Teorema del punto fijo

Elías López Rivera 1

¹ Universidad Nacinal Autónoma de México Facultad de Ciencias.

 $\{^1 \verb"elias.lopezr"\} @ \verb"ciencias.unam.mx"$

15 de junio de 2025

1. Un teorema del punto fijo

Ejercicio 1 (El espacio de las funciones continuas.)

Sea $C[a,b] = \{f : [a,b] \to \mathbb{R} \mid f \text{ es } continua\}$. En C[a,b], se define una distancia así: sí $f,g \in C[a,b]$ entonces:

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\}$$

Prueba que d es una distancia , i.e, prueba que:

- 1. d(f,g) = d(g,f), para toda $f,g \in C[a.b]$
- 2. $d(f,g) \ge 0$ para toda $f,g \in C[a,b]$ y d(f,g) = 0, si y solo si f = g
- 3. La desigualdad del triángulo: $d(f,g) \leq d(f,h) + d(h,g)$, para toda $f,g,h \in C[a,b]$

Solución

Tomamos $f, g, h \in C[a, b]$.

1) Se tiene que $|f(x) - g(x)| = |g(x) - f(x)| \ \forall \ x \in [a, b]$ se sigue que:

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\} = \sup\{|g(x) - f(x)| : x \in [a,b]\} = d(g,f)$$

2) Es claro que $0 \le |f(x) - g(x)| \ \forall \ x \in [a, b]$, se sigue:

$$0 \le \sup\{|f(x) - g(x)| : x \in [a, b]\} = d(f, g)$$

Si
$$f=g$$
 se sigue $|f(x)-g(x)|=0 \ \forall \ x\in [a,b]$ por tanto $0=\sup\{|f(x)-g(x)|:x\in [a,b]\}=d(f,g)$

Si $0 = d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\}$, entonces sea $\epsilon > 0$ se sigue que para $x \in [a,b]$ $0 \le |f(x) - g(x)| < \epsilon$, del hecho de que ϵ es arbitrario se sigue que |f(x) - g(x)| = 0, por tanto f(x) = g(x), como el x es arbitrario se concluye que f = g

3) Por desigualdad del triángulo $|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|$ $\forall x \in [a, b]$, aplicando la condición de supremo:

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\} \le |f(x) - h(x)| + |h(x) - g(x)| \le d(f,h) + d(h,g)$$

Definición 1

■ Sea $\{f_n \in C[a,b], n \geq 1\}$. Si $f: C[a,b] \to \mathbb{R}$, es una función, decimos que la sucesión f_n converge a f si

$$\lim_{n \to \infty} d(f_n, f) = 0$$

■ Decimos que $\{f_n \in C[a,b], n \geq 1\}$ es una sucesión de Cauchy si para toda $\epsilon > 0$, existe N tal que si $n, m \geq N$ entonces $d(f,g) < \epsilon$

Ejercicio 2 Prueba que si $\{f_n \in C[a,b], n \geq 1\}$ coverge a f, entonces $f \in C[a,b]$, i.e, f es continua.

Solución

Tomemos $x, x_0 \in [a, b]$, sea $\frac{\epsilon}{3} > 0$, como f_n converge a f se sigue que:

$$\exists K \in \mathbb{N} : |f(x) - f_K(x)| < \frac{\epsilon}{3} \ \forall \ x \in [a, b]$$

Partícularmente se sigue que:

$$|f_K(x_0) - f(x_0)| < \frac{\epsilon}{3}$$

Como f_K es continua se sigue que para $\frac{\epsilon}{3} > 0$:

$$\exists \ \delta \in \mathbb{R}^+ : 0 < |x - x_0| < \delta \implies |f_K(x) - f_K(x_0)| < \frac{\epsilon}{3}$$

Usando la desigualdad del triángulo generalizada y reestringiendo $0<|x-x_0|<\delta,$ se tiene:

$$|f(x) - f(x_0)| = |f(x) - f_K(x) + f_K(x) - f_K(x_0) + f_K(x_0) - f(x_0)|$$

$$\le |f(x) - f_K(x)| + |f_K(x) - f_K(x_0)| + |f_K(x_0) - f(x_0)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

Se concluye que f es continua.

