(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/35725 A1

(51) International Patent Classification7: A01H 1/00, 5/00, C12N 5/04, 15/00, 15/82, C12P 21/02

(21) International Application Number: PCT/US00/31414

(22) International Filing Date:

14 November 2000 (14.11.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/166,228 US 17 November 1999 (17.11.1999) 60/197,899 US 17 April 2000 (17.04.2000) 60/227,439 US 22 August 2000 (22.08.2000)

(71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).

(71) Applicants and

(72) Inventors: JIANG, Cai-Zhong [CN/US]; 34495 Heathrow Terrace, Fremont, CA 94555 (US). HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US). PINEDA, Omaira [US/US]; 19563 Helen Place, Castro Valley, CA 94546 (US). PILGRIM, Marsha [—/US]; 790 Saltillo Place, Fremont, CA 94536 (US). ADAM, Luc [CA/US]; 25800 Industrial Boulevard, L403, Hayward, CA 94545 (US). RIECHMANN. Jose, Luis [ES/US]; 115 Moss Avenue #308, Oakland, CA 94611 (US). YU, Guo-Liang [CN/US]; 242 Gravatt Drive, Berkeley, CA 94705 (US). SAMAHA, Raymond [US/US]; 2224 Albert Lane, Capitola, CA 95010 (US).

- (74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: YIELD-RELATED GENES

YIELD-RELATED GENES

RELATED APPLICATION INFORMATION

The present invention claims the benefit from US Provisional Patent Application Serial

Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait Modification III" filed August 22, 2000.

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

10

15

20

25

BACKGROUND OF THE INVENTION

Because sugars are important signaling molecules, the ability to control either the concentration of a signaling sugar or how the plant perceives or responds to a signaling sugar can be used to control plant development, physiology or metabolism. For example, the flux of sucrose (a disaccharide sugar used for systemically transporting carbon and energy in most plants) has been shown to affect gene expression and alter storage compound accumulation in seeds (Wobus et al (1999) Biol. Chem. 380:937-944). Manipulation of the sucrose signaling pathway in seeds may therefore cause seeds to have more protein, oil or carbohydrate, depending on the type of manipulation. Similarly, in tubers, sucrose is converted to starch which is used as an energy store.

It is thought that sugar signaling pathways may partially determine the levels of starch synthesized in the tubers (Zrenner et al. (1996) Plant J. 9:671-681). The manipulation of sugar signaling in tubers could lead to tubers with a higher starch content. Thus, manipulating the sugar signal transduction pathway may lead to altered gene expression to produce plants with desirable traits. In particular, manipulation of sugar signal transduction pathways could be used to alter source-sink relationships in seeds, tubers, roots and other storage organs leading to an increase in yield.

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways by modifying a plant's sugar-sensing characteristics and thereby, increasing the yield.

SUMMARY OF THE INVENTION

30

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide

5

10

15

20

25

30

comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-35, or a complementary nucleotide sequence thereof; (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's sugar-sensing characteristics; (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and (1) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention is a plant lacking a nucleotide sequence encoding a polypeptide described above. The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

5

10

15

20

25

30

Furthermore, the invention relates to a method for producing a plant having improved sugar-sensing traits. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for modified sugar-sensing traits.

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant sugar-sensing trait.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or

more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant sugar-sensing phenotype.

5

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's sugar-sensing characteristics when the expression levels of the polynucleotides or expression levels or activity levels of the polypeptides are altered. Sugars are central regulatory molecules that control aspects of physiology, metabolism and development. Therefore, the polynucleotides and polypeptides are useful for modifying the growth and germination rates of plants, photosynthesis, glyoxylate metabolism, respiration, starch and

sucrose synthesis and degradation, pathogen response, wounding response, cell cycle regulation, pigmentation, flowering and senescense of plants and for modifying sink-source relationships in seeds, tubers, roots and other storage organs leading to an increase in yield.

5

10

15

20

25

30

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from Arabidopsis thaliana and can belong, e.g., to one or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) J. Biol. Chem. 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) Trends Genet. 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) J. Biol. Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) Plant J. 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes, Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet. 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNAbinding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the BPF-1 protein (Box Pbinding factor) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) Plant Cell 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, of as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

DEFINITIONS

5

10

15

20

25

30

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

5

10

15

20

25

30

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain

for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

5

10

15

20

25

30

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by available biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

Trait modifications of particular interest include those to seed (such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids),

glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time, flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

5

10

15

20

25

30

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's sugar-sensing characteristics..

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the sugar-sensing characteristics of the plants were observed.

Therefore, the polynucleotides and polypeptides can be employed to improve the sugar-sensing characteristics of plants.

Making polynucleotides

5

10

15

20

25

30

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

A variety of methods exist for producing the polynucleotides of the invention. Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 Academic Press, Inc., San Diego, CA ("Berger"); Sambrook et al., <u>Molecular Cloning - A Laboratory Manual</u> (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and <u>Current Protocols in Molecular Biology</u>, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are

summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically ligated to produce a desired sequence, e.g., a polynucletotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) <u>Tetrahedron Letters</u> 22:1859-69; and Matthes et al. (1984) <u>EMBO J.</u> 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

HOMOLOGOUS SEQUENCES

5

10

15

20

25

30

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species, including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

Transcription factors that are homologous to the listed sequences will typically share at least about 34% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

Identifying Nucleic Acids by Hybridization

5

10

15

20

25

30

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can

be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising the wash temperature and/or decreasing the concentration of SSC.

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

SEQUENCE VARIATIONS

5

10

15

20

25

30

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC, TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

<u>Table 1</u>

5

10

15

20

Amino acids			Codon					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	С	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	TTC	TTT				
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT				
Isoleucine	Ile	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	P	CCA	CCC	CCG	CCT		
Glutamine	Gln	Q	CAA	CAG				0.07
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T	ACA	ACC	ACG	ACT		
Valine	Val	V	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid

substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

Table 2

Residue	Conservative Substitutions			
Ala	Ser			
Arg	Lys			
Asn	Gln; His			
Asp	Glu			
Gln	Asn			
Cys	Ser			
Glu	Asp			
Gly	Pro			
His	Asn; Gln			
Ile	Leu, Val			
Leu	Ile; Val			
Lys	Arg; Gln			
Met	Leu; Ile			
Phe	Met; Leu; Tyr			
Ser	Thr; Gly			
Thr	Ser;Val			
Trp	Тут			
Tyr	Trp; Phe			
Val	Ile; Leu			

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

5

10

FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

5

10

15

20

25

30

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for *S. cerevisiae* and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and *E. coli* prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

EXPRESSION AND MODIFICATION OF POLYPEPTIDES

5

10

15

20

25

30

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

5

10

15

20

25

30

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues (see, e.g., Odel et al. (1985) Nature 313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

5

10

15

20

25

30

A variety of plant gene promoters that regulate gene expression in response to environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flowerspecific (Kaiser et al, (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunI, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) Plant Mol. Biol. 40:387-396, and the PDF1.2 promoter described in Manners et al. (1998) Plant Mol. Biol. 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) Plant Mol Biol 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) Science 270: 1986-1988); or late seed development (Odell et al. (1994) Plant Physiol 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant

genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

Specific initiation signals can aid in efficient translation of coding sequences.

These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where
a coding sequence, its initiation codon and unstream sequences are inserted into the appropriate

a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

10

15

20

25

30

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium

tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

Modified Amino Acids

5

10

15

20

25

30

Polypeptides of the invention may contain one or more modified amino acids.

The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the literature.

IDENTIFICATION OF ADDITIONAL FACTORS

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of

interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g, a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

5

10

15

20

25

30

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid

and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

IDENTIFICATION OF MODULATORS

5

10

15

20

25

30

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

5

10

15

20

25

30

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, Int. J. Pept. Prot. Res. 37:487-493 (1991) and Houghton et al. Nature 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used.

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

Indeed, entire high throughput screening systems are commercially available. These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s)

appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell, plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention.

SUBSEQUENCES

5

10

15

20

25

30

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least

20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted *supra*.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, *supra*.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

PRODUCTION OF TRANSGENIC PLANTS

5

10

15

20

25

30

Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the seed characteristics of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved sugar-sensing characteristics, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Antisense and Cosuppression Approaches

5

10

15

20

25

30

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997)

Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various lengths can be utilized, preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous

mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

5

10

15

20

25

30

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of *Agrobacterium tumefaciens*. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single transgene insertion event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

A plant trait can also be modified by using the cre-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of

the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

5

10

15

20

25

30

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean, clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Curcurbitaceae* (melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) <u>Handbook of Plant Cell Culture – Crop Species</u>. Macmillan Publ. Co. Shimamoto et al. (1989) <u>Nature</u> 338:274-276; Fromm et al. (1990) <u>Bio/Technology</u> 8:833-839; and Vasil et al. (1990) <u>Bio/Technology</u> 8:429-434.

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated

transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526;

5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

5

10

15

20

25

30

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

INTEGRATED SYSTEMS—SEQUENCE IDENTITY

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may be used to associate or link certain functional benefits, such improved sugar-sensing characteristics, with one or more identified sequence.

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

5

10

15

20

25

30

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. J. Mol. Biol 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an

expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

5

10

15

20

25

30

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is

provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

10 EXAMPLES

5

15

20

25

30

The following examples are intended to illustrate but not limit the present invention.

EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

Alternatively, Arabidopsis *thaliana* cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60° C) and labeled with ³²P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60° C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the MarathonTM cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded

cDNA, blunting cDNA ends, followed by ligation of the MarathonTM Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

5

10

15

20

25

30

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with SalI and NotI restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform $Agrobacterium\ tumefaciens$ cells expressing the gene products. The stock of $Agrobacterium\ tumefaciens$ cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. $Agrobacterium\ strain\ ABI\ was\ grown\ in\ 250\ ml\ LB\ medium\ (Sigma)\ overnight\ at\ 28°C\ with\ shaking\ until an\ absorbance\ (A_{600})\ of\ 0.5-1.0\ was\ reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4°C. Cells were then$

resuspended in 250 μ l chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μ l chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μ l and 750 μ l, respectively. Resuspended cells were then distributed into 40 μ l aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

5

10

15

30

Agrobacterium cells were transformed with plasmids prepared as described above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28° C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR

After transformation of Agrobacterium tumefaciens with plasmid vectors

containing the gene, single Agrobacterium colonies were identified, propagated, and used to transform Arabidopsis plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were iñoculated with the colonies and grown at 28° C with shaking for 2 days until an absorbance (A₆₀₀) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1

X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μM benzylamino purine (Sigma), 200 μl/L Silwet L-77 (Lehle Seeds) until an absorbance (A₆₀₀) of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4" pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μ E/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

EXAMPLE V. IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H₂O. The seeds were stored in the last wash water at 4° C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 μE/m²/sec) at 22-23° C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T₁ generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

5

10

15

20

EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

The screening of insertion mutagenized *Arabidopsis* collections for null mutants in a known target gene was essentially as described in Krysan et al (1999) <u>Plant Cell</u> 11:2283-2290. Briefly, gene-specific primers, nested by 5-250 base pairs to each other, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

EXAMPLE VII. IDENTIFICATION OF SUGAR-SENSING CHARACTERISTICS PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

Experiments were performed to identify those transformants or knockouts that exhibited modified sugar-sensing. For such studies, seeds from transformants were germinated on media containing 5% glucose or 9.4% sucrose which normally partially restrict hypocotyl elongation. Plants with altered sugar sensing may have either longer or shorter hypocotyls than normal plants when grown on this media. Additionally, other plant traits may be varied such as root mass.

Table 3 shows the phenotypes observed for particular overexpressor or knockout plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or overexpressor plant was analyzed and the observed phenotype.

5

10

15

20

Table 3

SEQ ID No.	GID	Knockout (OE) or overexpressor KO)	Phenotype observed
1	G26	OE	Decreased germination and growth on glucose medium
3	G38	OE	Reduced germination on glucose medium
5	G43	OE	Decreased germination and growth on glucose medium
7	G207	OE	Decreased germination on glucose medium
9	G241	OE	Decreased germination and growth on glucose medium
11	G254	OE	Decreased germination and growth on glucose medium
13	G263	OE	Decreased root growth on sucrose medium
15	G308	OE	No germination on glucose medium
17	G536	OE	Decreased germination and growth on glucose medium
19	G680	OE	Reduced germination on glucose medium
21	G867	OE	Better seedling vigor on sucrose medium
23	G912	OE	Reduced cotyledon expansion in glucose
25	G996	OE	Reduced germination on glucose medium
27	G1068	OE	Reduced cotyledon expansion in glucose
29	G1337	OE	Decreased germination on sucrose medium

For a particular overexpressor that shows a less beneficial sugar-sensing characteristic, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows a less beneficial sugar-sensing characteristic, it may be more useful to select a plant with an increased expression of the particular transcription factor.

EXAMPLE VIII. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

5

10

15

20

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) <u>Proc. Natl. Acad. Sci. USA</u> 89: 10915-10919).

Identified Arabidopsis homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except Arabidopsis thaliana by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (Arabidopsis thaliana). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-54 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs

Nos. 1-54, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6×10^{-40} . For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

5

10

15

20

25

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 44%-79%; SEQ ID No. 3: 36%-72%; SEQ ID No. 5: 42%-67%; SEQ ID No. 7: 55%-82%; SEQ ID No. 9: 69%-84%; SEQ ID No. 11: 57%-90%; SEQ ID No. 13: 48%-85%; SEQ ID No. 15: 38%-85%; SEQ ID No. 17: 77%-87%; SEQ ID No. 19: 42%-88%; SEQ ID No. 21: 54%-69%; SEQ ID No. 23: 34%-71%; SEQ ID No. 25: 55%-95%; SEQ ID No. 27: 54%-95%; SEQ ID No. 29: 37%-58%; SEQ ID No. 31: 42%-70%; SEQ ID No. 33: 46%-62%; SEQ ID No. 35: 64%-84%; SEQ ID No. 37: 57%-87%; SEQ ID No. 39: 40%-80%; SEQ ID No. 41: 56%-82%; SEQ ID No. 43: 64%-93%; SEQ ID No. 45: 35%-86%; SEQ ID No. 47: 84%-91%; SEQ ID No. 49: 85%-91%; SEQ ID No. 51: 38%-89%; SEQ ID No. 53: 53%-75%; SEQ ID No. 55: 57%-72%; SEQ ID No. 57: 57%-69%; SEQ ID No. 59: 49%-86%; SEQ ID No. 61: 49%-78%; SEQ ID No. 63: 51%-86%; SEQ ID No. 65: 42%-72%; SEQ ID No. 67: 35%-69%; and SEQ ID No. 69: 36%-64%.

The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the sugar-sensing characteristics of a plant.

All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

What is claimed is:

15

20

25

1. A transgenic plant with modified sugar-sensing characteristics, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- 5 (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof;
 - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-
- 10 1, where N=1-35, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's sugar-sensing characteristics;
 - (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35;
 - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and
 - (l) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35.
- The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissueactive promoter operably linked to said nucleotide sequence.
 - 3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf,

banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

5

10

15

20

25

- 4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEO ID Nos. 2N, where N=1-35, or a complementary nucleotide sequence thereof;
 - (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-35, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's sugar-sensing characteristics;
 - (h) a nucleotide sequence having at least 34% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 34% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35;
 - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-35; and
- (1) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-35.

5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

- 6. A cloning or expression vector comprising the isolated or recombinant polynucleotide of claim 4.
 - 7. A cell comprising the cloning or expression vector of claim 6.
 - 8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.
- 10
- 9. A composition produced by one or more of:
 - (a) incubating one or more polynucleotide of claim 4 with a nuclease;
 - (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
 - (c) incubating one or more polynucleotide of claim 4 with a polymerase;
 - (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
 - (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
 - (f) incubating one or more polynucleotide of claim 4 with a cell.
- 10. A composition comprising two or more different polynucleotides of claim 4.

20

15

- 11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.
- 12. A plant ectopically expressing an isolated polypeptide of claim 11.

25

- 13. A method for producing a plant having modified sugar-sensing characteristics, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved sugar-sensing characteristics thereby providing the modified plant with a modified sugar-sensing characteristics.
- 14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.

15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:

- (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

5

- 16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.
- 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.
 - 18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:
 - (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
 - (b) monitoring one or more of:
 - (i) expression level of the polynucleotide in the plant;
 - (ii) expression level of the polypeptide in the plant;
 - (iii) modulation of an activity of the polypeptide in the plant; or
 - (iv) modulation of an activity of the polynucleotide in the plant.

20

15

- 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the polynucleotide.
- 20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant sugar-sensing characteristics phenotype.

30

- 21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:
 - (a) providing a sequence database; and,

(b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

5

22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.

10 23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.

- The method of claim 21, further comprising linking the one or more of the
 polynucleotides of claim 4, or encoded polypeptides, to a modified plant sugar-sensing characteristics phenotype.
 - 25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.

20

26. A plant comprising altered expression levels or the activity of an isolated or recombinant polypeptide of claim 11.

Figure 1

SEQ ID No.	GID	cDNA or protein	conserved domain
1	G26	cDNA	
2	G26	protein	67-134
3	G38	cDNA	
4	G38	protein	76-143
5	G43	cDNA	
6	G43	protein	104-172
7	G207	cDNA	
8	G207	protein	6-106
9	G241	cDNA	
10	G241	protein	14-114
11	G254	cDNA	
12	G254	protein	62-106
13	G263	cDNA	
14	G263	protein	15-105
15	G308	cDNA	
16	G308	protein	270-274
17	G536	cDNA	
18	G536	protein	226-233
19	G680	cDNA	
20	G680	protein	24-70
21	G867	cDNA	
22	G867	protein	59-124
23	G912	cDNA	
24	G912	protein	51-118
25	G996	cDNA	·
26	G996	protein	14-114
27	G1068	cDNA	
28	G1068	protein	143-150
29	G1337	cDNA	
30	G1337	protein	9-75

Figure 2

SEQ ID No.	GID	homolog	cDNA or protein	conserved domain
31	G1141	homolog of G38	cDNA	
32	G1141	homolog of G38	protein	75-142
33	G46	homolog of G43	cDNA	
34	G46	homolog of G43	protein	107-175
35	G242	homolog of G207	cDNA	
36	G242	homolog of G207	protein	6-105
37	G227	homolog of G207	cDNA	
38	G227	homolog of G207	protein	13-112
39	G1307	homolog of G241	cDNA	
40	G1307	homolog of G241	protein	14-114
41	G1327	homolog of G241	cDNA	
42	G1327	homolog of G241	protein	14-116
43	G673	homolog of G254	cDNA	
44	G673	homolog of G254	protein	37-95
45	G307	homolog of G308	cDNA	
46	G307	homolog of G308	protein	323-339
47	G529	homolog of G536	cDNA	
48	G529	homolog of G536	protein	229-236
49	G531	homolog of G536	cDNA	
50	G531	homolog of G536	protein	227-234
51	G214	homolog of G680	cDNA	
52	G214	homolog of G680	protein	22-71
53	G1930	homolog of G867	cDNA	
54	G1930	homolog of G867	protein	59-124
55	G9	homolog of G867	cDNA	
56	G9	homolog of G867	protein	62-127
57	G993	homolog of G867	cDNA	
58	G993	homolog of G867	protein	69-134
59	G41	homolog of G912	cDNA	
60	G41	homolog of G912	protein	39-106
61	G40	homolog of G912	cDNA	
62	G40	homolog of G912	protein	45-112
63	G42	homolog of G912	cDNA	
64	G42	homolog of G912	protein	48-115
65	G1127	homolog of G1068	cDNA	
66	G1127		protein	103-110, 155-162
67	G2657	homolog of G1068		
68	G2657	homolog of G1068		116-129
69	G326	homolog of G1337	cDNA	
70	G326	homolog of G1337	protein	11-94, 354-400

Figure 3A

SEQ ID No.	GID	Genbank NID		Species
1	G26	4387560		Lycopersicon esculentum
1	G26	9427282	1.60E-24	Triticum aestivum
1	G26	7206394	4.30E-24	Medicago truncatula
1	G26	7796858	5.40E-24	Glycine max
1	G26	7788764	6.40E-24	Lotus japonicus
1	G26	8098026	1.40E-20	Hordeum vulgare
1	G26	790362	1.80E-20	Nicotiana tabacum
1	G26	569065	2.60E-20	Oryza sativa
1	G26	3264766		Prunus armeniaca
1	G26	7528275	6.20E-20	Mesembryanthemum crystallinum
3	G38	8346772	5.30E-47	Catharanthus roseus
3	G38	7205636		Medicago truncatula
3	G38	7684799		Glycine max
3	G38	9363798		Triticum aestivum
3	G38	7777379		Lotus japonicus
3	G38	8903111		Hordeum vulgare
3	G38	568076		Oryza sativa
3	G38	9434234		Lycopersicon esculentum
3	G38	7324705		Lycopersicon pennellii
3	G38	9298423		Sorghum bicolor
5	G43	5760554		Glycine max
5	G43	7778996		Lotus japonicus
5	G43	5603736		Lycopersicon esculentum
5	G43	6478844		Matricaria chamomilla
5	G43	790361		Nicotiana tabacum
5	G43	7528275		Mesembryanthemum crystallinum
5	G43	9199136		Medicago truncatula
5				Catharanthus roseus
5	G43	8980312		Nicotiana sylvestris
<u> </u>	G43	8809570		Gossypium arboreum
	G43	7627061		
7	G207	6529807		Lycopersicon esculentum
7	G207	7564212		Medicago truncatula
7	G207	7624453	1.60E-57	Gossypium arboreum
7	G207	5820271		Glycine max
7	G207	7322467		Lycopersicon hirsutum
7	G207	5045349		Gossypium hirsutum
7	G207	8071527		Solanum tuberosum
7	G207	7790004		Beta vulgaris
7	G207	6325768		Lotus japonicus
7	G207	286661		Oryza sativa
9	G241	6552360		Nicotiana tabacum
9	G241	6782745		Oryza sativa
9	G241	8097368		Hordeum vulgare
9	G241	20560		Petunia x hybrida
9	G241	7217727		Sorghum bicolor
9	G241	5891408		Lycopersicon esculentum
9	G241	5139803		Glycine max
9	G241	7560175		Medicago truncatula
9	G241	8381332		Gossypium arboreum
9	G241	4886263	1.20E-42	Antirrhinum majus
11	G254	5847380	2.00E-41	Zea mays
11	G254	7614730	2.90E-41	Lotus japonicus

Figure 3B

rigure 3b				
SEQ ID No.	GID	Genbank NID	P-value	Species
11	G254	9204594		Glycine max
11	G254	9193761	6.70E-37	Medicago truncatula
11	G254	6907081	1.40E-35	Oryza sativa
11	G254	6976741	4.30E-33	Lycopersicon esculentum
11	G254	8903196	4.20E-31	Hordeum vulgare
11	G254	9424828	3.50E-25	Triticum aestivum
11	G254	6858452	3.40E-23	Sorghum bicolor
11	G254	3003284	0.00068	Mesembryanthemum crystallinum
13	G263	5821135	1.70E-73	Nicotiana tabacum
13	G263	19487	7.90E-69	Lycopersicon peruvianum
13	G263	662929	5.30E-65	Glycine max
13	G263	7766273	9.20E-49	Medicago truncatula
13	G263	7720908	3.60E-42	Lotus japonicus
13	G263	9303509	2.40E-37	Sorghum bicolor
13	G263	3326480	2.20E-36	Gossypium hirsutum
13	G263	8107182	5.10E-35	Lycopersicon esculentum
13	G263	8381330	7.00E-34	Gossypium arboreum
13	G263	4528238		Citrus unshiu
15	G308	5640156	3.50E-162	Triticum aestivum
15	G308	5640154	2.30E-134	Zea mays
15	G308	6970471		Oryza sativa
15	G308	7718432		Medicago truncatula
15	G308	8330344		Mesembryanthemum crystallinum
15	G308	5047560	1.50E-71	Gossypium hirsutum
15	G308	7588689	1.90E-68	Glycine max
15	G308	7623983	2.90E-62	Gossypium arboreum
15	G308	7780253	1.10E-57	Lotus japonicus
15	G308	6733213	3.70E-48	
17	G536	2689478	9.50E-69	Nicotiana tabacum
17	G536	1773327	4.60E-68	Mesembryanthemum crystallinum
17	G536	2921511	5.30E-68	Fritillaria agrestis
17	G536	1575724	7.30E-68	
17	G536	8515887	9.20E-68	Populus alba x Populus tremula
17	G536	6179980	1.70E-67	Lilium longiflorum
17	G536	1519250	8.60E-67	Oryza sativa
17	G536	1321992	4.30E-66	Solanum tuberosum
17	G536	7535681		Sorghum bicolor
17	G536	555973		Pisum sativum
19	G680	9258166		Glycine max
19	G680	9255178	3.00E-29	
19	G680	5274804	1.20E-27	
19	G680	4974199	3.00E-22	
19	G680	3325786	2.10E-21	
19	G680	9119112	1.30E-18	
19	G680	7660673	3.20E-17	Sorghum bicolor
19	G680	7243970	6.10E-16	Mentha x piperita
19	G680	3858093	2.10E-10	
19	G680	8845091		Triticum aestivum
21	G867	7643366		Medicago truncatula
21	G867	8329389		Mesembryanthemum crystallinum
21	G867	8669779		Glycine max
21	G867	9430646	5.70E-40	Lycopersicon esculentum
21	G867	8902194	1.20E-34	Hordeum vulgare

Figure 3C

SEQ ID No.	GID	Genbank NID	P-value	Species
				Species
21	G867	7722547		Lotus japonicus
21	G867	7324245		Lycopersicon pennellii
21	G867	8749037	1.10E-31	
21	G867	6069643		Oryza sativa
21	G867	9302986	1.40E-28	
23	G912	5616085	8.60E-71	Brassica napus
23	G912	7410271	5.70E-46	
23	G912	7719106		Medicago truncatula
23	G912	6667103	2.30E-38	
23	G912	6983854	1.30E-34	
23	G912	7324530	1.00E-32	4
23	G912	8904571	9.20E-29	
23	G912	7740143		Lotus japonicus
23	G912	7644788		Pinus taeda
23	G912	5050536		Gossypium hirsutum
25	G996	7566043		Medicago truncatula
25	G996	7535969		Sorghum bicolor
25	G996	7339127		Lycopersicon esculentum
25	G996	6341619		Glycine max
25	G996	8381332	7.20E-43	
25	G996	5049507	5.00E-41	Gossypium hirsutum
25	G996	6850206		Oryza sativa
25	G996	7776223		Lotus japonicus
25	G996	19058		Hordeum vulgare
25	G996	4680189		Oryza sativa subsp. indica
27	G1068	7333976		Lycopersicon esculentum
27	G1068	4405544	3.20E-27	Glycine max
27	G1068	7009437		Zea mays
27	G1068	7536402		Sorghum bicolor
27	G1068	3107210		Oryza sativa
27	G1068	3819186		Hordeum vulgare
27	G1068	7624850		Gossypium arboreum
27	G1068	9411568		Triticum aestivum
27	G1068	5419913		Lactuca sativa
27	G1068	7721066		Lotus japonicus
29	G1337	7410432		Lycopersicon esculentum
29	G1337	3618319		Oryza sativa
29	G1337	7571599		Medicago truncatula
29	G1337	7685955		Glycine max
29	G1337	7323708		Lycopersicon hirsutum
29	G1337	4091805		Malus domestica
29	G1337	6917805		Lycopersicon pennellii
29	G1337	3341722		Raphanus sativus
29	G1337	2303680	4.50E-17	Brassica napus
29	G1337	4557092		Pinus radiata
31	G1141	8346772		Catharanthus roseus
31	G1141	7205636		Medicago truncatula
31	G1141	7590901		Glycine max
31	G1141	7777379		Lotus japonicus
31	G1141	9363798		Triticum aestivum
31	G1141	8903111		Hordeum vulgare
31	G1141	568076		Oryza sativa
31	G1141	6527472	1.10E-17	Lycopersicon esculentum

Figure 3D

SEQ ID No.	GID	Genbank NID	P-value	Species
31	G1141	7324705	1.70E-16	Lycopersicon pennellii
31	G1141	7624302		Gossypium arboreum
33	G46	5760554		Glycine max
33	G46	7778996		Lotus japonicus
33	G46	5050094		Gossypium hirsutum
33	G46	790361		Nicotiana tabacum
33	G46	5603736	7.30E-24	Lycopersicon esculentum
33	G46	7238955	1.20E-23	Medicago truncatula
33	G46	8809574	4.10E-23	Nicotiana sylvestris
33	G46	7528275	1.40E-22	Mesembryanthemum crystallinum
33	G46	8980312	1.60E-22	Catharanthus roseus
33	G46	6478844	2.40E-22	Matricaria chamomilla
35	G242	6529807	1.90E-70	Lycopersicon esculentum
35	G242	7624453	3.00E-63	Gossypium arboreum
35	G242	7564212	2.30E-62	Medicago truncatula
35	G242	5820271		Glycine max
35	G242	7322467	1.10E-55	Lycopersicon hirsutum
35	G242	5045349	1.80E-51	Gossypium hirsutum
35	G242	8071527	6.80E-46	Solanum tuberosum
35	G242	7790004	7.40E-45	Beta vulgaris
35	G242	7746594	4.70E-41	Lotus japonicus
35	G242	286661	3.40E-39	Oryza sativa
37	G227	6529807	4.80E-67	Lycopersicon esculentum
37	G227	7624453	2.50E-66	Gossypium arboreum
37	G227	5045349	7.90E-65	Gossypium hirsutum
37	G227	7322467		Lycopersicon hirsutum
37	G227	5820271		Glycine max
37	G227	9199531		Medicago truncatula
37	G227	8071527		Solanum tuberosum
37	G227	7790004		Beta vulgaris
37	G227	7746594		Lotus japonicus
37	G227	286661		Oryza sativa
39	G1307	8172759		Medicago truncatula
39	G1307	5139807		Glycine max
39	G1307	1370139		Lycopersicon esculentum
39	G1307	1946264		Oryza sativa
39	G1307	6552360		Nicotiana tabacum
39	G1307	7500978		Gossypium arboreum
39	G1307	7217727		Sorghum bicolor
39	G1307	7746498		Lotus japonicus
39	G1307	517491	9.90E-34	
39	G1307	8097368		Hordeum vulgare
41	G1327	5139803		Glycine max
41	G1327	7560175		Medicago truncatula
41	G1327	6782745		Oryza sativa
41	G1327	5891408		Lycopersicon esculentum
41	G1327	7217727		Sorghum bicolor
41	G1327	20560		Petunia x hybrida
41	G1327	6552360		Nicotiana tabacum
41	G1327	8097368		Hordeum vulgare
41	G1327	8381332		Gossypium arboreum
43	G1327	9252441		Solanum tuberosum
43	G673	6062169	4.5UE-3D	Lycopersicon esculentum

SEQ ID No.	GID	Genbank NID	P-value	Species
43	G673	6907081		Oryza sativa
43	G673	9205170	2.60E-28	Glycine max
43	G673	5847380		Zea mays
43	G673	7614730	7.70E-26	Lotus japonicus
43	G673	9193761	3.40E-25	Medicago truncatula
43	G673	9424828		Triticum aestivum
43	G673	8903196		Hordeum vulgare
43	G673	6858452		Sorghum bicolor
43	G673	3003284		Mesembryanthemum crystallinum
45	G307	5640156	3.80E-151	Triticum aestivum
45	G307	5640154	1.00E-101	
45	G307	6970471		Oryza sativa
45	G307	7718432		Medicago truncatula
45	G307	8330344		Mesembryanthemum crystallinum
45	G307	5047560		Gossypium hirsutum
45	G307	7588689		Glycine max
45	G307	7623983		Gossypium arboreum
45	G307	7780253	9.30E-59	Lotus japonicus
45	G307	6733213		Lycopersicon esculentum
47	G529	1773327		Mesembryanthemum crystallinum
47	G529	8515887	1.20E-115	Populus alba x Populus tremula
47	G529	6179980		Lilium longiflorum
47	G529	2921511		Fritillaria agrestis
47	G529	1575724	3.30E-115	Glycine max
47	G529	466335	2.80E-112	Lycopersicon esculentum
47	G529	1519250		Oryza sativa
47	G529	2689478		Nicotiana tabacum
47	G529	2266661	5.10E-109	Hordeum vulgare
47	G529	1321992	1.20E-108	Solanum tuberosum
49	G531	2921511	7.40E-109	Fritillaria agrestis
49	G531	6179980	2.30E-108	Lilium longiflorum
49	G531	1773327	4.50E-108	Mesembryanthemum crystallinum
49	G531	8515887		Populus alba x Populus tremula
49	G531	2689478		Nicotiana tabacum
49	G531	1575724		Glycine max
49	G531	1519250		Oryza sativa
49	G531	466335		Lycopersicon esculentum
49	G531	1321992		Solanum tuberosum
49	G531	2266661		Hordeum vulgare
51	G214	8170933		Lycopersicon esculentum
51	G214	9205339		Glycine max
51	G214	8577344		Zea mays
·51	G214	9119112		Medicago truncatula
51	G214	7660673		Sorghum bicolor
51	G214	8213273		Oryza sativa
51	G214	3325786		Gossypium hirsutum
51	G214	9435251		Hordeum vulgare
51	G214	9411569		Triticum aestivum
51	G214	7614730		Lotus japonicus
53	G1930	7643366		Medicago truncatula
53	G1930	8329389	3.60E-47	
53	G1930	6069592	8.60E-47	
53	G1930	9430646	6.60E-39	Lycopersicon esculentum

7/9

Figure 3F

CEO ID No	CID	Conhank NID	Duelia	Cassica
SEQ ID No.	GID	Genbank NID	P-value	Species
53	G1930	7722547		Lotus japonicus
53	G1930	7324245		Lycopersicon pennellii
53	G1930	8902194		Hordeum vulgare
53	G1930	9247126		Oryza sativa
53	G1930	8749037		Citrus x paradisi
53	G1930	9302986		Sorghum bicolor
55	G9	7643366		Medicago truncatula
55	G9	8669779	3.30E-50	
55	G9	8329389		Mesembryanthemum crystallinum
55	G9	7412012	1.20E-41	Lycopersicon esculentum
55	G9	8902194	6.60E-36	
55	G9	7722547	2.10E-33	<u> </u>
55	G9	7324245	1.90E-32	
55	G9	8749037	1.10E-31	Citrus x paradisi
55	G9	9247126	1.20E-29	Oryza sativa
55	G9	9302986		Sorghum bicolor
57	G993	7643366		Medicago truncatula
57	G993	8329389	8.10E-50	Mesembryanthemum crystallinum
57	G993	8669779		Glycine max
57	G993	4384549		Lycopersicon esculentum
57	G993	8902194	2.00E-34	Hordeum vulgare
57	G993	7719409	1.00E-32	Lotus japonicus
57	G993	8749037	4.10E-32	Citrus x paradisi
57	G993	9247126	1.00E-30	Oryza sativa
57	G993	7324245	1.20E-30	Lycopersicon pennellii
57	G993	9302986	9.10E-27	Sorghum bicolor
59	G41	5616085	6.30E-84	Brassica napus
59	G41	5603726		Lycopersicon esculentum
59	G41	7719106	2.00E-43	Medicago truncatula
59	G41	6667103	1.60E-37	Glycine max
59	G41	6983854	1.80E-33	Oryza sativa
59	G41	7324530	9.50E-30	Lycopersicon pennellii
59	G41	8904571	2.70E-29	Triticum aestivum
59	G41	7740143	2.50E-26	Lotus japonicus
59	G41	7644788	3.40E-19	Pinus taeda
59	G41	7625186	6.50E-19	Gossypium arboreum
61	G40	5616085		Brassica napus
61	G40	5603726	1.60E-50	Lycopersicon esculentum
61	G40	7719106	4.70E-42	Medicago truncatula
61	G40	6667103		Glycine max
61	G40	6983854		Oryza sativa
61	G40	8904571	3.50E-29	Triticum aestivum
61	G40	7324530		Lycopersicon pennellii
61	G40	7740143		Lotus japonicus
61	G40	7644788	1.80E-20	Pinus taeda
61	G40	7625186	5.70E-20	Gossypium arboreum
63	G42	5616085		Brassica napus
63	G42	5603726	2.20E-53	Lycopersicon esculentum
63	G42	7719106	5.20E-43	Medicago truncatula
63	G42	6667103	6.00E-38	Glycine max
63	G42	6983854	1.10E-35	Oryza sativa
63	G42	8904571	5.50E-31	Triticum aestivum

