

Математика: алгебра и начала математического анализа, геометрия

Геометрия

Учебник для общеобразовательных организаций

Базовый и углублённый уровни

Рекомендовано Министерством просвещения Российской Федерации

7-е издание, переработанное и дополненное

Москва «Просвещение» 2019

УДК 373:514+514(075.3) ББК 22.151я721 М34

Серия «МГУ — школе» основана в 1999 году

Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, Л. С. Киселёва

На учебник получены положительные заключения научной (заключение РАО № 481 от 14.11.2016 г.), педагогической (заключение РАО № 170 от 05.10.2016 г.) и общественной (заключение РКС № 164-ОЭ от 19.12.2016 г.) экспертиз.

Условные обозначения:

25* — пункт, необязательный для изучения на базовом уровне

20 — задача, не являющаяся обязательной на базовом уровне

 начало материала, необязательного для изучения на базовом уровне

 — окончание материала, необязательного для изучения на базовом уровне

Математика: алгебра и начала математического анализа, М34 геометрия. Геометрия. 10—11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни / [Л. С. Атанасян и др.]. — 7-е изд., перераб. и доп. — М.: Просвещение, 2019. — 287 с.: ил. — (МГУ — школе). — ISBN 978-5-09-071730-4.

Учебник позволяет обеспечить вариативность обучения не только согласно системе условных обозначений, но и благодаря хорошо подобранной системе задач, включающей типовые задачи к каждому параграфу, дополнительные задачи к главе и задачи повышенной трудности.

УДК 373:514+514(075.3) ББК 22.151я721

ISBN 978-5-09-071730-4

© Издательство «Просвещение», 2014, 2019

© Художественное оформление. Издательство «Просвещение», 2014, 2019 Все права защищены

Введение

1 Предмет стереометрии

Школьный курс геометрии состоит из двух частей: планиметрии и стереометрии. В планиметрии изучаются свойства геометрических фигур на плоскости. Стереометрия — это раздел геометрии, в котором изучаются свойства фигур в пространстве. Слово «стереометрия» происходит от греческих слов «стереос» — объёмный, пространственный и «метрео» — измерять.

Простейшими и, можно сказать, основными фигурами в пространстве являются точки, прямые и плоскости. Наряду с этими фигурами мы будем рассматривать геометрические тела и их поверхности. Представление о геометрических телах дают окружающие нас предметы. Так, например, кристаллы имеют форму геометрических тел, поверхности которых составлены из многоугольников. Такие поверхности называются многогранниками. Одним из простейших многогранников является куб (рис. 1, а). Капли жидкости в невесомости принимают форму геометрического тела, называемого **шаром** (рис. $1, \delta$). Такую же форму имеет футбольный мяч. Консервная банка имеет форму геометрического тела, называемого **пилиндром** (рис. $1, \beta$).

В отличие от реальных предметов геометрические тела, как и всякие геометрические фигуры, являются воображаемыми объектами. Мы представляем геометрическое тело как часть пространства, отделённую от остальной части пространства поверхностью — границей этого тела. Так, например, граница шара есть сфера, а граница цилиндра состоит из двух кругов — оснований цилиндра и боковой поверхности.

Изучая свойства геометрических фигур — воображаемых объектов, мы получаем представление о геометрических свойствах реальных

Куб

б) Шар

. Цилиндр

Рис. 1

предметов (их форме, взаимном расположении и т. д.) и можем использовать эти свойства в практической деятельности. В этом состоит практическое (прикладное) значение геометрии. Геометрия, в частности стереометрия, широко используется в строительном деле, архитектуре, машиностроении, геодезии, во многих других областях науки и техники.

При изучении пространственных фигур, в частности геометрических тел, пользуются их изображениями на чертеже. Как правило, изображением пространственной фигуры служит её проекция на ту или иную плоскость. Одна и та же фигура допускает различные изображения. Обычно выбирается то из них, которое создаёт правильное представление о форме фигуры и наиболее удобно для исследования её свойств. На рисунках 2, а, б изображены два многогранника — параллелениед и пирамида, а на рисунке 2, в — конус. При этом невидимые части этих фигур изображены штриховыми линиями. Правила изображения пространственных фигур приведены в приложении 1.

В течение двух лет мы будем изучать взаимное расположение прямых и плоскостей, многогранники, «круглые» геометрические тела — цилиндр, конус, шар, рассмотрим вопрос об объёмах тел и познакомимся с векторами и методом координат в пространстве.

2 Аксиомы стереометрии

В планиметрии основными фигурами были точки и прямые. В стереометрии наряду с ними рассматривается ещё одна основная фигура — плоскость. Представление о плоскости даёт гладкая поверхность стола или стены. Плоскость как геометрическую фигуру следует представлять себе простирающейся неограниченно во все стороны.

Как и ранее, точки будем обозначать прописными латинскими буквами A, B, C и т. д., а прямые — строчными латинскими буквами a, b, c и т. д. или двумя прописными латинскими буквами AB, CD и т. д. Плоскости будем обозначать греческими буквами α , β , γ и т. д. На рисунках плоскости изображаются в виде параллелограмма (рис. β , α) или в виде произвольной области (рис. β , δ).

Параллелепипед

Пирамида

Конус

Рис. 2

Ясно, что в каждой плоскости лежат какие-то точки пространства, но не все точки пространства лежат в одной и той же плоскости. На рисунке 3, δ точки A и B лежат в плоскости β (плоскость β проходит через эти точки), а точки M, N, P не лежат в этой плоскости. Коротко это записывают так: $A \in \beta$, $B \in \beta$, $M \notin \beta$, $N \notin \beta$, $P \notin \beta$.

Основные свойства точек, прямых и плоскостей, касающиеся их взаимного расположения, выражены в аксиомах. Вся система аксиом стереометрии состоит из ряда аксиом, большая часть которых нам знакома по курсу планиметрии. Полный список аксиом и некоторые следствия из них приведены в приложении 2. Здесь мы сформулируем лишь три аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве. Ниже они обозначены A_1 , A_2 , A_3 .

Точки A и B лежат в плоскости β , а точки M, N и P не лежат в этой плоскости

Рис. 3

 \mathbf{A}_1

Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Иллюстрацией к этой аксиоме может служить модель, изображённая на рисунке 4. Плоскость, проходящую через точки A, B и C, не лежащие на одной прямой, иногда называют плоскостью ABC.

Отметим, что если взять не три, а четыре произвольные точки, то через них может не проходить ни одна плоскость. Иначе говоря, четыре точки могут не лежать в одной плоскости. Каждый знаком с таким наглядным подтверждением этого факта: если ножки стула не одинаковые по длине, то стул стоит на трёх ножках, т. е. опирается на три «точки», а конец четвёртой ножки (четвёртая «точка») не лежит в плоскости пола, а висит в воздухе.

Иллюстрация к аксиоме A_1 : пластинка поддерживается тремя точками A, B и C, не лежащими на одной прямой

Рис. 4

 $\mathbf{A_2}$

Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости 1 .

¹ Здесь и в дальнейшем, говоря «две точки» («две прямые», «три плоскости» и т. д.), будем считать, что эти точки (прямые, плоскости) различны.

В таком случае говорят, что прямая лежит в плоскости или плоскость проходит через прямую (рис. 5, a).

Свойство, выраженное в аксиоме A_2 , используется для проверки «ровности» чертёжной линейки. С этой целью линейку прикладывают краем к плоской поверхности стола. Если край линейки ровный (прямолинейный), то он всеми своими точками прилегает к поверхности стола. Если край неровный, то в каких-то местах между ним и поверхностью стола образуется просвет.

a)

Прямая AB лежит в плоскости α

Прямая a и плоскость α пересекаются в точке M

 \mathbf{A}_3

Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

В таком случае говорят, что **плоскости пересекаются по прямой** (рис. 5, ε). Наглядной иллюстрацией аксиомы A_3 является пересечение двух смежных стен, стены и потолка классной комнаты.

Прежде чем перейти к первым следствиям из данных аксиом, отметим одно важное обстоятельство, которым будем пользоваться в дальнейшем. В пространстве существует бесконечно много плоскостей, и в каждой плоскости справедливы все аксиомы и теоремы планиметрии. Более того, признаки равенства и подобия треугольников, известные из курса планиметрии, справедливы и для треугольников, расположенных в разных плоскостях (см. приложение 2).

Плоскости α и β пересекаются по прямой a

Рис. 5

3 Некоторые следствия из аксиом

Теорема

Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

Доказательство

Рассмотрим прямую a и не лежащую на ней точку M (рис. 6). Докажем, что через прямую a и точку M проходит плоскость. Отметим на прямой a две точки P и Q. Точки M, P и Q не лежат на одной прямой, поэтому согласно аксиоме A_1 через эти точки проходит некоторая плоскость α . Так как две точки прямой a (P и Q) лежат в плоскости α , то по аксиоме A_2 плоскость α проходит через прямую a.

Единственность плоскости, проходящей через прямую a и точку M, следует из того, что любая плоскость, проходящая через прямую a и точку M, проходит через точки M, P и Q. Следовательно, эта плоскость совпадает с плоскостью α , так как по аксиоме A_1 через точки M, P и Q проходит только одна плоскость. Теорема доказана.

Рис. 6

Теорема

Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Доказательство

Рассмотрим прямые a и b, пересекающиеся в точке M (рис. 7), и докажем, что через эти прямые проходит плоскость, и притом только одна.

Отметим на прямой b какую-нибудь точку N, отличную от точки M, и рассмотрим плоскость α , проходящую через точку N и прямую a. Так как две точки прямой b лежат в плоскости α , то по аксиоме A_2 плоскость α проходит через прямую b. Итак, плоскость α проходит через прямые a и b. Единственность такой плоскости следует из того, что любая плоскость, проходящая через прямые a и b, проходит через точку N. Следовательно, она совпадает с плоскостью α , поскольку через точку N и прямую a проходит только одна плоскость. Теорема доказана.

1 По рисунку 8 назовите: а) плоскости, в которых лежат прямые PE, MK, DB, AB, EC; б) точки пересечения прямой DK с плоскостью ABC, прямой CE с плоскостью ADB; в) точки, лежащие в плоскостях ADB и DBC; г) прямые, по которым пересекаются плоскости ABC и DCB, ABD и CDA, PDC и ABC.

Рис. 7

Рис. 8

2 По рисунку 9 назовите: а) точки, лежащие в плоскостях DCC_1 и BQC; б) плоскости, в которых лежит прямая AA_1 ; в) точки пересечения прямой MK с плоскостью ABD. прямых DK и BP с плоскостью $A_1B_1C_1$; г) прямые, по которым пересекаются плоскости AA_1B_1 и ACD, PB_1C_1 и ABC; д) точки пересечения прямых MK и DC, B_1C_1 и BP, C_1M и DC.

Рис. 9

- 3 Верно ли, что: а) любые три точки лежат в одной плоскости; б) любые четыре точки лежат в одной плоскости; в) любые четыре точки не лежат в одной плоскости; г) через любые три точки проходит плоскость, и притом только одна?
- 4 Точки A, B, C и D не лежат в одной плоскости. a) Могут ли какие-то три из них лежать на одной прямой? б) Могут ли прямые AB и CD пересекаться? Ответ обоснуйте.
- 5 Докажите, что через три данные точки, лежащие на прямой, проходит плоскость. Сколько существует таких плоскостей?
- 6 Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости.
- 7 Две прямые пересекаются в точке M. Докажите, что все прямые, не проходящие через точку M и пересекающие данные прямые, лежат в одной плоскости. Лежат ли в одной плоскости все прямые, проходящие через точку M?
- 8 Верно ли утверждение: а) если две точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости; б) если три точки окружности лежат в плоскости, то и вся окружность лежит в этой плоскости?
- 9 Две смежные вершины и точка пересечения диагоналей параллелограмма лежат в плоскости с. Лежат ли две другие вершины параллелограмма в плоскости α? Ответ обоснуйте.
- 10 Верно ли, что прямая лежит в плоскости данного треугольника, если она: а) пересекает две стороны треугольника; б) проходит через одну из вершин треугольника?
- 11 Даны прямая и точка, не лежащая на этой прямой. Докажите, что все прямые, проходящие через данную точку и пересекающие данную прямую, лежат в одной плоскости.
- 12 Точки A, B, C, D не лежат в одной плоскости. Пересекаются ли плоскости, проходящие через точки A, B, C и A, B, D?
- 13 Могут ли две плоскости иметь: а) только одну общую точку; б) только две общие точки; в) только одну общую прямую?
- 14 Три прямые проходят через одну точку. Через каждые две из них проведена плоскость. Сколько всего проведено плоскостей?
- 15 Три прямые попарно пересекаются. Докажите, что они либо лежат в одной плоскости, либо имеют общую точку.

Глава I Параллельность прямых и плоскостей

Параллельность прямых, прямой и плоскости

4 Параллельные прямые в пространстве

Введём понятие параллельных прямых в пространстве.

Определение

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Параллельность прямых a и b обозначается так: $a \parallel b$. На рисунке 10 прямые a и b параллельны, а прямые a и c, a и d, b и c, b и d не параллельны.

Докажем теорему о параллельных прямых.

Теорема

Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

Доказательство

Рассмотрим прямую a и точку M, не лежащую на этой прямой (рис. 11). Через прямую a и точку M проходит плоскость, и притом только одна (п. 3). Обозначим эту плоскость буквой α . Прямая, проходящая через точку M параллельно прямой a, должна лежать в одной плоскости α точкой α и прямой α , т. е. должна лежать в плоскости α . Но в плоскости α , как известно из курса планиметрии, через точку α проходит прямая, параллельная прямой α , и притом только одна. На рисунке 11 эта прямая обозначена буквой α . Итак, α 0 — единственная прямой α 3. Теорема локазана.

Рис. 10

Рис. 11

В дальнейшем нам понадобятся также понятия параллельных отрезков, параллельных отрезка и прямой, параллельных лучей. Два отрезка называются **параллельными**, если они лежат на параллельных прямых. Аналогично определяется параллельность отрезка и прямой, а также параллельность двух лучей. На рисунке 12 отрезки CD и EF параллельны ($CD \parallel EF$), а отрезки AB и CD не параллельны, отрезок AB параллелен прямой $AB \parallel a$.

Рис. 12

5 Параллельность трёх прямых

Докажем лемму о пересечении плоскости параллельными прямыми, необходимую для дальнейшего изложения.

Лемма

Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

Доказательство

Рассмотрим параллельные прямые a и b, одна из которых — прямая a — пересекает плоскость α в точке M (рис. 13, a). Докажем, что прямая b также пересекает плоскость α , т. е. имеет с ней только одну общую точку.

Обозначим буквой β плоскость, в которой лежат параллельные прямые a и b. Так как две различные плоскости α и β имеют общую точку M, то по аксиоме A_3 они пересекаются по некоторой прямой p (рис. 13, δ). Эта прямая лежит в плоскости β и пересекает прямую a (в точке M), поэтому она пересекает параллельную ей прямую b в некоторой точке N. Прямая p лежит также в плоскости α , поэтому N — точка плоскости α . Следовательно, N — общая точка прямой b и плоскости α .

Докажем теперь, что прямая b не имеет других общих точек с плоскостью α , кроме точки N. Это и будет означать, что прямая b пересекает плоскость α . Действительно, если бы прямая b имела ещё одну общую точку с плоскостью α , то она целиком лежала бы в плоскости α и, значит, была бы общей прямой плоскостей α и β , т. е. совпадала бы с прямой p. Но это невозможно, так как по условию прямые a и b параллельны, а прямые a и p пересекаются. Лемма доказана. \triangle

Рис. 13

Из курса планиметрии известно, что если три прямые лежат в одной плоскости и две из них параллельны третьей прямой, то эти две прямые параллельны. Аналогичное утверждение имеет место и для трёх прямых в пространстве. Сформулируем и докажем это утверждение.

Теорема

Если две прямые параллельны третьей прямой, то они параллельны.

Доказательство

Пусть $a \parallel c$ и $b \parallel c$. Докажем, что $a \parallel b$. Для этого нужно доказать, что прямые a и b: 1) лежат в одной плоскости и 2) не пересекаются.

1) Отметим какую-нибудь точку K на прямой b и обозначим буквой α плоскость, проходящую через прямую a и точку K (рис. 14). Докажем, что прямая b лежит в этой плоскости. Действительно, если допустить, что прямая b пересекает плоскость α , то по лемме о пересечении плоскости параллельными прямыми прямая c также пересекает плоскость α . Но так как прямые a и c параллельны, то и прямая a пересекает плоскость α , что невозможно, ибо прямая a лежит в плоскости α .

2) Прямые a и b не пересекаются, так как в противном случае через точку их пересечения проходили бы две прямые (a и b), параллельные прямой c, что невозможно в силу теоремы о параллельных прямых (n. 4). Теорема доказана.

Рис. 14

6 Параллельность прямой и плоскости

Если две точки прямой лежат в данной плоскости, то согласно аксиоме A_2 вся прямая лежит в этой плоскости. Отсюда следует, что возможны три случая взаимного расположения прямой и плоскости в пространстве:

- а) прямая лежит в плоскости (см. рис. 5, a);
- б) прямая и плоскость имеют только одну общую точку, т. е. пересекаются (см. рис. $5, \delta$);
- в) прямая и плоскость не имеют ни одной общей точки.

Определение

Прямая и плоскость называются параллельными, если они не имеют общих точек.

Параллельность прямой a и плоскости α обозначается так: $a \parallel \alpha$. Наглядное представление о прямой, параллельной плоскости, дают натянутые троллейбусные или трамвайные провода — они параллельны плоскости земли. Другой пример даёт линия пересечения стены и потолка — эта линия параллельна плоскости пола (рис. 15, a). Заметим, что в плоскости пола имеется прямая, параллельная этой линии. Такой прямой является, например, линия пересечения пола с той же самой стеной.

На рисунке 15, a указанные прямые обозначены буквами a и b. Оказывается, что если в плоскости α имеется прямая b, параллельная прямой a, не лежащей в плоскости α , то прямая a и плоскость α параллельны (рис. 15, δ).

Другими словами, наличие в плоскости α прямой b, параллельной прямой a, является признаком, по которому можно сделать вывод о параллельности прямой a и плоскости α . Сформулируем это утверждение в виде теоремы.

Рис. 15

Теорема

Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.

Доказательство

Рассмотрим плоскость α и две параллельные прямые a и b, расположенные так, что прямая b лежит в плоскости α , а прямая a не лежит в этой плоскости (рис. 15, δ). Докажем, что $a \parallel \alpha$.

Допустим, что это не так. Тогда прямая a пересекает плоскость α , а значит, по лемме о пересечении плоскости параллельными прямыми прямая b также пересекает плоскость α . Но это невозможно, так как прямая b лежит в плоскости α . Итак, прямая a не пересекает плоскость α , поэтому она параллельна этой плоскости. Теорема доказана.

Докажем ещё два утверждения, которые часто используются при решении задач.

10. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.

Пусть через данную прямую a, параллельную плоскости α , проходит плоскость β , пересекающая плоскость α по прямой b (рис. 16). Докажем, что $b \parallel a$. Действительно, эти прямые лежат в одной плоскости (в плоскости β) и не пересекаются: ведь в противном случае прямая a пересекала бы плоскость α , что невозможно, поскольку по условию $a \parallel \alpha$.

В самом деле, пусть a и b — параллельные прямые, причём прямая a параллельна плоскости α . Тогда прямая a не пересекает плоскость α , и, следовательно, по лемме о пересечении плоскости параллельными прямыми прямая b также не пересекает плоскость α . Поэтому прямая b либо параллельна плоскости α , либо лежит в этой плоскости.

Рис. 16

Вопросы и задачи

- 16 Параллельные прямые a и b лежат в плоскости α . Докажите, что прямая c, пересекающая прямые a и b, также лежит в плоскости α .
- 17 На рисунке 17 точки M, N, Q и P середины отрезков DB, DC, AC и AB. Найдите периметр четырёхугольника MNQP, если AD=12 см, BC=14 см.
- 18 Точка C лежит на отрезке AB. Через точку Рис. 17 A проведена плоскость, а через точки B и C параллельные прямые, пересекающие эту плоскость соответственно в точках B_1 и C_1 . Найдите длину отрезка CC_1 , если: а) точка C середина отрезка AB и BB_1 = 7 см; б) AC:CB = 3 : 2 и BB_1 = 20 см.
- 19 Стороны AB и BC параллелограмма ABCD пересекают плоскость α . Докажите, что прямые AD и DC также пересекают плоскость α .
- 20 Средняя линия трапеции лежит в плоскости α. Пересекают ли прямые, содержащие её основания, плоскость α? Ответ обоснуйте.
- **21** Треугольники ABC и ABD не лежат в одной плоскости. Докажите, что любая прямая, параллельная отрезку CD, пересекает плоскости данных треугольников.

- 22 Точки A и B лежат в плоскости α , а точка C не лежит в этой плоскости. Докажите, что прямая, проходящая через середины отрезков AC и BC, параллельна плоскости α .
- 23 Точка M не лежит в плоскости прямоугольника ABCD. Докажите, что прямая CD параллельна плоскости ABM.
- **24** Точка M не лежит в плоскости трапеции ABCD с основанием AD. Докажите, что прямая AD параллельна плоскости BMC.
- 25 Докажите, что если данная прямая параллельна прямой, по которой пересекаются две плоскости, и не лежит в этих плоскостях, то она параллельна этим плоскостям.
- 26 Сторона AC треугольника ABC параллельна плоскости α , а стороны AB и BC пересекаются с этой плоскостью в точках M и N. Докажите, что треугольники ABC и MBN подобны.
- 27 Точка C лежит на отрезке AB, причём AB:BC=4:3. Отрезок CD, равный 12 см, параллелен плоскости α , проходящей через точку B. Докажите, что прямая AD пересекает плоскость α в некоторой точке E, и найдите отрезок BE.
- 28 На сторонах AB и AC треугольника ABC взяты соответственно точки D и E так, что длина отрезка DE равна 5 см и $\frac{BD}{DA} = \frac{2}{3}$. Плоскость α проходит через точки B и C и параллельна отрезку DE. Найдите длину отрезка BC.
- **29** В трапеции ABCD основание BC равно 12 см. Точка M не лежит в плоскости трапеции, а точка K середина отрезка BM. Докажите, что плоскость ADK пересекает отрезок MC в некоторой точке H, и найдите отрезок KH.
- 30 Основание AB трапеции ABCD параллельно плоскости α , а вершина C лежит в этой плоскости. Докажите, что: а) основание CD трапеции лежит в плоскости α ; б) средняя линия трапеции параллельна плоскости α .
- 31 Плоскость α параллельна стороне BC треугольника ABC и проходит через середину стороны AB. Докажите, что плоскость α проходит также через середину стороны AC.
- 32 Плоскости α и β пересекаются по прямой AB. Прямая a параллельна как плоскости α , так и плоскости β . Докажите, что прямые a и AB па раллельны.

