PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	,	(11) International Publication Number: WO 99/64630
C12Q 1/68	A1	(43) International Publication Date: 16 December 1999 (16.12.99)
(21) International Application Number: PCT/USS (22) International Filing Date: 9 June 1999 (C) (30) Priority Data: 60/088,710 10 June 1998 (10.06.98) (71) Applicant: AXYS PHARMACEUTICALS, INC. [US/Kimball Way, South San Francisco, CA 94080 (U) (72) Inventors: GUIDA, Marco; 3899 Nobel Drive #1: Diego, CA 92122 (US). KURTH, Janice; 13044 Path Place, San Diego, CA 92130 (US). (74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, C (US).	09.06.9 (US); 1 (S). 301, S Walki	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the

(54) Title: GENOTYPING THE HUMAN PHENOL SULFOTRANSFERASE 2 GENE (STP2)

(57) Abstract

Genetic polymorphisms are identified in the human STP2 gene that alter STP2-dependent drug metabolism. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell and in vitro models for drug metabolism.

ATTORNEY DOCKET NUMBER: 9301-123 SERIAL NUMBER: 09/724,538

REFERENCE: CN

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΛÜ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	iE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel ·	MR	Mauritania	UG	Uganda.
BY	Belanus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ ·	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE '	Germany	ш	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

GENOTYPING THE HUMAN PHENOL SULFOTRANSFERASE 2 GENE (STP2)

INTRODUCTION

Sulfonation is an important pathway in the biotransformation of many drugs, xenobiotics, neurotransmitters, and steroid hormones. Many of the sulfonation reactions for pharmacologic agents are performed by a group of enzymes known as phenol transferases. The phenol sulfotransferase gene family consists to three members located on chromosome 16. A single gene (STM) encodes the thermolabile monoamine-metabolizing form. Two thermostable phenol-metabolizing enzymes are encoded by STP1 and STP2. Substrates for STP1 and STP2 include minoxidil, acetaminophen, and para-nitrophenol. Alterations in phenol sulfotransferase activity have been correlated with individual variation in sulfonation of acetaminophen (Reiter and Weinshilboum (1982) Clin. Pharm.) and predisposition to dietinduced migraine headaches.

The STP2 gene spans approximately 5.1 kb and contains nine exons that range in length from 74 to 347 bp. Exons IA and IB are noncoding and represent two different cDNA 5'-untranslated region sequences. The two apparent 5'-flanking regions of the STP2 gene contain no canonical TATA boxes, but do contain CCAAT elements. STP2 has been localized to human chromosome 16.

Since rates of metabolism of drugs, toxins, etc. can depend on the amounts and kinds of phenol sulfotransferase in tissues, variation in biological response may be determined by the profile of expression of phenol sulfotransferases in each person. Analysis of genetic polymorphisms that lead to altered expression and/or enzyme activity are therefore of interest.

SUMMARY OF THE INVENTION

25

5

10

15

20

Genetic sequence polymorphisms are identified in the STP2 gene. Nucleic acids comprising the polymorphic sequences are used in screening assays, and for genotyping individuals. The genotyping information is used to predict an individuals' rate of metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects. Specific polynucleotides include the polymorphic STP2 sequences set forth in SEQ ID NOs:63-100.

30

The nucleic acid sequences of the invention may be provided as probes for detection of STP2 locus polymorphisms, where the probe comprises a polymorphic sequence of SEQ ID NOs:63-110. The sequences may further be utilized as an array of oligonucleotides comprising two or more probes for detection of STP2 locus polymorphisms.

35

Another aspect of the invention provides a method for detecting in an individual a polymorphism in STP2 metabolism of a substrate, where the method comprises analyzing the genome of the individual for the presence of at least one STP2 polymorphism; wherein the

presence of the predisposing polymorphism is indicative of an alteration in STP2 expression or activity. The analyzing step of the method may be accomplished by detection of specific binding between the individual's genomic DNA with an array of oligonucleotides comprising STP2 locus polymorphic sequences. In other embodiments, the alteration in STP2 expression or activity is tissue specific, or is in response to a STP2 modifier that induces or inhibits STP2 expression.

DATABASE REFERENCES FOR NUCLEOTIDE SEQUENCES

Genbank accession no. U34804 provides the sequence of the STP2 gene.

10

15

20

5

BRIEF DESCRIPTION OF THE SEQUENCE LISTING

STP2 Reference Sequences. SEQ ID NO: 1 lists the sequence of the reference STP2 gene. The exons are as follows: exon 1A (nt 2591-2664); exon 1B (nt 3180-3526); exon 2 (nt 3726-3877); exon 3 (nt 3985-4110); exon 4 (nt 4196-4293); exon 5 (nt 6088-6214); exon 6 (6310-6404); exon 7 (nt 7214-7394); exon 8 (nt 7517-7712). The mRNA sequence is set forth in SEQ ID NO:2, and the encoded amino acid sequence in SEQ ID NO:3.

Primers. The PCR primers for amplification of polymorphic sequences are set forth as SEQ ID NOs:4-17. The primers used in sequencing isolated polymorphic sequences are presented as SEQ ID NOs:18-46. The primers used in Taqman assays are listed as SEQ ID NO:47-62.

Polymorphisms. Polymorphic sequences of STP2 are presented as SEQ ID NOs:63-110.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

25

Pharmacogenetics is the linkage between an individual's genotype and that individual's ability to metabolize or react to a therapeutic agent. Differences in metabolism or target sensitivity can lead to severe toxicity or therapeutic failure by altering the relation between bioactive dose and blood concentration of the drug. Relationships between polymorphisms in metabolic enzymes or drug targets and both response and toxicity can be used to optimize therapeutic dose administration.

30

Genetic polymorphisms are identified in the STP2 gene. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered metabolism for STP2 substrates, potential drug-drug interactions, and adverse/side effects, as well as diseases that result from environmental or occupational exposure to toxins. The nucleic acids are used to establish animal, cell culture and *in vitro* cell-free models for drug metabolism.

35

- Definition

WO 99/64630

5

10

15

20

25

30

Definitions

PCT/US99/13094

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, constructs, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a construct" includes a plurality of such constructs and reference to "the STP2 nucleic acid" includes reference to one or more nucleic acids and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

STP2 reference sequence. The sequence of the STP2 gene may be accessed through Genbank as previously cited, and is provided in SEQ ID NO:1 and SEQ ID NO:2 (cDNA sequence). The amino acid sequence of STP2 is listed as SEQ ID NO:3. These sequences provide a reference for the polymorphisms of the invention. The nucleotide sequences provided herein differ from the published sequence at certain positions throughout the sequence. Where there is a discrepancy the provided sequence is used as a reference.

The term "wild-type" may be used to refer to the reference coding sequences of STP2, and the term "variant", or "STP2" to refer to the provided variations in the STP2 sequence. Where there is no published form, such as in the intron sequences, the term wild-type may be used to refer to the most commonly found allele. It will be understood by one of skill in the art that the designation as "wild-type" is merely a convenient label for a common allele, and should not be construed as conferring any particular property on that form of the sequence.

STP2 polymorphic sequences. It has been found that specific sites in the STP2 gene sequence are polymorphic, *i.e.* within a population, more than one nucleotide (G, A, T, C) is found at a specific position. Polymorphisms may provide functional differences in the genetic sequence, through changes in the encoded polypeptide, changes in mRNA stability, binding of transcriptional and translation factors to the DNA or RNA, and the like. The polymorphisms are also used as single nucleotide polymorphisms to detect association with, or genetic linkage to phenotypic variation in activity and expression of STP2.

SNPs are generally biallelic systems, that is, there are two alleles that an individual may have for any particular marker. SNPs, found approximately every kilobase, offer the potential for generating very high density genetic maps, which will be extremely useful for developing haplotyping systems for genes or regions of interest, and because of the nature of SNPs, they may in fact be the polymorphisms associated with the disease phenotypes under study. The low mutation rate of SNPs also makes them excellent markers for studying complex genetic traits.

5

10

15

20

25

30

35

Single nucleotide polymorphisms are provided in the STP2 promoter, intron and exon sequences. Table 4 and the corresponding sequence listing provide both forms of each polymorphic sequence. For example, SEQ ID NO:99 and 100 are the alternative forms of a single polymorphic site. The provided sequences also encompass the complementary sequence corresponding to any of the provided polymorphisms.

In order to provide an unambiguous identification of the specific site of a polymorphism, sequences flanking the polymorphic site are shown in Table 4, where the 5' and 3' flanking sequence is non-polymorphic, and the central position, shown in bold, is variable. It will be understood that there is no special significance to the length of non-polymorphic flanking sequence that is included, except to aid in positioning the polymorphism in the genomic sequence. The STP2 exon sequences have been published, and therefore one of each pair of sequences in Table 4 is a publically known sequence.

As used herein, the term "STP2 gene" is intended to generically refer to both the wild-type and variant forms of the sequence, unless specifically denoted otherwise. As it is commonly used in the art, the term "gene" is intended to refer to the genomic region encompassing 5' UTR, exons, introns, and 3' UTR. Individual segments may be specifically referred to, e.g. exon 2, intron 5, etc. Combinations of such segments that provide for a complete STP2 protein may be referred to generically as a protein coding sequence.

Nucleic acids of interest comprise the provided STP2^v nucleic acid sequence(s), as set forth in Table 4. Such nucleic acids include short hybridization probes, protein coding sequences, variant forms of STP2 cDNA, segments, e.g. exons, introns, etc., and the like. Methods of producing nucleic acids are well-known in the art, including chemical synthesis, cDNA or genomic cloning, PCR amplification, etc.

For the most part, DNA fragments will be of at least 15 nt, usually at least 20 nt, often at least 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide, promoter motifs, etc. For use in amplification reactions, such as PCR, a pair of primers will be used. The exact composition of primer sequences is not critical to the

invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art.

The STP2 nucleic acid sequences are isolated and obtained in substantial purity, generally as other than an intact or naturally occurring mammalian chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a STP2 sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

5

10

15

20

25

30

35

For screening purposes, hybridization probes of the polymorphic sequences may be used where both forms are present, either in separate reactions, spatially separated on a solid phase matrix, or labeled such that they can be distinguished from each other. Assays may utilize nucleic acids that hybridize to one or more of the described polymorphisms.

