Corso di Algebra Lineare; Corso di Laurea in Informatica

Foglio di Esercizi 5 - Esercizi riassuntivi

Nota: la dicitura 'da esame' indica che l'esercizio é tratto da uno scritto di esame. Gli esercizi contrassegnati con asterisco sono impegnativi.

Numeri complessi

Esercizio 1. Calcolare

$$\left(\frac{1-i}{1+i}\right)^3$$

in forma algebrica e trigonometrica.

$$\frac{1-i}{1+i} = \frac{(1-i)^2}{(1+i)(1-i)} = \frac{1+i^2-2i}{1-i^2} = -i$$

quindi

$$\left(\frac{1-i}{1+i}\right)^3 = (-i)^3 = (-i)^2(-i) = i = \rho \cdot e^{i\theta},$$

con ho=1 e $heta=\pi/2$.

Esercizio 2. Dato

$$z = \frac{1}{\sqrt{3}} - \frac{1}{i}$$

determinare nella forma più comoda z^{22} .

Intanto

$$z = \frac{1}{\sqrt{3}} + i,$$

quindi

$$\rho = \sqrt{1/3 + 1} = \frac{2}{\sqrt{3}}.$$

L'angolo $\, \theta \,$ appartiene a $\,]0,\pi/2[$, perché $\, z \,$ si trova nel primo quadrante e

$$\tan(\theta) = \frac{y}{x} = \sqrt{3},$$

pertanto $\theta = \pi/3$. Allora

$$z^{22} = \rho^{22} \cdot e^{i22\pi/3} = \rho^{22} \cdot e^{i4\pi/3} = \rho^{22} (\cos(4\pi/3) + i\sin(4\pi/3)) = \rho^{22} (-1/2 - i\sqrt{3}/2)$$

Esercizio 3. Determinare le seguenti radici e rappresentarle sul piano complesso:

$$\left(\frac{-2}{1-i\sqrt{3}}\right)^{1/4}$$

Se $w = -2/(1 - i\sqrt{3})$, allora cerco z tale che $z^4 = w$, ossia

$$z^4 = w = \frac{-2(1+i\sqrt{3})}{1-3i^2} = \frac{-1}{2} - i\frac{\sqrt{3}}{2}.$$

Il modulo di w é $\rho=1$, mentre arg(w) si trova nel terzo quadrante ed é facile vedere che $arg(w)=4\pi/3$. Allora, $z_k=e^{i\theta_k}$, ove

$$\theta_k = \frac{4\pi/3 + 2k\pi}{4}$$

per k=0,1,2,3. Dunque si ha $z_0=e^{i\pi/3}$, $z_1=e^{i5\pi/6}$, $z_2=e^{i4\pi/3}$ e $z_3=e^{i11\pi/6}$. Tali radici sono i quattro vertici di un quadrato di lato $\sqrt{2}$ sulla circonferenza goniometrica, il primo dei quali ha coordinate $(1/2,\sqrt{3}/2)$, il cui raggio forma un angolo di 60 gradi con l'asse x, e il secondo $(-\sqrt{3}/2,1/2)$ il cui raggio forma un angolo di 150 gradi con l'asse x.

Esercizio 4. (da esame) Calcolare le radici quarte di -1.

Cerco z tale che $z^4=w=-1$. Il modulo di w é $\rho=1$ e $arg(w)=\pi$ (quando si puó, come in questo caso, meglio individuare l'argomento di un numero complesso direttamente sul piano in base ad argomentazioni geometriche). Allora, $z_k=e^{i\theta_k}$, ove

$$\theta_k = \frac{\pi + 2k\pi}{4}$$

per k=0,1,2,3 . Dunque si ha $z_0=e^{i\pi/4}$, $z_1=e^{i3\pi/4}$, $z_2=e^{i5\pi/4}$ e $z_3=e^{i7\pi/4}$.

Esercizio 5. (da esame) Sia $z=(1+i)^6$. Calcolare il modulo di z e le sue radici cubiche e dire chi é il suo coniugato \overline{z} .

Poniamo $z_0=1+i$. Il modulo di z_0 é $\sqrt{2}$; l'argomento di z_0 si trova nel primo quadrante e si ha $arg(z_0)=\arctan(1)=\pi/4$. Dunque $z_0=\sqrt{2}e^{i\pi/4}$ e

$$z = z_0^6 = (\sqrt{2})^6 \cdot (e^{i\pi/4})^6 = 8 \cdot e^{i3\pi/2} = -8i,$$

ove l'ultimo passaggio é dovuto alla goniometria di base (che dovete conoscere), ossia $\cos(3\pi/2)=0$ e $\sin(3\pi/2)=-1$. Il suo coniugato é $\overline{z}=8i$. Il modulo di z é 8 e il suo argomento é $3\pi/2$. Cerco ora le radici cubiche di z, date da $z_k=(8)^{1/3}e^{i\theta_k}=2e^{i\theta_k}$, ove

$$\theta_k = \frac{3\pi/2 + 2k\pi}{3}$$

per k=0,1,2 . Dunque si ha $z_0=2e^{i\pi/2}$, $z_1=2e^{i7\pi/6}$, $z_2=2e^{i11\pi/6}$.

