

FIGURE 12-20 Frequency distribution with log of user score

FIGURE 12-21 Frequency distribution of new user scores

Another idea may be to analyze the stability of price distributions over time to see if the prices offered to customers are stable or volatile. As shown in a graphic such as Figure 12-22, the prices appear to be stable. In this example, the user score of pricing remains within a tight band between two and three regardless of the time in days. In other words, the time in which a customer purchases a given product does not significantly influence the price she is willing to pay, as expressed by the user score, shown on the y-axis.

FIGURE 12-22 Graph of stability analysis for pricing

By this point the data scientist has learned the following about this example and made several observations about the data:

- Most user scores are between two and three in terms of their price sensitivity.
- After taking the log value of the user scores, a new user scoring index was created, which recentered
 the data values around the center of the distribution.
- The pricing scores appear to be stable over time, as the duration of the customer does not seem to
 have significant influence on the user pricing score. Instead, it appears to be relatively constant over
 time, within a small band of user scores.

At this point, the analysts may want to explore the range of price tiers offered to customers. Figures 12-22 and 12-23 demonstrate examples of the price tiering currently in place within the customer base.

Figure 12-23 shows the price distribution for a customer base. In this example, loyalty score and price are positively correlated; as the loyalty score increases, so do the prices that the customers are willing to pay. It may seem like a strange phenomenon that the most loyal customers in this example are willing to pay higher prices, but the reality is that customers who are very loyal tend to be less sensitive to price fluctuations or increases. The key, however, is to understand which customers are highly loyal so that appropriate pricing can be charged to the right groups of people.

Figure 12-24 shows a variation on 12-23. In this case, the new graphic portrays the same customer price tiers, but this time a rug representation (Chapter 3) has been added at the bottom to reflect the distribution of the data points.

FIGURE 12-23 Graph comparing the price in U.S. dollars with a customer loyalty score

FIGURE 12-24 Graph comparing the price in U.S. dollars with a customer loyalty score (with rug representation)

This rug indicates that the majority of customers in this example are in a tight band of loyalty scores, between about 1 and 3 on the x-axis, all of which offered the same set of prices, which are high (between 0.9 and 1.0 on the y-axis). The y-axis in this example may represent a pricing score, or the raw value of a customer in millions of dollars. The important aspect is to recognize that the pricing is high and is offered consistently to most of the customers in this example.

Based on what was shown in Figure 12-25, the team may decide to develop a new pricing model. Rather than offering static prices to customers regardless of their level of loyalty, a new pricing model might offer more dynamic price points to customers. In this visualization, the data shows the price increases as more of a curvilinear slope relative to the customer loyalty score. The rug at the bottom of the graph indicates that most customers remain between 1 and 3 on the x-axis, but now rather than offering all these customers the same price, the proposal suggests offering progressively higher prices as customer loyalty increases. In one sense, this may seem counterintuitive. It could be argued that the best prices should be offered to the most loyal customers. However, in reality, the opposite is often the case, with the most attractive prices being offered to the least loyal customers. The rationale is that loyal customers are less price sensitive and may enjoy the product and stay with it regardless of small fluctuations in price. Conversely, customers who are not very loyal may defect unless they are offered more attractive prices to stay. In other words, less loyal customers are more price sensitive. To address this issue, a new pricing model that accounts for this may enable an organization to maximize revenue and minimize attrition by offering higher prices to more loyal customers and lower prices to less loyal customers. Creating an iterative depicting the data visually allows the viewer to see these changes in a more concrete way than by looking at tables of numbers or raw values.

FIGURE 12-25 New proposed pricing model compared to prices in U.S. dollars with rug

Data scientists typically iterate and view data in many different ways, framing hypotheses, testing them, and exploring the implications of a given model. This case explores visual examples of pricing distributions, fluctuations in pricing, and the differences in price tiers before and after implementing a new model to optimize price. The visualization work illustrates how the data may look as the result of the model, and helps a data scientist understand the relationships within the data at a glance.

The resulting graph in the pricing scenario appears to be technical regarding the distribution of prices throughout a customer base and would be suitable for a technical audience composed of other data scientists. Figure 12-26 shows an example of how one may present this graphic to an audience of other data scientists or data analysts. This demonstrates a curvilinear relationship between price tiers and customer loyalty when expressed as an index. Note that the comments to the right of the graph relate to the precision of the price targeting, the amount of variability in robustness of the model, and the expectations of model speed when run in a production environment.

Figure 12-26 Evolution of a graph, analyst example with supporting points

Figure 12-27 portrays another example of the output from the price optimization project scenario, showing how one may present this to an audience of project sponsors. This demonstrates a simple bar chart depicting the average price per customer or user segment. Figure 12-27 shows a much simpler-looking visual than Figure 12-26. It clearly portrays that customers with lower loyalty scores tend to get lower prices due to targeting from price promotions. Note that the right side of the image focuses on the business impact and cost savings rather than the detailed characteristics of the model.

FIGURE 12-27 Evolution of a graph, sponsor example

The comments to the right side of the graphic in Figure 12-27 explain the impact of the model at a high level and the cost savings of implementing this approach to price optimization.

12.3.3 Common Representation Methods

Although there are many types of data visualizations, several fundamental types of charts portray data and information. It is important to know when to use a particular type of chart or graph to express a given kind of data. Table 12-3 shows some basic chart types to guide the reader in understanding that different types of charts are more suited to a situation depending on specific kinds of data and the message the team is attempting to portray. Using a type of chart for data it is not designed for may look interesting or unusual, but it generally confuses the viewer. The objective for the author is to find the best chart for expressing the data clearly so the visual does not impede the message, but rather supports the reader in taking away the intended message.

TABLE 12-3 Common Representation Methods for Data and Charts

Data for Visualization	Type of Chart
Components (parts of whole)	Pie chart
Item	Bar chart
Time series	Line chart
Frequency	Line chart or histogram
Correlation	Scatterplot, side-by-side bar charts

Table 12-3 shows the most fundamental and common data representations, which can be combined, embellished, and made more sophisticated depending on the situation and the audience. It is recommended

that the team consider the message it is trying to communicate and then select the appropriate type of visual to support the point. Misusing charts tends to confuse an audience, so it is important to take into account the data type and desired message when choosing a chart.

Pie charts are designed to show the components, or parts relative to a whole set of things. A pie chart is also the most commonly misused kind of chart. If the situation calls for using a pie chart, employ it only when showing only 2–3 items in a chart, and only for sponsor audiences.

Bar charts and line charts are used much more often and are useful for showing comparisons and trends over time. Even though people use vertical bar charts more often, horizontal bar charts allow an author more room to fit the text labels. Vertical bar charts tend to work well when the labels are small, such as when showing comparisons over time using years.

For frequency, histograms are useful for demonstrating the distribution of data to an analyst audience or to data scientists. As shown in the pricing example earlier in this chapter, data distributions are typically one of the first steps when visualizing data to prepare for model planning. To qualitatively evaluate correlations, scatterplots can be useful to compare relationships among variables.

As with any presentation, consider the audience and level of sophistication when selecting the chart to convey the intended message. These charts are simple examples but can easily become more complex when adding data variables, combining charts, or adding animation where appropriate.

12.3.4 How to Clean Up a Graphic

Many times software packages generate a graphic for a dataset, but the software adds too many things to the graphic. These added visual distractions can make the visual appear busy or otherwise obscure the main points that are to be made with the graphic. In general, it is a best practice to strive for simplicity when creating graphics and data visualization graphs. Knowing how to simplify graphics or clean up a messy chart is helpful for conveying the key message as clearly as possible. Figure 12-28 portrays a line chart with several design problems.

Figure 12-28 How to clean up a graphic, example 1 (before)

How to Clean Up a Graphic

The line chart shown in Figure 12-28 compares two trends over time. The chart looks busy and contains a lot of chart junk that distracts the viewer from the main message. *Chart junk* refers to elements of data visualization that provide additional materials but do not contribute to the data portion of the graphic. If chart junk were removed, the meaning and understanding of the graphic would not be diminished; it would instead be made clearer. There are five main kinds of "chart junk" in Figure 12-28:

- Horizontal grid lines: These serve no purpose in this graphic. They do not provide additional information for the chart.
- **Chunky data points:** These data points represented as large square blocks draw the viewer's attention to them but do not represent any specific meaning aside from the data points themselves.
- Overuse of emphasis colors in the lines and border: The border of the graphic is a thick, bold line.
 This forces the viewer's attention to the perimeter of the graphic, which contains no information value. In addition, the lines showing the trends are relatively thick.
- No context or labels: The chart contains no legend to provide context as to what is being shown. The lines also lack labels to explain what they represent.
- Crowded axis labels: There are too many axis labels, so they appear crowded. There is no need for labels on the y-axis to appear every five units or for values on the x-axis to appear every two units. Shown in this way, the axis labels distract the viewer from the actual data that is represented by the trend lines in the chart

The five forms of chart junk in Figure 12-28 are easily corrected, as shown in Figure 12-29. Note that there is no clear message associated with the chart and no legend to provide context for what is shown in Figure 12-28.

