

Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

Fletcher Hartshorn

Tybrin Corporation
Aerodynamics and Propulsion Branch
NASA Dryden Flight Research Center

29th AIAA Applied Aerodynamics Conference

Sheraton Waikiki and the Hawaii Convention Center, Honolulu, Hawaii June 27-30, 2011

Contents

- Glove Project Background
- Code Descriptions
- Grid Generation and Independence Studies
- Analysis Matrix
- Aircraft Aerodynamic Configuration Results
- Local Flow Properties Around the Glove
- Conclusions

DRE LFGE Project Background

- A natural laminar flow wing glove will be placed on a Gulfstream G-III business jet.
- The project is under the Environmentally Responsible Aviation (ERA) sub-project and is called Discrete Roughness Elements Laminar Flow Glove Experiment (DRE LFGE)
- Texas A&M University is the main partner and is credited with the design of the glove
- The glove is a large modification to the outer mold line of one aircraft wing, and the changes need to be analyzed using CFD to ensure pilot, aircraft, and mission safety

Code Descriptions

TRANAIR

- Well-validated non-linear full-potential flow aircraft aerodynamics code
- Implicit direct coupling with a boundary layer code for viscous effects
- Underlying surface grid is fully structured
- Automatically generated solution adaptive Cartesian unstructured grid
- Refines the grid where the error estimates from the velocity gradients are high
- Used for most of the GIII full aircraft analysis.

Star-CCM+

- Unstructured, full Reynolds Averaged Navier-Stokes commercial CFD code.
- Steady state, compressible capability, Menter SST Turbulence model
- Used to confirm Tranair results as well as for complex aircraft flows outside the applicability of Tranair, such high flap deflections, high aircraft angles of attack, etc...

Grid Independence

- Grid Independence studies were performed mostly for TRANAIR using the DLR-F6 aircraft
- Surface cell count and sizes are varied
- Volume cell count and maximum/minimum sizes analyzed
 - Care taken when decreasing minimum adaptive cell size
 - E.g. decreasing cell size while maintaining cell count will allow for more cells to cluster around suction peaks, and move away from oblique shocks
- Domain size needs only to be a couple aircraft lengths away from aircraft grid
 - Much less sensitive then full
 RANS computational domains
- Lessons learned and grid sizes from independence study are applied to the GIII surface grid

TRANAIR Surface Grid

High quality surface mesh is lofted using AGPS and forms the foundation for Tranair's automatic volume grid generation

Star-CCM+ Aircraft Grid

- •26 Million Volume Cells, 16 Prism Layers, Y+ 100
- •Refinement of glove LE and TE wakes to help ensure accuracy of the solution

CFD Analysis Matrix

- Seven main flight conditions were chosen at which to perform the analysis:
- Common Cruise Points Close to proposed flight test conditions
 - Mach(M_{∞}) 0.75, Altitude(H) 45k ft
 - M_{∞} 0.75, H 40k ft
 - M_{∞} 0.7, H 25k ft
- Near Highest Mach and Dynamic Pressure limits of the aircraft
 - M_{∞} 0.85, H 25k ft
- Low speed landing configuration (No flaps)
 - M_{∞} 0.26, H 0 ft
 - M_∞ 0.26, H 35 ft, Ground Effects
- Worst case takeoff configuration at takeoff safety speed
 - M_∞ 0.22, H 100 ft, 20° Flaps, One Engine Inoperable (OEI)
- Multiple aircraft angles of attack and sideslip were analyzed at each flight condition
- Takeoff configuration analyzed using Star-CCM+ because of the prominence of complex flow, separation and recirculation.