Figure 3G

SEQ ID No.	GID	Genbank NID	P-value	Species
63	G42	7324530	8.30E-31	Lycopersicon pennellii
63	G42_	7740143		Lotus japonicus
63	G42	7644788	2.40E-20	Pinus taeda
63	G42	7625186	1.50E-19	Gossypium arboreum
65	G1127	6913305		Glycine max
65	G1127	9280727	5.40E-27	Oryza sativa
65	G1127	2213533		Pisum sativum
65	G1127	7009437		Zea mays
65	G1127	7536402		Sorghum bicolor
65	G1127	7333976		Lycopersicon esculentum
65	G1127	3819186		Hordeum vulgare
65	G1127	7624850		Gossypium arboreum
65	G1127	4165182		Antirrhinum majus
65	G1127	7765939		Medicago truncatula
67	G2657	7238733		Medicago truncatula
67	G2657	6846994	7.60E-55	Glycine max
67	G2657	7615218	1.10E-43	Lotus japonicus
67	G2657	9445090	4.00E-41	Triticum aestivum
67	G2657	7333102		Lycopersicon esculentum
67	G2657	9252370	1.90E-27	Solanum tuberosum
67	G2657	5042437	5.90E-21	Oryza sativa
67	G2657	7536402	8.60E-20	Sorghum bicolor
67	G2657	7624850		Gossypium arboreum
67	G2657	7009437	1.80E-16	Zea mays
69	G326	7410432	1.10E-37	Lycopersicon esculentum
69	G326	3618319	2.90E-32	Oryza sativa
69	G326	7571599		Medicago truncatula
69	G326	7232283		Glycine max
69	G326	7323708		Lycopersicon hirsutum
69	G326	4091805		Malus domestica
69	G326	6917805		Lycopersicon pennellii
69	G326	3341722		Raphanus sativus
69	G326	4557092		Pinus radiata
69	G326	2303680	4.70E-17	Brassica napus

mbi19 Sequence Listing.ST25 SEQUENCE LISTING

	Cai-Z Jacqu Omair Pilgr Adam, Riech Yu, G Samah	elina, Pim, Duc im, Duc mann uo-L	e, H ined Mars , Jo iang	eard a ha se L	uis										
<120>	Yiel	d-re	late	d ge	nes										
<130>	MBI-	0019													
<150> <151>															
<150> <151>	•	-													
<150> <151>				Modi	fica	tion	III								
<160>	70														
<170>	Pate	ntIn	ver	sion	3.0										
<210> <211> <212> <213>	DNA	idop	sis 1	thal:	iana										
<220><221><222><222><223>	(73)	(7:	29)												
<400> ttggct	1 tgta	ccca	aacco	ca to	ettt	gacti	caa	aaaa	caaa	ataa	aaaa	caa 1	tcata	aattga	60
catcat	cgga	ta at Me 1	ig ca et Hi	at ag is Se	gc gg er G	gg aa ly Ly 5	ag ag ys An	ga co	ct ci co Le	ta to eu Se	er Pr	ro Gi	aa to lu Se	ca atg er Met	111
gcc gg Ala Gl 15	a aat y Asn	aga Arg	gaa Glu	gag Glu	aaa Lvs	aaa Lvs	gag	ttq							
tcg ga					20	-1-	Glu	Leu	tgt Cys	tgt Cys 25	tgc Cys	tca Ser	act Thr	ttg Leu	159
Ser Gl	a tct u Ser	gat Asp	gtg Val	tct	20 gat	ttt	gtc	Leu	Cys	Cys 25 ctc	Cys	Ser	Thr	Leu	159 207
Ser Gl	u Ser a tca	Asp	Val att	tct Ser 35	20 gat Asp	ttt Phe	gtc Val tct	tct Ser	Cys gaa Glu 40 tcg	Cys 25 ctc Leu ctt	Cys act Thr	ggt Gly ctt	Thr caa Gln caa	CCC Pro 45	
Ser Gl	u Ser a tca o Ser t aac	tcc Ser	att Ile 50	tct Ser 35 gat Asp	gat Asp gat Asp	ttt Phe caa Gln	gtc Val tct Ser	tct ser tcg ser 55	gaa Glu 40 tcg Ser	Cys 25 ctc Leu ctt Leu	Cys act Thr act Thr	ggt Gly ctt Leu caa	Thr caa Gln caa Gln 60 aga	ccc Pro 45 gaa Glu	207
ser Gl 30 atc cc Ile Pro	a tca o Ser t aac r Asn a aaa	tcc Ser tcg Ser 65	att Ile 50 agg Arg	tct Ser 35 gat Asp caa Gln	20 gat Asp gat Asp cga Arg	ttt Phe caa Gln aac Asn	gtc Val tct Ser tac Tyr 70	tct ser tcg ser 55 aga Arg	gaa Glu 40 tcg Ser ggc Gly	Cys 25 ctc Leu ctt Leu gtg Val	Cys act Thr act Thr agg Arg	ggt Gly ctt Leu caa Gln 75 gca	Caa Gln Caa Gln 60 aga Arg	ccc Pro 45 gaa Glu , ccg Pro	207 255
atc cc. Ile Pro	a tca o Ser t aac r Asn a aaa y Lys 80	tcc Ser tcg Ser 65 tgg Trp	att Ile 50 agg Arg gcg Ala	tct Ser 35 gat Asp caa Gln gct Ala	20 gat Asp gat Asp cga Arg gag Glu	ttt Phe caa Gln aac Asn att Ile 85	gtc Val tct Ser tac Tyr 70 cgt Arg	tct Ser tcg Ser 55 aga Arg gac Asp	gaa Glu 40 tcg ser ggc Gly ccg Pro	Cys 25 ctc Leu ctt Leu gtg Val aac Asn	Cys act Thr act Thr agg Arg agg Lys 90 gcc	ggt Gly ctt Leu caa Gln 75 gca Ala	Caa Gln caa Gln 60 aga Arg gct Ala	ccc Pro 45 gaa Glu , ccg Pro	207 255 303
atc cc Ile Production and again and again	a tca o Ser t aac r Asn a aaa y Lys 80 ctt p Leu	tcc Ser tcg Ser 65 tgg Trp	att Ile 50 agg Arg gcg Ala acg Thr	tct Ser 35 gat Asp caa Gln gct Ala ttc Phe	gat Asp gat Asp cga Arg gag Glu gac Asp 100	ttt Phe caa Gln aac Asn att Ile 85 act Thr	gtc Val tct Ser tac Tyr 70 cgt Arg	tct ser tcg ser 55 aga gac Asp gaa Glu	gaa Glu 40 tcg Ser ggc Gly ccg Pro	Cys 25 ctc Leu ctt Leu gtg Val aac Asn gcc Alas	Cys act Thr act Thr agg Arg Lys 90 gcc Ala aag	ggt Gly ctt Leu caa Gln 75 gca Ala tta Leu ctt	Thr caa Gln caa Gln 60 aga Arg gct Ala gcg Ala aac	ccc Pro 45 gaa Glu Ccg Pro cgt Arg	207 255 303 351

Page 1

				_		
Pro Glu His	Ile Arg 130			Sequence r Gln Leu 135		ST25 Ser Pro Ala 140
act tcc cat Thr Ser His	gat cgc Asp Arg 145	att atc Ile Ile	gtg aca Val Thi	r Pro Pro	agt cca Ser Pro	cct cca cca Pro Pro Pro 155
att gct cct Ile Ala Pro 160	gac ata Asp Ile	ctt ctt Leu Leu	gat caa Asp Gli 165	a tat ggc n Tyr Gly	cac ttt His Phe 170	caa tct cga Gln Ser Arg
			Leu Ser			tct tct tcg Ser Ser Ser
						gag gat ggt Glu Asp Gly 205
gaa aac gtg Glu Asn Val		Ile Ser				
catqttaatq o	cataaat	at ctctt	cqtcc aa	aqttatcaa	acqcatt	gac .ctccggcttt
			_		_	tta aagagtctat
						aat tttgaacatg
						ata ggtcatgacg
						tga tcgaccgatc
aaatgagata a						
<210> 2						
	.dopsis	thaliana				
<211> 218 <212> PRT		thaliana				
<211> 218 <212> PRT <213> Arabi	dopsis.		Leu Ser	Pro Glu 10	Ser Met	Ala Gly Asn 15
<211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1	dopsis Gly Lys 5	Arg Pro		10	•	
<211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1 Arg Glu Glu	dopsis Gly Lys 5 Lys Lys 20	Arg Pro	Cys Cys 25	10 Cys Ser	Thr Leu	15 Ser Glu Ser
<pre><211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1 Arg Glu Glu Asp Val Ser 35</pre>	Gly Lys 5 Lys Lys 20	Arg Pro Glu Leu Val Ser	Cys Cys 25 Glu Leu 40	Cys Ser	Thr Leu Gln Pro	Ser Glu Ser
<211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1 Arg Glu Glu Asp Val Ser 35 Ser Ile Asp 50	Gly Lys 5 Lys Lys 20 Asp Phe Asp Gln	Arg Pro Glu Leu Val Ser Ser Ser	Cys Cys 25 Glu Leu 40 Ser Leu	Cys Ser Thr Gly Thr Leu	Thr Leu Gln Pro 45 Gln Glu 60	Ser Glu Ser 30
<pre><211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1 Arg Glu Glu Asp Val Ser 35 Ser Ile Asp 50 Ser Arg Gln</pre>	Gly Lys 5 Lys Lys 20 Asp Phe Asp Gln Arg Asn	Arg Pro Glu Leu Val Ser Ser Ser 55 Tyr Arg 70	Cys Cys 25 Glu Leu 40 Ser Leu Gly Val	Thr Gly Thr Leu Arg Gln 75	Thr Leu Gln Pro 45 Gln Glu 60 Arg Pro	Ser Glu Ser 30 Ile Pro Ser Lys Ser Asn Trp Gly Lys 80
<211> 218 <212> PRT <213> Arabi <400> 2 Met His Ser 1 Arg Glu Glu Asp Val Ser 35 Ser Ile Asp 50 Ser Arg Gln 65	dopsis Gly Lys 5 Lys Lys 20 Asp Phe Asp Gln Arg Asn Glu Ile 85	Arg Pro Glu Leu Val Ser Ser Ser 55 Tyr Arg 70 Arg Asp	Cys Cys 25 Glu Leu 40 Ser Leu Gly Val	Cys Ser Thr Gly Thr Leu Arg Gln 75 Lys Ala 90 Ala Leu	Thr Leu Gln Pro 45 Gln Glu 60 Arg Pro	Ser Glu Ser 30 Ile Pro Ser Lys Ser Asn Trp Gly Lys 80 Val Trp Leu 95

mbi19 Sequence Listing.ST25 Ile Arg Val Asn Pro Thr Gln Leu Tyr Pro Ser Pro Ala Thr Ser His Asp Arg Ile Ile Val Thr Pro Pro Ser Pro Pro Pro Pro Ile Ala Pro Asp Ile Leu Leu Asp Gln Tyr Gly His Phe Gln Ser Arg Ser Ser Asp Ser Ser Ala Asn Leu Ser Met Asn Met Leu Ser Ser Ser Ser Ser 185 Leu Asn His Gln Gly Leu Arg Pro Asn Leu Glu Asp Gly Glu Asn Val 200 Lys Asn Ile Ser Ile His Lys Arg Arg Lys 210 <210> 3 <211> 1440 <212> DNA <213> Arabidopsis thaliana <220> CDS <221> <222> (149)..(1156) <223> G38 <400> 3 60 gaggaaaact cgaaaaagct acacacaaga agaagaagaa aagatacgag caagaagact aaacacgaaa gcgatttatc aactcgaagg aagagacttt gattttcaaa tttcgtcccc 120 tatagattgt gttgtttctg ggaaggag atg gca gtt tat gat cag agt gga Met Ala Val Tyr Asp Gln Ser Gly 172 gat aga aac aga aca caa att gat aca tcg agg aaa agg aaa tct aga Asp Arg Asn Arg Thr Gln Ile Asp Thr Ser Arg Lys Arg Lys Ser Arg 220 15 agt aga ggt gac ggt act act gtg gct gag aga tta aag aga tgg aaa Ser Arg Gly Asp Gly Thr Thr Val Ala Glu Arg Leu Lys Arg Trp Lys 268 gag tat aac gag acc gta gaa gaa gtt tot acc aag aag agg aaa gta 316 Glu Tyr Asn Glu Thr Val Glu Glu Val Ser Thr Lys Lys Arg Lys Val 364 Pro Ala Lys Gly Ser Lys Lys Gly Cys Met Lys Gly Lys Gly Pro 412 gag aat agc cga tgt agt ttc aga gga gtt agg caa agg att tgg ggt Glu Asn Ser Arg Cys Ser Phe Arg Gly Val Arg Gln Arg Ile Trp Gly 80 aaa tgg gtt gct gag atc aga gag cct aat cga ggt agc agg ctt tgg Lys Trp Val Ala Glu Ile Arg Glu Pro Asn Arg Gly Ser Arg Leu Trp 460 ctt ggt act ttc cct act gct caa gaa gct gct tct gct tat gat gag Leu Gly Thr Phe Pro Thr Ala Gln Glu Ala Ala Ser Ala Tyr Asp Glu 508 556 get get aaa get atg tat ggt eet ttg get egt ett aat tte eet egg Ala Ala Lys Ala Met Tyr Gly Pro Leu Ala Arg Leu Asn Phe Pro Arg 125 130

mbi19 Sequence Listing.ST25

									•			_				
	gat Asp															604
	gtt Val															652
	gaa Glu 170															700
gag Glu 185	aat Asn	ggt Gly	gcg Ala	gaa Glu	gag Glu 190	atg Met	aag Lys	aga Arg	ggt Gly	gtt Val 195	aaa Lys	gcg Ala	gat Asp	aag Lys	cat His 200	748
	ctg Leu															796
aaa Lys	gag Glu	aaa Lys	cag Gln 220	aag Lys	gag Glu	caa Gln	999 Gly	att Ile 225	gta Val	gaa Glu	acc Thr	tgt Cys	cag Gln 230	caa Gln	caa Gln	844
	cag Gln															892
	cag Gln 250															940
cta Leu 265	cgt Arg	gac Asp	cta Leu	aat Asn	ggc Gly 270	gac Asp	gat Asp	gtg Val	ttt Phe	gca Ala 275	ggc Gly	tta Leu	aat Asn	cag Gln	gac Asp 280	988
	tac Tyr															1036
	caa Gln															1084
	ttt Phe															1132
agt Ser	tac Tyr 330	ttg Leu	gat Asp	ctg Leu	gag Glu	aac Asn 335	taa	acaa	aaca	at a	itgaa	gctt	t tt	ggat	ttga	1186
tatt	tgcc	tt a	atco	caca	a cg	actg	ttga	tto	tcta	tcc	gagt	ttta	ıgt <u>c</u>	jatat	agaga	1246
acta	caga	ac a	cgtt	ttt	c tt	gtta	taaa	ggt	gaac	tgt	atat	atcg	jaa a	cagt	gatat	1306
gaca	atag	ag a	agac	aact	a ta	gttt	gtta	gto	tgct	tct	ctta	agtt	gt t	cttt	agata	1366
tgtt	ttat	gt t	ttgt	aaca	a ca	ıggaa	tgaa	taa	taca	cac	ttgt	gaag	jct t	ttaa	aaaaa	1426
aaaa	aaaa	aa a	aaa												•	1440

<210> 4 <211> 335 <212> PRT <213> Arabidopsis thaliana

<400> 4

Met Ala Val Tyr Asp Gln Ser Gly Asp Arg Asn Arg Thr Gln Ile Asp 1 5 10 15

Thr Ser Arg Lys Arg Lys Ser Arg Ser Arg Gly Asp Gly Thr Thr Val 20

Ala Glu Arg Leu Lys Arg Trp Lys Glu Tyr Asn Glu Thr Val Glu Glu

Val Ser Thr Lys Lys Arg Lys Val Pro Ala Lys Gly Ser Lys Lys Gly 50 60

Cys Met Lys Gly Lys Gly Gly Pro Glu Asn Ser Arg Cys Ser Phe Arg 65 70 75 80

Gly Val Arg Gln Arg Ile Trp Gly Lys Trp Val Ala Glu Ile Arg Glu 85 90 95

Pro Asn Arg Gly Ser Arg Leu Trp Leu Gly Thr Phe Pro Thr Ala Gln
100 105 110

Glu Ala Ala Ser Ala Tyr Asp Glu Ala Ala Lys Ala Met Tyr Gly Pro 115 120 125

Leu Ala Arg Leu Asn Phe Pro Arg Ser Asp Ala Ser Glu Val Thr Ser 130 135 140

Thr Ser Ser Gln Ser Glu Val Cys Thr Val Glu Thr Pro Gly Cys Val 145 150 155 160

His Val Lys Thr Glu Asp Pro Asp Cys Glu Ser Lys Pro Phe Ser Gly
165 170 175

Gly Val Glu Pro Met Tyr Cys Leu Glu Asn Gly Ala Glu Glu Met Lys 180 185 190

Arg Gly Val Lys Ala Asp Lys His Trp Leu Ser Glu Phe Glu His Asn 195 200 205

Tyr Trp Ser Asp Ile Leu Lys Glu Lys Glu Lys Gln Lys Glu Gln Gly 210 215 220

Ile Val Glu Thr Cys Gln Gln Gln Gln Asp Ser Leu Ser Val Ala 225 230 235 240

Asp Tyr Gly Trp Pro Asn Asp Val Asp Gln Ser His Leu Asp Ser Ser 245 250 255

Asp Met Phe Asp Val Asp Glu Leu Leu Arg Asp Leu Asn Gly Asp Asp 260 265 270

Val Phe Ala Gly Leu Asn Gln Asp Arg Tyr Pro Gly Asn Ser Val Ala 275 280 285

Asn Gly Ser Tyr Arg Pro Glu Ser Gln Gln Ser Gly Phe Asp Pro Leu 290 295 300

Gln Ser Leu Asn Tyr Gly Ile Pro Pro Phe Gln Leu Glu Gly Lys Asp 305 310 315 320 mbi19 Sequence Listing.ST25

Gly	Asn	Gly	Phe	Phe 325	Asp	Asp	Leu	Ser	Tyr 330	Leu	Asp	Leu	Glu	Asn 335

<210> <211> 909 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (38)..(643) G43 <400> 5 ctcctgtctt gtctaaagaa aaaagagaga ggaagaa atg gag act ttt gag gaa 55 Met Glu Thr Phe Glu Glu agc tct gat ttg gat gtt ata cag aaa cat cta ttt gaa gac ttg atg Ser Ser Asp Leu Asp Val Ile Gln Lys His Leu Phe Glu Asp Leu Met 103 atc cct gat ggt ttc att gaa gat ttt gtc ttt gat gat act gct ttt 151 Ile Pro Asp Gly Phe Ile Glu Asp Phe Val Phe Asp Asp Thr Ala Phe gtc tcc gga ctc tgg tct cta gaa ccc ttt aac cca gtt ccg aaa ctg 199 Val Ser Gly Leu Trp Ser Leu Glu Pro Phe Asn Pro Val Pro Lys Leu gaa cct agt tca cct gtt ctt gat cca gat tcc tat gtc caa gag att Glu Pro Ser Ser Pro Val Leu Asp Pro Asp Ser Tyr Val Gln Glu Ile 295 ctg caa atg gaa gca gaa tca tca tca tca tca aca aca acg tca Leu Gln Met Glu Ala Glu Ser Ser Ser Ser Ser Thr Thr Thr Ser 80 cct gag gtt gag act gtc tca aac cgg aaa aaa aca aag agg ttt gaa 343 Pro Glu Val Glu Thr Val Ser Asn Arg Lys Lys Thr Lys Arg Phe Glu gaa acg aga cat tac aga ggc gtg aga agg agg cca tgg ggg aaa ttt Glu Thr Arg His Tyr Arg Gly Val Arg Arg Pro Trp Gly Lys Phe 391 gca gca gag att cga gat ccg gca aag aaa gga tcc agg att tgg tta 439 Ala Ala Glu Ile Arg Asp Pro Ala Lys Lys Gly Ser Arg Ile Trp Leu 125 ggc act ttt gag agt gat att gat gct gca agg gct tac gac tat gca 487 Gly Thr Phe Glu Ser Asp Ile Asp Ala Ala Arg Ala Tyr Asp Tyr Ala gct ttt aag ctc agg gga aga aaa gct gtt ctc aac ttt cct ttg gat 535 Ala Phe Lys Leu Arg Gly Arg Lys Ala Val Leu Asn Phe Pro Leu Asp gcc gga aag tat gat gct ccg gtc aat tca tgc cga aaa agg agg aga Ala Gly Lys Tyr Asp Ala Pro Val Asn Ser Cys Arg Lys Arg Arg Arg 583 175 acc gat gta cca cag cct caa gga aca aca agt act tca tca tcg 631 Thr Asp Val Pro Gln Pro Gln Gly Thr Thr Thr Ser Thr Ser Ser Ser 190 tca tca aac taa tgggggaata gtgatgttta attagtatat ataggttaat 683 Ser Ser Asn 200 atcttaagta tgtgaagcat catgtataga gccaagaacc tgttagacta gtgtactgaa

<210> 6 <211> 201 <212> PRT <213> Arabidopsis thaliana

<400> 6

Met Glu Thr Phe Glu Glu Ser Ser Asp Leu Asp Val Ile Gln Lys His 1 5 10 15

Leu Phe Glu Asp Leu Met Ile Pro Asp Gly Phe Ile Glu Asp Phe Val 20 25 30

Phe Asp Asp Thr Ala Phe Val Ser Gly Leu Trp Ser Leu Glu Pro Phe 35 40 45

Asn Pro Val Pro Lys Leu Glu Pro Ser Ser Pro Val Leu Asp Pro Asp 50 60

Ser Tyr Val Gln Glu Ile Leu Gln Met Glu Ala Glu Ser Ser Ser 65 70 75 80

Ser Ser Thr Thr Thr Ser Pro Glu Val Glu Thr Val Ser Asn Arg Lys 85 90 95

Lys Thr Lys Arg Phe Glu Glu Thr Arg His Tyr Arg Gly Val Arg Arg 100 105 110

Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Pro Ala Lys Lys 115 120 125

Gly Ser Arg Ile Trp Leu Gly Thr Phe Glu Ser Asp Ile Asp Ala Ala 130 140

Arg Ala Tyr Asp Tyr Ala Ala Phe Lys Leu Arg Gly Arg Lys Ala Val 145 150 155 160

Leu Asn Phe Pro Leu Asp Ala Gly Lys Tyr Asp Ala Pro Val Asn Ser 165 170 175

Cys Arg Lys Arg Arg Thr Asp Val Pro Gln Pro Gln Gly Thr Thr 180 185

Thr Ser Thr Ser Ser Ser Ser Ser Asn 195 200

<210> 7 <211> 1107 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (16)..(930) <223> G207

mbi19 Sequence Listing.ST25

<40		7 ctg	tttc	a at Me 1	g gc	g gat a As _l	t cg p Ar	t gt g Va 5	t aa l Ly	a gg s Gl	t cc y Pr	a tg	g ag p Se 10	t ca r Gl	a gaa n Glu	51
													ccg Pro			99
													aaa Lys			147
aga Arg 45	tta Leu	cgt Arg	tgg Trp	tgt Cys	aat Asn 50	cag Gln	tta Leu	tct Ser	ccg Pro	gag Glu 55	gtt Val	gag Glu	cat His	cgt Arg	cct Pro 60	195
ttc Phe	tcg Ser	ccg Pro	gag Glu	gaa Glu 65	gat Asp	gag Glu	act Thr	att Ile	gta Val 70	acc Thr	gcc Ala	cgt Arg	gct Ala	cag Gln 75	ttt Phe	243
ggt Gly	aac Asn	aag Lys	tgg Trp 80	gcg Ala	acg Thr	att Ile	gct Ala	cgt Arg 85	ctt Leu	ctt Leu	aac Asn	ggt Gly	cgt Arg 90	acg Thr	gat Asp	291
													aaa Lys			339
													gat Asp			387
cgg Arg 125	ccg Pro	aag Lys	aag Lys	agg Arg	aga Arg 130	tct Ser	gtt Val	agc Ser	ttt Phe	gat Asp 135	cct Pro	gct Ala	ttt Phe	gct Ala	ccg Pro 140	435
													gga Gly			483
gtt Val	agt Ser	gat Asp	tct Ser 160	agc Ser	acg Thr	att Ile	ccg Pro	tca Ser 165	ccg Pro	tcg Ser	tct Ser	cct Pro	gtt Val 170	gct Ala	cag Gln	531
ctg Leu	ttt Phe	aaa Lys 175	cca Pro	atg Met	ccg Pro	att Ile	tcc Ser 180	ggc Gly	ggt Gly	ttt Phe	acg Thr	gtg Val 185	gtt Val	ccg Pro	cag Gln	579
													cct Pro			627
													agc Ser			675
aat Asn	aac Asn	aac Asn	aac Asn	gcg Ala 225	ttg Leu	atg Met	ttt Phe	ccg Pro	aga Arg 230	ttt Phe	gag Glu	agt Ser	cag Gln	atg Met 235	aag Lys	723
att Ile	aat Asn	gta Val	gag Glu 240	gag Glu	aga Arg	gga Gly	gga Gly	gga Gly 245	gga Gly	gaa Glu	gga Gly	cgt Arg	aga Arg 250	ggt Gly	gag Glu	771
ttt Phe	atg Met	acg Thr 255	gtg Val	gtg Val	cag Gln	gag Glu	atg Met 260	ata Ile	aaa Lys	gct Ala	gaa Glu	gtg Val 265	agg Arg	agt Ser	tac Tyr	819
													gga Gly			867

tac gaa Tyr Gli 285	tcc Ser	ggc	ggc Gly	aat Asn 290	ggt Gly	ggt	19 S ttt Phe	agg	gat	tgt	gga	gta	ata	aca Thr 300
cct aag Pro Lys				ttt	tggt	tta	gggt	taaa	ac t	tgaa	tcga	t tg	ggga	tttt
caagago	att	catt	tttg	99 g	ttta	tggt	a aa	atta	aaaa	caa	aaac	aaa	atgt	acagag
gaattaa	aat	ttct	atgg	aa t	aatc	ttaa	a tc	tçaa	atat	ttg	ttac	ttg	tttt	ggtgat
tcataac	caa	aatc	aaa											
<210><211><212><213>	8 304 PRT Arab	idop	sis (thal:	iana			,						
<400>	8													
Met Ala	Asp	Arg	Val 5	Lys	Gly	Pro	Trp	Ser 10	Gln	Glu	Glu	Asp	Glu 15	Gln
Leu Arg	Arg	Met 20	Val	Glu	Lys	Tyr	Gly 25	Pro	Arg	Asn	Trp	Ser 30	Ala	Ile
Ser Lys	Ser 35	Ile	Pro	Gly	Arg	Ser 40	Gly	Ļys	Ser	Cys	Arg 45	Leu	Arg	Trp
Cys Asr 50	Gln	Leu	Ser	Pro	Glu 55	Val	Glu	His	Arg	Pro 60	Phe	Ser	Pro	Glu
Glu Asp 65	Glu	Thr	Ile	Val 70	Thr	Ala	Arg	Ala	Gln 75	Phe	Gly	Asn	Lys	Trp 80
Ala Thr	Ile	Ala	Arg 85	Leu	Leu	Asn	Gly	Arg 90	Thr	Asp	Asn	Ala	Val 95	Lys
Asn His	Trp	Asn 100	Ser	Thr	Leu	Lys	Arg 105	Lys	Суз	Ser	Gly	Gly 110	Val	Ala
Val Thr	Thr 115	Val	Thr	Glu	Thr	Glu 120	Glu	Asp	Gln	Asp	Arg 125	Pro	Lys	Lys
Arg Arg		Val	Ser	Phe	Asp 135	Pro	Ala	Phe	Ala	Pro 140	Val	Asp	Thr	Gly
Leu Tyr 145	Met	Ser	Pro	Glu 150	Ser	Pro	Asn	Gly	Ile 155	Asp	Val	Ser	Asp	Ser 160
Ser Thr	Ile	Pro	Ser 165	Pro	Ser	Ser	Pro	Val 170	Ala	Gln	Leu	Phe	Lys 175	Pro
Met Pro	Ile	Ser 180	Gly	Gly	Phe	Thr	Val 185	Val	Pro	Gln	Pro	Leu 190	Pro	Val
Glu Met	Ser 195	Ser	Ser	Ser	Glu	Asp 200	Pro	Pro	Thr	Ser	Leu 205	Ser	Leu	Ser
Leu Pro	Gly	Ala	Glu	Asn	Thr	Ser	Ser	Ser	His	Asn	Asn	Asn	Asn	Asn

Leu Pro Gly Ala Glu Asn Thr Ser Ser Ser His Asn Asn Asn Asn Asn
Page 9

mbi19 Sequence Listing.ST25
210 215 220

	210					213					220					
Ala 225	Leu	Met	Phe	Pro	Arg 230	Phe	Glu	Ser	Gln	Met 235	Lys	Ile	Asn	Val	Glu 240	
Glu	Arg	Gly	Gly	Gly 245	Gly	Glu	Gly	Arg	Arg 250	Gly	Glu	Phe	Met	Thr 255	Val	
Val	Gln	Glu	Met 260	Ile	Lys	Ala	Glu	Val 265	Arg	Ser	Tyr	Met	Ala 270	Glu	Met	
Gln	Lys	Thr 275	Ser	Gly	Gly	Phe	Val 280	Val	Gly	Gly	Leu	Tyr 285	Glu	Ser	Gly	
Gly	Asn 290	Gly	Gly	Phe	Arg	Asp 295	Cys	Gly	Val	Ile	Thr 300	Pro	Lys	Val	Glu	
<210 <211 <213 <213	L> : 2> I	9 1046 ONA Arab:	idops	sis t	:hali	iana										
<220 <221 <222 <223	L> (?>	CDS (46) 3241	(86	57)												
<400 gaaa			caad	ettet	ct tt	atca	agcaa	a tca	acaaa	atca	aaga				ga gct cg Ala	57
			gag Glu													105
			atc Ile													153
			ctc Leu 40													201
tgt Cys	aga Arg	ctt Leu 55	agg Arg	tgg Trp	atg Met	aac Asn	tat Tyr 60	tta Leu	aag Lys	cct Pro	gat Asp	att Ile 65	aaa Lys	cgt Arg	ggc Gly	249
aat Asn	ttc Phe 70	acc Thr	aaa Lys	gaa Glu	gag Glu	gaa Glu 75	gat Asp	gct Ala	atc Ile	atc Ile	agc Ser 80	tta Leu	cac His	caa Gln	ata Ile	297
			aga Arg													345
gat Asp	aac Asn	gag Glu	atc Ile	aag Lys 105	aac Asn	gta Val	tgg Trp	cac His	act Thr 110	cac His	ttg Leu	aag Lys	aag Lys	aga Arg 115	ctc Leu	393
gaa Glu	gat Asp	tat Tyr	caa Gln 120	cca Pro	gct Ala	aaa Lys	cct Pro	aag Lys 125	acc Thr	agc Ser	aac Asn	aaa Lys	aag Lys 130	aag Lys	ggt Gly	441
act Thr	aaa Lys	cca Pro 135	aaa Lys	tct Ser	gaa Glu	tcc Ser	gta Val 140	ata Ile	acg Thr	agc Ser	tcg Ser	aac Asn 145	agt Ser	act Thr	aga Arg	489

agc Ser	gaa Glu 150	tcg Ser	gag Glu	cta Leu	gca Ala	gat Asp 155	tca	tca	aac	cct	List tct Ser 160	gga	gaa	agc	tta Leu
ttt Phe 165	tcg Ser	aca Thr	tcg Ser	cct Pro	tcg Ser 170	aca Thr	agt Ser	gag Glu	gtt Val	tct Ser 175	tcg Ser	atg Met	aca Thr	ctc Leu	ata Ile 180
agc Ser	cac His	gac Asp	ggc Gly	tat Tyr 185	agc Ser	aac Asn	gag Glu	att Ile	aat Asn 190	atg Met	gat Asp	aac Asn	aaa Lys	ccg Pro 195	gga Gly
gat Asp	atc Ile	agt Ser	act Thr 200	atc Ile	gat Asp	caa Gln	gaa Glu	tgt Cys 205	gtt Val	tct Ser	ttc Phe	gaa Glu	act Thr 210	ttt Phe	ggt Gly
gcg Ala	gat Asp	atc Ile 215	gat Asp	gaa Glu	agc Ser	ttc Phe	tgg Trp 220	aaa Lys	gag Glu	aca Thr	ctg Leu	tat Tyr 225	agc Ser	caa Gln	gat Asp
gaa Glu	cac His 230	aac Asn	tac Tyr	gta Val	tcg Ser	aat Asn 235	gac Asp	cta Leu	gaa Glu	gtc Val	gct Ala 240	ggt Gly	tta Leu	gtt Val	gag Glu
ata Ile 245	caa Gln	caa Gln	gag Glu	ttt Phe	caa Gln 250	aac Asn	ttg Leu	ggc Gly	tcc Ser	gct Ala 255	aat Asn	aat Asn	gag Glu	atg Met	att Ile 260
ttt Phe	gac Asp	agt Ser	gag Glu	atg Met 265	gaa Glu	ctt Leu	ctg Leu	gtt Val	cga Arg 270	tgt Cys	att Ile	ggc Gly	tag		
aac	cggcg	3 9 9 9	gaaca	aagat	c to	ettag	gccg	g gc	tcta	gtta	aca	gtt	tga 🤉	ggagt	taaagt
gaa	atggt	tgc a	aaati	tagti	a ag	ggcta	agaa	a ati	caa	aagc	ttt	gtti	tac (cgaga	aaaaaa
aca	cacto	cta a	actci	ttgai	g tg	gatgt	agti	t agi	igtai	ttaa	ttag	gagge	ctg (egtti	ttcaa
<21 <21 <21 <21	1> 2 2> I	10 273 PRT Arab:	idops	sis (hali	iana									
<40	0 > 3	10													
Met 1	Gly	Arg	Ala	Pro 5	Cys	Суз	Glu	Lys	Met 10	Gly	Leu	Lys	Arg	Gly 15	Pro
Trp	Thr	Pro	Glu 20	Glu	Asp	Gln	Ile	Leu 25	Vạl	Ser	Phe	Ile	Leu 30	Asn	His
Gly	His	Ser 35	Asn	Trp	Arg	Ala	Leu 40	Pro	Lys	Gln	Ala	Gly 45	Leu	Leu	Arg
Cys	Gly 50	Lys	Ser	Cys	Arg	Leu 55	Arg	Trp	Met	Asn	Tyr 60	Leu	Lys	Pro	Asp
Ile 65	Lys	Arg	Gly	Asn	Phe 70	Thr	Lys	Glu	Glu	Glu 75	Авр	Ala	Ile	Ile	Ser 80
Leu	His	Gln	Ile	Leu 85	Gly	Asn	Arg	Trp	Ser 90	Ala	Ile	Ala	Ala	Lys 95	Leu
Pro	Gly	Arg	Thr 100	Asp	Asn	Glu	Ile	Lys 105	Asn	Val	Trp	His	Thr 110	His	Leu
Lvs	Lvs	Ara	Leu	Glu	asa	Tyr	Gln	Pro	Ala	Lys	Pro	Lys	Thr	Ser	Asn

Lys Lys Arg Leu Glu Asp Tyr Gln Pro Ala Lys Pro Lys Thr Ser Asn Page 11 mbi19 Sequence Listing.ST25

