Gramatyki bezkontekstowe

Języki formalne i techniki translacji - Wykład 4

Maciek Gębala

23 października 2018

Notatki

Gramatyki bezkontekstowe

Definicja: Gramatyka bezkontekstowa G to czwórka

G = (N, T, P, S) gdzie

N - skończony zbiór zmiennych (nieterminale),

T - skończony zbiór symboli końcowych (terminale,

 ${\it P}\,$ - skończony zbiór produkcji postaci ${\it A}
ightarrow lpha,$ gdzie ${\it A} \in {\it N}$ $i \alpha \in (N \cup T)^*$,

 $S \in N$ - symbol początkowy.

Relacja wyprowadzenia \Rightarrow

Jeśli $A \to \beta$ jest produkcją w G i $\alpha, \gamma \in (N \cup T)^*$ to $\alpha A \gamma \underset{G}{\Rightarrow} \alpha \beta \gamma$

 $(\alpha\beta\gamma)$ jest bezpośrednio wyprowadzany z $\alpha A\gamma$ w gramatyce G). Będziemy pisać tylko ⇒ gdy gramatyka jest oczywista. ⇒* – zwrotne i przechodnie domknięcie ⇒.

Gramatyki bezkontekstowe

Definicja: Język generowany przez G to

$$L(G) = \{ w : w \in T^* \land S \underset{G}{\Rightarrow}^* w \}.$$

Język L nazywamy bezkontekstowym jeśli jest identyczny z L(G) dla pewnej gramatyki bezkontekstowej G. G_1 i G_2 są równoważne jeżeli $L(G_1) = L(G_2)$.

Przykład

$$\textit{G} = (\{\textit{S}\}, \{\textit{0}, \textit{1}\}, \{\textit{S} \rightarrow \textit{\varepsilon}, \textit{S} \rightarrow \textit{0}, \textit{S} \rightarrow \textit{1}, \textit{S} \rightarrow \textit{0S0}, \textit{S} \rightarrow \textit{1S1}\}, \textit{S})$$

lub inaczej (krócej) zapisując

$$\mathcal{S} \rightarrow \varepsilon |0|1|0\text{S}0|1\text{S}1$$

Wyprowadzenie słowa 0110:

$$S \Rightarrow 0S0 \Rightarrow 01S10 \Rightarrow 0110$$

Drzewo wyprowadzenia

Drzewo o następujących własnościach

- **1 a** każdy wierzchołek ma etykietę z $N \cup T \cup \{\varepsilon\}$,
- korzeń ma etykietę S (symbol początkowy),
- wierzchołki wewnętrzne mają etykiety z N,
- jeżeli wierzchołek wewnętrzny ma etykietę A a jego synowie od lewej mają kolejno etykiety X_1, \dots, X_n to $A \to X_1 \dots X_n$ jest produkcją w P.

Jeśli konkatenacja wszystkich liści czytanych od lewej do prawej daje α to drzewo nazywamy drzewem wyprowadzenia $\alpha.$

Przykład drzewa wyprowadzenia (na tablicy)

Słowo id + id * id dla gramatyki $E \rightarrow E + E|E * E|id$.

otatki
otatki
ptatki
otatki
ptatki
ptatki
ptatki
ptatki

Drzewo wyprowadzenia

Twierdzenie. Niech G=(N,T,P,S) będzie gramatyką bezkontekstową. Wtedy $S\Rightarrow^*\alpha\iff$ istnieje drzewo wyprowadzenia α w gramatyce G.

Dowód

Indukcja względem ilości wierzchołków wewnętrznych w drzewie.

Definicja. Jeżeli w każdym kroku wyprowadzenia stosujemy produkcję do nieterminala leżącego najbardziej na lewo (prawo), to wyprowadzenie nazywamy lewostronnym (prawostronnym). Jeżeli $w \in L(G)$ to w ma co najmniej jedno drzewo wyprowadzenia. Każdemu drzewu wyprowadzenia odpowiada dokładnie jedno wyprowadzenie lewostronne (prawostronne).

Definicja. Jeśli w L(G) istnieje słowo mające dwa różne drzewa wyprowadzenia to G nazywamy wieloznaczną.

