Analysis of the near-side Ridge in high-multiplicity pp collisions at $\sqrt{s} = 13 TeV$ via Momentum-Kick model*

Ann Author[†] and Second Author[‡]
Authors' institution and/or address
This line break forced with \\
(MUSO Collaboration)

Charlie Author[§]

Second institution and/or address

This line break forced and

Third institution, the second for Charlie Author

Delta Author

Authors' institution and/or address

This line break forced with \\
(CLEO Collaboration)
(Dated: March 21, 2022)

An article usually includes an abstract, a concise summary of the work covered at length in the main body of the article.

Usage: Secondary publications and information retrieval purposes.

Structure: You may use the description environment to structure your abstract; use the optional argument of the \item command to give the category of each item.

I. INTRODUCTION

Ridge structure refers to the shape of 'ridge' that appears at long-range. Previously, Ridge structure was observed in the case of heavy-ion collisions such as PbPb [? ? ? ? ? ? ? ? ? ?] and AuAu collisions [? ? ? ? ? ? ? ? ? ? ? ? ? ? ?]. In this case, they can be understood by collective motion, based on hydrodynamics theory, because it is enough to create high-temperature and high-density environment. And this is the hint of Quark-Gluon Plasma (QGP) state. Recently, however, in the case of high multiplicity of the proton-proton collision, ridge structure is also observed. It was expected that small system could not create such the environment. In this case, the medium doesn't create such the collective motion. Therefore, we will analyze the ridge structure in high multiplicity proton-proton collision at 13TeV, using the Momentum-Kick model [? ? ? ?].

The Momentum-Kick model is based on pure kinematics between Jet and Medium particles. The Momentum-Kick model assumes that near-side Jet partons transfer their momentum to medium. That model uses the process to explain ridge structure at near-side, which is $\Delta\phi\sim0$. In this paper, we will analyze the ridge structure using the Momentum-Kick model in high multiplicity proton-proton collision at 13TeV from ALICE, CMS, and ATLAS experiments.

II. MOMENTUM-KICK MODEL

The Momentum-Kick model explains the results of experiments at near-side region, through the behavior of near-side jet fragments kicking the medium parton. This model is successfully applying the experimental results in AuAu at 200GeV [?] and PbPb at 2.76TeV [?], etc. We expect that kinematics behavior is more dominant in the small system than heavy-ion collision. Hence, the Momentum-Kick model will be expected to describe successfully in proton-proton collision at 13TeV in high-multiplicity.

In the Momentum-Kick model, total yield is expressed as follows:

$$\left[\frac{1}{N_{\rm trig}} \frac{dN_{\rm ch}}{p_t dp_t d\Delta \eta d\Delta \phi} \right]_{\rm total}^{\rm AA} = \\ \left[\frac{2}{3} f_R \left\langle N_k \right\rangle \frac{dF}{p_t dp_t d\Delta \eta d\Delta \phi} \right]_{\rm Ridge}^{\rm AA} + \left[f_J \frac{dN_{\rm jet}^{\rm pp}}{p_t dp_t d\Delta \eta d\Delta \phi} \right]_{\rm Jet}^{\rm AA}, \tag{1}$$

which is the sum of ridge and jet fragments. $\Delta \eta$ and $\Delta \phi$ are the difference of η and ϕ between jet and the other particles. f_J is the average survival coefficient of jet fragments, f_R is the average survival factor of ridge particles, and $\langle N_k \rangle$ is the average of kicked partons pertrigger particle.

In the Momentum-Kick model, jet component is writ-

^{*} A footnote to the article title

[†] Also at Physics Department, XYZ University.

[‡] Second.Author@institution.edu

[§] http://www.Second.institution.edu/~Charlie.Author

ten as follow:

$$\frac{dN_{\rm jet}^{\rm pp}}{p_t dp_t d\Delta \eta d\Delta \phi} = N_{\rm jet} \frac{e^{\left[\left(m - \sqrt{m^2 + p_t^2}\right) / T_{\rm jet}\right]}}{T_{\rm jet}\left(m + T_{\rm jet}\right)} \times \frac{1}{2\pi\sigma_{\phi}^2} e^{-\left[\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)^2\right] / 2\sigma_{\phi}},$$

$$(2) \qquad x = \frac{\sqrt{m^2}}{2\pi\sigma_{\phi}^2} e^{-\left[\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)^2\right] / 2\sigma_{\phi}},$$

where $N_{\rm jet}$ is the total number of jet particles, $T_{\rm jet}$ is the temperature of jet partons, and σ_{ϕ} is the jet cone width, which can be parameterized as:

$$\sigma_{\phi} = \left. \sigma_{\phi_0} m_a \right/ \sqrt{m_a^2 + p_T^2} \ . \tag{3}$$

