

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 708 182 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 24.04.1996 Bulletin 1996/17

(21) Application number: 94929005.0

(22) Date of filing: 05.10.1994

(51) Int. Cl.⁶: C22C 38/04, C22C 38/42

(86) International application number: PCT/JP94/01665

(87) International publication number:WO 95/26422 (05.10.1995 Gazette 1995/42)

(84) Designated Contracting States: BE DE FR GB IT LU

(30) Priority: 28.03.1994 JP 57261/94

(71) Applicant: Nippon Steel Corporation Chiyoda-ku Tokyo 100 (JP)

(72) Inventors:

 NISHIDA, Seiki Nippon Steel Corporation Kimitsu Chiba 299-11 (JP) NAKASHIMA, Junji Nippon Steel Corporation Chiba 299-11 (JP)

SERIKAWA, Osami
 Nippon Steel Corporation Kimitsu
 Chiba 299-11 (JP)

OCHIAI, Ikuo
 Chiba 299-11 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 München (DE)

(54) HIGH-STRENGTH STEEL WIRE MATERIAL OF EXCELLENT FATIGUE CHARACTERISTICS AND HIGH-STRENGTH STEEL WIRE

(57) This invention provides a high-strength steel wire of excellent fatigue characteristics used for an extrafine steel wire of a high strength and a high ductility, such as a steel cord and a belt cord used to reinforce a rubber and an organic material for the production of a tire, a belt and a hose, and a high-strength steel wire, such as a rope and a PC wire. The present invention is characterized in that it contains 0.7-1 mass % of C, 0.1-1.5 mass % of Si, 0.1-1.5 mass % of Mn, not more than 0.02 mass % of P, not more than 0.02 mass % of S, and Fe and unavoidable impurities for the rest, not less than 80 % of nonmetallic inclusions comprising 4-60 % of CaO + MnO, 22-87 % of SiO₂ and 0-46 % of Al₂O₃, a melting point being not higher than 1500 °C.

Fig. 1

Description

FIELD OF THE INVENTION

The present invention relates a steel wire rod of high strength and a steel wire of high strength excellent in fatigue characteristics used for an extra fine steel wire of high strength and high ductility which is used for a steel cord, a belt cord, and the like for reinforcing rubber and organic materials such as those in tires, belts and hoses, and for a steel wire of high strength which is used for a rope, a PC (Prestressed Concrete) wire, and the like.

BACKGROUND OF THE INVENTION

In general, a drawn extra fine wire of high carbon steel used for a steel cord is usually produced by optionally hot rolling a steel material, cooling under control the hot rolled steel material to give a wire rod having a diameter of 4.0 to 5.5 mm, primary drawing the wire rod, final patenting the wire, plating the wire with brass, and finally wet drawing the wire. Such extra fine steel wires are in many cases stranded to give, for example, a two-strand cord or five-strand cord, which is used as a steel cord. These wires are required to have properties such as mentioned below:

a. a high strength,

20

55

- b. an excellent drawability at high speed,
- c. excellent fatigue characteristics, and
- d. excellent high speed stranding characteristics.

Accordingly, steel materials of high quality, in accordance with the demand, have heretofore been developed.

For example, Japanese Unexamined Patent Publication (Kokai) No. 60-204865 discloses the production of an extra fine wire and a high carbon steel wire rod for a steel cord which exhibit less breakage during stranding, and a high strength and a high ductility, by adjusting the Mn content to less than 0.3% to inhibit supercooled structure formation after lead patenting and controlling the amounts of elements such as C, Si and Mn. Moreover, Japanese Unexamined Patent Publication (Kokai) No. 63-24046 discloses a steel wire rod for a highly tough and ductile extra fine wire the lead patented wire of which rod is made to have a high tensile strength with a low working ratio of wire drawing by adjusting the Si content to at least 1.00%.

On the other hand, oxide type nonmetallic inclusions can be mentioned as one of factors which exert adverse effects on these properties.

Inclusions having a single composition such as Al₂O₃, SiO₂, CaO, TiO₂ and MgO are in general highly hard and nonductile, among oxide type inclusions. Accordingly, increasing the cleanliness of molten steel and making oxide type inclusions low-melting and soft are necessary for producing a high carbon steel wire rod excellent in drawability.

As methods for increasing the cleanliness of steel and making nonductile inclusions soft as mentioned above, Japanese Examined Patent Publication (Kokoku) No. 57-22969 discloses a method for producing a steel for a high carbon steel wire rod having good drawability, and Japanese Unexamined Patent Publication (Kokai) No. 55-24961 discloses a method for producing an extra fine steel wire. The fundamental idea of these techniques is the composition control of oxide type nonmetallic inclusions of the ternary system Al₂O₃-SiO₂-MnO.

On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 50-71507 proposes an improvement of the drawability of steel wire products by locating nonmetallic inclusions thereof in the spessartite region in the ternary phase diagram of Al₂O₃, SiO₂ and MnO. Moreover, Japanese Unexamined Patent Publication (Kokai) No. 50-81907 discloses a method for improving the drawability of a steel wire by controlling the amount of Al to be added to molten steel to decrease harmful inclusions.

Furthermore, Japanese Examined Patent Publication (Kokoku) No. 57-35243 proposes, in relation to the production of a steel cord having a nonductile inclusion index up to 20, a method for making inclusions soft comprising the steps of blowing CaO-containing flux into a molten steel in a ladle together with a carrier gas (inert gas) under complete control of AI, predeoxidizing the molten steel, and blowing an alloy containing one or at least two of substances selected from Ca, Mg and REM.

However, a steel wire having an even higher strength, higher ductility and higher fatigue strength is desired.

DISCLOSURE OF THE INVENTION

The present invention has been achieved for the purpose of providing a steel wire rod and a steel wire having a high strength, a high ductility and an excellent fatigue characteristic that conventional steel wires have been unable to attain.

The subject matter of the present invention is as described below.

- (1) A hot rolled steel wire rod of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C.
- (2) A hot rolled steel wire rod of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S, up to 0.3% of Cr, up to 1.0% of Ni, up to 0.8% of Cu and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C.
- (3) The hot rolled steel wire rod of high strength according to (1) or (2), wherein the structure of the wire rod comprises at least 95% of a pearlitic structure.
- (4) The hot rolled steel wire rod of high strength according to(1) or (2), wherein the structure of the wire rod comprises at least 70% of a bainitic structure.
- (5) The hot rolled steel wire rod of high strength according to any of (1) to (4), wherein the wire rod has a tensile strength from at least 261+1,010x(C mass %)-140 MPa and up to 261+1,010x(C mass %)+240 MPa.
- (6) A steel wire of high strength excellent in fatigue characteristics comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C, and at least 70% of which have aspect ratios of at least 10
- (7) A steel wire of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S, up to 0.3% of Cr, up to 1.0% of Ni, up to 0.8% of Cu and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C, and at least 70% of which have aspect ratios of at least 10.
- (8) The steel wire of high strength excellent in fatigue characteristics according to (6) or (7), wherein the structure of the wire comprises at least 95% of a pearlitic structure.
- (9) The steel wire of high strength excellent in fatigue characteristics according to (6) or (7), wherein the structure of the wire comprises at least 70% of a bainitic structure.

30 BRIEF DESCRIPTION OF THE DRAWINGS

10

15

20

25

35

40

45

- Fig. 1 is a graph showing the relationship between the proportion of nonmetallic inclusions having aspect ratios of at least 10 and the fatigue strength of a steel wire.
- Fig. 2 is a graph showing the relationship between the form of nonmetallic inclusions in a hot rolled steel wire rod and the form thereof in a drawn wire
- Fig. 3 is a view showing a method for measuring an aspect ratio of nonmetallic inclusions.
- Fig. 4 is a diagram showing the optimum compositions of nonmetallic inclusions according to the present invention.
- Fig. 5 is a graph showing the relationship between the melting point of nonmetallic inclusions in a steel and the amount of nonductile nonmetallic inclusions in a billet.
- Fig. 6 is a graph showing the relationship between the optimum proportion of nonmetallic inclusions, and the wire drawability and fatigue characteristics.
- Fig. 7 is a graph showing a method for determining a fatigue limit.

BEST MODE FOR CARRYING OUT THE INVENTION

The present invention has been achieved on the basis of knowledge of nonmetallic inclusions which is utterly different from the conventional knowledge thereof. Nonmetallic inclusions having low melting points have heretofore been considered desirable as nonmetallic inclusions suited to a steel cast for a high carbon steel wire rod which is used for materials represented by a steel cord because such inclusions are recognized as capable of being elongated during the rolling of the steel wire rod. The consideration is based on the knowledge that nonmetallic inclusions of a low-melting point composition are generally plastically deformed at a temperature about half the melting point thereof. Nonmetallic inclusions have heretofore been considered to be deformed and made harmless by working during rolling so long as they simply have a low melting point. In contrast to the conventional knowledge, the present invention has been achieved on the basis of the knowledge described below.

In the production of a high carbon steel wire rod of the present invention for materials represented by a steel cord, CaO-MnO-SiO₂-Al₂O₃ type nonmetallic inclusions are inevitably formed by deoxidation and slag refining during steel-making. When the optimum region of the composition of nonmetallic inclusions are to be determined simply on the basis of the melting point of the inclusions, it is evident from the phase diagram in Fig. 4 that there are a plurality of regions where the inclusions have melting points of, for example, up to 1,400°C.

Though not shown in the phase diagram, in the low SiO₂ content region, in addition to the crystallization of 12CaO · 7Al₂O₃ having a melting point of 1,455°C as a primary phase, CaO · Al₂O₃ having a high melting point of 1,605°C and 3CaO · Al₂O₃ having a high melting point of 1,535°C further emerge as precipitation phases. Accordingly, it is advantageous to select in the following manner the optimum composition of nonmetallic inclusions in a steel cast for a high carbon steel wire rod which is used for materials such as a steel cord: the composition is determined so that not only the average composition but also the compositions of such precipitation phases formed at the time of solidification have low melting points. The present invention has been achieved on the basis of a knowledge that the precipitated phases as well as the average composition should have low melting points, and that the composition of nonmetallic inclusions should be adjusted further from the compositions thus considered to a specified range.

Furthermore, the aspect ratio of nonmetallic inclusions in a steel wire rod and a steel wire has been paid attention to in the present invention on the condition that the nonmetallic inclusions as mentioned above are contained. As a result, nonmetallic inclusions having an aspect ratio of at least 4 in a steel wire rod and at least 10 in a drawn wire, that is, nonmetallic inclusions having extremely good workability have been realized for the first time, and the present invention has thus been achieved.

The reasons of restriction in the present invention will be explained in detail.

First, the reasons for restriction of the chemical composition and the nonmetallic inclusions in the present invention will be explained.

In addition, % shown below represents % by mass.

15

The reasons for restriction of the chemical composition of steel in the present invention are as described below.

C is an economical and effective strengthening element, and is also an element effective in lowering the precipitating amount of proeutectoid ferrite. Accordingly, a C content of at least 0.7% is necessary for enhancing the ductility of the steel as an extra fine steel wire having a tensile strength of at least 3,500 MPa. However, when the C content is excessively high, the ductility is lowered, and the drawability is deteriorated. The upper limit of the C content is, therefore, defined to be 1.1%.

Si is an element necessary for deoxidizing steel, and, therefore, the deoxidation effects become incomplete when the content is overly low. Moreover, although Si dissolves in the ferrite phase in pearlite formed after heat treatment to increase the strength of the steel after patenting, the ductility of ferrite is lowered and the ductility of the extra fine steel wire subsequent to drawing is lowered. Accordingly, the Si content is defined to be up to 1.5%.

To ensure the hardenability of the steel, the addition of Mn in a small amount is desirable. However, the addition of Mn in a large amount causes segregation, and supercooled structures of bainite and martensite are formed during patenting to deteriorate the drawability in subsequent drawing. Accordingly, the content of Mn is defined to be up to 1.5%.

When a hypereutectoid steel is treated as in the present invention, a network of cementite is likely to be formed in the structure subsequent to patenting and thick cementite is likely to be precipitated. For the purpose of realizing the high strength and high ductility of the steel, pearlite is required to be made fine, and such a cementite network and such thick cementite as mentioned above are required not to be formed. Cr is effective in inhibiting the emergence of such an extraordinary portion of cementite and in addition making pearlite fine. However, since the addition of Cr in a large amount increases the dislocation density in ferrite subsequent to heat treatment, the ductility of an extra fine steel wire subsequent to drawing is markedly impaired. Accordingly, when Cr is added, the addition amount must be to such an extent that the addition effects can be expected. The addition amount is defined to be up to 0.3%, an amount which does not increase the dislocation density so that the ductility is not impaired.

Since Ni has the same effects as Cr, Ni is added, if the addition is decided, to such an amount that the effects can be expected. Since the addition of Ni in an excessive amount lowers the ductility of the ferrite phase, the upper limit is defined to be 1.0%.

Since Cu is an element for improving the corrosion fatigue characteristics of a steel wire rod, Cu is added, if the addition is decided, to such an amount that the effects can be expected. Since the addition of Cu in an excessive amount lowers the ductility of the ferrite phase, the upper limit is defined to be 0.8%.

Like a conventional extra fine steel wire, the content of S for ensuring the ductility is defined to be up to 0.02%. Since P is similar to S in that P impairs the ductility of a steel wire rod, the content of P is desirably defined to be up to 0.02%. Reasons for restricting the composition of nonmetallic inclusions in the present invention will be explained.

It has heretofore been known that nonmetallic inclusions having a lower melting point in a steel wire are elongated more during working and are more effective in preventing wire breakage during drawing a steel wire rod.

However, the effects of nonmetallic inclusions on the fatigue characteristics of a steel cord, and the like which is used in an as drawn state have not been defined.

As the result of research, the present inventors have found that it is the presence of a crack near a nondeformable nonmetallic inclusion formed during wire drawing that causes significant deterioration of the fatigue characteristics. Accordingly, when the improvement of the fatigue characteristics of a drawn steel wire is considered, the nonmetallic inclusions contained in the cast steel must be made deformable.

As shown in Fig. 5, when the nonmetallic inclusions in a cast steel are made to have a composition of the quasiternary system MnO+CaO, SiO_2 and Al_2O_3 so that the inclusions have a melting point up to 1,500°C, the proportion of

nonmetallic inclusions which have been elongated after rolling the cast steel into a billet and during wire drawing is sharply increased. The ductility and fatigue characteristics of a drawn steel wire are improved by adjusting the composition of nonmetallic inclusions in the steel cast as described above. Accordingly, controlling the composition of nonmetallic inclusions in the steel cast or wire rod so that the composition is located in Region 1 enclosed by the letters a, b, c, d, e, f, g, h, i and j in Fig. 4 is effective in increasing the amount of ductile nonmetallic inclusions.

In Fig. 4, there is a region adjacent to Region I in which region nonmetallic inclusions have melting points up to 1,500°C. However, though not shown in the phase diagram, in the low SiO₂ content region, in addition to the crystallization of 12CaO · 7Al₂O₃ as a primary phase having a melting point of 1,455°C, CaO · Al₂O₃ having a melting point of 1,605°C and 3CaO · Al₂O₃ having a melting point of 1,535°C further precipitate at the time of solidification, high-melting point phases which are hard and cause breakage during wire drawing. Accordingly, the low SiO₂ region is not preferred. As the result of research, the present inventors have discovered, as shown in Fig. 6, that the fatigue characteristics are improved as the proportion of nonmetallic inclusions the compositions of which are located in Region I in Fig. 4 increases, and that the improvement in the fatigue characteristics is approximately saturated when the proportion thereof approaches near 80%. Accordingly, at least 80% of the nonmetallic inclusions counted are required to be located in Region I in Fig. 4.