FIGURE 12-29 How to clean up a graphic, example 1 (after)

FIGURE 12-30 How to clean up a graphic, example 1 (alternate "after" view)

Figures 12-29 and 12-30 portray two examples of cleaned-up versions of the chart shown in Figure 12-28. Note that the problems with chart junk have been addressed. There is a clear label and title for each chart to reinforce the message, and color has been used in ways to highlight the point the author is trying to make. In Figure 12-29, a strong, green color is shown to represent the count of SuperBox stores, because this is where the viewer's focus should be drawn, whereas the count of BigBox stores is shown in a light gray color.

In addition, note the amount of white space being used in each of the two charts shown in Figures 12-29 and 12-30. Removing grid lines, excessive axes, and the visual noise within the chart allows clear contrast between the emphasis colors (the green line charts) and the standard colors (the lighter gray of the BigBox stores). When creating charts, it is best to draw most of the main visuals in standard colors, light tones, or color shades so that stronger emphasis colors can highlight the main points. In this case, the trend of BigBox stores in light gray fades into the background but does not disappear, while making the SuperBox stores trend in a darker gray (bright green in the online chart) makes it prominent to support the message the author is making about the growth of the SuperBox stores.

An alternative to Figure 12-29 is shown in Figure 12-30. If the main message is to show the difference in the growth of new stores, Figure 12-30 can be created to further simplify Figure 12-28 and graph only the difference between SuperBox stores compared to regular BigBox stores. Two examples are shown to illustrate different ways to convey the message, depending on what it is the author of these charts would like to emphasize.

How to Clean Up a Graphic, Second Example

Another example of cleaning up a chart is portrayed in Figure 12-31. This vertical bar chart suffers from more of the typical problems related to chart junk, including misuse of color schemes and lack of context.

FIGURE 12-31 How to clean up a graphic, example 2 (before)

There are five main kinds of chart junk in Figure 12-31:

- Vertical grid lines: These vertical grid lines are not needed in this graphic. They provide no additional
 information to help the viewer understand the message in the data. Instead, these vertical grid lines
 only distract the viewer from looking at the data.
- Too much emphasis color: This bar chart uses strong colors and too much high-contrast dark grayscale. In general, it is best to use subtle tones, with a low contrast gray as neutral color, and then emphasize the data underscoring the key message in a dark tone or strong color.
- No chart title: Because the graphic lacks a chart title, the viewer is not oriented to what he is viewing
 and does not have proper context.
- Legend at right restricting chart space: Although there is a legend for the chart, it is shown on the
 right side, which causes the vertical bar chart to be compressed horizontally. The legend would make
 more sense placed across the top, above the chart, where it would not interfere with the data being
 expressed.
- Small labels: The horizontal and vertical axis labels have appropriate spacing, but the font size is
 too small to be easily read. These should be slightly larger to be easily read, while not appearing too
 prominent.

Figures 12-32 and 12-33 portray two examples of cleaned-up versions of the chart shown in Figure 12-31. The problems with chart junk have been addressed. There is a clear label and title for each chart to reinforce the message, and appropriate colors have been used in ways to highlight the point the author is trying to make. Figures 12-32 and 12-33 show two options for modifying the graphic, depending on the main point the presenter is trying to make.

Figure 12-32 shows strong emphasis color (dark blue) representing the SuperBox stores to support the chart title: Growth of SuperBox Stores.

FIGURE 12-32 How to clean up a graphic, example 2 (after)

Suppose the presenter wanted to talk about the total growth of BigBox stores instead. A line chart showing the trends over time would be a better choice, as shown in Figure 12-33.

FIGURE 12-33 How to clean up a graphic, example 2 (alternate view of "after")

In both cases, the noise and distractions within the chart have been removed. As a result, the data in the bar chart for providing context has been deemphasized, while other data has been made more prominent because it reinforces the key point as stated in the chart's title.

12.3.5 Additional Considerations

As stated in the previous examples, the emphasis should be on simplicity when creating charts and graphs. Create graphics that are free of chart junk and utilize the simplest method for portraying graphics clearly. The goal of data visualization should be to support the key messages being made as clearly as possible and with few distractions.

Similar to the idea of removing chart junk is being cognizant of the data-ink ratio. *Data-ink* refers to the actual portion of a graphic that portrays the data, while *non-data ink* refers to labels, edges, colors, and other decoration. If one imagined the ink required to print a data visualization on paper, the data-ink ratio could be thought of as (data-ink)/(total ink used to print the graphic). In other words, the greater the ratio of data-ink in the visual, the more data rich it is and the fewer distractions it has [4].

Avoid Using Three-Dimensions in Most Graphics

One more example where people typically err is in adding unnecessary shading, depth, or dimensions to graphics. Figure 12-34 shows a vertical bar chart with two visible dimensions. This example is simple and easy to understand, and the focus is on the data, not the graphics. The author of the chart has chosen to highlight the SuperBox stores in a dark blue color, while the BigBox bars in the chart are in a lighter blue. The title is about the growth of SuperBox stores, and the SuperBox bars in the chart are in a dark, high-contrast shade that draws the viewer's attention to them.

FIGURE 12-34 Simple bar chart, with two dimensions

Compare Figure 12-34 to Figure 12-35, which shows a three-dimensional chart. Figure 12-35 shows the original bar chart at an angle, with some attempt at showing depth. This kind of three-dimensional perspective makes it more difficult for the viewer to gauge the actual data and the scaling becomes deceptive.

Three-dimensional charts often distort scales and axes, and impede viewer cognition. Adding a third dimension for depth in Figure 12-35, does not make it fancier, just more difficult to understand.

FIGURE 12-35 Misleading bar chart, with three dimensions

The charts in Figures 12-34 and 12-35 portray the same data, but it is more difficult to judge the actual height of the bars in Figure 12-35. Moreover, the shadowing and shape of the chart cause most viewers to spend time looking at the perspective of the chart rather than the height of the bars, which is the key message and purpose of this data visualization.

Summary

Communicating the value of analytical projects is critical for sustaining the momentum of a project and building support within organizations. This support is instrumental in turning a successful project into a system or integrating it properly into an existing production environment. Because an analytics project may need to be communicated to audiences with mixed backgrounds, this chapter recommends creating four deliverables to satisfy most of the needs of various stakeholders.

- A presentation for a project sponsor
- A presentation for an analytical audience
- Technical specification documents
- Well-annotated production code

Creating these deliverables enables the analytics project team to communicate and evangelize the work that it did, whereas the code and technical documentation assists the team that wants to implement the models within the production environment.

This chapter illustrates the importance of selecting clear and simple visual representations to support the key points in the final presentations or for portraying data. Most data representations and graphs can be improved by simply removing the visual distractions. This means minimizing or removing chart junk, which distracts the viewer from the main purpose of a chart or graph and does not add information value.

Following several common-sense principles about minimizing distractions in slides and visualizations, communicating clearly and simply, using color in a deliberate way, and taking time to provide context addresses most of the common problems in charts and slides. These few guidelines support the creation of crisp, clear visuals that convey the key messages.

In most cases, the best data visualizations use the simplest, clearest visual to illustrate the key point. Avoid unnecessary embellishment and focus on trying to find the best, simplest method for transmitting the message. Context is critical to orient the viewer to a chart or graph, because people have immediate reactions to imagery on a precognitive level. To this end, make sure to employ thoughtful use of color and orient the viewer with scales, legends, and axes.

Exercises

- 1. Describe four common deliverables for an analytics project.
- 2. What is the focus of a presentation for a project sponsor?
- Give examples of appropriate charts to create in a presentation for other data analysts and data scientists as part of a final presentation. Explain why the charts are appropriate to show each audience.
- 4. Explain what types of graphs would be appropriate to show data changing over time and why.
- 5. As part of operationalizing an analytics project, which deliverable would you expect to provide to a Business Intelligence analyst?

References and Further Reading

Following are additional references to learn more about best practices for giving presentations.

