

Parsing of Context-Free Grammars

Bernd Kiefer

{Bernd.Kiefer}@dfki.de

Deutsches Forschungszentrum für künstliche Intelligenz

- Assignment: Write a regular expression for fully bracketed arithmetic expressions!
- Answer: ?

 Assignment: Write a regular expression for fully bracketed arithmetic expressions!

Answer:

- This is not possible!
- Regular expressions can only count finite amounts of brackets

 Assignment: Write a regular expression for fully bracketed arithmetic expressions!

• Answer:

- This is not possible!
- Regular expressions can only count finite amounts of brackets
- We need a more powerful formal device: context-free grammars

 Assignment: Write a regular expression for fully bracketed arithmetic expressions!

Answer:

- This is not possible!
- Regular expressions can only count finite amounts of brackets
- We need a more powerful formal device: context-free grammars
- Context-free grammars provide a (finite) inventory of named brackets
- All regular languages are also context-free, i.e.: for every regular expression, there is a context-free grammar that accepts / derives the same language

A context-free grammar (CFG) consists of:

- The set of terminal symbols $\Sigma = a, b, c, ...$ (the words or letters of the language)
- The set of non-terminal symbols N = A, B, C, ...
- The startsymbol $S \in N$
- The set of productions (rules) P, where $P \ni r = A \to \alpha$ with $\alpha \in (\Sigma \cup N)^*$ (we use greek letters for strings of $\Sigma \cup N$)

Example: A grammar for arithmetic expressions:

$$\Sigma = \{ int, +, *, (,) \} , N = \{E\} , S = E$$

$$P = \{ E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E), E \rightarrow int \}$$

The Language of a CFG

- Given a CFG G, the language L(G) is defined as the set of all strings that can be derived from S
- Given a string α from $(\Sigma \cup N)^*$, derive a new string β :
 - ightharpoonup Choose one of the nonterminals in α , say, A
 - Choose one of the productions with A on the left hand side
 - Replace A in α with the right hand side (rhs) of the production to get the derived string β
- If α contains only symbols in Σ , then $\alpha \in \mathcal{L}(G)$
- Example:

$$\alpha = int*(E)$$
; choose $E \to E + E$; $\beta = int*(E + E)$

Derivations: Formally

- A string α derives a string β , $(\alpha \underset{G}{\Rightarrow} \beta)$ $\alpha, \beta \in (\Sigma \cup N)^*$, if: there are $\gamma, \delta, \eta \in (\Sigma \cup N)^*, A \in N$ such that $\alpha = \gamma A \delta$, $\beta = \gamma \eta \delta$ and $A \longrightarrow \eta \in P$
- We write $\alpha \Rightarrow \beta$ for a one-step derivation
- $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \beta$ is a many-step derivation: $\alpha \stackrel{*}{\underset{G}{\Rightarrow}} \alpha_0 \stackrel{*}{\underset{G}{\Rightarrow}} \alpha_1 \dots \stackrel{*}{\underset{G}{\Rightarrow}} \beta$
- Language $\mathcal{L}(G)$ generated by G: $\mathcal{L}(G) = \{s \in \Sigma^* | S \stackrel{*}{\underset{G}{\Rightarrow}} s\}$
- The task of a parser: find one (or all) derivation(s) of a string in Σ^* , given a CFG G

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\mathsf{S}\mathop{\Rightarrow}\limits_{G}$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\bullet \ P = \left\{ \begin{array}{ll} \mathsf{S} \ \to \mathsf{NP} \ \mathsf{VP} | \mathsf{N} \ \mathsf{VP} | \mathsf{N} \ \mathsf{V} | \mathsf{NP} \ \mathsf{V} \ & \mathsf{N} \to \mathsf{john, girl, car} \\ \mathsf{VP} \to \mathsf{V} \ \mathsf{NP} | \mathsf{V} \ \mathsf{N} | \mathsf{VP} \ \mathsf{PP} \ & \mathsf{V} \to \mathsf{saw, walks} \\ \mathsf{NP} \to \mathsf{D} \ \mathsf{N} | \mathsf{NP} \ \mathsf{PP} | \mathsf{N} \ \mathsf{PP} \ & \mathsf{P} \to \mathsf{in} \\ \mathsf{PP} \to \mathsf{P} \ \mathsf{NP} | \mathsf{P} \ \mathsf{N} \ & \mathsf{D} \to \mathsf{the, a} \end{array} \right\}$$