Furthermore, the present inventors have paid attention to the form of inclusions in a wire prepared by drawing, thought of inhibiting the formation of a crack near a nonmetallic inclusion which crack causes the deterioration of wire fatigue characteristics. Fatigue characteristics of steel wire are improved by making a nonmetallic inclusion which has an elongated shape in longitudinal direction of the steel wire. Because stress concentration at the tip of a crack originated from the nonmetallic inclusion is released. Fig. 1 shows the relationship between the proportion of nonmetallic inclusions having aspect ratios of at least 10 in a steel wire and fatigue characteristics (a value obtained by dividing a fatigue strength obtained by Hunter fatigue test by a tensile strength). As shown in Fig. 1, the fatigue strength of steel wires having the same wire strength increases with the proportion of inclusions therein having aspect ratios of at least 10, and is approximately saturated when the proportion becomes at least 70%. Accordingly, the aspect ratios of at least 70% of inclusions in the wire are defined to be at least 10.

It can be seen from Fig. 2 that, in order to make nonmetallic inclusions have aspect ratios of at least 10 during wire drawing, the aspect ratios of the inclusions during hot rolling should be adjusted to at least 4.

As shown in Fig. 3, in the case where there is an inclusion having a length L in the drawing direction and where there is another inclusion within a distance 2L, the aspect ratio is determined on the assumption that the two inclusions are connected.

Furthermore, in Fig. 1 mentioned above, such effects of the shape of inclusions as mentioned above become particularly significant when the tensile strength is at least 2,800-1,200 log D (MPa, wherein D represents a circle-equivalent wire diameter), and, therefore, the tensile strength is preferably at least 2,800-1,200 log D.

For the purpose of improving the fatigue characteristics of a hot rolled steel material, the structure is required to comprise at least 95% of a pearlitic structure. When the tensile strength is less than TS wherein TS = 261+1,010x(C mass %)-140 MPa, the effects of elongating inclusions during wire drawing become insignificant. When the tensile strength exceeds TS wherein TS = 261+1,010x(C mass %)+240 MPa, it becomes difficult to make the structure comprise at least 95% of a pearlitic structure. Accordingly, when the structure comprises a pearlitic structure, the tensile strength is defined to be as follows:

at least 261+1,010x(C mass %)-140 MPa and

up to 261+1,010x(C mass %)+240 MPa

In the case where the structure of the steel subsequent to hot rolling is made to comprise a bainitic structure, the structure is required to comprise at least 70% of a bainitic structure for the purpose of improving the fatigue characteristics.

The production process of the present invention will be explained.

A steel having such a chemical composition as mentioned above and containing nonmetallic inclusions in the range as mentioned above of the present invention is hot rolled to give a wire rod having a diameter of at least 4.0 mm and up to 7.0 mm. The wire diameter is a equivalent circular diameter, and the actual cross sectional shape may be any of a polygon such as a circle, an ellipsoid and a triangle. When the wire diameter is determined to be less than 4.0 mm, the productivity is markedly lowered. Moreover, when the wire diameter exceeds 7.0 mm, a sufficient cooling rate cannot be obtained in controlled cooling. Accordingly, the wire diameter is defined to be up to 7.0 mm.

Such a hot rolled steel wire rod is drawn to give a steel wire having a wire diameter of 1.1 to 2.7 mm. When the wire diameter is determined to be up to 1.0 mm, cracks are formed in the drawn wire. Since the cracks exert adverse effects on subsequent working, the wire diameter is defined to be at least 1.1 mm. Moreover, when the drawn steel wire has a diameter of at least 2.7 mm, good results with regard to the ductility of the steel wire cannot be obtained after wire drawing in the case where the wire diameter of a final product is determined to be up to 0.4 mm. The diameter of the

steel wire prior to final patenting is, therefore, defined to be up to 2.7 mm. At this time, wire drawing may be conducted either by drawing or by roller dieing.

A steel wire the tensile strength of which is adjusted to (530+980xC mass %) MPa by patenting exhibits the most excellent strength-ductility balance when the wire is worked to have a true strain of at least 3.4 and up to 4.2. When the steel wire has a tensile strength up to {(530+980xC mass %)-50} MPa, a sufficient tensile strength cannot be obtained after wire drawing. When the steel wire has a tensile strength of at least {(530+980xC mass %)+50} MPa, a bainitic structure emerges in a pearlitic structure in a large amount though the steel wire has a high strength. Consequently, the following disadvantages result: the work hardening ratio is lowered during wire drawing and the attained strength is lowered in the same reduction of area, and the ductility is also lowered. Accordingly, the tensile strength of the steel wire is required to be adjusted to within {(530+980xC mass %)±50} MPa by patenting.

The steel wire is produced either by dry drawing or by wet drawing, or by a combination of these methods. To make the die wear as small as possible during wire drawing, the wire is desirably plated. Although plating such as brass plating, Cu plating and Ni plating is preferred in view of an economical advantage, another plating procedure may also be applied.

When the steel wire is wet drawn to have a true strain of at least (-1.43xlog D+3.09), the strength becomes excessively high, and as a result the fatigue characteristics are deteriorated. When the steel wire is wet drawn to have a true strain up to (-1.43xlog D+2.49), a strength of at least 3,500 MPa cannot be obtained

When the tensile strength of the steel wire exceeds (-1,590xlog D+3,330), the steel wire is embrittled, and is difficult to work further. Accordingly, the tensile strength of the steel wire is required to be adjusted to up to (-1,590xlog D+3,330).

When a steel wire having a equivalent circular diameter of 0.15 to 0.4 mm is produced by the production steps as mentioned above, the steel wire thus obtained has a ductility sufficient to resist twist during subsequent stranding in many cases. Accordingly, it becomes possible to produce a single wire steel cord or a multi-strand steel cord having excellent fatigue characteristics.

Furthermore, when the steel wire is wet drawn to have a true strain of at least (-1.23xlog D+4.00), the strength becomes excessively high, and as a result the fatigue characteristics are deteriorated.

When the steel wire is wet drawn to have a true strain up to (-1.23xlog D+3.00), a strength of at least 4,000 MPa cannot be obtained

A steel wire having a long fatigue life can be produced by producing a wire having a equivalent circular diameter of 0.02 to 0.15 mm by the production steps.

The present invention will be illustrated more in detail on the basis of examples.

EXAMPLES

30

35

55

Example 1

A molten steel was tapped from a LD converter, and subjected to chemical composition adjustment to have a molten steel chemical composition as listed in Table 1 by secondary refining. The molten steel was cast into a steel cast having

a size of 300x500 mm by continuous casting.

Table 1

5					Ch	emical	compos	ition (ma	ass %)			Conformity of inclusion compsn.* (%)
			С	Si	Mn	Cr	Ni	Cu	Р	S	Al	
Ste	el of invention	1	0.92	0.20	0.33	0.22	•	•	0.010	0.003	0.001	84
10		2	0.92	0.39	0.48	0.10	-	•	0.008	0.004	0.001	100
		3	0.96	0.19	0.32	0.21	-	-	0.009	0.003	0.002	95
		4	0.96	0.19	0.32	0.21	•	-	0.009	0.003	0.002	80
15		5	0.96	0.19	0.32	0.10	0.80		0.005	0.006	0.001	83
		6	0.98	0.30	0.32	-	•	0.20	0.007	0.005	0.002	96
		7.	0.98	0.20	0.31	-	•	0.80	0.006	0.005	0.002	98
		8	1.02	0.21	0.20	0.10	0.10	-	0.008	0.003	0.002	100
20		9	1.02	0.21	0.20	•	0.10	0.10	0.007	0.003	0.002	88
		10	1.06	0.19	0.31	-	0.10	-	0.007	0.004	0.002	86
		11	1.06	0.19	0.31	0.15	•	•	0.008	0.003	0.002	93
25		12	1.06	0.19	0.31	0.15	-	-	0.008	0.003	0.002	93
Con	mp. steel	13	0.82	0.21	0.50	-	-	-	0.009	0.003	0.002	87
		14	0.96	0.19	0.32	0.21	•	•	0.009	0.003	0.002	66
	:	15	0.96	0.19	0.32	0.21	•	-	0.009	0.003	0.002	84
30		16	0.96	0.19	0.32	0.21	•	•	0.009	0.003	0.002	84
		17	0.96	0.19	0.32	0.21	-	-	0.009	0.003	0.002	84

Note: * compsn. = composition

35

45

50

55

The steel slab was further rolled to give a billet. The billet was hot rolled, and subjected to controlled cooling to give a wire rod having a diameter of 5.5 mm. Cooling control was conducted by stalemore cooling.

The steel wire rod thus obtained was subjected to wire drawing and intermediate patenting to give a steel wire having a diameter of 1.2 to 2.0 mm (see Tables 2 and 3).

Table 2

5 .	-	Wire dia. (mm)	Proeutectoid cementite	Steps	Diameter of heat treated wire (mm)
Steel of invent	ion 1	4.0	No	4.0→3.25(LP)→1.40(L P)→0.30(LP)→0.020	0.30
	2	5.5	No	5.5→3.25(LP)→0.80(L P)→0.062	0.80
	3	5.5	No	5.5→3.25(LP)→0.74(L P)→0.062	0.74
	4	7.0	No	7.0→3.25(LP)→0.80(L P)→0.062	0.80
0	5	5.5	No	5.5→3.25(LP)→1.20(L P)→0.100	1.20
5	6	5.0	No	5.0→3.25(LP)→0.90(L P)→0.080	0.90
	7	5.5	No	5.5→3.25(LP)→1.00(L P)→0.080	1.00
	8	5.5	No	5.5→3.25(LP)→0.74(L P)→0.080	0.74
5	9	5.5	No	5.5→3.25(LP)→0.80(L P)→0.062	0.80
	10	5.5	No	5.5→3.25(LP)→0.90(L P)→0.080	0.90
	11	5.5	No	5.5→3.25(LP)→0.60(L P)→0.080	0.60
5	12	5.5	No	5.5→3.25(LP)→0.60(L P)→0.080	0.60

Continuation of the Table on the next page

50

55

_

Table 2 (continued)

			Wire dia. (mm)	Proeutectoid cementite	Steps	Diameter of heat treated wire (mm)
5	Comp. steel	13	5.5	No	5.5→3.25(LP)→0.74(L P)→0.062	0.74
10		14	5.5	No	5.53.25(LP)0.74(L P)0.062	0.74
٠		15	5.5	Yes	5.5→3.25(LP)→0.74(L P)→0.062	0.74
15		16	5.5	No	5.5>3.25(LP)>0.74(L P)>0.062	0.74
20		17	5.5	No	5.5→3.25(LP)→1.00(L P)→0.062	1.00

Table 3

25

30

35

50

55

					lable 5									
			Wire dia. (mm)	Tensile strength of patented wire (MPa)	Plating treat- ment	Final wire dia. (mm)	reduction of area ε=2In(D ₀ /D)	Number of wire breakage						
Steel o	f	1	4.0	1450	Brass plating	0.020	5.42	0						
invention	Г	2	5.5	1454	Brass plating	0.062	5.11	0						
	r	3	5.5	1460	Brass plating	0.062	4.96	0						
	Γ	4	7.0	1465	Brass plating	0.062	5.11	0						
	Γ	5	5.5	1491	Brass plating	0.100	4.97	0						
	Γ	6	5.0	1491	Brass plating	0.080	4.84	0						
	Γ	7	5.5	1521	Brass plating	0.080	5.05	0						
	Ī	8	5.5	1530	Brass plating	0.080	4.45	0						
		9	9	9	9	9	9	9	5.5	1572	Copper plating	0.062	5.11	0
	r	10	5.5	1590	Nickel plating	0.080	4.84	0						
	r	11 5.5		1528	Brass plating	0.080	4.03	0						
	F	12	5.5	1528	Brass plating	0.080	4.03	. 0						
Comp. stee	ıŢ.	13	5.5	1310	Brass plating	0.062	4.96	0						
	T	14	5.5	1460	Brass plating	0.062	4.96	3						
	1	15	5.5	1460	Brass plating	0.062	4.96	20↑						
	1	16	5.5	1534	Brass plating	0.062	4.96	5						
	r	17	5.5	1460	Brass plating	0.062	5.56	·7						

The steel wire thus obtained was heated to 900°C, subjected to final patenting in a temperature range from 550 to 600°C so that the structure and the tensile strength were adjusted, plated with brass, and subjected to final wet wire

drawing. Tables 2 and 3 show a wire diameter at the time of patenting, a tensile strength subsequent to patenting and a final wire diameter subsequent to wire drawing in the production of each of the steel wires.

The characteristics of the steel wire were evaluated by a tensile test, a twisting test and a fatigue test.

10

15

20

25

30

35

55

Table 4

		Tensile strength (MPa)	Reduction of area (%)	Fatigue characteristics
Steel of invention	1	5684	34.0	0
	2	4870	32.6	0
	3	5047	38.4	0
	4	5174	31.5	. 0
	5	5124	32.5	0
	6	4560	36.0	. 0
	7	4964	33.8	0
	8	4672	36.8	•
	9	5324	38.4	0
-	10	4870	36.4	⊕
	11	4125	40.1	0
.*	12	4205	42.1	⊕
Comp. steel	13	3875	35.8	0
	14	5037	35.0	Х
	15	•	•	-
	16	4939	38.0	Х
	17	5320	18.4	Х

The fatigue characteristics of the steel wire listed in Table 4 were evaluated by measuring the fatigue strength of the wire by a Hunter fatigue test, and represented as follows: Θ : the fatigue strength was at lest 0.33 times as much as the tensile strength, \bigcirc : the fatigue strength was at least 0.3 times as much as the tensile strength, and X: the fatigue strength was less than 0.3 times as much as the tensile strength. Moreover, the fatigue strength was measured by using a Hunter fatigue test, and a strength under which the wire was not ruptured in a cyclic fatigue test with a number of repeating cycles of up to 10^6 was defined as a fatigue strength.

Steels 1 to 12 in the table are steels of the present invention, and steels 13 to 17 are comparative steels.

Comparative steel 13 had a chemical composition outside the scope of the present invention but was produced by the same process.

Comparative steel 14 had a chemical composition within the scope of the present invention. However, the conformity of the nonmetallic inclusions in the steel cast was low compared with that of the present invention. The process for producing a steel wire was the same as that of the present invention except for the conformity thereof.

Comparative steel 15 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention, and primary cementite emerged in controlled cooling subsequent to hot rolling.

Comparative steel 16 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention. However, the tensile strength of the finally patented steel wire exceeded the tensile strength in the scope of the claims of the present invention.

Comparative steel 17 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention. However, the reduction of area in wire drawing subsequent to final patenting was larger than that of the present invention.

On the other hand, in Comparative steel 13, since the chemical components differed from those of the steel of the present invention, a strength of at least 4,000 MPa could not be obtained.

