Recall from the lecture the following variants of the SAT-problem:

- LEX-MAXIMAL MODEL SAT
- WEIGHT-MAXIMAL MODEL SAT
- LogLEX-MAXIMAL MODEL SAT
- CARD-MAXIMAL MODEL SAT
- CARD-MINIMAL MODEL SAT

And also recall the following problem reductions.

Reduction 1. From LEX-MAXIMAL MODEL SAT to WEIGHT-MAXIMAL MODEL SAT:

Consider an arbitrary instance φ ; (x_1, \ldots, x_n) of **LEX-MAXIMAL MODEL SAT**, where φ is a Boolean formula over variables X and (x_1, \ldots, x_n) is an ordering of the variables in X.

We define the instance φ ; (x_1, \ldots, x_n) ; $(w(x_1), \ldots, w(x_n))$; z of **WEIGHT-MAXIMAL MODEL SAT** as follows:

- Formula φ (and, hence, also variable set X) is left unchanged.
- For every $i \in \{1, ..., n\}$, we define the weight $w(x_i) = 2^{n-i}$.
- We set $z = x_n$.

Reduction 2. From LogLEX-MAXIMAL MODEL SAT to CARD-MAXIMAL MODEL SAT:

Consider an arbitrary instance φ ; (x_1, \ldots, x_n) of **LogLEX-MAXIMAL MODEL SAT**, where φ is a Boolean formula and (x_1, \ldots, x_n) is an ordering of logarithmically many variables in φ ; moreover, let $Y = \{y_1, \ldots, y_m\}$ denote the remaining variables in φ .

We add the following fresh variables:

- "copies" of each variable x_i , i.e. for every $i \in \{1, ..., n\}$, we introduce $2^{n-i} 1$ new variables $x_i^{(1)}, x_i^{(2)}, ..., x_i^{(r_i)}$ with $r_i = 2^{n-i} 1$.
- a primed copy of each variable in $Y: Y' = \{y'_1, \dots, y'_m\}.$

Then we construct the instance ψ ; z of **CARD-MAXIMAL MODEL SAT** as follows: We set $z = x_n$ and we define ψ as

$$\psi = \varphi \wedge \bigwedge_{i=1}^{n} \left((x_i \leftrightarrow x_i^{(1)}) \wedge \dots \wedge (x_i \leftrightarrow x_i^{(r_i)}) \right) \wedge \bigwedge_{i=1}^{m} y_i \leftrightarrow \neg y_i'$$

Reduction 3. From CARD-MAXIMAL MODEL SAT to CARD-MINIMAL MODEL SAT:

Consider an arbitrary instance φ ; x_i of **CARD-MAXIMAL MODEL SAT** where φ is a Boolean formula over the variables $X = \{x_1, \dots, x_n\}$.

We add primed and double-primed copies of the variables, i.e. $X' = \{x'_1, \ldots, x'_n\}$ and $X'' = \{x''_1, \ldots, x''_n\}$.

Then we construct the instance ψ ; x_i of **CARD-MINIMAL MODEL SAT** as follows:

$$\psi = \varphi \wedge \bigwedge_{i=1}^{n} \left((x_i \leftrightarrow \neg x_i') \wedge (x_i \leftrightarrow \neg x_i'') \right)$$

Exercise 1 (4 credits). Prove the correctness of the above reduction from LEX-MAXIMAL MODEL SAT to WEIGHT-MAXIMAL MODEL SAT.

Solution In a small abuse of notation let $w(x_1, \ldots, x_n) := (w(x_1), \ldots, w(x_n))$. Moreover, consider the following

Definition 1. Let X be some set (or ordering) of variables, let \mathcal{I} be an interpretation and let w be the weight function as introduced in Reduction 1 over the variables in X, then let $w^{\mathcal{I}}$ be defined as

$$w^{\mathcal{I}}(x) := \begin{cases} w(x) & \text{if } \mathcal{I} \models x \\ 0 & \text{otw.} \end{cases}$$

Moreover, for some $X' \subseteq X$ let $\omega^{\mathcal{I}}(X') := \sum_{x \in X'} w^{\mathcal{I}}(x)$.

