Observation Data Model Core Components and its Implementation in the Table Access Protocol

Cristopher Arenas

carenas@csrg.inf.utfsm.cl

Computer Systems Research Group, Universidad Técnica Fedrico Santa María

July 28, 2013

Overview

Objetivos de ObsCore

Casos de Uso

Elementos del modelo de datos

Implementación de ObsCore en un servicio TAP

Objetivos de ObsCore

El documento "Observation Data Model Core Components and its Implementation in the Table Access Protocol" (ObsCore) tiene dos objetivos:

- Definir un modelo de datos simple para describir datos de observaciones.
- Definir una forma estándar de exponer este modelo a través del TAP. Proveer una interfaz uniforme y así descubrir productos de datos científicos de cualquier tipo.

Casos de Uso

Deben encontrar productos de datos observacionales en el dominio del OV, entregando una misma consulta a múltiples archivos.

Soporte de consultas

- Multi-longitud de ondas para búsquedas de posición y tiempo.
- Cualquier tipo de producto de dato científico.
- Directo del ordenamiento del contenido típico de archivos.

Data Product Type

Describe una clasificación científica de alto nivel acerca del producto de datos.

Valores posibles

- image: imagen astrinómica 2D con 2 ejes espaciales.
- **cube**: imagen astronómica multidimensional con 3 o más ejes.
- spectrum: conjunto de datos con cobertura espectral como atributo primario.
- **sed**: distribución de energía espectral.
- timeseries: arreglo unidimensional que presenta alguna cantidad como función del tiempo.
- visibility: radio de visibilidad de algún tipo.
- event: conjunto de datos de un recuento de eventos de algún tipo.

Data Product Type

- Los valores posibles están codificados como *string* en minúsculas.
- Se permite el valor NULL y luego debe ser especificada más información en el campo sub tipo del producto de datos.
- La combinación de tipos de productos de datos está prohibída.

Calibration Level

Provee información del estado de procesamiento o reducción de los datos. Puede tomar un valor entero de acuerdo a un nivel.

Niveles

- **Nivel 0**: datos instrumentales en bruto.
- Nivel 1: datos instrumentales en formato estándar.
- **Nivel 2**: datos científicos calibrados.
- **Nivel 3**: productos de datos mejorados.

Otros elementos

Observation

- Puede estar compuesta por múltiples productos de datos individuales. En este caso llevan el mismo identificador de observación.
- Pueden tener distintos valores de data product type y calibration level.

File Content and Format

- Contenido y lo que es en realidad el archivo.
- Importante de saber antes de descargar.

- ObsCore debe ser implementado en servicios TAP de modo que las consultas válidas puedan ser ejecutadas sin cambios en cualquier servicio que implementa el modelo.
- Se especifican tablas lógicas como las expuestas en el TAP_SCHEMA.
- Estas tablas no tienen la misma estructura de TAP, pero la relación con la descripción de TAP_SCHEMA es sencilla.

1. Tipo de producto de datos (dataproduct_type)

- Cadena simple que describe la naturaleza primaria del producto de datos.
- Asume uno de los siguientes valores: image, cube, spectrum, sed, timeseries, visibility o event.
- NULL es permitido al proporcionar mayor detalle.

2. Nivel de calibración (calib_level)

- Muestra el nivel de calibración que ha sido aplicado para crear el producto de datos.
- Puede asumir los valores enteros 0, 1, 2 o 3. No puede tener valores nulos

3. Nombre de la Colección (obs_collection)

- Identifica la colección a la que pertenece el producto de datos. Una colección de datos es un conjunto de datos que es semejante de alguna manera.
- □ No es un atributo definido y es importante que sea familiar par los astrónomos y discriminativo para apuntar a datos de interés.

4. Identificador de la Observación (obs_id)

- Define un identificador único para la observación.
- Tiene el mismo valor en múltiples productos de datos para una observación
- □ Inalterable en el tiempo.
- No puede ser nulo.

Identificador del conjunto de datos del publicador (obs_publisher_did)

- Contiene el identificador del conjunto de datos IVOA para el producto de datos publicado.
- Es único dentro del espacio de nombres controlado por el conjunto de datos del publicador.
- Inalterable en el tiempo.
- □ No puede ser nulo.

6. Acceso URL (access_url)

- URL que puede ser usada para descargar el producto de datos como archivo de algún tipo.
- No se garantiza validez en el tiempo.

- 7. Formato de Acceso (access_format)
 - □ Especifica el formato del archivo.
 - □ El valor para esta columna puede ser un tipo MIME, MIME estándar, MIME extendido o un MIME personalizado.
- 8. Tamaño estimado de descarga (access_estsize)
 - □ Tamaño aproximado en KiloBytes del archivo disponible vía access_url.
- 9. Nombre del objetivo (target_name)
 - □ Nombre del objetivo de la observación, si lo hay.
 - Típicamente es el nombre del objeto astronómico.

10. Coordenadas centrales (s_ra, s_dec)

- Usan sistema de coordenadas ICRS.
- □ *s_ra* especifica el *ICRS Right Asencion* del centro de la observación.
- □ *s_dec* especifica el *ICRS Declination* del centro de la observación.

11. Extención espacial (s_fov)

- □ Tamaño aproximado de la región cubierta por el producto de datos.
- ☐ Si no están definidos los límites se utiliza un valor característico.

12. Cobertura espacial (s_region)

- Especifica la cobertura espacial de un producto de datos de maera más precisa.
- Representación casi exacta de la región iluminada de una observación.

13. Resolución espacial (s_resolution)

- Elemento espacial más pequeño en la señal observada en arcosegundos.
- □ Valor típico en caso de muestreo de frecuencia espacial complejo.

14. Límites de tiempo (t_min, t_max)

- □ Tiempo inicial y tiempo final de la observación, medidos en MJD.
- □ Se considera el menor $t_{-}min$ y el mayor $t_{-}max$ en caso de múltiples estructuras.

15. Tiempo de exposición (t_exptime)

- \square Para exposiciones simples corresponde a $t_max t_min$.
- Si no es constante en el tiempo se utiliza el tiempo medio de exposición.
- En algunos casos es un indicador de la sensibilidad relativa dentro de una colección de datos.

16. Resolución de tiempo (t_resolution)

Mínimo intervalo interpretable entre dos puntos a lo largo del eje temporal.

- 17. Límites espectrales (em_min, em_max)
 - □ Menor y mayor de los valores espectrales observados.
- 18. Poder de resolución espectral (em_res_power)
 - Valor adimensional definido como

$$\frac{\lambda}{\delta \cdot \lambda}$$

19. Descripción de ejes observable (o_ucd)

- Especifica un UCD describiendo la naturaleza de lo observable dentro del producto de datos.
- □ Cualquier valor UCD válido es permitido, sino este campo se deja nulo.

20. Columnas adicionales

- Los proveedores de servicios pueden incluir columnas adicionales en la tabla ivoa. ObsCore para exponer metadatos adicionales.
- Estas columnas deben ser descritas en la tabla TAP_SCHEMA.columns y en la salida de VOSI-tables resources.

Observation Data Model Core Components and its Implementation in the Table Access Protocol

Cristopher Arenas

carenas@csrg.inf.utfsm.cl

Computer Systems Research Group, Universidad Técnica Fedrico Santa María

July 28, 2013

