Sage Reference Manual: Modular Forms

Release 7.5

The Sage Development Team

CONTENTS

1	Modi	ule List	1
	1.1	Creating Spaces of Modular Forms	1
	1.2	Generic spaces of modular forms	6
	1.3	Ambient Spaces of Modular Forms	20
	1.4	Modular Forms with Character	26
	1.5	Modular Forms for $\Gamma_0(N)$ over ${\bf Q}$	29
	1.6	Modular Forms for $\Gamma_1(N)$ and $\Gamma_H(N)$ over \mathbf{Q}	30
	1.7	Modular Forms over a Non-minimal Base Ring	32
	1.8	Submodules of spaces of modular forms	33
	1.9	The Cuspidal Subspace	34
	1.10	The Eisenstein Subspace	37
	1.11	Eisenstein Series	42
	1.12	Eisenstein Series (optimized compiled functions)	46
	1.13	Elements of modular forms spaces	46
	1.14	Hecke Operators on q-expansions	64
	1.15	Numerical computation of newforms	66
	1.16	The Victor Miller Basis	69
	1.17	Compute spaces of half-integral weight modular forms	72
	1.18	Graded Rings of Modular Forms	73
	1.19	q-expansion of j-invariant	79
	1.20	q-expansions of Theta Series	80
2	Desig	gn Notes	83
	2.1	Design Notes	83
3	Indic	es and Tables	85

CHAPTER

ONE

MODULE LIST

1.1 Creating Spaces of Modular Forms

EXAMPLES:

```
sage: m = ModularForms(Gamma1(4),11)
sage: m
Modular Forms space of dimension 6 for Congruence Subgroup Gamma1(4) of weight 11
→ over Rational Field
sage: m.basis()
[
q - 134*q^5 + O(q^6),
q^2 + 80*q^5 + O(q^6),
q^3 + 16*q^5 + O(q^6),
q^4 - 4*q^5 + O(q^6),
1 + 4092/50521*q^2 + 472384/50521*q^3 + 4194300/50521*q^4 + O(q^6),
q + 1024*q^2 + 59048*q^3 + 1048576*q^4 + 9765626*q^5 + O(q^6)
]
```

 $sage.modular.modform.constructor. \begin{tabular}{ll} {\bf CuspForms} & (\textit{group=1}, & \textit{weight=2}, & \textit{base_ring=None}, \\ & \textit{use_cache=True}, \textit{prec=6}) \end{tabular}$

Create a space of cuspidal modular forms.

See the documentation for the ModularForms command for a description of the input parameters.

EXAMPLES:

```
sage: CuspForms(11,2)
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for

→Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
```

Create a space of eisenstein modular forms.

See the documentation for the ModularForms command for a description of the input parameters.

```
sage: EisensteinForms(11,2)
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2 for

→Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
```

Create an ambient space of modular forms.

INPUT:

- •group A congruence subgroup or a Dirichlet character eps.
- •weight int, the weight, which must be an integer = 1.
- •base_ring the base ring (ignored if group is a Dirichlet character)

Create using the command ModularForms(group, weight, base_ring) where group could be either a congruence subgroup or a Dirichlet character.

EXAMPLES: First we create some spaces with trivial character:

```
sage: ModularForms(Gamma0(11),2).dimension()
2
sage: ModularForms(Gamma0(1),12).dimension()
2
```

If we give an integer N for the congruence subgroup, it defaults to $\Gamma_0(N)$:

```
sage: ModularForms(1,12).dimension()
2
sage: ModularForms(11,4)
Modular Forms space of dimension 4 for Congruence Subgroup Gamma0(11) of weight 4
→over Rational Field
```

We create some spaces for $\Gamma_1(N)$.

We create a space with character:

We can also create spaces corresponding to the groups $\Gamma_H(N)$ intermediate between $\Gamma_0(N)$ and $\Gamma_1(N)$:

```
sage: G = GammaH(30, [11])
sage: M = ModularForms(G, 2); M
Modular Forms space of dimension 20 for Congruence Subgroup Gamma_H(30) with H

→generated by [11] of weight 2 over Rational Field
```

```
sage: M.T(7).charpoly().factor() # long time (7s on sage.math, 2011)
(x + 4) * x^2 * (x - 6)^4 * (x + 6)^4 * (x - 8)^7 * (x^2 + 4)
```

More examples of spaces with character:

This came up in a subtle bug (trac ticket #5923):

```
sage: ModularForms(gp(1), gap(12))
Modular Forms space of dimension 2 for Modular Group SL(2,Z) of weight 12 over

→Rational Field
```

This came up in another bug (related to trac ticket #8630):

We create some weight 1 spaces. The first example works fine, since we can prove purely by Riemann surface theory that there are no weight 1 cusp forms:

This example doesn't work so well, because we can't calculate the cusp forms; but we can still work with the Eisenstein series.

sage: M = ModularForms(Gamma1(57), 1); M Modular Forms space of dimension (unknown) for Congruence Subgroup Gamma1(57) of weight 1 over Rational Field sage: M.basis()

<repr(<sage.structure.sequence_Sequence_generic at 0x...>) failed: NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general> sage:
M.cuspidal_subspace().basis() Traceback (most recent call last): ... NotImplementedError: Computation of dimensions of weight 1 cusp forms spaces not implemented in general

sage: E = M.eisenstein_subspace(); E Eisenstein subspace of dimension 36 of Modular Forms space of dimension (unknown) for Congruence Subgroup Gamma1(57) of weight 1 over Rational Field sage: $(E.0 + E.2).q_expansion(40) 1 + q^2 + 1473/2*q^36 - 1101/2*q^37 + q^38 - 373/2*q^39 + O(q^40)$

sage.modular.modform.constructor. ModularForms_clear_cache ()
Clear the cache of modular forms.

EXAMPLES:

```
sage: M = ModularForms(37,2)
sage: sage.modular.modform.constructor._cache == {}
False
```

```
sage: sage.modular.modform.constructor.ModularForms_clear_cache()
sage: sage.modular.modform.constructor._cache
{}
```

INPUT:

- •identifier a canonical label, or the index of the specific newform desired
- •group the congruence subgroup of the newform
- •weight the weight of the newform (default 2)
- •base_ring the base ring
- •names if the newform has coefficients in a number field, a generator name must be specified

EXAMPLES:

```
sage: Newform('67a', names='a')
q + 2*q^2 - 2*q^3 + 2*q^4 + 2*q^5 + O(q^6)
sage: Newform('67b', names='a')
q + a1*q^2 + (-a1 - 3)*q^3 + (-3*a1 - 3)*q^4 - 3*q^5 + O(q^6)
```

sage.modular.modform.constructor. Newforms (group, weight=2, $base_ring=None$, names=None)

Returns a list of the newforms of the given weight and level (or weight, level and character). These are calculated as $\operatorname{Gal}(\overline{F}/F)$ -orbits, where F is the given base field.

INPUT:

- $\ensuremath{\raisebox{.4ex}{\scriptsize \bullet}}\xspace$ the congruence subgroup of the newform, or a Nebentypus character
- •weight the weight of the newform (default 2)
- $\bullet \texttt{base_ring}$ the base ring (defaults to $\mathbf Q$ for spaces without character, or the base ring of the character otherwise)
- •names if the newform has coefficients in a number field, a generator name must be specified

```
sage: Newforms(11, 2)
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 0(q^6)]
sage: Newforms(65, names='a')
[q - q^2 - 2*q^3 - q^4 - q^5 + 0(q^6),
  q + a1*q^2 + (a1 + 1)*q^3 + (-2*a1 - 1)*q^4 + q^5 + 0(q^6),
  q + a2*q^2 + (-a2 + 1)*q^3 + q^4 - q^5 + 0(q^6)]
```

A more complicated example involving both a nontrivial character, and a base field that is not minimal for that character:

```
sage: K.<i> = QuadraticField(-1)
sage: chi = DirichletGroup(5, K)[1]
sage: len(Newforms(chi, 7, names='a'))
1
sage: x = polygen(K); L.<c> = K.extension(x^2 - 402*i)
sage: N = Newforms(chi, 7, base_ring = L); len(N)
2
sage: sorted([N[0][2], N[1][2]]) == sorted([1/2*c - 5/2*i - 5/2, -1/2*c - 5/2*i - 5/2])
True
```

TESTS:

We test that trac ticket #8630 is fixed:

Check that trac ticket #15486 is fixed (this used to take over a day):

```
sage: N = Newforms(719, names='a'); len(N) # long time (3 s)
3
```

```
sage.modular.modform.constructor. \  \  \textbf{canonical\_parameters} \ (\textit{group}, \textit{level}, \textit{weight}, \\ \textit{base\_ring})
```

Given a group, level, weight, and base_ring as input by the user, return a canonicalized version of them, where level is a Sage integer, group really is a group, weight is a Sage integer, and base_ring a Sage ring. Note that we can't just get the level from the group, because we have the convention that the character for Gamma1(N) is None (which makes good sense).

INPUT:

```
•group - int, long, Sage integer, group, dirichlet character, or
```

- •level int, long, Sage integer, or group
- •weight coercible to Sage integer
- •base_ring commutative Sage ring

OUTPUT:

- •level Sage integer
- •group congruence subgroup
- •weight Sage integer
- •ring commutative Sage ring

EXAMPLES:

sage.modular.modform.constructor.parse_label (s)

Given a string s corresponding to a newform label, return the corresponding group and index.

EXAMPLES:

```
sage: sage.modular.modform.constructor.parse_label('11a')
(Congruence Subgroup Gamma0(11), 0)
sage: sage.modular.modform.constructor.parse_label('11aG1')
(Congruence Subgroup Gamma1(11), 0)
sage: sage.modular.modform.constructor.parse_label('11wG1')
(Congruence Subgroup Gamma1(11), 22)
```

GammaH labels should also return the group and index (trac ticket #20823):

```
sage: sage.modular.modform.constructor.parse_label('389cGH[16]')
(Congruence Subgroup Gamma_H(389) with H generated by [16], 2)
```

1.2 Generic spaces of modular forms

EXAMPLES (computation of base ring): Return the base ring of this space of modular forms.

EXAMPLES: For spaces of modular forms for $\Gamma_0(N)$ or $\Gamma_1(N)$, the default base ring is **Q**:

```
sage: ModularForms(11,2).base_ring()
Rational Field
sage: ModularForms(1,12).base_ring()
Rational Field
sage: CuspForms(Gamma1(13),3).base_ring()
Rational Field
```

The base ring can be explicitly specified in the constructor function.

```
sage: ModularForms(11,2,base_ring=GF(13)).base_ring()
Finite Field of size 13
```

For modular forms with character the default base ring is the field generated by the image of the character.

```
sage: ModularForms(DirichletGroup(13).0,3).base_ring()
Cyclotomic Field of order 12 and degree 4
```

For example, if the character is quadratic then the field is \mathbf{Q} (if the characteristic is 0).

```
sage: ModularForms(DirichletGroup(13).0^6,3).base_ring()
Rational Field
```

An example in characteristic 7:

```
sage: ModularForms(13,3,base_ring=GF(7)).base_ring()
Finite Field of size 7
```

Bases: sage.modular.hecke.module.HeckeModule_generic

A generic space of modular forms.

Element

alias of ModularFormElement

basis ()

Return a basis for self.

EXAMPLES:

```
sage: MM = ModularForms(11,2)
sage: MM.basis()
[
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6),
1 + 12/5*q + 36/5*q^2 + 48/5*q^3 + 84/5*q^4 + 72/5*q^5 + O(q^6)
]
```

character ()

Return the Dirichlet character of this space.

EXAMPLES:

```
sage: M = ModularForms(DirichletGroup(11).0, 3)
sage: M.character()
Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta10
sage: s = M.cuspidal_submodule()
sage: s.character()
Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta10
sage: CuspForms(DirichletGroup(11).0,3).character()
Dirichlet character modulo 11 of conductor 11 mapping 2 |--> zeta10
```

cuspidal_submodule ()

Return the cuspidal submodule of self.

```
sage: N.cuspidal_submodule()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 5 for

→Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

```
sage: N.cuspidal_submodule().dimension()
1
```

We check that a bug noticed on trac ticket #10450 is fixed:

```
sage: M = ModularForms(6, 10)
sage: W = M.span_of_basis(M.basis()[0:2])
sage: W.cuspidal_submodule()
Modular Forms subspace of dimension 2 of Modular Forms space of dimension 11

→for Congruence Subgroup Gamma0(6) of weight 10 over Rational Field
```

cuspidal_subspace ()

Synonym for cuspidal_submodule.

EXAMPLES:

```
sage: N = ModularForms(6,4); N
Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(6) of
    →weight 4 over Rational Field
sage: N.eisenstein_subspace().dimension()
4
```

```
sage: N.cuspidal_subspace()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 5 for

→Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

```
sage: N.cuspidal_submodule().dimension()
1
```

decomposition ()

This function returns a list of submodules $V(f_i,t)$ corresponding to newforms f_i of some level dividing the level of self, such that the direct sum of the submodules equals self, if possible. The space $V(f_i,t)$ is the image under g(q) maps to $g(q^t)$ of the intersection with R[[q]] of the space spanned by the conjugates of f_i , where R is the base ring of self.

TODO: Implement this function.

EXAMPLES:

```
sage: M = ModularForms(11,2); M.decomposition()
Traceback (most recent call last):
...
NotImplementedError
```

echelon_basis()

Return a basis for self in reduced echelon form. This means that if we view the q-expansions of the basis as defining rows of a matrix (with infinitely many columns), then this matrix is in reduced echelon form.

```
sage: M = ModularForms(Gamma0(11),4)
sage: M.echelon_basis()
[
1 + O(q^6),
q - 9*q^4 - 10*q^5 + O(q^6),
q^2 + 6*q^4 + 12*q^5 + O(q^6),
q^3 + q^4 + q^5 + O(q^6)
]
```

```
sage: M.cuspidal_subspace().echelon_basis()
[
q + 3*q^3 - 6*q^4 - 7*q^5 + O(q^6),
q^2 - 4*q^3 + 2*q^4 + 8*q^5 + O(q^6)
]
```

```
sage: M = ModularForms(SL2Z, 12)
sage: M.echelon_basis()
[
1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + O(q^6),
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
]
```

```
sage: M = CuspForms(Gamma0(17),4, prec=10)
sage: M.echelon_basis()
[
q + 2*q^5 - 8*q^7 - 8*q^8 + 7*q^9 + O(q^10),
q^2 - 3/2*q^5 - 7/2*q^6 + 9/2*q^7 + q^8 - 4*q^9 + O(q^10),
q^3 - 2*q^6 + q^7 - 4*q^8 - 2*q^9 + O(q^10),
q^4 - 1/2*q^5 - 5/2*q^6 + 3/2*q^7 + 2*q^9 + O(q^10)
]
```

echelon form ()

Return a space of modular forms isomorphic to self but with basis of q-expansions in reduced echelon form.

This is useful, e.g., the default basis for spaces of modular forms is rarely in echelon form, but echelon form is useful for quickly recognizing whether a q-expansion is in the space.

EXAMPLES: We first illustrate two ambient spaces and their echelon forms.

```
sage: M = ModularForms(11)
sage: M.basis()
[
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6),
1 + 12/5*q + 36/5*q^2 + 48/5*q^3 + 84/5*q^4 + 72/5*q^5 + O(q^6)
]
sage: M.echelon_form().basis()
[
1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + O(q^6),
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)
]
```

```
sage: M = ModularForms(Gamma1(6),4)
sage: M.basis()
[
q - 2*q^2 - 3*q^3 + 4*q^4 + 6*q^5 + O(q^6),
1 + O(q^6),
q - 8*q^4 + 126*q^5 + O(q^6),
q^2 + 9*q^4 + O(q^6),
q^3 + O(q^6)
]
sage: M.echelon_form().basis()
[
1 + O(q^6),
q + 94*q^5 + O(q^6),
q^2 + 36*q^5 + O(q^6),
```

```
q^3 + O(q^6),

q^4 - 4*q^5 + O(q^6)
```

We create a space with a funny basis then compute the corresponding echelon form.

```
sage: M = ModularForms(11,4)
sage: M.basis()
[
q + 3*q^3 - 6*q^4 - 7*q^5 + O(q^6),
q^2 - 4*q^3 + 2*q^4 + 8*q^5 + O(q^6),
1 + O(q^6),
q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)
]
sage: F = M.span_of_basis([M.0 + 1/3*M.1, M.2 + M.3]); F.basis()
[
q + 1/3*q^2 + 5/3*q^3 - 16/3*q^4 - 13/3*q^5 + O(q^6),
1 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)
]
sage: E = F.echelon_form(); E.basis()
[
1 + 26/3*q^2 + 79/3*q^3 + 235/3*q^4 + 391/3*q^5 + O(q^6),
q + 1/3*q^2 + 5/3*q^3 - 16/3*q^4 - 13/3*q^5 + O(q^6)
]
```

eisenstein_series ()

Compute the Eisenstein series associated to this space.

Note: This function should be overridden by all derived classes.

EXAMPLES:

eisenstein_submodule ()

Return the Eisenstein submodule for this space of modular forms.

EXAMPLES:

We check that a bug noticed on trac ticket #10450 is fixed:

```
sage: M = ModularForms(6, 10)
sage: W = M.span_of_basis(M.basis()[0:2])
sage: W.eisenstein_submodule()
Modular Forms subspace of dimension 0 of Modular Forms space of dimension 11_
→for Congruence Subgroup Gamma0(6) of weight 10 over Rational Field
```

eisenstein_subspace ()

Synonym for eisenstein_submodule.

EXAMPLES:

embedded_submodule ()

Return the underlying module of self.

EXAMPLES:

```
sage: N = ModularForms(6,4)
sage: N.dimension()
5
```

```
sage: N.embedded_submodule()
Vector space of dimension 5 over Rational Field
```

find_in_space (f, forms=None, prec=None, indep=True)

INPUT:

- •f a modular form or power series
- •forms (default: None) a specific list of modular forms or q-expansions.
- •prec if forms are given, compute with them to the given precision
- •indep (default: True) whether the given list of forms are assumed to form a basis.

OUTPUT: A list of numbers that give f as a linear combination of the basis for this space or of the given forms if independent=True.

Note: If the list of forms is given, they do *not* have to be in self.

EXAMPLES:

```
sage: M = ModularForms(11,2)
sage: N = ModularForms(10,2)
sage: M.find_in_space( M.basis()[0] )
[1, 0]
```

```
sage: M.find_in_space( N.basis()[0], forms=N.basis() )
[1, 0, 0]
```

```
sage: M.find_in_space( N.basis()[0] )
Traceback (most recent call last):
...
ArithmeticError: vector is not in free module
```

gen(n)

Return the nth generator of self.

```
sage: N = ModularForms(6,4)
sage: N.basis()
[
q - 2*q^2 - 3*q^3 + 4*q^4 + 6*q^5 + O(q^6),
1 + O(q^6),
q - 8*q^4 + 126*q^5 + O(q^6),
q^2 + 9*q^4 + O(q^6),
q^3 + O(q^6)
]
```

```
sage: N.gen(0)
q - 2*q^2 - 3*q^3 + 4*q^4 + 6*q^5 + O(q^6)
```

```
sage: N.gen(4)
q^3 + O(q^6)
```

```
sage: N.gen(5)
Traceback (most recent call last):
...
ValueError: Generator 5 not defined
```

gens ()

Return a complete set of generators for self.

EXAMPLES:

```
sage: N = ModularForms(6,4)
sage: N.gens()
[
q - 2*q^2 - 3*q^3 + 4*q^4 + 6*q^5 + O(q^6),
1 + O(q^6),
q - 8*q^4 + 126*q^5 + O(q^6),
q^2 + 9*q^4 + O(q^6),
q^3 + O(q^6)
]
```

group ()

Return the congruence subgroup associated to this space of modular forms.