Lemma 2. Let φ be a propositional formula over the set of variables X, let $\overline{x} := (x_1, \ldots, x_n)$ be a linear ordering of X. Then

 $(\varphi; \overline{x}) \in \textbf{LEX-MAXIMAL MODEL SAT} \iff \tau(\varphi; \overline{x}) \in \textbf{WEIGHT-MAXIMAL MODEL SAT}$ where $\tau(\varphi; \overline{x}) = (\varphi; w(\overline{x}); x_n)$, i.e. the transformation as presented in Reduction 1.

Proof. Let $I := \{1, ..., n\}$. Each direction is shown separately.

 \Rightarrow Assume that $(\varphi; \overline{x}) \in \mathbf{LEX\text{-}MAXIMAL}$ MODEL SAT. Hence, there exists a lexicographical maximal model \mathcal{I} of φ such that $\mathcal{I} \models x_n$. Hence, for any other model \mathcal{J} of φ there must exist a $k \in I$ such that $\forall i \in \{1, \ldots, k-1\}, \mathcal{I}(x_i) = \mathcal{J}(x_i)$ and $\mathcal{I} \models x_k$ and $\mathcal{J} \not\models x_k$. If \mathcal{J} does not exists, \mathcal{I} is trivially weight maximal. Otherwise, it must be that

$$\omega^{\mathcal{I}}(x_k, \dots, x_n) \ge w^{\mathcal{I}}(x_k) = 2^{n-k} > \sum_{k=1}^n 2^{n-i} \ge \omega^{\mathcal{I}}(x_k, \dots, x_n)$$

That is, even if $\forall i \in \{k+1,\ldots,n\}$ $\mathcal{J} \models x_i$ one would have at most $\omega^{\mathcal{J}}(x_k,\ldots,x_n) = \sum_{k+1}^n 2^{n-i}$ and since both interpretations agree on all x_i smaller k it must be that $\omega^{\mathcal{I}}(\overline{x}) > \omega^{\mathcal{J}}(\overline{x})$. Therefore, from \mathcal{J} being arbitrary, it follows that \mathcal{I} is weight maximal. Furthermore, since $\mathcal{I} \models x_n$ one can conclude that x_n is true in a weight maximal model (w.r.t. $w(\overline{x})$). Hence, $\tau(\varphi; \overline{x}) \in \mathbf{WEIGHT\text{-}MAXIMAL MODEL SAT}$.

 \Leftarrow Assume that $\tau(\varphi; \overline{x}) \in \mathbf{WEIGHT\text{-}MAXIMAL}$ MODEL SAT. Hence, there exists a weight maximal model \mathcal{I} of φ such that $\mathcal{I} \models x_n$. Let \mathcal{J} be an arbitrary model of φ other than \mathcal{I} . If \mathcal{J} does not exists, \mathcal{I} is trivially lexicographically maximal. Consider the order imposed by the vector \overline{x} . Since \mathcal{J} differs from \mathcal{I} it must be that there exists a $k \in I$ where $\mathcal{I}(x_k) \neq \mathcal{J}(x_k)$ and where $\forall i \in \{1, \ldots, k-1\}$, $\mathcal{I}(x_i) = \mathcal{J}(x_i)$. Now there are two cases. If $\mathcal{I} \models x_k$ and $\mathcal{J} \not\models x_k$, then \mathcal{I} is lexicographically greater than \mathcal{J} . If $\mathcal{I} \not\models x_k$ and $\mathcal{J} \models x_k$, then

$$\omega^{\mathcal{J}}(x_k,\ldots,x_n) \ge w^{\mathcal{J}}(x_k) = 2^{n-k} > \sum_{k+1}^n 2^{n-i} \ge \omega^{\mathcal{I}}(x_k,\ldots,x_n)$$

However, as above, this directly implies that $\omega^{\mathcal{I}}(\overline{x}) < \omega^{\mathcal{I}}(\overline{x})$ causing a contradiction. With \mathcal{J} being arbitrary, it follows that \mathcal{I} is the lexicographically maximal model. Moreover, since $\mathcal{I} \models x_n$ it follows that x_n is satisfied in the lexicographically maximal interpretation of φ , and thus $(\varphi; \overline{x}) \in \mathbf{LEX-MAXIMAL\ MODEL\ SAT}$.

