

Convolutional Neural Network For Product Quality Inspection

Data Science Series February 2022

Instructor at Algoritma Data Science School 2021

Tech Stack Python, R, SQL Deep Learning, Plotly, Dash App, Flask, GCP

Master of Physics, Universitas Gadjah Mada in 2020

DWI GUSTIN NURDIALIT

github.com/dwiknrd

<u>linkedin.com/in/dwi</u> <u>-qustin</u>

dwi@algorit.ma

yosiaazarya

yosiaazarya

Data Analysis

<u>kevbow</u>

Kevin Wibowo

Machine Learning

We'll be using Google Classroom for our learning platform. All materials, assignments, additional materials, and announcement will all be posted through class. Join the Classroom by entering your class code: **t3pjpff**

- Download material
- Pay attention to assignment deadline
- Don't miss additional material posted on Stream

PS: Google Classroom mobile application is available on Android and iOS

Training Objective

Python Programming Basics:

- Working with Conda Environment
- Introduction to Python for data science

Neural Network Architecture:

- Layer and neurons
- Activation and cost function
- Feedforward
- Backpropagation

Convolutional Neural Networks:

- Convolution concept: kernel convolutinals, strides, padding, and filter
- Convolutional Neural Network Architecture

• Case Study: Product Quality Inspection

- Load the data images and apply data augmentation techniques
- Visualize the images
- Training with validation: define the architecture, compile the model, model fitting and evaluation
- Testing on unseen images

Why do we need Python environments?

You might ask: shouldn't I just install the latest Python version?

Isolate package versions to avoid breaking changes

Sharing virtual environment to enable project collaboration

Publishing or deploying an application requires setting up an environment

Neural Network and Deep learning Basics

What do you think about Neural Network and Deep learning?

Age of Al

Artificial Intelligence (AI)

Segala bentuk program untuk mengotomatisasi tugas-tugas intelektual yang biasa dilakukan oleh manusia

Machine Learning (ML)

Salah satu bentuk Al yang membuat keputusan/prediksi berdasarkan pola yang dipelajari dari data.

Deep Learning (DL)

Salah satu kelompok algoritma ML yang memanfaatkan arsitektur neural network yang terinspirasi dari cara kerja jaringan syaraf manusia.

Machine Learning

TRADITIONAL PROGRAMMING

Rule1. Claim time - Submit time < 1 h Rule2. Agreement review time > 5 m Rule3. ...

MACHINE LEARNING

Deep Learning

Why Deep Learning is Popular?

Deep Learning sangat fleksibel untuk menyelesaikan berbagai permasalahan prediksi, terutama untuk data yang tidak terstruktur.

Teks

Describe a layout. Just describe any layout you want, and it'll try to render below! [A div that contains 3 buttons each witl a random color. Generate

Video

3D Modeling

algoritma learn data science by building

The Age of A.I.

1 season • 9 episodes

Training Objective

What Do You Think of Weather Prediction?

Arsitektur Neural Network untuk regresi

Neural Network memiliki 1 lapisan (layer) tambahan di antara input dan output, disebut dengan hidden layer

Arsitektur Neural Network untuk klasifikasi

Neural Network memiliki 1 lapisan (layer) tambahan di antara input dan output, disebut dengan hidden layer

Confusion Matrix

Actual Values

0 1

FALSE NEGATIVE TRUE NEGATIVE You're not pregnant You're not pregnant TYPE 2 ERBOR TRUE POSITIVE **FALSE POSITIVE** You're pregnant You're pregnant E 1 ERRO

Predicted Values

0

	Actual	
Predicted	0	1
0	86	58
1	75	93

diprediksi negatif, namun salah

specificity

When Accuracy does not really matters...

Number of observations: 100 | Number of non-covid: 98 | Number of covid: 2

Accuracy

$$(96 + 1) / (96 + 2 + 1 + 1) = 97\%$$

How many did it predict right for the **targeted class** (1)?

Recall/Sensitivity: true positive/actual = 1/(1 + 1) = 50%

Precision: true positive/predicted = 1/(1+2) = 33%

Recall vs Precision

Case 1: Cancer Detection

Positive: Kanker

Tindak lanjut: Pemeriksaan lanjutan

Recall vs Precision

Case 2: Spam Classifier

Positive: Spam

Tindak lanjut: Email Spam masuk folder Spam,

Email Ham masuk Inbox

Recall / Precision Threshold

Recall/Sensitivity:

Kita mau **sebanyak mungkin** mengambil
kemungkinan kelas positif

Precision:

Kita mau **seselektif/presisi mungkin** dalam memasukkan ke kelas positif

How Neural Networks Learn

Back Propagation

Algoritma dasar yang digunakan untuk mengupdate bobot adalah **gradient descent**

Mengupdate bobot dan bias yang bisa memberikan error terkecil

Back Propagation

Menghitung nilai error yang dihasilkan.