EXAMPLES:

```
sage: ModularForms(Gamma0(12),4).group()
Congruence Subgroup Gamma0(12)
```

```
sage: CuspForms(Gamma1(113),2).group()
Congruence Subgroup Gamma1(113)
```

Note that $\Gamma_1(1)$ and $\Gamma_0(1)$ are replaced by $SL_2(\mathbf{Z})$.

```
sage: CuspForms(Gamma1(1),12).group()
Modular Group SL(2,Z)
sage: CuspForms(SL2Z,12).group()
Modular Group SL(2,Z)
```

has_character ()

Return True if this space of modular forms has a specific character.

This is True exactly when the character() function does not return None.

EXAMPLES: A space for $\Gamma_0(N)$ has trivial character, hence has a character.

```
sage: CuspForms(Gamma0(11),2).has_character()
True
```

A space for $\Gamma_1(N)$ (for $N \geq 2$) never has a specific character.

```
sage: CuspForms(Gamma1(11),2).has_character()
False
sage: CuspForms(DirichletGroup(11).0,3).has_character()
True
```

integral_basis ()

Return an integral basis for this space of modular forms.

EXAMPLES: In this example the integral and echelon bases are different.

```
sage: m = ModularForms(97,2,prec=10)
sage: s = m.cuspidal_subspace()
sage: s.integral_basis()
q + 2*q^7 + 4*q^8 - 2*q^9 + O(q^{10}),
q^2 + q^4 + q^7 + 3*q^8 - 3*q^9 + O(q^{10}),
q^3 + q^4 - 3*q^8 + q^9 + O(q^{10}),
2*q^4 - 2*q^8 + O(q^{10}),
q^5 - 2*q^8 + 2*q^9 + O(q^{10}),
q^6 + 2*q^7 + 5*q^8 - 5*q^9 + O(q^{10}),
3*q^7 + 6*q^8 - 4*q^9 + O(q^{10})
sage: s.echelon_basis()
q + 2/3*q^9 + O(q^{10}),
q^2 + 2*q^8 - 5/3*q^9 + 0(q^{10}),
q^3 - 2*q^8 + q^9 + O(q^{10}),
q^4 - q^8 + O(q^{10}),
q^5 - 2*q^8 + 2*q^9 + O(q^{10}),
q^6 + q^8 - 7/3*q^9 + O(q^{10}),
q^7 + 2*q^8 - 4/3*q^9 + O(q^{10})
```

Here's another example where there is a big gap in the valuations:

```
sage: m = CuspForms(64,2)
sage: m.integral_basis()
[
q + O(q^6),
q^2 + O(q^6),
q^5 + O(q^6)
]
```

TESTS:

```
sage: m = CuspForms(11*2^4,2, prec=13); m
Cuspidal subspace of dimension 19 of Modular Forms space of dimension 30 for

→Congruence Subgroup Gamma0(176) of weight 2 over Rational Field
sage: m.integral_basis() # takes a long time (3 or 4 seconds)
[
```

```
q + O(q^13),
q^2 + O(q^13),
q^3 + O(q^13),
q^4 + O(q^13),
q^5 + O(q^13),
q^6 + O(q^13),
q^7 + O(q^13),
q^8 + O(q^13),
q^9 + O(q^13),
q^10 + O(q^13),
q^{11} + O(q^{13}),
q^12 + O(q^13),
0(q^13),
0(q^13),
0(q^13),
0(q^13),
0(q^13),
0(q^13),
0(q^13)
```

is_ambient()

Return True if this an ambient space of modular forms.

EXAMPLES:

```
sage: M = ModularForms(Gamma1(4),4)
sage: M.is_ambient()
True
```

```
sage: E = M.eisenstein_subspace()
sage: E.is_ambient()
False
```

is_cuspidal ()

Return True if this space is cuspidal.

EXAMPLE:

```
sage: M = ModularForms(Gamma0(11), 2).new_submodule()
sage: M.is_cuspidal()
False
sage: M.cuspidal_submodule().is_cuspidal()
True
```

is_eisenstein ()

Return True if this space is Eisenstein.

EXAMPLE:

```
sage: M = ModularForms(Gamma0(11), 2).new_submodule()
sage: M.is_eisenstein()
False
sage: M.eisenstein_submodule().is_eisenstein()
True
```

level ()

Return the level of self.

EXAMPLES:

```
sage: M = ModularForms(47,3)
sage: M.level()
47
```

modular_symbols (sign=0)

Return the space of modular symbols corresponding to self with the given sign.

EXAMPLES:

new_submodule (p=None)

Return the new submodule of self. If p is specified, return the p-new submodule of self.

Note: This function should be overridden by all derived classes.

EXAMPLES:

new_subspace (p=None)

Synonym for new_submodule.

EXAMPLES:

```
sage: M = sage.modular.modform.space.ModularFormsSpace(Gamma0(11), 2, __
→DirichletGroup(1)[0], base_ring=QQ); M.new_subspace()
Traceback (most recent call last):
...
NotImplementedError: computation of new submodule not yet implemented
```

newforms (names=None)

Return all newforms in the cuspidal subspace of self.

```
sage: CuspForms(18,4).newforms()
[q + 2*q^2 + 4*q^4 - 6*q^5 + O(q^6)]
sage: CuspForms(32,4).newforms()
[q - 8*q^3 - 10*q^5 + O(q^6), q + 22*q^5 + O(q^6), q + 8*q^3 - 10*q^5 + O(q^6)]
sage: CuspForms(23).newforms('b')
[q + b0*q^2 + (-2*b0 - 1)*q^3 + (-b0 - 1)*q^4 + 2*b0*q^5 + O(q^6)]
sage: CuspForms(23).newforms()
Traceback (most recent call last):
...
ValueError: Please specify a name to be used when generating names for generators of Hecke eigenvalue fields corresponding to the newforms.
```

```
prec ( new_prec=None)
```

Return or set the default precision used for displaying q-expansions of elements of this space.

INPUT:

```
•new_prec - positive integer (default: None)
```

OUTPUT: if new_prec is None, returns the current precision.

EXAMPLES:

```
sage: M = ModularForms(1,12)
sage: S = M.cuspidal_subspace()
sage: S.prec()
6
sage: S.basis()
[
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + 0(q^6)
]
sage: S.prec(8)
8
sage: S.basis()
[
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 0(q^8)
]
```

q_echelon_basis (prec=None)

Return the echelon form of the basis of q-expansions of self up to precision prec.

The q-expansions are power series (not actual modular forms). The number of q-expansions returned equals the dimension.

EXAMPLES:

```
sage: M = ModularForms(11,2)
sage: M.q_expansion_basis()
[
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6),
1 + 12/5*q + 36/5*q^2 + 48/5*q^3 + 84/5*q^4 + 72/5*q^5 + O(q^6)
]
```

```
sage: M.q_echelon_basis()
[
1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + O(q^6),
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)
]
```

q_expansion_basis (prec=None)

Return a sequence of q-expansions for the basis of this space computed to the given input precision.

INPUT:

```
•prec - integer (=0) or None
```

If prec is None, the prec is computed to be *at least* large enough so that each q-expansion determines the form as an element of this space.

Note: In fact, the q-expansion basis is always computed to at least self.prec().

EXAMPLES:

q_integral_basis (prec=None)

Return a **Z**-reduced echelon basis of q-expansions for self.

The q-expansions are power series with coefficients in \mathbb{Z} ; they are *not* actual modular forms.

The base ring of self must be \mathbf{Q} . The number of q-expansions returned equals the dimension.

EXAMPLES:

```
sage: S = CuspForms(11,2)
sage: S.q_integral_basis(5)
[
q - 2*q^2 - q^3 + 2*q^4 + O(q^5)
]
```

set_precision (new_prec)

Set the default precision used for displaying q-expansions.

INPUT:

•new_prec - positive integer

EXAMPLES:

```
sage: M = ModularForms(Gamma0(37),2)
sage: M.set_precision(10)
sage: S = M.cuspidal_subspace()
sage: S.basis()
[
q + q^3 - 2*q^4 - q^7 - 2*q^9 + O(q^10),
q^2 + 2*q^3 - 2*q^4 + q^5 - 3*q^6 - 4*q^9 + O(q^10)
]
```

```
sage: S.set_precision(0)
sage: S.basis()
[
0(q^0),
0(q^0)]
```

The precision of subspaces is the same as the precision of the ambient space.

```
sage: S.set_precision(2)
sage: M.basis()
[
q + O(q^2),
O(q^2),
1 + 2/3*q + O(q^2)
]
```

The precision must be nonnegative:

```
sage: S.set_precision(-1)
Traceback (most recent call last):
...
ValueError: n (=-1) must be >= 0
```

We do another example with nontrivial character.

```
sage: M = ModularForms(DirichletGroup(13).0^2)
sage: M.set_precision(10)
sage: M.cuspidal_subspace().0
q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-
→2*zeta6 + 4)*q^6 + (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)
```

span(B)

Take a set B of forms, and return the subspace of self with B as a basis.

EXAMPLES:

```
sage: N.span_of_basis([N.basis()[0]])
Modular Forms subspace of dimension 1 of Modular Forms space of dimension 5

→for Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

```
sage: N.span_of_basis([N.basis()[0], N.basis()[1]])
Modular Forms subspace of dimension 2 of Modular Forms space of dimension 5

→for Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

```
sage: N.span_of_basis( N.basis() )
Modular Forms subspace of dimension 5 of Modular Forms space of dimension 5

→for Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

$span_of_basis(B)$

Take a set B of forms, and return the subspace of self with B as a basis.

```
sage: N = ModularForms(6,4); N
Modular Forms space of dimension 5 for Congruence Subgroup Gamma0(6) of
    →weight 4 over Rational Field
```

```
sage: N.span_of_basis([N.basis()[0], N.basis()[1]])
Modular Forms subspace of dimension 2 of Modular Forms space of dimension 5

→for Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

```
sage: N.span_of_basis( N.basis() )
Modular Forms subspace of dimension 5 of Modular Forms space of dimension 5

→for Congruence Subgroup Gamma0(6) of weight 4 over Rational Field
```

sturm bound (M=None)

For a space M of modular forms, this function returns an integer B such that two modular forms in either self or M are equal if and only if their q-expansions are equal to precision B (note that this is 1+ the usual Sturm bound, since $O(q^{\rm prec})$ has precision prec). If M is none, then M is set equal to self.

EXAMPLES:

```
sage: S37=CuspForms(37,2)
sage: S37.sturm_bound()
8
sage: M = ModularForms(11,2)
sage: M.sturm_bound()
3
sage: ModularForms(Gamma1(15),2).sturm_bound()
33
sage: CuspForms(Gamma1(144), 3).sturm_bound()
3457
sage: CuspForms(DirichletGroup(144).1^2, 3).sturm_bound()
73
sage: CuspForms(Gamma0(144), 3).sturm_bound()
```

REFERENCES:

•[Stu1987]

NOTE:

Kevin Buzzard pointed out to me (William Stein) in Fall 2002 that the above bound is fine for Gamma1 with character, as one sees by taking a power of f. More precisely, if $f \cong 0 \pmod{p}$ for first s coefficients, then $f^r = 0 \pmod{p}$ for first s coefficients. Since the weight of f^r is rweight(f), it follows that if $s \ge$ the Sturm bound for Γ_0 at weight(f), then f^r has valuation large enough to be forced to be 0 at r· weight(f) by Sturm bound (which is valid if we choose r right). Thus $f \cong 0 \pmod{p}$. Conclusion: For Γ_1 with fixed character, the Sturm bound is *exactly* the same as for Γ_0 . A key point is that we are finding $\mathbf{Z}[\varepsilon]$ generators for the Hecke algebra here, not \mathbf{Z} -generators. So if one wants generators for the Hecke algebra over \mathbf{Z} , this bound is wrong.

This bound works over any base, even a finite field. There might be much better bounds over \mathbf{Q} , or for comparing two eigenforms.

weight ()

Return the weight of this space of modular forms.

```
sage: M = ModularForms(Gamma1(13),11)
sage: M.weight()
11
```

```
sage: M = ModularForms(Gamma0(997),100)
sage: M.weight()
100
```

```
sage: M = ModularForms(Gamma0(97),4)
sage: M.weight()
4
sage: M.eisenstein_submodule().weight()
4
```

sage.modular.modform.space.contains_each (V, B)

Determine whether or not V contains every element of B. Used here for linear algebra, but works very generally.

EXAMPLES:

```
sage: contains_each = sage.modular.modform.space.contains_each
sage: contains_each( range(20), prime_range(20) )
True
sage: contains_each( range(20), range(30) )
False
```

sage.modular.modform.space.is_ModularFormsSpace (x)

Return True if x is a `ModularFormsSpace`.

EXAMPLES:

```
sage: from sage.modular.modform.space import is_ModularFormsSpace
sage: is_ModularFormsSpace(ModularForms(11,2))
True
sage: is_ModularFormsSpace(CuspForms(11,2))
True
sage: is_ModularFormsSpace(3)
False
```

1.3 Ambient Spaces of Modular Forms

EXAMPLES:

We compute a basis for the ambient space $M_2(\Gamma_1(25), \chi)$, where χ is quadratic.

```
sage: chi = DirichletGroup(25,QQ).0; chi
Dirichlet character modulo 25 of conductor 5 mapping 2 |--> -1
sage: n = ModularForms(chi,2); n
Modular Forms space of dimension 6, character [-1] and weight 2 over Rational Field
sage: type(n)
<class 'sage.modular.modform.ambient_eps.ModularFormsAmbient_eps_with_category'>
```

Compute a basis:

```
sage: n.basis()
[
1 + O(q^6),
q + O(q^6),
q^2 + O(q^6),
q^3 + O(q^6),
q^4 + O(q^6),
```

```
q^5 + O(q^6)
```

Compute the same basis but to higher precision:

```
sage: n.set_precision(20)
sage: n.basis()
[
1 + 10*q^10 + 20*q^15 + O(q^20),
q + 5*q^6 + q^9 + 12*q^11 - 3*q^14 + 17*q^16 + 8*q^19 + O(q^20),
q^2 + 4*q^7 - q^8 + 8*q^12 + 2*q^13 + 10*q^17 - 5*q^18 + O(q^20),
q^3 + q^7 + 3*q^8 - q^12 + 5*q^13 + 3*q^17 + 6*q^18 + O(q^20),
q^4 - q^6 + 2*q^9 + 3*q^14 - 2*q^16 + 4*q^19 + O(q^20),
q^5 + q^10 + 2*q^15 + O(q^20)
]
```

TESTS:

```
sage: m = ModularForms(Gamma1(20),2,GF(7))
sage: loads(dumps(m)) == m
True
```

```
Bases: sage.modular.modform.space.ModularFormsSpace sage.modular.hecke.ambient_module.AmbientHeckeModule
```

An ambient space of modular forms.

ambient_space ()

Return the ambient space that contains this ambient space. This is, of course, just this space again.

EXAMPLES:

```
sage: m = ModularForms(Gamma0(3),30)
sage: m.ambient_space() is m
True
```

change_ring (base_ring)

Change the base ring of this space of modular forms.

INPUT:

•R - ring

```
sage: M = ModularForms(Gamma0(37),2)
sage: M.basis()
[
q + q^3 - 2*q^4 + O(q^6),
```

```
q^2 + 2*q^3 - 2*q^4 + q^5 + 0(q^6),

1 + 2/3*q + 2*q^2 + 8/3*q^3 + 14/3*q^4 + 4*q^5 + 0(q^6)
```

The basis after changing the base ring is the reduction modulo 3 of an integral basis.

```
sage: M3 = M.change_ring(GF(3))
sage: M3.basis()
[
q + q^3 + q^4 + O(q^6),
q^2 + 2*q^3 + q^4 + q^5 + O(q^6),
1 + q^3 + q^4 + 2*q^5 + O(q^6)
]
```

cuspidal_submodule ()

Return the cuspidal submodule of this ambient module.

EXAMPLES:

```
sage: ModularForms(Gamma1(13)).cuspidal_submodule()
Cuspidal subspace of dimension 2 of Modular Forms space of dimension 13 for
Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
```

dimension ()

Return the dimension of this ambient space of modular forms, computed using a dimension formula (so it should be reasonably fast).

EXAMPLES:

```
sage: m = ModularForms(Gamma1(20),20)
sage: m.dimension()
238
```

eisenstein_params ()

Return parameters that define all Eisenstein series in self.

OUTPUT: an immutable Sequence

EXAMPLES:

eisenstein_series ()

Return all Eisenstein series associated to this space.

```
sage: ModularForms(27,2).eisenstein_series()
[
q^3 + O(q^6),
q - 3*q^2 + 7*q^4 - 6*q^5 + O(q^6),
1/12 + q + 3*q^2 + q^3 + 7*q^4 + 6*q^5 + O(q^6),
```

```
sage: ModularForms(Gamma1(5),3).eisenstein_series()
[
-1/5*zeta4 - 2/5 + q + (4*zeta4 + 1)*q^2 + (-9*zeta4 + 1)*q^3 + (4*zeta4 - \]
\rightarrow15)*q^4 + q^5 + O(q^6),
q + (zeta4 + 4)*q^2 + (-zeta4 + 9)*q^3 + (4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6),
1/5*zeta4 - 2/5 + q + (-4*zeta4 + 1)*q^2 + (9*zeta4 + 1)*q^3 + (-4*zeta4 - \]
\rightarrow15)*q^4 + q^5 + O(q^6),
q + (-zeta4 + 4)*q^2 + (zeta4 + 9)*q^3 + (-4*zeta4 + 15)*q^4 + 25*q^5 + O(q^6)
]
```

```
sage: eps = DirichletGroup(13).0^2
sage: ModularForms(eps,2).eisenstein_series()
[
-7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6),
q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6)
]
```

eisenstein_submodule ()

Return the Eisenstein submodule of this ambient module.

EXAMPLES:

```
sage: m = ModularForms(Gamma1(13),2); m
Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of
    →weight 2 over Rational Field
sage: m.eisenstein_submodule()
Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13
    →for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
```

free module ()

Return the free module underlying this space of modular forms.

EXAMPLES:

```
sage: ModularForms(37).free_module()
Vector space of dimension 3 over Rational Field
```

hecke_module_of_level (N)

Return the Hecke module of level N corresponding to self, which is the domain or codomain of a degeneracy map from self. Here N must be either a divisor or a multiple of the level of self.

is ambient ()

Return True if this an ambient space of modular forms.

This is an ambient space, so this function always returns True.

EXAMPLES:

```
sage: ModularForms(11).is_ambient()
True
sage: CuspForms(11).is_ambient()
False
```

modular_symbols (sign=0)

Return the corresponding space of modular symbols with the given sign.

EXAMPLES:

```
sage: S = ModularForms(11,2)
sage: S.modular_symbols()
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign 0_
    →over Rational Field
sage: S.modular_symbols(sign=1)
Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with sign 1_
    →over Rational Field
sage: S.modular_symbols(sign=-1)
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with sign -1_
    →over Rational Field
```

```
sage: ModularForms(1,12).modular_symbols()
Modular Symbols space of dimension 3 for Gamma_0(1) of weight 12 with sign 0_
→over Rational Field
```

module ()

Return the underlying free module corresponding to this space of modular forms.

If the dimension of self can be computed reasonably quickly, then this function returns a free module (viewed as a tuple space) of the same dimension as self over the same base ring. Otherwise, the dimension of self.module() may be smaller. For example, in the case of weight 1 forms, in some cases the dimension can't easily be computed so self.module() is of smaller dimension.

