CS557: Cryptography

Elementary Number Theory-V

S. Tripathy IIT Patna

- Elementary Number Theory
 - -GCD
 - Euclidean Algorithm.
 - Group Theory
 - Modular arithmetic

Previous Class

that r.a + s.b

Fast Exponential: Square and multiply

Compute 30^{37 (mod} 77)

Find x^c mod n C as bit string: $b_{k-1} ... b_0$ z = 1For i = k-1 downto 0 do $z = z^2 mod n$ if bi= 1 then z = z * x mod nEndfor

i	b	Z		
5	1	30	=1*1*30 mod 77	
4	0	53	=30*30 mod 77	
3	0	37	=53*53 mod 77	
2	1	29	=37*37*30 mod 77	
1	0	71	=29*29 mod 77	
0	1	2	=71*71*30 mod 77	

Chinese Remainder Theorem

- used to speed up modulo computations
- · working modulo a product of numbers
 - eg. mod $M = m_1 m_2 ... m_k$
- Chinese Remainder theorem lets us work in each moduli m_i separately
- since computational cost is proportional to size, this is faster than working in the full modulus M
- can implement CRT in several ways
- to compute (A mod M) can firstly compute all (a_i mod m_i) separately and then combine results to get answer using:

Chinese Remainder Theorem (Contd.)

- Given $x \equiv b_i \mod m_i$ to solve for mod N, N= Π m_i
- · Algo:
 - 1. Solve for each (N/m_i) . $y_i \equiv 1 \mod m_{i i.e}$ $y = (N/m_i)$ inverse modulo m_i
 - 2. $A \equiv \sum_{i} N/m_i b_i$. $y_i \mod N$
- Example: Given $x \equiv 1 \mod 5$ and $x \equiv 10 \mod 11$
 - Compute $x \equiv ? \text{ Mod } 55$

Chinese Remainder Theorem (Contd.)

- Given $x \equiv b_i \mod m_i$ to solve for mod N, N= Π m_i
- · Algo:
 - 1. Solve for each (N/m_i) . $y_i \equiv 1 \mod m_{i i.e}$ $y = (N/m_i)$ inverse modulo m_i
 - 2. $A \equiv \sum_{i} N/m_i b_i$. $y_i \mod N$
- Example: Given $x \equiv 1 \mod 5$ and $x \equiv 10 \mod 11$
 - Compute $x \equiv ? \text{ Mod } 55$
 - Ans: 21 mod 55

- Find $x = (2,3,2) \pmod{(3,5,7)}$ respectively.
- Sol:

Example

i	mi	b _i	Mi	$y_i = M_i^{-1} \pmod{m_i}$	b _i M _i y _i
1	3	2	m/3=35	35 y ₁ ≡ 1 (mod 3) ⇒ -1	2 x 35 x -1
2	5	3	m/5=21	21 y ₂ ≡ 1 (mod 5) ⇒ 1	3 x 21 x 1
3	7	2	m/7=15	15 y ₃ ≡ 1 (mod 7) ⇒ 1	2 x 15 x 1
	M = 105				x = -70 + 63 + 30 = 23.

Modular e'th roots

We know how to solve modular <u>linear</u> equations:

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} = \mathbf{0}$$
 in Z_N

Solution:
$$x = -b \cdot a^{-1}$$
 in Z_N

What about higher degree polynomials?

Example: Let p be a prime and $c \in \mathbb{Z}_p$.

Can we solve:

$$x^2 - c = 0$$
 , $y^3 - c = 0$, $z^{37} - c = 0$ in Z_p

Modular e'th roots

Let p be a prime and $c \in \mathbb{Z}_{p}$.

<u>Def</u>: $x \in \mathbb{Z}_p$ s.t. $x^e = c$ in \mathbb{Z}_p is called an e'th root of c.

$$7^{1/3} = 6$$
 in \mathbb{Z}_{11} 6³ = 216 = 7 in \mathbb{Z}_{11}

$$3^{1/2} = 5$$
 in \mathbb{Z}_{11}

$$1^{1/3} = 1$$
 in \mathbb{Z}_{11}

Examples: $3^{1/2} = 5$ in \mathbb{Z}_{11} $2^{1/2}$ does not exist in \mathbb{Z}_{11}

How to Compute eth root?

```
When does c^{1/e} in Z_p exist? If gcd(e, p-1) = 1, then c^{1/e} exists in Z_p for all c in (Z_p)^*. Proof: let d = e^{-1} in Z_{p-1}. i.e, d \cdot e = 1 in Z_{p-1} \Rightarrow c^d = c^{1/e} in Z_p
```

The case e=2: square roots

If p is an odd prime then
$$\gcd(2,p-1) \neq 1$$
 $x \rightarrow x$

Fact: $\operatorname{in} \mathbb{Z}_p^*$, $x \rightarrow x^2$ is a 2-to-1 function x^2

Example: $\operatorname{in} \mathbb{Z}_{11}^*$:

1 10 2 9 3 8 4 7 5 6

 $\underline{\mathbf{Def}}$: x in \mathbb{Z}_p is a quadratic residue (Q.R.) if it has a square root in \mathbb{Z}_p

p odd prime \Rightarrow the # of Q.R. in \mathbb{Z}_p is (p-1)/2 + 1

Euler's theorem

Thm: $x \text{ in } (Z_p)^* \text{ is a Q.R.} \iff x^{(p-1)/2} = 1 \text{ in } Z_p \text{ (p odd prime)}$

Example:

in
$$\mathbb{Z}_{11}$$
: 1⁵, 2⁵, 3⁵, 4⁵, 5⁵, 6⁵, 7⁵, 8⁵, 9⁵, 10⁵

$$= 1 -1 1 1 1 1, -1, -1, -1, 1, -1$$
Note: $x \neq 0 \Rightarrow x^{(p-1)/2} = (x^{p-1})^{1/2} = 1^{1/2} \in \{1, -1\}$ in Z_p

<u>Def</u>: $x^{(p-1)/2}$ is called the <u>Legendre Symbol</u> of x over p

Computing square roots mod p

Suppose
$$p = 3 \pmod{4}$$

Lemma: if
$$c \in (Z_p)^*$$
 is Q.R. then $\int c = c^{(p+1)/4}$ in Z_p

When $p = 1 \pmod{4}$, can also be a bit harder nad may be solved using randomized algorithm.

Thanks