Bubbling of Kähler-Einstein metrics with cone singularities: examples in dimensions 1 and 2

Martin de Borbon (joint with Cristiano Spotti)

Seminar at Tsinghua University

5 December 2023

• $\dim_{\mathbb{C}} = 1$: Degeneration of polyhedral metrics on the 2-sphere

• $\dim_{\mathbb{C}} = 1$: Degeneration of polyhedral metrics on the 2-sphere

• $\dim_{\mathbb{C}} = 2$: Model Calabi-Yau metrics on \mathbb{C}^2 with cone singularities along a complex curve

• $\dim_{\mathbb{C}} = 1$: Degeneration of polyhedral metrics on the 2-sphere

• $\dim_{\mathbb{C}} = 2$: Model Calabi-Yau metrics on \mathbb{C}^2 with cone singularities along a complex curve

Conjectures

 $0 < \beta < 1$

$$0 < \beta < 1$$

$0 < \beta < 1$

• In polar coordinates $g_{\beta} = dr^2 + \beta^2 r^2 d\theta^2$

$$0 < \beta < 1$$

- In polar coordinates $g_{\beta} = dr^2 + \beta^2 r^2 d\theta^2$
- Fact: the induced complex structure on $\mathbb{R}^2 \setminus \{0\}$ is \mathbb{C}^*

$0 < \beta < 1$

- In polar coordinates $g_{\beta} = dr^2 + \beta^2 r^2 d\theta^2$
- Fact: the induced complex structure on $\mathbb{R}^2 \setminus \{0\}$ is \mathbb{C}^*
- Proof: set $z = r^{1/\beta}e^{i\theta}$ then $g_{\beta} = |z|^{2\beta-2}|dz|^2$

$$\begin{cases} dr^2 + \beta^2 \sin^2 r d\theta^2 \\ dr^2 + \beta^2 r^2 d\theta^2 \\ dr^2 + \beta^2 \sinh^2 r d\theta^2 \end{cases}$$

$$\begin{cases} dr^2 + \beta^2 \sin^2 r d\theta^2 \\ dr^2 + \beta^2 r^2 d\theta^2 \\ dr^2 + \beta^2 \sinh^2 r d\theta^2 \end{cases}$$

$$\begin{cases} dr^2 + \beta^2 \sin^2 r d\theta^2 \\ dr^2 + \beta^2 r^2 d\theta^2 \\ dr^2 + \beta^2 \sinh^2 r d\theta^2 \end{cases}$$

Double of spherical triangle. Constant curvature 1 metric on the 2-sphere with 3 cone points.

$$\begin{cases} dr^2 + \beta^2 \sin^2 r d\theta^2 \\ dr^2 + \beta^2 r^2 d\theta^2 \\ dr^2 + \beta^2 \sinh^2 r d\theta^2 \end{cases}$$

Double of spherical triangle. Constant curvature 1 metric on the 2-sphere with 3 cone points.

- Orbifolds: $\beta = 1/k$ for $k \ge 2$ integer
- Modular curve $\mathbb{H}/PSL(2,\mathbb{Z})$. Hyperbolic metric with two cone points 1/2,1/3

• Surface of a polyhedron in \mathbb{R}^3

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

Surface of a cube. Flat metric on S^2 with 8 cone points of total angle $2\pi\beta = 3(\pi/2)$.

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

Surface of a cube. Flat metric on S^2 with 8 cone points of total angle $2\pi\beta = 3(\pi/2)$.

Double of a triangle with interior angles $\pi\beta_i$. Flat metric on S^2 with 3 cone points of total angle $2\pi\beta_i$

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

Surface of a cube. Flat metric on S^2 with 8 cone points of total angle $2\pi\beta = 3(\pi/2)$.

Double of a triangle with interior angles $\pi\beta_i$. Flat metric on S^2 with 3 cone points of total angle $2\pi\beta_i$

$$\sum_{i=1}^{n} (1 - \beta_i) = 2$$

(Gauss-Bonnet)

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

Surface of a cube. Flat metric on S^2 with 8 cone points of total angle $2\pi\beta = 3(\pi/2)$.

