Deformable Convolutional Networks

Jifeng Dai^

With Haozhi Qi*^, Yuwen Xiong*^, Yi Li*^, Guodong Zhang*^, Han Hu, Yichen Wei
Visual Computing Group
Microsoft Research Asia
(* interns at MSRA, ^ equal contribution)

Highlights

- Enabling effective modeling of spatial transformation in ConvNets
- No additional supervision for learning spatial transformation
- Significant accuracy improvements on sophisticated vision tasks

Code is available at https://github.com/msracver/Deformable-ConvNets

Modeling Spatial Transformations

• A long standing problem in computer vision Deformation: Scale:

Viewpoint variation:

Intra-class variation:

(Some examples are taken from Li Fei-fei's course CS223B, 2009-2010)

Traditional Approaches

• 1) To build training datasets with sufficient desired variations

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1			_				_		_						
7	7	1	7	1	7	7	1	7	7	1	1	1	1	1	2	7
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	Ž
ચ	2	2	2	a	Ŷ	Ŷ	a	2	Ŷ	a	7	P	a	a	a	P
9	9	9	9	9	q	9	9	9	9	9	9	9	9	9	q	9

• 2) To use transformation-invariant features and algorithms

 Drawbacks: geometric transformations are assumed fixed and known, hand-crafted design of invariant features and algorithms

Spatial transformations in CNNs

- Regular CNNs are inherently limited to model large unknown transformations
 - The limitation originates from the fixed geometric structures of CNN modules

regular Rol Pooling

Spatial Transformer Networks

- Learning a global, parametric transformation on feature maps
 - Prefixed transformation family, infeasible for complex vision tasks

Deformable Convolution

- Local, dense, non-parametric transformation
 - Learning to deform the sampling locations in the convolution/RoI Pooling modules

Deformable Convolution

Regular convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n)$$

Deformable convolution

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n)$$

where $\Delta \mathbf{p}_n$ is generated by a sibling branch of regular convolution

Deformable Rol Pooling

Regular Rol pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p}) / n_{ij}$$

Deformable RoI pooling

$$\mathbf{y}(i,j) = \sum_{\mathbf{p} \in bin(i,j)} \mathbf{x}(\mathbf{p}_0 + \mathbf{p} + \Delta \mathbf{p}_{ij}) / n_{ij}$$

where $\Delta \mathbf{p}_{ij}$ is generated by a sibling fc branch

Deformable ConvNets

- Same input & output as the plain versions
 - Regular convolution -> deformable convolution
 - Regular Rol pooling -> deformable Rol pooling
- End-to-end trainable without additional supervision

Sampling Locations of Deformable Convolution

(a) standard convolution

(b) deformable convolution

Part Offsets in Deformable Rol Pooling

Ablation Experiments on VOC & Cityscapes

Number of deformable convolutional layers (using ResNet-101)

# deformable layers	DeepLab		Class-aware RPN		Faster R-CNN (2fc)		R-FCN	
# deformable layers	mloU@V (%)	mloU @C (%)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)	mAP@0.5 (%)	mAP@0.7 (%)
None (0, baseline)	69.7	70.4	68.0	44.9	78.1	62.1	80.0	61.8
Res5c (1)	73.9	73.5	73.5	54.4	78.6	63.8	80.6	63.0
Res5b, c (2)	74.8	74.4	74.3	56.3	78.5	63.3	81.0	63.8
Res5a, b, c (3) (default)	75.2	75.2	74.5	57.2	78.6	63.3	81.4	64.7
Res5 & res4b22, b21, b20 (6)	74.8	75.1	74.6	57.7	78.7	64.0	81.5	65.4

Deformable ConvNets v.s. dilated convolution

Deformable modules	DeepLab mIoU@V/@C	Class-aware RPN mAP@0.5/@0.7	Faster R-CNN mAP@0.5/@0.7	R-FCN mAP@0.5/@0.7	
Dilated convolution (2, 2, 2) (default)	69.7 / 70.4	68.0 / 44.9	78.1 / 62.1	80.0 / 61.8	
Dilated convolution (4, 4, 4)	73.1 / 71.9	72.8 / 53.1	78.6 / 63.1	80.5 / 63.0	
Dilated convolution (6, 6, 6)	73.6 / 72.7	73.6 / 55.2	78.5 / 62.3	80.2 / 63.5	
Dilated convolution (8, 8, 8)	73.2 / 72.4	73.2 / 55.1	77.8 / 61.8	80.3 / 63.2	
Deformable convolution	75.3 / 75.2	74.5 / 57.2	78.6 / 63.3	81.4 / 64.7	
Deformale RoI pooling	N.A	N.A	78.3 / 66.6	81.2 / 65.0	
Deformale convolution & RoI pooling	N.A	N.A	79.3 / 66.9	82.6 / 68.5	

regular convolution

dilated convolution

deformable convolution

Model Complexity and Runtime on VOC & Cityscapes

• Deformable ConvNets v.s. regular ConvNets

Method	# params	Net forward (sec)	Runtime (sec)	
Regular DeepLab @Cityscapes	46.0M	0.610	0.650	
Deformable DeepLab @Cityscapes	46.1 M	0.656	0.696	
Regular DeepLab @VOC	46.0M	0.084	0.094	
Deformable DeepLab @VOC	46.1 M	0.088	0.098	
Regular Class-aware RPN	46.0 M	0.142	0.323	
Deformable class-aware RPN	46.1 M	0.152	0.334	
Regular Faster R-CNN (2fc)	58.3 M	0.147	0.190	
Deformable Faster R-CNN (2fc)	59.9 M	0.192	0.234	
Regular R-FCN	47.1 M	0.143	0.170	
Deformable R-FCN	49.5 M	0.169	0.193	

Object Detection on COCO

Deformable ConvNets v.s. regular ConvNets

Conclusion

- Deformable ConvNets for dense spatial modeling
 - Simple, efficient, deep, and end-to-end
 - No additional supervision
 - Feasible and effective on sophisticated vision tasks for the first time