In Comparative steel 14, although the strength of at least 4,000 MPa was obtained, the composition of nonmetallic inclusions in the steel cast differed from that of the steel of the present invention. As a result, the number of wire breakages was large, and good fatigue characteristics could not be obtained.

In Comparative steel 15, since primary cementite emerged after hot rolling, the final wire could not be produced.

In Comparative steel 16, since the tensile strength obtained after final patenting was excessively high, the fatigue characteristics of the final wire were deteriorated, and good results could not be obtained.

In Comparative steel 17, since the reduction of area became excessively high in final wet wire drawing, the fatigue characteristics of the final steel wire were deteriorated, and good results could not be obtained.

Example 2

Table 5 lists the chemical compositions of steel wires of the present invention and those of comparative steel wires.

Table 5

				Che	micai c	omposit	ion (ma:	SS 1 7		
		С	Si	Mn	Cr	Ni	Cu	P	S	A]
	18	0.72	0.20	0.49	÷		-	0.012	0.008	0.00
	19	0.82	0.20	0.49	-	-	-	0.015	0.007	0.00
	20	0.82	0.20	0.33	0.20	-	-	0.010	0.006	0.00
	21	0.82	0.20	0.30	0.10	0.05	0.05	0.011	0.010	0.00
	22	0.87	0.20	0.30	0.10	-	0.10	0.012	0.008	0.00
	23	0.98	1.20	0.30	0.20	· -	-	0.016	0.008	0.00
	24	0.82	1.00	0.80	-	-	-	0.014	0.006	0.00
	25	0.87	0.49	0.33	0.28	-	-	0.011	0.009	0.00
	26	0.92	0.20	0.30	0.22	_	0.22	0.012	0.007	0.00
	27	0.92	0.30	0.20	0.25	-	-	0.012	0.008	0.00
	28	0.92	0.20	0.33	0.22	-	-	0.014	0.003	0.0
Steel of	29	0.92	0.39	0.48	0.10	-	-	0.008	0.004	0.00
Inven-	30	0.96	0.19	0.32	-	0.80		0.009	0.003	0.00
C1011	31	0.96	0.19	0.31	0.21	-,		0.006	0.005	0.0
	32	0.98	0.30	0.32	-	_	0.20	0.007	0.005	0.0
	33	0.98	0.20	0.31	-	-	0.80	0.006	0.005	0.0
	34	1.02	0.21	0.20	0.10	0.10	-	0.008	0.003	0.0
	35	1.02	0.21	0.20	-	0.10	0.10	0.007	0.003	0.0
	36	1.06	0.19	0.31	-	0.10	-	0.007	0.004	0.0
	37	1.06	.0.19	0.31	0.15	-	-	0.008	0.003	0.0
	38	0.98	1.20	0.30	0.20	-	-	0.012	0.005	0.0
	39	0.98	1.20	0.30	0.20	-	-	0.013	0.006	0.0
	40	0.82	0.21	0.50	-	-	-	0.009	0.003	0.0
	41	0.92	0.20	0.33	0.22	-	-	0.010	0.003	0.0
Comp.	42	0.92	0.20	0.33	0.22	-		0.010	0.003	0.0
steel	43	0.92	0.20	0.33	0.22	-	-	0.010	0.003	0.0
	44	0.92	0.20	0.33	0.22		-	0.010	0.003	0.0

A steel wire rod having a chemical composition as shown in Table 5 was drawn and patented by the steps as shown in Tables 6 and 7 to give a wire having a diameter of 0.02 to 4.0 mm.

Table 6

		Wire dia.	Structure of hot rolled	Proportion of	hot rolled steel	Conformity of aspect ratio
		(nun)	steel wire rod	structure (%)	wire rod (MPa)	(\$)
	18	5.5	Pearlitic	. 98	1096	72
	19	5.5	Pearlitic	97	1190	80
	20	5.5	Pearlitic	96	1217	90
	21	5.5	Pearlitic	97	1220	77
	22	5.5	Pearlitic	96	1369	87
	23	5.5	Pearlitic	98	1404	74
•	24	5.5	Pearlitic	96	1289	75
	25	5.5	Pearlitic	95	1040	81
	26	5.5	Pearlitic	97	1290	83
	27	5.5	Bainitic	92	1390	88
Steel of	28	4.0	Bainitic	78	1412	80
invention		5.5	Pearlitic	95	1210	85
	30	5.5	Pearlitic	93	1245	83
	31	7.0	Pearlitic	96	1268	92
	32	5.5	Pearlitic	97	1298	86
	33	5.5	Pearlitic	98	1221	82
	34	5.5	Pearlitic	99	1233	73
	. 35	5.5	Pearlitic	100	1255	86
	36	5.5	Pearlitic	100	1452	88
	37	5.5	Pearlitic	100	1468	92
	38	11.0	Pearlitic	98	1520	86
	39	11.0	Pearlitic	96	1478	87
	40	5.5	Pearlitic	95	1087	63
	41	5.5	Pearlitic	96	1187	62
Comp. steel	42	5.5	Pearlitic	98	1345	50
•	43	5.5	Pearlitic	98	1168	45
	44	5.5	Pearlitic	97	1265	59

Table 6 (Continued)

		Steps
	18	5.5 → 2.00(LP) → 0.30
•	19	5.5 → 2.05(LP) → 0.30
•	20	5.5 → 1.95(LP) → 0.30
•	21	5.5 → 2.05(LP) → 0.30
•	22	5.5 → 2.00(LP) → 0.30
•	23	5.5 → 2.00(LP) → 0.30
	24	5.5 → 2.00(LP) → 0.30
·	25	5.5 → 2.00(LP) → 0.30
	26	5.5 → 1.90(LP) → 0.30
,	27	5.5 → 2.00(LP) → 0.30
Steel of	28	4.0 → 1.40(LP) → 0.20
invention	29	5.5 → 1.80(LP) → 0.30
	30	$5.5 \rightarrow 3.25(LP) \rightarrow 1.35(LP) \rightarrow 0.20$
	31	$7.0 \rightarrow 3.5(LP) \rightarrow 1.90(LP) \rightarrow 0.3$
	32	5.0 → 3.25(LP) → 0.60(LP) → 0.0
•	33	$5.5 \to 3.25(LP) \to 1.00(LP) \to 0.00$
	34	5.5 → 1.80(LP) → 0.35
	35	$5.5 \rightarrow 3.25(LP) \rightarrow 1.10(LP) \rightarrow 0.19$
	36	$5.5 \rightarrow 3.25(LP) \rightarrow 1.15(LP) \rightarrow 0.19$
	37	5.5 → 1.80(LP) → 0.40
•	38	11.0(DLP) -> 4.0
	39	13.0(DLP) → 5.0
	40	5.5 3.25(LP) 1.40(LP) 0.3
Comp.	41	5.5 3.25(LP) 1.70(LP) 0.3
steel	42	5.5 3.25(LP) 1.70(LP) 0.3
	43	5.5 3.25(LP) 1.70(LP) 0.3 5.5 3.25(LP) 1.85(LP) 0.3
		212 312 (21)

Table 7

5			Plating treatment	Final wire dia. (mm)	Conformity of aspect ratio(%)	Tensile strength (MPa)	Reduction of area (%)	Fatigue characteristics
		18	Brass P*	0.30	-70	3300	40.1	
0	•	19	Brass P*	0.30	82	3680	30.1	0
	•	20	Brass P*	0.30	95	3610	36.5	0
	•	21	Brass P*	0.30	75	3870	34.8	0
5	•	22	Brass P*	0.30	85	3570	37.9	•
•	•	23	Brass P*	0.30	. 72	3980	39.5	0
		24	Brass P*	0.30	78	3980	40.2	0
0	,	25	Brass P*	0.30	82	3930	36.7	0
	•	26	Brass P*	0.30	83	4020	38.9	0
	•	27	Brass P*	0.30	85	4080	40.2	0
95	Steel of	28	No P*	0.20	75	4020	34.0	0
	invention	29	No P*	0.30	81	3824	32.6	0
	•	30	Brass P*	0.20	93	4025	38.4	•
10	•	31	Brass P*	0.30	81	3980	31.5	0
	•	32	Brass P*	0.02	90	5410	36.0	0
•	, ·	33	Brass P*	0.08	85	5120	33.8	ó
15		34	Brass P*	0.35	83	3625	36.8	0
		35	Copper P*	0.15	78	4220	38.4	0
		36	Nickel P*	0.15	. 76	4310	36.4	0
ю		37	Brass P*	0.40	88	3550	42.1	0
		38	No P*	4.00	82	2357	38.0	0
		39	No P*	5.00	88	2140	37.0	0
5		40	Brass P*	0.30	52	3215	41.2	×
	Come	41	No P*	0.30	54	3674	35.0	×
	Comp. steel	42	No P*	0.30	49	3624	36.8	×
io		43	Brass P*	0.30	42	3633	38.0	×
	-	44	Brass P*	0.30	57	4100	35.2	×

Note: * P = plating

55

Table 6 lists the conformity of the aspect ratio of nonmetallic inclusions in a hot rolled steel wire rod used. Table 7 lists the conformity thereof in a final steel wire prepared according to the steps as shown in Table 6. It can be seen from the tables that when at least 70% of nonmetallic inclusions in any of hot rolled steel wire rods of the steels of invention

18 to 39 had aspect ratios of at least 4, there could be obtained nonmetallic inclusions in the final steel wire at least 70% of which inclusions had aspect ratios of at least 10 on the condition that the final steel wire had a tensile strength of at least 2,800-1,200xlog D (MPa).

These steel wires were subjected to a fatigue test, and the results are shown in Table 7. When the steel wire diameter was up to 1 mm, the fatigue test was conducted using a Hunter fatigue testing machine. When the steel wire diameter exceeded 1 mm, the fatigue test was conducted using a Nakamura type fatigue testing machine. The fatigue limit thus obtained was divided by the tensile strength to give a value which was represented by the mark \bigcirc when the value was at least 0.3 or by the mark X when the value was less than 0.3.

Steel wires of invention 18 to 39 were all adjusted within the scope of the present invention.

The forms of nonmetallic inclusions in Comparative steel wires 40 to 44 differed from those of the steel wires of the invention.

There could be obtained from the steels of invention steel wires having a tensile strength of at least 2,800-1,200 log D (MPa) and excellent fatigue characteristics. Although comparative steel wires had tensile strengths equivalent to those of the steel wires of invention, the fatigue characteristics were deteriorated compared with those of the steel wires of invention.

Example 3

10

55

A molten steel was tapped from a LD converter, and subjected to secondary refining so that the chemical composition of the steel was adjusted as shown in Table 8. The molten steel was cast into a steel cast having a size of 300x500 mm by continuous casting.

Table 8

25				,	Ch	emical (composi	ition (ma	iss %)	-		Conformity of inclusion compsn.* (%)
			С	Si	Mn	Cr	Ni	Cu	Р	s	Al	
	Steel of invention	45	0.92	0.20	0.33	0.22	-	•	0.010	0.003	0.001	84
30		46	0.92	0.39	0.48	0.10	•	• •	0.008	0.004	0.001	100
		47	0.96	0.19	0.32	-	0.80	-	0.009	0.003	0.002	95
		48	0.96	0.19	0.32	0.21	-	-	0.006	0.005	0.002	80
35		49	0.98	0.30	0.32	0.15	-	0.20	0.007	0.005	0.002	96
		50	0.98	0.20	0.31	•	0.20	0.80	0.006	0.005	0.002	98
		51	1.02	0.21	0.20	0.10	0.10	•	0.008	0.003	0.002	100
		52	1.02	0.21	0.20	-	0.10	0.10	0.007	0.003	0.002	88
40		53	1.06	0.19	0.31	-	0.10	-	0.007	0.004	0.002	86
		54	1.06	0.19	0.31	0.15	-	-	0.007	0.003	0.002	93
		55	1.06	0.19	0.31	0.15	•	•	0.008	0.003	0.002	93
45	Comp. steel	56	0.82	0.21	0.50	•	•	•	0.009	0.003	0.002	87
	·	57	0.92	0.20	0.33	0.22	-	•	0.010	0.003	0.002	66
•		58	0.92	0.20	0.33	0.22	-	-	0.010	0.003	0.002	84
50		59	0.92	0.20	0.33	0.22	-	-	0.010	0.003	0.002	84
5 0		60	0.92	0.20	0.33	0.22	-	-	0.010	0.003	0.002	84

The steel slab was further bloomed to give a billet. The billet was hot rolled to give a steel wire rod having a diameter of 4.0 to 7.0 mm, which was subjected to controlled cooling. Cooling control was conducted by stalemore cooling.

The steel wire rod was subjected to wire drawing and intermediate patenting to give a wire having a diameter of 1.2 to 2.0 mm (see Tables 9 and 10).

Table 9

					<u> </u>	
5			Wire dia. (mm)	Proeutectoid cementite	Steps	Dia. of heat treated wire (mm)
	Steel of invention	45	4.0	No	4.0 → 1.40(LP) → 0.20(LP)	1.40
10	·	46	5.5	No	5.5 → 1.70(LP) → 0.30	1.70
		47	5.5	No	5.5 → 3.25(LP) → 1.35(LP) → 0.20	1.35
15		48	7.0	No	7.0 → 3.50(LP) → 1.90(LP) → 0.30	1.90
	٠.	49	5.0	No	5.5 → 1.85(LP) → 0.30	1.85
		50	5.5	No	5.0 → 3.25(LP) → 1.70(LP) → 0.35	1.70
20	·	51	5.5	No	5.5 → 1.80(LP) → 0.35	1.80
		52	5.5	No	5.5 → 3.25(LP) → 1.10(LP) → 0.15	1.10
25	·	53	5.5	No	5.5 → 3.25(LP) → 1.15(LP) → 0.15	1.15
		54	5.5	No	$5.5 \rightarrow 1.80(LP) \rightarrow 0.40$	1.80
		55	5.5	No	5.5 → 1.80(LP) → 0.40	1.80
30	Comp. steel	56	5.5	No	5.5 → 3.25(LP) → 1.70(LP) → 0.30	1.70
		57	5.5	No	5.5 → 3.25(LP) → 1.70(LP) → 0.30	1.70
35	·	58	5.5	Yes	5.5 → 3.25(LP) → 1.70(LP) → 0.30	1.70
		59	5.5	No	5.5 → 3.25(LP) → 1.70(LP) → 0.30	1.70
40		60	5.5	No	5.5 → 3.25(LP) → 1.70(LP) → 0.30	1.96
40					1.70(LP) → 0.30 5.5 → 3.25(LP) →	

Table 10

		Tensile strength of patented wire (MPa)	Plating treatment	Final wire dia. (mm)	Reduction of area in wire drawing ε=2ln(D ₀ /D)
Steel of invention	45	1428	Brass plating	0.200	3.89
	. 46	1450	Brass plating	0.300	3.47
	47	1473	Brass plating	0.200	3.82
•	48	1482	Brass plating	0.300	3.69
	49	1491	Brass plating	0.300	3.64
	50	1521	Brass plating	0.350	3.16
	51	1530	Brass plating	0.350	3.28
	52	1572	Copper plating	0.150	3.98
	53	1590	Nickel plating	0.150	4.07
	54	1528	Brass plating	0.400	3.01
	55	1528	Brass plating	0.400	3.01
Comp. steel	56	1310	Brass plating	0.300	3.47
	57	1453	Brass plating	0.300	3.47
	58	1453	Brass plating	0.300	3.47
	59	1545	Brass plating	0.300	3.47
	60	1448	Brass plating	0.300	3.75

The steel wire was then subjected to final patenting, so that the structure and the tensile strength were adjusted, plating, and to final wet drawing. Tables 9 and 10 list the wire diameter at the time of patenting, the tensile strength subsequent to patenting and the final wire diameter subsequent to wire drawing of each of the steel wires.