Lys Lys Lys Gly Thr Lys Pro Lys Ser Glu Ser Val Ile Thr Ser Ser 135 Asn Ser Thr Arg Ser Glu Ser Glu Leu Ala Asp Ser Ser Asn Pro Ser 155 Gly Glu Ser Leu Phe Ser Thr Ser Pro Ser Thr Ser Glu Val Ser Ser Met Thr Leu Ile Ser His Asp Gly Tyr Ser Asn Glu Ile Asn Met Asp Asn Lys Pro Gly Asp Ile Ser Thr Ile Asp Gln Glu Cys Val Ser Phe Glu Thr Phe Gly Ala Asp Ile Asp Glu Ser Phe Trp Lys Glu Thr Leu Tyr Ser Gln Asp Glu His Asn Tyr Val Ser Asn Asp Leu Glu Val Ala Gly Leu Val Glu Ile Gln Gln Glu Phe Gln Asn Leu Gly Ser Ala Asn 250 Asn Glu Met Ile Phe Asp Ser Glu Met Glu Leu Leu Val Arg Cys Ile 270 265 Gly <210> 11 <211> 1391 <212> DNA <213> Arabidopsis thaliana <220> · <221> CDS <222> (15)..(923) <223> G254 <400> 11 50 cgatttcgag ctct atg gtg tcc gta aac cct aga cct aag ggt ttt cca Met Val Ser Val Asn Pro Arg Pro Lys Gly Phe Pro gtt ttc gat tcc tcg aat atg agt tta cca agc tcc gat gga ttt ggt Val Phe Asp Ser Ser Asn Met Ser Leu Pro Ser Ser Asp Gly Phe Gly 98 tcg att ccg gcc acg gga cgg acc agt acg gtg tcg ttt tct gag gat Ser Ile Pro Ala Thr Gly Arg Thr Ser Thr Val Ser Phe Ser Glu Asp 146 35 194 ccg acg acg aag att cgg aag ccg tac aca atc aag aag tcg aga gag Pro Thr Thr Lys Ile Arg Lys Pro Tyr Thr Ile Lys Lys Ser Arg Glu aat tgg aca gat caa gag cac gat aaa ttt cta gaa gct ctt cac tta 242 Asn Trp Thr Asp Gln Glu His Asp Lys Phe Leu Glu Ala Leu His Leu

	mbi19 Sequence	Listing ST25	
ttc gat agg gat tgg aag aaa Phe Asp Arg Asp Trp Lys Lys 80	ata gaa gcc ttt	gtt gga tca aaa aca	290
gta gtt cag ata cga agc cac Val Val Gln Ile Arg Ser His 95	gct cag aaa tac Ala Gln Lys Tyr 100	ttt ctc aaa gtt cag Phe Leu Lys Val Gln 105	338
aag agt ggt gct aac gaa cat Lys Ser Gly Ala Asn Glu His 110 115	ctt cca ctt cct Leu Pro Leu Pro	cga cct aag agg aaa Arg Pro Lys Arg Lys 120	386
gcg agt cat cct tat cct ata Ala Ser His Pro Tyr Pro Ile 125 130	aag gct cct aaa Lys Ala Pro Lys 135	Asn Val Ala Tyr Thr	434
tct ctc ccg tct tcg agt aca Ser Leu Pro Ser Ser Ser Thr 145	tta ccg ttg ctt Leu Pro Leu Leu 150	gag cct ggt tat ttg Glu Pro Gly Tyr Leu 155	482
tat agc tct gat tcg aag tca Tyr Ser Ser Asp Ser Lys Ser 160	ttg atg gga aac Leu Met Gly Asn 165	cag gct gtt tgt gca Gln Ala Val Cys Ala 170	530
tct acc tct tct tcg tgg aat Ser Thr Ser Ser Ser Trp Asn 175	cat gaa tcg aca His Glu Ser Thr 180	aat ctg cca aaa ccg Asn Leu Pro Lys Pro 185	578
gtg att gaa gag gaa ccg gga Val Ile Glu Glu Pro Gly 190 195	gtc tcg gcc acg Val Ser Ala Thr	gct cct ctc cca aat Ala Pro Leu Pro Asn 200	626
aat cgc tgc aga cag gaa gat Asn Arg Cys Arg Gln Glu Asp 205 210	aca gag agg gta Thr Glu Arg Val 215	cga gca gtg aca aag Arg Ala Val Thr Lys 220	674
cca aat aac gaa gaa agt tgt Pro Asn Asn Glu Glu Ser Cys 225	gaa aag cca cat Glu Lys Pro His 230	aga gtg atg ccg aat Arg Val Met Pro Asn 235	722
ttt gct gaa gtt tac agc ttc Phe Ala Glu Val Tyr Ser Phe 240	att gga agt gtc Ile Gly Ser Val 245	ttc gat ccc aac aca Phe Asp Pro Asn Thr 250	770
tca ggc cac ctc cag aga tta Ser Gly His Leu Gln Arg Leu 255	aag cag atg gat Lys Gln Met Asp 260	cca ata aat atg gaa Pro Ile Asn Met Glu 265	818
acg gtt ctt tta ctg atg caa Thr Val Leu Leu Met Gln 270 275	aac ctg tct gta Asn Leu Ser Val	aat ctg aca agt ccc Asn Leu Thr Ser Pro 280	866
gag ttt gca gag caa agg agg Glu Phe Ala Glu Gln Arg Arg 285 290	ttg ata tca tca Leu Ile Ser Ser 295	tac agc gct aaa gct Tyr Ser Ala Lys Ala 300	914
ttg aaa tag agatagaata aaaca Leu Lys	aataat gtaccttat	g tgagatcaag	963
agacaatcat ccaaggtctg tatgca	ttgc ttggatttag	gcctcgtgtt ctcactacag	1023
gagcagaacc aatcgcaaag actctt	agat ggctactgag	ttgtggtttt tatgtctctg	1083
taagtcgcgg tggagcacac gtgttt	gtcc tgtcttgtgt	atgtgtgtat agataataca	1143
aggttttgca gagtaaggtc acagtt	agct gcaagtgagt	ttggatcaat cttaagatta	1203
aaaccctgag agtgagtgtc caaaga	gact gtgtaatatt	ggtttggcgg tcagcagaag	1263
agttttgaag tgcacatcca gttagt	gata acacggttga	agaaaaggta aggttacaag	1323
tttagttttg aataattgta tactca	aaaa atatgaatgt	ataaagaata atcacttgag	1383
tcgcctta		12	1391

mbi19 Sequence Listing.ST25

<210> 12

<211> 302 <212> PRT <213> Arabidopsis thaliana

<400> 12

Met Val Ser Val Asn Pro Arg Pro Lys Gly Phe Pro Val Phe Asp Ser

Ser Asn Met Ser Leu Pro Ser Ser Asp Gly Phe Gly Ser Ile Pro Ala

Thr Gly Arg Thr Ser Thr Val Ser Phe Ser Glu Asp Pro Thr Thr Lys

Ile Arg Lys Pro Tyr Thr Ile Lys Lys Ser Arg Glu Asn Trp Thr Asp

Gln Glu His Asp Lys Phe Leu Glu Ala Leu His Leu Phe Asp Arg Asp

Trp Lys Lys Ile Glu Ala Phe Val Gly Ser Lys Thr Val Val Gln Ile

Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val Gln Lys Ser Gly Ala

Asn Glu His Leu Pro Leu Pro Arg Pro Lys Arg Lys Ala Ser His Pro 120

Tyr Pro Ile Lys Ala Pro Lys Asn Val Ala Tyr Thr Ser Leu Pro Ser

Ser Ser Thr Leu Pro Leu Leu Glu Pro Gly Tyr Leu Tyr Ser Ser Asp

Ser Lys Ser Leu Met Gly Asn Gln Ala Val Cys Ala Ser Thr Ser Ser 165

Ser Trp Asn His Glu Ser Thr Asn Leu Pro Lys Pro Val Ile Glu Glu 180

Glu Pro Gly Val Ser Ala Thr Ala Pro Leu Pro Asn Asn Arg Cys Arg

Gln Glu Asp Thr Glu Arg Val Arg Ala Val Thr Lys Pro Asn Asn Glu

Glu Ser Cys Glu Lys Pro His Arg Val Met Pro Asn Phe Ala Glu Val

Tyr Ser Phe Ile Gly Ser Val Phe Asp Pro Asn Thr Ser Gly His Leu

Gln Arg Leu Lys Gln Met Asp Pro Ile Asn Met Glu Thr Val Leu Leu 265 260

mbi19 Sequence Listing.ST25

Leu Met Gln Asn Leu Ser Val Asn Leu Thr Ser Pro Glu Phe Ala Glu 275 280 285

Gln Arg Arg Leu Ile Ser Ser Tyr Ser Ala Lys Ala Leu Lys

<210> 13 <211> 1121 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (48)..(902) <222> <223> G263 <400> 13 tttttagttt tattttctg tggtaaaata aaaaaagttc gccggag atg acg gct 56 Met Thr Ala gtg acg gcg gcg caa aga tca gtt ccg gcg ccg ttt tta agc aaa acg 104 Val Thr Ala Ala Gln Arg Ser Val Pro Ala Pro Phe Leu Ser Lys Thr tat cag cta gtt gat gat cat agc aca gac gac gtc gtt tca tgg aac Tyr Gln Leu Val Asp Asp His Ser Thr Asp Asp Val Val Ser Trp Asn 152 25 200 gaa gaa gga aca gct ttt gtc gtg tgg aaa aca gca gag ttt gct aaa Glu Glu Gly Thr Ala Phe Val Val Trp Lys Thr Ala Glu Phe Ala Lys gat ctt ctt cct caa tac ttc aag cat aat aat ttc tca agc ttc att 248 Asp Leu Leu Pro Gln Tyr Phe Lys His Asn Asn Phe Ser Ser Phe Ile cgt cag ctc aac act tac gga ttt cgt aaa act gta ccg gat aaa tgg Arg Gln Leu Asn Thr Tyr Gly Phe Arg Lys Thr Val Pro Asp Lys Trp 296 gaa ttt gca aac gat tat ttc cgg aga ggc ggg gag gat ctg ttg acg Glu Phe Ala Asn Asp Tyr Phe Arg Arg Gly Gly Glu Asp Leu Leu Thr 344 gac ata cga cgg cgt aaa tcg gtg att gct tca acg gcg ggg aaa tgt Asp Ile Arg Arg Lys Ser Val Ile Ala Ser Thr Ala Gly Lys Cys 392 gtt gtt gtt ggt tcg cct tct gag tct aat tct ggt ggt ggt gat gat 440 Val Val Val Gly Ser Pro Ser Glu Ser Asn Ser Gly Gly Asp Asp 125 488 cac ggt tca agc tcc acg tca tca ccc ggt tcg tcg aag aat cct ggt His Gly Ser Ser Ser Thr Ser Ser Pro Gly Ser Ser Lys Asn Pro Gly 135 140 536 tcg gtg gag aac atg gtt gct gat tta tca gga gag aac gag aag ctt Ser Val Glu Asn Met Val Ala Asp Leu Ser Gly Glu Asn Glu Lys Leu aaa cgt gaa aac aat aac ttg agc tcg gag ctc gcg gcg gcg aag aag Lys Arg Glu Asn Asn Asn Leu Ser Ser Glu Leu Ala Ala Ala Lys Lys 584 cag cgc gat gag cta gtg acg ttc ttg acg ggt cat ctg aaa gta aga Gln Arg Asp Glu Leu Val Thr Phe Leu Thr Gly His Leu Lys Val Arg 632 185 190 680 ccg gaa caa atc gat aaa atg atc aaa gga ggg aaa ttt aaa ccg gtg

Page 15

Pro	Glu	Gln	Ile	Asp 200	Lys	Met			eque Gly 205						Val	
														Gly	gga Gly	728
					ggt Gly										ttg Leu	776
					aag Lys											824
agt Ser 260	Gly 999	tcc Ser	cgt Arg	atg Met	acg Thr 265	gaa Glu	ata Ile	aag Lys	aac Asn	gtg Val 270	gac Asp	ttt Phe	cac His	gcg Ala	ccg Pro 275	872
					aaa Lys				taa	aaaa	aagaq	gta (gaag	actg	tt	922
caaa	acca	gcg (gtga	acac	gt ca	atcga	acga	gad	cgaaa	aaaa	atga	attt	aaa a	aaac	tatttt	982
ttt	ccgta	aag g	gaaga	aaaag	gt ta	attt	tate	g ttt	taaa	aaag	gtga	aagaa	agg ·	tcca	gaagga	1042
tcaa	acgca	aaa t	atat	taaat	g ga	attt	cate	g tat	tata	ataa	ttta	aatta	agt (gtati	taagaa	1102
aata	aaaa	caa a	aaaa	aaaa	ā											1121
<210 <210 <210 <210	L> 2 2> 1	14 284 PRT Arab:	idops	sis t	hali	iana										
<400)> 1	14														
Met 1	Thr	Ala	Val	Thr 5	Ala	Ala	Gln	Arg	Ser 10	Val	Pro	Ala	Pro	Phe 15	Leu	
Ser	Lys	Thr	Tyr 20	Gln	Leu	Val	Asp	Asp 25	His	Ser	Thr	Asp	Asp 30	Val	Val	
Ser	Trp	Asn 35	Glu	Glu	Gly	Thr	Ala 40	Phe	Val	Val	Trp	Lys 45	Thr	Ala	Glu	
Phe	Ala 50	Lys	Asp	Leu	Leu	Pro 55	Gln	Tyr	Phe	Lys	His 60	Asn	Asn	Phe	Ser	
Ser 65	Phe	Ile	Arg	Gln	Leu 70	Asn	Thr	Tyr	Gly	Phe 75	Arg	Lys	Thr	Val	Pro 80	
Asp	Lys	Trp	Glu	Phe 85	Ala	Asn	Asp	Tyr	Phe 90	Arg	Arg	Gly	Gly	Glu 95	Asp	
Leu	Leu	Thr	Asp 100	Ile	Arg	Arg	Arg	Lys 105	Ser	Val	Ile	Ala	Ser 110	Thr	Ala	
Gly	Lys	Cys 115	Val	Val	Val	Gly	Ser 120	Pro	Ser	Glu	Ser	Asn 125	Ser	Gly	Gly	

						•					List					
Asn 145	Pro	Gly	Ser	Val	Glu 150	Asn	Met	Val	Ala	Asp 155	Leu	Ser	Gly	Glu	Asn 160	•
Glu	Lys	Leu	Lys	Arg 165	Glu	Asn	Asn	Asn	Leu 170	Ser	Ser	Glu	Leu	Ala 175	Ala	
Ala	Lys	Lys	Gln 180	Arg	Asp	Glu	Leu	Val 185	Thr	Phe	Leu	Thr	Gly 190	His	Leu	
Lys	Val	Arg 195	Pro	Glu	Gln	Ile	Asp 200	Lys	Met	Ile	Lys	Gly 205	Gly	Lys	Phe	
Lys	Pro 210	Val	Glu	Ser	Asp	Glu 215	Glu	Ser	Glu	Суз	Glu 220	Gly	Суѕ	Asp	Gly	
Gly 225	Gly	Gly	Ala	Glu	Glu 230	Gly	Val	Gly	Glu	Gly 235	Leu	Lys	Leu	Phe	Gly 240	
Val	Trp	Leu	Lys	Gly 245	Glu	Arg	Lys	Lys	Arg 250	Asp	Arg	Asp	Glu	Lys 255	Asn	
туг	Val	Val	Ser 260	Gly	Ser	Arg	Met	Thr 265		Ile	Lys	Asn	Val 270	Asp	Phe	
His	Ala	Pro 275	Leu	Trp	Lys	Ser	Ser 280	Lys	Val	Сув	Asn					
<210 <211 <212 <213	> 1 > [.5 .951 NA Arabi	dops	sis t	hali	.ana										
<220 <221 <222 <223	.> C !> (DS (196) 3308	(1	.794)												
<400 agta		.5 :ag t	ttt	ttt	t tt	tttt	ttac	aat	ttat	ttt	gtta	attag	gaa g	ıtggt	agtgg	60
agto	jaaaa	aa c	aaat	ccta	a go	agto	ctaa	ccg	atco	ccg	aago	taaa	iga t	tctt	cacct	120
tccc	aaat	aa a	gcaa	aacc	t ag	atco	gaca	ttg	aagg	aaa	aacc	ettt	ag a	itcca	tctct	180
gaaa	aaaa	cc c	aacc	atg Met	aag Lys	aga Arg	gat Asp	cat His	cat His	cat His	cat His	cat His	caa Glr 10	gat Asp	aag Lys	231
aag Lys	act Thr	atg Met 15	atg Met	atg Met	aat Asn	gaa Glu	gaa Glu 20	gac Asp	gac Asp	ggt Gly	aac Asn	ggc Gly 25	atg Met	gat Asp	gag Glu	279
ctt Leu	cta Leu 30	gct Ala	gtt Val	ctt Leu	ggt Gly	tac Tyr 35	aag Lys	gtt Val	agg Arg	tca Ser	tcg Ser 40	gaa Glu	atg Met	gct Ala	gat Asp	327
gtt Val 45	gct Ala	cag Gln	aaa Lys	ctc Leu	gag Glu 50	cag Gln	ctt Leu	gaa Glu	gtt Val	atg Met 55	atg Met	tct Ser	aat Asn	gtt Val	caa Gln 60	375
gaa Glu	gac Asp	gat Asp	ctt Leu	tct Ser 65	caa Gln	ctc Leu	gct Ala	act Thr	gag Glu 70	act Thr	gtt Val	cac His	tat Tyr	aat Asn 75	ccg Pro	423
gcg	gag	ctt	tac	acg	tgg	ctt	gat	tct		ctc age 1		gac	ctt	aat	cct	471

Ala	Glu	Leu	Tyr 80	Thr	Trp	Leu		19 S Ser 85							Pro	
								ctt Leu								519
att Ile	ctc Leu 110	aat Asn	cag Gln	ttc Phe	gct Ala	atc Ile 115	gat Asp	tcg Ser	gct Ala	tct Ser	tcg Ser 120	tct Ser	aac Asn	caa Gln	ggc Gly	567
								aac Asn								615
ggc Gly	gtc Val	gtg Val	gaa Glu	acc Thr 145	acc Thr	aca Thr	gcg Ala	acg Thr	gct Ala 150	gag Glu	tca Ser	act Thr	cgg Arg	cat His 155	gtt Val	663
								ggt Gly 165								711
								aag Lys								759
								tta Leu								807
								gcc Ala								855
								cca Pro								903
								act Thr 245							gct Ala	. 951
								ctc Leu								999
aga Arg	gtt Val 270	cat His	gtc Val	att Ile	gat Asp	ttc Phe 275	tct Ser	atg Met	agt Ser	caa Gln	ggt Gly 280	ctt Leu	caa Gln	tgg Trp	ccg Pro	1047
								cga Arg								1095
								gca Ala								1143
								cat His 325								1191
								gct Ala								1239
gct Ala	tcg Ser 350	atg Met	ctt Leu	gag Glu	ctt Leu	aga Arg 355	cca Pro	agt Ser	gag Glu	att Ile	gaa Glu 360	tct Ser	gtt Val	gcg Ala	gtt Val	1287
								ctc Leu								1335

gat													0 m 0 C			
Asp	aag Lys	gtt Val	ctt Leu	ggt Gly 385	gtg Val	gtg Val	aat	19 S cag Gln	att	aaa	ccg	gag	att	ttc	act Thr	1383
gtg Val	gtt Val	gag Glu	cag Gln 400	gaa Glu	tcg Ser	aac Asn	cat His	aat Asn 405	agt Ser	ccg Pro	att Ile	ttc Phe	tta Leu 410	gat Asp	cgg Arg	1431
ttt Phe	act Thr	gag Glu 415	tcg Ser	ttg Leu	cat His	tat Tyr	tac Tyr 420	tcg Ser	acg Thr	ttg Leu	ttt Phe	gac Asp 425	tcg Ser	ttg Leu	gaa Glu	1479
ggt Gly	gta Val 430	ccg Pro	agt Ser	ggt Gly	caa Gln	gac Asp 435	aag Lys	gtc Val	atg Met	tcg Ser	gag Glu 440	gtt Val	tac Tyr	ttg Leu	ggt Gly	1527
aaa Lys 445	cag Gln	atc Ile	tgc Cys	aac Asn	gtt Val 450	gtg Val	gct Ala	tgt Cys	gat Asp	gga Gly 455	cct Pro	gac Asp	cga Arg	gtt Val	gag Glu 460	1575
cgt Arg	cat His	gaa Glu	acg Thr	ttg Leu 465	agt Ser	cag Gln	tgg Trp	agg Arg	aac Asn 470	cgg Arg	ttc Phe	gly ggg	tct Ser	gct Ala 475	gly aaa	1623
ttt Phe	gcg Ala	gct Ala	gca Ala 480	cat His	att Ile	ggt Gly	tcg Ser	aat Asn 485	gcg Ala	ttt Phe	aag Lys	caa Gln	gcg Ala 490	agt Ser	atg Met	1671
ctt Leu	ttg Leu	gct Ala 495	ctg Leu	ttc Phe	aac Asn	ggc Gly	ggt Gly 500	gag Glu	ggt Gly	tat Tyr	cgg Arg	gtg Val 505	gag Glu	gag Glu	agt Ser	1719
gac Asp	ggc Gly 510	tgt Cys	ctc Leu	atg Met	ttg Leu	ggt Gly 515	tgġ Trp	cac His	aca Thr	cga Arg	ccg Pro 520	ctc Leu	ata Ile	gcc Ala	acc Thr	1767
	gct Ala							tag	ätgg	jtggd	etc a	atga	atto	ja		1814
tct	gttga	aac d	ggtt	atga	at ga	taga	tttc	c cga	iccga	agc	caaa	ectaa	aat d	ctac	etgttt	1874
ttc	ctt	gt	cactt	gtta	aa ga	atctt	atct	ttc	atta	tat	tagg	taat	tg a	aaaa	atttta	1934
atci																
	cgco	cta a	aatta	act												1951
<210 <211 <211 <211)> : L> : 2> 1	16 532 PRT	aatta		:hali	lana										
<210 <210 <210	0> : L> : 2> 1 3> 2	16 532 PRT			:hali	lana										
<210 <211 <211 <211	0> 1 L> 5 2> 1 3> 2	L6 532 PRT Arab:	idops	sis t			His	His	Gln 10		Lys	Lys	Thr	Met 15	Met	
<210 <211 <211 <211 <400 Met 1)> ; L> ; 2> ; 3> ; D> ;	L6 532 PRT Arab: L6 Arg	idops Asp	His 5	His	His		His Gly 25	10	Asp				15		
<210 <211 <211 <211 <400 Met 1)> : L> : 2> : 3> : 1 Lys Asn	L6 532 PRT Arab: L6 Arg	Asp Glu 20	His 5 Asp	His Asp	His Gly	Asn	Gly	10 Met	Asp	Glu	Leu	Leu 30	15 Ala	Val	
<210 <211 <211 <400 Met 1 Met	D> : L> : S> : L> : S> : D> : Asn Gly	L6 532 PRT Arab: L6 Arg Glu Tyr 35	idops Asp Glu 20 Lys	His 5 Asp Val	His Asp Arg	His Gly Ser	Asn Ser 40	Gly 25	10 Met Met	Asp Asp Ala	Glu Asp	Leu Val 45	Leu 30 Ala	15 Ala Gln	Val Lys	
<210 <211 <211 <400 Met 1 Met Leu	Clys Asn Gly Glu 50	Glu Tyr 35	Asp Glu 20 Lys Leu	His 5 Asp Val	His Asp Arg Val	His Gly Ser Met 55	Asn Ser 40 Met	Gly 25 Glu	10 Met Met Asn	Asp Asp Ala Val	Glu Asp Gln 60	Leu Val 45 Glu	Leu 30 Ala Asp	Ala Gln Asp	Val Lys Leu	

Thr Trp Leu Asp Ser Met Leu Thr Asp Leu Asn Pro Pro Ser Ser Asn Page 19

mbil9 Sequence Listing.ST25 85 90 95

Ala Glu Tyr Asp Leu Lys Ala Ile Pro Gly Asp Ala Ile Leu Asn Gln

Phe Ala Ile Asp Ser Ala Ser Ser Ser Asn Gln Gly Gly Gly Asp 115 120 125

Thr Tyr Thr Thr Asn Lys Arg Leu Lys Cys Ser Asn Gly Val Val Glu 130 140

Thr Thr Thr Ala Thr Ala Glu Ser Thr Arg His Val Val Leu Val Asp 145 150 155 160

Ser Gln Glu Asn Gly Val Arg Leu Val His Ala Leu Leu Ala Cys Ala 165 170 175

Glu Ala Val Gln Lys Glu Asn Leu Thr Val Ala Glu Ala Leu Val Lys 180 185 190

Gln Ile Gly Phe Leu Ala Val Ser Gln Ile Gly Ala Met Arg Gln Val 195 200 205

Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg Ile Tyr Arg Leu Ser 210 220

Pro Ser Gln Ser Pro Ile Asp His Ser Leu Ser Asp Thr Leu Gln Met 225 230 235 240

His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe Ala His Phe Thr Ala 245 250 255

Asn Gln Ala Ile Leu Glu Ala Phe Gln Gly Lys Lys Arg Val His Val 260 265 270

Ile Asp Phe Ser Met Ser Gln Gly Leu Gln Trp Pro Ala Leu Met Gln 275 280 285

Ala Leu Ala Leu Arg Pro Gly Gly Pro Pro Val Phe Arg Leu Thr Gly 290 295 300

Ile Gly Pro Pro Ala Pro Asp Asn Phe Asp Tyr Leu His Glu Val Gly 305 310 315 320

Cys Lys Leu Ala His Leu Ala Glu Ala Ile His Val Glu Phe Glu Tyr 325 330 335

Arg Gly Phe Val Ala Asn Thr Leu Ala Asp Leu Asp Ala Ser Met Leu 340 345 350

Glu Leu Arg Pro Ser Glu Ile Glu Ser Val Ala Val Asn Ser Val Phe 355 360 365

Glu Leu His Lys Leu Leu Gly Arg Pro Gly Ala Ile Asp Lys Val Leu 370 375 380

Gly 385	Val	Val	Asn	Gln	Ile 390	Lys	mbi Pro	19 S Glu	eque Ile	nce Phe 395	List Thr	ing. Val	ST25 Val	Glu	Gln 400	
Glu	Ser	Asn	His	Asn 405	Ser	Pro	Ile	Phe	Leu 410	Asp	Arg	Phe	Thr	Glu 415	Ser	
Leu	His	Tyr	Tyr 420	Ser	Thr	Leu	Phe	Asp 425	Ser	Leu	Glu	Gly	Val 430	Pro	Ser	
Gly	Gln	Asp 435	Lys	Val	Met	Ser	Glu 440	Val	Tyr	Leu	Gly	Lys 445	Gln	Ile	Cys	
Asn	Val 450	Val	Ala	Сув	Asp	Gly 455	Pro	Asp	Arg	Val	Glu 460	Arg	His	Glu	Thr	
Leu 465	Ser	Gln	Trp	Arg	Asn 470	Arg	Phe	Gly	Ser	Ala 475	Gly	Phe	Ala	Ala	Ala 480	
His	Ile	Gly	Ser	Asn 485	Ala	Phe	Lys	Gln	Ala 490	Ser	Met	Leu	Leu	Ala 495	Leu	
Phe	Asn	Gly	Gly 500	Glu	Gly	Tyr	Arg	Val 505	Glu	Glu	Ser	Asp	Gly 510	Сув	Leu	
Met	Leu	Gly 515	Trp	His	Thr	Arg	Pro 520	Leu	Ile	Ala	Thr	Ser 525	Ala	Trp	Lys	
Leu	Ser 530	Thr	Asn													
<210 <211 <212 <213	l> ' ?> I	17 768 DNA Arab:	idops	sis t	hali	iana										
<220 <221 <222 <223	L> (?>	CDS (1).	. (768	3)												
<400 atg Met 1	tca	aca Thr	agg Arg	gaa Glu 5	gag Glu	aat Asn	gtt Val	tac Tyr	atg Met 10	gcg Ala	aaa Lys	tta Leu	gcc Ala	gaa Glu 15	caa Gln	48
gct Ala	gaa Glu	cgt Arg	tac Tyr 20	gaa Glu	gaa Glu	atg Met	gtt Val	gaa Glu 25	ttc Phe	atg Met	gag Glu	aaa Lys	gtt Val 30	gcg Ala	aaa Lys	96
act Thr	gtt Val	gat Asp 35	gtt Val	gag Glu	gaa Glu	ctt Leu	tca Ser 40	gtt Val	gaa Glu	gag Glu	agg Arg	aat Asn 45	ctt Leu	ctc Leu	tct Ser	144
gtt Val	gct Ala 50	tac Tyr	aag Lys	aac Asn	gtg Val	att Ile 55	gga Gly	gcg Ala	aga Arg	aga Arg	gct Ala 60	tcg Ser	tgg Trp	aga Arg	atc Ile	192
att Ile 65	tct Ser	tcg Ser	att Ile	gag Glu	cag Gln 70	aaa Lys	gaa Glu	gag Glu	agc Ser	aaa Lys 75	gly ggg	aac Asn	gaa Glu	gat Asp	cat His 80	240
gtt Val	gct Ala	att Ile	atc Ile	aag Lys 85	gat Asp	tac Tyr	aga Arg	gga Gly	Glu 90	att Ile	gaa Glu	tcc Ser	gag Glu	ctt Leu 95	agc Ser	288

mbil9 Sequence Listing.ST25

							mbi	19 S	eque	nce	List	ing.	ST25			
aaa Lys	atc Ile	tgt Cys	gat Asp 100	ggg Gly	att Ile	ttg Leu	aat Asn	gtt Val 105	ctt Leu	gaa Glu	gct Ala	cat His	ctt Leu 110	att Ile	cct Pro	336
tct Ser	gct Ala	tca Ser 115	cca Pro	gct Ala	gaa Glu	tct Ser	aaa Lys 120	gtg Val	ttt Phe	tat Tyr	ctt Leu	aag Lys 125	atg Met	aag Lys	ggt Gly	384
gat Asp	tat Tyr 130	cat His	agg Arg	tat Tyr	ctt Leu	gct Ala 135	gag Glu	ttt Phe	aag Lys	gct Ala	ggt Gly 140	gct Ala	gaa Glu	agg Arg	aaa Lys	432
			gaa Glu													480
			gag Glu													528
			tct Ser 180													576
			ctc Leu													624
			ggt Gly													672
			gac Asp													720
			gag Glu												taa	768
<210 <211 <212 <213	> 2 ?> I	.8 255 PRT Arabi	dops	sis t	:hali	.ana										
<400)> 1	. 8														
Met 1	Ser	Thr	Arg	Glu 5	Glu	Asn	Val	Tyr	Met 10	Ala	Lys	Leu	Ala	Glu 15	Gln	
Ala	Glu	Arg	Tyr 20	Glu	Glu	Met	Val	Glu 25	Phe	Met	Glu	Lys	Val 30	Ala	Lys	
Thr	Val	Asp 35	Val	Glu	Glu	Leu	Ser 40	Val	Glu	Glu	Arg	Asn 45	Leu	Leu	Ser	
Val	Ala 50	Tyr	Lys	Asn	Val	Ile 55	Gly	Ala	Arg	Arg	Ala 60	Ser	Trp	Arg	Ile	
Ile 65	Ser	Ser	Ile	Glu	Gln 70	Lys	Glu	Glu	Ser	Lys 75	Gly	Asn	Glu	Asp	His 80	

Lys Ile Cys Asp Gly Ile Leu Asn Val Leu Glu Ala His Leu Ile Pro 100 100 110

Val Ala Ile Ile Lys Asp Tyr Arg Gly Glu Ile Glu Ser Glu Leu Ser 85 90 95

mbi19 Sequence Listing.ST25

Ser Ala Ser Pro Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Ala Gly Ala Glu Arg Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala Ser Asp Ile Ala Thr Ala Glu Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Asp Ala Ile Ala Glu Leu Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln 215 Leu Leu Arg Asp Asn Leu Thr Leu Trp Thr Ser Asp Met Thr Asp Glu 225 Ala Gly Asp Glu Ile Lys Glu Ala Ser Lys Pro Asp Gly Ala Glu <210> 19 <211> 2526 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (338)..(2275) <222> G680 <223> <400> 19 cagttatett etteettett etetetgttt tttaaattta tttttagaga attttttttg 60 ttttgcttcc gatttgatta tttccgggaa cgatgacttc tccggggagt tcccggtgag 120 atgataagtc agattgcata cttgtctcct ccatggctac tctcaagggt tttggctgcg 180 gtggattcgt ttggtttctc tagaatctaa agaggttatc acaacggctt tgcaatttga 240 aaactttcat gtttggggag atcaaagatg gtttcttttt tatactttac ttgttagaga 300 ggatttgaag cagcgaatag ctgcaaccgg tcctgtt atg gat act aat aca tct 355 Met Asp Thr Asn Thr Ser gga gaa gaa tta tta gct aag gca aga aag cca tat aca ata aca aag 403 Gly Glu Glu Leu Leu Ala Lys Ala Arg Lys Pro Tyr Thr Ile Thr Lys cag cga gag cga tgg act gag gat gag cat gag agg ttt cta gaa gcc Gln Arg Glu Arg Trp Thr Glu Asp Glu His Glu Arg Phe Leu Glu Ala 451 499 ttq agg ctt tat gga aga gct tgg caa cga att gaa gaa cat att ggg Leu Arg Leu Tyr Gly Arg Ala Trp Gln Arg Ile Glu Glu His Ile Gly 50 40 45

mbi19 Sequence Listing.ST25

							11001	1, 0	cquc			9 .	0123			
aca Thr 55	aag Lys	act Thr	gct Ala	gtt Val	cag Gln 60	atc Ile	aga Arg	agt Ser	cat His	gca Ala 65	caa Gln	aag Lys	ttc Phe	ttc Phe	aca Thr 70	547
aag Lys	ttg Leu	gag Glu	aaa Lys	gag Glu 75	gct Ala	gaa Glu	gtt Val	aaa Lys	ggc Gly 80	atc Ile	cct Pro	gtt Val	tgc Cys	caa Gln 85	gct Ala	595
ttg Leu	gac Asp	ata Ile	gaa Glu 90	att Ile	ccg Pro	cct Pro	cct Pro	cgt Arg 95	cct Pro	aaa Lys	cga Arg	aaa Lys	ccc Pro 100	aat Asn	act Thr	643
cct Pro	tat Tyr	cct Pro 105	cga Arg	aaa Lys	cct Pro	ggg ggg	aac Asn 110	aac Asn	ggt Gly	aca Thr	tct Ser	tcc Ser 115	tct Ser	caa Gln	gta Val	691
tca Ser	tca Ser 120	gca Ala	aaa Lys	gat Asp	gca Ala	aaa Lys 125	ctt Leu	gtt Val	tca Ser	tcg Ser	gcc Ala 130	tct Ser	tct Ser	tca Ser	cag Gln	739
								gaa Glu								787
aca Thr	tca Ser	act Thr	gga Gly	aaa Lys 155	gaa Glu	aat Asn	caa Gln	gat Asp	gag Glu 160	aat Asn	tgc Cys	tcg Ser	ggt Gly	gtt Val 165	tct Ser	835
act Thr	gtg Val	aac Asn	aag Lys 170	tat Tyr	ccc Pro	tta Leu	cca Pro	acg Thr 175	aaa Lys	cag Gln	gta Val	agt Ser	ggc Gly 180	gac Asp	att Ile	883
gaa Glu	aca Thr	agt Ser 185	aag Lys	acc Thr	tca Ser	act Thr	gtg Val 190	gac Asp	aac Asn	gcg Ala	gtt Val	caa Gln 195	gat Asp	gtt Val	ccc Pro	931
aag Lys	aag Lys 200	aac Asn	aaa Lys	gac Asp	aaa Lys	gat Asp 205	ggt Gly	aac Asn	gat Asp	ggt Gly	act Thr 210	act Thr	gtg Val	cac His	agc Ser	979
atg Met 215	caa Gln	aac Asn	tac Tyr	cct Pro	tgg Trp 220	cat His	ttc Phe	cac His	gca Ala	gat Asp 225	att Ile	gtg Val	aac Asn	999 Gly	aat Asn 230	1027
ata Ile	gca Ala	aaa Lys	tgc Cys	cct Pro 235	caa Gln	aat Asn	cat His	ccc Pro	tca Ser 240	ggt Gly	atg Met	gta Val	tct Ser	caa Gln 245	gac Asp	1075
ttc Phe	atg Met	ttt Phe	cat His 250	cct Pro	atg Met	aga Arg	gaa Glu	gaa Glu 255	act Thr	cac His	G1 y 999	cac His	gca Ala 260	aat Asn	ctt Leu	1123
caa Gln	gct Ala	aca Thr 265	aca Thr	gca Ala	tct Ser	gct Ala	act Thr 270	act Thr	aca Thr	gct Ala	tct Ser	cat His 275	caa Gln	gcg Ala	ttt Phe	1171
cca Pro	gct Ala 280	tgt Cys	cat His	tca Ser	cag Gln	gat Asp 285	gat Asp	tac Tyr	cgt Arg	tcg Ser	ttt Phe 290	ctc Leu	cag Gln	ata Ile	tca Ser	1219
tct Ser 295	act Thr	ttc Phe	tcc Ser	aat Asn	ctt Leu 300	att Ile	atg Met	tca Ser	act Thr	ctc Leu 305	cta Leu	cag Gln	aat Asn	cct Pro	gca Ala 310	1267
								gct Ala								1315
gtc Val	ggg Gly	aat Asn	tct Ser 330	ggt Gly	gat Asp	tca Ser	tca Ser	acc Thr 335	cca Pro	atg Met	agc Ser	tct Ser	tct Ser 340	cct Pro	cca Pro	1363
								aca Thr	Val		Ala					1411

	mbil9 Se	quence Listing.ST25
245	350	355

		345					350		•			355				
tgg Trp	gct Ala 360	tct Ser	cat His	gga Gly	ctt Leu	ctt Leu 365	cct Pro	gta Val	tgc Cys	gct Ala	cca Pro 370	gct Ala	cca Pro	ata Ile	aca Thr	1459
tgt Cys 375	gtt Val	cca Pro	ttc Phe	tca Ser	act Thr 380	gtt Val	gca Ala	gtt Val	çca Pro	act Thr 385	cca Pro	gca Ala	atg Met	act Thr	gaa Glu 390	1507
atg Met	gat Asp	acc Thr	gtt Val	gaa Glu 395	aat Asn	act Thr	caa Gln	ccg Pro	ttt Phe 400	gag Glu	aaa Lys	caa Gln	aac Asn	aca Thr 405	gct Ala	1555
ctg Leu	caa Gln	gat Asp	caa Gln 410	acc Thr	ttg Leu	gct Ala	tcg Ser	aaa Lys 415	tct Ser	cca Pro	gct Ala	tca Ser	tca Ser 420	tct Ser	gat Asp	1603
gat Asp	tca Ser	gat Asp 425	gag Glu	act Thr	gga Gly	gta Val	acc Thr 430	aag Lys	cta Leu	aat Asn	gcc Ala	gac Asp 435	tca Ser	aaa Lys	acc Thr	1651
aat Asn	gat Asp 440	gat Asp	aaa Lys	att Ile	gag Glu	gag Glu 445	gtt Val	gtt Val	gtt Val	act Thr	gcc Ala 450	gct Ala	gtg Val	cat His	gac Asp	1699
tca Ser 455	aac Asn	act Thr	gcc Ala	cag Gln	aag Lys 460	aaa Lys	aat Asn	ctt Leu	gtg Val	gac Asp 465	cgc Arg	tca Ser	tcg Ser	tgt Cys	ggc Gly 470	1747
tca Ser	aat Asn	aca Thr	cct Pro	tca Ser 475	ggg Gly	agt Ser	gac Asp	gca Ala	gaa Glu 480	act Thr	gat Asp	gca Ala	tta Leu	gat Asp 485	aaa Lys	1795
atg Met	gag Glu	aaa Lys	gat Asp 490	aaa Lys	gag Glu	gat Asp	gtg Val	aag Lys 495	Glu	aca Thr	gat Asp	gag Glu	aat Asn 500	cag Gln	cca Pro	1843
gat Asp	gtt Val	att Ile 505	gag Glu	tta Leu	aat Asn	aac Asn	cgt Arg 510	aag Lys	att Ile	aaa Lys	atg Met	aga Arg 515	gac Asp	aac Asn	aac Asn	1891
agc Ser	aac Asn 520	aac Asn	aat Asn	gca Ala	act Thr	act Thr 525	gat Asp	tcg Ser	tgg Trp	aag Lys	gaa Glu 530	gtc Val	tcc Ser	gaa Glu	gag Glu	1939
ggt Gly 535	cgt Arg	ata Ile	gcg Ala	ttt Phe	cag Gln 540	gct Ala	ctc Leu	ttt Phe	gca Ala	aga Arg 545	gaa Glu	aga Arg	ttg Leu	cct Pro	caa Gln 550	1987
agc Ser	ttt Phe	tcg Ser	cct Pro	cct Pro 555	caa Gln	gtg Val	gca Ala	gag Glu	aat Asn 560	gtg Val	aat Asn	aga Arg	aaa Lys	caa Gln 565	agt Ser	2035
gac Asp	acg Thr	tca Ser	atg Met 570	cca Pro	ttg Leu	gct Ala	cct Pro	aat Asn 575	ttc Phe	aaa Lys	agc Ser	cag Gln	gat Asp 580	tct Ser	tgt Cys	2083
gct Ala	gca Ala	gac Asp 585	caa Gln	gaa Glu	gga Gly	gta Val	gta Val 590	atg Met	atc Ile	ggt Gly	gtt Val	gga Gly 595	aca Thr	tgc Cys	aag Lys	2131
agt Ser	ctt Leu 600	aaa Lys	acg Thr	aga Arg	cag Gln	aca Thr 605	gga Gly	ttt Phe	aag Lys	cca Pro	tac Tyr 610	aag Lys	aga Arg	tgt Cys	tca Ser	2179
atg Met 615	gaa Glu	gtg Val	aaa Lys	gag Glu	agc Ser 620	caa Gln	gtt Val	999 Gly	aac Asn	ata Ile 625	aac Asn	aat Asn	caa Gln	agt Ser	gat Asp 630	2227
gaa Glu	aaa Lys	gtc Val	tgc Cys	aaa Lys 635	agg Arg	ctt Leu	cga Arg	ttg Leu	gaa Glu 640	gga Gly	gaa Glu	gct Ala	tct Ser	aca Thr 645	tga	2275
caga	ctt	gga g	ggtaa	aaaa	aa aa	acat	ccac	att		tca age :		cttt	aa a	tcta	gtgtt	2335

mbi19 Sequence Listing.ST25

agtagtttgc ttctccaatc tttatgaaag agacttttaa ttttccttcc gaacatttct 2395
ttggtcatgt caggttctgt accatattac cccatgtctt gtctcttgtc tctgtttgtg 2455
tatgctactt gtggtctata tgtcatctgc tactactgtt aattaaccat taagcaatgg 2515
atttgtcttt a 2526

