Jalpaiguri Govt. Engg. College (A Govt. Autonomous College) COE/B.Tech/CSE/PCC-CS602/2021-22 2022 COMPUTER NETWORK FM: 70 Time Allotted: 3 hours The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Group - A [Objective Type Questions] Answer all the questions $5 \times 2 = 10$ Which topology is most reliable and why? Is flow and error control needed in a noiseless channel? Why or why not? What is bandwidth delay product? What is piggybacking? A packet has arrived with M an M bit value of 0 in IPv4 datagram. Is this is the first fragment, the last fragment, or a middle fragment? Do we know if the packet was fragmented? Group - B - [Long Answer Type Questions] Answer any four of the following $4 \times 15 = 60$ In which two layers of OSI model Flow control and Error control is done? Why is it done in two layers? carde lo evento one What are the differences between packet switching and circuit switching? enfrelase resula A network using CSMA/CD has a bandwidth of 10 Mbps. If including all the delays, the maximum propagation time is 25.6 µs, what is the minimum size of the frame? What is the difference between FDMA and FDM? 4+5+(3-3) Why is acknowledgement numbered in stop & wait protocol? Discuss the situation when unnumbered acknowledgements can create confusion in the sender and receiver end. Discuss CSMA/CD with the help of a flow chart. A network with one primary and four secondary stations uses polling. The size of a data frame is 100 bytes. The size of poll; ACK and NAK frames are 32 bytes each. Each station has 5 frames to send. How many total bytes are exchanged if there are no limitations on the number of frames a station can send in response to a poll? 4+5+6 What is vulnerable time? Show that the vulnerable time in case of slotted ALOHA is T_{ff} (The frame transmission time). We have a pure aloha network with 100 stations. Channel capacity is 10 Mbps and frame size is 100 bits. What is the number of frames/s each station can send to achieve a maximum efficiency? Draw the IPv4 datagram format. Explain the function of "Flags" field in the datagram format. Which field of the IPv4 header change from router to router? The value of HLEN in an IPv4 datagram is 7. How many option bytes are present? (1+3)+4+5+2P.T.O

9

8

0

JALPAICURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE]

COE/B.TECH./CSE/PEC-IT-601C/2021-2022

2022

Software Engineering

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are requested to write their answers in their own words as far as practicable.

GROUP-A	
Answer all questions [OBJECTIVE TYPE QUESTIONS]	5x2=10
, mo wer am questions	JA2 10
Define Data Dictionary. What do you mean by size of a software product? How project size can be estimated? Write down the roles of SRS document in software development. Define software metrics with example. System testing can be considered a pure black-box testing. Justify the answer.	2 2 2 2
The string can be considered a pure black-box testing. Justily the answer.	2
GROUP-B [LONG ANSWER TYPE QUESTIONS] Answer any four questions	41560
Allswer any jour questions	4x15=60
6. Draw a schematic diagram to represent the iterative waterfall model of software development. Write down the advantages and limitations of iterative waterfall model. What is a prototype? Under what circumstances it is beneficial to construct a prototype? iii) According to Boehm's, explain different categories of software product with examples? Draw the characteristics curve of development effort with respect to project size for different categories of	2+1 3+3
software product and explain.	
7. i) Assume that the size of an utility software has been estimated to be 42,000 lines of source code Assume that the average salary of software developers is Rs. 30,000 per month. Determine the effort required to develop the software, nominal development time, the no. of engineers required and the cost to develop the product.	
 Using Putnam's method, show how effort required to develop a project depends on project schedule. Write down the differences between two types of organization structures: Project Format and Function Format. 	
 8. i) Consider a software project with 5 tasks T1-T5. Duration of the tasks (in days) are 15 10, 12, 25 and 20, respectively. T2 and T4 can start when T1 is complete. T3 can start when T2 is complete. T5 can start when both T3 and T4 are complete. a) Draw the PERT chart. b) When is the latest start date of the task T3? c) When is slack time of the task T4? 	
ii) What do you mean by software Risk? Explain the principles of software risk management.	2+4
iii) Differentiate between PERT chart and GANTT chart.	3
9. i) Define software reliability and software quality.	2+2
ii) Explain using one simple sentence each what you understand by the following reliability measures: a) A POFOD of 0.001 b) A ROCOF of 0.002 c) MTBF of 200 units d) Availability of 0.998	4
iii) Explain the different levels of SEI Capability Maturity Model . iv) Write down the different steps of Quality Management.	4+3

