DEPARTMENT OF ARCHAEOLOGY CENTRAL ARCHAEOLOGICAL LIBRARY

CLASS 1765

CALL No. 620.136

C.A. S.

D.G.A. 79.

520.126

620.136 C. A. I. 1765

Published by:

THE CONCRETE ASSOCIATION OF INDIA

1, Queen's Road, Bombay

Regional Offices at:

New Delhi – Lucknow – Patna – Calcutta – Madras

Bangalore – Nagpur – Karachi – Lahore

CENTR ... (C) GAL LIBRARY. No. 1765. Date 22. 7. 54. Call No. 62.0/136/C. A.1

PREFACE

India is making steady progress in all directions and in civil engineering she has some of the largest construction works in the world to her credit. It may, however, be said without any fear of contradiction that her strength of civil engineers is much less than her requirements. Except on government and semi-government projects and in cities like Bombay where qualified consulting engineers are available, a very large percentage of public building activity is today managed by the humble maistry or overseer or a contractor with little or limited theoretical background. Even in the case of qualified engineers we are afraid there may be several who have to construct a concrete structure only occasionally in their career in a drainage, irrigation, or water supply department. It may not be expected of them to remember all the long formulæ of reinforced concrete design together with the methods of their application.

This handbook is written specially for the convenience of such people. A specialist in concrete engineering who invariably has his own tables of reference may not find this book indispensable but we are sure where preliminary investigations and estimates are to be made he will save considerable time by reference to various tables in the handbook.

Large portions of India are alluvial tracts where good broken stone and coarse sand are not available and the use of imported material is very costly. The local material, even though of sub-standard quality, has to be used. Similarly in case of steel, it is necessary to use bars made from scrap steel by local rolling factories. In such places it is advisable to use lower stresses and hence tables, charts, etc. giving concrete sections

3

according to the old L.C.C. Regulations (1909) which may appear too orthodox to one unfamiliar with mofussil conditions in India have been given purposely. Where conditions are favourable, higher stresses are certainly recommended.

Before concluding this preface it would not be out of place to say a word or two about the most important and much discussed problem of the design of concrete mixes. This aspect of concrete engineering is practically new to the vast majority of Indian engineers who so far were working on the basis of arbitrary mixes found suitable by practice. A method of rationally designing concrete mixes has been given in this handbook and we trust Indian engineers will make extensive use of it henceforth, and let us have the reports of their findings.

Thanks are due to Mr. N. H. Mohile, B.E., M.I.E. (India), M.I. Struct. E. (Lond.) of this Association whose efforts are mostly responsible in bringing out this handbook.

The book is published with a sincere hope that it will fulfil the long felt need for a concise reference book on the design and technology of concrete.

CONTENTS

			Chapter 1				Page
MA	TE	RIALS	1				
	1.1	Cement		2.6	2.5	9 70	1
		1.1.1			0.0		1
		1.1.2	Various Kinds				1
		1.1.3	Storage		0.4		3
		1.1.4					4
		1.1.5	Adulteration				6
		1.1.6	Useful Memoranda		4.0		6
	4.79						-
	1.2	Aggregat		0.0	1.1	2.0	7
			Definition	0.0	987	0.0	7
		1.2.2	General Requirements		0.4	4.0	7
		1.2.3		**			7
			Storage	0.0	6.6	- * *	8
			Tests on Aggregates		* *		9
		1.2.6	Miscellaneous Notes		0.0		13
		1.2.7	Useful Data	1.17		4.4	14
	1.3	Water					
		13.1	Function				15
		1.3.2	Field Tests	0.0			15
		1.3.3	Quantity				16
			Useful Data				16
	* 4	Reinforce					
	1.4	1.4.1	Steel Reinforcement				140
				0.0	p 4		17
			General Requirements	0.0	0.4		17
			Structural Requirements,	etc.	2.0		17
		1.4.4	Areas, Weights, etc.	4-5	1.0		22

	Page
Chapter 2	
PROPORTIONING OF CONCRETE	
2.1 Introduction and Brief Notes	25
2.2 Essential Requirements of Concrete	28
2.3 Proportioning Concrete—Various Methods	29
Cl	
Chapter 3	
LOADS, BENDING MOMENTS AND SHEARING FORCES	
3.1 Dead Loads	61
3.2 Live Loads	68
3.3 Formulae for Bending Moments & Shearing Forces.	70
3.4 Bending Moments for r.c.c. slabs	85
3.5 Bending Moments for beams	86
Chapter 4	
DESIGN OF R.C.C. SLABS	
4.1 Formulae and design constants, stresses, etc.	89
4.2 Summary, charts and tables	100
4.3 Examples	109
Chapter 5	
RECTANGULAR BEAMS	
5.1 Singly Reinforced beams	113
5.2 Beams with Compressive Reinforcement	113
Chapter 6	
T-BEAMS OR L-BEAMS	
Design of T-beams	127
Standard T-beam tables	133

C	hapter	7				Page
SHEAR	mpier					
7.1 General						145
7.2 Example	0 0		6 p	6.6	0.0	145
7.2 Example	1.0	0.0	0.0	6.4	0.0	151
Ci	napter	8				
DESIGN OF R.C. COLUMNS						
8.1 General Formula	10.0		2.0	e a	0.0	155
8.2 Increased Stress		0.6		0.0	0.0	157
8.3 Details		100				158
8.4 Slenderness		0.0	0.07	0.0	9.0	160
8.5 Helical Binding	12.		- 6			162
8.6 Charts & Tables		4.6	0.6			164
8.7 Estimating Tables			0.4			168
8.8 Illustrative Examples						169
8.9 Eccentric Loading					100	170
	hapter	9				
COLUMN FOOTINGS						
9.1 General						179
9.2 Illustrative Example		0.0	0.0	0.4		180
9.3 Design Tables		0.0	0.0		4.4	182
-						
	napter	10				
RETAINING WALLS						
10.1 Small Retaining Wall	ls	0.0	6.0	0.0	0.0	189
10.2 Example		10	4.0	0.0	0.0	190
Charts & Graphs	0.0	11	4.4	4.4	2 0	191
01		11				
	hapter	11				
CIRCULAR TANKS						100
11.1 General		6.0		0.0	0	199
11.2 Illustrative Example		0.0	0.0	0.0	0.0	204

v

	Page
Chapter 12	
DIFFERENT KINDS OF CONCRETE	
12.1 Colloidal Concrete or Colcrete	209
12.2 Prepacked Concrete	210
12.3 Shot Concrete (Gunite)	210
12.4 Prestressed Concrete	212
12.5 Saw Dust Concrete	214
12.6 Light Weight Concrete	216
12.7 Precast (Prefabricated) Concrete	217
12.8 Air-Entrained Concrete	218
Chapter 13	
MISCELLANEOUS INFORMATION	
13.1 Soil Cement	223
13.2 Ashestos Cement	226
13.3 Cement Grouting	227
13.4 Cement Admixtures	229
13.5 Waterproofing of Concrete	229
13.6 Effects of acids, oils and salts on concrete	231
13.7 Protective Treatments	235
Chapter 14	
GENERAL DATA, TABLES, ETC.	
Crushing Strength of Stones	243
Strength of lime mortars	243
Safe permissible loads on masonry	243
Wind pressures	244
Water pressures	. 244
Working stresses for timber	245
Task work for artisans	246
Mensuration	
Properties of circles	
Areas of small circles	
Weights and Measures	251
Conversion Factors	253

CHAPTER 1 MATERIALS

CONTENTS

1.1 PORTLAND CEMENT.

- 1.1.1 Definition of Portland Cement.
- 1.1.2 Various Kinds of Cements.
 - 1.1.2.1 Rapid Hardening
 - 1.1.2.2 White
 - 1.1.2.3 Coloured
 - 1.1.2.4 Aluminous
 - 1.1.2.5 Blast Furnace
 - 1.1.2.6 Masonry
 - 1.1.2.7 Low Heat
 - 1.1.2.8 Air Entraining
 - 1.1.2.9 Pozzolanic
 - 1.1.2.10 Modified
- 1.1.3 Storage.
- 1.1.4 Standard Specifications.
- 1.1.5 Adulteration.
- 1.1.6 Useful Memoranda.

1.2 AGGREGATES.

- 1.2.1 Definition of Aggregates.
- 1.2.2 General Requirements.
- 1.2.3 Site Treatment.
- 1.2.4 Storage.
- 1.2.5 Tests on Aggregates.
- 1.2.6 Miscellaneous Notes.
- 1.2.7 Useful Data.

1.3 WATER.

- 1.3.1 Function.
- 1.3.2 Field Tests.
- 1.3.3 Quantity.
- 1.3.4 Useful Data.

1.4 REINFORCEMENT.

- 1.4.1 Steel reinforcement,
- 1.4.2 General requirements.
- 1.4.3 Structural requirements and other particulars.
- 1.4.4 Areas, weights etc. of bars.

CHAPTER 1

MATERIALS

LI PORTLAND CEMENT.

LIJ DEFINITION.

Portland Cement is defined as a product obtained by intimately mixing together calcureous and argillaceous and/or other silica, alumina, or iron oxide bearing materials, burning them at a clinkering temperature and grinding the resulting clinker. After burning no material other than gypsum or air entraining agents is added.

1.1.2 VARIOUS KINDS OF CEMENT.

1.1.2.1 Rapid Hardening (also called High Early Strength Cement).

- (a) Materials used for manufacture: Same as ordinary cement but more carefully prepared and carrying higher lime content.
- (b) Burning Operations: At a temperature higher than that of ordinary cement.
 - (c) Grinding: Finer than ordinary.
 - (d) Setting properties: Same as ordinary type.
- (e) Hardening properties: Attains in 3 days the strength of 28 days old normal cement and so saves cost of moulds, etc., by about 30 per cent.

(NOTE.—White cement is not made in India. Snowerete, Atlas, etc., are generally used.)

- (a) Materials used for manufacture: Pure limestone free from any iron content.
- (b) Strength, etc.: Up to B.S.S., but slightly less than normal cement.

Coloured cement is made by mixing white cement with inorganic colours about 5 to 10% at the time of grinding.

1.1.2.4 Aluminous (also called High Alumina) Cement.

[Not made in India. Imported brands are: Ciment Fondu Lightning (U.K.), Lumnite (U.S.A.) etc.]

- (a) Manufacture: Mixture of bauxite and lime is heated to fusion at high temperature.
 - (b) Setting: Sets within one hour.
- (c) Hardening: Very rapid. 100 days strength of ordinary cement is developed within 24 hours.
- (d) Special qualities: Immune from attacks of sea-water, sulphate bearing waters, frost, etc Forms excellent refractory concrete stable up to 1500°C.

Precautions: Contamination with ordinary cement to be avoided.

1.1.2.5 Blast Furnace Cement.

- (a) Manufacture: Clinker of normal Portland Cement is ground with about 65% of granulated slag. The slag should in no case be more than 65%.
 - (b) Properties: Same as ordinary cement.

Note: Slag cement is different from blast furnace cement being a mixture of lime and blast furnace slag ground together

1.1.2.6 Masonry Cement.

- (a) Manufacture: Ordinary Portland Cement is mixed with hydrated lime or calcium or aluminium stearate or paraffin oil.
- (b) Properties: Gives more workable and plastic mortar and hence more suitable for masonry and plaster works.

1.1.2.7 Low Heat Cement.

(a) Properties: Less heat is evolved during setting. Hence more suitable for large mass concrete works, where heat of hydration does not dissipate easily and so cracks the concrete after cooling.

1.1.2.8 Air Entraining Cement.

- (a) Manufacture: Rosin and Vinsol resin or vegetable fats and oils such as tallow and olive oil and other fatty acids such as stearie and oleic acids are ground with ordinary cement.
- (b) Properties: Development of microscopic air bubbles while setting forms minute voids in the concrete and increases its resistance against freezing and scaling action of salts like Calcium Chloride, etc. Three to five per cent air trapped in the concrete in the form of tiny individual bubbles improves the

workability of the concrete, permitting a reduction in the water cement ratio, reduces shrinkage and improves durability, etc.

1.1.2.9 Pozzolanic or Silica Cement.

- (a) Manufacture: Ordinary cement clinker and pozzolana (about 30%) are ground together. The pozzolana may be natural such as diatomaceous earth or pumice, or artificial such as burnt clay.
- (b) Properties: The pozzolana reacts with free lime in the concrete which otherwise is affected by corrosive water. Addition of pozzolana also improves such qualities of the concrete as water-tightness and fire resistance. The concrete is also of low heat type.

1.1.2.10 Modified Cement.

Gives lower heat of hydration than normal cement and has improved resistance to sulphates.

1.13 STORAGE

All possible precautions for keeping moisture away are necessary. The storage shed should have a pucca floor raised at least 6 inches from ground, with air-tight doors and windows. Bulk storage is preferable for longer interval. Fig. 1-1 gives a design of an ideal godown.

SUGGESTED BUILDING FOR STORING 40 TONS PORTLAND CEMENT

SECTION ON A-A

Fig. 1-1.

Reduction of Strength in Storage.

The following reduction may be expected at 28 days:-

After storage of 3 months 20% minimum.

After storage of 6 months 30% minimum.

After storage of 1 year 40% minimum.

After storage of 2 years 50% minimum.

1.1.4 STANDARD SPECIFICATIONS.

Summary of specifications controlling the manufacture of various cements, used in India is given on the facing page:-

PROPERTIES OF CEMENT

-								
	TYPL O	CEMENT .		RAPIO HARDEN ING FORTLAND CEMENT (I)		LOW-HEAT PORTLAND CEMENT	HIGH- ALUMINA CEMENT	
	STANC	ARD	(1951)	1 5 269	6 5 Nº 146 (1947)	8 5 M91370 (19 A7)	8 5 NY 915 (1947)	
	PIMEMESS ⁽⁴⁾	MINIMUM RESIDUE BY WEIGHT ON 8-3 SIEVE NF 170 ⁽²⁾	10 PERCENT	SPERCENT	10 PERCENT		8 PERCENT	
		MINIMUM SPECIFIC SURFACE (6) SQ CM PER GM	2250 (1600)	3250	2250	3200 (1700)	2250	
	MINIMUM TENSILE STRENGTH ^(I) LB.PER 5Q III.	1 DAY 3 DAYS 7 DAYS	300 375	300 450	300 375		=	
	MINIMUM COMPRESSIVE STRENGTH ⁽³⁾ LB PER SQ IM		2500 —	3500	1600	1000 1600 3750	6000 7000 —	
	SETTING TIMES (HOURS)	INITIAL		T LESS THAT		↓ 10	22 }6 }2 APTER INITIAL SET	
	SQUMDHESS	ERPANSION (LE CHATELIER)	н	T MORL T	HAN 10 701	m (0.401H)) 1 mm (0.40 III.)	
	HEAT OF WYDRATION	7 DAYS 28 DAYS	н	ONE SPEC	IFILD	CALS PERGM > 65 > 75	NONE SPECIFIED	
		5=510; A=Al20; F=1c30; C=Ca0	2.85+17A+	A 1.05		+0-657	A 4 32 PER CHMT	
	COMPOSITION	ADMINIURE ATTER BURHING	MONE (EXCEPT GYPSUM OR WATER OR AIR ENTRAUGHG AGENTS (1% MARIMUM)		WITH B.S.NE12)	HONE (ERCEPT GYPOM AND WATER)	NONE (EXCEPT WATER)	
		M9 0 503	A .	ER CENT 5 PER CENT	> 5 PERCENT	\$ 5 PERCENT \$ 2 75 PERCEN	_	
		INSOLUBLE RESIDUE LOSS ON IGNITION			ER CENT		_	
	NOTES	2 HOMINA 3 ALTERN 5 4 ALTERN 5 AS SO	TLY STOCKET CEMENT STATE OF APERTURE O-0035 IN. TIVE TESTS STRENGTH AT ANY AGE MUST BE GREATER THAN RENGTHS AT EARLIER AGES TIVE TESTS (EXCEPT FOR LOW WEAT PORTLAND CEMENT) > 2 PERCENT: AS SULPHIDE: > 1-2 PERCENT. 1.061GURRS FOR TURBIDMETER METHOD					

1.1.5 ADULTERATION.

Field Test for Adulteration.

(a) A sample of doubtful stuff should be burned for about 20 minutes on a steel plate heated by a stove. Adulterated sample changes its colour, while unadulterated cement remains unchanged.

(b) Make small pats, say 2"×2"×1" with adulterated and genuine cement. Pats made with doubtful cement can be bro-

ken easily with pressure of your fingers.

It is always advisable to send the sample to laboratory for full analysis and tests.

1.1.6 USEFUL MEMORANDA ON CEMENT.

1 jute bag contains 1101 lbs. of cement (about 1.2 eft.)

1 ton of Portland Cement-20 jute bags-24 eft.

I barrel of cement weighs 376 lbs.

6 barrels of cement make 1 ton (Metric).

1 eft. of cement loosely filled weighs 85 to 90 lbs.

I eft. of cement tightly packed weighs 110 lbs.

Atlas white cement (American) weighs 94 lbs per cft.

Snowcrete white cement (English) weighs 55 lbs. per cft. Ferrocrete Rapid Hardening Cement weighs 75 lbs. per cft.

Ciment Fondu Aluminous Cement weighs 87 lbs per eft.

l cubic yard of cement-1-1/12 tons.

1 cubic foot of loose cement neat as cement paste will cover about 10.4 sq. ft. (1 inch thick).

1 eft. of neat cement (90 lbs.) will cover 2.2 sq yds. (4" thick).

1 cft. of neat cement (90 lbs.) will cover 1.9 sq. yds. (?" thick).

1 oft, of neat cement (90 lbs.) will cover 1.7 sq. yds. (?" thick).

1 oft. of neat cement (90 lbs.) will cover 1.4 sq. yds. (3" thick).

1 cft. of neat cement (90 lbs.) will cover 1.1 sq. yds. (1" thick).

1 cft. of loose Portland Cement will make:

4.3 cft. of 1:2:4 concrete.

5.0 cft. of 1:21:5 concrete.

5.8 cft. of 1:3:6 concrete.

7.5 cft. of 1:4:8 concrete.

1.2. AGGREGATES.

1.2.1 DEFINITION.

Inert material such as sand, pebbles, gravel, crushed stone, etc., which is mixed with Portland Cement and water to produce concrete or mortar is called aggregate.

1.2.2 GENERAL REQUIREMENTS.

Necessary characteristics: The aggregates must be clean, dense, hard, durable, structurally sound, capable of developing good bond with cement, weather-resisting and unaffected by water. Aggregates for road work must have good wearing qualities. When fire-proof construction is needed the aggregates must possess fire-resisting qualities. In case of industrial by-products, blast furnace slag which is a non-metallic product consisting essentially of silicates and alumino silicates of lime and of other base obtained along with iron in a blast furnace, must not contain more than 40% lime. Cinders must be obtained as a product of high temperature combustion and must not contain more than ½% of sulphur and 1% of sulphates. Similarly coke breeze must be free from sulphur and unburnt coal.

1.23 SITE TREATMENT OF AGGREGATES.

Site Treatment.—This is necessary if the aggregate as supplied is short of requirement as regards cleanliness and grading. Screening can be done by hand or mechanically to adjust the grading. If the material requires cleansing, washing may be resorted to, but precautions against loss of fine material should be taken. A simple arrangement for mechanical washing device is shown diagramatically in Fig. 1-3.

1.2.4 STORAGE OF AGGREGATES.

Precautions.—Avoid storing on dusty, muddy or grassy spots. Dumps must be protected from exposure to dust. Old steel sheets or wooden planks may be used as platforms for storage. On large works storage bins may be used. When stored on ground, the bottom layer of aggregates, say 3" deep, should be rejected. Correct and incorrect methods of handling and storing aggregates are shown diagrammatically in Fig. 1-4.

A, Belt Conveyor, B, truck unloading material at the top of pile and allowing same to run down slope.

When bins are used for storing aggregates they should have bottoms sloping about 50° in all directions and corners of the bottom should be properly rounded. [Flat or insufficiently sloping bottomed bins are not suitable].

While filling the bins material should be made to drop in the centre and not against sides to avoid segregation.

Fig. 1-4.

The aggregates should not segregate into various sizes while storing, otherwise there will be serious difference in the quality of concrete produced.

1.25 TESTS ON AGGREGATES.

1.2.5.1 Laboratory Tests.

- (a) Sieve Analysis.
- (b) Determination of clay, silt and dust.
- (e) Determination of organic impurities.
- (d) Specific gravity and absorption.
- (e) Aggregate crushing test.
- (f) Bulk density or unit weight.
- (g) Determination of voids.
- (h) Test for coal and lignite.

Selection of sample. Care is necessary to have a fairly representative sample. A large quantity, say 12 ewts., should be collected by taking one cwt. from different heaps. This should be reduced to required quantity by method of quartering as shown in Fig. 1-5.

Fig. 1-5. Method of quartering aggregates for sampling.

Minimum quantity.—Different tests require different minimum quantity of aggregates as given below:—

Test	to the supplied to the laboratory	To be tested
Sieve analysis		
21" to 11" aggregates	11 cwt.	50 lbs.
i" to i" ,,	I cwt.	20 lbs.
Fine	28 lbs.	1 lb.
Determination of Clay etc.		- 101
2½" to 1½" aggregates	I manual	1 4 11
to to	I cwt.	14 lbs.
	28 lbs.	1 lb.
Fine .,	2 lbs.	1 lb.
specific gravity and absorption		
C. aggregates	4 lbs.	2 lbs.
Fine		
Aggregate Crushing Strength		**
2" to 1" size	2 cwts.	1 cwt.
to to size	11	14 lbs.
Fine aggregates	**	2 lbs.
Bulk density	1	
C. aggregate	2 cwts.	75 lbs.
fine aggregate	d cwt.	15 lbs.
	1 cwc	10 105.
Voids Test		
C. aggregate		500 ccs.
fine aggregates		100 ccs.

- (a) Sieve Test.—A known weight of dry aggregates is passed through a set of standard sieves of size 3", 2\frac{1}{2}", \frac{1}{2}", \frac{1}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}", \frac{1}{2}"
- (b) Determination of clay, etc.—A certain fixed quantity of material is sieved through No. 7 sieve. Material retained on the sieve is washed with sodium oxalate solution of 0.8 grs. per litre strength. This solution is again sieved through No. 7 sieve, and 150 m.l. of this solution taken. This solution is mixed with the material that has passed the No. 7 sieve. A soft rubber pestle is used for mixing the material without causing any attrition. The mixture is kept in a sedimentation tube and after 100 seconds a certain amount is taken in a pipette. This quantity is evaporated in a crucible and weight of residue taken. From this data the percentage of clay, etc., is known.
- (c) Organic Impurities.—A 12 oz. medicine bottle is filled to 4½ oz. mark with sand and 3% solution of sodium hydro-oxide is added up to 7 oz. mark. The colour of the liquid is compared with standard colour chart.
- (d) Specific Gravity.—A certain sample of material properly washed to remove dust is dried in an oven and weighed. The sample is then immersed in distilled water and entrained air from the sample is removed by gentle rodding. The sample is then placed in a wire basket suspended in water and weighed. The weight of saturated sample immersed in water is thus obtained. The specific gravity is calculated from the result.
- (e) Apprepate crushing strength.—A weighed quantity of aggregates is placed in a metal cylinder fitted with a plunger. This plunger is subjected to a specified compression and the aggregate is sieved to remove the material crushed by the compression. The weight of the fines formed is expressed as a percentage of the total sample.
- (f) Bulk density.—Material held by a container of unit volume when filled under specified conditions is found out.
- (g) Voids.—A cylindrical metal measure is filled onethird with water and dry aggregate is then added and tamped to exclude air. The process is repeated till the measure is filled to the top and further water added till the measure overflows. The volume of water added gives the volume of voids in the aggregate, from which the required percentage can be calculated.

(h) Coal and Lignite.—This is found by removing the particles by floatation in a liquid with a specific gravity of 2 (made from a mixture of earbon tetrachloride and acetylene tetrabromide).

1.2.5.2 Field Tests.

Sieve analysis is done in the same way as above but all the sieves are not necessary.

Silt Test.—A glass vessel is filled half with sand, and water is added up to three-fourth height. After shaking vigorously the contents are allowed to settle after one hour. This gives a fair idea about the quantity of silt in the sample.

Organic matter and void tests .- Same as laboratory tests.

1.2.5.3 Particle Shape and Surface Texture.

In addition to above, a report on aggregates should also contain information about particle shape and surface texture of the aggregates as per following description:—

Fig. 1-6. Characteristic specimens of concrete aggregates.

(a) Particle Shape.

Classification	Description	Examples.
Rounded	Fully waterworn or completely shaped by attrition.	River gravel, wind blown sand, desert sand etc.
Irregular	Naturally irregular or partly shaped by attrition and hav- ing rounded edges.	Pit sand & gravels land or dug flints, cuboid rock etc.
Angular	Having well defined edges.	Crushed rock of all types.
Flaky	Material (usually angular) of which thickness is small rela- tive to width and length.	Crushed rock of all types. Laminated rocks.

(b) Surface Texture.

Texture.	Example.
Glassy Smooth Granular Crystalline Pitted Fine slag Honey Combed porous	Flint, vitrious sand. Slate, Marble etc. Sandstone, oolite etc. Fine Basalt Medium dolerite Coarse granite, gneiss etc. Coarse slag, brick, pumice, etc.

1.2.6 MISCELLANEOUS NOTES.

Bulking of sand.—The volumetric expansion of sand due to moisture content is called Bulking. Finer sands bulk more

than coarser varieties. As the moisture increases and the sand becomes fully saturated, it occupies the same volume as dry sand.

Type of Sand	% Moisture by weight	% Bulking by volume.
Fine	5 10 15 20 27	38 32 22 10 0
Medium	5 10 15 20	29 22 12 0
Coarse	5 10 15	18 12 2

1.2.7 USEFUL DATA ON AGGREGATES.

Weight lbs./cft.	
Fine and dry river sand (loose)	90
Medium "	95
Coarse	100
Burnt clay ballast	70
Beach or river shingle ‡" to ‡"	100
Gravel—coarse loose, unscreened	115
Broken brick 2" to ‡" gauge	80
, stone	100
Stone screening ?" to ?"	90
Broken granite 2" to ?"	105
Granite chipping \text{\pi''} down	95
Coke Breeze 1" down	45
Clinker hard furnace 1" to 4"	70
Pumice stone	40
Blast furnace slag 11" to 1"	90
Honey comb slag	40

Voids:	1.17	morimate	percentages).
--------	------	----------	---------------

		(. (.,			, ,
Sand (moi	ist and	fine)				43
Sand (coar	rse)					35
Sand (mix	red)					38
Sand (dry	mixed	1)				30
Stone scree	enings					58
Broken sto	пе 1"	and u	nder			46
•9	1301	**				45
4.6	23"			. ,	- +	41
		Spec	ific Ara	eity.		
Trap	• •	Spec	ific Ara	eity.		2.9
Granite	• •				6 A	2.9 2.7
			n 6	6.0		
Granite	0.0	• •	e 6	6.0		2.7
Granite Slate	• •		e e			2.7 2.7
Granite Slate Gravel	6 e	• •	* * * * * * * * * * * * * * * * * * *			2.7 2.7 2.66

1.3. WATER.

13.1 FUNCTION OF WATER.

1.3.1.1 Chemical.

Water and various compounds in cement react chemically in the process of setting and hardening of cement. Portland Cement contains about 65% of lime. For complete hydration of all the lime in 100 lbs. of cement about 21 lbs. of water are required. In setting complete hydration does not take place; hence about 14 lbs. of water are sufficient.

1.3.1.2 Physical.

- (a) Water distributes the cement evenly so that every particle of stone and sand is coated by it and brought into intimate contact with each other.
- (b) Water acts as lubricant and gives workability to the mixture.

13.2 FIELD TESTS FOR WATER.

1.3.2.1 Acids.

Can be detected by litmus paper.

1.3.2.2. Sulphates.

Acidify the water with dilute sulphuric acid and then add a little barium chloride solution. Formation of white precipitate indicates presence of sulphates. This should be compared with the local tap water similarly treated.

1.3.23 Chlorides.

Acidify water with a little nitric acid and add a few drops of 10% silver nitrate solution. A thick white precipitate indicates chlorides.

1.3.2.4 Carbondioxide.

Add a few drops of dilute hydrochloric acid. A rapid evolution of CO₂ will then take place.

1.3.3 OUANTITY OF WATER.

(a) Mixing Concrete.—For exact quantity, detailed information is given in chapter on proportioning of concrete, but for estimating purposes the following figures may be used.

Mix	1:3:6	1:2:4	1:13:33	1:13:3	1:1:2
Dry aggregates	7 }	61	6	5}	5
Damp aggregates	61	6	51	5	4 1/2

(The above figures give quantity of water in gallons per cwt. of cement.)

(b) Other purposes.—For washing aggregates, curing, etc., 75 to 80 gallons may be assumed per 100 cft, of concrete work.

1.3.4 USEFUL DATA.

One eft. of water = 6.23 Imperial Gallons.

- 7.48 U.S.A. Gallons.

- 62.4 lbs. (at 60° F.).

One Imperial Gallon = 4.55 litres.

- 4 qrts.

- 0.16 cft.

- 1.2 U.S.A. Gallon.

One U.S.A. Gallon = 0.83 Imperial Gallon.

One ton of water = 1 cubic metre.

- 244 Imperial Gallons.

- 35.9 cubic feet.

One cft. of sea water = 64.1 lbs.

1.4. REINFORCEMENT.

1.4.1 STEEL REINFORCEMENT.

Steel Reinforcement comprises of:

- (a) mild steel rods,
- (b) cold drawn mild steel wire,
- (c) twisted bars, single or double,
- (d) welded fabrics,
- (e) expanded steel,
- (f) ribbed mesh steel sheets acting as shuttering also, and
- (g) R.S. sections such as joists, channels, rails, etc.

1.4.2 GENERAL REQUIREMENTS.

- (a) Freedom from surface defects.
- (b) Freedom from rust seales, (moderate surface rusting may be permitted).
- (c) Freedom from oil, grease or paint; (lime or cement wash is permissible).

1.4.3 STRUCTURAL REQUIREMENTS AND OTHER PARTICULARS.

(a) M.S. rods
(b) Cold drawn M.S. Wire

Material	Size D=Dia-	Minimut	m Stress	Elong	Diameter of		
	meter In Inches	Yield	Ultimate	Length	% Age	Bend	
Mild Steel	Over 1° 1′ To 1′ Below 1′	Not spe- cified.	28	4D 8D 8D	24 20 Id	3D 2D 2D	
Medium Tensile Steel	14° To 2° 1° To 14° 1° To 1° Below 1°	171 181 191 Do	33	4D 4D 8D 8D	22 22 18 14	3D 3D 2D	
High Tensile Steel	la To 2' la To la To la Below a'	21 22 23 Do	37	4D 4D 8D 8D	22 22 18 14	3D 3D 2D 2D	
Cold Drawn Wire	All Stres	Not Speci- fied	37	8D	71	20	

(c) Twisted Bars.

	Size D-Dia-		m Stress	Elong	Diameter	
Material	aterial meter In Inches Yield Ultimate		Length	%Age	Bend	
Twin Twisted Bars	Over 1' i' To 1' Below i'	54,000	63,000	5.7D 5.7D 11.3D 11.3D	16 10 14 12	3D 2D 2D 2D
Twisted Square Hars	Over 1°	80,000 Do Do 70,000	70,000 Do Do Do 80,000	4.5D 4.5D 9D 9D	16 16 14 12	4.4D 2.8D 2.8D 2.8D

D - Diameter of one round bar or side of square rod before being twisted.

Isteg Twisted Bars are mild steel bars treated by patent cold twisting and stretching process. The length after twisting is the same as original bars. Faulty rods break in the process of twisting, hence the rods which remain can stand higher stresses being without any defect. Yield point of these rods is at 54,000 lbs. per square inch. Bond stress of 540 lbs. per sq. inch and tensile stress of 27,000 lbs. per sq. inch can be permitted. Hooks, etc., which are required for anchorage can also be omitted and hence there is a saving of 33 per cent in weight of reinforcement.

(d) Welded Fabrics (Plain and Twisted Steel). -Several fabrics are available, names of a few being:

1. B.R.C.

3. Matchar

2. Maxweld

4. Twist Steel

5. Spun Groove, etc.

Manufacture of plain fabries is controlled by B.S.S. 1221.

The fabric is to consist of main wires and cross-wire electrically welded.

The fabric is to be made of hard drawn steel wire complying with B.S.S. 785 and can be made both in oblong and square mesh. All joints and junctions are to be electrically welded.

For twisted steel fabrics, cold twisted steel bars complying with B.S.S. 1144 are to be used. In case of oblong mesh, crossbars may be of plain hard-drawn steel wire complying with B.S.S. 785.

Fig. 1-7. B. R. C. Fabric.

(i) B.R.C. Fabric: is made from hard-drawn steel wire and consists of a wire mesh made up of a series of parallel longitudinal wires held at fixed distances apart by means of transverse wires at right angles to longitudinal wires (See Fig. 1-7). A higher working tensile strength of 25,000 lbs. per sq. inch is recommended by the manufacturers. Properties of standard sizes of B.R.C. Fabric are given in the following table. The Fabric is available in sheets 7 ft. wide.

	Size of Mesh and or Wire								
Ref. No. of	Distance of Longitudinal	Distance of Cross	Gauge (Imp		Sectional Area Per Ft.	Weight Lbs./cz			
Fabric	Wires Inches	Wires Inches	Longi- tudinal Cro		Width Sq. In.				
1 2 3 4 5	3	16	4/0 3/0 2/0 1/0	4 4 6 6 6	.5028 .4348 .3804 .3296 .2828	16.23 14.15 12.22 10.67 9.31			
6 7 8 9 10	3	16 12 	2 3 4 5 6	7 8 9 10 10	.2392 .1996 .1692 .1412 .1160	7.78 6.56 5.66 4.81 3.92			
11 12 13 14 65 610	3 6 6 6	12	7 8 9 10 5	10 12 12 12 12 5 10	.0972 .0804 .0652 .0516 .0706 .0258	3.37 2.71 2.25 1.83 4.32 1.57			

(ii) Maxweld Fabrics: These are also of the same type as B.R.C. and their references Nos. 403, 303, 203, 103, 1, 2, 3, 4, 5B, 6, 7, 8, 9, 10, 56 and 106 correspond approximately with Reference Nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 65 and 610 of B.R.C. fabrics.

Fabries Nos. 3, 4 and 5 are not very common in this country and hence particulars of the same have not been given.

(e) Expanded Steel: This is made from steel plates and sheets by cutting them and expanding them into diamond-shaped meshes of different sizes. Manufacture is controlled by B.S.S. 1221. Part C. main requirements being:

The blank steel plates shall have ultimate stress between 26 to 32 tons per sq. inch.

The strength of the fabric shall be-

Minimum ultimate tensile stress 75,000 lbs. per sq. iu.

yield stress

50,000 ...

, elongation

7447

Due to absence of any joints in the mesh work the fabric can be stressed to 20,000 lbs. per sq. inch in design work.

(f) Ribbed Mesh Steel Sheets (See Fig. 1-8): The 'V' shaped ribs give rigidity to the fabries and the meshwork is so shaped that it retains the wet concrete without appreciable loss of the same through the openings. Only timber joists are required for supporting the fabric at definite intervals depending upon the thickness of slab. This type of reinforcement is very convenient and economical in case of curved surfaces

'V'-SHAPED RIB

HY.RIB RIBBED MESH SHEET

Fig. 1-8.

where shuttering cost is heavy (see Fig. 1-8). "Hyrib" and "Self-sentering" are two common trade names for such reinforcement available in this country in pre-war days.

1.4.4 AREAS, WEIGHTS, ETC. OF BARS. Round and Square M. S. Bars.

Weight in pounds per Lineal toot. Area in sq. inches and Perimeters in inches.										
Dia- meter or		Roun	ıd	•		Square.				
Side in inches	Weight	Area	Peri- meter	Lineal feet in 1 cwt.	Weight	Area	Peri- meter.	Lineal feet in I cwt.		
3,16 1/4 5/16 3/8 7,10 1·2 9·16 5/8 11/16 3/4 12·16 7/8 15/16	094 .167 .261 .376 .511 .609 .845 1.043 1.262 1.703 2.044 2.347 2.670 3.380 4.172 5.049	.027 .049 .076 .110 .150 .196 .248 .306 .371 .442 .518 .601 .696 .785 .994 1.227 1.485	.589 .785 .982 1.178 1.375 1.571 1.767 1.963 2.160 2.338 2.533 2.749 2.945 3.142 3.534 3.927 4.320	1192 687 428 297 218 167 132 107 88 74 63 54 42 33 27 22	.120 .213 .332 .478 .651 .849 1.076 1.328 1.607 1.912 2.245 2.653 2.988 3.400 4.343 5.312 6.428	.035 .062 .097 .140 .191 .250 .316 .390 .472 .562 .660 .765 .879 1.000 1.265 1.562 1.820	.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.50 5.50	933 520 337 234 172 132 104 84 70 59 50 43 37 33 26 22		
1 1	6,008 10,68	1.767 3.141	4.713 6.283	18.5 10.5	6.650 13.60	2.250 4.000	6.00 8.00	15.6		

		Areas	per foot	width f	or vario	us Spac	ings.		
Spac-		-		Dia	meter o	of Bars.			
	3/16 1/4"	3 161	3.8"	7/16*	1/2"	5,8"	3'4"	7/8"	I'
3' 14' 4' 6' 7' 7' 7' 8' 9' 10' 10' 11'	0.110 0.19 0.035 0.16 0.083 0.14 0.074 0.13 0.066 0.11 0.060 0.10 0.055 0.09 0.051 0.09 0.041 0.07 0.041 0.07 0.037 0.06 0.035 0.06 0.035 0.06 0.033 0.05 0.032 0.05 0.032 0.05	8 0.263 7 0.230 1 0.295 8 0.184 7 0.167 8 0.153 1 0.142 4 0.131 9 0.108 5 0.102 2 0.007 9 0.008	9.442 0.379 0.331 9.295 0.265 0.224 0.204 0.189 0.177 0.140 0.150 0.147 0.140 0.130 0.120	0.601 0.515 0.451 0.401 0.361 0.328 0.201 0.258 0.241 0.225 0.212 0.200 0.190 0.180 0.172	0.783 0.673 0.589 0.524 0.471 0.428 0.393 0.365 0.337 0.314 0.227 0.227 0.262 0.248	1.227 1.052 0.930 0.818 0.736 0.614 0.566 0.526 0.491 0.433 0.400 0.388 0.358 0.335	1.767 1.615 1.325 1.178 1.060 0.964 0.816 0.797 0.707 0.663 0.624 0.586 0.580 0.586 0.595	2,405 2,06 1,804 1,604 1,412 1,203 1,110 1,631 0,962 0,760 0,722 9,687	3.142 £.69 2.350 2.09 1.885 1.714 1.571 1.450 1.346 1.257 1.178 1.109 1.047 9.992 0.942 0.957
12° 15°	0.028 0.04 0.03	9 0.077	0.110	0.150	0.196	0.307 0.245	0.482 0.442 0.359	0.656 0.501 0.481	0.785 0.628
24°	0.018 0.03		0.074	0.075	0.131	0.205	0.295	0.401	0.524

CHAPTER 2

PROPORTIONING OF CONCRETE

CONTENTS

- 2.1 Introduction and brief notes on some important terms pertaining to proportioning of concrete.
- 2.2 Essential requirements of concrete.
- 2.3 Proportioning of concrete.
 - 2.3.1 Arbitrary Method.
 - 2.3.2 Voids Method.
 - 2.3.3 Fineness Modulus Method.
 - 2.3.4 Grading Curves Method.
 - 2.3.5 Method of Trial Mixes.

CHAPTER 2

PROPORTIONING OF CONCRETE

2.1 INTRODUCTORY NOTES.

2.1.1 INTRODUCTION.

Concrete is a mixture of cement, water and aggregates, which consolidates into a hard mass due to chemical reaction between cement and water. Each of the four ingredients has its separate function. Coarse aggregates act as main filler. Fine aggregates fill in the voids in the coarse aggregates and cement and water form the binder. The science of proportioning of concrete is therefore mainly concentrated on the principle of obtaining a durable and strong concrete at the most economical rate. It is obvious that a properly designed concrete mix for certain requirements of strength should have the minimum possible cement content to make the mix economical.

2.1.2 WATER CEMENT RATIO.

The ratio of weight or volume of water used for mixing (correction of absorption by aggregates should be made), to weight or volume of cement in the concrete mixture. It may also be expressed as so many gallons of water per cwt. of cement. Since volume of cement is a variable term depending upon the manner in which a volumetric measure is filled, it is preferable always to express the water cement ratio on weight basis. Prof. D. Abrams discovered that the strength of concrete is solely governed by the amount of water used in making the concrete and is independent of the ratio of cement to aggregates provided the concrete is workable. The results of thousands of experiments carried out by him with various cement aggregate ratios are shown in Fig. 2-1 from which it will be noted that mixes varying from neat cement to 1:15 give the same strength. The equation of the curve is:—

$$S = \frac{\Lambda}{B^3}$$
 or $\log S = \log \Lambda - x \log B$

S - compressive strength in lbs.|sq. inch.

(Note.--1 cft. of cement is assumed to weigh 94 lbs.)

A and B are constants depending upon age of concrete, quality of cement and aggregates, climatic conditions, mixing, etc.

For washed and graded gravel, workable mix mixed in a machine for one minute, the values of A and B are: A=14000 and B=9 for 28 days strength (for special control B=7).

Note: Lean and Rich Mixtures give same strength for same W/c Ratio. The figures represent Cylinder strengths which are § the corresponding cube strengths.

Fig. 2-1.

It should be noted that though the water cement ratio law holds good universally the values of the constants A and B may vary according to the quality of cement, aggregates, etc. The values of compressive strength as given in curve in Fig. 2-1 are low, compared to present day values, as there is considerable progress in the manufacture of cement. The following values should therefore be used. Where the magnitude of the job permits the values of the constants should be found by actual experiments.

War	ter Cement Ra	atio	Crushing Strength	
Gals/cwt.	By Wt.	By volume	Lbs/\(\sigma'\) (\text{a 7 days}	Remarks
4	.36	. 52	5600	mix too
	. 40	.58	4950	dry for
4 ½ 5	. 45	.64	4300	hand com-
51	. 49	.71	3750	paction
6	. 54	.77	3250	
64	.58	.84	2850	mix work-
7	. 63	.90	2400	hand com-
71	. 67	. 97	2120	paction
8	.71	1.03	1850	Paction
81	.76	1.10	1670	Wet mix
9	.80	1.16	1500	} wet mix

(Note.-The figures are for cube test.)

2.1.3 WORKABILITY.

Has been defined in the simplest form as ease with which concrete can be mixed, handled, transported and placed. Workability will therefore vary according to the type of mould that is being used for the concrete structure under construction and the obstruction to the free flow of concrete caused by the spacing and nature of the reinforcement. Rational measure of workability is therefore not easy. A more scientific definition of workability would therefore be that property of concrete which determines the amount of useful internal work required to produce full compaction.

MEASUREMENT OF WORKABILITY.

(a) Slump Test: is very widely used. Sometimes, however, accurate results are not possible by this test due to distorted slumps as shown in figure below. (Fig. 2-2.)

Fig. 2-2. Distorted Slump.

(b) Compacting Factor Test.—It is a better test and depends on the definition of workability on basis of internal work as mentioned above. Concrete is made to fall into a mould from a standard height so that it compacts itself by gravity. Apparatus used is shown below. (Fig. 2-3.)

The height H determines the workability. The hopper (B) is not filled directly with concrete but by means of another hopper. (A). The heights of the hoppers can be varied as desired.

Fig. 2-3. Compaction Test.

- (A) Top Hopper (with hinged bottom).
- (B) Main ,
- (C) Mould.
- (D) Wooden Stand

2.2 ESSENTIAL REQUIREMENTS.

These are:-

- (a) Strength.
- (b) Durability.
- (c) Resistance to wear.
- (d) Water-tightness.
- (e) Compactness.
- (f) Workability.
- (g) Economy.
- (a) Strength.—The capacity to withstand without injury the stresses developed when being used as a structural material.

- (b) Durability.—The property of resisting the action of chemical and physical destructive agents, such as—
 - Leaching due to lime contents in the cement being dissolved by pure and distilled waters.
 - (ii) Expansion and contraction resulting from temperature and alternate drying and wetting.
 - (iii) Freezing and thawing of water sucked in small crevices by capillary action.
 - (iv) Disintegration by alkaline, acidic or saline waters.
- (e) Resistance to wear. Especially in case of pavements and roads.
- (d) Water-tightness.- Obstructing through passage of water after initial absorption takes place.
- (e) Compactness.—Is the proportion between the volume of concrete produced and the absolute volume of the aggregates and cement used.
- (f) Workability.—Ease with which concrete can be handled, transported and placed.
- (g) Economy.—Is effected by using local aggregates with minimum amount of cement and designing the mix properly to get the specified strength.

2.3 PROPORTIONING OF CONCRETE.

Various methods of proportioning are:-

2.3.1 ARBITRARY PROPORTIONS.

The proportions of cement, sand and coarse aggregates are specified as 1:2:4; 1:3:6, etc., mostly by volume.

23.2 SIMPLE VOIDS METHOD.

Voids in the coarse aggregates are to be filled in by the sand and voids in sand are to be filled in by cement paste. Ten per cent extra sand and 15 per cent extra cement paste are provided to allow for additional voids created by wedging action of sand particles on the coarse aggregates and that of cement particles on the sand.

Example.—Design a concrete mix if coarse aggregates and sand have 43% and 32% voids respectively.

Sand required for 100 eft, of course aggregate —43+.43×10—47.3 eft.

Cement paste required

 $=(47.3 \times .32) - (47.3 \times .32)(.15) - 17.406$ eft.

Dry cement required—17.406×1.2—20.9 cft. —20.9 cft.

Proportions of cement: sand: coarse aggregate

- 20.9:47.3:100 - 1:2.31:4.9

2.3.3 FINENESS MODULUS METHOD.

2.3.3.1 Object.

The arbitrary mix method described earlier in para 2.3.1 has certain drawbacks, as the exact strength of the arbitrary mix is not known and such mixes are usually uneconomical. It is, therefore, necessary to specify concrete of a stipulated strength, and to work out an economical mix by some rational method. The following paras explain in a simple manner the convenient methods which may be adopted with advantage.

2.3.3.2 Variables in design of concrete mix.

The variables in the design of a mix are:

- (a) Water-cement ratio.
- (b) Cement content for a unit quantity of concrete.
- (e) Workshility, grading of aggregates, and proportions of fine and coarse aggregates.

2.3.3.3 Data required for designing a concrete mix.

It is necessary to ascertain the following data before designing a satisfactory concrete mix.

The minimum compressive strength of concrete to which a structure is designed is essential, and the workability required is also necessary. As use has to be made of available aggregate, the grading of both coarse and fine aggregates, their weights, their bulking percentage and the water content must be known. These can be easily determined.

2.3.3.4 Relation between the minimum and average crushing strength.

Table 1 gives the estimated relation between the minimum and average crushing strength of works cubes for different conditions.

This serves as a guide for determining the average strength on which the mix design is to be based when the minimum strength is specified.

