

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

اختبار في مادة: الرياضيات المدة: 40 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

1) أ-عيّن، حسب قيم العدد الطبيعي n، بواقي القسمة الإقليدية للعدد 2^n على 7

7 على 6^n على القسمة الإقليدية للعدد 6^n على $6^{2n}\equiv 1$ ثمّ استنتج بواقي القسمة الإقليدية للعدد 6^n على 6^n

7 يقبل القسمة على $\left(2021^{2022} + 1962^{1443}\right)^{1954} - 2$ يقبل العدد وين أنّ العدد

 $S_n = a_0 + a_1 + \dots + a_n$ و $a_n = 2^n + 6^n$: n عدد طبیعی (3

7 على ما العدد a_n على أ- إستنتج، حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد a_n

 $S_{n+6} \equiv S_n [7]$ ، n عدد طبیعي عدد من أجل كلّ عدد عدد طبیعي

 $S_n \equiv 0$ [7] ثمّ استنتج قیم n بحیث $S_n \equiv 2^{n+1} + 3 \times 6^{n+1} + 3$ (7) دمن أجل كلّ عدد طبيعي n بحيث $S_n \equiv 0$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التعليل في كلّ حالة من الحالات التالية:

: و eta عددان حقیقیان غیر معدومین. (u_n) و (u_n) المتتالیتان العددیتان المعرّفتان بlpha (1

 $v_n = u_n + \beta$ ومن أجل كلّ عدد طبيعي n ، n عدد طبيعي $u_0 = 1$

lpha = -4eta المتتالية (v_n) هندسية إذا وفقط إذا كان –

 $\ln \sqrt{2}$ المعرفة على المعرفة

 $x\equiv 3[21]$ فإنّ $x\equiv 1[3]$ و $x\equiv 3[7]$ فإنّ (3 عدد صحيح $x\equiv 3[21]$

لدالة $f(x) = \ln(\sqrt{x^2+1}-x)$ بالدالة المعرّفة على $f(x) = \ln(\sqrt{x^2+1}-x)$ دالة فردية.

التمرين الثالث: (05 نقاط)

الدّالة العددية المعرّفة على $= (0;+\infty)$ كما يلي $= (x) = \frac{2x^2+5}{2x+1}$ الدّالة العددية المعرّفة على = (x) كما يلي = (x) كما يلي المستوي

المنسوب إلى المعلم المتعامد المتجانس $\left(O; \vec{i}, \vec{j}\right)$ كما هو مبيّن في الشّكل المرفق.

 $u_{n+1}=f\left(u_{n}
ight)$ و $u_{0}=2$ على كما يلي: $u_{0}=1$ و المعرّفة على المعرفة على المعرفة على المعرفة على المعرّفة على المعرفة على المعرّفة على المعرفة على المعرفة على المعرّفة على المعرفة على المعرفة على ا

اختبار في مادة: الرياضيات. الشعبة: رياضيات. بكالوريا 2022

y=x أ- أدرس وضعية (C) بالنّسبة إلى المستقيم (Δ) ذي المعادلة (1

 (u_n) انقل الشّكل ومثّل على حامل محور الفواصل الحدود u_1 ، u_0 وضع تخميناً حول اتّجاه تغيّر -

- أدرس اتجاه تغير المتتالية (u_n) ثم استنتج أنها متقارية.

$$5 - u_{n+1} = \frac{2u_n}{2u_n + 1} (5 - u_n)$$

$$\frac{2u_n}{2u_n+1} \le \frac{10}{11}$$
 ، n عدد طبیعي عدد أخه من أجل كلّ عدد (4

$$\lim_{n\to +\infty} u_n$$
 ب – استنتج أنّ $0<5-u_n\leq 3\left(\frac{10}{11}\right)^n$ ثم احسب

التمرين الرابع: (07 نقاط)

الدالة العددية المعرّفة على $]-\infty;1[$ كما يلي: $f(x)=\frac{e^x-x^2}{x-1}$ و $f(x)=\frac{e^x-x^2}{x-1}$ الدالة العددية المعرّفة على $[-\infty;1]$ كما يلي: $(0,\vec{i};\vec{j})$ الدالة المعلم المتعامد المتجانس $(0,\vec{i};\vec{j})$

- $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ أحسب (1
- $e^x x > 0$ ، x عدد حقیقی عدد أنّه من أجل كلّ عدد (2

 $f'(x) = \frac{(x-2)(e^x - x)}{(x-1)^2}$ ،] $-\infty$;1[من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي

جــاستنتج اتّجاه تغيّر الدّالة f ثمّ شكّل جدول تغيّراتها.

