Badania Operacyjne Informatyka 2024/2025

Antoni Kucharski Piotr Rusak Paweł Prus Kacper Garus

 $1~{\rm czerwca}~2025$

Spis treści

1	$\mathbf{W}\mathbf{s}$ 1	tęp	2	
2	Opis zagadnienia			
	2.1	Model matematyczny	2	
		2.1.1 Mapa	2	
		2.1.2 Zbiór linii komunikacyjnych	2	
		2.1.3 Harmonogramy odjazdu	2	
		2.1.4 Funkcja trasy	2	
		2.1.5 Funkcja celu	3	
	2.2	Szukana wartość	3	
	2.3	Możliwe zastosowania	3	
	2.0	niožniwe Zastosowania	0	
3	Opis algorytmu			
	3.1	Idea algorytmu	4	
	3.2	Adaptacja algorytmu	4	
		3.2.1 Reprezentacja rozwiązania	4	
		3.2.2 Opis procedur	4	
4	Anl	likacja	4	
4	_	· ·	4	
		Wymagania wstępne		
	4.2			
	4.3	Parametry wejściowe	5	
5	Eks	sperymenty	5	
6	Pod	lsumowanie	5	

1 Wstęp

Celem projektu jest analiza i implementacja algorytmu mrówkowego do rozwiązania problemu znalezienia najlepszej trasy przejazdu z przystanku A do przystanku B w sieci linii komunikacyjnych. Szukanie trasy uwzględnia czasy odjazdu pojazdów z przystanków, czas przejazdu pomiędzy przystankami i możliwość przesiadek. Użytkownik może podać czas, o której chce rozpocząć podróż jak i przystanek początkowy i końcowy.

2 Opis zagadnienia

2.1 Model matematyczny

2.1.1 Mapa

Mapa komunikacyjna jest grafem nieskierowanym G=(V,E), gdzie $V\subset\mathbb{N}^2$ to zbiór wierzchołków reprezentujących punkty na mapie jako para współrzędnych (x,y), a $E\subset\{\{u,v\}:u,v\in V\}$ to zbiór krawędzi. Ponadto zachodzi zależność

$$\forall \{(x_u, y_u), (x_v, y_v)\} \in E ||x_u - x_v| + |y_u - y_v| = 1$$

To oznacza, że sąsiednie wierzchołki różnią się dokładnie o jedną współrzędną, co odpowiada ruchowi w górę, w dół, w lewo lub w prawo.

2.1.2 Zbiór linii komunikacyjnych

Każda linia komunikacyjna jest opisana jako zbiór S_n , gdzie n to numer linii, a $S \subset V \times \{0,1\}$ to zbiór par wierzchołków i flagi określające czy dany punkt jest przystankiem czy nie. Zakładamy, że punkt $(v,0) \in S_n$ może występować kilka razy w zbiorze S_n , czyli może przejeżdżać przez ten sam punkt kilka razy w różnych momentach czasowych. Natomiast $(v,1) \in S_n$ występuje tylko raz. Oznacza to, że dana linia nie zatrzymuje się na danym przystanku więcej niż raz.

2.1.3 Harmonogramy odjazdu

Dla danego przystanku v definiujemy zbiór

$$H_v = \{(n_0, h_0), (n_1, h_1), \dots, (n_n, h_n)\}\$$

określającą harmonogram odjazdu, gdzie n oznacza liczbę odjazdów z przystanku v, l_i to numer linii komunikacyjnej, a h_i to czas odjazdu tej linii.

2.1.4 Funkcja trasy

Jeśli przez N oznaczymy liczbę tras z z przystanku v_0 do przystanku v_m , to k-tą z nich definiujemy jako sekwencję

$$P_k = \{(v_0, v_1^k, n_0^k), (v_1^k, v_2^k, n_1^k), \dots, (v_{m-1}^k, v_m, n_{m-1}^k)\}$$

gdzie m to liczba przystanków na trasie, $v_0, v_1^k, \dots, v_{m-1}^k v_m$ to kolejne przystanki, a n_i^k to linia komunikacyjna, którą jedziemy z przystanku v_i^k do przystanku v_{i+1}^k . Definiujemy funkcję

$$f(v_0, v_m) = \{P_1, P_2, \dots, P_N\}$$

zwracającą zbiór wszystkich tras z przystanku v_0 do przystanku v_m rozpoczynających się w chwili t_0 .