Exercise 2 (3 credits). Prove the correctness of the above reduction from LogLEX-MAXIMAL MODEL SAT to CARD-MAXIMAL MODEL SAT.

Solution

Definition 3. Let $(\varphi; \overline{x}) \in \text{LogLEX-MAXIMAL MODEL SAT}$ then $\tau(\varphi; \overline{x})$ is defined as $\tau(\varphi; \overline{x}) := (\tau(\varphi), x_n)$, with $\tau(\varphi)$ being the construction from Reduction 2. Moreover, for some $k \in \{1, \ldots, n\}$ let $\mathcal{X}_k := \{x_k, x_k^{(1)}, \ldots, x_k^{(r_k)}\}$, where $r_k := 2^{n-k} - 1$ (as defined in Reduction 2). Furthermore, let $\mathcal{X}_{\leq k} := \bigcup_{i \in \{1, \ldots, k\}} \mathcal{X}_k$. Analogously for $\mathcal{X}_{>k}$.

Definition 4. Let \mathcal{I} be an interpretation, then $\mathfrak{S}(\mathcal{I}) := \{x \mid \mathcal{I}(x) = \mathbf{true}\}$. Moreover, if \mathcal{I} is a model of the formula φ then one can construct the interpretation $\tau(\mathcal{I})$ such that $\forall i \in \{1, \ldots, m\}$ $\tau(\mathcal{I})(y_i) := \mathcal{I}(y_i) \wedge \tau(\mathcal{I})(y_i') := \neg \mathcal{I}(y_i)$, as well as $\forall i \in \{1, \ldots, n\}$ $\tau(\mathcal{I})(x_i) := \mathcal{I}(x_i) \wedge \forall j \in \{1, \ldots, 2^{n-i} - 1\}$ $\tau(\mathcal{I})(x_i^{(j)}) := \mathcal{I}(x_i)$.

Observation 5. For an arbitrary \mathcal{I} such that $\mathcal{I} \models \bigwedge_{i=1}^n \left((x_i \leftrightarrow x_i^{(1)}) \land \cdots \land (x_i \leftrightarrow x_i^{(r_i)}) \right)$ then for any $i \in \{1, \dots, n\}$ one has $\mathcal{I} \models x_i$ if and only if $\mathcal{I} \models x_i \land x_i^{(1)} \land \dots x_i^{(r_i)}$.

Observation 6. Take an arbitrary model \mathcal{I} of $\tau(\varphi)$. For any $i \in \{1, ..., n\}$ one has $\mathcal{I} \models y_i$ if and only if $\mathcal{I} \not\models y_i'$. Hence, for any other model \mathcal{J} of $\tau(\varphi)$ it must be that

$$|\mathfrak{S}(\mathcal{J}) \cap (Y \cup Y')| = |\mathfrak{S}(\mathcal{I}) \cap (Y \cup Y')|$$

Lemma 7. For the models \mathcal{I} and \mathcal{J} of $\tau(\varphi)$, consider the order $\overline{x} := (x_1, \ldots, x_n)$ on the basis of which $\tau(\varphi)$ was constructed. Then it holds that, there exists $k \in \{1, \ldots, n\}$ such that $\forall i \in \{1, \ldots, k-1\}$ one has $\mathcal{I}(x_i) = \mathcal{J}(x_i)$, as well as $\mathcal{J} \not\models x_k$ and $\mathcal{I} \models x_k$ if and only if $|\mathfrak{S}(\mathcal{J})| < |\mathfrak{S}(\mathcal{I})|$.

