

Intelligent Systems

Excersice 5- Feature Selection

Simon Reichhuber November 25, 2019

University of Kiel, Winter Term 2019

TABLE OF CONTENT

- 1. Feature Selection Basics
- 2. Inconsistency Rate
- 3. Feature Selection Techniques
- 4. SAX Algorithm with Python
- 5. Signature Task

Feature Selection Basics

- A. What are the tasks and goals of feature selection?
- B. What are benefits of feature selection?
- C. Describe the term "weakly relevant but non-redundant features"?
- D. Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?
- E. Enumerate and describe the three different search strategies for finding an adequate subset of features.Additionally, mention their advantages and disadvantages.

1. A

What are the tasks and goals of feature selection?

1. A Tasks & goals of feature selection

Task:

- Find and select the optimal subset of the feature set.
- The subset should meet the following conditions:
 - Provide the highest accuracy for the chosen task (classification, regresseion).
 - Minimal number of features simultaneously guaranteeing at least a required minimum accuracy. (no redundant features)
 - Minimum costs (in computing time and monetary).
 - · Improved comprehensability.

Goal:

 Distinguish important (good) features from unimportant (bad) features.

- A. What are the tasks and goals of feature selection?
- B. What are benefits of feature selection?
- C. Describe the term "weakly relevant but non-redundant features"?
- D. Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?
- E. Enumerate and describe the three different search strategies for finding an adequate subset of features.Additionally, mention their advantages and disadvantages.

1. B BENEFITS OF FEATURE SELECTION

Benefits:

- Saving of time through less amount of data (fewer feautures, possibly fewer patterns)
- Better data quality by elimination of unimportant (e.g. unecessary or high-noisy) information.
- Better comprehensability of the results of the pattern recognition process in smaller dimensional spaces; facilitated evaluation; interpretability can be impossibly by given a high number of features
- Reduced costs, for example by only buying the relevant features (e.g. direct marketing) or by reduced computing resources (e.g. in technical applications like signal processing)

- A. What are the tasks and goals of feature selection?
- B. What are benefits of feature selection?
- C. Describe the term "weakly relevant but non-redundant features"?
- D. Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?
- E. Enumerate and describe the three different search strategies for finding an adequate subset of features.Additionally, mention their advantages and disadvantages.

1. C WAEKLY RELEVANT, BUT NON-REDUNDANT FEATURES

I: irrelevant features

II: weakly relevant features

III: weakly relevant but non-redundant

IV: strongly relevant features

III+IV: optimal subset

- A. What are the tasks and goals of feature selection?
- B. What are benefits of feature selection?
- C. Describe the term "weakly relevant but non-redundant features"?
- D. Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?
- E. Enumerate and describe the three different search strategies for finding an adequate subset of features.Additionally, mention their advantages and disadvantages.

1. DRG, SFG, SBG, BG

Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?

Problem with SFG, SBG, and BG:

Incrementally removing the most unimportant or adding the most important feature may not end in an optimal solution!

Goal of *RG*:

Prevent local optima

1. E

- A. What are the tasks and goals of feature selection?
- B. What are benefits of feature selection?
- C. Describe the term "weakly relevant but non-redundant features"?
- D. Creating feature subsets, what is the advantage of Random Generation (RG) over Sequential Forward Generation (SFG), Sequential Backward Generation (SBG), and Bidirectional Generation (BG)?
- E. Enumerate and describe the three different search strategies for finding an adequate subset of features. Additionally, mention their advantages and disadvantages.

1. E SEARCH STRATEGIES

- Exhaustive Search:
 - + Searches through all combinations of features, finds optimum
 - Runtime
- Heuristic Search:
 - Heuristics are applied (e.g. based on expert knowledge)
 - + Certain paths of the search space → Reduced runtime
 - Not guaranteed to finde the optimum
- Non-deterministic Search:
 - Random selection of the next feature subset
 - + Fixed number of iterations → Reduced runtime
 - Global optimum not very likely

Inconsistency Rate

- A. Look at the Table. This data set represents relevant data for the decision wheter to play tennis or not. The column "Play" represents the class of the sample. First apply binning of the temperature values, in order to reduce the continuous temperature value range to three ordinal values. Also, take care of an equal interval size.
- B. Calculate the inconsistency rate (IR) of the new data set. Why does the IR plays a role for the feature selection?

