Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2219
USSR
ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

<u>ИЗМЕРЕНИЕ СЕЧЕНИЙ РАДИАЦИОННОГО ЗАХВАТА</u> БЫСТРЫХ НЕЙТРОНОВ

А.И.Лейпунский, О.Д.Казачковский, Г.Я.Артюхов, А.И.Барышников, Т.С.Баланова, В.Н.Галков, Ю.Я.Стависский, Э.А.Стумбур, Л.Е.Шерман

Развитие проблемы создания реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего поставило задачу измерения эффективных сечений радиационного захвата для веществ, используемых в качестве конструкционных материалов, теплоносителей и разбавителей (в том числе для U^{238} и Πh^{232}).

• Радиационный захват нейтронов важен, в первую очередь, с точ-ки зречия воспроизводства делящихся изотопов. Захват нейтронов в конструкционных материалах, теплоносителях, в нейтральных раз-бавителях приводит к потере нейтронов для воспроизводства. В то же время радиационный захват в U^{238} и $\eta \sim 232$ ведет к появле — нию новых делящихся изотонов и, таким образом, лежит в основе возможных циклов воспроизводства. Помимо этого, радиационный захват в конструкционных материалах и теплоносителе в основном определяет их активацию в реакторе. С величиной этой активации связаны условия эксплуатации реакторов и требования, предъявляемые к радиационной защите.

Ко времени начала экспериментальных работ (1950) имелись весьма ограниченные и противоречивые данные по сечениям радиационного захвата быстрых нейтронов. Это сделало необходимой постановку целого ряда исследований. Измерения велись различными методами для нейтронов различных энергий и для возможно большего числа изотопов с тем, чтобы получить необходимые при расчетах реакторов 25 YEAR RE-REVIEW

константы с наибольшей надежностью. Измерение сечений для большого числа изотопов, в том числе и для тех, которые не могут быть использованы в реакторах, позволяло с привлечением теории производить оценки сечений захвата, не поддающихся прямым измерениям.

Одним из наиболее простых и употребительных способов измерения сечений захвата является, как известно, метод активации. К числу его преимуществ относится возможность измерения сечений отдельных изотопов без разделения естественных смесей изотопов, возможность использования малых количеств исследуемых веществ (порядка мг). Однако применимость его существенно ограничена активируемыми изотопами. Поэтому наряду с методом активации при измерениях сечений захыата применялись методы, основанные на измерении интенсивности излучения захвата, на ослабление потока нейтронов в сферической геометрии, метод котельного осциллятора. Использование этих методов позволяло получать сечения захвата для неактивируемых изотопов.

Сечения захвата измерялись как для моноэнергетических нейтронов (нейтроны от ядерных реакций $\Pi(\rho,n)He^3$, $D(D,n)He^3$, фотонейтроны SB-Be, $NC-D_2O$, NC-Be, так и для широких спектров нейтронов (нейтроны деления, более мягкие спектры нейтронов, устанавливающиеся в активной зоне и в экране реактора на быстрых ней тронах). Измерения для широких спектров труднее интерпретировать, однако, при их проведении практически отсутствуют ограничения по интенсивности. Это позволяет измерять весьма малые се чения, недоступные для измерений с моноэнергетическими нейтронами.

Легко видеть, что в большинстве случаев измеренные сечения определяются многими уровнями промежуточного ядра, ибо даже для ней тронсв от ядерных реакций действительная ширина энергетического распределения нейтронов значительно превосходит среднее расстояние между уровнями (исключая легкие и "магические" ядра). Экспериментальные работы по измерению сечений радиационного захвата, рас сматриваемые в настоящем докладе, проводились в течение 1950-1957 гг. В основном производились относительные измерения, и для получения абсолютных значений сечений использовались некоторые опорные сечения (сечения захвата тепловых нейтронов, сечения захвата быстрых нейтронов изотопами, выбранными в качестве эта лонов и т.п.).

Приведенные в докладе результаты измерении пересчитаны на основе наиболее поздних опубликованных опорных сечений. В погрешности результатов не включены погрешности в опорных сечениях. Принимались следующие опорные сечения для основных эталонов:

Центр активной зоны реактора на быстрых

нейтронах: 1.83 барн.

Экран реактора на быстрых нейтронах; 1,75 барн /4/

Использовались сечения захвата тепловых нейтронов, приведен-HHe B /5/ , /6/.

> I. Радиационный захват нейтронов от реакций $\mathbb{T}(p,n) \operatorname{He}^3$, $\mathbb{J}(\mathbb{D},n) \operatorname{He}^5$

І) Активационные измерения

Методом активации были измерены сечения захвата для ряда изотопов при энергии нейтронов \sim 0,2, \sim 2,7 и \sim 4 мэв. Нейтроны энергии $\sim 0,2$ Мэв получались при реакции $\Psi(p,n)$ Не³, протекавшей на мишени ускорительной трубки каскадного генератора. Энергетический разброс нейтронов определялся, в основном, толщиной мишени и составлял \sim 30 кэв. Образцы исследуемых веществ и образец йода-127, используемый как эталонный, совместно облучались в потоках быстрых (рис. 1) и тепловых нейтронов.

