there is only one bra - ALGEBRA

PRZEKSZTAŁCENIA

Lemat Steinitza – załóżmy, że B jest bazą V, a a_1, \ldots, a_n jest lnz ciągiem wektorów. Wtedy

- $|B| \ge n$
- możemy wybrać parami różne element $c_1, \ldots, c_n \in B$ takie, że

$$(B \setminus \{c_1, \ldots, c_n\}) \cup \{a_1, \ldots, a_n\}$$

jest wciąż bazą V.

Funkcję F : $V \rightarrow W$ nazywamy izomorfizmem, ieżeli:

F jest addytywny (F(v+1) = F(v) + F(w))i jednorodny (F(av) = aF(v))

F jest bijekcją

Jeżeli dim V = n, to V \cong Kⁿ, a więc V \cong W \iff dim V = dim W

Jadro F.

$$\ker F := \{ v \in V : F(v) = 0 \}$$

Obraz F:

$$im F := \{F(v) : v \in V\}$$

Załóżmy, że $F: V \rightarrow W$ jest liniowe, wtedy

- F jest na ⇔ imF=W
- F jest 1-1 \iff ker F = 0

Rząd przekształcenia liniowego to rk F :=
dim im F

Twierdzenie o rzedzie:

dim V = dim ker F + dim im F = dim ker F + rk F

Jeżeli F: $V \to W$ jest przekształceniem liniowym i dim $V = \dim W < \infty$, to następujące warunki są równoważne:

- $\ker F = 0$
- F jest 1-1
- F jest na
- F jest izomorfizmem

Jeżeli mamy krótki ciąg dokładny przestrzeni liniowych

$$V_1 \xrightarrow{F_1} V_2 \xrightarrow{F_2} V_3$$

qdzie

- F_1 jest 1-1
- F₂ jest na
- $\operatorname{im} F_1 = \ker F_2$

to wtedy dim $V_2 = \dim V_1 + \dim V_3$.

Suma prosta (lub produkt) przestrzeni liniowych V,W to przestrzeń z określinymi działaniami

$$V \oplus W$$

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$

a(v, w) = (av, aw)

Jeżeli mamy liniowe $F_1: V_1 \rightarrow W_1$ i $F_2: V_2 \rightarrow W_2$, to mamy liniowe

$$F_1 \oplus F_2 : V_1 \oplus V_2 \rightarrow W_1 \oplus W_2$$

$$(F_1 \oplus F_2) (v_1, v_2) = (F_1 (v_1), F_2 (v_2))$$

PRZESTRZENIE (bi)DUALNE, warstwy

Przestrzeń dualna do przestrzeni liniowej V nad ciałem K to przestrzeń liniowa spełniająca:

$$V^* + = \{f : V \rightarrow K : f \text{ jest liniowe}\}$$

i elementy \mathbf{V}^{*} nazywamy funkcjonałami na $\mathbf{V.}$

Jeżeli dim $V \leq \infty$, to dim $V = \dim V^*$

Przkształcenie dualne do liniowego przekształcenia $F:V\to W$ to

$$F^*:W^*\to V^*$$

$$F^*(f)(v) = f(F(v))$$

i jest liniowe

Jeżeli $F_1: V_1 \rightarrow V_2$ i $F_2: V_2 \rightarrow V_3$ są liniowe, to $(F_1 \circ F_2)^* = F_1^* \circ F_2^*$

Jeżeli F : V \rightarrow W jest izomorfizmem, to F* też nim jest i wtedy V* \cong W*

Jeżeli $W \le V$ są przestrzeniiami liniowymi i $v \in V$, to warstwą v względem W nazywamy

$$v + W = \{v + w : w \in W\}$$

$$v_1 + W = v_2 + W \iff v_1 - v_2 \in W$$

Zbiór V/W warstw W w V to zbiór ilorazowy $V/\sim \, \mathrm{gdzie}$

$$v_1 \sim v_2 \iff v_1 - v_2 \in W$$

Przestrzeń ilorazowa to zbiór ilorazowy z określinymi działaniami

$$0_{V/W} = 0 + W$$

 $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$
 $a(v+W) = (av) + W$

.....

