

estatística aplicada

Descrição do capítulo

- 4.1 Distribuições de probabilidades
- 4.2 Distribuições binomiais
- 4.3 Mais distribuições de probabilidades discretas

Seção 4.1

Distribuições de probabilidades

4º edição

Variáveis aleatórias

Variáveis aleatórias

- Variável quantitativa cujo resultado depende de valores aleatórios
- Denotado por x
- Exemplos:
 - x = Número de vendas que um vendedor faz em um dia
 - x =Horas gastas em ligações de venda em um dia

Variáveis aleatórias discretas

- Tem um número finito ou contável de possíveis resultados que podem ser listados
- Exemplo:
 - x = Número de vendas que um vendedor faz em um dia

Variáveis aleatórias contínuas

- Tem um número incontável de resultados possíves, representados por um intervalo na reta numérica
- Exemplo:
 - x =Horas gastas em ligações de venda em um dia

estatística aplicada

4º edicão

Exemplo: variáveis

aleatórias

Decida se a variável aleatória *x* é discreta ou contínua.

1. *x* = O número de ações na média industrial da Dow Jones que tiveram aumento no preço em um dia.

Solução:

Variável aleatória discreta (o número de ações que tiveram aumento de preço pode ser contado).

estatística aplicada 4º edição

Decida se a variável aleatória *x* é discreta ou contínua.

2. *x* = O volume de água em um recipiente de 32 onças.

Solução:

Variável aleatória contínua (a quantidade de água pode ser qualquer volume entre 0 até 32 onças).

estatística aplicada

4º edicão

Distribuições de probabilidade discreta

Distribuição de probabilidade discreta

- Lista cada possível valor que a variável aleatória possa assumir, juntamente com sua probabilidade
- Precisa satisfazer as seguintes condições:

Em palavras	Em símbolos
1. A probabilidade de cada valor da variável discreta aleatória precisa estar entre 0 e 1.	$0 \le P(x) \le 1$

2. A soma de todas as probabilidades $\Sigma P(x) = 1$ tem de ser 1.

estatística aplicada

Construindo uma distribuição de probabilidade discreta

Seja x uma variável discreta aleatória com resultados possíveis x_1, x_2, \ldots, x_n .

- 1. Faça uma distribuição de frequências para os resultados possíveis.
- 2. Encontre a soma das frequências.
- 3. Encontre a probabilidade de cada resultado possível dividindo sua frequência pela soma das frequências.
- 4. Certifique-se de que cada probabilidade esteja entre 0 e 1 e que a soma seja 1.

estatística aplicada

Exemplo: construindo uma distribuição de probabilidade discreta

Um psicólogo industrial identificou traços passivoagressivos em 150 funcionários. Os indivíduos receberam pontuações de 1 a 5, em que 1 era extremamente passivo e 5 extremamente

agressivo. Uma pontuação de 3 indica neutralidade de traços. Construa uma distribuição de probabilidade para a variável aleatória x. Então faça um gráfico da distribuição usando um histograma.

Pontuação, x	Frequência, f
1	24
2	33
3	42
4	30
5	21

estatística aplicada

estatística aplicado Solução: construindo uma distribuição de probabilidade discreta

 Divida a frequência de cada pontuação pelo número total de indivíduos no estudo para encontrar a probabilidade para cada valor da variável aleatória

$$P(1) = \frac{24}{150} = 0.16$$
 $P(2) = \frac{33}{150} = 0.22$ $P(3) = \frac{42}{150} = 0.28$

$$P(4) = \frac{30}{150} = 0.20$$
 $P(5) = \frac{21}{150} = 0.14$

Distribuição da probabilidade discreta:

X	1	2	3	4	5
P(x)	0,16	0,22	0,28	0,20	0,14

estatística aplicada 4º edição

X	1	2	3	4	5
P(x)	0,16	0,22	0,28	0,20	0,14

Essa é uma distribuição de probabilidade discreta válida, já c 1.Cada probabilidade está entre 0 e 1, $0 \le P(x) \le 1$.

2.A soma das probabilidades é igual a 1,

$$\Sigma P(x) = 0.16 + 0.22 + 0.28 + 0.20 + 0.14 = 1.$$

Histograma

Como a largura de cada barra é 1, a área de cada barra é igual à probabilidade de um resultado em particular.

Média

Média de uma distribuição de probabilidade discreta

- $\mu = \sum x P(x)$
- Cada valor de *x* é multiplicado por sua probabilidade correspondente e os produtos são somados

4º edição

Exemplo: encontrando a média

A distribuição de probabilidade para a tentativa de personalidade para traços passivo-agressivos é dada. Encontre a média.

