Multiplication Or Fundamental Rule of counting

If an operation can be performed in n_1 ways, and if for each of these a second operation can be performed in n_2 ways, and for each of the first two a third operation can be performed in n_3 ways, and so forth, then the sequence of k operations can be performed in $n_1 n_2 \cdots n_k$ ways.

- i. How many sample points are there in the sample space when a pair of dice is thrown once?
- ii. How many there digit numbers can be formed from the digits 2, 4, 6, and 8 if: (i) repetitions are not allowed (ii) repetitions allowed

Set of Example (iii - viii)

- (iii) A developer of a new subdivision offers prospective home buyers a choice of Tudor, rustic, colonial, and traditional exterior styling in ranch, two-story, and split-level floor plans. In how many different ways can a buyer order one of these homes?
- (iv) If a 22-member club needs to elect a chair and a treasurer, how many different ways can these two to be elected?
- (v) Sam is going to assemble a computer by himself. He has the choice of chips from two brands, a hard drive from four, memory from three, and an accessory bundle from five local stores. How many different ways can Sam order the parts?
- (vi) How many even four-digit numbers can be formed from the digits 0, 1, 2, 5, 6, and 9 if each digit can be used only once?
- (vii) How many new arrangements can be made from the letters of the word **FAVOUR** so that vowel occupy even place.

Permutation

- A permutation is an arrangement of all or part of a set of objects.
- The number of permutations of n objects is n!.
- Suppose you have to arrange 3 books: **Statistics**, **Maths**, **Physics** on a shelf. How many arrangements are possible?

Permutations of "n" objects taken "r" at a time

$$_{n}P_{r} = \frac{n!}{(n-r)!}.$$

• In one year, three awards (research, teaching, and service) will be given to a class of 25 graduate students in a statistics department. If each student can receive at most one award, how many possible selections are there?

Example # 10:

- A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if
- (a) there are no restrictions;
- (b) A will serve only if he is president;
- (c) B and C will serve together or not at all;
- (d) D and E will not serve together?

Circular Permutations

• The number of permutations of n objects arrange in a circle is (n-1)!.

2.43 In how many ways can 5 different trees be planted in a circle?

Permutations of n objects when they are not all different.

The number of distinct permutations of n things of which n_1 are of one kind, n_2 of a second kind, ..., n_k of a kth kind is

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

- Find the number of permutations of 9995
- In how many ways can the letters of the word STATISTICS be arranged?
- In how many ways can 2 red, 3 blue, and 4 green chips be arranged in a row, if the chips of same color are not distinguishable from each other?

• In a college football training session, the defensive coordinator needs to have 10 players standing in a row. Among these 10 players, there are 1 freshman, 2 sophomores, 4 juniors, and 3 seniors. How many different ways can they be arranged in a row if only their class level will be distinguished?

Combinations

• Selection of "r" objects from "n" different objects and when the order is not important.

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

- In how many ways a committee of 3 students can be selected from 4 students.
- From a group of 10 boys and 6 girls a committee of 3 boys and 2 girls are to be selected. In how many ways can this done?

Exercises

- 2.22 In a medical study, patients are classified in 8 ways according to whether they have blood type AB⁺, AB⁻, A⁺, A⁻, B⁺, B⁻, O⁺, or O⁻, and also according to whether their blood pressure is low, normal, or high. Find the number of ways in which a patient can be classified.
- 2.33 If a multiple-choice test consists of 5 questions, each with 4 possible answers of which only 1 is correct,
- (a) in how many different ways can a student check off one answer to each question?
- (b) in how many ways can a student check off one answer to each question and get all the answers wrong?
- 2.37 In how many ways can 4 boys and 5 girls sit in a row if the boys and girls must alternate?

O

- 2.45 How many distinct permutations can be made from the letters of the word *INFINITY*?
- 2.47 How many ways are there to select 3 candidates from 8 equally qualified recent graduates for openings in an accounting firm?
 - 2.48 How many ways are there that no two students will have the same birth date in a class of size 60?