EXAMPLES:

```
sage: m = ModularForms(Gamma1(13),10)
sage: m.free_module()
Vector space of dimension 69 over Rational Field
sage: ModularForms(Gamma1(13),4, GF(49,'b')).free_module()
Vector space of dimension 27 over Finite Field in b of size 7^2
```

Note that in the following example the dimension can't be (quickly) computed, so M.module() returns a space of different dimension than M:

new submodule (p=None)

Return the new or p-new submodule of this ambient module.

INPUT:

•p - (default: None), if specified return only the p-new submodule.

EXAMPLES:

```
sage: m = ModularForms(Gamma0(33),2); m
Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(33) of_
    →weight 2 over Rational Field
sage: m.new_submodule()
Modular Forms subspace of dimension 1 of Modular Forms space of dimension 6_
    →for Congruence Subgroup Gamma0(33) of weight 2 over Rational Field
```

Another example:

```
sage: ModularForms(12,4).new_submodule()
Modular Forms subspace of dimension 1 of Modular Forms space of dimension 9

→for Congruence Subgroup Gamma0(12) of weight 4 over Rational Field
```

Unfortunately (TODO) - p-new submodules aren't yet implemented:

```
sage: m.new_submodule(3)  # not implemented
Traceback (most recent call last):
...
NotImplementedError
sage: m.new_submodule(11)  # not implemented
Traceback (most recent call last):
...
NotImplementedError
```

prec (new_prec=None)

Set or get default initial precision for printing modular forms.

INPUT:

```
•new_prec - positive integer (default: None)
```

OUTPUT: if new_prec is None, returns the current precision.

```
sage: M = ModularForms(1,12, prec=3)
sage: M.prec()
3
```

```
sage: M.basis()
[
q - 24*q^2 + O(q^3),
1 + 65520/691*q + 134250480/691*q^2 + O(q^3)
]
```

rank ()

This is a synonym for self.dimension().

EXAMPLES:

```
sage: m = ModularForms(Gamma0(20),4)
sage: m.rank()
12
sage: m.dimension()
12
```

set_precision (n)

Set the default precision for displaying elements of this space.

EXAMPLES:

```
sage: m = ModularForms(Gamma1(5),2)
sage: m.set_precision(10)
sage: m.basis()
[
1 + 60*q^3 - 120*q^4 + 240*q^5 - 300*q^6 + 300*q^7 - 180*q^9 + O(q^10),
q + 6*q^3 - 9*q^4 + 27*q^5 - 28*q^6 + 30*q^7 - 11*q^9 + O(q^10),
q^2 - 4*q^3 + 12*q^4 - 22*q^5 + 30*q^6 - 24*q^7 + 5*q^8 + 18*q^9 + O(q^10)
]
sage: m.set_precision(5)
sage: m.basis()
[
1 + 60*q^3 - 120*q^4 + O(q^5),
q + 6*q^3 - 9*q^4 + O(q^5),
q^2 - 4*q^3 + 12*q^4 + O(q^5)
]
```

1.4 Modular Forms with Character

```
sage: eps = DirichletGroup(13).0
sage: M = ModularForms(eps^2, 2); M
Modular Forms space of dimension 3, character [zeta6] and weight 2 over Cyclotomic
→Field of order 6 and degree 2
```

We create a spaces associated to Dirichlet characters of modulus 225:

```
sage: e = DirichletGroup(225).0
sage: e.order()
6
sage: e.base_ring()
Cyclotomic Field of order 60 and degree 16
sage: M = ModularForms(e,3)
```

Notice that the base ring is "minimized":

```
sage: M
Modular Forms space of dimension 66, character [zeta6, 1] and weight 3
over Cyclotomic Field of order 6 and degree 2
```

If we don't want the base ring to change, we can explicitly specify it:

```
sage: ModularForms(e, 3, e.base_ring())
Modular Forms space of dimension 66, character [zeta6, 1] and weight 3
over Cyclotomic Field of order 60 and degree 16
```

Next we create a space associated to a Dirichlet character of order 20:

```
sage: e = DirichletGroup(225).1
sage: e.order()
20
sage: e.base_ring()
Cyclotomic Field of order 60 and degree 16
sage: M = ModularForms(e,17); M
Modular Forms space of dimension 484, character [1, zeta20] and weight 17 over Cyclotomic Field of order 20 and degree 8
```

We compute the Eisenstein subspace, which is fast even though the dimension of the space is large (since an explicit basis of q-expansions has not been computed yet).

```
sage: M.eisenstein_submodule()
Eisenstein subspace of dimension 8 of Modular Forms space of
dimension 484, character [1, zeta20] and weight 17 over Cyclotomic Field of order 20_
→and degree 8

sage: M.cuspidal_submodule()
Cuspidal subspace of dimension 476 of Modular Forms space of dimension 484, character_
→[1, zeta20] and weight 17 over Cyclotomic Field of order 20 and degree 8
```

TESTS:

```
sage: m = ModularForms(DirichletGroup(20).1,5)
sage: m == loads(dumps(m))
True
```

```
sage: type(m)
<class 'sage.modular.modform.ambient_eps.ModularFormsAmbient_eps_with_category'>
```

Bases: sage.modular.modform.ambient.ModularFormsAmbient

A space of modular forms with character.

```
change_ring (base_ring)
```

Return space with same defining parameters as this ambient space of modular symbols, but defined over a different base ring.

EXAMPLES:

```
sage: m = ModularForms(DirichletGroup(13).0^2,2); m
Modular Forms space of dimension 3, character [zeta6] and weight 2 over

→Cyclotomic Field of order 6 and degree 2
sage: m.change_ring(CyclotomicField(12))
Modular Forms space of dimension 3, character [zeta6] and weight 2 over

→Cyclotomic Field of order 12 and degree 4
```

It must be possible to change the ring of the underlying Dirichlet character:

```
sage: m.change_ring(QQ)
Traceback (most recent call last):
...
TypeError: Unable to coerce zeta6 to a rational
```

cuspidal_submodule ()

Return the cuspidal submodule of this ambient space of modular forms.

EXAMPLES:

```
sage: eps = DirichletGroup(4).0
sage: M = ModularForms(eps, 5); M
Modular Forms space of dimension 3, character [-1] and weight 5 over Rational_
→Field
sage: M.cuspidal_submodule()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 3,_
→character [-1] and weight 5 over Rational Field
```

eisenstein_submodule ()

Return the submodule of this ambient module with character that is spanned by Eisenstein series. This is the Hecke stable complement of the cuspidal submodule.

EXAMPLES:

hecke module of level (N)

Return the Hecke module of level N corresponding to self, which is the domain or codomain of a degener-

acy map from self. Here N must be either a divisor or a multiple of the level of self, and a multiple of the conductor of the character of self.

EXAMPLES:

modular_symbols (sign=0)

Return corresponding space of modular symbols with given sign.

EXAMPLES:

1.5 Modular Forms for $\Gamma_0(N)$ over ${\bf Q}$

TESTS:

```
sage: m = ModularForms(Gamma0(389),6)
sage: loads(dumps(m)) == m
True
```

A space of modular forms for $\Gamma_0(N)$ over **Q**.

```
cuspidal_submodule ()
```

Return the cuspidal submodule of this space of modular forms for $\Gamma_0(N)$.

eisenstein submodule ()

Return the Eisenstein submodule of this space of modular forms for $\Gamma_0(N)$.

EXAMPLES:

```
sage: m = ModularForms(Gamma0(389),6)
sage: m.eisenstein_submodule()
Eisenstein subspace of dimension 2 of Modular Forms space of dimension 163

→for Congruence Subgroup Gamma0(389) of weight 6 over Rational Field
```

1.6 Modular Forms for $\Gamma_1(N)$ and $\Gamma_H(N)$ over \mathbf{Q}

EXAMPLES:

TESTS:

```
sage: m = ModularForms(Gamma1(20),2)
sage: loads(dumps(m)) == m
True

sage: m = ModularForms(GammaH(15, [4]), 2)
sage: loads(dumps(m)) == m
True
```

We check that trac ticket #10453 is fixed:

A space of modular forms for the group $\Gamma_1(N)$ over the rational numbers.

cuspidal submodule ()

Return the cuspidal submodule of this modular forms space.

EXAMPLES:

```
sage: m = ModularForms(Gamma1(17),2); m
Modular Forms space of dimension 20 for Congruence Subgroup Gamma1(17) of
    →weight 2 over Rational Field
sage: m.cuspidal_submodule()
Cuspidal subspace of dimension 5 of Modular Forms space of dimension 20 for
    →Congruence Subgroup Gamma1(17) of weight 2 over Rational Field
```

eisenstein submodule ()

Return the Eisenstein submodule of this modular forms space.

EXAMPLES:

```
sage: ModularForms(Gamma1(13),2).eisenstein_submodule()
Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13

→for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: ModularForms(Gamma1(13),10).eisenstein_submodule()
Eisenstein subspace of dimension 12 of Modular Forms space of dimension 69

→for Congruence Subgroup Gamma1(13) of weight 10 over Rational Field
```

A space of modular forms for the group $\Gamma_H(N)$ over the rational numbers.

cuspidal_submodule ()

Return the cuspidal submodule of this modular forms space.

EXAMPLES:

```
sage: m = ModularForms(GammaH(100, [29]),2); m
Modular Forms space of dimension 48 for Congruence Subgroup Gamma_H(100) with_
→H generated by [29] of weight 2 over Rational Field
sage: m.cuspidal_submodule()
Cuspidal subspace of dimension 13 of Modular Forms space of dimension 48 for_
→Congruence Subgroup Gamma_H(100) with H generated by [29] of weight 2 over_
→Rational Field
```

eisenstein_submodule ()

Return the Eisenstein submodule of this modular forms space.

1.7 Modular Forms over a Non-minimal Base Ring

```
{\bf class} \; {\tt sage.modular.modform.ambient\_R.} \; {\tt ModularFormsAmbient\_R} \; (\; M, base\_ring)
```

Bases: sage.modular.modform.ambient.ModularFormsAmbient

Ambient space of modular forms over a ring other than QQ.

EXAMPLES:

change ring (R)

Return this modular forms space with the base ring changed to the ring R.

EXAMPLE:

cuspidal_submodule ()

Return the cuspidal subspace of this space.

EXAMPLE:

modular_symbols (sign=0)

Return the space of modular symbols attached to this space, with the given sign (default 0).

TESTS:

```
sage: K.<i> = QuadraticField(-1)
sage: chi = DirichletGroup(5, base_ring = K).0
sage: L.<c> = K.extension(x^2 - 402*i)
```

```
sage: M = ModularForms(chi, 7, base_ring = L)
sage: symbs = M.modular_symbols()
sage: symbs.character() == chi
True
sage: symbs.base_ring() == L
True
```

1.8 Submodules of spaces of modular forms

EXAMPLES:

Bases: sage.modular.modform.space.ModularFormsSpace sage.modular.hecke.submodule

A submodule of an ambient space of modular forms.

Bases: sage.modular.modform.submodule.ModularFormsSubmodule

INPUT:

- •ambient_module ModularFormsSpace
- •submodule a submodule of the ambient space.
- •dual_module (default: None) ignored
- •check (default: False) whether to check that the submodule is Hecke equivariant

```
sage: M = ModularForms(Gamma1(13),2); M
Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight

→2 over Rational Field
sage: M.eisenstein_subspace()
Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for

→Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
```

1.9 The Cuspidal Subspace

EXAMPLES:

```
sage: S = CuspForms(SL2Z,12); S
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Modular Group SL(2,Z) of weight 12 over Rational Field
sage: S.basis()
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
sage: S = CuspForms(Gamma0(33), 2); S
Cuspidal subspace of dimension 3 of Modular Forms space of dimension 6 for
Congruence Subgroup Gamma0(33) of weight 2 over Rational Field
sage: S.basis()
q - q^5 + O(q^6),
q^2 - q^4 - q^5 + O(q^6),
q^3 + O(q^6)
sage: S = CuspForms(Gamma1(3),6); S
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 3 for
Congruence Subgroup Gamma1(3) of weight 6 over Rational Field
sage: S.basis()
q - 6*q^2 + 9*q^3 + 4*q^4 + 6*q^5 + O(q^6)
```

class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule (ambient_space)
 Bases: sage.modular.modform.submodule.ModularFormsSubmodule

Base class for cuspidal submodules of ambient spaces of modular forms.

$change_ring(R)$

Change the base ring of self to R, when this makes sense. This differs from base_extend() in that there may not be a canonical map from self to the new space, as in the first example below. If this space has a character then this may fail when the character cannot be defined over R, as in the second example.

EXAMPLES:

```
sage: chi = DirichletGroup(109, CyclotomicField(3)).0
sage: S9 = CuspForms(chi, 2, base_ring = CyclotomicField(9)); S9
Cuspidal subspace of dimension 8 of Modular Forms space of dimension 10,______
character [zeta3 + 1] and weight 2 over Cyclotomic Field of order 9 and______
degree 6
sage: S9.change_ring(CyclotomicField(3))
Cuspidal subspace of dimension 8 of Modular Forms space of dimension 10,______
character [zeta3 + 1] and weight 2 over Cyclotomic Field of order 3 and______
degree 2
sage: S9.change_ring(QQ)
Traceback (most recent call last):
...
ValueError: Space cannot be defined over Rational Field
```

is_cuspidal ()

Return True since spaces of cusp forms are cuspidal.

EXAMPLES:

```
sage: CuspForms(4,10).is_cuspidal()
True
```

modular_symbols (sign=0)

Return the corresponding space of modular symbols with the given sign.

EXAMPLES:

```
sage: S = ModularForms(11,2).cuspidal_submodule()
sage: S.modular_symbols()
Modular Symbols subspace of dimension 2 of Modular Symbols space
of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
sage: S.modular_symbols(sign=-1)
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field
sage: M = S.modular_symbols(sign=1); M
Modular Symbols subspace of dimension 1 of Modular Symbols space of
dimension 2 for Gamma_0(11) of weight 2 with sign 1 over Rational Field
sage: M.sign()
sage: S = ModularForms(1,12).cuspidal_submodule()
sage: S.modular_symbols()
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
sage: eps = DirichletGroup(13).0
sage: S = CuspForms(eps^2, 2)
sage: S.modular_symbols(sign=0)
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension,
→4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field,
→of order 6 and degree 2
sage: S.modular_symbols(sign=1)
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension,
→3 and level 13, weight 2, character [zeta6], sign 1, over Cyclotomic Field,
\hookrightarrow of order 6 and degree 2
sage: S.modular_symbols(sign=-1)
Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension
→1 and level 13, weight 2, character [zeta6], sign -1, over Cyclotomic Field,
→of order 6 and degree 2
```

class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_R (ambient_space)
 Bases: sage.modular.modform.cuspidal_submodule.CuspidalSubmodule

Cuspidal submodule over a non-minimal base ring.

Space of cusp forms with given Dirichlet character.

sage: S = CuspForms(DirichletGroup(5).0,5); S

sage: CuspForms(55).new_submodule()

```
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 3, character_
     \rightarrow[zeta4] and weight 5 over Cyclotomic Field of order 4 and degree 2
    sage: S.basis()
     q + (-zeta4 - 1)*q^2 + (6*zeta4 - 6)*q^3 - 14*zeta4*q^4 + (15*zeta4 + 20)*q^5 + ...
     \rightarrow0 (q^6)
    sage: f = S.0
    sage: f.qexp()
     q + (-zeta4 - 1)*q^2 + (6*zeta4 - 6)*q^3 - 14*zeta4*q^4 + (15*zeta4 + 20)*q^5 + ...
     \rightarrow0 (q^6)
     sage: f.qexp(7)
     q + (-zeta4 - 1)*q^2 + (6*zeta4 - 6)*q^3 - 14*zeta4*q^4 + (15*zeta4 + 20)*q^5 + ...
     412*q^6 + 0(q^7)
    sage: f.qexp(3)
    q + (-zeta4 - 1)*q^2 + O(q^3)
    sage: f.qexp(2)
    q + O(q^2)
    sage: f.qexp(1)
    0(q^1)
class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_g0_Q (ambient_space)
    Bases: sage.modular.modform.cuspidal_submodule.CuspidalSubmodule_modsym_gexp
    Space of cusp forms for \Gamma_0(N) over Q.
class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_g1_Q (ambient_space)
    \textbf{Bases: } \textit{sage.modular.modform.cuspidal\_submodule.CuspidalSubmodule\_gH\_Q}
    Space of cusp forms for \Gamma_1(N) over Q.
class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_gH_Q (ambient_space)
    Bases: sage.modular.modform.cuspidal submodule.CuspidalSubmodule modsym gexp
    Space of cusp forms for \Gamma_1(N) over Q.
class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_level1_Q (ambient_space)
    Bases: sage.modular.modform.cuspidal_submodule.CuspidalSubmodule
    Space of cusp forms of level 1 over Q.
class sage.modular.modform.cuspidal_submodule. CuspidalSubmodule_modsym_qexp (ambient_space)
    Bases: sage.modular.modform.cuspidal_submodule.CuspidalSubmodule
    Cuspidal submodule with q-expansions calculated via modular symbols.
    new submodule ( p=None)
         Return the new subspace of this space of cusp forms. This is computed using modular symbols.
         EXAMPLE:
```

Modular Forms subspace of dimension 3 of Modular Forms space of dimension 8.

→for Congruence Subgroup Gamma0(55) of weight 2 over Rational Field

1.10 The Eisenstein Subspace

The Eisenstein submodule of an ambient space of modular forms.

```
eisenstein submodule ()
```

Return the Eisenstein submodule of self. (Yes, this is just self.)

EXAMPLES:

```
sage: E = ModularForms(23,4).eisenstein_subspace()
sage: E == E.eisenstein_submodule()
True
```

```
modular_symbols ( sign=0)
```

Return the corresponding space of modular symbols with given sign. This will fail in weight 1.

Warning: If sign != 0, then the space of modular symbols will, in general, only correspond to a *subspace* of this space of modular forms. This can be the case for both sign +1 or -1.

```
sage: E = ModularForms(11,2).eisenstein_submodule()
sage: M = E.modular_symbols(); M
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
sage: M.sign()
sage: M = E.modular_symbols(sign=-1); M
Modular Symbols subspace of dimension 0 of Modular Symbols space of
dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field
sage: E = ModularForms(1,12).eisenstein_submodule()
sage: E.modular_symbols()
Modular Symbols subspace of dimension 1 of Modular Symbols space of
dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field
sage: eps = DirichletGroup(13).0
sage: E = EisensteinForms(eps^2, 2)
sage: E.modular_symbols()
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension.
→4 and level 13, weight 2, character [zeta6], sign 0, over Cyclotomic Field,
→of order 6 and degree 2
sage: E = EisensteinForms(eps, 1); E
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 1,
→character [zeta12] and weight 1 over Cyclotomic Field of order 12 and,
→degree 4
sage: E.modular_symbols()
Traceback (most recent call last):
ValueError: the weight must be at least 2
```

Space of Eisenstein forms with given Dirichlet character.