Solução:

X	P(x)	xP(x)
1	0,16	1(0.16) = 0.16
2	0,22	2(0.22) = 0.44
3	0,28	3(0.28) = 0.84
4	0,20	4(0.20) = 0.80
5	0,14	5(0.14) = 0.70

$$\mu = \Sigma x P(x) = 2,94$$

estatística aplicada Variância e desvio padrão

Variância de uma distribuição de probabilidade discreta

$$\bullet \sigma^2 = \Sigma (x - \mu)^2 P(x)$$

Desvio padrão de uma distribuição de probabilidade discreta

$$\sigma = \sqrt{\sigma^2} = \sqrt{\Sigma(x-\mu)^2 P(x)}$$

estatística aplicada

4º edicão

Exemplo: encontrando a variância e o desvio padrão

A distribuição de probabilidade para a tentativa de personalidade para traços passivo-agressivos é dada. Encontre a variância e o desvio padrão (μ = 2,94).

X	P(x)
1	0,16
2	0,22
3	0,28
4	0,20
5	0,14

estatística aplicada

Solução: encontrando a desvio padrão

Lembre-se: $\mu = 2,94$

X	P(x)	$x-\mu$	$(x-\mu)^2$	$(x-\mu)^2P(x)$
1	0,16	1 - 2,94 = -1,94	$(-1.94)^2 = 3.764$	3.764(0.16) = 0.602
2	0,22	2 - 2,94 = -0,94	$(-0.94)^2 = 0.884$	0.884(0.22) = 0.194
3	0,28	3 - 2,94 = 0,06	$(0.06)^2 = 0.004$	0.004(0.28) = 0.001
4	0,20	4 - 2,94 = 1,06	$(1.06)^2 = 1.124$	1.124(0.20) = 0.225
5	0,14	5 - 2,94 = 2,06	$(2.06)^2 = 4.244$	4.244(0.14) = 0.594

Variância:
$$\sigma^2 = \Sigma (x - \mu)^2 P(x) = 1.616$$

Desvio padrão:
$$\sigma = \sqrt{\sigma^2} = \sqrt{1.616} \approx 1.3$$

4º edição

Valor esperado

Valor esperado de uma variável aleatória discreta

- Igual à média da variável aleatória
- $E(x) = \mu = \sum x P(x)$

estatística aplicada

4º edição

Exemplo: encontrando um valor esperado

Em uma rifa, 1.500 bilhetes são vendidos a R\$ 2 cada para quatro prêmios de R\$ 500, R\$ 250, R\$ 150 e R\$ 75. Você compra um bilhete. Qual o valor esperado do seu ganho?

estatística aplicada

4º edicão

Solução: encontrando um valor esperado

- Para encontrar o ganho de cada prêmio, subtraia o valor do bilhete do prêmio:
 - Seu ganho para o prêmio de R\$ 500 é R\$ 500 R\$ 2 = R\$ 498
 - Seu ganho para o prêmio de R\$ 250 é R\$ 250 R\$ 2 = R\$ 248
 - Seu ganho para o prêmio de R\$150 é R\$ 150 R\$ 2 = R\$ 148
 - Seu ganho para o prêmio de R\$ 75 é R\$ 75 R\$ 2 = R\$ 73
- Se você não ganhar um prêmio, seu ganho é R\$ 0 R\$ 2 = -R\$ 2

estatística aplicada 4º edição

 A distribuição da probabilidade para os possíveis ganhos (resultados)

Ganho, x	R\$ 498	R\$ 248	R\$ 148	R\$ 73	-R\$ 2
P(x)	1 1500	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1}{1500}$	1496 1500

$$E(x) = \sum xP(x)$$
= \$498×\frac{1}{1500} +\$248 \times \frac{1}{1500} \text{ \$\$148 \times \frac{1}{1500} \text{ \$\$73 \times \frac{1}{1500} \text{ \$\$(+\$2) \times \frac{1496}{1500} \text{ \$\$}}
= -\$1.35

Você pode esperar perder uma média de R\$ 1,35 para cada bilhete que comprar.

estatística aplicada

4º edição

Seção 4.2

Distribuições binomiais

estatística aplicada

Experimento Bernoulli

Considere um experimento cujo resultado possa ser sucesso (S) ou falha (F).

Seja p a probabilidade de sucesso e q a probabilidade de fracasso, com p+q=1. Assim, q=1-p

Definimos a seguinte v.a. discreta: X número de sucessos em uma única tentativa do experimento.

