LA Final

2023/12/18

5. "Suppose $Ax=\lambda x$. If $\lambda=0$, then the eigenvector x is in the nullspace. If $\lambda\neq 0$, then the eigenvector x is in the column space of A. The eigenvectors in the column space has r (rank of A) linearly independent vectors and the eigenvectors in the nullspace has n-r linearly independent vectors. Since n+(n-r)=n, any $n\times n$ matrix A must have n linearly independent eigenvectors." What is wrong in the statement to lead to the incorrect conclusion? Find a 2×2 example (from the internet) that shows the statement is incorrect. Is the statement correct when A is a projection matrix?

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
, $\lambda = 2(repeated) \rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, eigenvector $= \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

5. "Suppose $Ax=\lambda x$. If $\lambda=0$, then the eigenvector x is in the nullspace. If $\lambda\neq 0$, then the eigenvector x is in the column space of A. The eigenvectors in the column space has r (rank of A) linearly independent vectors and the eigenvectors in the nullspace has n-r linearly independent vectors. Since n+(n-r)=n, any $n\times n$ matrix A must have n linearly independent eigenvectors." What is wrong in the statement to lead to the incorrect conclusion? Find a 2×2 example (from the internet) that shows the statement is incorrect. Is the statement correct when A is a projection matrix?

P: projection matrix, vector $x \in \mathbb{R}^n$

$$P \text{ project } x \text{ into a subspace}(dim. = r)$$

 $Px \in col(P)$

for
$$P$$
:
$$col(P) = row(P), null(P) = left \ null(P)$$

6. Show that the eigenvalues of A equal the eigenvalues of A^T . Show by an example that the eigenvectors of A and A^T are not the same.

$$\det(A - \lambda I) = \det(A - \lambda I)^T = \det(A^T - \lambda I^T) = \det(A^T - \lambda I) = 0$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$
, $\lambda = 1 \rightarrow eigenvector = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\lambda = 2 \rightarrow eigenvector = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$A^T = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \text{ } \lambda = 1 \rightarrow eigenvector = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \text{ } \lambda = 2 \rightarrow eigenvector = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

- 7. A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2, Is this information enough to find: (a) the rank of B, (b) the determinant of B^TB , (c) the eigenvalues of B^TB ? How?
 - (a) $Dim. of Null(B) = 1 \rightarrow Rank(B) = 3 1 = 2$
 - (b) $det(B^TB) = detB^T detB = (detB)^2 = (0 \cdot 1 \cdot 2)^2 = 0$

(c)B =
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, $\lambda = 0, 1, 2$ or B = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, $\lambda = 0, 1, 2$

$$\mathbf{B}^{\mathrm{T}}\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \ \lambda = 0, 1, 2 \text{ or } \mathbf{B}^{\mathrm{T}}\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \ \lambda = 0, 2, 4$$

• We can't find all λ of B^TB . But , one λ of B^TB is 0.

HW 10-2

If each number is the average of the two previous numbers, G_{k+2} = 1/2 (G_{k+1} + G_k), set up the matrix A and diagonalize it. Starting from G₀ = 0 and G₁ = 1/2, find a formula for G_k and compute its limit as k→∞.

Let
$$u_k = \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}$$
, $k = 0,1,2 \dots$ $(u_0 = \begin{bmatrix} G_1 \\ G_0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix})$

$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} G_{k+1} + \frac{1}{2} G_k \\ G_{k+1} \end{bmatrix} \to u_{k+1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix} u_k$$

注意維度!

