Rapport de Laboratoire : Matrices

Durée du laboratoire : 4 périodes **Auteurs :** Surbeck Léon, Nicolet Victor

Schéma UML

Description des Classes

Classe Matrix

La classe Matrix représente une matrice de taille (N x M) avec un ensemble d'éléments compris entre (0) et (n-1), où (n) est défini comme le modulo de la matrice.

Attributs

- int[][] matrix: Tableau 2D pour stocker les valeurs de la matrice.
- int N, M: Dimensions de la matrice (nombre de lignes et colonnes).
- int n: Modulo des éléments.

Méthodes

- **Constructeur** Matrix(int N, int M, int n): initialise une matrice de dimensions (N x M) avec des valeurs aléatoires modulo (n).
- **fillMatrix(int n)** : remplit la matrice avec des valeurs aléatoires comprises entre (0) et (n-1).
- **printMatrix()** : affiche le contenu de la matrice.

Classe operations

La classe operations permet de réaliser les opérations entre deux matrices en respectant le modulo (n).

Méthodes

- operateMatr(Matrix mat1, Matrix mat2, int module, MatrixOperation operation): effectue une opération donnée (addition, soustraction ou multiplication) sur deux matrices en appliquant le modulo et retourne le résultat.
- MatrixOperation (Interface): Interface pour définir une opération entre deux matrices, implémentée pour chaque type d'opération spécifique.

Sous-classes d'operations.MatrixOperation

- 1. Addition: Addition élément par élément des deux matrices avec un résultat modulo (n).
- 2. **Subtraction** : Soustraction élément par élément des deux matrices avec un résultat modulo (n).
- 3. **Multiplication** : Multiplication élément par élément des deux matrices avec un résultat modulo (n).

Classe Main

La classe Main permet de tester le programme en créant deux matrices de tailles spécifiées et en appliquant les opérations d'addition, soustraction et multiplication entre elles.

Exécution du Programme

Le programme est exécuté en ligne de commande avec les arguments suivants :

- Argument 1: Modulo (n) des matrices
- **Argument 2, 3 :** Dimensions (N1 x M1) de la première matrice
- Argument 4, 5 : Dimensions (N2 x M2) de la deuxième matrice

Si les arguments ne sont pas fournis, des valeurs par défaut sont utilisées.

Tests

Résultat de l'exécution du programme :

```
The Modulus is: 10
Matrix 1:
9 8 7 4 7
1 6 5 0 6
4 9 0 5 5
4 6 0 3 5
8 7 7 8 3
Matrix 2:
4 8 6 6 5
4 9 7 2 0
6 6 5 7 3
9 2 2 2 7
3 7 7 9 8
```

```
M1 + M2:
3 6 3 0 2
5 5 2 2 6
0 5 5 2 8
3 8 2 5 2
1 4 4 7 1
M1 - M2:
5 0 1 8 2
7 7 8 8 6
8 3 5 8 2
5 4 8 1 8
5 0 0 9 5
M1 * M2:
6 4 2 4 5
4 4 5 0 0
4 4 0 5 5
6 2 0 6 5
4 9 9 2 4
```

Hypothèses de travail

- Les dimensions des matrices sont des entiers positifs.
- Les valeurs des éléments des matrices sont des entiers positifs.
- Les valeurs des éléments des matrices sont comprises entre (0) et (n-1).
- Les valeurs des éléments des matrices sont générées aléatoirement.
- Les opérations sont effectuées en respectant le modulo (n).
- Les matrices sont affichées en ligne avec les éléments séparés par des espaces.