$$S \underset{G}{\Rightarrow} N VP \underset{G}{\Rightarrow}$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\bullet \ P = \left\{ \begin{array}{ll} \mathsf{S} \ \to \mathsf{NP} \ \mathsf{VP} | \mathsf{N} \ \mathsf{VP} | \mathsf{N} \ \mathsf{V} | \mathsf{NP} \ \mathsf{V} \ & \mathsf{N} \to \mathsf{john, girl, car} \\ \mathsf{VP} \to \mathsf{V} \ \mathsf{NP} | \mathsf{V} \ \mathsf{N} | \mathsf{VP} \ \mathsf{PP} \ & \mathsf{V} \to \mathsf{saw, walks} \\ \mathsf{NP} \to \mathsf{D} \ \mathsf{N} | \mathsf{NP} \ \mathsf{PP} | \mathsf{N} \ \mathsf{PP} \ & \mathsf{P} \to \mathsf{in} \\ \mathsf{PP} \to \mathsf{P} \ \mathsf{NP} | \mathsf{P} \ \mathsf{N} \ & \mathsf{D} \to \mathsf{the, a} \end{array} \right\}$$

$$S \underset{G}{\Rightarrow} N VP \underset{G}{\Rightarrow} john VP \underset{G}{\Rightarrow}$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

•
$$P = \left\{ egin{array}{ll} S & \rightarrow \mbox{NP VP}|\mbox{N VP}|\mbox{N VP}|\mbox{N VP}|\mbox{N V}|\mbox{NP VP}|\mbox{N VP}|\mbox{N$$

$$S \underset{G}{\Rightarrow} N VP \underset{G}{\Rightarrow} john VP \underset{G}{\Rightarrow} john V NP \underset{G}{\Rightarrow}$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\bullet \ P = \left\{ \begin{array}{ll} \mathsf{S} \ \to \mathsf{NP} \ \mathsf{VP} | \mathsf{N} \ \mathsf{VP} | \mathsf{N} \ \mathsf{V} | \mathsf{NP} \ \mathsf{V} \ & \mathsf{N} \to \mathsf{john, girl, car} \\ \mathsf{VP} \to \mathsf{V} \ \mathsf{NP} | \mathsf{V} \ \mathsf{N} | \mathsf{VP} \ \mathsf{PP} \ & \mathsf{V} \to \mathsf{saw, walks} \\ \mathsf{NP} \to \mathsf{D} \ \mathsf{N} | \mathsf{NP} \ \mathsf{PP} | \mathsf{NP} \ \mathsf{PP} \ & \mathsf{P} \to \mathsf{in} \\ \mathsf{PP} \to \mathsf{P} \ \mathsf{NP} | \mathsf{P} \ \mathsf{N} \ & \mathsf{D} \to \mathsf{the, a} \end{array} \right\}$$

$$\mathsf{S} \underset{G}{\Rightarrow} \mathsf{N} \; \mathsf{VP} \; \underset{G}{\Rightarrow} \; \; \mathsf{john} \; \mathsf{VP} \; \underset{G}{\Rightarrow} \; \; \mathsf{john} \; \mathsf{VNP} \; \underset{G}{\Rightarrow} \; \; \mathsf{john} \; \mathsf{saw} \; \mathsf{NP} \; \underset{G}{\Rightarrow} \;$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\bullet \ P = \left\{ \begin{array}{ll} \mathsf{S} \ \to \mathsf{NP} \ \mathsf{VP} | \mathsf{N} \ \mathsf{VP} | \mathsf{N} \ \mathsf{V} | \mathsf{NP} \ \mathsf{V} \ & \mathsf{N} \to \mathsf{john, girl, car} \\ \mathsf{VP} \to \mathsf{V} \ \mathsf{NP} | \mathsf{V} \ \mathsf{N} | \mathsf{VP} \ \mathsf{PP} \ & \mathsf{V} \to \mathsf{saw, walks} \\ \mathsf{NP} \to \mathsf{D} \ \mathsf{N} | \mathsf{NP} \ \mathsf{PP} | \mathsf{NP} \ \mathsf{PP} \ & \mathsf{P} \to \mathsf{in} \\ \mathsf{PP} \to \mathsf{P} \ \mathsf{NP} | \mathsf{P} \ \mathsf{N} \ & \mathsf{D} \to \mathsf{the, a} \end{array} \right\}$$

