

## Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC512 Elementos de Lógica Digital



Sistemas de Numeração

**Prof.Dr. Danilo Spatti** 

São Carlos - 2018

- Existem vários sistemas numéricos
- Decimal, Binário, Octal, Hexadecimal,...
- Sistemas Computacionais
- Binário e Hexadecimal

 Importante saber converter entre os sistemas numéricos

- Características (I)
- O sistema de numeração decimal (base 10), composto pelos símbolos de 0 a 9, é um sistema posicional.
- Em um sistema posicional, pode-se representar um número por uma soma de produtos do valor de cada dígito pelo seu peso.





## Sistema Decimal

Lógica Digital

Características (II)



- MSD (most significant digit): dígito com maior peso.
- LSD (least significant digit): dígito com o menor peso.
- Com N dígitos, pode-se contar 10<sup>N</sup> números diferentes, começando de 0 até 10<sup>N</sup>-1.

- Sistema posicional que utiliza alfabeto com dois símbolos: 0 e 1 (base 2).
- Trabalham internamente com dois estados (ligado/desligado, verdadeiro/falso, aberto/fechado).



Características (II)

- Um dígito binário é chamado de bit (Blnary digiT).
- O bit mais significativo é chamado de MSB (most significant bit) e o menos significativo de LSB (least significant bit).
- Nibble 4 dígitos binários
- Byte 8 dígitos binários

| Decimal | Pesos                 |                       |                       |  |  |  |  |  |
|---------|-----------------------|-----------------------|-----------------------|--|--|--|--|--|
| Decimal | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |  |  |  |  |  |
| 0       | 0                     | 0                     | 0                     |  |  |  |  |  |
| 1       | 0                     | 0                     | 1                     |  |  |  |  |  |
| 2       | 0                     | 1                     | 0                     |  |  |  |  |  |
| 3       | 0                     | 1                     | 1                     |  |  |  |  |  |
| 4       | 1                     | 0                     | 0                     |  |  |  |  |  |
| 5       | 1                     | 0                     | 1                     |  |  |  |  |  |
| 6       | 1                     | 1                     | 0                     |  |  |  |  |  |
| 7       | 1                     | 1                     | 1                     |  |  |  |  |  |

**MSB** 

Binário para Decimal

**Lógica Digital** 

Exemplo: 1011,101<sub>2</sub> seria quanto em decimal?



```
1011,101 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}
1011,101 = 8 + 0 + 2 + 1 + 0,5 + 0 + 0,125
1011,101 = 11,625_{10}
```

|   |   | P  |    |
|---|---|----|----|
| ) | þ | 1  | ľ  |
| ۹ |   | ۲. |    |
| п | 9 | -  | Į. |
| J | 9 | _  | L  |

**Características** 

Binário

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

Decimal

0

2

3

4

5

6

10

11

12

- Sistema de numeração muito utilizado na programação de microprocessadores.
- Sistema com 16 símbolos diferentes (base 16): os números de 0 a 9 (decimal) e as letras de A a F (hexa).
- As posições dos dígitos recebem pesos como potências de 16.
- Exemplo: 1BC2<sub>16</sub> para decimal?

$$1BC2_{16} = 1x16^3 + Bx16^2 + Cx16^1 + 2x16^0$$
  
 $1BC2_{16} = 4096 + 2816 + 192 + 2$ 

 $1BC2_{16} = 7106_{10}$ 

Hexa

0

4

5

6

8

9 A

В

C

D

13 14

1110 E 15 F 1111

Características

- O sistema octal foi muito utilizado no mundo da computação, como uma alternativa mais compacta do sistema binário.
- Sistema que possui alfabeto com oito símbolos (base 8): 0, 1, 2, 3, 4, 5, 6 e 7.

| Octal   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| Binário | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |

Exemplo: 372<sub>8</sub> para decimal?

$$372_8 = 3x8^2 + 7x8^1 + 2x8^0$$
  
 $372_8 = 3x64 + 7x8 + 2x1$   
 $372_8 = 192 + 56 + 2$   
 $372_8 = 250_{10}$ 

Binário para Decimal

 Qualquer número binário pode ser convertido para seu equivalente decimal pela soma dos pesos das posições em que o número binário possuir um bit 1.

```
1010_2 = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0
1010_2 = 8 + 0 + 2 + 0
1010_2 = 10_{10}
```

```
1010, 11_2 = 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 1x2^{-2}
1010,11_2 = 8 + 0 + 2 + 0 + 0,5 + 0,25
1010,11_2 = 10,75_{10}
```

Divisões sucessivas por 2 até que um quociente zero seja obtido. O resultado é dado pelos restos da divisão na ordem inversa que foram obtidos.



