NASA CONTRACTOR REPORT

NASA CR-2301

CASE FILE

PREDICTION OF OVERALL AND BLADE-ELEMENT PERFORMANCE FOR AXIAL-FLOW PUMP CONFIGURATIONS

by George K. Serovy, Patrick Kavanagh, Theodore H. Okiishi, and Max J. Miller

Prepared by
IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY
Ames, Iowa 50010
for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • AUGUST 1973

	2. Government Accession	on No.	3. Recipient's Catalog	No.
1, Report No.	2. Government recourse			
NASA CR-2301 4. Title and Subtitle			5. Report Date	
PREDICTION OF OVERALL AND BLADE-ELEMENT PERFORM-			August 1973	
ANCE FOR AXIAL-FLOW PUMP CONFIGURATIONS			6. Performing Organiza	ition Code
7. Author(s) George K. Serovy, Page 1	trick Kavanagh,	Theodore H.	8. Performing Organiza	tion Report No.
Okiishi, and Max J. Miller			ISU-ERI-AMI	ES-72322
		1	0. Work Unit No.	
9. Performing Organization Name and Address				
Iowa State University of Science	e and Technology	[1	11. Contract or Grant 1	No.
Ames, Iowa 50010			NGL 16-002-005	
			13. Type of Report and	d Period Covered
12. Sponsoring Agency Name and Address			Contractor R	eport
National Aeronautics and Spac	e Administration		4. Sponsoring Agency	Code
Washington, D.C. 20546				
15. Supplementary Notes				
Project Manager, Werner R.	Britsch, Fluid Sys	stem Components D	ivision, NASA L	ewis Research
Center, Cleveland, Ohio				
16. Abstract		adiation of the dist	ributions of fluid	l velocity and
A method and a digital comput	er program for pr	ediction of the disti	lusted. The me	thed uses the
properties in axial-flow pump blade-element flow model and	configurations are	e described and eva	iuateu. The me	thou uses the
hade_element flow model and	an iterative nume			
Diade-element flow model and	an iterative name	rical solution of the	radial equilibri	ium and con-
tinuity conditions. Correlated	l experimental res	sults are used to ge	nerate alternativ	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn	l experimental res ing and loss chara	sults are used to gen acteristics. Detaile	nerate alternatived descriptions o	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, v	l experimental res ing and loss chara	sults are used to gen acteristics. Details and typical comput	nerate alternatived descriptions of descriptio	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, you are inclu	l experimental res ing and loss chara	sults are used to generate and typical computer and	nerate alternatived descriptions of descriptio	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, volume of the puter puter included in puter	l experimental res ing and loss chara	sults are used to gen acteristics. Details and typical comput	nerate alternatived descriptions of descriptio	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, or p	l experimental res ing and loss chara	sults are used to generate and typical computer and	nerate alternatived descriptions of descriptio	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, or puter program are prediction.	l experimental res ing and loss chara	sults are used to generate and typical computer and	nerate alternatived descriptions of descriptio	e methods for
tinuity conditions. Correlated estimating blade-element turn puter program are included, you be supposed by Author(s). Axial-flow pumps Blade-element method Performance prediction Radial equilibrium	experimental resing and loss chara	sults are used to generate is and typical computer and typical and typical computer and typic	nerate alternatived descriptions of descriptio	ve methods for of the com-
tinuity conditions. Correlated estimating blade-element turn puter program are included, or puter program are prediction.	l experimental res ing and loss chara	sults are used to generate is and typical computer and typical and typical computer and typic	nerate alternatived descriptions of descriptio	e methods for

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
PERFORMANCE PREDICTION FOR AXIAL-FLOW TURBOMACHINERY	3
Performance Prediction Systems Background	3
Problem Analysis for Axial-Flow Pump Configurations	6
Flow Model	7
Computing Sequence	9
Numerical Solution of Governing Equations	10
BLADE ELEMENT LOSS AND DEVIATION ANGLE PREDICTION	14
Stationary Plane Cascade Flow	14
Extension of Stationary Plane Cascade Methods and Results to Pump Rotor Flow	23
COMPUTER PROGRAM CAPABILITY AND UTILIZATION	34
Input Load Description	35
Program Output Description	43
Computer Program Description	47
RESULTS	94
CONCLUDING REMARKS	97
APPENDIXES	
A - DERIVATION OF RELATIONSHIPS FOR AXIAL-FLOW PUMP ROTOR AND STATOR EQUIVALENT DIFFUSION RATIO	98
B - DERIVATION OF VERSION B AND C OF THE MOMENTUM THICKNESS- TO-CHORD RATIO RELATIONSHIP	101
C - DERIVATION OF AXIAL-FLOW PUMP ROTOR AND STATOR BLADE ELEMENT DIFFUSION FACTORS	103

D - COMPUTER PROGRAM LISTING	105
E - SAMPLE INPUT LOAD AND PROGRAM OUTPUT LISTS	142
F - ANALYSIS OF RADIAL EQUILIBRIUM SOLUTION FAILURE	174
G - SYMBOLS	177
REFERENCES	181
TABLES	187
FIGURES	189

This report describes a method and a digital computer program for prediction of the distributions of fluid velocity and properties in axial-flow pump configurations. A mathematical model of the flow is developed for calculation planes in which the flow is assumed to be steady and axisymmetric. Flow patterns in these planes are determined by an iterative numerical procedure. The calculation planes are located at the configuration entrance and exit, and between blade rows. Correlated results of pump configuration experiments are used to generate alternative methods for estimating the turning and loss characteristics of the blade elements intersected by approximate steam surfaces.

Detailed descriptions of program logic and use are followed by example input and output data sets, plus typical computed results. Strengths and weaknesses of the method are outlined. In general, it is found that the flow model and computational procedures are satisfactory. The results are useful for both qualitative and quantitative purposes. Limitations are related to the quality of the empirical estimation of blade section performance. These limitations are characteristic of all axial-flow compressor and pump performance prediction systems described in the literature to date.

INTRODUCTION

This report reviews an extended study of the problem of prediction of distributions of fluid velocity and properties in axial-flow pump configurations. This study was begun in 1960 as one response to the need for fundamental improvement in performance levels and reliability of turbopumps for liquid-propellent rocket systems and has been carried on in cooperation with the research staff of the NASA Lewis Research Center. Principal objectives were to select a satisfactory flow model and a logical sequence of steps for computation of the required flow patterns, and to incorporate these steps into an efficient digital computer program. In addition, necessary correlations of experimental information were to be developed to support the program.

In the first part of the report, the scope of the project is outlined and compared with related investigations in the fluid mechanics of turbomachinery. The second portion is a detailed description of a method and computer program for axial-flow pump performance prediction. The method and program are based on numerical solution of equations representing a model of the real flow in an axial-flow turbomachine. The third part reviews the results of utilization of the program for typical axial-flow pump geometries.

Computed results are compared with experimental measurements from NASA research involving water tunnel tests of these geometries. These comparisons are useful in defining areas in which the performance prediction method is successful and valid. It is also possible to identify characteristics of the method which are not satisfactory at present.

The performance prediction problem for turbomachinery, as it is defined in this report, is one of the most difficult unsolved problems in applied fluid mechanics. It is, therefore, a primary objective of this review to provide a foundation for future studies in performance prediction and related areas.

Two fundamental problems occur in selection of a geometrical configuration for a turbomachine. The first is the design or indirect problem and is concerned with the determination of a satisfactory passage and blading configuration. For this problem, the given information includes the nature and characteristics of the working fluid, the fluid properties at the entrance to the turbomachine for the design operating point of the system, the flow rate and a required change in one or more fluid properties between the entrance and exit. In addition, there may be other initial requirements or limits, related to rotational speed, size, efficiency, and other operating characteristics of the machine.

After a possible design point configuration is determined, it is essential to consider what will happen to the performance of the configuration when it is operated at flow rates or rotational speeds, or with entering fluid conditions other than those used as design point values. This second problem, called the analysis or direct problem, can be, for reasons which will be made evident in the report, considerably more difficult than the design problem. The level of difficulty is, however, substantially dependent on the nature of the information to be provided by the solution. Some of the methods which have been proposed will be reviewed briefly in the following paragraphs to indicate clearly their character.

Performance Prediction Systems Background

Although this section considers some work related to the most general forms of solution of the analysis problem, primary emphasis is on turbomachines in which energy is transferred from the rotor to the working fluid and in which the result is an increase in the fluid pressure or head, that is to compressor and pump configuration analysis. In addition, because of the objectives of the current program, detailed consideration is restricted to work applicable to the class of turbomachines (axial-flow) in which the main flow is essentially parallel to the rotational axis. Within these limits, there is a considerable volume of information available on methods for solution of the analysis problem. These methods may best be classified by reference to the scope and nature of the results obtained.

One category of performance prediction systems produces only overall performance characteristics. This class is exemplified by references 1-4 and its use is discussed by Robbins and Dugan in reference 5. Ordinarily, these methods are based on one-dimensional (e.g. mean radius) calculations, on "stacking" of the estimated performance curves for individual stages, or on assumed analogous behavior between the configuration of unknown performance and previously-tested configurations. Such methods are useful for component-matching and systems studies, and to a limited extent can be used for locating mismatches between stages in multistage compressors and pumps.

A second and far more difficult type of performance prediction method is based on computation of the fluid velocity and properties at selected points in the flow path of the turbomachine. A mathematical model of the flow is developed and solution of the resulting equations permits determination of flow patterns in the turbomachine and, by appropriate averaging techniques, the overall performance characteristics. The solutions are iterative and, for all practical cases, are feasible only if accomplished using a large-scale digital computer.

The significance of such methods can readily be understood. If the local velocity and properties could be calculated with some accuracy at desired points in a proposed configuration, alternate geometry choices could be evaluated during the design process without experimentation. Furthermore, the availability of both overall performance and detailed velocity distributions for off-design operating conditions would contribute substantially to reducing required design and development time for the system in which the turbomachine is a component.

The performance prediction method described in this report is of the second type and all subsequent uses of the term "performance-prediction method" herein refer to methods of this type. As background information for the work discussed, it is appropriate to review some of the related prior studies.

Some of the earliest reported work on the analysis problem was done by Serovy (refs. 6 and 7) and by Swan (refs. 8 and 9) for axial-flow compressor configurations. Both investigations were based on a finite-difference solution of the nonisentropic radial equilibrium and continuity conditions at stations between blade rows. The steady, axisymmetric model of the flow used has been described and justified thoroughly in references 10, 11 and 12. In each method, correlations of experimental data were developed and used for predicting the radial distribution of the fluid turning angle and of the total-pressure loss for each blade row. Trial solutions were presented for single-stage geometries, and comparison with experimental data was not good. Principal discrepancies appeared to be the result of inadequate data correlations for flow angle and loss. Nevertheless, the two studies demonstrated the feasibility of numerical solution systems in generating both detailed flow passage distributions and overall compressor performance.

Jansen and Moffatt (ref. 13) used a similar approach in developing a program for computation of multistage axial-flow compressor performance.

The steady, axisymmetric model was again used as formulated by Novak (ref. 14), and this formulation included improved schemes for iterative location of the axisymmetric stream surfaces and for computation of local values of stream surface slope and curvature. Example solutions for two multistage compressor configurations were, as in the earlier investigations, less than satisfactory. It is likely that experimental data correlations and computed annulus wall boundary layer displacement thicknesses were responsible for much of the observed difficulty.

Davis (refs. 15 and 16) has described a program and data correlations for compressor analysis and design problem solutions. This program was primarily based on the flow model of Novak (ref. 14), combined with correlations available from earlier studies. Davis provides extensive flow diagrams and descriptions of program logic, together with explicit definition of the correlation equations used. Creveling and Carmody (ref. 17) also have developed an analysis program for multistage axial-flow compressors. Again, the documentation of the program is reasonably complete for both data correlations and the flow model.

More recently Daneshyar (ref. 18) and Grahl (refs. 19 and 20) used flow models similar to Novak (ref. 14) and their own data correlations to predict compressor performance. Daneshyar discusses in somewhat more detail than any earlier work, the numerical problems which are encountered in flow passage solutions. This useful discussion is supplemented by papers of Marsh (ref. 21) and Wilkinson (ref. 22), who give a good deal of insight into some of these numerical difficulties. These stability, convergence, and loss-of-solution problems are important, and this will be made evident in the discussion of the current analysis program development.

All of the preceding referenced work is concerned with analysis for axial-flow-compressor geometries. The methods are also similar in that they assume a steady, axisymmetric flow. All reported calculations are at stations located in the axial spaces between blade rows. basic flow model is, therefore, that identified as the blade-element model and described in reference 10. Fundamental differences in strategy exist between these methods in the numerical solution techniques applied, including the means for estimating local values of stream surface position, slope and curvature. It is clear, even in those instances where program documentation is not included, that program logic is not similar in the various systems. Finally, there is evidence in all cases that the experimental data correlations required are a major source of program trouble. Because these correlations, which permit calculation of blade row relative exit flow angle and blade row relative totalpressure loss as a function of spanwise location, are present in every method, they may be isolated as a possible source of difficulty in the work reported herein.

A somewhat different means for formulation of the analysis problem for axial flow turbomachines has been proposed and used by Marsh,

Gregory-Smith and others (refs.23 and 24). The matrix through-flow method has been reasonably well documented, but unfortunately has not been tested by application to an adequate number of realistic flow situations. It does not avoid the requirement for input of key empirical data correlations and in example solutions currently available, does not appear to offer a clear improvement in any area of performance calculation.

Additional examples of related research on turbomachine analysis are contained in references 25 to 28. A procedure and computer program for axial-flow turbine analysis is described in reference 25. Another is discussed Renaudin and Somm (ref. 26). A novel method for avoiding solution convergence problems is used in reference 26, which should be applicable to other turbomachine cases. Novak et al. (ref. 27) have attempted adaptation of the earlier system reported in reference 13 to the estimation of effects of inlet flow distortion on axial-flow compressor performance. Ribaut (ref. 28) has outlined a system for a very general analysis of the through-flow field, but unfortunately, the problems of application appear to be substantial.

The analysis system described in this report differs essentially from earlier efforts in a few areas. First, the blade-element model is applied to axial-flow-pump analysis. As a result, it avoids problems that derive from changes in fluid density and from the loss phenomena associated with shock waves where acoustic velocity levels are reached or exceeded in compressor blade passages. Second, the influences of stream surface slope and curvature on the radial distribution of velocity are omitted. Third, a program logic is used that is believed to be somewhat unique and very efficient. Finally, some new ideas in data correlation are developed, which can only be proven by comprehensive application and testing. In every area, it is the intent of the report to disclose the reasoning leading to choices among alternate options and to expose the segments of the program that presented the greatest difficulty.

Problem Analysis For Axial-Flow Pump Configurations

Figure 1 is a typical plot of the experimental performance of an axial-flow pump stage. The data points were obtained by measuring fluid properties and velocities at the pump inlet and downstream from the stage at stations as shown in figure 2. Operating at constant rotational speed, while controlling the flow by means of a downstream throttle, data sets were measured at specified volume flow rates. The actual points plotted were obtained by averaging the radial distributions of measured properties. Corresponding to each data point on figure 1 are radial distributions of various flow parameters and reduced data such as those shown in figure 3.

Because most system analysis and design evaluation requirements are based on the use of curves such as those in figures 1 and 3, it is

logical to make generation of such curves a major goal in a performance prediction method. It is less apparent, but equally important to note that the mode of operation and data acquisition for the pump is based on the assumption of certain characteristics of the flow that are in keeping with the nature of the flow model described in the following paragraphs. These considerations have an important influence on the development of procedures and logic.

Flow Model

The analysis method described here is directed toward the problem of prediction of the flow patterns in axial-flow pump configurations. In proceeding toward this objective, a number of decisions were made which called for the use of parameters or techniques drawn from established axial-flow compressor and pump technology. Wherever possible, attention will be called to these decisions and to the limitations which they might place on the method.

All calculations are made in planes perpendicular to the rotational axis of the configuration. These planes must be located in the axial spaces between blade rows and are analogous to measuring stations shown in figure 2. Aside from the computational convenience resulting from use of such stations, the computed velocities and properties may readily be checked against experimentally measured data obtained from the radial survey probes. The local flow in all of these calculation planes is assumed to be steady and axisymmetric. Again, this is consistent with data acquisition methods, in which most rotor data have been taken using steady-state instrumentation located at a limited number of circumferential positions. Lehind stationary blade rows, circumferential property surveys have typically been made at constant radius values and averages have been taken at each radius to compute velocity diagram quantities for that radius. The result for rotor and stator measuring planes is a series of local velocity diagrams for selected radial positions.

A coordinate system which is consistent with typical data acquisition is used for the analysis program. The system is a cylindrical type with r, θ , and z coordinates. The z axis is coincident with the rotational axis of the pump and is positive in the direction of inlet flow. Local velocity diagrams for all calculation planes follow the sign convention shown in figure 4. The reason for omission of the radial component of velocity will be given later.

The flow through all blade rows is assumed to follow stream surfaces of revolutions which are fixed by the flow continuity condition at the calculation planes upstream and downstream from the blade row. No attempt is made in the performance prediction method to trace the assumed stream surface within the blade row. For calculation purposes, these surface of revolution may be thought of as shown in figure 5. These surfaces

intersect the blades to form a cascade of blade sections. A "cascade plane" view of the intersection surface, as seen by an observer looking along a radial line, is the basis for estimation of changes in flow angle and total pressure through each blade row (ref. 29). Figure 6 represents such a cascade plane projection and defines a number of blade section geometry and cascade flow parameters.

For the calculation system, radial components of local velocity in all calculation planes are assumed to be negligible. At the same time, all stream surface slope and curvature effects are eliminated in establishing the equations governing the flow. This aspect of the flow model differs from the treatment of flows in most axial-flow compressor analysis systems, in which stream surface slope and curvature influences may be significant factors. In the current study, examination of experimental data from a large number of axial-flow pump geometries showed that stream surfaces for a range of flow conditions were very nearly cylindrical, with near-zero radial velocity components.

For all calculations, local effects of fluid shear stress are neglected in setting up the equations representing the flow model. This does not mean that the cumulative effects of shear stresses do not affect the local flow, because upstream total-pressure losses are accounted for in determining the flow patterns in each calculation plane. This is an important distinction, because it will become evident that the accumulated losses in total pressure which occur on the assumed stream surfaces are among the most significant factors in influencing velocity distributions.

The equations representing the flow are all formulated for a fluid with a constant density. Nowhere in the analysis system is provision made for two-phase flow or for effects of cavitation.

For a steady, axisymmetric flow neglecting local fluid shear stress terms, the radial component of the differential equation of motion is

$$g \frac{\partial h}{\partial r} = \frac{v_{\theta}^2}{r} - v_r \frac{\partial v_r}{\partial r} - v_z \frac{\partial v_r}{\partial z}. \tag{1}$$

For constant-density fluid flows, a historically significant parameter has been the local total head defined as

$$H = h + \frac{v^2}{2g} . \tag{2}$$

Differentiating equation (2) with respect to radius and substituting in equation (1), gives

$$g \frac{\partial H}{\partial r} = \frac{v_{\theta}^2}{r} + v_{\theta} \frac{\partial v_{\theta}}{\partial r} + v_{z} \frac{\partial v_{z}}{\partial r} - v_{z} \frac{\partial v_{r}}{\partial z}.$$
 (3)

This is the radial equilibrium condition and is the equation used to determine the radial variation of axial velocity component in each calculation plane. The last term is omitted as a result of the assumption of negligible radial components of velocity.

In each calculation plane, the flow must also be consistent with the designated pump entrance flow rate. For an axisymmetric flow of a constant-density fluid, the flow rate equation in integral form is

$$q = 2\pi \int_{r_{\text{hub}}}^{r_{\text{tip}}} V_z \, r dr . \tag{4}$$

For flow through a rotating blade row, in which energy is added to the fluid, the change in total head along a stream surface between entrance and exit calculation planes is

$$H_2 = H_1 + U_2 V_{\theta,2} - U_1 V_{\theta,1} - H_{loss}$$
 (5)

For a stationary blade row, in which no energy transfer occurs, the corresponding equation is

$$H_2 = H_1 - H_{loss} . \tag{6}$$

These equations, together with equations defining the various passage and cascade flow parameters, are those which represent the flow in the calculation planes for the axial-flow pump analysis system. In the following section, these equations will be written in finite difference form as they have been programmed for digital computer solution.

With the exception of the assumptions concerned with radial velocity components and stream surface shape effects, the flow model proposed is essentially the same as that presented in reference 10 and used in numerous axial-flow compressor design and analysis situations. The equations presented are particularly adapted to the study of constant-density fluid flows. It should also be noted that no arbitrary factors are defined to account for passage wall effects. Specifically, no boundary-layer blockage factor enters the continuity condition. This point should be recalled in connection with comparison and interpretation of experimental and computed results as presented in later sections of this paper.

Computing Sequence

As described in the following section, the performance analysis program computes fluid velocities and properties for discrete values of inlet flow rate at a constant pump rotational speed for fixed and specified passage and blade row geometries. Beginning at a base flow rate, the program marches up and/or down in flow rate in much the same way

the pump configuration would be experimentally evaluated. Results available to the user include those which would be most significant in design evaluation.

Numerical Solution of Governing Equations

The simple radial equilibrium equation for determination of the radial distribution of axial velocity $V_{\rm Z}$ in the leaving flow from a blade row is given in equation (3). Solution of this equation for arbitrary blade row geometry and operating conditions has to be performed numerically in conjunction with requirements of the continuity equation and empirical approximations for head losses and leaving flow angle deviation in the flow. The development of a finite difference approximation to equation (3) for the numerical solution is given below.

Consider the meridional section through a blade row as shown in figure 5. A finite number of finitely spaced streamlines given by the traces of the axisymmetric stream surfaces in the meridional plane are used; intersections of these stream surfaces in the blades are the blade elements defined by the flow through the blade row. The computing stations just upstream and downstream of the blade row are constant z-planes identified as i and i+1, respectively. As seen in figure 5, two adjacent streamlines in the analysis are called streamlines j and j+1, with the streamline j=1 the hub streamline, and $j=j_{\lim}$ the tip or outer casing streamline.

The flow conditions satisfying radial equilibrium and continuity at the upstream axial station i are known. To be determined, of course, is the radial equilibrium and continuity solution for the flow leaving the blade row at station i + 1, and the radial positions there of the streamlines used in the solution.

The finite difference approximation to equation (3) is obtained by integration of the equation between streamlines j and j+1 at axial station i+1. Note again that the final term in equation (3) is omitted because of the assumption of negligible radial velocities. Thus,

$$\frac{v_{z i+1, j+1}^{2} - v_{z i+1, j}^{2}}{2} = g(H_{i+1, j+1} - H_{i+1, j}) - \frac{1}{2} \left(\frac{v_{\theta i+1, j+1}^{2}}{r_{i+1, j+1}}\right) + \frac{v_{\theta i+1, j}^{2}}{r_{i+1, j}} (r_{i+1, j+1} - r_{i+1, j}) - \frac{1}{2} \left(v_{\theta i+1, j+1}^{2} - v_{\theta i+1, j}^{2}\right) - \frac{1}{2} \left(v_{\theta i+1, j+1}^{2} - v_{\theta i+1, j}^{2}\right)$$

$$(8)$$

Solving this equation for the velocity $V_{z\ i+1,\ j+1}$ in terms of the known velocity $V_{z\ i+1,j}$ on the adjacent streamline and remaining variables yet to be determined, we obtain,

$$v_{z i+1, j+1}^{2} = v_{z i+1, j}^{2} + 2g(H_{i+1, j+1} - H_{i+1, j})$$

$$- \left(\frac{v_{\theta i+1, j+1}^{2}}{r_{i+1, j+1}} + \frac{v_{\theta i+1, j}^{2}}{r_{i+1, j}}\right) (r_{i+1, j+1} - r_{i+1, j})$$

$$- (v_{\theta i+1, j+1}^{2} - v_{\theta i+1, j}^{2})$$
(9)

The head difference term in equation (9) can be written in terms of the ideal head rise and head loss for the (j+1)th streamline or blade element as,

$$H_{i+1,j+1} - H_{i+1,j} = H_{i,j+1} + (\Delta H_{ideal})_{j+1} - H_{loss,j+1} - H_{i+1,j}$$
 (10)

This, with substitution of the ideal head rise from equation (5), along with the velocity triangle relation

$$v_{\theta i+1, j+1} = v_{i+1, j+1} - v_{z i+1, j+1} \tan \theta'_{i+1, j+1}$$
 (11)

for the leaving whirl velocity component, becomes

$$H_{i+1,j+1} - H_{i+1,j} = H_{i,j+1} + \frac{1}{g} \left[U_{i+1,j+1} \quad (U_{i+1,j+1} - V_{i+1,j+1}) - U_{i,j+1} V_{\theta i,j+1} \right] - H_{loss,i+1} - H_{i+1,i}.$$
(12)

Finally, with substitution of equations (11) and (12) into equation (9) it is readily apparent that the unknown velocity $V_{z \ i+1, j+1}$ is reintroduced on the right-hand side of the equation. With further extensive but straight-forward rearrangement of the equation, the following quadratic equation for $V_{z \ i+1, j+1}$ results:

$$AV_{z}^{2}_{i+1, j+1} + BV_{z}_{i+1, j+1} + C = 0$$
 (13)

where

A = 1 +
$$\tan^2 \beta'_{i+1, j+1} \left[1 + \left(\frac{r_{i+1, j+1} - r_{i+1, j}}{r_{i+1, j+1}} \right) \right],$$
 (14)

$$B = -2U_{i+1, j+1} \tan \beta_{i+1, j+1} \left(\frac{r_{i+1, j+1} - r_{i+1, j}}{r_{i+1, j+1}} \right), \quad (15)$$

$$C = -v_{z i+1, j}^{2} - 2g(H_{i, j+1} - H_{i+1, j} - H_{loss, j+1})$$

+
$$2U_{i,j+1} V_{\theta i,j+1} - U_{i+1,j+1}^2 \left(\frac{r_{i+1,j}}{r_{i+1,j+1}} \right)$$

+
$$v_{\theta i+1,j}^2 \left(\frac{r_{i+1,j+1}}{r_{i+1,j}} - 2 \right)$$
. (16)

Solution of equation (13) is iterative due to the fact that V_z i+1,j+1 is dependent on the leaving streamline radial positions, the blade element head loss and flow deviation, and on the leaving flow total head H_{i+1} , j and velocity components V_z i+1,j, V_{θ} i+1,j on the adjacent streamlines as well. A plot of the left-hand side of equation (13) as a function of V_z i+1,j+1 is a parabola; the correct root of equation (13) is at the intersection of the parabola with the V_z axis yielding the greatest V_z . The iteration process to obtain the V_z distribution leaving a blade row continually revises the coefficients in equation (13) for any one streamline, and hence the solution, until convergence is obtained. In the case of divergent iterations, the parabola is altered and readjusted until an intersection of the parabola (for the streamline) with the V_z axis fails to exist.

Initialization of head losses at zero and streamline radii at constant radial increments are therefore used at an initial flow rate assignment. Also, the axial velocity component at a starting or base streamline in the leaving flow (V_{Z} i+1,jbase) is assumed for the initial flow rate. With this starting information, deviation angle can be calculated in order to determine relative leaving flow angle $\beta_{i+1,j+1}^i$, and leaving flow total head and whirl velocity on the adjacent streamline. This incremental procedure is followed to solve for the blade element radial distribution of axial velocity, working adjacent streamline to the next, from the base streamline outward to the outer casing and inward to the hub.

With the $V_{\rm Z~i+1}$ distribution known, the continuity requirements from the assigned flow rate can be checked to revise the base streamline velocity and iterate as necessary. This is done using simple quadrature across the annulus to obtain a measure of the flow rate according to

$$Q_{i+1,j_{1im}} = \sum_{j=1}^{j_{1im}-1} (v_{z i+1,j+1} + v_{z i+1,j}) (r_{i+1,j+1}^2 - r_{i+1,j}^2).$$
(17)

Upon convergence of the base streamline axial velocity value, radial positions of the leaving streamlines are determined according to continuity and the entering streamline radii; the leaving radii are revised and iterated on until convergence is obtained. Finally, exterior to the radial equilibrium and continuity iterations, head losses are estimated on the basis of the determined flow. This procedure for solution is followed, of course, at the exit axial station for each blade row through the pump, with the determined leaving flow for a blade row becoming the known inlet flow for the following blade row. (Details of the radial equilibrium and continuity solution are given in the later discussion of subroutine RADEQC of the pump performance computer program. The basis of blade element head loss and deviation angle calculations is in the following section.)

As will be illustrated in the RESULTS section, the method for predicting axial-flow pump off-design performance proposed in this report can only be as successful as the blade-element total pressure loss and deviation angle estimation procedures required. The simplifications that led to the tractable mathematical formulation of the axial-flow pump off-design analysis problem nust eventually be compensated for via realistic loss and deviation angle prediction.

To date, totally satisfactory general means for obtaining axial-flow pump or compressor losses and deviation angles, even in terms of empirical correlations, are not to be found in the literature. Several options for loss and for deviation angle prediction in pumps have been made available with the present computer program. The background associated with each technique is described in the following paragraphs. Stationary plane cascade results are discussed first followed by an explanation of how these results were extended to apply to three-dimensional pump flow.

Because of the short time available for developing general three-dimensional pump flow blade-element loss and deviation angle calculation procedures, an empirical approach using reasonably orthodox ideas was pursued. Realizing that completely satisfactory loss and deviation angle estimation procedures would probably not result from empiricism, the goal established was to seek procedures that represented improvement over use of Carter's rule for deviation angle estimation and two-dimensional cascade data for loss calculation. Correlations are based on axial-flow pump rotor blade-element loss and deviation angle data. For stationary blade rows, pump configuration data were not available in sufficient quantity to permit correlation studies.

Stationary Plane Cascade Flow

In view of the widespread use of the blade-element method, it is not surprising to find that most current loss and deviation angle prediction methods are traceable to stationary two-dimensional cascade flow ideas. In many instances, more or less empirical "correction factors" have been used to make two-dimensional methods applicable to turbomachinery flows. Thus it seems appropriate to discuss briefly some of the two-dimensional cascade loss and deviation angle research relevant to the options available with the present performance prediction method.

Loss prediction. — As fluid flows over the suction and pressure surfaces of an airfoil representing a cross-section of a turbomachine blade, boundary layers develop on these surfaces and meet at the trailing

edge to produce a wake. Consequently, a decrease or "loss" of relative total pressure is suffered by the fluid as it flows past the airfoil. Depending mainly on the surface pressure gradients involved, large or small wakes and consequent losses may occur. Large losses are generally related to boundary layer separation on either the airfoil suction or pressure surface.

Results of the two-dimensional cascade loss-related research conducted by S. Lieblein and co-workers (refs. 30 to 34) in the 1950's remain influential today. Three data correlating parameters, namely, diffusion factor, blade-wake momentum thickness to chord ratio, and equivalent diffusion ratio that evolved from this work form the basis for many current axial-flow turbomachine loss prediction techniques.

Diffusion factor: Chronologically, the diffusion factor was developed first (ref. 30). It was mainly intended and developed as a limiting-blade-loading or separation criterion for design point operation that could be easily calculated from blade row inlet and outlet velocity diagram values. The Buri shape factor (ref. 35),

$$\Gamma = \frac{\theta}{U} \frac{dU}{dx} \left(\frac{U\theta}{\nu} \right)^{n} , \qquad (18)$$

was selected as the fundamental basis for the diffusion factor. Application of the Buri shape factor to the blade suction-surface velocity distribution of a blade element operating at minimum loss in a two-dimensional cascade led to the derivation of the diffusion factor or parameter

$$D = 1 - \frac{V_2}{V_1} + \frac{\Delta V_0}{a_0 V_1} + b$$
 (19)

where a is empirically determined to be equal to 2.0 and b is considered to be negligibly small. This diffusion factor was used with data for NACA 65-series compressor blade sections in two-dimensional low speed cascade and found to be satisfactory in terms of defining a limiting value of diffusion. The diffusion factor was also applied to selected conventional (65-series and circular-arc blade section) single stage compressor rotor and stator data. No significant variation of minimum (design) loss coefficient with diffusion factor was noted for the hub and mean radius regions of the rotors and the hub, mean and tip regions of the stators over the range of data considered. A marked and practically linear variation of minimum (design) and even off-design (positive incidence) loss coefficient with diffusion factor was noted for the tip region data of the rotors for a relative inlet Mach number less than 0.75.

Momentum thickness to chord ratio: Further developments by Lieblein and co-workers (ref. 32) appeared to be motivated by the idea that low-speed two-dimensional cascade losses are mainly attributable to the blade

suction and pressure surface boundary layers. It was pointed out by Lieblein (ref. 36) that according to the results of references 32, 37, and 38, the contribution of conventional blade trailing-edge thickness to the total loss is not generally large for compressor sections. He also observed, on the basis of the data of references 37 and 39, the effect of blade thickness is small for conventional cascade configurations. The approach to developing a viable loss prediction method consisted of developing a relationship between loss and blade wake characteristics and then identifying parameters that significantly influence these wake characteristics. The following relationship between total-pressure loss coefficient and blade wake characteristics was developed (ref. 32) for the outlet measuring plane (up to 1.5 chord lengths downstream of the blade trailing edge) of a constant density flow two-dimensional cascade of compressor blades:

$$\overline{\omega} = 2\left(\frac{\theta}{c}\right) \frac{\sigma}{\cos \beta_2} \left(\frac{\cos \beta_1}{\cos \beta_2}\right)^2 \frac{\frac{2H_2}{3H_2 - 1}}{\left[1 - \frac{\theta}{c} \frac{\sigma H_2}{\cos \beta_2}\right]^3}$$
(20)

The important assumptions associated with this equation are that

- the cascade outlet flow can be divided into a wake region where total pressure varies and a free stream region where total pressure remains constant,
- 2. the inlet flow is uniform across the blade spacing,
- the outlet static pressure and flow angle are constant across the entire blade spacing,
- 4. the outlet free-stream total pressure is equal to the inlet total pressure.

The term involving shape factor

$$\frac{\frac{2H_2}{3H_2 - 1}}{\left[1 - \left(\frac{\theta}{c}\right) \frac{\sigma H_2}{\cos \beta_2}\right]^3}$$

was judged to be essentially equal to 1.0 for conventional unstalled configurations. The parameters primarily influencing the boundary layer growth and subsequent losses on low speed cascade blade sections were identified (ref. 36) as a) blade surface velocity gradients, b) blade-chord Reynolds number, and c) the free-stream turbulence level.

Considering the suction surface boundary layer and thus the suction surface velocity distribution as being the major contributor to wake momentum thickness and consequently loss, Lieblein (ref. 36) successfully correlated some two-dimensional cascade minimum-loss data with (θ/c) and D. Recalling that the shape factor term in the relationship between loss coefficient and wake characteristics is secondary, it was also determined that approximate values of θ/c calculated from

$$\frac{\overline{\omega} \cos \beta_2}{2\sigma} \left(\frac{\cos \beta_2}{\cos \beta_1} \right)^2$$

and

$$\frac{\overline{\omega} \cos \beta_2}{2\sigma}$$

resulted in strong correlation of the cascade minimum loss data of reference 40.

Equivalent diffusion ratio: Subsequently, Lieblein (refs. 33 and 34) showed that two-dimensional cascade data for minimum-loss incidence angle, as well as incidence angles greater than the minimum loss value, could be generally correlated with θ/c and $V_{max,s}/V_2$, freestream as correlating parameters. Since the diffusion ratio, $V_{max,s}/V_2$, freestream is difficult to evaluate for turbomachine flow, an equivalent diffusion ratio, that could be calculated in terms of blade row inlet and outlet characteristics, was sought. The following semi-empirical relationship was developed for two-dimensional cascade flow:

$$DEQ = \frac{\cos \beta_2}{\cos \beta_1} \left[C_1 + C_2 (i - i^*)^{C_3} + C_4(C_P_*) \right]$$
 (21)

where

C.P. =
$$\frac{\Gamma}{cV_1}$$
 cos β_1 ,
 C_1 = 1.12,
 C_2 = 0.0117 for NACA 65(A_{10}) blades,
= 0.007 for C.4 circular-arc blade,

$$C_3 = 1.43,$$
 $C_{\Delta} = 0.61,$

and

 i^* = minimum loss incidence angle.

Reynolds number effect: As shown by Lieblein in reference 36, laminar boundary layer separation associated with low Reynolds number flow significantly affects the blade element losses involved. At low Reynolds number, turbulence level markedly influences the laminar boundary layer and thus loss. As Reynolds number increases, the extent of laminar boundary layer separation decreases and the influence of Reynolds number and turbulence level on loss diminishes. Schlicting and Das (ref. 41) suggest that "low" Reynolds numbers are of order 10⁵, while "high" Reynolds numbers are of order 10⁶. The evidence presented by Lieblein (ref. 36) supports these numbers. Because the NASA axial-flow pump data used for determining loss correlations involved minimum blade-chord Reynolds number of the order of 10⁶, Reynolds number and turbulence effects on loss were not considered further during the present study.

Deviation angle prediction. — The average flow angle of the fluid leaving a cascade of identical blades differs from the blade outlet angle by an amount defined as the deviation angle. Cascade geometrical and flow parameters thought to influence stationary plane cascade deviation angles are as follows:

blade setting angle,
solidity,
profile shape,
total camber,
maximum blade thickness,
thickness and camber distribution,
trailing-edge thickness,
surface finish,
incidence angle,
axial velocity ratio,
inlet velocity level (Mach number),
Reynolds number,
turbulence level,
unsteadiness, and
cavitation.

Two-dimensional geometric parameters: Two-dimensional cascade results, and to a lesser extent potential flow theory, have been used to establish the values of deviation angle for various two-dimensional

cascade geometries. The plausibility of the dependence of deviation angle in two-dimensional flow on geometric parameters can be established by considering the cascades drawn in figure 7. The cascades in figure 7a each have the same chord length, solidity and camber, but the cascade on the right has a higher blade setting angle than the other cascade, and hence has a significantly shorter length of passage bounded on both sides by blade surfaces. Thus, for a fixed incidence angle, increasing blade setting angle tends to decrease guidance of the flow and hence tends to increase deviation angle. Decreasing solidity, o, also tends to decrease guidance of the flow and increase deviation angle as seen by the difference in channel length of the two cascades in figure 7b. Although it is not so graphically obvious (figure 7c) deviation angle does increase with increasing camber, and according to Lieblein (ref. 36) the relationship between deviation angle and camber is linear for potential flow.

One frequently-used deviation angle prediction equation, Carter's rule (ref. 42) reflects these ideas as

$$\delta = \frac{{}^{\text{m}}_{\text{c}} \phi^{\text{O}}}{1/2} \tag{22}$$

where $m_{\rm C}$ is a function of blade setting angle and the position of maximum camber. Curves of $m_{\rm C}$ as a function of blade setting angle that are based on theory and experimental data are given by Carter and Hughes (ref. 43) for circular arc and parabolic arc (maximum camber at 40% of the chord from the leading edge) camberline blades. Howell (ref. 44) ascribed to Constant (ref. 45) an early version of equation (22) in which $m_{\rm C}=0.26$ was used. Equation (22) applies specifically to the "nominal" incidence angle which Howell (ref. 44) defines as the incidence angle for which the turning angle, (ε), is equal to 0.8 of the turning angle at which the loss is twice the minimum value, however, it is frequently applied throughout the low-loss incidence angle range under the assumption that deviation angle does not change appreciably with incidence angle in the low-loss range.

Lieblein's method: A deviation angle prediction method, which includes more geometric parameters, was presented by Lieblein (ref. 36). The method was based on two-dimensional cascade data for NACA 65-series compressor blades which were presented by Emery et al. (ref. 40). Correlations were made for performance at a reference incidence angle (i_{ref}) defined to be midway between the incidence angle at which the total pressure loss across the cascade was equal to twice the minimum-loss value (see figure 8). At the reference incidence angle, i_{ref} , deviation angle is expressed as

$$\delta = \delta_{0} + m\phi^{0} \tag{23}$$

where δ_O is the reference deviation angle for zero camber, ϕ^O is camber, and m is the slope of the deviation angle function with camber. Curves are presented by Lieblein (ref. 36), giving the slope factor m as a function of inlet air angle and solidity for circular-arc-mean-line blades. Inlet air angle was used instead of blade setting angle because the cascade date of Emery et al. (ref. 40) were obtained at a constant inlet air angle rather than a constant blade setting angle. The zero-camber deviation angle is given by Lieblein (ref. 36) as

$$\delta_{o} = \left(K_{\delta}\right)_{sh}\left(K_{\delta}\right)_{t}\left(\delta_{o}\right)_{10} \tag{24}$$

where $(\delta_0)_{10}$ represents the zero-camber deviation angle for a 10% thick NACA 65-series distribution, $(K_{\delta})_{sh}$ is a correction for blade shapes with thickness distributions different from the 65-series, and $(K_{\delta})_t$ is a correction for maximum blade thickness other than 10% of the chord. Empirical curves are given for $(\delta_0)_{10}$ as a function of inlet air angle and solidity and for $(K_{\delta})_t$ as a function of maximum thickness ratio, t_{max}/c . A value of 1.1 for $(K_{\delta})_{sh}$ is recommended for C-series circulararc blades and 0.7 for double-circular-arc blades. Both of these values were based on limited data. Plots of deviation angle versus camber, comparing values from equation (23) with cascade data of Emery et al. (ref. 40), are given by Lieblein (ref. 36). Equation (24) approximates the data quite well. However, at high cambers where D-factors exceed 0.62, the experimental data tend to fall above the predicted values. Blade sections operating at D-factors greater than 0.62 evidently have blade surface boundary layers thick enough at iref to cause the flow to differ significantly from the potential flow for which a linear relation between deviation angle and camber angle is predicted. A quantitative evaluation of deviation angle as a function of camber for D-factors greater than 0.62 is currently lacking.

Both methods previously described assumed the incidence angle to be fixed at some "design" value. In the following paragraphs, methods to predict the deviation angle at "off-design" values of incidence angle are reviewed.

Incidence angle effects: The deviation angle of a plane cascade is a function of the incidence angle in addition to blade geometry. A typical curve of deviation angle as a function of incidence angle for a cascade with a fixed inlet flow angle is shown in figure 9. The deviation angle curve can be roughly divided into two parts, one corresponding to the so-called low-loss incidence angle interval and the other corresponding to incidence angles outside the low-loss interval. When the incidence angle is in the low-loss interval, the blade surface boundary layers are probably quite thin, so that the flow closely approximates potential flow. Therefore, in the low-loss region, the functional relationship between deviation angle and incidence angle for a two-dimensional cascade is quite similar to the relationship for potential flow. Lieblein

(ref. 46) concluded, based on calculations using the potential flat plate flow theory of Weinig (ref. 47), that $\left(\frac{d\delta}{di}\right)_{ref}$ is positive for potential flow and that it is a function of solidity and blade chord angle. Smith (ref. 48), in a discussion of reference 46, indicated that $\left(\frac{d\delta}{di}\right)_{ref}$ is also a strong function of camber.

Using the low-speed cascade data for 65- $(A_{10})10$ blades of reference 40, Lieblein developed an empirical method to estimate the variation of deviation angle in the low-loss incidence interval. He assumed that since operation could be considered to be in the low-loss region for only a small incidence angle interval, the following linear function could be used to compute deviation angle:

$$\delta = \delta_{\text{ref}} + \left(i - i_{\text{ref}}\right) \left(\frac{d\delta}{di}\right)_{\text{ref}}$$
 (25)

where δ_{ref} and $\left(\frac{d\,\delta}{d\,i}\right)_{\text{ref}}$ are determined at i=i ref. Lieblein presented a family of curves from which values of $\left(\frac{d\,\delta}{d\,i}\right)_{\text{ref}}$ may be obtained for solidities ranging from 0 to 1.8, and for inlet air angles ranging from 0 to 70°. These correlations are also presented in reference 36.

Because the 65-Series cascade data (ref. 40) were obtained with inlet air angle fixed, the $\left(\frac{d\,\delta}{d\,i}\right)_{ref}$ obtained from Lieblein's curves is applicable to a constant inlet air angle cascade, while, as Smith (ref. 48) pointed out, in practical applications the blade setting angle, γ , is fixed and the inlet air angle varies. Smith (ref. 48) developed relations to obtain $\left(\frac{d\,\delta}{di}\right)_{ref}$ applicable to fixed- γ blade rows from Lieblein's correlations and gave a numerical example in which the fixed- γ derivative was larger than the fixed- β_1 derivative by a factor of three for NACA 65-(12)10 blades with σ = 1.0 and β_1 = 60°. Figure 10 shows the variation of deviation angle with incidence angle from reference 40 for the NACA 65-(12)10 blades of Smith's (ref. 48) example at a constant inlet air angle, β_1 = 60°. Date from reference 40 were crossplotted to obtain a second curve shown in figure 10 for the same blades with a constant stagger angle of 47.6° , which is the stagger angle of a cascade of NACA 65-(12)10blades with β_1 = 60°, σ = 1.0, and i = i_{ref} computed using the correlations of reference 46. Graphically determined values of $\left(\frac{d \, \delta}{d \, i}\right)_{ref}$ are compared with values from Lieblein's (ref. 46) correlation and Smith (ref. 48) calculation. Based on the differences in this example, it appears that the fixed- γ derivative should be used in preference to fixed- β_1 derivatives in analysis applications when computing the change of deviation angle for a change of incidence angle in the low-loss incidence angle

interval. Smith (ref. 48) also pointed out that because the fixed- γ derivative was strongly dependent on camber, the fixed- β_1 derivative should be also.

Howell (ref. 49) presented a single curve for $(\delta - \delta_{nom})/\varepsilon_{nom}$ as a function of (i - i_{nom})/ e_{nom} where the nominal conditions occur at 0.8 of the turning angle at which the loss is twice the minimum value.

Apparently no method (empirical or analytical) has been published as yet to predict the functional relation between deviation angle and incidence angle outside the low-loss incidence angle interval, even for a plane two-dimensional cascade flow.

Axial velocity ratio effects: It is well known that the deviation angle in a rectilinear or plane cascade depends on the ratio of the leaving to the entering axial velocities (AVR). Katzoffet al. (ref. 50) among others reported the phenomenon in 1947. Because of this effect, discrepancies exist between deviation angle data measured under twodimensional conditions in cascades with side and end wall suction and data measured in similar cascades with solid walls. The leaving axial velocity in a solid wall cascade is usually higher because of the general increase of boundary layer thickness and particularly because of regions of separation in the corner where the blade suction surface intersects the side wall. These regions of separation reduce the effective flow area, which raises the general level of axial velocity leaving the blade row. Elimination of these regions of separation and establishment of a constant axial velocity through the cascade can be accomplished by continuous boundary-layer removal through porous walls, as described in Erwin and Emery (ref. 51). A constant axial velocity is a consequence of continuity for the two-dimensional flow of an incompressible fluid.

