第7章脉冲电路

Pulse Circuits

作用在电路中短暂的电压或电流信号叫做脉冲 信号。(既非直流又非正弦交流的电压或电流)

数字电路中用的脉冲信号为矩形波

在同步时序电路中,作为时钟信号的矩形脉冲 控制和协调整个系统的工作. 因此, 时钟脉冲的特性 直接关系到系统能否正常工作.

脉冲信号参数:

脉宽 (T_{W}) : 半高宽(脉冲最大值一半时的宽度)

幅度(V_m): 电压变化最大幅度

周期(T):两相邻脉冲间间隔

频率
$$(f): f = 1/T$$

占空比(
$$q$$
): $q = \frac{T_w}{T}$ 一个脉冲中有效的脉冲比;
一个脉冲中高电平占的比例。

§ 7.1 555定时器 555 Timer

与非门基本 RS-FF

比较器

$$+ \geq - C = 1$$

$$+ \ge - C = 1$$

 $+ < - C = 0$

$\overline{S} \overline{R}$	$Q \bar{Q}$	FF state
0 0	1 1	\overline{S} \overline{R} $0 \rightarrow 1$ 不定
0 1	1 0	Set (1) $\overline{S} \neq \overline{R}$
1 0	0 1	Reset (0) $Q = \overline{R}$
1 1	保持	No- change

555 定时 器功能

 $V_{\rm CO}$ 悬空 不起作用

$\overline{R}_{\mathrm{D}}$	TH (6)	TR (2)	\overline{R} (C ₁	\overline{S} (C ₂)	Q (3)	\overline{Q}	T 状态 (7)
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	0	截止(断开)
		$> \frac{1}{3}V_{\rm CC}$			1保	持 0	保持
1	$>\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	1	导通 (GND)
0	Ф	Ф	Φ	Ф	0	1	导通 (GND)

555 定时器管脚图

总结

②
$$V_2 > \frac{1}{3}V_{CC}$$
, $V_6 > \frac{2}{3}V_{CC}$, $Q = 0$ $\overline{Q} = 1$ **T**导通

③
$$V_2 > \frac{1}{3}V_{CC}$$
, $V_6 < \frac{2}{3}V_{CC}$, **Q**保持

若用 V_{CO} , V_6 : V_{CO} 为参考电压

V2: ½ VCO 为参考电压

§ 7.2 施密特触发器 Schmitt Trigger

(1) 双稳态

$$\begin{cases} Q = 1, Q = 0 \\ Q = 0, \overline{Q} = 1 \end{cases}$$

(2) 滯后

输入电压增大和减小过程中,输出翻转 电平不同.

Backlash 回差 Hysteresis 滞后 ΔV

回差电压

$$\Delta V = V_{\mathrm{T+}} - V_{\mathrm{T-}}$$

符号

7.2.1 由555定时器构成的施密特触发器

Schmitt Trigger

- 2端和6端接在一起(两个比较器输入一致)
- $4 端 R_D$ 接高电平

两个输出端波形相同, 幅度可能不同

工作原理

设输入为三角形波形

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \quad V_{\rm 2}, V_{\rm 6} < 1/3 \ V_{\rm CC}$$
 $Q = 1$

$$V_i \uparrow$$
, $V_2 > 1/3 V_{CC}$, $V_6 < 2/3 V_{CC}$

Q 保持

$$V_{\rm i} > 2/3 \ V_{\rm CC}, \ V_{2}, V_{6} > 2/3 \ V_{\rm CC}$$

 $Q = 0$

$$V_{\rm i} \downarrow$$
, 1/3 $V_{\rm CC} < V_{\rm i} < 2/3 V_{\rm CC}$

Q 保持

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \ V_{2}, V_{6} < 1/3 \ V_{\rm CC},$$
 $Q = 1$

结论

- 1) 三角波 → 矩形波
- 2) 滞后

回差电压
$$\Delta V = V_{T+} - V_{T-} = \frac{2}{3}V_{cc} - \frac{1}{3}V_{cc} = \frac{1}{3}V_{cc}$$

3) 555 定时器分压电阻形成的滞后

7.2.2 与非门构成的施密特触发器 (略)

7.2.3 集成施密特触发器 IC Schmitt Trigger

74LS132是由4个独立的两输入与非门构成的TTL集成施密特触发器.

