CSP2023模拟赛

题目名称	十一之争	环球旅行	封印	双倍经验
题目类型	传统型	传统型	传统型	传统型
可执行文件名	yo	journey	seal	double
输入文件名	yo .in	journey.in	seal.in	double.in
输出文件名	yo.out	journey.out	seal.out	double.out
每个测试点时限	1.0 秒	2.0 秒	1.0 秒	1.0 秒
内存限	512 MiB	512 MiB	512 MiB	512 MiB
子任务/测试点数目	5	6	3	10
是否等分	否	否	否	是

提交源文件程序名

对于C++语言	уо.срр	journey.cpp	seal.cpp	double.cpp
---------	--------	-------------	----------	------------

编译选项

对于C++语言	-lm -O2 -std=c++17
V)) C ICI	-IIII -02 -3tu-c · · 17

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回类型必须是int,程序正常结束时返回值必须是0。
- 3. 选手提交的程序代码文件请在个人目录下以及子文件夹内各放一份。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于100KB。
- 6. 程序可使用的栈空间内存限制于题目的内存限制一直。
- 7. 使用std::deque等STL容器时,请注意其内存空间消耗。
- 8. 评测时采用的机器配置为 AMD Ryzen 7 5800H with Radeon Graphics,内存16GiB。上述时限以此配置为准。
- 9. 评测在Windows 10下进行,使用LemonLine进行评测。

十一之争(yo)

【题目描述】

yoimiya 和 oimiya 在争夺 11!

给定一个长度为 n 的数字串 s 和只包含 yo 的字符串 t , yoimiya 会和 oimiya 玩 n 轮游戏,初始有一个数字串 x 为 0 , 每次 :

- 如果 t_i 是 y 则是 yoimiya 操作,如果是 o 则是 oimiya 操作。
- 每次操作: 将 s_i 或者 0 加入 x 的末尾。

如果最后 x 是 11 的倍数,那么 yoimiya 获胜,否则 oimiya 获胜。

假设两人都是绝顶聪明的,那么最后谁会获胜?

【输入格式】

第一行,一个数n。

第二行,一个长度为n的数字串s。

第三行,一个长度为 n 的字符串 t。

【输出格式】

输出胜者: yoimiya 或者 oimiya。

【输入输出样例1】

yo.in	yo.out
5 19755 yoyyy	oimiya

【数据规模与约定】

本题采用捆绑测试。

对于所有测试数据,保证 $1 \le n \le 10^6$ 。

子任务编号	$n \leq$	特殊限制	分数
1	10		15
2	10^{3}		15
3	10^5	t全是 y 或者 o	15
4	10^5		25
5	10^{6}		30

环球旅行 (journey)

【题目描述】

小M在上一次环游世界后,又攒够了足够的钱,即将开启新的一次环球旅行。

现在,小M 所在的星球变成了一张 n 个点 m 条边的无向图,无向图上的每条边都有为士兵看守。

具体来说:

- 如果小 M 在 $\leq i$ 的时刻进入了第 i 条边,那么他可以在 i 时刻走出这条边。
- 如果小 M 在 >i 的时刻进入了第 i 条边,那么他将被第 i 条边的士兵抓住,从此不能再走出这条 边。

现在,小 M 有 q 次环球旅行的计划。对于一次计划,小 M 将用一个形如 (l,r,s,t) 的四元组来描述,表示他将在 l 时刻从 s 出发,并需要在 r 时刻及以前到达 t 节点进行游玩。

小M想知道,他的哪些环球旅行计划是可以实现的。但是他时间有限,于是请你来解决这个问题。

【输入格式】

第一行三个整数 n, m, q, 分别表示点数, 边数与小 M 的计划数量。

接下来 m 行,第 i 行给出两个整数 u, v,表示第 i 条边连接了 u 与 v 两个节点。

接下来 q 行,每行四个整数 l, r, s, t,表示一次旅行计划,含义见题目描述。

【输出格式】

输出共 q 行,每行一个字符串 Yes 或 No ,表示一次旅行计划是否能够实现,能实现则输出 Yes ,否则输出 No 。

【输入输出样例1】

journey.in	journey.out
5 4 6 1 2 2 3 3 4 3 5 1 3 1 4 1 3 2 4 1 4 4 5 1 4 4 1 2 3 1 4 2 2 2 3	Yes Yes Yes No No No Yes

【数据规模与约定】

本题采用**捆绑测试**。

对于所有测试数据, 保证

 $2 \le n \le 1000, 1 \le m \le 2 \times 10^5, 1 \le q \le 10^6, 1 \le l \le r \le m, 1 \le s, t \le n$,给出的无向图无重边无自环。

子任务编号	特殊性质	分值
1	$n,m,q \leq 10$	14
2	$n,m,q \leq 1000$	16
3	l=1	11
4	l=r	3
5	$n \leq 50$	25
6		31

封印 (seal)

【题目描述】

小M最近在研究一座神秘的古堡。

古堡内居住着 n 位法师。古堡的大门被施加了封印,只有<u>大法师</u>才可以在**位于大门前时**随意施加和破解封印。古堡内被圣伊娜庇护,因此在古堡大门内的法师均可以随意施加和破解封印,无论这位法师是否是大法师。