Облучение тепловыми нейтронами производилось в тепловой колоние уран-графитового реактора при кадмиевом отношении ~ 200 (по моду). Активности образцов измерялись с помощью торцовых газоразрядных счетчиков типа МСТ-17.

В случае, если времена облучения, высвечивания и измерения для каждого образца остаются постоянными, сечение захвата может быть определено по соотношению:

$$\mathfrak{S}_{c} = \mathfrak{S}_{c\vartheta} \cdot \frac{\mathfrak{S}_{c\Psi}}{\mathfrak{S}_{\vartheta\Psi}} \cdot \frac{\mathfrak{A}_{\vartheta}}{\mathfrak{A}_{\mathfrak{S}\vartheta}} / \frac{\mathfrak{A}_{\Psi}}{\mathfrak{A}_{\Psi\vartheta}} , \qquad (1)$$

При измерении сечений захвата нейтронов энергий 2,7 и 4 Мэв источником нейтронов служила реакция D(D,n) Не 5 , протекавшая на мишени из тяжелого льда. Облучавшиеся образцы располагались под углами 90 и 0^0 , что и соответствовало средним энергиям, захватываемых нейтронов $\sim 2,7$ и 4 Мэв. Сечение захвата нейтронов энергии 2,7 и 4 Мэв йодом-127 измерялось путем сравнения сечением деления U^{238} и составило:

Результаты измерений для нейтронов энергий 0,2, 2,7 и 4 Мэв приведены в табл.1.

При измерении сечения захвата нейтронов и U^{238} регистрировалась β — активность U^{239} . Для снижения начальной активности урана и для удаления осколков деления производилась хими — ческая очистка методом эфирной экстракции.

Для понижения естественной β -активности тория отделя - лись продукты естественного распада с использованием метода но-сителей. В качестве носителей применялись барий, висмут и сви - нец. Ввиду сложности методики удаления осколков деления сечение захвата тория измерялось лишь для нейтронов энергии \sim 0,2 Мэв.

У ряда элементов при облучении нейтронами энергии 2,7 и 4 Мэв наблюдалась дополнительная активация из-за (11, р), (11, 0) процессов (алюминий, хлор) и за счет возбуждения изомерных состояний при неупругом рассеянии (индий, ртуть). В случае алюминия и ртути эти эффекты отделить не удалось. Поэтому для них получены верхние границы сечений захвата.

Таблица 1 Сечения активации (миллибарны)

Изотопы	0,2 Мэв	2,7 Мэв	4 Мэв
Na ²⁵	1,8 ± 0,18	< 0,23	< 0,12
Ma 26		$0,35 \pm 0,09$	$0,25 \pm 0,05$
Mg 26	8,2 ± 1,2	$\frac{3}{3,5}$	< 1,8
A6 27	$5,6 \pm 0,56$, · · · · · · · · · · · · · · · · · · ·	,
Si 30	$5,5 \pm 0,5$	$0,3 \pm 0,3$	$0,67 \pm 0,10$
CP 37	4,31 <u>+</u> 0,04	0,65 <u>+</u> 0,09	$0,34 \pm 0,09$
V 51	10,0 <u>+</u> 0,8	1,97+0,08	$1,78 \pm 0,06$
Mn ⁵⁵	$19,7 \pm 1,1$	$3,12 \pm 0,3$	$1,79 \pm 0,18$
Ni ⁶⁴	$43,5 \pm 4,1$	< 5 , 2	$2,6 \pm 1,3$
Cu 65	13.9 ± 1.5	$4,75 \pm 0,05$	$2,77 \pm 0,03$
Zn ⁶⁹	35 + 4,5	< 13,6	< 9,14
Br 33	328 ± 8,0	$26,4 \pm 0,5$	$11,7 \pm 0,3$
β2 ⁷⁹	440 ± 12	$14,3 \pm 0,7$	$6,6 \pm 0,4$
Mo 100	$51,6 \pm 2,1$	$6,50 \pm 0.7$	$3,9 \pm 0,4$
Aα ¹⁰⁷	390 ± 13	56 <u>+</u> 1	$29,4 \pm 0,9$
In 445	$234 \pm 15,6$	74 <u>+</u> 3	$39,2 \pm 1,6$
Ba ¹³⁸	5,16 ± 0,8	1,14 + 0,23	$0,78 \pm 0,24$
W 186	180 <u>+</u> 13	< 36	< 19
Hq 204	₹ 250	< 50	₹25
Pg 208	$7,5 \pm 3,8$	$1,1 \pm 0,5$	$0,50 \pm 0,25$
η·h. 232	217 + 11	-	_
U 238	194 + 8	53,3 <u>+</u> 1,6	$33,3 \pm 1,2$

2) <u>Регистрация у -излучения радиационного</u> захвата

Для измерения сечений захвата нейтронов энергии \sim 0,2 мэв в 1951—1954 гг. было использовано два метода, основанных на регистрации % -излучения захвата. Основная трудность подобных измерений обусловлена фоном % -лучей, исходящих из источника нейтронов. Это исключило применение целого ряда ядерных реакций, используемых обычно как источники нейтронов — $\text{Li}^7(\rho,n)\text{Be}^7$, $\text{C}^{12}(\text{cl},n)\text{N}^{13}$ и т.п. В качестве источника нейтронов ока — залось возможным использовать лишь реакцию $\text{П}^{12}(\rho,n)\text{He}^3$.

