Tidsrækkeøkonometri

Økonometri A

Jakob Egholt Søgaard Blok 1, 2023

Program

Tidsrækkedata

Egenskaber ved OLS

Hvornår er OLS middelret?

Nye muligheder med tidsrækkedata

Tid som undladt variable

Stationaritet og svag afhængighed

Transformation af data

Eksempler på tidsrækkemodeller

Program

Tidsrækker er ikke en del af pensum.

Denne forelæsning giver et hurtigt overblik, som kan være nyttig opvarming til næste emne om panel data.

Kapitler i Wooldridge:

- Kap 10: Tidsrækker og under hvilke antagelser gælder alt det I har lært om OLS stadig.
- Kap 11: Egenskaber ved OLS under svagere antagelser (Stationaritet og svag afhængighed).
- Kap 12: Serial korrelation og heteroskedasticitet i fejlleddene.

Tidsrækker er et stort emne. Hvis I vil lære mere, kan I tage Econometrics II på Polit.

Motivation

Motivation: Hvad er tidsrækkedata?

Vi har indtil nu beskæftiget os med tværsnitsdata:

 Data målt på et tidspunkt, men for mange forskellige enheder (individer, firmaer, kommuner, lande).

Tidsrækkedata er data, som er målt på en række forskellige tidspunkter (typisk med et fast interval):

- Årlige data (BNP).
- Kvartalsdata (ledighed, priser).
- Månedsdata (salget af biler).
- Minutdata (aktiekurser).

Tidsrækkedata er ofte aggregeret data.

Hvor anvendes tidsrækkeøkonometri (i økonomi)?

Tidsrækkedata blev systematisk tilgængeligt for økonomer med fremkomsten af Nationalregnskaberne i 1940'erne.

Mange spørgsmål har traditionel været svære at bevare uden tidsrækkedata. Fx

- Sammnehængen mellem ledighed og inflation.
- Sammnehængen mellem eksporten og valutakursen.

Tidsrækkeøkonometri er også blevet brugt til at studere klimaudviklingen langt sigt.

I praksis bruges tidsrækkeøkonometri særligt til forudsigelser (forecast)

- Konjunkturskøn i Finansministeriet (ADAM, MONA).
- Skøn for udviklingen på de finansielle markeder.

Tidsrækkedata

Tidsrækkedata

I tidsrækkedata er der en naturlig ordning af observationer (i modsætning til tværsnitsdata).

Vi skriver y_t , hvor t referer til det tidspunkt variablen er målt.

• Hele tidsrækken skrives som:

$$y_1,y_2,...,y_T$$

hvor t=1 er det første tidspunkt, vi har målt y på, og t=T er det sidste tidspunkt.

- Antal observation = T
- Datasættet kan også angives som $\{y_t\}_{t=1}^T$.

Egenskaber ved tidsrækker: Prædeterminerede variable

Fordi vi har en naturlig ordning af data, kan vi tale om **prædeterminerede** variable.

Fx kan y_{t-1} opfattes som kendt på tidspunkt t.

- Vi kan derfor danne betingede forventninger $E(y_t|y_1, y_2, ..., y_{t-1})$.
- ...som er forskellige fra de ubetingede forventninger $E(y_t)$.

Vi kan opfatte $E(y_t|y_1, y_2, ..., y_{t-1})$ som en forudsigelser/forecast givet den information vi har op til tidspunkt t-1.

Bemærk: Forecast er grundlæggende en prædiktionsøvelse \neq estimation af kausale effekter.

Egenskaber ved tidsrækker: Tidsafhængighed

MLR.2 er sjældent opfyldt for tidsrækker.

Særligt er observationerne ofte afhængige over tid:

- Observationer tæt på hinanden er ofte korrelerede: $cov(y_t, y_{t+1}) \neq 0$.
- Fx vil ledigheden vil kun ændre sig langtsomt.
- Hvis man skal forudsige ledigheden et år frem, vil det være en god ide at tage udgangspunkt i dette års ledighedsniveau.

Meget tidsserieøkonometri handler om at forstå sammenhængen mellem observationerne over tid.

Egenskaber ved tidsrækker: Tidsafhængighed

Ledigheden ændrer sig kun lidt måned for måned

Egenskaber ved tidsrækker: Trender

Mange tidsrækker indeholder trender

Ĉ

Egenskaber ved tidsrækker: Samvariation

To tidsrækker kan synes følge den samme udvikling

Egenskaber ved tidsrækker: Sæsonvariation

Ved intervaller kortere end et år indeholder data typisk sæsonvariation

Egenskaber ved tidsrækker: Strukturelle brud

Der kan ske et skift i niveauet. Ofte udløst af en bestemt begivenhed

Egenskaber ved tidsrækker: Skiftende volatilitet

Med finansielle tidsrækker er man ofte også interesseret i volatiliteten

Egenskaber ved OLS

Hvornår er OLS middelret?