The characteristics of these steel wires were evaluated by a tensile test, a twisting test and a fatigue test.

The fatigue characteristics in Table 11 of the steel wire were evaluated by measuring the fatigue strength of the steel wire by a Hunter fatigue test, and represented as follows: \oplus : the fatigue strength was at least 0.33 times as much as the tensile strength, \bigcirc : the fatigue strength was at least 0.3 times as much as the tensile strength, and X: the fatigue

strength was less than 0.3 times as much as the tensile strength.

10

20

25

30

Table 11

		Tensile strength (MPa)	Reduction of area (%)	Fatigue characteristics
Steel of invention	45	3662	34.0	0
	46	3624	32.6	0
	47	4025	38.4	0
	48	3980	31.5	0
	49	4150	32.5	0
	50	3602	36.0	⊕
	51	3625	33.8	⊕
	52	4220	36.8	0
	53	4310	38.4	. 0
	54	3550	36.4	0
	55	3640	42.1	⊕
Comp. steel	56	3482	36.2	0
	57	3674	28.6	X
	58	•	•	-
	59	3633	28.4	Х
	60	3912	21.0	X

Moreover, the fatigue strength by a Hunter fatigue test was defined as a strength under which the steel wire was not ruptured in the cyclic fatigue test with a number of repeating cycles up to 106 (see Fig. 7).

Steels 45 to 55 in the table are steels of the present invention, and steels 56 to 60 are comparative steels.

Comparative steel 56 had a chemical composition outside the scope of the present invention but was produced by the same process.

Comparative steel 57 had a chemical composition within the scope of the present invention. However, the conformity of nonmetallic inclusions in the steel cast was low compared with that of the present invention. The process for producing a steel wire was the same as that of the present invention except for the conformity thereof.

Comparative steel 58 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention, and primary cementite emerged in controlled cooling subsequent to hot rolling.

Comparative steel 59 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention. However, the tensile strength of the finally patented steel wire became high compared with that obtained by the method in the present invention.

Comparative steel 60 had the same chemical composition and the same composition of nonmetallic inclusions as those of the present invention. However, the reduction of area in wire drawing subsequent to final patenting was larger than that of the present invention.

It can be understood from Table 11 that any of steel wires produced by the use of the steel of invention had a strength of at least 3,500 MPa and an excellent fatigue life.

On the other hand, in Comparative steel 56, since the C content was less than 0.90%, the chemical composition of the steel differed from that of the steel of the present invention. As a result, a strength of at least 3,500 MPa could not be obtained.

In Comparative steel 57, although the strength of at least 3,500 MPa was obtained, the composition of nonmetallic inclusions in the steel cast differed from that of the steel of the present invention. As a result, good fatigue characteristics could not be obtained.

In Comparative steel 58, since primary cementite emerged after hot rolling, wire breakage took place many times in the course of the wire production. As a result, the final wire could not be produced.

In Comparative steel 59, since the tensile strength obtained after final patenting was excessively high, the fatigue characteristics of the final steel wire were deteriorated, and good results could not be obtained.

In Comparative steel 60, since the reduction of area became excessively high in final wet wire drawing, the fatigue characteristics of the final steel wire were deteriorated, and good results could not be obtained.

INDUSTRIAL APPLICABILITY

As explained in the above examples, the present invention has been achieved on the basis of a knowledge that the precipitated phases as well as the average composition of nonmetallic inclusions should have low melting points, and that the composition of nonmetallic inclusions should be adjusted further from the compositions thus considered to a specified range. The present invention has thus realized nonmetallic inclusions having aspect ratios of at least 4 in a steel wire rod and at least 10 in a drawn wire, namely nonmetallic inclusions having extremely good workability. As a result, there can be obtained a steel wire rod of high strength and a drawn wire of high strength having a high strength, a high ductility and a good balance of high tensile strength and excellent fatigue characteristics.

Claims

15

20

30

40

45

- 1. A hot rolled steel wire rod of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C.
- 2. A hot rolled steel wire rod of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S, up to 0.3% of Cr, up to 1.0% of Ni, up to 0.8% of Cu and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C.
- 3. The hot rolled steel wire rod of high strength according to claim 1 or 2, wherein the structure of the wire rod comprises at least 95% of a pearlitic structure.
- The hot rolled steel wire rod of high strength according to claim 1 or 2, wherein the structure of the wire rod comprises at least 70% of a bainitic structure.
- 5. The hot rolled steel wire rod of high strength according to any of claim 1 to claim 4, wherein the wire rod has a tensile strength from at least 261+1,010x(C mass %)-140 MPa and up to 261+1,010x(C mass %)+240 MPa
- 6. A steel wire of high strength excellent in fatigue characteristics comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C, and at least 70% of which have aspect ratios of at least 10.
 - 7. A steel wire of high strength comprising, by mass %, 0.7 to 1.1% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Mn, up to 0.02% of P, up to 0.02% of S, up to 0.3% of Cr, up to 1.0% of Ni, up to 0.8% of Cu and the balance Fe and unavoidable impurities, and containing nonmetallic inclusions at least 80% of which comprise 4 to 60% of CaO+MnO, 22 to 87% of SiO₂ and 0 to 46% of Al₂O₃ and have melting points up to 1,500°C, and at least 70% of which have aspect ratios of at least 10.
 - 8. The steel wire of high strength excellent in fatigue characteristics according to claim 6 or 7, wherein the structure of the wire comprises at least 95% of a pearlitic structure.
- 50 9. The steel wire of high strength excellent in fatigue characteristics according to claim 6 or 7, wherein the structure of the wire comprises at least 70% of a bainitic structure.

55

Fig. 1

Fig.2

Fig.3

Fig. 4

	CaO+MnO°/。	SiO2 %	Al203 %
а	3.5	86.5	10.0
b	34.1	65.9	• 0
С	41.7	58.3	0
d	52.2	47.8	0
е	56.3	43.7	0
f	49.3	33.4	17.3
g	32.0	22.3	45.7
h	29.5	31.7	38.8
i	23.6	36.0	40.4
j	14.5	52.0	33.5

Fig. 5

Fig.6

Fig. 7

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP94/01665

A. CLASSIFICATION OF SUBJECT MATTER							
Int. Cl ⁶ C22C38/04, 38/42							
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED							
Minimum documentation searched (classification system followed by classification symbols)							
Int. Cl ⁵ C22C38/00-38/60, C21D8/06, 9/52							
Documentati	on searched other than minimum documentation to the ex	tent that such documents are included in the	e fields searched				
Flantania da	ta base consulted during the international search (name o	Character and miner are stimble annual to					
Electronic of	the pase committee owners the international search (name o	a data base and, where practicable, search is	rms useu)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
Y	JP, A, 4-6211 (Koba Steel,		1-9				
	January 10, 1992 (10. 01. 9 Page 1 to line 6, upper ric						
	(Family: none)	giic column, page 2,	İ				
Y	JP, A, 3-2352 (Nippon Stee) January 8, 1991 (08. 01. 93		1-9				
	Line 7, lower left column	to line 10, lower					
	right column, page 1, (Fam:		-				
Y	JP, A, 62-99437 (Nippon Ste	nel Corp)	1-9				
-	May 8, 1987 (08. 05. 87),	ser corp.,,	1-3				
•	Lower left column, page 1,	table 1, page 4,					
	(Family: none)						
Y	JP, A, 62-99436 (Nippon Ste	eel Corp.),	1-9				
	May 8, 1987 (08. 05. 87),	_	,				
	Lower left column, page 1, (Family: none)	table 1, page 4,					
	(1 dm 12) · 110110 /						
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.					
 Special categories of cited documents: "I later document published after the international filling date or priority date and not in conflict with the application but cited to understand date and not in conflict with the application but cited to understand 							
to be of particular relevance							
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is "E" document which may throw doubts on priority claim(s) or which is step wheel the document is taken alone							
cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be							
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination							
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family							
Date of the actual completion of the international search December 12, 1994 (12. 12. 94) December 12, 1995 (10. 01. 95)							
Name and m	ailing address of the ISA/	Authorized officer					
Japanese Patent Office							
Facsimile No. Telephone No.							
	4 M40 (

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

BEST AVAILABLE COPY

世界知的所有権機関

PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(11) 国際公開番号 WO 95/26422 (51) 国際特許分類 6 C22C 38/04, 38/42 A1 1995年10月5日(05.10.95) (43) 国際公開日 (81) 指定国 POT/JP94/01665 (21) 国際出願番号 CA, CN, KR, US, 欧州特許(AT, BE, CH, DE, DK, ES, 1994年10月5日(05. 10. 94) (22) 国際出願日 FR, GB, GR, IE, IT, LU, MO, NL, PT, SE). (30) 優先権データ 国際調查報告律 添付公開書類 特顯平6/57261 1994年3月28日(28.03.94) (71) 出願人 (米国を除くすべての指定国について) 新日本製取株式会社(NIPPON STEEL CORPORATION)[JP/JP] 〒100-71 東京都千代田区大手町二丁目6番3号 Tokyo,(JP) (72) 発明者; および (75) 発明者/出額人(米国についてのみ) 西田世紀(NISHIDA, Seiki)[JP/JP] 中島港二(NAKASHIMA, Junji)(JP/JP) 用准道(SERIKAWA, Osami)[JP/JP] 〒299-11 千菜県君津市君津1番地 新日本製蔵株式会社 君津製銀所内 Chiba。(JP) 茶合征堆(OCHIAI, Ikuo)(JP/JP) 〒299-11 千葉県君津市西坂田3丁目3-4 Chiba, (JP) (74) 代理人 弁理士 石田 敬,外(ISHIDA, Takashi et al.) 〒105 東京都港区虎ノ門一丁目8番10号 静光虎ノ門ピル 青和特許法律事務所 Tokyo (JP)

(54) Title: HIGH-STRENGTH STEEL WIRE MATERIAL OF EXCELLENT FATIGUE CHARACTERISTICS AND HIGH-STRENGTH STEEL WIRE

(54) 発明の名称 医労特性の優れた高強度鋼線材をよび高強度鋼線

1 ... fatigue strength

2 ... tensile strength

3 ... Parcantage (%) of aspect ratio of not less

than 10

(57) Abstract

This invention provides a high-strength steel wire material of excellent fatigue characteristics used for an extrafine steel wire of a high strength and a high ductility, such as a steel cord and a belt cord used to reinforce a rubber and an organic material for the production of a tire, a belt and a hose, and a high-strength steel wire, such as a rope and a PC wire. The present invention is characterized in that it contains 0.7-1 mass % of C, 0.1-1.5 mass % of Si, 0.1-1.5 mass % of Mn, not more than 0.02 mass % of P, not more than 0.02 mass % of S, and Fe and unavoidable impurities for the rest, not less than 80 % of nonmetallic inclusions comprising 4-60 % of CaO + MnO, 22-87 % of SiO₂ and 0-46 % of Al₂O₃, a melting point being not higher than 1500 °C.

(57) 要約

本発明はタイヤ、ベルト、ホースなどのゴムおよび有機材料の補強用に使用されているスチールコード、ベルトコードなどの高強度で高延性の極細鋼線やロープ、PCワイヤなどの高強度の鋼線に使用される疲労特性の優れた高強度鋼線材および高強度鋼線を提供する。本発明は、mass%で、C : 0 . 7~1 . 1%、Si: 0 . 1~1 . 5%、Mn: 0 . 1~1 . 5%、P : 0 . 02%以下、S : 0 . 02%以下、残部Fe及び不可避不純物を含有する成分で、かつ含有する非金属介在物の80%以上が、CaO+MnO: 4~60%、SiO2:22~87%、A12Os: 0~46%の組成範囲にあり、融点が1500℃以下であることを特徴とする。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

明細書

疲労特性の優れた高強度鋼線材および高強度鋼線

技術分野

本発明はタイヤ、ベルト、ホースなどのゴムおよび有機材料の補 強用に使用されているスチールコード、ベルトコードなどの高強度 で高延性の極細鋼線やロープ、PCワイヤなどの高強度の鋼線に使 用される疲労特性の優れた高強度鋼線材および高強度鋼線に関する。

背景技術

一般にスチールコードなど伸線された高炭素鋼極細線は、通常必要に応じて熱間圧延した後に調整冷却した直径4.0~5.5 mmの線材を一次伸線加工後、最終パテンティング処理を行ない、その後ブラスメッキ処理をへて最終湿式伸線加工により製造されている。このような極細鋼線の多くは、2本撚り、5本撚りなどの撚り線加工を施した状態でスチールコードとして使用されている。これらのワイヤが具備すべき特性として

- イ、より高強度であること
- 口、高速伸線性が優れていること、
- ハ、疲労特性が優れていること、
- 二. 高速撚り線性が優れること

等が上げられる。

このため、従来から要望に応じた高品質の鋼材が開発されている。例えば、特開昭 60-204865 号公報には、Mn 含有量を 0.3 %未満に規制して鉛パテンティング後の過冷組織の発生を抑え、 C 、S i 、M n 等の元素量を規制することによって、撚り線時の断

PCT/JP94/01665

線が少なく高強度および高靱延性の極細線およびスチールコード用高炭素鋼線材が開示されており、また、特開昭 6 3 - 2 4 0 4 6 号公報には、Si含有量を1.00%以上とすることによって鉛パテンティング材の引張強さを高くして伸線加工率を小さくした高靱性高延性極細線用線材が開示されている。

また、一方でこれらの特性に悪影響を与えるものの一つとして硬質の酸化物系非金属介在物があげられる。

一般的に酸化物系介在物の中でもAlgOg, SiOg, CaO, TiOg, MgO等の単組成の介在物は硬度も高く非延性である。 従って伸線性に優れた高炭素鋼線材製造のためには、溶鋼の清浄性を高めるとともに、酸化物系介在物を低融点化し軟質化する必要がある。

この様に鋼の清浄度を上げ、非延性介在物の軟質化を図る方法として、特公昭 5 7 - 2 2 9 6 9 号公報に示される伸線性の良好な高炭素鋼線材用鋼の製造法及び特開昭 5 5 - 2 4 9 6 1 号公報に示される極細線の製造方法が示されているが、これらの技術の基本思想は、A 1 2 O 2 - S i O 2 - M n O の三元系の酸化物系非金属介在物の組成制御によるものである。

また、特公昭 5 7 - 3 5 2 4 3 号公報においては、非延性介在物指数 2 0 以下のスチールコード製造に関し、A 1 完全規制の下で取 鍋溶鋼内にキャリアーガス(不活性ガス)と共に C a O 含有フラッ WO 95/26422 PCT/JP94/01665

