Índice

Introducción
Potencias y radicales
Polinomios
Ecuaciones
Sistemas
Números complejos
Funciones y gráficas
Logaritmos
Trigonometría
Límites
Derivadas
Integrales
Vectores
Geometría analítica
Matrices
Álgebra lineal
Álgebra de Boole
Estadística descriptiva
Regresión
Cálculo vectorial
Transformada de Laplace
Distribuciones de probabilidad 24
Aritmética modular 25
Sólidos tridimensionales
Funciones multiplicativas

Cónicas	. 29
Más gráficas	. 30
Cuaterniones	. 31
Ecuaciones diferenciales	. 32

Introducción

Realiza la operación:

$$51 + 53 \cdot (3 - 21) - 7 \cdot (-2)^7$$

Realiza la operación:

$$\frac{41}{2} + \frac{11}{3} \left(\frac{77}{3} + \frac{5}{9} \right) - 3$$

Realiza la operación:

$$4.8(45.94 - 89.78)^2 - 89.65$$

- Calcula π y $\sqrt{77}$ con decimales
- Factoriza 612 y 5292.
- Ocalcula MCM y MCD de 612 y 5292.
- lacktriangle Comprueba si 5673 es primo. Lo mismo con $2^{32}+1$.
- O Calcula el cociente y el resto de 567854 entre 457.
- Calcula todos los divisores 180.
- Demuestra que 496 es un número perfecto.
- Onvertir 496 en números romanos y a otras bases.

Potencias y radicales

Ocomprueba la propiedad del producto de potencias:

$$a^n \cdot a^m = a^{m+n}$$

Haz lo mismo con las propiedades:

$$\frac{a^m}{a^n} = a^{m-n} \qquad (a^n)^m = a^{nm}$$

Calcula, de modo exacto y aproximado:

a)
$$\sqrt{80}$$

b)
$$\sqrt[5]{224}$$

Realiza la siguiente multiplicación:

$$\sqrt[6]{2^5} \cdot \sqrt{2^7} \cdot \sqrt[3]{2^2}$$

Simplifica los siguientes radicales:

a)
$$\sqrt[12]{2^9}$$

b)
$$\frac{3}{\sqrt[3]{2^7}}$$

Simplifica:

$$23\sqrt{125} + 3\sqrt{20} - 2\sqrt{45}$$

Simplifica:

a)
$$\frac{5}{2\sqrt{3}-2}$$

b)
$$\sqrt[3]{2^5\sqrt{2}}$$

Polinomios

Realiza la operación:

$$(x-2)^2 + (8-5x)(4x-1)$$

Desarrolla las identidades notables:

$$a) (x+y)^2 b) (x+y)^4$$

Factoriza:

$$p = x^4 - x^3 - 7x^2 + 13x - 6$$
 $q = x^3 - 5x^2 + 8x - 4$

- Calcula MCM y MCD de los polinomios anteriores.
- Realiza la operación y descompón en fracciones simples:

$$\frac{x^2-3}{2x-5} + \frac{5x-2}{7x-1} \cdot \frac{6x+2}{4x^2-1}$$

Calcula el cociente y el resto:

$$(x^3 - 2x^2 - 5x - 3) : (2x^2 - 1)$$

Factoriza, halla raíces y comprueba las soluciones:

$$x^3 - 3x^2 + x - 3$$

Ecuaciones

Resuelve la ecuación:

$$(2x^2+1)^2 - 6 = (x^2+2)(x^2-2)$$

Resuelve, con respecto a varias letras, la ecuación:

$$ax^2 + bx + c = 0$$

Calcula las raíces y las soluciones del polinomio:

$$x^4 - 6x^3 + 13x^2 - 12x + 4$$

Resuelve la ecuación irracional:

$$\sqrt{7x+1} - \sqrt{8x-15} = 1$$

Resuelve:

$$3\cos(x) + x^2 = 5$$

Resuelve la inecuación:

$$x^3 - 2x^2 - 5x + 6 \ge 0$$

Resuelve la inecuación racional:

$$\frac{x^2 - 5x + 6}{x^2 - 6x + 8} \ge 0$$

Sistemas

Resuelve el sistema lineal:

$$\begin{cases} 5x+3 = 20-9y \\ 2x-3y = 5x-y \end{cases}$$

Resuelve el sistema no lineal:

$$\begin{cases} xy = 15 \\ x^2 + y^2 = 34 \end{cases}$$

Resuelve el sistema:

$$\begin{cases} 5x + 2y - 2z = 3\\ 4x + 5y - 4z = -1\\ -2x + 7y + 5z = 10 \end{cases}$$

Resuelve el sistema:

$$\begin{cases} 5x + 2y - 2z = 3\\ 4x + 5y - 4z = -1\\ 9x + 7y - 6z = 2 \end{cases}$$

Resuelve el sistema de inecuaciones:

$$\begin{cases} x^2 - y > 5\\ x^2 + y^2 > 9 \end{cases}$$

Números complejos

• Calcula $\sqrt{-1}$ y resuelve la ecuación:

$$x^2 + 1 = 0$$

Realiza la operación:

$$\frac{2+5i}{2-7i} + (2-i)^3$$

- O Calcula el módulo, el argumento, la parte real, la parte imaginaria y el conjugado de 3 + 9i.
- Calcula las raíces (y factoriza):

$$x^3 - 8x^2 + 29x - 52$$

- Escribe en polar el número 5 + 3i. Escribe $5\frac{\pi}{6}$ en forma binómica. Lo mismo con $5_{30^{\circ}}$.
- ◆ Calcula el logaritmo de −1 y comprueba la fórmula de Euler.
- O Calcula distintas raíces de 3 + 6i.

Funciones y gráficas

Calcula distintos valores de la función:

$$y = x^2 + 2x - 5$$

O Calcula el dominio y el rango de la función:

$$y = \frac{\sqrt{x}}{x - 3}$$

- O Dibuja la gráfica de la función $y = 3x^2 x + 1$. Varia el intervalo del eje x y del eje y.
- Dibuja varias gráficas en los mismos ejes.
- O Dibuja la gráfica de la función $y = x^2 2$ y superpuesta a ella la gráfica del valor absoluto de la función.
- Dibuja la función definida a trozos:

$$\begin{cases} x+2 & \text{si } x < -2 \\ 5 & \text{si } -2 < x < 1 \\ -x+4 & \text{si } x > 1 \end{cases}$$

Logaritmos

Calcula los siguientes logaritmos:

a)
$$\log_2(1024)$$

b)
$$\log_2(\sqrt{8})$$

- Comprueba la fórmula de cambio de base.
- Desarrolla el siguiente logaritmo:

$$\log\left(\frac{a^3 \cdot b^5}{\sqrt{2}}\right)$$

Halla el valor de *x* en las siguientes igualdades:

a)
$$\log_x(125) = 3$$
 b) $7^x = 115$

b)
$$7^x = 115$$

Resuelve la ecuación:

$$\log(x+3) - \log(x-6) = 1$$

Resuelve:

$$2^{4x} - 2^{2x} - 12 = 0$$

Resuelve:

$$\begin{cases} \log(x) + \log(y) = 3\\ 2\log(x) - 2\log(y) = -1 \end{cases}$$

Trigonometría

Realiza la siguiente operación (en radianes):

$$5\cos\left(\frac{\pi}{2}\right) + 2\cos(\pi) - \tan\left(\frac{\pi}{3}\right)$$