10. i) Distinguish between software vicomplexity and computational complexity of a program.	erification and software omplexity of a program.	validation. Differentiate be Define a metric for measur	etween structural	3+3+3	
ii) Explain the different methods f	or white box texting with	n examples.		6	
11. i) What do you mean by the terms these concepts useful in arriving at a	good design of a system	1?			
ii) What is model? Explain the diff iii) What do you mean by Software	erent types of diagrams a	and views supported in UMI		2+6	
12. Write Short Notes on any three				3*5	
ii) Spiral Model iii) Integration Testing iii) Decision Tree and Decision Tab iv) Halstead's software science v) Project Scheduling	le				<u>~</u> .

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE

[A GOVERNMENT AUTONOMOUS CC LLEGE] JGEC/B.TECH./CSE/PCC-CS601/2021-22

2022 DATABASE MANAGEMENT SYSTEM

Full Marks: 70

Company (company-name, city)

Manages (employee-name, manager-name)

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are requested to write their answers in their own words as far as practicable.

GROUP-A IORIECTIVE TYPE OFFICIALS	
Answer all questions [OBJECTIVE TYPE QUESTIONS]	2=10
Define 'meta data'.	2
2. What is prime attribute?	2
2. List two reasons why 'null' values might be introduced into the database? What is Foreign key?	2
What is Poleigh key?	2
5. What do you mean by Explicit Cursor?	2
GROUP-B	
Answer and four questions [LONG ANSWER TYPE QUESTIONS]	
Answer any jour questions	15=60
6. Discuss the external view, internal view and conceptual view in three-tier database architecture. How are these different schema layers related to concepts of logical and physical data independence? Write down the difference between the transfer of logical and physical data independence?	6+3
" The down the difference between procedural and non-procedural DMI	3
What are the disadvantages of DBMS?	3
7 i) Draw the F P diagram Cal Cal :	
7. i) Draw the $E - R$ diagram of the following: An exhibition experimetion because if	8
An exhibition organization keeps information about paintings and sculptures. Each painting has a PAINTING-NAME and PAINTING-DESCRIPTION. Each sculpture has a SCULPTOR-NAME SCULPTURE-NAME and SCULPTURE-DES. Paintings and sculptures may appear in the same gallery. For the purpose of keeping track of the location of items, each painting and sculpture is given a unique identifier ART-NO. Each gallery has an identifier GALLERY-NO, and a size. Each gallery can store any number of art objects. Each art object appears in one gallery only. The DATEPLACED-IN-GALLERY is kept for both paintings and sculptures.	
Note that PAINTING-NAME is unique within PAINTER-NAME, and SCULPTURE-NAME is unique within SCULPTOR-NAME.	
/ TOR-IVAIVIE.	
Describe how the entity animal (in a ZOO) can be developed into a specialization hierarchy.	
Compare between 3NF and BCNF with example.	3
	4
8. i) Let the following relation schemas be given:	
Sailors(sid:integer, sname: string, rating: integer, age: real)	
Boats(bid: integer, bname: string, color: string)	
Reserves(sid: integer, bid: integer, day: date)	
Perform the following queries on the tables in relational alash	
Perform the following queries on the tables in relational algebra, tuple relational calculus and domain relational calculus:	
a) Find the color of the boats reserves by Source.	
b) Find the sid's of sailors with age over 20 who have	2.5
c) Find the name of the sailors who have reserves boat 209(bid).	2.5
nave reserves boat 209(bld).	2.5
ii) Consider the following schemas, primary keys are underlined.	
Works (employee-name, company-name, salam)	
Company (company-name, city)	

