

Licenciatura em Telecomunicações e Informática

Arquitetura e Tecnologia de Computadores interface ao exterior

Paulo Cardoso

Grupo de Sistemas Embebidos Departamento de Eletrónica Industrial Escola de Engenharia Universidade do Minho

- GPIO
- Configuração
- Operação
- Caraterísticas elétricas

O microcontrolador 8051 microcontroladores

Microcontroladores

- Resposta a uma necessidade da indústria
 - Sistemas computacionais para ambientes de controlo
 - Onde para além de um "computador" é necessário
 - I/O digital e analógico
 - Temporizadores
 - PWM (Pulse Width Modulation)
 - Comunicação série (vários protocolos)
 - Por outro lado os ambientes industriais são agressivos
 - Condições ambientais, ruído eletromagnético
 - Fazer um computador com processador, memória e os circuitos integrados (CI) para implementar as funcionalidades acima
 - Solução mais sujeita a falhas e mais cara

O microcontrolador 8051 microcontroladores

Microcontroladores

- Resposta a uma necessidade da indústria
 - A solução é um CI único
 - Onde processador e periféricos estão integrados
 - Não apenas empacotados em conjunto no mesmo CI mas arquituralmente integrados
 - I.e. o processador "conhece" os periféricos
- Assim, quando se fala de um microcontrolador
 - Fala-se de um sistema que integra
 - Processador, memória
 - Pinos de I/O digital e analógico (com DACs/ADCs)
 - Timers, PWM
 - Comunicação série básica e uma variedade de protocolos tais como I2C, SPI, CAN

O 8051

- Microcontrolador de 8 bits lançado em 1980
 - O QUÊ???????
 - Hoje em dia o mundo é dominado por microcontroladores
 ARM de 16 e 32 bits
 - Ainda muito usado atualmente
 - A patente expirou
 - Vários fabricantes introduziram novas versões do 8051
 - Mantendo a compatibilidade original
 - Usando as últimas técnicas de desenho de processadores
 - Aumentando significativamente o desempenho
 - E.g.: O Intel 8051 original executava a 12MHz e usava 12 ciclos para executar 1 instrução (1MHz, 1MIP- milhoes de instruções por segundo)
 - O nosso micro executa a 100MHz a 100 MIPS (100x mais rápido que o 8051 clássico uma freqência apenas cerca de 8x mais)
 - Introduzindo novas caraterísticas

• O 8051

- Ainda muito usado atualmente
 - Uma base instalada de milhões de linhas de código
 - Para além disso tem algumas vantagens arquiteturais
 - Implementa a capacidade de realizar operações lógicas diretamente em alguns registros e locais de memória
 - Este é um recurso muito útil em quase todas as aplicações de controlo, sejam elas industriais ou outras
 - Essas operações podem ser realizadas num único ciclo, permitindo um melhor tempo de resposta de controlo
 - Os portos de I/O s\u00e3o acedidos \u00e0 velocidade do processador
 - Noutras arquiteturas estão separados por um barramento com desempenho inferior

- Os 8051 atuais
 - Algumas novidades de implementação
 - Pipelining

	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5
Instruction 1	Fetch	Decode	Execute		
Instruction 2		Fetch	Decode	Execute	
Instruction 3			Fetch	Decode	Execute

- MAC (multiply–accumulate)
 - Operações usadas em processamento digital de sinal
- Melhor sistema de interrupções
 - Tempo de resposta (latência) melhorado
 - Mecanismos mais sofisticados de prioridades
- Debug por hardware (in-system debugging)

Os 8051 atuais

- Vantagens do ponto de vista comercial
 - Consome menos que os micros mais poderosos
 - Custo mais baixo
 - Atrativos para soluções menos exigentes
 - E para soluções low cost
 - Apelativo para muitas soluções IoT
 - Onde o sensing é mais importante que o processing

- Os 8051 atuais
 - Vantagens de programação
 - Debug por hardware
 - Tal como os os micros mais poderosos
 - Mais fácil de programar
 - Dado ter complexidade mais baixa

Os 8051 atuais

- Vantagens de ensino
 - Micro de baixa complexidade
 - 44 mnemónicas *assembly*
 - Embora cada uma tenha declinações (diferentes opcodes)
 - 109 instruções
 - Implementa os conceitos relevantes
 - Classes de instruções
 - Modos de endereçamento
 - Periféricos
 - Baixa complexidade