In the equation ?? the exponential term is a Gaussian distribution, which indicates that jet particles are concentrated in the center of the jet cone. Since near-side jet rarely exists in long-range which is $|\Delta\eta| > 1.6$, jet component is not included in this analysis.

The Momentum-Kick model explains ridge component via soft scattering model:

$$\frac{dF}{p_t dp_t d\eta d\phi} = \left[\frac{dF}{p_{ti} dp_{ti} dy_i d\phi_i} \frac{E}{E_i} \right]_{\mathbf{p}_i = \mathbf{p} - \mathbf{q}} \times \sqrt{1 - \frac{m^2}{(m^2 + p_t^2) \cos \theta_i}}$$
(4)

 $dF/p_{ti}dp_{ti}dy_id\phi_i$ is the normalized initial parton distribution, which implies the distribution before freezing out. \mathbf{p}_i is the initial parton momentum, which is the shifted momentum as $\mathbf{p}_i = \mathbf{p} - \mathbf{q}$. \mathbf{q} denotes an average value of kicked momentum. The transverse momentum of initial particles is written as follows:

$$p_{ti}^2 = p_{tf}^2 - \frac{2p_{tf}q\cos(\Delta\phi)}{\cosh(\eta_{\text{jet}})} + \frac{q^2}{\cosh^2\eta_{\text{jet}}}.$$
 (5)

Since most of near-side jet is concentrated in the $\Delta\eta, \Delta\phi \sim 0$ region, we set $\eta_{\rm jet} = 0$. E/E_i insures conservation of energy between initial and final partons. $\sqrt{1-m^2/(m^2+p_t^2)\cosh^2 y}$ converts the rapidity into pseudo-rapidity.

The initial parton momentum distribution is expressed as follow:

$$\frac{dF}{p_{ti}dp_{ti}dy_{i}d\phi_{i}} = A_{\text{ridge}} (1-x)^{a} \frac{e^{-\sqrt{m^{2}+p_{ti}^{2}/T}}}{\sqrt{m_{d}^{2}+p_{ti}^{2}}}.$$
 (6)

In equation ??, A_{ridge} is the normalization constant satisfying:

$$\int A_{ridge} (1-x)^a \frac{e^{-\sqrt{m^2 + p_{ti}^2}/T}}{\sqrt{m_d^2 + p_{ti}^2}} p_{ti} dp_{ti} dy_i d\phi_i = 1. \quad (7)$$

T is the one of major parameters to explain momentum distribution, indicating the temperature of medium particles. Since pions are expected to take up the majority of partons, we set m as the pions mass. m_d is a cutoff parameter that prevents divergence at small p_{Ti} . a is a fall-off parameter, which determines the rate of decrease of 1-x distribution. m_d and a are set the same

as references [? ?] for the general application of the Momentum-Kick model [?]. Also, x is the light-cone xariable written as follow:

$$x = \frac{\sqrt{m^2 + p_{ti}^2}}{m} e^{|y_i| - y_b},\tag{8}$$

where y_b is the rapidity of the beam defined as $y_b = \cosh^{-1} \sqrt{s_{NN}}/2m_N$. m_N is the mass of beam particles, set as the proton mass.

III. LHC DETECTOR

We verify our model in ALICE, CMS and ATLAS experiments [? ? ?]. The conditions of data analyzed in these experiments are summarized in Table ??.