Writ	te SQL's for the queries given below 1) Find all employees in the database who live in the same cities as the companies for which hey 2	2.5
	work. 2) Find all employees in the database who live in the same cities and on the same streets as do their	2.5
	managers. 3) Find the company that has the smallest payroll.	2.5
	Why is normalization required?	2+2
9. i) Wri	te short note on integrity constraints. Why is normalization required? en a relational schema Supply {sno, city, status, pno, qty} with FD set	6
F= { Find	sno -> city, city -> status, {sno, pno} -> qty} the key of the schema.	
	o reduce it into 3NF. cuss with suitable example the lossless and lossy decomposition.	5
111, 010		
· 10 · it Wh:	at is transaction? Explain the transaction states.	1+4
Vin Disc	cuss the ACID properties of transaction.	5
iii) Exp	lain with example serializable schedule. Define MVD with suitable example?	2+3
• 11. Write sl	nort notes (any three)	<5=15
1	ctional Dependency	5
	abase Model	5
iii) B+		5
iv) Trig		5
	a independence	5

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE, COE/B.TECH./CSE/PEC-IT601B/2021 22

DATA WAREHOUSING & DATA MINING

2022

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are requested to write their answers in their own words as far as practicable.

GROUP-A
[OBJECTIVE TYPE QUESTIONS]

Answer all questions

Define data warehouse.

"FP-Tree approach is faster than Apriori algorithm for large frequent item-sets detection"- Justify?

Construct a lattice of cuboids for a four dimensional data warehouse?

What is concept hierarchy?

What is virtual warehouse?

GROUP-B
[LONG ANSWER TYPE QUESTIONS]

Answer any four questions

4x15=60

- Answer any *four* questions

 4x15=60

 6. i) Provide the pseudo code of the k-means clustering algorithm. State the advantage and drawback of 5+2 k-means algorithm.
 - ii) Compare the centroid update process of k-means with the medoid update process of k-medoids.

 2
 iii) Find two clusters from the given data (A(1.3), B(7.3), C(2.9), D(5.5), E(9.7), F(3.7), G(6.7), H(5.9),
 - iii) Find two clusters from the given data (A(1,3), B(7,3), C(2,9), D(5,5), E(9,7), F(3,7), G(6,7), H(5,9), I(1,9)) when initial centroids are C and G. Show all the steps for 3 iterations.
- 7. i) State the apriori property, joining rule and pruning process for Apriori
 Algorithm. How does pruning step help to reduce the execution time
 of Apriori Algorithm?

 TID Item Codes

 TID M. O. N. K. E. Y 5+3
 - ii) Enumerate all frequent itemsets from the database given in Table 1 T1 M, O, N, K, E, Y using Apriori algorithm with minimum support count S=3. List all the T2 D, O, N, K, E, Y candidate set and large frequent itemsets for each database scan. Show T3 M, A, K, E the association rules along with their confidence for all the frequent T4 M, U, C, K, Y itemsets in L3.
 - itemsets in L3.

 iii)— Given frequent itemset I and subset s of I, prove that the confidence of the rule "s' \Rightarrow (I s')" cannot be more than the confidence of "s \Rightarrow Table I (I s)," where s' is a subset of s.
- i) Draw the decision tree of the training data given in Table 2 using information gain. {cheat is the class label attribute}.
 - ii) List the classification rules obtained from the decision tree.
 - iii) What are the differences between supervised and unsupervised machine learning?

TID	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single *	10 to 15	No	
2	No	Married	10 to 15	No	
3	No	Single	up to 8	No	
4	Yes	Married	10 to 15	No	
5	No	Divorced	8 to 10	Yes	
6	No	Married	up to 8	No	
7	Yes	Divorced	10 to 15	No	
8	No	Single	8 to 10	Yes	
9	No	Married	up to 8	No	
10	No	Single	10 to 15	Yes	

005685

Table 2

10

/		
9.	.iV	Draw the FP-Tree for the database given in Table 3
	V	with minimum support count S=2.

- Derive all the conditional FP-Tree and state the frequent itemsets.
- Write the advantage of FP-Tree Algorithm over Apriori Algorithm.