Hexa para Decimal

 A conversão de números hexadecimais para decimais é feita da mesma forma que para converter binários para decimais.

```
356_{16} = 3x16^2 + 5x16^1 + 6x16^0
356_{16} = 768 + 80 + 60
356_{16} = 854_{10}
```

$$2AF_{16} = 2x16^2 + 10x16^1 + 15x16^0$$
  
 $2AF_{16} = 512 + 160 + 15$   
 $2AF_{16} = 687_{10}$ 

Decimal para Hexa

 A conversão de decimal para hexa, usam-se divisões sucessivas por 16 similar à conversão de decimal para binário.





Octal para Decimal

 A conversão de números octais para decimais é feita da mesma forma que para converter binários para decimais.

```
43_8 = 4x8^1 + 3x8^0

43_8 = 32 + 3

43_8 = 35_{10}
```

Decimal para Octal

 A conversão de decimal para hexa, usam-se divisões sucessivas por 8 similar à conversão de decimal para binário

 A conversão de hexa em binário é realizada pela troca de cada dígito hexa pelo seu equivalente binário com 4 bits.



**SSC512** 

Binário para Hexa

 A conversão binário em hexa é o inverso, ou seja, arranjam-se os bits em grupos de quatro e os substituem por dígitos hexa.

$$1110100110_2 = 3A6_{16}$$

- BCD (Binary-Coded-Decimal).
- Cada dígito de um número decimal é representado por seu equivalente binário de 4 bits.



 $137_{10} = 10001001_2$  (binário puro)

 $137_{10} = 0001 \ 0011 \ 0111 \ (BCD)$ 

Decimal

**BCD** 

## **BCD** Bin Dec **BCD**

- Cada dígito de um número decimal
- é representado por seu equivalente binário de 4 bits.



0001 0000

001 0101

0001 0001 0001 0010 0001 0011 0001 0100

| 20                                                                                                 | SSC!          |         | C      | odifica        | çõ      | es             |   |   |    |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------|---------|--------|----------------|---------|----------------|---|---|----|--|--|--|
|                                                                                                    | <b>Lógica</b> | Digital |        | Código de Gray |         |                |   |   |    |  |  |  |
| <ul> <li>Somente um bit muda entre dois números sucessivos na<br/>sequência de números.</li> </ul> |               |         |        |                |         |                |   |   | na |  |  |  |
| Decimal                                                                                            | Biná          | rio No  | Normal |                |         | Código de Gray |   |   |    |  |  |  |
|                                                                                                    | Α             | В       | С      |                | Decimal | Α              | В | С |    |  |  |  |
|                                                                                                    | 0             | 0       | 0      | 0              |         | 0              | 0 | 0 | 0  |  |  |  |
|                                                                                                    | 1             | 0       | 0      | 1              |         | 1              | 0 | 0 | 1  |  |  |  |
|                                                                                                    | 2             | 0       | 1      | 0              |         | 2              | 0 | 1 | 1  |  |  |  |
|                                                                                                    | 3             | 0       | 1      | 1              |         | 3              | 0 | 1 | 0  |  |  |  |
|                                                                                                    | 4             | 1       | 0      | 0              |         | 4              | 1 | 1 | 0  |  |  |  |
|                                                                                                    | 5             | 1       | 0      | 1              |         | 5              | 1 | 1 | 1  |  |  |  |
|                                                                                                    | 6             | 1       | 1      | 0              |         | 6              | 1 | 0 | 1  |  |  |  |
|                                                                                                    | 7             | 1       | 1      | 1              |         | 7              | 1 | 0 | 0  |  |  |  |

- ASCII (American Standard Code for Information Interchange)
- Codificação alfanumérica, utilizada para representar letras, números e outros símbolos.
- O código ASCII padrão usa 7 bits, 128 combinações possíveis.
- A versão estendida utiliza 8 bits, 256 combinações.

22

0

20

21

[SPACE]

64

65

40

41

@

96

97

32

33

[NULL]