- Say It with Charts, by Gene Zelazny[3]: Simple reference book on how to select the right graphical
 approach for portraying data and for ensuring the message is clearly conveyed in presentations.
- Pyramid Principle, by Barbara Minto [5]: Minto pioneered the approach for constructing logical structures for presentations in threes: three sections to the presentations, each with three main points. This teaches people how to weave a story out of the disparate pieces.
- Presentation Zen, by Garr Reynolds [6]: Teaches how to convey ideas simply and clearly and use imagery in presentations. Shows many before and after versions of graphics and slides.
- Now You See It, by Stephen Few [4]: Provides many examples for matching the appropriate kind of
 data visualization to a given dataset.

Bibliography

- [1] N. Yau, "flowingdata.com" [Online]. Available: http://flowingdata.com.
- [2] N. Yau, Visualize This, Indianapolis: Wiley, 2011.
- [3] G. Zelazny, Say It with Charts: The Executive's Guide to Visual Communication, McGraw-Hill, 2001.
- [4] S. Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis, Analytics Press, 2009.
- [5] B. Minto, *The Minto Pyramid Principle: Logic in Writing, Thinking, and Problem Solving*, Prentice Hall, 2010.
- [6] G. Reynolds, *Presentation Zen: Simple Ideas on Presentation Design and Delivery*, Berkeley: New Riders, 2011.

Index

Numbers & Symbols	technical specifications, 376–377
\ (backward slash) as separator, 69	analytic sandboxes. See sandboxes
/ (forward slash) as separator, 69	analytical architecture, 13–15
1-itemsets, 147	analytics
2-itemsets, 147 2-itemsets, 148–149	business drivers, 11
	examples, 22–23
3 Vs (volume, variety, velocity), 2–3 3-itemsets, 149–150	new approaches, 16–19
	ANOVA, 110–114
4-itemsets, 150–151	Anscombe's quartet, 82–83
	aov() function, 78
A	Apache Hadoop. See Hadoop
accuracy, 225	APIs (application programming interfaces), Hadoop, 304–305
ACF (autocorrelation function), 236–237	apriori() function, 146, 152-157
ACME text analysis example, 259–260	Apriori algorithm, 139
raw text collection, 260–263	grocery store example, 143
aggregates (SQL)	Groceries dataset, 144–146
ordered, 351–352	itemset generation, 146–151
user-defined, 347–351	rule generation, 152–157
aggregators of data, 18	itemsets, 139, 140–141
AIE (Applied Information Economics), 28	counting, 158
algorithms	partitioning and, 158
3	sampling and, 158
clustering, 134–135 decision trees, 197–200	transaction reduction and, 158
C4.5, 203–204	architecture, analytical, 13–15
	arima() function, 246
CART, 204 ID3, 203	ARIMA (Autoregressive Integrated Moving Average) model,
Alphine Miner, 42	236
•	ACF, 236–237
alternative hypothesis, 102–103	ARMA model, 241–244
analytic projects	autoregressive models, 238–239
Approach, 369–371	building, 244–252
Bl analyst, 362	cautions, 252–253
business users, 361 code, 362, 376–377	constant variance, 250–251
communication, 360–361	evaluating, 244–252
	fitted time series models, 249–250
data engineer, 362 data scientists, 362	forecasting, 251–252
DBA (Database Administrator), 362	moving average models, 239–241
deliverables, 362–364	normality, 250–251
	PACF, 238–239
audiences, 364–365 core material, 364–365	reasons to choose, 252–253
key points, 372	seasonal autoregressive integrated moving average
Main Findings, 367–369	model, 243–244
model description, 371	VARIMA, 253
model details, 372–374	ARMA (Autoregressive Moving Average) model, 241–244
operationalizing, 360–361	array() function, 74
	arrays
outputs, 361	matrices, 74
presentations, 362	R, 74–75
Project Goals, 365–367	association rules, 138–139
project manager, 362	application, 143
project sponsor, 361	candidate rules, 141–142
recommendations, 374–375	diagnostics, 158
stakeholders, 361–362	a.ag,

testing and, 157–158	case folding in text analysis, 264–265
validation, 157–158	categorical algorithms, 205
attributes	categorical variables, 170–171
objects, k-means, 130–131	cbind() function,78
R, 71–72	centroids, 120–122
AUC (area under the curve), 227	starting positions, 134
autoregressive models, 238–239	character data types, R, 72
averages, moving average models, 239–241	charts, 386–387
	churn rate (customers),
	120
В	logistic regression, 180–181
bagging, 228	class() function,72
bag-of-words in text analysis,	classification
265–266	bagging, 228
banking, 18	boosting, 228–229
barplot() function, 88	bootstrap aggregation, 228
barplots, 93–94	decision trees, 192–193
•	algorithms, 197–200, 203–204
Bayes' Theorem, 212–214. See also naïve Bayes	binary decisions, 206
conditional probability, 212 BI (business intelligence)	branches, 193
3	categorical attributes, 205
analytical tools, 10	classification trees, 193
versus Data Science, 12–13	correlated variables, 206
Big Data	decision stump, 194
3 Vs, 2–3	evaluating, 204–206
analytics, examples, 22–23	greedy algorithm, 204
characteristics, 2	internal nodes, 193
definitions, 2–3	irrelevant variables, 205
drivers, 15–16	nodes, 193
ecosystem, 16–19	numerical attributes, 205
key roles, 19–22	R and, 206–211
McKinsey & Co. on, 3	redundant variables, 206
volume, 2–3	regions, 205
boosting, 228–229	regression trees, 193
bootstrap aggregation, 228	root, 193
box-and-whisker plots, 95–96	short trees, 194
Box-Jenkins methodology, 235–236	splits, 193, 194, 197, 200–203
ARIMA model, 236	structure, 205
branches (decision trees), 193	uses, 194
Brown Corpus, 267–268	naïve Bayes, 211–212
business drivers for analytics, 11	Bayes' theorem, 212–214
Business Intelligence Analyst, Operationalize phase,	diagnostics, 217–218
52	naïve Bayes classifier, 214–217
Business Intelligence Analyst role, 27	R and, 218–224
Business User, Operationalize phase, 52	smoothing, 217
Business User role, 27	classification trees, 193
buyers of data, 18	classifiers
	accuracy, 225
	diagnostics, 224–228
C	recall, 225
C4.5 algorithm, 203–204	recail, 225 clickstream, 9
3 ,	,
cable TV providers, 17	clustering, 118
candidate rules, 141–142	algorithms, 134–135
CART (Classification And Regression Trees), 204	centroids, 120–122

starting positions, 134	data analysis, exploratory, 80-82
diagnostics, 128–129	visualization and, 82–85
k-means, 118–119	Data Analytics Lifecycle
algorithm, 120–122	Business Intelligence Analyst role, 27
customer segmentation, 120	Business User role, 27
image processing and, 119	Communicate Results phase, 30, 49–50
medical uses, 119	GINA case study, 58–59
reasons to choose, 130–134	Data Engineer role, 27–28
rescaling, 133–134	Data preparation phase, 29,
units of measure, 132–133	36–37
labels, 127	Alpine Miner, 42
number of clusters, 123–127	data conditioning, 40–41
code, technical specifications in project, 376–377	data visualization, 41–42
coefficients, linear regression, 169	Data Wrangler, 42
combiners, 302–303	dataset inventory, 39–40
Communicate Results phase of lifecycle, 30, 49–50	ETLT, 38-39
components, short trees as, 194	GINA case study, 55–56
conditional entropy, 199	Hadoop, 42
conditional probability, 212	OpenRefine, 42
naïve Bayes classifier, 215–216	sandbox preparation, 37–38
confidence, 141–142	tools, 42
outcome, 172	Data Scientist role, 28
parameters, 171	DBA (Database Administrator) role, 27
confidence interval, 107	Discovery phase, 29
confint() function, 171	business domain, 30–31
confusion matrix, 224, 280	data source identification, 35–36
contingency tables, 79	framing, 32–33
continuous variables, discretization, 211	GINA case study, 54–55
corpora	hypothesis development, 35
Brown Corpus, 267–268	resources, 31–32
corpora in Natural Language Processing, 256	sponsor interview, 33–34
IC (information content), 268–269	stakeholder identification, 33
sentiment analysis and, 278	GINA case study, 53–60
correlated variables, 206	Model Building phase, 30, 46–48
credit card companies, 2	Alpine Miner, 48
CRISP-DM, 28	GINA case study, 56–58
crowdsourcing, 17	Mathematica, 48
CSV (comma-separated-value) files, 64–65	Matlab, 48
importing, 64–65	Octave, 48
customer segmentation	PL/R, 48
k-means, 120	Python, 48
logistic regression, 180–181	R, 48
CVS files, 6	SAS Enterprise Miner, 48
cyclic components of time series analysis, 235	SPSS Modeler, 48
	SQL, 48
D	STATISTICA, 48
	WEKA, 48
data	Model Planning phase, 29–30, 42–44
growth needs, 9–10	data exploration, 44–45
sources, 15–16	GINA case study, 56
data () function, 84 data aggregators, 17–18	model selection, 45 R. 45–46
uata auur Cuaturs, 17-10	n. 4.7–40

