电子学基础第二次仿真作业报告

计 64 翁家翌 2016011446 2017.12.9

1 通过仿真画出 NMOS 和 PMOS 在不同栅压下的 I_D - V_{DS} 曲线,并从图中的取值得出 V_{od} 随着 V_{GS} 的变化关系

1.1 仿真电路图

图 1: 左侧为 NMOS, 右侧为 PMOS

1.2 NMOS 的 I-V 特性曲线

图 2: 从下至上依次为 $V_1 = 0, 1, 2, 3, 4, 5V$

1.3 PMOS 的 I-V 特性曲线

图 3: 从下至上依次为 $V_3 = 0, -1, -2, -3, -4, -5V$

过驱动电压 $|V_{od}| = |V_{GS}| - |V_{th}|$, 电路图中所选取的 MOS 管为理想晶体管, 故阈值电压 $V_{th} = 0$, 从图2和图3的 I-V 特性曲线可以看出, 在饱和区和线性区的临界点附近,都有 $|V_{od}| = |V_{GS}|$, 即过驱动电压 V_{od} 随栅源电压 V_{GS} 线性变化。

2 简单设计两个基本共源放大器,一个是电阻负载,一个是 MOSFET 负载。并讨论随着输入交流小信号频率的增加, 增益的变化。当频率达到何值时,增益比低频时下降 3dB?

2.1 仿真电路图

图 4: 左侧为电阻负载,右侧为 MOSFET 负载

2.2 电阻作负载

交流小信号频率增加超过某个值时,增益开始按一定的斜率降低;如图5所示,在低频时 A_n 约为 3.01V,即 9.57dBV,减弱 3dBV 后应是 6.57dBV,此时的频率约为 10.62MHz。

图 5: 电阻作负载的共源放大器,图中从上至下的数据点依次为:(173.8Hz,9.570dBV),(173.8Hz,3.010V),(10.62MHz,6.551dBV),(10.07MHz,2.182V)

2.3 有源 MOSFET 作负载

交流小信号频率增加超过某个值时,增益开始按一定的斜率降低;如图6所示,在低频时 A_v 约为 126.2mV,即-17.98dBV,减弱 3dBV 后应是-20.98dBV,此时的频率约为 27.54MHz。

图 6: 有源负载共源放大器,图中从上至下的数据点依次为:(2.188kHz,-17.98dBV),(2.138kHz,126.2mV),(27.54MHz,-21.00dBV),(25.70MHz,92.06mV)