Algorytmy metaheurystyczne

Antoni Bezdzietny

249327

Algorytmy metaheurystyczne to rodzaj algorytmów optymalizacyjnych, które inspirują się procesami naturalnymi, takimi jak ewolucja, migracja, ogrzewanie i schładzanie. Celem tych algorytmów jest znalezienie optymalnego rozwiązania w problemach, w których tradycyjne algorytmy optymalizacyjne nie dają satysfakcjonujących wyników.

W przeciwieństwie do tradycyjnych algorytmów optymalizacyjnych, algorytmy metaheurystyczne nie gwarantują znalezienia globalnego minimum. Zamiast tego, stanowią próbę znalezienia rozwiązania o wysokiej jakości w stosunkowo krótkim czasie.

Problem flow-shop scheduling

Flow-shop scheduling to problem harmonogramowania w procesie produkcji, w którym wszystkie zlecenia muszą być wykonywane w kolejności przez te same maszyny, ale każde zlecenie może być przetwarzane na każdej maszynie jednocześnie. Celem jest znalezienie optymalnej kolejności wykonywania zleceń, aby zminimalizować czas produkcji.

$$C = max \sum_{j=1}^n p_j \cdot t_{i,j}$$

dla
$$i=1,2,\dots,m$$
 i $j=1,2,\dots,n$

gdzie:

 p_j – czas wykonania zadania j na maszynie i

 $t_{i,j}$ – czas potrzebny do wykonania zadania j na maszynie i

m - liczba maszyn

n-liczba zadań.

Celem jest znalezienie kombinacji $t_{i,j}$, która zminimalizuje wartość funkcji kosztu C.

Wykorzystana baza danych

Baza danych benchmarkowych, która zawiera zestawy testowe dla problemów optymalizacji dyskretnej. Każdy zestaw danych jest opisany w pliku tekstowym i zawiera dane wejściowe i wyjściowe, co umożliwia testowanie i porównywanie różnych algorytmów optymalizacji.

Benchmark Database: OR-Library J.E. Beasley

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html

Wykorzystane zbiory:

- tai20_5 20 zadań, 5 maszyn
- tai20_10 20 zadań, 10 maszyn
- tai20_20 20 zadań, 20 maszyn
- tai50_5 50 zadań, 5 maszyn
- tai50_10 50 zadań, 10 maszyn
- tai50_50 50 zadań, 50 maszyn

Przykład bazy tai20 10.

Wykorzystane algorytmy

W tej sekcji przedstawiono algorytmy metaheurystyczne wykorzystane w celu kolejkowania w problemie flow-shop. W analizowanym problemie wykorzystano algorytmy bazujące na sąsiedztwie, rodzaju:

- SWAP zamiana elementów
- REVERSE_SUBSEQUENCE odwrócenie kolejności sekwencji
- INSERT_BEFORE wstaw przed dany element
- INSERT_AFTER wstaw za dany element

Tabu-Search

Tabu search (TS) jest algorytmem metaheurystycznym stosowanym do rozwiązywania problemów optymalizacyjnych. Jego głównym celem jest unikanie zapętlenia się w lokalnym minimum poprzez wprowadzanie ograniczeń na zmiany w rozwiązaniu.

W tabu search, każdy krok algorytmu polega na wyborze najlepszego z sąsiednich rozwiązań. Jednak, aby uniknąć zapętlenia się w lokalnym minimum, niektóre zmiany są oznaczane jako *tabu* i są wykluczane z dalszej analizy.

Ogólny schemat działania algorytmu tabu search jest następujący:

- 1. Inicjalizacja początkowego rozwiązania.
- 2. Utworzenie listy tabu i wybór sąsiedniego rozwiązania.
- 3. Porównanie wartości funkcji celu i wybór najlepszego rozwiązania.
- 4. Zmiana rozwiązania i dodanie zmiany do listy tabu.
- 5. Powtórzenie kroków 2-4, aż do osiągnięcia zadanego kryterium stopu (np. osiągnięcie maksymalnej liczby iteracji lub wartość funkcji celu).

W algorytmie można również dodać kryterium aspiracji umożliwiające wykonanie kroku z tabeli tabu.