<210> 20

<211> 645

<212> PRT

<213> Arabidopsis thaliana

<400> 20

Met Asp Thr Asn Thr Ser Gly Glu Glu Leu Leu Ala Lys Ala Arg Lys 1 5 10 15

Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Asp Glu His

Glu Arg Phe Leu Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Arg 35 40 45

Ile Glu Glu His Ile Gly Thr Lys Thr Ala Val Gln Ile Arg Ser His
50 55 60

Ala Gln Lys Phe Phe Thr Lys Leu Glu Lys Glu Ala Glu Val Lys Gly 65 70 75 80

Ile Pro Val Cys Gln Ala Leu Asp Ile Glu Ile Pro Pro Pro Arg Pro 85 90 95

Lys Arg Lys Pro Asn Thr Pro Tyr Pro Arg Lys Pro Gly Asn Asn Gly
100 105 110

Thr Ser Ser Ser Gln Val Ser Ser Ala Lys Asp Ala Lys Leu Val Ser 115 120 125

Ser Ala Ser Ser Ser Gln Leu Asn Gln Ala Phe Leu Asp Leu Glu Lys 130 135 140

Met Pro Phe Ser Glu Lys Thr Ser Thr Gly Lys Glu Asn Gln Asp Glu 145 150 155 160

Asn Cys Ser Gly Val Ser Thr Val Asn Lys Tyr Pro Leu Pro Thr Lys 165 170 175

Gln Val Ser Gly Asp Ile Glu Thr Ser Lys Thr Ser Thr Val Asp Asn 180 185 190

Ala Val Gln Asp Val Pro Lys Lys Asn Lys Asp Lys Asp Gly Asn Asp 195 200 205

Gly Thr Thr Val His Ser Met Gln Asn Tyr Pro Trp His Phe His Ala

Asp Ile Val Asn Gly Asn Ile Ala Lys Cys Pro Gln Asn His Pro Ser 225 230 235 240

mbil9 Sequence Listing.ST25

Gly Met Val Ser Gln Asp Phe Met Phe His Pro Met Arg Glu Glu Thr His Gly His Ala Asn Leu Gln Ala Thr Thr Ala Ser Ala Thr Thr Ala Ser His Gln Ala Phe Pro Ala Cys His Ser Gln Asp Asp Tyr Arg 280 Ser Phe Leu Gln Ile Ser Ser Thr Phe Ser Asn Leu Ile Met Ser Thr Leu Leu Gln Asn Pro Ala Ala His Ala Ala Ala Thr Phe Ala Ala Ser Val Trp Pro Tyr Ala Ser Val Gly Asn Ser Gly Asp Ser Ser Thr Pro Met Ser Ser Pro Pro Ser Ile Thr Ala Ile Ala Ala Ala Thr Val 345 Ala Ala Ala Thr Ala Trp Trp Ala Ser His Gly Leu Leu Pro Val Cys Ala Pro Ala Pro Ile Thr Cys Val Pro Phe Ser Thr Val Ala Val Pro 370 375 380 Thr Pro Ala Met Thr Glu Met Asp Thr Val Glu Asn Thr Gln Pro Phe Glu Lys Gln Asn Thr Ala Leu Gln Asp Gln Thr Leu Ala Ser Lys Ser Pro Ala Ser Ser Ser Asp Asp Ser Asp Glu Thr Gly Val Thr Lys Leu Asn Ala Asp Ser Lys Thr Asn Asp Asp Lys Ile Glu Glu Val Val Val Thr Ala Ala Val His Asp Ser Asn Thr Ala Gln Lys Lys Asn Leu Val 455 Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Gly Ser Asp Ala Glu Thr Asp Ala Leu Asp Lys Met Glu Lys Asp Lys Glu Asp Val Lys Glu Thr Asp Glu Asn Gln Pro Asp Val Ile Glu Leu Asn Asn Arg Lys Ile Lys Met Arg Asp Asn Asn Ser Asn Asn Asn Ala Thr Thr Asp Ser Trp Lys Glu Val Ser Glu Glu Gly Arg Ile Ala Phe Gln Ala Leu Phe Ala Page 27

mbi19 Sequence Listing.ST25 530 535 540

Arg Glu Arg Leu Pro Gln Ser Phe Ser Pro Pro Gln Val Ala Glu Asn 550 555 Val Asn Arg Lys Gln Ser Asp Thr Ser Met Pro Leu Ala Pro Asn Phe 565 Lys Ser Gln Asp Ser Cys Ala Ala Asp Gln Glu Gly Val Val Met Ile Gly Val Gly Thr Cys Lys Ser Leu Lys Thr Arg Gln Thr Gly Phe Lys 600 Pro Tyr Lys Arg Cys Ser Met Glu Val Lys Glu Ser Gln Val Gly Asn Ile Asn Asn Gln Ser Asp Glu Lys Val Cys Lys Arg Leu Arg Leu Glu Gly Glu Ala Ser Thr <210> 21 <211> 1281 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (64)..(1098) <223> G867 <400> 21 cacaacacaa acacatttct gttttctcca ttgtttcaaa ccataaaaaa aaacacagat 60 taa atg gaa tcg agt agc gtt gat gag agt act aca agt aca ggt tcc Met Glu Ser Ser Ser Val Asp Glu Ser Thr Thr Ser Thr Gly Ser 108 atc tgt gaa acc ccg gcg ata act ccg gcg aaa aag tcg tcg gta ggt Ile Cys Glu Thr Pro Ala Ile Thr Pro Ala Lys Lys Ser Ser Val Gly 156 aac tta tac agg atg gga agc gga tca agc gtt gtg tta gat tca gag Asn Leu Tyr Arg Met Gly Ser Gly Ser Ser Val Val Leu Asp Ser Glu 204 40 252 aac ggc gta gaa gct gaa tct agg aag ctt ccg tcg tca aaa tac aaa Asn Gly Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser Lys Tyr Lys ggt gtg gtg cca caa cca aac gga aga tgg gga gct cag att tac gag 300 Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu aaa cac cag cgc gtg tgg ctc ggg aca ttc aac gaa gaa gac gaa gcc Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu Asp Glu Ala 348 85 90 396 get egt gee tae gae gte geg gtt cae agg tte egt ege egt gae gee Ala Arg Ala Tyr Asp Val Ala Val His Arg Phe Arg Arg Arg Asp Ala gtc aca aat ttc aaa gac gtg aag atg gac gaa gac gag gtc gat ttc Val Thr Asn Phe Lys Asp Val Lys Met Asp Glu Asp Glu Val Asp Phe 444

	mbi19 Sequence	Listing.ST25
115	120	125

			115					120					125				
ttg Leu	aat Asn	tct Ser 130	cat His	tcg Ser	aaa Lys	tct Ser	gag Glu 135	atc Ile	gtt Val	gat Asp	atg Met	ttg Leu 140	agg Arg	aaa Lys	cat His	492	
act Thr	tat Tyr 145	aac Asn	gaa Glu	gag Glu	tta Leu	gag Glu 150	cag Gln	agt Ser	aaa Lys	cgg Arg	cgt Arg 155	cgt Arg	aat Asn	ggt Gly	aac Asn	540	
gga Gly 160	aac Asn	atg Met	act Thr	agg Arg	acg Thr 165	ttg Leu	tta Leu	acg Thr	tcg Ser	999 Gly 170	ttg Leu	agt Ser	aat Asn	gat Asp	ggt Gly 175	588	
gtt Val	tct Ser	acg Thr	acg Thr	999 Gly 180	ttt Phe	aga Arg	tcg Ser	gcg Ala	gag Glu 185	gca Ala	ctg Leu	ttt Phe	gag Glu	aaa Lys 190	gcg Ala	636	
gta Val	acg Thr	cca Pro	agc Ser 195	gac Asp	gtt Val	G1y 999	aag Lys	cta Leu 200	aac Asn	cgt Arg	ttg Leu	gtt Val	ata Ile 205	ccg Pro	aaa Lys	684	
cat His	cac His	gca Ala 210	gag Glu	aaa Lys	cat His	ttt Phe	ccg Pro 215	tta Leu	ccg Pro	tca Ser	agt Ser	aac Asn 220	gtt Val	tcc Ser	gtg Val	732	
aaa Lys	gga Gly 225	gtg Val	ttg Leu	ttg Leu	aac Asn	ttt Phe 230	gag Glu	gac Asp	gtt Val	aac Asn	999 Gly 235	aaa Lys	gtg Val	tgg Trp	agg Arg	780	
ttc Phe 240	cgt Arg	tac Tyr	tcg Ser	tat Tyr	tgg Trp 245	aac Asn	agt Ser	agt Ser	cag Gln	agt Ser 250	tat Tyr	gtt Val	ttg Leu	act Thr	aaa Lys 255	828	
ggt Gly	tgg Trp	agc Ser	agg Arg	ttc Phe 260	gtt Val	aag Lys	gag Glu	aag Lys	aat Asn 265	cta Leu	cgt Arg	gct Ala	ggt Gly	gac Asp 270	gtg Val	876	
gtt Val	agt Ser	ttc Phe	agt Ser 275	aga Arg	tct Ser	aac Asn	ggt Gly	cag Gln 280	gat Asp	caa Gln	cag Gln	ttg Leu	tac Tyr 285	att Ile	Gly 999	924	
tgg Trp	aag Lys	tcg Ser 290	aga Arg	tcc Ser	999 Gly	tca Ser	gat Asp 295	tta Leu	gat Asp	gcg Ala	ggt Gly	cgg Arg 300	gtt Val	ttg Leu	aga Arg	972	
ttg Leu	ttc Phe 305	gga Gly	gtt Val	aac Asn	att Ile	tca Ser 310	ccg Pro	gag Glu	agt Ser	tca Ser	aga Arg 315	aac Asn	gac Asp	gtc Val	gta Val	1020	
gga Gly 320	aac Asn	aaa Lys	aga Arg	gtg Val	aac Asn 325	gat Asp	act Thr	gag Glu	atg Met	tta Leu 330	tcg Ser	ttg Leu	gtg Val	tgt Cys	agc Ser 335	1068	
aag Lys	aag Lys	caa Gln	cgc Arg	atc Ile 340	ttt Phe	cac His	gcc Ala	tcg Ser	taa	caac	ctctt	ct t	ctt	tttt	t	1118	
tctt	ttgt	tg t	ttta	aataa	at tt	ttaa	aaaa	tco	attt	tcg	tttt	cttt	at t	tgca	atcggt	1178	
ttct	ttct	tc t	tgtt	taco	ca aa	aggtt	cate	gagt	tgtt	ttt	gttg	gtatt	ga t	gaad	tgtaa	1238	
attt	tatt	ta t	agga	ataaa	at tt	taaa	aaaa	a aaa	aaaa	aaa	aaa					1281	

<210> 22
<211> 344
<212> PRT
<213> Arabidopsis thaliana

<400> 22

Met Glu Ser Ser Ser Val Asp Glu Ser Thr Thr Ser Thr Gly Ser Ile 1 5 10 15

mbi19 Sequence Listing.ST25

Cys Glu Thr Pro Ala Ile Thr Pro Ala Lys Lys Ser Ser Val Gly Asn 20 25 30

Leu Tyr Arg Met Gly Ser Gly Ser Ser Val Val Leu Asp Ser Glu Asn 35 40 45

Gly Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser Lys Tyr Lys Gly
50 55 60

Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu Lys 65 70 75 80

His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu Asp Glu Ala Ala 85 90 95

Arg Ala Tyr Asp Val Ala Val His Arg Phe Arg Arg Arg Asp Ala Val

Thr Asn Phe Lys Asp Val Lys Met Asp Glu Asp Glu Val Asp Phe Leu 115 120 125

Asn Ser His Ser Lys Ser Glu Ile Val Asp Met Leu Arg Lys His Thr 130 135 140

Tyr Asn Glu Glu Leu Glu Gln Ser Lys Arg Arg Arg Asn Gly Asn Gly 145 150 155 160

Asn Met Thr Arg Thr Leu Leu Thr Ser Gly Leu Ser Asn Asp Gly Val

Ser Thr Thr Gly Phe Arg Ser Ala Glu Ala Leu Phe Glu Lys Ala Val 180 185 190

Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys His 195 200 205

His Ala Glu Lys His Phe Pro Leu Pro Ser Ser Asn Val Ser Val Lys 210 215 220

Gly Val Leu Leu Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg Phe 225 230 235 240

Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys Gly
245 250 255

Trp Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val Val 260 265 270

Ser Phe Ser Arg Ser Asn Gly Gln Asp Gln Gln Leu Tyr Ile Gly Trp
275 280 285

Lys Ser Arg Ser Gly Ser Asp Leu Asp Ala Gly Arg Val Leu Arg Leu 290 295 300

Phe Gly Val Asn Ile Ser Pro Glu Ser Ser Arg Asn Asp Val Val Gly 305 310 315 320

mbi19 Sequence Listing.ST25

Asn Lys Arg Val Asn Asp Thr Glu Met Leu Ser Leu Val Cys Ser Lys 325 330 335

Lys Gln Arg Ile Phe His Ala Ser

<210> 23 724 <211> <212> DNA Arabidopsis thaliana <213> <220> <221> CDS (20)..(694) <222> <223> G912 <400> 23 catcttatcc aaagaaaaa atg aat cca ttt tac tct aca ttc cca gac tcg 52 Met Asn Pro Phe Tyr Ser Thr Phe Pro Asp Ser 100 ttt ctc tca atc tcc gat cat aga tct ccg gtt tca gac agt agt gag Phe Leu Ser Ile Ser Asp His Arg Ser Pro Val Ser Asp Ser Ser Glu tgt tca cca aag tta gct tca agt tgt cca aag aaa cga gct ggg agg 148 Cys Ser Pro Lys Leu Ala Ser Ser Cys Pro Lys Lys Arg Ala Gly Arg 35 aag aag ttt cgt gag aca cgt cat ccg att tac aga gga gtt cgt cag 196 Lys Lys Phe Arg Glu Thr Arg His Pro Ile Tyr Arg Gly Val Arg Gln agg aat tot ggt aaa tgg gtt tgt gaa gtt aga gag oot aat aag aaa Arg Asn Ser Gly Lys Trp Val Cys Glu Val Arg Glu Pro Asn Lys Lys 244 292 tot agg att tgg tta ggt act ttt ccg acg gtt gaa atg gct gct cgt Ser Arg Ile Trp Leu Gly Thr Phe Pro Thr Val Glu Met Ala Ala Arg get cat gat get get tta get ett egt ggt ege tet get tgt ete 340 Ala His Asp Val Ala Ala Leu Ala Leu Arg Gly Arg Ser Ala Cys Leu aat ttc gct gat tct gct tgg cgg ctt cgt att cct gag act act tgt Asn Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile Pro Glu Thr Thr Cys 388 cct aag gag att cag aaa gct gcg tct gaa gct gca atg gcg ttt cag Pro Lys Glu Ile Gln Lys Ala Ala Ser Glu Ala Ala Met Ala Phe Gln aat gag act acg acg gag gga tct aaa act gcg gcg gag gca gag gag 484 Asn Glu Thr Thr Glu Gly Ser Lys Thr Ala Ala Glu Ala Glu Glu 150 532 580 aat ggt ggt gtg ttt tat atg gat gat gag gcg ctt ttg ggg atg ccc Asn Gly Gly Val Phe Tyr Met Asp Asp Glu Ala Leu Leu Gly Met Pro 175 aac ttt ttt gag aat atg gcg gag ggg atg ctt ttg ccg ccg ccg gaa 628 Asn Phe Phe Glu Asn Met Ala Glu Gly Met Leu Pro Pro Pro Glu 195 676 gtt ggc tgg aat cat aac gac ttt gac gga gtg ggt gac gtg tca ctc

mbi19 Sequence Listing.ST25 Val Gly Trp Asn His Asn Asp Phe Asp Gly Val Gly Asp Val Ser Leu 210 205

tgg agt ttt gac gag taa ttttttggct ctttttctgg ataataagtt Trp Ser Phe Asp Glu

724

<210> 24 <211> 224

<212> PRT

<213> Arabidopsis thaliana

<400> 24

Met Asn Pro Phe Tyr Ser Thr Phe Pro Asp Ser Phe Leu Ser Ile Ser

Asp His Arg Ser Pro Val Ser Asp Ser Ser Glu Cys Ser Pro Lys Leu

Ala Ser Ser Cys Pro Lys Lys Arg Ala Gly Arg Lys Lys Phe Arg Glu

Thr Arg His Pro Ile Tyr Arg Gly Val Arg Gln Arg Asn Ser Gly Lys

Trp Val Cys Glu Val Arg Glu Pro Asn Lys Lys Ser Arg Ile Trp Leu

Gly Thr Phe Pro Thr Val Glu Met Ala Ala Arg Ala His Asp Val Ala

Ala Leu Ala Leu Arg Gly Arg Ser Ala Cys Leu Asn Phe Ala Asp Ser 100 105

Ala Trp Arg Leu Arg Ile Pro Glu Thr Thr Cys Pro Lys Glu Ile Gln

Lys Ala Ala Ser Glu Ala Ala Met Ala Phe Gln Asn Glu Thr Thr

Glu Gly Ser Lys Thr Ala Ala Glu Ala Glu Glu Ala Ala Gly Glu Gly

Val Arg Glu Gly Glu Arg Arg Ala Glu Glu Gln Asn Gly Gly Val Phe

Tyr Met Asp Asp Glu Ala Leu Leu Gly Met Pro Asn Phe Phe Glu Asn

Met Ala Glu Gly Met Leu Leu Pro Pro Pro Glu Val Gly Trp Asn His

Asn Asp Phe Asp Gly Val Gly Asp Val Ser Leu Trp Ser Phe Asp Glu

<210> 25

<211> 1082

<212> DNA <213> Arabidopsis thaliana

mbil9 Sequence Listing.ST25

<220>
<221> CDS
<222> (53)..(1063)
<223> G996

<400> 25 58 cgatcgatct tgaattgatt ctttgtagta ttttatttac atatatatat ag atg gga aga cat toa tgt tgt tac aaa cag aaa ctg agg aaa gga ctt tgg tct 106 Arg His Ser Cys Cys Tyr Lys Gln Lys Leu Arg Lys Gly Leu Trp Ser 154 cct gaa gaa gat gag aag ctt ctt cgt tac atc act aag tat ggt cat Pro Glu Glu Asp Glu Lys Leu Leu Arg Tyr Ile Thr Lys Tyr Gly His ggt tgc tgg agc tct gtc cct aaa caa gct ggt tta cag aga tgt gga 202 Gly Cys Trp Ser Ser Val Pro Lys Gln Ala Gly Leu Gln Arg Cys Gly 250 Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp Leu Lys 298 aga gga gca ttt tct caa gat gaa gaa aat ctc att att gaa ctt cat Arg Gly Ala Phe Ser Gln Asp Glu Glu Asn Leu Ile Ile Glu Leu His gcc gtt ctt ggc aat aga tgg tct cag ata gct gca cag ctt cct gga 346 Ala Val Leu Gly Asn Arg Trp Ser Gln Ile Ala Ala Gln Leu Pro Gly aga acc gac aat gaa atc aag aat ctt tgg aat tct tgt ttg aag aag 394 Arg Thr Asp Asn Glu Ile Lys Asn Leu Trp Asn Ser Cys Leu Lys Lys aaa ttg agg ctg aga gga att gac ccg gtt aca cac aag ctc tta acc 442 Lys Leu Arg Leu Arg Gly Ile Asp Pro Val Thr His Lys Leu Leu Thr 490 gaa atc gaa acc ggt aca gat gac aaa aca aaa ccg gtt gag aag agt Glu Ile Glu Thr Gly Thr Asp Asp Lys Thr Lys Pro Val Glu Lys Ser 135 140 538 caa cag acc tac ctc gtt gag act gat ggc tcc tct agt acc act act Gln Gln Thr Tyr Leu Val Glu Thr Asp Gly Ser Ser Ser Thr Thr Thr 586 tgt agt act aac caa aac aac act gat cat ctt tat acc gga aat Cys Ser Thr Asn Gln Asn Asn Asn Thr Asp His Leu Tyr Thr Gly Asn 170 634 ttc ggt ttt caa cgg tta agt cta gaa aac ggt tca aga atc gca gcc Phe Gly Phe Gln Arg Leu Ser Leu Glu Asn Gly Ser Arg Ile Ala Ala 185 ggt tct gac ctc ggt atc tgg att ccc caa acc gga aga aac cat cat Gly Ser Asp Leu Gly Ile Trp Ile Pro Gln Thr Gly Arg Asn His His 682 cat cat gtc gat gaa acc atc cct agt gca gtg gta cta ccc ggt tca His His Val Asp Glu Thr Ile Pro Ser Ala Val Val Leu Pro Gly Ser 730 778 atg tto toa too ggt tta acc ggt tat aga too too aat oto ggt tta Met Phe Ser Ser Gly Leu Thr Gly Tyr Arg Ser Ser Asn Leu Gly Leu att gaa ttg gaa aac tca ttc tca acc ggg cca atg atg aca gag cat 826 Ile Glu Leu Glu Asn Ser Phe Ser Thr Gly Pro Met Met Thr Glu His 250

mbi19 Sequence Listing.ST25

cag caa Gln Gln 260	Ile G		Ser		Tyr									874
ggg aat Gly Asn 275	ctg a Leu A	at tgg Asn Trp	gga Gly 280	tta Leu	aca Thr	atg Met	gag Glu	gaa Glu 285	aat Asn	caa Gln	aat Asn	cca Pro	ttc Phe 290	922
aca ata Thr Ile														970
gag acc Glu Thr	Asn P													1018
tgt aac Cys Asn												taa		1063
atcttct	tgt at	attataa	ì											1082

<210> 26 <211> 336 <212> PRT

<213> Arabidopsis thaliana

<400> 26

Met Gly Arg His Ser Cys Cys Tyr Lys Gln Lys Leu Arg Lys Gly Leu 1 5 10 15

Trp Ser Pro Glu Glu Asp Glu Lys Leu Leu Arg Tyr Ile Thr Lys Tyr

Gly His Gly Cys Trp Ser Ser Val Pro Lys Gln Ala Gly Leu Gln Arg 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp

Leu Lys Arg Gly Ala Phe Ser Gln Asp Glu Glu Asn Leu Ile Ile Glu

Leu His Ala Val Leu Gly Asn Arg Trp Ser Gln Ile Ala Ala Gln Leu

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Leu Trp Asn Ser Cys Leu

Lys Lys Leu Arg Leu Arg Gly Ile Asp Pro Val Thr His Lys Leu

Leu Thr Glu Ile Glu Thr Gly Thr Asp Asp Lys Thr Lys Pro Val Glu 130 \$135\$

Lys Ser Gln Gln Thr Tyr Leu Val Glu Thr Asp Gly Ser Ser Ser Thr 145 150 150 160

Thr Thr Cys Ser Thr Asn Gln Asn Asn Asn Thr Asp His Leu Tyr Thr 170 165

mbil9 Sequence Listing.ST25 Gly Asn Phe Gly Phe Gln Arg Leu Ser Leu Glu Asn Gly Ser Arg Ile 180 185 190	
Ala Ala Gly Ser Asp Leu Gly Ile Trp Ile Pro Gln Thr Gly Arg Asn 195 200 205	
His His His Val Asp Glu Thr Ile Pro Ser Ala Val Val Leu Pro 210 215 220	
Gly Ser Met Phe Ser Ser Gly Leu Thr Gly Tyr Arg Ser Ser Asn Leu 225 230 235 240	
Gly Leu Ile Glu Leu Glu Asn Ser Phe Ser Thr Gly Pro Met Met Thr 245 250 255	
Glu His Gln Gln Ile Gln Glu Ser Asn Tyr Asn Asn Ser Thr Phe Phe 260 265 270	
Gly Asn Gly Asn Leu Asn Trp Gly Leu Thr Met Glu Glu Asn Gln Asn 275 280 285	
Pro Phe Thr Ile Ser Asn His Ser Asn Ser Ser Leu Tyr Ser Asp Ile 290 295 300	
Lys Ser Glu Thr Asn Phe Phe Gly Thr Glu Ala Thr Asn Val Gly Met 305 310 315 320	
Trp Pro Cys Asn Gln Leu Gln Pro Gln Gln His Ala Tyr Gly His Ile 325 330 335	
<210> 27 <211> 1606 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (150)(1310) <223> G1068	
<400> 27 gagagttgtt agctagctca cacgctttcg cttaaaaactc aaaaacctgc actttctcgt	60
ctattttctc ggcattcgta aaacagaaaa gtgggtctcc aagaaaatta ccctaaattc	120
acaaagattc atacttttct ccacctcca atg gat tcc aga gag atc cac cac Met Asp Ser Arg Glu Ile His His 1 5	173
caa caa cag caa caa caa caa caa caa cag cag	221
Caa cat cta caa caa caa caa cca cca cca ggg atg tta atg agt Gln His Leu Gln Gln Gln Gln Pro Pro Pro Gly Met Leu Met Ser 30 35 40	269
cac cac aat tcc tac aat cga aac cct aac gcc gcc gcc gct gtt tta His His Asn Ser Tyr Asn Arg Asn Pro Asn Ala Ala Ala Ala Val Leu 45 50 55	317
atg ggt cac aac acc tcc aca tct caa gct atg cat caa aga tta cct Met Gly His Asn Thr Ser Thr Ser Gln Ala Met His Gln Arg Leu Pro 60 65 70	365

mbi19 Sequence Listing.ST25

									cquc	1100		9 .	0123			
					tca Ser											413
cat His	cct Pro 90	cag Gln	cct Pro	cag Gln	caa Gln	cag Gln 95	ata Ile	gat Asp	cag Gln	aag Lys	act Thr 100	ctt Leu	gaa Glu	tct Ser	ctt Leu	461
					cct Pro 110											509
					ggt Gly											557
tct Ser	tcc Ser	gat Asp	cca Pro 140	cct Pro	gct Ala	aaa Lys	cgg Arg	aac Asn 145	aga Arg	gga Gly	cgt Arg	cct Pro	cct Pro 150	ggc Gly	tcc Ser	605
					gat Asp											653
					gag Glu											701
					aac Asn 190											749
					act Thr											797
					gtt Val											845
ctg Leu	tca Ser	ggt Gly 235	tct Ser	ttc Phe	ttg Leu	aat Asn	tct Ser 240	gag Glu	agt Ser	aat Asn	ggt Gly	act Thr 245	gtg Val	acc Thr	aaa Lys	893
					gtg Val											941
ggt Gly 265	gga Gly	tgt Cys	gtt Val	gat Asp	gga Gly 270	atg Met	cta Leu	gta Val	gct Ala	gga Gly 275	tca Ser	caa Gln	gtc Val	cag Gln	gtc Val 280	989
					gta Val											1037
					act Thr											1085
					gtt Val											1133
					gag Glu											1181
					aac Asn 350											1229
					caa Gln											1277

mbil9 Sequence Listing.ST25 365 370 375

cag aat ctc tgg cct ggc aac agt cct caa taa acagatggtt catgggtcaa 1330 Gln Asn Leu Trp Pro Gly Asn Ser Pro Gln 380 385

gatttgaccg ggtttgcttc tctgttcctt ttgacacatc tctccatcag atttatctct 1390 ataaagtaga ttgagctctc ttactctctc atcttcttct cctttactat ttctcttaaa 1450

ataaagtaga ttgagctctc ttactctctc atcttcttct cctttactat ttctcttaaa 1450
tttagctttg gttttagata aatagagaga gagagacatg ttaagtaggt ttcaaattca 1510
atcttgttta gtttgtttct tagtagtttc ttttgattgt gatgatcata aagacttgtt 1570
ctttttctcc tatattcaac gaattatcca ctttaa 1606

<210> 28

<211> 386

<212> PRT

<213> Arabidopsis thaliana

<400> 28

Met Asp Ser Arg Glu Ile His His Gln Gln Gln Gln Gln Gln Gln 1 5 10 15

Gln Gln Gln Gln Gln Gln Gln His Leu Gln Gln Gln Gln Gln Gln Gln 30

Pro Pro Pro Gly Met Leu Met Ser His His Asn Ser Tyr Asn Arg Asn 35 40 45

Pro Asn Ala Ala Ala Ala Val Leu Met Gly His Asn Thr Ser Thr Ser 50 55 60

Gln Ala Met His Gln Arg Leu Pro Phe Gly Gly Ser Met Ser Pro His 65 70 75 80

Gln Pro Gln Gln His Gln Tyr His His Pro Gln Pro Gln Gln Gln Ile 85 90 95

Asp Gln Lys Thr Leu Glu Ser Leu Gly Phe Pro Thr Ser Pro Leu Pro
100 105 110

Ser Ala Ser Asn Ser Tyr Gly Gly Gly Asn Glu Gly Gly Gly Gly 115 120 125

Asp Ser Ala Gly Ala Asn Ala Asn Ser Ser Asp Pro Pro Ala Lys Arg 130 135 140

Asn Arg Gly Arg Pro Pro Gly Ser Gly Lys Lys Gln Leu Asp Ala Leu 145 150 155 160

Gly Gly Thr Gly Gly Val Gly Phe Thr Pro His Val Ile Glu Val Lys 165 170 175

Thr Gly Glu Asp Ile Ala Thr Lys Ile Leu Ala Phe Thr Asn Gln Gly 180 185 190

Pro Arg Ala Ile Cys Ile Leu Ser Ala Thr Gly Ala Val Thr Asn Val · 195 200 205

mbil9 Sequence Listing.ST25

Met Leu Arg Gln Ala Asn Asn Ser Asn Pro Thr Gly Thr Val Lys Tyr Glu Gly Arg Phe Glu Ile Ile Ser Leu Ser Gly Ser Phe Leu Asn Ser 235 Glu Ser Asn Gly Thr Val Thr Lys Thr Gly Asn Leu Ser Val Ser Leu Ala Gly His Glu Gly Arg Ile Val Gly Gly Cys Val Asp Gly Met Leu Val Ala Gly Ser Gln Val Gln Val Ile Val Gly Ser Phe Val Pro Asp 280 Gly Arg Lys Gln Lys Gln Ser Ala Gly Arg Ala Gln Asn Thr Pro Glu Pro Ala Ser Ala Pro Ala Asn Met Leu Ser Phe Gly Gly Val Gly Gly Pro Gly Ser Pro Arg Ser Gln Gly Gln Gln His Ser Ser Glu Ser Ser 325 330 Glu Glu Asn Glu Ser Asn Ser Pro Leu His Arg Arg Ser Asn Asn Asn Asn Ser Asn Asn His Gly Ile Phe Gly Asn Ser Thr Pro Gln Pro Leu His Gln Ile Pro Met Gln Met Tyr Gln Asn Leu Trp Pro Gly Asn Ser Pro Gln 385 <210> 29 <211> 1630 <211> <212> DNA <213> Arabidopsis thaliana <220> <221> CDS (97)..(1398) <222> G1337 <400> 29 aatggatttg tcatcattct tctcaccgtc cttagtctct gaaaataaat tctgattttg 60 atttcgaatt ttagggattt tgagagagag tcagtt atg agt agt tcg gag aga 114 Met Ser Ser Ser Glu Arg gta ccg tgc gat ttc tgc ggc gag cgt acg gcg gtt ttg ttt tgt aga Val Pro Cys Asp Phe Cys Gly Glu Arg Thr Ala Val Leu Phe Cys Arg 162 gcc gat acg gcg aag ctg tgt ttg cct tgt gat cag caa gtt cac acg 210 Ala Asp Thr Ala Lys Leu Cys Leu Pro Cys Asp Gln Gln Val His Thr

											List					
gcg Ala	aat Asn 40	ctg Leu	ttg Leu	tcg Ser	agg Arg	aag Lys 45	cac His	gtg Val	cga Arg	tct Ser	cag Gln 50	atc Ile	tgc Cys	gat Asp	aat Asn	258
tgc Cys 55	ggt Gly	aac Asn	gag Glu	cca Pro	gtc Val 60	tct Ser	gtt Val	cgg Arg	tgt Cys	ttc Phe 65	acc Thr	gat Asp	aat Asn	ctg Leu	att Ile 70	306
ttg Leu	tgt Cys	cag Gln	gag Glu	tgt Cys 75	gat Asp	tgg Trp	gat Asp	gtt Val	cac His 80	gga Gly	agt Ser	tgt Cys	tca Ser	gtt Val 85	tcc Ser	354
gat Asp	gct Ala	cat His	gtt Val 90	cga Arg	tcc Ser	gcc Ala	gtg Val	gaa Glu 95	ggt Gly	ttt Phe	tcc Ser	ggt Gly	tgt Cys 100	cca Pro	tcg Ser	402
gcg Ala	ttg Leu	gag Glu 105	ctt Leu	gct Ala	gct Ala	tta Leu	tgg Trp 110	gga Gly	ctt Leu	gat Asp	ttg Leu	gag Glu 115	caa Gln	999 Gly	agg Arg	450
aaa Lys	gat Asp 120	gaa Glu	gag Glu	aat Asn	caa Gln	gtt Val 125	ccg Pro	atg Met	atg Met	gcg Ala	atg Met 130	atg Met	atg Met	gat Asp	aat Asn	498
ttc Phe 135	G1y 999	atg Met	cag Gln	ttg Leu	gat Asp 140	tct Ser	tgg Trp	gtt Val	ttg Leu	gga Gly 145	tct Ser	aat Asn	gaa Glu	ttg Leu	att Ile 150	546
gtt Val	ccc Pro	agc Ser	gat Asp	acg Thr 155	acg Thr	ttt Phe	aag Lys	aag Lys	cgt Arg 160	gga Gly	tct Ser	tgt Cys	gga Gly	tct Ser 165	agt Ser	594
tgt Cys	ggg Gly	agg Arg	tat Tyr 170	aag Lys	cag Gln	gta Val	ttg Leu	tgt Cys 175	aag Lys	cag Gln	ctt Leu	gag Glu	gag Glu 180	ttg Leu	ctt Leu	642
aag Lys	agt Ser	ggt Gly 185	gtt Val	gtc Val	ggt Gly	ggt Gly	gat Asp 190	ggc Gly	gat Asp	gat Asp	ggt Gly	gat Asp 195	cgt Arg	gac Asp	cgt Arg	690
gat Asp	tgt Cys 200	gac Asp	cgt Arg	gag Glu	ggt Gly	gct Ala 205	tgt Cys	gat Asp	gga Gly	gat Asp	gga Gly 210	gat Asp	gga Gly	gaa Glu	gca Ala	738
gga Gly 215	gag Glu	999 Gly	ctt Leu	atg Met	gtt Val 220	ccg Pro	gag Glu	atg Met	tca Ser	gag Glu 225	aga Arg	ttg Leu	aaa Lys	tgg Trp	tca Ser 230	786
aga Arg	gat Asp	gtt Val	gag Glu	gag Glu 235	atc Ile	aat Asn	ggt Gly	ggc Gly	gga Gly 240	gga Gly	gga Gly	gga Gly	gtt Val	aac Asn 245	cag Gln	834
cag Gln	tgg Trp	aat Asn	gct Ala 250	act Thr	act Thr	act Thr	aat Asn	cct Pro 255	agt Ser	ggt Gly	ggc Gly	cag Gln	agt Ser 260	tct Ser	cag Gln	882
ata Ile	tgg Trp	gat Asp 265	ttt Phe	aac Asn	ttg Leu	gga Gly	cag Gln 270	tca Ser	cgg Arg	gga Gly	cct Pro	gag Glu 275	gat Asp	acg Thr	agt Ser	930
cga Arg	gtg Val 280	gaa Glu	gct Ala	gca Ala	tat Tyr	gta Val 285	ggg Gly	aaa Lys	ggt Gly	gct Ala	gct Ala 290	tct Ser	tca Ser	ttc Phe	aca Thr	978
atc Ile 295	aac Asn	aat Asn	ttt Phe	gtt Val	gac Asp 300	cat His	atg Met	aat Asn	gaa Glu	act Thr 305	tgt Cys	tcc Ser	act Thr	aat Asn	gtg Val 310	1026
aaa Lys	ggt Gly	gtc Val	aaa Lys	gag Glu 315	att Ile	aaa Lys	aag Lys	gat Asp	gac Asp 320	tac Tyr	aag Lys	cga Arg	tca Ser	act Thr 325	tca Ser	1074
ggc Gly	cag Gln	gta Val	caa Gln 330	cca Pro	aca Thr	aaa Lys	tct Ser	gag Glu 335	agc Ser	aac Asn	aat Asn	cgt Arg	cca Pro 340	att Ile	acc Thr	1122

							mbi	19 S	eđue	nce	List	ing.	ST25			
															aca Thr	1170
						agt Ser 365										1218
						ctg Leu										1266
						aag Lys										1314
						aga Arg										1362
						gaa Glu					taa	cctt	taag	ttt		1408
tttc	cacat	ag g	gctto	cctt	t ag	gctad	caaac	tta	agtta	actt	ttt	tact	cc a	actgo	cctcat	1468
aaat	gtad	cag a	accgo	gtcto	g t	tcat	ctgg	g cc	gccct	tct	tgtt	ttat	tg (cctt	atctgg	1528
ccct	ttta	atg (acct	tgga	aa to	ettat	ctag	g tti	aaaa	aaag	att	gtaad	ect 1	ctag	gaaaac	1588
cata	attct	gt t	gaca	agtat	a ta	acato	gtcta	a tco	caago	caaa	aa					1630
.04.6																
<210 <211 <212 <213	l> 4 2> I	30 133 PRT Arabi	idops	sis t	hali	iana										
<211 <212	L> 4 2> E 3> F	133 PRT	idops	sis t	hali	iana										
<211 <212 <213 <400	l> 4 2> E 3> F	133 PRT Arabi	-			iana Val	Pro	Cys	Asp 10	Phe	Cys	Gly	Glu	Arg	Thr	
<211 <212 <213 <400 Met	l> 4 2> H 3> <i>H</i> 3> Ser	133 PRT Arabi 80 Ser	Ser	Glu 5	Arg	Val			10					15		
<211 <212 <213 <400 Met 1	1> 4 2> I 3> A 3> Ser Val	133 PRT Arabi 30 Ser Leu	Ser Phe 20	Glu 5 Cys	Arg Arg	Val Ala	Asp	Thr 25	10 Ala	Lys	Leu	Сув	Leu 30	Pro	Cys	
<211 <212 <213 <400 Met 1 Ala	l> 4 2> H 3> A 3> Ser Val	133 PRT Arabi 30 Ser Leu Gln 35	Ser Phe 20	Glu 5 Cys His	Arg Arg Thr	Val Ala	Asp Asn 40	Thr 25 Leu	10 Ala Leu	Lys Ser	Leu Arg	Cys Lys 45	Leu 30 His	Pro Val	Cys	
<211 <212 <213 <400 Met 1 Ala Asp		Arabi Arabi Ser Leu Gln 35	Ser Phe 20 Val	Glu 5 Cys His Asp	Arg Arg Thr Asn	Val Ala Ala	Asp Asn 40 Gly	Thr 25 Leu Asn	10 Ala Leu Glu	Lys Ser Pro	Leu Arg Val	Cys Lys 45 Ser	Leu 30 His Val	Pro Val	Cys Arg Cys	
<211 <212 <213 <400 Met 1 Ala Asp Ser Phe 65	l> 4 2> H 3> J Ser Val Gln 50	Asp	Ser Phe 20 Val Cys	Glu 5 Cys His Asp	Arg Thr Asn Ile	Val Ala Ala Cys 55	Asp Asn 40 Gly Cys	Thr 25 Leu Asn	Ala Leu Glu	Lys Ser Pro Cys 75	Leu Arg Val 60	Cys Lys 45 Ser Trp	Leu 30 His Val Asp	Pro Val Arg	Cys Arg Cys His	