An array may include all or a subset of the polymorphisms listed in Table 4. One or both polymorphic forms may be present in the array, for example the polymorphism of SEQ ID NO:37 and 38 may be represented by either, or both, of the listed sequences. Usually such an array will include at least 2 different polymorphic sequences, *i.e.* polymorphisms located at unique positions within the locus, and may include as many all of the provided polymorphisms. Arrays of interest may further comprise sequences, including polymorphisms, of other genetic sequences, particularly other sequences of interest for pharmacogenetic screening, *e.g.* STP1; UGT1, UGT2, cytochrome oxidases, *etc.* The oligonucleotide sequence on the array will usually be at least about 12 nt in length, may be the length of the provided polymorphic sequences, or may extend into the flanking regions to generate fragments of 100 to 200 nt in length. For examples of arrays, see Ramsay (1998) Nat. Biotech. 16:40-44; Hacia *et al.* (1996) Nature Genetics 14:441-447; Lockhart *et al.* (1996) Nature Biotechnol. 14:1675-1680; and De Risi *et al.* (1996) Nature Genetics 14:457-460.

Nucleic acids may be naturally occurring, e.g. DNA or RNA, or may be synthetic analogs, as known in the art. Such analogs may be preferred for use as probes because of superior stability under assay conditions. Modifications in the native structure, including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase intracellular stability and binding affinity. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O- phosphorothioate, 3'-CH2-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage.

Sugar modifications are also used to enhance stability and affinity. The a-anomer of deoxyribose may be used, where the base is inverted with respect to the natural b-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O- methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity.

Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'- deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5- propynyl-2'- deoxycytidine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

10

15

20

25

30

35

5

STP2 polypeptides. A subset of the provided nucleic acid polymorphisms in STP2 exons confer a change in the corresponding amino acid sequence. Using the amino acid sequence provided in SEQ ID NO:3 as a reference, the amino acid polymorphisms of the invention include pro→leu, pos. 19; ala→val, pos. 136; asn→thr, pos. 235; glu→lys, pos 282; and a truncated form resulting from a stop codon at exon 5, position 447. Polypeptides comprising at least one of the provided polymorphisms (STP2* polypeptides) are of interest. The term "STP2* polypeptides" as used herein includes complete STP2 protein forms, e.g. such splicing variants as known in the art, and fragments thereof, which fragments may comprise short polypeptides, epitopes, functional domains; binding sites; etc.; and including fusions of the subject polypeptides to other proteins or parts thereof. Polypeptides will usually be at least about 8 amino acids in length, more usually at least about 12 amino acids in length, and may be 20 amino acids or longer, up to substantially the complete protein.

The STP2 genetic sequence, including polymorphisms, may be employed for polypeptide synthesis. For expression, an expression cassette may be employed, providing for a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. Various transcriptional initiation regions may be employed that are functional in the expression host. The polypeptides may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. Small peptides can also be synthesized in the laboratory.

Substrate. A substrate is a chemical entity that is modified by STP2, usually under normal physiological conditions. Although the duration of drug action tends to be shortened by metabolic transformation, drug metabolism is not "detoxification". Frequently the metabolic

product has greater biologic activity than the drug itself. In some cases the desirable pharmacologic actions are entirely attributable to metabolites, the administered drugs themselves being inert. Likewise, the toxic side effects of some drugs may be due in whole or in part to metabolic products.

Substrates of interest may be drugs, xenobiotics, neurotransmitters, steroid hormones, etc. STP2 preferentially catalyzes the sulfonation of 'simple' planar phenols. Substrates include minoxidil, acetaminophen, para-nitrophenol, N-hydroxy 4-aminobiphenyl, etc.

5

10

15

20

25

30

35

Modifier. A modifier is a chemical agent that modulates the action of STP2, either through altering its enzymatic activity (enzymatic modifier) or through modulation of expression (expression modifier, e.g., by affecting transcription or translation). In some cases the modifier may also be a substrate. Inhibitors include N-ethylmaleimide; phenylglyoxal; 2,6-dichloro-4-nitrophenol; p-nitrophenol; quercetin and other flavonoids, e.g. fisetin, galangin, myricetin, kaempferol, chrysin, apigenin; and phenols such as curcumin, genistein, ellagic acid. Steroids, e.g. estradiol benzoate, testosterone proprionate may affect activity and/or expression.

Pharmacokinetic parameters. Pharmacokinetic parameters provide fundamental data for designing safe and effective dosage regimens. A drug's volume of distribution, clearance, and the derived parameter, half-life, are particularly important, as they determine the degree of fluctuation between a maximum and minimum plasma concentration during a dosage interval, the magnitude of steady state concentration and the time to reach steady state plasma concentration upon chronic dosing. Parameters derived from *in vivo* drug administration are useful in determining the clinical effect of a particular STP2 genotype.

Expression assay. An assay to determine the effect of a sequence polymorphism on STP2 expression. Expression assays may be performed in cell-free extracts, or by transforming cells with a suitable vector. Alterations in expression may occur in the basal level that is expressed in one or more cell types, or in the effect that an expression modifier has on the ability of the gene to be inhibited or induced. Expression levels of a variant alleles are compared by various methods known in the art. Methods for determining promoter or enhancer strength include quantitation of the expressed natural protein; insertion of the variant control element into a vector with a reporter gene such as β-galactosidase, luciferase, chloramphenicol acetyltransferase, etc. that provides for convenient quantitation; and the like.

Gel shift or electrophoretic mobility shift assay provides a simple and rapid method for detecting DNA-binding proteins (Ausubel, F.M. et al. (1989) In: Current Protocols in Molecular Biology, Vol. 2, John Wiley and Sons, New York). This method has been used widely in the

study of sequence-specific DNA-binding proteins, such as transcription factors. The assay is based on the observation that complexes of protein and DNA migrate through a nondenaturing polyacrylamide gel more slowly than free DNA fragments or double-stranded oligonucleotides. The gel shift assay is performed by incubating a purified protein, or a complex mixture of proteins (such as nuclear or cell extract preparations), with an end-labeled DNA fragment containing the putative protein binding site. The reaction products are then analyzed on a nondenaturing polyacrylamide gel. The specificity of the DNA-binding protein for the putative binding site is established by competition experiments using DNA fragments or oligonucleotides containing a binding site for the protein of interest, or other unrelated DNA sequences.

Expression assays can be used to detect differences in expression of polymorphisms with respect to tissue specificity, expression level, or expression in response to exposure to various substrates, and/or timing of expression during development. For example, since STP2 is expressed in liver, polymorphisms could be evaluated for expression in tissues other than liver, or expression in liver tissue relative to a reference STP2 polypeptide.

Substrate screening assay. Substrate screening assays are used to determine the metabolic activity of a STP2 protein or peptide fragment on a substrate. Many suitable assays are known in the art, including the use of primary or cultured cells, genetically modified cells (e.g., where DNA encoding the STP2 polymorphism to be studied is introduced into the cell within an artificial construct), cell-free systems, e.g. microsomal preparations or recombinantly produced enzymes in a suitable buffer, or in animals, including human clinical trials. Where genetically modified cells are used, since most cell lines do not express STP2 activity (liver cells lines being the exception), introduction of artificial construct for expression of the STP2 polymorphism into many human and non-human cell lines does not require additional modification of the host to inactivate endogenous STP2 expression/activity. Clinical trials may monitor serum, urine, etc. levels of the substrate or its metabolite(s).

Typically a candidate substrate is input into the assay system, and the oxidation to a metabolite is measured over time. The choice of detection system is determined by the substrate and the specific assay parameters. Assays are conventionally run, and will include negative and positive controls, varying concentrations of substrate and enzyme, etc. Exemplary assays may be found in the literature, for examples see Chou et al. (1995) Carcinogenesis 16:413-417; Walle and Walle (1991) Drug Metab. Dispos. 19:448-453; and Falany et al. (1990) Arch. Biochem. Biophys. 278:312-318.

30

5

10

15

20

25

Genotyping: STP2 genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample (serum, plasma, etc.), buccal cell sample, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in STP2, particularly those that affect the activity or expression of STP2. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of STP2 expression by modifiers, or alterations in STP2 substrate specificity and/or activity.

5

10

15

20

25

30

35

Linkage Analysis: Diagnostic screening may be performed for polymorphisms that are genetically linked to a phenotypic variant in STP2 activity or expression, particularly through the use of microsatellite markers or single nucleotide polymorphisms (SNP). The microsatellite or SNP polymorphism itself may not phenotypically expressed, but is linked to sequences that result in altered activity or expression. Two polymorphic variants may be in linkage disequilibrium, i.e. where alleles show non-random associations between genes even though individual loci are in Hardy-Weinberg equilibrium.

Linkage analysis may be performed alone, or in combination with direct detection of phenotypically evident polymorphisms. The use of microsatellite markers for genotyping is well documented. For examples, see Mansfield et al. (1994) <u>Genomics</u> **24**:225-233; and Ziegle et al. (1992) <u>Genomics</u> **14**:1026-1031. The use of SNPs for genotyping is illustrated in Underhill et al. (1996) <u>Proc Natl Acad Sci U S A</u> **93**:196-200.

Transgenic animals. The subject nucleic acids can be used to generate genetically modified non-human animals or site specific gene modifications in cell lines. The term "transgenic" is intended to encompass genetically modified animals having a deletion or other knock-out of STP2 gene activity, having an exogenous STP2 gene that is stably transmitted in the host cells, or having an exogenous STP2 promoter operably linked to a reporter gene. Transgenic animals may be made through homologous recombination, where the STP2 locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like. Of interest are transgenic mammals, e.g. cows, pigs, goats, horses, etc., and particularly rodents, e.g. rats, mice, etc.

Genetically Modified Cells. Primary or cloned cells and cell lines are modified by the introduction of vectors comprising STP2 gene polymorphisms. The gene may comprise one or more variant sequences, preferably a haplotype of commonly occurring combinations. In one embodiment of the invention, a panel of two or more genetically modified cell lines, each

cell line comprising a STP2 polymorphism, are provided for substrate and/or expression assays. The panel may further comprise cells genetically modified with other genetic sequences, including polymorphisms, particularly other sequences of interest for pharmacogenetic screening, e.g. STP1; UGT1, UGT2, cytochrome oxidases, etc.