SQL Analysis services, 46 variable selection, 44–45 Operationalize phase, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Engineer and, 52 DBA (Database Administrator) and, 52 GISHA case study, 59–60 Project Manager and, 52 Project Manager and, 52 Project Sponsor and, 52 Project Sponsor role, 27 roles, 26–28 data buyers, 18 data cleansing, 86 data buyers, 18 data cleansing, 86 data conditioning, 40–41 data ceration rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Data Conditioning, 40–41 data visualization, 41–42 dat	SAS/ACCESS, 46	data types in R, 71–72
Operationalize phase, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 GBA (Database Administrator) and, 52 GBA (Database Administrator) and, 52 GBA (Database Administrator) and, 52 GGobi, 377–378 GINA case study, 59–60 Project Manager and, 52 Project Sponsor and, 52 Project Sponsor role, 27 roles, 26–28 Project Sponsor role, 27 roles, 26–28 data buyers, 18 data conditioning, 40–41 data canditioning, 40–41 data creation rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 data frames, 75–76 data conditioning, 40–41 data frames, 75–76 data conditioning, 40–41 data frames, 75–76 data frames, 75–76 data frames, 75–76 data conditioning, 40–41 data frames, 75–76 data frames, 75–76 data conditioning, 40–41 data frames, 75–76 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETIT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus Bl, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6	SQL Analysis services, 46	character, 72
Business Intelligence Analyst and, 52 Business Devar and, 52 Data Engineer and, 52 Data Engineer and, 52 Data Scientist and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 GBNA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 Project Sponsor and, 52 Project Sponsor role, 27 Project Manager role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Rev points with support, 378–379 roles, 26–28 data buyers, 18 SDA (Database Administrator) and 378 data clearsing, 86 data calearsing, 86 data calearsing, 86 data calearsing, 86 data conditioning, 40–41 data creation rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 Data Engineer role, 27–28 data formats, text analysis, 257 Data Engineer role, 27–28 data formats, text analysis, 257 Data Engineer role, 27–28 data formats, text analysis, 257 DBA (Database Administrator), 10, 27 Operational phase and, 52 data amarts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data situit, 40 data visualization, 41–42 dataset inventory, 39–40 ETIT, 38–39 greedy, 204 ETIT, 38–39 greedy, 204 Data Scientists, 28 carbitities, 20–21 business challenges, 20 Data Scientists, 28 carbitities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6	variable selection, 44–45 logical, 72	
Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 CSS and, 378 DBA (Database Administrator) and, 52 GINA case study, 59–60 Project Manager and, 52 Project Manager and, 52 Project Sponsor and, 52 Project Sponsor role, 27 Project S	Operationalize phase, 30, 50-53, 360	numeric, 72
Data Engineer and, 52 Data Scientist and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 GINA case study, 59–60 Project Manager and, 52 Project Sponsor role, 27 Rey points with support, 378–379 Rey points with support, 378 Rey points with support, 37	Business Intelligence Analyst and, 52	vectors, 73–74
Data Scientist and, 52 DBA (Database Administrator) and, 52 GINA case study, 59–60 Gruplot, 377–378 Groward Robert Science Sci	Business User and, 52	data users, 18
Data Scientist and, 52 DBA (Database Administrator) and, 52 GINA case study, 59–60 Gruplot, 377–378 Groward Robert Science Sci	Data Engineer and, 52	data visualization, 41–42, 377–378
DBA (Database Administrator) and, 52 GINA Case study, 59–60 Project Manager and, 52 Project Sponsor and, 52 Project Manager role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Project Manager role, 27 Project Sponsor role, 27 Reproject Sponsor role, 27 Project Manager role, 27 Project Sponsor role, 27 Project Spo	_	
GINA case study. 59–60 Project Manager and, 52 Project Sponsor and, 52 processes, 28 Project Manager role, 27 Project Manager role, 27 Project Sponsor role, 27 roles, 26–28 data buyers, 18 data cleansing, 86 data cleansing, 86 data calcansing, 86 data conditioning, 40–41 data conditioning, 40–41 data ceration rate, 3 exporting, R and, 69–71 importing, R and,		
Project Manager and, 52 Project Sponsor and, 52 Project Sponsor and, 52 Project Sponsor and, 52 Project Manager role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Project Sponsor role, 27 Rey points with support, 378–379 Points with support, 378–379 Pota data conditioning, 40–41 data conditioning, 40–41 data frames, 75–76 data farmes, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 Joan Savy Professionals, 20 Data Savy Professionals, 20 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6		
Project Sponsor and,52 processes, 28 Project Manager role, 27 Project Sponsor role, 27 Rey points with support, 378–379 Page Sponsor Age Sponsor Rey Sy Gand, 378 data cleansing, 86 data warehouses, 11 Data Wrangler, 42 datasets data carditioning, 40–41 data creation rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Date Engineer role, 27–28 Date Engineer role, 27–28 Date Ingineer role, 27–28 Date Ingineer role, 27–28 Date Alagorithms, 193 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 Categorical, 205 data repositories, 9–11 Data Savny Professionals, 20 Data Science versus BI, 12–13 Data Scie	•	• •
processes, 28 Project Manager role, 27 Project Sponsor role, 27 Project Project Role, 38 Project Sponsor role, 28 Project Sponsor role, 28 Project Sponsor role, 29 Project Sponsor role, 29 Project	· -	
Project Manager role, 27 Project Sponsor role, 27 Pada Barbard Sponsor role, 27 Pada Waragler, 42 Padata Carditioning, 40–41 Pada Catacomorphic, 27–28 Pada Engineer, Operationalize phase, 52 Pada Engineer, Operationalize phase, 52 Pada Engineer role, 27–28 Pada Formats, text analysis, 257 Pada Engineer role, 27–28 Pada Formats, text analysis, 257 Pada Farmes, 75–76 Pada Formats, 10 Pada Preparation phase of lifecycle, 29, 36–37 Pada Preparation phase of lifecycle, 29, 36–37 Pada Project Pro		·
Project Sponsor role, 27 key points with support, 378–379 roles, 26–28 representation methods, 386–387 studies buyers, 18 data buyers, 18 data buyers, 18 data cleansing, 86 data warehouses, 11 data conditioning, 40–41 data creation rate, 3 exporting, R and, 69–71 importing, R and, 69–71 data ceretion rate, 3 data devices, 17 morting, R and, 69–71 inventory, 39–40 data framers, 75–76 data framers, 75–76 Davenport, Tom, 28 data formats, text analysis, 257 data framers, 75–76 data marts, 10 Data Preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 categorical, 205 greedy, 204 dataset inventory, 39–40 categorical, 205 greedy, 204 dataset inventory, 39–40 categorical, 205 data repositories, 9–11 dispatch of the prositories, 9–11 dispatch of the prositories, 20–21 business challenges, 20 derivatives, 20–21 business challenges, 20 department, 204 depth, 193 data scientists, 28 activities, 20–21 depth, 193 destance of the prositories of text analysis, 257 data structured data, 6 structu	•	
roles, 26–28 data buyers, 18 data buyers, 18 data buyers, 18 data cleansing, 86 data cleansing, 86 data collectors, 17 data conditioning, 40–41 data conditioning, 40–41 data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 data formats, text analysis, 257 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data orditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Questional phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Questional phase and, 52 regression trees, 193 rirelevant variables, 206 regions, 205 regression trees, 193 rirelevant variables, 206 regions, 205 regression trees, 193 root, 193 short trees, 194	, -	
data buyers, 18 data cleansing, 86 data warehouses, 11 data collectors, 17 data conditioning, 40–41 data sets data creation rate, 3 data devices, 17 Data Brand, 69–71 morning, R and, 69–71 morning,		, ,
data cleansing, 86 data warehouses, 11 data collectors, 17 data conditioning, 40–41 data creation rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 data farames, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data visualization, 41–42 data visualization, 41–42 data visualization, 41–42 data repositories, 9–11 Data Savay Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data fructured data, 6 structured data, 6 struc		•
data collectors, 17 data conditioning, 40–41 data creation rate, 3 exporting, R and, 69–71 importing, R and, 69–71 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 data formats, text analysis, 257 data formats, text analysis, 257 data formats, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data set inventory, 39–40 ETIL, 38–39 sandbox preparation, 37–38 data repositories, 9–11 Data Savy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 structured structured data, 6 structured	•	
data conditioning, 40–41 data creation rate, 3 exporting, R and, 69–71 importing, R and, 69–71 and and devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 DBA (Database Administrator), 10, 27 data frames, 75–76 Data Engineer nole, 27–28 DBA (Database Administrator), 10, 27 data frames, 75–76 DBA (Database Administrator), 10, 27 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data set inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 Data Savvy Professionals, 20 Data Savvy Professionals, 20 Data Savvy Professionals, 20 Data Science versus Bl, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6	3.	•
data creation rate, 3 data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 DBA (Database Administrator), 10, 27 data frames, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 greedy, 204 sandbox preparation, 37–38 Data prositiones, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Savy Professionals, 20 Data Sciente versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 structured ata, 6		3 .
data devices, 17 Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 Data Grames, 75–76 data frames, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data set inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Science versus BI, 12–13 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured, 64 structured data, 6 short trees, 194 Davenport, Tom, 28 Davenport, 29 Davenport, 20 Cecison trees, 192 Davenson phase and, 52 recommendations and, 21 depth, 193 data sources leaf, 193 Rand, 206–211 redundant variables, 206 regions, 205 regions, 206 devaluation, 204 devaluation, 204 categorical	data conditioning, 40–41	datasets
Data Engineer, Operationalize phase, 52 Data Engineer role, 27–28 data formats, text analysis, 257 Data Engineer role, 27–28 Davenport, Tom, 28 Davenport, Tom, 28 DBA (Database Administrator), 10, 27 Data frames, 75–76 DBA (Database Administrator), 10, 27 Data frames, 75–76 Decision trees, 192–193 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 C4.5, 203–204 Data visualization, 41–42 CART, 204 Categorical, 205 ETLT, 38–39 greedy, 204 ETLT, 38–39 greedy, 204 Sandbox preparation, 37–38 Data repositories, 9–11 types, 10–11 Data Savyy Professionals, 20 Data Savyy Professionals, 20 Data Science versus Bl, 12–13 Data Science versus Bl, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 depth, 193 data sources Discovery phase, 35–36 Ext analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 structured data, 6 structured data, 6	data creation rate, 3	. •
Data Engineer role, 27–28 data formats, text analysis, 257 data frames, 75–76 Operational phase and, 52 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savy Professionals, 20 Data Savy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operational phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 storus dacisin trees, 193 decision trees, 192–193 decision trees, 192–193 decision trees, 193 categorical, 205 CAS, 203–204 categorical, 205 greedy, 204 categorical, 205 greedy, 204 categorical, 205 paralysin, 203 categorical, 205 paralysin, 193 categorical, 205 paralysin, 207 paralysin, 204 categorical, 205 paralysin, 193 paralysin, 206 paralysin, 206 paralysin, 206 paralysin, 207 paralysin, 20	data devices, 17	importing, R and, 69–71
data formats, text analysis, 257 data frames, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data set inventory, 39–40 ETILT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus Bl, 12–13 Data Sciencists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured, 36, 59 semi-structured data, 6 structured data, 6 structured data, 6 stort Tees, 194 Decision trees, 192 decision trees, 192 algorithms, 197–200 categorical, 205 binary decisions, 206 branches, 193 classification trees, 193 classification trees, 193 classification trees, 193 correlated variables, 206 evaluating, 204–206 greedy algorithms, 204 internal nodes, 193 irrelevant variables, 205 nodes statistical models and, 20–21 depth, 193 data sources leaf, 193 Back, 194 Back, 194 Back, 192 Proving the cisons, 205 proving the decisions, 206 decison, 204 CAFT, 204 Categorical decisions, 205 preedy algorithms, 197 preedy algorithms, 197 preedy algorithms, 197 algorithms, 197 algorithms, 197 algorithms, 197 algoritms, 197 algoritms, 197 algoritms, 197 algoritms, 197	Data Engineer, Operationalize phase, 52	inventory, 39–40
data frames, 75–76 data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 structured care and selection trees, 193 algorithms, 197–200 cdata structures, 192–193 algorithms, 197–200 cdata structures, 193 correlated variables, 206 edecision trees, 192 algorithms, 197–200 categorithms, 204 characteristics, 21–22 internal nodes, 193 irrelevant variables, 205 regression trees, 193 regression trees, 193 semi-structured data, 6 short trees, 194	Data Engineer role, 27–28	Davenport, Tom, 28
data marts, 10 Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 data visualization, 41–42 data set inventory, 39–40 ETLT, 38–39 greedy, 204 sandbox preparation, 37–38 ID3, 203 data repositories, 9–11 types, 10–11 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data ond iffer the set of the set	data formats, text analysis, 257	DBA (Database Administrator), 10, 27
Data preparation phase of lifecycle, 29, 36–37 data conditioning, 40–41 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 greedy, 204 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 binary decisions, 206 branches, 193 classification trees, 193 catsification trees, 193 Data Science versus BI, 12–13 classification trees, 193 cativities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6 structured data, 6	data frames, 75–76	Operational phase and, 52
data conditioning, 40–41 data visualization, 41–42 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 stru	data marts, 10	decision trees, 192–193
data conditioning, 40–41 data visualization, 41–42 data visualization, 41–42 dataset inventory, 39–40 ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6 stru	Data preparation phase of lifecycle, 29, 36–37	algorithms, 197–200
dataset inventory, 39–40 ETLT, 38–39 greedy, 204 sandbox preparation, 37–38 data repositories, 9–11 pupes, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6 short trees, 194		C4.5, 203–204
dataset inventory, 39–40 ETLT, 38–39 greedy, 204 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6	data visualization, 41–42	CART, 204
ETLT, 38–39 sandbox preparation, 37–38 data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6		categorical, 205
sandbox preparation, 37–38 data repositories, 9–11	•	_
data repositories, 9–11 types, 10–11 Data Savvy Professionals, 20 Data Science versus BI, 12–13 Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structured data, 6, 7 semi-structured data, 6 structured data, 6 Takes Dinary decisions, 206 binary decisions, 206 binary decisions, 206 binary decisions, 206 classification trees, 193 correlated variables, 205 evaluating, 204–206 evaluating, 204–206 evaluating, 204–206 evaluating, 204–206 peradionalize, 205 internal nodes, 193 internal nodes adapting, 205 recommendations and, 21 depth, 193 depth, 193 depth, 193 depth, 193 depth, 193 depth, 193 redundant variables, 206 data structures, 5–9 regions, 205 regions, 205 regression trees, 193 semi-structured data, 6 short trees, 194		3 /
types, 10–11 binary decisions, 206 Data Savvy Professionals, 20 branches, 193 Data Science versus BI, 12–13 classification trees, 193 Data Scientists, 28 correlated variables, 206 activities, 20–21 evaluating, 204–206 business challenges, 20 greedy algorithms, 204 characteristics, 21–22 internal nodes, 193 Operationalize phase and, 52 irrelevant variables, 205 recommendations and, 21 nodes statistical models and, 20–21 depth, 193 data sources leaf, 193 Discovery phase, 35–36 R and, 206–211 text analysis, 257 redundant variables, 206 data structures, 5–9 regions, 205 quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 structured data, 6		
Data Savvy Professionals, 20 Data Science versus BI, 12–13 Classification trees, 193 Classification trees, 193 Correlated variables, 206 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 Classification trees, 193 Discovery phase, 35–36 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 structured data, 6 short trees, 194	•	
Data Science versus BI, 12–13 Data Scientists, 28	* *	· · · · · · · · · · · · · · · · · · ·
Data Scientists, 28 activities, 20–21 business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 structured data, 6 structured data, 6 sevaluating, 204–206 evaluating, 204–206 evaluating, 204–206 evaluating, 204–206 internal nodes, 193 internal nodes, 193 irrelevant variables, 205 nodes structured, 193 redundant variables, 206 regions, 205 regression trees, 193 reoot, 193 short trees, 194		
activities, 20–21 evaluating, 204–206 business challenges, 20 greedy algorithms, 204 characteristics, 21–22 internal nodes, 193 Operationalize phase and, 52 irrelevant variables, 205 recommendations and, 21 nodes statistical models and, 20–21 depth, 193 data sources leaf, 193 Discovery phase, 35–36 R and, 206–211 text analysis, 257 redundant variables, 206 data structures, 5–9 regions, 205 quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 structured data, 6		
business challenges, 20 characteristics, 21–22 Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 structured data, 6 structured data, 6 characteristics, 29 internal nodes, 193 depth, 193 depth, 193 depth, 193 depth, 193 redundant variables, 206 regions, 205 regions, 205 regression trees, 193 reoot, 193 short trees, 194	•	
characteristics, 21–22 internal nodes, 193 Operationalize phase and, 52 irrelevant variables, 205 recommendations and, 21 nodes statistical models and, 20–21 depth, 193 data sources leaf, 193 Discovery phase, 35–36 R and, 206–211 text analysis, 257 redundant variables, 206 data structures, 5–9 regions, 205 quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 structured data, 6 structured data, 6		_
Operationalize phase and, 52 recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 short trees, 194	3 .	· , ·
recommendations and, 21 statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 structured data, 6 short trees, 194	•	•
statistical models and, 20–21 data sources Discovery phase, 35–36 text analysis, 257 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 short trees, 194	•	
data sources Discovery phase, 35–36 R and, 206–211 text analysis, 257 redundant variables, 206 data structures, 5–9 quasi-structured data, 6, 7 semi-structured data, 6 structured data, 6 structured data, 6 short trees, 194		
Discovery phase, 35–36 R and, 206–211 text analysis, 257 redundant variables, 206 data structures, 5–9 regions, 205 quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 root, 193 structured data, 6 short trees, 194	•	• • •
text analysis, 257 redundant variables, 206 data structures, 5–9 regions, 205 regression trees, 193 semi-structured data, 6, 7 root, 193 structured data, 6 short trees, 194		
data structures, 5–9 regions, 205 quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 root, 193 structured data, 6 short trees, 194		•
quasi-structured data, 6, 7 regression trees, 193 semi-structured data, 6 root, 193 structured data, 6 short trees, 194	· · · · · · · · · · · · · · · · · · ·	
semi-structured data, 6 root, 193 structured data, 6 short trees, 194		_
structured data, 6 short trees, 194	quasi-structured data, 6, 7	regression trees, 193
	semi-structured data, 6	root, 193
unstructured data, 6 decision stump, 194	structured data, 6	short trees, 194
	unstructured data, 6	decision stump, 194