При измерении сечений первым методом в одинаковом потоке нейтронов от тритиевой мишени (см. активационные измерения) сравнивались интенсивности %-излучения от исследуемого образца и эталонного образца йода-I27. Интенсивность %-излучения пропорцио нальна сечению захвата $\mathcal{O}_{\mathbf{c}}$ и среднему числу %-квантов на захват $\overline{\phi}$. Измерение $\overline{\phi}$ осуществлялось путет счета %-%-совпадений. Гамма-излучение захвата регистрировалось двумя сцинтилляционными счетчиками с монокристаллами нафталина, активированного антраценом (рис. 2). Радиосхема позволяла осуществлять регистрацию %-лучей каждым счетчиком с энергетическим порогом \sim 0,7 Мэв и производить счет совпадающих во времени . %-квантов с разрешающим временем \sim 1,5·10-7 сек.

Сечения радиационного захвата определялись по формуле:

$$\widetilde{O}_{c} = \widetilde{O}_{c} \cdot \frac{N}{N_{\vartheta}} \cdot \frac{\widetilde{\Phi}_{\vartheta}}{\widetilde{\Phi}} , \qquad (2)$$

где $\mathfrak{S}_{\mathsf{C}\mathsf{9}}$ - сечение захвата нейтронов энергии 0,2 Мэв в эталоне;

N - скорость счета у-лучей от исследуемого образца;

 $\overline{\psi}$, $\overline{\psi}_{\ni}$ - скорость счета χ -лучей от образца эталона; $\overline{\psi}$, $\overline{\psi}_{\ni}$ - средние числа χ -квантов на акт захвата для исследуемого вещества и эталона (йода-127).

В результаты измерений вносились поправки на поглощение у-излучения и расселние нейтронов в материале образцов. Экспериментальные оценки влияния рассеянных в помещении нейтронов и активации образцов показали, что эти эфректы пренебрежимо малы. Полученные в результате измерений сечения приведены в табл.2. Для ряда элементов с малым сечением захвата (цирконий, стронций, барий, таллий, свинец, висмут) из-за малой интенсивности у-из-лучения захвата не удалось определить $\widetilde{\psi}$, поэтому для них дается лишь верхний предел $\widetilde{\delta}_{c}$.

Таблица 2

Сечения захвата	- '
Элемент	6 _c
Mn	23 <u>+</u> 7
Cu	5I <u>+</u> II
Zn	29 <u>+</u> 9
Se	83 <u>+</u> 17
Br Sr	380 <u>+</u> 55
Z	<175 < 55
Mo	97 <u>+</u> 16
Ag	590 <u>+</u> 77
Cď	1 77 <u>+</u> 33
Sn	68 <u>+</u> 9
56 Bo	255 <u>+</u> 33
Ba Ta	生30 530 <u>+</u> 77
W W	200 <u>+</u> 77
Hg	133 <u>+</u> 22
The same	< 1 75
PB	412
Bi	<14

Преимуществом описанного метода измерений является возможность определения усредненного сечения для смеси изотопов элемента, включая и неактивируемые изотопы. Наряду с этим методом измерения был разработан метод, основанный на сравнении интенсивности \mathcal{F} -излучения от захвата быстрых и тепловых нейтронов. Метод также дает возможность измерять $\mathfrak{S}_{\mathbb{C}}$ для неактивируемых изотопов, однако, применение его ограничено одно изотопными элементами. Что- бы уменьшить эффект, связанных с возможным отличием спектров

 κ -лучей, захвата тепловых и быстрых нейтронов, использовался детектор, мало чувствительный к структуре спектра κ -лучей. При измерениях $\delta_{\rm C}$ для золота подобный эффект оценивался эксперименталь но и оказался достаточно слабым.

При измерениях этим методом необходимо сравнение потоков тепловых и быстрых нейтронов, падающих на образец. Сравнение производилось с помощью ионизационной камеры деления со слоем U^{235} Источником нейтронов, как и в предыдущем случае, служила реакция $T(\rho, n)$ He³. Регистрация х -излучения захвата производилась сцинтилляционным счетчиком с криста ллом ристый кальций регистрирует нейтроны с малой эффективностью (сечение радиационного захвата нейтронов в кальции и фторе мало), так что фон при измерениях обусловлен, в основном, % -излучением из мишени. Другое преимущество ССГ, -относительно большой атомный вес. Это исключает замедление нейтронов в кристалле и обеспечивает значительную эффективность регистрации Малость светового выхода у фтористого кальция приводит к малой разрешающей способности счетчика по энергии и снижает его чувствительность к структуре спектра х-лучей. Это даже полезно в используемой методике.