Realiza la siguiente operación (en grados):

$$\cos(60^{\circ}) - 5\sin(135^{\circ})$$

- Calcula funciones trigonométricas inversas.
- Resuelve la siguiente ecuación:

$$\sin(x) + \cos(2x) = 1$$

Oceanies es una identidad la expresión:

$$4\sin^2(x)\cos^2(x) = 1 - \cos^2(2x)$$

Comprueba si es una identidad la expresión:

$$\sin(x+y) = \sin(x) + \sin(y)$$

- Encuentra la fórmula de seno de la suma, de la resta,...
- Resuelve el triángulo:

Límites

Calcula el límite:

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

• Calcula los límites laterales en x = 0 de:

$$f(x) = \frac{1}{x}$$

Calcula el límite:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

 Calcula el límite y comprueba la validez de la regla de L'Hôpital:

$$\lim_{x \to 0} \frac{\sin(x) - x}{x^3}$$

- Calcula la derivada de cos(x) en un punto x = a utilizando la definición con límites.
- Omprueba si f(x) es continua en x = 0.

$$f(x) = (2+x)^{\frac{1}{x}}$$

Derivadas

Calcula, de diversas formas, la derivada:

$$f(x) = 4x^3 - 35x^2$$

 Calcula las derivadas parciales y comprueba la igualdad de las derivadas cruzadas:

$$f(x,y) = x^2 \cos(y) + \sin(x \cdot y)$$

Calcula la derivada de orden 5 de:

$$f(x) = \cos(12x)$$

- Calcula la derivada de un producto y de una composición de funciones.
- Calcula la recta tangente a la curva en $x^2 + \sin(x)$ en el punto x = 3. Haz lo mismo con la curvatura y el círculo osculador.
- Calcula los extremos y los puntos de inflexión de la función:

$$f(x) = x^5 + 3x^4 - 3x^3$$

• Calcula polinomios de Taylor de: $f(x) = \cos(x)$.

Integrales

Calcula la integral indefinida y derivar el resultado:

$$\int x \cos(x)$$

Calcula la integral definida:

$$\int_0^4 4x^2 - 3$$

Calcula la integral impropia:

$$\int_{2}^{\infty} \frac{1}{x^2}$$

Calcula la integral dependiente de parámetros:

$$\int a\cos(wt)dt$$

Calcula la integral gaussiana:

$$\int e^{-t^2} dt$$

Calcula integral doble:

$$\int_{0}^{1} \int_{2}^{\pi} (x^{2} + y^{2}) dx dy$$

Vectores

- Obtén información sobre un vector bidimensional. Realiza combinaciones lineales.
- Realiza el producto escalar de dos vectores.
- Calcula el ángulo que forman ambos vectores.
- Obtén información sobre un vector tridimensional.
- Dados los vectores u=(3,5,2) y v=(-3,1,7) calcula su producto vectorial.
- Comprueba la antisimetría del producto vectorial y que el resultado es ortogonal a cada vector.

Geometría analítica

- Dados los puntos A = (4,2) y B = (2,8) calcula la distancia entre ellos, las coordenadas del punto medio y la ecuación de la recta que los une.
- Recta de pendiente m=1/3 y que pasa por el punto A=(2,5). Recta de vector normal n=(2,3) y que pasa por el punto B=(4,7).
- Distancia del punto A = (-1, 2) a la recta 2x 5y = 2.
- Orcunferencia de centro C = (2,5) y radio 3.
- Circunferencia que pasa por los puntos A = (3, 1), B = (5, 7) y C = (-2, 7).
- Circunferencia de centro C=(3,4) y que pasa por el punto A=(1,1).
- Recta por los puntos A = (2, 4, 1) y B = (5, 1, 3).
- Plano por los puntos A = (2, 4, 7), B = (4, -1, 0) y C = (4, 1, 1).
- Plano de vector normal n = (3, 5, -1) y que pasa por el punto A = (1, 2, 3)
- O Distancia del punto A = (2, 5, 1) y el plano 2x y + z = 4.
- Esfera de centro C = (1, 2, 3) y radio 4.

