Analysis I

Daniel Yu

September 23, 2024

Contents

1 Closure of a Set 3

CONTENTS 2

1 Closure of a Set

Definition 1. Let (X, ρ) be a metric space where $E \subseteq X$. Denote \overline{E} as the **closure**.

$$\overline{E} = \cap_{E \subseteq F} F$$
 and F is closed.

And since, the intersection of any number of (including infinite) closed sets is closed.

Note. It's obvious that if E is closed, then $E = \overline{E}$.