Phe Ser Gly Cys Pro Ser Ala Leu Glu Leu Ala Ala Leu Trp Gly Leu 100 105 110

Asp Leu Glu Gln Gly Arg Lys Asp Glu Glu Asn Gln Val Pro Met Met 115 120 125

Ala Met Met Met Asp Asn Phe Gly Met Gln Leu Asp Ser Trp Val Leu 130 135 140

mbi19 Sequence Listing.ST25

Gly Ser Asn Glu Leu Ile Val Pro Ser Asp Thr Thr Phe Lys Lys Arg Gly Ser Cys Gly Ser Ser Cys Gly Arg Tyr Lys Gln Val Leu Cys Lys Gln Leu Glu Glu Leu Leu Lys Ser Gly Val Val Gly Gly Asp Gly Asp Asp Gly Asp Arg Asp Arg Asp Cys Asp Arg Glu Gly Ala Cys Asp Gly Asp Gly Asp Gly Glu Ala Gly Glu Gly Leu Met Val Pro Glu Met Ser Glu Arg Leu Lys Trp Ser Arg Asp Val Glu Glu Ile Asn Gly Gly Gly Gly Gly Gly Val Asn Gln Gln Trp Asn Ala Thr Thr Thr Asn Pro Ser Gly Gly Gln Ser Ser Gln Ile Trp Asp Phe Asn Leu Gly Gln Ser Arg Gly Pro Glu Asp Thr Ser Arg Val Glu Ala Ala Tyr Val Gly Lys Gly Ala Ser Ser Phe Thr Ile Asn Asn Phe Val Asp His Met Asn Glu Thr Cys Ser Thr Asn Val Lys Gly Val Lys Glu Ile Lys Lys Asp Asp Tyr Lys Arg Ser Thr Ser Gly Gln Val Gln Pro Thr Lys Ser Glu Ser Asn Asn Arg Pro Ile Thr Phe Gly Ser Glu Lys Gly Ser Asn Ser Ser Ser Asp Leu His Phe Thr Glu His Ile Ala Gly Thr Ser Cys Lys Thr Thr Arg Leu Val Ala Thr Lys Ala Asp Leu Glu Arg Leu Ala Gln Asn Arg Gly Asp Ala Met Gln Arg Tyr Lys Glu Lys Arg Lys Thr Arg Arg Tyr Asp Lys Thr Ile Arg Tyr Glu Ser Arg Lys Ala Arg Ala Asp Thr

Arg Leu Arg Val Arg Gly Arg Phe Val Lys Ala Ser Glu Ala Pro Tyr
420 425

Pro

mbi19 Sequence Listing.ST25

<21 <21 <21 <21	1 > 2 >	31 1413 DNA Arab	idop	sis	thal	iana										
<22 <22 <22 <22	1> 2>	CDS (208 G114		1200)											
<40		31 caa	aaaq	aaaa	ga a	aaaa	gaga	c qc	taga	aaqa	acq	cqaa	aqc	ttac	gaagaa	60
			_		-			_	_			_	-		aagaga	120
ttt	ttgc	cta :	aata	aaga	ag ag	gatto	cgac	t ct	aatc	ctgg	agt	tatc	att	cacg	atagat	180
tct	taga	ttg	cgac	tata	aa ga	aagaa	ag a M	tg g et A	ct g la V	ta ta	at g yr G 5	aa c lu G	aa a ln T	cc g hr G	ga acc ly Thr	234
		ccg Pro														282
		gat Asp														330
		gct Ala														378
		tcg Ser 60														426
		tgt Cys														474
gtt Val 90	gca Ala	gag Glu	att Ile	cga Arg	gaa Glu 95	ccg Pro	aaa Lys	ata Ile	gga Gly	act Thr 100	aga Arg	ctt Leu	tgg Trp	ctt Leu	ggt Gly 105	522
		cct Pro	Thr		Ğlu	Lys	Ăla	Āla		Āla			Ğlu		Āla	570
		atg Met														618
999 Gly	tct Ser	gag Glu 140	ttt Phe	act Thr	agt Ser	acg Thr	tct Ser 145	agt Ser	caa Gln	tct Ser	gag Glu	gtg Val 150	tgt Cys	acg Thr	gtt Val	666
gaa Glu	aat Asn 155	aag Lys	gcg Ala	gtt Val	gtt Val	tgt Cys 160	ggt Gly	gat Asp	gtt Val	tgt Cys	gtg Val 165	aag Lys	cat His	gaa Glu	gat Asp	714
		tgt Cys														762
gag Glu	tct Ser	tgt Cys	gga Gly	acc Thr 190	agg Arg	ccg Pro	gac Asp	agt Ser	tgc Cys 195	acg Thr	gtt Val	gga Gly	cat His	caa Gln 200	gat Asp	810
		tct Ser							Leu		Ğlü					858

	mbil9 Sequence	Listing.ST25
205	210	215

	205		210) -		215	
tat tgg gg Tyr Trp Gl 22	y Gln Va	t ttg cad	g gag aaa n Glu Lys 225	a gag aaa s Glu Lys	ccg aag Pro Lys 230	cag gaa gaa Gln Glu Glu	906
			ı Gln Glı			cag ctg caa Gln Leu Gln	954
ccg gat tt Pro Asp Le 250	g ctt ac u Leu Th	ct gtt gca ar Val Ala 255	a gat tad a Asp Tyr	ggt tgg Gly Trp 260	Pro Trp	tct aat gat Ser Asn Asp 265	1002
att gta aa Ile Val As	t gat ca n Asp Gl 27	n Thr Sei	tgg gat Trp Ası	cct aat Pro Asn 275	gag tgc Glu Cys	ttt gat att Phe Asp Ile 280	1050
aat gaa ct Asn Glu Le	c ctt gg u Leu Gl 285	ga gat tto y Asp Lei	g aat gaa n Asn Glu 290	Pro Gly	ccc cat Pro His	cag agc caa Gln Ser Gln 295	1098
gac caa aa Asp Gln As 30	n His Va	a aat tct il Asn Sei	ggt agt Gly Ser 305	tat gat Tyr Asp	ttg cat Leu His 310	ccg ctt cat Pro Leu His	1146
ctc gag cc Leu Glu Pr 315	a cac ga o His As	t ggt cac p Gly His 320	Glu Phe	aat ggt Asn Gly	ttg agt Leu Ser 325	tct ctg gat Ser Leu Asp	1194
att tga ga Ile 330	gttctgag	gcaatggt	cc tacaa	gacta ca	acataatc	tttggattga	1250
tcataggaga	aacaaga	aat aggtg	ttaat ga	tctgattc	acaatgaa	aaa aatatttaat	1310
aactctatag	tttttgt	tct ttcct	tggat ca	tgaactgt	tgcttctc	at ctattgagtt	1370
aatatagcga	atagcag	agt ttctc	tcata aa	aaaaaaaa	aaa		1413
<210> 32 <211> 330 <212> PRT <213> Aral	oidopsis	thaliana					
<211> 330 <212> PRT <213> Aral <400> 32	-			Glu Gln 10	Pro Lys	Lys Arg Lys 15	
<211> 330 <212> PRT <213> Aral <400> 32 Met Ala Vail	Tyr Gl 5	u Gln Thr	Gly Thr	10		Lys Arg Lys 15 Leu Lys Lys 30	
<211> 330 <212> PRT <213> Aral <400> 32 Met Ala Va: 1	Tyr Gl 5 Arg Al 20	u Gln Thr a Gly Gly	Gly Thr Leu Thr 25	10 Val Ala	Asp Arg	15 Leu Lys Lys	
<pre><211> 330 <212> PRT <213> Aral <400> 32 Met Ala Vail 1 Ser Arg Ala Trp Lys Gla 35</pre>	Tyr Gl 5 Arg Al 20	u Gln Thr a Gly Gly n Glu Ile	Gly Thr Leu Thr 25 Val Glu	Val Ala Ala Ser	Asp Arg Ala Val 45	Leu Lys Lys 30	
<pre><211> 330 <212> PRT <213> Aral <400> 32 Met Ala Va. 1 Ser Arg Ala Trp Lys Gla 35 Glu Lys Pro 50</pre>	Tyr Gl 5 Arg Al 20 Tyr As	u Gln Thr a Gly Gly n Glu Ile g Lys Val	Leu Thr 25 Val Glu 40	Val Ala Ala Ser Lys Gly	Asp Arg Ala Val 45 Ser Lys 60	Leu Lys Lys 30 Lys Glu Gly	
<pre><211> 330 <212> PRT <213> Aral <400> 32 Met Ala Vai 1 Ser Arg Ala Trp Lys Gla 35 Glu Lys Pro 50 Met Lys Gla 65</pre>	Tyr Gl Arg Al 20 Tyr As	u Gln Thr a Gly Gly n Glu Ile g Lys Val 55 y Gly Pro	Gly Thr Leu Thr 25 Val Glu 40 Pro Ala	Val Ala Ala Ser Lys Gly Ser His 75	Asp Arg Ala Val 45 Ser Lys 60 Cys Ser	Leu Lys Lys 30 Lys Glu Gly Lys Gly Cys Phe Arg Gly	

mbi19 Sequence Listing.ST25

Ala Ala Ser Ala Tyr Asp Glu Ala Ala Thr Ala Met Tyr Gly Ser Leu 115

Ala Arg Leu Asn Phe Pro Gln Ser Val Gly Ser Glu Phe Thr Ser Thr

Ser Ser Gln Ser Glu Val Cys Thr Val Glu Asn Lys Ala Val Val Cys 145

Gly Asp Val Cys Val Lys His Glu Asp Thr Asp Cys Glu Ser Asn Pro

Phe Ser Gln Ile Leu Asp Val Arg Glu Glu Ser Cys Gly Thr Arg Pro

Asp Ser Cys Thr Val Gly His Gln Asp Met Asn Ser Ser Leu Asn Tyr

Asp Leu Leu Glu Phe Glu Gln Gln Tyr Trp Gly Gln Val Leu Gln

Glu Lys Glu Lys Pro Lys Gln Glu Glu Glu Glu Ile Gln Gln Gln 235

Gln Glu Gln Gln Gln Gln Leu Gln Pro Asp Leu Leu Thr Val Ala

Asp Tyr Gly Trp Pro Trp Ser Asn Asp Ile Val Asn Asp Gln Thr Ser 260

Trp Asp Pro Asn Glu Cys Phe Asp Ile Asn Glu Leu Leu Gly Asp Leu 280

Asn Glu Pro Gly Pro His Gln Ser Gln Asp Gln Asn His Val Asn Ser 295

Gly Ser Tyr Asp Leu His Pro Leu His Leu Glu Pro His Asp Gly His

Glu Phe Asn Gly Leu Ser Ser Leu Asp Ile 325

<210> 33 <211> 818

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (18)..(641) <223> G46

ttctctcttt cgtaaaa atg gcg agt ttt gag gaa agc tct gat ttg gaa

Met Ala Ser Phe Glu Glu Ser Ser Asp Leu Glu

gct ata cag agc cat ctc tta gaa gac ttg ttg gtt tgt gat ggt ttc Ala Ile Gln Ser His Leu Leu Glu Asp Leu Leu Val Cys Asp Gly Phe

98

50

mbil9 Sequence Listing.ST25

			15					20	•			_	25			
											tca Ser					146
ata Ile	gaa Glu 45	cca Pro	cac His	gtt Val	cct Pro	aaa Lys 50	caa Gln	gaa Glu	cct Pro	gat Asp	tct Ser 55	cca Pro	gtt Val	ctt Leu	gat Asp	194
ccg Pro 60	gat Asp	tct Ser	ttc Phe	gtc Val	aac Asn 65	gag Glu	ttc Phe	ttg Leu	caa Gln	gtg Val 70	gaa Glu	999 Gly	gaa Glu	tca Ser	tca Ser 75	242
											tca Ser					290
gat Asp	cag Gln	agt Ser	gtg Val 95	aaa Lys	aag Lys	gca Ala	gag Glu	agg Arg 100	ttc Phe	gaa Glu	gaa Glu	gaa Glu	gta Val 105	gat Asp	gct Ala	338
aga Arg	cat His	tac Tyr 110	cga Arg	gga Gly	gtg Val	agg Arg	cga Arg 115	agg Arg	ccg Pro	tgg Trp	ggg Gly	aaa Lys 120	ttt Phe	gca Ala	gca Ala	386
											atc Ile 135					434
											gac Asp					482
aag Lys	ctc Leu	cgg Arg	gga Gly	aga Arg 160	aaa Lys	gcc Ala	gtg Val	ctc Leu	aac Asn 165	ttc Phe	cct Pro	ctt Leu	gac Asp	gcc Ala 170	gly ggg	530
aaa Lys	tat Tyr	gaa Glu	gct Ala 175	cca Pro	gcg Ala	aat Asn	tca Ser	gga Gly 180	agg Arg	aaa Lys	agg Arg	aag Lys	aga Arg 185	agt Ser	gat Asp	578
gtg Val	cat His	gaa Glu 190	gag Glu	ctt Leu	caa Gln	aga Arg	act Thr 195	cag Gln	agc Ser	aat Asn	tca Ser	tct Ser 200	tca Ser	tct Ser	tcc Ser	626
		gca Ala		tag	cata	ıttaa	ıga g	jtgtg	jagca	ıg tt	tcct	taag	, tt <u>c</u>	ıtata	aag	681
taat	tgta	ica g	agga	aacg	ga at	tgtg	tagg	ttt	agtg	tgc	ttgc	aagt	tg c	aaca	aatgt	741
gtat	ggat	gt t	ctgt	ttct	t ca	tgto	ccta	aga	ttta	gaa	acat	cttc	tt a	tttc	caaga	801
aaaa	aaaa	aa a	aaaa	ıaa												818
<210 <211 <212 <213	> 2 > F	4 07 PRT Crabi	.dops	sis t	:hali	.ana										
<400	> 3	4														

Met Ala Ser Phe Glu Glu Ser Ser Asp Leu Glu Ala Ile Gln Ser His 1 5 10 15

Leu Leu Glu Asp Leu Leu Val Cys Asp Gly Phe Met Gly Asp Phe Asp 20 25 30

Phe Asp Ala Ser Phe Val Ser Gly Leu Trp Cys Ile Glu Pro His Val 35 40 45

mbi19 Sequence Listing.ST25

mbii bequence bibling.biis	
Pro Lys Gln Glu Pro Asp Ser Pro Val Leu Asp Pro Asp Ser Phe Val 50 60	
Asn Glu Phe Leu Gln Val Glu Gly Glu Ser Ser Ser Ser Ser Pro 65 70 75 80	
Glu Leu Asn Ser Ser Ser Ser Thr Tyr Glu Thr Asp Gln Ser Val Lys 85 90 95	
Lys Ala Glu Arg Phe Glu Glu Glu Val Asp Ala Arg His Tyr Arg Gly 100 105 110	
Val Arg Arg Pro Trp Gly Lys Phe Ala Ala Glu Ile Arg Asp Pro 115 120 125	
Ala Lys Lys Gly Ser Arg Ile Trp Leu Gly Thr Phe Glu Ser Asp Val 130 135 140	
Asp Ala Ala Arg Ala Tyr Asp Cys Ala Ala Phe Lys Leu Arg Gly Arg 145 150 155 160	
Lys Ala Val Leu Asn Phe Pro Leu Asp Ala Gly Lys Tyr Glu Ala Pro 165 170 175	
Ala Asn Ser Gly Arg Lys Arg Lys Arg Ser Asp Val His Glu Glu Leu 180 185 190	
Gln Arg Thr Gln Ser Asn Ser Ser Ser Ser Ser Cys Asp Ala Phe 195 200 205	
<210> 35 <211> 1195 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS	
<222> (66)(983) <223> G242	
<400> 35 ctctcaaaac caaaatcact aaagaggaga agattgctaa agtttgataa aacattccaa	60
aatca atg gct gat agg atc aaa ggt cca tgg agt cct gaa gaa gac gag Met Ala Asp Arg Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Glu 1 5 10 15	110
cag ctt cgt agg ctt gtt gtt aaa tac ggt cca aga aac tgg aca gtg Gln Leu Arg Arg Leu Val Val Lys Tyr Gly Pro Arg Asn Trp Thr Val 20 25 30	158
att agc aaa tct att ccc ggt aga tcg ggg aaa tcg tgt cgt tta cgg Ile Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg 35 40 45	206
tgg tgc aac cag ctt tcg ccg caa gtt gag cat cgg ccg ttt tcg gct Trp Cys Asn Gln Leu Ser Pro Gln Val Glu His Arg Pro Phe Ser Ala 50 60	254
gag gaa gac gag acg atc gca cgt gct cac gct cag ttc ggg aat aaa Glu Glu Asp Glu Thr Ile Ala Arg Ala His Ala Gln Phe Gly Asn Lys 65 70 75	302

tgg gcg acg	att gct	cqt ctt		-		isting.		qcc	ata	350
Trp Ala Thr										
aag aat cac Lys Asn His	tgg aac Trp Asn 100	tcg acg Ser Thr	ctc aag Leu Lys	agg Arg 105	aaa t Lys C	gc ggc Cys Gly	ggt Gly	tac Tyr 110	gac Asp	398
cat cgg ggt His Arg Gly	tac gat Tyr Asp 115	ggt tcg Gly Ser	gag gat Glu Asp 120	His	cgg c Arg P	ccg gtt Pro Val	aag Lys 125	aga Arg	tcg . Ser	446
gtg agt gcg Val Ser Ala 130	Gly Ser	cca cct Pro Pro	gtt gtt Val Val 135	act Thr	ggg c	ett tac Leu Tyr 140	atg Met	agc Ser	cca Pro	494
gga agc cca Gly Ser Pro 145	act gga Thr Gly	tct gat Ser Asp 150	gtc agt Val Ser	gat Asp	Ser S	gt act Ser Thr	atc Ile	ccg Pro	ata Ile	542
tta cct tcc Leu Pro Ser 160				Val						590
gtg cta ccg Val Leu Pro										638
act tcg tta Thr Ser Leu				Ala .						686
aac cgt agc Asn Arg Ser 210	His Glu	Ser Thr	aat atc Asn Ile 215	aac Asn	aac a Asn T	cc act hr Thr 220	tcg Ser	agc Ser	cgc Arg	734
cac aac cac His Asn His 225					Pro P					782
aga ggt gcg Arg Gly Ala 240	Ile Glu	gaa atg Glu Met 245	ggg aag Gly Lys	Ser	ttt c Phe P 250	cc ggt ro Gly	aac Asn	gga Gly	ggc Gly 255	830
gag ttt atg Glu Phe Met										878
tac atg acg Tyr Met Thr				Gly (926
ttc att gat Phe Ile Asp 290	Asn Gly	Met Ile	ccg atg Pro Met 295	agt (Ser (caa a Gln I	tt gga le Gly 300	gtt Val	999 999	aga Arg	974
atc gag tag Ile Glu 305	acaaagtg	ag attat	tagga a	actgt	ttaa (attggag	aag			1023
aagaaaaatg	ctctgtttt	t ttctcc	tttg ga	ttagg	ctt a	agaattt	tg g	gttt	taagg	1083
aaatgtatag	aggaaatcg	a gtgaac	aaag ct	cgaga	gct g	gggacgt	ag t	gacg	aagac	1143
gaagatcaaa	tttctctta	a gctatt	cagg aa	aataa	aat a	aattttt	at t	t		1195

Met Ala Asp Arg Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Glu Gln

<210> 36 <211> 305 <212> PRT <213> Arabidopsis thaliana

mbi19 Sequence Listing.ST25

Leu Arg Arg Leu Val Val Lys Tyr Gly Pro Arg Asn Trp Thr Val Ile 20 25 30

Ser Lys Ser Ile Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp 35 40 45

Cys Asn Gln Leu Ser Pro Gln Val Glu His Arg Pro Phe Ser Ala Glu 50 60

Glu Asp Glu Thr Ile Ala Arg Ala His Ala Gln Phe Gly Asn Lys Trp 65 70 75 80

Ala Thr Ile Ala Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Val Lys 85 90 95

Asn His Trp Asn Ser Thr Leu Lys Arg Lys Cys Gly Gly Tyr Asp His
100 105 110

Arg Gly Tyr Asp Gly Ser Glu Asp His Arg Pro Val Lys Arg Ser Val

Ser Ala Gly Ser Pro Pro Val Val Thr Gly Leu Tyr Met Ser Pro Gly 130 135 140

Ser Pro Thr Gly Ser Asp Val Ser Asp Ser Ser Thr Ile Pro Ile Leu 145 150 155 160

Pro Ser Val Glu Leu Phe Lys Pro Val Pro Arg Pro Gly Ala Val Val
165 170 175

Leu Pro Leu Pro Ile Glu Thr Ser Ser Phe Ser Asp Asp Pro Pro Thr 180 185 190

Ser Leu Ser Leu Pro Gly Ala Asp Val Ser Glu Glu Ser Asn 195 200 205

Arg Ser His Glu Ser Thr Asn Ile Asn Asn Thr Thr Ser Ser Arg His 210 215 220

Asn His Asn Asn Thr Val Ser Phe Met Pro Phe Ser Gly Gly Phe Arg 225 230 235 240

Gly Ala Ile Glu Glu Met Gly Lys Ser Phe Pro Gly Asn Gly Glu 245 250 255

Phe Met Ala Val Val Gln Glu Met Ile Lys Ala Glu Val Arg Ser Tyr 260 265 270

Met Thr Glu Met Gln Arg Asn Asn Gly Gly Gly Phe Val Gly Gly Phe

Ile Asp Asn Gly Met Ile Pro Met Ser Gln Ile Gly Val Gly Arg Ile 290 295 300 mbi19 Sequence Listing.ST25

mbi19 Sequence Listing.ST25	
305	
<210> 37 <211> 989 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (21)(983) <223> G227	
<pre><400> 37 gtaccgtcga cgatccggcg atg tca aac ccg acc cgt aag aat atg gag agg</pre>	53
att aaa ggt cca tgg agt cca gaa gaa gat gat ctg ttg cag agg ctt Ile Lys Gly Pro Trp Ser Pro Glu Glu Asp Asp Leu Leu Gln Arg Leu 15 20 25	.01
gtt cag aaa cat ggt ccg agg aac tgg tct ttg att agc aaa tca atc Val Gln Lys His Gly Pro Arg Asn Trp Ser Leu Ile Ser Lys Ser Ile 30 35 40	.49
cct gga cgt tcc ggc aaa tct tgt cgt ctc cgg tgg tgt aac cag cta Pro Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp Cys Asn Gln Leu 45 50 55	.97
tct ccg gag gta gag cac cgt gct ttt tcg cag gaa gaa gac gag acg Ser Pro Glu Val Glu His Arg Ala Phe Ser Gln Glu Glu Asp Glu Thr 60 65 70 75	245
att att cga gct cac gct cgg ttt ggt aac aag tgg gct acg atc tct Ile Ile Arg Ala His Ala Arg Phe Gly Asn Lys Trp Ala Thr Ile Ser 80 85 90	93
cgt ctt ctc aat gga cga acc gat aac gct atc aag aat cat tgg aac Arg Leu Leu Asn Gly Arg Thr Asp Asn Ala Ile Lys Asn His Trp Asn 95 100 105	41
tcg acg ctg aag cga aaa tgc agc gtc gaa ggg caa agt tgt gat ttt Ser Thr Leu Lys Arg Lys Cys Ser Val Glu Gly Gln Ser Cys Asp Phe 110 115 120	89
ggt ggt aat gga ggg tat gat ggt aat tta gga gaa ga	37
aaa cgt acg gcg agt ggt ggt ggt gtc tcg act ggc ttg tat atg Lys Arg Thr Ala Ser Gly Gly Gly Val Ser Thr Gly Leu Tyr Met 140 145 150 155	85
agt ccc gga agt cca tcg gga tct gac gtc agc gag caa tct agt ggt Ser Pro Gly Ser Pro Ser Gly Ser Asp Val Ser Glu Gln Ser Ser Gly 160 165 170	33
ggt gca cac gtg ttt aaa cca acg gtt aga tct gag gtt aca gcg tca Gly Ala His Val Phe Lys Pro Thr Val Arg Ser Glu Val Thr Ala Ser 175 180 185	81
tcg tct ggt gaa gat cct cca act tat ctt agt ttg tct ctt cct tgg Ser Ser Gly Glu Asp Pro Pro Thr Tyr Leu Ser Leu Pro Trp 190 195 200	29
act gac gag acg gtt cga gtc aac gag ccg gtt caa ctt aac cag aat Thr Asp Glu Thr Val Arg Val Asn Glu Pro Val Gln Leu Asn Gln Asn 205 210 215	77
acg gtt atg gac ggt ggt tat acg gcg gag ctg ttt ccg gtt aga aag Thr Val Met Asp Gly Gly Tyr Thr Ala Glu Leu Phe Pro Val Arg Lys 220 225 230 235	25

mbi19 Sequence Listing.ST25

									-			_				
			gtg Val		Val											773
			ggt Gly 255													821
gag Glu	gtg Val	agg Arg 270	agt Ser	tac Tyr	atg Met	gcg Ala	gat Asp 275	tta Leu	cag Gln	cga Arg	gga Gly	aac Asn 280	gtc Val	ggt Gly	ggt Gly	869
agt Ser	agt Ser 285	tct Ser	ggc Gly	ggc Gly	gga Gly	ggt Gly 290	ggc Gly	ggt Gly	tcg Ser	tgt Cys	atg Met 295	cca Pro	caa Gln	agt Ser	gta Val	917
			cgt Arg													965
			atg Met		tag	gcgg	gee									989
<21 <21 <21 <21	1> : 2> :	38 320 PRT Arab:	idop:	sis (thal:	iana										
<40	0 > :	38												•		
Met 1	Ser	Asn	Pro	Thr 5	Arg	Lys	Asn	Met	Glu 10	Arg	Ile	Lys	Gly	Pro 15	Trp	
Ser	Pro	Glu	Glu 20	Asp	Asp	Leu	Leu	Gln 25	Arg	Leu	Val	Gln	Lys 30	His	Gly	
Pro	Arg	Asn 35	Trp	Ser	Leu	Ile	Ser 40	Lys	Ser	Ile	Pro	Gly 45	Arg	Ser	Gly	
Lys	Ser 50	Cys	Arg	Leu	Arg	Trp 55	Cys	Asn	Gln	Leu	Ser 60	Pro	Glu	Val	Glu	
His 65	Arg	Ala	Phe	Ser	Gln 70	Glu	Glu	Asp	Glu	Thr 75	Ile	Ile	Arg	Ala	His 80	
Ala	Arg	Phe	Gly	Asn 85	Lys	Trp	Ala	Thr	Ile 90	Ser	Arg	Leu	Leu	Asn 95	Gly	
Arg	Thr	Asp	Asn 100	Ala	Ile	Lys	Asn	His 105	Trp	Asn	Ser	Thr	Leu 110	Lys	Arg	
Lys	Cys	Ser 115	Val	Glu	Gly	Gln	Ser 120	Сув	Asp	Phe	Gly	Gly 125	Asn	Gly	Gly	
Tyr	Asp 130	Gly	Asn	Leu	Gly	Glu 135	Glu	Gln	Pro	Leu	Lys 140	Arg	Thr	Ala	Ser	
Gly 145	Gly	Gly	Gly	Val	Ser 150	Thr	Gly	Leu	Tyr	Met 155	Ser	Pro	Gly	Ser	Pro 160	
Ser	Gly	Ser	Asp	Val 165	Ser	Glu	Gln	Ser	Ser 170	Gly	Gly	Ala	His	Val 175	Phe	

mbil9 Sequence Listing.ST25

Lys Pro Thr Val Arg Ser Glu Val Thr Ala Ser Ser Ser Gly Glu Asp 180 185 190	
Pro Pro Thr Tyr Leu Ser Leu Ser Leu Pro Trp Thr Asp Glu Thr Val 195 200 205	
Arg Val Asn Glu Pro Val Gln Leu Asn Gln Asn Thr Val Met Asp Gly 210 220	
Gly Tyr Thr Ala Glu Leu Phe Pro Val Arg Lys Glu Glu Gln Val Glu 225 230 235 240	
Val Glu Glu Glu Ala Lys Gly Ile Ser Gly Gly Phe Gly Glu 245 250 255	
Phe Met Thr Val Val Gln Glu Met Ile Arg Thr Glu Val Arg Ser Tyr 260 265 270	
Met Ala Asp Leu Gln Arg Gly Asn Val Gly Gly Ser Ser Ser Gly Gly 275 280 285	
Gly Gly Gly Ser Cys Met Pro Gln Ser Val Asn Ser Arg Arg Val 290 295 300	
Gly Phe Arg Glu Phe Ile Val Asn Gln Ile Gly Ile Gly Lys Met Glu 305 310 315 320	
<210> 39 <211> 994 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (140)(889) <223> G1307	
<400> 39 cccttattgg gcntnancgn ccncccggca ggtctagnnn tnancgcccg cgtccttctn	60
ccattttacn cncttgcngc ccacccttgt atntcntttt ntnngtgntn tttttcntga	120
gggggcaacg gaaaaaaga atg gga aga gca cca tgt tgt gag aaa atg ggg Met Gly Arg Ala Pro Cys Cys Glu Lys Met Gly 1 5 10	172
gtg aag aga gga cca tgg act cct gaa gaa gat caa atc ttg atc aat Val Lys Arg Gly Pro Trp Thr Pro Glu Glu Asp Gln Ile Leu Ile Asn 15 20 25	220
tat att cat ctt tat ggt cat tct aat tgg cga gct ctc cca aaa cac Tyr Ile His Leu Tyr Gly His Ser Asn Trp Arg Ala Leu Pro Lys His 30 . 35 40	268
gca ggt tta ctt aga tgt ggg aaa agt tgc aga ctt ggt tgg atc aat Ala Gly Leu Leu Arg Cys Gly Lys Ser Cys Arg Leu Gly Trp Ile Asn 45 50 55	316
tat ctt aga cca gac att aaa cgt ggc aat ttc act cct caa gaa gaa Tyr Leu Arg Pro Asp Ile Lys Arg Gly Asn Phe Thr Pro Gln Glu Glu 60 65 70 75	364
caa act att atc aat ctg cat gaa agc tta ggc aac aga tgg tct gcg	412

Gln Thr Ile	Ile Asn Le			Listing.ST25 Asn Arg Trp	Ser Ala 90
att gct gca Ile Ala Ala	aaa ttg co Lys Leu Pr 95	Gly Arg '	acc gac aat Thr Asp Asn 100	gaa ata aaa Glu Ile Lys 105	aat gtt 460 Asn Val
				aat cta aac Asn Leu Asn 120	
				acc aca aat Thr Thr Asn 135	
aaa gga tct Lys Gly Ser 140	gtg ata gt Val Ile Va 14	l Asp Thr	gcc tct tta Ala Ser Leu 150	caa caa ttt Gln Gln Phe	tct aat 604 Ser Asn 155
				aag gac gat Lys Asp Asp	
tcg tac gag Ser Tyr Glu	gat att to Asp Ile Se 175	r Ala Leu 🛚	ata gat gat Ile Asp Asp 180	agt ttt tgg Ser Phe Trp 185	tcg gac 700 Ser Asp
gtc ata tcg Val Ile Ser 190	gta gat aa Val Asp As	t tog aat a n Ser Asn 1 195	aag aat gag Lys Asn Glu	aag aag ata Lys Lys Ile 200	gag gat 748 Glu Asp
				tgt agc tat Cys Ser Tyr 215	
tct aag ttg Ser Lys Leu 220	tat aat ga Tyr Asn As 22	Asp Met (gag ttt tgg Glu Phe Trp 230	ttt gat gtt Phe Asp Val	ttc act 844 Phe Thr 235
				ccc gag ttt Pro Glu Phe	taa 889
ttttgatttt g	gattttgtgt	gtttttgtc	gttaagactt	tgaaagtctt t	ttgtaatcc 949
aaatgaataa a	itteetttte	ttttaaaaa	aaaaaaaaa	aaaaa	994
<210> 40 <211> 249 <212> PRT <213> Arabi	dopsis tha	Liana			
<400> 40					
Met Gly Arg 1	Ala Pro Cy 5	s Cys Glu I	Lys Met Gly 10	Val Lys Arg	Gly Pro 15
Trp Thr Pro	Glu Glu As 20	_	Leu Ile Asn 25	Tyr Ile His 30	Leu Tyr
Gly His Ser 35	Asn Trp Ar	g Ala Leu I 40	Pro Lys His	Ala Gly Leu 45	Leu Arg
Cys Gly Lys 50	Ser Cys Ar	Leu Gly 7 55	Trp Ile Asn	Tyr Leu Arg 60	Pro Asp
Ile Lys Arg	Gly Asn Pho	e Thr Pro (Gln Glu Glu 75	Gln Thr Ile	Ile Asn 80

Leu His Glu S	Ger Leu Gly 1 85		equence List: Ser Ala Ile 90		s Leu
Pro Gly Arg T	Thr Asp Asn (.00	Glu Ile Lys 105	Asn Val Trp	His Thr Hi 110	s Leu
Lys Lys Arg L 115	eu Ser Lys <i>l</i>	Asn Leu Asn 120	Asn Gly Gly	Asp Thr Ly 125	s Asp
Val Asn Gly I 130		Thr Thr Asn 135	Glu Asp Lys 140	Gly Ser Va	l Ile
Val Asp Thr A 145	ala Ser Leu (150	Gln Gln Phe	Ser Asn Ser 155	Ile Thr Th	r Phe 160
Asp Ile Ser A	sn Asp Asn I 165		Ile Met Ser 170	Tyr Glu Asy 17	
Ser Ala Leu I 1	le Asp Asp S 80	Ser Phe Trp 185	Ser Asp Val	Ile Ser Va	l Asp
Asn Ser Asn L 195	ys Asn Glu I	Lys Lys Ile 200	Glu Asp Trp	Glu Gly Let 205	ı Ile
Asp Arg Asn S 210		Cys Ser Tyr 215	Ser Asn Ser 220	Lys Leu Ty	r Asn
Asp Asp Met G 225	lu Phe Trp E 230	Phe Asp Val	Phe Thr Ser 235	Asn Arg Arg	Ile 240
Glu Glu Phe S	er Asp Ile E 245	Pro Glu Phe			
<210> 41 <211> 891 <212> DNA <213> Arabidopsis thaliana					
<220> <221> CDS <222> (1)(<223> G1327	891)				
<400> 41 atg ggg aaa g Met Gly Lys G 1	ga aga gca c ly Arg Ala F 5	Pro Cys Cys .	gac aag aac Asp Lys Asn 10	aaa gtg aaq Lys Val Lys 15	g aga 48 s Arg
ggg cca tgg a Gly Pro Trp S 2	gc cct caa g er Pro Gln 6 0	gaa gat ctc Glu Asp Leu 25	act ctc atc Thr Leu Ile	act ttt att Thr Phe Ile 30	caa 96 Gln
aaa cat ggc c Lys His Gly H 35	at caa aac t is Gln Asn T	tgg aga tct : Irp Arg Ser : 40	ctt ccc aag Leu Pro Lys	ctt gct gga Leu Ala Gly 45	a ttg 144 7 Leu
ttg aga tgt g Leu Arg Cys G 50	ly Lys Ser C	tgc cga cta Cys Arg Leu 55	aga tgg ata Arg Trp Ile 60	aac tat cto Asn Tyr Lei	g aga 192 1 Arg
ccg gac gtg a Pro Asp Val L 65	ag cga ggc a ys Arg Gly A 70	aac ttt agc a	aaa aag gag Lys Lys Glu 75	gaa gat gct Glu Asp Ala	atc 240 a Ile 80

mbi19 Sequence Listing.ST25

							moı	19 5	egue	nce	List	ing.	5125			
att Ile	cac His	tac Tyr	cat His	caa Gln 85	acc Thr	ctt Leu	gga Gly	aac Asn	aag Lys 90	tgg Trp	tca Ser	aag Lys	atc Ile	gcg Ala 95	tcc Ser	288
ttc Phe	ttg Leu	ccg Pro	gga Gly 100	aga Arg	act Thr	gac Asp	aac Asn	gag Glu 105	atc Ile	aaa Lys	aac Asn	gtg Val	tgg Trp 110	aac Asn	acg Thr	336
cat His	ctc Leu	aag Lys 115	aaa Lys	cga Arg	ctc Leu	act Thr	cca Pro 120	tct Ser	tct Ser	tct Ser	tct Ser	tca Ser 125	tcc Ser	ctc Leu	tct Ser	384
								gca Ala								432
999 Gly 145	gct Ala	caa Gln	gaa Glu	gaa Glu	ata Ile 150	cat His	tca Ser	999 Gly	tta Leu	aat Asn 155	gag Glu	agc Ser	caa Gln	aac Asn	tca Ser 160	480
gct Ala	act Thr	tcg Ser	tca Ser	cat His 165	cac His	caa Gln	ggc Gly	gag Glu	tgt Cys 170	atg Met	cac His	aca Thr	aaa Lys	cca Pro 175	gag Glu	528
ctt Leu	cat His	gag Glu	gtt Val 180	aat Asn	gga Gly	ctc Leu	aac Asn	gag Glu 185	atc Ile	cag Gln	ttc Phe	ctg Leu	ctc Leu 190	gac Asp	cat His	576
								gag Glu								624
tta Leu	ttt Phe 210	ccg Pro	cta Leu	gac Asp	tct Ser	ctt Leu 215	ctt Leu	cat His	aac Asn	cac His	caa Gln 220	act Thr	cac His	att Ile	tca Ser	672
								acc Thr								720
	_	_	_	_		_		ttt Phe		_					_	768
								tca Ser 265								816
								aac Asn								864
	ttc Phe 290							tga								891
<210 <211 <212 <213	L> '2 2> E	2 296 PRT Arabi	idops	sis t	hali	ana										
<400)> 4															
Met 1	Gly	Lys	Gly	Arg 5	Ala	Pro	Сув	Cys	Asp 10	Lys	Asn	Lys	Val	Lув 15	Arg	
Gly	Pro	Trp	Ser 20	Pro	Gln	Glu	Asp	Leu 25	Thr	Leu	Ile	Thr	Phe 30	Ile	Gln	