管脚图

A 或 B 或 二 者 $< V_{T-}, Y = 1;$ 只有 当 A 和 B 都 $> V_{T+}, Y = 0.$

逻辑功能
$$Y = \overline{AB}$$

个施密特与非门电路

电路:

正向阈值

 $V_{T+} = 1.5 \sim 2.0 \text{ V}$

反向阈值

 $V_{T_{-}} = 0.6 \sim 1.1 \text{ V}$

典型回差电压

 $\Delta V = 0.8 \text{ V}$

极管与门 电路

7.2.4 Schmitt 触发器应用

Applications of Schmitt Trigger

1) 波形转换

2) 幅度鉴别

注:输出信号的振荡幅度是门电路的高(3.6 V),低(0.1 V)电平,与 V_{T_+} , V_{T_-} 无关。

3. 光控路灯开关

工作原理

天亮, $R_{\rm L}$ 小, $V_{\rm i}$ 大, $V_{\rm i}$ > (2/3 $V_{\rm CC}$), Q=0. 继电器不吸合开关,路灯不亮; 天暗, $R_{\rm L}$ 大, $V_{\rm i}$ 小, $V_{\rm i}$ < (1/3 $V_{\rm CC}$), Q=1. 继电器吸合开关,路灯亮.

15

练习

一个 555定时器构成的施密特触发器以及输入波形如下图 (a)和 (b)所示. $V_{cc}=12$ V. V_{co} 悬空. 求: (1) V_{T+} , V_{T-} 及 ΔV 的值; (2) 根据 V_i 波形画出输出 V_o 波形; (3) 求出当 $V_{co}=10$ V时 V_{T+} , V_{T-} 及 ΔV 的值.

解:

(2) V。波形

(1)
$$V_{T+} = \frac{2}{3}V_{cc} = \frac{2}{3} \times 12 \text{ V} = 8 \text{ V}$$

 $V_{T-} = \frac{1}{3}V_{cc} = \frac{1}{3} \times 12 \text{ V} = 4 \text{ V}$
 $\Delta V = V_{T+} - V_{T-} = 8 - 4 = 4 \text{ V}$

(3)
$$V_{co} = 10 \text{ V}$$

 $V_{T+} = V_{co} = 10 \text{ V}, \quad V_{T-} = \frac{1}{2}V_{co} = 5 \text{ V}$
 $\Delta V = 5 \text{ V}$

§ 7.3 单稳态触发器

One-Shots (Monostable Multivibrators)

单稳态触发器

- ①一个稳定状态,一个不稳定状态;
- ② 单稳态触发器通常处于稳定状态,在触发时 变到不稳定状态;
- ③ 不稳定状态持续 $T_{\rm W}$ 时间后,自动回到稳定 状态.

符号 T_w 取决于定时元件 不可重复触发

7.3.1 与非门构成的单稳态触发器 (略)

7.3.2 555 定时器构成的单稳态触发器

555 Timer Connected as an One-Shot

- 6,7 脚连在一起
- 2 脚触发端接输入V_i, 非触发时为高电平,下降 沿(低电平)触发

R, C 定时元件

电容隔直,使 V_{CO} 悬空,防止引入干扰,既不是1,也不是0.

