Non Symmetrical Data Analysis New Methods and Applications

Carlo Lauro

Dipartimento di Matematica e Statistica Università di Napoli "Federico II"

Monna-Lisa by Leonardo

NSDA ... a different point of view!!!

Nude woman with the Turkish cap by P. Picasso

New Trends in Methods and Applications of Non Symmetrical Data Analysis

EXPLORATORY ANALYSIS OF TWO OR MORE SETS OF VARIABLES

	SYMMETRICA!	NON SYMMETRICAL
VARIABLES	APPROACHES	APPROACHES
Quantitative	and process of the second section of the second	1977 F. D. P. S. C.
Two Sets	Canonical Correlation Analysis (Hotelling, 1936)	Principal Component Analysis of Instrumental Variables (Rao, 1964;
		Robert, Escoufier, 1976) Redundancy Analysis (Gleason, 1976; Van den Wollenberg, 1977)
		Principa: Component Andrew mile e Reference Subseque (D'Ambra,
		Lauro, 1982a) Explanatory PCA
		(Obadia, 1982) Factorial Analysis of Structured Data (Sabatier, 1987)
MORE SETS		PLS2 (Tenenhaus, 1995)
Co. Vol. 1942 New Sc. Top	Generalised Canonical Correlation	Principal Grapparent Analysis auto
	Analysis (Carrol, 1968; Kettenring,	more than one Asterence Subspace
	1971)	(D'Ambra, Lauro, 1982b)
	Foundations of MVA (Takeuchi,	
and the state of t	Yanai, Mukherjee, 1982)	
Qualitative		and the second
TWO SETS	Method of Reciprocal averages	hion symmetrical
	(Horst, 1935)	Correspondence waysis
	Optimal quantification theory	(Lauro, D'Ambra, 1984)
	(Guttman, 1941; Hayashi, 1950, 1952)	Redundancy analysis for
	Correspondence Analysis	Qualitative variables
	(Escofier, 1965; Benzécri, 1973)	(Isräels, 1984)
		Canonical correspondence
	TOTAL PARTY STATE OF THE STATE	Analysis (Ter Braak, 1986)
MORE SETS	Multiple correspondence	Non symmetric maltiple
	analysis (Benzécri, 1972;	Correspondence analysis (Lauro
	Lebart, 1975)	Analysis (Ter Braak, 1986) Non symmetrical multiple Correspondence analysis (Lauro D'Ambra, 1984) Redundancy analysis for Qualitative variables (Isräels, 1987)
	Optimal quantification theory .	Redundancy analysis for
	(Hayashi, 1952)	Qualitative variables (Isräels, 1987)
	Generalisations of CA in terms of	
	projection operators (Yanai, 1986)	

Symmetrical Analyses

Principal Component Analysis (PCA, Pearson 1901)

Data Structure

1 set X of p Numerical Variables observed on n S.U.

To adapt a line or a plane to a cloud of points in a hyperspace by finding linear combinations $\Psi_{\alpha}=\chi u_{\alpha}$ $\alpha=1,...,p$ of the variables in X taking into account most of the variance of the variables themselves

Solution
$$X'XU_{\alpha} = \lambda_{\alpha}U_{\alpha}$$

Canonical Correlation Analysis (CCA, Hotelling 1936) Data Structure

2 sets X and Y of, respectively, p and a Numerical Variables

Criterion

To find those linear combinations, $\xi_{\alpha}=Xa_{\alpha}$ and $\eta_{\alpha}=yb_{\alpha}$, of the variables in X and Y showing the highest correlation coefficient among them

Solution
$$(X'X)^{-1}(X'Y)(Y'Y)^{-1}(Y'X)a_{\alpha} = \gamma_{\alpha}^{2}a_{\alpha}$$

$$(Y'Y)^{-1}(Y'X)(X'X)^{-1}(X'Y)b_{\alpha} = \delta_{\alpha}^{2}b_{\alpha}$$
with $\gamma = \delta = \cos \theta$

Note: Both the variables in X and Y are centred and divided by $n^{\frac{1}{2}}$ so that cross-product matrices define covariance matrices.

