STAT 3690 Lecture Note

Part IX: Classification

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2023/Mar/25 12:54:24

Classification

- Predictive task in which the response takes values across K discrete categories (i.e., not continuous)
 - Having training data with known class labels
 - Predict one subject's label Y according to p-vector \mathbf{X}
 - Binary classification: K = 2
 - E.g.
 - * Given a scanned handwritten digit, determine what digit was written.
 - * Predict the region of Italy in which a sample of olive oil was made, according to its chemical composition.

Bayes classifier

• Classification according to posteriors

$$\Pr(Y = k \mid \mathbf{X} = \boldsymbol{x}) = \frac{f_k(\boldsymbol{x})\pi_k}{\sum_{\ell=1}^K f_\ell(\boldsymbol{x})\pi_\ell}, \quad k = 1, \dots, K$$

- $-f_k(\boldsymbol{x})$: the probability density/mass function of **X** conditioning on Class k
- $-\pi_k = \Pr(Y = k)$: prior of Class k
- Bayes classifier

$$h(\boldsymbol{x}) = \arg\max_{k=1,...,K} \Pr(Y = k \mid \mathbf{X} = \boldsymbol{x}) = \arg\max_{k=1,...,K} f_k(\boldsymbol{x}) \pi_k$$

Linear discriminant analysis (LDA, from the perspective of Bayes classifier)

- Assuming $f_k(\boldsymbol{x}) = \text{density of MVN}_p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$
- LDA classifier (population version)

$$h(\boldsymbol{x}) = \arg \max_{k=1,...,K} f_k(\boldsymbol{x}) \pi_k = \arg \max_{k=1,...,K} \delta_k(\boldsymbol{x})$$

- Discriminant functions $\delta_k(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k \frac{1}{2} \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln \pi_k$
 - * Linear functions with respect to \boldsymbol{x}

$$\max_{k=1,\dots,K} f_k(x) \pi_k$$

$$= \max_{k=1,\dots,K} (ix)^{-\frac{N}{2}} \left\{ \det(\Sigma) \right\}^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2} (x - u_k)^T \Sigma^{-1} (x - u_k) \right\} \pi_k$$

$$= \max_{k=1,\dots,K} \exp\left\{ -\frac{1}{2} (x^T \Sigma^{-1} x - 2 x^T \Sigma^{-1} u_k + u_k^T \Sigma^{-1} u_k) \right\} \pi_k$$

$$= \max_{k=1,\dots,K} \exp\left(x^T \Sigma^{-1} u_k - \frac{1}{2} u_k^T \Sigma^{-1} u_k \right) \pi_k$$

$$= \max_{k=1,\dots,K} x^T \Sigma^{-1} u_k - \frac{1}{2} u_k^T \Sigma^{-1} u_k + u_k^T \Sigma^{-1} u_k \right\}$$

- LDA classifier (empirical version)
 - Training data: $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \{1, \dots, K\}, i = 1, \dots, n$
 - * n_k : the number of training observations in class $k, k = 1, \ldots, K$
 - Estimation for μ_k , Σ and π_k

 - * $\hat{\pi}_k = n_k/n$ * $\hat{\mu}_k = n_k^{-1} \sum_{i=1}^n x_i \cdot \mathbf{1}(y_i = k)$ * $\hat{\Sigma} = (n-1)^{-1} \sum_{k=1}^K \sum_{i=1}^n (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\top} \cdot \mathbf{1}(y_i = k)$
 - Empirical LDA classifier

$$\hat{h}(\boldsymbol{x}) = \arg\max_{k=1,\dots,K} \hat{\delta}_k(\boldsymbol{x})$$

$$* \hat{\delta}_k(\boldsymbol{x}) = \boldsymbol{x}^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_k - \frac{1}{2} \hat{\boldsymbol{\mu}}_k^{\top} \widehat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_k + \ln \hat{\pi}_k$$

- Example 9.1 (Fisher's or Anderson's iris data)
 - 50 flowers from each of 3 species of iris: setosa, versicolor, and virginica.
 - Measurements in centimeters of the variables sepal length and width and petal length and width.

