

Statistikexamen

Zeit:	90 Minuten
Name:	
Matr. Nummer:	

Hinweise:

- 1. Zugelassene Hilfsmittel: Open-Book: Aufschriebe, Formelsammlung, Skript, Taschenrechner (keine gespeicherten Formeln etc.!), Notizen.
- 2. Jede Antwort muss hinreichend begründet werden. Antworten ohne Begründung ergeben 0 Punkte.
- 3. Unleserliche Ergebnisse werden nicht gewertet. Nutzen Sie bei weiterem Platzbedarf bitte auch die Rückseiten der Klausurblätter!
- 4. Die geschätzte Bearbeitungszeit (in Minuten) für eine Aufgabe entspricht der Punktzahl. Somit sind die Aufgaben insgesamt 90 Punkte wert.
- 5. Sofern nicht anders angegeben, runden Sie Dezimalzahlen auf vier und Prozentzahlen auf zwei Nachkommastellen.

6. Viel Glück!!!

Aufgabe	Punkte	Erreichte Punkte
1	10	
2	25	
3	15	
4	20	
5	20	
Gesamt	90	

Aufgabe 1: Deskriptive Statistik – Skalenniveau und Lagemaße (10 Punkte)

Geben Sie das Messniveau der folgenden Daten sowie die Lagemaße, welche berechnet werden können, an.

Daten	Messniveau	Lagemaße, die berechnet werden können
Social-Media-Kanäle		
Performance-Bewertung		
(gut, mittel, schlecht)		
Kontostand		
Zustimmungswerte		
(trifft zu, neutral, trifft nicht zu)		
Arbeitseinkommen		

Lösung:

Daten	Messniveau	Lagemaße, die berechnet werden können
Social-Media-Kanäle	Nominal	Modalwert
Performance-Bewertung (gut, mittel, schlecht)	Ordinal	Modalwert, Median
Kontostand	Intervall	Modalwert, Median, Mittelwert
Zustimmungswerte (trifft zu, neutral, trifft nicht zu)	Ordinal	Modalwert, Median
Arbeitseinkommen	Verhältnis	Modalwert, Median, Mittelwert

Aufgabe 2: Deskriptive Statistik – Lage- und Zusammenhangsmaße (25 Punkte)

Betrachten Sie den folgenden Datensatz mit Miethöhe und Wohnraum von fünf Wohnungen:

Wohnung	1	2	3	4	5
Miete (in €)	1220	540	2300	950	1200
Wohnraum (in m²)	75	45	125	80	125

Geben Sie jeweils mindestens einen Rechenschritt an.

- a) Berechnen Sie den Median und Modalwert der Wohnraumgrößen.
- b) Berechnen Sie die durchschnittliche Miethöhe und Wohnraumgröße.
- c) Berechnen Sie die Kovarianz von Miete und Wohnraum.
- d) Welche der Wohnungen verringert die Kovarianz? Erklären Sie kurz warum dies so ist unter Bezugnahme auf die Mittelwerte.

Standardabweichungen: Miete: 583 €, Wohnraum: 31 m².

- e) Berechnen Sie den Korrelationskoeffizienten auf 2 Nachkommastellen und interpretieren Sie den Wert des Koeffizienten. Ist die Korrelation stark? Begründen Sie Ihre Antworten.
- f) Ändert sich der Korrelationskoeffizient, wenn Miete statt in € in tausend € gemessen wird? Begründen Sie Ihre Antwort.

Lösung:

a) Median: 80, Modalwert: 125

b)

$$Mittelw_{Miete} = 1242$$

$$Mittelw_{Wohnraum} = 90$$

- c) Kovarianz = 14'080
- d) Wohnung 5: Miete ist unterdurchschnittlich, Wohnraum ist überdurchschnittlich hoch.
- e) Korrelationskoeffizient = 0,78 -> starke Korrelation: 61% der Unterschiede in der Miete können durch Wohnraum erklärt werden.
- f) Nein, keine Änderung. Der Korrelationskoeffizient ist eine normierte Kovarianz und hängt nicht von den Einheiten ab.

Semester 2022/23

Prof. Dr. Florian Kauffeldt

Aufgabe 3: Wahrscheinlichkeitstheorie (15 Punkte)

Die Wahrscheinlichkeit die Klausur in

- Statistik (S) zu bestehen ist: P(S) = 78%.
- BWL (B) zu bestehen ist: P(B) = 85%.

Gegeben "Statistik bestehen" und "BWL bestehen" sind unabhängige Ereignisse.

Berechnen Sie

- a) die Wahrscheinlichkeit gleichzeitig Statistik **und** BWL zu bestehen $P(S \cap B)$.
- b) die Wahrscheinlichkeit Statistik **oder** BWL zu bestehen $P(S \cup B)$. Benutzen Sie hierfür Ihr Ergebnis aus Teil a).

Gegeben "Statistik bestehen" und "BWL bestehen" sind abhängige Ereignisse.

Die Wahrscheinlichkeit Statistik und BWL gleichzeitig zu bestehen sei $P(S \cap B) = 81\%$.

Berechnen Sie

- c) die Wahrscheinlichkeit mindestens eine der Klausuren nicht zu bestehen.
- d) die bedingte Wahrscheinlichkeiten P(S | B), d.h. die Wahrscheinlichkeit Statistik zu bestehen gegeben, dass BWL bestanden wurde.