splits, 193, 197	Data Savvy Professionals, 20
detecting, 200–203	Deep Analytical Talent, 19–20
limiting, 194	key roles, 19–22
structure, 205	Technology and Data Enablers, 20
uses, 194	EDWs (Enterprise Data Warehouses), 10
Deep Analytical Talent, 19–20	effect size, 110
DELTA framework, 28	EMC Google search example, 7–9
demand forecasting, linear regression and, 162	emoticons, 282
density plots, exploratory data analysis, 88–91	engineering, logistic regression and, 179
dependent variables, 162	ensemble methods, decision trees, 194
descriptive statistics, 79–80	error distribution
deviance, 183–184	linear regression model, 165–166
devices, 17	residual standard error, 170
mobile, 16	ETLT, 38–39
nontraditional, 16	EXCEPT operator (SQL), 333–3334
smart devices, 16	exploratory data analysis, 80–82
DF (document frequency), 271–272	density plot, 88–91
diagnostic imaging, 16	dirty data, 85–87
diagnostics	histograms, 88–91
association rules, 158	multiple variables, 91–92
classifiers, 224–228	analysis over time, 99
linear regression	barplots, 93–94
linearity assumption, 173	box-and-whisker plots, 95–96
N-fold cross-validation, 177–178	dotcharts, 93–94
normality assumption, 174–177	hexbinplots, 96–97
residuals, 173–174	versus presentation, 99–101
logistic regression	scatterplot matrix, 97–99
deviance, 183–184	visualization and, 82–85
histogram of probabilities, 188	single variable, 88–91
log-likelihood test, 184–185	exporting datasets in R, 69–71
pseudo-R ² , 183	expressions, regular, 263
ROC curve, 185–187	
naïve Bayes, 217–218	F
diff() function, 245	r
difference in means, 104	Facebook, 2, 3–4
confidence interval, 107	factors, 77–78
student's t-testing, 104–106	financial information, logistic regression and, 179
Welch's t-test, 106–108	FNR (false negative rate), 225
differencing, 241–242	forecasting
dirty data, 85–87	ARIMA (Autoregressive Integrated Moving Average)
Discovery phase of lifecycle, 29	model, 251–252
data source identification, 35–36	linear regression and, 162
framing, 32–33	FP (false positives), confusion matrix, 224
hypothesis development, 35	FPR (false positive rate), 225
sponsor interview, 33–34	framing in Discovery phase, 32–33
stakeholder identification, 33	functions
discretization of continuous variables, 211	aov(), 78
documents, categorization, 274–277	apriori(), 146,152-157
dotchart() function, 88	arima(), 246
	array(), 74
E	barplot(),88
E	cbind(), 78
Eclipse, 304	class(),72
ecosystem of Big Data, 16–19	confint(), 171

