Mélange de distributions des valeurs extrêmes généralisées

Pascal Alain Dkengne Sielenou

Travail en collaboration avec Stéphane Girard (INRIA)

Réunion de synchronisation du 12 janvier 2024

Rappels : Loi des valeurs extremes généralisées

- Soit X une variable aléatoire de fonction de répartion F.
- Soient $X_1, ..., X_n$ des copies indépendantes de X.
- Soit $M_n = \max\{X_1, \dots, X_n\}$, la suite des maximums de X.

Theorem

S'il existent des suites de constantes $a_n > 0$ et $b_n \in \mathbb{R}$ telles que

$$\lim_{n \to +\infty} \mathbb{P}\left\{\frac{M_n - b_n}{a_n} \le x\right\} = \lim_{n \to +\infty} F^n\left(a_n x + b_n\right) = G(x) \tag{1}$$

pour une fonction non dégénérée G, alors G appartient à la famille des lois des valeurs extrêmes généralisées (GEV)

$$G(x) = G(x; \gamma, \sigma, \mu) = \exp\left\{-\left[1 + \gamma \left(\frac{x - \mu}{\sigma}\right)\right]^{-\frac{1}{\gamma}}\right\},\tag{2}$$

définies sur $\left\{x \in \mathbb{R} : 1 + \gamma\left(\frac{x-\mu}{\sigma}\right) > 0\right\}$, où $\gamma \neq 0$, $\mu \in \mathbb{R}$, $\sigma > 0$.

Si F vérifie (1), on dit qu'il appartient au domaine d'attraction de la function G.

Résultats

Definition (Melange des distributions de probabilités)

Une loi de probabilités est dite **loi de mélange** si sa fonction de répartition est une **moyenne pondérée algébrique**, une **moyenne pondérée géométrique** ou une **moyenne pondérée harmonique** de plusieurs fonctions de répartition.

Example

Considérons une suite de p fonctions de répartition F_j de densité de probabilité f_j , $j=1,\cdots,p$ et un vecteur $\omega=(\omega_1,\cdots,\omega_p)\in[0,\,1]^p$ tel que $\sum_{j=1}^p\omega_j=1$. Les lois de mélange moyennes pondérées algébriquement F_S , géométriquement F_P et harmoniquement F_H ainsi que leurs densités de probabilités respectives f_S , f_P et f_H sont définies par les formules (3) et (4) ci-dessous

$$F_{S}(x;\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(x), \quad F_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x), \quad F_{\mathbb{H}}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)}\right)^{-1}, \quad (3)$$

$$f_{S}(x) = \sum_{j=1}^{p} \omega_{j} f_{j}(x), \ f_{\mathbb{P}}(x) = \left(\sum_{j=1}^{p} \omega_{j} \frac{f_{j}(x)}{F_{j}(x)}\right) \cdot F_{\mathbb{P}}(x;\omega), \ f_{\mathbb{H}}(x) = \left(\sum_{j=1}^{p} \omega_{j} \frac{f_{j}(x)}{F_{j}^{2}(x)}\right) \cdot F_{\mathbb{H}}^{2}(x;\omega).$$

$$(4)$$

Résultats

Definition (Mélange de distributions GEV)

- Désignons par $\omega = (\omega_1, \dots, \omega_p) \in [0, 1]^p$ un vecteur tel que $\sum_{j=1}^p \omega_j = 1$.
- Désignons par G_j une fonction de répartition de la loi GEV définie par (2).
- Désignons par $\Theta = (\Theta_j, j = 1, \dots, p)$ où $\Theta_j = (\gamma_j, \sigma_j, \mu_j)$ un vecteur des paramètres de la distribution GEV nommée G_i .

On définit les modèles de mélange G_S , G_P et G_H des lois GEV nommées G_i par

$$G_{S}(x; \omega, \Theta) = \sum_{j=1}^{p} \omega_{j} G_{j}(x; \Theta_{j}),$$

$$G_{P}(x; \omega, \Theta) = \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}),$$
(5)

$$G_{\mathbb{H}}(x;\omega,\Theta) = \left(\sum_{i=1}^{p} \frac{\omega_{i}}{G_{i}(x;\Theta_{i})}\right)^{-1}.$$

Résultats

Definition

Considérons une suite de p fonctions de répartition G_j de la loi GEV définie par

$$G_j(x) = G(x; \gamma_j, \sigma_j, \mu_j) = \exp\left\{-\left[1 + \gamma_j \left(\frac{x - \mu_j}{\sigma_j}\right)\right]^{-\frac{1}{\gamma_j}}\right\},\tag{6}$$

sur l'ensemble $\left\{x \in \mathbb{R} : 1 + \gamma_j \left(\frac{x - \mu_j}{\sigma_j}\right) > 0\right\}$, où $\gamma_j \neq 0$, $\mu_j \in \mathbb{R}$, $\sigma_j > 0$. On définit les modèles de mélange G_{\min} , G_{\max} , G_{\inf} , et G_{\sup} par

$$G_{\min}(x) = \min_{1 \le j \le p} G_j(x), \tag{7}$$

$$G_{\max}(x) = \max_{1 \le j \le p} G_j(x), \tag{8}$$

$$G_{\inf}(x) = G\left(x; \max_{1 \le j \le p} \gamma_j, \max_{1 \le j \le p} \sigma_j, \max_{1 \le j \le p} \mu_j\right), \tag{9}$$

$$G_{\sup}(x) = G\left(x; \min_{1 \le j \le p} \gamma_j, \min_{1 \le j \le p} \sigma_j, \min_{1 \le j \le p} \mu_j\right). \tag{10}$$

Theorem (Inégalités entre les modèles des distributions GEV)

Les inégalités suivantes sont satisfaites

$$G_{\inf}(x) \leq G_{\min}(x) \leq G_{\mathbb{H}}(x;\omega,\Theta) \leq G_{\mathbb{P}}(x;\omega,\Theta) \leq G_{\mathbb{S}}(x;\omega,\Theta) \leq G_{\max}(x) \leq G_{\sup}(x). \tag{11}$$

La preuve de ce résultat exploite les relations entre les moyennes arithmétiques, géométriques et harmoniques disponibles sur les pages web suivantes https://en.wikipedia.org/wiki/Generalized_mean

Theorem (Stabilité de la famille $\{G_{\mathbb{P}}(\cdot;\omega,\Theta)\}\)$

Pour tout entier positif m et pour tout réel x, la propriété suivante est satisfaite

$$G_{\mathbb{P}}^{m}(x;\omega,\Theta) = \prod_{j=1}^{p} \left[G_{j}(x;\Theta_{j}(m)) \right]^{\omega_{j}} = G_{\mathbb{P}}(x;\omega,\Theta(m)).$$
 (12)

Ici,
$$\Theta(m) = (\Theta_j(m), j = 1, \dots, p)$$
 où $\Theta_j(m) = (\gamma_j(m), \sigma_j(m), \mu_j(m))$
avec $\gamma_j(m) = \gamma_j$, $\sigma_j(m) = \sigma_j m^{\gamma_j}$, $\mu_j(m) = \mu_j + \sigma_j \left(\frac{m^{\gamma_j} - 1}{\gamma_j}\right)$.

