Analízis III. gyakorlatok

Programtervező informatikus BSc 2018 A szakirány

2021–2022. tanév tavaszi félév

Integrálszámítás

■ Szükséges ismeretek

- Primitív függvények meghatározásának a módszerei: Alapintegrálok. Az első helyettesítési szabály, speciális esetek. A parciális integrálás szabálya. A második helyettesítési szabály. Racionális törtfüggvények integrálása.
- Határozott integrál és alkalmazásai. A Newton-Leibniz-tétel. Síkidom területe. Síkbeli görbe ívhossza. Forgástest térfogata.
- Az improprius integrál értelmezése, ha integrandus értelmezési tartománya nem korlátos intervallum, ha az integrandus nem korlátos, de az értelmezési tartománya korlátos intervallum. Összehasonlító kritériumok. Végtelen sorokra vonatkozó integrálkritérium.

■ Feladatok

1. Mutassuk meg, hogy

(a)
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1}, & \text{ha } \alpha \in (1, +\infty) \\ +\infty, & \text{ha } \alpha \in (-\infty, 1], \end{cases}$$

(b)
$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \text{ha } \alpha \in (-\infty, 1) \\ +\infty, & \text{ha } \alpha \in [1, +\infty). \end{cases}$$

2. Számítsuk ki a

$$\int_{0}^{\pi} \frac{1}{a + \cos x} \, dx$$

határozott integrált, ahol a > 1 adott valós paraméter!

3. Lássuk be, hogy a

(a)
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$$
,
(b) $\int_{0}^{+\infty} e^{-2x} \cdot \cos(3x) dx$,
(c) $\int_{\sqrt{3}}^{+\infty} \frac{x+3}{(x-1)(x^2+1)} dx$,
(d) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$,

improprius integrálok mindegyike konvergens, és számítsuk ki az integrálok értékeit!

4. Bizonyítsuk be, hogy

(a)
$$\int_{1}^{+\infty} \frac{\sin x}{x} dx$$
 konvergens, (b) $\int_{1}^{+\infty} \left| \frac{\sin x}{x} \right| dx$ pedig divergens.

5. Döntsük el, hogy az alábbi improprius integrálok konvergensek-e:

(a)
$$\int_{0}^{1} \frac{dx}{\sqrt[3]{x} + 2\sqrt[4]{x} + x^3}$$
,

(b)
$$\int_{1}^{+\infty} \frac{dx}{2x + \sqrt[3]{x^2 + 1} + 5}$$
.

6. (a) Bizonyítsuk be, hogy minden x > 0 valós számra az $\int_0^{+\infty} t^{x-1} e^{-t} dt$ improprius integrál konvergens. A

$$\Gamma(x) := \int_{0}^{+\infty} t^{x-1} e^{-t} dt \qquad (x \in \mathbb{R}^+)$$

függvényt gammafüggvénynek nevezzük.

(b) Mutassuk meg, hogy

(i)
$$\Gamma(x+1) = x \Gamma(x) \quad (x \in (0, +\infty)),$$

(ii) ha
$$n = 0, 1, 2, 3, ...$$
, akkor $\Gamma(n+1) = n!$.

■ Házi feladatok

1. Számítsa ki az alábbi improprius integrálokat:

(a)
$$\int_{0}^{3} \frac{1}{(x-1)^{2/3}} dx$$
,

(b)
$$\int_{3}^{+\infty} e^{-x} \cdot \sin(2x) \, dx,$$

(c)
$$\int_{3}^{+\infty} \frac{2}{x^2 - 2x} dx$$
,

(d)
$$\int_{0}^{+\infty} \frac{1}{1+e^x} dx.$$

2. Legyen $\alpha>0.$ Számítsa ki a

$$\lim_{n \to +\infty} \frac{1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha}}{n^{\alpha+1}}$$

határértéket!

3. Bizonyítsa be, hogy

$$\ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n + 1 \quad (2 \le n \in \mathbb{N}).$$

3

4. Vizsgálja meg konvergencia szempontjából az alábbi számsorokat:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \ (\alpha \in \mathbb{R}),$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
.

■ Gyakorló feladatok

1. Igazolja, hogy a

$$\int_{0}^{+\infty} e^{-x^2} dx$$

improprius integrál konvergens!

2. Számítsa ki a következő improprius integrálokat:

(a)
$$\int_{-\infty}^{0} xe^x dx,$$

(b)
$$\int_{0}^{1} \ln x, dx,$$

(c)
$$\int_{1}^{\infty} \frac{\ln x}{x} \, dx,$$

(d)
$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx,$$

(e)
$$\int_{0}^{+\infty} \left(x - \frac{1}{\lambda}\right)^{2} \lambda e^{-\lambda x} dx \quad (\lambda > 0 \text{ valós paraméter}).$$

3. Döntse el, hogy az alábbi improprius integrálok konvergensek-e:

(a)
$$\int_{1}^{+\infty} \frac{\cos^2 x}{1+x^2} dx$$
,

(b)
$$\int_{1}^{+\infty} \frac{1}{\sqrt{x^3 + 1}} dx,$$

(c)
$$\int_{0}^{1} \frac{e^{-x}}{x} dx,$$

(d)
$$\int_{0}^{+\infty} \frac{x}{\sqrt{x^5 + 1}} dx.$$

4. Lássa be, hogy a $\lim_{b\to +\infty} \int\limits_{-b}^b \frac{x}{1+x^2}\,dx$ határérték létezik és véges, de a

$$\int_{-\infty}^{+\infty} \frac{x}{1+x^2} \, dx$$

improprius integrál divergens.

5. A valószínűségszámításban a $\lambda>0$ paraméterű exponenciális eloszlás sűrűségfüggvénye így van definiálva:

$$f_{\lambda}(x) := \lambda e^{-\lambda x}$$
 $(x \in [0, +\infty)).$

Néhány $\lambda>0$ paraméter esetén szemléltesse az f_λ függvényt, és mutassa meg, hogy az f grafikonja alatti terület a $[0,+\infty)$ intervallumon minden $\lambda>0$ esetén 1-gyel egyenlő, azaz

$$\int_0^{+\infty} f_{\lambda}(x) dx = 1 \quad \text{minden } \lambda > 0 \text{ számra.}$$

■ További feladatok

- 1. Bizonyítsuk be, hogy a π szám irracionális!
- 2. Bizonyítsa be a

$$\lim_{n \to +\infty} \frac{2^2}{1^2} \cdot \frac{4^2}{3^2} \cdots \frac{(2n)^2}{(2n-1)^2} \cdot \frac{1}{2n+1} = \frac{\pi}{2}$$

Wallis-formulát!

3. Mutassa meg, hogy

$$\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Útmutatás. Legyen

$$G_n := \int_{0}^{+\infty} x^n e^{-x^2} dx$$
 $(n = 0, 1, 2, ...),$

és lássa be a következő állításokat:

(a) a fenti improprius integrálok konvergensek,

$$G_0 = \int_{0}^{+\infty} e^{-x^2} dx$$
, $G_1 = \frac{1}{2}$, $G_n = \frac{n-1}{2}G_{n-2}$ $(n = 2, 3, ...)$,

majd fejezze ki ${\cal G}_{2n}\text{-}{\rm et}$ és ${\cal G}_{2n+1}\text{-}{\rm et}.$

(b) $G_n^2 < G_{n-1}G_{n+1}$ $(n=1,2,\dots)$ (ennek igazolásához tekintese a $G_{n-1}t^2 + 2G_nt + G_{n+1}$ $(t \in \mathbb{R})$ polinomot),

(c)
$$\frac{2}{2n+1}G_{2n+1}^2 < G_{2n}^2 < G_{2n-1}G_{2n+1}$$
 $(n=1,2,\ldots),$

- (d) alkalmazza a Wallis-formulát.
- 4. A valószínűségszámításban és a statisztikában fontos szerepet játszanak a következő függvények: Legyen μ tetszőleges valós és σ pozitív valós paraméter, és tekintse az

$$f(x) := \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad (x \in \mathbb{R}),$$

illetve a

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt \qquad (x \in \mathbb{R})$$

5

függvényeket. Mutassa meg, hogy

(a)
$$\int_{-\infty}^{+\infty} f(x)dx = 1;$$

(b)
$$\int_{-\infty}^{+\infty} x f(x) dx = \mu;$$

(c)
$$\int_{-\infty}^{+\infty} (x-\mu)^2 f(x) dx = \sigma^2.$$

Megjegyzések. 1° Az f függvényt a μ és σ paraméterű normális eloszlás sűrűségfüggvényének nevezzük (l. (a)). A $\Phi(x)$ $(x \in \mathbb{R})$ függvény (ennek jelölésére gyakran az erf (x) $(x \in \mathbb{R})$ szimbólumot is használják) a standard normális eloszlás eloszlásfüggvénye. Számos statisztikai problémánál fontos ismerni a $\Phi(x)$ $(x \in \mathbb{R})$ értékeket. Az $\int e^{-\frac{x^2}{2}} dx$ integrált azonban nem lehet elemi függvényekkel kifejezni, ezért a pontos értékek meghatározására nincs lehetőségünk. Közelítő (numerikus) értékeit táblázatokban szokás megadni.

 2^{o} A (b), illetve a (c) feladat eredményét röviden úgy fejezik ki, hogy az f sűrűségfüggvényű eloszlás **várható értéke**, illetve **szórása** μ , illetve σ . Ezért szokás az f függvényt a μ várható értékű és a σ szórású normális eloszlás **sűrűségfüggvényének** nevezni.

 3^{o} Érdekességképpen még azt is megjegyezzük, hogy a fenti f függvénynek a harang alakú grafikonját, $Carl\ Friedrich\ Gauss\ (1777–1855)$ arcképét, valamint Göttingen történelmi épületeit láthatjuk az az 1989-ben, a Német Szövetségi Bank által kibocsátott 10 márkás bankjegyen:

5. A Stirling-formula:

$$\lim_{n \to +\infty} \frac{n!}{\left(\frac{n}{e}\right)^n \sqrt{2\pi n}} = 1,$$

azaz n! közelítésére az alábbi formula érvényes:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, ha $n \to +\infty$.

