Human Cannonball Run

There are lots of human cannons available. You run at 5m/s and all cannons launch you 50m in 2s. Given your location, a destination, and the positions of cannons, can you calculate the minimal time to travel?

Possible Paths

Starting point -> destination

Possible Paths

Starting point -> destination
Starting point -> cannon -> destination

Possible Paths

- Starting point -> destination
 Starting point -> cannon -> destination
 Starting point -> cannon 1
 - -> cannon 2 -> ... -> cannon N
 - -> destination

Timing

Starting point -> cannon or destination time = distance / 5

Timing

```
Starting point -> cannon or destination
time = distance / 5
Cannon -> cannon or destination
time = 2 + |distance - 50| / 5
```

Timing

```
Starting point -> cannon or destination
  time = distance / 5
Cannon -> cannon or destination
  time = 2 + |distance - 50| / 5
(You will never run to a cannon but not
use it. Why?)
```

Problem Modeling

```
Cannon = vertex
Starting point, destination = vertex
Run / launch = edge
Time = edge length
```

Solution

...

Which solution to use mainly depends on the maximum number of cannons.

Solution

```
For a small number of cannons:
Floyd -> O(n³)
Larger:
```

Dijkstra -> O(n²) (Possible optimization: A*)

Dijkstra's Algorithm

- Setup a queue Q
- Setup a minimum distance table D
- Push the starting point into Q
- Perform the iteration on Q until the destination is popped

Dijkstra Iteration

- Pop the vertex V with smallest D_V from Q
- For all vertices U that an edge $E_{V\to U}$ exists
 - $D_U = min(D_U, D_V + |E_{V \to U}|)$
 - If D_U changed, insert/move U -> Q

By the way...

Dijkstra Iteration

- Pop the vertex V with smallest D_V from Q
- For all vertices U that an edge $E_{V\to U}$ exists
 - $-D_{U} = \min(D_{U}, D_{V} + |E_{V} -> U|)$
 - If D_U changed, insert/move U -> Q

??? Iteration

- Pop the vertex V with smallest D_V
 from Q
- For all vertices U that an edge $E_{V\to V}$ exists
 - $D_U = min(D_U, ???)$
 - If D_U changed, insert/move U -> Q

Prim Iteration

- Pop the vertex V with smallest D_V
 from Q
- For all vertices U that an edge $E_{V\to V}$ exists
 - $-D_{U} = \min(D_{U}, |E_{V \rightarrow U}|)$
 - If D_U changed, insert/move U -> Q

A* Iteration

- Pop the vertex V with smallest D_V
 from Q
- For all vertices U that an edge E_{V -> U} exists
 - $-D_{U} = min(D_{U}, D_{V} + H_{U} + |E_{V->U}|)$
 - If D_U changed, insert/move U -> Q