X assume valor x=0 para fracasso e x=1 para sucesso.

$$P(X=x)=p^x q^{1-x}$$

$$E(X)=p e Var(X)=E(X^2)-E(X)^2=p-p^2=pq$$

Experimento Bernoulli

Exemplo: Canal Simétrico Binário

Experimentos binomiais

- 1. Experimento Bernoulli é repetido para um número fixo de tentativas; cada tentativa é independente das outras.
- 2. Há apenas dois resultados possíveis de interesse para cada tentativa: sucesso (S) ou falha (F).
- 3. A probabilidade de um sucesso P(S) é a mesma para cada tentativa.
- **4.** A variável aleatória *x* conta o número de tentativas bem-sucedidas.

4º edição

Notações para experimentos binomiais

Símbolo	Descrição
n	Número de vezes que uma tentativa é repetida
p = P(s)	Probabilidade de sucesso em uma única tentativa
q = P(F)	Probabilidade de falha em uma única tentativa $(q = 1 - p)$
X	A variável aleatória representa a contagem do número de sucessos em n tentativas: $x = 0, 1, 2, 3,, n$.

estatística aplicada

4º edição

Exemplo: experimentos binomiais

Decida se o experimento é um experimento binomial. Se for, especifique os valores de *n*, *p* e *q* e liste os valores possíveis da variável aleatória *x*.

1. Um certo procedimento cirúrgico tem uma chance de sucesso de 85%. Um médico realiza o procedimento em oito pacientes. A variável aleatória representa o número de cirurgias bem-sucedidas.

estatística aplicada

4º edição

Solução: experimentos binomiais

Experimento binomial

- 1. Cada cirurgia representa uma tentativa. Há oito cirurgias, e cada uma é independente das outras.
- 2. Há apenas dois resultados possíveis de interesse para cada cirurgia: um sucesso (*S*) ou uma falha (*F*).
- 3. A probabilidade de um sucesso, P(S), é 0,85 para cada cirurgia.
- **4.** A variável aleatória *x* conta o número de cirurgias bem-sucedidas.

Experimento binomial

- n = 8 (número de tentativas)
- p = 0.85 (probabilidade de sucesso)
- q = 1 p = 1 0.85 = 0.15 (probabilidade de falha)
- x = 0, 1, 2, 3, 4, 5, 6, 7, 8 (número de cirurgias bem-sucedidas)

estatística aplicada

Exemplo: experimentos binomiais

Decida se o experimento é um experimento binomial. Se for, especifique os valores de n, p e q e liste os possíveis valores da variável aleatória x.

2. Uma jarra contém cinco bolinhas vermelhas, nove bolinhas azuis e seis bolinhas verdes. Você pega aleatoriamente três bolinhas do jarro, *sem recolocá-las*. A variável aleatória representa o número de bolinhas vermelhas.

estatística aplicada

Solução: experimentos binomiais

Não é um experimento binomial

- A probabilidade de selecionar uma bolinha vermelha na primeira tentativa é de 5/20
- Como a bolinha não é recolocada no jarro, a probabilidade de sucesso (vermelho) para as tentativas subsequentes já não será mais 5/20
- As tentativas não são independentes e a probabilidade de sucesso não é a mesma para cada tentativa

estatística aplicada

4º edicão

Fórmula de probabilidade binomial

Fórmula de probabilidade binomial

• A probabilidade de exatamente *x* sucessos em *n* tentativas é:

$$P(x) = {}_{n}C_{x}p^{x}q^{n-x} = \frac{n!}{(n-x)!x!}p^{x}q^{n-x}$$

- n = número de tentativas
- p = probabilidade de sucesso
- q = 1 p probabilidade de falha
- x = número de sucessos em ntentativas

estatística aplicada

4º edição

Exemplo: encontrando probabilidades binomiais

Cirurgias de microfraturas no joelho têm 75% de chance de sucesso em pacientes com problemas degenerativos no joelho. A cirurgia é realizada em três pacientes. Encontre a probabilidade da cirurgia ser bem-sucedida em exatamente dois pacientes.

4º edição

Solução: encontrando probabilidades binomiais

Método 1: Desenhar um diagrama de árvore e usar a regra da multiplicação.