2. A BINNING I

Outlook	Temperature	Humidity	Windy	Play
overcast	24	high	false	no
rainy	12	normal	false	no
sunny	18	low	true	yes
overcast	13	low	true	no
sunny	23	high	true	yes
rainy	24	normal	false	yes
rainy	19	high	true	no
overcast	17	normal	false	yes
sunny	14	high	false	yes
overcast	21	high	false	no
sunny	17	low	true	yes
rainy	18	high	true	no
rainy	22	normal	false	yes
sunny	12	high	false	yes
overcast	10	low	true	no
sunny	11	high	false	no
overcast	12	low	true	yes
overcast	20	high	false	yes
sunny	16	low	true	no
rainy	15	high	true	yes
rainy	21	normal	false	no

2. A BINNING II

Values:

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

Bins:

- 10, 11, 12, 13, 14 Cold
- 15, 16, 17, 18, 19 Mild
- 20, 21, 22, 23 ,24 Warm

2. A BINNING III

Outlook	Temperature	Humidity	Windy	Play
overcast	warm	high	false	no
rainy	cold	normal	false	no
sunny	mild	low	true	yes
overcast	cold	low	true	no
sunny	warm	high	true	yes
rainy	warm	normal	false	yes
rainy	mild	high	true	no
overcast	mild	normal	false	yes
sunny	cold	high	false	yes
overcast	warm	high	false	no
sunny	mild	low	true	yes
rainy	mild	high	true	no
rainy	warm	normal	false	yes
sunny	cold	high	false	yes
overcast	cold	low	true	no
sunny	cold	high	false	no
overcast	cold	low	true	yes
overcast	warm	high	false	yes
sunny	mild	low	true	no
rainy	mild	high	true	yes
rainy	warm	normal	false	no

- A. Look at the Table. This data set represents relevant data for the decision wheter to play tennis or not. The column "Play" represents the class of the sample. First apply binning of the temperature values, in order to reduce the continuous temperature value range to three ordinal values. Also, take care of an equal interval size.
- B. Calculate the inconsistency rate (IR) of the new data set. Why does the IR plays a role for the feature selection?

2. B Inconsistency Rate

Muster	Klasse: Yes	Klasse: No	IZ
overcast 1	1	2	IZ = 3-2 = 1
overcast 2	1	2	IZ = 3-2 = 1
overcast 3	1	0	IZ = 1-1 = 0
rainy 1	0	1	IZ = 1-1 = 0
rainy 2	2	1	IZ = 3-2 = 1
rainy 3	1	2	IZ = 3-2 = 1
sunny 1	2	1	IZ = 3-2 = 1
sunny 2	1	0	IZ = 1-1 = 0
sunny 3	2	1	IZ = 3-2 = 1

•
$$IR = \frac{1+1+0+0+1+1+1+0+1}{21} = \frac{6}{21} = \frac{2}{7}$$

Why should you check the dataset of inconsistencies after the feature selection?

 Feature selection can produce inconsistencies by removing features.

FEATURE SELECTION WITH IR I

Let D_i and D_j be two (sub)sets of features with inconsistency rates $IR(D_i)$ and $IR(D_i)$, then:

- D_i and D_j are indistinguishable, if $IR(D_i) = IR(D_j)$ and $|D_i| = |D_i|$
- D_i is preferred to D_i , if:
 - $IR(D_i) = IR(D_j)$ and $|D_i| < |D_j|$
 - $IR(D_i) < IR(D_j)$ and $|D_i| <= |D_j|$

FEATURE SELECTION WITH IR II

	Hair color	Size	Weight	Sun cream	Sun burned?
i_1	1	2	1	0	1
i_2	1	3	2	1	0
i_3	2	1	2	1	0
i_4	1	1	3	0	1
i_5	3	2	3	0	1
i_6	2	3	3	0	0
i_7	2	2	3	0	0
i_8	1	1	1	1	0

Which features would you select in this data set?