Megoldás. Az alapötlet az, hogy az $\int_1^n \ln x \, dx$ integrált, azaz az ln függvény [1, n] intervallumon vett grafikonja alatti területet a beírt trapézok területének összegével közelítjük. A szóban forgó integrál könnyen meghatározható:

$$\int_{1}^{n} \ln x \, dx = \left[x \ln x - x \right]_{1}^{n} = n \ln n - n + 1 = \ln n^{n} - \ln e^{n} + \ln e = \ln \left(e \cdot \left(\frac{n}{e} \right)^{n} \right).$$

Tekintsük most az ln (konkáv!) függvény grafikonjába beírt azon töröttvonalat, amelynek szögpontjai a görbe $1, 2, \ldots, n$ abszcisszákhoz tartozó pontjai. Az e töröttvonal alatti

síkidom területe egy háromszögnek és (n-1) trapéznak a területéből tevődik össze, és az értéke:

$$\frac{\ln 2}{2} + \frac{\ln 2 + \ln 3}{2} + \dots + \frac{\ln(n-1) + \ln 2}{2} =$$

$$= \ln 2 + \ln 3 + \dots + \ln n - \frac{1}{2} \ln n = \ln \left(\frac{n!}{\sqrt{n}}\right).$$

ezért a területek különbsége:

$$\Delta_n := \ln\left(e \cdot \left(\frac{n}{e}\right)^n\right) - \ln\left(\frac{n!}{\sqrt{n}}\right) = \ln\left(\frac{e \cdot \left(\frac{n}{e}\right)^n \sqrt{n}}{n!}\right) > 0 \qquad (\forall n \in \mathbb{N}).$$

 $(\triangle_n$ azért pozitív, mert az ln függvény konkáv az egész \mathbb{R}^+ -on.) A geometriai tartalomból nyilvánvaló, hogy a (\triangle_n) sorozat monoton növekedő. Egy szellemes geometriai megfontolásból az is következik, hogy a (\triangle_n) sorozat felülről korlátos és $\triangle_n \leq \frac{\ln 2}{2}$ minden $n \in \mathbb{N}$ esetén. Ezért a (\triangle_n) sorozat konvergens. Az exp függvény szigorúan monoton növekedő, ezért az

$$\frac{e^{\triangle_n}}{e} = \frac{\left(\frac{n}{e}\right)^n \sqrt{n}}{n!}$$

sorozat is konvergens, és a határértéke pozitív. A sorozat reciproka, tehát az

$$a_n := \frac{n!}{\left(\frac{n}{\epsilon}\right)^n \sqrt{n}} \qquad (n \in \mathbb{N})$$

sorozat is konvergens. Feladatunk a határértékének a kiszámolása.

Ehhez két észrevételt érdemes megjegyezni: egyrészt azt, hogy

$$0 < \lim(a_n) = \lim\left(\frac{a_n^2}{a_{2n}}\right),\,$$

ami az $\frac{a_n^2}{a_{2n}} = a_n \cdot \frac{a_n}{a_{2n}}$ és $\lim(a_n) = \lim(a_{2n})$ nyilvánvaló következménye. A másik észrevétel az, hogy $\frac{a_n^2}{a_{2n}}$ a Wallis-formulával hozható kapcsolatba:

$$\frac{a_n^2}{a_{2n}} = \frac{\left[n!\right]^2}{\left(\frac{n}{e}\right)^{2n}n} \cdot \frac{\left(\frac{2n}{e}\right)^{2n}\sqrt{2n}}{(2n)!} = \frac{\left[2^n n!\right]^2}{(2n)!} \cdot \sqrt{\frac{2}{n}} = \frac{\left[2 \cdot 4 \cdot 6 \cdots (2n)\right]^2}{1 \cdot 2 \cdot 3 \cdots (2n)} \cdot \sqrt{\frac{2}{n}} = \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot \cdots (2n-1)} \cdot \frac{1}{\sqrt{2n+1}} \cdot \sqrt{\frac{2(2n+1)}{n}}.$$

A Wallis-formula alapján

$$\lim_{n \to +\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot \cdots \cdot (2n-1)} \cdot \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}},$$

ezért

$$\lim(a_n) = \lim_{n \to +\infty} \frac{n!}{\left(\frac{n}{e}\right)^n \sqrt{n}} = \lim\left(\frac{a_n^2}{a_{2n}}\right) =$$

$$= \lim_{n \to +\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot \cdots \cdot (2n-1)} \cdot \frac{1}{\sqrt{2n+1}} \cdot \sqrt{\frac{2(2n+1)}{n}} = \sqrt{\frac{\pi}{2}} \cdot 2 = \sqrt{2\pi},$$

ami azt jelenti, hogy

$$\lim_{n \to +\infty} \frac{n!}{\left(\frac{n}{e}\right)^n \sqrt{2\pi n}} = 1.$$

Metrikus terek és normált terek 1.

■ Szükséges ismeretek

- A metrikus tér fogalma. Példák metrikus terekre.
- A normált tér fogalma. Példák normált terekre. Ekvivalens normák.
- Az euklideszi tér fogalma. Példák eukliszi terekre. Alaptulajdonságok.

■ Feladatok

1. (A diszkrét metrikus tér.) Mutassuk meg, hogy tetszőleges M nemüres halmazon értelmezett

$$\varrho(x,y) := \begin{cases} 0, & \text{ha } x = y \\ 1, & \text{ha } x \neq y \end{cases}$$

függvény metrika M-en! Adjuk meg a $K_1(a)$ környezetet, ha $a \in M$ egy tetszőleges elem!

- 2. (A Hamming-távolság.) Legyen $\mathcal{K} \neq \emptyset$ egy véges karakterhalmaz, $n \in \mathbb{N}^+$ és H a \mathcal{K} elemeiből álló n hosszúságú karaktersorozatok halmaza. Jelölje ϱ_H azt a függvényt, amely két tetszőleges H-beli karaktersorozathoz azt a számot rendeli, hogy hány helyen különbözik egymástól a két karaktersorozat. Bizonyítsuk be, hogy (H, ϱ_H) egy metrikus tér.
- **3.** Tegyük fel, hogy az $f:[0,+\infty)\to [0,+\infty)$ függvény rendelkezik a következő tulajdonságokkal:
 - f monoton növekedő,
 - \bullet $f(x) = 0 \iff x = 0$
 - $f(x+y) \le f(x) + f(y) \ (x, y \ge 0)$.

Bizonyítsuk be, hogy ha ϱ metrika a nemüres M halmazon, akkor $f \circ \varrho$ is metrika M-en.

4. Igazoljuk, hogy az $f(x) := \sqrt{x}$, $f(x) := \frac{x}{1+x}$, $f(x) := \ln(1+x)$ $(x \in [0,+\infty))$ függvények eleget tesznek az elzőző feladat feltételeinek. Következésképpen, ha (M,ϱ) metrikus tér, akkor

(a)
$$(M, \sqrt{\varrho})$$
, (b) $(M, \frac{\varrho}{1+\varrho})$, (c) $(M, \ln(1+\varrho))$

is metrikus tér.

- 5. Adjunk példát olyan metrikus térre, amelyben van olyan gömb, amelyik tartalmaz egy nagyobb sugarú valódi részgömböt.
- **6.** Tegyük fel, hogy X olyan lineáris tér, amelyik tartalmaz az X nullelemétől, vagyis θ -tól különböző elemet is, azaz $X \neq \{\theta\}$. Legyen $(X, \|\cdot\|)$ egy normált tér, $a, b \in X$ és $0 < r, R \in \mathbb{R}$. Bizonyítsuk be, hogy a

8

$$K_r(a) \subset K_R(b) \implies r \leq R$$

állítás igaz!

7. Mutassuk meg, hogy ha $(X, \|\cdot\|)$ normált tér, akkor a

$$\varrho(x,y) := \|x - y\| \qquad (x, y \in X)$$

függvény metrika X-en, azaz (X, ϱ) metrikus tér.

8. Legyen $n \in \mathbb{N}^+$, $1 \le p \le +\infty$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ és

$$||x||_p := \begin{cases} \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, & \text{ha } 1 \le p < +\infty \\ \max_{1 \le k \le n} \{|x_k|\}, & \text{ha } p = +\infty. \end{cases}$$

Bizonyítsuk be, hogy a p = 1, a p = 2, valamint a $p = +\infty$ esetekben a fenti függvényeke mindegyike norma az \mathbb{R}^n lineáris téren!

9. Mutassuk meg, hogy az \mathbb{R}^n $(n \in \mathbb{N}^+)$ lineáris téren értelmezett $\|\cdot\|_p$ $(1 \le p < +\infty)$ normákra tetszőlegesen rögzített $x \in \mathbb{R}^n$ vektor esetén igaz az

$$||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$$

határérték-egyenlőség!

10. Legyen $n \in \mathbb{N}^+$, $0 és <math>x = (x_1, \dots, x_n) \in \mathbb{R}^n$ esetén

$$||x||_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}.$$

Bizonyítsuk be, hogy ezek a függvények nem normák az \mathbb{R}^n lineáris téren!

■ Házi feladatok

1. Tetszőleges $x \in \mathbb{R}$ és $y \in \mathbb{R}$ esetén legyen

$$\varrho_{1}(x,y) := (x-y)^{2}, \quad \varrho_{2}(x,y) := \sqrt{|x-y|}, \quad \varrho_{3}(x,y) := |x^{2}-y^{2}|,
\varrho_{4}(x,y) := |x-2y|, \quad \varrho_{5}(x,y) := \frac{|x-y|}{1+|x-y|}, \quad \varrho_{6}(x,y) := |e^{x}-e^{y}|,
\varrho_{6}(x,y) := \begin{cases} |x-y|, & \text{ha } x \leq y \\ 1+|x-y|, & \text{ha } x > y. \end{cases}$$

Döntse el mindegyik függvényről, hogy metrika-e vagy sem.