- $\Sigma = \{ \text{john, girl, car, saw, walks, in, the, a} \}$
- $N = \{S, NP, VP, PP, D, N, V, P\}$

$$\bullet \ P = \left\{ \begin{array}{ll} \mathsf{S} \ \to \mathsf{NP} \ \mathsf{VP} | \mathsf{N} \ \mathsf{VP} | \mathsf{N} \ \mathsf{V} | \mathsf{NP} \ \mathsf{V} \ & \mathsf{N} \to \mathit{john, girl, car} \\ \mathsf{VP} \to \mathsf{V} \ \mathsf{NP} | \mathsf{V} \ \mathsf{N} | \mathsf{VP} \ \mathsf{PP} \ & \mathsf{V} \to \mathit{saw, walks} \\ \mathsf{NP} \to \mathsf{D} \ \mathsf{N} | \mathsf{NP} \ \mathsf{PP} | \mathsf{N} \ \mathsf{PP} \ & \mathsf{P} \to \mathit{in} \\ \mathsf{PP} \to \mathsf{P} \ \mathsf{NP} | \mathsf{P} \ \mathsf{N} \ & \mathsf{D} \to \mathit{the, a} \end{array} \right\}$$

 $S \underset{G}{\Rightarrow} N VP \underset{G}{\Rightarrow} john VP \underset{G}{\Rightarrow} john V NP \underset{G}{\Rightarrow} john saw NP \underset{G}{\Rightarrow} john saw NP PP \underset{G}{\Rightarrow} john saw D N PP \underset{G}{\Rightarrow} john saw the N PP \underset{G}{\Rightarrow} john saw the girl PNP \underset{G}{\Rightarrow} john saw the girl in NP \underset{G}{\Rightarrow} john saw the girl in D N \underset{G}{\Rightarrow} john saw the girl in a N \underset{G}{\Rightarrow} john saw the girl$

Derivation (Parse) Trees

- Encodes many possible derivations
- PP node in the example can be attached to two nodes: the grammar is ambigous
- CF Parsers/Recognizers differ in the way the derivation trees are build

Context-free Recognition

Task: given $s \in \Sigma^*$ and G, is $s \in \mathcal{L}(G)$?

Two ways to go:

- start with the start symbol S and try to derive s by systematic application of the productions: top down recognition (goal driven)
- start with the string s and try to reduce it to the start symbol:

bottom up recognition (data driven)

Idea: Recursively compute all expansions of a nonterminal at some input position

$$E \rightarrow S+S, \quad E \rightarrow S*S,$$

 $S \rightarrow (E), \quad S \rightarrow int$

S

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \rightarrow S + S, \quad E \rightarrow S * S,$ expand(S, 1) $S \rightarrow (E), S \rightarrow int$ int * int) int

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \rightarrow S + S, \quad E \rightarrow S * S,$ expand(S, 1) $S \to (E), S \to int$ int int int)

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \to S + S, \quad E \to S * S,$ expand(E, 4) $S \rightarrow (E), S \rightarrow int$ int int int

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \to S + S, \quad E \to S * S,$ expand(S, 4) $S \rightarrow (E), S \rightarrow int$ int int int int

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \to S + S, \quad E \to S * S,$ expand(S, 6) $S \rightarrow (E), S \rightarrow int$ int int int int

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \to S + S, \quad E \to S * S,$ expand(S, 6) $S \rightarrow (E), S \rightarrow int$ int int int int int