Minimal Inconsistency Rate 0 for:

- Hair color and sun creame
- Hair color, size, weight
- Any super set of the two sets above

Result: Hair color and sun creame

Feature Selection Techniques

A. What is the difference between the wrapper and the filter?

- B. Calculate the Information Gain of every feature in Table 1. Sort your results and begin with the most important one.
- C. What is known by "Automated Branch and Bound Algorithmus" and what are its properties? Create an ABB search tree from the data of Table 1.

3. A WRAPPER VS. FILTER

There are two basic methodologies for the feature selection:

- Filter analyse the quality of features in the feature space.
- Wrapper analyse the quality of features according to a suitable Machine Learning algorithm (e.g. Classification)

In principle, Wrapper achieve better results, as the actual Machine Learning task is taken into account. Though, the computing time is much higher, sometimes not computable in a reasonable amount of time. Hybrid approaches are possible.

3. A FILTER

Filter analyse the quality of features in the feature space.

Figure 1: Filter Pipeline

3. A WRAPPER

Wrapper analyse the quality of features according to a suitable Machine Learning algorithm (e.g. Classification)

Figure 2: Wrapper Pipeline

- A. What is the difference between the wrapper and the filter?
- B. Calculate the Information Gain of every feature in Table 1. Sort your results and begin with the most important one.
- C. What is known by "Automated Branch and Bound Algorithmus" and what are its properties? Create an ABB search tree from the data of Table 1.

Calculate the Information Gain of every feature in Table 1. Sort your results and begin with the most important one.

3. B Information Gain

•
$$IG(d) = I(X) - \sum_{l=1}^{L} \frac{|X_{d_l}|}{|X|} I(X_{d_l})$$

•
$$I(X_{d_l}) = -\sum_{c=1}^{C} p x_{d_l}(c) * log_2 p x_{d_l}(c)$$

•
$$I(X) = -\sum_{c=1}^{C} px(c) * log_2px(c)$$

3. B ENTROPY

Figure 3: Order vs. Entropy

3. B ENTROPY

- Entropy is a measure for for information based on the probabilty distribution of events
- Hence, it is also a quantification for disorder or chaos
- The more chaotic a system is, the more information is necessary to describe it.
- General idea:
 - Given an unlikely event, then the information we gain, if it occurs is high
 - Given a likely event, then the information we gain, if it occurs is low

3. B Information Gain II

Shannon's entropy of events

Shannon's entropy (information content) I of an event with a probability of occurance p is defined as:

$$I = \log_2 \frac{1}{p} = -\log_2 p$$

The unit of information is bit.1

Examples:

- I of the event Head in a "Head or Tails" game: $\log_2 \frac{2}{1} = 1$
- I of the event 5 rolling a dice : $\log_2 \frac{6}{1} \approx 2,59$
- I of the event odd number rolling a dice: $\log_2 \frac{6}{3} = 1$

¹ If the logarithm of base 2 is used.

3. B Information Gain III

Information of events

$$I = \log_2 \frac{1}{p} = -\log_2 p$$

- blue ball: $I = -\log_2 \frac{7}{15} = 1.09$
- green ball:

$$I = -\log_2 \frac{5}{15} = 1.58$$

yellow ball:

$$I = -\log_2 \frac{3}{15} = 2.32$$

3. B Information Gain IV

Entropie

The entropy of a series of events is defined as:

$$H = -\sum_{i=1}^n p_i \log_2 p_i,$$

where *n* is the number of possible events.