Proof. \Rightarrow By Observation 5, this implies that $\mathcal{X}_k \subseteq \mathfrak{S}(\mathcal{I})$ and $\mathcal{X}_k \cap \mathfrak{S}(\mathcal{J}) = \emptyset$. Meaning that,

$$|\mathcal{X}_{\leq k} \cap \mathfrak{S}(\mathcal{I})| = |\mathcal{X}_{\leq k} \cap \mathfrak{S}(\mathcal{I})| + 2^{n-k}$$

However, by construction $|\mathcal{X}_{>k}| < 2^{n-k}$. Thus it follows that $|\mathfrak{S}(\mathcal{J}) \cap \mathcal{X}_{\leq n}| < |\mathfrak{S}(\mathcal{I}) \cap \mathcal{X}_{\leq n}|$. By Observation 6, this implies that $|\mathfrak{S}(\mathcal{J})| < |\mathfrak{S}(\mathcal{I})|$.

 \Leftarrow If $|\mathfrak{S}(\mathcal{J})| < |\mathfrak{S}(\mathcal{I})|$, by Observation 6, there must exists an $k \in \{1, \dots, n\}$ such that $\mathcal{I} \models x_k$ and $\mathcal{J} \not\models x_k$. With respect to the ordering \overline{x} let this be the first of its occurrences. Assume that there exists a l < k such that $\mathcal{I} \not\models x_l$ and $\mathcal{J} \models x_l$ If this is the case then this implies that $\mathcal{X}_l \subseteq \mathfrak{S}(\mathcal{J})$ and $\mathcal{X}_l \cap \mathfrak{S}(\mathcal{I}) = \emptyset$. Meaning that,

$$|\mathcal{X}_{\leq l}\cap\mathfrak{S}(\mathcal{J})|\geq |\mathcal{X}_{\leq l}\cap\mathfrak{S}(\mathcal{I})|+2^{n-l}$$

However, by construction $|\mathcal{X}_{>l}| < 2^{n-l}$, thus even if k is satisfied by \mathcal{I} this would not matter, as it would still be the case that $|\mathfrak{S}(\mathcal{I})| < |\mathfrak{S}(\mathcal{I})|$, which is a contradiction. Hence, l does not exist. Now with k being the first of its occurrences, it must be the case that $\forall i \in \{1, \ldots, k-1\}$ one has $\mathcal{I}(x_i) = \mathcal{J}(x_i)$.

Observation 8. For the models \mathcal{J} and \mathcal{I} of $\tau(\varphi)$. Then $|\mathfrak{S}(\mathcal{I})| = |\mathfrak{S}(\mathcal{J})|$ if and only if $\mathfrak{S}(\mathcal{I}) \cap X = \mathfrak{S}(\mathcal{J}) \cap X$.

- Proof. \Rightarrow Assume that $|\mathfrak{S}(\mathcal{I})| = |\mathfrak{S}(\mathcal{J})|$ and $\mathfrak{S}(\mathcal{I}) \cap X \neq \mathfrak{S}(\mathcal{J}) \cap X$. Consider the order \overline{x} on the basis of which $\tau(\varphi)$ was constructed. Given this order, and from Observation 6, there must be a $k \in \{1, \ldots, n\}$ such that $\forall i \in \{1, \ldots, k-1\}$ one has $\mathcal{I}(x_i) = \mathcal{J}(x_i)$, as well as $\mathcal{J}(x_k) \neq \mathcal{I}(x_k)$. W.l.o.g. $\mathcal{J} \not\models x_k$ and $\mathcal{I} \models x_k$, thus from Lemma 7 it follows that $|\mathfrak{S}(\mathcal{J})| < |\mathfrak{S}(\mathcal{I})|$, which is a contradiction.
 - \Leftarrow This follows trivially from Observation 5 & 6.