Lys His Gly His Gln Asn Trp Arg Ser Leu Pro Lys Leu Ala Gly Leu 35 40 45

PCT/US00/31414 WO 01/35725

mbi19 Sequence Listing.ST25

Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg

Pro Asp Val Lys Arg Gly Asn Phe Ser Lys Lys Glu Glu Asp Ala Ile 65 70 75 80

Ile His Tyr His Gln Thr Leu Gly Asn Lys Trp Ser Lys Ile Ala Ser

Phe Leu Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Val Trp Asn Thr

His Leu Lys Lys Arg Leu Thr Pro Ser Ser Ser Ser Ser Leu Ser

Ser Thr His Asp Gln Ser Thr Lys Ala Asp His Asp Lys Asn Cys Asp

Gly Ala Gln Glu Glu Ile His Ser Gly Leu Asn Glu Ser Gln Asn Ser 155

Ala Thr Ser Ser His His Gln Gly Glu Cys Met His Thr Lys Pro Glu

Leu His Glu Val Asn Gly Leu Asn Glu Ile Gln Phe Leu Leu Asp His

Asp Asp Phe Asp Asp Ile Thr Ser Glu Phe Leu Gln Asp Asn Asp Ile

Leu Phe Pro Leu Asp Ser Leu Leu His Asn His Gln Thr His Ile Ser

Thr Gln Glu Met Thr Arg Glu Val Thr Lys Ser Gln Ser Phe Asp His

Pro Gln Pro Asp Ile Pro Cys Gly Phe Glu Asp Thr Asn Glu Glu Ser

Asp Leu Arg Arg Gln Leu Val Glu Ser Thr Thr Pro Asn Asn Glu Tyr

Asp Glu Trp Phe Asn Phe Ile Asp Asn Gln Thr Tyr Phe Asp Asp Phe

Asn Phe Val Gly Glu Val Cys Leu

<210> 43 <211> 1237

<212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS

<222> (73)..(954)

<223> G673

mbi19 Sequence Listing.ST25

<400> 43 tctctctcta	accccttc	tc tcttc	agtct c	tctct	ctct	aga	cgat	ctc	tatc	ttgaat	60
aaaataccga	ta atg a Met T 1	cc tca a hr Ser T	cc aat hr Asn 5	ccg g Pro V	tg g al V	tc go al A	cc g la G	lu V	ta a al I	ta ccg le Pro	111
gcg gaa act Ala Glu Thi 15	tct aca Ser Thr	gat gct Asp Ala 20	aca ga Thr Gl	g acg u Thr	acg Thr	att Ile 25	gca Ala	acg Thr	acg Thr	gaa Glu	159
gct ggt gaa Ala Gly Glu 30	gca ccg Ala Pro	gag aag Glu Lys 35	aag gt Lys Va	g agg l Arg	aaa Lys 40	gct Ala	tat Tyr	aca Thr	atc Ile	acc Thr 45	207
aag tot aga Lys Ser Arg	gag agt Glu Ser 50	tgg act Trp Thr	gaa gg Glu Gl	a gaa y Glu 55	cac His	gac Asp	aag Lys	ttt Phe	ctg Leu 60	gaa Glu	255
gct ctt caa Ala Leu Glr	ttg ttt Leu Phe 65	gat cgt Asp Arg	gac tg Asp Tr 70	g aaa p Lys	aag Lys	ata Ile	gaa Glu	gat Asp 75	ttt Phe	gtt Val	303
ggt tca aag Gly Ser Lys 80	aca gtt Thr Val	att cag Ile Gln	atc ago Ile Arc 85	g agc g Ser	cat His	gcc Ala	caa Gln 90	aaa Lys	tac Tyr	ttt Phe	351
cta aag gto Leu Lys Val 95	caa aaa Gln Lys	aat ggg Asn Gly 100	act tt Thr Le	a gca u Ala	cat His	gtt Val 105	cca Pro	ccc Pro	cct Pro	agg Arg	399
cct aag cgc Pro Lys Arg 110											447
gct caa atg Ala Gln Met											495
aac ctg cct Asn Leu Pro				qaA q							5 43
aac att gct Asn Ile Ala 160	Val Ser										591
ctt tgt gga Leu Cys Gly 175											639
act agt cct Thr Ser Pro 190											687
gat tot aag Asp Ser Lys	ggt ttg Gly Leu 210	aga ctg Arg Leu	gcg aaa Ala Lys	caa Gln 215	gct Ala	ccc Pro	tca Ser	atg Met	cat His 220	ggt Gly	735
ctt cct gat Leu Pro Asp				n Phe							783
cct gac ago Pro Asp Ser 240	Lys Gly	cgc atg Arg Met	aaa aag Lys Lys 245	g ctc s Leu	aag Lys	gaa Glu	atg Met 250	gat Asp	cct Pro	ata Ile	831
aat ttc gaa Asn Phe Glu 255											879
tca aac cct Ser Asn Pro	gac ttt Asp Phe	gaa cct Glu Pro	act to	gaa Glu	tat Tyr	gtt Val	gat Asp	gct Ala	gca Ala	gag Glu	927

	mbi19	Sequence	Listing.ST25	
275		280	_	285

gaa ggt cat gaa cac tta agc tct tag ctgtttgtgc actcaacaag 974 Glu Gly His Glu His Leu Ser Ser 290

ttatatatet tettgacgae ttettgeteg caacaactet etaccageta teaaatgeat 1034
egtacggttg ttgtetgagg agaacataae tgagtegteg teacaaacaa gaggaacata 1094
tgeagttteg gteagaacea gtegtgtgaa tggtagatat atgtatgtgt gtgtagaaaa 1154
tggttaceaa ttgtatette tttttgataa ttattttte atgeettttg taatatgtaa 1214
gtttetttaa aaaaaaaaaa aaa 1237

<210> 44

270

<211> 293

<212> PRT

<213> Arabidopsis thaliana

<400> 44

Met Thr Ser Thr Asn Pro Val Val Ala Glu Val Ile Pro Ala Glu Thr 1 5 10 15

Ser Thr Asp Ala Thr Glu Thr Thr Ile Ala Thr Thr Glu Ala Gly Glu 20 25 30

Ala Pro Glu Lys Lys Val Arg Lys Ala Tyr Thr Ile Thr Lys Ser Arg
35 40 45

Glu Ser Trp Thr Glu Gly Glu His Asp Lys Phe Leu Glu Ala Leu Gln 50 · 60

Leu Phe Asp Arg Asp Trp Lys Lys Ile Glu Asp Phe Val Gly Ser Lys 65 70 75 80

Thr Val Ile Gln Ile Arg Ser His Ala Gln Lys Tyr Phe Leu Lys Val 85 90 95

Gln Lys Asn Gly Thr Leu Ala His Val Pro Pro Pro Arg Pro Lys Arg 100 105 110

Lys Ala Ala His Pro Tyr Pro Gln Lys Ala Ser Lys Asn Ala Gln Met 115 120 125

Ser Leu His Val Ser Met Ser Phe Pro Thr Gln Ile Asn Asn Leu Pro 130 135 140

Gly Tyr Thr Pro Trp Asp Asp Thr Ser Ala Leu Leu Asn Ile Ala 145 150 155

Val Ser Gly Val Ile Pro Pro Glu Asp Glu Leu Asp Thr Leu Cys Gly
165 170 175

Ala Glu Val Asp Val Gly Ser Asn Asp Met Ile Ser Glu Thr Ser Pro 180 185 190

Ser Ala Ser Gly Ile Gly Ser Ser Ser Arg Thr Leu Ser Asp Ser Lys 195 200 205

mbil9 Sequence Listing.ST25

Gly	Leu 210	Arg	Leu	Ala	Lys	Gln 215	Ala	Pro	Ser	Met	His 220	Gly	Leu	Pro	Asp	
Dho		Glu	บรา	Tur	yen		Tlo	Gly	Ser	Val		Asn	Pro	Asn	Ser	
225	Ala	Gru	val	lyL	230	FIIC	116	Gly	361	235	FIIC	nsp	110	пор	240	
Lys	Gly	Arg	Met	Lys 245	Lys	Leu	Lys	Glu	Met 250	Asp	Pro	Ile	Asn	Phe 255	Glu	
Thr	Val	Leu	Leu 260	Leu	Met	Arg	Asn	Leu 265	Thr	Val	Asn	Leu	Ser 270	Asn	Pro	
Asp	Phe	Glu 275	Pro	Thr	Ser	Glu	Tyr 280	Val	Asp	Ala	Ala	Glu 285	Glu	Gly	His	
Glu	His 290	Leu	Ser	Ser												
<210 <211 <212 <213	> I	15 1764 DNA Arab:	idops	sis t	hali	iana										
<220 <221		CDS														
	!> ((1). 3307	. (176	54)												
<400 atg Met 1	aaq	15 aga Arg	gat Asp	cat His 5	cac His	caa Gln	ttc Phe	caa Gln	ggt Gly 10	cga Arg	ttg Leu	tcc Ser	aac Asn	cac His 15	g1y 999	48
act Thr	tct Ser	tct Ser	tct Ser 20	tca Ser	tca Ser	tca Ser	atc Ile	tct Ser 25	aaa Lys	gat Asp	aag Lys	atg Met	atg Met 30	atg Met	gtg Val	96
aaa Lys	aaa Lys	gaa Glu 35	gaa Glu	gac Asp	ggt Gly	gga Gly	ggt Gly 40	aac Asn	atg Met	gac Asp	gac Asp	gag Glu 45	ctt Leu	ctc Leu	gct Ala	144
gtt Val	tta Leu 50	ggt Gly	tac Tyr	aaa Lys	gtt Val	agg Arg 55	tca Ser	tcg Ser	gag Glu	atg Met	gcg Ala 60	gag Glu	gtt Val	gct Ala	ttg Leu	192
aaa Lys 65	ctc Leu	gaa Glu	caa Gln	tta Leu	gag Glu 70	acg Thr	atg Met	atg Met	agt Ser	aat Asn 75	gtt Val	caa Gln	gaa Glu	gat Asp	ggt Gly 80	240
tta Leu	tct Ser	cat His	ctc Leu	gcg Ala 85	acg Thr	gat Asp	act Thr	gtt Val	cat His 90	tat Tyr	aat Asn	ccg Pro	tcg Ser	gag Glu 95	ctt Leu	288
tat Tyr	tct Ser	tgg Trp	ctt Leu 100	gat Asp	aat Asn	atg Met	ctc Leu	tct Ser 105	gag Glu	ctt Leu	aat Asn	cct Pro	cct Pro 110	cct Pro	ctt Leu	336
ccg Pro	gcg Ala	agt Ser 115	tct Ser	aac Asn	ggt Gly	tta Leu	gat Asp 120	ccg Pro	gtt Val	ctt Leu	cct Pro	tcg Ser 125	ccg Pro	gag Glu	att Ile	384
tgt Cys	ggt Gly 130	ttt Phe	ccg Pro	gct Ala	tcg Ser	gat Asp 135	tat Tyr	gac Asp	ctt Leu	aaa Lys	gtc Val 140	att Ile	ccc Pro	gga Gly	aac Asn	432
gcg Ala	att Ile	tat Tyr	cag Gln	ttt Phe	ccg Pro	gcg Ala	att Ile	gat Asp	Ser	Ser	Ser	tcg Ser	tcg Ser	aat Asn	aat Asn	480
									Pi	age !	J 0					

145					150		mbi	19 S	eque	nce 155	List	ing.	ST25		160	
cag Gln								tcg Ser								528
tcg Ser	act Thr	tcg Ser	acg Thr 180	ggt Gly	acg Thr	cag Gln	att Ile	ggt Gly 185	gga Gly	gtc Val	ata Ile	gga Gly	acg Thr 190	acg Thr	gtg Val	576
acg Thr	aca Thr	acc Thr 195	acc Thr	acg Thr	aca Thr	acg Thr	acg Thr 200	gcg Ala	gcg Ala	gct Ala	gag Glu	tca Ser 205	act Thr	cgt Arg	tct Ser	624
gtt Val																672
ctt Leu 225	atg Met	gct Ala	tgt Cys	gca Ala	gaa Glu 230	gca Ala	atc Ile	cag Gln	cag Gln	aac Asn 235	aat Asn	ttg Leu	act Thr	cta Leu	gcg Ala 240	720
gaa Glu																768
gct Ala	atg Met	aga Arg	aaa Lys 260	gtg Val	gct Ala	act Thr	tac Tyr	ttc Phe 265	gcc Ala	gaa Glu	gct Ala	tta Leu	gct Ala 270	cgg Arg	cgg Arg	816
atc Ile	tac Tyr	cgt Arg 275	ctc Leu	tct Ser	ccg Pro	ccg Pro	cag Gln 280	aat Asn	çag Gln	atc Ile	gat Asp	cat His 285	tgt Cys	ctc Leu	tcc Ser	864
gat Asp																912
gct Ala 305	cac His	ttc Phe	acg Thr	gcg Ala	aac Asn 310	caa Gln	gcg Ala	att Ile	ctc Leu	gaa Glu 315	gct Ala	ttt Phe	gaa Glu	ggt Gly	aag Lys 320	960
aag Lys																1008
Pro	gcg Ala	ctt Leu	atg Met 340	caa Gln	gct Ala	ctt Leu	gcg Ala	ctt Leu 345	cga Arg	gaa Glu	gga Gly	ggt Gly	cct Pro 350	cca Pro	act Thr	1056
ttc Phe	cgg Arg	tta Leu 355	acc Thr	gga Gly	att Ile	ggt Gly	cca Pro 360	ccg Pro	gcg Ala	ccg Pro	gat Asp	aat Asn 365	tct Ser	gat Asp	cat His	1104
ctt (Leu)	cat His 370	gaa Glu	gtt Val	ggt Gly	tgt Cys	aaa Lys 375	tta Leu	gct Ala	cag Gln	ctt Leu	gcg Ala 380	gag Glu	gcg Ala	att Ile	cac His	1152
gta (Val (385	gaa Glu	ttc Phe	gaa Glu	tac Tyr	cgt Arg 390	gga Gly	ttc Phe	gtt Val	gct Ala	aac Asn 395	agc Ser	tta Leu	gcc Ala	gat Asp	ctc Leu 400	1200
gat (gct Ala	tcg Ser	atg Met	ctt Leu 405	gag Glu	ctt Leu	aga Arg	ccg Pro	agc Ser 410	gat Asp	acg Thr	gaa Glu	gct Ala	gtt Val 415	gcg Ala	1248
gtg (aac Asn	tct Ser	gtt Val 420	ttt Phe	gag Glu	cta Leu	cat His	aag Lys 425	ctc Leu	tta Leu	ggt Gly	cgt Arg	ccc Pro 430	ggt Gly	999 999	1296
ata (gag Glu	aaa Lys 435	gtt Val	ctc Leu	ggc Gly	gtt Val	gtg Val 440	aaa Lys	cag Gln	att Ile	aaa Lys	ccg Pro 445	gtg Val	att Ile	ttc Phe	1344
acg (gtg	gtt	gag	caa	gaa	tcg	aac	cat		gga ige !		gtt	ttc	tta	gac	1392

Thr	Val 450	Val	Glu	Gln	Glu	Ser 455						ing. Val			Asp	
	Phe	act Thr														1440
		gtt Val														1488
		cag Gln														1536
		cac His 515														1584
		gcg Ala														1632
atg Met 545	Leu	ttg Leu	tct Ser	gtg Val	ttt Phe 550	aat Asn	agt Ser	ggc Gly	caa Gln	ggt Gly 555	tat Tyr	cgt Arg	gtg Val	gag Glu	gag Glu 560	1680
		gga Gly														1728
		gct Ala									tga					1764
<21: <21: <21: <21:	1 > ! 2 > 1	46 587 PRT Arabi	idops	sis t	:hali	iana										
<21 <21	1> ! 2> ! 3> !	587 PRT	idops	sis t	:hali	iana										
<21: <21: <21: <40:	1> ! 2> ! 3> !	587 PRT Arabi	_			_	Phe	Gln	Gly 10	Arg	Leu	Ser	Asn	His 15	Gly	
<21: <21: <21: <40: Met 1	1> ! 2> ! 3> ! 0> 4	587 PRT Arabi	Asp	His 5	His	Gln			10					15		
<21: <21: <21: <40: Met 1	1> !! 2> !! 3> ! 0> '	587 PRT Arabi 46 Arg	Asp Ser 20	His 5 Ser	His Ser	Gln Ser	Ile	Ser 25	10 Lys	Asp	Lys	Met	Met 30	15 Met	Val	
<21: <21: <21: <400 Met 1 Thr	1> ! 2> 3> 0> Lys Ser	587 PRT Arabi 46 Arg Ser	Asp Ser 20	His 5 Ser Asp	His Ser Gly	Gln Ser Gly	Ile Gly 40	Ser 25 Asn	10 Lys Met	Asp	Lys Asp	Met Glu 45	Met 30 Leu	15 Met Leu	Val Ala	
<21: <21: <400 Met 1 Thr Lys	1> ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ser Glu 35	Asp Ser 20 Glu	His 5 Ser Asp	His Ser Gly Val	Gln Ser Gly Arg	Ile Gly 40	Ser 25 Asn Ser	Lys Met	Asp Asp Met	Lys Asp Ala 60	Met Glu 45 Glu	Met 30 Leu Val	15 Met Leu Ala	Val Ala Leu	
<21: <21: <21: <40: Met 1 Thr Lys Val	1> ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	Ser Glu 35	Asp Ser 20 Glu Tyr	His 5 Ser Asp Lys	His Ser Gly Val	Gln Ser Gly Arg 55 Thr	Ile Gly 40 Ser Met	Ser 25 Asn Ser Met	Lys Met Glu Ser	Asp Asp Met Asn 75	Lys Asp Ala 60 Val	Met Glu 45 Glu Glu	Met 30 Leu Val Glu	Met Leu Ala	Val Ala Leu Gly	
<21: <21: <400 Met 1 Thr Lys Val Lys 65	1> ! 2> 3> 3> 10> Lys Ser Lys Leu Ser	Ser Glu 35 Gly Glu	Asp Ser 20 Glu Tyr Gln Leu	His 5 Ser Asp Lys Leu Ala 85	His Ser Gly Val Glu 70	Gln Ser Gly Arg 55 Thr	Ile Gly 40 Ser Met	Ser 25 Asn Ser Met	Lys Met Glu Ser	Asp Asp Met Asn 75	Lys Asp Ala 60 Val	Met Glu 45 Glu Gln Pro	Met 30 Leu Val Glu Ser	Met Leu Ala Asp Glu 95	Val Ala Leu Gly 80	

mbi19 Sequence Listing.ST25 Cys Gly Phe Pro Ala Ser Asp Tyr Asp Leu Lys Val Ile Pro Gly Asn 130 135 140

Ala Ile Tyr Gln Phe Pro Ala Ile Asp Ser Ser Ser Ser Asn Asn 145 150 155 160

Gln Asn Lys Arg Leu Lys Ser Cys Ser Ser Pro Asp Ser Met Val Thr 165 170 175

Ser Thr Ser Thr Gly Thr Gln Ile Gly Gly Val Ile Gly Thr Thr Val

Thr Thr Thr Thr Thr Thr Thr Ala Ala Glu Ser Thr Arg Ser 195 200 205

Val Ile Leu Val Asp Ser Gln Glu Asn Gly Val Arg Leu Val His Ala 210 215 220

Leu Met Ala Cys Ala Glu Ala Ile Gln Gln Asn Asn Leu Thr Leu Ala 225 230 235 240

Glu Ala Leu Val Lys Gln Ile Gly Cys Leu Ala Val Ser Gln Ala Gly
245 250 255

Ala Met Arg Lys Val Ala Thr Tyr Phe Ala Glu Ala Leu Ala Arg Arg 260 265 270

Ile Tyr Arg Leu Ser Pro Pro Gln Asn Gln Ile Asp His Cys Leu Ser 275 280 285

Asp Thr Leu Gln Met His Phe Tyr Glu Thr Cys Pro Tyr Leu Lys Phe 290 295 300

Ala His Phe Thr Ala Asn Gln Ala Ile Leu Glu Ala Phe Glu Gly Lys 305 310 315 320

Lys Arg Val His Val Ile Asp Phe Ser Met Asn Gln Gly Leu Gln Trp 325 330 335

Pro Ala Leu Met Gln Ala Leu Ala Leu Arg Glu Gly Gly Pro Pro Thr 340 345 350

Phe Arg Leu Thr Gly Ile Gly Pro Pro Ala Pro Asp Asn Ser Asp His 355 360 365

Leu His Glu Val Gly Cys Lys Leu Ala Gln Leu Ala Glu Ala Ile His 370 375375

Val Glu Phe Glu Tyr Arg Gly Phe Val Ala Asn Ser Leu Ala Asp Leu 385 390 395 400

Asp Ala Ser Met Leu Glu Leu Arg Pro Ser Asp Thr Glu Ala Val Ala 405 410 415

Val Asn Ser Val Phe Glu Leu His Lys Leu Leu Gly Arg Pro Gly Gly 420 425 430

mbi19 Sequence Listing.ST25

Ile Glu Lys Val Leu Gly Val Val Lys Gln Ile Lys Pro Val Ile Phe 440 Thr Val Val Glu Glu Ser Asn His Asn Gly Pro Val Phe Leu Asp Arg Phe Thr Glu Ser Leu His Tyr Tyr Ser Thr Leu Phe Asp Ser Leu Glu Gly Val Pro Asn Ser Gln Asp Lys Val Met Ser Glu Val Tyr Leu 490 Gly Lys Gln Ile Cys Asn Leu Val Ala Cys Glu Gly Pro Asp Arg Val 500 505 Glu Arg His Glu Thr Leu Ser Gln Trp Gly Asn Arg Phe Gly Ser Ser 515 520 Gly Leu Ala Pro Ala His Leu Gly Ser Asn Ala Phe Lys Gln Ala Ser Met Leu Leu Ser Val Phe Asn Ser Gly Gln Gly Tyr Arg Val Glu Glu 555 Ser Asn Gly Cys Leu Met Leu Gly Trp His Thr Arg Pro Leu Ile Thr 570 Thr Ser Ala Trp Lys Leu Ser Thr Ala Ala His 580 <210> 47 <211> 990 <212> DNA <213> Arabidopsis thaliana <220> <221> <222> (7)..(813) <223> G529 <400> 47 gcaaag atg tct tct gat tcg tcc cgg gaa gag aat gtg tac ttg gcc 48 Met Ser Ser Asp Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala aag tta gcc gag caa gct gag cgt tac gag gaa atg gtt gag ttc atg 96 Lys Leu Ala Glu Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met gag aaa gtt gca aag acc gtg gag acc gag gaa ctt act gtt gaa gag 144 Glu Lys Val Ala Lys Thr Val Glu Thr Glu Glu Leu Thr Val Glu Glu agg aat ctc ttg tct gtt gct tac aag aac gtg att ggt gct agg aga Arg Asn Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg 192 gct tct tgg agg att atc tct tcc att gag cag aag gaa gat agc agg Ala Ser Trp Arg Ile Ile Ser Ser Ile Glu Gln Lys Glu Asp Ser Arg 240 70 ggc aac agt gat cat gtt tcg att atc aag gat tac aga ggc aag att 288 Gly Asn Ser Asp His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile

		mbi19 Sequence Listing.ST25	
80	85	90	

80	85	90	
gaa act gag ctc agc aa Glu Thr Glu Leu Ser Ly 95 10	s Ile Cys Asp Gly Ile	ttg aac ctt ctt gag 3 Leu Asn Leu Leu Glu 110	336
gct cat ctc att cct gc Ala His Leu Ile Pro Al 115	t gct tct ttg gct gag a Ala Ser Leu Ala Glu 120		884
ctg aag atg aag gga ga Leu Lys Met Lys Gly As 130	t tat cat cgg tac ctt o Tyr His Arg Tyr Leu 135	gct gaa ttc aag act 4 Ala Glu Phe Lys Thr 140	132
ggt gct gag agg aaa ga Gly Ala Glu Arg Lys Gl 145	a gct gct gag agc act 1 Ala Ala Glu Ser Thr 150	ctt gtt gcc tac aag 4 Leu Val Ala Tyr Lys 155	180
tct gct cag gat att gc Ser Ala Gln Asp Ile Al 160			28
aga ctg ggg ctt gct ct Arg Leu Gly Leu Ala Le 175 18	Asn Phe Ser Val Phe	tac tat gag att ctc 5 Tyr Tyr Glu Ile Leu 190	76
aac tca tct gat cgt gc Asn Ser Ser Asp Arg Al 195	g tgt agt ctc gca aag a Cys Ser Leu Ala Lys 200		24
gca atc tcg gag cta gad Ala Ile Ser Glu Leu As 210	c aca ttg gga gag gaa o Thr Leu Gly Glu Glu 215		72
aca ttg atc atg cag ct Thr Leu Ile Met Gln Le 225	c ctc cgt gac aat ctc 1 Leu Arg Asp Asn Leu 230	acc ctc tgg act tct 7 Thr Leu Trp Thr Ser 235	20
gac ctc aat gac gaa gc Asp Leu Asn Asp Glu Ala 240	ggt gat gat atc aag Gly Asp Asp Ile Lys 245		68
gtg cag aaa gtt gat gat Val Gln Lys Val Asp Glo 255 260	Gln Ala Gln Pro Pro		13
taaaatcaga tccatggaat g	gatttgcaga caaaaagata	tatggcttgg ttctgtgttt 8	73
ttaaacagaa aaaaaccttg	agtttcctt aaacatgggc	tgtagtttcc ttaaacatgg 9	33
atttgtagta gtaattgtag	etgcatgatt tggttatcga	tggttaaaaa aaaaaaa 9	90

<210> 48 <211> 268 <212> PRT <213> Arabidopsis thaliana

Met Ser Ser Asp Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala Lys Leu 1 5 10 15

Ala Glu Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys

Val Ala Lys Thr Val Glu Thr Glu Glu Leu Thr Val Glu Glu Arg Asn 35 40 45

Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser 50 55 60

							wbı	19 S	eque	nce	Lıst	ing.	ST25				
Trp 65	Arg	Ile	Ile	Ser	Ser 70	Ile	Glu	Gln	Lys	Glu 75	Asp	Ser	Arg	Gly	Asn 80		
Ser	Asp	His	Val	Ser 85	Ile	Ile	Lys	Asp	Tyr 90	Arg	Gly	Lys	Ile	Glu 95	Thr		
Glu	Leu	Ser	Lys 100	Ile	Cys	Asp	Gly	Ile 105	Leu	Asn	Leu	Leu	Glu 110	Ala	His		
Leu	Ile	Pro 115	Ala	Ala	Ser	Leu	Ala 120	Glu	Ser	Lys	Val	Phe 125	Tyr	Leu	Lys		
Met	Lys 130	Gly	Asp	Tyr	His	Arg 135	туг	Leu	Ala	Glu	Phe 140	Lys	Thr	Gly	Ala		
Glu 145	Arg	Lys	Glu	Ala	Ala 150	Glu	Ser	Thr	Leu	Val 155	Ala	туг	Lys	Ser	Ala 160		
Gln	Asp	Ile	Ala	Leu 165	Ala	Asp	Leu	Ala	Pro 170	Thr	His	Pro	Ile	Arg 175	Leu	,	
Gly	Leu	Ala	Leu 180	Asn	Phe	Ser	Val	Phe 185	Tyr	Туr	Glu	Ile	Leu 190	Asn	Ser		
Ser	Asp	Arg 195	Ala	Сув	Ser	Leu	Ala 200	Lys	Gln	Ala	Phe	Asp 205	Glu	Ala	Ile		
Ser	Glu 210	Leu	Asp	Thr	Leu	Gly 215	Glu	Glu	Ser	Tyr	Lys 220	Asp	Ser	Thr	Leu		
Ile 225	Met	Gln	Leu	Leu	Arg 230	Asp	Asn	Leu	Thr	Leu 235	Trp	Thr	Ser	Asp	Leu 240		
Asn	Asp	Glu	Ala	Gly 245	Asp	Asp	Ile	Lys	Glu 250	Ala	Pro	Lys	Glu	Val 255	Gln		
Lys	Val	Asp	Glu 260	Gln	Ala	Gln	Pro	Pro 265	Pro	Ser	Gln						
<210 <211 <212 <213	> 1 > [.dops	sis t	:hali	ana											
<220 <221 <222 <223	> C		. (86	57)													
<400 ccac		.9 .cc g	ıcgac	aaat	:c cc	:taat	tcca	aaa	tcct	ctc	ggat	ctaa	aa q	agto	ıtgtga		60
		g at	gto	g to	t to	t cg	ıg ga	ıa ga	g aa	t gt	g ta	c tt	a go	c aa	g tta 's Leu	1	111
gct	gag	_	gct	gaa	cgt	tat	gag	gaa	atg	gtt			atg	gag	aaa	1	.59

mbil9 Sequence Listing.ST25 gtt gca aag act gtt gac acc gat gag ctt act gtc gaa gag aga aac	207
Val Ala Lys Thr Val Asp Thr Asp Glu Leu Thr Val Glu Glu Arg Asn 35 40 45	20,
ctc ttg tct gtt gct tac aag aac gtc att ggt gct agg aga gct tcc	255
Leu Leu Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser 50 55 60	
tgg agg atc ata tct tcc att gaa cag aag gaa gaa agc aga gga aac Trp Arg Ile Ile Ser Ser Ile Glu Gln Lys Glu Glu Ser Arg, Gly Asn	303
65 70 75	
gat gat cat gtt tcc att atc aag gac tac aga gga aag atc gaa act Asp Asp His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile Glu Thr 80 85 90	351
gaa ctc agc aaa atc tgt gat gga ata ctc aat ctt ctg gat tct cac	399
Glu Leu Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Asp Ser His 100 105 110	
ctt gtt ccc act gca tct ttg gcc gag tcc aaa gtc ttt tac ctc aaa Leu Val Pro Thr Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr Leu Lys 115 120 125	447
atg aaa gga gat tac cac agg tac ctt gct gag ttt aag act gga gct	495
Met Lys Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala 130 135 140	
gag agg aaa gaa gct gct gag agc act ctg gtt gct tac aag tca gct Glu Arg Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala 145 150 155	543
cag gat att gca ctt gct gat tta gct cct act cat ccg att aga ctg Gln Asp Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu	591
160 165 170	
gga ctt gct ctt aac ttc tct gtc ttc tac tac gag att ctc aac tca Gly Leu Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser 175 180 185 190	639
cot gat ogt god tgo agt oto goa aaa cag got tit gat gag god att	687
Pro Asp Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile 195 200 205	
tct gag ctg gat aca tta gga gaa gaa tca tac aaa gac agt acg ttg Ser Glu Leu Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu	735
210 215 220	
ata atg caa ctt ctc cgt gac aat ctg acc ctt tgg aac tct gac atc Ile Met Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Asn Ser Asp Ile 225 230 235	783
aat gat gag gcg ggt gat gag atc aag gag gcg tca aaa cat gag Asn Asp Glu Ala Gly Gly Asp Glu Ile Lys Glu Ala Ser Lys His Glu 240 245 250	831
ccg gaa gag ggg aaa cca gct gag aca ggg cag tga ccagagagag Pro Glu Glu Gly Lys Pro Ala Glu Thr Gly Gln 255 260 265	877
agggagagac atttctaagt atgtatggta tggattttcc aaaaacatat gatatgatta	937
ggggatttgt agaagcagag agaaagatct ttatttgatt ttctccaaaa atctctgttc	997
ccttttttt ttattgggtt attaaagctg tttgagtcca aaaaaaaaaa	1057
aaaaaaaaaa aa .	1069

<210> 50 <211> 265 <212> PRT <213> Arabidopsis thaliana

<400> 50

mbi19 Sequence Listing.ST25

Met Ser Ser Arg Glu Glu Asn Val Tyr Leu Ala Lys Leu Ala Glu

Gln Ala Glu Arg Tyr Glu Glu Met Val Glu Phe Met Glu Lys Val Ala

Lys Thr Val Asp Thr Asp Glu Leu Thr Val Glu Glu Arg Asn Leu Leu

Ser Val Ala Tyr Lys Asn Val Ile Gly Ala Arg Arg Ala Ser Trp Arg

Ile Ile Ser Ser Ile Glu Gln Lys Glu Glu Ser Arg Gly Asn Asp Asp

His Val Ser Ile Ile Lys Asp Tyr Arg Gly Lys Ile Glu Thr Glu Leu

Ser Lys Ile Cys Asp Gly Ile Leu Asn Leu Leu Asp Ser His Leu Val

Pro Thr Ala Ser Leu Ala Glu Ser Lys Val Phe Tyr Leu Lys Met Lys

Gly Asp Tyr His Arg Tyr Leu Ala Glu Phe Lys Thr Gly Ala Glu Arg

Lys Glu Ala Ala Glu Ser Thr Leu Val Ala Tyr Lys Ser Ala Gln Asp

Ile Ala Leu Ala Asp Leu Ala Pro Thr His Pro Ile Arg Leu Gly Leu

Ala Leu Asn Phe Ser Val Phe Tyr Tyr Glu Ile Leu Asn Ser Pro Asp

Arg Ala Cys Ser Leu Ala Lys Gln Ala Phe Asp Glu Ala Ile Ser Glu

Leu Asp Thr Leu Gly Glu Glu Ser Tyr Lys Asp Ser Thr Leu Ile Met

Gln Leu Leu Arg Asp Asn Leu Thr Leu Trp Asn Ser Asp Ile Asn Asp

Glu Ala Gly Gly Asp Glu Ile Lys Glu Ala Ser Lys His Glu Pro Glu

Glu Gly Lys Pro Ala Glu Thr Gly Gln 260

<210> 51 <211> 2240

<212> DNA

<213> Arabidopsis thaliana

<220>

mbil9 Sequence Listing.ST25

<221> CDS <222> (238)..(2064) <223> G214

<400> 51 tgagatttct ccat	ttccgt agctt	ctggt ctcttt	ctt tgtttcattg	atcaaaagca 60
aatcacttct tct	cttctt cttct	cgatt tcttact	gtt ttcttatcca	acgaaatctg 120
gaattaaaaa tgga	atcttt atcga	atcca agctgat	ttt gtttctttca	ttgaatcatc 180
tctctaaagt ggaa	attttgt aaaga	gaaga totgaag	ttg tgtagaggag	cttagtg 237
			gtt att aag act Val Ile Lys Thr	
			tgg act gag gaa Trp Thr Glu Glu 30	
aat aga ttc att Asn Arg Phe Ile 35	gaa gct ttg Glu Ala Leu	agg ctt tat Arg Leu Tyr 40	ggt aga gca tgg Gly Arg Ala Trp 45	cag aag 381 Gln Lys
			gtc cag ata aga Val Gln Ile Arg 60	
gct cag aaa ttt Ala Gln Lys Phe 65	ttc tcc aag Phe Ser Lys 70	gta gag aaa Val Glu Lys	gag gct gaa gct Glu Ala Glu Ala 75	aaa ggt 477 Lys Gly 80
gta gct atg ggt Val Ala Met Gly	caa gcg cta Gln Ala Leu 85	gac ata gct Asp Ile Ala 90	att cct cct cca Ile Pro Pro Pro	cgg cct 525 Arg Pro 95
	Asn Asn Pro		aag acg gga agt Lys Thr Gly Ser 110	Gly Thr
atc ctt atg tca Ile Leu Met Sex 115	aaa acg ggt Lys Thr Gly	gtg aat gat Val Asn Asp 120	gga aaa gag tcc Gly Lys Glu Ser 125	ctt gga 621 Leu Gly
tca gaa aaa gto Ser Glu Lys Val 130	tcg cat cct Ser His Pro 135	Glu Met Ala	aat gaa gat cga Asn Glu Asp Arg 140	caa caa 669 Gln Gln
			gac aac tgt tca Asp Asn Cys Ser 155	
ttc act cat cag Phe Thr His Glr	tat ctc tct Tyr Leu Ser 165	gct gca tcc Ala Ala Ser 170	tcc atg aat aaa Ser Met Asn Lys	agt tgt 765 Ser Cys 175
ata gag aca tca Ile Glu Thr Ser 180	Asn Ala Ser	act ttc cgc Thr Phe Arg 185	gag ttc ttg cct Glu Phe Leu Pro 190	Ser Arg
gaa gag gga agt Glu Glu Gly Ser 195	cag aat aac Gln Asn Asn	agg gta aga Arg Val Arg 200	aag gag tca aac Lys Glu Ser Asn 205	tca gat 861 Ser Asp
ttg aat gca aaa Leu Asn Ala Lys 210	tct ctg gaa Ser Leu Glu 215	aac ggt aat Asn Gly Asn	gag caa gga cct Glu Gln Gly Pro 220	cag act 909 Gln Thr
tat ccg atg cat Tyr Pro Met His 225	atc cct gtg Ile Pro Val 230	cta gtg cca Leu Val Pro	ttg ggg agc tca Leu Gly Ser Ser 235	ata aca 957 Ile Thr 240
agt tct cta tca	cat cct cct		gat agt cat ccc ige 67	cac aca 1005