Algorytm Symulowanego Wyżarzania

Algorytm Symulowanego Wyżarzania (SA) algorytm bazujący na sąsiedztwie, stosowany do rozwiązywania problemów optymalizacyjnych. Algorytm wykorzystuje analogię z fizycznym procesem wyżarzania metalu, aby przeszukać przestrzeń rozwiązań i znaleźć globalne minimum funkcji kosztu.

Algorytm w krokach:

- 1. Inicjalizacja: Wybierz początkowe rozwiązanie i ustaw początkową temperaturę T.
- 2. Wybieranie sąsiedniego rozwiązania: Losowo wybierz sąsiednie rozwiązanie.
- 3. Obliczenie funkcji kosztu nowego rozwiązania.
- 4. Akceptacja/odrzucenie nowego rozwiązania: Jeśli nowe rozwiązanie jest lepsze niż bieżące rozwiązanie, zaakceptuj je jako bieżące rozwiązanie. W przeciwnym razie, zaakceptuj je z prawdopodobieństwem opartym na temperaturze T.

- 5. Aktualizacja temperatury: Obniż temperaturę T zgodnie z zadanym schematem.
- 6. Sprawdzenie warunków końcowych: Sprawdź, czy temperatura T osiągnęła określony próg lub czy została osiągnięta określona maksymalna liczba iteracji. Jeśli warunki nie zostały spełnione, powróć do kroku 2.

Przyjęto poniższe schematy studzenia:

- $\text{ geometryczny: } T_k * \left(\frac{\epsilon}{T_0}\right)^{\frac{1}{N}}$ $\text{ logarytmiczny: } \frac{T_k}{1 + \frac{T_0}{N*T_0}*T_k} * T_k$
- liniowy: $\frac{T_0}{N}$

Threshold Algorithm

Threshold Algorithm (TA) - algorytm bazujący na algorytmie SA, jedyną zmianą jest próg akceptacji rozwiązania pogarszającego rozwiązanie. Przyjęcie nowego rozwiązania odbywa się na podstawie zadanego progu bez części probabilistycznej.

RVNS

RVNS (Randomized Variable Neighborhood Search) to metaheurystyka stosowana do rozwiązywania problemów optymalizacyjnych. Algorytm działa poprzez losowe wybieranie w sąsiedztwie aktualnego rozwiązania i modyfikowanie jej wartości w celu znalezienia lepszego rozwiązania. Proces powtarza się wielokrotnie, aż znalezione rozwiązanie będzie spełniać określone kryteria stopu.

Kroki algorytmu RVNS:

- 1. Wybierz początkowe rozwiązanie
- 2. Losuj typ sąsiedztwa i pozycje zmian
- 3. Zmodyfikuj wartość wybranego rozwiązania i oblicz nową wartość funkcji celu
- 4. Porównaj nową wartość funkcji celu z poprzednią i zdecyduj, czy zachować ją jako bieżące rozwiązanie
- 5. Powtarzaj kroki 2-4, aż zostaną spełnione określone kryteria stopu
- 6. Zwraca najlepsze znalezione rozwiązanie.

Uzyskane rezultaty dla zbioru n=20, m=10

Dane benchmarkowe *tai20_10* zawierającej zbiór 20 zadań na 10 maszyn. Wszystkie prezentowanie wyniki są uśrednionymi rezultatami dla 10 wykonań.

Wykorzystany zestaw

Dane:

- czas początkowy: 2104.0
- granica rozwiązania optymalnego: 1659.0

Algorytm **Tabu Search**:

Z parametrami:

- maksymalna ilość iteracji: 500
- długość listy tabu: 6
- kryterium aspiracji: 10

Rodzaj sąsiedztwa	Uzyskane wyniki	Czas wykonania [s]
SWAP	1711.0	11.43
REVERSE_SUBSEQUENCE	1723.0	10.71
INSERT_BEFORE	1698.0	11.23
INSERT_AFTER	1682.0	11.23

Wykresy zbieżności w zależności od sąsiedztwa

Algorytm Algorytm Symulowanego Wyżarzania:

Z parametrami:

• maksymalna ilość iteracji: 5000

- początkowa temperatura: 1145
- z podbiciem temperatury w przypadku braku poprawy
- 1. Typ spadku temperatury: geometryczne

