Logic and Foundation with Haskell

Exercise sheet 11

In lecture, we defined the natural numbers ω in ZFC as consisting of all sets that are contained in every inductive set.

Definition 1. A set A is *inductive*, if it contains \emptyset , and if $a \in A$ implies $a^+ := a \cup \{a\} \in A$.

Definition 2. The natural numbers ω consist of sets n that are contained in every inductive set.

Furthermore, recall that a *Peano system* $\langle N, s, e \rangle$ consists of a set N, a function $s : N \to N$, and a designated element $e \in N$ that satisfies the Peano axioms:

- (i) $e \notin \operatorname{ran}(s)$
- (ii) s is injective,
- (iii) any subset $A \subseteq N$ that contains e and is closed under s is equal to N.

In this sheet, we will show that the naturals numbers ω are a Peano system. For this, it is helpful to introduce the following definition:

Definition 3. A set A is called *transitive* if it satisfies the following condition:

$$\forall a \in A \ \forall x \in a \ (x \in a \in A \ \rightarrow \ x \in A).$$

Exercise 1. Show that the following conditions are equivalent to being a transitive set:

- (i) $| A \subset A$
- (ii) $\forall a \in A \ (a \in A \rightarrow a \subseteq A)$,
- (iii) $A \subset \mathcal{P}(A)$.

Exercise 2. Show that for any transitive set $| \cdot | (a^+) = a$.

Exercise 3. Show that every natural number $n \in \omega$ is a transitive set.

Exercise 4 (Bonus). Show that the natural numbers ω form a transitive set.

Exercise 5. Prove that $\langle \omega, (-)^+, \emptyset \rangle$ form a Peano system.

Hint: Use Exercises 2 and 3 to prove injectivity of the successor operation $(-)^+$.