Double of a triangle with interior angles $\pi\beta_i$. Flat metric on S^2 with 3 cone points of total angle $2\pi\beta_i$

$$\sum_{i=1}^{n} (1 - \beta_i) = 2$$

(Gauss-Bonnet)

• Surface of a cube: $8 \cdot (1 - 3/4) = 2$

- Surface of a polyhedron in \mathbb{R}^3
- Double of a polygon in \mathbb{R}^2

Surface of a cube. Flat metric on S^2 with 8 cone points of total angle $2\pi\beta = 3(\pi/2)$.

Double of a triangle with interior angles $\pi\beta_i$. Flat metric on S^2 with 3 cone points of total angle $2\pi\beta_i$

$$\sum_{i=1}^{n} (1 - \beta_i) = 2$$

(Gauss-Bonnet)

- Surface of a cube: $8 \cdot (1 3/4) = 2$
- Double of a triangle: $3 (\beta_1 + \beta_2 + \beta_3) = 2$

• Fix
$$\vec{\beta} = (\beta_1, \dots, \beta_n)$$
 with $\sum_{i=1}^n (1 - \beta_i) = 2$

- Fix $\vec{\beta} = (\beta_1, \dots, \beta_n)$ with $\sum_{i=1}^n (1 \beta_i) = 2$
- $Met(\vec{\beta}) = flat metrics on S^2$ with n cone points x_i of total angle $2\pi\beta_i$ modulo marked (orientation preserving) isometry and scale

- Fix $\vec{\beta} = (\beta_1, \dots, \beta_n)$ with $\sum_{i=1}^n (1 \beta_i) = 2$
- Met($\vec{\beta}$) = flat metrics on S^2 with n cone points x_i of total angle $2\pi\beta_i$ modulo marked (orientation preserving) isometry and scale
- $\mathcal{M}_{0,n} = \text{configuration of } n \text{ distinct marked points in } \mathbb{CP}^1 \text{ up to the action of Möbius transformations } PSL(2, \mathbb{C})$

- Fix $\vec{\beta} = (\beta_1, \dots, \beta_n)$ with $\sum_{i=1}^n (1 \beta_i) = 2$
- Met($\vec{\beta}$) = flat metrics on S^2 with n cone points x_i of total angle $2\pi\beta_i$ modulo marked (orientation preserving) isometry and scale
- $\mathcal{M}_{0,n}$ = configuration of n distinct marked points in \mathbb{CP}^1 up to the action of Möbius transformations $PSL(2,\mathbb{C})$

Theorem (Troyanov)

The forgetful map $F: \operatorname{Met}(\vec{\beta}) \to \mathcal{M}_{0,n}$ is a bijection

- Fix $\vec{\beta} = (\beta_1, \dots, \beta_n)$ with $\sum_{i=1}^n (1 \beta_i) = 2$
- $\operatorname{Met}(\vec{\beta}) = \operatorname{flat}$ metrics on S^2 with n cone points x_i of total angle $2\pi\beta_i$ modulo marked (orientation preserving) isometry and scale
- $\mathcal{M}_{0,n} = \text{configuration of } n \text{ distinct marked points in } \mathbb{CP}^1 \text{ up to the action of Möbius transformations } PSL(2, \mathbb{C})$

Theorem (Troyanov)

The forgetful map $F: Met(\vec{\beta}) \to \mathcal{M}_{0,n}$ is a bijection

Proof: If $x_1, \ldots, x_n \in \mathbb{C}$ then

$$\left(\prod_{i=1}^{n} |z - x_i|^{2\beta_i - 2}\right) |dz|^2$$

extends smoothly over ∞ and defines a flat (Kähler) metric on \mathbb{CP}^1 with cone angles $2\pi\beta_i$ at the points x_i