确定电路的稳定状态:

设
$$Q=0$$
, $\overline{Q}=1$,

放电管 T 导通, $7 \rightarrow$ 地

7, 6
$$\to$$
 GND, $(V_6 < \frac{2}{3}V_{CC})$

$$V_i = 1, (V_2 > \frac{1}{3} V_{CC})$$
 $Q \text{ } \text{$\not$ Q$} = 0$

设 Q=1, Q=0, T 截止, $7\to$ 开路

$$V_{\rm CC}$$
 向 C 充电, $V_{\rm C}$ 升高,

$$\overline{Q}$$
=1, 放电管 T 导通(7地)

$$Q=0$$
 保持

$$rightharpoonup V_{\rm C} > \frac{2}{3}V_{\rm CC}, \ Q = 0$$

$$\overline{Q}$$
=1, 放电管 T 导通(7地) $V_6 < \frac{2}{3}V_{\rm CC}$, $V_2 > \frac{1}{3}V_{\rm CC}$

所以,稳定状态为:
$$Q=0$$

单稳态触发器工作原理:

触发前,Q=0 (T导通, 6,7地) 触发瞬间, $V_{\rm i}<\frac{1}{3}V_{\rm CC}$ Q=1 $\bar{Q}=0$, T截止 (断开),C 充电

充电路径: $V_{CC} \rightarrow R \rightarrow C \rightarrow$ 地

时间常数 $\tau_1 = RC$, C 充电, $V_C \uparrow$

当
$$V_{\rm C} > \frac{2}{3}V_{\rm CC} (V_6 > \frac{2}{3}V_{\rm CC})$$

$$V_{\rm i}$$
早已回到 1 ($V_{\rm 2} > \frac{1}{3} V_{\rm cc}$)

$$Q=0$$
, $\overline{Q}=1$, T导通(地),

C 放电,路径: $C \rightarrow T \rightarrow$ 地

放电时间常数 $\tau_2 = R_{on}C$,

R_{on} : T导通电阻

$$V_{
m C}$$
 \downarrow

暂稳态持续时间 T_{W}

$$T_{w} = RC \ln \frac{V_{C}(\infty) - V_{C}(0^{+})}{V_{C}(\infty) - V_{C}(t)}$$

$$= RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = 1.1RC$$

 $T_{\rm W}$ 是重要参数.

$$T_{\rm W} = 1.1RC$$

暂稳态持续时间是电容C充电到 $\frac{2}{3}V_{\rm CC}$ 所用时间

单稳态触发器的恢复时间 (recovery time):

$$T_{\rm R} = (3\sim5)R_{\rm on}C = 4R_{\rm on}C$$

1. 触发信号最小周期:

$$T = T_{\rm w} + T_{\rm R} = 1.1RC + 4R_{\rm on}C$$

T: resolution 分辨率

触发信号最大工作频率:

$$f = \frac{1}{T}$$

实际触发周期 T_i : $T_i \ge T$

7.3.3 集成单稳态触发器74121

74121 是非重复触发的单稳态触发器,FF进入暂稳态后,不再接收新触发信号,直到 $T_{\rm W}$ 时间后结束。

IEEE 符号:

7 GND, 14 V_{CC}, 2, 8, 12, 13 空

输入 (触发):

 $\begin{cases} A_1, A_2$ 低有效 . "或" B 高有效 , Schmitt $(A_1 + A_2)B$

CLK 正边沿触发

 R_{int} : 内电阻 (不用时悬空)

Cext: 外接电容

 $R_{\rm ext}/C_{\rm ext}$: 共用

*非数字信号,接R,C

74121 功能表

I	np	uts	Outputs
A ₁	A ₂	В	$Q \overline{Q}$
0	X	1	0 1
X	0	1	0 1
×	×	0	0 1
1	1	X	0 1
1	1	1	ᇺ
\downarrow	1	1	几几
1	\downarrow	1	
0	X	↑	
X	0	1	

74121

- (1) 稳定状态 (Q=0)
- 3变量 (A_1, A_2, B)
 - →8个组合
- 8个状态都是稳定状态
 - (2) 暂稳态
 - ① B = 1, A_1 和 A_2 至少有一个为下降沿,另一个为高电平。
 - ② $A_1 \cdot A_2 = 0$, B上升沿 \mathcal{L}

(3) 定时元件接法

定时元件 R, C

外接
$$\begin{cases} R: RX \sim V_{CC} 之间 \\ C: CX \sim RX 之间 \end{cases}$$

内接
$$R_{int}$$
 (RI): $R_{int} = 2 \text{ k}\Omega$
RI ~ V_{CC} (内接电阻)
 C : CX (外接电容)

