

Alapvető algoritmusok

9. előadás

Dr. Pătcaș Csaba

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megoldás

megkeresese
Backtracking a síkban

ctracking a síkbai

Mohó módszer Greedy)

Összeg

Tartalom

- Visszalépéses keresés (Backtracking)
 - Optimális megoldás megkeresése
 - Egyetlen megoldás megkeresése
 - Backtracking a síkban
- Mohó módszer (Greedy)
 - Összeg
 - Várakozási idő
 - Buszmegállók

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldá megkeresése

Egyetlen mege megkeresése

Racktracking a si

Mohó módszer

(Greedy) Összeg

Várakozási i

Várakozási idő Buszmegállók

Feladattípusok

- Az eddigi feladatokban az összes megoldást kellett generálnunk, de a backtracking ennél általánosabb módszer, más típusú feladatokra is alkalmazható.
- Említettük, hogy azoknál a feladatoknál, amelyek egyetlen megoldást kérnek, a kiírás után kiléphetünk. Ebbe a kategóriába tartoznak a MindenTávolság és Sudoku feladatok.
- A visszalépéses keresést alkalmazhatjuk optimumkeresési feladatokra is, ebben a kategóriában említjük majd az ABCLefedés, Kivonások és a Dáma 1D feladatokat.
- Számolási feladatokat is megoldhatunk backtrackinggel: az eredményt számolhatjuk egyesével (pl. hányféleképpen helyezhetünk fel n királynőt egy n × n-es sakktáblára), vagy nagyobb lépésekben (pl. számoljuk ki egy adott szám osztóinak összegét). Ide tartoznak még a HuszárFutár és Díjazás feladatok.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

megkeresése Egyetlen megoldás

gyetlen megoldas negkeresése

Mohó módszer

(Greedy)

Összeg

Várakozási idő Buszmegállók

Feladat

Egy természetes számon végrehajthatjuk a következő műveletet: válasszuk ki a szám valamely nem-nulla számjegyét és vonjuk azt ki a számból. Így például a 40451-ből kaphatunk 40450-et, 40447-et, vagy 40446-ot. Határozzuk meg egy adott n számra, hogy legkevesebb hány lépésben változtatható nullává!

- Minden lépésben meghatározzuk a lehetséges lépések halmazát, sorban végigpróbáljuk őket és rekurzívan meghívjuk az alprogramot az így kapott számra.
- Vegyük észre, hogy az így kapott fa minden ága megoldáshoz vezet, de a levelek különböző mélységben helyeszkednek el. Például a 19-et átalakíthatjuk nullává 11 lépésből, de 3 lépésből is.

Megjegyzés: A feladat megoldásához nem szükséges a visszalépéses keresés módszere, ez csak egy didaktikai példa 4 D > 4 A > 4 B > 4 B > B 90 C

Algoritmika

Dr. Pătcas

Optimális megoldás megkeresése


```
ALGORITMUS Kivonások1(n, lépés, megoldás)
  HA (n = 0) akkor
    megoldás = min(megoldás, lépés)
  KÜLÖNBEN
    SzámjegyekHalmaza(n, halmaz, halmazMéret)
    MINDEN i = 1, halmazMéret végezd el:
      Kivonások1(n - halmaz[i], lépés + 1, megoldás)
    VÉGE (Minden)
  VÉGE (Ha)
VÉGE (Algoritmus)
Kezdetben megoldás = VÉGTELEN (cím szerint átadott paraméter), hívás:
Kivonások1(n, 0, megoldás)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés Optimális megoldás

megkeresése

megkeresése

Backtracking a síkb.

Mohó módszei (Greedy)

Összeg

Második változat

Ha meghaladtuk az eddig talált minimális megoldást, már biztosan nem találunk jobbat, így nincs értelme folytatnunk. Így megszabadulunk a min függvény hívásától is.