2.3.3.5 Water-Cement Ratio.

Table 2 gives the relation between the crushing strength and water-cement ratio for fully compacted concrete using ordinary Portland cement. The water-cement ratio is determined for the average strength.

2.3.3.6 Workability and Slump.

The degrees of workability for various requirements are given in Table 3, and knowing the conditions of work, the required slump is determined from this table.

2.3.3.7 Weight of cement per 100 c.ft. of concrete.

The quantity of cement per 100 cft, of concrete may be determined from Table 4 in which the total quantity of water per 100 cft, of concrete is given. These values divided by the water-cement ratio give the required quantity of cement.

2.3.3.8 Absolute volumes of water, cement and mixed aggregates.

The quantity of water and of cement per 100 cft, of concrete being found, the absolute volumes of these two are obtained by dividing the weights by their absolute specific gravities. The absolute volume of mixed aggregate is then 100 minus absolute volumes of water and cement. The absolute specific gravities for cement, fine and coarse aggregates may be taken as 3.15, 2.65 and 2.55 respectively.

2.3.3.9 Determination of fineness modulii of fine and coarse aggregates and calculation of the proportions of fine and coarse aggregates.

The proportions of coarse and fine aggregates to produce optimum workability is obtained through Fineness Modulus. The fineness modulii of the coarse and of the fine aggregates are determined separately by ascertaining the percentage retained on each of the sieves.

The sum of the percentages retained divided by 100 gives the F.M. Suitable F.M. for mixed aggregates are given in Table 5. The percentage of fine aggregate is obtained from $F_c - F_m \times 100$. Values of F, and F_t i.e. the F.M. of coarse and fine aggregates respectively, are determined as above and the value of F_m , the F.M. for mixed aggregate, is taken from Table 5.

23.3.10 Absolute volumes and weights of fine and coarse aggregates.

Once the proportions of coarse and fine aggregates are determined as explained, the absolute volumes of these aggre-

gates are obtained from these proportions. The weights of the aggregates are determined by multiplying the absolute volumes by absolute specific gravity and the weight of water.

2.3.3.11. Determination of the Nominal Mix.

The nominal mix is obtained by dividing the weights of the various components by the weight of eement.

2.3.3.12 Quantity of mixing water required.

In order to determine the quantity of mixing water required per 100 cft. of concrete, the free moisture in the aggregates has to be taken into account; the free moisture being obtained by multiplying the percentage of water in each aggregate by the weight required for 100 cft. of concrete. This free moisture is to be deducted from the total quantity of mixing water as determined in para 2.3.3.5.

2.3.3.13. Field Mix by Weight.

The field mix by weight is obtained by taking into consideration the free moisture in the aggregates in the nominal mix.

2.3.3.14. Field Mix by Volume.

It is often convenient to prepare a concrete mix by volume, and in such a case, bulking of the aggregates has to be taken into consideration. Bulking is the increase in volume of aggregates due to the presence of water. The method of correction for this item is shown in the example.

2.3.3.15 Quantity of mixing water required per bag of cement.

The mixing water required after allowing for the free moisture in the aggregates is easily obtained by dividing the mixing water as obtained in para 2.3.3.12 by the number of bags of cement required per 100 eft. of concrete as determined in para 2.3.3.7.

TABLE 1

Estimated relation between the Minimum and Average Crushing strengths of works cubes for different works conditions.

Conditions	Minimum strength as percentage of average strength.
Very good control with weight batching, constant supervision, etc.	75
Fair control	60
Poor Control	40

TABLE 2

Relation between Cube Crushing Strength and Water-Cement Ratio by weight for Fully Compacted Concrete (Ordinary Portland Cement).

Water-cement ratio by weight	Cube crushing 7 days	strength p.s.i. 28 days
0.35	5,700	7,500
0.40	5,000	6,700
0.45	4,300	6,000
0.50	3,600	5,300
0.55	3,100	4,600
0.60	3.600	4,000
0.65	2,200	3,500
0.70	1,900	3,100
0.75	1,600	2,800
0.80	1.500	2,500

Notes: 1. Cylinder strength may be taken as 0.8 of cube strength.

2. Strengths at 3 months and 1 year are approximately 25% and 67% greater than the strength at 28 days.

TABLE 3.

Degrees of workability for various requirements.

Degree of workability	Slump in inches	Use for which concrete is suitable.
"Very Low"	0 to 1	Vibrated concrete in roads or other large sections.
"Low"	1 to 2	Mass concrete foundation without vibration. Simple reinforced sections with vibration.
"Medium"	2 to 4	For normal reinforced work without vibration and heavily reinforced sections with vibration.
"High"	4 to 7	For sections with congested reinforce- ment. Not normally suitable for vibration.

TABLE 4.
Water content per 100 eft of concrete for 3" slump

Max. size of coarse aggregate	j.,	3"	1"	13"	2"	3"
Water in lbs. (a) for rounded coarse aggregate	1241	1149	1111	1037	982	926
(b) for angular coarse aggregate	1333	1241	1204	1122	1074	1019

For each 1" increase or decrease in slump, increase or decrease the water content by 3 percent.

TABLE 5.

Fineness Modulii of mixed aggregates for different sizes of aggregates.

Max. size of coarse aggregate.	1	3.	1"	11,"	2"	3"
Fineness Modulii of mixed aggregate. Min. Max.	4.5 5.0	4.8 5.3	5,0 5.5	5.4 6.0	5.7 6.3	5.9 6.5

EXAMPLE

(Paragraph numbers in this example are identical with the paragraph numbers in the text of section 2.3.3)

3. Data

- 3.1 Minimum compressive strength 750 lbs, per sq. in
- 3.2 Workability-Medium
- 3.3 Aggregates available

3.3.1 Coarse aggregates

?" gravel (rounded coarse aggregate) with 40% passing 1" sieve.
90 lbs. per c.ft.

Weight of C.A.
Bulking percentage
Water content

2.56

	3.3.2 Fine aggregates		% passing	100 sie	ve	22
				52 ,		10
			4.9	25 .		45
			8.9	14 .		til
			1.	7 .		87
			11	3/8 .	9	100
	Weight of F. A.		100 lbs. pc	er c. ft.		
	Bulking percentage		14.3			
	Water content		200			
	3.4 Control		Fair			
4.	Average crushing strength	==	750 × 3 (R	Refer Tab	de 1)	
		~_	3,750 p.s.:	i.		
	Note:—Cube strength should be 3 times working strength.					
5.	Water-Cement Ratio	-	0.62	Refer Te	thle :	2)
6.	Slump required	===	3" (Refer Ta	able	3)
7.	Determination of the weight of	Ces	ment net 10	o cft. of	conc	rete.
			Total qu			
	Weight of cement per		per leni			
	100 cft. of concrete	-	117-4	D-	Ai a	_
			Water-cer	Refer Ta		4)
			1149	(20.000		-1
		-	0.62			
		==	1853 lbs.			
8.	Absolute volumes of water, c	cme	ent and mi	xed agg	regat	6,00.
	N. I. Absolute values of surter		1149	15	8.4	
	8.1 Absolute volume of water	=	62.4	14	7.278	
	8.2 Absolute volume of cemer	nt	$\frac{1853}{3.15 + 62}$. 4 9.	4	

= 18.4 + 9.4 = 27.8 c.ft.

= 100 - 27.8 72.2 c.ft.

Absolute volume of

water and cement = 8.3 Therefore, absolute volume of mixed aggregates =

- 9. F.M. of fine and coarse aggregates and proportions of fine and coarse aggregates.
 - 9.1 F.M. of coarse aggregates-Fc

Sieve	Passing	Retained
3 8"	40%	600%
3/4"	100%	0%
3/16"	00/0	160%
7	0%	100%
14	0%	100%
25	0%	100%
52	0%	finia a
100	0%	100%
		-
		660%

$$Fc = \frac{660}{100} = 6.6$$

9.2 F.M. of fine aggregates = Ff

Sieve	Passing	Retained
100	2	98
52	10	90
25	45	55
14	67	33
7	87	13
3/16"	1000	4.1
		289

$$Ff = \frac{289}{100} - 2.89$$

9.3 Average F.M. of mixed aggregates = 5.05 (Refer Table 5)

9.4 % of fine aggregate =
$$\frac{F_0 - F_m}{F_c - F_t}$$
. 100 $\frac{6.6 - 5.05}{6.6 - 2.89}$. 100

9.5 % of coarse aggregate = 100 - 42 = 58%

- 10. Absolute volumes and weights of fine and coarse aggregates.
 - 10.1 Absolute volume of fine aggregate 72.2 42 = 30.3
 - 10.2 Absolute volume of coarse ... 72.2 × .58= 41.9
 - 10.3 Therefore, weight of fine aggregate per 100 c.ft. of concrete = $30.3 \times 2.65 \times 62.4 = 5012$ lbs.
 - 10.4 And weight of coarse aggregate per 100 c.ft. of concrete $= 41.9 \times 2.55 \times 62.4 = 6666$ lbs.

11 Nominal Mix

Nominal mix	=	1853 1853	:	5012 1853	6666 1853
		1	:	2.7 :	3.6

12. Mixing water required per 100 c.ft. of concrete Water content of F.A. = \$12×.02 = 100 lbs.

Water content of C.A. - 6666 x.01 = 66 lbs. Total water content of F.A. and C.A. = 166 lbs.

Hence mixing water required = 1149 - 166 = 983 lbs = 98.3 gallons

per 100 c.ft. of concrete after allowing for moisture in the aggregate.

13. Field Mix by Weight (taking into consideration weight of water

in aggregates) = $\frac{1853}{1853}$: $\frac{5012+100}{1853}$: $\frac{6666+66}{1853}$ = 1 : 2.76 : 3.63

14. Field Mix by Volume taking into consideration bulking of materials).

Volume of cement in bags 1853 - 16.6 bags

Volume of F.A. allowing for bulking

weight of F.A. per 100 c.ft. of concrete. weight of F.A. per c.ft. (1+bulking per-)

$$\frac{5012}{100} \bigg(1 \pm \frac{14.3}{100} \bigg)$$

... 57.3 c.ft.

Volume of C.A. after allowing for bulking

weight of C.A. per 100 c.ft. of concrete weight of C.A. per c.ft. (1+bulking per-)

$$\frac{6666}{9}$$
 (1 = $\frac{2.56}{100}$)

= 76 c.ft.

Field Mix by volume is therefore

$$\frac{16.6}{16.6} \div \frac{57.3}{16.6} \div \frac{76}{16.6}$$

1 bag cement : 3.5 c.ft. sand : 4.6 c.ft. coarse aggregate.

15. Quantity of mixing water required per bag of cement after allowing for maisture in the aggregates

$$=\frac{98.3}{16.6}=5.9$$
 gallons

23.4 GRADING CURVES METHOD OF PROPORTIONING.

- 2.3.4.1 In this method, the average crushing strength, water-cement ratio and the degree of workability are determined as in the previous method, use being made of Tables 1, 2 and 3.
- 2.3.4.2 The aggregate-cement ratio is obtained from Table 6. These ratios are given for \(\frac{2}{\cupsilon}\) and \(1\frac{1}{\cupsilon}\) aggregates and for four different gradings in each case, as depicted in graphs Nos. A and B.

- 2.3.4.3 Suitable proportions of fine and coarse aggregates are determined from these graphs as illustrated in the second Example.
- 2.3.4.4 The nominal mix is read off from the results obtained in preceding para 2.3.4.3.
- 2.3.4.5 The field mix by weight is obtained by multiplying the nominal mix proportions by the weight of a bag of cement and adding the weight of free moisture.
- 2.3.4.6 The quantity of mixing water is obtained by multiplying the water-cement ratio by the weight of a bag of cement and deducting the free moisture in the aggregates.
- 2.3.4.7 The field mix by volume is obtained in the same way as in para 2.3.3.14.

The limitation of this method is that aggregate-cement ratio Tables are available for \(\frac{3}{4} \) and \(1\frac{1}{2} \) aggregates only at present.

Table 6 and graphs A and B are taken from the UK Road Research Institute Brochure No. 4 on "Design of Concrete Mixes", and Tables 1, 2 and 3 are based on data given in the same brochure.

lo e		1	1 -	ei ei	3.3	4.1	90	5.5	6.1	6.0	51	5.5			
Aggregate-Coment Ratio Required to give Four Degrees of Workshahity with different gradings and types of		-	FC	9.6	17	6.5	10 10	6.1	6.8	4.4	7.0				
lings an		High	24	21	e2 (23	% **	5.3	6.5	†+	1.					
nt grad			-	20 71	3.6	4.6	4.00 4.000	12							
differe			4	t- 01	6.2	10 +	4.6	6.4	21	20		-			
ty with		Medium	00	26 2 i	9.	5.0	3.6	7.4	= 1						
rkaluli	,		TI	3.0	4	10 60	8	1 - 63							
of Wo	gregate			٠; -	4.2	10 10	6.3	67							
Degrees	in. Rounded Aggregate.		7	- 69	+ .1		0.0	6.9	£=	200				_	
Four	Kounde	W	6.2	ତଃ ୧୨	6.6	3.6	7.0	01 20							
to give	im.	Luw	et	3.6	5.1	9 9	N.0								
Famili	₹ (V)		-	90 85	4.0 8.3	6.9	20								
atio Re			4	63	4.5	90 (d)	977	20							
nent R		Very Luw	~3	13	1.3 84	5.2	÷								
tte-Cen		Very	e)	4.5	6.3	\$ = \$ =									
Aggrega			-	4.6	6.6	0.8									
		of	rggre-	3 3 3	0,40	0.43	0.50	0, 55	0.60	0.65	13. 15.	0.75	60% 0	0.85	0.90
TABLE NO. 6		Workability	Grading of aggregate Carve No.				Meté	ρλ	uita	1 10	ənuə:				
							3879								

01 5.0

0 0 101 10 01 3.1 23 High 3.9 10 30.00 CI 7 2. 00 *: 01 3.9 } in. Irregular travel Aggregate. 21 50 3.5 6.8 Medium 01 6.0 5.4 61 21 4.0 4.6 9.5 3.3 01 3.0 10 3.8 63 3.0 Low 8.0 6.9 71 3 3.0 (B) B.40 9 3.0 69 6.8 NO. 3.0 = × TABLE 3.5 1-H. 6 Very Low 8.6 81 3.7 00 6.3 0.0 3.7 Gate (Curve No. on Graph A 100 0.00 10.75 0.80 0.85 00.0 0.35 0.50 0.25 00.0 02.0 0.65 Workahilty Degree of

Water-centent ratio by weight.

TAMLE No. 6 (C) I in. Crushed Rock Aggregate.

Workability	of		Very	Very Low				Low			Me	Medium		_	=	High	
Grading of aggregate (Curve No.	KATE.	-	@1	es	*		eı	es	*	-	69	es	-	-	21	63	*
	0.35	6.5 2.3	3.0	9.5	64	t- ci	27	21	4.	oi oi	21	es si	31 31	21	21	28	ei
9	0.40	40	÷.	17	10	85 85	10	24	3.0	<u>e</u>	 	6.5	r-i	6.5	G. G.	zi zi	21
-	0.45	15	5.0	4.6	÷	4.3	4.1	3.6	e3	63	8 - 79	eri	873 873	12)T	71	#i
	0.60	6.3	30	5.4	3.0	9.0	4.9	5.	₹ 3	4	¢.	6.0	85 85		a m	22	5.5
	0.55	0.0	9.6	6.0	5.6	17	4.5	5.0	oc.	17.4	17	4.5	4.3			*	4.0
	0.60	5. S.	14	6.6	6.00	6.3	0.0	5.6	63		43	4.0	30			17	4.4
	0.65	200	30	\$- 51	6.9	6.9	6.0	6.1	35.		10	4.6	91			45	4.9
	0,70	20	90	[n [n	17	1.0 di	2.0	4.3	6.3	-	6.0	36 +0	17			\$ 000 \$ 000	63
e we	0.75			200 0.1	œ. œ.	20	12	2.0	9			6.9	- 9			4G 35	10
	0.80							**	81			0.0	0.5			6.1	6.0
	0.86							90	5.5				6.9			6.4	\$ 'S
0	0.90											£2.	6.5				6.7
0	0.95											8.0	7.6				7.0
-	1.00																6-

TABLE NO. 6 (D) 14 in. Irregular River Gravel Aggregate.

	→	\$1 \$2	3.1	5. t. c.	7.7	5.5	7 6.2	3 6.9	7.4	0.8	
High	83	00	85 85	4.5	3.1	0.0	6.7	1-			
	24	*5	10	4.4	10	9.6					
	-	21	100		30						
	→	2.5	3.6	4.3	5.1	8.6	6.6	90	0.		
Medium	00	9:0	67	4.6	10	6.3	2 -	00 1*			
Med	21	op op	00	4.7	5.7	± 53	2.0	Z.			
	-	œ.	80.	8.6	\$. \$.	21	0.7	7E			
	-	6.0	3.8	40,	5.7	6.6	7.4	 			
l.ow	62	20	4.	5.3	6.3	61					
	70	62	4.6	5.6	6.6	9 1-					
	-	# #2	4	5.0	6.7	20.					
	-	है। एवं	÷	65.00	6.3	63					
Low	65	12	4.7	0.0	7.1	9.1					
Very Low	o.	3.9	65	6.5	-1						
	_	4.0	6.0	6.0	7.7						
Degree of Workability.	Grading of aggre- gate Curve No. on Graph Bl	0.35	0,40	0,45	0,50	0,55	0.60	0.65	0.70	0.75	0.80
Worl	radin gate on		11	righ	M N	q o	us:	าเอเ	11 3 3	7918VI	

EXAMPLE

(Paragraph numbers in this example are identical with the paragraph numbers in the text of section 2.3.4.)

2.3.4.1 Data.

Minimum compressive strength 750 lbs. per sq. in. Workability—Medium.

Aggregates available:

Coarse aggregates	4" gravel (rounded coarse aggregate) with 40% passing 4" sieve.
Weight of C.A.	90 lbs. per cft.
Bulking percentage	2.56
Water content	1%
Fine aggregates	% passing 100 sieve 2
	,. 52 ,, 10
	25 ,, 45
	14 67
	7 ,, 87
	,, 100
Weight of F A	100 lbs non - 6

Weight of F.A. 100 lbs. per c.ft.

Bulking percentage 14.3
Water content 2%
Control Fair

Average crushing strength $=\frac{750 \times 3}{0.6}$ (Refer Table 1) =3.750 p.s.i

Note:—Cube strength should be 3 times working strength.

Water-cement Ratio —0.62 (Refer Table 2) Siump required —3" (Refer Table 3)

2.3.4.2 Aggregate-Cement Ratio:

For a medium workability and w/e ratio of .62, two different aggregate-cement ratios are obtained from Table 6 as follows, irregular gravel being assumed:

For	grading			* * * *	6.2
97	11	No.	4		5.8

For an economic mix, the aggregate-cement ratio must be as high as possible, i.e., in this case, our grading should approximate to standard grading No. 3 (please refer to graph A).

2.3.4.3 Proportions of Fine and Coarse Aggregates:

The following three trial mixes are prepared:

	Sand	Coarse
		Aggregate
.\	30°7	70%
В	35%	65%
C	40%	60%

The sieve analysis of these three mixes is determined and the results are as follows:-

	Percentage of	of material par	ssing sieve
3.S. Sieve	Sample containing 30% sand	Sample containing 35% sand	Sample containing 40% sand
No. 100	0.6	0.7	0.7
52	3.0	3.5	4.0
., 25	13.5	15.75	18.0
14	20.5	23.4	26.8
7	26.0	30.4	34.8
3/16 in.	30.0	36.0	40.0
3/8 in.	58.0	60.0	64.0
3/4 in.	100,0	100.0	1:0.0

Curves of these gradings are drawn on a tracing paper to the same scale as the optimum grading curves in graph Λ .

This tracing paper is superimposed on the optimum grading curves to ascertain which of the above three mixes approximates to optimum grading No. 3.

In this case, mix C approximates to optimum grading No. 3, hence, the mix containing 40% sand is suitable.

Hence proportion of sand
$$= 6.2 \times \frac{40}{100} = 2.48$$
 and ... of coarse aggregate $= 6.2 \times \frac{60}{100} = 3.72$

2.3.4.4 Nominal Mix.

Therefore the nominal mix = 1:2.48:3.72say = 1:2.5:3.7

2.3.4.5 Field Mix by Weight.

The quantities of materials required by weight are

Cement —112 lbs.

Sand 2.5 x 112—280 ... plus weight of free moisture (.02 x 280—5.6)—286 lbs.

Gravel 3.7 x 112—415 ... plus weight of free moisture (.01 x 415—4.15)—419 lbs.

The field mix by weight is therefore-

$$\frac{112}{112}$$
 : $\frac{286}{112}$: $\frac{419}{112}$ i.e. 1 : 2.55 : 3.74

2.3.4.6 Quantity of mixing water.

Water 0.62 x 112=69.5—free moisture in sand and coarse aggregate (9.75)

-59.25 lbs. -say 6 gallons

2.3.4.7 Field Mix by Volume.

The quantities of materials required by volume are:

Cement = 1 bag Sand $\frac{280}{100}$ x 1.143 = -3.2 eft.

Gravel $\frac{419}{90} \times 1.0256 -4.75$ eft.

The field mix by volume is therefore 1 bag: 3.2 eft.: 4.75 eft.

2.3.4.8 Remarks.

A slight variation in the mix from the results of the first example may be noted. This is due to the fact that the percentage of sand to gravel by the method of trial and error has been taken as 40 whereas in the first Example, the Fineness Modulus method gave a percentage of 42.

2.3.5 THE METHOD OF TRIAL MIXES. (Portland Cement Association, U.S.A.)

In this method also laboratory data on trial concrete mixes made with varying sizes and proportions of aggregates and water content are made use of, in arriving at the proper type of mix for a particular job. Various steps followed in this method are:—

(a) Selection of w/c ratio to get the strength and durability desired.

(b) Selection of slump for desired workability and maximum size of aggregates to be used.

(c) Selection of approximate trial mix for the particular type of aggregates to be used on the job. The total water content and sand to coarse aggregate ratio of this trial mix is used and the exact trial mix for the given aggregates is calculated. If the aggregates as supplied in the field are wet, correction for moisture is made.

(a) W/C RATIOS FOR VARIOUS TYPES OF CONSTRUCTION OR EXPOSURE CONDITIONS

Type or Lecation		Wide R	er Moder ange ut T Long Fre	emperat	ngre	Mild Climain						
of Structure	This Section		Ministrate Section		Heavy Section Mass	Thin Soction		Moderate Section		Henry Sections Man		
	RCC	Plan	RCC	Plans	Concerts	R.C.C.	Flain	RCC	Plan	Concrete		
At the Water Lane in Hydraulin Structures Subject to Intermit- tent Saturation												
la Sea Water In Fresh Water	44	.40	.48	.63 (IIII	63 88	49	. 49 83	40	.33 388	. 50		
Hydranic Structures away from Water Line but subject to froquent wetting by Sea Water By Fresh Water	40 33	43 388	.33	43	53 56	.49	- MA - CE	THE	539E - 67	. 00E 07		
Ordinary exposed Structures, Buildings, etc	_53	200	300M	62	.02	33	69	SHOR	62	.07		
Submerged Struc- tures. In Sea Water In Fresh Water	.83	54 63	SO EARLE	67	62 67	E.G	3.6 62	LONG CHIZ	U62 67	_62 _67		
Pavement Slahs Wexney Slahn Base Slabs	. 49	33 5000				13	_56 .87					

Curves for selecting w/c ratio for particular strength.

(Portland Cement Association's figures.)

Results of experiments by Indian Railways for compressive strength of Indian cements (Standard Cylinders).

W/c Ratio By wt.	. 33	. 45	.55	.66	.78	.89
Min. Compressive Strength @ 7	2900	2420	1980	1580	1200	920
Average Comp. Strength @ 7 days lbs. []	3500	3(H)0	2550	2150	1780	1500
Average Comp. Strength @ 28 days taken as 150% Strength @ 7 days	5250	4500	3825	3225	2670	2250

It will be noted that there is slight difference in the figure in the above two as well as those in table in paragraph 2.3.3. Hence the w/c ratio should be selected by judgment for small jobs and for important big jobs actual tests should be made and curves plotted accordingly.

(b) Slump for particular job:—To be selected according to nature of work. Maximum size of aggregates to be used will depend on nature of work and should be as per following table:—

	Max. Size of aggregate in inches											
Minimum dimension of section in unches	R.C. walls beams & cols.	Unreinfor- ced walls	Heavily reinforced Slabs.	Lightly reinforced Slabs.								
21 to 5	i to i	2	1 to 1	‡ to 1}								
6 to 11	₹ to 1½	11	11	1} to 3								
12 to 29	1½ to 3	3	11 to 3	3								
30 or more	1½ to 3	6	3	3 to 6								

(c) Typical Trial Mixes.—These are given for medium consistency concrete made with coarse, medium and fine sand and rounded or angular coarse aggregate varying from ?" maximum size to 2" maximum size. In calculating the quantities of materials it is necessary to use the principle of absolute volume. It is assumed that in, say, I cubic yard of compact concrete water occupies all the voids in cement powder. The cement-water paste occupies all the voids in the sand and cement paste and sand mortar in their turn occupy all the voids in the coarse aggregate. Thus the volume of concrete produced by any combination of materials equals the sum of absolute volume of cement and aggregates and the volume of water. The absolute volume of a loose material is the actual total volume of solid matter in all the loose particles and is obtained as follows:—

Absolute volume $=\frac{\text{Wt. of loose material}}{\text{Sp. gravity}\times\text{unit wt. of water}}$

Specific gravities of materials used in concrete are:—

Cement 3.15; Sand 2.65; Gravel 2.65; Trap 2.90; Granite 2.70; Hard Stone 2.55; Lime Stone 2.65; and Water 1.0.

SUGGESTED TRIAL MIXES FOR CONCRETE OF MEDIUM CONSISTENCY.

(Slump=3")

FINE SAND. (F.M. 2 2 to 2.6) Rounded Coarse Aggregates.

Max. Size	Water Gale/	Sand "age		Cwt. of nent		1	1	oncrete	Yield Cubic (4)			
of	Cwt of	of	Sand	Gravel	Water	Cement.	Sand	Gravel	Cubic ft.			
C.A.	Cement.	Total	Lbs.	Lbs.	l.bs.	Curts.	Lbs.	I bs.	of Cement.			
1	5	41	200	230	310	6.2	1260	1800	4.35			
1	5	36	185	325	300	6.1	1115	1980	4.45			
14	.5	32	178	380	280	5.7	1020	2180	4.72			
0	3	29	178	430	270	5.4	960	2300	5.05			
2	5)	42	230	320	310	5.6	1310	1810	4.8			
1	5}	37	215	362	300	5.4	1170	1985	4.95			
13	5]	33	263	415	280	5.2	1055	2170	5.20			
23	5}	30	203	475	270	4.85	985	2320	5.60			
2	6	43	263	345	310	5.2	1360	1800	5.20			
1	6	38	243	394	300	5.0	1230	1980	5.35			
13	6	34	232	451	280	4.8	1110	2165	5.65			
2	6	31	232	520	270	4.45	1035	2300	6.10			
2	61	44	292	373	310	4.8	1400	1795	5.65			
1	64	39	275	430	300	4.65	1265	1980	5.85			
14	61	35	267	493	280	4.38	1170	2160	6.19			
22	6]	32	262	360	270	4.10	1080	2300	6.60			
1	7	45	327	400	310	4.45	1460	1775	6.1			
1	7	40	304	460	300	4.30	1300	1965	6.3			
14	7	36	292	520	280	4.1	1200	2130	6.3			
2	7	33	292	390	270	3.85	1125	2275	7.0			
2	7)	46	361	430	310	4.1	1495	1765	6.6			
00	74	41	332	482	300	4.0	1343	1945	6.7			
11	71	37	328	360	280	3.8	1240	2115	7.2			
2	71	34	322	625	270	3.6	1160	2260	7.5			
1	8	47	400	334	310	3.85	1540	1750	7.0			
1	8	42	370	512	300	3.8	1395	1935	7.2			
11	8	38	357	585	280	3.6	1290	2105	7.5			
	8	38	357	670	270	3.85	1200	2240	8.1			

II FINE SAND (F.M. 22 to 26) Augular Coarse Aggregates

Max. Water Samt Samt Stone C.A. Comeant C.A. C.A.														
of C.A. Cement. Total Lbs. Lbs. Lbs. Cwts Lbs. Lbs. 2 5 46 202 238 335 6.73 1390 1690 4.02 1 5 41 185 208 325 6.55 1210 1755 4.12 1 5 37 185 310 305 6.22 1150 1925 4.35 2 5 34 185 352 295 5.98 1085 2065 4.60 2 5 34 185 352 295 5.98 1085 2065 4.60 2 5 34 185 352 295 5.96 1280 1775 4.52 1 5 5 38 208 345 300 5.62 1170 1945 4.80 2 5 3 35 208 345 300 5.62 1170 1945 4.80 2 5 3 35 208 345 300 5.62 1470 1945 4.80 2 5 3 35 208 345 300 5.62 1475 1573 4.8 1 6 48 262 280 335 5.62 1475 1573 4.8 1 6 48 262 280 335 5.62 1475 1573 4.8 1 6 48 264 321 325 5.46 1330 1753 4.95 1 6 49 298 369 309 5 20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2080 5.55 4 6 4 49 298 304 335 5.2 1520 1580 5.20 1 6 4 43 274 345 325 5.04 1380 1740 5.35 1 6 4 43 278 345 325 5.04 1380 1740 5.35 1 6 4 43 278 360 309 4.78 1280 1910 5.65 2 6 3 37 268 452 295 4.53 1215 2050 5.95 4 7 50 327 327 335 4.78 1570 1570 5.65 2 7 38 298 476 295 4.20 1250 2050 6.42 2 7 38 298 476 295 4.20 1250 2050 6.42 2 7 38 298 476 295 4.36 1400 1715 6.15 1 7 45 364 383 393 325 4.36 1460 1715 6.15 1 7 45 364 386 325 4.70 1430 1735 5.75 1 7 41 298 428 309 4.5 1015 1350 6.05 2 7 38 298 476 295 4.20 1250 2050 6.42 2 7 38 298 476 295 4.20 1250 2050 6.42 2 7 38 298 476 295 4.36 1460 1715 6.15 1 7 4 5 333 348 309 4.12 1370 1890 6.60 2 7 3 8 298 476 295 4.20 1250 1580 6.60 2 7 3 8 298 476 295 4.20 1250 2020 6.85 3 8 52 308 383 335 4.20 1650 1525 6.42 4 8 52 309 386 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1 8 47 369 417 325 4.12 1520 1715 6.60						-		_	oncrete	Yield c.ft.				
Lbs Lbs Lbs Cwts Lbs Lbs Lbs				Sand	Stone	Water	Coment.	Sand	Stone	per Cwt				
1 5 41 185 208 325 6.55 1210 1755 4.12 1½ 5 37 185 310 305 6.22 1150 1925 4.35 2 5 34 185 352 295 6.98 1085 2065 4.60 4 5½ 47 232 262 335 6.13 1420 1605 4.40 1 5½ 42 214 298 325 5.96 1280 1775 4.52 1½ 5½ 38 208 345 300 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 2 6 48 262 280 335 5.62 1475 1375 4.8 1 6 43 244 321 325 5.46 1330 1755 4.9 <td>C.A.</td> <td>Cament.</td> <td>Total</td> <td></td> <td>,</td> <td>Lbs.</td> <td>Cwts</td> <td>Lbs.</td> <td>Llis.</td> <td>of Cement.</td>	C.A.	Cament.	Total		,	Lbs.	Cwts	Lbs.	Llis.	of Cement.				
1½ 5 37 185 310 305 6.32 1150 1925 4.35 2 5 34 185 352 295 5.98 1085 2065 4.60 2 5½ 47 232 262 335 6.13 1420 1605 4.40 1 5½ 42 214 296 325 5.96 1280 1775 4.52 1½ 5½ 38 208 345 300 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 3 6 48 262 280 335 5.62 1475 1575 4.8 1 6 43 244 321 325 5.46 1330 1755 4.8 1½ 6 30 238 369 309 5.20 1240 1920 5.20 <td>2</td> <td>5</td> <td>46</td> <td>202</td> <td>238</td> <td>335</td> <td>6.73</td> <td>1360</td> <td>1600</td> <td>4.02</td>	2	5	46	202	238	335	6.73	1360	1600	4.02				
2 5 34 185 352 295 5.98 1085 2065 4.60 2 5½ 47 232 262 335 6.13 1420 1605 4.40 1 5½ 42 214 298 325 5.96 1280 1775 4.52 1½ 5½ 38 208 345 309 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 3 6 48 262 280 335 5.62 1475 1575 4.8 1 6 43 244 321 325 5.46 1330 1753 4.95 1½ 6 30 238 360 309 5.20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2060 3.55 <td>I</td> <td>.7</td> <td>41</td> <td>185</td> <td>268</td> <td>325</td> <td>6.55</td> <td>1210</td> <td>1755</td> <td>4.12</td>	I	.7	41	185	268	325	6.55	1210	1755	4.12				
2 5½ 47 232 262 335 6.13 1420 1605 4.40 1 5½ 42 214 296 325 5.96 1280 1775 4.52 1½ 5½ 38 208 345 300 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 2 6 48 262 280 335 5.62 1475 1575 4.8 1 6 43 244 321 325 5.46 1330 1755 4.95 1½ 6 30 238 369 309 5.20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2060 5.55 4 6½ 49 298 304 335 5.2 1520 1580 6.20 <td>11</td> <td>5</td> <td>37</td> <td>185</td> <td>310</td> <td>305</td> <td>6.22</td> <td>1150</td> <td>1925</td> <td>4.35</td>	11	5	37	185	310	305	6.22	1150	1925	4.35				
1 5½ 42 214 298 325 5.96 1280 1775 4.52 1½ 5½ 38 208 345 300 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 2 6 48 262 280 335 5.62 1475 1575 4.8 1 6 43 244 321 325 5.46 1330 1755 4.95 1½ 6 30 238 369 309 5.20 1240 1920 5.20 2 6 36 238 324 295 4.87 1160 2060 5.55 3 49 298 304 335 5.2 1520 1580 8.20 4 6½ 49 298 304 335 5.2 1520 1580 8.20	-3	3	34	185	352	295	5.98	1085	2085	4.60				
1½ 5½ 38 208 345 309 5.62 1170 1945 4.80 2 5½ 35 208 387 295 5.37 1120 2080 5.02 2 6 48 262 280 335 5.02 1475 1573 4.8 1 6 43 244 321 325 5.46 1330 1753 4.95 1½ 6 30 238 369 309 5.20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2080 5.55 3 6½ 49 298 304 335 5.2 1580 5.20 1 6½ 49 298 304 335 5.2 1580 5.20 1 6½ 49 298 304 335 5.2 1580 5.20 1 7	2	5}	47	232	262	335	6.13	1420	1605	4.40				
2 5½ 35 208 387 295 5.37 1120 2080 5 02 ½ 6 48 262 280 335 5.62 1475 1575 4.8 1 6 43 244 321 325 5.46 1330 1755 4.95 1½ 6 30 238 369 309 5 20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2060 3.55 ½ 6½ 49 298 304 335 5.2 4520 1580 6.20 ½ 6½ 49 298 304 335 5.2 4520 1580 5.20 ½ 6½ 49 298 304 335 5.2 4520 1580 5.20 ½ 6½ 40 309 4.78 1280 1910 5.65 ½	1	54	42	214	13975	325	5.96	1.280	1775	4.52				
\$\begin{align*} 6 & 48 & 262 & 280 & 335 & 5.62 & 1475 & 1573 & 4.8 1 6 & 43 & 244 & 321 & 325 & 5.46 & 1330 & 1755 & 4.95 1\$\begin{align*} 6 & 30 & 238 & 369 & 369 & 5 & 20 & 1240 & 1920 & 5.20 2 6 & 36 & 238 & 424 & 295 & 4.87 & 1160 & 2060 & 5.55 \$\begin{align*} 6\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11	5}	38	2019	345	300	0.62	1170	1945	4.80				
1 6 43 244 321 325 5.46 1330 1755 4.95 1½ 6 30 238 369 309 5.20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2060 5.55 4 6½ 49 298 304 335 5.2 1520 1580 5.20 1 6½ 44 274 345 325 5.04 1380 1740 5.35 1½ 6½ 40 208 400 309 4.78 1280 1910 5.65 2 6½ 37 208 452 295 4.53 1215 2050 5.95 1 7 45 304 369 325 4.78 1570 5.65 1 7 45 304 369 325 4.70 1430 1735 5.75	2	51	35	208	387	29.5	5.37	1120	2080	5 02				
1½ 6 30 238 369 300 5 20 1240 1920 5.20 2 6 36 238 424 295 4.87 1160 2060 5.20 4 6½ 49 298 304 335 5.2 1520 1580 6.20 1 6½ 44 274 345 325 5.04 1380 1740 5.35 1½ 6½ 40 208 400 309 4.78 1280 1910 5.85 2 6½ 37 268 452 293 4.53 1215 2050 5.95 1 7 45 304 369 325 4.78 1570 1570 5.65 1 7 45 304 369 325 4.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 </td <td>2</td> <td>6</td> <td>49</td> <td>262</td> <td>280</td> <td>335</td> <td>5.62</td> <td>1475</td> <td>1373</td> <td>4.8</td>	2	6	49	262	280	335	5.62	1475	1373	4.8				
2 6 36 238 424 295 4.87 1160 2060 3.55 4 6½ 49 298 304 335 5.2 4520 1580 6.20 1 6½ 44 274 345 325 5.04 1380 1740 5.35 1½ 6½ 40 268 400 309 4.78 1280 1910 5.65 2 6½ 37 268 452 296 4.53 1215 2050 5.95 1 7 50 327 327 335 4.78 1570 5.65 1 7 45 304 369 325 4.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.29 1250 2050 6.42	1	6	43	244	321	325	5.46	1330	1753	4 95				
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	13	63	20	238	369	309	5 20	1240	1920	5.20				
1 64 44 274 345 325 5.04 1380 1740 5.35 1½ 6½ 40 268 400 309 4.78 1280 1910 5.65 2 6½ 37 268 452 295 4.53 1215 2050 5.95 1 7 50 327 327 335 4.78 1570 5.65 1 7 45 304 369 325 4.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.29 1250 2050 6.42 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 46 333 393 325 4.36 1460 1715 6.15 <t< td=""><td>2</td><td>ti</td><td>36</td><td>238</td><td>424</td><td>295</td><td>4.87</td><td>1160</td><td>2060</td><td>3.55</td></t<>	2	ti	36	238	424	295	4.87	1160	2060	3.55				
1½ 6½ 40 268 400 309 4.78 1280 1910 5.65 2 6½ 37 268 452 296 4.53 1215 2050 5.95 1 7 50 327 327 335 4.78 1570 1570 5.65 1 7 45 304 369 325 4.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.29 1250 2050 6.42 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 438 309 4.12 1370 1896 6.6	2	61	49	299	304	335	5.2	1520	1580	5.20				
2 61/4 37 268 452 293 4.53 1215 2050 5.95 1 7 50 327 327 335 4.78 1570 1570 5.65 1 7 45 304 360 325 4.70 1430 1735 5.75 1½ 7 41 298 428 360 4.45 1325 1910 6.05 2 7 38 298 476 295 4.20 1250 2650 6.42 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 488 300 4.12 1370 1890 6.60 2 7½ 39 327 512 295 3.95 1290 2020 6.	1	61	44	274	345	325	5.04	1380	1740	3.35				
2 7 50 327 327 335 4.78 1570 1570 5.65 1 7 45 304 309 325 6.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.29 1250 2059 6.42 1 7½ 51 363 345 335 4.45 1615 1540 6.05 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 498 300 4.12 1370 1890 6.60 2 7½ 39 327 512 295 3.95 1290 2020 6.95 2 7½ 39 363 335 4.20 1659 1525 6.42 <t< td=""><td>14</td><td>63</td><td>40</td><td>276279</td><td>400</td><td>300</td><td>4.78</td><td>1280</td><td>1910</td><td>5.65</td></t<>	14	63	40	276279	400	300	4.78	1280	1910	5.65				
1 7 45 304 309 325 4.70 1430 1735 5.75 1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.20 1250 2059 6.42 1 7½ 51 363 345 335 4.45 1615 1540 6.05 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 498 300 4.12 1370 1890 6.60 2 7½ 39 327 512 295 3.95 1290 2020 6.95 2 7½ 39 363 335 4.20 1659 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 <t< td=""><td>2</td><td>64</td><td>37</td><td>263</td><td>453</td><td>293</td><td>4.53</td><td>1215</td><td>2050</td><td>3.95</td></t<>	2	64	37	263	453	293	4.53	1215	2050	3.95				
1½ 7 41 298 428 309 4.45 1325 1910 6.05 2 7 38 298 476 295 4.29 1250 2059 6.42 2 7½ 51 363 345 335 4.45 1615 1540 6.05 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 498 300 4.12 1370 1890 6.60 2 7½ 39 327 512 295 3.95 1290 2020 6.85 3 8 52 393 365 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1865 7.00<	2	7	50	327	327	335	4.78	1570	1570	5 .65				
2 7 38 298 476 295 4 29 1250 2050 6.42 1 7½ 51 363 345 335 4.45 1615 1540 6.05 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 488 300 4.12 1370 1890 6.60 2 7½ 39 327 512 295 3.95 1290 2020 6.85 2 8 52 393 363 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1865 7.00	1	7	45	304	369	325	4.70	14311	1735	5.75				
1 7½ 51 363 345 335 4.45 1615 1540 6.05 1 7½ 46 333 393 325 4.36 1460 1715 6.15 1½ 7½ 42 333 458 300 4.12 1370 1890 6.60 2 7½ 39 327 512 29.0 3.95 1290 2020 6.85 2 8 52 393 365 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1865 7.00		7	41	298	428	309	4 45	1325	1910	6 05				
1 7½ 46 333 393 325 4.36 1460 1713 6.15 1½ 7½ 42 333 488 300 4.12 1370 1896 6.60 2 7½ 39 327 512 29.0 3.95 1290 2020 6.85 ½ 8 52 393 363 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1865 7.00	***	4	38	298	476	205	4 20	1250	2050	6.42				
1½ 7½ 42 333 458 300 4.12 1370 1890 6.60 2 7½ 39 327 512 29.5 3.95 1290 2020 6.85 3 8 52 393 363 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1805 7.00	2	71	31	363	345	335	4.45	1615	1540	6.05				
2 7½ 39 327 512 29.0 3.95 1290 2020 6.85 ½ 8 52 393 363 335 4.20 1630 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.86 1405 1865 7.00	1	74	46	333	393	325	4.36	1460	1715	6.15				
\$ 52 393 365 335 4.20 1650 1525 6.42 1 8 47 369 417 325 4.12 1520 1715 6.60 1½ 8 43 363 482 309 3.80 1405 1865 7.00	11	71	42	333	458	309	4.12	1370	1890	6.60				
1 S 47 369 417 325 4.12 1520 1715 6 60 14 8 43 363 482 309 3.86 1465 1865 7.00	7 6	71	39	327	512	20.	3.95	1290	2020	6.85				
11 8 43 363 482 309 3.80 1405 1865 7.00	1	2h	E in	393	363	335	4.20	1630	1525	6.42				
3 0 00 000	1	S	47	369	417	325	4.12	1520	1715	6 60				
2 8 40 363 542 295 3 69 1340 2000 7.32	14	8	43	363	482	309	3.86	1405	1865	7.00				
	2	В	40	362	542	295	3.69	1340	2000	7.32				

III MEDIUM SAND (F.M 26 to 20) Rounded Coarse Aggregates.

111 ME		Dea Ca	bic Yar						
Max.	Water	Sand	Per Cv Cem		Let Co	DIC TAI	9 01 00	muce ce.	Yield C. ft.
Size	Gala/ Cut of	%age of	Sand	Gravel	Water	Cement	Sand	Gravel	per Cwt of Coment.
C.A.	Cement.	Tetal	Lbs	Lbs.	Lbs.	Cwts.	Lbs.	Lbs.	
1	5	43	214	280	310	6.2	1330	["20	4.35
1	3	38	196	331	300	6.1	1190	1945	\$.45
11	5	34	190	369	280	6.7	1090	2110	4.72
2	: 5	31	196	417	270	5.4	1025	2240	5.05
1	5}	44	244	310	310	5.6	1370	1740	4.80
1	5}	39	2011	357	300	5.4	1235	1950	4.95
14	5	35	214	405	280	5.2	1115	2115	5.20
2	51	32	214	464	270	4.9	1045	2260	5.60
1	6	45	274	333	310	5.2	1425	1735	5.20
1	6	40	256	381	300	5.0	1290	1920	8.35
11	6	36	244	434	280	4.8	1170	2080	5.65
2	1 0	33	250	506	270	4.45	1110	2250	6.10
1	64	46	310	363	310	4.8	1450	1740	5.65
1	6	41	292	417	300	4.65	1320	1925	5.85
1}	0}	37	280	476	280	4.38	1220	2080	6.19
2	6}	34	280	542	1 270	4.10	1150	2230	6 60
1	7	47	339	387	310	4.45	1510	1725	6.1
1	7	42	321	440	300	4.30	1375	1890	6.3
14	7	38	310	500	280	4.10	1275	2060	6.5
2	7	35	310	572	270	3.86	1195	2210	7.0
i	71	48	381	417	310	4.1	1570	1715	6.6
1	71	43	352	464	300	4.0	1415	1575	6.7
11	7}	39	240	542	280	3.75	1305	2030	7.2
2	73	30	339	607	270	3.6	1225	2196	7.5
1	8	49	418	434	310	3.85	1610	1686	7.0
1	8	44	357	494	300	3.8	1465	1870	7.2
11	8	40	374	560	280	3.6	1355	2020	7.5
2	8	37	381	043	270	3.85	1280	2160	8.1
-									

IV. MEDIUM SAND (FM 26 to 2.9) Augular Course Angregales.

	1 1		Per C	wt. of	Per Cu	bic Yar	d of Co	ncrete.	
Max. Size	Water Gals/	Sand %age	Cem	ent.			Sand 1	Stone	Yield C. ft.
of	Cwt of	of	Sand	Stone	Water	Jeanent.	Sann	Stutie	of Coment.
C.A.	Сещень.	Louis	Lbs.	Lbs.	Lbs.	Cwts.	Lbs.	Lbs.	
1	1 5	48	208	226	335	6.73	1400	1526	4.00
1	3	43	1965	** { } ***	325	0.55	1290	1715	4.12
1}	5	30	190	298	305	6 *3.0	1185	1850	4.35
2	5	36	190	345	295	5.98	1120	2030	4.60
1	5}	49	238	2561	335	6.13	1160	1535	4.40
1	ă	44	226	286	325	5.96	1350	1705	4 52
11	0	40	333	333	305	5.62	1240	1875	4.80
9	51	37	375	375	295	5.37	1185	2015	5.02
1	6	50	274	274	335	5.62	1540	1540	4.8
1	8	45	256	310	325	5.46	1400	1690	4.95
11	6	41	250	357	305	5.20	1300	1860	5.20
0	6	38	250	411	295	4.87	1220	2000	5.35
1	6)	51	3114	292	335	5.20	1580	1520	5.20
I	ម៌ផ្ល	46	286	333	325	5.04	1440	1680	5.35
13	6}	42	250	387	305	4.78	1340	1850	5.05
*)	61	39	280	440	260	4.53	1270	2000	5.95
1	7	52	330	316	335	4.78	1625	1510	5.65
1	7	47	316	357	325	4.70	1480	1680	5.75
11	7	43	310	417	305	4.45	1380	1855	6.05
2	7	40	316	470	295	4.20	1325	1975	6.42
3	7}	53	37.5	333	335	4.45	1670	1485	6.05
1	74	48	352	381	325	4.36	1535	1665	6.15
14	74	44	352	440	305	4.12	1445	1810	6.60
2	71	41	345	494	295	3.95	1360	1950	6.85
i	8	54	411	345	335	4.20	1725	1540	6.42
1	8	49	381	400	325	4.12	1570	1610	6.60
13	8	43	381	470	305	3.80	1470	1520	7.00
2	8	42	381	524	295	3.69	1410	1935	7.32
		-	_						

v COARSE SAND (F M 29 to 32) Rounded Coarse Aggregates

Max.	Water Gals/ Cwt of Cement	Sand o age of Total	Per Cwt of Cement		Per Cubic Yard of Concrete				
Size					Water (cment,		Sand Stone		Yield C. ft.
			Lbs.	Lbs.	Lbs.	Cwts.	Lha.	Lbs.	of Cement.
1	5	4.5	220	274	310	6.4	1370	1700	4.35
1	5	40	208	310	300	6.1	1260	1870	4.45
11	3	36	202	357	280	5.7	1155	2040	4.72
2	5	33	202	405	270	5.4	1090	2175	5.05
-	5]	443	256	298	310	5.6	1440	1675	4.80
ĭ	51	41	238	339	300	5.4	1300	1855	4.95
13	∂å	37	226	393	280	5.2	1180	2045	5.20
2	54	34	232	146	270	4.9	1130	2175	3.60
	ti	47	286	321	310	5.2	1490	1675	5.20
1	63	42	268	369	300	5.0	1350	1860	5.35
11	6	38	262	424	280	4.8	1250	2020	5.65
2	6	3.5	262	488	270	4.45	1165	2170	6.10
1	64	48	321	345	310	4.8	1540	1650	5.65
1	61	43	304	400	300	4.65	1400	1840	5.85
11	61]	39	29%	464	240	4.38	1300	2030	6.13
2	61	36	298	524	270	4.10	1225	2160	6.60
1	7	41)	357	369	310	4.45	1590	1640	6.1
E	7	44	333	428	300	4.30	1430	1835	6.3
11	7	40	321	482	280	3.10	1320	1985	6.3
2	7	37	321	554	270	3.85	1240	2140	7.0
1	71	50	400	400	310	4.1	1640	1840	0.6
1	74	45	369	446	300	4.0	1490	1800	6.7
14	74	41	363	524	280	3.75	1375	1980	7.2
2	71	38	357	590	270	3.60	1290	2130	7.5
i	8	51	435	417	310	3.85	1680	1610	7.0
1	8	46	403	476	31)(1	3.80	1530	1800	7.2
11	8	8.2	393	542	280	3.60	1420	1960	7.5
2	ч	39	400	625	270	3.85	1340	2100	8.1

vi COARSE SAND (F.M. 2.9 to 3 2) Angular Course Aggregates.