data(),84 diff(),245	GINA (Global Innovation Network and Analysis), Data Analytics Lifecycle case study, 53–60
dotchart(), 88	gl () function, 84
gl(), 84	glm() function, 183
glm(), 183	Gnuplot, 377–378
hclust(), 135	GPS systems, 16
head(),65	*
	Graph Search (Facebook), 3–4
inspect(), 147, 154-155	graphs, 380–386
integer(),72	clean up, 387–392
IQR(),80	three-dimensional, 392–393
is.data.frame(),75	greedy algorithms, 204
is.na(),86	Green Eggs and Ham, text analysis and, 256
is.vector(),73	grocery store example of Apriori algorithm, 143
jpeg(), 7 1	Groceries dataset, 144–146
kmeans(), 134	itemsets, frequent generation, 146–151
kmode(), 134-135	rules, generating, 152–157
length(),72	growth needs of data, 9–10
library(),70	GUIs (graphical user interfaces), R and, 67–69
lm(),66	
load.image(),68-69	11
<pre>matrix.inverse(),74</pre>	Н
mean(), 86	Hadoop
my range(),80	Data preparation phase, 42
na.exclude(),86	Hadoop Streaming API, 304–305
pamk(), 135	HBase, 311–312
Pig, 307–308	architecture, 312–317
plot(), 65, 153–154, 245	column family names, 319
predict(), 172	column qualifier names, 319
rbind(),78	data model, 312–317
read.csv(), 64-65,75	Java API and, 319
read.csv2(),70	rows, 319
read.delim2(),70	
rpart, 207	use cases, 317–319
SQL, 347–351	versioning, 319
	Zookeeper, 319
sqlQuery(),70	HDFS, 300–301
str(),75	Hive, 308–311
summary(), 65, 66-67, 79, 80-82	LinkedIn, 297
t(),74	Mahout, 319–320
ts(), 245	MapReduce, 22
typeof(),72	combiners, 302–303
wilcox.test(), 109	development, 304–305
window functions (SQL), 343–347	drivers, 301
write.csv(),70	execution, 304–305
write.csv2(),70	mappers, 301–302
write.table(),70	partitioners, 304
	structuring, 301–304
	natural language processing, 18
G	Pig, 306–308
Generalized Linear Model function, 182	pipes, 305
genetic sequencing, 3, 4	Watson (IBM), 297
3	Yahoo!, 297–298
genomics, 4, 16	YARN (Yet Another Resource Negotiator), 305
genotyping, 4	hash-based itemsets, Apriori algorithm and, 158
GGobi, 377–378	nasii-baseu itemsets, Aprion algoritilli aliu, 136

G

HAWQ (HAdoop With Query), 321	is.vector() function,73
HBase, 311–312	itemsets, 139
architecture, 312–317	1-itemsets, 147
column family names, 319	2-itemsets, 148-149
column qualifier names, 319	3-itemsets, 149–150
data model, 312–317	4-itemsets, 150–151
Java API and, 319	Apriori algorithm, 139
rows, 319	Apriori property, 139
use cases, 317–319	downward closure property, 139
versioning, 319	dynamic counting, Apriori algorithm and, 158
Zookeeper, 319	frequent itemset, 139
hclust() function, 135	generation, frequent, 146–151
HDFS (Hadoop Distributed File System), 300–301	hash-based, Apriori algorithm and, 158
head() function, 65	k-itemset, 139, 140-141
hexbinplots, 96–97	
histograms	
exploratory data analysis, 88–91	J
logistic regression, 188	joins (SQL), 330–332
Hive, 308–311	jpeg() function,71
HiveQL (Hive Query Language), 308	
Hopper, Grace, 299	1/
Hubbard, Doug, 28	K
HVE (Hadoop Virtualization Extensions), 321	k clusters
hypotheses	finding, 120–122
alternative hypothesis, 102–103	number of, 123–127
Discovery phase, 35	k-itemset, 139, 140–141
null hypothesis, 102	k-means, 118–119
hypothesis testing, 102–104	customer segmentation, 120
two-sided hypothesis testing, 105	image processing and, 119
type I errors, 109–110	k clusters
type II errors, 109–110	finding, 120–122
type il eliois, 109–110	number of, 123–127
	medical uses, 119
	objects, attributes, 130–131
IBM Watson, 297	R and, 123–127
ID3 algorithm, 203	reasons to choose, 130–134
IDE (Interactive Development Environment), 304	rescaling, 133–134
IDF (inverted document frequency), 271–272	units of measure, 132–133
• •	kmeans () function, 134
importing datasets in R, 69–71 in-database analytics	kmode () function, 134–135
SQL, 328–338	itiliode () fulletion, 154 155
text analysis, 338–339	L
independent variables, 162	lag, 237
input variables, 192	3.
inspect () function, 147, 154–155	Laplace smoothing, 217 lasso regression, 189
integer () function, 72	3
internal nodes (decision trees), 193	LDA (latent Dirichlet allocation), 274–275
Internet of Things, 17–18	leaf nodes, 192, 193
INTERSECT operator (SQL), 333	lemmatization, text analysis and, 258
IQR() function, 80	length() function, 72
is.data.frame() function,75	leverage, 142
is.na() function,86	library() function,70

