Quantum Circuit Transformation For Neutral atom computation

Dingchao Gao

ISCAS

24 de agosto de 2025

Main reference

- Computational Capabilities and Compiler Development for Neutral Atom Quantum Processors: Connecting Tool Developers and Hardware Experts
- DasAtom: A Divide-and-Shuttle Atom Approach to Quantum Circuit Transformation, Yunqi Huang and Dingchao Gao and Shenggang Ying and Sanjiang Li

contents

Recent Developments

- Microsoft and Atom Computing Collaboration
 microsoft.com/en-us/research/blog/microsoft-and-atom-computing-collaborate on-quantum-supercomputer
- Modular Quantum System-on-Chip Development nature.com/articles/s41586-024-03876-9
- Fault-Tolerant Quantum Computation with High-Rate qLDPC Codes

arxiv.org/abs/2408.12345

Neutral Atom Quantum Computing Devices

- Qubits: Individual neutral atoms (e.g., rubidium, cesium)
- Trapping Methods: Optical tweezers, optical lattices
- Encoding: Internal atomic states (hyperfine ground states)
- Interactions: Mediated via Rydberg state excitation

Key Features

- Scalability: Potential for large qubit arrays
- Long Coherence Times: Use of clock states reduces sensitivity to magnetic fields
- Controlled Interactions: Tunable via Rydberg excitations

Common Atoms Used

- Alkali Atoms Rubidium (Rb), Cesium (Cs)
- Alkaline-Earth-Like Atoms Strontium (Sr), Ytterbium (Yb)

Workflow

- Metal
- Atomic beam
- Cooling
- Optical lattice
- Rearrange

Figura: Overview of the main hardware components constituting a quantum processor

Optical Traps and Tweezers

- Atom Trapping Methods
 - Optical dipole traps
 - Optical tweezers created by lasers
- Array Configurations
 - One-, two-, or three-dimensional setups
- Dynamic Control
 - Reloading and rearrangement of atoms
 - Enhances scalability and qubit adjustment

Single-Qubit Gates with Rydberg Atoms

- Single-Qubit Operations
 - Laser pulses drive Rabi oscillations
 - Controlled via Rabi frequency and detuning
- Implemented by driving Rabi oscillations between qubit states $|0\rangle$ and $|1\rangle$.
- Hamiltonian:

$$rac{H_1(t)}{\hbar} = rac{\Omega(t)}{2}|0
angle\langle 1| + rac{\Omega^*(t)}{2}|1
angle\langle 0| - \Delta(t)|1
angle\langle 1|$$

where $\Omega(t)$ and $\Delta(t)$ are Rabi frequency and detuning.

 Single- or two-photon transitions used, with options for individual or global laser addressing.

Two-Qubit Gates with Rydberg Atoms

Two-Qubit Gates via Rydberg Blockade:

- Rydberg blockade prevents simultaneous excitation of two nearby atoms to Rydberg states (one or more electrons that have a very high principal quantum number, n).
- Blockade radius r_b defines the interaction range:

$$r_b \simeq \left(\frac{C_6}{\hbar\Omega_r}\right)^{1/6}$$

 Enables two-qubit gates for atoms beyond nearest neighbors, increasing connectivity.

Multi-qubit gates Gates with Rydberg Atoms

Shutting Atoms

Shuttling Process

- Qubits transferred between static (SLM) and dynamic (AOD) traps.
- Controlled AOD frequency moves qubits, then releases to static trap.
- Dynamically Field-programmable Qubit Arrays (DPQA)
 - Shuttling-only processor design with entangling, measuring, and storage zones.
 - Balances routing overhead and operation optimization.
- Benefits of Shuttling in NAQC
 - Dynamically moves qubits without breaking entanglement.
 - Replaces virtual SWAP (3 CX gates) for flexible qubit connections.

Shuttling Process

Figura: Moving a single atom from one site to another in the register

Figura: DPQA

Scalability Potential

- Flexible Arrangement
 - Atoms arranged in customizable geometries
- Long-Range Interactions
 - Rydberg blockade enables distant entanglement
- Atom Shuttling
 - Physical movement enhances connectivity

Challenges in Scaling Up

- Cross-Talk
 - Limited precision in laser focus (Stark effect)
 - Unintended interactions during Rydberg transitions
- Maintaining Coherence
 - Coherence times may decrease with system size
- Reliable Atom Control
 - Preventing atom loss and decoherence during trapping and shuttling

Differences in Noise Sources Compared to Other Platforms

Superconducting Qubits

- Sensitive to electromagnetic noise and material defects
- Decoherence due to charge and flux noise

Trapped Ion Qubits

- Susceptible to electric field fluctuations
- Motional heating and laser noise

Photonic Qubits

- Affected by atom loss and detector inefficiencies
- Immune to thermal noise affecting matter-based qubits

