The DH parameters:

Link	r_i	α_i	d_i	θ_i
1	0	$\frac{-\pi}{2}$	3	θ_1
2	5.75	0	0	$\theta_2 - \frac{\pi}{2}$
3	7.375	0	0	$\theta_3 + \frac{\pi}{2}$
4	0	$-\frac{\pi}{2}$	0	$\theta_4 - \frac{\pi}{2}$
5	0	0	4.125	θ_5

$$Trans(d_n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot(\theta_n) = \begin{bmatrix} C_1 & -S_1 & S_1 & 0 \\ S_1 & C_1 & -C_1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Trans(r_n) = \begin{bmatrix} 1 & 0 & 0 & r_n \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot(\alpha_n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C_{\alpha} & -S_{\alpha} & 0 \\ 0 & S_{\alpha} & C_{\alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_n = \begin{bmatrix} C_{\theta} & -S_{\theta} * C_{\alpha} & S_{\theta} * S_{\alpha} & r_n * C_{\theta} \\ S_{\theta} & C_{\theta} * C_{\alpha} & -C_{\theta} * S_{\alpha} & r_n * S_{\theta} \\ 0 & sin_{\alpha} & cos_{\alpha} & d_n \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Above matrix is a 4-by-4 homogeneous transformation matrix using the Denavit-Hartenberg convention. Robot Arm kinematics are derived using the kinematics chain multiplication

$$A_0^5 = A_0^1 * A_1^2 * A_2^3 * A_3^4 * A_4^5$$

Likewise, each gripper points are transformed into the world frame by using kinematic chain multiplication. Figure 1 Animation of the robot arm.

Figure 1: Robot Arm.