Twierdzenie o izomorfizmie - jeżeli F: V \to W jest odwzorowaniem liniowym, to im F \cong V/ker F

Dla każdej liniowej przestrzeni mamy przekształcenie liniowe

 $\phi: V \to V^{**}$

$$\phi(v)(f) = f(v)(f \in V^*)$$

gdzie przestrzeń V^{**} (dualną do przestrzeni dualnej) nazywamy przestrzenią bidualna.

Jeżeli dim V < ∞ , to ϕ zadaje izomorfizm V \cong V**

MACIORKI

Jeżeli M jest dowolną macierzą, to $e_i^T M e_j$ to ij-ty wyraz M, w szczególności jeżeli M, $N \in M_{n \times m}(K)$ spełniają $v^T M w = v^T N w$ dla każdych $v \in K^m$, $w \in K^n$, to M = N.

Układy równań - postaci i ich imiona

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = y_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = y_2 \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = y_m \end{cases}$$

postać wektorowa:

$$x_1A_1 + x_2A_2 + ... + x_mA_m = Y$$
,

$$\text{gdzie } A_k = \begin{pmatrix} a_{1k} \\ a_{2k} \\ \dots \\ a_{mk} \end{pmatrix} \text{ i } Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_m \end{pmatrix}$$

postać macierzowa:

$$(A_1 A_2 ... A_n) X = AX = Y$$

wtedy A to macierz główna układu równań, a macierz (A|Y) to macierz rozszerzona.

Dla jednorodnego układu równań poniższe są równoważne

- układ ma rozwiązanie
- $Y \in Lin(A_1, \ldots, A_n)$
- $Lin(A_1, ..., A_n) = Lin(A_1, ..., A_n, Y)$
- dim Lin (A_1, \ldots, A_n) = dim Lin (A_1, \ldots, A_n, Y)

Twierdzenie Kroneckera-Capelliego - układ ma rozwiązanie \iff rk A = rk(A|Y)

Operacje kolumnowe i wierszowe nie zmieniają rzędu macierzy.

Każdą macierz można sprowadzić operacjami kolumnowymi i wierszowymi do postaci schodkowej (lub schodkowej z wiodącymi 1).

Przerwa od pseudo-formalizmu, macierz odwrotną szukamy wlepiając po prawej naszą macierz, a po lewej identyczność i operacjami wierszowymi dochodząc do identyczności po prawej - po lewej to co powstało to odwrócona oryginalna.

.....

Załóżmy, że mamy

$$V \xrightarrow{F} W \xrightarrow{G} 7$$

gdzie baza V to B, baza W to C, a baza Z to D, wtedy

$$m_D^B (G \circ F) = m_D^C (G) \cdot m_C^B (F)$$

i mamy z tego wzorek na zmianę bazy endomorfizmu $F:V\to V$

$$m_C(F) = m_C^B(id) m_B(F) m_B^C(id)$$

 $F:V\to W$ jest odwracalnym przekształceniem liniowym $\iff F$ jest izomorfizmem, a więc $\dim V=\dim W$

WYZNACZNIK

Wyznacznik macierzy jest funkcją

- n-liniową (czyli dla ustalonego jednego argumentu jest liniowa w drugim)
- alternujący, czyli dla $X_i = X_j$ dla $i \neq j$ det $(X_1, X_2, ..., X_n) = 0$
- jeżeli char K \neq 2 (1+1 \neq 0) to alternujące \iff antysymentryczne, czyli zmienia znak jeżeli zamienimy dowolne dwa argumenty

 S_n to zbiór permutacji zioru $\{1,\ldots,n\}$, a pojedyńczą permutację oznaczamy σ

Mam dwie postaci permutacji:

- iloczyn transpozycji postaci (i, i+1)
 (i tutaj ogółem patrzymy na 1, i gdzie ona
 się pojawi na dole, potem hop to pod czym
 jest 1 i pod czym to jest i to wychodzą
 pary (1, a) (1, b) ...)
 - iloczyn rozłącznych cykli

Liczba inwersji (nieporządków) permutacji to liczba jej skrzyżowań, a sama inwersja (nieporządek) to para (i,j), i < j \wedge σ (i) > σ (j).

