

Rec' (25 JAN 2005)

Cyclic adhesion inhibitors

Patent number:

DE19613933

Publication date:

1997-10-09

Inventor:

JONCZYK ALFRED DR [DE]; GOODMAN SIMON L DR

[DE]; DIEFENBACH BEATE DR [DE]; KESSLER

HORST PROF [DE]; KOPPITZ MARCUS DR [DE]

Applicant:

MERCK PATENT GMBH [DE]

Classification:

- international:

C07K5/12; A61K38/12; C07K1/22

- european:

C07K7/64; C07K14/75

Application number: DE19961013933 19960406 Priority number(s): DE19961013933 19960406

Also published as:

図 WO9738009 (A1 図 EP0904285 (A1) 図 US6127335 (A1)

EP0904285 (B1) SK283718B (B6)

more >>

Abstract of **DE19613933**

The invention concerns cyclopeptides of formula (I): Cyclo-(Arg-Gly-Asp-X-Y) in which X is Cha, Nal, Photosical Concerns and Concerns are concerns as a concerns and concerns are concerns as a concern and concern are concerns as a concern are concerns as a concern and concern are concerns as a concern are concerns as a concern and concern are concerns as a concern are concerns as a concern and concern are concern are concerns as a concern and concern are concerns as a concern are concerns as a concern and concern are concerns as a concern are concerns as a concern and concern are concerns as a concern are concerns 2-R<1>-Phe, 3-R<1>-Phe, 4-R<1>-Phe, homo-Phe, Phg, Thi, Trp, Tyr or derivatives of Tyr, whereby the OH group can be etherified by alkyl groups containing 1-18 C-atoms and the amino-acid groups given ca also be derivatives, R<1> is NH2, NO2, I, Br, Cl, F, alkyl with 1-18 C-atoms, Ar, Ar-O or <3>H, Y is Gly ir which the alpha N-atom may be substituted by R<2> and/or the alpha C-atom may be substituted by R<3> and/or R<4>, with the provision that Gly has at least one of the substituents specified, Ar is phenyl which may be substituted by one or two of the groups NH2, NO2, I, Br, CI, F, alkyl with 1-6 C-atoms or <3>H, R<2>, R<3> or R<4>, independently of each other, are alkyl with 1-18 C-atoms or R<2> and R<3: or R<3> and R<4> together in each case are a branched or unbranched alkylene chain with 3 to 18 Catoms so that either the alpha N-atom and the alpha C-atom together with the alkylene chain, or the alph C-atom alone, forms a ring with the alkylene chain, whereby, when optically active amino-acid or aminoacid-derivative groups are involved, both the D- and the L-form are included, plus derivatives, in particula the beta -ester of aspartic acid or N-quanidine acyl derivatives of arginine or prodrug as well as their physiologically acceptable salts. These compounds act as integrin inhibitors and may be used particularly for the prophylaxis and treatment of circulatory and angiogenic conditions and microbial infections as we as in tumor therapy.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(51) Int. Cl.6:

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschri DE 196 13 933 A 1

C 07 K 5/12 A 61 K 38/12

C 07 K 1/22

PATENTAMT

Aktenzeichen:

196 13 933.3

Anmeldetag: Offenlegungstag: 6. 4.96 9.10.97

(71) Anmelder:

Merck Patent GmbH, 64293 Darmstadt, DE

② Erfinder:

Jonczyk, Alfred, Dr., 84295 Darmstadt, DE; Goodman, Simon L., Dr., 64286 Darmstadt, DE; Diefenbach, Beate, Dr., 64289 Darmstadt, DE; Kessler, Horst, Prof., 85748 Garching, DE; Koppitz, Marcus, Dr., 85748 Garching, DE

(54) Cyclische Adhäsionsinhibitoren

Die Erfindung betrifft neue Cyclopeptide der Formel I Cyclo-(Arg-Gly-Asp-X-Y)

worin

X Cha, Nai, Phe, 2-R1-Phe, 3-R1-Phe, 4-R1-Phe, homo-Phe, Phg, Thi, Trp, Tyr oder Derivate von Tyr, wobei die OH-Gruppe durch Alkyireste mit 1-18 C-Atomen verethert sein kann, und wobei die genannten Aminosäurereste auch zusätzlich derivatisiert sein können,

 ${
m R^1~NH_2,~NO_2,~I,~Br,~Cl,~F,~Alkyl~mit~1-18~C-Atomen,~Ar,~Ar-O~oder~^3H,}$

Y Gly, wobei das α-N-Atom durch R2 und/oder das α-C-Atom durch R3 und/oder R4 substituiert sein kann, mit der Maßgabe, daß Gly mindestens einfach in der angegebenen Weise substituiert ist,

Ar Phenyl, welches gegebenenfalls ein- oder zweifach durch NH₂, NO₂, I, Br, Cl, F, Alkyl mit 1-8 C-Atomen oder ³H substituiert sein kann,

R², R³ oder R⁴ jeweils unabhängig voneinander Alkyl mit 1-18 C-Atomen, oder aber R² und R³ oder R³ und R⁴ jeweils zusammen auch eine verzweigte oder unverzweigte Alkylenkette mit 3 bis 18 C-Atomen, so daß dabei entweder das α-N-Atom und des α-C-Atom zusammen mit der Alkylenkette oder das α-C-Atom allein mit der Alkylenkette einen Ring bildet, bedeuten, wobei, sofern es sich um Reste optisch aktiver Aminosäuren und Aminosäurederivate handelt, sowohl die D- als auch die L-Formen eingeschlossen sind, und Derivate, insbesondere Asparaginsäure-β-ester oder N-Guanidin-acyl-Derivate des Arginins, Prodrugs, sowie deren physiologisch unbedenkliche Salze. Diese Verbindungen

wirken als Integrin-Inhibitoren und können ...

Die Erfindung betrifft neue Cyclopeptide der Formel

Cyclo-(Arg-Gly-Asp-X-Y) I,

X Cha, Nal, Phe, 2-R1-Phe, 3-R1-Phe, 4-R1-Phe, hodie OH-Gruppe durch Alkylreste mit 1-18 C-Atomen verethert sein kann, und wobei die genannten Aminosäurereste auch zusätzlich derivatisiert sein können, R¹ NH₂, NO₂, I, Br, Cl, F, Alkyl mit 1-18 C-Atomen, Ar, Ar-O oder 3H,

Y Gly, wobei das α-N-Atom durch R² und/oder das α-C-Atom durch R³ und/oder R⁴ substituiert sein kann, mit der Maßgabe, daß Gly mindestens einfach in der angegebenen Weise substituiert ist,

Ar Phenyl, welches gegebenenfalls ein- oder zweifach 20 durch NH₂, NO₂, I, Br, Cl, F, Alkyl mit 1-6 C-Atomen oder 3H substituiert sein kann

R², R³, oder R⁴ jeweils unabhängig voneinander Alkyl mit 1-18 C-Atomen,

oder aber

R² und R³ oder R³ und R⁴ jeweils zusammen auch eine verzweigte oder unverzweigte Alkylenkette mit 3 bis 18 C-Atomen, so daß dabei entweder das a-N-Atom und das α-C-Atom zusammen mit der Alkylenkette oder das

wobei, sofern es sich um Reste optisch aktiver Aminosäuren und Aminosäurederivate handelt, sowohl die Dals auch die L-Formen eingeschlossen sind, und Derivate, insbesondere Asparaginsäure-β-ester oder N-Guani- 35 din-acyl-Derivate des Arginins, Prodrugs, sowie deren physiologisch unbedenkliche Salze.