Matrices

 Calcular el determinante, la traza, la inversa, la traspuesta y la adjunta de:

$$A = \begin{pmatrix} 5 & 7 & 8 \\ -3 & 4 & 2 \\ 4 & 7 & 9 \end{pmatrix}$$

- Realiza operaciones con matrices y comprueba que el producto no es conmutativo.
- Calcula el rango de B y redúcela a forma escalonada:

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

- Calcula el polinomio característico, los autovalores y los autovectores de A. Diagonaliza la matriz.
- O Calcula la descomposición LU de la matriz A.
- Encuentra la forma de Jordan de la matriz:

$$C = \begin{pmatrix} -10 & 1 & 7 \\ -7 & 2 & 3 \\ -16 & 2 & 12 \end{pmatrix}$$

Álgebra lineal

Comprueba que los siguientes vectores forman una base:

$$(3,6,2)$$
 $(4,-2,3)$ $(1,5,2)$

Encuentra las coordenadas de (2, 40, 3) en esta base.

Comprueba que los siguientes vectores son dependientes y encuentra el subespacio que generan:

$$(3,6,2)$$
 $(4,-2,3)$ $(1,22,0)$

 Calcula x para que los vectores sean linealmente dependientes:

$$(3,6,1)$$
 $(-2,4,1)$ $(7,x,4)$

Encuentra el núcleo de la aplicación lineal asociada a la matriz:

$$A = \begin{pmatrix} 3 & 6 & 2 \\ 4 & -2 & 3 \\ 1 & 22 & 0 \end{pmatrix}$$

Ortogonaliza los vectores:

$$(3,6,2)$$
 $(4,-2,3)$ $(1,5,2)$

Álgebra de Boole

- Dibuja el diagrama de Venn de la unión, la intersección, la diferencia y la diferencia simétrica de dos conjuntos.
- «Comprueba» una propiedad distributiva:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

«Comprueba» la ley de De Morgan:

$$(A \cap B)^c = A^c \cup B^c$$

Escribe e interpreta las expresiones booleanas:

$$p \wedge (q \vee r)$$
 $(p \wedge q) \vee (p \wedge r)$

- Calcula la función booleana 224 sobre 3 variables.
- Vuelve a comprobar la ley de De Morgan utilizando expresiones booleanas.
- Calcula la tabla de verdad de la proposición:

$$((p \land q) \lor (p \land r)) \Rightarrow (q \lor r)$$

Estadística descriptiva

Las edades de un conjunto de 13 alumnos son:

- Calcula el número de datos. Calcula la media aritmética.
 Suma los datos y divide entre el número de datos.
- Calcula la mediana. Ordena los datos.
- O Calcula el máximo, el mínimo y el rango.
- Calcula la desviación típica y la varianza.
- Calcula la Kurtosis y el coeficiente de asimetria.
- Calcula los cuartiles.
- Calcula las frecuencias de los datos. Calcula la moda.
- Calcula otras medias distintas.
- Resumen de varios estadísticos.

Regresión

Las notas de 10 alumnos en dos asignaturas son:

Matemáticas	7	6	4	7	8	3	7	5	7	2
Física	6	6	5	8	8	4	7	7	6	1

- Calcula la recta de regresión.
- Calcula ajustes cuadrático y cúbico
- Realiza otro tipo de ajustes.
- Calcula la nota estimada que le corresponde a un alumno que tiene un 7 en matemáticas.
- Calcula el polinomio interpolador que pasa por:

$$(2,3), (2'5,4), (4,-1), (5,1)$$

Realiza un ajuste lineal de los puntos:

Cálculo vectorial

Dada la función:

$$f(x, y, z) = xyz^{6} + 3(x+y)z^{2}$$

calcula el gradiente y el laplaciano.

Dado el campo vectorial:

$$\{3(x+y)z, 5xyz^3, 8x^2 + 3z - 7y\}$$

calcula su divergencia y su rotacional.