Rodzaj sąsiedztwa	Uzyskane wyniki	Czas wykonania [s]
SWAP	1715.8	6.30
REVERSE_SUBSEQUENCE	1739.7	6.28
INSERT_BEFORE	1707.1	5.95
INSERT_AFTER	1702.8	6.36

2. Typ spadku temperatury: logarytmiczny

Rodzaj sąsiedztwa	Uzyskane wyniki	Czas wykonania [s]
SWAP	1714.4	5.51
REVERSE_SUBSEQUENCE	1732.7	6.28
INSERT_BEFORE	1706.0	5.57
INSERT_AFTER	1694.1	5.73

Algorytm SA z geometryczną funkcją studzenia z podbiciem.

Algorytm SA z logarytmiczną funkcją studzenia z podbiciem.

Algorytm SA z logarytmiczną funkcją studzenia bez podbicia.

Algorytm Threshold Algorithm (TA):

Z parametrami:

• maksymalna ilość iteracji: 5000

• początkowa temperatura: 1000

• z podbiciem temperatury w przypadku braku poprawy

1. Typ spadku temperatury: *geometryczne*

Rodzaj sąsiedztwa	Uzyskane wyniki	Czas wykonania [s]
SWAP	1718.7	6.35
REVERSE_SUBSEQUENCE	1749.6	5.88
INSERT_BEFORE	1700.5	5.51
INSERT_AFTER	1703.8	5.971

2. Typ spadku temperatury: *logarytmiczny*

Rodzaj sąsiedztwa	Uzyskane wyniki	Czas wykonania [s]
SWAP	1711.4	5.61
REVERSE_SUBSEQUENCE	1726.3	5.70
INSERT_BEFORE	1691.1	5.60
INSERT_AFTER	1696.2	5.46

Algorytm **RVNS**:

Z parametrami:

k' iteration: 1000k'' iteration: 500

Rodzaj sąsiedztwa Uzyskane wyniki Czas wykonania [s]

Przykładowe rozwiązanie z czasem 2104 -> 1669

Uzyskane wyniki dla zbioru n=50, m=20

Dane benchmarkowe *tai50_20* zawierającej zbiór 50 zadań na 20 maszyn. Wszystkie prezentowanie wyniki są uśrednionymi rezultatami dla 10 wykonań. Testowana rozwiązania przynoszące najlepsze wyniki dla mniejszego zbioru.

Dane:

czas początkowy: 4730.0

• granica rozwiązania optymalnego: 3715.0

Algorytm Tabu Search INSERT_AFTER 154.430s: 3816.0

Algorytm Symulowanego Wyżarzania INSERT_BEFORE 29.56s: 3921.9

Algorytm Threshold Algorithm INSERT_BEFORE 30.73s: 3946.1

Algorytm RVNS 3153.11s: 3960.0

Przykładowe rozwiązanie z czasem 4730 -> 3816

Wnioski --- Liczba możliwych kombinacji w problemie flow shop zależy od wielu czynników, takich jak liczba maszyn, liczba zadań, ograniczenia czasowe itp. W niektórych przypadkach liczba kombinacji może

być bardzo duża i przekraczać możliwości obliczeniowe dostępnych komputerów. Dlatego stosuje się heurystyki i algorytmy optymalizacyjne, aby znaleźć dobre, a niekoniecznie najlepsze, rozwiązanie.

W analizowanych przypadkach najlepiej poradziła sobie metoda ze zmiennym sąsiedztwem osiągając wynik **1669** wartość bliską ograniczeniu (**1659**). Jednak czas wykonania wyniósł ponad *610s*. Algorytm Tabu Search osiągnął wartość **1682** w *11s*. Algorytmy TA oraz SA osiągnęły wartości bliskie **1693** w czasie *6s*.

Na podstawie powyższych wyników można również zaobserwować iż podobne do siebie algorytmy **SA** oraz **TA** osiągają zbliżone wyniki jak **Tabu Search** czy **RVNS** zajmując przy tym najmniej zasobów.

