# Biological Data Analysis

Carl Herrmann IPMB - Universität Heidelberg









### 7. Hypothesis testing

# Are observations significant?









- For the cohort, we observe:
  - a difference in man/women weights
  - a non-zero correlation between age and cholesterol
- But:
  - would we observe this in another cohort??
  - Does this hold for the entire (unknown) population?
    - → is this difference/correlation significant?

### Hypothesis testing: what do we need?





- Question that we want to investigate:
  - is there a **GENERAL** weight difference between men/women?
  - is there a **GENERAL** non-zero correlation between age/cholesterol?
- Null-hypothesis (H<sub>0</sub>): this is the "no-effect" Hypothesis
  - no difference between the **expectations of the random variables**  $X_m$ =weight of Men and  $X_w$  = weights of Women
  - no correlation between the random variables  $X_{chol}$  and  $X_{age:}$  cor(Xchol,Xage)=0
- Alternative hypothesis (H<sub>1</sub>):
  - $\bullet \qquad E(X_m) \neq E(X_w)$
  - $cor(X_{age}, X_{chol}) \neq 0$
- **Test-statistics**: numerical value that can be computed from the data, with known distribution under H<sub>0</sub>





- Study: effect of fertilizer F1 on plant growth
  - no-fertilizer: h = 1.5m
  - fertilizer on n = 10 samples:

$$X = \{1.47, 1.62, 1.51, 1.61, 1.27, 1.51, 1.55, 1.49, 1.44, 1.5\}$$

- Random variable: plant height X after treatment with F1
- Question: does the treatment with fertilizer enhance plant growth?
- Hypothesis:

• H0: no 
$$E(X) \le h = 1.5m$$

• H1: yes 
$$E(X) > h = 1.5m$$

$$E(n) > n - 1.5m$$

$$\begin{cases} \bar{x} - h = -0.003 \\ s/\sqrt{n} = 0.031 \end{cases} \qquad t = \frac{\bar{x} - h}{s/\sqrt{n}} = -0.09$$

s = standard deviation of sample

• What are typical values of t under the H<sub>0</sub> hypothesis?





- Distribution of t under the  $H_0$  hypothesis
- Vertical line = observed value of test statistics t
- Green = probability to observe under  $H_0$  a lower value of t
- Blue = probability to observe under  $H_0$  a larger value of t
- Here: Blue = 53.9% of total area



Pvalue = 0.461



Conclusion: if H0 (= no effect) is true, there is a **53.9% probability** to observe a value of t larger or equal to the one observed

→ not unlikely, hence no reason to distrust H0 ( = no effect)





- Study: effect of fertilizer F2 on plant growth
  - no-fertilizer: h = 1.5m
  - fertilizer on n = 10 samples:

$$X = \{1.47, 1.62, 1.61, 1.61, 1.47, 1.51, 1.55, 1.59, 1.64, 1.5\}$$

- Random variable: plant height X after treatment with F2
- Question: does the treatment with fertilizer enhance plant growth?
- Hypothesis:

$$E(X) \le h = 1.5m$$

$$E(X) > h = 1.5m$$

$$\begin{cases} \bar{x} - h = 0.057 \\ s/\sqrt{n} = 0.02 \end{cases} \qquad t = \frac{\bar{x} - h}{s/\sqrt{n}} = 2.77$$

• What are typical values of t under the  $H_0$  hypothesis?

s = standard deviation of sample





- Distribution of t under the  $H_0$  hypothesis
- Vertical line = observed value of test statistics t
- Green = probability to observe under  $H_0$  a lower value of
- Blue = probability to observe under  $H_0$  a larger value of t
- Here: Blue = 0.3% of total area



Pvalue = 0.997



Conclusion: if H0 (= no effect) is true, there is a **0.3% probability** to observe a value of t larger or equal to the one observed

→ very unlikely, H0 is probably not true and should be rejected





- Study: effect of fertilizer F3 on plant growth
  - no-fertilizer: h = 1.5m
  - fertilizer on n = 10 samples:

$$X = \{1.47, 1.45, 1.31, 1.41, 1.47, 1.51, 1.55, 1.39, 1.44, 1.5\}$$

- Question: does the treatment with fertilizer enhance plant growth?
- Hypothesis:

$$E(X) \le h = 1.5m$$

H1: yes

$$E(X) > h = 1.5m$$

Effect size:

$$-h$$

$$t = \frac{x - h}{\sqrt{x}} = -\frac{x}{\sqrt{x}}$$

s = standard deviation of sample

size of random effect:

• What are typical values of t under the  $H_0$  hypothesis?





$$t = -2.32$$

- Distribution of t under the  $H_0$  hypothesis
- Vertical line = observed value of test statistics t
- Green = probability to observe under  $H_0$  a lower value of t
- Blue = probability to observe under  $H_0$  a larger value of t
- Here: Blue = 99% of total area



Pvalue = 0.010



Conclusion: if  $H_0$  ( = no effect) is true, there is a 99% probability to observe a value of t larger or equal to the one observed

→ very likely, H<sub>0</sub> cannot be rejected...

# What was the question again?





Question 1:
 does the treatment with fertilizer enhance plant growt.
 (→ expected direction of effect is implicit: "upper tail
 H0: no! H1: yes!



blue area = 99%: H0 cannot be rejected!

Question 2:
 does the treatment with fertilizer reduce plant growth?
 (→ expected direction of effect is implicit: "lower tail o
 H0: no! H1: yes!



blue area = 1%: H0 very unlikely

## What was the question again?





• Question 3:

does the treatment with fertilizer **has an effect** on plan (→ no direction implicit: **"two-sided test"**)

H0: no! H1: yes!



blue area = 2%: H0 very unlikely

### P-value





the p-value is the probability of obtaining a

- larger (one-sided upper tail)
- smaller (one-sided lower tail)
- more extreme (two-sided or two tailed)

value of the test statistics if H<sub>0</sub> is valid!

The p-value represents the area under the H0 curve

- above observed value (one-sided upper tail)
- below observed value (one-sided lower tail)
- more extreme than pbserved value (two-sided or two tailed)

The probability of the two sided test is **twice** the smallest probability of the upper-tail or lower-tail test

$$p_{2sided} = 2 \min(p_{lower-tail}, p_{upper-tail})$$







Pvalue = 0.020

# Significance





- When is a probability low, very low, or high?
- Define a significance level α
- p < α:</li>
  - H<sub>0</sub> hypothesis can be rejected
  - the observed effect is significant
  - H<sub>1</sub> is statistically proven
- $p > \alpha$ :
  - effect is not sufficient to reject H<sub>0</sub>
  - observed effect is compatible with statistical fluctuations
  - H<sub>0</sub> is not proven, maybe with a larger sample, the effect could become significant
- $\alpha = 0.05$  has become a standard value (but no golden rule!)



### Effect size vs. significance





### comparing mean weights



| n  | w.m   | w.f   | Difference | p        | -log(p) |
|----|-------|-------|------------|----------|---------|
| 3  | 69.51 | 66.48 | 3.03       | 3.76E-02 | 1.425   |
|    |       |       |            |          |         |
| 10 | 70.08 | 66.98 | 3.10       | 1.42E-08 | 7.846   |
|    |       |       |            |          |         |
| 50 | 70.17 | 67.24 | 2.93       | 1.11E-24 | 23.957  |

- A small effect size can become significant for large n
- A large effect size can be none-significant if n is low





### 7. Hypothesis testing

7.2 Testing the mean - t-tests

### Test on mean values





- Hypothesis on mean values can be investigated using a t-test
- Family of tests with different version:
  - one-sample test: is the mean body temperature 37.7 C?
  - two-sample test, unpaired: do men and women have different mean cholesterol levels?
  - **two-sample test, paired**: is there a change in cholesterol level after a one-month egg rich diet?



(do both samples have equal variance?)

