

第七章 线性方程组的数值解

□ Ax=b,A、b已知,求x

□应用例子: 立体视觉

思考:如何从两幅/多幅不同的图片恢复3D信息(深度)?

2

$$x_j = P * X_j$$

已知 x_j 和映射矩阵P时,不能求出 X_j ;如果还知道 $x'_j = P' * X_j$ 中的 x'_j 和映射矩阵P',则可通过求解线性方程组求取

注意:实际应用时需要考虑各种误差

Ax = b, A可逆时,有两大类方法:

□直接法: 当A为低阶矩阵

□ 迭代法: 当A为大型稀疏矩阵

若A不可逆,则属于广义逆问题:

有解问题为min ||Ax - b||

有唯一解: min ||x||

第一节 高斯消去法

$$\begin{cases}
 a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} & (1) \\
 a_{21}^{(1)}x_1 + a_{22}^{(1)}x_2 + \dots + a_{2n}^{(1)}x_n = b_2^{(1)} & (2) \\
 & \dots & \dots \\
 a_{n1}^{(1)}x_1 + a_{n2}^{(1)}x_2 + \dots + a_{nn}^{(1)}x_n = b_n^{(1)} & (n)
\end{cases}$$

一、基本方法

1. (1)不变,(2)~(n)对(1)消元,消去(2)~(n)中*x*₁ 项,

设
$$a_{11}^{(1)} \neq 0$$
,新(i)=旧(i) $-\frac{a_{i1}^{(1)}}{a_{11}^{(1)}} \times (1)$

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ \dots \\ a_{n2}^{(2)}x_2 + \dots + a_{nn}^{(2)}x_n = b_n^{(2)} \end{cases}$$

2. (1),(2)不变,(3)~(n)对(2)消元,消去(3)~(n) 中 x_2 项。… 经n-1步消元后,得到上三角形方程组。

$$\begin{cases} a_{11}^{(1)}x_1 + a_{12}^{(1)}x_2 + \dots + a_{1n}^{(1)}x_n = b_1^{(1)} \\ a_{22}^{(2)}x_2 + \dots + a_{2n}^{(2)}x_n = b_2^{(2)} \\ & \dots \\ a_{nn}^{(n)}x_n = b_n^{(n)} \end{cases}$$

则有

$$x_n = \frac{b_n^{(n)}}{a_{nn}^{(n)}},$$

$$x_i = \frac{\left[b_i^{(i)} - \sum_{j=i+1}^n a_{ij}^{(i)} x_j\right]}{a_{ii}^{(i)}}, i = n - 1, \dots, 2, 1$$

1. 列主元素消去法

在 $a_{kk}^{(k)}$,…, $a_{nk}^{(k)}$ 中选模最大的元 $a_{i_k,k}^{(k)}$,对换 i_k , k行:

能够进行的充分必要条件是A可逆(思考)

- 2 行主元素消去法: x_k 和 x_{j_k} 也需要互换
- 3. 全面主元素消去法:相当于前二者的结合 思考:比较三种方法,各方法有何优缺点?

二、计算量

加减法 $\approx \frac{n^3}{3}$ 乘除法 $\approx \frac{n^3}{3}$

三、使用条件: $a_{kk}^{(k)} \neq 0, k = 1, \dots, n$

□ 定理1: 高斯消去法能进行的充分必要条件 是系数矩阵A的各阶顺序主子式均不为0.

$$\Delta_1 = a_{11}, \ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \Delta_n = |A|$$

12

□ 第一讲, P45

防止被除数远大于除数

$$\begin{cases} 0.00001x_1 + x_2 = 1\\ 2x_1 + x_2 = 2 \end{cases}$$

(当先求取 x_2 , 再待人第一式中求取 x_1 时)

五、矩阵的三角分解 Ax = b, A为nxn矩阵,x,b为向量

□ 定理2:如果矩阵A的1~n-1阶顺序主子式都不为0,则A=LU,其中L为单位下三角矩阵, U为上三角矩阵,且分解唯一。

证明: "存在性"由高斯消去法可知。

"唯一性": $A = LU = L_1U_1$ 则有 $U = (L^{-1}L_1)U_1$

THE RESERVE

其中($L^{-1}L_1$)为单位下三角矩阵 U和 U_1 对角线前n-1个元不为0 对 $U=(L^{-1}L_1)U_1$ 进行等式两边的比较可得 $L^{-1}L_1=I$

注:看 $U_{ij}(i>j)$ 即 U_{21} U_{31} \cdots U_{n1} U_{32} \cdots U_{n2}

第二节 矩阵的三角分解法

一、直接法 $LUx = b \Rightarrow Ly = b Ux = y$ 即高斯消去法 思考: 如何具体求出L和U? 计算量?

