Vivek Ghosal

Department of Economics Rensselaer Polytechnic Institute

Comments on the materials in this slide set

- These materials are designed to provide you with a broad base of theoretical and conceptual constructs, and discussion of issues.
- I have included materials that serve as review of topics you should have done in the introductory economics (INQR/IHSS 1200).
- You must go over this slide set BM1 in its entirety on your own to review the basic materials.

Outline of these lecture slides

- Outline theories and concepts to lay foundation for analysis
- Examine
 - Nature of industries and markets
 - Characterization of demand and costs
 - Models of perfect competition and monopoly
 - The different dimensions in which firms compete
 - Firms' key decision variables
- Next set of slides BM2 we will discuss
 - Model of *Bertrand* differentiated product price-competition

Industries

Examples

- Pharmaceuticals
- Medical Devices
- Airlines
- Automobiles
- Telecommunications
- Physicians and hospitals
- Insurance
- Semiconductors
- Some decision variables are similar across industries (e.g., price and quantity) while others can vary considerably (e.g., variety, quality, or innovation e.g., manifested in R&D and patents)

Industries Structure

- Industries can have very different structures
- Commonly used measures of structure are
 - Number of firms
 - Size distribution of firms
 - Concentration ratio
 - ➤ E.g., four-firm concentration ratio; Hirschman-Herfindahl Index
- Some examples
 - Aircraft engine manufacturing: very small number of firms; very high concentration
 - Ready-to-eat breakfast cereals: few firms, higher concentration
 - Specific cancer therapies: few firms, highly concentrated
 - Maple syrup: large number of firms; lower concentration

Review of microeconomics

I will not discuss this slide set in detail as demand, elasticities, costs, profits, competition, and monopoly were part of IHSS/Econ 1200.

You must read through the materials in BM1 yourself.

The concepts here will be important for the next segment on oligopoly – slides BM2.

Defining a Market

- Before we discuss models of competition, it is important to think about what constitutes the *relevant market*
- <u>Cancer therapies</u>: Markets can be wide across countries, but products/treatment categories very narrow.
- <u>Arterial stents</u>: Markets are wide across many countries, but products/treatment categories very narrow.
- <u>Automobiles:</u> Ferrari and Hyundai do not compete. Highly differentiated products due to attributes.
- <u>Electricity:</u> An electricity generator in California does not compete providing service with one in Florida. Geographic segmentation due to transmission constraints.
- <u>Plumbing service</u>: Markets are local. Mobility of labor.
- We define a <u>market</u> by examining the <u>substitutability</u> of the products or services

Defining a Market

Cross-Price Elasticity: Concept

- Concept: <u>cross-price</u> elasticity of demand (CPE)
- Consider two products Y and X

$$\varepsilon_{\mathcal{Q}(Y),\;P(X)}^{D} = \left\{ \frac{Percentage\;change\;in\;quantity\;demanded\;of\;Y}{Percentage\;change\;in\;price\;of\;X} \right\}$$

$$\varepsilon_{Q(Y), P(X)}^{D} \begin{cases} > 0 & Substitutes \ in \ consumption : e.g., Coke \ and \ Pepsi \\ = 0 & Unrelated \ in \ consumption : e.g., pens \ and \ sugar \\ < 0 & Complements \ in \ consumption : e.g., cars \ and \ petrol \end{cases}$$

Defining a Market Cross-Price Elasticity: Concept

- For a product like the automobile, the extent of product differentiation is important
 - Ferrari and Hyundai: CPE≈0
 - Toyota Camry and Hyundai Sonata: CPE>0
- For electricity service provision, distance is important
 - o Increase in distance tends to render CPE≈0
- Defining the *relevant market* is important, otherwise we may not be able to properly assess the effects of a regulation on the market participants

Market Demand

Standard Linear

Linear Demand $P = A - B \cdot Q$

E.g., P=10-2Q

Market Demand Own-Price Elasticity: Concept

- Concept: <u>own-price</u> elasticity of demand
- Consider demand for "vacation cruises"

$$\varepsilon_{Q(cruise),P(cruise)}^{D} = \left\{ \frac{Percentage\ change\ in\ quantity\ demanded\ of\ cruises}{Percentage\ change\ in\ price\ of\ cruise} \right\} < 0$$

$$\left| \mathcal{E}_{Q(cruise), P(cruise)}^{D} \right| \begin{cases} > 1 & elastic demand \\ < 1 & inelastic demand \end{cases}$$

Market Demand Own-Price Elasticity: Concept

- ---
- Suppose (<u>absolute value</u>) of elasticity for electricity is **0.3**
 - It implies that a 10% rise in price of electricity will lead to a 3% decrease in the quantity demanded of electricity
 - Electricity is a necessity, hence it is not very price elastic
 - Electricity has no meaningful substitutes
- Suppose (<u>absolute value</u>) of elasticity for a BMW 7 series car is **9.4**
 - o It implies that a 10% rise in the price of a BMW 7 series car will, *ceteris paribus*, lead to a 94% decrease in quantity demanded
 - o BMW 7 series has several competitors, and some consumers will switch away to other brands
 - Consumers have the option of postponing purchases
 - o BMW 7 series is a luxury item