Решение

Через точку A проведём прямую AM, параллельную прямой a (рис. 18). Так как прямая a параллельна плоскостям α и β , то пря-

¹ Выражения «проведём прямую», «проведём плоскость», разумеется, не нужно понимать в буквальном смысле (ни прямую, ни плоскость в пространстве мы не проводим). Эти слова означают, что указанная прямая или плоскость вводятся в рассмотрение.

мая AM лежит как в плоскости α , так и в плоскости β (п. 6, утверждение 2^0). Таким образом, AM — прямая, по которой пересекаются плоскости α и β , т. е. она совпадает с прямой AB. Следовательно, $AB \parallel a$.

33 Докажите, что если три плоскости, не проходящие через одну прямую, попарно пересекаются, то прямые, по которым они пересекаются, либо параллельны, либо имеют общую точку.

Рис. 18

Взаимное расположение прямых в пространстве. Угол между двумя прямыми

7 Скрещивающиеся прямые

Если две прямые пересекаются или параллельны, то они лежат в одной плоскости. Однако в пространстве две прямые могут быть расположены так, что они не лежат в одной плоскости, т. е. не существует такой плоскости, которая проходит через обе эти прямые. Ясно, что такие прямые не пересекаются и не параллельны.

Рис. 19

Определение

Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Наглядное представление о скрещивающихся прямых дают две дороги, одна из которых проходит по эстакаде, а другая — под эстакадой (рис. 19).

Докажем теорему, которая выражает признак скрещивающихся прямых.

Теорема

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Доказательство

Рассмотрим прямую AB, лежащую в плоскости α , и прямую CD, пересекающую эту плоскость в точке C, не лежащей на прямой AB (рис. 20). Докажем, что AB и CD — скрещивающиеся прямые, т. е. они не лежат в одной плоскости. Действительно, если допустить, что прямые AB и CD лежат в некоторой плоскости β , то плоскость β будет проходить через прямую AB и точку C и поэтому совпадёт с плоскостью α . Но это невозможно, так как прямая CD не лежит в плоскости α . Теорема доказана.

Итак, возможны три случая взаимного расположения двух прямых в пространстве:

- а) **прямые пересекаются**, т. е. имеют только одну общую точку (рис. 21, *a*);
- б) прямые параллельны, т. е. лежат в одной плоскости и не пересекаются (рис. 21, δ);
- в) прямые скрещиваются, т. е. не лежат в одной плоскости (рис. 21, s).

Пересекающиеся прямые

Параллельные прямые

Рис. 21

Докажем ещё одну теорему о скрещивающихся прямых.

Теорема

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.

Доказательство

Рассмотрим скрещивающиеся прямые AB и CD (рис. 22). Докажем, что через прямую AB проходит плоскость, параллельная прямой CD, и такая плоскость только одна.

Проведём через точку A прямую AE, параллельную прямой CD, и обозначим буквой α плоскость, проходящую через прямые AB и AE.

Так как прямая CD не лежит в плоскости α и параллельна прямой AE, лежащей в этой плоскости, то прямая CD параллельна плоскости α .

Ясно, что плоскость α — единственная плоскость, проходящая через прямую AB и параллельная прямой CD. В самом деле, любая другая плоскость, проходящая через прямую AB, пересекается с прямой AE, а значит, пересекается и с параллельной ей прямой CD. Теорема доказана.

Наглядной иллюстрацией этой теоремы служат две дороги, одна из которых проходит по эстакаде, а другая — под эстакадой (см. рис. 19). Нижняя дорога лежит в плоскости земли, параллельной дороге на эстакаде. Ясно, что и через дорогу на эстакаде проходит плоскость, параллельная плоскости земли, а значит, параллельная нижней дороге.

8 Углы с сонаправленными сторонами

Согласно одной из аксиом (см. приложение 2) любая прямая a, лежащая в плоскости, разделяет эту плоскость на две части, называемые полуплоскостями (рис. 23). Прямая a называется границей каждой из этих полуплоскостей. Любые две точки одной и той же полуплоскости лежат по одну сторону от прямой a, а любые две точки разных полуплоскостей — по разные стороны от этой прямой (см. рис. 23).

Два луча OA и O_1A_1 , не лежащие на одной прямой, называются сонаправленными, если они параллельны и лежат в одной полуплоскости с границей OO_1 . Лучи OA и O_1A_1 , лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой. На рисунке 24 лучи OA и O_1A_1 , а также лучи A_2B_2 и O_2B_2 сонаправлены, а лучи OA и O_2A_2 , OA и O_3A_3 , O_2A_2 и O_2B_2 не являются сонаправленными (объясните почему). Докажем теорему об углах с сонаправленными сторонами.

Рис. 22

Прямая *а* разделяет плоскость на две полуплоскости

Рис. 23

Лучи OA и O_1A_1 , а также A_2B_2 и O_2B_2 — сонаправленные

Рис. 24

Теорема

Если стороны двух углов соответственно сонаправлены, то такие углы равны.

Доказательство

Ограничимся рассмотрением случая, когда углы O и O_1 с соответственно сонаправленными сторонами лежат в разных плоскостях, и докажем, что $\angle O = \angle O_1$

Отметим на сторонах угла O какие-нибудь точки A и B и отложим на соответственных сторонах угла O_1 отрезки $O_1A_1=OA$ и $O_1B_1=OB$ (рис. 25). Так как лучи OA и O_1A_1 сонаправлены и $OA=O_1A_1$, то получится параллелограмм OAA_1O_1 и, следовательно, $AA_1 \parallel OO_1$ и $AA_1=OO_1$. Аналогично получаем: $BB_1 \parallel OO_1$ и $BB_1=OO_1$. Отсюда следует, что $AA_1 \parallel BB_1$ и $AA_1=BB_1$, а значит, ABB_1A_1 — параллелограмм и $AB=A_1B_1$.

Сравним теперь треугольники AOB и $A_1O_1B_1$. Они равны по трём сторонам, и поэтому $\angle O = \angle O_1$. Теорема доказана.

▼ Замечание

При доказательстве мы неявно воспользовались тем, что отрезки AB и A_1B_1 не пересекаются (в противном случае параллелограммом оказалась бы фигура AB_1BA_1 , а не ABB_1A_1). Докажем это. Допустим, что отрезки AB и A_1B_1 пересекаются. Тогда плоскости AOB и $A_1O_1B_1$ пересекаются по некоторой прямой a. Поскольку $OA \parallel O_1A_1$, то $OA \parallel A_1O_1B_1$, поэтому $a \parallel OA$ (см. п. 6). Аналогично $a \parallel OB$. Но этого не может быть, так как через точку O проходит одна прямая, параллельная прямой a. Следовательно, отрезки AB и A_1B_1 не пересекаются. \triangle

9 Угол между прямыми

Любые две пересекающиеся прямые лежат в одной плоскости и образуют четыре неразвёрнутых угла. Если известен один из этих углов, то можно найти и другие три угла (рис. 26). Пусть α — тот из углов, который не превосходит любого из трёх остальных углов. Тогда говорят, что угол между пересекающимися прямыми равен α . Очевидно, $0^{\circ} < \alpha \le 90^{\circ}$.

Введём теперь понятие угла между скрещивающимися прямыми. Пусть AB и CD — две скрещивающиеся прямые (рис. 27, a). Через произвольную точку M_1 проведём прямые A_1B_1 и C_1D_1 , соответственно параллельные прямым AB и CD (рис. 27, δ).

Рис. 25

Рис. 26

18

Если угол между прямыми A_1B_1 и C_1D_1 равен ϕ , то будем говорить, что угол между скрещивающимися прямыми AB и CD равен ϕ .

Докажем, что угол между скрещивающимися прямыми не зависит от выбора точки M_1 . Действительно, возьмём любую другую точку M_2 и проведём через неё прямые A_2B_2 и C_2D_2 , соответственно параллельные прямым AB и CD (см. рис. 27, δ). Так как $A_1B_1\parallel A_2B_2$, $C_1D_1\parallel C_2D_2$ (объясните почему), то стороны углов с вершинами M_1 и M_2 попарно сонаправлены (на рис. 27, δ такими углами являются $\angle A_1M_1C_1$ и $\angle A_2M_2C_2$, $\angle A_1M_1D_1$ и $\angle A_2M_2D_2$ и т. д.). Поэтому эти углы соответственно равны. Отсюда следует, что угол между прямыми A_2B_2 и C_2D_2 также равен φ .

В качестве точки M_1 можно взять любую точку на одной из скрещивающихся прямых. На рисунке 27, ϵ на прямой CD отмечена точка M и через эту точку проведена прямая A'B', параллельная прямой AB. Угол между прямыми A'B' и CD также равен φ .

Вопросы и задачи

- 34 Точка D не лежит в плоскости треугольника ABC, точки M, N и P середины отрезков DA, DB и DC соответственно, точка K лежит на отрезке BN. Выясните взаимное расположение прямых:
 - a) ND и AB;
- б) *PK* и *BC*:
- в) MN и AB;
- Γ) MP и AC;
- д) KN и AC;
- e) *MD* и *BC*.
- 35 Через точку M, не лежащую на прямой a, проведены две прямые, не имеющие общих точек с прямой a. Докажите, что по крайней мере одна из этих прямых и прямая a являются скрещивающимися прямыми.

Рис. 27

- **36** Прямая c пересекает прямую a и не пересекает прямую b, параллельную прямой a. Докажите, что b и c скрещивающиеся прямые.
- 37 Прямая m пересекает сторону AB треугольника ABC. Каково взаимное расположение прямых m и BC, если:
 - а) прямая m лежит в плоскости ABC и не имеет общих точек с отрезком AC;
 - б) прямая m не лежит в плоскости ABC?

- 38 Через вершину A ромба ABCD проведена прямая a, параллельная диагонали BD, а через вершину C прямая b, не лежащая в плоскости ромба. Локажите, что:
 - а) прямые a и CD пересекаются;
 - б) а и b скрещивающиеся прямые.
- **39** Докажите, что если AB и CD скрещивающиеся прямые, то AD и BC также скрещивающиеся прямые.
- 40 На скрещивающихся прямых a и b отмечены соответственно точки M и N. Через прямую a и точку N проведена плоскость α , а через прямую b и точку M плоскость β .
 - а) Лежит ли прямая b в плоскости α ?
 - б) Пересекаются ли плоскости α и β? При положительном ответе укажите прямую, по которой они пересекаются.
- 41 Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой? Ответ обоснуйте.
- **42** Даны параллелограмм ABCD и трапеция ABEK с основанием EK, не лежащие в одной плоскости.
 - а) Выясните взаимное расположение прямых CD и EK.
 - б) Найдите периметр трапеции, если известно, что в неё можно вписать окружность и AB = 22.5 см, EK = 27.5 см.
- **43** Докажите, что середины сторон пространственного четырёхугольника¹ являются вершинами параллелограмма.
- **44** Прямые OB и CD параллельные, а OA и CD скрещивающиеся прямые. Найдите угол между прямыми OA и CD, если:
 - a) $\angle AOB = 40^{\circ}$; 6) $\angle AOB = 135^{\circ}$; B) $\angle AOB = 90^{\circ}$.
- **45** Прямая a параллельна стороне BC параллелограмма ABCD и не лежит в плоскости параллелограмма. Докажите, что a и CD скрещивающиеся прямые, и найдите угол между ними, если один из углов параллелограмма равен:
 - a) 50° ; 6) 121° .
- **46** Прямая m параллельна диагонали BD ромба ABCD и не лежит в плоскости ромба. Докажите, что:
 - а) m и AC скрещивающиеся прямые, и найдите угол между ними;
 - б) m и AD скрещивающиеся прямые, и найдите угол между ними, если угол ABC равен 128° .
- 47 В пространственном четырёхугольнике ABCD стороны AB и CD равны. Докажите, что прямые AB и CD образуют равные углы с прямой, проходящей через середины отрезков BC и AD.

20

Четырёхугольник называется пространственным, если его вершины не лежат в одной плоскости.

Параллельность плоскостей

10 Параллельные плоскости

Мы знаем, что если две плоскости имеют общую точку, то они пересекаются по прямой (аксиома A_3). Отсюда следует, что две плоскости либо пересекаются по прямой (рис. 28, a), либо не пересекаются, т. е. не имеют ни одной общей точки (рис. $28, \delta$).

Определение

Две плоскости называются параллельными, если они не пересекаются.

Представление о параллельных плоскостях дают пол и потолок комнаты, две противоположные стены комнаты, поверхность стола и плоскость пола.

Параллельность плоскостей α и β обозначается так: $\alpha \parallel \beta$. Докажем теорему, выражающую признак параллельности двух плоскостей.

Плоскости α и β пересекаются

Плоскости а и β параллельны

Рис. 28

Теорема

Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство

Рассмотрим две плоскости α и β (рис. 29). В плоскости α лежат пересекающиеся в точке M прямые a и b, а в плоскости β — прямые a_1 и b_1 , причём $a \parallel a_1$ и $b \parallel b_1$. Докажем, что $\alpha \parallel \beta$. Прежде всего отметим, что по признаку параллельности прямой и плоскости $a \parallel \beta$ и $b \parallel \beta$.

Допустим, что плоскости α и β не параллельны. Тогда они пересекаются по некоторой прямой c. Мы получили, что плоскость α проходит через прямую a, параллельную плоскости β , и пересекает плоскость β по прямой c. Отсюда следует (по свойству 1^0 , п. 6), что прямые a и c параллельны.

Рис. 29

Но плоскость α проходит также через прямую b, параллельную плоскости β . Поэтому $b \parallel c$. Таким образом, через точку M проходят две прямые a и b, параллельные прямой c. Но это невозможно, так как по теореме о параллельных прямых через точку M проходит только одна прямая, параллельная прямой c. Значит, наше допущение неверно, и, следовательно, $\alpha \parallel \beta$. Теорема доказана.

11 Свойства параллельных плоскостей

Рассмотрим два свойства параллельных плоскостей.

1°. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Наглядным подтверждением этого факта служат линии пересечения пола и потолка со стеной комнаты — эти линии параллельны.

Для доказательства данного утверждения рассмотрим прямые a и b, по которым параллельные плоскости α и β пересекаются c плоскостью γ (рис. 30). Докажем, что прямые a и b параллельны. Эти прямые лежат в одной плоскости (в плоскости γ) и не пересекаются. В самом деле, если бы прямые a и b пересекались, то плоскости α и β имели бы общую точку, что невозможно, так как эти плоскости параллельны. Итак, прямые a и b лежат в одной плоскости и не пересекаются, т. е. прямые a и b параллельны.

 2^{0} . Отрезки параллельных прямых, заключённые между параллельными плоскостями, равны.

Для доказательства этого утверждения рассмотрим отрезки AB и CD двух параллельных прямых, заключённые между параллельными плоскостями α и β (рис. 31). Докажем, что AB = CD. Плоскость γ , проходящая через параллельные прямые AB и CD, пересекается с плоскостями α и β по параллельным прямым AC и BD (свойство 1^{0}). Таким образом, в четырёхугольнике ABDC противоположные стороны попарно параллельны, т. е. ABDC — параллелограмм. Но в параллелограмме противоположные стороны равны, поэтому отрезки AB и CD равны.

Рис. 30

Рис. 31

Вопросы и задачи

- 48 Укажите модели параллельных плоскостей на предметах классной комнаты.
- 49 Прямая m пересекает плоскость α в точке B. Существует ли плоскость, проходящая через прямую m и параллельная плоскости α ?
- 50 Плоскости α и β параллельны, прямая m лежит в плоскости α . Докажите, что прямая m параллельна плоскости β .
- 51 Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые m и n плоскости α параллельны плоскости β .
- 52 Две стороны треугольника параллельны плоскости α . Докажите, что и третья сторона параллельна плоскости α .
- 53 Три отрезка A_1A_2 , B_1B_2 и C_1C_2 , не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости $A_1B_1C_1$ и $A_2B_2C_2$ параллельны.
- 54 Точка B не лежит в плоскости треугольника ADC, точки M, N и P середины отрезков BA, BC и BD соответственно.
 - а) Докажите, что плоскости MNP и ADC параллельны.
 - б) Найдите площадь треугольника MNP, если площадь треугольника ADC равна $48~{\rm cm}^2$.
- 55 Докажите, что если прямая a пересекает плоскость α , то она пересекает также любую плоскость, параллельную данной плоскости α .

Решение

Рассмотрим произвольную плоскость β , параллельную плоскости α . Через какую-нибудь точку B плоскости β проведём прямую b, параллельную прямой a.

Так как прямая a пересекает плоскость α , то прямая b также пересекает эту плоскость. Следовательно, прямая b пересекает плоскость β (а не лежит в ней). Поэтому прямая a также пересекает плоскость β .

- 56 Плоскости α и β параллельны, A точка плоскости α . Докажите, что любая прямая, проходящая через точку A и параллельная плоскости β , лежит в плоскости α .
- 57 Прямая a параллельна одной из двух параллельных плоскостей. Докажите, что прямая a либо параллельна другой плоскости, либо лежит в ней.
- 58 Докажите, что если плоскость γ пересекает одну из параллельных плоскостей α и β, то она пересекает и другую плоскость.

Решение

Пусть плоскость γ пересекает плоскость α по прямой a. Докажем, что плоскость γ пересекает также плоскость β . Проведём в плоскости γ прямую b, пересекающую прямую a. Прямая b пересекает плоскость α , поэтому она пересекает и параллельную ей пло-

скость β (задача 55). Следовательно, и плоскость γ , в которой лежит прямая b, пересекает плоскость β .

59 Докажите, что через точку A, не лежащую в плоскости α , проходит плоскость, параллельная плоскости α , и притом только одна.

Решение

Проведём в плоскости α две пересекающиеся прямые a и b, а через точку A проведём прямые a_1 и b_1 , соответственно параллельные прямым a и b. Рассмотрим плоскость β , проходящую через прямые a_1 и b_1 . Плоскость β — искомая, так как она проходит через точку A и по признаку параллельности двух плоскостей параллельна плоскости α .

Докажем теперь, что β — единственная плоскость, проходящая через данную точку A и параллельная плоскости α . В самом деле, любая другая плоскость, проходящая через точку A, пересекает плоскость β , поэтому пересекает и параллельную ей плоскость α (задача 58).

- **60** Две плоскости α и β параллельны плоскости γ . Докажите, что плоскости α и β параллельны.
- **61** Даны две пересекающиеся прямые a и b и точка A, не лежащая в плоскости этих прямых. Докажите, что через точку A проходит плоскость, параллельная прямым a и b, и притом только одна.
- 62 Для проверки горизонтальности установки диска угломерных инструментов пользуются двумя уровнями, расположенными в плоскости диска на пересекающихся прямых. Почему уровни нельзя располагать на параллельных прямых?
- 63 Параллельные плоскости α и β пересекают сторону AB угла BAC соответственно в точках A_1 и A_2 , а сторону AC этого угла соответственно в точках B_1 и B_2 . Найдите:
 - а) AA_2 и AB_2 , если $A_1A_2 = 2A_1A = 12$ см, $AB_1 = 5$ см;
 - б) $A_2 B_2$ и $A A_2$, если $A_1 B_1 = 18$ см, $A A_1 = 24$ см,

$$AA_2 = \frac{3}{2} A_1 A_2$$
.

- 64 Три прямые, проходящие через одну точку и не лежащие в одной плоскости, пересекают одну из параллельных плоскостей в точках A_1 , B_1 и C_1 , а другую в точках A_2 , B_2 и C_2 . Докажите, что треугольники $A_1B_1C_1$ и $A_2B_2C_2$ подобны.
- 65 Параллельные отрезки A_1A_2 , B_1B_2 и C_1C_2 заключены между параллельными плоскостями α и β (рис. 32).
 - а) Определите вид четырёхугольников $A_1B_1B_2A_2$, $B_1C_1C_2B_2$ и $A_1C_1C_2A_2$.
 - б) Докажите, что $\triangle A_1 B_1 C_1 = \triangle A_2 B_2 C_2$.

Рис. 32

Тетраэдр и параллелепипед

12 Тетраэдр

Одна из глав нашего курса будет посвящена многогранникам — поверхностям геометрических тел, составленным из многоугольников. Но ещё до подробного изучения многогранников мы познакомимся с двумя из них — тетраэдром и параллелепипедом. Это даст нам возможность проиллюстрировать понятия, связанные со взаимным расположением прямых и плоскостей, на примере двух важных геометрических тел.

Прежде чем ввести понятия тетраэдра и параллелепипеда, вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник мы рассматривали либо как замкнутую линию без самопересечений, составленную из отрезков (рис. 33, a), либо как часть плоскости, ограниченную этой линией, включая её саму (рис. 33, δ). При рассмотрении поверхностей и тел в пространстве будем пользоваться вторым толкованием многоугольника. При таком толковании любой многоугольник в пространстве представляет собой плоскую поверхность.

Перейдём теперь к определению простейшего из многогранников — тетраэдра.

Рассмотрим произвольный треугольник ABC и точку D, не лежащую в плоскости этого треугольника. Соединив точку D отрезками с вершинами треугольника ABC, получим треугольники DAB, DBC и DCA. Поверхность, составленная из четырёх треугольников ABC, DAB, DBC и DCA, называется **тетраэдром** и обозначается так: DABC (рис. 34).

Треугольники, из которых составлен тетраэдр, называются гранями, их стороны — рёбрами, а вершины — вершинами тетраэдра. Тетраэдр имеет четыре грани, шесть рёбер и четыре вершины. Два ребра тетраэдра, не имеющие общих вершин, называются противоположными. На рисунке 34 противоположными являются рёбра AD и BC, BD и AC, CD и AB. Иногда выделяют одну из граней тетраэдра и называют её основанием, а три другие — боковыми гранями.