二、追赶法:可用于三对角线方程组(常微分

方程边值问题求解)

$$A = \begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & & \cdots \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{bmatrix}$$

$$=\begin{bmatrix} \alpha_1 & & & & \\ \gamma_2 & \alpha_2 & & & \\ & & \cdots & & \\ & & \gamma_{n-1} & \alpha_{n-1} & \\ & & & \gamma_n & \alpha_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & \beta_1 & & & \\ 1 & \beta_2 & & & \\ & & \cdots & & \\ & & & 1 & \beta_{n-1} & \\ & & & & 1 & \end{bmatrix}$$

$$\begin{vmatrix}
b_1 = \alpha_1 \\
c_1 = \alpha_1 \beta_1 \\
a_i = \gamma_i & i \ge 2 \\
b_i = \gamma_i \beta_{i-1} + \alpha_i & i \ge 2 \\
c_i = \alpha_i \beta_i & i \ge 2
\end{vmatrix} \Rightarrow \begin{cases}
\alpha_1 = b_1 \\
\beta_1 = \frac{c_1}{b_1} \\
\gamma_i = a_i \\
\alpha_i = b_i - \gamma_i \beta_{i-1} \\
\beta_i = \frac{c_i}{\alpha_i}
\end{cases}$$

递推过程 i=2, ..., n

$$Ly = f$$

$$\begin{bmatrix} \alpha_1 \\ \gamma_2 & \alpha_2 \\ & \cdots \\ & \gamma_n & \alpha_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

$$\alpha_1 y_1 = f_1 \\ \gamma_i y_{i-1} + \alpha_i y_i = f_i \end{cases} \Rightarrow \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

$$i = 2, 3, \dots, n$$

$$i = 2, 3, \dots, n$$

$$Ux = y$$

$$\begin{bmatrix} 1 & \beta_1 & & \\ & 1 & \beta_2 & \\ & & \ddots & \\ & & 1 & \beta_{n-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ \vdots \\ y_n \end{bmatrix}$$

$$x_n = y_n$$

$$x_i + \beta_i x_{i+1} = y_i$$
 \rightarrow \text{\$x_n = y_n\$} \text{\$x_i = y_i - \beta_i x_{i+1}\$}
$$i = n - 1, n - 2, \dots, 1$$

三、平方根法(适用于对称正定矩阵) $A = A^{T} \text{且} \forall \text{向量} x \neq 0 \ x^{T} A x > 0$ 三角分解 $U = \begin{bmatrix} u_{11} & & & \\ & u_{22} & & \\ & & \ddots & \\ & & & u_{nn} \end{bmatrix} \begin{bmatrix} 1 & \frac{u_{12}}{u_{11}} & \cdots & \frac{u_{1n}}{u_{11}} \\ 1 & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} = DU_{0}$ $A = LDU_{0} \quad A^{T} = U_{0}^{T} D^{T} L^{T}$ 由分解的唯一性, $L = U_{0}^{T} \text{所以} A = LDL^{T}$

可将Ax=b分解,得到如下两种方法:

平方根法:
$$\begin{cases} L_1 y = b \ (L_1 = LD^{\frac{1}{2}}) \\ L_1^T x = y \end{cases}$$

或用改进的平方根法:

$$\begin{cases} Lz = b \\ Dy = z \\ L^T x = y \end{cases}$$

思考: 比较二者的计算量及适用性

$$\begin{cases} L_1 y = b \ (L_1 = LD^{\frac{1}{2}}) \\ L_1^T x = y \end{cases}$$

$$\int Lz = b$$

$$Dy = z$$

□ 例:

$$||x_1||_1 = \sum_{i=1}^n |x_i|$$

$$||x_1||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x_1||_\infty = \max_{1 \le i \le n} |x_i|$$

第三节 范数与误差分析

- 一、向量范数
- □ 定义: 按某种规则将每个 $x \in R^n$ 对应于一个 非负实数||x||,且满足下列条件:
- 1. ||x|| > 0 当 $x \neq 0$ 时
- $||cx|| = |c| \cdot ||x||, \forall c \in R$
- 3. $||x + y|| \le ||x|| + ||y||$

