1. Exploramos los datos

Leemos el archivo excel

Valores duplicados

No existen valores duplicados

data[data.duplicated()]

Python

ID Warehouse_block Mode_of_Shipment Customer_care_calls Customer_rating Cost_of_the_Product Prior_purchases Product_importance Gender Discount_offered Weight_in_gms

Observamos la informacion

Veamos la cantidad de datos non-null y tambien los tiopos de datos

```
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 8999 entries, 0 to 8998
Data columns (total 12 columns):

data.info()

#	Column	Non-Null Count	Dtype
Θ	ID	8999 non-null	int64
1	Warehouse_block	8999 non-null	object
2	Mode_of_Shipment	8999 non-null	object
3	Customer_care_calls	8999 non-null	int64
4	Customer_rating	8999 non-null	int64
5	Cost_of_the_Product	8999 non-null	int64
6	Prior_purchases	8999 non-null	int64
7	Product_importance	8999 non-null	object
8	Gender	8999 non-null	object
9	Discount_offered	8999 non-null	int64
10	Weight_in_gms	8999 non-null	int64
11	Reached.on.Time_Y.N	8999 non-null	int64

dtypes: int64(8), object(4)
memory usage: 843.8+ KB

Al parecer todo esta completo y tambien vemos que hay 4 columnas que posiblemente sean categoricas y nos sirvan para nuestro modelo

Vemos la correlacion de la data corr = data.corr() plt.figure(figsize=(9,7)) sns.heatmap(corr,annot=True) <AxesSubplot:> - 1.0 -0.62 - 0.8 Customer_care_calls -- 0.6 Oustomer_rating -0.00082 0.012 0.0098 0.016 -0.0043 -0.00023 0.011 0.32 0.0098 Cost_of_the_Product -Prior_purchases -0.0 Discount offered --0.2Weight in gms --0.42 -0.4Reached.on.Time_Y.N -9 No existe una buena correlacion entre las caracteristicas y la variable objetivo

Vemos la dispersión de los datos

Identificacion de Outlier Los outlier identificados en los boxplot no son outlier como tal, mas bien son datos que estan dentro de lo permitido y que sucede muy pocas veces #sns.boxplot(x="Customer_rating",data= data) @ns.boxplot(x="Cost_of_the_Product",data= data) sns.boxplot(x="Prior_purchases",data= data) <AxesSubplot:xlabel='Prior_purchases'> sns.boxplot(x="Discount_offered",data= data) ? <AxesSubplot:xlabel='Discount_offered'> 30 Discount offered

Hasta el momento no encontramos datos duplicados ni faltantes, lo que sí deberíamos de manejar son los datos categóricos y la estandarización.

De acuerdo a la siguiente gráfica podemos ver cual es el mejor modelo y a partir de eso empezar a completar el informe.

[El mejor modelo es Support Vector Classifier]

2. Modelamiento

```
Separando datos categoricos y numericos en listas
      categoricos = [cat for cat in data.columns if data[cat].dtype == "object" and data[cat].nunique() \leq 10]
      categoricos
" ['Warehouse_block', 'Mode_of_Shipment', 'Product_importance', 'Gender']
      numericos = [num for num in data.columns if data[num].dtype <math>\neq "object"]
  El ID no ayudara en el modelo
      numericos.remove('ID')
      numericos
... ['Customer_care_calls',
    'Customer_rating',
    'Cost_of_the_Product',
    'Prior_purchases',
    'Discount_offered',
    'Weight_in_gms',
    'Reached.on.Time_Y.N']
   Ordenamos las columnas
      data = data[numericos + categoricos]
```

Separando en caracteristicas y variable objetivos

Como valores de X no consideramos **Reached.on.Time_Y.N** ya que es la variable objetivo y tambien descartamos **Gender** ya que no nos dara mejora en el modelo

```
X = data.loc[:,[dx for dx in data.columns if dx not in ['Reached.on.Time_Y.N','Gender']]]
y = data['Reached.on.Time_Y.N']
```

	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Discount_offered	Weight_in_gms	Warehouse_block	Mode_of_Shipment	Product_importance
0	4	2	177	3	44	1233	D	Flight	low
	4		216	2	59	3088		Flight	low
2	2	2	183	4	48	3374	Α	Flight	low
			176	4	10	1177	В	Flight	medium
4	2	2	184	3	46	2484	С	Flight	medium
8994	3		217			4177	D	Ship	low
8995			232			4526	F	Ship	medium
8996	4	5	260		6	4221	Α	Ship	medium
8997	4	2	184		5	5931	В	Ship	medium

Separando valores en train test

+ C6

```
from sklearn.model_selection import train_test_split

train_x, test_x, train_y, test_y = train_test_split(X,y,test_size=0.3,random_state=1)
```

Pipelin y ColumnsTransform

Usamos tuberias para que se nos haga mas facil llegar a los resultados

```
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_validate
```

Existen diversas formas de manejar los datos categorios, en mi caso usare OrdinalEncoder y OneHotEncoder y asi evaluar los resultados

OrdinalEncoder

Primero transformo las columnas

OneHotEncoder

Primero transformo las columnas

Usando SVC y OneHotEncoder

```
OneHot
Agregamos a la tuberia los pasos
    pipeline_svc2 = Pipeline(steps=[
            ("previo", encoder_standard2),
            ("gridknn",gridSVC)
        1)
Ajustamos
    pipeline_svc2.fit(train_x,train_y)
 Pipeline(steps=[('previo',
                  ColumnTransformer(transformers=[('encoder', OneHotEncoder(),
                                                   ['Warehouse_block',
                                                    'Mode_of_Shipment',
                                                    'Product_importance']),
                                                  ('standar', StandardScaler(),
                                                   ['Customer_care_calls',
                                                    'Customer_rating',
                                                    'Cost_of_the_Product',
                                                    'Prior_purchases',
                                                    'Discount_offered',
                                                    'Weight_in_gms'])])),
                 ('gridknn',
                 GridSearchCV(estimator=SVC(random_state=1),
                               param_grid={'gamma': ('scale', 'auto'),
                                           'kernel': ('linear', 'poly', 'rbf',
                                                      'sigmoid')},
                               scoring='recall'))])
```

```
Predecimos y evaluamos

pred_svc2= pipeline_svc2.predict(test_x)
recall_score(test_y,pred_svc2)

0.7996443390634262
```

Aplicación a E-commerce-test

```
Como ya tenemos las tuberias listas solo es necesario colocar la data. Las tuberias automaticamente manejaran los datos categoricos y estandarizar los datos

Recordemos que el mejor modelo fue SVC-OneHotEnoder

pred_final= pipeline_svc2.predict(ecommerce_test)

Creamos el DataFrame

df = pd.DataFrame({'pred':pred_final})

Creamos el Archivo CSV

df.to_csv("../Edward-Htc.csv",index=False)
```