Application No.: 10/526,659

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1-18. (canceled).

19. (new):

A method to reduce the driving voltage of a device comprising a smectic A liquid crystal

composition and to enhance dynamic light scattering of the composition, said method comprising

doping a smectic A liquid crystal composition with an ionic dopant comprising a sulfur or a

phosphorous containing anion with a cation.

20. (new): A device comprising a smectic A liquid crystal composition, wherein the

smectic A liquid crystal composition comprises one or more ionic dopants, wherein the ionic

dopant comprises a sulfur or a phosphorus containing anion with a cation, wherein the ionic dopant

reduces the driving voltage of the device and enhances dynamic light scattering of the composition.

21. (new): The device as claimed in claim 20, wherein the device is a display or a

light shutter.

22. (new): A method of doping a smectic A liquid crystal composition, comprising

adding an ionic dopant to a smectic A liquid crystal composition, wherein the ionic dopant

3

Application No.: 10/526,659

comprises a sulfur or a phosphorus containing anion with a cation, wherein the ionic dopant reduces the driving voltage of a device comprising the smectic A liquid crystal composition and enhances dynamic light scattering of the composition.

- 23. (new): A smectic A liquid crystal composition, comprising one or more ionic dopants, wherein the ionic dopant comprises a phosphorus containing anion with a cation, wherein the ionic dopant reduces the driving voltage of a device comprising the smectic A liquid crystal composition and enhances dynamic light scattering of the composition.
- **24.** (new): The composition as claimed in claim 23, wherein the anion comprises X, and X is one of the following: POH, PO_2H , PO_3H , $(PO_3)^2$, PO_4H or $(PO_4)^2$.
- **25.** (new): The composition as claimed in claim 23, wherein the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$
 I

wherein X is POH, PO₂H, PO₃H or (PO₃)²; m is 0 or 1; n is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano

Application No.: 10/526,659

group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19.

26. (new): The composition as claimed in claim 23, wherein the anion comprises:

$$X - \left(\begin{array}{c} \\ \\ \end{array} \right) - R^3$$

wherein X is PO_3H^- or $(PO_3)^{2-}$, and R^3 is an alkyl or alkoxy chain.

- 27. (new): The composition as claimed in claim 23, wherein the anion is chiral.
- 28. (new): The composition as claimed in claim 23, wherein the dopant is:

$$C_{16}H_{33}(CH_3)_3N^{\bigoplus}PF_6^{\bigoplus}$$
 1b

$$C_{16}H_{33}(C_2H_5)(CH_3)_2N \xrightarrow{\Theta} PF_6$$
 2b

$$C_{16}H_{33}$$
 PF_6^{Θ} 3b

$$C_{16}H_{33}(CH_3)_3N^{\oplus}$$
 HO_3P OC_9H_{19} 7a

Application No.: 10/526,659

$$C_{16}H_{33}(CH_3)_3N$$
 $\bigoplus \Theta$
 $9b$
 $C_{12}H_{25}$
 $C_{16}H_{33}(CH_3)_3N$
 $\bigoplus \Theta$
 $O_{12}H_{25}$
 $O_{12}H_{25}$

$$C_{16}H_{33}(CH_3)_3N \xrightarrow{\oplus \ominus} HO_2P ----C_{12}H_{25}$$
11b

