DESIGN GRADE DE BRAGG

SEMANA

ESTUDO DE REFERENCIAS

Ref: T. Erdogan, "Fiber grating spectra," in Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, Aug. 1997, doi: 10.1109/50.618322.

Para uma grade do tipo FBG, é interessante calcular analiticamente sua transmissão e refletância teorica

Para um caso mais simples as variáveis que podemos controlar são:

Neff, Comprimento da grade, refletância maxima

Podemos calcular a através da seguinte equação:

$$r = rac{\sinh^2\!\left(\sqrt{\kappa^2 - \hat{\sigma}^2} L
ight)}{\cosh^2\!\left(\sqrt{\kappa^2 - \hat{\sigma}^2} L
ight) - rac{\hat{\sigma}^2}{\kappa^2}}.$$

Logo, so precisamos definir k e $\hat{\sigma}$

K pode ser calculado a partir da reflexão maxima:

$$r_{
m max} = anh^2(\kappa L)$$

$$k = \frac{arctang(\sqrt{r_{max}})}{L}$$

E sabendo que:

$$\hat{\sigma} \equiv \delta + \sigma - \frac{1}{2} \frac{d\phi}{dz}$$

Dado que a grade é uniforme: $\frac{d\phi}{dz} = 0$

Desprezando o self-coupling: $\sigma = 0$

Logo:
$$\hat{\sigma} \equiv \delta = 2\pi n_{\rm eff} \left(\frac{1}{\lambda} - \frac{1}{\lambda_D}\right)$$

E sabendo que:

$$\hat{\sigma} \equiv \delta + \sigma - \frac{1}{2} \frac{d\phi}{dz}$$

Dado que a grade é uniforme: $\frac{d\phi}{dz} = 0$

Desprezando o self-coupling: $\sigma = 0$

Logo:
$$\hat{\sigma} \equiv \delta = 2\pi n_{\rm eff} \left(\frac{1}{\lambda} - \frac{1}{\lambda_D}\right)$$

```
L = 1 \; mm \; , r \; max = 0.8 , Comprimento \; central = 1550 \; nm
```


Simulação interconect Exemplo 1

SEMANA 2

DESIGN DE FILTRO COM GRADE DE BRAGG

SEMANA 2

Design de filtro com Grade de Bragg

Parametros

Comprimento central = 1540 nm

Fwhm = 20 nm

Guia: 450 x 220 nm, SOI

Neff = 2.2875

Ng = 4.5878

Parametros

Simulação do guia

mode # ▼	effective index	wavelength (μm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)
1	2.287553-6.070278e-18i	1.54	-2.1512e-12	4.587824-8.341346e-16i	97	68.69 / 82.03
2	1.553599-2.755374e-07i	1.54	-0.097646	3.383983+2.583202e-05i	8	73.55 / 87.94

Parametros:

Para neff = 2.287: Periodo da grade = 336.612 nm Para Numero de periodos = 100: L = 33.6612 um Para L = 336.612 um, deltaNeff = 0.09331

Calculo do Delta W

Simulação no EME

# *	Name	Туре	Value	Unit
1	[1] W	Length	0.45	um
2	[1] altura	Length	0.22	um
3	[1] deltaW	Length	0.0354	um
4	1 periodo	Length	0.336612	um
5	material material	Material	Si (Silicon)	
6	substrato	Material	SiO2 (Glass)	

Simulação no EME

Resultados Iniciais

DESIGN
Calculando novo periodo ideal P = 0.3534426 nm (x1.05)

DESIGN
Calculando novo periodo ideal

P = 0.3702732 nm (x1.1)

Calculando novo periodo ideal

Novo periodo teorico

P = 0.337118 um (E = 0.15%)

Corrigindo o FWHM, calculo de ΔW $\Delta W = 0.03894 (x1.1)$

Corrigindo o FWHM, calculo de ΔW $\Delta W = 0.04956 (x1.5)$

Corrigindo o FWHM, calculo de ΔW ΔW teorico = 0.0660727 um (E = 87.6%)