74121暂稳态时间 $T_{\rm w}$:

$$T_{\rm w} = 0.7RC$$

7.3.4 单稳态触发器应用

1. 波形转换

把不符合要求的波形整形成 $T_{\rm w}$, $V_{\rm m}$ 都一定的脉冲.

$$T_{\rm w} \sim R, C.$$

555 定时器单稳态:

触发
$$\left\{ \frac{\text{负边沿}}{<\frac{1}{3}V_{\text{cc}}} \right\}$$

脉冲展宽和变窄

2. 定时

例 2. 楼道照明灯控制电路

定时元件: R, C. TH: 晶闸管

灯亮时间: $T_{\text{W}} = 1.1RC$

工作原理

按 A之前, V_i = 1, Q = 0, 稳态, T_1 截止, $V_e = 0$, TH 开路, 灯不亮;

接 $A, V_i = 0, Q = 1,$ T_1 导通, $V_e > 0$, TH 导通, 灯亮.

3. 延时

 $T_{\rm W}$ 下降沿触发下一个电路.

例:花房自动控制系统:每次喷药2 s,马上喷水15 s

分析: 第一个单稳态 $T'_{w} = 2s$ (喷药),

T'w 下降沿触发喷水开关:

$$T''_{W} = 15 \text{ s} (7 \text{K}).$$

两个单稳态触发器

定时器单稳态,在 T'_{w} 后 Q_{1} 不回到高电平,在两个单稳态触发器之间需要一个微分电路,形成一个窄脉冲来触发 T''_{w} .

例 3 曝光电路

4. 用 74121 设计电路, 其输入输出波形如图所示:

设 $R_1 = R_2 = 10$ kΩ, 求 C_1 , C_2

分析

在输入和输出间需要一个输出*Q*',其下降沿触发第二个74121.

$$T_{W1} = 100 \times 10^{-6}$$

= $0.7R_1C_1$

$$T_{W2} = 30 \times 10^{-6}$$

= $0.7R_2C_2$

电路 方法 1

暂稳态

$$\begin{cases}
A_1 = A_2 & \downarrow \\
B = 1
\end{cases}$$

方法 2

暂稳态

II
$$\left\{\begin{array}{l} \boldsymbol{B} & \stackrel{\frown}{} \\ \boldsymbol{A_1} \cdot \boldsymbol{A_2} = \boldsymbol{0} \end{array}\right.$$

121

方法 3

暂稳态

$$\begin{cases}
\mathbf{B} & \mathbf{F} \\
A_1 \Box A_2 = 0
\end{cases}
\begin{cases}
\mathbf{B} = \mathbf{1} \\
A_1 = A_2 \mathbf{I}
\end{cases}$$

$$0.7C'_1R'_1 = 90 \ \mu s$$

练习

一个单稳态触发器电路及输入波形如下图所示. 其中 V_{cc} =10 V, R=33 k Ω , C=0.1 μ F.

- 求: 1) 暂稳态持续时间 $T_{\text{W}}=$?
 - 2) 对应 V_i 波形画出 V_C 和 V_O 波形.

 $T_{\rm w} = 1.1RC = 1.1 \times 33 \times 10^3 \times 1.1 \times 10^{-6} = 3.63 \text{ ms}$

§ 7.4 多谐振荡器

Astable Multivibrators (Oscillators)

产生矩形波的自激振荡器.

