu Gln Pro Gly Thr Val Val 385 390 395 400

Glu Val Trp Lys Ser Glu His Tyr Ser Tyr Glu Leu Lys Gln Val Thr 405 410 415

Gly Ser Gly Phe Pro Ala Ile Leu Ser Ala Pro Trp Tyr Leu Asp Leu 420 425 430

Ile Ser Tyr Gly Gln Asp Trp Lys Asn Tyr Tyr Lys Val Glu Pro Leu