

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Maiora Seugar! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Funções exponenciais

Olímpio Rudinin Vissoto Leite

■ Potenciação

Qual o total de resultados possíveis nos 14 jogos da Loteca?

Cada jogo pode ter 3 resultados possíveis: vitória da primeira equipe, empate ou vitória da segunda equipe.

Mas, para cada resultado possível do primeiro jogo, o segundo jogo também apresenta três possibilidades, e assim por diante. Logo, o número de resultados possíveis nos 14 jogos é dado por:

$$\underbrace{3.3.3.3.3.3.3.3.3.3.3.3}_{14 \text{ jogos}} = 3^{14} = 4782969$$

Na indicação $3^{14} = 4782969$, o número 3 é chamado de *base*; o número 14, de *expoente* e o número 3^{14} , de *potência*. Multiplicações com fatores iguais induziram à criação dessa notação.

Dados um número real a e um número natural n (n > 1) , a notação a^n significa $\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}_{\text{n fatores}}$.

$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{\text{n fatores}}$$

Potências são extremamente convenientes para representar números muito grandes ou muito pequenos.

Observe as sequências a sequir:

$$\begin{cases} 64, 32, 16, 8, 4, 2, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \\ 2^{6}, 2^{5}, 2^{4}, 2^{3}, 2^{2}, 2^{1}, 1, \frac{1}{2^{1}}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \frac{1}{2^{5}}, \frac{1}{2^{6}} \end{cases}$$

Essas sequências sugerem que as potências sejam escritas com expoentes negativos. Veja: 2^6 , 2^5 , 2^4 , 2^3 , 2^2 , 2^1 , 2^0 , 2^{-1} , 2^{-2} , 2^{-3} , 2^{-4} , 2^{-5} , 2^{-6}

Assim:

$$2^{1} = 2$$
, $2^{0} = 1$, $2^{-1} = \frac{1}{2}$, $2^{-2} = \frac{1}{2^{2}}$, $2^{-3} = \frac{1}{2^{3}}$ etc.

A partir dessas considerações, podemos definir:

$$a^{-1} = 1$$
 $a^{-1} = \frac{1}{a}, a \neq 0$
 $a^{-1} = \frac{1}{a}, a \neq 0$

Exemplo:

Calcular o valor de 10⁻² e 3⁻³.

Solução:

$$10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0.01$$
 $3^{-3} = \frac{1}{3^3} = \frac{1}{27} = 0.037037037...$

Observações:

- a^{-1} é chamado de *inverso* de *a*.
- O número zero não tem inverso.
- $a \cdot a^{-1} = 1$

Propriedades das potências

Multiplicação de potências de mesma base

Em multiplicação de potências de mesma base, conservam-se as bases e somam-se os expoentes.

Para $a \in \mathbb{R}^*$ e $m, n \in \mathbb{Z}$, podemos escrever:

$$a^{\mathrm{m}}.a^{\mathrm{n}}=a^{\mathrm{m}+\mathrm{n}}$$

Divisão de potências de mesma base

Em divisão de potências de mesma base, conservam-se as bases e subtraem-se os expoentes.

Para $a \in \mathbb{R}^*$ e $m, n \in \mathbb{Z}$, podemos escrever:

$$a^{\mathrm{m}}$$
: $a^{\mathrm{n}} = a^{\mathrm{m-n}}$

Potência de uma potência

Para efetuarmos cálculos envolvendo potência de uma potência, basta conservarmos a base e multiplicarmos os expoentes.

Simbolicamente, para $a \in \mathbb{R}$ e $m, n \in \mathbb{Z}$, podemos escrever:

$$(a^n)^m = a^{n \cdot m}$$

Outras propriedades das potências

Para $a \in \mathbb{R}$ e $m, n \in \mathbb{Z}$, temos:

$$(ab)^n = a^n b^n$$

$$(a^{\rm m})^{\rm n} = a^{\rm mn}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

■ Notação científica

Para diminuir o trabalho de escrever números com muitos algarismos, os cientistas introduziram em sua linguagem a *notação científica*.

Um número está expresso em notação científica se estiver escrito como o produto de dois números reais: um deles entre 1 e 10, incluindo o 1, e o outro, uma potência de 10.

Exemplo:

A velocidade da luz, no vácuo, é de 300 000km/s. Determinar a distância percorrida pela luz em um minuto. Expressar a resposta utilizando notação científica.

Solução:

Em 1 segundo a luz percorre 300 000km. Como 1 minuto equivale a 60 segundos, temos:

60 . 300 000 = 18 000 000
18 000 000 = 18 .
$$10^6$$
 = 1,8 . $10 \cdot 10^6$ = 1,8 . 10^7

Então, em 1 minuto a luz percorre 18 milhões de quilômetros ou, utilizando notação científica, 1,8 . 10⁷km.