La propriété (12) montre que si la loi d'une v.a. X appartient à la famille des lois de probabilités $\{G_P(\cdot;\omega,\Theta)\}$, alors la loi du maximum de m copies indépendantes de X appartient également à cette même famille des lois de probabilités.

Theorem (Equivalence des queues de distributions)

On considère les distributions de probabilités F_S , F_P et F_H définies resp. par (??), (??) et (??). S'ils existent des constantes $\tau_j > 0$ telles que pour tout $j = 1, \dots, p$ nous avons

$$\lim_{x \to x_{F_j}} \frac{1 - F_j(x)}{1 - G_j(x; \Theta_j)} = \tau_j, \tag{13}$$

où $x_{F_j} = \sup\{x \in \mathbb{R}: F_j(x) < 1\}$ est la borne supérieure du support de la distribution F_j , alors les limites suivantes sont satisfaites

$$\lim_{x \to x^{\star}} \frac{1 - F_{\mathbb{H}}(x; \omega)}{1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau))} = 1, \quad \lim_{x \to x^{\star}} \frac{1 - F_{\mathbb{S}}(x; \omega)}{1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau))} = 1, \quad \lim_{x \to x^{\star}} \frac{1 - F_{\mathbb{P}}(x; \omega)}{1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau))} = 1, \quad (14)$$

 $où x^* = \max\{x_{F_j}, j = 1, \cdots, p\} \text{ et } \tau = (\tau_1, \cdots, \tau_p).$

Ici,
$$\Theta(\tau) = (\Theta_j(\tau_j), j = 1, \dots, p)$$
 où $\Theta_j(\tau_j) = (\gamma_j(\tau_j), \sigma_j(\tau_j), \mu_j(\tau_j))$

$$\textit{avec } \gamma_j(\tau_j) = \gamma_j, \quad \sigma_j(\tau_j) = \sigma_j \, \tau_j^{\gamma_j}, \quad \mu_j(\tau_j) = \mu_j + \sigma_j \bigg(\frac{\tau_j^{\gamma_j} - 1}{\gamma_j} \bigg).$$

Preuve de la Propriété 3 (1/3)

Quand x tend vers x^* , on peut effectuer les équivalents suivants

$$\begin{aligned} 1 - F_{S}(x) &= 1 - \sum_{j=1}^{p} \omega_{j} F_{j}(x) = \sum_{j=1}^{p} \omega_{j} \left(1 - F_{j}(x) \right) \\ &\sim \sum_{j=1}^{p} \omega_{j} \tau_{j} \left(1 - G_{j}(x; \Theta_{j}) \right), \quad \text{(faisant usage de (13))} \\ &\sim - \sum_{j=1}^{p} \omega_{j} \log G_{j}^{\tau_{j}}(x; \Theta_{j}) = - \sum_{j=1}^{p} \log G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j})) \\ &= - \log \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j})) \\ &\sim 1 - \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j})) \\ &= 1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau)). \end{aligned}$$

Preuve de la Propriété 3 (2/3)

Quand x tend vers x^* , on peut effectuer les équivalents suivants

$$1 - F_{\mathbb{P}}(x) \sim -\log F_{\mathbb{P}}(x) = -\log \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x)$$

$$= \sum_{j=1}^{p} \omega_{j} (-\log F_{j}(x)) \sim \sum_{j=1}^{p} \omega_{j} (1 - F_{j}(x))$$

$$\sim \sum_{j=1}^{p} \omega_{j} \tau_{j} (1 - G_{j}(x; \Theta_{j})), \quad \text{(faisant usage de (13))}$$

$$\sim -\sum_{j=1}^{p} \omega_{j} \log G_{j}^{\tau_{j}}(x; \Theta_{j}) = -\sum_{j=1}^{p} \log G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j}))$$

$$= -\log \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j})) \sim 1 - \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j}))$$

$$= 1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau)).$$

Preuve de la Propriété 3 (3/3)

Quand x tend vers x^* , on peut effectuer les équivalents suivants

$$1 - F_{\mathbb{H}}(x) \sim -\log F_{\mathbb{H}}(x) = \log \sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)} \sim \sum_{j=1}^{p} \omega_{j} \left(\frac{1}{F_{j}(x)} - 1\right)$$

$$\sim \sum_{j=1}^{p} \omega_{j} \left(-\log F_{j}(x)\right) \sim \sum_{j=1}^{p} \omega_{j} \left(1 - F_{j}(x)\right)$$

$$\sim \sum_{j=1}^{p} \omega_{j} \tau_{j} \left(1 - G_{j}(x; \Theta_{j})\right), \quad \text{(faisant usage de (13))}$$

$$\sim -\sum_{j=1}^{p} \omega_{j} \log G_{j}^{\tau_{j}}(x; \Theta_{j}) = -\sum_{j=1}^{p} \log G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j}))$$

$$= -\log \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j})) \sim 1 - \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x; \Theta_{j}(\tau_{j}))$$

$$= 1 - G_{\mathbb{P}}(x; \omega, \Theta(\tau)).$$

Theorem

- On considère une suite de p fonctions de répartition F_i , $j = 1, \dots, p$.
- On considère un vecteur $\omega = (\omega_1, \dots, \omega_p) \in [0, 1]^p$ tel que $\sum_{i=1}^p \omega_i = 1$.
- On désigne par $x^* = \max \{x_{F_1}, x_{F_2}, \cdots, x_{F_p}\}$, où $x_{F_j} \le +\infty$ est la borne supérieure du support de la distribution F_j .

Alors, les lois de mélange moyennes pondérées ci-dessous

$$F_{S}(x;\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(x), \quad F_{P}(x;\omega) = \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x), \quad F_{H}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)}\right)^{-1}$$

satisfont la propriété suivante :

$$\lim_{x \to x^{\star}} F_{S}(x; \omega) = \lim_{x \to x^{\star}} F_{\mathbb{P}}(x; \omega) = \lim_{x \to x^{\star}} F_{\mathbb{H}}(x; \omega). \tag{15}$$

Preuve de la Propriété 4 (1/2)

$$\lim_{x \to x^*} F_{S}(x; \omega) = \lim_{x \to x^*} \sum_{j=1}^{p} \omega_j F_j(x) = \lim_{x \to x^*} \exp\left\{\log\left(\sum_{j=1}^{p} \omega_j F_j(x)\right)\right\}$$

$$= \lim_{x \to x^*} \exp\left\{\sum_{j=1}^{p} \omega_j F_j(x) - 1\right\} = \lim_{x \to x^*} \exp\left\{\sum_{j=1}^{p} \omega_j \left(F_j(x) - 1\right)\right\}$$

$$= \lim_{x \to x^*} \exp\left\{\sum_{j=1}^{p} \omega_j \log F_j(x)\right\} = \lim_{x \to x^*} \exp\left\{\log\left(\prod_{j=1}^{p} F_j^{\omega_j}(x)\right)\right\}$$

$$= \lim_{x \to x^*} \prod_{j=1}^{p} F_j^{\omega_j}(x) = \lim_{x \to x^*} F_{\mathbb{P}}(x; \omega).$$