Collision of two cone points

$$\gamma + (1 - \beta_1) + (1 - \beta_2) = 1$$

Model flat metrics on \mathbb{C} with cone points

$$g_F = \left(\prod_{i=1}^p |z - x_i|^{2\beta_i - 2}\right) |dz|^2$$

- flat Kähler metric on \mathbb{C} with cone angles $2\pi\beta_i$ at x_i
- isometric to the 2-cone $C(2\pi\gamma)$ outside a compact set

$$1 - \gamma = \sum_{i=1}^{p} (1 - \beta_i)$$

$$\lim_{\lambda \to 0} \lambda \cdot g_F = C(2\pi\gamma)$$

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

• For $f \in \mathcal{O}_{\mathbb{C},0}$ let $\nu(f) = \text{order of vanishing of } f$ at 0

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

- For $f \in \mathcal{O}_{\mathbb{C},0}$ let $\nu(f) = \text{order of vanishing of } f$ at 0
- For $r \geq 0$ we have an equivalence relation $f \sim_r g$ if $\nu(f g) \geq r$

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

- For $f \in \mathcal{O}_{\mathbb{C},0}$ let $\nu(f) = \text{order of vanishing of } f$ at 0
- For $r \geq 0$ we have an equivalence relation $f \sim_r g$ if $\nu(f g) \geq r$
- If $S = \{x_1(t), \dots, x_p(t)\} \subset \mathcal{O}_{\mathbb{C},0}$ is a finite set then the equivalence classes of \sim_r make a tree \mathcal{T} with root S and leaves $\{x_i(t)\}$

Bubble trees

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

- For $f \in \mathcal{O}_{\mathbb{C},0}$ let $\nu(f) = \text{order of vanishing of } f$ at 0
- For $r \geq 0$ we have an equivalence relation $f \sim_r g$ if $\nu(f g) \geq r$
- If $S = \{x_1(t), \dots, x_p(t)\} \subset \mathcal{O}_{\mathbb{C},0}$ is a finite set then the equivalence classes of \sim_r make a tree \mathcal{T} with root S and leaves $\{x_i(t)\}$
- To every non-leaf vertex $\mathbf{v} \in \mathcal{T}$ we associate a model flat metric $B_{\mathbf{v}}$ on \mathbb{C} . The number of cone points of $B_{\mathbf{v}}$ is equal to the number of children of \mathbf{v}

Bubble trees

Consider a family of flat metrics g_t for which a cluster of cone points $x_1(t), \ldots, x_p(t)$ collides to 0 as $t \to 0$

- For $f \in \mathcal{O}_{\mathbb{C},0}$ let $\nu(f) = \text{order of vanishing of } f$ at 0
- For $r \geq 0$ we have an equivalence relation $f \sim_r g$ if $\nu(f g) \geq r$
- If $S = \{x_1(t), \dots, x_p(t)\} \subset \mathcal{O}_{\mathbb{C},0}$ is a finite set then the equivalence classes of \sim_r make a tree \mathcal{T} with root S and leaves $\{x_i(t)\}$
- To every non-leaf vertex $\mathbf{v} \in \mathcal{T}$ we associate a model flat metric $B_{\mathbf{v}}$ on \mathbb{C} . The number of cone points of $B_{\mathbf{v}}$ is equal to the number of children of \mathbf{v}
- The cone angles are $2\pi\gamma_{\mathbf{w}}$ with $1 \gamma_{\mathbf{w}} = \sum_{i|x_i \in \mathbf{w}} (1 \beta_i)$ and the position of the cone points are $x_{\mathbf{w}} = \lim_{t \to 0} t^{-k} x_i(t)$ where k is the smallest integer such that the elements of \mathbf{v} are $not \sim_k$ equivalent.

