4. Trigonometric Functions - II

- Inverse Trigonometric functions :
 - (i) $\sin(\sin^{-1} x) = x$, for $x \in [-1,1]$
 - (ii) $\sin^{-1} (\sin y) = y$, for $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$
 - (iii) $\cos(\cos^{-1} x) = x$, for $x \in [-1,1]$
 - (iv) $\cos^{-1} (\cos y) = y$, for $y \in [0, \pi]$
 - (v) $\tan(\tan^{-1}x) = x$, for $x \in R$ (vi) $\tan^{-1}(\tan y) = y$, for $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
 - (vii) $\sec(\sec^{-1}x) = x$, for $x \in R (-1,1)$
 - (viii) $\sec^{-1}(\sec y) = y$, for $y \in [0,\pi] \left\{\frac{\pi}{2}\right\}$
 - (ix) $\cot(\cot^{-1}x)=x$, for $x \in R$ (x) $\cot^{-1}(\cot y) = y$, for $y \in (0,\pi)$
 - (xi) $\csc(\csc^{-1}x) = x$, for $x \in R (-1,1)$
 - (xii) $\operatorname{cosec}^{-1}$ (cosec y) = y, for $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \{0\}$
- Ex. (1) Show that $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}x$ if $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$

Solution: Let $\sin^{-1} x = \theta$

$$\therefore \sin \theta = x, \quad x \in [-1,1],$$

$$\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Given
$$-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$$
,

fr v I	100	
		 •

$$\therefore \sin\left(-\frac{\pi}{4}\right) \le \sin\theta \le \sin\left(\frac{\pi}{4}\right)$$

$$\therefore -\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$$
(3.0) By (101 - 4 = 0) 100 (x) ABX 101 $x = (x + 100) \times 0$ (x)

$$\therefore -\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2}$$

$$\therefore 2\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$$

$$L.H.S = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

$$=\sin^{-1}(2\sin\theta\cos\theta)$$

$$=\sin^{-1}(\sin 2\theta)$$

$$=2\theta$$
 As $2\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$= 2\sin^{-1} x = R.H.S.$$

Ex. (2) If
$$x > 0, y > 0$$
 then prove that $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$

Solution: Let
$$\tan^{-1} x = \theta$$
 and $\tan^{-1} y = \phi$

$$\therefore \tan \theta = x, \tan \phi = y$$

As x>0 and y>0, we have $0<<\frac{\pi}{2}$ and $0<\phi<\frac{\pi}{2}$.

$$\therefore -\frac{\pi}{2} < -\phi < 0$$

$$\therefore \quad -\frac{\pi}{2} < \theta - \phi < \frac{\pi}{2} \qquad \dots (1)$$

Also
$$\tan(\theta - \phi) = \frac{\tan\theta - \tan\phi}{1 + \tan\theta \tan\phi} = \frac{x - y}{1 + xy}$$
 ... (2)

From (1) and (2) we get
$$\theta - \phi = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

$$\therefore \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

Ex. (3) Prove that for all $x \in \mathbb{R}$

(a)
$$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$$

(b)
$$\tan^{-1}(-x) = -\tan^{-1}(x)$$

Solution : (a) To prove that $\cot^{-1}(-x) = \pi - \cot^{-1}(x)$

Let
$$\cot^{-1}(-x) = \theta$$

$$\therefore \cot \theta = . \quad ? \quad \text{Where} \quad -x \in R, 0 < \theta < \pi$$

$$\therefore -\cot \theta = . \quad \chi$$

$$\therefore \cot(\pi - \theta) = x, x \in R$$

Since,
$$0 < \theta < \pi$$

$$\therefore 0 < \pi - \theta < .$$
 $\boxed{1}$.

