Low-Code Al:

Making Al Accessible to Everyone

Harish Chintakunta
MathWorks
hchintak@mathworks.com
LinkedIn Profile

Overview

What will we see today?

How to Access Materials

- Set up a MathWorks account if you don't have one
 - Go to https://www.mathworks.com/mwaccount/
- Workshop license (if you don't already have access to MATLAB)
 - https://www.mathworks.com/licensecenter/classro om/4969700/
- Open the GitHub Repository
 - https://github.com/nrobertsMW/simco2025/
 - You can either clone the repo or download all the material

Access MATLAB for your Machine Learning Workshop

MathWorks is pleased to provide a special license to you as a course participant to use for your Machine Learning Workshop. This is a limited license for the duration of your course and is intended to be used only for course work and not for government, research, commercial, or other organization use.

Course Name:	Simian Collective 2025 MATLAB Workshops	
Organization:	MathWorks Machine Learning	
Starting:	25 Aug 2025	
Ending:	26 Aug 2025	

Access MATLAB Online

Learning Outcomes

Experience working with example problems

Design and train AI models with interactive tools

Automatically generate code for reuse

What is AI?

Traditional Programming

Traditional Programming

Machine Learning

Type of Learning

Clustering:

- Segmenting data into groups based on data similarity
- Hard clustering models (e.g. kmeans)
- Soft clustering models (e.g. Gaussian mixture models)
- To discover patterns, identify possible features, check for outliers

Regression:

Predicted variable (response) is continuous (number)

Classification:

Predicted variable (response) is discrete (class)

Data:

Inputs	3-axial Accelerometer 3-axial Gyroscope	
Outputs	⅓ ⅓ ⅓ —	

Let's jump into some exercises

Running example: Human Activity Classification

Task: Classify activity data acquired from the sensors in a mobile phone

Case 1: no labels are available clustering

Case 2+3: labels are available

Recap

Clustering can be used to label raw data

Classification Learner lets you try out different models

Deep Network Designer lets you design networks interactively

Relevant textbooks and doc examples

MATLAB and Simulink Based Books

Books Main Page Search Join Book Program Fundamentals of Bioinformatics and Computational Biology:

Methods and Exercises in MATLAB, 2nd edition

Gautam B. Singh, Oakland University Springer International Publishing, 2025 ISBN: 978-3-031-75694-8; Language: English

Fundamentals of Riginformatics and Computational Riginary covers all the core highermatics tonics and includes practical examples

complet engineer biology. genetics biology. essentia

MATLAB for Neuroscientists: An Introduction to Computing in MATLAB, 2e

Pascal Wallisch, New York University; Mike Lusignan, University of Chicago; Marc Benayoun, University of Chicago; Tanya I. Baker, The Salk Institute; Adam S. Dickey, University of Chicago; Nicho G. Hatsopoulos, University of Chicago Academic Press, 2014

ISBN: 978-0-12-383836-0; Language: English

Written for students and researchers, MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB provides a comprehensive introduction to MATLAB and its use within the fields of neuroscience and psychology. The book aims to empower users of MATLAB to design and implement their own analytical tools. Topics include stimulus generation, experimental control, data collection, data analysis, and modeling.

MATLAB is used throughout the book to solve many application examples. In addition, a set of MATLAB code files is available for download.

	Domain		Example Workflow	Learn More
	Image classification, regression, and processing	bell pepper (98.2%)	Apply deep learning to image data tasks. For example, use deep learning for image classification and regression.	Get Started with Transfer Learning Pretrained Deep Neural Networks Create Simple Deep Learning Neural Network for Classification Train Convolutional Neural Network for Regression Preprocess Images for Deep Learning
	Sequences and time series	Time Step	Apply deep learning to sequence and time series tasks. For example, use deep learning for sequence classification and time series forecasting.	Sequence Classification Using Deep Learning Time Series Forecasting Using Deep Learning
•	Computer vision		Apply deep learning to computer vision applications. For example, use deep learning for semantic segmentation and object detection.	Get Started with Semantic Segmentation Using Deep Learning (Computer Vision Toolbox) Recognition, Object Detection, and Semantic Segmentation (Computer Vision Toolbox)

Key takeaways

Ease-of-use through interactive tools

Al accessible to everyone

Interactive tools can enhance programming skills

Supporting *Your* Success Self-Paced Online Trainings

OVERVIEW COURSES (2-3 hours)

MATLAB Onramp Simulink Onramp Stateflow Onramp Simscape Onramp Machine Learning Onramp

Deep Learning Onramp

Reinforcement Learning Onramp

Control Design with Simulink Onramp

Power Electronics Onramp

Signal Processing Onramp Image Processing Onramp Wireless Communications Onramp Circuit Simulation Onramp Optimization Onramp

Self-Paced Courses

FREE "getting started" content – available for everyone

Continue the conversation!

- MathWorks Education Application Engineers
- Harish Chintakunta
- hchintak@mahtworks.com
- We consult with faculty and researchers to support them with their STEM initiatives, including integrating computational or systems thinking into their curriculum and research
- Office hours with my colleague Noah
 - Meet with Noah on 08/26
 - (link also in GitHub Repository!)

Thank you!

© 2022 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.