### t-test test statistics





| Type                                       | test statistics                                                                 | degrees of freedom                | note                                                                       |
|--------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|
| one<br>sample                              | $t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$                                        | n-1                               |                                                                            |
| two-sample<br>unpaired<br>(same variance)  | (Student t-test) $t = \frac{\bar{x}_1 - \bar{x}_2}{s_{12}\sqrt{1/n_1 + 1/n_2}}$ | n <sub>1</sub> +n <sub>2</sub> -2 | $s_{12} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$    |
| two-sample<br>unpaired<br>(diff. variance) | (Welch t-test) $t = \frac{\bar{x}_1 - \bar{x}_2}{s_{\bar{x}_1 - \bar{x}_2}}$    | (*)                               | $s_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ |
| two-sample paired                          | $t = \frac{\bar{x}_D - \mu}{s_D / \sqrt{n}}$                                    | n-1                               | $x_D$ = difference between pairs $mu$ = expected difference                |

(\*) 
$$\frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1)^2/(n_1 - 1) + (s_2^2/n_2)^2/(n_2 - 1)}.$$

### Distribution under H0





- The test statistics of the t-tests under H<sub>0</sub> are distributed according to a t-distribution with the corresponding number of degrees of freedom
- for large sample sizes, the  $H_0$  distribution is the standard normal distribution N(0,1)



### Table of critical values





| TWO-Campia | T-TOCT  | linnaired               | DAD-SIGA  |
|------------|---------|-------------------------|-----------|
| two-sample | t-test. | ulibali <del>c</del> u. | OHE-SIMEM |
|            |         |                         |           |

| ν | .10   | .05   | .025   | .01    | .005   | .001   | .0005  |
|---|-------|-------|--------|--------|--------|--------|--------|
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.31 | 636.62 |
| 2 | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 22.326 | 31.598 |
| 3 | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 10.213 | 12.924 |
| 4 | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 7.173  | 8.610  |
| 5 | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 5.893  | 6.869  |
| 6 | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  | 5.208  | 5.959  |
| 7 | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  | 4.785  | 5.408  |
| 8 | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  | 4.501  | 5.041  |
| 9 | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 4.297  | 4.781  |



- Example (1-sample t-test)
  - alpha = 0.05
  - t = 2.01
  - sample size  $n = 8 \rightarrow \nu = n 1 = 7$
- one-sided t-test
  - critical value  $t_{0.05,7} = 1.895$
  - $t > t_{0.05,7}$ : test is significant for alpha = 0.05
  - H<sub>0</sub> can be rejected: result is significant!

### Table of critical values





| two-sample t-test, unpaired, two-sided |
|----------------------------------------|
|----------------------------------------|

|   |       |       |        | 3 (300 |        |        |        |
|---|-------|-------|--------|--------|--------|--------|--------|
| ν | .10   | .05   | .025   | .01    | .005   | .001   | .0005  |
| 1 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657 | 318.31 | 636.62 |
| 2 | 1.886 | 2.920 | 4.303  | 6.965  | 9.925  | 22.326 | 31.598 |
| 3 | 1.638 | 2.353 | 3.182  | 4.541  | 5.841  | 10.213 | 12.924 |
| 4 | 1.533 | 2.132 | 2.776  | 3.747  | 4.604  | 7.173  | 8.610  |
| 5 | 1.476 | 2.015 | 2.571  | 3.365  | 4.032  | 5.893  | 6.869  |
| 6 | 1.440 | 1.943 | 2.447  | 3.143  | 3.707  | 5.208  | 5.959  |
| 7 | 1.415 | 1.895 | 2.365  | 2.998  | 3.499  | 4.785  | 5.408  |
| 8 | 1.397 | 1.860 | 2.306  | 2.896  | 3.355  | 4.501  | 5.041  |
| 9 | 1.383 | 1.833 | 2.262  | 2.821  | 3.250  | 4.297  | 4.781  |



- Example (1-sample t-test)
  - alpha = 0.05
  - t = 2.01
  - sample size  $n = 8 \rightarrow \nu = n 1 = 7$
- two-sided t-test
  - critical value  $t_{0.025,7} = 2.365$
  - $t < t_{0.025,7}$ : test is NOT significant for alpha = 0.05
  - H<sub>0</sub> cannot be rejected: test is NOT significant





#### two-sample unpaired, two-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
> t.test(weight.m, weight.f, var.equal=TRUE)
        Two Sample t-test
data: weight.m and weight.f
t = 1.8265, df = 400, p-value = 0.06852
alternative hypothesis: true difference in
means is not equal to 0
95 percent confidence interval:
 -0.5669448 15.4259192
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```





