# Part 5. Comprehensive Projects: Practical CUDA Development

Real-world Project Implementation

**CNN and Image Processing Pipeline** 

## 프로젝트 기반 학습의 중요성

실무에서 CUDA를 사용할 때는 단순한 커널 하나만 작성하는 것이 아닙니다. 복잡한 시스템을 설계하고, 다양한 최적화 기법을 조합하며, 유지보수 가능한 코드를 작성해야 합니다.

#### 실무 CUDA 프로젝트의 특징

#### 1. 복합적 문제 해결

- 여러 알고리즘의 조합
- 메모리 관리와 성능 최적화
- 에러 처리와 디버깅

#### 2. 시스템 통합

- 호스트-디바이스 상호작용
- 외부 라이브러리 활용
- 실시간 처리 요구사항

#### 3. 확장성과 유지보수성

- 모듈화된 설계
- ㅇ 코드 재사용성
- 성능 모니터링

#### 4. 실제 데이터와 제약조건

- 대용량 데이터 처리
- ㅇ 메모리 제한
- 실시간 처리 요구

## 표준 프로젝트 구조

```
cuda-project/
  - include/
     — kernels.cuh
                           # CUDA kernel declarations
    — tensor.h
                           # Tensor class definition
    └─ utils.h
                           # Utility functions
   src/
      - kernels/
          - conv2d.cu
                           # Convolution kernels
          - pooling.cu
                           # Pooling operations
         — activation.cu
                           # Activation functions
      - host/
        ├─ main.cpp
                           # Main program
         — model.cpp
                           # Model implementation
    └─ utils/
         — memory.cpp
                           # Memory management
   tests/
    test_kernels.cpp
                           # Unit tests
    └─ benchmark.cpp
                           # Performance tests
   build/
                           # Build output
   CMakeLists.txt
   README.md
```

#### 필수 개발 도구와 설정

#### CMake 설정 예시

```
cmake_minimum_required(VERSION 3.18)
project(CUDAProject LANGUAGES CXX CUDA)

# CUDA 설정
set(CMAKE_CUDA_STANDARD 17)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CUDA_ARCHITECTURES "75;80;86;89")

# 컴파일 옵션
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS}-O3-use_fast_math")
```

#### 핵심 유틸리티 헤더

```
// src/utils/cuda_utils.h
#define CUDA_CHECK(call) do { /* ... */ } while(0)
#define CUDA_CHECK_KERNEL() do { /* ... */ } while(0)
void printGPUInfo() { /* ... */ }
void checkMemoryUsage() { /* ... */ }
int getOptimalBlockSize(const void* kernel_func, int dynamic_smem_size = 0);
```

#### 데이터 관리 및 검증 시스템

#### 테스트 데이터 생성기

```
class DataGenerator {
private:
    std::mt19937 rng;
public:
    DataGenerator(uint32_t seed = 42) : rng(seed) {}
    void generateRandomFloats(float* data, size_t count, float min_val = -1.0f, float max_val = 1.0f);
    void generateSequentialFloats(float* data, size_t count, float start = 0.0f);
    void generateImage(float* data, int width, int height, int channels);
    void generateSparseMatrix(float* data, int rows, int cols, float sparsity = 0.9f);
}
```

#### 결과 검증 클래스

## 성능 벤치마킹 시스템

```
class PerformanceBenchmark {
private:
    struct BenchmarkResult {
         std::string name;
         double time_ms;
         size_t data_size;
         size_t operations;
         size_t memory_used;
    };
    std::vector<BenchmarkResult> results;
public:
    void addResult(const std::string& name, double time_ms,
       size_t data_size, size_t operations, size_t memory_used);
    void printResults();
    void saveToFile(const std::string& filename);
    void compareResults(const std::string& baseline);
};
```