Rescaled limits

- Let $s \in \mathcal{O}_{\mathbb{C},0}$ be a section
- For $\alpha > 0$ let h_{α} be the pointed Gromov-Hausdorff limit

$$h_{\alpha} = \lim_{t \to 0} (|t|^{-2\alpha} \cdot g_t, s(t))$$

Rescaled limits

- Let $s \in \mathcal{O}_{\mathbb{C},0}$ be a section
- For $\alpha > 0$ let h_{α} be the pointed Gromov-Hausdorff limit

$$h_{\alpha} = \lim_{t \to 0} (|t|^{-2\alpha} \cdot g_t, s(t))$$

- The section determines a path in the tree with vertices $\mathbf{v}_1, \dots, \mathbf{v}_\ell$
- $0 = \alpha_0 < \alpha_1 < \ldots < \alpha_\ell$ such that $h_\alpha = C(2\pi\gamma_{\mathbf{v}_i})$ (with base point its vertex) if $\alpha_{i-1} < \alpha < \alpha_i$ and $h_\alpha = B_{\mathbf{v}_i}$ if $\alpha = \alpha_i$ (with base point $\lim_{t\to 0} t^{-k} s(t)$).

 $s(t) = t - t^4 + \text{(h.o.t.)}$ shown in red where \mathcal{T}

Moduli spaces

• Thurston: complex hyperbolic cone metric on $\overline{\text{Met}}(\vec{\beta})$, divisors represent collision of pair of points

Moduli spaces

• Thurston: complex hyperbolic cone metric on $\overline{\text{Met}}(\vec{\beta})$, divisors represent collision of pair of points

• Deligne-Mumford-Knudsen compactification $\overline{\mathcal{M}}_{0,n}$, divisors correspond to partitions of $\{1,\ldots,n\}$ into two disjoint sets, its points represent nodal curves with 2 irreducible components

Moduli spaces

• Thurston: complex hyperbolic cone metric on $\overline{\text{Met}}(\vec{\beta})$, divisors represent collision of pair of points

- Deligne-Mumford-Knudsen compactification $\overline{\mathcal{M}}_{0,n}$, divisors correspond to partitions of $\{1,\ldots,n\}$ into two disjoint sets, its points represent nodal curves with 2 irreducible components
- Logarithmic resolution $\overline{\mathcal{M}}_{0,n} \to \overline{\mathrm{Met}}(\vec{\beta})$ (Koziarz-Nguyen), points in $\overline{\mathcal{M}}_{0,n}$ represent bubble trees

Kähler-Einstein metrics with cone singularities

$$D\subset X$$
 smooth complex hypersurface and $0<\beta<1$ \longleftrightarrow $(X,(1-\beta)D)$
$$C(2\pi\beta)\times\mathbb{C}^{n-1}$$

$$(X,(1-\beta)D)$$

- $\operatorname{Ric}(g_{KE}) = \lambda \cdot g_{KE}$ on $X \setminus D$
- $g_{KE} \sim C(2\pi\beta) \times \mathbb{C}^{n-1}$ near D

• Donalson's interior Schauder estimate for the Laplace operator

• Donalson's interior Schauder estimate for the Laplace operator

• Existence and regularity theory, polyhomogeneous expansion (Jeffress-Mazzeo-Rubinstein)

• Donalson's interior Schauder estimate for the Laplace operator

- Existence and regularity theory, polyhomogeneous expansion (Jeffress-Mazzeo-Rubinstein)
- Chern-Weil formulas (Jian Song and Xiaowei Wang)

• Donalson's interior Schauder estimate for the Laplace operator

- Existence and regularity theory, polyhomogeneous expansion (Jeffress-Mazzeo-Rubinstein)
- Chern-Weil formulas (Jian Song and Xiaowei Wang)
- Algebraic structure on non-collapsed Gromov-Hausdorff limits (Chen-Donaldson-Sun)