Ähnliche Verbindungen sind z.B. aus EP 0 406 428 und FEBS Lett. 291, 50-54 (1991) bekannt.

Der Erfindung lag die Aufgabe zugrunde, neue Ver- 40 bindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.

Es wurde überraschenderweise gefunden, daß die Verbindungen der Formel I und ihre Salze sehr wertvol- 45 le Eigenschaften besitzen. Vor allem wirken sie als Integrin-Inhibitoren, wobei sie insbesondere die Wechselwirkungen der β₃- oder β₅-Integrin-Rezeptoren mit Liganden hemmen. Besondere Wirksamkeit zeigen die aber auch gegenüber $a_v\beta_1$ -, $a_v\beta_6$ - und $a_v\beta_8$ -Rezeptoren. Diese Wirkungen können z. B. nach der Methode nachgewiesen werden, die von J.W. Smith et al. in J. Biol. Chem. 265, 12267-12271 (1990) beschrieben wird. Zusätzlich treten antiinflammatorische Effekte auf.

Die Abhängigkeit der Entstehung von Angiogenese von der Wechselwirkung zwischen vaskulären Integrinen und extrazellulären Matrixproteinen ist von P.C. Brooks, R.A. Clark und D.A. Cheresh in Science 264, 569-71 (1994) beschrieben.

Die Möglichkeit der Inhibierung dieser Wechselwirkung und die damit verbundene Einleitung von Apotosis (programmierter Zelltod) angiogener vaskulärer Zellen durch ein cyclisches Peptid ist von P.C. Brooks, A.M. Montgomery, M. Rosenfeld, R.A. Reisfeld, T.-Hu, G. 65 Klier und D.A. Cheresh in Cell 79 1157-64 (1994) beschrieben. Verbindungen der Formel I, die die Wechselwirkung von Integrinrezeptoren und Liganden, wie z. B.

von Fibrinogen an den Finogenrezeptor (Glycoprotein IIb/IIIa) blockieren, verhindern als GPIIb/IIIa-Antagonisten die Ausbreitung von Tumorzellen durch Metastase. Dies wird durch folgende Beobachtungen be-5 legt:

Die Verbreitung von Tumorzellen von einem lokalen Tumor in das vaskuläre System erfolgt durch die Bildung von Mikroaggregaten (Mikrothromben) durch Wechselwirkung der Tumorzellen mit Blutplättchen. mo-Phe Phg, Thi, Trp, Tyr oder Derivate von Tyr, wobei 10 Die Tumorzellen sind durch den Schutz im Mikroaggregat abgeschirmt und werden von den Zellen des Immunsystems nicht erkannt.

> Die Mikroaggregate können sich an Gefäßwandungen festsetzen, wodurch ein weiteres Eindringen von 15 Tumorzellen in das Gewebe erleichtert wird. Da die Bildung der Mikrothromben durch Fibrinogenbindung an die Fibrinogenrezeptoren auf aktivierten Blutplättchen vermittelt wird, können die GPIIa/IIIb-Antagonisten als wirksame Metastase-Hemmer angesehen werden.

Die Verbindungen der Formel I können ferner als antimikrobiell wirkende Substanzen bei Operationen eingesetzt werden, wo Biomaterialien, Implantate, Katheter oder Herzschrittmacher eingesetzt werden. Dabei wirken sie antiseptisch. Die Wirksamkeit der antimikrobiellen Aktivität kann durch das von P. Valentin-Weigund et al., in Infection and Immunity, 2851—2855 (1988) beschriebene Verfahren nachgewiesen werden.

Da die Verbindungen der Formel I Inhibitoren der α-C-Atom allein mit der Alkylenkette einen Ring bildet, 30 Fibrinogenbindung und damit Liganden der Fibrinogenrezeptoren auf Blutplättchen darstellen, können sie als Diagnostika zur Detektion und Lokalisierung von Thromben im vaskulären System in vivo verwendet werden, sofern sie beispielsweise durch einen radioaktiven oder UV-detektierbaren Rest substituiert werden.

Die Verbindungen der Formel I können als Inhibitoren der Fibrinogenbindung auch als wirksame Hilfsmittel zum Studium des Metabolismus von Blutplättchen in unterschiedlichen Aktivierungsstadien oder von intrazellulären Signalmechanismen des Fibrinogenrezeptors verwendet werden. Die detektierbare Einheit eines einzubauenden "Labels", z. B. eine Isotopenmarkierung durch ³H, erlaubt es, nach Bindung an den Rezeptor, die genannten Mechanismen zu untersuchen.

Die Verbindungen haben also die Eigenschaft, die Bindung natürlicher oder künstlicher Liganden an Integrine, speziell der Integrine α_{v3} , $\alpha_v\beta_5$ und $\alpha_{IIb}\beta_3$ aber auch von $\alpha_{\nu}\beta_{1}$, $\alpha_{\nu}\beta_{6}$ und $\alpha_{\nu}\beta_{8}$ zu inhibieren.

Sie haben zudem noch den Vorteil zum Stand der Verbindungen im Fall der Integrine $a_v\beta_3$, $a_v\beta_5$ und $a_{II}\beta_3$ $_{50}$ Technik, daß durch α -N-Alkylierung oder α -C-Alkylierung des Y-Aminosäurerestes eine metabolische Stabilisierung und erhöhte Fettlöslichkeit erreicht wird. Durch die Reduzierung der möglichen Wasserstoffbrücken, denn N-Alkyl kann z. B. kein H-Donor für C=O sein, verbessert sich die Penetrationsfähigkeit durch Membranen, so daß eine erhöhte orale Resorbierbarkeit erhalten werden kann, zu dem kann eine gesteigerte Plasmaproteinbindung auftreten.

> Die α-N-Alkylierung oder α-C-Alkylierung des Y-A-60 minosäurebausteines steigert die inhibitorische Potenz der Verbindungen und erhöht die Selektivität der Inhibitierung in bezug auf bestimmte Integrine. Insbesondere durch die N-Alkyl-Gruppen kann die Selektivität beeinflußt werden.

Die Verbindungen können als Arzneimittelwirkstoffe in der Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Prophylaxe und zur Behandlung von Erkrankungen des Kreislaufs, Thrombose, Herzinfarkt,

Arteriosklerose, Entzündungeh, Appoplexie, Angina pectoris, Tumorerkrankungen, osteolytischen Erkrankungen, insbesondere Osteoporose, Angiogenese und durch Angiogenese bedingte Erkrankungen, wie z. B. der diabetischen Retinopathie des Auges, ophthalmischen Erkrankungen, makularer Degeneration, Myopie, okularer Histoplasmose, rheumatischer Arthritis, Osteoarthritis, rubeotischem Glaukom, aber auch ulcerativen Colitis, Morbus Crohn, Multiple Sclerose, Psoriasis sowie Restenose nach Angioplastie Ferner können die Verbin- 10 dungen zur Verbesserung und Unterstützung von Wundheilungsprozessen bei mikrobiellen Infekten und bei akutem Nierenversagen eingesetzt werden.