Vi har tidligere vist at OLS er middelret (og konsistent) under MLR.1-MLR.4.

- MLR.1: Modellen er lineær.
- MLR.2: Tilfældig stikprøve af uafhængige observationer.
- MLR.3: Ingen perfekt multikollinearitet.
- MLR.4: $E(u|\mathbf{X}) = 0$.

MLR.2 er sjældent opfyldt i tilfælde med tidsserier

 Det giver sjældent mening at tale om stikprøve, og at observationer er ikke uafhængige.

Hvornår er OLS middelret?

Uden MLR.2 er vi nød til at erstatte MLR.4 med en stærkere antagelse.

- TS.1: Modellen er lineær (samme som MLR.1)
- TS.2: Ingen perfekt multikollinearitet (samme som MLR.3)
- TS.3: $E(u_t|\mathbf{X}) = 0$ for alle t.

TS.3 siger at u_t skal være ukorreleret med x'erne på alle tidspunkter.

Hvornår kan TS.3 være brudt?

Hvornår er OLS middelret?

Teorem 10.1: Middelrethed af OLS estimatoren

Under antagelserne TS.1-TS.3 er OLS estimatoren på tidsrækkedata middelret.

Tilføjer vi

- TS.4: homoskedasticitet $var(u, \mathbf{X}) = \sigma^2$ (samme som MLR.5)
- TS.5: Ingen seriekorrelation $cov(u_t, u_s) = 0$ for alle $s \neq t$.

Får vi

Teorem 10.2: Variansen af OLS estimatoren

Under antagelserne TS.1-TS.5 er variansen på OLS estimatoren givet ved:

$$var(\hat{eta}_j|\mathbf{X}) = rac{\sigma^2}{SST_j(1-R_j^2)}$$

Hvis TS.1-TS.3 er opfyldt, giver tidsrækkedata mulighed for at undersøge indfasningseffekter af en politik.

Betragt fx modellen:

$$crime_t = \beta_0 + \beta_1 police_t + u_t \tag{1}$$

Her antager vi at der er en øjeblikkelig sammenhæng mellem mængde af politi og kriminaliteten i en by.

Er det realistisk?

Vi kan modellere indfasningseffekter ved at tilføje **laggede** x'er til modellen:

$$crime_t = \delta_0 + \delta_1 police_t + \delta_2 police_{t-1} + \delta_3 police_{t-2} + u_t$$

Dette kaldes en Finite Distributed Lag (FDL) model.

Ved en midlertidig (1-årig) stigning i politi:

- δ_1 er førsteårseffekten.
- δ_2 er andenårseffekten, osv.

Vi kan modellere indfasningseffekter ved at tilføje **laggede** x'er til modellen:

$$crime_t = \delta_0 + \delta_1 police_t + \delta_2 police_{t-1} + \delta_3 police_{t-2} + u_t$$

Dette kaldes en Finite Distributed Lag (FDL) model.

Ved en permanent stigning i politi:

- δ_1 er førsteårseffekten.
- $\delta_1 + \delta_2$ er andenårseffekten, osv.

Pre-trends

FDL modeller kan også udvides med leads:

$$\textit{crime}_t = \delta_0 + \delta_1 \textit{police}_t + \delta_2 \textit{police}_{t-1} + ... + \delta_4 \textit{police}_{t+1} + \textit{u}_t$$

Hvorfor er vi interesseret i δ_4 ?

- Fremtidig politi bør ikke have nogen effekt på kriminaliteten i dag $(H_0:\delta_4=0)$
- Hvis vi finder at $\hat{\delta}_4 > 0$, så følger en stigning i politi typisk efter år med unormalt meget kriminalitet.
- Kan tyde på at politikkerne reagerer på mere kriminalitet med at ansætte mere politik
- \Rightarrow Brud på TS.3.

Ved at inkludere leads i modellen, kan vi således validere vores TS.3. En **placebo øvelse**.

Tid som undladt variable

Som i MLR verdenen er OLS estimatoren biased, hvis vi undlader en relevant variabel fra estimationen.

Med tidsrækkedata, kan tid i sig selv være en undladt variabel.

- Hvis både den afhængige og uafhængige variabel vokser over tid...
- ... vil OLS estimatet være postivt biased, hvis vi ikke tager højde for det i estimationen.

Model:

$$y_t = \delta_0 + \delta_1 x_t + \delta_2 t + u_t$$

Sfa. Frish-Waughs Teoremet kan vi få samme estimater ved:

$$\ddot{y}_t = \delta_0 + \delta_1 \ddot{x}_t + u_t,$$

hvor \ddot{y}_t og \ddot{x}_t er detrendede variable (W10.5).