•
$$H = -\left[\frac{7}{15} * \log_2 \frac{7}{15}\right] - \left[\frac{5}{15} * \log_2 \frac{5}{15}\right] - \left[\frac{3}{15} * \log_2 \frac{3}{15}\right] = 1.51$$

3. B Information Gain V

•
$$IG(d) = I(X) - \sum_{l=1}^{L} \frac{|X_{d_l}|}{|X|} I(X_{d_l})$$

•
$$I(X_{d_l}) = -\sum_{c=1}^{C} p x_{d_l}(c) * log_2 p x_{d_l}(c)$$

•
$$I(X) = -\sum_{c=1}^{C} px(c) * log_2px(c)$$

3. B Information Gain VI

34

Outle	ook Tem	perature	Humidity	Windy	Play
Sunn	y Hot		High	False	No
Sunn	y Hot		High	True	No
Over	cast Hot		High	False	Yes
Rain	y Mild		High	False	Yes
Rain	y Cool		Normal	False	Yes
Rain	y Cool		Normal	True	No
Over	cast Cool		Normal	True	Yes
Sunn	y Mild		High	False	No
Sunn	y Cool		Normal	False	Yes
Rain	y Mild		Normal	False	Yes
Sunn	y Mild		Normal	True	Yes
Over	cast Mild		High	True	Yes
Over	cast Hot		Normal	False	Yes
Rain	y Mild		High	True	No

3. B Information Gain VII

- Calculate the information Berechne den Informationsgehalt der Klassenverteilung
 - $I(X) = -\sum_{c=1}^{C} px(c) * log_2 px(c)$
 - $I(X) = -\frac{5}{14}log_2(\frac{5}{14}) \frac{9}{14}log_2(\frac{9}{14}) = 0.94$
- 2. Calculate the information content of every feature value (= manifestation or possible instance):
 - $I(X_{d_i}) = -\sum_{c=1}^{C} px_{d_i}(c) * log_2 px_{d_i}(c)$
 - $I(X_{sunny}) = -\frac{3}{5}log_2(\frac{3}{5}) \frac{2}{5}log_2(\frac{2}{5}) = 0.97$
 - $I(X_{rainy}) = -\frac{2}{5}log_2(\frac{2}{5}) \frac{3}{5}log_2(\frac{3}{5}) = 0.97$
 - $I(X_{overcast}) = 0 log_2(\frac{4}{4}) = 0$
- 3. Calculate the Information Gain of every feature:
 - $IG(Outlook) = I(X) \sum_{l=1}^{L} \frac{|X_{d_l}|}{|X|} I(X_{d_l})$
 - $IG(Outlook) = 0.94 (\frac{5}{14} * 0.97 + \frac{5}{14} * 0.97 + \frac{4}{14} * 0) = 0.247$

3. B Information Gain VIII

- 4. Compare the features by sorting them by their Information Gain values:
 - IG(Outlook) = 0.247, IG(Humidity) = 0.15, IG(Windy) = 0.05, IG(Temp) = 0.03

- A. What is the difference between the wrapper and the filter?
- B. Calculate the Information Gain of every feature in Table 1.Sort your results and begin with the most important one.
- C. What is known by "Automated Branch and Bound Algorithmus" and what are its properties? Create an ABB search tree from the data of Table.

3. C ABB SEARCH TREE

Figure 4: ABB Search Tree

Remark: (1, 1, 1, 1) corresponds to

(Outlook, Temperature, Humidity, Windy)

3. C ABB SEARCH TREE

Figure 5: ABB Suchbaum Pruning

⇒ One out of the feature selections (Outlook, Temperature, Windy) and (Outlook, Humidity, Windy) will be chosen.

SAX Algorithm with Python

A. Download the jupyter notebook **4_SAX.ipynb** from Open Olat. First, calcluate the Euclidean distance of the two time series. Afterwards, apply the steps of the SAX algorithm and compare the distance of the two strings. What attracts your attention? Which paramaters can be adapted two achieve better results?

4. A

Download the jupyter notebook **4_SAX.ipynb** from Open Olat. First, calcluate the Euclidean distance of the two time series. Afterwards, apply the steps of the *SAX* algorithm and compare the distance of the two strings. What attracts your attention? Which paramaters can be adapted two achieve better results?

Signature Task

A. Construct different feautures for the signatures and calculate the IG and IR values.