Diese Wirkungen können z. B. mit Hilfe von literaturbekannten Methoden wie sie z. B. von P.C. Brooks et al. 15 in Cell. 79, 1157-1164 (1994) oder Science 264, 569-571 (1994) beschrieben werden, nachgewiesen

Die vor- und nachstehend aufgeführten Abkürzungen Aminosäuren:

Abu 4-Aminobuttersäure

Acha α-Aminocyclohexancarbonsäure

Acpa α-Aminocyclopentancarbonsäure

Aha 6-Aminohexansäure

Ahds 16-Aminohexadecansäure

Aib 3-Aminoisobuttersäure

Ala Alanin

Aos 8-Aminooctansäure

Asn Asparagin

Asp Asparaginsäure

Asp(OR) Asparaginsäure (β-ester)

Arg Arginin

N-Ac-Arg N-Guanidinoacylarginin

Cha 3-Cyclohexylalanin

Dab 2,4-Diaminobuttersäure

Dap 2,3-Diaminpropionsäure

Deg Diethylglycin

Gln Glutamin

Glu Glutaminsäure

Gly Glycin

hPro Pipecolinsäure

His Histidin

Ile Isoleucin

Leu Leucin

Lys Lysin

Nal 3-(2-Naphthyl)-alanin

Nhdg N-Hexadecylglycin

Nle Norleucin

Phe Phenylalanin

homoPhe homo-Phenylalanin

4-Hal - Phe 4-Halogen-phenylalanin

Phg Phenylglycin

Pro Prolin

Sar Sarcosin (N-Methylglycin)

Tia 3-(2-Thienyl)-alanin

Tic Tetrahydroisochinolin-3-carbonsäure

Thr Threonin

The tert. Leucin (C_{α} -tert.-butylglycin)

Trp Tryptophan

Tyr Tyrosin

Val Valin.

Ferner bedeuten nachstehend:

BOC tert-Butoxycarbonyl

Bzl Benzyl

DCCl Dicyclohexylcarbodiimid

DMF Dimethylformamid

EDCI N-Ethyl-N'-(3-dimethylaminopropyl)-carbodii-

mid × HCl

Et Ethvl

Fmoc 9-Fluorenylmethoxycarbonyl

HOBt 1-Hydroxybenzotriazol

5 Me Methyl

Mtr 4-Methoxy-2,3,6-trimethylphenyl-sulfonyl

NMe N-methylierte α-Aminogruppe

OBut tert.-Butylester

OMe Methylester

OEt Ethylester

POA Phenoxyacetyl

TBTU 2-(1 H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluro-

niumtetrafluorborat

TFA Trifluoressigsäure.

Sofern die vorstehend genannten Aminosäuren in mehreren enantiomeren Formen auftreten können, so sind vor- und nachstehend, z. B. als Bestandteil die Verbindungen der Formel I, alle diese Formen und auch ihre Gemische (z. B. die DL-Formen) eingeschlossen. von Aminosäureresten stehen für die Reste folgender 20 Ferner können die Aminosäuren, z.B. als Bestandteil von Verbindungen der Formel I, mit entsprechenden an sich bekannten Schutzgruppen versehen sein.

Ferner werden von der Erfindung auch solche Peptide eingeschlossen, deren Aminosäurereste teilweise 25 oder vollständig derivatisiert sind. Unter "derivatisiert" ist zu verstehen, daß auch sogenannte "Prodrugs", wie z. B. N-Guanidino-acylderivate von Arg, β-Ester von Asp, Ne-Alkanoyl-, -Aminoalkanoyl-, -Mercaptoalkanoyl-Derivate des Lysins, um nur einige zu nennen, ein-30 geschlossen werden. Außerdem können die Aminosäurereste teilweise C-alpha-alkyliert oder, z. B. für diagnostische Zwecke, isotopenmarkiert sein. Weiterhin sind solche Verbindungen der Formel I eingeschlossen, die in den Seitenketten der Bausteine X und Y zusätzlich 35 durch Amino-, Carboxy- oder Mercaptogruppen derivatisiert sind, da derartige Derivate wichtige Ausgangsverbindungen zur Herstellung höhermolekularer Konjugate, z. B. für Immunisierungszwecke und Antikörperherstellung sind. Ferner ist es möglich, funktionelle 40 Gruppen in der Seitenkette bestimmter Aminosäurereste oder derivatisierter Aminosäurereste zur Immobilisierung der Peptide auf Polymermaterialien für die Herstellung von Affinitätschromatographiesäulen zu verwenden oder die funktionellen Gruppen zur Derivati-45 sierung mit diagnostischen Hilfsreagenzien, wie fluoreszierenden Substituenten zu nutzen.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung einer Verbindung der Formel I nach Anspruch 1 oder eines ihrer Salze, dadurch gekenn-50 zeichnet, daß man sie aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt oder daß man ein Peptid der Formel II

worin

$$-Gly-Asp-X-Y-Arg-$$

 $-Y-Arg-Gly-Asp-\dot{X}-bedeutet$,

oder ein reaktionsfähiges Derivat eines solchen Peptids mit einem cyclisierenden Mittel behandelt,

65 oder daß man ein Cyclopeptid, welches an sich der Formel I entspricht, aber über eine oder mehrere freie Aminogruppen, Säuregruppen und/oder aktivierte α-C-Atome verfügt, durch Alkylierung, Acylierung oder Veresterung derivatisiert

und/oder daß man eine basische oder saure Verbindung der Formel I durch Behandeln mit einer Säure oder Base in eines ihrer Salze überführt.

Vor- und nachstehend haben die Reste X und Y die bei den Formeln I und II angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist. Die verwendeten Buchstaben für die jeweiligen Reste stehen in keinem Zusammenhang mit dem Einbuchstaben-Code für Aminosäuren.

In den vorstehenden Formeln steht Alkyl vorzugsweise für Methyl, Ethyl, Isopropyl, n-Butyl, sec.-Butyl oder tert.-Butyl. Ferner bedeutet Alkyl aber auch vorzugsweise n-Pentyl, Isopentyl, Neopentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl oder n-Hexadecyl.

Die Gruppe X ist vorzugsweise Phe, auch bevorzugt D—Phe, aber auch Phe(4-Hal), besonders Phe(4-F) oder Phe(4-Cl) sowie homo-Phe oder Phg, wobei die D-Formen auch gleichermaßen bevorzugt sind.

Y ist vorzugsweise ein hydrophober Aminosäurerest, 20 insbesondere Gly, Ala, Val, Leu, Nle oder Ile.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen 25 hat.

Eine bevorzugte Gruppe von Verbindungen kann durch die Teilformel Ia ausgedrückt werden, die sonst der Formel I entspricht, worin jedoch

X D-Phe, Phe, D-homoPhe, homoPhe, D-Phg, Phg, 30 Phe(4-F), D-Phe(4-F), D-Phe(4-Cl) oder Phe(4-Cl), und

Y Nle, hPro, Ahds, Aos, Nhdg, Acha, Aib, Acpa, Tle, Ala, Leu oder Ile, wobei D— und L-Formen gleichermaßen bevorzugt sind bedeuten.