Znak permutacji σ to

$$sgn(\sigma) = (-1)^{liczba inwersji\sigma}$$

Wyznacznik macierzy $A \in M_{n \times n}(K)$ definiujemy więc jako

$$\det \left(\mathbf{A} \right) = \sum_{\sigma \in \mathbf{S_n}} \mathrm{sgn} \left(\sigma \right) \mathbf{a}_{\sigma \, (1) \, 1} \cdot \ldots \cdot \mathbf{a}_{\sigma \, (n) \, n}$$

Ustalmy permutację $\sigma \in S_n$. Niech $\overline{\sigma}$ będzie permutacją powstałą przez zamianę $\sigma(j)$ i $\sigma(k)$, wtedy

$$sgn(\sigma) = -sgn(\overline{\sigma})$$

Jeżeli σ , τ są permutacjami, to $sgn(\sigma \circ \tau) = sgn(\sigma) \cdot sgn(\tau)$

Jeżeli $\sigma = (a_1, \ldots, a_n)$ jest cyklem, to $sgn(\sigma) = (-1^{n-1})$

Jeżeli σ^{-1} jest permutacją odwrotną do σ , to wtedy $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$

PODSTAWOWE WŁASNOŚĆI WYZNACZNIKA::::

 $\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} \cdot \ldots \cdot a_{n,\sigma(n)}$

(sigma gdzie indziej)

- $\det(A) = \det(A^T)$
- det (AB) = det A · det B
- rozwinięcie Laplace względem wiersza i kolumny działa
- nie zmienia się, gdy dowolnego wiersza/kolumny dodajemy skalarną wielokrotnść innego wiersza/kolumny
- jeżeli pomnożymy dowolny wiersz przez skalar, to wyznacznik też się przez niego pomnoży
- zamiana wierszy miejscami zmienia znak wyznacznika
- wyznacznik macierzy górno/dolno trójkątnej to iloczyn tego co na przekątnej
- wyznacznik jest = 0 \iff kolumny są lz

Wyznacznik Vandermonde'a

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & & & & & \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{i < j} (x_j - x_i)$$

Minor macierzy A to macierz kwadratowa powstała z A przez wykreślenie pewnej liczby wiierszy lub kolumn, lub wyznacznik takiej macierzy

Jeżeli A jest dowolną macierzą, to rk A jest max rozmiarem niezerowego minora

CRAMER

$$(A_1, \ldots, A_n)$$
 $\begin{pmatrix} x_1 \\ \ldots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \ldots \\ y_n \end{pmatrix}$

to jeżeli A jest nieosobliwa (czyli ma lnz kolumny), to

$$x_k = \frac{\text{det}(A_1, \ldots, A_{k-1}, Y, A_{k+1}, \ldots, A_n)}{\text{det } A}$$

Dla macierzy $A = (a_{ij})$ iloczyn $(-1)^{i+j}A_{ij}$, gdzie A_{ij} to minor powstały przez wykreślenie i tej kolumny i j wiersza, nazywa się dopełnieniem algebraicznym wyrazu a_{ij} macierzy A.

Macierz dołączona do A to macierz transponowana do macierzy dopełnień algebraicznych A, czyli

adj(A) =
$$A^{\vee}$$
 =
$$\begin{pmatrix} +A_{11} & -A_{21} & \dots & (-1)^{n+1}A_{n1} \\ -A_{12} & +A_{22} & \dots & \dots \end{pmatrix}$$

Jeżeli $A \in M_{n \times n}(K)$, to

- $A \cdot adj(A) = adj(A) \cdot A = det A \cdot I$
- jeżeli det A \neq 0, to A⁻¹ = $\frac{1}{\det A}$ adj(A)

WIELOMIAN CHARAKTERYSTYCZNY?