SPECIAL CASES OF CCA

Non-Symmetrical Alternatives

PCA with Instrumental Variables (PCAIV, Rao 1964)

Data Structure

As in CCA but Y is considered to be instrumental for the explanation of X

Criterion

To substitute, moving from the joint-dispersion matrix, Y with a lower-dimensional matrix $\mathcal{T}'y$ that maximises its predictive efficiency for X

Solution

$$(Y'Y)^{-1}(Y'X)(X'Y)f_{\alpha} = \lambda_{\alpha}f_{\alpha}$$

so to minimise the residual-dispersion matrix

Problem

Clearly set in a Multivariate Regression-like framework so that no geometrical interpretation is available

Redundancy Analysis

(RA, van den Wollenberg 1977)

Criterion

Maximising the explained variance of the variables in X through the maximisation of the Redundancy Index (Stewart and Love, 1968):

$$\frac{tr(Y'X)(X'X)^{-1}(X'Y)}{tr(Y'Y)}$$

i.e. the average variance of the X variables accounted by the Y variables

Solution

RA comes to the same solution of PCAIV

Problem

As an alternative to CCA, RA suffers from the same interpretation drawbacks

PCA anto a Reference Subspace

(PCAR, D'Ambra and Lauro 1982)

Data Structure

1 set X of p Dependent Variables
1 set Y of a Explanatory (or Reference) Variables

Criterion

PCA of a suitable image of the variables in X obtained on the reference subspace by means of orthogonal projection operators

Geometrical Insight

Solution $X'P_{y}Xg_{\alpha}=\lambda_{\alpha}g_{\alpha}$ with k=1...min(rank(X), rank(Y)) where $P_{y}=Y(Y'Y)^{-1}Y'$

Variance Decomposition
$$(X'X) = (X'P_{Y}X) + (X'X - X'P_{Y}X)$$

Remarks

- The preliminary geometrical transformation of projection in PCAR may be meant as an optimal, or at least coherent, quantification or coding of the variables in according with the objective of the analysis
- The predictive efficiency in PCAR is measured by the percentage of explained variance $tr(X'P_yX)/tr(X'X)$ and this portion is just the one decomposed by PCAR.
- With respect to the PCAIV solution, PCAR has the same non-trivial eigenvalues, and simple relations exist among the eigenvectors but PCAR provides useful geometrical interpretation tools as well as the possibility to be generalised to more than 2 sets of variables.

PCAR Biplot Representations

As the matrix $X'P_yX$ is symmetric, the following relations hold:

$$\mathbf{g}_{\alpha}\mathbf{g}_{\alpha} = \lambda_{\alpha}$$
 and $\mathbf{g}_{\alpha}\mathbf{g}_{\alpha'} = 0 \quad \forall \alpha \neq \alpha'$

- Principal Components calculation: $\mathbf{c}_{\alpha} = \mathbf{P}_{\mathbf{y}} \mathbf{X} \mathbf{g}_{\alpha}$
- For interpretative scopes, it is very helpful to set both statistical units and variables in the same geometry. Therefore, we ensure that the graphical display in the reduced space is a biplot by dealing with components normalised to 1:

$$\mathbf{c}_{\alpha}^{\star} = \mathbf{P_{y}Xg}_{\alpha} / \sqrt{\lambda_{\alpha}}$$

 Dependent variables co-ordinates, as the correlation between the variables themselves and the principal components:

$$\mathbf{X}'\mathbf{c}_{\alpha}^{\star} = \mathbf{X}'\mathbf{P}_{\mathbf{y}}\mathbf{X}\mathbf{g}_{\alpha} / \sqrt{\lambda_{\alpha}} = \mathbf{g}_{\mathbf{k}}\sqrt{\lambda_{\alpha}}$$

• Explanatory variables co-ordinates:

$$\mathbf{Y}'\mathbf{c}_{\alpha}^{\star} = \mathbf{Y}'\mathbf{X}\mathbf{g}_{\alpha} / \sqrt{\lambda_{\alpha}}$$

correlações entre las y y la C.P. = RyC2

11 11 1 X = Ryxga.