O microcontrolador 8051 arquitetura

- Arquitetura do MCS 8051
 - O diagrama de blocos original

Fonte: https://web.mit.edu/6.115/www/document/8051.pdf

O microcontrolador 8051 arquitetura

Silicon Labs C8051F388

Usado no nosso kit

O microcontrolador 8051 Silicon Labs C8051F388

C8051F388/9/A/B

Flash MCU Family

Analog Peripherals

- 10-Bit ADC
 - Up to 500 ksps
 - Built-in analog multiplexer with single-ended and differential mode
 - VREF from external pin, internal reference, or V_{DD}
 - Built-in temperature sensor
 - External conversion start input option
- Two comparators
- Internal voltage reference
- Brown-out detector and POR Circuitry

On-Chip Debug

- On-chip debug circuitry facilitates full speed, non-intrusive in-system debug (No emulator required)
- Provides breakpoints, single stepping, inspect/modify memory and registers
- Superior performance to emulation systems using ICE-chips, target pods, and sockets

Voltage Supply Input: 2.7 to 5.25 V

 Voltages from 2.7 to 5.25 V supported using On-Chip Voltage Regulators

High Speed 8051 µC Core

- Pipelined instruction architecture; executes 70% of instructions in 1 or 2 system clocks
- Up to 48 MIPS operation
- Expanded interrupt handler

Memory

- 4352 or 2304 Bytes RAM
- 64 or 32 kB Flash; In-system programmable in 512-byte sectors

Digital Peripherals

- 40/25 Port I/O; All 5 V tolerant with high sink current
- Hardware enhanced SPI™, two I²C/SMBus™, and two enhanced UART serial ports
- Six general purpose 16-bit counter/timers
- 16-bit programmable counter array (PCA) with five capture/compare modules
- External Memory Interface (EMIF)

Clock Sources

- Internal Oscillator: ±1.5% accuracy. Supports all UART modes
- External Oscillator: Crystal, RC, C, or clock (1 or 2 Pin modes)
- Low Frequency (80 kHz) Internal Oscillator
- Can switch between clock sources on-the-fly

Packages

- 48-pin TQFP (C8051F388/A)
- 32-pin LQFP (C8051F389/B)
- 5x5 mm 32-pin QFN (C8051F389/B)

Temperature Range: -40 to +85 °C

O microcontrolador 8051 Silicon Labs C8051F388

Silicon Labs C8051F388

- Blocos
 - Periféricos analógicos
 - Periféricos digitais
 - Relógio do sistema
 - *Core* do 8051

Periféricos

- Módulos de hardware especializados
 - Exemplo: temporizadores, porta série, ADCs, DACs, ...
 - Estes recursos s\u00e3o disponibilizados atrav\u00e9s de pinos de I/O
 - Estes pinos de I/O podem ser também usado para I/O genérico (GPIO)
 - Cada pino ser configurado para uma função diferente dependendo da aplicação

- Interface ao exterior
 - O GPIO (General purpose I/O)
 - Interface mais simples que o micro suporta
 - Divididos em conjuntos de 8 pinos de I/O (portos)
 - O micro original disponibiliza 4 portos de I/O
 - O nosso micro suporta 5 portos
 - Cada um dos pinos de cada porto pode ser configurado como
 - GPIO digital
 - Entrada analógica;

O GPIO do Silicon Labs C8051F388

- O GPIO do Silicon Labs C8051F388
 - Permite a associar de forma flexível um pino a uma função
 - Priority Crossbar Decoder
 - Funções
 - UART 0/1
 - Timer 0/1
 - SPI 0/1
 - I2C
 - •
 - As funções não estão fixas aos pinos
 - Após reset a crossbar está desativada

- Caso se pretenda usar os pinos
 - Numa configuração base apenas como GPIO
 - Basta ativar a crossobar
 - XBARE = 1 (registo XBR1 = 0x40)
 - Após reset todos os pinos ficam como entradas digitais
 - Com weak pull-up

- Funcionamento dos pinos do porto
 - Como entrada
 - Digital ou analógico
 - Modo coletor aberto
 - Com ou sem weak pull-up
 - Como saída
 - Modo coletor aberto ou modo push-pull

Um pino do porto

- Modo coletor aberto (open drain)
 - Usado nos pinos de input e output
 - Neste modo o pino só pode "consumir corrente"
 - O pino pode estar em
 - alta impedância
 - O pino está "desligado"
 - Para evitar que o pino fique a "flutuar" pode ser usado um "weak pull-up"
 - Estes estão ativos quando configurados, o pino está em modo digital, definido como "open-drain" e é escrito 1 no porto
 - São usados tipicamente quando o pino está como entrada
 - Ligado à massa
 - Indo a zero (consumindo corrente)
 - É comum ser usada uma resistência externa de pull-up

