## Google PageRank

Prof. Beat Signer <a href="mailto:best"><a href="mailto:best">bsigner@vub.ac.be</a>>

Department of Computer Science Vrije Universiteit Brussel

http://www.beatsigner.com



#### **Overview**

- History of PageRank
- PageRank algorithm
- Examples
- Implications for website development

## **History of PageRank**

- Developed as part of an academic project at Stanford University
  - research platform to aid understanding of large-scale web data and enable researches to easily experiment with new search technologies
  - Larry Page and Sergey Brin worked on the project about a new kind of search engine (1995-1998) which finally led to a functional prototype called Google





Larry Page

Sergey Brin

#### Web Search Until 1998

- Find all documents using a query term
  - use information retrieval (IR) solutions
  - ranking based on "on-page factors"
     → problem: poor quality of search results (order)
- Page and Brin proposed to compute the absolute qualtity of a page (PageRank)
  - based on the *number and quality* of pages linking to a page (votes)

### **PageRank**



- A page has a high PageRank R if
  - there are many pages linking to it
  - or, if there are some pages with a high PageRank linking to it
- Total score = IR score x PageRank

### PageRank Algorithm

$$R(P_i) = \sum_{P_j \in B_i} \frac{R(P_j)}{L_j}$$

#### where

- $B_i$  is the set of pages that link to page  $P_i$
- $L_j$  is the number of outgoing links for page  $P_j$



## **Matrix Representation**

 Let us define a hyperlink matrix H

$$\mathbf{H}_{ij} = \begin{cases} 1/L_j & \text{if } P_j \in B_i \\ 0 & \text{otherwise} \end{cases}$$

and 
$$\mathbf{R} = [R(P_i)]$$

$$\rightarrow$$
 R = HR

R is an eigenvector of H with eigenvalue 1



### **Matrix Representation ...**

We can use the power method to find R

$$\mathbf{R}^{t+1} = \mathbf{H}\mathbf{R}^t$$

For our example 
$$\mathbf{H} = \begin{bmatrix} 0 & 1/2 & 1 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \end{bmatrix}$$

this results in  $\mathbf{R} = \begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$  or  $\begin{bmatrix} 0.4 & 0.4 & 0.2 \end{bmatrix}$ 

## **Dangling Pages**

Problem with pages that have no outbound links (P<sub>2</sub>)

$$\mathbf{H} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{R} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 & 1/2 \\ 0 & 1/2 \end{bmatrix} \quad \text{and} \quad \mathbf{S} = \mathbf{H} + \mathbf{C} = \begin{bmatrix} 0 & 1/2 \\ 1 & 1/2 \end{bmatrix}$$



## **Strongly Connected Pages (Graph)**

- Add new transition probabilities between all pages
  - with probability d we follow
     the hyperlink structure S
  - with probability 1-d we choose a random page

$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$

 $\mathbf{R} = \mathbf{G}\mathbf{R}$ 



# **Examples**

$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$







$$P(A) = 0.5$$



$$P(B) = 0.5$$

$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$



$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$



$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$



$$\mathbf{G} = (1 - d) \frac{1}{n} \mathbf{1} + d\mathbf{S}$$



## Implications for Website Development

- First make sure that your page gets indexed
  - on-page factors
- Think about your site's internal link structure
  - create many internal links for important pages
  - be "careful" about where to put outgoing links
- Increase the number of pages
- Ensure that webpages are addressed consistently
  - http://www.vub.ac.be ≠ http://www.vub.ac.be/index.php
- Make sure that you get links from good websites

### **Consistent Addressing of Webpages**





## **Search Engine Optimisations (SEO)**

- Internet marketing has become a big business
  - white hat and black hat optimisations
- Bad ranking or removal from index can cost a company a lot of money
  - e.g. supplemental index ("Google hell")

## **Black Hat Optimisations (Don'ts)**

- Link farms
- Spamdexing in guestbooks, Wikipedia etc.
  - "solution": <a rel="nofollow" href="...">...</a>
- Doorway pages (cloaking)
  - e.g. BMW Germany and Ricoh Germany banned in February 2006
- Selling/buying links
- ...

## **On-Page Factors (Speculative)**

- It is assumed that there are over 200 on-page and off-page factors
- Positive factors
  - keyword in title tag
  - keyword in URL
  - keyword in domain name
  - quality of HTML code
  - page freshness (occasional changes)
  - . . . .

### On-Page Factors (Speculative) ...

- Negative factors
  - links to "bad neighbourhood"
  - over optimisation penalty (keyword stuffing)
  - text with same colour as background (hidden content)
  - automatic redirects via the refresh meta tag
  - any copyright violations

• ...

### Off-Page Factors (Speculative)

- Positive factors
  - high PageRank
  - anchor text of inbound links
  - links from authority sites (Hilltop algorithm)
  - listed in DMOZ (ODP) and Yahoo directories
  - site age (stability)
  - domain expiration date
  - · ...

### Off-Page Factors (Speculative) ...

- Negative factors
  - link buying (fast increasing number of inbound links)
  - link farms
  - cloaking (different pages for spider and user)
  - limited (temporal) availability of site
  - links from bad neighbourhood?
  - competitor attack (e.g. duplicate content)?
  - · ...

#### **Tools**

- Google toolbar
  - PageRank information not frequently updated
- Google webmaster tools
  - meta description issues
  - title tag issues
  - non-indexable content issues
  - number and URLs of indexed pages
  - number and URLs of inbound/outbound links
  - ...

#### **Questions**

- Is PageRank fair?
- What about Google's power and influence?

#### **Conclusions**

- PageRank algorithm
  - absolute quality of a page based on incoming links
  - random surfer model
  - computed as eigenvector of Google matrix G
- Implications for website development and SEO
- PageRank is just one (important) factor

#### References

- The PageRank Citation Ranking: Bringing Order to the Web, L. Page, S. Brin, R. Motwani and T. Winograd, January 1998
- The Anatomy of a Large-Scale Hypertextual
  Web Search Engine, S. Brin and L. Page,
  Computer Networks and ISDN Systems, 30(1-7),
  April 1998

#### References ...

- PageRank Uncovered, C. Ridings and M. Shishigin, September 2002
- PageRank Calculator, http://www.webworkshop.net/pagerank\_ calculator.php