Interpretation Property

The image of the correlations between the two sets X and Y is reconstructed directly on the principal axes.

Differently from CCA, we are enabled to read on a unique factorial plane both the internal and external correlations

The α -th eigenvalue of PCAR is the sum of squared correlations between the variables in X and the principal components of the reference subspace. Therefore, it represents the explanatory power of the principal component, associated with the k-th eigenvector, with respect to the dependent variables

1.8= = = Xx2cx con[cx + 1/4/9x]

PCAR Dual Analysis

Characteristic Equation

$$P_{y}XX'P_{y}Xg_{\alpha} = \lambda_{\alpha}P_{y}Xg_{\alpha}$$

Remark 1

The Principal Vectors $P_{Y}Xg_{\alpha}$

represent the Principal Components relative to the

variables space

Remark 2

The Principal Vectors can be expressed as linear combinations of the variables in Y:

$$c_{\alpha} = P_{y} X g_{\alpha} = Y [(Y'Y)^{-1} Y' X g_{\alpha}] = Y Z_{\alpha}$$

PCAR for Different Data Structures

Dependent Variables	Explanatory Variables	Analyses
Numerical	Numerical	PCAR
Nominal	Nominal	Non Symmetrical Correspondence Analysis
Ordinal (Ranks)	Nominal (Experimental Design)	Factorial Conjoint Analysis
Numerical	Nominal (Experimental Design)	MANOVA Total Quality Control

Non Symmetrical Correspondence Analysis (NSCA) for two Sets of Binary Dummy

Variables (Lauro et al., 1984)

Data Structure

$$\frac{1}{n}(X'P_{y}X - X'P_{m}X)u_{\alpha} = \mu_{\alpha}u_{\alpha}$$

with $\alpha=1...min(rank(X), rank(Y))$ and P_m is the centring matrix Interpretation

From the Huyghens theorem, the total variability of X is decomposed as:

$$\frac{1}{n}(X'X - X'P_{m}X) = \frac{1}{n}(X'P_{y}X - X'P_{m}X) + \frac{1}{n}(X'X - X'P_{y}X)$$

Therefore, NSCA aims at decomposing:

$$\tau_{X,Y} = \frac{tr(X'P_{Y}X - X'P_{m}X)}{tr(X'X - X'P_{m}X)} = \frac{Explained Variability}{Total Variability}$$

Expression of Goodman-Kruskal's association index

Non Symmetrical

Multiple Correspondence Analysis

(NS-MCA, Lauro et al., 1984, 1989, 1992)

Limitations of the classical MCA

- Symmetry (Survey Analysis)
- Interactions (Burt's Table diagonalizations)

3 Qualitative Variables $X Y_1 Y_2$

a) S_{y1} and S_{y2} are DISJOINTS $P_m^{\perp}X = P_m^{\perp}P_{y1}X + P_m^{\perp}P_{y2}X + P_m^{\perp}(I - P_{y1} - P_{y2})X$

$$\frac{1}{n} X' \left[\sum_{j=1}^{2} (P_{y_j} - P_m) \right] X$$

Remark: Extensions to More Sets of Variables

$$\frac{1}{n}X_{i}\left[\sum_{j=1}^{q}\left(P_{y_{j}}-P_{m}\right)\right]X_{i}\Rightarrow\sum_{j=1}^{q}P_{y_{j}}\sum_{i}X_{i}X_{i}$$

b) Analysis onto the Cartesian Product Space Sylle by means of the Projection Operator:

$$P_{Y_{12}} = Y_{12} (Y_{12} Y_{12})^{-1} Y_{12}$$

$$\frac{1}{n} X' (P_{Y_{12}} - P_m) X$$

Gray Williams' Multiple t

c) Analysis onto the Cartesian Product Space S_{y12} Orthogonal to S_{y1} :