Ejercicio 3 Prueba que si $\{f_n \in C[a,b], n \geq 1\}$ es una sucesión de Cauchy entonces existe $f \in C[a,b]$ tal que f_n coverge a f

Solución

De la desigualdad $|f_m(x) - f_n(x)| \le d(f_m, f_n)$, y del hecho de que f_n es una sucesión de Cauchy en C[a, b], se sigue que $(f_n(x))_{n \in \mathbb{N}}$ es una sucesión de Cauchy $\forall x \in [a, b]$ dentro de \mathbb{R} , como \mathbb{R} es completo se sigue que existe f(x) tal que:

$$f(x) = \lim_{n \to \infty} f_n(x) \ \forall \ x \in [a, b]$$

Definimos F de tal manera que F(x)=f(x) para toda $x\in [a,b]$, por tanto tomemos $\epsilon>0$, se tiene que:

$$\exists K \in \mathbb{N} : d(f_m, f_n) < \epsilon \ \forall \ m, \ n \geq K$$

Si en partícular hacemos que $m \to \infty$, se sigue que la confición se reescribe:

$$\exists K \in \mathbb{N} : d(F, f_n) < \epsilon \ \forall \ n \geq K$$

De donde se sigue que f_n converge a F, del inciso anterior se sigue que $F \in C[a,b]$

Definición 2 (Contracción) Sea $P:C[a,b]\to C[a,b]$ una función. Decimos que P es una contracción si existe un número $\alpha<1$ tal que, para toda $f,g\in C[a,b]$

$$d(P(f).P(g)) \le \alpha d(f,g)$$

Ejercicio 4 Sea P una contracción. Demuestra que si f_n , converge a f, entonces $P(f_n)$ converge P(f)

Solución

Como P es contracción se cumple que:

$$0 < d(P(f), P(f_n)) < \alpha d(f, f_n)$$

La desigualdad se sigue para el límite:

$$\lim_{n \to \infty} 0 \le \lim_{n \to \infty} d(P(f), P(f_n)) \le \lim_{n \to \infty} \alpha d(f, f_n)$$

Como $\alpha < 1$, y f_n converge a f se sigue que:

$$0 \le \lim_{n \to \infty} d(P(f), P(f_n)) \le 0$$

Por teorema squeeze se tiene que:

$$\lim_{n \to \infty} d(P(f), P(f_n)) = 0$$

Por tanto $P(f_n)$ converge a P(f)

Ejercicio 5 Prueba el siguiente teorema de punto fijo:

Teorema 1 Si P es una contracción, entonces tiene un único punto fijo, i.e., existe una única $f_0 \in C[a,b]$ tal que $P(f_0) = f_0$

Solución

Sea $f \in C[a, b]$, primero consideremos la siguiente sucesión $P^{n+1}(f) = P(P^n(f))$, como la imagen de P, es un subconjunto del dominio de P, se sigue que la sucesión esta bien definida.

Demostraremmos por inducción la siguiente desigualdad:

$$d(P^{n+1}(f), P^n(f)) < \alpha^n d(P(f), f) \ \forall \ n \in \mathbb{N}$$

i) Base de inducción:

Como P es contracción se sigue directamente que:

$$d(P^2(f), P(f)) < \alpha \, d(P(f), f)$$

ii) Hipótesis de inducción:

Para algún $k \in \mathbb{N}$ se cumple que:

$$d(P^{k+1}(f), P^k(f)) < \alpha^k d(P(f), f)$$

iii)
$$P(k) \implies P(k+1)$$
:,

Del hecho de que P es contracción, y utilizando ii) se sigue que:

$$d(P^{k+2}(f), P^{k+1}(f)) < \alpha d(P^{k+1}(f), P^k(f)) < \alpha^{k+1} D(P(f), f)$$