Величина сечения определялась по формуле:

Поправочный коэффициент Q введен для учета некоторого различия геометрии опытов в случае захвата тепловых и быстрых нейтронов, для учета поглощения У-излучения захвата, для учета рассеяния нейтронов в образце. Для определения Q производились вспомогательные измерения с использованием точечных источни-

ков у-лучей и малогабаритной спиральной камеры деления. Поглощение у-лучей захвата в образцах исследовалось с помощью висмутовых поглотителей. Для проверки применимости метода производились измерения при различных энергетических порогах регистрации у-лучей и с образцами различного размера. Результаты контрольных измерений в пределах ошибок совпали с результатами основных.

Таблица З Сечения захвата (миллибарны)

Изотоп	€ G _c
Ta 181	370 <u>+</u> 40
Au 197	380 <u>+</u> 25
Th 232	210 ± 40

П. Фотонейтроны

I) <u>Активационные</u> измерения /7/

Методом активации измерялись сечения радиационного захвата фотонейтронов от сурьмяно-берилиевого источника (эффективная энергия \sim 25 кэв). Метод измерений, основанный на регистрации β -активности облученных образцов, аналогичен применявшемуся при измерениях сечений захвата нейтронов от реакций $\Psi(p,n)He^3$ и $\Psi(p,n)He^3$ и $\Psi(p,n)He^3$ использовался источник фотонейтронов интенсивностью \sim 10 мм (рис.3).

Образцы в защитных контейнерах располагались на расстоянии ~5 см от центра источника. В качестве эталона использовался йод-127.

Результаты измерения, приведенные в табл. 4 в общем согла - суются с результатами работы Маклина (1). Необходимо отметить, однако, что результаты измерений Маклина, при которых использо - вались сравнительно толстые образцы исследуемых веществ, больше подвержены влиянию резонансной блокировки, чем результаты данной работы.

Таблица 4 Активационные сечения для 24 кэв миллибарны

I,72 + 0,27	
6 _c I,72 ± 0,27 I,90 ± 0,27 2,09 ± 0,5I 3,7I ± 0,64 < 26 32,5 ± 2,I 65 ± 3 7,7 ± 0,8 < 37	
38,6 ± 0,3 24,0 ± 2,8 15I ± I,2 7I0 ± 33 4400 29,0± I,4 120 ± 12 II2 ± 3 I330 ± 9I 590 ± 20 8,6 ± 0,4 285 ± 58 960 ± 6	

2) Ослабление потока нейтронов при сферической геометрии опыта /8/

Методы, основанные на измерении ослабления пучка нейтронов при прохождении через исследуемое вещество, позволяют получать сечения захвата для неактивируемых изотопов и естественных смесей изотопов. При измерениях с быстрыми нейтронами, сечение захвата для которых составляет малую долю полного сечения,

необходимо использование сферической геометрии опыта, с тем чтобы в первом приближении исключить эффект упругого рассеяния. При проведении измерений изотропные источники нейтронов (фотонейтронные источники Sb-Be, N o- D_2O , Nc-Be) окружались сферическим слоем исследуемого вещества (рис. 4). Сравнива и скорости счета детектора нейтронов при установленном сферическом слое и без него. Расчет сечений \mathfrak{S}_c производился по формуле:

Формула была получена при использовании предположения об экспоненциальном характере распределения длин путей нейтронов, испытавших упругое рассеяние в поглотителе.

Средний путь нейтрона в сферическом слое ℓ , с учетом многократных соударений, вычислялся по интерполяционной формуле, предложенной Казачковским:

$$\bar{\ell} = \frac{1}{2} \frac{R^2}{\lambda_{t2}} + 0,7 R - \frac{3}{2} \frac{\tau^2}{\lambda_{t2}} + \frac{\tau^3}{\tau_0 \lambda_{t2}} + 0,29 \left(R - \frac{\tau}{2}\right) e^{-0.46 \left(R - \frac{\tau}{2}\right)/\lambda_{t2}}$$
(5)

При использовании этого метода для исключения эффектов упругого и неупругого рассеяния необходимо применение детектора, нечувствительного к энергии нейтронов. В описываемой работе использовался счетчик, предложенный Мак-Киббеном /9/. Спадение эффективности счетчика для нейтронов с энергией

Т Мэв приводит к завышению сечений захвата (замедление нейтронов при упругом и неупругом рассеянии в исследуемом веществе). Оценки показывают, что для фотонейтронов NO-Be можно ожидать завышения сечений на 20-30%, а для фотонейтронов $NO-D_2O-2-4\%$. Результаты измерений приведены в табл. 5.