Aircraft Aerodynamic Results

- Differences in forces and moment between the baseline and gloved aircraft are quantified using deltas and control surface deflections
- Deltas are defined as the force or moment of the gloved aircraft subtracted from that of the baseline aircraft
 - Note at each analysis point the inflow is constant with no transients modeled
- Control surface deflection required to trim out the delta force and moments are calculated
- The glove produces only small changes in overall aircraft aerodynamics in all cases.
- The glove is not a problem for the aircraft high-speed, maximum dynamic pressure flight; as well as the low-speed, one-engine out, 20-deg. flap, low-altitude flight
- The glove does not change the aircraft's ground effects aerodynamics
- Coordinate system is defined X positive forward, Y positive out right wing, Z positive down
 - Rolling moment positive rolling into right wing
 - Pitching moment positive pitch up
 - Yawing moment positive yawing into right wing

Aircraft Aero Results

Flight Condition	$\mathbf{M}_{\!\scriptscriptstyle \infty}$	H (ft)	Alpha (°)	Beta (°)	$\Delta \mathrm{C_L}$	ΔC_{D}	$\Delta C_{ m Y}$	ΔC_l	$\Delta \mathrm{C}_{\mathrm{m}}$	ΔC_n
1	0.75	45 K	4.24	0	-0.0106	-0.0015	0.0017	-0.0012	-0.0037	-0.0003
1	0.75	45 K	-0.76	0	-0.0039	0.0002	0.0008	-0.0008	0.0019	-0.0002
1	0.75	45 K	4.24	5	-0.0120	0.0012	0.0024	-0.0007	-0.0031	-0.0005
1	0.75	45 K	4.24	-5	-0.0081	-0.0044	0.0031	-0.0006	-0.0046	-0.0005
2	0.75	40 K	4.24	0	-0.0089	-0.0015	0.0016	-0.0010	-0.0041	-0.0003
2	0.75	40 K	-0.76	0	-0.0041	-0.0003	0.0009	-0.0008	0.0021	-0.0003
2	0.75	40 K	4.24	5	-0.0102	-0.0015	0.0011	-0.0012	-0.0036	-0.0003
2	0.75	40 K	4.24	-5	-0.0096	-0.0008	0.0002	-0.0016	-0.0042	0.0000
3	0.7	25 K	2.30	0	-0.0071	-0.0004	0.0012	-0.0011	-0.0026	-0.0003
3	0.7	25 K	-2.70	0	0.0005	-0.0021	0.0000	-0.0005	0.0053	0.0000
3	0.7	25 K	6.00	0	-0.0121	-0.0003	0.0023	-0.0016	-0.0066	-0.0006
3	0.7	25 K	2.30	5	-0.0073	-0.0004	0.0014	-0.0009	-0.0017	-0.0004
3	0.7	25 K	2.30	-5	-0.0069	-0.0004	0.0012	-0.0013	-0.0030	-0.0003
4	0.85	25 K	1.59	0	0.0059	-0.0013	0.0007	0.0034	-0.0038	0.0002
4	0.85	25 K	1.09	0	0.0023	-0.0016	0.0001	0.0020	-0.0005	0.0004
4	0.85	25 K	0.59	0	-0.0055	-0.0021	-0.0003	-0.0005	0.0051	0.0004
5	0.26	0	2.67	0	-0.0060	-0.0003	0.0011	-0.0011	-0.0027	-0.0003
5	0.26	0	7.67	0	-0.0103	-0.0009	0.0023	-0.0018	-0.0092	-0.0007
5	0.26	0	10.67	0	-0.0130	-0.0018	0.0028	-0.0020	-0.0129	-0.0009
5	0.26	0	7.67	5	-0.0110	-0.0011	0.0024	-0.0016	-0.0080	-0.0007
5	0.26	0	7.67	-5	-0.0099	-0.0009	0.0022	-0.0022	-0.0105	-0.0006
6	0.26	35	7.67	0	-0.0081	-0.0008	0.0014	-0.0020	-0.0032	-0.0001
7	0.22	100	6.75	15	-0.0112	-0.0038	-0.0019	-0.0011	-0.0056	0.0000
7	0.22	100	6.75	-15	-0.0075	-0.0085	0.0002	-0.0026	-0.0129	0.0000