Max.	Water Sand		Per Cwt. of Cement.		Per Cubic Yard of Concrete.				Vi-la C &
Size	Size Gals! of Cwt of	%age of	Sand Stone		Water	('ement.	Sand	Stone	Yield C. ft. per Cwt of Cement.
C.A.	Cement.	Total	Lbs	Lbs.	Lbs.	Cwts.	Lbs.	Lbs.	
1	1 5	50	220	220	33.5	6.73	1480	1480	4.02
1	5	45	202	250	325	6.55	1325	1640	4.12
14	5	41	203	290	305	6.22	1260	1810	4.35
2	5	38	199	328	293	5.98	1190	1960	4.60
1	5}	51	250	238	335	6.13	1535	1460	4.40
i	51	46	232	275	325	5.96	1385	1635	4.52
11	5	42	232	322	305	5.62	1310	1810	4.80
2	51	39	232	364	295	5.37	1250	1950	5.02
1	6	52	280	262	335	5.62	1575	1475	4.8
1	6	47	268	296	325	5.46	1460	1625	4.95
11	6	43	262	346	305	5.20	1360	1800	5.20
2	6	40	263	308	295	4.87	1280	1940	5.55
1	61	53	316	280	335	5.20	1640	1400	5.20
1	63	48	290	822	325	5.04	1500	1620	5.35
11	61	44	294	266	305	4.78	1400	1795	5.65
a a	61	41	298	430	295	4.53	1350	1920	5.95
1	7	54	350	296	335	4.78	1680	1425	3.65
t	7	49	328	346	325	4.70	1540	1625	5.75
11	7	45	327	398	303	4.45	1455	1775	6.05
-1	7	42	330	452	295	4.20	1400	1900	6.42
1	71	35	394	322	335	4.45	1750	1430	6.65
1	71	50	2:19	229	325	4.36	1585	1585	6.15
11	71	46	366	430	305	4.12	1520	1765	6.60
2	71	43	362	475	295	3.95	1430	1880	6.85
1	8	56	423	384	335	4.20	1775	14(0)	6.40
1	8	āl	398	380	325	4.12	1640	1570	6.60
1½	8	47	400	452	305	3.86	1540	1750	7.00
2	8	44	400	506	295	3.69	1475	1870	7.32

Note.—The preceding tables apply to concrete of 3 inches slump and made with natural sand. For concrete with different slump and made with stone sand the following adjustment should be made before using the tables:—

- Increase or decrease water content by 3% for each increase or decrease of 1 inch in slump.
- (2) For stone sand increase percentage of sand by about 3 and water content by about 15 lbs. per cubic yard of concrete. For less workable concrete as in pavements decrease percentage of sand by about 3 and water content by 8 lbs. per cubic yard of concrete.

An illustrative example will make the procedure clear. A reinforced concrete structure of thin section is to be exposed to fresh water in a severe climate where freezing and thawing takes place. The strength of concrete required is 3,750 lbs./sq. in. The C. Aggregate to be used is gravel 1½" downwards carrying free moisture of 1%. The fine aggregate consists of natural sand of f.m. 2.5 with free moisture of 3%. The specific gravities of both are 2.65. The slump required for the concrete is 4".

W/c ratio from table on page 47-.49, i.e., say 5½ gals.|cwt. Do. graph on page 48-.55

Take the lower figure of .49.

Approximate trial mix from page 50 is

1 ewt. of cement: 203 lbs. of sand: 415 lbs. of gravel.

The percentage of sand will be about 33 and 280 lbs. of water will be required per cubic yard of concrete.

From these assumptions we shall find out the correct trial mix for 4" slump since the table gives figures for 3" slump.

Water required for 4" slump = 1.03 × 28.0 = 29.0 gallons

Cement required per cubic yard of concrete

$$\frac{29.0}{5.5}$$
 = 5.3 cwts say 5.4 bags

% age of sand given in the table is 33

absolute volume of Cement = $\frac{5.4 \times 110}{3.15 \times 62.3}$ = 3.07 cft. volume of water required = $\frac{29.0}{3.15 \times 62.3}$ = 4.70 cft.

∴ volume of Cement paste = 7.77 cft.

: absolute volume of aggregates = 27-7.77 = 19.23 cft.

: absolute volume of sand = $.33 \times 19.23 = 6.35$ cft.

.. wt. of surface dry sand = $6.35 \times 2.65 \times 62.3$

 \approx 1048 lbs. & absolute volume of gravel = $.67 \times 19.23 = 12.90$ cft.

: weight of surface dry gravel = $12.90 \times 2.65 \times 62.3$ = 2130 lbs.

and so for each bag of cement (110 lbs.)

we require, $\frac{1048}{5.4} = 195$ lbs. of sand and $\frac{2130}{5.4} = 394$ lbs. of gravel

Since the sand and gravel are wet we must take

 $195 + \frac{3}{100} \times 195 = 195 + 6 = 201 \text{ lbs. of wet sand}$

and $394 + \frac{1}{100} \times 394 = 394 + 4 = 398$ lbs. of wet gravel

The water to be added to

the mix will be $5.5 - \frac{6+4}{10}$ gallons

= 4.5 gallons.

corrected field mix for trial is

1 bag of cement (110 lbs. net)

201 lbs. of sand

398 lbs. of gravel and

4.50 gallons of water.

CHAPTER 3

LOADS, BENDING MOMENTS AND SHEARING FORCES

CONTENTS

- 3.1 Dead Loads.
 - (i) Weights of Materials.
 - (a) Bituminous substances.
 - (b) Excavated materials.
 - (c) Liquids.
 - (d) Minerals and building stones.
 - (e) Metals.
 - (f) Timber.
 - (g) Solids (miscellaneous).
 - (h) Stored materials.
 - (ii) Weights of structural items.
- 3.2 Live Loads.
- 3.3 Formula for Bending Moments and Shearing Forces.
- 3.4 Bending Moments for r.c.c. slabs (ready calculated)
 Table & Chart
- 3.5 Bending Moments for Beams (ready calculated)
 Table & Chart

CHAPTER 3

LOADS, BENDING MOMENTS AND SHEARING FORCES

3.1 DEAD LOADS.

(i) Weights of Materials:

(a) Bituminous substances:

				lbs.	/c.ft.
Asph	altum	* *			81
Coal	anthr	acite			97
29	bitun	ninous			84
29	lignit	е			78
22	peat				47
	chare	oal light			23
29	99	heavy			33
90	coke				75
Grap	hite		7 0		31
Para	ffin	• •			56
Petro	oleum	(crude)			55
9	19	(refined)			50
Pitch					69
Tar	bitumi	inous			75

(b) Excavated Materials:

	lb	s./c.f	t.	
		63		
		110		
		110		
		76		
		95		
		78		
		96		
		108		
		115		
		80	to	90
18e		90	to	105
cked		100	to	120
t		118	to	120
	se cked	se	63	

(c) Liquids:

10	,	iquias.				
			- 1	bs./c.ft.		
Alcohol				49		
Acids muriatio				75		
nitrie				94		
" sulphuri	ic			112		
Oils vegetable				58		
, mineral				57		
Datamilana				55		
Gasoline				42		
Water fresh				62.4		
n sea	• •	• •		64.0		
Ice				57		
. ,		• •		0,		
(d) Mineral	s Ac	Building	Ston	es:		
Asbestos				153		
Barytes				281		
Basalt				184		
Bauxite			4 0	159		
Chalk				137		
Clay marl				137		
Copper ore (p	yrite	8)		262		
Dolomite				181		
Granite				175		
Hematite				325		
Gypsum		6 8	4 6	159		
Hornblende			* *	187		
Limestone man				165		
Lead ore (gal-	ena)			465		
Magnesite	* 1			187		
Porphyry				172		
Pumice				40		
Quartz				165		
Sandstone				175		
Soapstone				169		
Lime (ore)				253		
Cement				90		
(c) Metals:						
Aluminium				165		
Brass				534		
Bronze				509		
Chromium				428		
Copper				556		
Gold				1205		

				lbs./	e.ft.	
Iron (pig)				450		
" (wrough	1.3			485		
(-Anall	,			490		
Lead				706		
Magnesium				109		
Manganese				456		
Mercury				848		
Nickel	• •			545		
Platinum				1330		
Silver				656		
Tin	* *	• •		459		
Tungsten				1180		
1 tingoven	• •	• •				
(f) Tim	ber:				
Anjan (Terni	matia	Tome	ntosa	53 -	6)(1	
Anjan (Hard			ta)	82		
Babul (Acacia				54		
Bambu				71		
Cocoanut				57-	-70	
Cedar (white)				22		
Deal (yellow)				27		
Fir				25-	-30	
Hirda				32		
Jambul				47		
Kalamb (styp	hegyne	paro	ifolia'	12		
Khair (acacia	catech	nu)		66		
Mango				42		
Oak (white)				46		
Pine (red)				30		
Sissue (Tali)				50		
Tamarind				79		
Teak				41-	45	
Walnut				38		
(g) Solids (miscellaneous):						
Bricks		2.0		100		
Bakelite				80-	-120	
Carbon				129		
Cork				15		
Ebony				76		
Glass (commo				160		
Paper	=0 /			60		
Phosphorus	. 1			114		
Porcelain				150		
Orcenti	0 4	• •	• •	300		

				lbs./	o fi
Resin				67	V 4.0-
Rubber				58	
Silicon				155	
Sulphur				128	
Wax		• •	• •	60	
***************************************				00	
(h)	Stored	Materi	al:		
Animal food				64	
Alum				106	
Beans (cann	ed)			43	
Boiled oil				59	
Books (on sh	elves)			40	
" Bulk				90	
Butter				59	
Camphor				62	
Candles				32	
Celluloid				84-	-100
, gu	ods			10	
Chains				160	
Chocolate				34	
Cigarettes (e	eases)			15	
Cloth	4			30	
Cloves bales				20	
Cocoanut oi]			58	
Coffee bags				28-	-32
, beans				40	
Cotton raw	compres	sed		25-	-36
, presse	d			17	
" piece	goods			25-	-30
seed b	_			43	
Cutlery case	R			37	
Drugs cases				26	
Dyes				28	
Eggs (crates	3)			•)•)	
Fancy goods				12	
Files (cases			, ,	56	
Flour sacks				40	
Fruit (dry)			, ,	60	

			lbs/e.ft.
Glycerine (drums)			50
Grain barley			39
oats			26
rye			45
maize			47
rice bags			50
wheat			49
Ground nuts (bags)			39
Honey		-	90
Hosiery (cased)			14
Ice			57
Jaggery			56
Jute bales .			30
Linen goods			35
Machinery cases			28
Manila ropes			32
Milk .			64
. саясь			38
powder			23
Oilcake bags			41
Paint aluminium			70
bituminous			70
red lead			195
zinc			150
Perfumery (cases)			28
Rags (baled)			13
Rubber cases			25
raw			50
Salt bulk			60
, bags .			45
Soap (boxed)			57
Soft drinks cases			27
Starch			59
Sugar bags			45-50
Tea chests			22
Tobacco packets			18
Wine bulk			61
Wine bottles in cas	es		37

(ii) Structural items, ceiling, finishes, etc.

Ashestos cement flat sheets \frac{1}{2} thick 2\frac{1}{2} lbs /s.ft.

***************	committee and and control of	(11	10 / 0:
			lbs./c.ft.
	reinforced		144 to 150
with	1% steel .	•	148
	2%	٠	151
	5%		161
Concrete:	plain		140
19	with brick aggregate	6	120
89	breeze		70 to 90
99	lime		120
57	pumice		50 to 55
22	sawdust		70
99	aerated or cell .		16
Flooring	: cork 1"	thie	k 2
	fibre board	99	11
	granolithic	99	12
	hardwood ?" in m	asti	e 4
	macadam tar 1"	thic	k 11
	terrazzo	99	12
			lbs./c.ft.
Masonry	: ashlar		165
	rubble		150
	dry rubble .		130
	briek		120
			lbs,/s.ft
Partition	s: 9" brickwork		90
	3" breeze .		24
	2" hollow block		9
	3" "		$12\frac{1}{2}$
	4" "		15
	C T sheets		3
	lath & plaster		8
clay tile	partitions		· ·
Cast's Cast.	3" thick		18
	7 billion		10

	1	bs./s ft.
Plasters:		
	cement	11
	gypsum "	7
Roofing :	asbestos slieet	
	‡" thick	31/2
	asbestos sheet	
	roofing complete	10
	bituminous felt	11
	boarding soft wood	
	‡" thick	2
	G.I. sheets 24 G	1
	" " 18 G	2
	G.I. sheet roofing	
	complete with	
	purlins etc	4
	Ruberoid 5 layers.	13
	Shingles	11/2
	Slates 1-5" thick	7
	Tiling clay	유글
	" Mangalore	
	with battens	14
	" single country	
	with battens	14
	o double country	
	with battens	24
	Thatching 9" inclu-	4.0
	ding frame	10
	" 6" inclu-	
	ding frame	$6\frac{1}{2}$

3.2 LIVE LOADS.

(a) London Building Bye-Laws.

No	Description	Loading in Lbs., s.it. of floor		
		Slabs	Beams	
ŧ.	Residential Rooms, Corridors, Stairs Landings within curtilage of Residence	30 or 360 whichever	40 or 2240 is more	
2.	Office floors above entrance floor	80 or 840 S	50 or 4480	
3.	Office floor, entrance floor & below entrance floor	80 or 810	80 or 4480	
	Retail Shops, Garages for Cars 21 Ton wt. Maximum	Add 20 lbs. s.ft. for par- titions in case of offices.		
4.	Corridors, stairs & landings except those in Class I	100 or 840 S		
3.	(a) Workshop & Factories	150 or 840	120 or 4480	
	(b) Garages for Cars over 2) Tons.	150 or 1.5 Max. Combi- ned wheel load	120 or 1.5 Max. wheel load combin- ed.	
6,	Ware Houses, Book stores, Stationery Stores	200 or 840 S	200 or 4480 S	
Al	ODITIONAL FLOORS SPECIFIED BY D.S.	I.R. CODE O	FPRACTICE	
1.	Hotel Bed Rooms, Hospital Rooms & Wards	An (1)	Move	
<u>a</u> .	Churches, Schools, Reading Rooms, Art Galleries	As (3)	Move	
3.	Assembly Halls, Drill Halls, Dauce Halls, Gymnasiums, Public Spaces in Hotels & Hospitals, Theatres, Cinemas, Restaurants Grand Stalls.	1	Marc	
1.	Roofs Inclination < 20° to Horizontal 100° > (Loads to be taken on Plan Area)	face acting windward see normal to acting outward	Normal to sur- inwards on ie. 10 lbs. s.ft. surface and rds on leeward ide	

Note. In Case of Nos. 5 & 6 above use actual loading it more than specified above.

S denotes span in feet.

(b) B.S. Code..

		Normal	Min. Total	Load lbs.
No.	Description.	Load Ibaje.ft.	Slalis	Beams
1.	Dwelling > 2 Storeys	30	540	1920
	Do < 2 Flats. Hotel Bed Rooms, Hospital	40	320	2564)
	Rooms & Wards. Public Rooms in Hotels	100	800	01-4-00
2.	Office Rooms	50	400	3200
4.	Bank Halls Public Offices	70	560	4480
	Filing & Record Rooms	100	800	6400
	Light Storage Space	150		
	General storage space, Ware Houses	200		
	Retail Shops	80		
3.	Light Workshops (Min.)	60		
elt.	Do. including Machinery	100	800	5400
	Circulation space in machinery halls Medium workshop, Light Storage	80	640	5120
	Space Heavy Workshops, General Storage	150		
	Space			
4.	Churches, Chapels, Restaurants	045	640	5120
	(with fixed seating)		480	3840
	School & College Class Rooms		800	8400
	Dance Halis (without fixed seating	(490)		34011
5.	Roof : Flat < 10° to Horizontal	30	240	
	Inclined (> 10° > 65° to Horizontal)	100		

Notes: Stairs Landing & Carridors: Design for same load as floor to which access is given but with max. load = 80 lbs. s.ft. (min. load on slabs to be 640 lbs. and for beams = 5120 lbs.). Same loads apply to place of assembly with fixed seating.

ap	ply to pla	aces of asset	ubly with	fixed seating.	
(0)	Typical	American	Building	Code Live	Loads.
(c)	Lypical		9		Lbs./s.ft

		-	1
1.	Residences	1	40
2.	Places for Assembly or Public Purposes		
3.	Class Rooms of Schools or other places of Instruction.		75
A	Offices.		50
	Floors or any other Class not included above		20
۵.	Piloots of any other class not and		40
6.	Roofs Pitch < 20°		-
77	- > 20°	9	30
0.0	Side Walks between Curb & Building	. 3	100
8.	Side Walks between Caro & Buildian Visa		20
0.	Yards & Courts inside the Building Line		417
	The Lands of the Lands		

(d) Old L.C.C. Regulation (1909) — Live Loads. Lba./sq. ft.

1.	Domestic Buildings	70
2.	Asylum Wards, Lodging House Bed Rooms, Hospital	D 4
	Wards, Hotel Bed Rooms, Work House Wards etc.	84
3.	Counting Houses, Offices etc.	100
4.	Art Galleries, Chapels, Churches, Class Rooms, Lecture	
	Halls, Music Halls, Public Halls, Workshops, Retail	112
	Shops, Theatres etc. etc.	150
5.	Ball Rooms, Drill Room, Floors subjected to Vibration	224
6.	Book Stores, Museums, Ware Houses etc	224

3.3 FORMULAE for B. M. and S.F.

3.3.8 CANTILEVERS LOAD DIAGRAM HA DIA SHAM S F DIAGRAM

3-3 & SIMPLY SUPPORTED BEAMS

SIMPLY SUPPORTED BEAMS

3-3-3 PROPPED CANTILEVER

3-3 4 FIXED ENDED BEAMS

FIXED ENDED BEAMS

3.3-5 TWO EQUAL SPANS

PO . CONCENTRATED DEAD LOAD ON CENTRE OF EACH SPAN

DEAD LOAD MOMENTS

MM 5 + 156 Ppl

Ma - - 108 PoL

DEAD LOAD SHEARS

V1 = - 312 Pb + V3

V2 L = V2R + 688 Po

PL . CONCENTRATED LIVE LOAD

VEL = .594 PL

PD = CONCENTRATED DEAD LOAD AT 300 POINT OF EACH SPAN

DEAD LOAD MOMENTS

 $M_M = .222 P_D L$ $M_N = .111 P_D L$

Mg = - - 333 PoL

DEAD LOAD SHEARS

V1 = V3 = 1667 PD

V2L = V2R = 1-333 PD

CONCENTRATED LIVE LOADS AT 380 POINTS OF ONE SPAN ONLY

LIVE LOAD MOMENTS

MM = .277 PLL

MN = .222 PLL

MB = -.167 PLL

LIVE LOAD SHEARS $V_1 = .833 P_L$ $V_2 L = 1.167 P_L$ $V_3 = -.167 P_L$

BOTH ENDS FREE, EQUAL SPANS

ALL SPANS UNIFORMLY LOADED

Wo - TOTAL DEAD LOAD DIN OHE SPAN

DEAD LOAD MOMENTS

MM = 1-08 WOL MM = + 025 WOL MM = - 0-1 WOL

DEAD LOAD SHEARS

V1 = V0 = -4 W0 V2 L = V0 L = -5 W0 V2 R = V1 R - 6 W0

TWO ADJACENT SPANS LOADED

3-3-8-2

WL = TOTAL LIVE LOAD ON ONE SPAN

LIVE LOLD MOMENTS

MM = + . 0735 WLL MM = + . 0535 WLL

Mg = - 0:117 WLL Mc = - 033 WLL

INE LOAD SHEARS

V: = -383 WL V2R =-617 WL

V21 = -583 WL

V4 = 088 WL

CENTRAL SPAN LOADED UNIFORMLY

LIVE LOAD SHEARS VI = -45 WL Val = V2R =-55 WL

B M 9 PER POOT WIDTH OF SLABS IN FOOT POLINDS FOR LARIOUS CONDITIONS OF ENDS

Fig. 3-1

Fig. 3-2

3.4 g. He. FOR R.C.C. SLABS (Ready Calculated)

TABLE Sa

							and and		_																
	1	44+	ern	ma .	100	120	140	160	160	2011	200	.4,	290	프웨티	Seper	2.50	210	SHIII	38.1	\$ £1	£10	846	866	640	\$1#1
4	wls/8 wls/10	41)	120	160	200	260	224	320	360	400 320	440 253	(mi)	120	5/5(1)	500 6=0	040 512	riner 544	720	701	H MI	n 40	AMI	92.1	261] dx×
	w[3] 12	53 33	44(1	106 -7	133 -3	160	156 -7	213-3	240	886 7	293 3	126	01/12	273 2		11.50				61.	8%	204	? :	700	906
-	wl* 8	125	187 5	250 0	310-5	375	437 -5	500	562.5	6:25	687 5	750	1		400	108.7	453 3	\$857	508 -7	523 2	50/1	276 5	417 3	8.85	### T
5	wl1/10	100	150	200	250	300	350	400	450	500	550	0,161	1 612	A73	257 -5	1000	10023	1125	1187 -5	1,,,,,	1812-5	1275	1 6 07	à factor	1502-6
	wl ² 12	83 33	125	168-7	208 -3	250	291 -7	333 -3	376	416 -7	456 3	Page 1	0.0	700	750	.5(%)	850	000	960	1/484	1050	1100	1150	1200	[2541
	wla 8	180	270	360	450	540	630	720	810				-41 7	643 3	625	7- 860	709 3	750	701 -7	H33 3	975	914 4	05A 3	1(0.0)	1041 17
6	w1*/10	144	216	288	360	490	504	570		300	194961	\$154(1	1101	1260	1350	1440	1530	1620	1710	125004	3 4 941	1 (m) t	2(1) ·	1166	2250
	wl1/12	120	ENG	240	300	360	620	680	644	720	792	464	21/1	1006	1080	1102	1226	1504	1364	1449	1512	1.04	1654	1739	3 (6)3
	w]1/8	245	367 -5	400	612-5	785	- 857 -5		\$40	600	560	721	T+I	×40	900	960	1020	1 (2012	1140	1208	1260	1240	13en	1660	1 7/10
7	wl ² /10	196	294	302	490	588	066	764	1102:5	1225	1347 5	1470	1140 5	1715	1M87 -5	1969	2042 5	0005	23.27 3	2450	2572-3	2005	2417 6	20.60	0403 2
	wl3/12	163 -:	245	326 6	408 -3	490	571 6	,	840	980	1078	1176	77.6	1372	1470	156A	1666	1764	1882	1960	316.13	1114	12.4	2352	24-0
	wl1/8	820	490	640	AD0	960		653 -3	735	816 -6	A98 -3	970 -9	1001 6	1143 2	1224 0	1306 -6	1,353 -2	1469 9	1551 6	1632 -2	1714 9	1796 5	147A C	1959 A	2041 3
8	wl1/10	255	384	512			1120	1250	1440	1600	1786	1920	100	200	2400	2560	2720	2880	3040	2500	20(1)	3530	2800	20.011	\$/100
	wl ¹ /12	212-35		425 6	640	766	896	1024	1152	1250	1408	1000	JAAL	1792	1925	2048	2176	2304	2432	2560	26/95	2016	7244	3071	2000
-	wl ² /8	405	607 -5		583 3	640	746 -6	853 -2	960	1006-6	1173 -0	1250	1584 6	1493 -2	1600	1706 -7	1513 3	1920	2024 6	2138-2	2240	2240 7	0.60.0 0	21/10 >	1864 P
9	w1 10	224		810	1012.5	1215	1417-5	1620	1400.5	2025	22.5	2480	2501 5	2435	2037 -5	3240	3442-5	3341 -8	2847 %	4060	4252 - 5	4455	4857 J	4 600)	5003 -6
-	wl ¹ /12	270	456	6-6/8	810	972	1134	1296	1458	1620	1780	1944	01 (18	2263	2430	259%	2754	2916	3070	3340	3402	3564	3726	3440	£437,43
-			405	540	676	810	1845	1060	1215	1350	1485	1000	1735	1990	2025	2160	2205	2430	2545	2700	29.32	2970	3105	2.5611	1277
10	mls (10)	800	750	1900	1250	1.500	1750	2000	2250	2500	2750	3000	2250	3500	3750	4000	4250	4500	4750	2008	5230	5500	\$750	601(4)	4550
10		400	BOIG	MANG	1000	1200	1400	1600	1400	2000	2200	5100	260	DAGE	2003	8200	3400	3600	3500	4000	4200	4400	4.6cm	& Str. (4.)	5600
-		333-3	500	666-6	833 3	1000	1166 m	1303 3	1500	1066-6	1533	1999 9	0,000	2833 -2	2500	2006 7	2833 3	2000	STON -G	5333	3490 -7	3674	Delta i	hoos 6	41/00 >
11	w [2 S	605	107 -5	1210	1512 5	1m15 6	5117-5	1150	27mm -5	\$025	2327 -5	2031)	WE 5	1000	4537 5	6940	5142-5	5845	5747 4	6010	6142 5	6655	6957 5	1280	7302-3
4.0	17	484	724	Didde	1010	1452	1604	1936	2179	2429	Ge ¹ () 1	\$40.42	21+	3340	3830	3872	4114	4350	4,199	8,440	Com 2	5224	5566	000	6/6/6/3
	-	403 -3	405	506 6	1908 -3	1210	1411-6	1613 -2	1515	2016 -6	Coult B by ca made to me	20 6 de 1	gc: 4	1923 2	205.	4226 7	5428 3	3650	1-31 0	(nut	4274 7	4400-5	47.13	A1 23 -0	3041 3
12	w i* 8	720	10%	1440	1800	2160	2520	0880	3540	30(%)	00-00	8,355	111	5000	5480	5760	61.50	6450	(Cathol)	PHIN	7569	7970	* _ D i	RA415	ation
12	wls 110	576	564	1152	1440	1728	2166	2204	2592	25/60	3166	\$456	27.11	4002	4320	115130	2+94	5134	5478	5260	K048	A354	0024	6/12	1200
		480	720	986	1200	1640	1680	1920	2160	2400	2640	geste	300	3300	3600	3540	41840	43011	4560	4500	5660	1/200	1.1.26	\$760	6001
13	w13 8	A45	1007-5	1890	2112 6	2535 -0	2957-5	0.546)	3502-5	4225	4667-3	5070	1000	5915 n	4337-5	8760	7182-6	7635	9027 5	8450	8A72	0297	0717 5	214741	10/02 5
1.3	wl ¹ /10 wl ² /12	676	1014	1352	1490	2028	2366	2704	1041	3360	2716	4056	L 2014	4733	2070	6-410ê	3746	6694	6320	6760	7004	1434	7774	9110	0.850
	4.	EE- 604	545	1126 -7	1408-3	1690	1971 -6	2053-3	2635	2816 -6	2006 -3	8819 0	jiát 🔻	2013 -5	4445	4560 -7	4788 S	6070	5331 ·T	5633 -3	5015	4104-4	NATA 3	6780	T041 -3
	w12 8	976	1664	1052	2440	2929	3416	3904	4302	4580	5369	1406	Allah I	de32	7310	76Us	5350	6754	9272	9760	10064	1073A	El ma	11711	1 000(11)
14	wla/10	784	1176	1566	1960	2352	2744	DOM	3528	3920	4312	4701	12.4	SANN	5880	6272	2001	7074	7445	7840	4031	4611	brit8	3460	8600
	wls 12	653 -3	980	1306 -6	1633	1960	2214 -4	2613 -3	2940	3266 -7	3593 3	3010	4350 F	1573 3	4900	5010 0	5555-8	(AU)	6206 6	6553 3	6460 0	7186 6	7-13-3	7840	a166-7
								ì							-	-			1						

BENDING MOMENTS ON POLICE FEET, FOR SLAB-L-SPAN IN FEET W- OAD PER 8Q, FOOT

TABLE 1-b

Values of bending moments for beams in ft/pounds

$$M = \frac{WL}{12}$$

											1.											
M.	10	3.3	12	13	14	15	16	17	18	19	Į ga	21	2.0	23	24	25	200	12 Mg gr 9	28	29	19	;
1000	1000	10083	12000	14983	10333	1A750	21833	24063	27000	30063	1 22333	14730	40333	44093	[48000	60040	* 4 8 0 9	40710	Gianh	W.C. 2	21000	
1100	3406	11166	12200	15491	17999	42002	23406	26481	29700	33091	36667	:0425	44366	18401		52063	56303	60750	65100	70040	75000	1000
1200	10000	12100	14400	16900	19600	22500	25600	Design	32400	38100	्री विश्व स्थानित्	-6100	18400	52900	50×00	57291	61966	66815	71966	77091	82500	1100
2203	10633	13108	15600	18106	21283	24375	27733	31308	35100	20104	43332	47775	52438	5730A	63400	62500	67600	72060	75400	44100	90000	1200
1400	11506	14116	16600	19715	23266	20230	20866	00716	37800	42110	44447	-1450	Ciri see	61710	67200	72916	79233	79773 83000	94993 91000	91105 66116	105000	1500
1500	12500	15125	19000	21125	21560	MINES	\$2000	36125	40500	45125	16000	13125	66650	64125	72000	78005	54500		97,900	10512	115500	
1660	13533	15123	19200	22533	26133	30000	34133	39533	43200	63123	33333	249100	41533	70333	78800	63333	90133	91125	104508	112113	1 3101010101	1960
1700	14166	17141	204003	23941	27766	31875	36220	40941	45900	51141	were	12475	10000	74941	41600	88541	95706	100075	110586	119141	107600	1700
1500	13066	EN156	21600	25380	20100	33750	35400	43340	49600	54150	661(400)	41150	72600	79350	96400	93750	101400	100350	117600	120130	195000	1800
1500	15833	19158	22300	20758	31033	35625	40333	45755	51300	57158	63303	1825	7 500 421	83758	91200	98956	107033	115425	124133	123154	142500	1900
2000	16666	20166	24000	28166	32333	TTECH	42665	4N166	54000	00164	6AAAT	18500	90647	88166	2400	104140	11:0667	121600	130607	140106	159000	2000
2100	17500	21249	25200	29574	33966	39375	64500	\$0574	56700	63174	70000	77173	BATTE	92574	100800	109374	115300	127575	187200	147174	157500	1100
2200	15333	EXIAS	2640)	30983	35600	41250	49933	52983	N9406	66180	70334	- 385D	88734	Prima				133630	143734	164193	165000	2000
2300	17166	23191	27600	32361	37233	43125	40066	55391	62100	00101	18007	A 1625	PETET	101391	105600	1145A3 119791	123934	159725	150267	161191	172500	2300
2400	20000	24109	28800	33749	30/2003	45000	51200	57800	64500	72200	5014013	88300	96800	105800	115200	125000	185200	145800	156800	169200	140000	2600
E00	20833	25208	30000	35°2018	40500	46875	55323	60206	67560	73.200	53333	21875	100634	110208			140834	151576	143234	175 206	187500	2500
2800	21508	26216	31200	36615	42133	49750	15460	62616	70200	78216	48867	16550	104867	114616	120000	130208	146407	157050	109807	182216	105000	2400
Mag	22300	27024	30400	38004	43760	50625	57000	65024	72900	81224	proposi	772E5	108900	118704	129800		152100	164025	176200	189224	2925/10	2756
2500	23333	25233	33506	39439	45390	52500	29733	67432	75600	54233	25354	102900	112034			140624		170100	182934	196233	210000	2800
2900	24155	29241	34400	40941	47033	54373	91866	40841	78300	A7241	00667	: 6575	116967	123433	134400	145680	167734	178175	199467	202241	217500	2900
Mone	25000	III08510	36000	12250	300000	56250	64000	72250	61000	90230	100000	110250	121000	132250	139200	157041	169000	182250	196000	510050	205000	5000
3100	25933	REMARK	37200	#3858	50633	68125	66133	74650	83700	93253	109333	115006	125023	136658	145800	150250	174633	1A8825	202555	217258	232500	3100
\$200	20667	32267	185-6002	45067	52:166	60000	65267	77067	56400	98287	106607	117600	129067	141067	153800	161465	150287	194400	209767	224267	540000	3200
1200	27500	33275	39600	46475	53200	61875	70400	79475	50 LOO	99275	100000	111275	133100	145675		166667	185000	200475	215600	231275	247500	3300
8400	28333	34233	40800	47AB3	55933	63750	793.00	31683	91800	100033	115833	1:1950	107125	149652	158400	181875	191633	206550	221113	434.142	955000	5669)
2500	29107	35292	42000	49292	57167	65625	74667	84290		105292	110007	TUSHES	141167		162200	177761	197167	212685	228547	D45892	262300	2500
3600	20000	205 (5-0) 5	43200	50700	58800	67500	76800	90700	94500	108300	150000	102300	145200	158700	1 22200	180009	202500	215700	293200	252300	274000	5,500
27/00	30833	373.06	\$ 840Q	52108	50423	8007E	78983	SELTING SALVOO	01200	111305	123333	115075	149233		172800	197500		221775	241331	20/208	(77)60	1000
3800	31667	36317	45600	53517	62066	71250	41067				126607	107060	155007	103108	173800	192709	208483	520950	249267	206317	250000	3600
2000	12500	39325	46800	54925	62700	73125		91516	102500	113317	1200000	143325	157300	167517	192400	197916	214067	256925	254800	272525	20/25/00	3900
4000	23333	40333	AROUN	66833	69332	1	63200	93025	105300	117305	133333	147000		171925	157200	203123	216500		201223	260333	200000	4000
- 1			- Control of	20003	09337	75000	86333	96332	100000	120333	122223	10000	101338	176513	192000	208333	527234	213000	Sept 1-world	200000	1	4400

W == LOAD IN PURNOS PER RIT.

L = SPAN IN FEET.

CHAPTER 4

DESIGN OF R.C.C. SLABS

CONTENTS

- 4.1 (a) Formulæ and (b) Design Constants and Stresses for calculation of r.c.c. slabs and rectangular beams.
- 4.2 Summary of above.

Charts and Tables.

Chart No. 4-1 Values of 'n' for different stress ratios.

Chart No. 4-2 -do.- 'p' -do.-

Table No. 4-a Design constants for different values of fc, ft and m.

Chart No. 4-3 Values of 'n' for different percentage of steel.

Chart No. 4-4 -do.- 'Q' -do.-

Chart No. 4-5 Details of r.c.c. slabs with different reinforcement Old L.C.C.R.

Chart No. 4-6 -do.- New L.C.C.R.

Chart No. 4-7 -do.- I.S.I. or D.S.I.R. Code

Table No. 4-b R.M. & At for r.c.c. slabs of various depths & mixes.

Chart No. 4-8 -do.-

Tables 4-c Safe loads, etc. on slabs Old L.C.C.R.

4-d —do.— New "

4-c -do.- I.S.I. or D.S.I.R. Code

4.f —do.—

4-g —do.—

4-h —do.—

Charts 4-9 -do- Old L.C.C.R.

4-10 —do.— New 29

4-11 —do.— I.S.I. or D.S.I.R. Code

4-12 —do.— B.S. Code

4.3 Examples illustrating use of charts and tables.

CHAPTER 4

DESIGN OF R.C.C. SLABS

4.1 (a) FORMULA FOR DESIGN OF R.C.C. SLABS AND RECTANGULAR BEAMS.

Fig. A

NOTATION.

m

fe—compressive un The following 1:2:4 concre	nit stress in extreme i values are adopted	fibre of concrete. in practice for
fc= 600 lbs/		gulations
fe= 750		Laws (Ordinary
	The state of the s	Grade)
950	-do-	(Quality
		A Grade)
fe= 750	D.S.I.R. or I.S.I.	
	(Ordinary Grade)
950 ,,	-do-	(High
		Grade)
1188	-do-	(Special
		Grade)
1000		e (Aggregates
		as per B.S. 882)
ft=16000 lbs/ []		
-18000 ,,	New -do-	D.S.I.R. & B.S. Codes
-20000	High Yield	Point Mild Steel
==25000 ,,	Hard Drawn	
	Modulus of elasticity	of steel
-modular ratio i.e.	Modulus of elasticity	

The following values of m are assumed in practice: m=15 (New & Old L.C.C.R.) and B.S. Code of Practice

R.M.—Moment of resistance or bending moment in pounds inches

At-Cross-sectional area of re-inforcement in tension in sq. inches.

b-breadth of beam or slab in inches

d-effective depth of beam or slab in inches

n-ratio of depth of neutral axis to depth d

j-ratio of lever arm, of resisting couple to depth d jd-lever arm

p = At ratio of area of tension steel to effective area of concrete

4.1 (b) DESIGN CONSTANTS & STRESSES.

(i) Stresses

	fc	ft	103	Ref
Old L.C.C.R.	600	16000	15	(a)
New L.C.C.R.				
Ordinary grade	750	18000	15	(b)
Quality A grade	950	18000	15	(c)
D.S.I.R. or ISI. Code of Practice				Also I.S.I.
Also Railway code of Practice				Code for
Ordinary grade	750	18/1110	18	(d) < 1:2:4 mix
High grade	950	18:00:00	14	(e) ordinary
Special grade ,.	1188	18900	- 11	(f) grade.
B.S. Code of Practice				
Aggregates according to				
B.S. 882	TOOLS,	18mm	1.5	(8)
Aggregates not according				1
to B.S. 882	750	18,000	15	(h)

(ii) Constants

$$n = \frac{mfc}{mfc + ft} \text{ or } \frac{1}{1 + \frac{ft}{mfc}}$$

$$n = .36 \qquad \text{for case a}$$

$$= .385 \qquad \dots \qquad \text{b \& h}$$

$$= .44 \qquad \dots \qquad \text{c}$$

$$= .430 \qquad \dots \qquad \text{d}$$
(1)

DESIGN OF R.C.C. SLABS

_	.430	for	case	е
_	.423	22	23	f
_	.455		20	

The location of neutral axis is always governed by the stress ratio $\frac{ft}{fc}$ and modular ratio m.

The values of n for different values of ft/fc and m are given in graph No. 4-1.

At=.00675 bd or .675% of the effective sectional area of the section for case a

- .008 bd or .8 % for case b & h
- .0117 bd or 1.17% " " e
- = .0089 bd or .89% ,, ,, d
- .0112 bd or 1.12% ,, e
- .0140 bd or 1.40% ,, , f
- .0126 bd or 1.26% ,, ,, g
 (b & d measured in inches)

The percentage of reinforcement depends upon the location of neutral axis and stress ratio. The value of p is given in graph No. 4-2 for different values of $\frac{ft}{fc}$ and m

R.C.C. SLABS

VALUES OF P

DIFFERENT STRESS RATIO

Chart 4-2.

K.31. =	At id = Qbd ² (b & d measured in inches)	
Q — 95 126 179 137 173.3 217 192.8	for case a b & h c d e f g	

Design constants for various values of fe, ft & m are given in table No. 4-a.

Values of R.M & At for slabs of various depths designed for stresses specified by the different codes are given in table 4-b and chart No. 4-3.

The amount of steel as given by formula (3) is the economic amount i.e. both the steel and concrete are stressed to the maximum permitted limits. If steel more than that calculated by formula (3) is used, the steel will be understressed and safe R.M. of the slab will be governed by the concrete. If less steel is used, the concrete will be understressed and the safe R.M. will be governed by steel. The following procedure is necessary to find the safe R.M. of the slab in such cases.

a. To find the neutral axis of the slab by the formula $n = \sqrt{p^2 m^2 + 2 pm} - pm$

The values of n for m=11 to 18 & p=.002 to 02 are plotted in graph No. 4-3.

- b. Find lever arm $j = d \frac{n}{3}$
- c. Find R.M. R.M.=At.ft.jd when steel provided is less than economic

or R.M. = $\frac{fc}{2}$ nj bd² when steel provided is more than economic

In general R.M.-Qbd2

The different values of Q are given in graph No. 44 for different values of p & m-15 and m-18. R.M.s. for different depths of slab designed as per different codes and reinforced with different amount of steel are given in charts 4-5, 4-6 and 4-7.

R. C. C. SLAB

VALUES OF THE FOR VARIOUS PERCENTAGES OF
STEEL

Chart 4-3

R.C.C. SLAB

a: fc=750 ft=18000 m=18 b: 750 18000 m=15 c: 600 16000 m=15

Chart 4 4

R. C. C. SLABS

Chart 4-5

Chart 4-7

4.2 SUMMARY.

NAME	fc llis T	ft lbs []	m	17)d	At	Ó
Old L.C.C.R	64M ¹	16000	15	. 36	.88	.675	95
New L.C.C. Ordinary Do A Grade	750 950	18000 18000	15 15	.385	. 87	.8 1.17	126
D.S.I.R. Code Ordinary (Also Indian Railway	750	Ізіна	18	43	86	.89	197
Do. High Grade Do. Special Grade	950 1188	180000	11	. 423	86	1.12	217
B.S. Code of Practice Aggts as per B.S. 882 Other aggts.]1000 750	1800m	15 15	435	.848	1.26	192.8
Proposed I.S. Code of Practice Ordinary Grade		18000	18	. 43	.88	.80	137

TABLE 4-a.

		1	m	15			157 401	19			ras I	4		fe		111	; 1	
fo	fr.	12	2 3 0 1	166	J	η	p	TS.	. 1	1	:,	**	1	31	(1	6	;
	400	69-6	first.	-273	-904	55 -5	0039	310	1997	47	1H12 0	-560	213	P 43()	79 (140-1	200	19/15
1	4.063	60 2	0042	-297	-901	66 -7	0046	335	વનાદુ	111	(113111)	283	9ft,	€, .	Ly	$\hat{\xi}_{(-\rho)}{}_{\nu-\alpha f}$	309	-597
1	500	71 -3	6050	319	-594	70 -2	0004	280	ASO	n	90.68	204	893	730	1405 0	Me t 1 2	1.	18 9 10
į	550	93 P	-0060	-340	-867	91 8	0066	-343	-872	70 4	(inid	223	492	101	113.0	SIGN I	341	ART
	600	03 0	-0005	360	-96401	104 7	0074	-ana	A66	D) 1	4064	344	-45	A-30	101.0	(k.16.)	355	-ASE
18000	450	107 3	-0077	-379	674	117 %	0068	-400	-869	1010	9074	363	-A7a	n52	107 4	+ m ≥ +d	7.07	A77
	700	120 -4	-0087	-396	688	131 -3	()096	840	-853	110	-CHING	350	477 [₄ 11 ₄	150.0	-0107	342	473
	750	133 -5	-0097	-413	-882	165 1	-0107	- 656	848	120 1	1093	296	1615.0	917.	162 9	0117	303	555
	500	146 -9	-0107	429	857	159 1	0118	472	983	142.0	6163	412	ART	1900	170 2	117.4	107	~64 ************************************
	850	100 -6	0118	-443	852	174 -0	0130	4/19	-837	135 4	177.14	427	9,54	in sej	149 1	0104	-819	H60
	ขอก	174 5	-0159	-658	-847	188 -4	0341	-593	932	100 1	0124	441	RC 3	10000	\$650.00	0148	431	857
	950	138 0	-0140	471	843	203 - 5	0154	517	826	181-1	5135	454	H49	1 3110	220 7	11T -	450	440
	400	45-8	0028	250	917	51 3	00.32	285	3/15	49-	6,000	23?	921	21 a 06 s	73 3	0.045	264	-011
	450	33 0	-0034	273	909	82 T	0039	311	112/5	59 1	(m)372	250	914	450	n) A	A(V-1	-944	965
	500	66-3	-0041	294	902	74 -1	0046	334	889	63 5	W159	280	907	7696	94:4	16/46	-200	N/US
	550	77 4	0044	:314	895	86 -1	0054	354	-50,5E 41	78-1	14364	-299	200	7,573	1000	4)006	314	-831
	900	594 W	-0056	233	RED	98-2	0092	-374	875	45 4	nos 1	-319	A94	6 p)	118 -9	4073	300	RAR
18000	850	100-8	70041	-351	683	111 3	0071	394	9-640	90 ×	0061	-338	Relat	970	135 -6	00H1	350	842
	700	113 -1	-0072	-36A	577	124 -6	0040	-812	883	108 9	0069	353	AM2	Unio	160 0	(40)	36°	474
	750	125 -7	-00A0	321.5	872	137 -7	-(10%)	-423	457	121 .	0077	268	-877	[a],61	148 0	0.67	1*,	474
	900	128 -7	00%9	400	967	151 6	0000	885	85.2	173 1	(n)h _{i2}	394	472	1000	165 -7	17,1	201	471
	ASD.	131 -0	-0003	-415	-ARE	163 -4	AN SO-	45-3	867	1 414 2	Ba 1911	2011	467	160 0	114 -	0114	417.	566
	sion	165 3	-0107	-429	45?	1400	-0119	-674	5.8 tt	159 3	0103	612	565	1100	161 3	0111	423	650
	950	179 0	-0117	642	550	196 0	0124	-487	A38	101111	6112	425	1655	10107	Sle n	-0143	9.20	
-	1000	193 0	0126	435	RAR	208 0	CE10-	600	833	197	01:1	C3s	45.4			pro 9		917
	400	42 6	0023	231	043	431-1	0026	-264	-912	-02-2	1900	-219	917	60090	1,4 1	(6)	283	815
	45D	59.0	-0028	252	-010	58 -5	-0030	-982	1004	45 =	0027	240	-0(5)	450	78 3	(1) 193 (1) 193	275	907
	500	812, -10	-0034	273	200	90 5	0030	-311	995	54.2	(10) 1 _{20 20}	250	-014	100	59 4	0.03-5	273	ans
	550	72 5	-0040	298	203	81 0	(4048	-331	= 9O	6 + 11	0035	1278	907	200	14 0	Deat 1	306	40.
20000	45000	#3 -5	-0047	310	697	02.3	Pi03 3	23-6	43+5	Muj =	UF502	200	EFE	5/11	1117-8		319	631
	6.0	24.9	0053	-03A	591	106 2	-ମଧ୍ୟର	161	-A77	9411	che s., I	315	9 00	4561	121	ratifica VSTO	21	1020
	7610	106 -7	-0.060	356	2445	117.7	FIDE'S	(6A)	571	3 . 4	Paliting	7.9	st 243	690	100 1	OHAG	041	MAR
	750	116-6	0044	3/10	840	130 8	-0074	ED+	486	118 2	124.95	754	4(mS	0.00	166 4	Chillian I	3	660
	AOri	131 0	9075	1000	475	144 0	0094	-817	ৰদ্যা	104 ;	(m);	859	વલે()	1.100	156 4	I NOTES	165	978
	950	164 -0	00%3	3A9	-970	157 8	-0092	-484	415	138 4	9670	-373	-876	1 10.0	16A A	-010	1377	A74
	300	157 0	-0091	to:	нев	172 0	0161	160	851	151 7	9087	1-1	471	\$1000	101 3	0119		ARH
	950	170 2	90(4)	416	P61	19315	-0100	463	946	166. 3	0001	-500	967	1.000	206 4	(117.0		1

VALUES OF DESIGN CONSTANTS FOR DIFFERENT VALUES OF St. & m.

