Digital Signal Processing

Vu Nhat Huy

Faculty of Electrical and Electronics Engineering Department of Telecommunications Engineering Ho Chi Minh City University of Technology Contact: https://doi.org/10.2007/nut.edu.vn

Contents

Sampling is to convert a continuous time signal into a discrete time signal. The analog signal is periodically measured at every T seconds.

$$x(n) \equiv x(nT) = x(t = nT), \ n = \dots -2, -1, 0, 1, 2, 3\dots$$

- T: sampling interval or sampling period (second);
- Fs=1/T: sampling rate or frequency (samples/second or Hz)

Aliasing of Sinusoids In general, the sampling of a continuous-time sinusoidal signal $x(t) = A\cos(2\pi F_0 t + \theta)$ at a sampling rate $F_s = 1/T$ results in a discrete-time signal x(n).

The sinusoids $x_k(t) = A\cos(2\pi F_k t + \theta)$ is sampled at F_s , resulting in a discrete time signal $x_k(n)$.

If
$$F_k = F_0 + kF_s$$
, $k = 0, \pm 1, \pm 2, \ldots$, then $x(n) = x_k(n)$.

Sampling Theorem For accurate representation of a signal x(t) by its time samples x(nT), two conditions must be met:

- 1) The signal x(t) must be band-limited, i.e., its frequency spectrum must be limited to F_{max} .
- 2) The sampling rate F_s must be chosen at least twice the maximum frequency F_{max} . $F_s \geq 2F_{\text{max}}$
 - $-F_s = 2F_{\text{max}}$ is called Nyquist rate.
 - $-F_s/2$ is called Nyquist frequency.
 - $-[-F_s/2, F_s/2]$ is Nyquist interval.

Figure 1: Typical band-limited spectrum

Practical antialiasing prefilter

- A lowpass filter: Passband $[-F_{pass}, F_{pass}]$ is the frequency range of interest for the application $(F_{max} = F_{pass})$.
- The stopband frequency F_{stop} and the minimum stopband attenuation Astop dB must be chosen appropriately to minimize the aliasing effects.
- The Nyquist frequency $F_s/2$ is in the middle of transition region.

$$F_s = F_{pass} + F_{stop}$$

• The attenuation of the filter in decibels is defined as (where f_0 is a convenient reference frequency, typically taken to be at DC for a lowpass filter):

$$A(F) = -2\log_{10} \left| \frac{H(F)}{H(F_0)} \right| \quad (dB)$$

- $\alpha_{10} = A(10F) A(F)$ (dB/decade): the increase in attenuation when F is changed by a factor of ten.
- $\alpha_2 = A(2F) A(F)$ (dB/octave): the increase in attenuation when F is changed by a factor of two.

Quantization process The quantized sample $x_Q(nT)$ is represented by **B** bit, which can take 2^B possible

Figure 2: Analog to digital conversion

values.

An A/D is characterized by a **full-scale range R** which is divided into 2^B quantization levels. Typical values of R in practice are between 1-10 volts.

Figure 3: Signal quantization

Quantizer resolution or quantization width (step): $Q = \frac{R}{2^B}$

- A bipolar ADC: $-\frac{R}{2} < x_Q(nT) < \frac{R}{2}$
- A unipolar ADC: $0 < x_Q(nT) < R$

Quantization by rounding: replace each value x(nT) by the nearest quantization level.

Quantization by truncation: replace each value x(nT) by its below nearest quantization level.

Quantization error: $e(nT) = x_Q(nT) - x(nT)$. Consider rounding quantization: $-\frac{Q}{2} < e < \frac{Q}{2}$

Figure 4: Uniform probability density of quantization error

Root-mean-square (rms) error: $e_{rms} = \sigma_q = \sqrt{\overline{e^2}} = \frac{Q}{\sqrt{12}}$

R and Q are the ranges of the signal and quantization noise, then the signal to noise ratio (SNR) or dynamic range of the quantizer is defined as

$$SNR_{dB} = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_a^2} \right) = 20 \log_{10} \left(\frac{R}{Q} \right) = 20 \log_{10} (2^B) = 6B \ dB$$

which is referred to as 6 dB bit rule.