أ- أحسب $\lim_{x\to\infty} (f(x)+x)$ ثمّ فسّر النّتيجة بيانيا. (3

y=-x-1 أدرس وضعية (C) بالنّسبة إلى المستقيم (Δ) ذي المعادلة (C)

- (C) مماس المنحنى النّقطة ذات الفاصلة المنحنى النّقطة ذات الفاصلة المنحنى ((C)
- $\frac{e^{x}-x^{2}+x-1}{x-1}=mx$: خاقش بیانیاً، حسب قیّم الوسیط الحقیقي m، عدد وإشارة حلول المعادلة (6
- و الدّالة المعرّفة على $g(x) = \frac{\left|e^x x^2\right|}{x-1}$ با $g(x) = \frac{\left|e^x x^2\right|}{x-1}$ و الدّالة المعرّفة على $g(x) = \frac{\left|e^x x^2\right|}{x-1}$

 (C_{g}) دون رمز القيمة المطلقة ثمّ أنشى g(x) – أكتب

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (04 نقاط)

$$B_n = n + 2$$
 و $A_n = n^3 + 5n^2 + 7n + 9$ و n

$$p \gcd(A_n; B_n) = p \gcd(B_n; 7)$$
 أ- بيّن أنّ (1

$$p \gcd(A_n; B_n)$$
 إستنتج القيم الممكنة لـ

ج- عيّن قيم العدد الطبيعي n حتى يكون A_n و A_n أوليين فيما بينهما.

$$y$$
 و x نعتبر المعادلة $A_2x - B_2y = 29 \cdots (E)$ نعتبر المعادلة (2

$$x \equiv 3[4]$$
 فإنّ (E) حلاً للمعادلة (x; y) أنّه إذا كانت الثنائية

$$(E)$$
 عيّن حلول المعادلة $-$

$$51x - 4y = 45 \cdot \cdot \cdot \cdot (E')$$
 أ- إستنتج حلول المعادلة (3

$$|y-12x| \le 3$$
 عين الثنائيات $(x; y)$ حلول المعادلة (E') عين حلول عبد الثنائيات

التمرين الثاني: (04 نقاط)

$$f(x) = \frac{ax}{x+b} + \ln(x+b)$$
 : كما يلي: -1 ; $+\infty$ على على أصوحبة على $f(x) = \frac{ax}{x+b}$

حيث a عددان حقيقيان مع b موجب تماما. تمثيلها البياني (C) في المستوي المنسوب إلى المعلم المتعامد المتجانس $(C;\vec{i},\vec{j})$ يقبل حامل محور الفواصل مماسا له في النقطة $(C;\vec{i},\vec{j})$

$$f(x) = -1 + \frac{1}{x+1} + \ln(x+1)$$
 ، $]-1; +\infty[$ من أجل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي (1

$$g(x) = (x+1)\ln(x+1)$$
 : كما يلي: $g(x) = (x+1)\ln(x+1)$ الدالة العددية المعرّفة على $g(x) = (x+1)\ln(x+1)$ الحسب $g'(x)$ ثمّ إستنتج دالة أصلية للدالة $g(x)$ على $g'(x)$

$$u_n = \int\limits_{n-1}^n f(x) \, dx : \mathbb{N}^*$$
 ب المتتالية العددية المعرّفة على المتالية (u_n) (3

أ- أحسب u_{2022} ثمّ فسّر النتيجة بيانيا.

$$u_n = -2 + (n+2)\ln(n+1) - (n+1)\ln n$$
 ، n معدوم غير معدوم غير معدوم $\lim_{n \to +\infty} u_n$ معدوم $\lim_{n \to +\infty} u_n$