Ser	Ser	Leu	Ser	His 245	Pro	Pro			eque Pro 250						Thr	
						tcg Ser										1053
tta Leu	caa Gln	aca Thr 275	ccg Pro	gct Ala	ctt Leu	tat Tyr	act Thr 280	gcc Ala	gca Ala	act Thr	ttc Phe	gcc Ala 285	tca Ser	tca Ser	ttt Phe	1101
						ggt Gly 295										1149
						gcc Ala										1197
						tta Leu										1245
						cct Pro										1293
						agc Ser										1341
						gag Glu 375										1389
						aag Lys										1437
tct Ser	gca Ala	aca Thr	cct Pro	gag Glu 405	agt Ser	gat Asp	gca Ala	aag Lys	ggt Gly 410	tca Ser	gat Asp	gga Gly	gca Ala	gga Gly 415	gac Asp	1485
						tcc Ser										1533
agt Ser	gat Asp	gat Asp 435	gtt Val	gag Glu	gcg Ala	gat Asp	gca Ala 440	tca Ser	gaa Glu	agg Arg	caa Gln	gag Glu 445	gat Asp	ggc Gly	acc Thr	1581
						acg Thr 455										1629
						cgc Arg										1677
						gac Asp										1725
						ccg Pro										1773
						caa Gln										1821
						cag Gln 535										1869

mbi19 Sequence Listing.ST25 aag aga aac aca gga ttt ctt gga atc gga tta gat gct tca aag cta Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly Leu Asp Ala Ser Lys Leu 545 550 560	1917
atg agt aga gga aga aca ggt ttt aaa cca tac aaa aga tgt tcc atg Met Ser Arg Gly Arg Thr Gly Phe Lys Pro Tyr Lys Arg Cys Ser Met 565 570 575	1965
gaa gcc aaa gaa agt aga atc ctc aac aac aat cct atc att cat gtg Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn Asn Pro Ile Ile His Val 580 585 590	2013
gaa cag aaa gat ccc aaa cgg atg cgg ttg gaa act caa gct tcc aca Glu Gln Lys Asp Pro Lys Arg Met Arg Leu Glu Thr Gln Ala Ser Thr 595 600 605	2061
tga gactctattt tcatctgatc tgttgtttgt actctgtttt taagttttca	2114
agaccactge tacattttet ttttettttg aggeetttgt atttgtttee ttgtecatag	2174
tottootgta acatttgact otgtattatt caacaaatca taaactgttt aatotttttt	2234
tttcca	2240
<210> 52 <211> 608 <212> PRT <213> Arabidopsis thaliana	
<400> 52	
Met Glu Thr Asn Ser Ser Gly Glu Asp Leu Val Ile Lys Thr Arg Lys 1 10 15	
Pro Tyr Thr Ile Thr Lys Gln Arg Glu Arg Trp Thr Glu Glu His 20 25 30	
Asn Arg Phe Ile Glu Ala Leu Arg Leu Tyr Gly Arg Ala Trp Gln Lys 35 40 45	
Ile Glu Glu His Val Ala Thr Lys Thr Ala Val Gln Ile Arg Ser His 50 55 60	
Ala Gln Lys Phe Phe Ser Lys Val Glu Lys Glu Ala Glu Ala Lys Gly 65 70 75 80	
Val Ala Met Gly Gln Ala Leu Asp Ile Ala Ile Pro Pro Pro Arg Pro 85 90 95	
Lys Arg Lys Pro Asn Asn Pro Tyr Pro Arg Lys Thr Gly Ser Gly Thr 100 105 110	
Ile Leu Met Ser Lys Thr Gly Val Asn Asp Gly Lys Glu Ser Leu Gly 115 120 125	
Ser Glu Lys Val Ser His Pro Glu Met Ala Asn Glu Asp Arg Gln Gln 130 135 140	
Ser Lys Pro Glu Glu Lys Thr Leu Gln Glu Asp Asn Cys Ser Asp Cys 145 150 155 160	
Phe Thr His Gln Tyr Leu Ser Ala Ala Ser Ser Met Asn Lys Ser Cys 165 170 175	

mbi19 Sequence Listing.ST25

Ile Glu Thr Ser Asn Ala Ser Thr Phe Arg Glu Phe Leu Pro Ser Arg 180 185 190

Glu Glu Gly Ser Gln Asn Asn Arg Val Arg Lys Glu Ser Asn Ser Asp 195 200 205

Leu Asn Ala Lys Ser Leu Glu Asn Gly Asn Glu Gln Gly Pro Gln Thr 210 215 220

Tyr Pro Met His Ile Pro Val Leu Val Pro Leu Gly Ser Ser Ile Thr 225 230 235 240

Ser Ser Leu Ser His Pro Pro Ser Glu Pro Asp Ser His Pro His Thr 245 250 255

Val Ala Gly Asp Tyr Gln Ser Phe Pro Asn His Ile Met Ser Thr Leu 260 265 270

Leu Gln Thr Pro Ala Leu Tyr Thr Ala Ala Thr Phe Ala Ser Ser Phe 275 280 285

Trp Pro Pro Asp Ser Ser Gly Gly Ser Pro Val Pro Gly Asn Ser Pro 290 295 300

Pro Asn Leu Ala Ala Met Ala Ala Ala Thr Val Ala Ala Ala Ser Ala 305 310 315 320

Trp Trp Ala Ala Asn Gly Leu Leu Pro Leu Cys Ala Pro Leu Ser Ser 325 330 335

Gly Gly Phe Thr Ser His Pro Pro Ser Thr Phe Gly Pro Ser Cys Asp 340 345 350

Val Glu Tyr Thr Lys Ala Ser Thr Leu Gln His Gly Ser Val Gln Ser 355 360 365

Arg Glu Gln Glu His Ser Glu Ala Ser Lys Ala Arg Ser Ser Leu Asp 370 375 380

Ser Glu Asp Val Glu Asn Lys Ser Lys Pro Val Cys His Glu Gln Pro 385 390 395 400

Ser Ala Thr Pro Glu Ser Asp Ala Lys Gly Ser Asp Gly Ala Gly Asp 405 410 415

Arg Lys Gln Val Asp Arg Ser Ser Cys Gly Ser Asn Thr Pro Ser Ser 420 425 430

Ser Asp Asp Val Glu Ala Asp Ala Ser Glu Arg Gln Glu Asp Gly Thr
435
440
445

Asn Gly Glu Val Lys Glu Thr Asn Glu Asp Thr Asn Lys Pro Gln Thr 450 455 460

Ser Glu Ser Asn Ala Arg Arg Ser Arg Ile Ser Ser Asn Ile Thr Asp 465 470 475 480

mbi19 Sequence Listing.ST25

Pro Trp Lys Ser Val Ser Asp Glu Gly Arg Ile Ala Phe Gln Ala Leu 485 490 Phe Ser Arg Glu Val Leu Pro Gln Ser Phe Thr Tyr Arg Glu Glu His Arg Glu Glu Glu Gln Gln Gln Glu Gln Arg Tyr Pro Met Ala Leu Asp Leu Asn Phe Thr Ala Gln Leu Thr Pro Val Asp Asp Gln Glu Glu 535 540 Lys Arg Asn Thr Gly Phe Leu Gly Ile Gly Leu Asp Ala Ser Lys Leu 550 555 Met Ser Arg Gly Arg Thr Gly Phe Lys Pro Tyr Lys Arg Cys Ser Met 565 Glu Ala Lys Glu Ser Arg Ile Leu Asn Asn Pro Ile Ile His Val Glu Gln Lys Asp Pro Lys Arg Met Arg Leu Glu Thr Gln Ala Ser Thr 600 <210> 53 <211> 1155 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (76)..(1077) <223> G1930 <400> 53 attcacatta ctaatctctc aaqatttcac aattttcttg tgattttctc tcagtttctt 60 atttcgtttc ataac atg gat gcc atg agt agc gta gac gag agc tct aca 111 Met Asp Ala Met Ser Ser Val Asp Glu Ser Ser Thr 159 act aca gat tee att eeg geg aga aag tea teg tet eeg geg agt tta Thr Thr Asp Ser Ile Pro Ala Arg Lys Ser Ser Pro Ala Ser Leu cta tat aga atg gga agc gga aca agc gtg gta ctt gat tca gag aac Leu Tyr Arg Met Gly Ser Gly Thr Ser Val Val Leu Asp Ser Glu Asn 207 ggt gtc gaa gtc gaa gtc gaa gcc gaa tca aga aag ctt cct tct tca Gly Val Glu Val Glu Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser 255 303 aga ttc aaa ggt gtt gtt cct caa cca aat gga aga tgg gga gct cag Arg Phe Lys Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln att tac gag aaa cat caa cgc gtg tgg ctt ggt act ttc aac gag gaa 351 Ile Tyr Glu Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu 399 gac gaa gca gct cgt gct tac gac gtc gcg gct cac cgt ttc cgt ggc Asp Glu Ala Ala Arg Ala Tyr Asp Val Ala Ala His Arg Phe Arg Gly 100 105

mbi19 Sequence Listing.ST25

							-		- 4							
					aat Asn											447
gag Glu 125	ttc Phe	tta Leu	aac Asn	gcg Ala	cat His 130	tcg Ser	aaa Lys	tca Ser	gag Glu	atc Ile 135	gta Val	gat Asp	atg Met	ttg Leu	aga Arg 140	495
aaa Lys	cac His	act Thr	tac Tyr	aaa Lys 145	gaa Glu	gag Glu	tta Leu	gac Asp	caa Gln 150	agg Arg	aaa Lys	cgt Arg	aac Asn	cgt Arg 155	gac Asp	543
ggt Gly	aac Asn	gga Gly	aaa Lys 160	gag Glu	acg Thr	acg Thr	gcg Ala	ttt Phe 165	gct Ala	ttg Leu	gct Ala	tcg Ser	atg Met 170	gtg Val	gtt Val	591
atg Met	acg Thr	999 Gly 175	ttt Phe	aaa Lys	acg Thr	gcg Ala	gag Glu 180	tta Leu	ctg Leu	ttt Phe	gag Glu	aaa Lys 185	acg Thr	gta Val	acg Thr	639
cca Pro	agt Ser 190	gac Asp	gtc Val	999 999	aaa Lys	cta Leu 195	aac Asn	cgt Arg	tta Leu	gtt Val	ata Ile 200	cca Pro	aaa Lys	cac His	caa Gln	687
gcg Ala 205	gag Glu	aaa Lys	cat His	ttt Phe	ccg Pro 210	tta Leu	ccg Pro	tta Leu	ggt Gly	aat Asn 215	aat Asn	aac Asn	gtc Val	tcc Ser	gtt Val 220	735
					aat Asn											783
ttc Phe	cgt Arg	tac Tyr	tct Ser 240	tat Tyr	tgg Trp	aat Asn	agt Ser	agt Ser 245	caa Gln	agt Ser	tat Tyr	gtg Val	ttg Leu 250	acc Thr	aaa Lys	831
ggt Gly	tgg Trp	agt Ser 255	aga Arg	ttc Phe	gtt Val	aaa Lys	gag Glu 260	aag Lys	aga Arg	ctt Leu	tgt Cys	gct Ala 265	ggt Gly	gat Asp	ttg Leu	879
					tcc Ser											927
					999 Gly 290											975
ttg Leu	ttt Phe	999 Gly	gtt Val	gat Asp 305	att Ile	tct Ser	tta Leu	aac Asn	gcc Ala 310	gtc Val	gtt Val	gta Val	gtg Val	aag Lys 315	gaa Glu	1023
aca Thr	acg Thr	gag Glu	gtg Val 320	tta Leu	atg Met	tcg Ser	tcg Ser	tta Leu 325	agg Arg	tgt Cys	aag Lys	aag Lys	caa Gln 330	cga Arg	gtt Val	1071
ttg Leu	taa	taac	caatt	ta a	acaa	cttgg	gg aa	aagaa	aaaa	a aag	gcttt	ttg	attt	taat	:tt	1127
ctct	tcaa	icg t	taat	cttg	ge t <u>e</u>	gagat	ta									1155
<210 <211 <212 <213	> 3 > E	33 PRT Arabi	dops	sis t	hali	iana										
<400	> 5	4														
Met	Asp	Ala	Met	Ser	Ser	Val	Asp	Glu	Ser	Ser	Thr	Thr	Thr	Asp	Ser	

Met Asp Ala Met Ser Ser Val Asp Glu Ser Ser Thr Thr Thr Asp Ser 1 $$ 5

mbil9 Sequence Listing.ST25 Ile Pro Ala Arg Lys Ser Ser Ser Pro Ala Ser Leu Leu Tyr Arg Met Gly Ser Gly Thr Ser Val Val Leu Asp Ser Glu Asn Gly Val Glu Val Glu Val Glu Ala Glu Ser Arg Lys Leu Pro Ser Ser Arg Phe Lys Gly Val Val Pro Gln Pro Asn Gly Arg Trp Gly Ala Gln Ile Tyr Glu Lys His Gln Arg Val Trp Leu Gly Thr Phe Asn Glu Glu Asp Glu Ala Ala Arg Ala Tyr Asp Val Ala Ala His Arg Phe Arg Gly Arg Asp Ala Val Thr Asn Phe Lys Asp Thr Thr Phe Glu Glu Glu Val Glu Phe Leu Asn Ala His Ser Lys Ser Glu Ile Val Asp Met Leu Arg Lys His Thr Tyr Lys Glu Glu Leu Asp Gln Arg Lys Arg Asn Arg Asp Gly Asn Gly Lys Glu Thr Thr Ala Phe Ala Leu Ala Ser Met Val Val Met Thr Gly Phe Lys Thr Ala Glu Leu Leu Phe Glu Lys Thr Val Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys His Gln Ala Glu Lys His Phe Pro Leu Pro Leu Gly Asn Asn Val Ser Val Lys Gly Met Leu Leu Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys Gly Trp Ser Arg Phe Val Lys Glu Lys Arg Leu Cys Ala Gly Asp Leu Ile Ser Phe Lys Arg Ser Asn Asp Gln Asp Gln Lys Phe Phe Ile Gly Trp Lys Ser Lys Ser Gly Leu Asp Leu Glu Thr Gly Arg Val Met Arg Leu Phe Gly Val 295 Asp Ile Ser Leu Asn Ala Val Val Val Lys Glu Thr Thr Glu Val

mbi19 Sequence Listing.ST25

<21: <21: <21: <21:	1> 2>	55 1246 DNA Arab	idop	sis	thal	iana										
<22: <22: <22: <22:	1 > 2 >	CDS (81) G9	(1	139)												
<40 gtg		55 ttc	tttc	tgct	aa a	aggti	tata	a tt	tttg	tttc	ttg	gttt	ggt (gaga	atcttc	60
aaga	aaac	tga (aaca	aaga	aa a Mo 1	tg ga	at to sp S	ct ag er Se	gt to er C	gc a ys I	ta ga le A	ac g sp G	ag a lu I	ta ag le S	gt tcc er Ser 0	113
					ttc Phe											161
					tta Leu											209
					ccc Pro											257
					tac Tyr 65											305
					tac Tyr											353
ttc Phe	aac Asn	gag Glu	caa Gln 95	gaa Glu	gaa Glu	gct Ala	gct Ala	cgt Arg 100	tcc Ser	tac Tyr	gac Asp	atc Ile	gca Ala 105	gct Ala	tgt Cys	401
					gac Asp											449
Ăsp		Asp	Leu	Ăla	ttt Phe	Leu	Ğlu	Ăla	His	Ser		Āla				497
gac Asp 140	atg Met	ttg Leu	aga Arg	aaa Lys	cac His 145	act Thr	tac Tyr	gcc Ala	gac Asp	gag Glu 150	ctt Leu	gaa Glu	cag Gln	aac Asn	aat Asn 155	545
					ctc Leu											593
					aac Asn											641
					aca Thr											689
					cac His											737

								100			T :	:	CTO E			
Ser I 220	ccg Pro	gca Ala	gtg Val	act Thr	aaa Lys 225	gga Gly	qtt	ttg	atc	aac	List ttc Phe	gaa	gac	gtt Val	aac Asn 235	785
ggt a Gly I	aaa Lys	gtg Val	tgg Trp	agg Arg 240	ttc Phe	cgt Arg	tac Tyr	tca Ser	tac Tyr 245	tgg Trp	aac Asn	agt Ser	agt Ser	caa Gln 250	agt Ser	833
tac c Tyr V	gtg Val	ttg Leu	acc Thr 255	aag Lys	gga Gly	tgg Trp	agt Ser	cga Arg 260	t tc Phe	gtc Val	aag Lys	gag Glu	aag Lys 265	aat Asn	ctt Leu	881
cga c Arg A	gcc Ala	ggt Gly 270	gat Asp	gtt Val	gtt Val	act Thr	ttc Phe 275	gag Glu	aga Arg	tcg Ser	acc Thr	gga Gly 280	cta Leu	gag Glu	cgg Arg	929
cag t Gln I	tta Leu 285	tat Tyr	att Ile	gat Asp	tgg Trp	aaa Lys 290	gtt Val	cgg Arg	tct Ser	ggt Gly	ccg Pro 295	aga Arg	gaa Glu	aac Asn	ccg Pro	977
gtt c Val C 300	cag Gln	gtg Val	gtg Val	gtt Val	cgg Arg 305	ctt Leu	ttc Phe	gga Gly	gtt Val	gat Asp 310	atc Ile	ttt Phe	aat Asn	gtg Val	acc Thr 315	1025
acc c	gtg Val	aag Lys	cca Pro	aac Asn 320	gac Asp	gtc Val	gtg Val	gcc Ala	gtt Val 325	tgc Cys	ggt Gly	gga Gly	aag Lys	aga Arg 330	tct Ser	1073
cga c Arg A	gat Asp	gtt Val	gat Asp 335	gat Asp	atg Met	ttt Phe	gcg Ala	tta Leu 340	cgg Arg	tgt Cys	tcc Ser	aag Lys	aag Lys 345	cag Gln	gcg Ala	1121
ata a Ile I					tga	cata	attto	ect t	ttc	gatt	t ta	atgct	tteg	3		1169
tttt	ttaa	itt t	tttt	tttt	g to	caagt	tgtg	g tag	gttg	gtga	ttca	atgct	ag g	gttgt	attta	1229
ttttt ggaaa					g to	caagt	tgtg	y tag	gttg	jtga	ttca	itgci	ag g	gttgt	attta	1229 1246
	aaga > 5 > 3	iga t 66 152 PRT		acc			tgt	, tag	ggttg	gtga	ttca	itgel	ag g	gttgt	cattta	
ggaaa <210 > <211 > <212 >	aaga > 5 > 3 > F	iga t 66 152 PRT	aaga	acc			tgt	y ta <u>c</u>	ggtt <u>s</u>	jtga	ttca	itge	cag <u>c</u>	gttgt	cattta	
<pre><ggaaa <210=""> <211> <212> <213></ggaaa></pre>	aaga > 5 > 3 > F > A	iga t 66 52 PRT Arabi	aaga idops	acc	chal i	iana										
<pre>ggaaa <210> <211> <212> <213> <400> Met A</pre>	aaga > 5 > 3 > P > A	iga t 66 852 PRT Arabi	idops Ser	acc sis t Cys 5	chali Ile	iana Asp	Glu	Ile	Ser 10	Ser	Ser	Thr	Ser	Glu 15	Ser	
9gaaa <210> <211> <212> <213> <400> Met F	aaga > 5 > F > A > S	iga t 66 552 PRT Arabi 66 Ser	idops Ser Thr	cys Thr	:hali Ile Ala	iana Asp Lys	Glu Lys	Ile Leu 25	Ser 10 Ser	Ser	Ser	Thr	Ser Ala 30	Glu 15 Ala	Ser Ala	
9gaaa <210> <211> <212> <213> <400> Met A 1 Phe S Leu A	aaga >> 5 >> F >> A Ser	iga t 56 552 PRT Arabi 66 Ser Ala Leu 35	idops Ser Thr 20	Cys 5 Thr	ihali Ile Ala Met	iana Asp Lys Gly	Glu Lys Ser 40	Ile Leu 25	Ser 10 Ser Gly	Ser Pro Ser	Ser Pro Ser	Thr Pro Val 45	Ser Ala 30 Val	Glu 15 Ala Leu	Ser Ala Asp	
9gaaa <210> <211> <212> <213> <400> Met A 1 Phe S Leu A	aaga > 5 > 3 > 7 A > 5 A Ser Arg Glu 50	iga t i6 i52 PRT irabi i6 Ser Ala Leu 35	idops Ser Thr 20 Tyr	Cys 5 Thr Arg	Thali Ile Ala Met Glu	iana Asp Lys Gly Thr 55	Glu Lys Ser 40	lle Leu 25 Gly Ser	Ser 10 Ser Gly	Ser Pro Ser Lys	Ser Pro Ser Leu 60	Thr Pro Val 45	Ser Ala 30 Val Ser	Glu 15 Ala Leu Ser	Ser Ala Asp Lys	
9gaaa <210> <211> <212> <213> <400> Met F 1 Phe S Tyr I	aaga > 5 > 7 > 7 Asp Ser Arg Slu Lys	iga to 1552 PRT Arabi	idops Ser Thr 20 Tyr Gly Val	Cys 5 Thr Arg Leu	Ile Ala Met Glu Pro 70	Lys Gly Thr 55	Glu Lys Ser 40 Glu	lle Leu 25 Gly Ser	Ser 10 Ser Gly Arg	Ser Pro Ser Lys	Ser Pro Ser Leu 60	Thr Pro Val 45 Pro Gly	Ser Ala 30 Val Ser	Glu 15 Ala Leu Ser	Ser Ala Asp Lys Ile 80	

mbi19 Sequence Listing.ST25

Asp Ala Val Val Asn Phe Lys Asn Val Leu Glu Asp Gly Asp Leu Ala
115 120 125

Phe Leu Glu Ala His Ser Lys Ala Glu Ile Val Asp Met Leu Arg Lys 130 135 140

His Thr Tyr Ala Asp Glu Leu Glu Gln Asn Asn Lys Arg Gln Leu Phe 145 150 155 160

Leu Ser Val Asp Ala Asn Gly Lys Arg Asn Gly Ser Ser Thr Thr Gln
165 170 175

Asn Asp Lys Val Leu Lys Thr Cys Glu Val Leu Phe Glu Lys Ala Val 180 185 190

Thr Pro Ser Asp Val Gly Lys Leu Asn Arg Leu Val Ile Pro Lys Gln
195 200 205

His Ala Glu Lys His Phe Pro Leu Pro Ser Pro Ser Pro Ala Val Thr 210 215 220

Lys Gly Val Leu Ile Asn Phe Glu Asp Val Asn Gly Lys Val Trp Arg 225 230 235 240

Phe Arg Tyr Ser Tyr Trp Asn Ser Ser Gln Ser Tyr Val Leu Thr Lys 245 250 255

Gly Trp Ser Arg Phe Val Lys Glu Lys Asn Leu Arg Ala Gly Asp Val

Val Thr Phe Glu Arg Ser Thr Gly Leu Glu Arg Gln Leu Tyr Ile Asp 275 280 285

Trp Lys Val Arg Ser Gly Pro Arg Glu Asn Pro Val Gln Val Val 290 295 300

Arg Leu Phe Gly Val Asp Ile Phe Asn Val Thr Thr Val Lys Pro Asn 305 310 315 320

Asp Val Val Ala Val Cys Gly Gly Lys Arg Ser Arg Asp Val Asp Asp 325 335

Met Phe Ala Leu Arg Cys Ser Lys Lys Gln Ala Ile Ile Asn Ala Leu 340 345 350

<210> 57

<211> 1239

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (6)..(1091)

<223> G993

<400> 57

caaat atg gaa tac agc tgt gta gac gac agt agt aca acg tca gaa tct Met Glu Tyr Ser Cys Val Asp Asp Ser Ser Thr Thr Ser Glu Ser

	1				5		mbi	19 S	eque	nce 1	List 0	ing.	ST25		15	
	tcc Ser															98
ctc Leu	tct Ser	tct Ser	ccg Pro 35	ccg Pro	gcg Ala	acg Thr	tcg Ser	atg Met 40	cgt Arg	ctc Leu	tac Tyr	aga Arg	atg Met 45	gga Gly	agc Ser	. 146
ggc Gly	gga Gly	agc Ser 50	agc Ser	gtc Val	gtt Val	ttg Leu	gat Asp 55	tca Ser	gag Glu	aac Asn	ggc Gly	gtc Val 60	gag Glu	acc Thr	gag Glu	194
	cgt Arg 65															242
aac Asn 80	gga Gly	aga Arg	tgg Trp	gga Gly	gct Ala 85	cag Gln	att Ile	tac Tyr	gag Glu	aag Lys 90	cat His	cag Gln	cga Arg	gtt Val	tgg Trp 95	290
ctc Leu	ggt Gly	act Thr	ttc Phe	aac Asn 100	gag Glu	gaa Glu	gaa Glu	gaa Glu	gct Ala 105	gcg Ala	tct Ser	tct Ser	tac Tyr	gac Asp 110	atc Ile	338
gcc Ala	gtg Val	agg Arg	aga Arg 115	ttc Phe	cgc Arg	ggc Gly	cgc Arg	gac Asp 120	gcc Ala	gtc Val	act Thr	aac Asn	ttc Phe 125	aaa Lys	tct Ser	386
caa Gln	gtt Val	gat Asp 130	gga Gly	aac Asn	gac Asp	gcc Ala	gaa Glu 135	tcg Ser	gct Ala	ttt Phe	ctt Leu	gac Asp 140	gct Ala	cat His	tct Ser	434
aaa Lys	gct Ala 145	gag Glu	atc Ile	gtg Val	gat Asp	atg Met 150	ttg Leu	agg Arg	aaa Lys	cac His	act Thr 155	tac Tyr	gcc Ala	gat Asp	gag Glu	482
ttt Phe 160	gag Glu	cag Gln	agt Ser	aga Arg	cgg Arg 165	aag Lys	ttt Phe	gtt Val	aac Asn	ggc Gly 170	gac Asp	gga Gly	aaa Lys	cgc Arg	tct Ser 175	530
	ttg Leu															578
gag Glu	gtt Val	ttg Leu	ttc Phe 195	gag Glu	aag Lys	act Thr	gtt Val	acg Thr 200	ccg Pro	agc Ser	gac Asp	gtc Val	999 Gly 205	aag Lys	ctg Leu	626
aac Asn	cgt Arg	tta Leu 210	gtg Val	ata Ile	ccg Pro	aaa Lys	caa Gln 215	cac His	gcg Ala	gag Glu	aag Lys	cat His 220	ttt Phe	ccg Pro	tta Leu	674
	gcg Ala 225															722
	ttg Leu															770
tac Tyr	agt Ser	tac Tyr	tgg Trp	aac Asn 260	agc Ser	agt Ser	caa Gln	agt Ser	tac Tyr 265	gtg Val	ttg Leu	acc Thr	aag Lys	ggc Gly 270	tgg Trp	818
agc Ser	cgg Arg	ttc Phe	gtt Val 275	aaa Lys	gag Glu	aag Lys	aat Asn	ctt Leu 280	cga Arg	gcc Ala	ggt Gly	gat Asp	gtg Val 285	gtt Val	tgt Cys	866
	gag Glu															914
gtc	cgg	tct	agt	ccg	gtt	cag	act	gtg		agg		ttc	gga	gtc	aac	962

mbi19 Sequence Listing.ST25 Val Arg Ser Ser Pro Val Gln Thr Val Val Arg Leu Phe Gly Val Asn 305 310 315	
att ttc aat gtg agt aac gag aaa cca aac gac gtc gca gta gag tgt Ile Phe Asn Val Ser Asn Glu Lys Pro Asn Asp Val Ala Val Glu Cys 320 325 330 335	1010
gtt ggc aag aag aga tct cgg gaa gat gat ttg ttt tcg tta ggg tgt Val Gly Lys Lys Arg Ser Arg Glu Asp Asp Leu Phe Ser Leu Gly Cys 340 345 350	1058
tcc aag aag cag gcg att atc aac atc ttg tga caaattcttt tttttttggtt Ser Lys Lys Gln Ala Ile Ile Asn Ile Leu 355 360	1111
tttttcttca atttgtttct cctttttcaa tattttgtat tgaaatgaca agttgtaaat	1171
taggacaaga caagaaaaaa tgacaactag acaaaatagt ttttgtttaa aaaaaaaaaa	1231
aaaaaaaa	1239
<210> 58 <211> 361 <212> PRT <213> Arabidopsis thaliana	
<400> 58	
Met Glu Tyr Ser Cys Val Asp Asp Ser Ser Thr Thr Ser Glu Ser Leu 1 15	
Ser Ile Ser Thr Thr Pro Lys Pro Thr Thr Thr Thr Glu Lys Lys Leu 20 25 30	
Ser Ser Pro Pro Ala Thr Ser Met Arg Leu Tyr Arg Met Gly Ser Gly 35 40 45	
Gly Ser Ser Val Val Leu Asp Ser Glu Asn Gly Val Glu Thr Glu Ser 50 55 60	
Arg Lys Leu Pro Ser Ser Lys Tyr Lys Gly Val Val Pro Gln Pro Asn 70 75 80	
Gly Arg Trp Gly Ala Gln Ile Tyr Glu Lys His Gln Arg Val Trp Leu 85 90 95	
Gly Thr Phe Asn Glu Glu Glu Glu Ala Ala Ser Ser Tyr Asp Ile Ala 100 105 110	
Val Arg Arg Phe Arg Gly Arg Asp Ala Val Thr Asn Phe Lys Ser Gln 115 120 125	
Val Asp Gly Asn Asp Ala Glu Ser Ala Phe Leu Asp Ala His Ser Lys 130 135 140	
Ala Glu Ile Val Asp Met Leu Arg Lys His Thr Tyr Ala Asp Glu Phe 145 150 155 160	
Glu Gln Ser Arg Arg Lys Phe Val Asn Gly Asp Gly Lys Arg Ser Gly 165 170 175	
Leu Glu Thr Ala Thr Tyr Gly Asn Asp Ala Val Leu Arg Ala Arg Glu 180 185 190	

mbil9 Sequence Listing.ST25

Val Leu Phe Glu L 195	ys Thr Val Thi 200		Val Gly Lys Leu 205	Asn
Arg Leu Val Ile P	ro Lys Gln His 215		His Phe Pro Leu 220	Pro
Ala Met Thr Thr A 225	la Met Gly Met 230	Asn Pro Ser 1 235	Pro Thr Lys Gly	Val 240
Leu Ile Asn Leu G 2	lu Asp Arg Thi 45	Gly Lys Val 5 250	Trp Arg Phe Arg 255	Tyr
Ser Tyr Trp Asn S 260	er Ser Gln Sei	Tyr Val Leu 1 265	Thr Lys Gly Trp 270	Ser
Arg Phe Val Lys G 275	lu Lys Asn Leu 280		Asp Val Val Cys 285	Phe
Glu Arg Ser Thr G 290	ly Pro Asp Arg 295	Gln Leu Tyr 1	Ile His Trp Lys 300	Val
Arg Ser Ser Pro V	al Gln Thr Val	Val Arg Leu I 315	Phe Gly Val Asn	Ile 320
Phe Asn Val Ser A	sn Glu Lys Pro 25	Asn Asp Val A	Ala Val Glu Cys 335	Val
Gly Lys Lys Arg S	er Arg Glu Asp	Asp Leu Phe S 345	Ser Leu Gly Cys 350	Ser
Lys Lys Gln Ala I 355	le Ile Asn Ile 360			
<210> 59 <211> 803 <212> DNA <213> Arabidopsi	s thaliana			
<220> <221> CDS <222> (35)(658 <223> G41)			
<400> 59 ctgatcaatg aactca	tttt ctgcctttt		t ggc tcc gat t e Gly Ser Asp T 5	
tct ccg gtt tcc tc Ser Pro Val Ser Sc 10	ca ggc ggt gat er Gly Gly Asr 15	tac agt ccg a Tyr Ser Pro I	aag ctt gcc acg Lys Leu Ala Thr 20	agc 103 Ser
tgc ccc aag aaa c Cys Pro Lys Lys P 25	ca gcg gga agg ro Ala Gly Arg 30	Lys Lys Phe A	ogt gag act cgt Arg Glu Thr Arg 35	cac 151 His
cca att tac aga g Pro lle Tyr Arg G 40	ga gtt cgt caa ly Val Arg Glr 45 .	aga aac tee g Arg Asn Ser C 50	ggt aag tgg gtg Gly Lys Trp Val	tgt 199 Cys 55
gag ttg aga gag c	ca aac aag aaa	acg agg att t	tgg ctc ggg act	ttc 247

												List					
	Glu	Leu	Arg	Glu	Pro 60	Asn	Lys	Lys	Thr	Arg 65	Ile	Trp	Leu	Gly	Thr 70	Phe	
	caa Gln	acc Thr	gct Ala	gag Glu 75	atg Met	gca Ala	gct Ala	cgt Arg	gct Ala 80	cac His	gac Asp	gtc Val	gcc Ala	gcc Ala 85	ata Ile	gct Ala	295
						gcc Ala											343
						tca Ser											391
						aat Asn 125											439
						gac Asp											487
						caa Gln											535
						ttg Leu											583
						caa Gln											631
						tgg Trp 205			taa	aatt	cgat	ctt t	tatt	tcca	at		678
	tttt	ggta	att a	atago	ettt	t at	acat	ttga	a tco	ettt	tta	gaat	ggat	ct t	ctto	etttt	738
	ttgg	ttgt	gag	gaaac	cgaat	g ta	aatq	gtaa	a aag	gttgt	tgt	caaa	atgca	aa t	gttt	ttgag	798
	tgca	ıg															803
	<210 <211 <212 <213	> 2 > I	50 207 PRT Arabi	ldops	sis t	hali	lana										
	<400)> 6	0														
	Met 1	Phe	Gly	Ser	Asp 5	Tyr	Glu	Ser	Pro	Val 10	Ser	Ser	Gly	Gly	Asp 15	Tyr	
	Ser	Pro	Lys	Leu 20	Ala	Thr	Ser	Сув	Pro 25	Lys	Lys	Pro	Ala	Gly 30	Arg	Lys	
]	Lys	Phe	Arg 35	Glu	Thr	Arg	His	Pro 40	Ile	Tyr	Arg	Gly	Val 45	Arg	Gln	Arg	
1	Asn	Ser 50	Gly	Lys	Trp	Val	Cys 55	Glu	Leu	Arg	Glu	Pro 60	Asn	Lys	Lys	Thr	
	Arg 65	Ile	Trp	Leu	Gly	Thr 70	Phe	Gln	Thr	Ala	Glu 75	Met	Ala	Ala	Arg	Ala 80	
I	His	Asp	Val	Ala	Ala 85	Ile	Ala	Leu	Arg	Gly 90	Arg	Ser	Ala	Сув	Leu 95	Asn	

mbil9 Sequence Listing.ST25

Phe Ala Asp Ser Ala Trp Arg Leu Arg Ile Pro Glu Ser Thr Cys Ala 100 105 110	
Lys Glu Ile Gln Lys Ala Ala Ala Glu Ala Ala Leu Asn Phe Gln Asp 115 120 125	
Glu Met Cys His Met Thr Thr Asp Ala His Gly Leu Asp Met Glu Glu 130 135 140	
Thr Leu Val Glu Ala Ile Tyr Thr Pro Glu Gln Ser Gln Asp Ala Phe 145 150 155 160	
Tyr Met Asp Glu Glu Ala Met Leu Gly Met Ser Ser Leu Leu Asp Asn 165 170 175	
Met Ala Glu Gly Met Leu Leu Pro Ser Pro Ser Val Gln Trp Asn Tyr 180 185 190	
Asn Phe Asp Val Glu Gly Asp Asp Asp Val Ser Leu Trp Ser Tyr 195 200 205	
<210> 61 <211> 929 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (164)(805) <223> G40	
<223> G40	
<400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca	60
<400> 61	60 120
<400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca	
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatcttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatcttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120 175
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatcttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120 175 223
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatcttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120 175 223 271
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatctttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120 175 223 271 319
<pre><400> 61 cttgaaaaag aatctacctg aaaagaaaaa aaagagagag agatataaat agctttacca agacagatat actatcttt attaatccaa aaagactgag aactctagta actacgtact acttaaacct tatccagttt cttgaaacag agtactctga tca atg aac tca ttt</pre>	120 175 223 271 319

Leu	Asn	Phe	Ala	Asp 105	Ser	Ala		19 S Arg						Ser 115	Thr	
tgc Cys	gcc Ala	aag Lys	gat Asp 120	atc Ile	caa Gln	aaa Lys	gcg Ala	gct Ala 125	gct Ala	gaa Glu	gcg Ala	gcg Ala	ttg Leu 130	gct Ala	ttt Phe	559
														gac Asp		607
gag Glu	gag Glu 150	acg Thr	atg Met	gtg Val	gaa Glu	gct Ala 155	att Ile	tat Tyr	aca Thr	ccg Pro	gaa Glu 160	cag Gln	agc Ser	gaa Glu	ggt Gly	655
														ttg Leu		703
gat Asp	aat Asn	atg Met	gct Ala	gaa Glu 185	ggc Gly	atg Met	ctt Leu	tta Leu	ccg Pro 190	ccg Pro	ccg Pro	tct Ser	gtt Val	caa Gln 195	tgg Trp	751
aat Asn	cat His	aat Asn	tat Tyr 200	gac Asp	ggc Gly	gaa Glu	gga Gly	gat Asp 205	ggt Gly	gac Asp	gtg Val	tcg Ser	ctt Leu 210	tgg Trp	agt Ser	799
tac Tyr	taa	tatt	cgat	ag t	cgtt	tcca	at t	ttgt	acta	ı tag	gttt	gaaa	atat	tcta	agt	855
tcct	ttt	tt a	igaat	ggtt	c ct	tcat	ttta	a ttt	tatt	tta	ttgt	tgta	aga a	aacga	agtgga	915
aaat	aatt	ca a	tac													929
<210 <211 <211 <211	l> 2 2> E		dops	sis t	hali	iana										
Met 1	Asn	Ser	Phe	Ser 5	Ala	Phe	Ser	Glu	Met 10	Phe	Gly	Ser	Asp	Tyr 15	Glu	
Pro	Gln	Gly	Gly 20	Asp	Tyr	Cys	Pro	Thr 25	Leu	Ala	Thr	Ser	Сув 30	Pro	Lys	
Lys	Pro	Ala 35	Gly	Arg	Lys	Lys	Phe 40	Arg	Glu	Thr	Arg	His 45	Pro	Ile	Tyr	
Arg	Gly 50	Val	Arg	Gln	Arg	Asn 55	Ser	Gly	Lys	Trp	Val 60	Ser	Glu	Val	Arg	
Glu 65	Pro	Asn	Lys	Lys	Thr 70	Arg	Ile	Trp	Leu	Gly 75	Thr	Phe	Gln	Thr	Ala 80	
Glu	Met	Ala	Ala	Arg 85	Ala	His	Asp	Val	Ala 90	Ala	Leu	Ala	Leu	Arg 95	Gly	
Arg	Ser	Ala	Cys 100	Leu	Asn	Phe	Ala	Asp 105	Ser	Ala	Trp	Arg	Leu 110	Arg	Ile	
Pro	Glu	Ser 115	Thr	Сув	Ala	Lys	Asp 120	Ile	Gln	Lys	Ala	Ala 125	Ala	Glu	Ala	