2. Igaz-e, hogy az

$$||x|| := \max\{|2x_1 - x_2|, |4x_1|\} \quad (x = (x_1, x_2) \in \mathbb{R}^2)$$

függvény norma az \mathbb{R}^2 lineáris téren?

■ Gyakorló feladatok

1. Legyen $f: \mathbb{R} \to \mathbb{R}$ egy szigorúan monoton növekedő függvény és

$$\varrho(x,y) := |f(x) - f(y)| \qquad (x,y \in \mathbb{R}).$$

Bizonyítsa be, hogy ϱ metrika az \mathbb{R} halmazon. Ha $f(x) := x \ (x \in \mathbb{R})$, akkor a "szokásos" metrikát kapjuk. Mutassa meg, hogy az $f(x) := \operatorname{arctg} x \ (x \in \mathbb{R})$ választás is lehetséges, és az ezzel képzett metrikában bármelyik két \mathbb{R} -beli elem távolsága $< \pi$.

- **2.** Tegyük fel, hogy $\|\cdot\|$ egy norma \mathbb{R} -en. Mutassa meg, hogy ekkor létezik olyan pozitív α valós szám, amellyel minden $x \in \mathbb{R}$ esetén az $\|x\| = \alpha \cdot |x|$ egyenőség teljesül.
- 3. (A $(C[a,b], \|\cdot\|_p)$ normált terek.) Az [a,b] intervallumon $(a,b \in \mathbb{R}, a < b)$ értelmezett folytonos függvények C[a,b]-vel jelölt halmazán a függvények közötti szokásos + és \cdot_{λ} műveletekkel egy valós lineáris teret kapunk. Legyen $1 \le p \le +\infty$, $f \in C[a,b]$ és

$$||f||_p := \begin{cases} \left(\int_a^b |f|^p\right)^{1/p}, & \text{ha } 1 \le p < +\infty \\ \max_{x \in [a,b]} |f(x)|, & \text{ha } p = +\infty. \end{cases}$$

Bizonyítsa be, hogy a p=1, a p=2, valamint a $p=+\infty$ esetekben a fenti függvényeke mindegyike norma a C[a,b] lineáris téren!

4. Mutassa meg, hogy az C[a,b] lineáris téren értelmezett $\|\cdot\|_p$ $(1 \le p < +\infty)$ normákra tetszőlegesen rögzített $f \in C[a,b]$ vektor esetén igaz az

$$||f||_{\infty} = \lim_{p \to +\infty} ||f||_p$$

határérték-egyenlőség!

5. (a) Mutassa meg, hogy az $l_1 := \left\{ x = (x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sum_{k=0}^{+\infty} |x_k| < +\infty \right\}$ halmaz a sorozatok közötti szokásos műveletekkel (összeadás, számmal való szorzás) lineáris tér \mathbb{R} felett, és az

$$||x||_1 := \sum_{k=0}^{+\infty} |x_k| \quad (x \in l_1)$$

függvény norma az l_1 lineáris téren.

(b) Mutassa meg, hogy az $l_{\infty} := \left\{ x = (x_n) \in \mathbb{R}^{\mathbb{N}} \mid \sup_{k \in \mathbb{N}} |x_k| < +\infty \right\}$ halmaz a sorozatok közötti szokásos műveletekkel (összeadás, számmal való szorzás) lineáris tér \mathbb{R} felett, és az

$$||x||_{\infty} := \sup_{k \in \mathbb{N}} |x_k| \quad (x \in l_{\infty})$$

függvény norma az l_{∞} lineáris téren.

■ További feladatok

- 1. Bizonyítsa be, hogy a metrika megadott axiómái nem függetlenek: Legyen $\emptyset \neq M$ egy tetszőleges halmaz, és tegyük fel, hogy a $\varrho: M \times M \to \mathbb{R}$ függvényre az alábbi két tulajdonság teljesül: minden $x, y, z \in M$ esetén
 - 1) $\varrho(x,y) = 0 \iff x = y$,
 - 2) $\varrho(x,y) \le \varrho(x,z) + \varrho(y,z)$.

Mutassa meg, hogy (M, ϱ) metrikus tér.

2. Mutassa meg, hogy az $l_2 := \left\{ x = (x_n) : \mathbb{N} \to \mathbb{R} \;\middle|\; \sum_{k=0}^{+\infty} |x_k|^2 < +\infty \right\}$ halmaz a sorozatok közötti szokásos műveletekkel (összeadás, számmal való szorzás) lineáris tér \mathbb{R} felett, és az

$$||x||_2 := \sqrt{\sum_{k=0}^{+\infty} |x_k|^2} \quad (x \in l_2)$$

függvény norma az l_2 lineáris téren.

3. Jelölje $\mathbb{R}^{\mathbb{N}}$ a valós sorozatok szokásos $(+,\,\cdot_{\lambda})$ műveletekkel ellátott lineáris terét, és legyen

$$\varrho(x,y) := \sum_{n=1}^{+\infty} \frac{1}{2^n} \cdot \frac{|x_n - y_n|}{1 + |x_n - y_n|} \qquad (x = (x_n), y = (y_n) \in \mathbb{R}^{\mathbb{N}}).$$

Mutassa meg, hogy

- (a) a ϱ függvény metrika az $\mathbb{R}^{\mathbb{N}}$ lineáris téren,
- (b) ez a metrika nem származtatható normából, vagyis nincs olyan norma $\mathbb{R}^{\mathbb{N}}$ -en, amelyik a ρ metrikát indukálja.

Útmutatás. A (b) igazolásához először bizonyítsa be a következő állítást:

Egy X lineáris téren definiált ϱ metrika akkor és csak akkor származtatható egy $\|\cdot\|$ normából a $\varrho(x,y)=\|x-y\|$ összefüggéssel, ha ϱ minden $x,y,z\in X,\ \lambda\in\mathbb{R}$ esetén teljesíti a következő két feltételt:

- $(\mathrm{i}) \ \varrho(\lambda x,\lambda y) = |\lambda| \, \varrho(x,y) \quad (abszol\acute{u}t\ homogenit\acute{a}s),$
- (ii) $\varrho(x+z,y+z) = \varrho(x,y)$ (eltolásinvariáns).

Metrikus terek és normált terek 2.

■ Szükséges ismeretek

- A konvergens sorozat fogalma normált, illetve metrikus terekben. Alaptulajdonságok.
- Vektorsorozat konvergenciája.
- A Cauchy-féle konvergenciakritérium normált terekben. Teljes normált terek vagy Banach-terek, példák. A Cauchy-kritérium \mathbb{R}^n -ben.
- \bullet A Bolzano-Weierstrass-féle kiválasztási tétel \mathbb{R}^n -ben.

■ Feladatok

- 1. Melyek a konvergens sorozatok a diszkrét metrikus térben? Teljes-e a diszkrét metrikus tér?
- **2.** Legyen $(X, \|\cdot\|)$ normált tér, $a \in X$ és r > 0. Mutassuk meg, hogy a

$$K_r(a) := \{ x \in X \mid ||x - a|| < r \} \subset X$$

nyílt gömb nyílt halmaz, a

$$\overline{K}_r(a) := \left\{ x \in X \mid ||x - a|| \le r \right\} \subset X$$

zárt gömb pedig zárt halmaz.

3. Konvergens-e az

$$f_k(x) := \frac{k^2 x^3}{1 + k^2 x^4} \quad (x \in [1, 2], \ k \in \mathbb{N}^+)$$

függvénysorozat a $(C[1,2], \|\cdot\|_{\infty})$, illetve a $(C[1,2], \|\cdot\|_{1})$ normált térben?

4. Legyen

$$f_k(x) := x^k - x^{2k} \quad (x \in [0, 1], \ k \in \mathbb{N}^+).$$

Mutassuk meg, hogy az (f_k) függvénysorozat

- (a) az f(x) := 0 $(x \in [0,1])$ függvényhez konvergál a $(C[0,1], \|\cdot\|_1)$ normált térben,
- (b) nem konvergens a $\left(C[0,1],\|\cdot\|_{\infty}\right)$ normált térben!

■ Házi feladatok

1. Tegyük fel, hogy $(X, \|\cdot\|)$ normált tér, és legyen $\emptyset \neq A \subset X$. Bizonyítsa be, hogy

$$a \in A' \iff \forall K(a) : A \cap (K(a) \setminus \{a\}) \neq \emptyset.$$

2. Legyen

$$f_k(x) := \frac{kx^2}{1 + kx^2} \quad (x \in [0, 1], \ k = 1, 2, 3, \ldots).$$

Mutassa meg, hogy az (f_k) függvénysorozat a $(C[0,1], \|\cdot\|_{\infty})$ normált térben divergens, a $(C[0,1], \|\cdot\|_1)$ normált térben pedig az f(x) = 1 $(x \in [0,1])$ függvényhez konvergál!

■ Gyakorló feladatok

- 1. Legyen $(X, \|\cdot\|)$ tetszőleges normált tér. Bizonyítsa be, hogy ekkor
 - (a) tetszőleges $x_1, x_2, \dots, x_n \in X$ elemekre $(n \ge 2)$

$$||x_1 + x_2 + \dots + x_n|| \le ||x_1|| + ||x_2|| + \dots + ||x_n||;$$

(b) minden $x, y \in X$ esetén

$$|||x|| - ||y||| \le ||x - y||.$$

2. Tegyük fel, hogy az $(X, \|\cdot\|)$ normált tér $(x_k) : \mathbb{N} \to X$ sorozata konvergens. Lássa be, hogy ekkor egyértelműen létezik olyan $\alpha \in X$, amellyel

$$\forall \varepsilon > 0$$
-hoz $\exists k_0 \in \mathbb{N}, \ \forall k > k_0 : \|x_k - \alpha\| < \varepsilon$.

3. Határozza meg az

$$A := \left\{ \left(\frac{1}{n}, \frac{1}{m} \right) \mid n, m \in \mathbb{N}^+ \right\} \subset \mathbb{R}^2$$

halmaz torlódási pontjait az $\left(\mathbb{R}^2,\|\cdot\|_2\right)$ normált térben!