1) 两个不稳定状态
$$\begin{cases} Q = 0, \ \overline{Q} = 1 \\ Q = 1, \ \overline{Q} = 0 \end{cases}$$

- 2) 无触发信号
- 3) 输出: 周期性的从一个暂稳态 转到另一个哲稳态

许多电路可以组成多谐振荡器,如TTL逻辑门,施 密特触发器,石英晶体,555 定时器等。

利用RC电路中电容的充放电来改变电平的高低。

7.4.1 555 定时器构成的多谐振荡器 Astable Multivibrator Composed of 555 Timer

2,6 端相连

定时元件: R_1, R_2, C

利用放电管(7端)和电容充放电改变电压

工作原理: 开关闭合前, $V_C = 0$

电源开, $V_{\rm C}=0$

电容上电压不能跳变

$$Q = 1$$
 ($V_i < 1/3 V_{CC}$) $\overline{Q} = 0$, T 截止 (7 断开)

C: 充电 充电路径: $V_{CC} \rightarrow R_1 \rightarrow R_2 \rightarrow C \rightarrow$ 地

充电时间常数 $\tau_1 = (R_1 + R_2)C$

$$V_{\rm C}$$
 ↑ , $1/3~V_{\rm CC}$ < $V_{\rm C}$ < $2/3~V_{\rm CC}$ Q : 保持

当
$$V_{\rm C} \rightarrow 2/3 \ V_{\rm CC}$$

当
$$V_C \rightarrow 2/3$$
 V_{CC} $Q = 0$, $\overline{Q} = 1$, \overline{T} 导通 (7 地)

$$C$$
: 放电 $C \rightarrow R_2 \rightarrow T \rightarrow$ 地

$$\tau_2 = R_2 C$$

$$V_{
m C}\!\!\downarrow$$

$$\stackrel{\text{\tiny def}}{=} V_{\text{\tiny C}} \rightarrow 1/3 \ V_{\text{\tiny CC}}$$

$$Q=1$$
, $\overline{Q}=0$, T 截止

C:再充电

两个暂稳态持续时间 T_1, T_2 :

高电平时间:

$$T_{1} = \tau_{1} \ln \frac{V_{C}(\infty) - V_{C}(0^{+})}{V_{C}(\infty) - V_{C}(T_{1})} = (R_{1} + R_{2})C \ln \frac{V_{CC} - \frac{1}{3}V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}} = 0.7(R_{1} + R_{2})C$$

低电平时间:

$$T_2 = \tau_2 \ln \frac{V_C(\infty) - V_C(0^+)}{V_C(\infty) - V_C(T_2)} = R_2 C \ln \frac{0 - \frac{2}{3}V_{CC}}{0 - \frac{1}{3}V_{CC}} = 0.7 R_2 C$$

振荡周期
$$T$$
: $T = T_1 + T_2 = 0.7(R_1 + 2R_2)C$

频率
$$f$$
: $f = \frac{1}{T}$

占空比:
$$q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} > \frac{1}{2}$$

占空比可调的多谐振荡器

充放电原理相同, 充放电回路不同 当 $V_0 = 1$, T截止 (7 断开),

C: 充电,充电路径:

$$V_{CC} \rightarrow R_A \rightarrow D_1 \rightarrow C \rightarrow$$
¹

时间常数: $\tau_1 = R_A C$

$$V_{\mathbf{C}} \uparrow V_C > \frac{2}{3} V_{CC} V_{\mathbf{0}}(\mathbf{Q}) = \mathbf{0},$$

T 导通, C: 放电

放电路径:

$$C \rightarrow R_B \rightarrow D_2 \rightarrow T \rightarrow$$
 地

时间常数: $\tau_2 = R_B C$

两个暂稳态时间

$$\begin{cases}
T_H = 0.7R_A C \\
T_L = 0.7R_B C
\end{cases}$$

周期

$$T = T_{\rm H} + T_{\rm L} = 0.7(R_{\rm A} + R_{\rm B})C$$

占空比

$$q = \frac{T_H}{T} = \frac{R_A}{R_A + R_B}$$

$$\stackrel{\text{def}}{=} R_A = R_B$$

$$q=\frac{1}{2}$$
 方波

7.4.3 石英晶体振荡器

Quartz Crystal Oscillators

实际工作中,经常需要一个稳定的频率.