Udviklingen i BNP/capita i Danmark og Peru

Udviklingen i BNP/capita i Danmark og Peru

```
reg gdpDNK gdpPER
estimates store wo_time
reg gdpDNK gdpPER year
estimates store w_time
```

```
estimates table wo_time w_time, stats(N) b(\%7.3f) p(\%7.3f)
```

Variable	1	wo_time	w_time
	-+-		
gdpPER		0.971	0.080
	1	0.000	0.079
year			0.022
			0.000
_cons		1.906	-34.502
		0.000	0.000
	-+-		
N	١	70	70

legend: b/p

Stationaritet og svag afhængighed

Middelret vs. konsistent

Vi kræver TS.3 for at OLS er middelret på tidsrække data.

- TS.3: $E(u_t|X) = 0$ for alle t.
- Det er en streng antagelse, som typisk ikke er opfyldt praksis.

OLS er dog konsistent under mildere antagelser.

Særligt kan vi erstatte TS.3 med

• TS.3': $E(u_t|\mathbf{X_t})=0$. Dvs. u_t skal kun være ukorreleret med x på tidspunkt t

hvis $\{(\mathbf{x}_t, y_t)\}$: t = 1, 2, ... er en **stationær** og **svag afhængig** proces.

Hvad betyder det?

Stokastisk processer

Når vi arbejder med tidsrækkedata, giver det sjældent mening at tale om "stikprøver".

I stedet tænker vi på tidsrækken, som en realisation af en **stokastisk process**.

- Historien er et resultat af processer, som er (delvist) stokastiske.
- Vores historie er en specifik realisation af disse processer.
- Hvis vi kunne genstarte historien, ville vi få en anden realisation.

Hypotetisk forestiller vi os, at vi har M realisationer:

$$\begin{split} & \text{Realization 1:} \quad y_1^{(1)}, \ y_2^{(1)}, \ ..., \ y_t^{(1)}, \ ..., \ y_T^{(1)} \\ & \text{Realization m:} \quad y_1^{(m)}, \ y_2^{(m)}, \ ..., \ y_t^{(m)}, \ ..., \ y_T^{(m)} \\ & \text{Realization M:} \quad y_1^{(M)}, \ y_2^{(M)}, \ ..., \ y_t^{(M)}, \ ..., \ y_T^{(M)} \\ \end{aligned}$$

Stokastisk processer

Hvad kan vi sige om fordelingen af y_t , når vi kun har en realisation?

Fx kunne vi være interesseret den forventede værdi af y_t , som vi hypotetisk kunne estimere som

$$\hat{E}(y_t) = \frac{1}{M} \sum_{m=1}^{M} y_t^{(m)},$$

men vi har kun en realisation.

Alternativt kan vi udregne

$$\tilde{E}(y_t) = \frac{1}{T} \sum_{m=1}^{T} y_t^{(T)},$$

Men det er kun en konsistent estimator, hvis $\{y_t\}$: t=1,2,... er en **stationær** og **svag afhængig** proces.

Stationaritet

Vi kan ikke beregne fx middelværdier, hvis vi kun har en realisation til hvert tidspunkt.

• ...med mindre fordelingen for y_t er den samme ved alle t.

Hvis observationerne er trukket fra samme fordeling, kalder vi det **stationaritet**.

Definition: Streng stationaritet

• En tidsrække er strengt stationær, hvis den fælles fordeling af s+1 stokastiske variable

$$(y_t, y_{t+1}, y_{t+2}, ..., y_{t+s})$$
 og $(y_{t+h}, y_{t+h+1}, y_{t+h+2}, ..., y_{t+h+s})$

er den samme uanset med hvilket interval (h) vi måler dem.

Stationaritet

Eksempel med s = 0

Tidsafhængighed

Definition: Svag afhængighed

• En tidsrække $(y_1, y_2, ..., y_T)$ er svagt afhængig, hvis y_t og y_{t+h} er approksimativt uafhængig, når $h \to \infty$.

Særligt skal det gælde at $corr(y_t, y_{t+h}) \to 0$ "tilstrækkeligt hurtigt" når $h \to \infty$, hvor

$$corr(y_t, y_{t+h}) = \frac{cov(y_t, y_{t+h})}{\sqrt{var(y_t)var(y_{t+h})}}$$

Denne korrelation kaldes autokorrelation.

- Hvis autokorrelationen er positiv (negativ), vil store værdier af y_t blive fulgt af store (små) værdier af y_{t+1} .
- Hvis der er en høj grad af tidsafhængighed/autokorrelation, kalder vi tidsrækken for persistent.

30

Stationaritet og svag afhængighed

For at udlede de asymptotiske egenskaber ved OLS på tværsdata anvendte vi:

- Store tals lov (LLN) \Rightarrow konsistens.
- Den centrale grænseværdisætning (CLT) ⇒ asymptotiske normalfordeling.