Quadratic discriminant analysis (QDA, from the perspective of Bayes classifier)

- Assuming $f_k(\mathbf{x}) = \text{density of MVN}_p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- QDA classifier (population version)

$$h(\boldsymbol{x}) = \arg\max_{k=1,...,K} f_k(\boldsymbol{x}) \pi_k = \arg\max_{k=1,...,K} \delta_k(\boldsymbol{x})$$

- Discriminant functions $\delta_k(\boldsymbol{x}) = -\boldsymbol{x}^{\top} \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x} + 2 \boldsymbol{x}^{\top} \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k - \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k + 2 \ln \pi_k - \ln \det \boldsymbol{\Sigma}_k$ * Quadratic functions with respect to \boldsymbol{x}

- QDA classifier (empirical version)
 - Training data: $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \{1, \dots, K\}, i = 1, \dots, n$
 - * n_k : the number of training observations in class $k, k = 1, \ldots, K$
 - Estimation for μ_k , Σ and π_k

 - * $\hat{\pi}_k = n_k/n$ * $\hat{\mu}_k = n_k^{-1} \sum_{i=1}^n x_i \cdot \mathbf{1}(y_i = k)$

*
$$\widehat{\boldsymbol{\Sigma}}_k = (n_k - 1)^{-1} \sum_{i=1}^n (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\top} \cdot \mathbf{1}(y_i = k)$$

- Empirical classifier
$$\widehat{h}(\boldsymbol{x}) = \arg\max_{k=1,\dots,K} \widehat{\delta}_k(\boldsymbol{x})$$

* $\widehat{\delta}_k(\boldsymbol{x}) = -\boldsymbol{x}^{\top} \widehat{\boldsymbol{\Sigma}}_k^{-1} \boldsymbol{x} + 2\boldsymbol{x}^{\top} \widehat{\boldsymbol{\Sigma}}_k^{-1} \widehat{\boldsymbol{\mu}}_k - \widehat{\boldsymbol{\mu}}_k^{\top} \widehat{\boldsymbol{\Sigma}}_k^{-1} \widehat{\boldsymbol{\mu}}_k + 2\ln\widehat{\pi}_k - \ln\det\widehat{\boldsymbol{\Sigma}}_k$

• Example 9.2 (iris data, con'd)

