#### RUTHERFORD'S ATOM MODEL

- i) Majority of  $\alpha$  particles passed without any deviation.
- ii) Some are scattered at small angle  $\theta$  (impact parameter is equal to that of nuclear radius)
- iii) Only few alpha particle retrace the path (impact parameter = 0)



# BOHR ATOM MODEL

First postulate

$$F = \frac{1}{4\pi\epsilon_0} \frac{Ze \times e}{r^2}$$

Second postulate

$$mvr = \frac{nh}{2\pi}$$

$$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r^2}$$

#### DISTANCE OF CLOSEST APPROACH OF ∝-PARTICLES



- RADIUS OF ORBIT  $r_n = 0.53 \frac{n^2}{7}$
- VELOCITY OF ELECTRON  $V_n \alpha \frac{Z}{n}$
- TIME PERIOD  $T\alpha \frac{n^3}{z^2}$
- FREQUENCY =  $\frac{1}{T} \alpha \frac{z^2}{n^3}$
- CURRENT =  $\frac{e}{T} \alpha \frac{z^2}{n^3}$
- MAGNETIC FIELD B  $\alpha \frac{v}{r^2} \Rightarrow B \alpha \frac{z^3}{n^5}$
- MAGNETIC DIPOLE MOMENT Man

### IMPACT PARAMETER

$$b = \frac{1}{4\pi\epsilon_{o}} \frac{Ze^{2}\cot\frac{\theta}{2}}{\frac{1}{2}mv^{2}}$$

$$b\alpha \frac{1}{m} b\alpha \frac{1}{v^{2}}$$

$$b\alpha \frac{1}{K.E} b\alpha \cot\frac{\theta}{2}$$
Particle



As the n value increases, the energy difference betwen adjacent level decreases 5  $\rightarrow$  1 > 4  $\rightarrow$  1 > 3  $\rightarrow$  1 > 2  $\rightarrow$  1 > > 4  $\rightarrow$  2 > 3  $\rightarrow$  2  $\to$  2  $\to$  2  $\to$  2  $\to$  2  $\to$  3  $\to$  2  $\to$  2  $\to$  3  $\to$  3  $\to$  3  $\to$  3  $\to$  4  $\to$  5  $\to$  6  $\to$  9  $\to$  1  $\to$ 

# Atomic Physics



#### HYDROGEN SPECTRUM

Absorption spectrum



Electrons absorb only those photons whose energy

=Energy difference of 2 shells

If atomic excitation takes place upto n<sup>th</sup> shell starting from ground state then (n-1)different photons are - absorbed

## ENERGY

Total energy = -13.6  $\frac{z^2}{n^2}$  eV K.E = -T.E = +13.6  $\frac{z^2}{n^2}$  eV P.E = 2T.E



#### EMISSION SPECTRUM





#### LINE SPECTRUM OF HYDROGEN ATOM



### LINE SPECTRUM OF HYDROGEN ATOM

| Spectral series | n <sub>1</sub> | n <sub>2</sub> | Wavelength                                                                   | $\lambda_{\text{max}}$ (n <sub>2</sub> =n <sub>1</sub> +1) | $\lambda_{min}$ (n <sub>2</sub> = $\infty$ ) | $\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$ | Region           | Range                                |
|-----------------|----------------|----------------|------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|------------------|--------------------------------------|
| Lyman           | 1              | 2,3,4          | $\frac{1}{\lambda_{Ly}} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$       | 4<br>3R                                                    | 1<br>R                                       | 4 3                                                 | Ultra - violet   | 911 <sub>.</sub> 6 Å<br>to<br>1216 Å |
| Balmer          | 2              | 3,4,5          | $\frac{1}{\lambda_{B}} = R \left( \frac{1}{2^{2}} - \frac{1}{n^{2}} \right)$ | 36<br>5R                                                   | 4<br>R                                       | 9 5                                                 | Visible          | 3646 Å<br>to<br>6563 Å               |
| Paschen         | 3              | 4,5,6          | $\frac{1}{\lambda_p} = R \left( \frac{1}{3^2} - \frac{1}{n^2} \right)$       | 144<br>7R                                                  | 9<br>R                                       | 16<br>7                                             | Near infar-red   | 8204 Å<br>to<br>18753 Å              |
| Brackett        | 4              | 5,6,7          | $\frac{1}{\lambda_{Br}} = R \left( \frac{1}{4^2} - \frac{1}{n^2} \right)$    | 400<br>9R                                                  | 16<br>R                                      | <u>25</u><br>9                                      | Middle infra-red | 14585 Å<br>to<br>40515 Å             |
| Pfund           | 5              | 6,7,8          | $\frac{1}{\lambda_{pf}} = R\left(\frac{1}{5^2} - \frac{1}{n^2}\right)$       | 900<br>11R                                                 | 25<br>R                                      | 36<br>11                                            | Far infra-red    | 22790 Å<br>to<br>74583 Å             |

Energy levels A,B & C of a certain atom correspond to increasing values of energy, i.e.  $E_A < E_B < E_C$ . If  $\lambda_1, \lambda_2, \lambda_3$  are the wavelengths of radiations corresponding to transitions C to B,B to A and C to A respectively then



a) 
$$\lambda_3 = \lambda_1 + \lambda_2$$
 c)  $\lambda_1 + \lambda_2 + \lambda_3 = 0$ 

**b)** 
$$\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
 **d)**  $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$