W metodach opartych na sąsiedztwie najlepsze wyniki uzyskano dla sąsiedztw *INSERT_BEFORE* i *INSERT_AFTER*, może to wynikać z zachowania już zoptymalizowanych podciągów. Sąsiedztwo *REVERSE_SUBSEQUENCE* w każdym z analizowanych algorytmów dostarczało najgorsze rozwiązania.

Zalety algorytmów metaheurystycznych bazujących na sąsiedztwie:

- Elastyczność możliwość dostosowania do różnych problemów optymalizacyjnych
- Skuteczność wysokie prawdopodobieństwo znalezienia globalnego minimum/maksimum.
- Szybkość szybka zbieżność do rozwiązania optymalnego.

Wady algorytmów metaheurystycznych bazujących na sąsiedztwie:

- Brak gwarancji znalezienia optymalnego rozwiązania.
- Zależność od parametrów konieczność doboru odpowiednich parametrów aby uzyskać dobre wyniki.

Poprawa parametrów filtru - metaheurystyki

FIR (Finite Impulse Response) to filtr cyfrowy, w którym odpowiedź impulsowa jest ograniczona w czasie.

$$y[n] = \sum_{i=0}^{M-1} b_i x[n-i]$$

Celem, jest poprawa uzyskanych współczynników wyznaczonych metodą okna, w tym przypadku z wykorzystaniem okna *Hamminga*. Testowana były filtry dolnoprzepustowe.

Parametry filtru LP FIR

Zaproponowane algorytmy

RVNS Continuous

Algorytm bazuje na wyżej opisywanym *RVNS*, zmieniono typ sąsiedztwa. Sąsiedztwo bazuje na zmianie pojedynczej wartości współczynnika filtru. Dopuszczalne jest pogorszenie algorytmu o jeden krok wstecz (pogorszenie wyniku w k-tym kroku musi poprawić wynik w k+1 kroku).

Kroki algorytmu:

- 1. Inicjalizacja rozwiązania początkowego bazującego na metodzie okna
- 2. Zaburzenie losowego współczynnika filtru wartością z $\sigma_1 * randn()$
- 3. Dla nowego rozwiązania sprawdź $k^{\prime\prime}$ rozwiązań sąsiednich $x^{\prime\prime}$
- 4. Zaburzenie losowego współczynnika filtru wartością z $\sigma_2 * randn()$
- 5. Aktualizacja parametru σ_2
- 6. Zapisz najlepsze rozwiązanie $x^{\prime\prime}$
- 7. Jeżeli wartość rozwiązania x'' jest mniejsza od najlepszego rozwiązania zapamiętaj.
- 8. Jeżeli wartość rozwiązania x'' jest mniejsza od obecnego zapisz jako obecne.
- 9. Po osiągnięciu warunku stopu zwróć najlepszy wynik.

Wartości σ_1 oraz σ_2 są wartościami liniowo malejącymi z przedziału 1e-3 ... 1e-6.

Parametry k' oraz k'' odpowiada za ilość iteracji.

Hybryda algorytmu genetycznego oraz RVNS

Algorytm genetyczny (GA) jest metaheurystycznym podejściem do rozwiązywania problemów optymalizacyjnych. Inspirowany jest ideą ewolucji i dziedziczenia genów w biologii.

Algorytm działa w następujący sposób:

- 1. Inicjalizacja populacji: początkową populacją są współczynniki filtru wyznaczone metodą okien
- 2. Ocena: każde rozwiązanie w populacji jest oceniane za pomocą funkcji celu, która określa jego jakość.
- 3. Selekcja: najlepsze rozwiązania są wybierane do dalszej reprodukcji, a reszta jest odrzucana.
- 4. Krzyżowanie (reprodukcja): wybrane rozwiązania są łączone wykorzystując permutacje najlepszych rozwiązań, tworząc nowe rozwiązania, które reprezentują kombinację losowych cech rodziców.
- 5. Mutacja: losowe zmiany są wprowadzane do nowych rozwiązań, aby zapewnić zmienność i uniknąć zakleszczenia w lokalnym minimum. W tym celu wykorzystywany jest wyżej omawiany *RVNS*.
- 6. Powtarzanie kroków 2-5, aż do osiągnięcia zadanej liczby iteracji lub zadanej wartości funkcji celu.

Uzyskane wyniki

Poniżej przedstawiono przykładowe wyniki.