HW 10-2

2. If each number is the average of the two previous numbers, $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$, set up the matrix A and diagonalize it. Starting from $G_0 = 0$ and $G_1 = \frac{1}{2}$, find a

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix}, \det(A - \lambda I) = 0, \lambda = 1, -\frac{1}{2}$$

formula for G_k and compute its limit as $k \to \infty$.

$$A = S\Lambda S^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

HW 10-2

If each number is the average of the two previous numbers, G_{k+2} = 1/2 (G_{k+1} + G_k), set up the matrix A and diagonalize it. Starting from G₀ = 0 and G₁ = 1/2, find a formula for G_k and compute its limit as k→∞.

$$\begin{bmatrix} G_k \\ G_{k-1} \end{bmatrix} = u_{k-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix} u_{k-2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 0 \end{bmatrix}^{k-1} u_0 = A^{k-1} u_0 = (S\Lambda S^{-1})^{k-1} u_0$$

$$= S\Lambda^{k-1} \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} = S \begin{bmatrix} 1 & 0 \\ 0 & \left(-\frac{1}{2}\right)^{k-1} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} = S \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \left(-\frac{1}{2}\right)^{k-1} \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{3} \left(-\frac{1}{2} \right)^{k-1} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} \to G_k = \frac{1}{3} + \frac{1}{6} \left(-\frac{1}{2} \right)^{k-1}, \text{ if } k \to \infty, G_k = \frac{1}{3}$$

HW 11-5

5. Rewrite the following matrices in the form $\lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H$.

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad R = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

$$P = 0 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}^{T} + 1 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{T} = 0 \cdot \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} + 1 \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$Q = 1 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{T} - 1 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}^{T} = 1 \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} - 1 \cdot \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$R = 5 \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}^{T} - 5 \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} -1 \\ 2 \end{bmatrix}^{T} = 5 \cdot \begin{bmatrix} \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

HW 11-6

- 6. Write one significant fact about the eigenvalues of each of the following
- (a) A real symmetric matrix : $\forall \lambda_i \in R$
- (b) A stable matrix (solutions of du/dt=Au approach zero) : eigenvalues: a+bi, a<0, $b \in R$

No "=(Neutrally stable)"

- (c) A Markov matrix : $\lambda_{max} = 1$, $|\lambda_i| \le 1$
- (d) A continuous Markov matrix $\lambda_{max} = 0$, $\lambda_i \leq 0$
- (e) A defective (nondiagonalizable) matrix : if A is $n \times n$, the number of distinct $\lambda < n$
- (f) A singular matrix : $Dim.of\ nullspace \ge 1 \rightarrow one\ eigenvalue = 0$

HW 12-3

3. Show that an upper triangular and normal matrix must be diagonal.

Let
$$A = \{a_{ij}\}, a_{ij} = 0, for \ i > j$$

For $i = 1, \because A^H A = AA^H \rightarrow |a_{11}|^2 = |a_{11}|^2 + \sum_{j=2}^n |a_{1j}|^2 \rightarrow \sum_{j=2}^n |a_{1j}|^2 = 0$
 $\rightarrow a_{1j} = 0, for \ j > 1$
For $i = 2, \because A^H A = AA^H \rightarrow |a_{12}|^2 + |a_{22}|^2 = |a_{22}|^2 + \sum_{j=3}^n |a_{2j}|^2 \rightarrow \sum_{j=3}^n |a_{2j}|^2 = 0$
 $\rightarrow a_{2j} = 0, for \ j > 2$
For $i = k, \because A^H A = AA^H \rightarrow \sum_{i=1}^{k-1} |a_{ik}|^2 + |a_{kk}|^2 = |a_{kk}|^2 + \sum_{j>k}^n |a_{kj}|^2 \rightarrow \sum_{j>k}^n |a_{kj}|^2 = 0$
 $\rightarrow a_{kj} = 0, for \ j > k$

HW 12-3

3. Show that an upper triangular and normal matrix must be diagonal.

For
$$i = k$$
, $A^H A = AA^H \rightarrow \sum_{i=1}^{k-1} |a_{ik}|^2 + |a_{kk}|^2 = |a_{kk}|^2 + \sum_{j>k}^n |a_{kj}|^2 \rightarrow \sum_{j>k}^n |a_{kj}|^2 = 0$
 $A^H A = AA^H \rightarrow \sum_{i=1}^{k-1} |a_{ik}|^2 + |a_{kk}|^2 = |a_{kk}|^2 + \sum_{j>k}^n |a_{kj}|^2 \rightarrow \sum_{j>k}^n |a_{kj}|^2 = 0$

By mathematical induction, $a_{ij} = 0$, for i < j \therefore A must be diagonal.