```
ALGORITMUS Kivonások2(n, lépés, megoldás)

HA (lépés >= megoldás)

VISSZATÉRÍT

VÉGE(Ha)

HA (n = 0) akkor

megoldás = lépés

KÜLÖNBEN

... (ugyanaz mint az előbb)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megold megkeresése

megkeresése Backtracking a sík

Nohó módszer

(Greedy)

Összeg

Harmadik változat

A legnagyobb érték amivel egy lépésben csökkenhet a szám egyenlő a legnagyobb számjeggyel, ami 9. Vagyis a legjobb esetben is $\lfloor n/9 \rfloor$ lépésre van szükségünk, hogy eljussunk a nullához. Ha ebben az optimista feltételezésben is meghaladjuk az eddigi legjobb megoldást, nincs értelme folytassuk, mert azt jelenti, hogy olyan ágra kerültünk, amelyben minden levél túl mélyen van.

```
ALGORITMUS Kivonások3(n, lépés, megoldás)

HA (lépés + (n / 9) >= megoldás)

VISSZATÉRÍT

VÉGE(Ha)

HA (n = 0) akkor

megoldás = lépés

KÜLÖNBEN

... (ugyanaz mint az előbb)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megoldás

megkeresése

Backtracking a síkba

Mohó módsze (Greedy)

Összeg

Negyedik változat

Nagyobb eséllyel jutunk kevesebb lépésből álló megoldáshoz, ha nagyobb számjegyeket választunk, ezért érdemes az ágakat ennek megfelelő sorrendben bejárni, így az eddigi optimalizálások is többször alkalmazhatóak lesznek majd.

```
ALGORITMUS Kivonások4(n, lépés, megoldás)
  HA (lépés + (n / 9) >= megoldás)
    VISSZATÉRÍT
  VÉGE (Ha)
  HA (n = 0) akkor
    megoldás = lépés
  KÜLÜNBEN
    SzámjegyekHalmaza(n, halmaz, halmazMéret)
    RendezCsökkenőbe(halmaz, halmazMéret)
    ... (ugyanaz mint az előbb)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

> Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

megkeresése

Backtracking a síkb

Mohó módszei (Greedy)

Összeg

Dáma 1D

Feladat

Adott egy n elemből álló sorozat, melynek elemei a 0, 1, vagy 2 értéket vehetik fel. A 0 szabad pozíciót jelöl, az 1 világos bábut és a 2 sötét bábut. A világos bábuk csak jobbra léphetnek, a sötétek csak balra. Egy bábu léphet egyetlen pozíciót, ha üres helyre kerül, vagy kettőt, ha ezzel átugrik egy tetszőleges színű bábut és üres pozícióra kerül. Határozzuk meg a minimális lépések számát, amellyel olyan konfigurációba jutunk, amelyben a baloldali pozíciókat csak sötét bábuk foglalják el és a jobboldali pozíciókat csak világos bábuk (tehát az üres pozíciók középre kerülnek).

Példa: n=512010 02110 02011

20011

Algoritmika

Dr. Pătcas

Optimális megoldás megkeresése

Összeg

Dáma 1D

Flemzés

- A Kivonások feladathoz hasonlóan itt is egy optimumkeresési feladattal van dolgunk.
- Erre a feladatra is adaptálhatóak az ott látott optimalizálási ötletek.
- Ha több lépést hajtottunk végre, mint az eddigi legjobb megoldás, nincs értelme tovább menni.
- Egy bábu legtöbb két pozíciót haladhat egy lépésben. Ezt az észrevételt felhasználva adhatunk egy alsó becslést a szükséges lépések számára.
- A fenti kezdő konfigurációban [1 2 0 1 0] két világos és egy sötét bábu volt, vagyis egy sötét bábu legalább az 1. indexig kell lépjen és egy világos legalább a 4. indexig. Felírhatjuk, hogy melyik pozíción lévő bábu milyen messze van a legközelebbi végcéljától: [3 1 0 0 0]. Mivel egy lépésben két pozíciót is elmozdulhat egy bábu, a minimális lépések száma: [2 1 0 0 0], vagyis 3.
- A rekurzív hívásokat érdemes olyan sorrendben végrehajtani, hogy először azokat a lépéseket hajtjuk végre, ahol két pozíciót ugrik egy bábu, mivel így nagyobb eséllyel jutunk jobb megoldáshoz.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

Backtracking a síkba

Aohó módsz Greedy)

Összeg Várakozási idő

Feladat

Adott egy részben kitöltött 9×9 méretű négyzetrács. Töltsük ki úgy a megmaradt mezőket, hogy minden sorban, minden oszlopban és mind a 9 darab 3×3 -as kis négyzetben, minden 1 és 9 közötti természetes szám pontosan egyszer jelenjen meg!