4. Bizonyítsa be, hogy az

$$f_k(x) := x^k \quad (x \in [0, 1], \ k \in \mathbb{N})$$

függvénysorozat a $(C[0,1], \|\cdot\|_1)$ normált térben konvergens, a $(C[0,1], \|\cdot\|_{\infty})$ normált térben pedig divergens.

Mi a helyzet akkor, ha C[0,1] helyett a $C[0,\alpha]$ lineáris teret tekintjük, ahol $0<\alpha<1$?

5. Konvergensek-e a $(C(I), \|\cdot\|_{\infty})$, iletve a $(C(I), \|\cdot\|_1)$ normált térben az alábbi függvénysorozatok:

(a)
$$f_k(x) := \frac{1}{x+k}$$
 $(x \in I := [0,2], k = 1,2,3,...),$

(b)
$$f_k(x) := \frac{k x}{1 + k^2 x^2}$$
 $(x \in I := [0, 2], k = 1, 2, 3, ...),$

(c)
$$f_k(x) := x^k - x^{k+1} \quad (x \in I := [0, 1], k \in \mathbb{N})$$
?

■ További feladatok

1. Bizonyítsa be, hogy az $(\mathbb{R}^n, \|\cdot\|_p)$ $(2 \le n \in \mathbb{N})$ tér $\|\cdot\|_p$ normája $(1 \le p \le +\infty)$ akkor és csak akkor származtatható skaláris szorzatból, ha p=2.

Útmutatás. Alkalmazza a Neumann–Jordan-tételt, és tekintse az x := (1, 0, ..., 0), $y := (0, 1, 0, ..., 0) \in \mathbb{R}^n$ vektorokat!

2. Legyen

$$\varrho(n,m) := \begin{cases} 2^{-n}, & \text{ha } n < m \\ 2^{-m}, & \text{ha } m < n \\ 0, & \text{ha } n = m \end{cases} (n, m = 1, 2, 3, \ldots).$$

- (a) Igazolja, hogy (\mathbb{N}, ϱ) metrikus tér.
- (b) Jellemezze a fenti metrikus térbeli konvergens sorozatokat.
- (c) Teljes-e ez a metrikus tér?
- 3. Legyen $n \in \mathbb{N}^+$, $M_n := \{0,1\}^n$ és $x = (x_1, \dots, x_n) \in M_n$.
 - (a) Mutassa meg, hogy a

$$\varrho_n(x,y) = \sum_{i=1}^n |x_i - y_i|, \qquad (x, y \in M_n)$$

függvény metrika az M_n halmazon! (Ez az ún. Hamming-távolság.)

- (b) Jellemezze a konvergens sorozatokat az (M_n, ϱ_n) metrikus térben!
- (c) Teljes-e ez a metrikus tér?
- 4. Legyen

$$\varrho(m,n) = \begin{cases} 0, & \text{ha } m = n \\ \frac{1}{1 + \min\{m, n\}}, & \text{ha } m \neq n \end{cases} \quad (m, n \in \mathbb{N}).$$

Mutassa meg, hogy

- (a) (\mathbb{N}, ϱ) metrikus tér,
- (b) (\mathbb{N}, ϱ) nem teljes.
- 5. Legyen A a C[0,1] lineáris térnek az a részhalmaza, amelyik pontosan az alábbi függvényeket tartalmazza:

$$f_n(x) := \begin{cases} 2n^2 x, & \text{ha } 0 \le x \le \frac{1}{2n} \\ 2n^2 \left(\frac{1}{n} - x\right), & \text{ha } \frac{1}{2n} \le x \le \frac{1}{n} \\ 0, & \text{ha } \frac{1}{n} \le x \le 1. \end{cases}$$

Igazolja, hogy

- (a) az Ahalmaz korlátos a $\left(C[0,1],\|\cdot\|_1\right)$ normált térben,
- (b) az A halmaz nem korlátos a $(C[0,1], \|\cdot\|_{\infty})$ normált térben.

Függvények folytonossága és határértéke

■ Szükséges ismeretek

- $\bullet \mathbb{R}^n \to \mathbb{R}^m$ típusú függvények folytonosságának a definíciója.
- A folytonosságra vonatkozó átviteli elv.
- $\bullet \mathbb{R}^n \to \mathbb{R}^m$ típusú függvények határértékének a definíciója. Ekvivalens átfogalmazások.
- A határértékre vonatkozó átviteli elv.

■ Feladatok

1. A koordinátasíkokkal párhuzamos metszetgörbék vizsgálata alapján szemléltessük az

$$f(x,y) := y^2 - x^2 \quad ((x,y) \in \mathbb{R}^2)$$

függvény grafikonját, vagyis a $z = y^2 - x^2$ egyenletű felületet (ez az ún. **nyeregfelület**)!

2. A definíció alapján bizonyítsuk be, hogy az

$$f(x,y) := \begin{cases} \frac{x^2 y^3}{2x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény folytonos a (0,0) pontban!

3. Mutassuk meg, hogy az

$$f(x,y) := \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény nem folytonos a (0,0) pontban!

4. Legyen

$$f(x,y) := \begin{cases} \frac{x^2y}{x^4 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Bizonyítsuk be, hogy

- (a) az f függvény leszűkítése minden, az origón átmenő egyenesre egy folytonos egyváltozós függvény,
- (b) de f nem folytonos az origóban: $f \notin C\{(0,0)\}!$
- 5. Lássuk be, hogy

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0,$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1} = 2.$

6. (a) Bizonyítsuk be, hogy az

$$f(x,y) := \begin{cases} \frac{x^4 y}{(x^2 + y^2)^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

függvény folytonos a (0,0) pontban!

(b) Mutassuk meg, hogy a

$$g(x,y) := \frac{x^4}{(x^2 + y^2)^2} \quad ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\})$$

függvénynek nincs határértéke a (0,0) pontban!

7. Léteznek-e a

(a)
$$\lim_{(x,y)\to(0,0)} \frac{(x+y)^2}{x^2+y^2}$$
, (b) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$

határértékek? Ha igen, számoljuk ki az értéküket!

■ Házi feladatok

1. Folytonosak-e az

$$f(x,y) := \begin{cases} \frac{x^3y^2}{3x^2 + 2y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0); \end{cases}$$
$$g(x,y) := \begin{cases} \frac{xy}{x^2 + xy + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

függvények az origóban?

2. Léteznek-e a

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
, (b) $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+3y^2}$

határértékek? Ha igen, számolja ki az értéküket.

■ Gyakorló feladatok

1. Határozza meg és szemléltesse az $f \in \mathbb{R}^2 \to \mathbb{R}$ függvénynek a koordinátasíkokkal párhuzamos síkmetszeteit és szintvonalait. Milyen felülettel szemléltethető a függvény a térbeli koordináta-rendszerben?

(a)
$$f(x,y) := \sqrt{1-x^2-y^2}$$
 $((x,y) \in \mathbb{R}^2, x^2+y^2 \le 1),$

(b)
$$f(x,y) := e^{-(x^2+y^2)} ((x,y) \in \mathbb{R}^2).$$

2. Az $f(x,y):=x^2+y^2$ $\big((x,y)\in\mathbb{R}^2\big)$ függvény grafikonja egy forgásparaboloid. Milyen felülettel szemléltethető a

$$g(x,y) := x^2 + y^2 - 2x + 4y + 1 \quad ((x,y) \in \mathbb{R}^2)$$

függvény a térbeli koordináta-rendszerben?

3. Legyen

$$f(x,y) := \frac{x^2y^2}{x^2y^2 + (x-y)^2} \qquad ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\})$$

Bizonyítsa be, hogy

(a) $\exists \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y) \right)$,

(b) $\exists \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right)$,

- (c) $\not\equiv \lim_{(0,0)} f$.
- 4. Léteznek-e a
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2 + y^2}$,

(b) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^4}{x^2+y^2}$,

(c) $\lim_{(x,y)\to(0,0)} \frac{(x+y)^3}{5x^3+y^3}$,

- (d) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{|x|+|y|}$,
- (e) $\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$

határértékek? Ha igen, számoljuk ki az értéküket!

■ További feladatok

1. Legyen

$$f(x,y) := (x+y) \cdot \sin \frac{1}{x} \cdot \sin \frac{1}{y} \quad \left((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \right)$$

Bizonyítsa be, hogy

(a) $\nexists \lim_{x\to 0} \left(\lim_{y\to 0} f(x,y)\right)$,

(b) $\nexists \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right)$,

- (c) $\exists \lim_{(0,0)} f$.
- 2. Mutassa meg, hogy

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2)^{x^2y^2} = 1.$$

Differenciálszámítás 1.

■ Szükséges ismeretek

- \bullet Parciális deriváltak $\mathbb{R}^n \to \mathbb{R}$ típusú függvényekre.
- Iránymenti deriváltak $\mathbb{R}^n \to \mathbb{R}$ típusú függvényekre.
- $\mathbb{R}^n \to \mathbb{R}^m$ típusú lineáris leképezések. Lineáris leképezések és mátrixok közötti kapcsolat: $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong \mathbb{R}^{m \times n}$.
- Totális derivált értelmezése $\mathbb{R}^n \to \mathbb{R}^m$ típusú függvényekre. A deriváltmátrix egyértelműsége és előállítása a parciális deriváltakkal.

■ Feladatok

1. Számítsuk ki az

$$f(x,y) := \frac{x^2 - y^3}{xy} \quad (x,y > 0)$$

függvény x és y változók szerinti parciális deriváltjait!

2. Melyik $f:\mathbb{R}^2 \to \mathbb{R}$ függvényt határozzák meg (együtt) az alábbi egyenlőségek:

$$\partial_x f(x,y) = x^2 y, \quad \partial_y f(x,y) = 1 + \frac{x^3}{3} \quad ((x,y) \in \mathbb{R}^2)$$
?

3. Legyen

$$f(x,y) := x^3y + x^2y^2 + x + y^2$$
 $((x,y) \in \mathbb{R}^2).$

Számítsuk ki a függvény másodrendű parciális deriváltjait az (x,y)=(1,0) pontban!