Eine weitere bevorzugte Gruppe von Verbindungen kann durch die Teilformel Ib ausgedrückt werden, die sonst der Formel I entspricht, worin jedoch

XD—Phe oder Phe und

Y Ahds, hPro, Aos, Nhdg, Acha, Aib, Acpa oder Tle, wobei D— und L-Formen gleichermaßen bevorzugt sind

bedeuten.

und alle Aminosäurereste Arg, Gly oder Asp in der 45 natürlichen L-Konfiguration vorliegen.

Eine weitere bevorzugte Gruppe von Verbindungen kann durch die Teilformel Ic ausgedrückt werden, die den Teilformeln Ia und Ib sowie der Formel I entspricht, worin jedoch nur einer der Aminosäurereste X oder Y 50 in der D-Form vorliegt, während alle anderen L-konfiguriert sind.

Ferner sind alle physiologisch verträglichen Salze der unter die Teilformeln Ia, Ib und Ic fallenden Verbindungen besonders bevorzugt.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach bekannten Methoden hergestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel Lamsetzt.

Die Verbindungen der Formel I können erhalten werden, indem man sie aus ihren funktionellen Derivaten durch Solvolyse, insbesondere Hydrolyse, oder durch Hydrogenolyse in Freiheit setzt.

Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die anstelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Aminoschutzgruppe tragen, z. B. solche, die der Formel I entsprechen, aber anstelle einer NH₂-Gruppe eine NHR'-Gruppe (worin R' eine Aminoschutzgruppe bedeutet, z. B. BOC oder CBZ) enthalten.

Ferner sind Ausgangsstoffe bevorzugt, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z. B. solche, die der Formel I entsprechen, aber anstelle einer Hydroxyphenylgruppe eine R"O-phenylgruppe enthalten (worin R" eine Hydroxyschutzgruppe bedeutet).

Es können auch mehrere — gleiche oder verschiedene — geschützte Amino- und/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.

Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Aralkoxymethyloder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch; bevorzugt werden jedoch solche mit 1-20, insbesondere 1—8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er umschließt von aliphatischen, araliphatischen, aromatischen oder heterocyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen sowie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aralkoxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Benzoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxycarbo-Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOC, 2-Jodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbobenzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Arylsulfonyl wie Mtr. Bevorzugte Aminoschutzgruppen sind BOC und Mtr, ferner CBZ, Fmoc, Benzyl und Acetyl.

Der Ausdruck "Hydroxyschutzgruppe" ist ebenfalls allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Hydroxygruppe vor chemischen Umsetzungen zu schützen, die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind die oben genannten unsubstituierten oder substituierten Aryl-, Aralkyl- oder Acylgruppen, ferner auch Alkylgruppen. Die Natur und Größe der Hydroxyschutzgruppen ist nicht kritisch, da sie nach der gewünschten chemischen Reaktion oder Reaktionsfolge wieder entfernt werden; bevorzugt sind

Gruppen mit 1-20, insbesondere 1-10 C-Atomen. Beispiele für Hydroxyschutzgruppen sind u. a. Benzyl, p-Nitrobenzoyl, p-Toluolsulfonyl, tert. Butyl und Acetyl, wobei Benzyl und tert. Butyl besonders bevorzugt sind. Die COOH-Gruppen ins Asparaginsäure und Glutaminsäure werden bevorzugt in Form ihrer tert.-Butylester geschützt (z. B. Asp(OBut)).

Die als Ausgangsstoffe zu verwendenden funktionellen Derivate der Verbindungen der Formel I können nach üblichen Methoden der Aminosäure- und Peptid- 10 synthese hergestellt werden, wie sie z. B. in den genannten Standardwerken und Patentanmeldungen beschrieben sind, z. B. auch nach der Festphasenmethode nach Merrifield (B.F. Gysin u. R.B. Merrifield, J. Am. Chem. Soc 94 3102 ff. (1972)).

Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktionellen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit starken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit anderen starken anorganischen Säuren wie Salzsäure 20 oder Schwefelsäure, starken organischen Carbonsäuren wie Trichloressigsäure oder Sulfonsäuren wie Benzoloder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich 25 vorzugsweise organische, beispielsweise Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan, Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, ferner auch Alkohole wie Methanol, Ethanol oder Isopropanol sowie Wasser. Ferner kommen 30 Gemische der vorgenannten Lösungsmittel in Frage. TFA wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäure und 70%iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstempe- 35 raturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).

Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Dichlormethan oder mit etwa 3 bis 5 n 40 HCl in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50%igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°.

CBZ oder Benzyl) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, 50 insbesondere z. B. Alkohole wie Methanol oder Ethanol oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogeno- 55 lyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10%igem Pd—C in Methanol oder mit Ammoniumformiat (anstelle von H₂) an Pd-C in Methanol/DMF bei 20-30°.

Verbindungen der Formel I können auch durch Cyclisierung von Verbindungen der Formel II unter den Be- 60 dingungen einer Peptidsynthese erhalten werden. Dabei arbeitet man zweckmäßig nach üblichen Methoden der Peptid-Synthese, wie sie z. B. in Houben-Weyl, 1.c., Band 15/II, Seiten 1 bis 806 (1974) beschrieben sind.

Die Reaktion gelingt vorzugsweise in Gegenwart ei- 65 nes Dehydratisierungsmittels, z. B. eines Carbodiimids wie DCCl oder EDCl, ferner Propanphosphonsäureanhydrid (vgl. Angew. Chem. 92,129 (1980)), Diphenylphos-

phorylazid oder 2 Ethoxy-N-ethoxycarbonyl-1,2-dihydrochinolin, in einem inerten Lösungsmittel, z. B. einem halogenierten Kohlenwasserstoff wie Dichlormethan, einem Ether wie Tetrahydrofuran oder Dioxan, einem Amid wie DMF oder Dimethylacetamid, einem Nitril wie Acetonitril, oder in Gemischen dieser Lösungsmittel, bei Temperaturen zwischen etwa - 10 und 40, vorzugsweise zwischen 0 und 30°. Um die intramolekulare Cyclisierung vor der intermolekularen Peptid-Bindung zu fordern, ist es zweckmäßig, in verdünnten Lösungen zu arbeiten (Verdünnungsprinzip).

Anstelle von II können auch geeignete reaktionsfähige Derivate dieser Stoffe in die Reaktion eingesetzt werden, z. B. solche, in denen reaktive Gruppen inter-15 mediär durch Schutzgruppen blockiert sind. Die Aminosäurederivate II können z. B. in Form ihrer aktivierten Ester verwendet werden die zweckmäßig in situ gebildet werden, z. B. durch Zusatz von HOBt oder N-Hydroxysuccinimid.

Die Ausgangsstoffe der Formel II sind in der Regel neu. Sie können nach bekannten Methoden, z. B. den oben angegebenen Methoden der Peptidsynthese und der Abspaltung von Schutzgruppen, hergestellt werden.