Maciek Gebala

aramatyki bezkontekstowe

Usuwanie symboli bezużytecznych

Niech L – niepusty język bezkontekstowy. Wtedy L można wygenerować za pomocą gramatyki G o następujących własnościach

- każdy symbol pojawia się w wyprowadzeniu jakiegoś słowa z L,

Co więcej, jeśli $\varepsilon \notin L$ to w G nie ma produkcji postaci $A \to \varepsilon$.

Symbol X jest użyteczny jeśli istnieje wyprowadzenie postaci $S\Rightarrow^*\alpha X\gamma\Rightarrow^* w\ (w\in T^*)$, w p.p. X jest bezużyteczny.

Maciek Gębal

Gramatyki bezkontekstowe

Usuwanie symboli bezużytecznych

Lemat. Dla dowolnej gramatyki bezkontekstowej G=(N,T,P,S) z $L(G)\neq\emptyset$ można efektywnie znaleźć równoważną gramatykę bezkontekstową G'=(N',T,P',S) t.że dla dowolnego $A\in N'$ istnieje $w\in T^*$ t.że $A\Rightarrow^*w$.

Dowód (szkic)

- $\mathbf{O} N_s \leftarrow \emptyset$
 - $N_n \leftarrow \{A : (A \rightarrow w) \in P \land w \in T^*\}$
- ② while $N_s \neq N_n$ do

$$N_s \leftarrow N_n$$

$$N_n \leftarrow N_s \cup \{A : (A \rightarrow \alpha) \in P \land \alpha \in (T \cup N_s)^*\}$$

 $N' \leftarrow N_n$

$$P' \leftarrow (A \rightarrow \alpha) \in P : A \in N_n \land \alpha \in (T \cup N_s)^*$$

Maciek Gęba

Gramatyki bezkontekstow

Usuwanie symboli bezużytecznych

Lemat. Dla dowolnej gramatyki bezkontekstowej G=(N,T,P,S) można efektywnie znaleźć równoważną gramatykę bezkontekstową G'=(N',T',P',S) t.że dla każdego $X\in(N'\cup T')$ istnieją $\alpha,\beta\in(N'\cup T')^*$ t.że $S\Rightarrow^*\alpha X\beta$.

Dowód (szkic)

- while można zmienić N' do

Jeśli $A \in N'$ i $A \to \alpha_1 | \dots | \alpha_n$ to dodaj wszystkie nieterminale z $\alpha_1, \dots, \alpha_n$ do N' a terminale do T'.

 Do P' przenieś tylko te produkcje z P które zawierają symbole z N' ∪ T' ∪ {ε}.

Twierdzenie. Każdy niepusty język bezkontekstowy jest generowany przez gramatykę bezkontekstową nie zawierającą symboli bezużytecznych.