Idea: Recursively compute all expansions of a nonterminal at some input position

 $E \to S + S, \quad E \to S * S,$ expand(S, 3) $S \rightarrow (E), S \rightarrow int$ int int int int int int

$$E \rightarrow S+S, \quad E \rightarrow S*S,$$

 $S \rightarrow (E), \quad S \rightarrow \text{int}$

- expand returns a set of possible end positions
- During expansion of one production
 - Keep track of a set of intermediate positions for the already expanded part
 - Expand the next terminal or nonterminal from every intermediate position
 - If the set of possible intermediate position gets empty, the production fails
- When a production was successfully completed, the intermediate set is added to the set of end positions
- May run into an infinite loop with left-recursive grammars, i.e. grammars where $A \stackrel{*}{\Rightarrow} A\beta$ for some A

Top Down Parsing: Optimizations

- For every nonterminal, compute the set of terminals that can occur in the *first* position
 - Expand only those nonterminals / productions that are compatible with the current input symbol
- Avoid performing duplicate calls with identical nonterminal/position pair: memoize previous calls
 - use a data structure whose index are tuples consisting of the function arguments
 - the result of the lookup is the result of a previous call with the same arguments (if available)
 - The memoized method has to be strictly functional for this to work

• A CFG may contain productions of the form $A \rightarrow \epsilon$

add all non- ϵ productions of P to P'

• Construct a CFG G' with the same language as G and at most one epsilon production: $S \to \epsilon$

```
for all nonterminals A with A \to \epsilon \in P:
   mark A as \epsilon-deriving and add it to the set \mathcal Q
   while \mathcal Q is not empty, remove a nonterminal X from \mathcal Q:
   for all Y \to \alpha \, X \, \beta \in P, with \alpha or \beta not empty, add Y \to \alpha \, \beta to P'
   for all Y \to X, if Y is not marked as \epsilon-deriving:
        mark Y as \epsilon-deriving and add it to \mathcal Q
   if S is \epsilon-deriving, add S \to \epsilon to P'
```

Chomsky Normal Form

- A context-free grammar is in Chomsky Normal Form if:
 - (i) it is ϵ -free,
 - (ii) all productions have one of two forms:
 - $A \rightarrow a$ with $a \in \Sigma$
 - $A \rightarrow BC$ with $B, C \in N$
- Every CFG can be transformed into a CNF grammar with the same language
- Drawback: The original structure of the parse trees must be reconstructed, if necessary
- The original and transformed grammar are said to be weakly equivalent

Chomsky Normal Form II

- Convert an arbitrary CFG into CNF:
 - ightharpoonup Introduce new nonterminals and productions $A^a \rightarrow a$
 - ightharpoonup Replace all occurences of a by A^a
 - ► Eliminate unary productions $A \rightarrow B$: add productions where A is replaced by B in the right hand sides
 - Replace productions with more than two symbols on the right hand side by a sequence of productions:

$$A \to R_1 R_2 \dots R_n \Rightarrow$$

 $A \to R_1 A^{(1)}, \quad A^{(1)} \to R_2 A^{(2)}, \quad \cdots \quad A^{(n-2)} \to R_{n-1} R_n$

- First algorithm independently developed by Cocke, Younger and Kasami (late 60s)
- Given a string w of length n, use an $n \times n$ table to store subderivations (hence chart or tabular parsing)
- Works for all kinds of grammars: left/right recursive, ambiguous
- Storing subderivations avoids duplicate computation: an instance of dynamic programming
- polynomial space and time bounds, although an exponential number of parse trees may be encoded!

- Input: G in Chomsky normal form, input string w_1, \ldots, w_n
- Systematically explore all possible sub-derivations bottom-up
- Use an $n \times n$ array C such that
 - ► If nonterminal A is stored in C(i,k): $A \stackrel{*}{\Rightarrow} w_{i+1}, \ldots, w_k$
 - Maintain a second table \mathcal{B} , such that if $j \in \mathcal{B}(i,k)$: ex. $A \to B \ C \in P, A \in \mathcal{C}(i,k), B \in \mathcal{C}(i,j)$ and $C \in \mathcal{C}(j,k)$
 - \triangleright \mathcal{B} enables us to extract the parse trees
- Implement \mathcal{C} and \mathcal{B} as three-dimensional boolean arrays of size $n \times n \times |N|$ and $n \times n \times n$, respectively