Esercizio 6. * Risolvere l'equazione $z^2 = \overline{z}^2$

In forma algebrica, l'equazione diviene $(x+iy)^2=(x-iy)^2$, da cui

$$x^2 - y^2 + 2ixy = x^2 - y^2 - 2ixy,$$

quindi 4ixy = 0, pertanto xy = 0, da cui si conclude che ogni punto del tipo (x,0) dell'asse reale oppure ogni punto (0,y) dell'asse immaginario é soluzione dell'equazione.

Spazi vettoriali

Esercizio 7. Stabilire se $W=\{(x,y,z)\in\mathbb{R}^3:z=x-y\}$ é un sottospazio vettoriale di $V=\mathbb{R}^3$.

Chiusura della somma: $(x_1, y_1, x_1 - y_1)$ e $(x_2, y_2, x_2 - y_2)$ appartengono a W e la loro somma

$$(x_1 + x_2, y_1 + y_2, x_1 + x_2 - y_1 - y_2)$$

appartiene chiaramente a W. Chiusura moltiplicazione scalare: $(x,y,x-y)\in W$ e $\lambda\in\mathbb{R}$, allora chiaramente $(\lambda x,\lambda y,\lambda(x-y))=(\lambda x,\lambda y,\lambda x-\lambda y)$ appartiene ancora a W. Pertanto W é un sotospazio vettoriale di V.

Esercizio 8. Stabilire se $W=\{(x,y,z)\in\mathbb{R}^3:z\geq 0\}$ é un sottospazio vettoriale di $V=\mathbb{R}^3$.

No, perché, ad esempio, $(x,y,1)\in W$, ma $\lambda(x,y,1)=(\lambda x,\lambda y,\lambda)$ non appartiene a W per $\lambda<0$.

Esercizio 9. Dati u=(1,1), v=(0,2), w=(2,-2) nello spazio vettoriale $V=\mathbb{R}^2$, dire se sono linearmente indipendenti (LI) e determinare il sottospazio da essi generato.

Sappiamo giá che i tre vettori non sono LI perché sono tre, ma la dimensione dello spazio vettoriale $V=\mathbb{R}^2$ cui appartengono é due. Mostriamo che, ad esempio, u e v sono LI: la combinazione lineare (CL) $\alpha u + \beta v = \mathbf{0}$ equivale a

$$\begin{cases} \alpha = 0 \\ \alpha + 2\beta = 0 \end{cases}$$

da cui si deduce immediatamente che $\,\alpha=\beta=0\,$. Siccome $\,u\,$ e $\,v\,$ sono LI e la dimensione di $\,V\,$ é due, significa che sono una base, quindi il sottospazio da essi generato é esattamente $\,V\,$.

Esercizio 10. (da esame) Stabilire se $W = \{(x, y, z, t) \in \mathbb{R}^4 : xy = 0\}$ é un sottospazio vettoriale di $V = \mathbb{R}^4$.

Se lo fosse, allora dati $(x,y,z,t), (x_1,y_1,z_1,t_1) \in W$, si dovrebbe avere che $(x+x_1,y+y_1,z+z_1,t+t_1) \in W$, il che equivarrebbe a

$$(x+x_1)(y+y_1)=0,$$

quindi

$$0 = (x + x_1)(y + y_1) = xy + xy_1 + x_1y + x_1y_1.$$

Siccome $(x,y,z,t),(x_1,y_1,z_1,t_1)\in W$, so che xy=0 e $x_1y_1=0$, pertanto l'equazione precedente si riduce a

$$xy_1 + x_1y = 0.$$

Tuttavia, tale equazione non é sodisfatta da tutti i punti $(x,y,z,t), (x_1,y_1,z_1,t_1) \in W$: si pensi ad esempio a (1,0,0,0) e (0,1,0,0). Entrambi appartengono a W ma non soddisfano la precedente equazione, quindi in definitiva W non é un sottospazio vettoriale perché non é chiuso nella somma.

Esercizio 11. * (da esame)

 $V=\mathbb{R}^4$, $U=span\{u_1,u_2,u_3\}$, $W=span\{w_1,w_2\}$, ove

$$u_1 = (1, 1, 1, 1), u_2 = (1, 0, 1, 0), u_3 = (2, -3, 2, -3), w_1 = (1, 0, -1, 0), w_2 = (1, 5, 1, 5).$$

Determinare dimU, dimW, $dim(U\cap W)$, una base di $U\cap W$, una base di U+W e infine stabilire se V é somma diretta di U e W.

