8. Részletes tervek

54 – Override

Konzulens:

dr. László Zoltán

Csapattagok:

Kriván Bálint	CBVOEN	balint@krivan.hu
Jákli Gábor	ONZ5G1	j_gab666@hotmail.com
Dévényi Attila	L1YRH0	devenyiat@gmail.com
Apagyi Gábor	X8SG3T	apagyi.gabooo@gmail.com
Péter Tamás Pál	N5ZLEG	falconsaglevlist@gmail.com

Tartalomjegyzék

8	Rés	zletes tervek	4
	8.1.	Osztályok és metódusok tervei	4
		8.1.1. Osztály1	4
		8.1.2. Osztály2	4
	8.2.	A tesztek részletes tervei, leírásuk a teszt nyelvén	5
		8.2.1. Áramkörök betöltése	
		8.2.2. Alap áramkör	5
		8.2.3. MPX-es áramkör	6
		8.2.4. Visszacsatolt stabil áramkör	8
		8.2.5. Visszacsatolt nem stabil áramkör	9
		8.2.6. Flip-flop-os áramkör	10
		8.2.7. Kompozitos áramkör	11
			14
	8.3.	A tesztelést támogató programok tervei	15
	8.4.	Napló	15

Ábrák jegyzéke

8. Részletes tervek

8.1. Osztályok és metódusok tervei

8.1.1. Osztály1

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály → Ősosztály2 → Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

• Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.1.2. Osztály2

• Felelősség

[Mi az osztály felelőssége. Kb 1 bekezdés. Ha szükséges, akkor state-chart is.]

Ősosztályok

[Mely osztályokból származik (öröklési hierarchia) Legősebb osztály \to Ősosztály $2 \to$ Ősosztály3...]

Interfészek

[Mely interfészeket valósítja meg.]

Attribútumok

[Milyen attribútumai vannak]

- attribútum1: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- attribútum2: attribútum jellemzése: mire való, láthatósága (UML jelöléssel), típusa
- Metódusok

[Milyen publikus, protected és privát metódusokkal rendelkezik. Metódusonként precíz leírás, ha szükséges, activity diagram is a metódusban megvalósítandó algoritmusról.]

- int foo(Osztály3 o1, Osztály4 o2): metódus leírása, láthatósága (UML jelöléssel)
- int bar(Osztály5 o1): metódus leírása, láthatósága (UML jelöléssel)

8.2. A tesztek részletes tervei, leírásuk a teszt nyelvén

[A tesztek részletes tervei alatt meg kell adni azokat a bemeneti adatsorozatokat, amelyekkel a program mű-ködése ellenőrizhető. Minden bemenő adatsorozathoz definiálni kell, hogy az adatsorozat végrehajtásától a program mely részeinek, funkcióinak ellenőrzését várjuk és konkrétan milyen eredményekre számítunk, ezek az eredmények hogyan vethetők össze a bemenetekkel.]

8.2.1. Áramkörök betöltése

Minden teszteset elején betöltjük a megfelelő fájból az áramkört. Ezt mindig meg kell tenni, azonban csak egy esetben mutatjuk meg az egyszerűség és átláthatóság kedvéért.

Alap áramkör

loadCircuit test1.ovr

load successful

8.2.2. Alap áramkör

- Leírás
 - Olyan áramkör, melyben 2 kapcsolóval állíthatjuk egy ÉS kapu bemeneteit, melyet egy LED jelenít meg.
- Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrízzük a kapcsoló helyes váltását,az ÉS kapu kimenetének helyes kiszámítását és a LED működését
- Áramkör létrehozása

```
kapcs1=TOGGLE()
kapcs2=TOGGLE()
es=AND(kapcs1,kapcs2)
led=LED(es)
```

• Bemenet és kimenet

Bemenet	Kimenet
step	simulation successful
switch kapcs1	kapcs1: 0
step	kapcs2: 0
check -all	led: 0
switch kapcs2	
step	kapcs1: 1
	simulation successful
	kapcs1: 1
	kapcs2: 0
	led: 0
	led:
	in: 0
	out:
	kapcs1:
	in:
	out: 1
	kapcs2:
	in:
	out: 0
	es:
	in: 1, 0
	out: 0
	kapcs2: 1
	simulation successful
	kapcs1: 1
	kapcs2: 1
	led: 1

8.2.3. MPX-es áramkör

• Leírás

Olyan áramkört hozunk létre, melyben egy 7 szegmenses kijelzőt hajtunk meg kapcsolókkal és egy MPX-xel. A 7szegmenses kijelző [2]-[7] bemeneteire kapcsolókat kötünk, a [1] bemenetét egy MPX adja, mely 4 kapcsolóból választja ki az egyiket, tehát egy 4/1 es MPX.

• Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrízzük a MPX helyes működését, és a 7 szegmenses kijelzőt. Hiba a MPX kiválasztása során történhet, hogy rossz jelet juttat a kimenetére.