Многоугольник ABCDE — фигура, составленная из отрезков

Многоугольник *ABCDE* — часть плоскости, ограниченная линией *ABCDE*

Рис. 33

I ... / 1

Рис. 34

Тетраэдр изображается обычно так, как показано на рисунках 34 и 35, т.е. в виде выпуклого или невыпуклого четырёхугольника с диагоналями. При этом штриховыми линиями изображаются невидимые рёбра. На рисунке 34 невидимым является только ребро AC, а на рисунке 35 — рёбра EK, KF и KL.

13 Параллелепипед

Рассмотрим два равных параллелограмма ABCD и $A_1B_1C_1D_1$, расположенных в параллельных плоскостях так, что отрезки AA_1 , BB_1 , CC_1 и DD_1 параллельны (рис. 36, a). Четырёхугольники

$$ABB_1A_1, BCC_1B_1, CDD_1C_1, DAA_1D_1$$
 (1)

также являются параллелограммами, так как каждый из них имеет попарно параллельные противоположные стороны, например, в четырёхугольнике ABB_1A_1 стороны AA_1 и BB_1 параллельны по условию, а стороны AB и A_1B_1 — по свойству линий пересечения двух параллельных плоскостей третьей (свойство 1^0 , п. 11). Поверхность, составленная из двух равных параллелограммов ABCD и $A_1B_1C_1D_1$ и четырёх параллелограммов (1), называется параллелепипедом и обозначается так: $ABCDA_1B_1C_1D_1$.

Параллелограммы, из которых составлен параллелепипед, называются гранями, их стороны — рёбрами, а вершины параллелограммов — вершинами параллелепипеда. Параллелепипед имеет шесть граней, двенадцать рёбер и восемь вершин. Две грани параллелепипеда, имеющие общее ребро, называются смежными, а не имеющие общих рёбер — противоположными. На рисунке 36, δ противоположными являются грани ABCD и $A_1B_1C_1D_1$, ABB_1A_1 и DCC_1D_1 , ADD_1A_1 и BCC_1B_1 . Две вершины, не принадлежащие одной грани, называются противоположными.

Отрезок, соединяющий противоположные вершины, называется диагональю параллеленипеда. Каждый параллеленипед имеет четыре диагонали. На рисунке 36, σ диагоналями являются отрезки AC_1 , BD_1 , CA_1 и DB_1 .

Часто выделяют какие-нибудь две противоположные грани и называют их основаниями, а остальные грани — боковыми гранями паралле-

Рис. 35

 A_1 B_1 C_1 B_1 C_2 A_1 B_2 A_3 A_4 A_4 A_4 A_5 A_5

Параллелепипед

Рис. 36

Параллельность прямых и плоскостей лепипеда. Рёбра параллелепипеда, не принадлежащие основаниям, называются боковыми рёбрами. Так, если в качестве оснований выбрать грани ABCD и $A_1B_1C_1D_1$, то боковыми гранями будут параллелограммы (1), а боковыми рёбрами — отрезки AA_1 , BB_1 , CC_1 и DD_1 .

Параллелепипед изображается обычно так, как показано на рисунке 36, б. При этом изображениями граней являются параллелограммы; невидимые рёбра и другие невидимые отрезки, например диагонали, изображаются штриховыми линиями¹.

Докажем два утверждения о свойствах параллелепипеда.

1⁰. Противоположные грани параллелепипеда параллельны² и равны.

Докажем, например, параллельность и равенство граней ABB_1A_1 и DCC_1D_1 параллелепипеда $ABCDA_1B_1C_1D_1$ (рис. 37, a). Так как ABCD и ADD_1A_1 — параллелограммы, то $AB\parallel DC$ и $AA_1\parallel DD_1$. Таким образом, две пересекающиеся прямые AB и AA_1 одной грани соответственно параллельны двум пересекающимся прямым CD и DD_1 другой грани. Отсюда по признаку параллельности плоскостей следует, что грани ABB_1A_1 и DCC_1D_1 параллельны.

Докажем теперь равенство этих граней. Так как все грани параллелепипеда — параллелограммы, то AB = DC и $AA_1 = DD_1$. По этой же причине стороны углов A_1AB и D_1DC соответственно сонаправлены, и, значит, эти углы равны. Таким образом, две смежные стороны и угол между ними параллелограмма ABB_1A_1 соответственно равны двум смежным сторонам и углу между ними параллелограмма DCC_1D_1 , поэтому эти параллелограммы равны.

 2^{0} . Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Чтобы доказать это свойство, рассмотрим четырёхугольник A_1D_1CB , диагонали которого A_1C и D_1B являются диагоналями парал-

Рис. 37

¹ Более подробно об изображении пространственных фигур на плоскости, в частности параллелепипеда, рассказано в приложении 1.

² Две грани параллелепипеда называются параллельными, если их плоскости параллельны.

лелепипеда $ABCDA_1B_1C_1D_1$ (см. рис. 37, a). Так как $A_1D_1 \parallel BC$ и $A_1D_1 = BC$ (объясните почему), то A_1D_1CB — параллелограмм. Поэтому диагонали A_1C и D_1B пересекаются в некоторой точке O и этой точкой делятся пополам.

Далее рассмотрим четырёхугольник AD_1C_1B (рис. 37, 6). Он также является параллелограммом (докажите это), и, следовательно, его диагонали AC_1 и D_1B пересекаются и точкой пересечения делятся пополам. Но серединой диагонали D_1B является точка O. Таким образом, диагонали A_1C , D_1B и AC_1 пересекаются в точке O и делятся этой точкой пополам.

Наконец, рассматривая четырёхугольник A_1B_1CD (рис. 37, s), точно так же устанавливаем, что и четвёртая диагональ DB_1 параллелепипеда проходит через точку O и делится ею пополам.

14 Задачи на построение сечений

Для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения различными плоскостями. Уточним, что понимается под сечением тетраэдра или параллелепипеда. Назовём секущей плоскостью тетраэдра (параллелепипеда) любую плоскость, по обе стороны от которой имеются точки данного тетраэдра (параллелепипеда). Секущая плоскость пересекает грани тетраэдра (параллелепипеда) по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением тетраэдра

Сечения тетраэдра

Рис. 38

Сечения параллелепипеда

Рис. 39

(параллелепипеда). Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники (рис. 38). Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырёхугольники (рис. 39, a), пятиугольники (рис. 39, b) и шестиугольники (рис. 39, b).

При построении сечений параллелепипеда на рисунке следует учитывать тот факт, что если секущая плоскость пересекает две противоположные грани по каким-то отрезкам, то эти отрезки параллельны (свойство $1^{\bar{0}}$, п. 11). Так, на рисунке 39, б секущая плоскость пересекает две противоположные грани (левую и правую) по отрезкам AB и CD, а две другие противоположные грани (переднюю и заднюю) — по отрезкам AEи BC, поэтому $AB \parallel CD$ и $AE \parallel BC$. По той же причине на рисунке 39, ε $AB \parallel ED$, $AF \parallel CD$, $BC \parallel EF$. Отметим также, что для построения сечения достаточно построить точки пересечения секущей плоскости с рёбрами тетраэдра (параллелепипеда), после чего остаётся провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.

Рассмотрим примеры построения сечений тетраэдра и параллелепипеда.

Задача 1

На рёбрах AB, BD и CD тетраэдра ABCD отмечены точки M, N и P (рис. 40, a). Построить сечение тетраэдра плоскостью MNP.

Решение

Построим сначала прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка M является общей точкой этих плоскостей. Для построения ещё одной общей точки продолжим отрезки NP и BC до их пересечения в точке E (рис. 40, δ), которая и будет второй общей точкой плоскостей MNP и ABC. Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро AC в некоторой точке Q. Четырёхугольник MNPQ — искомое сечение.

Если прямые NP и BC параллельны (рис. 40, e), то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту грань по прямой ME', параллельной прямой NP. Точка Q, как и в первом случае, есть точка пересечения ребра AC с прямой ME'.

Построение сечения тетраэдра плоскостью MNP

Рис. 40

Залача 2

Точка M лежит на боковой грани ADB тетраэдра DABC (рис. 41, a). Построить сечение тетраэдра плоскостью, проходящей через точку M параллельно основанию ABC.

Решение

Так как секущая плоскость параллельна плоскости ABC, то она параллельна прямым AB, BC и CA. Следовательно, секущая плоскость пересекает боковые грани тетраэдра по прямым, параллельным сторонам треугольника ABC (п. 6, утверждение 1^0). Отсюда вытекает следующий способ построения искомого сечения. Проведём через точку M прямую, параллельную отрезку AB, и обозначим буквами P и Q точки пересечения этой прямой с боковыми рёбрами DA и DB (рис. 41, 6). Затем через точку P проведём прямую, параллельную отрезку AC, и обозначим буквой R точку пересечения этой прямой с ребром DC. Треугольник PQR — искомое сечение.

Задача 3

На рёбрах параллелепипеда даны три точки A, B и C. Построить сечение параллелепипеда плоскостью ABC.

Решение

Построение искомого сечения зависит от того, на каких рёбрах параллелепипеда лежат точки A, B и C. Рассмотрим некоторые частные случаи. Если точки A, B и C лежат на рёбрах, выходящих из одной вершины (см. рис. 39, a), нужно провести отрезки AB, BC и CA, и получится искомое сечение — треугольник ABC. Если точки A, B и C расположены так, как показано на рисунке 39, δ , то сначала нужно провести отрезки AB и BC, а затем через точку A провести прямую, параллельную BC, а через точку C — прямую, параллельную AB. Пересечения этих прямых с рёбрами нижней грани дают точки E и D. Остаётся провести отрезок ED, и искомое сечение — пятиугольник ABCDE — построено.

Более трудный случай, когда данные точки A, B и C расположены так, как показано на рисунке 39, a. В этом случае можно поступить так. Сначала построим прямую, по которой секущая плоскость пересекается с плоскостью нижнего основания. Для этого проведём прямую AB и продолжим нижнее ребро, лежащее в той же

Рис. 41

грани, что и прямая AB, до пересечения с этой прямой в точке M. Далее через точку M проведём прямую, параллельную прямой BC. Это и есть прямая, по которой секущая плоскость пересекается с плоскостью нижнего основания. Эта прямая пересекается с рёбрами нижнего основания в точках E и F. Затем через точку E проведём прямую, параллельную прямой AB, и получим точку D. Наконец, проводим отрезки AF и CD, и искомое сечение — шестиугольник ABCDEF — построено.

Задачи

- 66 Назовите все пары скрещивающихся (т. е. принадлежащих скрещивающимся прямым) рёбер тетраэдра *ABCD*. Сколько таких пар рёбер имеет тетраэдр?
- 67 В тетраэдре DABC дано: $\angle ADB = 54^{\circ}$, $\angle BDC = 72^{\circ}$, $\angle CDA = 90^{\circ}$, DA = 20 см, BD = 18 см, DC = 21 см. Найдите: а) рёбра основания ABC данного тетраэдра; б) площади всех боковых граней.
- **68** Точки M и N середины рёбер AB и AC тетраэдра ABCD. Докажите, что прямая MN параллельна плоскости BCD.
- **69** Через середины рёбер AB и BC тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
- 70 Докажите, что плоскость, проходящая через середины рёбер AB, AC и AD тетраэдра ABCD, параллельна плоскости BCD.
- 71 Изобразите тетраэдр DABC и на рёбрах DB, DC и BC отметьте соответственно точки M, N и K. Постройте точку пересечения: а) прямой MN и плоскости ABC; б) прямой KN и плоскости ABD.
- 72 Изобразите тетраэдр DABC и постройте сечение этого тетраэдра плоскостью, проходящей через точку M параллельно плоскости грани ABC, если: а) точка M является серединой ребра AD; б) точка M лежит внутри грани ABD.
- 73 В тетраэдре ABCD точки M, N и P являются серединами рёбер AB, BC и CD, AC=10 см, BD=12 см. Докажите, что плоскость MNP проходит через середину K ребра AD, и найдите периметр четырёх-угольника, получившегося при пересечении тетраэдра с плоскостью MNP.
- 74 Через точку пересечения медиан грани BCD тетраэдра ABCD проведена плоскость, параллельная грани ABC.

 а) Докажите, что сечение тетраэдра этой плоскостью есть треуголь
 - ник, подобный треугольнику АВС.
 - б) Найдите отношение площадей сечения и треугольника АВС.
- 75 Изобразите тетраэдр KLMN. а) Постройте сечение этого тетраэдра плоскостью, проходящей через ребро KL и середину A ребра MN. б) Докажите, что плоскость, проходящая через середины E, O и F

- отрезков LM, MA и MK, параллельна плоскости LKA. Найдите площадь треугольника EOF, если площадь треугольника LKA равна $24~{\rm cm}^2$.
- 76 Дан параллелепипед $ABCDA_1B_1C_1D_1$. Докажите, что $AC \parallel A_1C_1$ и $BD \parallel B_1D_1$.
- 77 Сумма всех рёбер параллелепипеда $ABCDA_1B_1C_1D_1$ равна 120 см. Найдите каждое ребро параллелепипеда, если $\frac{AB}{BC} = \frac{4}{5}$, $\frac{BC}{BB_1} = \frac{5}{6}$.
- 78 На рисунке 42 изображён параллелепипед $ABCDA_1B_1C_1D_1$, на рёбрах которого отмечены точки M,N,M_1 и N_1 так, что $AM=CN=A_1M_1=C_1N_1$. Докажите, что $MBNDM_1B_1N_1D_1$ параллелепипед.
- 79 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение: а) плоскостью ABC_1 ; б) плоскостью ACC_1 . Докажите, что построенные сечения являются параллелограммами.

- 80 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ Рис. 42 и постройте его сечения плоскостями ABC_1 и DCB_1 , а также отрезок, по которому эти сечения пересекаются.
- 81 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и отметьте точки M и N соответственно на рёбрах BB_1 и CC_1 . Постройте точку пересечения: а) прямой MN с плоскостью ABC; б) прямой AM с плоскостью $A_1B_1C_1$.
- 82 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и отметьте внутреннюю точку M грани AA_1B_1B . Постройте сечение параллелепипеда, проходящее через точку M параллельно: а) плоскости основания ABCD; б) грани BB_1C_1C ; в) плоскости BDD_1 .
- 83 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью, проходящей через: а) ребро CC_1 и точку пересечения диагоналей грани AA_1D_1D ; б) точку пересечения диагоналей грани ABCD параллельно плоскости AB_1C_1 .
- 84 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью, проходящей через точки B_1 , D_1 и середину ребра CD. Докажите, что построенное сечение трапеция.
- 85 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью BKL, где точка K середина ребра AA_1 , а точка L середина ребра CC_1 . Докажите, что построенное сечение параллелограмм.
- 86 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью, проходящей через диагональ AC основания параллельно диагонали BD_1 . Докажите, что если основание параллелепипеда ромб и углы ABB_1 и CBB_1 прямые, то построенное сечение равнобедренный треугольник.

87 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью MNK, где точки M, N и K лежат соответственно на рёбрах: а) BB_1 , AA_1 , AD; б) CC_1 , AD, BB_1 .

Вопросы к главе І

- 1 Верно ли утверждение: если две прямые не имеют общих точек, то они параллельны?
- 2 Точка M не лежит на прямой a. Сколько прямых, не пересекающих прямую a, проходит через точку M? Сколько из этих прямых параллельны прямой a?
- 3 Прямые a и c параллельны, а прямые a и b пересекаются. Могут ли прямые b и c быть параллельными?
- 4 Прямая a параллельна плоскости α . Верно ли, что эта прямая:
 - а) не пересекает ни одну прямую, лежащую в плоскости а;
 - б) параллельна любой прямой, лежащей в плоскости а;
 - в) параллельна некоторой прямой, лежащей в плоскости α?
- 5 Прямая a параллельна плоскости α . Сколько прямых, лежащих в плоскости α , параллельны прямой a? Параллельны ли друг другу эти прямые, лежащие в плоскости α ?
- 6 Прямая a пересекает плоскость α . Лежит ли в плоскости α хоть одна прямая, параллельная a?
- 7 Одна из двух параллельных прямых параллельна некоторой плоскости. Верно ли утверждение, что и вторая прямая параллельна этой плоскости?
- 8 Верно ли утверждение: если две прямые параллельны некоторой плоскости, то они параллельны друг другу?
- 9 Две прямые параллельны некоторой плоскости. Могут ли эти прямые: а) пересекаться; б) быть скрещивающимися?
- 10 Могут ли скрещивающиеся прямые a и b быть параллельными прямой c?
- 11 Боковые стороны трапеции параллельны плоскости α. Параллельны ли плоскость α и плоскость трапеции?
- 12 Две стороны параллелограмма параллельны плоскости α. Параллельны ли плоскость α и плоскость параллелограмма?
- 13 Могут ли быть равны два непараллельных отрезка, заключённых между параллельными плоскостями?
- 14 Существует ли тетраэдр, у которого пять углов граней прямые?
- 15 Существует ли параллелепипед, у которого: а) только одна грань прямоугольник; б) только две смежные грани ромбы; в) все углы граней острые; г) все углы граней прямые; д) число всех острых углов граней не равно числу всех тупых углов граней?
- 16 Какие многоугольники могут получиться в сечении: а) тетраэдра;
 б) параллелепипеда?

Дополнительные задачи

- 88 Параллельные прямые AC и BD пересекают плоскость α в точках A и B. Точки C и D лежат по одну сторону от плоскости α , AC=8 см, BD=6 см, AB=4 см.
 - а) Докажите, что прямая CD пересекает плоскость α в некоторой точке E.
 - б) Найдите отрезок BE.
- 89 Точки A, B, C и D не лежат в одной плоскости. Медианы треугольников ABC и CBD пересекаются соответственно в точках M_1 и M_2 . Докажите, что отрезки AD и M_1M_2 параллельны.
- 90 Вершины A и B трапеции ABCD лежат в плоскости α , а вершины C и D не лежат в этой плоскости. Как расположена прямая CD относительно плоскости α , если отрезок AB является:
 - а) основанием трапеции;
 - б) боковой стороной трапеции?
- 91 Через каждую из двух параллельных прямых a и b и точку M, не лежащую в плоскости этих прямых, проведена плоскость. Докажите, что эти плоскости пересекаются по прямой, параллельной прямым a и b.
- 92 Плоскость α и прямая a параллельны прямой b. Докажите, что прямая a либо параллельна плоскости α , либо лежит в ней.
- 93 Прямые a и b параллельны. Через точку M прямой a проведена прямая MN, отличная от прямой a и не пересекающая прямую b. Каково взаимное расположение прямых MN и b?
- 94 Даны две скрещивающиеся прямые и точка B, не лежащая на этих прямых. Пересекаются ли плоскости, каждая из которых проходит через одну из прямых и точку B? Ответ обоснуйте.
- 95 Прямая a параллельна плоскости α . Докажите, что если плоскость β пересекает прямую a, то она пересекает и плоскость α .
- 96 Докажите, что отрезки параллельных прямых, заключённые между плоскостью и параллельной ей прямой, равны.
- 97 Докажите, что два угла с соответственно параллельными сторонами либо равны, либо их сумма равна 180° .
- 98 Прямая a параллельна плоскости α . Существует ли плоскость, проходящая через прямую a и параллельная плоскости α ? Если существует, то сколько таких плоскостей? Ответ обоснуйте.
- 99 Докажите, что три параллельные плоскости отсекают на любых двух пересекающих эти плоскости прямых пропорциональные отрезки.
- 100 Даны две скрещивающиеся прямые и точка A. Докажите, что через точку A проходит, и притом только одна, плоскость, которая либо параллельна данным прямым, либо проходит через одну из них и параллельна другой.

- 101 Докажите, что отрезки, соединяющие середины противоположных рёбер тетраэдра, пересекаются и точкой пересечения делятся пополам.
- 102 Докажите, что плоскость α , проходящая через середины двух рёбер основания тетраэдра и вершину, не принадлежащую основанию, параллельна третьему ребру основания. Найдите периметр и площадь сечения тетраэдра плоскостью α , если длины всех рёбер тетраэдра равны 20 см.
- 103 На рёбрах DA, DB и DC тетраэдра DABC отмечены точки M, N и P так, что DM: MA = DN: NB = DP: PC. Докажите, что плоскости MNP и ABC параллельны. Найдите площадь треугольника MNP, если площадь треугольника ABC равна 10 см^2 и DM: MA = 2:1.
- 104 Изобразите тетраэдр ABCD и отметьте точку M на ребре AB. Постройте сечение тетраэдра плоскостью, проходящей через точку M параллельно прямым AC и BD.
- 105 Изобразите тетраэдр DABC и отметьте точки M и N на рёбрах BD и CD и внутреннюю точку K грани ABC. Постройте сечение тетраэдра плоскостью MNK.
- 106 Изобразите тетраэдр DABC, отметьте точку K на ребре DC и точки M и N граней ABC и ACD. Постройте сечение тетраэдра плоскостью MNK.
- 107 Изобразите тетраэдр ABCD и отметьте точку M на ребре AB. Постройте сечение тетраэдра плоскостью, проходящей через точку M параллельно грани BDC.
- 108 В тетраэдре DABC биссектрисы трёх углов при вершине D пересекают отрезки BC, CA и AB соответственно в точках A_1 , B_1 и C_1 . Докажите, что отрезки AA_1 , BB_1 и CC_1 пересекаются в одной точке.
- 109 Две плоскости, каждая из которых содержит два боковых ребра параллелепипеда, не принадлежащих одной грани, пересекаются по прямой a. Докажите, что прямая a параллельна боковым рёбрам параллелепипеда и пересекает все его диагонали.
- **110** Докажите, что в параллелепипеде $ABCDA_1B_1C_1D_1$ плоскость A_1DB параллельна плоскости D_1CB_1 .
- **111** Докажите, что диагональ параллелепипеда меньше суммы трёх рёбер, имеющих общую вершину.
- **112** Докажите, что сумма квадратов четырёх диагоналей параллелепипеда равна сумме квадратов двенадцати его рёбер.
- 113 По какой прямой пересекаются плоскости сечений A_1BCD_1 и BDD_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$?
- 114 Изобразите параллелепипед $ABCDA_1B_1C_1D_1$ и отметьте на ребре AB точку M. Постройте сечение параллелепипеда плоскостью, проходящей через точку M параллельно плоскости ACC_1 .
- 115 Точка M лежит на ребре BC параллелепипеда $ABCDA_1B_1C_1D_1$. Постройте сечение этого параллелепипеда плоскостью, проходящей через точку M параллельно плоскости BDC_1 .

