EEOB 563 assignment4

Devin Molnau

February 26, 2019

EEOB563 assignment 4

Question 1:

To get a Jukes Cantor distance matrix we can read in the data as sequences. We can use the library ape and the function dist.dna() to get the JC matrix.

```
sequences<-read.FASTA("sequences_1a.txt", type="DNA")
dist.dna(sequences,model="JC69")</pre>
```

To calulate the distances manually you will need to count the number of distances between every pair of sequences and then from that you can calculate the distances.

```
seq1a<-read.dna("sequences_1a.txt", format = "fasta", as.character = TRUE, as.matrix = TRUE)</pre>
comparing<-function(string1, string2){</pre>
  counter=0
  for (i in 1:length(sequences[[1]])){
    if (string1[i]!=string2[i]){
      counter=counter+1
  }
  return(counter)
get_distances<-function(matrix_of_interest){</pre>
  l<-length(row.names(matrix_of_interest))</pre>
  a<-matrix(data=NA, nrow=length(row.names(matrix_of_interest)),
            ncol=length(row.names(matrix_of_interest)),
            dimnames = list(row.names(matrix of interest),
                             row.names(matrix_of_interest)))
  for (i in 1:1){
    for (j in 1:1){
    value<-comparing(matrix_of_interest[i,],matrix_of_interest[j,])</pre>
    a[i,j]<-value
    a[j,i]<-value
    }
  }
  return(a)
a < - get_distances (seq1a)
cat("Differences in amino acid sequences Question#1")
```

```
## Differences in amino acid sequences Question#1
cat("\n")
a #Differences in amino acid sequences Question#1
        Dog Cat Mouse Pig Human
## Dog
          0
             4
                    4 3
          4 0
## Cat
                    6 3
## Mouse 4 6
                    0 4
          3 3
## Pig
                    4
                        0
## Human
          8 9
                    9
a_prob<-a/(length(seq1a[1,]))</pre>
\#a\_prob < -formatC(a\_prob, digits = 5, format = "f")
distance_matrix<-(-3/4)*log(1-((4/3)*(a_prob)))
cat("Distance matrix Question#1")
## Distance matrix Question#1
cat("\n")
distance matrix #Distance matrix Question#1
##
                        Cat
                                Mouse
                                                    Human
              Dog
                                            Pig
## Dog 0.0000000 0.1468084 0.1468084 0.1073256 0.3295250
## Cat 0.1468084 0.0000000 0.2326162 0.1073256 0.3831192
## Mouse 0.1468084 0.2326162 0.0000000 0.1468084 0.3831192
## Pig 0.1073256 0.1073256 0.1468084 0.0000000 0.3831192
## Human 0.3295250 0.3831192 0.3831192 0.3831192 0.0000000
```

Question 2:

Using this distance matrix we can build the UPGMA tree.

```
tree_upgma<-upgma(D=distance_matrix)
plot(tree_upgma, type="phylogram", use.edge.length = TRUE, show.tip.label = TRUE, show.node.label = TRUE
edgelabels(formatC(tree_upgma$edge.length, digits = 4, format = "f"), bg="black", col="white", font=0.2</pre>
```


#tree_upgma\$edge.length

To do this by hand you would combine the columns with the smallest distance together and then recalculate the distances after that each time. Work attached to end of document.

Question 3:

To create a neighbor joining tree we will take the distance matrix tree from question 1. We will average the row values and then generate a new matrix of the intersect of the cell-the row average- the row average for the other intersected taxa. Using the minimum of this new matrix (called U) we will new which two taxa are the nearest neighbor of one another. We will then recalculate the distance between our grouped taxa and the other taxa and restart the process again.

```
#length(distance_matrix[1,])
average_dist_matrix<-function(dist_mat){
   average_dist<-c()
   for (i in 1:length(dist_mat[1,])){
      average_dist[i]<-sum(dist_mat[i,])/((length(dist_mat[1,]))-2)
   }
   #average_dist
   dist_mat_alter<-cbind(dist_mat,average_dist)
   return(dist_mat_alter)
}
dist_mat_alter<-average_dist_matrix(distance_matrix)
cat("------\n")</pre>
```

```
dist_mat_alter #The new distance matrix with the row averages added
##
                         Cat
                                 Mouse
                                              Pig
                                                      Human average dist
               Dog
## Dog
         0.0000000 0.1468084 0.1468084 0.1073256 0.3295250
                                                               0.2434892
         0.1468084 \ 0.0000000 \ 0.2326162 \ 0.1073256 \ 0.3831192
                                                               0.2899565
## Mouse 0.1468084 0.2326162 0.0000000 0.1468084 0.3831192
                                                               0.3031174
## Pig 0.1073256 0.1073256 0.1468084 0.0000000 0.3831192
                                                               0.2481930
## Human 0.3295250 0.3831192 0.3831192 0.3831192 0.0000000
                                                                0.4929609
## -----
u_matrix<-function(dist_mat){</pre>
  new_dim_names<-unlist(list(row.names(dist_mat)))</pre>
  #new_dim_names<-unlist(list(row.names(dist_mat_alter)))</pre>
  dimension<-length(dist mat[,1])</pre>
  #dimension<-length(dist_mat_alter[,1])</pre>
  which next<-matrix(NA, nrow=dimension, ncol = dimension,
       dimnames = list(new_dim_names,new_dim_names))
for (i in 1:length(which_next[1,])){
  for (j in 1:length(which_next[1,])){
    if (i==j){
      which_next[i,j]<-0
   }
   else{
      value<-dist_mat[i,j]-</pre>
        dist_mat[i,length(dist_mat[1,])]-
        dist_mat[j,length(dist_mat[1,])]
      which_next[i,j]<-value
   }
 }
return(which_next)
}
u_matrix(dist_mat_alter) #This return the matrix to tell you which branch to cluster next
##
                Dog
                           Cat
                                     Mouse
                                                  Pig
## Dog
          0.0000000 -0.3866372 -0.3997982 -0.3843565 -0.4069251
         -0.3866372 \quad 0.0000000 \ -0.3604577 \ -0.4308238 \ -0.3997982
```

```
## Mouse -0.3997982 -0.3604577 0.0000000 -0.4045020 -0.4129591
        -0.3843565 -0.4308238 -0.4045020 0.0000000 -0.3580346
## Human -0.4069251 -0.3997982 -0.4129591 -0.3580346 0.0000000
```

Because the smallest element of the u matrix is the intersection between Cat and Pig, those taxa will be the first to merge. I create a new distance matrix with of those two columns merged and then start the process again.

NJ distance matrix with four taxa groups now.

```
new_dim_names<-list("Dog","Pig/Cat","Mouse","Human")</pre>
nj_matrix_1<-matrix(data = c(0,0.0735,0.147,0.329,0.0735,0,0.1365,0.3295,0.147,0.1365,0,0.383,0.329,0.3
                    nrow = 4, ncol = 4, dimnames = list(new dim names, new dim names))
cat("NJ distance matrix with 4 taxa\n")
```

```
## NJ distance matrix with 4 taxa
nj_matrix_1 #NJ distance matrix with 4 taxa
##
             Dog Pig/Cat Mouse Human
        0.0000 0.0735 0.1470 0.3290
## Pig/Cat 0.0735 0.0000 0.1365 0.3295
## Mouse 0.1470 0.1365 0.0000 0.3830
## Human 0.3290 0.3295 0.3830 0.0000
aver_nj_mat_1<-average_dist_matrix(nj_matrix_1)</pre>
## -----
cat("Altered distance 4 taxa matrix with row averages\n")
## Altered distance 4 taxa matrix with row averages
aver_nj_mat_1 #Altered distance 4 taxa matrix with row averages
             Dog Pig/Cat Mouse Human average_dist
## Dog
          0.0000 0.0735 0.1470 0.3290 0.27475
## Pig/Cat 0.0735 0.0000 0.1365 0.3295
                                           0.26975
## Mouse 0.1470 0.1365 0.0000 0.3830
                                           0.33325
## Human
          0.3290 0.3295 0.3830 0.0000
                                           0.52075
## -----
cat("U matrix of 4 taxa distance matrix\n")
## U matrix of 4 taxa distance matrix
u_matrix(aver_nj_mat_1) # U matrix of 4 taxa distance matrix
##
              Dog Pig/Cat Mouse
                                  Human
## Dog
          0.0000 -0.4710 -0.4610 -0.4665
## Pig/Cat -0.4710 0.0000 -0.4665 -0.4610
## Mouse -0.4610 -0.4665 0.0000 -0.4710
## Human
         -0.4665 -0.4610 -0.4710 0.0000
branch_length_nj<-function(mat,i,j){</pre>
 value<-((1/2)*(mat[i,j]))+((1/2)*(aver_nj_mat_1[i,length(aver_nj_mat_1[1,])]-aver_nj_mat_1[j,length(a
 return(value)
}
#branch_length_nj(aver_nj_mat_1,2,1)
#branch_length_nj(aver_nj_mat_1,1,2)
#branch_length_nj(aver_nj_mat_1,3,4)
#branch_length_nj(aver_nj_mat_1,4,3)
Next JC distance matrix with 3 taxa groups now.
new_dim_names<-list("Dog", "Pig/Cat", "Mouse/Human")</pre>
nj_matrix_2 < -matrix(data = c(0,0.0735,0.044,0.0735,0,0.04175,0.044,0.04175,0),
                   nrow = 3, ncol = 3, dimnames = list(new_dim_names,new_dim_names))
cat("NJ distance matrix with 3 taxa groups\n")
```

