Conductometric Titration

Compounds that wholly or partially dissociate into ions in water/solvents are electrolytes. The conductance depends on

the concentration of the ions
temperature of the solution
nature of the ion (charge per ion, mobility/size etc.)

This experiment, we will use conductometry to determine the concentration of HCl

Total conductance of the solution follows Ohm's Law

$$i = V/R$$

Where, i = current, V = potential difference, R = resistance (Ohms)

Conductivity Measurement set-up

Conductivity cell

Electrodes

Two parallel plates (inert metal: Au, Pt) are used as electrodes. The resistance/conductance of an electrolyte is measured by immersing the electrodes in the electrolyte and applying an electric field between the electrodes. Electrodes are separated by 1 cm and the are is 1 cm².

Primary Standard Solution

0.02 M KCl solution at 25 °C has a specific conductivity of $0.01286\Omega^{-1}/\text{cm}$ and is used as a primary standard.

Useful Terms

Specific Conductance (κ): The conductance of one cm³ of a material, which is an inherent property of the material. Units of κ is mhos/cm or Siemens/cm.

Molar Conductivity (Λ_{mol}): The conductivity of a solution that contains one mole of the substance (solute) in 1 liter. Unit of Λ is S cm² mol⁻¹.

$$\Lambda_{\rm mol} = \kappa/C$$

where C is concentration in mol/liter.

Equivalent Conductivity (Λ_{eq}): The conductivity per gram equivalent of the electrolyte.

$$\Lambda_{\rm eq} = \kappa/C_{\rm eq}$$

where C_{eq} is the equivalent concentration of the electrolyte (gram equivalent in L)

Molar conductivity of various ions at infinite dilution at 25°C

Ions	Molar Conductivity (S cm ² mol ⁻¹)
\mathbf{K}^{+}	73.52
Na^+	50.11
Li ⁺	38.69
\mathbf{H}^{+}	349.82
$\mathbf{A}\mathbf{g}^{+}$ \mathbf{F}^{-}	61.92
F-	55.5
Cl ⁻	76.34
Br ⁻	78.4
OH-	198
CH ₃ COO-	41.0

Applications of Conductometry

To determine

- Solubility of sparingly soluble salts
- Ionic product of water
- Basicity of organic acids
- Salinity of sea water (oceanographic work)
- Chemical equilibrium in ionic reactions
- Conductometric titration

Conductometric Titration

The determination of end point of a titration by means of conductivity measurements is known as conductometric titration.

Types of Conductometric Titrations

Acid Base Titration Precipitation Titration Redox Titration

Conductometric titration of a strong acid (HCl) vs. a strong base (NaOH)

Conductometric titration of a weak acid (acetic acid) vs. a strong base (NaOH)

Conductometric titration of a strong acid (H₂SO₄) vs. a weak base (NH₄OH)

Conductometric titration of a mixture of a strong acid (HCl) and a weak acid (CH $_3$ COOH) vs. a strong base (NaOH) or a weak base (NH $_4$ OH)

Images courtesy www.embibe.com

Conductometric Titration: Strong Acid Vs strong Base

NaOH (aq) + HCl (aq)
$$\longrightarrow$$
 NaCl (aq) + H₂O

Experimental Protocol

- 1. Take NaOH (0.1 N) solution in a 50 mL burette and adjust zero reading.
- 2. Pipette out 25 mL of the given HCI solution in a 100/150 mL beaker. Add 25 mL of water to this.
- 3. Now add the NaOH solution from the burette in (2 drops) 0.2 mL increments and record the conductivity after mixing the solution.
- 4. Continue the titration till you reach the initial conductivity value.
- 5. Repeat the experiment twice.
- 6. Plot the graph of volume of NaOH vs conductance and determine the equivalence point of the titration.
- 7. Calculate the normality of HCl solution.

Observations

Given Concentration of NaOH solution = 0.1 M

Vol. NaOH	Conductance
0	1.93
0.2	1.82
0.4	1.71
0.6	1.6
0.8	1.5
1	1.39
1.2	1.28
1.4	1.17
1.6	1.06
1.8	0.95
2	0.84
2.2	0.75
2.4	0.67
2.6	0.59
2.8	0.63
3	0.7
3.2	0.75
3.4	0.82
3.6	0.89
3.8	0.95
4	1.02
4.2	1.09
4.4	1.15
4.6	1.21
4.8	1.28
5	1.34

Conductance	
1.41	
1.47	
1.54	
1.6	
1.66	
1.71	
1.76	
1.82	
1.88	
1.93	

Observations

Image of a graph Conductivity vs Volume of NaOH

Observations and Calculations

From graph;

Note the end point of titration (in this case when 2.6 mL of NaOH was consumed)

At the end point;

moles of NaOH = moles of HCl

$$M_{NaOH} \times V_{NaOH} = M_{HCl} \times V_{HCl}$$

$$0.1 \times 2.6 = M_{HCl} \times 25$$

Molarity of HCl = 0.01 M

Conductometric titration was performed to determine the concentration of a given acid sample

Molarity of given HCl = 0.01 M

Advantages of Conductometric Titrations

- No need of indicator
- Colored or dilute solutions or turbid suspensions can be used for titrations
- Temperature is maintained constant throughout the titration
- End point can be determined accurately, and errors are minimized as the end point is being determined graphically