Przykład próby zawężenia pasma przejściowego

Zadane parametry:

```
filter = {
    'N_fft': 512,  # FFT N próbek -> 2^m
    'm_order': 51,  # Długość filtru
    'fs': 48e3,  # Częstotliwość próbkowania
    'f_pass': 9.6e3,  # Częstotliwość graniczna pasma zaporowego
    'tr_band': 0.2e3,  # Szerokość pasma przejściowego
    'd1_db': 1,  # df1 [db] maksymalne pulsacje w paśmie
    przepustowym
    'd2_db': -50,  # df2 [db] minimalna wartość tłumienia w paśmie
zaporowym
}
```

Metoda RVNS-C

Czas wykonania: 285.968

Parametry filtru początkowego:

• Wartość funkcji kosztu (metoda okna): 40.3648

• Pasmo przejściowe (metoda okna): 1603.12 Hz

Parametry filtru zmodyfikowanego:

• Wartość funkcji kosztu (metoda sąsiedztwo): 17.8185

• Pasmo przejściowe (metoda sąsiedztwo): 853.12 Hz

Hybryda algorytmu genetycznego oraz RVNS

Czas wykonania: 202.077

Parametry filtru początkowego:

• Wartość funkcji kosztu (metoda okna): 40.3648

• Pasmo przejściowe (metoda okna): 1603.12 Hz

Parametry filtru zmodyfikowanego:

- Wartość funkcji kosztu (metoda hybrydowa): 15.7287
- Pasmo przejściowe (metoda hybrydowa): 571.87 Hz

Przykład próby poprawy tłumienia w paśmie zaporowym

Zadane parametry:

```
filter = {
    'N_fft': 512,  # FFT N próbek -> 2^m
    'm_order': 51,  # Długość filtru
    'fs': 48e3,  # Częstotliwość próbkowania
    'f_pass': 9.6e3,  # Częstotliwość graniczna pasma zaporowego
    'tr_band': 2e3,  # Szerokość pasma przejściowego
    'd1_db': 1,  # df1 [db] maksymalne pulsacje w paśmie
    przepustowym
    'd2_db': -90,  # df2 [db] minimalna wartość tłumienia w paśmie
    zaporowym
}
```

Metoda RVNS-C

Uzyskane rezultaty metodą RVNS-C

Czas wykonania: 288.034

Parametry filtru początkowego:

• Wartość funkcji kosztu (metoda okna): 11.2398

• Pasmo przejściowe (metoda okna): 3337.50 Hz

Parametry filtru zmodyfikowanego:

• Wartość funkcji kosztu (metoda sąsiedztwo): 5.2243

• Pasmo przejściowe (metoda hybrydow): 3712.50 Hz

Hybryda algorytmu genetycznego oraz RVNS

Czas wykonania: 204.768

Parametry filtru początkowego:

Wartość funkcji kosztu (metoda okna): 11.2398

• Pasmo przejściowe (metoda okna): 3337.50 Hz

Parametry filtru zmodyfikowanego:

• Wartość funkcji kosztu (metoda hybrydowa): 6.8189

• Pasmo przejściowe (metoda hybrydowa): 3009.37 Hz

Wnioski

Wykorzystanie heurystyk w przypadku poprawy tłumienia w paśmie zaporowym, jak i zmniejszeniu szerokości pasma przejściowego umożliwia poprawienie charakterystyki filtru.

W obu przypadkach zaproponowany algorytm hybrydowy wykorzystujący własności algorytmu genetycznego oraz algorytmu bazującego na sąsiedztwie dostarczyły rozwiązań o lepszej charakterystyce.

W przypadku poprawy współczynników filtru istotną kwestią jest rozpoczęcie od rozwiązania 'dobrego', a następnie próba jego poprawienia dopuszczając pogorszenie tylko kilka modyfikacji wstecz. Dzięki temu zapewniamy zbieżność.

W przypadku modelowania współczynników heurystykami, istotną rolę odgrywa dobrze zaproponowana funkcja kosztu. Warto zwrócić uwagę na korzystanie ze skali logarytmicznej. Wartości w paśmie zaporowym są bardzo małe przez co wyznaczenie np. odległości euklidesowej nie jest najlepszym rozwiązaniem.