TABLE 4-b.

RM & At for R.C.C. slabs of various depths for different mixes.

1. M. At R. M. At At R. M. At At R. M. At At R. M. At At Bt At At <t< th=""><th>.a. '.b&b" c</th><th>\$ q.</th><th></th><th></th><th></th><th></th><th>3</th><th>70</th><th></th><th>0</th><th></th><th></th><th></th><th>20</th><th></th></t<>	.a. '.b&b" c	\$ q.					3	70		0				20	
316 699 240 877 .302 1103 .381 977 .386 1644 294 1331 370 1649 465 1459 .456 1457 .347 1330 .437 2294 550 2018 .491 1690 374 2123 .470 2071 589 2304 .662 2208 .427 2773 .538 3488 677 3086 .702 3450 .634 4353 .672 5450 .840 4823 .702 3450 .634 4353 .672 5450 .840 4823 .773 3803 .604 4770 .770 0008 .886 .5319 .847 4563 .614 5729 .773 7207 .973 .0361 .913 5830 .641 6379 .841 8515 1.10 8164 .913 5830 .694 7322	K.M. At R. M. At Ibs., (C°)	R. M.	M.	At		R. M.	At		At		At		At	R. M.	At
.386 1644 .294 1331 370 1649 .465 1459 .456 1457 .347 1830 .437 2290 .560 2038 .491 1990 374 2123 .470 2071 .592 2304 .562 2208 427 2773 .538 3488 .677 3068 .702 3450 .534 4333 .672 5450 .840 4683 .772 3450 .634 .776 .706 .0068 .840 4823 .772 4176 .776 .706 .0068 .886 .5319 .772 4176 .5242 .739 .686 .5319 .868 .5319 .842 4563 .641 .6279 .896 .7248 1.00 .6948 .913 .5830 .664 .773 .874 .9210 1.10 .8154 .913 .923 .721 .790 <t< td=""><td>481 182 638 .216</td><td>638</td><td></td><td>918</td><td>-</td><td>906</td><td>316.</td><td>669</td><td>.240</td><td>877</td><td>302</td><td>1103</td><td>.381</td><td>977</td><td>.340</td></t<>	481 182 638 .216	638		918	-	906	316.	669	.240	877	302	1103	.381	977	.340
.456 1457 .347 1830 .437 2290 .650 2038 .491 1990 374 2125 .470 2971 .592 2384 .652 2208 427 2773 .538 3488 .677 3086 .632 2705 480 3509 .605 4416 701 3097 .702 3450 .534 4333 .672 5450 .840 4623 .737 3803 .560 4776 .706 .008 .840 4623 .772 4175 .5242 .773 7207 .973 6386 .841 5729 .773 7207 .973 6381 .913 5830 .641 6379 .841 8515 1.00 6948 .913 5830 .668 6769 .841 8515 1.11 8763 .913 6283 .721 7906 .907 9932 1.14	728 .223 953 .264	903		364		1354	386	1644	294	1331	.370	1649	791	1459	.416
491 1080 374 2123 470 2671 532 2384 562 2208 427 2773 .538 3488 677 3086 702 3450 .684 4353 .672 5450 .840 4823 702 3450 .634 4353 .672 5450 .840 4823 772 4176 .587 .706 0008 .886 .5319 807 468 614 5729 .773 7207 .973 6386 842 4968 .641 6379 .841 8515 1.06 7539 878 5390 .668 6760 .841 8515 1.10 8154 913 6830 .694 7322 .874 9210 1.10 8154 983 6762 .746 .960 .907 9932 1.14 8763 983 6762 .769 .964 .960 .9	1003 .263 1350 .312	1350		63		1890	.456	1457	.347	1830	.437	2290	. 550	2038	169
.562 2208 .427 2773 .538 3488 677 3968 632 2795 .480 3509 .605 4416 761 3907 702 3450 .534 4333 .672 5450 .840 4823 773 3803 .500 4776 .706 .006 .886 .5319 772 4175 .5242 .739 .6595 .930 .5836 807 4563 614 5729 .773 7207 .973 6381 878 5390 .641 6379 .841 8515 1.06 6946 .913 5830 .694 .773 7207 .973 6946 .913 6830 .694 .773 .9210 1.10 8154 .913 6830 .694 .773 .9210 1.11 8763 .948 6752 .748 961 .907 9932 1.14 9467	1164 .283 1543 .336	1543		.336		2183	161	1690	.374	2123	.470	2671	383	1,304	2550
632 2795 .480 5509 .605 .4416 761 3907 702 3450 .634 4333 .672 5450 .840 4623 ,737 3803 .560 4776 .706 6008 .888 6319 ,772 4176 .587 .739 6595 .930 5836 ,807 4663 .641 6379 .846 7848 1.02 6946 ,913 5830 .668 6760 .841 8515 1.06 7539 ,913 5830 .694 7322 .874 9210 1.10 8154 ,913 6283 .721 7906 .907 9632 1.11 8763 ,983 6762 .748 9612 .940 1.18 9467	1520 .324 2016 .384	2016 .384	.386			2864	. 562	\$077	. 427	2773	53.00	3488	.677	3088	300.
702 3450 654 4333 .672 5450 .840 4623 .772 4176 .587 5242 .739 6595 .930 5839 .807 4663 614 5729 .773 7207 .973 6836 .842 4968 641 6379 .806 7848 1.02 6948 .913 5830 .668 6769 .841 8515 1.00 7539 .913 6283 .721 7906 .907 9632 1.11 8753 .948 6762 .748 8512 .940 10682 1.11 8763	1924 .365 2650 .432 3	2650 .432	24 92 T		63	3625	632	2705	089	3500	.605	4416	.761	3907	.080
737 3803 360 4776 ,706 4008 386 5319 772 4176 .587 5242 .773 930 5838 807 4563 614 5729 .773 7207 973 5836 .842 4968 641 6379 806 7848 1.02 6946 .913 5390 .668 6769 .841 8515 1.00 7539 .913 5830 .694 7322 .874 9210 1.10 8154 .948 6762 .748 6512 .940 10682 1.14 8793	4 3150 .480	3150 .480	084.	_	*	175	702	3450	.634	4333	.672	5430	.840	1823	.756
. 807 4176 . 587 5242 . 739 6595 . 930 5838 . 807 4663 614 5729 . 773 7297 . 973 6381 . 842 4968 . 641 6279 . 841 8515 1.00 7539 . 913 6839 . 694 7322 . 874 9210 1.10 8154 . 948 6283 . 721 7906 . 907 9632 1.14 8793 9457 . 983 6762 . 748 8512 . 940 10682 1.18 9457	2618 .426 3473 .604 46	3473 . 504	1000	_	+	933	737	3803	. 360	4776	.706	8000	30 86	6319	76
. 842 4968 . 641 6579 . 806 7320 730 7207 .973 6381	2874 .446 3812 .528	3812 .528	. 528		2	116	27 22	4176	. 587	5242	.739	6595	. 930	5838	838
. 842	3141 .465 4166 .652 6	4166 . 662	. 662		3	210	508.	4063	614	5729	.773	7907	.973	6381	.869
. 978 5390 . 668 6760 . 841 8515 1.00 7539 . 913 5830 . 694 7322 . 874 9210 1.10 8154 948 6283 . 721 7906 . 907 9632 1.14 8793 . 983 6762 . 748 8512 . 940 10682 1.18 9457	3340 .486 4636 .576 6	4636 576	.576	-	\$	184	.849	1968	.641	6279	.806	30	1.02	6948	.907
. 913 5830 . 694 7322 . 874 9210 1.10 8154 948 6283 . 721 7906 . 907 9932 1.14 8793 . 983 6762 . 748 8512 . 940 10682 1.18 9457	3611 .506 4922 .600 6	4922 .600	009		9	995		2390	.668	6769	.841	8515	1.05	7539	946
948 6283 .721 7906 .907 9932 1.14 8793 983 6762 .748 8512 .940 10682 1.18 9457	4013 . 527 5324 .624 7	5324 . 624	\$229		-	563	. 913	5830	. 694	7322	.874	9210	1.10	8154	. 983
.083 6762 .748 8512 .940 10682 1.18 9457	4327 .547 5740 648 8	5740 648	0.48		30	165	948	6283	.721	1906	.907	9632	1.1	8793	1.020
	.664 6174 .672	6174 672	672			8771	. 983	6762	.748	8512	.940	10682	1.18	9457	1.058

Note. - For 4 and given in the Table above. Refer to Chart No. 4-8.

R.C.C. SLABS

1	1	TIES AFE	Steel Culm.	0.78	0 -02	1-05	1.16	25. 1	1.40	1.65	1.60	1.76	1.76	1 - 2 B	3	00.2	34 1- 34	17.17
		Per 100 A ft	Contracte C. Ft.	00	20 -17	23 - 03	32 55	10-10	45 -83	50 -00	52 -OM	21 12	ii R	SR -33	29-00	62 -50	84-58	20 -02
	10.5		Datribu- G	3.10" 46 0"	10°	1/4" 20 12"	1,10 00 14"	1,4" 40 15"	Do	Do.	1/4" 60 14"	1. 中面 12.	Do.	Do.	No.	111, 68 10.	Do	3
	DETAILS OF SLAIS	REINFORGEMENT (round bars)	Main	1,4 49 8" 3	B-8" 60 54"	. 0		,4	: 381	1/2 60 0.	: 000	5	°6	:	*** :	- 44	:	•
15)	DETAI	0) []	Momen Resett Frank l	Lm1	118	1003	1163	1520	10%4	22.22	MIN	92.50	3141	3420	8710	4013	435H	4655
i m=		دياك •	Cover In	0110	0 10	0/10	13/10	13,16	9 23	3/8	3/4	9/8	3/6	3/6	3/6	3,4	3,4	11/16
(fc-600, ft16000, m-15)		3,1	Anth I Innse TA	181	1 40	2.75	343.	924	366	405	425	440	605	997.	.50M	52.3	194	199
F		97	प्रश्ना प्रश्ना	23 24 64	15	20.0	3-00	4 00	4 .60	00.9	6 25	99.3	8 .75	00. 9	2	9 8	0 .75	7 400
.600,			10.								181	3	2	197	110	125	1.65	165
(fc-	3.E		ìa							\$4 70	93	10%	110	121	21	142	154	165
ahs	Da ad		.9						7.0	8	100	118	127	130	180	104	175	150
de Sa	A III L		èn					28	8	112	22	133	147	101	174	190	202	220
supported slabs	SALB LOAD (INCLUDING WILDRY OF SLAIN LDS [] FO		34					20	100	137	144	1NJ	173	180	ğ	200	200	3
SIII	HT	regr	-			90	76	100	126	156	172	100	202	250	244	2000	ñ	300
Simply	W.L.t	×	10.		57	90	8.9	51	153	140	HH	282	20021	272	100	350	311	37.5
S	0810	APAR	'n	47	70	8	116	1 80	169	01 01	23 23	38	307	SAT	300	Store	111	001
	TOTAL		'n	98	40	124	145	180	230	295	225	350	361	427	460	009	15.3 15.3	630
	D GP		1.	E 0"	110	162	190	248	312	365	425	470	80s	557	802	0.66	702	700
	rov 1		è	106	156	51	256	336										
	SALIF		è	162	200	818	27.5	9119										
			-	ā														
			[43.7] dale	Sin .	31.	.,	+1.	0,00	219	100	-10	.10	. 10	1-	e viss Etc.	0 (C) (C)	- 12	2

· Bar Spaning have been kept at round figures though theoretical values may be sightly different.

R.C.C. SLABS
Simply supported slabs (fc= 750, fa=18,000, m=15)

	TIESS A.ft	Strell Cwts.	1 .03	1 -1	1.25	H	1 -46	1 56	1.75	1 -90	1 -90	- H	32	575 *** (13	06- 2	100 - 21 21	\$ 04
	QUANTITIES	Courrete C Ft	00 sa	20 - 17	20 20 20 20 20 20 20 20 20 20 20 20 20 2	97 - 60	19-11	45 -83	00 09	55 · OR	54 17	77 43	28 · 94	21.00	62-50	3 3	20 - 07
HA	EMENT	Usarribu- (17.4	1.4" & 10"	'8" at 10"	14" 49 16"	14. 60 15.	1/4 8 16	34 30 3	114" 00 12"	1/4" 40 127	1/4" . 11"	1. of 10°	1/4" (4 10"	110 00 10	.4. (0) 0.	10° 60 U°
A OF BLAHA	REINFORCEMENT	Matu	" a bl. 1	-39		:	2 0 0° 1	- 88° -	÷:	46. 11	- 49	2.44.1	1. to 4.	T & & T	N. 62. 6" 1	. 49 m . 8.	SIN @ 58. 11
DETAILS OF	, pag 200	Material Material Material M.M.	634 B	200	1250	1563	2016	2550	3150	3473	21100	4160 11	4636 1/	1/1	A324 6/	57.00 5	0174 5/
		(,04et (1n	01.0	91:16	91.16	9:62	9, 07	3/0	3/4	3/4	3/4	2/4	3/4	3/4	11/16	11/16	11/16
	1:	Series of Participal Control of Participal C	-21g	264	-315	S. S.	386	132	989	\$0.0	25.	299	.670	- GUID	-024	970	672
	(2317.3	Haceth an dispett b	93	1/3	is is	3 .00	00-1	9- 9	9 9	B	00 9	6 .75	00.9	33 0	09.9	0.75	7 00
		.0						00	8	108	110	130	143	164	100	091	2
Z.		, u						8	112	127	28	148	101	175	lab	203	210
100		36.	-			3	84 30	102	120	143	166	170	166	200	217	233	280
A to L		eí	_	3	63	12	8	150	160	100	180	3	*13	9024	203	270	34 95 31
JE SE		200	_	200	7.6	2	=======================================	1	174	105	51	2	2	5	200	320	25 25
HT C	PERT	i	21	00	67	103	136	3	2003	230	25.0	276	300	7	360	250	404
WEIG	SPAN 1N 1	, S	61	76	100	120	101	204	99	083	306	ä	200	396	20	9	101
DING	BPAR	<u> </u>	20	2	183	183	190	250	\$10	245	376	410	3	700	525	670	010
ICI.UI		è	3	110	167	194	252	2	304	3	478	520					
D (IN		-i-	2	155	217	1563	_										
SAFE LOAD (INCLUDING WEIGHT OF SLAM LOG) 72		÷	148	210	200	363											
SAP		· ·	202							_							
		*	-	_		_										_	
10	ept b.	T latoT	100	31.		41.	*	.10	6	-	.19	10	20	71.	76.	71.	п

Table 4-c.
R.C.C. SLABS
Simply supported slabs (fc-750, ft-18000, m-18)

	TING.	Street Cwts.	1 -08	- IC	1 43	3 · 54	21 Pr. pre	1 40	2 -10	20 01	3.30	99-11	2-90	2-76	91 02 01	16- 2	11
	QUANTITIES Per 100 a.R.	Conormia C. Ft	25-00	29 -17	33 - 33	37 -60	41 -67	878 · 29	20 00	80 25 25	24 17	23	56 - 53	25. 00	09.89	64 -58	10- 90
• 93		Distribu-	1/4" @ 10"	Do.	200.1	14- 10 11-	1/4 6 7	1/4" 40 6"	18" 62 54"	1/4" 48 5"	174 @ 6"	114 @ 41.	N. en 11"	3/8 40 10°	.10 m .u/s	WH. CO. D.	3/N 40 0"
SOF SLAIS	REINFORCEMENT (round bars)	Maln	3/8" @ 54" 1	10 0 .g/g	- to m	-0 B -5	1/5 @ 2/1	1 2 6 2 2/	112 6 41	1/2 @ 41.	1/2 60 4.	Sir a 6.	S/N @ 58" 8	5.8. @ ch. 8	5, H" 49 5" 3	5/H" (A 6" 3)	5,8" @ 41"
DETAILS.	9.013.	Medical Root L Root L	thu a	1044	1457	1660	280%	2798	8450	2003	4175	4503	1969	5390	2830	0283	6762
	(and)	Cover (In	9/10	9/10	9/16	3/4	3/4	3/4	3/4	9/2	3/4	87.4	4/2	8/4	11/10	11/16	11/10
	. 37	ilmi8	.240	294	-347	-374	- 60	089.	189	000.	- 567	-814	.641	.66A	*69.	.723	-76N
		itoshii b b	\$3	20 - 21	200	3.50	90. 4	09. 9	00. 2	2 .9	08.3	5 -75	00-0	9.	9-9	8 -75	7-00
		18,					8	100 100 100 100 100 100 100 100 100 100	110	3	133	146	160	172	187	200	210
Y.E.		12				3	28	3	221	135	148	162	178	193	207	91 91 94	240
Pa.		.91		22.9	8	90	3	114	141	931	170	991	8	03:	25	257	270
LID E		, is		0.2	90	38.4	108	136	163	180	195	216	255	256	277	2013	OKR
F 81.		70		SAR	R	13	187	155	101	21	22	202	278	300	8224	350	375
HT 0	KKT	010 010	3	90	8	114	151	185	200	No.	276	300	220	350	2885	416	44.7
WKIG	SPAN IN FERT	,0	3	22	1117	120	182	2013	276	200	91 92 98	301	207	700	999	202	240
DITO	SPAN	۵	8	101	144	107	813	278	340	376	919	448	144				
CLU		'n	In 00	131	162	110	270	018	430	678	929	670					
NI) (I		7-	110	171	340	277											
SAFK LOAD ANCLUDING WEIGHT OF SLAID LEA. DF		•	20	231													
SAF		ia															
		¥															
	hepilb.	l lato?	'n	,	**	.49	the same	2.00		-	-	.70	1-	74.	76.	78.	*

Table 4f.

R.C.C. SLABS
Simply supported slabs (fc-1000, ft-18,000, m-15)

LABR	HEINFORCEMENT QUANTITIES (round been too a.ft.	Barrilla. Concrete steel	1:4" 127	- 12. SS -12.	12. 33.38	. 10, 37,50	10° 41 67 E	Q* 45 m3	20.00	92 20	B 24-12	7 20 20 20	n 3 5 1.	. 0, 00 62	H. 62 50 H	0° 64.54 3	OB. 9 22 22 32
DETAILS OF SLABS		Malin	1/20 00 70	I'm w of	:	1 64 437	8/15" up n"	10 60 1	3/4" 45 7"	1 8 1	00. 6	9 :	10/18 · 中中	3/4" on 5%	66 5.	k 18 11	do fo
THE	8013	Minner Aleisia Food LAC	070	1400	1740	DING	3000	9 3010	49.20	5310	59.40	BUBBO	0 6940	7530	8150	87nD	BARA
		rai) draii	=	100	8/8	1/3	11/30	11/16	5 5/8	3 6/18	5/8	8/9	11/10	5/8	1 0/8	0 5/8	20.00
	30	an A. Imjë	.340	416	652	626	100	0 640	75.	5 -7103	0.830	8 -1168	900-0	945	1981	1 -020	
-			10	2 -76	3.00	74 n 50	90 + 90	9-1	00- 2 -00	20 20	1H3 0-00	0 C - 78	7 6-00	6-38	4.00	274 6 · TS	
		91			_			_	2	186	-	SIE	25 25	236	922 (-
1		ভ			61	*	130	130	171	189	976	251	267	993	200	313	-
		.5		09	7	8	25	100	107	217	22	8	K	3	22	250	-
i	G G	ès		00	34	21	146	185	3	81	270	2000	1	30.5	286	416	
	4	1 1 mm	20	4	201	-	173	1012	1	200	200	255	7	410	21	420	
	P).Ki	-	- No	5	112	3	102	3	918	25	SA A	Î	655	15.0	540	3	
	IN K	,01	R	1117	139	169	240	212	No.	425	467	010	100	800			
	SPAN IN	>	8	144	81 [%	619	304	990	47.6	969	277						
		10)	81	183	818	á	800	40.0									
	SAFK IAAD (RECUDING WEIGHT OF STAD) 1880, 1871, STAN IN PLKI	i	160	ä	i	Ä	109										
	K [70] X	è	202	1	1												
	AVE	in	213														
		-															_

R.C.C. SLABS (continuous) (fc-750, ft.-18,000, m-15)

		10.						120	167	21	178	105	\$1 0	122	502	270	D1 04
	1 12	20						135	10M	3	204	31	=======================================	202	KNA	304	55
	SAPR LOAD (INCLUDING WEIGHT OF SLAB) LUL/ \square F.	16.				3	123	153	103	70	<u>27</u>	27.78	123	SUA	326	21	375
	(QV	5		67	90	100	144	1110	23	260	025	202	22	351	10110	500	12.00
I M	OF EL	<u> </u>		2	111	120	168	200	264	202	1000	348	376	11 4	442	450	275 275
FULLY CONTINUOUS	FEET		5	3	130	154	204	20	94	245	ř.	412	450	467	283	570	010
TIME	WIN X	.0	75	114	169	ING	31	3100	378	490	457	121	246	204	020	690	-1
COD !	BEAN	6	20	171	100	25.52	20	872	900	212	200	015	672	785	787	855	010
UL L'A	KCLU.	ic	120	100	950	101	278	480	109	950	717	780					
^	(I) (I)	j.	100	230	325	370			4								
	707 8	- 6	57	312	111	514											
	SAPI	ò	300														
	1	5															
	1	.0						100	04 94	136	140	102	170	102	207	252	242
	1 1	.5						2.6 	140	150	170	185	102	210	236	254	27.4
	WEIGHT OF SLAD) LEG. WEIGHT	*				79	102	127	101	179	104	21 22	123	25.0	171	204	94 77
	(N.	92		2.0	6,1	10	120	160	147	203	H	200	267	Tima	315	120	346
W.L.)	N AG	25		90	3	107	140	177	025	9931	202	1500	314	344	360	400	422
Us (VERGIT O	- 1	28	2	100	120	170	210	2000	1207	320	244	33.5	900	437	475	209
NEO	WEL	30,	70	50	10	158	102	57	315	350	1 NS	41.7	464	495	200	010	617
*EMI CONTINUOUS (-NL	BPAN	à	5.	117	100	101	245	21	25.52	431	929	2123	993	012	979	24 00 00 00	702
D I MI	Gra	'n	001	340	2002	21 20 24	911	909	103	544	207	920					
4.	D d.	j.	130	106	273	310											
	SAFE LOAD CINCLUDING	· o	177	202	370	420											
	SAF	èa	25.5														
		*															
30	ती ग्वन्ती श्वरी नहीं)	I lateT date	la la	-10		49	°23	21,		.10	.10	.10	2-	78.	21.	\$	200

Table 4-h.

R.C.C. SLABS (continuous)
(fc-600, ft.-16,000, m-15)

1	.)	. se.								121	136	145	2	174	27.4	202	en en B4
		.9							2	130	153	145	181	146	50	<u> </u>	247
	l.ha.	2						111	3.64	150	177	180	90	ä	200	200	280
	EIGHT OF SLAIN) Lie.	100					104	185	100	182	2002	050	194	201	2×5	207	830
	75.	34					951	120	53.	212	0 7	093	2945	200	33.6	35.7	25
OUB	ETGHT O	1			3	116	92	2	12	22	100	307	8	908	2	426	999
FULLY CONTINUOUS	WEIGN N IN	10,		3	150	3	1	2	7	2	3	27.50	111	442	E	93.0	200
NOO	-4	ò	9:	100	1.67	17 22	6000	283	345	SING	3	400	205	540	544	637	9
TITA	TEL	's	98	133	17.0	21	25°	356	4 6.0	487	638	2013	070	000	750	R07	
2	SAPE LOAD (INCLUDING	1-	100	176	243	285	55 51 10	991	577	400	100	703	800	200	289	1055	
	LOAI	ö	20.00	122	188	287	2002										
	AFE	نه	5	202	477	823	25										
	, 196	-	267														
		18.		_						101	118	ä	134	168	186	100	181
	12	100							102	116	H	137	161	168	177	100	903
		15.						10	5	20 E2	147	150	174	182	202	210	5° 01 24
	SLAB) Lbs/	, es	_				000	11	140	9.0 473 	171	184	100	04 04	15	59	275
W.1.	OF SI	Ì					193	130	164	180	200	210	123	225	27.2	200	22.00
-	HIT (Ξ			84 Æ	90	12	157	196	20	200	250	28.52	300	62	365	8
MOON	WEIGHT IN THE	10.		-	100	110	2	101	91	960	283	2112	346	300	109	430	555
DNT		'3	95	E 22	31	1	186	967	0.00	0	255	25.4	129	455	405	1ES	9
HEMI CONTINUOUS	qu'i.	'A	67	=======================================	3	INI	55	20	840	400	979	949	900	10	026	87	
32.	LOAD (INCLUDING SPAN	j-	2/2	145	200	8	310	300	4.841	7,41	1	635	P()4	01 63 74	910	M27	
	LOVE	6	1 200	10.7	022	000	089										
1	HAFE	is	100	8	1	1	8										
	25	5	40%														
2		ditator i) dafe	1			* 10		6.10	2 0		30	A.8.	. 2	910	9 16		e k

Chart 4 8.

108 (a)

0 0 - 500

4.3 EXAMPLES ILLUSTRATING USE OF VARIOUS CHARTS AND TABLES IN THIS CHAPTER.

(1) Charts 4-1 & 4-2 and Table 4-a:

Find R.M. & At of a slab where stresses to be adopted are:

.: n-.34 from chart 4-1.

$$...$$
j =1-n/3 = .867

.. R.M. =
$$\frac{1}{2}$$
 fe · n · jbd² = $550/2$ / .34 × .87bd² = 83 bd²

The same values can be obtained directly from table 4-a

(2) Charts 4-3 to 4-7:

Find R.M. of a slab, effective depth 5" and reinforced with,

and designed for $f_0 = 750$ psi, $f_t = 18000$ psi & m = 18.

Case a
$$p = .3 \times 100/60 = .5\%$$
 $p = .6 \times 100/60 = 1.0\%$ n (chart 4.3) = .342

$$j = 1 - .343/3 = .885$$
 $1 - .445/3 = .852$

$$R.M = At \times ft \times jd$$

$$.3 \times 18000 \times 885 \times 5 \text{ in. lbs.}$$

$$fe/2 \times n \times j \times bd^{2}$$

$$750/2 \times .445 \times .852 \times 12 \times 5^{2}$$

3500 ft. lbs. - 1950 ft. lbs. or (from chart 4-4)

$$Q = 77 \text{ bd}^2$$
 $Q = 142 \text{ bd}^2$ -142×25 -142×25 2550 ft

or Direct from chart 4-7

Chart 4-8 or Table 4-b.

Find R.M. & At for a slab (effective depth 6") designed as per B.S. Code with aggregates as per B.S. 882.

Refer table 4-b under "g" R.M.=6948 ft. lbs & At=.907
Refer chart No. 4-8 R.M.=6950 ,, ,, At=.900

Tables 4-c, 4-d, 4-e, etc. and

Charts 4-9, 4-10, 4-11 & 4-12.

are self explanatory giving

- (a) safe load per sq. ft.
- (b) other structural particulars
- (c) quantities of steel and concrete per 100 s. ft. for simply supported slabs designed for various values of fc. ft & m. For continuous and semi-continuous spans the safe loads may be increased by 50% and 20% respectively.

CHAPTER 5. RECTANGULAR BEAMS

CONTENTS

- 5.1 Singly reinforced beams.
- 5.2 Beams with compressive reinforcement.

Charts & Tables.

CHAPTER 5

RECTANGULAR BEAMS

5.1 SINGLY REINFORCED.

The same formulæ as those for slabs apply to design of rectangular beams. However, in case of slabs, the concrete area is generally sufficient to meet the shear stresses, while in case of rectangular beams provision for shear stresses will have to be made by means of bent up bars and stirrups.

The charts and tables in this chapter are useful in designing rectangular beams ordinarily employed in practice. Continuous beams in a structure which are treated as T-beams in centre of span, behave as rectangular beams over supports and the charts can be used for their calculation by placing the required reinforcement at top.

Tables 5-a, 5-b and 5-c give M.R. & AT for rectangular beams for different concrete and steel stresses.

Charts 5-1, 5-2 and 5-3 also give M.R. & AT as above. Tables 5-d, and 5-e give safe load per r.ft. for reetangular beams as above.

Fig. 5-1. Singly reinforced rectangular beams.

5.2 BEAMS WITH COMPRESSIVE REINFORCEMENT.

In practice, beams with compression steel have to be used in the following cases:

- (a) T-beams, when continuous, behave as rectangular beams on support and when singly reinforced require considerable depth to take up the B.M. Steel for compression being automatically available from the two spans adjacent to a support, a doubly reinforced rectangular beam is more suitable from architectural considerations and practical reasons.
- (b) Rectangular beams, lintels, etc. where the depth is necessarily restricted from consideration of headway or other architectural reasons.
- (e) Braces, walls of storage reservoirs, etc. where B.M. reverses according to loading conditions.

Fig. S-2. Beam with compression reinforcement.

In case of (a) and (e), the following formulæ give the amount of Ae and AT in sq. inches for B.M. -M inch lbs.

the values of fs being 16000 & 18000 and n being .36 & .385 in case of Old and New L.C.C.R. respectively and m=15. For both cases, the values of K_1 and K_2 are tabulated below:—

d³/d	(100	04	.006	.08	.10	.12	.14	.16	.18	.45()
$K_{\mathbf{i}}$	7780	7150	6570	5980	5450	4920	4410	3920	3440	2980
h:	1620	Ωинн	8280	7650	6960	6360	5780	5160	4860	4080

In case of (c), it is necessary to provide equal top and bottom steel. In this case, both steel and concrete may not be stressed to the maximum permitted stress. If steel is assumed to be stressed to the maximum permissible limit, the stress in concrete will be below the maximum limit. Alternatively if concrete is fully stressed, steel will be understressed. The following procedure is necessary to find out the R.M. of section reinforced with known amount of Ac and AT:—

Determine position of neutral axis by the general formula

$$n = \sqrt{(mr - (m-1)r^{1})^{2} + 2 (mr - (m-1)r^{1})^{2}}$$

$$- [mr + (m-1)r^{1}]$$
where $r = \frac{At}{bd}$ and $r^{1} = \frac{Ac}{bd}$

After the position of neutral axis is determined, the R.M. can be found by the following formulæ:

$$\frac{M}{\log^2} = \text{fs} \frac{n}{m(1-n)} \left[\frac{n}{2} \left(1 - \frac{n}{3}\right) + \frac{\Lambda c}{\log} \left(1 - \frac{d^4}{d}\right) \left(n - \frac{d^4}{d}\right) \frac{m - 1}{n} \right] = Q$$

$$\frac{M}{b d^2} = \frac{ic}{2} n \left(1 - \frac{n}{3}\right) \cdot \frac{Ac}{bd} \left(1 - \frac{d^4}{d}\right) \left(n - \frac{d^4}{d}\right) \frac{(m-1)}{n} \text{ fc} = Q$$

The smaller of the two values of Q calculated by the above formulæ to be adopted. The values of Q are given below for a few typical cases.

111===	15
Max. permissible	Max. permissible
stresses	stresses
fe= 600 lbs. p.s.i.	fe= 750 p.s.i.
fs=16000 lbs. p.s.i.	fs=18000 p.s.i.
.le=.lt=1(c 141	159
1.5% 186	232
2% 221	276

Chart 5-3.

Table 5-a. RECTANGULAR BEAMS R.M. & AT for various depths & widths. fc = 600 ft = 16000 m = 15. R.M. in ft.lbs.

d	6"	A"	u*	10"	12"	14*	15"	10"	16°	20.
6"	1710 243	322 2250	2566 36	295n 41	3420	3990 57	407%	4584)	5130 73	a700 81
Ŧ*	28.17 28	3103 38	3491 42	3879 47	4500 -86	5431 68	3819 71	6207 76	Minnie Mg	775=
W.	3040	4053	4560 40	5020 54	STANKS FIRS	7093 76	76(m) *1	E (1) T	9110 97	101u3 1 us
9*	3847 38	5130 49	5771 55	6412	7600 73	6977 65	0619	10260 97	11542	1949N 1-21
10°	4750 40	6333 -54	712,	7916 68	1,,(1() 8()	11643 -93	11875	12067 1 00	14130	15503
11°	5747 44	7865 60	6621 67	8679 75	11495 68	13411	14370	15327 1 10	17242	1915A 1-48
12*	6840 68-	9120	10280 75	11400 52	13680	13960	17160 1 2	16240 1 ·30	20520	10-11 (Ac)() 1 6100
13"	8027 52	19703 -71	12041 79	12450	16055 1 os	18731	200/d9 1 81	21407 1-41	246m3 1 56	26758 1 75
14"	0310 -56	12413 76	13065 85	14717	18610	21723 1-32	23275 1 41	24827 1 ·61	27930 1 48	31035 1 80
15"	10667 60	14250 82	16031	1781 <u>9</u> 1-00	1 20	24937	26719 1 ·51	20500	32062	35625
10"	12160 64	16213 -67	19240	20266 1 08	24320 1 28	29373 1-50	30400	32427 I 78	34840	4059n 2 · 16
17°	13727 68	1830a 95	20591 1 03	22570 1-15	27455 1 -36	18031	3431v 1-71	36607 1 53	41162	4573A 2 29
161	15390 -72	20421) Qu	23005	23630 1 -21	307au 1-54	35910 1 ·70	38473 1 81	4104tr 1 94	46170 2-17	51300 2 42
19"	17147	22863 1 04	25721	98579 1-28	34293 1 56	40011	42565 1-91	45727 2 05	51460 2-30	57156 2 56
200	19000 82	25333	28500 1 #1	1 35	386890	44333 1 -88	47500 2 02	≥ 16	\$7000 # 40	6033 I 2 :70
21"	20947 86	27930 1-15	31421 1 ·27	3401g 1 12	41878 1 ·72	4%877 1 98	52360 2 -12	Mar(K)	62415 2 52	00823 2 82
hasp ^d Ø ==	22990 :90	1 20	34485	1:49	45950 1-80	33643 2 07	37475 2 :22	61307 2 3A	88970 2 05	76653
25°	25127 94	33503 1 -20	37691 1 30	41550 1 56	3/255 1-88	3M681 2 17	6.51H 2-32	07tH#4 2-49	758H2 2 77	58754 3 10
24"	27360 (M)	7/480 1-31	41040 1 45	1 6.1	51720 1 96	2 26	65400 2 42	7 <u>2960</u> 2.59	A20N0 2 A9	91200
25°	29687 1-02	39583 1-36	41198 1-51	1 60	59375 2 03	89271 2 35	74219 2 52	75146 2 70	apantg n n	3 36
¥6°	32110 1 06	42013	48165 1-67	53516 1 75	64 <u>92</u> 0 2 12	74923 2 45	5 42 MJ585	45627 2-61	96530 3-12	167034 3 70
27*	34n27 1 -10	46170 1 -47	51941 1 43	37712 1 82	000000 2 20	E 5.8	86369 2 72	92341) 2-92	3 25	115425 3-64
Sh*	J7240 1 14	19423	1 dp	Byons 1 ma	744HD 2 99	86493 2 64	93100 2 53	90317 3 0#	111720 3 37	124133 3 76
29"	29947 1 20	50063 1 SH	50021 1-75	66579 1-96	79895 2 40	03211 2 73	1/10/14 2 0/1	1005th 3-18	11984E 3 48	130138
THEY!	42750 1 24	57066 1 -84	1-83	71250 2 02	83500 12000	2.82	108875 3 63	1140(m) 3 :23	12eg50 2-61	182 (00 4 (05
31.	456N7 1 28	60m63 1 60	66471 1 68	76079 2 10	91295 2 56	106511 2 92	114119 3 12	121727 3 - 34	136942	15215a 4 :18
32*	1-32	6485B 1 -78	72960 1 96	2:17	97280 2 -64	112493	1216(A) 3 22	159707 3 45	146920 3 85	16,133
33*	51727 1 36	68970 1 ·78	77591 2 02	86912 2 23	100335	3 - 10	120310	137940 3 56	155182 g	172425 4-45
34"	54010 1 40	73213 1 84	82365 2 (m	91517 2 30	1(1964)	128123	197250 3 43	146427	164730 4 10	4 58

Table 5-b. RECTANGULAR BEAMS R.M. & AT for various depths & widths fc - 750 ft - 18000 m - 15. R.M. in ft.lbs.

0	0°	0"	9*	10°	12"	14"	15"	16.	18"	267
6"	2265	384	3102	178/1 083	4536 -576	5202	5670 -72	6048	1684 188	7560
7"	8007	4116	6630 -904	5145 560	6174	7203 -78	7717 -84	8232 90	9261 1-01	10290
6*	4032 384	5376 512	6048 576	6720 640	BO# 4 -768	98694	10060	10752	1-15	13440
0.	\$103 -432	6604 376	7634 645	8505 720	10206 -564	11907	12767	19608 1-15	15300	17010 1 -44
10*	6300 -480	8400 -640	9450 720	10500 800	12600 960	14700	16750 1 ·20	16800 1 -28	18900 1 -44	21000 1-60
11"	7623 524	10164 704	11434 -792	12705 560	15296 1 056	15167	19057 1 -32	20828 1:41	22569 1 -58	25410 1 -70
12"	9072 1576	12096 768	1360E 864	15120 960	18144 1 ·152	21168 1 34	22680 1 :44	24192	27±16 1 -73	30240 1 -92
in"	10647 -624	14196 832	15970	17745 1 -040	21294 1 248	24543 1 -46	26617 1 -56	28392 1 -66	31941	25490 2 08
84"	12348 -672	16464	16522	1-12	24696 1-34	28812 1 · 87	30970 1 :68	35958 1-79	87044 2-02	41160
15"	14175 72	18900	21262 1 08	23625 1 · 20	1 -44	\$3075 L=6a	35437 1 80	37800 1995	42525 2 - 16	47250 2 ·40
16"	16128 -77	21506 1 02	24192	26890 1 ·28	32256 1-54	3763± 1-79	1.92	45000 2 -05	48384	53760 2 -56
17°	18207 82	24276 1-00	27310 1 -22	30345	36414 1 63	42483 1 -90	45517 2:04	48352 2 · 18	54621 2 · 45	00690 2 72
16"	20402 海道	27216 1 - 15	30618 1 ·30	340±0 1 44	40824 1 ·78	47628 2 :02	51030 2 ·16	34432 2 ·3	01238 2-59	G -68 €H040
19"	22743 FMY	30324	34114 1 ·37	17905	45486 1 82	53067 2 ·13	86857	60648 2 · 63	68229 2 · 74	75810 8-04
20"	25200 (#8	83600 1 28	87H00 I 44	42000 1 60	30400 1 -92	58800 2 - 24	63000 2 · 40	67200 2 56	75600 2 -58	A & UOU
21"	27783 1-01	17044 1-36	1:51	46305 1 48	35366 2-02	64827 2:35	69457 2 · 52	74088 2.60	83349	92610 3 36
60*	30492 1 056	40656 1 41	63738 1 58	50000 1 ·76	60984 2 ·11	71148	76230 2 -64	81312	91476 3 - 17	101640
297	283±7 1 10	14436	1 46	55542 1-81	00654 2 ·21	77768 3-58	83317 2 76	8872 2-94	3 -31	111000
24"	36288 1 15	48384 1 84	54432 1 -78	1-02	72576 2-3	84672 2-69	90720 2 88	3 -07	108864 3 -46	12(N/60 3-84
25*	39473 1 -20	1:60	50000 1 50	65625	76730	91875 2 ·8	984.17 3 (m)	105000 0 20	118125	181250 4 -00
261	42566 1 24	36764 1-67	€3852 1-87	70980 2-08	83176 2-50	09371	106470 3 -12	11556a 1-63	127764	141900
27"	45927 1 -30	4123A 1 -78	64590 1 -94	74545 2 16	91834 2 - 69	10716a 3-02	114817 3 -24	122472	137781 3 -89	153090 4 -32
24"	49398 1-34	65%56 1 79	74084 # 92	A2320 2 - 24	98784 2 -67	115243 3·14	1234H0 1136	131712 3-5H	148176	164640 4 48
291	52967 1-20	70644 1 :86	79474 2 09	48306 2 · 32	105966 2 78	123627 3 ·25	132457 3 ·48	1 (1 288 3 · 71	150049 4 · 18	176610 4 -64
807	567UO 1 44	75600 1 -92	85050 2-16	94500 2 40	113400 2 da	132300 3 -36	141730	151200 3 -84	170100 4-32	1890UII 4 -80
31"	60543 1-40	40724 1-98	2 23	100006 2 45	1210m6 2 9%	141267 3 -47	151357 2 -73	16144n 3-97	101629	200910 4 -96
25,	64512 1-54	50016 2 05	96768 2:30	107520	129024	150528 3 58	161280 3 -84	172032 4 ·10	1935-36	215040 5 -12
331	68603 1 58	91478 2 · 11	102910	114345 2-64	137214 3 17	1600m j 3 -70	171570 3 96	182952	205821	22845 90 5 28
34"	72828 1 4 8	97104 2 18	109242	121380 2 -72	145656	169932 3-81	182070 4 06	1942	218484	242760

Table 5-c. RECTANGULAR BEAMS R.M. & AT for various depths & widths. fc - 750 ft - 18000 & m - 18. R.M. in ft.lbs.

10			44	444	100					
_0	6"	8"	9°	10"	13"	14"	15"	16"	18°	20"
6*	2466 32	3287 43	3699 ·481	4127 His	4982	5748 70	6163 80	6873 85	7808	8254 1-07
7"	37	4475 50	5034 566	5018	6713	7831 87	8391 -94	8950 1 (H)	10060	11230 1 -25
ñ°	4384	5845 -57	6576	7888 -71	6765 65	1 00	1 -07	11600	13132	14613
9"	5548 -48	7297 -64	A300 -72	U287	11097	12946 1 12	13871	14705	10545 1-44	18474
10"	6850 -63	9133 -71	10275 #0	11466 -NU	1 -07	15963	17125	18266	20550 1 -60	22833
11"	A288 -89	11050	12432 58	13073	16577 1 ·18	19337	20721	22101 1 57	24863	27627 1 - 96
12"	9864 64	13151 85	14796	16511 1 07	19728	23015 1 ·50	24660 1-60	26303 1 ·71	1 02	2-14
18"	11576	15434	17364 1 -04	19377 1 16	23153	27011 1-82	28941 1 -74	30869 1.485	34720 2 06	28587 2-81
14"	18496 75	17900 1 -00	101sv 1-12	22473 1 ·25	26852 1 -50	31326 1 -74	23565 1 -87	35801 2 00	4027b 2 24	44752
16*	15412	1 07	23118 1 20	25796 1 :34	1 60	1 67	2 00	4109ê 2-14	46237 2 -40	51874 2 67
16"	17586 985	23380 1-14	26304 1 · 28	29332 1 ·62	35072 1 -71	40916 1 -99	43840 2·14	16760	52Hud 2 56	58452 3 463
17"	19796 -91	26394 1 ·21	29694 1 00	33156 1 ·51	1 82	46196 2-12	49301 2 · 27	52788 2-42	59589 2-72	3 61
\$A"	22104	29590 1 28	33291 1 ·41	37140 1/65	44398 1 92	517m; 2 24	55485 2-60	59181 2 56	66485 2 88	74296 3 50
19*	24728 1 02	22970 1 35	37092 1-52	1 69	49457 2-08	37698 2 37	01821 2 ·54	85v90 1 71	74077 3 Q4	52784 3 38
20°	27400 1 :07	26582 1 ·42	41100	45884 1 ·78	54800 2 14	63932 2 40	68500 2 67	73064 9798	82200 3 20	91728 3 -56
EL*	30208	60276 1 :50	45812 1-68	50565 1 87	00417 2 · 24	70486 2-62	73521 2 60	90553 2 29	90023 ¥-36	101130 3 ·74
22"	88154 1 ·17	44203 1:57	49731 1-76	55495 1 · 96	2 - 35	77357 2 · 74	82865 2 -94	58407 3 ·13	99462 3 52	110511
(CA)	36242	48313 1-64	54854 1 -84	80400 2-05	72473 2 46	94050 ± 87	90891	96627 3 29	3 60	190788
24*	39456 1 -28	52606 1 ·71	59184 1 92	65757 2 ·14	78912 2 2 3 6	02052	8 -51 M9210	105919 3 40	116364 3 65	131518
251	42812 1 84	57081 1-78	64218	71662 2-23	85625 2 -67	99398 3 12	107031 3 34	114160 3 :56	128437 4-01	142706
26°	46306 1 39	#1730 1 A5	69459 2 08	77510 2 31	92612 2 ·78	105045 3 -24	115765 3-47	123478 3 70	13e018 4-17	154351 4 -63
27*	49930 1 -64	46579 1-98	74904 2 -16	83587 2 -40	99673 2 63	116516	124541 F-60	ISS134 8 (85	149505	160452
24"	83704 1 50	71602 1 -99	50556 2 -24	K9A93 2-49	107408	125306 3 49	134260 3 -74	143265	161112	179010 4 WB
330"	87608 1 55	76801 2 97	86412 2 32	1-01-429 27-58	115217 8-10	134417 3 61	144024 3-07	158617 4 ·18	172525 4-05	192025 5 · 16
ao*	4165U 1 60	R2107 2:14	92475 2 40	103194 2-67	1233MI 3 20	143847 8:74	154125	164394	184950	2654v7 5 34
91"	65828 1-66	87768 3 -21	98742 8 48	110158 2 76	131657 3-31	183396	164571 4 · 14	176586	1974e5 4 97	210425 3-52
32"	70144 1-71	93521 2 -23	105216	117411 2 後年	140258 8-42	168605 # 90	175702 4-27	187043 4 50	21043E 5-13	288509 5770
33*	74506 1 ·76	2-33	111894 2-64	124564 2 94	149193 3-52	174054 4-11	186491 6 -41	198196 4-70	2237n9 3 200	246651 5-87
341	79186 1-82	105577	118779	132546 3-03	15637± 3-63	184763 4-24	197963 4 -54	211154 4-54	237556 5 6 6	263949

RECTANGULAR BEAMS

Table 5-d.

fc-600 psi, ft.-16000 psi, m-15
Safe load uniformly distributed lbs/r.ft. including wt. of beam.

