(1) (10 pkt.) Niech (X_1, ρ_1) i (X_2, ρ_2) będą przestrzeniami metrycznymi. Jednostajną ciągłość funkcji $f: X_1 \to X_2$ definiujemy przez warunek

$$(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, x' \in X_1) \rho_1(x, x') < \delta \Rightarrow \rho_2(f(x), f(x')) < \varepsilon.$$

Taka funkcja spełnia warunek Lipschitza jeżeli istnieje stała L>0, taka że dla dowolnych $x,x'\in X_1$ zachodzi nierówność

$$\rho_2(f(x), f(x')) \le L \cdot \rho_1(x, x').$$

Pokazać, że warunek Lipschitza implikuje jednostajną ciągłość, a jednostajna ciągłość pociąga za sobą ciągłość, ale implikacje przeciwne nie muszą zachodzić (podać kontr-przykłady).

- (2) (10 pkt.) Przestrzeń X nazywamy lokalnie zwartą, jeśli dla każdego $x \in X$ istnieje otwarty $x \in U \subseteq X$ taki, że \overline{U} jest zwarty.
 - (a) Pokazać, że zarówno otwarte, jak i domknięte podprzestrzenie lokalnie zwartej przestrzeni Hausdorffa są lokalnie zwarte.

WSKAZÓWKA: Przydatne będzie pokazanie, że lokalnie zwarta przestrzeń Hausdorffa jest regularna. Proszę zauważyć, że Zad. (9) z Listy 4 implikuje, że zwarta przestrzeń Hausdorffa jest normalna.

- (b) Czy $\mathbb{R}^n,\ n=1,2,\ldots$ z metryką euklidesową jest lokalnie zwarta? Uzasadnij odpowiedź.
- (c) Czy zbiór liczb wymiernych z metryką euklidesową jest lokalnie zwarta? Uzasadnij odpowiedź.
- (3) (11 pkt.) Niech Y będzie zbiorem niepustym i niech ∞ będzie punktem nienależącym do Y. Rozważmy przestrzeń $X = Y \cup \{\infty\}$ z jednym punktem skupienia: deklarujemy, że każdy zbiór $A \subseteq Y$ jest otwarty, natomiast zbiory otwarte zawierające ∞ są postaci $\{\infty\} \cup (Y \setminus I)$, gdzie $I \subseteq Y$ jest skończony.
 - (a) Sprawdzić, że faktycznie zdefiniowaliśmy topologię na X.
 - (b) Ustalić, kiedy ta topologia ma bazę przeliczalną i kiedy jest ośrodkowa.
 - (c) Podać wzory na domknięcie i wnętrze dowolnego zbioru $A \subseteq X$.
 - (d) Wykazać, że X jest przestrzenią normalną.
- (4) (10 pkt.) Niech (X,d) będzie przestrzenią metryczną zupełną, $f\colon Y\to\mathbb{R}$ funkcją określoną na podprzestrzeni $Y\subseteq X$ i $d_f(x,y)=d(x,y)+|f(x)-f(y)|$. Pokazać, że przestrzeń metryczna (Y,d_f) jest zupełna wtedy i tylko wtedy, gdy wykres f jest domknięty w iloczynie kartezjańskim $X\times\mathbb{R}$ przestrzeni X i prostej euklidesowej. Nie trzeba pokazywać, że d_f jest metryką. Patrz też Zad. (2a) na Liście 6.
- (5) (10 pkt.) Niech (X,d) będzie przestrzenią zwartą metryczną i niech K(X) będzie rodziną wszystkich niepustych zbiorów domkniętych w X. Pokazać, że topologia generowana przez $(K(X),d_H)$, gdzie d_H jest metryką Hausdorffa, jest zadana przez bazę

$$\{K \in K(X) : K \subseteq U_0, K \cap U_1 \neq \emptyset, K \cap U_2 \neq \emptyset, \dots, K \cap U_n \neq \emptyset\},\$$

gdzie $U_0, U_1, U_2, \dots, U_n$ są zbiorami otwartymi w X. W pierwszej kolejności pokazać, że zbiory powyższej postaci stanowią bazę pewnej topologii K(X).