REGULARIZATION STRATEGIES IN DEEP LEARNING

CSE 676 – Project 2

-Sandesh Kumar Srivastava

Underfit vs Good Fit vs Overfit

- Underfit or High Bias Solution: Make model more expressive/complex
- Good fit or low bias and low variance
- Overfit or High Variance Solution: Regularization

John von Neumann famously said "With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

Underfitted

Good Fit/Robust

Overfitted

School of Engineering and Applied Sciences

Overfitting in real life example

.....

Regularization Strategies

Methods to reduce generalization error(error on unseen data)

- -> But not the training error
- -> Even at the expense of training error

Different methods exist:

- L1 norm
- L2 norm
- Data Set Augmentation
- Noise Robustness
- Early Stopping
- Dropout
- Adversarial Training ...

School of Engineering and Applied Sciences

Regularization Strategies

L1 norm:

$$\tilde{J}(\Theta; X, y) = J(\Theta; X, y) + \alpha \Omega(\Theta) \tag{1}$$

$$\Omega(\Theta) = ||w||_1 = \sum |w_i|_1 \tag{2}$$

$$\tilde{J}(\Theta; X, y) = J(\Theta; X, y) + \alpha \sum_{i} |w_{i}|_{1}$$
 (3)

Conv2D(filters=f_5x5, kernel_size=(5,5), padding='same', activation='relu', kernel _regularizer=l1(l1=0.01), bias_regularize r=l1(1e-4), activity_regularizer=l1(1e-5))

L2 norm:

$$\tilde{J}(\Theta; X, y) = J(\Theta; X, y) + \alpha \Omega(\Theta) \tag{1}$$

$$\Omega(\Theta) = \frac{1}{2}||w||_2^2 \tag{4}$$

$$\tilde{J}(\Theta; X, y) = J(\Theta; X, y) + \alpha \frac{1}{2} ||w||_2^2$$
 (5)

Conv2D(filters=f_3x3_r, kernel_size=(1,1)
, padding='same', activation='relu', kern
el_regularizer=12(12=0.001), bias_regular
izer=12(1e-4),
activity_regularizer=12(1e-5))

Regularization Strategies

Data Set Augmentation:

- Train the ML model on more data
- Transform the given input to obtain new input

```
datagen = ImageDataGenerator(
   zca_epsilon=1e-06,
   rotation_range=10,
   width_shift_range=0.1,
   height_shift_range=0.1,
   horizontal_flip=True)
```

Noise Robustness:

- Noise can be applied at different levels to a ML model.
- If applied at input, it serves as a data augmentation.
- If applied to output layers, it helps to handle the mistakes made by ML model.

GaussianNoise(0.005)

Regularization Strategies

Early Stopping:

 Stop training process whenever there is not significant improvement on the validation data metrics

EarlyStopping(monitor='val_accuracy', pat ience=40)

Dropout:

- Technique similar to bagging.
- Randomly dropping some units by simply multiplying their output value to 0.

Dropout (0.5)

Adversarial Training:

- ML model trained on the generated adversarial examples.
- Fast Gradient Sign Method(FGSM)

$$x \to x + \epsilon sign(\nabla_x J(\Theta, x, y))$$
 (6)

```
gradient = tape.gradient(loss, image)
signed_grad = tf.sign(gradient)
adversarial = image + perturbations *
epsilon
```

Implementation

- Using Keras library in Python.
- CIFAR-10 dataset(50k training and 10k test images of size 32x32x3).
- Inception_v2 like model.
- Adamax optimizer.
- ModelCheckPoint to store best weights.

Results - accuracy and loss plots

L2 norm

Dataset Augmentation

Noise Robustness

Adversarial Training(FGSM)

Results

Regularization Strategy	Precision	Accuracy	0.8 -	Model Loss train test 00 -
No regularization	0.77896	0.7785	0.7	.75 - .50 -
L1	0.78399	0.7841	1	
L2	0.79902	0.8005	0.4 - 0.0 0.3 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
L1L2	0.79272	0.7923	0 25 50 75 100 125 150 175 200 epoch	0 25 50 75 100 125 150 175 200 epoch
Dataset Augmentation	0.82933	0.8301	Combination (L2, Dataset Augmentation & Dropout)	
Noise Robustness	0.78409	0.7811		
Early Stopping	0.77789	0.7703	 Achieved in 168 epochs compared to 200 for others 	
Dropout	0.79751	0.7961		
Adversarial(FGSM)	0.77787	0.777	 Accuracy on adversarial test samples increased from 34% to 70% 	
Combination	0.84854	0.8481	← Best performance	
				8/16/10//

Results – finetuning regularization hyperparameters

Conclusion

- Overfitting is a very common problem in deep neural networks.
- Regularization strategies help to solve the problem of overfitting.
- Selection of regularization strategy depends on the nature of problem being solved.
- Often multiple regularization strategies are combined to get best result.
- Finetuning of regularization parameters is required for optimal performance.