Circuit Theory and Electronics Fundamentals

Special Season Exam - July/28/2021. Duration: 3h00m

Only calculator e and scratch paper are allowed. Closed-book exam.

- **1.** Consider the circuit in Figure 1, where $I_S=6mA$ and $V_B=12V$.
- **a**) Consider the o <u>Superposition Theorem</u> for calculating V_{α} - V_{γ} and I_{B} . Present the results, symbolically and numerically, in matrix **A** (2x2).

$$\begin{bmatrix} V_{\alpha} - V_{y} \\ I_{B} \end{bmatrix} = A \begin{bmatrix} I_{S} \\ V_{B} \end{bmatrix}$$

- b) Compute the power in sources I_S e V_B, and indicate, justifying, if each source is receiving or supplying energy.
- c) Compute the parameters of the <u>Thévenin's and Norton's Equivalents</u>, R_{eq} , V_{eq} and I_{eq} , seen from node β to node α . Consider two terminals connected to these nodes.
- **2.** Consider the circuit in Figure 2, where $I_S=6mA$ and $V_K=k(V_\beta-V_\alpha)$, k=-2 V/V
- **a**) Using the Mesh Method, compute, symbolically and numerically, matrix A(2x2) and vector B(2x1).

$$A\begin{bmatrix} I_1 \\ I_3 \end{bmatrix} = B$$

$$A \begin{bmatrix} V_{\alpha} \\ V_{\beta} \\ V_{\delta} \end{bmatrix} = B$$

- **3.** Consider the circuit in Figure 3, where $i_S(t)$ = -20 $cos(\omega t \pi/4)$ mA and f=10Hz.
- a) Determine the forced solution $v_1(t) = v_{\beta}(t) v_{\alpha}(t)$.
- b) Compute the active and reactive power associated with the current source.
- **e**) Compute the <u>Transfer Function</u> $T(s)=V_1(s)/I_s(s)$ symbolically, where $V_1(s)=V_\beta(s)-V_\alpha(s)$, and indicate the implemented <u>filter type</u>, justifying your answer.
- **4.** Consider again the circuit in Figure 3, where $i_s(t) = 10 \text{ sign}(\sin(\omega t)) mA$, for

f=10Hz and
$$sign(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

Figure 3

- a) Assuming the capacitor is discharged at instant t=0s, plot the voltage $v_2(t)=v_\beta(t)-v_\gamma(t)$ during the first period T, numerically calculating its values at instants 0, T/2 and T.
- **b**) Determine the <u>maximum instantaneous power</u> associated with the energy dissipated by R_2 in the time interval [0,T], and the instant when that happens.

- **5**. Consider the circuit in Figure 4 where the <u>diode is ideal</u>.
- a) For $v_s(t) = 10 \text{ V}$ and $v_a(0) = 9.5 \text{ V}$, compute $i_D(t)$ for $t \ge 0$ s.
- **b)** For $v_s(t) = 10 \cos(\omega t)$ V, f=1 kHz, plot $v_s(t)$, $v_\beta(t)$ and $i_D(t)$ during 2 periods.
- c) For $v_s(t) = 10 \cos(\omega t) \ V$ and $f=1 \ kHz$, answer only one of the following two questions: (i) Compute the time instants t_{OFF} when the diode goes from being ON to being OFF. (ii) Compute V_{ripple} , the voltage ripple peak-to-peak value in node β (difference between the maximum and minimum voltages), using a linear approximation for the capacitor's voltage variation during one period. Assume $t_{OFF}=250$ ns.

- **6.** Consider the voltage amplifier in Figure 5.
- a) Compute the value of R_B so that the collector is at 5V at the quiescent operating point. If you have not answered this question assume for the following questions that R_B =100k Ω .
- **b)** Draw the amplifier's <u>incremental circuit</u> in the passband, and determine the <u>voltage gain</u> and the <u>input and output impedances</u>.
- c) Determine the circuit's <u>frequency response</u> $V_O(\omega)/V_S(\omega)$, for $C_I=\infty$, $C_O=2\mu F$ and $C_\pi=2pF$.

Figure 5

- **7.** Consider the circuit in Figure 6 and assume the OP-AMPs never saturate.
- **a)** Determine $v_Z(v_X, v_W)$, $v_Y(v_Z)$ and $v_W(v_Y)$ and, based on the obtained results, establish the <u>differential equation</u> that relates v_X and v_Y .
- **b)** Compute $v_Y(t)$ in the sinusoidal steady-state (without the initial transient), for $v_X(t)$ =2 cos(ωt), R=1k Ω , C=1 μ F and f=1kHz. Suggestion: establish the <u>algebraic equation</u> that relates \tilde{V}_X and \tilde{V}_Y .
- c) Determine the <u>Transfer Function</u> $V_z(s)/V_x(s)$ and indicate, justifying, the implemented filter type.

Question grading

1-a)	1-b	1-c)	2-a)	2-b)	3-a)	3-b)	3-c)	4-a)	4-b)	5-a)	5-b)	5-c)	6-a)	6-b)	6-c)	7-a)	7-b)	7-c)
1	1	1	1.5	1.5	1	1	1	1	1	1	1	1	1	1	1	1	1	1