In der Regel synthetisiert man zunächst geschützte Pentapeptidester der Formel R'-Z-OR", z. B. BOC-Z—OMe oder BOC—Z—OEt, die zunächst zu Säuren der Formel R'-Z-OH, z. B. BOC-Z-OH verseift werden; aus diesen wird die Schutzgruppe R' abgespalten, wodurch man die freien Peptide der Formel H-Z-OH(II) erhält.

Die Derivatisierung eines Cyclopeptides, welches an sich einer Verbindung der Formel I entspricht, erfolgt ebenfalls über an sich bekannte Methoden, wie sie für die Alkylierung von Aminen, die Veresterung von Carbonsäuren oder die nucleophile Substitution an aliphatischen C-Atomen bekannt und in jedem Lehrbuch der Organischen Chemie, z. B. J. March, Adv. Org. Chem., John Wiley & Sons N.Y. (1985), beschrieben sind.

Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäu-Hydrogenolytisch entfernbare Schutzgruppen (z. B. 45 ren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Orthophosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfonoder Schwefelsäuren, z. B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure Bernsteinsäure, Pimelinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Benzoesäure, Salicylsäure, 2- oder 3-Phenylpropionsäure, Citronensäure, Gluconsäure, Ascorbinsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefelsäure. Salze mit physiologisch nicht unbedenklichen Säuren, z. B. Pikrate, können zur Isolierung und/oder Aufreinigung der Verbindungen der Formel I verwendet werden.

Andererseits kann eine Säure der Formel I durch Umsetzung mit einer Base in eines ihrer physiologisch unbedenklichen Metall- oder Ammoniumsalze übergeführt werden. Als Salze kommen dabei insbesondere die Natrium-, Kalium-, Magnesium-, Calcium- und Ammoniumsalze in Betracht, ferner substituierte Ammonium-

oder Diisopropylamsalze, z. B. die Dimethyl-, Die moniumsalze, Monoethanol-, Diethanol- oder Triethanolammoniumsalze, Cyclohexyl-, Dicyclohexylammoniumsalze, Dibenzylethylendiammoniumsalze, weiterhin z. B. Salze mit N-Methyl-D-glucamin oder mit Arginin oder Lysin.

Die neuen Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können zur Herstellung pharmazeutischer Präparate verwendet werden, indem man sie zusammen mit mindestens einem Träger- 10 ist bevorzugt. oder Hilfsstoff und, falls erwünscht, zusammen mit einem oder mehreren weiteren Wirkstoff(en) in eine geeignete Dosierungsform bringt. Die so erhaltenen Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin eingesetzt werden. Als Trägersub- 15 stanzen kommen organische oder anorganische Stoffe in Frage, die sich für die enterale (z. B. orale oder rektale), parenterale (z. B. intravenöse İnjektion) oder lokale (z. B. topische, dermale, ophthalmische oder nasale) Applikation oder für eine Applikation in Form eines Inha- 20 lations-Sprays eignen und mit den neuen Verbindungen nicht reagieren, beispielsweise Wasser oder wässerige isotonische Kochsalzlösung, niedere Alkohole, pflanzliche Öle, Benzylalkohole, Polyethylenglykole, Glycerintriacetat und andere Fettsäureglyceride, Gelatine, Soja-25 lecithin, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Cellulose, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Dragees, Kapseln, Sirupe, Säfte oder Tropfen; von Interesse sind speziell Lacktabletten und Kapseln mit magensaftresisten- 30 ten Überzügen bzw. Kapselhüllen. Zur rektalen Anwendung dienen Suppositorien, zur parenteralen Applikation Lösungen, vorzugsweise ölige oder wässerige Lösungen, ferner Suspensionen, Emulsionen oder Implantate. Zur topischen Anwendung eignen sich z. B. Lösun- 35 gen, die in Form von Augentropfen verwendet werden können, ferner z. B. Suspensionen, Emulsionen, Cremes, Salben oder Komprimate. Für die Applikation als Inhalations-Spray können Sprays verwendet werden, die den Wirkstoff entweder gelöst oder suspendiert in einem 40 Treibgas oder Treibgasgemisch (z. B. CO₂ oder Fluorchlorkohlenwasserstoffersatzstoffe enthalten. Zweckmäßig verwendet man den Wirkstoff dabei in mikronisierter Form, wobei ein oder mehrere zusätzliche physiologisch verträgliche Lösungsmittel zugegen sein kön- 45 nen, z. B. Ethanol. Inhalationslösungen können mit Hilfe üblicher Inhalatoren verabfolgt werden. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyophilisate z. B. zur Herstellung von Injektionspräpaals Bolus oder als kontinuierliche Infusion (z. B. intravenös, intramusculär, subcutan oder intrathecal) gegeben werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Sal- 55 ze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Farb- und/oder Aromastoffe enthalten. Sie können, falls erwünscht, auch einen oder mehrere weitere Wirkstoffe enthalten, z. B. auch ein oder mehrere Vitamine.

Die erfindungsgemäßen Substanzen können in der Regel in Analogie zu anderen bekannten, im Handel befindlichen Peptiden, insbesondere aber in Analogie zu den in US 4,472,305 beschriebenen Verbindungen verabreicht werden, vorzugsweise in Dosierungen zwi- 65 schen etwa 0,05 und 500, insbesondere zwischen 0,5 und 100 mg pro Dosierungseinheit. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,01 und 2 mg/kg

Körpergewicht. Die spe e Dosis für jeden bestimmten Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körper-5 gewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabfolgungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkombination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt. Die parenterale Applikation

Ferner können die neuen Verbindungen der Formel I als Integrinliganden zur Herstellung von Säulen für die Affinitätschromatographie zur Reindarstellung von Integrinen verwendet werden.

Der Ligand, d. h. ein Peptidderivat der Formel I, wird dabei über Ankerfunktionen an einen polymeren Träger kovalent gekuppelt.

Als polymere Trägermaterialien eignen sich die an sich in der Peptidchemie bekannten polymeren festen Phasen mit vorzugsweise hydrophilen Eigenschaften, beispielsweise quervernetzte Polyzucker, wie Zellulose, Sepharose oder Sephadex®, Acrylamide, Polymer auf Polyethylenglykolbasis oder Tentakelpolymere®

Als Ankerfunktionen, die mit den polymeren Trägern verknüpft sind, eignen sich vorzugsweise lineare Alkylenketten mit 2-12 C-Atomen, die mit einem Ende direkt an das Polymer gebunden sind und am anderen Ende eine funktionelle Gruppe, wie z. B. Hydroxy, Amino, Mercapto, Maleinimido oder -COOH aufweisen und dazu geeignet sind, mit dem C- oder N-terminalen Abschnitt des jeweiligen Peptids verknüpft zu werden.

Dabei ist es möglich, daß das Peptid direkt oder ebenfalls über eine zweite Ankerfunktion mit dem Anker des Polymers verbunden ist. Ferner ist es möglich, daß Peptide, die Aminosäurereste mit funktionalisierten Seitenketten enthalten, über diese mit der Ankerfunktion des Polymers verbunden werden.

