a)
$$\log(s_i^2) + \frac{2\rho_i}{n} = (-0,1)$$

 $\log(s_o^2) + \frac{2\rho_i}{n} < \log(s_i^2) + \frac{2\rho_i}{n}$
 $\log(s_o^2) - \log(s_i^2) < \frac{2}{n} (\rho_i - \rho_o)$ $\log(a) - \log(b) = \log(\frac{a}{b})$
 $\log(\frac{s_o^2}{s_i^2}) < \frac{2(\rho_i - \rho_o)}{n}$ exponent boun sides
b) $e^{\frac{3}{2}} \times 1 + \frac{2}{n} (\rho_i - \rho_o) \approx 1 + \frac{2}{n} (\rho_i - \rho_o)$
 $\frac{s_o^2}{s_i^2} < 1 + \frac{2}{n} (\rho_i - \rho_o)$
 $\frac{s_o^2}{s_i^2} - 1 < \frac{2}{n} (\rho_i - \rho_o)$ (x)
c) $s^2 = e'e/(n-k)$ $s^2 = e'e/(n-\rho_o) - e'e/(n-\rho_o)$ $s^2 = e'e/(n-\rho_o)$
 (x) LHS $so^2 - s_i^2 = e'e/(n-\rho_o) - e'e/(n-\rho_o)$ $s^2 = e'e/(n-\rho_o)$
 (x) becomes $so^2 - s_i^2 = e'e/(n-\rho_o)$

d)
$$F = \frac{(e_{n}'e_{n} - e_{n}'e_{n})}{(e_{n} - e_{n})}$$

from ()
$$\frac{e^{x'}e^{x} - e^{u'}e^{u}}{e^{u'}e^{u}} < \frac{2}{n} (\rho_{1} - \rho_{0}) (+ *)$$
 $\frac{e^{u'}e^{u}}{e^{u'}e^{u}} < \frac{2}{n} (\rho_{1} - \rho_{0}) (+ *)$
 $\frac{n - \rho_{1}}{\rho_{1} - \rho_{0}}$
 $\frac{(e^{u'}e^{u} - e^{u'}e^{u})(\rho_{1} - \rho_{0})}{e^{u'}e^{u}} < \frac{2}{n}$
 $\frac{(e^{u'}e^{u} - e^{u'}e^{u})(\rho_{1} - \rho_{0})}{n} < \frac{2}{n}$
 $\frac{(e^{u'}e^{u} - e^{u'}e^{u})(\rho_{1} - \rho_{0})}{n} < \frac{2}{n}$