一位法师从外面回到古堡大门前,或想要从古堡大门内离开古堡时,如果大门被施加封印,那么这位法师必须解除封印,才能通过大门。法师通过大门后,如果 TA 现在具有施加封印的能力,那么 TA 可以选择是否给大门施加封印。封印被施加和被破解的速度都非常快,**消耗的时间可以看做**0。

新的一天开始了,法师要离开古堡进行战斗。初始 n 名法师都在古堡中,且大门被施加了封印。第 i 名法师将会在时刻 a_i 从古堡大门内离开古堡,并且在时刻 b_i 从外面回到古堡大门前。一天共有 t 个单位时间,因为法师们的作息非常规律,于是法师们一定会在时刻 t 之前回到古堡。当法师不打算通过大门时,TA **不可以**给大门施加或破解封印,也就是说,第 i 名法师只可能在**时刻** a_i **和** b_i 给大门施加或破解封印。

根据神秘的羊皮纸记载,古堡内只会有**恰好** *m* 名大法师,并且所有法师都在回到古堡大门前之后顺利地进入了古堡,**没有在大门前等待任何时间**。并且,同一个时刻只有至多一名法师出现在大门前,也就是说,没有两名法师在**同一个时刻**离开或回到古堡。

小M想请您求出,在所有可能的满足上述要求的情况中,这一天内大门被封印的最长时间。

【输入格式】

第一行三个整数 n, t, m。

接下来 n 行, 第 i 行两个正整数 a_i, b_i 。

【输出格式】

一行一个非负整数,表示大门被封印的最长时间。

【输入输出样例1】

travel.in	travel.out
4 20 2	
12 17	
4 11	14
6 10	
5 15	

【输入输出样例1说明】

我们把时刻 x-1 到时刻 x 形成的这段时间称作第 x 个单位时间。

- 一种可能的情况是, 第2名法师和第3名法师是大法师。
 - 时刻 4, 第 2 名法师解除封印, 离开古堡时施加封印;
 - 时刻 5, 第 4 名法师解除封印并离开古堡;

- 时刻 6, 第 3 名法师解除封印, 离开古堡时施加封印;
- 时刻 10, 第 3 名法师解除封印, 回到古堡内, 并施加封印;
- 时刻 11, 第 2 名法师解除封印, 回到古堡内, 并施加封印;
- 时刻 12, 第 1 名法师解除封印并离开古堡;
- 时刻 15, 第 4 名法师直接回到古堡;
- 时刻 17, 第 1 名法师直接回到古堡, 并施加封印。

容易发现,大门仅在第 6 个单位时间,第 $13\sim17$ 个单位时间没有被施加封印,因此被封印了 14 个单位时间。容易证明没有比这更长的封印时间。

注意到第4名法师回到古堡后不能给古堡大门施加封印,这会使第1名法师无法进入古堡,因为第1名法师无法在古堡大门前解除封印。

【数据规模与约定】

本题采用捆绑测试。

对于所有数据,保证 $2 \le n \le 2000, 5 \le t \le 10^9, 1 \le m < n, 1 \le a_i < b_i < t$,对于任意 $i \ne j$,满足 $a_i \ne a_j, b_i \ne b_j, a_i \ne b_j$ 。

子任务编号	特殊限制	分值
1	$n \leq 20, t \leq 10^6$	20
2	$n \leq 200$	30
3	无	50

双倍经验 (double)

【题目描述】

你有一棵 n 个点的树,每条边的边权 $\in [0,10^{12}]$,多次询问任意两个点的距离。

显然这样还不够,现在有了两棵树,一棵是芒树,一棵是荒树,这两个树形态一模一样,但是边权不一样,并且两棵树对应节点间有边,具体地:

- 有边 $(2i-1,2i,w_i)$
- 以及 $(2x_i 1, 2y_i 1, wt_{i,1}), (2x_i, 2y_i, wt_{i,2})$

Q 次询问,每次询问任意两个节点之间的距离。

【输入格式】

第一行,一个数n。

第二行,n个数,表示(2i-1,2i)之间的边权。

接下来 n-1 行,每行 (x,y,w_1,w_2) ,表示原树上有边 (x,y),芒树上是 $(2x-1,2y-1,w_1)$,荒树上是 $(2x,2y,w_2)$ 。

下一行一个数Q。

接下来 Q 行,每行两个数 $u,v(1\leq u,v\leq 2n,u\neq v)$ 表示询问。

【输出格式】

Q 行,表示答案。

【输入输出样例1】

double.in	double.out
5 361548 1254 2357 1415 1521 3 12 56 110	3 15 4

【数据规模与约定】

对于所有测试数据, $1 \le n, Q \le 10^5, 1 \le u, v \le 2n, u \ne v$,边权 $\in [0, 10^{12}]$ 。

测试点编号	\$n\le \$		特殊性质
$1\sim 3$	1000	1000	

测试点编号	\$n\le \$	$Q \leq$	特殊性质
$4\sim 5$	10^5	10^5	保证原树是一条链
$6\sim7$	10^5	10^{5}	保证原树是一朵菊花
$8\sim 10$	10^5	10^5	