Cirurgia 1ª	a Cirurgia 2^a	Cirurgia 3ª	Resultado	Número de sucessos	Probabilidade
	- 0	S	SSS	3	$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$
S 	5	F	SSF	2	$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{9}{64}$
		S	SFS	2	$\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{9}{64}$
	Г	\sqsubseteq_{F}	SFF	1	$\frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{64}$
		S	FSS	2	$\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{64}$
	_5	L-F	FSF	1	$\frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{64}$
— F		S	FFS	1	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{64}$
	—F —	L_F	FFF	0	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{64}$

estatística aplicada

4º edição

Método 2: Fórmula da probabilidade binomial.

$$n=3$$
, $p=\frac{3}{4}$, $q=1-p=\frac{1}{4}$, $x=2$

$$P(2 \text{ cirurgias com sucesso}) = \frac{3!}{(3-2)!2!} \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right)^1$$
$$= 3\left(\frac{9}{16}\right) \left(\frac{1}{4}\right) = 3\left(\frac{9}{64}\right) = \frac{27}{64} \approx 0,422.$$

estatística aplicada

4º edição

Distribuição de probabilidade binomial

Distribuição de probabilidade binomial

- Lista os valores possíveis de *x* com a correspondente probabilidade de cada um
- Exemplo: Distribuição de probabilidade binomial para a cirurgia de microfraturas no joelho: n = 3, p = 3/4
- Usa a fórmula da probabilidade binomial para encontrar probabilidades

X	0	1	2	3
P(x)	0,016	0,141	0,422	0,422

estatística aplicada

Exemplo: construindo uma distribuição binomial

Em uma pesquisa, foi pedido a trabalhadores dos EUA as fontes de renda esperadas na aposentadoria. Sete trabalhadores que participaram da pesquisa são aleatoriamente selecionados e perguntados se eles planejam confiar no Seguro Social para sua renda na aposentadoria. Crie uma distribuição de probabilidade binomial para o número de trabalhadores que responderam sim.

estatística aplicada

Solução: construindo uma 4º º º º distribuição binomial

- 25% dos trabalhadores americanos esperam confiar no Seguro Social para recebimento de renda na aposentadoria
- n = 7, p = 0.25, q = 0.75, x = 0.1, 2.3, 4.5, 6.7 $P(x = 0) = {}_{7}C_{0}(0.25)^{0}(0.75)^{7} = 1(0.25)^{0}(0.75)^{7} \approx 0.1335$

$$P(x = 1) = {}_{7}C_{1}(0,25)^{1}(0,75)^{6} = 7(0,25)^{1}(0,75)^{6} \approx 0,3115$$

$$P(x = 2) = {}_{7}C_{2}(0,25)^{2}(0,75)^{5} = 21(0,25)^{2}(0,75)^{5} \approx 0,3115$$

$$P(x = 3) = {}_{7}C_{3}(0,25)^{3}(0,75)^{4} = 35(0,25)^{3}(0,75)^{4} \approx 0,1730$$

$$P(x = 4) = {}_{7}C_{4}(0,25)^{4}(0,75)^{3} = 35(0,25)^{4}(0,75)^{3} \approx 0,0577$$

$$P(x = 5) = {}_{7}C_{5}(0,25)^{5}(0,75)^{2} = 21(0,25)^{5}(0,75)^{2} \approx 0,0115$$

$$P(x = 6) = {}_{7}C_{6}(0,25)^{6}(0,75)^{1} = 7(0,25)^{6}(0,75)^{1} \approx 0,0013$$

$$P(x = 7) = {}_{7}C_{7}(0,25)^{7}(0,75)^{0} = 1(0,25)^{7}(0,75)^{0} \approx 0,0001$$

estatística aplicada 4º edição

X	P(x)
0	0,1335
1	0,3115
2	0,3115
3	0,1730
4	0,0577
5	0,0115
6	0,0013
7	0,0001

Todas as probabilidades estão entre 0 e 1 e a soma das probabilidades é $1,00001 \approx 1$.

estatística aplicada

4º edição

Exemplo: encontrando probabilidades binomiais

Uma pesquisa indica que 41% das mulheres nos EUA consideram leitura como seu lazer favorito. Você seleciona aleatoriamente quatro mulheres dos EUA e as pergunta se ler é o passatempo preferido delas. Encontre a probabilidade de pelo menos duas delas dizer sim.