The changes in flow through a cascade as axial velocity ratio changes may be described by considering the accompanying change in pressure distribution. If the losses are assumed constant for a small change in AVR, then the static pressure rise across a blade in a cascade decreases (increases) as AVR increases (decreases), assuming incompressible flow. The resulting change in pressure distribution is illustrated in figure 11. In general, the airfoil circulation may also be expected to change as AVR varies. The magnitude of the change in circulation has a direct effect on the change in deviation angle. Evaluating circulation using the path EFGH of figure 12, assuming $s_1 = s_2$, yields the result

$$\Gamma = s(V_{\theta,1} - V_{\theta,2}) . \tag{26}$$

From the velocity diagrams in figure 12 it is apparent that the deviation angle will decrease as AVR increases, if circulation increases (i.e. V_{θ} , 2 decreases) or decreases less than an amount that allows V_{θ} , 2 to increase by more than d units. Similarly if circulation decreases

or increases less than a critical amount, deviation angle will increase as AVR decreases. In fact, available experimental results (refs. 50 to 53) indicate that deviation angle does decrease with increasing AVR and increases with decreasing AVR, although the data of reference 51 indicate that circulation decreases slightly as AVR increases. A reasonably complete summary of empirical, semi-empirical and potential flow methods for calculating axial velocity ratio effects is presented in reference 54.

Thickness and camber distribution: Factors are presented in reference 36 which compensate for the differing thickness distributions of 65-series, C-series circular-arc, and double-circular-arc blades. Though this correction is rather small, the data of reference 55 (e.g., figure 57 of that reference) indicate that camber distribution may have significant effects on deviation angle, at least at off-design incidence angles. For double-circular-arc blade sections, however, predicting this effect does not seem especially important.

Trailing-edge thickness effect: Minor geometric parameters, such as trailing-edge thickness, apparently have negligible effect on deviation angle for normally specified values (refs. 37, 55 and 56).

Miscellaneous effects: The effect of fluctuation of circulation and other unsteady flows on deviation angle is unknown. Cavitation and Mach number effects are listed for completeness, but are beyond the intended scope of the present method and will not be considered further. Surface finish, turbulence level and Reynolds number did not significantly affect the pump data available for correlation and hence were not considered in detail.

Extension of Stationary Plane Cascade Methods and Results to Pump Rotor Flow

If the previously mentioned two-dimensional cascade loss and deviation angle prediction methods are to be extended to serve usefully in axial-flow pump design and analysis, the significant differences existing between stationary cascade and axial-flow pump flows need to be identified and considered. Many of the complicated features of pump flow are inherently absent in the cascade environment. Whereas the flow through a typical axial-flow pump blade row is three-dimensional and unsteady, the flow through plane cascades is mainly steady and twodimensional. The three-dimensionality and unsteadiness associated with typical pump flow stem mainly from blade divergence and twist and rotor relative motion with respect to the fluid and stationary annulus walls and blades, features usually not found in plane cascades. At constant speed, a typical pump rotor blade section operates with unchanging blade setting angle as incidence changes with flow rate. Most plane cascades have been operated with incidence variation accomplished by changing cascade blade setting angle while maintaining constant relative inlet

angle. In a large portion of the plane cascade work, end wall boundary layer effects on the resulting flow were minimized by fluid removal. The flow through an axial-flow pump blade row on the other hand is appreciably influenced by end wall boundary layers.

Within the time available for developing loss and deviation angle prediction methods, it was decided that axial-flow pump experimental data correlation would be most practical and therefore should be pursued. Available for this purpose was a substantial amount of axial-flow pump rotor experimental data obtained at the NASA Lewis Research Center (ref. 57). Pertinent information related to these rotors is given in Table I. To minimize analysis time and cost, five rotor configurations were selected as representative of the range of geometry and design variables present in the twelve rotor configurations for which data were initially avail-The five selected, indicated by asterisks in Table I, were used exclusively to obtain the correlations explained below. Configurations 07 and 09 differ only in the number of blades and the chord length. The hydrodynamic design is identical for configurations 5, 6, 8, 9 and 10, but configurations 5 and 6 have 9-in. diameters while configurations 8, 9, and 10 have 5-in. diameters. The only other differences among these five configurations are the tip clearance values. Configurations 13 and 16 have the same blade angles but different blade section profiles. The double-circular-arc profile of configuration 13 is the more conventional profile and thus configuration 13 was chosen instead of configuration 16. Configuration 15 data were reserved to "test" the resultant correlations. Although the two-parameter correlation philosophy served well in working with plane cascade data, the minimum number of axial-flow pump data correlation parameters necessary was felt to be three. An explanation of the development of the various parameters associated with the three-parameter loss and deviation angle correlation options available with the present off-design analysis computer program follows.

Loss prediction. - Swan (refs. 8 and 9) claimed reasonable success in correlating axial-flow compressor blade-element profile and secondary losses using Lieblein's DEQ (modified slightly for use with compressor rotor

flow) and θ/c as calculated from $\frac{\theta}{c} = \frac{\cos \beta_2}{2\sigma}$ as correlating parameters. Additionally, spanwise location was used as a third correlating parameter for minimum-loss data and inlet relative Mach number was used as the third correlating parameter for off-minimum-loss data. In view of this fact, it was felt that appropriately modified versions of Lieblein's DEQ and θ/c relationships, plus at least one other independent correlating parameter, might serve as the base for an axial-flow pump blade-element data correlation method. The modification of DEQ for use with pump rotor and stator flows is outlined in Appendix A. The results are:

$$DEQ_{r} = \frac{V_{z,1} \cos \beta_{2}'}{V_{z,2} \cos \beta_{1}'} \left\{ C_{1} + C_{2} \left(i - i_{ref} \right)^{C_{3}} + C_{4} \frac{\cos^{2} \beta_{1}'}{\sigma_{1} V_{z,1}} \left[\frac{r_{1}}{r_{2}} V_{\theta,1}' - V_{\theta,2}' \right] \right\}$$
(27)

and

$$DEQ_{s} = \frac{V_{z,1} \cos \beta_{2}}{V_{z,2} \cos \beta_{1}} \left\{ C_{1} + C_{2} \left(i - i_{ref} \right)^{C_{3}} + \frac{C_{4} \cos^{2} \beta_{1}}{\sigma_{2} V_{z,1}} \left[V_{\theta,2} - \frac{r_{1}}{r_{2}} V_{\theta,1} \right] \right\}.$$
(28)

Several parameters related to Lieblein's (θ/c) parameter for plane cascades were identified as possible candidates for use with the axial-flow pump data. These were:

$$\left(\frac{\theta}{c}\right)_{A} = \frac{\overline{w} \cos \beta_{2}^{t}}{2\sigma} , \qquad (29)$$

$$\left(\frac{\theta}{c}\right)_{B} = \frac{\overline{w} \cos \beta_{2}'}{2\sigma} \left(\frac{\cos^{2} \beta_{2}'}{\cos^{2} \beta_{1}'}\right) \left(\frac{v_{z,1}}{v_{z,2}}\right)^{3} \left(\frac{3H_{2}-1}{2H_{2}}\right) , \qquad (30)$$

$$\left(\frac{\theta}{c}\right)_{C} = \frac{\overline{\omega} \cos \frac{\beta_{2}'}{2\sigma}}{2\sigma} \left(\frac{v_{1}'}{v_{2}'}\right)^{2} , \qquad (31)$$

$$\left(\frac{\theta}{c}\right)_{D} = \frac{\overline{w} \cos \beta_{2}^{'}}{2\sigma} \left(\frac{\cos \beta_{2}^{'}}{\cos \beta_{1}^{'}}\right)^{2}, \qquad (32)$$

$$\left(\frac{\theta}{c}\right)_{E} = \frac{\overline{w} \cos \beta_{2}^{t}}{\left(\frac{\overline{P}_{1}^{t} - \overline{P}_{2}}{\overline{P}_{1}^{t} - \overline{P}_{1}}\right) \sigma \left(\frac{4H_{2}}{3H_{2} - 1}\right) + \overline{w}\sigma H_{2}} .$$
(33)

Note that $(\theta/c)_A$ and $(\theta/c)_D$ are abbreviated forms of Lieblein's relationship for θ/c for plane cascade flow that was shown earlier (equation 20) to be suitable for correlating plane cascade minimum loss data (ref. 36). Derivations of $(\theta/c)_B$ and $(\theta/c)_C$ have been included in Appendix B. The derivation of $(\theta/c)_E$ is given in reference 58.

A "blade-loading" parameter used extensively in compressor design and sometimes for correlating compressor off-design loss data is the D-factor modified for 3-dimensional flow, as shown in Appendix C:

$$D_{\mathbf{r}} = 1 - \frac{V_{2}'}{V_{1}'} + \frac{r_{1}V_{\theta,1}' - r_{2}V_{\theta,2}'}{\sigma_{av}(r_{1}+r_{2})V_{1}'}$$
(34)

$$D_{s} = 1 - \frac{V_{2}}{V_{1}} + \frac{r_{2}V_{\theta,2} - r_{1}V_{\theta,1}}{\sigma_{av}(r_{1}+r_{2})V_{1}}.$$
 (35)

In order to "test" the various relationships for blade wake momentum thickness parameter for suitability as experimental data correlators, each was used with the pump data provided by NASA. DEQ and D as expressed by equations (27-28) and (34-35), respectively, provided an indication of blade loading level. In order to ascertain possible effects associated with spanwise location that are not strongly reflected in the expression for wake momentum thickness and loading, suitability tests were performed on data from similar spanwise locations only. As indicated in figures 13, $\left(\theta/c\right)_A$ and $\left(\theta/c\right)_E$ appeared to be about equally more suitable than the other 0/c relationships as experimental data correlators. Similar trends were indicated when D-factor was used as the abscissa variable. $(\theta/c)_A$ or $(\theta/c)_E$ seemed to be entirely satisfactory. Nevertheless, since $(\theta/c)_A$ is the simpler relationship, it was selected as the wake momentum thickness parameter to use in constructing the three-parameter loss tables involving $(\theta/c)_A$, spanwise location and DEQ or D. The tables are represented graphically in figures 14 and 15. The curves shown are indicative of the trends demonstrated by the NASA axial-flow pump rotor data in figures 16 and 17.

In order to ascertain the worth of the three-parameter loss tables mentioned above, with respect to a two-dimensional cascade data related method for calculating losses, an option involving equations (27) or (28) for DEQ, equations (20) for loss coefficient and the two-dimensional cascade loss data indicated in figure 18 was made available.

<u>Deviation angle prediction</u>. — In addition to those items influencing deviation angle previously discussed in the Stationary Plane Cascade Section, the following can be identified for the three-dimensional flow through a typical axial-flow pump rotor:

corner stall,
tip clearance,
annulus wall boundary layers,
radial gradients of circulation,
radial flow of blade boundary layer fluid,
blade row interaction parameters, and
blade sweep and dihedral angles.

Corner stall and tip clearance flow, while important locally, probably directly affect the deviation angle for only a small percentage of the total span. For this reason, and because data are lacking for empirical correlations, the influence of corner stall and tip clearance flow was not directly accounted for in the present correlation.

Presence of annulus wall boundary layers in the flow approaching a blade row tends to result in local overturning or decreased deviation angles. This phenomenon has been discussed for the simpler case of curved channels in reference 59 and for two-dimensional cascades in reference 60. It is also included in the more general analysis of reference 61. However, in all cases, the flow model is highly idealized, and the theory does not appear to be directly applicable to real flows where skewed boundary layers and tip clearance flows exert significant influence on flow patterns. In any case, the percentage of fluid involved is small and the errors involved in neglecting cascade secondary flow are not expected to be large (see data presented in reference

The effects of radial gradients of circulation on deviation angle have been considered in reference 62 for inlet guide vanes and in a more general context by reference 61. A conclusive evaluation of this effect was not completed, but it may be worthwhile in the future to apply the analysis of reference 61 to a typical pump rotor for a quantitative indication of the magnitude of the effect.

Radial flow of boundary layer fluid may have both a direct and indirect influence on deviation angle. Deviation angle would be directly affected when radial movement of the boundary layer either triggers or retards flow separation from a particular blade section. Indirect effects could result from the axial velocity ratios required to satisfy radial equilibrium for a flow with loss profiles that include effects of low momentum fluid moving radially in the wake behind the blade. In both cases, the movement of boundary layer material could be expected to be reflected in the downstream axial velocity profile. This suggests that an empirical correlation based on three-dimensional data, which accounts for axial velocity ratio effects, might also partially account for the effect of radial boundary layer flows.

yields a quadratic equation in $V_{2,c}^{\prime}$. The corrected diagram can then be computed from the appropriate root $V_{2,c}^{\prime}$, U_2^{\prime} , and $V_{z,l}^{\prime}$. The expectation was that δ_c from either of the iterative approaches would more closely approximate the measured deviation angle than a value computed directly from Carter's rule using the actual blade section camber. However, the comparison of results in figure 22 shows that the corrected deviation angles are generally smaller than the deviation angles from Carter's rule which are in turn much too small over most of the blade span for the high loaded rotors in figures 22b and 22c. These results are typical for all the rotor configurations and for other flows. Based on these results these correlation approaches are also discarded.

An approach similar to the iterative, constant circulation one discussed above with a variable exponent on the camber term in the function used to compute $\delta_{\mathbf{C}},$ namely

$$\delta_{\mathbf{c}} = m \left(\phi_{\mathbf{c}}^{0} \right)^{b} / \sigma^{1/2} , \qquad (43)$$

was tried next. In this case, the exponent was chosen so that

$$\delta_{c} = \delta_{exp} . \tag{44}$$

Values of b computed at all radial positions for operation at reference incidence angle are given in figure 23. The exponents show a consistent trend except at the hub and tip for configuration 02. This configuration is a low hub-tip ratio, lightly loaded rotor intended to typify a transition rotor, located between a lightly loaded inducer and high loaded main stages. With the subsequent development of higher loaded inducers (ref. 65), this type of rotor is not likely to appear in a multistage pump. Therefore, the fact that the exponents from configuration 02 fall outside the band in figure 23 is not considered a major deficiency in the method, although it indicates a lack of generality.

As another approach, the method just described was simplified by using the actual blade camber instead of a corrected camber in the functions for $\delta_{\mathbf{C}}\colon$

$$\delta_{c} = m(\phi^{0})^{b}/\sigma^{1/2} . \tag{45}$$

The exponent was again chosen so that the following expression was obtained:

$$\delta_{c} = \delta_{exp} . \tag{46}$$

The resulting exponents are shown as a function of percent passage height in figure 24. The band of data is about the same width as that in figure 23, except at the tip section where the exponent for configuration 07 shows more scatter. This was considered the most promising approach for predicting deviation angles at reference incidence angle operation. A preliminary check on the method was made by calculating deviation angles for the five configurations using equation (45), where b was obtained as the mean line of the band in figure 24. The results are given in Table II. Excluding configuration 02, the deviation angles, $\delta_{\rm C}$, computed from equation (45) are within \pm 2.60 of the measured angles, which is a significant improvement over Carter's rule. Note that because the camber of configuration 07 is small at the 10% station, the large scatter in the exponent (figure 24) resulted in only a 1.30 discrepancy in deviation angle. However, this is still a large percentage of the relative turning angle.

Incidence angle: Prior efforts to predict deviation angles at off-reference incidence angles are mainly represented by Lieblein's correlations (ref. 36) of two-dimensional low-speed air cascade results. In this correlation, values of $d\delta/di$ are presented as a function of solidity and inlet flow angle. The $d\delta/di$ is always positive and only applies to incidence angles near i_{ref} . However, in the analysis problem it is necessary to predict deviation angles over the entire range of operation and not just near i_{ref} . Furthermore, as illustrated by data in figure 25, the slope $d\delta/di$ is not always positive for pump rotor blade sections even at i_{ref} . The incidence angle corrections of reference 36 are clearly inadequate and the characteristics of data in figure 25 preclude any possibility of a simple functional relationship of the form

$$\delta - \delta_{ref} = f \left(i - i_{ref} \right). \tag{47}$$

The method involving equations (43) and (44) described earlier was also applied at off-reference conditions to obtain values of camber exponent b. The results are shown in figure 26 for five spanwise positions. If configuration 02 data are excluded, a consistent trend is exhibited near the tip and hub but considerable scatter exists in the midspan data at low incidence angles.

Very similar results were obtained when the camber exponent was computed using the actual camber equation (equation 45). These results are presented in figure 27. At the tip section the exponents for configuration 07 fall above the others, which is consistent with results in the previous section. In spite of the greater scatter in figure 27 as compared to figure 26, the simplicity of using actual blade camber instead of an equivalent camber obtained by an iterative calculation suggests its use. Lines fitted through the data of figure 27 are shown in figure 28. These variations of the exponent b and the relationship expressed by equation (45) together form a method for calculating deviation angles that is available as a program option.

Reference incidence angle. - Associated with the loading parameter, DEQ, and the three-parameter off-design deviation angle correlation method involving the camber exponent b, i - iref and spanwise location (fraction of passage height from the tip), is a reference incidence angle, iref. Two possible reference incidence angles were considered: (1) a reference incidence angle based on the experimental rotor data for a given blade element; and (2) the reference incidence angle which would be predicted for the given geometry using the two-dimensional cascade correlations of reference 36. Basing the reference angle on the experimental rotor data seems attractive at first, but is not possible because of the complicated nature of flow in rotors. For example, the loss coefficients measured for blade elements at 50, 70 and 90% of passage height from the tip often are very low and change very little over the entire test incidence angle interval, making it impossible to determine a reference angle as defined in reference 36. Typical examples of flat loss-coefficient distributions for these blade elements are shown in figure 29. Sometimes the loss coefficients increase or decrease as a function of incidence angle with no minimum value defined, as illustrated in figure 30. In either case, the reference incidence angle cannot be defined as in reference 36. Even in the few cases where the experimental loss coefficient curves allow the reference incidence angle to be defined (figure 31), the incidence angle so obtained may be misleading because the loss indicated from measurements downstream of the rotor is probably a distorted indication of the loss generated by that element. It may be more or less than the actual loss generated by the flow around the blade section because of the migration of low momentum fluid along the blade and annulus surfaces (ref. 66). For these reasons a reference incidence angle based on the experimental rotor data was not used.

Instead, a reference incidence angle based on the correlations of reference 36 was chosen. These correlations were derived from cascade data obtained with fixed inlet flow angles, i.e., the incidence angle was varied by re-setting the blades, and hence the correlation incorporates inlet flow angle as a parameter rather than stagger angle. Since rotor blades have fixed setting and variable inlet relative flow angles, the correlations of reference 36 do not directly yield a single reference incidence angle for rotor blade elements. However, a unique reference angle can be obtained by an iterative procedure as follows (ref. 67):

- 1. an initial estimate of i_{ref} is made;
- from the known blade angle and the estimated iref, a corresponding inlet relative flow angle is calculated;
- 3. using the calculated relative flow angle and the correlations of reference 36, a new value of i_{ref} is obtained and compared with the estimated value; and
- 4. if the calculated and estimated values of i_{ref} are different, the estimated value is revised and steps 2, 3, and 4 are repeated until convergence is obtained.

This procedure contains the implicit assumption that the same reference incidence angle would be measured in a constant blade setting angle cascade (γ = constant) and a constant inlet flow angle cascade $[\beta_1 = (i_{ref})_{\beta} + \alpha_1$, where α_1 is the inlet blade angle corresponding to v = constant]. This assumption is not strictly correct as noted in reference 36 and illustrated by cross-plotted data (ref. 40) in figure 32. For this example, the reference incidence angle for a constant setting angle cascade is 1.2° less than for a constant inlet flow angle cascade. Applying the reference incidence angles obtained from reference 36 also involves the assumption that the reference incidence angle is not dependent on the axial velocity change across the cascade because the axial velocity ratio was about 1.0 for the data correlated in reference 36, while axial velocity ratios ranging from 0.55 to 1.40 were measured across the rotor blade sections. No attempt has been made to evaluate the possible change of reference incidence angle caused by the change in diffusion accompanying axial velocity ratio changes. While the assumptions involved were recognized, the $i_{\mbox{ref}}$ obtained from reference 36 was considered to be the most consistent and best estimate available for the reference incidence angle.

Specific experimental data correlations. - A less general data correlation method for individual pump rotors was also determined. As mentioned previously the blade chord Reynolds numbers associated with the axial-flow pump experimental data were high enough to justify neglecting Reynolds number effects. It seems reasonable then to assume that the experimental data blade-element non-dimensional velocity diagrams (all velocities non-dimensionalized with tip speed), and therefore loss coefficients and deviation angle, will be mainly dependent on average flow coefficient in addition to spanwise location and blade row geometry. Based on this assumption, tables of experimentally determined loss coefficients and deviation angles as functions of exit streamline spanwise location (radius) and effective average inlet flow coefficient can be constructed for specific rotor configurations. In such loss and deviation angle correlations, appropriate effective inlet flow area to annulus area ratios as a function of flow rate are required. These ratios permit the calculation of effective average flow coefficients from theoretically computed ones determined in a radial equilibrium solution.

In all of the other loss correlation methods discussed, the resulting predicted loss is strongly dependent on the calculated exit flow conditions via the loadingparameter D or DEQ. Inherent with the specific loss correlation method presently described is a weak relationship between predicted loss and calculated exit flow conditions via exit radius. This difference accounts partly for the solution stability associated with using the specific loss correlation method.

COMPUTER PROGRAM CAPABILITY AND UTILIZATION

As already outlined in the solution method, the performance prediction program is based on numerical solution for radial equilibrium and continuity requirements in the meridional flow at axial stations between blade rows in a given pump configuration. Blade-element head losses, deviation angles, and reference incidence angles are estimated, based on available correlated data tables. Simple radial equilibrium, accounting for streamline shift across a blade row but ignoring streamline slope and curvature at computing stations, is employed. Blade elements in a blade row defined by streamlines as determined in the solution are the basis for the computed blade-element performance.

Input to the program includes pump annulus and blade geometry, rotational speed, flow rate, and reference data tables for head loss and deviation angle calculations. Number of streamlines at which the numerical solution is made is also prescribed by the user. The geometry data describing the annulus inner and outer radii and blade element geometric parameters are inputed in tabular form for between blade-row stations. Flow rates are also given in the form of tables assigning radial distributions of flow velocity and total head at the inlet station to the pump. Using these input tables for the flow at the inlet station, the program computes flow rate and establishes streamlines which are followed in calculation of the flow solution through the blade rows. Extensive use is made of interpolation procedures in the program to obtain blade-element results from the various data tables. Both blade-element and mass-averaged rotor or stage performance is computed and outputed by the program.

Overall operation of the program for a given pump performance problem is formed in two nested iteration loops. These are a head loss iteration loop, and a radial equilibrium and continuity iteration loop nested within, both of which require initializations. Bladeelement head losses are initialized zero prior to solution at the beginning flow rate for a given rpm, while a base streamline velocity is assigned an approximating average value corresponding to the beginning flow rate. The same basic calculation scheme is used for any blade row, rotating or stationary, for any given rotational speed and flow rate of the pump. However, the program input and calculations are arranged so that successive values of flow rate are computed along lines of constant rpm. (Beginning flow rate for a constant rpm line is generally high relative to the design flow, since loss of radial equilibrium solution may be encountered at lower assigned flow rates). In this process, the solution, including head loss distribution obtained at the preceding flow rate, is used as initialization of iterations at the next flow rate.

In the following sections, explanation of program input load preparation is given along with a detailed discussion of the program. Descriptions, including flow diagrams and glossaries, are given for the main program and each subroutine. A complete listing of the program and sample program loads and outputs are contained in Appendices D and E.

Input Load Description

In this section a working description of input load preparation is given to enable the program user to estimate off-design performance for arbitrary pump configurations and operating conditions.

Input is identified by card packets which carry an identification number (ID) in the first two columns of each card. The ID is read by the program as the data are loaded into the computer to check the ordering of input cards. If incorrect ordering is detected, an error message is printed and calculations terminated.

The card packets and their arrangement in particular card packet sets are described below. The numerous options that exist within an input data load are explained. Also sample data loads are presented for purposes of illustration.

Card packet sets. — Input is ordered in terms of six basic sets of card packets. These card packet sets, referred to for convenience by the initial card packet in each set, are as follows:

- a) Card packet set 10 limit specifications card for pump configuration
- b) Card packet set 18 head loss and deviation angle specifications per blade row of configuration
- c) Card packet set 30 geometry data per blade row of configuration
- d) Card packet set 50 assigned rotational speed (rpm) per blade row of configuration
- e) Card packet set 70 base streamline axial velocity initilization card corresponding to first flow rate

f) Card packet set 80 - assigned flow rate, inlet conditions, and axial station effective flow area factors

Card packet sets 18 for all the blade rows of the pump configuration are loaded before proceeding to packet sets 30. The same is true for packet sets 30, before proceeding to packet sets 50. Multiple rpm calculations are made by successively loading packet sets 50, each followed by packet sets 80 for the appropriate flow rates. Finally, multiple pump configurations may be loaded, each starting with packet set 10, followed by sets as described above.

Card packets:

ID	Card Col.	Format	Data Input
10	1,2	12	identification number, ID
	3,4	12	number of blade rows plus 1, ILIM
	5,6	12	number of streamlines, JLIM; ≥ 3 , ≤ 20
	7,8	12	base streamline number, JBASE; \geq 1, \leq JLIM (but generally taken near mid-radius of the annulus)
	9-14	16	problem run identification, IRUN
	15-20	F6.4	tolerance value for head loss iteration, THL (ratio of change in computed head loss to previously computed head loss)
18	1,2	12	ID
	5,6	12	blade row number
	7-13	F7.4	blade row reference radius, RSTAR, ft
19	1,2	12	ID
	3,4	12	blade row option for head loss calculation, IEXLOS
	5,6	12	blade row option for deviation angle calculation, IEXDEV
20	1,2	12	ID
	3,4	12	number of elements in PHIBB array (packet 21) for blade row; \geq 3, \leq 20

ID	Card Col.	Format	Data Input
	5,6	12	number of elements in XPB array (packet 22) for blade row; \geq 3, \leq 20
21	1,2	12	ID
	3-7 :	F5.4	reference table of inlet flow coefficient for blade row, PHIBB
	68-72	F5.4	
22	1,2	12	ID
	3 - 7	F5.4	reference table streamline radius at outlet of blade row, XPB, ft
	68-72	F5.4	
23	1,2	12	ID
	3,4	12	card identification (visual checking only)
	5 - 9 :	F5.4 :	reference table (for blade row) of head loss coefficient, OMEGBB, function of PHIBB, XPB
	70-74	F5.4	
24	1,2	12	ID
	3,4	12	card identification (visual checking only)
	5-9	F5.4	reference table (for blade row) of flow
	• •	:	deviation angle, DEL2B deg., function of PHIBB, XPB
	70-74	F5.4	
25	1,2	12	ID
	3,4	12	number of elements in XDBB or DEQBB array (packet 26) for blade row; ≥ 3 , ≤ 20
	5,6	12	number of elements in RPBB array (packet 27) for blade row; \geq 3, \leq 7
26	1,2	12	ID

<u>ID</u>	Card Col.	Format	Data Input
	3-8 : 69-74	F6.4 : F6.4	reference table of D-factor or equivalent D-factor, XDBB or DEQBB, for blade row
27	1,2	12	ID
	3-8 : : 69-74	F6.4 : : F6.4	reference table of fraction of passage height from outer casing, RPBB, for blade row
28	1,2	12	ID
	3-8	F6.4	reference table (for blade row) of wake momentum thickness/chord, THACBB, function of XDBB or DEQBB and RPBB
	69-74	F6.4	
30	1,2	12	ID
	3,4	12	blade row number
31	1,2	12	ID
	3,4	12	number of elements in geometry arrays (packet 32) for blade row
32	1,2	12	ID
	3,4	12	blade row identification (visual check only)
	5,6	12	number of radial position, J
	7-13	F7.4	reference radius at blade row inlet, X, ft
	14-20	F7.4	blade element leading edge camberline tangent angle, ALFB, deg., function of ${\tt X}$
	21-26	F7.4	reference angle radius at blade row exit, XP, ft
	27-33	F7.4	blade-element trailing edge camberline tangent angle, ALFPB, deg., function of XP
	34-40	F7.4	blade-element solidity, SGMAB, function of XP

<u>ID</u>	Card Col.	Format	Data Input
	41-47	F7.4	blade-element maximum thickness/chord, TMXCB, function of XP
	48-54	F7.4	blade-element reference incidence angle minus cascade rule incidence angle, FI2DB, deg., function of XP
	55-62	F7.4	blade-element wake form factor, FHB, function of XP
	63-69	F7.4	Shape correction factor, FKSHA, function of XP
50	1,2	12	ID
	3-8	F6.4	blade row rotational speed, rpm
70	1,2	12	ID
	3-8	F6.4	initializing base streamline axial velocity, ft/sec
80	1,2	12	ID
	3-8	F6.4	flow rate calculation identification number, PHIRUN
81	1,2	12	ID
	3,4	12	number of elements per array (packet 82), \geq 3, \leq 20
82	1,2	12	ID
	3-8	F6.4	reference radius at inlet station, X1, ft
	9-14	F6.4	fluid axial velocity at inlet station, VZB, ft/sec, function of X1
	15-20	F6.4	fluid whirl velocity at inlet station, VUB, ft/sec, function of X1
	21-26	F6.4	total head at inlet station, HB, ft, function of X1
	27 - 32	F6.4	reference radius at inlet station, X1, ft
	45-50	F6.4	total head at inlet station, HB, ft, function of X1

ID	Card Col.	Format	<u>Data Input</u>
	51-56 :	F6.4	reference radius at inlet station, X1, ft
	69 - 74	F6.4	total head at inlet station, HB, ft, function of X1
83	1,2	12	ID
	3-8 : 69-74	F6.4 : F6.4	effective flow area/annulus area, ARFAC, per successive axial calculation station

Blade rows are numbered sequentially through a pump configuration, starting with the first blade row as blade row 1. Axial stations are also numbered sequentially through the configuration, starting with the inlet station to the pump as station 1.

Card packets 20-24 (optional) constitute user supplied reference tables of head loss coefficient and flow deviation angle as a function of inlet flow coefficient and leaving streamline radius for the blade row. This is true also regarding packets 25-28, in which tables of wake momentum thickness/chord are inputed as functions of D-factor (or equivalent D-factor) and fraction of passage height from the outer casing. As many cards as necessary are used in packets 21-24 and 26-28 to fill out the specified arrays.

In packet 21, the reference flow coefficients given are to be consistent with flow coefficients based on blade speed computed by the program using the supplied reference radius in packet 18 and the given rotational speed. For a stationary blade row, the reference blade speed is based on the reference radius for the blade row and the rotational speed of the rotor of the pump. In the case of no rotor, reference blade speed is taken as unity, and reference radius is ignored.

Radius values given in packets 22, 27, 32, and 82 should range across the entire annulus at the axial station considered to include hub and casing locations.

User supplied blade-element geometry data in packet 32 are to conform with the sign convention previously noted. Wake form factor and blade section geometry correction factors are as presented in the section BLADE-ELEMENT LOSS AND DEVIATION ANGLE PREDICTION.

In packet 50, rotational speed - 1 indicates a new pump configuration follows immediately (starting with packet 10).

Packet 70 accompanies only the first flow rate to be calculated for a pump configuration.

Packet sets 80 for all assigned flow rates for a given rotational speed follow packet 50 (or 70). PHIRUN < 0 in packet 80 signals new rotational speed follows immediately (starting with packet 50). PHIRUN = 0 in packet 80 signals termination of calculations.

Calculation options for head loss and deviation angle. — A total of six program options are available for calculation of blade-element head losses. These options involve correlated wake momentum thickness parameter and diffusion factor or equivalent diffusion factor, and blade-element radial location; or they involve correlated loss and flow coefficients and radial location. Three options are available for deviation angle calculations. These involve Carter's rule, a camber exponent modification of Carter's rule, or correlated deviation angle with flow coefficient and blade element radial location.

The options are specified by the user per blade row of the pump configuration in terms of input values of IEXLOS and IEXDEV (card packet 19) as follows:

IEXLOS = 1 specifies that the user is supplying a reference table of loss coefficient as a function of flow coefficient and radial position (card packets 20-23) for basis of head loss calculations. Card packets 25-28 for head loss are omitted.

IEXLOS = 0 specifies that reference table of wake momentum thickness/chord as function of equivalent D-factor from the BLOCK DATA routine is used for basis of head loss calculation. Card packets 20-23 and 25-28 for head loss are omitted.

IEXLOS = - 1 specifies reference table of wake momentum thickness/chord as function of equivalent D-factor and fraction of passage height from outer casing from the BLOCK DATA routine is used for basis of head loss calculation. Card packets 20-23 and 25-28 for head loss are omitted.

IEXLOS = - 2 specifies reference table of wake momentum thickness/chord as function of D-factor and fraction of passage height from outer casing from the BLOCK DATA routine is used for basis of head loss calculation. Card packets 20-23 and 25-28 for head loss are omitted.

IEXLOS = - 3 specifies that the user is supplying a reference table of wake momentum thickness/chord as a function of equivalent D-factor and radial position (card packets 25-28) for basis of head loss calculations. Card packets 20-23 for head loss are omitted.

IEXLOS = -4 specifies that the user is supplying a reference table of wake momentum thickness/chord as a function of D-factor and radial position (card packets 25-28) for basis of head calculations. Card packets 20-23 for head loss are omitted.

IEXDEV = 1 specifies that the user is supplying a reference table of flow deviation angle as a function of flow coefficient and radial position (card packets 20-22, 24) for deviation angle calculations.

IEXDEV = 0 specifies that Carter's deviation angle rule based on reference table from BLOCK DATA routine is used for basis of deviation angle calculations. Card packets 20-22, 24 for deviation angle calculation are omitted.

IEXDEV = - 1 specifies that reference table of deviation angle rule camber exponent as a function of incidence angle minus reference incidence and fraction of passage height from outer casing from BLOCK DATA routine is used for basis of deviation angle calculations. Card packets 20-22, 24 for deviation angle calculations are omitted.

Sample input loads. — Two sample input loads are given in Appendix E. Listings of the input card decks are shown, with the ID numbers in the first two card columns for identification. These two sample problems were run on the Iowa State University IBM 360 Model 65 computer Operating System Release 21. Running time, including input and output, was less than one minute for each problem. The program outputs for each are in Appendix E. Discussion of program output is given in the following section.

The first sample load is for a single stage composed of a rotor followed by a stator row. The annulus has constant hub and outer casing radii of 0.1500 and 0.3750 ft, respectively. The input load is set up to calculate performance for one rotational speed (3910 rpm) at two flow rates. As can be seen in packets 82, inlet data for each of the flow rates are given in terms of nine different radial positions across the annulus. Geometry data for the two blade rows are given in packets 32, each involving seven radial locations. No head loss or deviation angle calculation reference tables are inputed, since the IEXLOS and IEXDEV specifications in cards 19 show that reference tables from BLOCK DATA are to be used.

The second sample is for a single rotor blade row in a straight annulus with hub and outer casing radii of 0.2625 and 0.3750 ft, respectively. With this input, performance is to be computed for two rotational speeds. The first is 3620 rpm as indicated by the first 50 card, followed by the 70 card for base streamline velocity initialization and two 80 packet sets for the assigned flow rates at this speed. A

third 80 card follows, carrying the value - 1 and signaling that a second rotational speed follows. This rpm value (2890) is shown on the second 50 card. One more flow rate is then indicated by the one 80 packet set. The final 80 card indicates termination of the calculations. The IEXLOS and IEXDEV head loss and deviation calculation options in card 19 for the second sample load are each indicated as 1. The corresponding user supplied reference tables are included in packets 20-24.

Program Output Description

Sample program outputs. — Sample output listings from the program are given in Appendix E. These were produced using the two input loads just described.

An output listing from the program begins with identification of the problem run, designated base streamline, and number of streamlines used in the solution. Data tables for reference incidence angle analysis (from BLOCK DATA routine) are printed out next. The additional data load to the problem is printed out at the starting flow rate for a rpm line on a blade row by blade row basis. This includes blade row rpm, reference radius, deviation angle and head loss calculation options specified, blade row geometry, and specified deviation angle and head loss reference data tables (these tables are printed whether obtained from input cards or from BLOCK DATA). Variables can be identified by referring to the glossaries contained in the program descriptions of subroutines INOUT or INPUT.

Output of computed results for a given flow rate begins with the listing of the inlet conditions. Flow rate identification (PHIRUN NO.) is based on the combined IRUN (card packet 10) and PHIRUN (card packet 80) numbers. Calculated flow rate and entering and leaving blade-element radial equilibrium results follow, blade row by blade row. Blade-element results are printed in order from the outer casing in toward the hub. Mass-averaged results for a rotor or for a stage, and blade row identification (I) follow the blade-element results.

Column heading identifications in the input are the following (refer also to LIST OF SYMBOLS).

BETA flow angle, β

BETAP relative flow angle, β '

CMBR camber angle. ϕ^{0}

DEV deviation angle, δ

```
EFFIC
              efficiency, \( \bar{1} \)
              equivalent D factor, Deg
EQ D-FAC
              head loss, H<sub>loss</sub>
HD LOSS
INCID
              incidence angle, i
J
              streamline or blade element number, j
LOSS DIFF
              head loss relative difference, HLDP (see subroutine OUTPUT)
              loss coefficient, w
OMEGABAR
%PH F T
              percentage passage height from tip
              flow coefficient, \phi_1
PHI1
PHI2
              flow coefficient, \phi_2
PSI
              head coefficient, #
              ideal head coefficient, \psi_{\mathbf{f}}
PHI I
R/R(TIP)
              radius ratio, r/r+
R/RT(I)
              radius ratio, r/r+
              reference incidence, i ref
REF INC
STAG
              blade setting angle, y
STAT HD
              static head, h
              wake momentum thickness to chord ratio, (\theta/c)_{A}
(THTA/C)
              maximum thickness ratio, t /c
TMAX/C
TOT HD
              total head, H
V(REL)
              relative velocity, V'
              velocity, V_A
VU
VZ
              velocity, V<sub>Z</sub>
```

In the first sample output given, the results are shown for a stage (a rotor, followed by a stator row) for one rpm and two flow rates.

Twenty streamlines were used in the solution, and as indicated by the IEXLOS and IEXDEV parameter values, reference data tables from BLOCK DATA were used in computing blade element head losses and deviation angles in the rotor and in the stator. The extrapolation warning messages given in the output are due to high stagger angle (> 70 deg.) in the rotor near the outer casing, and to high $D_{\mbox{eq}}$ (> 2.2) toward the hub in the stator.

In the second example in Appendix E, the results are for a single rotor blade row. Two values of rpm were computed for, with two flow rates at the first rpm and one at the second. According to IEXLOS and IEXDEV, user supplied reference data tables for head loss and deviation angle calculations were read in from cards.

Abnormal problem completions. — The following error or warning messages may be produced by the program in the case of abnormal problem completion:

"Error in input data card order, MAIN program"

An error has been detected by MAIN in checking ID on input cards. Problem is terminated. Refer to Section, Input Load Description to correct error.

"Error in input data card order, subroutine INPUT. ID = xx I = xx K = xx L = xx J = xx"

An error has been detected in subroutine INPUT in checking ID. Current values of ID, I, K, L, J are printed out to help in correcting error. Problem is terminated.

"Error in input - xx must be greater than 2 for interpolation, I = xx, ID = xx"

Number of elements in an input data table has been detected as too small. The table delimiter and values of I, ID are printed out. Problem is terminated.

"Warning - FIT1D called in xx - extrapolation of table xx"

An extrapolation of a reference data table has occurred in FIT1D. The calling routine and table involved are identified. Problem calculation continues.

"Warning - FIT2D called in xx - extrapolation of table xx"

An extrapolation of a reference data table has occurred in FIT2D. The calling routine and table involved are identified. Problem calculation continues.

"IREF at streamline xx required extrapolation of tables because BTP1 = xx deg"

Analysis in subroutine IREF required extrapolation of reference incidence angle data tables from BLOCK DATA. Relative entering flow angle BTP1 exceeds 75 deg. Problem calculation continues.

"ALF1 = 0 not allowed"

Entering blade tangent angle ALF1 has been computed as zero for a blade element in subroutine RADEQC. Problem calculation continues with next inputed flow rate.

"Radial equilibrium solution failed"

Negative radicand encountered in iterations for radial equilbrium solution in subroutine RADEQC. Head loss iterations prior to failure are repeated and results printed out. Problem calculation resumes with next inputed flow rate.

"Solution failure due to negative radicand during loss iteration"

Message following "Radial equilibrium solution failed". Failure encountered during head loss iteration as indicated.

"Solution for several loss iterations preceding failure are printed next"

Message following radial equilibrium solution failure.

"Solution for the loss iteration preceding failure is printed next"

Message following radial equilibrium solution failure.

"Loss solution not achieved in 40 iterations"

Convergence of head loss iterations not achieved in limit of 40 iterations. Problem calculation continues with next blade row or inputed flow rate.

"Radial equilibrium and streamline radial adjustments not achieved in 10 iterations"

Iterations for blade element leaving streamline positions in subroutine RADEQC did not converge in limit of 10 iterations. Problem calculation continues. "Radial equilibrium at continuity not achieved in 20 iterations"

Convergence not attained in continuity loop in limit of 20 iterations in subroutine RADEQC. Problem calculation continues.

Computer Program Description

The complete calculation procedure for off-design performance estimation is under the control of program MAIN. Several subprograms or subroutines (as shown in Flow Chart 1) are called upon by MAIN to accomplish certain specific tasks or calculations in the overall program execution. Flow Charts 2-5 give a detailed outline of MAIN. Additional description of MAIN is given below, along with the Fortran symbol definitions. The same procedure is repeated, involving Flow Charts 6-21, in the sections following for the subroutines.

In the Flow Charts, program segments have been identified by horizontal dashed lines for convenient reference. These segments are identified in the program listing (Appendix D) by inserted comments in the appropriate locations. In those instances where program calls of fitting routines FIT1D and FIT2D are made, the purpose of the call is indicated in the Flow Charts by the parameter returned from the subroutine, with those parameter(s) it is a function of in parentheses. Purposes of other subroutine calls are evident in the description and Flow Charts for the particular subroutine.

Program MAIN. - The subprogram BLOCK DATA has been included here as a part of the description and symbol definitions, and as a part of Flow Chart 2 for program MAIN. This subprogram initializes blade element standard reference tables for head loss, deviation angle and incidence reference angle analyses.

A direct responsibility of MAIN is the initialization of the radial equilibrium solution at all axial computing stations for head loss and streamline radii (at equal radial increments) according to the assigned number of streamlines for the solution through the pump. Also MAIN initializes the base streamline axial velocities at all axial computing stations according to the inputed base streamline value at the inlet. (It should be noted here that input card identifications (ID) are checked by the program, in MAIN or in subroutine INPUT during read operations. This checking has not been shown, however, in the Flow Charts. Also, checking of IWARN, and print out of warning messages in MAIN and the

Flow Chart 1.

subroutines noting extrapolation in fitting procedures (IWARN = 2) have not been included in the Flow Charts.)

Also program MAIN is responsible for identifying the Run No. for the pump operating point. Pump inlet flow conditions are set up for the solution according to the given pump operating point conditions and number of streamlines; flow rate, average flow coefficient, and streamfunction values are computed by simple quadrature of the inlet station axial velocity profile. Effective flow coefficients per axial computing station for loss and deviation analyses are computed from given effective area factors and blade speeds.

Successive axial calculation stations through the pump are controlled by MAIN; loss and deviation angle reference tables are set up according to the input options per station. Flow conditions entering a blade row are set up prior to the head-loss and radial equilibrium solution for the flow leaving the blade row. Iterations (with a maximum of 40) for head losses are monitored by MAIN with actual loss calculations performed in subroutine LOSS. Convergence of head losses according to a given tolerance value, and revised head loss distribution per head loss iteration are determined by MAIN. Radial equilibrium, continuity and streamline radial adjustment calculations are performed in subroutine RADEQC interior to the head loss iteration loop.

In case of loss of radial equilibrium solution during any one head loss iteration, iterations are re-initialized and then repeated, but only up through the head loss iteration immediate to the unsuccessful one. The calculated results for the final repeated iterations (maximum of three, for four iterations and beyond) are outputed, even though a valid converged solution has not been obtained.

Program parts of MAIN in the accompanying Flow Charts 2-5 are identified as follows:

- Flow Chart 2 Program segments "Input problem geometry and reference tables," "Initialize streamline radii, head loss and base streamline velocity" and "Input pump inlet conditions, axial station blockage factors and compute stream function distribution" of program MAIN.
- Flow Chart 3 Program segments "Compute station annulus area and effective flow coefficient," and "Transfer loss and deviation angle reference tables per loss and deviation angle options" of program MAIN (continued).
- Flow Chart 4 Program segments "Compute blade row inlet conditions,"
 "Save blade row initial head loss," "Interpolate profile maximum thickness and incidence angle correction factor, compute radial equilibrium and continuity solution and determine head loss" of program MAIN (continued).

Flow Chart 5 Program segments "Check head-loss convergence and output computed results," "Revise head loss," "Output message head losses not converged, and output computed results," "Initialize head loss to zero," Reassign head loss and repeat iterations to loss of solution and "Output intermediate iteration results prior to loss of solution" of program MAIN (concluded).