Preuve de la Propriété 4 (2/2)

$$\lim_{x \to x^*} F_{\mathbb{H}}(x; \omega) = \lim_{x \to x^*} \left\{ \sum_{j=1}^{p} \frac{\omega_j}{F_j(x)} \right\}^{-1} = \lim_{x \to x^*} \exp \left\{ -\log \left(\sum_{j=1}^{p} \frac{\omega_j}{F_j(x)} \right) \right\}$$

$$= \lim_{x \to x^*} \exp \left\{ 1 - \sum_{j=1}^{p} \frac{\omega_j}{F_j(x)} \right\} = \lim_{x \to x^*} \exp \left\{ \sum_{j=1}^{p} \omega_j \left(1 - \frac{1}{F_j(x)} \right) \right\}$$

$$= \lim_{x \to x^*} \exp \left\{ \sum_{j=1}^{p} \omega_j \log F_j(x) \right\} = \lim_{x \to x^*} \exp \left\{ \log \left(\prod_{j=1}^{p} F_j^{\omega_j}(x) \right) \right\}$$

$$= \lim_{x \to x^*} \prod_{j=1}^{p} F_j^{\omega_j}(x) = \lim_{x \to x^*} F_{\mathbb{P}}(x; \omega).$$

Theorem

On considère les distributions de probabilités F_S et $F_{\mathbb{P}}$ définies resp. par $(\ref{eq:sphere})$ et $(\ref{eq:sphere})$. S'ils existent des suites $a_{n,j} > 0$ et $b_{n,j} \in \mathbb{R}$ telles que pour tout $x \in \mathbb{R}$, nous avons

$$\lim_{n\to+\infty} n\left[1-F_j\left(a_{n,j}x+b_{n,j}\right)\right] = -\log G_j(x) \iff \lim_{n\to+\infty} F_j^n\left(a_{n,j}x+b_{n,j}\right) = G_j(x), \quad (16)$$

alors les limites suivantes sont satisfaites pour tout $x \in \mathbb{R}$:

$$\lim_{n \to +\infty} F_{\mathbb{P}}^{n}(v_{n}(x)) \le G_{\mathbb{P}}(x) \le \lim_{n \to +\infty} F_{\mathbb{P}}^{n}(u_{n}(x)), \tag{17}$$

$$\lim_{n\to+\infty} F_{S}^{n}\left(v_{n}(x)\right) \leq G_{\mathbb{P}}(x) \leq \lim_{n\to+\infty} F_{S}^{n}\left(u_{n}(x)\right), \lim_{n\to+\infty} F_{\mathbb{H}}^{n}\left(v_{n}(x)\right) \leq G_{\mathbb{P}}(x) \leq \lim_{n\to+\infty} F_{\mathbb{H}}^{n}\left(u_{n}(x)\right),$$

où les suites $u_n(x)$ et $v_n(x)$ sont définies par

$$u_n(x) = \max_{1 \le j \le p} \{a_{n,j}x + b_{n,j}\}, \quad v_n(x) = \min_{1 \le j \le p} \{a_{n,j}x + b_{n,j}\}.$$
 (18)

De plus, il existe trois suites non linéaires $p_n(x)$, $s_n(x)$, $h_n(x) \in [v_n(x), u_n(x)]$ qui sont strictement croissantes et satisfont

$$\lim_{n \to +\infty} F_{\mathbb{P}}^{n}(p_{n}(x)) = G_{\mathbb{P}}(x) = \lim_{n \to +\infty} F_{\mathbb{S}}^{n}(s_{n}(x)) = \lim_{n \to +\infty} F_{\mathbb{H}}^{n}(h_{n}(x)). \tag{19}$$

Preuve de la Propriété 5

$$\lim_{n \to +\infty} F_{\mathbb{P}}^{n}(v_{n}(x); \omega) = \lim_{n \to +\infty} \left(\prod_{j=1}^{p} F_{j}^{\omega_{j}}(v_{n}(x)) \right)^{n} \leq \lim_{n \to +\infty} \prod_{j=1}^{p} \left[F_{j}^{n} \left(a_{n,j} x + b_{n,j} \right) \right]^{\omega_{j}}$$

$$= \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x), \quad \text{(faisant usage de (16))}. \tag{20}$$

$$\lim_{n \to +\infty} F_{\mathbb{P}}^{n}(u_{n}(x); \omega) = \lim_{n \to +\infty} \left(\prod_{j=1}^{p} F_{j}^{\omega_{j}}(u_{n}(x)) \right)^{n} \geq \lim_{n \to +\infty} \prod_{j=1}^{p} \left[F_{j}^{n} \left(a_{n,j} x + b_{n,j} \right) \right]^{\omega_{j}}$$

$$\lim_{n \to +\infty} F_{\mathbb{P}}(u_n(x), w) = \lim_{n \to +\infty} \left(\prod_{j=1}^{p} F_j(u_n(x)) \right) \ge \lim_{n \to +\infty} \prod_{j=1}^{p} \left[F_j(u_{n,j}x + u_{n,j}) \right]$$

$$= \prod_{i=1}^{p} G_j^{\omega_j}(x), \quad \text{(faisant usage de (16))}.$$
(21)

Faisant usage des égalités (15) et des inégalités (20-21), on peut écrire

$$\lim_{n\to+\infty} F_{S}^{n}(v_{n}(x);\omega) = \lim_{n\to+\infty} F_{H}^{n}(v_{n}(x);\omega) = \lim_{n\to+\infty} F_{P}^{n}(v_{n}(x);\omega) \leq G_{P}(x;\omega),$$

$$\lim_{n\to+\infty} F^n_{\mathbb{S}}(u_n(x);\omega) = \lim_{n\to+\infty} F^n_{\mathbb{H}}(u_n(x);\omega) = \lim_{n\to+\infty} F^n_{\mathbb{P}}(u_n(x);\omega) \ge G_{\mathbb{P}}(x;\omega).$$

Theorem

- On considère une suite de p fonctions de répartition F_j , $j=1,\cdots,p$.
- On considère un vecteur $\omega = (\omega_1, \dots, \omega_p) \in [0, 1]^p$ tel que $\sum_{i=1}^p \omega_i = 1$.

