Name	TA	Time

The Chemistry of Oxygen

In this lab you will make several compounds, all oxides. You will do this by burning several elements in oxygen gas or watching your TA burn some elements. The goal of this experiment is to not set off the fire alarm. Be careful! Work in the hoods!

I. Production of oxygen gas

We will need oxygen gas in this lab to make several oxides. Oxygen gas can be produced by the decomposition of hydrogen peroxide. The first part of this lab is to test different ways to decompose hydrogen peroxide into oxygen.

In a rack, place four test tubes and add 3.0 mL hydrogen peroxide to each.

In the first, add about 10 drops of 1M FeCl₃.

In the second, add about the tip of a spatula (pea size) of solid MnO₂.

In the third, add 10 grains of active dry yeast.

In the fourth, add nothing, this is your control.

Observe the reactions. Which of the four is the most effective oxygen gas producer?

What are FeCl₃, MnO₂ and yeast called in the reactions above?

Assemble the apparatus shown below for producing oxygen gas using the best method you determined earlier.

Universal	pН
indicator	
color	
Red	4 or less
Orange	5
Yellow	6
Green	7
Blue	8
Indigo	9
violet	10 or greater

Fill the tank or bucket with water and fill 4 jars with water. To a 250 mL Erlenmeyer flask, add hydrogen peroxide and the best reagent determined to produce oxygen gas. Attach the stopper with the rubber tubing and after the initial air is blown out of the tube start collecting oxygen by bubbling O₂ into the inverted water filled jar. When the water reaches the bottle neck of the jar, stop collecting oxygen. Cover the jar, invert it and continue to collect oxygen until the 4 are filled with oxygen.

II. Preparation of four oxides (demos)

Your TA will demonstrate the igniting and burning in O₂ of Lithium, Phosphorus, Titanium powder and Barium using the oxygen you produced.

Name		TA	Time
III. Preparation of Magnesium	four other oxid	es	
	on of Mg in a pair	of tongs and set it on fire by pl	acing it in the flame of a Bunsen burner.
		O_2 . (Shield your eyes; it will be	_
Calcium			
-		s, heat it, at first slowly then stro crucible into a beaker with dist	ongly. It is hard to ignite but burns brightly.
Carbon (coal)	the residue in the	crucible into a beaker with dist	med water.
` ′	al hald with tongs	or in a deflacrating anon-usin	a the Duncen burner and quickly put in a
= =	-		g the Bunsen burner and quickly put in a
Sulfur	Note. Grop a sinai	l piece of dry ice into the bottle	•]
	za sammla of sulf	un in a deflerenting anoon (male	a sum this and is in a head) Hold it assemble
•	•		e sure this one is in a hood) Hold it over the tle of O_2 . Sulfur will melt then burn with
smore.			
Experimental resu	ılts		
Table 1 Reactions of	of selected elemen	its with oxygen.	
Element name	Symbol	Observations	
,			
			
,			

Name	TA	Time
1 (diffe		<u> </u>

Reactions of the oxides with water

Next the reactions of the oxides with water left in the jars will be examine. The pH of the solution will be determined. By convention, the formulation involves addition of one or more water molecules to the oxide; the way this is done is illustrated by the reaction of C with O₂ to give CO₂ and then the reaction of CO₂ with H₂O to yield either a basic or acidic compound as illustrated in Table 2 below. The correct hydrated formula is determined by the pH of the corresponding solution.

IV. Testing the pH of the eight oxides

To each oxide you made in a bottle or beaker add a little distilled water and then drip 2-3 drops of the solution onto universal indicator paper. Record the color of each in the table. Translate the color of the universal indicator to a pH value using the color code on the chart.

V. Obtain and test the pH of some other oxides

Several other oxides have already been prepared. Take a little on the tip of a spatula and transfer to a clean test tube add about 1 mL of hot distilled water and then drip 2-3 drops of the solution onto universal indicator paper. Again translate the color of the universal indicator to a pH value using the color code on the chart.

Table 2 Metal oxides formed and reactions in water.

Elements	Metal,	Oxide	Hydrated fo	ormula	Universal	pН	Acidic,	Correct
symbol	Nonmetal,	formula	written as:		indicator		Basic, or	hydrated
	or		Base	acid	color		Neutral	formula
	metalloid							
С		C0 ₂	CO(OH) ₂	H ₂ CO ₃				

Name		TA	Time
Consider your retest.	esults above and predict the	e formulas of two acidic or	xides and two basic oxides that you did not
Acidic		Basic	
What does the te	erm anhydride mean?		
	ur experiment would be to s. (What should you do wit	•	noving water from the molecules below and ogens?)
Determine the fo	ormulas of the anhydrides of	of the following oxides.	
HClO	HNO ₃	H ₂ SO ₄	Sn(OH)4
HClO ₃	HNO ₂	H ₂ SO ₃	Sr(OH) ₂
H ₂ CO ₃	La(OH)3	H4SiO4	CsOH