Digital to Analog Converters (DACs)

Figure 5: B-bit D/A converter

Vector B input bits: $b = [b_1, b_2, \dots, b_B]$. Note that b_B is the least significant bit (LSB) while b_1 is the most significant bit (MSB).

For unipolar signal, $x_Q \in [0, R)$; for bipolar $x_Q \in [-R/2, R/2)$.

• Unipolar natural binary $x_Q = R(b_1 2^{-1} + b_2 2^{-2} + ... + b_B 2^{-B}) = Qm$ where m is the integer whose binary representation is $b = [b_1, b_2, ..., b_B]$.

$$m = b_1 2^{B-1} + b_2 2^{B-2} + \dots + b_B 2^0$$

• Bipolar offset binary: obtained by shifting the x_Q of unipolar natural binary converter by half-scale $\mathbb{R}/2$:

$$x_Q = R(b_1 2^{-1} + b_2 2^{-2} + \dots + b_B 2^{-B}) - \frac{R}{2} = Qm - \frac{R}{2}$$

• Two's complement code: obtained from the offset binary code by complementing the most significant bit, i.e., replacing b_1 by $\overline{b_1} = 1 - b_1$.

$$x_Q = R(\bar{b}_1 2^{-1} + b_2 2^{-2} + \dots + b_B 2^{-B}) - \frac{R}{2}$$

A/D converters

A/D converters quantize an analog value x so that is represented by B bits $b = [b_1, b_2, \dots, b_B]$

Figure 6: B-bit A/D converter

One of the most popular converters is the successive approximation A/D converter

Figure 7: Successive approximation A/D converter

After B tests, the successive approximation register (SAR) will hold the correct bit vector b.

Successive approximation algorithm

for each x to be converted, do:
initialize
$$\mathbf{b} = [0, 0, \dots, 0]$$

for $i = 1, 2, \dots, B$ do:
 $b_i = 1$
 $x_Q = \operatorname{dac}(\mathbf{b}, B, R)$
 $b_i = u(x - x_Q)$
Truncation quantization

where the unit-step function is defined by

$$u(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

for each x to be converted, do:

$$y = x + Q/2$$

initialize $\mathbf{b} = [0, 0, ..., 0]$
for $i = 1, 2, ..., B$ do:
 $b_i = 1$
 $x_Q = \text{dac}(\mathbf{b}, B, R)$
 $b_i = \mathbf{u}(y - x_Q)$
Rounding quantization

for each x to be converted, do: y = x + Q/2initialize $\mathbf{b} = [0, 0, \dots, 0]$ $b_1 = 1 - u(y)$ for $i = 2, 3, \dots, B$ do: $b_i = 1$ $x_Q = \text{dac}(\mathbf{b}, B, R)$ $b_i = u(y - x_Q)$ Two's complement

	natural binary		offset binary		2's C
$b_1b_2b_3b_4$	m	$x_{\rm Q} = Qm$	m'	$x_{\rm Q} = Qm'$	$b_1b_2b_3b_4$
_	16	10.000	8	5.000	_
1111	15	9.375	7	4.375	0 1 1 1
1110	14	8.750	6	3.750	0110
1101	13	8.125	5	3.125	0101
1100	12	7.500	4	2.500	0100
1011	11	6.875	3	1.875	0011
1010	10	6.250	2	1.250	0010
1001	9	5.625	1	0.625	0001
1000	8	5.000	0	0.000	0000
0111	7	4.375	-1	-0.625	1111
0110	6	3.750	-2	-1.250	1110
0101	5	3.125	-3	-1.875	1101
0100	4	2.500	-4	-2.500	1100
0 0 1 1	3	1.875	-5	-3.125	1011
0 0 1 0	2	1.250	-6	-3.750	1010
0 0 0 1	1	0.625	-7	-4.375	1001
0 0 0 0	0	0.000	-8	-5.000	1000

Figure 8: Converter codes for B=4 bits, R=10 volts

Unit sample sequence (unit impulse):
$$\delta(n)$$

$$\begin{cases} 1 & for \ n=0 \\ 0 & for \ n\neq 0 \end{cases}$$
 Unit step signal: $\delta(n)$
$$\begin{cases} 1 & for \ n\geq 0 \\ 0 & for \ n<0 \end{cases}$$

Input/output rules.