		ALICE	CMS	ATLAS
	$\Delta \eta$ range	$1.6 < \Delta \eta < 1.8$ $0 \sim 0.1\%$	$2 < \Delta \eta < 4$	$2 < \Delta \eta < 5$
	Multiplicity	$0 \sim 0.1\%$	N > 105	N > 90
osl	$p_T \text{ range}$	$1 < p_T < 4$	$0.1 < p_T < 4$	$0.5 < p_T < 5$

TABLE I. The ranges of data in ALICE, CMS, and ATLAS experiments \cite{NRR}

Moreover, references [? ? ?] used different methods in analyzing their data. In ALICE and CMS analysis, they used Zero Yield At Minimum (ZYAM) method, a traditional experimental analysis method. In this method, the minimum value is set to zero by subtracting. However, ATLAS used the peripheral subtraction method. It takes the ridge component from the experiment data by subtracting the peripheral component, which is low multiplicity pp collisions, to check the flow effect. However, we apply ZYAM method when we use ATLAS experiment data for consistency.

IV. FITTING RESULTS

We compare physical parameters in ridge component of Momentum-Kick model at STAR AuAu at 200GeV [?], CMS PbPb at 2.76TeV [?] and pp at 13TeV, in which ALICE, CMS and ATLAS data are used from reference [???].

	AuAu 200GeV	PbPb 2.76TeV	pp 13TeV
T (GeV) q (GeV)	0.5	0.6	0.65
q (GeV)	1.0	0.7	0.9
	4	$20.2e^{-\frac{1.395}{\left\langle p_T^{trig}\right\rangle} - 0.207\left\langle p_T^{trig}\right\rangle}$	$0.83 + 0.5p_T^2$

TABLE II. Physical parameters in ridge component of momentum kick model.

Since T is higher as center of mass energy gets bigger, T becomes higher from 0.5 GeV at AuAu to 0.6 GeV at

is expected to be applied well in the high multiplicity pp collision. We apply our model in high multiplicity pp collision at 13TeV data from all 3 collaboration, altogether. As a result, we obtain $T=0.65\,GeV,\,q=0.9\,GeV,\,f_R\,\langle N_k\rangle=0.66e^{0.71p_T}.$ Because of higher energy, the medium temperature is 8.3% higher than PbPb collision. Also, because the medium from pp collision has less density than heavy-ion collisions, the total number of kicked medium partons is smaller than PbPb collision at 2.76TeV. Therefore, the average momentum transfer per kicked medium partons is 28.6% higher than PbPb collision at 2.76TeV. Also, we introduce p_T dependence on f_R following reference [?]. In PbPb at 2.76TeV collision,

since high density is created, jet particles kick many of initial medium particles. Therefore, many of final particles, which is middle range of p_T , are created. As a result, $f_R\langle N_k\rangle$ in PbPb collision is the highest in mid-range of p_T . However, in pp collision at 13TeV collision, the survival effect of medium partons is more important than the number of kicked medium partons, because of less density. Therefore, $f_R\langle N_k\rangle$ in pp collision is the highest in high-range of p_T .

Furthermore, we expect the Momentum-Kick model can well describe various energies and multiplicity cuts. Therefore, we will try to explain other diverse data via the Momentum-Kick model.

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. M. Ghete, J. Hammer, S. Hänsel, C. Hartl, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, G. Kasieczka, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz, V. Mossolov, N. Shumeiko, J. Suarez Gonzalez, L. Benucci, L. Ceard, E. A. De Wolf, X. Janssen, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, V. Adler, S. Beauceron, S. Blyweert, J. D'Hondt, O. Devroede, A. Kalogeropoulos, J. Maes, M. Maes, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Villella, E. C. Chabert, O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A. P. R. Gay, G. H. Hammad, T. Hreus, P. E. Marage, C. Vander Velde, P. Vanlaer, J. Wickens, S. Costantini, M. Grunewald, B. Klein, A. Marinov, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis, S. Basegmez, G. Bruno, J. Caudron, J. De Favereau De Jeneret, C. Delaere, P. Demin, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, L. Quertenmont, N. Schul, N. Beliy, T. Caebergs, E. Daubie, G. A. Alves, D. De Jesus Damiao, M. E. Pol, M. H. G. Souza, W. Carvalho, E. M. Da Costa, C. De Oliveira Martins, S. F. De Souza, L. Mundim, H. Nogima, V. Oguri, J. M. Otalora Goicochea, W. L. P. Da Silva, A. Santoro, S. M. Silva Do Amaral, A. Sznajder, F. Torres Da Silva De Araujo, F. A. Dias, M. A. F. Dias, T. R. Fernandez Perez Tomei, E. M. Gregores, F. Marinho, S. F. Novaes, S. S. Padula, N. Darmenov, L. Dimitrov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov, M. Dyulendarova, R. Hadjiiska, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov, J. G. Bian, G. M. Chen, H. S. Chen, C. H. Jiang, D. Liang, S. Liang, J. Wang, X. Wang, Z. Wang, M. Yang, J. Zang, Z. Zhang, Y. Ban, S. Guo, Z. Hu, W. Li, Y. Mao, S. J. Qian, H. Teng, B. Zhu, A. Cabrera, B. Gomez Moreno, A. A. Ocampo Rios, A. F. Osorio Oliveros, J. C. Sanabria, N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak, Z. An-