NJ distance matrix with 3 taxa groups

```
nj_matrix_2 #NJ distance matrix with 3 taxa groups
##
                 Dog Pig/Cat Mouse/Human
## Dog
              0.0000 0.07350
                              0.04400
## Pig/Cat
              0.0735 0.00000
                                 0.04175
## Mouse/Human 0.0440 0.04175
                                 0.00000
## -----
aver_nj_mat_2<-average_dist_matrix(nj_matrix_2)</pre>
cat("NJ distance matrix with 3 taxa groups and row averages\n")
## NJ distance matrix with 3 taxa groups and row averages
aver_nj_mat_2 #NJ distance matrix with 3 taxa groups and row averages
##
                 Dog Pig/Cat Mouse/Human average_dist
## Dog
              0.0000 0.07350
                              0.04400
                                              0.11750
## Pig/Cat
              0.0735 0.00000
                                 0.04175
                                              0.11525
## Mouse/Human 0.0440 0.04175
                                 0.00000
                                              0.08575
## -----
u_matrix(aver_nj_mat_2)
                   Dog Pig/Cat Mouse/Human
##
## Dog
               0.00000 -0.15925
                                   -0.15925
## Pig/Cat
              -0.15925 0.00000
                                    -0.15925
## Mouse/Human -0.15925 -0.15925
                                    0.00000
#branch_length_nj(nj_matrix_2,1,2) #distance between dog and the internal node pig/cat
#branch_length_nj(nj_matrix_2,2,1) #distance between pig/cat internal node and dog
To get the absolute last matrix, there is no difference is merging dog with cat and pig or merging dog with
human and mouse. I am chosing to merge dog with cat and pig.
new_dim_names<-list("Dog/Pig/Cat","Mouse/Human")</pre>
nj_matrix_3<-matrix(data = c(0,0.006125, 0.006125,0),</pre>
                   nrow = 2, ncol = 2, dimnames = list(new_dim_names,new_dim_names))
nj_matrix_3
##
              Dog/Pig/Cat Mouse/Human
## Dog/Pig/Cat
                 0.000000
                             0.006125
                 0.006125
                             0.000000
## Mouse/Human
To verify our results, we can build the NJ tree using the ape package's NJ() function.
neighbor_joining_tree<-NJ(distance_matrix)</pre>
plot(neighbor_joining_tree,type="phylogram")
edgelabels(formatC(neighbor_joining_tree$edge.length, digits = 4, format = "f"), bg="black", col="white
```


