PYP Answer - MA3269 AY1718Sem1

Ma Hongqiang

January 26, 2018

	$[0, K_1]$	$(K_1, K_2]$	$(K_2,K_3]$	(K_3,∞)
Long 1 K_1 call	0	$S_T - K_1$	$S_T - K_1$	$S_T - K_1$
Short 2 K_2 call	0	0	$-2S_T + 2K_2$	$-2S_T + 2K_2$
Long 1 K_3 call	0	0	0	$S_T - K_3$
Sum	0	$S_T - K_1$	$-S_T + K_3$	$S_T - K_3$

- 1. (a) i. Since all the sums are greater or equal to 0 yet the investment is initially costing 0, it is an arbitrage opportunity.
 - ii. We have

$$C_i + Ke^{-rT} = P_i + S_0, i = 1, 2, 3$$

$$\Rightarrow C_2 - \frac{1}{2}(C_1 + C_3) = P_2 - \frac{1}{2}(P_1 + P_3) \le 0$$

- (b) i. We employ the two-period binomial model. Here, q=0.613636 and let $a:=e^{-r\delta t}=0.970446$. $F_1^u=a(q\times 0+(1-q)(42-44\times 0.92))=0.569916$ and $F_1^d=a(q(42-40.48)+(1-q)(42-33.856))=3.95871$ and finally $F_0=a(qF_1^u+(1-q)F_1^d)=1.82$.
 - ii. Here q and a remains the same. $F_1^u = a(q \times 8.4 + (1-q) \times 0.48) = 5.18218$ and $F_1^d = a(q \times 0.48) = 0.28584$ and $F_0 = 3.19$.
- 2. (a) By definition of certainty equivalent,

$$U(c) = 0.2U(0.8) + 0.6U(1) + 0.2U(1.25) \Rightarrow c = 1.00$$

- (b) Solving U(1) > pU(0.8) + 3pU(1) + (1 4p)U(1.25) gives p > 0.201.
- (c) We calculate ARA of $U^2(x)$ to be $-\frac{-(x+1)^{-2}}{(x+1)^{-1}} = (1+x)^{-1}$. By definition of ARA, we have $-\frac{R_1''}{R_1'} = (1+x)^{-1}$. Therefore,

$$\ln(R')' = -(x+1)^{-1}$$

$$\ln(R') = c_1 - \ln(x+1)$$

$$R' = A_1(x+1)^{-1}$$

$$R(x) = A_1 \ln(x+1) + A_2 \text{ where } A_1 > 0, A_2 \in \mathbb{R}$$

- (d) $W=1-\frac{1}{V}=1-V^{-1}$. Differentiating once gives $W'=V^{-2}V'$ and twice gives $W''=-2V^{-3}V'+V^{-2}V''<0$ since V>0,V'>0 and V''<0. Therefore, investor C is risk averse.
- (e) $W_{\text{ARA}} = -\frac{W''}{W'} = 2V^{-1} \frac{V''}{V'}$. Since $V_{\text{ARA}} = -\frac{V''}{V'}$, we have $W_{\text{ARA}} = V_{\text{ARA}} + 2V^{-1} > V_{\text{ARA}}$ for all x > 0. Therefore, C is globally more risk averse than B.
- (f) We have $Z = W \circ U^{-1}$. Therefore, $Z' = W'(U^{-1}) \frac{1}{U'(U^{-1})}$ and $Z'' = W''(U^{-1}) \frac{1}{U'(U^{-1})}$ $W'(U^{-1})(U'(U^{-1}))^{-2}U''(U^{-1})\frac{1}{U'(U^{-1})}<0.$
- (a) (\Rightarrow) By two-fund theorem, all frontier portfolios are spanned by $\frac{\mathbf{C}^{-1}\mathbf{1}}{\mathbf{1}^{\mathsf{T}}\mathbf{C}^{-1}\mathbf{1}}$ and $\frac{\mathbf{C}^{-1}\mu}{\mathbf{1}^{\mathsf{T}}\mathbf{C}^{-1}\mu}$. Since **u** is uncorrelated with all frontier portfolio, we have

$$\mathbf{w}_u^{\mathrm{T}} \mathbf{C} \mathbf{C}^{-1} \mathbf{1} = 0 \text{ and }$$

 $\mathbf{w}_u^{\mathrm{T}} \mathbf{C} \mathbf{C}^{-1} \boldsymbol{\mu} = 0$

The first equation shows \mathbf{u} is hedge and second equation show \mathbf{u} is zero-mean.

 (\Leftarrow) From the condition zero-mean and hedge we can arrive at the above pair of equations. Then any portfolio x's correlation with this portfolio is

$$\mathbf{w}_{u}^{\mathrm{T}}\mathbf{C}\mathbf{w}_{x} = c_{1}\mathbf{w}_{u}^{\mathrm{T}}\mathbf{C}\mathbf{C}^{-1}\mathbf{1} + c_{2}\mathbf{w}_{u}^{\mathrm{T}}\mathbf{C}\mathbf{C}^{-1}\boldsymbol{\mu} = 0$$

by two fund theorem.

