Niveaux: SM PC Matière: Physique PROF:Zakaryae Chriki Résumé N:1
Ondes Mécaniques

I.les ondes mécanique progressives

1. Quelles définitions :

- Le signal est une perturbation (modification locale et temporaire) qui se propage dans un milieu matériel élastique
- Une onde progressive correspond à la propagation dans l'espace et au cours du temps d'une perturbation.
- **Une onde mécanique** correspond à la propagation d'une perturbation dans <u>un milieu matériel</u> sans transport de matière. L'onde ne transporte que de l'énergie
- On appelle onde mécanique progressive, Onde résultant de la perturbation d'un milieu par une source.
- Un milieu élastique est un milieu qui reprend sa forme initiale après le passage de l'onde mécanique
- L'onde se propage dans toutes les directions qui lui sont offertes.

2. Mouvement d'un point M du milieu matériel.

- La perturbation crée au point S de la corde au temps t0 (Souvent t0=0) se propage de proche en proche à une vitesse précise.
- Toute onde est caractérisé par une source (S), une durée d'onde (durée nécessaire de passage de l'onde par un point) ,une amplitude et une longueur d'onde
- Chaque point du milieu matériel reproduit la perturbation de la source S.
- La perturbation au point M reproduit la perturbation de la source S avec un retard τ , car la perturbation met un certain temps pour progresser de S à M

3. Front d'onde et mouvement d'un point du milieu de propagation

- L'onde débute de la source (S)
- La Source (S)
- Le premier point qui se met en mouvement
- Débute souvent son mouvement à l'instant t₀=0s (les autres points sont immobiles à t₀)
- Le Front d'onde (F)
- Le point le plus lointain de la source (S) suivis , et dans le sens du mouvement , d'un trait horizontal (indiquant les points immobiles)
- Informe sur le premier mouvement :
 - De la source (S) à l'instant t₀
 - Réaliser par un point lors de la réception de l'onde à un instant t
 - Que réaliseras un point une fois l'onde y parviens

NB:

Tous les points (quand la perturbation y parviens à l'instant t) reproduisent la même perturbation que la source (S) (perturbation crée à l'instant t_0)

4. Sens de mouvement d'un point

Du point on suit légèrement l'allure de l'onde vers la source (S) on peut déterminer :

- Le sens du mouvement d'un point
- Le sens de mouvement du front (F) et en déduire le premier mouvement de chaque point et en particulier celui de la source (S)

Exemple : La figure représente l'aspect d'une corde à un instant t

Le point	(S)	(K)	(L)	(M)	(N)	(O)
Mouvement à t ₀ =0	Vers le bas	immobile				
Mouvement à t	Vers le haut	Vers le haut	Vers le bas	Vers le haut	Vers le bas	Immobile
Le premier mouvement	C'est le mouvement du front et c'est vers la bas					

Les types d'ondes :

Ondes transversales:

Une onde est transversale lorsque la déformation du milieu de matériel a lieu perpendiculairement à la direction de propagation de la perturbation.

Exemples:

Une onde se propageant:

- À la surface de l'eau
- Le long d'une corde.

Ondes longitudinales:

Une onde est longitudinale si la déformation du milieu matériel a lieu parallèlement à la direction de propagation de la perturbation. Direction de propagation

- Une onde se propageant dans un ressort.
- L'onde sonore.

Exemples:

La direction dans laquelle se propage la perturbation est la direction de propagation de l'onde.

6. Définition de la célérité (vitesse).

La célérité v d'une onde progressive est égale au quotient de la distance d séparant deux points M1 et M2 du milieu par la durée Δt qui sépare les dates t_1 et t_2 de passage de l'onde en ces deux points. $V = \frac{M_1 M_2}{t_2 - t_1} = \frac{d}{\Delta t}$

$$V = \frac{M_1 M_2}{t_2 - t_1} = \frac{d}{\Delta t}$$

7. Facteurs influençant la célérité.

- La vitesse de propagation de l'onde est une propriété du milieu. Elle dépend en effet des gualités d'élasticité du milieu et de son inertie (c'est-à-dire de la difficulté plus ou moins grande à le mettre en mouvement : plus l'inertie du milieu est grande, la vitesse est faible).
- Dans un milieu linéaire, la célérité est indépendante de la forme et de l'amplitude du signal.
- Pour un même milieu, la célérité dépend du type d'onde considéré ($V_{transversale} \neq V_{longitudinale}$)
- La célérité d'une onde progressive est plus grande dans un solide, que dans un liquide, que dans un gaz. Elle dépend de la compressibilité du fluide. (Vcuivre =3600m.s⁻¹; Veau=1500m.s⁻¹; Vair =340m.s⁻¹).

Remarques:

- t : temps ou instant ou date et caractérise un point qui est souvent le front de l'onde
- $\Delta t = \theta = \tau = t_2 t_1$: durée (ou retard) entre deux points M_1 et M_2
- Aspect ou image ou forme de l'onde des mots souvent lié à la position du front de l'onde à un instant t

Une phrase

On précise la distance d et la durée de parcours Δt

Exemple:

L'onde parcours 15cm pendant 10 seconde d=15cm $\Delta t = 10s$

Graphiquement

et avec une indication sur la source (S)

L'onde est émise de la source à l'instant t₀=0s

Graphiquement

et sans aucune indication sur la source (S)

L'onde passe par le point M à l'instant t₁ et par

8. Superposition de deux ondes.

- Deux ondes mécaniques peuvent se superposer sans se perturber.
- Lorsque les deux perturbations se croisent, leurs amplitudes s'ajoutent algébriquement.
- Après le croisement, chaque perturbation reprend sa forme propre.