Exercícios

- 1. Calcule os seguintes produtos, expressando a resposta na forma de potência.
 - a) $10^3 \cdot 10^4 \cdot 10^{-5}$
 - b) $(10^2 \cdot 10^3)^2$

c)
$$(10^{-2} \cdot 10^{-3})^2$$

d)
$$(10^{-1} \cdot 10^{-2} \cdot 10^{-3})^{-4}$$

2. Escreva todos os fatores na base 2 e calcule o valor de

$$\frac{2^{-3} \cdot 0,5^{4} \cdot 8}{\left(\frac{1}{2}\right)^{3} \cdot 2^{-2} \cdot \left(\frac{1}{4}\right)^{-2}}$$

3. Calcule o valor da expressão

$$4^{-2} + 4^{-1} + 4^{0} + 4^{1} + 4^{2}$$

4. Calcule o valor da expressão

$$\left(\frac{1}{2}\right)^{\!-2}\!+\!\left(\frac{1}{2}\right)^{\!-1}\!+\!\left(\frac{1}{2}\right)^{\!0}\!+\!\left(\frac{1}{2}\right)^{\!1}\!+\!\left(\frac{1}{2}\right)^{\!2}$$

- 5. Classifique as sentenças abaixo em verdadeiras (V) ou falsas (F):
 - a) $5^2 + 5^2 = 5^4$
 - b) $10^2 7^2 = 3^2$
 - c) $5^{-4} = -20$
 - d) $10^2:5^2=2^2$
 - e) $10^2 \cdot 5^2 = 50^2$

- 6. Identifique quais das afirmações abaixo são verdadeiras:
 - a) $7^{10} + 7^{-10} = 1$
 - b) $2^{10}: 2^4 = 2^6$
 - c) $2^{10} + 2^{10} = 2^{20}$
 - d) $2^{10} 2^4 = 2^6$
 - e) $(7.9)^2 = 7^2.9^2$
 - f) $(7+9)^2 = 7^2 + 9^2$
 - g) $(9:7)^3 = 9^3:7^3$
 - h) $(9-7)^3 = 9^3 7^3$

- 7. Quais das afirmações a seguir são verdadeiras?
 - a) $-1^{10} = -1$
 - b) $(-2)^5 = -32$
 - c) $(0, 1)^{-1} = 10$
 - d) $(4^2)^3 = 2^{12}$
 - e) $(5^2)^{10} = 5^{20}$

- **8.** Considere *a* e *b* números reais positivos. Simplifique as expressões a seguir:
 - a) $a^2 . b^3 . a^{-5} . b^{-6}$
 - b) $(a \cdot b^2)^3 : (a^2 \cdot b)^3$

- 9. Escreva, em notação científica, os produtos:
 - a) $2.10^{-4}.4,2.10^{-20}$

h)	3.4	. 1030	. 7	10-20

- **10.** Escreva em notação científica:
 - a) um milhão.
 - b) um trilhão.
 - c) um milésimo.
 - d) um milionésimo.
- 11. Um ano-luz é a distância percorrida pela luz em um ano. A luz percorre, no vácuo, 300 000km/s. Calcule, escrevendo em notação científica, a distância percorrida pela luz:
 - a) em 1 hora.
 - b) em 1 dia.

■ Função exponencial

A pressão que a camada de ar exerce sobre um corpo, ao nível do mar, é de 1atm (atmosfera). Um quilômetro acima do nível do mar, é de 0,9atm. E assim, para cada 1km de altitude, essa pressão cai em torno de 10%. Vamos obter a lei que fornece a pressão y (em atmosferas) em função da altitude x (em metros):

Altitude (km)	Pressão (atm)	Cálculo
0	1atm	Calculo
1	0,9atm	1. 0,9 = 0,9 ou 90% de 1atm
2	0,81atm	$0.9 \cdot 0.9 = 0.81 = (0.9)^2$
3	0,73atm	$0.81.$ 0.9 = $0.73 = (0.9)^3$
4	0,66atm	$0.73.$ 0.9 = $0.66 = (0.9)^4$
х	(0,9) ^x	

Logo, $y = (0.9)^{x}$.

Os pontos (0, 1), (1; 0,9), (2; 0,81), (3; 0,73), (4; 0,66) etc. representam essa função no plano cartesiano:

Mas, como a variação da pressão atmosférica é contínua, podemos desenhar o gráfico:

Definimos, assim, a função exponencial $y = (0.9)^x$, sendo x qualquer número real.

