Useful Data

	$M_{\rm e}$	Mass of the earth	$5.98 \times 10^{24} \mathrm{kg}$
	$R_{\rm e}$	Radius of the earth	$6.37 \times 10^6 \mathrm{m}$
	g	Free-fall acceleration	9.80 m/s^2
	G	Gravitational constant	$6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$
	k_{B}	Boltzmann's constant	$1.38 \times 10^{-23} \text{ J/K}$
ſ	R	Gas constant	8.31 J/mol • K
١,	$N_{\rm A}$	Avogadro's number	6.02×10^{23} particles/mol
	T_0	Absolute zero	−273°C
	$p_{\rm atm}$	Standard atmosphere	101,300 Pa
	v_{sound}	Speed of sound in air at 20°C	343 m/s
	$m_{\rm p}$	Mass of the proton (and the neutron)	$1.67 \times 10^{-27} \text{ kg}$
	$m_{\rm e}$	Mass of the electron	$9.11 \times 10^{-31} \text{ kg}$
	K	Coulomb's law constant $(1/4\pi\epsilon_0)$	$8.99 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$
	ϵ_0	Permittivity constant	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$
	μ_0	Permeability constant	$1.26 \times 10^{-6} \mathrm{T} \cdot \mathrm{m/A}$
	e	Fundamental unit of charge	$1.60 \times 10^{-19} \mathrm{C}$
	c	Speed of light in vacuum	$3.00 \times 10^8 \text{ m/s}$
	h	Planck's constant	$6.63 \times 10^{-34} \mathrm{J \cdot s}$ $4.14 \times 10^{-15} \mathrm{eV \cdot s}$
	ħ	Planck's constant	$1.05 \times 10^{-34} \mathrm{J \cdot s}$ $6.58 \times 10^{-16} \mathrm{eV \cdot s}$
	$a_{\rm B}$	Bohr radius ()	$5.29 \times 10^{-11} \text{ m}$

Common Prefixes

Conversion Factors

a_{B}	Bohr radius	$5.29 \times 10^{-11} \text{ m}$	
Common I	Prefixes	Conversion Factors	
Prefix femto- pico- nano- micro- milli- centi- kilo-	Meaning 10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶ 10 ⁻³ 10 ⁻² 10 ³	Length 1 in = 2.54 cm 1 mi = 1.609 km 1 m = 39.37 in 1 km = 0.621 mi Velocity 1 mph = 0.447 m/s 1 m/s = 2.24 mph = 3.28 ft/s	Time 1 day = 86,400 s 1 year = 3.16×10^7 s Force 1 lb = 4.45 N Pressure 1 atm = 101.3 kPa = 760 mm Hg 1 atm = 14.7 lb/in ²
mega- giga- terra-	$ \begin{array}{c} 10^6 \\ 10^9 \\ 10^{12} \end{array} $	Mass and energy $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$ 1 cal = 4.19 J $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	Rotation 1 rad = $180^{\circ}/\pi = 57.3^{\circ}$ 1 rev = $360^{\circ} = 2\pi$ rad 1 rev/s = 60 rpm

Mathematical Approximations

Binominal Approximation: $(1+x)^n \approx 1 + nx$ if $x \ll 1$

Small-Angle Approximation: $\sin \theta \approx \tan \theta \approx \theta$ and $\cos \theta \approx 1$ if $\theta \ll 1$ radian

Greek Letters Used in Physics

Alpha		α	Nu		ν
Beta		$\boldsymbol{\beta}$	Pi		π
Gamma	Γ	γ	Rho		ρ
Delta	Δ	δ	Sigma	Σ	σ
Epsilon		ϵ	Tau		au
Eta		η	Phi	Φ	ϕ
Theta	Θ	$\dot{\theta}$	Psi		ψ
Lambda		λ	Omega	Ω	ω
Mu		μ			

Table of Problem-Solving Strategies

Note for users of the two-volume edition:

Volume 1 (pp. 1–541) includes chapters 1–16.

Volume 2 (pp. 542–1027) includes chapters 17–30.

