Computational Analysis of Big Data

Week 2

A Data Scientist's most fundamental tools

Visualization O O O O

1 1000

11000

-

This is data

It's usually some (large) file full of text and numbers

```
Terminal — less — 107 \times 37
<?xml version="1.0" encoding="UTF-8"?>
<gpx version="1.1" creator="Garmin Connect"</pre>
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd http://ww
w.garmin.com/xmlschemas/GpxExtensions/v3 http://www.garmin.com/xmlschemas/GpxExtensionsv3.xsd http://www.ga
rmin.com/xmlschemas/TrackPointExtension/v1 http://www.garmin.com/xmlschemas/TrackPointExtensionv1.xsd"
 xmlns="http://www.topografix.com/GPX/1/1"
 xmlns:gpxtpx="http://www.garmin.com/xmlschemas/TrackPointExtension/v1"
 xmlns:gpxx="http://www.garmin.com/xmlschemas/GpxExtensions/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchem
a-instance">
  <metadata>
    <link href="connect.garmin.com">
      <text>Garmin Connect</text>
    </link>
    <time>2010-12-21T17:31:19.000Z</time>
  </metadata>
 <trk>
    <name>To Work</name>
      <trkpt lon="12.577596567571163" lat="55.70799755863845">
        <ele>12.0</ele>
        <time>2011-01-26T09:23:55.000Z</time>
        <extensions>
          <gpxtpx:TrackPointExtension>
           <gpxtpx:hr>143</gpxtpx:hr>
         </gpxtpx:TrackPointExtension>
        </extensions>
      </trkpt>
      <trkpt lon="12.577596567571163" lat="55.70799755863845">
        <ele>12.0</ele>
        <time>2011-01-26T09:23:55.000Z</time>
        <extensions>
          <gpxtpx:TrackPointExtension>
            <gpxtpx:hr>143</gpxtpx:hr>
          </gpxtpx:TrackPointExtension>
        </extensions>
      </trkpt>
activity_65197512.gpx
```

This is GPS data

It's usually some (large) file full of text and numbers

```
Terminal — less — 107 \times 37
<?xml version="1.0" encoding="UTF-8"?>
<gpx version="1.1" creator="Garmin Connect"</pre>
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com/GPX/1/1/gpx.xsd http://ww
w.garmin.com/xmlschemas/GpxExtensions/v3 http://www.garmin.com/xmlschemas/GpxExtensionsv3.xsd http://www.ga
rmin.com/xmlschemas/TrackPointExtension/v1 http://www.garmin.com/xmlschemas/TrackPointExtensionv1.xsd"
 xmlns="http://www.topografix.com/GPX/1/1"
 xmlns:gpxtpx="http://www.garmin.com/xmlschemas/TrackPointExtension/v1"
 xmlns:gpxx="http://www.garmin.com/xmlschemas/GpxExtensions/v3" xmlns:xsi="http://www.w3.org/2001/XMLSchem
a-instance">
  <metadata>
    <link href="connect.garmin.com">
      <text>Garmin Connect</text>
    </link>
    <time>2010-12-21T17:31:19.000Z</time>
  </metadata>
 <trk>
    <name>To Work</name>
      <trkpt lon="12.577596567571163" lat="55.70799755863845">
        <ele>12.0</ele>
        <time>2011-01-26T09:23:55.000Z</time>
        <extensions>
          <gpxtpx:TrackPointExtension>
            <gpxtpx:hr>143</gpxtpx:hr>
          </gpxtpx:TrackPointExtension>
        </extensions>
      </trkpt>
      <trkpt lon="12.577596567571163" lat="55.70799755863845">
        <ele>12.0</ele>
        <time>2011-01-26T09:23:55.000Z</time>
        <extensions>
          <gpxtpx:TrackPointExtension>
            <gpxtpx:hr>143</gpxtpx:hr>
          </gpxtpx:TrackPointExtension>
        </extensions>
      </trkpt>
activity_65197512.gpx
```

And if you're lucky there is also some kind of <markup>

Most raw data is incomprehensible to humans

We have:

- Narrow spectrum of data that we can process and understand
- Limited memory for processing new information
- Limited attention for undertaking focussed tasks

The human eye is made for advanced pattern recognition

It can:

- Immediately recognize a pattern in a highly complex image
- Quickly spot things that deviate from patterns (outlier detection)
- Process streams of images and recognize patterns over time

Probability theory O

Very complex data that changes in time!

