Practical aspects of deep learning

TOTAL POINTS 10

1.	If you have 10,000,000 examples, how would you split the train/dev/test set?
	98% train . 1% dev . 1% test
	33% train . 33% dev . 33% test
	60% train . 20% dev . 20% test
2.	The dev and test set should:
	Come from the same distribution
	Come from different distributions
	Be identical to each other (same (x,y) pairs)
	Have the same number of examples
3.	If your Neural Network model seems to have high bias, what of the following would be promising things to try? (Check all that apply.)
	Increase the number of units in each hidden layer
	Add regularization
	Get more training data
	Get more test data
	Make the Neural Network deeper
4.	You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)
	Increase the regularization parameter lambda
	Decrease the regularization parameter lambda
	Get more training data
	Use a bigger neural network

5.	What is weight decay?
	The process of gradually decreasing the learning rate during training.
	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.
	A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.
	Gradual corruption of the weights in the neural network if it is trained on noisy data.
6.	What happens when you increase the regularization hyperparameter lambda?
	Weights are pushed toward becoming smaller (closer to 0)
	Weights are pushed toward becoming bigger (further from 0)
	Oubling lambda should roughly result in doubling the weights
	Gradient descent taking bigger steps with each iteration (proportional to lambda)

7.	With the inverted dropout technique, at test time:
	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.
	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training
	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training
8.	Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)
	☐ Increasing the regularization effect
	Reducing the regularization effect
	Causing the neural network to end up with a higher training set error
	Causing the neural network to end up with a lower training set error
9.	Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)
	Gradient Checking
	Data augmentation
	Exploding gradient
	☐ Vanishing gradient
	L2 regularization
	Xavier initialization
	☐ Dropout
10.	Why do we normalize the inputs x ?
	It makes the parameter initialization faster
	It makes the cost function faster to optimize
	It makes it easier to visualize the data
	Normalization is another word for regularizationIt helps to reduce variance