4. Legyen

$$f(x,y) := x^2 - xy + y^2$$
 $((x,y) \in \mathbb{R}^2),$

 $a:=(a_1,a_2)=(1,1)$ és v az x-tengely pozitív ágával α szöget bezáró euklideszi normában vett egységvektor.

- (a) Határozzuk meg a definíció alapján a $\partial_v f(a)$ iránymenti deriváltat!
- (b) Ellenőrizzük a kapott eredményt a tanult tétellel!
- (c) Melyik irány esetén lesz a derivált értéke a legnagyobb?
- 5. Határozzuk meg az

$$f(x,y) := \frac{y^3}{e^{2x+1}} \qquad ((x,y) \in \mathbb{R}^2)$$

függvény iránymenti deriváltját a $P(-\frac{1}{2},1)$ pontban az u=(1,2) vektor által meghatározott irány mentén!

6. A definíció alapján bizonyítsuk be, hogy az

$$f(x,y) := 2x^2 + 3xy - y^2 \quad ((x,y) \in \mathbb{R}^2)$$

függvény totálisan deriválható az a := (1,2) pontban, és adjuk meg az f'(a) deriváltmátrixot! Az f'(a)-ra így kapott eredményt ellenőrizzük a Jacobi-mátrix kiszámításával!

7. A definíció alapján lássuk be, hogy az

$$f(x,y) := \begin{bmatrix} x^2 + xy \\ y^2 - 2x^2 \end{bmatrix} \quad ((x,y) \in \mathbb{R}^2)$$

függvény totálisan deriválható az a = (-1, 1) pontban, és határozzuk meg az f'(a) deriváltmátrixot! Az f'(a)-ra így kapott eredményt ellenőrizzük a Jacobi-mátrix kiszámításával!

8. Bizonyítsuk be, hogy az

$$f(x,y) := \sqrt{|xy|}$$
 $((x,y) \in \mathbb{R}^2)$

függvény folytonos a (0,0) pontban, ott léteznek a parciális deriváltak, de f nem differenciálható a (0,0) pontban!

■ Házi feladatok

1. Számolja ki az

$$f(x,y) := xe^{yx} - xy$$
 $((x,y) \in \mathbb{R}^2)$

függvény iránymenti deriváltját az (1,1) pontban a v=(3,4) vektor által meghatározott irány mentén!

2. A definíció alapján lássa be, hogy az

$$f(x,y) := x^3 + xy \quad ((x,y) \in \mathbb{R}^2)$$

függvény totálisan deriválható az a := (2,3) pontban, és adja meg az f'(a) deriváltmátrixot! Az f'(a)-ra így kapott eredményt ellenőrizze a Jacobi-mátrix kiszámításával!

3. A definíció alapján lássa be, hogy az

$$f(x,y) := \begin{bmatrix} x^2 + y^2 \\ x^2 - y^2 \end{bmatrix} ((x,y) \in \mathbb{R}^2)$$

függvény deriválható a a := (1, 2) pontban, és adja meg f'(a)-t. Az f'(a)-ra így kapott eredményt ellenőrizze a Jacobi-mátrix kiszámításával!

■ Gyakorló feladatok

1. Számítsa ki az

(a)
$$f(x,y) := y^2 \ln(xy)$$
 $(x,y > 0)$,

(b)
$$f(x,y) := e^{x^2y} - 2x^2y^7\sin(x+y)$$
 $(x, y \in \mathbb{R}),$

(c)
$$f(x,y) := e^x \cos y - x \ln y \quad (x,y > 0)$$

függvény x és y változók szerinti parciális deriváltjait!

- **2.** Határozza meg az $f(x,y) := x^3 e^{y^2} ((x,y) \in \mathbb{R}^2)$ függvény összes első- és másodrendű parciális deriváltját az (x,y) := (2,1) pontban!
- 3. Milyen v irányban lesz a $\partial_v f(1,2)$ iránymeni derivált a legnagyobb, ha

$$f(x,y) := e^{y-2x} \sin \pi xy \quad ((x,y) \in \mathbb{R})?$$

- 4. Vizsgálja meg a definíció szerint az alábbi függvények totális differenciálhatóságát a megadott pontokban!
 - (a) $f(x,y) := x^2 + xy$ $((x,y) \in \mathbb{R}^2)$, a = (2,1),
 - (b) $f(x,y) := (x+y)^3 \quad ((x,y) \in \mathbb{R}^2), \quad a = (1,2),$
 - (c) $f(x,y) := \sqrt[3]{x^3 + y^3}$ $((x,y) \in \mathbb{R}^2)$, a = (0,0),

(d)
$$f(x,y) := \begin{cases} \frac{x^3}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0), \end{cases}$$
 $a = (0,0).$

5. Legyen

$$A := \{(x, y) \in \mathbb{R}^2 \mid x^2 + (y - 1)^2 < 1 \text{ vagy } x^2 + (y + 1)^2 < 1\},$$

$$B := \{(x, 0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

Bizonyítsa be, hogy a

$$\chi_{A \cup B}(x, y) := \begin{cases} 1, & \text{ha } (x, y) \in A \cup B \\ 0, & \text{ha } (x, y) \in \mathbb{R}^2 \setminus (A \cup B) \end{cases}$$

függvény (az $A \cup B$ halmaz karakterisztikus függvénye) minden irányban deriválható a (0,0) pontban, de nem deriválható (totálisan) a (0,0) pontban!

6. Mutassa meg, hogy az

$$f(x,y) := \begin{cases} 1, & \text{ha } x > 0 \text{ \'es } y = x^2 \\ 0, & \text{egy\'eb } (x,y) \in \mathbb{R}^2 \text{ pontban} \end{cases}$$

képlettel értelmezett $f: \mathbb{R}^2 \to \mathbb{R}$ függvény a (0,0) pontban deriválható minden irányban, de ott totálisan nem deriválható, mert még csak nem is folytonos a (0,0) pontban!

7. Legyen

$$f(x,y) := \sqrt{3(x-1)^4 + 2y^2}$$
 $((x,y) \in \mathbb{R}^2).$

Igazolja, hogy $\exists \partial_x f(1,0)$, de $\not\equiv \partial_y f(1,0)$!

8. Legyen

$$f(x,t) := \frac{1}{2a\sqrt{\pi t}} \cdot \exp\left(-\frac{(x-b)^2}{4a^2t}\right) \quad (x \in \mathbb{R}, \ t \in (0, +\infty),$$

ahol $a, b \in \mathbb{R}, \ a \neq 0$ paraméterek. Mutassa meg, hogy fennáll a

$$\partial_t f(x,t) = a^2 \cdot \partial_{xx} f(x,t) \quad (x \in \mathbb{R}, \ t \in (0,+\infty))$$

egyenlőség! (Ez az ún. hővezetési egyenlet.)

Differenciálszámítás 2.

■ Szükséges ismeretek

- Felület érintősíkja.
- Egy elégséges feltétel a totális deriválhatóságra.
- Algebrai műveletek differenciálható függvényekkel.
- Az összetett függvény deriválása (a láncszabály).

■ Feladatok

1. Legyen

$$f(x,y) := \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Mutassuk meg, hogy az f függvény a (0,0) pontban

- (a) folytonos,
- (b) minden irány mentén deriválható,
- (c) totálisan nem deriválható!

2. Legyen

$$f(x,y) := \sqrt{x^2 - 2y^2}$$
 $((x,y) \in \mathbb{R}^2, x^2 > 2y^2).$

- (a) Számítsuk ki az f függvény elsőrendű parciális deriváltjait!
- (b) Írjuk fel a $z = \sqrt{x^2 2y^2}$ egyenletű felület $P_0(3, 2)$ pontjához tartozó érintősíkjának az egyenletét, és adjuk meg a sík egy normálvektorát!

3. Legyen

$$f(x,y) := \begin{cases} (x^2 + y^2) \cdot \sin \frac{1}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

- (a) Határozzuk meg a $\partial_1 f$, $\partial_2 f$ parciálisderivált-függvényeket!
- (b) Bizonyítsuk be, hogy $\partial_1 f, \partial_2 f \notin C\{(0,0)\}!$
- (c) Mutassuk meg, hogy $f \in D\{(0,0)\}!$
- 4. Legyen

$$f(x,y) := \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

Igazoljuk, hogy a $\partial_{12}f(0,0)$ és a $\partial_{21}f(0,0)$ parciális deriváltak léteznek, de ezek nem egyenlők:

$$\partial_{12} f(0,0) \neq \partial_{21} f(0,0).$$

Mutassuk meg azt is, hogy f nem differenciálható kétszer a (0,0) pontban!

5. Tegyük fel, hogy az

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 és a $q:=(q_1, q_2): \mathbb{R} \to \mathbb{R}^2$

függvények mindenütt differenciálhatóak. Bizonyítsuk be, hogy ekkor a $F:=f\circ g$,

$$F(x) := (f \circ g)(x) = f(g(x)) = f(g_1(x), g_2(x)) \quad (x \in \mathbb{R})$$

összetett függvény mindenütt differenciálható, és $\forall x \in \mathbb{R}$ pontban

$$F'(x) = (f \circ g)'(x) = \partial_1 f(g_1(x), g_2(x)) \cdot g_1'(x) + \partial_2 f(g_1(x), g_2(x)) \cdot g_2'(x).$$

6. Tegyük fel, hogy az

$$f: \mathbb{R}^2 \to \mathbb{R}$$
 és a $q:=(q_1, q_2): \mathbb{R}^2 \to \mathbb{R}^2$

függvények mindenütt differenciálhatóak. Bizonyítsuk be, hogy a $F := f \circ g : \mathbb{R}^2 \to \mathbb{R}$ függvény is mindenütt differenciálható, és számítsuk ki a

$$F(x) = (f \circ g)(x) = f(g(x)) = f(g_1(x), g_2(x)) \quad (x \in \mathbb{R}^2)$$

kompozíciófüggvénynek a parciálisderivált-függvényeit!