CYK - The Original

For
$$i=1$$
 to n

For each $R_j \longrightarrow a_i$, set $\mathcal{C}(i-1,i,j)=$ true

For $l=2$ to n

-Length of new constituent

For $i=0$ to $n-l$

-Start of new constituent

For $m=1$ to $l-1$

-Length of first subconstituent

For each production $R_a \longrightarrow R_b R_c$

If $\mathcal{C}(i,i+m,b)$ and $\mathcal{C}(i+m,i+l,c)$ then set $\mathcal{C}(i,i+l,a)=$ true

set $\mathcal{B}(i,i+l,i+m)=$ true

If $\mathcal{C}(1,n,S)$ is true, $w\in\mathcal{L}(G)$

① john ① saw ② the ③ girl ④ in ⑤ a ⑥

N						
	V					
		D				
			N			
				Р		
					D	
						Ν

 \mathcal{C}

N	S					
	V					
		D	NP			
			Ν			
				Р		
					D	NP
						N

 \mathcal{C}

N	S					
	V		VΡ			
		D	NP			
			Ν			
				Р		PP
					D	NP
						N

C

1			
	2		
	3		
			5
			6

N	S		S			
	V		VP			
		D	NP			
			Ν			NP
				Р		PP
					D	NP
						N

 \mathcal{C}

1	1		
	2		
	3		
			4
			5
			6

N	S		S			
	V		VP			
		D	NP			NP
			Ν			NP
				Р		PP
					D	NP
						N

 \mathcal{C}

1	1		
	2		
	3		4
			4
			5
			6

CYK Chart Example

N	S		S			
	V		VP			VP
		D	NP			NP
			Ν			NP
				Р		PP
					D	NP
						Ν

 \mathcal{C}

	1	1		
		2		2,4
		3		4
				4
				5
				6

CYK Chart Example

VP→V NP|V N|VP PP

 $NP \rightarrow D N|NP PP|N PP$

 $PP \rightarrow P NP|P N$

 $N \rightarrow john, girl, car$

 $V \rightarrow saw$, walks

 $\mathsf{P} \rightarrow \mathit{in}$

 $\mathsf{D} \to \mathit{the}, \, \mathsf{a}$

	1	2	3	4	5	6	7
0	N	S		S			S
1		V		VP			VP(2)
2			D	NP			NP
3				N			NP
4					Р		PP
5						D	NP
6							N

 $_0$ john $_1$ saw $_2$ the $_3$ girl $_4$ in $_5$ a $_6$ car $_7$

 $VP \rightarrow V NP|V N|VP PP$

 $NP \rightarrow D N|NP PP|N PP$

 $PP \rightarrow P NP|P N$

 $N \rightarrow john, girl, car$

 $V \rightarrow saw$, walks

 $P \rightarrow in$

 $\mathsf{D} \to \mathit{the}, \mathsf{a}$

 $VP \rightarrow V NP|V N|VP PP$

 $NP \rightarrow D N|NP PP|N PP$

PP→P NP|P N

 $N \rightarrow john, girl, car$

 $V \rightarrow saw$, walks

 $P \rightarrow in$

 $\mathsf{D} \to \mathsf{the}, \mathsf{a}$

	1	2	3	4	5	6	7
0	N	S		S			S
1		V		VP			VP(2)
2			D	NP-			→NP <
3				N)			NP
4					P		→ PP {
5						D	NP
6							N

 $VP \rightarrow V NP|V N|VP PP$

 $NP \rightarrow D N|NP PP|N PP$

PP→P NP|P N

 $N \rightarrow john, girl, car$

 $V \rightarrow saw$, walks

 $P \rightarrow in$

 $\mathsf{D} \to \mathsf{the}, \mathsf{a}$

	1	2	3	4	5	6	7
0	Ν	S		S			S
1		V		VP-			VP(2)
2			D	NP			NP-
3				Ν			NP
4					Р		PP
5						D	NP
6							N

Encoding Ambiguities

$$\begin{split} \Sigma &= \{\textit{john, girl, car, sees, in, the, a} \} \\ P &= \left\{ \begin{array}{ll} \mathsf{S} &\to \mathsf{NP} \; \mathsf{VP}, \; \mathsf{N} \to \textit{john, girl, car} \\ \mathsf{VP} \to \mathsf{V|V} \; \mathsf{NP|V} \; \mathsf{NP} \; \mathsf{PP} & \mathsf{V} \to \mathsf{sees} \\ \mathsf{NP} \to \mathsf{N|D} \; \mathsf{N|N} \; \mathsf{PP|D} \; \mathsf{NP} & \mathsf{P} \to \textit{in} \\ \mathsf{PP} \to \mathsf{P} \; \mathsf{NP} & \mathsf{D} \to \textit{the, a} \end{array} \right\}$$