Calcula las siguientes expresiones:

$$\operatorname{div}(\operatorname{rot}(V))$$
 $\operatorname{rot}(\operatorname{rot}(V))$

- Comprueba que el laplaciano es lo mismo que la divergencia del gradiente.
- Comprueba que si un campo tiene potencial (es el gradiente de una función) entonces es irrotacional.
- Calcula en coordenadas esféricas el gradiente de:

$$r\cos(\theta)\sin(\phi)$$

Transformada de Laplace

 Calcula la transformada de Laplace del seno utilizando la definición:

$$\mathscr{L}(F(t))(s) = \int_0^\infty F(t)e^{-st}dt$$

Calcula las siguientes transformadas de Laplace:

$$\mathscr{L}(\sin(at))$$
 $\mathscr{L}(\cos(at))$ $\mathscr{L}(e^{at})$

- Calcula la transformada de Laplace de la delta de Dirac y de la función de Heaviside.
- Calcula transformadas de Laplace de constantes y de polinomios.
- O Calcula la transformada de Laplace de:

$$t^3 e^{-5t} \cos(2t)$$

- Calcula la transformada de una combinación lineal y de la derivada.
- lacktriangle Multiplica por e^{at} y calcula su transformada.
- Calcula la siguiente transformada inversa de Laplace:

$$\mathcal{L}^{-1}\left(\frac{1}{(s+1)^2(s+2)}\right)$$

Distribuciones de probabilidad

- Calcula propiedades de la distribución normal con media 6 y desviación estandar 2.
- Con la distribución anterior calcula las probabilidades:

$$P[X < 7]$$
 $P[X > 3]$ $P[2 < X < 7]$ $P[X^2 - X - 3 > 2]$

- Calcula el valor esperado (o esperanza) de $3X^2 2$ si X sigue la distribución anterior.
- Calcula propiedades de la distribución binomial con n=45 y p=0.7.
- On la distribución anterior calcula las probabilidades:

$$P[X < 34]$$
 $P[X \le 34]$ $P[23 \le X < 40]$

• Investiga las distribuciones χ^2 y β .

Aritmética modular

- Encuentra el representante de 593 en \mathbb{Z}_{29} . Realiza operaciones en dicho anillo y encuentra el inverso del número.
- Aplica el teorema de Bezout para encontrar inversos.
- O Calcula el orden del número 5 en \mathbb{Z}_{29} .
- **Operation** Comprueba el pequeño teorema de Fermat en \mathbb{Z}_{29} .
- lacktriangle Comprueba el teorema de Wilson en \mathbb{Z}_{29} .
- lacktriangle Encuentra una raíz primitiva de \mathbb{Z}_{29} y compruébalo.
- Resuelve la ecuación diofántica:

$$3x + 5y = 4$$

 Encuentra un número entero n que cumpla el siguiente sistema de congruencias (Teorema chino del resto):

$$\begin{cases} x \bmod 8 = 7 \\ x \bmod 11 = 6 \\ x \bmod 20 = 3 \end{cases}$$

Sólidos tridimensionales

- Volumen, área y ecuación de una esfera.
- Esfera de radio 7.
- Esfera de superficie 19π .
- Esfera de volumen 42.
- Cilindro de radio 5 y altura 7.
- Cono de radio 5 y altura 7.
- Tetraedro de la lado 6.
- Octaedro de volumen 16.
- Piramide pentagonal.
- Información sobre los sólidos platónicos.

Funciones multiplicativas

- Calcula la función τ sobre 540. Comprueba que coincide con el número de divisores del número.
- Comprueba que 237 y 452 son coprimos y que la función τ es multiplicativa.
- Factoriza el número 540 y aplica sobre él la función τ .
- Calcula la suma de los divisores de 245 y decide si el número es perfecto, abundante o deficiente.
- Comprueba que $2^{30}(2^{31}-1)$ es un número perfecto.
- **O Comprueba que la función** σ **es multiplicativa.**
- Calcula la suma de los cubos de los divisores de 540.
- Calcula la función μ de Moebius para distintas factorizaciones.
- Calcula la función ϕ de Euler. Comprueba que es multiplicativa y que se verifica el teorema de Fermat.
- lacktriangle Calcula una tabla de cuadrados para \mathbb{Z}_{29} .
- Utiliza el criterio de Euler para restos cuadráticos.
- Calcula el símbolo de Legendre de algunos números.

