模块二 圆与方程

第1节 圆的方程(★☆)

内容提要

- 1. 圆的方程
- ①标准方程: $(x-a)^2 + (y-b)^2 = r^2(r>0)$,其中圆心为(a,b),半径为r.
- ②一般方程: $x^2 + v^2 + Dx + Ev + F = 0$, 其中 $D^2 + E^2 4F > 0$.
- 2. 求圆的方程常用三种方法:
- ①设一般式方程 $x^2 + y^2 + Dx + Ey + F = 0$,建立关于系数D,E,F的方程组,解方程组. 当已知圆上三点时, 常用这种方法.
- ②设圆心,利用圆心到圆上点的距离都等于半径建立方程求圆心. 已知圆心性质时常用此法.
- ③找圆心(弦的中垂线过圆心)、求半径.
- 3. 点与圆的位置关系: 设 $P(x_0,y_0)$, 圆 $C:(x-a)^2+(y-b)^2=r^2$ (或 $x^2+y^2+Dx+Ey+F=0$),
- ①点P在圆C外 $\Leftrightarrow (x_0-a)^2+(y_0-b)^2>r^2$ (或 $x_0^2+y_0^2+Dx_0+Ey_0+F>0$);
- ②点P在圆C上 $\Leftrightarrow (x_0-a)^2+(y_0-b)^2=r^2$ (或 $x_0^2+y_0^2+Dx_0+Ey_0+F=0$);
- ③点P在圆C内 $\Leftrightarrow (x_0-a)^2+(y_0-b)^2< r^2$ (或 $x_0^2+y_0^2+Dx_0+Ey_0+F<0$).

典型例题

类型 I: 圆的方程中的系数条件

【例 1】若方程 $x^2 + y^2 + 6x + m = 0$ 表示一个圆,则 m 的取值范围是 ()

- (A) $(-\infty, 9)$ (B) $(-\infty, -9)$ (C) $(9, +\infty)$ (D) $(-9, +\infty)$

解析: 用 $D^2 + E^2 - 4F > 0$ 求解 m 的范围即可,方程 $x^2 + y^2 + 6x + m = 0$ 表示圆 $\Rightarrow 6^2 - 4m > 0 \Rightarrow m < 9$.

答案: A

【变式】若点 P(-1,2) 在圆 $C: x^2 + y^2 - 2x + 4y + k = 0$ 的外部,则实数 k 的取值范围是()

- (A) (-5,5) (B) (-15,5) (C) $(-\infty,-15) \cup (5,+\infty)$ (D) (-15,2)

解析: 点 P(-1,2) 在圆 C 外部 $\Rightarrow (-1)^2 + 2^2 - 2 \times (-1) + 4 \times 2 + k > 0$,解得: k > -15 ①,

还需考虑圆 C 的方程本身对 k 的要求,方程 $x^2 + y^2 - 2x + 4y + k = 0$ 表示圆,应有 $(-2)^2 + 4^2 - 4k > 0$,

解得: k < 5, 结合①可得 $k \in (-15,5)$.

答案: B

【反思】当圆的方程中含参时,不要忘了考虑圆的方程本身对参数的要求.

类型Ⅱ: 求圆的方程

【例 2】已知 A(2,0), B(4,2), O 为原点,则 ΔAOB 的外接圆的方程为_____.

解析:如图,已知圆上三点,可设一般式方程,把点代入建立方程组求解系数,

设 ΔAOB 外接圆的方程为 $x^2+y^2+Dx+Ey+F=0$,将 A、B、O 的坐标代入可得 $\begin{cases} 4+2D+F=0\\ 20+4D+2E+F=0, \end{cases}$

解得:
$$\begin{cases} D=-2\\ E=-6 \text{ , 所以} \Delta AOB \text{ 外接圆的方程为} x^2+y^2-2x-6y=0.\\ F=0 \end{cases}$$

答案: $x^2 + y^2 - 2x - 6y = 0$

【例 3】(2022・全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在 $\odot M$ 上,则 $\odot M$ 的方程为