Função exponencial é toda função cuja lei é dada pela equação $y = a^x$, sendo a um número real positivo e diferente de 1.

Gráfico da função exponencial

O gráfico da função exponencial $y = a^x$ ou $f(x) = a^x$ tem as seguintes características:

- passa pelo ponto P(0, 1);
- apresenta uma das seguintes configurações:

Note que:

a > 0, restrição à base a, garante a existência de a^x no conjunto |R|. Veja o exemplo:

$$(-4)^{0.5} = (-4)^{\frac{1}{2}} = \sqrt{-4}$$
 (não existe em |R)

■ $a \neq 0$ e $a \neq 1$, restrições impostas à base a, garantem que potências iguais e de mesma base não sejam provenientes de expoentes diferentes, como nos exemplos:

$$0^5 = 0^7$$
; $1^9 = 1^3$

Assim, se a > 0 e $a \ne 1$, então $a^m = a^n \Rightarrow m = n$.

O conjunto imagem da função exponencial é formado exclusivamente pelos números reais positivos. Observe que não existe $2^x = -1$; $2^x = -0.5$.

Portanto, a função y = a^x ou $f(x) = a^x$, com a > 0 e $a \ne 1$, tem domínio |R| e conjunto imagem $|R|^*$

Exemplos:

1. Observe o gráfico da função $y = 2^x$:

Observações:

- a) Se x = 2, então y = 4, isto é, $2^2 = 4$.
- b) Se x = 2.5 então y = 5.5, isto é, $2^{2.5} = 5.5$

- c) Se y = 3, então x = 1,5, isto é, $2^{1,5} = 3$
- d) Se x > 2 \Leftrightarrow y > 4, isto é, x > 2 \Leftrightarrow 2^x > 4
- 2. Observe o gráfico y = $\left(\frac{1}{2}\right)^x$

X	V	
	у	(x, y)
-3	8	(-3, 8)
-2	4	(-2, 4)
-1	2	(-1, 2)
0	1	(0, 1)
1	1/2	$\left(1,\frac{1}{2}\right)$
2	1/4	$\left(2,\frac{1}{4}\right)$
3	1/8	$\left(3,\frac{1}{8}\right)$

Observações:

- a) Se x = -2, então y = 4, isto é, $\left(\frac{1}{2}\right)^{-2} = 4$
- b) Se x = -2,5, então y \approx 5,5, isto é, $\left(\frac{1}{2}\right)^{-2,5} \approx$ 5,5
- c) Se y = 3, então x \cong 1,5, isto é, $\left(\frac{1}{2}\right)^{-1,5} \cong 3$
- d) $x > -2 \Leftrightarrow y < 4$, isto é, $x > -2 \Leftrightarrow \left(\frac{1}{2}\right)^x < 4$

Comportamento da função exponencial: crescente ou decrescente?

Se $y = a^x$, temos:

Exercícios

12. Em cada item, construa o gráfico da função, atribuindo para a variável x, os seguintes valores: –2, –1, 0, 1 e 2. A seguir, dê seu domínio e o conjunto imagem:

a)
$$y = 3^x$$

b)
$$y = (\frac{1}{3})^x$$

13. Construa uma tabela e desenhe o gráfico da função exponencial $y = 4^x$. Use os seguintes valores para x : -1; -0.5; 0; 0.5 e 1. Dê o domínio e o conjunto imagem dessa função.

14. Construa uma tabela e desenhe, num referencial cartesiano, o gráfico da função exponencial $f(x) = \left(\frac{2}{3}\right)^x$. Use os seguintes valores para x : -2, -1, 0, 1 e 2. Dê o domínio e o conjunto imagem dessa função.

15. Apopulação P de um país tem seu crescimento dado pela lei $P = 2000\,000\,.(1,03)^n$ onde n é o número de anos que decorrem depois desse país ultrapassar dois milhões de habitantes. Observe a base da potência e esboce o gráfico dessa função. Determine a população estimada desse país para n = 2.

16. A produção de uma indústria vem diminuindo ano a ano. Num certo ano, ela produzia mil unidades de seu principal produto. A partir daí, a produção anual passou a seguir a lei $y = 1~000 \cdot (0.9)^x$. Observe a base da potência e esboce o gráfico dessa função. Quantas unidades foram produzidas no segundo ano desse período recessivo?