Program MAIN variables:

fraction of annulus passage height from hub to initial	JL	JLIM-1
streamline radius	JLIM	number of streamlines, casing streamline
axial station; blade row number, determined by inlet	K	index
	KHLOSS	loss of radial equilibrium
input card identification number		<pre>solution indicator (= 0, solution not lost; = 1, solution lost)</pre>
card read reference number	кк	index delimiter
ILIM-1		
	KLK	head loss iteration loop
maximum value of I, the		index
	1* *	law af alamanta in an
	KILIM	number of elements in array X1
printer reference number	L	index
problem run identification		
number	LINDEX	head loss calculation option indicator (IEXLOS + 5)
fitting extrapolation		
	LL	index delimiter
extrapolation of reference	LOK	KLK
data table)	I.OK1	LOK-3, or LOK-1, with loss
index	Home	of radial equilibrium solu-
		tion occurring on head loss
streamline number (= 1 at hub)	iteration number LOK
base streamline number from which radial equilibrium calculations proceed outward to casing, or inward to hub	LOKLIM	LOK-1, with loss of radial equilibrium solution occurring on head loss iteration number LOK
	height from hub to initial streamline radius axial station; blade row number, determined by inlet station to blade row input card identification number card read reference number ILIM-1 maximum value of I, the number of blade rows plus one printer reference number problem run identification number fitting extrapolation warning indicator (- 1, no extrapolation; = 2, extrapolation of reference data table) index streamline number (= 1 at hub base streamline number from which radial equilibrium calculations proceed outward	height from hub to initial streamline radius axial station; blade row number, determined by inlet station to blade row KHLOSS input card identification number card read reference number KKK ILIM-1 KLK maximum value of I, the number of blade rows plus one Card reference number L problem run identification number fitting extrapolation warning indicator (- 1, no LL extrapolation; = 2, extrapolation of reference LOK data table) LOK1 index streamline number (= 1 at hub) base streamline number from which radial equilibrium calculations proceed outward

PHIB	average flow coefficient at inlet station	XJOE	damping factor in reas- signment of head loss
PHIRUN	flow rate calculation identi- fication number	XR	IRUN
		Z	J
QRUN	computed flow rate		
		ZL	JL
THL	tolerance value for conver- gence of head loss iteration		

Program MAIN arrays:

ALF1	leading edge blade-element camberline tangent angle	FIDIFB	reference table of blade- element incidence angle minus reference incidence angle
ALPHZ	diagnostic alphameric word		(FIDIF)
ANGSTB	reference table of blade setting angle (YANGS)	FI10GB	reference table of blade-ele- ment zero-camber incidence angle
AREA	axial calculation station annulus area		(FI010G), function of YANGSB, SGMGBB
ARFAC	axial station effective	FNC1	blade-element incidence angle
	flow area/ annulus area	Н	blade-element total head
BTAP1	blade-element relative entering fluid flow angle	НВ	total head at inlet station, function of Xl
CS	<pre>product of blade-element wheel speed and fluid whirl velocity</pre>	н1	blade-element total head at inlet station
DEL2B	reference table of deviation angle (DEL2), function of	HLOB	computed blade-element head loss
	PHIBB, XPB	HLOSS	computed blade-element head loss in preceding head loss
DE QBB	reference table of blade- element equivalent diffusion		iteration
	factor (DEQ)	HLOSS1	initial value of blade- element head loss
EMB	reference table of deviation		
	angle rule slope factor (EM), function of YANGSB	IEXDEV	option designation for deviation
ЕХРВВ	reference table of camber exponent (EXPB) in deviation angle rule, function of FIDIFB, PPHB	IEXLOS	option designation for head loss calculation

KLZ	number of elements in reference table PHIBB, XDBB, or DEQBB	RPBB2	reference table of percent passage height from outer casing at blade row exit (PPFT2)
K2LM	number of elements in reference table PHIBB	SGMGBB	reference table of blade element solidity (SGMA)
LLZ	number of elements in reference table XPB or RPBB	SLP1GB	reference table of linear camber coefficient (SLOP1G),
L2LM	number of elements in reference table XPB		function of YANGSB and SGMGBB
OMEGBB	reference table of head loss coefficient (OMEGB), function of PHIBB, XPB	SLP2GB	reference table of quadratic camber coefficient (SLOP2G), function of YANGSB and SGMGBB
PHIBB	reference table of PHIEFC	ТНАСВВ	reference table of wake momen- tum thickness/chord (THAC), function of DBB or DEQBB, and
PHIEFC	blade row inlet average flow coefficient		RPBB
PPFT1	streamline location at inlet to blade row as percent of passage height from outer	тнсвв1	reference table of wake momen- tum thickness/chord (THAC), function of YXDBB and RPBB1
РРНВ	casing reference table of percent	THCBB2	reference table of wake momen- tum thickness/chord (THAC), function of YDEQBB and RPBB2
11110	passage height from outer casing at blade row exit (PPFT2)	TMAXC	blade-element maximum profile thickness/chord
QB	blade-element quadrature value of flow rate (from hub)	USTAR	blade tip speed or reference speed
R	streamline radius	U1	blade-element velocity at in-
RN	blade row rotational speed	O.I.	let to a blade row
RPBB	reference table of percent passage height from outer casing at blade row exit	VUB	reference table of VU1, function of X1
	(PPFT2)	VU1	blade-element fluid whirl velocity at inlet station
RPBB1	reference table of percent passage height from outer casing at blade row exit (PPFT2)	VZ	blade-element fluid axial velocity

VZB	reference table of VZ1, function of X1	YDEQBB	reference table of blade- element equivalent diffuser factor (DEQ)
VZ1	blade-element fluid axial velocity at inlet station	YFKIB	reference table of blade-
Х	reference table of R at inlet to blade row		element incidence angle connection factor (FKI), function of YTMACB
XDBB	reference table of blade- element diffusion factor	YOMGBB	OMEGBB
	(XD)	YPHIBB	PHIBB
XP	reference table of R at outlet of blade row	YRPB	RPBB
XPB	reference table of R at	YTHACB	ТНАСВВ
	outlet of blade row	YTMACB	caste of plade =
X1	reference table of R at inlet station		element maximum thickness/ chord (TMAXC)
YANGSB	reference table of blade-	YTMAXC	TMAXC
	element stagger angle (ANGST)	YXDB	XDBB
YDEL2B	reference table of DEL2B	YXDBB	reference table of blade- element diffusion factor
YDE QB	DEQBB		(XD)
		YXPB	XPB

Flow Chart 5.

Subroutine DEV. — The purpose of DEV is to compute blade-element flow deviation angles according to the given option value IEXDEV per axial calculation station. In these options, deviation angle is computed based on an inputed correlation of deviation angle, flow coefficient, and radius, or on Carter's deviation angle rule, or on the camber exponent deviation angle rule, using blade-element reference incidence angle and percent passage height location. Details of these methods have been given in the section BLADE-ELEMENT LOSS AND DEVIATION ANGLE PREDICTION.

DEV variables:

10	printer reference number	J	<pre>streamline number (= 1 at hub)</pre>
IWARN	fitting extrapolation warning indicator	JLIM	number of streamlines, casing streamline
DEV	arrays:		
ALF1	leading edge blade-element camberline tangent angle	FNC1	blade-element incidence angle
ALF2	trailing edge blade-element camberline tangent angle	IEXDEV	option designation for deviation angle calculation
ALPHZ	diagnostic alphameric word	PPHT2	streamline location at outlet of a blade row as percent of
DEL2	blade-element flow deviation angle		passage height from outer casing
EM	blade-element deviation	R	streamline radius
	angle rule slope factor	SGMA	blade-element solidity
EXPB	blade-element camber expo- nent in deviation angle rule	STARI	blade-element reference incidence angle
FIDIF	FNC1 - STARI	тнта	blade-element camber angle

Flow Chart 6.

Subroutine FIT1D. — Interpolations for Y(X) are made based on 3-point Lagrange polynomials. Reference data tables are YB, XB, where elements of XB are in monotone nondecreasing order, and KP is the number of point pairs (XB, YB). A total of JP interpolations Y(X) is made. The interpolate X is bracketed (if possible) in each interpolation by three neighboring elements of XB. IWARN = 2 indicates extrapolation of XB array.

FIT1D variables:

I	index
IWARN	extrapolation indicator
J	index
JP	number of fittings made
К	index
KP	number of point pairs (XB, YB)
L	M
M	index
xo	XB value bracketing X
x1	XB value bracketing X
X2	XB value bracketing X
FIT	lD arrays:
x	interpolate
ХВ	reference table of independent variable
Y	interpolated value

reference table of dependent variable

ΥB

Flow Chart 7.

Subroutine FIT2D. — Interpolations for Y(X, Z) are made based on three-point Lagrange polynomials. Reference data tables are XB, YB, ZB, where elements of XB, ZB are in monotone nondecreasing order. IP is the number of elements in XB, JP the number in ZB. A total of JL interpolations Y(X, Z) is made. The interpolates X, Z are bracketed (if possible) in each interpolation by three neighboring elements of XB and ZB, respectively. IWARN = 2 indicates extrapolation of XB or ZB arrays.

FIT2D variables:

I	М	XO	XB or ZB value bracketing X or Z
IQ	dimension size of YB	x1	XB or ZB value bracketing
IWARN	fitting extrapolation warn- ing indicator		X or Z
J	М	X2	XB or ZB value bracketing X or Z
JQ	dimension size of YB	Y0	YB element at bracket point (XB, ZB)
K	index	Y1	YB element at bracket
L	I + K		point (XB, ZB)
М	index	Y 2	YB element at bracket point (XB, ZB)
N	index		•

FIT2D arrays:

X	interpolate	YST	intermediate interpolated Y value
XB	reference table independent variable	Z	interpolated value
Y	interpolated value	ZB	reference table of independent
YB	reference table of depen- dent variable		

Subroutine INOUT. — In this subroutine, the input data to the program for the particular problem are printed out for reference. Problem run number is identified, followed by output of reference incidence angle tables supplied by the BLOCK DATA program (see description of program MAIN). On a blade row by blade row basis, rotational speed and reference geometry tables, and reference deviation angle and loss tables (per designated options) are printed out.

Program parts of INOUT in the accompanying Flow Charts 9 and 10 are identified as follows:

Flow Chart 9 Program segments "Output reference incidence angle tables,"
"Output blade row RPM, reference radius and loss and
deviation angle options," "Output reference blade row
geometry tables," "Output reference deviation angle tables"
of subroutine INOUT.

Flow Chart 10 Program segment "Output reference blade wake momentum thickness/chord or loss coefficient tables of subroutine INOUT (concluded).

INOUT variables:

I	axial station; blade row number, determined by inlet	K	index
	station to blade row	KK	index delimiter
IL	ILIM-1	KLIM	number of elements in blade row geometry reference
ILIM	maximum value of I, the num- ber of blade rows plus one		tables
		к1	index initial value
IOUT	printer reference number	L	index
IRUN	problem run identification number	LINDEX	IEXLOS + 5
J	streamline number (= 1 at	LL	index delimiter
	hub)	LL1	index delimiter
JBASE	base streamline number	L1	index
JLIM	number of streamlines, casing streamlines		

INOUT arrays:

ALFB	reference table of leading edge blade-element camber-line tangent angle (ALF1), function of X	FI2DB	reference table of blade- element reference incidence minus cascade rule inci- dence angle (FIS2D), func- tion of XP
ALFPB	reference table of trailing edge blade-element camber-line tangent angle (ALF2), function of XP	FKSHAB	reference table of shape correction factor (FKSHA), function of XP
DEL2B	reference table of blade- element flow deviation angle (DEL2), function of	I EXDEV	option designation for devia- tion angle calculation
DEOR	PHIBB, XPB	IEXLOS	option designation for head loss calculation
DEQB	reference table of blade- element equivalent diffu- sion factor (DEQ)	K2LM	number of elements in reference table PHIBB
DEQBB	reference table of blade- element equivalent diffu- sion factor (DEQ)	KLZ	number of elements in reference table XDBB, YXDBB, DEQBB, YDEQBB, or PHIBB
ЕМВ	reference table of devia- tion angle rule slope fac- tor (EM), function of YANGSB	LLZ	number of elements in reference table RPBB or XPB
EXPBB	reference table of camber exponent (EXPB) in deviation angle rule, function	OMEGBB	reference table of head loss coefficient (OMEGB), function of PHIBB, XPB
	of FIDIFB, PPHB	PHIBB	reference table of blade row inlet average flow coef-
FHB	reference table of blade- element wake form factor		ficient (PHIEFC)
	(FH2), function of XP	РРНВ	reference table of percent passage height from outer
FIDIFB	reference table of blade- element incidence angle minus reference incidence		casing at blade row exit (PPFT2)
	angle (FIDIF)	RN	blade row rotational speed
FI10GB	reference table of blade- element zero-camber inci- dence angle (FIO10G), func- tion of YANGSB, SGMGBB	RPBB	reference table of percent passage height from outer casing at blade row exit (PPFT2)

RSTAR	blade row reference radius	X	reference table of stream- line radius (R) at inlet to
SGMAB	reference table of blade- element solidity (SGMA), function of XP	XDBB	blade row reference table of diffusion factor (XD)
SGMGBB	reference table of blade- element solidity (SGMA)	Х Р	reference table of stream- line radius (R) at outlet of blade row
SLP1GB	reference table of linear camber coefficient (SLOPIG) function of YANGSB, SGMGBB	ХРВ	reference table of stream- line radius (R) at outlet
SLP2GB	reference table of quadratic camber coefficient (SLOP2G), function of YANGSB, SGMGBB	YANGSB	of blade row reference table of blade- element stagger angle (ANGST)
THACB	reference table of blade- element wake momentum thick- ness/chord (THAC), function of DEQB	YFKIB	reference table of incidence angle correction factor (FKI), function of YTMACB
THACBB	reference table of blade- element wake momentum thick- ness/chord (THAC), function of RPBB, and DEQBB or XDBB	YTMACB	reference table of blade- element maximum thickness/ chord (TMAXC)
тмхсв	reference table of blade- element maximum profile thickness/chord (TMAXC), function of XP		

Flow Chart 9.

Flow Chart 10.

Subroutine INPUT. — Input data are read in on a blade row by blade row basis from cards, or are transferred as necessary from arrays initialized in the BLOCK DATA subprogram. Input data comprise limit parameters and computing run identification, loss and deviation reference tables, blade row geometry reference tables and balde row rotational speed (flow rate, inlet conditions, and area blockage factors are read in by MAIN per flow rate calculation). Multiple rotational speed calculations are handled by ENTRY INPUT1, in which only rotational speeds (per blade row) are read in. Also, reference blade speeds are computed in INPUT, based on blade row rotational speed and reference radius. Subroutine INOUT is called to output the data load for each assigned rotation speed.

Program parts of INPUT in the accompanying Flow Charts 11 and 12 are identified as follows:

- Flow Chart 11 Program segments "Input limit values and run identification," "Input loss and deviation option values," "Input reference loss and deviation tables" of subroutine INPUT.
- Flow Chart 12 Program segments "Input reference wake momentum/chord (THACBB) tables," "Input reference blade row geometry tables," "Input blade row RPM and compute reference blade speed," "Output problem data load" of subroutine INPUT (concluded).

INPUT variables:

I	axial station; blade row number, determined by inlet station to blade row	J	I, K, L
ID	input card identification number	JBASE	base streamline number from which radial equilibrium calculations proceed outward to hub
IIN	card reader reference number	JL	JLIM-1
IL	ILIM-1	JLIM	number of streamlines, casing
ILIM	maximum value of I, the		streamline
	number of blade rows plus one	K	index
IOUT	printer reference number	KK	index delimiter
IRUN	problem run identification number	KLIM	index delimiter, number of elements in input blade element geometry arrays
IZ	index	K2LIM	KLZ

L	index	RRN	RN
LINDEX	head loss calculations option indicator (IEXLOS + 5)	THL	tolerance value for conver- gence of head loss itera- tion
LL	index delimiter		CION
L2LIM	LLZ		
INP	UT arrays:		
ALFB	reference table of leading edge blade-element camberline tangent angle (ALF1), func-	IEXLOS	option designation for head loss calculation
	tion of X	KLZ	number of elements in reference table XDBB, DEQBB,
ALFPB	reference table of trailing edge blade relement camberline tangent angle (ALF2), func- tion of XP	K2LM	or PHIBB
ALFPZ	diagnostic alphameric word	LLZ	number of elements in reference table RPBB or XPB
DEL2B	reference table or blade-	L2LM	LLZ
	element flow deviation angle (DEL2), function of PHIBB, XPB	OMEGBB	reference table of head loss coefficient (OMEGB), function of PHIBB, XPB
DE QBB	reference table of blade- element equivalent diffusion factor (DEQ)	PHIBB	reference table of blade row inlet average flow coefficient (PHIEFC)
FHB	reference table of blade- element wake form factor	RN	blade row rotational speed
FI2DB	reference table of blade- element reference incidence minus cascade rule incidence	RPBB	reference table of percent passage height from outer casing at blade row exit (PPFT2)
FKSHAB	angle (FIS2D), function of XP reference table of shape correction factor (FKSHA), function of XP	RPBB1	reference table of percent passage height from outer casing (PPFT2)
I EXDEV	option designation for deviation angle calculation	RPBB2	reference table of percent passage height from outer casing (PPFT2)

RSTAR

blade row reference radius

reference table of blade- element solidity (SGMA), function of XP	USTAR	blade tip speed or reference speed
 reference table of blade- element wake momentum thickness/chord (THAC), func-	Х	reference table of streamline radius (R) at inlet to blade row
tion of RPBB, and DEQBB or XDBB	XDBB	reference table of diffusion factor (XD)
reference table of wake momentum thickness/chord (THAC), function of YXDBB and RPBB1	XP	reference table of streamline radius (R) at outlet of blade row
reference table of wake momentum thickness/chord (THAC), function of YDEQBB	XРВ	reference table of streamline radius (R) at outlet of blade row
and RPBB2	Y DE QBB	reference table of blade- element equivalent diffusion
reference table of blade- element maximum profile		factor (DEQ)
thickness/chord (TMAXC), function of XP	YXDBB	reference table of blade- element diffusion factor (XD)

Flow Chart 11.

Flow Chart 12.

Subroutine IREF. — Blade-element reference incidence angles are computed from camber angle, stagger angle, maximum thickness/chord, solidity, and thickness distribution correction factor. Interpolations for factors FI010G, SLOP1G and SLOP2G from reference tables as functions of YANGS and SCMA are required. Extrapolations of the data for relative inlet angle (BTP1) above 75° are noted by the subroutine.

IREF variables:

втр1	blade-element relative entering fluid flow angle	J	<pre>streamline number (= 1 at hub)</pre>
IZ	index	JLIM	number of streamlines, casing streamline
10	printer reference number		
IRE	F arrays:		
ALF1	leading edge blade-element camberline tangent angle	FKSHA	blade-element shape correction factor
ALPHZ	diagnostic alphameric word	SLOP1G	linear camber coefficient
ANGST	blade-element stagger angle	SLOP2G	quadratic camber coefficient
F1010G	blade-element zero-camber incidence angle	STARI	blade-element reference incidence angle
FKI	blade-element incidence angle correction factor for maximum thickness/chord and	THTA	blade-element camber angle
		YANGS	ANGST
	thickness distribution	YANGS 1	YANGS

Subroutine LOSS. — Blade-element head losses are computed for all streamlines, hub to casing, in rotors or stationary blade rows. Head losses are computed from reference tables according to specified loss calculation option. These tables consist of (1) blade-element wake momentum thickness/chord and correlated diffusion factor (or both diffusion factor and blade-element radial position), or (2) loss coefficient and correlated effective flow coefficient and radial position.

LOSS variables:

C0117	coefficient in equivalent diffusion factor calculation	I	axial station; blade row number, determined by inlet station to blade row
C1	ratio of blade-element	IO	printer reference number
	entering and leaving stream- line radii	IWARN	fitting extrapolation warning indicator
C2	reciprocal of blade-element relative entering fluid	IZ	index
с3	velocity parameter in blade-element	J	streamline number (= 1 at hub)
	head loss calculation	JLIM	number of streamlines, casing streamline
C4	parameter in blade-element head loss calculation	KK	KLZ
C61	coefficient in blade-ele- ment equivalent diffusion factor calculation, rotor or stationary blade row	KSI	coefficient in blade-ele- ment diffusion factor cal- culation, rotor or stationary blade row
FIIPS	absolute value of difference between blade-element inci- dence angle and reference	LL	LLZ
	incidence angle	LINDEX	IEXLOS + 5
LOS	SS arrays:		
ALPHZ	diagnostic alphameric word	DE QB	reference table of DEQ
BTAP1	blade-element relative enter-	DEQDD	DE QB
втар2	<pre>ing bluid flow angle blade-element relative</pre>	FH2	blade-element wake form factor
DIREZ	leaving fluid flow angle	FNC1	blade-element incidence angle
DEQ	blade-element equivalent diffusion factor		

HLOB	computed blade-element head loss	STARI	blade-element reference incidence angle
IEXLOS	option designation for head loss calculation	THAC	blade-element wake momentum thickness/chord
KLZ	number of elements in reference table of blade ele- ment diffusion factor (YXDB	ТНАСВ	reference table of THAC, function of DEQB
	or YDEQB), or blade row inlet flow coefficient (YPHIBB)	THACDD	ТНАСВ
	,	U1	blade-element velocity at
LLZ	number of elements in reference table of percent		inlet to blade row
	passage height from outer casing at blade row exit (YRPB), or streamline radius	v u	blade-element exit fluid whirl velocity
	at outlet of blade row (YXPB)	VZ	blade-element fluid axial velocity
OMEGB	blade-element head loss		•
	coefficient	XD	blade-element diffusion factor
PPFT2	percent passage height from		
	outer casing at blade row exit	XDD	DEQ
R	streamline radius	XVP1	blade -element relative entering fluid velocity
RN	blade row rotational speed	1270	,
SGMA	blade-element solidity	XVP2	blade-element relative leaving fluid velocity

Flow Chart 14.

<u>Subroutine MAVE</u>. — Mass-averaged performance results are computed and outputed for a rotating blade row, or for a stage consisting of a rotating and a stationary blade row. Mass-averaged results are based on quadratures of blade-element inlet conditions and determined radial equilibrium outlet conditions.

MAVE variables:

AFLCO	average flow coefficient at blade row inlet	RHRCO	rotor total head rise coefficient
AFLCO1	average flow coefficient at blade row exit	RHRI	rotor total head rise quadrature function
DENOM	quadrature function of R times VZ across annulus	RMAE	rotor mass-averaged hydraulic efficiency
I	axial station; blade row number, determined by inlet station to blade row	RMAHR	rotor mass-averaged total head rise
IL	maximum value of I (ILIM) minus one	SEFFI	stage hydraulic efficiency quadrature function
IO	printer reference number	SHRCO	stage total head rise coefficient
J	streamline number (= 1 at hub)	SHRI	stage total head rise quadrature function
JL	JLIM-1		quadratate function
JLIM	number of streamlines, casing streamline	SMAE	stage mass-averaged hydraulic efficiency
QRUN	computed flow rate	SMAHR	stage mass-averaged total head rise
REFFI	rotor hydraulic efficiency quadrature function		
MAVE	E arrays:		
DELH	blade-element total head rise	REFFP	rotor blade-element hydraulic efficiency product
DELHI	blade-element ideal total head rise	RHRP	rotor blade-element total head rise product
Н	blade-element total head	RN	blade row rotational speed.
R	streamline radius		

RVEL	product of blade-element leaving radius and axial velocity	TISPD	rotor inlet blade tip velocity
		U1	blade-element velocity at
SDELH	stage total head rise along a streamline		inlet to a blade row
		U2	blade-element velocity at
SEFFP	stage hydraulic efficiency for a streamline		blade row exit
		VZ	blade-element fluid axial
SHRP	stage total head rise product for a streamline		velocity
	•	W	DELHI

Flow Chart 15.

Subroutine OUTPUT. — Additional blade-element results are computed and outputed, based on the blade row entering flow conditions and determined radial equilibrium leaving conditions. Dimensional unit conversions are made for several blade-element results prior to outputing. Subroutine MAVE is called to compute and output mass-averaged blade row results.

Program parts of OUTPUT in the accompanying Flow Charts 16, 17 and 18 are identified as follows:

- Flow Chart 16 Program segment "Compute equivalent D-factor and head loss difference" of subroutine OUTPUT.
- Flow Chart 17 Program segment "Prepare blade-element results for output" of subroutine OUTPUT (continued).
- Flow Chart 18 Program segments "Output blade-element results," and "Output mass-averaged results" of subroutine OUTPUT (concluded).

OUTPUT variables:

Cl ratio of blade-element entering and leaving stream- line radii		IL	ILIM-1
		ILIM	maximum value of I, the number of blade rows plus
C2	reciprocal of blade-element relative entering fluid		one
	velocity	10	printer reference number
C61	coefficient in blade-ele- ment equivalent diffusion factor calculation, rotor	J	streamline number (= 1 at hub)
	or stationary blade row	JLIM	number of streamlines, casing streamline
FIIPS	absolute value of differ- ence between blade-element incidence angle and refer-	K	I + 1
	ence incidence angle	KJ	index, streamline number
I	axial station; blade row number, determined by inlet station to blade row	QRUN	computed flow rate

OUTPUT arrays:

ANGST	blade-element stagger	BTAP1	blade-element relative
	angle		entering fluid flow angle

BTAP2	blade-element relative leaving fluid flow angle	STARI	blade-element reference incidence angle
DELH	blade-element total head ris	e THAC	blade-element wake momentum thickness/chord
DELHI	blade-element ideal total head rise	тнта	blade-element camber angle
DEL2	blade-element flow deviation angle	TMAXC	blade-element maximum profile thickness/chord
DE Q	blade-element equivalent diffusion factor	U1	blade-element velocity at inlet to a blade row
FNC1	blade-element incidence angle	U2	blade-element velocity at blade row exit
H	blade-element total head	VU	<pre>blade-element fluid whirl velocity</pre>
HLDP	relative difference in computed and estimated blade element head loss	- VZ	blade-element fluid axial velocity
HLOB	computed blade-element head loss	XBETA	blade-element entering fluid flow angle
PPFT1	percent passage height from outer casing at blade row inlet	XBETA2	blade-element leaving fluid flow angle
PPFT2	percent passage height from	XBTAP1	BTAP1, deg.
	outer casing at blade row exit	XBTAP2	BTAP2, deg.
HLOSS	computed blade-element	XD	blade-element diffusion factor
	head loss in preceding head loss iteration	XDEL2	DEL2, deg.
R	streamline radius	XEFF	blade-element hydraulic efficiency
RN	blade row rotational speed	XFNC1	FNC1, deg.
RRT	streamline radius ratio at inlet to blade element	XHSTT1	blade-element static head entering blade row
RRT2	streamline radius ratio at blade-element exit	XHSTT2	blade-element static head leaving blade row
SGMA	blade-element solidity	XOMEG	blade-element total head loss coefficient

XPFT1 XPFT2	PPFT1, percent PPFT2, percent	XV1	<pre>blade~element fluid flow velocity at blade row inlet</pre>
XPHI1	blade-element flow coefficient at blade row inlet	XV 2	blade-element fluid flow velocity at blade row exit
XPHI2	blade-element flow coefficient		
	at blade row exit	XVP1	blade-element relative fluid flow velocity at blade row
XPSI	blade-element head rise coefficient		inlet
		XVP 2	blade-element relative fluid
XPSII	blade-element ideal head rise coefficient		flow velocity at blade row exit
XTHTA	THTA, deg.		

Flow Chart 16.

Subroutine RADEQC. — Blade-element radial equilibrium and continuity flow solutions are determined for the flow leaving a given blade row. Iterative adjustment of streamline radii based on radial equilibrium solution and flow continuity requirements are made. Maximum number of adjustments is 10, and a convergence tolerance of \pm 1.0% change in streamline radius is used. Maximum number of radial equilibrium and continuity solutions and base streamline axial velocity adjustments is 20, with convergence tolerance set at \pm 0.5% of the assigned flow rate.

Abnormal return to the calling program (MAIN) is executed in case of failure of the radial equilibrium solution for leaving axial velocity (VZ) at any blade-element. Also an abnormal return is executed in case a leading edge blade-element camberline tangent angle (ALFI) equal to zero is encountered.

Program parts of RADEQC in the accompanying Flow Charts 19, 20, and 21 are identified as follows:

- Flow Chart 19 Program segment "Determine blade-element geometry parameters, wheel speed and relative leaving flow angles" of subroutine RADEQC.
- Flow Chart 20 Program segment "Determine leaving whirl velocity, total head and axial velocity satisfying radial equilibrium" of subroutine RADEQC (continued).
- Flow Chart 21 Program segments "Compute stream function distribution for leaving flow and revise base streamline velocity" and "Revise leaving flow streamline radii based on stream function distribution of subroutine RADEQC (concluded).

RADEQC variables:

A	factor in radial equili-	10	printer reference number
В	brium equation factor in radial equili- brium equation	IWARN	fitting extrapolation warning indicator (= 1, no extrapolation; = 2, extrapolation of reference data
С	factor in radial equili- brium equation		table)
		IZ	index
D	streamline radius factor	J	streamline number (= 1 at
E	streamline radius factor		hub)
I	axial station; blade row number, determined by inlet station to blade row	JBASE	base streamline number from which radial equilibrium calculations proceed outward to casing, or inward to hub

JL	JLIM-1	KNTT radia	radial equilibrium solution failure indicator (= 0, no
JLIM	number of streamlines, casing streamline	3	failure; = 1, failure)
K	I + 1	KR	index
KJ	J + 1, or J - 1	RAD	factor in radial equili- brium equation
KKK	index	S	streamline radius factor
KNT	<pre>integration direction indi- cator from JBASE streamline (= 1, outward; ≠ 1 inward)</pre>		
RAI	DEQC arrays:		
ALF1	leading edge blade-element camberline tangent angle	PHIEFC	blade row inlet average flow coefficient
AFL2	trailing edge blade-element camberline tangent angle	Q	blade-element quadrature value of flow rate (from hub) based on normalized
ANGS T	blade-element stagger angle		radial equilibrium solution
ALPHZ	diagnostic alphameric word	QB	blade-element quadrature value of normalized flow
BTAP2	blade-element relative leaving fluid flow angle		rate (from hub)
CS	<pre>product of blade-element wheel speed and fluid whirl velocity</pre>	QR	conversion factor in normal- ized flow rate (Q) calcula- tion
DEL2 blade-element flo	blade-element flow devia-	R	streamline radius
	tion angle	RB2	interpolated blade-element leaving streamline radius
FKSHA	blade-element shape correction factor	RN	blade row rotational speed
Н	blade-element total head	SGMA	blade-element solidity
HLOSS	blade-element total head loss	U 2	blade-element velocity at blade row exit
IEXDEV	option designation for deviation angle calculation	VU	blade-element fluid whirl velocity
IEXLOS	option designation for head loss calculation	VZ	blade-element fluid axial velocity

YANGS | ANGST | YR R
YPHIEF PHIEFC

Flow Chart 19.

Flow Chart 21.

The following examples were selected from a large number of cases considered to represent typical results and to illustrate the significant strengths as well as weaknesses of the proposed pump performance prediction method. Insofar as the primary results shown are computer calculated ones, the calculated mass-averaged flow coefficient without blockage, i.e. ϕ_{prog} , is used throughout the section as the flow level parameter. The experimental flow coefficient values used for comparison were thus appropriately adjusted to reflect the difference between calculated, ϕ_{prog} , and measured, ϕ_{prog} , flow coefficients.

As mentioned in a previous section, specific correlations of experimentally determined values of blade-element loss and deviation angle were obtained on a three-parameter basis for each rotor geometry and were made available for use in the present program as options associated with IEXLOS > 0 and IEXDEV > 0. For loss, the three correlating parameters are average blade-element loss coefficient, $\overline{\boldsymbol{\omega}}$, exit flow streamline spanwise location (radius from machine axis), and average inlet flow coefficient. For deviation angle the three parameters are deviation angle, $\delta,\ \text{exit}$ flow streamline spanwise location (radius from machine axis), and average inlet flow coefficient. These correlations were precise enough to yield estimated average blade-element loss coefficients and deviation angles that are very close to measured values thus providing a means for assessing whether or not the present computer program would produce meaningful results if losses and deviation angles could be estimated accurately. Typical computed results are compared with measured results for a particular rotor, configuration 13A (Table I), in figures 33 and 34. The close agreement between calculated and measured values of mass-averaged hydraulic efficiency, $\overline{\eta}$, head rise coefficient, $\overline{\psi}$, axisymmetric blade-element outlet flow angle, β_2 , and axial velocity, $V_{\rm Z,2}$, suggests that aside from the procedures used for estimating losses and deviation angles, the basic programming and the axisymmetric, steady-flow, radial equilibrium flow model are as reliable as the available measurements.

Work on the development of semi-empirical and relatively general rotor blade-element loss and deviation estimation procedures based on a large collection of NASA isolated pump rotor data was outlined earlier in the BLADE-ELEMENT LOSS AND DEVIATION ANGLE PREDICTION section of this report.

The recommended procedures for calculating rotor blade-element loss and deviation angles evolving from this work are based on NASA axial-flow pump rotor data (rotor configurations 02, 07, 5, 13A, 14A) correlations. These involve version A of the wake momentum thickness to chord ratio parameter, $(\theta/c)_A$, modified equivalent diffusion ratio,

DEQ, and spanwise location (percent of passage height from the outer wall) as loss data correlating parameters (see figure 14) and camber exponent, b, incidence angle difference, i - $i_{\mbox{ref}}$, and spanwise location (percent of passage height from the outer wall) as deviation angle data correlating parameters (see figure 28). These recommended loss and deviation angle estimation procedures are available as the options associated with IEXLOS = - 1 and IEXDEV = - 1 and were used in computing the performance of a NASA axial-flow pump rotor, configuration 15, for which measured data are available but were not used in the abovementioned correlations. Since the major objective of the blade-element loss and deviation angle estimating procedures development was to realize significant improvement over two-dimensional flow methods (Carter's rule and two-dimensional cascade loss correlation), results obtained using the recommended procedures as well as the two-dimensional flow methods were compared with measured data. Overall-performance results are indicated in figure 35 while blade-element comparisons are shown in figure 36. In general, the overall as well as blade element results related to the recommended procedures for loss and deviation angle prediction were significantly better than those obtained using the two-dimensional flow methods. Note, however, that when using the recommended procedures for calculating blade-element losses and deviation angles, the radial equilibrium condition could not be satisfied for flows corresponding to flow coefficients equal to or less than 0.372. When using the two-dimensional procedures for calculating blade-element losses and deviation angles, the radial equilibrium condition could be satisfied at $\overline{\phi}_{prog}$ = 0.372 but not at $\overline{\phi}_{prog}$ = 0.338. As demonstrated in figures 37 and 38, using the more specific $\overline{\omega}$ and δ vs $\overline{\phi}$ and radius correlations (IEXLOS and IEXDEV > 0) results in the radial equilibrium condition being satisfied at even the lowest flow coefficient, $\overline{\phi}_{prog}$ 0.338. These results point out that a failure to satisfy the radial equilibrium condition at lower flow rates in the case of configuration 15, when using either the recommended or the two-dimensional loss and deviation angle estimation procedures, should be interpreted mainly as an indication of the imprecision of these calculating procedures. The more precise loss and deviation estimation procedure did not result in radial equilibrium failure at the lower flow rates. Any statement relating radial equilibrium failure and a reversed flow condition near the hub or tip wall should only be made if the precision of the loss and deviation calculating procedures has been ascertained.

As shown in Appendix F, the radial equilibrium solution loss related to loss and deviation angle estimation procedure imprecision is probably mainly due to a failure to predict loss gradients accurately. Thus, while the $(\theta/c)_A$, DEQ, passage location loss calculation method led to more realistic magnitudes of losses for rotor configuration 15 than the two-dimensional cascade data method did, the predicted gradients were too large at lower flow rates, thus leading to premature radial equilibrium failure. It is interesting to note the computer results of iterations just before a loss of solution occurs. In figure 39, the computed

results of each of three iterations before a radial equilibrium solution failure occurred are shown for configuration 15 operating at a flow coefficient, $\phi_{prog} = 0.338$, with the recommended procedures for estimating losses and deviation angles. The predicted deviation angle spanwise variation remained essentially unchanged during iterations 2, 3 and 4, due mainly to the weak dependence between predicted deviation angle and the calculated outlet flow field.

The NASA axial-flow pump experimental research program (see reference 57) involved only one single-stage configuration (ref. 68 to 70). Although measured data from the rotor of this stage were not used in the $(\theta/c)_A$, DEQ and passage location, camber exponent, incidence angle difference and passage location correlations, data from a 16-bladed (the stage rotor had 19 blades) version of the stage rotor (configuration 02) were used. As mentioned previously, no attempt was made to develop an improvement over two-dimensional loss and deviation angle calculation procedures for a stator blade row. The computed results associated with using the recommended loss and deviation angle estimation procedures for the rotor and the two-dimensional procedures for the stator are compared with measured data in figures 40, 41 and 42. The early failure to satisfy the radial equilibrium condition in the stage occurs specifically in the stator row and it most likely is an indication of the inadequacy of the two-dimensional stator loss calculations used. As indicated in figures 43 and 44, the radial equilibrium condition could be satisfied at all flows in the rotor alone.

CONCLUDING REMARKS

The results presented in the current report represent typical examples of computation of axial-flow pump configuration performance using the program described and given in the text. Numerous preliminary versions of the program and its components were modified, combined, and discarded in the process of reaching the format now in use. In retrospect, it is evident that the development of such a computation system is a major undertaking in terms of time and funds that must involve continuity of effort. It is also an undertaking that, considered in a broad sense, is not likely to be completed in the foreseeable future.

At present, it may be concluded that the program logic and the flow model are consistent and adequate in terms of current experimental procedures and design requirements. There does not appear to be a reasonable way to avoid the requirement for introduction of experimental correlations to support the system. This requirement represents a limitation that should be considered in the planning and coordination of future research on axial-flow pump and compressor components.

APPENDIX A

DERIVATION OF RELATIONSHIPS FOR AXIAL-FLOW PUMP ROTOR AND STATOR EQUIVALENT DIFFUSION RATIO

Rotor

For a plane cascade blade element, the equivalent diffusion ratio is an expression intended to serve as a measure of the velocity ratio, $V_{\text{max,s}}/V_2$, freestream. For a rotor, it is assumed that the appropriate equivalent diffusion ratio to use is one that approximates the velocity ratio, $V_{\text{max,s}}/V_2$, which can be expressed as follows:

$$\frac{V'_{\text{max,s}}}{V'_{2}} = \frac{V'_{\text{max,s}}}{V'_{1}} \quad \frac{V'_{1}}{V'_{2}} = \frac{V'_{\text{max,s}}}{V'_{1}} \quad \frac{V_{2,1}}{V_{2,2}} \quad \frac{\cos \beta'_{2}}{\cos \beta'_{1}} \quad . \tag{A-1}$$

Further, it is assumed that for a rotor, the velocity ratio, $V_{\text{max,s}}/V_1$, can be expressed in a form similar to that proposed for plane cascade flow by Lieblein (33), namely,

$$\frac{v'_{\text{max,s}}}{v'_{1}} = \left[c_{1} + c_{2} (i - i^{*})^{c_{3}} + c_{4}(c.P)_{r}^{i}\right] . \tag{A-2}$$

The relative circulation parameter, C.P. $_{r}$, deserves further explanation. For axial-flow pump rotor flow, the blade element circulation referenced to a rotating coordinate system is

$$\Gamma_{\mathbf{r}}^{\prime} = \oint V_{\mathbf{s}}^{\prime} d\mathbf{s} = \left[\left(\mathbf{r}_{1} V_{\theta, 1}^{\prime} - \mathbf{r}_{2} V_{\theta, 2}^{\prime} \right) \frac{2\pi}{n} \right]. \tag{A-3}$$

With respect to the rotating coordinate system, the circulation parameter, C.P. $_{\mathbf{r}}^{\prime}$, is

C.P.,
$$=\frac{\Gamma' \cos \beta_1'}{cV_1'} = \frac{\left[(r_1/r_2)V_{\theta,1}' - V_{\theta,2}' \right] \cos \beta_1'}{v^{nc} V_2'}$$

$$C.P.'_{r} = \frac{\left[(r_{1}/r_{2}) V'_{\theta, 1} - V'_{\theta, 2} \right] \cos \beta'_{1}}{\sigma_{2} V'_{1}} . \tag{A-4}$$

Since

$$V_1' = \frac{V_{z,1}}{\cos \beta_1'} \quad ,$$

then it is true that

$$C.P.'_{r} = \frac{\cos^{2} \beta'_{1}}{\sigma_{2} V_{z,1}} \left[(r_{1}/r_{2})V'_{\theta,1} - V'_{\theta,2} \right] . \tag{A-5}$$

The velocity ratio, $V_{\text{max.s}}^{\prime}/V_{2}^{\prime}$, can thus be expressed as

$$\frac{V_{\text{max,s}}^{'}}{V_{2}^{'}} = \frac{V_{z,1} \cos \beta_{2}^{'}}{V_{z,2} \cos \beta_{1}^{'}} \left\{ C_{1} + C_{2} (i - i^{*})^{C_{3}} + \frac{C_{4} \cos^{2} \beta_{1}^{'}}{\sigma_{2} V_{z,1}} \left[\frac{r_{1}}{r_{2}} V_{\theta,1}^{'} - V_{\theta,2}^{'} \right] \right\} . \tag{A-6}$$

Finally, it can be seen that

$$DEQ_{\mathbf{r}} = \frac{V_{\mathbf{z},1} \cos \beta_{2}^{\prime}}{V_{\mathbf{z},2} \cos \beta_{1}^{\prime}} \left\{ C_{1} + C_{2} \left(i - i_{\mathbf{ref}} \right)^{C_{3}} + \frac{C_{4} \cos^{2} \beta_{1}^{\prime}}{\sigma_{2} V_{\mathbf{z},1}} \left[\frac{\mathbf{r}_{1}}{\mathbf{r}_{2}} V_{\theta,1}^{\prime} - V_{\theta,2}^{\prime} \right] \right\}. \tag{A-7}$$

Stator

For a stator, it is assumed that the appropriate equivalent diffusion ratio to use is the one that approximates the ratio, $V_{\text{max,s}}/V_2$, which can be expressed as follows:

$$\frac{v_{\text{max,s}}}{v_2} = \frac{v_{\text{max,s}}}{v_1} \quad \frac{v_1}{v_2} = \frac{v_{\text{max,s}}}{v_1} \quad \frac{v_{z,1}}{v_{z,2}} \quad \frac{\cos \beta_2}{\cos \beta_1} . \tag{A-8}$$

It is further assumed that the velocity ratio, $V_{\text{max,s}}/V_1$, can be expressed as

$$\frac{V_{\text{max,s}}}{V_1} = \left[c_1 + c_2 (\mathbf{i} - \mathbf{i}^*)^{C_3} + c_4 (c \cdot P \cdot s) \right] . \tag{A-9}$$

The circulation for a stator row blade element can be expressed as

$$\Gamma_{s} = \oint V_{s} ds = \left(r_{2}V_{\theta,2} - r_{1}V_{\theta,1}\right) \frac{2\pi}{n} . \tag{A-10}$$

So the stator circulation parameter, C.P., is

$$C.P._{s} = \frac{\cos^{2} \beta_{1}}{\sigma_{2} V_{z,1}} \left[V_{\theta,2} - \frac{r_{1}}{r_{2}} V_{\theta,1} \right]. \tag{A-11}$$

The resulting stator equivalent diffusion ratio is

$$DEQ_{s} = \frac{V_{z,1}}{V_{z,2}} \frac{\cos \beta_{2}}{\cos \beta_{1}} \left\{ c_{1} + c_{2} (i - i_{ref})^{C_{3}} + \frac{C_{4} \cos^{2} \beta_{1}}{\sigma_{2} V_{z,1}} \left[V_{\theta,2} - \frac{r_{1}}{r_{2}} V_{\theta,1} \right] \right\}.$$
(A-12)

APPENDIX B

DERIVATION OF VERSION B AND C OF THE MOMENTUM

THICKNESS-TO-CHORD RATIO RELATIONSHIP

Version B

For plane cascade flow (32):

$$\left(\frac{\theta}{c}\right) = \frac{\overline{w}}{2\sigma} \cos \beta_2 \left(\frac{\cos \beta_2}{\cos \beta_1}\right)^2 \frac{\left[1 - \frac{\theta}{c} \sigma \frac{H_2}{\cos \beta_2}\right]^3}{\frac{2H_2}{3H_2 - 1}}$$
(B-1)

and

$$1 - \left(\frac{\theta}{c}\right) \left(\frac{H_2^{\sigma}}{\cos \beta_2}\right) = \frac{V_{z,1}}{V_{z,2}} . \tag{B-2}$$

Combining these relationships and using relative flow angles results in

$$\frac{\theta}{c} = \frac{\overline{\omega} \cos^3 \beta_2'}{2\sigma \cos^2 \beta_1'} \left(\frac{V_{z,1}}{V_{z,2}}\right)^3 \left(\frac{3H_2 - 1}{2H_2}\right) = \left(\frac{\theta}{c}\right)_B . \tag{B-3}$$

Version C

If it is assumed that

$$\frac{\left[1-\frac{\theta}{c} \circ \frac{H_2}{\cos \beta_2}\right]^3}{\frac{2H_2}{3H_2-1}} \approx 1.0$$

and

$$v_{z,1} = v_{z,2}$$

or

$$\frac{\cos \beta_2}{\cos \beta_1} = \frac{v_1}{v_2} ,$$

then equation (B-1) becomes

$$\frac{\theta}{c} = \frac{\overline{\omega}}{2\sigma} \cos \beta_2 \left(\frac{v_1}{v_2}\right)^2 . \tag{B-4}$$

With relative velocities and exit flow angle for a rotor blade element, the parameter becomes

$$\frac{\theta}{c} = \frac{\overline{w}}{2\sigma} \left(\frac{v_1'}{v_2'} \right)^2 \cos \beta_2' = \left(\frac{\theta}{c} \right)_C . \tag{B-5}$$

APPENDIX C

DERIVATION OF AXIAL-FLOW PUMP ROTOR AND STATOR BLADE ELEMENT DIFFUSION FACTORS

Rotor

For a plane cascade blade element, the diffusion factor is expressed as

$$D = 1 - \frac{V_2}{V_1} + \frac{\Gamma}{acV_1}$$
 (C-1)

where a is empirically determined to be equal to 2.0. For a rotor blade element, an appropriate diffusion factor might be

$$D_{r} = 1 - \frac{V_{2}'}{V_{1}'} + \frac{\Gamma_{r}'}{acV_{1}'} . \qquad (C-2)$$

The relative circulation, Γ_r^1 , could be expressed as

$$\Gamma_{\mathbf{r}}' = \oint V_{\mathbf{s}}' d\mathbf{s} = \left(\mathbf{r}_{1} V_{\theta, 1}' - \mathbf{r}_{2} V_{\theta, 2}\right) \frac{2\pi}{n} . \tag{C-3}$$

Thus

$$D_{r} = 1 - \frac{V_{2}'}{V_{1}'} + \left(\frac{r_{1}V_{\theta,1}' - r_{2}V_{\theta,2}'}{acV_{1}'}\right)\left(\frac{2\pi}{n}\right). \tag{C-4}$$

and

$$D_{r} = 1 - \frac{V_{2}'}{V_{1}'} + \frac{r_{1}V_{0,1}' - r_{2}V_{0,2}'}{\sigma_{av}(r_{1} + r_{2})V_{1}'}$$
 (C-5)

if a = 2.0.