$$\frac{1}{n}X'P_m^{\perp}(P_{Y_1}P_{Y_{12}})X = \frac{1}{n}X'(P_{Y_{12}}-P_{Y_1})X$$
Gray Williams' Partial τ

d) Analysis onto the Interaction Sub-Space $S_{y_i \otimes y_j}$:

$$P_{Y_1 \otimes Y_2} = P_{Y_{12}} - P_{Y_1} - P_{Y_2} + P_m$$

e) Analysis onto the Union Sub-Space 5,10%:

$$P_{Y_1 \cup Y_2} = P_{Y_1} + P_{Y_2 / Y_1} = P_{Y_2} + P_{Y_1 / Y_2}$$
where $P_{Y_1 / Y_2} = P_{Y_2} Y_1 (Y_1 Y_1)^T Y_1 P_{Y_2}$

.. Extensions $X_{i_1...i_p}$ with $i_1 \times i_2 \times ... \times i_p$ categories

NSCA for Contingency Tables

(Lauro et al., 1984)

Notations $D_p = \frac{1}{n}X'Y \qquad D_q = \frac{1}{n}Y'Y$ $f'_p = [f_1, ..., f_p] \qquad f'_q = [f_1, ..., f_q]$

- NSCA studies the q conditional distributions fiff, with reference to the independence hypothesis fi
- From a geometrical view point NSCA aims at studying the spread of the q column points around their centroid f_p in the space \mathbb{R}^p spanned by the rows of \mathbf{FD}_q^{-1}

Interpretation

$$\tau_{X,Y} = \frac{tr(FD_q^{-1}F' - f_p f_p)}{tr(D_p - f_p f_p)}$$

Solution

Eigen-analysis of the matrix: $FD_a^{-1}F'$

Analysis with respect to the common centroid fp

Criterion: Gray-Williams Multiple τ

Partial NSCA

Analysis with respect to the strata centroids

Criterion: Gray-Williams Partial $\boldsymbol{\tau}$

An Example on Medical Data

Simple NSCA

Disease								
~	Typh.	Salmon.	Oral Af.	Pneumo.	Mening.	Urin. Af.	Staphil.	Total
Medicine								
Penicillin	0	0	8	7	2	4	3	24
Typhom.	4	2	0	0	2	0	0	Š
Tetracycl.	0	0	5	5	0	2	1	13
Erythroc.	0	0	3	2	0	0	3	8
Thioph.	2	1	0	0	0	0	0	
Gentam.	0	0	3	3	1	6	0	
Total	6	3	19	17	5	12	7	69

An Example on School Success

Multiple and Partial NSCA

		Male			Female		
Residence	CITY	PROV.	REGION	CITY	PROV.	REGION	
~							Total
Grade							
Sufficient	6	4	5	1	1	1	1.8
Good	17	8	9	3	3	4	44
Excellent	19	5	3	10	2	1	40
Total	42	17	17	14	6	6	102

Multiple NSCA

Partial NSCA

Interpretation of NSCA Displays

- A row-modality (marginal) for from the origin indicates a dependence of that modality from the column-character
- A column-profile far from the origin indicates a great influence of the related column-modality on the behaviour of the dependent (row) variable

Distance between rows

Analogies with respect to column character dependency

Distance between columns

Similar profiles indicate similar influence on the dependent variable

Angles *(no distances)* between row & column profiles

A large cosine indicates strong influence of the column-modality on the row-modality

Comparison of descriptive factorial methods for two-way contingency tables analysis