Sucesiones

- Calcula diversos términos de la sucesión $a_n = 1/(n+1)$.
- Encuentra el término general de la sucesión:

$$0, 3, 8, 15, 24, 35, \dots$$

- Calcula diversos términos de la sucesión de Fibonacci.
- Encuentra la sucesión que cumple:

$$f(1) = 3$$
 $f(2) = 3$ $f(n) = f(n-1) + 5f(n-2)$

Calcula el límite en el infinito de las sucesiones:

$$a_n = \frac{(-1)^n}{n+1} \qquad b_n = \left(1 + \frac{1}{n}\right)^n$$

Occuprueba si son convergentes las series:

$$\sum_{n=1}^{\infty} \frac{1}{n} \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- Comprueba si es convergente la serie asociada a una progresión geométrica.
- Comprueba si converge la serie:

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \cdots$$

Cónicas

- Información de todos los tipos de cónicas.
- \bigcirc Circunferencia de radio 5 y de centro(2,3).
- \bigcirc Circunferencia que pasa por (2,4), (5,2) y (3,7).
- lacktriangle Circunferencia de centro (3,4) y que pasa por (5,6).
- Información de la elipse.
- Elipse de centro (4,5), semiejes a=3 y b=4 y ángulo de rotación de 45° .
- Elipse de centro (4,5), foco en (6,8) y excentricidad 1/2.
- Hipérbola de centro (3,4) y excentricidad 2.
- \bullet Parábola de foco (3,4) y vértice (5,2).
- Encontrar la cónica asociada a la ecuación:

$$x^2 + 3y^2 + 5xy - 3x + 4y - 4 = 0$$

Encontrar la cónica asociada a la forma cuadrática:

$$(x,y)\begin{pmatrix} 3 & 2\\ 2 & 6 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}$$

Más gráficas

- Simular una función definida a trozos.
- Dibuja la ecuación paramétrica:

$$(\sin(t),\cos(t))$$

variando el intervalo de tiempo.

Dibuja la gráfica en polares:

$$r = \sin(\theta)$$

Dibuja la ecuación implícita:

$$x^2 + 3y^2 + 3x - 5y = 9$$

Dibuja la inecuación:

$$x^2 + y^2 \le 9$$

Cuaterniones

- Escribe un cuaternión y analiza la respuesta.
- Calcula la norma, el conjugado y el inverso de a. Comprueba que efectivamente es el inverso.
- Multiplica dos cuaterniones y comprueba que no es conmutativa.
- Comprueba que el inverso de un cuaternión se calcula con la fórmula:

$$a^{-1} = \frac{\bar{a}}{|a|^2}$$

- Comprueba que al multiplicar un cuaternión por su conjugado obtenemos un número real. Además dicho número real es la norma.
- Comprueba que si u y v son dos cuaterniones imaginarios su producto cumple:

$$u \cdot v = -\langle u, v \rangle + u \times v$$

Ecuaciones diferenciales

Ocomprueba que $y = x^2 - 2x + 2$ es solución de la ecuación diferencial:

$$y' + y = x^2$$

Resuelve la ecuación diferencial:

$$y \cdot y' = \cos(x)$$

Resuelve la ecuación diferencial lineal:

$$3y'' + 5y' - 3y = e^x$$

Resuelva la ecuación de variables separables:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x(y-3)}$$

Resuelve la ecuación homogenea:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - y^2}{5xy}$$

Resuelve la ecuación de Bernoulli:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{3}y = \frac{1-2x}{3}y^4$$