EXAMPLES:

```
sage: e = DirichletGroup(27,CyclotomicField(3)).0**2
sage: M = ModularForms(e, 2, prec=10).eisenstein_subspace()
sage: M.dimension()
sage: M.eisenstein series()
-1/3*zeta6 - 1/3 + q + (2*zeta6 - 1)*q^2 + q^3 + (-2*zeta6 - 1)*q^4 + (-5*zeta6 + 1)*q^4 + 
 \rightarrow 1) *q^5 + O(q^6),
-1/3*zeta6 - 1/3 + q^3 + O(q^6),
q + (-2*zeta6 + 1)*q^2 + (-2*zeta6 - 1)*q^4 + (5*zeta6 - 1)*q^5 + O(q^6),
q + (zeta6 + 1)*q^2 + 3*q^3 + (zeta6 + 2)*q^4 + (-zeta6 + 5)*q^5 + O(q^6),
q^3 + O(q^6),
q + (-zeta6 - 1)*q^2 + (zeta6 + 2)*q^4 + (zeta6 - 5)*q^5 + O(q^6)
sage: M.eisenstein_subspace().T(2).matrix().fcp()
(x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2
sage: ModularSymbols(e,2).eisenstein_subspace().T(2).matrix().fcp()
(x + 2 \times zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2 \times zeta3 - 1)^2
sage: M.basis()
1 - 3*zeta3*q^6 + (-2*zeta3 + 2)*q^9 + O(q^10),
q + (5*zeta3 + 5)*q^7 + O(q^10),
g^2 - 2*zeta3*g^8 + O(g^10),
q^3 + (zeta3 + 2)*q^6 + 3*q^9 + O(q^{10}),
q^4 - 2*zeta3*q^7 + O(q^10),
q^5 + (zeta3 + 1)*q^8 + O(q^10)
```

Space of Eisenstein forms for $\Gamma_0(N)$.

class sage.modular.modform.eisenstein_submodule. EisensteinSubmodule_g1_Q (ambient_space) Bases: sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_gH_Q Space of Eisenstein forms for $\Gamma_1(N)$.

 ${\bf class} \ {\bf sage.modular.modform.e} is enstein_submodule. \ {\bf EisensteinSubmodule_gH_Q} \ (\it ambient_space) \\ {\bf Bases:} \ sage.modular.modform.e} is enstein_submodule. EisensteinSubmodule_params$

Space of Eisenstein forms for $\Gamma_H(N)$.

Return the Eisenstein submodule of the given space.

```
sage: E = ModularForms(23,4).eisenstein_subspace() ## indirect doctest
sage: E
Eisenstein subspace of dimension 2 of Modular Forms space of dimension 7 for_
→Congruence Subgroup Gamma0(23) of weight 4 over Rational Field
```

```
sage: E == loads(dumps(E))
True
```

change_ring (base_ring)

Return self as a module over base_ring.

EXAMPLES:

```
sage: E = EisensteinForms(12,2); E
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5 for
→ Congruence Subgroup Gamma0(12) of weight 2 over Rational Field
sage: E.basis()
[
1 + O(q^6),
q + 6*q^5 + O(q^6),
q^2 + 0(q^6),
q^3 + O(q^6),
q^4 + O(q^6)
sage: E.change_ring(GF(5))
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5 for
→Congruence Subgroup Gamma0(12) of weight 2 over Finite Field of size 5
sage: E.change_ring(GF(5)).basis()
1 + O(q^6),
q + q^5 + O(q^6),
q^2 + O(q^6),
q^3 + O(q^6),
q^4 + 0(q^6)
```

eisenstein_series ()

Return the Eisenstein series that span this space (over the algebraic closure).

```
sage: EisensteinForms(11,2).eisenstein_series()
[
5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 0(q^6)
]
sage: EisensteinForms(1,4).eisenstein_series()
[
1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + 0(q^6)
]
sage: EisensteinForms(1,24).eisenstein_series()
[
236364091/131040 + q + 8388609*q^2 + 94143178828*q^3 + 70368752566273*q^4 + 11920928955078126*q^5 + 0(q^6)
]
sage: EisensteinForms(5,4).eisenstein_series()
[
1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + 0(q^6),
1/240 + q^5 + 0(q^6)
]
sage: EisensteinForms(13,2).eisenstein_series()
[
1/2 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 0(q^6)
]
```

```
sage: E = EisensteinForms(Gamma1(7),2)
sage: E.set_precision(4)
sage: E.eisenstein_series()
1/4 + q + 3*q^2 + 4*q^3 + O(q^4),
1/7 \times zeta6 - 3/7 + q + (-2 \times zeta6 + 1) \times q^2 + (3 \times zeta6 - 2) \times q^3 + O(q^4)
q + (-zeta6 + 2)*q^2 + (zeta6 + 2)*q^3 + O(q^4),
-1/7*zeta6 - 2/7 + q + (2*zeta6 - 1)*q^2 + (-3*zeta6 + 1)*q^3 + O(q^4),
q + (zeta6 + 1)*q^2 + (-zeta6 + 3)*q^3 + O(q^4)
sage: eps = DirichletGroup(13).0^2
sage: ModularForms(eps, 2).eisenstein_series()
-7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - ...
\Rightarrow3) *q^4 - 4*q^5 + O(q^6),
q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6)
sage: M = ModularForms(19,3).eisenstein_subspace()
sage: M.eisenstein_series()
sage: M = ModularForms(DirichletGroup(13).0, 1)
sage: M.eisenstein_series()
-1/13*zeta12^3 + 6/13*zeta12^2 + 4/13*zeta12 + 2/13 + q + (zeta12 + 1)*q^2 + ___
\Rightarrowzeta12^2*q^3 + (zeta12^2 + zeta12 + 1)*q^4 + (-zeta12^3 + 1)*q^5 + O(q^6)
sage: M = ModularForms(GammaH(15, [4]), 4)
sage: M.eisenstein_series()
1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6),
1/240 + q^3 + O(q^6),
1/240 + q^5 + O(q^6),
1/240 + O(q^6),
1 + q - 7*q^2 - 26*q^3 + 57*q^4 + q^5 + O(q^6),
1 + q^3 + O(q^6),
q + 7*q^2 + 26*q^3 + 57*q^4 + 125*q^5 + O(q^6),
q^3 + O(q^6)
```

new_eisenstein_series ()

Return a list of the Eisenstein series in this space that are new.

EXAMPLE:

```
sage: E = EisensteinForms(25, 4)
sage: E.new_eisenstein_series()
[q + 7*zeta4*q^2 - 26*zeta4*q^3 - 57*q^4 + O(q^6),
    q - 9*q^2 - 28*q^3 + 73*q^4 + O(q^6),
    q - 7*zeta4*q^2 + 26*zeta4*q^3 - 57*q^4 + O(q^6)]
```

new_submodule (p=None)

Return the new submodule of self.

EXAMPLE:

parameters ()

Return a list of parameters for each Eisenstein series spanning self. That is, for each such series, return a triple of the form $(\psi, \chi, \text{level})$, where ψ and χ are the characters defining the Eisenstein series, and level is the smallest level at which this series occurs.

EXAMPLES:

```
sage: ModularForms(24,2).eisenstein_submodule().parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1,
→17 |--> 1, Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1,
\hookrightarrow13 |--> 1, 17 |--> 1, 2),
Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17,
\hookrightarrow | --> 1, 24)]
sage: EisensteinForms(12,6).parameters()[-1]
(Dirichlet character modulo 12 of conductor 1 mapping 7 \mid--> 1, 5 \mid--> 1,...
\rightarrowDirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1, 12)
sage: pars = ModularForms(DirichletGroup(24).0,3).eisenstein_submodule().
→parameters()
sage: [(x[0].values_on_gens(),x[1].values_on_gens(),x[2]) for x in pars]
[((1, 1, 1), (-1, 1, 1), 1),
((1, 1, 1), (-1, 1, 1), 2),
((1, 1, 1), (-1, 1, 1), 3),
((1, 1, 1), (-1, 1, 1), 6),
((-1, 1, 1), (1, 1, 1), 1),
((-1, 1, 1), (1, 1, 1), 2),
((-1, 1, 1), (1, 1, 1), 3),
((-1, 1, 1), (1, 1, 1), 6)]
sage: EisensteinForms(DirichletGroup(24).0,1).parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1,...
→17 |--> 1, Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1,
\rightarrow13 |--> 1, 17 |--> 1, 1), (Dirichlet character modulo 24 of conductor 1...
\rightarrowmapping 7 |--> 1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of
→conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 2), (Dirichlet_
\rightarrowcharacter modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
\hookrightarrowDirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1,
\rightarrow17 |--> 1, 3), (Dirichlet character modulo 24 of conductor 1 mapping 7 |-->...
\rightarrow1, 13 |--> 1, 17 |--> 1, Dirichlet character modulo 24 of conductor 4,
\rightarrowmapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 6)]
```

 $\verb|sage.modular.modform.eisenstein_submodule.cyclotomic_restriction| (\textit{L}, \textit{K})$

Given two cyclotomic fields L and K, compute the compositum M of K and L, and return a function and the index [M:K]. The function is a map that acts as follows (here $M = Q(\zeta_m)$):

INPUT:

element alpha in L

OUTPUT:

a polynomial f(x) in K[x] such that $f(\zeta_m) = \alpha$, where we view alpha as living in M. (Note that ζ_m generates M, not L.)

EXAMPLES:

```
sage: L = CyclotomicField(12) ; N = CyclotomicField(33) ; M = CyclotomicField(132)
sage: z, n = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L,N)
2
sage: z(L.0)
-zeta33^19*x
sage: z(L.0)(M.0)
zeta132^11
sage: z(L.0^3-L.0+1)
(zeta33^19 + zeta33^8)*x + 1
sage: z(L.0^3-L.0+1)(M.0)
zeta132^33 - zeta132^{11} + 1
sage: z(L.0^3-L.0+1)(M.0) - M(L.0^3-L.0+1)
```

sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower (L,

Suppose L/K is an extension of cyclotomic fields and L=Q(zeta_m). This function computes a map with the following property:

INPUT:

an element alpha in L

OUTPUT:

a polynomial f(x) in K[x] such that $f(zeta_m) = alpha$.

EXAMPLES:

```
sage: L = CyclotomicField(12) ; K = CyclotomicField(6)
sage: z = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_
→tower(L,K)
sage: z(L.0)
sage: z(L.0^2+L.0)
x + zeta6
```

1.11 Eisenstein Series

 $sage.modular.modform.eis_series.$ compute_eisenstein_params (character, k)

Compute and return a list of all parameters (χ, ψ, t) that define the Eisenstein series with given character and weight k.

Only the parity of k is relevant (unless k = 1, which is a slightly different case).

If character is an integer N, then the parameters for $\Gamma_1(N)$ are computed instead. Then the condition is that $\chi(-1) * \psi(-1) = (-1)^k$.

If character is a list of integers, the parameters for $\Gamma_H(N)$ are computed, where H is the subgroup of $(\mathbf{Z}/N\mathbf{Z})^{\times}$ generated by the integers in the given list.

EXAMPLES:

```
sage: sage.modular.modform.eis_series.compute_eisenstein_
→params(DirichletGroup(30)(1), 3)
[]
sage: pars = sage.modular.modform.eis_series.compute_eisenstein_
→params (DirichletGroup (30) (1), 4)
sage: [(x[0].values_on_gens(), x[1].values_on_gens(), x[2]) for x in pars]
[((1, 1), (1, 1), 1),
((1, 1), (1, 1), 2),
((1, 1), (1, 1), 3),
((1, 1), (1, 1), 5),
((1, 1), (1, 1), 6),
((1, 1), (1, 1), 10),
((1, 1), (1, 1), 15),
((1, 1), (1, 1), 30)
sage: pars = sage.modular.modform.eis_series.compute_eisenstein_params(15, 1)
sage: [(x[0].values_on_gens(), x[1].values_on_gens(), x[2]) for x in pars]
[((1, 1), (-1, 1), 1),
((1, 1), (-1, 1), 5),
((1, 1), (1, zeta4), 1),
((1, 1), (1, zeta4), 3),
((1, 1), (-1, -1), 1),
((1, 1), (1, -zeta4), 1),
((1, 1), (1, -zeta4), 3),
((-1, 1), (1, -1), 1)
sage: sage.modular.modform.eis_series.compute_eisenstein_
→params (DirichletGroup (15).0, 1)
[(Dirichlet character modulo 15 of conductor 1 mapping 11 |--> 1, 7 |--> 1,
\rightarrowDirichlet character modulo 15 of conductor 3 mapping 11 |--> -1, 7 |--> 1, 1),
(Dirichlet character modulo 15 of conductor 1 mapping 11 |--> 1, 7 |--> 1,...
\rightarrowDirichlet character modulo 15 of conductor 3 mapping 11 |--> -1, 7 |--> 1, 5)]
sage: len(sage.modular.modform.eis_series.compute_eisenstein_params(GammaH(15,...
\hookrightarrow [4]), 3))
```

Return the L-series of the weight 2k Eisenstein series on $SL_2(\mathbf{Z})$.

This actually returns an interface to Tim Dokchitser's program for computing with the L-series of the Eisenstein series

INPUT:

```
weight - even integer
prec - integer (bits precision)
max_imaginary_part - real number
max asymp coeffs - integer
```

1.11. Eisenstein Series 43

OUTPUT:

The L-series of the Eisenstein series.

EXAMPLES:

We compute with the L-series of E_{16} and then E_{20} :

```
sage: L = eisenstein_series_lseries(16)
sage: L(1)
-0.291657724743874
sage: L = eisenstein_series_lseries(20)
sage: L(2)
-5.02355351645998
```

Now with higher precision:

```
sage: L = eisenstein_series_lseries(20, prec=200)
sage: L(2)
-5.0235535164599797471968418348135050804419155747868718371029
```

Return the q-expansion of the normalized weight k Eisenstein series on $SL_2(\mathbf{Z})$ to precision prec in the ring K. Three normalizations are available, depending on the parameter normalization; the default normalization is the one for which the linear coefficient is 1.

INPUT:

•k - an even positive integer

•prec - (default: 10) a nonnegative integer

•K - (default: Q) a ring

•var - (default: 'q') variable name to use for q-expansion

•normalization - (default: 'linear') normalization to use. If this is 'linear', then the series will be normalized so that the linear term is 1. If it is 'constant', the series will be normalized to have constant term 1. If it is 'integral', then the series will be normalized to have integer coefficients and no common factor, and linear term that is positive. Note that 'integral' will work over arbitrary base rings, while 'linear' or 'constant' will fail if the denominator (resp. numerator) of $B_k/2k$ is invertible.

ALGORITHM:

We know $E_k = \text{constant} + \sum_n \sigma_{k-1}(n)q^n$. So we compute all the $\sigma_{k-1}(n)$ simultaneously, using the fact that σ is multiplicative.

EXAMPLES:

```
sage: eisenstein_series_qexp(2,5)
-1/24 + q + 3*q^2 + 4*q^3 + 7*q^4 + O(q^5)
sage: eisenstein_series_qexp(2,0)
O(q^0)
sage: eisenstein_series_qexp(2,5,GF(7))
2 + q + 3*q^2 + 4*q^3 + O(q^5)
sage: eisenstein_series_qexp(2,5,GF(7),var='T')
2 + T + 3*T^2 + 4*T^3 + O(T^5)
```

We illustrate the use of the normalization parameter:

```
sage: eisenstein_series_qexp(12, 5, normalization='integral')
691 + 65520*q + 134250480*q^2 + 11606736960*q^3 + 274945048560*q^4 + O(q^5)
sage: eisenstein_series_qexp(12, 5, normalization='constant')
1 + 65520/691*q + 134250480/691*q^2 + 11606736960/691*q^3 + 274945048560/691*q^4_
→+ O(q^5)
sage: eisenstein_series_qexp(12, 5, normalization='linear')
691/65520 + q + 2049*q^2 + 177148*q^3 + 4196353*q^4 + O(q^5)
sage: eisenstein_series_qexp(12, 50, K=GF(13), normalization="constant")
1 + O(q^50)
```

TESTS:

Test that trac ticket #5102 is fixed:

```
sage: eisenstein_series_qexp(10, 30, GF(17))  
15 + q + 3*q^2 + 15*q^3 + 7*q^4 + 13*q^5 + 11*q^6 + 11*q^7 + 15*q^8 + 7*q^9 + 5*q^6 + 10 + 7*q^11 + 3*q^12 + 14*q^13 + 16*q^14 + 8*q^15 + 14*q^16 + q^17 + 4*q^18 + 4*q^2 +
```

This shows that the bug reported at trac ticket #8291 is fixed:

```
sage: eisenstein_series_qexp(26, 10, GF(13))
7 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 2*q^8 + O(q^10)
```

We check that the function behaves properly over finite-characteristic base rings:

```
sage: eisenstein_series_qexp(12, 5, K = Zmod(691), normalization="integral")
566*q + 236*q^2 + 286*q^3 + 194*q^4 + O(q^5)
sage: eisenstein_series_qexp(12, 5, K = Zmod(691), normalization="constant")
Traceback (most recent call last):
ValueError: The numerator of -B_k/(2*k) (=691) must be invertible in the ring.
→Ring of integers modulo 691
sage: eisenstein_series_qexp(12, 5, K = Zmod(691), normalization="linear")
q + 667*q^2 + 252*q^3 + 601*q^4 + O(q^5)
sage: eisenstein_series_qexp(12, 5, K = Zmod(2), normalization="integral")
1 + O(q^5)
sage: eisenstein_series_qexp(12, 5, K = Zmod(2), normalization="constant")
1 + O(q^5)
sage: eisenstein_series_qexp(12, 5, K = Zmod(2), normalization="linear")
Traceback (most recent call last):
ValueError: The denominator of -B_k/(2*k) (=65520) must be invertible in the ring.
→Ring of integers modulo 2
```

AUTHORS:

- •William Stein: original implementation
- •Craig Citro (2007-06-01): rewrote for massive speedup
- •Martin Raum (2009-08-02): port to cython for speedup
- •David Loeffler (2010-04-07): work around an integer overflow when k is large
- •David Loeffler (2012-03-15): add options for alternative normalizations (motivated by trac ticket #12043)

1.12 Eisenstein Series (optimized compiled functions)

```
sage.modular.modform.eis_series_cython. Ek_ZZ ( k, prec=10)
```

Return list of prec integer coefficients of the weight k Eisenstein series of level 1, normalized so the coefficient of q is 1, except that the 0th coefficient is set to 1 instead of its actual value.

INPUT:

```
\bullet k – int
```

•prec - int

OUTPUT:

•list of Sage Integers.

EXAMPLES:

```
sage: from sage.modular.modform.eis_series_cython import Ek_ZZ
sage: Ek_ZZ(4,10)
[1, 1, 9, 28, 73, 126, 252, 344, 585, 757]
sage: [sigma(n,3) for n in [1..9]]
[1, 9, 28, 73, 126, 252, 344, 585, 757]
sage: Ek_ZZ(10,10^3) == [1] + [sigma(n,9) for n in range(1,10^3)]
True
```

```
sage.modular.modform.eis_series_cython.eisenstein_series_poly (k, prec=10)
```

Return the q-expansion up to precision prec of the weight k Eisenstein series, as a FLINT Fmpz_poly object, normalised so the coefficients are integers with no common factor.

Used internally by the functions $eisenstein_series_qexp()$ and $victor_miller_basis()$; see the docstring of the former for further details.

EXAMPLES:

```
sage: from sage.modular.modform.eis_series_cython import eisenstein_series_poly
sage: eisenstein_series_poly(12, prec=5)
5 691 65520 134250480 11606736960 274945048560
```

1.13 Elements of modular forms spaces

class sage.modular.modform.element. EisensteinSeries (parent, vector, t, chi, psi)

Bases: sage.modular.modform.element. ModularFormElement

An Eisenstein series.

```
sage: E = EisensteinForms(1,12)
sage: E.eisenstein_series()
[
691/65520 + q + 2049*q^2 + 177148*q^3 + 4196353*q^4 + 48828126*q^5 + O(q^6)
]
sage: E = EisensteinForms(11,2)
sage: E.eisenstein_series()
[
5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)
]
```

```
sage: E = EisensteinForms(Gamma1(7),2)
sage: E.set_precision(4)
sage: E.eisenstein_series()
[
1/4 + q + 3*q^2 + 4*q^3 + O(q^4),
1/7*zeta6 - 3/7 + q + (-2*zeta6 + 1)*q^2 + (3*zeta6 - 2)*q^3 + O(q^4),
q + (-zeta6 + 2)*q^2 + (zeta6 + 2)*q^3 + O(q^4),
-1/7*zeta6 - 2/7 + q + (2*zeta6 - 1)*q^2 + (-3*zeta6 + 1)*q^3 + O(q^4),
q + (zeta6 + 1)*q^2 + (-zeta6 + 3)*q^3 + O(q^4)
]
```

L()

Return the conductor of self.chi().