2.1.5 Funkcja celu

Niech

$$t(n, v, t_0) = \min(\{h - t_0 : (n, h) \in H_v, h \geqslant t_0\})$$

oznacza czas oczekiwania na linię n będąc na przystanku v w chwili t_0 , a

$$d(n, u, v) = \min(\{h_v - h_u : (n, h_u) \in H_u, (n, h_v) \in H_v, h_v > h_u\})$$

oznacza czas przejazdu linią n z przystanku u do przystanku v. Wtedy funkcja celu dla danej trasy $P=\{(v_0,v_1,n_0),\ldots,(v_{m-1},v_m,n_{m-1})\}\in f(v_0,v_m)$ jest zdefiniowana jako

$$T(P, t_0) = \sum_{i=0}^{m-1} \left(t(n_i, v_i, t_i) + d(n_i, v_i, v_{i+1}) \right)$$

gdzie t_i to czas przyjazdu na przystanek v_i .

2.2 Szukana wartość

Szukana przez nas wartość to trasa $P_{opt} \in f(v_0, v_m)$ z przystanku $v_0 \in V$ do $v_m \in V$ zaczynając o godzinie t_0 o minimalnej wartości funkcji celu czyli

$$P_{opt} = \underset{P \in f(v_0, v_m)}{\arg \min} T(P, t_0)$$

2.3 Możliwe zastosowania

Zastosowanie algorytmu mrówkowego do problemu komunikacji miejskiej może być przydatne w wielu sytuacjach, takich jak:

- Planowanie codziennych dojazdów do pracy lub szkoły, uwzględniając czas odjazdu pojazdów i przesiadek.
- Organizacja transportu publicznego w miastach, aby zoptymalizować trasy i czasy przejazdu.
- Pomoc turystom w znalezieniu najdogodniejszej trasy zwiedzania miasta z uwzględnieniem komunikacji miejskiej.

3 Opis algorytmu

3.1 Idea algorytmu

Problem znalezienia najlepszej trasy przejazdu z przystanku A do przystanku B w sieci linii komunikacyjnych można rozwiązać przy pomocy algorytmu mrówkowego, który jest inspirowany zachowaniem mrówek w poszukiwaniu najkrótszej drogi do źródła pożywienia. Algorytm ten polega na symulacji ruchu mrówek, które eksplorują graf komunikacyjny, pozostawiając feromony na krawędziach, co pozwala innym mrówkom na znalezienie lepszej trasy. W kontekście komunikacji miejskiej, mrówki będą reprezentować użytkowników transportu publicznego, którzy szukają optymalnej trasy przejazdu, uwzględniając czas odjazdu pojazdów, czas przejazdu pomiędzy przystankami i możliwość przesiadek.

3.2 Adaptacja algorytmu

3.2.1 Reprezentacja rozwiązania

Rozwiązaniem naszego problemu jest sekwencja krotek postaci (v,t,n), gdzie n to numer linii komunikacyjnej i $(v,1) \in S_n$ to przystanek, na którym się znajdujemy w chwili t. Krotki te są uporządkowane rosnąco według czasu t i reprezentują kolejne przystanki na trasie, na których mrówka się zatrzymuje lub wsiada do pojazdu komunikacji miejskiej. Rozwiązaniem początkowym jest wartość pusta None.

3.2.2 Opis procedur

Pierwszym krokiem jest wygenerowanie struktury danych zawierającej informację o czasie przejazdu pomiędzy każdymi kolejnymi przystankami dla każdej linii komunikacyjnej jak i czasów oczekiwania na przystankach na każdą linię.

4 Aplikacja

4.1 Wymagania wstępne

Aplikacja jest napisana w języku Python i wymaga zainstalowania biblioteki pygame do obsługi interfejsu graficznego. Uruchomienie aplikacji odbywa się poprzez wykonanie polecenia:

python3 run.py

w katalogu głównym projektu.

4.2 Charakterystyka danych wejściowych

Dane wejściowe do aplikacji są trzymane w katalogu data i są to pliki pythonowe z rozszerzeniem .py. Każdy plik zawiera listę linii komunikacyjnych zgodnych

z definicją zbioru S_n z sekcji (2.1.2). Plik ten również zawiera listę godzin odjazdów z początkowego przystanku dla każdej linii komunikacyjnej. Pełny harmonogram odjazdu jest generowany na etapie wykonania programu. Dodatkowo plik zawiera listę kolorów, które będą używane do rysowania linii komunikacyjnych.

- 4.3 Parametry wejściowe
- 5 Eksperymenty
- 6 Podsumowanie