	To two way countingency rapies analysis						
	Correspondence Analysis (CA)	Non-symmetrical					
Analysis in R ^{P1}							
Coordinates	f _{ij} /f _{.j}	f _{ij} /f _{.j}					
Weight	f _{.j}						
Distance from	$\sum_{i} \frac{1}{f_{i}} \left(f_{ij} / f_{.j} - f_{i.} \right)^{2}$	$\frac{\mathbf{f}_{.j}}{\sum_{i} (f_{ij}/f_{.j} - f_{i.})^2}$					
centre of mass	$= \frac{2}{i} f_{i} (y)^{i} J^{i} J^{i}$	/					
Metric	χ^2	Euclidean					
Inertia	$\sum_{j} f_{.j} \sum_{i} \frac{1}{f_{i.}} \left(f_{ij} / f_{.j} - f_{i.} \right)^{2}$	$\sum_{j} f_{.j} \sum_{i} (f_{ij}/f_{.j} - f_{i.})^{2}$					
Index	$0 \le \phi^2 \le \min(p,q)-1$	0 ≤ τ ≤ f _i .≤ 1					
Characteristic Equations	$\sum_{j} f_{.j} \sum_{i} \frac{1}{f_{i'.}} \left(\frac{f_{ij}}{f_{.j}} - f_{i.} \right) \left(\frac{f_{ij}}{f_{.j}} - f_{i'.} \right) u_{i'\alpha}$ $= \lambda_{\alpha} u_{i'\alpha}$	• •					
Constraints	$\mathbf{u}_{\alpha}^{\prime}\mathbf{D}_{p}\mathbf{u}_{\alpha}=1,\mathbf{u}_{\alpha}^{\prime}\mathbf{D}_{p}\mathbf{u}_{\alpha}=0$	$= \lambda_{\alpha} u_{i'\alpha}$ $\mathbf{u}_{\alpha} \mathbf{u}_{\alpha} = 1, \mathbf{u}_{\alpha} \mathbf{u}_{\alpha'} = 0$					
Factorial	$\psi_{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{D}_{p}^{-1} \mathbf{u}_{\alpha}$	$\psi_{\alpha} = \sqrt{\lambda_{\alpha}} \mathbf{u}_{\alpha}$					
Coordinates	,	,					
Transition	$\mathbf{v}_{\alpha} = 1/\sqrt{\lambda_{\alpha}} \mathbf{F}' \mathbf{D}_{\rho}^{-1} \mathbf{u}_{\alpha}$	$\mathbf{v}_{\alpha} = 1/\sqrt{\lambda_{\alpha}} \mathbf{F'} \mathbf{u}_{\alpha}$					
formulae to \mathbb{R}^{9^1}							
Constraints 🖓 🖰	$\mathbf{v}_{\alpha}\mathbf{D}_{q}\mathbf{v}_{\alpha}=1,\mathbf{v}_{\alpha}\mathbf{D}_{q}\mathbf{v}_{\alpha}=0$	$\mathbf{v}_{\alpha}^{'}\mathbf{D}_{q}\mathbf{v}_{\alpha}=1,\mathbf{v}_{\alpha}^{'}\mathbf{D}_{q}\mathbf{v}_{\alpha}=0$					
Coordinates 🛭 🕫	$\varphi_{\alpha} = \sqrt{\lambda_{\alpha}} D_{q}^{-1} v_{\alpha}$	$\varphi_{\alpha} = \sqrt{\lambda_{\alpha}} D_{q}^{-1} v_{\alpha}$					
Reconstruction	$f_{ij} = f_{.j} f_{i.} \left(1 + \sum_{\alpha} M^{*} \lambda_{\alpha} \mathbf{u}_{\alpha i} \mathbf{v}_{\alpha j} \right)$	$f_{ij} = f_{.j} \left(f_{i.} + \sum_{\alpha}^{M^*} \lambda_{\alpha} \mathbf{u}_{\alpha i} \mathbf{v}_{\alpha j} \right)$					
Formulae	α α α α	$\alpha = \alpha - \alpha - \alpha $					

Principal Matrices Analysis onto an Experimental Design (PMAD, Lauro et al., 1997)

s= 1...5 control samples or bootstrap replications h= 1...H Experimental conditions

j= 1...q Experimental factors
$$\sum_{j=1}^{q} l_j = L$$
 levels of the factors Aim