Control Surface Deflections

Flight Condition	$\mathbf{M}_{\!\scriptscriptstyle \infty}$	H (ft)	Alpha (°)	Beta (°)	ΔC_1	ΔC_{m}	ΔC_n
					Aileron (°)	Elevator (°)	Rudder (°)
1	0.75	45 K	4.24	0	1.0	0.2	0.2
1	0.75	45 K	-0.76	0	0.6	-0.1	0.2
1	0.75	45 K	4.24	5	0.5	0.2	0.4
1	0.75	45 K	4.24	-5	0.5	0.3	0.4
2	0.75	40 K	4.24	0	0.8	0.3	0.2
2	0.75	40 K	-0.76	0	0.6	-0.1	0.2
2	0.75	40 K	4.24	5	0.9	0.2	0.2
2	0.75	40 K	4.24	-5	1.2	0.3	0.0
3	0.7	25 K	2.30	0	0.9	0.2	0.2
3	0.7	25 K	-2.70	0	0.4	-0.4	0.0
3	0.7	25 K	6.00	0	1.3	0.5	0.5
3	0.7	25 K	2.30	5	0.7	0.1	0.3
3	0.7	25 K	2.30	-5	1.1	0.2	0.2
4	0.85	25 K	1.59	0	-2.9	0.4	-0.2
4	0.85	25 K	1.09	0	-1.7	0.1	-0.3
4	0.85	25 K	0.59	0	0.4	-0.6	-0.3
5	0.26	0	2.67	0	0.9	0.1	0.3
5	0.26	0	7.67	0	1.4	0.5	0.6
5	0.26	0	10.67	0	1.6	0.7	0.8
5	0.26	0	7.67	5	1.2	0.4	0.6
5	0.26	0	7.67	-5	1.8	0.6	0.5
6	0.26	35	7.67	0	1.5	0.2	0.1
7	0.22	100	6.75	15	0.8	0.3	0.0
7	0.22	100	6.75	-15	1.9	0.7	0.0

Cruise Condition Mach Contours

- Mach 0.75, 40,000 ft, 4.24 deg. AoA
- The glove modifies the shock structure on the upper surface of the wing.
- The glove produces a pocket of supersonic flow at the inboard fairing.

Cruise Condition Span Loads

- Lift and moment coefficient are non-dimensionalized by one reference chord.
- The glove does not have a significant effect on span-wise lift distribution.
- The glove significantly modifies the local span-wise pitching moment distribution in the glove area

Max q_∞ Mach Contours

- Mach 0.85, 25,000 ft, 1.59 deg. AoA
- Glove adds a strong shock near the glove blending region.
- The aircraft engine's zone of influence extends into the glove area.

Cruise Condition Span Loads

- The glove has a slightly more significant effect on span-wise lift distribution.
- Lift decreases because the glove changes the chord wise extent of the shocks
- The added lift at the front of the glove, is partially balanced out by the added lift caused by the shock near the blending region of the glove

Landing Config. Span Loads

- The glove has a very minimal effect on span-wise lift distribution.
- The glove significantly modifies the local span-wise pitching moment distribution in the glove area
- Structural studies need to be performed to determine if the wing can handle the added torsional load

Takeoff Config. C_P Contours

Mach 0.22, 100 ft alt., 6.75-deg. α , -15-deg. β

The glove has no significant effects on aircraft aerodynamics

Conclusions

- The delta aerodynamic forces and moments produced by the glove are fairly small
- Only Small control surface deflections are needed to trim out the asymmetries
- The spanwise lift distribution of the gloved wing matches very well with the clean wing
- TRANAIR and Star-CCM+ worked very well in generating the necessary results for these studies
- Flight data will be gathered that will include aircraft PID parameters, wing pressure distributions, surface temperatures, and much more and used to help validate the CFD models