- They are described using chart items, which consist of
 - a symbol, derived from the grammar
 - \triangleright a start and end position from $0, \ldots, n$

- They are described using chart items, which consist of
 - a symbol, derived from the grammar
 - \triangleright a start and end position from $0, \ldots, n$
- The symbol of *complete* items is one of $\Sigma \cup N$

- They are described using chart items, which consist of
 - a symbol, derived from the grammar
 - \triangleright a start and end position from $0, \ldots, n$
- The symbol of *complete* items is one of $\Sigma \cup N$
- Incomplete chart items encode partially filled rules
 - The symbol is a pair (r, i) of rule and *dot position* if $P \ni r : A \to \alpha\beta$ with $|\alpha| = i$
 - ightharpoonup write alternatively: $A \to \alpha \bullet \beta$

Bottom-Up Chart Parsing

- How, when and which chart items are created or combined characterizes a parsing algorithm or parsing strategy
- First: A modified variant of Cocke-Younger-Kasami (CYK) algorithm
- Prerequisites: CFG G, input string $w = a_1, \ldots, a_n$
- Data Structures:
 - ightharpoonup A n+1 imes n+1 chart \mathcal{C} , where each cell contains a set of (complete or incomplete) chart items
 - A set of chart items A (those must still be treated in some way)
- Initialization: add all $(a_i, i-1, i)$ to \mathcal{A} and $\mathcal{C}_{i-1, i}$

Bottom-Up Parsing Algorithm

```
while \mathcal{A} not empty
    take an (X, i, j) from \mathcal{A} and remove it
    if X \in \Sigma \cup N
       for P \ni r \equiv A \to X\alpha do
             check_and_add(A \rightarrow X \bullet \alpha, i, j)
       for k \in 0, \ldots, i-1 do
             for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                   check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                       - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
    else
       for k \in j + 1, \ldots, n do
             if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
    else if (A \to \alpha \bullet \beta, i, j) \notin \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
```


- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in \mathcal{C} :

- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in \mathcal{C} :
 - > Operations: add single element, contains element

- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in C:
 - Operations: add single element, contains element
 - ▶ bit vector of size $|G| := |\Sigma| + |N| + \sum_{P \ni r:A \to \alpha} |A\alpha|$

- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in \mathcal{C} :
 - Operations: add single element, contains element
 - ▶ bit vector of size $|G| := |\Sigma| + |N| + \sum_{P\ni r:A\to\alpha} |A\alpha|$
- Implementation of the set A:

- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in \mathcal{C} :
 - > Operations: add single element, contains element
 - ▶ bit vector of size $|G| := |\Sigma| + |N| + \sum_{P \ni r: A \to \alpha} |A\alpha|$
- Implementation of the set A:
 - Operations: add, get and remove some element

- How to implement A and C efficiently?
- Implementation of the $(n+1)^2$ sets in \mathcal{C} :
 - Operations: add single element, contains element
 - ▶ bit vector of size $|G| := |\Sigma| + |N| + \sum_{P \ni r: A \to \alpha} |A\alpha|$
- Implementation of the set A:
 - Operations: add, get and remove some element
 - (priority) queue, stack
 - A is called agenda and can be used to implement search strategies
- Keep terminal items separate from the chart for space and time efficiency

 $\begin{array}{l} \textit{check_and_add}(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv \\ & \text{if } \beta = \epsilon \text{ then if } (A, i, j) \not \in \mathcal{C} \text{ add } (A, i, j) \text{ to } \mathcal{A} \text{ and } \mathcal{C} \text{ endif } \\ & \text{else if } (A \rightarrow \alpha \bullet \beta, i, j) \not \in \mathcal{C} \text{ add } (A \rightarrow \alpha \bullet \beta, i, j) \text{ to } \mathcal{A} \text{ and } \mathcal{C} \text{ endif} \\ \end{array}$