■ Házi feladatok

- 1. Írja fel a $z = x^2 + 3y^2$ egyenletű felület $(x_0, y_0) = (3, 2)$ pontjához tartozó érintősíkjának az egyenletét, és adja meg a sík egy normálvektorát!
- 2. Legyen

$$f(x,y) := \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{ha } (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} \\ 0, & \text{ha } (x,y) = (0,0). \end{cases}$$

- (a) Mutassa meg, hogy $f \in C\big\{(0,0)\big\}!$
- (b) Határozza meg a $\partial_1 f$ és $\partial_2 f$ függvényeket \mathbb{R}^2 minden pontjában!
- (c) Bizonyítsa be, hogy $f \not\in D\{(0,0)\}!$

■ Gyakorló feladatok

1. Legyen

$$f(x,y) := y e^{x^2} ((x,y) \in \mathbb{R}^2),$$

$$g(u,v) := \begin{bmatrix} u v^2 \\ u + v^2 \end{bmatrix} ((u,v) \in \mathbb{R}^2).$$

Számítsa ki az $F:=f\circ g\in\mathbb{R}^2\to\mathbb{R}$ függvény parciálisderivált-függvényeit!

2. Legyen

$$f(x,y) := x^2 + 2y^2 \quad ((x,y) \in \mathbb{R}^2),$$

$$g(u,v) := \begin{bmatrix} u - v^2 \\ uv \end{bmatrix} \quad ((u,v) \in \mathbb{R}^2).$$

Tetszőleges $a:=(a_1,a_2)\in\mathbb{R}^2$ pontban számítsa ki $\big(f\circ g\big)'(a)$ -t!

3. Mutassa meg, hogy ha $F:\mathbb{R}\to\mathbb{R}, F\in D$ és

$$f(x,y) := y \cdot F(x^2 - y^2) \qquad ((x,y) \in \mathbb{R}^2),$$

akkor

$$y^2 \cdot \partial_x f(x, y) + xy \cdot \partial_y f(x, y) = x \cdot f(x, y)$$
 $((x, y) \in \mathbb{R}^2).$

■ További feladatok

1. Legyen $f: \mathbb{R} \to \mathbb{R}, f \in D^3$ és

$$F(x, y, z) := f(xyz)$$
 $((x, y, z) \in \mathbb{R}^3).$

Bizonyítsa be, hogy alkalmas $g:\mathbb{R}\to\mathbb{R}$ függvénnyel

$$\partial_{123}F(x,y,z) = g(xyz) \qquad ((x,y,z) \in \mathbb{R}^3).$$

Differenciálszámítás 3.

■ Szükséges ismeretek

- Magasabb rendű deriváltak.
- Young tétele.
- Taylor-polinomok.
- Taylor-formula a Lagrange-féle maradéktaggal.

■ Feladatok

1. Mutassuk meg, hogy az $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$, $f \in D^2\{a\}$ függvény $a \in \operatorname{int} \mathcal{D}_f$ ponthoz tartozó második Taylor-polinomja a

$$T_{a,2}f(a+h) = f(a) + \langle f'(a), h \rangle + \frac{1}{2} \langle f''(a) \cdot h, h \rangle \quad \left(h = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix} \in \mathbb{R}^n \right)$$

alakban is felírható!

2. Legyen

$$P(x,y) := 2x^2 - xy - y^2 - 6x - 3y + 5 \quad ((x,y) \in \mathbb{R}^2).$$

- (a) Írjuk fel a P polinom a:=(1,-2) ponthoz tartozó második Taylor-polinomját, vagyis $T_{a,2}P(x,y)$ t!
- (b) Mutassuk meg, hogy

$$P(x,y) = T_{a,2}P(x,y) \quad (\forall (x,y) \in \mathbb{R}^2).$$

- 3. Alkalmas függvény alkalmas ponthoz tartozó első Taylor-polinomjával számítsuk ki az $1,02^{3,01}$ egy közelítő értékét, és azt hasonlítsuk össze számológéppel kapott eredménnyel!
- 4. Legyen

$$f(x,y) := \ln(1+x+y) \quad ((x,y) \in K_{\frac{1}{4}}(0,0)).$$

Írjuk fel az f függvény a := (0,0) ponthoz tartozó első Taylor-polinomját, és határozzuk meg, hogy $|x|, |y| \le 0,01$ esetén ez a polinom mekkora hibával közelíti meg a függvényt!

5. Adjunk közelítő képletet az

$$f(x,y) := \ln(1+x) \cdot \ln(1+y) \quad ((x,y) \in K_{\frac{1}{2}}(0,0))$$

függvényértékekre, a függvény (0,0) ponthoz tartozó második Taylor-polinomjával! Számítsunk ki néhány közelítő értéket, és azokat hasonlítsuk össze számológéppel kapott eredményekkel!

■ Házi feladatok

1. Írja fel az

$$f(x,y) := x^y + y^2 \cdot \cos(x-1) \quad ((x,y) \in (0,+\infty) \times \mathbb{R})$$

függvény a = (1,3) ponthoz tartozó második Taylor polinomját!

2. Számítsa ki az $e^{0,1}$ ·sin 0, 2 egy közelítő értékét alkalmas függvény alkalmas ponthoz tartozó első Taylor-polinomjával, majd azt hasonlítsa össze számológéppel kapott eredménnyel!

■ Gyakorló feladatok

1. A második Taylor-polinom segítségével adjon közelítő formulát az alábbi kifejezésekre az a pont valamely környezetéből vett (x, y) esetén:

(a)
$$\frac{\cos x}{\cos y}$$
, $a := (0,0)$;

(b)
$$\sin \frac{x}{1+y}$$
, $a := (-\pi, 2)$.

Számítson ki néhány közelítő értéket, és hasonlítsa össze azokat számológéppel kapott eredményekkel!

2. Tegyük fel, hogy $f \in \mathbb{R}^2 \to \mathbb{R}$, $i = (i_1, i_2) \in \mathbb{N}^2$ és $f \in D^3\{a\}$. Bizonyítsa be, hogy minden $h = (h_1, h_2) \in \mathbb{R}^2$ pontban

$$\sum_{|i|=3} \frac{\partial^i f(a)}{i!} h^i = \partial_{111} f(a) \cdot \frac{h_1^3}{6} + \partial_{112} f(a) \cdot \frac{h_1^2 h_2}{2} + \partial_{122} f(a) \cdot \frac{h_1 h_2^2}{2} + \partial_{222} f(a) \cdot \frac{h_2^3}{6}.$$

3. Az

$$f(x,y) := x^2y + xy^2 - 2xy \quad ((x,y) \in \mathbb{R}^2)$$

függvény esetén számítsa ki az $a_{nk} \in \mathbb{R}$ $(n, k \in \mathbb{N})$ együtthatókat, ha

$$f(x,y) = \sum_{n,k=0}^{+\infty} a_{nk}(x-1)^n (y+1)^k \quad ((x,y) \in \mathbb{R}^2).$$

4. Legyen az $f \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$ függvény s-szer differenciálható az $a \in \text{int } \mathcal{D}_f$ pontban. Mutassa meg, hogy a $T_{a,s}f$ az egyetlen a legfeljebb s-edfokú, n-változós polinomok között, amelyre teljesül, hogy $T_{a,s}f(a) = f(a)$ és

$$\partial_{i_1 i_2 \dots i_k} T_{a,s} f(a) = \partial_{i_1 i_2 \dots i_k} f(a)$$

minden $k \leq s$ és $1 \leq i_1, \ldots, i_k \leq n$ esetén.

5. Bizonyítsa be, hogy ha a $G \in \mathbb{R}^n \to \mathbb{R}$ $(n \in \mathbb{N}^+)$ egy legfeljebb s-edfokú, n-változós polinomra teljesül a

$$\lim_{h \to \theta_n} \frac{f(a+h) - G(a+h)}{\|h\|^s} = 0$$

egyenlőség (ahol $\|\cdot\|$ tetszőleges norma \mathbb{R}^n -en), akkor $G \equiv T_{a,s}f$. (Tehát a legfeljebb s-edfokú polinomok közül a $T_{a,s}f$ polinom az, amelyik az f függvényt az a pont egy környezetében a legjobban közelíti.)

Differenciálszámítás 4.

■ Szükséges ismeretek

- Taylor-formula a Peano-féle maradéktaggal.
- $\bullet \mathbb{R}^n \to \mathbb{R}$ típusú függvények lokális szélsőértékei.
- Elsőrendű szükséges feltétel a lokális szélsőértékre.
- Kvadratikus alakok értelmezése és osztályozása. A Sylvester-kritérium.
- Másodrendű elégséges feltétel a lokális szélsőértékre az általános, illetve az n=2 speciális esetben.
- Másodrendű szükséges feltétel a lokális szélsőértékre.

■ Feladatok

1. A Sylvester-kritérium, ha n = 2: Legyen

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \in \mathbb{R}^{2 \times 2}.$$

Mutassuk meg, hogy a

$$Q(h) := \langle A \cdot h, h \rangle = ah_1^2 + 2bh_1h_2 + ch_2^2 \quad (h = [h_1 \ h_2]^T \in \mathbb{R}^2)$$

kvadratikus alak, illetve az $A \in \mathbb{R}^{2 \times 2}$ mátrix

- pozitív definit \iff a > 0 és $\det A > 0$,
- negatív definit \iff a < 0 és $\det A > 0$,
- indefinit \iff det A < 0.
- 2. Határozzuk meg az

$$f(x,y) := x^3 - 3x^2 + 2xy + y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

3. Határozzuk meg az

$$f(x,y) := x^4 + y^4 - x^2 - 2xy - y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

4. Legyen

$$f(x,y) := x^4 + y^2$$
 és $g(x,y) := x^3 + y^2$ $((x,y) \in \mathbb{R}^2)$.

Bizonyítsuk be a következő állításokat:

- (a) Az f függvénynek az a := (0,0) pontban lokális (és abszolút) minimuma van, és g-nek ugyanott nincs lokális szélsőértéke.
- (b) Az f'(a) = (0,0), g'(a) = (0,0), az f''(a) és a g''(a) Hesse-mátrixok pozitív szemidefinitek, de nem pozitív definitek.