Ala Leu Ala Phe 130	Gln Asp		19 Seque Cys Asp		Thr '		His	
Gly Leu Asp Met	Glu Glu 150	Thr Met	Val Glu	Ala Ile 155	Tyr '	Thr Pro	Glu 160	
Gln Ser Glu Gly	Ala Phe 165	Tyr Met	Asp Glu 170		. Met	Phe Gly 175		
Pro Thr Leu Leu 180		Met Ala	Glu Gly 185	Met Le		Pro Pro 190	Pro	
Ser Val Gln Trp 195	Asn His	Asn Tyr 200		Glu Gly	/ Asp (205	Gly Asp	Val	
Ser Leu Trp Ser 210	Tyr							
<210> 63 <211> 908 <212> DNA <213> Arabidop	sis thali	.ana .						
<220> <221> CDS <222> (119)(<223> G42	769)							
<400> 63 cctgaactag aaca	gaaaga ga	ıgagaaacı	t attatt	tcag caa	accata	ac caac	aaaaaa	60
gacagagatc tttt	agttac ct	tatccag	t ttcttg		gtacto	ct totg	atca	118
gacagagatc tttt atg aac tca ttt Met Asn Ser Phe 1	tct gct	ttt tct	gaa atg	aaac aga	tcc g	gat tac	gag	118 166
atg aac tca ttt Met Asn Ser Phe	tct gct Ser Ala 5	ttt tct Phe Ser	gaa atg Glu Met 10	ttt ggo Phe Gly	tcc g Ser /	gat tac Asp Tyr 15 gcg agc	gag Glu agc	
atg aac tca ttt Met Asn Ser Phe 1 tct tcg gtt tcc Ser Ser Val Ser	tct gct Ser Ala 5 tca ggc Ser Gly	ttt tct Phe Ser ggt gat Gly Asp	gaa atg Glu Met 10 tat att Tyr Ile 25 aag aag	ttt ggo Phe Gly ccg acc Pro Thi	ctt g	gat tac Asp Tyr 15 gcg agc Ala Ser 30	gag Glu agc Ser	166
atg aac tca ttt Met Asn Ser Phe 1 tct tcg gtt tcc Ser Ser Val Ser 20 tgc ccc aag aaa Cys Pro Lys Lys	tct gct ser Ala 5 tca ggc Ser Gly ccg gcg Pro Ala	ttt tct Phe Ser ggt gat Gly Asp ggt cgt Gly Arg 40 cgt cgg	gaa atg Glu Met 10 tat att Tyr Ile 25 aag aag Lys Lys	ttt ggc Phe Gly ccg acc Pro Thr ttt cgt Phe Arc	ctt c Ser J	gat tac Asp Tyr 15 gcg agc Ala Ser 30 act cgt Thr Arg	gag Glu agc Ser cac His	166 214
atg aac tca ttt Met Asn Ser Phe tct tcg gtt tcc Ser Ser Val Ser 20 tgc ccc aag aaa Cys Pro Lys Lys 35 cca ata tac aga Pro Ile Tyr Arg	tct gct Ser Ala 5 tca ggc Ser Gly ccg gcg Pro Ala gga gtt Gly Val	ttt tct Phe Ser ggt gat Gly Asp ggt cgt Gly Arg 40 cgt cgg Arg Arg 55	gaa atg Glu Met 10 tat att Tyr Ile 25 aag aag Lys Lys aga aac Arg Asn aca agg	ttt ggc Phe Gly ccg acg Pro Thr ttt cgt Phe Arg tcc ggt Ser Gly 60	ctt cgag a gag a g	gat tac Asp Tyr 15 gcg agc Ala Ser 30 act cgt Thr Arg cgg gtt Trp Val	gag Glu agc Ser cac His tgt Cys	166 214 262
atg aac tca ttt Met Asn Ser Phe 1 tct tcg gtt tcc Ser Ser Val Ser 20 tgc ccc aag aaa Cys Pro Lys Lys 35 cca ata tac aga Pro Ile Tyr Arg 50 gag gtt aga gaa Glu Val Arg Glu	tct gct ser Ala 5 tca ggc Ser Gly ccg gcg Pro Ala gga gtt Gly Val cca aac Pro Asn 70	ggt gat Gly Asp ggt cgt Arg 40 cgt cgg Arg Arg 55 aaag aaa Lys Lys	gaa atg Glu Met 10 tat att Tyr lle 25 aag aag Lys Lys aga aac Arg Asn aca agg Thr Arg	ttt ggg Phe Gly ccg acc Pro Thr ttt cgt Phe Arc tcc ggt Ser Gly 60 att tgg Ile Try 75	ctt co	gat tac Asp Tyr 15 gcg agc Ala Ser 30 act cgt Thr Arg tgg gtt Trp Val gga aca gga aca	gag Glu agc Ser cac His tgt Cys	166 214 262 310
atg aac tca ttt Met Asn Ser Phe 1 tct tcg gtt tcc Ser Ser Val Ser 20 tgc ccc aag aaa Cys Pro Lys Lys 35 cca ata tac aga Pro Ile Tyr Arg 50 gag gtt aga gaa Glu Val Arg Glu 65 caa acc gct gag	tca ggc ser Gly ccg gcg Pro Ala gga gtt Gly Val cca aac Pro Asn 70 atg gca Met Ala 85 tca gcc ser Ala	ttt tct Phe Ser ggt gat Gly Asp ggt cgt Gly Arg 40 cgt cgg Arg Arg S5 aag aaa Lys Lys gct cga Ala Arg	gaa atg Glu Met 10 tat att Tyr Ile 25 aag aag Lys Lys aga aac Arg Asn aca agg Thr Arg gct cac Ala is 90 aat ttc	ttt ggg ccg acg Pro Thr ttt cgt Phe Arg tcc ggt Ser Gly 60 att tgg Ile Trr 75 gac gtt Asp Val	ctt gag a ga	gat tac Asp Tyr 15 gcg agc Ala Ser 30 act cgt Thr Arg tgg gtt Trp Val gga aca Gly Thr gct tta Ala Leu 95 gct tgg	gag Glu agc Ser cac His tgt Cys ttt Phe 80 gcc Ala	166 214 262 310
atg aac tca ttt Met Asn Ser Phe 1 tct tcg gtt tcc Ser Ser Val Ser 20 tgc ccc aag aaa Cys Pro Lys Lys 35 cca ata tac aga Pro Ile Tyr Arg 50 gag gtt aga gaa Glu Val Arg Glu 65 caa acc gct gag Gln Thr Ala Glu ctt cgt ggc cga Leu Arg Gly Arg	tca ggc gcg Pro Ala gga gtt gly Val cca aac Pro Asn 70 atg gca Met Ala 85 tca gcc ser Ala	ggt gat Gly Arg 40 cgt cgg Arg Arg 55 aaag aaaa Lys Lys gct cga Ala Arg tgt ctc Cys Leu act tgc	gaa atg Glu Met 10 tat att Tyr lle 25 aag aag Lys Lys aga aac Arg Asn aca agg Thr Arg gct cac Ala agg Thr Ches 90 aat ttc Asn 105 gct aag	ttt ggg Phe Gly ccg acc Pro Thi ttt cgt Phe Arc tcc ggt Ser Gly 60 att tgg Ile Trr 75 gac gtt Asp Val gct gac Ala Asp	gag a	gat tac Asp Tyr 15 gcg agc Ala Ser 30 act cgt Thr Arg tgg gtt Trp Val gga aca Gly Thr gct tta Ala Leu 95 gct tgg Ala Trp L10 aag gcg	gag Glu agc Ser cac His tgt Cys ttt Phe 80 gcc Ala aga Arg	166 214 262 310 358 406

mbi19 Sequence Listing.ST25

gat cat ggc ttc gac atg gag gag acg ttg gtg gag gct att tac acg Asp His Gly Phe Asp Met Glu Glu Thr Leu Val Glu Ala Ile Tyr Thr 150 155 160	598
gcg gaa cag agc gaa aat gcg ttt tat atg cac gat gag gcg atg ttt Ala Glu Gln Ser Glu Asn Ala Phe Tyr Met His Asp Glu Ala Met Phe 165 170 175	646
gag atg ccg agt ttg ttg gct aat atg gca gaa ggg atg ctt ttg ccg Glu Met Pro Ser Leu Leu Ala Asn Met Ala Glu Gly Met Leu Leu Pro 180 185 190	694
Ctt ccg tcc gta cag tgg aat cat aat cat gaa gtc gac ggc gat gat Leu Pro Ser Val Gln Trp Asn His Asn His Glu Val Asp Gly Asp Asp 195 200 205	742
gac gac gta tcg tta tgg agt tat taa aactcagatt attatttcca Asp Asp Val Ser Leu Trp Ser Tyr 210 215	789
tttttagtac gatacttttt attttattat tatttttaga tcctttttta gaatggaatc	849
tncattatgt ttgtaaaact gagaaacgag tgtaaattaa attgattcag tttcagtat	908
<210> 64 <211> 216 <212> PRT <213> Arabidopsis thaliana <400> 64	
Met Asn Ser Phe Ser Ala Phe Ser Glu Met Phe Gly Ser Asp Tyr Glu 1 5 10 15	
Ser Ser Val Ser Ser Gly Gly Asp Tyr Ile Pro Thr Leu Ala Ser Ser 20 25 30	
Cys Pro Lys Lys Pro Ala Gly Arg Lys Lys Phe Arg Glu Thr Arg His	
Pro Ile Tyr Arg Gly Val Arg Arg Arg Asn Ser Gly Lys Trp Val Cys 50 60	
Glu Val Arg Glu Pro Asn Lys Lys Thr Arg Ile Trp Leu Gly Thr Phe 65 70 80	
Gln Thr Ala Glu Met Ala Ala Arg Ala His Asp Val Ala Ala Leu Ala 85 90 95	
Leu Arg Gly Arg Ser Ala Cys Leu Asn Phe Ala Asp Ser Ala Trp Arg 100 105 110	
Leu Arg Ile Pro Glu Ser Thr Cys Ala Lys Asp Ile Gln Lys Ala Ala 115 120 125	
Ala Glu Ala Ala Leu Ala Phe Gln Asp Glu Met Cys Asp Ala Thr Thr 130 135 140	
Asp His Gly Phe Asp Met Glu Glu Thr Leu Val Glu Ala Ile Tyr Thr 145 150 155 160	
Ala Glu Gln Ser Glu Asn Ala Phe Tyr Met His Asp Glu Ala Met Phe 165 170 175	

mbi19 Sequence Listing.ST25

Glu Met Pro Ser Leu Leu Ala Asn Met Ala Glu Gly Met Leu Leu Pro 180 185 190

Leu Pro Ser Val Gln Trp Asn His Asn His Glu Val Asp Gly Asp Asp 195 200 205

Asp Asp Val Ser Leu Trp Ser Tyr 210 215

<210> 65
<211> 1407
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> CDS
<222> (191)..(1351)
<223> G1127

<400> 65 60 gacagactct ctctgtatgt gtgcgagaag cgagaagcga gagagagaga gagagagttg ttagctcaca cgctttctct attttctcgg aattcacaaa acagaaagtt tcatccttta 120 cgagaattaa gccgaaagaa acaatctttg agtttgattt cttcttcctt ccttctctc 180 ctotgeteta atg gat tee aga gae ate eea eeg tea eat aac eag ett 229 Met Asp Ser Arg Asp Ile Pro Pro Ser His Asn Gln Leu 277 caa cca ccg gga atg tta atg tct cat tac cgt aac cct aac gcc Gln Pro Pro Gly Met Leu Met Ser His Tyr Arg Asn Pro Asn Ala gcc gct tca cca tta atg gtt ccc act tcc aca tct caa ccg att caa Ala Ala Ser Pro Leu Met Val Pro Thr Ser Thr Ser Gln Pro Ile Gln 325 35 cac cct cgt ctt cct ttt ggc aat caa caa caa tct caa acg ttt cat 373 His Pro Arg Leu Pro Phe Gly Asn Gln Gln Ser Gln Thr Phe His cag cag caa caa caa atg gat cag aag act ctt gaa tct ctt gga Gln Gln Gln Gln Gln Met Asp Gln Lys Thr Leu Glu Ser Leu Gly 421 ttt ggt gat gga tca cct tct tct caa ccg atg cga ttc ggg atc gat 469 Phe Gly Asp Gly Ser Pro Ser Ser Gln Pro Met Arg Phe Gly Ile Asp 517 gat cag aat cag caa ctg caa gtg aag aag aag cga gga agg ccg aga Asp Gln Asn Gln Gln Leu Gln Val Lys Lys Lys Arg Gly Arg Pro Arg 565 aag tat act cct gat ggt agc att gct tta ggt tta gct cct acg tct Lys Tyr Thr Pro Asp Gly Ser Ile Ala Leu Gly Leu Ala Pro Thr Ser 115 613 cct ctt ctc tct gca gct tct aat tct tac ggt gag ggt ggt gtt gga Pro Leu Leu Ser Ala Ala Ser Asn Ser Tyr Gly Glu Gly Val Gly gat agt ggt gga aat gga aac tot gtt gat ooa oot gtt aaa ogt aac Asp Ser Gly Gly Asn Gly Asn Ser Val Asp Pro Pro Val Lys Arg Asn 661 aga gga agg cct cct ggt tct agt aag aaa cag ctt gat gct tta gga 709 Arg Gly Arg Pro Pro Gly Ser Ser Lys Lys Gln Leu Asp Ala Leu Gly 165 170

mbil9 Sequence Listing.ST25

	mbilly bequence bibling.billy															
														aac Asn		757
														ggg Gly		805
														gtg Val 220		853
														gga Gly		901
ttt Phe	gag Glu	atc Ile 240	att Ile	act Thr	ctc Leu	tca Ser	ggc Gly 245	tca Ser	gtc Val	ttg Leu	aat Asn	tat Tyr 250	gag Glu	gta Val	aat Asn	949
														gga Gly		997
														gct Ala		1045
aca Thr	caa Gln	gtc Val	cag Gln	gtg Val 290	ata Ile	gtg Val	gga Gly	agc Ser	ttt Phe 295	gtt Val	gca Ala	gaa Glu	gca Ala	aag Lys 300	aaa Lys	1093
														gaa Glu		1141
														caa Gln		1189
cca Pro	tcg Ser 335	agc Ser	gag Glu	tca Ser	tca Ser	gaa Glu 340	gag Glu	aat Asn	gag Glu	agc Ser	ggt Gly 345	tct Ser	cct Pro	gca Ala	atg Met	1237
														caa Gln		1285
														ctt Leu 380		1333
tct Ser	aat Asn	cat His	ggt Gly 385	caa Gln	taa	aatg	jaago	gg a	ıaatt	aatt	t gt	ttcc	gttt	;		1381
tggt	tacg	ıgt t	atgg	tttg	ja tt	tctt	:									1407
<211 <212	<210> 66 <211> 386 <212> PRT <213> Arabidopsis thaliana															
<400)> 6	6														
Met 1	Asp	Ser	Arg	Asp 5	Ile	Pro	Pro	Ser	His 10	Asn	Gln	Leu	Gln	Pro 15	Pro	

Pro Gly Met Leu Met Ser His Tyr Arg Asn Pro Asn Ala Ala Ala Ser 20 25

Pro Leu Met Val Pro Thr Ser Thr Ser Gln Pro Ile Gln His Pro Arg
35 40 45

Leu Pro Phe Gly Asn Gln Gln Gln Ser Gln Thr Phe His Gln Gln Gln 50 55 60

Gln Gln Gln Met Asp Gln Lys Thr Leu Glu Ser Leu Gly Phe Gly Asp
65 70 75 80

Gly Ser Pro Ser Ser Gln Pro Met Arg Phe Gly Ile Asp Asp Gln Asn 85 90 95

Gln Gln Leu Gln Val Lys Lys Lys Arg Gly Arg Pro Arg Lys Tyr Thr 100 105 110

Pro Asp Gly Ser Ile Ala Leu Gly Leu Ala Pro Thr Ser Pro Leu Leu 115 120 125

Ser Ala Ala Ser Asn Ser Tyr Gly Glu Gly Gly Val Gly Asp Ser Gly
130 135 140

Gly Asn Gly Asn Ser Val Asp Pro Pro Val Lys Arg Asn Arg Gly Arg 145 150 155 160

Pro Pro Gly Ser Ser Lys Lys Gln Leu Asp Ala Leu Gly Gly Thr Ser 165 170 175

Gly Val Gly Phe Thr Pro His Val Ile Glu Val Asn Thr Gly Glu Asp 180 185 190

Ile Ala Ser Lys Val Met Ala Phe Ser Asp Gln Gly Ser Arg Thr Ile 195 200 205

Cys Ile Leu Ser Ala Ser Gly Ala Val Ser Arg Val Met Leu Arg Gln 210 215 220

Ala Ser His Ser Ser Gly Ile Val Thr Tyr Glu Gly Arg Phe Glu Ile 225 230 235 240

Ile Thr Leu Ser Gly Ser Val Leu Asn Tyr Glu Val Asn Gly Ser Thr 245 250 255

Asn Arg Ser Gly Asn Leu Ser Val Ala Leu Ala Gly Pro Asp Gly Gly
260 265 270

Ile Val Gly Gly Ser Val Val Gly Asn Leu Val Ala Ala Thr Gln Val 275 280 285

Gln Val Ile Val Gly Ser Phe Val Ala Glu Ala Lys Lys Pro Lys Gln 290 295 300

Ser Ser Val Asn Ile Ala Arg Gly Gln Asn Pro Glu Pro Ala Ser Ala 305 310 315 320

Pro Ala Asn Met Leu Asn Phe Gly Ser Val Ser Gln Gly Pro Ser Ser 325 330 335

mbi19 Sequence Listing.ST25

Glu Ser Ser Glu Glu Asn Glu Ser Gly Ser Pro Ala Met His Arg Asp 340 345 350

Asn Asn Gly Ile Tyr Gly Ala Gln Gln Gln Gln Gln Gln Pro 355 360 365

Leu His Pro His Gln Met Gln Met Tyr Gln His Leu Trp Ser Asn His 370 375 380

Gly Gln 385

<220>

<210> 67 <211> 1020 <212> DNA

<213> Arabidopsis thaliana

<221> CDS <222> (1)..(1020)

<223> G2657

<400> 67 atg gat cca gtt caa tct cat gga tca caa agc tct ctt cct cct 48 Met Asp Pro Val Gln Ser His Gly Ser Gln Ser Ser Leu Pro Pro Pro 96 Phe His Ala Arg Asp Phe Gln Leu His Leu Gln Gln Gln Gln His caa caa caa caa caa caa caa caa caa cag ttc ttt ctc cac cat 144 Gln Gln Gln His Gln Gln Gln Gln Gln Gln Phe Phe Leu His His 40 192 cat cag caa cca caa aga aac ctt gat caa gat cac gag cag caa gga His Gln Gln Pro Gln Arg Asn Leu Asp Gln Asp His Glu Gln Gln Gly 240 ggg tca ata ttg aat aga tct atc aag atg gat cgc gaa gag aca agc Gly Ser Ile Leu Asn Arg Ser Ile Lys Met Asp Arg Glu Glu Thr Ser 288 gat aac atg gac aac atc gct aat acc aac agc ggt agc gaa ggt aaa Asp Asn Met Asp Asn Ile Ala Asn Thr Asn Ser Gly Ser Glu Gly Lys gag atg agt tta cac gga gga gga gga agc ggt ggt gga gga agt Glu Met Ser Leu His Gly Gly Glu Gly Gly Ser Gly Gly Gly Gly Ser 336 384

gga gaa cag atg aca aga agg cca aga gga aga cca gga tcc aag
Gly Glu Gln Met Thr Arg Arg Pro Arg Gly Arg Pro Ala Gly Ser Lys
115

aac aaa cct aaa gct cca ata atc ata aca aga gac agc gca aac gcg
432

Asn Lys Pro Lys Ala Pro Ile Ile Ile Thr Arg Asp Ser Ala Asn Ala 130 135 140

ctt cga act cac gtc atg gag ata gga gac gga tgt gac ata gtt gac Leu Arg Thr His Val Met Glu Ile Gly Asp Gly Cys Asp Ile Val Asp

tgt atg gct acg ttc gct aga cgc cgc caa aga ggc gtt tgc gtt atg
Cys Met Ala Thr Phe Ala Arg Arg Gln Arg Gly Val Cys Val Met

agc ggt aca gga agc gtt act aac gtc act ata cgt cag cct gga tcg
Ser Gly Thr Gly Ser Val Thr Asn Val Thr Ile Arg Gln Pro Gly Ser

			180				mbi	19 S 185	eque	nce	List	ing.	ST25 190			
cca Pro	cct Pro	ggc Gly 195	tcg Ser	gtg Val	gtt Val	agc Ser	ctt Leu 200	cac His	ggc Gly	cgg Arg	ttt Phe	gaa Glu 205	atc Ile	ctc Leu	tct Ser	624
ctt Leu	tcg Ser 210	gga Gly	tct Ser	ttc Phe	ttg Leu	cct Pro 215	ccg Pro	cct Pro	gcg Ala	ccg Pro	cct Pro 220	gca Ala	gcc Ala	acc Thr	gga Gly	672
cta Leu 225	agc Ser	gtt Val	tac Tyr	cta Leu	gcc Ala 230	gga Gly	gga Gly	caa Gln	ggg Gly	cag Gln 235	gtc Val	gtt Val	gga Gly	ggt Gly	agt Ser 240	720
gtg Val	gtg Val	gga Gly	cct Pro	ttg Leu 245	ttg Leu	tgt Cys	tcg Ser	ggt Gly	cct Pro 250	gtg Val	gtg Val	gtt Val	atg Met	gcg Ala 255	gct Ala	768
tct Ser	ttt Phe	agc Ser	aat Asn 260	gcg Ala	gcg Ala	tac Tyr	gaa Glu	agg Arg 265	ctg Leu	cct Pro	ttg Leu	gaa Glu	gaa Glu 270	gat Asp	gag Glu	816
atg Met	cag Gln	acg Thr 275	cca Pro	gtt Val	caa Gln	gga Gly	ggc Gly 280	ggt Gly	gga Gly	gga Gly	gga Gly	gga Gly 285	ggt Gly	ggt Gly	ggt Gly	864
gga Gly	atg Met 290	gga Gly	tct Ser	ccc Pro	ccg Pro	atg Met 295	atg Met	gga Gly	cag Gln	caa Gln	caa Gln 300	gct Ala	atg Met	gca Ala	gct Ala	912
atg Met 305	gcg Ala	gcg Ala	gct Ala	caa Gln	gga Gly 310	cta Leu	cca Pro	ccg Pro	aat Asn	ctt Leu 315	ctt Leu	ggt Gly	tcg Ser	gtt Val	cag Gln 320	960
ttg Leu	cca Pro	ccg Pro	cca Pro	caa Gln 325	cag Gln	aat Asn	gat Asp	cag Gln	cag Gln 330	tat Tyr	tgg Trp	tct Ser	acg Thr	ggt Gly 335	cgg Arg	1008
	ccg Pro		tga													1020
<210 <210 <210 <210	l> : 2> :	8 839 PRT Arabi	idops	sis (chal:	iana										
<400)> 6	8														
Met 1	Asp	Pro	Val	Gln 5	Ser	His	Gly	Ser	Gln 10	Ser	Ser	Leu	Pro	Pro 15	Pro	
Phe	His	Ala	Arg 20	Asp	Phe	Gln	Leu	His 25	Leu	Gln	Gln	Gln	Gln 30	Gln	His	
Gln	Gln	Gln 35	His	Gln	Gln	Gln	Gln 40	Gln	Gln	Gln	Phe	Phe 45	Leu	His	His	
His	Gln 50	Gln	Pro	Gln	Arg	Asn 55	Leu	Asp	Gln	Asp	His 60	Glu	Gln	Gln	Gly	
Gly 65	Ser	Ile	Leu	Asn	Arg 70	Ser	Ile	Lys	Met	Asp 75	Arg	Glu	Glu	Thr	Ser 80	
Asp	Asn	Met	Asp	Asn 85	Ile	Ala	Asn	Thr	Asn 90	Ser	Gly	Ser	Glu	Gly 95	Lys	

Glu Met Ser Leu His Gly Gly Glu Gly Gly Ser Gly Gly Gly Ser Page 89 $\,$

> mbi19 Sequence Listing.ST25 100

Gly Glu Gln Met Thr Arg Arg Pro Arg Gly Arg Pro Ala Gly Ser Lys

Asn Lys Pro Lys Ala Pro Ile Ile Ile Thr Arg Asp Ser Ala Asn Ala

Leu Arg Thr His Val Met Glu Ile Gly Asp Gly Cys Asp Ile Val Asp

Cys Met Ala Thr Phe Ala Arg Arg Gln Arg Gly Val Cys Val Met

Ser Gly Thr Gly Ser Val Thr Asn Val Thr Ile Arg Gln Pro Gly Ser

Pro Pro Gly Ser Val Val Ser Leu His Gly Arg Phe Glu Ile Leu Ser

Leu Ser Gly Ser Phe Leu Pro Pro Pro Ala Pro Pro Ala Ala Thr Gly

Leu Ser Val Tyr Leu Ala Gly Gly Gln Gly Gln Val Val Gly Gly Ser

Val Val Gly Pro Leu Leu Cys Ser Gly Pro Val Val Met Ala Ala

Ser Phe Ser Asn Ala Ala Tyr Glu Arg Leu Pro Leu Glu Glu Asp Glu 260

Met Gln Thr Pro Val Gln Gly Gly Gly Gly Gly Gly Gly Gly Gly

Gly Met Gly Ser Pro Pro Met Met Gly Gln Gln Gln Ala Met Ala Ala

Met Ala Ala Gln Gly Leu Pro Pro Asn Leu Leu Gly Ser Val Gln 305

Leu Pro Pro Gln Gln Asn Asp Gln Gln Tyr Trp Ser Thr Gly Arg

Pro Pro Tyr

<210> 69 <211> 1558 <212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS <222> (191)..(1396) <223> G326

<400> 69

				Listing.ST2		
_		ttctcctttc a	_			60
		ttcttcttcc a				120
gatcttattc	tccactgtat	aaaatcagcg a	gattttaag	ggattgtgaa	ggtaccatct	180
taaacacaaa	atg ggt act Met Gly Thr 1	tct act aca Ser Thr Thr 5	gag agt Glu Ser	gtg gtg gcg Val Val Ala 10	tgt gaa Cys Glu	229
		g gcg gtt ct r Ala Val Le 20				277
aag ctt tgt Lys Leu Cys 30	ttg cct tg Leu Pro Cy 35	t gac cag ca s Asp Gln Hi	c gtg cac s Val His 40	tcg gcg aad Ser Ala Asi	c ctt ctc n Leu Leu 45	325
		t tct cag at g Ser Gln Il				373
ccg gtg tcc Pro Val Ser	gta cgt tg Val Arg Cy 65	c ttc aca ga s Phe Thr As 70	p Asn Leu	gta ttg tgt Val Leu Cys 75	cag gag Gln Glu	421
tgt gat tgg Cys Asp Trp 80	gat gtt ca Asp Val Hi	c gga agc tg s Gly Ser Cy 85	t tcc tcc s Ser Ser	tcc gcg acg Ser Ala Thr 90	g cat gaa His Glu	469
cgc tcc gcc Arg Ser Ala 95	gtg gaa gg Val Glu Gl	g ttt tca gg y Phe Ser Gl 100	t tgt cct y Cys Pro	tcg gtt ttg Ser Val Let 105	g gag ctt 1 Glu Leu	517
gct gct gtg Ala Ala Val 110	tgg gga at Trp Gly Il 11	c gat tta aa e Asp Leu Ly 5	g ggt aag s Gly Lys 120	aag aaa gaa Lys Lys Glu	a gat gac 1 Asp Asp 125	565
gaa gac gaa Glu Asp Glu	ttg act aa Leu Thr Ly 130	g aat ttt gg s Asn Phe Gl	g atg ggg y Met Gly 135	ttg gat tcg Leu Asp Ser	tgg ggt Trp Gly 140	613
tct gga tct Ser Gly Ser	aac atc gt Asn Ile Va 145	t caa gaa ct l Gln Glu Le 15	u Ile Val	cct tat gat Pro Tyr Asp 155	Val Ser	661
tgc aaa aag Cys Lys Lys 160	Gln Ser Ph	t agc ttt gg e Ser Phe Gl 165	g agg tct y Arg Ser	aag cag gta Lys Gln Val 170	gtg ttt Val Phe	709
gaa cag ctt Glu Gln Leu 175	gag tta ct Glu Leu Le	g aag aga gg 1 Lys Arg Gl 180	c ttc gtt y Phe Val	gaa ggc gaa Glu Gly Glu 185	n gga gag n Gly Glu	757
att atg gtt Ile Met Val 190	ccg gag gg Pro Glu Gl 19	a atc aat gg / Ile Asn Gl	c gga gga y Gly Gly 200	agc att tct Ser Ile Ser	cag cca Gln Pro 205	805
		act tot tte Thr Ser Le				853
ggt aat ggt Gly Asn Gly	atg caa tg Met Gln Tr 225	g aat gct ac o Asn Ala Th 23	r Asn His	agc act ggo Ser Thr Gly 235	dln Asn	901
act cag ata Thr Gln Ile 240	Trp Asp Ph	aac ttg gg Asn Leu Gl 245	a cag tcg y Gln Ser	agg aac cct Arg Asn Pro 250	gat gaa Asp Glu	949
cct agt cca Pro Ser Pro 255	gtc gaa ac Val Glu Th	aaa ggc tc Lys Gly Se 260	t act ttc r Thr Phe	aca ttc aac Thr Phe Asr 265	aac gtt Asn Val	997
act cat ctc	aag aac ga	acc cga ac	c acc aat		ttc aaa	1045

mbil9 Sequence Listing.ST25 Thr His Leu Lys Asn Asp Thr Arg Thr Thr Asn Met Asn Ala Phe Lys								
270 275 280 285								
gag agt tac cag gag gat tcc gtc cac tca act tct acc aag gga cag Glu Ser Tyr Gln Glu Asp Ser Val His Ser Thr Ser Thr Lys Gly Gln 295 300	1093							
gaa aca tct aag agc aac aat att cct gct gcc att cac tcg cat aaa Glu Thr Ser Lys Ser Asn Asn Ile Pro Ala Ala Ile His Ser His Lys 305 310 315	1141							
agt tot aac gac too tgt ggc ttg cat tgc acg gaa cat att gct att Ser Ser Asn Asp Ser Cys Gly Leu His Cys Thr Glu His Ile Ala Ile 320 325 330	1189							
act agt aat aga gcc aca aga ttg gtg gcg gta acg aat gct gat cta Thr Ser Asn Arg Ala Thr Arg Leu Val Ala Val Thr Asn Ala Asp Leu 335 340 345	1237							
gag cag atg gca cag aac aga gat aat gct atg cag cgg tac aag gaa Glu Gln Met Ala Gln Asn Arg Asp Asn Ala Met Gln Arg Tyr Lys Glu 350 360 365	1285							
aag aag aaa acg cgg aga tat gat aag acc ata aga tat gaa acg agg Lys Lys Lys Thr Arg Arg Tyr Asp Lys Thr Ile Arg Tyr Glu Thr Arg 370 375 380	1333							
aag gcg aga gcc gag acc agg ttg cgt gtt aag ggc aga ttt gtg aaa Lys Ala Arg Ala Glu Thr Arg Leu Arg Val Lys Gly Arg Phe Val Lys 385 390 395	1381							
gct aca gat cct tag atgtctctcc acgttaggtt ttacatttga gatcctaagt Ala Thr Asp Pro 400	1436							
taggaacttt ttttgttttt tctactttca actaccttgt aaatgtaaat gatcgatctt 14								
cagctgcata atgtgtggcc agatttttgt aatttttacg tttaaccttc taaaaaaaa	a 1556							
aa	1558							
<pre><210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana</pre>	1558							
<210> 70 <211> 401 <212> PRT	1558							
<210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana	1558							
<210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly	1558							
<pre> <210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly 1</pre>	1558							
<pre> <210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly 1</pre>	1558							
<pre> <210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly 1</pre>	1558							
<pre> <pre> <210> 70 <211> 401 <212> PRT <213> Arabidopsis thaliana <400> 70 Met Gly Thr Ser Thr Thr Glu Ser Val Val Ala Cys Glu Phe Cys Gly 1</pre></pre>	1558							

mbi19 Sequence Listing.ST25

Trp Gly Ile Asp Leu Lys Gly Lys Lys Lys Glu Asp Asp Glu Asp Glu Leu Thr Lys Asn Phe Gly Met Gly Leu Asp Ser Trp Gly Ser Gly Ser Asn Ile Val Gln Glu Leu Ile Val Pro Tyr Asp Val Ser Cys Lys Lys Gln Ser Phe Ser Phe Gly Arg Ser Lys Gln Val Val Phe Glu Gln Leu Glu Leu Leu Lys Arg Gly Phe Val Glu Gly Glu Gly Glu Ile Met Val Pro Glu Gly Ile Asn Gly Gly Gly Ser Ile Ser Gln Pro Ser Pro Thr Thr Ser Phe Thr Ser Leu Leu Met Ser Gln Ser Leu Cys Gly Asn Gly Met Gln Trp Asn Ala Thr Asn His Ser Thr Gly Gln Asn Thr Gln Ile Trp Asp Phe Asn Leu Gly Gln Ser Arg Asn Pro Asp Glu Pro Ser Pro Val Glu Thr Lys Gly Ser Thr Phe Thr Phe Asn Asn Val Thr His Leu Lys Asn Asp Thr Arg Thr Thr Asn Met Asn Ala Phe Lys Glu Ser Tyr Gln Glu Asp Ser Val His Ser Thr Ser Thr Lys Gly Gln Glu Thr Ser Lys Ser Asn Asn Ile Pro Ala Ala Ile His Ser His Lys Ser Ser Asn Asp Ser Cys Gly Leu His Cys Thr Glu His Ile Ala Ile Thr Ser Asn Arg Ala Thr Arg Leu Val Ala Val Thr Asn Ala Asp Leu Glu Gln Met Ala Gln Asn Arg Asp Asn Ala Met Gln Arg Tyr Lys Glu Lys Lys Thr Arg Arg Tyr Asp Lys Thr Ile Arg Tyr Glu Thr Arg Lys Ala Arg Ala Glu Thr Arg Leu Arg Val Lys Gly Arg Phe Val Lys Ala Thr Asp 390

Pro

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

IPC(7) : A01H 1/00, 5/00; C12N 5/04, 15/00, 15/82; C12P 21/02 US CL : 435/69.1, 320.1, 410, 419, 468; 800/278, 284, 287, 290									
According to	According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIEL	B. FIELDS SEARCHED								
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/69.1, 320.1, 410, 419, 468; 800/278, 284, 287, 290									
Documentation	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) East, USPAT; STN, Agricola, Biosis, CaPlus, Embase; Sequence Search of SEQ ID NOs. 1 & 2									
C. DOC	UMENTS CONSIDERED TO BE RELEVANT								
Category *	Citation of document, with indication, where ap		Relevant to claim No.						
X	AOYAMA, T. et al. Ectopic expression of the Arab		1-10, 13, 25						
 Y	1 alters leaf cell fate in tobacco, The Plant Cell, No 1785, entire document.	vember 1993, Vol. 7, pages 1773-	11, 12, 26						
_	BELLIS, L.D. et al. Distinct cis-acting sequences a	re required for the germination and	1-10, 13, 25						
X	sugar responses of the cucumber isocitrate lyase gen 378, entire document.	te. Gene 1997, Vol. 197, pages 375-	1-10, 13, 23						
X	KIM, S. et al. Sugar response element enhances wor inhibitor II promoter in transgenic tobacco. Plant M 983, entire document.		1-10, 13, 25						
Y	1-10, 13, 25								
Further	documents are listed in the continuation of Box C.	See patent family annex.							
• S	pecial categories of cited documents:	"T" later document published after the int date and not in conflict with the appli							
• •	defining the general state of the art which is not considered to be tlar relevance	principle or theory underlying the inv "X" document of particular relevance; the	ention						
"E" earlier ap	plication or patent published on or after the international filing date	considered novel or cannot be considered when the document is taken alone							
	which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination							
"O" document	referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in the	ne art						
	published prior to the international filing date but later than the late claimed	"&" document member of the same patent	family						
Date of the a	octual completion of the international search	Date of mailing of the international sea	arch report						
23 Fehmaru	2001 (23.02.2001)	0 4 APR 2001	- 0						
	ailing address of the ISA/US	Authorized officer	(XM)						
Con	nunissioner of Patents and Trademarks	David Kruse	MY DEA NON						
	PCT shington, D.C. 2023!	LARANTEGO							
Facsimile No	o. (703)305-3230	Telephone No. 703-308-050100000	TY CENTER 1600						

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)							
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:							
_							
ort							
•							

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/31414

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXXV, claim(s) 1-13 and 25-26, drawn to a transgenic plant having modified seed characteristics, polynucleotides and vectors for producing said transgenic plant and a method of making said transgenic plant. Applicant must elect one pair of sequences (one nucleic acid and the corresponding amino acid translation) to be examined, i.e. SEQ ID NO: 1 and 2 in Group I, SEQ ID NO: 3 and 4 in Group II, SEQ ID NO: 5 and 6 in Group III, etc.

Group XXXVI, claim(s) 15-17, drawn to a method of identifying a factor that is modulated.

Group XXXVII, claims(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide.

Group XXXVIII, claims(s) 19 and 20, drawn to an integrated computer system.

Group XXXIV, claim(s) 21-23, drawn to a method for identifying a polynucleotide sequence comprising selecting a nucleic acid sequence from a database that meets a selected sequence criteria.

The inventions listed as Groups I-XXXIV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The inventions listed as Groups I-XXXIX do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXXV are drawn to a transgenic plant and a method of producing said plant with a nucleic acid sequence. The methods of Groups I-XXXV differ from each other in that they are directed to a plant transformation method and transgenic plant with a structurally and functionally distinct nucleic acid sequence which encodes a structurally and functionally distinct amino acid sequence. In addition, Groups XXXVI, XXXVII and XXXIX are different methods from any of Groups I-XXXV in that they have different method steps and different end products, and Group XXXVIII requires a computer system. Thus, there is no single special technical feature, which links the inventions of Groups I-XXXIX under PCT Rule 13.2.