4 . 4.	R.M.	At	L			Effe	etion S ₁	pen in l	Port			
I) (I	Ft Lbs	lad m	- 5	7	18	9	10	12	1.6	16	18	1 20
8" × 8"	\$655	42	JIOS	495	507	400	304	221	145	107	103	-1
a 10°	*1 :	5.8	140.	100	71.	Addi	Saint	350	254	1tm	101	127
n 12"	17.741	-65	ballo	14" -	1110	990	750	505	374	0×3	0.0.2	101
8" - 11"	12413	-75	2720	1092	1551	1205	2(3)_1	677	1.69Fa	34=	311	-15
A" II."	10212	ad	26681	발레Sa)	2026	1600	1200	595	657	507	412	124
n" 1m"	20,40	92		3.040	2674	2022	1638	1105	F36	643	100	410
5" - 10"		1 00			3169	2500	2020	1400	1030	7PH	045	SHM
4" 02"	\$06.5	1 15				2950	2442	1460	1250	954	760	613
n' 24'	30474	1 30				ı	2910	5010	1495	1140	930	729
8" < 56"	42411	1 40					8420	2370	1740	1.48(1	1110	×34,
(w* 10*	755	64	1700	1200	990	782	634	440	223	247	198	154
10" < 12"	11405	~2)	2530	1400	1430	1125	914	632	465	356	2-1	20%
10" 18"	15510	ยส	2050	2540	1950	1535	1240	660	484	445	380	310
19 161	20/2015	1 (00	\$ u(se)	3111	2540	Steed	1644	1130) ويق	601	560	4115
I F A IN	250-19	1 21		4.200	TEME	2530	0000	1400	1045	MENT	034	ais
111, 1 Feb. 1	21465	1 30	}	5170	2060	3130	2520	1750	1202	990	781	430
10" (12"	04315	1 44			175B	67×0	3150	2120	1.00	1105	atu	760
197 < 247	15597	1 60				47/50	3751	2580	1 =6+1	1450	1130	tera.
107.4861	-14	1 -73				52 m	4/5/64x	3970	2150	1670	1430	1070
10° 29°	бдейв	1 50					5360	3440	2210	1940	1540	1241

plse	R.M.	At				E.f.	ctuv Sp	an in	Feet			
tivet	Ft Lba.	Sq.in.	6	7	В	9	10	12	14	16	18	20
15" - 15"	13640	97	2500	2230	1700	1350	1990	760	558	427	336	274
12" > 14"	18690	1 -13	4140	3010	2330	1940	1490	1035	760	391	4/10	572
12" - 16"	24720	1 -30	5400	3(4)(1)	3200	2400	1940	1350	9/90	760	400	4 ± 6
12° × 18°	30750	1 -46		5000	3840	3050	2450	1705	1255	900	756	616
12" < 20"	38000	1 -62		amo	4750	3760	3040	2110	1550	1155	937	760
100 1000	45980	1 .76			5750	4550	3650	25141	1875	1435	1135	320
10" + 24"	\$1720	1 -94				5400	4370	3040	2230	1710	1350	1094
12° x 26°	64220	2 -10					5120	3560	2020	2050	15A0	1224
15" < 28"	74480	2 .46						4140	3040	2530	1835	1490
15" x 30"	85500	2 42						4750	3480	2670	2119	1710

RECTANGULAR BEAMS

Table 5-c.

fc=750 psi, ft=18,000 psi, m=15
Safe load uniformly distributed lbs/r.ft. including wt. of beam.

Size	R.M.	At				E ffeet	time Spo	in in P	ed.			
brd	Ft Lbs.	siq, in	6	7	8	9	10	12	14	16	1 18	20
8° × 8°	5376	-51	1195	KBU	675	5311	43/)	295	219	169	133	107
8" x 10"	H400	-64	1870	1870	1050	830	672	466	343	262	207	168
n" - 12°	12096	-77	2680	1970	1512	1195	970	670	494	878	298	242
8" - 14"	10464	1990	5660	2690	2065	1630	1322	915	675	515	407	329
5" x 16"	21504	1 -02	4770	3100	2688	2120	1730	1190	577	672	530	480
8° × 18°	27210	1 -15	6050	4430	3402	2090	2180	1510	1110	850	670	564
8" - 20°	88600	1 20			4200	23an	2090	1865	1370	1050	630	672
n" : 22"	36976	1 41			4870	3850	3120	2160	1580	1240	962	ใดป
8°×24°	45354	1 54				4750	3870	2680	1960	1510	1190	968
8" - 26"	56784	1 -66					4550	3150	9320	1750	1400	1185

Myw	R. M.	ı At			_	Effe	tive Sp	on in 1	Fact	_		
bad	Pt. Lba.	8q.1a.	6	7	-	9	10	12	14	16	1.8	20
10° × 10°	10600	146	2330	1710	1310	reas	840	384	A25	318	V35/0	210
10" x 12"	15120	-98	3300	2460	1991	1490	1210	840	617	472	972	902
10"×14"	20550	1 -12	4570	1360	REMOD	2150	1645	1140	887	IIAX	609	613
10" × 16"	26880	1.28	5300	4400	25(0)	2660	2150	1800	1100	HXO	607	538
10° × 18°	114000	1 -44		1900	£25Q	1960	2720	1900	1390	1062	840	680
10° × 20°	42000	1:60			5250	4150	3360	1340	KTEO	1310	1929	N.A.S
10" × 22"	MANCO	1 -76			8250	5010	4050	1810	2070	1565	1255	1016
10" x 26"	60480	1.392				5970	4840	3360	2470	1984	1490	1210
10" × 26"	70685	E-06					5670	2940	2900	2205	1755	1419
10" × 28"	H23/00	2-24						\$260	8360	2570	2035	1656
18" × 12"	IDA	1 -15	4/120	1960	2270	1790	1450	1006	740	666	447	863
12" × 14"	24596	1 :34	5420	6000	8067	2430	1970	1370	1000	770	610	494
12" × 16"	HEESA .	1 -54	7160	5260	4032	3190	2880	1790	1321	1005	T95	645
18" × 18"	40824	1 -73		6670	5103	4030	3260	2230	1000	1275	1005	516
18" x 20"	50481	1 -92			9300	6970	£500	1710	2060	1575	1240	1000
18" × 22"	60984	2 -11				2006	4870	1110	2470	1900	1500	1220
19" × 24"	72576	2-30					5800	4010	2950	2270	1790	1451
18" × 26"	85176	2 -40						4720	3470	2660	2100	1704
12"×28"	D0784	12-69						5470	4010	8090	2430	INTH
11"×10"	113460	2 -88						HSSG	4620	3540	(280)	2227

NOTE.—Shear Intensity more than 75 lbs/sq. in. to left of Vertical Line.

CHAPTER 6 DESIGN OF T-BEAMS, L-BEAMS, ETC.

CONTENTS

Standard T-Beam Tables.

Charts.

CHAPTER 6

T-BEAMS OR L-BEAMS

In practice in case of T-beams, the thickness of the table 't'

Stresses in a T-Beam.

is the same as the thickness of slab already calculated to span between the beams. The width of the slab (B) which is supposed to act as top flange of the beam cannot be determined theoretically but is assumed as:

	Old L. C. C. R	D.S.I.R. Code or I.SI. Code B.S. Code or New L.C.C.R.
T beam	effective span or Distance between ribs or 12t	Or Distance between ribs
L beams	4t	effective span or Distance between ribs or 4t+b

The practical procedure followed and formulæ used in design of T beams are therefore as follows:—

t and B are known, the value of d the effective depth is assumed from practical and economical or architectural considerations. For smaller value of d the amount of tension steel is more, for bigger values of d it is less. The most suitable value of d will therefore depend upon the relative cost of steel and concrete and the following formula is sometimes used to find it approximately.

$$d = \sqrt{\frac{rm}{f_t b_r}} + \frac{1}{2}$$
m=B.M. in inch lbs.
$$r = \frac{cost \text{ of } 4.38 \text{ cwts. of steel}}{cost \text{ of } 1 \text{ cft. of concrete}}$$

when the value of d is assumed, the value of lever arm also requires to be assumed by judgment. This value will vary from $d \cdot \frac{t}{2}$ to $d - \frac{t}{3}$. In case of thin slab and deep beam, the value will be nearer to $d = \frac{t}{2}$ and in case of thick slab and shallowed.

low beam, the value will be nearer to $d-\frac{t}{3}$.

Since slabs in buildings are rarely thicker than 6" we may say for practical purposes that the value of lever arm is say upto .95d for deep beams and .89d for comparatively shallow beams. On these assumptions the amount of tensile steel AT can be found from charts 6-1 and 6-2.

Value of lever arm $-d - \frac{1}{2}$ errs on the safe side and gives slightly more steel.

If further accuracy is required, charts Nos. 6-3, 6-4, 6-5 and table 6-a or formulæ on the next page may be used, as follows:--

Find the value of
$$Q = \frac{M}{Bd^2}$$
 and ratio t/d .

Find from chart 6.3, 6-1 or 6-5 the fc for the above values of Q & t'd. From chart No. 6-6 find the location of neutral axis for the particular value of fc and the table 6-a will give the factor j for the particular value of n and t/d.

The maximum B.M. which a particular beam can take without eausing excessive fc is shown by the dotted lines in charts 6-1 and 6-2. Thus for a T beam with d=36" and B-60", the

DESIGN OF T-BEAMS OR L-BEAMS

B.M. should not exceed 50 x 105 inch lbs in chart 6-1. Otherwise fe will be more than permitted and compression steel will be required.

Alternatively the following formulæ can be used for calculations of properties of T beams when approximate values of d and AT are found from the charts No. 6-1 and 6-2 and the value of B is taken in conformity with code regulations.

(1) Position of neutral axis $nd = \frac{Bt^2}{2} + mATd$ Bt + mAT

$$n = \frac{1}{1 + (fs \ mtc)}$$

- (2) Value of lever arm $jd = d = \frac{t}{2} + \frac{t^2}{6(2\pi d t)}$
- (3) Moment of Resistance = QBd² in general

$$= fc \left(1 - \frac{t}{2nd}\right) Btjd \text{ on concrete}$$

$$= fs \quad AT \quad jd \qquad \text{on steel}$$

(Charts Nos. 6.3, 6-4 and table 6-a are based on the above formulæ and are drawn on basis of fs = 16000 or 18000 lbs/[]* and m = 15.)

VALUES OF J

n eld	.06	80	10	.13	14	16	18	.50	22	.24	.26	28	30	.35	34	36	38	40
.30	-97	96	96	.95	94	-94	-93	93										
.52	.97	-96	95	95	-94	93	93	33	92	33								
-30	-97	'96	95	94	94	93	-93	-255	91	91	.20	-90	90					
.35	97	.96	95	-94	-94	.93	-25	.91	191	90	.80	-89	169	89	8.8			
.40	97	196	.95	-94	1523	-93	'92	.91	90	oe	.89	169	185	88	87	87	87	87
'45	'97	.96	.D2	94	.93	-93	93	91	90	89	709	88	38	87	87	D-5	-86	85
'50	97	96	95	94	.63	-83	-92	-91	50	89	-89	88	87	87	.86	85	85	84
55	97	1596	95	-94	-93	.63	92	-91	50	89	188	8.8	87	186	8.5	85	18.4	84
60	97	'96	95	-94	-93	-92	92	191	-90	.89	88	87	27	86	85	85	84	83

Table 6-a.

STANDARD T-BEAMS.

The following tables, Nos. 6-b and 6-e, give particulars of simply supported T-beams earrying uniformly distributed load of 1000 to 3000 lbs. per running foot.

Chart 6-3.

DESIGN OF T-BEAMS OR L-BEAMS

D-Overall depth of beam in inches br-Thickness of web

- t-Minimum thickness of flange in inches necessary to keep compression below 600 or 750 lbs./sq. inch as permitted by regulations.
- a. b, c, d main steel bars (a and c are in pairs)

Chart 6-4

K-distance in feet in which shear intensity exceeds 60 or 75 lbs. per sq. inch.-

n_1	number	of	stirrups	in	portion	AB
n ₂			Do			BC
na			_Do-			CD
			Do			DR

(Note: AB=BC=CD) in ease of beam with 6 rods (: AB=BC) Do. 5

These tables can be used for preliminary designs and for approximate estimates of quantities of concrete and steel.

Chart 6-5.

Table 6-b. T-BEAMS. 1c=750 psi; it=18000 psi; m=15 Span=8'-0" (effective). load—lbs r.tt. unitorm including wt. of beam.

				_		_		_						
	1000	1200	1400	1400	1800	2000	2200	2400	2600	2800	8000	3200	3400	3600
SECTION	B ₁	В,	\mathbb{D}_{i}	\mathbb{R}_{i}	\mathbf{B}_{t}	B ₁	В	\mathbb{B}_i	B_1	$\mathbf{B}_{\mathbf{r}}$	B ₁	11,	Ha	B.
Main Steel Sq. Inches.	-6	-7	-6	-8	1.0	1 1	1 2	1 -8	1 -53	1 -53	1 -90	1 67	1.0	1 0
	1 _y	•	2 0	ža.	1 2	1	3 a	1 10	3%	2 "	10	2.	4	4 8
ь	4	4	٠,	l o	1 4	A	1 ,	50	A pr	No	9,	T &	1,0	2 0
					* 4	١,	1	1 9	L	3.	2 m	1 00	20	A.
đ														
No. of % Strps	9	0	9	9	v	9	v	9	D	Ų	0	U	B	9
n ₁	1	1	1	1	1	ŧ	1	1	1	1	1	1	1	î
an a	1	1	1	1	1	1	1	1	1	t	1	1	1	1
n _a														
84														
K	•			-25	-7	1.0	1.8	1 .5	1 7	1.8	1.8	1 .\$	1 -3	1.5
Concrete C.Ft.	4 -5	4 -5	4 5	4 -6	4 -5	4 -5	4 -5	4 -5	4 - 5	5 -1	5 1	ep eq 1 1	7 7	7 7
Main Steel Lim.	33	37	40	40	6.6	65	32	56	65	65	69	74	76	TA
Strpe Lbs.	10	10	10	10	10	12	12	10	12	10	1 10	12	12	12
Span=10'-0	" (cf	fectiv	c).											
SECTION	В	B,	В,	В,	B ₁	Ba	В	B _s	B _e	B,	В	B,	B ₀	B.
Main Steel Eq. Inches	-8	1.2	1 -22	1 31	1 -5	1 67	1 -9	2 -1	1 9	1 94	2 -1	2 21	2 3	2 53
	3,6	24	3-9	1 0	An	P.a	4 6	54	1,0	D po	2 4	* 4	200	
ь	h _y		1 ~	As	An	A d	A a	B. 10	A					
e					- 40		-	2 10	- 65	4.4	2 0	20	* 6	44
		1,0	***	1/2	5 ₈	3	3 _D		3.6	1 d	6,	a a	1 6	14
4		1,0						8. 0						
	10	10												
4	10		* 50	·~	ða.	3 10	, B	B	7.6	4	¢ ,	, J	6	1,
No of %, Strps		10	10	10	5s 11	11	13	18	18	18	13	15	15	15
No of h _b ' Strps		10	10	10	5s 11 1	11	13	18	18	18	13	15	15	15
No of h _b ' Strpa		10	10	10	5s 11 1	11	13	18	18	18	13	15	15 1 8	15
No of h, Strpe		10	10	10	5s 11 1	11	13	18	18	18	13	15	15 1 8	15
No of h, Strpa		10	10	10	5n	11 I	13	18	18 1 2	18	13 1 2	15 1 2 1	15 1 8 1	15 1 2 1
No of h _b ' Strpa n ₁ n ₂ n ₃	1	10	10 1	10 1 1 -25	5 m 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 I I I I I I I I I I I I I I I I I I	13 1 2 0	38 3 2	18 1 2	18 2 1	18 1 2	15 1 2 1	15 1 8 1	15 1 2 1
No of h _b ' Strpa n ₁ n ₂ n ₃ R Congrete C.Ft.	5 5	10 1	10 1 0 .7	1 - 25	11 1 1 1:25	11 I I I I I I I I I I I I I I I I I I	13 1 2 0	18 1 2 2 -2	18 1 2 1 · 5	18 2 1 1 · B	13 1 2 2 · 0	15 1 2 1	15 1 2 1 8-8	15-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Span=12'-0" (Effective) load=lbs/r.it. uniterm including wt. of beam.														
	1000	1200	1400	1600	1800	2000	2200	2400	2600	2/100	3000	3800	3400	MSS
SECTION	В,	B,	11,	li,	B _r	B _s	В	H _a	В,	H,	li,	В	B,	B,
Main Steel	1 -2	1 -43	1 -07	1 94	2 21	2 -3	2:21	2 -3	2 69	2 84	3 -0	2 66	2-54	8-0
	ð.	24	h _a	2 4	4 6	4.	A a	Aa	•		7.	74	X ₃₀	٠.
L	1 4	1 7	Ar _b	₫/a	A	Z _a	4		7,0	1,	To	3,0	4.	74
•	1,	3 4	3u	5 .	A	4.	4		4.	T a	Ĭ,	A 4	F _a	TA
-13														
No of 2, " Strpn	14	11	1 4	14	14	1.6	14	14	14	15	10	20	10	20
ta,	2	1	1	t	1	1	1	1	1	1	1	**	1	2
av.	1	1	ŧ	3	1	t	1	1	1	2	us a		=	**
El o										1	9	1	1	1
er •														
K		4	1.2	1.8	04 15 04 10	2 0	1 -0	2 - 2	2 - 3	2-6	3 .0	2.4	276	5 -9
(macrute t lit	7 -4	7 - 4	7.4	7 4	7 - 4	7 6	11:0	11 0	11-0	11 0	11-0	14-0	14-0	14:0
Mam need Liber	Path	74	{at -	1413	117	1-11	121	12-	1.40	151	140	152	162	170
wtern Liu	15	15	1 .	1.0	15	15	15	15	15	19	21	.NO	27	1860
Span=14'-0	" (ci	lectiv	c).											
SECTION	" (cf	lectiv	e).	E _n	В,	t.	f ₂	R,	B ₀	b ₄	B _o	ts.	Bir	20,10
				F Gal	B. 2 ·33	1.,	h,	B, 3-13	B ₀	b, 3-13	8°,	ts,	В.,	B ₁₁
SECTION	В	В	B,	-						J-13		11-46	5126	
SECTION Main Steel Sq Inches	B	1 -94	B ₁	E 68	2 -53	2 '64 Tu	T-UU	3 -13	8-60	J-13	3 -28			8 - 44
SECTION Main Steel Sq Inches	B 1 07	1-94	B ₁	2 68 Ta	2 -53	2 re4	NEWS.	3·13	8-60 2,	3 -13	3 -28	N=66	2026	8 -44
SECTION Main Steel Sq Inches	1 B	1 -04 = x = x = x = x = x = x = x = x = x =	B ₁	2 66 1 _a	2.53	2 '64 Tu	THE	3 ·13	8-60	3-13	3 -28 1 ₆	N-60	# (1)	8 -44
SECTION Main Steel Sq Inches	1 B	1 -04 = x = x = x = x = x = x = x = x = x =	B ₁	2 66 1 _a	2.53	2 '64 Tu	THE	3·13	8-60 2,	3·13	3 -28 Th	W -86	\$ (25) 	3 -44 7. 7. 7.
SECTION Main Steel Sq. Inches	1 1 07 30 50 70	1 - 10-4 1 - 10-4 1 - 10-4 1 - 10-4	B, 2 %	2 68 5 a	2·53	2 '66 To	3-100	3 ·13	8-60	3·13 	9 -20 Th 1 ₈	1 -00	1 (2)	3 -44 7 7 7 A
SECTION Main Steel Sq Incline 1. No. of 5 Stries	1 B 1 67 30 54 30 70	1 :04 x ₁ x ₄ x ₄ x ₄ x ₅	B, 2 : a ' a ' a ' a ' a ' a ' a ' a ' a ' a	2 68 50 50 46	2-53	2:06 Tu '4 T _o	\$200 	3:13 	8-60 26	3 ·13	9 - 28 76 14 24	T-60	5 (28)	8 -44 7 7 7 A 4
SECTION Main Steel Sq. Incline A fr. No. of 50° Strpe ts.	1 B 1 07 30 50 50 100 100 110 1	1 · 94 · r ₄ ·	B, 2 % '1 '1 '4 '1 '4 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1	2 66 5 a 4 b	2·53	2 :04 T ₁₀ /4 T ₀	100	3-13 	8-60 2 _b 2 _a 2 ₆	3-13 	9 -28 h	1 -60 7 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5 (28)	3 · 44 7
SECTION Main Steet Sq Inches A fo No. of Co* Strps th, a,	1 B 1 07 30 50 50 100 100 110 1	1 · 94 · r ₄ ·	B, 2 % '1 '1 '4 '1 '4 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1	2 66 5 a 4 b	2·53	2 :04 T ₁₀ /4 T ₀	100	3-13 	8-60 2 _p 2 _n 2 _k 1	3-18 	9 -225 Th 1 ₆ 1 ₆ 1 ₆ 1 ₆ 24 1	# 400	5 (26) 1 a 7 a 29 2	8 -44 7. 7. 7. 4. 61 2.
No. of 50° Stries	1 B 1 07 30 50 50 100 100 110 1	1 · 94 · r ₄ ·	B, 2 % '1 '1 '4 '1 '4 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1 '1	2 66 5 a 4 b	2·53	2 :04 T ₁₀ /4 T ₀	100	3-13 	8-60 25 25 1 2	3-18 	3 -28 Th	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5 (26)	8 -44 7 a 7 a 7 a 8 1 4 a 2
Ne. of to Strie	1 B 1 07 30 50 50 100 100 110 1	11 - 124	B, 2 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 :	2 68	2 · 5·3	3 -04 Tu '4 To In I	100	3-13 	8-60 ?b 	3-18 	3 -28	# -80 7 4 7 4 7 4 1 2 1 1 2	5 (26) 1 a 5 a 29 2 2 1	8 - 64
No. of 5 Stries	1 B 1 67 30 50 50 11 11 11 11 11 11 11 11 11 11 11 11 11	1 :04	B ₁ 2 · a · · · · · · · · · · · · · · · · ·	2 68 5a	2 -5-3 	2 -04 To 7 o 2 h	100	3 ·13 	8-60 ?b , , , , , , , , , , , , ,	3 ·13 · . · a · A a · A a · . · a · A a · A a · . · . · a · A a · A a · . · 1 · 20 · 1 · 21 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	3 -235 The No. Tu., The No. Tu.	# -60 7 a 7 a 7 a 1 a 2 b 1 a 1 a 2 b 1 a 2 b 1 a 2 b 1 a 2 b	5 000 1 0 1 0 2 0 2 0 2 1 1 1	3 · 44 7 7 A 4 311 2 1

Span=16'	19" ((effec	tive).		load	l—lb	s/r.tt.	uni	torm	inch	iding	wt.	ot b	eam.
	1000	1210	1400	1600	1#00	2000	2000	2400	2600	2900	8000	2200	3400	3600
SECTION	B,	Ва	B,	B,	B ₀	B,	ß,	H _e	B,	Bis	H ₁₀	В,,	B ₁₀	Bio
Main Steel ng Inches	1.9	2 -21	2 62	2.84	3 -13	3-6	3 13	3-6	3 -004	8 -7	4 -02	1 02	1 34	4 -53
A	L _d	4,	- 46	76	1 11	T _{in}	м	7.	1	1	1	1	1	1
b	Age	A _d	34	44	40	75	1 4	1 a	1,	1	4	4	14	1
•	A	48	74	7 a	1/2	76	7,	26	7 a	2 4	1	1	1	1
d					34	Ĩ p	* 4	T _{at}	Tp	4 4	34	4	7á	ĭ "
No. of "," birgm.	17	17	17	1s	20	20	41(1)	dn	24	14	24	24	30	20
85 3	1	1	1	1	1	t	1	1	1	1	1	ţ	2	2
u _a	1	1	1	1		ed er	***	=	2	19	1	3	4	4
tt a				1	1	1		2	44	I.	3	2	4	2
0,									*					2
К		1 -25	2 2	3 -0	3 -6	4 -0	3 -=	8 -6	4 -0	2-4	2.6	3-2	3 4	3 7
Concrete C.Pt.	14.3	14.3	14 3	14 -3	14 -3	14 -8	18 -2	15:2	18 -2	28	29	29	29	
Wain Steel List	107	164	184	2014	234	251	240	266	264	271	300	300	320	331
steps, Lin.	15	18	ln	20	012	the day	30	30	36	41	54	54	68	66

Span-	18'-0"	(effective)	
-------	--------	-------------	--

SECTION	B_1	В,	B,	110	Ho	34,	B _e	B _a	B ₁₀	Htt	B _t ,	B ₁₊
Main Steel Sq. Inches.	2 8	2 -84	3 -13	1-6	4 ()	4-0	6 - 16	4 -53	4 -84	4 -53	4 - 73	5-14
4	24	1.	7.	ž a	1	1	1	1	1	3	1	114
ъ	T _a	A ₄	ta	T _a	1	₹4	1	· In	1.	1	1	1
r	34	24	4	1,	44	7 -	1,	1	3	1	1	1
đ	1		14	7 01	1	36) al	1	1.	7,0	1	1
No. of " " strps	19	19	70 m }	20	20	24	24	26	26	ZA	30	3/1)
n,	1	1	1	1	1	1	1	1	1	1	0	2
r _a	1	1	1	1	1	4	0	3	3	#	3	3
n _a	,		1	1	i.	2	2	40 m	u m	3	9	2
D ₄				1	1	1	ı	4		₩ m	2	3
Ж		1 -3	2-4	3-4	0 1	3 - 2	3-4	4 -2	a · 5	1-9	4 -2	4 -5
Couesete (.5't	16	16	16	16	16	21 -5	21-5	21 -5	26 -8	25 8	20 8	100 AH
lain strel Liu.	188		243	277	303	309	253	35E	348	850	872	403
itrys. Liv.	21	21	22	22	***	100	26	58	58	63	64	96

Span=20'-0" (effective). load=lbs/r.ft. uniform including wt. of beam.

	1000	1200	1400	1600	1800	2000	2700	2400	2600	2800
SECTION	B _v	R,	B _a	R _u	B _q	b,	Be	B ₁₀	Bis	Bu
Main Steel Sq Tuches	2 64	50-144	4 -00	4 -58	4 - 16	4 -72	5 -14	4 -72	6-14	ā -57
		* e	1	1	1	1	134	1	13.	1
h	4	*,	1	1	1	1	1	1	1	136
e		* 4	A	1	Tal	t	1	t	1	136
d		- 4	1		*6	1	1	1	ž.	156
No. of a . Strps	21	21	21	21	24	34	26	24	26	24
n	1	1	1	1	1	1	1	1	1	1
Pig.	1	1	1	1	2	1	1	2	2	2
Eig.				1	1	2	2	9	2	2
ts.						1	2		2	31
K	1	2.5	3 -6	4 - 4	3 -6	4 -2	4 -7	3 -6	4 -2	4 18
Concrete C.Ft	17 -7	17 -7	17 -7	17 -7	20.3	227-0		29 5	29 -5	229 18
Main Steel Lbs.	247	272	827	871	246	291	425	897	431	467
Stirrups Lbs.	23	23	22	23	36	36	30	54	58	63

Table 6-c. T-BEAMS. 1c=600 psi, 1t=16000 psi, m=15.

Span 8'-	0" (effecti	ve).		load	—lbs	/r.ft.	unif	orm	ınclu	ding	W1.	ot he	am.
	1000	1200	1400	1600	1800	20(10	2200	2400	2000	2500	3000	3200	3100	2600
SECTION	Ts.	В,	В,	B,	В,	35,	Bi	8	H ₁	\mathbf{B}_{i}	B _i	Ha	H	н.
Main Steel	-59	70	-43	(8%)	1 -10	1 -31	1 31	1 53	1 -53	1 -#0	1 80	1 04	1 :80	1 -60
	1		5 ,	A	Pi se	E a	a _n	Ag	20	1 4	* 4	4 4	¢	A. a
1-	1	2.10	Ť	A in	1	1,	N	ða.	2u	3 ,,	A m	A _d	4,0	3 %
e					4	1 4	* -	h	3.5	3 0	2 2	8 7	A pa	10
d													A	
No. of " Strpe	á	15	10	10	11	11	12	12	12	14	18	17	15	15
n ₁	2	<u>ن</u> •	ed to	4	1	1	1	1	1	1	2	00	85	8
n,					1	1	1	2	2	¥	7	2	100	1
D _d							1	1	1	2	2	15	3	1
n ₄														
К	1		6	1 -0	1 -3	1 46	1.8	2 0	2:1	2.3	2 - 4	2 -3	1.9	:
t operate C.ft	4 -6	4 -5	4.5	4 - 5	4.5	15	4.5	4 -5	4 - 5	4 - 5	4-6	B-1	7 7	7 7
Main Strel Ide	33	27	411	13	5.03 5.04	38	56	64	64	74	74	79	74	74
Stirrujo Lio.	9	So.	11	11	11	11	1.3	18	13	13	17	19	30	20
Span=10'-0	" (cf	lectiv	(c).											
SECTION	В,	B_t	Bi	B ₁	B _r	n,	B,	B,	B ₀	B,	B,	B,	B _a	Ba
Main Steel Sq. Inches.	-92	1 -31	1 -31	1 -58	1 .72	1 -94	2 07	2 -21	2 07	2 -24	2 38	2 -65	2 45	3 41
	. a ,	12/2	λ_{μ}	5 5	<i>3</i> 4		1 4	1 4	4.9	* 4	14	2 4	4	14
b	3=	*5	Bu	3.0	* d	ž.,	A.	ža.	2 n	ð»	2 4	3.	4 4	%
e		14	120	1.9	* 4	3.	4.	4.5	4,6	36	2.0	a de	£ ,	5 4
d										A 4	4	2 4	44	*4
Vo of 7, Steps	1 11	12	12	10	12	12	16	16	16	20	91)	440 000	07 co co co	24
n,	1 =	1	1	1	15.	1	1	1	2	0	ulb m	***	2	2
ng		1	1	1	1	1	2	ol e	1	4.7	4.7 db	60	4	2
n,						1		2	1	1	1	1	1	1
n,	1									2	1		3	4
K	.00	1 .0	1 -6	<u>a</u> ()	2.0	2.3	五 - 6	2-7	2.0	2 -4	2-6	2 · 7	2 -9	3 -0
Concrete C.ft.	5.3	5 - 8	5 5	5 - 5	6 - 8	6.8	4 - 8	6 3	9 -4	9 4	9.4	9 4	9 - 6	9-4
Main Steel Lin.	49	67	67	83	60	92	99	104	101	107	111	125	125	134
Stirrupe Lis.	11	12	12	12	13	12	15	18	20	26	26	27	27	1000

Span=12'-	D" (e	fecti	ve).		load	l—lb	s/r.ít	. uni	form	incl	uding	wt.	of b	eam.
	1000	1200	1400	1666	1900	2000	2200	2400	2000	2100	MMORE	2200	8400	2600
BECTION	Bi	\mathbf{H}_{n}	B ₁	112	B,	6,	Ba	В,	В	Ha	B,	B4	100	B.
Main Steel 8q. Inches	1 -42	1 -67	1 -92	2-21	2-42	1.66	2 -60	2 -72	2790	1102	3 - 36	X 1254	3294	4 -00
а	36	ħ _m	4,	44	T's	76	36	7	1	7,	1	7 _M	7	1
ь	1,2	%	34	3/4	36	74	36	26	5.	1	14	4.	1	1
•	34	Ph.	59	3,	34	λ_4	*4	* .	24	75	7 0	76	⁷ m	Th
洒												24	54	%
No. of A , * Strpa.	18	10	18	13	18	14	17	17	17	20	23	25	92	86
n _s	1	1	1	1	L	1	1	1	2	2	2	1	1	1
n _e	1	1	1	1	1	1	1	2	2	1	2	3	2	8
n _e	1				3	2	3	1	1	20	8	2	Z.	-
D ₀												2	2	1
x	196	1 -5	2 -2	2.7	3 -0	3 -8	2 -7	3 -0	8 -2	3-4	3-6	8 -1	8-3	3-5
Concrete C.Ft	7-4	7 - 6	7 -4	7 -4	7:4	7 -4	11-0	11.0	11 -0	11-0	11 -8	34 -0	14 -0	14-0
Main Steel Lhe.	79	AD	103	116	125	130	148	148	156	11539	178	155	200	225
Strps. Lbs.	14	14	14	14	14	15	16	18	18	21	24	26	33	26
Span=14'-	0" (effecti	ive).											
SECTION	B ₂	It,	B,	B ₁	B,	Ba	В.	B	В,	В,	100	BG	26,	В,
Main Steel Sq. Inches	1 -8	2 -21	2-04	3 .9	2 -87	3 -2		2 56	3 -93	8 61	31-95	4-16	3 -2	4-16
	44	4,4	15	1	1 8	7 st	75	1	1	75	1	1	l	1
ь	35	5.4		54	26	1	76	1	1	7 a	75	1	20	1
c	45	2.6	T.a	A.	75	2,5	1	Ta	1	1 a	1/4	36	In	75
M											T _a	² h	7.0	36
No of 2, 6 Bigs	15	16	16	El	15	14	20	22	25	23	26	26	28	34
th g	1	1	1	3	1	1	1	3	1	1	2	2	2	2
Dq	1	1	1	*	1	1		0	2	=	2	=	2	2
n,	1		ed n	4	1	eb The	8	4	6		=	2	2	2
n,											5	5	5	
K	1-	7.5	3 -1	3-4	3 -0	3 -4	3 -7	4 -0	4 - 3	3 -7	4 -0	4 - 3	4 - 2	4 - 4
Constete C.Ft.	84	6-6	8-6	4 -6	12:7	12-7	12 -7	12 -7	12 -7	16 -1	16 -1	16 -1	17 -0	17-6
Main Steel Lbs.	120	143	166	100	THE	202	214	225	347	240	263	274	269	281
Strps. Lbs.	16	16	17	23	16	17	30	22	2.5	46	32	52	63	66

Span=16'-	6" (ffecti	ive).		load	l—lb	5/r.ft.	uni	form	inclu	ding	wt.	of h	eam.
	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	2200	\$400	3600
SECTION	B,	B,	В,	R,	B,	В,	B.	В	[h ₂	ß.	В,	B _q	B,	B.
Main Steel Sq. inches	2.1	2 - 41	2 -76	3 -24	1 65	4 -02	4 -37	4 -16	4 :34	4 -71	4 -53	4 -73	6-14	X-200
	34	$\tau_{\rm b}$	1	1	1	1	1	à	1	1	1	1	14	130
Ba	36	T _b	T _A	1	* ,3	1	8	ı	1	1	1	1	1	130
e 1	3,0	h _a	E 4	1 4	4,	2.4	1	2/0	T _{in}	1	1	1	1	1
A					T _a	1	4	a	1	1	⁷ h	1	1	1
No. of %5" Strps	17	136	17	17	21	25	31	25	29	31	39	29	35	85
n,	1	1	1	1	1	1	1	1	1	1	1	9.0	**	¥
M-g	1	1	1	1	1	1	*	2	=	*		2	3	3
n ₄					t	1	2	2	2	=	2	2	8	10
n,					2	4	3	2	4	5	8	4		7
ĸ	-36	2.0	2-9	3 -5	4 ()	4 -6	4-7	4 1	4 -5	4 -7	4 -3	4 4	4-0	4 -8
Concrete C.ft.	14-3	14 -3	14 -3	14 -8	14 -9	14:3	14 -8	16 -2	14-2	18.0	20 -0	20 0	20.0	20 -0
Main Steel Lhs.	155	175	217	204	224	282	310	500	313	340	3341	341	367	1889
Strps. Lbs.	1 26	24	26	26	32	38	47	50	249	42	0.5	6.5	nD.	80
Span=18'-0)" (el	ffection B.	re).	В,	В,	B ₄	В,	B,	ъ,	B,	B,	В		
Main Steel Sq. Inches	1 2 30	3 -01	3 -61	4 -16	4 -71	4 -10	4-53	5 -18	4 -95	5 -34	5 -74	5 -96		
	3.	36	Tie	1	1	1	1	1%	136	13-6	11%	1%		
ь	1	34	7.5	1	1	1	1	1	1	136	136	136		
c	24	15	* ,	z,	1	Th	1	1	1	1	136	14		
4			15	76	1	1,	٠	1	3%	1	1	136		
Yo of 1," Strps.	1 19	1%	10	19	25	22	25	27	29	31	33	37		
n ₄	ı		1	1	1	1	1	1	l.	=	i	9		
n _e			1	1	1	2	9	9	:	2	2	2		
m.	,		1	1	1	1	2	2	2		2	2		
n,			1	2	5	3	4	5	5		3	9		
К	1-8	8.0	3-9	4 -5	3-0	4 - 4	4-9	5 -2	5 - 3	5-4	5-8	4.0		,
Concrete C.Ft.	16 -4	16-	0 16-	0 36-0	15	19-	0 19 (10-0	25-1	120	HE	22.2		
Main Steel Lbs.	214	237	294	334	260	342	377	420	417	445	4M7	502		
Strps. Lin.	200	29	29	29	26	16	50	54	65	70	10	84		

Span=20' (effective).

load-lbs/r.ft. uniform including wt. of beam.

- Indiana in the second in the	1000	1200	1400	1600	1806	2000	2200	2400	2500	2800	1000	90	200
SECTION	Ba	Bi	B ₁	B _a	В,	В,	B,	В	R.	B,			
fain steel	3 - 13	3 -81	4 -53	4 - 99	4 -71	5 34	5 -79	6 -0	0.1	6 -7			
	7 a	1	1	11,	1	135	11%	11%	13,	14			
ь	T _u	٠.	1	11,	1	1%	13%	11.	124	12,			
e	2 6	1,	1	٠.	i.	1	1%	115	1	11,			
M	10	1 4	A	1	1	1	1	145	1	1%			
of 4° Strpe	19	19	21	25	23	23	27	29	25	39			
8,	1	1	3	1	1	1	1	1	2	ĭ			
n_{i}	1	1	1	1	2	2	en en	*.0 01	2	00			
n.	1	ī	1	1	1	2	7	1	x	10			
D _a			**	4	1	4	4	ń	Я	10			
K	2 -8	4 ()	\$ 18	5·5	4 -9	5 4	3 ·B	5-7	6 - 1	6 - 4			
operate C.Ft.	17 -0	17:0	17:0	17 n	<u>"}</u> ((21.0	21-0	24 -5	24 -5	24 -5			×
tain Steel Lim.	260	316	372	401	401	102	469	515	516	573			
tternpe Liba.	20	29	30	n=	4.0	815	54	66	750	88			

NOTE:

- (a) Bearing assumed = D 1 Inches
- (b) Quantities should be considered approximate. They are given on bash of : Total length of beam inflective span -(D-1)' & t = 4'. The quantity of concrete is in web only. Steel includes anchor bars also

Standard sections of T-beams used in Table Nos. 6-b & 6-c.

(all figures show inches)

	В	11,8	B ₂	114	B_{ν}	B ₄	1:-	11,	В,	} 1 2 2 0
D	13	13	16	lei	1 et	19	19	19	22	44
						100				
t	3	3	3	4	4}	3	4	4 }	4 4	3

Chart 6-6.

Example:-

Find the section of a simply supported T-beam 18' effective span carrying a load of 1600 lbs. per running foot.

From Chart 6-2:

$$M = \frac{1600 \times 18^2}{8} = 64800$$
 ft. lbs.
= 65×10^2 , (say)
for d = 14^o A_T = 4 sq inches.

From tables 6-b:

section reqd.=
$$B_4$$
 i.e. $16' \times 10''$

shear steel will be required for a distance of 4.5 ft. from the support and 5 stirrups of \{\}" e will be required in this portion.

The whole beam will require 19 stirrups. The sketch below gives all the details of the beam.

(fe=600 psi, ft=16000 psi and m=15)

CHAPTER 7

SHEAR

CONTENTS

- 7.1 General.
- 7.2 Examples.

Table No. 7a
Table No. 7b

Shearing resistance of inclined bars.

Table No. 7c Distance from support requiring shear reinforce-Table No. 7d ment.

Table No. 7e

Shearing resistance of stirrups spaced at various distances.

Chart 7-1 Spacing of stirrups.

CHAPTER 7

SHEAR

7.1 GENERAL.

The shear intensity can be considered as uniform over the area bid of a concrete beam.

Distribution of Shear Stress.

The shear stress therefore is $\frac{S}{bjd}$ lbs/sq inch.

when S is the vertical shear in lbs., b and d are breadth and depth of beam in inches, respectively.

This stress must not exceed $\frac{fc}{10}$ otherwise separate shear reinforcement is necessary. If the intensity exceeds $\frac{3fc}{10}$ it is necessary to enlarge the section of the beam.

Provision for shear is made generally by:

- (a) Inclined bars.
- (b) Vertical stirrups.

(a) In ordinary practice special inclined bars are not provided but bars which form the tensile reinforcement are bent up to take shear in such portions of the beam where due to reduction of the bending moment they are no longer necessary for the tensile stress. The points where tensile bars can be bent up are found by drawing the B.M. diagram to scale, on which tensile value of each bar can be sketched to scale.

The following sketches give the location of the point at which part of the tensile steel can be bent up, in case of uniformly distributed load on a simply supported beam.

NOTE:- ALL BARG ARE OF SAME DIAMETER

Bending of bars for Shear.

The shearing resistance of inclined bars is given in Tables 7-a and 7-b. The distance from support of an uniformly loaded simply supported beam, for which shear steel is required for a particular shear intensity at support is given in Tables 7-c and 7-d.

(b) If the vertical binders are spaced at a distance p, there will be $\frac{jd}{p}$ number of binders in a length equal to lever arm of the beam. Then the shear resistance in this portion which is $\frac{Aftjd}{p}$ equals the shear S (A is the area of both the vertical arms of stirrup). The values of $\frac{Aft}{p}$ for different sizes and (Continued on page 151)

R. C. C. BEAMS. STIRRUP SPACING CHART.

Chart 7-1.

SHEAR RESISTANCE OF INCLINED BARS

Table 7-a. Table 7-b.

Hammer	ft.=1600	Lbs./p"	ft. ~1800	00 Lbs /0"
Pag .	θ=45°	Ø -: 30°	θ=45°	0-30
1:2"	2220	1575	2500	1750
5/8"	3470	2460	Mines	2750
3/6"	8000	3550	5800	3900
7/6°	6602	4A30	7650	5400
1°	8884	Rison	KTOKNOO	7050
16"	11244	7900	19850	8050
18"	13882	9650	15600	11050
10"	EARON	11920	18900	12230
13"	19994	14150	22500	15900

Table 7-c.

Diameter	j			VALU	10 83	7 Sijd	Lo.	l fs/p.		1	t=160	00 Lbs	10"	
flar	5.	3"	4°	4}"	ã°	6"	7"	73"	6"	397	12"	15"	18*	- 5
1/4"	782	522	392	348	314	262	224	206	195	175	100	104	RIS	
5 '16"	1225	517	618	543	1080	406	1350	327	20%	273	204	163	136	1
3,8"	1760	1175	1660	783	706	587	BOS	470	660	291	293	235	196	1
1/2	3130	troot	1571	1395	1258	1045	898	19425	787	700	524	410	350	100
					T	able :	7-£.			ft=18	000 Li	w/o*		_
1/4"	862	587	441	391	055	294	252	225	221	196	147	117	0.0	-
5/10"	1386	924	663	616	554	462	2004	370	347	108	231		9.6	
318*	1980	1320	990	860	792	NEO	266	528	496	440	330	1925	154	1
1/2"	3530	2350	1706	1567	1412	1175	TOOM	940	HAZ	784	588	264	392	10

Table 7-c.

Distance along beam span requiring shear steel (for safe shear at 60 lbs. per sq. inch.)

Note:-Figures tabulated give value of "k" in inches.