### two-sample unpaired, one-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
>t.test(weight.m, weight.f, alternative="greater", va
r.equal=TRUE)
        Two Sample t-test
       weight.m and weight.f
data:
t = 1.8265, df = 400, p-value = 0.03426
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.723444
               Inf
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```







one-sided t-test
→ significant

two-sided t-test

→ non significant





### two-sample Welch unpaired, one-sided

t = test statistics
df = degrees of
freedom

confidence interval differences of the means

```
>t.test(weight.m, weight.f, alternative="greater")
        Welch Two Sample t-test
data: weight.m and weight.f
t = 1.8453, df = 372.446, p-value = 0.0329
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.7903498
                 Inf
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```

### Paired t-test





- 2 samples with equal number of elements
- each element of sample A can be associated to one element of sample B
  - patients before (A) and after (B) treatment
  - technical replicates

$$t = \frac{x_D - \mu}{s_D / \sqrt{n}}$$

 $\bar{x_D}$  = mean of differences  $\mu$  = expected difference

# Treatment against anorexia Weight before/after treatment



unpaired:  $p = 5 \cdot 10^{-3}$ 

### When can we apply t-test?





- There are several conditions that must be fulfilled to apply a t-test
- Normality: data must be (approximately) normaly distributed
  - → check using
  - QQ-plot
  - statistical tests: Shapiro-Wilks / Kolmogorov-Smirnov
  - if not, apply non-parametrical test
- Variance of samples must be equal
  - if so: Student t-test
  - if not: Welch t-test
- Independance: independent samples: values in one sample should not be influenced by those in the second sample





### 7. Hypothesis testing

7.3 Non-parametric tests

### Non-parametric tests





- If the condition of normality of the data is not met, use non-parametric tests
- These do not require any specific distribution of the data
- Values of the data are converted to ranks (remember the Spearman correlation!)
- Wilcoxon Rank Tests
  - unpaired: Wilcoxon Rank Sum Test (a.k.a, Mann-Whitney U test)
  - paired : Wilcoxon signed rank test

### Wilcoxon Rank Sum Test Mann-Whitney U Test

I P M B Molekulare Biotechnologie

largest



2 samples with numerical values

$$X = \{x_1, x_2, \dots, x_{n_1}\}$$
  $Y = \{y_1, y_2, \dots, y_{n_2}\}$ 

Values are merged and ranked in increasing order

$$Z = X \cup Y$$

- R<sub>1</sub> is the sum of the ranks of the first probe (first probe is the one giving the smallest U)
- Test statistics

$$U = R_1 - \frac{n_1(n_1 + 1)}{2}$$

 $H_0$ : E(X) = E(Y)

(2-sided test)

E(X) > E(Y)

(1-sided test)

E(X) < E(Y)

reds are smaller than the blues?



### Wilcoxon Rank Sum Test Mann-Whitney U Test









# Remember: the smaller U, the more significant

|       | !! Values of α are for two-sided test !! |   |   |   |   |    |     |    |    |    |    |    |    |    |
|-------|------------------------------------------|---|---|---|---|----|-----|----|----|----|----|----|----|----|
|       |                                          |   |   |   |   |    |     |    |    | n  | 1  |    |    |    |
| $n_2$ | α                                        | 3 | 4 | 5 | 6 | 7  | 8   | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| 3     | .05                                      |   | 0 | 0 | 1 | 1  | 2   | 2  | 3  | 3  | 4  | 4  | 5  | 5  |
|       | .01                                      |   | 0 | 0 | 0 | 0  | 0   | 0  | 0  | 0  | 1  | 1  | 1  | 2  |
| 4     | .05                                      |   | 0 | 1 | 2 | 3  | 4   | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| 4     | .01                                      |   |   | 0 | 0 | 0  | 1   | 1  | 2  | 2  | 3  | 3  | 4  | 5  |
| 5     | .05                                      | 0 | 1 | 2 | 3 | 5  | 6   | 7  | 8  | 9  | 11 | 12 | 13 | 14 |