Глава II Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости

15 Перпендикулярные прямые в пространстве

Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90° . Перпендикулярность прямых a и b обозначается так: $a \perp b$. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися. На рисунке 43 перпендикулярные прямые a и b пересекаются, а перпендикулярные прямые a и c скрещивающиеся. Докажем лемму о перпендикулярности двух параллельных прямых к третьей прямой.

Рис. 43

Лемма

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

▼ Доказательство

Пусть $a \parallel b$ и $a \perp c$. Докажем, что $b \perp c$. Через произвольную точку M пространства, не лежащую на данных прямых, проведём прямые MA и MC, параллельные соответственно прямым a и c (рис. 44). Так как $a \perp c$, то $\angle AMC = 90^{\circ}$.

По условию $b \parallel a$, а по построению $a \parallel MA$, поэтому $b \parallel MA$. Итак, прямые b и c параллельны соответственно прямым MA и MC, угол между которыми равен 90° . Это означает, что угол между прямыми b и c также равен 90° , т. е. $b \perp c$. Лемма доказана. \triangle

Рис. 44

16 Параллельные прямые, перпендикулярные к плоскости

Определение

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Перпендикулярность прямой a и плоскости α обозначается так: $a \perp \alpha$. Говорят также, что плоскость α перпендикулярна κ прямой a.

Если прямая a перпендикулярна к плоскости α , то она пересекает эту плоскость. В самом деле, если бы прямая a не пересекала плоскость α , то она или лежала бы в этой плоскости, или была бы параллельна ей. Но тогда в плоскости α имелись бы прямые, не перпендикулярные к прямой a, например, прямые, параллельные ей, что противоречит определению перпендикулярности прямой и плоскости. Значит, прямая a пересекает плоскость α .

Окружающая нас обстановка даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Непокосившийся телеграфный столб стоит прямо, т. е. перпендикулярно к плоскости земли. Так же расположены колонны здания по отношению к плоскости фундамента, линии пересечения стен по отношению к плоскости пола и т. д.

Рис. 45

Докажем две теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости.

Теорема

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Доказательство

Рассмотрим две параллельные прямые a и a_1 и плоскость α , такую, что $a \perp \alpha$. Докажем, что и $a_1 \perp \alpha$. Проведём какую-нибудь прямую x в плоскости α (рис. 46). Так как $a \perp \alpha$, то $a \perp x$. По лемме о перпендикулярности двух параллельных прямых к третьей $a_1 \perp x$. Таким образом, прямая a_1 перпендикулярна к любой прямой, лежащей в плоскости α , т. е. $a_1 \perp \alpha$. Теорема доказана.

Докажем обратную теорему.

Рис. 46

Теорема

Если две прямые перпендикулярны к плоскости, то они параллельны.

Доказательство

Рассмотрим прямые a и b, перпендикулярные к плоскости α (рис. 47, a). Докажем, что $a \parallel b$.

Через какую-нибудь точку M прямой b проведём прямую b_1 , параллельную прямой a. По предыдущей теореме $b_1 \perp \alpha$. Докажем, что прямая b_1 совпадает с прямой b. Тем самым будет доказано, что $a \parallel b$. Допустим, что прямые b и b_1 не совпадают. Тогда в плоскости β , содержащей прямые b и b_1 , через точку M проходят две прямые, перпендикулярные к прямой c, по которой пересекаются плоскости α и β (рис. 47, δ). Но это невозможно, следовательно, $a \parallel b$. Теорема доказана. \triangle

17 Признак перпендикулярности прямой и плоскости

Как проверить, перпендикулярна ли данная прямая к данной плоскости? Этот вопрос имеет практическое значение, например, при установке мачт, колонн зданий и т. д., которые нужно поставить прямо, т. е. перпендикулярно к той плоскости, на которую они ставятся. Оказывается, что для этого нет надобности проверять перпендикулярность по отношению к любой прямой, как о том говорится в определении, а достаточно проверить перпендикулярность лишь к двум пересекающимся прямым, лежащим в плоскости. Это вытекает из следующей теоремы, выражающей признак перпендикулярности прямой и плоскости.

 $a \perp \alpha$ и $b \perp \alpha$

Рис. 47

Теорема

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Доказательство

Рассмотрим прямую a, которая перпендикулярна к прямым p и q, лежащим в плоскости α и пересекающимся в точке O (рис. 48, a). Докажем, что $a \perp \alpha$. Для этого нужно доказать, что прямая a перпендикулярна к произвольной прямой m плоскости α .

Рассмотрим сначала случай, когда прямая a проходит через точку O (рис. 48, δ). Проведём через точку O прямую l, параллельную пря-

мой m (если прямая m проходит через точку O, то в качестве l возьмём саму прямую m). Отметим на прямой a точки A и B так, чтобы точка O была серединой отрезка AB, и проведём в плоскости α прямую, пересекающую прямые p, q и l соответственно в точках P, Q и L. Будем считать для определённости, что точка Q лежит между точками P и L (рис. 48, δ).

Так как прямые p и q — серединные перпендикуляры к отрезку AB, то AP = BP и AQ = BQ. Следовательно, $\triangle APQ = \triangle BPQ$ по трём сторонам. Поэтому $\angle APQ = \angle BPQ$.

Сравним треугольники APL и BPL. Они равны по двум сторонам и углу между ними $(AP=BP,\ PL-$ общая сторона, $\angle APL=\angle BPL$), поэтому AL=BL. Но это означает, что треугольник ABL равнобедренный и его медиана LO является высотой, т. е. $l\perp a$. Так как $l\parallel m$ и $l\perp a$, то $m\perp a$ (по лемме о перпендикулярности двух параллельных прямых к третьей). Итак, прямая a перпендикулярна к любой прямой m плоскости α , т. е. $a\perp \alpha$.

Рассмотрим теперь случай, когда прямая a не проходит через точку O. Проведём через точку O прямую a_1 , параллельную прямой a. По упомянутой лемме $a_1 \perp p$ и $a_1 \perp q$, поэтому по доказанному в первом случае $a_1 \perp \alpha$. Отсюда (по первой теореме п. 16) следует, что $a \perp \alpha$. Теорема доказана.

Воспользуемся признаком перпендикулярности прямой и плоскости для решения следующей задачи.

Задача

Доказать, что через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Решение

Обозначим данную прямую буквой a, а произвольную точку пространства — буквой M. Докажем, что существует плоскость, проходящая через точку M и перпендикулярная к прямой a.

Проведём через прямую a две плоскости α и β так, чтобы $M \in \alpha$ (рис. 49)¹. В плоскости α через точку M проведём прямую p, перпен-

 $a \perp p$ и $a \perp q$

Рис. 48

Рис. 49

 $^{^1}$ На рисунке 49 изображён тот случай, когда точка M не лежит на прямой a. Однако приведённое решение задачи пригодно и для того случая, когда точка M лежит на прямой a.

дикулярную к прямой a, а в плоскости β через точку пересечения прямых p и a проведём прямую q, перпендикулярную к прямой a. Рассмотрим плоскость γ , проходящую через прямые p и q. Плоскость γ является искомой, так как прямая a перпендикулярна к двум пересекающимся прямым p и q этой плоскости.

Замечание

Можно доказать, что γ — единственная плоскость, проходящая через точку M и перпендикулярная к прямой a (задача 133).

18 Теорема о прямой, перпендикулярной к плоскости

Теорема

Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

▼ Доказательство

Данную плоскость обозначим α , а произвольную точку пространства — буквой M. Докажем, что: 1) через точку M проходит прямая, перпендикулярная к плоскости α ; 2) такая прямая только одна.

- 1) Проведём в плоскости α произвольную прямую a и рассмотрим плоскость β , проходящую через точку M и перпендикулярную к прямой a (рис. 50). Обозначим буквой b прямую, по которой пересекаются плоскости α и β . В плоскости β через точку M проведём прямую c, перпендикулярную к прямой b. Прямая c и есть искомая прямая. В самом деле, она перпендикулярна к плоскости α , так как перпендикулярна к двум пересекающимся прямым этой плоскости $(c \perp b)$ по построению и $(c \perp b)$ по построению $(c \perp b)$ по пост
- 2) Предположим, что через точку M проходит ещё одна прямая (обозначим её через c_1), перпендикулярная к плоскости α . Тогда (по обратной теореме п. 16) $c_1 \parallel c$, что невозможно, так как прямые c_1 и c пересекаются в точке M. Таким образом, через точку M проходит только одна прямая, перпендикулярная к плоскости α . Теорема доказана. \triangle

Рис. 50

Задачи

- **116** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Докажите, что:
 - а) $DC \perp B_1C_1$ и $AB \perp A_1D_1$, если $\angle BAD = 90^\circ$;
 - б) $AB \perp CC_1$ и $DD_1 \perp A_1B_1$, если $AB \perp DD_1$.
- 117 В тетраэдре ABCD $BC \perp AD$. Докажите, что $AD \perp MN$, где M и N середины рёбер AB и AC.
- 118 Точки A, M и O лежат на прямой, перпендикулярной к плоскости α , а точки O, B, C и D лежат в плоскости α . Какие из следующих углов являются прямыми: $\angle AOB$, $\angle MOC$, $\angle DAM$, $\angle DOA$, $\angle BMO$?
- 119 Прямая OA перпендикулярна к плоскости OBC, и точка O является серединой отрезка AD. Докажите, что:
 - a) AB = DB;
 - б) AB = AC, если OB = OC;
 - в) OB = OC, если AB = AC.
- 120 Через точку O пересечения диагоналей квадрата, сторона которого равна a, проведена прямая OK, перпендикулярная к плоскости квадрата. Найдите расстояние от точки K до вершин квадрата, если OK = b.
- 121 В треугольнике ABC дано: $\angle C = 90^{\circ}$, AC = 6 см, BC = 8 см, CM медиана. Через вершину C проведена прямая CK, перпендикулярная к плоскости треугольника ABC, причём CK = 12 см. Найдите KM.
- 122 Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр O этого треугольника проведена прямая OK, параллельная прямой CD. Известно, что $AB = 16\sqrt{3}$ см, OK = 12 см, CD = 16 см. Найдите расстояния от точек D и K до вершин A и B треугольника.
- 123 Докажите, что если две плоскости α и β перпендикулярны к прямой a, то они параллельны.

Решение

Проведём какую-нибудь прямую, параллельную прямой a, так, чтобы она пересекала плоскости α и β в различных точках A и B. По первой теореме п. 16 плоскости α и β перпендикулярны к прямой AB.

Если допустить, что плоскости α и β не параллельны, т. е. имеют хотя бы одну общую точку M, то получим треугольник ABM с двумя прямыми углами при вершинах A и B, что невозможно. Следовательно, $\alpha \parallel \beta$.

- 124 Прямая PQ параллельна плоскости α . Через точки P и Q проведены прямые, перпендикулярные к плоскости α , которые пересекают эту плоскость соответственно в точках P_1 и Q_1 . Докажите, что $PQ = P_1Q_1$.
- 125 Через точки P и Q прямой PQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P_1 и Q_1 . Найдите P_1Q_1 , если PQ=15 см, $PP_1=21,5$ см, $QQ_1=33,5$ см.

- 126 Прямая MB перпендикулярна к сторонам AB и BC треугольника ABC. Определите вид треугольника MBD, где D произвольная точка прямой AC.
- 127 В треугольнике ABC сумма углов A и B равна 90° . Прямая BD перпендикулярна к плоскости ABC. Докажите, что $CD \perp AC$.
- **128** Через точку O пересечения диагоналей параллелограмма ABCD проведена прямая OM так, что MA = MC, MB = MD. Докажите, что прямая OM перпендикулярна к плоскости параллелограмма.
- 129 Прямая AM перпендикулярна к плоскости квадрата ABCD, диагонали которого пересекаются в точке O. Докажите, что:
 - а) прямая BD перпендикулярна к плоскости AMO;
 - б) $MO \perp BD$.
- 130 Через вершину B квадрата ABCD проведена прямая BM. Известно, что $\angle MBA = \angle MBC = 90^\circ$, MB = m, AB = n. Найдите расстояния от точки M до:
 - а) вершин квадрата;
 - б) прямых AC и BD.
- 131 В тетраэдре ABCD точка M середина ребра BC, AB = AC, DB = DC. Докажите, что плоскость треугольника ADM перпендикулярна к прямой BC.
- **132** Докажите, что если одна из двух параллельных плоскостей перпендикулярна к прямой, то и другая плоскость перпендикулярна к этой прямой.
- **133** Докажите, что через любую точку пространства проходит только одна плоскость, перпендикулярная к данной прямой.

Решение

- Согласно задаче п. 17 через данную точку M проходит плоскость α , перпендикулярная к данной прямой a. Предположим, что через точку M проходит ещё одна плоскость α_1 , перпендикулярная к этой прямой. Тогда плоскости α и α_1 параллельны (см. задачу 123). Но это невозможно, так как эти плоскости имеют общую точку M. Следовательно, наше предположение неверно, и через точку M проходит только одна плоскость, перпендикулярная к прямой a.
- **134** Докажите, что все прямые, проходящие через данную точку M прямой a и перпендикулярные к этой прямой, лежат в плоскости, проходящей через точку M и перпендикулярной к прямой a.
- **135** Прямая a перпендикулярна к плоскости α и перпендикулярна к прямой b, не лежащей в этой плоскости. Докажите, что $b \parallel \alpha$.
- **136** Докажите, что если точка X равноудалена от концов данного отрезка AB, то она лежит в плоскости, проходящей через середину отрезка AB и перпендикулярной к прямой AB.
- 137 Докажите, что через каждую из двух взаимно перпендикулярных скрещивающихся прямых проходит плоскость, перпендикулярная к другой прямой.

Перпендикуляр и наклонные. Угол между прямой и плоскостью

19 Расстояние от точки до плоскости

Рассмотрим плоскость α и точку A, не лежащую в этой плоскости. Проведём через точку A прямую, перпендикулярную к плоскости α , и обозначим буквой H точку пересечения этой прямой с плоскостью α (рис. 51). Отрезок AH называется перпендикуляром, проведённым из точки Aк плоскости α , а точка H — основанием перпендикуляра. Отметим в плоскости а какую-нибудь точку M, отличную от H, и проведём отрезок AM. Он называется наклонной, проведённой из точки Aк плоскости α , а точка \bar{M} — основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α . Сравним перпендикуляр AHи наклонную AM: в прямоугольном треугольнике AMH сторона AH — катет, а сторона AM — гипотенуза, поэтому AH < AM. Итак, перпендикуляр. проведённый из данной точки к плоскости, меньше любой наклонной, проведённой из той же точки к этой плоскости.

Следовательно, из всех расстояний от точки A до различных точек плоскости α наименьшим является расстояние до точки H. Это расстояние, т. е. длина перпендикуляра, проведённого из точки A к плоскости α , называется расстоянием от точки A до плоскости α . Когда мы говорим, что некоторый предмет, например лампочка уличного фонаря, находится на такой-то высоте, скажем, 6 м от земли, то имеем в виду, что расстояние от лампочки до поверхности земли измеряется по перпендикуляру, проведённому от лампочки к плоскости земли (рис. 52).

Замечания

1. Если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. В самом деле, рассмотрим перпендикуляры AA_0 и MM_0 , проведённые из двух произвольных точек A и M плоскости α к параллельной ей плоскости β . Так как $AA_0 \perp \beta$ и $MM_0 \perp \beta$, то $AA_0 \parallel MM_0$. Отсюда следует, что $MM_0 = AA_0$ (свойство 2^0 , п. 11), т. е. расстояние от любой точки M плоскости α до плоскости β равно длине от-

Рис. 51

Рис. 52

резка AA_0 . Очевидно, все точки плоскости β находятся на таком же расстоянии от плоскости α .

Расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости называется расстоянием между параллельными плоскостями.

Как уже отмечалось, примером параллельных плоскостей служат плоскости пола и потолка комнаты. Все точки потолка находятся на одинаковом расстоянии от пола. Это расстояние и есть высота комнаты.

- 2. Если прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости (задача 144). В этом случае расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.
- 3. Если две прямые скрещивающиеся, то, как было доказано в п. 7, через каждую из них проходит плоскость, параллельная другой прямой, и притом только одна. Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми.

20 Теорема о трёх перпендикулярах

Теорема

Прямая, проведённая в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.

Доказательство

Обратимся к рисунку 53, на котором отрезок AH — перпендикуляр к плоскости α , AM — наклонная, a — прямая, проведённая в плоскости α через точку M перпендикулярно к проекции HM наклонной. Докажем, что $a \perp AM$.

Рассмотрим плоскость AMH. Прямая a перпендикулярна к этой плоскости, так как она перпендикулярна к двум пересекающимся прямым AH и MH, лежащим в плоскости AMH ($a \perp HM$ по условию и $a \perp AH$, так как $AH \perp \alpha$). Отсюда следует, что прямая a перпендикулярна к любой

Рис. 53

прямой, лежащей в плоскости AMH, в частности $a\perp AM$. Теорема доказана.

Эта теорема называется **теоремой о трёх перпендикулярах**, так как в ней говорится о связи между тремя перпендикулярами AH, HM и AM.

Справедлива также обратная теорема: прямая, проведённая в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции. По аналогии с доказательством прямой теоремы, используя рисунок 53, докажите эту теорему самостоятельно (задача 153).

21 Угол между прямой и плоскостью

В п. 19 было дано определение проекции наклонной на плоскость. Введём теперь понятие проекции произвольной фигуры. Проекцией точки на плоскость называется основание перпендикуляра, проведённого из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости. На рисунке 54 точка M_1 — проекция точки M на плоскость α , а N — проекция самой точки N на ту же плоскость $(N \in \alpha)$.

Обозначим буквой F какую-нибудь фигуру в пространстве. Если мы построим проекции всех точек этой фигуры на данную плоскость, то получим фигуру F_1 , которая называется проекцией фигуры F на данную плоскость. На рисунке 54 треугольник F_1 — проекция треугольника F на плоскость α .

Докажем теперь, что проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая.

Данную плоскость обозначим буквой α , а произвольную прямую, не перпендикулярную к плоскости α , — буквой a (рис. 55). Из какой-нибудь точки M прямой a проведём перпендикуляр MH к плоскости α и рассмотрим плоскость β , проходящую через a и MH. Плоскости α и β пересекаются по некоторой прямой a_1 . Докажем, что эта прямая и является проекцией прямой a на плоскость α . В самом деле, возьмём произвольную точку M_1 прямой a и проведём в плоскости β пря-

Рис. 54

 $MH \perp \alpha$, $M_1H_1 \parallel MH$

Рис. 55

¹ В данном пункте речь идёт о **прямоугольной** (или **ортогональной**) проекции фигуры. Более общее понятие параллельной проекции фигуры рассматривается в приложении 1.

мую M_1H_1 , параллельную прямой MH (H_1 — точка пересечения прямых M_1H_1 и a_1). По первой теореме п. $16~M_1H_1\perp\alpha$, и, значит, точка H_1 является проекцией точки M_1 на плоскость α . Мы доказали, что проекция произвольной точки прямой a лежит на прямой a_1 . Аналогично доказывается, что любая точка прямой a_1 является проекцией некоторой точки прямой a. Следовательно, a_1 — проекция прямой a на плоскость α .

Из доказанного утверждения следует, что проекцией отрезка AB, не перпендикулярного к плоскости, является отрезок, концами которого служат проекции точек A и B. Поэтому определение проекции наклонной (п. 19) полностью согласуется с общим определением проекции фигуры. Используя понятие проекции прямой на плоскость, дадим определение угла между прямой и плоскостью.

Определение

Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и её проекцией на плоскость.

Можно доказать, что угол φ_0 между данной прямой AM и плоскостью α (рис. 56) является наименьшим из всех углов φ , которые данная прямая образует с прямыми, проведёнными в плоскости α через точку A (задача 162).

Если прямая перпендикулярна к плоскости, то её проекцией на эту плоскость является точка пересечения этой прямой с плоскостью. В таком случае угол между прямой и плоскостью считается равным 90° .

Если данная прямая параллельна плоскости, то её проекцией на плоскость является прямая, параллельная данной. В этом случае понятие угла между прямой и плоскостью мы не вводим. (Иногда договариваются считать, что угол между параллельными прямой и плоскостью равен 0° .)

▼ Замечание

Наряду с рассмотренной в этом пункте прямоугольной проекцией и параллельной проекцией, речь о которой пойдёт в приложении 1, иногда используется центральная проекция. Она

Рис. 56

определяется так. Рассмотрим произвольную плоскость α и какую-нибудь точку O, не лежащую в этой плоскости. Пусть β — плоскость, проходящая через точку O и параллельная плоскости α . Центральной проекцией (с центром O) точки M, не лежащей в плоскости β , на плоскость α называется точка M_1 пересечения прямой OM с плоскостью α . Центральной проекцией фигуры на плоскость α называется множество центральных проекций на плоскость α всех точек этой фигуры, не лежащих в плоскости β . Примером центральной проекции фигуры является её фотографический снимок. \wedge

Залачи

- 138 Из некоторой точки проведены к данной плоскости перпендикуляр и наклонная, угол между которыми равен ϕ . а) Найдите наклонную и её проекцию на данную плоскость, если перпендикуляр равен d. б) Найдите перпендикуляр и проекцию наклонной, если наклонная равна m.
- 139 Из некоторой точки проведены к плоскости две наклонные. Докажите, что: а) если наклонные равны, то равны и их проекции; б) если проекции наклонных равны, то равны и наклонные; в) если наклонные не равны, то большая наклонная имеет большую проекцию.
- 140 Из точки A, не принадлежащей плоскости α , проведены к этой плоскости перпендикуляр AO и две равные наклонные AB и AC. Известно, что $\angle OAB = \angle BAC = 60^\circ$, AO = 1,5 см. Найдите расстояние между основаниями наклонных.
- 141 Один конец данного отрезка лежит в плоскости α, а другой находится от неё на расстоянии 6 см. Найдите расстояние от середины данного отрезка до плоскости α.
- 142 Концы отрезка отстоят от плоскости α на расстояниях 1 см и 4 см. Найдите расстояние от середины отрезка до плоскости α .
- 143 Расстояние от точки M до каждой из вершин правильного треугольника ABC равно 4 см. Найдите расстояние от точки M до плоскости ABC, если AB=6 см.
- 144 Прямая a параллельна плоскости α . Докажите, что все точки прямой a равноудалены от плоскости α .