- A feladat egyetlen helyes kitöltést kér, így az első kiíratás után megállhatunk.
- Az első ötlet az lenne, hogy sorról-sorra haladva minden kitöltetlen mezőbe megpróbáljuk beírni az összes értéket 1-től 9-ig, majd a végén ellenőrizzük, hogy teljesülnek-e a belső feltételek.
- Ez tulajdonképpen egy nyers erő (brute force) megközelítés lenne, visszalépéses kereséssel írhatunk hatékonyabb megoldást is.
- Vegyük észre, hogy az eredmény természetes kódolásához nem elegendő egy egyszerű számsorozat.

Algoritmika

Dr. Pătcaș Csaba

keresés

Optimális megoldá megkeresése

Egyetlen megoldás megkeresése

megkeresese

Backtracking a síkbar

Nohó módszer

Greedy)

Várakozási idő

4 D > 4 B > 4 B > 4 B > 9 Q P

Optimalizálási lehetőségek

- Minden üres mezőre számontartjuk, hogy milyen értékeket írhatunk belé, figyelembe véve a részlegesen kitöltött négyzetrácsot.
- Ahelyett, hogy mind a 9 lehetőséget végigpróbálnánk, csak ezekből az értékekből választunk. Ezzel tulaidonképpen beépítettük a belső feltételeket a folytatási feltételekbe és amint megoldáshoz jutottunk, az helyes is lesz.
- Megfigyelhetjük, hogy a backtracking által felépített fának van néhány általános tulajdonsága: az azonos szinten lévő csúcsok leszármazottainak a száma változó (1-től 9-ig) és csak az ágak nagyon kis százaléka vezet végeredményhez.

Algoritmika

Dr. Pătcas

Egyetlen megoldás megkeresése

Optimalizálási lehetőségek

járjunk be.

ágat, amely végeredményhez vezet.

Algoritmika

Dr. Pătcas

Egyetlen megoldás

megkeresése

 Ezt úgy érhetjük el, hogy a végeredménynek megfelelő ágtól "balra" eső (korábban felépített) részfa minél kevesebb csúcsból álljon, vagyis minél "keskenyebb" és minél "alacsonyabb" legyen.

A cél az, hogy a fában minél hamarább építsünk fel egy maximális hosszúságú

Ehhez az kell, hogy az első végeredményt megelőzően, minél kevesebb állapotot

Hogyan tehetjük a fát "keskenyebbé"?

- Megpróbáljuk minimalizálni egy csúcs gyerekeinek a számát. A Sudoku feladatánál ennek érdekében tekintünk a 9 gyerek helyett csak annyit, ahány értéket az adott mezőre írhatunk, de a Permutációk vagy a Királynők feladatánál is alkalmaztuk ezt az elvet a folytatási feltételek megfogalmazásakor.
- Nem mindegy, hogy egy csúcs gyerekeit milyen sorrendben járjuk be, a Sudoku feladatánál nem feltétlenül a leghatékonyabb választás az üres mezőkbe növekvő sorrendbe beírni a lehetséges értékeket.
- Általában véve érdemesebb a kisebb részfákat bejárni először (ha mindegyik részfa egyenlő valószínűséggel visz megoldáshoz).
- Például ha egy csúcsnak van két gyereke, az egyik részfája 100 állapot bejárását feltételezi, a második 10 állapot bejárását és a két ág 50%-50% eséllyel visz megoldáshoz, akkor jobban járunk ha a 10 állapot bejárásával kezdjük.

Algoritmika

Dr. Pătcaș Csaba

keresés

megkeresése

Egyetlen megoldás megkeresése

Backtracking a síkban

Mohó módszer

Összeg Várakozási id

Hogyan tehetjük a fát "alacsonyabbá" és "keskenyebbé"?