クスを吹込み、予備脱酸した後、Ca, Mg, REMの一種または 二種以上を含む合金を吹込み介在物を軟質化する方法が提案されて いる。

しかしながら、さらに高強度、高延性、高疲労強度の鋼線が求められるようになった。

発明の開示

本発明は、従来の鋼線では達成し得なかった高強度でかつ高延性 で、疲労特性の優れた線材および鋼線を提供することを目的として、 達成されたものである。

その要旨とするところは下記のとおりである。

(1) mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si: 0.1 \sim 1.5\%$

 $M n : 0 . 1 \sim 1 . 5 \%$

P:0.02%以下、

S:0.02%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の80%以上が、 $CaO+MnO:4\sim60\%$ 、 $SiO_2:22\sim87\%$ 、 $Al_2O_3:0\sim46\%$ の組成範囲にあり、融点が1500%以下であることを特徴とする高強度熱間圧延線材。

(2) mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si: 0.1 \sim 1.5\%$

 $M n : 0 . 1 \sim 1 . 5 \%$

P:0.02%以下、

PCT/JP94/01665

WO 95/26422

S:0.02%以下、

Cr:0.3%以下、

Ni:1.0%以下、

Cu: 0. 8%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 80%以上が、CaO+MnO:4~60%、SiO::22~87%、A1:O::0~46%の組成範囲にあり、融点が <math>1500 ℃以下であることを特徴とする高強度熱間圧延線材。

- (3)前記熱間圧延線材の組織として、該組織の95%以上がパーライト組織からなる(1)または(2)記載の高強度熱間圧延線材。
- (4) 前記熱間圧延線材の組織として、該組織の70%以上がベーナイト組織からなる(1) または(2) 記載の高強度熱間圧延線材。
- (5) 前記熱間圧延線材の引張り強さが、261+1010×(Cmass%)-140MPa以上、261+1010×(Cmass%)+240MPa以下である(1)から(4)のいずれかに記載の高強度熱間圧延線材。
 - (6) mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $S i : 0 . 1 \sim 1 . 5 \%$

 $M n : 0 . 1 \sim 1 . 5 \%$

P:0.02%以下、

S:0.02%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 8 0 %以上が、 C a O + M n O : 4 ~ 6 0 %、 S i O 2 : 2 2 ~ 8 7 %、 A 1 2 O 3 : 0 ~ 4 6 %の組成範囲にあり、融点が 1 5 0 0 ℃以下であり、かつ該非金属介在物の

PCT/JP94/01665

70%以上が、アスペクト比:10以上であることを特徴とする疲労特性の優れた高強度鋼線。

(7) mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si: 0. 1 \sim 1. 5\%$

 $Mn: 0. 1 \sim 1. 5\%$

P:0.02%以下、

S:0.02%以下、

Cr:0.3%以下、

Ni:1.0%以下、

Cu: 0. 8%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 80%以上が、CaO+MnO:4~60%、SiO2:22~87%、A12O3:0~46%の組成範囲にあり、融点が <math>1500 ℃以下であり、かつ該非金属介在物の 70%以上が、アスペクト比:10以上であることを特徴とする疲労特性の優れた高強度鋼線。

(8) 前記鋼線の組織として、該組織の95%以上がパーライト組織からなる(6) または(7) 記載の疲労特性の優れた高強度鋼線。(9) 前記鋼線の組織として、該組織の70%以上がベーナイト組織からなる(6) または(7) 記載の疲労特性の優れた高強度鋼線。

図面の簡単な説明

第1図は、アスペクト比10以上の非金属介在物の割合と鋼線の 疲労強度の関係を示す図である。

第2図は、熱間圧延線材と伸線ワイヤの非金属介在物形態の関係 を示す図である。 第3図は、非金属介在物のアスペクト比の測定方法を示す図である。

第4回は、本発明の適正非金属介在物組成を示す図である。

第5図は、鋼中非金属介在物融点とビレットでの非延性非金属介 在物量との関係を示す図である。

第6図は、非金属介在物適正割合と伸線加工性および疲労特性との関係である。

第7図は、疲労限の決定方法を示す図である。

発明を実施するための最良の形態

本発明は、従来の非金属介在物の知見とは全く別異なる知見に基づいて達成されたものである。従来より、スチールコードに代表される高炭素鋼線材用鋳片に適した非金属介在物組成として、線材圧延時に伸延し易いものとして、単に融点が低い組成が望ましいとされてきた。これは、低融点組成の非金属介在物は、一般に融点の1/2程度の温度で塑性変形するとの知見によるもので、これまでは単純に融点さえ低ければ圧延時の加工によって、非金属介在物は変形し無害化できるとされていた。この従来の知見に対して本発明では以下の知見に基づいている。

本発明のスチールコードに代表される高炭素鋼線材では、溶製の際の脱酸およびスラグ精錬によって、必然的に CaO-MnO-SiO2-A12O3系非金属介在物となる。この際、単純に非金属介在物の融点のみで適正な非金属介在物組成の領域を決定すると、第4図の状態図からも明らかなように、例えば1400℃以下の領域は複数存在することになる。

しかし、この状態図では図面には示されていないが、低SiO₂ 含有の領域では、初晶相として融点が1455℃である12CaO・ 7 A 1。O。を晶出する以外に、さらに、析出相として融点が 1 6 0 5 ℃と高融点である C a O・A 1 2 O。および 1 5 3 5 ℃の 3 C a O・A 1 2 O。が出現する。このため、スチールコードに代表される高炭素鋼線材用鋳片として、最適なる非金属介在物組成は、単に平均組成としての融点が低いだけでなく、凝固に伴うこれら析出相の組成も低融点である組成とする方が有利である。すなわち、本発明では、平均組成として融点が低いだけでなく、析出相としての融点をも考慮して、この中でさらに特定の組成範囲に制御する必要があるとの知見に基づいて成されたものである。

さらに、上記の非金属介在物を前提として、本発明は線材および 鋼線における非金属介在物のアスペクト比に注目して、これが線材 で4以上、鋼線で10以上なる従来にない、極端に加工性の良好な 非金属介在物を実現し、本発明を達成したものである。

以下、本発明の限定理由について、詳細に説明する。

先ず本発明の組成及び非金属介在物の限定理由について説明する。なお、以下に示す%は全てmass%表示である。

本発明の鋼組成の限定理由は下記の通りである。

Cは経済的かつ有効な強化元素であるが、この初析フェライトの析出量低下にも有効な元素である。従って、引張強さ3500MPa以上の極細線とし延性を高めるためにはCは0.7%以上とすることが必要であるが、高すぎると延性が低下し伸線性が劣化するのでその上限は1.1%とする。

Siは鋼の脱酸のために必要な元素であり、従ってその含有量があまりに少ないとき、脱酸効果が不十分になる。また、Siは熱処理後に形成されるパーライト中のフェライト相に固溶しパテンティング後の強度を上げるが、反面フェライトの延性を低下させ伸線後の極細線の延性を低下させるため1.5%以下とする。

Mnは鋼の焼き入れ性を確保するために小量のMnを添加することが望ましい。しかし、多量のMnの添加は偏析を引き起こしパテンティングの際にベイナイト、マルテンサイトという過冷組織が発生しその後の伸線性を害するため1.5%以下とする。

本発明のような過共析鋼の場合、パテンティング後の組織においてセメンタイトのネットワークが発生しやすくセメンタイトの厚みのあるものが析出しやすい。この鋼において高強度高延性を実現するためには、パーライトを微細にし、かつ先に述べたようなセメンタイトを無くす必要がある。Crはこのようなセメンタイトの異常部の出現を抑制しさらに、パーライトを微細にする効果を持っている。しかし、多量の添加は熱処理後のフェライト中の転移密度を上昇させるため、引き抜き加工後の極細線の延性を著しく害することになる。従って、Crを添加する場合、その添加量はその効果が期待できる程度とし、フェライト中の転移密度を増加させ延性を害することの無い0.3%以下とする。

NiもCrと同じ効果があるため、Niを添加する場合、その添加量はその効果が期待できる程度とし、Niも添加量が多くなり過ぎるとフェライト相の延性を低下させるので上限を1.0%とする。

Cuは線材の腐食疲労特性を向上させる元素であるので、Cuを添加する場合、その添加量はその効果が期待できる程度とし、Cuも添加量が多くなり過ぎるとフェライト相の延性を低下させるので上限を 0.8%とする。

従来の極細鋼線と同様に、延性を確保するためSの含有量を 0.02%以下とし、PもSと同様に線材の延性を害するのでその含有量を 0.02%以下とするのが望ましい。

次に、本発明の非金属介在物組成の限定理由について説明する。 鋼線中の非金属介在物は、介在物融点が低い方が加工時の非金属 介在物の伸びが大きく線材圧延加工時の断線防止に有効な事は従来 から知られている。

しかし、伸線加工を行ったままの状態で使用するスチールコードなどにおいて非金属介在物の及ぼす疲労特性への影響は明確ではなかった。

本発明者らが研究を進めた結果、疲労特性を大きく低下させる原因として伸線加工中に形成される非変形非金属介在物近傍のクラックの存在がある。従って、伸線ワイヤの疲労特性を向上させることを考えた場合、鋳片中に含まれる非金属介在物を変形しやすいものにする必要がある。

第5図に示すように、鋳片の非金属介在物組成を、MnO+CaO,SiO2,A12O。四元系で見た融点1500℃以下の組成にすると、鋳片からビレットに分塊圧延後、および伸線加工過程において伸びた非金属介在物の割合が急増する。このように鋳片中の非金属介在物組成を調整することで、伸線加工ワイヤの延性および疲労特性が向上する。そこで、延性のある非金属介在物を増加させるために鋳片、線材の非金属介在物組成を第4図のイ、ロ、ハ、ニ、ホ、ヘ、ト、チ、リ、ヌで囲まれる領域Iに制御することが有効である。

第4図の領域Iに隣接し、かつ融点が1500℃以下の領域があるが、しかし、この状態図では図面には示されていないが、低Si〇2合有の領域では、初晶相として融点が1455℃である12℃ a〇・7A12Os を晶出する以外に、さらに、析出相として融点が1605℃と高融点であるCaO・A12Os および1535℃の3CaO・A12Os の伸線時に断線の原因となる硬質な高融点相が凝固時に析出するので非金属介在物組成としては望ましくない。本発明者らが研究を進めた結果、第6図に示すように、非金属介在

物組成が第4図の領域Iに存在する割合が増えるに従って疲労特性は向上する。また、領域Iに存在する割合が80%近傍で疲労特性の向上がほぼ飽和する。従って、第4図の領域Iには計数される非金属介在物の80%以上が存在する必要がある。

さらに、本発明者らは、伸線加工したワイヤの介在物の形態に着目し、ワイヤ疲労特性を低下させる原因として非金属介在物の近傍に形成されるクラックを抑制することを考え、介在物の形状をワイヤの長手方向に伸びた形状とすることで、非金属介在物を起因とするクラック先端における応力集中を緩和し、疲労特性を向上さるワイヤを考案した。第1図にワイヤ中のアスペクト比が10以上の非金属介在物の割合と疲労特性(ハンター疲労試験により求めた疲労強度を引張強さで割った値)の関係を示す。第1図に示されるように、同一ワイヤ強度において鋼線中のアスペクト比が10以上の介在物の70%以上でほぼ飽和する。従って、鋼線中の介在物の70%以上のアスペクト比が10以上とする。

また、第2図より、伸線過程でアスペクト比が10以上となる非 金属介在物とするためには、熱間圧延過程での介在物のアスペクト 比を4以上に調整する必要があることがわかる。

ここで介在物のアスペクト比は第3図に示すように、伸線方向に 長さLを持つ介在物があった場合に、距離2L内に介在物が存在す る場合、この二つの介在物は繋がっているものとしてアスペクト比 を求めるものである。

また、前述の第 1 図では、このような非金属介在物の形状の効果は、引張強さが 2 8 0 0 - 1 2 0 0 1 0 g D (MPa、ただしD は円相当の線径を表す)以上の場合に特に大きくなるので、好ましくは引張強さは 2 8 0 0 - 1 2 0 0 1 0 g D 以上の範囲とする。

PCT/JP94/01665

また、疲労特性を向上させた熱間圧延材とするためには、その組織の95%以上をパーライト組織に調整する必要がある。この時、引張強さが $TS=261+1010\times(Cmass\%)-140$ MPa未満の時は伸線加工の際に介在物を伸ばす効果が少なくなる。引張強さが $TS=261+1010\times(Cmass\%)+240$ MPaを越えた場合には、パーライト組織を95%以上とするのが困難となる。従って、パーライト組織の場合の引張強さを

261+1010× (Cmass%) - 140 MPa以上 261+1010× (Cmass%) + 240 MPa以下 とする。

また、熱間圧延後の組織をベイナイト組織とする場合には、疲労 特性を向上させるため、70%以上をベイナイト組織とする必要が ある。

以下、本発明の製造方法について説明する。

先の鋼組成と含有する非金属介在物が本発明の前記範囲内にある 鋼を熱間圧延により、4.0 mm φ以上7.0 mm φ以下の線材とする。 この時の線径は円相当直径で、実際の断面形状は、円、楕円、三角 などの多角形のいづれでも良い。4.0 mm φ未満の線径とする場合 には生産性が著しく低下する。また、7.0 mm φを越えた場合には、 調整冷却において充分な冷却速度が得られないため、7.0 mm φ以 下とする。

これらの熱間圧延線材を伸線加工により線径を1.1から2.7 mm のワイヤとする。線径を1.0 mm の以下にすると伸線ワイヤ中にクラックが入るため、その後の加工に悪影響を与えるため1.1 mm の以上とする。また、2.7 mm の以上のワイヤとすると最終製品線径を0.4 mm以下とする場合に伸線加工後のワイヤ延性面で良好な結果を得ることができないので最終パテンティング処理前の線径

PCT/JP94/01665

を 2. 7 mm φ 以下とする。この時、伸線加工は引き抜き加工でもローラーダイスのどちらを用いても良い。

パテンティング処理により、引張強さが(530+980×C mass%)MPa に調整された時、真ひずみで3.4以上4.2以下の加工を施した場合の強度延性パランスが最も優れている。{(530+980×Cmass%)-50}MPa 以下となった場合、伸線加工後の引張強さを充分に得ることができない。{(530+980×Cmass%)+50}MPa 以上となった場合には、強度は高いがパーライト組織中にベイナイト組織が多く出現しているので、伸線加工中の加工硬化率が低下し、同一減面率での到達強度が低下し、延性も低下する。従って、パテンティング処理における引張強さを{(530+980×Cmass%)±50}MPa に調整する必要がある。

これらのワイヤは、乾式伸線、湿式伸線のいづれかあるいは組み合わせで製造されているが、伸線の過程においてダイスの磨耗を出来るだけ起こしにくくするため表面にめっきを施すことが望ましい。これらのめっきはブラスメッキ、Cuめっき、Niめっきなどが経済的に望ましいがこれ以外のめっきでも良い。

湿式伸線加工において真歪みで(-1.43×1 o g D +3.0 9)以上の加工では、強度が上がり過ぎるため疲労特性が低下する。また、(-1.43×1 o g D +2.49)以下の加工では、35 0 0 MPa 以上の強度を得ることができない。

引張強さが($-1590 \times 10gD + 3330$)を越えるとワイヤが脆化してその後の加工が困難となるので、引張強さを($-1590 \times 10gD + 3330$)以下に調整する必要がある。