التمرين الثالث: (05 نقاط)

$$v_n = u_n - 1$$
 و $u_{n+1} = -\frac{1}{3}u_n^2 + \frac{2}{3}u_n + \frac{2}{3}$ ، $u_0 = 0$: $v_n = 0$ ب المتتاليتان العدديتان المعرّفتان على $v_n = 0$

$$v_{n+1} = -\frac{1}{3}(v_n)^2$$
 ، من أجل كلّ عدد طبيعي (1

$$-3 \le v_n < 0$$
 ، n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (2

(v_n) أدرس اتجاه تغير المتتالية (v_n) ثمّ استنتج أنّ الجاه تغير المتتالية (v_n)

$$w_n = \ln\left(-\frac{3}{v_n}\right)$$
 : ب n عدد طبیعي عدد أجل كلّ عدد (w_n) (4

 w_0 أ- بيّن أنّ (w_n) متتالية هندسية أساسها 2 يطلب حساب حدّها الأول

 $\lim_{n\to +\infty}u_n$ بدلالة u_n و u_n و v_n بدلالة u_n بدلالة w_n بدلالة w_n

$$P_n = \frac{1}{v_0} \times \frac{1}{v_1} \times \dots \times \frac{1}{v_n}$$
 أحسب بدلالة n الجُداء P_n حيث (5

التمرين الرابع: (07 نقاط)

 $h(x) = x + \ln x$: كما يلي $0; +\infty$ على على الدالة العددية المعرّفة على الدالة العددية المعرّفة المعرّفة على الدالة العددية العددي

h أدرس اتّجاه تغيّر الدّالة (1)

 $0.5 < \alpha < 0.6$ حيث أنّ المعادلة h(x) = 0 تقبل حلاً وحيداً معادلة (2

 $]0;+\infty[$ على ا $]0;+\infty[$ على المتنتج إشارة

 $f(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$: كما يلي $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$ الدالة العدديّة المعرّفة على $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$ الدالة العدديّة المعرّفة على $g(x) = -\frac{1}{2}x^2 + 3x - x \ln x + (\ln x)^2$

 $\left(O; \vec{i}\;,\; \vec{j}
ight)$ سنجامد المتعامد المتعامد المستوي المستوي المنسوب إلى المعلم المتعامد المتجانس (C)

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ أحسب (1

 $f'(x) = \frac{(2-x)h(x)}{x}$ ، الله من أجل كلّ عدد حقيقي x موجب تماما ، وجب أدّ (2

 $oldsymbol{+}$ استنتج اتّجاه تغيّر الدّالة f ، ثمّ شكّل جدول تغيّراتها.

 $f(\alpha)$ بيّن أنّ $f(\alpha) = \frac{3}{2}\alpha(\alpha+2)$ ثمّ عيّن حصراً لـ (3

 $g(x) = x^2 + x - 2 + 2 \ln x$: كما يلي $g(x) = x^2 + x - 2 + 2 \ln x$ الدّالة العددية المعرّفة على $g(x) = x^2 + x - 2 + 2 \ln x$

g(1) أ- أدرس اتّجاه تغيّر الدّالة g واحسب

بين أنّ (C) يقبل نقطة انعطاف A يطلب تعيين إحداثييها.

A أكتب معادلة للمستقيم (T) مماس المنحني (C) في النّقطة

[0;5] أنشئ (C) و (T) في المجال (5)

 $k(x) = f(e^{-x})$ كما يلي: \mathbb{R} كما الدالة العددية المعرّفة على k

 $\lim_{x\to +\infty} k(x)$ و $\lim_{x\to -\infty} k(x)$ و $\lim_{x\to -\infty} k(x)$ و $\lim_{x\to +\infty} k(x)$

