

Introduction to Databases

Module 1: Databases

DatabasesMODULE 1: CONTENTS

- What is a database?
- Relational databases.

Objectives

Introduction to databases

Understand how databases are used commercially

What are they used for and why?

Describe the different types of objects within a database

What would you expect to find in a database?

Explore the different ways databases store information

What kinds of databases are there?

What is a database?

Databases: Module 1

Introduction to Databases

Q^ What is a database?

A database is an organised collection of data, containing several different objects

- Tables: Columns and rows of data.
- Schemas: Structure of data (though some databases do not have schemas).
- Queries: How we ask the database for the data we want.

Businesses use databases to model information from the real world

Modelled in a way to answer some sort of question through the information.

QA Database types

Typically, databases fall into one of two categories: relational or non-relational.

- In this course, we will work with relational databases.
- We will use SQL to ask the database for the information we need.

Q^ Database objects

Transforming data into information is extremely important

- Thanks to databases, we can store the information we need in the format that we want.
- Before, ledgers might have been used to store information even in corporations or governments.
- Today, everybody will have stored information in some kind of database.

	Database 'lunch'	
NAME	CITY	ORDER
GAZ	LONDON	JELLIED EELS
HARRY	GLASGOW	HAGGIS
RODNEY	NEWCASTLE	CHIPS 'N' GRAVY

Field: A way to categorise stored data.

Database: A full data set, consisting of a collection of tables.

Record: An instance of fields in a table.

Table: An organised set of a type of data.

Relational databases

Databases: Module 1

Introduction to Databases

QA Task: GAME Database

Outcome:

• Think about what kind of information is in a typical database and how that information might be structured.

Steps:

10 minutes, in pairs:

- Draw all the different tables that might be stored in GAME's database, and what sort of information you would expect to find in each table.
- For bonus points, see how you might link together some of these tables.

customers

CUSTOMER ID	NAME	ADDRESS	EMAIL	PASSWORD
1	SIMON	256 BYTE STREET	SI@MAIL.CO.UK	*****
2	MARKUS	47 RED TIE ROAD	MARKUS47@POST.COM	*****
3	EMMA	63 NUMBER LANE	EM@LETTER.BOX	*****

games

PRODUCT ID	TITLE	QUANTITY	PRICE	AGE RATING
1	SHOOT THE COOL GUN 9	8965	79.99	18
2	GUNBLADERS XXII	546	64.99	15
3	PAINT DRYING SIMULATOR 2012	35	37.99	3
4	SITAR HERO	456	45.99	12

orders

ORDER ID	CUSTOMER ID	PRODUCT ID	PLACED	PRICE
1	1	4	2019-08-06	45.99
2	2	3	2019-08-14	37.99

QA Making the database relational

If we think about something like the GAME database, we can think of a lot of different tables:

- The customers table stores account information.
- The **orders** table keeps track of purchases.
- The games table stores information on what titles are sold.

If we create each of these tables individually, we may find data being needlessly duplicated:

• Linking information makes finding data easier. For instance, a **customer** places an **order**, but an order can contain many **games**.

Relationships are the bedrock which underpins relational databases

• Linking tables together allows common data to be stored.

Summary

Databases: Module 1

Understand how databases are used commercially

- Databases are used to organise data and give it context.
- Businesses use it to model real-life content.

Describe the different types of objects within a database

 Databases usually contain tables, fields, records, schema, and queries.

Explore the different ways in which databases store information

 Relational databases store information in a shared way.

Thank you for listening

Any questions?