 $\textit{check_and_add}(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv \qquad \qquad \text{all operations } \mathcal{O}(1)$ if $\beta = \epsilon$ then if $(A, i, j) \not\in \mathcal{C}$ add (A, i, j) to \mathcal{A} and \mathcal{C} endif else if $(A \rightarrow \alpha \bullet \beta, i, j) \not\in \mathcal{C}$ add $(A \rightarrow \alpha \bullet \beta, i, j)$ to \mathcal{A} and \mathcal{C} endif


```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                       all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
    else if (A \to \alpha \bullet \beta, i, j) \not\in \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
    take an (X, i, j) from \mathcal{A} and remove it
    if X \in \Sigma \cup N
       for P \ni r \equiv A \to X\alpha do
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
       for k \in 0, \ldots, i-1 do
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                  check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                      - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
    else
       for k \in j + 1, \ldots, n do
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```



```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                      all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
    else if (A \to \alpha \bullet \beta, i, j) \not\in \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
    take an (X, i, j) from \mathcal{A} and remove it
                                                                                     max. |G| \times (n+1)^2
    if X \in \Sigma \cup N
       for P \ni r \equiv A \to X\alpha do
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
       for k \in 0, \ldots, i-1 do
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                  check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                      - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
    else
       for k \in j + 1, \ldots, n do
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```



```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                     all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
   else if (A \to \alpha \bullet \beta, i, j) \not\in \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
   take an (X, i, j) from \mathcal{A} and remove it
                                                                                     max. |G| \times (n+1)^2
   if X \in \Sigma \cup N
      for P \ni r \equiv A \to X\alpha do
                                                                                                       max. |G|
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
      for k \in 0, \ldots, i-1 do
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                  check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                      - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
    else
      for k \in j + 1, \ldots, n do
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```



```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                    all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
   else if (A \to \alpha \bullet \beta, i, j) \notin \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
   take an (X, i, j) from \mathcal{A} and remove it
                                                                                    max. |G| \times (n+1)^2
   if X \in \Sigma \cup N
      for P \ni r \equiv A \to X\alpha do
                                                                                                      max. |G|
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
      for k \in 0, \ldots, i-1 do
                                                                                              max. n times
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                  check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                      - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
    else
      for k \in j + 1, \ldots, n do
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```



```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                   all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
   else if (A \to \alpha \bullet \beta, i, j) \notin \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
   take an (X, i, j) from \mathcal{A} and remove it
                                                                                   max. |G| \times (n+1)^2
   if X \in \Sigma \cup N
      for P \ni r \equiv A \to X\alpha do
                                                                                                     max. |G|
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
      for k \in 0, \ldots, i-1 do
                                                                                             max. n times
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                                                                                          max. |G| times
                 check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                     - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
   else
      for k \in j + 1, \ldots, n do
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```



