Enhancing Vehicle Identification in Challenging Conditions Through Fine-Grained Classification

Eduardo Santos^{1,2}, Gabriel E. Lima¹, Rayson Laroca³, Eduil Nascimento Jr.², and David Menotti¹

 1 Federal University of Paraná 2 Paraná Military Police 3 Pontifical Catholic University of Paraná

October 1, 2024

Summary

1. Introduction

2. Data preparation

3. Experiments and Results

4. Conclusion

Introduction

Scope: vehicle identification.

Approach: integrating Automatic License Plate Recognition (ALPR) with Fine-Grained Vehicle Classification (FGVC).

Work in progress: enhance vehicle make classification through *class reduction* and *selective prediction*.

Data preparation

Original data: RodoSol-ALPR dataset.

Data preparation: preprocessing; image selection; annotations.

Figure: Sample images from the RodoSol-ALPR dataset.

Data preparation

VehicleMake: 9,553 images categorized into 29 classes.

Figure: Distribution of classes in the VehicleMake dataset.

Data preparation

VehicleMake: 9,553 images categorized into 29 classes.

Figure: Examples of images from the VehicleMake dataset.

Baseline experiment: evaluate four deep learning models for vehicle make classification.

Methodology:

- Models;
- Split;
- Data augmentation;
- Training protocols;
- Evaluation metrics.

Additional experiments: class reduction; selective prediction.

Baseline experiment

Table: Global metrics on vehicle make task (averaged over five runs). Protocol (p2) incorporates oversampling of minority classes, whereas (p1) does not.

Protocol	Model	Top-1	Top-2	Precision	Recall	F1
	ViT b16	55 .3%	62.6%	63.9%	55 .3%	57 .4%
(-1)	ResNet-34	38.7%	47.8%	49.3%	38.7%	41.1%
(p1)	EfficientNetV2	39.3%	49.1%	45.8%	39.3%	39.5%
	${\sf MobileNetV3}$	40.9%	50.9%	52.2%	40.9%	43.5%
	ViT b16	65.4%	73.8%	53.0%	65.4%	56.8%
(2)	ResNet-34	49.4%	61.8%	33.9%	49.4%	36.9%
(p2)	EfficientNetV2	49.4%	60.2%	31.7%	49.4%	33.8%
	MobileNetV3	50.7%	61.8%	37.7%	50.7%	41.2%

Class reduction (static and online)

Table: Class distribution considered for the class reduction experiments.

Class	Images		
Chevrolet	1,054		
Fiat	1,189		
Ford	1,662		
Honda	231		
Hyundai	352		
Jeep	97		
Nissan	168		
Renault	968		
Toyota	1,273		
Volkswagen	1,256		
Others	1,303		

Table: Global accuracies using superclass and online superclass (averaged over five runs).

Method	Top-1	Top-2
Baseline Static class reduction Online class reduction	73.4%	73.8% 85.0 % 81.5%

Class reduction (static and online)

Figure: Average confusion matrices for the baseline experiment (a) and the static class reduction experiment (b)

Selective prediction

Table: Global accuracies and rejection rates using only softmax response rejection, and combining it with online class reduction (averaged over five runs).

Method	Minimum	Rejected	Correct predictions	Top-1	Top-2
Method	confidence	images	images incorrectly rejected		10p-2
Baseline	-	-	-	65.4%	73.9%
	0.1	0 / 0.0%	0 / 0.0%	65.4%	73.9%
	0.2	37 / 3.1%	8 / 23.0%	66.7%	75.0%
	0.3	207 / 17.3%	62 / 30.1%	71.9%	79.5%
C 1 .:	0.4	382 / 32.0%	145 / 38.0%	77.0%	82.5%
Selective	0.5	534 / 44.7%	239 / 44.8%	75.4%	79.7%
Prediction	0.6	655 / 54.9%	328 / 50.1%	75.8%	78.5%
	0.7	770 / 64.5%	426 / 55.3%	75.8%	77.0%
	0.8	876 / 73.4%	523 / 59.7%	75.3%	75.8%
	0.9	1013 / 84.8%	656 / 64.8%	71.3%	71.5%
	0.1	0 / 0.0%	0 / 0.0%	71.1%	81.6%
C 1 .:	0.2	37 / 3.1%	10 / 0.9%	72.6%	83.0%
Selective	0.3	207 / 17.3%	71 / 5.9%	78.6%	87.6%
Prediction	0.4	382 / 32.0%	159 / 13.4%	84.7%	91.8%
+	0.5	534 / 44.7%	255 / 21.3%	90.2%	94.6%
Online	0.6	655 / 54.9%	345 / 28.9%	93.4%	95.7%
Class	0.7	770 / 64.5%	445 / 37.3%	95.8%	97.4%
Reducing	0.8	876 / 73.4%	543 / 45.5%	94.3%	94.7%
	0.9	1013 / 84.8%	677 / 56.7%	88.5%	88.8%

Conclusions

Remarks: both selective prediction and class reduction methods can improve overall vehicle make classification accuracy.

Future directions: refine the studied methods; develop a combined ALPR and FGVC system.

Acknowledgments

Enhancing Vehicle Identification in Challenging Conditions Through Fine-Grained Classification

Eduardo Santos^{1,2}, Gabriel E. Lima¹, Rayson Laroca³, Eduil Nascimento Jr.², and David Menotti¹

 1 Federal University of Paraná 2 Paraná Military Police 3 Pontifical Catholic University of Paraná

October 1, 2024