- Modo coletor aberto
 - Resistência de pull-up

- Modo coletor aberto
 - Configuração típica com resistência de "pull-up"

- Modo coletor aberto
 - Weak pull-up ativo

- Modo push-pull
 - Neste modo o pino fornece o "1" e o "0"
 - Usado nos pinos de output

- Funcionamento dos pinos do porto
 - Como entrada
 - Digital ou analógico
 - Modo coletor aberto
 - Com ou sem weak pull-up
 - Como saída
 - Modo coletor aberto ou modo push-pull

- A utilização dos GPIO (ou qualquer outro periférico)
 - Está dividida em duas partes
 - Configuração
 - Geralmente os periféricos têm vários modos de operação
 - Parametrizados através de registos de configuração (SFRs)
 - Operação
 - Depois de configurado o periférico está pronto a ser usado
 - Os dados sobre os quais os periféricos operam estão também em registos (SFRs)
 - Outros registos ou *flags* (bits) poderão ser alterados em função do estado dos dados (SFRs)

Configuração

- Como entrada
 - Digital
 - Registo PxMDIN
 - Bit respetivo a 1 (valor de defeito)
 - Weak pull-up
 - Registo **xbr1**, bit **weakpub** (valor de defeito)
 - Registo **PxMDOUT**
 - Bit respetivo a 0 (valor de defeito)
 - Um pino de entrada só pode estar em "open drain"
 - Escrita de 1 para o pino do porto
 - Após reset todos os pinos ficam como entradas digitais
 - Com weak pull-up; Os pinos do porto estão a 1

- Configuração
 - Como entrada
 - Analógica
 - Registo PxMDIN
 - Respetivo bit a 0
 - Registo PxSKIP
 - Respetivo bit a 1
 - Weak pull-up
 - Modo analógico: desativado

- Configuração como entrada
 - Digital ou analógico
 - Registo PxMDIN

		T	1					
Bit	7	6	5	4	3	2	1	0
Name	P0MDIN[7:0]							
Туре		R/W						
Reset	1	1	1	1	1	1	1	1

Bit	Name	Function
7:0	P0MDIN[7:0]	Analog Configuration Bits for P0.7–P0.0 (respectively).
		Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled.
		0: Corresponding P0 n pin is configured for analog mode
		1: Corresponding P0.n pin is not configured for analog mode.

- Configuração como entrada
 - Digital ou analógico
 - Registo PxSKIP

D:4	7 7	•	F	4	•		4	0	
Bit	7	6	5	4	3	2	1	0	
Name	POSKIP[7:0]								
Туре	De R/W								
Rese	ot 0	0	0	0	0	0	0	0	
SFR A	ddress = 0xD4	SFR Page	e = All Pages	S					
Bit	Name				Function	1			
7:0	P0SKIP[7:0]	Port 0 C	Port 0 Crossbar Skip Enable Bits.						
	These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port used for analog, special functions or GPIO should be skipped by the Cross								
		O: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.							

- Configuração como entrada
 - Weak pull-up
 - Registo xbr1, bit weakpub

SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0
Name	WEAKPUD	XBARE	T1E	T0E	ECIE	PCA0ME[2:0]		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE2 SFR Page = All Pages

—		.
Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode).1: Weak Pullups disabled.
6	XBARE	Crossbar Enable. 0: Crossbar disabled. 1: Crossbar enabled.

Afeta todos os pinos de todos os portos!

- Configuração como entrada
 - Para se poder ler do pino
 - Deve ser precedido da escrita de 1 no pino
 - Configuração coletor aberto com weak pull up (por defeito no

- Configuração
 - Como saída
 - Registo PxMDOUT
 - Seleciona modo open drain ou push-pull
 - Weak pull-up
 - Registo xbr1, bit weakpub
 - Após reset todos os pinos ficam como entradas digitais
 - Com weak pull-up

Registo PxMDOUT

SFR [Definition 20	.6. POMI	OOUT: Po	rt 0 Outpu	t Mode			
Bit	7	6	5	4	3	2	1	0
Name				P0MDC	UT[7:0]			l
Туре	R/W							
Reset	t 0	0	0	0	0	0	0	0
FR A	ddress = 0xA4	SFR Page	= All Pages			'		
Bit	Name				Function			
7:0 I	P0MDOUT[7:0]	Output C	onfiguration	n Bits for P	0.7–P0.0 (re	espectively)	•	
		These bit	s are ignore	d if the corre	sponding bi	t in register F	POMDIN is lo	ogic 0.
		0: Corres	pondina P0.	n Output is	open-drain	-		
		1: Corres	ponding P0.	n Output is	oush-pull.			