Maciek Gebala

Bramatyki	hezkonte	ekstow

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Usuwanie $arepsilon$ -produkcji	Notatki
Twierdzenie. Jeżeli $L = L(G)$ dla gramatyki bezkontekstowej $G = (N, T, P, S)$ to dla $L \setminus \{\varepsilon\}$ istnieje gramatyka bezkontekstowa G'	
nie zawierająca ε-produkcji i symboli bezużytecznych.	
Dowód Symbole bezużyteczne usunęliśmy dzięki poprzedniemu twierdzeniu.	
Symbole bezüzyteczne dsolniętniy dzięki poprzednieniu twietdzeniu. Dla każdego nieterminala A sprawdzamy czy $A\Rightarrow^*\varepsilon$. Jeśli tak to każdą produkcję $B\to\alpha A\beta$ zastępujemy produkcjami $B\to\alpha A\beta$	
i $B \to \alpha \beta$ (ale nie dołączamy $B \to \varepsilon$). Następnie usuwamy wszystkie ε -produkcje.	
Madok Gębala Gramatyki bezkontekstowe	
Usuwanie produkcji jednostkowych	Notatki
Twierdzenie. Każdy język bezkontekstowy nie zawierający ε jest definiowany za pomocą gramatyki nie zawierającej symboli	
bezużytecznych, ε -produkcji i produkcji jednostkowych.	
Dowód Jeżeli dla nieterminala A mamy $A \Rightarrow^* B$ i $A \neq B$ to dla każdej	
niejednostkowej produkcji $B o lpha$ dodajemy produkcję $A o lpha.$ Następnie usuwamy produkcje jednostkowe.	
Maciok Gebala Gramatyki bezkontekstowe	
Postać normalna Chomsky'ego	Notatki
Twierdzenie. Dowolny język bezkontekstowy nie zawierający ε jest generowany przez gramatykę której wszystkie produkcje są postaci	
Generowally preed grainally related wazyanite producting a postacion $A \to BC$ lub $A \to a$, gdzie $A, B, C \in N$ i $a \in T$.	
Dowód (konstrukcja)	
Niech G będzie gramatyką bez symboli bezużytecznych, ε -produkcji i produkcji jednostkowych. Wtedy jeśli prawa strona produkcji jest długości 1 to jest postaci $A \rightarrow a$. Dla pozostałych produkcji	
wykonujemy następujące operacje: • Jeśli po prawej stronie występuje terminal <i>a</i> to dodajemy do <i>N</i>	
nowy nieterminal C_a a do produkcji $C_a o a$ i zastępujemy a przez C_a .	
Teraz jeśli prawa strona produkcji jest dłuższa niż 1 to zawiera tylko nieterminale. Jeśli jest postaci $A \rightarrow B_1 \dots B_n$ dla $n > 2$, to	
tworzymy nowe nieterminale D_1, \ldots, D_{n-2} i zastępujemy tą produkcję przez	
$A \to B_1 D_1, D_1 \to B_2 D_2, \dots, D_{n-3} \to B_{n-2} D_{n-2}, D_{n-2} \to B_{n-1} B_n.$	
Maciek Gębala Gramstyki bezkontekstowe	
Przykład	Notatki
S ightarrow bA aB	
$egin{array}{lll} A & ightarrow & bAA aS a \ B & ightarrow & aBB bS b \end{array}$	
Przykład na tablicy.	
Postać normalna Chomsky'ego	
$egin{array}{lll} \mathcal{S} & ightarrow & C_b A C_a B \ A & ightarrow & C_b D_A C_a S a \end{array}$	
$egin{array}{lcl} B & ightarrow & C_a D_B C_b S b \ C_a & ightarrow & a \end{array}$	
$egin{array}{cccc} C_b & ightarrow & b \ D_A & ightarrow & AA \end{array}$	
$egin{array}{ccc} D_A & ightarrow & AA \ D_B & ightarrow & BB \end{array}$	

Postać normalna Greibach

Produkcje są postaci $A \rightarrow a\alpha$, gdzie $A \in N$, $a \in T$ i $\alpha \in N^*$.

Określmy jako A-produkcje wszystkie produkcje z nieterminalem A po lewej stronie.

Lemat 1. Niech G = (N, T, P, S) będzie gramatyką bezkontekstową. Niech $A \to \alpha_1 B \alpha_2$ będzie produkcją w P i niech $B \to \beta_1 | \dots | \beta_r$ będzie zbiorem wszystkich B-produkcji. Niech G' = (N, T, P', S) będzie gramatyką otrzymaną z G przez usunięcie produkcji $A o lpha_1 B lpha_2$ i dodanie produkcji $A \to \alpha_1 \beta_1 \alpha_2 | \dots | \alpha_1 \beta_r \alpha_2$. Wówczas L(G) = L(G').

Dowód po strukturze drzewa wyprowadzenia.

Maciek Gębala Gran

Postać normalna Greibach

Lemat 2. Niech G = (N, T, P, S) będzie gramatyką bezkontekstową. Niech $A \rightarrow A\alpha_1 | \dots | A\alpha_r$ będzie zbiorem tych A-produkcji których prawe strony zaczynają się od A. Niech $A \to \beta_1 | \dots | \beta_s$ będzie zbiorem pozostałych A-produkcji. Niech $G' = (N \cup \{B\}, T, P', S)$ będzie gramatyką utworzoną poprzez dodanie nowego nieterminala B i zastąpienie wszystkich A-produkcji przez następujące produkcje

$$A \rightarrow \beta_i | \beta_i B$$
, $1 \leqslant i \leqslant s$

$$B \to \alpha_j | \alpha_j B$$
, $1 \leqslant j \leqslant r$

Wtedy L(G) = L(G').