则称||x||为x的范数

二、矩阵范数

- □ 定义: 按某种规则将每个 $A \in R^{n \times n}$ 对应一个非负实数||A||,且满足:
- 1. ||A|| > 0 当A ≠ 0时
- $2. \quad ||cA|| = |c| \cdot ||A||, \forall c \in R$
- $|A+B| \le |A| + |B|$
- $||AB|| \leq ||A|| \cdot ||B||$ 则称||A||为A的范数

若又满足

 $||Ax|| \leq ||A|| \cdot ||x||$ 则称||A||为与向量范数相容的矩阵范数

□ 例:

$$||A||_1 = \max_{1 \le j \le n} (\sum_{i=1}^n |a_{ij}|)$$
 列范数,与 $||x||_1$ 相容

$$||A||_{\infty} = \max_{1 \le i \le n} (\sum_{j=1}^{n} |a_{ij}|)$$
 行范数,与 $||x||_{\infty}$ 相容

$$||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$$
 (最大特征值)
与 $||x||_2$ 相容

27

三、误差分析

- □误差来源
- 1. 系数扰动 A, b (观测误差或先前步骤带来的误差)

$$Ax = b
A \Rightarrow A + \delta A
b \Rightarrow b + \delta b$$

$$\begin{cases}
A \Rightarrow A + \delta A \\
b \Rightarrow b + \delta b
\end{cases}$$

分析 $\frac{||\delta A||}{||A||}$, $\frac{||\delta b||}{||b||}$ 对 $\frac{||\delta x||}{||x||}$ 的影响

28

□ 例1:

$$\begin{bmatrix} 3 & 1 \\ 3.0001 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4.0001 \end{bmatrix}$$

$$x = (1 \ 1)^T$$
, $\det A = 10^{-4}$

$$\begin{bmatrix} 3 & 1 \\ 2.9999 & 1 \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4.0002 \end{bmatrix}$$

$$\tilde{x} = (-2 \quad 10)^T$$

$$\delta b = (0.1, -0.1, 0.1, -0.1)^{T}$$

$$\Rightarrow x + \delta x = (9.2, -12.6, 4.5, -1.1)^{T}$$

$$A + \delta A = \begin{bmatrix} 10 & 7 & 8.1 & 7.2 \\ 7.08 & 5.04 & 6 & 5 \\ 8 & 5.98 & 9.89 & 9 \\ 6.99 & 4.99 & 9 & 9.98 \end{bmatrix} \Rightarrow x + \delta x = \begin{bmatrix} -81 \\ 137 \\ -34 \\ 22 \end{bmatrix}$$

30

$$\delta A = 0, \delta b \neq 0$$

$$A(x + \delta x) = b + \delta b$$

由 $Ax = b$,有 $A\delta x = \delta b$, $\delta x = A^{-1}\delta b$

$$||\delta x|| \le ||A^{-1}|| \cdot ||\delta b||$$

$$||b|| \le ||A|| \cdot ||x||$$

$$\Rightarrow \frac{||\delta x||}{||x||} \le ||A|| \cdot ||A^{-1}|| \cdot \frac{||\delta b||}{||b||}$$

思考: 考虑 $\delta A \neq 0$, $\delta b \neq 0$ 时的情形(相当于两种误差之和)

记 $Cond(A) = ||A|| \cdot ||A^{-1}||$ 为条件数,如果 Cond(A)较大,则A称为病态。

2. 舍入误差(解方程组各步骤) 与计算机字长、方程组大小有关 舍入误差的事先分析一般比较复杂,可以采用 事后估计。

2)
$$\delta A \neq 0, \delta b = 0$$
时
 $(A + \delta A)(x + \delta x) = b$
 $x + \delta x = (A + \delta A)^{-1}b$
又 $x = A^{-1}b$,则有
 $\delta x = [(A + \delta A)^{-1} - A^{-1}]b$
 $= [I - A^{-1}(A + \delta A)](A + \delta A)^{-1}b$
 $= -A^{-1}\delta A(x + \delta x)$
所以 $||\delta x|| \le ||A^{-1}|| \cdot ||\delta A|| \cdot ||x + \delta x||$
 $\frac{||\delta x||}{||x||} \approx \frac{||\delta x||}{||x + \delta x||} \le ||A^{-1}|| \cdot ||A|| \cdot \frac{||\delta A||}{||A||}$