この製造工程により円相当直径が 0. 15~0. 4 mm φ のワイヤを製造することで、多くの場合にこの後に行われる撚り線加工にお

いて、撚り線の際に捻りに耐えられるだけの延性を備えさせることができるため、素線においても、撚り線においても疲労特性の優れたスチールコードを製造することが可能となる。

さらに、湿式伸線加工において真歪みで(-1. 23×1 o g D +4. 00)以上の加工では、強度が上がり過ぎるため疲労特性が低下する。また、

(-1. 2 3 × 1 o g D + 3. 0 0) 以下の加工では、 4 0 0 0 M P a 以上の強度を得ることができない。

この製造工程により円相当直径が 0.02~0.15 mm φ のワイヤを製造することで、疲労寿命の高い素線を製造することができる。以下、本発明について、実施例に基づきさらに説明する。

実施例

実施例1

転炉出鋼後、二次精練処理を行い第1表に示した溶鋼組成に成分 調整した後に、連続鋳造法により鋳造を行い、300×500mmの 鋳片を製造した。

第1表

	•												 ,				
適合率(%)	84	100	95	8	83	96	86	100	88	98	93	93	87	99	84		84
Al	0.001	0,001	0,002	0.002	0.001	0,002	0,002	0.002	0,002	0.002	0,002	0.005	0.005	0,002	0.002	0,002	0, 002
S	0,003	0.004	0, 003	0.003	0,006	0,005	0,005	0.003	0,003	0,004	0.003	0.003	0,003	0,003	0,003	0,003	0,003
Ы	0.010	0,008	0.009	0.009	0,005	0.007	0.006	0,008	0,007	0,007	0,008	0.008	0.009	0,009	0, 009	0,009	0.009
n ₂	1	1	1	1		0.20	0.80	1	0.10				1	1	Į	1	_
Ni	1	1		1	0.80	١	1	0, 10	0.10	0.10	ľ	1				1	1
r.	0.22	0, 10	0.21	0.21	0.10	1	1	0.10	i	1	0.15	0.15	ļ	0, 21	0.21	0.21	0.21
W	0, 33	0.48	0.32	0.32	0.32	0.32	0, 31	0.20	0.20	0.31	0.31	0.31	0.50	0, 32	0.32	0.32	0, 32
Si	0.20	0.39	0.19	0, 19	0.19	0.30	0.20	0.21	0.21	0. 19	0 19	0, 19	0.21	0.19	0.19	0.19	0, 19
ن	0.92	0.92	0.96	0.96	0.96	0.98	0.98	1 02	1 02	1 06	1 08	1 06	0 82	95	96 0	96 0	0.96
	1-	, 6	, es	4	r.	9	,	. α	0	عاد	: =	12	2 2	1 4	: 5	2 9	17
/			*		無		野	_ I	惡	_•				3		登	F
	Si Mn Cr Ni Cu P S A1	Si Mn Cr Ni Cu P S A1 0, 20 0, 33 0, 22 — — 0, 010 0, 003 0, 001	C Si Mn Cr Ni Cu P S Al 1 0,92 0,20 0,33 0,22 — — 0,010 0,003 0,001 2 0,92 0,39 0,48 0,10 — 0,008 0,004 0,001	C Si Mn Cr Ni Cu P S A1 0, 92 0, 20 0, 33 0, 22 — — 0, 010 0, 003 0, 001 0, 92 0, 39 0, 48 0, 10 — — 0, 008 0, 004 0, 001 0, 96 0, 19 0, 32 0, 21 — 0, 009 0, 003 0, 002	C Si Mn Cr Ni Cu P S A1 1 0,92 0,20 0,33 0,22 — — 0,010 0,003 0,001 2 0,92 0,39 0,48 0,10 — — 0,008 0,004 0,001 3 0,96 0,19 0,32 0,21 — — 0,009 0,003 0,002 4 0,96 0,19 0,32 0,21 — 0,009 0,003 0,002	C Si Mn Cr Ni Cu P S A1 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.006 0.001	C Si Mn Cr Ni Cu P S A1 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.005 0.001 6 0.98 0.30 0.32 0.10 0.80 — 0.005 0.005 0.005 0.005	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.005 0.001 6 0.98 0.30 0.32 — — 0.00 0.005 0.005 0.005 7 0.98 0.20 0.007 0.005 0.005 0.005 0.005 0.005	C Si Mn Cr Ni Cu P S Al 1 0,92 0,20 0,33 0,22 — — 0,010 0,003 0,001 2 0,92 0,39 0,48 0,10 — — 0,008 0,004 0,001 3 0,96 0,19 0,32 0,21 — — 0,009 0,003 0,002 4 0,96 0,19 0,32 0,21 — — 0,009 0,003 0,002 5 0,96 0,19 0,32 0,10 0,80 — 0,005 0,006 0,001 6 0,98 0,30 0,32 — — 0,20 0,005 0,005 0,002 7 0,98 0,20 0,31 — — 0,80 0,005 0,005 0,002 8 1,02 0,21 0,20 0,006 0,003 0,002 0,003 0,002 <	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.98 0.30 0.32 0.10 0.80 — 0.005 0.005 0.005 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 9 1.02 0.21 0.20 0.10 0.006 0.005 0.005 0.005	C Si Mn Cr Ni Cu P S Al 1 0,92 0,20 0,33 0,22 — — 0,010 0,003 0,001 2 0,92 0,39 0,48 0,10 — — 0,008 0,004 0,001 3 0,96 0,19 0,32 0,21 — — 0,009 0,003 0,002 4 0,96 0,19 0,32 0,21 — — 0,009 0,003 0,002 5 0,96 0,19 0,32 0,10 0,80 — 0,005 0,003 0,002 6 0,98 0,30 0,32 — — 0,20 0,005 0,005 0,002 7 0,98 0,20 0,31 — — 0,80 0,005 0,005 0,002 8 1,02 0,21 0,10 0,10 0,007 0,003 0,002 <t< td=""><td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.009 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.20 0.005 0.005 0.002 7 0.98 0.20 0.31 — — 0.80 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.007 0.003 0.002 </td></t<> <td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.20 0.005 0.005 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 0.005 8 1.02 0.21 0.20 — 0.10 0.005 0.005 0.005</td> <td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.96 0.19 0.32 — — 0.20 0.001 0.005 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.002 8 1.02 0.21 0.20 — 0.10 0.006 0.005 0.002</td> <td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.29 0.39 0.48 0.10 — 0.009 0.003 0.001 3 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.009 0.003 0.002 7 0.98 0.20 0.10 0.80 — 0.005 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.00 0.005 0.002 9 1.02 0.21 0.20<td>C Si Mn Cr Ni Cu P S A1 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.29 0.48 0.10 — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 0.005 0.003 0.002 6 0.98 0.20 0.10 0.80 0.005 0.002 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.00 0.005 0.005 0.005 10 1.02 0.21 0.20 0</td><td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.20 0.33 0.22 — — 0.009 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.98 0.20 0.31 — — 0.00 0.005 0.002 7 0.98 0.20 0.31 — — 0.00 0.005 0.002 8 1.02 0.21 — 0.10 0.10 0.00 0.005 0.002 10 1.0</td></td>	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.009 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.20 0.005 0.005 0.002 7 0.98 0.20 0.31 — — 0.80 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.007 0.003 0.002	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.20 0.005 0.005 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 0.005 8 1.02 0.21 0.20 — 0.10 0.005 0.005 0.005	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.39 0.48 0.10 — — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.96 0.19 0.32 — — 0.20 0.001 0.005 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.002 8 1.02 0.21 0.20 — 0.10 0.006 0.005 0.002	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.29 0.39 0.48 0.10 — 0.009 0.003 0.001 3 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 6 0.98 0.30 0.32 — — 0.009 0.003 0.002 7 0.98 0.20 0.10 0.80 — 0.005 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.00 0.005 0.002 9 1.02 0.21 0.20 <td>C Si Mn Cr Ni Cu P S A1 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.29 0.48 0.10 — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 0.005 0.003 0.002 6 0.98 0.20 0.10 0.80 0.005 0.002 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.00 0.005 0.005 0.005 10 1.02 0.21 0.20 0</td> <td>C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.20 0.33 0.22 — — 0.009 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.98 0.20 0.31 — — 0.00 0.005 0.002 7 0.98 0.20 0.31 — — 0.00 0.005 0.002 8 1.02 0.21 — 0.10 0.10 0.00 0.005 0.002 10 1.0</td>	C Si Mn Cr Ni Cu P S A1 1 0.92 0.20 0.33 0.22 — 0.010 0.003 0.001 2 0.92 0.29 0.48 0.10 — 0.008 0.004 0.001 3 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.21 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 0.005 0.003 0.002 6 0.98 0.20 0.10 0.80 0.005 0.002 0.002 7 0.98 0.20 0.31 — — 0.20 0.005 0.005 0.005 8 1.02 0.21 0.20 0.10 0.10 0.00 0.005 0.005 0.005 10 1.02 0.21 0.20 0	C Si Mn Cr Ni Cu P S Al 1 0.92 0.20 0.33 0.22 — — 0.010 0.003 0.001 2 0.92 0.20 0.33 0.22 — — 0.009 0.004 0.001 3 0.96 0.19 0.32 0.21 — — 0.009 0.003 0.002 4 0.96 0.19 0.32 0.10 0.80 — 0.009 0.003 0.002 5 0.96 0.19 0.32 0.10 0.80 — 0.005 0.003 0.002 6 0.98 0.20 0.31 — — 0.00 0.005 0.002 7 0.98 0.20 0.31 — — 0.00 0.005 0.002 8 1.02 0.21 — 0.10 0.10 0.00 0.005 0.002 10 1.0

さらにこの鋳片を分塊圧延してビレットを製造し、5.5 mm φの 熱間圧延した後に調整冷却を行い5.5 mm φの線材を製造した。調 整冷却はステルモア冷却にて行った。

この $5.5mm\phi$ の線材を伸線加工と中間パテンティング処理により $1.2\sim2.0mm\phi$ のワイヤとした(第 2 表および第 3 表)。

第2表

熱処理線径	(<u>EE</u>)	0.30	0.80	0.74	0.80	1.20	0, 90	1.00	0,74	0.80	0.90	0, 60	0, 60	0, 74	0.74	0.74	0.74	1.00
	1	4. 0 →3. 25(LP)→1. 40(LP)→0. 30(LP)→0. 020	5.5 →3.25(LP)→0.80(LP)→0.062	5. 5 → 3. 25(LP) → 0. 74(LP) → 0. 062	7.0 →3.25(LP)→0.80(LP)→0.062	5. 5 → 3. 25(LP) → 1. 20(LP) → 0. 100	5. 0 →3. 25(LP)→0. 90(LP)→0. 080	5.5 →3.25(LP)→1.00(LP)→0.080	5. 5 → 3. 25(LP) → 0. 74(LP) → 0. 080	5. 5 →3. 25(LP)→0. 80(LP)→0. 062	5. 5 →3. 25(LP)→0. 90(LP)→0. 080	5. 5 →3. 25(LP)→0. 60(LP)→0. 080	5. 5 →3. 25(LP)→0. 60(LP)→0. 080	5. 5 → 3. 25(LP) → 0. 74(LP) → 0. 062	5. 5 →3. 25(LP)→0. 74(LP)→0. 062	5. 5 → 3. 25(LP) → 0. 74(LP) → 0. 062	5. 5 →3. 25(LP)→0. 74(LP)→0. 062	5. 5 →3. 25(LP)→1. 00(LP)→0. 062
初析	e37941	兼つ	無し	無し	無し	無し	無し	無し	無つ	無つ	無つ	無つ	無つ	兼つ	無し	有り	無つ	兼つ
粮径		4.0	5.5	5.5	7.0	5.5	5.0	5.5	5.5	5.5	5,5	5.5	5.5	5,5	5,5	5.5	5,5	5,5
	$\overline{/}$	-	2	3	4	5	9	7	8	9	10	=	12	13	14	15	16	17
			4	€.	ŝ	*	<u> </u>	<u>F</u>	Į	豪					퐈	救	靈	

第 3 表

				·			
		線径 (mm)	パテンティング 材 T.S. (MPa)	めっき処理	最終 917 線径 (mm)	伸 線 減面率 ε=21n (D _o /D)	断線回数
	1	4.0	1450	ブラスめっき	0.020	5.42	0
	2	5.5	1454	ブラスめっき	0.062	5.11	0
本	3	5. 5	1460	ブラスめっき	0.062	4.96	0
	4	7.0	1465	ブラスめっき	0.062	5.11	0
発	5	5. 5	1491	752めっき	0.100	4.97	0
	6	5.0	1491	752めっき	0.080	4.84	0
明 	7	5.5	1521	752めっき	0.080	5.05	0
A	. 8	5.5	1530	ブラスめっき	0.080	4.45	0
鋼	9	5.5	1572	銅めっき	0.062	5.11	0
	10	5.5	1590	ニッケルめっき	0.080	4.84	0
	11	5.5	1528	ブラスめっき	0.080	4.03	0
	12	5.5	1528	ブラスめっき	0.080	4.03	0
	13	5.5	1310	ブラスめっき	0.062	4.96	0
比	14	5.5	1460	プラスめっき	0.062	4.96	3
較	15	5.5	1460	ブラスめっき	0.062	4.96	20 ↑
鋼	16	5. 5	1534	ブラスめっき	0.062	4.96	5
	17	5.5	1460	ブラスめっき	0.062	5.56	7

この後、900℃に加熱し、550~600℃の温度範囲で最終パテンティング処理を行うことで組織と引張強さを調整し、ブラスめっきを行ってから最終湿式伸線を行った。それぞれの鋼線の製造における、パテンティング処理時のワイヤ径、パテンティング処理後の引張強さ、伸線加工後の最終ワイヤ径は第2表および第3表に

示される通りである。

これらのワイヤ特性を引張試験、捻回試験、疲労試験により評価した。

第 4 表

		引張強さ (MPa)	絞 (%)	疲労特性
	1	5684	34.0	0
	2	4870	32.6	0
本	3	5047	38.4	0
54	4	5174	31.5	0
発	5	5124	32.5	. 🔿
88	6	4560	36.0	0
明	7	4964	33.8	0
201521	8	4672	36.8	0
鋼	9	5324	38.4	0
ļ	10	4870	36.4	0
	11	4125	40.1	0
	12	4205	42.1	0
	13	3875	35.8	0
比	14	5037	35.0	×
較	15			<u> </u>
鋼	16	4939	38.0	×
	17	5320	18.4	×

第4表中の疲労特性は、ハンター疲労試験において疲労強度を測定し、疲労強度が引張強さの 0.3 3以上の場合を◎、0.3以上の場合を○、0.3以上の場合を○として表し、0.3未満の場合を×で表した。また、疲

労強度はハンター疲労試験を用いて測定し、疲労強度として 1 0 ° 以下の繰り返しで破壊しない強度を疲労強度とした。

表中の鋼1~12は本発明鋼であり、鋼13~17は比較鋼である。

比較鋼13は鋼組成が本発明範囲外で製造方法は同じ場合である。 比較鋼14は鋼組成が本発明範囲で、鋳片中の非金属介在物的中 率が本発明より低く、これ以外のワイヤの製造方法は本発明方法と 同じ場合である。