HW 12-4

4. Show that all permutation matrices are normal

```
P: permutation matrix

∴ P is orthogonal matrix ∴ P^{-1} = P^{T}

P^{H} = P^{T}

P^{H} = P^{T} = P^{T}P = P^{H}P = I

∴ P is a normal matrix.
```

3. Find the minimum values of

$$R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{x_1^2 + x_2^2} \text{ and } R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{2x_1^2 + x_2^2} \text{ (hint: let } y = \sqrt{2}x_1\text{)}$$

By Rayleigh's qoutient:
$$R(x) = \frac{x^T A x}{x^T x}$$

 $\lambda_{min} \le R(x) \le \lambda_{max}$

$$R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{x_1^2 + x_2^2} \to x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, A = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$$

$$\rightarrow \lambda = \frac{1}{2}, \frac{3}{2} \rightarrow minimum \ of \ R(x) = \frac{1}{2}$$

3. Find the minimum values of

$$R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{x_1^2 + x_2^2} \text{ and } R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{2x_1^2 + x_2^2} \text{(hint: let } y = \sqrt{2}x_1\text{)}$$

By Rayleigh's qoutient:
$$R(x) = \frac{x^T A x}{x^T x}$$

 $\lambda_{min} \le R(x) \le \lambda_{max}$

$$R(x) = \frac{x_1^2 - x_1 x_2 + x_2^2}{2x_1^2 + x_2^2} \to x = \begin{bmatrix} \sqrt{2}x_1 \\ x_2 \end{bmatrix}, A = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{2}}{4} \\ -\frac{\sqrt{2}}{4} & 1 \end{bmatrix}$$

$$\rightarrow \lambda = \frac{3 \pm \sqrt{3}}{4} \rightarrow minimum \ of \ R(x) = \frac{3 - \sqrt{3}}{4}$$

- 4. The ten largest U.S. industrial corporations yield the following data.
- (a) Calculate the covariance and correlation matrices for the Sales and Profit
- Excel: COVARIANCE.S and CORREL

Covariance	Sales	Profit
Sales	1000509114	25575599.63
Profit	25575599.63	1430020.011

Correlation	Sales	Profit
Sales	1	0.67615
Profit	0.67615	1

- 4. The ten largest U.S. industrial corporations yield the following data.
- (b) Use the first eigenvector of the covariance matrix to find a weighted index of the sales and the profit so that the companies' performance can be best distinguished.
- (c) Use the first eigenvector of the correlation matrix to find a weighted index so that the companies' performance can be distinguished.

Covariance	no.1		no.2	Correlation	no.1	no.2
eigenvalue		1001163400	775734.3	eigenvalue	1.67615	0.32385
eigenvector		0.99967293	0.02557405	eigenvector	0.70711	-0.7071
(unit vector)		0.02557405	-0.99967293	(unit vector)	0.70711	0.70711

Relative weights not weighted index!!

weighted index:
$$z_k = e_i^T y_k = e_{i1} y_{k1} + e_{i2} y_{k2} + \dots + e_{ip} y_{kp}$$

- 4. The ten largest U.S. industrial corporations yield the following data.
- (d) Compare and discuss the difference between the two indices found in (b) and (c).
- (c): normalized
- (e) Use the second eigenvector of the correlation matrix to find a second weighted index. Show that this index is uncorrelated to the index in (c) and compare the two indexes.

$$Cov(e_2^T y, e_1^T y) = e_2^T B^T B e_1 = 0 \ (\because e_1 \perp e_2)$$

 e_1 : First Principal component, λ_1 : the first largest variance

 e_2 : Second Principal component, λ_2 : the second largest variance