## 자동화된 벤치마킹 함수

```
template<typename Kernel>
void benchmarkKernel(const std::string& name, Kernel kernel_func,
        void** args, size_t data_size, size_t operations,
        dim3 grid, dim3 block, size_t shared_mem = 0) {
    const int num_runs = 100;
    const int warmup_runs = 10;
    std::vector<float> times;
    // Warm-up runs
    for (int i = 0; i < warmup_runs; i++) {</pre>
         kernel_func<<<grid, block, shared_mem>>>(args[0], args[1], args[2]);
    CUDA_CHECK(cudaDeviceSynchronize());
    // Actual benchmark runs
    CUDATimer timer;
    for (int i = 0; i < num_runs; i++) {
         timer.start();
```

핵심: 체계적인 벤치마킹 시스템은 성능 병목을 식별하고 최적화 효과를 정량적으로 측정하는 데 필수적입니다.

# 5.2 프로젝트 1: CNN 계산 가속기

#### 프로젝트 개요

딥러닝의 핵심인 Convolutional Neural Network(CNN)를 처음부터 CUDA로 구현합니다.

#### 학습 목표

- 텐서 연산 최적화: 다차원 배열의 효율적인 처리
- **메모리 계층 활용**: Shared Memory를 통한 컨볼루션 가속
- 배치 처리: 여러 이미지 동시 처리로 처리량 극대화
- 성능 비교: cuDNN 대비 우리 구현의 성능 분석

#### 구현할 레이어

- Convolution 2D (with im2col, Winograd)
- Batch Normalization
- Pooling (Max, Average)
- Activation Functions (ReLU, Sigmoid, Tanh)
- Fully Connected

# **Project Implementation**

## **Practice files: cnn\_project/**

#### **Project Structure**

```
cnn_project/

— include/

| — tensor.h

| — layers.h

| — network.h

— src/

| — kernels/

| | — conv2d.cu

| | — pooling.cu

| | — activation.cu

| — main.cu

| Makefile
```

# **Convolution Operation Visualization**



# **Tiling Visualization**



## **Key Components**

- 1. **Tensor Class**: Multi-dimensional array management
- 2. Layer Interface: Forward/Backward propagation
- 3. **Optimized Kernels**:
  - 2D Convolution
  - Max Pooling
  - ReLU Activation

```
// Optimized convolution using shared memory
__global__ void conv2d_shared_memory(
   const float* input, const float* filter,
   float* output, int H, int W, int C
) {
     __shared__ float tile[TILE_SIZE][TILE_SIZE];
     // Collaborative loading and computation
     // ...
}
```

## **Optimized 1x1 Convolution**

```
// 1x1 convolution optimized as matrix multiplication
__global__ void conv2d_1x1(
 const float* input, const float* filter,
 float* output, int N, int C_in, int C_out, int HW
) {
    int out_ch = blockIdx.y;
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < N * HW) {
        float sum = 0.0f;
         for(int c = 0; c < C_in; c++) {
             sum += filter[out_ch * C_in + c] *
                     input[idx * C_in + c];
        output[idx * C_out + out_ch] = sum;
```

## **Detailed Tiling Concept Explanation**

#### 1D to 2D Conversion

- Linear index  $\rightarrow$  2D coordinates: idx = y \* width + x
- 2D coordinates → Linear index: x = idx % width, y = idx / width

#### **Shared Memory Tiling**

- Purpose: Minimize global memory access
- Method: Divide data into small tiles and load into shared memory
- **Effect**: Maximize memory bandwidth efficiency

## **Thread Block Mapping**

```
// Each thread handles one element of the tile
int tid = threadIdx.y * blockDim.x + threadIdx.x;
int tile_x = tid % TILE_WIDTH;
int tile_y = tid / TILE_WIDTH;

// Collaborative loading
__shared__ float tile[TILE_WIDTH][TILE_WIDTH];
tile[tile_y][tile_x] = global_mem[global_idx];
__syncthreads();
```

# **Performance Benefits of Tiling**

#### **Memory Access Pattern**

- 1. Coalesced Access: Consecutive threads access consecutive memory
- 2. **Data Reuse**: Reuse data within tile multiple times
- 3. **Latency Hiding**: Hide memory latency