|       | .01                                      |   |   | 0 | 1 | 1  | 2   | 3  | 4  | 5  | 6  | 7  | 7  | 8  |
| 6     | .05                                      | 1 | 2 | 3 | 5 | 6  | 8   | 10 | 11 | 13 | 14 | 16 | 17 | 19 |
| 0     | .01                                      |   | 0 | 1 | 2 | 3  | 4   | 5  | 6  | 7  | 9  | 10 | 11 | 12 |
| 7     | .05                                      | 1 | 3 | 5 | 6 | 8  | 10  | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| /     | .01                                      |   | 0 | 1 | 3 | 4  | _6_ | 7  | 9  | 10 | 12 | 13 | 15 | 16 |
| 8     | .05                                      | 2 | 4 | 6 | 8 | 10 | 13  | 15 | 17 | 19 | 22 | 24 | 26 | 29 |
| 0     | .01                                      |   | 1 | 2 | 4 | 6  | 7   | 9  | 11 | 13 | 15 | 17 | 18 | 20 |

U is larger than the critical values for  $\alpha$ =0.05 or 0.01

- → H<sub>0</sub> cannot be rejected
- → test non significant



# Wilcoxon Signed Rank Test (2 paired probes)





2 samples with numerical values

$$X = \{x_1, x_2, ..., x_n\}$$
  $Y = \{y_1, y_2, ..., y_n\}$ 

- $D_i$  = differences between pairs
- $R_i$  = ranks of the differences  $|D_i|$
- Test statistics:

$$W_{+} = \sum_{i=1}^{N_{+}} R_{i,D_{i}>0} \qquad W_{-} = \sum_{i=1}^{N_{-}} R_{i,D_{i}<0}$$

$$W = min(W_+, W_-)$$

- Question: do the positive/negative differences have different ranks?
  - $\rightarrow$  H<sub>0</sub>: no!







# Table of critical values for Wilcoxon signed-rank test





- The smaller, the more significant
- Example:
  - n=14
  - W = 22
  - Non-significant for 2-tailed test and  $\alpha = 0.05$
  - Significant for 1-tailed test and  $\alpha = 0.05$
  - Non significant for 1-tailed test and  $\alpha = 0.01$

|    | Two-Ta         | iled Test      | One-Tailed Test |                |  |
|----|----------------|----------------|-----------------|----------------|--|
| n  | $\alpha = .05$ | $\alpha = .01$ | $\alpha = .05$  | $\alpha = .01$ |  |
| 5  |                |                | 0               |                |  |
| 6  | 0              |                | 2               |                |  |
| 7  | 2              |                | 3               | 0              |  |
| 8  | 3              | 0              | 5               | 1              |  |
| 9  | 5              | 1              | 8               | 3              |  |
| 10 | 8              | 3              | 10              | 5              |  |
| 11 | 10             | 5              | 13              | 7              |  |
| 12 | 13             | 7              | 17              | 9              |  |
| 13 | 17             | 9              | 21              | 12             |  |
| 14 | 21             | 12             | 25              | 15             |  |
| 15 | 25             | 15             | 30              | 19             |  |
| 16 | 29             | 19             | 35              | 23             |  |
| 17 | 34             | 23             | 41              | 27             |  |
| 18 | 40             | 27             | 47              | 32             |  |
| 19 | 46             | 32             | 53              | 37             |  |
| 20 | 52             | 37             | 60              | 43             |  |
| 21 | 58             | 42             | 67              | 49             |  |
| 22 | 65             | 48             | 75              | 55             |  |
| 23 | 73             | 54             | 83              | 62             |  |
| 24 | 81             | 61             | 91              | 69             |  |
| 25 | 89             | 68             | 100             | 76             |  |
| 26 | 98             | 75             | 110             | 84             |  |
| 27 | 107            | 83             | 119             | 92             |  |
| 28 | 116            | 91             | 130             | 101            |  |
| 29 | 126            | 100            | 140             | 110            |  |
| 30 | 137            | 109            | 151             | 120            |  |

# Wilcoxon Signed Rank Test (2 paired probes)