انتهى الموضوع الثاني

العلامة		() ()									
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)									
التمرين الأول (04 نقاط)											
	0.5	n			3 <i>k</i>	$3k \mid 3k+1$		k+2	يدية	أ- بواقي القسمة الإقا	1
	0.3	راقي قسمة 2^n على 2^n		بواقي ن	1	2	4			7 على 2^n	
1		$6^{2n} \equiv 1[7]$ ومنه $6^{2n} = 36^n$ -ب									
1	0.5										
	0.5					n		2 <i>k</i>	2k + 1		
				7	على 7	_ي قسمة 6	بواق	1	6		
	0.5			20	021^{20}	$0.022 \equiv 1[7]$	منه	20′2 و	$21^{2022} \equiv 0$	$(-2)^{2022}$ [7] لدينا	2
1						1962 ¹	⁴⁴³ =	= 1[7]	196 ومنه	$52^{1443} \equiv 2^{3k} [7]$	
	0.5					(2021^{202})	22 +	1962	1443)1954 -	ومنه $[7] \equiv 2 = 2$	
		n	6 <i>k</i>	6k -	+1	6k + 2	6 <i>k</i>	+3	6k + 4	6k+5	3
	0.25×4	2^n	1	2	,	4		1	2	4	
		6 ⁿ	1	6		1		6	1	6	
-		a_n	2	1		5		0	3	3	
	0.5					~	_ 2		"	$n^{n} + 6^{n}$ ب- لدينا $n^{n} + 6^{n}$	
2		$a_{n+6}=2^{n+6}+6^{n+6}=2^6 imes 2^n+6^6 imes $ $S_{n+6}\equiv S_nigl[7igr]$ وبالنالي $a_{n+6}\equiv a_nigl[7igr]$ ومنه $a_{n+6}\equiv 2^n+6^nigl[7igr]$									
-											
	0.25	$S_n = \sum_{k=0}^{k=n} 2^k + \sum_{k=0}^{k=n} 6^k = 2^{n+1} - 1 + \frac{6^{n+1} - 1}{5}$ دينا									
		S_n	$\equiv 2^{n+}$	1+3>	< 6 ⁿ⁺¹	1 + 3[7]	ئ اذن	$5S_n =$	$5\times 2^{n+1}$	$+6^{n+1}-6$ و منه	
	0.25	$n=6k+5$ يكافئ $S_n\equiv 0$ عليه $S_n\equiv 0$									
<u> </u>				اط)	04 نة	ين الثاني: (التمر				
1	0.5 + 0.5						<i>V</i>	$\frac{1}{1} = \frac{1}{1}$	$v_{n} + \frac{4\beta}{}$	+α صحيح لأنّ :	1
		$v_{n+1} = \frac{1}{5}v_n + \frac{4\beta + \alpha}{5}$: صحیح لأنّ						2			
1	0.5 + 0.5	$u_n - \ln \sqrt{e} = n \times \ln \sqrt{2} \cdot 0$						2			
	0.5 + 0.5		و و	x = 7	к + з	و منه: ($x \equiv$	1[3]	$x \equiv 3$ و	$7k + 3 \equiv 1[3]$	3
1				r	= 10	ار ائی [21]	r –	21k'.	. عاد به 10 +		
		xنن $k=3k'+1$ وعليه $k=21k'+10$ أي $x=21k'+10$ خن رائق اخرى)									
1	0.5.0.5								4		
1	0.5 + 0.5							f(-x)	f(x) + f(x)	صحيح لان : 0=	4

		التمرين الثالث: (05 نقاط)								
	0.25	$f(x) - x = \frac{5 - x}{2x + 1} - 1$	1							
	0.5	<i>x</i> 0 5 +∞								
		الوضعية (Δ) أسفل (Δ) أسفل (Δ) أسفل (C)								
		ب- تمثيل الحدود								
		y								
	0.2542	4								
	0.25×3									
1.75		3								
		2								
	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
		التخمين: (u_n) متزايدة تماما	2							
		اً - البرهان بالتراجع $f(2) \leq f(u_n) < f(5)$ فان $2 \leq u_n < 5$ وإذا كان $2 \leq u_n < 5$ فان $2 \leq u_0 < 5$	2							
	0.5+0.25	,								
1.5	$2 \le u_{n+1} < 5$ ومنه $\frac{13}{5} \le u_{n+1} < 5$									
	0.5	ب - لدينا u_n - $u_n = \frac{5 - u_n}{2u_n + 1} > 0$ و منه u_n متزايدة تماما								
	0.25	$2u_n+1$ متزايدة تماما و محدودة من الأعلى فهي متقاربة (u_n)								
		-	3							
0.5	0.5	$5 - u_{n+1} = 5 - \frac{2u_n^2 + 5}{2u_n + 1} = \frac{2u_n}{2u_n + 1} (5 - u_n)$								
	0.5	n	4							
	0.5	$\frac{2u_n}{2u_n+1} - \frac{10}{11} = \frac{2(u_n-5)}{11(2u_n+1)} \le 0 - 1$								
1.25	0.5	$0 < 5 - u_n \le 3 \left(\frac{10}{11}\right)^n$ و منه $0 < 5 - u_{n+1} \le \frac{10}{11}(5 - u_n)$ ب – لدينا								
	0.25									
		$\lim_{n\to+\infty}u_n=5$								