lifecycle. See also Data Analytics Lifecycle	marketing, logistic regression and, 179
lift, 142	master nodes, 301
linear regression, 162	matrices
coefficients, 169	confusion matrix, 224
diagnostics	R, 74–75
linearity assumption, 173	scatterplot matrices, 97–99
N-fold cross-validation, 177–178	matrix.inverse() function,74
normality assumption, 174–177	MaxEnt (maximum entropy), 278
residuals, 173–174	McKinsey & Co. definition of Big Data, 3
model, 163–165	mean () function, 86
categorical variables, 170–171	medical information, 16
normally distributed errors, 165–166	k-means and, 119
outcome confidence intervals, 172	linear regression and, 162
parameter confidence intervals, 171	logistic regression and, 179
prediction interval on outcome, 172	minimum confidence, 141
R, 166–170	missing data, 86
p-values, 169–170	mobile devices, 16
use cases, 162–163	mobile phone companies, 2
LinkedIn, 2, 22–23, 297	Model Building phase of lifecycle, 30, 46–48
lists in R, 76–77	Alpine Miner, 48
lm() function, 66	Mathematica, 48
load.image() function, 68-69	Matlab, 48
logical data types, R, 72	Octave, 48
logistic regression, 178	PL/R, 48
cautions, 188–189	Python, 48
diagnostics, 181–182	R, 48
deviance, 183–184	SAS Enterprise Miner,
histogram of probabilities, 188	48
log-likelihood test, 184–185	SPSS Modeler, 48
pseudo-R ² , 183	SQL, 48
ROC curve, 185–187	STATISTICA, 48
Generalized Linear Model function, 182	WEKA, 48
model, 179–181	Model Planning phase of lifecycle, 29–30, 42–44
multinomial, 190	data exploration, 44–45
reasons to choose, 188–189	model selection, 45
use cases, 179	R, 45–46
log-likelihood test, 184–185	SAS/ACCESS, 46
loyalty cards, 17	SQL Analysis services, 46
	variables, selecting, 44–45
M	morphological features in text analysis, 266–267
	moving average models, 239–241
MAD (Magnetic/Agile/Deep) skills, 28, 352–356	MPP (massively parallel processing), 5
MADlib, 352–356	MTurk (Mechanical Turk), 282
Mahout, 319–320	multinomial logistic regression, 190
MapReduce, 22, 298–299	multivariate time series analysis, 253
combiners, 302–303	<pre>my_range() function, 80</pre>
development, 304–305	
drivers, 301–302	
execution, 304–305	N
mappers, 301–302	
partitioners, 304	na.exclude() function, 86
structuring, 301–304	naïve Bayes, 211–212
market basket analysis, 139	Bayes' theorem, 212–214
association rules, 143	diagnostics, 217–218

naïve Bayes classifier, 214–217	parsing, text analysis and, 257
R and, 218–224	partitioning
sentiment analysis and, 278	Apriori algorithm and, 158
smoothing, 217	MapReduce, 304
natural language processing, 18	photographs, 16
N-fold cross-validation, 177–178	Pig, 306–308
NLP (Natural Language Processing), 256	Pivotal HD Enterprise, 320–321
nodes	plot () function, 65, 153–154, 245
master, 301	POS (part-of-speech) tagging,
worker, 301	258
nodes (decision trees), 192	power of a test, 110
depth, 193	precision in sentiment analysis, 281
leaf, 193	predict() function, 172
leaf nodes, 192, 193	prediction trees. See decision trees
nonparametric tests, 108–109	presentation <i>versus</i> data exploration, 99–101
nontraditional devices, 16	probability, conditional, 212
normality	naïve Bayes classifier, 215–216
ARIMA model, 250–251	Project Manager, Operationalize phase, 52
linear regression, 174–177	Project Manager role, 27
normalization, data conditioning, 40–41	Project Sponsor, Operationalize phase, 52
NoSQL, 322–323	Project Sponsor role, 27
null deviance, 183	pseudo-R ² , 183
null hypothesis, 102	p-values, linear regression, 169–170
numeric data types, R, 72	, , ,
numerical algorithms, 205	
numerical underflow, 216–217	Q
	quasi-structured data, 6, 7
•	queries, SQL, 329–330
0	•
O objects, k-means, attributes, 130–131	queries, SQL, 329–330
	queries, SQL, 329–330 nested, 3334
objects, k-means, attributes, 130–131	queries, SQL, 329–330 nested, 3334 subqueries, 3334
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6	queries, SQL, 329–330 nested, 3334
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42	queries, SQL, 329–330 nested, 3334 subqueries, 3334
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10	queries, SQL, 329–330 nested, 3334 subqueries, 3334
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172 prediction interval, 172	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82 density plot, 88–91
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82 density plot, 88–91 dirty data, 85–87
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172 prediction interval, 172	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82 density plot, 88–91 dirty data, 85–87 histograms, 88–91
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172 prediction interval, 172 P PACF (partial autocorrelation function), 238–239	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82 density plot, 88–91 dirty data, 85–87 histograms, 88–91 multiple variables, 91–99
objects, k-means, attributes, 130–131 OLAP (online analytical processing), 6 cubes, 10 OpenRefine, 42 Operationalize phase of lifecycle, 30, 50–53, 360 Business Intelligence Analyst and, 52 Business User and, 52 Data Engineer and, 52 Data Scientist and, 52 DBA (Database Administrator) and, 52 Project Manager and, 52 Project Sponsor and, 52 operators, subsetting, 75 outcome confidence intervals, 172 prediction interval, 172	queries, SQL, 329–330 nested, 3334 subqueries, 3334 R arrays, 74–75 attributes, types, 71–72 data frames, 75–76 data types, 71–72 character, 72 logical, 72 numeric, 72 vectors, 73–74 decision trees, 206–211 descriptive statistics, 79–80 exploratory data analysis, 80–82 density plot, 88–91 dirty data, 85–87 histograms, 88–91 multiple variables, 91–99 versus presentation, 99–101

aov(),78	hypothesis testing, 102–104
array(), 74	power of test, 110
barplot(),88	sample size, 110
cbind(),78	type I errors, 109–110
class(),72	type II errors, 109–110
data(),84	tables, contingency tables, 79
dotchart(),88	R commander GUI, 67
gl(),84	random components of time series analysis, 235
head(),65	Rattle GUI, 67
import function defaults, 70	raw text
integer(),72	collection, 260-263
IQR(),80	tokenization, 264
is.data.frame(),	rbind() function, 78
75	RDBMS, 6
is.na(),86	read.csv() function, 64-65, 75
is.vector(),73	read.csv2() function,70
jpeg(), 71	read.delim() function,69
length(),72	read.delim2() function,70
library(),70	read.table() function,69
lm(),66	real estate, linear regression and, 162
load.image(),68-69	recall in sentiment analysis, 281
my_range(), 80	redundant variables, 206
plot() function,65	regression
rbind(),78	lasso, 189
read.csv(),65,75	linear, 162
read.csv2(),70	coefficients, 169
read.delim(),69	diagnostics, 173–178
read.delim2(),70	model, 163–172
read.table(),69	p-values, 169–170
str(),75	use cases, 162–163
summary(),65,66-67,79	logistic, 178
t(),74	cautions, 188–189
typeof(), 72	diagnostics, 181–188
visualizing single variable, 88	model, 179–181
write.csv(),70	multinomial logistic,
write.csv(),70 write.csv2(),70	190
	reasons to choose, 188–189
write.table(),70	use cases, 179
GUIs, 67–69	multinomial logistic, 190
import/export, 69–71	ridge, 189
k-means analysis, 123–127	variables
linear regression model, 166–170	dependent, 162
lists, 76–77	independent, 162
matrices, 74–75	regression trees, 193
model planning and, 45–46	regular expressions, 263, 339–340
naïve Bayes and, 218–224	relationships, 141
operators, subsetting, 75	repositories, 9–11
overview, 64–67	types, 10–11
statistical techniques, 101–102	representation methods, 386–387
ANOVA, 110–114	rescaling, k-means, 133–134
difference in means, 104–108	residual deviance, 183
effect size, 110	residual standard error, 170
- ,	