```
> X
   Prior Post Diff AbsDiff ranks SignedRanks
    76.9 76.8 -0.1
                        0.1
    79.6 76.7 -2.9
                        2.9
                                           -2
    81.6 77.8 -3.8
                        3.8
                                           -3
    89.9 93.8 3.9
                        3.9
                        5.3
    80.5 75.2 -5.3
                                           -5
                        5.5
    86.0 91.5 5.5
    86.0 91.7 5.7
                        5.7
    94.2 101.6 7.4
                        7.4
    83.5 92.5 9.0
                        9.0
    82.5 91.9 9.4
                        9.4
                                           10
                               10
        98.0 10.7
                       10.7
    87.3
                               11
                                           11
    83.3
         94.3 11.0
                       11.0
                               12
                                           12
    83.8
         95.2 11.4
                       11.4
                               13
                                           13
    77.6 90.7 13.1
                       13.1
                               14
                                           14
    82.1 95.5 13.4
                       13.4
                               15
                                           15
    86.7 100.3 13.6
                       13.6
                               16
                                           16
   73.4 94.9 21.5
                       21.5
                                           17
                               17
> W.p <- sum(X[X$Diff>0, 'ranks'])
> W.m <- sum(X[X$Diff<0, 'ranks'])</pre>
> W.p
[1] 142
> W.m
[1] 11
```

(two-sided test)





### 7. Hypothesis testing

7.4 Proportion tests

### **Proportion tests**





- This class of tests can be used when searching for
  - relation between different categorical variables

    Is there a relation between social background and school grades?
  - comparison of observed vs. expected counts
    Is there a significant gender bias in the math department if 4 professors out of 10 are women?
- Two tests are generally used
  - Fisher-Exact test (FET): gives an exact p-value, used for small samples
  - **chi-square test**: for larger samples (*n*>5 in each category)
  - both tests are equivalent for large n

### Fisher Exact Test





- Tests for a significant relationship between 2 variables
- Starting point: contingency table

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 4      | 1     | 5     |
| Women | 2      | 3     | 5     |
| Total | 6      | 4     | 10    |

Proportion iPhone/other:

- Men: 4/1 = 4

- Women: 2/3 = 0.66

**Odds-Ratio:** 

OR = (4/1)/(2/3) = 6

If we would <u>randomly</u> distribute 6 iPhone and 4 other smartphones to 5 men and 5 women, how often would we get a larger/smaller\*/more extreme

\*smaller: < 1/6

\*\*More extreme: > 6 or < 1/6

### What is H0?





|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 3      | 2     | 5     |
| Women | 3      | 2     | 5     |
| Total | 6      | 4     | 10    |

H<sub>0</sub>: The proportion of men with iPhone is **equal** to the proportion of women with iPhones (2-sided)

OR = 1

H<sub>0</sub>:The proportion of men with iPhones is **not higher** that the proportion of women with iPhones (1-sided)

 $OR \leq 1$ 

H<sub>0</sub>:The proportion of men with iPhones is **not lower** that the proportion of women with iPhones (1-sided)

 $OR \ge 1$ 

# Random permutations





If I randomly distribute 6 iPhones and 4 other phones to 5 women and 5 men, how likely it is to obtain this table?

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 4      | 1     | 5     |
| Women | 2      | 3     | 5     |
| Total | 6      | 4     | 10    |

J

### Random permutations





|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 4      | 1     | 5     |
| Women | 2      | 3     | 5     |
| Total | 6      | 4     | 10    |

$$p = \frac{\binom{6}{4} \cdot \binom{5}{4} \cdot 4! \cdot \binom{5}{2} \cdot 2! \cdot \binom{4}{1} \cdot 3!}{10!} = 0.238 \qquad OR = 6$$

$$p = 0.023; \quad OR = \frac{5/0}{1/4} = +\infty$$

$$p = 0.4761; \quad OR = \frac{3/2}{3/2} = 1$$

### Random permutations





|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 2      | 3     | 5     |
| Women | 4      | 1     | 5     |
