

(Part-I)

2. Write short answers to any Six (6) questions: 12

(i) Define transpose of matrix.

Ans A matrix obtained by changing the row into columns or columns into rows of a matrix is called transpose of that matrix. If A is a matrix, then its transpose is denoted by A^t .

(ii) Find additive inverse of the matrices:

$$\begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$$

Ans Let:

$$A = \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$$

Then additive inverse of A is:

$$A = \begin{bmatrix} -\sqrt{3} & -1 \\ 1 & -\sqrt{2} \end{bmatrix}$$

(iii) Define multiplicative identity.

Ans Let A be a matrix. Another matrix B is called the identity matrix of A under multiplication if

$$AB = A = BA$$

(iv) Simplify: $5^{2^3} \div (5^2)^3$

$$\begin{aligned} &= 5^{2^3} \div (5^2)^3 \\ &= 5^8 \div 5^6 \\ &= 5^{8-6} \\ &= 5^2 \end{aligned}$$

$$= 25$$

(v) Find the value of x , when: $\log_{64} 8 = \frac{x}{2}$

Ans $\log_{64} 8 = \frac{x}{2}$

$$(64)^{x/2} = 8$$

$$(8^2)^{x/2} = 8^1$$

$$8^x = 8^1$$

$$\boxed{x = 1}$$

(vi) Define logarithm.

Ans If $a^x = y$, then x is called the logarithm of y to the base 'a' and is written as $\log_a y = x$, where $a > 0$, $a \neq 1$ and $y > 0$.

(vii) Simplify: $\frac{x+2}{2x-3y} \cdot \frac{4x^2 - 9y^2}{xy + 2y}$

Ans $\frac{x+2}{2x-3y} \cdot \frac{4x^2 - 9y^2}{xy + 2y} = \frac{(x+2)[(2x)^2 - (3y)^2]}{(2x-3y)(x+2)y}$
 $= \frac{(x+2)(2x+3y)(2x-3y)}{(2x-3y)(x+2)y}$

$$\boxed{= \frac{2x+3y}{y}}$$

(viii) Rationalize the denominator of $\frac{1}{3+2\sqrt{5}}$.

Ans $= \frac{1}{3+2\sqrt{5}} \times \frac{(3-2\sqrt{5})}{(3-2\sqrt{5})}$
 $= \frac{3-2\sqrt{5}}{(3)^2 - (2\sqrt{5})^2}$
 $= \frac{3-2\sqrt{5}}{9-20}$
 $= \frac{3-2\sqrt{5}}{-11}$

$$\boxed{= \frac{-1}{11}(3-2\sqrt{5})}$$

(ix) What is meant by remainder theorem?

Ans If a polynomial $p(x)$ is divided by a linear divisor $(x - a)$, then the remainder is $p(a)$.

3. Write short answers to any Six (6) questions:

(i) Find H.C.F. of the polynomials by factorization:

$$x^2 + 5x + 6, x^2 - 4x - 12$$

Ans $x^2 + 5x + 6 = x^2 + 2x + 3x + 6$

$$= x(x + 2) + 3(x + 2) \Rightarrow (x + 2)(x + 3)$$

$$x^2 - 4x - 12 = x^2 - 6x + 2x - 12$$

$$= x(x - 6) + 2(x - 6) \Rightarrow (x - 6)(x + 2)$$

$$\text{H.C.F} = x + 2 \text{ (common factor)}$$

(ii) Solve the equation: $\sqrt{3x + 4} = 2$

Ans $(\sqrt{3x + 4})^2 = (2)^2$

$$3x + 4 = 4$$

$$3x = 4 - 4$$

$$3x = 0$$

$$\boxed{x = 0}$$

(iii) Find the solution set of: $|3x - 5| = 4$

Ans $|3x - 5| = 4$

$$3x - 5 = 4;$$

$$3x - 5 = -4$$

$$3x = 4 + 5$$

$$;$$

$$3x = -4 + 5$$

$$3x = 9;$$

$$3x = 1$$

$$x = \frac{9}{3};$$

$$x = \frac{1}{3}$$

$$x = 3$$

(iv) Define Cartesian plane.

