KGD lab workshop in 2025

Wan-Rung Chen

Quantitative Real-time PCR

Immunofluorescence

Quantitative Real-time PCR

- Quantitative polymerase chain reaction (qPCR) is a laboratory technique of molecular biology based on the PCR.
- It is a highly **sensitive** and **reliable** method for the detection and quantification of nucleic acids (DNA, RNA and cDNA).
- There are two common methods for the detection of products in realtime PCR.
- SYBR Green Dye
- TaqMan Probe

TaqMan

Three Phases of qPCR

Exponential

- Exact doubling of product
- Reaction is very precise and specific

Linear

- The reaction components are becoming limited
- The reaction efficiency is dropping

Plateau

- The reaction has stopped
- No more products are being made

Ct value and Threshold in qPCR

- Threshold: The horizontal line in the amplification plot's y-axis marks the detection level, where fluorescence surpasses background levels.
- Ct: The number of reaction cycles it takes to reach that threshold is called Ct value.

Melt curve in qPCR

- It is used to assess the dissociation characteristics of double-stranded DNA during heating.
- Using it to determine the specificity of the qPCR assay.
- A single distinct peak in the plot indicates that the amplified doublestranded DNA products are a single discrete species.

Types of qPCR Techniques

TaqMan Probe

- Fluorophores is linked to oligonucleotides
- Uses specific probes to detect target genes
- Advantages: High specificity, High accuracy.
- Disadvantages: Higher cost

Types of qPCR Techniques

SYBR Green Dye

- Fluorescent dye binds to the minor groove of double-stranded DNA
- Advantages: Lower cost,
 simple operation
- Disadvantages: Lower specificity, potential for non-specific qPCR products (ex: primer dimers).

Components of qPCR

SYBR Green

2x SYBR Master Mix 1x 12.5 ul

F Primer optimized NA

R Primer optimized NA

Water NA

cDNA 10-100 ng 5-10 ul

25 ul

<u>Components</u>

StepOneTM Real-Time PCR System

StepOneTM Real-Time PCR System

qPCR data analyze

Calculation Formula

- ∆Ct=
 Ct (Target gene)—Ct (reference gene)
- ΔΔCt=
 ΔCt (experimental group)-ΔCt
 (control group)
- **RQ** (Fold change) = $2^-\Delta\Delta Ct$

GraphPad Prism software

Workflow of qPCR

Immunofluorescence (IF)

Principle of Immunofluorescence

Direct and Indirect Immunofluorescence

Step by step procedure of IF

Immunofluorescence (IF)

- Immunofluorescence is a powerful technique that use fluorescent-labeled antibodies to detect specific target antigens.
- Direct immunofluorescence
- Indirect immunofluorescence

Types of Immunofluorescence

- Direct immunofluorescence
- Indirect immunofluorescence

Procedure of Immunofluorescence

冷凍包埋/切片

Tissue Fixation:

Acetone:Methanol=1:1, -20°C for

10-15 min

Wash: 3 times for 5 min

Blocking: with Blocking buffer for 30 min at Room temperature
Wash: 3 times with washing buffer

for 5 min

Primary antibody: Incubate at 4 °C overnight or 4 hr at 37 °C Wash: 3 times with washing buffer for 5 min

Secondary antibody/DAPI:

Incubate at 37 °C for 1 hr Wash: 3 times with washing

buffer for 5 min

*For other antibodies, follow the manufa

Mount Sample: Mounting media Image:

microscopy

Thanks for your attention