A discrete-time system is a processor that transform an input sequence x(n) into an output sequence y(n).

input sequence
$$H$$
 output sequence

Figure 9: Discrete-time system

Sample-by-sample processing: $\{x_0, x_1, x_2, ..., x_n\} \xrightarrow{H} \{y_0, y_1, y_2, ..., y_n\}$ that is, $x_0 \xrightarrow{H} y_0, x_1 \xrightarrow{H} y_1, ...$ and so on.

Block processing:
$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \end{bmatrix} \xrightarrow{H} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \end{bmatrix} = y$$

Constant multiplier $x(n) \xrightarrow{a} y(n) = ax(n)$ (amplifier, scale)

Delay $x(n) \xrightarrow{z^{-D}} y(n) = x(n-D)$

Adder (sum)

 $x_1(n) \xrightarrow{x_2(n)} y(n) = x_1(n) + x_2(n)$

Signal multiplier
$$x_1(n)$$
 $y(n) = x_1(n)x_2(n)$ (product)

Figure 10: Basic building blocks of DSP systems

Linearity and time invariance

A linear system has the property that the output signal due to a linear combination of two input signals can be obtained by forming the same linear combination of the individual outputs.

Figure 11: Testing linearity

If $x(n) = a_1x_1(n) + a_2x_2(n) \rightarrow y(n) = a_1y_1(n) + a_2y_2(n) \ \forall a_1, a_2 \rightarrow \text{linear system.}$ Otherwise, the system is nonlinear.

A time-invariant system is a system that its input-output characteristics do not change with time.

$$x(n)$$
 D $x_D(n)$ H $y_D(n)$

Figure 12: Testing time invariance

If $y_D(n) = y(n-D) \ \forall D \to \text{time-invariant system}$. Otherwise, the system is time-variant.

Impulse repsonse

Linear time-invariant (LTI) systems are characterized uniquely by their impulse response sequence h(n), which is defined as the response of the systems to a unit impulse $\delta(n)$.

Figure 13: Impulse response of an LTI system

Figure 14: Delayed impulse response of an LTI system

A finite impulse response (FIR) filter has impulse response h(n) that extend only over a finite time interval, say $0 \le n \le M$.

Figure 15: FIR impulse response

- M: filter order; $L_h = M + 1$: the length of impulse response.
- $h = \{h_0, h_1, ..., h_M\}$ is referred by varius name such as filter coefficients, filter weights or filter taps.

• FIR filtering equation:
$$y(n) = \sum_{m=0}^{M} h(m)x(n-m) = h(n) * x(n)$$

A infinite impulse response (IIR) filter has impulse response h(n) of infinite duration, say $0 \le n \le \infty$.

Figure 16: IIR impulse response

IIR filtering equation: $y(n) = \sum_{m=0}^{M} h(m)x(n-m) = h(n)*x(n)$. The I/O equation of IIR filters are expressed as the recursive differences equation.

Causality and Stability

Figure 17: Causal, Anticasual and Mixed signals

LTI systems can also classified in terms of causality depending on whether h(n) is casual, anticausal or mixed. A system is stable (BIBO) if **bounded inputs** ($|x(n)| \le A$) always generate **bounded outputs** ($|y(n)| \le B$).

A LTI system is stable
$$\Leftrightarrow \sum_{n=-\infty}^{\infty} (h(n)) < \infty$$