Прямая на плоскости

Теорема 1. Основная теорема о прямой на плоскости. Каждая прямая на плоскости является фигурой первого порядка и обратно, каждая фигура первого порядка на плоскости является прямой. Другими словами, на плоскости множество всех прямых и множество всех фигур первого порядка совпадают.

Доказательство. Пусть l — некоторая прямая, \varkappa — аффинная система координат на плоскости.

Найдем уравнение l в \varkappa . Пусть M_0 — некоторая точка прямой l, \vec{a} — ненулевой вектор, параллельной l. Точку M_0 будем называть начальной, вектор \vec{a} — направляющим для прямой l, координаты точки M_0 и вектора \vec{a} в \varkappa обозначим соответственно: x_0 , y_0 и a_1 , a_2 .

Пусть M(x;y) — переменная, принимающая значения в множестве всех точек плоскости. Вектор $\overrightarrow{M_0M}$ коллинеарен вектору $\overrightarrow{a} \Leftrightarrow$ точка M принадлежит прямой l.

Найдем координаты вектора $\overrightarrow{M_0M} = (x - x_0; y - y_0)$. Согласно признаку коллинеарности двух векторов в координатах получим:

$$\overrightarrow{M_0M}||\overrightarrow{a} \Leftrightarrow \begin{vmatrix} x - x_0 & y - y_0 \\ a_1 & a_2 \end{vmatrix} = 0. \tag{1}$$

Это и есть искомое уравнение прямой l в \varkappa . Записав уравнение (1) в виде $a_2(x-x_0)-a_1(y-y_0)=0$, находим, что это есть алгебраическое уравнение. Так как $\vec{a}\neq \vec{0}$, то, по крайней мере, одна из его координат a_1 или a_2 отлична от нуля. Следовательно, степень уравнения (1) равна 1. Первое утверждение теоремы доказано.

Пусть на плоскости дана фигура первого порядка Φ уравнением в аффинной системе координат \varkappa

$$Ax + By + D = 0 \ (B \neq 0).$$
 (2)

Уравнение (2) равносильно уравению $Ax + B(y + \frac{C}{B}) = 0$, которое, в свою очередь, равносильно уравнению

$$\begin{vmatrix} x & y + \frac{C}{B} \\ -B & A \end{vmatrix} = 0. \tag{2'}$$

Возьмем на плоскости прямую l_1 с начальной точкой $M_1(0; -\frac{C}{B})$ и направляющим вектором $\vec{a}(-B;A)$. По первой части теоремы уравнением l_1 в \varkappa будет уравнение (2'). Следовательно, фигура Φ совпадает с прямой l_1 . Второе утверждение доказано.

Теорема 2 (условие параллельности вектора и прямой на плоскости). Пусть на плоскости заданы вектор \vec{u} своими координатами и прямая l общим уравнением в аффинной системе координат Ax + By + C = 0. Тогда \vec{u} параллелен l тогда и только тогда, когда сумма произведений координат вектора \vec{u} на соответствующие коэффициенты при переменных уравнения равна нулю:

$$\vec{u}||l \Leftrightarrow Au_1 + Bu_2 = 0.$$

Доказательство. Согласно доказательству второй части основной теоремы о прямой на плоскости, вектор $\vec{a}(-B;A)$ является направляющим для l. Учитывая это и условие коллинеарности векторов в координатах, получим:

$$|\vec{u}||l \Leftrightarrow \vec{u}||\vec{a} \Leftrightarrow \begin{vmatrix} u_1 & u_2 \\ -B & A \end{vmatrix} = 0 \Leftrightarrow Au_1 + Bu_2 = 0.$$

Теорема 3. Прямая на плоскости l, заданная общим уравнением Ax + By + C = 0 в аффинной системе координат,

- 1. Проходит через начало системы координат O тогда и только тогда, когда свободный член уравнения l равен нулю: $O \in l \Leftrightarrow C = 0$.
- 2. Параллельна координатной прямой OX тогда и только тогда, когда коэффициент при переменной x уравнения l равен нулю, а свободный член уравнения не равен нулю: $l||OX \Leftrightarrow (A=0 \land C \neq 0)$.

3. Совпадает с координатной прямой OX тогда и только тогда, когда коэффициент при переменном x и свободный член уравнения l равны нулю: $l = OX \Leftrightarrow (A = 0 \land C = 0).$

Доказательство.

- 1. Действительно, прямая l будет проходит через начало системы координат тогда и только тогда, когда координаты полюса $x_0 = 0$ и $y_0 = 0$ удовлетворяют уравнению l, что возможно в том и только том случае, когда C = 0.
- 2. Прямая l будет параллельна OX тогда и только тогда, когда она параллельна первому базисному вектору \vec{e}_1 и не проходит через начало координат. Учитывая, что координаты вектора \vec{e}_1 равны 1 и 0, теорему 2 и первое утверждение теоремы, получим:

$$l||OX \Leftrightarrow (l||\vec{e}_1(1;0) \land O \notin l) \Leftrightarrow (A \cdot 1 + B \cdot 0 = 0 \land C \neq 0) \Leftrightarrow (A = 0 \land C \neq 0).$$

3. Прямая l будет совпадать с OX тогда и только тогда, когда она параллельна вектору $\vec{e_1}$ и проходит через начало координат: $A=0 \land C=0$.