#### **Practical Example: Matrix Multiplication**

```
// Matrix multiplication with tiling
for (int tile = 0; tile < numTiles; tile++) {
    // Load tile to shared memory
    __shared__ float As[TILE_SIZE][TILE_SIZE];
    __shared__ float Bs[TILE_SIZE][TILE_SIZE];

    // Compute partial result
    for (int k = 0; k < TILE_SIZE; k++) {
        sum += As[ty][k] * Bs[k][tx];
    }
    __syncthreads();
}</pre>
```

**Performance improvement**: Global memory access N<sup>3</sup> → N<sup>3</sup>/TILE\_SIZE

# **Batch Normalization Implementation**

# **Pooling Operation Visualization**



# **Pooling Layer Implementation**

```
// Max Pooling kernel
__global__ void max_pooling_2d(
    const float* input, float* output,
    int H, int W, int pool_size, int stride
    int out_x = blockIdx.x * blockDim.x + threadIdx.x;
    int out_y = blockIdx.y * blockDim.y + threadIdx.y;
    if (out_x < W/stride && out_y < H/stride) {</pre>
        float maxval = -FLT_MAX;
        for(int i = 0; i < pool_size; i++) {</pre>
            for(int j = 0; j < pool_size; j++) {</pre>
                int in_y = out_y * stride + i;
                int in_x = out_x * stride + j;
                maxval = fmaxf(maxval, input[in_y * W + in_x]);
```

# Average Pooling 구현

```
// Average Pooling kernel
__global__ void avg_pooling_2d(
    const float* input, float* output,
   int H, int W, int pool_size, int stride
   int out_x = blockIdx.x * blockDim.x + threadIdx.x;
    int out_y = blockIdx.y * blockDim.y + threadIdx.y;
   if (out_x < W/stride && out_y < H/stride) {</pre>
       float sum = 0.0f;
       int count = 0;
       for(int i = 0; i < pool_size; i++) {</pre>
           for(int j = 0; j < pool_size; j++) {</pre>
               int in_y = out_y * stride + i;
               int in_x = out_x * stride + j;
```

## **Activation Functions Visualization**



# **Activation Functions Implementation**

```
// Fused activation kernel
__global__ void conv_relu_fused(
    const float* input, const float* kernel,
    float* output, int H, int W, int C
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= H * W * C) return;

    // Convolution computation
    float sum = compute_conv(input, kernel, idx);

    // Fused ReLU activation
    output[idx] = fmaxf(0.0f, sum);
}
```

## **Activation Gradient Implementation**

```
// Backward pass for activation functions
__global__ void activation_backward(
    const float* grad_out, const float* input,
    float* grad_in, int n, ActivationType type
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= n) return;
    switch(type) {
        case RELU:
           grad_in[idx] = input[idx] > 0 ? grad_out[idx] : 0;
           break;
        case SIGMOID:
            float s = 1.0f / (1.0f + expf(-input[idx]));
           grad_in[idx] = grad_out[idx] * s * (1.0f - s);
           break;
```

#### **Activation Functions**

#### **Basic Activation Functions**

```
__device__ float relu(float x) {
   return fmaxf(0.0f, x);
__device__ float sigmoid(float x) {
   return 1.0f / (1.0f + expf(-x));
__device__ float tanh_act(float x) {
   return tanhf(x);
_device__ float leaky_relu(float x, float alpha = 0.01f) {
   return x > 0 ? x : alpha * x;
```

#### **Advanced Activation Functions**

```
// GELU (Gaussian Error Linear Unit)
__device__ float gelu(float x) {
    const float sqrt_2_over_pi = 0.7978845608f;
    const float a = 0.044715f;
    float x3 = x * x * x;
    return 0.5f * x * (1.0f + tanhf(sqrt_2_over_pi * (x + a * x3)));
}

// Swish activation
__device__ float swish(float x, float beta = 1.0f) {
    return x * sigmoid(beta * x);
}
```