比較鋼15は鋼組成と非金属介在物組成が同じで熱間圧延後の調整冷却において初析セメンタイトの出現した場合である。

比較鋼16は鋼組成および非金属介在物組成が本発明と同じで、 最終パテンティング材の引張り強さが特許請求の範囲から高くなっ た場合である。

比較鋼17は鋼組成および非金属介在物組成が本発明と同じで、 最終パテンティング処理後の伸線減面率が本発明より大きい場合で ある。

一方、比較鋼13においては鋼成分が本発明鋼と異なるため40 00MPa以上の強度が得られていない。

比較鋼14においては、4000MPa以上の強度が得られているが鋳片中の非金属介在物組成が本発明鋼と異なるため、断線回数が多く疲労特性において良好な結果が得られていない。

比較鋼15においては、熱間圧延後に初析セメンタイトが出現したため、最終ワイヤまでの製造が出来なかった。

比較鋼16においては、最終パテンティング処理における引張強 さが高すぎるため、最終ワイヤでの疲労特性が劣化して良好な結果 が得られていない。

比較鋼17に於いては、最終湿式伸線の際の減面率が高すぎるた

め、最終ワイヤでの疲労特性が劣化して良好な結果が得られていない。

実施例 2

第5表に本発明ワイヤと比較ワイヤの化学成分を示す

第 5 表

了 2 2 4 2 4 2	18 19 20 21 22 23 24 25 26	C 0. 72 0. 82 0. 82 0. 82 0. 87 0. 98 0. 82 0. 87	Si 0. 20 0. 20 0. 20 0. 20 0. 20 1. 20 1. 00 0. 49	化 Mn 0. 49 0. 33 0. 30 0. 30 0. 30 0. 80	学 Cr — 0. 20 0. 10 0. 10 0. 20	成 Ni — — — 0.05 —	分 Cu — — — 0.05 0.10	(mass%) P 0.012 0.015 0.010 0.011 0.012 0.016	S 0.008 0.007 0.006 0.010 0.008 0.008	A1 0.001 0.001 0.001 0.001 0.001 0.002
了 2 2 4 2 4 2	19 20 21 22 23 24 25 26	0. 72 0. 82 0. 82 0. 82 0. 87 0. 98 0. 82 0. 87	0. 20 0. 20 0. 20 0. 20 0. 20 1. 20 1. 00	0. 49 0. 49 0. 33 0. 30 0. 30 0. 30 0. 80			 0. 05	0. 015 0. 010 0. 011 0. 012 0. 016	0.007 0.006 0.010 0.008 0.008	0.001 0.001 0.001 0.001
了 2 2 4 2 4 2	19 20 21 22 23 24 25 26	0. 82 0. 82 0. 82 0. 87 0. 98 0. 82 0. 87	0. 20 0. 20 0. 20 0. 20 1. 20 1. 00	0. 49 0. 33 0. 30 0. 30 0. 30 0. 80	0. 10 0. 10	0.05 —		0. 015 0. 010 0. 011 0. 012 0. 016	0.006 0.010 0.008 0.008	0.001 0.001 0.001
本 2	20 21 22 23 24 25 26	0. 82 0. 82 0. 87 0. 98 0. 82 0. 87	0. 20 0. 20 0. 20 1. 20 1. 00	0. 33 0. 30 0. 30 0. 30 0. 80	0. 10 0. 10			0. 010 0. 011 0. 012 0. 016	0. 010 0. 008 0. 008	0. 001 0. 001
本	21 22 23 24 25 26	0. 82 0. 87 0. 98 0. 82 0. 87	0. 20 0. 20 1. 20 1. 00	0. 30 0. 30 0. 30 0. 80	0. 10 0. 10			0.012 0.016	0.008 0.008	0.001
本	22 23 24 25 26	0. 87 0. 98 0. 82 0. 87	0, 20 1, 20 1, 00	0. 30 0. 30 0. 80	0.10			0.012 0.016	0.008	
本 2	23 24 25 26	0. 98 0. 82 0. 87	1. 20 1. 00	0. 30 0. 80				0.016		0,002
本	24 25 26	0. 82 0. 87	1.00	0.80						
	25 26	0.87						0.014	0.006	0.001
	26			0.33	0. 28			0.011	0.009	0.001
		N 091	0. 20	0.30	0. 22		0.22	0.012	0.007	0.001
	97	0. 92 0. 92	0. 30	0. 20	0. 25			0.012	0.008	0.001
	27	0. 92	0. 20	0. 33	0. 22			0.014	0,003	0.001
	28	0. 92	0. 39	0. 48	0. 10			0, 008	0.004	0.001
. —	29	0. 96	0. 19	0. 32	0. 10	0.80		0.009	0.003	0.002
	30 31	0. 96	0. 19	0. 32	0. 21	0.00		0.006	0.005	0.002
· -	32	0. 98	0. 13	0. 32	-		0. 20	0.007	0.005	0.002
	33	0. 98	0. 20	0.31			0.80	0.006	0.005	0,002
	34	1. 02	0. 21	0. 20	0. 10	0.10		0.008	0.003	0.002
	35	1. 02	0. 21	0. 20	-	0.10	0.10	0.007	0.003	0.002
	36	1.06	0. 19	0.31		0.10	_	0.007	0.004	0.002
	37	1.06	0. 19	0.31	0. 15			0.008	0.003	0.002
	38	0. 98	1. 20	0.30	0. 20		-	0.012	0.005	0.001
l —	39	0. 98	1. 20	0.30	0, 20		T-	0.013	0.006	0.001
	40	0. 82	0. 21	0.50				0.009	0.003	0.002
比	41	0. 92	0. 20	0.33	0. 22	T=	$\vdash =$	0.010	0.003	0.001
較	42	0. 92	0. 20	0.33	0. 22	1 —		0.010	0.003	0.001
	43	0. 92	0. 20	0.33	0. 22	 	1 —	0.010	0.003	0.001
鋼	44	0. 92	0.20	0.33	0. 22		T-	0.010	0.003	0.001

第5表に示す成分の線材を第6表および第7表に示す伸線加工と パテンティング処理の工程により0.02~4.0mm ゆのワイヤと した。

第6表

		線	熱間圧延	組織	熱間圧延	アスペクト	
		径	線材	ル率	線材の引張強さ	比適合	工程
		(mm)	の組織	(%)	(MPa)	率(%)	
	18	5. 5	バーライト 組織	98	1096	72	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
	19	5. 5	バーライト 組織	97	1190	80	$5.5 \rightarrow 2.05(LP) \rightarrow 0.30$
	20	5, 5	バーライト 組織	96	1217	90	$5.5 \rightarrow 1.95(LP) \rightarrow 0.30$
	21	5. 5	バーライト 組織	97	1220	77	$5.5 \rightarrow 2.05(LP) \rightarrow 0.30$
	22	5, 5	バーライト 組織	96	1369	87	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
	23	5, 5	バーライト 組織	98	1404	74	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
本	24	5. 5	バーライト 組織	96	1289	75	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
	25	5. 5	バーライト 組織	95	1040	81	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
発	26	5. 5	パーライト 組織	97	1290	83	$5.5 \rightarrow 1.90(LP) \rightarrow 0.30$
	27	5. 5	べけれ 組織	92	1390	88	$5.5 \rightarrow 2.00(LP) \rightarrow 0.30$
明	28	4.0	ベイナイト 組織	78	1412	80	$4.0 \rightarrow 1.40(LP) \rightarrow 0.20$
	29	5. 5	パーライト 組織	95	1210	85	$5.5 \rightarrow 1.80(LP) \rightarrow 0.30$
鋼	30	5. 5	パーライト 組織	93	1245	83	$5.5 \rightarrow 3.25(LP) \rightarrow 1.35(LP)$
							→0. 20
	31	7. 0	パーライト 組織	96	1268	92	7. 0 \rightarrow 3. 5(LP) \rightarrow 1. 90(LP)
							→0.30
	32	5, 5	バーライト 組織	97	1298	86	5. 0 \rightarrow 3. 25(LP) \rightarrow 0. 60(LP)
			.4 - 11 .500.444		1001		→0. 02
	33	5, 5	バーライト 組織	. 98	1221	82	5. 5 →3. 25(LP)→1. 00(LP)
	0.4	E E	10 = () 40 46	00	1000	70	→0.08
	34 35	5. 5 5. 5	パーライト組織	100	1233 1255	73 86	$5.5 \rightarrow 1.80(LP) \rightarrow 0.35$
	33	ວ. ວ	パーライト 組織	100	1255	00	5. 5 →3. 25(LP)→1. 10(LP) →0. 15
	36	5, 5	パーライト 組織	100	1452	88	$5.5 \rightarrow 3.25(LP) \rightarrow 1.15(LP)$
	30	J. J	ハーノイト 本出来以	100	1402	00	$\rightarrow 0.15$
	37	5. 5	パーライト 組織	100	1468	92	$5.5 \rightarrow 1.80(LP) \rightarrow 0.40$
	38	11.0		98	1520	86	$\begin{array}{c} 3.5 & -31.80(LF) - 3.40 \\ \hline 11.0 & (DLP) \rightarrow 4.0 \end{array}$
	39	11.0	パーライト組織	96	1478	87	$13.0 \text{ (DLP)} \rightarrow 5.0$
$\vdash \vdash$	40	5. 5	パーライト組織	95	1087	63	5. 5 \rightarrow 3. 25(LP) \rightarrow 1. 40(LP)
	70	J. J	A THE WORK	33	1001	30	→0. 30
比	41	5, 5	バーライト 組織	96	1187	62	5, 5 \rightarrow 3, 25(LP) \rightarrow 1, 70(LP)
	31	J. J	/ / / ALLASK	00	1107	02	→0.30
較	42	5.5	パーライト 組織	98	1345	50	$5.5 \rightarrow 3.25(LP) \rightarrow 1.70(LP)$
*^	70	0.0	, / 11 / 作D/明人		1030	30	→0. 30
	43	5, 5	バーライト 組織	98	1168	45	5. 5 \rightarrow 3. 25(LP) \rightarrow 1. 70(LP)
	30	0.0		"	1100	30	→0.30
鋼	44	5, 5	バーライト 組織	97	1265	59	5. 5 →3. 25(LP)→1. 85(LP)
	7.3	J. J		91	1200	1 39	3. 3 → 3. 25(LF) → 1. 65(LF) → 0. 30
لـــا	لـــــا		L	<u> L</u>	<u> </u>	L	

第7表

			最終	アスペクト	引張		疲労
-		めっき処理	· ワイヤ 線 径	比 適合率	強さ	絞り	1.1
	. }		(mm)	(%)	(MPa)	(%)	特性 性
	18	ブラス めっき	0.30	70	3300	40.1	0
T	19	ブラス めっき	0.30	82	3680	30.1	0
	20	ブラス めっき	0.30	95	3610	36.5	0
	21	ブラス めっき	0.30	75	3870	34.8	0
	22	ブラス めっき	0.30	85	3570	37.9	0
	23	ブラス めっき	0.30	72	3980	39.5	0
本	24	ブラス めっき	0.30	78	3980	40.2	0
	25	ブラス めっき	0.30	82	3930	36.7	0
発	26	ブラス めっき	0.30	83	4020	38.9	0
^"	27	ブラス めっき	0.30	85	4080	40.2	0
明月	28	めっき無し	0.20	75	4020	34.0	0
``	29	めっき無し	0.30	81	3824	32.6	0
鋼	30	ブラス めっき	0.20	93	4025	38.4	0
'''	31	ブラス めっき	0.30	81	3980	31.5	0
1. 1	32	ブラス めっき	0.02	90	5410	36.0	0
	33	ブラス めっき	0.08	85	5120	33.8	0
ļļ	34	ブラス めっき	0.35	83	3625	36.8	0
	35	銅 めっき	0.15	78	4220	38.4	<u> </u>
	36	ニッケルめっき	0.15	76	4310	36.4	0
	37	ブラス めっき	0.40	88	3550	42.1	<u> </u>
	38	無し	4.00	82	2357	38.0	0
	39	無し	5.00	88	2140	37.0	0
ш	40	ブラス めっき	0.30	52	3215	41.2	×
比	41	めっき無し	0.30	54	3674	35.0	×
較	42	めっき無し	0.30	49	3624	36.8	×
,pts21	43	ブラス めっき	0.30	42	3633	38.0	×
鋼	44	ブラス めっき	0.30	57	4100	35.2	<u> </u>

用いた熱間圧延線材における非金属介在物のアスペクト比の適合率を第6表に示す。また第6表に示す工程に従って作成した最終ワイヤのアスペクト比の適合率を第7表に示す。この表に示されるように本発明鋼18~39は、熱間圧延線材における70%以上の非金属介在物のアスペクト比が4以上であれば、引張強さが2800-1200×LogD (MPa)以上のワイヤにしたとき、最終ワ

イヤの70%以上の介在物のアスペクト比を10以上とすることができる。

これらのワイヤを疲労試験した結果を第7表に示す。疲労試験は線径が1mm以下の場合にはハンター疲労試験機を用い、1mmを越えた場合には中村式疲労試験機を用い疲労特性を調査した。この結果、得られた疲労限強度を引張強さで割った値が0.3以上の場合を〇で表し、0.3より小さい場合を×で表した。

本発明鋼線18~39はいづれも、本発明範囲内に調整されている。

比較鋼線 40~44は非金属介在物形態が本発明鋼線と異なる場合である。

本発明鋼は、2800-1200 logD(MPa)以上の引張強さと優れた疲労特性を示すワイヤを得る事ができる。しかし、比較鋼線は、本発明鋼と同等の引張強さが得られているが疲労特性は本発明鋼線に比べ劣っている。

実施例3

転炉出鋼後、二次精錬処理を行い第8表に示した溶鋼組成に成分調整した後に、連続鋳造法により鋳造を行い、300×500mmの 鋳片を製造した。

第8表

									•				<u> </u>				
介在物組成	適合率(%)	84	100	95	80	96	86	100	88	98	93	93	87	99	84	84	84
	AI	0,001	0.001	0.002	0.002	0,002	0,002	0.002	0.002	0,002	0,005	0.005	0,002	0.002	0,002	0,002	0,002
	S	0,003	0.004	0.003	0,005	0,005	0,005	0,003	0,003	0.004	0, 003	0.003	0,003	0.003	0,003	0,003	0,003
	d ·	0.010	0,008	0.009	0,006	0.007	0,006	0.008	0.007	0.007	0,007	0.008	0,009	0.010	0.010	0.010	0.010
分 (mass%)	η	1	-1		1	0.20	08.0	1	0, 10	-	1		-	1	—		_
成分	i.		1	0.80			0.20	0.10	0.10	0.10		_		-	1	_	-
元	Ç	0.22	0.10	I	0.21	0, 15	1	0.10	1	1	0.15	0.15	1	0.22	0, 22	0.22	0, 22
	Min	0.33	0.48	0.32	0.32	0.32	0.31	0, 20	0. 20	0.31	0.31	0.31	0.50	0.33	0.33	0.33	0.33
	Si	0.20	0, 39	0.19	0, 19	0.30	0.20	0.21	0, 21	0.19	0, 19	0.19	0.21	0.20	0.20	0.20	0.20
	3	0.92	0.92	0.96	0.96	0.98	0.98	1.02	1.02	1.06	1.06	1.06	0.82	0.92	0.92	0, 92	0.92
	$\overline{/}$	45	46	47	48	49	20	51	52	23	54	22	26	57	58	59	99
			-	₩	í	**	Ę	<u></u>	ļ	暴				퐈	数	觀	