 $\operatorname{Hom}\left(\mathbf{V},\,\mathbf{W}\right)$ to przestrzeń odwzorowań liniowych $\mathbf{V}\to\mathbf{W}$

Jeżeli B jest bazą V, a C jest bazą W i obie przestrzenie są skończenie wymiarowe, to $\dim Hom(V,W) = \dim V \cdot \dim W$

Jeżeli $F \in Hom(V, V)$, to det $m_B^B(F)$ nie zależy od wyboru bazy

Ślad F to suma wyrazów na przekątnej jego macierzy i równoważnie

$$tr(F) = (-1)^{n-1} \cdot wspolczynnik przy x w \chi_F(x)$$

Podprzestrzenie $V_1, \ldots, V_k \leq V$ są liniowo niezależne, jeżeli dla $v_i \in V_i$

$$\sum_{i=1}^{k} v_i = 0 \iff v_1 = v_2 = \ldots = v_k = 0$$

Niech $V_1, \ldots, V_k \leq V$, wtedy następujące są równoważne

- $V = v_1 \oplus V_2 \oplus \ldots \oplus V_n$
- $-\phi: V_1 \times V_2 \times ... \times V_n \to V$ zadana wzorem
 - $V_1, ..., V_n$ są lnz i $V_1 + V_2 + ... + V_n = V_n$
 - $-\infty > \dim V = \dim V_1 + \ldots + \dim V_2$

Niech W \leq V, a F \in End(V), mówimy że W jest F-nizmiennicza, jeżeli F[W] \subseteq W

Jeżeli W jest F-nizmiennicza, to mamy dobrze określone odwzorowanie

$$\overline{F}: V/W \rightarrow V/W$$

$$\overline{F}(v+W) = F(v) + W$$

Przestrzeń własna dla λ to

$$V_{\lambda} = \{ v \in V : F(v) = \lambda v \}$$

Przestrzeń pierwiastkowa dla λ to

$$V^{\lambda} = \{ v \text{ inV } : (\exists k) (F-\lambda)^k v = 0 \} = \ker(F-\lambda)^{\dim V^{\lambda}}$$

 $\dim V^{\lambda}$ to krotność λ jako pierwiastka $\chi_{\rm F}({\bf x})$ Spektrum punktowe (widmo) F to

$$\sigma(F) = \operatorname{Spec}(F) = \{\lambda : V_{\lambda} \neq 0\}$$

bo czemu nie używać tej samej literki do kilku rzeczy! to nie tak, że alfabet ma więcej niż 5 na krzyż i możemy wybierać do woli!!!

 $\label{eq:force_problem} \textbf{F} : \textbf{V} \rightarrow \textbf{V} \text{ ma co najwyżej dim V wartości} \\ \textbf{własnych}$

Załóżmy, że $\lambda_1,\ldots,\lambda_n$ są parami różne, wtedy $V_{\lambda_1},\ldots,V_{\lambda_n}$ są liniowo niezależne

Przestrzenie pierwiastkowe dla różnych wartości własnych są liniowo niezależne

F : V \to V jest diagonalizowalne, jeżeli $\sum_{\lambda \in \sigma \, ({\bf F})} \dim {\bf V}_{\lambda} = \dim {\bf V}$

Następujące są równoważne

- F jest diagonalizowalne
- istnieje baza B że $m_{\rm B}\left(F\right)$ jest diago-
- istnieje B złożona z wektorów własnych F

PRZEKLETY JORDAN

Wzór na n-tą potęgę k-wymiarowej klatki Jordana dla wartości własnej λ

$$\begin{pmatrix} \lambda^n & \binom{n}{1}\lambda^{n-1} & \dots & \binom{n}{k}\lambda^{n-k} \\ 0 & \lambda^n & \binom{n}{1}\lambda^{n-1} & \dots & \binom{n}{k-1}\lambda^{n-k+1} \\ \dots & & & & \\ 0 & 0 & \dots & & \lambda^n \end{pmatrix}$$

Ilość klatek rozmiaru \geq k i wartością własną λ to

$$\dim \ker (F - \lambda)^k - \dim \ker (F - \lambda)^{k-1}$$

Rozkład Fittinga $V = V^0 \oplus V'$, gdzie $V' = \operatorname{im} F^{\dim V^0}$, poza tym $F \setminus V'$ jest odwracalne

Wielomian $P \in K[x]$ rozszczepia się nad K, jeżeli jest iloczynem jednomianów z K[x]. Jeżeli wielomian charakterystyczny rozszczepia się nad K, to $V = \bigoplus V^{\lambda}$.