##Question 4: The rest of this assignment is done in the commandline on an hpc. The multiple sequence alignment is first generated using MAFFT and saved in a phylip format. Then we load in phylip and generate a distance matrix. Using the program duadist within phylip, we can create several different distance matrices: Jukes-Cantor, Kimura, Log and F84. With these distance matrices we can create a neighbor joining tree of both and then create a strict consensus tree using consense.

```
module load mafft
mafft --nuc --phylipout cob_nt.fasta > cob_nt_aln.phylip
module load phylip
dnadist cob_nt_aln.phylip
neighbor
consense #strict, root
```

Question 5:

Majority consensus tree

Figure 1: Consensus tree (question 4)

Figure 2: Majority tree (question 5)

Λ.		40,11	
(JUL	Uxtion 3	EQ.ij/tax	
and produce the second		Linhan Human Average	
	24 0 H 0 1 1 2 3 2 0	107 0.395 0.434	
	ouse 0.14 1.232 0 0	1468 0.383 0.30311	
ن	Pizy 0.107 0.107 0.1468 Turan 0.57 0.383 0.383	0 0.383 0,248	
'.	- I and a second		- 1 1 1 2 2 1 (h 299 n 440)
0	V m	urge car and Pig	Vcot = 10.1073+1 (0.289-0.248)
	Day Pia/cast Ma	mal Human Averages	Veat = 0.0745
	Dog 0 0.0435	137 0.3296 0.2695	Vpig - 2(0.01073)+2(0.248-0.009)
	1.7/00/0/3	0 0.3830 0.333	Vpig=0.0327667
	Mouse 0.14 0.1365		cas Pig
	1	1	0.0745 0.0327
	1 -1	rge Nouse & Human	Pairly Distriction
		9/Car Mouse/Auman 0735 0.04176 0.0446	Rujik = Dix + Dix - Dig xample. 2
	P18/Cad 0.0735	0 10,04175	O (CDDog= Oco+ DPO - Dcp
	house/Human 0.044 0,	04175 0	
	1	•	October 147 + 0.107 - 0.107
	V 1	There is no particular group to be made.	5
		L am amitmoly	Pep(Dog) = 0.0735
		adding Dog to additing	Nows = 1/2 (0.3830) + 1/2 (6.303n-0.49
	1 Dog/Pig/Cat 1	moure/Ahman	Vmause = 0.09775
0		0.006125	VHuman = 0.28 525
	3		mouse human
Wor	ne/Human 0.006125	0	0.09778 0.28525
	\		VD00=1 6 0000 1 10 1200-0.11
	Mar		Voog=1 (0.0735)+1 (0.11750-0.11
	(MH) = On - 1	MH + POUMH-DOOGPig	1 cat Vog= 0.03925
	O cogypc		Vpiq cat (pay) = 1 (0.0735) + 2 (0.11525
		2	71900 11 2 - 6.1
	= 0.000	6125	= 0.03425
	<i>y</i> 0 . •	-	Mouse Human pig Cat Dog
With the state of			0.064 0.0
0			0.006,250.392
			-6/a
And Constitution on the			

Jukes Cantor model equal probabilities Pp=(1/4 1/4 1/4 1/4) continuous time model rate matrix M(+). got -> use to get the Harkov medrix $M(t) = e^{Qt} = \begin{cases} a/3 & 1-a & a/3 & a/3 \\ a/3 & a/3 & 1-a & a/3 \\ a/3 & a/3 & a/3 & 1-a \end{cases}$ Markov matrix a=a(+)=3/(1-e-4/3 x+) Table 1 A AC ATT CGA AAK 000 Acc A c/c) A A C A T A C 4 A A A C A T A C 4 A C A T A C 4 C Cart AAA A ca Mouse AAA Pig AT 4 AAA AT9 Hurran CAC Pog CUA 8se (50,51) = - 3 In(1 - 4 2) CAC Mouse € A C CAC Human cdc example from book. CTA dbe (50,51)=-3 1n (1-4 €) SO = ATTOAS SI = ATGUEC à 2/6 = 0.3333 De(50(591) = -3 In(1-4(2)) = 0.4408 swe abbones They Dog | cat | Mouse | pig | Human 4/30 6.1470.383 9/30 House 6/30 4/30 0 6.107 6.107 10.147 3/30 4/30

3130

distance matrix

W 6.30 6.383 6.383 6.383 0