Algoritmika

Dr. Pătcas

Føyetlen megoldás megkeresése

- Az sem mindegy, hogy mit rendelünk a fa különböző szintjeihez, az M_1, \ldots, M_n halmazokból milyen sorrendben választunk értéket, nem feltétlenül az $1, \ldots, n$ sorrend a leghatékonyabb.
- Például a Sudoku feladatánál az üres mezőket ne sorról sorra töltsük ki, hanem kezdiük azokkal, amelyekbe a legkisebb számú értéket írhatjuk. Így potenciálisan hamarabb bejárjuk azokat az ágakat, amelyek nem vezetnek eredményhez és kevesebb konfiguráció kigenerálása után találunk megoldást.

Hogyan tehetjük a fát "alacsonyabbá" és "keskenyebbé"?

Ä

Példa:

- Tegyük fel, hogy a Sudoku táblán keressük az értéket a p_1, \ldots, p_5 üres mezőkhöz.
- A p_1 mező 5 lehetséges értéket kaphat még, a p_2, \ldots, p_4 mezők mindegyike két lehetséges értéket, és a p_5 mező csak egy értéket kaphat.
- A tábla konfigurációja olyan, hogy azonos soron vagy oszlopon vannak egymással a p_2 és a p_3 , a p_3 és a p_4 , valamint a p_4 és a p_5 . Vagyis ha valamelyikük értéket kap, a másik eggyel kevesebb értéket kaphat.

Algoritmika

Dr. Pătcaș Csaba

keresés

Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

Backtracking a síkbar

Mohó módszer

Összeg

Hogyan tehetjük a fát "alacsonyabbá" és "keskenyebbé"?

- Feltételezzük, hogy csak akkor jutunk megoldáshoz, ha a p_1 az 5. ágnak megfelelő értéket kapja és a p_2 , p_3 és p_4 a második ágnak megfelelő értéket.
- Ha p_1, \ldots, p_5 sorrendben rendeljük a mezőket a fa szintjeihez, a következő fát kapjuk mielőtt a megoldáshoz vezető értékeket rendeljük az öt mezőhöz.

Algoritmika

Dr. Pătcaș Csaba

keresés

megkeresése Egyetlen megoldás

megkeresése

Backtracking a síkbai

Mohó módsze

Összeg

Hogyan tehetjük a fát "alacsonyabbá" és "keskenyebbé"?

• Ha p_5, \ldots, p_1 sorrendben rendeljük a mezőket a fa szintjeihez, 31 állapot helyett csak 4-et kell feleslegesen bejárnunk, mielőtt a helyes ágon megyünk tovább.

Algoritmika

Dr. Pătcaș Csaba

Visszalepeses keresés

Optimális megoldá megkeresése Egyetlen megoldás

megkeresése

acktracking a síkban

Mohó módszei (Greedy)

Összeg Várakozási is

Minden távolság

Algoritmika

Dr. Pătcas

Favetlen megoldás

megkeresése

Feladat

lsmervén a távolságot minden pontpár között n darab Ox tengelyen található pont közül, határozzuk meg a pontok nemnegatív koordinátáit, tudván, hogy az origó biztos közöttük van!

- A legnagyobb távolság biztosan csak egyszer fog szerepelni, ez megadja az origótól legtávolabbi pont max helyzetét.
- Ahhoz, hogy több száz pontra is időben fusson a program, szükség van a Sudoku feladatánál látott optimalizálási ötletekre.

Minden távolság

Milyen sorrendben érdemes a fa szintjeit elképzelni?

Algoritmika

Dr. Pătcas

Egyetlen megoldás megkeresése

4 D > 4 D > 4 E > 4 E > E 900

- Intuitíven "érezzük", hogy érdemesebb a nagyobb távolságokkal kezdeni.
- Ha egyenletes eloszlású koordináták közötti távolságok gyakoriságát nézzük, könnyen látható, hogy a legnagyobb értékek a legritkábbak.

Minden távolság

Milyen sorrendben érdemes a fa szintjeit elképzelni?

Dr. Pătcaș Csaba

Visszalépés keresés

Optimális megoldá megkeresése

Egyetlen megoldás megkeresése

Backtracking a si

Mohó módszer

(Greedy) Összeg

Várakozási idő

 Észrevesszük, hogy ha létezik egy x koordinátájú pont, akkor nem csak az x, hanem a max – x is szerepel távolságok között, vagyis ezekből az értékekből is n darab található a hisztogramon. Ezek figyelmevételével duplára növelhetjük az esélyeinket arra, hogy egy helyes x pozíciót találunk.