Equações exponenciais

As equações que apresentam incógnitas como expoente são chamadas equações exponenciais. Na resolução de equações exponenciais, utilizamos todas as propriedades das potências. Outra propriedade usada é a seguinte:

$$a^{m} = a^{n} \Leftrightarrow m = n \ (a > 0 \ e \ a \neq 1)$$

Exemplos:

1. Qual é o valor real x, tal que $2^x = 16$?

Solução:

Fatorando o número 16, obtemos $16 = 2^4$. Logo:

$$2^{x} = 16$$

$$2^{x} = 2^{4}$$

$$x = 4$$

2. Determinar o valor real de x, tal que $3^x = \frac{1}{9}$.

Solução:

$$9 = 3^2$$
. Assim, $3^x = \frac{1}{3^2} = 3^{-2}$. Então:

$$3^{x} = \frac{1}{2}$$

$$3^{x} = 3^{-2}$$

$$x = -2$$

3. Calcular o valor de x, tal que $4^x = 8$.

Solução:

 $8 = 2^3$, mas a base que aparece no primeiro lado da igualdade é 4.

Entretanto, $4 = 2^2$. Assim, $(2^2)^x = 2^3$ ou $2^{2x} = 2^3$. Portanto:

$$4^{x} = 8$$

$$(2^2)^x = 2^3$$

$$2^{2x} = 2^3$$

$$2x = 3$$

$$x = \frac{3}{2}$$

4. Resolver a equação exponencial:

$$2^{x} + 2^{x+3} = 36$$

Solução:

$$2^{x} + 2^{x+3} = 36$$

$$2^{x} + 2^{x} \cdot 2^{3} = 36$$

$$2^{x} + 2^{x} \cdot 8 = 36$$

$$9.2^{x} = 36$$

$$2^{x} = 4$$

$$2^{x} = 2^{2}$$

$$x = 2$$

Exercícios

17. Determine o valor real de *x* nas equações a seguir:

a)
$$2^x = 64$$

b)
$$2^x = \frac{1}{128}$$

c)
$$2^x = \sqrt{32}$$

d)
$$2^x = 8^{0,7}$$

18. Resolva as seguintes equações exponenciais no conjunto dos número reais:

a)
$$3^x = \frac{1}{9}$$

b)
$$9^x = 27$$

c)
$$16^x = \frac{1}{4}$$

d)
$$32^{2x} = 16^{0.9}$$

19. Resolva as seguintes equações exponenciais no conjunto dos números reais:

a)
$$2^x = 512$$

b)
$$2^{x} = 1$$

c)
$$2^x = -2$$

d)
$$2^x = -\frac{1}{32}$$

e)
$$16^x = 8$$

20. Em cada item, determine o valor real de x:

a)
$$2^{x+5} = 64$$

b)
$$4^{x-1} = 32$$

c)
$$8^x \cdot 16 = 128$$

d)
$$5^x + 5^{x+2} = 650$$

e)
$$3^{x^2+x} = 729$$

Gabarito

Funções exponenciais

1.

a)
$$10^3 \cdot 10^4 \cdot 10^{-5} = 10^2$$

b)
$$(10^2 \cdot 10^3)^2 = (10^5)^2 = 10^{10}$$

c)
$$(10^{-2} \cdot 10^{-3})^2 = (10^{-5})^2 = 10^{-10}$$

d)
$$(10^{-1} \cdot 10^{-2} \cdot 10^{-3})^{-4} = (10^{-6})^{-4} = 10^{24}$$

2. $\frac{2^{-3} \cdot (0,5)^4 \cdot 8}{\left(\frac{1}{2}\right)^3 \cdot 2^{-2} \cdot \left(\frac{1}{4}\right)^{-2}} = \frac{2^{-3} \cdot 2^{-4} \cdot 2^3}{2^{-3} \cdot 2^{-2} \cdot 2^{-4}} =$ $= 2^5 = 32$

3. $4^{-2} + 4^{-1} + 4^{0} + 4^{1} + 4^{2} = \frac{1}{16} + \frac{1}{4} + 1 + 4 + 16 = \frac{341}{16}$

4. $\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{2}\right)^{0} + \left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} =$ $= 4 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = \frac{31}{4}$

5.

- a) F
- b) F
- c) F
- d) V
- e) V

6. São verdadeiras as alternativas *a*, *b*, *e* e *q*.

7. Todas.

8.

a)
$$a^2 \cdot b^3 \cdot a^{-5} \cdot b^{-6} = a^{-3} \cdot b^{-3} = \frac{1}{(ab)^3}$$

b) $(a \cdot b^2)^3 : (a^2 \cdot b)^3 = (a^3 \cdot b^6) : (a^6 \cdot b^3) = a^{-3} \cdot b^3 = \frac{b^3}{a^3} = \left(\frac{a}{b}\right)^3$

9.

