

Formal Language Σ : alphabet (set of symbols)

 Σ : alphabet (set of symbols)

 $\Sigma \colon$ alphabet (set of symbols)

 Σ : alphabet (set of symbols)

 $\Sigma \colon$ alphabet (set of symbols)

$\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots, \dots\}$

 Σ : alphabet (set of symbols)

Formal Language

 Σ^* : set of finite strings

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", $\;$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

but it will also contain gibberish like this

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 $\Sigma \colon$ alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L\subset \Sigma^*$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

So we define it as a subset of the set of string, Σ^*

 $\Sigma {:}$ alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Note that here we do not describe the rules that define the subset

 $\Sigma \colon$ alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L\subset \Sigma^*$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

That may differ between languages

 $\Sigma\text{: alphabet (set of symbols)}$

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$ $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

In natural languages, this is usually done by specifying a grammar

 $\Sigma \colon$ alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L\subset \Sigma^*$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 $\Sigma :$ alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Let us now take stock of the symbols that are used to form expressions in logic

 $\Sigma {:}$ alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

We will call the resulting alphabet a proposition alphabet

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet: $\{A, B, \ldots, \}$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, , \dots \}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

it must include variables

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet: $\{A, B, \dots, A_1, A_2, \dots$

including indexed variables if we need to many of them

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots, \dots\}$

and the usual functions and operators

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots, \dots\}$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

 $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Example (string)

Definition A string is a propositional form if

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

We will simultaneously present an example

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) P Q

Definition A string is a propositional form if

1. it is a proposition variable

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P$ Q

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P$ Q

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P$ Q

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

We have not yet completely defined what a valid propositional form is

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P$ Q

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P$ Q

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $\neg P \land Q$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q.

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk". "iklaisdlf ak vldsiaf ldaspfoa.3"

We finally include those that are composed by operators

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet: $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Example (string) $(\neg P \land Q) \lor (P \to Q \land P)$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q.

Note that we use parentheses to avoid confusion about which operator is first

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L\subset \Sigma^*$

Proposition alphabet:

$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $(\neg P \land Q) \lor (P \to Q \land P)$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q.

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet: $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Example (string) $(\neg P \land Q) \lor (P \to Q \land P)$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q.

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

to allow us to drop the outermost ones

Formal Language Σ : alphabet (set of symbols)

Proposition alphabet:

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$

 $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Definition A string is a propositional form if

- 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for
- some propositional forms p and q. A propositional for p is a **tautology**

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Formal Language Σ : alphabet (set of symbols)

Proposition alphabet:

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$

 $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p
- some propositional forms p and q.

3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for A propositional for p is a **tautology** if $\nu(p) = T$ for any ν .

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Formal Language Σ : alphabet (set of symbols)

Proposition alphabet:

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

 $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for
- some propositional forms p and q.

A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Formal Language

Proposition alphabet:

 Σ : alphabet (set of symbols)

 Σ^* : set of finite strings

A language over the alphabet Σ is $L \subset \Sigma^*$

Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$

 $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q)$, $(p \land q)$, $(p \rightarrow q)$, $(p \leftrightarrow q)$ for
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q.

A propositional for p is a ${\bf tautology}\ \ {\it if}\ \nu(p)=T$ for any $\nu.$ Denoted $\vDash p$

Examples:

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

Formal Language

 Σ : alphabet (set of symbols)

 $\Sigma = \{a, b, \dots, z, A, B, \dots, Z, \dots\}$

"I broke the chalk", "jklajsdlf ak vldsjaf ldaspfoa.3"

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:

Example (string) $(\neg P \land Q) \lor (P \to Q \land P)$

 $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$

Definition A string is a propositional form if

- 1. it is a proposition variable
- 2. of the form $\neg p$ for some propositional form p3. of the form $(n \lor q)$ $(n \land q)$ $(n \rightarrow q)$ $(n \leftrightarrow q)$ for
- 3. of the form $(p\vee q), (p\wedge q), (p\to q), (p\leftrightarrow q)$ for some propositional forms p and q.

A propositional for p is a ${\bf tautology}\ \ {\it if}\ \nu(p)=T$ for any $\nu.$ Denoted $\ \vDash p$

Examples: $P \vee \neg P$

Formal Language Σ : alphabet (set of symbols)

 Σ^* : set of finite strings A language over the alphabet Σ is $L \subset \Sigma^*$

Proposition alphabet:
$$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$$

Example (string) $(\neg P \land Q) \lor (P \to Q \land P)$

- **Definition** A string is a propositional form if
 - it is a proposition variable
 of the form ¬p for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q.
- A propositional for p is a $\mathbf{tautology}$ if $\nu(p) = T$ for any $\nu.$ Denoted $\ \vDash p$

Examples: $P \vee \neg P$, $\neg (P \wedge \neg Q)$

```
p \leftrightarrow \neg \neg p Formal Language
```

 Σ : alphabet (set of symbols) Σ^* : set of finite strings

Proposition alphabet:

A language over the alphabet Σ is $L\subset \Sigma^*$

 $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$

- **Definition** A string is a propositional form if
- 2. of the form $\neg p$ for some propositional form p
- 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for
- some propositional forms p and q.

