Question 1

Following the techniques outlined in [1], I will model walking locomotion for myself as a **planar spring-mass model**.

This model cycles through 2 modes: 'flight' and 'stance'. Each phase has different dynamics and therefore different equations of motion, and solving for the system trajectory requires different sets of states and differential equations.

- 1. The simplifying assumptions:
 - a. Legs are massless, and all joints and components are negligible
 - b. Two legs have the same stiffness
 - c. Knees are simplified as compressing springs
 - d. Everything above the waist is simplified as a single point mass, and the angle at the waist is negligible
 - e. The leg can be controlled to any position instantaneously (since leg is massless), so the control input $u = \theta$
- 2. The model that I picked is one found in literature. As I am walking, one can consider one of my legs in the 'flight' phase and the other in the 'stance' phase, and with every step the two legs switch phases. My 'apex' y term in the model mirrors the movement of my torso 'center of mass' during my walk.
- 3. The system parameters, as seen in the diagram above:
 - a. The spring constant k
 - b. The length of the fully extended leg I_0
 - c. The angle of attack of the 'foot' α
 - d. The mass of the body m
 - e. Gravity g
 - f. The stance angle range ϕ
- 4. There are 2 phases to this model, each with a state and dynamics
 - a. Flight:
 - i. The state in this phase is $s = [x, y, x^*, y^*]$
 - ii. The dynamics are based on the fact that gravity is the only force acting the system:

- 1. $s^* = [x^*, y^*, x^{**}, y^{**}] = [x^*, y^*, 0, -g]$
- iii. We transition out of this phase when the foot **collides into the ground**, or mathematically when $y \le 0$
- b. Stance:
 - i. The state in this phase is s = [r, theta, r*, theta*]. These are the polar coordinates of the system
 - ii. The forces involved are the kinetic energy T (angular and translational velocities), and potential energy U from the spring force and gravity. The leg by definition is **compressed** in this phase, so we use r instead of I_0
 - iii. The Lagrangian yields:
 - 1. $T = m / 2 (r^{*2} + r^{*2} \theta^{*2})$
 - 2. U = gravitational potential energy + spring energy = mg (rcos θ) + k / 2 (I₀ r)²
 - 3. L = T U = m / 2 ($r^{*2} + r^{*2}\theta^{*2}$) mg ($r\cos\theta$) k / 2 (I_0 r)²
 - iv. We can substitute L to a known expression to obtain the **Euler-Lagrange equation of motion** to get the stance dynamics
 - 1. $mr^{**} mr\theta^{*2} + mg \cos\theta k(l_0 r) = 0$
 - 2. $mr^2\theta^{**} + 2mrr^*\theta^* mgrsin\theta = 0$
 - v. Note that the right hand side for these expressions is 0, the system is **unforced**
 - 1. We introduce energy into the system via controlling the leg angle at takeoff instantaneously
 - vi. We transition out of the stance phase when the leg extends / relaxes to its uncompressed length $r \ge I_0$
- 5. The following is a plot of the SLIP model after controller iterating / tuning. It is a P controller on the xdot / ydot terms and the output is routed to the takeoff angle.

Main references:

https://www.cs.cmu.edu/~hgeyer/Publications/Geyer05PhDThesis.pdf http://underactuated.mit.edu/simple_legs.html#example5

Question 2

Following the techniques outlined in [1], I will model walking locomotion for my charging dog as **2 planar spring-mass models** that are coupled with a torso defined as 1 mass-less link connected to either leg and each other, similar to in the figure below.

Fig. 1: Dual-SLIP template model for quadrupedal running.

This model cycles through 2 modes: 'flight' and 'stance'. Each phase has different dynamics and therefore different equations of motion, and solving for the system trajectory requires different sets of states and differential equations.

- 1. Simplifying assumptions:
 - a. All of the assumptions from Question 1 hold still for the front and hind legs, and they have the **same static parameters**
 - i. Legs are massless, and all joints and components are negligible
 - ii. Two legs have the same stiffness
 - iii. Knees are simplified as compressing springs
 - iv. Everything above the waist is simplified as a single point mass, and the angle at the waist is negligible
 - v. The leg can be controlled to any position instantaneously (since leg is massless), so the control input $u = \theta$
 - b. The torso is massless and does not bend
 - c. When the hind leg is in stance, the front of the body in flight, and vice-versa.
 - d. The two springs have the **same** stiffness k
 - e. The two masses have the same mass
- 2. When my dog is charging / running, he largely propels forward using his hind legs and then again using his front legs. His apex, head motion, follows an apex map similar to the one proposed by this dual-slip model
- 3. Like in Question 1, this model cycles through multiple states. The sequence of states is as follows: hind SLIP, fore SLIP, hind SLIP, etc. Unlike Question 1, however, because the first SLIP is coupled to a linkage, the dynamics when m₁ is 'flying' are those of a

pendulum swinging along the torso link about m₂, and vice versa. The system parameters are as follows:

- a. mass of mass 1 and mass 2 hip and shoulder m
- b. Extended link of both hind and front leg 10
- c. Stiffness of hind front legs k
- d. Length of the torso torsol
- During the two states of the system, the hind and front legs alternate between flight / stance phases
 - a. When hind is stance, front is flying
 - i. The hind leg equations of motion are solved in Question 1 for the stance phase
 - ii. For the front leg, the hind leg to torso angle phih is changing and driving the motion here
 - 1. Kinetic energy T = m / 2 $(x_{hind}^2 + y_{hind}^2)$ + m / 2 $(torsol^{*2} + torsol^{*2}phi_{hind}^{*2})$, this is the sum of the hind mass (a constant w.r.t. phi) and the polar translational velocity of phi about mass_{hind}
 - 2. Potential energy U = m g y_{mass2} = m g $(y_{hind}$ + torsol * sin(phi))
 - iii. The Lagrangian yields:
 - 1. L = T U
 - iv. We can substitute L to a known expression to obtain the **Euler-Lagrange** equation of motion to get the stance dynamics for phi
 - 1. el1 = L.diff(phih) (L.diff(phih.diff(t))).diff(t)
 - 2. $-gmtorsol\cos\phi_{hind}-mtorsol^2\phi_{hind}^{...}=0$, note that this is **unforced**

3.
$$\phi_{hind}^{"} = \frac{gcos\phi_{hind}}{torsol}$$

- 4. So for the hind leg we integrate as in Question 1, and we integrate ϕ_{hind} and front leg moves as a function of hind but remains static otherwise
- v. Transition conditions still hold from Question 1, so when the hind legs $r \ge 10$, it 'takes off' and when the front leg $y \le 0$, it 'touches down'
- b. Note that when the front leg is stancing and hind is flying, the same equation of motion applies for ϕ_{front} , and this drives the 'flying' hind leg to fall back down.