			10121	6											
Va.	10	11	12	13	1.6	15	16	17	16	19	50	21	22	255	24
Dipo	43	46 -4	50-4	54 6	58 6	63	67 -2	71 -4	76 -7	79 -7	84	88 2	924	90.4	100-1
105	41 -5	45 6	49 -8	54	58 2	62.3	66 - 3	70 -0	74 -6	28 - 7	83	87 -2	91 -3	95.5	\$9 ·&
100	41	45.2	49 -3	33 E	57 4	61.5	65 6	8-00	74	77 -9	82	86 -1	100	94 -8	1875.14
185	40 5	84-6	825-E	52 -8	36 -7	100.00	64 A	68 -9	73	77.	81	85	N2-1	93-2	07 :
180	Altr	44	\$85	52 1	56	60	64	68	72	76	80	84	88	92	96
175	10.5	43-4	67 3	54 - 6	\$5.2	59-1	63 -2	67	71	75	79	83	67	91	94 -7
170	39	40 -8	15 6	50 6	54 -3	SA-2	60.12	45 9	70	74	78	82	83	89 -6	93 A
165	38	41 -8	45 -8	40 7	33 4	57 -2	01-1	64 -6	68 -8	72 - 2	76	295-16	88 -6	87 - 5	91 :
160	37 3	61 -3	45	48 -8	\$2.5	50 1	60	63 7	67 -5	71 -3	75	77 -8	82-3	86 -8	90
155	37	40-5	44 -2	47 8	51 -5	35 4	56 9	62.5	100 · 5	70 -2	74	76 -8	81 -4	85	8.4
150	36	39 - 7	48 - =	48.8	50 4	34	57 -7	61 -2	SES	68 -4	72	75 -6	79 2	83	86 4
145	35	35 -8	42 -2	45 7	10	52.4	56 3	59-5	03	99-2	70	74 -6	77	BNE 15	84
140	34 3	37 -8	41 -2	84 6	8.6	51 4	54-8	58 2		45 - 1	6A -6	72	78 - 8	79	R2 4
135	33 4	36 -7	40	43 4	46 -6	50	53 -3	26.4	60	BX-4	66 -7	70	73 -4	76 -8	80
130	32-3	35 - 8	\$8.8	42	45 2	46 -5	51 7	54 -8	58/2	41.19	64 -6	dA	71 -2	74 -4	77 4
125	31 -2	34 -3	37 5	40 6	43 -7	46 B	100	MISS	56.13	50 6	ME-4	66.0	68 -7	71 -9	75
120	30	33	36	39	42	45	48	51	34	57	60	63	06	00	71
135	28 17	31 5	34 4	37 -2	40 -2	43	48	48 -6	81 -5	54 - 6	57 4	800-G	68	WX 10	68 -7
110	27 -3	30 1	32.6	33 5	58.C	41	48 -7	46 -3	40 -2	51 -8	54 -6	57 -4	NO.	62 -8	65 6
105	25 - 7	38/3	30.0	33 3	34	38 -6	81-2	43 -6	46 -4	88-75	51 -5	54	56 -7	50 -2	61 -8
100	24	2014	28 5	31 -2	33-4	36	38 -4	40 -8	43 -2	45 -7	48	3/0-5	52.8	\$5 -2	57 - 7
93	22	24 -2	26 - 8	28 -6	30 -8	33	35 -3	37 -4	300 -4	41 -6	8.4	46 -2	48 -4	M2-6	52 -8
90	20	22	24	26	28	30	32	34	36-0	38	40	62	4.4	46	46
85	17 -6	19 -4	21 -5	23	24 -7	26 4	28-2	30.6	81 -7	83 -4	25 - 2	37	38 -8	4/) · 5	42.3
80	15	16 -5	16	19-5	21	22 -3	24	25-5	27	59 5	30	31 -5	85	34 -5	34
7%	12	13 -4	14:4	15 -6	16 -8	3.8	19 -0	257.4	21 -6	22 -8	24	25-2	26 -4	28 -6	22 3
70	8 -5	9 -4	10-4	11-2	3.2	12 -0	18 - 7	14 -5	16-4	ERTA.	17 -1	18	18 -7	19-7	20.0
65	4 -6	5-1	5-4	6	8.8	7	7-6	7-8	30:003	8 -8	9.01	9.76	10 -2	10.7	11-1
60	0	0	0	0	D	0	0	0	0	0	0	0	0	0	0
			_	_									_		

Table 7-d.

Distance along beam span requiring shear steel (for safe shear at 75 lbs./□")

(Note:—Figures tabulated give value of "k" in inches)

20 11 12 13 14 15 16 17 18 16 20 21 22 23 24 20 37 · 5 41 · 2 45 45 · 7 5五元 58 元 50 62 66 元 70 · 2 74 77 · 6 61 · 3 85 88 · 7 18 36 · 6 40 · 4 4 · 3 48 51 · 7 55 元 50 62 60 · 7 62 70 · 2 74 77 · 6 81 · 3 85 88 · 7 18 35 · 7 35 元 40 · 4 3 · 5 47 · 3 50 · 8 54 · 4 58 61 · 7 55 元 60 72 · 5 76 元 79 · 8 55 元 82 · 3 18 35 · 7 35 元 42 45 · 5 49 57 · 5 56 56 · 5 56 56 · 5 63 56 · 5 70 75 元 77 60 元 84 17 35 · 5 37 · 7 41 · 2 44 · 6 48 51 · 5 54 元 55 · 6 56 · 5 56 · 6 57 · 2 60 · 6 61 · 7 75 · 5 76 元 77 · 60 元 84 17 35 · 5 37 40 · 2 44 · 6 48 51 · 5 54 元 55 · 6 56 · 6 57 · 2 60 · 6 61 · 7 75 · 5 76 · 7 70 · 5 74 77 · 2 80 · 7 18 32 · 7 38 38 · 3 42 · 5 55 · 6 56 · 5 · 6 56 · 6 57 · 2 56 · 6 57 · 2 56 · 6 57 · 2 56 · 6 57 · 2 56 · 6 57 · 2 56 · 6 57 · 2 56 · 7 70 · 5 74 77 · 2 50 · 7 18 32 · 7 38 38 · 3 · 6 41 · 5 44 · 7 47 · 8 51 · 1 54 · 2 57 · 5 60 · 7 63 · 8 67 70 · 7 · 3 · 5 78 · 7 18 38 · 7
1
185 28-19 40-18 44-18 48 48 51-7 35-18 59 61-7 85-2 60 72-5 75-18 77-8 81-3 85 88-7 185 35-7 182-3 45-4 180 53-6 57-3 60-8 64-3 68 71-5 73 75-4 52-3 55-18
180 25・32 40 43・5 47・2 56・8 54・4 58 61・7 85・2 60 72・5 7万・2 79・8 83・3 82・3 83・7 82・3 82・3 45・6 49 53・5 56 55・5 63 60 65 70 73・5 77 70・8 84・178 83・3 77 41・2 44・6 48 51・5 54・8 53・7 82・3 60・8 61・7 85・8 68・6 70 73・5 77 70・8 84・170 33・5 37 83・3 43・6 47 85・8 53・7 87 83・3 63・8 67 77・3 73・8 83・4 77・2 80・7 165 32・7 38 83・3 42・5 45・8 49 52・3 55・6 59 62・2 85・5 63・7 72 73・3 73・6 73・7 73・5 73・7
185 第57 開発器 42 45·5 49 5至5 86 55·5 63 86·6 70 万年度 77 80·6 84 178 第4章 37·7 61·2 44·6 48 51·5 54·6 55·7 87 86·4 63·8 67 70 75·5 78 82·4 170 33·5 37 86·3 43·6 47 80·6 53·7 87 86·4 63·8 67 70·8 74 77·2 85·7 185 32·7 36 86·6 185 32·7 36 86·6 185 32·7 36 86·7 72·2 85·7 185 32·7 36 86·7 72·2 85·7 185 32·7 36 86·7 72·2 85·7 185 32·7 36 86·7 72·2 85·7 78·6 185 32·7 36 86·7 72·2 85·7 78·6 185 32·7 36 86·7 72·2 85·7 78·6 185 32·7 36 86·7 72·2 85·7 78·6 185 32·7 32·8 86·7 72·2 85·7 78·6 185 32·7 32·8 86·7 72·2 85·7 86·7 185 32·7 86·7 86·7 78·6 78·7 86·7 185 32·7 86·7 86·7 86·7 86·7 86·7 86·7 86·7 86
180 85 88-5 42 45-5 49 5至-5 86 55-5 63 88-6 70 73-5 77 80-6 84 178 34-5 37-7 61-2 44-6 48 51-5 54-6 88-5 61-7 85-2 68-6 71 75-5 72 82-4 170 38-5 37 48-6 43-6 47 85-6 53-7 87 88-6 65-8 67-7 70-8 74 77-2 85-7 165 32-7 36 38-6 42-5 45-8 49 82-8 55-6 88 62-2 85-5 88-7 72 75-3 78-6 185 31-3 35-1 33-6 41-5 44-7 47-8 61-1 54-6 57-5 60-7 63-8 67 76-8 77-4 74-8 185 31 34-1 37-2 46-2 43-6 48-5 49-7 52-7 56-6 59 63 68-2 88-5 71-4 74-8 185 30 33 38 39 42 45 48 81 54 57 60 63 65 85 71 145 29 31-6 34-8 37-7 40-6 43-5 48-5 49-6 53-2 58-2 58 56 88-7 61-5 64-2 67 185 287 27-8 33-5 36-3 36-1 41-9 44-7 47-5 52-2 58 50 58-7 61-5 64-2 67 185 287 27-8 30-5 33 35-6 38-1 40-7 42-8 45-7 42-2 50-9 53-4 58-1 58-3 61-4 64-1 180 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 42-2 50-9 53-4 58-1 58-3 61-4 64-1 180 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 42-2 50-9 53-4 58-1 58-3 61-4 64-1 180 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 42-2 50-9 53-4 58-1 58-3 51-4 64-1 180 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 42-2 50-9 53-4 58-1 58-3 51-4 64-1
178
170 38-5 37 48-8 43-8 47 150-8 53-7 127 165-4 65-8 67-2 70-8 74 77-2 165-7 165 32-7 38 186-8 42-5 45-8 49 162-2 155-6 180 62-2 185-5 186-7 72 75-8 78-6 185 33-1
185 22 7 38 28 4 42 5 45 8 49 52 8 5 6 57 72 75 3 78 6 155 8 15 35 1 53 2 5 1 53 2 41 5 44 7 47 8 51 1 54 2 57 5 60 7 63 8 67 70 8 72 5 78 78 78 78 78 78 78 78 78 78 78 78 78
185 31 35-1 58-3 41-5 44-7 47-8 51-1 54-2 57-5 60-7 63-8 67 70/8 73-5 76-7 155 31 34-1 37-2 48-3 43-4 46-5 49-7 52-7 56-6 59 62 68-2 88-2 71-4 74-8 180 30 33 86 39 42 45 48 81 54 57 60 63 66 85 71 145 29 81-6 34-8 37-7 40-6 43-5 88-3 49-6 55-2 88-2 88 61 64-7 88-8 69-7 140 27-9 30-7 33-5 88-3 39-1 41-9 44-7 47-5 55-2 58 50 58-7 61-6 64-2 67 135 28-7 78-4 33 34-7 87-4 40 42-6 45-6 48-1 50-7 53-4 58-1 58-8 61-4 64-1 180 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 88-2 50-9 53-4 56 53-5 81
155 31 36-1 37-2 48-3 48-5 49-7 52-7 56-6 59 63 65-2 58-5 71-4 74-8 150 30 33 36 39 42 45 48 51 54 57 60 63 66 85 71 145 29 81-9 34-8 37-7 40-6 43-5 88-5 49-4 55-3 56-2 58-2 58 61 64-9 88-8 69-7 140 27-9 30-7 33-5 58-3 38-1 41-9 44-7 47-5 52-2 53 56 86-7 61-6 64-2 67 135 28-7 28-8 32 34-7 37-4 40 42-8 45-6 48-1 50-7 53-4 58-1 58-3 61-4 64-1 150 25-4 27-8 30-5 33 35-6 38-1 40-7 42-2 45-7 42-2 50-9 53-4 56 53-3 81
150 20 23 26 29 42 45 48 EI 54 57 60 63 66 85 7E 145 29 81 69 34 8 27 7 40 8 43 5 8E 5 49 4 51 2 55 2 58 50 61 54 7E 60 7E 60 67 135 28 7 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28
145 29 81.0 34.8 27.7 40.6 43.5 48.5 49.4 55.2 55.2 58 50 61 64.7 88.8 60.7 140 27.0 20.7 23.5 28.3 39.1 41.9 44.7 47.5 50.2 58 50 50.7 61.5 64.2 67 135 28.7 28.8 28 34.7 37.4 40 42.8 45.6 48.1 50.7 53.4 58.1 58.8 61.4 64.1 120 25.4 27.8 30.5 33 35.6 38.1 40.7 45.2 45.7 48.2 50.9 53.4 58.1 58.3 61.4 64.1 125 24.2 54.2 54.2 54.2 54.2 55.4 28.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8
140 27 9 20 7 23 5 25 2 33 1 41 9 44 7 47 5 52 2 53 56 58 7 61 5 64 2 67 135 28 7 27 4 82 34 7 37 4 40 42 8 45 6 48 1 50 7 53 4 58 1 58 3 61 4 64 1 150 25 4 27 8 30 5 83 35 6 38 1 40 7 45 2 45 7 48 2 50 9 53 4 56 53 3 81
135 28/7 28/4 82 34·7 87·4 40 42·8 45·6 48·1 50·7 53·4 58·1 58·3 61·4 64·1 130 25·4 27·8 80·5 83 35·6 38·1 40·7 42/2 45·7 42/2 50·9 53·4 56 58·5 81
180 25·4 27·8 30·5 33 35·6 38·1 40·7 45·2 45·7 45·2 50·9 53·4 56 53·5 #1
125 24 25-4 SS-M ST-S 22-4 SM MSC4 40-0 42-7 C-2
130 25/3 51/4 57 50/4 51/5 51/5 51/5 51/5 51/5 51/5 51/5 51
115 98/T 92-1 94-1 94-1 94-1 95/B 85/B 85/B 85/B 85/B
110 15 20 0 22 5 24.7 55 4 86 3 MS 2 MS 2 MS 3 MS 3 MS 3 MS 3 MS 3 MS
103 17-2 18-9 20-8 55-4 94-1 95-8 197 5 50-9 21 25-9 20 41-0 63 7 65-0
100 15 16-5 18 10-5 91 NEX 04 NEX 05 NEX 05 NEX 05 NEX 05 NEX 05 NEX 100 NEX 1
95 12-6 13-8 15-1 16-4 17-6 18-9 20 4 21-4 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
00 16 11 12 18 14 15 14 17 18 14 17
85 7 7.7 8.4 9.1 9.4 10.5 11.0 11.0 11.0 11.0 11.0
60 3 8 6 1 4 5 4 9 5 3 5 6 8 6 4 6 7 7 7 6 18 4 19 6
75 N I L _ 7.5 7.9 8.2 8.7 9

SHEAR

spacings of stirrups are given in Tables 7-e and 7-f. From these tables spacing of stirrups in a particular portion of a beam can be found: (see example).

7.2 EXAMPLE.

Find the pitch of stirrups at the end portion of a 20' span. $20'' \times 10''$ beam with end shear S of 24000 lbs. $2-1'' \phi$ bars are available for being bent up.

2-1" \(\phi \) \(\text{@ 45}^\circ \text{ give 18000 lbs.} \)

Balance to be provided by stirrups-6000 lbs.

$$S/jd = \frac{6000}{20 \times .88} = 340$$

Hence ‡" stirrups should be placed at ½" \$\phi\$. It is necessary to calculate the spacing of stirrups at various points as shown and arrange them properly, in a practical and simple manner.

Explanation of chart No. 7-1.

This chart can be used for any type of shear diagram but it is more useful in case of triangular shear diagram; the use will be understood from example below:—

Example above

Balance S-6000 lbs. jd-17.6" say 17.5 for chart.

\$" stirrups (a 41" are required according to the chart.

Find stirrups for the whole beam as above when no bars are available for bending up.

S/jd-1365 from chart so S/bjd-136.

Shear taken by concrete @ 60 lbs.—10800 lbs. from chart. Stirrups are required from portion A to B of the beam; length AB—66" from Table No. 7-c. This much length is given by 31 divisions in the chart.

So the spacing of \frac{1}{2}" stirrups is-

$$4\frac{1}{2}$$
" for 13 divisions from support i.e. $\frac{13}{31} \times 66 - 28$ " say 6 " 10 " -21 " " -8 " " -8 " " -8 " " -8 " " -8 " " -8 " "

Total length to be reinforced for shear checks with Table No. 7-c.

CHAPTER 8

DESIGN OF R.C. COLUMNS

CONTENTS

- 8.1 General formulæ.
- 8.2 Increase of stress due to extra binding in old regulations.
- 8.3 Details of columns New & Old L.C.C., and D.S.I.R. Code.
- 8.4 Effect of slenderness of columns.
- 8.5 Effect of helical bindings.
- 8.6 Charts and tables for design.

Chart No. 8-1. Safe loads on square circular or octagonal columns with different reinforcement (New L.C.C.R.).

Tables of safe loads, reinforcement quantities, etc., for square columns.

- 8.7 Estimating tables of formwork, etc. for columns.
- 8.8 Illustrative examples.
- 8.9 Eccentric loading.

CHAPTER 8

R.C. COLUMNS

8.1 GENERAL FORMULAE.

The general formula for design of columns loaded with axial loads is

P= { the load carried by } = Concrete stress × Concrete area + Steel stress × steel area

(a) Concrete Arca is assumed as follows:-

Old L.C.C.R. d²: Core area (shown hatched in para 8.3 (b) less area of steel. Av.

New L.C.C.R. D²: Gross cross sectional area—area & D.S.I.R. Code of steel—area of champhers.

(b) Steel area is the area of longitudinal bars only.

(c) Concrete stress & modular ratios. (stress in lbs per sq. inch)

m - 151:2:4 mix Old L.C.C.R. 600 1:1:2 mix m-12750 (A quality) 1000 New L.C.C.R. 780 1:1:2(Ordinary) (A quality) 880 1:11:3

680 1:1½:3 (Ordinary)
760 1:2:4 (A quality)
600 1:2:4 (Ordinary)

m-15

D.S.I.R. ('ode same as above. Concrete styled high grade in place of A quality.

I.S.I. Code 900 1:1:2 750 1:1½:3 600 1:2:4

In case of old L.C.C.R. concrete stress can be increased to some extent if extra volume of lateral binding is used as given in Statement in para 8.2; in this case

the value of m is to be taken as increased stress

(d) Steel Stress

Old L.C.C.R. m × concrete stress m × concrete stress

D.S.I.R. Code 13500 lbs./sq. inch (ordinary steel)

D.S.I.R. Code 15000 lbs./sq. inch (special steel)

Value of safe loading in different types of columns calculated on above principles are given in Chart No. 8-1 and Table No. 8-a.

I.S.I. Code B.S. Code } 18,000 lbs./sq. inch.

R.C.C. COLUMNS (NEW L.C.C. BY-LAWS)

8.2 INCREASED COMPRESSIVE STRENGTH.

Cross binding of the longitudinal reinforcement of columns adds to the compressive strength of the concrete to some extent. The following increment in stress permitted by old regulations may be noted.

be noted.				
olume of bind-		For	rm of bindi	ng
ng expressed as percentage of core volume	Pitch of - binding	Spiral	Circular separate links	Rectilinear separate links
.50	.2d or less	1.16	1.12	1.08
0.75	. 20 01 1033	1.24	1.18	1.12
1.00		1.32	1.24	1.16
1.25			1.30	1.20
1.50				1.24
1.75				1.28
2.00				1.32
	0.3d or less	1.12	1.09	1.06
0.50	0.30 01 1635	1.18	1.14	1.09
0.75		1.24	1.18	1.12
1.00		1.30	1.23	1.15
1.25		2.00	1.27	1.18
1.50			1.32	1.21
1.75 2.00				1.24
	0.4d or less	1.08	1.06	1.04
0.50	0.40 01 1035	1.12	1.09	1.06
0.75		1.16	1.12	1.08
1.00		1.20	1.15	1.10
1.25		1.24	1.18	1.12
1.50		1.28	1.21	1.14
2.00		1.32	1.24	1.16
	0.5d or less			1.02
0.50	U. Su UI ICSS			1.03
0.75 1.00				1.04
1.25				1.05
1.50				1.06
1.75				1.07
2.00				1.08
Any percentage	0.6d			1.00

Note:—The concrete stress can never be increased to more than 11 fc viz. 800 lbs/sq. inch.

8.3 DETAILS OF COLUMNS.

Note:

Where it is necessary to splice the longitudinal reinforcement the rods must be lapped in contact with one another, the length of the lap being not less than 24".

OLD L.C.C.R

8.4 EFFECT OF SLENDERNESS OF COLUMNS ON SAFE LOAD P.

(a) New L.C.C. Regulations.

Any Cols. v/g	Square Cols. v/d	Safe load allowed.
50	15	1.0 × P
60	18	$0.9 \times P$
70	21	$0.8 \times P$
80	24	0.7 × P
90	27	$0.6 \times P$
100	30	$0.5 \times P$
110	33	$0.4 \times P$
120	36	$0.3 \times P$
121	39	Nil

Notes: d and g to be taken on gross section basis, except in case of helically wound columns where g to be taken on core basis.

(b) Old L.C.C. Regulations.

Square Cols.	Round Cols. v/d	Any Col.	Safe load allowed
15	12	45	1.0 × P
18	15	54	$0.8 \times P$
21	18	63	$0.6 \times P$
24	21	72	$0.4 \times P$
27	24	82	0.2 × P
30	27	90	Nil

Notes: v-virtual length. See table on next page.
d-effective diameter of column measured
across core in direction of lateral supports
which determine its length.

g-least equivalent radius of gyration ascertained on the core area.

D.S.I.R. Code of Practice

Rectangular & Any Col. Safe load allowed			[
15 18 60 0.9 × P 21 70 0.8 × P 24 80 27 90 0.6 × P 30			& round Cols.
33 110 0.3 × P 36 120 0.3 × P 39 130 0.2 × P 42 140 0.1 × P 45 150 Nil	0.9 × P 0.8 × P 0.7 × P 0.6 × P 0.5 × P 0.4 × P 0.3 × P 0.2 × P 0.1 × P	60 70 80 90 100 110 120 130	15 18 21 24 27 30 33 36 39

Relation between virtual length 'v' & actual length 'l'.

- i Both ends of column fixed in position & direction:
- ii One end of column fixed in position & direction and one end fixed in position only (hinged)
- iii Both ends fixed in position only and not in direction:
- iv One end fixed in position and direction and one end free e.g. a mast, flagstaff, etc. v-4l

Note: l is taken as clear distance between lateral supports.

New L.C.C.R. & D.S.I.R. Code of Practice:

-	.t.(.n. w 17.17.18.	Cols. of 1 storey	Cols of 2 storeys & above
i	Both ends fixed in position & direction	v = 0.75 l	0.75 1
ıi	Both ends fixed in position & not in direction	ı l	0.75 to 1 l
iii	One end fixed in position & direction and	t d	
	One end imperfectly fixed in both position and direction	1 to 2 l	1 to 2

Note: length 'l' is measured as follows.

D.S.I.R. Code of Practice

l: to be measured between upper surfaces of two floors affording lateral support or to be the clear distance between supports plus the lateral dimension of the column.

New L.C.C.R.

1: to be the actual length with single storey columns and to be the distance from floor level to floor level with other columns.

8.5 HELICAL BINDING OF COLUMNS.

Old L.C.C.R.

Safe stress in concrete can be increased to 1.33fc as already stated.

New L.C.C.R. and D.S.I.R. Code

The safe stress on concrete cannot be increased as above but additional load of 2tbAb (i.e. 27000 Ab lbs. tb being 13500 lbs for both codes) can be allowed on the column. However the safe load on the column is to be calculated on core area basis and not on gross area basis.

Thus P=Pe+PT+PB where

Pc=load carried by concrete in core

P_T= ,, vertical steel

PB=additional load due to helical binding

=2tbAb-27000 Ab

Ab-volume of helical binding per unit length of column.

The pitch of helicals not to be more than 3" or 1/6 of core diameter whichever is less. For practical reasons not more than 4'\$\phi\$ bars and not less than 3/16" dia. should be used for forming the helical binding. The values of Pn for different column size and arrangement of helical windings can be found from the Chart 8-2.

Chart 8-2

		300	ARL	COLO	1411.40	luca	L.C.C.R.)				
Ref	[]	d	A	٧.	Sti	rps.		Concrete	Steel Lhe	10' Ht.	
TP-C1		Inches	Nos.	Dia.	Fitch Inches	Dia Inches	Load	C. Ft.	Mala	Strps.	
Cl	6"	3	4	1,	4	3,4	13	2 - 36	28-60	9 - 5	
CSA	8"	5	1	1,	6	1 20	20	4 -35	28-00	19 -70	
С2ъ	8		4	1,0	a	2 9	21 -5	4 35	EX-68	19 -70	
Cta	B	6		1,	6	%	24 -7	5 -48	29-00	22 80	
СЗЪ	9	8	- 6	A	7	36	26 -0	5 -48	15.70	10-11	
€8c		8	4	14	7	3 ;	29 - 4	5 -48	83-99	19-11	
Céa	10	7	4	1,0		٦,	29 -8	6 -75	28 -00	24-96	
C4b	10	7	4	A	6	A _p	31 -4	6 -75	43 -68	25 94	
C4e	10	7	Ä	14	6	Ag	MATERIA	6 -76	BATEGO:	24 -96	
U4d	10	7	4	7,	6	36	84 -5	6 -75	85-66	24795	
C40	10	葡	4	1	6	56	35.0	6 -75	114-81	14/04	
U5a	12	9	4	E a	6	8,,	43 -2	9.86	4.8 166	30 -17	
СЗР	12	9	×	'.	6	2 3	46 -8	9 -86	63 -00	30 17	
CSe	12	9	4	1,	6	16	47 -6	Q186	85 -68	30 - 17	
C54	15	9	4	1	6	3 8	50-4	9 -86	114-61	30 -17	
Cities	12	9	8	1.	6	3 ,	50-4	9 366	171 -36	80 -17	
Céa	14	11	4		9	1,,	1.9 2	18-55	M3. 100	15.75	
СбЬ	14	11	4	, b	10	1/2	61 -5	13 -55	EXTEN	22/19	
C6c	14	11	4	1	10	14	64 - 8	13 -55	114-81	32/16	
C7a	15	12	8	3%	9	1,	69 3	15 -50	85-68	18-0A	
C76	15	12	4	1	0	1,	72 -1	15 -50	114 81	85 D6	
СТе	13	12		134	9	1	75 3	15 -50	148 72	45 -04	
KINA	16	18	4	14	-	1 2	77 -7	17 -7	25-66	48728	
CBb	16	13	4	1	100	1,2	80.0	17 -7	114-81	48 :26	
Clic	10	12	4	11.	18	1 7	88 -7	17 -7	148 -72	48.26	
CAd	16	19	8	1.	9	14	98 -1	17 -7	229 62	48 - 26	
CPa	18	18	4	1	А	١.,	98-8	22 -4	114 61	42 19	
CAP	16	16	4	11 _a	8	1 7	103 -0	22 - 4	148-72	82:19	
C10a	20	17	1 6	114	8	1 9	122.0	27 -60	148 72	69 -33	
Clob	20	17	19	1	8	13	132 -12	27 -60	229 -62	69 - 33	
C10c	20	17	8	115	8	1,9	139 -0	27-66	297 -44	89-55	
Clia	21	LE	8	136	8	36	150 -0	30 <6	297 -44	89.43	
Cllb	21	16	8	134		1 7	158 -0	00 4	317-00	69 38	
	1		1		-			3			

Table 8-b SQUARE COLUMNS (Old L.C.C.R.)

			As		htz	ţie.	Nafe	Concrete.	Strel Lba.	10 ht
Ref. No	In-hen	Inches	Nos.	Dia.	Pitch Inches	Dia Inches	Tons	10' Ht	Malo	Strpe.
C1	Я	\$	4	1,	3	9 24	10	4 - 35	20	9-6
12	g	6	4	٠,	319	2/10	13	5 - 48	28	9 -81
-		7		1,	47,	1 1	16	6 -75	3h	15 -3
C3a	10	7	4	4.	41,	3.	18	6 - 75	43 7	15 -3
(3b		1					1	1		10.3
C4a	12	1 0	4	R	45 a	1,	26	3 86	48 -7	18 - 5
61435	10	9	1 4	1 6	412	2 6	25	3 34	85 -7	18 5
040	12	9	8	3a	43 10	1 4	3.0	9 84	60 .	
/ E=	1 14	111	1	2,	31,	0/10	37	13 -58	48 -7	27 -0
(Sa (Sb	14	11	4	2 4	514	0/10	39	13 -55	63 -0	27 -0
r5e	14	11		T _a	Sty	8110	42	13 -55	R6 -7	27-0
C04	14	11	4	1	512	0/20	44	13 -55	114-8	27 0
				1	1 01	1.	45	15.5	68	22 -6
Ctta	15	12	4	14	71,	5,	48	15-5	85 7	22-6
C6P	15	12	1		71-3	E,	51	15 -5	114 8	32 -6
Cec	12	12	4	1	734	1	-		-	1
C74	16	13		2 4	7',	1 1,	32	17-7	43	58 -6
C7b	16	13	4	7,0	71,	1 2	5.8	17-7	65 -7	58 6
(7"	16	13	4	1	7' ,	14	57	17-7	114 8	59 -6
(Td	16	13	4	115	71-		60	17.7	148 -7	58 -6
		1		1 .	10	1,	80	22-4	HS 7	36 4
CSA	10		1	1	9	8 9	72	22 - 8	114-8	54 4
CSh	16			114	0	1 2	75	225.0	148 -7	54 - 4
Cau	1/			14.	9	1	78	22 4	171 -4	54 -4
	1		1	-	-	1		1	114-5	60 7
4 Shi	20	17	4	1	9	19	96			60 -7
£85	20	D 17	6	15%		34"	91			60 -7
Coc	35	D 36	8	**	9	2	100			60 7
e19d	1 4	0 13	7 8	1	9	16"	1			
C1(ha	,	c 1		12.0	8	1 3	11:	33 -1	146-7	76 3
(10)		2 1			8	1,"	13			76 5
C10e		2 1	9 8	1	8	3%	1			91 -8
C10a			9 8	132	A	1,3	12	1 83 -	297 4	91 -5
			1 4	13,	10	1	13	7 39 9	183 -5	105 9
Cili			1 4				1	6 39	171 -4	102 9
CH			1 1					= 393	229 4	
CII			1	11,	1		14	8 59	297 -4	105 4
111	10									

Size (in)			final Steel	carried by longitudinal bars at 16,000 lbs. per sq. in,	Lon	Load carried by the Column				
	No.	Bars Dia,	(Sq. In.)	Lba.	1:2:4 600 p.s.t.	1:1%:3 750 p.s.l.	1:1:2 900 p.s.			
	4	34	DITE	14,100	52,100	61,500	70,000			
A	4	1	3-14	56,600	93,100	1.02,200	111,300			
	4	154	4-91	88,400	123,900	132,700	141,000			
	4	34	9779	14,100	82,300	74,300	965 800			
9	8	1	3 14	56,600	103,300	118,000	126.800			
	8	1	6.08	115,100	156,000	169,100	EROLDON			
	8	A _b	1 -28	22,100	81,300	96,206	110,900			
10	4	13%	3-98	71,600	129,200	148,600	156,000			
	В	134	7 -95	143,100	198,400	212,100	123,806			
	4	86	1 -23	1001.22	93,900	111,600	129,500			
11	6	134	4-91	56,400	158,100	175,500	191,900			
	6	2%	9-62	177,200	240,000	254,700	274,200			
	4	76	1 -23	22,100	107,700	129,100	150,500			
E	4	10%	5 -94	106,900	189,800	210,700	231,300			
	8	134	9-62	176,700	257,300	277,500	297,700			
	4	34	1 -77	31,500	132,800	157,300	182,400			
18	8	1	0 28	113,100	210,700	235,100	125H 400			
	10	15.	12-27	120,900	314,900	338,400	381.906			
	4	34	1 -77	31,400	148,600	177,600	\$100,000			
14	8	1	6 - 28	113,100	227,100	255,900	284,100			
	A	II.	16-14	254,500	364,500	391,000	418,800			
	6	%	1-84	33,190	167,100	200,600	284,100			
15	8	234	9.42	176,700	305,700	888,200	170,200			
	12	136	17 -62	R29,706	445,200	476,200	307,200			
	4	36	2-41	43.300	195,500	233, 400	271,300			
34		1%	1139	218,800	300,300	\$04,A00	433,860			
		354	19-24	846,400	488,500	524,400	559,400			
	4	76	2 -41	43,000	215,400	258,300	201,200			
17	8	196	11 -86	218,800	\$80,000	A21,800	462,600			
	12	136	21 -21	#81,700	542,700	582,700	NSE 700			

Table 8-c (contd).

Sise (In)	1	Lougitudia	al Steel	Load carried by longitudinal hars at 18,000 lbs. per sq. lb.	Lond	carried by the C	olumn		
	Baro , Aroa Ilea				1:2:4	1:13:8	1:1:2		
	No.	Dia.	(3q in.)	Estar,	600 p = 1	730 p = 1	900 pal.		
	4	1	3-14	56,600	249,600	207,000	345 600		
18	8	11, (14 -14	274,500	440,500	487,000	533,560		
		2	25 13	652,600	631,900	676,900	721,400		
	4	1	3-14	56,600	271,600	323,100	378,600		
19	12	11.	14 73	\$65,100	473,100	525,100	577,100		
	12	1 * 4	25 86	519,500	719,000	768,500	418,500		
	8	1,	8 -53	63,500	301,600	361,100	421,800		
20	10	2,"	17 -82	320,700	549,700	507,200	664,700		
	10	0	81 -42	565,500	786,000	841,500	997,000		
	А		3 -53	63,600	320,600	391,600	457,600		
21	R	14	19 -24	346,400	599,400	662,900	756,400		
	10	2	31 -42	563,500	811,500	872,500	034,500		
	8	T _{in}	4-81	88,600	374,300	445,600	514,600		
212	12	Et.	21 -21	381,700	65P,700	727,700	798,700		
	12	2	37 -70	678,000	946,600	1,013,600	1 050,600		
	А	10	4 -81	M8 800	629,600	514,600	1 400,600		
24	12	154	20 406	519,500	847,900	929,500	1,012,000		
	18	114	43-30	779,300	1,090,300	1,179,300	1,250,200		
	1 8	1	6 - 24	113,100	515,100	615,100	716,100		
26	12	14, 1	28 86	519,500	907,500	1,004,500	1,102,000		
	16	2	50 27	008,400	1,280,600	1,374,600	000,804,1		
	4	8 1	6 - 28	118,110	879,100	696,100	813,100		
24	12	19 1	37 -70	674,600	1,126,600	1,238,600	1,349,600		
	20	<u>.</u> ;	88 98	1,181,000	1,584 000	1,672,000	1,781,000		
	12		7 -22	[29 nno	664,000	798,000	933,000		
30	16	149	BA AR	692,700	1,200,700	1,337,700	1,687,700		
	20	2	89 US	1,244,000	1,743,000	1,887,000	1,992,000		
1	12	1	9 -43	169,600	778,600	930,600	1,082,600		
62	16	63 96	50 -27	904,500	1,489,500	1,634,500	1,780,400		
	24	2	75 -40	1,357,000	1,927,900	2,060,000	2,212,000		
	8	11,	9 A2	176,700	863,700	1,038,700	1,206.700		
34	16	2	30-27	904,600	1,567,500	1 733 800	1,899,800		
	28	2	87.526	1,583,000	2,223 000	12,393,060	2,543,000		
	8	14.	11-85	213,800	983,800	1.175,600	1,373,500		
36	82	1%	56-63	1,018,000	1,762,000	1,947,900	2,184,000		
	28	4	87 -96	1,563,000	2,307,000	2,488,000	2,671,000		
	28	4	87 -96	1,563,000	2,307,900	2,098,000	2,071,0		

8.7 ESTIMATING TABLES OF FORM WORK, ETC. FOR COLUMNS.

Sectional areas and perimeters of columns Per foot height

Illa, or	trea	Peri- meter	Area	Peri-	Area	Peri- meter	Arra	Peri-	
N°	35	2 09	37	2:21	30	2 -31	4.1	2.67	
10"	-55	2.65	5.6	2.75	-60	2 Ks	10	3 -33	
12"	79	3-14	83	3 - 32	-87	3 07	1-00	4 00	
14"	1 07	3 67	1:13	3 188	1 -18	4:03	1 :37	4 67	
14"	1 40	4 19	1 47	1 42	1 -54	4 62	1 7=	5 -33	TOTE
18"	1 -77	4 -72	1 -87	4 96	1 -95	5-10	2 - 25	6 (N)	Cross sectional areas
20"	2:14	5-24	2 -30	3 -50	2 -41	5 -78	2:78	6 67	are in eq. ft. and
22"	2 63	5 70	3 -78	6 08	2-90	6 -35	3 35	7 -33	perimeters in linear
24"	3-14	6 -48	3 -31	6 :62	3 46	6-94	4 00	# 00	feet.
261	3 69	6.81	3 -89	7 - 17	4:06	7 -50	4 -71	~ 67	
281	4 27	7 34	4 51	7-80	4 -72	9 00	5 43	7 33	
80"	4 91	7 86	8-18	8-25	5 41	9-60	0 25	10 00	
821	3 - 5.6	h 30	57 640	8-80	6 -15	0 20	7 -18	10 67	
34"	6:31	6 00	6 63	9.38	6 -94	9 - 75	3, 4000	11 23	
1007	7 (16)	9 43	7 45	0.02	7 -78	10 40	9 00	19:00	
SHAPE	кот	IND	OCTA	GONAL	HEX	GONAL	sqt	ABE	

SECTIONAL AREAS OF RECTANGULAR COLUMNS in sq. feet.

albes	10°	14"	14"	16"	18"	50.	1.049.0 An Ib	24"	- <u>-</u>	##°	30°	32°	34"	36°
A*	5.5	67	78	AD.	1-00	1-11	1 -22	1 -34	1 -45	1.56	1-67	1 -78	1 80	2.01
10"	69	A.3	-97	1-11	1 25	1 - 39	1 -53	1 -67	1 -80	1 91	2 fla	9.09	2 35	2 49
12"	R3	1.00	1 -17	1 -33	1 50	1 67	1 -03	2 00	2 -17	2 -33	2 50	2 67	2-A3	3 00
14"	97	1 -17	1 37	1.16	1 -75	1 -95	2 14	2 34	2.38	2.72	2 95	3-12	3-00	3 -51
16"	1 11	1 -33	1 56	1 78	2 00	2 - 23	2 - 45	2 66	2 90	3-11	3:34	3 54	3 -78	4 -0:0
18"	1 25	1 -50	1 76	2 100	2 25	2 50	= -78	3 60	3 25	3 -0	3 73	4.40	4 -25	4 -50
20*	1 -30	1 -67	1 -95	2 23	2 50	2 78	2 05	3 - 33	3 62	3 49	4-17	4 - 68	4 -72	5 01
94"	1 53	1 -83	2-14	2-44	2 75	3.05	3 25	3 66	3 -97	4 =7	4 -58	4 -89	5-10	5 40
94"	1 -67	2 00	2 34	27-66	3 00	3:31	3 66	A-00	4 -34	4 -60	5 00	5 3.1	5 66	а (иг

8.8 ILLUSTRATIVE EXAMPLES.

1. Find suitable reinforcement for a column 16" x 16" overall size and supporting a load of 80 tons and to be designed according to stresses for 1:2:4 ordinary grade concrete specified by new L.C.C.R.

From chart put 1.22°_{\circ} vertical steel i.e. $\frac{256}{100}$ 1.22=3.14

i.e. 4-1" \(\phi \) bars.

 Find safe load on an octagonal column of 12" across flats with a reinforcement of 8-7 8" φ bars and 5/16" helical windings at 1" pitch.

Diameter of core of column

$$=12"-(1\frac{1}{2}"+1\frac{1}{2}")+\left(\frac{5"}{16}+\frac{5"}{16}\right)=9\, \P"$$

.. Area of core = $\pi (9\frac{1}{6})^2 \times \frac{1}{6} = 72.76 \Box$

 $\therefore \text{ Percentage of steel} = \frac{4.81 \times 100}{72.76} = 6.6$

:. load carried from chart 8-1. = 38 tons

load carried by helical winding from Chart 8-2.

.. Total load = 66 tons

Find safe load on a rectangular column 10" x 24".
 reinforced with eight i φ bars made from 1:1:2 mix ordinary quality.

Percentage of steel = $\frac{4.81 \times 100}{24 \times 10}$ = 2

Side of corresponding square column = $\sqrt{240}$ = 15.5

Safe load from chart by referring to vertical scale No. 3 is 106 tons.

8.9 COLUMNS WITH ECCENTRIC LOAD OR SUB-JECTED TO B.M.

Sometimes columns of a building are not loaded axially but the resultant load is eccentric. Especially in case of external columns of a building, a portion of the bending moment from the end of the beams is transferred to the columns and it is necessary to design the column to stand both direct load and B.M.

Eccentrically loaded columns fall under two cases:

- (1) Columns where the whole section is under compression.
- (2) Columns where only part of the section is under compression whereas the other portion is under tension.

Case (1) In this case the value of e/d is less than

$$\frac{1+.27p}{6(1+.14p)}$$
 Thus in the case of columns without steel

this value is 1/6 (i.e. the line of load falls within middle third of the section). The stress fc in concrete is given by the formula

The value of K can be found from the chart 8.3 for various values of p upto 5% and m = 15, $\frac{d}{10}$ being the distance of steel rods from the face of the column.

Case (2) In this case it is necessary to first find out the position of the neutral axis by the formula.

$$n_o^0 + 3\left(\frac{e}{d} - \frac{1}{2}\right)n^2_o + 6mp\frac{e}{d}n_o - 3mp\left(\frac{2r^2}{d^2} + \frac{e}{d}\right)$$

$$= 0.$$

DESIGN OF COLUMNS WITH ECCENTRIC LOADS (WHOLE SECTION IN COMPRESSION)

Chart 8-3

DESIGN OF COLUMNS WITH ECCENTRIC LOADS LOCATION OF HEUTRAL AXIS.

This being an equation of 3rd degree is difficult to solve. For solution the chart No. 8-4 should be used. After finding the neutral axis, the compressive stresses in concrete and tensile stress in steel are given by:

$$fc = \frac{W}{bd} \times \frac{2n_o}{n^2_o + 2mpn_o - mp} = \frac{P}{bd} \times \frac{1}{K} \cdot \dots \cdot (a)$$

$$ft = mfc \left(\frac{.9}{n_0} - 1\right) \qquad \dots \dots (b)$$

the values of K can be found from chart No. 8-5.

Charts 8-6, a, b and c give safe loads on eccentrically loaded columns of different sizes and reinforcement.

CHAPTER 9 COLUMN FOOTINGS

CONTENTS

- 9.1. General.
- 9.2 Illustrative Example.
- 9.3 Design Tables.

CHAPTER 9

COLUMN FOOTINGS

9.1 GENERAL

Footing for a column must be safe against:

(a) Punching shear.

(b) Bending moment and shear due to soil pressure.

In addition, it must be adequately thick to allow proper embedment of the column reinforcement for complete transfer of the column load to the footing. The minimum thickness for the above condition should be 30 times the diameter of the column steel.

(a) Punching shear:

The perimeter of the column×depth of footing×safe punching shear=total punching force.

i.e.
$$4c \times D \times Sp = p(a^2 - c^2)$$

Safe punching shear is taken as twice the safe ordinary shear i.e. 120 lbs./sq. inch and 150 lbs./sq. inch for Old and New L.C.C.R. respectively.

(b) Bending moment.

$$M = \frac{Wa}{24} (2 + R) (1 - R)^2$$
 inch lbs. = $\frac{Wak}{24}$ inch lbs.

where W-column load in lbs.

a-length of the side of the footing in inches.

This moment is at critical section AA. and is caused by soil pressure acting upwards on the hatched portion of the footing.

The values of constant k are given in chart 9-1 for various values of ratio R.

Chart 9-1.

The effective breadth of the footing is taken as $c+2D+\frac{1}{2}(a-c-2D)$

9.2 ILLUSTRATIVE EXAMPLE.

Design r.e. footing for a column for the following conditions:—

W-load on column-126 tons c-size of column-21 inches

P—safe pressure on soil—3 tons/s.ft.—43.7 lbs./sq. in Sp—safe punching stress—150 lbs./sq. in.

Diameter of column reinforcement-1".

COLUMN FOOTINGS

(a) Size of footing:

total load on soil -126 tons+say 10% wt. of footing -140 tons approximately.

size of footing =
$$\sqrt{\frac{140}{3}}$$
 = 6.82 ft. = 7'-0" say
= 84" = a

(b) Depth for safe punching stress.

$$4e \times D \times Sp = p(a^2 - e^2)$$

 $84 \times D \times 150 = 43.7(84^2 - 21^2)$
 $D = 23''$

Take total depth of footing as 30", the column bars being 1" \$\phi\$

(The effective depth may be taken as 27")

(c) Bending moment.

$$R = \frac{21}{84} = .25 \qquad k = 1.27 \text{ from graph}$$

$$M = \frac{(126 \times 2240) \times 84}{24} \times 1.27 = 1250000 \text{ inch lbs.}$$
effective width of footing = $c - 2D + \frac{1}{4}(a - c - 2D)$
= $21 + 54 + \frac{1}{4}(84 - 21 - 54)$
= $794'' = 80$ inches.

d for B.M=
$$\sqrt{\frac{1250000}{126 \times 80}}$$
 = 11.5°

$$AT = \frac{1250000}{18000 \times .87 \times 27} = 3 \text{ sq. inches.}$$

use 10 Nos §" \(\phi \) bars both ways.

Details of column footings for columns in Chapter 8 are given in Tables 9 (a) and 9 (b).

9.3 DESIGN TABLES.

Table 9-a SQUARE FOOTINGS

 $(fc=750 lbs./\Box$ fs=18000 lbs./ \Box m=15)

Ref No			1, Ton	Ft			1	Ton/CFt		
Column		13	Concrete C.Ft.	Barn Barn	cei		D	Concrete C.Ft.	Baro	Lba.
Cla	5'-0"	13*	201-165			li		1	I	1
KEEA	09.	14"	36 -10	63,0	85	8'-?"	13"	11.0	5 % , "	16
Czn	7'-0"	18"		10%	1	61-6"	16"	17 88	8,",	32
C3a	7-6	14"	48 44	9%	51	6'-0"	18"	25 -50	8 %	30
C3b			47 -77	161,1	87	5'-3"	14"	24 -10	1055	4.6
	7'-9"	18"	5.0 -22	13 %	84	5'-6"	18"	30 -62	955	42
C3e	80.	21"	858-80	13 3,4	88	5'-9"	21"	30.70	84,	40
Cia	8'-3"	15"	50 81	11 %	132	5'-9"	15"	50-57	14 %	70
С4Б	8.4.	18*	68 -89	17 4,0	160	60.	18*	39 90	115,	5-6
C4e	81-9"	21.	83 60	16 3."	Time	6'-3"	21"	43 -05	11 %	5/1
C4d	8.00	24*	NO DE	14 %"	101	6'-3"	34"	47 -50	9 46"	45
CSa	50.	21"	103 -45	18 %"	182	7'-0"	21"	537-58	10 14"	104
C5b	10'-0"	21"	1.06 -62	14 %	202	7'-0"	21"	55-34	915"	84
C5c	10'-3"	24"	123-64	185,0	412	7'-3"	24"	54/20	1255	EM
C50	10'-6"	24"	129 -54	15 %	824	7'-0"	24"	86-61	10 39"	110
KOKIA.	11'-6"	21"	143 -23	22 5 ₁ °	362	81-3*	21"	76-23	14 59"	160
C6b	11'-0"	27"	167 -90	16 34"	262	8'-3"	27"	89 74	12.5,0	114
100%	12'-0"	27"	182 -00	12%	MIN	8'-6"	27"	95 -00	18 35"	160
C7a	12"-6"	21"	168-60	18 h	496	80.	21"	85 -66	124.	237
С7Ъ	12'-0"	24"	190 -12	16 %5"	450	9,-0,	24"	94 -02	115.	229
C7e	13'-0"	24"	197 -37	1755	486	D'-3"	24"	103 42	12 54"	220
C8a	13'-3"	24"	205-64	18 5%	524	9'-3"	24"	104 -21	12 5.0	220
C8b)	13'-6"	24"	213-00	14 %	600	00.	247	1.00 -35	16.3%	206
(C)(E)	13'-9"	24"	220 6a	14 %	600	9'-9"	24"	114 -93	15 55"	385
C9a	14'-6"	27"	265 -67	15 %	686	10'-6"	27"	144-52	15 550	370
Cop	14'-9"	27"	274 -44	10 %	744	10'-6"	27"	144 -52	15 3.0	370
100a	15'-0"	27"	283 -44	10 %	756	10'-6"	27"	144 -52	12 34	414
Cl0a	16'-6°	307*	370-59	1734	15/15/3	11'-9"	30°	195-00		024
	1			74		-	00	2 - 300	16 %	020

Note : See Table Sea Chapter No. 8 for Column Reference Number.