- a) $2.10^{-4}.4,2.10^{-20} = 8,4.10^{-24}$
- b) $3.4 \cdot 10^{30} \cdot 7 \cdot 10^{-20} = 23.8 \cdot 10^{10}$
- c) = $2,38 \cdot 10^{11}$

10.

- a) $1\,000\,000 = 1.10^6$
- b) $1\ 000\ 000\ 000\ 000 = 1\ .\ 10^{12}$
- c) $0.001 = 1.10^{-3}$
- d) $0.000001 = 1.10^{-6}$

11

- a) Como em uma hora temos 3 600 segundos, então:
- b) $d = 3600 .300 000 km = 36.10^2 .$ $3.10^5 = 108.10^7 = 1,08.10^2 .10^7 =$ $1,08.10^9 km$
- c) Como em um dia temos 24 horas, então:
- d) $d = 24 \cdot 1,08 \cdot 10^9 = 25,92 \cdot 10^9 = 2,592 \cdot 10 \cdot 10^9 = 2,592 \cdot 10^{10} \text{km}$

12.

a)

 $D = IR e Im = IR_{\perp}^*$

b)

 $D = IR e Im = IR^*$

13.

x	у	(x, y)
-1	1/4	$(-1; \frac{1}{4})$
-0,5	$\frac{1}{2} = 0.5$	(-0,5; 0,5)
0	1	(0; 1)
0,5	2	(0,5; 2)
1	4	(1; 4)

 $D = IR e Im = IR_{\perp}^*$

14.

х	у	(x, y)
-2	$\frac{9}{4} = 2,25$	(-2; 2,25)
-1	$\frac{3}{2}$ = 1,5	(-1; 1,5)
0	1	(0; 1)
1	$\frac{2}{3} \cong 0.7$	$(1; \frac{2}{3})$
2	$\frac{4}{9} \cong 0.4$	$(2;\frac{4}{9})$

 $D = IR e Im = IR^*$

15.

 $P(2)=2000000.1,03^2=2121800$

16.

$$y = 1000.0,9^2 = 810$$

17.

a)
$$2^x = 2^6 \implies x = 6$$

b)
$$2^x = 2^{-7} \Rightarrow x = -7$$

c)
$$2^x = 2^{\frac{5}{2}} \Rightarrow x = \frac{5}{2}$$

d)
$$2^x = 2^{2,1} \Rightarrow x = 2,1$$

18.

a)
$$3^x = 3^{-2} \Rightarrow x = -2$$

b)
$$3^{2x} = 3^3 \Rightarrow x = \frac{3}{2}$$

c)
$$4^{2x} = 4^{-1} \Rightarrow x = -\frac{1}{2}$$

d)
$$2^{10x} = 2^{3.6} \Rightarrow x = 0.36$$

19.

a)
$$2^x = 2^9 \Rightarrow x = 9$$

 $S = \{9\}$

b)
$$2^x = 2^0 \Rightarrow x = 0$$

 $S = \{0\}$

c)
$$S = \{\emptyset\}$$

d)
$$2^x = 2^{-5} \Rightarrow x = -5$$

$$S = \{-5\}$$

e)
$$2^{4x} = 2^3 \Rightarrow x = \frac{3}{4}$$

 $S = \left\{\frac{3}{4}\right\}$

20.

a)
$$2^{x+5} = 64$$

$$2^{x+5} = 26$$

$$x + 5 = 6$$

$$x = 1$$

b)
$$4^{x-1} = 32$$

$$(2^2)^{x-1} = 2^5$$

$$2^{2x-2}=2^5$$

$$2x - 2 = 5$$

$$x = \frac{7}{2}$$

c)
$$8^{x} \cdot 16 = 128$$

$$(2^3)^x$$
. $2^4 = 2^7$

$$2^{3x} \cdot 2^4 = 2^7$$

$$2^{3x+4} = 2^7$$

$$3x + 4 = 7$$

$$x = 1$$

d)
$$5^x + 5^{x+2} = 650$$

$$5^{x} + 5^{x} \cdot 5^{2} = 650$$

Fazendo $5^x = y$ temos:

$$y + y \cdot 5^2 = 650$$

$$26y = 650$$

$$y = 25$$

	Como a variável original é x e	
	$5^x = y$, então:	
	5 ^x = 25	
	Portanto $x = 2$.	
۵)	$3^{x^2} + x = 729$	
e)	$3^{x^2+x} = 3^6$	
	$x^2 + x = 6$	
	$x^2 + x - 6 = 0$	
	Resolvendo a equação temos que:	
	$x_1 = 2$	
	$x_2 = -3$	
	_	
-		