Which implies $\cot(\pi - \theta) = x$ and $x \in R, 0 < \pi - \theta < \pi$

$$\therefore \pi - \theta = \cot^{-1} x$$

$$\therefore \theta = \pi - . \cot^{-1} x$$

$$\therefore \cot^{-1}\left(-x\right) = \pi - \cot^{-1}x$$

(b) To prove that $\tan^{-1}(-x) = -\tan^{-1}(x)$

Let
$$tan^{-1}(-x) = \theta$$

$$\therefore$$
 tan. $\bigcirc = -x$ where $-x \in \mathbb{R}, -\frac{\pi}{2} < . \bigcirc . < \frac{\pi}{2}$

$$:-tano=x$$

$$\therefore \tan(. - . \Theta_{\cdot}) = x$$

$$\therefore \quad \tan \theta = x, \qquad x \in R \text{ and } -\frac{\pi}{2} < -\theta < \frac{\pi}{2}$$

$$\therefore - \bigcirc = \tan^{-1} x$$

-.
$$\tan^{-1} x = \tan^{-1} x$$
 | $\tan x = 0$ | \tan

$$\therefore \tan^{-1}(-x) = -\tan^{-1}x$$

Ex. (4) Prove that :
$$\tan^{-1} \left[\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right] = \frac{\pi}{4} + \theta$$
 if $\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right)$

Solution:
$$L.H.S. = \tan^{-1} \left[\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right]$$

$$= \tan^{-1} \left[\frac{1 + \tan \theta}{1 - \tan \theta} \right]$$

$$= \tan^{-1} \left[\frac{\tan \left(\frac{\pi}{2 + 1} \right) + \tan \theta}{1 - \tan \left(\frac{\pi}{2 + 1} \right) \tan \theta} \right]$$

We have,
$$\tan^{-1}(\tan \theta) = \theta$$
 for $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. - - - - - - (2)

Since
$$-\frac{\pi}{4} < \theta < \frac{\pi}{4}$$

$$\therefore -\frac{\pi}{4} + \frac{\pi}{4} < \theta + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$$

$$\therefore \quad \bigcirc \quad <\theta+\frac{\pi}{4}<\quad \boxed{1}$$

From equation (1) we get,

$$L.H.S. = \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \theta \right) \right]$$

$$= \frac{\pi}{4} + \Theta \quad \text{From equation (2)}.$$

Thus,
$$\tan^{-1} \left[\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} \right] = \frac{\pi}{4} + \theta$$
 for $\theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right)$

(LHS = SIM (SIM (-11-20))

KHESSETH THE SERVE **Ex.** (5) If $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then find the value of x.

Caluston 2HA = 2HA 1	siny =0 (07) 2 siny-1=0
$\sin^{-1}(1-x)-2\sin^{-1}x=\frac{\pi}{2}$	$Siny = 0 og Siny = \frac{1}{2}$
Put x= siny	" X=0 01 X=1 " X=Siny
$sin^{-1}(1-siny)-2sin^{-1}(siny)=\frac{\pi}{2}$: $sin^{-1}(1-siny)=\frac{\pi}{2}+2y$	Let $n=\frac{1}{2}$
: $1-\sin y = \sin \left(\frac{\pi}{2} + 2y\right)$	LHS = Sin (1-x) - 25in x
	$= \sin^{1}(1-\frac{1}{2})-2\sin^{1}(\frac{1}{2})$
$1-\sin y = \cos 2y$ $1-\sin y = 1-2\sin^2 y$	$= \sin^{1}(\frac{1}{2}) - 2 \sin^{1}(\frac{1}{2})$
1-siny-1+2sin2y=0	$= \frac{\pi}{6} - 2x \frac{\pi}{6} $ $= -\frac{\pi}{6}$ $= -\frac{\pi}{6}$ is not sol ⁿ $= -\frac{\pi}{6}$ is not sol ⁿ
$2\sin^2 y - \sin y = 0$	$= -\frac{\pi}{2}$ is not sol
siny. (.2siny-1).=0	LHS + RHS 10000 X = 0
Ex. (6) Show that $\sin^{-1}(2x\sqrt{1-x^2}) = -2\pi +$	$-2\cos^{-1}x$ if $-1 \le x \le -\frac{1}{\sqrt{2}}$

