$$(2.45) L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ -1 & 3 & 0 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

2.50.a)
$$Au + 4HCl + HNO_3 \rightarrow HAuCl_4 + 2H_2O + NO$$
.

2.50.b)
$$3K_2Gr_2O_7 + 18FeSO_4 + 42HCI \rightarrow 6KCI + 6CrCl_3 + 6FeCl_3 + 6Fe_2(SO_4)_3 + 21H_2O$$
.

Capítulo 3: Interpolação polino-

Seção 3.1

$$3.1) P_1(0,33) = 0,3237.$$

3.2)
$$P_2(0,33) = 0,3241.$$

$$3.3) P_1(0,38) = 0,3706.$$

$$3.4) P_2(0,38) = 0,3709.$$

3.6)
$$L_1(1,1) = 0.9785$$
.

$$3.7) L_2(1,1) = 0.9867.$$

3.8)
$$L_2(1,1) \stackrel{\text{de}}{=} 0,9867.$$

3.9)
$$L_3(1,2) = 1,1187$$
.

$$3.11$$
) $P_1(2,1) = 1,0749$; $P_2(2,1) = 1,0752$; $P_3(2,1) = 1,0752$.

Seção 3.4

$$3.17$$
) $P_1(2,15) = 0,4415$; $P_2(2,15) = 0,4396$; $P_3(2,15) = 0,4393$.

Seção 3.5

$$3.21) \ x = (1,1;1,3).$$

$$3.22) \ x = (1,1;1,3;1,4).$$

3.23)
$$x = (1,3;1,4;1,7;1,8)$$
.

$$3.24$$
) $x = (1,4; 1,7; 1,8)$.

$$3.25$$
) $x = (1,7;1,8;2,0)$.

Seção 3.6

$3.26) P_2(3,5) = 6,5466.$

$$3.27$$
) $T_2(3,5) = 0,0019$.

$$3.28) P_2(3,5) = 6,5485.$$

3.29)
$$T_2(3,5) = -7,8612 \times 10^{-4}$$
.

4.6) $r^2 = 0,8246$.

Seção 4.2

 $4.7) \sigma^2 = 0,4549.$

Seção 3.11

$$3.42$$
) $s(1,1) = 1,0433$; $s(2,2) = 1,4870$; $s(4,3) = 2,0727$; $s(5,7) = 2,3889$; $s(8,8) = 2,9660$; $s(8,9) = 2,9830$.

$$3.43$$
) $s(1,1) = 1,0466$; $s(2,2) = 1,4848$; $s(4,3) = 2,0732$; $s(5,7) = 2,3883$; $s(8,8) = 2,9663$; $s(8,9) = 2,9832$.

Gerais

$$3.46) c_p = P_3(250) = 1,158.$$

$$3.47) \ \rho = P_2(25) = 13,534.$$

$$3.48.a$$
) $P_1(0,3) = 0.61488$; $P_2(0,3) = 0.61987$; $P_3(0,3) = 0.61894$; $P_4(0,3) = 0.61805$; $P_5(0,3) = 0.61767$; $P_6(0,3) = 0.61767$.

$$3.48.b$$
) $s(0,3) = 0,61786$.

$$3.48.c$$
) $s(0,3) = 0,61859$.

4.18)
$$b_0 = 4,23929$$
; $b_1 = 3,40000$; $b_2 = -6,46429$.

4.19)
$$b_0 = -2,01765$$
; $b_1 = 11,3315$;

$$4.19$$
) $b_0 = -2.01765$; $b_1 = 11,33$
 $b_2 = -1,22223$.

Capítulo 4: Ajuste de curvas

3.50) Com ordenadas $x = [-1 \ 0.5 \ 2]$:

 $\psi = 1,5069.$

3.49) z = 0.82297.

4.20) Os resultados são iguais.

Seção 4.5

4.2) p(x) = -2,7143x + 6,4571; D = 94,4780

Seção 4.1

4.3)
$$p(x) = -0.7273x + 4.3273$$
; $D = 1.9674$. 4.21) $p(x) = 3x + 2$.

4.4)
$$p(x) = -0,9061x + 4,8015; D = 1,4776.$$
 4.22) $p(x) = 3x + 2.$

mínimos, pois apresenta o menor desvio.

do se necessita de um valor intermediário não ve ser usada quando se deseja estimar um parâmetro de um modelo semideterminístico 4.25) A interpolação deve ser utilizada quanconstante de uma tabela. A regressão dee/ou prever um valor dado por este modelo.

4.10) O coeficiente de determinação mede a Gerais

4.9) $r^2 = 0,9660; \sigma^2 = 9,5822 \times 10^{13}$.

4.8) $r^2 = 0.7235$; $\sigma^2 = 0.3096$.

proporção da variação total dos dados em forma da média de
$$y$$
, que é explicada pelo $\frac{1}{y} = \frac{b}{a} + \frac{c}{a}x$.

4.26.b)
$$\log_e(y) = \log_e(a) + \log_e(b)x$$
.

4.26.c)
$$\frac{1}{y} = \frac{b}{a} + \frac{1}{a}x$$
.

4.26.d)
$$\log_e \left(\frac{1}{y} - 1 \right) = bx$$
.

4.12) $u = -2,0177 + 11,3315x - 1,2222x^2$.

4.14) $b_0 = 4,23929$; $b_1 = 3,40000$;

 $b_2 = -6,46429.$

4.11) $u = 4,2393 + 3,4000x_1 - 6,4643x_2$.

modelo de regressão.

Seção 4.3

$$\begin{bmatrix} 2x_1x_1 \\ \sum_{x_1x_2} \sum_{x_1x_2} \sum_{x_2x_1} \sum_{x_3x_2} \left| \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \sum_{x_1y_1} \sum_{x_2y_1} \left| \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \sum_{x_2y_1} \sum_{x_2y_1} \left| \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

4.15) $b_0 = -2,01765$; $b_1 = 11,3315$;

 $b_2 = -1,22223.$

4.28)
$$u = 2,8014x - 3,5908x^2 + 1,8115x^3$$
.