Vectors useful for introduction of the gene include plasmids and viral vectors, e.g. retroviral-based vectors, adenovirus vectors, etc. that are maintained transiently or stably in mammalian cells. A wide variety of vectors can be employed for transfection and/or integration of the gene into the genome of the cells. Alternatively, micro-injection may be employed, fusion, or the like for introduction of genes into a suitable host cell.

10

15

20

25

30

5

Genotyping Methods

The effect of a polymorphism in the STP2 gene sequence on the response to a particular substrate or modifier of STP2 is determined by *in vitro* or *in vivo* assays. Such assays may include monitoring the metabolism of a substrate during clinical trials to determine the STP2 enzymatic activity, specificity or expression level. Generally, *in vitro* assays are useful in determining the direct effect of a particular polymorphism, while clinical studies will also detect an enzyme phenotype that is genetically linked to a polymorphism.

The response of an individual to the substrate or modifier can then be predicted by determining the STP2 genotype, with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, guidelines for drug administration can be generally tailored to a particular ethnic group.

The basal expression level in different tissue may be determined by analysis of tissue samples from individuals typed for the presence or absence of a specific polymorphism. Any convenient method may be use, e.g. ELISA, RIA, etc. for protein quantitation, northern blot or other hybridization analysis, quantitative RT-PCR, etc. for mRNA quantitation. The tissue specific expression is correlated with the genotype.

The alteration of STP2 expression in response to a modifier is determined by administering or combining the candidate modifier with an expression system, e.g. animal, cell, in vitro transcription assay, etc. The effect of the modifier on STP2 transcription and/or steady state mRNA levels is determined. As with the basal expression levels, tissue specific interactions are of interest. Correlations are made between the ability of an expression modifier to affect STP2 activity, and the presence of the provided polymorphisms. A panel of different modifiers, cell types, etc. may be screened in order to determine the effect under a number of different conditions.

35

A STP2 polymorphism that results in altered enzyme activity or specificity is determined by a variety of assays known in the art. The enzyme may be tested for metabolism of a

substrate *in vitro*, for example in defined buffer, or in cell or subcellular lysates, where the ability of a substrate to be metabolized by STP2 under physiologic conditions is determined. Where there are not significant issues of toxicity from the substrate or metabolite(s), *in vivo* human trials may be utilized, as previously described.

The genotype of an individual is determined with respect to the provided STP2 gene polymorphisms. The genotype is useful for determining the presence of a phenotypically evident polymorphism, and for determining the linkage of a polymorphism to phenotypic change.

5

10

15

20

25

30

35

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) Science 230:1350-1354, and a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2–14.33. Amplification may be used to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990) Nucleic Acids Res 18:2887-2890; and Delahunty et al. (1996) Am J Hum Genet 58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA), radioactive labels, e.g. 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, *e.g.* amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, *etc.* The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in U.S.

5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

5

10

15

20

25

30

35

In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided polymorphic sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking the polymorphic position. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For examples of arrays, see Hacia et al. (1996) Nat Genet 14:441-447 and DeRisi et al. (1996) Nat Genet 14:457-460.

The genotype information is used to predict the response of the individual to a particular STP2 substrate or modifier. Where an expression modifier inhibits STP2 expression, then drugs that are a STP2 substrate will be metabolized more slowly if the modifier is coadministered. Where an expression modifier induces STP2 expression, a co-administered substrate will typically be metabolized more rapidly. Similarly, changes in STP2 activity will affect the metabolism of an administered drug. The pharmacokinetic effect of the interaction will depend on the metabolite that is produced, e.g. a prodrug is metabolized to an active form, a drug is metabolized to an inactive form, an environmental compound is metabolized to a toxin, etc. Consideration is given to the route of administration, drug-drug interactions, drug dosage, etc.

EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

MATERIALS AND METHODS

5

10

15

35

DNA samples. Blood specimens from approximately 300 individuals were collected after obtaining informed consent. All samples were stripped of personal identifiers to maintain confidentiality. The only data associated with a given blood sample was gender and self-reported major racial group designations in the United States (Caucasian, Hispanic, African American). Genomic DNA was isolated from these samples using standard techniques. gDNA was either stored as concentrated solutions or stored dried in microtiter plates for future use.

PCR amplifications. The primers used to amplify the coding regions and the promoter region of the STP2 gene from 200 ng of human gDNA are shown in Table 1. Primers were designed based upon publicly available genomic sequence provided by Her et al. (1996) Genomics 33:409-420. 100 ng of gDNA from 2 individuals was amplified with the Perkin Elmer GeneAmp PCR kit according to manufacturer's instructions in 100 µl reactions with Taq Gold DNA polymerase, with two exceptions. Boehringer-Mannheim Expand High Fidelity PCR System kit was used to amplify the promoter region and exon 1A. Magnesium concentrations for each PCR reaction was optimized empirically, and are shown in Table 1.

Table 1. PCR primers and Mg++ concentrations.

	Region	Forward/ Reverse	SEO ID	Forward Primer (5' 3')	[Mg**]
	Promoter	F	4.	CCCAAATACAGGTGTTCC	2mM
20		R ·	5.	GGAGCAGAGCAAGGATC	
	Exon 1A	F	6.	TTCTTCTAGGATCTTCTATCG	2mM
		R	7.	ACTCAGCAAAAGGAGGAT	
	Exon 1B	F	8.	TTAGAGATGGGGTCTTCC	2mM
		R	9.	GGGCGAGAGATGTCC	
25	Exon 2	F	10.	GGAGAGGAGCCTACTGG	2mM
		R	11.	AGTCTGAGGTGAGCAT	
	Exons 3&4	F	12.	GCCTCAGTGACTTCCCT	3mM
		R	13.	TTTGGAAGAGACTTATCTGG	
	Exons 5&6	F	14.	GCAGGACTTTGGCTTT	2mM
30		R	15.	GACTCAGGCACAGGAG	
	Exons 7&8	F	16.	GACCATCCCAGTCCTT	2mM
	-	R	17.	CCCCAACGACACAGG	

Thermal cycling was performed in a GeneAmp PCR System 9600 PCR machine (Perkin Elmer) with an initial denaturation step at 95°C for 10 min, followed by 35 cycles of denaturation at 95°C for 30 sec, primer annealing at 60°C for 45 sec, and primer extension at 72°C for 2 min, followed by final extension at 72°C for 5 min, with the following exceptions. 40 cycles were used to amplify exon 1B and to co-amplify exons 7 and 8. Cycling conditions for the promoter region and exon 1A were an initial denaturation at 95°C for 2 min, followed by 40

WO 99/64630 PCT/US99/13094.

cycles of denaturation at 94°C for 30 sec, primer annealing at 60 °C for 45 sec, and primer extension at 68°C for 4 min, followed by a final extension at 68°C for 7 min.

DNA sequencing. PCR products from 32 individuals, approximately 1/3 from each of the 3 major racial groups (see above), were spin column purified using Microcon-100 columns. Cycle sequencing was performed on the GeneAmp PCR System 9600 PCR machine (Perkin Elmer) using the ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit according to the manufacturer's directions. Oligonucleotide primers used for the sequencing reactions are listed in Table 2.

Table 2. Sequencing primers.

5

10

	Region	Forward/ Reverse	SEO ID	Forward Primer (5' 3')
	Promoter (1)	F	18.	TGGAGCCCGTCTTGG
15		R	19.	CAGCAGTTTCACTTGACC
	Promoter (2)	F	20.	TGCCACCCCTGCT
		R	21.	AGGCTGCTCCCTG
	Promoter (3)	F	22.	GGGCTCACGCAACC
		R	23.	GCAGGTACTTTTCTTTCCA
20	Exon 1A (1)	F	24.	TTCTTCTAGGATCTTCTATCG
		R	25.	TTTTTGAGGTGTCACTGG
	Exon 1A (2)	F	26.	CCCACACACACCCAC
		R	27.	GCTTCTGGAATGTTGG
	Exon 1A (3)	R	28.	CGGAAAAAAAAAAGGAAG
25	Exon 1B (1)	F	29.	CAATGCTGCCCAGA
		R	30.	GCTCCACTGAGGAACCT
	Exon 1B (2)	F	31.	GGAGAGGAGCCTACTGG
		R	32.	TACCACCATCACAACAGC
	Exon 2	F	33.	CTGAAAGCAAGAAATCCAC
30		R	34.	AGGCTGAGGTGAGCAT
	Exons 3&4	F	35.	GCGGTGACCTGGAA
		R	36.	TTTGGAAGAGACTTATCTGG
	Exons 5&6 (1)	F	37.	CTGACTTGCCCCTACCT
		R	38.	TAGCCACCACCCTTA
35	Exons 5&6 (2)	F	39.	CCAAAGTGTACCCTCACC
		R	40.	AGCCTGCTGCCACA
	Exons 7&8 (1)	F	41.	GACCATCCCAGTCCTT
		R	42.	CAAACCCCGTGCT
	Exons 7&8 (2)	F	43.	CTGTGGACCTCTTGGTTG
40		R	44.	CACAAATCATACTTTATTCTGG
	Exons 748 (3)	F	45.	CGATGCGGACTATGC
		R ·	46.	CCCCAACGACACAGG

Eight μl sequencing reactions were subjected to 30 cycles at 96°C for 20 sec, 50°C for 20 sec, and 60°C for 4 min, followed by ethanol precipitation. Samples were evaporated to dryness at 50°C for ~15 min and resuspended in 2 μl of loading buffer (5:1 deionized formamide:50 mM EDTA pH 8.0), heated to 65°C for 5 min, and electrophoresed through 4% polyacrylamide/6M urea gels in an ABI 377 Nucleic Acid Analyzer according to the manufacturer's instructions for sequence determination. All sequences were determined from both the 5' and 3' (sense and antisense) direction. Each sequencing reaction was performed with 2 individuals' DNA pooled together. The 16 electropherograms were analyzed by comparing peak heights, looking for ~25% reduction in peak size and/or presence of extra peaks as an indication of heterozygosity. If polymorphisms were identified, pools were subsequently split and resequenced for confirmation.

Population genotyping. High-throughput genotyping using TaqMan technology (ABI) was performed using standard techniques (Livak *et al.* (1995) PCR Methods and Applications 4:357-362) on the samples described above for 3 STP2 polymorphisms. Oligonucleotide PCR primers and probes used for genotyping are shown in Table 3. Polymorphisms for which allele frequencies were determined are marked with an asterisk (*) in Table 4.

Table 3. TaqMan primers and probes.