Таблица 5 Сечения поглощения (миллибарны)

Элемент	Sb- Be	Na - D ₂ 0	Na-Be
Na	19 <u>+</u> 3	13 <u>+</u> 10	10 <u>+</u> 4
AB	17 <u>+</u> 3	6 <u>+</u> 3	<16
\$	< 44	< 38	< 40
Ca	< 13 <u>+</u> 10	< 5	48
ርፖ	144 <u>+</u> 6	36 <u>+</u> I	21 <u>+</u> 1
Fe	19 <u>+</u> 2	13 <u>+</u> 2	9 <u>+</u> 2
Ni	50 <u>+</u> I	26 <u>+</u> 2	19 <u>+</u> 6
Cu	32 <u>+</u> 3	18 ± 2	19 <u>+</u> 1
Zn	29 <u>+</u> 2	2I ± 2	18 <u>+</u> 3
\$e	215 <u>+</u> 11	83 <u>+</u> I3	58 <u>+</u> 16
Cd	32I <u>+</u> 7	123 <u>+</u> 5	73 <u>+</u> 5
Sn	112 <u>+</u> 5	52 <u>+</u> 8	36 <u>+</u> 6
Sb	444 + 4	130 ± 10	100 <u>+</u> 8
1	1097 <u>+</u> 39	314 + 42	101 <u>+</u> 40
Ba	< 108	< 116	< 114
\mathbb{W}	422 <u>+</u> 26	133 <u>+</u> 35	40 <u>+</u> 33
Hg	202 <u>+</u> 9	108 ± 11	43 <u>+</u> 12
Pģ .	13 ± 3	8 <u>+</u> 4	< 24
Th	457 <u>+</u> 4	235 <u>+</u> 6	202 <u>+</u> 6
ัน	572 <u>+</u> 7	204 <u>+</u> 5	147 <u>+</u> 7

Ш. Широкие спектры нейтронов

1) Активационные измерения сечений захвата нейтронов спектра деления

Данная работа была первой в описываемом цикле эксперимен - тальных работ по измерению сечений радиационного захвата быстрых нейтронов. Во время ее постановки (1950) не были доступны такие источники быстрых нейтронов, как реакции с заряженными частицами, мощные фотонейтронные источники, реакторы на быстрых нейтронов. Это заставило использовать в качестве источника быстрых нейтронов делительный конвертер в потоке тепловых нейтронов.

Методика активационных измерений аналогична использованной Юзом / \mathbf{I} 0/. Сечение захвата \mathcal{O}_{c} определялось по соотношению:

$$\mathcal{O}_{c} = \mathcal{O}_{Crr} \cdot \frac{A_{\delta}}{A_{m}} \cdot \frac{\Gamma_{\sigma}}{\Gamma_{\delta}} , \qquad (6)$$

где:

 $\frac{A_{\delta}}{A_{T}}^{C_{T}}$ - сечение захвата тепловых нейтронов; - отношение активностей образцов, вызванных захва-

 $\frac{F_{\tau}}{F_{\tau}}$ - отношение потоков тепловых и быстрых нейтронов.

Отношение потоков определялось как расчетным путем, так и экспериментально, с использованием в качестве эталона сечений захвата, полученных Юзом.

Облучение образцов производилось в полости тепловой колонны размером 60х60х60 см. При измерениях использовался конвертер из естественного урана.

Результаты измерений приведены в табл. 6.

Таблица 6 Сечения активации для спектра нейтронов деления (миллибарны)

потоя
Na ²³ Ab ²⁷ Mn ⁵⁵ Cu ⁶⁵ Zr ⁹⁶ Mo ¹⁰⁰ Ag ¹⁰⁹ Pt ¹⁹⁸ Pb ²⁰⁹ Bi ²⁰⁹ U ²³⁸

2) Активационные измерения в центре активной зоны реактора на быстрых нейтрона БР-1

Методом активации измерялись сечения захвата ряда изотопов для спектра нейтронов, устанавливающегося в центре активной зоны реактора на быстрых нейтронах БР-1 /4/. Измерения проводились для двух вариантов реактора.

В первом варианте активная зона реактора собиралась из плутониевых стержней, экраном служил слой обедненного урана. В центре активной зоны располагался измерительный канал. Во втором варианте реактора БР-I использовался медный экран. Кроме того, первый ряд плутониевых стержней вокруг измерительного канала заменялся вставкой из меди (рис.5). Эталоном при измерениях служил Россий вставкой из меди (рис.5). Эталоном при измерениях служил Россий вставкой из меди (рис.5). Эталоном при измерениях служил Россий вставкой из меди (рис.5). Эталоном при измерения со слоем Ригоновой колонне. В остальном метод измерений аналогичен описанному ранее.

Результаты измерений для 2-х вариантов реактора приведены в табл. 7.