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].L()
17
```

M ()

Return the conductor of self.psi().

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].M()
1
```

character ()

Return the character associated to self.

EXAMPLES:

TESTS:

chi ()

Return the parameter chi associated to self.

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].chi()
Dirichlet character modulo 17 of conductor 17 mapping 3 |--> zeta16
```

new_level ()

Return level at which self is new.

EXAMPLES:

parameters ()

Return chi, psi, and t, which are the defining parameters of self.

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].

→parameters()
(Dirichlet character modulo 17 of conductor 17 mapping 3 |--> zeta16,__

→Dirichlet character modulo 17 of conductor 1 mapping 3 |--> 1, 1)
```

psi()

Return the parameter psi associated to self.

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].psi()
Dirichlet character modulo 17 of conductor 1 mapping 3 |--> 1
```

t()

Return the parameter t associated to self.

EXAMPLES:

```
sage: EisensteinForms(DirichletGroup(17).0,99).eisenstein_series()[1].t()
1
```

```
class sage.modular.modform.element. ModularFormElement ( parent, x, check=True)
```

```
Bases: sage.modular.modform.element.ModularForm_abstract sage.modular.hecke.element.HeckeModuleElement
```

An element of a space of modular forms.

INPUT:

- •parent ModularForms (an ambient space of modular forms)
- •x a vector on the basis for parent

•check - if check is True, check the types of the inputs.

OUTPUT:

•ModularFormElement - a modular form

EXAMPLES:

```
sage: M = ModularForms(Gamma0(11),2)
sage: f = M.0
sage: f.parent()
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of weight 2_
→over Rational Field
```

atkin_lehner_eigenvalue (d=None)

Return the eigenvalue of the Atkin-Lehner operator W_d acting on this modular form (which is either 1 or -1), or None if this form is not an eigenvector for this operator.

EXAMPLE:

modform_lseries (*args, **kwds)

Deprecated: Use lseries() instead. See trac ticket #16917 for details.

twist (chi, level=None)

Return the twist of the modular form self by the Dirichlet character chi.

If self is a modular form f with character ϵ and q-expansion

$$f(q) = \sum_{n=0}^{\infty} a_n q^n,$$

then the twist by χ is a modular form f_{χ} with character $\epsilon \chi^2$ and q-expansion

$$f_{\chi}(q) = \sum_{n=0}^{\infty} \chi(n) a_n q^n.$$

INPUT:

- •chi a Dirichlet character
- •level (optional) the level N of the twisted form. By default, the algorithm chooses some not necessarily minimal value for N using [AL1978], Proposition 3.1, (See also [Kob1993], Proposition III.3.17, for a simpler but slightly weaker bound.)

OUTPUT:

The form f_{χ} as an element of the space of modular forms for $\Gamma_1(N)$ with character $\epsilon \chi^2$.

```
sage: f = CuspForms(11, 2).0
sage: f.parent()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for

→Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
```

```
sage: f.q_expansion(6)
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)
sage: eps = DirichletGroup(3).0
sage: eps.parent()
Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 2 and degree 1
sage: f_eps = f.twist(eps)
sage: f_eps.parent()
Cuspidal subspace of dimension 9 of Modular Forms space of dimension 16 for order 2 order 2 over Cyclotomic Field of order 2 order degree 1
sage: f_eps.q_expansion(6)
q + 2*q^2 + 2*q^4 - q^5 + O(q^6)
```

Modular forms without character are supported:

```
sage: M = ModularForms(Gamma1(5), 2)
sage: f = M.gen(0); f
1 + 60*q^3 - 120*q^4 + 240*q^5 + O(q^6)
sage: chi = DirichletGroup(2)[0]
sage: f.twist(chi)
60*q^3 + 240*q^5 + O(q^6)
```

The base field of the twisted form is extended if necessary:

REFERENCES:

- •[AL1978]
- •[Kob1993]

AUTHORS:

- •L. J. P. Kilford (2009-08-28)
- •Peter Bruin (2015-03-30)

class sage.modular.modform.element. ModularFormElement_elliptic_curve (parent,

E)

Bases: sage.modular.modform.element.ModularFormElement

A modular form attached to an elliptic curve.

atkin_lehner_eigenvalue (d=None)

Calculate the eigenvalue of the Atkin-Lehner operator W_d acting on this form. If d is None, default to the level of the form. As this form is attached to an elliptic curve, we can read this off from the root number of the curve if d is the level.

```
sage: EllipticCurve('57a1').newform().atkin_lehner_eigenvalue()
1
sage: EllipticCurve('57b1').newform().atkin_lehner_eigenvalue()
-1
sage: EllipticCurve('57b1').newform().atkin_lehner_eigenvalue(19)
1
```

elliptic_curve ()

Return elliptic curve associated to self.

EXAMPLES:

```
sage: E = EllipticCurve('11a')
sage: f = E.modular_form()
sage: f.elliptic_curve()
Elliptic Curve defined by y^2 + y = x^3 - x^2 - 10*x - 20 over Rational Field
sage: f.elliptic_curve() is E
True
```

class sage.modular.modform.element. ModularForm_abstract

Bases: sage.structure.element.ModuleElement

Constructor for generic class of a modular form. This should never be called directly; instead one should instantiate one of the derived classes of this class.

atkin_lehner_eigenvalue (d=None)

Return the eigenvalue of the Atkin-Lehner operator W_d acting on self (which is either 1 or -1), or None if this form is not an eigenvector for this operator. If d is not given or is None, use d = the level.

EXAMPLES:

```
sage: sage.modular.modform.element.ModularForm_abstract.atkin_lehner_
    →eigenvalue(CuspForms(2, 8).0)
Traceback (most recent call last):
    ...
NotImplementedError
```

base ring()

Return the base_ring of self.

EXAMPLES:

```
sage: (ModularForms(117, 2).13).base_ring()
Rational Field
sage: (ModularForms(119, 2, base_ring=GF(7)).12).base_ring()
Finite Field of size 7
```

character (compute=True)

Return the character of self. If <code>compute=False</code>, then this will return None unless the form was explicitly created as an element of a space of forms with character, skipping the (potentially expensive) computation of the matrices of the diamond operators.

```
sage: ModularForms(DirichletGroup(17).0^2,2).2.character()
Dirichlet character modulo 17 of conductor 17 mapping 3 |--> zeta8

sage: CuspForms(Gamma1(7), 3).gen(0).character()
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1
```

```
sage: CuspForms(Gamma1(7), 3).gen(0).character(compute = False) is None
True
sage: M = CuspForms(Gamma1(7), 5).gen(0).character()
Traceback (most recent call last):
...
ValueError: Form is not an eigenvector for <3>
```

coefficients(X)

The coefficients a_n of self, for integers n>=0 in the list X. If X is an Integer, return coefficients for indices from 1 to X.

This function caches the results of the compute function.

TESTS:

```
sage: e = DirichletGroup(11).gen()
sage: f = EisensteinForms(e, 3).eisenstein_series()[0]
sage: f.coefficients([0,1])
[15/11*zeta10^3 - 9/11*zeta10^2 - 26/11*zeta10 - 10/11,
1]
sage: f.coefficients([0,1,2,3])
[15/11*zeta10^3 - 9/11*zeta10^2 - 26/11*zeta10 - 10/11,
1,
4*zeta10 + 1,
-9*zeta10^3 + 1]
sage: f.coefficients([2,3])
[4*zeta10 + 1,
-9*zeta10^3 + 1]
```

Running this twice once revealed a bug, so we test it:

```
sage: f.coefficients([0,1,2,3])
[15/11*zeta10^3 - 9/11*zeta10^2 - 26/11*zeta10 - 10/11,
1,
4*zeta10 + 1,
-9*zeta10^3 + 1]
```

cuspform_lseries (*args, **kwds)

Deprecated: Use *lseries* () instead. See trac ticket #16917 for details.

group ()

Return the group for which self is a modular form.

EXAMPLES:

```
sage: ModularForms(Gamma1(11), 2).gen(0).group()
Congruence Subgroup Gamma1(11)
```

level ()

Return the level of self.

EXAMPLES:

```
sage: ModularForms(25,4).0.level()
25
```

1series (embedding=0, prec=53, $max_imaginary_part=0$, $max_asymp_coeffs=40$, conjugate=None) Return the L-series of the weight k cusp form f on $\Gamma_0(N)$.

This actually returns an interface to Tim Dokchitser's program for computing with the L-series of the cusp form.

INPUT:

- •embedding either an embedding of the coefficient field of self into C, or an integer *i* between 0 and D-1 where D is the degree of the coefficient field (meaning to pick the *i*-th embedding). (Default: 0)
- •prec integer (bits precision). Default: 53.
- •max_imaginary_part real number. Default: 0.
- •max_asymp_coeffs integer. Default: 40.
- •conjugate deprecated synonym for embedding.

For more information on the significance of the last three arguments, see dokchitser.

Note: If an explicit embedding is given, but this embedding is specified to smaller precision than prec, it will be automatically refined to precision prec.

OUTPUT:

The L-series of the cusp form, as a sage.lfunctions.dokchitser.Dokchitser object.

EXAMPLES:

As a consistency check, we verify that the functional equation holds:

```
sage: abs(L.check_functional_equation()) < 1.0e-20
True</pre>
```

For non-rational newforms we can specify an embedding of the coefficient field:

For backward-compatibility, conjugate is accepted as a synonym for embedding:

We compute with the L-series of the Eisenstein series E_4 :

```
sage: f = ModularForms(1,4).0
sage: L = f.lseries()
sage: L(1)
-0.0304484570583933
sage: L = eisenstein_series_lseries(4)
sage: L(1)
-0.0304484570583933
```

Consistency check with delta_lseries (which computes coefficients in pari):

```
sage: delta = CuspForms(1,12).0
sage: L = delta.lseries()
sage: L(1)
0.0374412812685155
sage: L = delta_lseries()
sage: L(1)
0.0374412812685155
```

We check that trac ticket #5262 is fixed:

```
sage: E = EllipticCurve('37b2')
sage: h = Newforms(37)[1]
sage: Lh = h.lseries()
sage: LE = E.lseries()
sage: Lh(1), LE(1)
(0.725681061936153, 0.725681061936153)
sage: CuspForms(1, 30).0.lseries().eps
-1
```

We can change the precision (in bits):

```
sage: f = Newforms(389, names='a')[0]
sage: L = f.lseries(prec=30)
sage: abs(L(1)) < 2^-30
True
sage: L = f.lseries(prec=53)
sage: abs(L(1)) < 2^-53
True
sage: L = f.lseries(prec=100)
sage: abs(L(1)) < 2^-100
True

sage: f = Newforms(27, names='a')[0]
sage: L = f.lseries()
sage: L(1)
0.588879583428483</pre>
```

padded_list (n)

Return a list of length n whose entries are the first n coefficients of the q-expansion of self.

EXAMPLES:

period (M, prec=53)

Return the period of self with respect to M.

INPUT:

- •self a cusp form f of weight 2 for $Gamma_0(N)$
- •M an element of $\Gamma_0(N)$
- •prec (default: 53) the working precision in bits. If f is a normalised eigenform, then the output is correct to approximately this number of bits.

OUTPUT:

A numerical approximation of the period $P_f(M)$. This period is defined by the following integral over the complex upper half-plane, for any α in $\mathbf{P}^1(\mathbf{Q})$:

$$P_f(M) = 2\pi i \int_{\alpha}^{M(\alpha)} f(z) dz.$$

This is independent of the choice of α .

EXAMPLES:

```
sage: C = Newforms(11, 2)[0]
sage: m = C.group() (matrix([[-4, -3], [11, 8]]))
sage: C.period(m)
-0.634604652139776 - 1.45881661693850*I

sage: f = Newforms(15, 2)[0]
sage: g = Gamma0(15) (matrix([[-4, -3], [15, 11]]))
sage: f.period(g) # abs tol le-15
2.17298044293747e-16 - 1.59624222213178*I
```

If E is an elliptic curve over \mathbf{Q} and f is the newform associated to E, then the periods of f are in the period lattice of E up to an integer multiple:

```
sage: E = EllipticCurve('11a3')
sage: f = E.newform()
sage: g = Gamma0(11)([3, 1, 11, 4])
sage: f.period(g)
0.634604652139777 + 1.45881661693850*I
sage: omega1, omega2 = E.period_lattice().basis()
sage: -2/5*omega1 + omega2
0.634604652139777 + 1.45881661693850*I
```

The integer multiple is 5 in this case, which is explained by the fact that there is a 5-isogeny between the elliptic curves $J_0(5)$ and E.

The elliptic curve E has a pair of modular symbols attached to it, which can be computed using the method sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field.modular. These can be used to express the periods of f as exact linear combinations of the real and the imaginary period of E:

```
sage: s = E.modular_symbol(sign=+1)
sage: t = E.modular_symbol(sign=-1, implementation="sage")
sage: s(3/11), t(3/11)
(1/10, 1/2)
sage: s(3/11)*omega1 + t(3/11)*2*omega2.imag()*I
0.634604652139777 + 1.45881661693850*I
```

ALGORITHM:

We use the series expression from [Cre1997], Chapter II, Proposition 2.10.3. The algorithm sums the first T terms of this series, where T is chosen in such a way that the result would approximate $P_f(M)$ with an absolute error of at most $2^{-\text{prec}}$ if all computations were done exactly.

Since the actual precision is finite, the output is currently *not* guaranteed to be correct to prec bits of precision.

TESTS:

```
sage: C = Newforms(11, 2)[0]
sage: g = Gamma0(15) (matrix([[-4, -3], [15, 11]]))
sage: C.period(g)
Traceback (most recent call last):
TypeError: matrix [-4 -3]
                  [15 11]
is not an element of Congruence Subgroup Gamma0(11)
sage: f = Newforms(Gamma0(15), 4)[0]
sage: f.period(g)
Traceback (most recent call last):
ValueError: period pairing only defined for cusp forms of weight 2
sage: S = Newforms(Gamma1(17), 2, names='a')
sage: f = S[1]
sage: g = Gamma1(17)([18, 1, 17, 1])
sage: f.period(g)
Traceback (most recent call last):
NotImplementedError: period pairing only implemented for cusp forms of,

→trivial character

sage: E = ModularForms(Gamma0(4), 2).eisenstein_series()[0]
sage: gamma = Gamma0(4)([1, 0, 4, 1])
sage: E.period(gamma)
Traceback (most recent call last):
NotImplementedError: Don't know how to compute Atkin-Lehner matrix acting on.
→this space (try using a newform constructor instead)
sage: E = EllipticCurve('19a1')
sage: M = Gamma0(19)([10, 1, 19, 2])
sage: E.newform().period(M) # abs tol 1e-14
-1.35975973348831 + 1.09365931898146e-16*I
```

petersson_norm (embedding=0, prec=53)

Compute the Petersson scalar product of f with itself:

$$\langle f, f \rangle = \int_{\Gamma_0(N) \setminus \mathbb{H}} |f(x + iy)|^2 y^k \, \mathrm{d}x \, \mathrm{d}y.$$

Only implemented for N = 1 at present. It is assumed that f has real coefficients. The norm is computed as a special value of the symmetric square L-function, using the identity

$$\langle f, f \rangle = \frac{(k-1)! L(\text{Sym}^2 f, k)}{2^{2k-1} \pi^{k+1}}$$

INPUT:

•embedding: embedding of the coefficient field into \mathbf{R} or \mathbf{C} , or an integer i (interpreted as the i-th embedding) (default: 0)

•prec (integer, default 53): precision in bits

EXAMPLE:

The Petersson norm depends on a choice of embedding:

```
sage: set_verbose(-2, "dokchitser.py") # disable precision-loss warnings
sage: F = Newforms(1, 24, names='a')[0]
sage: F.petersson_norm(embedding=0)
0.000107836545077234
sage: F.petersson_norm(embedding=1)
0.000128992800758160
```

TESTS:

Verify that the Petersson norm is a quadratic form:

```
sage: F, G = CuspForms(1, 24).basis()
sage: X = lambda u: u.petersson_norm(prec=100)
sage: (X(F + G) + X(F - G) - 2*X(F) - 2*X(G)).abs() < 1e-25
True</pre>
```

prec ()

Return the precision to which self.q_expansion() is currently known. Note that this may be 0.

```
sage: M = ModularForms(2,14)
sage: f = M.0
sage: f.prec()
0

sage: M.prec(20)
20
sage: f.prec()
0
sage: x = f.q_expansion(); f.prec()
20
```

q_expansion (prec=None)

The q-expansion of the modular form to precision $O(q^{\text{prec}})$. This function takes one argument, which is the integer prec.

EXAMPLES:

We compute the cusp form Δ :

```
sage: delta = CuspForms(1,12).0
sage: delta.q_expansion()
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
```

We compute the q-expansion of one of the cusp forms of level 23:

```
sage: f = CuspForms(23,2).0
sage: f.q_expansion()
q - q^3 - q^4 + O(q^6)
sage: f.q_expansion(10)
q - q^3 - q^4 - 2*q^6 + 2*q^7 - q^8 + 2*q^9 + O(q^10)
sage: f.q_expansion(2)
q + O(q^2)
sage: f.q_expansion(1)
O(q^1)
sage: f.q_expansion(0)
O(q^0)
sage: f.q_expansion(-1)
Traceback (most recent call last):
...
ValueError: prec (= -1) must be non-negative
```

qexp (prec=None)

Same as self.q_expansion(prec).

See also:

```
q_expansion()
```

EXAMPLES:

```
sage: CuspForms(1,12).0.qexp()
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
```

symsquare_lseries (chi=None, embedding=0, prec=53)

Compute the symmetric square L-series of this modular form, twisted by the character χ .

INPUT:

- •chi Dirichlet character to twist by, or None (default None, interpreted as the trivial character).
- •embedding embedding of the coefficient field into ${\bf R}$ or ${\bf C}$, or an integer i (in which case take the i-th embedding)
- •prec The desired precision in bits (default 53).

OUTPUT: The symmetric square L-series of the cusp form, as sage.lfunctions.dokchitser.Dokchitser object.

```
sage: CuspForms(1, 12).0.symsquare_lseries()(22)
0.999645711124771
```

An example twisted by a nontrivial character:

```
sage: psi = DirichletGroup(7).0^2
sage: L = CuspForms(1, 16).0.symsquare_lseries(psi)
sage: L(22)
0.998407750967420 - 0.00295712911510708*I
```

An example with coefficients not in **Q**:

TESTS:

AUTHORS:

- •Martin Raum (2011) original code posted to sage-nt
- •David Loeffler (2015) added support for twists, integrated into Sage library

valuation()

Return the valuation of self (i.e. as an element of the power series ring in q).

EXAMPLES:

```
sage: ModularForms(11,2).0.valuation()
1
sage: ModularForms(11,2).1.valuation()
0
sage: ModularForms(25,6).1.valuation()
2
sage: ModularForms(25,6).6.valuation()
7
```

weight ()

Return the weight of self.

EXAMPLES:

```
sage: (ModularForms(Gamma1(9),2).6).weight()
2
```

class sage.modular.modform.element. Newform (parent, component, names, check=True)

Bases: sage.modular.modform.element.ModularForm_abstract

Initialize a Newform object.

INPUT:

- •parent An ambient cuspidal space of modular forms for which self is a newform.
- •component A simple component of a cuspidal modular symbols space of any sign corresponding to this newform.
- •check If check is True, check that parent and component have the same weight, level, and character, that component has sign 1 and is simple, and that the types are correct on all inputs.

EXAMPLES:

```
sage: sage.modular.modform.element.Newform(CuspForms(11,2),_

→ModularSymbols(11,2,sign=1).cuspidal_subspace(), 'a')
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)

sage: f = Newforms(DirichletGroup(5).0, 7,names='a')[0]; f[2].trace(f.base_ring().