Tipp: Benutzen Sie folgende Formel. Bedingte Wahrscheinlichkeit von E gegeben F:

$$P(E \mid F) = \frac{P(E \cap F)}{P(F)}$$

Lösung:

a)
$$P(S \cap B) = P(S) \cdot P(B) = 66.3\%$$

b)
$$P(S \cup B) = P(S) + P(B) - P(S \cap B) = 96.7\%$$

c)
$$P(nicht S \cup nicht B) = 1 - P(S \cap B) = 19\%$$

d) Bedingte Wahrscheinlichkeit:

$$P(S \mid B) = P(S \cap B)/P(S) = 81\%/85\% \approx 95,29\%$$

Aufgabe 4: Inferenzstatistik – Hypothesentest (20 Punkte)

Der langfristige Durchschnitt der Monatsmiete von Studierenden an der Hochschule Heilbronn ist 231 € (Standardabweichung: 56 €).

In einer Stichprobe mit 52 Studierenden ist die durchschnittliche Monatsmiete 245 €. Wir möchten wissen, ob Studierende inzwischen mehr Miete bezahlen als in der Vergangenheit und führen hierzu einen Hypothesentest durch.

- a) Handelt es sich um einen Ein- oder Zweistichprobentest. Begründen Sie Ihre Antwort.
- b) Ist der Test einseitig oder zweiseitig. Falls einseitig, ist der Test rechts- oder linksseitig. Begründen Sie Ihre Antworten.
- c) Schreiben Sie die Null- und Alternativhypothese des Hypothesentests in Bezug zum Aufgabenkontext auf.
- d) Berechnen Sie den Standardfehler auf 2 Nachkommastellen.
- e) Berechnen Sie die Teststatistik und den p-Wert. Interpretieren Sie den p-Wert. Liegt Evidenz vor, dass die monatlichen Mietzahlungen angestiegen sind?
- f) Wie verändert sich der Standardfehler, wenn die Stichprobengröße ansteigt? Begründen Sie Ihre Antwort.

Lösung:

- a) Einstichprobentest <- nur eine Gruppe
- b) Einseitig <- "mehr Miete bezahlen"; Rechtsseitig <- Ablehnungsbereich rechts
- c) Hypothesen:

H0:
$$\mu_{Miete} \leq 231$$

Ha:
$$\mu_{Miete} > 231$$

d) Standardfehler =
$$\frac{\sigma}{\sqrt{n}} = \frac{56}{\sqrt{52}} \approx 7,77$$

e)
$$Teststatistik = \frac{x - \mu_0}{Standardfehler} = \frac{245 - 231}{7.77} \approx 1.8 \text{ -> p-Wert} = 0.5 - 0.4641 = 3.59\%$$

f) Standardfehler sinkt. Extremwerte rücken näher bzw. Wurzel (n) wird größer -> SE wird kleiner, da unter dem Bruch.

Aufgabe 5: Inferenzstatistik – Hypothesentest Chi2 (20 Punkte)

Wir möchten wissen, ob die Sportpräferenz abhängig ist vom Geschlecht. Hierfür erheben wir eine Stichprobe mit 181 Personen und beobachten folgende Häufigkeiten:

Beobachtete Häufigkeiten:

	Wandern	Fußball	Joggen	Gesamt
Mann	12	52	20	84
Frau	45	31	21	97
Gesamt	57	83	41	181

Erwartete Häufigkeiten

	Wandern	Fußball	Joggen
Mann	а	b	С
Frau	d	е	f

- a) Schreiben Sie die Null- und Alternativhypothese des Chi2-Unabhängigkeitstest in Bezug auf den Aufgabenkontext auf.
- b) Berechnen Sie die erwarteten Häufigkeiten (a,b,c,d, e und f) auf 2 Nachkommastellen. Geben Sie für jede Häufigkeit einen Rechenschritt an.
- c) Berechnen Sie die Teststatistik des Chi2-Tests auf 2 Nachkommastellen.
- d) Berechnen Sie die Freiheitsgrade des Chi2-Tests.
- e) Überprüfen Sie, ob der Chi2-Test auf einem 5%-Niveau ($\alpha = 5\%$) signifikant ist. Was können wir schlussfolgern?

Lösung:

a) Hypothesen:

H0: Geschlecht und Sportpräferenz sind stochastisch unabhängig.

Ha: Geschlecht und Sportpräferenz sind stochastisch abhängig.

b) Erwartete Häufigkeiten:

	Wandern	Fußball	Joggen
Mann	26,45	38,52	19,03
Frau	30,55	44,48	21,97

c) Teststatistik:

$$Chi2 = \frac{(12 - 26,45)^2}{26,45} + \dots + \frac{(21 - 21,97)^2}{21.97} \approx 23,63$$

Semester 2022/23

Prof. Dr. Florian Kauffeldt

d) Freiheitsgrade: $df = (2-1)^*(3-1) = 2$

e)

- Kritischer Wert bei df = 2 und α = 5%: 5,99146
- Also: Chi2 = 23,63 > 5,99146 = kritischer Wert
 Wir können die Nullhypothese auf 5%-Niveau ablehnen. Evidenz für einen Zusammenhang von Geschlecht und Sportpräferenz.