To build non parametric control charts taking into account of a possible different behaviour of the control variables through representing the statistical units rearrenged according to their own experimental pattern

$$X_{s}^{*} = T_{s}^{-1} M_{s}^{'} X_{s}$$
 where $M_{ihs} = \begin{bmatrix} 1 \text{ if the } i \text{ - th unit } \in h \text{ - th condtion} \\ 0 \text{ otherwise} \end{bmatrix}$ and $T_{s} = diag(M_{s}^{'}1)$

PMAD Solution

Step 1

Each X_s^* is projected onto the subspace spanned by the columns of the experimental matrix D:

$$A_s = P_s X_s^*$$

where $P_s = D(D'T_sD)^{-1}D'T_s$

Step 2

The three-way structure determined by the As's is analysed by a Principal Matrices Analysis.

In particular, Co-Chart are built for the experimental conditions based on:

$$Co = \sum_{s=1}^{s} u_{r_b} X_s^*$$

where u_{r_b} is the b-th element of the eigenvector corresponding to the r-th eigenvalue of the so-called matrix IS having as general element:

$$tr(X_s^{*}, X_s^{*})$$

A PMAD Application: Buffon's Beams

76 Items

6 variables:

Factors

Width 2 levels

Length 2 levels

Weight 3 levels

Responses

Breaking Load

Failure Time

Sag of the Beam at First Crack

Experimental Conditions:

12

Observed Experimental Conditions:

7

Control Chart based on experimental design 95% limits, 200 bootstrap replications

A Multidimensional Approach to Conjoint Analysis (Lauro et al., 1997)

- Conjoint Analysis deals with preference judgements, expressed by individuals (judges) about a set of stimuli (products or services). Stimuli are described by several attributes at different levels
- Conjoint Analysis aims at evaluating the relative importance of the levels of each attribute in establishing the known global preference associated to the different stimuli, by means of a decompositive approach
- We mainly cope with the so called Metric Conjoint Analysis approach in which the multiple linear regression model is used in order to estimate the part-worth coefficient of each level

In order to improve the interpretation of the Conjoint Analysis results we propose an alternative approach to CA in the context of

Multidimensional Data Analysis

- > Optimal Synthesis of the Conjoint Analysis results
- Seometrical approach
- > Visualization and interpretation of subsets of models

The individual regression model estimated by the *Metric* approach to Conjoint Analysis is:

$$X_p = b_{p1}D_1 + ... + b_{pl}D_l + ... + b_{pl}D_l + e_p$$

where:

- X_p is the centred preference vector of the g-th judge;
- D_l is the 1-th level of the generic attribute;
- b_{pl} is the individual *utility coefficient* for the level D_{l} ;
- e_p is the error term;

Data Structure

Design Matrix

n Stimuli; L Levels; q Attributes

$$L = \sum_{j=1,q} I_j$$

		Ŋ			D		D ² / ₂		Ŋ	• • •	D_{lq}^{g}
	5	1	• • • •	0	0	• • •	1	•••	1		0
D =	52	0	• • •	1	1	• • •	0		0	• • •	1
	:	:	٠.	:	:	٠.	:	ļ•.¦	:	٠.	:
Mark & Markey Alexander	<i>5</i> _n	0		1	1	•••	0		0	•••	1

Preference Judgements Matrix

n Stimuli; p Judgements

		X_1	X_2	• • •	X_i		X_p
	<u>5</u>	n	2	• • •	2		1
X =	52	2	1	•••	n	•••	n
	•	:	:	٠.	•	٠.	•
	S_n	1	n	•••	1	• • •	2

COMPUTATIONAL ASPECTS

Consider the multivariate regression model in matrix notation:

$$X = DB + E$$

Due to the peculiar structure of D, it can be easily seen that its rank is equal to (L-q), and consequently one cannot compute the **inverse** of the matrix D'D...