Решение

Через какую-нибудь точку прямой a проведём плоскость β , параллельную плоскости α (задача 59). Прямая a лежит в плоскости β , так как в противном случае она пересекала бы плоскость β , а значит, пересекала бы и плоскость α (задача 55), что невозможно. Все точки плоскости β равноудалены от плоскости α , поэтому и все точки прямой a, лежащей в плоскости β , равноудалены от плоскости α , что и требовалось доказать.

- 145 Через вершину A прямоугольного треугольника ABC с прямым углом C проведена прямая AD, перпендикулярная к плоскости треугольника. а) Докажите, что треугольник CBD прямоугольный. 6) Найдите BD, если BC = a, DC = b.
- **146** Прямая a пересекает плоскость α в точке M и не перпендикулярна к этой плоскости. Докажите, что в плоскости α через точку M проходит прямая, перпендикулярная к прямой a, и притом только одна.
- 147 Из точки M проведён перпендикуляр MB к плоскости прямоугольника ABCD. Докажите, что треугольники AMD и MCD прямоугольные.
- 148 Прямая AK перпендикулярна к плоскости правильного треугольника ABC, а точка M — середина стороны BC. Докажите, что $MK \perp BC$.
- 149 Отрезок AD перпендикулярен к плоскости равнобедренного треугольника ABC. Известно, что AB=AC=5 см, BC=6 см, AD=12 см. Найдите расстояния от концов отрезка AD до прямой BC.
- 150 Через вершину A прямоугольника ABCD проведена прямая AK, перпендикулярная к плоскости прямоугольника. Известно, что KD=6 см, KB=7 см, KC=9 см. Найдите: а) расстояние от точки K до плоскости прямоугольника ABCD; б) расстояние между прямыми AK и CD.
- **151** Прямая CD перпендикулярна к плоскости треугольника ABC. Докажите, что: а) треугольник ABC является проекцией треугольника ABD на плоскость ABC; б) если CH высота треугольника ABC, то DH высота треугольника ABD.
- 152 Через вершину B квадрата ABCD проведена прямая BF, перпендикулярная к его плоскости. Найдите расстояния от точки F до прямых, содержащих стороны и диагонали квадрата, если BF=8 дм, AB=4 дм.
- 153 Докажите, что прямая a, проведённая в плоскости α через основание M наклонной AM перпендикулярно к ней, перпендикулярна к её проекции HM (см. рис. 53).

Решение

- Прямая a перпендикулярна к плоскости AMH, так как она перпендикулярна к двум пересекающимся прямым этой плоскости $(a \perp AM$ по условию и $a \perp AH$, так как $AH \perp \alpha$). Отсюда следует, что прямая a перпендикулярна к любой прямой, лежащей в плоскости AMH, в частности $a \perp HM$, что и требовалось доказать.
- 154 Прямая BD перпендикулярна к плоскости треугольника ABC. Известно, что BD=9 см, AC=10 см, BC=BA=13 см. Найдите: а) расстояние от точки D до прямой AC; б) площадь треугольника ACD.
- 155 Через вершину прямого угла C равнобедренного прямоугольного треугольника ABC проведена прямая CM, перпендикулярная к его плоскости. Найдите расстояние от точки M до прямой AB, если AC = 4 см, а $CM = 2\sqrt{7}$ см.

48

- 156 Один из катетов прямоугольного треугольника ABC равен m, а острый угол, прилежащий к этому катету, равен ϕ . Через вершину прямого угла C проведена прямая CD, перпендикулярная к плоскости этого треугольника, CD = n. Найдите расстояние от точки D до прямой AB.
- 157 Прямая OK перпендикулярна к плоскости ромба ABCD, диагонали которого пересекаются в точке O. а) Докажите, что расстояния от точки K до всех прямых, содержащих стороны ромба, равны. 6) Найдите это расстояние, если OK = 4,5 дм, AC = 6 дм, BD = 8 дм.
- 158 Через вершину B ромба ABCD проведена прямая BM, перпендикулярная к его плоскости. Найдите расстояние от точки M до прямых, содержащих стороны ромба, если AB=25 см, $\angle BAD=60^\circ$, BM=12,5 см.
- 159 Прямая BM перпендикулярна к плоскости прямоугольника ABCD. Докажите, что прямая, по которой пересекаются плоскости ADM и BCM, перпендикулярна к плоскости ABM.
- **160** Концы отрезка AB лежат на двух параллельных плоскостях, расстояние между которыми равно d, причём d < AB. Докажите, что проекции отрезка AB на эти плоскости равны. Найдите эти проекции, если AB = 13 см, d = 5 см.
- 161 Луч BA не лежит в плоскости неразвёрнутого угла CBD. Докажите, что если $\angle ABC = \angle ABD$, причём $\angle ABC < 90^\circ$, то проекцией луча BA на плоскость CBD является биссектриса угла CBD.
- **162** Прямая MA проходит через точку A плоскости α и образует с этой плоскостью угол $\phi_0 \neq 90^\circ$. Докажите, что ϕ_0 является наименьшим из всех углов, которые прямая MA образует с прямыми, проведёнными в плоскости α через точку A.

Решение

Обозначим буквой H основание перпендикуляра, проведённого из точки M к плоскости α , и рассмотрим произвольную прямую p в плоскости α , проходящую через точку A и отличную от прямой AH. Угол между прямыми AM и p обозначим через ϕ (рис. 57) и докажем, что $\phi > \phi_0$. Из точки M проведём перпендикуляр MN к прямой p. Если точка N совпадает с точкой A, то $\phi = 90^\circ$ и поэтому $\phi > \phi_0$. Рассмотрим случай, когда точки A и N не совпадают (см. рис. 57). Отрезок AM — общая гипотенуза прямоугольных треугольников

ANM и AHM, поэтому $\sin \varphi = \frac{MN}{AM}$, $\sin \varphi_0 = \frac{MH}{AM}$. Так как MN > MH

(MN — наклонная, MH — перпендикуляр), то из этих равенств следует, что $\sin \phi > \sin \phi_0$, и поэтому $\phi > \phi_0$.

163 Наклонная AM, проведённая из точки A к данной плоскости, равна d. Чему равна проекция этой наклонной на плоскость, если угол между прямой AM и данной плоскостью равен: а) 45° ; б) 60° ; в) 30° ?

Рис. 57

- 164 Под углом ф к плоскости с проведена наклонная. Найдите ф, если известно, что проекция наклонной вдвое меньше самой наклонной.
- 165 Из точки A, удалённой от плоскости γ на расстояние d, проведены к этой плоскости наклонные AB и AC под углом 30° к плоскости. Их проекции на плоскость γ образуют угол в 120° . Найдите BC.

Двугранный угол. Перпендикулярность плоскостей

22 Двугранный угол

Углом на плоскости мы называем фигуру, образованную двумя лучами, исходящими из одной точки. В стереометрии наряду с такими углами рассматривается ещё один вид углов — двугранные углы. Чтобы ввести понятие двугранного угла, напомним, что любая прямая, проведённая в данной плоскости, разделяет эту плоскость на две полуплоскости (рис. 58, *a*). Представим себе, что мы перегнули плоскость по прямой *a* так, что две полуплоскости с границей *a* оказались уже не лежащими в одной плоскости (рис. 58, *б*). Полученная фигура и есть двугранный угол.

Таким образом, можно дать такое определение двугранного угла: двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название — двугранный угол. Прямая а — общая граница полуплоскостей — называется ребром двугранного угла.

Двугранный угол с ребром AB, на разных гранях которого отмечены точки C и D, называют двугранным углом CABD.

В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Такими предметами являются двускатные крыши зданий, полураскрытая папка, стена комнаты совместно с полом и т. д.

Прямая *а* разделяет плоскость на две полуплоскости

Двугранный угол

Рис. 58

Мы знаем, что углы на плоскости (обычные углы) измеряются в градусах. А как измеряются двугранные углы? Это делается следующим образом. Отметим на ребре двугранного угла какую-нибудь точку и в каждой грани из этой точки проведём луч перпендикулярно к ребру. Образованный этими лучами угол называется линейным углом двугранного угла. На рисунке 59, a угол AOB — линейный угол двугранного угла с ребром CD.

Так как $OA \perp CD$ и $OB \perp CD$, то плоскость AOB перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Очевидно, двугранный угол имеет бесконечное множество линейных углов (рис. 59, δ).

Докажем, что все линейные углы двугранного угла равны друг другу. Рассмотрим два линейных угла AOB и $A_1O_1B_1$ (см. рис. 59, δ). Лучи OA и O_1A_1 лежат в одной грани и перпендикулярны к прямой OO_1 , поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O_1B_1 . Поэтому $\angle A_1O_1B_1 = \angle AOB$ (как углы с сонаправленными сторонами).

Градусной мерой двугранного угла называется градусная мера его линейного угла. На рисунке 60, a градусная мера двугранного угла равна 45° . Обычно говорят коротко: «Двугранный угол равен 45° ».

Двугранный угол называется **прямым** (острым, тупым), если он равен 90° (меньше 90° , больше 90°). Двугранный угол, изображённый на рисунке 60, δ , прямой, на рисунке 60, a — острый, а на рисунке 60, ϵ — тупой.

Линейные углы двугранного угла

Рис. 59

Рис. 60

23 Признак перпендикулярности двух плоскостей

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 61, a). Если один из этих двугранных углов равен ϕ , то другие три угла равны соответственно $180^\circ - \phi$, ϕ и $180^\circ - \phi$. В частности, если один из углов прямой ($\phi = 90^\circ$), то и остальные три угла прямые. Если ϕ — тот из четырёх углов, который не превосходит каждого из остальных, то говорят, что угол между пересекающимися плоскостями равен ϕ . Очевидно, $0^\circ < \phi \le 90^\circ$.

Определение

Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90° (рис. 61, δ).

Примером взаимно перпендикулярных плоскостей служат плоскости стены и пола комнаты. Ясно, что все четыре двугранных угла, образованных взаимно перпендикулярными плоскостями, прямые. Рассмотрим признак перпендикулярности двух плоскостей.

Теорема

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

6)

Взаимно перпендикулярные плоскости

Рис. 62

Доказательство

Рассмотрим плоскости α и β такие, что плоскость α проходит через прямую AB, перпендикулярную к плоскости β и пересекающуюся с ней в точке A (рис. 62). Докажем, что $\alpha \perp \beta$. Плоскости α и β пересекаются по некоторой прямой AC, причём $AB \perp AC$, так как по условию $AB \perp \beta$, т. е. прямая AB перпендикулярна к любой прямой, лежащей в плоскости β .

Проведём в плоскости β прямую AD, перпендикулярную к прямой AC. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей α и β . Но $\angle BAD = 90^\circ$ (так как $AB \perp \beta$). Следовательно, угол между плоскостями α и β равен 90° , т. е. $\alpha \perp \beta$. Теорема доказана.

Если $\gamma \perp a$, то $\gamma \perp \alpha$ и $\gamma \perp \beta$

Рис. 63

Следствие

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 63).

24 Прямоугольный параллелепипед

Параллелепипед называется **прямоугольным**, если его боковые рёбра перпендикулярны к основанию, а основания представляют собой прямоугольники. Форму прямоугольного параллелепипеда имеют многие предметы: коробки, ящики, комнаты и т. д. На рисунке 64 изображён прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями служат прямоугольники ABCD и $A_1B_1C_1D_1$, а боковые рёбра AA_1 , BB_1 , CC_1 и DD_1 перпендикулярны к основаниям. Отсюда следует, что $AA_1 \perp AB$, т. е. боковая грань AA_1B_1B — прямоугольник. То же самое можно сказать и об остальных боковых гранях. Таким образом, мы обосновали свойство прямоугольного параллелепипеда:

1°. В прямоугольном параллелепипеде все шесть граней — прямоугольники.

Полуплоскости, в которых расположены смежные грани параллелепипеда, образуют двугранные углы, которые называются двугранными углами параллелепипеда.

Докажите самостоятельно, что:

2⁰. Все двугранные углы прямоугольного параллелепипеда — прямые.

Прямоугольный параллелепипед

Рис. 64

Рассмотрим одно из самых замечательных свойств прямоугольного параллелепипеда.

Длины трёх рёбер, имеющих общую вершину, назовём измерениями прямоугольного параллелепипеда. Например, у параллелепипеда, изображённого на рисунке 64, в качестве измерений можно взять длины рёбер AB, AD и AA_1 .

В обыденной практике, говоря о размерах комнаты, имеющей форму прямоугольного параллелепипеда, вместо слова «измерения» используют обычно слова «длина», «ширина» и «высота» комнаты. Ясно, что длина, ширина и высота комнаты — это и есть её измерения.

Прежде чем сформулировать свойство параллелепипеда, связанное с его измерениями, вспомним, что в прямоугольнике квадрат диагонали равен сумме квадратов смежных сторон.

Длины смежных сторон можно назвать измерениями прямоугольника, и поэтому квадрат диагонали прямоугольника равен сумме квадратов двух его измерений. Оказывается, аналогичным свойством обладает и прямоугольный параллелепипед.

Теорема

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Доказательство

Обратимся к рисунку 64, на котором изображён параллелепипед $ABCDA_1B_1C_1D_1$, и докажем, что

$$AC_1^2 = AB^2 + AD^2 + AA_1^2$$
.

Так как ребро CC_1 перпендикулярно к основанию ABCD, то угол ACC_1 прямой. Из прямоугольного треугольника ACC_1 по теореме Пифагора получаем $AC_1^2 = AC^2 + CC_1^2$.

Но AC — диагональ прямоугольника ABCD, поэтому $AC^2 = AB^2 + AD^2$. Кроме того, $CC_1 = AA_1$. Следовательно, $AC_1^2 = AB^2 + AD^2 + AA_1^2$. Теорема доказана.

Следствие

Диагонали прямоугольного параллелепипеда равны.

Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом. Все грани куба — равные друг другу квадраты.

25* Трёхгранный угол

Рассмотрим три луча с общим началом O — лучи OA, OB и OC, не лежащие в одной плоскости. Фигура, состоящая из углов AOB, BOC, COA и их внутренних областей, называется трёхгранным углом OABC, а указанные углы — плоскими углами этого трёхгранного угла.

Докажем, что каждый плоский угол трёхгранного угла меньше суммы двух других плоских углов. Рассмотрим трёхгранный угол OABC и для определённости будем считать, что $\angle BOC \geqslant \angle AOC \geqslant \angle AOB$. Достаточно доказать, что $\angle BOC < \angle AOB + \angle AOC$ (объясните почему). Если $\angle BOC = \angle AOB$, то справедливость этого неравенства очевидна. В противном случае ($\angle BOC > \angle AOB$) поступим так.

На луче BC выберем точку M так, чтобы угол MOB оказался равным углу AOB (рис. 65, a). Поскольку $\angle BOC > \angle AOB$, то точка M будет лежать между точками B и C. Далее, на луче OA отложим отрезок ON = OM. Треугольники BON и BOM равны по первому признаку равенства треугольников, поэтому BN = BM.

В треугольнике ВСИ имеем:

$$BM + MC = BC < BN + NC = BM + NC$$

откуда находим: MC < NC.

Разогнём двугранный угол с ребром OC так, чтобы точки M, N, O и C оказались лежащими в одной плоскости, и проведём биссектрису OD треугольника MON (рис. 65, δ). Поскольку треугольник MON — равнобедренный, то отрезок OD является его медианой и высотой: MD = DN, $OD \perp MN$. Таким образом, прямая OD проходит через середину стороны MN треугольника MNC и перпендикулярна к этой стороне. Следовательно, она пересекает большую из сторон MC и NC (докажите это), т. е. сторону NC. Поэтому $\angle MOC < \angle NOC$. Обратимся теперь к рисунку 65, a. Мы видим, что

$$\angle BOC = \angle MOB + \angle MOC =$$
 = $\angle AOB + \angle MOC < \angle AOB + \angle NOC = \angle AOB + \angle AOC$, что и требовалось доказать.

M C C

Рис. 65

26* Многогранный угол

Рассмотрим фигуру, составленную из углов A_1OA_2 , A_2OA_3 , ..., A_nOA_1 и их внутренних областей так, что смежные углы (т. е. углы A_1OA_2 и A_2OA_3 , ..., A_nOA_1 и A_1OA_2) не лежат в одной плоскости, а несмежные углы (с их внутренними областями) не имеют общих точек. Такая фигура называется многогранным углом $OA_1A_2...A_n$, углы, из которых составлен этот многогранный угол, — плоскими углами, лучи OA_1 , OA_2 , ..., OA_n — рёбрами, а точка O — вершиной этого многогранного угла. Примером многогранного угла является трёхгранный угол.

Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждого из своих плоских углов. В частности, трёхгранный угол — выпуклый (объясните почему).

Докажем, что для любого выпуклого многогранного угла существует плоскость, пересекающая все его рёбра. Рассмотрим рёбра OA_1 и OA_2 многогранного угла $OA_1A_2 \dots A_n$. Поскольку данный многогранный угол — выпуклый, то точки A_3, \dots, A_n лежат по одну сторону от плоскости OA_1A_2 .

Проведём среднюю линию BC треугольника OA_1A_2 (рис. 66) и выберем из рёбер OA_3 , ..., OA_n то ребро OA_i , для которого величина двугранного угла $OBCA_i$ имеет наименьшее значение (на рисунке грани этого двугранного угла закрашены). Рассмотрим полуплоскость с границей BC, делящую двугранный угол $OBCA_i$ на два двугранных угла (на рисунке эта полуплоскость не изображена). Все вершины A_1 , ..., A_n лежат по одну сторону от плоскости α , содержащей эту полуплоскость, а точка O — по другую сторону от плоскости α (объясните почему). Следовательно, плоскость α пересекает все рёбра OA_1 , ..., OA_n . Утверждение доказано.

Выпуклые многогранные углы обладают ещё одним важным свойством.

Рис. 66

Теорема

Сумма плоских углов выпуклого многогранного угла меньше 360° .

Доказательство

Рассмотрим выпуклый многогранный угол с вершиной O и проведём плоскость, пе-

ресекающую все его рёбра в некоторых точках A_1 , $A_2, ..., A_n$ (рис. 67). Ясно, что многоугольник $A_1A_2 \dots A_n$ — выпуклый. Имеем

$$\begin{split} \angle A_1 O A_2 + \angle A_2 O A_3 + \ldots + \angle A_n O A_1 = \\ &= (180^\circ - \angle O A_1 A_2 - \angle O A_2 A_1) + \\ &+ (180^\circ - \angle O A_2 A_3 - \angle O A_3 A_2) + \ldots \\ &\ldots + (180^\circ - \angle O A_n A_1 - \angle O A_1 A_n) = \\ &= 180^\circ \cdot n - (\angle O A_1 A_n + \angle O A_1 A_2) - \\ &- (\angle O A_2 A_1 + \angle O A_2 A_3) - \ldots - (\angle O A_n A_{n-1} + \angle O A_n A_1). \end{split}$$

Но сумма двух плоских углов трёхгранного угла больше третьего плоского угла (см. п. 25), поэтому

$$\angle OA_1A_n + \angle OA_1A_2 > \angle A_nA_1A_2, \ldots,$$

 $\angle OA_nA_{n-1} + \angle OA_nA_1 > \angle A_{n-1}A_nA_1,$

Следовательно, искомая сумма меньше, чем

$$180^{\circ} \cdot n - (\angle A_n A_1 A_2 + \angle A_1 A_2 A_3 + \dots + \angle A_{n-1} A_n A_1) =$$

$$= 180^{\circ} \cdot n - 180^{\circ} \cdot (n-2) = 360^{\circ}.$$

Теорема доказана.

$\angle OA_nA_{n-1} + \angle OA_nA_1 > \angle A_{n-1}A_nA_1$.

Рис. 67

Задачи

- **166** Неперпендикулярные плоскости α и β пересекаются по прямой MN. В плоскости β из точки A проведён перпендикуляр AB к прямой MN и из той же точки A проведён перпендикуляр AC к плоскости α . Докажите, что $\angle ABC$ — линейный угол двугранного угла AMNC.
- **167** В тетраэдре DABC все рёбра равны, точка M середина ребра AC. Докажите, что $\angle DMB$ — линейный угол двугранного угла BACD.
- 168 Двугранный угол равен ф. На одной грани этого угла лежит точка, удалённая на расстояние d от плоскости другой грани. Найдите расстояние от этой точки до ребра двугранного угла.
- 169 Даны два двугранных угла, у которых одна грань общая, а две другие грани являются различными полуплоскостями одной плоскости. Докажите, что сумма этих двугранных углов равна 180°.
- 170 Из вершины B треугольника ABC, сторона AC которого лежит в плоскости α , проведён к этой плоскости перпендикуляр BB_1 . Найдите расстояния от точки B до прямой AC и до плоскости α , если AB = 2 см, $\angle BAC = 150^{\circ}$ и двугранный угол $BACB_1$ равен 45° .
- 171 Гипотенуза прямоугольного равнобедренного треугольника лежит в плоскости α , а катет наклонён к этой плоскости под углом 30° . Найдите угол между плоскостью α и плоскостью треугольника.

- 172 Катет AC прямоугольного треугольника ABC с прямым углом C лежит в плоскости α , а угол между плоскостями α и ABC равен 60° . Найдите расстояние от точки B до плоскости α , если AC=5 см, AB=13 см.
- 173 Ребро CD тетраэдра ABCD перпендикулярно к плоскости ABC, AB = BC = AC = 6, $BD = 3\sqrt{7}$. Найдите двугранные углы DACB, DABC, BDCA.
- 174 Найдите двугранный угол ABCD тетраэдра ABCD, если углы DAB, DAC и ACB прямые, AC = CB = 5, $DB = 5\sqrt{5}$.
- 175 Докажите, что если все рёбра тетраэдра равны, то все его двугранные углы также равны. Найдите эти углы.
- 176 Через сторону AD ромба ABCD проведена плоскость ADM так, что двугранный угол BADM равен 60°. Найдите сторону ромба, если $\angle BAD = 45^{\circ}$ и расстояние от точки B до плоскости ADM равно $4\sqrt{3}$.
- 177 Докажите, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
- 178 Плоскости α и β взаимно перпендикулярны и пересекаются по прямой c. Докажите, что любая прямая плоскости α , перпендикулярная к прямой c, перпендикулярна к плоскости β .