#### **Vectorized Activation Kernels**

## CNN 레이어 클래스

#### **Conv2D Layer**

```
class Conv2DLayer {
private:
    TensorFloat weights_, bias_, output_;
    int in_channels_, out_channels_;
    int kernel_h_, kernel_w_;
    int stride_, pad_;
public:
    Conv2DLayer(int in_ch, int out_ch, int kernel_size) {
        // 가중치 초기화
        cudaMalloc(&weights_, out_ch * in_ch * kernel_size * kernel_size);
        cudaMalloc(&bias_, out_ch);
    TensorFloat& forward(const TensorFloat& input) {
        // Convolution 연산
        conv2d_kernel<<<grid, block>>>(
            input.data, weights_, bias_, output_.data
```

## **BatchNorm & Pooling Layer**

```
class BatchNormLayer {
private:
    float *gamma_, *beta_;
    float *running_mean_, *running_var_;
    float momentum_ = 0.1f;
public:
    TensorFloat& forward(const TensorFloat& input, bool training) {
        if (training) {
            // 배치 통계 계산 및 정규화
            compute_batch_stats<<<grid, block>>>(input);
        batch_norm_forward<<<grid, block>>>(
            input, gamma_, beta_, output_, running_mean_, running_var_
        );
        return output_;
};
```

## **CNN Network Configuration**

```
class SimpleCNN {
private:
    std::vector<std::unique_ptr<Layer>> layers_;
public:
    SimpleCNN() {
        // Conv1: 3 -> 32
        layers_.push_back(std::make_unique<Conv2D>(3, 32, 3));
        layers_.push_back(std::make_unique<BatchNorm>(32));
        layers_.push_back(std::make_unique<ReLU>());
        layers_.push_back(std::make_unique<MaxPool2D>(2, 2));
        // Conv2: 32 -> 64
        layers_.push_back(std::make_unique<Conv2D>(32, 64, 3));
        layers_.push_back(std::make_unique<BatchNorm>(64));
        layers_.push_back(std::make_unique<ReLU>());
        layers_.push_back(std::make_unique<MaxPool2D>(2, 2));
```

## **Forward Propagation**

```
TensorFloat SimpleCNN::forward(const TensorFloat&input) {
    TensorFloat output = input;

    // Forward through each layer
    for (auto& layer : layers_) {
        output = layer->forward(output);
    }

    return output;
}
```

## CNN 성능 벤치마킹

#### **Custom CNN vs cuDNN**

```
class CNNBenchmark {
    SimpleCNN custom_cnn;
    CuDNNCNN cudnn_cnn;
    CUDATimer timer;
public:
    void benchmark(int batch, int size) {
        TensorFloat input(batch, 3, size, size);
        // Warmup
        for(int i = 0; i < 10; i++) {
             custom_cnn.forward(input);
             cudnn_cnn.forward(input);
        // Benchmark
        timer.start();
        for(int i = 0; i < 100; i++)
             custom cnn.forward(input);
```

# 5.3 Project 2: Large-scale Image Processing Pipeline

#### Project Overview

Duild a high parformance pipaline for real time image hidea processing

#### Duastical Compuiss

- Real-time Streaming: 4K/8K video real-time filtering
- Batch Processing: Process thousands of images simultaneously
- Foundat Commercian IDEC DNIC DAIM formant account

#### Implementation Fastures

• Color Space Conversion: RGB

 $\Leftrightarrow$ 

YUV, HSV

• Filtering: Gaussian, Sobel, Bilateral

#### Daufaumanaa Caala

- 4K@60fps real-time processing
- 100v accoloration compared to CDII



## **Basic Image Processing Kernels**

#### **Gaussian Blur**

```
__global__ void gaussian_blur(
    const uchar3* input, uchar3* output,
    int width, int height, float* kernel, int k_size
) {
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;
    // Apply convolution with Gaussian kernel
}
```