方法: 石英晶体振荡器

电抗一频率特性

当电压频率为 f_0 时, 其电抗最小 将石英晶体接入多谐振荡器,频率为f₀的电压信号最容易通过,其他频率信号经过石英晶体时被衰减。

振荡器的工作频率一定等 于石英晶体的振荡频率 f_0 振荡频率取决于石英晶体的固有谐振频率 f_0 ,而不是电阻和电容。

石英晶体振荡频率

结晶方向 外形尺寸

电路 石英晶体 C_2 G_1 C_1 G_2 R_{F1} R_{F2}

7.4.5 多谐振荡器应用

Applications of Astable Multivibrators

例 1. 用555定时器设计一个每隔2 s振荡3 s的多谐振 荡器, 其振荡频率为200 Hz, q = 1/2, 电容取10 μF.

分析: 两个振荡器

I:振荡 3 s,停2 s II:频率: 200 Hz $q = \frac{1}{2}$

两个振荡器:

用555定时器的4脚复位端来控制II是否工作

$$\begin{bmatrix} \overline{R}_D = 1, & \text{II} & \text{If} & \text{II} & q > 1/2, 用不可调类型; \\ \overline{R}_D = 0, & \text{II} 清 0, & \text{II} : q = 1/2, 用占空比可调型 \end{bmatrix}$$

$$Q_1 = 1, \overline{R}_D = 1$$

Ⅱ工作;

$$Q_1 = 0$$
, $\overline{R}_D = 0$

Ⅱ停止,

$$V_0 = Q_2 = 0$$

电路参数:

振荡器 I:已知

$$\begin{cases}
T = 3 + 2 = 5 \text{ s} \\
q = \frac{3}{5} \quad C_1 = 10 \mu\text{F}
\end{cases}$$

$$T = 0.7(R_1 + 2R_2)C_1 = 5 \text{ s}$$

$$q = \frac{T_1}{T} = \frac{R_1 + R_2}{R_1 + 2R_2} = \frac{3}{5}$$

$$R_2 = 2R_1$$

 $5=0.7(R_1+4R_1)\times 10\times 10^{-6}$

$$\begin{cases} f = 200 \text{ Hz}, T = \frac{1}{f} = \frac{1}{200} = 0.005 \text{ s} \\ q = \frac{1}{2} & C_2 = 10 \mu\text{F} \end{cases}$$

$$T=0.7(R_A + R_B)C_2=0.005 \text{ s}$$

$$q = \frac{R_A}{R_A + R_B} = \frac{1}{2}$$

$$R_A = R_B$$

$$1.4R_A = \frac{0.005}{10 \times 10^{-6}} = 500$$

$$\begin{cases} R_1 = 143 \ K\Omega \\ R_2 = 286 \ K\Omega \end{cases}$$

$$R_A = R_B = 357 \ \Omega$$

"叮咚"门铃电路 例 2

无人叫门, A断开, $V_{C1}=0$, 4脚→地, 电路 不振荡,门铃不响;

工作原理:

有人按铃 A, V_{CC} 同 时向 C_1 和 C_2 克电.

 $V_{C1} = 1,4$ 脚高电平, 振荡

 $V_{\rm CC}$ **555** 驱动电路 $\pm 0.01 \mu F$

按钮A: 按"叮",

 ${C_1 4 脚 \rightarrow$ 高电平,振荡 C_2 定时元件

按A

充电:
$$T_1 = 0.7(R_2 + R_3)C_2$$

放电:
$$T_2 = 0.7R_3C_2$$

$$T=0.7(R_2+2R_3)C_2$$
 $f=\frac{1}{T}$

松开A V_{C1} 不突变, 仍高

$$V_{\text{CC}} \rightarrow R_1 \rightarrow R_2 \rightarrow R_3 \rightarrow C_2 \rightarrow$$
地

充电:
$$T_1 = 0.7(R_1 + R_2 + R_3)C_2$$

放电:
$$T_2 = 0.7R_3C_2$$

$$T'=0.7(R_1+R_2+2R_3)C_2$$
 $f'=\frac{1}{T'}$

$$T$$
小, f 大,声音尖 "叮"

$$T$$
'大, f '小,声音粗 "咚"