• Áramkör létrehozása

```
inmpx1=TOGGLE()
inmpx2=TOGGLE()
inmpx3=TOGGLE()
inmpx4=TOGGLE()
selmpx1=TOGGLE()
```

```
selmpx2=TOGGLE()
mux=MPX(inmpx1,inmpx2,inmpx3,inmpx4,selmpx1,selmpx2)
seg=TOGGLE()
display=7SEG(mux,seg,0,0,0,0,0)
```

• Bemenet és kimenet

Bemenet	Kimenet
 switch inmpx1	load successful
switch inmpx3	Toda Baccessiai
step	inmpx1: 1
switch selmpx2	Timpit. I
switch seg2	inmpx3: 1
step	Timpx3. I
switch selmpx2	 simulation successful
switch selmpx1	inmpx1: 1
step	inmpx2: 0
	inmpx3: 1
	inmpx4: 0
	selmpx1: 0
	selmpx2: 0
	seg: 0
	display: 1, 0, 0, 0, 0, 0
	selmpx2: 1
	seg: 1
	simulation successful
	inmpx1: 1
	inmpx2: 0
	inmpx3: 1
	inmpx4: 0
	selmpx1: 0
	selmpx2: 1
	seg: 1
	display: 1, 1, 0, 0, 0, 0, 0
	selmpx2: 0
	selmpx1: 1
	simulation successful
	inmpx1: 1
	inmpx2: 0
	inmpx3: 1
	inmpx4: 0
	selmpx1: 1
	selmpx2: 0
	seg: 1
	display: 0, 1, 0, 0, 0, 0, 0

8.2.4. Visszacsatolt stabil áramkör

Leírás

Egy olyan áramkört hozunk létre, melyben egy VAGY kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük a második bemenetére, illetve egy csomóponton keresztül egy LED-

re is eljuttatjuk.

Ellenőrzött funkcionalitás, várható hibahelyek
 Ellenőrízzük, hogy az áramkör helyesen stabilnak érzékeli e a kapcsolást, illetve a VAGY kapu helyes működését is ellenőrízzük. Hibát a visszakötés okozhat.

Áramkör létrehozása

```
kapcs=TOGGLE()
vagy=OR(kapcs,node[2])
node=NODE(vagy,2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet
step switch kapcs	load successful
step	simulation successful kapcs: 0 led: 0
	kapcs: 1
	simulation successful kapcs: 1 led: 1

8.2.5. Visszacsatolt nem stabil áramkör

• Leírás

Egy olyan áramkört hozunk létre, melyben egy ÉS kapu szerepel, aminek egyik bemenete egy kapcsoló, kimenetét pedig visszakötjük egy inverteren keresztül a második bemenetére, illetve egy csomóponton keresztül egy LED-re is eljuttatjuk.

• Ellenőrzött funkcionalitás, várható hibahelyek Ellenőrízzük, hogy az áramkör helyesen instabilnak érzékeli e a kapcsolást. Továbbá, hogy a hálózat helyesen egy bizonyos lépésszám után instabillá nyilvánítja e a hálózatot. Hibás működést ez okozhat, tehát ha az áramkör ezt rosszul állapítja meg, és nem jelzi.

Áramkör létrehozása

```
kapcs=TOGGLE()
inv=INV(node[2])
es=AND(kapcs,inv)
node=NODE(es,2)
led=LED(node[1])
```

• Bemenet és kimenet

Bemenet	Kimenet
switch kapcs step	load successful kapcs: 1 simulation failed

8.2.6. Flip-flop-os áramkör

• Leírás

Egy olyan áramkört hozunk létre, melyben egy JK flipflop szerepel, J és K bemenetére kapcsolókat kötünk, órajelét egy jelgenerátorból kapja, és a kimenetét egy oszcilloszkóp kapja meg.

Ellenőrzött funkcionalitás, várható hibahelyek
 Ellenőrízzük a jelgenerátort, hogy megfelelő jelet ad e ciklikusan, ellenőrízzük a JK flipflop működését, illetve, hogy megfelelelően lép e az órajelre, továbbá ellenőrízzük az oszcilloszkóp helyes működését.
 Hiba lehetséges a jelgenerátor működésében, a JK flipflop működésében illetve számolásában, és az oszcilloszkóp működésében.

• Áramkör létrehozása