Ans The Cartesian plane establishes one-to-one correspondence between the set of ordered pairs $R \times R$ $\{(x, y) | x, y \in R\}$ and the points of the Cartesian plane.

(v) Find the value of m and c of the line expressing in the form $y = mx + c$, $3 - 2x + y = 0$.

Ans

$$y = mx + c$$

$$3 - 2x + y = 0$$

(i)

$$y = 2x - 3$$

By comparing both equations, we get

(ii)

$$m = 2$$

$$c = -3$$

(vi) Find the distance between pair of points:

A(0, 0), B(0, -5)

Ans

$$d = \sqrt{|x_2 - x_1|^2 + |y_2 - y_1|^2}$$

$$|AB| = \sqrt{[(0 - 0)]^2 + [(-5) - 0]^2}$$

$$= \sqrt{0 + (-5)^2}$$

$$= \sqrt{25}$$

$$= 5$$

(vii) Find the mid-point between the pair of points:

A(-4, 9), B(-4, -3)

Ans

A (-4, 9), B (-4, -3)

$$P(x, y) = \left(\frac{-4 - 4}{2}, \frac{9 - 3}{2} \right)$$

$$P(x, y) = (-4, 3)$$

$$\text{Mid-point of } AB = (-4, 3)$$

(viii) What is meant by the congruency of triangles?

Ans Two triangles are said to be congruent, if there exists a correspondence between them such that all the corresponding sides and angles are congruent.

(ix) One angle of a parallelogram is 130° . Find the measures of its remaining angles.

Ans

$$\angle B \cong \angle C$$

$$m\angle A = 130^\circ$$

$$m\angle C = 130^\circ$$

$$m\angle B = 180^\circ - m\angle A$$

$$= 180^\circ - 130^\circ = 50^\circ$$

As

$$\angle B = \angle D$$

$$m\angle C = 50^\circ$$

- 4.** Write short answers to any Six (6) questions: 12
(i) If 3 cm and 4 cm are lengths of two sides of a right angle triangle, then what should be the third length of the triangle?

Ans

$$\begin{aligned}(\text{Hypotenuse})^2 &= (\text{Perpendicular})^2 + (\text{Base})^2 \\(\text{Hypotenuse})^2 &= (3)^2 + (4)^2 \\(\text{Hypotenuse})^2 &= 9 + 16 \\(\text{Hypotenuse})^2 &= 25 \\\sqrt{(\text{Hypotenuse})^2} &= \sqrt{25} \\(\text{Hypotenuse}) &= 5 \text{ cm}\end{aligned}$$

- (ii) Define bisector of an angle.

Ans Angle bisector is the ray which divides an angle into two equal parts.

- (iii) Define proportion.

Ans Equality of two ratios is defined as the proportion.
if $a : b = c : d$, then a, b, c and d are said to be a proportion.

- (iv) State converse to Pythagoras theorem.

Ans Converse of Pythagoras theorem is:

If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right-angled triangle.

- (v) Verify that the triangle having the measures of sides $a = 1.5 \text{ cm}$, $b = 2 \text{ cm}$, $c = 2.5 \text{ cm}$ are right-angled.

Ans $a = 1.5 \text{ cm}$, $b = 2 \text{ cm}$, $c = 2.5 \text{ cm}$

$$c^2 = a^2 + b^2$$

$$(2.5)^2 = (1.5)^2 + (2)^2$$

$$6.25 = 2.25 + 4$$

$$6.25 = 6.25$$

Hence measures are the sides of a triangle.

(vi) Define rectangular region.

Ans A rectangular region is the union of a rectangle and its interior.

(vii) Find the area of the figure:

Ans Length of rectangle = 6 cm

Width of // // = 3 cm

Area of // // = 6×3

$$= 18 \text{ Sq. cm}$$

(viii) Define incentre.

