

Geometria Analítica

Cônicas

PROFA. MAGDA MANTOVANI LORANDI

(MATERIAL DA PROF. ADRIANA MIORELLI ADAMI — ADAPTADO)

Período 2022-4

LIVRO-TEXTO

Capítulo 10- Seção 10.4 págs. 730 a 747

ANTON, Howard; BIVENS, Irl; DAVIS, Stephen L. Cálculo. 10. ed. Porto Alegre: Bookman, 2014.

SEÇÕES CÔNICAS SEÇÃO 10.4 (PÁGS. 730-747)

FBX5007 Geometria Analítica e Álgebra Linear

SEÇÕES CÔNICAS (PÁG.730)

Circunferências, elipses, parábolas e hipérboles são chamadas de seções cônicas ou cônicas, e representam um conjunto de curvas no plano que podem ser obtidas da interseção de um plano com um cone circular

GEOMETRIA ANALÍTICA NO ENSINO MÉDIO

Ponto Médio entre Dois Pontos A(a, b) e B(c, d):

$$M = \left(\frac{a+c}{2}; \frac{b+d}{2}\right)$$

Distância entre dois Pontos A e B:

$$d(A, B) = \sqrt{(a-c)^2 + (b-d)^2}$$

Geometria Analítica

5

ELIPSE (PÁG. 731)

Definição

É o conjunto dos pontos do plano tais que a soma das distâncias a dois pontos fixos

é uma constante

Elementos

Focos: pontos F_1 e F_2

Distância Focal: distância 2c entre os focos

Centro: ponto médio C do segmento F₁F₂

Vértices: pontos A_1 , A_2 , B_1 e B_2

Eixo maior: segmento A₁A₂ de comprimento 2a

Eixo menor: segmento B₁B₂ de comprimento 2b

MEDIDAS DOS EIXOS NA ELIPSE (PÁG. 734)

EQUAÇÕES DA ELIPSE EM POSIÇÃO PADRÃO

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$

Quando a = b, temos uma circunferência

COMO CALCULAR O VALOR DE C (PÁG. 734)

$$a = \sqrt{b^2 + c^2}$$

Figura 10.4.12

ou de modo equivalente,

Figura 10.4.13

Exemplo 3 (pág. 736)

ELIPSES TRANSLADADAS COM CENTRO (H,K) E A≥B (PÁG. 740)

Eixo maior paralelo ao eixo x:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Eixo maior paralelo ao eixo y:

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Quando a = b, temos uma circunferência

Exemplo 9 (pág. 741)

EXEMPLOS E EXERCÍCIOS

Para casa

1 (letras c-d), 7, 9, 10, 19 (págs. 744-745)

HIPÉRBOLE (PÁG. 731)

Definição

É o conjunto dos pontos do plano tais que a diferença das distâncias a dois pontos fixos é uma constante

HIPÉRBOLE (PÁG. 737)

Elementos

- Focos: pontos F1 e F2
- Distância Focal: distância 2c entre os focos
- Centro: ponto médio O do segmento
 F1F2
- Vértices: pontos A1 e A2
- Eixo focal ou transverso: segmento A1A2 de comprimento 2a
- Eixo conjugado ou imaginário: segmento B1B2 de comprimento 2b

EQUAÇÕES DA HIPÉRBOLE EM POSIÇÃO PADRÃO

(PÁG. 738)

b

$$y = -\frac{b}{a}x$$

$$y = \frac{b}{a}x$$

$$y = \frac{a}{b}x$$

$$(-c,0)$$

$$a$$
 $(c,0)$ x

(0,c)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$c > b > 0$$
, $c > a > 0$

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Exemplo 5 (págs. 739)

HIPÉRBOLES TRANSLADADAS

Hipérbole com centro (h,k) e eixo focal paralelo ao eixo x:

$$\frac{(x-h)^{2}}{a^{2}} - \frac{(y-k)^{2}}{b^{2}} = 1$$

Hipérbole com centro (h,k) e eixo focal paralelo ao eixo y:

$$\frac{(y-k)^{2}}{a^{2}} - \frac{(x-h)^{2}}{b^{2}} = 1$$

CLASSIFICAÇÃO DAS CÔNICAS: COMO CLASSIFICÁ-LAS QUANDO A EQUAÇÃO NÃO ESTÁ NA FORMA REDUZIDA?

$$5x^{2} + 40x + 2y + 94 = 0$$
$$x^{2} - 5y^{2} - 2x - 10y - 9 = 0$$
$$x^{2} + y^{2} + 2x + 10y + 26 = 0$$

$$x^2 - 6x + y - 2 = 0$$

$$16x^2 + 16y^2 - 16x + 8y - 59 = 0$$

$$x^2 + y^2 - 2x + 10y = 0$$

Analise com atenção o próximo slide!!

$$16x^{2} - y^{2} - 32x - 6y = 57$$
$$x^{2} - 4y^{2} + 2x + 8y - 7 = 0$$
$$3x^{2} + y^{2} + 12x + 2y + 13 = 0$$

CLASSIFICAÇÃO DAS CÔNICAS

$$3x^2 + y^2 + 12x + 2y + 13 = 0$$

$$x^{2} + y^{2} + 2x + 10y + 26 = 0$$
$$16x^{2} + 16y^{2} - 16x + 8y - 59 = 0$$
$$x^{2} + y^{2} - 2x + 10y = 0$$

$$x^{2} - 5y^{2} - 2x - 10y - 9 = 0$$
$$16x^{2} - y^{2} - 32x - 6y = 57$$
$$x^{2} - 4y^{2} + 2x + 8y - 7 = 0$$

$$5x^2 + 40x + 2y + 94 = 0$$
$$x^2 - 6x + y - 2 = 0$$

EXEMPLOS E EXERCÍCIOS

Para casa

Exercícios 1 (letras e-f), 11, 13(b), 14(a) (págs. 744-745)

APLICAÇÕES DAS ELIPSE

1º Lei de Kepler - Lei das Órbitas

Os planetas descrevem órbitas elipticas em torno do Sol, que ocupa um dos focos da elipse.

- O astrônomo e matemático Johannes Kepler (1571-1630) formulou 3 leis que regem o movimento planetário
- Uma delas diz que um planeta gira em torno do Sol em uma órbita elíptica com o Sol em um dos focos

APLICAÇÕES DAS ELIPSE

Engenharia Elétrica

Conjuntos de elipses homofocais (elipses de mesmo foco) são utilizadas na teoria de correntes elétricas estacionárias.

• Engenharia Mecânica

São usadas engrenagens elípticas (excêntricos)

Engenharia Civil

Arcos em forma de semielipse são muito empregados na construção de pontes de concreto e de pedras (desde os antigos romanos)

APLICAÇÕES DA HIPÉRBOLE

- Experimentos físicos mostraram que partículas carregadas atiradas em núcleos de átomos se espalham ao longo de trajetórias hiperbólicas
- Mecânica Celeste: dependendo de sua velocidade, um cometa tem uma órbita elíptica, parabólica ou hiperbólica (o foco coincide com o Sol)
- Na navegação marítima e aérea utilizam-se sistemas hiperbólicos