Assuming that D is an orthogonal design, a particular solution estimates B by means of the inverse diagonal terms of D'D, so that:

$$\hat{\mathbf{B}} = \Delta_{\mathcal{D}}^{-1} \mathbf{D}' \mathbf{X}$$
 where $\Delta_{\mathcal{D}} = Diag(\mathcal{D}' \mathcal{D})$

As a synthesis of utility coefficients
we propose an approach based on the decomposition of the
explained preference-judgements variability

$$trace(\hat{\mathbf{X}}'\hat{\mathbf{X}}) = trace(\mathbf{X}'D\Delta_D^{-1}D'\mathbf{X})$$

\$\\ it follows from the characteristic equation:

$$\mathbf{X'D}\left(\Delta_{\mathcal{D}}^{-1}\right)\mathbf{D'Xv}_{\alpha} = \lambda_{\alpha}\mathbf{v}_{\alpha}$$

under the usual orthonormality constraints

$$\mathbf{v}_{\alpha}'\mathbf{v}_{\alpha}=\mathbf{1}$$
 $\mathbf{v}_{\alpha}'\mathbf{v}_{\alpha'}=\mathbf{0}$

the direction cosines in $V\alpha$ lead to the principal judgments

$$\hat{\mathbf{X}}\mathbf{v}_{\alpha} = \mathbf{D}\Delta_{\mathcal{D}}^{-1}\mathbf{D}'\mathbf{X}\mathbf{v}_{\alpha}$$

An application on the preference for a Cup of Coffee

A case-study from the Philip Morris Award 1996

60 judges expressed their preferences on 9 different kinds of coffee described by 3 attributes

Taste	moderate	bitter	very bitter	
<i>Flavour</i>	Weak		intense	
Strength	weak		moderate	strong

Design Matrix

Attributes Stimuli	Taste	<u>Flavour</u>	<u>Strength</u>
S1	Moderate bitter	intense	moderate
S2	Moderate bitter	weak	weak
S3	Moderate bitter	weak	strong
S4	Moderate bitter	intense	strong
<u> </u>	Moderate bitter	intense	weak
<u> </u>	very bitter	weak	weak
S7	very bitter	weak	moderate
S8	Moderate bitter	weak	moderate
<u>\$9</u>	very bitter	weak	strong

PCAR and Conjoint Analysis results

Levels	Axis 1	Axis 2	Averaged utility
(1) moderate bitter	1.77	-0.54	0.98
(2) very bitter taste	-2.51	0.71	-0.98
(3) weak flavour	-1.77	0.11	-1.01
(4) strong flavour	2.51	-0.21	1.01
(5) weak strength	-0.23	-3.39	-0.23
(6) moderate strength	-0.69	0.14	-0.24
(7) strong strength	0.92	3.46	0.47

ACOMPANION DE L'ANDRESSA DE L'	Eigenvalue	%
	15.64	80.87
	2.51	12.98
	0.71	3.66
	0.48	2.49

Attribute Importance	Axis 1	Axis 2	Averaged utility
Taste	38.98	5.83	34.05
Flavour	37.71	13.59	31.08
Strength	23.31	80.58	34.87

Representation on the first factorial plan

On the 1st Factorial Plan the stimulus S4

(moderate bitter, intense flavour, strong strength),
seems to individuate the Ideal Cup of Coffee

PCAR in Comparative Studies Geometrical Insights

Rotated Canonical Analysis onto a Reference Subspace

Non Symmetrical Co-Inertia Analysis

Simultaneous PCAR

Non Symmetrical Generalised Co-Structure Analysis

Generalisation to More Sets in the Sense of Generalised

Canonical Correlation Analysis

PCAR in Comparative Studies Data Structures

Rotated Canonical Analysis onto a Reference Subspace (RCAR, Balbi and Esposito 1997)

Non Symmetrical Co-Inertia Analysis (NSCoA, Esposito 1997)

Non Symmetrical Generalised Co-Structure Analysis (NSGCoA, Esposito and Scepi 1997)

Simultaneous PCAR (S-PCAR, Esposito and Balbi 1997)