```
j=TOGGLE()
k=TOGGLE()
seqgen=SEQGEN()
jk=FFJK(seqgen,j,k)
scope=SCOPE(jk, 3)
```

• Bemenet és kimenet

Bemenet	Kimenet
switch k	load successful
step	
step	k: 1
switch j	
step	simulation successful
step	j: 0
switch j switch k	k: 1
	seggen: 0
step step	scope: 0
Scep	simulation successful
	j: 0
	k: 1
	seqgen: 1
	scope: 00
	j: 1
	simulation successful
	j: 1
	k: 1
	seggen: 0
	scope: 000
	simulation successful
	j: 1
	k: 1
	seqgen: 1
	scope: 001
	j: 0
	k: 0
	simulation successful
	j: 0 k: 0
	k: 0 seqgen: 0
	seqgen: 0 scope: 011
	 simulation successful
	j: 0
	k: 0
	seqgen: 1
	scope: 111

8.2.7. Kompozitos áramkör

Leírás

Egy olyan áramkört valósítunk meg, melyben egy kompozit szerepel. Ez a kompozit egy 2 bites balról 2011. április 4.

tölthető shiftregisztert valósít meg. A kompozitnak két bemenete van egy kapcsoló ami a balról bejövő értéket adja, és egy jelgenerátor, amely az órajelet. Belül 2 D flipflop található összekötve. Az első flipflop kimenetét kiadja a kompozit kimenetén is, és a 2-ik flipflop bemenetére is adja, ezért NODE is kell. Kompozit kimenete a 2 bit és a carry.

- Ellenőrzött funkcionalitás, várható hibahelyek Kompozit helyes működését ellenőrízzük.
- Áramkör létrehozása

```
input=TOGGLE()
seqgen=SEQGEN()
composite SHR(clk, in) {
   in2 = NODE(in, 1)
   d1 = FFD(clk, in)
   node1 = NODE(d1,2)
   d2 = FFD(clk,node1[1])
} (in2, node1[2], d2)
myshr = SHR(seqgen, input)
led1=LED(myshr[1])
led2=LED(myshr[2])
ledcarry=LED(myshr[3])
```

• Bemenet és kimenet

Bemenet	Kimenet
switch input	load successful
step	
step	input: 1
switch input	1
step	simulation successful
step	input: 1
step	seggen: 0
step	led1: 1
-	led2: 0
	ledcarry: 0
	simulation successful
	input: 1
	seqgen: 1
	led1: 1
	led2: 1
	ledcarry: 1
	input: 0
	simulation successful
	input: 0
	seqgen: 0
	led1: 0
	led2: 1
	ledcarry: 1
	simulation successful
	input: 0
	seqgen: 1
	led1: 0
	led2: 0
	ledcarry: 0
	simulation successful
	input: 0
	seggen: 0
	led1: 0
	led2: 0
	ledcarry: 0
	simulation successful
	input: 0
	seggen: 1
	led1: 0
	led2: 0
	ledcarry: 0

8.2.8. Kompoziton belüli kompozitos áramkör

Leírás

Egy olyan áramkört hozunk létre melyben egy kompozit szerepel ami egy 4bites shiftregiszter. Ezt shiftregisztert úgy hozzuk létre, hogy a kompoziton belül 2db 2 bites shiftregiszter szerepel mint kompozitok. Kívülről csak a 4 bites shiftregisztert látjuk, ami belül 4 kompozittal jön létre. 4 bit és carry kimeneteket leden jelezzük, míg az input és órajel bemenetét kapcsolóval és jelgenerátorral adjuk.

Ellenőrzött funkcionalitás, várható hibahelyek
 Leteszteljük, hogy működik e a kompozit elem, ha belül bonyolultabb áramköri hálózat szerepel, egy kompozit, illetve jelen esetben több kompozit.

Áramkör létrehozása

```
composite SHR2BIT(clk,in) {
    nodeclk=NODE(clk,2)
    d1=FFD (nodeclk[1], in)
    node1=NODE(d1,2)
    d2=FFD (nodeclk[2], node1[2])
    node2 = NODE(d2, 2)
} (node1[1], node2[2], node2[2])
input=TOGGLE() \newline
seqgen=SEQGEN()
composite SHR4BIT(clk,in){
    nodeclk=NODE(clk,2)
    shr2bit_1=SHR2BIT (nodeclk[1],in)
    shr2bit_2=SHR2BIT(nodeclk[2], shr2bit[3])
} (shr2bit_2[2], shr2bit_2[1], shr2bit_1[2], shr2bit_1[1], shr2bit_2[3])
my4bitshr=SHR4BIT(clk,in)
ledbit1=LED (my4bitshr[1])
ledbit2=LED (my4bitshr[2])
ledbit3=LED (my4bitshr[3])
ledbit4=LED (my4bitshr[4])
ledcarry=LED (my4bitshr[5])
```

• Bemenet és kimenet

Bemenet	Kimenet
switch input	copy-paste from netbeams
step	
step	
step	
step	
switch input	
step	
step	
switch input	
step	
step	

8.3. A tesztelést támogató programok tervei

[A tesztadatok előállítására, a tesztek eredményeinek kiértékelésére szolgáló segédprogramok részletes terveit kell elkészíteni.]

8.4. Napló

Kezdet	Időtartam	Résztvevők	Leírás
2011.04.01. 15:00	2,5 óra	Péter T.	Tesztesetek megtervezése, leírása, felépítésük
			megadása a bemeneti nyelvnek megfelelően
2011.04.02. 10:00	3 óra	Apagyi G.	Tesztesetek felhasználói interakciójának, il-
			letve várt kimeneteinek megtervezése.
		•••	