Таблица 7 Сечение активации (миллибарны)

зотоп	Ü-экран	Си-экран
Na ²³	0,51 + 0,02	0,53 ± 0,03
A627	0,82 ± 0,03	$0,79 \pm 0,04$
Mn ⁵⁵	5,17 + 0,26	$5,85 \pm 0,36$
1u63	$15,25 \pm 1,14$	17.8 ± 1.4
lu ⁶⁵	$8,46 \pm 0,73$	12,8+1,3
30,69		57,2 ± 8,3
30 ⁷¹		44,1 + 5,5
3 ₇ 79		164 ± 21
37 ⁸¹		63 ± 9
√ ³⁹	8,3 <u>+</u> 0,9	8,06 ± 0,87
2h103	121 ± 9	, , , , , , , , , , , , , , , , , , ,
4g ¹⁰⁷		155 ± 11
Ag 109		263 <u>+</u> 25
In ¹¹⁵	213 <u>+</u> 20	
7127	107 ± 10	128 <u>+</u> 12
Pv ¹⁴¹	$11,8 \pm 0,7$	$30,2 \pm 1,9$
Та ¹⁸¹	182 ± 15	230 <u>+</u> 19

3) Осцилляторные измерения в центре активной зоны реактора на быстрых нейтронах БР-1

Для определения сечений захвата нейтронов в неактивируемых изотопах и естественных смесях изотопов использовался метод глобального осциплятора в реакторе на быстрых нейтронах БР-Т.

метод измерений основан на сравнении измерений реактивности реактора при введении в центр активной зоны исследуемого образца и образца Pu^{239} . Изменение реактивности при введении

в реактор исследуемого образца происходит за счет поглощений нейтронов и за счет изменения ценности нейтронов при их упругом и неупругом рассеянии в образце. Дополнительное возшущение может вносить "канальный эффект", то есть изменение утечки нейтронов через измерительный канал при введении образца в центр активном зоны и эффект рассеяния в образце.

Осципляторные измерения производились для двух вариантов реактора БР-І.

Исследуемый образец перемещался в центральном измерительном канале с периодом 82 сек. Для исключения "канального эффекта" образец
заключался в полость медного стержня (рис.5). Уровень нейтронного
потока в реакторе регистрировался с помощью ионизационной камеры
со слоем бора, подсоединенной к измерителю реактивности. Система
позволяла регистрировать изменение реактивности $\sim 40^{-7}$.

Сечение возмущения определялось по формуле:

$$G_{\mathcal{B}} = \frac{\Delta \mathcal{D}}{\Delta \mathcal{D}^{9}} \cdot \frac{N^{9}}{N} \left[G_{\mathcal{C}}^{9} (\mathcal{J} - 1) - G_{\alpha}^{9} \right] , \qquad (7)$$

где $\Delta \mathcal{Q}$, $\Delta \mathcal{Q}^{O}$ - изменения реактивности, возникающие при введении исследуемого образца и образца \mathcal{Q}_{U}^{239} ; \mathcal{Q}_{U}^{O} , \mathcal{Q}_{Q}^{O} , возникающие при введении исследуемом образце и образце \mathcal{Q}_{Q}^{O} , $\mathcal{Q}_$

 $6_{\varrho}^{9}+(\sqrt[3]{-4})-6_{\alpha}^{9}$ определялось из независимого опыта /4/. Сравнение сечений возмущения (табл.8) с результатами активационных измерений показывает, что при использовании варианта реактора с медным экраном и медной вставкой в центре активной зоны, сечения возмущения оказываются близкими к сечениям поглощения нейтронов (исключая легкие и "магические" ядра). Это объясняется более слабой зависимостью ценности нейтронов от энергии для такой системы, и, таким образом, более слабым влиянием упругото и неупругого рассеяния нейтронов в образце.

В варианте с урановым экраном сечения возмущения сильнее отличаются от сечений поглощения. Результаты измерений в варианте с урановым отражателем близки к результатам работы Холмса и др./АТ/.

- I7 -

Таблица 8 Сечения возмущения (миллибарны)