Cominciamo con W e vediamo se i due vettori w_1 e w_2 sono LI: la CL $\alpha w_1 + \beta w_2 = \mathbf{0}$ implica il sottosistema

$$\begin{cases} \alpha + \beta = 0 \\ 5\beta = 0 \end{cases}$$

da cui si deduce immediatamente che $\,\alpha=\beta=0$, pertanto $\,w_1\,$ e $\,w_2\,$ sono LI e la dimensione di $\,W\,$ é due. Vediamo $\,U\,$: la CL $\,\alpha u_1+\beta u_2+\gamma u_3={\bf 0}\,$ equivale a

$$\begin{cases} \alpha + \beta + 2\gamma = 0 \\ \alpha - 3\gamma = 0 \end{cases}$$

e non é difficile vedere che tale sistema é soddisfatto, ad esempio, da $\alpha=3$, $\beta=-5$ e $\gamma=1$, quindi u_1,u_2,u_3 sono linearmente dipendenti (LD). Provate voi a dimostrare che, ad esempio, u_1 e u_2 sono LI (non é difficile), il che vuol dire dimU=2 e U=L(S), ove $S=\{u_1,u_2\}$. Vediamo $U\cap W$: se un vettore appartiene sia a U che a W, signfica che si puó esprimere cotemporaneamente come CL di S che di $\{w_1,w_2\}$, dunque

$$\alpha u_1 + \beta u_2 = \gamma w_1 + \delta w_2$$

che equivale a

$$\begin{cases} \alpha + \beta = \gamma + \delta \\ \alpha = 5\delta \\ \alpha + \beta = -\gamma + \delta \end{cases}$$

Tramite riduzione, se consideriamo la prima equazione meno la terza, si trova $\,2\gamma=0$, ossia $\,\gamma=0$ ed ora é facile vedere che si arriva a

$$\begin{cases} \alpha = 5\delta \\ \beta = -4\delta \\ \gamma = 0 \\ \delta \in \mathbb{R}. \end{cases}$$

Come si vede, abbiamo un grado di libertá dato dal parametro $\,\delta$: ció significa che $\,dim(U\cap W)=1$ e una sua base é data dal vettore $\,5\delta u_1-4\delta u_2\,$ o, equivalentemente, da $\,\delta w_2$, quindi, per $\,\delta=1$, una base é data dal vettore $\,w_2$. Vediamo $\,U+W\,$: dal teorema di Grassmann, abbiamo

$$dim(U+W) = dimU + dimW - dim(U \cap W) = 3.$$

Siccome in generale U+W é generato dall'insieme unione dei generatori di U e W, in questo caso é generato da $\{u_1,u_2,w_1,w_2\}$, ma essendo di dimensione tre, per trovare una base é sufficiente che scartiamo uno di quei vettori e che i tre rimasti siano LI. Proviamo con $\{u_1,u_2,w_1\}$, ossia scartiamo w_2 : la CL $\alpha u_1 + \beta u_2 + \gamma w_1 = \mathbf{0}$ equivale a

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \alpha = 0 \\ \alpha + \beta - \gamma = 0 \end{cases}$$

da cui si deduce immediatamente che $\,\alpha=\beta=\gamma=0\,$, dunque $\,\{u_1,u_2,w_1\}\,$ é una base di $\,U+W\,$. Infine, $\,V\,$ non é somma diretta di $\,U\,$ e $\,W\,$, perché $\,U\cap W\,$ non si riduce al solo vettore nullo.

Esercizio 12. (da esame)

Sia $W = span\{w_1, w_2\}$, ove

$$w_1 = (1, 0, -1, 0), w_2 = (1, 1, 1, 5).$$

Completare W in modo da formare una base di $V=\mathbb{R}^4$.

Non é difficile verificare che w_1, w_2 sono LI, quindi dobbiamo trovare altri due vettori LI tra loro in modo che tutti e quattro i vettori siano LI e automaticamente, essendo V di dimensione 4, avremo una base di V. Idea: aggiungiamo due vettori della base canonica. Un primo metodo é quello di sceglierli in modo (piú o meno) casuale e verificare poi che siano LI. Se siete abili a fare la scelta giusta, tale metodo é il piú veloce. Ad esempio, scegliamo e_2 e e_4 e verifichiamo se $\{w_1, w_2, e_2, e_4\}$ sia LI. La CL $\alpha w_1 + \beta w_2 + \gamma e_2 + \delta e_4 = \mathbf{0}$ equivale a

$$\begin{cases} \alpha + \beta = 0 \\ \beta + \gamma = 0 \\ -\alpha + \beta = 0 \\ 5\beta + \delta = 0 \end{cases}$$

Tramite riduzione, se consideriamo la prima equazione piú la terza, si trova $\beta=0$, quindi $\alpha=0$ e facilmente anche $\gamma=\delta=0$, perció tale insieme é effettivamente una base di V. Nella lezione 8 abbiamo visto un metodo piú razionale, anche se spesso piú lungo.