

EXAMINATION PAPER

FACULTY: COMPUTER SCIENCE AND MULTIMEDIA

COURSE : BACHELOR OF INFORMATION TECHNOLOGY (HONS)

YEAR/ SEMESTER : FIRST YEAR / SEMESTER ONE

MODULE TITLE : MATH I

CODE : BIT 116

DATE: APRIL 08- 2018, SUNDAY

TIME ALLOWED : 3 HOURS

START : 1:00 PM FINISH : 4:00 PM

Instruction to candidates

1. This question paper has THREE (3) Sections.

- 2. Answer ALL questions in Section A, MCQ.
- 3. Answer 5 questions in Section B, MSAQ.
- 4. Answer 2 questions in Section C, MEQ.
- 5. No scripts or answer sheets are to be taken out of the Examination Hall.
- 6. For Section A, answer in the OMR form provided.

Do not open this question paper until instructed

SECTION A

Multiple Choice Questions

(30*1=30)

1. The integral value of the function $4x^3-3x^2+2$ is:

- a. 4x-3
- b. $4x^2 x + 2$
- c. $x^4 x^3 + 2x$
- d. d. $x^4 2x$

2. The P-series is convergent if_____.

- a. P> 1
- b. P = 1
- c. P = 0
- d. P≤ 1

3. The domain of the function $y = \sqrt{x+3}$ is _____.

- a. $(0,\infty)$
- b. [3,∞)
- c. $(-1, \infty)$
- d. $[1,\infty)$

4. Which of the following statement is tautology?

- a. $[p^{\wedge}(p => q)] => q$
- b. ~p^ q
- c. $p_v \sim q$
- d. $\sim [p_v q]$

5. The value of $\lim_{x\to 3} \frac{5x^2 - 8x - 13}{x^2 - 5}$ is :

- a. 1
- b. -1
- c. 2
- d. -2

6. The area between the region $y = x^2$ and $y = \sqrt{x}$ is_____.

- a. 3
- b. -4
- c. $\frac{1}{2}$
- d. 1/3

- 7. The value of $\lim_{x\to\infty} \frac{2x+7}{3x^2-5}$ is _____.
 - a. 1
 - b. 2
 - c. -1
 - d. 0
- 8. The derivative of the function $y = 6x^2 5x + 7$ is:
 - a. 6x 5x + 7
 - b. 12x -5
 - c. $12x^2 5x + 7$
 - d. $6x^2 3$
- 9. If -3< x<7, then:
 - a. |x-2| < 5
 - b. |x| < 7
 - c. |x + 3| < 7
 - d. |x + 1| < 4
- 10. Let A = [-3, 2] and B = [-2, 3], then the value of A-B is :
 - a. (2, 3)
 - b. [-3, -2]
 - c. (-3, 2]
 - d. [-3,-2]
- 11. If (x+3, 3) = (2, y+7x), then the value of x is:
 - a. -1
 - b. 0
 - c. 2
 - d. -2
- 12. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = x^2$ is:
 - a. one to one
 - b. onto
 - c. both
 - d. none

13. If $A = \{a, b, c, d\}$ and $B = \{x, y, z, 4\}$ then, which of the following is not a function:

- a. $\{(a, x), (b, y), (c, z), (d, 4)\}$
- b. $\{(a, x), (b, y), (c, 4)\}$
- c. $\{(a, z), (b, x), (c, z), (d, x)\}$
- d. $\{(a, 4), (b, 4), (c, 4), (d, 4)\}$

14. Which of the following is an exponential function?

- a. $y = x^2 2$
- b. $y=2^{x}$
- c. y = log x
- d. $y = \frac{x^2}{2}$

15. Which is not true?

- a. log(xy) = logx.logy
- b. log(xy) = logx + logy
- c. $\log x^m = m \log x$
- d. all of the above

16. The value of x if $\log_3 x = 3$, is_____.

- a. 9
- b. 18
- c. 21
- d. 27

17. Which of these is not an indeterminate form?

- a. $\infty.0$
- b. $\infty \infty$
- c. 0.0
- d. $\frac{0}{0}$

18. Which of the following is true?

- a. $\lim_{x\to p} c = c$
- b. $\lim_{x\to p} c = p$
- c. $\lim_{x\to p} c = x$
- d. None of the above

