Family Background, Academic Ability, and College Decisions in the 20th Century U.S.

Lutz Hendricks (UNC) Chris Herrington (VCU) Todd Schoellman (ASU)

July 16, 2015

Motivation

Big picture goal:

Understand changes in U.S. college enrollment over time.

Focus of this paper:

Changes in the composition of college students since 1920s.

- rich versus poor students
- high versus low ability students

The role of **financial** conditions

- student loans
- college wage premium
- college costs

Empirical Contribution

Compile 40+ historical data sources on college enrollment 1919 - 1980

Main finding:

- ▶ The role of student ability has increased.
- The role of family background has decreased.

Quantitative Modeling Contribution

Model college decisions of heterogeneous students.

Identify changes in financial conditions that drive changes in enrollment patterns.

Main finding:

- Unimportant: college costs and borrowing limits.
- ▶ Important: college wage premium.

Objective

The goal: Characterize how college entry varies with

- student ability
- family background

over the period 1919-1980.

Data Sources

Post 1960 data

- access to micro data
- Project Talent, NLSY

Pre 1960 data

- no micro data
- published cross-tabulations of college entry rates

Measurement:

- Family background: parental income or socioeconomic status (SES)
- Student ability: standardized test scores (e.g. AFQT) or class rank

Example: Updegraff (1936)

Sample: 15% of Pennsylvania's 1933 graduating class.

Family background: socioeconomic status (6 bins)

Ability: test scores (6 bins)

Summarizing Historical Studies

Regress college entry rates on

- ▶ ability percentile $\rightarrow \beta_{IQ}$
- family background percentile $\rightarrow \beta_F$

Percentiles are bin midpoints.

The Role of Student Ability: β_{IQ}

Bivariate regressions

Univariate regressions

Result 1: The "role" of student ability rises over time.

The Role of Family Background: β_F

Bivariate regressions

Univariate regressions

Result 2: The "role" of **family** background (weakly) **declines** over time.

Comparability

Histories studies differ in

- sizes of percentile bins
- measures of ability and family background

Does lack of comparability affect the results?

To address this question, we replicate each study in NLSY79 data.

Example: Updegraff (1936)

Entry rates: Updegraff (1936) and NLSY replication.

Across studies: no evidence that changes in study design affect time trends in β_{IO} or β_F . Details

Key Empirical Finding

Large change in who attends college

- Academic ability has become more important
- ► Family background has become less important

Next step:

Develop a model to uncover why these changes occurred.

Model Timing

Endowments

At high school graduation, students draw:

- parental income y_p
- college cost τ
- ability signal m
- preference for college (details below)

Ability x is not observed until the start of work.

College Entry Decision

$$\max\{\underbrace{V_{HS}(y_p,m) - \gamma \eta_w}_{\text{work as HSG}}, \underbrace{V_{entry}(y_p,\tau,m) - \gamma \eta_c}_{\text{enter college}}\}$$
 (1)

 η_c, η_w : type I extreme value shocks (for computational reasons)

Working as HSG

Value of working as HSG:

$$V_{HS}(y_p, m) = \max_{z_w \ge 0} u_p(y_p - z_w) + \mathbb{E}_x \{ V_w(z_w, HS, x) | m \} + \bar{\eta}$$
 (2)

 y_p : parental income

z: transfer to the child

 $\bar{\eta}$: common preference for working as HSG

 permits the model to match overall college entry rate for each cohort

Work Phase

$$V_w(k, x, s) = \max_{c_a} \sum_{a=1}^{A-A_s} \beta^{t-1} u_w(c_a)$$
 (3)

subject to a lifetime budget constraint

$$\sum_{a=1}^{A-A_s} R^{1-a} c_a = Y(s,x) + Rk \tag{4}$$

Value of College Entry

$$V_{entry}(y_p, \tau, m) = \max_{z_c \ge 0} u_p(y_p - z_c) + V_1(z_c, \tau, m)$$
 (5)

Years 1-2 In College

$$V_{1}(k,\tau,m) = \max_{k',c,l} (1+\beta) u(c+\overline{c}_{m},1+\overline{l}_{m}-l) + \beta^{2} V_{m}(k',\tau,m)$$
 (6)

subject to

- ▶ budget constraint: $k' = Rk + 2(w_{coll}l \tau c)$
- ▶ borrowing constraint: $k' \ge k_{min,3}$
- \bar{c}, \bar{l} : increasing in m
 - prevents high ability students from consuming too much in college

End of Year 2 in College

With probability $1 - \pi(x)$: drop out and start working.

Otherwise: remain in college for 2 more years.