tunovic, M. Dzelalija, V. Brigljevic, S. Duric, K. Kadija, S. Morovic, A. Attikis, R. Fereos, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, H. Rykaczewski, Y. Assran, M. A. Mahmoud, A. Hektor, M. Kadastik, K. Kannike, M. Müntel, M. Raidal, L. Rebane, V. Azzolini, P. Eerola, S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, J. Klem, M. J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland, K. Banzuzi, A. Korpela, T. Tuuva, D. Sillou, M. Besancon, M. Dejardin, D. Denegri, J. Descamps, B. Fabbro, J. L. Faure, F. Ferri, S. Ganjour, F. X. Gentit, A. Givernaud, P. Gras, G. H. de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, D. Rousseau, M. Titov, P. Verrecchia, S. Baffioni, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, L. Dobrzynski, R. G. de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, A. Zabi, J.-L. Agram, A. Besson, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, P. Van Hove, F. Fassi, D. Mercier, C. Baty, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, A. Falkiewicz, and T. C. collaboration, Observation of long-range, near-side angular correlations in proton-proton collisions at the lhc, Journal of High Energy Physics **2010**, 91 (2010).

S. Chatrchyan, V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V. M. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz, V. Mossolov, N. Shumeiko, J. S. Gonzalez, S. Bansal, L. Benucci, E. A. De Wolf, X. Janssen, J. Maes, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, F. Blekman, S. Blyweert, J. D'Hondt, O. Devroede, R. G. Suarez, A. Kalogeropoulos, M. Maes,

W. Van Doninck, P. Van Mulders, G. P. Van Onsem, I. Villella, O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A. P. R. Gay, G. H. Hammad, T. Hreus, P. E. Marage, L. Thomas, C. V. Velde, P. Vanlaer, V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis, S. Basegmez, G. Bruno, J. Caudron, L. Ceard, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul, N. Beliy, T. Caebergs, E. Daubie, G. A. Alves, D. De Jesus Damiao, M. E. Pol, M. H. G. Souza, W. Carvalho, E. M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W. L. Prado Da Silva, A. Santoro, S. M. Silva Do Amaral, A. Sznajder, C. A. Bernardes, F. A. Dias, T. R. Fernandez Perez Tomei, E. M. Gregores, C. Lagana, F. Marinho, P. G. Mercadante, S. F. Novaes, S. S. Padula, N. Darmenov, L. Dimitrov, V. Genchev, P. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov, A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov, J. G. Bian, G. M. Chen, H. S. Chen, C. H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang, Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S. J. Qian, H. Teng, L. Zhang, B. Zhu, W. Zou, A. Cabrera, B. G. Moreno, A. A. Ocampo Rios, A. F. Osorio Oliveros, J. C. Sanabria, N. Godinovic, D. Lelas, K. Lelas, R. Plestina, D. Polic, I. Puljak, Z. Antunovic, M. Dzelalija, V. Brigljevic, S. Duric, K. Kadija, S. Morovic, A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis, M. Finger, Y. Assran, S. Khalil, M. A. Mahmoud, A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane, V. Azzolini, P. Eerola, G. Fedi, S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M. J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland, K. Banzuzi, A. Korpela, T. Tuuva, D. Sillou, M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J. L. Faure, F. Ferri, S. Ganjour, F. X. Gentit, A. Givernaud, P. Gras, G. H. de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia, S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch, A. Zabi, J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E. C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, and T. C. collaboration, Longrange and short-range dihadron angular correlations in central pbpb collisions at $\sqrt{\frac{s_{-1}}{s_{-1}}}$ 2.76tev, Journal of High Energy Physics 2011, 76(2011)