Mini tutorial for limit setting tool

<u>Yun-Ju Lu</u> National Central University, Taiwan

April 17, 2015

Basics idea

Exclusion limits

- Test $H_0 = s+b$
- Try to disprove it
- Can't disprove at 125 mH!

Claim for a discovery

- Test $H_0 = b$
- Try to disprove "background only"

We found it!

Fit with signal and background to find signal strength

What are Exclusion limits

What are Exclusion limits

Observed and Only Bkg

For CMS H->bb
At 125 GeV
Bkg only r =1.5
Data r = 2
No sensitivity!

Make a discovery

3 steps of a discovery from ATLAS

5

2015/04/10 Yun-Ju Lu

Setup the tool

https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideHiggsAnalysisCombinedLimit

SLC6 release

Setting up the environment (once)

```
setenv SCRAM_ARCH s1c6_amd64_gcc481

cmsrel CMSSW_7_1_5 ### must be a 7_1_X release >= 7_1_5; (7.0.X and 7.2.X are NOT supported either)

cd CMSSW_7_1_5/src

cmsenv

git clone https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit.git HiggsAnalysis/CombinedLimit
```

- if you get errors related to ZLIB when doing the git clone, try instead doing the git clone before the cmsenv
- when running with the HybridNew calculator, you can safely ignore the following warning from RooFit

 WARNING:Eval -- RooStatsUtils::MakeNuisancePdf no constraints found on nuisance parameters in the input model

Updating to a tag (both the first time and whenever there are updates)

```
cd HiggsAnalysis/CombinedLimit
git fetch origin
git checkout v5.0.1
scramvl b clean; scramvl b # always make a clean build, as scram doesn't always see updates to src/LinkDef.h
```

Configuration file

combine -M Asymptotic realistic-counting-experiment.txt

```
# Simple counting experiment, with one signal and a few
background processes
# Simplified version of the 35/pb H->WW analysis for mH = 160
GeV
imax 1 number of channels
jmax 3 number of backgrounds
kmax 5 number of nuisance parameters (sources of
systematical uncertainties)
# we have just one channel, in which we observe 0 events
bin 1
observation 0
```

Configuration file

now we list the expected events for signal and all backgrounds in that bin # the second 'process' line must have a positive number for backgrounds, and 0 for signal # then we list the independent sources of uncertainties, and give their effect (syst. error) # on each process and bin

	bin	1	1	1	1				
	process	ggH	qqWW	ggWW	others				
	process	0	1	2	3				
	rate	1.47	0.63	0.06	0.22				
	lumi InN	1.11	-	1.11	-	lumi affects both signal and gg->WW (mc-driven).			
	xs_ggH_lnN	1.16	-	-	-	gg->H cross section + signal efficiency + other minor ones			
						WW estimate of 0.64 comes from sidebands: 4 events in			
sideband times 0.16 (=> ~50% statistical uncertainty)									

xs_ggWW lnN	-	-	1.50	-	50% uncertainty on gg->WW cross section
bg_others InN	-	-	-	1.30	30% uncertainty on the rest of the backgrounds

InN stands for Log-normal, which is the recommended choice for multiplicative corrections gmN stands for Gamma, and is the recommended choice for the statistical uncertainty on a background coming from the number of events in a control region or in a MC sample with limited statistics