LOM3223 - Materiais e Dispositivos Magnéticos e Supercondutores

Magnetic and Superconducting Materials and Devices

Créditos-aula: 4 Créditos-trabalho: 0 Carga horária: 60 h Semestre ideal: 7 Ativação: 01/01/2012

Departamento: Engenharia de Materiais

Objetivos

Propiciar ao aluno os conhecimentos básicos de materiais magnéticos e supercondutores visando sua aplicação em dispositivos.

Docente(s) Responsável(eis)

5840726 - Cristina Bormio Nunes

Programa resumido

Magnetostática. Magnetismo de elétrons. Ferromagnetismo e interações de troca.

Antiferromagnetismo e tipos de ordenamento magnético. Magnetismo em nanoescala.

Ressonância magnética. Métodos experimentais de medições magnéticas. Materiais magnéticos. Aplicações de materiais magnéticos.

O fenômeno da supercondutividade. Propriedades elétricas, magnéticas e termodinâmicas de supercondutores. Teorias fenomenológicas de supercondutividade. Teoria microscópica de supercondutividade. Materiais supercondutores. Propriedades de transporte. Técnicas de caracterização de materiais supercondutores. Aplicações.

Programa

Revisão de magnetostática. Magnetismo de elétrons. Ferromagnetismo e interações de troca. Antiferromagnetismo e tipos de ordenamento magnético. Magnetismo em nanoescala. Ressonância magnética. Métodos experimentais de medições magnéticas. Materiais magnéticos. Aplicações de materiais magnéticos.

O fenômeno da supercondutividade. Propriedades elétricas, magnéticas e termodinâmicas de supercondutores. Teorias fenomenológicas de supercondutividade. Teoria microscópica de supercondutividade. Materiais supercondutores. Propriedades de transporte. Técnicas de caracterização de materiais supercondutores. Aplicações.

Avaliação

Método: Aulas expositivas, seminários e exercícios comentados.

Critério: Média aritmética de duas provas sendo a primeira com peso 1 e a segunda com peso 2. **Norma de recuperação:** Aplicação de uma prova escrita dentro do prazo regimental antes do início do próximo semestre letivo. A nota da segunda avaliação será a média aritmética entre a nota da prova de recuperação e a nota final da primeira avaliação

Bibliografia

JILES, D. C. Introduction to Magnetism and Magnetic Materials, CRC Press, 1998.

COEY, J. M. D. Magnetism and Magnetic Materials, Cambridge University Press, 2010.

BUSCHOW, K. H. J.; DE BOER, F. R. Physics of Magnetism and Magnetic Materials, Springer, 2003.

CULLITY, B. D.; GRAHAM, C. D. Introduction to Magnetic Materials, Wiley-IEEE Press, 2008. POOLE, C. P. et al., Superconductivity, Academic Press, 2007.

SHEAHEN, T. P. Introduction to High-Temperature Superconductivity, Kluwer Academic, 2002. LEE, P. J. Engineering Superconductivity, Wiley-IEEE Press, 2001.

Requisitos

LOM3206 - Eletrônica (Requisito)

LOM3215 - Física do Estado Sólido (Requisito)