		التمرين الرابع: (07 نقاط)	
0.5	0.25+0.25	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty$	1
1.75	0.5	x $-\infty$ 0 $+\infty$ $e(x)$ -1 -0 $+1$ $e(x)$ -1 -1 $e(x)$ -1 -1 $e(x)$ -1 -1 $e(x)$ $-$	2
	0.5	$f'(x) = \frac{(x-2)(e^x - x)}{(x-1)^2} - \varphi$	
	0.5	ج $-$ متناقصة تماما	
	0.25	جدول التغيرات $\begin{array}{c c} x & -\infty & 1 \\ \hline +\infty & +\infty \\ \hline f(x) & & -\infty \end{array}$	
	0.5	$\lim_{x \to -\infty} (f(x) + x) = -1 - 1$	3
1	0.25	$-\infty$ عند (C) عند $y=-x-1$	
	0.25	$]-\infty;0]$ أسفل (Δ) في المجال $[0;1[$ و (C) أعلى (Δ) في المجال (C)	
0.5	0.5	y = -2x - 1 : (T)معادلة	4
	0.75	اً − مبرهنة القيمة المتوسطة	5
	0.25 0.25	رب – انشاء (T) (Δ) (C)	
1.75	0.5	-4 -3 -2 -1 0 $1x$ -2 -3 -4 -4 -5	

0.75	0.25	$f(x) = mx - 1$ تكافئ $\frac{e^x - x^2 + x - 1}{x - 1} = mx$	6						
	0.5	m $-\infty$ -2 -1 $+\infty$ $-\infty$ -1 -1 $+\infty$ $-\infty$ -1 -1 -1 $-\infty$ -1							
	0.5	$\begin{cases} g(x) = -f(x) & : x \le \alpha \\ g(x) = f(x) & : \alpha \le x < 1 \end{cases}$	7						
0.75	0.25	(C_g) similar (C_g) simil							
		عناصر الإجابة (الموضوع الثاني)							
		التمرين الأول: (04 نقاط)							
	0.5	$p \gcd(A_n; B_n) = p \gcd(B_n; 7)$ ومنه $A_n = (n^2 + 3n + 1)B_n + 7$ أ لدينا	1						
1.5	0.5	$p\gcd(A_n; B_n) \in \{1;7\} - \varphi$							
	0.5	$n+2\equiv 0igl[7igr]$ تكافئ $p\gcd(A_n;B_n)=7$ ج $k\in\mathbb{N}$ المطلوبة هي كل الأعداد الطبيعية ما عدا $7k+5$ مع							
1.5	0.75	x = 3[4] ومنه $3x = 1[4]$ اي $51x - 4y = 29[4]$	2						
1.5	0.75	$k \in \mathbb{Z}$ مع $(x;y) = (4k+3;51k+31)$: الحلول							
	0.5	$51x-4(y+4)=29$ تكافئ $51x-4y=45$ ا $k\in\mathbb{Z}$ مع $(x;y)=(4k+3;51k+27)$ مع							
1	0.5	$(11;129)$ ب $y-12x \leq 3$ اذن الثنائيات هي $y-12x \leq 3-1$ ب $(15;180)$ و $(15;180)$							
		التمرين الثاني: (04 نقاط)							
1	0.5+0.5	حیث $ab + \frac{1}{b} = 0 \ln b = 0$ تکافئ $f'(0) = 0$ و منه $f(x) = -1 + \frac{1}{x+1} + \ln(x+1)$ و $a = -1$	1						