Backtracking a síkban

- Az előző feladatoknál már láttuk, hogy az eredmény kódolása nem mindig lehetséges egy egyszerű számsorral.
- Például amikor egy kétdimenziós tömbben való adatokat kell feldolgoznunk, abban kell utakat keressünk, minden szinten egy (x, y) koordinátapárt kell majd tárolnunk (esetleg más adatokkal egyetemben).
- Ekkor tekinthetjük úgy is, hogy az $M_1 \times M_2 \times ... M_n$ Descartes-szorzat minden eleme $M_k = (x_k, y_k, ?)$ alakú.
- Ilyenkor a módszer neve backtracking a síkban.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megoldás

megkeresése Backtracking a síkban

ohó módszer

Mohó módsze (Greedy)

Összeg

Labirintus

Feladat

Egy labirintust egy $n \times m$ méretű A mátrixszal kódolunk, amelyben az 1-es érték jelzi a folyosót és a 0-ás értékek a falat. Egy személyt ejtőernyővel leengednek az (x,y) pozícióra, amelyen biztosan folyosó található. Írjuk ki a labirintusból kivezető összes utat, tudván, hogy egy út nem érintheti kétszer ugyanazt a helyet. A labirintusból a tömb szélén léphetünk ki, egy adott mezőről a négy szomszédos mezőre léphetünk.

- Az eredményt a v tömbben kódoljuk, amelynek minden eleme egy struktúra, melynek x és y mezői vannak.
- Belső feltételek: az út folyosón kell haladjon végig és nem léphetünk kétszer ugyanarra a helyre. Vagyis v[1] = (x, y), v[k] és v[k-1] szomszédosak, $A[v[k].x][v[k].y] = 1, \forall k, v$ utolsó eleme a mátrix szélén van és $v[i] \neq v[j], \forall i \neq j$

Algoritmika

Dr. Pătcaș Csaba

Visszalépés keresés

Optimális megoldá megkeresése

> Egyetlen megole megkeresése

Backtracking a síkban

Mohó módszei

Összeg

Labirintus

Algoritmika

Dr. Pătcas

Backtracking a síkban

- A folytatási feltételek egyszerűsítése végett körbevesszük az A mátrixot 0-ás értékekkel.
- Egy volt logikai mátrixban tartjuk számon, hogy az aktuális útvonal során érintettük-e az adott mezőt
- Egy pozícióra akkor léphetünk, ha ott folyosó található és még nem jártunk ott, ez lesz a folytatási feltétel.

Labirintus


```
ALGORITMUS Labirintus(x, y, k, v, volt, A)
  HA ((A[x][y] = 1) ÉS (volt[x][y] = HAMIS)) akkor
    volt[x][y] = IGAZ
    v[k] = (x, v)
    HA ((x = 1) \text{ VAGY } (x = n) \text{ VAGY } (y = 1) \text{ VAGY } (y = m)) akkor
      Kiír(v, k)
    VÉGE (Ha)
    Labirintus(x + 1, y, k + 1, v, volt, A)
    Labirintus (x - 1, y, k + 1, v, volt, A)
    Labirintus(x, y + 1, k + 1, v, volt, A)
    Labirintus(x, y - 1, k + 1, v, volt, A)
    volt[x][v] = HAMIS
  VÉGE (Ha)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépése keresés

Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

Backtracking a síkban

Лohó módszer

(Greedy)

Osszeg Várakozás

- Bemutatunk egy másik megoldást, amely másképpen implementálja az algoritmus részleteit.
- A volt logikai tömböt felváltja egy eredm mátrix, melynek kezdetben minden eleme 0, majd egy adott koordinátán azt fogja tárolni, hogy hányadik lépésben értünk oda.
- Így a v tömbre már nincs szükségünk, az eredm tárolja az út visszakereséséhez szükséges információkat.
- Deklarálunk két konstans tömböt: $dx[4] = [-1 \ 0 \ 0 \ 1], \ dy[4] = [0 \ -1 \ 1 \ 0]$
- Ezúttal nem használunk keretet, hanem ellenőrizzük, hogy kilépnénk-e a labirintusból a következő lépéssel.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése Føyetlen megoldás

Egyétlen megoldás megkeresése

Backtracking a síkban

lohó módszer

Mohó módszei (Greedy)

Várakozási idő

Várakozási idő Buszmegállók ALGORITMUS Labirintus2(x, y, k, eredm, A)

MINDEN irány = 1, 4 végezd el:

újx = x + dx[irány]újy = y + dy[irány]