Stator

For a stator blade element,

$$\Gamma_{\mathbf{s}} = \oint V_{\mathbf{s}} d\mathbf{s} = \left(\mathbf{r}_{2} V_{\theta, 2} - \mathbf{r}_{1} V_{\theta, 1}\right) \frac{2\pi}{n} . \tag{C-6}$$

Thus,

$$D_{s} = 1 - \frac{V_{2}}{V_{1}} + \frac{r_{2}V_{\theta,2} - r_{1}V_{\theta,1}}{a\sigma_{av}(r_{1} + r_{2})V_{1}}$$
 (C-7)

if a = 2.0.

```
BLCCK DATA
 COMMCN/BLCCKA/ALF8(5,20), BTA2(20), BTP18(10), DEQ(20), DEQ8(10), FHB
1(5,2C),FF2(20),F1S2D(20),F110GB(8,9),F12DB(5,2O),FK1(2O),FKSHAB
2(5,2C),HLCB(20),SLP1GB(8,9),SLP2GB(8,9),THAC(20),THACB(10),X(5,20)
 COMMENTAL COMMENTAL F1 (20), ALF2 (20), ALFPB (5,20), ANG ST (5,20), ANG STB
1(5,8),CS(20),EM(20),EMB(5,8),FKSHA(20),PPFT1(20),PPFT2(20),Q(5,20)
2,QE(5,20),RB2(20),RN(5),SGMA(20),SGMAB(5,20),SGMGBB(9),THTA(20),
3TMAXC(20), TMXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
 COMMON/BLCCKI/EXPEB(7,7), FICIFB(7), PPHB(7), STARI(20)
 COMMCN/BLCCKM/KLZ(5),LLZ(5),YXDBB(20),RPBB1(7),THCBB1(20,7),
1RPEB2(7), THCBB2(20,7), YCECBB(20)
 COMMON/BLCCKP/YFKI8(5,7),YTMACB(5,7)
 DIMENSION FI1011(40), F11012(32), SLP1A(40), SLP1B(32), SLP2A(40),
1SLP28(32)
 DIMENSION THOM (4C), THOS (4C), THOC (40), THOD (20), THOE (40), THOE (40),
1THCG(40), THCH(20)
 EQUIVALENCE (FI1CGE(1), FI10 I1(1)), (FI10GE(41), FI10 I2(1)), (SLP1GB
1(1), SLP1A(1)), (SLP1GB(41), SLP1B(1)), (SLP2GB(1), SLP2A(1)), (SLP2GB
2(41), SLP2E(1))
 EQUIVALENCE (THCBB1(1), THCA(1)), (THCBB1(41), THCB(1)), (THCBB1(81),
1THCC(1)), (THCBB1(121), THCC(1)), (THCBB2(1), THCE(1)), (THCBB2(41),
2THCF(1)),(THCEE2(81),THCG(1)),(THCBB2(121),THCH(1))
```

ELADE-ELEMENT REFERENCE CATATABLES:

REFERENCE TABLES INCIDENCE ANGLE CORRECTION FACTOR FOR MAXIMUM THICKNESS

DATA YTMACE(1,1),YTMACB(1,2),YTMACB(1,3),YTMACB(1,4),YTMACB(1,5),
1YTMACB(1,6),YTMA(B(1,7)/C.O,O.O2,O.O4,O.O6,O.O8,O.10,O.12/
DATA YFKIE(1,1),YFKIB(1,2),YFKIB(1,3),YFKIB(1,4),YFKIB(1,5),YFKIB
1(1,6),YFKIB(1,7)/O.O,C.334,O.589,O.772,O.903,1.O,1.08/

REFERENCE TABLES CONSTANT STAGGER ANGLE ZERO-CAMBER IN-CICENCE ANGLE AND CAMBER QUACRATIC COEFFICIENT AS FUNC-TIENS OF STAGGER ANGLE AND SCLIDITY

```
CATA YANGSE/0.0,10.,20.,30.,40.,50.,60.,70./
 DATA SGMGBB/0.4,C.6,0.8,1.0,1.2,1.4,1.6,2.0,2.6/
 CATA FI1011/
    C.042,
1
            0.413,
                     0.738,
                              1.043,
                                      1.360,
                                               1.662,
                                                       1.864,
                                                                2.042.
2
    C.012,
             C. 554,
                     1.085,
                              1.571,
                                      2.050,
                                               2.485,
                                                       2.834,
                                                                3.099.
3
    C.OC3,
                     1.405.
             C.721,
                              2.105,
                                      2.759.
                                               3.386,
                                                       3.835,
                                                                4.145.
4
    -.041,
             0.853,
                     1.735,
                              2.636,
                                      3.488.
                                               4.283,
                                                       4.919,
                                                                5.276,
    -.074,
             1.072.
                     2.146,
                              3.136.
                                     4.219,
                                               5.215,
                                                       5.955,
                                                                6.377/
 DATA FI1012/
1
    -.C57,
             1.203,
                     2.476,
                              3.751,
                                      5.029,
                                               6.214,
                                                       7.016.
                                                                7.390.
2
    -.124,
             1.387,
                     2.844,
                              4.346,
                                      5.827,
                                               7.255,
                                                       8.100.
                                                                8.517,
3
    -.132,
             1.764,
                     3.663,
                              5.606,
                                      7.591.
                                               9.398, 10.200, 10.850,
```

```
4 -.186, 2.303, 4.944, 7.694, 10.460, 12.540, 13.550, 14.500/
     DATA SLP1A/
    1-.042758,-.087534,-.138043,-.190901,-.250442,-.321693,-.392870,
    1-.484C41,
    2-.C22447.-.C58126,-.100154,-.148312,-.206059,-.272889,-.352378,
    2-. 457603.
    3-.0(3620,-.032000,-.067203,-.113722,-.166661,-.234563,-.317756,
    3-.448353,
    40.C15655,-.CC8163,-.037528,-.079030,-.130964,-.200632,-.291484,
    4-.433447,
    50.041494,0.019001,-.013239,-.043754,-.096356,-.173708,-.267640,
    5-.408423/
     DATA SLPIE/
    10. C559C1, C. C46E85, O. O25376, -. C09586, -. O66273, -. 150270, -. 249121,
    1-.376220,
    20. CE2185, C. C73C9C, O. O55278, O. O185O5, -. O4O472, -. 133857, -. 236335,
    2-.356545.
    30.116359,0.123619,0.113367,0.079266,0.003457,-.107843,-.194811,
    3-.296872.
    40.162877, C.189407, O.19342C, C.147714, O.046888, -. 071540, -. 156740,
    4-.247098/
     DATA SLP2A/
    1-.001435,-.001385,-.001268,-.001161,-.001019,-.000744,-.000538,
    1-.000113,
    2-.CC1321,-.CC1342,-.001331,-.001289,-.001178,-.C01022,-.000814,
    2-.CCC337,
    3-. CC1225,-.C01325,-.001395,-.001370,-.001347,-.001256,-.001107,
     3-.000463,
    4-.CC1164,-.001293,-.001424,-.001497,-.001533,-.001489,-.001376,
     4-.CCC6C7,
     5-.CC1171,-.001341,-.001418,-.001653,-.001749,-.CO1639,-.001551,
     5-.000846/
     CATA SLP2B/
     1-.001058,-.001330,-.001604,-.001843,-.001940,-.001797,-.001617,
     1-.CC1048,
     2-.001045,-.001386,-.001744,-.002001,-.002120,-.001904,-.001656,
     2-.CC12CC.
     3-.000875,-.001462,-.001587,-.002403,-.002377,-.001919,-.001769,
     3-.CC1514.
     4-. CCC71C,-.C01564,-.C02445,-.C02851,-.002623,-.C02108,-.002036,
     4-.002749/
C
C
              REFERENCE TABLES CEVIATION ANGLE RULE CAMBER EXPONENT AS
C
              FUNCTION OF INCIDENT ANGLE MINUS REFERENCE INCIDENT
C
              ANGLE AND FRACTION OF PASSAGE HEIGHT FROM CUTER CASING
C
C
              (IEXCEV<0)
C
      DATA FICIFB/-12.,-8.,-4.,C.,4.,8.,10./
      CATE PPHB/0...1, .3, .5, .7, .9,1./
      DATA EXPBB/
          1.17 , 1.13 , 1.10 , 1.14 , 1.20 , 1.28 , 1.32 ,
```

```
2
          1.15 ,
                  1.10 ,
                          1.08 ,
                                  1.11 ,
                                           1.17 ,
                                                   1.26 .
                                                           1.31 ,
     3
          1.11 ,
                  1.07 ,
                                   1.07 ,
                           1.05 .
                                           1.13,
                                                   1.22 .
                                                           1.28 ,
     4
          1.07 ,
                           1.05 .
                  1.06 .
                                   1.06 .
                                           1.08 .
                                                   1.11.
                                                           1.13 ,
     5
          1.C7 .
                  1.06,
                           1.05 ,
                                   1.04 ,
                                           1.03 ,
                                                   1.02 ,
                                                           1.015.
     6
          1.06 ,
                  1.038,
                           1.016,
                                   0.994,
                                           0.572,
                                                   0.95 ,
                                                           0.939.
     7
          1.04 .
                  1.C1 ,
                           C.98 ,
                                   0.95 ,
                                           0.92 .
                                                   0.90 .
                                                           0.88 /
C
C
              REFERENCE TABLE SLOPE FACTOR CARTER DEVIATION ANGLE RULE
C
C
              AS FUNCTION OF STAGGER (YANGSB) (IEXDEV=0)
C
      DATA EMB(1,1), EME(1,2), EME(1,3), EMB(1,4), EMB(1,5), EMB(1,6),
     1EMB(1,7), EMB(1,8)/.217,.227,.245,.268,.295,.328,.368,.425/
С
С
              REFERENCE TABLES WAKE MCMENTUM THICKNESS/CHORD AS FUNC-
C
C
              TIEN OF EQUIVALENT D-FACTOR (IEXLOS=0)
C
      DATA DEQB/ 1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2/
      DATA THACB/.CC5,.CO6,.CC7,.CC8,.CO94,.O11,.O13,.O153,.O19,.O23/
C
C
C
              REFERENCE TABLES WAKE MCMENTUM THICKNESS/CHORD AS FUNC-
С
              TICN OF C-FACTOR AND FRACTION OF PASSAGE HEIGHT FROM
C
              CLTER CASING (IEXLCS=-2)
C
      DATA YXD8B/.05,.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,
     1.8,.85,.95,1.0/
      DATA RPBB1/.0,.10,.30,.50,.70,.90,1.0/
      CATA THCA/
         .C16 ,.O16 ,.C16 ,.O16 ,.O16 ,.O17 ,.O22 ,.O27 ,.O32 ,
         .037 ,.042 ,.047 ,.052 ,.057 ,.062 ,.068 ,.073 ,.078 ,.083 ,
     1
         .C16 ..C16 ..C16 ..O16 ..O16 ..O17 ..O22 ..O27 ..O32 .
         .037 ,.042 ,.047 ,.052 ,.057 ,.062 ,.068 ,.073 ,.078 ,.083 /
     2
     CATA THORY
    1
         . C1
             ..01
                   ,.(1 ,.01
                               ,.01 ,.01 ,.01 ,.01
        .023 ,.C32 ,.C41 ,.O5 ,.C59 ,.O68 ,.C77 ,.O86 ,.O95 ,.104 ,
        .CC59,.C062,.CC65,.3C68,.0071,.3074,.0077,.0C8 ,.0085,.009 ,
    2
        .CC95,.C1 ,.C105,.011 ,.0115,.012 ,.0125,.013 ,.0135,.014 /
     CATA THECK
        .CC6 ,.CC65,.CC7 ,.0077,.0084,.0091,.0398,.0105,.0112,.0119,
    ł
        .0126,.0133,.C14 ,.0147,.0154,.C161,.0168,.0175,.0182,.0189,
             ,.01 ,.01 ,.01 ,.011 ,.012 ,.014 ,.016 ,.018 ,
        .C1
    2
        .02
             .. 022 .. (24 .. C26 .. 028 .. 03 .. 032 .. 034 .. 036 .. 038 /
    2
     DATA THOO/
    1
        . C1
             ,.Cl ,.Cl ,.Ol ,.Oll ,.Ol2 ,.Ol4 ,.Ol6 ,.Ol8 ,
             ..022 ,.C24 ,.C26 ,.O28 ,.O3 ,.O32 ,.O34 ,.O36 ,.O38 /
        .02
             REFERENCE TABLES WAKE MCMENTUM THICKNESS/CHORD AS FUNC-
             TION OF EQUIVALENT D-FACTOR AND FRACTION OF PASSAGE HEIGHT
             FRCM CUTER CASING (IEXLCS=-1)
```

C C

C

C

```
C
      CATA YCEQ88/1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,
     12.5,2.6,2.7,2.8,2.9,3.0,3.4/
      DATA RPBE2/.0,.10,.30,.50,.70,.90,1.00/
      DATA THEE!
         .014 ,.014 ,.016 ,.018 ,.022 ,.026 ,.030 ,.034 ,.038 ,.043 ,
         .048 ,.053 ,.058 ,.063 ,.068 ,.075 ,.083 ,.093 ,.108 ,.165 ,
         .014 ,.014 ,.016 ,.018 ,.022 ,.026 ,.030 ,.034 ,.038 ,.043 ,
         .C48 ,.C53 ,.C58 ,.C63 ,.O68 ,.O75 ,.O83 ,.O93 ,.108 ,.165 /
     2
      DATA THEF!
                   ,.(1 ,.0105,.0145,.0195,.024 ,.0285,.033 ,.0375,
         .01
             ,.Cl
     1
         .042 ,.0465,.051 ,.0555,.06 ,.0645,.069 ,.0735,.078 ,.096 ,
         .CC6 ..CC6 ,.CC6 ,.OC6 ,.OO61,.OO61,.OC62,.OO66,.OO70,
         .0074,.0078,.0082,.0086,.0090,.0094,.0098,.0102,.0106,.0122/
      CATA THOG/
         .CC6 ,.CC6 ,.CC65,.CC7 ,.OO75,.OO8 ,.OO85,.OO9 ,.O1
                                                             ,.011 ,
         .012 ,.013 ,.014 ,.015 ,.016 ,.017 ,.018 ,.019 ,.020 ,.024 ,
         .CC6 ,.CC6 ,.CC65,.OC75,.OO85,.OO95,.O105,.O115,.O125,.O14 ,
     2
         .C155,.C17 ,.C185,.C2 ,.O215,.O23 ,.O245,.O26 ,.O275,.O335/
      DATA THCH!
         .006 ..CC6 ..CC65,.0C75,.0085,.0095,.0105,.0115,.0125,.014 ,
```

.0155,.C17 ,.C185,.02 ,.0215,.023 ,.0245,.026 ,.0275,.0335/

ENC

```
COMMCN/BLOCKA/ALFE(5,20), BTA2(20), BTP18(10), DEQ(20), DEQ8(10), FHR
   1(5,2C),FF2(20),FIS2C(20),FI10GB(8,9),FI2CB(5,20),FK1(20),FKSHAB
   2(5,20), HLOB(20), SLP1GB(8,9), SLP2GB(8,9), THAC(20), THACB(10), X(5,20)
    COMMON/BLCCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
   1(5,8),CS(2C),EM(2C),EMB(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2O),Q(5,2O)
   2,QE(5,20), RB2(20), RN(5). SGMA(20), SGMAB(5,20), SGMGBB(9), THT4(20),
   3TMAXC(2C), TMXCE(5,2C), XP(5,2O), YANGSE(8), YANGS(5,2O)
    CGMMCN/BLCCKC/ETAP1(2C),BTAP2(23),DELH(20),DELHI(20),DEL2(20),
   1FNC1(20), F(5,20), HLGSS(5,20), R(5,20), U1(20), U2(20), VU(5,20), VZ(5,
   2201
    COMMON/BLCCKD/I, JBASE, JL, JLIM, K, KLIM, KPRI, QR, QRLN, THL
    CCMMCN/BLCCKE/X1(5,20), VZE(5,20), VZ1(20), VUB(5,20), VUI(20),
   1HB(5,2C),H1(2C)
    COMMEN/BLCCKF/IL IM, IRUN, IEXLGS(5), IEXDEV(5), K2LM(5), L2LM(5)
   1, USTAR(5), PHIBE(5, 20), XFB(5, 20), CMEGBB(5, 20, 20), DEL2B(5, 20, 20)
   2, PHIEX (20), RSTAR (5), AREA (5), AREAC (5)
    CCMMCN/BLCCKG/K2LIM, L2LIM, YPHIBB(20), YXPB(20), YCMGBB(20,20), YDEL2
   1B(20,2C), YPHIEF(2C), YR(2O), PHIEFC(5)
    COMMON/BLOCKH/IC, IL, IPRI, JPRI, KILIM
    COMMON/BLCCKI/ EXPBB(7,7), FIDIFB(7), PPHB(7), STARI(20)
    COMMCN/BLCCKJ/EMEE(8), FI1011(40), FI1012(32), FK1E(7), SLP111(16),
   1SLF112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
   2 SLP213(16), SLP214(16), SLP215(8), TMAXCE(7)
    CGMMCN/BLCCKK/YCECB(20), YRPB(7), YTHACB(20,7), YXDB(20), DEQBB(5,20)
   X, RPBE(5,7), THACBE(5,20,7), XCBB(5,20), HLCP(20)
    COMMON/BLOCKL/II, IO
    COMMCN/BLCCKM/KLZ(5),LLZ(5),YXDEB(20),RPBB1(7),THCBB1(20,7),
   1RPBB2(7), THCBB2(20,7), YCECBB(20)
    CCMMCN/BLCCKP/YFKIB(5,7), YTMACB(5,7)
    DIMENSION
                                       YTMAXC(5,20), HLOSS1(20)
    DIMENSION ALPHZ(20)
    DATA ALPHZ/* VZE*,*(X1)*,* VUB*,*(X1)*,* HB*,*(X1)*,* ALF*,
  1
                *B{X}*,*
                           T', 'MXCB', '(XP)', '
                                                 Y * , * FK IB* , * [YTM*,
  2
                *ACB) *, *
                           F', 'I 208', '(XP)', ' FHB', '(XP)'/
    II = 5
    10=6
    DO 340 J=1.8
340 ANGSTB(1,J)=YANGSE(J)
    INPUT PROBLEM GEOMETRY AND REFERENCE TABLES.
    CALL INPUT(E5)
    INITIALIZE STREAMLINE RADII, HEAD LOSS AND BASE STREAMLINE VELOCITY.
 5 DO 9 J=1.JLIM
   Z = J
   ZL=JL
```

```
FZ = (Z-1.)/2L
      R(ILIM,J)=FZ*(XP(IL,KLIM)-XP(IL,1))+XP(IL,1)
      HLCSS(ILIN, J) = C.
      DO 9 I=1, IL
      R(I,J)=FZ*(X(I,KLIM)-X(I,I))+X(I,I)
    9 HLCSS(I,J)=C.
      READ ([I,6CC)ID, VZ(1, JEASE)
      IF (IE-70)14,11,14
   11 DO 12 I=2,ILIM
   12 VZ(I,JBASE)=VZ(1,JBASE)
      INPLT PUMP INLET CONDITIONS, AXIAL STATION BLOCKAGE FACTOR AND
C
      COMPLIE STREAMFUNCTION DISTRIBUTION.
C
   13 REAC(II, 6CC) ID, PHIRUN
      IF (FHIRUN) 131, 45, 133
  131 WR ITE (IC, 616)
      CALL INPUTI(85)
  133 XR=IRUN
      PHIRLN=XR+PHIRUN
      IF(IC-80)14,113,14
  113 WRITE (IC,519)
      WRITE(IC, 601) PHIRLN
      READ(II, 615) ID, KILIM
      IF (IC-81) 14,7C1,14
  701 REAC (11,600) IC, (X1(1,K), VZP(1,K), VUB(1,K), HB(1,K), K=1, K1LIM)
      IF (IC-82)14,70C,14
  700 REAC (II,6CC) IC, (ARFAC(I), I=1, IL)
       IF(IC-83)14,15,14
   15 WRITE (IC,520)
      WRITE ([C,521)(X1(1,K), VZE(1,K), VUB(1,K), HB(1,K), K=1,K1L[M)
   16 CALL FITIC(R, VZ1, X1, VZB, JLIM, K1LIM, 1, 1, IWARN)
      GO TC (1002,1001), IWARN
                ,9CC)(ALPHZ(IZ), [Z=1,2)
 1001 WRITE(ID
 1002 CALL FITIC(R.VLI,XI,VUB,JLIM,KILIM,1,1,IWARN)
       GO TC (1CC4,1CC3), IWARN
 1003 WRITE(IO ,900)(ALPHZ(IZ),IZ=3,4)
 1004 CALL FITIC(R, H1, X1, HB, JLIM, KILIM, 1, 1, IWARN)
       GO TC (10C6,1CC5), IWARN
 1005 WRITE(IC ,900)(ALPHZ(IZ),1Z=5,6)
 1006 DO 160 J=1,JLIM
       VZ(1.J)=VZ1(J)
       VU(1,J)=VU1(J)
   160 H(1,J)=H1(J)
       QB(1,1)=0.
       DO 161 J=2,JLIM
   161 QB(1,J)=QB(1,J-1)+705.0217*(VZ(1,J-1)+VZ(1,J))*(R(1,J)*R(1,J)
      1-R(1,J-1)*R(1,J-1)
       QRUN=QB(1,JLIM)
       DO 162 J=2,JLIM
   162 QR(1,J)=CE(1,J)/GPUN
       QR = 705. C217/QRUN
```

```
PHIB=GRUN/((R(1, JLIM)*R(1, JLIM)-R(1, 1))*R(1, 1))*1410.1*USTAR(1))
      DO 67 I=1,IL
      IF (IEXLOS(I))62,62,63
   62 [F(IEXDEV(I))67,67,63
C
      COMPUTE STATICA ANNULUS AREA AND EFFECTIVE FLOW COEFFICIENT.
   63 AREA(I)=3.1416*(R(I,JLIM)*R(I,JLIM)-R(I,1)*R(I,1))
   66 PHIEFC(I)=PHIB*( REA(1) / AREA(I)) *ARFAC(I)*(USTAR(1) / USTAR(I))
      IF (I-1)610,611,610
  611 WRITE(IC, 612)
  610 WRITE(IO, 614)I, PHIEFC(I), LSTAR(I), ARFAC(I)
   67 CONTINUE
C
C
      TRANSFER LOSS AND DEVIATION ANGLE REFERENCE TABLES PER LOSS AND
C
      DEVIATION ANGLE OPTIONS.
      00 42 I=1,IL
  18 IF (IEXDEV(I))232,232,233
  233 KK=K2LM(I)
      LL=L2LM(I)
      DO 230 K=1.KK
  230 YPHIBE(K)=PHIBE(I,K)
      DO 235 L=1,LL
      YXPE(L)=XPE(I,L)
      DO 235 K=1,KK
  235 YDEL28(K,L)=DEL28(I,K,L)
  232 LINDEX=IEXLOS(I)+5
      GO TC(401,403,401,403,408,409),LINDEX
  409 KK = KLZ(I)
      LL=LLZ(I)
      DO 2301 K=1,KK
2301 YPHIBB(K)=PHIBE(I,K)
      DO 2302 L=1,LL
      YXPE(L)=XPE(I,L)
      DO 2302 K=1,KK
2302 YOMGER (K, L) = OMEGER (I, K, L)
     GO TO 408
 401 KK=KLZ(I)
     LL=LLZ(I)
     DO 402 K=1,KK
 402 YXCE(K)=XCEB(I,K)
     DO 406 L=1,LL
     YRPE(L)=RPEE(I,L)
     DO 406 K=1,KK
 406 YTHACB(K,L)=THACBB(I,K,L)
     GO TO 408
 403 KK=KLZ(I)
     LL=LLZ(I)
     DO 4C4 K=1,KK
 404 YDECB(K)=DECBE(I,K)
     DO 407 L=1.LL
```

```
YRPE(L)=RPEE(I,L)
      DO 407 K=1,KK
  407 YTHACB(K,L)=THACEB(I,K,L)
C
C
      COMPUTE BLADE RCW INLET CONDITIONS.
  403 CALL FITID(R, ALF1, X, ALFE, JLIM, KLIM, I, I, IWARN)
      GO TO (1008,1007), IWARN
 1007 WRITE(IO
                ,900)(ALPHZ(IZ),IZ=7,8)
 1008 DO 19 J=1,JLIM
      PPFT1(J) = (R(I,JLIM) - R(I,J)) / (R(I,JLIM) - R(I,I))
      U1(J) = .1C472 * FN(I) * R(I,J)
      BTAP1(J) = ATAN((L1(J) - VU(I,J))/VZ(I,J))
      ALF1(J)=.C17453*ALF1(J)
      FNC1(J)=ABS(BTAF1(J))-AES(ALF1(J))
   19 CS(J)=U1(J)*VU(I.J)
      K = [+]
      KHLCSS=0
C
      SAVE BLACE ROW INITIAL HEAD LOSS.
C
C
      DO 850 J=1,JLIM
  850 HLCSS1(J)=HLCSS(I,J)
      INTERPOLATE PROFILE MAXIMUM THICKNESS AND INCIDENCE ANGLE CORRECTI
C
      FACTOR, COMPUTE FADIAL EQUILIBRIUM AND CONTINUITY SOLUTION AND
C
C
      CETERMINE FEAC LCSS.
  851 00 41 KLK=1,40
      LOK=KLK
      CALL FIT1C(R, TMAXC, XP, TMXCB, JLIM, KLIM, I, K, IWARN)
      GO TO (1010,1005), IWARN
 1009 WRITE(IO ,900)(ALPHZ(IZ), IZ=9,11)
 1010 DO 25C J=1,JLIM
  250 YTMAXC(1,J)=TMAXC(J)
      CALL FITIC (YTMAXC, FKI, YTMACB, YFKIB, JLIM, 7, 1, 1, IWARN)
      GO TO (1012,1011), IWARN
 1011 WRITE(IC ,90C)(ALPHZ(IZ), IZ=12,15)
 1012 CALL RADECC(813, 8852)
   34 CALL FITID(R, FIS2D, XP, FI2CB, JLIM, KLIM, I, K, IWARN)
      GO TC (1014,1013), IWARN
                 ,900)(ALPHZ([Z),[Z=16,18)
 1013 WRITE(10
 1014 CALL FIT1D(R,FH2,XP,FHB,JLIM,KLIM,I,K,IWARN)
      GO TC (1016,1015), IWARN
 1015 WRITE(10
                 ,90C)(ALPHZ(IZ),IZ=19,20)
 1016 CALL LCSS(R, VZ, VL, BTAP1, BTAP2, FNC1, U1, U2, FH2,
     1FIS2D, DEGB, THACE, I, K, JLIN, HLOB, DEG, THAC)
      CHECK FEAC LOSS CONVERGENCE AND OUTPUT COMPUTED RESULTS.
C
  801 DO 37 J=1,JLIM
   36 IF(ABS(HLOB(J)-HLCSS(I,J))-THL*ABS(HLCSS(I,J)))37,37,400
```

```
37 CONTINUE
       CALL CLTPUT
       GD TC 42
C
C
       REVISE HEAD LOSS.
C
  400 IF ( IEXLCS(I) . GT . C) GD TC 413
      GC TC (411,411,412,413), LCK
  413 XJCE=1.0
       GC TC 414
   411 XJCE= .5
       GO TO 414
  412 XJCE= .65
  414 [F(KFLCSS.EQ.C) 60 TO 860
C
C
       REASSIGN FEAC LCSS AND REFEAT ITERATIONS TO LOSS OF SOLUTION.
C
       IFILCK.LT.LCK11 GC TO 860
      CALL OUTPUT
      WRITE(IC,880) LCK
      IF(LCK.GE.LCKLIM) GC TO 870
  860 IF (LCK-40)40,841,841
   40 00 41 J=1,JLIM
   41 HLOSS(I,J)=HLCSS(I,J)+XJCE*(HLGE(J)-HLOSS(I,J))
C
      CUIPLT MESSAGE FEAD LCSS NCT CONVERGED AND OUTPUT COMPUTED RESULTS.
C
C
  841 WRITE (10,513)
      CALL OUTPUT
      GO TG 870
C
      OUTPUT INTERMEDIATE ITERATION RESULTS PRIOR TO LOSS OF SOLUTION.
C
  852 WRITE(ID, 854) LCK
      IF (LCK-4) E72,871,871
  872 IF (LCK.GT.1) GC TC 874
      GO TC 870
  871 WRITE(IC, 856)
      KHLCSS=1
      LCKLIM=LCK-1
      LOK1=LCK-3
      CO 853 J=1,JLIM
  853 HLCSS(I,J)=HLCSS1(J)
      GO TC 851
  874 hRITE(10,855)
      KHLCSS=1
      LOKLIM=LCK-1
      LOK1=LCK-1
      DO 873 J=1,JLIM
  873 HLCSS(I,J)=HLCSS1(J)
      GC TC 851
C
```

```
INITIALIZE HEAD LOSS TO ZERC.
€
  870 DO 43 J=1,JLIM
   43 HLESS(I,J)=0
   42 CONTINUE
      GO TC 13
   14 WRITE(IC.510)IC...K.L
   45 STCP
  510 FORMAT (// ERRCR IN INPLT DATA CARD ORDER, MAIN PROGRAM. +, 2X,
                              K=",[3,"
                                         L=',[3)
     1 1 1 C = 1 , 13 , 1 J = 1 , 13 , 1
  513 FORMAT(1H1///44HCLGSS SOLUTION NOT ACHIEVED IN 40 ITERATIONS)
  519 FORMAT (17H1INLET CONDITIONS)
                                                     H)
                                            VU
  520 FORMAT (36HC
  521 FORMAT (4F10-4)
  600 FORMAT(12, (T3, 12F6.4))
  601 FORMAT(1CX. PHIFUN NO. 1, F10.2)
                                                        ARFAC!//)
                                           USTAR
                              PHIEFC
  612 FORMAT(//"
                       1
  614 FORMAT (5X, 12, 3F12.4)
  615 FORMAT(212)
  616 FORMAT(// FLCW RATES COMPLETED-NEXT READ NEW RPM OR NEW GEOMETRY
   854 FORMAT(1HO, *SCLUTION FAILURE DUE TO NEGATIVE RACICAND DURING LOSS
   855 FORMAT(1HO, SCLUTION FOR THE LOSS ITERATION PRECEDING FAILURE IS P
      1ITERATION , 13)
      1RINTED NEXT*)
   856 FORMAT(1HC, SCLUTIONS FOR SEVERAL LOSS ITERATIONS PRECEDING FAILUR
      1E ARE PRINTED NEXT )
   88C FORMAT( LCSS ITERATION NO. 1, 14)
   900 FORMAT(//***** WARNING - FITID CALLED IN MAIN - EXTRAPOLATION OF
      1TAELE 1,444)
       ENC
```

```
SUBROLTINE FITTO
С
       *****
C
C
     1(X,Y,XB,YB,JP,KP,I,K,IhARN)
      CCMMCN/BLOCKL/II,IO
      DIMENSION X(5,1),Y(1),XE(5,1),YB(5,1)
С
      3-FCINT LAGRANGIAN INTERPCLATION FOR Y(X) FROM DATA TABLES YB(XB).
C
      XB-ARRAY ELEMENTS ARE ARBITRARILY SPACED, MONOTONE INCREASING.
C
      IWARN=2 INCICATES EXTRAFCLATION CUTSICE RANGE OF XB ARRAY.
C
C
      IWARN=1
      IF(X(K,1)-XB(I,1)) 15,16,16
   15 IWARN=2
   16 DO 3 J=1,JP
      DO 1 M=3,KP
      L=M
C
      BRACKET INTERPOLATE X WITH THREE NEIGHBORING POINTS IN XB ARRAY.
C
C
      IF(X(K,J)-XB(I,L))2,2,1
    1 CONTINUE
      IWARN=2
    2 X0=XB(I,L-2)
      X1 = XE(I,L-1)
      X2 = XB(I,L)
C
C
      COMPLTE INTERPOLATED Y(X).
C
    3 Y(J)=(X(K,J)-X1)*(X(K,J)-X2)*YB(I+L-2)/((X0-X1)*(X0-X2))
    1+(x(K_*J)-x_2)*(x(K_*J)-x_0)*y_B(I_*L-1)/((x_1-x_2)*(x_1-x_0))
     2+(X(K,J)-XC)*(X(K,J)-X1)*YB(I,L)/((X2-X0)*(X2-X1))
      RETURN
      END
```

```
SUBROUTINE FIT2D
C
      ** * * * * * * * * * * * * * * *
C
     1(X,Y,Z,XB,YE,ZE,IP,JP,JL,IQ,JQ,IWARN)
      COMMON/BLCCKL/II,IC
      DIMENSION X(1), Y(1), Z(1), XB(1), ZB(1), YST(3)
      DIMENSION YE(IQ,JQ)
C
      3-FCINT LAGRANGIAN INTEFPCLATION FOR Y(X,Z) FROM DATA TABLES
      YB(XE, ZB). XB, ZB ARRAY ELEMENTS ARE ARBITRARILY SPACED, MONOTONE
C
C
      INCREASING. IWARN=2 INDICATES EXTRAPOLATION OUTSIDE RANGE OF
C
      XE. ZB ARRAY.
C
      IWARN=1
      IF(x(1)-xe(1)) 16,17,17
   16 IWARN=2
   17 IF(Z(1)-ZE(1)) 18,19,19
   18 IWARN=2
   19 DO 6 N=1,JL
      DO 1 M=3, IP
      I = M
C
C
      BRACKET INTERPOLATE X WITH THREE NEIGHBORING POINTS IN XB ARRAY.
C
      IF (X(N)-XE(I))2.2.1
    1 CONTINUE
      IWARN=2
    2 DO 3 M=3,JP
      J = >
C
C
      BRACKET INTERPOLATE Z WITH THREE NEIGHBORING POINTS IN ZB ARRAY.
C
      IF(Z(N)-ZB(J))4,4,3
    3 CONTINUE
      IWARN=2
    4 XO = ZP(J-2)
      X1 = Ze(J-1)
      X2 = ZB(J)
      DO 5 K=1.3
      L=I+K
      Y0=YE(L-3,J-2)
      Y1=YE(L-3,J-1)
      Y2=YB(L-3,J)
C
C
      COMPUTE INTERPOLATED YST(XB,Z) AT THREE NEIGHBORING POINTS IN
C
      XB ARRAY.
C
    5 YST(K) = (Z(N)-X1)*(Z(N)-X2)*Y0/((X0-X1)*(X0-X2))
     1+(Z(N)-X2)*(Z(N)-X0)*Y1/((X1-X2)*(X1-X0))
     2+(2(N)-X0)*(2(N)-X1)*Y2/((X2-X0)*(X2-X1))
      XO = XE(I-2)
```

```
X1 = XP(I-1)

X2 = XE(I)

C

C COMPUTE INTERPCLATED Y(X,Z).

6 Y(N) = (X(N)-X1)*(X(N)-X2)*YST(1)/((X0-X1)*(X0-X2))

1+(X(N)-X2)*(X(N)-X0)*YST(2)/((X1-X2)*(X1-X0))

2+(X(N)-X0)*(X(N)-X1)*YST(3)/((X2-X0)*(X2-X1))

RETURN

ENC
```

```
SUBRELTINE CEV
      ** ** * * * * * * * * * * * * * *
C
C
      CGMMCN/BLCCKA/ALFE(5,20), ETA2(20), BTP18(10), DEQ(20), DEQ8(10), FHB
C
     1(5,20),FH2(20),FIS2D(20),FI10GB(8,9),FI2DB(5,20),FKI(20),FKSHAB
     2(5,20),HLCE(2C),SLP1G2(8,5),SLP2GB(8,9),THAC(20),THACB(10),X(5,20)
      CCMMCN/BLCCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTE
     1(5,8),CS(2C),EM(2C),EME(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2C),Q(5,2O)
     2.QB(5,20),RB2(2C),RN(5),SGMA(2O),SGMAB(5,20),SGMGBB(9),THTA(2O),
     3TM AXC(20), TMXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
      COMMEN/BLECKE/ETAP1(20),BTAP2(20),DELH(20),DELHI(20),DEL2(20),
     1FNC1(20), + (5,26), +LOSS(5,20), R(5,20), U1(20), U2(20), VU(5,20), VZ(5,
      220)
      CCMMCN/BLCCKD/I, JEASE, JL, JLIM, K, KLIM, KPRI, QR, QRUN, THL
       COMMON/BLOCKF/ILIM, IRUN, IEXLOS(5), IEXDEV(5), K2LM(5), L2LM(5)
      1.USTAR(5), PHIBE(5,20), XPB(5,20), CMEGBB(5,20,20), DEL2B(5,20,20)
      2,PFIEX(20),RSTAR(5),ARE4(5),ARFAC(5)
       CCMMCN/BLCCKG/K2LIM, L2LIM, YPHIBB(20), YXPB(20), YCMGBB(20,20), YDEL2
      1B(20,20), YPHIEF(2C), YR(2C), PHIEFC(5)
       COMMEN/BLECKI/ EXPBE(7,7),FIDIFB(7),PPHB(7),STARI(20)
       COMMCN/BLCCKJ/EMEB(8), FIICI1(40), FI10I2(32), FKIB(7), SLP1I1(16),
      1SLP112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
      2 SLF2[3(16),SLP2[4(16),SLP2[5(8),TMAXCE(7)
       CONNCN/BLCCKL/II, IC
       DIMENSION EXPB(20), FIDIF(20)
       DIMENSION ALPHZ(10)
       CATA ALPHZ/' YDE', L28(', TYPHI', BB, Y', TXPB)', EX', TPBB(',
                   *FIDI *, *FB, P*, *PHB) */
 С
       CALCULATE REFERENCE INCIDENCE ANGLES.
 C
 C
        DC 45 J=1,JLIM
        PPFT2(J) = (R(K,JLIM) - R(K,J)) / (R(K,JLIM) - R(K,1))
    45 THTA(J)=ABS(ALF1(J)-ALF2(J))
        CALL IREF
        IF (IEXDEV(I))43,40,42
        CALCULATE CEVIATION ANGLES USING CARTER'S RULE.
 C
     40 CALL FIT1C (YANGS, EM, ANGSTB, EMB, JLIM, 8,1, K, IWARN)
        GO TC (51,50), INARN
     50 WRITE(10,100)
     51 DC 41 J=1,JLIM
     41 DEL2(J) =EM(J) *THTA(J)/SCRT(SGMA(J))
        RETURN
        CALCULATE CEVIATION ANGLES FROM INPUTED REFERENCE TABLE.
  C
  C
     42 KK=K2LM(I)
        LL = L2LM(I)
```

```
CALL FIT2C(YPHIEF, DEL2, YR, YPHIBB, YDEL2B, YXPB, KK ,LL
                                                                  ,JLIM,20,
     1 2C, IWARN)
      GO TO (55,54), IWARN
   54 WRITE(10,101)(ALFHZ(1Z),1Z=1,5)
   55 RETURN
      CALCULATE DEVIATION ANGLES USING CAMBER EXPONENT RULE.
С
C
   43 CALL FITIC(YANGS, EM, ANGSTB, EMB, JLIM, 8, 1, K, I WARN)
      GO TC (53,52), IWARN
   52 WRITE(10,100)
   53 DO 47 J=1,JLIM
   47 FICIF(J)=FNCI(J) *57.29578-STARI(J)
      CALL FIT2C(FIDIF, EXPB, PPFT2, FIDIFB, EXPBB, PPHB, 7, 7, JLIM, 7, 7, IWARN)
      GO TC (57,56), IWARN
  56 WRITE(IO, 101) (ALPHZ(IZ), IZ=6,10)
  57 DO 46 J=1, JLIM
  46 DEL2(J) = EF(J) *((THTA(J) *57.29578) ** EXPB(J))/(57.29578*
     1 SQRT(SGMA(J)))
      RETURN
 100 FORMAT(// *** ** WARNING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FI
    1T1C-CALLEC IN CEV.)
 101 FORMAT(// *** ** WARNING - FIT2D CALLED IN DEV - EXTRAPOLATION OF T
    1ABLE *,5A4)
     END
```

```
SUBROUTINE INCLT
      ****
C
С
C
      COMMCN/BLOCKA/ALF8(5,20), BTA2(20), BTP1B(10), DEQ(20), DEQB(10), FH8
     1(5,20),FH2(20),FIS2C(20),FI10GB(8,9),FI2DB(5,20),FKI(20),FKSHAB
     2(5,20), HLGE(2C), SLP1GB(8,5), SLP2GB(8,9), THAC(20), THACB(10), X(5,20)
      COMMENTELECKE/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
     1(5,8),CS(2C),EM(20),EMB(5,8),FKSHA(20),PPFT1(20),PPFT2(20),Q(5,20
     2,QE(5,20),RB2(2C),RN(5),SCMA(20),SGMAB(5,20),SGMGBB(9),THTA(20),
     3TMAXC(20), TMXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
      COMMON/BLCCKD/I, JBASE, JL, JLIM, K, KLIM, KPRI, QR, QRUN, THL
      COMMON/BLOCKF/ILIM, IRUN, IEXLOS(5), IEXDEV(5), K2LM(5), L2LM(5)
     1. USTAR (5), PHIBE (5,20), XFB (5,20), OMEGBB (5,20,20), DEL2B(5,20,20)
     2,P+1EX(2C),RSTAR (5),AREA(5),ARFAC(5)
      CCMMCN/BLCCKH/IC, IL, IPRI, JPRI, K1LIM
      COMMON/BLOCKI/ EXPBB(7,7), FIDIFB(7), PPHB(7), STARI(20)
      COMMEN/BLCCKK/YCEGB(20), YRPE(7), YTHACB(20,7), YXCB(20), DEQBB(5,20)
     X, RPBE (5, 7), THACBE (5, 20, 7), XCBB (5, 20), HLDP (20)
      CCMMCN/BLCCKL/IIN, IOUT
      COMMON/BLCCKM/KLZ(5), LLZ(5), YXCBB(20), RPBB1(7), THCBB1(20,7),
     1RPEB2(7), THCBB2(20, 7), YCECBB(20)
      CCMMCN/BLCCKP/YFKIB(5,7),YTMACB(5,7)
      WRITE (IOUT, 9125)
      WRITE(IOUT,5074)
    8 WRITE (IOLT, 503) IRUN, JBASE, JLIM
      WRITE(IOUT.5076)
C
      OUTPUT REFERENCE INCIDENCE ANGLE TABLES.
C
C
      WRITE(IOUT, 5031) (YTMACE(1,K), K=1,7)
      WR ITE(IOUT,5078) (YFKIB(1,K),K=1,7)
      WR ITE (IOUT, 5077)
       WRITE (ICUT, 5034)
       WRITE(10UT,5032)(SGMGBB(L),L=1,9)
       CG 61 K=1.8
       WRITE(IOUT,5033) YANGSB(K), (FI10GB(K,L),L=1,9)
   61 CONTINUE
       WR ITE ( IOUT , 9124 )
       DO 62 K=1.8
       WRITE(IOUT, 5033) YANGSB(K), (SLP1GB(K,L),L=1,9)
    62 CONTINUE
       WRITE(IOUT, 9124)
       DO 63 K=1.8
       WRITE(ICUT,5033) YANGSB(K),(SLP2GB(K,L),L=1,9)
    63 CONTINUE
C
       OUTPUT BLADE RCW RPM, REFERENCE RADIUS AND LOSS AND DEVIATION
C
 C
       ANGLE CPTICNS.
 C
       DO 93 I=1,IL
       WRITE(IOUT,5038)
```

```
WRITE(IOUT.5C5) I.RN(I), RSTAR(I), IEXDEV(I), IEXLCS(I)
       WRITE(ICLT,506)
       WRITE (IGUT, 507)
 C
 C
       OUTPUT REFERENCE BLADE ROW GECMETRY TABLES.
    81 WRITE(IGUT,508)(J,X([,J),ALFB(I,J),XP(I,J),ALFPB(I,J),SGMAR(I,J),
      1TMXCB(I,J),F12CB(I,J),FHB(I,J),FKSHAB(I,J),J=1,KLIM)
 C
 C
       OUTFUT REFERENCE DEVIATION ANGLE TABLES.
 C
       IF (IEXCEV(I)) 9113,911,9112
  9113 WRITE([OLT,5081]
       WRITE(IOUT,5091)
       WRITE(IOUT,600)(FIDIFE(K),K=1,7)
       WR ITE (10UT, 9124)
       DO 360 L=1,7
   360 WRITE(IOLT,630) FPHB(L),(EXPBB(K,L),K=1,7)
       GO TC 900
  911 WRITE(ICUT, 5082)
       WRITE(IOUT,60C1)(YANGSE(K),K=1,8)
       WRITE(IOLT, 60C2) (EMB(1, K), K=1,8)
       GO TC 900
  9112 K1=1
       IF (K2LM(I)-10)912,912,921
   921 KK=10
       LL 1=2
       GO TC 9211
   912 KK=K2LM(I)
       LL 1=1
  9211 LL=L2LM(I)
       WR ITE (10UT, 5083)
       WR ITE ( IOUT, 9122)
       DO 981 L1=1,LL1
      WR ITE(IOUT, 9123) (PHIBB(I, K), K=K1, KK)
      WRITE(IOUT, 9124)
      DO 98 L=1,LL
      WR ITE(IOUT, 542) >PB(I,L), (DEL2B(I,K,L),K=K1,KK)
      DC 98 K=K1,KK
   98 DEL28(I,K,L)=C.C17453*DEL28(I,K,L)
       IF (LL1-1)982,981,982
  982 KK=K2LM(I)
      K1 = 11
      WRITE(ICUT,9124)
  981 CONTINUE
C
C
      OUTPUT REFERENCE BLADE WAKE MOMENTUM THICKNESS/CHORD OR LOSS
C
      COEFFICIENT TABLES.
  900 LINDEX=IEXLCS(I)+5
      GO TC (855,856,855,898,857,896),LINDEX
  896 K1=1
```

```
IF( KLZ(I)-1C) 8563,8963,8961
8961 KK=10
     LL1=2
     GO 1G 8962
8963 KK= KLZ(I)
     LL1=1
8962 LL= LLZ(I)
     WRITE (IOUT, 553)
     WRITE(IOUT,543)
     DO 52 L1=1,LL1
     WRITE(IOUT,9123)(PHIBB(I,K),K=K1,KK)
      WRITE(IOUT, 9124)
      DO 95 L=1,LL
      WRITE(IOUT,5422) XPB(I,L),(CMEGBB(I,K,L),K=K1,KK)
  95 CONTINUE
      IF(LL1-1) 57,92,97
   97 KK= KLZ(I)
      K1 = 11
      WRITE(IDUT,9124)
   92 CONTINUE
      GO TC 93
  899 K1=1
      IF (KLZ(I)-10) 8992, 8992, 8991
 8991 KK=10
      LL 1=2
      GO TO 902
 8992 KK=KLZ(I)
      LL 1=1
  902 LL=LLZ(I)
       WRITE (ICUT, 554)
       WRITE (IOUT, 566)
       DO 5021 L1=1.LL1
       WR ITE ( IOUT, 563) ( >CBB( I, K) ,K=K1,KK)
       WRITE (ICUT, 9124)
       DO 904 L=1,LL
       WRITE(IOUT, 564) RPBB(I,L), (THACBB(I,K,L),K=K1,KK)
   904 CONTINUE
       IF(LL1-1) 9041,9021,9041
  9041 KK=KLZII)
       K1=11
       WR ITE ( IOUT, 9124)
  9021 CONTINUE
       GO TC 53
   898 K1=1
        IF (KLZ(I)-10) 8982,8982,8981
  8981 KK=10
        LL 1=2
        GO TO 901
   8982 KK=KLZ(I)
        LL 1=1
    901 LL=LLZ(I)
        WRITE (IOUT, 57C)
```

```
WRITE(IOUT,562)
       DO 9011 L1=1,LL1
       WR ITE(IOUT, 563) (CEQBB(I,K), K=K1,KK)
       WRITE(10UT,9124)
       DO 903 L=1,LL
       WRITE(IOUT, 564) FPBB(I, L), (THACEB(I, K, L), K=K1, KK)
  903 CONTINUE
       IF(LL1-1) 9031,9011,9031
 9031 KK=KLZ(I)
       K1 = 11
       WRITE (10UT, 9124)
 9011 CONTINUE
       GO TO 93
  897 WRITE(ICUT,55C)
       WRITE(IOUT,551) (DEQB(K),K=1,10)
       WR ITE(IOUT, 552) (THACB(K), K=1, 10)
   93 CONTINUE
      RETURN
  503 FORMAT(4X, "IRUN=", 14, 10X, "JBASE=", 13, 10X, "JLIM=", 13)
  505 FORMAT(7X, "I=", I2, 10X, "RN=", F7.1, " RPM", 10X, "RSTAR=", F8.5, " FT", 10
     1x, 'IEXDEV=', I2, 10x, 'IEXLCS=', I2,//)
  506 FORMAT (7X, REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY-DE
     1PENDENT LOSS CATA 1//)
  507 FORMAT (10x, "J", 5x, "X", 9x, "ALFB", 7X, "XP", 7X, "ALFPB", 5X, "SGMAB", 5X,
     1 TMXCB ,5X, FI2CE ,5X, FHE ,6X, FKSHAB //)
  508 FORMAT(9X,12,9F1C.4)
  542 FCFMAT (9X, F8.4, 2X, 10F8.4)
  543 FORMAT(12X, "XPB", 43X, "PF188"/)
  550 FORMAT (//, 7X, *REFERENCE TABLE LOSS(THACB)*//)
  551 FORMAT(/10X, CECE= 1,10F8.2)
  552 FORMAT( 10X, THACB= 1, 10F8.2)
  553 FORMAT(//,7X, *REFERENCE TABLE LCSS(OMEGBB)*//)
 554 FORMAT(//, 7X, REFERENCE TABLE LOSS(THACBB) 1//)
 562 FORMAT(11X, "RPBB", 45X, "CECBB"/)
 563 FORMAT (17X,10F10.4)
 564 FORMAT(6X,F10.4,1X,10F1C.4)
 566 FORMAT (11X, 'RPEE', 45X, 'XCBB'/)
 570 FORMAT (//7x, *REFERENCE TABLE LCSS (THACBE) *//)
 600 FORMAT(17X,7F10.1)
 630 FORMAT ( 5X,F10.3,2X,7F10.3)
5031 FORMAT (7X, "YTMACE=",7F8.2)
5032 FORMAT(13X,9F10.1/)
5033 FORMAT (5X, F7.2, 2X, 9F10.3)
5034 FORMAT(7X, "YANGSE", 43X, "SGMGBB"/)
5038 FORMAT (//4x, BLACE ROW CATA 1//)
5074 FORMAT(//2x, AXIAL-FLOW PUMP PERFORMANCE PREDICTION - - INPUT 1/1)
5076 FORMAT(//4x, REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRE
5077 FORMAT(//4X, REFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBE
    IR CCEFFICIENTS (FILOGB, SLP1GB, SLP2GB) 1//)
5078 FORMAT(7X, 'YFKIE= ',7F8.2)
```

```
5081 FORMAT(//7X,*REFERENCE TABLE DEVIATION ANGLE-CAMBER EXPONENT(EXP88 1)*//)
5082 FORMAT(//7X,*REFERENCE TABLE DEVIATION ANGLE-SLOPE FACTOR(EMB)*//)
5083 FORMAT(//7X,*REFERENCE TABLE DEVIATION ANGLE(DEL28)*//)
5091 FORMAT(11X,*PPHB*,45X,*FICIFB*/)
5422 FORMAT(8X,F8.4,2X,1GF8.4)
6001 FORMAT(/10X,*YANCSB=*,8F8.2)
6002 FORMAT(10X,*YANCSB=*,8F8.2)
9122 FORMAT(14X,*XPB*,45X,*PPHBB*/)
9123 FORMAT(18X,10F8.4)
9124 FORMAT(1H)
ENC
```

```
1(*)
      COMMCN/BLCCKA/ALFE(5,20), ETA2(20), BTP1B(10), DEQ(20), DEQB(10), FHB
     1(5,2C),FH2(2C),FIS2D(2O),FI10GB(8,9),FI2CB(5,2O),FKI(2O),FKSHAB
     2(5,20),HLGB(20),SLP1GB(8,9),SLP2GB(8,9),THAC(20),THACB(10),X(5,20)
      CCMMCN/BLCCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
     1(5,8),CS(20),EM(2C),EMB(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2O),Q(5,2O)
     2,QE(5,20),RB2(20),RN(5),SGMA(20),SGMAB(5,20),SGMGBB(9),THTA(20),
     3TMAXC(20), 1MXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
      COMMEN/BLECKD/I, JEASE, JI, JLIM, K, KLIM, KPRI, QR, QRUN, THL
      COPPCN/BLCCKF/ILIM, IRUN, IEXLOS(5), IEXDEV(5), K2LP(5), L2LM(5)
     1, LSTAR(5), PHIBE(5,20), XFB(5,20), OMEGBB(5,20,20), DEL2B(5,20,20)
     2,PHIEX(20),RSTAR(5),AREA(5),ARFAC(5)
      COPMCN/BLCCKG/K2LIM, L2LIM, YPHIBE(20), YXPB(20), YOMGBB(20,20), YDEL2
     18(20,2C), YPHIEF(20), YR(2C), PHIEFC(5)
      COMMEN/BLECKH/IC, IL, IPRI, JPRI, K1LIM
      COMMCN/BLCCKI/ EXPBB(7.7).FIDIFB(7).PPHB(7).STARI(20)
      COMMON/BLOCKJ/EMBB(8), FI1011(40), FI1012(32), FKIE(7), SLP111(16),
     1SLF112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
     2 SLP2I3(16),SLP2I4(16),SLP2I5(8),TMAXCE(7)
      CCMMCN/BLCCKK/YCEGB(20),YRPB(7),YTHACB(20,7),YXCB(20),DEQBB(5,20)
     X, RPBE (5,7), THACEE (5,20,7), XDBB (5,20), HLCP (20)
      COMMON/BLCCKL/IIN.IOUT
      COMMCN/BLCCKM/KLZ(5), LLZ(5), YXDBB(20), RPBB1(7), THCBB1(20,7),
     1RPPE2(7), THCBB2(2C, 7), YDECEE(20)
      DIMENSION ALPHZ(6)
      ', 'KLIM'/
C
C
      INPUT LIMIT VALUES AND RUN IDENTIFICATION.
   73 READ (IIN, 501) ID, ILIM, JLIM, JBASE, IRUN, THL
      IF (IC-10)14.3.14
    3 IL=ILIM-1
      JL = JL IM-1
      DO 99 [=1,IL
C
      INPUT LOSS AND CEVIATION OPTION VALUES.
      REAC (IIN, 5021) IC, J, RSTAR(I)
      IF (IC-18)14,100,14
  100 IF(I-J)14,101,14
  101 READ (IIN, 501 ) IC, IEXLOS(I), IEXDEV(I)
      IF (IC-19)14,74,14
C
C
      INFUT REFERENCE LOSS AND DEVIATION TABLES.
C
   74 IF (IEXLOS(I))75,75,76
   75 If (!EXDEV(I))8CC,800,76
   76 READ (IIN,501 )IC, KLZ(I), LLZ(I)
```

```
IF(IC-20) 14, 86, 14
  86 IF (KLZ(I)-3) 600,601,601
 600 WRITE(IOLT, 1000) (ALPHZ(IZ), IZ=1,2), I, IC
      STCP
 601 IF(LLZ(I)-3) &C2,603,603
 602 WR ITE(IOLT, 1000) (ALPHZ(IZ), IZ=3,4), I, ID
      STCP
 603 K2LIN=KLZ(I)
      L2LIN= LLZ(I)
      REAC ([IN,533) IC, (PHIBB (I,K), K=1,K2LIM)
      IF(ID-21)14,78,14
  78 REAC (IIN,533) IC, (XPB(I,K), K=1, L2LIM)
      IF(IC-22)14,1C2,14
 102 IF(IEXLOS(I))89,89,79
  79 DC 80 K=1,K2LIM
      REAC (IIN, 532) ID, (CMEGBB(I, K, L), L=1, L2LIM)
      IF(IC-23)14,8C,14
  80 CONTINUE
   89 IF(IEXDEV(I))59,59,103
  103 DO 85 L=1,K2LIM
      REAC (IIN,532) ID, (DEL28 (I,L,K), K=1,L2LIM)
      IF(IC-24)14,85,14
   85 CONTINUE
      K2LM(I)=KLZ(I)
      L2LP(I)=LLZ(I)
C
      INPUT REFERENCE WAKE MCMENTUM/CHORD (THACBB) TABLES.
C
C
  800 LINDEX=IEXLOS(I)+5
      GC TC (812,813,814,815,811),LINDEX
  811 GO TC 99
  812 REAC (IIN,501 )IC, KLZ(I), LLZ(I)
      IF (IC-25)14,816,14
  816 IF (KLZ(I)-3) 6C4,605,605
  604 WRITE(IOUT, 10CO) (ALPHZ(IZ), IZ=1,2), I, ID
  605 IF (LLZ(1)-3) &C6,6C7,607
  606 WR ITE ( IOUT, 1000) (ALPHZ ( IZ ), IZ=3,4), I, ID
      STCP
  607 KK=KLZ([]
      LL=LLZ(I)
  802 REAC(IIN, 500) IC, (XCBE(I,K), K=1,KK)
       IF(IC-26)14,8C3,14
  813 REAC (IIN,501 )IC, KLZ(I), LLZ(I)
       IF (IC-25)14,817,14
  817 [F(KLZ(I)-3) 6C8,609,609
  608 WRITE(ICUT, 10CC) (ALPHZ(IZ), IZ=1,2), I, ID
       STCP
   609 IF(LLZ(I)-3) 610,611,611
  610 WRITE(ICUT, 100C) (ALPHZ(IZ), IZ=3,4), I, ID
       STCP
   611 KK=KLZ(I)
```

```
LL=LLZ(I)
   801 REAC(IIN, 500) IC, (DEQBB(I,K), K=1,KK)
       IF(IC-26)14,8C3,14
   803 REAC(IIN, 500) IC, (RPBB(I, L), L=1, LL)
       IF(IC-27) 14,804,14
   804 DO EC5 K=1.KK
   805 REAC(IIN, 500) IC, (THACBE(I, K, L), L=1, LL)
       IF(IC-28) 14,55,14
   814 KLZ(I)=20
       LL Z(I)=7
       DO 8141 K=1,20
  8141 XDEE(I,K) = YXDBE(K)
       DO 8142 L=1,7
  8142 RPEE(I,L)=RPBB1(L)
       DO 8143 K=1,20
       DO 8143 L=1,7
  8143 THACBB(I,K,L)=THCBB1(K,L)
       GB TD 59
  815 KLZ([]=20
       LLZ(1)=7
       DO 8151 K=1,20
  8151 DECEB(I,K)=YDECEE(K)
       DO 8152 L=1.7
  8152 RPBB(I,L)=RPBB2(L)
       CO 8153 K=1,20
       DO 8153 L=1,7
  8153 THACEB(I,K,L)=THCBB2(K,L)
   99 CONTINUE
C
C
       INPUT REFERENCE BLADE ROW GEOMETRY TABLES.
C
       DC 6 L=1, IL
      REAC (IIN,501)ID,J
       IF(IC-30)14,4,14
    4 IF(L-J)14,44,14
   44 REAC (IIN.5C1 )IC, KLIM
       IF (IC-31)14,444,14
  444 IF(KLIM-3) 612,613,613
  612 WRITE(IOLT, 1000) (ALPHZ(IZ), IZ=5,6), L, ID
      STCP
  613 DO 6 K=1,KLIM
      REAC (IIN,5021)IC, J, X(L,K), ALFB(L,K), XP(L,K), ALFPB(L,K),
     1SGMAE(L,K),TMXCE(L,K), F12CB(L,K),FHB(L,K),FKSHAB(L,K)
      IF(IC-32)14,5,14
    5 IF(J-K)14,6,14
    6 CONTINUE
                           ر
      ENTRY INPUTI(*)
      CONTINUE
C
C
      INPUT BLADE RCW FPM AND COMPUTE REFERENCE BLADE SPEED.
C
```

```
72 DC 7 K=1, IL
      READ (IIN,500) ID, RN(K)
      IF(IC-50)14,71,14
   71 IF (RN(K)+1.)7,73,7
    7 CONTINUE
      DO 250 K=1,IL
      IF (RN(K))251,250,251
  251 RRN=RN(K)
      GO TC 253
  250 CONTINUE
      00 255 I=1,IL
  255 USTAR(I)=1
      GO TC 256
  253 DO 252 I=1,IL
  252 UST#R(I)=0.10472#RSTAR(I)#RRN
C
C
      OUTPUT PROBLEM DATA LOAD.
С
  256 CALL INCUT
      RETURN 1
   14 WRITE (IOUT,557)
                          ID, I, K, L, J
      STCF
  500 FORMAT(12,(T3,12F6.4))
  501 FORMAT (412, 16, F6.4)
  532 FORMAT(12, (T5, 14F5.4))
  533 FORMAT([2,(T3,14F5.4))
  557 FORMAT(// ERROR IN INPLT DATA CARD ORDER, SUBROUTINE INPUT. . . 2X,
     1"IC=",13,"[=",13,"K=",13,"L=",13,"J=",13)
 1000 FORMAT(//***** ERROR IN INPUT - 1,244, MUST BE GREATER THAN 2 FO
     1R INTERPCLATION, I= 1,12, 1D= 1,12)
 5021 FORMAT(12,2X,12,5F7.4)
      EN D
```

```
SUBROUTINE IREF
C
      *****
C
C
C
      COMPUTE REFERENCE INCIDENCE ANGLE FOR CONSTANT STAGGER CASCADES
      BASED ON CAMPER ANGLE, STAGGER ANGLE, MAXIMUM THICKNESS TO CHORD
C
      RATIC, SCLICITY, AND CORRECTION FACTOR FOR THICKNESS DISTRIBUTION.
C
C
C
      CCMMCN/BLCCKA/ALF8(5,20), ETA2(20), BTP1B(10), DEQ(20), DEQB(10), FHB
     1(5,2C),FH2(20),FIS2D(20),FI10GB(8,9),FI2DB(5,20),FKI(20),FKSHAB
     2(5,20), HLCE(2C), SLP1GE(8,5), SLP2GB(8,9), THAC(20), THACB(10), X(5,20)
      COMMON/BLCCKE/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
     1(5,8),CS(2C),EM(2C),EMB(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2O),Q(5,2O)
     2.QE(5,2C),RB2(2C),RN(5),SGMA(2O),SGMAB(5,2O),SGMGBB(9),THTA(2O),
     3TMAXC(20), TMXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
      COMMON/BLCCKD/I, JBASE, JL, JLIM, K, KLIM, KPRI, QR, QRUN, THL
      COMMEN/BLCCKI/ EXPBB(7,7), FIDIFB(7), PPHB(7), STARI(20)
      COMMCN/BLCCKJ/EMBB(8), F11011(40), F11012(32), FK1B(7), SLP111(16),
     1SLP112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
     2 SLF2I3(16), SLP2I4(16), SLP2I5(8), TMAXCB(7)
      COMMEN/BLECKL/II,IC
      CIMENSION FI010G(20), SLCP1G(20), SLCP2G(20), YANGS1(20)
      CIMENSION ALPHZ(18)
      DATA ALPHZ/
                      F','I1GG','B(YA','NGSB',',SGM','GBB)','
     1
                  "LP1G", "B(YA", "NGSB", ", SGM", "GBB) ", " S", "LP2G",
     2
                  "B(YA", "NGSB", ", SGM", "GBB) "/
C
      DO 10 J=1,JLIM
   10 YANGS1(J)=YANGS(+,J)
      CALL FIT2C(YANGS1, FI010C, SGMA, YANGSB, FI10GB, SGMGBB, 8, 9,
     XJLIM,8,9,IWARN)
      GO TO (201,200), IHARN
 200 WRITE(IC, 501)(ALPHZ(IZ), IZ=1,6)
  201 CALL FIT2D(YANGS1, SLOP1G, SGMA, YANGSB, SLP1GB, SGMGBB, 8, 9,
     XJL IM, 8, 9, I hARN)
      GC TC (203,202), IWARN
  202 WRITE(IC,5C1)(ALFHZ(IZ),IZ=7,12)
  203 CALL FIT2C(YANGS1, SLOP2G, SGMA, YANGSB, SLP2GB, SGMGBB, 8, 9,
     XJLIM,8,9,IMERN)
      GO TC (205,204), IMARN
  204 WRITE(IG, 501)(ALPHZ(IZ), IZ=13,18)
  205 DO 1CO J=1,JLIM
  100 STARI(J)=FKSHA(J)*FKI(J)*FI010G(J)+SLOP1G(J)*THTA(J)*57.29578
     X +SLCP2G(J) *THTA(J) *THTA(J) *57.29578*57.29578
      DO 6C J=1,JLIM
      BTP1=57.29578*ALF1(J)+STARI(J)
      IF(ETP1.LE.75.) GO TO 60
      WRITE (10,500) J,BTP1
  60 CONTINUE
```

