

TOPIC OUTLINE

Node Voltage

Node Analysis Method

NODE ANALYSIS METHOD

NODE VOLTAGE

Node Voltage is the electrical potential difference at a specific node in a circuit relative to a reference node.

<u>example</u>

$$v_1 = 9V - 5V$$

$$v_2 = 5V - 0$$

$$v_3 = 5V - 0$$

NODE ANALYSIS METHOD

The <u>node analysis method</u> is based on Kirchhoff's current law (KCL), which is implicitly applied to establish voltage-current relationships forming a system of equations to solved for the <u>unknown node</u> <u>voltages</u>.

NODE ANALYSIS METHOD

KCL @a

$$-i_1 + i_2 + i_3 = 0$$

$$-\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} = 0$$

$$-\frac{v_o - v_a}{R_1} + \frac{v_a - 0}{R_2} + \frac{v_a - 0}{R_3} = 0$$

$$-v_o G_1 + v_a G_1 + v_a G_2 + v_a G_3 = 0$$

$$v_a(G_1 + G_2 + G_3) = v_o G_1$$

$$v_a = \frac{v_o G_1}{G_1 + G_2 + G_3}$$

ELECTRICAL POWER

Electrical power refers to the rate at which electrical energy is converted per unit time (joules/second).

Formulas

$$P = vi$$

$$P = i^2 R$$

$$P=\frac{v^2}{R}$$

$$\boldsymbol{P}_o = \boldsymbol{P}_1 + \boldsymbol{P}_2 + \boldsymbol{P}_3 + \cdots \boldsymbol{P}_n$$

unit: Watt (W)

EXERCISE

Determine the current through and voltage across each resistor, as well as the total power in the given circuit.

Solution

EXERCISE

Determine the current through and voltage across each resistor, as well as the total power in the given circuit.

120R 320R 100R 9V 220R 470R

Solution

LABORATORY