CHAPTER	PROBLE	M-SOLVING STRATEGY	PAGE
Chapter 2		Problem-solving strategy	48
Chapter 2	2.1	Motion with constant acceleration	51
Chapter 3	3.1	Projectile motion problems	87
Chapter 5	5.1	Equilibrium problems	132
Chapter 5	5.2	Dynamics problems	136
Chapter 5	5.3	Objects-in-contact problems	151
Chapter 6	6.1	Circular dynamics problems	174
Chapter 7	7.1	Rotational dynamics problems	217
Chapter 8	8.1	Static equilibrium problems	235
Chapter 9	9.1	Conservation of momentum problems	271
Chapter 10	10.1	Conservation of energy problems	307
Chapter 11	11.1	Energy efficiency problems	325
Chapter 12	12.1	Calorimetry problems	386
Chapter 16	16.1	Standing waves	518
Chapter 20	20.1	Electric forces and Coulomb's law	653
Chapter 21	21.1	Conservation of energy in charge interactions	682
Chapter 23	23.1	Resistor circuits	751
Chapter 24	24.1	Resistor circuits Magnetic-field problems	786
Chapter 24	24.2	Magnetic-force problems	798
Chapter 25	25.1	Electromagnetic induction	826

Table of Math Relationship Boxes

CHAPTER	MATH RELATIONSHIP	PAGE
Chapter 2	Proportional relationships	37
Chapter 2	Quadratic relationships	47
Chapter 4	Inversely proportional relationships	114
Chapter 6	Inverse-square relationships	186
Chapter 12	Square-root relationships	366
Chapter 14	Sinusoidal relationships	451–452
Chapter 14	Exponential relationships	464

Astronomical Data

Planetary body	Mean distance from sun (m)	Period (years)	Mass (kg)	Mean radius (m)
bouy	from sun (m)	(years)	(kg)	(111)
Sun	_	::	1.99×10^{30}	6.96×10^{8}
Moon	3.84×10^{8} *	27.3 days	7.36×10^{22}	1.74×10^{6}
Mercury	5.79×10^{10}	0.241	3.18×10^{23}	2.43×10^{6}
Venus	1.08×10^{11}	0.615	4.88×10^{24}	6.06×10^{6}
Earth	1.50×10^{11}	1.00	5.98×10^{24}	6.37×10^{6}
Mars	2.28×10^{11}	1.88	6.42×10^{23}	3.37×10^{6}
Jupiter	7.78×10^{11}	11.9	1.90×10^{27}	6.99×10^{7}
Saturn	1.43×10^{12}	29.5	5.68×10^{26}	5.85×10^{7}
Uranus	2.87×10^{12}	84.0	8.68×10^{25}	2.33×10^{7}
Neptune	4.50×10^{12}	165	1.03×10^{26}	2.21×10^{7}

^{*}Distance from earth

Typical Coefficients of Friction

Material	Static μ_s	Kinetic μ_k	Rolling $\mu_{\rm r}$
Rubber on concrete	1.00	0.80	0.02
Steel on steel (dry)	0.80	0.60	0.002
Steel on steel (lubricated)	0.10	0.05	
Wood on wood	0.50	0.20	
Wood on snow	0.12	0.06	
Ice on ice	0.10	0.03	

Melting/Boiling Temperatures, Heats of Transformation

Substance	$T_{\rm m}$ (°C)	$L_{\rm f}({ m J/kg})$	$T_{\rm b}(^{\circ}{\rm C})$	$L_{\rm v}({ m J/kg})$
Water	0	3.33×10^{5}	100	22.6×10^{5}
Nitrogen (N_2) -210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcol	nol -114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}

Properties of Materials

		11101001		OILL LO	-
50	0.20	Lead	328	0.25×10^{5}	175
12	0.06		1		
0	0.03		528		
			41	/_	
			7	C ~ .	
D	amautica of Mataulala			9/:	
	operties of Materials			140	
	Substance	ρ (kg/m ³)	$c (J/kg \cdot K)$	$v_{\text{sound}}(\text{m/s})$)
	Helium gas (1 atm, 20°C)	0.166		1010	
	Air (1 atm, 0°C)	1.28		331	
	Air (1 atm, 20°C)	1.20		343	
	Ethyl alcohol	790	2400	1170	
	Gasoline	680			
	Glycerin	1260			
	Mercury	13,600	140	1450	
	Oil (typical)	900			
	Water ice	920	2090	3500	
	Liquid water	1000	4190	1480	
	Seawater	1030		1500	
	Blood	1060			
	Muscle	1040	3600		
	Fat	920	3000		
	Mammalian body	1005	3400	1540	
	Granite	2750	790	6000	
	Aluminum	2700	900	5100	
	Copper	8920	385		
	Gold	19,300	129		
	Iron	7870	449		
	Lead	11,300	128	1200	
	Diamond	3520	510	12,000	
	Osmium	22,610			