RETURN

500 FORMAT(/' IREF AT STREAMLINE", 14, REQUIRED EXTRAPOLATION OF TABL

1FS BECAUSE BTP1=",F7.2, CEG"/)

501 FORMAT(//****** WARNING - FIT2C CALLEC IN IREF - EXTRAPOLATION OF

1TABLE ",6A4)

ENC

```
SUBROLTINE LOSS
C
       ** * * * * * * * * * * * * * *
C
C.
     1(R, VZ, VU, BTAP1, BTAP2, FNC1, U1, U2, FH2, FIS2D, DEQB, THACB, I, K, JLIM,
     2HLOB.DEQ.THAC)
      DIMENSION BTAP1(20), BTAP2(20), DEQ(20), DEQ8(10).
     1FH2(20),FIS2D(20),FNC1(20),HLCB(20),R(5,20),
     2TH AC(20), THACE(10), U1(20), U2(20), VU(5, 20), VZ(5, 20), OMEGE(20)
      DIMENSION XVP1(20), XVP2(20), XC(20), XDD(5,20), DEGDD(5,20), THACDD(5,
     120)
      COMMEN/BLOCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
     1(5,8),CS(20),EM(20),EME(5,8),FKSHA(20),PPFT1(20),PPFT2(20),Q(5,20)
     2,QE(5,20),RB2(20),RN(5),SGMA(20),SGMAB(5,20),SGMGBB(9),THTA(20),
     3TMAXC(20), TMXCE(5,20), XF(5,20), YANGSB(8), YANGS(5,20)
      COMMEN/BLCCKF/ILIM, IRUN, IEXLCS(5), IEXDEV(5), K2LM(5), L2LM(5)
     1. USTAR(5), PHIBE(5,20), XFB(5,20), CMEGBB(5,20,20), DEL2E(5,20,20)
     2, PHIEX(20), RSTAR (5), AREA(5), AREA(5)
      COMMCN/BLCCKG/K2LIM, L2LIM, YPHIBE(20), YXPB(20), YCMGBB(20, 20), YDEL2
     1B(20,20), YPHIEF(20), YR(20), PHIEFC(5)
      CCMMCN/BLOCKI/ EXFBB(7,7),FIDIFE(7),PPHB(7),STARI(20)
      CCMMCN/BLCCKJ/EMEB(8), F11CI1(40), F110I2(32), FK1E(7), SLP1I1(16),
     1SLP112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
     2 SLF2I3(16), SLF2I4(16), SLF2I5(8), TMAXCP(7)
      COMMON/BLCCKK/YDEGB(20), YRPB(7), YTHACB(20,7), YXCB(20), DEGBB(5,20)
     1,RPBE(5,7),THACBE(5,2C,7),XDBB(5,20),HLDP(20)
      CEMMEN/BLCCKL/II.IC
      COMMEN/BLCCKM/KLZ(5), LLZ(5), YXDEB(20), RPBB1(7), THCBB1(20,7),
     1RPBB2(7), THCBB2(2C,7), YDECBE(20)
      DIMENSION ALPHZ(15)
                       Y*, "THAC ", "B (YX", "DB, Y", "RPB) ", " YT", "HACB",
      DATA ALPHZ/*
                   "(YCE', "QB, Y', "RPB)', " YOM', 'GBB(', 'YPHI', 'BB, Y',
     1
                   'YPE) 1/
      C0117=.CC7
      IF(U1(1))10,11,10
   10 C61=-.61
      GO TO 12
   11 C61=.61
   12 LINDEX=IEXLOS(I)+5
      GO TC (30,20,30,20,50,40),LINDEX
   30 KK=KLZ(I)
      LL=LLZ(I)
C
C
      CCMFLTE THETA CVER CHORD RATIO(THAC) FROM D-FACTOR AND BLADE-
C
      ELEMENT LCCATION.
C
      IF(RN(I)) 32,33,32
   32 KSI=1
      GO TO 34
   33 KS I=-1
   34 DO 31 J=1,JLIM
      XVP1(J)=VZ(I,J)/(CCS(BTAP1(J)))
```

```
XVP2(J)=VZ(K,J)/(COS(ETAP2(J)))
   31 XD(J)=1.-(XVP2(J)/XVP1(J))+KSI*(R(K,J)*VU(K,J)-R(I,J)*VU(I,J))/
     1(XVP1(J)*(R(K,J)+R(I,J))*SGMA(J))
      CALL FIT2C(XC,THAC,PPFT2,YXCB,YTHACB,YRPB,KK,LL,JLIM,20,7,IWARN)
      GO TC (61,60), IWARN
   60 WRITE(IC, 1C1)(ALPHZ(IZ), IZ=1,5)
   61 GO TC 25
   20 KK=KLZ(I)
      LL=LLZ(I)
C
      COMPLIE DEQ.
   50 DO 21 J=1,JLIM
      C1=R(I,J)/R(K,J)
      C2 = CCS(BTAP1(J))/VZ(I,J)
      C3=4./(3.*FH2(J)-1.)
      FIIPS=57.2957E*ABS(FNC1(J)-STARI(J)/57.29578)
      DEC(J)=1.12+C0117*FIIPS**1.43
      DEC(J) = ((C61 + C2 + COS(BTAP1(J)) / SGMA(J)) + (C1 + (VU(I, J) - U1(J)))
     1+U1(J)/C1-VU(K,J))+DEG(J))*COS(BTAP2(J))/(C2*VZ(K,J))
   21 CONTINUE
      IF(LINDEX-5) 22,23,22
C
      COMPLIE THAC AND FEAD LOSS FROM DEQ AND BLADE-ELEMENT LOCATION.
   22 CALL FIT2C(DEG,T+AC,PPFT2,YDEGB,YTHACB,YRPB,KK,LL,JLIM,20,7,IWARN)
      GO TC (25,62), TWARN
   62 WRITE(IO, 101) (ALPHZ(IZ), IZ=6, 10)
   25 DO 24 J=1,JLIM
      C4=(VZ(I,J)*VZ(I,J)/(CCS(BTAP1(J))*COS(BTAP1(J))))
   24 HLCE(J)=SGMA(J)*THAC(J)*C4/{32.174*COS(BTAP2(J))}
      RETURN
C
      COMPUTE THAC AND FEAD LCSS FROM DEQ.
   23 DO 26 J=1,JLIM
   26 XDC(1,J)=DEC(J)
      DO 28 J=1,10
      DECCC(1,J)=CEQE(J)
   28 THACDD(1.J)=THACE(J)
      CALL FITIC (XDC, THAC, DEQDD, THACDD, JLIM, 10, 1, 1, IWARN)
      GO TO (67,66), IWARN
   66 WRITE(10,1CC)
   67 DO 27 J=1,JLIM
      C4=SGMA(J)*THAC(J)*FH2(J)/CCS(BTAP2(J))
   27 HLCB(J)=(C3*C4*((VZ(I,J)/CCS(BTAP2(J)))*(VZ(I,J)/COS(BTAP2(J))))/
     1((1.0-C4)**3))/64.348
      RETURN
   4C KK=KLZ(I)
      LL=LLZ(I)
С
      COMPUTE LOSS COEFFICIENT AND HEAD LOSS FROM EFFECTIVE FLOW
```

```
COEFFICIENT AND RADIAL POSITION.
C
C
      CALL FIT2C(YPHIEF, OMEGB, YR, YPHIBB, YOMGBB, YXPB, KK, LL, JLIM, 20, 20,
     1 I WARK)
      GC TC (65,64), IWARN
   64 WRITE(IO, 101)(ALFHZ(IZ), IZ=11, 15)
   65 DO 41 J=1,JLIM
      HLCE(J)=CMEGB(J)*((VZ(I,J)/CCS(BTAP1(J)))**2)/64.348
      C4=VZ(I,J)*VZ(I,J)/(CGS(ETAP1(J))*COS(BTAP1(J)))
   41 THAC(J)=(HLCB(J)*32.174*CCS(BTAP2(J)))/(C4*SGMA(J))
      RETURN
  100 FORMAT(//***** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN
     1FIT1C-CALLED IN LCSS*)
  101 FORMAT(//****** WARNING - FIT2D CALLED IN LOSS - EXTRAPOLATION OF
     1TABLE 1,5A41
      END
```

```
SUBROUTINE MAVE
C
      *****
C
C
     1(I,J,K,R,VZ,VU,H,U1,U2,QRUN,JLIM,JL,DELH,DELHI,RN,IL)
      CCMMCN/BLCCKL/II, IO
      DIMENSION CELH(2C), CELH 1(20), H(5,20), R(5,20), REFFP(20),
     1RHRP(20), RVEL(20), SEFFP(20), SHRP(20), SDELH(20), TISPD(5), U1(20),
     2U2(20), VU(5,20), VZ(5,20), W(5,20), RN(5)
      DO 1 J=1,JLIM
    1 RVEL(J)=R(K,J)\pmVZ(K,J)
      DENCM=0
      DO 2 J=1,JL
    2 DENCM=CENCM+((RVEL(J+1)+RVEL(J))*(R(K,J+1)-R(K,J)))/2.0
      IF(RN(I)) 3,12,3
   12 IF(IL-1) 13,10,13
   13 IF(FN(I-1)) 7,10,7
    3 DO 4 J=1,JLIM
      RHRP(J)=R(K,J)*V2(K,J)*DELH(J)
    4 REFFP(J)=RHRP(J)/DELHI(J)
      RHRI=0
      REFFI=0
      DO 5 J=1,JL
      RHRI=RHRI+((RHRP(J+1)+RHRP(J))*(R(K,J+1)-R(K,J)))/2.0
    5 REFFI=REFFI+((REFFP(J+1)+REFFP(J))*(R(K,J+1)-R(K,J)))/2.0
      RM AFR=RHRI/CENCM
      RMAE=REFFI/DENCM
      AFLCG = .CCC7C9 + QRLN/((R(I,JLIM) + R(I,JLIM) - R(I,I) + R(I,I)) + UI(JLIM))
      AFLCC1=.GCC7C5*GFLN/((R(K,JLIM)*R(K,JLIM)-R(K,1)*R(K,1))*U2(JLIM)
      RHRCC=32.174*RMAHR/(U2(JLIM)*U2(JLIM))
      WRITE (IC, 10C) RM &HR, RMAE, AFLCC, AFLCO1, RHRCO, I
      TISPE(I)=U1(JLIM)
      DO 6 J=1, JLIM
    6 W(I,J)=DELHI(J)
      GO TC 10
    7 DO 8 J=1,JLIM
      SDEL+(J)=H(K,J)-+(I-1,J)
      SHRP(J)=R(K,J)*VZ(K,J)*SDELH(J)
    8 SEFFP(J)=SHRP(J)/h(I-I,J)
      SHR I = 0
      SEFF I=0
      DO 9 J=1.JL
      SHRI=SHRI+((SFRP(J+1)+SHRP(J))*(R(K,J+1)-R(K,J)))/2.0
    9 SEFFI=SEFFI+((SEFFP(J+1)+SEFFP(J))*(R(K,J+1)-R(K,J)))/2.0
      SMAFR=SHRI/DENCM
      SMAE=SEFFI/DENCM
      SHRCC=32.174*SMAFR/(TISFC(I-1)*TISPC(I-1))
      WRITE (IG, 101) SMAHR, SMAE, SHRCO, I
  10 CONTINUE
      RETURN
```

- 100 FORNAT (1HC,46H RCTOR MASS AVERAGED HEAD RISE FROM I TO I+1 =,F10.4
 1,3H FT/52H ROTOR MASS AVERAGED EFFICIENCY BETWEEN I AND I+1 =,F6.
 24,/33H AVERAGE FLOW COEFFICIENT AT I =,F6.4/35H AVERAGE FLOW COE
 3FFICIENT AT I+1 =,F6.4/38H ROTOR HEAD RISE COEFFICIENT AT I+1 =,
 4F6.4/4H I=,I2)
- 101 FORMAT(1HC.48F STAGE MASS AVERAGED HEAD RISE FROM I-1 TO I+1 =. F10 1.4.3F FT/54H STAGE MASS AVERAGED EFFICIENCY BETWEEN I-1 AND I+1 = 2.F6.4/50F STACE FEAD RISE COEFFICIENT (ROTOR IN TIP SPD) =.F6.4/3 4F I=.I2) END

```
SUBROUTINE GUTPUT
C
       ** ** ** ** ** * * * * * * * * * *
C
C
      COMMEN/BLCCKA/ALFE(5,20), BTA2(20), BTP1B(10), DEQ(20), DEQB(10), FHB
     1(5,20),FF2(20),FIS2D(20),FI10GB(8,9),FI2DB(5,20),FKI(20),FKSHAB
     2(5,2C), HLCB(20), SLP1GB(8,9), SLP2GB(8,9), THAC(20), THACB(10), X(5,20)
      COMMEN/BLCCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
     1(5,8),CS(2C),EM(2C),EMB(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2C),G(5,2O
     2,QE(5,20),RB2(20),RN(5),SGMA(20),SGMAB(5,20),SGMGBB(9),THTA(20),
     3TMAXC(2C), TMXCB(5,2C), XP(5,2O), YANGSB(8), YANGS(5,2O)
      COMMEN/ELGCKC/ETAP1(20),BTAP2(20),DELH(20),DELHI(20),DEL2(20),
     1FNC1(20),H(5,20),HLCSS(5,20),R(5,20),U1(20),U2(20),VU(5,20),VZ(5,
      CGMMCN/BLCCKD/I, JBASE, JL, JLIM, K, KLIM, KPRI, QR, QRUN, THL
      COMMON/BLCCKF/ILIM, IRUN, IEXLOS(5), IEXDEV(5), K2LM(5), L2LM(5)
     1, USTAR (5), PHIBE (5, 20), XFB (5, 20), OMEGBB (5, 20, 20), DEL 28 (5, 20, 20)
     2, PHIEX(20), RSTAR(5), ARE(15), AREAC(5)
      CCMMCN/BLOCKI/ EXPBB(7,7),FIDIFB(7),PPHB(7),STARI(20)
      CCMMCN/BLCCKK/YCEGB(20),YRPB(7),YTHACB(20,7),YXCB(20),DEQBB(5,20)
     X, RPBB(5,7), THACBE(5,2C,7), XCBB(5,20), HLDP(20)
      CCMMCN/BLCCKL/II, IO
      DIMENSION RRT(20), X8ETA(20), XBETA2(20), XCMEG(20), RRT2(20), XEFF(20
     1, XVP1(20), XVP2(20), XV1(20), XV2(20), XHSTT1(20), XHSTT2(20), XPHI1(20
     2, XFHI2(20), XPSI(20), XPSII(20), XC(20), XETAP1(20), XFNC1(20)
     3, XETAP2(20), XCEL2(20), XPFT1(20), XPFT2(20), XTHTA(20)
C
C
      COMPUTE EQUIVALENT C-FACTOR AND HEAD LOSS DIFFERENCE.
C.
      CO117=.0C7
      IF(U1(1))10,11,10
   10 C61=-.61
      GO TC 12
   11 C61=.61
   12 DO 20 J=1,JLIM
      C1=R(I,J)/R(K,J)
      C2=CCS(BTAP1(J))/VZ(I,J)
      C3=4./(3.*FH2(J)-1.)
      FIIPS=57.29578*AES(FNC1(J)-STARI(J)/57.29578)
      DEG(J)=1.12+CC117*FIIPS**1.43
      DEC(J) = ((C61*C2*COS(BTAP1(J))/SGMA(J))*(C1*(VU(I,J)-U1(J)))
     1+U1(J)/C1-VU(K,J))+DEG(J))*COS(BTAP2(J))/(C2*VZ(K,J))
   20 CONTINUE
      DG 30 J=1, JLIM
      IF(HLOSS(I,J)) 30,31,30
   30 HLCP(J)=(FLCB(J)-FLCSS(I,J))/HLCSS(I,J)
   31 CONTINUE
C
С
      PREPARE BLACE-ELEMENT RESULTS FOR OUTPUT.
C
   42 DO 43 J=1,JLIM
      RRT(J) = R(I,J)/R(I,JLIM)
```

```
RRT2(J)=R(k,J)/R(k,JL[N)
      XPFT1(J)=1CO.*PPFT1(J)
      XPFT2(J)=100.*PPFT2(J)
      XTHTA(J)=57.29578*THTA(J)
      XVP1(J)=VZ(I,J)/(COS(BTAP1(J)))
      XVP2(J)=VZ(K_{\bullet}J)/(CCS(BTAP2(J)))
      XBETA(J)=57.2957E*ATAN(VU(I,J)/VZ(I,J))
      XBETA2(J)=57.29578*ATAN(VL(K,J)/VZ(K,J))
      XOMEG(J)=64.348*FLGSS(I,J)*CCS(BTAP1(J))*COS(BTAP1(J))/(VZ(I,J)*
     1VZ(I,J))
      XBTAP1(J)=57.29578*BTAP1(J)
      XFNC1(J) = 57.29578 * FNC1(J)
      XBTAP2(J)=57.25578*BTAP2(J)
      DELFI(J)=(U2(J)*VU(K,J)-U1(J)*VU(I,J))/32.174
      DELF(J)=H(k,J)-H(I,J)
      XV1(J)=(VZ([,J)*VZ([,J)+VU([,J) *VU([,J))**0.5
      XV2\{J\} = (VZ(K,J) + VZ(K,J) + VU(K,J) * VU(K,J) * * 0.5
      XHSTT1{J}=H{I,J}-{(XV1{J})*XV1{J})}/64.348}
      XHSTT2(J)=H(K,J)-(\{XV2(J)*XV2(J)\}/64.348\}
      XDEL2(J)=57.29578*CEL2(J)
      IF (RN(I))44,45,44
   44 XEFF(J)=DELH(J)/DELHI(J)
      XPHI1(J)=VZ(I,J)/U1(JLIM)
      XPHI2(J)=VZ(K,J)/L2(JLIM)
      XPSI(J) = 64.348 * CELH(J) / (U2(JLIM) * U2(JLIM))
      XPSII(J)=64.348*CELHI(J)/(U2(JLIM)*U2(JLIM))
      XD(J)=1.-(XVP2(J)/XVP1(J))+(R(K,J)*VU(K,J)-R(I,J)*VU(I,J))/(XVP1(J))
     1)*(R(K,J)*R(I,J))*SGMA(J))
      GO TC 43
   45 XEFF(J)=0
      XPF[1(J)=0
      XPFI2(J)=C
      XPSI(J)=0
      XPSII(J)=0
      XD(J)=1.-(XVP2(J)/XVP1(J))-(R(K,J)*VU(K,J)-R(I,J)*VU(I,J))/(XVP1(J))
     1)*(R(K,J)+R(I,J))*SGMA(J))
  43 CONTINUE
С
      CUTPUT BLACE-ELEMENT RESULTS.
      WRITE ([C,514) CRUN
      WRITE ([C,525]
      WRITE (IC.515)
      WRITE (10,519)
      DO 50 KJ=1,JLIM
      J = JLIM-KJ+1
  50 WRITE(IO,516)J,RRT(J) ,U1(J),XV1(J),VZ(I,J),VU(I,J),XVP1(J),H(I,J)
     1,XHSTT1(J),XBETA(J),XBTAP1(J)
      WRITE (IC,519)
      WRITE (IC,530)
      WRITE (IC,515)
      WRITE (10,519)
```

```
DO 60 KJ=1.JLIM
     J = JLIM-KJ+1
  60 WRITE(IC,518)J,RFT2(J),U2(J),XV2(J),VZ(K,J),VU(K,J),XVP2(J),H(K,J)
    1,XHSTT2(J),HLCSS(I,J),XBETA2(J),XBTAP2(J)
     WRITE ([C,535]
     WRITE (IC,540)
     WRITE (10,521)
     DO 70 KJ=1,JLIM
     J=JLIM-KJ+1
  70 WRITE(IO.520) J,RRT(J), XPFT1(J), XPHI1(J), XFNC1(J), STARI(J),
    1 RRT2(J), ANGST(K, J), XTHTA(J), SGMA(J), TMAXC(J)
      WRITE (10,519)
      WRITE (IC,530)
      WRITE(10,522)
      DO 80 KJ=1.JLIM
      J=JLIM-KJ+1
   80 WRITE(IO,523) J,RRT2(J),XPFT2(J),XPHI2(J),XDEL2(J),XPSI(J),
     IXPSII(J),XEFF(J),XOMEG(J),XC(J),DEQ(J),THAC(J),HLDP(J)
C
      OUTPUT MASS AVERAGED RESULTS.
C
C
      IL=ILIM-1
      CALL MAVE(I, J, K, R, VZ, VU, H, U1, U2, QRUN, JL IM, JL, DELH, DELHI, RN, IL)
  514 FORMAT(11H1FLCh RATE=+F8-1,4H GPM///)
                                                                VZ,FPS
                                                    V, FPS
                                      U.FPS
                       R/R(TIP)
  515 FORMATI
               · J
               V(REL), FPS TOT HD, FT STAT HD, FT HD LOSS, FT
     1 VU.FPS
        BETAP, CEG 1
  516 FORMAT(13,F12.3,7F12.2,12X,2F11.2)
  518 FORMAT (13, F12.3, 8F12.2, 2F11.2)
  519 FORMAT(1HC)
  520 FORMAT(13,F11.3,F11.1,F11.3,2F11.2,F15.3,2F10.2,F10.3,F10.4)
                                                                     REF IN
                                                        INCID, DEG
                                   PH F T
                                                PHI1
                       F/RT(I)
                J
  521 FORMAT('
                                                           TMAX/C*//)
                                              SCLIDITY
               R2/RT(1) STAG, DEG CMBR, DEG
     10
                                                           DEV, DEG
                                    %PH F T
                                                  PHI2
                        R/RT(I)
  522 FORMAT (
                • J
                                   CMEGABAR C-FACTOR EQ D-FAC (THTA/C)A
                          EFFIC
               PSI I
     1 S I
     1LOSS DIFF'//)
  523 FORMAT(I3.F11.3,F11.1.F11.3,F11.2,4F11.3,2F10.3,2F10.4)
   525 FORMAT( * ENTRANCE QUANTITIES */)
   530 FORMAT ( EXIT CUANTITIES /)
   535 FORMAT (1H1/)
   540 FORMAT (21H ENTRANCE QUANTITIES 44X 21H GEOMETRIC PARAMETERS/)
       ENC
```

```
1(*,*)
    RACIAL EQUILIBRIUM AND CONTINUITY ITERATIONS.
   CCMMCN/BLCCKA/ALFE(5,20), ETA2(20), BTP1B(10), DEQ(20), DEQB(10), FHB
   1(5,20),FH2(20),FIS2C(20),FI10GB(8,9),FI2DB(5,20),FKI(20),FKSHAB
   2(5,20),HLCE(20),SLP1GE(8,9),SLP2GB(8,9),THAC(20),THACB(10),X(5,20)
    COMMCN/BLCCKB/ALF1(20), ALF2(20), ALFPB(5,20), ANGST(5,20), ANGSTB
   1(5,8),CS(2C),EM(2O),EMB(5,8),FKSHA(2O),PPFT1(2O),PPFT2(2O),Q(5,2O)
   2,QE(5,2C),RE2(20),RN(5),SGMA(20),SGMAE(5,2O),SGMGBB(9),THTA(2O),
   3TMAXC(2C), TMXCE(5,20), XP(5,20), YANGSB(8), YANGS(5,20)
    CCMMCN/BLCCKC/BTAP1(20),BTAP2(20),DELH(20),DELHI(20),DEL2(20),
   1FNC1(2C),H(5,2O),HLOSS(5,2O),R(5,2O),U1(2O),U2(2O),VU(5,2O),VZ(5,
   220)
    COMMON/BLCCKD/I, JEASE, JL, JLIM, K, KLIM, KPRI, QR, QRUN, THL
    COMMON/BLOCKF/ILIM.IRUN.IEXLOS(5),IEXDEV(5),K2LM(5),L2LM(5)
   1, USTAR(5), PHIBE(5, 20), XFB(5, 20), CMEGBB(5, 20, 20), DEL2B(5, 20, 20)
   2, PHIEX(2C), RSTAR (5), ARE 4 (5), ARE AC (5)
    COMMCN/BLOCKG/K2LIM, L2LIM, YPHIBE(20), YXPB(20), YCMGBB(20,20), YDEL2
   18(20,20), YPHIEF(20), YR(20), PHIEFC(5)
    COMMCN/BLCCKJ/EMEE(8), FI1CI1(40), FI10I2(32), FKIE(7), SLP1[1(16),
   1SLP112(16), SLP113(16), SLP114(16), SLP115(8), SLP211(16), SLP212(16),
   2 SLP2I3(16), SLP2I4(16), SLP2I5(8), TMAXCB(7)
    COMMON/BLOCKL/II,IO
    DIMENSION ALPHZ(10)
                  Δ*,*LFPB*,*(XP)*,* FK*,*SHAB*,*(XP)*,*
                                                                 S.
    DATA ALPHZ/
                "GMAB","(XP)", "R(Q)"/
   1
    DETERMINE BLADE-ELEMENT GECMETRY PARAMETERS, WHEEL SPEED AND RELATIVE
    LEAVING FLOW ANGLES.
    DO 33 KKK=1.10
    CALL FIT10(R, ALF2, XP, ALFPB, JLIM, KLIM, I, K, IWARN)
    GO TC (401,400), IWARN
400 WRITE(IO, 700)(ALFHZ(IZ), IZ=1,3)
401 CALL FITIC (R, FKS+A, XP, FKSHAB, JLIM, KLIM, I, K, IWARN)
    GO TC (403,402), IHARN
402 WR ITE(IO, 7CC)(ALPHZ(IZ), IZ=4,6)
403 CALL FITIC(R,SGMA,XP,SGMAB,JLIM,KLIM,I,K,IWARN)
    GO TC (405,404), IHARN
404 WRITE(IO, 7CO)(ALPHZ(IZ), IZ=7,9)
405 DO 43 J=1,JLIM
    U2(J) = .1C472 * RN(I) * R(K, J)
    ANGST(K, J)=C.5*57.29578*ALF1(J)+.5*ALF2(J)
    YANGS(K,J) = ABS(ANGST(K,J))
43 ALF2(J)=.017453*ALF2(J)
    IF (IEXLOS(I))45,45,47
45 IF(IEXDEV(I))44,44,47
47 DO 46 J=1.JLTM
```

```
YPHIEF(J) = PHIEFC(I)
   46 YR(J)=R(K,J)
C
C
       COMPLIE CEVIATION ANGLES
C
   44 CALL DEV
C
C
      DO 20 J=1, JLIM
       IF (ALF1(J))201,202,200
  200 BTAP2(J)=ALF2(J)+DEL2(J)
       GO TC 20
  201 BTAP2(J)=ALF2(J)-DEL2(J)
       GD TC 20
  202 WRITE (10,511)
       RETURN 1
   20 CONTINUE
C
С
       DETERMINE LEAVING WHIRL VELOCITY. TOTAL HEAD AND AXIAL VELOCITY
C
       SATISFYING RACIAL EQUILIBRIUM.
       DO 29 KR=1,20
       KNT=1
       KNTT=0
  300 J=JBASE
  301 VU(K,J)=U2(J)-VZ(K,J)*SIN(BTAP2(J))/COS(BTAP2(J))
       H(K_{+}J)=H(I_{+}J)+.03106*(L2(J)*VU(K_{+}J)-CS(J))-HLOSS(I_{+}J)
       IF (KNT-1) 101,100,101
  101 \text{ KJ} = J - 1
       GO TO 102
  100 \text{ KJ} = \text{J} + 1
  102 S = \{R(K,KJ) - R(K,J)\}/R(K,KJ)
       E = S + R(K + KJ)/R(K + J) - 1
       D=S-1.
       C = -(VZ(K,J)*VZ(K,J))-64.348*(H(I,KJ)-HLOSS(I,KJ)-H(K,J))
      1+2.*CS(KJ)+D*U2(KJ)*U2(KJ)+E*VU(K,J)*VU(K,J)
       B=SIN(BTAP2(KJ))/COS(BTAP2(KJ))
       A = 1. + (S+1.) *B *B
       B=-2.*U2(KJ)*S*B
       RAC= P * B - 4 . * A * C
       IF (RAD) 25,21,21
   25 WRITE (IO,512)
       KNTT=1
       IF (KNT-1) 103,104,103
  103 RETURN 2
  104 KNT=2
       GO TC 300
   21 VZ(K,KJ) = (-B + SCRT(RAC)) / (2.*A)
       IF(KNT-1) 106,105,106
  106 IF (J-2) 112,112,111
  111 J = J - 1
```

```
GU TO 301
 112 \text{ KJ} = 1
     GO TO 108
105 IF(J-JL) 6C0,1C7,107
 600 J=J+1
     GO TC 301
 107 KJ=JLIM
 108 VU(K,KJ)=L2(KJ)-VZ(K,KJ)*SIN(BTAP2(KJ))/COS(BTAP2(KJ))
     H(K_*KJ)=F(I_*KJ)+.C3106*(U2(KJ)*VU(K_*KJ)-CS(KJ))-HLOSS(I_*KJ)
     IF (KNT-1) 110,105,110
 109 KNT=2
     GO TC 300
 110 IF (KNTT-GT-0) GC TO 103
     COMPLTE STREAM FUNCTION DISTRIBUTION FOR LEAVING FLOW AND REVISE
     BASE STREAMLINE VELCCITY.
     Q(K,1)=0.
    DO 28 J=1,JL
 28 Q(K,J+1)=G(K,J)+GR*(VZ(K,J+1)+VZ(K,J))*(R(K,J+1)*R(K,J+1)
   1-R(K,J)*R(K,J)
    IF (ABS(Q(K, JLIN)-1.)-.005)30,29,29
 29 VZ(K, JEASE) = VZ(K, JBASE) +QB(1, JLIM)/Q(K, JLIM)
    WRITE(10,515)
    REVISE LEAVING FLCW STREAMLINE RADII BASED ON STREAM FUNCTION
    DISTRIBUTION.
 3C CALL FIT1D(CB,R82,Q,R,JL ,JLIM,K,1,IWARN)
    GO TC (407,406), IWARN
406 WRITE(10,700) ALFHZ(10)
407 DO 31 J=2,JL
    IF (ABS(RB2(J)-R(K,J))-.01*R(K,J))31,31,32
 31 CONTINUE
    RETURN
 32 DO 33 J=2,JL
    R(K,J)=RB2(J)
 33 CONTINUE
    WR ITE(IC,514)
    RETLRN
511 FORMAT (21H1ALF1 = 0 NOT ALLOWED)
512 FORMAT(1H1///35FORACIAL EQUILIBRIUM SOLUTION FAILED)
514 FORMAT (1HO, 'RACIAL EQUILIERIUM SOLUTION AND STREAMLINE RADIAL ADJU
   1STMENTS NCT ACHIEVED IN 10 ITERATIONS*)
515 FORMAT(IHC, "RADIAL EQUILIERIUM AT CONTINUITY NOT ACHIEVED IN 20 IT
   1ERATIONS*)
70C FORMAT(//***** WARNING - FITID CALLED IN RACECO - EXTRAPOLATION O
   1F TABLE . 3A4)
    END
```

APPENDIX E SAMPLE INPUT LOAD AND PROGRAM OUTPUT LISTS

Sample Input Load 1.