さらにこの鋳片を分塊圧延してビレットを製造し、4.0~7.0 mm φ に熱間圧延した後に調整冷却を行い線材を製造した。調整冷却はステルモア冷却にて行った。

この線材を伸線加工と中間パテンティング処理により $1.2 \sim 2.0$ $0 \text{ mm} \phi$ のワイヤとした(第 9 表および第 1.0 表)。

第 9 表

		線径 (mm)	初析 セメン タイト	工程	熱処理 線径 (mm)
	45	4.0	無し	$4.0 \rightarrow 1.40(LP) \rightarrow 0.20$	1.40
	46	5.5	無し	$5.5 \rightarrow 1.70(LP) \rightarrow 0.30$	1.70
本	47	5. 5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.35(LP) \rightarrow 0.20$	1.35
	48	7.0	無し	7.0 \rightarrow 3.50(LP) \rightarrow 1.90(LP) \rightarrow 0.30	1.90
発	49	5.0	無し	5.5 → 1.85(LP) → 030	1.85
	50	5.5	無し	5. 0 \rightarrow 3. 25(LP) \rightarrow 1. 70(LP) \rightarrow 0. 35	1.70
明	51	5.5	無し	$5.5 \rightarrow 1.80(LP) \rightarrow 0.35$	1.80
	52	5.5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.10(LP) \rightarrow 0.15$	1, 10
鋼	53	5.5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.15(LP) \rightarrow 0.15$	1. 15
	54	5. 5	無し	$5.5 \rightarrow 1.80(LP) \rightarrow 0.40$	1.80
	.55	5, 5	無し	5.5 →1.80(LP)→0.40	1.80
	56	5. 5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.70(LP) \rightarrow 0.30$	1.70
比	57	5. 5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.70(LP) \rightarrow 0.30$	1.70
較	58	5.5	有り	5. 5 \rightarrow 3. 25(LP) \rightarrow 1. 70(LP) \rightarrow 0. 30	1.70
鋼	59	5.5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.70(LP) \rightarrow 0.30$	1.70
	60	5.5	無し	$5.5 \rightarrow 3.25(LP) \rightarrow 1.70(LP) \rightarrow 0.30$	1.96

第10表

		•			
		パテンティング 材 T.S. (MPa)	めっき処理	最終917 線径 (mm)	伸線減面率 ε=21n(D ₀ /D)
	45	1428	ガスめっき	0.200	3.89
	46	1450	752めっき	0.300	3, 47
本	47	1473	ブラスめっき	0.200	3.82
	48	1482	・ブラスめっき	0.300	3.69
発	49	1491	ガスめっき	0.300	3.64
	50	1521	プラスめっき	0.350	3.16
明	51	1530	ブラスめっき	0.350	3.28
	52	1572	銅めっき	0.150	3.98
鋼	53	1590	ニッケルめっき	0.150	4. 07
	54	1528	ブラスめっき	0.400	3.01
	55	1528	ガスめっき	0.400	3.01
	56	1310	ブラスめっき	0.300	3.47
.比	57	1453	ブラスめっき	0.300	3.47
較	58	1453	プラスめっき	0.300	3. 47
鋼	59	1545	ガラスめっき	0.300	3. 47
	60	1448	ガラスめっき	0.300	3.75

この後、最終パテンティング処理を行うことで組織と引張強さを 調整し、めっきを行ってから最終湿式伸線を行った。それぞれの鋼 線の製造における、パテンティング処理時のワイヤ径、パテンティ ング処理後の引張強さ、伸線加工後の最終ワイヤ径は第9表および 第10表に示される通りである。

これらのワイヤ特性を引張試験、捻回試験、疲労試験により評価した。

第11表中の疲労特性は、ハンター疲労試験において疲労強度を

測定し、疲労強度が引張強さの 0.3 3以上の場合を◎で表し、 0.3以上の場合を○として表し、 0.3未満の場合を×で表した。 第11表

		引張強さ (MPa)	絞 (%)	疲労特性
	45	3662	34.0	0
	46	3624	32. 6	0
本	47	4025	38. 4	0
5~	48	3980	31.5	0
発	49	4150	32. 5	0
np	50	3602	36.0	0
明	51	3625	33.8	0
2007	52	4220	36.8	0
鋼	53	4310	38.4	0
	54	3550	36.4	0
Ì	55	3640	42.1	0
	56	3482	36.2	0
比	57	3674	28.6	×
較	58			. —
鎁	59	3633	28.4	×
	60	3912	21.0	×

また、ハンター疲労試験における疲労強度は10°以下の繰り返しで破壊しない強度を疲労強度とした(第7図)。

表中の鋼 4 5 ~ 5 5 は本発明鋼であり、鋼 5 6 ~ 6 0 は比較鋼である。

比較鋼 5 6 は鋼組成が本発明範囲外で製造方法は同じ場合である。

比較鋼 5.7 は鋼成分が本発明範囲であるが、鋳片中の非金属介在物的中率が本発明法より低く、これ以外のワイヤの製造方法は本発明方法と同じ場合である。

比較鋼 5 8 は鋼組成と非金属介在物組成が同じで熱間圧延後の調整冷却において初析セメンタイトの出現した場合である。

比較鋼 5 9 は鋼組成および非金属介在物組成が本発明と同じで、最終パテンティング材の引張り強さが本発明法より高くなった場合である。

比較鋼 6 0 は鋼組成および非金属介在物組成が本発明と同じで、最終パテンティング処理後の伸線減面率が本発明より大きい場合である。

第11表より、本発明鋼を用いて製造したワイヤの場合にはいずれも3500MPa以上の強度と優れた疲労寿命を持ち合せることが分る。

一方、比較鋼 5 6 においては C が 0 . 9 0 %未満であるため鋼成分が本発明鋼と異なるため 3 5 0 0 MPa 以上の強度が得られていない。

比較鋼 5 7 においては、 3 5 0 0 MPa 以上の強度が得られているが 場片中の非金属介在物組成が本発明鋼と異なるため、疲労特性において良好な結果が得られていない。

比較鋼 5 8 においては、熱間圧延後に初析セメンタイトが出現したため、途中で断線が多発し、最終ワイヤまでの製造が出来なかった。

比較鋼 5 9 においては、最終パテンティング処理における引張強さが高すぎるため、最終ワイヤでの疲労特性が劣化して良好な結果が得られていない。

比較鋼60に於いては、最終湿式伸線の際の減面率が高すぎるた

め、最終ワイヤでの疲労特性が劣化して良好な結果が得られていない。

産業上の利用可能性

以上の実施例にて、説明したように、本発明によって、平均組成として融点が低いだけでなく、析出相としての融点をも考慮して、この中でさらに特定の組成範囲に制御することによって、線材および鋼線における非金属介在物のアスペクト比に注目して、これが線材で4以上、鋼線で10以上なる従来にない、極端に加工性の良好な非金属介在物を実現し、高強度高延性にして、高い引張強さと優れた疲労特性のバランスよい高強度鋼線材および鋼線を得ることができる。

PCT/JP94/01665

WO 95/26422

請求の範囲

1. mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si: 0.1 \sim 1.5\%$

 $Mn: 0. 1 \sim 1. 5\%$

P:0.02%以下、

S:0.02%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 80%以上が、CaO+MnO:4~60%、SiO:22~87%、A1:O:10~46%の組成範囲にあり、融点が <math>1500%以下であることを特徴とする高強度熱間圧延線材。

2. mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si:0.1\sim1.5\%$

 $Mn: 0. 1 \sim 1. 5\%$

P:0.02%以下、

S:0.02%以下、

Cr:0.3%以下、

Ni:1.0%以下、

Cu: 0. 8%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 8 0 %以上が、 C a O + M n O : 4 ~ 6 0 %、 S i O 2 : 2 2 ~ 8 7 %、 A 1 2 O 3 : 0 ~ 4 6 %の組成範囲にあり、融点が 1 5 0 0 ℃以下であることを特徴とする高強度熱間圧延線材。

PCT/JP94/01665

WO 95/26422

- 3. 前記熱間圧延線材の組織として、該組織の95%以上がパーライト組織からなる請求の範囲1または2記載の高強度熱間圧延線材。
- 4. 前記熱間圧延線材の組織として、該組織の70%以上がベーナイト組織からなる請求の範囲1または2記載の高強度熱間圧延線材。
- 5. 前記熱間圧延線材の引張り強さが、261+1010×(Cmass%)-140MPa以上、261+1010×(Cmass%)+240MPa以下である請求の範囲1から4のいずれかに記載の高強度熱間圧延線材。
 - 6. mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $S i : 0. 1 \sim 1. 5 \%$

 $M n : 0 . 1 \sim 1 . 5 \%$

P:0.02%以下、

S:0.02%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の 80%以上が、CaO+MnO:4~60%、SiO2:22~87%、A12O8:0~46%の組成範囲にあり、融点が <math>1500 C以下であり、かつ該非金属介在物の 70%以上が、アスペクト比:10以上であることを特徴とする疲労特性の優れた高強度鋼線。

7. mass%で、

 $C : 0. 7 \sim 1. 1 \%$

 $Si: 0.1 \sim 1.5\%$

 $M n : 0 . 1 \sim 1 . 5 \%$

P:0.02%以下、

S:0.02%以下、

Cr:0.3%以下、

Ni:1.0%以下、

Cu: 0. 8%以下、

残部Fe及び不可避不純物を含有する成分で、

かつ含有する非金属介在物の80%以上が、 $CaO+MnO:4\sim60\%$ 、 $SiO2:22\sim87\%$ 、 $A12O3:0\sim46\%$ の組成範囲にあり、融点が1500%以下であり、かつ該非金属介在物の70%以上が、アスペクト比:10以上であることを特徴とする疲労特性の優れた高強度鋼線。

- 8. 前記鋼線の組織として、該組織の95%以上がパーライト組織からなる請求の範囲6または7記載の疲労特性の優れた高強度鋼線。
- 9. 前記鋼線の組織として、該組織の70%以上がベーナイト組織からなる請求の範囲6または7記載の疲労特性の優れた高強度鋼線。

Fig. 1

Fig.2

Fig.3

Fig. 4

Γ		CaO+MnO°/。	SiO2 %	Al203 %
t	7	3.5	86.5	10.0
ŀ		34.1	65.9	0
ŀ	ハ	41.7	58.3	0
f	Ξ	52.2	47.8	0
t	ホ	56.3	43.7	0
t	$\frac{1}{}$	49.3	33.4	17.3
Ì	7	32.0	22.3	45.7
l	<u>・</u> チ	29.5	31.7	38.8
1	را	23.6	36.0	40.4
1	ا	14.5	52.0	33.5
	l ×	14.5	32.0	

Fig. 5

Fig.6

Fig. 7

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP94/01665

A. CLASSIFICATION OF SUBJECT MATTER					
Int.	Int. C1 ⁶ C22C38/04, 38/42				
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
	cumentation searched (classification system followed by c				
Int.	$C1^5$ $C22C38/00-38/60$, $C21D8$	/06, 9/52			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic da	ta base consulted during the international search (name of	data base and, where practicable, search to	rms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT	The state of the s			
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.		
Y	JP, A, 4-6211 (Koba Steel,	Ltd.),	1-9		
	January 10, 1992 (10. 01. 92), Page 1 to line 6, upper right column, page 2, (Family: none)				
Y	JP, A, 3-2352 (Nippon Steel	Corp.),	1-9		
	January 8, 1991 (08. 01. 91), Line 7, lower left column to line 10, lower right column, page 1, (Family: none)				
Y ·	JP, A, 62-99437 (Nippon Ste May 8, 1987 (08. 05. 87),	el Corp.),	1-9		
	Lower left column, page 1, (Family: none)	table 1, page 4,			
У	JP, A, 62-99436 (Nippon Ste May 8, 1987 (08. 05. 87),	•	1-9		
	Lower left column, page 1, (Family: none)	table 1, page 4,			
<u> </u>					
Furth	er documents are listed in the continuation of Box C.	See patent family annex.			
"A" docum	categories of cited documents: ent defining the general state of the art which is not considered facetoring the selections.	"T" later document published after the inte date and not in conflict with the appl the principle or theory underlying th	e invention		
to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is "L" document which may throw doubts on priority claim(s) or which is					
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means					
means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
December 12, 1994 (12. 12. 94) January 10, 1995 (10. 01. 95)					
Name and mailing address of the ISA/ Authorized officer			· · · · · · · · · · · · · · · · · · ·		
Japanese Patent Office					
Facsimile I	No.	Telephone No.			

国際調査報告

国際出願番号 PCT/JP

94/01665

	- ··· ·· - · · -		
A. 発明の属	はする分野の分類(国際特許分類(IPC))		
	Int. CL4 C22C38/04,	, 38/42	
B. 調査を行	īった分野		
			· · · · · · · · · · · · · · · · · · ·
調査を行った記	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		
·	Int. CL ³ C 2 2 C 3 8/00-	-38/60, C21D8/06	, 9 / 5 2
最小限資料以外			
		•	
国際調査で使用	目した電子データペース(データベースの名称、調査(に使用した用語)	•
·			·
C. 関連する	5と認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	るときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP,A,4-6211(株式会社 10.1月.1992(10.01.		1 — 9
	第1頁一第2頁右上欄6行(フ	· · · · · · · · · · · · · · · · · · ·	·
Y	JP,A,3-2352(新日本4		1 — 9
	8.1月.1991(08.01.5 第1頁左下欄7行一右下欄10		
	99 1 AZE (1981 (1) — 41 (1981)		
Y	JP,A,62-99437(新日	本製鐵株式会社),	1 — 9
☑ C棚の続き	きにも文献が列挙されている。	【】 パテントファミリーに関する別紙	を参照。
「E」先行文 「L」優先権 若しく! (理由 「O」ロ頭に、 「P」国際出	のカテゴリー 連のある文献ではなく、一般的技術水準を示すもの 軟ではあるが、国際出願日以後に公表されたもの 主張に疑義を提起する文献又は他の文献の発行日 は他の特別な理由を確立するために引用する文献 を付す) よる開示、使用、展示等に言及する文献 願日前で、かつ優先権の主張の基礎となる出願の日 公表された文献	「T」国際出願日又は優先日後に公表され 矛盾するものではなく、発明の原理 に引用するもの 「X」特に関連のある文献であって、当該 性又は進步性がないと考えられるも 「Y」特に関連のある文献であって、当該 献との、当業者にとって自明である がないと考えられるもの 「&」同一パテントファミリー文献	又は理論の理解のため 文献のみで発明の新規 の 文献と他の1以上の文
国際調査を完	了した日	国際調査報告の発送日	
	12. 12. 94	1 0. 0	1.95
	先 杉 国 特 許 庁 (ISA/JP) 郵便番号 1 0 0	特許庁審査官(権限のある職員)	K 7 2 1 7
	第一代田区質が関三丁目 4番3号	電話番号 03-3581-1101 内線	3 4 3 5

国 版 區 查 報 告

国際出職者号 PCT/JP

94/01665

C (統き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	8.5月.1987(08.05.87), 第1頁左下欄,第4頁第1表(ファミリーなし) JP,A,62-99436(新日本製鐵株式会社), 8.5月.1987(08.05.87), 第1頁左下欄,第4頁第1表(ファミリーなし)	1 — 9
		·

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.