Решение

Проведём в плоскости α произвольную прямую AC, перпендикулярную к прямой $c, C \in c$. Докажем, что $CA \perp \beta$. В плоскости β через точку C проведём прямую CB, перпендикулярную к прямой c. Так как $CA \perp c$ и $CB \perp c$, то $\angle ACB$ — линейный угол одного из двугранных углов, образованных плоскостями α и β . По условию задачи $\alpha \perp \beta$, поэтому $\angle ACB$ — прямой, т. е. $CA \perp CB$. Таким образом, прямая CA перпендикулярна к двум пе-

- ресекающимся прямым c и CB плоскости β , поэтому $CA \perp \beta$.

 179 Плоскости α и β взаимно перпендикулярны. Через некоторую точку плоскости α проведена прямая, перпендикулярная к плоскости β . Докажите, что эта прямая лежит в плоскости α .
- **180** Докажите, что плоскость и не лежащая в ней прямая, перпендикулярные к одной и той же плоскости, параллельны.
- **181** Плоскости α и β пересекаются по прямой a. Из точки M проведены перпендикуляры MA и MB соответственно к плоскостям α и β . Прямая a пересекает плоскость AMB в точке C. Докажите, что $MC \perp a$.
- 182 Плоскости α и β взаимно перпендикулярны и пересекаются по прямой a. Из точки M проведены перпендикуляры MA и MB к этим плоскостям. Прямая a пересекает плоскость AMB в точке C. а) Докажите, что четырёхугольник ACBM является прямоугольником. б) Найдите расстояние от точки M до прямой a, если AM = m, BM = n.

58

- 183 Плоскости α и β пересекаются по прямой a и перпендикулярны к плоскости γ . Докажите, что прямая a перпендикулярна к плоскости γ .
- 184 Общая сторона AB треугольников ABC и ABD равна 10 см. Плоскости этих треугольников взаимно перпендикулярны. Найдите CD, если треугольники: а) равносторонние; б) прямоугольные равнобедренные с гипотенузой AB.
- **185** Прямая a не перпендикулярна к плоскости α . Докажите, что существует плоскость, проходящая через прямую a и перпендикулярная к плоскости α .

Решение

Через произвольную точку M прямой a проведём прямую p, перпендикулярную к плоскости α , и рассмотрим плоскость β , проходящую через прямые a и p. Плоскость β является искомой, так как она проходит через прямую a и по признаку перпендикулярности двух плоскостей перпендикулярна к плоскости α .

186 Докажите, что существует, и притом только одна, прямая, пересекающая две данные скрещивающиеся прямые *a* и *b* и перпендикулярная к каждой из них.

Решение

Рассмотрим плоскость α , проходящую через прямую a и параллельную прямой b. Через прямые a и b проведём плоскости β и γ так, чтобы $\beta \perp \alpha$ и $\gamma \perp \alpha$ (задача 185). Докажите самостоятельно, что прямая p, по которой пересекаются плоскости β и γ , искомая.

Докажем, что p — единственная прямая, удовлетворяющая условию задачи. Предположим, что существуют две прямые A_1B_1 и A_2B_2 , пересекающие данные скрещивающиеся прямые a и b и перпендикулярные к каждой из них (рис. 68). Прямые A_1B_1 и A_2B_2 перпендикулярны к плоскости α (объясните почему), поэтому они параллельны. Отсюда следует, что скрещивающиеся прямые a и b лежат в одной плоскости, что противоречит определению скрещивающихся прямых.

Рис. 68

- 187 Найдите диагональ прямоугольного параллелепипеда, если его измерения равны: а) 1, 1, 2; б) 8, 9, 12; в) $\sqrt{39}$, 7, 9.
- 188 Ребро куба равно а. Найдите диагональ куба.
- 189 Найдите расстояние от вершины куба до плоскости любой грани, в которой не лежит эта вершина, если: а) диагональ грани куба равна m; б) диагональ куба равна d.
- 190 Дан куб $ABCDA_1B_1C_1D_1$. Найдите следующие двугранные углы: а) ABB_1C ; б) ADD_1B ; в) A_1BB_1K , где K середина ребра A_1D_1 .
- **191** Дан куб $ABCDA_1B_1C_1D_1$. Докажите, что плоскости ABC_1 и A_1B_1D перпендикулярны.

- 192 Найдите тангенс угла между диагональю куба и плоскостью одной из его граней.
- 193 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ дано: $D_1B=d$, AC=m, AB=n. Найдите расстояние между: а) прямой A_1C_1 и плоскостью ABC; б) плоскостями ABB_1 и DCC_1 ; в) прямой DD_1 и плоскостью ACC_1 .
- 194 Ребро куба равно *а*. Найдите расстояние между скрещивающимися прямыми, содержащими: а) диагональ куба и ребро куба; б) диагональ куба и диагональ грани куба.
- 195 Найдите измерения прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, если $AC_1=12$ см и диагональ BD_1 составляет с плоскостью грани AA_1D_1D угол в 30° , а с ребром DD_1 угол в 45° .
- 196 Изобразите куб $ABCDA_1B_1C_1D_1$ и постройте его сечение плоскостью, проходящей через: а) ребро AA_1 и перпендикулярной к плоскости BB_1D_1 ; б) ребро AB и перпендикулярной к плоскости CDA_1 .

Вопросы к главе ІІ

- 1 Верно ли утверждение: если две прямые в пространстве перпендикулярны к третьей прямой, то эти прямые параллельны? Верно ли это утверждение при условии, что все три прямые лежат в одной плоскости?
- 2 Параллельные прямые b и c лежат в плоскости α , а прямая a перпендикулярна к прямой b. Верно ли утверждение: а) прямая a перпендикулярна к прямой c; б) прямая a пересекает плоскость α ?
- 3 Прямая a перпендикулярна к плоскости α , а прямая b не перпендикулярна к этой плоскости. Могут ли прямые a и b быть параллельными?
- 4 Прямая a параллельна плоскости α , а прямая b перпендикулярна к этой плоскости. Верно ли утверждение, что прямые a и b взаимно перпендикулярны?
- 5 Прямая a параллельна плоскости α , а прямая b перпендикулярна κ этой плоскости. Существует ли прямая, перпендикулярная κ прямым a и b?
- 6 Верно ли утверждение, что все прямые, перпендикулярные к данной плоскости и пересекающие данную прямую, лежат в одной плоскости?
- 7 Могут ли две плоскости, каждая из которых перпендикулярна к третьей плоскости, быть: а) параллельными плоскостями; б) перпендикулярными плоскостями?
- 8 Можно ли через точку пространства провести три плоскости, каждые две из которых взаимно перпендикулярны?
- 9 Диагональ квадрата перпендикулярна к некоторой плоскости. Как расположена другая диагональ квадрата по отношению к этой плоскости?
- 10 Сколько двугранных углов имеет: а) тетраэдр; б) параллелепипед?

60

Дополнительные задачи

- 197 Отрезок BM перпендикулярен к плоскости прямоугольника ABCD. Докажите, что прямая CD перпендикулярна к плоскости MBC.
- 198 Точка A лежит в плоскости α , а точка B удалена от этой плоскости на расстояние 9 см. Точка M делит отрезок AB в отношении 4:5, считая от точки A. Найдите расстояние от точки M до плоскости α .
- 199 Точка S равноудалена от вершин прямоугольного треугольника и не лежит в плоскости этого треугольника. Докажите, что прямая SM, где M середина гипотенузы, перпендикулярна к плоскости треугольника.
- 200 Докажите, что любая точка прямой, которая проходит через центр окружности, описанной около многоугольника, и перпендикулярна к плоскости многоугольника, равноудалена от вершин этого многоугольника.
- 201 Найдите угол между скрещивающимися прямыми AB и PQ, если точки P и Q равноудалены от концов отрезка AB.
- 202 Точка удалена от каждой из вершин прямоугольного треугольника на расстояние 10 см. На каком расстоянии от плоскости треугольника находится эта точка, если медиана, проведённая к гипотенузе, равна 5 см?
- **203** Через центр O окружности, вписанной в треугольник ABC, проведена прямая OK, перпендикулярная к плоскости треугольника. Найдите расстояние от точки K до сторон треугольника, если AB = BC = 10 см, AC = 12 см, OK = 4 см.
- **204** Прямая OM перпендикулярна к плоскости правильного треугольника ABC и проходит через центр O этого треугольника, OM = a, $\angle MCO = \varphi$. Найдите: а) расстояние от точки M до каждой из вершин треугольника ABC и до прямых AB, BC и CA; б) длину окружности, описанной около треугольника ABC; в) площадь треугольника ABC.
- **205** Через вершину C прямого угла прямоугольного треугольника ABC проведена прямая CD, перпендикулярная к плоскости этого треугольника. Найдите площадь треугольника ABD, если CA=3 дм, CB=2 дм, CD=1 дм.
- 206 Стороны треугольника равны 17 см, 15 см и 8 см. Через вершину A меньшего угла треугольника проведена прямая AM, перпендикулярная к его плоскости. Определите расстояние от точки M до прямой, содержащей меньшую сторону треугольника, если известно, что AM = 20 см.
- **207** В треугольнике ABC дано: AB = BC = 13 см, AC = 10 см. Точка M удалена от прямых AB, BC и AC на $8\frac{2}{3}$ см. Найдите расстояние от точки M до плоскости ABC, если её проекция на эту плоскость лежит внутри треугольника.

- 208 Из точки K, удалённой от плоскости α на 9 см, проведены к плоскости α наклонные KL и KM, образующие между собой прямой угол, а с плоскостью α углы в 45° и 30° соответственно. Найдите отрезок LM.
- 209 Углы между равными отрезками AB и AC и плоскостью α , проходящей через точку A, равны соответственно 40° и 50° . Сравните расстояния от точек B и C до плоскости α .
- **210** На рисунке 69 двугранные углы *HABP* и *PABQ* равны. Докажите, что каждая точка плоскости *ABP* равноудалена от плоскостей *ABH* и *ABQ*.

Рис. 69

- **211** Плоскости правильного треугольника KDM и квадрата KMNP взаимно перпендикулярны. Найдите DN, если KM = a.
- 212 Точка C является проекцией точки D на плоскость треугольника ABC. Докажите, что площадь треугольника ABD равна $\frac{S}{\cos\alpha}$, где S площадь треугольника ABC, а α угол между плоскостями ABC и ABD.
- **213** Правильные треугольники ABC и DBC расположены так, что вершина D проектируется в центр треугольника ABC. Вычислите угол между плоскостями этих треугольников.
- 214 Проекцией прямоугольника ABCD на плоскость α является квадрат ABC_1D_1 . Вычислите угол ϕ между плоскостью α и плоскостью прямоугольника ABCD, если AB:BC=1:2.
- **215** Параллельные прямые AB и CD лежат в разных гранях двугранного угла, равного 60° . Точки A и D удалены от ребра двугранного угла соответственно на 8 см и 6,5 см. Найдите расстояние между прямыми AB и CD.
- 216 Точки A и B лежат на ребре данного двугранного угла, равного 120° . Отрезки AC и BD проведены в разных гранях и перпендикулярны к ребру двугранного угла. Найдите отрезок CD, если AB = AC = BD = a.
- 217 Сумма площадей трёх граней прямоугольного параллелепипеда, имеющих общую вершину, равна 404 дм², а его рёбра пропорциональны числам 3, 7 и 8. Найдите диагональ параллелепипеда.

Глава III Многогранники

Понятие многогранника. Призма

27 Понятие многогранника

В главе I мы рассмотрели тетраэдр и параллелепипед: тетраэдр — поверхность, составленная из четырёх треугольников (рис. 70, a), параллелепипед — поверхность, составленная из шести параллелограммов (рис. 70, δ). Каждая из этих поверхностей ограничивает некоторое геометрическое тело, отделяет это тело от остальной части пространства.

Поверхность, составленную из многоугольников и ограничивающую некоторое геометрическое тело, будем называть многогранной поверхностью или многогранником. Тетраэдр и параллелепипед — примеры многогранников. На рисунке 71 изображён ещё один многогранник октаэдр. Он составлен из восьми треугольников. Тело, ограниченное многогранником, часто также называют многогранником.

Многоугольники, из которых составлен многогранник, называются его гранями¹. Гранями тетраэдра и октаэдра являются треугольники (рис. 70, *a* и 71), гранями параллелепипеда — параллелограммы (рис. 70, *б*). Стороны граней называются рёбрами, а концы рёбер — вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника. Плоскость, по обе стороны от которой имеются точки многогранника, называется секущей плоскостью, а общая часть многогранника и секущей плоскости — сечением многогранника.

Многогранники бывают выпуклые и невыпуклые. Многогранник называется выпуклым, если он расположен по одну сторону от плоско-

Тетраэдр

Параллелепипед

Рис. 70

Рис. 71

¹ При этом предполагается, что никакие две соседние грани многогранника не лежат в одной плоскости.

сти каждой его грани. Тетраэдр, параллелепипед и октаэдр — выпуклые многогранники. На рисунке 72 изображён **невыпуклый** многогранник.

Ясно, что все грани выпуклого многогранника являются выпуклыми многоугольниками. Отметим также, что в выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360° (см. п. 26). Рисунок 73 поясняет это утверждение: многогранник «разрезан» вдоль рёбер и все его грани с общей вершиной A развёрнуты так, что оказались расположенными в одной плоскости α . Видно, что сумма всех плоских углов при вершине A, т. е. $\phi_1 + \phi_2 + \phi_3$, меньше 360° .

28* Геометрическое тело

Мы отметили, что многогранник ограничивает некоторое геометрическое тело. Уточним понятие геометрического тела.

Точка M называется граничной точкой данной фигуры F, если среди сколь угодно близких к ней точек (включая её саму) есть точки, как принадлежащие фигуре, так и не принадлежащие ей. Множество всех граничных точек фигуры называется её границей. Так, например, границей шара является сфера.

Точка фигуры, не являющаяся граничной, называется внутренней точкой фигуры. Каждая внутренняя точка фигуры характеризуется тем, что все достаточно близкие к ней точки пространства также принадлежат фигуре. Так, любая точка шара, не лежащая на сфере — его границе, является внутренней точкой шара.

Фигура называется ограниченной, если её можно заключить в какую-нибудь сферу. Очевидно, шар, тетраэдр, параллелепипед — ограниченные фигуры, а прямая и плоскость — неограниченные.

Фигура называется **связной**, если любые две её точки можно соединить непрерывной линией, целиком принадлежащей данной фигуре. Примерами связных фигур являются тетраэдр (см. рис. 70, a), параллелепипед (см. рис. 70, δ), октаэдр (см. рис. 71), плоскость. Фигура, состоящая из двух параллельных плоскостей, не является связной.

Невыпуклый многогранник

Рис. 72

 $\phi_1+\phi_2+\phi_3<360^\circ$

Рис. 73

Геометрическим телом (или просто телом) называют ограниченную связную фигуру в пространстве, которая содержит все свои граничные точки, причём сколь угодно близко от любой граничной точки находятся внутренние точки фигуры. Границу тела называют также его поверхностью и говорят, что поверхность ограничивает тело.

Плоскость, по обе стороны от которой имеются точки данного тела, называется секущей плоскостью. Фигура, которая образуется при пересечении тела плоскостью (т. е. общая часть тела и секущей плоскости), называется сечением тела.

29* Теорема Эйлера

Сейчас мы докажем удивительную теорему, связанную с именем выдающегося математика Леонарда Эйлера (1707—1783), швейцарца по происхождению, большую часть жизни работавшего в России.

Теорема

В любом выпуклом многограннике сумма числа граней и числа вершин больше числа рёбер на 2.

Доказательство

Рассмотрим произвольный выпуклый многогранник, имеющий e вершин, f граней и k рёбер. Докажем, что f+e-k=2.

Выберем произвольную грань G, отметим какую-нибудь точку M её внутренней области и проведём из неё луч h, перпендикулярный к плоскости этой грани и лежащий по ту сторону от неё, по которую нет точек многогранника. Если плоскости каких-либо других граней пересекают луч h, то выберем на нём точку O, лежащую между M и ближайшей к M точкой пересечения; в противном случае возьмём в качестве точки O произвольную точку луча h (рис. 74). Тогда точка O окажется лежащей по ту же сторону от плоскости каждой грани многогранника, отличной от G, что и сам многогранник.

Удалим теперь грань G. В результате получим многогранную поверхность F, имеющую те же рёбра и вершины, что и исходный много-

Рис. 74

гранник, число граней которой равно f-1. Любой луч с началом O пересекает поверхность F не более чем в одной точке (поскольку после пересечения лучом поверхности F он «уходит» в то полупространство, в котором точек поверхности F нет). Примем точку O за центр проектирования и рассмотрим центральную проекцию поверхности F на плоскость грани G (рис. 75; грань G на этом рисунке изображена в увеличенном масштабе). Она представляет собой грань G, составленную из f-1выпуклых многоугольников — проекций остальных граней (докажите, что эти многоугольники выпуклые). Число вершин этих многоугольников равно e, а число сторон равно k. Если провести диагональ какого-нибудь из них, то число вершин не изменится, число многоугольников увеличится на 1, число сторон также увеличится на 1, поэтому разность числа многоугольников и числа сторон не изменится (см. рис. 75). Следовательно, если каждый многоугольник разделить диагоналями на треугольники, то грань G окажется разделённой на f' треугольников с e' вершинами и k' сторонами, причём

$$f' + e' - k' = (f - 1) + e - k$$
.

Пусть n — число сторон грани G. Каждый из треугольников имеет три стороны, поэтому число k' меньше числа 3f' на число сторон, каждая из которых принадлежит одновременно двум треугольникам, т. е. на k'-n:

$$k' = 3f' - (k' - n)$$
.

Отсюда получаем:

$$n = 2k' - 3f'$$
.

Сумма углов всех треугольников, с одной стороны, равна $f' \cdot 180^\circ$, с другой — сумме углов n-угольника G плюс 360° , умноженных на число e'-n вершин, лежащих внутри G:

$$f' \cdot 180^{\circ} = (n-2) \cdot 180^{\circ} + 360^{\circ} \cdot (e'-n).$$

Отсюда находим f' = 2e' - n - 2 = 2e' - (2k' - 3f') - 2,

т. е.
$$f' + e' - k' = 1$$
.

Ho f' + e' - k' = (f - 1) + e - k. Следовательно,

$$f + e - k = 2$$
.

Теорема доказана.

Рис. 75

30 Призма

Рассмотрим два равных многоугольника $A_1A_2 \dots A_n$ и $B_1B_2 \dots B_n$, расположенных в параллельных плоскостях α и β так, что отрезки A_1B_1 , A_2B_2, \dots, A_nB_n , соединяющие соответственные вершины многоугольников, параллельны (рис. 76). Каждый из n четырёхугольников

$$A_1A_2B_2B_1, A_2A_3B_3B_2, ..., A_nA_1B_1B_n$$
 (1)

является параллелограммом, так как имеет попарно параллельные противоположные стороны. Например, в четырёхугольнике $A_1A_2B_2B_1$ стороны A_1B_1 и A_2B_2 параллельны по условию, а стороны A_1A_2 и B_1B_2 — по свойству параллельных плоскостей, пересечённых третьей плоскостью (п. 11).

Многогранник, составленный из двух равных многоугольников $A_1A_2 \dots A_n$ и $B_1B_2 \dots B_n$, расположенных в параллельных плоскостях, и n параллелограммов (1), называется призмой (см. рис. 76).

Многоугольники $A_1A_2 \dots A_n$ и $B_1B_2 \dots B_n$ называются основаниями, а параллелограммы (1) — боковыми гранями призмы.

Отрезки A_1B_1 , A_2B_2 , ..., A_nB_n называются **боковыми рёбрами** призмы. Эти рёбра как противоположные стороны параллелограммов (1), последовательно приложенных друг к другу, равны и параллельны.

Призму с основаниями $A_1A_2...A_n$ и $B_1B_2...B_n$ обозначают $A_1A_2...A_nB_1B_2...B_n$ и называют **п-угольной призмой**. На рисунке 77 изображены треугольная и шестиугольная призмы, а на рисунке 70, σ — четырёхугольная призма, являющаяся параллелепипедом.

Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые рёбра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае — наклонной. Высота прямой призмы равна её боковому ребру.

Прямая призма называется правильной, если её основания — правильные многоугольники. У такой призмы все боковые грани — равные прямоугольники (объясните почему). На рисунке 77 изображена правильная шестиугольная призма.

Призма. Многоугольники $A_1A_2\dots A_n$ и $B_1B_2\dots B_n$ — основания призмы. Параллелограммы $A_1A_2B_2B_1,\dots,A_nA_1B_1B_n$ — боковые грани

Рис. 76

Наклонная треугольная призма

Правильная шестиугольная призма

Рис. 77

Площадью полной поверхности призмы называется сумма площадей всех её граней, а площадью боковой поверхности призмы — сумма площадей её боковых граней. Площадь $S_{\text{полн}}$ полной поверхности выражается через площадь $S_{\text{бок}}$ боковой поверхности и площадь $S_{\text{осн}}$ основания призмы формулой

$$S_{\text{полн}} = S_{\text{бок}} + 2S_{\text{осн}}$$
.

Докажем теорему о площади боковой поверхности прямой призмы.

Теорема

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы.

Доказательство

Боковые грани прямой призмы — прямоугольники, основания которых — стороны основания призмы, а высоты равны высоте h призмы. Площадь боковой поверхности призмы равна сумме площадей указанных прямоугольников, т. е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т. е. его периметр P. Итак,

$$S_{\text{for}} = Ph$$
.

Теорема доказана.

31* Пространственная теорема Пифагора

Решим сначала такую задачу.

Задача

Найти площадь S_1 прямоугольной проекции многоугольника с площадью S на плоскость α , если угол между плоскостью многоугольника и плоскостью α равен ϕ (0° < ϕ < 90°).