10 32010 82C .C1 18 1 .375 19-1-1 18 2 .375 19 30 1								
31 7								
32 1 1 .150C 49.5C	•150C -	-1C.7	2.52	.100	0.	1.08	• 7	
32 1 2 .1725 55.60		11.10	2.19	.097	0.	1.08	•7	
32 1 3 .2175 62.50	-2175	38.60	1.74	.091	0.	1.08	• 7	
32 1 4 .2625 66.40	.2625	52.40	1.44	.C85	0.	1.08	• 7	
32 1 5 . 3075 69 . 40	.3075		1.23	.079	0.	1.08	.7	
32 1 6 .3525 71.80	.3525	65.40	1.07	.073	0.	1.08	• 7	
32 1 7 .3750 72.80	.3750	67.50	1.00	.070	0.	1.C8	• 7	
30 2								
21 7	1500	16 76	2 24	0.0	0.	1.08	• 7	
32 2 1 .1500 -51.44	•1500	10.76	2.34 2.09	.08 .08	0.	1.08	• 7	
32 2 2 .1725 -49.00	.1725	10.60	1.65	.08	0.	1.08	. 7	
32 2 3 .2175 -44.30	.2175 .2625	11.20	1.36	.08	0.	1.08	.7	
32 2 4 . 2625 -40.20	.3075	11.60	1.16	.08	0.	1.08	• 7	
32 2 5 • 3C75 - 36 • 40 32 2 6 • 3525 - 33 • 10	.3525	12.20	1.01	.08	0.	1.08	• 7	
32 2 7 .3750 -31.69	.3750	12.47	0.96	.C8	0.	1.08	•7	
50 3910.	•3.20		• • • •					
50 0.								
70 51.78								
80 .01								
81 9								
82 .1500 53.3	115.2	.1625	53.3		.2 .1			115
82 .2165 53.7	115.2	.2625	53.1		.2 .3			115
82 .3540 50.2	115.2	.3625	48.0	115	5.2 .3	750 48.0	•	115
83 0.967 (.967								
80 •02								
81 9				116	: 2 1	710 45.4		115
82 .1500 44.6	115.2	.1625	44.6		5.2.1			115
82 . 2165 45.4	115.2	.2625	46.2		5.2.3			115
82 . 3540 43.1	115.2	.3625	46.8	111	J. C. + 3	150 4040	,	~ ~ -
83 C.97 C.97								
80								

Sample Output 1

AXIAL-FLOW PUMP PERFORMANCE PREDICTION - - INPUT

REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRECTION

YTMACB= 0.0 0.02 0.04 0.06 0.08 0.10 0.12 YFKIB= 0.0 0.33 0.59 0.77 0.90 1.00 1.08

REFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBER COEFFICIENTS (F110GB, SLP1GB, SLP2GB)

YANGSB					SGMGBB				
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	2.0	2.6
0.0 10.00 20.00 30.00 40.00 50.CC 60.00 70.00	0.042 0.413 0.738 1.043 1.360 1.662 1.864 2.042	0.012 0.554 1.085 1.571 2.050 2.485 2.834 3.099	0.003 0.721 1.405 2.105 2.759 3.386 3.835 4.145	-0.041 0.853 1.735 2.636 3.488 4.283 4.919 5.276	-0.074 1.072 2.146 3.136 4.219 5.215 5.955 6.377	-0.097 1.203 2.476 3.751 5.029 6.214 7.016 7.390	-0.124 1.387 2.844 4.346 5.827 7.255 8.100 8.517	-0.132 1.764 3.663 5.606 7.591 9.398	-0.186 2.303 4.944 7.694 10.460 12.540 13.550
0.0 10.00 20.00 30.00 40.00 50.00 60.00 70.00	-0.043 -0.088 -0.138 -0.191 -0.250 -0.322 -0.393	-0.022 -0.058 -0.100 -0.148 -0.206 -0.273 -0.352 -0.458	-0.004 -0.032 -0.067 -0.114 -0.167 -0.235 -0.318	0.016 -0.008 -0.038 -0.079 -0.131 -0.201 -0.291	0.041 0.019 -0.013 -0.044 -0.096 -0.174 -0.268 -0.408	0.060 0.047 0.025 -0.010 -0.066 -0.150 -0.249 -0.376	0.082 0.073 0.055 0.019 -0.040 -0.134 -0.236	0.116 0.124 0.113 0.079 0.003 -0.108 -0.195	14.500 0.163 0.189 0.193 0.148 0.047 -0.072 -0.157 -0.247
0.0 10.00 20.00 30.00 40.00 50.00 60.00	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	-0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001	-0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.001	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002	-0.001 -0.002 -0.002 -0.003 -0.003 -0.002 -0.002 -0.002

BLADE ROW DATA

I= 1 RN= 3910.0 RPM RSTAR= 0.37500 FT IEXDEV=-1 IEXLOS=-1

REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY-DEPENDENT LOSS DATA

J X ALFB XP ALFPB SGMAB TMXCB F1208 FHB FKSHAB

													2.1000	0.0430	0.00	0.000		0410	0-0140	1	3.4000	0.1650	0.1650	0960	0.0122	0.0240	0.0335	0.0335	
													2.0000	0.0380	0.0300	0.0330	900	0.010	0.0125		3.0000	0.1080	0. 1080	0.0780	0.0106	0.0200	0.0275	0.0275	
0.7000 0.7000 0.7000 0.7000 0.7000 0.7000													1.9000			0.0283	70000		0.0115		2.9000	0.0930	0.0930	0.0735	0105	0.0190	0.0260	0.0260	
1.0800 1.0800 1.0800 1.0800 1.0800 1.0800			10.0	1.320	1.310	1-130	1.015	0.939	0.880				1.8000 1.	0.0300				0.0083		,	2.8000 2.	0.0830 0.					0.0245 0.	_	
000000			8.0	1.280	1.260	1.110	1.020	0.950	006-0	! !			1.7000	0,0200	0.0260	0.0195	1900-0	0.000	5600	•	2. 7000	0.0750	0.0750	0.0645	0.0094	0.010	0.0230	0.0230	
0.1000 0.0970 0.0910 0.0850 0.0790 0.0730		FIDIFB	••	1.200	1.170	1.080	1.030	0-972	0.920			06988	1.6000	.0220					0000		2.6000							0.0215	
2.5200 2.1900 1.7400 1.4400 1.2300 1.0000	ENT (EXP88)	T.	0.0	1.140	1.110	0.00	1.060	986	0.950			ō	1.5000		_				0.0075		2.5000	0.0630	0.0630	0.0555	0.0086	0.0150		0.0200	
-10.7000 11.1000 38.6000 52.4000 60.3000 65.4000	DEVIATION ANGLE-CAMBER EXPONENT(EXP88)		-4.0	1.100	1.080	1.050	0.00	7.0	0.980	•			1.4000						4900	6900 0	2.4000	0.0580		0.0510	0.0082	0.0140	0.0185	0.0185	
0.1500 0.1725 0.2175 0.2625 0.3075 0.3525	I ANGLE-CAM		0.8-	1.130	1.100	0.00	1.060	090	1.038	010-1	(88)		1.3000	0.0140	-			0900	0900	0900.0	2.3000	0.0530	0.0530					0.0170	
49.5000 55.6000 62.5000 66.4000 71.8000	_		-12.0	1.170	1.150	1.110	1.070	0,00	000	1.040	: LCSS(THACEB)		1.2000	0140	0140	0100	0900		0900	0900	2.2000	0.480	0480	0450	9200	0120	0155	0.0155	
0.1500 0.1725 0.2175 0.2625 0.3075 0.3525	EFERENCE TABLE	9			00	00	0 5	00	9	2	NCE TABLE	9 9	4							0000	•		000					1.0000	
≥こまたららて	REFEREN	ррнв		0.0	0.100	C. 300	0.500	0. 700	006*3	1.000	REFERENCE	A P		0-0	0.1000	0.3000	0.5	0.7000	6°0	1.0		0.0		Ċ		7.0		1.0	

REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY—DEPENDENT LOSS DATA

IEXLOS= 0

IEXDEV= 0

RSTAR= 0.37500 FT

RN= 0.0 RPM

1= 2

BLADE ROW DATA

J	x	ALFB	XP	ALFPB	SGMAB	TMXCB	F1208	FHB	FK SHAB
1 2 3 4 5 6 7	0.1500 0.1725 0.2175 0.2625 0.3075 0.3525 0.3750	-51.4400 -49.0000 -44.3000 -40.2000 -36.4000 -33.1000 -31.6900	0.1500 0.1725 0.2175 0.2625 0.3075 0.3525 0.3750	10.7600 10.6000 10.9000 11.2000 11.6000 12.2000	2.3400 2.0900 1.6500 1.3600 1.1600 1.0100	0.0800 0.0800 0.0800 0.0800 0.0800 0.0800	0.0 0.0 0.0 0.0 0.0	1.0800 1.0800 1.0800 1.0800 1.0800 1.0800	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000

REFERENCE TABLE DEVIATION ANGLE-SLOPE FACTOR(EMB)

YANGSB=	0.0	10.00	20.00	30.00	40.00	50.00	60.00	70-00
EMB=	0.22	0.23	0.24	0.27	0.29	0.33	0.37	0.42

REFERENCE TABLE LOSS(THACB)

DEQB=	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	
THACB=	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	

INLET CONDITIONS PHIRUN NO.	820.01		
R VZ	VU H 0.0 115.20	00	
0.1500 53.3000			
0.1625 53.3000			
0.1710 54.2000			
0.2165 53.7000			
0.2625 53.1000			
0.3085 51.8000			
0.3540 50.2000			
0.3625 48.0000	11111		
0.3750 48.0000	0.0 115.20	,00	
**** WARNING - FIT2D	CALLED IN IREF -	- EXTRAPGLATION OF TABLE	FILOGBLYANGSB, SGM6BB1
**** WARNING - FIT2D	CALLED IN IREF -	- EXTRAPOLATION OF TABLE	SLP1GB(YANGSB, SGMGBB)
**** WARNING - FIT20	CALLED IN IREF -	- EXTRAPOLATION OF TABLE	SLP2GB(YANGSB, SGMGBB)
*** WARNING - EXTRA	POLATION OF TABLE	E EMB(ANGSTB) IN FIT1D-CALL	ED IN DEV
**** WARNING - FIT2D	CALLED IN IREF -	- EXTRAPOLATION OF TABLE	FILOGB(YANGSB, SGMGBB)
**** WARNING - FIT2D	CALLED IN IREF	- EXTRAPOLATION OF TABLE	SLP1GB(YANGSB, SGMGBB)
**** WARNING - FIT2D	CALLED IN IREF	- EXTRAPOLATION OF TABLE	SLP2GB(YANGSB, SGMGBB)
*** WARNING - EXTRA	POLATION OF TABL	E EMB(ANGSTB) IN FITID-CAL	LED IN DEV
**** WARNING - FIT2D	CALLED IN IREF	- EXTRAPOLATION OF TABLE	FI10GB(YANGSB, SGMGBB)
**** WARNING - FIT20	CALLED IN IREF	- EXTRAPOLATION OF TABLE	SLP1GB(YANGSB, SGMGBB)
**** WARNING - FIT20	CALLED IN IREF	- EXTRAPOLATION OF TABLE	SLP2GB(YANGSB,SGMGBB)
**** WARNING - EXTRA	POLATION CF TABL	E EMB(ANGSTB) IN FIT1D-CAL	LED IN DEV
**** WARNING - FIT2	CALLED IN IREF	- EXTRAPOLATION OF TABLE	FIlOGB(YANGS8, SGMGBB)
*** WARNING - FIT2	CALLED IN TREF	- EXTRAPOLATION OF TABLE	SLP1GB(YANGSB, SGMGBB)
**** WARNING - FIT2	D CALLED IN IREF	- EXTRAPOLATION OF TABLE	SLP2GB(YANGSB, SGMGBB)
**** WARNING - EXTR	APOLATION CF TABL	LE EMB(ANGSTB) IN FITID-CAL	LED IN DEV

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE FILOGB(YANGSB, SGMGBB) **** WARNING - FIT2D CALLEC IN IREF - EXTRAPOLATION OF TABLE SLP1GBI YANGSB, SGMGBB) **** WARNING - FIT20 CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB) **** WARRING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FIT1D-CALLED IN DEV **** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE FI10GB(YANGSB, SGMGBB) **** WARNING - FIT2C CALLED IN IREF - EXTRAPOLATION OF TABLE SLP1GB(YANGSB, SGMGBB) **** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB) **** WARNING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FIT1D-CALLED IN DEV **** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE FILOGB(YANGSB, SGMGBB) **** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP1GE(YANGS8, SGMGBB) **** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB) **** WARNING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FIT1D-CALLED IN DEV

FLOW RATE 8681.2 GPM

	BETAP,DEG	72.14	69.94	69.12	68.26	67.34	000 00	64-27	63.15	61.97	60.71	59,35	57, 59	55.76	54.09	52, 58	51, 21	49.05	•	,	BETAP, DEG	70, 28	69.41	68.40	67.40	66.25	64.95	63.55	65.09	26.00	26. 23	20. 20	27.60	00°	3 - 1 -	35, 99	28.68	10,05	47.0	45.1-) •
	BETA, DEG	000	0	0.0	0.0	•	•	•	0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0			BETA, DEG	25.22	25.46	25.51		52			~	7	~ 1	50.03	25.02	97.07	20.40	70 - 16	10.00	30.06	20.04		•
	MD LOSS,FT																				MD LOSS,FT	34.18	32.57	31.53	28.72	24.83	19.99	15.20	12.29	\$8°6	78.7		76.0	18.6	7.0	10.0	44 4	90.0	67.3	2 2 2	;
	STAT HO,FT	79.39	75.18	74.52	73.88	73.24	79.27	71.50	71.25	70.98	70.72	70.48	69.24	68.19	68.17	40.18	71.12				STAT HO,FT	;	144.30	43.	143,31	142.76	142,19	‡ !	140.97	1 40.29	139.52	138.65	137.52	:	•	136.36	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	132 45	• • •	900	10.401
	TOT H0,FT	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	115.20	, ,	115.20	, ,	:		TOT HOPFT	186.81	187.27	187.89	188.00	188.31	188.87	189.40	189.72	190.57	191.82	192.17	192.85	194.86	191.00	199.83	203.38	208.73	614°47	66.055	e c • 0C 7
	V(REL), FPS	160.87	152.39	143.58	139.20	134.86	130.56	129-27	122.01	113.52	109,34	105.21	17.101	22 20	03 70	13.00	04.00	20.00	76 • 10		V(REL), FPS	139.55	135.03	130.08	125.46	121-14	117.13	113.18	108.74	104.20	99.58	94.78	89.87	84.88	9.6	75.02	60°0/	7/ •00	02.13	61.20	CD • 10
	VU,FPS	000	0 0	0	0.0	0.0	•	•	9 0		5 6			5	•	•	•		•		VU.FPS	22,18	22.61	23.27	23.47	23.47	23.30	23.13	23.39	23.96	24.84	25.75	27.06	29.11	31.98	34.70	38,34	42.99	00.84	15.66	63.10
	VZ,FPS	48.00	50.30	51.17	51.56	51.96	52.34	52.68	52.97	70.40	52.50	2000	10.00	20.00	22.00	10.00	74.46	23.40	53.30		VZ,FPS	47, 10	47.48	7.80	48.22	48, 79	49.60	50.41	50.89	51.59	52.43	52.13	53.18	54.10	55.16	55.92	57.12	58.54	59.92	61.23	80
	V.F.P.S	48.00	50.30	51.17	51.56	51.96	52.34	52.68	52.97	D7 • C C	75.54	20.00	33.04	24.48	00.66	10.66	24.42	53.26	53.30		V, FPS	52.06	20.00	36.53	53.62	54.14	54, 80	55.46	56.01	56.88	58.01	58.68	29.67	61.44	63.76	65.82	68.19	72.63	77.15	82.51	88.34
ES	U.F.P.S	153.55	143.85	134 15	129.30	124.45	119.60	114.76	109.91	90-501	100.21	47.50	90.51	n	0	15.96	71-12	•	61.42		U+FPS	89 691	140.00	10.641	130 20	136.45	129.41	124.46	119.48	114.49	109.51	104.51	99.50	94.52	89.60	84.70	79.83	75.02	70.34	65.82	61.42
ENTRANCE QUANTITIES	R/R(T1P)	1.000	0.937	606.00	0.842	0.811	0.779	0.747	7	•	0.653	•	•	0.558	ŝ	4	0.463	٠,	4	QUANTITIES	R/R(TIP)		000	0.60	0.434		640	, a	6.778									0.489			
ENTRAI	7	20	81	Է ։	9 5	1	13	12	11	10	σ,	co	~	•	5	*	m	7	-	EXIT	7	ę	07	61	B) !	: :	9	14	<u> </u>	12	::	01	, 0	80	_	•	\$	*	m	7	

																								A LOSS DIFF		***************************************					8 0.0002							' '	'	'	'	1	•	•					
	TMAX/C		0.0 0.0	0.0715	0.0730		0.070	0.0705	0.0811	0.0827	0.0843	0.0860	0.0876	0.0892	0.0508	0,0924	0.0540	0.0556	0.0571	0.0586	0007-0			D-FAC (THTA/C)A							400 0.0118								d	Ö	ŏ	1.851 0.0110	ċ	ċ					
	SOC IDITY		1.000			150		243	.293	349	413	478	.552	635	•729	. 821	-930	.057	61.		036.3			D-FACTOR EQ D							0.229											= :	704	5 9 3					
RS	CMBR, DEG		5.30	6.37	6.88	7.56	8.40	9.30	10.26	11.59	13.29	14.96	17.11	20.05	23.72	21.12	32.78	38.72	45.37	60.20				OMEGABAR D-							990-0		940		031	30	0.031	37	141	45	640	250-0	150.0	760.0					
C PARAMETERS	STAG, DEG		64-69	68.56	67.72	66.17	65.69	64.54	63.34	61.90	60.20	58.58	99.96	67.5	90.10	0.00	06.64	00.00	1 4	19.40				EFFIC ON	į	0.676	0.688	7690		0 6 6	000	858	4884	906	026*	.928	.931	.927	-927	626	. 433	0-959	956						
GEOMETRIC	R2/RT([]	-	0.970	0.939	0.907	0.875	0.843	0.811	0. 778	0.746	£1/3	189-0	240.0	785	10000	200	037.0	0.4.0	ヽ~	00+00				PSI I	G	607		717		25.6	244	237	233	231	228	528	33	m (.	2 4 5		0,309	53	ŧ					
	REF INC	0.79	0.80	0.81	0.86	06.0	0° 61	* 6		300	7 5	70-1	1.05	1.14	1.31	1.68	2, 33	3.26	4.43	5.86			;	IS d	0.194	0-107	861.0	0.199	0.200	0.201	0.203	0.203	0.206	0.209	0.210	0.212	0 225	0.225	0.241	0.255	0.272	0.293	0.314		79.5418 FT	=0.8435			
	INCID, DEG	-0-16	-0.15	-1.02	-1.22	7.1	11.03	- 2.11	-2.35	-2.58	-2.91	-3.24	-3.46	-3.57	-4-17	-4.53	-4.24	-3.30	-1.72	-0-45			700	94,046	2.78	2.91	3.02	3.12	3.27	3.46	3.66	3.88	4.22	89.	0.10	7000	7.05	7.76	8.48	90.6	9.45	9.36	41.6		n 	1+1	4	1085	•
	PH []	0.313	0.312	0.328	0.433	0.336	0.338	0.341	0.343	0.345	0.346	0.347	0.348	0.349	0.354	0.358	0.358	0.354	0.347	0.347			61.13	714	0.307	0.309	0.312	0.314	0.318	0.323	0.328	0.331	0.336	140	0.346	0.352	0.359	0.364	0.372	0.381	0.390	0.399	0.403		20	T =0.3304	[+] =0.334	AT 1+1 =0.1085	
ITIES	#Ph F T	ວ • ວ	, s	10.0	31.1	26.3	31.6	36.8	42.1	4.7.4	52.6	57.9	63.2	£8.4	73.7	5.8	84.2	66.0	7.45	7001			ZPH F T	•	0.0	6.4	10.1	15.5	20.8	26.2	31.6	36.0	47.	2.5	58.7	64.1	4.69	74.7	80.0	85.2	90.3	7.54	0.001		AGED FEET TENCY			9	
ANC E	R/RT(I)	1.000	9 6	2.905	\$ B \$	C.842	C. 811	6.179	C* 747	C. 716	0.684	0.653	C. 621	, c	5000	2000		0 t t t t t t t t t t t t t t t t t t t	200			QUANTITIES	R/RT(I)		1.000	0.55	6.939	125.7	C .		0.77	94,700	6.13	0.681	849-0	0.616	0.584	C. 552	C-520	585.	0.40 0.40	0.400		ASS AVE	ASS AVER	FLCH	FLOW CO	EAC RISE	
Œ	ר	ر د د د	T)	11	16	15	14	<u>.</u>	77	Ξ.	01		n r	- «	o v	١.	•	• ^	٠.	•		EXIT	7		50	61:	2 1	- 71	2 2	3 2	13	12	11	01	•	œ	~ .	•	۸ ،	* ~	• 0	٠.	ļ	ROTOR	ROTOR	AVERAG	AVERAS	ROTCR :	

ENTRANCE QUANTITIES

			LOSS DIFF	-0.0025 -0.0024 -0.0023 -0.0024 -0.0024 -0.0021 -0.0017 -0.001
	۷,	900000000000000000000000000000000000000	(THTA/C)A	0.0075 0.0075 0.0075 0.0075 0.0086 0.00108 0.0116 0.0127 0.0128 0.0127 0.0127 0.0127
	TMAX/C		D-FAC	11.534 11.5546 11.5546 11.5546 11.5546 11.5548 11.6881 11.6885 11.8885 11.8885 11.8885 11.8844 11.8845
	SOL 101TY	0.960 1.014 1.051 1.051 1.051 1.137 1.137 1.234 1.422 1.422 1.569	O-FACTOR EQ	0.307 0.305 0.305 0.305 0.206 0.206 0.206 0.207 0.207 0.315 0.315 0.315 0.315
	• 0EG	444 16 45 16 46 46 46 46 46 46 46 46 46 46 46 46 46		
ERS	G CMBR, DEG		OMEGABAR	0.011 0.012 0.012 0.014 0.016 0.020 0.022 0.020 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
C PARAMETER	STAG, DEG	10.00 10.00 10.00 10.00 10.00 11.00	EFFIC C	
GEOMETRIC	R2/RT(1)	1.000 0.968 0.968 0.903 0.869 0.869 0.702 0.668 0.570 0.570 0.570 0.570 0.570 0.570	₩	
ق	œ		I S d	
	REF INC	2.54 2.55 2.50 2.50 3.56 3.56 4.00 4.00 4.00 4.00 4.00 4.00	PSI	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	INCIDIDEG	-6.47 -7.21 -7.21 -8.00 -10.57 -112.57 -114.93 -114.07 -113.57 -113.57 -113.55 -110.56	DEV, DEG	10.23 10.24 10.24 10.23 10.23 10.25 10.25 10.25 10.26 10.20 10.20 10.20 10.00
	Н 1 1		PH12	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ITIES	H I I de	10000000000000000000000000000000000000	RPH F T	0.0 5.3 10.7 10.7 10.7 10.2 21.8 27.9 32.5 32.5 44.1 45.7 45.7 46.3 71.7 76.9 82.0 87.0 91.4 95.9 100.0 100.0 COEFFICIENT
ANCE CUANTITIE	R/RT(1)	1.000 0.970 0.970 0.907 0.843 0.811 0.483 0.681 0.681 0.681 0.681 0.520 0.520 0.489 0.489 0.489	R/RT([])	1.000 0.568 0.936 0.936 0.886 0.886 0.735 0.735 0.702 0.703 0.702 0.703 0.702 0.702 0.703 0.702 0.703 0.704 0.
ENTR	7	20 119 117 117 118 119 119 110 100 100 100 100 100 100 100	7	20 119 118 116 115 117 110 110 110 110 110 110 110 110 110

INLET CCNDIT	ICNS IRUN NO.	820.02		
R	٧Z	٧u	H	
0.1500	44.6000	0.0	115.2000	
0.1625	44.6000	0.0	115.2000	
0.1710	45.4C00	0.0	115.2000	
0.2165	45.4C00	0.0	115.2000	
0.2625	46.2000	0.0	115.2000	
0.3085	45.0000	0.0	115.2000	
0.3540	43.1000	0.0	115.2000	
0.3625	40.8000	0.0	115.2000	
0.3750	40.8000	0.0	115.2000	
**** barking	5 - FIT20	CALLED IN	IREF - EXTRAPOLATION OF TABLE	FILOGB(YANGSB, SGMGBB)
**** WARNING	5 - FIT20	CALLED IN	IREF - EXTRAPOLATION OF TABLE	SLPIGB(YANGSB, SGMGBB)
*** WARNING	G - FIT20	CALLED IN	IREF - EXTRAPOLATION OF TABLE	SLP2GB(YANGSB, SGMGBB)
**** WARKIN	G — EXTRA	POLATION C	F TABLE EMB(ANGSTB) IN FIT1D-CALL	ED IN DEV
**** WARNIN	G - FIT2D	CALLED IN	IREF - EXTRAPOLATION OF TABLE	FI10GB(YANGSB, SGMGBB)
**** WARNIN	G - FIT20	CALLED IN	IREF - EXTRAPOLATION OF TABLE	SLP1GB(YANGSB, SGMGBB)
**** WARNIN	G - FIT2D	CALLED IN	IREF - EXTRAPOLATION OF TABLE	SLPZGB(YANGSB, SGMGBB)
**** WARNIN	G - EXTRA	POLATION C	F TABLE EMBIANGSTB) IN FITID-CALL	ED IN DEV
**** WARNIN	IG - FIT20	CALLED I	IREF - EXTRAPOLATION OF TABLE	FI10GB(YANGSB, SGMGBB)
**** WARNIN	iG – FIT20	CALLED I	IREF - EXTRAPOLATION OF TABLE	SLP1GB(YANGS8, SGMGBB)
**** WARNIN	IG - FIT20	CALLED II	V IREF - EXTRAPOLATION OF TABLE	SLP2GB(YANGSB, SGMGBB)
**** WARNIN	NG – EXTRA	APOLATION (OF TABLE EMB(ANGSTB) IN FIT10-CAL	ED IN DEV
**** hARNII	NG - FIT2	CALLED I	N IREF - EXTRAPOLATION OF TABLE	FILOGB(YANGSB, SGMGBB)
**** WARNI	NG - FIT2	D CALLED I	N IREF - EXTRAPOLATION OF TABLE	SLP1GB(YANGSB,SGMGBB)
**** WARNI	NG - FIT2	D CALLED I	N IREF - EXTRAPOLATION OF TABLE	SLP2GB(YANGSB,SGMGBB)
**** WARNI	NG – EXTR	APOLATION	CF TABLE EMBIANGSTB) IN FITID-CAL	LED IN DEV

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE FILOGB(YANGSB, SGMGBB)

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB)

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB)

**** WARNING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FIT1D-CALLED IN DEV

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE FILOGB(YANGSB, SGMGBB)

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP1GB(YANGSB, SGMGBB)

**** WARNING - FIT2D CALLED IN IREF - EXTRAPOLATION OF TABLE SLP2GB(YANGSB, SGMGBB)

**** WARNING - EXTRAPOLATION OF TABLE EMB(ANGSTB) IN FIT1D-CALLED IN DEV

		BETAP,DEG	75.12	72 27	72.52	71.73	10.01	70.04	11.64	00.17	77 - 10	44 84	64.45	63, 34	61.82	60.20	58.70	57.33	56.08	54.01		BETAP, DEG	70.45	69. 59	68.57	67.58	000	07.10	62.34	60.61	50.5	56,53	54.15	50.95	46.88	45.40	36. 63	29.15	20.00	9. 20	-2.87
		BETA, CEG	0.0	• •	0	0	0.0	0	• •		9 6	•	•	0 0	0-0		0	0.0	0	0		BETA, DEG	37.84	38.39	38.61	38.61	37 44	70.76	77.50	37.98	38.25	38.62	39,53	40.84	42.17	44.71	46.62	48.60	50.48	52.05	03+60
		НО LOSS •FT																				HO LOSS,FT	39.73	38.45	35.93	32.15	17.17	61.31	13.77	11.60	8.83	6.19	5.09	4.92	90.9	6.89	7.41	7.79	7.76	98.0	0 • 0
		STAT HO, FT	6	89.46	85.41	84.72	84.09	m	\sim	vι	40	4 6	vη		, 0		• (, ~		84.29		STAT HOFFT	188.28	187.33	186.28	185.12	163681	107.00	180.02	178.54	176.92	175,15	173.04	170.66	167.88	164.55	160.54	155.67	149.80	142.74	71 046 1
		TOT HD,FT	115.20	115.20	5.2	5.2	5.2	2.5	2.5	,,	, ,	, ,	, ,	, ,		,	5.2	5.7	5.2	5.2		TOT HO,FT	233.75	233.68	233.60	232.82	232.00	77.060	220.40	220.23	228.92	227.96	226.93	226.90	227.44	26.92	226.66	726.89	\$27.32	228.73	Z30.44
		V(REL), FPS	158.87	154-17	45.7	141.27	36.8	32.4	28.0	23.0	7.41		2 6		97.18	03-13	88,90	84.48	79.86	75.90		VIREL 1, FPS	27.	22.	18	113.49	5 6	ŝ	5 8	77 10	87.14	82.58	77.56	72.25	64.99	60.97	55.83	51.26	47.83	; ·	79.95
		VU,FPS	0.0	0 0		0	0.0	0.0	0.0	3 c	•	•	•		•	•	9	0.0	0.0	0		VU, FPS	33.20	33.92	34.43	34.57	****	41.6	35.00	25.15	15.81	36,38	37.48	39.34	45.04	44.57	47.41	50.78	54.48	58.66	•
		V2.FPS	4C. 80	40.70	43.23	; ;	*	ŝ	45.66	۸,	40.10		* "		F 6	•	•	ď	, ,	4		VZ.FPS	42.14	42.81	43.12	43.29	43.68	77.44	+0 ·++	45.02	45.43	45,55	45.42	45, 51	45.45	45.02	44.80	44.17	•	45.74	•
		V, FPS	00	40.70	v٨	٠ ٨	_	~	9	σ.	÷ (2 (, o	<u>,</u> 4	• •	9 .	٠,	• •	۷.	44.60		V,FPS	4.1	••	5.1	55.40	9.0		7.0	, v	• •	2.8	8.8		1.9	3,3	5.2	7.7	9.0	. 3 . 3	8.9
# d 5 9	IES	U.FPS		8	• 0		29.	24.	19.	14.	60	ŝ	9 6	•			•		•	61.42		U,FPS	53.5	48.9	4.3	139.48	34.6	7.67	2.4.2	17.7	1		00.3	95.4	0.5	5.6	0.7	75.75	0.8	0.9	61.42
RATE= 7445.6	ANCE CLANTITIE	R/P(TIP)	٠,	σ,	. c	9	æ	æ	٦.	٦.	•	•	•	•				•	. `	0.400	CUANTITIES	R/R(TIP)	•			806*3	•	•	•	•	•	• •			•	•	•	•	•	•	•
FLOM R	ENTRA	7	50	67	8 .	. 91	15	14	13	15		10	σ (x0 f	~ .	۰	Λ 4	• •	n r	v - 4	EXIT	ה	20	19	18	11	16	15	71.	1	71	11	6	œ	4	•	5	4	æ	2	4

																															IDSS DIFE	2		;	0.0031	0.0035	0.0029	0.0023	0-0018	0.00.0	0.0024		160000	0.000	0.0015	0.0	0.0003	2000-0	00000	0.0011	0.0029	0.0049	0.0064	0.0053	0.0024						
	x/c			5	3 :	57	30	99		70	7.7	93		5	.5	19			2 9	<u>~</u>	5	=			•	ָרַ <u>י</u>	585	0			(THTA/C)A				70.00	0.0176	0.0175	0.0168	0.0153	0.0131	0.0106	0000		2600	* 1000		16000	0.0000	2.00.0	\$500.00 0.00	9110.0	0.0137	0.0152	0.0146	0.0130						
	Y THAX/			c	•	•	ō	0		•	•	•		•	5	0	0		•	5	•	0	0	ċ		•	0	3			O D-FAC	•		1.450		001	1.4.1	1.490	1.500	1.508	1.517	1.545	1.577	1,604	1.626	1.679	1 725	10.1	1001	0 0 0 0	2000	7 1 20	081-7	2.132	2.035						
	SCL IDIT			000		1.034	1.070	1.107	1.140	00.	1.193	1.239	1.288		746.1	1.404	1.468	1.538		670.7	1.710	1.801	1.909	2.037	7.183	2 211	2 630	026.2			FACTOR E			105.0	0.210	22.0	125.0	6259	0.333	0.335	0.337	0.350	3.364	0.376	0-388 0-388	2-407	.631	0.465	2005	534	563	. 581	707	0.7.0	766.						
s	CMBR, DEG			5,30	G		0.33	6.84	7.49	000	67.0	9.18	10.07	11 22	77.00	76.51	14.59	16.54	10.22		99.77	26.59	31.46	37.43	44.34	70	60-20	03.00			3AR O																							0.065							
PARAMETER	STAG. DEG			70.15	66.39	4.8.5.7		0:0	66.80	65.74		00.40	63.44	62.03	96 04		28.76	56.95	54.56	2 1 4		9.0	44.55	39.61	33,70	26.95	19.40)			EFFIC OMEGA			749	755	767	785		2 4 4	7 7	2.2	392	207	727	141	956	151	148	41	13.7	34	35	E 49	51							
GEOMETRIC	R2/RT(1)			1.000	0.670	0-940		906 00	0.877	0.845		0.010	0.781	0.750	0.718		0000	0.654	0.622	0.590	0 4 4	0,00	0.526	0.493	0.461	0.430	004.0				PSI I E			432 0	4 29 0	422 0	0 60%	393	376		Š (חמה ה	343	335 0,	125 0.	19 0.	119 0.	ċ	.24 0.	.25 0.	26 0.	27 0.	29 0.	32 0.							
	REF INC		Ç,	£ •0	0.80	0,81	0.87		16.0	0, 93	96 0	-	70.1	1.04	1.03	1.05		6	11.1	1.19	1.33	07 -	000	2.50	3. 22	4.39	5.86				75.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.324	0.323	0.323	0.321	0.319	0.317	0.315	0.312	77.0	710.0	016-0	0.308	0.305	0.305	0.306	0.305	0.304	0.305	0.306	0.310	0.316		_					
	INC 10, DEG		2.33	,		1.53	1.35	1.18		F0 • 7	0.84	0.63			0.37	0.27	0.22	100	0 .	0.42	0.07	-0.08	0.38	74	• •	3.15	4.51			700	0.000		20.05	2 10	200	B1.6	3.25	3.38	3,56	3,76	3.93	4.24	77 7	000	90.0		70.0	7 23		70.0	27.0	***	8.23	685		* =	I AND I+1		245	ì	
	PH 1.1		. 26	26		0 7	`	288	291	, ,	Ä	0.297	٠,	•	j,	ū	0.298	^	, ,	,	5	3	0.301	0.297	ò	0.530	ζ,			PH12	:		7	0.270														0.293		0	٠.	, ,	,	•	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F FROM I T	CT BETHEEN		AT 1+1 =0.		
	#PH F T		0.0	- 1	٠,	٠.	*	_	26.3	:	•			7 7 7	٠.	•	•	•		•	٠	•	•	89.5		•	9			T H H			0.0	5.0	10-0	15.3	1	7 9 9 9	B • C 7	31.1	36.4	41.7	47.1	52.4	57.7	63.1	68.3	73.7	79.0	84.4	89.8	95.0	000	•	•	~ ∟	SELCTERT AT	CEFFICIENT AT	OEFFICIENT		
	R/RT(1)		1.000	38	9	u	•	ĸ,	ᢍ	- 00			٦.	^	•		ç	9	58		3	2	4	0.463	43	4	2		QUANTITIES	R/RT(1)			ã	0	ò	ŏ	· ine	·à		7	~	-	=	~	3	ŭ	.5	0.558	~	Q.	Ŷ	9	C	1	ASS AVE	3 A A A A A A A A A A A A A A A A A A A		F FLCN C	HEAC RIS		
	7	,	0.7	61	81	17	: -	0 !	15	74		· •	71	11	10	; •	٠,	3 0	_	•	u	٠.	.	m	7		,		EXI 1	7		į	20	19	18	17	16	15	1 7	; c	<u>.</u>	71		10	0	80	7	•	Ŋ	*	•	7	_		~	~	್ತ	A VERAG	~	1 = 1	

ENTRANCE CLANTITIES

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

**** WARNING - EXTRAPOLATION OF TABLE THACOD(DEQDD) IN FIT1D-CALLED IN LOSS

	BETAP,DEG	-37.84	-38,39	-38.61	-38.61	-38,25	-37.64	-37.07	-37.50	-37.9B	-34,25	- 38. 62	- 10 5 2	46 04-	-42 27	17. 44-	77.44-	70 00			50.55-	20		BETAP, DEG		5. 26	2.10	1.93	1.75	1.57	1.40	1.25	1.09	96.0	\$ ° ° °	•		70.0	8 5	6.00	•		2.4	0.77	
	BETA, DEG	~	38.39	38.61	38.61	38.25	37.64	37.07	37.50	37.98	38.25	38.67	39.53	40.54	17. 77	7. 44	77 47	70.07	94 04	20.40		Ü		BETA, CEG		-2.26	-2.10	-1.93	-1.75	-1.57	-1.40	-1.25	-1-09	95.0	S - 0 - 0		00.0	70.0		60.01	• • • • • • • • • • • • • • • • • • • •		10.0	-0-77	
	HD LOSS,FT																							H0 L055,FT	;	39.0	0.63	0.65	99.0	79.0	59.0	1.00	0 0		8 6		1 2 4	1.24	95.1	5 6 7	2.34	3.13	4.25	5.59	
	STAT HD.FT	188.28	187, 33	186.28	85.	183,91	182.66	181,38	180.02	178.54	176.92	175.15	173.04	170-66	167.88	164.55	160.54		149.80		• •	•		STAT HO, FT		04.61		197.39	;;	;	197.38	95.167	107 30	107 28	197.38	197.38	197, 38	197.38	197.38	197, 38	197,38	197.38	197,38	197.38	
	TOT HO,FT	233, 75	233.66	233.60	232.82	232.00	231.22	230.46	229.69	229.23	228.92	227.96	226.93	226.90	227.44	226.92	226.66	226.85	227.32	228.73	230.04	****		TOT HOPET	,	K1 = E C Z	233.00	232.96	232.16	66.163	#C*067	20 000	228.44	228.04	226.99	225.84	225.67	226.08	225,36	224.82	224.55	224.19	224.48	225.35	
	V(REL), FPS	54.12	24.62	55.18	55.40	55.63	25.90	56.20	56.54	57.11	57.85	58.29	58.89	91.09	61.91	63,35	65.23	67.70	70.63		0	•		V(REL), FPS		71.07	76.14	*****	10014	67.44	61.04	45.07	44.70	64.43	43.65	42.79	42.66	42.98	45.44	42.02	41.82	41.54	41.76	45.43	
	VU, FPS	33.20	33.92	34.43	34.57	34.44	34.14	33.87	34.42	35,15	35.81	36.38	37.48	39,34	45.04	44.57	47.41	50.78	54.48	Ğ	3.7	ì		VU.FPS	00	• •	67.	10.1-	1 20	7.1.1	100	-0.86	-0.75	-0-66	-0.58	-0.51	-0.46	-0.43	-0.39	-0.34	-0.34	-0.37	4	-0.57	
	VZ.FPS	42.74	18°74	43.12	43.25	43.68	44.27	44.84	44.85	45.02	45.43	45.55	45.42	45.51	45.45	45.02	44.80	44.17	44.54	45.74	46.56	,		VZ.FPS	47.95	47.97	10 67	10.11	44. 72	46.18	45,63	45.06	44.70	44.43	43.65	42.79	45.66	42.98	42.43	45.02	41.82	41.53	41.76	42.42	
	V, F P S	54.12	۰.	٠,	₽ ⋅	0 (,	NI	n	-	∞	~	œ	_	Or.	m	2	~	•	m	0			VeFPS	66-17	, o	٠.	47. 31	, ~		··	റ	•	4	•	7	•	Q.	4	0	ø	41.54	~	4	
IES	L. F.P.S	0.0	•	9 0	•	•	• • • •	2 0))	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			U, FPS	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	
ANCE CUANTITIES	R/R(IIP)	1.000				- 0	0.0	0.00	18/ 0	0.4.0	B 7 / 0	9890	0.054	0.622	0.590	C. 558	0.526	0.453	0.461	C. 430	004.0		GUANTITIES	R/R(TIP)																		C.467			
ENTR	7	50		2 -		2 4	2.	† r	2:	71	1:	3 (.	no i	~	•	'n	*	m	~	_		EXI T	7	50	61	18	-	16	15	14	13	75	11	2	.	80 1	~ .	•	Δ.	* 1	m (٧.	-	

•				CHBK, Ore	SOL IDITY	THAX/C		
6.15	15 -2.54	1.000	-10.01	44.72	0.980	0.0800		
2		0.945	-10.44	45.33	1.005	0.0800		
4		0.917	-10.93	45.99	1.035	0.0800		
3.4		0.888	-11.43	46.69	1.069	0.0800		
1.9		0.858	-11.95	44.14	701-1	0000		
9 6		070.0	-12.03	40.10	1617	0-0 600		
		0,766	-13.59	50.00	1.239	0.0800		
-1.38		0.734	-14.16	50.93	1.294	0.800		
-2.0		0.102	-14.73	51.87	1.356	0.0800		
-2.1		0.670	-15,30	52.84	1.419	0.0800		
-1.9		0.637	-15.88	53.85	1.494	0.0800		
1-1-1		0.604	-16.49	24.90	1.581	0.0800		
4.0		0.570	-17.15	55.99	1.683	0.0800		
0.2		0.536	-17.85	57.09	1.801	0.0500		
0.9	93 1.84	0,502	-18.53	58.28	1.929	0.0800		
1.5		194.0	-19.17	24.05	5.003	0080-0		
1.8		0.433	-19.78	60.85	2.201	00800		
2.4		0.400	-20.34	62.20	2.340	0.0800		
DEV, DEG	EG PSI	1 154	EFFIC ON	OMEGABAR D-	D-FACTOR EG	D-FAC (INIA/C)A COSS		20 000
10.2		0.0	0.0	0.013	0.451	*804	0.0111	0.0003
10.2		0.0	0.0	0.013	0.455		0.0112	0.0003
10.2		0.0	0.0	0.014	0.457	•805	0.0111	0.0003
10.3		0.0	0.0	0.014	0.459	. 795	0.0109	0.0003
		0.0	0.0	0.014	0.458	.775	0.0106	0.0003
		0	0	0.014	0.457	.750	0.0102	0.0002
10.		0.0	0.0	0.014	0.456	.731	6500-0	0.0002
10.4		0.0	0.0	0.015	0.462	.739	0010-0	0.0002
10.4		0.0	0.0	0.016	0.468		0.0101	0.0002
10.4		0.0	0.0	0.017	0.473	•756	0.0103	0.0001
10.4		0.0	0.0	0.018	0.482	. 794	0.0109	0.0
10.4		0.0	0.0	0.020	0.498		0.0118	-0.0003
10.4		0.0	0.0	0.022	0.510	•	0.0125	-0.0005
10.38	38 0.0	0.0	0.0	0.023	0.520	1.898	0.0130	9000-0-
10.3		0.0	0.0	0.025	0.539	.	0.0141	6000°0-
10.2		0.0	0.0	0.028	0.557	_	0.0155	-0.0026
101		0.0	0.0	0.033	0.576		0.0179	-0.0054
10.01		0.0	0.0	0.040	0.599	•	0.0215	-0.0054
10.0		0.0	0.0	0.049	0.619	_	0.0254	-0.0049
		0.0	0.0	0.058	0.637	~	0.0292	-0.0010
•)						

Sample Input Load 2.

```
10 22010 1000
                   .01
          •375
 18 1
 19 1 1
 20 9 9
 21 .260 .284 .290 .302 .324 .352 .381 .405 .420
 22 2625 2729 2850 2979 3188 3396 3500 3646 3750
 23 1 051
           042
                024
                     016
                          057
                                062
                                     140 380 440
23 2 052
           045
                036
                      029
                           036
                                044
                                     082
                                          201
                                               262
23 3 052
           046
                038
                     032
                          032
                                040
                                     8 60
                                          160
                                               214
23 4 051
           046
                041
                     036
                          029
                                039
                                     056
                                          089
                                              118
23 5 038
           033
                028
                     026
                          044
                                060
                                     070
                                              105
                                          090
23 6 053
           047
                039
                     030
                         013
                                019
                                          103 164
                                     042
23 7 092
           067
                043
                     031
                          036
                                040
                                         090 117
                                     056
23 8 066
           054
                040
                     033 064
                                047
                                          096 116
                                     063
                     034 083
23 9 040
           038
                036
                                048
                                     064
                                         104
                                              116
24 1 1.65 4.20 6.30 7.25 6.05 4.85 3.50 0.0 0.0
24 2 4.75 6.26 7.58 8.14 7.68 6.53 4.60 1.73 0.50
24 3 5.25 6.60 7.70 8.25 7.95 6.90 5.95 4.10 2.55
24 4 6.30 7.11 7.88 8.23 8.11 7.21 6.72 6.18 5.90
24 5 6.60 7.31 7.43 7.65 7.55 6.46 6.12 5.82 5.70
24 6 9.25 8.02 6.95 6.45 6.53 5.88 5.60 5.36 5.19
24 7 7.95 7.28 6.60 6.17 5.98 5.43 5.36 5.40 5.50
24 8 8.25 7.33 6.33 5.75 5.28 4.90 4.92 5.47 6.08
24 9 8.65 7.45 6.35 5.50 4.80 4.50 4.70 5.38 6.50
30 1
3110
32 1 1 . 2625
              66.00
                      .2625
                             38.40
                                    1.44
                                            .0850
                                                  0.
                                                          1.08
                                                                  • 7
32 1 2 .2700
                      .2700
              66.60
                             40.30
                                    1.40
                                            .0840
                                                  0.
                                                          1.08
                                                                  . 7
32 1 3 .2800
              67.50
                      .2800
                             42.70
                                    1.35
                                           .0826
                                                  0.
                                                          1.08
                                                                  • 7
32 1 4 .2900
              68.50
                      ·2900
                             45.10
                                    1.30
                                           .0813
                                                   0.
                                                          1.08
                                                                  • 7
32 1 5 .3000
              69.30
                      •3000
                             47.20
                                    1.26
                                           .0800
                                                  0.
                                                          1.08
                                                                  • 7
32 1 6 .3200
              70.50
                      3200
                             51.00
                                    1.18
                                           • 0773
                                                  0.
                                                          1.08
                                                                  • 7
32 1 7 .3400
              71.10
                      .3400
                             55.20
                                    1.11
                                           • 0746
                                                  0.
                                                          1.08
                                                                  • 7
32 1 8 .3600
              70.30
                             60.20
                      •3600
                                    1.05
                                           •0720
                                                   0.
                                                          1.08
                                                                  • 7
32 1 9 . 3700
              68.40
                      .3700
                            63.70
                                    1.02
                                            .0706
                                                   0.
                                                          1.08
                                                                  . 7
32 110 .3750
              67.10
                      .3750
                            67.10
                                   1.01
                                            .0700
                                                   0.
                                                          1.08
                                                                  • 7
50 3620.
70 55.0
80
   •01
81 7
82 .2625 59.81
                    188.36 .2729 59.81
                                           188.36 .2979 58.95
188.52 .3646 55.92
                  188.46 .3396 58.93
185.66
                                                                       188.36
82 .3188 59.39
                                                                       185.66
82 .3750 55.92
83 0.984
80 .02
81 7
```

82 82 83	.2625 .3188 .3750 0.985	51.34	188.57 188.84 186.90			188.57 188.89			188.41 186.90
50	-1.0 2890. 47.7								
80 81	•05 7								
82	. 2625	48.01	188.36	.2729	48.01	188.36	.2979	47.32	188.36
82	.3188	47.68	188.46	.3396	47.31	188.52	.3646	44.89	185.66
82	.3750	44.89	185.66						
83	0.984								
80									

Sample Output 2

AXIAL-FLOW PUMP PERFORMANCE PREDICTION - - INPUT

I RUN=1000

....

