ВВЕДЕНИЕ В МАШИНОЕ ОБУЧЕНИЕ

KARPOV.COURSES

BIG DATA & ML

DATA PLATFORM

АЛГОРИТМ

МАШИННОЕ ОБУЧЕНИЕ

АЛГОРИТМ VS МАШИННОЕ ОБУЧЕНИЕ

	АЛГОРИТМ	МАШИННОЕ ОБУЧЕНИЕ
Результат	Точный	Вероятностный
Проверка	Тестирование	Оценка качества (метрики)
Сложность	Относительно просто реализовать	Требует затрат как для подготовки данных так и в обучении
Интерпретируемость	Прозрачен	Большинство методов трудно объяснимы
Применение	Широкое	Более широкое

СОСТАВЛЯЮЩИЕ МАШИННОГО ОБУЧЕНИЯ

ДАННЫЕ

Множество объектов (ситуаций) и их свойств для решения задачи.

ПРИЗНАКИ

Свойства или характеристики используемые для обучения.

АЛГОРИТМ

Метод применяемый для создания модели.

МЕТРИКА

Функция для оценки качества модели.

ОСНОВНЫЕ ПРОБЛЕМЫ В ML

ДАННЫЕ

- Где взять?
- Как хранить?
- Чем больше тем лучше!

РЕЗУЛЬТАТЫ ПО ДАННЫМ

- Ручная разметка
- Сбор результатов внутри системы
- Готовые датасеты

вычислительные мощности

• Где взять CPU/GPU?

ПРОИЗВОДИТЕЛЬНОСТЬ (NRT)

- Оптимизация
- Масштабирование

методы мо

ОСНОВНЫЕ ВИДЫ МО

КЛАССИЧЕСКОЕ ОБУЧЕНИЕ

Просты данные и признаки.

ОБУЧЕНИЕ С ПОДКРЕПЛЕНИЕМ

Возможно взаимодействие со средой исполнения для обучения.

АНСАМБЛИ

Комбинирование моделей для улучшения качества.

ГЛУБОКОЕ ОБУЧЕНИЕ

Применение нейросетей любого типа.

КЛАССИЧЕСКОЕ ОБУЧЕНИЕ

ОБУЧЕНИЕ С УЧИТЕЛЕМ

•КЛАССИФИКАЦИЯ

Предсказать класс объекта

•РЕГРЕССИЯ

Предсказать значение

ОБУЧЕНИЕ БЕЗ УЧИТЕЛЯ

•КЛАСТЕРИЗАЦИЯ

Группировка объектов по схожести

•АССОЦИАЦИЯ

Выявление последовательностей

•УМЕНЬШЕНИЕ РАЗМЕРНОСТИ

Выявление зависимостей

ЗАДАЧА КЛАССИФИКАЦИИ

Задача классификации - получение категориального ответа на основе набора признаков.

Метрики

Ассигасу - доля правильных ответов в наборе данных

F-мера - гармоническое среднее между точностью и полнотой

. . .

ЗАДАЧА РЕГРЕССИИ

Задача регрессии - прогноз значения на основе выборки объектов с различными признаками.

Метрики

MSE - средний квадрат отклонения

RMSE- корень среднего квадрата

отклонения

. . .

МОДЕЛИ КЛАССИЧЕСКОГО МО

МОДЕЛИ КЛАССИЧЕСКОГО МО

ДЕРЕВО РЕШЕНИЙ

СЛУЧАЙНЫЙ ЛЕС

АНСАМБЛИ

СТЕКИНГ

Обучение набора разных алгоритмов и передача их результатов на вход последнему, который и принимает итоговое решение.

АНСАМБЛИ

БЭГГИНГ

Обучаем один алгоритм много раз на случайных выборках из исходных данных. В конце усредняем ответы.

АНСАМБЛИ

БУСТИНГ

Обучаем алгоритм последовательно, каждый следующий уделяет особое внимание тем случаям, на которых ошибся предыдущий.

ВИДЫ ПАРАМЕТРОВ МОДЕЛИ

Параметры модели — параметры, которые изменяются и оптимизируются в процессе обучения модели и итоговые значения этих параметров являются результатом обучения модели.

Гиперпараметры модели — параметры, значения которых задается до начала обучения модели и не изменяется в процессе обучения.
При этом у модели может не быть гиперпараметров.

Оптимизация гиперпараметров — процесс поиска набора оптимальных гиперпараметров для алгоритма обучения.

ОПТИМИЗАЦИЯ ГИПЕРПАРАМЕТРОВ

ПРИМЕНЯЕМЫЕ АЛГОРИТМЫ ОПТИМИЗАЦИИ

Grid Search — алгоритм поиска гиперпараметров на основе перебора комбинаций гиперпараметров из заданого множества.

Random Search — алгоритм поиска гиперпараметров на основе перебора случайно выбранных комбинаций гиперпараметров из заданого диапазона.

Gradient-based — алгоритмы поиска гиперпараметров на основе градиентного спуска.

ПРОЦЕСС ОБУЧЕНИЯ

train - применяется для обучения модели.

validation - применяется для оптимизации параметров модели.

test - применяется для итоговой оценки качества модели.

ПРОЦЕСС ОБУЧЕНИЯ