- Modo coletor aberto
 - Resistência de pull-up

O interface ao exterior configuração

Modo push-pull

Push Phase

Pull Phase

Fonte: https://open4tech.com/open-drain-output-vs-push-pull-output/

O interface ao exterior configuração

Modo coletor aberto (open drain)

Operação

- Depois dos pinos estarem configurados
 - A leitura/escrita é simplesmente aceder ao pino do porto
 - Ao escrever em cada pino
 - O valor é guardado no registo
 - Para manter o valor dos dados de saída em cada pino
 - Ao ler de cada pino
 - Os níveis lógicos dos pinos de entrada da porta são retornados
 - A exceção são as instruções "read-modify-write"
 - ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ e MOV, CLR ou SETB (quando o destino é um bit individual num porto SFR)
 - Para essas instruções, o valor do registro (não o pino) é lido, modificado e escrito de volta no SFR

O registo do porto P0

• SFR 0x80

SFR Definition 20.4. P0: Port 0									
Bit	7	6	5	4	3	2	1	0	
Name	P0[7:0]								
Туре	R/W								
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0x80 SFR Page = All Pages; Bit Addressable

| Bit | Name | Description | With the page | With th

Bit	Name	Description	Write	Read
7:0	P0[7:0]	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells configured for digital I/O.	O: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P0.n Port pin is logic LOW. 1: P0.n Port pin is logic HIGH.

- Cada porto é suportado por um registo
 - Que armazena o estado de cada pino do porto
 - De onde podemos ler e escrever
 - Mapeado em memória na área do SFR
 - P0:0x80
 - P1:0x90
 - P2:0x0A0
 - P3:0x0B0
 - P4:0x0C7

- Cada porto é suportado por um registo
 - Acesso aos pinos via software
 - Exemplo: escrita num porto (neste caso porto P2)

```
• P2 = 0xC0;
```

 Exemplo: condição com pino do porto (neste caso pino 6 do porto P0)

```
• if (!PO_6)
```


Exemplo: Escrita de 1 num pino do porto

Configuração coletor aberto (por defeito no reset)

- Exemplo: Escrita de 0 num pino do porto
 - Configuração coletor aberto (por defeito no reset)

Ligação de um led (output)

- Ligação de um botão de pressão (input)
 - Modo open drain/push-pull

- Modo open drain
 - Com weak pull-up

O interface ao exterior Exemplo

Questões

- Verificar tipo de dados de bitvar
- Pinos **PO_6**, **PO_7** (pinos de entrada)
 - Verificar no esquemático como estão ligados
- Pino PO_7 (pino de saída)
 - Verificar no esquemático como estão ligados
- O que faz o programa?

```
#include <c8051f380.h>
void main (void) {
    bit bitVar;
    /* Faz Disable do watchdog */
    PCAOMD = 0x00;
    /* Ativa o Crossbar */
    XBR1 = 0x40;
    while (1) {
       bitVar = P0 6;
       bitVar &= P0 7;
       P2 7 = bitVar;
```


O interface ao exterior Caraterísticas elétricas

Caraterísticas elétricas do portos

Parameter	Test Condition	Min	Тур	Max	Unit
Output High Voltage	I _{OH} = -3 mA, Port I/O push-pull	V _{DD} – 0.7	_	_	V
	$I_{OH} = -10 \mu A$, Port I/O push-pull	$V_{DD} - 0.1$			
	I_{OH} = -10 mA, Port I/O push-pull	_	$V_{DD} - 0.8$	_	
Output Low Voltage	I _{OL} = 8.5 mA	_	_	0.6	V
	I_{OL} = 10 μ A		_	0.1	
	I_{OL} = 25 mA	_	1.0	_	
Input High Voltage		2.0	_	_	V
Input Low Voltage		_	_	0.8	V
Input Leakage	Weak Pullup Off	_	_	±1	μA
Current	Weak Pullup On, $V_{IN} = 0 V$	_	15	50	
INT2 Detection Input Low Voltage		_	_	1.0	V
INT2 Detection Input High Voltage		3.0	_	_	V

VDD=2,7 a 3,6V

O interface ao exterior

Obrigado