→base_field())
-5*zeta4 - 5
```

abelian_variety ()

Return the abelian variety associated to self.

EXAMPLES:

```
sage: Newforms(14,2)[0]
q - q^2 - 2*q^3 + q^4 + 0(q^6)
sage: Newforms(14,2)[0].abelian_variety()
Newform abelian subvariety 14a of dimension 1 of J0(14)
```

atkin_lehner_eigenvalue (d=None)

Return the eigenvalue of the Atkin-Lehner operator W_d acting on this newform (which is either 1 or -1). A ValueError will be raised if the character of this form is not either trivial or quadratic. If d is not given or is None, then d defaults to the level of self.

EXAMPLE:

character ()

The nebentypus character of this newform (as a Dirichlet character with values in the field of Hecke eigenvalues of the form).

EXAMPLES:

```
sage: Newforms(Gamma1(7), 4,names='a')[1].character()
Dirichlet character modulo 7 of conductor 7 mapping 3 |--> 1/2*a1
sage: chi = DirichletGroup(3).0; Newforms(chi, 7)[0].character() == chi
True
```

coefficient (n)

Return the coefficient of q^n in the power series of self.

INPUT:

•n - a positive integer

OUTPUT:

•the coefficient of q^n in the power series of self.

EXAMPLES:

```
sage: f = Newforms(11)[0]; f
q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)
sage: f.coefficient(100)
-8

sage: g = Newforms(23, names='a')[0]; g
q + a0*q^2 + (-2*a0 - 1)*q^3 + (-a0 - 1)*q^4 + 2*a0*q^5 + O(q^6)
sage: g.coefficient(3)
-2*a0 - 1
```

element ()

Find an element of the ambient space of modular forms which represents this newform.

Note: This can be quite expensive. Also, the polynomial defining the field of Hecke eigenvalues should be considered random, since it is generated by a random sum of Hecke operators. (The field itself is not random, of course.)

EXAMPLES:

```
sage: ls = Newforms(38,4,names='a')
sage: ls[0]
q - 2*q^2 - 2*q^3 + 4*q^4 - 9*q^5 + O(q^6)
sage: ls # random
[q - 2*q^2 - 2*q^3 + 4*q^4 - 9*q^5 + 0(q^6),
q - 2*q^2 + (-a1 - 2)*q^3 + 4*q^4 + (2*a1 + 10)*q^5 + O(q^6),
q + 2*q^2 + (1/2*a^2 - 1)*q^3 + 4*q^4 + (-3/2*a^2 + 1^2)*q^5 + O(q^6)
sage: type(ls[0])
<class 'sage.modular.modform.element.Newform'>
sage: ls[2][3].minpoly()
x^2 - 9*x + 2
sage: ls2 = [ x.element() for x in ls ]
sage: ls2 # random
[q - 2*q^2 - 2*q^3 + 4*q^4 - 9*q^5 + O(q^6),
q - 2*q^2 + (-a1 - 2)*q^3 + 4*q^4 + (2*a1 + 10)*q^5 + O(q^6),
q + 2*q^2 + (1/2*a^2 - 1)*q^3 + 4*q^4 + (-3/2*a^2 + 1^2)*q^5 + O(q^6)
sage: type(1s2[0])
<class 'sage.modular.modform.element.CuspidalSubmodule_q0 Q with category.
→element_class'>
sage: ls2[2][3].minpoly()
x^2 - 9*x + 2
```

hecke eigenvalue field ()

Return the field generated over the rationals by the coefficients of this newform.

```
sage: ls = Newforms(35, 2, names='a'); ls
[q + q^3 - 2*q^4 - q^5 + O(q^6),
q + a1*q^2 + (-a1 - 1)*q^3 + (-a1 + 2)*q^4 + q^5 + O(q^6)]
sage: ls[0].hecke_eigenvalue_field()
Rational Field
```

```
sage: ls[1].hecke_eigenvalue_field()
Number Field in a1 with defining polynomial x^2 + x - 4
```

modular_symbols (sign=0)

Return the subspace with the specified sign of the space of modular symbols corresponding to this newform.

EXAMPLES:

number ()

Return the index of this space in the list of simple, new, cuspidal subspaces of the full space of modular symbols for this weight and level.

EXAMPLES:

```
sage: Newforms(43, 2, names='a')[1].number()
1
```

twist (chi, level=None, check=True)

Return the twist of the newform self by the Dirichlet character chi.

If self is a newform f with character ϵ and q-expansion

$$f(q) = \sum_{n=1}^{\infty} a_n q^n,$$

then the twist by χ is the unique newform $f \otimes \chi$ with character $\epsilon \chi^2$ and q-expansion

$$(f \otimes \chi)(q) = \sum_{n=1}^{\infty} b_n q^n$$

satisfying $b_n = \chi(n)a_n$ for all but finitely many n.

INPUT:

- •chi a Dirichlet character. Note that Sage must be able to determine a common base field into which both the Hecke eigenvalue field of self, and the field of values of chi, can be embedded.
- •level (optional) the level N of the twisted form. By default, the algorithm tries to compute N using [AL1978], Theorem 3.1.
- •check (optional) boolean; if True (default), ensure that the space of modular symbols that is computed is genuinely simple and new. This makes it less likely that a wrong result is returned if an incorrect level is specified.

OUTPUT:

The form $f \otimes \chi$ as an element of the set of newforms for $\Gamma_1(N)$ with character $\epsilon \chi^2$.

```
sage: G = DirichletGroup(3, base_ring=QQ)
sage: Delta = Newforms(SL2Z, 12)[0]; Delta
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
sage: Delta.twist(G[0]) == Delta
True
sage: Delta.twist(G[1]) # long time (about 5 s)
q + 24*q^2 - 1472*q^4 - 4830*q^5 + O(q^6)
sage: M = CuspForms(Gamma1(13), 2)
sage: f = M.newforms('a')[0]; f
q + a0*q^2 + (-2*a0 - 4)*q^3 + (-a0 - 1)*q^4 + (2*a0 + 3)*q^5 + O(q^6)
sage: f.twist(G[1])
q - a0*q^2 + (-a0 - 1)*q^4 + (-2*a0 - 3)*q^5 + O(q^6)
sage: f = Newforms(Gamma1(30), 2, names='a')[1]; f
q + a1*q^2 - a1*q^3 - q^4 + (a1 - 2)*q^5 + O(q^6)
sage: f.twist(f.character())
Traceback (most recent call last):
NotImplementedError: cannot calculate 5-primary part of the level of the_
\rightarrowtwist of q + a1*q^2 - a1*q^3 - q^4 + (a1 - 2)*q^5 + O(q^6) by Dirichlet,
\rightarrowcharacter modulo 5 of conductor 5 mapping 2 |--> -1
sage: f.twist(f.character(), level=30)
q - a1*q^2 + a1*q^3 - q^4 + (-a1 - 2)*q^5 + O(q^6)
```

TESTS:

We test that feeding inappropriate values of the level parameter is handled gracefully:

```
sage: chi = DirichletGroup(1)[0]
sage: Delta.twist(chi, level=3)
Traceback (most recent call last):
...
ValueError: twist of q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6) by_
Dirichlet character modulo 1 of conductor 1 is not a newform of level 3
```

Twisting and twisting back works:

```
sage: f = Newforms(11)[0]
sage: chi = DirichletGroup(5).0
sage: f.twist(chi).twist(~chi, level=11) == f
True
```

AUTHORS:

•Peter Bruin (April 2015)

Return the L-series of the modular form Delta.

This actually returns an interface to Tim Dokchitser's program for computing with the L-series of the modular form Δ .

INPUT:

```
prec - integer (bits precision)max_imaginary_part - real numbermax_asymp_coeffs - integer
```

OUTPUT:

The L-series of Δ .

EXAMPLES:

```
sage: L = delta_lseries()
sage: L(1)
0.0374412812685155
```

sage.modular.modform.element.is_ModularFormElement (x)

Return True if x is a modular form.

EXAMPLES:

```
sage: from sage.modular.modform.element import is_ModularFormElement
sage: is_ModularFormElement(5)
False
sage: is_ModularFormElement(ModularForms(11).0)
True
```

1.14 Hecke Operators on q-expansions

ready_echelonized=False)

Given a basis B of q-expansions for a space of modular forms with character ε to precision at least $\#\dot{B}\cdot n+1$, this function computes the matrix of T_n relative to B.

Note: If the elements of B are not known to sufficient precision, this function will report that the vectors are linearly dependent (since they are to the specified precision).

INPUT:

- •B list of q-expansions
- •n an integer >= 1
- •k an integer
- •eps Dirichlet character
- •already_echelonized bool (default: False); if True, use that the basis is already in Echelon form, which saves a lot of time.

```
ValueError: The given basis vectors must be linearly independent.

sage: hecke_operator_on_basis(ModularForms(1,12).q_expansion_basis(30), 3, 12)
[ 252     0]
[ 0 177148]
```

TESTS:

This shows that the problem with finite fields reported at trac ticket #8281 is solved:

```
sage: bas_mod5 = [f.change_ring(GF(5)) for f in victor_miller_basis(12, 20)]
sage: hecke_operator_on_basis(bas_mod5, 2, 12)
[4 0]
[0 1]
```

This shows that empty input is handled sensibly (trac ticket #12202):

```
sage.modular.modform.hecke_operator_on_qexp. hecke_operator_on_qexp (f, n, k, eps=None, prec=None, check=True, \_re-turn\ list=False)
```

Given the q-expansion f of a modular form with character ε , this function computes the image of \overline{f} under the Hecke operator $T_{n,k}$ of weight k.

```
sage: M = ModularForms(1,12)
sage: hecke_operator_on_qexp(M.basis()[0], 3, 12)
252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + O(q^5)
sage: hecke_operator_on_qexp(M.basis()[0], 1, 12, prec=7)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)
sage: hecke_operator_on_qexp(M.basis()[0], 1, 12)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - 16744*q^8 - 16744*q^
 \rightarrow113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + O(q^14)
sage: M.prec(20)
sage: hecke_operator_on_qexp(M.basis()[0], 3, 12)
252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7)
sage: hecke_operator_on_qexp(M.basis()[0], 1, 12)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 - ...
  →113643*q^9 - 115920*q^10 + 534612*q^11 - 370944*q^12 - 577738*q^13 + 401856*q^
 \hookrightarrow14 + 1217160*q^15 + 987136*q^16 - 6905934*q^17 + 2727432*q^18 + 10661420*q^19 - ...
  \rightarrow7109760*q^20 + O(q^21)
```

```
sage: (hecke_operator_on_qexp(M.basis()[0], 1, 12)*252).add_bigoh(7)
252*q - 6048*q^2 + 63504*q^3 - 370944*q^4 + 1217160*q^5 - 1524096*q^6 + O(q^7)

sage: hecke_operator_on_qexp(M.basis()[0], 6, 12)
-6048*q + 145152*q^2 - 1524096*q^3 + O(q^4)
```

An example on a formal power series:

```
sage: R.<q> = QQ[[]]
sage: f = q + q^2 + q^3 + q^7 + O(q^8)
sage: hecke_operator_on_qexp(f, 3, 12)
q + O(q^3)
sage: hecke_operator_on_qexp(delta_qexp(24), 3, 12).prec()
8
sage: hecke_operator_on_qexp(delta_qexp(25), 3, 12).prec()
9
```

An example of computing $T_{p,k}$ in characteristic p:

1.15 Numerical computation of newforms

```
class sage.modular.modform.numerical. NumericalEigenforms (group, weight=2, eps=1e-20, delta=0.01, tp=[2, 3, 5])
```

Bases: sage.structure.sage_object.SageObject

numerical_eigenforms(group, weight=2, eps=1e-20, delta=1e-2, tp=[2,3,5])

INPUT:

- •group a congruence subgroup of a Dirichlet character of order 1 or 2
- •weight an integer >= 2
- •eps a small float; abs() < eps is what "equal to zero" is interpreted as for floating point numbers.
- •delta a small-ish float; eigenvalues are considered distinct if their difference has absolute value at least delta
- •tp use the Hecke operators T_p for p in tp when searching for a random Hecke operator with distinct Hecke eigenvalues.

OUTPUT:

A numerical eigenforms object, with the following useful methods:

•ap () - return all eigenvalues of T_p

•eigenvalues () - list of eigenvalues corresponding to the given list of primes, e.g.,:

```
[[eigenvalues of T_2],
  [eigenvalues of T_3],
  [eigenvalues of T_5], ...]
```

•systems_of_eigenvalues() - a list of the systems of eigenvalues of eigenforms such that the chosen random linear combination of Hecke operators has multiplicity 1 eigenvalues.

EXAMPLES:

```
sage: n = numerical_eigenforms(23)
sage: n == loads(dumps(n))
True
sage: n.ap(2) # rel tol 2e-15
[3.0, 0.6180339887498941, -1.618033988749895]
sage: n.systems_of_eigenvalues(7) # rel tol 2e-15
[-1.618033988749895, 2.23606797749979, -3.23606797749979],
[0.6180339887498941, -2.2360679774997902, 1.2360679774997883],
[3.0, 4.0, 6.0]
sage: n.systems_of_abs(7)
[0.6180339887..., 2.236067977..., 1.236067977...],
[1.6180339887..., 2.236067977..., 3.236067977...],
[3.0, 4.0, 6.0]
sage: n.eigenvalues([2,3,5]) # rel tol 2e-15
[[3.0, 0.6180339887498941, -1.618033988749895],
[4.0, -2.2360679774997902, 2.23606797749979],
[6.0, 1.2360679774997883, -3.23606797749979]]
```

ap(p)

Return a list of the eigenvalues of the Hecke operator T_p on all the computed eigenforms. The eigenvalues match up between one prime and the next.

INPUT:

•p - integer, a prime number

OUTPUT:

•list - a list of double precision complex numbers

EXAMPLES:

```
sage: n = numerical_eigenforms(11,4)
sage: n.ap(2) # random order
[9.0, 9.0, 2.73205080757, -0.732050807569]
sage: n.ap(3) # random order
[28.0, 28.0, -7.92820323028, 5.92820323028]
sage: m = n.modular_symbols()
sage: x = polygen(QQ, 'x')
sage: m.T(2).charpoly('x').factor()
(x - 9)^2 * (x^2 - 2*x - 2)
sage: m.T(3).charpoly('x').factor()
(x - 28)^2 * (x^2 + 2*x - 47)
```

eigenvalues (primes)

Return the eigenvalues of the Hecke operators corresponding to the primes in the input list of primes. The eigenvalues match up between one prime and the next.

INPUT:

```
•primes - a list of primes
```

OUTPUT:

list of lists of eigenvalues.

EXAMPLES:

level ()

Return the level of this set of modular eigenforms.

EXAMPLES:

```
sage: n = numerical_eigenforms(61); n.level()
61
```

modular_symbols ()

Return the space of modular symbols used for computing this set of modular eigenforms.

EXAMPLES:

```
sage: n = numerical_eigenforms(61); n.modular_symbols()
Modular Symbols space of dimension 5 for Gamma_0(61) of weight 2 with sign 1_
→over Rational Field
```

systems_of_abs (bound)

Return the absolute values of all systems of eigenvalues for self for primes up to bound.

EXAMPLES:

```
sage: numerical_eigenforms(61).systems_of_abs(10) # rel tol 6e-14
[
[0.3111078174659775, 2.903211925911551, 2.525427560843529, 3.214319743377552],
[1.0, 2.0000000000000027, 3.0000000000003, 1.000000000000044],
[1.4811943040920152, 0.8060634335253695, 3.1563251746586642, 0.
→6751308705666477],
[2.170086486626034, 1.7092753594369208, 1.63089761381512, 0.
→46081112718908984],
[3.0, 4.0, 6.0, 8.0]
]
```

systems_of_eigenvalues (bound)

Return all systems of eigenvalues for self for primes up to bound.

```
[0.3111078174659775, 2.903211925911551, -2.525427560843529, -3.

→214319743377552],

[2.170086486626034, -1.7092753594369208, -1.63089761381512, -0.

→46081112718908984],

[3.0, 4.0, 6.0, 8.0]
```

weight ()

Return the weight of this set of modular eigenforms.

EXAMPLES:

```
sage: n = numerical_eigenforms(61); n.weight()
2
```

sage.modular.modform.numerical. support (v, eps)

Given a vector v and a threshold eps, return all indices where |v| is larger than eps.

EXAMPLES:

1.16 The Victor Miller Basis

This module contains functions for quick calculation of a basis of q-expansions for the space of modular forms of level 1 and any weight. The basis returned is the Victor Miller basis, which is the unique basis of elliptic modular forms f_1, \ldots, f_d for which $a_i(f_j) = \delta_{ij}$ for $1 \le i, j \le d$ (where d is the dimension of the space).

This basis is calculated using a standard set of generators for the ring of modular forms, using the fast multiplication algorithms for polynomials and power series provided by the FLINT library. (This is far quicker than using modular symbols).

TESTS:

sage.modular.modform.vm_basis. delta_qexp (prec=10, var='q', K=Integer Ring)

Return the q-expansion of the weight 12 cusp form Δ as a power series with coefficients in the ring K (= **Z** by default).

INPUT:

```
•prec - integer (default 10), the absolute precision of the output (must be positive)
```

•var - string (default: 'q'), variable name

•K - ring (default: \mathbf{Z}), base ring of answer

OUTPUT:

a power series over K in the variable var

ALGORITHM:

Compute the theta series

$$\sum_{n>0} (-1)^n (2n+1) q^{n(n+1)/2},$$

a very simple explicit modular form whose 8th power is Δ . Then compute the 8th power. All computations are done over \mathbf{Z} or \mathbf{Z} modulo N depending on the characteristic of the given coefficient ring K, and coerced into K afterwards.

EXAMPLES:

```
sage: delta_qexp(7)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 + O(q^7)
sage: delta_qexp(7,'z')
z - 24*z^2 + 252*z^3 - 1472*z^4 + 4830*z^5 - 6048*z^6 + O(z^7)
sage: delta_qexp(-3)
Traceback (most recent call last):
...
ValueError: prec must be positive
sage: delta_qexp(20, K = GF(3))
q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + O(q^20)
sage: delta_qexp(20, K = GF(3^5, 'a'))
q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + O(q^20)
sage: delta_qexp(10, K = IntegerModRing(60))
q + 36*q^2 + 12*q^3 + 28*q^4 + 30*q^5 + 12*q^6 + 56*q^7 + 57*q^9 + O(q^10)
```

TESTS:

Test algorithm with modular arithmetic (see also #11804):

AUTHORS:

- •William Stein: original code
- •David Harvey (2007-05): sped up first squaring step
- •Martin Raum (2009-08-02): use FLINT for polynomial arithmetic (instead of NTL)

Compute and return the Victor Miller basis for modular forms of weight k and level 1 to precision $O(q^{prec})$. If cusp_only is True, return only a basis for the cuspidal subspace.

INPUT:

```
k - an integer
prec - (default: 10) a positive integer
cusp_only - bool (default: False)
var - string (default: 'q')
```

OUTPUT:

A sequence whose entries are power series in ZZ [[var]].