Lemma 9. Let φ be a propositional formula over the set of variables $X \cup Y$, let $\overline{x} := (x_1, \ldots, x_n)$ be a linear ordering of X and let $Y := \{y_1, \ldots, y_m\}$. Then

- $(\varphi; \overline{x}) \in \mathbf{LogLEX\text{-}MAXIMAL}$ MODEL SAT $\iff \tau(\varphi; \overline{x}) \in \mathbf{CARD\text{-}MAXIMAL}$ MODEL SAT *Proof.* Each direction is shown separately.
 - \Rightarrow Assume that $(\varphi; \overline{x}) \in \mathbf{LogLEX\text{-}MAXIMAL}$ MODEL SAT. Hence, there exists a lexicographically maximal (w.r.t. \overline{x}) model \mathcal{I} of φ where x_n evaluates to true. Let $\mathcal{I}_{\tau} := \tau(\mathcal{I})$. By construction $\mathcal{I}_{\tau} \models \tau(\varphi)$. Hence, it remains to be shown that \mathcal{I}_{τ} is a cardinal maximal model. Take an arbitrary model \mathcal{J}_{τ} of $\tau(\varphi)$ other than \mathcal{I}_{τ} . If none exists, then \mathcal{I}_{τ} is trivially maximal in cardinality. Firstly, by Observation 6 it must be that $|\mathfrak{S}(\mathcal{J}_{\tau}) \cap (Y \cup Y')| = |\mathfrak{S}(\mathcal{I}_{\tau}) \cap (Y \cup Y')|$. Secondly, two cases ought to be considered. On the one hand, if $\forall i \in \{1,\ldots,n\}$ $\mathcal{I}_{\tau}(x_i) = \mathcal{J}_{\tau}(x_i)$ it follows that $|\mathfrak{S}(\mathcal{I}_{\tau})| = |\mathfrak{S}(\mathcal{I}_{\tau})|$ by Observation 8. On the other hand, since \mathcal{I}_{τ} must model φ , one can restrict it to the variables in $X \cup Y$ to obtain $\mathcal J$ which still models φ . Since, \mathcal{I} is lexicographically maximal with respect to \overline{x} , it follows that there must be a $k \in \{1, \ldots, n\}$ such that $\forall i \in \{1, \ldots, k-1\}$ one has $\mathcal{I}(x_i) = \mathcal{J}(x_i)$, as well as $\mathcal{J} \not\models x_k$ and $\mathcal{I} \models x_k$. However, since \mathcal{I}_{τ} agrees with \mathcal{I} and since \mathcal{J}_{τ} agrees with \mathcal{J} on all X's (and Y's), the same must hold for \mathcal{I}_{τ} and \mathcal{J}_{τ} . Hence, from Lemma 7 one obtains $|\mathfrak{S}(\mathcal{J}_{\tau})| < |\mathfrak{S}(\mathcal{I}_{\tau})|$. Therefore, from the two cases one obtains $|\mathfrak{S}(\mathcal{J}_{\tau})| \leq |\mathfrak{S}(\mathcal{I}_{\tau})|$ for some arbitrary model of $\tau(\varphi)$, and thus \mathcal{I}_{τ} is cardinal maximal. Finally, since $\mathcal{I}_{\tau} \models x_n$ it follows that $(\tau(\varphi), x_n) \in \mathbf{CARD\text{-}MAXIMAL}$ MODEL SAT.
 - \Leftarrow Assume that $(\tau(\varphi), x_n) \in \mathbf{CARD\text{-}MAXIMAL\ MODEL\ SAT}$. Hence, there must exits a model \mathcal{I}_{τ} of $\tau(\varphi)$ that is maximal in its cardinality. Clearly, by restricting \mathcal{I}_{τ} to the variables in $X \cup Y$, one can construct an interpretation \mathcal{I} such that $\mathcal{I} \models \varphi$. Now, take any arbitrary model \mathcal{J} of φ other than \mathcal{I} . Again, if \mathcal{J} would not exist then \mathcal{I} must be lexicographically maximal (w.r.t. \overline{x}). Then $\mathcal{J}_{\tau} := \tau(\mathcal{J})$ is a model of $\tau(\varphi)$. Moreover, by maximality of \mathcal{I}_{τ} it is known that $|\mathfrak{S}(\mathcal{J}_{\tau})| \leq |\mathfrak{S}(\mathcal{I}_{\tau})|$. Clearly, by Observation 6 it must be that $|\mathfrak{S}(\mathcal{J}_{\tau}) \cap (Y \cup Y')| =$ $|\mathfrak{S}(\mathcal{I}_{\tau}) \cap (Y \cup Y')|$. Hence, by Observation 5, the only difference in cardinality can occur due to the respective evaluation of the variables in X. Thereby, inducing two cases. On the one hand, if $|\mathfrak{S}(\mathcal{J}_{\tau})| = |\mathfrak{S}(\mathcal{I}_{\tau})|$, then it follows by Observation 8, that $\mathfrak{S}(\mathcal{J}_{\tau}) \cap X = \mathfrak{S}(\mathcal{I}_{\tau}) \cap X$, implying that \mathcal{I} is lexicographically equivalent to \mathcal{J} , i.e. they only differ on their assignments on the variables in Y. On the other hand, if $|\mathfrak{S}(\mathcal{J}_{\tau})| < |\mathfrak{S}(\mathcal{I}_{\tau})|$, then it follows from Lemma 7 that there exists a $k \in \{1, \ldots, n\}$ such that $\forall i \in \{1,\ldots,k-1\}$ one has $\mathcal{I}_{\tau}(x_i) = \mathcal{J}_{\tau}(x_i)$, as well as $\mathcal{J}_{\tau} \not\models x_k$ and $\mathcal{I}_{\tau} \models x_k$. However, this means that \mathcal{I}_{τ} is lexicographically greater than \mathcal{J}_{τ} w.r.t. the order \overline{x} . Since this carries over to \mathcal{I} and \mathcal{J} and since $\mathcal{I} \models x_n$ by assumption, it follows that $(\varphi, \overline{x}) \in \mathbf{LogLEX\text{-}MAXIMAL}$ MODEL SAT.

