Inception Module in Deep Convolution Networks

CS8004: Deep Learning and Applications

Motivation...

 Standard CNN architecture until 2014 consisted of stacked convolutional layers with Max pooling and batch normalization.

- But standard CNN architecture has various limitations.
 - Large memory footprint
 - Large computation demand
 - Prone to overfitting
 - Vanishing and exploding gradients
 - AlexNet had ~60 million parameters

Motivation...

- Dense connections are expensive whereas Biological systems are sparse.
- Sparsity can be exploited by clustering correlated outputs (Theoretical work by Arora et al.)
- How to choose the filter size to capture features at different abstraction levels simultaneously.
- Wider filters have powerful ability of local abstraction.
- Levels of features can be enriched by the depth of the network (the number of stacked layers).
- One way is to integrate low/mid/high-level features and classifiers.

Main Issues

- Increasing model size and computational cost leads to immediate quality gains for most of the tasks.
- But computational efficiency decreases due to explosion in trainable parameters.
- What are the major factors in computational load: high dimensional convolutions.
- Higher dimensional representations are easier to process locally within a network.
- Increasing the activations in each layer in a convolutional network allows for more disentangled features. The resulting networks will train faster.
- Let us see how this can be achieved.

General Practice

- Avoid representational bottlenecks and maintain higher dimensional representations, particularly in the initial network layers.
- The representation size should gently decrease from the input layer to the output.
- Balance the width and depth of the network.

Example

Both the ResNet modules in a network have similar complexity.

Inception Module

Inception: Balance model size and computation cost.

 Use different size of filters altogether to capture different levels of feature abstractions simultaneously.

Go deeper to enrich the feature abstraction.

Inception Module (Naïve)

- Approximation of an optimal local sparse structure
- Process visual/spatial information at various scales and then aggregate
- But higher dimensional feature maps are computationally expensive.

Inception Module

• Let us see a computationally efficient \parameter reduction model.

CS8004: Deep Learning and Applications

9 + 9

25

13-10-2021

3*3

С

Same inputs

and outputs

Inception Module with Dimension Reduction

- Computationally efficient.
- Dimension reduction
- Achieved with 1x1 convolutions.
- Pooling in depth instead of max/average pooling in height/width.

Computational Efficiency

• Number of multiplications: $(28 \times 28 \times 256) \times (5 \times 5 \times 128) = 642,252,800 \approx 642$ million

Computational Efficiency

• Number of multiplications: $(28 \times 28 \times 32) \times 128 + (28 \times 28 \times 256) \times (5 \times 5 \times 32) = 3,211,264 + 160,563,200 \approx$

The Inception Module

Full Inception-v1

Inception Network v1: GoogLeNet

- Inception Modules: standard convolution, pooling, and normalization layers.
- Total Structure: 9 stacked inception modules.
- Final Classifier: average pooling and single fully connected (fc)-layer.
- Small Improvement over all fc-layers.
- Auxiliary classifiers
 - Helpful in discrimination
 - provide regularization
 - discarded at inference
- 22 layers total, only ~5 million parameters 12 times less than AlexNet.
- ILSVRC'14 classification winner (6.7% top 5 error)

Evolution of Inception

¹Inception 5 (GoogLeNet)

Inception 7a

Structural Changes between Inception 5 and 6

13-10-2021

Structural Changes between Inception 5 and 6

- Each mini network has the same receptive field.
- Deeper: more expressive (ReLu on both layers).
- 25 / 18 times (~28%) cheaper (due to feature sharing).
- Computation savings can be used to increase the number of filters.

Downside:

Grid Size Reduction from Inception 5 to 6

Structural Changes between Inception 6 and 7

13-10-2021

Structural Changes between Inception 6 and 7

- Each mini network has the same receptive field.
- Deeper: more expressive (ReLu on both layers).
- 9 / 6 times (~33%) cheaper (due to feature sharing).
- Computation savings can be used to increase the number of filters.

<u>Downside:</u>

Padding in Inception Modules

Inception 6: **SAME** padding throughout:

SAME padding

Input grid size	Patch size	Stride	Output grid size
8x8	3x3	1	8x8
8x8	5x5	1	8x8
8x8	3x3	2	4x4
8x8	3x3	4	2x2

Output size is independent of patch size

Padding with zero values

VALID padding

Input grid size	Patch size	Stride	Output grid size
7x7	3x3	1	5x5
7x7	5x5	1	3x3
7x7	3x3	2	3x3
7x7	3x3	4	2x2

- Output size depends on the patch size
- No padding: each patch is fully contained

Padding in Inception Modules v6 and v7

Advantages of padding methods

SAME padding

- More equal distribution of gradients
- Less boundary effects
- No tunnel vision (sensitivity drop at the border)

VALID padding

 More refined: higher grid sizes at the same computational cost

Stride	Inception 6 padding	Inception 7 padding
1	SAME	SAME (VALID on first few layers)
2	SAME	VALID

13-10-2021

Computational Cost

Computational cost of the Inception models

Comparison with VGG

Computational Cost Comparison

References

- Slides on inception Networks by
 - Wenchi Ma, Computer Vision Group, EECS, KU.
 - Christian Szegedy, Julian Ibarz and Vincent Vanhoucke's presentation slides on Inception Networks, Google.
 - David White's lecture slides on Inception Networks, Colorado State University