

B1
polymer comprising a cationic polymer, a nonionic polymer, or an amphoteric polymer under cationic conditions or combinations thereof; and

B2
forming the treated pulp into paper or paperboard, wherein said fibrous cationic colloidal alumina microparticles are added to said papermaking pulp prior to introducing said polymer to said pulp.

B2
13. (Amended) The method of claim 1, wherein said polymer is a synthetic, water-soluble cationic polymer containing acrylamide units and cationic monomeric units.

B3
17. (Amended) A papermaking apparatus comprising a supply of fibrous cationic colloidal alumina microparticles, a supply of a papermaking pulp, a device for feeding fibrous cationic colloidal alumina microparticles from the supply of fibrous cationic colloidal alumina microparticles to the supply of papermaking pulp, a supply of a retention system polymer, a device for feeding retention system polymer from the supply of retention system polymer to the pulp or treated pulp, wherein the supply of fibrous cationic colloidal alumina microparticles is located upstream from the supply of the retention system polymers, and a device for forming the pulp into a paper or paperboard after treatment with said fibrous cationic colloidal alumina microparticles and said retention system polymer, wherein said retention system polymer is a cationic polymer, a nonionic polymer, or an amphoteric polymer under cationic conditions, or combinations thereof.

B4
22. (Amended) A paper or paperboard made from a drained paperweb, said paperweb comprising a treated pulp, said treated pulp comprising cellulosic fibers, fibrous cationic colloidal alumina microparticles, and at least one retention system polymer, said retention system polymer comprising a cationic polymer, a nonionic polymer, or an amphoteric polymer under