5

10

15

40

20	SEQ ID	Description	Primers
	47.	STP2-136A primer	GGTGCTGGGGTTGAGTCTTCTG
	48.	STP2-136Ala probe	CAAAGGATGTGGCGGTTTCCTACTACC
	49.	STP2-136B primer	ACACCTTCCTTCCCCATCAAG
	50.	STP2-136Val probe	CGCAAAGGATGTGGTGGTTTCCTACTAC
25	51.	STP2-235A primer	GGAGACTGTGGACCTCATGGTTGA
	52.	STP2-235Asn probe	TAGTTGGTCATAGGGTTCTTCTTCATCTCCTT
	53.	STP2-235B primer	CCGGCACCTACCTTTCCTCAT
	54.	STP2-235Thr probe	TAGTTGGTCATAGGGGTCTTCTTCATCTCC
	55.	STP2-282A primer	AGCTTTGCTCCCTGCCTTCCT
30	56.	STP2-282Glu probe	CTGCCATCTTCTCCGCATAGTCCG
	57.	STP2-282B primer	GGAACCCCTCTCACAGCTCAGA
	58.	STP2-282Lys probe	TGCCATCTTCTTCGCATAGTCCGC
	59.	STP2-447A primer	GGTGCTGGGGTTGAGTCTTCTG
	60.	STP2-DelA447 probe	ATGGCCAAAGTGTACCCTCACCCTG
35	61.	STP2-447B primer	ACACCTTCCTTCCCATCAAG
	62.	STP2-InsA447 probe	CATGGCCAAAGTGTAACCCTCACCC

Assay name is given by locus and position. Primer names are abbreviated locus - position and letter designations representing forward (A) and reverse (B) primers. Probes are abbreviated locus-position and 3 letter nucleic acid designations representing the nucleic acid alteration in the coding strand of the genomic DNA. Positions at which probes detect nucleic acid variations are shown in bold.

RESULTS

Eight exons, the promoter region, 3' and 5' untranslated regions from the human STP2 gene were resequenced in 32 individuals representing three major ethnic groups (Caucasian, Hispanic, and African American). The polymorphisms are listed in Table 4.

5 Table 4. Newly identified STP2 gene polymorphisms.

	Location;	SEQ ID	Polymorphism Sequence	AA change
	3' end; 99	63.	CCAGCTCCTCAACTTGCCCTG	•
		64.	CCAGCTCCTCTACTTGCCCTG	
	3' UTR; 7	65.	GTGAGAGGGGTTCCTGGAGTC	
10		66.	GTGAGAGGGGCTCCTGGAGTC	
	Promoter; -603	67.	CATGAAGCTGGGGCTGGCTCC	
		68.	CATGAAGCTGAGGCTGGCTCC	
	Promoter; -833	69.	CTCGTGCCCAGCTTGACCCTG	
		70.	CTCGTGCCCAACTTGACCCTG	
15	Promoter; -1005	71.	GGGATTCCTCAGGGGCACAGA	
		72.	GGGATTCCTC C GGGGCACAGA	
	Promoter; -1306	73.	ACAGCGCCATGTTGCTTCTGG	
		74.	ACAGCGCCATATTGCTTCTGG	
	5' UTR - A; 36	75.	CAGCCACTGCGGGGGGGGGGG	
20		76.	CAGCCACTGCAGGCGAGGAGG	
	5' UTR - A; 51	77.	AGGAGGCACAAGGCCAGGTT	
		78.	AGGAGGCAC G AGGCCAGGTT	
	5' UTR - B; 183	79.	GGGGAACATC G GGGAGAGGAG	
		80.	GGGGAACATC A GGGAGAGGAG	
25	Exon 5*; 447	81.	CCAAAGTGTACCCTCACCCT	INS STOP
		82.	CCAAAGTGTAACCCTCACCCT	INS STOP
	Exon 5*; 136 (nt 307)	83.	AAGGATGTGGCGGTTTCCTAC	ALA-VAL
		84.	AAGGATGTGG T GGTTTCCTAC	ALA-VAL
30	Exon 7*; 235 (nt 705)	85.	ATGAAGAAGA A CCCTATGACC	ASN-THR
		86.	ATGAAGAAGACCCCTATGACC	ASN-THR
	Exon 8*; 282 (nt 845)	87.	GGACTATGCG G AGAAGATGGC	GLU-LYS
35		88.	GGACTATGCG A AGAAGATGGC	GLU-LYS
	Exon 2; 19 (nt 56)	89.	AAGGGGGTCCCGCTCATCAAG	PRO-LEU
		90.	AAGGGGTCCTGCTCATCAAG	PRO-LEU
	Intron 1A; 88	91.	CTCTGCTATCTCTGCCCTCTC	
40		92.	CTCTGCTATCCCTGCCCTCTC	
	Intron 2; 34	93.	CTCTCCCAGGTGGCAGTCCCC	
		94.	CTCTCCCAGGCGGCAGTCCCC	
	Intron 4; -71	95.	CCTTTGCCAACCAAGAGATG	DEL A
		96.	CCTTTGCCACCAAGAGATG	DEL A
45	Intron 5; -19	97.	GTGTCGGCACTCCCTGCCCGC	

	WO 99/64630			PCT/US99/13094
	-	98.	GTGTCGGCACCCCTGCCCGC	
	Intron 6; 93	99.	CCTCCCTGGGCGCCCCTCCA	
	•	100.	CCTCCCTGGGTGGCCCCTCCA	
	Promoter; -547	101.	TTGTTCTATGGATCCATGCTC	
5		102.	TTGTTCTATGCATCCATGCTC	
	Promoter: -453	103.	CATGGGCTGCTGGAGGCCTGT	
		104.	CATGGGCTGCCGGAGGCCTGT	
	Promoter; -425	105.	ACTGGGCCAGGACCCCTGGCA	
		106.	ACTGGGCCAGAACCCCTGGCA	
10	Promoter; -358	107.	CCTGCCTATCCCAGCTTTCTC	
		108.	CCTGCCTATCTCAGCTTTCTC	
	Promoter; -355	109.	GCCTATCCCATCTTTCTCCTC	
		110.	GCCTATCCCAGCTTTCTCCTC	

Genotyping of 95 individuals from each of 3 broadly defined racial groups (African Americans, Hispanic Americans, and Caucasian Americans) for three polymorphisms produced the allele and genotype frequencies shown in Table 5.

20

25

30

35

lual. Table 5. Allele and Genotyp Population frequencies. Polymorphism name includes gene abbreviation followed by nucleotide designation for allele 1, then nucleotide number, then nucleotide designation for allele 2. Population abbreviations are as follows: AfAm=African Americans,

BAH=Cauc nucleotide	asians from the United State and position. Genotypes are	es; Cauc=C e designate	BAH=Caucasians from the United States; Cauc=Caucasians from California; Hisp=Hispanic from California. Allele name are designated by nucleotides representing each of the chromosomes in a given individu	=Hispanic from California. representing each of the c	BAH=Caucasians from the United States; Cauc=Caucasians from California; Hisp=Hispanic from California. Allele name are designated by nucleotides and position. Genotypes are designated by position and 2 nucleotides representing each of the chromosomes in a given individu
Locus	Calc Name	Start Position	Population	Allele Freq	Genotype Freq
STP2	STP2_Ala136Val_AfAm	0	African Americans, California	STP2_Ala136=0.997 STP2_Val136=0.003	STP2_136Ala/Ala=0.995 STP2_136Ala/Val=0.005 STP2_136Val/Val=0
STP2	STP2_Ala136Val_Cauc2	0	Caucasian, USA	STP2_Ala136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Ala136Val_Cauc	0	Caucasians, California	STP2_Val136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Ala136Val_Chin	0	Chinese, California	STP2_Val136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Ala136Val_Hisp	0	Hispanics, California	STP2_Val136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0
STP2	STP2_Ala136Val_Japn	0	Japanese, California	STP2_Ala136=1 STP2_Val136=0	STP2_136Ala/Ala=1 STP2_136Ala/Val=0 STP2_136Val/Val=0

STP2	STP2_insA447_AfAm	0	African Americans, California	STP2_delA447=0.981 STP2_insA447=0.019	STP2_447delA/delA=0.963 STP2_447delA/insA=0.037 STP2_447insA/insA=0
STP2	STP2_insA447_Cauc2	0	Caucasian, USA	STP2_delA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Cauc	0	Caucasians, California	STP2_delA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Chin	0	Chinese, Ca <u>lifo</u> mia	STP2_delA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_insA447_Hisp	0	Hispanics, California	STP2_delA447=0.995 STP2_insA447=0.005	STP2_447delA/delA=0.989 STP2_447delA/insA=0.011 STP2_447insA/insA=0
STP2	STP2_insA447_Japn	0	Japanese, California	STP2_delA447=1 STP2_insA447=0	STP2_447delA/delA=1 STP2_447delA/insA=0 STP2_447insA/insA=0
STP2	STP2_Asn235Thr_AfAm	0	African Americans, California	STP2_Asn235=0.749 STP2_Thr235=0.251	STP2_235Asn/Asn=0.562 STP2_235Asn/Thr=0.373 STP2_235Thr/Thr=0.065
STP2	STP2_Asn235Thr_Cauc2	0	Caucasian, USA	STP2_Asn235=0.753 STP2_Thr235=0.247	STP2_235Asn/Asn=0.565 STP2_235Asn/Thr=0.376 STP2_235Thr/Thr=0.059

STP2 STP2_Asn235Thr_Ch STP2 STP2_Asn235Thr_His STP2 STP2_Asn235Thr_His STP2 STP2_Glu282Lys_AfA STP2 STP2_Glu282Lys_Cau	STP2_235Asn/Asn=0.42	STP2_235Asn/Asn=0.882 In 0 Chinese, California STP2_Asn235=0.934 STP2_235Asn/Thr=0.105 STP2_235Thr/Thr=0.013	STP2_235Asn/Asn=0.385 p 0 Hispanics, California STP2_Thr235=0.623 STP2_235Asn/Thr=0.476 STP2_235Thr/Thr=0.139		m 0 African Americans, California STP2_Glu282=0.949 STP2_282Glu/Glu=0.899 STP2_282Glu/Lys=0.101 STP2_282Lys/Lys=0	c2 0 Caucasian, USA STP2_Glu282=1 STP2_282Glu/Glu=1 STP2_Lys282=0 STP2_282Glu/Lys=0 STP2_282Lys/Lys=0	Caucasians, California STP2_Glu282=0.997 STP2_282Glu/Glu=0.995 STP2_282Glu/Lys=0.005 STP2_282Glu/Lys=0.005 STP2_282Lys/Lys=0	STP2_282Glu/Glu=1 Chinese, California STP2_Lys282=0 STP2_282Glu/Lys=0 STP2_282Lys/Lys=0
STP	STP2_Asn235Thr_Cauc	STP2_Asn235Thr_Chin	STP2_Asn235Thr_Hisp	STP2_Asn235Thr_Japn	STP2_Glu282Lys_AfAm	STP2_Glu282Lys_Cauc2	STP2_Glu282Lys_Cauc	STP2_Glu282Lys_Chin
	STP2	STP2	STP2	STP2	STP2	STP2	STP2	

