CS 223 Computer Architecture and Organization

Main Memory

J. K. Deka

Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Structure - Top Level

Structure - The CPU

CPU Internal Structure

Computer Components

Semiconductor Memory

- RAM (Random Access Memory)
 - Misnamed as all semiconductor memory is random access
 - Read/Write
 - Volatile
 - Temporary storage
 - Static or dynamic

Memory Cell Operation

Memory Cell

Memory Module

Memory Module

Parameters of Memory Module:

- Addressable Memory Space
 - Size of Address Bus
- Size of Memory Location
 - Size of Data Bus
- Memory Capacity
- Memory Organization
 - Byte organized

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue
 - Level of charge determines value

Dynamic RAM Structure

DRAM Operation

- Address line active when bit read or written
 - Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Read
 - Address line selected
 - transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine 0 or 1
 - Capacitor charge must be restored

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital
 - Uses flip-flops

Stating RAM Structure

State 1 C_1 high, C_2 low T_1 T_4 off, T_2 T_3 on

State 0

C₁ low, C₂ high

T₁ T₄ on, T₂ T₃ off

Static RAM Operation

- Transistor arrangement gives stable logic state
- State 1
 - C₁ high, C₂ low
 - $-T_1T_4$ off, T_2T_3 on
- State 0
 - C₂ high, C₁ low
 - $-T_2T_3$ off, T_1T_4 on
- Address line transistors T₅ T₆
- Write apply value to B & compliment to B
- Read value is on line B

SRAM v DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Larger memory units
- Static
 - Faster
 - Less dense
 - Cache

Reference

Computer Organization and Architecture –
Designing for Performance
William Stallings, Seventh Edition

Chapter 05: Internal Memory

Computer Organization
Hamacher, Vranesic and Zaky, Fifth Edition

Chapter05: Page No.: 291 - 314