Exercise 3 (3 credits). Prove the correctness of the above reduction from CARD-MAXIMAL MODEL SAT to CARD-MINIMAL MODEL SAT.

Solution

Definition 10. Let φ be a propositional formula over the set of variables $X := \{x_1, \ldots, x_n\}$, then $\tau(\varphi)$ the formula as defined in Reduction 3. Moreover, consider a model \mathcal{I} of φ , then $\tau(\mathcal{I})$ is the interpretation $\forall i \in \{1, \ldots, n\}$ $\tau(\mathcal{I})(x_i) := \mathcal{I}(x_i) \land \tau(\mathcal{I})(x_i') := \neg \mathcal{I}(x_i) \land \tau(\mathcal{I})(x_i') := \neg \mathcal{I}(x_i)$.

Observation 11. Let φ be a propositional formula over the set of variables $X := \{x_1, \dots, x_n\}$. Let \mathcal{I} be a model of $\tau(\varphi)$. Then $|\mathfrak{S}(\mathcal{I}) \cap \tau(X)| = 2n - |\mathfrak{S}(\mathcal{I}) \cap X|$

Proof. Clearly,
$$\forall i \in \{1, ..., n\}$$
 $x_i \notin \mathfrak{S}(\mathcal{I}) \iff x_i' \in \mathfrak{S}(\mathcal{I}) \land x_i'' \in \mathfrak{S}(\mathcal{I})$. Hence,

$$|\mathfrak{S}(\mathcal{I})| = |\mathfrak{S}(\mathcal{I}) \cap \tau(X)| = |\mathfrak{S}(\mathcal{I}) \cap X| + 2(|X| - |\mathfrak{S}(\mathcal{I}) \cap X|) = 2n - |\mathfrak{S}(\mathcal{I}) \cap X|$$

where the first equality holds, if one considers only interpretations restricted to the variables in $\tau(X)$.¹

The following lemma demonstrates the correctness of Reduction 3

Lemma 12. Let φ be a propositional formula over the set of variables $X := \{x_1, \dots, x_n\}$. Then,

 $(\varphi; x_i) \in \mathbf{CARD\text{-}MAXIMAL}$ MODEL SAT $\iff (\tau(\varphi); x_i) \in \mathbf{CARD\text{-}MINIMAL}$ MODEL SAT

Proof. Each direction is shown separately.

