LISTING OF CLAIMS

- 1. (currently amended) A method for driving a segmented pi-cell modulator in a stereoscopic image viewing system, comprising applying an alternating, unipolar-carrier waveform to the <u>segmented pi-cell modulator</u>, wherein the carrier waveform does not change polarity within a time period that the <u>segmented pi-cell modulator</u> is energized, and <u>further wherein applying the carrier waveform to the segmented pi-cell modulator tends to reduce likelihood of at least one from a group comprising ion shadow defects and visible artifacts being exhibited by the pi-cell.</u>
- 2. (original) A method as in claim 1, wherein the waveform is in the range of 1-2 kHz.
- 3. (currently amended) A method as in claim 1, wherein a stutter start waveform is applied to the <u>segmented pi-cell modulator</u> for a brief period of time when power is first applied.
- 4. (original) A method as in claim 3, wherein the stutter start waveform is a series of pulses separated by a small rest period.
- 5. (original) A method as in claim 4, wherein the small rest period is approximately a few hundred milliseconds.
- 6. (currently amended) A method for driving a segmented pi-cell modulator in a stereoscopic image viewing system, comprising:

applying a <u>first</u> modulating waveform having a carrier signal of a first polarity to the <u>segmented</u> pi-cell <u>modulator</u> during a first time period, wherein the carrier signal does not change polarity during the first time period;

removing the <u>first modulating</u> waveform <u>for a finite period comprising application</u> <u>of de minimis energy; and</u>

applying the a second modulating waveform having a carrier signal of a second

polarity opposite the first polarity to the <u>segmented pi-cell modulator</u> during a second time period, wherein the carrier signal does not change polarity during the second time period;

wherein applying the first modulating waveform and second modulating waveform to the segmented pi-cell modulator tends to reduce likelihood of at least one from a group comprising ion shadow defects and visible artifacts being exhibited by the segmented pi-cell modulator.

- 7. (original) A method as in claim 6, wherein the waveform is in the range of 1-2 kHz.
- 8. (currently amended) A method as in claim 6, wherein a burst of pulses is applied to the <u>segmented pi-cell modulator</u> for a brief period of time when power is first applied.
- 9. (original) A method as in claim 8, wherein each of the burst of pulses is separated by a small rest period.
- 10. (original) A method as in claim 9, wherein the small rest period is approximately a few hundred milliseconds.
 - 11. (currently amended) A stereoscopic image viewing system, comprising:a segmented pi-cell modulator; and

a drive circuit for applying an alternating, unipolar carrier waveform to the <u>segmented pi-cell modulator</u>, wherein the <u>alternating, unipolar carrier</u> waveform does not change polarity within a time period that the <u>segmented pi-cell modulator</u> is energized;

wherein applying the alternating, unipolar carrier waveform to the segmented picell modulator tends to reduce likelihood of at least one from a group comprising ion shadow defects and visible artifacts being exhibited by the segmented pi-cell modulator.

- 12. (original) A system as in claim 11, wherein the carrier waveform is in the range of 1-2 kHz.
- 13. (currently amended) A system as in claim 11, wherein a burst of pulses is applied to the <u>segmented pi-cell modulator</u> for a brief period of time when power is first applied.
- 14. (original) A system as in claim 13, wherein each of the burst of pulses is separated by a small rest period.
- 15. (original) A system as in claim 14, wherein the small rest period is approximately a few hundred milliseconds.
- 16. (new) A method as in claim 1, wherein the alternating, unipolar-carrier waveform comprises a plurality of modulating waveforms separated by periods of application of de minimis energy.
- 17. (new) A method as in claim 11, wherein the alternating, unipolar carrier waveform comprises a plurality of modulating waveforms separated by periods of application of de minimis energy.
- 18. (new) A method as in claim 1, wherein ion shadow defect comprises free ions contaminating liquid crystal material within the segmented pi-cell modulator.
- 19. (new) A method as in claim 6, wherein ion shadow defect comprises free ions contaminating liquid crystal material within the segmented pi-cell modulator.
- 20. (new) A method as in claim 11, wherein ion shadow defect comprises free ions contaminating liquid crystal material within the segmented pi-cell modulator.