Common Noise Sources in Neutral Atom Quantum Computing

- Laser Noise: Intensity fluctuations, frequency/phase noise
- Atom Loss: Background gas collisions, photon scattering
- Decoherence: Spontaneous emission, blackbody radiation
- Motional Decoherence: Thermal motion, trap fluctuations
- Control Errors: Beam imperfections, timing jitter
- Rydberg Decay: Finite lifetimes, state mixing

Mitigation Strategies

- Laser Stabilization: High-quality lasers with active stabilization
- Vacuum Improvements: Enhanced vacuum conditions
- Cooling Techniques: Raman sideband cooling
- Error Correction: Quantum error correction protocols
- Optimal Control: Robust control pulse design

contents

Key Compilation Subroutines during Compilation

- Platform-independent Compilation: General optimizations, e.g., loop unrolling and gate commutation.
- Platform-dependent Compilation: Adapts quantum circuits to specific hardware constraints and capabilities.
- Hardware-dependent Compilation: Translates abstract operations into hardware-executable instructions.

primary objectives

- Synthesis: Decompose gates into native hardware-compatible operations.
- Mapping: Assign logical qubits to physical qubits, introducing SWAP/MOVE operations.
- **Scheduling:** Optimize gate execution timing to maximize parallelism and minimize errors.

attention:

- NAQC-specific capabilities like atom shuttling and Rydberg interactions affect all steps.
- Compilation steps are often optimized collectively for hardware constraints.

SC Compilation Challenges for NAQC

- Synthesis: SC only supports one- and two-qubit gates, making multi-qubit gates challenging.
- Mapping: SC relies on virtual swaps for connectivity, while NAQC defines coupling using r_{int}.
- Scheduling: NAQC adds constraints from the restriction radius, requiring tailored adjustments.

Overview of Related Work on NAQC Compilation

- Neutral atom quantum computing (NAQC) introduces unique challenges and capabilities.
- Related works address these through distinct themes:
 - Long-range interactions
 - Multi-qubit gates
 - Shuttling operations
 - Adaptation of superconducting (SC) compilers

Long-range Compilers

Two Major Implementations:

Baker et al. [33]

- Focus: Mapping & atom loss
- Features parallel SWAP execution
- Uses look-ahead schemes

Q-Tetris [28]

- Greedy heuristic algorithm
- Monte Carlo tree search
- Time-efficient optimization

Multi-qubit Compiler

Geyser [29, 115]

- Novel approach to multi-qubit operations
- Key features:
 - Composes Toffoli gates from two-qubit gates
 - Uses Qiskit for mapping
 - Optimizes laser pulse count
- Evaluation metric: laser pulse count vs. gate count

Shuttling Compilers (1/2)

First Generation:

- Brandhofer et al. [31]
 - 1D atom displacements
 - SMT solver optimization
- Tan et al. [111, 116]
 - DPQA architecture focus
 - Visual movement animations
 - 2D shuttling capability
- Schmid et al. [36]
 - Hybrid compilation scheme
 - SABRE-based heuristic
 - Comprehensive capability support

Future Challenges

- Synthesis improvements needed for:
 - General quantum algorithms
 - Multi-qubit gate integration
- Integration of multiple capabilities
- Hardware-dependent error analysis
- Platform accessibility improvement

Goal: Full exploitation of NAQC platform potential

contents

Subgraph Isomorphism in Quantum Circuit Mapping

- DasAtom uses subgraph isomorphism to map quantum circuits onto neutral atom (NA) architectures.
- Ensures each gate in a subcircuit is directly executable.
- Embedding interaction graphs onto the NA grid enhances fidelity and efficiency.

DasAtom Algorithm Overview

The algorithm operates in four main steps:

- Partitioning
 - Divide the quantum circuit into CZ layers and subcircuits.
 - Ensure each layer is fully contained within a subcircuit.
- 2 Embedding
 - Find optimal qubit mappings for each subcircuit onto the NA grid.
- Parallel Execution
 - Execute gates in each subcircuit in parallel.
 - Consider blockade radius constraints of the NA architecture.
- Routing via Atom Shuttling
 - Use atom shuttling to transition between different qubit mappings.
 - Enable efficient, high-fidelity transformations.

Running example

Performance Comparison with Existing Methods

Fidelity Improvements

- 414x over Enola
- 10.6x over Tetris
- 16.1x over Atomique
- Evaluated on a 30-qubit Quantum Fourier Transform (QFT) circuit

Reduced Compilation Time

- Significantly shorter runtimes for larger circuits
- Outperforms existing methods on complex topologies

Ablation studies on QFT-20

Directions for Future Research

- Approximate Subgraph Isomorphism
 - Develop algorithms for approximate mappings in large circuits
- Optimized Embeddings
 - Design embeddings to minimize atom movement costs
 - Use search-based methods to reduce movement time and distance
- Integration with Realistic NA Devices
 - Support native multi-qubit gates like CCZ
 - Incorporate realistic atom movement protocols