Ans The internal bisectors of the angles of a triangle meet at a point called the incentre of the triangle.

(ix) Construct a $\triangle ABC$ in which:

$$m\overline{AB} = 3.2 \text{ cm}, m\overline{BC} = 4.2 \text{ cm}, m\overline{CA} = 5.2 \text{ cm}$$

Ans

(Part-II)

NOTE: Attempt THREE questions in all. But question No. 9 is Compulsory.

Q.5.(a) Solve with the help of Cramer's rule: (4)

$$2x + y = 3$$

$$6x + 5y = 1$$

Ans

$$2x + y = 3$$

$$6x + 5y = 1$$

$$A = \begin{bmatrix} 2 & 1 \\ 6 & 5 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}$$

$$Ay = \begin{bmatrix} 2 & 3 \\ 6 & 1 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 2 & 1 \\ 6 & 5 \end{vmatrix}$$

$$= (2)(5) - (1)(6)$$

$$= 10 - 6$$

$$= 4$$

$$x = \frac{|A_x|}{|A|} = \frac{\begin{vmatrix} 3 & 1 \\ 1 & 5 \end{vmatrix}}{4}$$

$$= \frac{(3)(5) - (1)(1)}{4}$$

$$= \frac{15 - 1}{4}$$

$$= \frac{14}{4}$$

$$x = \frac{7}{2}$$

$$y = \frac{|A_y|}{A}$$

$$y = \frac{\begin{vmatrix} 2 & 3 \\ 6 & 1 \end{vmatrix}}{4}$$

$$y = \frac{(2)(1) - (6)(3)}{4}$$

$$y = \frac{2 - 18}{4}$$

$$y = \frac{-16}{4}$$

$$y = -4$$

$$x = \frac{7}{2}, y = -4$$

(b) Simplify:
$$\begin{aligned} & \left(\frac{a^{2l}}{a^{l+m}} \right) \left(\frac{a^{2m}}{a^{m+n}} \right) \left(\frac{a^{2n}}{a^{n+l}} \right) \\ &= \left(\frac{a^{2l}}{a^{l+m}} \right) \left(\frac{a^{2m}}{a^{m+n}} \right) \left(\frac{a^{2n}}{a^{n+l}} \right) \\ & a^{2l-(l+m)} \times a^{2m-(m+n)} \times a^{2n-(n+l)} \\ &= a^{l-m} \times a^{m-n} \times a^{n-l} \\ &= a^{l-m+m-n+n-l} \\ &= a^0 \\ &= 1 \end{aligned} \quad (4)$$

Q.6.(a) Use log table to find the value of : (4)

$$\frac{0.678 \times 9.01}{0.0234}$$

Ans Let,

$$x = \frac{0.678 \times 9.01}{0.0234}$$

Taking log both side

$$\begin{aligned} \log x &= \log \frac{0.678 \times 9.01}{0.0234} \\ &= \log 0.678 + \log 9.01 - \log 0.0234 \\ &= \bar{1}.8312 + 0.9547 - (\bar{2}.3692) \\ &= \bar{1}.8312 + 0.9547 - \bar{2}.3692 \\ &= -1 + .8312 + 0.9547 + 2 - .3692 \\ &= 2.4167 \end{aligned}$$

Take antilog

$$x = \text{Antilog } 2.4167$$

$$x = 261$$

(b) If $x + y = 7$ and $xy = 12$, then find the value of $x^3 + y^3$. (4)

Ans

$$x + y = 7$$

$$xy = 12$$

$$x^3 + y^3 = ?$$

Formula:

$$(x + y)^3 = x^3 + y^3 + 3xy(x + y)$$

Putting values,

$$(7)^3 = x^3 + y^3 + 3(12)(7)$$

$$343 = x^3 + y^3 + 252$$

$$343 - 252 = x^3 + y^3$$

$$91 = x^3 + y^3$$

$$\boxed{x^3 + y^3 = 91}$$

Q.7.(a) For what value of m is the polynomial

$$p(x) = 4x^3 - 7x^2 + 6x - 3m$$

exactly divisible by $x + 2$?