A lokális szélsőértékre megfogalmazott másodrendű szükséges feltétel tehát nem elégséges.

5. Határozzuk meg az

$$f(x,y) := x^4 y^5$$
 $((x,y) \in \mathbb{R}^2)$

függvény lokális szélsőértékhelyeit!

6. Határozzuk meg az

$$f(x,y) := 8x + \frac{1}{y} + \frac{y}{x} \quad \left((x,y) \in \mathbb{R}^2 \text{ és } x \cdot y \neq 0 \right)$$

függvény lokális szélsőértékhelyeit!

■ Házi feladatok

1. Határozza meg az

$$f(x,y) := x^2 + xy + y^2 - 5x - 4y + 1 \quad ((x,y) \in \mathbb{R}^2)$$

függvény lokális szélsőértékhelyeit.

2. Határozza meg az

$$f(x,y) := x^3 + y^3 - 9xy \quad ((x,y) \in \mathbb{R}^2)$$

függvény lokális szélsőértékhelyeit.

3. Határozza meg az

$$f(x,y) := (2x^2 + 3y^2) \cdot e^{-x^2 - y^2} \quad ((x,y) \in \mathbb{R}^2)$$

függvény lokális szélsőértékhelyeit!

■ Gyakorló feladatok

1. Határozza meg az alábbi függvények lokális szélsőértékeit!

(a)
$$f(x,y) := x^4 y^2 (4 - x - y) \quad ((x,y) \in \mathbb{R}^2),$$

(b)
$$f(x,y) := x^3y^2(4-x-y) \quad ((x,y) \in \mathbb{R}^2),$$

(c)
$$f(x,y) := 2x^3 - 6x + y^3 - 12y + 5 \quad ((x,y) \in \mathbb{R}^2),$$

(d)
$$f(x,y) := x^3 y^5 \quad ((x,y) \in \mathbb{R}^2),$$

(e)
$$f(x,y) := x^2 + 2y + \frac{2}{xy}$$
 $(x, y \neq 0)$,

(f)
$$f(x,y) := \frac{y}{x} + \frac{x}{y} + (x-1)^{2022}$$
 $(x, y \neq 0)$,

(g)
$$f(x,y) := (x^2 + 2y^2) \cdot e^{-x^2 - y^2} \quad ((x,y) \in \mathbb{R}^2),$$

(h)
$$f(x,y) := (1 + e^y) \cos x - ye^y \quad ((x,y) \in \mathbb{R}^2).$$

Differenciálszámítás 5.

■ Szükséges ismeretek

- $\bullet \mathbb{R}^n \to \mathbb{R}$ típusú függvények abszolút szélsőértékei. Weierstrass tétele.
- Az egyenletes folytonosság fogalma $\mathbb{R}^n \to \mathbb{R}$ függvényekre. Heine tétele.
- A paraméteres integrál értelmezése.
- A paraméteres integrál deriválhatósága.

■ Feladatok

1. Határozzuk meg az

$$f(x,y) := xy(x^2 + y^2 - 1) \quad ((x,y) \in \mathbb{R}^2)$$

függvénynek az abszolút szélsőértékhelveit és abszolút szélsőértékeit a

$$H := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$$

zárt körlapon!

2. Határozzuk meg az

$$f(x,y) := x^3 - 12x + y^3 - 3y$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek az abszolút szélsőértékhelyeit és abszolút szélsőértékeit az alábbi halmazon:

$$H := \{(x, y) \in \mathbb{R}^2 \mid -2 \le x \le 3, \quad -x \le y \le 2\}.$$

3. Határozzuk meg az

$$f(x,y) := x^3 y^5 \qquad ((x,y) \in \mathbb{R}^2)$$

függvénynek a

- (a) lokális szélsőértékhelyeit és lokális szélsőértékeit,
- (b) az A(0,0), B(1,0), C(0,1) pontok által határolt zárt háromszöglapon az abszolút szélsőértékhelyeit és az abszolút szélsőértékeit.
- 4. Téglatest alakú, felülről nyitott $4\,m^3$ térfogatú tartályt akarunk készíteni a lehető legkevesebb anyag felhasználásával. Hogyan válasszuk meg a tartály méreteit, és az elkészítéséhez mennyi anyagra lesz szükségünk?

■ Házi feladatok

1. Határozza meg az

$$f(x,y) := 2x + 6y + \frac{18}{xy}$$
 $(x > 0, y > 0)$

függvénynek az abszolút szélsőértékhelyeit és abszolút szélsőértékeit!

2. Határozza meg az

$$f(x,y) := 2x^3 - 6x + y^3 - 12y + 5$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek a

- (a) a lokális szélsőértékhelyeit és a lokális szélsőértékeit,
- (b) az abszolút szélsőértékhelyeit és az abszolút szélsőértékeit az A(0,0), B(0,-3), C(-2,-3), D(-2,0) pontok által határolt zárt téglalapon.

■ Gyakorló feladatok

1. Számítsa ki az

$$f(x,y) := x^3 + y^3 - 9xy$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek az

$$A := \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 5, \ 0 \le y \le 2x \} \subset \mathcal{D}_f$$

halmazon az abszolút szélsőértékeit.

2. Határozza meg az

$$f(x,y) := x^3 - 3x^2 - y^2$$
 $((x,y) \in \mathbb{R}^2)$

függvénynek a

- (a) lokális szélsőértékhelyeit és a lokális szélsőértékeit,
- (b) az $A:=\left\{(x,y)\in\mathbb{R}^2\mid x\geq -1,\ x-1\leq y\leq 4\right\}$ halmazon az abszolút szélsőértékeit.
- 3. Határozza meg az alábbi függvények abszolút szélsőértékeit:
 - (a) f(x,y) := y(2x-3) $((x,y) \in A)$, ahol a A halmaz az $y=x^2$ egyenletű parabola, az x-tengely és az x=2 egyenes által határolt zárt síkrész;
 - (b) $f(x,y) := x^2 y^2 x$ $((x,y) \in B)$, ahol a B halmaz az $x^2 + y^2 = 1$ egyenletű kör és a koordinátatengelyek által határolt zárt síkrész az első síknegyben;
 - (c) $f(x, y, z) := \sin x \cdot \sin y \cdot \sin z$, ahol x, y, z egy háromszög szögei.
- 4. Adott ponton áthaladó síkok közül melyik van az origótól a legmesszebb?
- 5. Egy folyó partján elterülő földterületből szeretnénk a maximális nagyságú egyenlőszárú tarpéz alakú területet körülhatárolni $200\,m$ hosszú kerítéssel. Hogyan válasszuk meg a trapéz adatait?
- **6.** Legyenek adottak az $x_i \in \mathbb{R}^3$ (hely)vektorok és az $m_i > 0$ "súlyok" $(i = 1, 2, ..., n; n \in \mathbb{N}^+)$. Adja meg azt az $x \in \mathbb{R}^3$ pontot, amelyre a $\sum_{i=1}^n m_i \cdot r_i^2$ összeg minimális, ha r_i az x_i euklideszi távolsága x-től (i = 1, 2, ..., n).

Integrálszámítás 1.

■ Szükséges ismeretek

- \bullet A többszörös integrál értelmezése $\mathbb{R}^n \to \mathbb{R}$ típusú függvényekre.
- Kettős integrálok kiszámítása téglalapokon.
- Kettős integrálok kiszámítása normáltartományokon.

■ Feladatok

1. Tekintsük az $I := [0,1] \times [0,2]$ téglalapot. Kétféle sorrendben számítsuk ki az

$$\iint\limits_{I} x^3 \sqrt{y} \, dx \, dy$$

kettős integrált!

2. Számítsuk ki az

$$\iint\limits_I x \cdot \sin(xy) \, dx \, dy \qquad \left(I := \left[1, 3\right] \times \left[0, \frac{\pi}{2}\right]\right).$$

kettős integrált!

3. Számítsuk ki a következő kettős integrált:

$$\iint\limits_{H} (2xy - x^3) \, dx \, dy,$$

aholHaz $y=x^2$ és az y=x+2egyenletű görbék által közrezárt korlátos síkrész!

4. Legyen $H:=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;0\leq x\leq 1,\;0\leq y\leq 1-x\right\}$. Számítsuk ki a

$$\iint\limits_{H} (x+y) \, dx \, dy$$

integrált!

5. Jelölje H a (0,2), az (1,1) és a (3,2) csúcspontú zárt háromszöglapot. Számítsuk ki az

$$\iint\limits_{H} y \, e^x \, dx \, dy$$

integrált!

6. Számítsuk ki az

$$f(x,y) := e^x (\sqrt{x} + y)$$
 $((x,y) \in \mathbb{R}^2)$

függvény integrálját az x=1 és $y^2=x$ egyenletű görbék által határolt korlátos és zárt halmazon úgy, hogy a H-val jelölt integrálási tartományt az x tengelyre nézve normáltartományként fogjuk fel!

■ Házi feladatok

1. Számítsa ki a

$$\iint_{H} \frac{y^2}{x^2 + 1} \, dx \, dy \qquad \left(H := [0, 1] \times [-2, 2] \right)$$

kettős integrált!

2. Számítsa ki a

$$\iint\limits_{H} \frac{x^2}{y^2} \, dx \, dy$$

kettős integrált, aholH az $y\geq \frac{1}{x},$ az $y\leq x$ és az $1\leq x\leq 2$ egyenlőtlenségekkel meghatározott korlátos és zárt síkrész!