19. If $f(x) = x^2 - 5x + 1$, then f(-1) is_____.

- a. 7
- b. -3
- c. 0
- d. -5

20. The derivative of log 2x is_____.

- a. $\frac{1}{x}$
- b. $\frac{1}{2x}$
- c. 2x
- d. $\frac{1}{2}$

21. The derivative of e^{2x} is_____.

- a. e^{2x}
- b. 2x
- c. $2e^{2x}$
- d. e^x

22. If $f(x) = x^{-3}$, then f'(x) is_____.

- a. $-3 x^{-4}$
- b. x^{-3}
- c. $-3x^{-2}$
- d. -x⁻⁴

23. If $f(x) = x^3 + 2x$, then f''(x) is _____.

- a. $3x^2$
- b. $3x^2+2$
- c. 6x
- d. 6

24. A function is even function if_____.

- a. f(-x) = -f(x)
- b. f(-x) = f(x)
- c. f(-x) = -f(-x)
- d. -f(-x) = f(x)

25. Which of the following is not the rational number?		
	a.	$\sqrt{2}$
	b.	-2
	c.	0
	d.	<u>1</u> 5
		5
26. Which of the following is not the irrational number?		
	a.	π
	b.	$\sqrt{3}$
	c.	16
	d.	$\sqrt{14}$
27. If $ydx + xdy = 0$, then which of the following is true?		
<i>4</i>	-	x+y=c
		xy = c xy = c
		x-y=c
		xy = x+y+c
0.54.2		
28.		egral value of $\int_1^4 x^2 dx$ is
		12
		14
		21
	u.	30
29. The range of the function $-x^2+4x-3$ is		
		$(-\infty\infty)$
		(-∞ 1]
		$(\infty \ 0)$
	d.	$(\infty \ 0)$
30. What is the value of f (6) if $f(x) = 2x+6$?		
	a.	18
	b.	12
	c.	1
	d.	15

SECTION B

Short Answer Questions Attempt any five (5) questions out of eight (8) questions (5*6=30)

- 1. Show that $f(x) = x^2$ is continuous at x = 4.
- **2.** Determine the area of the region enclosed by $y = \sin x$, $y = \cos x$, x = 2, and the y-axis.
- **3.** Find the volume of the solid obtained by revolving the region bounded by $y = x-x^2$ and y = 0 about the y-axis.
- **4.** Show that the function f(x) = |x 6| is not differentiable at 6. Find a formula for f' and sketch its graph.
- **5.** Prove that the p-series converges if p > 1 and diverges if $p \le 1$.
- **6.** The arc of the parabola $y = x^2$ from (1, 1) to (2, 4) is rotated about the y-axis. Find the area of the resulting surface.
- 7. State and prove mean value theorem.
- **8.** Find the domain and range of $f(x) = x^2 2x + 5$.

SECTION C

Long Answer Questions

Attempt any two (2) questions out of three (3) questions (2*20=40)

- **1.** Suppose that $\sum an$ and $\sum bn$ are two series with positive terms.
 - **a.** If $\sum bn$ is convergent and $an \leq bn$, then $\sum an$ is also convergent. (10)
 - **b.** If $\sum bn$ is divergent and $an \ge bn$, then $\sum an$ is also divergent. (10)
- **2.** Solve:

a.
$$(x^2+y^2)dy+2xydx = 0$$
 (10)

- **b.** Find the derivative of \sqrt{x} . from first principle (10)
- 3. Solve:

$$\mathbf{a.} \int \left(\frac{x^2+x+1}{x}\right) dx \tag{7}$$

b.
$$\int \left(\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\right) dx \tag{7}$$

c.
$$\lim_{x \to 2} \left(\frac{4 - 8x + 5x^2 - x^3}{2x^3 - 9x^2 + 12x - 4} \right)$$
 (6)

***BEST OF LUCK**