			7	†	
Элемен	Си-экран	U -экран	Элемент	Си -экран	U -экран
Zn Ge Se Br Sr Y Zr Nb	2,00 ± 0,13 3,55 ± 0,04 7,3 ± 0,1 9,0 ± 0,1 67,9 ± 0,5 54,4 ± 1,1 39,1 ± 1,2 11,7 ± 0,3 2,7 ± 0,1 ·22,3 ± 0,3 13,3 ± 0,2 30,0 ± 1,0 20,61 ± 0,13 65,5 ± 0,4 45,5 ± 0,4 45,6 ± 0,6 35,8 ± 0,4 114 ± 2 28,5± 1,6 7,6± 1,7 20,8± 0,3 76,0±0,7	17,1 ± 0,8 13,7 ± 0,4 22,4 ± 0,2 17,2 ± 0,4 93,4 ± 1,2 66,1 ± 2,4 60,6 ± 1,7 51,4 ± 2,6 27,7 ± 1,0 25,9 ± 0,4 34,7 ± 0,6 52,6 ± 0,6 49,4 ± 0,6 98,7 ± 0,2 74,0 ± 0,7 70,2 ± 1,5 71,3 ± 1,7 122 ± 5 56,2 ± 3,7 53,3 ± 8,6 56,4±0,5 111 ± 2	Pd. Ag	177 ± 1 135 ± 1 227 ± 1 109,0± 1,3 274 ± 1 61 ± 1 146 ± 1 145 ± 3 17,7±0,6 15,1 ± 2,5 24,8 ± 2,2 59,4 ± 3,6 56,4 ± 2,6 195 ± 7 213 ± 1 228 ± 1 114 ± 1 133 ± 1 62 ± 1 21,7 ± 0,4 18,8±0,2	21.9 ± 2 170 ± 1 261 ± 1 168,0± 1,3 303 ± 2 98 ± 1 173 ± 2 183 ± 3 177 ± 6 41,7±1,6 133 ± 1 95,3 ± 2,4 162 ± 5 194 ± 13 305 ± 15 184 270 ± 1 180 ± 9 187 ± 1 223 ± 1 107 ± 4
Mo	65,0 <u>+</u> 0,6	108±1,4	Th	106 <u>+</u> 1	157 ± 1

4) <u>Активационные измерения в экране реактора</u> $\overline{\text{БР--2}}$

Для большой группы изотопов методом активации измерялись сечения захвата нейтронов спектра, устанавливающегося в урановом экране реактора БР-2 [12] на расстоянии 20 см от края активной зоны.

В качестве основного эталона при измерениях использовался Pu^{239} . Промежуточным эталоном служил йод-127. Исследуемые образцы и образец йода-127 совместно облучались в измерительном канале экрана реактора (рис.6) и в канале тепловой колонны. Сечение захвата $\mathcal{O}_{\mathbf{C}}$ вычислялось по соотношению:

$$\mathfrak{S}_{\mathbf{c}} = \mathfrak{S}_{\mathbf{c}\,\mathbf{9}} \cdot \frac{\mathfrak{S}_{\mathbf{c}\,\mathbf{m}}}{\mathfrak{S}_{\mathbf{3}\,\mathbf{m}}} \cdot \frac{\mathsf{A}_{\mathbf{S}}}{\mathsf{A}_{\mathbf{S}_{\mathbf{3}}}} \left/ \frac{\mathsf{A}_{\mathbf{m}}}{\mathsf{A}_{\mathbf{m}_{\mathbf{3}}}} \right. , \tag{8}$$

(Обозначения аналогичны (1)) Величина $\frac{O_{c_2}}{O_{27}}$ ($\frac{O_{c_3}}{O_{27}}$) определялась путем сравнения с сечениями деления P_{11} (259)

Сопоставление измеренных сечений захвата для ряда элементов () Ми, Ао, Аи) с зависимостью сечения захвата от энергии для этих элементов, известной из других работ /5/, позволяло оценить эффективную энергию захватываемых нейтронов. Эффективная энергия составила 0,15 Мэв.

Таблица 8 Сечения активации в экране БР-2 (миллибарны)

потоп	€c	Изотоп	රි _c	
Na ²³ Mg ²⁶ Ag ²⁷ K ⁴¹ Ca ⁴⁴ Mn ⁵⁵ V ⁵¹ Fe ⁵⁸ Co ⁵⁹ Ni ⁶⁴ Cu ⁶³ Cu ⁶³ Cu ⁶³ Cu ⁶⁵ Ga ⁶⁹ Ga ⁷¹ Br ⁷⁹ Br ⁸¹ Rg ⁸⁵ Rg ⁸⁶	1,34 ± 0,13 8,9 ± 1,0 1,80 ± 0,03 5,7 ± 0,4 1,6 ± 0,05 11,3 ± 0,9 19,0 ± 3,0 35 ± 1,4 6,3 ± 0,1 49,5 ± 3,4 24,7 ± 1,2 123 ± 2 43 ± 2 465 ± 10 176 ± 7 222 ± 22 14,0 ± 0,6	\$7.88 Z7.94 N8.93 M0.100 M0.98 Rh.103 Pd.110 A9.107 In.115 B0.138 L0.139 P2.141 Ta.181 W.186 Au.197 H9.204 Bi.209 U.258	2,7 ± 0,3 4,7 ± 0,3 106 ± 3 43,2 ± 1,1 41,6 ± 2,1 564 ± 15 36,0 ± 3,6 366 ± 35 314 ± 19 2,6 ± 0,1 31,0 ± 0,3 223 ± 12 632 ± 33 158 ± 3 530 ± 47 420 ± 42 2,5 ± 0,1 187 ± 0,3	

Результаты измерений сечений радиационного захвата использованись в системах многогрупповых констант для расчета реакторов на быстрых нейтронах. Малость этих сечений для большинства
материалов, которые могут быть использованы как теплоносители,
конструкционные материалы, разбавители обеспечивают возможность
получения значительных коэффициентов воспроизводства в реакторах
на быстрых нейтронах.

