1 Sieć

1.1 Technologia Bluetooth Low Energy

Są dwie formy technologii Bluetooth - Basic Rate (BR) oraz LE (Low Energy). Wybraliśmy technologię Low Energy ze względu na oszczędność energii zużywanej na transmisje.

1.2 Zasięg BLE

Zasięg BLE zależy od klasy urządzenia implementującego technologię. Najbardziej powszechną, używaną w telefonach jest klasa 2. Urządzenia tej klasy mają w większości przypadków zasięg 5-10m (w dobrych warunkach max 20m). Zasięg urządzeń klasy 1 wynosi 20-30m (max 100m).

1.3 Przebieg transmisji

Częstotliwości używane przez Bluetooth są podzielone na 40 fizycznych kanałów oddzielonych od siebie o 2 MHz. 3 z nich używane są jako kanały rozgłoszeniowe, a pozostałych 37 jako kanały informacyjne. Fizyczny kanał podzielony jest na jednostki czasowe - zdarzenia (ang. events). Informacje przesyłane są podczas trwania zdarzeń. Urządzenie rozgłaszające (ang. advertiser) wysyła jeden pakiet rozgłaszający na jednym kanale, po czym zmienia kanał rozgłoszeniowy. Wysłanie 3 pakietów na 3 kanałach to jedno zdarzenie. Urządzenia, które chcą nawiązać połączenie (ang. initiators) nasłuchują pakietów rozgłoszeniowych, jeżeli uda im się jeden odebrać wysyłają żądanie do advertisera o nawiązanie połączenia. Połączenie zostaje zaakceptowane, jeżeli advertiser zaakceptuje żądanie, wtedy initiator staje się zarządzającym (ang. master), a advertiser podwładnym (ang. slave). Ich komunikacja odbywa się poprzez 37 kanałów informacyjnych. Informacje przesyłane są między nimi podczas eventów zachodzących w tych kanałach. Master inicjuje zajście każdego eventu. Wysyłanie informacji zachodzi naraz tylko w jednym kanale.

Master i slave tworzą sieć nazwaną piconet. W sieci tej zawsze występuje jeden master i kilku slave. Ilość urządzeń slave, mogących być podpięta do jednej sieci piconet jest ograniczona przez zasoby fizyczne mastera. Urządzenia w sieci piconet używają schematu, według którego zmieniają kanały transmisji. Schemat ten jest algorytmiczne zdeterminowany przez mastera, który dostarcza slave'om mechanizm synchronizacji - ustalony czas, co który urządzenia zmieniają kanał komunikacyjny. Schemat ten może być zmieniany, aby wyłączyć z transmisji kanały, które są mocno obciążone przez pośrednie urządzenia, nieuczestniczące w sieci piconet.

Komunikacja w sieci piconet zachodzi tylko między masterem i jego slave'ami. Master komunikuje się naraz z jednym slave'em, chyba że master pełni funkcję Broadcaster zdefiniowaną w profilu Bluetooth GAP. Jedno urządzenie może pełnić rolę mastera w jednej sieci piconet i slave'a w innej, jak i również mastera albo slave'a w dwóch różnych sieciach piconet. Sieć złożona z sieci piconet nazwana jest siecią scatternet. Zmiana ról w jednej sieci piconet nie jest możliwa.

1.4 Topologia sieci

Rysunek poniżej przedstawia sieć scatternet użytą w projekcie.

Rysunek 1: Topologia sieci

- W sieci piconet 1 instruktor pełni funkcję nadajnika, a poszkodowani odbiornika.
- W sieci piconet 2 KAM pełni rolę nadajnika, a instruktor odbiornika.
- W sieci piconet 3 KAM pełni rolę odbiornika, a triażyści nadajników.

1.5 BLE 4.2 vs BLE 5.0

Dla BLE 5.0 dodano kilka ulepszeń, które mogą wpływać na jakość działania budowanego systemu informatycznego.

- 1. Dla technologii LE 4.2 przepływność symbolowa wynosi 1Mb/s dla niekodowanych korekcyjne danych, a z kodowaniem 500kb/s lub 125kb/s. Dla technologii LE 5.0 przepływność symbolowa dla niekodowanych danych może zostać zwiększona do 2Mb/s.
- 2. LE Channel Selection Algorithm 2 (CSA 2) algorytm przeskakiwania między kanałami, który lepiej unika interferencji i zanikania fal radiowych (multipath fading).

W związku z tym, że technologia BLE 5.0 nie wprowadza wyraźnych ulepszeń w systemie rozwiązaniem pozostaje technologia BLE 4.2 z uwagi na większą dostępność i niższą cenę urządzeń na rynku.