JBASE= 10 JLIM= 20

REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRECTION

0.02 0.33 YTMACB= 0.0 0.04 0.06 0.08 0.10 1.08 0.12 YFK !R= 0.0 0.59 0.90 1.00

PEFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBER COEFFICIENTS (FI10GB, SLP1GB, SLP2GB)

YANGSB					SGMGBB				
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	2.0	2.6
0.0	0.042	0.012	0.003	-0.041	-0.074	-0.097	-0.124	0 122	
10.00	0.413	0.554	0.721	0.853	1.072	1.203	1.387	-0.132	-0.186
20.00	0.738	1.085	1.405	1.735	2.146	2.476	2.844	1.764	2.303
30.00	1.043	1.571	2.105	2.636	3.136	3.751		3.663	4.944
40.00	1.360	2.050	2.759	3.488	4.219	5.029	4.346	5.606	7.694
50.00	1.662	2.485	3.386	4.283	5.215	6.214	5.827	7.591	10.460
60.00	1.864	2.834	3.835	4.919	5.955	7.016	7.255	9.398	12.540
70.00	2.042	3.099	4.145	5.276	6.377	7.390	8.100	10.200	13.550
				742.0	0.311	1.370	8.517	10.850	14.500
0.0	-0.043	-0.022	-0.004	0.016	0.041	0.060			
10.00	-0.088	-0.058	-0.032	-0.008	0.019	0.060	0.082	0.116	0.163
20.00	-0.138	-0.100	-0.067	-0.038	-0.013		0.073	0.124	0.189
30.00	-0.191	-0.148	-0.114	-0.079	-0.015	0.025	0.055	0.113	0.193
40.00	-0.250	-0.206	-0.167	-0.131	-0.096	-0.010	0.019	0.079	0.148
50.00	-0.322	-0.273	-0.235	-0.201	-0.174	-0.066	-0.040	0.003	0.047
60.00	-0.393	-0.352	-0.318	-0.291	-0.268	-0.150	-0.134	-0.108	-0.072
70.00	-0.484	-0.458	-0.448	-0.433	-0.408	-0.249	-0.236	-0.195	-0.157
			44.10	04433	-0.408	-0.376	-0.357	-0.297	-0.247
0.0	-0.001	-0.001	-0.001	-0.001	-0.001	0.001			
10.00	-0.001	-0.001	-0.001	-0.001	-0.001	-9.001	-0.001	-0.001	-0.001
20.00	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002
30.00	-0.001	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002
40.00	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002	-0.003
50.00	-0.001	-0.001	-0.001	-0.001	-0.002	-0.002	-0.002	-0.002	-0.003
60.00	-0.001	-0.001	-0.001	-0.001		-0.002	-0.002	-0.002	-0.002
70.00	-0.000	-0.000	-0.000	-0.001	-0.002	-0.002	-0.002	-0.002	-0.002
			0.000	-0.001	-0.001	-0.001	-0.001	-0.002	-0.003

BLADE ROW DATA

RN= 3620.0 RPM RSTAR= 0.37500 FT IEXDEV= 1 TEXLOS= 1

REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY-DEPENDENT LOSS DATA

J X ALFB XP ALFPB SGMAB TMXCB FT2DB FHB FKSHAB

0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000			
1.0800 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800	0.4200 8.6500 7.4500 6.3500 6.3500 4.8000 4.5000 4.7000 5.3800	0.4200	0.0380 0.0360 0.0340 0.0830 0.0480 0.0640 0.160
000000000	0.4050 8.2500 7.3300 6.3300 6.3300 6.3900 4.9000 4.9200 5.4700	0.4050	0.0540 0.0400 0.0330 0.0640 0.0670 0.0630 0.1160
	0.3810 7.9500 7.2800 5.6000 5.4300 5.4000 5.5000	0.3810	0.0670 0.0430 0.0310 0.0360 0.0560 0.0560
0000000000	PHI88 0.3520 9.2500 8.0200 6.9500 6.9500 5.8800 5.86000 5.3600	0.3520	0.0470 0.0390 0.0300 0.0130 0.0190 0.0420 0.1030
1.4400 1.3500 1.3500 1.3600 1.2600 1.1800 1.0500 1.0500 1.0100	6.6000 7.3100 7.4300 7.6500 7.6500 6.4600 6.1200 6.1200 5.8200 5.7000	0.3240	0.0330 0.0330 0.0280 0.0260 0.0440 0.0400 0.0700
98.4000 40.3000 42.1000 47.2000 51.0000 55.2000 63.7000 67.1000	6.3020 6.3020 7.8800 7.8800 8.2300 8.2300 6.1800 6.1800 5.9000	0.3020	0.0460 0.0410 0.0290 0.0390 0.0360 0.0890
2625 2700 2800 2800 38000 3400 3700 3700	ANGL E(DEL 28) O 0.2900 (O 5.2500 (O 7.7000 (O 7.7000 (O 7.9500 (O 7.95	0.2900	0.0460 0.0460 0.0320 0.0320 0.0680 0.1600
	710N ANGL 4.7500 4.7500 7.5800 8.1400 7.6800 6.5300 4.6000 1.7300 0.5000	0.2840	0.050 0.0450 0.0360 0.0290 0.0360 0.0440 0.2010
66,0000 67,500 68,5000 69,3000 70,5000 71,1000 70,3000 68,4000	DEVIA 2600 2000 2500 2500 6500 6500 6500 600 600 600	0.2600	0.0510 0.0420 0.0240 0.0160 0.0570 0.0620 0.1400
0.2625 0.2700 0.2800 0.2900 0.3200 0.3200 0.3400 0.3700	XPB 0.2 6.2 1. 0.2 7.2 9.4 0.2 85 0.2 9.7 9.7 7.0 0.3 3.9 6.0 0.3 3.9 6.0 0.3 3.5 0.0 0.3 4.6 0.0 0.3 7.5 0.0 0.0 0.3 7.5 0.0 0.0 0.3 7.5 0.0 0.0 0.3 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	8 d ×	0,2625 0,2729 0,2850 0,3188 0,3396 0,35646 0,3500
10 8 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	XPB 0.2625 0.2729 0.2979 0.3396 0.3396 0.3360		00000000

INLET COND	PHIRUN NO.	1000.01	
R 0.2625 0.2729 0.2979 0.3188 0.3396 0.3646 0.3750	VZ 59.8100 59.8100 58.9500 59.3900 58.9300 55.9200	VU 0.0 0.0 0.0 0.0 0.0 0.0	H 188.3600 188.3600 188.4600 188.5200 185.6600
r	PHIEFC	USTAR	ARFAC
1	0.4052	142.1574	0.9840

0	96 (87.00%)	68.53	69. 25	18.79	\$1°.19	24.52	'n	65,39	64.93	64.48	64.04	63.66	64.40	62.60	27 64	100	01.00	61.26	60.67	60, 10	59.54					90.414.00	43	12.10	7 * 9 9	62.20	63.61	67.43	60.50	27.60	28.12	20.75	20.00	20.03	80.40	* 1 ° C C	22.20	21. 24	50° 23	44. 35	48.49	47.59	46.65	
	8E14.0EG 3	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0		•		•	0 1	0.0	•	0.0	0.0	0.0		•			9E14.0E6	ò	30.80	21.5	25.14	24.49	23.66	23.23	23.88	24.80	25.42	25.68	25-11	74.82	24 · 81	25.08	25.58	26.18	26.87	27.53	æ	æ	
	H0 L0SS,FT																									HD LUSS,F1	1	42.07	35.11	29.28	23.75	19.09	15.67	16.70	18.46	18.97	18.10	13.80	10.83	60%	9.40	8.82	9.50	10.68	11.79	12.81	13.75	
ı	STAT HO.FT +	137.06	137.14	136.89	136.19	135,56	135.01	134.54	134.12	133 621	600661	133.00	•	134.18			133.79	133,33	33	32	127 73	7) • 7 6 6 6	17.751			STAT HD, FT		211.67	211.40	211.12	210.85	210.59	210.31	210.02	209.68	209, 31	208.91	2 08. 49	\$.202	207.38	206.81	206.20	205.5%			203,35	02.	
	TOT HOPFT			185,91	86	87	α	8			ğ	90	80	188.41	88	88	88	188.36	8	9 0		0 (SO SO			TOT HO, FT		239.60	253.08	260.79	266.20	270.67	274.33	276.80	278.61	280.11	281.24	282.41	283.24	283,81	284.07	284.15	284.14	283,34	282.25	281,10	279.86	
	V(REL), FPS	152.76	150.64	148.68	146.96	145.20	07*641	75.1	+ C + C + C + C + C + C + C + C + C + C	00.461	137.63	135.64	133.58	131.48	129.43	127.43	125.59	124.74	121 84	00 171	119.96	118.04	116.10			V(REL), FPS		125.79	124.15	123.09	122.17	121.11	119.79	117.27	114.45	111.99	109.94	108.95	107.68	106.11	104.21	6	6	97.31	94.86	92.43	90.01	
	VU, FPS V	o o						•		0.0	0.0	0.0	0.0	0.0	0.0	0-0			•	0.0	0.0	0.0	0.0			VU,FPS		21.74	23.89	24.55	24.74	24.95	25.31	26.54	27.94	78.97	29.57	29.27	29.22	29.42	29.88	30.58	31.37	32.11	17.77	33.42	34.05	· · ·
	VZ.FPS	9	27.000	52, 63	70.73		51.83	78.47	58.94	59.16	59,30	59,38	59.26	59.07	58.97	40 84	70.04	03.60	•	•	è.	59.84	59.81			VZ,FPS		36.39		20 03	56.23	40.44	K 0 0 8	70.04	40.45	40	04.14	67.45	64.18	63.66	63,86	A 2 . S. S.	63.81	10.60	63 64 64 84	10.20	61.78) •
	V,FPS		24.66	20.00	100	50.75	57.85	v	58.94	59.16	59.30	59.38	59.26	59.07	58.97	40.00				٦.		œ,	59.81			V,FPS		01 67	٠,	77. 53	00.00	04.00	01.70	01.40	62.23	00.00	06.00	10 e7	17 07	70 13	10,10	10.01	70.07	11.17	11.00	0.00	. 0. . 0. . 0. . 0. . 0. . 0. . 0. . 0.	•
S:	U,FPS	•	142.16	139.91	137.67	135,42	133.18	130.93	128.69	126.45	124.20	121.96	110.71	117.47	115 22	779611	117.98	110.73	108.49	106.24	104.00	101.75	99.51			U.FPS		71. 671	01.241	77.651	136.61	134.18	131.84	159621	127.34	71.621	16.221	1/071	110.77	74.011	114.52	116.63	110.14	108.05	•	ě.	• •	•
NTRANCE QUANTITIES	/R(TIP)		1.000	0.984	0.968	0.953	0.937	0.921	0.905	0.889	47.8.0	- u	6,00	0.042	0.020	118.0	0.195	0.179	0.763	747	0.732	0.716	0.700		QUANTITIES	R/R(TIP)			000-1		196.0	946	0.927	0.911	0.896	0.880	0.865	648.0	0.834	0.819	*08.0	0.789	_	9	0.745	2	0.715	2
ENTRAN	~		20	19	18	11	16	15	14		1	71		2 (.	10	_	•	r	4	۰,	, ,	, -	ŀ	EXIT	7		,	20	10	18	17	16	15	14	13	12		10	σ :	so (-	•	'n	4	•	~	,- 4

1.000				
1,000	CMBR, DEG SQ	SOL IDITY TO	MAX/C	
0.994 5.7 0.97 0.97 0.97 0.97 0.97 0.99 0.99 0.				
0.946 10.5 0.399 0.399 0.020 0.991 0.991 0.994 0.996 0.993 15.5 0.993 10.994 0.994 0.995 0.993 15.6 0.993 15.6 0.993 0.994 0.995 0.993 15.6 0.991 0.994 0.995 0.993 15.6 0.991 0.994 0.993 0.993 15.6 0.991 0.994 0.993 0.993 15.6 0.993 15.6 0.991 0.994 0.993 0.993 15.6 0.994 0.993 0.993 15.6 0.994 0.993 0.993 15.6 0.994 0.993		,		
0,953 15.6 0.407		010	0 7 0 0	
0,937 211 0.007 - 4.30 - 1.63 0.94 6.555 0.99 0.99 0.99 0.99 0.99 0.99 0.99		920	01.10	
0.921 26.3 0.401 -4.30 -1.82 0.927 6393 6393 6393 6393 6393 6393 6393 639	***	640	720	
0.905 31.0 0.411 -5.08 -1.82 0.911 63.73 0.816 0.415 -5.00 -1.82 0.911 63.73 0.817 42.1 0.411 -6.83 -2.40 0.896 62.70 0.82 52.6 0.417 -6.83 -2.40 0.896 62.70 0.82 52.6 0.417 -6.83 -2.39 0.819 59.28 0.82 52.6 0.417 -6.83 -2.39 0.819 59.28 0.719 73.7 0.417 -6.84 -2.39 0.819 59.28 0.719 73.7 0.417 -6.84 -2.23 0.819 59.28 0.710 94.7 0.417 -6.88 -1.99 0.715 56.91 0.710 94.7 0.421 -6.88 -1.99 0.716 56.01 0.711 8PH F T PHIZ DEV, DE PST 0.326 0.329 0.718 59.28 0.904 0.400 0.256 6.09 0.172 0.306 0.401 0.904 0.421 0.422 4.99 0.225 0.326 0.329 0.904 0.422 4.99 0.229 0.329 0.489 0.009 0.904 0.422 4.99 0.229 0.329 0.489 0.009 0.904 0.422 4.99 0.229 0.329 0.489 0.009 0.904 0.420 0.422 4.99 0.229 0.339 0.909 0.904 0.400 0.422 4.99 0.229 0.339 0.909 0.806 0.400 0.422 4.99 0.229 0.339 0.909 0.807 0.420 0.420 4.99 0.229 0.339 0.909 0.808 0.400 0.420 4.99 0.229 0.339 0.909 0.809 0.400 0.420 0.420 0.320 0.339 0.909 0.809 0.400 0.420 0.420 0.339 0.339 0.909 0.809 0.400 0.400 0.400 0.339 0.909 0.809 0.400 0.400 0.400 0.339 0.909 0.809 0.400 0.400 0.400 0.339 0.909 0.809 0.400 0.400 0.400 0.339 0.909 0.809 0.400 0.400 0.339 0.339 0.909 0.809 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.400 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.800 0.400 0.400 0.400 0.339 0.339 0.909 0.800 0.8	68*1	067 0	1728	
0.866 35.8 0.415 -6.04 -2.25 0.866 62.70 0.874 47.4 0.417 -6.83 -2.40 0.896 62.02 0.885 47.4 0.417 -6.83 -2.40 0.846 62.02 0.886 63.2 0.417 -6.83 -2.40 0.846 62.85 0.795 68.4 0.417 -6.85 -2.35 0.866 62.85 0.797 73.7 0.417 -6.85 -2.35 0.866 62.85 0.797 73.7 0.417 -6.85 -2.35 0.866 62.85 0.798 68.4 0.420 -6.85 -2.12 0.776 56.95 0.799 68.5 0.421 -6.85 -2.12 0.776 56.95 0.790 100.0 0.421 -6.85 -2.12 0.776 56.95 0.790 100.0 0.421 -6.85 -2.12 0.776 56.95 0.790 100.0 0.421 -6.85 -2.12 0.776 56.95 0.790 6.99 0.421 -6.89 -2.12 0.776 56.95 0.790 0.421 -6.89 -2.12 0.776 56.95 0.790 0.421 -6.89 -2.12 0.776 56.95 0.790 0.421 -6.89 -2.12 0.776 56.95 0.790 0.421 -6.89 -2.12 0.776 56.95 0.790 0.421 -6.89 -2.12 0.776 56.95 0.491 0.422 0.421 -6.89 0.172 0.304 0.459 0.941 13.0 0.422 4.99 0.224 0.325 0.489 0.942 0.442 0.432 5.17 0.232 0.334 0.829 0.944 13.0 0.422 4.99 0.224 0.335 0.834 0.829 0.945 13.0 0.422 4.99 0.224 0.335 0.836 0.906 0.911 0.422 4.99 0.227 0.335 0.836 0.906 0.911 0.422 4.99 0.227 0.335 0.839 0.909 0.912 0.423 0.433 5.24 0.433 0.913 0.913 0.913 0.844 55.4 0.442 5.47 0.332 0.332 0.913 0.913 0.845 55.4 0.444 5.47 0.332 0.333 0.913 0.913 0.846 55.4 0.444 5.47 0.332 0.333 0.913 0.913 0.775 0.785 0.785 0.333 0.913 0.913 0.785 0.785 0.785 0.333 0.913 0.913 0.785 0.485 0.442 0.442 0.335 0.335 0.986 0.786 0.790 0.442 0.442 0.335 0.335 0.986 0.786 0.790 0.442 0.442 0.335 0.335 0.986 0.790 0.790 0.442 0.442 0.235 0.335 0.987 0.987 0.790 0.790 0.442 0.442 0.435 0.335 0.987 0.987 0.790 0.790 0.490 0.442 0.442 0.229 0.335 0.335 0.987 0.987 0.790 0.790 0.490 0.442 0.442 0.479 0.335 0.335 0.987 0.987 0.790 0.790 0.490 0.442 0.442 0.229 0.335 0.335 0.987 0.987 0.790 0.790 0.490 0.442 0.442 0.235 0.335 0.335 0.888 0.988 0.790 0.790 0.490 0.442 0.442 0.229 0.335 0.335 0.987 0.987 0.790 0.790 0.490 0.442 0.442 0.229 0.335 0.335 0.987 0.	3.77	085 0	736	
0.874 42.1 0.415 -6.04 -2.25 0.889 0.2.70 0.887 62.10 0.887 62.10 0.415 -6.32 -2.41 0.887 62.20 0.887	5. 1 0	104 0	744	
0.856 47.4 0.417 -6.32 -2.36 0.865 61.28 0.862 52.6 0.417 -6.43 -2.41 0.865 60.85 0.826 57.9 0.418 -6.43 -2.41 0.846 60.85 0.826 57.9 0.416 -6.45 -2.39 0.819 59.28 0.827 52.6 0.417 -6.45 -2.39 0.819 59.28 0.828 52.6 0.417 -6.85 -2.39 0.819 59.28 0.775 68.4 0.415 -6.85 -2.23 0.775 56.95 0.777 73.7 73.7 0.421 -6.85 -2.23 0.775 56.95 0.775 84.2 0.421 -6.85 -1.99 0.775 56.95 0.775 84.2 0.421 -6.85 -1.99 0.775 56.95 0.776 84.2 0.421 -6.87 -1.86 0.775 56.95 0.770 0.700 0.256 0.09 0.175 0.306 0.775 59.01 0.900 0.00 0.256 0.09 0.175 0.306 0.775 59.01 0.901 13.0 0.328 5.41 0.329 0.326 0.906 0.902 0.903 0.302 5.41 0.326 0.326 0.906 0.903 0.403 0.302 5.41 0.326 0.326 0.906 0.904 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.805 45.1 0.400 0.400 0.400 0.400 0.400 0.805 45.1 0.400 0.400 0.400 0.400 0.400 0.805 45.1 0.400 0.40	8. 78	124 0	1752	
0.842 52.6 0.418 -6.53 -2.41 0.845 61.33 0.845 0.825 52.6 0.417 -6.63 -2.40 0.845 61.33 0.845 0.825 52.6 0.417 -6.63 -2.35 0.814 0.845 61.33 0.815 0.815 0.415 -6.63 -2.35 0.814 59.98 0.815 0.415 -6.68 -2.35 0.814 59.98 0.815 0.417 -6.85 -2.35 0.814 59.98 0.815 0.417 -6.85 -2.33 0.814 59.98 0.815 0.417 -6.85 -2.33 0.815 55.01 0.815 0.775 55.01 0.775 55.	7.91	166	26.0	
0.876 52.6 0.417 -6.63 -2.70 0.849 60.65 0.816 60.65 0.817 60.826 0.818 60.65 0.818 60.67	1.95	164	7.77	
0.826 57.9 0.416 -6.65 -2.35 0.834 59.88 0.815 63.2 0.815 63.2 0.415 -6.68 -2.35 0.816 59.28 0.815 63.2 0.415 -6.88 -2.35 0.816 59.28 0.816 59.28 0.817 73.7 73.7 73.7 0.417 -6.88 -2.12 0.775 56.91 0	85	184		
0.811 63.2 0.415 -0.68 -2.39 0.819 59.28 0.775 68.4 0.415 -0.68 -2.23 0.804 58.55 0.804 58.55 0.775 0.775 0.415 -0.68 -2.23 0.775 0.775 0.415 0.415 -0.68 -2.23 0.775 0.775 0.415 0.417 0.412 0.417 0.420 -0.685 -1.99 0.775 0.775 0.421 0.421 -0.685 -1.99 0.775 0.775 0.421 0.421 -0.687 0.775 0.775 0.775 0.421 0.421 -0.687 0.775 0.775 0.775 0.421 0.421 -0.697 0.775 0.775 0.775 0.775 0.421 0.421 -0.697 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.421 0.425 0.421 0.425 0.421 0.425 0.421 0.421 0.425 0.421 0.	3	100	5	
0.795 68.4 0.415 -0.71 -2.35 0.0404 58.55 0.077 73.7 73.7 0.417 -6.84 -2.23 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 56.95 0.775 0.775 0.775 56.95 0.775 0.775 0.775 56.95 0.775 0.	1 4	0 607	783	
0.779 73.7 0.417 -6.84 -2.23 0.769 57.78 0.765 0	000	232 0	791	
0.763 77.9 0.417 -6.85 -2.23 0.775 56.95 0.775 0	9	254 0	798	
0.747 84.2 0.421	· .	275 0.	805	
0.732 89.5 0.422 -6.85 -1.99 0.745 55.05 0.716 94.7 0.421 -6.92 -1.75 0.715 55.10 0.716 0.716 0.720 0.421 -6.92 -1.75 0.715 55.10 0.716 0.720 0.421 -6.92 -1.75 0.700 52.20 0.700 52.20 0.400 0.042 0.	94.	298 0,	812	
0.716 94.7 0.421 -6.87 -1.86 0.735 55.11 0.700 0	.20	325 0.	819	
0.700 100.0 0.421 -6.92 -1.75 0.715 53.16 59.10 0.700 100.0 0.421 -7.01 -1.65 0.700 52.20 2.20 2.20 0.700 100.0 0.421 -7.01 -1.65 0.700 52.20 2.20 2.20 0.700 0.700 0.256 0.256 0.235 0.325 0.235 0.325 0.235 0.325 0.235 0.325 0.235 0.325 0.235 0.325 0.25	. 95	353 0,	827	
### PARTICLES ### PA	.73	380	835	
### Prince	29.	1-409 0-01	0842	
1.000 0.0 0.256 6.09 0.172 0.306 0.553 0.979 0.979 0.329 0.329 0.553 0.944 18.7 0.382 5.61 0.253 0.329 0.553 0.944 18.7 0.382 5.01 0.253 0.329 0.553 0.951 2.95 0.412 0.401 4.90 0.253 0.329 0.718 0.927 24.2 0.401 4.90 0.253 0.329 0.718 0.927 24.2 0.401 4.90 0.255 0.329 0.718 0.896 0.911 2.945 0.412 4.95 0.287 0.325 0.325 0.866 0.880 4.0 0.425 5.01 0.257 0.325 0.325 0.866 0.880 4.0 0.425 5.00 0.297 0.334 0.871 0.887 0.887 0.425 5.00 0.297 0.334 0.871 0.887 0.889 0.425 5.35 0.299 0.335 0.836 0.836 0.889 0.775 75 75.1 0.444 5.47 0.302 0.304 0.333 0.918 0.775 75 75.1 0.449 5.80 0.305 0.333 0.918 0.775 75 75.1 0.449 5.80 0.305 0.335 0.918 0.775 75 75.1 0.449 6.02 0.305 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.1 0.449 6.33 0.305 0.335 0.335 0.918 0.775 75 75.2 0.305 0.335 0.335 0.335 0.336 0.335 0.336 0.335 0.775 75 75.2 0.325 0.335 0.335 0.335 0.336 0.335 0.336 0.335 0.305 0.335 0.336 0.335 0.336 0.336 0.335 0.336 0.336 0.335 0.336 0.336 0.335 0.336 0.335 0.336 0.336 0.335 0.336 0.336 0.335 0.336 0.336 0.336 0.335 0.336 0.336 0.336 0.336 0.335 0.336 0.33	2		850	
Part				
1.000 0.0 0.256 6.09 0.172 0.306 0.561 0.979 6.9 0.323 5.61 0.215 0.329 0.653 0.944 18.7 0.388 5.25 0.228 0.329 0.653 0.944 18.7 0.388 5.25 0.228 0.329 0.329 0.653 0.911 29.5 0.415 4.90 0.225 0.329				
1.000 0.0 0.256 6.09 0.172 0.306 0.561 0.979 6.9 0.323 5.61 0.215 0.329 0.653 0.9964 18.7 0.382 5.25 0.238 0.332 0.718 0.944 18.7 0.382 5.25 0.253 0.332 0.718 0.9927 24.2 0.401 4.90 0.253 0.274 0.322 0.718 0.991 29.5 0.401 4.90 0.265 0.326 0.329 0.708 0.991 29.5 0.401 4.90 0.265 0.326 0.329 0.708 0.896 34.8 0.422 4.995 0.274 0.325 0.845 0.845 0.896 45.1 0.422 4.95 0.281 0.334 0.829 0.829 0.829 0.335 0.829 0.829 0.335 0.829 0.829 0.335 0.829 0.896 0.397 0.395 0.395 0.395 0.896 0.397 0.399 0.395 0.395 0.918 0.775 0.775 0.449 5.42 0.305 0.335 0.918 0.775 0.775 0.449 5.80 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 0.449 6.33 0.305 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.449 0.449 0.305 0.335 0.335 0.918 0.775 0.775 0.299 0.337 0.898 0.775 0.775 0.299 0.337 0.335 0.299 0.337 0.335 0.299 0.337 0.335 0.299 0.335 0.335 0.809	ABAR D-FACTOR	OR EQ D-FAC	I THT A CF 14 .	ċ
0.979 6.9 0.256 6.09 0.172 0.306 0.561 0.961 0.961 13.0 0.323 5.61 0.215 0.329 0.653 0.9561 0.964 18.7 0.358 5.25 0.238 0.332 0.329 0.653 0.927 24.2 0.401 4.90 0.256 0.326 0.329 0.708 0.911 29.5 0.415 4.89 0.275 0.326 0.326 0.813 0.865 45.1 0.422 4.95 0.281 0.336 0.326 0.813 0.865 45.1 0.422 4.95 0.281 0.334 0.829 0.829 0.334 0.829 0.849 0.849 0.281 0.334 0.829 0.829 0.334 0.829 0.834 0.829 0.335 0.335 0.829 0.335 0.829 0.335 0.829 0.335 0.829 0.335 0.335 0.896 0.375 0.399 0.335 0.918 0.775 0.775 0.449 5.62 0.305 0.333 0.918 0.775 0.775 0.449 5.80 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.898 0.775 0.775 0.449 0.445 0.305 0.335 0.335 0.898 0.775 0.775 0.449 0.445 0.305 0.335 0.335 0.898 0.775 0.775 0.449 0.445 0.305 0.335 0.335 0.898 0.775 0.775 0.449 0.445 0.305 0.335 0.335 0.898 0.775 0.700 0.445 0.445 0.205 0.335 0.335 0.335 0.898 0.775 0.700 0.445 0.445 0.205 0.335 0.335 0.898 0.775 0.299 0.337 0.335 0.336 0.335 0.		,		110 000
0.961 13.0 0.323 5.61 0.215 0.329 0.653 0.944 18.7 0.385 5.61 0.238 0.332 0.718 0.9944 18.7 0.385 5.62 0.238 0.332 0.718 0.991 29.5 0.401 4.90 0.2265 0.326 0.326 0.891 20.652 0.415 4.90 0.265 0.326 0.813 0.880 40.0 0.422 4.95 0.281 0.335 0.846 0.885 45.1 0.429 5.17 0.297 0.345 0.828 0.884 55.4 0.429 5.17 0.297 0.345 0.828 0.887 60.4 0.444 5.47 0.302 0.331 0.891 0.775 75.1 0.449 5.62 0.305 0.332 0.918 0.775 0.775 0.449 6.02 0.305 0.332 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.449 6.02 0.305 0.335 0.898 0.775 0.449 0.449 6.02 0.305 0.335 0.918 0.775 0.449 0.449 6.02 0.305 0.335 0.898 0.775 0.449 0.449 6.02 0.305 0.335 0.898 0.775 0.449 0.449 0.305 0.335 0.898				
0.944 18.7 0.358 5.25 0.238 0.332 0.718 0.927 24.2 0.401 0.253 0.253 0.329 0.718 0.927 24.2 0.401 4.90 0.265 0.329 0.729 0.70 0.896 34.8 0.422 4.95 0.265 0.334 0.335 0.846 0.886 0.886 0.829 0.274 0.325 0.846 0.829 0.869 0.274 0.325 0.846 0.829 0.869 0.291 0.334 0.429 0.292 0.335 0.836 0.834 0.449 5.47 0.292 0.353 0.836 0.879 0.775 75.1 0.449 5.47 0.302 0.333 0.913 0.775 75.1 0.449 5.49 0.309 0.333 0.913 0.913 0.745 84.9 0.449 6.33 0.305 0.335 0.889 0.775 0.789 0.449 6.33 0.305 0.335 0.899 0.775 0.449 0.449 6.33 0.305 0.335 0.899 0.775 0.449 0.449 0.305 0.305 0.335 0.899 0.775 0.449 0.442 7.25 0.299 0.337 0.899 0.775 0.789 0.442 7.25 0.299 0.337 0.899 0.775 0.789 0.442 7.25 0.299 0.337 0.899 0.780 0.780 0.442 7.25 0.299 0.337 0.899 0.780 0.780 0.780 0.335 0.335 0.889 0.780 0.780 0.335 0.335 0.899 0.780 0.780 0.335 0.337 0.899 0.780 0.780 0.335 0.335 0.337 0.899 0.780 0.780 0.442 7.725 0.299 0.337 0.899 0.899 0.780 0.335 0.335 0.889		_	O	ć
0.927 24.2 0.582 5.01 0.253 0.329 0.715 0.815 0.811 29.5 0.415 4.90 0.265 0.326 0.326 0.813 0.896 0.813 0.896 0.813 0.896 0.813 0.886 0.886 0.886 0.829 0.274 0.325 0.846 0.886 0.886 40.0 0.422 5.06 0.287 0.334 0.829 0.838 0.898 0.809 0.829 0.835 0.888 0.888 0.898 0.809 0.835 0.835 0.889 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889 0.835 0.835 0.889		_	0	0
0.911 29.5 0.415 4.90 0.265 0.326 0.813 0.896 34.8 0.422 4.89 0.274 0.325 0.846 0.885 0.885 4.89 0.274 0.325 0.846 0.885 0.885 4.95 0.422 4.89 0.287 0.334 0.829 0.895 0.829 0.895 0		_	0	6
0.896 34.8 0.422 4.89 0.274 0.325 0.845 0.885 0.885 4.95 0.422 4.95 0.281 0.335 0.845 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.883 0.883 0.835 0.835 0.828 0.835 0.835 0.828 0.835 0.835 0.828 0.835 0.835 0.828 0.835 0.83		_	0	0
0.880		_	0	0
0.865 45.1 0.429 5.17 0.287 0.346 0.829 0.839 0.829 0.839 0.829 0.839 0.829 0.839 0.829 0.839 0.829 0.839 0.829 0.839 0.829 0.839 0.839 0.829 0.839 0.839 0.869		-	0	0
0.849 50.3 0.433 5.27 0.292 0.352 0.828 0.834 0.834 0.433 5.28 0.299 0.353 0.838 0.838 0.834 0.834 0.434 5.28 0.299 0.353 0.838 0.838 0.839 0.354 0.879 0.353 0.838 0.838 0.879 0.375 0.343 0.449 5.47 0.302 0.333 0.913 0.913 0.775 75.1 0.449 5.80 0.309 0.333 0.913 0.913 0.745 80.9 0.449 6.33 0.305 0.333 0.918 0.918 0.745 84.9 0.449 6.33 0.305 0.335 0.918 0.715 0.449 6.33 0.305 0.335 0.918 0.715 0.449 0.442 7.25 0.299 0.337 0.898 0.700 100.0 0.435 8.25 0.299 0.337 0.898 0.809 0.337 0.898 0.808 0.			0	
0.834 55.4 0.433 5.28 0.295 0.353 0.836 0.816 0.819 0.829 0.353 0.836 0.816 0.844 0.444 5.47 0.302 0.303 0.837 0.897 0.378 0.378 0.897 0.378 0.387 0.897 0.378 0.913 0.913 0.775 75.1 0.449 5.62 0.305 0.333 0.913 0.913 0.775 75.1 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.449 6.02 0.305 0.335 0.918 0.775 0.775 0.442 7.25 0.305 0.335 0.898 0.775 0.442 7.774 0.299 0.337 0.898 0.776 0.395 0.337 0.898 0.770 0.700 0.435 8.25 0.299 0.337 0.898 0.805 0.700 0.435 8.25 0.291 0.335 0.869		1	0	0.0
0.819 60.4 0.444 5.47 0.302 0.343 0.871 0.871 0.884 0.345 0.444 5.47 0.302 0.337 0.897 0.317 0.897 0.3789 170.2 0.449 5.80 0.302 0.333 0.913 0.973 0.775 15.1 0.449 6.02 0.305 0.333 0.913 0.913 0.775 15.1 0.449 6.02 0.305 0.335 0.918 0.775 15.1 0.449 6.02 0.305 0.335 0.918 0.775 15.1 0.449 6.02 0.305 0.335 0.918 0.775 15.1 0.449 6.02 0.305 0.335 0.918 0.775 0.775 15.1 0.449 6.02 0.305 0.337 0.898 0.775 0.700 100.0 0.435 17.74 0.299 0.337 0.888 0.809 0.700 100.0 0.435 17.74 0.299 0.337 0.888 0.809 0.700 100.0 0.435 17.74 0.299 0.337 0.869 0.809 0.335 0.869		-	0	0.0
0.804 65.3 0.448 5.42 0.302 0.337 0.897 0.789 70.2 0.449 5.62 0.304 0.333 0.913 0.913 0.775 75.1 0.449 5.80 0.305 0.335 0.913 0.913 0.750 80.0 0.449 6.02 0.305 0.335 0.918 0.745 84.9 0.446 6.33 0.305 0.335 0.915 0.745 84.9 0.446 6.33 0.305 0.335 0.909 0.715 94.9 0.442 7.25 0.309 0.337 0.888 0.70 100.0 0.438 7.74 0.299 0.337 0.888 0.878 485S AVERAGED HEAD RISE FROM I TO I+1 × 87.9479 FT		_	0	0
0.789 70.2 0.449 5.80 0.304 0.333 0.913 0.973 0.775 75.1 0.449 5.80 0.305 0.333 0.913 0.913 0.775 75.1 0.449 6.02 0.305 0.333 0.918 0.775 75.1 0.449 6.33 0.305 0.333 0.918 0.745 84.9 0.446 6.33 0.305 0.335 0.919 0.730 89.9 0.442 7.25 0.305 0.337 0.898 0.715 94.9 0.438 7.74 0.299 0.337 0.888 0.878 0.700 100.0 0.435 8.25 0.291 0.335 0.869 0.869 0.858 0.869			0	0.0
0.775 75.1 0.449 6.32 0.305 0.332 0.918 0.765 80.0 0.449 6.33 0.305 0.333 0.915 0.745 84.9 0.446 6.33 0.305 0.335 0.909 0.730 89.9 0.442 7.25 0.299 0.337 0.898 0.715 94.9 0.438 7.74 0.299 0.337 0.878 0.700 100.0 0.435 8.25 0.291 0.335 0.869 0.855 8VERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT	-	, i	0	0.0
0.760 80.0 0.449 6.35 0.305 0.333 0.915 0.745 84.9 0.446 6.78 0.305 0.335 0.909 0.715 94.9 0.442 7.25 0.299 0.337 0.898 0.700 100.0 0.438 7.74 0.295 0.336 0.878 4ASS AVERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT		- ∔ ,	o	0.0
0.745 84.9 0.446 6.78 0.305 0.335 0.909 0.715 0.442 7.25 0.299 0.337 0.898 0.715 94.9 0.438 7.74 0.299 0.337 0.888 0.700 100.0 0.435 8.25 0.291 0.335 0.869 4ASS AVERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT	•	-i ,	0	0.0
0.730 89.9 0.442 7.25 0.392 0.337 0.898 0.715 94.9 0.436 7.74 0.299 0.337 0.888 0.700 100.0 0.435 8.25 0.291 0.336 0.878 0.85S AVERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT	•	- ĭ.	ŏ	0.0
0.15 94.9 0.438 7.74 0.299 0.337 0.888 0.700 100.0 0.435 8.25 0.291 0.336 0.878 4ASS AVERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT	•	.	ŏ	0.0
0.700 100.0 0.435 8.25 0.291 0.336 0.878 MASS AVERAGED HEAD RISE FROM I TO I+1 = 87.9479 FT	•	₽,	o .	0.0
MASS AVERAGED HEAD RISE FROM I TO I+1 # 87.9479 FT		-	Ö	0.0
AASS AVERAGED HEAD RISE TROE I TO I+1 # 87.9479 FT	066 0.327	7 1.627	2+10-0	0
THE MACHINE PERSONAL BUSINESS		•	•	0.0
E EL DO CONTROL CIENCY BETWEEN I AND 1+1				
OU COEFFICIENT AT 1 =0.4117				
# I+I IV INSIDILLED SELL				
•				

INLET COND	ITIONS PHIRUN NO.	1000.02	
R 0.2625 0.2729 0.2779 0.3188 0.3396 0.3646 0.3750	VZ 51.8100 51.8100 51.1500 51.3400 51.1700 48.8000 48.8000	VU 0.0 0.0 0.0 0.0 0.0 0.0	H 188.5700 188.5700 188.4100 188.8400 188.8900 186.9000
ī	PHIEFC	USTAR	ARFAC
	A 3821	142, 1574	0.9850

FLOW RATE= 5139.1 GPM

ENTRANCE QUANTITIES

BETAP.DEG	71.05 70.80 70.80 69.83 69.73 67.93 65.46 65.11 65.16 65.11	62.50	BETAP, DEG	72.29 67.98 65.72 65.12	62.71 61.43	50°00°00°00°00°00°00°00°00°00°00°00°00°0	56.07 54.96	52. 88 51. 87	50.85 49.96 49.16 48.39 47.65	,
9£TA,DEG		000	BETA, DEG	47.41 41.76 37.76 35.16	32.54	32.99	35.21	36.69	38.04 39.31 40.03 40.68	
HD LOSS,FT			HD LOSS, FT	39.95 27.16 17.84	11.33	3.83 3.46 7.46	. 4	04.0	8.75 9.29 9.75 10.11 10.39	
STAT HO,FT	149.89 149.94 149.76 149.20 148.47 148.47 147.99 147.89 147.89 147.89 147.99	146.83 146.85	HO K	258.80 258.14 257.57	56.	N 4 4	253.59 252.68 251.72	000		
TOT HO,FT	186.90 186.90 187.08 187.70 188.63 188.63 188.91 188.91 188.75 188.75 188.75 188.75 188.51	188.57 188.57	TOT HD,FT	306.59 309.98 312.31	314.52 316.49 317.81	318,85 319,80 320,59	321.65 322.13 322.24	321.99 321.52 320.85	319.53 317.73 315.66	
V(REL), EPS	150.30 148.16 146.23 146.23 142.38 136.45 136.45 136.45 136.45 126.05 126.02 126.02 126.02 126.01 126.01	112.19	ViREL), FPS 108.71	110.33 111.06 111.15	110.54 109.39 107.61	105.44 103.11 100.63	97.81 95.12 92.52	89.99 87.55 85.12	82.69 80.28 77.88	
VU, FPS		00	VU,FPS 38.61	36.93 36.33	33°50 33°82	34.43 35.20 36.10	37.40 38.54 39.57	40.47 41.27 42.04	42.63 43.08 43.44 43.71	
VZ,FPS	48,80 48,80 49,00 49,00 50,35 51,35 51,35 51,15 51,15 51,15 51,39 51,39 51,39	51.81	33.07	41.36 45.66 48.52	53.23	54. 21 54. 45	54. 52 54. 52	54. 05 53. 74	53.19 52.49 51.71 50.86	
V.FPS	48.80 49.00 49.00 50.35 51.17 51.17 51.18 51.18 51.18 51.39 51.39 51.39	51,81	05 88 • 05	57.76 57.76 59.35	62.12 63.06 63.87	65.03	66.85 67.36	68.01 68.23	68.17 67.91 67.54 67.06	
U.FPS	142.16 139.91 137.67 133.42 133.18 126.69 126.69 126.45 126.45 117.47 115.22 112.98 110.73 106.24	99.51	142.16	136.61 136.61 134.18 131.84	129.57 127.34 125.12	122.91 120.71 118.55	116.42	110-14	103.94 103.82 101.67 99.51	
R/R(TIP)	1.000 0.984 0.953 0.937 0.937 0.889 0.889 0.874 0.842 0.842 0.874 0.779 0.779	O. QUANT	1.000	0.961 0.944 0.927	0.911 0.896 0.880	0.865 0.849 0.834	0.819 0.804 0.789	0.75	0.730 0.730 0.700	
7	20 11 11 12 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10	I EXIT	20	18 17 16	2 <u>4 5</u>	212	0 100 10	φ tv 4		

			C 000000000000000000000000000000000000
			(THTA/C)A LQ 0.0247 0.0247 0.0150 0.00136 0.0036 0.0036 0.0036 0.0049 0.0064
	TMAX/C	0.0700 0.0710 0.0720 0.0736 0.0736 0.0757 0.0759 0.0805 0.0812 0.0812 0.0835	0
	SOLIDITY	1.010 1.028 1.049 1.067 1.067 1.124 1.124 1.209 1.209 1.209 1.209 1.353 1.353 1.353 1.353 1.353 1.353	FACTOR EQ. 00.00.00.00.00.00.00.00.00.00.00.00.00
s	CMBR, DEG	0.0 5.95 11.89 11.77 11.77 15.40 16.78 11.95 19.85 19.85 19.85 22.55 22.75 22.75 22.75 22.75 22.75 22.75	FGABAR D-0.164 0.055 0.055 0.055 0.055 0.055 0.013 0.023 0.023 0.055 0.0
PARAMETER	STAG, DEG	64.10 65.64 65.06 63.32 62.33 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63 60.63	EFFIC OM 0.662 0.749 0.818 0.948 0.957 0.951 0.951 0.933 0.933
GEOMETRIC	R2/RT[1]	1.000 0.979 0.979 0.974 0.911 0.896 0.880 0.880 0.880 0.880 0.775 0.775 0.775 0.775 0.715	PSI PSI PSI PSI PSI PSI PSI PSI
	REF INC	3,111 -0,00 -0,000 -0,000 -1,000 -2,000 -2,000 -2,000 -2,000 -1,0	PSE 0.359 0.391 0.391 0.402 0.410 0.417 0.417 0.426 0.426 0.426 0.426 0.426 0.426 0.426 0.427 0.417 0.417 0.417 0.417 0.417
	INCID. DEG	6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEV.DEG 5.19 5.32 5.41 5.52 5.66 5.66 6.43 6.35 6.35 6.35 6.35 6.35 6.35 7.39 7.39 7.39 7.39 7.39 7.39 7.39 7.39
	рнп	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PH12 0 .233 0 .233 0 .233 0 .341 0 .341 0 .344 0 .383 0 .383 0 .383 0 .383 0 .383 0 .384 0 .384 0 .384 0 .386 0 .386 0 .387 0 .386 0 .378 0 .378 0 .378 0 .378
.1ES	TPH F	0.0 10.5 110.5 110.5 21.0 210.0 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	DUANTITIES R/RT(I) TPH F T 1.000 0.979 0.961 13.0 0.964 13.0 0.964 13.0 0.965 13.0 0.986 40.0 0.886 40.0 0.886 40.0 0.886 60.4 0.887 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.889 60.4 0.775 80.0 0.775 80.0 0.775 80.0 0.775 80.0 0.775 80.0 0.776 80.0 0.776 80.0 0.776 80.0 0.777 80.0 0.777 80.0 0.777 80.0 0.777 80.0 0.777 80.0 0.778 80.0 0.7
ANCE QUANTITIE	R/RT(1)	1.000 0.984 0.968 0.953 0.937 0.937 0.889 0.889 0.874 0.795 0.779 0.779 0.779	0.700 0.911 0.954 0.951 0.954 0.954 0.957 0.911 0.865
ENTRA	7	111111111111111111111111111111111111111	EXIT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

AXIAL-FLOW PUMP PERFORMANCE PREDICTION - - INPUT

REFERENCE TABLE INCIDENCE ANGLE BLADE THICKNESS CORRECTION

YTMACB= 0.0 0.02 0.04 0.06 0.08 0.10 0.12 YFK1B= 0.0 0.33 0.59 0.77 0.90 1.00 1.08

REFERENCE TABLE ZERO-CAMBER INCIDENCE ANGLE AND CAMBER COEFFICIENTS (FILOGB, SLP1GB, SLP2GR)

