

mioty® - the Best Technology for Satellite-Based IoT Applications

NTN Days 2025, Toulouse

Florian Leschka, Fraunhofer IIS, Germany Group Manager System Design Department RF and SatCom Systems florian.leschka@iis.fraunhofer.de

Introduction to Fraunhofer Society and Fraunhofer IIS

Fraunhofer-Gesellschaft At a glance

Mission: Applied research

Applied research focusing on key future-relevant technologies and the commercialization of findings in business and industry. A trailblazer and trendsetter in innovative developments.

Fraunhofer Institute for Integrated Circuit IIS

Overview

Fraunhofer IIS is the

largest Institute in

Fraunhofer-Gesellschaft

RF and SatCom Systems Department

We develop solutions for satellite communications and customized antenna systems to connect people and things everywhere.

Our Mission,
Department RF & SatCom Systems

© Fraunhofer IIS

Department RF und SatCom Systems Clustering of R&D Activities

Antennas

Our (Sat) IoT Solution – mioty®

mioty®

Terrestrial IoT Solution of Fraunhofer IIS

- IoT technology: Long history at IIS ("Smart Metering")
 - mioty® / TS-UNB
- LPWAN system (terrestrial) up to 30 km
- TS-UNB → ETSI standard TS103357
- ALOHA based access technology
- Telemetry data transmission (10-245 Bytes per telegram)
- Supporting bidirectional communication

- ISM frequencies: e.g. 868/915 MHz [EU/US]
- Small bandwidth (typ. 200 kHz)
- Up to 3.6 million messages/day @ PER <1%
- Low computing power for receiving and decoding possible (e.g. based on Raspberry Pi 4)
- Energy efficient sensor nodes
- Low-cost devices (COTS, multi source)
- mioty™ alliance established in 2020 (mioty-alliance.com)

The mioty®-Technology

A new protocol for wireless data transmission - tailor-made for large sensor networks

Legacy LPWAN
- Unlicensed bands
Data
Packet

Data not received

Data is transmitted as a complete package

- Low resistance to interference
- High power consumption
- Packet error rates (PER) of >10% are common
- Limited suitability for Massive IoT

Data is transmitted via small sub-packets

Interference immunity thanks to forward error correction

Time

- Long transmission-free periods enable energy recovery
- High reliability and robustness (<1% PER)
- Well suited for massive IoT-applications

The mioty-alliance **Driving Innovation Together**

Our Goals:

Expand in new markets

The Value for our Members:

The mioty Alliance empowers members to drive mioty innovation and shape the future of standardized IoT technology.

Full Members DIEHL TEXAS INSTRUMENTS Fraunhofer WIKA SWISSPHONE Associated Members

Friendcom

SILICON LABS

schnell

Radiocrafts

WITTRA

STACKFORCE &

WEPTECH

com·t·ac

FAU

Ø\

GLYN

® SPEKTER

From Terrestrial to Satellite IoT

"mioty® over Satellite" IoT at Fraunhofer IIS

Reuse of proven terrestrial LPWAN technology

- Smart metering → Low data rate / small message sizes
- Massive machine type communication (mMTC)
- Technical boundaries of terrestrial IoT systems (Limited cell size / coverage & Availability
- Integration in existing mioty® value chain/eco system
- IoT for GEO and LEO scenarios → 100% compatible to TN

Satellite IoT at Fraunhofer IIS – our competences

- Air interface and waveform development and advancement
- System design assessment & optimization
- Antenna and demonstration platform development

Next steps (technology aspects)

Demonstrations of mioty® in a LEO satellite environment

From Terrestrial to Satellite IoT

Why mioty® for satellite IoT networks?

Multi-source transceiver hardware & low cost nodes Easily adaptable & scalable to specific satellite scenarios **Energy efficiency** Long battery lifetime of nodes LPWAN protocol with highest system capacity → mioty® for large roll-outs See mioty® comparison study Open ETSI standard https://mioty-alliance.com/mioty-vs-lora-TS-UNB, vendor independent study-report/ High market readiness, entire value chain Robust against Doppler and interference available → mioty® alliance Developed in ESA and DLR projects **Enabling Hybrid Networks:** Same protocol for terrestrial and satellite networks

IoT via Satellite

System Capacity Considerations

System Capacity

- Number of successful packet transmissions
- Measured within a specific time-frame
- Considered within a given channel bandwidth

Capacity importance in NTN

- Large cell → crucial for handling more users
- High capacity: Essential for high user density without service degradation
- From economic perspective:
 - Supporting a wide range of commercial applications necessary
- Not feasible to densify existing deployments (done in (LoRa) TN networks)

System Capacity is THE key feature for successful SatCom IoT business cases

See: J. Mrazek, S. Kisseleff, C. Rohde, J. Robert, J. Kneissl and F. Leschka, "mioty superiority over both LoRa-versions in satellite-IoT applications," 41st International Communications Satellite Systems Conference (ICSSC 2024), Seattle, USA, 2024, pp. 63-70, doi: 10.1049/icp.2024.4613.