Ahora Tomemos $m, n \in \mathbb{N}$, suponemos sin perdida de generalidad que m > n, aplicando las propiedades de d y la desigualdad anterior podemos obterner:

$$\begin{split} d(P^m(f),P^n(f)) &= d(P^n(f),P^m(f)) \leq d(P^n(f),P^{n+1}(f)) \\ &+ d(P^{n+1}(f),P^{n+2}(f)) + \ldots + d(P^{m-1}(f),P^m(f)) \\ &\leq d(P(f),f) \left[\alpha^n + \alpha^{n+1} + \ldots + \alpha^{n+m-n-1}\right] \\ &= d(P(f),f) \, \alpha^n \left[1 + \alpha + \alpha^2 + \ldots + \alpha^{m-n-1}\right] \end{split}$$

Podemos acotar con la convergencia de la serie geométrica ya que $\alpha < 1$:

$$d(P^n(f), P^m(f)) \le \left[\frac{1}{1-\alpha}\right] \alpha^n d(P(f), f)$$

Tomemos el límite cuando $n\to\infty$, como $\alpha<1$, se obtiene que lím $\alpha^n=0$ de donde se obtiene que:

$$\forall \ \epsilon > 0 \ \exists \ K \in \mathbb{N} : n \ge K \implies |\alpha^n| = \alpha^n < \epsilon$$

Definimos:

$$\lambda := \frac{(1-\alpha)}{d(P(f), f)} \, \epsilon > 0$$

Con $\epsilon > 0$ arbitrario. Por lo anterior sabemos que:

$$\exists \, K \in \mathbb{N} : m,n \geq K \implies d(P^n(f),P^m(f)) \leq \left[\frac{1}{1-\alpha}\right] \, \alpha^n \, d(P(f),f) < \frac{\lambda \, d(P(f),f)}{1-\alpha} \, \epsilon = \epsilon$$

Por tanto la sucesión $(P^n(f))_{n\in\mathbb{N}}$, es una sucesión de cauchy y converge a $f_0\in C[a,b]$

De lo anterior se sigue que:

$$P(f_0) = P(\lim_{n \to \infty} P^n(f)) = \lim_{n \to \infty} P^{n+1}(f) = f_0$$

Para probar la unicidad bastara suponer la existencia de dos puntos fijos diferentes f_0, f_1 , debido a que P es contracción se sigue que:

$$0 < d(f_0, f_1) = d(P(f_0), P(f_1)) < \alpha d(f_0, f_1)$$

Lo cual es una contradicción ya que $\alpha < 1$, por tanto f_0 , es unico

Conclusión Este resultado te dice que si P es una contracción, la ecuación P(f) = f siempre tiene una única solución; además te da un método (iterativo) para aproximar la solución

Ejercicio 6 Piensa cuidadosamente que propiedades de C[a,b] usaste para demostrar el Teorema 1 y enuncia un teorema de punto fijo para otros espacios.

Solución

Sea $P: X \to X$ una contracción sobre un espacio métrico completo (ie toda sucesión de Cauchy en el espacio converge a un punto del espacio) (X,d), se tiene que existe un unico punto $z \in X$ tal que P(z) = z

Ejercicio 7 Dar un ejemplo de una $P: C[a,b] \to C[a,b]$ tal que:

$$d(P(f), P(g)) < d(f, g)$$

para toda $f \neq g$, pero que no tiene un punto fijo, esto muestra la necesidad de la hipótesis $\alpha < 1$ en (1)

Solución

Definimos $P(f) = \lambda f$, es claro que $P(f) \in C[a,b]$, tomemos $f,g \in C[a,b]$, $f \neq g$, se sigue que:

$$|P(f)(x) - P(g)(x)| = |\lambda||f(x) - g(x)|$$

Si reestringimos $0 < \lambda < 1$, entonces se obtiene que:

$$|P(f)(x) - P(g)(x)| = |\lambda||f(x) - g(x)| < |f(x) - g(x)|$$

Además sabemos que un punto fijo f^* de P, es equivalente a $\lambda f^* = f^*$, lo cual solo es posible si $\lambda = 1$, así que nuestra P carece de puntos fijos ya que $\lambda \neq 1$