	0.5	$a'(a) = 1 + \ln(a + 1)$	
1.5	0.5	$g'(x) = 1 + \ln(x+1)$	2
	01	$]-1;+\infty[$ على f على $x\mapsto -2x+(x+2)\ln(x+1)$	
	0.25	$u_{2022} = \int_{2021}^{2022} f(x) dx = -2 + 2024 \ln 2023 - 2023 \ln 2022 - 1$	3
	0.25	، $y\!=\!0$:هو مساحة الحيز المحدد بـ (C) و المستقيمات التي معادلاتها u_{2022}	
		$x = 2021 \cdot x = 2022$	
1.5	0.5	$u_n = -2 + (n+2)\ln(n+1) - (n+1)\ln n$	
	0.5	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(-2 + \ln(n+1) + \frac{n+1}{n} \times \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}} \right) = +\infty - \Rightarrow$	
		التمرين الثالث: (05 نقاط)	
1	01	$v_{n+1} = u_{n+1} - 1 = -\frac{1}{3}(u_n - 1)^2 = -\frac{1}{3}(v_n)^2$	1
1	01	البرهان بالتراجع	2
0.75	0.25+0.25	ومنه (v_n) متزایدة تماما $v_{n+1}-v_n=-v_n\left(\frac{1}{3}v_n+1\right)>0$	3
	0.25	متزايدة تماما ومحدودة من الأعلى فهي متقاربة (u_n)	
	0.25+0.5	$w_0 = \ln 3$ $w_{n+1} = \ln \left(-\frac{3}{v_{n+1}} \right) = 2 \ln \left(-\frac{3}{v_n} \right) = 2w_n - 5$	4
1.75	4x 0.25	$u_n = -3^{1-2^n} + 1$, $v_n = -3^{1-2^n}$, $w_n = 2^n \ln 3$ $\lim_{n \to +\infty} u_n = 1$	
0.5	0.5	$P_n = (-1)^{n+1} imes 3^{2^{n+1}-n-2}$ ومنه $\frac{1}{v_n} = -3^{2^n-1}$ لاينا	5
		التمرين الرابع: (07 نقاط)	1
0.5	0.5	$]0;+\infty$ متزایدة تماما علی h	I 1
	0.5	أ – تطبيق مبرهنة القيم المتوسطة	2
0.55	0.25	ب –	
0.75		$\begin{bmatrix} x & 0 & \alpha & +\infty \end{bmatrix}$	
		h(x) - 0 +	
0.75	0.5+0.25	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to \infty} f(x) = +\infty$	II 1
	0.5	$f'(x) = \frac{(2-x)h(x)}{x} - 1$	2
1	0.25	ب اتجاه التغير	1

	1		
	0.25	$[2;+\infty[\ 0\]0;\alpha]$ and also also arilled a particles $[\alpha;2]$ and	
0.5	0.25+0.25	$1,8 \le f(\alpha) \le 2,4 \text{ef} f(\alpha) = \frac{3}{2}\alpha(\alpha+2)$	3
	0.25+0.5	$g(1) = 0$ $g'(x) > 0$. $g'(x) = \frac{2x^2 + x + 2}{x} - 1$	4
1.75	0.25+0.25	ب $-\frac{1}{2}$ بنا $\frac{-g(x)}{x^2}$ بنائی $f''(x) = \frac{-g(x)}{x^2}$ بنقطة انعطاف $A\left(1; \frac{5}{2}\right)$	
	0.5	$y=x+rac{3}{2}:$ هي (T) هي ج	
0.75	0.5+0.25	انشاء (C) و (T) في المجال [0; 5] المجال [0;	5
	0.25	$k'(x) = -e^{-x}f'(e^{-x})$	6
	0.25	متناقصة تماما على $-\ln 2; -\ln lpha$ ومتزايدة تماما على كل من	
		$\left[-\ln\alpha;+\infty\right[\ \]-\infty;-\ln2\right]$	
	0.25	$\lim_{x \to +\infty} k(x) = +\infty \lim_{x \to -\infty} k(x) = -\infty$	
1	0.25	$\begin{array}{ c c c c c c }\hline x & -\infty & -\ln 2 & -\ln \alpha & +\infty \\\hline k'(x) & + & 0 & - & 0 & + \\\hline k(x) & & & & +\infty \\\hline k(x) & & & & & f(\alpha) & & & \\\hline\end{array}$	