Relational Model: Examples

Banking Example

```
branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)
```

depositor (customer_name, account_number)

borrower (customer_name, loan_number)

Banking Example

```
branch (<u>branch_name</u>, branch_city, assets)

customer (<u>customer_name</u>, customer_street, customer_city)

account (<u>account_number</u>, branch_name, balance)

F

loan (<u>loan_number</u>, branch_name, amount)

F

depositor (<u>customer_name</u>, account_number)

F

borrower (<u>customer_name</u>, loan_number)

F
```

Example branch relation

branch_name	branch_city	assets
Brighton	Brooklyn	7100000
Downtown	Brooklyn	9000000
Mianus	Horseneck	400000
North Town	Rye	3700000
Perryridge	Horseneck	1700000
Pownal	Bennington	300000
Redwood	Palo Alto	2100000
Round Hill	Horseneck	8000000

Example *loan* relation

loan_number	branch_name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L -2 3	Redwood	2000
L-93	Mianus	500

Example borrower relation

customer_name	loan_number
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17

■ Find all loans of over \$1200

$$\sigma_{amount > 1200}$$
 (loan)

Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan \ number} (\sigma_{amount > 1200} (loan))$$

Find the names of all customers who have a loan, an account, or both, from the bank

$$\prod_{customer\ name}$$
 (borrower) $\cup \prod_{customer\ name}$ (depositor)

Find the names of all customers who have a loan at the Perryridge branch.

$$\prod_{customer_name} (\sigma_{branch_name="Perryridge"} (\sigma_{borrower.loan_number=loan.loan_number} (borrower x loan)))$$

Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

```
\Pi_{customer\_name} (\sigma_{borrower.loan\_number} (\sigma_{borrower.loan\_number} (borrower x loan))) - \Pi_{customer\_name} (depositor)
```

- Find the names of all customers who have a loan at the Perryridge branch.
 - Query 1

```
\Pi_{customer\_name} (\sigma_{branch\_name} = "Perryridge" (\sigma_{borrower.loan\_number} = loan.loan\_number (borrower x loan)))
```

Query 2

```
\Pi_{customer\_name}(\sigma_{loan.loan\_number} = borrower.loan\_number (\sigma_{branch\_name} = "Perryridge" (loan)) \times borrower))
```

- Find the largest account balance
 - Strategy:
 - Find those balances that are not the largest
 - Rename account relation as d so that we can compare each account balance with all others
 - Use set difference to find those account balances that were not found in the earlier step.
 - The query is:

$$\prod_{balance}(account) - \prod_{account.balance} (\sigma_{account.balance} < \sigma_{account.balance} (account \times \rho_{d} (account)))$$

Bank Example Queries

Find the names of all customers who have a loan and an account at bank.

$$\prod_{customer_name}$$
 (borrower) $\cap \prod_{customer_name}$ (depositor)

Find the name of all customers who have a loan at the bank and the loan amount

 $\prod_{customer_name, loan_number, amount}$ (borrower \bowtie loan)

Bank Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
 - Query 1

```
\prod_{customer\_name} (\sigma_{branch\_name = \text{``Downtown''}} (depositor \bowtie account)) \cap \\ \prod_{customer\_name} (\sigma_{branch\_name = \text{``Uptown''}} (depositor \bowtie account))
```