Funcții derivabile

Exercițiul 1: Determinați derivata de ordinul n a următoarelor funcții:

- a) $f:(-1,\infty)\to\mathbb{R}$ definită prin $f(x)=(1+x)^r$, unde $r\in\mathbb{R}$;
- b) $f:(-1,\infty)\to\mathbb{R}$ definită prin $f(x)=x\cdot\ln(1+x)$;
- c) $f:(-\infty,-1)\to\mathbb{R}$ definită prin $f(x)=x\cdot\ln(1-x)$;
- d) $f:(-1,1)\to\mathbb{R}$ definită prin $f(x)=\sqrt{3x+4}$;
- e) $f:(-\frac{1}{2},\infty)\to\mathbb{R}$ definită prin $f(x)=\frac{1}{\sqrt{2x+1}}$.

Exercițiul 2:Determinați derivata de ordinul n a următoarelor funcții:

- a) $f: \mathbb{R} \setminus \{-\frac{b}{a}\} \to \mathbb{R}$ definită prin $f(x) = \frac{1}{ax+b}$;
- b) $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = \sin(ax + b)$;
- c) $f : \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = \cos(ax + b)$;
- d) $f: \mathbb{R} \to \mathbb{R}$ definită prin $f(x) = e^{ax+b}$.

Exercițiul 3: Calculați derivatele următoarelor funcții:

- a) $f:(0,\infty)\to\mathbb{R}$ definită prin $f(x)=x^x$;
- b) $f:(0,\infty)\to\mathbb{R}$ definită prin $f(x)=x^{\frac{1}{x}};$
- c) $f:(0,\pi)\to\mathbb{R}$ definită prin $f(x)=\sin x^x;$
- d) $f:(0,\infty)\to\mathbb{R}$ definită prin $f(x)=x^{\sin x}$;

Excerciţiul 4:

Fie funcția $f:\mathbb{R}\to\mathbb{R}$ definită prin

$$f(x) = x + |x - 1|$$

oricare ar fi $x \in \mathbb{R}$.

- a) Să se arate că funcția f are derivate laterale în punctul $x_0=1;$
- b) Să se calculeze derivatele laterale în punctul $x_0 = 1$;

- c) Este funcția f derivabilă la stânga în punctul $x_0=1$? Dar la dreapta?
- d) Are funcția f derivată în punctul $x_0 = 1$?
- e) Este funcția f derivabilă în punctul $x_0 = 1$;

Exercițiul 5: Arătați că $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}$ oricare ar fi x > 0.

Exercițiul 6:

a) Arătați că pentru orice număr natural $n \geq 2$ au loc inegalitățile

$$na^{n-1} < \frac{b^n - a^n}{b - a} < nb^{n-1}$$

oricare ar fi $a,b \in (0,+\infty)$ cua < b.