La variable aléatoire X associée à la fonction de répartition $F_{\mathbb{P}}(x) = \prod_{j=1}^p F_j^{\omega_j}(x)$ est définie par

$$X = \max_{1 \le j \le p} \left\{ F_j^{-1} \left(\exp \left\{ -Y_j \right\} \right) \right\}, \tag{22}$$

où Y_j est une variable aléatoire qui suit la loi exponentielle de paramètre ω_j .

Simulation

La formule (22) suggère les deux étapes suivantes pour simuler une observation x de la distribution $F_{\mathbb{P}}$.

- **①** Générer les valeurs indépendantes y_j , $j=1,2,\cdots,p$ à l'aide de la loi exponentielle de paramètre ω_j .
- ② Prendre comme valeur simulée de la distribution $F_{\mathbb{P}}$ la quantité x définie par

$$x = \max_{1 \le j \le p} \left\{ F_j^{-1} \left(\exp \left\{ -y_j \right\} \right) \right\}. \tag{23}$$

Preuve de la Propriété 6

Soit X_j la variable aléatoire associée à la distribution $F_j^{\omega_j}$.

La variable aléatoire $U_j = F_i^{\omega_j}(X_j)$ suit la loi uniforme sur l'intervalle [0, 1].

Ainsi
$$X_j = F_j^{-1} \left(U_j^{1/\omega_j} \right) = F_j^{-1} \left(\exp \left\{ \frac{1}{\omega_j} \log U_j \right\} \right).$$

La variable aléatoire $Y_j = -\frac{1}{\omega_j} \log U_j$ suit la loi exponentielle de paramètre ω_j . En effet pour tout réel y > 0, on a :

$$\mathbb{P}\left\{Y_{j} \leq y\right\} = \mathbb{P}\left\{-\frac{1}{\omega_{j}}\log U_{j} \leq y\right\} \\
= \mathbb{P}\left\{U_{j} > \exp\{-\omega_{j}y\}\right\} \\
= 1 - \exp\{-\omega_{j}y\}.$$

Pour tout $x \in \mathbb{R}$, on a :

$$\mathbb{P}\{X \le x\} = \prod_{j=1}^{p} \mathbb{P}\{X_j \le x\}$$

$$= \mathbb{P}\{X_1 \le x, \dots, X_p \le x\}$$

$$= \mathbb{P}\{\max\{X_1, \dots, X_p\} \le x\}.$$

Theorem

Soit $\omega = (\omega_1, \cdots, \omega_p) \in [0, 1]^p$ un vecteur de poids, c'est-à-dire $\sum_{j=1}^p \omega_j = 1$. On considère les distributions de probabilités F_S , F_H et F_P définies par

$$F_{S}(x;\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(x), \quad F_{\mathbb{H}}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)}\right)^{-1}, \quad F_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x).$$

Si $x_j(\alpha)$ désigne le quantile d'ordre $\alpha \in [0, 1]$ de la distribution F_j , i.e. $F_j(x_j(\alpha)) = 1 - \alpha$, alors les quantités $x_1(\alpha) = \min_{1 \le j \le p} \{x_j(\alpha)\}$, $x_2(\alpha) = \max_{1 \le j \le p} \{x_j(\alpha)\}$ satisfont pour tout vecteur de poids ω les inégalités suivantes :

$$F_{S}(x_{1}(\alpha);\omega) \leq 1-\alpha \leq F_{S}(x_{2}(\alpha);\omega) \iff x_{1}(\alpha) \leq F_{S}^{-1}(1-\alpha;\omega) \leq x_{2}(\alpha),$$

$$F_{\mathbb{H}}\big(x_1(\alpha);\omega\big) \leq 1-\alpha \leq F_{\mathbb{H}}\big(x_2(\alpha);\omega\big) \quad \Longleftrightarrow \quad x_1(\alpha) \leq F_{\mathbb{H}}^{-1}\big(1-\alpha;\omega\big) \leq x_2(\alpha),$$

$$F_{\mathbb{P}}(x_1(\alpha);\omega) \leq 1 - \alpha \leq F_{\mathbb{P}}(x_2(\alpha);\omega) \quad \Longleftrightarrow \quad x_1(\alpha) \leq F_{\mathbb{P}}^{-1}(1-\alpha;\omega) \leq x_2(\alpha).$$

Preuve de la Propriété 7 (1/2)

Par hypothèse, pour tout $j = 1, \dots, p$ on a les deux égalités suivantes vraies

$$F_j^{\omega_j}(x_j(\alpha)) = (1-\alpha)^{\omega_j}, \quad \omega_j F_j(x_j(\alpha)) = \omega_j (1-\alpha), \quad \frac{\omega_j}{F_j(x_j(\alpha))} = \frac{\omega_j}{1-\alpha}.$$

Par définition, pour tout $j = 1, \dots, p$ on a les inégalités suivantes :

$$F_j\left(\max_{1\leq k\leq p}\{x_k(\alpha)\}\right)\geq F_j(x_j(\alpha)), \quad F_j\left(\min_{1\leq k\leq p}\{x_k(\alpha)\}\right)\leq F_j(x_j(\alpha)).$$

Ce qui implique

$$F_j^{\omega_j}(x_2(\alpha)) \geq (1-\alpha)^{\omega_j}, \quad \omega_j F_j(x_2(\alpha)) \geq \omega_j (1-\alpha), \quad \frac{\omega_j}{F_j(x_2(\alpha))} \leq \frac{\omega_j}{1-\alpha}.$$

$$F_j^{\omega_j}\big(x_1(\alpha)\big) \leq (1-\alpha)^{\omega_j}, \quad \omega_j F_j\big(x_1(\alpha)\big) \leq \omega_j\big(1-\alpha\big), \quad \frac{\omega_j}{F_j\big(x_1(\alpha)\big)} \geq \frac{\omega_j}{1-\alpha}.$$

Preuve de la Propriété 7 (2/2)

$$F_{\mathbb{P}}(x_2(\alpha)) = \prod_{j=1}^{p} F_j^{\omega_j}(x_2(\alpha)) \ge \prod_{j=1}^{p} (1-\alpha)^{\omega_j} = (1-\alpha)^{\sum_{j=1}^{p} \omega_j} = 1-\alpha.$$

$$F_{\mathbb{P}}(x_1(\alpha)) = \prod_{j=1}^p F_j^{\omega_j}(x_1(\alpha)) \le \prod_{j=1}^p (1-\alpha)^{\omega_j} = (1-\alpha)^{\sum_{j=1}^p \omega_j} = 1-\alpha.$$

$$F_{\mathbf{S}}(\mathsf{x}_2(\alpha)) = \sum_{j=1}^p \omega_j F_j(\mathsf{x}_2(\alpha)) \geq (1-\alpha) \sum_{j=1}^p \omega_j = 1-\alpha.$$

$$F_{S}(x_{1}(\alpha))=\sum_{j=1}^{p}\omega_{j}F_{j}(x_{2}(\alpha))\leq (1-\alpha)\sum_{j=1}^{p}\omega_{j}=1-\alpha.$$

$$\frac{1}{F_{\mathbb{H}}(\mathsf{x}_2(\alpha))} = \sum_{i=1}^p \frac{\omega_i}{F_j(\mathsf{x}_2(\alpha))} \leq \sum_{i=1}^p \frac{\omega_i}{1-\alpha} = \frac{1}{1-\alpha}.$$

$$\frac{1}{F_{\mathbb{H}}(x_1(\alpha))} = \sum_{j=1}^p \frac{\omega_j}{F_j(x_1(\alpha))} \geq \sum_{j=1}^p \frac{\omega_j}{1-\alpha} = \frac{1}{1-\alpha}.$$

