1	USN			2	1CST501	
	[B. E. Degree (Autonomous) Fourth Semester End Exan	nination (S	EE)		
		AUTOMATA THEORY AND INTRODUCTION TO	COMPLIE	DC		
		(Model Question Paper - I)		NO .		
Tir	ne: 3	Hours]	[Maximum Marks: 100			
		<u>Instructions to students</u> : Answer 5 full questions.				
			Marks	Course Outcomes	BTL* Cognitive Level	
1	a)	What is an automaton? Discuss why study automaton?	[06 M]	CO1	L2	
	b)	 Design DFA for the following languages over ∑ = { a, b} Set of all string that either begins or ends or both with substring ab. Set of all strings that end with substring abb. L= {w: w mod 5 ≠ 0} 	[09 M]	CO1	L5	
	c)	Explain the applications of Finite Automata?	[05 M]	CO1	L3	
		OR				
2	a)	Convert to a DFA, the following NFA	[10 M]	CO1	L2	
	b)	Prove that a language is Regular if and only if it is accepted by a Finite Automata.	[10 M]	CO1	L3	
3	a)	State and prove pumping lemma for Regular Languages	[08 M]	CO2	L3	
	b)	Minimize the following DFA, given A = Start state. States C, F and I are final states.	[12 M]	CO2	L4	
		OR				
4	a)	Write the Table filling algorithm to find the distinguishable pairs in a DFA 'M'.	[08 M]	CO2	L2	
	b)	Show that the language $L = \{ 0^n / n \text{ is prime } \}$ is not regular.	[06 M]	CO2	L3	
	c)	Using identities prove that the regular languages are closed under intersection.	[06 M	CO2	L3	

5	a)	Define the following terms with examples 1.Parse tree 2.Ambiguity 3 Pightmost derivation	[08 M]	CO3	L1
		3.Rightmost derivation			
	b)	Show that following grammar is ambiguous. Obtain unambiguous grammar for this: $E \rightarrow E + E/E + E/E/E - E/(E)/a/b$.	[06 M]	CO3	L3
	c)	Write CFG for the language $1.L = \{ 0^n 1^n \mid n >= 1 \}$ $2. L = \{ w w^R \mid w \in \{a,b\}^*, w^R \text{ is the reversal of } w \}$	[06 M]	CO3	L2
		OR			
6	a)	Write context free grammars for the following	[12 M]	CO3	L2
		i) $L(G) = \{a^n b^m c^m d^n : m, n \ge 1\}$			
		ii) $L(G) = \{ a^n b^{n+1} : n \ge 0 \}$			
		iii) $L(G) = \{w: n_a(w) = n_b(w)\}$			
		iv) $L(G) = \{w: n_a(w) > n_b(w)\}$			
	b)	Write a note on chomsky hierarchy.	[08 M]	CO3	L2
7	a)	With neat diagram explain the working of PDA and define the language accepted by PDA by both methods.	[12 M]	CO4	L2
	b)	Design a PDA to accept the language $L = \{w \ w^R : w \ \epsilon \{0,1\}^*\}$ by empty stack method.	[08 M]	CO4	L5
		OR	1	-	
8	a)	Give the formal definition of a PDA.	[06 M]	CO4	L2
	b)	Obtain a PDA to accept the language $L = \{ a^n b^n \mid n \ge 0 \}$ by a final state. Give the graphical representation for PDA obtained. Show the moves made by the PDA for the string aaabbb.	[14 M]	CO4	L3
9	•)	Evaloin the structure of an compiler with an evenue	[10 M]	COS	Τ./
9	a)	Explain the structure of an compiler with an example.	[10 M]	CO5	L4
	b)	List and Explain the applications of compiler technology.	[06 M]	CO5	L3
	c)	Differentiate between Compiler and Interpreter.	[04 M]	CO5	L3
		OR			
10	a)	Explain the concept of input buffering in lexical analysis with its implementation	[10 M]	CO5	L5
	b)	Write a brief note on Language processing system.	[06 M]	CO5	L1