一般的事后估计法:

如果 \bar{x} 为Ax = b的一个近似解, x^* 为精确解,则有 $x^* - \bar{x} = A^{-1}(b - A\bar{x})$ $||x^* - \bar{x}|| \le ||A^{-1}|| \cdot ||b - A\bar{x}||$ 又 $\frac{1}{||x^*||} \le \frac{||A||}{||b||}$

有
$$\frac{||x^* - \bar{x}||}{||x^*||} \le ||A|| \cdot ||A^{-1}|| \cdot \frac{||b - A\bar{x}||}{||b||}$$

注:误差来源可以是舍入误差的累积,也可以是迭代法的方法误差所带来的

思考: 有无模型误差、方法误差?

实际应用时:

- 1. 用哪种范数?
- 2. 如何判断条件数是否很大?
- 3. 有些情况下可以对矩阵的行列作数乘来改 变条件数

第四节 迭代法

由Ax = b (其中A可逆) 推出x = Bx + f迭代法: $x^{(k+1)} = Bx^{(k)} + f$

如何推导或构造B?

关键: 收敛性、误差分析

一、雅可比迭代法
$$Ax=b$$
 $A = D + L + U$

$$= \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & & & \\ a_{21} & 0 & & \\ \vdots & \ddots & \ddots & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

$$+ \begin{pmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & \vdots & \\ & \ddots & a_{n-1,n} \\ 0 & 0 & \end{pmatrix}$$

$$(D+L+U)x = b$$

$$Dx = -(L+U)x + b$$

$$x = -D^{-1}(L+U)x + D^{-1}b$$
令 $B = -D^{-1}(L+U)$ $f = D^{-1}b$
则有 $x = Bx + f$
迭代公式 $x^{(k+1)} = Bx^{(k)} + f$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} [b_i - \sum_{j=1, j \neq i}^{n} a_{ij} x_j^{(k)}]$$

二、高斯-赛德尔迭代法(G-S法)

利用已计算出的 $x_i^{(k+1)}$, $j=1,\cdots,i-1$ 来计算 $x_i^{(k+1)}$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} [b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)}]$$
 从矩阵形式上看

$$x^{(k+1)} = D^{-1}[b - Lx^{(k+1)} - Ux^{(k)}]$$

相当于
$$(D+L)x^{(k+1)} = b - Ux^{(k)}$$

$$x^{(k+1)} = \underbrace{-(D+L)^{-1}U}_{B} x^{(k)} + \underbrace{(D+L)^{-1}b}_{f}$$

三、迭代法的收敛性

记误差向量 $\epsilon^{(k)} = x^{(k)} - x^*$

由 $x^{(k+1)} = Bx^{(k)} + f$ 和 $x^* = Bx^* + f$ (假定 x^* 存 在) ,有 $\epsilon^{(k+1)} = B\epsilon^{(k)} = \cdots = B^{k+1}\epsilon^{(0)}$

□ 定理3: 迭代法 $x^{(k+1)} = Bx^{(k)} + f$ 对于任意 $x^{(0)}$ 都收敛的充分必要条件是 $\rho(B) < 1$, 其中, $\rho(B) = \max_{1 \le i \le n} |\lambda_i|$, 谱半径

证明: 仟意 $\epsilon^{(0)}$ 下迭代法收敛 $\Leftrightarrow B^k \to 0$

考虑将B相似化简化为Jordan标准型

注: 显然, $\rho(B)$ 越小则收敛速度越快

□ 定理4: 迭代法收敛的充分条件是||B|| < 1, 其 中||B||是一种与向量范数相容的矩阵范数。

证明:
$$Bx = \lambda x$$
 $|\lambda| \cdot ||x|| = ||\lambda x|| = ||Bx|| \le 1$

证明: $Bx = \lambda x$ $|\lambda| \cdot ||x|| = ||\lambda x|| = ||Bx|| \le ||B|| \cdot ||x||$ $\Rightarrow |\lambda| \leq ||B||$ 所以, $\rho(B) \leq |B|$

如何由Ax=b(其中A可逆)构造一般迭代法?