Untuk kasus klasifikasi menggunakan Cross-Entropy

$$Binary\ Cross - Entropy = -p(x)\ log\ q(x) + (1-p(x))\ log\ (1-q(x))$$

Untuk kasus regresi menggunakan Sum of Squared Error

$$SSE = rac{1}{2}\Sigma(y-\hat{y})^2$$

$$SSE = \frac{1}{2}(61.5 - (-0.986))^2 = 1952.25$$

Back Propagation

Setelah mengupdate bobot dan bias dari hidden layer ke output layer, bisa dilanjutkan menuju layer berikutnya

Learning Rate

Learning Rate mengatur seberapa besar perubahan terhadap bobot

- Learning rate yang besar akan membuat model belajar lebih cepat dengan jumlah step yang lebih sedikit, namun kemungkinan besar akan melewatkan titik terendahnya sehingga tidak bisa mencapai nilai error yang optimal.
- Learning rate yang kecil akan membuat model mengupdate bobot sedikit demi sedikit sehingga kemungkinan untuk melewatkan titik terendah/titik optimalnya lebih kecil. Namun, model dapat terjebak ke local optima dan tidak bisa mencapai global optima

Terjadi ketika loss (error) dari training data jauh lebih kecil daripada validation/testing data

Neural Networks for Image Classification

Gambar direpresentasikan dalam bentuk **matriks** berisikan **nilai pixel**Nilai pixel 0 = semakin gelap (hitam)
Nilai pixel 255 = semakin terang (putih)

How does computer see an image?

Gambar berwarna direpresentasikan dalam 3 channel (Red, Green, Blue) berisikan **nilai pixel**Nilai pixel 0 = semakin gelap / tidak ada warna
Nilai pixel 255 = semakin terang / ada warna

Dimension of Image Data

How does human see an image?

Tebak apa nama hewan pada gambar di bawah ini?

How does human see an image?

Bagaimana manusia mengenali sebuah gambar? Apakah:

a. Melihat secara detail satu per satu titik piksel

ATAU

b. Melihat bentuk objek pada gambar secara umum?

Hal ini yang diadaptasi oleh layer Convolution pada CNN

Convolutional Neural Network (CNN)

Layers in CNN

Pada umumnya kita menggunakan 4 jenis layer pada arsitektur CNN:

- 1. Convolutional layer
- 2. Pooling layer
- 3. Flattening
- 4. Fully-connected layer (sama seperti NN sebelumnya)

1. Convolutional Layer

- Ekstraksi fitur dari pixel gambar
- Parameter jauh lebih sedikit karena direpresentasikan dalam bentuk filter (atau kernel)

1. Convolutional Layer

Perhitungan manual operasi convolution:

1	1	1	0	0
0	1	1	1	0
0	0	1,	1 _{×0}	1,
0	0	1,0	1,	0,0
0	1	1,	0,0	0,1

4	3	4
2	4	3
2	3	4

Image

Convolved Feature

Image filtering mengubah nilai pixel, sehingga **warna gambar** diubah tanpa mengubah posisi pixel Berikut adalah contoh dari efek beberapa matriks filter:

$$*$$
 $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} =$

IDENTITY FILTER

$$* \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} =$$

RIDGE DETECTION FILTER

$$* \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} =$$

SHARPENING FILTER

Matriks filter dengan ukuran yang berbeda akan memberikan efek yang berbeda pula

$$* \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} =$$

BLUR FILTER (3 x 3)

BLUR FILTER (5 x 5)

Key Takeaways:

- Convolutional layer akan berusaha **mencari sendiri filter** yang optimal (Ingat konsep backpropagation)
- Ukuran filter adalah hyperparameter dari Convolutional Neural Network

2. Pooling Layer

Mereduksi ukuran gambar dengan merangkum pixel

3. Flattening Layer

Mengubah dimensi data, yang sebelumnya 2 dimensi menjadi 1 dimensi

Fitting of a model

- Underfitting: model terlalu simple
- Overfitting: model terlalu kompleks

Data Augmentation

- Meminimalisir overfitting (kondisi model terlalu "menghafal" pola data)
- Memperbanyak jumlah dan variasi dari data training