0

Código ASCII

60

61

## **ASCII TABLE** Decimal Hex Char Decimal Hex Char | Decimal Hex Char | Decimal Hex Char

[START OF HEADING]

| 1  | 1  | [START OF TILADING]    | 33 | 21 |     | 00 | 41 | <b>A</b> | 97  | 01 | d     |  |
|----|----|------------------------|----|----|-----|----|----|----------|-----|----|-------|--|
| 2  | 2  | [START OF TEXT]        | 34 | 22 | п   | 66 | 42 | В        | 98  | 62 | b     |  |
| 3  | 3  | [END OF TEXT]          | 35 | 23 | #   | 67 | 43 | C        | 99  | 63 | C     |  |
| 4  | 4  | [END OF TRANSMISSION]  | 36 | 24 | \$  | 68 | 44 | D        | 100 | 64 | d     |  |
| 5  | 5  | [ENQUIRY]              | 37 | 25 | %   | 69 | 45 | E        | 101 | 65 | e     |  |
| 6  | 6  | [ACKNOWLEDGE]          | 38 | 26 | &   | 70 | 46 | F        | 102 | 66 | f     |  |
| 7  | 7  | [BELL]                 | 39 | 27 | 100 | 71 | 47 | G        | 103 | 67 | g     |  |
| 8  | 8  | [BACKSPACE]            | 40 | 28 | (   | 72 | 48 | H        | 104 | 68 | h     |  |
| 9  | 9  | [HORIZONTAL TAB]       | 41 | 29 | )   | 73 | 49 | 1        | 105 | 69 | i     |  |
| 10 | Α  | [LINE FEED]            | 42 | 2A | *   | 74 | 4A | J        | 106 | 6A | j     |  |
| 11 | В  | [VERTICAL TAB]         | 43 | 2B | +   | 75 | 4B | K        | 107 | 6B | k     |  |
| 12 | С  | [FORM FEED]            | 44 | 2C | ,   | 76 | 4C | L        | 108 | 6C | 1     |  |
| 13 | D  | [CARRIAGE RETURN]      | 45 | 2D | -   | 77 | 4D | M        | 109 | 6D | m     |  |
| 14 | Е  | [SHIFT OUT]            | 46 | 2E |     | 78 | 4E | N        | 110 | 6E | n     |  |
| 15 | F  | [SHIFT IN]             | 47 | 2F | /   | 79 | 4F | 0        | 111 | 6F | 0     |  |
| 16 | 10 | [DATA LINK ESCAPE]     | 48 | 30 | 0   | 80 | 50 | P        | 112 | 70 | р     |  |
| 17 | 11 | [DEVICE CONTROL 1]     | 49 | 31 | 1   | 81 | 51 | Q        | 113 | 71 | q     |  |
| 18 | 12 | [DEVICE CONTROL 2]     | 50 | 32 | 2   | 82 | 52 | R        | 114 | 72 | r     |  |
| 19 | 13 | [DEVICE CONTROL 3]     | 51 | 33 | 3   | 83 | 53 | S        | 115 | 73 | S     |  |
| 20 | 14 | [DEVICE CONTROL 4]     | 52 | 34 | 4   | 84 | 54 | T        | 116 | 74 | t     |  |
| 21 | 15 | [NEGATIVE ACKNOWLEDGE] | 53 | 35 | 5   | 85 | 55 | U        | 117 | 75 | u     |  |
| 22 | 16 | [SYNCHRONOUS IDLE]     | 54 | 36 | 6   | 86 | 56 | V        | 118 | 76 | V     |  |
| 23 | 17 | [ENG OF TRANS. BLOCK]  | 55 | 37 | 7   | 87 | 57 | W        | 119 | 77 | w     |  |
| 24 | 18 | [CANCEL]               | 56 | 38 | 8   | 88 | 58 | X        | 120 | 78 | X     |  |
| 25 | 19 | [END OF MEDIUM]        | 57 | 39 | 9   | 89 | 59 | Y        | 121 | 79 | у     |  |
| 26 | 1A | [SUBSTITUTE]           | 58 | 3A | :   | 90 | 5A | Z        | 122 | 7A | Z     |  |
| 27 | 1B | [ESCAPE]               | 59 | 3B | ;   | 91 | 5B | [        | 123 | 7B | {     |  |
| 28 | 1C | [FILE SEPARATOR]       | 60 | 3C | <   | 92 | 5C | \        | 124 | 7C |       |  |
| 29 | 1D | [GROUP SEPARATOR]      | 61 | 3D | =   | 93 | 5D | ]        | 125 | 7D | }     |  |
| 30 | 1E | [RECORD SEPARATOR]     | 62 | 3E | >   | 94 | 5E | ^        | 126 | 7E | ~     |  |
| 31 | 1F | [UNIT SEPARATOR]       | 63 | 3F | ?   | 95 | 5F | _        | 127 | 7F | [DEL] |  |

- Converta 1, 2, 7, 8, 32 e 33 de decimal para binário e hexadecimal.
- Converta os valores do exercício 1 da representação binária para Octal e Hexadecimal.
- Diversos aparelhos eletrônicos usam displays de números com display de 7 segmentos. Quantos números diferentes podem ser escritos com esse display?
- Qual o sistema numérico que você usaria tendo à disposição um display de 7 segmentos? Justifique.



spatti@icmc.usp.br