 $Ax = b \Leftrightarrow x = (I - TA)x + Tb$,其中T可逆 关键: 构造T

可构造T为行变换矩阵(若干初等矩阵的乘积), 使得TA是上三角矩阵(类似于列主元素消去法), 甚至是对角形且对角线上的元在(0.2)中。

注意: 还要使得||I - TA|| < 1,以方便误差分析

□ 结论:

- 1. 按照上述方法可以对任意Ax=b(其中A可逆) 构造出收敛的迭代公式
- 2. 但这种构造过程的计算量相当于直接法, 对于大型矩阵并不适用
- 3. 对于特殊类型的大型矩阵,一般还是直接 套用特别的公式,如雅可比迭代法和G-S迭 代法

51

□ 定义: 设
$$A = (a_{ij})_{n \times n}$$
, 如果 $|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|$, 则称A为严格对角优势矩阵。

- □ 定理5:设Ax=b,若A为严格对角优势矩阵,则雅可比迭代法和高斯-赛德尔迭代法均收敛。证明:
- 1. 证 $det(A) \neq 0$ 即A可逆(存在),也说明严格对角优势矩阵可逆。

用反证法: 假设det(A) = 0,则 $\exists u \neq 0$ 使Au = 0。

52

无妨设
$$|u_t| = \max_{1 \le i \le n} |u_i| > 0$$
则 $\sum_{j=1}^n a_{tj} u_j = 0$
 $a_{tt} u_t = -\sum_{j=1, j \ne t}^n a_{tj} u_j$
 $|a_{tt}| \cdot |u_t| = |\sum_{j=1, j \ne t}^n a_{tj} u_j| \le \sum_{j=1, j \ne t}^n |a_{tj}| \cdot |u_j|$
 $\le \sum_{j=1, j \ne t}^n |a_{tj}| \cdot |u_t|$
所以,有 $|a_{tt}| \le \sum_{j=1, j \ne t}^n |a_{tj}|$ 矛盾。

2. 证 $\rho(B) < 1$ 雅可比法: $B = -D^{-1}(L + U)$ $\det(\lambda I - B) = \det[\lambda I + D^{-1}(L + U)]$ $= \det[D^{-1}(\lambda D + L + U)]$ $= \det(D^{-1})\det(\lambda D + L + U)$ $\det(\lambda I - B) = 0 \Leftrightarrow \det(\lambda D + L + U) = 0$ 若 $|\lambda| \ge 1$,则 $\lambda D + L + U$ 为严格对角优势阵,由1可知,可逆。 所以, $\det(\lambda D + L + U) = 0 \Leftrightarrow |\lambda| < 1 \Rightarrow \rho(B) < 1$ 也可直接证明 $||B||_{\infty} < 1$

G-S法:
$$B = -(D+L)^{-1}U$$

$$\det(\lambda I - B) = \det[(D+L)^{-1}]\det(\lambda D + \lambda L + U)$$

$$\det(\lambda I - B) = 0 \Leftrightarrow \det(\lambda D + \lambda L + U) = 0$$

$$\lambda D + \lambda L + U$$
在 $|\lambda| \ge 1$ 时为严格对角优势矩阵,可逆,所以

$$\det(\lambda D + \lambda L + U) = 0 \Rightarrow |\lambda| < 1 \Rightarrow \rho(B) < 1$$

思考:以上定理中,雅可比法和G-S法,哪种的 $\rho(B)$ 更小?

55

- □ 定理6: 如果A正定对称,则G-S法收敛。 (充分性)
- □ 定理:设A对称,且其对角元素 $a_{ii} > 0, i = 1, ... n$,则方程组的Jacobi方法收敛的充分必要条件是A和2D-A均为正定矩阵。

Jacobi	k-=0	K=1	K=2	K=3	K=4	K=5	K=6
x_1^k	0	1.4	1.11	0.929	0.9906	1.01159	1.000251
x_2^k	0	0.5	1.20	1.055	0.9645	0.9953	1.005795
x_3^k	0	1.4	1.11	0.929	0.9906	1.01159	1.000251
$ x^k - x^* _{\infty}$	1	0.5	0.20	0.071	0.035	0.01159	0.005795

Gauss-Seidel	k-=0	K=1	K=2	K=3	K=4
x_1^k	0	1.4	0.9234	0.99134	0.99154
x_2^k	0	0.78	0.99248	1.0310	0.99578
x_3^k	0	1.026	1.1092	0.99159	1.0021
$\left \left x^{k}-x^{*}\right \right _{\infty}$	1	0.4	0.1092	0.031	0.0085

