WHAT IS CLAIMED IS:

1	1. An acoustic transducer for measuring a property of a flui	ıa,
2	the acoustic transducer comprising:	
3	an acoustic pulse generator; and	
4	a buffer assembly between the pulse generator and the fluid, the	he
5	buffer assembly being composed of a core and a sleeve shrink fitted over the co	re
6	to form a cladding that reduces dispersion of the acoustic pulses traveling through	gh
7	the core.	
1	2. The acoustic transducer of claim 1 wherein the sleeve has	s a
2	thermal conductivity of at least 15 W/(m·K).	
1	3. The acoustic transducer of claim 1 wherein the sleeve is made	.de
2	of titanium.	
1	4. The acoustic transducer of claim 1 wherein the core has	a
2	thermal conductivity of less than 15 W/(m·K).	
1	5. The acoustic transducer of claim 1 wherein the core has	a
2	thermal conductivity of less than 1 W/(m·K).	
1	6. The acoustic transducer of claim 1 wherein the core is made	de
2	of fused silica.	
1	7. The acoustic transducer of claim 6 wherein the core is made	de
2	of a composite of fused silica and mica.	
1	8. The acoustic transducer of claim 1 wherein the sleeve	is
2	secured to the core by high temperature glass fusing.	
1	9. The acoustic transducer of claim 1 wherein the high	gh
2	temperature glass fusing of the sleeve and core forms a hermitic seal.	د

1	10. The acoustic transducer of claim 1 wherein the sleeve is
2	secured to the core with a refractory cement.
1	11. The acoustic transducer of claim 1 wherein the sleeve is made
2	of metal.
1	12. The acoustic transducer of claim 1 further comprising:
2	a thermal management system mounted to the sleeve to transfer hea
3	from the sleeve, wherein the thermal management system is formed of a high
4	thermal conductivity material and is arranged along the sleeve such that substantia
5	heat is transferred to the environment from the thermal management system without
6	excessive temperature increase at the pulse generator.
1	13. The acoustic transducer of claim 12 wherein the therma
2	management system includes a plurality of fins.
	the decide the cleave is made
1	14. The acoustic transducer of claim 1 wherein the sleeve is mad
2	of a material having a bulk sound speed greater than a bulk sound speed of the cor
3	material.
1	15. The acoustic transducer of claim 1 wherein the sleeve is mad
2	of a material having a bulk sound speed less than a bulk sound speed of the cor
3	material, and wherein the sleeve is configured in a way that adds stiffness thereto
1	16. The acoustic transducer of claim 1 wherein during operation
2	at least a portion of the core extends into the fluid which is being measured an
3	wherein the sleeve is arranged to insulate the sides of the extended core portion from
4	heat from the fluid while leaving the tip of the core in contact with the fluid suc
5	that the insulated core portion is not cladded.
1	17. The acoustic transducer of claim 1 wherein the insulate
2	portion of the core sides is insulated by an air gap formed by the sleeve.

1

18.

2	which fluid flows, the improvement comprising:
3	an acoustic transducer for measuring a property of a fluid, the
4	acoustic transducer including an acoustic pulse generator and a buffer assembly
5	between the pulse generator and the fluid, the buffer assembly being composed of
6	a core formed of a low thermal conductivity material and a sleeve shrink fitted over
7	the core to form a cladding that reduces dispersion of the acoustic pulses traveling
8	through the core.
1	19. The combination of claim 18 wherein the sleeve is secured to
2	the core by high temperature glass fusing.
1	20. The combination of claim 18 wherein the sleeve is secured to
2	the core with a refractory cement.
1	21. The combination of claim 18 wherein the sleeve is made of
2	metal.
1	The combination of claim 18 further comprising:
2	a thermal management system mounted to the sleeve to transfer heat
3	from the sleeve, wherein the thermal management system is formed of a high
4	thermal conductivity material and is arranged along the sleeve such that substantial
5	heat is transferred to the environment from the thermal management system without
5	excessive temperature increase at the pulse generator.
1	23. The combination of claim 22 wherein the thermal management
2	system includes a plurality of fins.
1	24. The combination of claim 18 wherein during operation at least
2	a portion of the core extends into the fluid which is being measured and wherein the
3	sleeve is arranged to insulate the sides of the extended core portion from heat from

In combination with an apparatus including a conduit through

4	the fluid while leaving the tip of the core in contact with the fluid such that the
5	insulated core portion is not cladded.
1	25. The combination of claim 18 wherein the insulated portion of
2	the core sides is insulated by an air gap formed by the sleeve.
1	26. A sampling system comprising:
2	a fluid inlet for receiving a fluid;
3	a dilution inlet for receiving a dilution gas;
4	a mixing section for mixing at least a portion of the fluid with the
5	dilution gas;
6	a collection section for collecting a sample of the mixture; and
7	a flow meter for measuring a flow related to the sampling system, the
8	flow meter including an acoustic transducer for measuring the flow, the acoustic
9	transducer including an acoustic pulse generator and a buffer assembly between the
10	pulse generator and the fluid, the buffer assembly being composed of a core formed
11	of a low thermal conductivity material and a sleeve shrink fitted over the core to
12	form a cladding that reduces dispersion of the acoustic pulses traveling through the
13	core.
1	27. The sampling system of claim 26 wherein the flow meter
2	includes a pair of acoustic transducers arranged in an opposed fashion in a conduit
3	through which fluid flows for measuring the flow.
1	28. A sampling system comprising:
2	a sample line for sampling a fluid from a main conduit;
3	a flow meter for measuring a flow of the fluid through the main
4	conduit, the flow meter including an acoustic transducer for measuring the flow, the
5	acoustic transducer including an acoustic pulse generator and a buffer assembly
6	between the pulse generator and the fluid, the buffer assembly being composed of
7	a core formed of a low thermal conductivity material and a sleeve shrink fitted over
8	the core to form a cladding that reduces dispersion of the acoustic pulses traveling
9	through the core;

10	a dilution inlet for receiving a dilution gas;
11	a mixing section for mixing the fluid flow from the sample line with
12	the dilution gas at a generally fixed ratio;
13	a collection section for sampling the mixture, the mixture being
14	sampled at a rate generally proportional to the flow of the fluid through the main
15	conduit
1	29. The sampling system of claim 26 wherein the flow meter
2	includes a pair of acoustic transducers arranged in an opposed fashion in the main
3	conduit.