## **Separable Filter Optimization**

```
// Horizontal pass
__global__ void separable_filter_h(
    const uchar3* input, float3* temp,
    int w, int h, float* kernel, int k_size
    // Process horizontal direction
// Vertical pass
__global__ void separable_filter_v(
    const float3* temp, uchar3* output,
    int w, int h, float* kernel, int k_size
    // Process vertical direction
```

## **Edge Detection and Histogram**

```
// Sobel edge detection
__global__ void sobel_edge(
    const uchar3* input, uchar3* output,
    int width, int height
   // Apply Sobel operator
// Histogram equalization
__global__ void hist_equalize(
    const uchar* input, uchar* output,
    int* hist, int* cdf, int size
    // Equalize histogram
```

## **Color Space Conversion**

#### **RGB** → **YUV** Conversion

```
__global__ void rgb_to_yuv(
    const uchar3* rgb, uchar3* yuv, int size
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= size) return;

    // ITU-R BT.709 conversion matrix
    float3 color = make_float3(rgb[idx].x, rgb[idx].y, rgb[idx].z);

    yuv[idx].x = 0.2126f * color.x + 0.7152f * color.y + 0.0722f * color.z;
    yuv[idx].y = -0.0999f * color.x - 0.3360f * color.y + 0.4360f * color.z;
    yuv[idx].z = 0.6150f * color.x - 0.5586f * color.y - 0.0563f * color.z;
}
```

## **YUV** → **RGB** Conversion

```
__global__ void yuv_to_rgb(
    const uchar3* yuv, uchar3* rgb, int size
) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx >= size) return;

    // Inverse transformation matrix
    float3 color = make_float3(yuv[idx].x, yuv[idx].y, yuv[idx].z);

    rgb[idx].x = saturate(color.x + 1.28033f * color.z);
    rgb[idx].y = saturate(color.x - 0.21482f * color.y - 0.38059f * color.z);
    rgb[idx].z = saturate(color.x + 2.12798f * color.y);
}
```

#### **Geometric Transforms**

## **Image Resizing (Bilinear Interpolation)**

```
__global__ void resize_bilinear(
   const unsigned char* input, unsigned char* output,
   int in_w, int in_h, int out_w, int out_h
   int x_out = blockIdx.x * blockDim.x + threadIdx.x;
   int y_out = blockIdx.y * blockDim.y + threadIdx.y;
   // Calculate input image coordinates
   float x_{in} = x_{out} * (in_w - 1.0f) / (out_w - 1.0f);
   float y_in = y_out * (in_h - 1.0f) / (out_h - 1.0f);
   // Bilinear interpolation
   // Weighted average from 4 neighbor pixels
   output[idx] = bilinear_sample(input, x_in, y_in);
```

## **Image Rotation**

```
__global__ void rotate_image(
    const unsigned char* input, unsigned char* output,
    int width, int height, float angle_rad
) {
   int x_out = blockIdx.x * blockDim.x + threadIdx.x;
    int y_out = blockIdx.y * blockDim.y + threadIdx.y;
    // Apply rotation transformation matrix
    float cos_a = cosf(angle_rad);
    float sin_a = sinf(angle_rad);
    // Calculate input coordinates using inverse transform
    float x_in = x_centered * cos_a - y_centered * sin_a;
    float y_in = x_centered * sin_a + y_centered * cos_a;
   output[idx] = bilinear_sample(input, x_in, y_in);
```

## 이미지 파이프라인 클래스

```
class ImagePipeline {
private:
    std::vector<std::function<void(Image&)>> stages_;
    cudaStream_t stream_;
public:
    struct Image {
         unsigned char* data;
        int width, height, channels;
         Image(int w, int h, int c) {
             cudaMalloc(&data, w * h * c);
    };
    void addGaussianBlur(float sigma);
    void addSobelEdgeDetection();
    void addColorConversion(ColorSpace from, ColorSpace to);
    void addResize(int new width int new height).
```