DESIGN Correção do FWHMW

DESIGNCorreção do FWHMW

DESIGN 2º correção do periodo

DESIGN 2º correção do periodo

DESIGN Design Final

1	[1] W	Length	0,45	um
2	[1] altura	Length	0,22	um
3	[1] deltaW	Length	0,0734068	um
4	[1] periodo	Length	0,338535	um
5	■ N	Number	100	
6	material	Material	Si (Silicon) - P	alik
7	substrato	Material	SiO2 (Glass) -	P

ALTERANDO O GUIA PARA 600 NM

Alterando o guia para 600 nm

Simulação do guia

mode #	effective index	wavelength (µm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)
1	2.537329+8.301567e-17i	1.54	2.9419e-11	4.198189+3.531844e-17i	99	80.25 / 81.12
2	1.667813+5.340745e-11i	1.54	1.8927e-05	3.920935-4.571173e-09i	12	67.94 / 90.11

Parametros:

```
Para neff = 2.5373
Periodo da grade = 303.468 nm
Para Numero de periodos = 250: L = 75.867 um
Para L = 36.416 um, deltaNeff = 0.05405
Rmax = 0.988
```

Calculo do Delta W

DESIGN Simulação no EME

1	[1] W	Length	0,6	um
2	1 altura	Length	0,22	um
3	[1] deltaW	Length	0,0517	um
4	[1] periodo	Length	0,303469	um
5	material material	Material	Si (Silicon) - P	Palik
6	substrato	Material	SiO2 (Glass) -	P
7	■ N	Number	120	

Simulação no EME

	n (µm) -0.5 rgy conservation make passiv	re v	п		number of cell gro		per	riodic	ic group definition	number o	of periodic groups 3
					llow custom eigens			•	start cell group	end cell group	periods
ell g	group definition						1	1	1	1	1
	group spans (μm)	cells	subcell method	modes	custom	cell range	2	2	2	3	120
1	0.5	2	CVCS	20	default	[1,2]	3	4	4	4	1
2	0.151734	2	CVCS	20	default	[3,4]					
3	0.151734	2	CVCS	20	default	[5,6]					
			+								
4	0.5	2	CVCS	20	default	[7,8]					
4	0.5	2	CVCS	20	default	[7,8]					
4	0.5	2	CVCS	20	default	[7,8]					
4 <	0.5	2	CVCS	20	default	[7,8]					
<	0.5 display cells		CVCS Clear settings for cell		default Custom settings for	>					
<					Custom settings for	>					
<	display cells			group 1	Custom settings fi	>					
<	display cells y (µm) 0 y span (µm) 5			group 1 y min (µn y max (µn	Custom settings fin) -2.5	>		all s			
<	display cells y (µm)			group 1	Custom settings fin) -2.5 n) 2.5 n) -2	>	C	ell g	group sequence	,(2,3)^120	(4) 0.47

Resultados Iniciais

Correção do FWHM

 $\Delta W = 0.064625 (x1.25)$

Correção do FWHM $\Delta W = 0.07755 (x1.5)$

Correção do FWHM

 $\Delta W = 0.090475 (x1.75)$

Correção do FWHM

 $\Delta W = 0.1034 (x2)$

Correção do FWHM

 $\Delta W = 0.12925 (x2.5)$

DESIGN Analise do FWHM

Comparação com a grade anterior

ALTERANDO A GEOMETRIA DA 1 GRADE

DESIGN Gemetria triangular

Gemetria triangular

DESIGN Gemetria triangular

Variando o ΔW

 $\Delta W = 0.0550551 (x0.75)$

Variando o ΔW

 $\Delta W = 0.02752755 (x0.375)$

Comparação entre grades

ALTERANDO A GEOMETRIA DA 1 GRADE

DESIGN Gemetria Senoidal

Gemetria triangular

DESIGN Gemetria triangular

Variando o ΔW

 $\Delta W = 0.0550551 (x0.75)$

Variando o ΔW

 $\Delta W = 0.02752755 (x0.375)$

Comparação entre grades