Misclassification/error rate

- Population: $Pr(Y \neq h(\mathbf{X}))$
 - $-h(\cdot)$: the classifier to be evaluated
- Apparent estimation
 - Implementation
 - 1. Fit a classifier according to training data
 - 2. Apply the fitted classifier to training data as well
 - 3. Estimate the error rate by the misclassification proportion
 - Comments
 - * Training and testing with identical data points
 - * Severe underestimation likely
- Parametric estimation
 - Implementation
 - 1. Express $\Pr(Y \neq h(\mathbf{X}))$ in terms of unknown parameters
 - 2. Plug in estimates of unknown parameters
 - Comment
 - * Able to derive the analytical form of $Pr(Y \neq h(\mathbf{X}))$ in rare cases
 - * Underestimation likely

```
For KEZ and X/Y=k~MVN (Ak, I),
                            the error roote of LDA classifier h(X)
                        = P_r (Y \neq h(X))
                        = Pr(Y=1, h(x)=2) + Pr(Y=2, h(x)=1)
                        = P_r(Y=1, \delta_1(X) < \delta_2(X)) + P_r(Y=1, \delta_1(X) > \delta_2(X))
                       = T.Pr (3,(x) < 3,(x) | Y=1) + T. Pr (3,(x) > 3,(x) | Y=1)
let U = \hat{\boldsymbol{\beta}}_{1}(\boldsymbol{X}) - \hat{\boldsymbol{\beta}}_{2}(\boldsymbol{X}) = \boldsymbol{X}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathcal{L}}^{R_{1}} - \boldsymbol{\mathcal{L}}_{1}) - \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\mathcal{L}}^{R_{1}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathcal{L}}_{1} + \hat{\boldsymbol{\Sigma}}^{-1} \boldsymbol{\mathcal{L}}^{T_{1}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mathcal{L}}_{1} + \ln(\boldsymbol{\mathcal{R}}_{1}/\boldsymbol{\pi}_{1}), then
       \mathcal{E}\left(U\big|Y_{\geq 1}\right) = \mathcal{M}_{1}^{\mathsf{T}} \Sigma^{\mathsf{T}} \left(\mathcal{M}_{1} - \mathcal{M}_{2}\right) - \frac{1}{2} \mathcal{M}_{1}^{\mathsf{T}} \Sigma^{\mathsf{T}} \mathcal{M}_{1} + \frac{1}{2} \mathcal{M}_{1}^{\mathsf{T}} \Sigma^{\mathsf{T}} \mathcal{M}_{1} + \ln 1\pi . /\pi_{L}\right)
                                          =\frac{1}{2}M_1^T\Sigma^{-1}M_1-M_1^T\Sigma^{-1}M_1+\frac{1}{2}M_2^T\Sigma^{-1}M_1+\ln(\pi_1/\pi_2)
                                          = \frac{1}{2} [M_1 - M_1]^T \Sigma^{-1} (M_1 - M_1) + \ln(\pi_1/\pi_2)
        E(U|Y=2) = -\frac{1}{2} (M_1-M_2)^T \Sigma^{-1} (M_1-M_2) + (m(\pi_1/\pi_1))
       var (U | Y=1) = (M, -M,) T = -1 $ $ -1 (M,-M)
        var(U|Y=2) = (M, -M_L)^T \Sigma^{-1} (M, -M_L)
                   \frac{U - \frac{1}{2} \underbrace{U^{A_1} \mathcal{M}_1)^T \Sigma^{-1} \underbrace{U^{A_1} \mathcal{M}_1) - \underbrace{U^{A_1} \mathcal{M}_1}_{U^{A_1} - \underbrace{U^{A_1}}_{U^{A_1}}} \mid Y = I \quad \sim \mathcal{N}(0, I)}{\sqrt{\underbrace{U^{A_1} \mathcal{M}_1)^T \Sigma^{-1} \underbrace{U^{A_1} \mathcal{M}_1}_{U^{A_1}}}}
                  \frac{\left( \left( \mathcal{A}_{1}, \mathcal{A}_{1} \right)^{T} \Sigma^{-1} \left( \mathcal{A}_{1}, \mathcal{A}_{1} \right) - \left| \mathcal{A}_{1} \left( \mathcal{A}_{1} \right) \mathcal{A}_{1} \right) }{\sqrt{\left( \mathcal{A}_{1}, \mathcal{A}_{1} \right)^{T} \Sigma^{-1} \left( \mathcal{A}_{1}, \mathcal{A}_{1} \right)}} \right) Y_{z}} \wedge N(o, i)
     So, PrlY + h(x))
              - π. Pr (U < 0 | Y=1) + π. Pr (U>0 | Y=2)
             = \pi_{1} \underbrace{\Phi \left( \frac{-\frac{1}{2} \underbrace{\mu_{1} - \mu_{1}}^{T} \sum^{-1} \underbrace{\mu_{1} - \mu_{1}}^{T} - \underbrace{\mu_{1} \pi_{1} / \pi_{1}}^{T} - \underbrace{\mu_{1} \pi_{1} / \pi_{1}}^{T} \right)}_{\text{In} : \mu_{1} : T} \right)}
               + \pi_{3} \overline{\Phi}\left(\frac{-\frac{1}{5}(M_{1}-M_{1})^{T}}{\sqrt{(M_{1}-M_{1})^{T}}}\sum^{-1}(M_{1}-M_{1})+|M_{1}(\pi_{1}/\pi_{5})}{\sqrt{(M_{1}-M_{1})^{T}}}\sum^{-1}(M_{1}-M_{1})}\right)
where \underline{\Phi}(\cdot) is the studerd normal celf.
```

- Estimation via M-fold cross validation (CV)
 - Implementation

- 1. The dataset is randomly partitioned into M chunks.
- 2. Train one classifier upon each combination of M-1 chunks.
- Apply each classifier to the corresponding remaining chunk and compute the empirical error rate.
- 4. Estimate the population error rate by averaging these M empirical error rates.
- Comment
 - * Leave-one-out $CV \Leftrightarrow n$ -fold CV
- Estimation via $M \times L$ -fold CV
 - Implementation
 - 1. Repeat the four steps of M-fold CV L times.
 - 2. Average all the ML resulting empirical error rates.
 - Comment
 - * $M \times 1$ -fold CV $\Leftrightarrow M$ -fold CV

A joint application of LDA/QDA & PCA

- Revisit the dataset of handwritten digits Part 7: mnist is a list with two components: train and test. Each of these is a list with two components: images and labels.
 - The images component is a matrix with each row for one image consisting of 28*28 = 784 entries (pixels). Their value are integers between 0 and 255 representing grey scale.
 - The labels components is a vector representing the digit shown in the image.
 - Uninvertible \mathbf{S}_k because of the shared blank on canvas

Alternative methods for classification in the view of regression

- (Multinomial) logistic regression
- k-nearest neighbors (k-NN)
- Tree-based
 - Decision tree/classification and regression tree (CART)
 - Random forest