Capacity Analysis

Restricted

- Capacity simulations need to model realistic node distribution, i.e. more nodes with lower reception power.
- Dynamic range for terrestrial: 69 dB
- Dynamic range for satellite: 10 dB
- Higher Capacity for satellite system:
 - due to smaller dynamic range weaker messages don't get overshadowed by stronger ones.

Doubled capacity for mioty® over satellite!

Current detailed analysis show that direct to satellite mioty® system can deliver **6.25 Mio Messages/day/200kHz** instead of 3.6 Mio

mioty® Comparative Study Report (mioty® vs LoRa) by TU Ilmenau System Capacity as KPI

Reference: https://mioty-alliance.com/mioty-vs-lora-study-report/

mioty® is suitable for large roll-outs

Realistic Field Test scenario

→ Do not trust field trial results with few devices

mioty® Comparative Study Report (mioty® vs LoRa) by TU Ilmenau

mioty® vs LoRa/ LoRa-FHSS

Key Points of updated study

- LoRa-FHSS significantly increases the capacity wrt. classical LoRa
- Still, mioty® has approx. 8x 13x higher system capacity than LoRa-FHSS.
- Energy consumption is 40% higher than LoRa SF12 (making it 6 times more power hungry than mioty®!)
- Sensitivity goes down 3dB in comparison with LoRa SF12 (lowering the range)
- Transmission and on-air time goes up (limiting the no. of messages allowed to send within the duty cycle) limitations)

- The header bursts are not robust, making LoRa FH-SS vulnerable to noise, especially classical LoRa
- LoRa FHSS still relies on classical LoRa for the downlink

Key Takeaways & Outlook

© Fraunhofer IIS

Key Takeaways and Outlook

Our Offer:

Fraunhofer IIS supports national and international SatCom players in:

- Consulting
- R&D in SatCom
- System Design
- System Simulations
- Constellation Design
- Test & Verification

mioty® can easily be adopted to specific SatCom IoT scenarios

System Capacity is key feature for successful SatCom business cases

TS-UNB/mioty® outperforms IoT/LPWAN protocol competitors

mioty® enables **Hybrid Networks**: terrestrial and satellite networks

3

References

- 1. Fraunhofer IIS https://www.iis.fraunhofer.de/
- 2. Fraunhofer IIS SatCom https://www.iis.fraunhofer.de/en/ff/kom/satkom.html
- 3. Fraunhofer IIS Satellite IoT https://www.iis.fraunhofer.de/en/ff/kom/satkom/satellite iot.html
- 4. mioty® Alliance http://mioty-alliance.com/
- 5. Mioty® vs LoRa study report https://mioty-alliance.com/mioty-vs-lora-study-report/
- 6. Paper ICSSS 2024: mioty® Superiority over Both LoRa®-Versions in Satellite-IoT Applications https://s.fhg.de/H66
- 7. Paper "Time Variant Doppler Compensation for TS-UNB" https://ieeexplore.ieee.org/document/10192999
- 8. Paper "Doppler Localisation of TS-UNB IoT Nodes from LEO satellites" https://ieeexplore.ieee.org/document/10572039
- 9. Paper E2UT https://ieeexplore.ieee.org/document/9384419
- 10. Paper "Doppler Localisation of TS-UNB IoT Nodes from LEO satellites" https://ieeexplore.ieee.org/document/10572039
- 11. ESA Project Webpage Energy Efficient User Terminal <u>https://artes.esa.int/projects/e2ut</u>
- 12. ESA Project Webpage M2MSatNet Study https://artes.esa.int/projects/m2msatnet

Fraunhofer Institute for Integrated Circuits IIS

Contact

Florian Leschka
Group Manager "System Design"
Department RF and SatCom Systems
Florian.leschka@iis.fraunhofer.de

Fraunhofer IIS
Am Wolfsmantel 33
91058 Erlangen
Germany
www.iis.fraunhofer.de