

Tau ID for $W \rightarrow \tau \nu$ background estimation

D.Colling, P. Dunne, A. Magnan, A. Nikitenko, J. Pela

$W \rightarrow \tau$ Background Estimation

$W \rightarrow \tau$ Method:

- ▶ Select subsample of signal region (without CJV to increase stat.) with 1 $\tau_{hadronic}$ candidate with $p_T > 20\,\text{GeV}$, $|\eta| < 2.3$:
- Main tau discriminant "byTightCombinedIsolationDeltaBetaCorr3Hits"
- Cross-check with "byMediumIsolationMVA2"
- There is also a choice of loose or tight antilepton discriminators
- Subtract events from other backgrounds
- Correct with tau ID efficiency from MC
- Correct with CJV efficiency from MC

Equations

$$N_{Data}^{W o au
u} = (N_{Data}^{ au subsample} - N_{MC}^{Background}) X_{\epsilon_{ au_{ID}}}^{\epsilon_{CJV}},$$

 $\mathsf{Background} = \mathsf{Top}, \mathsf{Z} + \mathsf{Jets} \; \mathsf{and} \; \mathsf{VV}$

Efficiency definitions

$$\epsilon_{\tau_{ID}} = \frac{N_{W \rightarrow \tau \nu}^{tausubregion}}{N_{W \rightarrow \tau \nu}^{Signal region without CJV}}$$

$$\epsilon_{\textit{CJV}} = \frac{N_{W \rightarrow \tau \nu}^{\textit{SignalregionwithCJV}}}{N_{W \rightarrow \tau \nu}^{\textit{SignalregionwithoutCJV}}}$$

Yield Tables

Discriminant	W o e u	$W o \mu u$	W o au u	Bkg	Data	
3Hits & againste μ loose	2 ± 1	0 ± 0	26 ± 4	16.4 ± 3.2	47 ± 7	
3Hits & againste μ tight	0.4 ± 0.4	0 ± 0	20 ± 4	12.4 ± 2.2	32 ± 6	
MVA2 & againste μ loose	6 ± 2	0.7 ± 0.5	40 ± 5	22.5 ± 3.6	75 ± 9	
MVA2 & againsteµtight	6 ± 2	0.7 ± 0.5	40 ± 5	20.5 ± 3.6	70 ± 8	

Efficiencies

Discriminant	$\epsilon_{ au_{ID}}$	
3Hits & againste μ loose discriminant	0.14 ± 0.03	
3Hits & againste μ tight discriminant	0.11 ± 0.02	
MVA2 & againsteµloose discriminant	0.22 ± 0.03	
MVA2 & againste μ tight discriminant	0.22 ± 0.03	

 $\blacktriangleright~\epsilon_{\textit{CJV}}$ is independent of discriminant choice and is 0.43 \pm 0.03.

Remaining $W \rightarrow e \nu$ events

- ▶ With loose(tight) antilepton discrimant $W \rightarrow e\nu$ from MC is:
- 8(2)% of expected W o au
 u events for 3hit discriminant
- 15(15)% for the MVA2 discriminant
- this is 12(3)% of the expected background for 3hit and 27(30)% for MVA2 .
- ▶ Two approaches will be compared:
- 1) subtract MC prediction of $W \to e \nu$ from N^C_{Data} and update stat. error accordingly
- 2) add number of W o e
 u from MC as an additional systematic

Option 1

- ▶ Subtracting MC estimation of $W \to e\nu$ contamination gives a final $W \to \tau\nu$ estimate of:
- 3Hits againste μ loose: $86 \pm 29 \pm 19$
- 3Hits againste μ tight: $75\pm30\pm18$
- MVA2 againste μ loose: 91 \pm 25 \pm 17
- MVA2 againste μ tight: $85 \pm 23 \pm 15$

Option 2

- ▶ Adding MC prediction of $W \to e\nu$ contribution as a systematic gives a final $W \to \tau\nu$ estimate of:
- 3Hits againste μ loose: $92 \pm 29 \pm 20$
- 3Hits againste μ tight: $76 \pm 31 \pm 18$
- MVA2 againste μ loose: $102\pm26\pm20$
- MVA2 againste μ tight: 97 \pm 24 \pm 19

Summary

- ▶ Behaviour agrees with what is seen in tau tau
- Best purity comes from tight antilepton discrimination
- For the main discriminant with tight antilepton discrimination the $W \to e \nu$ contamination is small 2% so systematic approach appropriate.
- For the cross-check discriminant $W \to e \nu$ contamination is large so subtraction may be the better option.
- ▶ Should we be doing anything else to reduce $W \rightarrow e\nu$ contribution?