Решение

а) Начнём с того случая, когда данный многоугольник является треугольником, одна из сторон которого лежит в плоскости α . Обратимся к рисунку 78, a, на котором сторона AB треугольника ABC лежит в плоскости α , отрезок CC_1 — пер-

пендикуляр, проведённый из точки C к плоскости α , и, следовательно, треугольник ABC_1 — проекция треугольника ABC на эту плоскость. Пусть отрезок C_1H — высота треугольника ABC_1 . Тогда отрезок CH — высота треугольника ABC (по теореме о трёх перпендикулярах), а $\angle CHC_1 = \varphi$ (объясните почему). Так как

$$S_1 = \frac{1}{2} AB \cdot C_1 H,$$

$$S = \frac{1}{2} AB \cdot CH,$$

$$C_1 H = CH \cdot \cos \varphi,$$

то

$$S_1 = S \cdot \cos \varphi. \tag{2}$$

б) Если сторона AB данного треугольника ABC параллельна плоскости α (рис. 78, δ ; на этом рисунке треугольник $A_1B_1C_1$ — проекция треугольника ABC, плоскость ABC_2 параллельна плоскости α), то, согласно доказанному, площадь треугольника ABC_2 равна $S \cdot \cos \varphi$.

Но треугольник ABC_2 равен треугольнику $A_1B_1C_1$ (докажите это), поэтому его площадь равна S_1 . Таким образом, и в этом случае площадь S_1 проекции треугольника ABC с площадью S выражается формулой (2).

в) Рассмотрим, наконец, произвольный многоугольник с площадью S. Разобьём его на треугольники.

Если ни одна из сторон какого-то из них не параллельна плоскости α и не лежит в ней, то разобьём этот треугольник на два треугольника отрезком, проведённым через одну из его вершин параллельно плоскости α (рис. 78, ϵ), либо в самой плоскости α (рис. 78, ϵ).

Выразим площадь проекции каждого треугольника по формуле (2) и сложим эти площади. Вынеся за скобки общий множитель $\cos \varphi$, получим в скобках сумму площадей треугольников, т. е. площадь S данного многоугольника.

Таким образом, площадь S_1 проекции многоугольника выражается формулой (2).

Воспользуемся этим для доказательства утверждения, получившего название пространственная теорема Пифагора.

a)

B)

Рис. 78

Теорема

Если все плоские углы при одной из вершин тетраэдра — прямые, то квадрат площади грани, противолежащей этой вершине, равен сумме квадратов площадей остальных граней.

Доказательство

Рассмотрим тетраэдр OABC, в котором $\angle AOB = \angle BOC = \angle COA = 90^\circ$. Пусть S_C , S_A , S_B и S — площади треугольников OAB, OBC, OCA и ABC, α , β , γ — величины двугранных углов с рёбрами AB, BC, CA, точка D — проекция точки O на плоскость грани ABC (рис. 79). Поскольку $\alpha < 90^\circ$, $\beta < 90^\circ$, $\gamma < 90^\circ$ (докажите это), то точка D лежит внутри треугольника ABC. Треугольники OAB, OBC и OCA являются проекциями треугольника ABC, поэтому

Рис. 79

$$S_C = S \cos \alpha$$
, $S_A = S \cos \beta$, $S_B = S \cos \gamma$.

Треугольники DAB, DBC и DCA являются проекциями треугольников OAB, OBC и OCA на плоскость грани ABC, причём сумма площадей этих треугольников равна площади S треугольника ABC. Таким образом,

$$(S\cos\alpha)\cdot\cos\alpha + (S\cos\beta)\cdot\cos\beta + (S\cos\gamma)\cdot\cos\gamma =$$

$$= S(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) = S.$$

Следовательно,

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
.

Поэтому

$$S_C^2 + S_A^2 + S_B^2 = S^2 (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = S^2$$
.

Теорема доказана.

Задачи

- 218 Докажите, что: а) у прямой призмы все боковые грани прямоугольники; б) у правильной призмы все боковые грани — равные прямоугольники.
- 219 В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ параллелепипеда образует с плоскостью основания угол в 45° . Найдите боковое ребро параллелепипеда.
- 220 Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллелепипеда.

- 221 Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
- 222 Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых рёбрах призмы.
- 223 Через два противолежащих ребра куба проведено сечение, площадь которого равна $64\sqrt{2}$ см². Найдите ребро куба и его диагональ.
- 224 Диагональ правильной четырёхугольной призмы наклонена к плоскости основания под углом 60° . Найдите площадь сечения, проходящего через сторону нижнего основания и противолежащую сторону верхнего основания, если диагональ основания равна $4\sqrt{2}$ см.
- **225** Диагональ правильной четырёхугольной призмы образует с плоскостью боковой грани угол в 30° . Найдите угол между диагональю и плоскостью основания.
- 226 В правильной четырёхугольной призме через диагональ основания проведено сечение параллельно диагонали призмы. Найдите площадь сечения, если сторона основания призмы равна 2 см, а её высота равна 4 см.
- 227 Основание призмы правильный треугольник ABC. Боковое ребро AA_1 образует равные углы со сторонами основания AC и AB. Докажите, что: а) $BC \perp AA_1$; б) CC_1B_1B прямоугольник.
- 228 Основанием наклонной призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, в котором AC=AB=13 см, BC=10 см, а боковое ребро призмы образует с плоскостью основания угол в 45° . Проекцией вершины A_1 является точка пересечения медиан треугольника ABC. Найдите площадь грани CC_1B_1B .
- **229** В правильной n-угольной призме сторона основания равна a и высота равна h. Вычислите площади боковой и полной поверхности призмы, если: a) n=3, a=10 см, h=15 см; б) n=4, a=12 дм, h=8 дм; в) n=6, a=23 см, h=5 дм; г) n=5, a=0,4 м, h=10 см.
- 230 Основание прямой призмы треугольник со сторонами 5 см и 3 см и углом в 120° между ними. Наибольшая из площадей боковых граней равна 35 см 2 . Найдите площадь боковой поверхности призмы.
- **231** Стороны основания прямого параллелепипеда равны 8 см и 15 см и образуют угол в 60° . Меньшая из площадей диагональных сечений равна 130 см^2 . Найдите площадь поверхности параллелепипеда.
- 232 Диагональ прямоугольного параллелепипеда, равная d, образует с плоскостью основания угол ϕ , а с одной из боковых граней угол α . Найдите площадь боковой поверхности параллелепипеда.

¹ Сечение параллелепипеда называется диагональным, если оно содержит какую-нибудь его диагональ и боковое ребро.

- **233** Основанием прямой призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с прямым углом B. Через ребро BB_1 проведено сечение BB_1D_1D , перпендикулярное к плоскости грани AA_1C_1C . Найдите площадь сечения, если $AA_1 = 10$ см, AD = 27 см, DC = 12 см.
- 234 Основанием прямой призмы является прямоугольный треугольник. Через середину гипотенузы перпендикулярно к ней проведена плоскость. Найдите площадь сечения, если катеты равны 20 см и 21 см, а боковое ребро равно 42 см.
- **235** Основанием прямой призмы является прямоугольный треугольник с острым углом ϕ . Через катет, противолежащий этому углу, и через противоположную этому катету вершину основания проведено сечение, составляющее угол θ с плоскостью основания. Найдите отношение площади боковой поверхности призмы к площади сечения.
- **236** Докажите, что площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
- 237 Боковое ребро наклонной четырёхугольной призмы равно 12 см, а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.
- 238 В наклонной треугольной призме две боковые грани взаимно перпендикулярны, а их общее ребро, отстоящее от двух других боковых рёбер на 12 см и 35 см, равно 24 см. Найдите площадь боковой поверхности призмы.

§2

Пирамида

32 Пирамида

Рассмотрим многоугольник $A_1A_2...A_n$ и точку P, не лежащую в плоскости этого многоугольника. Соединив точку P отрезками с вершинами многоугольника, получим n треугольников (рис. 80):

$$PA_1A_2, PA_2A_3, ..., PA_nA_1.$$
 (1)

Многогранник, составленный из n-угольника $A_1A_2...A_n$ и n треугольников (1), называется пирамидой. Многоугольник $A_1A_2...A_n$ называется основанием, а треугольники (1) — боковыми гранями пирамиды. Точка P называется вершиной

Пирамида. Многоугольник $A_1A_2A_3\dots A_n$ — основание пирамиды. Треугольники A_1PA_2 , A_2PA_3 , ..., A_nPA_1 — боковые грани, P — вершина пирамиды

Рис. 80

¹ Перпендикулярным сечением наклонной призмы называется её сечение плоскостью, перпендикулярной к боковым рёбрам и пересекающей их.

пирамиды, а отрезки PA_1, PA_2, \ldots, PA_n — её боковыми рёбрами. Пирамиду с основанием $A_1A_2\ldots A_n$ и вершиной P обозначают так: $PA_1A_2\ldots A_n$ и называют n-угольной пирамидой. На рисунке 81 изображены четырёхугольная и шестиугольная пирамиды. Ясно, что треугольная пирамида — это тетраэдр.

Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды. На рисунке 80 отрезок PH является высотой пирамиды.

Площадью полной поверхности пирамиды называется сумма площадей всех её граней (т. е. основания и боковых граней), а площадью боковой поверхности пирамиды — сумма площадей её боковых граней. Очевидно, $S_{\text{полн}} = S_{\text{бок}} + S_{\text{осн}}$.

33 Правильная пирамида

Пирамида называется **правильной**, если её основание — правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром основания¹, является её высотой (рис. 82).

Докажем, что все боковые рёбра правильной пирамиды равны, а боковые грани являются равными равнобедренными треугольниками.

Рассмотрим правильную пирамиду $PA_1A_2 \dots A_n$ (см. рис. 82). Сначала докажем, что все боковые рёбра этой пирамиды равны. Любое боковое ребро представляет собой гипотенузу прямоугольного треугольника, одним катетом которого служит высота PO пирамиды, а другим — радиус описанной около основания окружности (например, боковое ребро PA_1 — гипотенуза треугольника OPA_1 , в котором OP = h, $OA_1 = R$). По теореме Пифагора любое боковое ребро равно $\sqrt{h^2 + R^2}$, поэтому

$$PA_1 = PA_2 = \dots = PA_n.$$

Мы доказали, что боковые рёбра правильной пирамиды $PA_1A_2\dots A_n$ равны друг другу, поэтому боковые грани — равнобедренные треугольники. Основания этих треугольников также равны друг другу, так как $A_1A_2\dots A_n$ — правильный многоугольник. Следовательно, боковые гра-

Четырёхугольная и шестиугольная пирамиды

Рис. 81

Рис. 82

¹ Напомним, что центром правильного многоугольника называется центр вписанной в него окружности.

ни равны по третьему признаку равенства треугольников, что и требовалось доказать.

Высота боковой грани правильной пирамиды, проведённая из её вершины, называется апофемой. На рисунке 82 отрезок PE — одна из апофем. Ясно, что все апофемы правильной пирамиды равны друг другу.

Докажем теорему о площади боковой поверхности правильной пирамиды.

Теорема

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Доказательство

Боковые грани правильной пирамиды — равные равнобедренные треугольники, основания которых — стороны основания пирамиды, а высоты равны апофеме. Площадь S боковой поверхности пирамиды равна сумме произведений сторон основания на половину апофемы d. Вынося множитель $\frac{1}{2}d$ за скобки, получим в скобках сумму

сторон основания пирамиды, т. е. его периметр. Теорема доказана.

34 Усечённая пирамида

Возьмём произвольную пирамиду $PA_1A_2 \dots A_n$ и проведём секущую плоскость β , параллельную плоскости α основания пирамиды и пересекающую боковые рёбра в точках B_1, B_2, \dots, B_n (рис. 83). Плоскость β разбивает пирамиду на два многогранника. Многогранник, гранями которого являются n-угольники $A_1A_2 \dots A_n$ и $B_1B_2 \dots B_n$ (нижнее и верхнее основания), расположенные в параллельных плоскостях, и n четырёхугольников $A_1A_2B_2B_1, A_2A_3B_3B_2, \dots, A_nA_1B_1B_n$ (боковые грани), называется усечённой пирамидой.

Отрезки $A_1B_1, A_2B_2, ..., A_nB_n$ называются боковыми рёбрами усечённой пирамиды.

Усечённую пирамиду с основаниями $A_1A_2 \dots A_n$ и $B_1B_2 \dots B_n$ обозначают так:

$$A_1A_2 \dots A_nB_1B_2 \dots B_n$$
.

Перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого основания, называется высотой усечённой пирамиды. На рисунке 83 отрезок CH является высотой усечённой пирамиды.

Докажем, что боковые грани усечённой пирамиды — трапеции. Рассмотрим, например, боковую грань $A_1A_2B_2B_1$ (см. рис. 83). Стороны A_1A_2 и B_1B_2 параллельны, поскольку принадлежат прямым, по которым плоскость PA_1A_2 пересекается с параллельными плоскостями α и β . Две другие стороны A_1B_1 и A_2B_2 этой грани не параллельны — их продолжения пересекаются в точке P. Поэтому данная грань — трапеция. Аналогично можно доказать, что и остальные боковые грани — трапеции.

Усечённая пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной основанию. Основания правильной усечённой пирамиды — правильные многоугольники, а боковые грани — равнобедренные трапеции (докажите это). Высоты этих трапеций называются апофемами. Площадью боковой поверхности усечённой пирамиды называется сумма площадей её боковых граней.

Усечённая пирамида

Рис. 83

Теорема

Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров оснований на апофему.

▼ Докажите эту теорему самостоятельно. △

Задачи

- 239 Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые рёбра пирамиды, если высота её проходит через точку пересечения диагоналей основания и равна 7 см.
- 240 Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см². Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.
- 241 Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды.

- 242 Основанием пирамиды является квадрат, одно из боковых рёбер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найдите: а) высоту пирамиды; б) площадь боковой поверхности пирамиды.
- 243 Основанием пирамиды DABC является треугольник ABC, у которого AB=AC=13 см, BC=10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды.
- **244** Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза AB равна 29 см, а катет AC равен 21 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.
- 245 Основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы в 30° и 45°. Найдите площадь поверхности пирамиды.
- Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведённая из вершины пирамиды, равна 41 см. а) Докажите, что высота пирамиды проходит через центр окружности, вписанной в её основание. б) Найдите площадь основания пирамиды, если его периметр равен 42 см.
- 247 Двугранные углы при основании пирамиды равны. Докажите, что: а) высота пирамиды проходит через центр окружности, вписанной в основание пирамиды; б) высоты всех боковых граней, проведённые из вершины пирамиды, равны; в) площадь боковой поверхности пирамиды равна половине произведения периметра основания на высоту боковой грани, проведённую из вершины пирамиды.
- 248 Основанием пирамиды является треугольник со сторонами 12 см, 10 см и 10 см. Каждая боковая грань пирамиды наклонена к основанию под углом 45° . Найдите площадь боковой поверхности пирамиды.
- 249 В пирамиде все боковые рёбра равны между собой. Докажите, что: а) высота пирамиды проходит через центр окружности, описанной около основания; б) все боковые рёбра пирамиды составляют равные углы с плоскостью основания.
- 250 Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые рёбра образуют с её высотой, равной 16 см, углы в 45°. Найдите площадь основания пирамиды.
- **251** Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой BC. Боковые рёбра пирамиды равны друг другу, а её высота равна 12 см. Найдите боковое ребро пирамиды, если BC = 10 см.
- 252 Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором стороны AB и AC равны, BC=6 см, высота AH равна 9 см. Известно также, что DA=DB=DC=13 см. Найдите высоту пирамиды.

- **253** Основанием пирамиды является равнобедренная трапеция с основаниями 6 см и $4\sqrt{6}$ см и высотой 5 см. Каждое боковое ребро пирамиды равно 13 см. Найдите её высоту.
- 254 В правильной треугольной пирамиде сторона основания равна *а*, высота равна *H*. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основанием пирамиды; д) двугранный угол при боковом ребре пирамиды.
- 255 В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине равен ф. Найдите высоту этой пирамилы.
- **256** В правильной четырёхугольной пирамиде сторона основания равна m, а плоский угол при вершине равен α . Найдите: а) высоту пирамиды; б) боковое ребро пирамиды; в) угол между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирамиды.
- 257 Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45° . Найдите площадь поверхности пирамиды.
- 258 Боковое ребро правильной четырёхугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.
- 259 В правильной четырёхугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60° . Найдите боковое ребро пирамиды.
- 260 В правильной треугольной пирамиде DABC через боковое ребро DC и высоту DO пирамиды проведена плоскость α . Докажите, что: а) ребро AB перпендикулярно к плоскости α ; б) перпендикуляр, проведённый из вершины C к апофеме грани ADB, является перпендикуляром к плоскости ADB.
- 261 Докажите, что в правильной треугольной пирамиде скрещивающиеся рёбра взаимно перпендикулярны.
- 262 Докажите, что плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани.
- 263 В правильной пирамиде MABCD точки K, L и N лежат соответственно на рёбрах BC, MC и AD, причём $KN \parallel BA$, $KL \parallel BM$. а) Постройте сечение пирамиды плоскостью KLN и определите видсечения. б) Докажите, что плоскость KLN параллельна плоскости AMB.
- 264 Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона её основания равна *a*, а площадь боковой грани равна площади сечения, проведённого через вершину пирамиды и большую диагональ основания.

- **265** В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60° . Через сторону основания проведена плоскость под углом 30° к плоскости основания. Найдите площадь получившегося сечения, если сторона основания пирамиды равна 12 см.
- **266** Основанием пирамиды, высота которой равна 2 дм, а боковые рёбра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. Найдите площадь сечения, проведённого через диагональ основания параллельно боковому ребру.
- 267 Пирамида пересечена плоскостью, параллельной основанию. Докажите, что боковые рёбра и высота пирамиды делятся этой плоскостью на пропорциональные части.
- 268 Плоскость, параллельная плоскости основания правильной четырёхугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усечённой пирамиды равна 4 дм, а площадь её полной поверхности равна 186 дм². Найдите высоту усечённой пирамиды.
- **269** Стороны оснований правильной треугольной усечённой пирамиды равны 4 дм и 2 дм, а боковое ребро равно 2 дм. Найдите высоту и апофему пирамиды.
- 270 Основаниями усечённой пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответственно. Одно из боковых рёбер пирамиды перпендикулярно к плоскостям оснований и равно 1 см. Найдите площадь боковой поверхности усечённой пирамиды.

Правильные многогранники

35 Симметрия в пространстве

В планиметрии мы рассматривали фигуры, симметричные относительно точки и относительно прямой. В стереометрии рассматривают симметрию относительно точки, прямой и плоскости.

Точки A и A_1 называются симметричными относительно точки O (центр симметрии), если O — середина отрезка AA_1 (рис. 84, a). Точка O считается симметричной самой себе.

Точки A и \hat{A}_1 называются симметричными относительно прямой a (ось симметрии), если прямая a проходит через середину отрезка AA_1 и перпендикулярна к этому отрезку (рис. 84, δ). Каждая точка прямой a считается симметричной самой себе.

Точки A и A_1 симметричны относительно точки O

Точки A и A_1 симметричны относительно прямой a

Точки A и A_1 симметричны относительно плоскости α

Рис. 84

Точки A и A_1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка AA_1 и перпендикулярна к этому отрезку (рис. 84, ϵ). Каждая точка плоскости α считается симметричной самой себе.

Введём понятия центра, оси и плоскости симметрии фигуры. Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно неё некоторой точке той же фигуры. Если фигура имеет центр (ось, плоскость симметрии), то говорят, что она обладает центральной (осевой, зеркальной) симметрией.

На рисунках 85, a, b, b показаны центр b, ось b и плоскость b симметрии прямоугольного параллелепипеда. Параллелепипед, не

Прямая a — ось симметрии прямоугольного параллелепипеда

Плоскость α—плоскость симметрии прямоугольного параллелепипеда

Точка *О* — центр симметрии прямоугольного параллелепипеда

являющийся прямоугольным, но являющийся прямой призмой, имеет плоскость (или плоскости, если его основание — ромб), ось и центр симметрии.

Фигура может иметь один или несколько центров симметрии (осей, плоскостей симметрии). Например, куб имеет только один центр симметрии и несколько осей и плоскостей симметрии. Существуют фигуры, имеющие бесконечно много центров, осей или плоскостей симметрии. Простейшими из таких фигур являются прямая и плоскость. Любая точка плоскости является её центром симметрии. Любая прямая (плоскость), перпендикулярная к данной плоскости, является её осью (плоскостью) симметрии. С другой стороны, существуют фигуры, не имеющие центров, осей или плоскостей симметрии. Например, параллелепипед, не являющийся прямой призмой, не имеет оси симметрии, но имеет центр симметрии и может иметь (подумайте, в каком случае) плоскость симметрии; призма и пирамида в общем случае не имеют ни плоскости, ни оси, ни центра симметрии (плоскость, ось или центр симметрии у этих многогранников могут быть лишь в некоторых частных случаях).

С симметрией мы часто встречаемся в природе, архитектуре, технике, быту. Так, многие здания симметричны относительно плоскости, например главное здание Московского государственного университета (рис. 86), некоторые виды деталей имеют ось симметрии. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии (рис. 87). В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрии этого многогранника.

36 Понятие правильного многогранника

Выпуклый многогранник называется правильным, если все его грани — равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер. Примером правильного многогранника является куб. Все его грани — равные квадраты, и к каждой вершине сходятся три ребра.

Очевидно, все рёбра правильного многогранника равны друг другу. Можно доказать, что равны также все двугранные углы, содержащие две грани с общим ребром.

Главное здание МГУ им. М. В. Ломоносова

Рис. 86

Рис. 87

Правильный тэтраэдр

Рис. 88

Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и вообще n-угольники при $n \ge 6$. В самом деле, угол правильного n-угольника при $n \ge 6$ не меньше 120° (объясните почему). С другой стороны, при каждой вершине многогранника должно быть не менее трёх плоских углов. Поэтому если бы существовал правильный многогранник, у которого грани — правильные n-угольники при $n \ge 6$, то сумма плоских углов при каждой вершине такого многогранника была бы не меньше чем $120^\circ \cdot 3 = 360^\circ$. Но это невозможно, так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше 360° (п. 27).

По этой же причине каждая вершина правильного многогранника может быть вершиной либо трёх, четырёх или пяти равносторонних треугольников, либо трёх квадратов, либо трёх правильных пятиугольников. Других возможностей нет.