```
Algoritmika
```

Dr. Pătcaș Csaba

keresés

megkeresése

Egyetlen megoldás megkeresése

megkeresése

Backtracking a síkban

.

(Greedy)

Összeg

```
N
```

```
HA ((újx >= 1) ÉS (újx <= n) ÉS (újy >= 1) ÉS (újx <= m)) akkor
       HA (A[\check{u}]x][\check{u}]y = 1) ÉS (eredm[\check{u}]x][\check{u}]y = 0) akkor
         eredm[újx][újy] = k
         HA ((\acute{u}jx = 1) VAGY (\acute{u}jx = n) VAGY
              (újv = 1) VAGY (újv = m)) akkor
            Kiir(eredm)
         VÉGE (Ha)
         Labirintus2(újx, újy, k + 1, eredm, A)
          eredm[\check{u}ix][\check{u}iv] = 0
       VÉGE (Ha)
     VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépés keresés

Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

megkeresése

Backtracking a síkban

Mohó módszer Greedy)

Összeg

Fénykép

Algoritmika

Dr. Pătcas

Backtracking a síkban

Feladat

Egy $n \times m$ méretű A mátrixban egy egyszerű fényképet ábrázolunk. Ott ahol a fényképen valamilyen tárgy egy része látható, a megfelelő elem értéke 1, különben 0. Ugyanahhoz a tárgyhoz tartozó megfelelő elemek szomszédosak soronként, oszloponként, vagy átlósan. Írjuk ki minden tárgy egy tetszőleges koordinátáját és a tárgy méretét (az 1-esek számát amik alkotják).

Fénykép

Megoldás

- A megoldáshoz kombináljuk az előbb látott ötleteket.
- Az A mátrix köré ismét nullásokból álló keretet rajzolunk, azon tárgyak lekezelésére, amelyek érintik a mátrix szélét.
- Ezúttal a dx és dy tömbök mérete 8 lesz.
- Ha elronthatjuk az A mátrix tartalmát, akkor 2-re állítjuk majd azokat a mezőket ahol már jártunk.
- Ha egy helyen jártunk, oda már nincs értelme más úton visszamenni, így az A elemeit többet nem állítjuk vissza 1-re.
- Emiatt ennek az algoritmusnak polinomiális futási ideje lesz, tulajdonképpen egy "álcázott" mélységi bejárásról van szó.
- Mivel ehhez hasonló algoritmusokat megtalálhatunk grafikus alkalmazásokban, zárt területek színezésekor, az algoritmust fill algoritmusnak is nevezik.

Algoritmika

Dr. Pătcaș Csaba

Visszalépése keresés

Optimális megoldás megkeresése

Egyetlen megoldás megkeresése

Backtracking a síkban

Mohó módszer

Összeg Várakozási idő

Várakozási idő Buszmegállók


```
ALGORITMUS Fill(x, y, A, méret)
  HA (A[x][y] != 1) akkor
    VISSZATÉRÍT
  VÉGE (Ha)
  A[x][y] = 2
  m\acute{e}ret = m\acute{e}ret + 1
  MINDEN irány = 1, 8 végezd el:
    Fill(x + dx[irány], y + dy[irány], A, méret)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

megkeresése

megkeresése

Backtracking a síkban

Mohó módsze

(Greedy)

Összeg

Varakozası ido

Az algoritmust a következőféleképpen hívjuk meg:

```
. . .
MINDEN i = 1, n végezd el:
  MINDEN j = 1, m végezd el:
    HA (A[i][j] = 1) akkor
      m\acute{e}ret = 0
      Fill(i, j, méret)
      KI: i, j, méret
    VÉGE(Ha)
  VÉGE (Minden)
VÉGE (Minden)
. . .
```

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

megkeresése Egyetlen megoldás

megkeresése

Backtracking a síkban

Mohó módsze (Greedy)

Összeg

Tartalom

- Visszalépéses keresés (Backtracking)
 - Optimális megoldás megkeresése
 - Egyetlen megoldás megkeresése
 - Backtracking a síkban
- Mohó módszer (Greedy)
 - Összeg
 - Várakozási idő
 - Buszmegállók

Algoritmika

Dr. Pătcaș Csaba

Visszalépés keresés

Optimális megoldás megkeresése

Egyetlen megolmegkeresése

Backtracking a síkb.

Mohó módszer

(Greedy)

Összeg

Várakozási idő Buszmegállók

Mohó módszer (Greedy)

- Láttuk a Sudoku, Kivonás és Dáma 1D feladatoknál, hogy ha nem tetszőleges sorrendben jártuk be a backtracking által épített fát, hanem bizonyos döntések alapján választottuk meg, hogy merre induljunk, javíthattuk az esélyeinket arra, hogy hamarabb eredményhez jussunk.
- Tulajdonképpen lokálisan hoztunk döntéseket, annak az információnak az ismeretében, ami az adott csúcsban rendelkezésünkre állt.
- Ez a greedy módszer lényege, amely során mohó módon mindig a legígéretesebb irányba indulunk, viszont a backtrackinggel ellentétben, soha nem lépünk vissza.
- Megmaradva a fás analógiánál, tulajdonképpen a legbaloldalabbi ágon lefutunk a gyökértől a levélig.
- A greedy módszert leggyakrabban optimalizálási feladatok esetén használjuk.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése Egyetlen megoldás

megkeresése Backtracking a síl

Mohó módszer

(Greedy)

Mohó módszer (Greedy)

- Bizonyos feladatok esetén optimális megoldáshoz juthatunk, ha megfelelő döntések alapján választjuk meg az első ágat amin lefelé haladunk a fában.
- A mohó módszer tárgyalását ilyen feladadok bemutatásával kezdjük majd.
- Ha egy feladatra greedy módszert akarunk alkalmazni, bizonyítanunk kell, hogy a módszer az optimális megoldáshoz vezet. Ezt általában a reductio ad absurdum módszerével kézenfekvő megtenni.
- Ennek az ellenkezője könnyen bizonyítható egy ellenpéldával.
- A bemutatott feladatok esetén kihagyjuk a bizonyításokat, de ezek megtalálhatóak a jegyzetben.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

megkeresése

Backtracking a síkhi

Backtracking a síkb

Mohó módszer (Greedy)

Összeg Várakozási idő

Greedy heurisztika

- Más feladatok esetében nem garantált, hogy a mohó módszerrel optimális megoldáshoz jutunk, ekkor a kapott megoldással csak közelíteni próbáljuk az optimumot.
- Ilyenkor greedy heurisztikáról beszélünk, erre is adunk majd néhány példát a fejezet végén.
- Ezt a jelenséget szemléltethetjuk a mindennapi életből vett példával is: ha az aktuális pozíciónkról indulva mindig a legmagasabb pontra mászunk amit látunk (vagyis a lokális ismereteink alapján mohó módon választunk), nem garantált, hogy a Mount Everest csúcsán kötünk ki (viszont vannak olyan kiindulási pontok, ahonnan igen).
- Ezt matematikai nyelvezettel úgy is szoktuk mondani, hogy a lokális optimum nem garantálja a globális optimumot. Ezekkel a fogalmakkal ismét találkozni fogunk a dinamikus programozás módszerénél.

Algoritmika

Dr. Pătcaș Csaba

Visszalépés keresés

megkeresése Egyetlen megoldás megkeresése

megkeresése Backtracking a síkhai

Mohó módszer (Greedy)

Összeg Várakozási id

fárakozási idő Buszmegállók

Osszeg

Algoritmika

Dr. Pătcas

Összeg

Feladat

Adott egy n elemű valós számokból álló sorozat. Határozzuk meg az adott sorozat azon részsorozatát, amelynek összege a lehető legnagyobb!