Endomorfizm $F \in End(V)$ jest nilpotentny, jeżeli $F^d = 0$ dla pewnego d. Podprzestrzeń jest cykliczna, gdy jest postaci $K[F] \cdot v := Lin(v, F(v), F^2(v), ...)$

Załóżmy, że F jest nilpotentny, d \in \mathbb{N}_+ jest minimalne takie, że F^d = 0, zaś v $_0$ \in

 $V \setminus \ker F^{d-1}$ - wtedy istnieje niezmiennicza podprzestrzeń dopełnicza do $K[F] \cdot v_0$

Niech F będzie nilpotentny, wtedy V jest sumą prostą cyklicznych podprzestrzeni F.

Ciało K jest algebraicznie domknięte, jeżeli każdy niestały wielomian o współczynnikach z K ma pierwiastek w K

Kompleksyfikacja V to

$$V_{c} = V \oplus iV$$

Jeżeli $A \subseteq V$, to $Lin_R(A) = V \cap Lin_C(A)$

Niech V będzie przestrzenią liniową nad \mathbb{R} , wtedy $\dim_{\mathbb{R}} V = \dim_{\mathbb{C}} V_{\mathbb{C}}$ i dla $\mathbb{B} \subseteq \max$

- B rozpina V \iff B rozpina V_C
- B jest lnz w V \iff B jest lnz w V_C
- B jest bazą V \iff B jest bazą V $_{\mathbb{C}}$

Jeżeli λ jest wartością własną F $_{ extsf{c}}$, to $\overline{\lambda}$ też nią jest

Jeżeli 3+i jest wartością własną F, to jedna z klatek Jordana w formie rzeczywistej jest na przykład

$$\begin{pmatrix} 3+i & 1 \\ 0 & 3+1 \end{pmatrix}$$

a coś zespolonego to będzie wtedy

$$\begin{pmatrix} 3 & -1 \\ 1 & 3 \end{pmatrix}$$

FORMY DWULINIOWE I KWADRY-KIII

Iloczyn skalarny na \mathbb{R}^n jest

- dwuliniowy
- symetryczny
- dodatnio określony

Forma dwuliniowa φ jest symetryczna \iff macierz φ jest symentryczna w każdej bazie

$$\mathbf{m}^{\mathrm{CC}}\left(\varphi\right) = \mathbf{m}_{\mathrm{B}}^{\mathrm{C}}\left(\mathrm{id}\right)^{\mathrm{T}} \cdot \mathbf{m}^{\mathrm{BB}}\left(\varphi\right) \cdot \mathbf{m}_{\mathrm{B}}^{\mathrm{CC}}\left(\mathrm{id}\right)$$

Dwie formy dwuliniowe są równoważne jeżeli mają te same macierze (niekonieczne w tych samych bazach)

P jest ortogonalna, jeżeli $P^{T} = P^{-1}$

Maciierz A jest dodatnio określona, jeżeli dla każdego $v \in \mathbb{R}^n$ mamy

$$v^{T}Av > 0$$

Kryterium Sylvestera - wszystkie wiodące minory główne (czyli mają k pierwszych kolumn i wierszy i przekątna pokrywa się z przekątną całej macierzy) mają dodatni wyznacznik

Następujące są równoważne dla $A \in M_{n \times n}(\mathbb{R})$

- A reprezentuj standardowy iloczyn skalarny na \mathbb{R}^{n}
 - istnieje odwracalne P takie, że A+P^TP
- A jest symetryczna i dodatnio określona

arphi jest iloczynem skalarnym \iff istnieje B spełniająca m^{BB}(arphi) = I

Dopełnienie ortogonalne \textbf{A}^{T} to zbiór wektorów prostopadłych do wszystkich elementów A

$$A^{T} = \{ v \in V : (\forall a \in A) \varphi(a, v) = 0 \}$$

Twierdzenie Lagrange'a:

– niech φ będzie formą symetryczną na rzeczywistej prezstrzeni liniowej V, wtedy istnieje baza ortogonalna dla φ

niech A będzie rzeczywistą macierzą symetryczna, wtedy istnieje macierz odwracalna Q taka, że QAQ^T jest diagonalne 133