```
sage: victor_miller_basis(1, 6)
sage: victor_miller_basis(0, 6)
1 + O(q^6)
sage: victor_miller_basis(2, 6)
sage: victor_miller_basis(4, 6)
1 + 240 \times q + 2160 \times q^2 + 6720 \times q^3 + 17520 \times q^4 + 30240 \times q^5 + O(q^6)
sage: victor_miller_basis(6, 6, var='w')
1 - 504 * w - 16632 * w^2 - 122976 * w^3 - 532728 * w^4 - 1575504 * w^5 + O(w^6)
sage: victor_miller_basis(6, 6)
1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + O(q^6)
sage: victor_miller_basis(12, 6)
1 + 196560 \times q^2 + 16773120 \times q^3 + 398034000 \times q^4 + 4629381120 \times q^5 + O(q^6)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
sage: victor_miller_basis(12, 6, cusp_only=True)
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 + O(q^6)
sage: victor_miller_basis(24, 6, cusp_only=True)
q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + O(q^6)
sage: victor_miller_basis(24, 6)
1 + 52416000 * q^3 + 39007332000 * q^4 + 6609020221440 * q^5 + O(q^6),
q + 195660*q^3 + 12080128*q^4 + 44656110*q^5 + O(q^6),
q^2 - 48*q^3 + 1080*q^4 - 15040*q^5 + 0(q^6)
sage: victor_miller_basis(32, 6)
1 + 2611200 \times q^3 + 19524758400 \times q^4 + 19715347537920 \times q^5 + O(q^6)
q + 50220*q^3 + 87866368*q^4 + 18647219790*q^5 + O(q^6),
q^2 + 432*q^3 + 39960*q^4 - 1418560*q^5 + O(q^6)
sage: victor_miller_basis(40,200)[1:] == victor_miller_basis(40,200,cusp_
→only=True)
True
sage: victor_miller_basis(200,40)[1:] == victor_miller_basis(200,40,cusp_
→only=True)
```

True

AUTHORS:

- •William Stein, Craig Citro: original code
- •Martin Raum (2009-08-02): use FLINT for polynomial arithmetic (instead of NTL)

1.17 Compute spaces of half-integral weight modular forms

Based on an algorithm in Basmaji's thesis.

AUTHORS:

• William Stein (2007-08)

A basis for the space of weight k/2 forms with character χ . The modulus of χ must be divisible by 16 and k must be odd and > 1.

INPUT:

- •chi a Dirichlet character with modulus divisible by 16
- •k an odd integer = 1
- •prec a positive integer

OUTPUT: a list of power series

Warning:

- 1. This code is very slow because it requests computation of a basis of modular forms for integral weight spaces, and that computation is still very slow.
- 2.If you give an input prec that is too small, then the output list of power series may be larger than the dimension of the space of half-integral forms.

EXAMPLES:

We compute some half-integral weight forms of level 16*7

```
sage: half_integral_weight_modform_basis(DirichletGroup(16*7).0^2,3,30)
[q - 2*q^2 - q^9 + 2*q^14 + 6*q^18 - 2*q^21 - 4*q^22 - q^25 + O(q^30),
    q^2 - q^14 - 3*q^18 + 2*q^22 + O(q^30),
    q^4 - q^8 - q^16 + q^28 + O(q^30),
    q^7 - 2*q^15 + O(q^30)]
```

The following illustrates that choosing too low of a precision can give an incorrect answer.

```
sage: half_integral_weight_modform_basis(DirichletGroup(16*7).0^2,3,20)
[q - 2*q^2 - q^9 + 2*q^14 + 6*q^18 + O(q^20),
  q^2 - q^14 - 3*q^18 + O(q^20),
  q^4 - 2*q^8 + 2*q^12 - 4*q^16 + O(q^20),
  q^7 - 2*q^8 + 4*q^12 - 2*q^15 - 6*q^16 + O(q^20),
  q^8 - 2*q^12 + 3*q^16 + O(q^20)]
```

We compute some spaces of low level and the first few possible weights.

This example once raised an error (see trac ticket #5792).

```
sage: half_integral_weight_modform_basis(trivial_character(16),9,10)
[q - 2*q^2 + 4*q^3 - 8*q^4 + 4*q^6 - 16*q^7 + 48*q^8 - 15*q^9 + O(q^10),
    q^2 - 2*q^3 + 4*q^4 - 2*q^6 + 8*q^7 - 24*q^8 + O(q^10),
    q^3 - 2*q^4 - 4*q^7 + 12*q^8 + O(q^10),
    q^4 - 6*q^8 + O(q^10)]
```

ALGORITHM: Basmaji (page 55 of his Essen thesis, "Ein Algorithmus zur Berechnung von Hecke-Operatoren und Anwendungen auf modulare Kurven", http://wstein.org/scans/papers/basmaji/).

Let $S = S_{k+1}(\epsilon)$ be the space of cusp forms of even integer weight k+1 and character $\varepsilon = \chi \psi^{(k+1)/2}$, where ψ is the nontrivial mod-4 Dirichlet character. Let U be the subspace of $S \times S$ of elements (a,b) such that $\Theta_2 a = \Theta_3 b$. Then U is isomorphic to $S_{k/2}(\chi)$ via the map $(a,b) \mapsto a/\Theta_3$.

1.18 Graded Rings of Modular Forms

This module contains functions to find generators for the graded ring of modular forms of given level.

AUTHORS:

• William Stein (2007-08-24): first version

 $Bases: \verb|sage_object.SageObject| \\$

The ring of modular forms (of weights 0 or at least 2) for a congruence subgroup of $SL_2(\mathbf{Z})$, with coefficients in a specified base ring.

INPUT:

```
•group – a congruence subgroup of SL_2(\mathbf{Z}), or a positive integer N (interpreted as \Gamma_0(N))
```

•base_ring (ring, default: \mathbf{Q}) – a base ring, which should be \mathbf{Q} , \mathbf{Z} , or the integers mod p for some prime p.

```
sage: ModularFormsRing(Gamma1(13))
Ring of modular forms for Congruence Subgroup Gamma1(13) with coefficients in

→Rational Field
```

```
sage: m = ModularFormsRing(4); m
Ring of modular forms for Congruence Subgroup Gamma0(4) with coefficients in...
→Rational Field
sage: m.modular_forms_of_weight(2)
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(4) of weight 2...
→over Rational Field
sage: m.modular_forms_of_weight(10)
Modular Forms space of dimension 6 for Congruence Subgroup Gamma0(4) of weight 10,
→over Rational Field
sage: m == loads(dumps(m))
True
sage: m.generators()
[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 0(q^10)),
(2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^{10}))
sage: m.q_expansion_basis(2,10)
[1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^{10}),
q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^{10})
sage: m.q_expansion_basis(3,10)
[]
sage: m.q_expansion_basis(10,10)
[1 + 10560*q^6 + 3960*q^8 + O(q^10),
q - 8056*q^7 - 30855*q^9 + O(q^{10}),
q^2 - 796*q^6 - 8192*q^8 + O(q^{10})
q^3 + 66*q^7 + 832*q^9 + O(q^{10})
q^4 + 40*q^6 + 528*q^8 + O(q^{10}),
q^5 + 20*q^7 + 190*q^9 + O(q^{10})
```

TESTS:

Check that trac ticket #15037 is fixed:

```
sage: ModularFormsRing(3.4)
Traceback (most recent call last):
...
ValueError: Group (=3.40000000000000) should be a congruence subgroup
sage: ModularFormsRing(Gamma0(2), base_ring=PolynomialRing(ZZ,x))
Traceback (most recent call last):
...
ValueError: Base ring (=Univariate Polynomial Ring in x over Integer Ring) should_
→be QQ, ZZ or a finite prime field
```

base_ring()

Return the coefficient ring of this modular forms ring.

EXAMPLE:

```
sage: ModularFormsRing(Gamma1(13)).base_ring()
Rational Field
sage: ModularFormsRing(Gamma1(13), base_ring = ZZ).base_ring()
Integer Ring
```

cuspidal_ideal_generators (maxweight=8, prec=None)

Calculate generators for the ideal of cuspidal forms in this ring, as a module over the whole ring.

```
sage: ModularFormsRing(Gamma0(3)).cuspidal_ideal_generators(maxweight=12) [(6, q - 6*q^2 + 9*q^3 + 4*q^4 + 0(q^5), q - 6*q^2 + 9*q^3 + 4*q^4 + 6*q^5 + 0(q^6)]
```

cuspidal_submodule_q_expansion_basis (weight, prec=None)

Calculate a basis of q-expansions for the space of cusp forms of weight weight for this group.

INPUT:

```
•weight (integer) - the weight
```

•prec (integer or None) – precision of q-expansions to return

ALGORITHM: Uses the method <code>cuspidal_ideal_generators()</code> to calculate generators of the ideal of cusp forms inside this ring. Then multiply these up to weight weight using the generators of the whole modular form space returned by <code>q_expansion_basis()</code>.

EXAMPLES:

```
sage: R = ModularFormsRing(Gamma0(3))
sage: R.cuspidal_submodule_q_expansion_basis(20)
[q - 8532*q^6 - 88442*q^7 + O(q^8), q^2 + 207*q^6 + 24516*q^7 + O(q^8), q^3 + 456*q^6 + O(q^8), q^4 - 135*q^6 - 926*q^7 + O(q^8), q^5 + 18*q^6 + 135*q^7 + O(q^8)]
```

We compute a basis of a space of very large weight, quickly (using this module) and slowly (using modular symbols), and verify that the answers are the same.

gen_forms (maxweight=8, start_gens=[], start_weight=2)

This function calculates a list of modular forms generating this ring (as an algebra over the appropriate base ring). It differs from generators() only in that it returns Sage modular form objects, rather than bare q-expansions; and if the base ring is a finite field, the modular forms returned will be forms in characteristic 0 with integral q-expansions whose reductions modulo p generate the ring of modular forms mod p.

INPUT:

- •maxweight (integer, default: 8) calculate forms generating all forms up to this weight.
- •start_gens (list, default: []) a list of modular forms. If this list is nonempty, we find a minimal generating set containing these forms.
- \bullet start_weight (integer, default: 2) calculate the graded subalgebra of forms of weight at least start_weight.

Note: If called with the default values of start_gens (an empty list) and start_weight (2), the values will be cached for re-use on subsequent calls to this function. (This cache is shared with generators ()). If called with non-default values for these parameters, caching will be disabled.

```
sage: A = ModularFormsRing(Gamma0(11), Zmod(5)).gen_forms(); A
[1 + 12*q^2 + 12*q^3 + 12*q^4 + 12*q^5 + 0(q^6), q - 2*q^2 - q^3 + 2*q^4 + q^6]
\rightarrow 5 + 0(q^6), q - 9*q^4 - 10*q^5 + 0(q^6)]
sage: A[0].parent()
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of \rightarrow weight 2 over Rational Field
```

generators (maxweight=8, prec=10, start_gens=[], start_weight=2)

If R is the base ring of self, then this function calculates a set of modular forms which generate the R-algebra of all modular forms of weight up to maxweight with coefficients in R.

INPUT:

- •maxweight (integer, default: 8) check up to this weight for generators
- •prec (integer, default: 10) return q-expansions to this precision
- •start_gens (list, default: []) list of pairs (k, f), or triples (k, f, F), where:
 - -k is an integer,
 - -f is the q-expansion of a modular form of weight k, as a power series over the base ring of self,
 - -F (if provided) is a modular form object corresponding to F.

If this list is nonempty, we find a minimal generating set containing these forms. If F is not supplied, then f needs to have sufficiently large precision (an error will be raised if this is not the case); otherwise, more terms will be calculated from the modular form object F.

•start_weight (integer, default: 2) - calculate the graded subalgebra of forms of weight at least start_weight.

OUTPUT:

a list of pairs (k, f), where f is the q-expansion to precision prec of a modular form of weight k.

See also:

gen_forms(), which does exactly the same thing, but returns Sage modular form objects rather than bare power series, and keeps track of a lifting to characteristic 0 when the base ring is a finite field.

Note: If called with the default values of start_gens (an empty list) and start_weight (2), the values will be cached for re-use on subsequent calls to this function. (This cache is shared with gen_forms()). If called with non-default values for these parameters, caching will be disabled.

```
sage: ModularFormsRing(SL2Z).generators()
[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + 17520*q^4 + 30240*q^5 + 60480*q^6 + 482560*q^7 + 140400*q^8 + 181680*q^9 + 0(q^10)), (6, 1 - 504*q - 16632*q^2 - 49122976*q^3 - 532728*q^4 - 1575504*q^5 - 4058208*q^6 - 8471232*q^7 - 4917047800*q^8 - 29883672*q^9 + 0(q^10))]
sage: s = ModularFormsRing(SL2Z).generators(maxweight=5, prec=3); s
[(4, 1 + 240*q + 2160*q^2 + 0(q^3))]
sage: s[0][1].parent()
Power Series Ring in q over Rational Field

sage: ModularFormsRing(1).generators(prec=4)
[(4, 1 + 240*q + 2160*q^2 + 6720*q^3 + 0(q^4)), (6, 1 - 504*q - 16632*q^2 - 49122976*q^3 + 0(q^4))]
```

```
sage: ModularFormsRing(2).generators(prec=12)
[(2, 1 + 24*q + 24*q^2 + 96*q^3 + 24*q^4 + 144*q^5 + 96*q^6 + 192*q^7 + 24*q^4 + 312*q^9 + 144*q^10 + 288*q^11 + O(q^12)), (4, 1 + 240*q^2 + 2160*q^4 + 40720*q^6 + 17520*q^8 + 30240*q^10 + O(q^12))]
sage: ModularFormsRing(4).generators(maxweight=2, prec=20)
[(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + 144*q^10 + 96*q^12 + 192*q^14 + 4074q^16 + 312*q^18 + O(q^220)), (2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 4074q^11 + 14*q^13 + 24*q^15 + 18*q^17 + 20*q^19 + O(q^220))]
```

Here we see that for \Gamma_0 (11) taking a basis of forms in weights 2 and 4 is enough to generate everything up to weight 12 (and probably everything else).:

```
sage: v = ModularFormsRing(11).generators(maxweight=12)
sage: len(v)
3
sage: [k for k, _ in v]
[2, 2, 4]
sage: dimension_modular_forms(11, 2)
2
sage: dimension_modular_forms(11, 4)
4
```

For congruence subgroups not containing -1, we miss out some forms since we can't calculate weight 1 forms at present, but we can still find generators for the ring of forms of weight ≥ 2 :

```
sage: ModularFormsRing(Gamma1(4)).generators(prec=10, maxweight=10) [(2, 1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10)), (2, q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10)), (3, 1 + 12*q^2 + 64*q^3 + 60*q^4 + 160*q^6 + 384*q^7 + 252*q^8 + O(q^10)), (3, q + 4*q^2 + 8*q^3 + 16*q^4 + 26*q^5 + 32*q^6 + 48*q^7 + 64*q^8 + 73*q^9 + O(q^10))]
```

Using different base rings will change the generators:

An example where start_gens are specified:

group ()

Return the congruence subgroup for which this is the ring of modular forms.

EXAMPLE:

```
sage: R = ModularFormsRing(Gamma1(13))
sage: R.group() is Gamma1(13)
True
```

modular_forms_of_weight (weight)

Return the space of modular forms on this group of the given weight.

EXAMPLES:

q_expansion_basis (weight, prec=None, use_random=True)

Calculate a basis of q-expansions for the space of modular forms of the given weight for this group, calculated using the ring generators given by find_generators.

INPUT:

```
•weight (integer) - the weight
```

- •prec (integer or None, default: None) power series precision. If None, the precision defaults to the Sturm bound for the requested level and weight.
- •use_random (boolean, default: True) whether or not to use a randomized algorithm when building up the space of forms at the given weight from known generators of small weight.

```
sage: m = ModularFormsRing(Gamma0(4))
sage: m.q_expansion_basis(2,10)
[1 + 24*q^2 + 24*q^4 + 96*q^6 + 24*q^8 + O(q^10),
q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + O(q^10)]
sage: m.q_expansion_basis(3,10)
[]

sage: X = ModularFormsRing(SL2Z)
sage: X.q_expansion_basis(12, 10)
[1 + 196560*q^2 + 16773120*q^3 + 398034000*q^4 + 4629381120*q^5 + 40000*q^6 + 187489935360*q^7 + 814879774800*q^8 + 2975551488000*q^9 + 4000*q^10),
q - 24*q^2 + 252*q^3 - 1472*q^4 + 4830*q^5 - 6048*q^6 - 16744*q^7 + 84480*q^8 + 40000*q^8 + 20000*q^8 + 20000*q
```

We calculate a basis of a massive modular forms space, in two ways. Using this module is about twice as fast as Sage's generic code.

Check that absurdly small values of prec don't mess things up:

```
sage: ModularFormsRing(11).q_expansion_basis(10, prec=5) [1 + O(q^5), q + O(q^5), q^2 + O(q^5), q^3 + O(q^5), q^4 + O(q^5), O(q^5),
```

sage.modular.modform.find_generators.basis_for_modform_space (*args)

This function, which existed in earlier versions of Sage, has now been replaced by the q_expansion_basis() method of ModularFormsRing objects.

EXAMPLE:

sage.modular.modform.find_generators.find_generators (*args)

This function, which existed in earlier versions of Sage, has now been replaced by the *generators* () method of ModularFormsRing objects.

EXAMPLE:

1.19 q-expansion of j-invariant

sage.modular.modform.j_invariant.j_invariant_qexp (prec=10, K=Rational Field)
Return the q-expansion of the j-invariant to precision prec in the field K.

See also:

If you want to evaluate (numerically) the j-invariant at certain points, see the special function elliptic_j().

Warning: Stupid algorithm – we divide by Delta, which is slow.