Solução:

- n = 4, p = 0.41, q = 0.59
- Pelo menos duas significa duas ou mais
- Encontre a soma de P(2), P(3), e P(4)

estatística aplicada

4º edição

Solução: encontrando probabilidades binomiais

$$P(x = 2) = {}_{4}C_{2}(0,41)^{2}(0,59)^{2} = 6(0,41)^{2}(0,59)^{2} \approx 0,351094$$

$$P(x = 3) = {}_{4}C_{3}(0,41)^{3}(0,59)^{1} = 4(0,41)^{3}(0,59)^{1} \approx 0,162654$$

$$P(x = 4) = {}_{4}C_{4}(0,41)^{4}(0,59)^{0} = 1(0,41)^{4}(0,59)^{0} \approx 0,028258$$

$$P(x \ge 2) = P(2) + P(3) + P(4)$$

 $\approx 0.351094 + 0.162654 + 0.028258$
 ≈ 0.542

estatística aplicada

Exemplo: encontrando probabilidades binomiais usando uma tabela

Cerca de 30% dos adultos trabalhadores gastam menos de 15 minutos para ir e voltar ao trabalho. Você seleciona aleatoriamente seis adultos trabalhadores. Qual é a probabilidade de exatamente três deles gastarem menos de 15 minutos indo e voltando do trabalho? Use uma tabela para encontrar a probabilidade. (Fonte: U.S. Census Bureau.)

Solução:

Binomial com n = 6, p = 0,30, x = 3

estatística aplicada

Solução: encontrando probabilidades binomiais usando uma tabela

Uma porção da Tabela 2 é exibida:

		p												
n	x	0,01	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60
3	0 1 2 0	0,020 0,000 0,970	0,095 0,002 0,857	0,180 0,010 0,729	0,255 0,023 0,614	0,320 0,040 0,512	0,375 0,063 0,422	0,420 0,090 0,343	0,423 0,455 0,123 0,275	0,480 0,160 0,216	0,495 0,203 0,166	0,500 0,250 0,125	0,495 0,303 0,091	0,480 0,360 0,064
-	1 2 3	0,000	0,007	0,027	0,057	0,096	0,141	0,189	0,444 0,239 0,043	0,288	0,334	0,375	0,408	0,432
6	0 1 2	0,057	0,232	0,354	0,399	0,393	0,356	0,303	0,075 0,244 0,328	0,187	0,136	0,094	0,061	0,037
	3 4 5	0,000	0,000	0,001	0,006	0,015	0,033	0,060	0,095	0,138	0,186	0,234	0,278	0,311
	6								0,020 0,002					

A probabilidade de exatamente três dos seis trabalhadores gastarem menos de 15 minutos indo e voltando do trabalho é de 0,185.

estatística aplicada Exemplo: fazendo um 4º edição gráfico de distribuição binomial

59% dos lares nos EUA são assinantes de TV a cabo. Você seleciona aleatoriamente 6 lares e pergunta se a casa tem TV a cabo. Construa uma distribuição de probabilidade para a variável aleatória x. Depois, faça um gráfico da distribuição. (Fonte: Kagan Research, LLC.)

Solução:

- n = 6, p = 0.59, q = 0.41
- Encontre a probabilidade para cada valor de *x*

estatística aplicada 4º edição

X	0	1	2	3	4	5	6
P(x)	0,005	0,041	0,148	0,283	0,306	0,176	0,042

Histograma

Assinatura de TV a cabo

estatística aplicada

4º edição

Média, variância e desvio padrão

Média: $\mu = np$

Variância: $\sigma^2 = npq$

Desvio padrão: $\sigma = \sqrt{npq}$

estatística aplicada

Exemplo: encontrando a média, variância e desvio padrão

Em Pitsburgo, Pensilvânia, cerca de 56% dos dias em um ano são nublados. Encontre a média, variância e desvio padrão para o número de dias nublados durante o mês de junho. Interprete os resultados e determine quaisquer valores incomuns. (Fonte: National Climatic Data Center.)

Solução: n = 30, p = 0.56, q = 0.44

Variância: $\sigma^2 = npq = 30.0, 56.0, 44 \approx 7,4$

Desvio padrão: $\sigma = \sqrt{npq} = \sqrt{30 \times 0.56 \ \text{@}.44} \ \text{@}.7$

estatística aplicada

Solução: encontrando a média, variância e desvio padrão

$$\mu = 16.8 \quad \sigma^2 \approx 7.4 \quad \sigma \approx 2.7$$

- Em média, há 16,8 dias nublados no mês de junho
- O desvio padrão é de cerca de 2,7 dias
- Valores maiores de dois desvios padrão da média são considerados incomuns
 - 16,8 2(2,7) = 11,4; junho com 11 dias nublados seria incomum
 - 16,8 + 2(2,7) = 22,2; junho com 23 dias nublados seria incomum também