Allowing
More than Two
Conditions

Invariant

PCAR Solutions in Comparative Studies

RCAR

1) Projection Step: $P_{y}X_{1}$ $P_{y}X_{2}$

2) Rotation of P_yX_2 towards P_yX_1 :

$$R_{P_{y}} = X_{2}P_{y}X_{1}(X_{1}P_{y}X_{2}X_{2}P_{y}X_{1})^{\frac{1}{2}}$$
so to have $P_{y}X_{2}R_{P_{y}}$

3) Core of the Analysis: CCA between $P_{\mathcal{Y}}X_1$ and $P_{\mathcal{Y}}X_2R_{P_{\mathcal{Y}}}$

<u>Aim</u>: To represent the principal structure of similarity once the variability of each dependent set is decomposed

5-PCAR

1) Rotation of all X_k 's towards X_1 :

$$R = X_{2}' X_{1} (X_{1}' X_{2} X_{2}' X_{1})^{-\frac{1}{2}}$$
 so to have $X_{1}, X_{2} R, ..., X_{K} R$

2) Projection Step: $P_{\mathcal{Y}}[X_1 \mid X_2 R \mid ... \mid X_K R]$

3) Core of the Analysis: PCA on $P_{y}[X_{1} \mid X_{2}R \mid ... \mid X_{K}R]$

<u>Aim</u>: To detect the differences in the overall structure of dependent variables and then to explain these differences in terms of the explanatory variables

NSC0A

1) Projection Step: $P_{\nu}X_1 \qquad P_{\nu}X_2$

2) Criterion to Maximise: $cov(P_{y}X_{1}z_{1}, P_{y}X_{2}z_{1})$

3) Singulare Value Decomposition of:

$$(X_{2}P_{y}X_{1} + X_{1}P_{y}X_{2})/2$$

<u>Aim</u>: To identify a common structure to all conditions w.r.t. which the statistical units configurations are compared

Note: Compromise between two separate PCAR's and a global CCA on projected data

NSGC0A

1) Projection Step:

$$P_{y}X_{1}$$
 $P_{y}X_{2}$ $P_{y}X_{K}$

2) Criterion to Maximise:

$$\sum_{k} \pi_{k} (P_{y} X_{k} w_{k} \mid z_{1})^{2}$$

3) Core of the Analysis: PCA on $P_{\mathcal{Y}}[X_1 \mid X_2 \mid ... \mid X_K]$

<u>Aim</u>: The same as NSCOA but extended to multiple just row-wise paired matrices

Applications in Comparative Studies

RCAR

Sensory Data Analysis

comparing, on the basis of a common structure, the judgements expressed by different groups of tasters w.r.t. the organoleptic features of a product

S-PCAR

Multivariate Quality Control

characteristics with the in-control situation and explain the eventual differences with respect to the process variables

NSCoA

Customer Satisfaction

Measuring the gap between perceived and expected quality by the customers of a product/service w.r.t. a pre-defined set of scenarios

NSGCOA

Non Parametric MVQC Charts
The whole set of quality
characteristics may be split
into differently sized groups
according to a specified expert's
criterion

Panel Data

A questionnaire is submitted to different samples in different occasions

An RCAR Example

4 Dependent Variables:

Judgements on:

Sight

Taste

Smell

Aftertaste

of the "Tocai friulano" Italian wine produced by 22 wineries

Condition 1: Experts judgements (rotation reference)

Condition 2: Ordinary Consumers judgements

7 Explanatory Variables:

Physical-chemical features of the 22 wines:

Alcohol

pH

Sugar

Methanol

Free Sulphur Dioxide

Optical Absorbency

Ethyl Acetate

Representation of Paired Wineries

Individual-Points

Representation of Judgements

Variable-Points

CONCLUDING REMARKS AND PERSPECTIVES

The time dimension has always represented a challenge for data analysts. In fact, though easily to consider from a technical point of view, it often lacks of a proper interpretation.

Geometrically based techniques usually consider this dimension only implicitly, thus interpreting the ordinal feature of time a posteriori on the graphical displays regardless of its being a real variable that should be taken into account in the core of the analysis.