2. Ecuaciones de Fredholm

Definición 3 Una ecuación de Fredholm (de segundo tipo) es una ecuación integral de la forma

$$f(x) = \lambda \int_{a}^{b} K(x, y) f(y) dy + \phi(x)$$

que depende de las funciones (dadas) K(x,y) y $\phi(x)$, de la función **incógnita** f y de un parámetro $\lambda \in \mathbb{R}$. K se conoce como el núcleo de la ecuación; la ecuación es homogénea si $\phi = 0$, e inhomegénea si ϕ no es identicamente cero.

Ejercicio 8 Supón que K(x,y) y ϕ son continuas en el cuadrado $a \leq x \leq b, a \leq y \leq b$ (en particular, $|K(x,y)| \leq M$, para alguna M, en el cuadrado). Sí $f \in C[a,b]$, prueba que la función g definida por

$$g(x) = \lambda \int_{a}^{b} K(x, y) f(y) dy + \phi(x)$$

Esta también en C[a, b]

Solución

Tomemos $x, x_o \in [a, b], y \in [a, b]$ es claro que:

$$|g(x) - g(x_0)| = |\lambda \int_a^b (K(x, y) - K(x_o, y)) f(y) dy + \phi(x) - \phi(x_o)|$$

Por desigualdad del triángulo, y las propiedades de la integral definida:

$$|g(x) - g(x_0)| \le |\lambda \int_a^b (K(x, y) - K(x_o, y)) f(y) dy| + |\phi(x) - \phi(x_o)|$$

$$\le |\lambda| \int_a^b |K(x, y) - K(x_o, y)| |f(y)| dy + |\phi(x) - \phi(x_o)|$$

I) Debido a que ϕ es continua en el intervalo, se deduce que, sea $\frac{\epsilon}{2}>0$:

$$\exists \ \delta_1 \in \mathbb{R}^+ : |x - x_0| < \delta_1 \implies |\phi(x) - \phi(x_0)| < \frac{\epsilon}{2}$$
 (1)

Además de la continuidad de ϕ , y la compacidad de [a,b], se deduce que ϕ esta acotada; $\exists T \in \mathbb{R} : |\phi(x)| \leq T \ \forall x \in [a,b]$

II) Como el conjunto $[a, b] \times [c, d]$, es compacto y la función K(x, y) es continua sobre el rectángulo, se sigue que la función es **uniformemente continua.** sobre el mismo rectángulo, por tanto definimos:

$$\psi := \frac{\epsilon}{2|\lambda| T (d - c)} > 0$$

Se sigue que:

$$\exists \ \delta_2 \in \mathbb{R}^+ : |x - x_0| < \delta_2, \ 0 = |y - y| < \delta_2 \implies |K(x, y) - K(x_0, y)| < \psi$$
 (2)

Sea $\delta := max\{\delta_1, \delta_2\}$, por (1) y (2), se sigue que:

$$|g(x) - g(x_0)| < |\lambda| \psi T \int_a^b dy + \frac{\epsilon}{2} \le |\lambda| T (d - c) \psi + \frac{\epsilon}{2} = \epsilon$$

Ejercicio 9 Define la función $P: C[a,b] \rightarrow C[a,b]$, dada por

$$P(f)(x) = \lambda \int_{a}^{b} K(x, y) f(y) dy + \phi(x)$$

Muestre que si

$$|\lambda| < \frac{1}{M(b-a)}$$

entonces P es una contracción. Argumenta que, en ese caso, la ecuación de Fredholm tiene una unica solución.

