Pros and cons of Bayesian Methods in Parameter Identification

Eduard Campillo-Funollet with C.Venkataraman, A. Madzvamuse, S. Portet

23/11/2016

US University of Sussex The Leverhulme Trust

Bayesian approach to parameter identification¹

Parameter identification

$$y = G(p) + \eta$$

- ▶ y experimental data
- ► G observation operator
- p parameters
- $\blacktriangleright \eta$ noise

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$\pi(p|y) = \frac{\pi(y|p)\pi(p)}{\pi(y)}$$

$$rac{\mathrm{d}\mu}{\mathrm{d}\mu_0} \propto \exp(-\Phi(p;y))$$

Gaussian noise and Gaussian prior:

$$\pi(p|y) \propto \exp\left(-rac{1}{2}\left(\|y-G(p)\|_{\Sigma}^2 + \|p\|_{\Gamma}^2
ight)
ight)$$

Priors¹

$$\blacktriangleright \{\phi_i\}_{i=1}^{\infty}, \ \phi_i \in X$$

$$\blacktriangleright \{u_i\}_{i=1}^{\infty}, u_i \in \mathbb{R}$$

$$u=m_0+\sum_{j=1}^\infty u_j\phi_j$$

Uniform priors

- ▶ Let $\{\gamma_i\}_{i=1}^{\infty} \in \ell^1$
- ▶ Let $\xi = \{\xi_i\}_{i=1}^{\infty}$, $\xi_i \sim \mathcal{U}(-1, 1)$, i.i.d.
- ▶ Take $u_i = \gamma_i \xi_i$

Pros and cons

Pros

- ► Rigorous modelling
- ► Choices connected to real world
- ► Additional information

Cons

- ► Technically involved
- ► Choices due to technical reasons
- ► Computationally expensive

Parameter identification and data analysis

- Modelling
- Statistics
- Big data
- ► Machine learning
- ► Classification problems

Example: Dynamics of keratin network¹

Model

- ▶ I concentration of assembled keratin.
- ▶ *S* concentration of soluble keratin.

$$\begin{cases} \partial_t I + \mathbf{v} \cdot \nabla I - D_I \Delta I = R(I, S), \\ \partial_t S - D_S \Delta S = -R(I, S). \end{cases}$$

$$R(I,S) = \frac{k_{dis}I}{k_I + I} - \frac{k_{ass}S}{k_S + S}$$

Example: Dynamics of keratin network

Akaike choice

Experts choice

Example: Traction Force Microscopy

Model

- ▶ *u* displacement
- ▶ f force

$$-{\rm div}(\mathbb{C}\nabla u)=f$$

Displacement

Mean posterior

Thank you!

Parallel MCMC ¹

Idea

▶ Build a Markov chain with our target distribution as stationary distribution

MCMC

Given q proposal density, a acceptance probabiliy

- 1. Set k = 0. Pick $p^{(0)}$.
- 2. Propose $\tilde{p}^{(k)} \sim q(p^{(k)}, \cdot)$
- 3. Set $p^{(k+1)} = \tilde{p}^{(k)}$ with probability $a(p^{(k)}, \tilde{p}^{(k)})$. $p^{(k+1)} = p^{(k)}$ otherwise.
- 4. $k \leftarrow k + 1$ and go to 2.
- $\qquad \qquad \mathsf{a}(\mathsf{p},\tilde{\mathsf{p}}) = \mathsf{min}\{1, \mathsf{exp}(\phi(\mathsf{p}) \phi(\tilde{\mathsf{p}}))\}$

Parallel MCMC

- ► Define a new probability $P = P(p_1, ..., p_{N+1}; i)$
- $P_i(p) = \pi(p_i)q(p_i, p_{-i})$

Given q proposal density, a acceptance probabiliy

- 1. Set n = 0. Pick $p^{(0)}$. Set I = 1.
- 2. Propose N points from $q(p^{(k)}, \cdot)$
- 3. Compute distribution of I: $P(I = i|p) \propto \pi(p_i)$
- 4. Sample N times from I.
- 5. $n \leftarrow n + 1$ and go to 2.

¹Tjelmeland 2004, Calderhead 2014