Linear algebra O O

link

link

Most fancy visualizations break down to very simple things

For understanding how data is distributed

- Histograms
- Kernel density plots
- Box plots/violin plots
- Heatmaps

Most fancy visualizations break down to very simple things

For understanding how data is distributed

For understanding how variables in data compare and develop

- Histograms
- Kernel density plots
- Box plots/violin plots
- Heatmaps
- Scatter plots
- Pairs plot
- Time series plot
- Line plot
- Bar plot

Most fancy visualizations break down to very simple things

For understanding how data is distributed

For understanding how variables in data compare and develop

For understanding interrelations in highly connected data

- Histograms
- Kernel density plots
- Box plots/violin plots
- Heatmaps
- Scatter plots
- Pairs plot
- Time series plot
- Line plot
- Bar plot

Networks

Linear algebra

A principled and scalable method for manipulating data

Objects

- Scalars
- Vectors
- Matrices

Everything is a Tensor!

Linear algebra

A principled and scalable method for manipulating data

Objects

- Scalars
- Vectors
- Matrices

OD

Everything is a Tensor!

scalar In [2]: print np.random.randint(1, 100) Last executed 2018-01-25 11:52:52 in 5ms 82

Objects

- Scalars
- Vectors
- Matrices

Everything is a Tensor!

```
Scalar

In [2]: print np.random.randint(1, 100)

Last executed 2018-01-25 11:52:52 in 5ms

82

Vector

In [3]: print np.random.randint(1, 100, size=3)

Last executed 2018-01-25 11:53:37 in 5ms

[83 80 84]
```

Objects

- Scalars
- Vectors
- Matrices

Everything is a Tensor!

scalar **OD** In [2]: print np.random.randint(1, 100) Last executed 2018-01-25 11:52:52 in 5ms 82

1D In [3]: print np.random.randint(1, 100, size=3) Last executed 2018-01-25 11:53:37 in 5ms [83 80 84]

vector

matrix

2D

```
In [4]: print np.random.randint(1, 100, size=(3, 3))
         Last executed 2018-01-25 11:54:38 in 4ms
         [[99 47 77]
          [15 82 9]
          [59 55 48]]
```

Objects

- Scalars
- Vectors
- Matrices

Everything is a Tensor!

```
scalar
OD
         In [2]: print np.random.randint(1, 100)
                   Last executed 2018-01-25 11:52:52 in 5ms
                   82
                                vector
1D
         In [3]: print np.random.randint(1, 100, size=3)
                   Last executed 2018-01-25 11:53:37 in 5ms
                   [83 80 84]
```

matrix

2D

```
In [4]: print np.random.randint(1, 100, size=(3, 3))
         Last executed 2018-01-25 11:54:38 in 4ms
         [[99 47 77]
          [15 82 9]
          [59 55 48]]
```

3D-tensor

3D

```
In [5]: print np.random.randint(1, 100, size=(3, 3, 3))
         Last executed 2018-01-25 11:55:19 in 5ms
         [[[45 11 73]
           [84 50 88]
           [13 22 97]]
          [[10 5 12]
           [27 23 76]
           [43 84 53]]
          [[86 58 61]
           [71 95 86]
           [92 19 68]]]
```

Operations

- Products: **dot**, cross
- Elementwise: addition, subtraction, multiplication, division
- Mutations: transpose, inverse/pseudo-inverse, scaling, rotation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

used frequently for basis transformation

Operations

- Products: dot, cross
- Elementwise: addition, subtraction, multiplication, division
- Mutations: transpose, inverse/pseudo-inverse, scaling, rotation

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

used frequently for basis transformation

Operations

• Products: dot, cross

• Elementwise: addition, subtraction, multiplication, division

• Mutations: *transpose*, *inverse/pseudo-inverse*, *scaling*, *rotation*

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}$$

used frequently for basis transformation

A set of tools and jargon for describing data

Probability theory O

A set of tools and jargon for describing data

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

median = Middle number in ordered list

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Visualization • • • • •

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^n (x_i - \mu)^2$$

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

range = max(value) - min(value)

A set of tools and jargon for describing data

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Visualization • • • •

cov(X, Y) =
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_y)$$

A set of tools and jargon for describing data

Vocabulary

- Mean, median
- Variance, standard deviation, range
- Correlation, covariance

Visualization • • • •

$$cor(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

Formalized framework for dealing with randomness

Formalized framework for dealing with randomness

Important concepts

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Probability theory

Formalized framework for dealing with randomness

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Formalized framework for dealing with randomness

Important concepts

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Process

Formalized framework for dealing with randomness

Important concepts

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

A **process** is *stochastic*

Otherwise the two words mean the same

Formalized framework for dealing with randomness

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Formalized framework for dealing with randomness

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Formalized framework for dealing with randomness

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

Formalized framework for dealing with randomness

- Discrete vs. continuous
- Distribution and process
- Random and stochastic
- Normalization
- Probability functions
 - Probability mass function (pmf)
 - Probability density function (pdf)
 - Cumulative density function (cdf)