Model Ricci-flat solutions

- $C = \{P = 0\} \subset \mathbb{C}^2$ smooth with $\deg(P) \ge 2$
- Different asymptotic lines i.e. no parabola

$$\frac{d-2}{d} < \beta < 1$$

Model Ricci-flat solutions

- $C = \{P = 0\} \subset \mathbb{C}^2$ smooth with $\deg(P) \ge 2$
- Different asymptotic lines i.e. no parabola

$$\frac{d-2}{d} < \beta < 1$$

Theorem (de Borbon, 2017)

- $\bullet \ \omega^2_{RF} = \Omega \wedge \bar{\Omega} \ with \ \Omega = P^{\beta-1} dz dw$

Polyhedral Kähler cones

 $\bar{g} = \text{constant curvature 1}$ metric on the 3-sphere

Cone:

$$d\rho^2 + \rho^2 \bar{g}$$

Proof of Theorem

$d=2 \rightarrow S^1$ -symmetry

Gibbons-Hawking ansatz

$$g_{RF} = V g_{\mathbf{R}_{\beta}^3} + (1/V)\alpha^2, \quad d\alpha = -\star_{\beta} dV$$

L^2 -norm of the curvature

Chern-Weil: the energy of a KE metric depends only on topology.

$$E(g) := \frac{1}{8\pi^2} \int |\mathrm{Riem}(g)|^2$$

$$E = \chi(X) + (\beta - 1)\chi(C)$$

$$ALE$$

$$E = \chi(X) - \frac{1}{|\Gamma|}$$

$$E(g_{RF}) = 1 + (\beta - 1)\chi(C) - \frac{\mathrm{vol}(S^3(\bar{g}))}{2\pi^2}$$

Blow-up limits

Blow-up limits

 $C_{\epsilon} = \{P_d(z, w) + (\text{h. o. t.}) = \epsilon\} \text{ as } \epsilon \to 0.$ If we rescale coordinates by $z = \epsilon^{1/d} \tilde{z}, w = \epsilon^{1/d} \tilde{w} \text{ then } C_{\epsilon} \text{ converges to } C = \{P_d(\tilde{z}, \tilde{w}) = 1\} \text{ as } \epsilon \to 0.$

Multiple asymptotic lines

Conjecture:

• For every $1/2 < \beta < 1$ there is a Calabi-Yau metric on \mathbb{C}^2 with cone angle $2\pi\beta$ along the parabola $\{w = z^2\}$

• The tangent cone at infinity equal to $\mathbb{C}_{\gamma} \times \mathbb{C}$, where $\gamma = 2\beta - 1$

• The energy of the metric is finite and given by $E = 1 - \beta$

• Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.
- Let P be a generic homogeneous degree 4 and $C_{\epsilon} = \{\epsilon P + Q^2 = 0\}$. There are eight branch points $\{P = 0\} \cap \{Q = 0\}$

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.
- Let P be a generic homogeneous degree 4 and $C_{\epsilon} = \{\epsilon P + Q^2 = 0\}$. There are eight branch points $\{P = 0\} \cap \{Q = 0\}$
- Family of KE metrics g_{ϵ} with cone angle $2\pi\beta$ along C_{ϵ} and a limiting KE metric g_0 with cone angle $2\pi\gamma$ along C_0

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.
- Let P be a generic homogeneous degree 4 and $C_{\epsilon} = \{\epsilon P + Q^2 = 0\}$. There are eight branch points $\{P = 0\} \cap \{Q = 0\}$
- Family of KE metrics g_{ϵ} with cone angle $2\pi\beta$ along C_{ϵ} and a limiting KE metric g_0 with cone angle $2\pi\gamma$ along C_0
- The convergence $g_{\epsilon} \to g_0$ is modelled in directions transverse to C_0 by two cone points of angle $2\pi\beta$ which collide into a single cone point of angle $2\pi\gamma$