Market Demand Own-Price Elasticity: Concept

- *Own-price* elasticity is a very important concept
- Whether a product or service is relatively a necessity or luxury determines elasticity
- Whether a product or service has substitutes in consumption determines elasticity
 - E.g., BMW 5-series has substitutes (Audi, Lexus, Mercedes, etc) and consumers are likely to shop around more if BMW raises its price.
 This influences the price BMW can set
 - E.g., in the Hong Kong to Tokyo flight segment, 4 airlines (Japan Airlines, Cathay Pacific Airways, All Nippon Airways, and Delta) offer direct flights. This affects the ability of any one airline to charge high prices

Market Demand

Own-Price Elasticity: Estimates

- Some illustrative estimates of <u>own-price</u> elasticities (<u>absolute</u> <u>values</u>) from U.S. market data
 - Beer: Miller Lite = 2.10; Budweiser = 3.80
 - Cars: Honda Accord = 51.6
 - Breakfast cereals: Kellogg's Corn Flakes = 3.4; Rice Krispies = 2.3
 - Soft drinks (2-liter bottle): Coke = 3.9; Mountain Dew = 3.7
 - Gasoline (petrol): 0.04
 - ➤ This estimate (based on short-run consumption data) indicates that a 10% increase in price of gasoline leads to a 4% decrease in quantity demanded. Inelastic, as expected, due to lack of viable alternatives.

Cost Functions Standard U-Shaped

Cost Functions Standard U-Shaped

- The precise shapes of the cost curves will arise from the nature of fixed-costs versus variable-costs
- If fixed-costs are very high, then the AC curve will show a larger declining segment
 - Larger scale economies
 - Pharmaceuticals: very high fixed-costs due to exorbitant costs of R&D, product development, testing, regulatory approvals; marginal cost per pill is very low
- If fixed-costs are low, then the AC curve will show a smaller declining segment
 - Smaller scale economies
 - A garden landscaping service company: relatively low fixed-costs; and higher variable costs

Benchmark: Perfectly Competitive

- Some "illustrative" examples
 - Over 10,000 farms in the U.S. and Canada produce Maple syrup
 - Mediterranean coast has thousands of farmers growing <u>olives</u>
 - Dozens of firms worldwide make <u>basic printer/copier paper</u> and compete globally
 - Within a big city market, hundreds of individuals and small businesses provide <u>repair and plumbing services</u>
- In such markets, an individual seller typically has little or no influence on the market price, and has to take it as given
- If one seller attempts to raise its product or service price, consumers will switch away to buy from other sellers

Benchmark: Perfectly Competitive

- Consider the benchmark classical model
- Many firms in the relevant market
- Many consumers
- Homogenous (or non-differentiated) product
- U-shaped average (AC) and marginal costs (MC)
- Little or no barriers to entry
- No sunk costs (non-recoverable cost component)
- Market demand is downward sloping
- Individual firm faces horizontal demand
 - Cannot change prices from what is given by the market
 - Individual firm's MR=P (explain)

Benchmark: Perfectly Competitive

- A firm in a competitive market exhibits price-taking behavior
- In this market, equilibrium results in P=MC
- Industry equilibrium occurs where the industry supply curve intersects the market demand curve
 - The industry supply curve is the horizontal summation of the individual firms' MC curves
- With zero/negligible entry barriers, entry and exit restore long-run competitive equilibrium of zero economic profits

Models of Competition Monopoly

- Some "illustrative" examples
 - Only one <u>airline</u> that offers service on a particular route with no meaningful alternatives
 - **▼** E.g., Air France Paris to Pointe A Pitre (Guadeloupe)
 - One <u>dentist</u> in a town with no alternatives within reasonable distance
 - One supplier of <u>ready-made cement</u> in the area
- Typically, a monopoly has two key features
 - No close substitutes
 - o Barriers to entry (e.g.: patents; legal; scale economies; etc)
- Monopolies can be local, regional or national
- In such markets, the individual seller of the product or service will have the power to **set prices** of the product or service it sells

Monopoly and Profit Maximization

 Monopolist maximizes profit by equating marginal revenue with marginal cost

Competitive v. Monopoly Outcomes

- In competitive market (compared to monopoly)
 - Market price for the product or service is lower
 - Quantity transacted in the market is higher
 - Consumer surplus is higher
 - Producer surplus is lower
 - Total welfare is higher
 - Greater efficiency in the market
- While the idealized settings of the benchmark competitive market are hard to replicate, they serves as very useful guidepost to what we may want to accomplish

Markets with Few Firms Oligopoly

- The previous models were the extreme benchmarks perfect competition and monopoly.
- Many markets are best treated as oligopolistic
 - Few firms we will discuss duopoly (2 firms) markets
 - Likely barriers to entry
 - Likely sunk costs (non-recoverable entry costs)
 - Potentially differentiated products
- We will study one model of competition in oligopolistic markets
 - Bertrand price-competition with differentiated products
 - × Slides BM2

Key Decision Variables

- Pharmaceuticals: firms have large **R&D** budgets and compete to obtain **patents**, success in commercialization and market power obtained via patents and advertising.
- Medical devices firms are similar to pharmaceuticals in some respects, but much different in others.
- Hospitals and medical clinics: compete in provision of service variety and quality

Numerical Problems

• I will provide sample questions a bit later so that you are proficient at solving numerical problems relating to competitive and monopoly markets