Theorem

Soit $\omega = (\omega_1, \cdots, \omega_p) \in [0, 1]^p$ un vecteur de poids, c'est-à-dire $\sum_{j=1}^p \omega_j = 1$. On considère les distributions de probabilités F_S , F_H et F_P définies par

$$F_{S}(x;\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(x), \quad F_{\mathbb{H}}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)}\right)^{-1}, \quad F_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x)$$

de densités de probabilités respectives $f_S(\cdot;\omega)$, $f_H(\cdot;\omega)$, $f_P(\cdot;\omega)$, où F_j est une fonction de répartition de densité de probabilités f_j .

- Soit $x_j(\alpha) \in \mathbb{R}$ avec $\alpha \in (0, 1)$ tel que $F_j(x_j(\alpha)) = 1 \alpha$.
- Soit $j_0 = \arg\max_{1 \leq j \leq p} \{x_j(\alpha)\}$, i.e. $x_{j_0}(\alpha) = \max_{1 \leq j \leq p} \{x_j(\alpha)\}$.

Alors la quantité $x(\alpha) \in \mathbb{R}$ définie au voisinage de $\alpha = 0$ par

$$x(\alpha) = x_{j_0}(\alpha) + \alpha \left[\frac{1}{f_{j_0}(x_{j_0}(\alpha))} - \frac{1}{f_{\mathbb{S}}(x_{j_0}(\alpha); \omega)} \right]$$

est une fonction qui croît avec $x_{j_0}(\alpha)$ et qui satisfait les conditions ci-dessous

$$\lim_{\alpha \to 0} x(\alpha) = x_{j_0}(\alpha), \quad \lim_{\alpha \to 0} F_{\mathbb{S}}(x(\alpha); \omega) = \lim_{\alpha \to 0} F_{\mathbb{H}}(x(\alpha); \omega) = \lim_{\alpha \to 0} F_{\mathbb{P}}(x(\alpha); \omega) = 1 - \alpha.$$

Preuve de la Propriété 8 (1/3)

L'équation

$$F_{\mathbb{S}}(x(\alpha);\omega)=1-\alpha$$

peut encore s'écrire de la manière suivante

$$F_{S}(x(\alpha);\omega) - F_{S}(x_{j_0}(\alpha);\omega) = 1 - \alpha - F_{S}(x_{j_0}(\alpha);\omega).$$

A l'aide du dévelpoppement limité de Taylor à l'ordre 1 on en déduit que

$$[x(\alpha)-x_{j_0}(\alpha)]\cdot f_S(x_{j_0}(\alpha);\omega)\sim 1-\alpha-F_S(x_{j_0}(\alpha);\omega)$$

au voisinage de $\alpha = 0$ car $\lim_{\alpha \to 0} x(\alpha) = \lim_{\alpha \to 0} x_{j_0}(\alpha)$. Ainsi au voisinage de $\alpha = 0$ on a

$$x(\alpha) \sim x_{j_0}(\alpha) + \frac{1 - \alpha - F_S\left(x_{j_0}(\alpha); \omega\right)}{f_S\left(x_{i_0}(\alpha); \omega\right)} = x_{j_0}(\alpha) + \frac{1 - F_S\left(x_{j_0}(\alpha); \omega\right)}{f_S\left(x_{i_0}(\alpha); \omega\right)} - \frac{\alpha}{f_S\left(x_{i_0}(\alpha); \omega\right)}.$$

Preuve de la Propriété 8 (2/3)

$$\frac{1 - F_{S}(x_{j_{0}}(\alpha); \omega)}{f_{S}(x_{j_{0}}(\alpha); \omega)} = \frac{\sum_{j=1}^{p} \omega_{j} \left[1 - F_{j}(x_{j_{0}}(\alpha); \omega)\right]}{\sum_{j=1}^{p} \omega_{j} f_{j}(x_{j_{0}}(\alpha); \omega)}$$

$$= \frac{1 - F_{j_{0}}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)} \cdot \frac{\omega_{j_{0}} + \sum_{j \neq j_{0}}^{p} \omega_{j} \frac{1 - F_{j}(x_{j_{0}}(\alpha); \omega)}{1 - F_{j_{0}}(x_{j_{0}}(\alpha); \omega)}}{\omega_{j_{0}} + \sum_{j \neq j_{0}}^{p} \omega_{j} \frac{f_{j}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)}}$$
(Hospital rule)
$$\sim \frac{1 - F_{j_{0}}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)} \cdot \frac{\omega_{j_{0}} + \sum_{j \neq j_{0}}^{p} \omega_{j} \left(\frac{dx_{j_{0}}(\alpha)}{d\alpha}\right) \cdot \left(\frac{dx_{j_{0}}(\alpha)}{d\alpha}\right)^{-1} \cdot \frac{f_{j}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)}}$$

$$\omega_{j_{0}} + \sum_{j \neq j_{0}}^{p} \omega_{j} \frac{f_{j}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)}$$

$$\sim \frac{1 - F_{j_{0}}(x_{j_{0}}(\alpha); \omega)}{f_{j_{0}}(x_{j_{0}}(\alpha); \omega)}.$$

Preuve de la Propriété 8 (3/3)

Soit $x^* = \max \{x_{F_1}, x_{F_2}, \cdots, x_{F_p}\}$, où $x_{F_j} \le +\infty$ est la borne supérieure du support de la distribution F_j . Soient x_1 et x_2 deux valeurs assez proches de x^* telles que $x_1 < x_2$.

$$\begin{split} \left(\frac{1}{f_{j_{0}}\left(x_{2}\right)} - \frac{1}{f_{S}\left(x_{2}\right)}\right) \left(\frac{1}{f_{j_{0}}\left(x_{1}\right)} - \frac{1}{f_{S}\left(x_{1}\right)}\right)^{-1} &= \left(\frac{f_{S}\left(x_{2}\right) - f_{j_{0}}\left(x_{2}\right)}{f_{j_{0}}\left(x_{2}\right) f_{S}\left(x_{2}\right)}\right) \left(\frac{f_{S}\left(x_{1}\right) - f_{j_{0}}\left(x_{1}\right)}{f_{j_{0}}\left(x_{1}\right) f_{S}\left(x_{1}\right)}\right)^{-1} \\ &= \left(\frac{f_{S}\left(x_{2}\right) - f_{j_{0}}\left(x_{2}\right)}{f_{S}\left(x_{1}\right) - f_{j_{0}}\left(x_{1}\right)}\right) \left(\frac{f_{j_{0}}\left(x_{1}\right) f_{S}\left(x_{1}\right)}{f_{j_{0}}\left(x_{2}\right) f_{S}\left(x_{2}\right)}\right). \end{split}$$