Darüber hinaus können bestimmte Aminosäurereste, die Bestandteil der Peptide der Formel I sind, in ihren Seitenketten derart modifiziert werden, so daß sie zur Verankerung über z. B. SH-, OH-, NH₂- oder COOH-Gruppen mit dem Anker des Polymers zur Verfügung

Möglich sind hierbei ungewöhnliche Aminosäuren, wie z. B. Phenylalaninderivate, die in 4-Position des Phenylrings eine Mercapto-, Hydroxy-, Amino- oder Carboxyalkylkette tragen, wobei die funktionelle Gruppe sich am Ende der Kette befindet.

Beispiele für Aminosäurereste, deren Seitenkette diraten verwendet werden. Die Injektionen können dabei 50 rekt als Ankerfunktion dienen kann, sind z. B. Lys, Arg, Asp, Asn, Glu, Gin, Ser, Thr, Cys oder Tyr.

> Beispiele für N-terminale Anker sind Reste wie z. B. $-CO-C_nH_{2n}-NH_2$, $-CO-C_nH_{2n}-OH$, -CO- C_nH_{2n} -SH oder CO- C_nH_{2n} -COOH mit n = 2-12, wobei die Länge der Alkylenkette nicht kritisch ist und diese gegebenenfalls auch z.B. durch entsprechende Aryl- oder Alkylarylreste ersetzt werden kann.

C-terminale Anker beispielsweise können $-O-C_nH_{2n}-OH$ $-O-C_nH_{2n}-SH-$ 60 $-O-CnH_{2n}-NH_{2}$, $O-C_nH_{2n}-COOH$, $C_nH_{2n}-SH$, $-NH-C_nH_{2n}-OH$, $NH-C_nH_{2n}-NH_2$ oder -NH-C_nH_{2n}-COO sein, wobei für n sowie die Alkylenkette das bereits im vorhergehenden Abschnitt Gesagte gilt.

Die N- und C-terminalen Anker können auch als Ankerbaustein für eine bereits funktionalisierte Seitenkette eines Aminosäurerests dienen. Es kommen hier beispielsweise Aminosäurereste wie Lys (CO-

11

Asp(NH-C3H6-COOH) oder $C_5H_{10}-NH_2),$ Cys(C3H6-NH2) in Frage, wobei der Anker immer an die funktionelle Gruppe der Seitenkette gebunden ist.

Die Herstellung der Materialien für die Affinitätschromatographie zur Integrinreinigung erfolgt unter Bedingungen wie sie für die Kondensation von Aminosäuren üblich und an sich bekannt sind und bereits im Abschnitt zur Herstellung der Verbindungen der Formel I geschildert wurden.

Neben der Verwendung der Cyclopeptide zur Immobilisierung auf Polymermaterialien für die Herstellung von Affinitätschromatographiesäulen ist es möglich, die Verbindungen mit ihren funktionalisierten Seitenketten zur weiteren Derivatisierung mit diagnostischen Hilfsreagenzien, wie z. B. fluoreszierenden Substituenten, zu 15 Phe-Acha); FAB-MS (M + H): 601; Cyclo-(Argnutzen.

Es ist ferner möglich, in den Seitenketten der Reste X und Y zusätzlich funktionelle Gruppen wie Amino-, Mercapto- oder Carboxygruppen einzuführen, über die kularen Substanzen, wie z.B. für Immunisierungszwekke und/oder Antikörpererzeugung, hergestellt werden können.

Vor- und nachstehend sind alle Temperaturen in °C "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, neutralisiert, extrahiert mit Ether oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, filtriert, dampft ein und reinigt durch Chromatographie an Kieselgel und/oder Kristallisation. RZ = Retentionszeit (Minuten). Die analytische Untersuchung erfolgte durch HPLC an Lichrosorb® RP select B (7 μ m)-250 \times 4 mm-Säule, Eluent A: 0,3% TFA in Wasser; Eluent B: 0,3% TFA in 2-Propanol/Wasser (8:2) Gradient 1-99% B in 50 Min. bei 1 ml/Min. Fluß 35 H):589; und Detektion bei 215 nm. M+ = Molekular-Peak im Massenspektrum, erhalten nach der "Fast Atom Bombardment"-Methode (FAB).

Beispiel 1

Eine Lösung von 1,1 g H-Arg(Mtr)-Gly-Asp(OBut)-D-Phe-hPro-ONa [z. B. erhältlich aus Fmoc-NMe-Arg(Mtr)-Gly-Asp(OBut)-D-Phezierten Merrifield-Techniken verwendeten Rest eines 4-Oxymethyl-phenoxymethyl-polystyrolharzes bedeutet, durch Abspaltung der Fmoc-Gruppe mit Piperidin/ DMF und Abspaltung des Harzes mit TFA/CH2Cl2 (1:1)] in 15 ml DMF wird mit 85 ml Dichlormethan ver- 50 dünnt und mit 50 mg NaHCO3 versetzt. Nach Kühlung in einer Trockeneis/Aceton-Mischung werden 40 µl Diphenylphosphorylazid zugegeben. Nach 16 Stunden Stehen bei Raumtemperatur engt man die Lösung ein. in Isopropanol/Wasser 8:2) und dann wie üblich mittels HPLC gereinigt. Man erhält nach Behandlung mit TFA/ H₂O (98:2) Cyclo-(Arg-Gly-Asp-D-PhehPro); RZ = 18,5; FAB-MS (M+H): 587.

Analog erhält man durch Cyclisierung der entspre- 60 Asp-DPhe-DhPro); FAB-MS (M+H): 587. chenden linearen Peptide und Abspaltung der Schutz-

Cyclo-(Arg-Gly-Asp-DPhe-Nle); RZ FAB-MS (M + H): 589; Cyclo-(Arg-Gly-Asp-Phe-Ahds); RZ = 35.1; FAB - MS(M + H): 730; Cyclo-65 (Arg-Gly-Asp-DPhe-Ahds); RZ = 35,4; FAB-MS(M + H): 730; Cyclo-(Arg-Gly-Asp-Phe-DAhds); RZ = 35,7; FAB - MS(M + H):730;

Cyclo-(Arg-Gly-Asp-DPhe-Aos); Cyclo-(Arg --Gly-Asp-DPhe-DAos); Cyclo-(Arg-Gly-Asp-Phe-DAos);

Cyclo-(Arg-Gly-Asp-DPhe-Nhdg); RZ = 36.7; 5 FAB-MS (M + H): 758; Cyclo-(Arg-Gly-Asp-Phe-Nhdg); RZ = 36.5; FAB - MS(M + H): 758; Cyclo-(Arg-Gly-Asp-DPhe-DNhdg); FAB-MS (M + 758; Cyclo-(Arg-Gly-Asp-Phe-DNhdg); FAB-MS(M+H):758;

Cyclo-(Arg-Gly-Asp-DPhg-Nhdg); Cyclo-(Arg-Gly-Asp-Phg-Nhdg); Cyclo-(Arg-Gly-Asp-DPhg-DNhdg); Cyclo-(Arg-Gly-Asp-Phg-DNhdg); Cyclo-(Arg-Gly-Asp-DPhe-Acha); RZ =FAB-MS (M + H): 601; Cyclo-(Arg-Gly-Asp-

Gly-Asp-DPhe-DAcha); FAB-MS (M + H): 601; Cyclo-(Arg-Gly-Asp-Phe-DAcha); FAB-MS (M + H): 601;