。定理6: 如果A正定对称,则G-S法收敛。 证明: 即证 ρ {(D+L) ^{-1}U } < 1, $L=U^T$ 记 λ 为(D+L) ^{-1}U 的特征值,则有

$$(D+L)^{-1}Uy = \lambda y$$
 $\lambda((D+L)y,y) = (Uy,y)$ $\lambda = \frac{(Uy,y)}{(Dy,y)+(Ly,y)}$ 记 $(Uy,y) = \alpha + i\beta, (Dy,y) = \gamma > 0$ 则有 $(Ly,y) = \alpha - i\beta, 2\alpha + \gamma > 0$

58

$$\lambda = \frac{\alpha + i\beta}{\gamma + \alpha - i\beta}$$
$$|\lambda|^2 = \frac{\alpha^2 + \beta^2}{(\gamma + \alpha)^2 + \beta^2}$$

分母-分子=
$$\gamma(\gamma + 2\alpha) > 0$$

得证 $|\lambda| < 1$

第五节 逐次超松弛迭代法(SOR法)

对G-S法做加速

G-S法:

$$x^{(k+1)} = D^{-1}[b - Lx^{(k+1)} - Ux^{(k)}]$$

$$= x^{(k)} + \underbrace{D^{-1}[b - Lx^{(k+1)} - (D+U)x^{(k)}]}_{\text{ $\Re \pitchfork $= $}}$$

引入松弛因子ω

$$(1 - \omega)x^{(k)} + \omega x^{(k+1)} = x^{(k)} + \omega (x^{(k+1)} - x^{(k)})$$
$$x^{(k+1)} = x^{(k)} + \omega D^{-1} [b - Lx^{(k+1)} - (D + U)x^{(k)}]$$

60

整理可得

$$(D + \omega L)x^{(k+1)} = [(1 - \omega)D - \omega U]x^{(k)} + \omega b$$

$$x^{(k+1)} = (D + \omega L)^{-1}[(1 - \omega)D - \omega U]x^{(k)}$$

$$+ \omega (D + \omega L)^{-1}b$$

$$= L_{\omega}x^{(k)} + f$$
其中 $L_{\omega} = (D + \omega L)^{-1}[(1 - \omega)D - \omega U]$ 是关键

 $x^{(0)} = [1 \ 1 \ 1]^T$, G-S, SOR ($\omega = 1.25$, $\omega = 1.75$)

- G-S: $x^{(10)} = [3.005238 \ 3.995634 -5.001091]$
- SOR $\omega = 1.25$: $x^{(10)} = [3.000002 \ 4.000014 \ -5.000022]$
- SOR $\omega = 1.75$: $\chi^{(10)} = [3.042294$ 4.006919 - 5.572998]

67

。定理7: SOR法收敛的必要条件是 $0<\omega<2$ 证明: 收敛的充要条件是 $\rho(L_{\omega})<1$,记 L_{ω} 的特征值为 λ_i ,则 $|\lambda_1\lambda_2\cdots\lambda_n|<1$

$$|\lambda_1 \cdots \lambda_n| = |\det(L_\omega)|$$

$$= |\det[(D + \omega L)^{-1}] \det[(1 - \omega)D - \omega U]|$$

$$= \left|\frac{\det[(1 - \omega)D - \omega U]}{\det(D + \omega L)}\right|$$

$$= \left|\frac{(1 - \omega)^n a_{11} a_{22} \cdots a_{nn}}{a_{11} \cdots a_{nn}}\right|$$

$$= |(1 - \omega)^n| < 1 \Rightarrow 0 < \omega < 2$$
64

□ 定理8: 如果A正定对称且 $0 < \omega < 2$,则SOR 法收敛。

思考:如何证明?

$$\omega$$
最佳值 $\omega = \frac{2}{1+\sqrt{1-\rho^2(B_0)}} > 1$

其中B₀为雅可比迭代矩阵

迭代法的事后估计法:

$$||x^{(k)} - x^*|| \le \frac{||B||}{1 - ||B||} \cdot ||x^{(k)} - x^{(k-1)}||$$
 迭代法中舍入误差(存储误差)的影响:

$$||\delta_{k+1}|| \le ||B|| \cdot ||\delta_k|| + ||\begin{pmatrix} \frac{1}{2} \cdot 10^{-m} \\ \vdots \\ \frac{1}{2} \cdot 10^{-m} \end{pmatrix}||$$

思考: 迭代法的计算量?

方程组求解总结