On peut écrire

$$\frac{f_{S}(x_{2}) - f_{j_{0}}(x_{2})}{f_{S}(x_{1}) - f_{j_{0}}(x_{1})} = \frac{f_{j_{0}}(x_{2})}{f_{j_{0}}(x_{1})} \cdot \frac{(\omega_{j_{0}} - 1) + \sum_{j'=j_{0}}^{p} \omega_{j} \frac{f_{j}(x_{2})}{f_{j_{0}}(x_{1})}}{(\omega_{j_{0}} - 1) + \sum_{j'=j_{0}}^{p} \omega_{j} \frac{f_{j}(x_{1})}{f_{j_{0}}(x_{1})}} \sim \frac{f_{j_{0}}(x_{2})}{f_{j_{0}}(x_{1})}.$$

Ainsi

$$\left(\frac{1}{f_{j_0}\left(x_2\right)} - \frac{1}{f_{\mathbb{S}}\left(x_2\right)}\right) \left(\frac{1}{f_{j_0}\left(x_1\right)} - \frac{1}{f_{\mathbb{S}}\left(x_1\right)}\right)^{-1} \sim \frac{f_{j_0}\left(x_2\right)}{f_{j_0}\left(x_1\right)} \cdot \frac{f_{j_0}\left(x_1\right) f_{\mathbb{S}}\left(x_1\right)}{f_{j_0}\left(x_2\right) f_{\mathbb{S}}\left(x_2\right)} = \frac{f_{\mathbb{S}}\left(x_1\right)}{f_{\mathbb{S}}\left(x_2\right)} > 1.$$

D'où la croissance stricte avec $x \in \mathbb{R}$ au voisinage de x^* de la function $\frac{1}{f_0(x)} - \frac{1}{f_0(x)\omega}$.

Corollary

Soit $\omega = (\omega_1, \cdots, \omega_p) \in [0, 1]^p$ un vecteur de poids, c'est-à-dire $\sum_{j=1}^p \omega_j = 1$. On considère les distributions de probabilités G_S , G_H et G_P définies par

$$G_{\mathbb{S}}(x;\omega) = \sum_{j=1}^{p} \omega_j G_j(x), \quad G_{\mathbb{H}}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_j}{G_j(x)}\right)^{-1}, \quad G_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} G_j^{\omega_j}(x)$$

de densités de probabilités respectives $g_S(\cdot;\omega)$, $g_H(\cdot;\omega)$, $g_P(\cdot;\omega)$, où G_j est une distribution GEV de paramètre $(\gamma_j,\sigma_j,\mu_j)\in\mathbb{R}^3$ et de densité g_j .

Soit
$$x_j(\alpha) = \mu_j + \sigma_j \left\{ \frac{[-\log(1-\alpha)]^{-\gamma_j} - 1}{\gamma_j} \right\} \in \mathbb{R}$$
 avec $\alpha \in (0, 1)$, i.e. $G_j(x_j(\alpha)) = 1 - \alpha$.

Si $j_0 = \arg\max_{1 \le j \le p} \{\gamma_j\}$, alors la fonction $x(\alpha) \in \mathbb{R}$ définie par (24) croît simultanément avec γ_{j_0} , σ_{j_0} et μ_{j_0}

$$x(\alpha) = x_{j_0}(\alpha) + \alpha \left[\frac{1}{g_{j_0}(x_{j_0}(\alpha))} - \frac{1}{g_{S}(x_{j_0}(\alpha); \omega)} \right]. \tag{24}$$

De plus, les conditions ci-dessous sont satisfaites

$$\lim_{\alpha \to 0} x(\alpha) = x_{j_0}(\alpha), \quad \lim_{\alpha \to 0} G_{\mathbb{S}}(x(\alpha); \omega) = \lim_{\alpha \to 0} G_{\mathbb{H}}(x(\alpha); \omega) = \lim_{\alpha \to 0} G_{\mathbb{P}}(x(\alpha); \omega) = 1 - \alpha.$$

Estimation des distributions de mélange $F_{\mathbb{P}}$ et $F_{\mathbb{H}}$ (1/2)

Cadre de travail

Soit $\omega = (\omega_1, \cdots, \omega_p) \in [0, 1]^p$ un vecteur de poids, c'est-à-dire $\sum_{j=1}^p \omega_j = 1$. On considère les distributions de probabilités $F_{\mathbb{P}}$ et $F_{\mathbb{H}}$ définies pout tout $x \in \mathbb{R}$ par

$$F_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} F_{j}^{\omega_{j}}(x), \quad F_{\mathbb{H}}(x;\omega) = \left(\sum_{j=1}^{p} \frac{\omega_{j}}{F_{j}(x)}\right)^{-1}.$$

Soit $X_{\mathbb{P}}$ et $X_{\mathbb{H}}$ les variables aléatoires associées resp. aux distributions $F_{\mathbb{P}}$ et $F_{\mathbb{H}}$. Les relations suivantes

$$-\log F_{\mathbb{P}}\left(X_{\mathbb{P}};\omega\right) = \sum_{j=1}^{p} \omega_{j}\left(-\log F_{j}\left(X_{\mathbb{P}}\right)\right), \quad -\log F_{\mathbb{H}}\left(X_{\mathbb{H}};\omega\right) = \sum_{j=1}^{p} \omega_{j}\left(\frac{1}{F_{j}\left(X_{\mathbb{H}}\right)}\right).$$

montrent que les variables aléatoires $Y_{\mathbb{P}} = -\log F_{\mathbb{P}}(X_{\mathbb{P}};\omega)$ et $Y_{\mathbb{H}} = -\log F_{\mathbb{H}}(X_{\mathbb{H}};\omega)$ suivent la loi exponentielle standard et s'exprime comme une moyenne pondérée arithmétiquement d'autres variables aléatoires.

Cette remarque suggère la stratégie suivante pour l'estimation des paramètres des distributions **unimodales** $F_{\mathbb{P}}$ et $F_{\mathbb{H}}$ à partir d'un échantillon $X = \{x_1, \dots, x_n\}$ de fonction de répartition empirique F_n .

Estimation des distributions de mélange $F_{\mathbb{P}}$ et $F_{\mathbb{H}}$ (2/2)

Stratégie

- ① Utiliser par exemple l'algorithme appelé **kmeans** pour partitionner l'échantillon $\mathcal{E} = \{-\log F_n(x_1), \dots, -\log F_n(x_n)\}$ en p clusters nommés \mathcal{E}_i , $j = 1, \dots, p$.
- ② Estimer les poids $\omega_j = \frac{n_j}{\sum_{k=1}^p n_k}$, où n_j est le nombre d'éléments dans le cluster \mathcal{E}_j .
- **3** Estimer les paramètres de la distribution F_j à l'aide des observations du cluster $X_j = \{x_i \in X : -\log F_n(x_i) \in \mathcal{E}_j\}$.