Cyclo-(Arg-Gly-Asp-DPhe-Aib); FAB-MS (M + dann Konjugate mit Proteinen oder anderen hochmole- 20 H): 575; Cyclo-(Arg-Gly-Asp-Phe-Aib); RZ = 36,5; FAB-MS (M + H): 575; Cyclo-(Arg-Gly-Asp-DPhe-DAib); FAB-MS (M + H): 575; Cyclo-(Arg-Gly-Asp-Phe-DAib); FAB-MS(M+H): 575; Cyclo-(Arg-Gly-Asp-DPhe-Acpa); RZ = 17,1; angegeben. In den nachfolgenden Beispielen bedeutet 25 FAB-MS (M + H): 587; Cyclo-(Arg-Gly-Asp-Phe-Acpa); FAB-MS (M + H): 587; Cyclo-(Arg-Gly-Asp-DPhe-DAcpa); FAB-MS (M + H): 587;

> + H): 587: 30 Cyclo-(Arg-Gly-Asp-DPhe-Tle); RZ = 19.1; FAB-MS (M + H): 589; Cyclo-(Arg-Gly-Asp-Phe-Tie); FAB-MS (M + H): 589; Cyclo-(Arg-Gly-Asp-DPhe-DTle); FAB-MS (M + H): 589; Cyclo-(Arg-Gly-Asp-Phe-DTle); FAB-MS (M +

Cyclo-(Arg-Gly-Asp-Phe-DAcpa); FAB-MS (M

Cyclo-(Arg-Gly-Asp-DPhe(4-Cl)-Tle); RZ = 23.2; FAB-MS (M + H): 623; Cyclo-(Arg-Gly-Asp-Phe(4-Cl)—Tle); FAB—MS (M + H): 623; Cyclo-(Arg-Gly-Asp-DPhe(4-Cl)-DTle); FAB-MS (M 40 + H): 623; Cyclo-(Arg-Gly-Asp-Phe(4-Cl)-DTle); FAB-MS(M+H):623;Cyclo-(Arg-Gly-Asp-DPhe(4-F)-Tle); RZ = 20.2; FAB-MS (M + H): 607; Cyclo-(Arg-Gly-Asp-Phe(4-F)—Tle); FAB—MS (M + H): 607; Cyclo-(Arg hPro-O-Wang, wobei -O-Wang den bei den modifi- 45 Gly-Asp-DPhe(4-F)-DTle); FAB-MS (M + H):

607; Cyclo-(Arg-Gly-Asp-Phe(4-F)-DTle); FAB-MS(M + H):607.

Beispiel 2

Eine Lösung von 0,28 g Cyclo-(Arg(Mtr)-Gly-Asp-DPhe-DhPro) [erhältlich durch Cyclisierung gemäß Bsp. 1] in 8,4m TFA, 1,7 ml Dichlormethan und 0,9 ml Thiophenol wird 4 Stunden bei Raumtemperatur Das Konzentrat wird gelfiltriert (Sephadex G10-Säule 55 stehen gelassen, anschließend eingeengt und nach Verdünnen mit Wasser gefriergetrocknet. Gelfiltration an Sephadex G 10 (Essigsäure/Wasser 1:1) und anschließende Reinigung durch präparative HPLC unter den angegebenen Bedingungen liefern Cyclo-(Arg-Gly-

> Analog erhält man: aus Cyclo-(Arg(Mtr) - Gly - Asp - Phe-DhPro): FAB-MS Cyclo-(Arg-Gly-Asp-Phe-DhPro); (M + H): 587;

aus Cyclo-(Arg(Mtr)-Gly-Asp(OBut)-DPhg-Tle): Cyclo-(D-Arg-NMeGly-Asp-DPhg-Tle); aus Cyclo-(Arg(Mtr)-Gly-Asp(OEt)-DPhg-hPro): Cyclo-(Arg-Gly-Asp-DPhg-hPro);

DE 196 13 933 A1

20

aus Cyclo-(Arg(Mtr)—Gly—Phg-DAhds): Cyclo-(Arg—Gly—Asp-Phg-DAhds); aus Cyclo-(Arg(Mtr)—Gly—Asp—DPhg-Acpa): Cyclo-(Arg—Gly—Asp—DPhg-Acpa); aus Cyclo-(Arg(Mtr)—Gly—Asp—DPhg-Aos): Cyclo-(Arg—Gly—Asp—DPhg-Aos).

Beispiel 3

80 mg Cyclo-(Arg—Gly—Asp—DPhe-hPro) [erhält-loch nach Bsp. 1] werden fünf-bis sechsmal in 0,01 m HCl gelöst und nach jedem Lösevorgang gefriergetrocknet. Anschließende Reinigung durch HPLC liefert Cyclo-(Arg—Gly—Asp—DPhe-hPro) × HCl.

Analog erhält man aus Cyclo-(Arg-Gly-Asp-DPhe-Nle): Cyclo-(NMeArg-Gly-Asp-DPhe-Nle): × HCl; aus Cyclo-(Arg-Gly-Asp-DPhe-Ahds): Cyclo-(Arg-Gly-Asp-DPhe-Ahds) × HCl; aus Cyclo-(Arg-Gly-Asp-Phe-Ahds): Cyclo-(Arg-Gly-Asp-Phe-Ahds) × HCl.

Beispiel 4

Zur Herstellung von Affinitätsphasen suspendiert 25 N-Maleinimido-(CH₂)₅—CO—NHman (CH₂)₃-Polymer [erhältlich durch Kondensation von N-Maleinimido-(CH₂)₅-COOH mit H₂N-(CH₂)₃-Polymer] in 10 ml 0,1 M Natriumphosphatpuffer bei pH 7 und fügt bei 40 ein Äquivalent Cyclo-(Arg-Gly- 30 $Asp-DPhe(4-N-CO(CH_2)_2SH)-hPro)$ [erhältlich H-DPhe(4-NH-Cyclisierung von BOC)-hPro-Arg(Mtr)-Gly-Asp-OH Abspaltung der Schutzgruppen und Acylierung mit z.B. Cl-CO(CH₂)₂SH] hinzu. Man rührt 4 Stunden bei gleichzei- 35 tiger Erwärmung der Reaktionsmischung auf Raumtemperatur, filtriert den festen Rückstand ab und wäscht zweimal mit je 10 ml Pufferlösung (pH 7) und anschließend dreimal mit je 10 ml Wasser. Man erhält Cyclo-(Arg-Gly-Asp-DPhe(4-N-CO(CH₂)₂S-3-(N-mal-40))einimido-(CH₂)₅—CONH—(CH₂)₃-Polymer)-hPro).

Beispiel 5

Analog Beispiel 4 erhält man durch Kondensation 45 von Polymer-O-(CH₂)₃-NH₂ [im Handel erhältlich] und Cyclo-(Arg-Gly-Asp-DPhe(4-N-CO(CH₂)₄-COOH)-hPro) [erhältlich durch Kondensation von Adipinsäure mit Cyclo-(Arg(Mtr)-Gly-Asp-DPhe(4-NH-BOC)-hPro) unter den in Bsp. 4 genannten Bedingungen] die folgende polymere Phase: Cyclo-(Arg-Gly-Asp-DPhe(4-N-CO-(CH₂)₄-CO-NH-(CH₂)₃-O-Polymer)-hPro).

