CS223: Computer Architecture & Organization

Lecture 25 [05.04.2022] MIPS 5-stage Instruction Pipeline

Dr. John Jose

Associate Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Unpipelined RISC Data path

Pipelined RISC Data path

- Each instruction can take at most 5 clock cycles
- Instruction fetch cycle (IF)
 - ❖ Based on PC, fetch the instruction from memory
 - ❖ Increment PC

- Instruction decode/register fetch cycle (ID)
- Decode the instruction + register read operation
- Fixed field decoding

Ex: [ADD R1,R2,R3]: A3.01.02.03

10100011 00000001 00000010 00000011

Ex: [LW R1,8(R2)]: 86.01.08.02

10000110 00000001 00001000 00000010

- Execution/Effective address cycle (EX)
- Memory reference: Calculate the effective address

Register-register ALU instruction

[ADD R1,R2,R2]

- Memory access cycle (MEM)
 - Load from memory and store in register [LW R1,8(R2)]
 - Store the data from the register to memory[SW R3,16(R4)]

- Write-back cycle (WB)
- ❖ Register-register ALU instruction or load instruction
- ❖ Write to register file [LW R1,8(R2)], [ADD R1,R2,R3]

Pipelined RISC Data path

5 Steps of RISC Data path

- Each instruction can take at most 5 clock cycles
- Instruction fetch cycle (IF)
 - Based on PC value, fetch the instruction from memory
 - Update PC
- Instruction decode/register fetch cycle (ID)
 - Decode the instruction + register read operation
 - Fixed field decoding
 - Equality check of registers
 - Computation of branch target address if any

5 Steps of MIPS Data path

- Execution/Effective address cycle (EX)
 - Memory reference: Calculate the effective address
 - Register-register ALU instruction
 - Register-immediate ALU instruction
- Memory access cycle (MEM)
 - Load instruction: Read from memory using effective address
 - Store instruction: Write the data in theregister to memory using effective address

5 Steps of MIPS Data path

- Write-back cycle (WB)
 - ❖ Register-register ALU instruction or load instruction
 - ❖ Write the result into the register file
- Cycles required to implement different instructions
 - ❖ Branch instructions 4 cycles
 - ❖ Store instructions 4 cycles
 - ❖ All other instructions 5 cycles

Visualizing Pipelining

	Clock number							
Instruction number	1	2	3	4	5	6	7	8
i	IF	ID	EX	MEM	WB			
i+1		IF	ID	EX	MEM	WB		
i+2			IF	ID	EX	MEM	WB	
i+3				IF	ID	EX	MEM	WB
i+4					IF	ID	EX	MEM

Visualizing Pipelining

Pipelining Issues

- Ideal Case: Uniform sub-computations
 - ❖ The computation to be performed can be evenly partitioned into uniform-latency sub-computations
- Reality: Internal fragmentation
 - Not all pipeline stages may have the uniform latencies
- Impact of ISA
 - Memory access is a critical sub-computation
 - Memory addressing modes should be minimized
 - Fast cache memories should be employed

Pipelining Issues

- Ideal Case : Identical computations
 - The same computation is to be performed repeatedly on a large number of input data sets
- Reality: External fragmentation
 - Some pipeline stages may not be used
- Impact of ISA
 - Reduce the complexity and diversity of the instruction types
 - *RISC architectures use uniform stage simple instructions

Pipelining Issues

- Ideal Case : Independent computations
 - ❖ All the instructions are mutually independent
- **Reality: Pipeline stalls cannot proceed.**
 - ❖ A later computation may require the result of an earlier computation
- Impact of ISA
 - Reduce Memory addressing modes dependency detection
 - ❖ Use register addressing mode easy dependencies check

Reference

- Computer Architecture-A Quantitative Approach (5th edition), John L. Hennessy, David A. Patterson, Morgan Kaufman.
- ❖ Appendix C: Pipelining: Basic and Intermediate Concepts
 - Section C1: Introduction

❖ NPTEL Video Link: https://tinyurl.com/ybcx9sae

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/