- Megoldás: Könnyen belátható, hogy optimális megoldást kapunk, ha a sorozatból kiválasztjuk az összes szigorúan pozitív elemet.
- Speciális eset: Ha minden szám negatív?

Várakozási idő

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldá megkeresése

> Egyetlen megold megkeresése

megkeresése Racktracking a síkh

Sacktracking a sikba

Mohó módsze (Greedy)

Összeg

Várakozási idő

Feladat

Egy ügyvédi irodába egyszerre érkezik *n* személy, akiknek az intéznivalóit az ügyvéd ismeri, így azt is tudja, hogy egy-egy személlyel hány percet fog eltölteni. Állapítsuk meg azt a sorrendet, amelyben fogadnia kellene a személyeket ahhoz, hogy az átlagos várakozási idő minimális legyen!

Mivel az átlagos várakozási idő az *n* személy várakozási idejének számtani középarányosa, tulajdonképpen a várakozási idők összegét kell minimalizálni.

Várakozási idő

Példa: n = 3, várakozási idők: [60 10 30]

Sorrend	Várakozási idők összege	Átlagos várakozási idő
1 2 3	0+60+(60+10)	130 / 3
1 3 2	0+60+(60+30)	150 / 3
2 1 3	0+10+(10+60)	80 / 3
2 3 1	0+10+(10+30)	50 / 3
3 1 2	0+30+(30+60)	120 / 3
3 2 1	0+30+(30+10)	70 / 3

- A fenti példa alapján az első ötlet az lehetne, hogy visszalépéses kereséssel generáljuk az összes permutációt és ezek közül kiválasztjuk a minimális összeget adót. A megismert optimalizálási módszerek is alkalmazhatóak lennének.
- A feladat viszont megoldható sokkal hatékonyabban: a várakozási idők növekvő sorrendjében fogadjuk a személyeket.

Algoritmika

Dr. Pătcaș Csaba

Visszalépés keresés

Optimális megoldás megkeresése

gyetlen megoldás negkeresése

negkeresese Backtracking a síkl

Mohó módszer

(Greedy) Összeg

Várakozási idő

árakozási idő uszmegállók

Buszmegállók

Algoritmika

Dr. Pătcas

Buszmegállók

Feladat

Egy közszállítási vállalat olyan gyorsjáratot szeretne indítani, amely csak a város főutcáján közlekedne és már létező megállókat használna. Ezeket a megállókat úgy kell kiválasztanunk, hogy két megálló között a távolság legkevesebb x méter legyen (mivel gyorsjáratról van szó) és a megállók száma legyen a lehető legnagyobb (minél több utas használhassa).

Példa: n = 10, x = 60

A megállók koordinátái: [0 100 150 175 200 250 260 270 350 370]

A gyorsjáratnak 5 megállója lesz, ezek sorszámai: 1, 2, 4, 6, 9.

Koordinátáik: 0. 100. 175. 250. 350

Buszmegállók

Megoldás

- Bizonyítható, hogy mindig létezik optimális megoldás, amelyhez hozzátartozik az 1-es, vagyis a legkisebb koordinátával rendelkezó megálló (lásd jegyzet).
- Ennek a tulajdonságnak a segítségével jön a megoldási ötlet.
- Az első megállót betesszük a megoldásba.
- Minden lépésben a legközelebbi megállót választjuk a megoldásba, amely legalább x távolságra van a legutóbb hozzáadott megállótól.
- A pszeudokódban feltételezzük, hogy a megállók rendezve vannak a koordinátáik szerinti növekvő sorrendbe.

Algoritmika

Dr. Pătcaș Csaba

Visszalépéses keresés

Optimális megoldás megkeresése

Egyetlen megol

megkeresése

Mohó módszer

(Greedy)

Összeg

Várakozási ide

Buszmegállók

Buszmegállók

Pszeudokód

```
Ö
```

```
ALGORITMUS Busz(n, megállók, x, megoldás)
  Hozzáfűz (megoldás, 1)
  táv = 0
  MINDEN i = 2, n végezd el:
    újTáv = táv + megállók[i] - megállók[i - 1]
    HA (újTáv >= x) akkor
      Hozzáfűz(megoldás, i)
      t \dot{a} v = 0
    KÜLÖNBEN
      táv = újTáv
    VÉGE (Ha)
  VÉGE (Minden)
VÉGE (Algoritmus)
```

Algoritmika

Dr. Pătcaș Csaba

keresés

megkeresése

negkeresése

ktracking a síkban

Mohó módsze (Greedy)

Összeg

Várakozási idő

Buszmegállók