COLUMN FOOTINGS

Table 9-a (contd.)
SQUARE FOOTINGS

 $(fc = 750 \text{ lbs./} \square \text{"} \text{ fs} = 18000 \text{ lbs./} \square \text{"} \text{ m} = 15)$

Hef. No.	1	3	Tona F	t.	1	4 Tons' Tt.					
Column		D I	Concrete	Bare Lbs.			D	Concrete:	Bare	Steel Bare Lba.	
	1	13*	5 -56	5 % "	12	2'-0"	13"	2 -72	8 %5"	10	
Cla	2'-6"				24	2'-3"	14"	4 -98	8 %"	18	
Cla	33.	14"	9 - 72	8.5%		5,-9,	180	7-12	73,	17	
Cth	3′-6″	18"	18 - 12	75%	23		16"	8 92	10.56"	27	
CSa	39.	14"	12 -77	10 %	84	2'-8"				24	
Сзь	3,-8,	18"	15 - 07	0 %6"	31	50,	15"	8-70	9.5%	23	
C3c	4'-0"	21"	18 -75	8 %	30	3'-0°	21"	11-21	8 %		
C4a	4'-0"	15"	15/20	11 %	40	30,	18"	9-22	11 84"	81	
C4b	4'-3"	16"	19 -44	11 56"	42	30.	18"	10.50	11 "g"	01	
C4c	4'-4"	21"	20 -23	10 ','	34	30.	21"	11 -56	10%	29	
Cid	4'-6"	24"	25 494	B 8 "	30	33.	24"	14.66	8 %	24	
C5a	8'-0"	21"	29 97	12.5%	52	8'-4"	21"	15-69	12 %	39	
СБЬ	5'-0"	21"	29 97	18 5,"	57	8'-6"	21°	15 -67	13 %	42	
€5e	5'-8"	24"	85 -64	12 %*	54	30-	24"	19-68	12 %"	41	
C54	5'-3"	24"	35 -64	12 %	54	31-9"	24"	19-04	12 5%	41	
Coa	5'-9"	21"	80 -1.5	16 54"	79	4'-0"	21"	20 .70	16 5."	5.6	
Cab	6'-0"	24"	84 (56	15 %	79	4'-3"	21"	22795	17 %°	66	
Cae	6'-0"	24"	36 (26	16 50	79	4'-3"	21"	22.05	18 %"	68	
C7a	6'-3"	21"	45 -95	8 5%	116	4'-5"	21"	84565	18 %	72	
C7b	06.	21"	10-32	13 %	126	41-01	21"	25 62	18 34"	91	
Cte	6'-6"	24"	13 95	14 34	128	4'-9"	24"	59 68	34 3/2"	103	
C8a	60.	21"	137-87	22 %	122	4'-9"	21"	29-58	22 %	91	
C8b	6'-9"	24"	34 33	15 %	150	4'-0"	24"	31 -28	35.55*	111	
Cac	8'-10"	24"	29 72	16 34*	164	4'-10"	24"	82 - 38	16 1/3"	120	
Con	7'-8"	24"	87:46	18 15"	102	5'-8"	24"	88 -14	18 %	144	
Cop	7-6"	271	77 - 79	16 %	177	5'-3"	27"	41 -50	16 %	128	
C9e	7'-8"	27"	73-14	17 35"	182	5'-0"	27"	38 (24	17 %	132	
C10a	83.	27"	25-81	21 %	893	5'-10"	27"	50 09	21 %	2004	

Note: See Table 8-a Chapter No. 8 for Column Reference Number.

Table 9-b SQUARE FOOTINGS

(fc -6'M) lbs./ \Box * fs=16000 lbs./ \Box * m=15.)

Ref No.	11	1	Ton/PF	7.0		II B Plan / CEP					
of			Concrete		icel	1 Ten/OP.					
Column	E D		C.Ft.	Barn	Lba.	-	D	C.Pt.			
C1	4'-0"	12"	18 38	71,"	28 -06	31-4"	12"	0 30	535	15.0	
C2	8.50	12"	24-12	93%	10 -50	3'-9"	12"	12.1	0.55°	100-366	
EXA	5'-10"	12"	27 -70	12 %	57.00	4'-3"	12"	15 -4	10 %*	35 6	
Cab	64.	15"	28 54	11 34"	56-00	4'-6"	16"	19 -8	834"	80 O	
Cta	7'-8"	15"	51 -87	13 1,"	120 0	5'-3"	15"	26 -4	1234"	51 8	
C4b	8'-0"	18"	64-60	18 1/2"	128 -0	5'-6"	18"	32 -1	834"	64-0	
C4e	8'-2"	21"	74 -50	18 36"	190-0	8'-9"	21"	SNOX	83%	67 -6	
Cha	00.	18"	80 86	12 %	235 0	6'-3"	18"	40 -7	101,	BIG-M	
Cab	9'-8"	18"	86 -57	123%	245 -0	6'-6"	10"	43 -7	10 36"	94-0	
Disc	9'-5"	:1.	26 50	13 %	279 -4"	61-9*	21"	56 -7	8500	NO.	
Cfd	91-90	21.	108-58	12 5 ,*	202-00	7'-0°	24"	60 -4	10 %°	100-0	
1084	10'-0"	18"	100 -23	13 5 ,"	279 -\$6	7'-0"	18"	61 -3	9 1/10	140 -6	
Can	10'-4"	21"	117 -27	18 3,0	268 - 5	7'-4"	21"	61 -7	13 1,0	ESS -0	
C6e	10'-6"	24"	131 96	12 5 5	862.03	7'-6"	24"	70 -4	1235*	128 -0	
C7a	10'-9"	18"	115-00	18 50"	DAGE 16	7'-6"	18"	16 ch	33.5 ₁₁ "	190 -7	
C7b	10'-10"	21"	128-29	16 %	325 -7	7'-8"	21"	66 -9	10°5"	178 -8	
C7e	11'-6"	24"	150 -77	16 3 ₀ "	343 -8	8'-0°	24"	79.3	10%	188 -7	
C74	11'-6"	27"	189.74	15 %	318 -2	8:-0"	27"	M6 - 0	10 0,0	163 -7	
IORA	12:-6*	21"	170 78	17 % "	MASI	90.	21"	87 -3	1295	259 -0	
СВР	12'-6"	24"	THE-26	15 4,"	607 -5	90-	24"	1000-4	182,"	267 -0	
(184	18'-0"	27°	217 -16	15 5,0	#3010	99"	27"	113-0	125%	247 6	
Ci8d	14'-0"	27°	250 00	15 43"	667 - 5	10'-0"	27"	132 -7	1250	270 -4	
179m	14'-0"	24°	224-86	16 %	968 -3	10'-0"	24"	122:2	16 5 .*	360 5	
CSh	14'-3"	27"	258-67	15 7,0	938 -4	10'-0"	27"	132-7	16 5 h	540 · 5	
Cor	14'-6"	24"	217:00	17 7,0	1075 -0	10'-4"	24"	150-0	1354"	848 -5	
UM	15'-0"	24"	263-20	18 "	1175-0	10'-6"	24"	184 0	1454"	483 -0	
1094	15'-0'	24"	294-70	18 "	1175 -0	10'-6"	24"	184 0	1454	483 -0	

Note . See Table 5-b Chapter No. 8 for Column, Reference Numbers.

COLUMN FOOTINGS

Table 9-b (contd.)
SQUARE FOOTINGS

 $(fc=600 lbs./\Box$ fs=16000 lbs./ \Box m=15.)

Bef. No.		2 1	Tons/DFt	4	1	4 Tons Ft.					
Column		D I	C.Pt.	Steel	Lbs.	B	D	Concrete, O.Ft	Bars	el Lbs.	
	1		1	1	1	1	12"	2.96	6 %"	10-6	
Ct	2'-6"	12"	5 - 57	65,0	13 -50	1'-9"	12"	3 36	B 37.4	11 25	
C2	59.	12"	6-9	61,	14-62	20,			-		
C3a	3'-0"	12"	8-1	7%"	18 -87	35,	13"	4.80	7 %"	16 40	
Cap	33.	15"	10.7	6 3%"	1.6 -317	3,-4,	15"	# -00	4 36"	13 -50	
Céa	319"	15"	16-3	9 %"	28 -70	2'-9"	15"	# - A S	91,"	21 -93	
G4b	4"-0"	18"	18 -10	8 %"	21 -10	2'-10"	18"	10 00	856"	21-00	
Cie	41-21	21"	51.42	834"	21 -37	8'-0"	21"	12 37	8.5%	21 -50	
Cōa	4'-6"					8'-3"	18"	12-62	10%	28 -75	
CSb	41-9"					31-4"	15°	18-18	115,"	22-31	
C\$e	4'-10"	21"	28-1	91,0	66 0	3'-6"	21"	111 100	9 %"	48 -00	
C5d	5'-0"	24"	8: 28	8.86"	82 - 25	3'-6"	24"	17 -65	85%	24-00	
RM	5'-0"	16"	27 -8	95,"	67 -00	3'-6"	18"	18 05	9.56"	48 -00	
CGb	5'-8"	21"	33 -7	10 5	77-60	8'-8"	21"	18-81	125,"	88 -25	
Cte	8'-4"	24"	88 -0	10%	44-70	31-91	24"	20 84	10 %	82 -50	
C7a	5'-6"	18"	32:0	1235	97-93	3'-9"	16"	18 90	12 1/4"	89-33	
С7ъ	51-6"	21"	361-6	10 16"	81 -11	8'-10"	21"	19 -55	10%	26 86	
C7e	5'-9"	24"	25%	936"	76-00	4'-0"	24"	23 -20	915"	55 -00	
C74	5'-9"	27"	47 - 8	936"	76 -00	4'-2"	27"	27 -20	94"	37 06	
CSA	0'-2"	21.	47 -4	1235"	109 -3	4'-4"	21"	25 -10	1214"	78 -64	
C'85	6'-4"	24"	53 -1	11 50	101-6	4'-6"	24"	29-52	11 52	74 -58	
Che	6'-6"	27"	60 -6	1236"	113 -3	4'-9"	27"	35 62	12 4"	85 -33	
tred.	8'-6"	27	80-6	12 34"	113 -3	5'-0"	27°	## 570	1236"	89 122	
COA	7'-0"	24"	82.0	12 95	195 -5	5'-0"	24"	85 /25	12 %	145 -60	
Kith	7'-0"	27"	88.72	1296"	195 -5	5'-0"	27"	38-50	1236"	145 60	
C9c	7'-4"	24"	69 -1	13 547	255 8	5'-2"	24"	27/32	124,"	149 5	
IDM:	7'-6"	24"	72-0	124,	208 -0	5'-4"	24"	89 -34	1256	158 9	
	11						1			1	

Note : See Table 8-b Chapter No. 8 for Column, Reference Numbers.

CHAPTER 10 RETAINING WALLS

CONTENTS

- 10.1 Small Retaining Walls.
- 10.2 Example.

Charts and Graphs.

CHAPTER 10

RETAINING WALLS

10.1 SMALL RETAINING WALLS.

Small retaining walls upto 15'-0'' are mostly of cantilever type. Retained materials like sand, gravel, earth, etc. exert on the retaining structure pressure of much the same nature as ordinary fluids. The intensity of this pressure (we) depends upon the weight (w), angle of repose (ϕ) and angle of surcharge (α) of the material and is given by the formula.

we=w
$$\cos \alpha \frac{\cos \alpha - \sqrt{\cos^2 \alpha - \cos^2 \phi}}{\cos \alpha + \sqrt{\cos^2 \alpha - \cos^2 \phi}} = wk.$$

when there is no surcharge i.e. when $\alpha = 0$. This reduces to

$$we = w \frac{1 - \sin \phi}{1 + \sin \phi} = wk$$

CHART 10-1.

Chart No. 10-1 gives the values of k for different values of ϕ and α and Table No. 10-a gives the values w and ϕ for various filling materials.

In case of a cantilevered retaining wall it is necessary to see that:

- (a) the stem, heel and toe are adequately reinforced for B.M. and shear
- (b) the overturning moment is less than the stabilizing moment
- (c) the pressure on the ground is within safe limits
- (d) the wall is safe against sliding

Charts 10-2 to 10-6 may be used with advantage for preliminary designs which can subsequently be modified slightly by exact calculations.

10.2 EXAMPLE.

Find approximate dimensions and reinforcement for a cantilever retaining wall 12' high over the ground level with level fill weighing 110 lbs. c.ft. and with angle of repose of 30°.

we, from chart $10-1 = .33 \times 110 = 37$ lbs.

overturning force P = 4500 for we=40 and H=15 (from chart 10-3) = 3700 for we=30 and H=15

 \therefore for we=37 and H=15

P=4170 lbs.

effective depth of stem (from chart 10-2) for H==14'-0"

=13"

assume $B=.5\times15=7$ ft.

 $W=110\times5\times15=8250 \text{ lbs}$.

M overturning = 21200 ft. lbs. (by interpolation) (from chart 10-4)

M stabilizing = $\frac{5}{2} \times W = 20500$ lbs. ft. (factor of safety 2)

Try B=9'

then $W=110\times6\times15=9900 \text{ lbs.}$

RETAINING WALLS

Chart 10-2.

and stabilizing mt= $9900 \times 3 = 29700$ ft. lbs. Frictional force= μ W= $.7 \times 9900 = 6930$ lbs. which is more than P.

$$m=P/W\times H/3=\frac{4170}{9900}\times 5=2.1 \text{ ft.}$$

$$e=3+2.1-9/2=.6$$

$$p_1 = \frac{9900}{9} (1 : \frac{6 \times .6)}{9} = 1100 \cdot 1.4 = 1540 \text{ lbs/ft.}$$

$$p_2 = \frac{9900}{9}$$
 ft $= \frac{6 \times .60}{9} = 1100 \times .6 = 660$ lbs. ft.

moment in heel for 15' height=20500 ft. lbs. (from chart 10-5) and 5' span

$$A\tau = \frac{20500}{18000 \times .87 \times 12.7} = 1.05^{\circ}$$

RETAINING WALLS

moment in toe=
$$\frac{1540 \times 3^2}{2}$$
 = 6900 ft. lbs.

At for $15\frac{1}{4}$ depth = $\frac{6900 \times 12}{18000 - .87 \times 15.5}$ = .34 \square ° i.e. $\frac{1}{4}$ ° i.e. $\frac{1}{4}$ ° i.e. $\frac{1}{4}$ ° i.e.

Note:

The above chart gives the Bending Moment caused in the vertical member of a cantilever retaining wall due to different values of earth pressure.

RETAINING WALLS

From these approximate details accurate calculation in which W includes the weight of wall, and in which the point of application of W etc. is correctly calculated can be carried out, and final details worked out accurately.

Table 10-a

Material	w (lbs/cft.)	φ(degrees)
Sand dry	90 to 100	30
moist	100 to 110	35
, wet	110 to 125	25
Vegetable earth dry	90 to 100	30
-do- moist	100 to 110	45
-do- wet	110 to 120	15
Gravel	90	40
Rubble stone	100 to 110	45
Gravel & Sand	100 to 110	25 to 30
Clay dry	120 to 140	30
moist	120 to 160	45
wet	120 to 160	15
" mud	105 to 120	0
Ashes	40	40

CHAPTER 11 CIRCULAR TANKS

CONTENTS

- 11.1 General.
- 11.2 Illustrative Example.

CHAPTER 11

CIRCULAR TANKS

11.1 GENERAL.

The pressure of water at a depth of h ft. is 62.5 h lbs. per sq ft. In case of a circular tank the tension in the tank walls caused by the water pressure is therefore $\frac{62.5 hD}{2}$ lbs. in a ring one foot high, of diameter D ft. and situated at a mean depth of h ft. below the surface. The cross sectional area of steel rings to be provided in this strip is $\frac{62.5 hD}{2.512000}$ sq. inches.

The walls of all tanks are, however, restrained at the base being monolythic with the floor and the walls assume the shape shown in sketch below when the tank is filled with water.

Deflection of Tank Walls.

In such a case the water pressure at the bottom is entirely resisted by the cantilever action of the vertical wall which is subjected to tensile stress on the inner face. In case of shallow tanks of large diameter, the tendency of the walls is to act more

like vertical cantilevers and hoop stresses are small, whereas in cases of deep tanks of small diameter, hoop stresses are more and cantilever action is very small.

The enclosed charts give

- (a) Capacity of tanks in gallons for various heights and diameters (Chart No. 11-1).
- (b) Position of maximum hoop tension Chart No. 11-2).
- (c) Amount of maximum hoop tension (Chart No. 11-3).
- (d) Amount of restraint moment (Chart No. 11-4).

200

CIRCULAR TANKS

CYLINDRICAL TANKS

POSITION OF MAX. HOOP TENSION.

CYLINDRICAL TANKS

Chart 11-3.

CIRCULAR TANKS

Table 11-a gives detail of tanks of different capacities and sizes.

Table No. 11-a.

Ht. of Water ft. Cap'cty n Gale.		15						1 10			
	D	ı	L	48	Av	D	d	L	An	Av	
100,000	87	10	6 -30	-93	- 85	60	9	3 -84	es a	32	
75,000	32		\$ -58	-60	11	35 ·5		5 -10	-64	36	
50 000	20	Įa.	8 -00	70	85	29	7	4 -05	-(5/4	11	
\$0.000	205%	:	4 -20	-56	31	281,	7	4 -2	45	- 25	
10 000	1114	;	3 -50	15	-1n	18	ĸ	7 -8	(Ph)	1%	

Ht. of Water ft ap'cty Gals.		10					4				
OMI.	D	d	L	Am	Av	D	d	1.	An	41	
100,000	8.5	н.	A -7	-6g -64	-33	50	î	6(1	-85	¥7	
78 000	89	7	4.0	-4F	133	421 _y	7	5 -2	-25	-21	
Bos,1 Maiu	251.4	6	4-2	61	26	351,	0	3 49	-32	·24	
30,000	25	6 ,	д -9	254	21	27	0	g •ā	-28	14	
10,000	1.6		8 - 8	100	-14	16	et	3-8	-19	8.1	

11.2 ILLUSTRATIVE EXAMPLE.

Find the stresses in the walls of a circular tank with 10' depth of water and of diameter 25 ft.

Assuming the thickness d of walls as 6"

$$H/d = \frac{10}{.5} = 20$$
 and $H/D = \frac{10}{25} = .4$

From charts we have:

- (a) position of maximum hoop tension

 L-C₂H-.4×10-4 ft. above base.
- (h) Maximum hoop tension

$$T = C_1 \frac{WH}{2} D$$

= .59×62.5×10/2×25=4700 lbs.

(e) Restraint Moment

f WH³=
$$0.014\times62.5\times10^3$$
 ft. lbs.
= 10.500 inch lbs.

Reinforcement:

An (for hoop stress) =
$$\frac{4700}{12000}$$
 = .39 · q ins. $\frac{1}{2}$ ' ϕ (\hat{a} 6' c.c.

A_v (for restraint moment)

with ‡" φ bars and 1" cover

effective depth=6-1.25=4.75°

Lever arm = $.85 \times 4.75^{\circ}$

CIRCULAR TANKS

$$A_1 = \frac{10500}{12,000 \times .85 \times 4.75} = .22 \text{ sq. ins. approximately}$$

 $3/8'' \phi @ 6'' \text{c.c.}$

Section of Tank.

CHAPTER 12 DIFFERENT KINDS OF CONCRETE

CONTENTS

- 12.1 Colloidal Concrete or Colcrete.
- 12.2 Prepacked Concrete.
- 12.3 Shot Concrete (Gunite).
- 12.4 Prestressed Concrete.
- 12.5 Saw Dust Concrete.
- 12.6 Light Weight Concrete.
- 12.7 Precast (Prefabricated Concrete).
- 12.8 Air-entrained Concrete.

CHAPTER 12

DIFFERENT KINDS OF CONCRETE

12.1 COLLOIDAL CONCRETE OR COLCRETE.

This is a particular process of making concrete in which stone aggregates which are already laid in position are bound together by cement and sand grout mixed in a special type of mixer. A grout of cement, sand and water mixed in the usual manner is not sufficiently fluid to penetrate between the interstices of the aggregates and produce a dense concrete. Cement particles being very fine are difficult to wet as they cling to each other and are also surrounded by a thin film of air. The surface areas of cement and sand are 80% and 19% respectively of the surface area of all the constituents of concrete. Hence, if these two constituents are efficiently wetted, it is easy to get proper quality of concrete. The special type of machine for mixing the grout is shown below (Fig. 12-1).

Fig. 12-1.

The roller A about 8" diameter rotating anticlockwise at 1200 r.p.m. draws in grout through a volute shaped cavity between the drum and the cowl B. The cowl is hinged at C so that the gap at the end of the volute may be adjusted. A knife-edged plate D nearly touches the roller immediately below the back edge of the cowl and cuts off the liquid and directs it to the back of the tank so that complete mixing is secured. After each mixing the grout is tipped into a sump from where it is removed by a pump. In some machines two stage mixing is

done. Cement and water are mixed first and then sand and cement paste subsequently.

Colloidal concrete is very economical as just the required quantity of grout enough to fill in the voids in the coarse aggregate is used. For 1 cubic yard of colloidal concrete only 3 cwts of cement are required as against 5 cwts for usual 1:2:4 mix. Colcrete is very useful in road and runway construction.

12.2 PREPACKED CONCRETE.

The principle of this method of making concrete is the same as above, but instead of using mechanical method of effecting thorough mixture of cement, water and sand, certain chemicals are added to the grout. Cheecol is one such chemical compound.

12.3 SHOT CONCRETE.

12.3.1 DEFINITION.

Cement and sand mortar applied by air pressure is commonly called gunite. Actually such concrete is termed Shoterete in general and "gunite" is only a trade name for the product of Cement Gun Company.

12.3.2 USES.

Gunite is used for many purposes, the most important being:-

- (a) Repairing masonry or concrete structures.
- (b) Waterproofing.
- (c) Construction of water tanks.
- (d) Lining of canals and reservoirs. (Two inches thick gunite is used on brick pitching and three inches of earth slopes.)
- (e) Protection of steel from fire, corrosion, etc.
- (f) Roof and rib protection in mines.
- (g) Walls and roofs etc. of buildings.

12.3.3 PROPERTIES OF GUNITE.

Gunite walls for building are generally 2" thick and are shot on chicken netting stretched against plywood forms. Roofs of buildings are 2 to 3 inches thick. Gunite is used for r.c. domes also.

DIFFERENT KINDS OF CONCRETE

Strength (a 28 days—6000 lbs./sq. inch average.

Modulus of elasticity—4,670,000 lbs./sq. inch.

W/C ratio required—.25 to .30 (by weight)

Density—\frac{1}{2}" gunite slab could stand 700' head of water

1\frac{1}{2} \quad -do— \quad 1600' \quad -do—

12.3.4 NOTES ON SPECIFICATIONS FOR GUNITE WORK.

a. Sand should be of fineness modulus 2.4.

The following grading is recommended:

passing	No. 4	sieve	98-1	100%
	8	4.9	70	95%
	16	0.0	6()	85%
	30	* 0	45—	65%
	50		15	35%
	100		0-	5%

Sand should be slightly moist (3 to 5% moisture).

- b. Air Pressure: 35 lbs/sq. inch for 100' long hose. Increase 5 lbs for every additional 50 ft.
- Water Pressure: Should be 15 lbs more than the atmosphere.
- d. Material should be shot at right angles to the surface. Loose sand deposits should be removed. A thin edge should be left at each day's work.
- e. The following points to be attended to in ease of various works:

Steel encasing: fix 2" x 2" mesh wire netting at about \{\}" from the surface. Remove paint, rust. etc. and apply gunite 1:3 mix by volume.

Floors: apply 1:3 gunite in one coat upto %" thickness. For greater thickness apply in 2 coats the final coat being always more than one inch.

Wall slabs and panels: The thickness to be 1½" upto 4' span and 2" upto 7' span. The steel fabric reinforcement should not be more than 4" mesh and the area should be 3' i of wall cross-section in each direction.

Waterproofing of walls: Clean and sand-blast the surface and apply \(\frac{1}{2}'' \) gunite 1:3 mix.

1235 DESIGN DATA FOR GUNITE.

Assumptions: Ultimate compressive stress.

	x=4100 ll x=4800	bs/sq. i —do			
fe	fs	11.	j	p	q
1500	20000	.43	.86	.016	276
1800	20000	.47	.84	.021	359
1200	16000	.43	.86	.016	221
1500	16000	.48	.84	.023	305

(Value of modular ratio is 10)

12.4 PRESTRESSED CONCRETE.

12.4.1 PRINCIPLE OF PRESTRESSED CONCRETE.

Principle of prestressed concrete is to introduce internal stresses in the concrete, of nature opposite to those caused by the design load. Hence when the design load operates, the resultant stresses in the concrete are very low.

12.4.2 ADVANTAGES OF PRESTRESSED CONCRETE.

- (a) Economy: spans above 100 ft. are not economical in ordinary R.C. work since so much of concrete is wasted in portion below the neutral axis.
- (b) It is possible to use high tensile steel reinforcement which cannot be used in ordinary R.C. because of necessity to limit the width of minute cracks in the tensile zone to .02 inches.
- (c) The danger of rusting of reinforcement due to atmospheric action in unfavourable areas is entirely eliminated.

12.4.3 METHODS OF PRESTRESSING.

There are two methods:

- (a) Prestretched bonded method.
- (b) Post-stretched bondless method.

In (a) high tensile steel reinforcement is placed in position and stretched with the help of yokes, hydraulic jacks and abutments. The calculated tension is induced in the wires and concrete is filled into the mould of the prestressed concrete member and allowed to set. When the concrete is sufficiently strong, the tension of the wire is released. The steel while contracting induces compression in the concrete, being bonded to the concrete.

DIFFERENT KINDS OF CONCRETE

In (b) high tensile steel is placed in the moulds of the prestressed concrete member but is prevented from coming in contact with the concrete being encased in sheaths. The prestressing reinforcement consists of cables made of high tensile steel wires, laid in one or more rings round a core. After the concrete is placed and allowed to attain its normal strength, the high tensile wires are stretched by means of special jacks. The wires are then anchored to the two ends of the beams or structural member by special anchorages. The compression in the concrete is developed through these anchorages instead of through bond between steel and concrete as in method (a).

12.4.4 THEORY.

The prestressing compression being applied eccentrically produces in the section concerned stresses equal to $\frac{F}{A} \pm \frac{Fy^1y}{I}$. These stresses when combined with the tension and compression due to dead and live load bending give the resulting stresses as shown in Fig. 12-2.

Fig. 12-2

The induced prestressing force is reduced to some extent due to shrinkage of concrete, creep in concrete, plastic flow of steel reinforcement and compression of concrete due to prestressing.

12.4.5 USES OF PRESTRESSED CONCRETE.

Prestressed concrete is being used for various structural items such as bridges, large span roofs, precast roofing joists, railway sleepers, tanks, pressure pipes, etc. etc. The following statements will give some idea about the comparative dimensions and economic possibilities of prestressed concrete.

(1) Prestressed concrete girders vs steel joists.

For the same Loading

- (a) Prestressed concrete girders are twice the weight of steel joists.
- (b) Prestressed concrete girders are one and a half times deeper than steel joists.
- (2) R.C.C. vs Steel Girders

Steel in ordinary R.C.C. Girders is 10 per cent of that used in steel joists.

- (3) Prestressed concrete vs R.C.C. Girders
 - (a) Steel required in prestressed concrete girders is 25% of that required in R.C.C. Girders, i.e., 2½% of that required in steel joists.
 - (b) Concrete in prestressed concrete girders is 50% of that required in ordinary reinforced concrete girders.

12.5 SAW DUST CONCRETE.

Mixture of cement and saw-dust can serve as a useful building material with some limitations. The strength of saw-dust concrete is uncertain and must be determined by tests. However, it may be taken 10 to 20% the strength of normal concrete. The principle use of saw-dust concrete is as an insulating material and for special purposes. The results of tests on saw-dust concrete are given below:—

Building Research Station U.K.

1:2 mix gavè 1190 lbs/sq. in. @ 7 days

1:4 .. 92

DIFFERENT KINDS OF CONCRETE

New Zealand: (with Pinus insignus as aggregates)

1:2 mix gavê 1190 lbs/sq. in. 1:4 ,, 725 lbs/sq. in.

The following results are also experimentally found with pine wood saw-dust.

Mix	Comp. strength @ 7 days ultimate.	Density
1:2	1100	75
1:3	500	49
1:4	150	41
1:6	110	40
1:14 sand: 14	1300	100

The extractable materials in saw-dust upset the hardening of cement. This can be prevented by using dust from soft woods or by using 20% of lime or 5% of calcium chloride in the mix. It is advisable to first immerse the saw-dust in boiling water for about 10 minutes and then wash it freely with water. This should be repeated second time, by mixing 2% ferrie sulphate in the boiling water and washing the dust again. Saw-dust concrete absorbs water and hence expands and shrinks on getting wet and dry. This can be prevented by coating the units with water resisting substances and using certain percentage of sand as aggregate.

Consistency of the concrete should be such that the mix compacts itself. The following amounts of water are suggested:

Cement	Saw-dust (slightly damp)	Water
94 lbs.	1 cft.	5.5 gallons
	2 eft.	5.9 gallons

The finish should be smooth but even, heavy trowelling should not give eement skin on the top.

12.6 LIGHT WEIGHT CONCRETE.

Is frequently used in making precast blocks, etc., to keep down the weight of the units. Research has shown that it is possible to make concrete of low cement content, with excellent workability, sufficient strength and adequate heat insulation and effect appreciable economy in structural load of a building.

12.6.1 METHODS.

Lightweight concrete is made by

- (a) Using light and porous aggregate such as breeze, pumice, etc.
- (b) By adding to the cement slurry, containing little or no aggregate, an aerating agent which causes the paste to foam so that the set material contains a certain proportion of air.

12.6.2 LIGHT AGGREGATES.

These are of three types.

- (a) Natural: such as pumice, breeze, etc.
- (b) By-products: such as Blast-furnace slag, coke, breeze, cinders, saw-dust, etc. etc.
- (c) Processed aggregates such as Exfoliated Vermiculity a type of mice expanded by heat.

Sintered diatomite—a processed diatomite with soft chalky particles.

Perlite—an expanded perlite composed of frothy particles.

Expanded clay.

Sintered fly ash -s processed material resulting from the combustion of powered fuel in steam power plants.

12.63 AERATED CONCRETE.

Hydrogen gas bubbles are generated in a mix containing lime or easient by incorporation of finely divided aluminium or zinc powder about 0.1% of cernent. The cellular structure produced in this way is retained after the cement has set and a lightweight product obtained thereby. Sometimes a foaming agent is used, instead of the metal powder, and the mix is whipped up in a special mixer to a fine foam. The weight of aerated cement is 40 to 60 lbs per c.ft.

DIFFERENT KINDS OF CONCRETE

Properties of Light Weight Concrete

Material	Mix	Wt. Lim oft.	Comprendice strength lin./aq. in.	Transverse attempth the jeq. in.	Shrinkage %	Thermal conductivity.
Pumice Concrete	1:6	4570	200-550	100-150	8040-	1 4 B.th U
-do-	1:10					1.1
Clinker Concrete	1:6	50-105	150450	75	-030 20	2-8
-do-	1:10					2 -3
Foatned Sing Concrete	1:6	9095 6095	300 500	200- 300	0.08-0.05	1.5-2.2
Cellular Concrete	1:12	37- 66	200500	100-240	0 -060 -18	1-2
Ballast Concrete	1:2:4	140-150	80005000	300600	0-000-04	7-0

12.7 PRECAST (PREFABRICATED) CONCRETE.

Precast (Prefabricated) Concrete is getting popular day by day.

12.7.1 ADVANTAGES.

- (a) Economy in form work.
- (b) Possibility of standardization and employment of machinery for manufacture.
- (c) Controlled weather conditions.
- (d) Use of experienced and skilled workmen.
- (e) Temperature effects in the structure are negligible due to many construction joints.
- (f) Defective components can be easily rejected.

12.7.2 DISADVANTAGES.

- (a) Repeated handling may break the units.
- (b) The problem of connecting various units properly is difficult.

12.7.3 REQUIREMENTS.

Precast concrete units must be strong and at the same time light. It is, therefore, necessary to use light-weight concrete in case of non-structural units. Structural units are made either hollow or flanged or are in prestressed concrete so as to cut down the quantity of concrete. It is also necessary to use special methods of consolidation and curing such as vibration, shocks, spinning, steam or electric curing, etc. The concrete also is

very carefully designed and made. Typical sections of structural precast concrete units are shown in Fig. 12-3 (on facing page).

12.7.4 APPLICATIONS.

Precast concrete is used for numerous purposes, the following being only a typical list of most important items:

Floors: Channel beams, hollow beams, T-beams, 1-beams, etc.

Foundation: Sockets for wooden or steel column

plates —do— etc. piles —do—

Building frames: Portals, gabled frames, etc.

Building units: Hollow and solid blocks, lintels,

wall panels (Hollow or solid), window and door sills, cornices, string courses, chimneys, trusses,

roofing tiles, etc.

Bridges: Bridge girders, slabs, arch voussoirs.

Miscellaneous: Pipes, transmission line poles, gar-

den furnitures, drains, silos, tanks,

railway sleepers, etc.

12.8 AIR-ENTRAINED CONCRETE, (See Para 1.1,2.8)

It is possible to cause in the concrete the inclusion of millions of microscopic bubbles during the process of mixing by using a small amount of certain chemicals either in the mixing water or in the cement. Each bubble of air is encased in a hard glazed shell formed by the surface active force generated by the chemical reaction. Thus the formation of the usual capillary channels by which the water enters the concrete, is prevented and there is no possibility of disintegration of the concrete by freezing and thawing or by leaching. The air bubbles give additional workability permitting smaller w/c ratio and consequently better strength. The segregation of the concrete is prevented due to reduction of wee ratio and action of the air bubbles. It is also possible to give a better finish to the concrete and improve the surface texture by preventing sand streaking. Vinsol resin is the most common air-entering agent. Several proprietary air-entraining agents are available in the market.

Fig. 12-3. Precast Floor Systems.

I Beam, Rapid Floor Rail System and T Section.

CHAPTER 13 MISCELLANEOUS INFORMATION

CONTENTS

- 13.1 Soil Cement.
- 13.2 Asbestos Cement.
- 13.3 Cement Grouting.
- 13.4 Cement Admixtures.
- 13.5 Waterproofing of Concrete.
- 13.6 Effects of Acids, Oils and Salts on Concrete.
- 13.7 Protective Treatments.

CHAPTER 13

MISCELLANEOUS INFORMATION

13.1 SOIL CEMENT.

Soil cement is a simple intimate mixture of soil with measured amounts of Portland cement and water, compacted to high density. It is mostly used for pavement work.

13.1.1 REQUIREMENTS OF SOIL CEMENT WORK.

- (a) Adequate cement content.
- (b) Proper moisture content.
- (c) Proper density.

The above requirements are determined by tests before starting the work.

- (a) Cement content: Cement acts as a binder and by chemical action with water converts the soil cement mixture into a hardened mass.
- (b) Water is required to get the necessary workability for the mass to ensure proper compaction and for the hydration of the cement.

13.1.2 TESTS FOR SOIL CEMENT WORK.

Before starting the work it is necessary

- (a) to analyse the soil.
- (b) to determine how much cement and water should be added to the soil.
- (e) to find out the density to which a soil cement mixture should be packed.
- (a) Soil is examined for gradation and for any material harmful to cement. The best gradation found by experiment is as follows:—

Sieve designation	% by weight passing		
	square mesh sieve.		
No. 3	100		
No. 4	55-100		
No. 40	15-100		
No. 200	0- 50		

All soil can be broadly divided into three groups.

- (1) Sandy and gravelly soils with about 10 to 35% silt and clay combined. These are quite suitable for soil cement work.
- (2) Sandy soils deficient in fines like beach sands, wind blown sands, etc. are also suitable but present difficulties in packing and finishing.
- (3) Silty and clayey soils also make satisfactory soil cement, but those containing higher clay are difficult to pulverise.
- (b) & (c) The approximate minimum moisture content and the approximate minimum volume to which a soil cement mixture should be packed are the optimum moisture and the maximum density. This is determined by means of a special mould and rammer. The soil cement is packed in three layers of equal thickness into a 1/30 c.ft. moisture density mould (also called Procter Mould) with collar attachment.

Cylindrical mould for Moisture-Density Test.

Fig. 13-1.

Each layer is compacted by 25 uniformly spaced vertical blows of a 5½ lb. rammer having a 2" diameter striking face and a free fall of 12". The thickness of the layer is controlled so that the third layer extends over the top of the mould into the collar extension, a distance of about ½ inch. After removing the collar, the soil cement is trimmed to the exact size of the mould

MISCELLANEOUS INFORMATION

after which the assembly is weighed. The damp weight of the compacted material at different moisture contents is determined in this way, and after determining the moisture content of each test, the dry weights are calculated and then plotted against moisture contents to form a moisture density curve. The optimum moisture content is that at which the greatest dry density is obtained in the test. This density is referred to as the maximum density and is the approximate minimum density to use in soil cement construction. The cement content required to harden the soil will depend upon the nature of the soil and varies from 7 to 16%. It is therefore necessary that the soil on a particular job be tested to determine the safe economical quantity of cement that should be added to it to harden it properly. This is determined by the wetting and drying test. Specimens are alternately subjected to wetting and drying cycles and the loss of material due to two firm strokes of a wire scratch brush is noted.

13.1.3 CONSTRUCTION.

There are two methods followed, viz.:-

- (a) mixed in place with heavy duty field cultivators, gang ploughs, rotary speed mixers, etc.
- (b) mixed with a travelling type mechanical mixer.

The former is in common use for pavements, etc. and hence described below. The latter is used for cheap type of house construction.

- (a) Pavements, roads, etc.
 - (i) Initial preparation of the site is made and grades, etc. fixed properly.
 - (ii) Pulverization: A depth of about 5½" is ripped up by means of pulverizing equipment. Offset disc harrows with 24 to 26 inches discs and rotary speed mixers are then used to break up the soil lumps. During this pulverization a 3 or 4 bottom plough is used to assist in cutting a level subgrade for exposing the edge of the pavement by throwing the material towards the centre, and for bringing up the lumps from the bottom.
 - (iii) Spreading cement: This is done by hand or by mechanical spreaders upon the area. By accurate calculation the cement bags are spotted properly.
 - (iv) Dry mixing: When cement spread is completed the mixing of cement and soil is carried out by

means of spring tooth field cultivators, rotary litters, three or four bottom gang ploughs, offset harrows, etc.

- (v) Watering: It is often desirable to prewet the soil the day before, if the soil is very dry. For excellent mixing conditions the moisture contents of the said soil should be two or three percentage below the optimum moisture for the soil at the time the cement is spread. Water is added in as large increments as the equipment and the soil will permit. One gallon of water per sq. yd. per application should be sufficient for most soil. After adding 75% of the required water content, samples of the mixed material are examined. Soil cement when at optimum moisture is just moist enough to moisten the hands and it can pack in the hands to form a tight cast.
- (vi) Compaction: This is done by sheepsfoot rollers. When the feet of the roller are at 2" to 3" from the surface, a motor grader is used for preliminary shaping. Again the sheepsfoot rollers continue packing until about 1" of loose material remains. At this stage again the motor grader is used to get the final shape. During this interval small quantity of water may be added. The surface compaction planes formed by the last sheepsfoot rolling are removed by a spike tooth harrow.
- (vii) Finishing: This is done by means of a pneumatic tyre roller.
- (viii) Curing: This is done by moist earth covering or waterproof paper.

13.2 ASBESTOS CEMENT.

Asbestos cement is a combination of asbestos fibres and Portland cement. Asbestos is an infusible, tough and flexible mineral in fibrous form. The fibres are made of extremely minute threads about 1/1000 m.m. in diameter. Suitable type of asbestos for asbestos cement products is found in Russia. Canada and South Africa. Neat Portland cement is mixed with about 15% of asbestos fibres in such a way that all fibres are thoroughly coated with fine cement. This composition is kept under great hydraulic pressure until it sets. The asbestos fibres act in the same way as steel reinforcement used in R.C.C.

MISCELLANEOUS INFORMATION

work, but the mixture possesses the great advantage that it is more resilient. It has been proved to possess indefinite durability and great resistance to transverse and tensile stresses. The cement in these products is reinforced in a most effective manner by an intricate network of carefully blended and opened asbestos fibres.

13.3 CEMENT GROUTING.

Grouting is always done under high or low pressure. High pressure grouting is done at pressures above 100 lbs/sq. inch. There are various methods of pressure grouting such as

- (a) Fluid or Pump grouting.
- (b) Plastic grouting (air pressure grouting).
- consistency of soft fluid mud are used for injection and usually neat Portland cement or very rich cement and sand mixtures are employed. Since the amount of water used is excessive, the grout has got very little cementing value. A reciprocating pump is used for this work.
- (b) Cement mortar, or small aggregate concrete with a slump of 6 to 8 inches are injected by pneumatic pressure by means of special machinery which consists of an air compressor and a grouting chamber as shown in Fig. 13-2. By proper manipulation of the various valves and the by-pass pipe it is possible to charge and discharge the grouter and also agitate the grout.

Grouting is used for various purposes, such as-

- (a) Soil stabilization.
- (b) Solidification of fractured, porous or fissured rock.
- (c) Restoration of completed structures by strengthening the foundations.
- (d) Sealing of rock strata, gravel or other waterlogged ground formations. Preventing contamination of well water from polluted water oozing through porous strata, etc.
- (e) Dry pack concrete construction.
- (f) Cast in place pile work, etc.

WHEN DISCHARGE WE'L & BIGHT HAND SIDE ARRANDE IS CLOSED AIR TROM LLIT HAND VALVE COMING UP INSOUGH INE BYPASS AS SHOWN BY BOILED ARROWS AGIIAITO

Grouting Machine.

Fig. 13-2.

MISCELLANEOUS INFORMATION

13.4 CEMENT ADMIXTURES.

Admixtures consist of powdered materials to be added to the concrete during its preparation to improve its quality. Most of these are more or less inert and have an indirect effect on the quality of concrete. Admixtures can be classed as of three types, physical, cementacious and pozzolanic.

13.4.1 PHYSICAL ADMIXTURES.

When water is added to the cement, heavier particles of cement settle down and finer particles and water go to the top. The segregation of cement particles is prevented by these admixtures which help in improving the texture of the concrete.

13.4.2 CEMENTACIOUS ADMIXTURES.

These behave more or less like cement and give a richness to the concrete mixture.

13.43 POZZOLANIC ADMIXTURES.

Pozzolanic admixtures: These have no cementing value of their own, but they react with the products of hydration of cement to form compounds adding to the strength of the concrete mixture.

Admixtures commonly used are quicklime, slaked lime, diatomeceous earth, bentomite, glue, and salts acting as dispersing agents.

13.5 WATERPROOFING OF CONCRETE.

13.5.1 NECESSITY.

Portland cement concrete has a high resistance to permeation of water when it is gauged with correct quantity of water. In practice, however, we usually add more water to increase the workability and thus increase the voids space in concrete, making it permeable. In order to get water-tight concrete, it is necessary to use clean, well graded, non-porous aggregates with sufficient sand to fill in the void and correct amount of mixing water.

13.5.2 METHODS OF WATERPROOFING.

- (a) Use of internal waterproofers.
- (b) Surface treatments.

- (a) These consist of materials added to cement or concrete. They are available in form of finely ground inert substances such as chalk, diatomaceous earth, silica, dolomitic lime or tale intended to improve the plasticity of the mix and thereby reduce the voids. These are usually employed in conjunction with substances of hydrophobic character e.g. calcium and aluminium soaps. Liquid waterproofers contain substances capable of reacting with a second solution or with cement to form an insoluble product. Examples of this type of solutions are alkali silicates, calcium chloride, zinc sulphate and ordinary soap. Integral waterproofers generally contain calcium chloride soaps, hydrated lime, etc.
- (b) These are: Asphalt emulsions, iron salammoniae compounds, cement washes, silicate of soda, boiled linseed oil, gelatinous pastes, etc.

13.5.3 A FEW WATERPROOFING COMPOUNDS LIKELY TO BE AVAILABLE IN BOMBAY.

Name of Product

Sole Agents in India

Sealocrete

McKenzies Ltd.,

Sewri, Bombay. Heatley & Gresham Ltd.,

Ironite

9, Forbes Street, Fort, Bombay.

Tretol

J. C. Gammon Ltd., Hamilton House,

Ballard Estate, Bombay.

Impermo (A.P.C.M.)

The Anglo-Thai Corporation Ltd.,

Ewart House, Bruce Street,

Bombay.

Compo-Seal

Robert Ingham Clark & Co.,

Lakshmi Building, Sir P.M. Road,

Bombay.

Aquella

Turner Hoare & Co. Ltd.,

Gateway Building, Apollo Bunder, Bombay.

Pudlo

Apollo Bunder, Bombay. Richardson & Cruddas,

Lumo

Byeulla Ironworks, Parel Road, Byeulla,

Bombay.

Sika

William Jacks & Co.,

Hamilton House, Ballard Estat.

Bombay.

MISCELLANEOUS INFORMATION

Name of Product Sole Agents in India

Metarock Gannon Dunkerley & Co. Ltd.,

Chartered Bank Building,

Fort, Bombay.

Cico (Che-Ko) Structural Waterproofing Co.,

21-1, Davar Road, Ballygunge, Calcutta.

Cemexo The Unique Waterproofing Co.,

28/A Debendra,

Calcutta.

Hydrol H. S. Cox & Co. Ltd.,

24 Rampart Row,

Bombay 1.

C.C. Case Hardening —do— —do—

Sodium Silicate Imperial Chemical Industries,

Imperial Chemical House,

Dougall Road,

Ballard Estate, Bombay.

Visek Marshall & Sons Ltd.,

Marshall's Building, Ballard Estate, Bombay.

13.6 EFFECTS OF ACIDS, OILS AND SALTS ON CONCRETE.

Protective Treatments Recommended, Where Required—Directions for their application.

13.6.1 GENERAL CONSIDERATIONS.

The industrial application of this problem is of great importance in numerous cases where chemicals, oils, and various other industrial liquids are kept in storage in reinforced concrete tanks.

The protective treatments recommended are based, as they must be, on the assumption that the concrete is of a suitable quality, which means a well cured, dense, water-tight concrete. This requires:

- (a) Low water-cement ratio, not to exceed 6 gal. of mixing water per sack of cement.
- (b) Suitable workability, to avoid mixes so harsh and stiff that honeycomb occurs, and those so fluid that water rises to the surface.

- (c) Thorough mixing, at least one minute after all materials are in the mixer, or until the mix is uniform.
- (d) Proper placing, spacing or vibration to fill all corners and angles of forms without segregation of materials—avoid construction joints.
- (e) Adequate curing, protection by leaving forms in place, covering with wet sand or burlap and sprinkling. Concrete to be kept wet and above 50°F, for at least the first week. Not to be subject to hydrostatic pressure during this period.