| Total | 6      | 4     | 10    |

$$p = 0.238; \quad OR = \frac{2/3}{4/1} = 1/6$$

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 1      | 4     | 5     |
| Women | 5      | 0     | 5     |
| Total | 6      | 4     | 10    |

$$p = 0.023; \quad OR = \frac{1/4}{5/0} = 0$$

$$p_{1-sided} = 0.238 + 0.0238 = 0.2619 \quad (OR \ge 6)$$
  
 $p_{2-sided} = 0.238 + 0.0238 + 0.238 + 0.0238 = 0.5238$   
 $(OR \le \frac{1}{6} \quad or \quad OR \ge 6)$ 

### MoBi students





|       | iPhone |    | Total |
|-------|--------|----|-------|
| Men   | 8      | 19 | 27    |
| Women | 16     | 16 | 32    |
| Total | 24     | 35 | 59    |

Fisher's Exact Test for Count Data

data: X
p-value = 0.1831
alternative hypothesis: true odds
ratio is not equal to 1
95 percent confidence interval:
 0.1230632 1.3943512
sample estimates:
odds ratio
 0.4273899

### chi-square test





- The chi-square test compares observed and expected counts
- Starting point is a contingency table
- Test statistics

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- H<sub>0</sub>: expected and observed proportions are equal
- H<sub>0</sub> distribution: chi2 distribution with *n-1* degrees of freedom for *n* observations
- Application possible when  $O_i > 2$  and  $O_i > 5$  in 80% of observations
- Note: the chi-square test is always a 1-sided upper tail test!





#### **Observed**

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 14     | 30    | 44    |
| Women | 5      | 20    | 25    |
| Total | 19     | 50    | 69    |



|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 31.8%  | 68.2% | 100%  |
| Women | 20%    | 80%   | 100%  |
| Total | 27.5%  | 72.5% | 100%  |



### **Expected counts under H0**

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 12.1   | 31.9  | 44    |
| Women | 6.9    | 18.1  | 25    |
| Total | 19     | 50    | 69    |

= 0.6022



### **H0** proportions

|       | iPhone | other | Total |
|-------|--------|-------|-------|
| Men   | 27.5%  | 72.5% | 100%  |
| Women | 27.5%  | 72.5% | 100%  |
| Total | 27.5%  | 72.5% | 100%  |

$$\chi^2 = \frac{(14 - 12.1)^2}{12.1} + \frac{(30 - 31.9)^2}{31.9} + \frac{(5 - 6.9)^2}{6.9} + \frac{(20 - 18.1)^2}{18.1}$$

degrees of freedom = (rows-1) x (columns-1)

# chi-square distribution





#### **Critical values**

|         | 0.025 | 0.05  | 0.1   |
|---------|-------|-------|-------|
| df = 1  | 5.02  | 3.84  | 2.71  |
| df = 2  | 7.38  | 5.99  | 4.61  |
| df = 3  | 9.35  | 7.81  | 6.25  |
| df = 4  | 11.14 | 9.49  | 7.78  |
| df = 5  | 12.83 | 11.07 | 9.24  |
| df = 6  | 14.45 | 12.59 | 10.64 |
| df = 7  | 16.01 | 14.07 | 12.02 |
| df = 8  | 17.53 | 15.51 | 13.36 |
| df = 9  | 19.02 | 16.92 | 14.68 |
| df = 10 | 20.48 | 18.31 | 15.99 |



$$\alpha = 0.05$$
 
$$\chi^2 = 0.6022$$
 not significant... 
$$df = 1$$

# More than 2 categories





### Side effects

|        | weak | medium | strong | Total |
|--------|------|--------|--------|-------|
| Drug A | 25   | 11     | 13     | 49    |
| Drug B | 9    | 14     | 11     | 34    |
| Total  | 34   | 25     | 24     | 83    |

| > table( | sideeff                 | ect)                                                |          |          |         |
|----------|-------------------------|-----------------------------------------------------|----------|----------|---------|
|          | Effect                  | ,                                                   |          |          |         |
| Drug wea | ak mediu                | m strong                                            |          |          |         |
|          |                         | 11                                                  |          |          |         |
|          |                         | 14                                                  |          |          |         |
| Ь        | 9                       | 14                                                  | T T      |          |         |
| data: t  | Pearson<br>able(si      | ble(side<br>'s Chi-s<br>deeffect<br>257, df         | quared ) | test     | 0.06311 |
| data: t  | Fisher' able(si = 0.063 | able(sides sides able) s Exact deeffect 75 othesis: | Test fo  | or Count | Data    |

|        | weak  | medium | strong | Total |
|--------|-------|--------|--------|-------|
| Drug A | 51%   | 22.5%  | 26.5%  | 100%  |
| Drug B | 26.5% | 41.2%  | 32.3%  | 100%  |
| Total  | 41%   | 30.1%  | 28.9%  | 100%  |