$$C_{16}H_{33}(CH_3)_3N$$
 O_3P $O_4C_{12}H_{25}$ $O_5C_{16}H_{25}$

$$C_{16}H_{33}(CH_3)_3N$$
 $\overset{\oplus}{}$ Θ O_3P $O_{12}H_{25}$

$$C_{16}H_{33}(CH_3)_3N$$
 O_2P $O_{12}H_{25}$

Application No.: 10/526,659

$$C_{16}H_{33}(CH_3)_3N$$
 $\overset{\oplus}{}$ Θ_3P $-- C_{12}H_{25}$ **12b**

$$C_{16}H_{33}(CH_3)_3N$$
 $\bigoplus \Theta$
 HO_4P
 $C_{12}H_{25}$

$$C_{16}H_{33}(CH_3)_3N$$
 $\bigoplus \Theta$
 HO_3P
 $C_{12}H_{25}$

- **29.** (new): The composition as claimed in claim 23, wherein the cation is a quaternary ammonium cation.
- **30. (new):** A smectic A liquid crystal composition, comprising one or more ionic dopants, wherein the ionic dopant comprises a sulfur containing anion with a cation, wherein the ionic dopant reduces the driving voltage of a device comprising the smectic A liquid crystal composition and enhances dynamic light scattering of the composition, wherein:
 - (a) the anion comprises X, and X is one of the following: S⁻, SO₂⁻, SO₄⁻ or NHSO₃⁻; or
 - (b) the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$
 I

Application No.: 10/526,659

wherein X is S⁻, SO₂ or NHSO₃; m is 0 or 1; n is 0 to 19; and R is R^3 , R^1R^3 , R^1 -(CO₂)- R^3 , R^1 -(CO₂)- R^2R^3 , R^1 -(CO₂)- R^2R^3 , or R^1 -(CH₂)_p- R^2R^3 ; wherein R^1 is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R^2 is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R^3 is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(c) the anion is according to formula I:

 $X-O_m(CH_2)_n-R$

wherein X is S⁻, SO₂⁻, SO₃⁻ or NHSO₃⁻; m is 1; n is 0 to 19; and R is R^3 , R^1R^3 , R^1 -(CO₂)- R^3 , R^1 -(CO₂)- R^2R^3 , R^1 -(CO₂)- R^2R^3 , or R^1 -(CH₂)_p- R^2R^3 ; wherein R^1 is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R^2 is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R^3 is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(d) the anion is according to formula I:

Application No.: 10/526,659

 $X-O_m(CH_2)_n-R$ I

wherein X is S⁻, SO₂⁻, SO₃⁻ or NHSO₃⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(e) the anion is according to formula I:

 $X-O_m(CH_2)_n-R$

wherein X is S⁻, SO₂⁻, SO₃⁻ or NHSO₃⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

Application No.: 10/526,659

(f) the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$
 I

wherein X is S⁻, SO₂⁻, SO₃⁻ or NHSO₃⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹R³, R¹(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(g) the anion comprises:

$$X - \left(\begin{array}{c} \\ \\ \end{array} \right) - R^3$$

wherein X is SO₃, and R³ is an alkoxy chain; or

- (h) the anion is chiral; or
- (i) the cation is based on an N,N'-dialkylimidazole, an N,N'-dialkyltriazole, an N,N'-dialkyltriazole, an N-alkylquinuclidine or an N-alkylazanaphthalene; or
 - (j) the cation is according to formula II:

$$Y-(CH_2)_{\mathfrak{a}}-R$$
 II

Application No.: 10/526,659

wherein Y is NR⁴R⁵R⁶ wherein R⁴, R⁵ and R⁶ is in every instance an alkyl group or an alkyl chain containing 0 to 5 carbon atoms, N-alkylimidazoles, N-alkylbenzimidazoles, N-alkyltriazoles, alkylquinuclidines or alkylazanaphthalenes; q is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyl, a substituted biphenyl, a terphenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(k) the cation is according to formula II:

$$Y-(CH_2)_q-R$$
 II

wherein Y is NR⁴R⁵R⁶ wherein R⁴, R⁵ and R⁶ is in every instance an alkyl group or an alkyl chain containing 0 to 5 carbon atoms, pyridines, N-alkylimidazoles, N-alkylbenzimidazoles, N-alkyltriazoles, alkylquinuclidines or alkylazanaphthalenes; q is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyl, a substituted biphenyl, a substituted phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a

Application No.: 10/526,659

biphenyldiazine, a naphthalene or an azanaphthalene; R^3 is a cyano group, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH_2 -groups are replaced by an oxygen atom; and p is 0 to 19; or

(1) the cation is:

$$R^{7} = N = R^{9}$$
 R^{10}
or
 R^{8}
 $R^{7} = N = R^{9}$
 R^{8}

where R⁷, R⁸, R⁹ and R¹⁰ are alkyl chains; or

- (m) the cation is *n*-hexadecyltrimethylammonium (HTMA) or *n*-hexadecyldimethylethyl-ammonium (HDME); or
 - (n) the cation is chiral; or
 - (o) the dopant is:

Application No.: 10/526,659

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

$$C_{16}H_{33}(CH_3)_3N \stackrel{\bigoplus \bigcirc}{} O_3S - C_{12}H_{25}$$
11a

$$C_{16}H_{33}(CH_3)_3N \overset{\oplus}{}^{\bigcirc}O_4S - C_{12}H_{25}$$
12a

$$C_{16}H_{33}(CH_3)_3N$$
 O_4S $C_{12}H_{25}$

31. (new): The composition as claimed in claim 30, wherein the cation is a quaternary ammonium cation.

Application No.: 10/526,659

32. (new): A method to reduce the driving voltage of a device comprising a smectic A liquid crystal composition and to enhance dynamic light scattering of the composition, said method comprising doping a smectic A liquid crystal composition with an ionic dopant comprising a quaternary ammonium cation with an anion.

- 33. (new): A device comprising a smectic A liquid crystal composition, wherein the smectic A liquid crystal composition comprises one or more ionic dopants, wherein the ionic dopant comprises a quaternary ammonium cation with an anion, wherein the ionic dopant reduces the driving voltage of the device and enhances dynamic light scattering of the composition.
- 34. (new): The device as claimed in claim 33, wherein the device is a display or a light shutter.
- 35. (new): A method of doping a smectic A liquid crystal composition, comprising adding an ionic dopant to a smectic A liquid crystal composition, wherein the ionic dopant comprises a quaternary ammonium cation with an anion, wherein the ionic dopant reduces the driving voltage of a device comprising the smectic A liquid crystal composition and enhances dynamic light scattering of the composition.
- 36. (new): A smectic A liquid crystal composition, comprising one or more ionic dopants, wherein the ionic dopant comprises a quaternary ammonium cation with an anion, wherein the ionic dopant reduces the driving voltage of a device comprising the smectic A liquid crystal composition and enhances dynamic light scattering of the composition, wherein:

AMENDMENT UNDER 37 C.F.R. § 1.111Attorney Docket No.: Q86569 Application No.: 10/526,659

- (a) the anion is a phosphorus containing anion; or
- (b) the anion comprises X, and X is one of the following: S^- , SO_2^- , SO_4^- , NHSO₃, POH⁻, PO₂H⁻, PO₃H⁻, (PO₃)²⁻, PO₄H⁻ or (PO₄)²⁻; or
 - (c) the anion is according to formula I:

 $X-O_m(CH_2)_n-R$

wherein X is S⁻, SO₂⁻, NHSO₃⁻, POH⁻, PO₂H⁻, PO₃H⁻ or (PO₃)²⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(d) the anion is according to formula I:

 $X-O_m(CH_2)_n-R$ I

wherein X is S⁻, SO₂⁻, SO₃⁻, NHSO₃⁻, POH⁻, PO₂H⁻, PO₃H⁻ or (PO₃)²⁻; m is 1; n is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an

Application No.: 10/526,659

aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(e) the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$

wherein X is S⁻, SO₂⁻, SO₃⁻, NHSO₃⁻, POH⁻, PO₂H⁻, PO₃H⁻ or (PO₃)²⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(f) the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$
 I

wherein X is S⁻, SO₂⁻, SO₃⁻, NHSO₃⁻, POH⁻, PO₂H⁻, PO₃H⁻ or (PO₃)²⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, a non-aromatic ring, a cyclopexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted

Application No.: 10/526,659

biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(g) the anion is according to formula I:

$$X-O_m(CH_2)_n-R$$
 I

wherein X is S⁻, SO₂⁻, SO₃⁻, NHSO₃⁻, POH⁻, PO₂H⁻, PO₃H⁻ or (PO₃)²⁻; m is 0 or 1; n is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R³, or R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(h) the anion comprises:

$$X - \left(\begin{array}{c} \\ \\ \end{array} \right) - R^3$$

wherein X is SO₃⁻, PO₃H⁻ or (PO₃)²-, and R³ is an alkoxy chain; or

(i) the anion is chiral; or

Application No.: 10/526,659

(j) the cation is based on an N,N'-dialkylimidazole, an N,N'-dialkyltriazole, an N,N'-dialkyltriazole, an N-alkylquinuclidine or an N-alkylazanaphthalene; or