 A propositional for p is a **tautology** if $\nu(p) = T$ for any
- **Examples**: $P \vee \neg P$, $\neg (P \wedge \neg Q)$

 ν . Denoted $\models p$

1. it is a proposition variable

```
Formal Language
\Sigma: alphabet (set of symbols)
                                                                            \neg(p \lor q) \leftrightarrow \neg p \land \neg q
\Sigma^*: set of finite strings
A language over the alphabet \Sigma is L \subset \Sigma^*
Proposition alphabet:
\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}
Example (string) (\neg P \land Q) \lor (P \rightarrow Q \land P)
Definition A string is a propositional form if
  1. it is a proposition variable
  2. of the form \neg p for some propositional form p
  3. of the form (p \lor q), (p \land q), (p \to q), (p \leftrightarrow q) for
      some propositional forms p and q.
A propositional for p is a tautology if \nu(p) = T for any
\nu. Denoted \models p
Examples: P \vee \neg P. \neg (P \wedge \neg Q)
```

```
Formal Language
\Sigma: alphabet (set of symbols)
                                                                               \neg(p \lor q) \leftrightarrow \neg p \land \neg q
\Sigma^*: set of finite strings
                                                                               \neg(p \land a) \leftrightarrow \neg p \lor \neg a
A language over the alphabet \Sigma is L \subset \Sigma^*
Proposition alphabet:
\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}
Example (string) (\neg P \land Q) \lor (P \rightarrow Q \land P)
Definition A string is a propositional form if
  1. it is a proposition variable
  2. of the form \neg p for some propositional form p
  3. of the form (p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q) for
      some propositional forms p and q.
A propositional for p is a tautology if \nu(p) = T for any
\nu. Denoted \models p
Examples: P \vee \neg P. \neg (P \wedge \neg Q)
```

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p$ Proposition alphabet: $\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor a \leftrightarrow a \lor p$ **Definition** A string is a propositional form if 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor a \leftrightarrow a \lor p$ **Definition** A string is a propositional form if $(p \rightarrow q)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor a \leftrightarrow a \lor p$ **Definition** A string is a propositional form if $(p \to q) \leftrightarrow (\neg p \lor q)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land a) \leftrightarrow \neg p \lor \neg a$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor q \leftrightarrow q \lor p$ **Definition** A string is a propositional form if $(p \to q) \leftrightarrow (\neg p \lor q)$ $(p \rightarrow q)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor q \leftrightarrow q \lor p$ **Definition** A string is a propositional form if $(p \to q) \leftrightarrow (\neg p \lor q)$ $(p \to q) \leftrightarrow (\neg q \to \neg p)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor q \leftrightarrow q \lor p$ **Definition** A string is a propositional form if $(p \to q) \leftrightarrow (\neg p \lor q)$ $(n \to q) \leftrightarrow (\neg q \to \neg p)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p $(p \leftrightarrow q)$ 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

 $p \leftrightarrow \neg \neg p$ Formal Language Σ : alphabet (set of symbols) $\neg(p \lor q) \leftrightarrow \neg p \land \neg q$ Σ^* : set of finite strings $\neg(p \land q) \leftrightarrow \neg p \lor \neg q$ A language over the alphabet Σ is $L \subset \Sigma^*$ $p \wedge p \leftrightarrow p$ Proposition alphabet: $p \lor p \leftrightarrow p$ $\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$ $p \wedge q \leftrightarrow q \wedge p$ **Example** (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$ $p \lor q \leftrightarrow q \lor p$ **Definition** A string is a propositional form if $(p \to q) \leftrightarrow (\neg p \lor q)$ $(n \to q) \leftrightarrow (\neg q \to \neg p)$ 1. it is a proposition variable 2. of the form $\neg p$ for some propositional form p $(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$ 3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for some propositional forms p and q. A propositional for p is a **tautology** if $\nu(p) = T$ for any ν . Denoted $\models p$ **Examples**: $P \vee \neg P$. $\neg (P \wedge \neg Q)$