Solución

Tomemos $x, x_o \in [a, b], y \in [a, b], f, g \in C[a, b],$ se tiene que:

$$|P(f)(x) - P(g)(x)| = |\lambda| |\int_{a}^{b} K(x, y)(f(y) - g(y)) dy|$$

$$\leq |\lambda| \int_{a}^{b} |K(x, y)| |f(y) - g(y)| dy$$

De lo anterior se tiene que:

$$\begin{split} d(P(f),P(g)) &\leq |\lambda| \int_a^b |K(x,y)| \left| f(y) - g(y) \right| dy \\ &\leq |\lambda| \, M \int_a^b \left| f(y) - g(y) \right| dy \\ &\leq |\lambda| M (b-a) \, d(f,g) \end{split}$$

Sí se tiene que :

$$\left|\lambda\right|<\frac{1}{M\left(b-a\right)}\implies\alpha:=\left|\lambda\right|M\left(b-a\right)<1$$

Por tanto:

$$d(P(f) - P(g)) \le \alpha d(f, g) \quad \alpha < 1$$

Como ${\cal C}[a,b]$ es completo y P es contracción, por el Teorema del punto fijo .

$$\exists ! f^* : P(f^*) = f^*$$

3. Ecuaciones diferenciales

La siguiente lista de ejercicios prueba el siguiente teorema clásico de existencia y unicidad de soluciones para ecuaciones diferenciales ordinarias:

Teorema 2 Sea $f: \Re \to \mathbb{R}$ una función continua, donde $\Re \subset \mathbb{R}^2$ es el cuadrado $(a,b) \times (a,b)$ que incluye al punto (x_0,y_0) . Supón que f satisface la siguiente condición (Lipschitz) en y:

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|$$

para toda x. Entonces existe un intervalo $|x-x_0| \leq \delta$ en donde la ecuación diferencial

$$\frac{dy}{dx} = f(x, y)$$

tiene una solución

$$y = \phi(x)$$

que satisface la condición inicial

$$\phi(x_0) = y_0$$

Ejercicio 10 Muestra que encontrar una solución a la ecuación diferencial que satisfaga una condición inicial dada, es equivalente a resolver la ecuación integral

$$\phi(x) = y_0 + \int_{x_0}^x f(t, \phi(t)) dt$$

Solución

Tomemos x_0 y valuemos $\phi(x_0)$:

$$\phi(x_0) = y_0 + \int_{x_0}^{x_0} f(t, \phi(t)) dt = y_0$$

Luego derivando y aplicando el T.F.C:

$$\frac{d\,\phi(x)}{d\,x} = \frac{d}{d\,x}\,\int_{x_0}^x\,f(t,\phi(t))\,dt = f(x,\phi(x)) = f(x,y)$$

Por tanto $\phi(x)$ cumple las condiciones para ser solución.

Ejercicio 11 La continuidad de f implica que $|f(x,y)| \leq K$ en algún cuadrado más pequeño $\Re^* \subset \Re$ que incluye a (x_0,y_0) . Prueba que puedes escoger $\delta > 0$ tal que

- 1. $(x,y) \in \Re^*$, siempre que $|x-x_0| \le \delta$, $|y-y_0| \le K \delta$
- $2. M \delta < 1$

Solución

Definimos el interior del rectangulo \Re^* : $\Re' := (a^*, b^*) \times (a^*, b^*)$, sea δ :

$$\delta := \min \left\{ |a^* - x_0|, |b^* - x_0|, \frac{|a^* - y_O|}{K}, \frac{|b^* - y_0|}{K}, \frac{1}{2M} \right\}$$

Es fácil notar que, sea $x, y \in \mathbb{R}$ tal que:

$$|x - x_0| \le \delta < |a^* - x_0|$$

$$|x - x_0| \le \delta < |b^* - x_0|$$

$$|y - y_0| \le K \delta < |a^* - y_0|$$

$$|y - y_0| \le K \delta < |b^* - y_0|$$

Cumplen que $(x, y) \in \Re^*$

Luego:

$$\delta < \frac{1}{2\,M} < \frac{1}{M} \implies \delta\,M < 1$$

Por tanto δ , cumple las condiciones (1) y (2)

