Отчёт по лабораторной работе 1

МОЗИиИБ

Папикян Гагик Тигранович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение 3.1 Принцип работы симметричных алгоритмов	7 7 7 8
4	Выполнение лабораторной работы	9
5	Выводы	12

List of Figures

4.1 Выполнение лабораторной работы	. 1	
------------------------------------	-----	--

List of Tables

1 Цель работы

Познакомиться с простейшими алгоритмами шифрования данных, посредством реализации шифра Цезаря и Атбаш

2 Задание

- 1) Реализовать шифр Цезаря с ключом К
- 2) Реализовать шифр Атбаш

3 Теоретическое введение

3.1 Принцип работы симметричных алгоритмов

В целом симметричным считается любой шифр, использующий один и тот же секретный ключ для шифрования и расшифровки.

Например, если алгоритм предполагает замену букв числами, то и у отправителя сообщения, и у его получателя должна быть одна и та же таблица соответствия букв и чисел: первый с ее помощью шифрует сообщения, а второй — расшифровывает.

Однако такие простейшие шифры легко взломать — например, зная частотность разных букв в языке, можно соотносить самые часто встречающиеся буквы с самыми многочисленными числами или символами в коде, пока не удастся получить осмысленные слова. С использованием компьютерных технологий такая задача стала занимать настолько мало времени, что использование подобных алгоритмов утратило всякий смысл.

3.2 Шифр Цезаря

Шифр Цезаря, также известный как шифр сдвига, код Цезаря или сдвиг Цезаря — один из самых простых и наиболее широко известных методов шифрования. Шифр Цезаря — это вид шифра подстановки, в котором каждый символ в открытом тексте заменяется символом, находящимся на некотором постоянном числе позиций левее или правее него в алфавите. Например,

в шифре со сдвигом вправо на 3, А была бы заменена на Г, Б станет Д, и так далее.

Шифр назван в честь римского полководца Гая Юлия Цезаря, использовавшего его для секретной переписки со своими генералами.

Шаг шифрования, выполняемый шифром Цезаря, часто включается как часть более сложных схем, таких как шифр Виженера, и всё ещё имеет современное приложение в системе ROT13. Как и все моноалфавитные шифры, шифр Цезаря легко взламывается и не имеет почти никакого применения на практике.

3.3 Шифр Атбаш

Атба́ш — простой шифр подстановки для алфавитного письма. Правило шифрования состоит в замене і-й буквы алфавита буквой с номером n-i+1, где n — число букв в алфавите. Ниже даны примеры для английского, русского и еврейского алфавитов:

4 Выполнение лабораторной работы

Был написан следующий скрипт на javascript

```
//Caesar Cipher
//UTF
//[a-z] 97-122
//[A-Z] 65-90
const alphabet = "! abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
function CaesarEncode( msg, k = 1){
    let res = ''
    for(let char of msg){
        let code = alphabet.indexOf(char)
        res += alphabet[ (code+k)%alphabet.length ]
    }
    return res
}
function CaesarDecode( msg, k = 1){
    let res = ''
    for(let char of msg){
        let code = [...alphabet].reverse().indexOf(char)
        res += [...alphabet].reverse()[ (code+k)%alphabet.length ]
    }
```

```
return res
}
//Atbash Cipher
function AtbashEncodeDecode( msg ){
    let res = ''
    for(let char of msg){
        let code = alphabet.indexOf(char)
        res += [...alphabet].reverse()[ code ]
    }
    return res
}
const k = 55
const text = 'Hey There!'
console.log(`
Caesar Cipher:
text=${text}
k=${k}
encoded=${CaesarEncode( text, k )}
decoded=${ CaesarDecode( CaesarEncode( text, k ), k)}
Atbash Cipher:
text=${text}
encoded=${AtbashEncodeDecode( text )}
decoded=${ AtbashEncodeDecode( AtbashEncodeDecode( text ))}
`)
 Результат исполнения скрипта приведен на рисунке 1 (рис. 4.1)
```

Figure 4.1: Выполнение лабораторной работы

5 Выводы

Был реализован Шифр Цезаря с произвольным ключом и Шифр Атбаша Был использован фиксированный алфавит, состоящий из символов "! abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

На рисунке 4.1 в окне терминала было показано, как текст "Hey There!" зашифровывается и расшифровывается сначала алгоритмом Цезаря, потом Атбаш