Cas des valeurs extrêmes

Pour modéliser les valeurs extrêmes d'une variable aléatoire X dont on connait un échantillon $X = \{x_1, \dots, x_n\}$, on peut appliquer la stratégie ci-dessus en utilisant :

- **1** Ia distribution $G_{\mathbb{P}}(x;\omega) = \prod_{j=1}^{p} G_{j}^{\omega_{j}}(x)$ avec $x \in \mathbb{R}$, où G_{j} est une distribution GEV,
- ② l'échantillon $X(\alpha) = \{x_i \in X : x_i > x(\alpha)\}$, où $x(\alpha) = F_n^{-1}(\alpha)$ avec $\alpha \ge 0.5$, F_n étant la fonction de répartition empirique estimée sur l'échantillon X.

Estimation de la distribution de mélange F_s (1/3)

Soit $\omega = (\omega_1, \dots, \omega_p) \in [0, 1]^p$ un vecteur de poids, c'est-à-dire $\sum_{j=1}^p \omega_j = 1$. On considère une distribution de probabilités F_S définie pout tout $x \in \mathbb{R}$ par

$$F_{S}(x;\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(x),$$

où F_j est une fonction de répartition de densité de probabilités f_j paramétrée par $\theta_j \in \mathbb{R}^d$. Soit X_S la variable aléatoire associée à la distribution F_S . La relation suivante

$$F_{S}(X_{S};\omega) = \sum_{j=1}^{p} \omega_{j} F_{j}(X_{S})$$

montre que la variable aléatoire $Y_S = F_S(X_S; \omega)$ suit la loi uniforme standard et s'exprime comme une moyenne pondérée arithmétiquement d'autres variables aléatoires.

Nous adoptons la stratégie suivante pour l'estimation des paramètres ω_j et θ_j de la distribution (**multimodales**) F_S à partir d'un échantillon $X = \{x_1, \dots, x_n\}$ de fonction de répartition empirique F_n .

12 janvier 2024

Estimation de la distribution de mélange F_{s} (2/3)

Stratégie : Initialisation

- ① Utiliser par exemple l'algorithme appelé **kmeans** pour partitionner l'échantillon $\mathcal{U} = \{F_n(x_1), \cdots, F_n(x_n)\}$ en p clusters nommés $\mathcal{U}_j^{(0)}, j = 1, \cdots, p$.
- Estimer les poids $\omega_j^{(0)} = \frac{n_j^{(0)}}{\sum_{k=1}^p n_k^{(0)}}$, où $n_j^{(0)}$ est le nombre d'éléments dans l'ens. $\mathcal{U}_j^{(0)}$.
- **Q** Estimer le paramètre $\theta_i^{(0)}$ de la distribution F_j à l'aide de la formule suivante

$$\theta_{j}^{(0)} = \operatorname{arg\,max}_{\theta_{j}} \sum_{x \in \mathcal{X}_{j}^{(0)}} \log f_{j}(x; \theta_{j}),$$

où
$$X_i^{(0)} = \left\{ x_i \in X : F_n(x_i) \in \mathcal{U}_i^{(0)} \right\}.$$

• calculer la probabilité a posteriori $\zeta_{j,i}^{(0)}$ d'appartenance d'une obs. x_i au cluster $X_j^{(0)}$ à l'aide de la formule suivante

$$\zeta_{j,i}^{(0)} = \frac{\omega_j^{(0)} f_j\left(x_i; \theta_j^{(0)}\right)}{\sum_{k=1}^p \omega_k^{(0)} f_k\left(x_i; \theta_k^{(0)}\right)}.$$

Estimation de la distribution de mélange F_s (3/3)

Stratégie : Itérations

pour $t = 1, 2, \dots$, faire:

• Constituer les ensembles $X_i^{(t)}$ définis pour $j=1,2,\cdots,p$ par

$$X_{j}^{(t)} = \left\{ x_{i} \in X : \ \zeta_{j,i}^{(t-1)} \geq \max_{1 \leq k \leq p} \zeta_{k,i}^{(t-1)} \right\}$$

- ② Estimer les poids $\omega_j^{(t)} = \frac{n_j^{(t)}}{\sum_{k=1}^p n_k^{(t)}}$, où $n_j^{(t)}$ est le nombre d'éléments dans l'ens. $X_j^{(t)}$.
- **3** Estimer le paramètre $\theta_i^{(t)}$ de la distribution F_j à l'aide de la formule suivante

$$\theta_{j}^{(t)} = \arg\max_{\theta_{j}} \sum_{\mathbf{x} \in \mathcal{X}_{j}^{(t)}} \log f_{j}\left(\mathbf{x}; \theta_{j}\right).$$

• calculer la probabilité a posteriori $\zeta_{j,i}^{(t)}$ d'appartenance d'une obs. x_i au cluster $X_j^{(t)}$ à l'aide de la formule suivante

$$\zeta_{j,i}^{(t)} = \frac{\omega_j^{(t)} f_j(x_i; \theta_j^{(t)})}{\sum_{k=1}^p \omega_k^{(t)} f_k(x_i; \theta_k^{(t)})}.$$

Resultat: $\theta_j = \lim_{t \to +\infty} \theta_j^{(t)}$, $\omega_j = \lim_{t \to +\infty} \omega_j^{(t)}$, $\mathcal{X}_j = \lim_{t \to +\infty} \mathcal{X}_j^{(t)}$.

Distribution des extrêmes et mélange des lois GEV

- Soit X une v.a. de fonction de répartition F et de borne supérieure x_F .
- Soient b_1, \dots, b_p une suite de p entiers positifs suffisamment grands.
- On suppose que pour tout $j=1,\cdots,p$ et pour toute grande valeur $x\in\mathbb{R}$, l'approximation suivante est satisfaite

$$F(x) = \mathbb{P}\{X \le x\} \sim G_i^{1/b_j}(x; \Theta_j) = G_j(x; \Theta_j(b_j)), \tag{25}$$

où G_j est une distribution GEV de paramètre $\Theta_j = (\gamma_j, \sigma_j, \mu_j) \in \mathbb{R}^3$.