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
some propositional forms p and q .	
	$(p \land q \to r)$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	
F I D/(D (D)	
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \rightarrow q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	$(p \wedge (q \wedge r))$
Examples: $P \vee \neg P$, $\neg (P \wedge \neg Q)$	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	* */ *
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
(,,···, - -,· - -,···, ,··, ·, ·, ·, (, /, [,]]	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
	F · 4 · · 4 · F
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
1. it is a proposition variable	
2. of the form $\neg p$ for some propositional form p	$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	$(P \land Q \land A) \land (P \land (Q \land A))$
ν . Denoted $\models p$	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
ν . Denoted $\vdash p$	$(p \lor (q \lor r))$
Examples: $P \setminus (-P, -(P \land -O))$	$(P \vee (q \vee r))$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$,,
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A,B,\ldots,A_1,A_2,\ldots,\neg,\wedge,\vee,\rightarrow,\leftrightarrow,(,),[,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
*	$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	
•	

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
some propositional forms p and q .	
	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	(- A (- A -)) + ((- A -) A -)
u. Denoted $ varphi$	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
	$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	(oo A oo)
	$(p \wedge q)$

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \dots, A_1, A_2, \dots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	
some propositional forms p and q .	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
u. Denoted $ varphi$ p	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
	$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	
	$(p \wedge q) \leftrightarrow (q \wedge p)$

	$p \leftrightarrow \neg \neg p$
Formal Language	
Σ : alphabet (set of symbols)	$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$
Σ^* : set of finite strings	$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$
A language over the alphabet Σ is $L\subset \Sigma^*$	
	$p \wedge p \leftrightarrow p$
Proposition alphabet:	$p \lor p \leftrightarrow p$
$\{A, B, \ldots, A_1, A_2, \ldots, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,), [,]\}$	
	$p \wedge q \leftrightarrow q \wedge p$
Example (string) $(\neg P \land Q) \lor (P \rightarrow Q \land P)$	$p \lor q \leftrightarrow q \lor p$
Definition A string is a propositional form if	$(p \to q) \leftrightarrow (\neg p \lor q)$
1. it is a proposition variable	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
2. of the form $\neg p$ for some propositional form p	
3. of the form $(p \lor q), (p \land q), (p \to q), (p \leftrightarrow q)$ for	$(p \leftrightarrow q) \leftrightarrow ((p \to q) \land (q \leftarrow p))$
some propositional forms p and q .	
	$(p \land q \to r) \leftrightarrow (p \to (q \to r))$
A propositional for p is a tautology if $\nu(p) = T$ for any	
ν . Denoted $\models p$	$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$
	$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$
Examples : $P \vee \neg P$, $\neg (P \wedge \neg Q)$	
	$(p \land q) \leftrightarrow (q \land p)$
	$(p \lor q)$

$$p \leftrightarrow \neg \neg p$$

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

$$p \land p \leftrightarrow p$$

$$p \land p \leftrightarrow p$$

$$p \lor q \leftrightarrow q \land p$$

$$p \lor q \leftrightarrow q \lor p$$

$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$$

$$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$$

$$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$$

$$(p \land q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \lor p)$$

$$(p \land (q \lor r))$$

$$p \leftrightarrow \neg \neg p$$

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

$$p \land p \leftrightarrow p$$

$$p \land p \leftrightarrow p$$

$$p \lor q \leftrightarrow q \land p$$

$$p \lor q \leftrightarrow q \lor p$$

$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \land q \rightarrow r) \leftrightarrow (p \rightarrow q \land r)$$

$$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$$

$$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$$

$$(p \land q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \lor p)$$

$$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$$

$$p \leftrightarrow \neg \neg p$$

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

$$p \land p \leftrightarrow p$$

$$p \land q \leftrightarrow q \land p$$

$$p \lor q \leftrightarrow q \lor p$$

$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \land q \rightarrow r) \leftrightarrow (p \rightarrow q \land r)$$

$$(p \land q \rightarrow r) \leftrightarrow (p \land q \land r)$$

$$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$$

$$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$$

$$(p \land q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \lor p)$$

$$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$$

$$(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$$

$$\neg (p \lor q) \leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

$$p \land p \leftrightarrow p$$

$$p \lor p \leftrightarrow p$$

$$p \lor q \leftrightarrow q \land p$$

$$p \lor q \leftrightarrow q \lor p$$

$$(p \rightarrow q) \leftrightarrow (\neg p \lor q)$$

$$(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$$

$$(p \rightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \leftarrow p))$$

$$(p \land q \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$$

$$(p \land (q \land r)) \leftrightarrow ((p \land q) \land r)$$

$$(p \lor (q \lor r)) \leftrightarrow ((p \lor q) \lor r)$$

$$(p \land q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \lor p)$$