```
check_and_add(X \equiv A \rightarrow \alpha \bullet \beta, i, j) \equiv
                                                                                  all operations \mathcal{O}(1)
   if \beta = \epsilon then if (A, i, j) \notin \mathcal{C} add (A, i, j) to \mathcal{A} and \mathcal{C} endif
   else if (A \to \alpha \bullet \beta, i, j) \notin \mathcal{C} add (A \to \alpha \bullet \beta, i, j) to \mathcal{A} and \mathcal{C} endif
while A not empty
   take an (X, i, j) from \mathcal{A} and remove it
                                                                                  max. |G| \times (n+1)^2
   if X \in \Sigma \cup N
      for P \ni r \equiv A \to X\alpha do
                                                                                                    max. |G|
            check_and_add(A \rightarrow X \bullet \alpha, i, j)
                                                                                            max. n times
      for k \in 0, \ldots, i-1 do
            for all (A \to \beta \bullet X\alpha, k, i) \in \mathcal{C} do
                                                                                         max. |G| times
                 check_and_add(A \rightarrow \beta X \bullet \alpha, k, j)
                     - incomplete item: X \equiv A \rightarrow \beta \cdot Y \alpha
   else
      for k \in j + 1, \ldots, n do
                                                                                            max. n times
            if (Y, j, k) \in \mathcal{C} check_and_add(A \rightarrow \beta Y \bullet \alpha, i, k)
```


- Polynomial complexity: $\mathcal{O}(|G|^2n^3)$
- Explores all possible sub-derivations
- Advantageous for robust parsing:
 Extract the biggest/best chunks for ungrammatical input
- That a derivation must start at S is not used at all
 - Average time is near or equal to the worst case
 - May lead to poor performance in practice
- Two main steps:
 - ▶ if $(X, i, j) \in C, X \in \Sigma \cup N$ and $A \to X\alpha \in P$: add $(A \to X \bullet \alpha, i, j)$ to C
 - ▶ if $(A \to \beta \bullet Y \alpha, i, j) \in \mathcal{C}$ and $(Y, j, k) \in \mathcal{C}$: add $(A \to \beta Y \bullet \alpha, i, k)$ to \mathcal{C}

Predictive Bottom-Up: Earley Parsing

- Described by J. Earley (1970): Predict Top-Down and Complete Bottom-Up
- Initialize by adding the terminal items and $(S \to \alpha, 0, 0)$ for all $S \to \bullet \alpha \in P$
- Three main operations:

Prediction if $(A \to \beta \bullet Y \alpha, i, j) \in \mathcal{C}$, add $(Y \to \bullet \gamma, j, j)$ to \mathcal{C} for every $Y \to \gamma \in P$

Scanning if $(A \to \beta \bullet a_{j+1} \alpha, i, j) \in \mathcal{C}$, add $(A \to \beta a_{j+1} \bullet \alpha, i, j+1)$ to \mathcal{C}

Completion if $(Y,i,j),Y\in N$ and $(A\to\beta\bullet Y\alpha,j,k)\in\mathcal{C}$, add $(A\to\beta Y\bullet\alpha,i,k)$

 $S \rightarrow \bullet NP VP$

 $NP \rightarrow \bullet D N PP$

 $NP \rightarrow \bullet N$

 $NP \rightarrow \bullet D N$

NP→•N PP

 $NP \rightarrow \bullet N$

 $NP \rightarrow \bullet D N$

NP→•N PP

 $N \rightarrow \bullet john$

 $N \rightarrow \bullet girl$

 $N \rightarrow \bullet car$

 $D \rightarrow \bullet the$

 $D \rightarrow \bullet a$

Earley Parsing – Summary

- The number of useless items is reduced
- Superior runtime for unambiguous grammars: $\mathcal{O}(n^2)$
- Valid prefix property
- Not all sub-derivations are computed

- Observation: Earley parsing predicts items that can not succeed
- Idea: predict only items that can also be derived from the leftmost terminal item
- Formalization: left-corner relation
 - $ightharpoonup A >_l B \iff \exists \beta : A \to B\beta \in P, B \in \Sigma \cup N$
 - $ightharpoonup A >_l^*$ is the transitive closure of $>_l$
- Reformulation of the prediction step:
 - ▶ If $(A \to \beta \bullet Y\alpha, i, j)$ and $(B, j, k) \in C$, with $B \in \Sigma \cup N$ add $(C \to B \bullet \gamma, j, k)$ if $Y >_l^* C$
- This formulation also avoids the zero-length predictions with the dot in initial position

 $lackbox{o} - john - lackbox{o} - saw - lackbox{o} - the - lackbox{o} - girl - lackbox{o} - in - lackbox{o} - a - lackbox{o} - car - lackbox{o}$

Left-Corner Example

Left-Corner Example

Context-Free Parsing: Summary

- Context-free grammars provide you with a finite set of infinitely embeddable brackets
- Two main approaches to CF recognition: top down (goal-driven) and bottom-up (data driven)
- Storing sub-derivations for re-use (*dynamic programming*) in a chart lead to a polynomial algorithm with worst case n^3
- The chart offers a compact (polynomial size) storage for a possibly exponential number of results
- Earley and Left Corner Parsing improve the average runtime over the naïve CYK algorithm, and have a better worst case complexity for some classes of context-free grammars