```
sage: j_invariant_qexp(4)
q^-1 + 744 + 196884*q + 21493760*q^2 + 864299970*q^3 + O(q^4)
sage: j_invariant_qexp(2)
q^-1 + 744 + 196884*q + O(q^2)
sage: j_invariant_qexp(100, GF(2))
q^-1 + q^7 + q^15 + q^31 + q^47 + q^55 + q^71 + q^87 + O(q^100)
```

1.20 q-expansions of Theta Series

AUTHOR:

William Stein

```
sage.modular.modform.theta. theta2_qexp ( prec=10, var='q', K=Integer\ Ring, sparse=False) Return the q-expansion of the series 'theta_2 = sum_{n odd} q^{n^2}. '
```

INPUT:

```
•prec – integer; the absolute precision of the output
```

•var – (default: 'q') variable name

•K – (default: ZZ) base ring of answer

OUTPUT:

a power series over K

EXAMPLES:

```
sage: theta2_qexp(18)
q + q^9 + 0(q^{18})
sage: theta2_qexp(49)
q + q^9 + q^25 + O(q^49)
sage: theta2_qexp(100, 'q', QQ)
q + q^9 + q^25 + q^49 + q^81 + O(q^{100})
sage: f = theta2_qexp(100, 't', GF(3)); f
t + t^9 + t^25 + t^49 + t^81 + o(t^100)
sage: parent(f)
Power Series Ring in t over Finite Field of size 3
sage: theta2_qexp(200)
q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + O(q^200)
sage: f = theta2_qexp(20,sparse=True); f
q + q^9 + 0(q^20)
sage: parent(f)
Sparse Power Series Ring in q over Integer Ring
```

sage.modular.modform.theta. **theta_qexp** (prec=10, var='q', $K=Integer\ Ring$, sparse=False) Return the q-expansion of the standard θ series 'theta = 1 + 2sum_{n=1}{^infty} q^{n^2}. '

INPUT:

```
•prec – integer; the absolute precision of the output
```

•var – (default: 'q') variable name

•K – (default: ZZ) base ring of answer

OUTPUT:

a power series over K

```
sage: theta_qexp(25)
1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + O(q^25)
sage: theta_qexp(10)
1 + 2*q + 2*q^4 + 2*q^9 + O(q^10)
sage: theta_qexp(100)
1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + 2*q^25 + 2*q^36 + 2*q^49 + 2*q^64 + 2*q^81 + 00(q^100)
sage: theta_qexp(100, 't')
1 + 2*t + 2*t^4 + 2*t^9 + 2*t^16 + 2*t^25 + 2*t^36 + 2*t^49 + 2*t^64 + 2*t^81 + 00(t^100)
sage: theta_qexp(100, 't', GF(2))
1 + O(t^100)
sage: theta_qexp(100, 't', GF(2))
1 + O(t^100)
sage: f = theta_qexp(20, sparse=True); f
1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + O(q^20)
sage: parent(f)
Sparse Power Series Ring in q over Integer Ring
```

CHAPTER

TWO

DESIGN NOTES

2.1 Design Notes

The implementation depends the fact that we have dimension formulas (see dims.py) for spaces of modular forms with character, and new subspaces, so that we don't have to compute q-expansions for the whole space in order to compute q-expansions / elements / and dimensions of certain subspaces. Also, the following design is much simpler than the one I used in MAGMA because submodulesq don't have lots of complicated special labels. A modular forms module can consist of the span of any elements; they need not be Hecke equivariant or anything else.

The internal basis of q-expansions of modular forms for the ambient space is defined as follows:

First Block: Cuspidal Subspace Second Block: Eisenstein Subspace

Cuspidal Subspace: Block for each level M dividing N, from highest level to lowest. The block for level M contains the images at level N of the newsubspace of level M (basis, then basis(q**d), then basis(q**e), etc.)

Eisenstein Subspace: characters, etc.

Since we can compute dimensions of cuspidal subspaces quickly and easily, it should be easy to locate any of the above blocks. Hence, e.g., to compute basis for new cuspidal subspace, just have to return first n standard basis vector where n is the dimension. However, we can also create completely arbitrary subspaces as well.

The base ring is the ring generated by the character values (or bigger). In MAGMA the base was always ZZ, which is confusing.

CHAPTER

THREE

INDICES AND TABLES

- Index
- Module Index
- Search Page

m

```
sage.modular.modform.ambient, 20
sage.modular.modform.ambient_eps, 26
sage.modular.modform.ambient_g0, 29
sage.modular.modform.ambient_g1, 30
sage.modular.modform.ambient_R, 32
sage.modular.modform.constructor, 1
sage.modular.modform.cuspidal submodule, 34
sage.modular.modform.eis_series,42
sage.modular.modform.eis_series_cython,46
sage.modular.modform.eisenstein_submodule, 37
sage.modular.modform.element,46
sage.modular.modform.find_generators,73
sage.modular.modform.half_integral,72
sage.modular.modform.hecke_operator_on_qexp,64
sage.modular.modform.j_invariant,79
sage.modular.modform.notes, 83
sage.modular.modform.numerical,66
sage.modular.modform.space, 6
sage.modular.modform.submodule, 33
sage.modular.modform.theta, 80
sage.modular.modform.vm_basis,69
```

88 Python Module Index

Α abelian variety() (sage.modular.modform.element.Newform method), 60 ambient_space() (sage.modular.modform.ambient.ModularFormsAmbient method), 21 ap() (sage.modular.modform.numerical.NumericalEigenforms method), 67 atkin lehner eigenvalue() (sage.modular.modform.element.ModularForm abstract method), 51 atkin_lehner_eigenvalue() (sage.modular.modform.element.ModularFormElement method), 49 atkin_lehner_eigenvalue() (sage.modular.modform.element.ModularFormElement_elliptic_curve method), 50 atkin lehner eigenvalue() (sage.modular.modform.element.Newform method), 60 В base_ring() (sage.modular.modform.element.ModularForm_abstract method), 51 base_ring() (sage.modular.modform.find_generators.ModularFormsRing method), 74 basis() (sage.modular.modform.space.ModularFormsSpace method), 7 basis for modform space() (in module sage.modular.modform.find generators), 79 C canonical parameters() (in module sage.modular.modform.constructor), 5 change ring() (sage.modular.modform.ambient.ModularFormsAmbient method), 21 change_ring() (sage.modular.modform.ambient_eps.ModularFormsAmbient_eps method), 28 change_ring() (sage.modular.modform.ambient_R.ModularFormsAmbient R method), 32 change ring() (sage.modular.modform.cuspidal submodule.CuspidalSubmodule method), 34 change_ring() (sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_params method), 39 character() (sage.modular.modform.element.EisensteinSeries method), 47 character() (sage.modular.modform.element.ModularForm abstract method), 51 character() (sage.modular.modform.element.Newform method), 60 character() (sage.modular.modform.space.ModularFormsSpace method), 7 chi() (sage.modular.modform.element.EisensteinSeries method), 48 coefficient() (sage.modular.modform.element.Newform method), 60 coefficients() (sage.modular.modform.element.ModularForm abstract method), 52 compute_eisenstein_params() (in module sage.modular.modform.eis_series), 42 contains each() (in module sage.modular.modform.space), 20 cuspform lseries() (sage.modular.modform.element.ModularForm abstract method), 52 CuspForms() (in module sage.modular.modform.constructor), 1 cuspidal_ideal_generators() (sage.modular.modform.find_generators.ModularFormsRing method), 74 cuspidal submodule() (sage.modular.modform.ambient.ModularFormsAmbient method), 22 cuspidal_submodule() (sage.modular.modform.ambient_eps.ModularFormsAmbient_eps method), 28 cuspidal_submodule() (sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q method), 29

```
cuspidal submodule() (sage,modular,modform,ambient g1.ModularFormsAmbient g1 O method), 31
cuspidal_submodule() (sage.modular.modform.ambient_g1.ModularFormsAmbient_gH_Q method), 31
cuspidal submodule() (sage.modular.modform.ambient R.ModularFormsAmbient R method), 32
cuspidal submodule() (sage.modular.modform.space.ModularFormsSpace method), 7
cuspidal_submodule_q_expansion_basis() (sage.modular.modform.find_generators.ModularFormsRing method), 75
cuspidal_subspace() (sage.modular.modform.space.ModularFormsSpace method), 8
CuspidalSubmodule (class in sage.modular.modform.cuspidal submodule), 34
CuspidalSubmodule eps (class in sage.modular.modform.cuspidal submodule), 35
CuspidalSubmodule_g0_Q (class in sage.modular.modform.cuspidal_submodule), 36
CuspidalSubmodule_g1_Q (class in sage.modular.modform.cuspidal_submodule), 36
CuspidalSubmodule gH Q (class in sage.modular.modform.cuspidal submodule), 36
CuspidalSubmodule level 1 Q (class in sage.modular.modform.cuspidal submodule), 36
CuspidalSubmodule_modsym_qexp (class in sage.modular.modform.cuspidal_submodule), 36
CuspidalSubmodule R (class in sage.modular.modform.cuspidal submodule), 35
cyclotomic restriction() (in module sage.modular.modform.eisenstein submodule), 41
cyclotomic_restriction_tower() (in module sage.modular.modform.eisenstein_submodule), 42
D
decomposition() (sage.modular.modform.space.ModularFormsSpace method), 8
delta lseries() (in module sage.modular.modform.element), 63
delta_qexp() (in module sage.modular.modform.vm_basis), 69
dimension() (sage.modular.modform.ambient.ModularFormsAmbient method), 22
echelon basis() (sage.modular.modform.space.ModularFormsSpace method), 8
echelon_form() (sage.modular.modform.space.ModularFormsSpace method), 9
eigenvalues() (sage.modular.modform.numerical.NumericalEigenforms method), 67
eisenstein params() (sage.modular.modform.ambient.ModularFormsAmbient method), 22
eisenstein series() (sage.modular.modform.ambient.ModularFormsAmbient method), 22
eisenstein_series() (sage.modular.modform.eisenstein_submodule_EisensteinSubmodule_params method), 39
eisenstein series() (sage.modular.modform.space.ModularFormsSpace method), 10
eisenstein series lseries() (in module sage.modular.modform.eis series), 43
eisenstein_series_poly() (in module sage.modular.modform.eis_series_cython), 46
eisenstein_series_qexp() (in module sage.modular.modform.eis_series), 44
eisenstein submodule() (sage.modular.modform.ambient.ModularFormsAmbient method), 23
eisenstein submodule() (sage.modular.modform.ambient eps.ModularFormsAmbient eps method), 28
eisenstein_submodule() (sage.modular.modform.ambient_g0.ModularFormsAmbient_g0_Q method), 30
eisenstein_submodule() (sage.modular.modform.ambient_g1.ModularFormsAmbient_g1_Q method), 31
eisenstein submodule() (sage.modular.modform.ambient g1.ModularFormsAmbient gH Q method), 31
eisenstein submodule() (sage.modular.modform.eisenstein submodule.EisensteinSubmodule method), 37
eisenstein_submodule() (sage.modular.modform.space.ModularFormsSpace method), 10
eisenstein subspace() (sage.modular.modform.space.ModularFormsSpace method), 10
EisensteinForms() (in module sage.modular.modform.constructor), 1
EisensteinSeries (class in sage.modular.modform.element), 46
EisensteinSubmodule (class in sage.modular.modform.eisenstein submodule), 37
EisensteinSubmodule_eps (class in sage.modular.modform.eisenstein_submodule), 37
EisensteinSubmodule_g0_Q (class in sage.modular.modform.eisenstein_submodule), 38
EisensteinSubmodule_g1_Q (class in sage.modular.modform.eisenstein_submodule), 38
EisensteinSubmodule_gH_Q (class in sage.modular.modform.eisenstein_submodule), 38
EisensteinSubmodule params (class in sage.modular.modform.eisenstein submodule), 38
```

```
Ek ZZ() (in module sage.modular.modform.eis series cython), 46
Element (sage.modular.modform.space.ModularFormsSpace attribute), 7
element() (sage.modular.modform.element.Newform method), 61
elliptic curve() (sage.modular.modform.element.ModularFormElement elliptic curve method), 51
embedded_submodule() (sage.modular.modform.space.ModularFormsSpace method), 11
F
find_generators() (in module sage.modular.modform.find_generators), 79
find in space() (sage.modular.modform.space.ModularFormsSpace method), 11
free_module() (sage.modular.modform.ambient.ModularFormsAmbient method), 23
G
gen() (sage.modular.modform.space.ModularFormsSpace method), 11
gen_forms() (sage.modular.modform.find_generators.ModularFormsRing method), 75
generators() (sage.modular.modform.find generators.ModularFormsRing method), 76
gens() (sage.modular.modform.space.ModularFormsSpace method), 12
group() (sage.modular.modform.element.ModularForm_abstract method), 52
group() (sage.modular.modform.find_generators.ModularFormsRing method), 78
group() (sage.modular.modform.space.ModularFormsSpace method), 12
Η
half_integral_weight_modform_basis() (in module sage.modular.modform.half_integral), 72
has_character() (sage.modular.modform.space.ModularFormsSpace method), 12
hecke eigenvalue field() (sage.modular.modform.element.Newform method), 61
hecke module of level() (sage.modular.modform.ambient.ModularFormsAmbient method), 23
hecke_module_of_level() (sage.modular.modform.ambient_eps.ModularFormsAmbient_eps method), 28
hecke operator on basis() (in module sage, modular, modform, hecke operator on gexp), 64
hecke operator on qexp() (in module sage.modular.modform.hecke operator on qexp), 65
integral basis() (sage.modular.modform.space.ModularFormsSpace method), 13
is ambient() (sage.modular.modform.ambient.ModularFormsAmbient method), 23
is ambient() (sage.modular.modform.space.ModularFormsSpace method), 14
is_cuspidal() (sage.modular.modform.cuspidal_submodule.CuspidalSubmodule method), 34
is_cuspidal() (sage.modular.modform.space.ModularFormsSpace method), 14
is eisenstein() (sage.modular.modform.space.ModularFormsSpace method), 14
is_ModularFormElement() (in module sage.modular.modform.element), 64
is_ModularFormsSpace() (in module sage.modular.modform.space), 20
j_invariant_qexp() (in module sage.modular.modform.j_invariant), 79
L() (sage.modular.modform.element.EisensteinSeries method), 47
level() (sage.modular.modform.element.ModularForm abstract method), 52
level() (sage.modular.modform.numerical.NumericalEigenforms method), 68
level() (sage.modular.modform.space.ModularFormsSpace method), 14
lseries() (sage.modular.modform.element.ModularForm_abstract method), 52
```

M

```
M() (sage.modular.modform.element.EisensteinSeries method), 47
modform lseries() (sage.modular.modform.element.ModularFormElement method), 49
modular_forms_of_weight() (sage.modular.modform.find_generators.ModularFormsRing method), 78
modular symbols() (sage.modular.modform.ambient.ModularFormsAmbient method), 24
modular symbols() (sage.modular.modform.ambient eps.ModularFormsAmbient eps method), 29
modular_symbols() (sage.modular.modform.ambient_R.ModularFormsAmbient_R method), 32
modular_symbols() (sage.modular.modform.cuspidal_submodule.CuspidalSubmodule method), 35
modular_symbols() (sage.modular.modform.eisenstein_submodule.EisensteinSubmodule method), 37
modular symbols() (sage.modular.modform.element.Newform method), 62
modular symbols() (sage.modular.modform.numerical.NumericalEigenforms method), 68
modular symbols() (sage.modular.modform.space.ModularFormsSpace method), 15
ModularForm_abstract (class in sage.modular.modform.element), 51
ModularFormElement (class in sage.modular.modform.element), 48
ModularFormElement_elliptic_curve (class in sage.modular.modform.element), 50
ModularForms() (in module sage.modular.modform.constructor), 1
ModularForms_clear_cache() (in module sage.modular.modform.constructor), 4
ModularFormsAmbient (class in sage.modular.modform.ambient), 21
ModularFormsAmbient eps (class in sage.modular.modform.ambient eps), 28
ModularFormsAmbient_g0_Q (class in sage.modular.modform.ambient_g0), 29
ModularFormsAmbient_g1_Q (class in sage.modular.modform.ambient_g1), 31
ModularFormsAmbient gH Q (class in sage.modular.modform.ambient g1), 31
ModularFormsAmbient R (class in sage.modular.modform.ambient R), 32
ModularFormsRing (class in sage.modular.modform.find_generators), 73
ModularFormsSpace (class in sage.modular.modform.space), 7
ModularFormsSubmodule (class in sage.modular.modform.submodule), 33
ModularFormsSubmoduleWithBasis (class in sage.modular.modform.submodule), 33
module() (sage.modular.modform.ambient.ModularFormsAmbient method), 24
Ν
new_eisenstein_series() (sage.modular.modform.eisenstein_submodule_EisensteinSubmodule_params method), 40
new level() (sage.modular.modform.element.EisensteinSeries method), 48
new submodule() (sage.modular.modform.ambient.ModularFormsAmbient method), 24
new submodule() (sage.modular.modform.cuspidal submodule.CuspidalSubmodule modsym gexp method), 36
new submodule() (sage.modular.modform.eisenstein submodule.EisensteinSubmodule params method), 40
new submodule() (sage.modular.modform.space.ModularFormsSpace method), 15
new_subspace() (sage.modular.modform.space.ModularFormsSpace method), 15
Newform (class in sage.modular.modform.element), 59
Newform() (in module sage.modular.modform.constructor), 4
Newforms() (in module sage.modular.modform.constructor), 4
newforms() (sage.modular.modform.space.ModularFormsSpace method), 15
number() (sage.modular.modform.element.Newform method), 62
NumericalEigenforms (class in sage.modular.modform.numerical), 66
padded list() (sage.modular.modform.element.ModularForm abstract method), 54
parameters() (sage.modular.modform.eisenstein submodule.EisensteinSubmodule params method), 41
parameters() (sage.modular.modform.element.EisensteinSeries method), 48
parse_label() (in module sage.modular.modform.constructor), 6
period() (sage.modular.modform.element.ModularForm abstract method), 55
```

```
petersson norm() (sage.modular.modform.element.ModularForm abstract method), 56
prec() (sage.modular.modform.ambient.ModularFormsAmbient method), 25
prec() (sage.modular.modform.element.ModularForm abstract method), 57
prec() (sage.modular.modform.space.ModularFormsSpace method), 16
psi() (sage.modular.modform.element.EisensteinSeries method), 48
Q
q_echelon_basis() (sage.modular.modform.space.ModularFormsSpace method), 16
q_expansion() (sage.modular.modform.element.ModularForm_abstract method), 57
q_expansion_basis() (sage.modular.modform.find_generators.ModularFormsRing method), 78
q_expansion_basis() (sage.modular.modform.space.ModularFormsSpace method), 16
q_integral_basis() (sage.modular.modform.space.ModularFormsSpace method), 17
qexp() (sage.modular.modform.element.ModularForm_abstract method), 58
R
rank() (sage.modular.modform.ambient.ModularFormsAmbient method), 26
S
sage.modular.modform.ambient (module), 20
sage.modular.modform.ambient_eps (module), 26
sage.modular.modform.ambient_g0 (module), 29
sage.modular.modform.ambient g1 (module), 30
sage.modular.modform.ambient_R (module), 32
sage.modular.modform.constructor (module), 1
sage.modular.modform.cuspidal_submodule (module), 34
sage.modular.modform.eis series (module), 42
sage.modular.modform.eis series cython (module), 46
sage.modular.modform.eisenstein submodule (module), 37
sage.modular.modform.element (module), 46
sage.modular.modform.find generators (module), 73
sage.modular.modform.half_integral (module), 72
sage.modular.modform.hecke_operator_on_qexp (module), 64
sage.modular.modform.j invariant (module), 79
sage.modular.modform.notes (module), 83
sage.modular.modform.numerical (module), 66
sage.modular.modform.space (module), 6
sage.modular.modform.submodule (module), 33
sage.modular.modform.theta (module), 80
sage.modular.modform.vm basis (module), 69
set_precision() (sage.modular.modform.ambient.ModularFormsAmbient method), 26
set precision() (sage.modular.modform.space.ModularFormsSpace method), 17
span() (sage.modular.modform.space.ModularFormsSpace method), 18
span_of_basis() (sage.modular.modform.space.ModularFormsSpace method), 18
sturm bound() (sage.modular.modform.space.ModularFormsSpace method), 19
support() (in module sage.modular.modform.numerical), 69
symsquare_lseries() (sage.modular.modform.element.ModularForm_abstract method), 58
systems_of_abs() (sage.modular.modform.numerical.NumericalEigenforms method), 68
systems of eigenvalues() (sage.modular.modform.numerical.NumericalEigenforms method), 68
```

Τ

t() (sage.modular.modform.element.EisensteinSeries method), 48 theta2_qexp() (in module sage.modular.modform.theta), 80 theta_qexp() (in module sage.modular.modform.theta), 80 twist() (sage.modular.modform.element.ModularFormElement method), 49 twist() (sage.modular.modform.element.Newform method), 62

V

valuation() (sage.modular.modform.element.ModularForm_abstract method), 59 victor_miller_basis() (in module sage.modular.modform.vm_basis), 70

W

weight() (sage.modular.modform.element.ModularForm_abstract method), 59 weight() (sage.modular.modform.numerical.NumericalEigenforms method), 69 weight() (sage.modular.modform.space.ModularFormsSpace method), 19