вариант	ф. номер	група	поток	курс	специалност
1					
Име:				•	

Второ контролно по Изчислимост и сложност (теория)

13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a).$

Зад. 2. а) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x) = a^x.$

Зад. 3. а) Формулирайте Теоремата на Пост.

б) Приложете тази теорема, за да докажете, че ако A_1,\dots,A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1\cup\dots\cup A_n=\mathbb{N},$ то A_1,\dots,A_n са разрешими.

Успех! =

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Второ контролно по Изчислимост и сложност (теория) 13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a).$

Зад. 2. а) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x) = a^x.$

Зад. 3. а) Формулирайте Теоремата на Пост.

бо). Приложете тази теорема, за да докажете, че ако A_1, \ldots, A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1 \cup \cdots \cup A_n = \mathbb{N}$, то A_1, \ldots, A_n са разрешими.

Успех! =

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Второ контролно по Изчислимост и сложност (теория)

13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a).$

Зад. 2. а) Формулирайте теоремата за определимост по рекурсия

б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x)=a^x.$

Зад. 3. а) Формулирайте Теоремата на Пост.

б) Приложете тази теорема, за да докажете, че ако A_1,\dots,A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1\cup\dots\cup A_n=\mathbb{N},$ то A_1,\dots,A_n са разрешими.

Успех! ¨

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Второ контролно по Изчислимост и сложност (теория)

13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a)$.

Зад. 2. а) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x)=a^x$.

Зад. 3. а) Формулирайте Теоремата на Пост.

б) Приложете тази теорема, за да докажете, че ако A_1, \ldots, A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1 \cup \cdots \cup A_n = \mathbb{N}$, то A_1, \ldots, A_n са разрешими.

Успех! =

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Второ контролно по Изчислимост и сложност (теория)

13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a).$

Зад. 2. a) Формулирайте теоремата за определимост по рекурсия.

б) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x)=a^x.$

Зад. 3. а) Формулирайте Теоремата на Пост.

6) Приложете тази теорема, за да докажете, че ако A_1, \ldots, A_n са две по две непресичащи се и полуразрешими множества от естествени числа, такива че $A_1 \cup \cdots \cup A_n = \mathbb{N}$, то A_1, \ldots, A_n са разрешими.

Успех! 🛎

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Второ контролно по Изчислимост и сложност (теория)

13/01/19

Зад. 1. а) Дефинирайте означенията $P_a, \varphi_a^{(n)}$ и Φ_n . Дайте определение за индекс на изчислима функция.

- б) Формулирайте Теоремата за универсалната функция.
- в) Докажете, че ако a е индекс на функцията $\lambda x.\Phi_1(x,x)+1$, то $\neg!\varphi_a(a).$

Зад. 2. а) Формулирайте теоремата за определимост по рекурсия

6) Докажете, че съществува поне едно естествено число a, такова че $\varphi_a(x)=a^x$.

Зад. 3. а) Формулирайте Теоремата на Пост.

6) Приложете тази теорема, за да докажете, че ако A_1,\ldots,A_n са две по две непресичащи се и полуразрешним множества от естествени числа, такива че $A_1\cup\cdots\cup A_n=\mathbb{N}$, то A_1,\ldots,A_n са разрешими.

Успех! ¨