STP2_282Glu/Glu=0.984 STP2_282Glu/Lys=0.016 STP2_282Lys/Lys=0	STP2_282Glu/Glu=1 STP2_282Glu/Lys=0 STP2_2821 vs/1 vs=0
STP2_Glu282=0.992 STP2_Lys282=0.008	STP2_Glu282=1 STP2_Lys282=0
Hispanics, California	Japanese, California
0	0
STP2 STP2_Glu282Lys_Hisp	STP2 STP2_Glu282Lys_Japn
STP2	STP2

Each of the polymorphisms identified in this study are unique and newly described. Several of the nucleotide base changes result in amino acid changes that may alter enzyme activity by any of a number of possible mechanisms. The changes in the 5' and 3' UTRs may alter regulation of transcription or transcript stability. Promoter region alterations may result in altered regulation or efficiency of transcription.

All of these polymorphisms have utility. As the human genome project progresses, polymorphisms within every human gene must be identified in order to perform whole genome association studies that will be necessary for identifying genetic etiologies of complex diseases. These polymorphisms are useful for association studies.

10

15

5

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

5

What is Claimed is:

1. An isolated nucleic acid molecule comprising a STP2 sequence polymorphism, as part of other than a naturally occurring chromosome.

- 5 2. A nucleic acid probe for detection of STP2 locus polymorphisms, comprising a polymorphic sequence listed in Table 4.
 - 3. A nucleic acid probe according to Claim 2, wherein said probe is conjugated to a detectable marker.

10

4. An array of oligonucleotides comprising:

two or more probes for detection of STP2 locus polymorphisms, said probes comprising at least one form of a polymorphic sequence listed in Table 4.

15 5. A method for detecting in an individual a polymorphism in STP2 metabolism of a substrate, the method comprising:

analyzing the genome of said individual for the presence of at least one STP2 polymorphism listed in Table 4; wherein the presence of said predisposing polymorphism is indicative of an alteration in STP2 expression or activity.

20

25

-

6. A method according to Claim 5, wherein said analyzing step comprises detection of specific binding between the genomic DNA of said individual with an array of oligonucleotides comprising:

two or more probes for detection of STP2 locus polymorphisms, said probes comprising at least one form of a polymorphic sequence listed in Table 4.

- 7. A method according to Claim 5, wherein said alteration in STP2 expression is tissue specific.
- 30 8. A method according to Claim 5, wherein said alteration in STP2 expression is in response to a STP2 modifier.
 - 9. A method according to Claim 8, wherein said modifier induces STP2 expression.
- 35 10. A method according to Claim 8, wherein said modifier inhibits STP2 expression.

SEQUENCE LISTING

```
<110> Guida, Marco
             Kurth, Janice
       <120> Genotyping Human Phenol Sulfotransferase
        (STP2)
       <130> SEO-16P
       <150> 60/088,710
       <151> 1998-06-10
       <160> 110
       <170> FastSEQ for Windows Version 3.0
       <210> 1
       <211> 8396
       <212> DNA
       <213> H. sapiens
       <400> 1
ctctccctcc ttgtctctta cctgcctgct gcctgggaca ggatgaagcg gggcccttgt
                                                                        60
gttgccccaa ccctggctgt tggctaagag cccacgtgat ctgcctgtga gaggagttcc
                                                                       120
ttccggaaga accagggcag cttctgcccc tagagggcca atgccctagc tgagtgcagt
                                                                       180
ccccqqccc cagcttggtc cagctttggg aagagggtgc ccagttgtgc aatccaggcc
                                                                       240
ggggcagccg tgtcctgatc ttggtattca gggctgagcc tggagggggc ttgtgatgcc
                                                                       300
tqactctqtc tctctctctg gccccatgcc ttggtagctg tgaggcgtca ctgctttggg
                                                                       360
tgacctgatc tggctgtgat ggatgagcac gggggaaata gtggaagact cggaattaga
                                                                       420
agacgtgagt gggctttggc cccagcctcc ctaccccact ccctgtcctg ggctgcctgt
                                                                       480
gaccaacctt gtttctgcag gcacactgga tagccctgct ggagctcagt gtccctaatc
                                                                       540
ccctccagat actggtggcc taggggaggt catcaaagac cagtgggaca tcgacctcag
                                                                       600
cctqtttcca cqtttcttqt tqtttttttt tttttqtqqa qacaqaqttt cactcttqtt
                                                                       660
gcccaggctg gagtgcaatg gcgtgatctt ggctcaccgc aacctctgcc tcccgggttc
                                                                       720
                                                                       780
aagegattet cetgeeteag ceteceaagt agetgggatt acaggegtgt gecaceagge
ttgactaatt ttctatttt agtagagaca aggtttctcc atgttggtca ggctggtctc
                                                                       840
aaactcccga cttcaggtga tctgcctgcc tcggcctccc aaagtgctgg gattacagga
                                                                       900
gtgagccacc gtgccaggcc ttctccaggc tcttggcacc ttagccagaa acaatttaag
                                                                       960
gacaagtgca aaagtcatga acgtaggcag atttcctgca gagtaaaggg actcactgaa
                                                                      1020
gaagaggaac gtgggggtcc tcaagagagt gtctcatgcc ctacaaggtg tggggctgac
                                                                      1080
ctttatgggc ttcttcaact aaagaggggt atattcatga agagtccagg aaaaggtaaa
                                                                      1140
gatttctcaa gaccgtggtg ccacaattta cacccaaata caggtgttcc tggagccgtc
                                                                      1200
ttggcactgg tgggtgtacg gtttcatatg ttactgattg tacagtgaga tcctaggtga
                                                                      1260
aacctacate aaatacageg ccatgttget tetggttggt egeageeage ttggtcetea
                                                                      1320
tectattttt eagggaetta ttggeeettg geacatgeag etattteaag ttteettett
                                                                      1380
ctggtcatgt gaaactgctg cctgggattt tctgttgtct tgctagcact ctattaatct
                                                                      1440
cacatteteg cetetttet gtgccacccc ctgctggtcc ggctggtttt cactagagtg
                                                                      1500
caatacaaag totoagtoaa gagggootoo tgaaggttgo tgagggcagg ggtggagcta
                                                                      1560
gtagccggag gacctgccag tcatggggat tcctcagggg cacagaggag ggaggagggg
                                                                      1620
cctgtggccc tagcagggga gcagcctctc ctctgcctgg aaatcccatg cctcagtttt
                                                                      1680
ccccgcttgc ctctgagctc acgcaaccct gggaaggctt gggagactca cctttactca
                                                                      1740
```

```
gatggttgtt tacctgtctc gtgcccagct tgaccctgga ctttaaatag tgaggacaaa
                                                                      1800
gaacgaggag ggtgggggga tgcactcctt ccacgggggc ctgtggcttc caagcctcaa
                                                                      1860
cctcctctgg tctctgtctg tggagcctcc ttcaaaccca tggaaagaaa agtacctgcc
                                                                      1920
aggggctgtg gttcttctag gatcttctat cgatgttctg tgaggtcccc agggagccat
                                                                      1980
gaagetgggg etggeteeca gggeaatggg actgeagtgt cettgttett tettgtteta
                                                                      2040
tggatccatg ctctgctcca cccctgcccc ttcactctgc ccacacgcat cactccagac
                                                                      2100
tggccttgtg gtcagagcct ggagtgcatg ggctgctgga ggcctgtggg ttgcactggg
                                                                      2160
ccaggaccc tggcaccttc aagactggcc tggagccagc aggtaggtga cctttccagg.
                                                                      2220
geotgectat cocagettte tectecaate ecteceetet ettgeetggg teaattagag
                                                                      2280
aaagettgte ttttggagtt caggggcagg teaggageee agtgacaget caaaaaaaa
                                                                      2340
accccaaaaa aaaaacccca ccattgggcc ctttcccctt tcattcttct gttttctaca
                                                                      2400
caccaaaccc agtcgtggct ttggagatca ctttaagctt gtctccagct ggcaaactaa
                                                                      2460
ggagggtaat agagaagete ecceacece aacectacee ettectteeg gaageaaate
                                                                      2520
taagtecage ceeggeteca gatecetece acaetgaeet aagaaaceet cageacagae
                                                                      2580
                                                                      2640
aacacccctg cattccccac acaacaccca cactcagcca ctgcgggcga ggagggcacg
aggccaggtt cccaagagct caggtgagtg acacaccgga atggcccagg acgccctcac
                                                                      2700
congeteage tigiggetee aacatteeag aageegagge etetgetate tetgecetet
                                                                      2760
ccccatggat atcccatttc agacaacccc ggccggcctg aatccccctc ccttcctttt
                                                                      2820
                                                                      2880
tttttttccg gggaggccag gtcttgctgt caccgaggct ggagtgctgt gggatcctgg
ccactgcage cttgaattee tgggetcaag tgatteteet geetcagtag ctaggactae
                                                                      2940
agacceteae cateetgeet ggatagtttt aaaaaatatt tttaaaagat ttttagagat
                                                                      3000
ggggtettee aatgetgeee agattggtet ccaaattetg geeteageet eectagggte
                                                                      3060
tgggattaca ggtgggagcc accetgecca ggatectect tttgetgagt cateacagtt
                                                                      3120
ttgctcattc ccacatcagg ctctggcccc caataccagc tcagttgctc aatgggctgt
                                                                      3180
ttgtcctgga acccagatgg actgtggccg ggcaagtgga tcacaggcct ggccagccta
                                                                      3240
ggagttgcca catgtgaggg gccgaggggc tcaaggaggg gaacatcggg gagaggagcc
                                                                      3300
tactgggtgg aggctggggg tcccagcagg aaatggtgag acaaagggcg ctggctggca
                                                                      3360
qqaaqacagc acaggaaggt cctagaggtt cctcagtgca gctggactct cctggagacc
                                                                      3420
ttcacacacc ctgacatctg ggccccgttc cacgagggtg ctttcactgg tctgcaccat
                                                                      3480
ggcccaggcc ctgggatttt gaäcagctcc gcaggtgaat gaaaggtgag gccaggctgg
                                                                      3540
ggaaccacca cattagaacc cgacctggtt ttcagcccca gccccgccac tgactggcct
                                                                      3600
tgtgagtgcg ggcaagtcac tcaacctccc taggcctcag tgacttccct gaaagcaaga
                                                                      3660
attocacttt cttgctgttg tgatggtggt aagggaacgg gcctggctct ggcccctgac
                                                                      3720
gcaggaacat ggagctgatc caggacatct ctcgcccgcc actggagtac gtgaagggg
                                                                      3780
                                                                      3840
tecegeteat caagtacttt geagaggeae tggggeeeet geagagette caggeeegge
                                                                      3900
ctgatgacct gctcatcagc acctacccca agtccggtag gtgaggaggg ccacccaccc
                                                                      3960
teteceaggt ggeagteece acettggeea gegaggteat geteacetea geetgeteae
                                                                      4020
ctoccatoto cotocctoto caggoaccao otgggtgago cagattotgg acatgatota
ccagggcggt gacctggaaa agtgtcaccg ageteceate tteatgeggg tgecetteet
                                                                      4080
tgagttcaaa gtcccaggga ttccctcagg tgtgtgtgtc ctgggtgcaa ggggagtgga
                                                                      4140
ggaagacagg gctggggctt cagctcacca gaccttccct gacccactgc tcagggatgg
                                                                      4200
agactetgaa aaacacaca geeccaegae teetgaagae acaeetgeee etggetetge
                                                                      4260
                                                                      4320
tecceagae tetgttggat cagaaggtea aggtgagaet gggeacagtg gtteacacee
gcaatctcag tactttggga ggctgaggtg ggaagatccc ttgaagccag aagttccaga
                                                                      4380
taaqtctctt ccaaaaaaa aacttagctg tgcatagtgg tgtgtgcctg taataccagt
                                                                      4440
tactcaggag gttgaggtgg gaggatcatc tgagcctagg agtttaaggt tacagcgagc
                                                                      4500
                                                                      4560
tatgatcaca ccagtgcact ccaggctggg tgacagagaa acactgtctc aaaaaacgat
gaatagaaag agtgtcccac cagtgcggtg gctcacacct gtaattccag cacttgaaga
                                                                      4620
                                                                      4680
ggctgaggca ggtggatcac ctgagactag gagtttgaga tcagcctggc caacatggca
                                                                      4740
aaaccccatc tctactaaaa atacaaaaaa attagccggg catggtggca ggcatctgta
                                                                      4800
atcccagcta cttgggaggc tgaagcagga gaattgcttg aagctgggag gcagaggttg
taqtcaqccg agacctcacc attgcaccgc agcctgggaa acaagagcaa aactctgtct
                                                                      4860
                                                                      4920
caaaaaaaaa agaaaaaaat aaaaaagcgg caggtggcag ggggctgggc ctgttgtggc
```