(k) the cation is according to formula II:

$$Y-(CH_2)_q-R$$
 II

wherein Y is NR⁴R⁵R⁶ wherein R⁴, R⁵ and R⁶ is in every instance an alkyl group or an alkyl chain containing 0 to 5 carbon atoms, N-alkylimidazoles, N-alkylbenzimidazoles, N-alkyltriazoles, alkylquinuclidines or alkylazanaphthalenes; q is 0 to 19; and R is R³, R¹R³, R¹-(CO₂)-R³, R¹-(CO₂)-R²R³, R¹-(CH₂)_p-R²R³; wherein R¹ is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyl, a substituted biphenyl, a terphenyl, a substituted phenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a hydrogen, a cyano group, an alkyl chain, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(l) the cation is according to formula II:

$$Y-(CH_2)_q-R$$
 II

wherein Y is $NR^4R^5R^6$ wherein R^4 , R^5 and R^6 is in every instance an alkyl group or an alkyl chain containing 0 to 5 carbon atoms, pyridines, N-alkylimidazoles, N-alkylbenzimidazoles, N-alkyltriazoles, alkylquinuclidines or alkylazanaphthalenes; q is 0 to 19; and R is R^3 , R^1R^3 , R^1 -(CO_2)- R^3 , R^1 -(CO_2)- R^2R^3 , R^1 -(CH_2)_p- R^3 , or R^1 -(CH_2)_p- R^2R^3 ; wherein R^1 is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a substituted terphenyl, an aromatic ring, a

Application No.: 10/526,659

non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R² is a phenyl, a substituted phenyl, a biphenyl, a substituted biphenyl, a terphenyl, a substituted terphenyl, an aromatic ring, a non-aromatic ring, a cyclohexyl, a cyclopentyl, a diazine, a bidiazine, a terdiazine, a phenyldiazine, a biphenyldiazine, a naphthalene or an azanaphthalene; R³ is a cyano group, an alkyl substituted cyclohexyl, an alkenyl chain, or an alkyl chain wherein one or more non-adjacent CH₂-groups are replaced by an oxygen atom; and p is 0 to 19; or

(m) the cation is:

where R⁷, R⁸, R⁹ and R¹⁰ are alkyl chains; or

- (n) the cation is *n*-hexadecyltrimethylammonium (HTMA) or *n*-hexadecyldimethylethyl-ammonium (HDME); or
 - (o) the cation is chiral; or
 - (p) the dopant is:

$$C_{16}H_{33}(CH_3)_3N^{\bigoplus} Br^{\bigoplus}$$
 1a
 $C_{16}H_{33}(CH_3)_3N^{\bigoplus} PF_6^{\bigoplus}$ 1b

Application No.: 10/526,659

Application No.: 10/526,659

$$C_{16}H_{33}(CH_3)_3N \overset{\oplus \ominus}{} O_3S - C_{12}H_{25}$$
11a

$$C_{16}H_{33}(CH_3)_3N \xrightarrow{\oplus \ominus} HO_2P - C_{12}H_{25}$$
11b

$$\begin{array}{ccc}
\oplus & \ominus \\
C_{16}H_{33}(CH_3)_3N & HO_3P & C_{12}H_{25}
\end{array}$$
11c

$$C_{16}H_{33}(CH_3)_3N$$
 $\bigoplus \Theta$ O_3P $C_{12}H_{25}$

$$C_{16}H_{33}(CH_3)_3N$$
 $\bigoplus \Theta$ HO_2P $C_{12}H_{25}$

Application No.: 10/526,659

13a

Application No.: 10/526,659

37. (new): The composition as claimed in claim 36, wherein the anion is a sulfur or a phosphorus containing anion.