Die nachstehenden Beispiele betreffen pharmazeuti- 55 sche Zubereitungen.

Beispiel A

Injektionsgläser

Eine Lösung von 100 g eines Cyclopeptides der Formel I und 5 g Dinatriumhydrogenphosphat in 31 zweifach destilliertem Wasser wird mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

Suppositorien

Man schmilzt ein Gemisch von 20 g Wirkstoff der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C

Lösung

Man bereitet eine Lösung aus 1 g Wirkstoff der Formel I, 9,38 g NaH₂PO₄ × 2 H₂O, 28,48 g Na₂HPO₄ × 12 H₂O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D

Salbe

Man mischt 500 mg Wirkstoff der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E

Tabletten

Ein Gemisch von 100 g eines Cyclopeptids der Formel I, 1 kg Lactose, 600 g mikrokristalliner Cellulose, 600 g Maisstärke, 100 g Polyvinylpyrrolidon, 80 g Talk und 10 g Magnesiumstearat wird in üblicher Weise zu Tabletten gepreßt, so daß jede Tablette 10 g Wirkstoff enthält.

Beispiel F

Dragees

Man preßt Tabletten wie in Beispiel E angegeben und überzieht sie anschließend in üblicher Weise mit einem Überzug aus Saccharose, Maisstärke, Talk, Tragant und Farbstoff.

Beispiel G

Kapseln

In üblicher Weise werden Hartgelatinekapseln mit einem Wirkstoff der Formel I gefüllt, so daß jede Kapsel 5 mg Wirkstoff enthält.

Beispiel H

Inhalationsspray

Man löst 14 g Wirkstoff der Formel I in 10 l isotonischer NaCl-Lösung und füllt die Lösung in handelsübliche Sprühgefäße mit Pump-Mechanismus. Die Lösung kann in Mund oder Nase gesprüht werden. Ein Sprühstoß (etwa 0,1 ml) entspricht einer Dosis von etwa 0,14 mg.

5

1. Cyclopeptide der Formel

Cyclo-(Arg-Gly-Asp-X-Y)

worin

X Cha, Nal, Phe, 2-R1-Phe, 3-R1-Phe, 4-R1-Phe, homo-Phe, Phg, Thi, Trp, Tyr oder Derivate von Tyr, wobei die OH-Gruppe durch Alkylreste mit 10 1-18 C-Atomen verethert sein kann, und wobei die genannten Aminosäurereste auch zusätzlich derivatisiert sein können,

R¹ NH₂, NO₂, I, Br, Cl, F, Alkyl mit 1-18 C-Atomen, Ar, Ar — O oder 3H,

Y Gly, wobei das α-N-Atom durch R² und/oder das α-C-Atom durch R3 und/oder R4 substituiert sein kann, mit der Maßgabe, daß Gly mindestens einfach in der angegebenen Weise substituiert ist,

Ar Phenyl, welches gegebenenfalls ein- oder zwei- 20 fach durch NH2, NO2, I, Br, Cl, F, Alkyl mit 16 C-Atomen oder 3H substituiert sein kann,

R², R³, oder R⁴ jeweils unabhängig voneinander Alkyl mit 1-18 C-Atomen,

oder aber

R² und R³ oder R³ und R⁴ jeweils zusammen auch eine verzweigte oder unverzweigte Alkylenkette mit 3 bis 18 C-Atomen, so daß dabei entweder das α-N-Atom und das α-C-Atom zusammen mit der Alkylenkette oder das α-C-Atom allein mit der Al- 30 kylenkette einen Ring bildet,

wobei, sofern es sich um Reste optisch aktiver Aminosäuren und Aminosäurederivate handelt, sowohl die D- als auch die L-Formen eingeschlossen sind, 35 und Derivate, insbesondere Asparaginsäure-β-ester oder N-Guanidin-acyl-Derivate des Arginins,

Prodrugs, sowie deren physiologisch unbedenkliche Salze.

2. Ein Enantiomer oder ein Diastereomer einer 40 Verbindung der Formel gemäß Anspruch 1.

3.(a) Cyclo-(Arg-Gly-Asp-D-Phe-Nle);

(b) Cyclo-(Arg-Gly-Asp-DPhe-hPro);

(c) Cyclo-(Arg-Gly-Asp-DPhe-Tle);

(d) Cyclo-(Arg-Gly-Asp-Phe-DAhds);

(e) Cyclo-(Arg-Gly-Asp-Phe-Nhdg); (f) Cyclo-(Arg-Gly-Asp-DPhe-Acha),

(g) Cyclo-(Arg-Gly-Asp-DPhe(4-Cl)-Tle);

(h) Cyclo-(Arg-Gly-Asp-DPhe(4-F)-Tle);

gemäß Anspruch 1 sowie deren physiologisch un- 50

bedenklichen Salze.

4. Verfahren zur Herstellung einer Verbindung der Formel I nach Anspruch 1 oder eines ihrer Salze, dadurch gekennzeichnet, daß man sie aus einem ihrer funktionellen Derivate durch Behandeln mit 55 einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt

oder daß man ein Peptid der Formel II

Z-Arg-Gly-Asp-X-Y-

-Gly-Asp-X-Y-Arg-

-Asp-X-Y-Arg-Gly-

-X-Y-Arg-Gly-Asp-oder

—Y—Arg—Gly—Asp—X— bedeutet,

oder ein reaktionsfähiges Derivat eines solches

Peptids mit einem cyclisierenden Mittel behandelt, oder daß man ein Cyclopeptid, welches an sich der Formel I entspricht, aber über eine oder mehrere freie Aminogruppen, Säuregruppen und/oder aktivierte α-C-Atome verfügt, durch Alkylierung, Acylierung oder Veresterung derivatisiert,

und/oder daß man eine basische oder saure Verbindung der Formel I durch Behandeln mit einer Säure

oder Base in eines ihrer Salze überführt.

5. Verfahren zur Herstellung pharmazeutischer Zubereitungen, dadurch gekennzeichnet, daß man eine Verbindung der Formel I nach Anspruch 1 und/ oder eines ihrer physiologisch unbedenklichen Salze zusammen mit mindestens einem festen, flüssigen oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform bringt.

6. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der allgemeinen Formel I nach Anspruch 1 und/oder einem ihrer physiologisch unbedenkli-

chen Salze.

7. Verwendung von Verbindungen der Formel I nach Anspruch 1 oder von deren physiologisch unbedenklichen Salzen zur Herstellung eines Arzneimittels zur Bekämpfung von Krankheiten.

8. Verwendung von Verbindungen der Formel I nach Anspruch 1 oder deren physiologisch unbedenklichen Salzen bei der Bekämpfung von Krank-

heiten.

45

60

65

9. Verwendung von Verbindungen der Formel I nach Anspruch 1 zur Herstellung von immobilisierten Liganden für Affinitätssäulenchromatographie. 10. Verwendung von Verbindungen der Formel I nach Anspruch 1 zur Reinigung von Integrinen durch Affinitätschromatographie.

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.