teacacctat	aataccagca	ctttcggagg	tenagetana	cagatcaccc	22555	4980
				tactaaaaat		5040
				ggaggctgag		5100
				tgtgccactg		
				aatattttaa		5160
						5220
				gccaagatgg		5280
				gactccatct		5340
				cccagctact		5400
				gtgagctatt		5460
				gtctttttc		5520
				aaccacaaca		5580
				aggccccggc		5640
				agacttgtct		5700
				tgagactctt		5760
				tttggtggtg		5820
				cattgatgca		5880
				gcttttgagc		5940
				gtcagcctct		6000
ttcctccttt	gccaaaccaa	gagatgagct	ggcctggggc	aggctgtgtg	gtgatggtgc	6060
tggggttgag	tcttctgccc	ctgcaggtgg	tctatgttgc	ccgcaacgca	aaggatgtgg	6120
cggtttccta	ctaccacttc	taccacatgg	ccaaagtgta	ccctcaccct	gggacctggg	6180
aaagcttcct	ggagaagttc	atggctggag	aaggtgggct	tgatgggagg	aaggaaggtg	6240
				tgtcggcacc		6300
				gagtggtggg		6360
				gaggtgagac		6420
				ggacctgcca		6480
				cccatcctga		6540
				agctctcatc		6600
				ttttgagaca		6660
				cagtgtaacc		6720
				agattacaga		6780
				ttggtctcca		6840
				attacacgcc		6900
				cctgccaatg		6960
				cccataggag		7020
				cccagggact		7080
				gccagttccc		7140
				aagcctccac		7200
				tggagtttgt		7260
				cgttcaagga		7320
aaccctatga	ccaactacac	caccgtccgc	cgggagttca	tggaccacag	catctccccc	7380
				gagcaggtgg		7440
				agactccagc		7500
				cttcaccgtg		7560
				cagecteage		7620
				tgcgaatcaa		7680
				tctctattcc		7740
				tacggccacc		7800
				ggagaagtaa		7860
				tgctgtcctg		7920
				tgggttcctt		7980
				ctgcatagga		8040
				gacaggaggg		8100
aucaggaceg	-500900000	35330-36	Jagacayyca	acayyayyy	gurgurdaya	9100

gaccccagg ccaggacagg caccccttc cccagccta gaccacagga ggctctgggc cgtggactct cagccactcc taacatcctt cactctgggg tcaagaagtc ttggcccagt ccctgctgct acagagctct tttctcagtg gctggagacc caaggcaggg aataggcagg gaggagtagg ggtgctgact cccttcctag tggggtcata gctggagggt ctgctgcctt tcaaggactc tttgttgaga ggactgaggg caacccagag ggtggcaggc agggat	8160 8220 8280 8340 8396
<210> 2 <211> 1396 <212> DNA <213> H. sapiens	
<220> <221> CDS <222> (426)(1308)	
gcattccca cacaacacc acactcagc actgcgggg aggagggcac gaggccaggt tcccaagage tcaggtttgt cetggaacc agatggactg tggccgggca agtggatcac aggcctggcc agcctaggag ttgccacatg tgaggggccg agggggctcaa ggaggggaac atcggggaa ggagcctact gggtggaggc tgggggtccc agcaggaaat ggtgagacaa agggcgtgg ctggcaggaa gacagcacag gaaggtccta gaggttcctc agtgcagctg gactctcctg gagaccttca cacaccctga catctgggcc ccgttccacg agggtgcttt cactggtctg caccatggcc caggccctgg gattttgaac agctccgcag gtgaatgaaa ggaac atg gag ctg atc cag gac atc tct cgc ccg cca ctg gag tac gtg Met Glu Leu Ile Gln Asp Ile Ser Arg Pro Pro Leu Glu Tyr Val	60 120 180 240 300 360 420 470
aag ggg gtc ccg ctc atc aag tac ttt gca gag gca ctg ggg ccc ctg Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu 20 25 30	518
Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu	518 566
Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu 20 25 30 cag agc ttc cag gcc cgg cct gat gac ctg ctc atc agc acc tac ccc Gln Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro	
Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu 20 25 30 cag agc ttc cag gcc cgg cct gat gac ctg ctc atc agc acc tac ccc Gln Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro 35 40 45 aag tcc ggc acc acc tgg gtg agc cag att ctg gac atg atc tac cag Lys Ser Gly Thr Thr Trp Val Ser Gln Ile Leu Asp Met Ile Tyr Gln	566
Lys Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu 20 25 30 cag agc ttc cag gcc cgg cct gat gac ctg ctc atc agc acc tac ccc Gln Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro 35 40 45 aag tcc ggc acc acc tgg gtg agc cag att ctg gac atg atc tac cag Lys Ser Gly Thr Thr Trp Val Ser Gln Ile Leu Asp Met Ile Tyr Gln 50 55 60 ggc ggt gac ctg gaa aag tgt cac cga gct ccc atc ttc atg cgg gtg Gly Gly Asp Leu Glu Lys Cys His Arg Ala Pro Ile Phe Met Arg Val	566 614

-	ctg Leu			_		_	_	_	_	_	_	_		_		806
	gcc Ala	_		_	_	_			_							854
	atg Met 145											-	_		_	902
	aag Lys															950
	caa Gln															998
	tat Tyr															1046
	gag Glu															1094
	gag Glu 225															1142
	acc Thr		_	_				_	-		_					1190
_	agg Arg			_	-				_							1238
	aat Asn															1286
	ctc Leu						c t	gtga	gagg	g gti	teet	ggag	tca	ctgca	aga	1338
gggagtgtgc gaatcaagcc tgaccaagag gctccagaat aaagtatgat ttgtgttc 1396																

<210> 3 <211> 295

<212> PRT

<213> H. sapiens

<400> 3 Met Glu Leu Ile Gln Asp Ile Ser Arg Pro Pro Leu Glu Tyr Val Lys 10 Gly Val Pro Leu Ile Lys Tyr Phe Ala Glu Ala Leu Gly Pro Leu Gln 25 20 Ser Phe Gln Ala Arg Pro Asp Asp Leu Leu Ile Ser Thr Tyr Pro Lys 40 Ser Gly Thr Thr Trp Val Ser Gln Ile Leu Asp Met Ile Tyr Gln Gly 55 Gly Asp Leu Glu Lys Cys His Arg Ala Pro Ile Phe Met Arg Val Pro 70 75 Phe Leu Glu Phe Lys Val Pro Gly Ile Pro Ser Gly Met Glu Thr Leu 90 Lys Asn Thr Pro Ala Pro Arg Leu Leu Lys Thr His Leu Pro Leu Ala 105 100 Leu Leu Pro Gln Thr Leu Leu Asp Gln Lys Val Lys Val Val Tyr Val 120 Ala Arg Asn Ala Lys Asp Val Ala Val Ser Tyr Tyr His Phe Tyr His 135 140 Met Ala Lys Val Tyr Pro His Pro Gly Thr Trp Glu Ser Phe Leu Glu 155 150 Lys Phe Met Ala Gly Glu Val Ser Tyr Gly Ser Trp Tyr Gln His Val 165 170 Gln Glu Trp Trp Glu Leu Ser Arg Thr His Pro Val Leu Tyr Leu Phe 180 185 Tyr Glu Asp Met Lys Glu Asn Pro Lys Arg Glu Ile Gln Lys Ile Leu 200 Glu Phe Val Gly Arg Ser Leu Pro Glu Glu Thr Val Asp Leu Met Val 215 220 Glu His Thr Ser Phe Lys Glu Met Lys Lys Asn Pro Met Thr Asn Tyr 230 235 Thr Thr Val Arg Arg Glu Phe Met Asp His Ser Ile Ser Pro Phe Met 245 250 Arg Lys Gly Met Ala Gly Asp Trp Lys Thr Thr Phe Thr Val Ala Gln 265 Asn Glu Arg Phe Asp Ala Asp Tyr Ala Glu Lys Met Ala Gly Cys Ser 275 280 Leu Ser Phe Arg Ser Glu Leu 290