Postać normalna Greibach

Dowód

W wyprowadzeniu lewostronnym ciąg produkcji postaci $A o A \alpha_i$ musi kiedyś skończyć się produkcją $A o \beta_j$

$$A \Rightarrow A\alpha_{i_1} \Rightarrow A\alpha_{i_2}\alpha_{i_1} \Rightarrow \ldots \Rightarrow A\alpha_{i_n} \ldots \alpha_{i_1} \Rightarrow \beta_j\alpha_{i_n} \ldots \alpha_{i_1}$$

Można to zastąpić przez

$$A \Rightarrow \beta_j B \Rightarrow \beta_j \alpha_{i_n} B \Rightarrow \ldots \Rightarrow \beta_j \alpha_{i_n} \ldots \alpha_{i_2} B \Rightarrow \beta_j \alpha_{i_n} \ldots \alpha_{i_1}$$

Ponieważ transformacja ta jest obustronna to L(G) = L(G')

Postać normalna Greibach

Twierdzenie. Każdy język bezkontekstowy L nie zawierający ε jest generowany przez pewną gramatykę w której każda produkcja jest postaci $A \to a\alpha$, gdzie $a \in T$, $A \in N$ i $\alpha \in N^*$.

Niech G = (N, T, P, S) będzie gramatyką w postaci normalnej Chomsky'ego. Zalóżmy, że $N=\{A_1,\dots,A_n\}$. Modyfikujemy produkcje tak aby jeśli produkcja jest postaci $A_i\to A_j\alpha$

to i < j.

for k o 1 to n do for j o 1 to k-1 do

- lacktriangle Za każdą produkcję postaci $A_k o A_jlpha$ wstaw produkcje $A_k oetalpha$ dla wszystkich produkcji $A_j \rightarrow \beta$ (Lemat 1).
- ② Dla produkcji postaci $A_k o A_k \alpha$ wykonaj Lemat 2 używając nowy nieterminal Bu

Notatki
Notatki
Notatki

Postać normalna Greibach

Dowód cd.

Po wykonaniu tego algorytmu mamy gramatykę równoważną o produkcjach w postaci:

Zauważmy, że A_n -produkcje muszą zaczynać się terminalem. Teraz rozważmy A_{n-1} -produkcje: ich lewe strony muszą zaczynać się terminalem lub nieterminalem A_n więc możemy je z Lematu 1 zastąpić prawymi stronami A_n -produkcji (wszystkie zaczynają się terminalem). I tak do A_1 .

Łatwo zauważyć że *B*-produkcje nigdy nie zaczynają się nieterminalem *B* więc też z Lematu 1 możemy je zastąpić prawymi stronami *A*-produkcji.

faciek Gebala

Gramatyki bezkontekstowe

Przykład

 $A_1 \rightarrow A_2A_3$

 $A_2 \rightarrow A_3A_1|b$

 $A_3 \rightarrow A_1A_2|a$

Nie pasuje $A_3 \rightarrow A_1 A_2$ więc z Lematu 1 dostajemy $A_3 \rightarrow A_2 A_3 A_2$.

Dalej nie pasuje więc ponownie z Lematu 1 otrzymujemy $A_3 \rightarrow A_3 A_1 A_3 A_2 | bA_3 A_2.$

Teraz mamy $A_3 \rightarrow A_3A_1A_3A_2|bA_3A_2|a$, korzystamy z Lematu 2 i otrzymujemy $A_3 \rightarrow a|aB_3|bA_3A_2|bA_3A_2B_3$ i $B_3 \rightarrow A_1A_3A_2|A_1A_3A_2B_3$.

Maciek Gębal

Gramatyki bezkontekstowe

Przykład

Teraz odpowiednio podstawiając zgodnie z Lematem 1 otrzymujemy

 $A_3 \rightarrow a|aB_3|bA_3A_2|bA_3A_2B_3$

 $A_2 \rightarrow aA_1|aB_3A_1|bA_3A_2A_1|bA_3A_2B_3A_1|b$

 $A_1 \rightarrow aA_1A_3|aB_3A_1A_3|bA_3A_2A_1A_3|bA_3A_2B_3A_1A_3|bA_3$

 $\begin{array}{ll} B_3 & \to & aA_1A_3A_3A_2|aB_3A_1A_3A_3A_2|bA_3A_2A_1A_3A_3A_2| \\ & bA_3A_2B_3A_1A_3A_3A_2|bA_3A_3A_2|aA_1A_3A_3A_2B_3| \\ & aB_3A_1A_3A_3A_2B_3|bA_3A_2A_1A_3A_3A_2B_3| \\ & bA_3A_2B_3A_1A_3A_3A_2B_3|bA_3A_3A_2B_3 \end{array}$

Maciek Gębala

Gramatyki bezkontekstowe

Notatki
Nearti
Notatki
Notatki
Notatki
Notatki