Her antog vi at fejlleddene var uafhængige og identiske fordelte (iid), og vi kunne derfor anvende de simpleste versioner af LLN og CLT.

Med tidsrækker kan vi erstatte:

- "identisk fordelt" med "stationaritet".
- "uafhængighed" med "svag afhængighed".

Stationaritet og svag afhængighed

Estimation autokorrelation

Vi kan estimaterer autokorrelationen som funktion af h ved at regressere

$$y_t = \alpha + \rho_h y_{t-h} + u \tag{2}$$

Eksempel med ledigheden i USA.

Transformation af data

Nogle gange er vi nød til først at transformere data før tidsrækken er stationær og svag afhængig

Eksempel med detrending af produktiviteten i Danmark.

Transformation af data

Eksempel med ændringer i stedet for niveauet af forbruget i Danmark.

Dette eksempel tyder på at

$$\Delta y_t \approx \varepsilon_t \Leftrightarrow y_t \approx y_{t-1} + \varepsilon_t$$

Da $\rho=1$, er processen meget persistent. En såkaldt **unit root proces**.

Statisk model

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \varepsilon_t$$

hvor y_t kun afhænger af x målt på tidspunkt t.

Finite Distributed Lag (FDL) model

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \dots + \varepsilon_t$$

hvor y_t kun afhænger af x målt på tidspunkt t samt laggede x'er.

Som vist ovenfor tillader denne model gradvis indfasning af effekten af ændringer i \boldsymbol{x} .

Autoregressiv model

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$$

hvor y_t kun afhænger af tidligere værdier af y. Her i den simpleste version med kun et lag.

Modellen kaldes også for

- en **univariat model**, fordi y kun afhænger af sig selv.
- en første orden autoregresiv model AR(1)

Generelt kan vi have en AR(p) model

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_p y_{t-p} + \varepsilon_t$$

Autoregressiv Distributed Lag (ADL) model

$$y_t = \beta_0 + \beta_1 y_{t-1} + \theta_1 x_t + \theta_2 x_{t-1} + \dots + \varepsilon_t$$

som blander egenskaberne fra en AR model og en FDL model: y_t afhænger både af tidligere værdier af y og af samtidige og laggede værdier af x

Hvad sker der, når man ændrer x_t med en enhed?

- Ved en en-periode stigning i x_t er $\Delta y_t = \theta_1 \Delta x_t$
- De næste perioder er $\Delta y_{t+1} = \theta_2 \Delta x_t + \beta_1 \theta_1 \Delta x_t$.
- $\Delta y_{t+2} = \beta_1 \left(\theta_2 \Delta x_t + \beta_1 \theta_1 \Delta x_t \right)$
- $\Delta y_{t+3} = \beta_1^2 \left(\theta_2 \Delta x_t + \beta_1 \theta_1 \Delta x_t \right)$
- Hvis $|\beta_1| < 1$ så dør effekten ud over tid.

Moving Average (MA) model

$$y_t = \beta_0 + \varepsilon_t + \beta_1 \varepsilon_{t-1} + \beta_2 \varepsilon_{t-2} + \dots$$

 y_t er en (vægtet) sum af samtidig og laggede iid stød ε . Når y_t afhænger af q laggede værdier af u kalder vi modellen for MA(q).

 $\mathsf{MA}(\mathsf{q})$ modellen svarer til en $\mathsf{AR}(1)$ model, når $q \to \infty$

$$y_{t} = \beta_{0} + \varepsilon_{t} + \beta_{1}y_{t-1}$$

$$= \beta_{0} + \varepsilon_{t} + \beta_{1}(\varepsilon_{t-1} + \beta_{1}y_{t-2})$$

$$= \beta_{0} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}y_{t-2}$$

$$= \beta_{0} + \varepsilon_{t} + \beta_{1}\varepsilon_{t-1} + \beta_{1}^{2}\varepsilon_{t-2} + \dots + \beta_{1}^{k}\varepsilon_{t-k} + \dots$$

Opsummering

Opsummering

- Nogle spørgsmål kan (kunne) kun besvares med tidsrækkeøkonometri. Fx er n = 1, når vi studerer Jorden.
- Med tidsrækkedata kan vi studere indfasningseffekter.
- Middelrethed af OLS på tidsrækkedata beror på en stærk antagelse om streng eksogenitet: $E(u_t|\mathbf{X}) = 0$ for alle t.
- Det udelukker at u kan påvirke x i fremtiden.
- OLS er dog konsistent under en svagere antagelse om $E(u_t|\mathbf{x}_t) = 0$, hvis y og x er stationære og svagt afhængige.
- Derfor bruger man meget tid i tidsrækkeøkonometri på at studere "stokastiske processer".