Many solutions such as brines and salts, which have no chemical effect on concrete, may crystallize upon loss of water. It is especially important that concrete subject to alternate wetting and drying of such solutions be very dense and non-absorbent. If the concrete is porous it will absorb the solution. Since the crystals require more space than the liquid, they exert considerable pressure which may be sufficient to break down the concrete. Salt solutions corrode steel more rapidly than plain water. In structures which are to be subject to frequent wetting and drying by these solutions it may be advisable to provide some surface coating such as sodium silicate, linseed oil or one of the varnishes as an added precaution.

13.6.1 SURFACE TREATMENTS.

Materials are available for almost any degree of protection required on concrete. The more common methods of treatment are indicated in the table, the numbers in the table corresponding to the following numbered paragraphs in which the necessary instructions are given:

(1) Magnesium Fluosilicate or Zinc Fluosilicate.

The treatment consists of two or more applications. First, a solution of about 1 lb. of the fluosilicate crystals per gallon of water is used. For subsequent applications about 2 lb. of crystals per gallon of water is used. Large brushes are convenient for applying on vertical surfaces, and mops on horizontal areas. Each application should be allowed to dry; after the last has dried, the surface should be brushed and washed with water to remove crystals which have formed. The treatment densifies and hardens the surface by chemical action. Fluosilicates are available through dealers in chemicals.

MISCELLANEOUS INFORMATION

(2) Sodium Silicate (commonly called water glass).

This is quite viscous and must be diluted with water to obtain penetration, the amount of dilution depending on the quality of the silicate and the density of the concrete. Silicate of about 42.5 deg. Baume gravity diluted in proportions of 1 gal. with 4 gal. of water makes a good solution. It may be applied in two or three or more coats, allowing each coat to dry thoroughly. On horizontal surfaces it may be poured on and then spread evenly with brooms or brushes. Scrubbing each coat with water after it has hardened provides a better condition for application of succeeding coats. For tanks and similar structures progressively stronger solutions are often used for the succeeding coats.

(3) Linseed Oil.

Only boiled linseed oil should be used. Applied hot, it gives better penetration. Two or three coats may be applied, allowing each to dry thoroughly before the next application. The concrete should be well cured and seasoned before the first application. Linseed oil is sometimes applied after the magnesium fluosiliente treatment, providing a good coating over a hardened surface.

(4) Cumar.

Cumar is a synthetic resin soluble in xylol and similar hydrocarbon solvents. A solution consisting of about 6 lb. of Cumar per gallon of xylol with ½ pint boiled linseed oil makes a good coating. Two or more coats should be applied. Concrete should be fairly dry. The cumar should be powdered to aid dissolving. It is available in grades from dark brown to colourless.

(5) Varnishes.

Any varnish can be applied to dry concrete. High grade varnishes of the spar, china-wood oil, or bakelite types give good protection against many substances. Good varnishes may contain natural or synthetic resins. Two or more coats should be applied.

(6) Bituminous or Coal Tar Paints, Tar and Pitches.

These are usually applied in two coats, a thin priming coat to insure bond and a thicker finish coat. Concrete must be dry and dust-free. Finish coat must be carefully applied to insure continuity and avoid pin holes. Surface should be touched up where necessary.

(6) Bituminous Enamels.

This is suitable protection against relatively strong acids. It does not resist abrasion at high temperatures. Two materials are used, a priming solution and the enamel proper. The priming solution is of thin brushing consistency and should be applied to dry, dust-free concrete, touching up any uncoated spots before applying the enamel. When primer has dried to a slightly tacky state, it is ready for the enamel. The enamel usually consists of a bitumen with a finely powdered siliceous mineral filler. The filler increases the resistance to flowing and sagging at elevated temperatures, and to abrasion. The enamel should be melted and carefully heated until it is fluid enough to brush. The temperature should not exceed 375°F. When fluid it should be mopped on quickly, as it sets and hardens rapidly.

Bituminous paints and enamels are made by a number of companies.

(8) Bituminous Mastic.

This is used chiefly for floors on account of the thickness of the layer which must be applied, but some mastics can be troweled on vertical surfaces. Some mastics are applied cold. Others must be heated until fluid. The cold mastic consists of two compositions—the priming solution and the body coat or mastic. The primer is brushed on dry, dust-free concrete. When it has dried to a tacky state, a thin layer—about 1/32" of the mastic is troweled on. When this has dried, successive 1-32" coats of the mastic are applied, until the required thickness has been built up. The mastic is similar to the primer but is ground with sufficient asbestos and finely powdered siliceous material fillers to make a very thick, pasty fibrous mass.

The hot mastics are somewhat similar to the mixtures used in sheet asphalt pavements, but contain more asphaltic binder so that when heated to fluid condition, they can be poured and troweled into place. They are satisfactory only when applied in layers of 1 in. or more in thickness. When ready to lay, the mixture usually consists of about 15 per cent asphaltic binder. 20 per cent finely powdered siliceous mineral filler, and the remainder is sand graded up to \(\frac{1}{2}\) in. maximum size.

Masties are made by a large number of manufacturers.

(9) Vitrified Brick or Tile.

These are special burnt clay products which are not attacked by acids or alkalies. They must, of course, be laid in

MISCELLANEOUS INFORMATION

mortar which is also resistant against the substance to which they are to be exposed. A bed of the mortar is usually placed between the brick or tile and concrete. Some of the acid-proof cements are melted and poured in the joints. Many manufacturers make acid-proof brick and cement.

(10) Glass.

May be cemented to the concrete.

(11) Lead.

May be cemented to the concrete with an asphaltic paint.

(12) Rubber.

One of the largest rubber companies in U.S.A. contracts to treat tanks and other structures with their "Acid-Seal". The material is not for sale to other contractors.

13.7 EFFECT OF ACIDS, OILS AND OTHER PRODUCTS, ON UNPROTECTED CONCRETE, WITH PROTECTIVE TREATMENTS, WHERE REQUIRED.

ACIDS.

Material	Effect on Concrete	Surface treatment
Acetic	Disintegrates slowly	5, 6, 7
Acid waters	Natural acid waters may erode surface mortar, but usually action then stops	1, 2, 3, 4, 5, 6, 7
Carbolic	Disintegrates slowly	1, 2, 3, 5
Carbonic	Disintegrates slowly	2, 3, 4, 5, 6, 7
Humic	Depends on humus material but may cause slow disintegration	1, 2, 3, 4, 5, 6, 7
Hydrochloric	Disintegrates	8, 9, 10, 11, 12
Hydrofluoric	I)isintegrates	8, 9, 11, 12
Lactic	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Muriatic	Disintegrates	8, 9, 10, 11, 12
Nitric	Disintegrates	8, 9, 10, 11, 12
Oxalic	None	None
I'hosphoric	Attacks surface slowly	1, 2, 3, 4, 5, 6, 7
Sulphuric	Disintegrates	8, 9, 10, 11, 12
Sulphurous	Disintegrates	8, 9, 10, 11, 12
Tannic	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7

SALTS AND ALKALIES

995 07 A AD A	
Effect on Concrete	Surface treatment
Weak solutions and dry salts will not affect concrete. Strong solutions may cause slow disintegration and concrete should be treated	1, 3, 4, 5, 6, 7
None unless concrete is alternately wet and dry with the solution, when it is advisable to treat with.	1, 3, 4, 5, 6, 7
Disintegrates slowly	1, 3, 4, 5, 6, 7
Effect on Concrete	Surface treatment
None except ammonium fluoride	3, 4, 8, 6, 7
Disintegrates	1, 3, 4, 8, 6, 7
Disintegrates None Disintegrates slowly Disintegrates slowly	8, 9, 10, 11, 12 None 1, 3, 4, 5, 6, 7 1, 3, 4, 5, 6, 7
None	None
None	None
Disintegrates	8, 9, 10, 11, 12
1)isintegrates	1, 3, 4, 5, 6, 7
	not affect concrete. Strong solutions may cause slow disintegration and concrete should be treated None unless concrete is alternately wet and dry with the solution, when it is advimble to treat with. Disintegrates slowly Effect on Concrete None except ammonium fluoride Disintegrates Disintegrates slowly Disintegrates slowly None None None Disintegrates slowly None Disintegrates slowly

MISCELLANEOUS INFORMATION

PETROLEUM OILS

Material	Effect on Concrete	Surface treatment
*Heavy oils below 30° Baume	None	None
*Light oils above 30° Baume	None—Some loss from penetration	1, 2, 3, 5,
Benzine Gasoline Kerosene Naphtha	None—Considerable loss from penetration	1, 2, 3, 5.

Many lubricating and other oils contain some vegetable oils. Concrete exposed to such oils should be protected as for vegetable oils:

Material	Effect on Concrete	Surface treatment
Coal	Great majority of structures show no deterioration. Exceptional cases have been coal high in pyrites (sulphide of iron) and moisture showing some action but the rate is greatly retarded by deposit of an insoluble film. Action may be stopped by surface treatments	1, 2, 3, 4, 5, 6, 7
Сога ѕугир	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Electrolyte	Depends on liquid. For lead and zinc refining use.	7, 8, 9, 10 12
Formalin	Aqueous solution of formaldehyde disintegrates concrete.	9, 10, 11, 12
Fruit juices	Most fruit juices have little if any effect as tartaric acid and citric acid do not appreciably affect concrete. Floors under raisin seeding machines have shown some effect, probably due to poor concrete.	1, 2
Glucose	Disintegrates slowly	1, 2, 3, 4, 5, 6, 7
Glycerine	None	None
Honey	None	None
Lye	Same as sodium hydroixde	1, 2, 3, 4, 5, 6, 7

Material	Effect on Concrete	Surface treatment
M:11	Sweet milk should have no effect but if allowed to sour the lactic acid will attack.	1, 2, 3, 4, 5, 6, 7
Modueres	Does not affect dense, thoroughly cured concrete. Dark, partly refined molasses may attack concrete that is not thoroughly cured. Such concrete may be protected with	2, 5
Nitre	Same as nitrate of potassium	1, 3, 4, 5, 6, 7
Sal ammoniae	Same as ammonium chloride—causes slow disintegration	1, 3, 4, 5, 6, 7
Sal soda	Same as sodium carbonate	1, 3, 4, 5, 6, 7
Salt petre	Same as nitrate of potassium	1, 3, 4, 5, 6, 7
Sauserkraut	Little, if any, effect. Protect taste with.	1, 2
Silage	Attacks concrete slowly	3, 4, 5, 6, 7
Sugar (cane or beet)	No effect on concrete that is thoroughly cured.	None.
Sulphite liquor	Attacks concrete slowly	1, 2, 3, 4, 5, 6, 7
Tanning liquor	Depends on liquid. Most of them have no effect. Tanneries using chromium report no effects. If liquor is acid, protect with	1, 2, 3, 4, 5, 6, 7
Vinegar	Disintegrates (See acetic acid)	1, 2, 3, 4, 5, 6, 7
Washing soda	Same as sodium carbonate	1, 3, 4, 5, 6, 7
Whey	The lactic acid will attack concrete	1, 2, 3, 4, 5, 6, 7
Wine	Many wine tanks with no surface coating have given good results but taste of first batch may be affected unless concrete has been given tartaric acid treatment	For fine wines the concrete has been treated with 2 or applications,* (1 litertaric acid in 3 pint water.) Sodium silicate is alseffective. In a fecases tanks are line with glass-tile.
Wood pulp	None	None.

of tartaric acid solution.

MISCELLANEOUS INFORMATION

Material	Effect on Concret	te Surface treatment
Alizarin Anthracene Benzol Carboxol Cumol Paraffin Pitch Toluol Xylol	None	None
Carbolineum Creosote Cresol Lysol Phenol)) Disintegrates slowly	1, 2, 3, 5

VEGETABLE OILS

Material	Effect on Concrete	Surface treatment
Cotton seed	No action if air is excluded. Slight disintegration if exposed to air.	None 1, 2
Rosin	None	None
Almond Castor China-wood Cocoanut Linseed Olive Peanut Poppy seed Rope seed Soy-bean Tung Walnut	Disintegrates surface slowly	1, 2
Turpentine	None—Considerable penetration	1, 2

Applied in thin coats the material quickly oxidizes and has no effect. Results indicated above are for constant exposure to the material in liquid form.

FATS AND FATTY ACIDS (Animal)

Material	Effect on Concrete	Surface treatment
Fish oil	Most fish oils attack concrete slightly. Menhaden oil does not.	1, 2
Folio to Lard and lard oil Tallow and tallow oil	Disintegrates surface slowly	1, 2
	MISCELLANEOUS	
Material	Effect on Concrete	Surface treatment
Alcohol	None	None
Ammonia water (Am. Hydroride)	Disintegrates slowly	1, 3, 4, 5, 6, 7
Baking soda	Same as sodium bicarbonate—no effect in weak solutions and dry salts. For strong solutions treat concrete.	1, 2, 3, 4, 5, 6, 7
Hect	Beer will cause no progressive dis- integration of concrete, but in beer storage and fermenting tanks a spe- cial coating is used to guard against contamination of beer	Coating made and applied by a New Yor Company.
Bleaching powder	Mixtures of calcium chloride and calcium hypochloride do not affect dense concrete.	None
Borax, boracic acid,	No effect	None
Brine (salt)	No effect on dense concrete. Where subject to frequent wetting and drying of brine provide	1, 2, 3, 4, 5, 6, 7
Buttermilk	Same as milk	1, 2, 3, 4, 5, 6, 7
Charged water	Same as carbonic acid—slow attack	1, 2, 3, 4, 5, 6, 7
Caustic soda	(Sodium hydroxide) Disintegrates	1, 2, 3, 4, 5, 6, 7
Cider	Disintegrates (See acetic acid)	1, 2, 3, 4, 5, 6, 7
Cinders	May cause some disintegration	1, 2, 3, 4, 5, 6, 7

CHAPTER 14

CONTENTS

GENERAL DATA, TABLES, ETC.

Crushing strength of stones.

Strength of lime mortars.

Safe permissible loads on masonry.

Wind pressures.

Water pressures.

Working stresses for timber.

Task work for artisans.

Mensuration.

Properties of circles.

Areas of small circles.

Weights and measures.

Conversion factors.

CHAPTER 14

GENERAL DATA, TABLES, ETC.

Crushing Strength of Stones

	Tons/s.ft.
Granite	1000 to 700
Trap	400
Basalt	1000
Sandstone (Hard)	600
" (Medium)	400
Limestone (Hard)	4()()
(Soft)	100
Brick (1st Class)	100
Cement concrete 1:2:4	180

Strength of Lime Mortars

		3 months	27 menths
	T	ons/sq.ft.	Tons/sq.ft.
Hydraulic Kankar Lime	1:1	71	107
	1:14	66	104
	1:2	64	118
	1:23	52	104
	1:3	415	85
Fat lime	1:2	4.8	
-do- Surkhi	2:1:6	59	-
-do- Blacksoil Surkhi	2:1:6	411	-

Safe Permissible Loads on Masonry

		Tons/s.ft
1.	Brick in mud	11
2.	Brickbat concrete in lime	2
3.	Stone metal concrete in lime	3 to 3½
4.	Laterite masonry in lime	2
5.	-do- (good quality stone)	3

		Tons/s.ft.
6.	Country brickwork in lime	2 to 3½
7. 8.	1st Class ,, ,,	4 to 5
8.	C. R. Masonry in lime	3.5 to 7
9.	—do— (granite)	ő
10.	Country bricks in cement	4 to 6
11.	1st Class bricks —do—	8
12.	Granite ashlar	15
13.	Trap —do—	20
14.	Cement Concrete	
	1:2:4	35
	1:3:6	25
	1:4:8	19

Wind Pressures in India & Pakistan.

10 LBs/sq. ft.

Karachi Dist., Cutch and Saurashtra.

20 LBs./sq. ft.

Madras, Vellore, Nellore & Masulipatam Districts.

15 LBs/sq. ft.

Makran, Hyderabad (Sind), Deesa, Ahmedabad, Surat, Bombay, Poona, Ratnagiri, Goa, Belgaum, Karwar, Mangalore, Mercara, Coconada, Vizagapatam, etc.

10 LBs/sq. ft.

For the rest of India and Pakistan. The above allowance is on safe side.

Wind velocity and pressure.

	Nature of wind.	Equivalent velocity	Mean wind pressure
		miles 1 hour.	lbs. per sq. foot.
1.	Moderate breeze	15	0.67
٠).	Fresh breeze	21	1.31
3.	Strong breeze	27	2.30
4.	Strong gale	50	7.70
5.	Whole gale	59	10.50
6.	Storm	68	14.00

Water velocity and pressure.

P-1.8V2 for fresh water.

-1.85V2 for salt water.

V-velocity of current in feet/sec.

P-pressure on a plane normal to the current in lbs. per sq. foot.

GENERAL DATA, TABLES, ETC.

WORKING STRESSES FOR TIMBER (lbs. per sq. inch.)

No. 1 Quality.

	Young	isending		Sheet ,	Parallel to grain Perpendicular to grain						
Vanie	Modu- lus.	_ A	В	-	5411 - 1	X	B	C	A	В	C
Hassan Teak	1600	2200	2000	1570	125	1700	1580	1:34	700	520	420
o p	1200	1w50	1850	1100	190	3350	1280	1000	670	500	400
Yellow Pine	1030	1740	1580	1240	120	1350	1250	(Unit)	1003	300	210
hasi	DRA	(854)	MO	05/4/2	110	970	990	700	170	125	100
Decdara	1349	1740	1 (284)	1240	100	1970	1270	990	44D	330	260
Sal	1920	2120	1930	1510	175	1510	3 41561	1090			
Jarrah	1500	2300	2000	ietu		970	H10	430			
No. 2 Quality.	t										
Burmah Teak	1400	1830	1600	1300	115	1380	1200	1000	606	470	380
С. Р	1050	1510	1000	1070	110	1120	1000	10 m	670	450	200
Vellow Pine	1420	1450	1240	1020	105	1100	DAU	MENS	340	270	45 14
Kell	858	790	1 050	560	95	790	700	570	140	110	Vi
Deodara	1170	1440	1275	1020		1110	990	FIO	350	5477	240
4a1	1670	1770	1510	1850	160	1230	1098	890	1	,	
Jarrah	1300	1910	1640	1350		710	630	510			

Note

A Inside location

B Outside location.

C Wet location

DAILY TASK WORK FOR ARTISANS & LABOURERS.

(Working day 81 hours)

(Working day og	tious)
(1) Excavation: (5' lift & 100' lead)	
a earth	75 cft. per man
b soft murum	50
c average murum	35
d hard murum	25
e soft rock	16 ., ,,
f hard rock	8 ,, ,,
(2) Breaking metal	
trap stone 11° size	10 cft. per man
quartz -do-	13 ,,
laterite -do-	20 ,, .,
brick -do-	50 ,, ,,
(3) Conveying metal on head	
lead 100 ft.	85 cft. per man
200 ,,	65
300 ,,	50 ,, ,,
600 .,	35 ,, ,,
(4) Masonry	
a ashlar stone	2 cft. one mason & 1 man
b coarsed rubble 1st class	9
-do- 2nd ,,	12}
-do- 3rd	20
c brick 1st class	17 ,, ,,
,, 2nd ,,	25 ., .,
(5) Plastering	
‡" thick cement	33 s.ft. one mason & 1 man
rough cast	90 ,, ,,
pointing	60 ,, ,,

GENERAL DATA, TABLES, ETC.

(6) Flooring

Flagstone (làdi)	30	to 40	sq. ft.
Dressed trap stone		5	39
Cement concrete		30	28

(7) Carpenter

a	Panelled doors 4'×7'	10 days per piece
b	Plain planked	4 ,,
c	Glazed windows	6 **
d	Venetianed windows	14 ,,
е	Teakwood work (framing)	2 cft.
f	-do- (joinery)	1 ,,
g	Woodwork in Mangalore tiled	roof 100 sft.
h	-do- in G.C.I. roof	33

(8) Precast concrete works (in steel moulds)

2.	Pipes 6' diameter	12 nos.
b	Roofing tiles	90 ,,
C	Hollow blocks	100 ,, (1 mason & 2
	(in hand machine)	coolies)
d	Paving flags	30

(9) Cutting and bending reinforcement

}" φ to }" φ	2 cwts.
1° φ	21
1° \$ to 2° \$	4 ,,

(10) Erecting formwork

20 s.ft.

(11) Finishing

2	Whitewashing 3 coats	400 s.ft.
b	Distempering	200 ,,
c	Cement washing 2 coats	400 ,,

Mensuration

Circumference of circle Dia × 3.1416

Side of an equal square Dia × .8862

Side of an inscribed square Dia × .7071

Area of a circle Dia² x .7854

Area of a sector length of arc × 1 radius

Ellipse .7854 × long axis × short axis

Parabola Base × height × }

Parallelogram Height × base

Trapezium Sum of parellal sides × H/2

Volume or surfaces.

Lateral surface of a sphere 4 π r³

cylinder $2 \pi \text{ rh}$

.. cone $\pi r h^2 + r^2$

Contents of a sphere $\frac{4 \pi r^4}{3}$

do cone $\pi r h^2 + r^2$

do cylinder 2 = rh

do pyramid area of base × perpendicular

height + 3

GENERAL DATA, TABLES, ETC.

PROPERTIES OF THE CIRCLE

Chord of angle $A = \frac{c}{r}$

Versed sine of angle
$$\frac{1}{4}A = \frac{h}{r}$$

=1-Cos $\frac{A}{2}$

Area of circle = $\pi r^2 = .7854d^2$

Circumference of circle = $2 \pi r$

 $\pi = 3.141593$ $\pi = 9.869604$ Arc length abc = rA (A in radians) one radian = 57.296°

$$\begin{split} I &= \sqrt{\ h^2 + c^2/_4} \\ c &= 2 \sqrt{2rh - h^2} \\ r &= \frac{4h^2 + c^2}{8h} \\ h &= r - \sqrt{r^2 - c^2/_4} \end{split}$$

I about a diameter $=\frac{\pi d^2}{64}$ = .0491d² Side of a square having periphery equal to circumference of circle $\frac{r\pi}{2}$

Diameter of a circle circumscribed about a square = side of square × 1.41421.

AREAS OF SMALL CIRCLES ADVANCING BY 32nds OF AN INCH

Diameter In inches	Area aq, inches	Itianister In inches	Area aq inches	Diameter in inches	Area eq inches	Diameter in inches	Area eq. Inches
1 '32	0004	0 32	0421	3 7/12	-0017	25 32	-4794
1/16	0031	5/16	0767	3/16	24A5	13/16	-5163
3/10	9609	11.32	F(21)O	19/32	-2769	27/32	-5591
1/8	0113	3.8	-1104	5/8	3064	7/8	-6013
5/32	0192	13-32	-1296	21/32	3362	20/32	-6450
8/16	0276	7/16	-1503	11/16	3715	15/16	-6903
7:32	0376	15 '32	1726	23/32	-4037	31/32	-7071
1/4	0491	1/2	-1963	314	-441/6	1.	- 1 To 1

Moments of Inertia of Sections.

GENERAL DATA, TABLES, ETC.

Weights & Measures.

```
8 Ruttees - 1 masha
                              = 3/175 \, dr.
                                              Avois
12 mashas
           = 1 Tola
                              = 12/175
                             = 2 = 125 O2S.
 5 Tolas
           ===
               1 chattak
                             = 2^{8/83} lbs.
16 chattaks = 1 seer
                             = 82^{2/87} lbs.
40 seers
            = 1 maund
 4 chattaks = 20 Tolas
                              = 2^{2}/_{35} lbs.
 4 Paus
            = 1 seer
 5 seers
            - 1 Pansari
16 Drams
                1 ounce
16 ounces = 1 pound
14 pounds = 1 stone
28 pounds = 1 quarter
112 pounds = 1 hundredweight (cwt.)
20 cwts.
           = 1 Ton.
 4 inches
            = 1 hand
 9 inches
           1 span
           = 1 foot
 12 inches
 3 feet
            = 1 yard
 5 feet
            - 1 pace
 6 feet
            - 1 fathom
54 vards
           = 1 rod pole
 4 poles
            = 1 chain
 10 chains
            = 1 furlong
           = 1 mile (one nautical mile=6080 ft.
 8 furlongs
 3 miles
            = 1 league 1 Knot = 1 nautical mile/hour.)
144 square inches
                      I square foot
 9 square feet
                   = 1 square yard
                  = 1 square perch
301 square yards
                     1 rood
40 perches
 4 roods
                   = 1 acre
640 acres
                  = 1 square mile
                      4840 sq. yds.
                  ==
an acre
```

Metric Measures.

(1) Length:

Millimeter (m.m.)		.039370 inches
Centimeter =	101 m.m.	200	.393704 ,,
Decimeter =	= 10 ² m.ms	=	3.937043
Meter =	10 ³ m.ms	=	39.370428 ,,
Decimeter =	104 m.ms	==	393.70428
			= 32.80869 ft.
Hectometer =	105 m.ms	222	= 328.0869 ft.
Kilometer	10 ⁶ m.ms	100	= 3280.869 ft.

(2) Area

Square millimete	er (m	.m ³)	22	.001550 sq. inches.
Sq. Centimeter	=	10 ² sq. m.ms	=	.1550 sq. inches
Sq. Decimeter	-	104 sq. m.ms	=	15.5003 sq. inches
Sq. Meter	==	10° sq. m.ms	=	1550.03 sq. inches
				= 10.764 s.ft.
Sq. Kilometer	=	10 ¹² sq. m.ms)	= 10764101 s.ft.
	-	106 sq. meters	. [247.11 acres.

(3) Capacity.

Millilitre	20 mm	.0610254 Cubic inches.
Centilitre	-	10 Mililitres = .610254 Cubic in.
Litre	-	10 ³ mililitres = 61.0254 Cubic in.
Kilolitre	-	35.3156 Cubic ft.

(4) Weight.

Milligramme	22	$\frac{1}{10} \text{ Centigramme} = \frac{1}{10^3} \frac{\text{gramme}}{.015432} = \frac{1}{10^3} \frac{1}{.015432} = \frac{1}{10^3} = \frac{1}{10^3} \frac{1}{.015432} = \frac{1}{10^3} = \frac{1}{10^3} \frac{1}{.015432} = \frac{1}{10^3} =$
Gramme	-	= 0.03527 oz.
Kilogramme	-	10^3 grammes = 2.2046 lbs.
Tonne	_	1000 Kilogrammes = .9843 Tons.

(5) Volume.

1	Cubic	Centimeter	(c.c.) =	.06103	Cubic	inches.		
1	Cubic	Meter	1,000,000	c.cs	- 35	.3156	Cubic ft.	
					= 1.	31 Cubi	ic yds.	

GENERAL DATA, TABLES, ETC.

Conversion factors.

Multiply by	To convert	То	
7000 28.35 .065 50.8 1016.0 4.546 10 .454 70.3 2.3 0.7 .068 1.575 4.883 .593 16.02 .0998 .138 .33 1014 746 33000 76 44 0.1 0.252 14.7 0.70 9.55 .737	Pounds (avoir) Ounces (avoir) Grains Cwts. Tons Gallons of water Pounds of water Ib/sq. inch -dodo- Tons/sq. inch Lbs./Cubic yd. Lbs./Cubic ft. Lbs./gal. Foot Ibs. Foot Tons H. P. "" Watts "" Watts "" Watts "" Carcels Joules	Grains (troy) Grammes -do- Kilogrammes -do- Litres Pounds Litres gms/sq. cm. Head of water ft M. atmospheres Kgm./mm² Kgm./m² Kgm./m² Kgm./m² Kgm.m meters Tonnes meters Tonnes meters Force-de-cheval Watts Ft. lbs/min Kg. m/sec. Ft. lbs./min Kg m/sec. Calories Lb./Sq. inch English Candles Candles Ft. lbs.	.000143 .0352 15.38 .01968 .000984 .22 .1 .2202 .0142 .434 1.4285 14.7 .635 .205 1.686 .0624 10.02 7.23 3 .9861 .00134 — .01316 .0227 10 3.97 .068 1.1111 .1047 1.357
88	Miles/hour To obtain	Ft./min	multiply by
	10 obtain	rom	above.

Multiply by	To Convert	То	1
197	meters/sec	Ft/min	.00508
1.8	C.H.O.	B.Th.U.	.5555
0.0208	Centipoise	Lbs/m² sec	1 48
1.488	lbs/ft	kgm litre	0.672
0.496	lbs/yd	-do-	2.016
3333.33	tons/ft	-do-	0.0003
1111.11	tons/yd	-do-	0.0009
0.2818	lb/mile	kgm/kilometer	3.548
10.936	tons/sft	tonnes/meter ²	0.0914
1.215	tons/syd	-do-	0.823
1.329	tons/cu. yd.	tonnes/m³	0.752
0.01426	grains/gallon	gm/litre	70.12
48.905	gallons/sft	litres/m²	0.0204
25.8	inch/tons	kgm/meters	0.0387
0.477	lbs/H.P.	kgm per cheval	2.235
0.0916	sft/H.P.	m/2 cheval	10.913
0.0279	cft/H.P.	m³/cheval	35 806
2.713	Heat units/H.P.	calories/m ²	0.369
	To obtain	From	Multiply by above

METRIC EQUIVALENTS OF FEET & INCHES

(figures indicate metres)

frent . !	6	1	:	3	4	•	6	?	٨	y	10	11	10
4.5	()	Ini	410	-214	1 -219	1-524	1 820	2 100	2:4%	2 -7 68	3.044	3-312	7 607
1	11254	-330	ئ8 <i>ۇ</i>	-940	1 -244	1 549	1 -834	1.69	2.163	2-765	3 - 077	3-274	2 460
2	035e3A	-350	660	-963	1-240	1 -505	1 440	2-184	2 489	2-794	2 009	8 -465	3 7(ui
3	10702	-39.2	රුප්ර	-991	1 -203	1 -600	1 905	1 100	2-314	2-419	3-154	8 - 025	3 773
4	-1016	-411/5	-711	1-016	1 -226	1-026	1 -031	13.	2.540	2-844	3 150	3 454	3 760
D	1270	- (32	7.37	1-011	1 -346	1 4651	1 4950	g 200	2.585	2-870	3 175	3 479	3 744
	1.524	-457	702	1 -066	1 -371	1 -676	1 981	: 244	2-300	2 835	3 -200	3 505	5 A10
7	-1775	1467	242	1-092	1 -397	1.702	3 007	2-311	2-616	2-921	3 - 226	3 530	3 435
	2001	-3.63M	-613	1-117	1 412	1 -727	3 03:	2.386	2 641	2 946	3-251	3-555	3 460
9	2244	-3.23	:Aite	1-142	1 -184#	1 -783	2-057	1 M2	1.667	2 974	3 276	3-5NI	7 884
10	-2540	-229	864	1 -168	1 :473	1-774	2:061	347	2-692	2 107	3 -200	3 664	2-911
31	-2704	-3,64	889	1-193	1 -408	1:603	2-106	3-110	2:717	3 022	3 -327	3 632	3 936

ENGLISH	EQUIVALENTS	OF	CMS &	MILLIMETERS
---------	-------------	----	-------	-------------

		n	1	30 **	3	t.	ô	ß	7	a	q	10 cms.
m m	n	13	1937	-TAT4	1-1811	1-5748	1 Servers	7 3627	2 - 2220	3-1495	3-9453	2 -0370 Inches
	1	41804	-4151	-5268	1 2205	1 614.	_ 0079	2 -401A	2 -7952	2 15%	D 5427	
	2	-0767	4704	9661	1 -23Pn	1-6576	2 0473	2 6610	2 = 347	3-2254	n 6221	
	a	1181	-5118	2055	1 8502	1 -602%	2 0666	1 4801	2 0740	3-2677	3 -0614	
	4	1676	-2212	9449	1 -3366	1 7/123	2 -1260	2 5197	2 0131	3-2071	3.7008	
	5	-1068	1906	-9643	1 -3750	1 -7717	2 -1651	2-5591	2 4624	1 5665	5.7402	
	6	2561	4000	1-0236	1 -4173	1 6110	2-3(47	2:59×4	2 9911	2 3547	3 7796	
	7	2758	4497	1 (0620	1 -4567	1 4544	2-2441	2 6996	3 0315	3 4252	3 4160	1
	А	-3150	7067	1:1024	1 -4061	1 6594	2.5833	2 -6772	3-0700	3 4645	3 00001	
	9	-3513	7480	1 -1417	1 -5354	1 -9291	2-2005	E 7166	3 1103	3 3040	3 8977	

GENERAL DATA, TABLES, ETC.

METRIC EQUIVALENTS:

(millimetres from inches and sixteenths)

Inch	es ;	1:16	1.8	3:16	1 4	5 10	3.6	7 16
0		1 -58	3 17	8 -76	a as	7 -93	9 52	11-11
1	25 400	56 (46)	Sn -87	20 - 26	31 -74	35 33	34 -98	36 -51
2	30/298	51:38	58 97	\$5 56	77 14	58 -73	00 32	61 91
8	76 - 190	77 ·7e	79 -37	BU US	80-51	41 17	AS -72	A7 -31
ā	101 60	103 19	104 -77	106 36	107 98	100 -54	111-12	112 71
â	127 -00	12A -59	130 -17	131 76	176 %	184 -94	136-32	138 -11
[6]	152-40	100 98	155 -57	157 -16	158 -75	160 33	161 -92	160-51
:	177 80	179 -3=	190 97	182 -34	104-15	155 -79	187 -32	168-01
Dis.	265-36	204 -78	Qua-117	207 96	209-55	211 -13	192 -72	214-31
n	228-60	230 14	231 -77	233 30	234 -94	296 53	234 15	229 71
160	251 00	255 - 55	257 - 17	234 78	260 35	261 -03	263 52	265 -11
11	279 -39	260-98	282 57	234-10	285 -74	207-32	288 92	290 51
12	304 :70	200 -25	307 97	201 26	311-14	310 73	314 30	216-91
12	330 -19	231 74	323 37	334 -96	336 -54	358 -12	439 72	341-31
1.8	335 -59	557 18	358 -77	360 36	301 94	363 53	204 115	360 -71
15	280 09	382 55	384 -17	3A5 -76	387 34	384 93	700-52	192 -11
16	406 29	107 9d	400 -57	411 -16	412-74	414 33	410-93	417 -50
17	431 79	433 -08	434 97	436-54	438 - 14	439 -73	461-32	142 90
1e	457 19	458 -78	460 37	461 -96	463 54	465 -13	1 100 72	46# 30
10	457 19	458 -78	460 37	161-96	102 24	100.13	(10) 72	

METRIC EQUIVALENTS: (millimeters from inches and sixteenths)

·		0.14	# IA	11/14				
Terres	1 2	0 16	5/8	11/10	3.4	13110	7 8	15 19
								1
61	12.70	14 -28	15 -87	17 -46	19-05	50.63	22 (22	23 :81
1	0.00	310 GB	41 27	42 80	44 44	30.03	47 -62	49 21
2	e# 4n	65 - 08	80 67	8m -24	69:34	71 43	73 (12)	74-61
13	BATHS	(50) (63)	92 07	Win -6-6	95.24	(00 100)	14 42	100 01
4	114-30	15 ·80	117 47	119-06	129 43	122 -24	123-62	123-41
5	139 -70	141 -25	142 57	144-46	166 05	147 68	149 22	150 41
6	165 -10	100 65	168 27	169-56	171 -45	173 05	174 62	176 21
;	100 50	192 04	193-67	102-20	196 :65	19n 43	200-02	201 41
a	215 -00	217 -88	219 07	220 -06	204 85	223 93	225 12	227 01
9	241 -30	242-8A	244 -47	246 -06	247 65	210 -53	250 82	252 -41
10	266 -70	264 - 24	269 47	271 -46	273-05	274 63	270 22	277-61
Lt	202-10	293 68	500 B1	200 M	295 44	100 03	301 -02	303 21
12	317 .6	319-08	330 67	322 20	323 41	325 43	327 02	32n -0]
1:	342 -00	13-6-4-10-1	346 -07	347 -66	349 - 24	350 -83	352 42	St 01
14	Day 0.00	307 141	371 -47	373 06	174 -64	376 - 23	377 -82	379 -41
15	304.60	16.5	796 -87	398 -46	100-01	401 -63	1000112	404 51
Ţ os	419 -00	+20 08	421 27	423 -86	825 · 84	427 -03	429 62	130 20
17	444 49	8240 TOE	447 -07	440-25	450 -84	452 43	454 02	453 -00
18	400 99	471 -48	473 07	474-65	476 -24	477 58	479 42	601 (66)

GENERAL DATA, TABLES, ETC.

TABLE OF ENGLISH WEIGHTS EXPRESSED IN INDIAN WEIGHTS

WEIGHTS									
English	Intian	English	Initian	Elugitah	Tudian	Haglish	Indian		
Liu. 2	Mds. Sre 1	16	21 31	34	W25 22	50	2450 0		
4	9	10	24 20	36	980 0	92	2504 18		
6	3	Tone. 1	27 9	38	1034 18	9-8	2058 20		
â	4	4	54 18	40	1089 30	96	2018 13		
10	5	3	51 27	42	1148 13	(un)	2067 31		
12	100	4	108 36	44	1197 31	100	2722 0		
16	7	5	136 4	46	1202 9	200	5444 In		
16	5	M	103 13	4.8	1306 27	400	10688 86		
19	9	•	190 22	50	1361 4	500	13011 4		
20	10	8	217 31	0.2	1415 22	1000	urusu b		
22	1.1	9	245 0	54	1470 0				
24	12	10	272 0	525	1524 18	100 Melo=	3 673 Tons.		
26	13	11	290 18	Sh	1578 36	1 Ton =	27 -22 Mila		
Qrts. 2	1.4	12	826 27	60	1633 18	1 Md	85 29 11 -		
9	27	13	263 36	62	1087 83				
L.	1 1 1	14	381 4	64	1742 9				
Cuts. 1	1 14	15	406 13	66	1796 27				
2	2 29	16	485 22	0.5	151 4				
:	4 3	17	402 31	70	1905 22				
	5 28	16	490 U	72	1960 0				
	6 3:	19	617 9	76	2014 18				
i	8 7	20	544 18	76	2068 36				
	9 21	22	206 150	76	2123 13				
4	10 30	24	653 18	50	2177 31				
I	12 10	26	707 31	82	2232 9				
1	0 18 2	28	762 9	34	2284 27				
1	2 16 13	30	816 27	566	2341 4				
1	4 19 5	32	871 4	199	2395 22				
			f						

INDEX

A

ADULTERATION OF CEMENT 6 AERATED CONCRETE 216 AGGREGATES, GENERAL 7, 41, 34

Lightweight 216
Particle shape 12
Site treatment 7
Storage of 8
Tests on 9
Weights of 14

AIR-ENTRAINING CEMENT 2
AIR-ENTRAINED CONCRETE 218
ALUMINOUS CEMENT 2
ASBESTOS CEMENT 226

В

BEAMS 113, 127

Charts for 116, 141
Continuous beams 80
L beams 127
Rectangular beams 127, 119
Tee beams 127, 133

BENDING MOMENT DIAGRAMS
70

BLAST FURNACE CEMENT 2 BULKING OF SAND 13

C

CANTILEVERS 70, 73

Moment Diagrams 70, 73 Shear Diagrams 70, 73

CEMENT

Admixtures 229
Adulteration tests for 6

Aluminous 2
Asbestos 226
Blast furnace 2
Coloured 1
Low heat 2
Masonsy 2
Modified 3
Pozzolanic 2
Soil 223

Air-entraining 2

Specifications of 4 Storage of 3

Weight of 6

COLUMNS 155

Details of 158

Eccentric loading of 170, 171

Footings 179

Helical binding of 162, 163

Increase of compressive strengths

157

Slenderness effect on 160

COLLOIDAL CONCRETE 209 COLOURED CEMENTS 1 CONCRETE

Acrated 216
Air entrained 218
Colloidal 209
Effects of acids, oils on 231
Essential requirements of 28
Gunite or shot concrete 210
Light-weight 216
Mix design of 29
Precast 217
Prepacked 210

Prestressed 212
Proportioning of 29, 50
Saw dust 214
Slump tests of 27
Water cement ratio of 25
Water proofing of 229
Weight of 31

CONTINUOUS BEAMS

Moment diagrams of 80 Shear diagrams of 80

CONVERSION FACTORS 253 CIRCLE, PROPERTIES OF 249

Đ

DESIGN OF

Circular tanks 199
Columns 155, 164
Concrete mixes 29
Footings 179, 182
Rectangular beams 113, 120
Slabs 89, 101
Tee beams 127, 133

F

FOOTINGS 179 Soil pressure 180, 195

FLOOR

Slabs 89, 102 Systems 219

G

GUNITE 210

L

LIGHT-WEIGHT
Aggregates 216
Concrete 216

LOADS

Dead loads 61 Live loads 68 LOW HEAT CEMENT 2

M

MASONRY CEMENTS 2 MODIFIED CEMENTS 2 MODULAR RATIO 91 MOMENT

> Bending 70, 129, 86a, 86b Inertia of sections 250 Resistance 90, 94, 129

> > N

NEUTRAL AXIS 90, 94, 114

p

POZZOLANIC CEMENTS 2 PREFABRICATED (PRECAST) CONCRETE

Advantages of 217 Disadvantages of 217 Requirements of 217 Uses of 218

PREPACKED CONCRETE 210

PRESTRESSED CONCRETE

Advantages of 212 Methods of 212 Principles of 212 Theory of 213 Uses of 214

R

RAPID HARDENING CEMENT 1
REINFORCEMENT (See Steel)
RETAINING WALLS

Cantilevered 190 Charts for 189-194 Earth pressures 190

S

SAND, BULKING OF 13 SAW DUST CONCRETE 215 SHOT CONCRETE 210 SHEAR

> Diagrams 70, 71 Stirrups 146, 148, 151

SLABS

Charts for design of 95 Tables for design of 100

SLUMP TEST OF CONCRETE 27, 49

SOIL CEMENT

Construction 225

Requirements of 223

Tests for 223

SPECIFICATIONS FOR CEMENT

STEEL

Allowable stresses 18 Areas of 22 Expanded steel 20 Mesh sheets of 21 Spacing of 22 Weights of 22 Welded fabric 18

STORAGE OF

Aggregates 8 Cements 3 STRENGTH OF

Concrete 33, 89, 115

Lime mortars 243

Steel 18, 89, 115

Stones 243

Timbers 245

SPECIFICATIONS FOR CEMENT 4
SPECIFIC GRAVITY 15

T

TANKS

Circular 200, 203

W

WATER

Functions of 15 Tests for 16 Weight of 16

WATER, CEMENT RATIO 25, 45 WATER PROOFING OF CON-CRETE 229

WEIGHTS OF

Aggregates 14

Cement 6, 90 Concrete 66

Materials 61

Steel 22

Timber 63

Water 16, 62

WIND PRESSURES

India 244

Pakistan 244

CHARTS

	Page
Beams, Bending moments for loads, spans and end condi-	
tions of rc.	86
Beams, R.M. and At for various stresses and sizes of	
rectangular r.c	116
Beams, —do—	117
Beams, —do—	118
Beams, design for various stresses of r.c. tee	128(a)
Beams, —do—	128(b)
Beams, values of t/d against Q for simply supported tee	130
Beams, —do—	131
Beams, —do—	132
Beams, values of 'n' for various stresses of tee	141
Beams, stirrup spacing for r.c	147
Columns, safe load for various sizes and percentages of	
steel in r.c	156
Columns, effect of helical binding, in r.c.	163
Columns, design of, with eccentric loads	171
Columns, location of N.A. with eccentric loads for	172
Columns, design of, with eccentric loads	173
Columns, safe load for different sizes with eccentric load-	
ing and 1% steel	174
Columns, —do— with 2% steel	175
Columns, —do— with 3% steel	175
Footings, values of constant "K" against Ratio "R" for r.c.	180
Retaining walls, values of constant "k1" against surcharge a	
for	189
Retaining walls, value of pressure 'P' against depth of fill-	
ing for	191

	Page
Retaining walls, value of pressure 'P' against depth of fill-	
ing for vertical member of	193
Retaining walls, B.M. against depth of filling for vertical	
member of	193
Retaining walls, B.M. against depth of filling for heel	
member of	194
Stabs, bending moment per foot width for various loads,	oe.
spans and end conditions of r.c	85
Slabs, values of "n" for different stress ratios for r.c.	91
Slabs, values of "p" for different stress ratios for r.c.	93
Slabs, values of "n" for various percentages of steel for r.c.	95
Slabs, values of 'Q' for various percentages ot steel and	
values of 'm' for r.c.	96
Slabs, R.M. for various amounts of steel for r.c.	97
Slabs, —do—	98
Slabs, R.M. for various amounts of steel for r.c.	99
Slabs, R.M. and At for different mixes for r.c.	108
Slabs, design for various stresses of r.c. floor	108(a)
Slabs, —do—	108(b)
Slabs, —do—	108(c)
Slabs, —do—	108(d)
Tanks, capacity in gallons for various heights and dia-	
meters of	200
Tanks, position of maximum hoop tension in	201
Tanks, amount of maximum hoop tension in	201
Tanks, value of restraint moment in	202

TABLES

	Table No.	Page
Aggregate - cement ratio for workability (?"		
rounded aggregate)	6A	40
Aggregate—Do.—(3" irregular gravel aggregate)	6B	41
Aggregate—Do.—(3" crushed rock aggregate)	6C	42
Aggregate—Do.—(1½" irregular river gravel aggregate)	6D	43
Aggregates, fineness modulii for different sizes		
of mixed	5	34
Beams, values of bending moments for	3(b)	86b
Beams, R.M. and At for various depths and		
widths of rectangular	5(a)	119
Beams, —do—	5(b)	120
Beams, —do—	5(c)	121
Beams, safeload uniformly distributed including		
self weight for reetangular	5(d)	122
Beams, —do—	5(e)	123
Beams, values of j for tee	6(a)	129
Beams, design for various mixes and stresses of	- 100	
tee	6(b)	133
Beams, —do—	6(c)	137
Columns, design of square (New L.C.C.R.)	8(a)	164
Columns, -do- (Old L.C.C.R.)	8(b)	165
Columns, -do- (I.S.I. Code)		166
Concrete, strengths of cubes for various working	1	32
Concrete, cube crushing strength vs. water cement		34
ratio	2	33
Concrete, degree of workability for various		33
requirements	3	33
Concrete, water content per 100 c.ft. of	4	34

Table No.	Page
9(a)	182
9(b)	184
10(a)	195
7(a)	148
7(b)	148
7(c)	149
7(d)	150
7(e)	148
7(f)	148
3(a)	86a
4(a)	100a
4(b)	101
4(c)	102
4(d)	103
4(e)	104
4(f)	105
4(g)	106
4(h)	107
11(a)	203
	10(a) 7(a) 7(b) 7(c) 7(d) 7(e) 7(f) 3(a) 4(a) 4(b) 4(c) 4(d) 4(e) 4(f) 4(g) 4(h)

CATALOGUED.

Central Archaeological Library,

NEW DELHI- 1765

Call No. 620.136

Author-

Title_Concrete Engineers

Borrower No. | Date of Issue |

"A book that is shut is but a block"

ARCHAEOLOGICAL

GOVT. OF INDIA

Department of Archaeology

NEW DELHI.

Please help us to keep the book clean and moving.

S. S., 148. N. DELHI.