Time Series Forecasting

UTKARSH GAIKWAD

WHAT WILL BE MY DEMAND OF ALOO TIKKI FOR NEXT DAYS?

Date	Quantity
01-01-2023	50
02-01-2023	30
03-01-2023	20
04-01-2023	25
05-01-2023	10
06-01-2023	34
07-01-2023	55
08-01-2023	60
09-01-2023	20
10-01-2023	22
11-01-2023	23
12-01-2023	25
13-01-2023	40
14-01-2023	65
15-01-2023	75
16-01-2023	36
17-01-2023	25
18-01-2023	41
19-01-2023	39
20-01-2023	42
21-01-2023	66
22-01-2023	71

Stationary vs Non Stationary time series

Rules for a stationary time series

Models for Time Series

Equation for ARIMA

 θ = moving average parameters of order q,

 Φ = autoregressive parameters of order p,

 \hat{y}_t = prediction estimates at time t,

 y_{t-p} = lagged values of y, and

e = error term.

ARIMA Equation (Difference)

$$y_t \overset{(d)}{\searrow} = c + \varepsilon_t + \phi_1 y_{t-1}^{(d)} + \phi_2 y_{t-2}^{(d)} + \dots + \phi_p y_{t-p}^{(d)} + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_p \varepsilon_{t-q}$$
 Integrated Auto-Regressive Moving Average

Thank you

UTKARSH GAIKWAD