Ans

$$P(x) = 4x^3 - 7x^2 + 6x - 3m$$

From $x + 2 = 0, x = -2$

$$\begin{aligned} P(-2) &= 4(-2)^3 - 7(-2)^2 + 6(-2) - 3m \\ &= -32 - 28 - 12 - 3m \\ &= -72 - 3m \end{aligned}$$

If $x + 2$ is factor, then $R = 0$.

$$-72 - 3m = 0$$

$$-3(24 + m) = 0$$

$$24 + m = 0$$

$$\boxed{m = -24}$$

(b) Simplify to the lowest form:

$$\begin{aligned} &\frac{2y^2 + 7y - 4}{3y^2 - 13y + 4} \div \frac{4y^2 - 1}{6y^2 + y - 1} \\ \text{Ans} &= \frac{2y^2 + 7y - 4}{3y^2 - 13y + 4} \div \frac{4y^2 - 1}{6y^2 + y - 1} \\ &= \frac{2y^2 + 8y - y - 4}{3y^2 - 12y - y + 4} \div \frac{(2y)^2 - (1)^2}{6y^2 + 3y - 2y - 1} \\ &= \frac{2y(y + 4) - 1(y + 4)}{3y(y - 4) - 1(y - 4)} \div \frac{(2y + 1)(2y - 1)}{3y(2y + 1) - 1(2y + 1)} \\ &= \frac{(2y - 1)(y + 4)}{(3y - 1)(y - 4)} \div \frac{(2y + 1)(2y - 1)}{(3y - 1)(2y + 1)} \\ &= \frac{\cancel{(2y - 1)}(y + 4)}{\cancel{(3y - 1)}(y - 4)} \times \frac{\cancel{(3y - 1)}}{\cancel{(2y + 1)}} \end{aligned}$$

$$= \frac{y+4}{y-4}$$

Q.8.(a) Find the solution set of the equation: (4)

$$\frac{x}{3x-6} = 2 - \frac{2x}{x-2}, x \neq 2$$

Ans

$$\frac{x}{3x-6} + \frac{2x}{x-2} = 2$$

$$\frac{x}{3(x-2)} + \frac{2x}{x-2} = 2$$

$$\frac{x + 3(2x)}{3(x-2)} = 2$$

$$\frac{x + 6x}{3x-6} = 2$$

$$\frac{7x}{3x-6} = 2$$

$$7x = 2(3x-6)$$

$$7x = 6x - 12$$

$$7x - 6x = -12$$

$$x = \{-12\}$$

(b) Construct $\triangle ABC$. Draw perpendicular bisectors of its sides: (4)

$$m\angle A = 120^\circ, m\overline{AC} = 3.2 \text{ cm}, m\overline{AB} = 2.4 \text{ cm}$$

Ans

Step of Construction:

- (i) Take $m\overline{AB} = 2.4 \text{ cm}$.
- (ii) Draw $m\angle BAC = 120^\circ$ at point A.

- (iii) With centre at the point A and radius 3.2 cut $mAC = 3.2\text{ cm}$.
- (iv) Join B to C to complete the $\triangle ABC$.
- (v) Draw perpendicular bisectors of BC and CA meeting at point O.
- (vi) Now draw perpendicular bisector of third side AB.
- (vii) We observe that it also passes through O, the point of intersection of first two perpendicular bisectors.
- (viii) Hence the three perpendicular bisectors of $\triangle ABC$ are concurrent at O.

Q.9. Prove that the right bisectors of the sides of a triangle are concurrent.

Ans For Answer see Paper 2017 (Group-I), Q.9.

OR

Prove that triangles on equal bases and of equal altitudes are equal in area.

Ans For Answer see 2014 (Group-II), Q.9(OR).

Babullim