■ Gyakorló feladatok

1. Számítsa ki a következő kettős integrálokat a megadott H téglalapokon:

(a)
$$\iint_H (4-x-y) dx dy$$
, $H := [0,2] \times [0,1]$,

(b)
$$\iint_H (x^2y - 2xy) dx dy$$
, $H := [0, 3] \times [-2, 0]$,

(c)
$$\iint_H x \sqrt{x^2 + y} \, dx \, dy$$
, $H := [0, 1] \times [0, 3]$,

(d)
$$\iint_{H} \frac{y}{1+xy} dx dy$$
, $H := [0,1] \times [0,1]$,

(e)
$$\iint_H e^{2x+y} dx dy$$
, $H := [0, \ln 2] \times [0, \ln 5]$,

(f)
$$\iint_{H} xye^{x} dx dy$$
, $H := [0, 1] \times [1, 2]$,

(g)
$$\iint_{H} \frac{y}{(1+x^2+y^2)^{3/2}} dx dy, \qquad H := [0,1] \times [0,1].$$

2. Számítsa ki a

$$\iint_{H} (x+6y) \, dy \, dx \qquad \Big(H := \big\{ (x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ x \le y \le 5x \big\} \Big)$$

kettős integrált!

3. Számítsa ki a

$$\iint\limits_{H} \cos(x+y) \, dy \, dx \qquad \Big(H := \big\{ (x,y) \in \mathbb{R}^2 \, \big| \, 0 \le x \le \pi, \, 0 \le x \le y \big\} \Big)$$

kettős integrált!

4. Számítsa ki a

$$\iint\limits_{H} e^{2x+3y} \, dx \, dy \qquad \Big(H := \big\{ (x,y) \in \mathbb{R}^2 \, \big| \, \, 0 \le y \le 1, \, \, 3y \le x \le 3 \big\} \Big)$$

kettős integrált!

5. Számítsa ki a

$$\iint\limits_{H} xy^2 \, dx \, dy$$

kettős integrált, ahol H az $y=x^2$ és $y=\sqrt{8x}$ egyenletű görbék által közrezárt korlátos és zárt síkrész!

6. Számítsa ki a

$$\iint\limits_{H} \frac{1}{\sqrt{x}} \, dx \, dy$$

kettős integrált, ahol H az $y^2 \le 8x$, az $y \le 2x$ és az $y + 4x \le 24$ egyenlőtlenségekkel meghatározott korlátos és zárt síkrész!

■ További feladatok

1. Legyen $H := [0,1] \times [0,1]$ és

$$f(x,y) := \begin{cases} \frac{x-y}{(x+y)^3}, & \text{ha } xy \neq 0, \\ 0, & \text{ha } xy = 0. \end{cases}$$

Igazolja, hogy $f \notin R(H)$, de a szukcesszív integrálás elvégezhető a H téglalapon!

2. Számítsa ki a

$$\iint_{H} \operatorname{sign}(x - y^{2}) \, dy \, dx \qquad \left(H := \left\{ (x, y) \in \mathbb{R}^{2} \colon x^{2} + y^{2} \le 2 \right\} \right)$$

kettős integrált!

3. Mutassuk meg, hogy minden 0 < a < b valós paraméter esetén

(*)
$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx = \ln \left(\frac{b+1}{a+1} \right).$$

Megoldás. Legyen

$$g(x) := \frac{x^b - x^a}{\ln x} \quad (x \in (0, 1)).$$

Mivel $\lim_{x\to 0+0}g(x)=0$ és $\lim_{x\to 1-0}g(x)=b-a$, továbbá $g\in C(0,1)$, ezért a szóban forgó integrál létezik.

Tekintsük ezután az

$$f(x,y) := x^y \quad ((x,y) \in [0,1] \times [a,b] =: I)$$

függvényt. Mivel $f \in C(I)$, ezért $f \in R(I)$, és

$$\iint\limits_I f(x,y) \, dx \, dy = \int\limits_0^1 \left(\int\limits_a^b f(x,y) \, dy \right) dx = \int\limits_a^b \left(\int\limits_0^1 f(x,y) \, dx \right) dy.$$

Ekkor egyrészt

$$\int_{a}^{b} \left(\int_{0}^{1} x^{y} dx \right) dy = \int_{a}^{b} \left[\frac{x^{y+1}}{y+1} \right]_{x=0}^{x=1} dy = \int_{a}^{b} \frac{1}{y+1} dy = \ln \left(\frac{b+1}{a+1} \right).$$

Másrészt, ha 0 < x < 1, akkor

$$\int_{0}^{1} \left(\int_{a}^{b} x^{y} dy \right) dx = \int_{0}^{1} \left[\frac{x^{y}}{\ln x} \right]_{y=a}^{y=b} dx = \int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx,$$

ezért (*) valóban igaz.

<u>Megjegyzés.</u> Igazolható, hogy a (*) egyenlőség minden -1 < a < b valós paraméter esetén is teljesül.

Integrálszámítás 2.

■ Szükséges ismeretek

- Fubini tétele kettős integrálokra.
- Kettős integrálok kiszámítása téglalapokon.
- Kettős integrálok kiszámítása normáltartományokon.
- Integráltranszformáció kétváltozós függvényekre.
- Síkidom területe.
- Hengerszerű test térfogata.

■ Feladatok

1. Tegyük fel, hogy $f: \mathbb{R}^2 \to \mathbb{R}$ folytonos függvény. Tekintsük a következő integrált:

$$\int_{0}^{1} \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx \, dy.$$

Szemléltessük az integrálási tartományt! Cseréljük fel az integrálás sorrendjét!

2. Számítsuk ki a

$$\int_{0}^{1} \int_{x^2}^{1} y \sin x^2 \, dx \, dy$$

integrált!

3. Számítsuk ki az

$$\iint_{1 \le x^2 + y^2 \le 4} \ln\left(x^2 + y^2\right) dx \, dy$$

kettős integrált!

- 4. Számítsuk ki az xy = 1, xy = 4, valamint az y = x és az y = 3x egyenletű görbék által meghatározott és az első síknegyedben fekvő zárt síkrész területét!
- 5. Határozzuk meg a $z=1-x^2-y^2$ egyenletű felület (forgásparaboloid) és az xy sík által határolt korlátos és zárt térrész térfogatát!
- 6. Szemléltessük az

$$x^2 + y^2 = 1$$
, $z = 0$, $z = x + 2y + 3$

egyenletekkel meghatározott korlátos és zárt térbeli tartományt, majd kettős integrál alkalmazásával számítsuk ki e térrész térfogatát!

■ Házi feladatok

1. Számítsa ki az

$$f(x,y) := \frac{1}{x^2 + y^2 + 1}$$
 $((x,y) \in \mathbb{R}^2)$

függvény integrálját az $x^2+y^2 \leq 1$ és $y \geq 0$ egyenlőtlenségekkel meghatározott korlátos tartományon!

- 2. Számítsa ki a $z = 5 x^2 y^2$ forgásparaboloid és a z = 1 sík által határolt korlátos és zárt térrész térfogatát!
- 3. Számítsa ki a

$$\int_{0}^{1} \int_{x}^{1} \frac{x \sin y}{y} \, dy \, dx$$

integrált!

■ Gyakorló feladatok

1. Számítsa ki az

$$\iint_{1 \le x^2 + y^2 \le 3} \frac{x}{x^2 + y^2} \, dx \, dy$$

kettős integrált!

2. Számítsa ki az

$$\iint\limits_{x^2+y^2<1} e^{x^2+y^2} \, dx \, dy$$

kettős integrált!

3. Számítsa ki a

$$\iint\limits_{D} \ln(1+x^2+y^2)\,dy\,dx \qquad \Big(D:=\big\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\le 9,\ x\le 0,\ y\ge 0\big\}\Big)$$

kettős integrált!

4. Számítsa ki a

$$\iint\limits_{D} \operatorname{arc} \operatorname{tg} \frac{y}{x} \, dy \, dx \qquad \left(D := \left\{ (x, y) \in \mathbb{R}^2 \colon x^2 + y^2 \le 1, \ x \ge 0, \ y \ge 0 \right\} \right)$$

kettős integrált!

5. Számítsa ki az

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1 \qquad (a, b > 0 \text{ paraméterek})$$

egyenletű ellipszis területét!

6. Mekkora annak a korlátos és zárt D síkidomnak a területe, melyet az alábbi egyenlőtlenség határoz meg:

$$x^2 + y^2 \le 2ax$$
 $(a > 0 \text{ paraméter}).$

- 7. Számítsa ki az xy=1, xy=4, valamint az $y^2=x$ és az $y^2=4x$ egyenletű görbék által meghatározott és az első síknegyedben fekvő zárt síkrész területét!
- 8. Számítsa ki a $z=x^2+y^2-1$ forgásparaboloid, a z=2 és a z=5 síkok által határolt korlátos és zárt térrész térfogatát!

Integrálszámítás 3.

■ Feladatok

- 1. Számítsuk ki annak a korlátos és zárt $T \subset \mathbb{R}^3$ térrésznek a V(T) térfogatát, amelyet az $x^2 + y^2 + z^2 = \mathbb{R}^2$ egyenletű gömbfelület és az $x^2 Rx + y^2 = 0$ egyenletű hengerfelület határol! (Ez az ún. Viviani-féle test.)
- 2. Legyenek a, b és c pozitív valós paraméterek. Határozzuk meg az

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

egyenletű ellipszoiddal határolt térrész térfogatát!

3. Számítsuk ki a

$$\iiint\limits_{H} \frac{dx\,dy\,dz}{(1+x+y+z)^3}$$

hármas integrált, ahol H a koordinátasíkok és az x+y+z=1 egyenletű sík által határolt kompakt térrész!

- 4. Határozzuk meg az $y^2=x,\,y=0$ és az x=4 egyenletű görbék által határolt kompakt síkidom súlypontjának a koordinátáit!
- 5. Legyen f nemnegatív folytonos függvény az $[a,b]\subset\mathbb{R}$ kompakt intervallumon. Tegyük fel, hogy az

$$A := \{(x, y) \in \mathbb{R}^2 \mid x \in [a, b], \ 0 \le y \le f(x)\}$$

síkidom t(A) területe pozitív: t(A) > 0. Bizonyítsuk be, hogy a

$$H := \{(x, y, z) \in \mathbb{R}^3 \mid a \le x \le b, \ y^2 + z^2 \le f^2(x)\}$$

forgástest V(H) térfogata egyenlő a t(A)-nak és a forgatás során az A súlypontja által leírt kör kerületének a szorzatával! (Ez az ún. második Pappus-Guldin-szabály.)