例 3. 救护车、警笛等扬声器发声电路

555 输出:

$$V_{\rm OH} = 3.6 {\rm \ V}$$

$$V_{\rm OL} = 0.3 \text{ V}$$

I控制 II:

I输出高, $Q_1=1$, $V_{CO}=3.6$ V,

 Q_2 振荡周期 T_2 ;

 T_2 大, f_2 小

I输出低, $Q_1=0$, $V_{CO}=0.3$ V,

 Q_2 振荡周期 T_3 ;

 T_3 小, f_3 大

扬声器发声频率分别为 f_2 和 f_3 ;持续时间分别为 t_1 和 t_2 .

例 4. 两相时钟产生电路及工作波形。

电路

多谐振荡器 → CLK

T'-FF $\rightarrow Q$ (CLK 下降沿)

$$CLK_1 = CLK \cdot Q$$

工作波形

 $CLK_2 = CLK \cdot \overline{Q}$

课堂练习: P.173 7.13 ($V_{cc} = 12V$)

7.13 电路及输入波形 V_i 如题图7.14所示,对应 V_i 画出 Q_1 、 Q_2 波形,并计算 T_w 。

解: I: 施密特触发器

II: 单稳态触发器

$$T_{\rm w} = 1.1 {\rm RC}$$

= $1.1 \times 10 \times 10^3 \times 4 \times 10^{-6}$
= 44 ms

7.4.4 Schmitt-FF构成的多谐振荡器

施密特触发器滞后:

回差电压

$$\Delta V = V_{\mathrm{T+}} - V_{\mathrm{T-}}$$

将Schmitt-FF反向输出端经 RC 积分回路接入输入端,利用输入电压在 V_{T_+} 与 V_{T_-} 之间往复变化,在输出端得到矩形脉冲。

$$(V_{\rm C})_{V_{\rm i}}$$

初始, $V_{\rm C}=0$,

 $V_{\rm i}$ 低, $V_{\rm O}$ 高.

充电: $V_0 \rightarrow R \rightarrow C$.

当 $V_i = V_{T+}$, V_O 跳变到低.

放电:
$$C \rightarrow R$$
. 当 $V_i = V_{T-}$, V_O 跳变到高.

电路振荡

高、低电平时间:

$$T_{1} = RC \ln \frac{V_{OH} - V_{T-}}{V_{OH} - V_{T+}} = 0.7RC \qquad T_{2} = RC \ln \frac{V_{OL} - V_{T+}}{V_{OL} - V_{T-}} = 0.7RC$$

$$T_1 = T_2 = 0.7RC$$
 方波,占空比不可调

占空比可调振荡器

电路

工作原理: 设 V_0 = 高电平,

C 充电 $V_0 \rightarrow R_1 \rightarrow D_1 \rightarrow C \rightarrow$ 地

C 放电: $C \rightarrow D_2 \rightarrow R_2$

$$V_{i} \downarrow \qquad \qquad \stackrel{\text{def}}{=} V_{T}$$

 V_0 = 高电平, C 充电

$$V_{\rm i}$$
 ↑

输出矩形波

高电平时间 T_1 : $T_1 = 0.7 R_1 C$

低电平时间 T_2 : $T_2 = 0.7 R_2 C$

周期 T: $T = T_1 + T_2 = 0.7(R_1 + R_2)C$

占空比
$$q = \frac{T_1}{T} = \frac{R_1}{R_1 + R_2}$$

例: 已知右图电路中 Schmitt-FF 为CMOS 电路 CC40106, $V_D = 12 \text{ V}$, $R_1 = R_2 = 20 \text{ k}\Omega$, $C = 0.01 \mu\text{F}$, 试求该 电路的振荡周期T.

周期
$$T: T = T_1 + T_2 = 0.7(R_1 + R_2)C$$

= $0.7 \times (2 \times 20 \times 10^3) \times 0.01 \times 10^{-6}$
= 280 µs

作业

7.2 (V_{T}) 7.15

7.8 7.18

7.9 7.19

7.13