Continuation value:

$$V_m(k,\tau,m) = \mathbb{E}_x[(1-\pi[x])V_w(k,x,CD) + \pi[x]V_3(k,\tau,m)]$$
 (7)

Years 3-4 In College

$$V_3(k,\tau,m) = \max_{k',c,l} (1+\beta) u(c+\overline{c}_m, 1+\overline{l}_m-l) + \beta^2 \mathbb{E}_x V_w(k', x, CG)$$

subject to

- budget constraint
- borrowing constraint

Calibration

Step 1:

- Calibrate all parameters to NLSY79 data
- ► High school graduates around 1979

Step 2:

Calibrate a subset of **time-varying** parameters for high school graduates around

▶ 1960: Project Talent data

▶ **1933**: Updegraff (1936) data

Calibration Targets (NLSY79)

Median lifetime earnings by schooling (CPS)

College **entry** and graduation rates, by $[y_p, IQ]$ quartile

College **financing** (by y_p and IQ quartile):

- 1. College costs
- 2. Parental transfers (High School & Beyond)
- 3. Parental income
- 4. Hours worked and earnings in college
- 5. Student loans

$$IQ = x + \text{noise}$$

Calibrated Parameters

- Endowment distributions (college costs, parental income, abilities and signals)
- Preferences (consumption, leisure, parental altruism)
- Lifetime earnings
- Graduation rates: $\pi(x)$

▶ Details

24 calibrated parameters – 111 moments

Fit: College entry College graduation Earnings Debt and transfers

Time Series Calibration

Study	Updegraff (1936)	Project Talent	NLSY79
Cohort	1933	1960	1979
Panel A: Attendance and Sorting			
College entry rate	0.39	0.53	0.58
eta_{IQ}	0.22	0.70	0.58
$oldsymbol{eta}_F$	0.68	0.48	0.42
Panel B: Financial Conditions			
College premium	0.36	0.35	0.56
Borrowing limit	0	0	22,596
College cost	2,154	2,038	2,731

College premium ► Entry rates ► Parameters

College Entry Patterns Over Time

Financial conditions account for

- ▶ 90% of the change in β_{IQ}
- ▶ none of the change in β_F

Accounting for Changing College Entry

Which exogenous driving forces account for the changes in college entry patterns?

One answer:

- 1. Start with the baseline (NLSY79) model.
- One-by-one, change a forcing variable to match the value for an earlier cohort.

For ease of interpretation: The overall college entry rate is held fixed by adjusting the preference parameter $\bar{\eta}$.

Accounting for Changing College Entry

Most of the changes in college entry patterns are due to the rising college premium.

College Financing Over Time

How do students pay for college without loans? They get larger transfers.

Future Work

- ► NLSY97 data
 - ▶ Belley and Lochner (2007), Lochner and Monge-Naranjo (2011)
- Additional driving forces
 - e.g. standardized testing

Detail Slides

NLSY Replication Results

Variation in study design does not systematically affect β_{IQ} or β_F .

Time-Varying Parameters

- borrowing limit: k_{min}
- mean college cost: μ_{τ}
- ▶ lifetime earnings gap by schooling: $\bar{Y}(s)$
- taste for college: η̄
- parental altruism (to match share of college costs paid by "family contributions")

Calibrated Parameters

Parameter	Description	Value
Endowments		
$\mu_{ au}, \sigma_{ au}$	Marginal distribution of $ au$	3.9, 3.0
$\sigma_{\!IQ}$	IQ noise	0.32
Preferences		
ω_l	Weight on leisure	0.23
$\omega_{\scriptscriptstyle W}$	Weight on u(c) at work	8.60
$\boldsymbol{\varphi}_{\!\scriptscriptstyle D}$	Curvature of parental utility	0.54
μ_p	Weight on parental utility	0.44
	Std of weight on parental utility	0.14
$egin{array}{c} \sigma_p \ ar{\eta} \end{array}$	Preference for HS	-0.10
\bar{c}_{max}	Max free consumption	0.9
\overline{l}_{max}	Max free leisure	0.10
Other		
$ar{Y}_{\mathcal{S}}$	Log skill prices	6.48, 6.52, 6.72
w_c	College wage	24.4

College Entry Rates

College Graduation Rates

Debt and Transfers

Hours and Earnings in College

Accounting for Changing College Entry

Men vs Women

Time Series Data

Time Series Data

College Premium

Cohort Schooling

Mean Student Debt

Mean debt per undergraduate, 2010 prices.

College Costs

Mean out of pocket college cost, 2010 prices.

Borrowing Limits

Lifetime maximum undergraduate federal loan limits.

References I

Belley, P., and L. Lochner (2007): "The Changing Role of Family Income and Ability in Determining Educational Achievement," *Journal of Human Capital*, 1(1), 37–89.

Lochner, L. J., and A. Monge-Naranjo (2011): "The Nature of Credit Constraints and Human Capital," The American Economic Review, 101(6), 2487–2529.