 \Rightarrow Assume that $(\varphi; x_i) \in \mathbf{CARD\text{-}MAXIMAL}$ MODEL SAT. Hence, x_i is satisfied in a cardinal maximal model \mathcal{I} of φ . Using this, construct the interpretation $\mathcal{I}_{\tau} := \tau(\mathcal{I})$. By construction, $\mathcal{I}_{\tau} \models \tau(\varphi)$, thus it remains to be shown that it is cardinal minimal. Consider an arbitrary model \mathcal{J}_{τ} of $\tau(\varphi)$. Restrict \mathcal{J}_{τ} to the variables in X in order to create \mathcal{J} . Clearly, $\mathcal{J} \models \varphi$. By maximality of \mathcal{I} , any interpretation that satisfies φ must satisfy fewer or equally as many $x \in X$, i.e.

$$r = |\mathfrak{S}(\mathcal{J}_{\tau}) \cap X| = |\mathfrak{S}(\mathcal{J})| \le |\mathfrak{S}(\mathcal{I})| = |\mathfrak{S}(\mathcal{I}_{\tau}) \cap X| = o$$

However, by Observation 11, this implies that

$$|\mathfrak{S}(\mathcal{J}_{\tau})| = |\mathfrak{S}(\mathcal{J}_{\tau}) \cap \tau(X)| = 2n - r \ge 2n - o = |\mathfrak{S}(\mathcal{I}_{\tau}) \cap \tau(X)| = |\mathfrak{S}(\mathcal{I}_{\tau})|$$

Now with \mathcal{J}_{τ} being arbitrary \mathcal{I}_{τ} is a cardinal minimal model of $\tau(\varphi)$. Moreover, by assumption x_i is satisfied by \mathcal{I} and thus also by \mathcal{I}_{τ} .

Hence, $(\tau(\varphi); x_i) \in \mathbf{CARD\text{-}MINIMAL}$ MODEL SAT.

 \Leftarrow Assume that $(\tau(\varphi); x_i) \in \mathbf{CARD\text{-}MINIMAL}$ MODEL SAT. Hence, x_i is satisfied in a cardinal minimal model \mathcal{I}_{τ} of $\tau(\varphi)$. Using this construct the interpretation \mathcal{I} by restricting \mathcal{I}_{τ} to the set of variables in X. By construction, $\mathcal{I} \models \varphi$, thus it remains to be shown that \mathcal{I} is cardinal maximal. By minimality of \mathcal{I}_{τ} , any interpretation that satisfies $\tau(\varphi)$ must satisfy more or equally as many $x \in \tau(X)$. Now

¹as is required to obtain any notion of maximality

consider an arbitrary model \mathcal{J} of φ and construct $\mathcal{J}_{\tau} := \tau(\mathcal{J})$. Clearly, $\mathcal{J}_{\tau} \models \tau(\varphi)$ and thus

$$2n - |\mathfrak{S}(\mathcal{J}_{\tau}) \cap X| = |\mathfrak{S}(\mathcal{J}_{\tau}) \cap \tau(X)| = |\mathfrak{S}(\mathcal{J}_{\tau})| \ge |\mathfrak{S}(\mathcal{I}_{\tau})| = |\mathfrak{S}(\mathcal{I}_{\tau}) \cap \tau(X)| = 2n - |\mathfrak{S}(\mathcal{I}_{\tau}) \cap X|$$

which clearly is equivalent to $|\mathfrak{S}(\mathcal{J}_{\tau}) \cap X| \leq |\mathfrak{S}(\mathcal{I}_{\tau}) \cap X|$. However, by construction this is equivalent to $|\mathfrak{S}(\mathcal{J})| \leq |\mathfrak{S}(\mathcal{I})|$. Therefore, \mathcal{I} is a cardinal maximal model of φ . Moreover, by assumption x_i is satisfied by \mathcal{I}_{τ} and thus also by \mathcal{I} . Hence, $(\varphi; x_i) \in \mathbf{CARD\text{-}MAXIMAL}$ MODEL SAT.