Alors, **quel que soit** le vecteur $\omega = (\omega_1, \cdots, \omega_p) \in [0, 1]^p$ tel que $\sum_{j=1}^p \omega_j = 1$ et pour toute grande valeur $x \in \mathbb{R}$, on peut faire les approximations suivantes

$$F(x) = \mathbb{P}\{X \leq x\}^{\sum_{j=1}^{p} \omega_j} = \prod_{j=1}^{p} \left(\mathbb{P}\{X \leq x\} \right)^{\omega_j} \sim \prod_{j=1}^{p} \left[G_j(x; \Theta_j(b_j)) \right]^{\omega_j} = G_{\mathbb{P}}(x; \omega, \Theta(b)).$$

$$F(x) = \mathbb{P}\{X \leq x\} \sum_{j=1}^{p} \omega_{j} = \sum_{j=1}^{p} \omega_{j} \mathbb{P}\{X \leq x\} \sim \sum_{j=1}^{p} \omega_{j} G_{j}\left(x; \Theta_{j}(b_{j})\right) = G_{S}\left(x; \omega, \Theta(b)\right).$$

$$\frac{1}{F(x)} = \frac{\sum_{j=1}^{p} \omega_j}{\mathbb{P}\{X \leq x\}} = \sum_{i=1}^{p} \frac{\omega_j}{\mathbb{P}\{X \leq x\}} \sim \sum_{i=1}^{p} \frac{\omega_j}{G_j\left(x;\Theta_j(b_j)\right)} = \frac{1}{G_{\mathbb{H}}\left(x;\omega,\Theta(b)\right)}.$$

Estimation du paramètre 🖯 : Cas IID

Soit $X = (x_1, ..., x_n)$ un échantillon d'une une variable aléatoire X ayant une distribution de probabilité **inconnue**.

- Soit $b = \{b_j \in \mathbb{N}^*, j = 1, \dots, p\}$ un ensemble de p tailles de blocs assez grandes.
- Soit $(\gamma_j, \sigma_j, \mu_j)$ le vecteur des paramètres de la loi GEV nommée $G_j(\cdot)$ caractérisant la distribution des maximums de b_i obs. consécutives de la v.a. X.

Nous avons adoptés les notations ci-dessous pour désigner l'ensemble des paramètres qui figurent dans les modèles de mélange qui précèdent

- $b = (b_1, \cdots, b_p),$
- $\bullet \ \Theta(b) = (\Theta_j(b_j), j = 1, \cdots, p),$
- $\bullet \ \gamma_j(b_j) = \gamma_j, \quad \sigma_j(b_j) = \sigma_j \ b_j^{-\gamma_j}, \quad \mu_j(b_j) = \mu_j + \sigma_j \left(\frac{b_j^{-\gamma_j} 1}{\gamma_j}\right).$

Estimation du paramètre 🖯 : Cas Stationnaire

Soit X_t , $t = 1, 2, \cdots$ une série temporelle **stationnaire** de processus aléatoire **inconnu**.

- Soit $b = \{b_j \in \mathbb{N}^*, j = 1, \dots, p\}$ un ensemble de p tailles de blocs assez grandes.
- Soit $(\gamma_j, \sigma_j, \mu_j)$ le vecteur des paramètres de la loi GEV nommée $G_j(\cdot)$ caractérisant la distribution des maximums de b_j obs. consécutives de la serie X_t .
- Soit $v_j \in [0, 1]$ l'**indice extremal** associé au seuil défini par le quantile empirique $x_{n,1/b_j}$ d'ordre $1/b_j$ estimé sur une séquence $X_n = \{x_1, \dots, x_n\}$ de la série X_t .

Indice extremal

Un indice extremal ν quantifie le degré de dépendance entre l'occurrence des valeurs extrêmes consécutives. Cette dépendance est **forte** lorsque ν tend vers 0 et **faible** lorsque ν tend vers 1.

Nous avons adoptés les notations ci-dessous pour désigner l'ensemble des paramètres qui figurent dans les modèles de mélange qui précèdent

- $b = (b_1, \dots, b_p), \ \Theta(b) = (\Theta_j(b_j), \ j = 1, \dots, p), \ \Theta_j(b_j) = (\gamma_j(b_j), \sigma_j(b_j), \mu_j(b_j)),$
- $\gamma_j(b_j) = \gamma_j$, $\sigma_j(b_j) = \sigma_j(\nu_j b_j)^{-\gamma_j}$, $\mu_j(b_j) = \mu_j + \sigma_j\left(\frac{(\nu_j b_j)^{-\gamma_j} 1}{\gamma_i}\right)$.

Estimation du paramètre Θ : Cas Non-Stationnaire (1/2)

Soit X_t , $t = 1, 2, \cdots$ une série temporelle **non-stationnaire** de processus **inconnu**. Soit $Y_t = (Y_{1,t}, \cdots, Y_{q,t})$ une série temporelle de q covariables pour la série X_t . Soit X_1, \cdots, X_n une séquence de n obs. de la série X_t .

On suppose que chaque obs. x_{ℓ} est associée à un vecteur de q cov. $y_{\ell} = (y_{1,\ell}, \cdots, y_{q,\ell})$.

- Soit $b = \{b_j \in \mathbb{N}^*, j = 1, \dots, p\}$ un ensemble de p tailles de blocs assez grandes.
- Soit $(\gamma_j(y_t), \sigma_j(y_t), \mu_j(y_t))$ le vecteur des paramètres de la loi GEV nommée $G_j(\cdot|Y_t=y_t)$ caractérisant la distribution conditionelle des maximums de b_j obs. consécutives de la série X_t .
- Soit $v_j \in [0, 1]$ l'indice extremal associé au seuil défini par le quantile empirique $x_{n,1/b_j}$ d'ordre $1/b_j$ estimé sur une séquence $X_n = \{x_1, \cdots, x_n\}$ de la série X_t .

Structure des paramètres

- $\mu_i(y_t) = \mu_{0,i} + \mu_{1,i} f_1(y_t) + \cdots + \mu_{q,i} f_q(y_t),$
- $\sigma_j(y_t) = \exp \{ \phi_{0,j} + \phi_{1,j} g_1(y_t) + \dots + \phi_{q,j} g_q(y_t) \},$
- où f_{ℓ} , g_{ℓ} , h_{ℓ} sont des fonctions continues de supports dans \mathbb{R}^q et à valeurs dans \mathbb{R} .

Estimation du paramètre Θ : Cas Non-Stationnaire (2/2)

Nous avons adoptés les notations ci-dessous pour désigner l'ensemble des paramètres qui figurent dans les modèles de mélange qui précèdent

- $b = (b_1, \dots, b_p),$
- $\Theta(b) = (\Theta_i(b_i, y_t), j = 1, \dots, p, t = 1, \dots, n),$
- $\bullet \ \Theta_j(b_j, y_t) = (\gamma_j(b_j, y_t), \sigma_j(b_j, y_t), \mu_j(b_j, y_t)),$
- $\sigma_j(b_j, y_t) = \sigma_j(y_t) \cdot (v_j b_j)^{-\gamma_j(y_t)}$,
- $\mu_j(b_j, y_t) = \mu_j(y_t) + \sigma_j(y_t) \cdot \left(\frac{(v_j b_j)^{-\gamma_j(y_t)} 1}{\gamma_j(y_t)}\right).$