> <210> 4 <211> 18 <212> DNA

<213> H. sapiens

<400> 4 cccaaataca ggtgttcc

<210> 5 <211> 17 <212> DNA 18

<213> H. sapiens		•
-400- E		
<400> 5		1.7
ggagcagagc aaggatc		17
<210> 6		
<211> 21		
<212> DNA		
<213> H. sapiens		
(213) II. Supiciis		
<400> 6		
ttcttctagg atcttctatc g		21
cccccagg accectact g		2.1
<210> 7		•
<211> 18		
<212> DNA		
<213> H. sapiens		
tara bapatino		
<400> 7		
actcagcaaa aggaggat		18
	•	
<210> 8		
<211> 18		
<212> DNA		
<213> H. sapiens	•	
•		
<400> 8		
ttagagatgg ggtcttcc		18
_		
<210> 9		
<211> 15		
<212> DNA		
<213> H. sapiens		
<400> 9		
gggcgagaga tgtcc		15
<210> 10		
<211> 17		
<212> DNA	•	-
<213> H. sapiens		
<400> 10		
ggagaggagc ctactgg		17
<210> 11	,	
<211> 16	· ·	
<212> DNA	·	
<213> H. sapiens		
400: 27	,	
<400> 11		
agtctgaggt gagcat	•	16

	<210> 12		
	<211> 17		
	<212> DNA		
	<213> H. sapiens		
•	-		
	<400> 12		
acctic	agtga cttccct		17
J	.5.5		
	<210> 13		
	<211> 20		
	<212> DNA		
	<213> H. sapiens		
	•		
	<400> 13		•
tttgg	aagag acttatctgg		20
	<210> 14		
	<211> 16		
	<212> DNA		
	<213> H. sapiens		
	-		
	<400> 14		
gcagg	acttt ggcttt		16
	<210> 15		
	<211> 16		
	<212> DNA		
	<213> H. sapiens		
	<400> 15		•
gactc	aggca caggag		16
			•
	<210> 16	•	
	<211> 16		
	<212> DNA		
	<213> H. sapiens		
	<400> 16		
gacca	tccca gtcctt		16
		•	
	<210> 17		
	<211> 15		
	<212> DNA		
	<213> H. sapiens		
	<400> 17		
cccca	acgac acagg		15
	<210> 18		•
	<211> 15		
	<212> DNA	•	
	<213> H. sapiens	•	

		•
<400> 18		
tggagcccgt cttgg		15
-55-5555		15
<210> 19		
<211> 19		
<212> DNA		
<213> H. sapiens		
	•	
<400> 19		
cagcagtttc acttgacc		18
<210> 20		
<211> 14		
<212> DNA		-
<213> H. sapiens	, , A	
<400> 20		
tgccacccc tgct		
tyccacccc tyce		14
210- 21		
<210> 21		
<211> 14		
<212> DNA		
<213> H. sapiens		
<400> 21		
aggetgetee eetg		14
<210> 22		
<211> 14		
<212> DNA		
<213> H. sapiens		
<400> 22		
gggctcacgc aacc		14
gggcccacgc dacc		14
<210> 23		
<211> 19		
<212> DNA		
<213> H. sapiens	Ξ.	·
	•	
<400> 23		
gcaggtactt ttctttcca	•	19
<210> 24		
<211> 21		
<212> DNA		
<213> H. sapiens		
•		
<400> 24		
ttcttctagg atcttctatc g		21
		21
<210> 25	•	
	•	
<211> 18		

WO 99/64630

PCT/US99/13094

<212> DNA		
<213> H. sapiens		•
<400> 25		
titttgaggt gtcactgg		18
<210> 26		
<211> 16		
<212> DNA		
<213> H. sapiens		
•		
<400> 26		
cccacacaac acccac		16
	·	
<210> 27		
<211> 16	•	
<212> DNA		
<213> H. sapiens		
<400> 27		
gcttctggaa tgttgg		
gereeggaa egeegg		16
<210> 28		
<211> 19		
<212> DNA		
<213> H. sapiens	•	
<400> 28		
cggaaaaaa aaaaggaag		19
-210- 20		
<210> 29 <211> 14		
<211> 14 <212> DNA		
<213> H. sapiens		
(213) II. Bapiens		
<400> 29		
caatgctgcc caga		14
<210> 30		
<211> 17	•	
<212> DNA		
<213> H. sapiens		
<400> 30		
gctccactga ggaacct		
Jecouacija ggaacec		17
<210> 31	•	
<211> 17		
<212> DNA		
<213> H. sapiens		
	•	•
<400> 31		
ggagaggagc ctactgg		17

	<210> 32			•	•
	<211> 18				
	<211> 10 <212> DNA				
	<213> H. sapiens				
	<400> 32				
taccad	ccatc acaacagc				18
				. •	
	<210> 33				
	<211> 19				•
	<212> DNA				
	<213> H. sapiens				
	vers in Suprems				
	<400> 33				
			•		1.0
ctgaaa	agcaa gaaatccac				19
	•				
	<210> 34				
	<211> 16				
	<212> DNA				
	<213> H. sapiens				
	<u>-</u>				
	<400> 34				
aggete	gaggt gagcat				16
-55	9-55- 5-5				
	<210> 35				
	<211> 14	-			
	•				
	<212> DNA				
	<213> H. sapiens				
	<400> 35				
gcggt	gacct ggaa				14
	<210> 36				
	<211> 20				
	<212> DNA				
	<213> H. sapiens				
	-				
	<400> 36				
tttaa	aagag acttatctgg				20
	aagag acceaeoogg		•		
	<210> 37				
	<211> 17				
	<212> DNA				
	<213> H. sapiens				
	<400> 37	•			
ctgac	ttgcc cctacct	, ,			17
	<210> 38	*			
	<211> 16				
	<212> DNA	•			
	<213> H. sapiens				
	to u. sabrens				

<400> 38		
tagccaccac ccctta	•	16
<210> 39		
<211> 18		
<212> DNA <213> H. sapiens		
<213> H. Sapiens		
<400> 39		
ccaaagtgta ccctcacc		18
<210> 40		
<211> 14	•	
<212> DNA		
<213> H. sapiens	n	
<400> 40		14
agcctgctgc caca		14
222. 43		
<210> 41 <211> 16		
<211> 16 <212> DNA		
<212> DNA <213> H. sapiens		
(213) II. Sapiens		
<400> 41		
gaccatccca gtcctt	1	16
3		
<210> 42		
<211> 14		
<212> DNA		
<213> H. sapiens		
	·	
<400> 42		14
caaacccccg tgct		
<210> 43		
<211> 43		
<212> DNA		
<213> H. sapiens		
<400> 43		
ctgtggacct cttggttg		18
<210> 44		
<211> 22		
<212> DNA	·	
<213> H. sapiens		
400. 44		
<400> 44		22
cacaaatcat actttattct gg		
· 210> 45		

	<211> 15	•
	<212> DNA	
	<213> H. sapiens	
	<400> 45	
		15
cgacg	geggae tatge	15
	<210> 46	
	<211> 15	
	<212> DNA	
	<213> H. sapiens	
	<400> 46	
CCCCa	aacgac acagg	15
	<210> 47	•
	<211> 22	
	<212> DNA	
	<213> H. sapiens	
	<400> 47	
	ctgggg ttgagtcttc tg	2.2
ggtgt	ctgggg ctgagcette tg	22
	070. 40	
	<210> 48	
	<211> 27	
	<212> DNA	
	<213> H. sapiens	
	<400> 48	
caaag	ggatgt ggeggtttee tactace	27
	33333	-
	<210> 49	
	<211> 23	
	<212> DNA	
	<213> H. sapiens	
	<400> 49	
acacc	cttcct tcctcccatc aag	23
	<210> 50	
	<211> 28	
	<212> DNA	
	<213> H. sapiens	
	<400> 50	
cgcaa	aaggat gtggttgt cctactac	28
	•	
	<210> 51	
	<211> 24	
	<212> DNA	
	<213> H. sapiens	
	zers u. pahrena	
	.400. 51	
	<400> 51	

ggagactgtg gacctcatgg ttga	. 2
-210 - 52	•
<210> 52 <211> 32	
<212> DNA	
<213> H. sapiens	
<400> 52	
tagttggtca tagggttctt cttcatctcc t	t 3
<210> 53	
<211> 21	·
<212> DNA	
<213> H. sapiens	
<400> 53	
ccggcaccta cctttcctca t	2
<210> 54	_
<211> 30	
<212> DNA	
<213> H. sapiens	
varav n. saprens	
<400> 54	
tagttggtca taggggtctt cttcatctcc	30
<210> 55	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 55	
agetttgete cetgeettee t	21
<210> 56	
<211> 24	
<212> DNA	
<213> H. sapiens	
<400> 56	
ctgccatctt ctccgcatag tccg	
<210> 57	
<211> 22	
<212> DNA	
<213> H. sapiens	
<400> 57	
ggaacccctc tcacagctca ga	22
<210> 58	
<211> 24	
<212> DNA	