TranID	List of Item_IDs
T100	Butter, Milk, Rice
T200	Bread, Butter, Jam
T300	Butter, Sugar
T400	Bread, Butter, Milk
T500	Bread, Sugar, Pepsi
T600	Butter, Sugar, Curd
T700	Bread, Sugar
T800	Bread, Butter, Sugar, Jam
T900	Bread, Butter, Sugar

Table 3

10. i) Briefly compare the following concepts. You may use an example to explain your point(s).	
(a) Star schema and snowflake schema	3
(b) Independent and dependent data marts	3
(c) OLAP and OLTP	6
Write a short note on Metadata repository.	3
Draw the 3-Tier Data Warehouse architecture and explain each tier. Discuss the OLAP operations which are performed in the middle tier of the data warehouse architecture on Multidimensional Data Model.	8
architecture on Multidimensional Data Model.	7

JALPAIGURI GOV: RNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH/CSE/OEC-IT601A/2021-22

NUMERICAL METHODS

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are instructed to write the answers in their own words as far as practicable.

GROUP-A

Angwer	II questions	10	OBJECTIVE	E TYPE QUE	STIONS				
	all questions								5x2=10
	ve that $\nabla = \Delta E^{-1}$								- 2
2. Def	fine round off error a	and truncation e	rror.						2
3.	te any two properties	s of dividend di	fference.						2
Sol	ve by Gauss elimina	tion method:	22.2	-					
A.	o o a a so cilimina	tion method: X-	+y=2,2x+3y=	=5					2
5. Fin	d an iterative formul	la to find to No.	homa Nica	nositi.	1				2
	- Torma	ia to find (21 W	nere in is a j	GROUP-B	iber.				2
		ILO			HESTION	VSI			
Answer a	my five/ four question	ons			CLSTIO	,51		4x15 =	60
6. (1)Ta	ny five/ four question aking h=0.5 evaluate	$e^{\int_{-\infty}^{2} dx} u \sin \theta$	Tranezoida	Lrule				iais	. 5
iix's	Solve the following	71 1-2	·····			*			
	Solve the following $3x+y+2z=3$, $2x-3y-3y-3y-3y-3y-3y-3y-3y-3y-3y-3y-3y-3y-$	equations by ma	atrix-inversi	on method.					5
110	Use Larrange Same	2 3 , X+2y+2	-4 - 656 -1		1 000	22155 1			
100	Use Lagrange's me	0 661 -2 920	710 050, gr	ven mai anu	10.910 054	- 2.8156, 10	910 658	3 = 2.8182,	
:05	$g_{10} 659 = 2.8189$, lo	$y_{10}001 = 2.820$	2 5						5
7. i)F	ind a root of the follo	owing equation	union bisses						
	ind a root of the follo	- cquation	using bisec	tion method	correct to 1	three decima	al places.		8
x ³	3 - x - 1 = 0								
		(+v) with initial	oondition	-1 . 0.0	10				
	Given $dy/dx = (y-x)/(y$	(1 X) With miliai	condition y	y=1 at $x=0;11$	nd for $x=1$	by Euler's	method.		
									7
8. i)F	ind a real root of the	e equation $3x +$	$\sin x - e^x$	= 0 by the i	nethod of	false position	n correc	t to four dec	imal 0
pla	ices.	,				Positio		to four dec	illiai o
ii)	Given the following /eight (in lbs) x: 0	table, find the n	umber of st	udents who	se weight i	s between 6	0 and 70	lhe.	7
	5.B. (103) A. 0	-40 40-00	60 - 80 8	80 - 100 - 1	00 - 120		0 4114 70	103.	
IN	o. of students: 25	0 120			0				
9. ix	Setermine f(x) as a n	ok ' L'							
	Setermine f(x) as a p	olynomial in x	for the follo	wing data:	(Newton's	s divided dif	ference	formula)	7
	x: -4	-1							
			0	2		5			
	f(x):1245	33	5	9		1225			
						1335			
V	Solve the following	equations by F	actorization	Method:					8
	1004-412-	2		wicellou,					
	101747-12.	2x+10y+z=13:	2x + 2y + 10x	c=14		10	1	1	
						2	10	1	
						2	9	10	
						1. YE .			THE RESERVE OF THE PERSON OF T

