1. (6 points) Visual Numerical Methods

Consider the graph of f'(t) below.

(a) Use Euler's method to draw an approximation of the graph of f(t). Use $h = \frac{\pi}{3}$, n = 6, and f(0) = 0. Estimate values from the graph of f'(t). Show your work.

Yn+1-1-+- = (xn, xn)

	,	
1 a)	X-valve Approx - y valve TV3 1=0+13 = cos (0) = TV3 TV3 12= TV + TV3 = cos (TV) = TV3 TV3 = TV + TV3 = cos (TV) = TV3 STV/3 14 = TV3 + TV3 = cos (TV) = TV3 STV/3 15 = 0 + TV3 = cos (TV) = TV3 2TT 16 = -TV + TV3 = cos (TV) = TV3 2TT 16 = -TV + TV3 = cos (TV) = 0 2TT 16 = -TV + TV3 = cos (TV) = 0 2TT 16 = -TV + TV3 = cos (TV) = 0 2TT 16 = -TV + TV3 = cos (TV) = 0 2TT 16 = -TV + TV3 = cos (TV) = 0 2TT 16 = -TV4 + TV3 = cos (TV) = 0 2TT 16 = -TV4 + TV3 = cos (TV) = 0 2TT 17 = -TV4 + TV3 = cos (TV) = 0 2TT 18 = -TV4 +	exact ~
16.)	Y-Valve Approx - y The York of Cos(0) + Cos(1) - The York of The York of Cos(0) + Cos(1) - The York of The York o	O

Josh whehen

For reference here is the plot of f'(t) again.

(b) Use Improved Euler's method to draw an approximation of the graph of f(t). Use $h = \frac{\pi}{3}$, n = 6, and f(0) = 0. Estimate values from the graph f'(t). Show your work.

Josh whitehead U1069343

2. (7 points) Numerical Approximation Sometimes Fails

When we use numerical approximation techniques we are mainly concerned with how accurate a given numerical algorithm is, i.e. how small the error is for a given step size h. In some cases though, a numerical method might result in a solution that is completely wrong. To see this, consider the IVP:

$$y' = -8y, \qquad y(0) = 1,$$

where y is a function of time, t, with domain $0 \le t \le 2$.

(a) Determine the true solution y(t) to the IVP.

- (b) On the provided slope field:
 - sketch the approximations to the IVP using Euler's method with step size h = 0.5,
 - sketch the approximations to the IVP using Euler's method with step size h = 0.25,
 - and plot the true solution.

In your own words describe what is going wrong with the approximate values.

- true - h= 0.5 - h=0.25

There is a horizontal assymptote@ 1=0 so approp keep

(c) Describe the qualitative properties of the true solution. For what range of step sizes will the approximate solution reflect these qualitative properties? That is, determine T such that 0 < h < Twill provide a valid approximation to the IVP.

2.6	X- Val	Y-val	exact
•	0		
	0.5	7,=1+0.5(-8(1))=-3	
	1	72 = -3 + = (-8(-3))= 9	
	1.5	12 = -3 + 2 (-8(-3))= 9 13 = 9 + 2 (-8(9)) = -27 14 = -27 + 2 (-8(-27)) = -	
	2	7y = -27+12(-8(-27))= -	
	O		J
	4	7, = 1 + 4 (-8(1))=-1	
	2	7, = 1 + 4 (-8(1))=-1 12=-1+4 (-8(-1))=1 13=1+4 (-8(1))=-1	
		173 = 1 + ty (-8(1)) =-1	
	74	\ .	
	3/2	-1 '	
	714	-1	
		1	
			J