

ENGINEERING MATHEMATICS - I Ordinary Differential Equations

Dr. Karthiyayini

Department of Science and Humanities

Unit 3: Ordinary Differential Equations

Session: 3

Sub Topic: Bernoulli's Differential Equation

Dr. Karthiyayini

Department of Science & Humanities

Bernoulli's Differential Equation

Any differential equation of the form

$$\frac{dy}{dx} + Py = Qy^n$$

where P and Q are functions of x only is called as Bernoulli's Differential equation in y.

To reduce this to the linear equation in standard form,

Step 1 : Divide throughout by y^n to obtain

$$\frac{1}{y^n}.\frac{dy}{dx} + Py^{1-n} = Q$$

Bernoulli's Differential Equation

$$(1-n)y^{-n}\frac{dy}{dx} = \frac{dz}{dx}$$

and

$$\frac{dz}{dx} + P'z = Q'$$

which is linear in z

Integrating Factor =
$$IF = e^{\int P'dx}$$

Solution:
$$z(IF) = \int Q' \cdot (IF) dx + c$$

Bernoulli's Differential Equation

Any differential equation of the form

$$\frac{dx}{dy} + Px = Qx^n$$

where P and Q are functions of y only is called as Bernoulli's Differential equation in x.

To reduce this to the linear equation in standard form,

Step 1 : Divide throughout by x^n to obtain

$$\frac{1}{x^n}.\frac{dx}{dy}+Px^{1-n}=Q$$

Bernoulli's Differential Equation

■ Take the substitution $x^{1-n} = z$, then

$$(1-n)x^{-n}\frac{dx}{dy} = \frac{dz}{dy}$$

and

$$\frac{dz}{dx} + P'z = Q'$$

which is linear in z

Integrating Factor =
$$IF = e^{\int P'dy}$$

Solution:
$$z(IF) = \int Q'.(IF)dy + c$$

Example 1.

Solve:
$$\frac{dy}{dx} + \frac{y}{x} = y^2x$$

$$\frac{dy}{dx} + \mathbf{P}y = \mathbf{Q}y^{\mathbf{n}} \quad (\mathbf{Linear in } y)$$

where
$$P = \frac{1}{x}$$
, $Q = x$ and $n = 2$.

- Dividing throughout by y^2 , $\frac{1}{y^2} \frac{dy}{dx} + \left(\frac{1}{xy}\right) = x$
- Taking the substitution, $y^{-1} = z$, we obtain $\frac{dz}{dx} = \frac{-1}{y^2} \cdot \frac{dy}{dx}$

On simplifying,
$$-\frac{dz}{dx} + \frac{1}{x}$$
 $z = x$ or $\frac{dz}{dx} - \frac{z}{x} = -x$

This is a linear differential equation of the form $\frac{dz}{dx} + \mathbf{P}'\mathbf{z} = \mathbf{Q}'$

Example 1.

where
$$P' = -\frac{1}{x}$$
 and $Q' = x$

Integrating Factor =
$$IF = e^{-\int P'dx} = e^{-\int \frac{1}{x}dx} = \frac{1}{x}$$

General Solution:
$$z(IF) = \int Q' \cdot (IF) dx + c$$

$$\Rightarrow z \cdot \frac{1}{x} = \int -x \cdot \frac{1}{x} dx + c$$

$$\Rightarrow z \cdot \frac{1}{x} = -x + c$$

$$\Rightarrow \frac{1}{xy} = -x + c \text{ is the required solution.}$$

Example 2.

Solve:
$$\frac{dr}{d\theta} = rtan\theta - \frac{r^2}{cos\theta}$$

Solution: The given equation can be written as

$$\frac{dr}{d\theta} - rtan\theta = -\frac{r^2}{\cos\theta}$$

This is the Bernoulli's equation linear in r where $\mathbf{P} = -tan\theta$, $\mathbf{Q} = -1/cos\theta$ and n=2

lacktriangle Dividing throughout by ${f r^2}$,

$$\frac{1}{r^2}\frac{dr}{d\theta} - \frac{1}{r}\tan\theta = -\frac{1}{\cos\theta} = -\sec\theta$$

Example 2.

■ Taking the substitution,
$$\frac{1}{r} = t$$
, we obtain $\frac{dt}{d\theta} = \frac{-1}{r^2} \cdot \frac{dr}{d\theta}$

Therefore
$$-\frac{dt}{d\theta} - t \cdot tan\theta = -sec\theta$$

 $\Rightarrow \frac{dt}{d\theta} + t \cdot tan\theta = sec\theta$

This is a linear differential equation of the form $\frac{dt}{dx} + P't = Q'$ where $P' = tan\theta$ and $Q' = sec\theta$

Example 2.

Integrating Factor = IF =
$$e^{\int P'd\theta} = e^{\int tan\theta d\theta} = e^{\log(sec\theta)} = sec\theta$$

General Solution :
$$t(IF) = \int Q'.(IF)d\theta + c$$

$$\Rightarrow tsec\theta = \int sec^2\theta d\theta + c$$

$$\Rightarrow tsec\theta = tan\theta + c$$

$$\Rightarrow \frac{sec\theta}{r} = tan\theta + c$$
 is the required solution.

THANK YOU

Dr. Karthiyayini

Department of Science & Humanities

Karthiyayini.roy@pes.edu

+91 80 6618 6651