It's Vitamin C Week at

www.knowledgeofhealth.com

Read these groundbreaking reports

Part I	Vitamin C: Its promise unrealized because of flawed research and public disinformation	
Part II	Vitamin C: Forgotten lessons, and overlooked teachers	
Part III	Vitamin C: The massive effort to malign vitamin C therapy is evidence of conventional medicine's fear of this nutrient	
Part IV	In tribute to Emil Ginter DSc, Bratislava, Slovakia. The World's Leading Vitamin C Researcher	
Part V	Do vitamin C supplements induce kidney stones?	
Part VI	Researchers Discover First Step In Artery Disease And A Simple Antidote	
Part VII	Shaken Baby Syndrome: Child Abuse or Vitamin C Deficiency?	
Part VIII	Vitamin C: The New Weight Loss Pill	
Part IX	Can The Ability To Produce Vitamin C Be Restored To Humans?	

Can The Ability To Produce Vitamin C Be Restored To Humans?

By Bill Sardi

Can a genetic plague be corrected to restore the ability of humans to produce vitamin C? Scientists are getting closer to accomplishing this task.

Researchers believe humans once produced their own vitamin C. Most animals still produce vitamin C. Exceptions are fruit bats, guinea pigs and monkeys.

Humans have a malfunctioning (mutant) gene in their liver that no longer produces vitamin C by enzymatically converting blood sugar to ascorbate (the scientific name for vitamin C). Animals that don't produce vitamin C, like guinea pigs, will develop artery disease, cataracts and other health problems if not supplied with sufficient amounts of supplemental vitamin C. Humans are in the same predicament.

In an attempt to correct this genetic flaw, in 1996 researchers inserted the gene that produces the missing enzyme (gulonolactone oxidase) needed to produce vitamin C, into fish eggs. The fish offspring were able to produce vitamin C. [Biochem

Biophysic Research Communications 223: 650-53, 1996]

Recently, investigators at McMaster University in Hamilton, Ontario, Canada, successfully demonstrated that the gulonolactone oxidase gene can be inserted into human cells using a virus as a vector (carrier). [Genomics 83: 482-92, 2005]

It is surmised that humans would live far longer and suffer less disease if they could produce vitamin C as they once did long ago.

Daily Production of Ascorbate in Animals			
Animal	Milligrams per Kilogram of body weight/per day	Human equivalent per day	
Cold-blooded animals			
Snake Tortoise	10 7	700 490	
Warm-blooded animals			
Mouse Rabbit Goat Rat Dog Cat	275 226 190 150 40 40	19,250 15,820 13,300 10,500 2800 2800	
Humans	0		