(b) We want to $\min_{\mathbf{w}} \mathbf{w}^{\mathrm{T}} \boldsymbol{\mu} - \frac{\gamma}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{C} \mathbf{w})$ subject to the constraints $\mathbf{w}^{\mathrm{T}} \mathbf{w}_0 = 0$. Employ the Lagrange multiplier, we have

$$L = \mathbf{w}^{\mathrm{T}} \boldsymbol{\mu} - \frac{\gamma}{2} (\mathbf{w}^{\mathrm{T}} \mathbf{C} \mathbf{w}) - \lambda (\mathbf{w}^{\mathrm{T}} \mathbf{w}_0)$$

and

$$\frac{\mathrm{d}L}{\mathrm{d}\mathbf{w}} = \boldsymbol{\mu} - \gamma \mathbf{C}\mathbf{w} - \lambda \mathbf{w}_0 = 0$$

gives

$$\mathbf{w} = \frac{1}{\gamma} \mathbf{C}^{-1} (\boldsymbol{\mu} - \lambda \mathbf{w}_0)$$

and substituting it into the constraints, we have

$$\frac{1}{\gamma} \boldsymbol{\mu}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{w}_{0} - \frac{\lambda}{\gamma} \mathbf{w}_{0} \mathbf{C}^{-1} \mathbf{w}_{0} = 0$$

so we have $s - \lambda p = 0 \Rightarrow \lambda = \frac{s}{p}$. Therefore, $\mathbf{w} = \frac{1}{\gamma} \mathbf{C}^{-1} (\boldsymbol{\mu} - \frac{s}{p} \mathbf{w}_0)$.

(c) By definition of beta, $\beta_m = \frac{\mu_m - r_f}{\mu_m - r_f} = 1$. Since $\sigma_m^2 = \mathbf{w}_m^{\mathrm{T}} \mathbf{C} \mathbf{w}$, equivalently we want to show $\mathbf{w}_m^{\mathrm{T}} \mathbf{C} \mathbf{w} = \frac{1}{\beta^{\mathrm{T}} \mathbf{C}^{-1} \beta}$. $\beta_m = \boldsymbol{\beta}^{\mathrm{T}} \mathbf{w}_m$, we evaluate $\mathbf{w}_m^{\mathrm{T}} \mathbf{C} \mathbf{w} \boldsymbol{\beta}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\beta} = 1$, which proves the claim.

(a) From the table, the weight vector is

$$\mathbf{w}_{m} = \frac{1}{150 \times 2 + 100 \times 2 + 80 \times 2.5 + 100 \times 3} \begin{pmatrix} 150 \times 2 \\ 100 \times 2 \\ 80 \times 2.5 \\ 100 \times 3 \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.3 \end{pmatrix}$$

Portfolio mean is $\mu_m = \boldsymbol{\mu}^{\mathrm{T}} \mathbf{w}_m = 0.103$.

(b) From the asymptote, the minimum-variance frontier has the format of

$$9\sigma^2 = \frac{47}{417}(100\mu - \frac{359}{47})^2 + c$$

where c is some constant. It should also satisfy the market portfolio, so

$$9 \times 0.11 = \frac{47}{417} (100 \times 0.103 - \frac{359}{47})^2 + c$$

so $c = \frac{9}{47}$. Then the required frontier is

$$\sigma^2 = \frac{470000}{3753} (\mu - \frac{359}{4700})^2 + \frac{1}{47}$$

where $x = \frac{470000}{3753}$, $y = \frac{359}{4700}$ and $z = \frac{1}{47}$.

- (c) GMVP occurs when $\mu_g = \frac{359}{4700}$ and $\sigma_g^2 = \frac{1}{47}$.
- (d) Implicit differentiation on the frontier gives

$$18\sigma d\sigma = \frac{9400}{417} (100\mu - \frac{359}{47}) d\mu$$

Therefore, at market portfolio, we have

$$\frac{\mathrm{d}\mu}{\mathrm{d}\sigma} = \frac{18 \times \sqrt{0.11}}{\frac{9400}{417} (100 \times 0.103 - \frac{359}{47})} = \frac{3}{10} \sqrt{0.11}$$

Therefore, the CML admits the following equation

$$\mu - 0.103 = \frac{3}{10}\sqrt{0.11}(\sigma - \sqrt{0.11})$$

- (e) $r_f = 0.103 + \frac{3}{10}\sqrt{0.11}(0 \sqrt{0.11}) = 0.07.$
- (f) $\beta_3 = \frac{\mu_3 r_f}{\mu_m r_f} = \frac{10}{11}$.
- (g) Since $\sigma_g^2 = \frac{1}{a}$, we have $a = \frac{1}{\frac{1}{47}} = 47$.

Then $b = a\mu_g = \frac{359}{100}$, From frontier, we have $\frac{a}{ac-b^2} = \frac{470000}{3753}$, so $c = \frac{1411}{5000}$