YANGSB					SGMGBB				
	0.4	0.6	0.8	1.0	1.2	1.4	1.6	2.0	2.6
0.0 10.00 20.00 30.00 40.00 50.00 60.00 70.00 0.0 10.00 20.00 30.00 40.00 50.00 60.00	0.042 0.413 0.738 1.043 1.360 1.662 1.864 2.042 -0.043 -0.088 -0.138 -0.138 -0.138 -0.250 -0.322 -0.393 -0.484	0.012 0.554 1.085 1.571 2.050 2.485 2.834 3.099 -0.022 -0.058 -0.100 -0.148 -0.206 -0.273 -0.352 -0.458	0.003 0.721 1.405 2.105 2.759 3.386 3.835 4.145 -0.004 -0.032 -0.067 -0.114 -0.167 -0.235 -0.318 -0.448	-0.041 0.853 1.735 2.636 3.488 4.283 4.919 5.276 0.016 -0.008 -0.038 -0.079 -0.131 -0.201 -0.291 -0.433	-0.074 1.072 2.146 3.136 4.219 5.215 5.955 6.377 0.041 0.019 -0.013 -0.044 -0.096 -0.174 -0.268 -0.408	-0.097 1.203 2.476 3.751 5.029 6.214 7.016 7.390 0.060 0.047 0.025 -0.010 -0.066 -0.150 -0.249 -0.376	-0.124 1.387 2.844 4.346 5.827 7.255 8.100 8.517 0.082 0.073 0.055 0.019 -0.040 -0.134 -0.236 -0.357	-0.132 1.764 3.663 5.606 7.591 9.398 10.200 10.850 0.116 0.124 0.113 0.079 0.003 -0.108 -0.195 -0.297	-0.186 2.303 4.944 7.694 10.460 12.540 13.550 14.500 0.163 0.183 0.189 0.148 0.047 -0.072 -0.157 -0.247
0.0 10.00 20.00 30.00 40.00 50.00 60.00 70.00	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	-0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.000	-0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001	-0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.001	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001	-0.001 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002	-0.001 -0.002 -0.002 -0.003 -0.003 -0.002 -0.002

BLADE ROW DATA

I= 1 RN= 2890.0 RPM RSTAR= 0.37500 FT IEXDEV= 1 IEXLOS= 1

REFERENCE TABLES FOR BLADE ROW GEOMETRY AND GEOMETRY-DEPENDENT LOSS DATA

J X ALFB XP ALFPB SGMAB TMXCB F12DB FHB FKSHAB

FLOW RATES COMPLETED-NEXT READ NEW RPM OR NEW GEOMETRY DATA

1 2 3 4 5 6 7 8 9	0.2625 0.2700 0.2900 0.2900 0.3000 9.3200 0.3400 0.3600 0.3750	66.0000 66.6000 67.5000 68.5000 69.3000 70.5000 71.1000 70.3000 63.4000 67.1000	0.2625 0.2700 0.2900 0.2900 0.3000 0.3200 0.3400 0.3600 0.3750	38.4000 40.3000 42.7000 45.1000 47.2000 51.0000 55.2000 60.2000 63.7000 67.1000	1.4400 1.4000 1.3500 1.3000 1.2600 1.1800 1.1100 1.0500 1.0200 1.0100	0.0850 0.0840 0.0826 0.0813 0.0800 0.0773 0.0746 0.0720 0.0706 0.0700	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0300 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800	0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
---	--	--	--	--	--	--	---	--	---

REFERENCE TABLE DEVIATION ANGLE (DEL28)

XPB						PH188			
	0.2600	0.2840	0.2900	0.3020	0.3240	0.3520	0.3810	0.4050	0.4200
0.2625 0.2729 0.2850 0.2979 0.3188 0.3396 0.3500 0.3646 0.3750	0.0288 0.0733 0.1100 0.1265 0.1056 0.0846 0.0611	0.1421 0.1340 0.1140	0.1038	0.1415 0.1258 0.1173 0.1079	0.1318 0.1127 0.1068 0.1016	0.1614 0.1400 0.1213 0.1126 0.1140 0.1026 0.0977 0.0935	0.0935	0.1004 0.0922 0.0855	0.1510 0.1300 0.1108 0.0960 0.0838 0.0785 0.0820 0.0939 0.1134

REFERENCE TABLE LOSS(OMEGBB)

XPB	B PH198														
	0.2600	0.2840	0.2900	0.3020	0.3240	0.3520	0.3810	0.4050	0.4200						
0.2625 0.2729 0.2850 0.2979 0.3188 0.3396 0.3500 0.3646 0.3750	0.0510 0.0420 0.0240 0.0160 0.0570 0.0620 0.1400 0.3800 0.4400	0.0520 0.0450 0.0360 0.0290 0.0360 0.0440 0.0820 0.2010 0.2620	0.0520 0.0460 0.0380 0.0320 0.0320 0.0400 0.0680 0.1600 0.2140	0.0510 0.0460 0.0410 0.0360 0.0290 0.0390 0.0560 0.0890 0.1180	0.0380 0.0330 0.0280 0.0260 0.0440 0.0600 0.0700 0.0900 0.1050	0.0530 0.0470 0.0390 0.0300 0.0130 0.0190 0.0420 0.1030 0.1640	0.0920 0.0670 0.0430 0.0310 0.0360 0.0400 0.0560 0.0900 0.1170	0.0660 0.0540 0.0400 0.0330 0.0640 0.0470 0.0630 0.0960 0.1160	0.0400 0.0380 0.0360 0.0340 0.0830 0.0480 0.0640 0.1040 0.1160						

INLET CON	TT TONS		
	PHIRUN NO.	1000.05	
R 0.2625 0.2729 0.2979 0.3188 0.3396 0.3646 0.3750	VZ 48.0100 48.0100 47.3200 47.6800 47.3100 44.8900 44.8900	VU 0.0 0.0 0.0 0.0 0.0 0.0	H 188.3600 188.3600 188.3600 188.4600 188.5200 185.6600
1	PHIEFC	USTAR	ARFAC
ı	0.4075	113.4903	0.9840

FLOW RATE 4752.8 GPM

ENTRANCE QUANTITIES

SETAP, DEG	68, 42	67.69	67,03	99.40	65.82	65.27	64.80	44.45	64.01	42.54	60.04	07.50	* 70	26 . 20	61.72	61.12	60.54	59.97	59. 41	58.85			RETAP.OFG		67.21	63.45	61.33	59.55	58.02	56.55	55.17	53, 89	52.64	51.43	50,33	49.23	48.09	46. 91	45.67	44.29	45.88	41.49	40.04	38.54	
SETA, DEG	0 0				0.0				•		•	0 0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	•		AETA, DEC.	200	41.78	39.49	38,05	36.56	35.52	34.73	34.49	35.70	36.58	37.15	36.94	36.4	36.28	36.43	36.99	37.66	38.47	39.28	40.07	40.84	1
HD LOSS,FT																							19.000.01		26.84	23.81	20.43	16.81	13, 77	11.05	14.6	11,33	12.26	12,33	10.42	7.88	6.22	5.36	5.50	5.87	6.53	7.19	7.79	A. 3.3	• • •
STAT HO, FT	154.34	134.30	154.30	22.67	20.5	76.00	153.63	Cr. CC.	153.20	155.15	153.27	153.46	153.56	153,56	153.20	152,90	152.69	152,56	152.51	152.54	17.50		TA CO TATA	14614	234.43	234.01	233.54	233.07	232,58	232.09	231.57	231.01	230,39	229, 72	229-02	228,16	227.29	226.40	225.47	224.48	223.44	222.34	221-17	20 010	4 4 7
TOT HO,FT	185.66		189.91	0.00		300	800	ָ מ מ	98.	8 B.	88.4	88°.	88.3	88.3	88.3	88.3	88.3	88.3	88.3		200			10 HO	268.03	274. 79	277.94	280.26	282.06	283.70	285,00	286.02	286.66	287.02	286.98	286.77	286.54	286.21	285. 76	285.41	284.87	284.04	287.10	40 646	±0.4263
V(REL), FPS	122.05	120.35	118.80	111.43	70.011	かい・911	113.11	111.56	100.99	108.41	106.76	105.09	103.45	101.85	100.39	98.91	97.41	95. 90	71 70		78.76			V(REL), FPS	89, 50	47 88	97.73	72 40	04 40		24.48	80.14	79.43	77.63	74.47	15.66	74.52	73.06	1.20	50.04	67-17	11 37	11.67	4 -	_
VU. FPS	0.0	0.0	0.0	0	0	0.0	0	0•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			•	0.0			VU,FPS	30.98		90.00	26.47	26.03	35.0	20.00	33.623	31.01.0	32.00	36.00	11.00	36.63	36.96	10.01	40.06	11 06	11.60	70.00	****	41.5
V2,F0S	44.89	44.82	45.09	45,83	46.44	46.94	47.31	47.49	47.61	47.67	47.58	47.42	47.34	47.32	47.57	47.74	7.01	100	00.00		48.01			V7, FPS	34.67		10.00	50°74	07 ***	C7 • C7 •	41.50	- C C C C	70.04	76.32		18.84		6.0	76 *6*	61.64		77.64	87.64	16 .84	47.83
\$ e b \$	44.89	44.82	45.09	45.83	44.94	46.94	47.31	-	47.61	_	47.58	47.42	47.34	67.32	77 27	74 47			-	48.03	48.01			V.FPS	04 47	00.00	51.63	53.45	55.11	56.43	57.63	58.68	06.86	60.17	27.09	61.07	14.10	61.75	\$0.29 0.00	67.79	19.29	62.87	63.01	63.13	63.22
U, FPS	113.49	111.70	100.61	108.11	106.32	104,53	102.74	100.95	99.15	97,36	95.57	93.78	01.00	01 00	61.06	2.00	20.01	;		÷	ċ			U,FPS	07 666	113.49	111.70	100.01	108.11	106.32	104.53	102.74	100.95	99.15	97.36	95.57	93.78	66.16	90.19	88.40	86.61	84.82	83.03	81.24	19.44
R/R(TIP)	1-000	0.984	0.968	0.953	0.937	0.921	0,905	0,889	0.874	6.00	0.00	3 6 0	200	110.0	0.47	5/ · 0	0.763	0.747	0.132	0.716	0.700	QUANTITIES		R/R(TIP)					0.953	0.937	0.921	906*0	0.889	~	•	•	0.826	•	~	-	•	~	_	-	~
7	ç	6	18	11	16	2	· •		<u> </u>	: :	1.5	2 6	۰.	o 1	٠.	•	ς.	4	~	7	-	EXIT		¬	;	20	19	18	11	16	15	14	13	12	=	2	•	&	7	•	1 0	*	•	7	

			000 000 000 000 000 000 000 000 000 00
	۷		0.022 0.022 0.0231 0.0231 0.0188 0.0187 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172 0.0173 0.0173 0.0173 0.0173 0.0173 0.0173
	TMAX/C	0.0700 0.0707 0.0724 0.0731 0.0731 0.0763 0.0763 0.0763 0.0808 0.0834 0.0834	0-FAC 1.626 1.626 1.629 1.639 1.639 1.639 1.751 1.759 1.759 1.759 1.759 1.759 1.759 1.759 1.759
	SOLIDITY	1.010 1.0023 1.0023 1.0058 1.0058 1.1052 1.1052 1.1052 1.207 1.207 1.207 1.318 1.318 1.408	0-FACTOR EQ 0-392 0-395 0-395 0-381 0-381 0-403 0-422 0-422 0-422 0-425 0-425 0-426 0-459 0-459 0-459
	CMBR , DEG	0.0 8.57 11.03 12.89 14.55 14.55 17.17 17.17 18.24 19.25 20.05 20.05 21.59 22.35 23.12 23.92 24.76 25.55	
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	STAG, DEG	67.10 65.98 64.98 64.93 63.09 62.39 62.39 60.27 59.55 57.98 57.13 55.14 55.14	1 C C C C C C C C C C C C C C C C C C C
GEOMETRIC		1.000 0.984 0.953 0.953 0.937 0.937 0.889 0.859 0.859 0.779 0.779 0.747 0.779	11 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	EF INC	3.11 1.18 1.18 1.00 1.00 1.00 1.00 1.00 1	
	1NC10, DEG R	N. M. and A. D. C. D.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PH11 1	80000000000000000000000000000000000000	11.2 10.06 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.
TIES	₩ H H H	000 100.0 115.8 115.8 115.8 115.8 115.8 115.8 115.8 116.9 116.9 116.0	THE CONTRACTOR OF CONTRACTOR O
ANCE QUANTITIES	R/RT(1)	1.000 0.968 0.953 0.951 0.921 0.874 0.858 0.874 0.858 0.779 0.779 0.779 0.779	1
ENTP	7	11000000000000000000000000000000000000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

APPENDIX F

ANALYSIS OF RADIAL EQUILIBRIUM SOLUTION FAILURE

In the formulation of the pump off-design performance prediction problem, the radial equilibrium equation in finite difference form was obtained in equation (13). Coefficient C in that equation is repeated here, with subscripts 1 and 2 denoting blade row entering and leaving stations:

$$C = -v_{z}^{2} _{2,j} - 2g(H_{1,j+1} - H_{1oss,j+1} - H_{2,j}) + 2 (UV_{o})_{1,j+1}$$
$$-\frac{r_{2,j}}{r_{2,j+1}} U_{2,j+1}^{2} + \left(\frac{r_{2,j+1} - r_{2,j}}{r_{2,j}} - 1\right) V_{\theta}^{2} _{2,j+1}.$$

The coefficient C can be expressed in terms of a difference in loss, $^{\rm H}$ loss, $^{\rm j+1}$ - $^{\rm H}$ loss, $^{\rm j}$.

Since

$$H_{2,j} - H_{1,j} = \Delta H_{ideal,j} - H_{loss,j}$$

and

$$\Delta^{H}_{ideal,j} = \frac{\left(UV_{\theta}\right)_{2,j} - \left(UV_{\theta}\right)_{1,j}}{g},$$

then

$$H_{2,j} = H_{1,j} + \frac{\left(UV_{\theta}\right)_{2,j} - \left(UV_{\theta}\right)_{1,j}}{g} - H_{loss,j}.$$

Therefore

$$C = -v_{z}^{2}_{2,j} - 2g\left(H_{1,j+1} - H_{loss,j+1} - H_{1,j}\right)$$

$$-\left[\frac{\left(UV_{\theta}\right)_{2,j} - \left(UV_{\theta}\right)_{1,j}}{g}\right] + H_{loss,j} + 2\left(UV_{\theta}\right)_{1,j+1}$$

$$-\frac{r_{2,j}}{r_{2,j+1}} U_{2,j+1}^{2} + \left(\frac{r_{2,j+1} - r_{2,j}}{r_{2,j}} - 1\right) V_{\theta}^{2}_{2,j}$$

or

$$C = -v_{z}^{2}_{2,j} - 2g(H_{1,j+1} - H_{1,j}) + 2g(H_{loss,j+1} - H_{loss,j})$$

$$+ 2(UV_{\theta})_{2,j} - 2(UV_{\theta})_{1,j} + 2(UV_{\theta})_{1,j+1}$$

$$- \frac{r_{2,j}}{r_{2,j+1}} U_{2,j+1}^{2} + \left(\frac{r_{2,j+1} - r_{2,j}}{r_{2,j}} - 1\right) V_{\theta}^{2}_{2,j}.$$

Radial equilibrium solution failure is defined as the condition related to the radicand of the quadratic equation root formula, namely, B^2 - 4AC, becoming negative.

In figure 39, the computed results of each of three iterations before a radial equilibrium failure occurred are shown for pump configuration 15 operating at a flow coefficient, $\overline{\phi}_{prog} = 0.338$. The recommended procedures associated with figures 14 and 28 were used for predicting losses and deviation angles. The results indicate that the spanwise variation of predicted deviation angle did not vary appreciably during successive iterations. Thus it can be concluded that the spanwise variations with iteration of the blade row exit relative flow angle, 2, and hence the quadratic equation coefficients A and B, were very small. Stability of successive predicted loss variations was, however, never achieved before a radial equilibrium solution was obtained. The main reason for this circumstance is thought to be the imprecision of the recommended loss prediction method which, in the case of radial equilibrium solution failure, seems to generate spanwise gradients of loss that cause the quadratic equation coefficient C to become large enough in a positive sense to result in a negative radicand B² - 4AC

before equilibrium is achieved. It is easily seen from the quadratic formula as well as the relationship for the coefficient C that a large spanwise gradient of loss will lead to a small ${\rm V_{Z}},{\rm 2}$ and a large ${\rm V_{\theta}},{\rm 2}$. The large difference in ${\rm H_{loss}},$ the small ${\rm V_{Z}},{\rm 2},$ and the large ${\rm V_{\theta}},{\rm 2}$ all tend to make C a large positive number.

APPENDIX G SYMBOLS

In addition to the following list of symbols, glossaries of Fortran computer program symbols and description of program input load and output variables are included in the section, Computer Program Capability and Utilization.

- A coefficient (see equation 14)
- a empirical constant (see equation 19)
- AVR ratio of blade leaving to entering axial velocity
 - B coefficient (see equation 15)
 - b empirical constant (see equation 19); camber exponent
 (see equation 43)
 - C coefficient (see equation 16)
 - c blade chord
- C.P. circulation parameter (see equation 21)
 - C_n pressure coefficient
- \mathbf{C}_1 , ... \mathbf{C}_4 coefficients (see equation 21)
 - D diffusion factor (see equation 19)
 - DEQ equivalent diffusion factor (see equation 21)
 - g acceleration of gravity
 - H stagnation head
 - H blade wake form factor
 - h static head
 - ${\rm H_{loss}}$ head loss
 - i blade incidence angle (see figure 6)

- $(K_{\delta})_{ch}$ deviation angle blade shape correction factor
- $(K \, \delta)_{\scriptscriptstyle +}$ deviation angle blade thickness correction factor
 - m slope factor, deviation angle function of blade camber for compressors (see equation 23) for compressors
 - m coefficient in Carter's deviation angle rule for compressors (see equation 22)
 - n exponent (equation 18); number of blades in blade row
 - P stagnation pressure
 - p static pressure
 - Q measure of volume flow rate (see equation 17)
 - g volume flow rate
 - r radius from machine axis
 - s blade spacing in cascade
 - U tangential blade speed
 - U free stream velocity
 - V flow velocity
 - x a distance
 - z axial coordinate
 - α blade angle (see figure 6)
 - β flow angle, measured from axial direction (see figure 6)
 - Γ blade circulation (see equation 26); Buri shape factor (see equation 18)
 - γ blade setting angle, angle between chord and axial direction
 - δ flow deviation angle (see figure 4)

- δ_{o} zero camber reference deviation angle (see equation 23)
- $\mbox{($\delta_{0}$)}_{10}$ 10% thickness reference value of $\delta_{0},$ NACA 65-series blading (see equation 24)
 - ε turning angle, β_1 β_2
 - η hydraulic efficiency
 - θ blade wake momentum thickness
- $(\theta/c)_A$, ... $(\theta/c)_E$ blade wake momentum thickness to chord ratio (see equations 29-33)
 - u kinematic viscosity
 - σ solidity, c/s
 - ϕ flow coefficient, V_2/U_t
 - ϕ° blade camber angle (see figure 6)
 - ψ head rise coefficient, $g(H_2 H_1)/U_t^2$
 - $\overline{\omega}$ head loss coefficient, $2g(H'_{2,i} H'_{2})/(V'_{1})^{2}$

Subscripts

- A, ... E versions of momentum thickness to chord ratio parameter
 - AV average
 - c corrected
 - eq equivalent
 - exp experimental
 - i axial station, between blade rows
 - j blade element or streamline radial station
 - $j_{\mbox{\scriptsize base}}$ radial equilibrium calculation starting value of j
 - j_{lim} outer casing
 - min minimum value

nom nominal

prog program

- r rotor
- ref reference
 - s blade suction surface; stator
- st stage
- t blade tip
- z axial
- θ tangential
- 1 blade row entrance
- 2 blade row exit
- 2-D two-dimensional

Superscripts

- ' relative to blades
- * reference value
- mass averaged

REFERENCES

- 1. Finger, H. B. and Dugan, J. F., Jr. Analysis of Stage Matching and Off-Design Performance of Multistage Axial-Flow Compressors. NACA RM E52D07. 1952.
- 2. Doyle, M. D. C. and Dixon, S. L. The Stacking of Compressor Stage Characteristics to Give an Overall Compressor Performance Map. Aeronautical Quarterly. 13:349-367. 1962.
- 3. Hostetler, G. W. Prediction of Off-Design Performance of Multi-Stage Compressors. A. E. Thesis. California Institute of Technology. 1965.
- 4. Horlock, J. H. Axial-Flow Compressors. London. Butterworths Scientific Publications. 1958. pp. 119-124.
- 5. Robbins, W. H. and Dugan, J.F., Jr. Prediction of Off-Design Performance of Multistage Compressors. Chapter X of Aerodynamic Design of Axial-Flow Compressors. NASA SP-36. 1965.
- 6. Serovy, G. K. A Method for the Prediction of the Off-Design Performance of Axial-Flow Compressors. Ph.D. Dissertation. Iowa State University. Ames, Iowa. 1958.
- 7. Serovy, G. K. and Anderson, E. W. Method for Predicting Off-Design Performance of Axial-Flow Compressor Blade Rows. NASA TN D-110. 1959.
- 8. Swan, W. C. A Practical Engineering Solution of the Three-Dimensional Flow in Transonic Type Axial Flow Compressors. WADC Technical Report 58-57. February 1958.
- 9. Swan, W. C. A Practical Method of Predicting Transonic-Compressor Performance. Journal of Engineering for Power, Trans. ASME, Series A, 83:322-330. 1961.
- 10. Bullock, R. O. and Johnsen, I. A. Compressor Design System. Chapter III of Aerodynamic Design of Axial-Flow Compressors. NASA SP-36. 1965.
- 11. Giamati, C. C., Jr. and Finger, H. B. Design Velocity Distribution in Meridional Plane. Chapter VIII of Aerodynamic Design of Axial-Flow Compressors. NASA SP-36. 1965.
- 12. Holmquist, C. O. and Rannie, W. D. An Approximate Method of Calculating Three-Dimensional Compressible Flow in Axial Turbomachines. Journal of the Aeronautical Sciences. 23:543-556, 582. 1956.
- 13. Jansen, W. and Moffatt, W. C. The Off-Design Analysis of Axial-Flow Compressors. Journal of Engineering for Power, Trans. ASME, Series A. 89:453-462. 1967.

- 14. Novak, R. A. Streamline Curvature Computing Procedures for Fluid-Flow Problems. Journal of Engineering for Power, Trans. ASME, Series A. 89:478-490. 1967.
- 15. Davis, W. R. A Computer Program for the Analysis and Design of Turbomachinery--Revision. Report ME/A 71-5. Division of Aerothermodynamics. Carleton University. September, 1971.
- 16. Davis, W. R. A Computer Program for the Analysis and Design of the Flow in Turbomachinery. Part B Loss and Deviation Correlations. Report ME/A 70-1. Division of Aerothermodynamics. Carleton University. July, 1970.
- 17. Creveling, H. F. and Carmody, R. H. Axial Flow Compressor Computer Program for Calculating Off-Design Performance (Program IV). NASA CR-72427. August, 1968.
- 18. Daneshyar, H. The Off-Design Analysis of Flow in Axial Compressors. CUED/A-Turbo/TR 19. Department of Engineering, University of Cambridge. 1970.
- 19. Grahl, K. Beitrag zur Berechnung des Teillastverhaltens von Axialverdichterstufen mit Berücksichtigung der unterschiedlichen Strömungsverhältnisse in den Stufenelementen. Dissertation, Technische Hochschule Aachen. 1970.
- 20. Grahl, K. Teillastberchnung für Axialverdichterstufen. Zeitschrift für Flugwissenschaften. 20:42-51. 1972.
- 21. Marsh, H. The Uniqueness of Turbomachinery Flow Calculations. Report CUED/A-Turbo/TR-24. Department of Engineering, Cambridge University. February, 1971.
- 22. Wilkinson, D. H. Stability, Convergence, and Accuracy of Two-Dimensional Streamline Curvature Methods Using Quasi-Orthogonals. Proceedings of the IME. 184: Part 3G (1): 108-119. 1969-1970.
- 23. Marsh, H. A Digital Computer Program for the Through-Flow Fluid Mechanics in an Arbitrary Turbomachine Using a Matrix Method. Aeronautical Research Council, R + M 3509. 1968.
- 24. Gregory-Smith, D. G. An Investigation of Annulus Wall Boundary Layers in Axial Flow Turbomachines. Journal of Engineering for Power, Trans. ASME, Series A. 92:369-376. 1970.
- 25. Flagg, E. E. Analytical Procedure and Computer Program for Determining the Off-Design Performance of Axial Flow Turbines. NASA CR-710. 1967.
- 26. Renaudin, A. and Somm, E. Quasi-Three-Dimensional Flow in a Multistage Turbine Calculation and Experimental Verification. In Dzung. L. S., ed. Flow Research on Blading. Amsterdam. Elsevier Publishing Company. 1970.

- 27. Novak, R. A. and Hearsey, R. M. The Performance Prediction of Multi-stage Axial Compressors of Arbitrary Geometry Operating with Combined Radial and Circumferential Distributions. In Proceedings of the Air Force Airborne-Propulsion Compatibility Symposium, 24-26 June, 1969. AFAPL-TR-69-103, pp. 627-672. 1970.
- 28. Ribaut, M. Three-Dimensional Calculation of Flow in Turbomachines with the Aid of Singularities. Journal of Engineering for Power, Trans. ASME, Series A. 90:258-264. 1968.
- 29. Smith, L. H., Jr. and Yeh, H. Sweep and Dihedral Effects in Axial-Flow Turbomachinery. Journal of Basic Engineering, Trans. ASME, Series D. 85:401-416. 1963.
- 30. Lieblein, Seymour, Schwenk, Francis C., and Broderick, Robert L. Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements. NACA RM E53D01. 1953.
- 31. Lieblein, S. and Roudebush, W. H. Low-Speed Wake Characteristics of Two-Dimensional Cascade and Isolated Airfoil Sections. NACA TN 3771. 1956.
- 32. Lieblein, S. and Roudebush, W. H. Theoretical Loss Relations for Low-Speed Two-Dimensional-Cascade Flow. NACA TN 3662. 1956.
- 33. Lieblein, S. Analysis of Experimental Low-Speed Loss and Stall Characteristics of Two-Dimensional Compressor Blade Cascades. NACA RM E57A28. 1957.
- 34. Lieblein, S. Loss and Stall Analysis of Compressor Cascades. Journal of Basic Engineering, Trans. ASME, Series D. 81:387-400. 1959.
- 35. Schlichting. H. Boundary Layer Theory. New York, N.Y. McGraw-Hill Book Co., Inc. 1968.
- 36. Lieblein, S. Experimental Flow in Two-Dimensional Cascades. Chapter VI of Aerodynamic Design of Axial-Flow Compressors. NASA SP-36. 1965.
- 37. Herrig, L. J., Emery, J. C. and Erwin, J. R. Effect of Section Thickness and Trailing-Edge Radius on the Performance of NACA 65-series Compressor Blades in Cascade at Low Speeds. NACA RM L51J16. 1951.
- 38. Reeman, J. and Simonis, E. A. The Effect of Trailing Edge Thickness on Blade Loss. Great Britain RAE Tech. Note 116. 1943.
- 39. Bailey, W. and Jefferson, J. L. Compressibility Effects on Cascades of Low Cambered Compressor Blades. Great Britain RAE Report E3972. 1943.

- 40. Emery, James C., Herrig, L. Joseph, Erwin, John R., and Felix A. Richard. Systematic Two-Dimensional Cascade Tests of NACA 65-series Compressor Blades at Low Speeds. NACA Report 1368. 1958.
- 41. Schlichting, H. and Das, A. On the Influence of Turbulence Level on the Aerodynamic Losses of Axial Turbomachines. In Dzung, L.S., ed. Flow Research on Blading. Amsterdam. Elservier Publishing Company. 1969.
- 42. Carter, A.D.S. The Low Speed Performance of Related Aerofoils in Cascades. Great Britain ARC Current Paper No. 29. 1950.
- 43. Carter, A.D.S. and Hughes, Hazel, P., A Theroretical Investigation Into the Effect of Profile Shape on the Performance of Aerofoils in Cascade. Great Britain ARC Reports and Memoranda No. 2384. 1946.
- 44. Howell, A. R. The Present Basis of Axial Flow Compressor Design. Part 1. Cascade Theory and Performance. Great Britain ARC Reports and Memoranda No. 2095. 1942.
- 45. Constant, H. Performance of Cascades of Aerofoils. Great Britain ARC No. 4155. 1939.
- 46. Lieblein, Seymour. Incidence and Deviation-Angle Correlations for Compressor Cascades. Journal of Basic Engineering, Trans. ASME, Series D. 82:575-584. 1960.
- 47. Weinig, Fritz. Die Strömung um die Schaufeln von Turbomaschinen. Leipzig Johann Ambrosius Barth. 1935.
- 48. Smith, Leroy H., Jr. Discussion. Journal of Basic Engineering, Trans. ASME, Series D. 82:585-596. 1960.
- 49. Howell, A. R. Flow in Cascades. In Hawthorne, W. R., ed. High Speed Aerodynamics and Jet Propulsion, Vol. 10, Aerodynamics of Turbines and Compressors. Princeton, New Jersey. Princeton Univ. Press. 1964.
- 50. Katzoff, S., Bogdonoff, Harriet E., and Boyet, Howard. Comparisons of Theoretical and Experimental Lift and Pressure Distributions on Airfoils in Cascade. NACA TN 1376. 1947.
- 51. Erwin, John R., and Emery, James C. Effect of Tunnel Configuration and Testing Technique on Cascade Performance. NACA Report 1016. 1951.
- 52. Pollard, D. and Gostelow, J. P. Some Experiments at Low Speed on Compressor Cascades. Journal of Engineering for Power, Trans. ASME, Series A. 89:427-436. 1967.

- 53. Montgomery, S. R. Spanwise Variations of Lift in Compressor Cascades. Part 1. Experiments. Journal of Mechanical Engineering Science. 1:293-304. 1959.
- 54. Miller, M. J. Deviation Angle Prediction Methods--A Review. Iowa State University Engineering Research Institute Report 580. 1969.
- 55. Erwin, J. R., Savage, M., and Emery, J. C. Two-Dimensional Low-Speed Cascade Investigation of NACA Compressor Blade Sections Having a Systematic Variation in Mean-Line Loading. NACA TN 3817. 1956.
- 56. Moses, J. J. and Serovy, G. K. Some Effects of Blade Trailing-Edge Thickness on Performance of a Single-Stage Axial-Flow Compressor. NACA RM E51F28. 1951.
- 57. Miller, M. J., Okiishi, T. H., Serovy, G. K., Sandercock, D. M. and Britsch, W. R. Summary of Design and Blade-Element Performance Data for 12 Axial-Flow Pump Rotor Configuration NASA TN D-7074. 1973.
- 58. Miller, M. J., Okiishi, T. H., Kavanagh, P. and Serovy, G. K. Application of Blade-Element Techniques to Designed Performance Prediction Problems for Axial-Flow Turbomachinery. ISU-ERI-AMES-77900. Engineering Research Institute, Iowa State University. July, 1970.
- 59. Hawthorne, W. R. Secondary Circulation in Fluid Flow. Proc. of the Royal Society. London. Series A. 206:374. 1951.
- 60. Lakshminarayana, B. and Horlock, J. H. Effects of Shear Flows on the Outlet Angle in Axial Compressor Cascades Methods of Prediction and Correlation with Experiments. Journal of Basic Engineering, Trans. ASME Series D. 89:191-200. 1967.
- 61. Smith, L. H., Jr. Secondary Flow in Axial-Flow Turbomachinery. Trans. ASME. 77:1065-1976. 1955.
- 62. Lieblein, S. and Ackley, R. H. Secondary Flows in Annular Cascades and Effects on Flow in Inlet Guide Vanes, NACA RM E51G27. 1951.
- 63. Schulze, Wallace M., Erwin, John R., and Ashby, George C. NACA 65-series Compressor Rotor Performance with Varying Annulus-Area Ratio, Solidity, Blade Angle, and Reynolds Number and Comparisons with Cascade Results. NACA TN 4130. 1957.

- 64. Scholz, N. Two-Dimensional Correction of the Outlet Angle in Cascade Flow. Journal of the Aeronautical Sciences, Readers Forum. 20: 786-787. 1953.
- 65. Soltis, Richard F., Urasek, Donald C., and Miller, Max J. Blade-Element Performance of a Tandem-Bladed Inducer Tested in Water. NASA TN D-5562. 1969.
- 66. Westphal, Willard R., and Godwin, William R. Comparison of NACA 65-series Compressor-Blade Pressure Distributions and Performance in a Rotor and in Cascade. NACA TN 3806. 1957.
- 67. Miller, M. J. and Skanberg, T. Reference Incidence Angles in Constant Stagger Cascades. ISU-ERI-AMES-99985. Engineering Research Institute, Iowa State University. 1971.
- 68. Miller, M. J., Crouse, J. E. and Sandercock, D. M. Summary of Experimental Investigation of Three Axial-Flow Pump Rotors Tested in Water. Journal of Engineering For Power, Trans. ASME, Series A. 89:589-599. 1967.
- 69. Crouse, J. E., Montgomery, J. C. and Soltis, R. F. Investigation of the Performance of an Axial-Flow-Pump Stage Designed by the Blade-Element Theory Design and Overall Performance. NASA TN D-591. 1961.
- 70. Crouse, J. E., Soltis, R. F. and Montgomery, J. C. Investigation of the Performance of an Axial-Flow-Pump Stage Designed by the Blade-Element Theory Blade-Element Data. NASA TN D-1109. 1961.

Table I. NASA axial-flow pump rotor configuration descriptions.

Minimum blade chord Reynolds number	1.0x106	1.5×10 ⁶	3.0x10 ⁶	1.5×10 ⁶	1.5×10 ⁶	8.0x10 ⁶	8.0x10 ⁶	8.0x106	1.0x10 ⁶	1.5x10 ⁶	1.5x10 ⁶	1.0x106
Design point flow co- efficient	0.293	0.294	0.294	0.466	0.466	0.466	0.466	0.466	0.5	0.7	0.466	0.5
Design tip section D-factor	0.23	0.43	97.0	99.0	99.0	99.0	99.0	99.0	0.72	0.63	0.55	0.72
Radial tip clearance, d inches	0.013 - 0.020	0.005 - 0.012	0.013 - 0.020	0.015 - 0.017	0.025 - 0.027	0.007 - 0.009	0.015 - 0.017	0.022 - 0.024	0.009 - 0.011	0.009 - 0.011	0.009 - 0.010	0.009 - 0.011
Blade chord length, ^c inches	1.5	1.5	3.04	1.5	1.5	0.834	0.834	0.834	1.172	1.5	1.5	1.172
Blade section profile b	DCA	DCA	DCA	DCA	DCA	DCA	DCA	DCA	DCA	DCA	DCA	CUBIC
Number of blades	16	19	œ	19	19	19	19	19	33	19	19	33
r /r	4.0	0.7	0.7	8.0	8.0	8.0	8.0	8.0	0.85	6.0	8.0	0.85
NASA config- Tip uration diameter, number inches	0.6	0.6	0.6	0.6	0.6	5.0	5.0	5.0	0.6	0.6	0.6	9.0
NASA config- uration number	* 02	* 07	60	*2	9	œ	6	10	*13A	*14A	15	16

^aAll rotors were tested without inlet guide vanes and downstream stator blades. Data are presented in reference 57.

 $^{
m b}{
m DCA}$ indicates a DOUBLE CIRCULAR ARC blade section profile.

^cAll blade chord lengths were uniform along the blade span.

 $^{ extsf{d}}$ The range of circumferential variation of radial tip clearance is indicated.

 * Rotors used for obtaining loss and deviation angle correlations.

Table II. Comparison of measured deviation angles with those computed from Carter's rule and equation (45).

Configuration 14	$\frac{\delta_{\exp^{-\delta}2-D}}{\delta_{\exp^{-\delta}c}} \frac{\delta_{\exp^{-\delta}2D}}{\delta_{\exp^{-\delta}c}} \frac{\delta_{\exp^{-\delta}c}}{\delta_{\exp^{-\delta}c}}$	7.6 -1.3	5.8 0.6	5.1 -0.1	2.4 -2.2	0.1 1.6
Configuration 13	$\delta_{\exp^{-\delta_c}}$	-1.4	2.6	2.1	1.8	-1.0
	$^{\delta}$ exp $^{-\delta}$ 2-D	6.9	7.9	8.0	6.9	-1.7
ation 5	δ _{exp} -δ _c	1.6	0.3	0.0	-0.3	8.0
Configuration 5	$\int_{\exp^{-\delta}c} \int_{\exp^{-\delta}2-D} \int_{\exp^{-\delta}c} \int_{\varphi^{-\delta}c} \int_$	6.3	3.6	3.9	2.8	-0.1
ion 02 Configuration 07	δ exp σ c	1.3	-0.5	8.0-	-0.3	0.0
	6 exp $^{-6}$ 2 $^{-D}$	2.2	8.0	6.0	1.2	4.0-
1tion 02	· • 1		4.0-	-0.9	0.1	4.0
Configurati	6 exp $^{-6}$ 2-D	-0.7	0.2	0.1	1.5	3.3
	م		1.07	1.07	1.06	86.0
Percent	passage height from tip	01	; e	05	20 02	C

Figure 1. - Noncavitating overall performance of an axial-flow pump stage (ref.69).

Figure 2. - Typical axial-flow pump stage test installation (ref. 69).

Figure 3. - Radial distributions of flow parameters at rotor inlet, rotor exit (stator inlet) and stator exit of an axial-flow pump stage; rotor tip speed 153.7 feet per second (ref. 69).

Figure 3. - Continued.

Figure 3. - Concluded.

Figure 4. – Sign convention for blade-element parameters.

Figure 5. - Meridional plane view of a typical axial-flow pump stage.

Figure 6. - Typical blade elements and nomenclature.

(b) Effect of solidity

(c) Effect of camber

Figure 7. - Effect of geometric parameters on deviation angle.

Figure 8. - Schematic definition of reference incidence angle.

Data from reference 40.

Figure 9. - Typical cascade results.

Figure 10. - Comparison of deviation angle as a function of incidence angle for constant inlet angle and constant blade setting angle. Data from reference 40.

Figure 11. - Effect of axial velocity ratio on cascade blade pressure distribution (ref. 52).

Figure 12. - Effect of axial velocity ratio on plane cascade velocity diagrams.

(a) Version A of momentum thickness to chord ratio; 10 percent of passage height from the outer wall.

Figure 13. - Variation of blade-element wake momentum thickness parameter with loading (equivalent diffusion ratio).

(b) Version B of momentum thickness to chord ratio; 10 percent of passage height from the outer wall.

Figure 13. - Continued.

(c) Version C of the momentum thickness to chord ratio; 10 percent of passage height from the outer wall.

Figure 13. - Continued.

(d) Version D of the momentum thickness to chord ratio; 10 percent of passage height from the outer wall.

Figure 13. - Continued.

(e) Version E of the momentum thickness to chord ratio; 10 percent of passage height from the outer wall.

Figure 13. - Continued.

(f) Versions A, B, C, D, and E of the momentum thickness to chord ratio; 50 percent of passage height from the outer wall.

Figure 13. - Continued.

(g) Versions A, B, C, D, and E of the momentum thickness to chord ratio; 90 percent of passage height from the outer wall.

Figure 13. - Concluded.

Figure 14. - Loss correlation curves derived from experimental data with Version A of the momentum thickness to chord ratio, equivalent diffusion ratio and percent of passage height from outer wall used as correlating parameters.

Figure 15.-Loss correlation curves derived from experimental data with Version A of the momentum thickness to chord ratio, diffusion factor and percent of passage height from outer wall used as correlating parameters.

Figure 16. - Variation of Version A of the momentum thickness to chord ratio with equivalent diffusion ratio at different radii.

Figure 17. - Variation of Version A of the momentum thickness to chord ratio with diffusion factor at different radii.

Figure 18. – Two-dimensional cascade loss correlation (ref. 34).

Figure 19. - Velocity diagrams used in the axial velocity ratio correction of reference 51.

Figure 20. - Results of using the axial velocity ratio correction of reference 51 at reference incidence angle conditions.

Figure 21. - Results of using the axial velocity ratio correction of reference 51 at design flow coefficient.

Figure 22. - Deviation angle radial distribution comparisons.

Figure 23. - Camber exponents for reference incidence angle conditions using the corrected camber concept.

Figure 24. – Camber exponents for reference incidence angle conditions using actual blade camber.

Figure 25. - Measured deviation angle as a function of incidence angle.

Figure 25. - Concluded.

Figure 26. - Camber exponents for entire operating range using equivalent camber concept.

Figure 26. - Concluded.

Figure 27. - Camber exponents for entire operating range using actual blade camber.

Figure 27. - Concluded.

Figure 28. - Curves of camber exponent derived from data of figure 27.

Figure 29. – Typical plot of rotor loss coefficients which show little dependence on incidence angle at 50, 70 and 90 percent of passage height from the outer wall.

Figure 30. - Examples of loss coefficient variations with no minimum loss incidence angle defined.

Configuration 14A 10 percent of passage height from outer wall

Figure 31. - Example of loss coefficient curve for which a reference incidence angle may be determined.

Figure 32. - Variation of loss coefficient with incidence angle at constant inlet flow angle and constant blade setting angle.

Figure 33. - Rotor overall performance, 9-inch tip diameter, 33 blades, 0.85 hub-tip radius ratio, N = 2420 rpm (configuration 13A).

△ Experimental data (ref. 57) Calculated using specific three-parameter (δ or $\overline{\omega}$, $\overline{\phi}$ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1) 70 30 Outlet flow angle, β_2 , deg 60 26 Deviation angle, 5, deg 50 22 40 18 30 14 20 10 110 0.8 Outlet axial velocity, V_{2,2}, fps Loss coefficient, E 7:0 90 🕒 70 50 0.2 0.85 0.95 1.00 0.90 0.90 0.95 1.00 Radius ratio, r/r, (a) $\overline{\phi}_{prog} = 0.745$

Figure 34. – Rotor blade-element performance, 9-inch tip diameter, 33 blades, 0.85 hub-tip radius ratio, N = 2420 rpm (configuration 13A).

△ Experimental data (ref. 57) - Calculated using specific three-parameter (δ or ω, φ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1) 65 26 Deviction angle, & deg Outlet flow angle, \mathfrak{h}_2 , deg 55 22 18 35 14 25 10 0.45 85 0.35 **7**5 Outlet axid velocity, V, 2, fps Loss coefficient, w 0.25 0.15 55 0.05 -0.05 35 0.85 0.90 0.95 Radius ratio, r/r 0.90 0.95 1.00 0.85 1.00 Radius ratio, r/r (b) $\bar{\phi}_{prog} = 0.695$

Figure 34. - Continued.

Experimental data (ref. 57) Calculated using specific three-parameter (δ or ω, φ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1)

(c) $\bar{\phi}_{prog} = 0.646$

Figure 34. - Continued.

Experimental data (ref. 57) Calculated using specific three-parameter (δ or ω, φ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1)

Figure 34. - Concluded

Experimental data (ref. 57)
 Calculated using recommended loss (fig. 14, IEXLOS = -1) and deviation angle (fig. 28, IEXDEV = -1) correlations
 Calculated using two-dimensional loss (fig. 18, IEXLOS = 0) and deviation angle (Carter's rule, IEXDEV = 0) correlations

Figure 35. - Rotor overall performance, 9-inch, 19 blades,
0.8 hub-tip radius ratio, N = 3000 rpm (configuration 15).

- △ Experimental data (ref. 57)

 —— Calculated using recommended loss (fig. 14, IEXLOS = -1)

 and deviation angle (fig. 28; IEXDEV = -1) correlations

 —— Calculated using two-dimensional loss (fig. 18, IEXLOS =
- --- Calculated using two-dimensional loss (fig. 18, IEXLOS = 0) and deviation angle (Carter's rule, IEXDEV = 0) correlations

Figure 36. - Rotor blade-element performance, 9-inch tip diameter, 19 blades, 0.8 hub-tip radius ratio, N = 3010 rpm (configuration 15).

- △ Experimental data (ref. 57)
- -- Calculated using recommended loss (fig. 14, IEXLOS = 1) and deviation angle (fig. 28, IEXDEV = = -1) correlations
- --- Calculated using two-dimentional loss (fig. 18, IEXLOS = 0) and deviation angle (Carter's rule, IEXDEV = 0) correlations

Figure 36. - Concluded.

O Experimental data (ref. 57)

Calculated using specific three-parameter (δ or \overline{w} , $\overline{\phi}$ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1)

Figure 37. – Rotor overall performance, 9-inch tip diameter, 19 blades, 0.8 hub-tip radius ratio, N = 3010 rpm (configuration 15).

Experimental data (ref. 57)

Calculated using specific three-parameter (δ or $\overline{\omega}$, $\overline{\phi}$ and r) loss and deviation angle correlations (IEXLOS = IEXDEV = 1)

Figure 38. – Rotor blade-element performance, 9-inch tip diameter, 19 blades, 0.8 hub-tip radius ratio, N = 3010 rpm, $\overline{\phi}_{prog} = 0.338$ (configuration 15).

Experimental data (ref. 57)

Calculated values associated with each of three iterations

before solution failure when using the recommended

(figs. 14 and 28, IEXLOS = IEXDEV = -1) loss and deviation angle correlations.

Figure 39. – Rotor blade-element performance, 9-inch tip diameter, 19 blades, 0.8 hub-tip radius ratio, N = 3010 rpm, $\phi_{prog} = 0.338$ (configuration 15).

Experimental data (ref. 69)
 Calculated using recommended loss (fig. 14, IEXLOS = -1) and deviation angle (fig. 28, IEXDEV = -1) correlations

Figure 40. - Stage overall performance; rotor - 9-inch tip diameter, 19 blades, 0.4 hub-tip radius ratio, N = 3910 rpm; stator - 9-inch tip diameter, 18 blades, 0.4 hub-tip radius ratio (configuration 01).

 Calculated using recommended loss (fig. 14, IEXLOS = -1) and deviation angle (fig. 28, IEXDEV = -1) correlations.

Figure 41. - Rotor blade-element performance; 9-inch tip diameter,
19 blades, 0.4 hub-tip radius ratio, N = 3910 rpm, $\overline{\phi}$ = 0.291
(rotor of configuration 01 stage).

Figure 42. - Stator blade-element performance; 9-inch tip diameter, 18 blades, 0.4 hub-tip radius ratio, $\overline{\phi}$ = 0.291 (stator of configuration 01 stage).

Experimental data (ref. 69)
 Calculated using recommended loss (fig. 14, IEXLOS = -1) and deviation angle (fig. 28, IEXDEV = -1) correlations.

Figure 43. - Rotor overall performance; 9-inch tip diameter, 19 blades, 0.4 hub-tip ratio, N = 3910 rpm (rotor of configuration 01 stage)

Experimental data (ref. 70)
 Calculated using recommended loss (fig. 14, IEXLOS = -1) and deviation angle (fig. 28, IEXDEV = -1) correlations

Figure 44. – Rotor blade-element performance; 9-inch tip diameter, 19 blades, 0.4 hub-tip radius ratio, N = 3910 rpm, $\overline{\phi}_{prog} = 0.272$ (rotor of configuration 01 stage)

			•	

	•	
	•	
		•