residuals, linear regression, 173–174	sponsor interview, Discovery phase, 33
resources, Discovery phase of lifecycle, 31–32	spreadmarts, 10
RFID readers, 16	spreadsheets, 6, 9, 10
ridge regression, 189	SQL (Structured Query Language), 328–329
ROC (receiver operating characteristic) curve, 185–187, 225	aggregates
roots (decision trees), 193	ordered, 351–352
rpart function, 207	user-defined, 347–351
RStudio GUI, 67–68	EXCEPT operator, 333–3334
rules	functions, user-defined, 347–351
association rules, 138–139	grouping, 334–338
application, 143	INTERSECT operator, 333
candidate rules, 141–142	joins, 330–332
diagnostics, 158	MADlib, 352–356
testing and, 157–158	queries, 329–330
validation, 157–158	nested, 3334
generating, grocery store example (Apriori), 152–157	subqueries, 3334
	set operations, 332–334
<i>c</i>	UNION ALL operator, 332–333
S	window functions, 343–347
sales, time series analysis and, 234	SQL Analysis services, model planning and, 46
sample size, 110	sqlQuery() function,70
sampling, Apriori algorithm and, 158	stakeholders, Discovery phase of lifecycle, 33
sandboxes, 10, 11. See also work spaces	stationary time series, 236
Data preparation phase, 37–38	statistical techniques, 101–102
SAS/ACCESS, model planning, 46	ANOVA, 110–114
scatterplot matrix, 97–99	difference in means, 104
scatterplots, 81	student's t-test, 104–106
Anscombe's quartet, 83	Welch's t-test, 106–108
multiple variables, 91–92	effect size, 110
scientific method, 28	hypothesis testing, 102–104
searches, text analysis and, 257	power of test, 110
seasonal autoregressive integrated moving average model,	sample size, 110
243–244	type I errors, 109–110
seasonality components of time series analysis, 235	type II errors, 109–110
seismic processing, 16	Wilcoxon rank-sum test, 108–109
semi-structured data, 6	statistics Anscombe's quartet, 82–83
SensorNet, 17–18	descriptive, 79–80
sentiment analysis in text analysis, 277–283	stemming, text analysis and, 258
confusion matrix, 280	stock trading, time series analysis and, 235
precision, 281	stop words, 270–271
recall, 281	stop words, 270–271 str() function, 75
shopping	structured data, 6
loyalty cards, 17	subsetting operators, 75
RFID chips in carts, 17	summary() function, 65, 66-67, 79, 80-82
short trees, 194	SVM (support vector machines), 278
smart devices, 16	3VW (support vector machines), 270
smartphones, 17	
smoothing, 217	Т
social media, 3–4	
sources of data, 15–16	t () function, 74
spart parts planning, time series analysis and, 234–235	tables, contengency tables, 79
splits (decision trees), 193	Target stores, 22
detecting, 200–203	t-distribution

ANOVA, 110-114	ARIMA model, 236
student's t-test, 104–106	ACF, 236–237
Welch's t-test, 106–108	ARMA model, 241–244
technical specifications in project, 376–377	autoregressive models, 238–239
Technology and Data Enablers, 20	building, 244–252
testing, association rules and, 157–158	cautions, 252–253
text analysis, 256	constant variance, 250–251
ACME example, 259–263	evaluating, 244–252
bag-of-words, 265–266	fitted models, 249–250
corpora, 264–265	forecasting, 251–252
Brown Corpus, 267–268	moving average models, 239–241
corpora in Natural Language Processing, 256	normality, 250–251
IC (information corpora), 268–269	PACF. 238–239
data formats, 257	reasons to choose, 252–253
data sources, 257	seasonal autogregressive integrated moving average
document categorization, 274–277	model, 243–244
Green Eggs and Ham, 256	ARMAX (Autoregressive Moving Average with
in-database, 338–339	Exogenous inputs), 253
lemmatization, 258	Box-Jenkins methodology, 235–236
morphological features, 266–267	cyclic components, 235
NLP (Natural Language Processing), 256	differencing, 241–242
5 5 5	fitted models, 249–250
parsing, 257	,
POS (part-of-speech) tagging, 258	GARCH (Generalized Autoregressive Conditionally
raw text, collection, 260–263	Heteroscedastic), 253
search and retrieval, 257	Kalman filtering, 253
sentiment analysis, 277–283	multivariate time series analysis, 253
stemming, 258	random components, 235
stop words, 270–271	seasonal autoregressive integrated moving average
text mining, 257–258	model, 243–244
TF (term frequency) of words, 265–266	seasonality, 235
DF, 271–272	spectral analysis, 253
IDF, 271–272	stationary time series, 236
lemmatization, 271	trends, 235
stemming, 271	use cases, 234–235
stop words, 270–271	white noise process, 239
TFIDF, 269–274	tokenization in text analysis, 264
tokenization, 264	topic modeling in text analysis, 267, 274
topic modeling, 267, 274	LDA (latent Dirichlet allocation), 274–275
LDA (latent Dirichlet allocation), 274–275	TP (true positives), confusion matrix, 224
web scraper, 262–263	TPR (true positive rate), 225
word clouds, 284	transaction data, 6
Zipf's Law, 265–266	transaction reduction, Apriori algorithm and, 158
text mining, 257	trends, time series analysis, 235
textual data files, 6	TRP (True Positive Rate), 185–187
TF (term frequency) of words,	ts() function, 245
265–266	two-sided hypothesis test, 105
DF (document frequency), 271–272	type I errors, 109–110
IDF (inverted document frequency), 271–272	type II errors, 109–110
lemmatization, 271	typeof() function,72
stemming, 271	
stop words, 270–271	U
TFIDF, 269–274	
TFIDF (Term Frequency-Inverse Document Frequency),	UNION ALL operator (SQL), 332–333
269–274, 285–286	units of measure, k-means, 132–133
time series analysis	unstructured data, 6

visualization, 41–42. See also data visualization

Apache Hadoop, HDFS, 300–301 LinkedIn, 297 MapReduce, 298–299 natural language processing, 18 use cases, 296–298	exploratory data analysis, 82–85 single variable, 88–91 grocery store example (Apriori), 152–157 volume, variety, velocity. <i>See</i> 3 Vs (volume, variety, velocity)
Watson (IBM), 297 Yahoo!, 297–298 unsupervised techniques. <i>See</i> clustering users of data, 18	W Watson (IBM), 297 web scraper, 262–263 white noise process, 239 Wilcoxan rank-sum test, 108–109
validation, association rules and, 157–158 variables categorical, 170–171 continuous, discretization, 211 correlated, 206 decision trees, 205 dependent, 162 factors, 77–78 independent, 162 input, 192	wilcox.test() function, 109 window functions (SQL), 343–347 word clouds, 284 work spaces, 10, 11. See also sandboxes Data preparation phase, 37–38 worker nodes, 301 write.csv() function, 70 write.csv2() function, 70 write.table() function, 70 WSS (Within Sum of Squares), 123–127
redundant, 206 VARIMA (Vector ARIMA), 253 vectors, R, 73–74 video footage, 16 k-means and, 119 video surveillance, 16	X-Z XML (eXtensible Markup Language), 6 Yahoo!, 297–298 YARN (Yet Another Resource Negotiator), 305

Zipf's Law, 265-266

A comprehensive book on information storage and management by the EMC's Education Services, a global technology leader.

More than ever, the IT industry is challenged with employing and developing highly skilled technical professionals with storage technology expertise across classic, virtualized, and cloud environments. This book covers concepts, principles, and deployment considerations across technologies that are used for storing and managing information.

978-1-118-09483-9 · \$70.00 US · \$77.00 CAN · £47.50 UK

Key Technology Strategies for Classic, Virtualized, and Cloud Environments:

- Challenges and Solutions for Data Storage and Management
- Intelligent Storage, Object-Based Storage, and Unified Storage
- Storage Networking, Federation, and Protocols
- Backup, Recovery, Deduplication, and Archive
- Business Continuity and Disaster Recovery
- Cloud Computing and Converged Infrastructure
- Storage Security and Managing Storage Infrastructure

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley's ebook EULA.