Solution:	- T ≤20≤T	
Solution: we know that	Here n = 20 does not	$-1 \leq \chi \leq -\frac{1}{2}$
sin" (sinx)=x,=1/2 (x < 1/2	Satisfy - 7 < x < 7	-sin # <sino<-sin#< td=""></sino<-sin#<>
LHS = Sin (2x 11-x2 -(1)		2 - 4
put x=sino => 0=sin'x	we have to find the	$\frac{\pi}{2} < \theta < -\frac{\pi}{4}$
-15251, -726057	value of x tox which	MIN 2
LHS = sin1 (2sine sin2)	-프 <x<코< td=""><td>- TI 120 5- T</td></x<코<>	- TI 120 5- T
= 3in (25ino Jcos20)	. LHs = sin (sinea)	T < -20 < T
= sin (2 sin 0 · (050)		
= sin (sin 20)	= sin [-sin(1+20)]	
where - 1 40 5 7	= sin [sin [-(11+20)]]	
multiplying.by.2bis	= sin [sin (- T-20)]	igië .
	25	

- T+ T-205-17+17.	LHS = - 11-2515 x
- 1 ≤ - 11-20 ≤ 6	$= - \pi - 2 \left(\frac{\pi}{2} - \cos \lambda \right)$
: LHS = Sin (sin (-71-20))	$("sin'x + cos'x = \frac{\pi}{2})$
where - 1 < - 11 - 20 < 0	$LHS = -\Pi - \Pi + 2\cos^2 x$
= 1-20 from (I)	$= -2 \pi + 2 \cos^{3} x$
	= xe ni 2 s - (x-1) ni 2
Ex. (7) Prove that : $\tan^{-1} \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = -\frac{\theta}{2}$,	if $\theta \in (-\pi, 0)$
T = 10 10 1 C = (Pro	sin (+-sing) -22in (si
	: LHS = tan (- tan 0)
(1) mas = (1) 1 (1) (1) (1) (1) (1) (1) (1) (1) (=-tan' (tan @)
$= \tan^{-1}\left(\frac{12\sin^2\frac{\omega}{2}}{2\cos^2\frac{\omega}{2}}\right)$: tan -n = - tan u
$= \tan^{-1}\left(\sqrt{\tan^2 \frac{\sigma}{2}}\right)$	0-600-600
0 =)0.00	LHS = - 2
$= \tan^{-1}\left(\pm \tan \frac{0}{2}\right)$: LHS = RHS
Since (-II,0)	
	Solution :
dividing by 2 on b.s.	Sin (sinot) = 0 = 2 (ot (2) LHS = Sin (201 11- x2 = (1)
- IL C C C O	MUSER & QUISER AND
2 11 In TV quadrant	- ا هـ عدوا نِ سَلِيْ وَهُ وَ عِلْ اللَّهِ اللَّهِ عَلَيْهِ اللَّهِ اللَّهِ عَلَيْهِ اللَّهِ اللَّهِ اللَّهِ ا
3-> 23 × F	
THE SIN CHARLES THE STATE OF THE	C. Consent MONAL MARKET
-7 1 2 CO mid	= sin (sin 20)
Sign of Tagebox:	
Sign of Teacher:	multiplying by 2 bs

Q. 26. A solenoid of length π m and 5 cm in diameter has a winding of 1000 turns and carries a current of 5A. Calculate the magnetic field at its centre along the axis.

SECTION - D

Attempt any THREE questions of the following:

[12]

- **Q. 27.** What is Ferromagnetism? Explain it on the basis of domain theory.
- **Q. 28.** Obtain an expression for average power dissipated in a series LCR circuit.
- **Q. 29.** Distinguish between interference and diffraction of light.

A double slit arrangement produces interference fringes for sodium light of wavelength 589 nm, that are 0.20 degree apart. What is the angular fringe separation if the entire arrangement is immersed in water?

(R.I. of water = 1.33)

Q. 30. State Einstein's photoelectric equation and mention physical significance of each term involved in it.

The wavelength of incident light is 4000Å. Calculate the energy of incident photon.

Q. 31. State any four uses of Van de Graaff generator.

In a parallel plate air capacitor, intensity of electric field is changing at the rate of 2×10^{11} V/ms. If area of each plate is 20 cm^2 , calculate the displacement current.

- On Solution Buddy, You Will Get:
- ✓ Exercise solutions for Class 8-12
- Previous Year Question Papers (10th & 12th)
- Free Textbook Downloads
- Practical Solutions (Class 10, 11 & 12)
- ✓ Water Security Exercise & Activity Solution
- Defence Studies Exercise Solution
- Website: solutionbuddy.netlify.app
- YouTube: youtube.com/@solutionbuddy

Solution Buddy