Ejercicio 12 Sea $C^* \subset C[x_0 - \delta, x_0 + \delta]$ el espacio de funciones $\phi(x)$ definidas en $|x - x_0| \leq \delta$, tales que $|\phi(x) - y_0| \leq K \delta$. Considera $P: C^* \to C^*$ definida por

$$P(\phi)(x) = y_0 + \int_{x_0}^x f(t, \phi(t)) dt, \quad |x - x_0| \le \delta$$

- (a) Prueba que $\phi \in C^*$, implica $P(\phi) \in C^*$.
- (b) Prueba que P es una contracción

Solución

a) Tomemos $\phi \in C^*$ y δ del ejercicio anterior, por la continuidad de f(x,y) tenemos que P es continua en el intervalo $[x-\delta,x+\delta]$, como $|x-x_0| \leq \delta, |\phi(x)-y_0|, \leq K \delta$, se sigue que $(x,\phi(x)) \in \Re^*$ por tanto $|f(x,\phi(x))| \leq K$, se obtiene:

$$|P(\phi)(x) - y_0| = |\int_{x_0}^x f(t, \phi(t)) dt| \le \int_{x_0}^x |f(t, \phi(t))| dt \le K|x - x_0| \le K \delta$$

Se concluye que $P(\phi) \in C^*$

b) Tomando $\phi_1, \phi_2 \in C^*$ y la δ definida anteriormente, resstringiendo $|x - x_0| \leq \delta$:

$$|P(\phi_1) - P(\phi_2)| = |\int_{x_0}^x (f(t, \phi_1(t)) - f(t, \phi_2(t))) dt|$$

$$\leq \int_{x_0}^x |f(t, \phi_1(t)) - f(t, \phi_2(t))| dt$$

Se sigue que, aplicando la condición de Lipschitz:

$$d(P(\phi_1), P(\phi_2)) \le \int_{x_0}^x |f(t, \phi_1(t)) - f(t, \phi_2(t))| dt$$

$$\le M \int_{x_0}^x |\phi_1(x) - \phi_2(x)|$$

$$\le M |x - x_0| d(\phi_1, \phi_2)$$

$$\le M \delta d(\phi_1, \phi_2)$$

Definiendo:

$$\alpha := M \, \delta < 1$$

Se concluye que:

$$d(P(\phi_1), P(\phi_2)) \le \alpha d(\phi_1, \phi_2)$$

Por tanto $P(\phi)$ es una contracción.

Ejercicio 13 Usa el teorema de punto fijo, aplicado a P, para obtener la solución (OjO: para poder invocar el teorema de punto fijo, tendrás que probar que C^* es completo: ie que toda sucesión de Cauchy en C^* converge a un punto de C^* .)

Solución

Definimos $\{\phi_n \in C^*, n \geq 1\}$ una succeión de Cauchy, como $C^* \subset C[x-\delta,x+\delta]$ se sigue $\{\phi_n \in C[x-\delta,x+\delta], n \geq 1\}$, como $(C[x-\delta,x+\delta],d)$, es completo se sigue que $\exists \phi \in C[x-\delta,x+\delta]$ tal que:

$$\lim_{n \to \infty} d(\phi_n, \phi) = 0$$

De lo anterior se obtiene que, sea $\epsilon > 0$:

$$\exists N \in \mathbb{N} : |\phi(x) - \phi_N(x)| \le \epsilon$$

En particular $\phi_N \in C^*$ de donde se sigue que:

$$|\phi_N(x) - y_0| \le K \delta$$

Usando las dos consecuencias anteriores:

$$|\phi(x) - y_0| = |\phi(x) - \phi_N(x) + \phi_N(x) - y_0| \le |\phi(x) - \phi_N(x)| + |\phi_N(x) - y_0| \le K \,\delta + \epsilon$$

Como ϵ es arbitrario se sigue que necesariamente:

$$|\phi(x) - y_0| \le K \,\delta$$

Y por tanto $\phi \in C^*$ ie (C^*,d) es completo, de esto se sigue que como P es una contracción:

$$\exists ! \phi^* : P(\phi^*) = \phi^*$$

Del ejercicio 10 se sigue el teorema de existencia y unicidad (teorema 2)