解析: $2x+y-1=0 \Rightarrow y=1-2x$, 由题意, 圆心M在直线y=1-2x上, 故可设M(a,1-2a),

要求圆心坐标,可用M与所给圆上两点的距离相等来建立关于a的方程,

如图,|MA| = |MB|,所以 $\sqrt{(a-3)^2 + (1-2a)^2} = \sqrt{a^2 + [1-(1-2a)]^2}$,解得:a = 1,故圆心为(1,-1),

半径 $r = |MA| = \sqrt{(1-3)^2 + (-1-0)^2} = \sqrt{5}$,所以 $\odot M$ 的方程为 $(x-1)^2 + (y+1)^2 = 5$.

答案: $(x-1)^2 + (y+1)^2 = 5$

【例 4】过点 A(0,-1), 且与直线 l:x-y-3=0相切于点 B(2,-1)的圆的方程为____.

解析: 先找圆心,如图,圆心应在过 B 且与 l 垂直的直线上,也在 AB 的中垂线上,故圆心是它们的交点,由题意,过 B 且与 l 垂直的直线为 y-(-1)=-(x-2),即 x+y-1=0,

线段 AB 的中垂线为 x=1, 联立 $\begin{cases} x+y-1=0 \\ x=1 \end{cases}$ 解得: $\begin{cases} x=1 \\ y=0 \end{cases}$ 所以圆心为 C(1,0),

半径 $r = |CA| = \sqrt{2}$,故所求圆的方程为 $(x-1)^2 + y^2 = 2$.

答案: $(x-1)^2 + y^2 = 2$

【总结】求圆的方程常用三种方法: ①设圆的一般式方程, 并建立关于系数的方程组, 已知圆上三点常用 此法;②利用圆上点到圆心距离为半径列方程,已知圆心坐标性质时常用此法;③利用弦的中垂线过圆心 来找圆心,再求半径.

强化训练

- 1. (2022 广州三模 ★) 设甲: 实数 a < 3; 乙: 方程 $x^2 + y^2 x + 3y + a = 0$ 是圆,则甲是乙的(
- (A) 充分不必要条件 (B) 必要不充分条件
- (C) 充要条件 (D) 既不充分也不必要条件
- 2. (2022•西安模拟•★) 已知 $a \in \mathbb{R}$,方程 $a^2x^2 + (a+2)y^2 + 2x + 8y + 5a = 0$ 表示圆,则圆心坐标是_____.
- 3. (2022 •河南模拟 •★★) 已知点 A(1,2) 在圆 $C: x^2 + y^2 + mx 2y + 2 = 0$ 外,则实数 m 的取值范围是() (A) $(-3,-2) \cup (2,+\infty)$ (B) $(-3,-2) \cup (3,+\infty)$ (C) $(-2,+\infty)$ (D) $(-3,+\infty)$
- 4. $(2022 \cdot 全国乙卷 \cdot ★)$ 过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为____.

- 5. (★★) 过点 A(1,-1), B(-1,1),且圆心在直线 x+y-2=0 上的圆的方程为____.
- 6. $(2023 \cdot 河南模拟改 \cdot ★★)过 <math>P(-2,-1)$ 且与两坐标轴都相切的圆的方程为____.

7.	(★★)	已知点 B(1,0),	直线 $l: x = -1$,	点 C 在 l 上,	以 C 为圆心的圆与 y 轴的正半轴相切于点 A ,是	若
∕B.	$AC = 120^{\circ}$	。, 则圆的方程为	Ы.			

8. $(2022 \cdot 浙江模拟 \cdot \star \star \star \star)$ 在平面直角坐标系中,第一象限内的点 A 在直线 l: y = 2x 上, B(5,0) ,以 AB 为直径的圆 C 与直线 l 的另一个交点为 D,若 $AB \perp CD$,则圆 C 的方程为_____.

《一数•高考数学核心方法》