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.
- Let P be a generic homogeneous degree 4 and $C_{\epsilon} = \{\epsilon P + Q^2 = 0\}$. There are eight branch points $\{P = 0\} \cap \{Q = 0\}$
- Family of KE metrics g_{ϵ} with cone angle $2\pi\beta$ along C_{ϵ} and a limiting KE metric g_0 with cone angle $2\pi\gamma$ along C_0
- The convergence $g_{\epsilon} \to g_0$ is modelled in directions transverse to C_0 by two cone points of angle $2\pi\beta$ which collide into a single cone point of angle $2\pi\gamma$
- It is expected that the parabola CY metric is a re-scaled limit of the sequence g_{ϵ} at each of the eight branch points

- Ascher-DeVleming-Liu: K-moduli space of pairs $(\mathbb{CP}^2, (1-\beta)C)$ with deg C=4 is the GIT quotient for $5/8 < \beta < 1$
- If $\gamma = 2\beta 1$ then $1/4 < \gamma < 1$. By Li-Sun there is a KE metric with cone angle $2\pi\gamma$ along $C_0 = \{Q = 0\}$ where $Q = X_0^2 + X_1^2 + X_2^2$.
- Let P be a generic homogeneous degree 4 and $C_{\epsilon} = \{\epsilon P + Q^2 = 0\}$. There are eight branch points $\{P = 0\} \cap \{Q = 0\}$
- Family of KE metrics g_{ϵ} with cone angle $2\pi\beta$ along C_{ϵ} and a limiting KE metric g_0 with cone angle $2\pi\gamma$ along C_0
- The convergence $g_{\epsilon} \to g_0$ is modelled in directions transverse to C_0 by two cone points of angle $2\pi\beta$ which collide into a single cone point of angle $2\pi\gamma$
- It is expected that the parabola CY metric is a re-scaled limit of the sequence g_{ϵ} at each of the eight branch points
- The Song-Wang energy formula $E = \chi(X) + (\beta 1)\chi(D)$ gives $E(q_{\epsilon}) E(q_0) = 8(1 \beta)$

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_p X := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_p X := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

• Uniqueness, C_pX is an affine algebraic variety (Donaldson-Sun). Order of vanishing w.r.t. $d_{KE} \implies$ two steps degeneration.

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_p X := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

- Uniqueness, C_pX is an affine algebraic variety (Donaldson-Sun). Order of vanishing w.r.t. $d_{KE} \implies$ two steps degeneration.
- C_pX depends only on $\mathcal{O}_{X,p}$ (the germ of X at p). Chi Li's normalized volumes of valuations.

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_p X := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

- Uniqueness, C_pX is an affine algebraic variety (Donaldson-Sun). Order of vanishing w.r.t. $d_{KE} \implies$ two steps degeneration.
- C_pX depends only on $\mathcal{O}_{X,p}$ (the germ of X at p). Chi Li's normalized volumes of valuations.

Sasaki geometry precedents: Martelli-Sparks-Yau (volume minimization), Collins-Székelyhidi (K-stability)

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_pX := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

- Uniqueness, C_pX is an affine algebraic variety (Donaldson-Sun). Order of vanishing w.r.t. $d_{KE} \implies$ two steps degeneration.
- C_pX depends only on $\mathcal{O}_{X,p}$ (the germ of X at p). Chi Li's normalized volumes of valuations.

Sasaki geometry precedents: Martelli-Sparks-Yau (volume minimization), Collins-Székelyhidi (K-stability)

Question

Describe all possible rescaled limits of a family.

Non-collapsed polarized KE limit space (X, d_{KE})

$$C_p X := \lim_{\lambda \to 0} (X, \lambda^{-1} d_{KE}, p)$$

- Uniqueness, C_pX is an affine algebraic variety (Donaldson-Sun). Order of vanishing w.r.t. $d_{KE} \implies$ two steps degeneration.
- C_pX depends only on $\mathcal{O}_{X,p}$ (the germ of X at p). Chi Li's normalized volumes of valuations.

Sasaki geometry precedents: Martelli-Sparks-Yau (volume minimization), Collins-Székelyhidi (K-stability)

Question

Describe all possible rescaled limits of a family.

Song Sun's minimal bubbles.

THANK YOU!