## 파이프라인 스테이지 추가

```
void ImagePipeline::addStage(std::function<void(Image&)> stage) {
    stages_.push_back(stage);
void ImagePipeline::addSobel() {
    stages_.push_back([](Image& img) {
        dim3 block(16, 16);
        dim3 grid((img.width + 15) / 16, (img.height + 15) / 16);
        sobel<<<grid, block>>>(img.data, img.width, img.height);
    });
void ImagePipeline::addResize(int w, int h) {
    stages_.push_back([w, h](Image& img) {
        Image resized(w, h, img.channels);
        resize<<<grid, block>>>(img.data, resized.data,
            img.width, img.height, w, h);
        img = std::move(resized);
```

## 파이프라인 실행

```
void ImagePipeline::process(const Image& input, Image& output) {
    Image current = input;
    for (auto& stage : stages_) {
        stage(current);
        cudaStreamSynchronize(stream_);
    output = std::move(current);
// 사용 예제
ImagePipeline pipeline;
pipeline.addGaussianBlur(1.5f);
pipeline.addSobelEdgeDetection();
pipeline.addResize(640, 480);
pipeline.process(input_image, output_image);
```

# 스트리밍 최적화



# Multi-Stream Pipeline 구현

```
// Create and configure streams
cudaStream_t streams[NUM_STREAMS];
for(int i = 0; i < NUM_STREAMS; i++) {</pre>
    cudaStreamCreate(&streams[i]);
// Pipeline processing
for(int i = 0; i < num batches; <math>i++) {
    int sid = i % NUM_STREAMS;
    // Async H2D transfer
    cudaMemcpyAsync(d_in[sid], h_in[i], size,
                    cudaMemcpyHostToDevice, streams[sid]);
    // Process kernel
    process<<<grid, block, 0, streams[sid]>>>(
        d_in[sid], d_out[sid], w, h);
    // Async D2H transfer
    cudaMemcpyAsync(h_out[i], d_out[sid], size,
                    cudaMemcpyDeviceToHost, streams[sid]);
```

# **Stream Synchronization Strategy**

```
// Event-based sync
cudaEvent_t events[NUM_STREAMS];
for(int i = 0; i < NUM_STREAMS; i++)</pre>
    cudaEventCreate(&events[i]);
// Process stages with events
for(int stage = 0; stage < num_stages; stage++) {</pre>
    for(int s = 0; s < NUM_STREAMS; s++) {</pre>
        kernel<<<grid, block, 0, streams[s]>>>();
        cudaEventRecord(events[s], streams[s]);
        if(s > 0)
            cudaStreamWaitEvent(streams[s], events[s-1], 0);
// Sync all streams
for(int i = 0; i < NUM_STREAMS; i++)</pre>
    cudaStreamSynchronize(streams[i]);
```

## Part 5. 요약

#### 이 장에서 우리는 다음을 배웠습니다:

#### 1. 프로젝트 설정과 구조

- 실무 CUDA 프로젝트의 특징과 표준 디렉토리 구조
- CMake 설정, 핵심 유틸리티 헤더, 데이터 관리 및 벤치마킹 시스템

#### 2. 프로젝트 **1: CNN 계산 가속기**

- CNN 기본 연산 분석 및 CUDA 구현 (컨볼루션, 배치 정규화, 풀링, 활성화 함수)
- Tensor 클래스 및 CNN 네트워크 클래스 설계
- 성능 벤치마킹 및 cuDNN과의 비교

#### 3. 프로젝트 2: 대용량 이미지 처리 파이프라인

- 실시간 이미지 처리 파이프라인 요구사항
- 이미지 처리 기본 커널들 (필터링, 색상 공간 변환, 기하학적 변환)
- 이미지 파이프라인 클래스 설계 및 스트리밍 최적화

축하합니다! 이제 여러분은 CUDA를 활용하여 복잡한 실제 애플리케이션을 설계하고 구현할 수 있는 전문가 수준의 개발자가 되었습니다. 이 지식을 바탕으로 다양한 분야에서 GPU 컴퓨팅의 힘을 발휘하시길 바랍니다.