<213> H. sapiens	
<400> 58	
tgccatcttc ttcgcatagt ccgc	24
<210> 59	
<211> 22	
<212> DNA	
<213> H. sapiens	
<400> 59	
ggtgctgggg ttgagtcttc tg	22
<210> 60	•
<211> 25	
<212> DNA	
<213> H. sapiens	
<400> 60	
atggccaaag tgtaccctca ccctg	25
<210> 61	
<211> 23	
<212> DNA	
<213> H. sapiens	
<400> 61	
acacetteet teeteecate aag	23
<210> 62	
<211> 25	
<212> DNA	
<213> H. sapiens	
400- 62	
<400> 62 catggccaaa gtgtaaccct caccc	25
catggitaaa gigtaattii tatti	25
<210> 63	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 63	
ccagctcctc aacttgccct g	21
<210> 64	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 64	
ccagctcctc tacttgccct g .	21

<210> 65	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 65	
gtgagagggg ttcctggagt c	21
<210> 66	
<211> 21	
<212> DNA	•
<213> H. sapiens	
<400> 66	
gtgagagggg ctcctggagt c	21
<210> 67	
<211> 21	
<212> DNA	
<213> H. sapiens	
ters, w. paprem	
<400> 67	
catgaagetg gggetggete e	21
<210> 68	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 68	
catgaagctg aggctggctc c	21
3 3 3 32 22	
<210> 69	•
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 69	
ctcgtgccca gcttgaccct g	2:
<210> 70	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 70	
ctcgtgccca acttgaccct g `	2:
<210> 71	
<211> 21	
<212> DNA	
<213> H. sapiens	

<400> 71	<u>.</u>	
gggattcctc aggggcacag a		21
222		
<210> 72		
<211> 21		
<212> DNA		
<213> H. sapiens		
(213) II. Bapiens		
. <400> 72		
		21
gggattcctc cggggcacag a		21
		•
<210> 73		
<211> 21		
<212> DNA		•
<213> H. sapiens		
<400> 73		
acagegeeat gttgettetg g		21
<210> 74		
<211> 21		
<212> DNA		
<213> H. sapiens		
<400> 74		
acagegeeat attgettetg g		21
<210> 75		
<211> 21		
<212> DNA		
<213> H. sapiens		
<400> 75		
cagecactge gggegaggag g		21
<210> 76		
<211> 70		
<211> 21 <212> DNA		
<213> H. sapiens	**************************************	
<213> h. sapiens		
.400- 26		
<400> 76		21
cagecactge aggegaggag g		21
.010. 77		
<210> 77		
<211> 21		
<212> DNA		
<213> H. sapiens		
,		
<400> 77		
aggagggcac aaggccaggt t		21
<210> 78		
<211> 21		

	<212> DNA	
	<213> H. sapiens	
	·	
	<400> 78	
aggag	ggcac gaggccaggt t	21
-55-5	3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	
	<210> 79	
	<211> 21	
	<212> DNA	
	<213> H. sapiens	
	(213) 11. 508255	
	<400> 79	
aaaaa	acatc ggggagagga g	21
99990		
	<210> 80	
	<211> 21	
	<211> 21 <212> DNA	
	<213> H. sapiens	
	(213) n. sapiens	
	<400> 80	
	,	21
9999	acatc agggagagga g	21
	<210> 81	
	<211> 20	
	<211> 20 <212> DNA	
	<213> H. sapiens	
	(213) n. Sapiens	
	<400> 81	
CC222	agtgta ccctcaccct	20
ccaae	agigita cooccacooc	
*	<210> 82	
	<211> 21	
	<212> DNA	
	<213> H. sapiens	
	(21) n. daptem	
	<400> 82	
ccaa	agtgta accctcaccc t	21
0000	-5-5	
	<210> 83	
	<211> 20	
	<212> DNA	
	<213> H. sapiens	
	<400> 83	
aagg	atgtgg ggtttcctac	20
33	·	
	<210> 84	
	<211> 20	
	<212> DNA	
	<213> H. sapiens	
	<400> 84	
aagg	atgtgg ggtttcctac	20

	<210> 85		
	<211> 20		
	<212> DNA		
	<213> H. sapiens		
	•		
	<400> 85		
atgaa	gaaga ccctatgacc	•	20
_		• •	
	<210> 86		
	<211> 20		
	<212> DNA		
	<213> H. sapiens		
	<400> 86		
atgaa	gaaga ccctatgacc		20
	gwaga		20
	<210> 87		
	<211> 20		
	<212> DNA		
	<213> H. sapiens		
	1217 pupitone		
	<400> 87		
ggact	atgcg agaagatggc		20
33	44343 4344344334		
	<210> 88		
	<211> 20		
	<212> DNA		
	<213> H. sapiens		
	1225 III Suppose		
	<400> 88		
ggact	atgcg agaagatggc		20
33			
	<210> 89		
	<211> 21		
	<212> DNA		
	<213> H. sapiens		
	<400> 89		
aaqqq	ggtcc cgctcatcaa g		21
333			
	<210> 90		
	<211> 21		
	<212> DNA		
	<213> H. sapiens	•	
	<u>-</u>		
	<400> 90		
aaggg	ggtcc tgctcatcaa g		21
	<210> 91		
	<211> 21		
	<212> DNA .		
	<213> H. sapiens		

<400> 91 ctctgctatc tctgccctct c	21
<210> 92	
<211> 92	
<212> DNA	
<213> H. sapiens	
= - -	
<400> 92	
ctctgctatc cctgccctct c	21
212	
<210> 93 <211> 21	
<211> 21 <212> DNA	
<213> H. sapiens	
(223) II. Suprens	
<400> 93	
ctctcccagg tggcagtccc c	21
<210> 94	·
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 94	
ctctcccagg cggcagtccc c	21
	4.1
<210> 95	
<211> 20	
<212> DNA	
<213> H. sapiens	
<400> 95	·
cctttgccaa ccaagagatg	20
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	20
<210> 96	
<211> 19	
<212> DNA	
<213> H. sapiens	•
<400> 96	
cctttgccac caagagatg	19
3,3,43	19
<210> 97	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 97	
gtgtcggcac tccctgcccg c	·
J-52-55-4	21
<210> 98	

<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 98	
gtgtcggcac cccctgcccg c	2:
<210> 99	
<211> 21	
<212> DNA	
<213> H. sapiens	
14005 00	
<400> 99	
cctccctggg cggcccctcc a	21
<210> 100	
<211> 21	
<212> DNA	
<213> H. sapiens	
vers in suprems	
<400> 100	
cctccctggg tggcccctcc a	•
233 23	21
<210> 101	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 101	
ttgttctatg gatccatgct c	21
<210> 102	
<211> 21	•
<212> DNA	
<213> H. sapiens	
<400> 102	
ttgttctatg catccatgct c	
regerency carocatges c	21
<210> 103	
<211> 21	·
<212> DNA	
<213> H. sapiens	
•	
<400> 103	
catgggctgc tggaggcctg t	21
•••	
<210> 104	
<211> 21	
<212> DNA	
<213> H. sapiens	
	•
<400> 104	

catgggctgc cggaggcctg t	21
<210> 105	
<211> 21	
<212> DNA	
<213> H. sapiens	
•	
<400> 105	
actgggccag gacccctggc a	21
	21
<210> 106	
<211> 21	•
<212> DNA	
<213> H. sapiens	
<400> 106	
actgggccag aacccctggc a	21
ंके"	21
<210> 107	
<211> 21	
<212> DNA	
<213> H. sapiens	·.
400 700	
<400> 107	
cctgcctatc ccagctttct c	21
<210> 108	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 108	
cctgcctatc tcagctttct c	21
	21
<210> 109	
<211> 21	
<212> DNA	
<213> H. sapiens	
gcctatccca tetttetect e	21
<210> 110	
<211> 21	
<212> DNA	
<213> H. sapiens	
<400> 110	
gcctatccca gctttctcct c	21

INTERNATIONAL SEARCH REPORT

Intr Itional Application No PCT/US 99/13094

A CLASSIT	EICATION OF SUBJECT MATTER					
A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C1201/68						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
	currentation searched (classification system followed by classification	n symbols)	· · · · · · · · · · · · · · · · · · ·			
IPC 6	C12Q					
Documentat	ion searched other than minimum documentation to the extent that su	ch documents are included in the fields so	arched			
Electronic da	ata base consulted during the international search (name of data base	e and, where practical, search terms used)				
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	:				
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.			
χ	HER C ET AL: "Human phenol		1_4			
^		ular	1-4			
	sulfotransferase STP2 gene: molecular cloning, structural characterization, and					
	chromosomal localization."	ion, and				
]	GENOMICS, (1996 MAY 1) 33 (3) 409-20. , XP002117271					
•						
	cited in the application	ļ				
	the whole document					
. .			_			
X	GAEDIGK: "Cloning structural		1			
	organization, and chromosomal map					
1	human phenol sulfotransferase STP GENOMICS,	z gene"				
	vol. 40, 1997, pages 242-246, XPO	02117277				
	the whole document	V611/6//				
	_	/				
1		·				
V 5:	har decuments are listed in the continuation of how C	Data tamba a a fi	·			
X Further documents are listed in the continuation of box C. Patent family members are listed in annex.						
' Special categories of cited documents :						
To later document published after the international filling date of priority date and not in conflict with the application but						
considered to be of particular relevance cited to understand the principle or theory underlying the invention						
"X" document but published on or after the international "X" document of particular relevance; the claimed invention						
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of expense.						
citation or other special reason (as specified) cannot be considered to involve an inventive step when the						
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such documents, such combination being obvious to a person skilled						
"P" document published prior to the international filing date but in the art.						
later than the priority date claimed "&" document member of the same patent family						
Date of the actual completion of the international search Date of mailing of the international search report						
1 ,	October 1000	15/10/1000				
	October 1999	15/10/1999				
Name and mailing address of the ISA Authorized officer						
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk						
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Reuter, U						
	i ax, (70 1-70) 540-30 10					

INTERNATIONAL SEARCH REPORT

International Application No
PCI/US 99/13094

	•	PCI/US 99	/13094
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category ·	Citation of document, with indication where appropriate, of the relevant passages		Relevant to claim No.
X .	DOOLEY T P ET AL: "Genomic organization and DNA sequences of two human phenol sulfotransferase genes (STP1 and STP2) on the short arm of chromosome 16." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, (1996 NOV 1) 228 (1) 134-40., XP002117273 the whole document		1
A	WEINSHILBOUM R M ET AL: "Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes." FASEB JOURNAL, (1997 JAN) 11 (1) 3-14. REF: 99 , XP002117274 the whole document		1-10
	·	·	
·			
·			
·	·		
	· .		