При рассмотрении зависимости сечений от числа нуклонов в ядре ярко проявляются закономерности, отмеченные еще Юзом (ДО). Сечения систематически растут с ростом А от Д до ДОО, затем в среднем остаются постоянными (рис. 7,8,9). В то же время наблюдается резкое падение сечений в областях магических чисел, связанные с малой плотностью уровней в соответствующих возбужденных составных ядрах. Особенно сильно падение сечений проявляется в результатах активационных измерений в экране БР-Д (рис.7).

Слабее этот эффект проявляется у сечений захвата, полученных методом ослабления в сферической геометрии и по у плучам захвата (рис. 8), что, правда, целиком объясняется малой пригодностью этих методов для измерения очень малых сечений захвата магических ядер. Здесь, однако, можно видеть, что падение сечений происходит уже у изотопов, предшествующих изотопам с замкнутыми оболочками (вольфрам, ртуть, таллий). Наряду с эффектом образования замкнутых оболочек проявляется и эффект четности числа нуклонов в ядре. У ядер с четным Z сечения захвата в среднем меньше, чем в случаях ядер с нечетными Z

Подобные же закономерности проявляются в сечениях захвата, полученных при осциляторных измерениях в реакторе на быстрых нейтронах (рис. 9).

Литература

- 1. Macklin R.L. et al., Neutron Activation Cross Sections with Sb-Be Neutrons, Phys. Rev., 1957, 107, 504
- 2. H.C. Martin and R.F. Taschek. The (n) and (n,2n) Reactions in Jodine, Phys.Rev., 1953, 89, 1302
- 3. W.D. Allen, A.T.G. Ferguson, The Fission Cross Section of U-233, U-235 and Pu-239 for Neutrons in the Energy Range 0,036 Mev to 3,0 Mev, Proc. Phys. Soc. 1957, A, 70, 573

- 4. Лейпунский А.И. и др. Исследования по физике реакторов на бистрых нейтронах, доклад, представленный на Вторую Международную конференцию по мирному использованию атомной энергии, 1958
- 5. Hughes D.J., Harwey J.A., Neutron Cross Sections, 1955, BNL-325
- 6. Hughes D.J., Schwartz R.B. Neutron Cross Sections, Supplement, 1957, Nº1, BNL-325.
- 7. Кононов В.Н., Толстиков В.Измерение сечений радиационного захвата для сурьма-бериллиевых фотонейтронов, 1957. Будет опубликовано
- 8. Беланова Т.С. Измерение сечений поглощения быстрых нейтронов, 1957. В печати
- 9. Hanson A.O. and Mckibben J.L., A Neutron Detector Having Uniform Sensitivity from 10 Kev to 3 Mev, Phys.Rev., 1947, 89, 673
- 10. Hughes D.J., Spatz W.D. and Goldstein N. Capture Cross Sections for Fast Neutrons Phys. Rev., 1949, 75, 1781
- 11. Holmes J.at al. Experimental Studies on Fast Neutron Reactors. Доклад на Женевской конференции, 1955
- 12. Лейпунский А.И., Блохинцев Д.И., Аристархов Н.Н., Бондаренко И.И. Козачковский О.Д., Пинхасик М.С., Стависский Ю.Я., Стумбур Э.А., Украинцев Ф.И., Усачев Л.Н. Экспериментальный реактор на быстрых нейтронах БР-2, Атомная энергия, 1957, 11, 6, 437

Рис. Т. Активационные измерения. Т-й слой титана с абсорбированным тритием. 2. Охлаждение иишени водяным паром. 3. Кадмиевый контейнер с борной засыпкой. 4. Образцы

Рис. 2. Регистрация — Тучей захвата. І. Тритиевая мишень. 2. Охлаждение водяным паром. 3. Образец с борной защитой . 4. Кристаллы нафталина с антраценом. 5. Алюминиевые отражатели. 6. Фотоумножитель ФЗУ-19. 7. Защит-

Рис. 3. Активационные измерения с фотонейтронами. 4. У -источник 56. 2. Бериллий. 3.Кад - миевый контейнер с борной засыпкой. 4. Образцы

Рис. 4. Сферическая геометрия. А. Источник нейтронов. 2. Исследуемое вещество. 3. Детектор нейтронов

Реактор БР-1. Осцилляторные и активационные измерения, 1.Лк-ТИВНАЯ ЗОНА, 2. Экран. 3. Медная вставка, 4. Измерительный канал. 5. Осцилляторный стержень. 6. Образец Рис.5.

Рис. 6. Реактор БР-2. Активационные измерения. 1. Активная зона. 2. Урановый экран. 3. Измерительный канал. 4. Медный экран