В соответствии с этим получаем следующие правильные многогранники:

Правильный тетраэдр¹ (рис. 88) составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.

Правильный октаэдр (рис. 89) составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°.

Правильный икосаэдр (рис. 90) составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 300°.

Куб (рис. 91) составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270° .

Правильный октаэдр

Рис. 89

Правильный икосаэдр

Рис. 91

¹ Мы различаем правильный тетраэдр и правильную треугольную пирамиду. В отличие от правильного тэтраэдра, все рёбра которого равны, в правильной треугольной пирамиде боковые рёбра равны друг другу, но они могут быть не равны рёбрам основания пирамиды.

Правильный додекаэдр (рис. 92) составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

Других видов правильных многогранников, кроме перечисленных пяти, нет.

▼ Замечания

1. Число граней f, рёбер k и вершин e каждого из правильных многогранников можно найти с помощью теоремы Эйлера. В самом деле, пусть n— число рёбер каждой грани, m— число рёбер, сходящихся к каждой вершине. Поскольку каждое ребро принадлежит двум граням, то nf = 2k. Кроме того, me = 2k (так как каждое ребро содержит две вершины) и по теореме Эйлера f + e - k = 2. Из этих трёх равенств находим:

$$f = \frac{4m}{2m + 2n - mn}, \quad k = \frac{2mn}{2m + 2n - mn}, \quad e = \frac{4n}{2m + 2n - mn}.$$

Таким образом,

у правильного тетраэдра (n=3, m=3):

$$f = 4$$
, $k = 6$, $e = 4$;

у правильного октаэдра (n=3, m=4):

$$f = 8$$
, $k = 12$, $e = 6$;

у правильного икосаэдра (n=3, m=5):

$$f = 20, k = 30, e = 12;$$

у куба (n = 4, m = 3):

$$f = 6$$
, $k = 12$, $e = 8$;

у правильного додекаэдра (n = 5, m = 3):

$$f = 12$$
, $k = 30$, $e = 20$.

2. Мы доказали, что существует не более пяти видов правильных многогранников, но не доказали, что каждый из указанных многогранников действительно существует.

Существование правильного тетраэдра (правильной треугольной пирамиды со стороной основания, равной a, и высотой, равной $\frac{\sqrt{6}}{3}a$) и куба очевидно.

Правильный додекаэдр

Центры граней куба являются вершинами правильного октаэдра (докажите это), поэтому существование правильного октаэдра не вызывает сомнений.

Правильный икосаэдр составлен из двух правильных пятиугольных пирамид и многогранника, отдалённо напоминающего пятиугольную призму. Высоты пирамид и этого многогранника легко выражаются через ребро a (как?), поэтому существование правильного икосаэдра также не вызывает сомнений.

Наконец, центры граней правильного икосаэдра являются вершинами правильного додекаэдра (убедитесь в этом), поэтому правильный додекаэдр тоже существует.

Отметим, что в существовании всех пяти правильных многогранников можно убедиться воочию, если склеить их из развёрток (задания 271-275). \triangle

37 Элементы симметрии правильных многогранников

Рассмотрим элементы симметрии правильных многогранников. Правильный тетраэдр не имеет центра симметрии. Прямая, проходящая через середины двух противоположных рёбер, является его осью симметрии. Плоскость α , проходящая через ребро AB перпендикулярно к противоположному ребру CD правильного тетраэдра ABCD, является плоскостью симметрии (рис. 93). Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб имеет один центр симметрии — точку пересечения его диагоналей. Прямые а и b, проходящие соответственно через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани, являются его осями симметрии (рис. 94). Куб имеет девять осей симметрии. Все оси симметрии проходят через центр симметрии. Плоскостью симметрии куба является плоскость, проходящая через любые две оси симметрии. Куб имеет девять плоскостей симметрии.

Правильный октаэдр, правильный икосаэдр и правильный додекаэдр имеют центр симметрии и несколько осей и плоскостей симметрии. Попробуйте подсчитать их число.

Плоскость α — плоскость симметрии правильного тетраэдра

Рис. 93

Прямые a и b — оси симметрии куба

Практические задания

- 271 Перерисуйте развёртку правильного тетраэдра (рис. 95) на плотный лист бумаги в большем масштабе, вырежьте развёртку (сделав необходимые припуски для склеивания) и склейте из неё тетраэдр.
- 272 Перерисуйте развёртку куба (рис. 96) на плотный лист бумаги в большем масштабе, вырежьте развёртку и склейте из неё куб.
- 273 Перерисуйте развёртку правильного октаэдра (рис. 97) на плотный лист бумаги в большем масштабе, вырежьте развёртку и склейте из неё октаэдр.
- 274 Перерисуйте развёртку правильного додекаэдра (рис. 98) на плотный лист бумаги в большем масштабе, вырежьте развёртку и склейте из неё додекаэдр.
- 275 Перерисуйте развёртку правильного икосаэдра (рис. 99) на плотный лист бумаги в большем масштабе, вырежьте развёртку и склейте из неё икосаэдр.

Развёртка правильного тетраэдра

Рис. 95

Развёртка куба

Рис. 96

Вопросы и задачи

- 276 Сколько центров симметрии имеет: а) параллелепипед; б) правильная треугольная призма; в) двугранный угол; г) отрезок?
- 277 Сколько осей симметрии имеет: a) отрезок; б) правильный треугольник; в) куб?
- 278 Сколько плоскостей симметрии имеет: а) правильная четырёхугольная призма, отличная от куба; б) правильная четырёхугольная пирамида; в) правильная треугольная пирамида?
- 279 Найдите угол между двумя диагоналями граней куба, имеющими общий конец.
- **280** Ребро куба равно *a*. Найдите площадь сечения, проходящего через диагонали двух его граней.

Развёртка правильного октаэдра

Развёртка правильного додекаэдра

Развёртка правильного икосаэдра

Рис. 98

- **281** В кубе $ABCDA_1B_1C_1D_1$ из вершины D_1 проведены диагонали граней D_1A , D_1C и D_1B_1 и концы их соединены отрезками. Докажите, что многогранник D_1AB_1C правильный тетраэдр. Найдите отношение плошадей поверхностей куба и тетраэдра.
- 282 Найдите угол между двумя рёбрами правильного октаэдра, которые имеют общую вершину, но не принадлежат одной грани (см. рис. 89).
- 283 В правильном тетраэдре DABC ребро равно a. Найдите площадь сечения тетраэдра плоскостью, проходящей через центр грани ABC: а) параллельно грани BDC; б) перпендикулярно к ребру AD.
- **284** От каждой вершины правильного тетраэдра с ребром 2 отсекают тетраэдр с ребром 1. Какая фигура получится в результате?
- 285 Докажите, что в правильном тетраэдре отрезки, соединяющие центры граней, равны друг другу.
- **286** В правильном тетраэдре h высота, m ребро, а n расстояние между центрами его граней. Выразите: а) m через h; б) n через m.
- **287** Ребро правильного октаэдра равно *a*. Найдите расстояние между: а) двумя его противоположными вершинами; б) центрами двух смежных граней; в) противоположными гранями.

Вопросы к главе III

- 1 Какое наименьшее число рёбер может иметь многогранник?
- **2** Призма имеет n граней. Какой многоугольник лежит в её основании?
- 3 Является ли призма прямой, если две её смежные боковые грани перпендикулярны к плоскости основания?
- 4 В какой призме боковые рёбра параллельны её высоте?
- 5 Является ли призма правильной, если все её рёбра равны друг другу?
- 6 Может ли высота одной из боковых граней наклонной призмы являться и высотой призмы?
- 7 Существует ли призма, у которой: а) боковое ребро перпендикулярно только одному ребру основания; б) только одна боковая грань перпендикулярна к основанию?
- 8 Правильная треугольная призма разбивается плоскостью, проходящей через средние линии оснований, на две призмы. Как относятся площади боковых поверхностей этих призм?
- 9 Будет ли пирамида правильной, если её боковыми гранями являются правильные треугольники?
- 10 Сколько граней, перпендикулярных к плоскости основания, может иметь пирамида?
- 11 Существует ли четырёхугольная пирамида, у которой противоположные боковые грани перпендикулярны к основанию?

- 12 Могут ли все грани треугольной пирамиды быть прямоугольными треугольниками?
- 13 Можно ли из куска проволоки длиной 66 см изготовить каркасную модель правильной четырёхугольной пирамиды со стороной основания, равной 10 см?
- 14 На какие многогранники рассекается треугольная призма плоскостью, проходящей через вершину верхнего основания и противолежащую ей сторону нижнего основания?

Дополнительные задачи

- 288 Докажите, что число вершин любой призмы чётно, а число рёбер кратно 3.
- **289** Докажите, что площадь полной поверхности куба равна $2d^2$, где d диагональ куба.
- 290 Угол между диагональю основания прямоугольного параллелепипеда, равной l, и одной из сторон основания равен φ. Угол между этой стороной и диагональю параллелепипеда равен θ. Найдите площадь боковой поверхности данного параллелепипеда.
- 291 В прямоугольном параллелепипеде диагональ, равная d, образует с плоскостью основания угол ϕ , а с одной из сторон основания угол θ . Найдите площадь боковой поверхности параллелепипеда.
- 292 В правильной четырёхугольной призме сторона основания равна 6 см, боковое ребро равно 8 см. Найдите расстояние от стороны основания до не пересекающей её диагонали призмы.
- **293** В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ диагонали B_1D и D_1B взаимно перпендикулярны. Докажите, что угол между диагоналями A_1C и B_1D призмы равен 60° .
- **294** Правильная четырёхугольная призма пересечена плоскостью, содержащей две её диагонали. Площадь сечения равна S_0 , а сторона основания a. Вычислите площадь боковой поверхности призмы.
- **295** Основанием наклонного параллелепипеда $ABCDA_1B_1C_1D_1$ является ромб. Боковое ребро CC_1 составляет равные углы со сторонами основания CD и CB. Докажите, что: a) $CC_1 \perp BD$; б) BB_1D_1D прямоугольник; в) $BD \perp AA_1C_1$; г) $AA_1C_1 \perp BB_1D_1$.
- 296 Высота правильной треугольной призмы равна h. Плоскость α , проведённая через среднюю линию нижнего основания и параллельную ей сторону верхнего основания, составляет с плоскостью нижнего основания острый двугранный угол ϕ . Найдите площадь сечения призмы плоскостью α .
- 297 Основанием треугольной призмы $ABCA_1B_1C_1$ является правильный треугольник ABC, BD высота этого треугольника, а вершина A_1 проектируется в его центр. Докажите, что: а) $A_1BD \perp AA_1C_1$; б) $AA_1O \perp BB_1C$; в) грань BB_1C_1C прямоугольник.

- 298 Основание параллелепипеда с боковым ребром b квадрат со стороной a. Одна из вершин верхнего основания равноудалена от вершин нижнего основания. Найдите площадь полной поверхности.
- 299 Найдите высоту правильной треугольной пирамиды, если сторона основания равна *m*, а площадь боковой поверхности вдвое больше плошали основания.
- **300** В правильной треугольной пирамиде DABC точки E, F и P середины сторон BC, AB и AD. Определите вид сечения, проходящего через эти точки, и найдите его площадь, если сторона основания пирамиды равна a, боковое ребро равно b.
- 301 Двугранный угол при боковом ребре правильной треугольной пирамиды DABC равен 120° . Расстояние от вершины B до бокового ребра DA равно 16 см. Найдите апофему пирамиды.
- 302 Основанием пирамиды является параллелограмм со сторонами 3 см и 7 см и одной из диагоналей 6 см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4 см. Найдите боковые рёбра пирамиды.
- 303 Основанием пирамиды является ромб. Две боковые грани перпендикулярны к плоскости основания и образуют двугранный угол в 120°, а две другие боковые грани наклонены к плоскости основания под углом в 30°. Найдите площадь поверхности пирамиды, если её высота равна 12 см.
- 304 В правильной четырёхугольной пирамиде плоский угол при вершине равен 60° . Докажите, что двугранный угол между боковой гранью и основанием пирамиды вдвое меньше двугранного угла при боковом ребре.
- 305 В правильной четырёхугольной пирамиде высота равна h, плоский угол при вершине равен α . Найдите площадь боковой поверхности.
- **306** Высота правильной четырёхугольной пирамиды равна h и составляет угол ϕ с плоскостью боковой грани. Найдите площадь полной поверхности пирамиды.
- 307 В правильной пирамиде MABCD AM=b, AD=a. а) Постройте сечение пирамиды плоскостью α , проходящей через диагональ BD основания параллельно ребру MA, и найдите площадь сечения. б) Докажите, что точки M и C равноудалены от плоскости α .
- 308 Основанием пирамиды является ромб со стороной 5 см и меньшей диагональю 6 см. Высота пирамиды, равная 3,2 см, проходит через точку пересечения диагоналей ромба. Найдите высоты боковых граней пирамиды, проведённые из её вершины.
- 309 Основанием пирамиды с равными боковыми рёбрами является прямоугольник со сторонами 6 дм и 8 дм. Высота пирамиды равна 6 дм. Найдите площадь сечения, проведённого через меньшую сторону и середину высоты.

- 310 В пирамиде DABC ребро DA перпендикулярно к плоскости ABC. Найдите площадь боковой поверхности пирамиды, если AB = AC = 25 см, BC = 40 см, DA = 8 см.
- 311 Основанием пирамиды DABC является треугольник со сторонами AC=13 см, AB=15 см, CB=14 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 9 см. а) Найдите площадь полной поверхности пирамиды. б) Докажите, что основание перпендикуляра, проведённого из вершины A к плоскости грани BDC, лежит на высоте этой грани, и найдите длину этого перпендикуляра.
- 312 В правильной n-угольной пирамиде боковые грани составляют с плоскостью основания угол φ . Найдите тангенс угла между плоскостью основания и боковым ребром.
- 313 Стороны оснований правильной треугольной усечённой пирамиды равны 12 дм и 6 дм, а её высота 1 дм. Найдите площадь боковой поверхности пирамиды.
- 314 В правильной четырёхугольной усечённой пирамиде высота равна 63 см, апофема 65 см, а стороны оснований относятся как 7:3. Найдите стороны оснований пирамиды.
- 315 Докажите, что центры граней правильного октаэдра являются вершинами куба.
- **316** Докажите, что центры граней правильного тетраэдра являются вершинами другого правильного тетраэдра.
- 317 Докажите, что центры граней куба являются вершинами правильного октаэдра.
- 318 Докажите, что сумма двугранного угла правильного тетраэдра и двугранного угла правильного октаэдра равна 180°.
- 319 Сколько плоскостей симметрии, проходящих через данную вершину, имеет правильный тетраэдр?

Глава IV Цилиндр, конус и шар

Цилиндр

38 Понятие цилиндра

Рассмотрим произвольную плоскость α и окружность L с центром O радиуса r, лежащую в этой плоскости. Через каждую точку окружности L проведём прямую, перпендикулярную к плоскости α . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью, а сами прямые — образующими цилиндрической поверхности. Прямая, проходящая через точку O перпендикулярно к плоскости α , называется осью цилиндрической поверхности. Поскольку все образующие и ось перпендикулярны к плоскости α , то они параллельны друг другу (см. п. 16).

ность L_1 с центром O_1 радиуса r, где O_1 — точка пересечения плоскости β с осью цилиндрической поверхности. В самом деле, рассмотрим, например, отрезок MM_1 образующей (см. рис. 100). Так как $OO_1 \perp OM$, $MM_1 \perp OM$ и $OO_1 = MM_1$, то четырёхугольник OMM_1O_1 — прямоугольник, поэтому $O_1M_1 = OM = r$, а это означает, что точка M_1 лежит на окружности L_1 с центром O_1 радиуса r.

Очевидно, верно и обратное: любая точка M_1 окружности L_1 является концом отрезка MM_1 образующей, проходящей через точку M окружности L и перпендикулярной к плоскости α . Таким образом, цилиндрическая поверхность пересекается с плоскостью β по окружности L_1 .

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L_1 , называется цилиндром (см. рис. 100). Круги называются основаниями цилиндра, отрезки образующих, заключённые между основаниями, — образующими цилиндра, а образованная ими часть цилиндрической поверхности — боковой поверхностью цилиндра. Ось цилиндрической поверхности называется осью цилиндра.

Как уже отмечалось, все образующие цилиндра параллельны и равны друг другу. Длина образующей называется высотой цилиндра, а радиус основания — радиусом цилиндра.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. На рисунке 101 изображён цилиндр, полученный вращением прямоугольника ABCD вокруг стороны AB. При этом боковая поверхность цилиндра образуется вращением стороны CD, а основания — вращением сторон BC и AD.

Рассмотрим сечения цилиндра различными плоскостями. Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник (рис. 102), две стороны которого — образующие, а две другие — диаметры оснований цилиндра. Такое сечение называется осевым.

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение является кругом. В самом деле, такая секущая плоскость (плоскость у на рисунке 103) отсекает от данного цилиндра тело, также являющееся цилиндром. Его основаниями служат два круга, один из которых и есть рассматриваемое сечение.

Цилиндр получен вращением прямоугольника *ABCD* вокруг стороны *AB*

Рис. 101

Осевое сечение цилиндра — прямоугольник

Рис. 102

Сечение цилиндра плоскостью, перпендикулярной к оси, — круг

Рис. 103

Замечание

На практике нередко встречаются предметы, которые имеют форму более сложных цилиндров. На рисунке 104, а изображён цилиндр, каждое основание которого представляет собой фигуру, ограниченную частью параболы и отрезком. На рисунке 104, б изображён цилиндр, основаниями которого являются круги, но образующие цилиндра не перпендикулярны к плоскостям оснований (наклонный цилиндр).

Однако в дальнейшем мы будем рассматривать только такие цилиндры, которые были определены в этом пункте. Их называют иногда прямыми круговыми цилиндрами.

39 Площадь поверхности цилиндра

На рисунке 105, a изображён цилиндр. Представим себе, что его боковую поверхность разрезали по образующей AB и развернули таким образом, что все образующие оказались расположенными в некоторой плоскости α (рис. 105, δ). В результате в плоскости α получится прямоугольник ABB'A'. Стороны AB и A'B' прямоугольника представляют собой два края разреза боковой поверхности цилиндра по образующей AB. Этот прямоугольник называется развёрткой боковой поверхности цилиндра. Основание AA' прямоугольника является развёрткой окружности основания цилиндра, а высота AB — образующей цилиндра, поэтому $AA' = 2\pi r$, AB = h, где r — радиус цилиндра, h — его высота.

За площадь боковой поверхности цилиндра принимается площадь её развёртки.

Рис. 104

Развёртка боковой поверхности цилиндра

Рис. 105

Так как площадь прямоугольника ABB'A' равна $AA'\cdot AB = 2\pi rh$, то для вычисления площади $S_{\text{бок}}$ боковой поверхности цилиндра радиуса r и высоты h получается формула

$$S_{\text{for}} = 2\pi rh$$
.

Итак, площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту цилиндра.

Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. Так как площадь каждого основания равна πr^2 , то для вычисления площади $S_{\text{цил}}$ полной поверхности цилиндра получаем формулу

$$S_{\text{\tiny HMJ}} = 2\pi r (r+h).$$

Задачи

- 320 Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные стороны которого — образующие, а две другие — диаметры оснований цилиндра. Найдите диагональ осевого сечения, если радиус цилиндра равен 1,5 м, а высота равна 4 м.
- 321 Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей цилиндра равен 60°. Найдите: а) высоту цилиндра; б) радиус цилиндра; в) площадь основания цилиндра.
- 322 Осевое сечение цилиндра квадрат, диагональ которого равна 20 см. Найдите: а) высоту цилиндра; б) площадь основания цилиндра.
- 323 Осевые сечения двух цилиндров равны. Верно ли, что высоты двух цилиндров равны, если равны их осевые сечения?
- 324 Площадь осевого сечения цилиндра равна 10 м^2 , а площадь основания равна 5 м^2 . Найдите высоту цилиндра.
- 325 Площадь основания цилиндра относится к площади осевого сечения как $\sqrt{3}\pi$: 4. Найдите: а) угол между диагональю осевого сечения цилиндра и плоскостью основания; б) угол между диагоналями осевого сечения.
- 326 Концы отрезка AB лежат на окружностях оснований цилиндра. Радиус цилиндра равен r, его высота h, а расстояние между прямой AB и осью цилиндра равно d. Найдите: a) h, если r=10 дм, d=8 дм, AB=13 дм; б) d, если h=6 см, r=5 см, AB=10 см.
- 327 Докажите, что если секущая плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью цилиндра меньше его радиуса, то сечение цилиндра представляет собой прямоугольник, две противоположные стороны которого образующие цилиндра.
- 328 Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между этой плоскостью и осью цилиндра равно 3 см.

- 329 Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечён плоскостью, параллельной его оси, так, что в сечении получился квадрат. Найдите расстояние от оси цилиндра до секущей плоскости.
- 330 Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной оси цилиндра и удалённой на 9 дм от неё, равна $240~{\rm дm}^2$. Найдите радиус цилиндра.
- 331 Через образующую AA_1 цилиндра проведены две секущие плоскости, одна из которых проходит через ось цилиндра. Найдите отношение площадей сечений цилиндра этими плоскостями, если угол между ними равен ϕ .
- **332** Высота цилиндра равна h, а площадь осевого сечения равна S. Найдите площадь сечения цилиндра плоскостью, параллельной его оси, если расстояние между осью цилиндра и плоскостью сечения равно d.
- 333 Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 120° . Найдите площадь сечения, если высота цилиндра равна h, а расстояние между осью цилиндра и секущей плоскостью равно d.
- 334 Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60° . Образующая цилиндра равна $10\sqrt{3}$ см, расстояние от оси до секущей плоскости равно 2 см. Найдите площадь сечения.
- **335** Через образующую цилиндра проведены две взаимно перпендикулярные плоскости. Площадь каждого из полученных сечений равна *S*. Найдите площадь осевого сечения цилиндра.
- 336 Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине окружности основания. Найдите площадь боковой поверхности цилиндра.
- 337 Площадь боковой поверхности цилиндра равна S. Найдите площадь осевого сечения цилиндра.
- 338 Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
- 339 Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см². Найдите радиус основания и высоту цилиндра.
- 340 Сколько квадратных метров листовой жести пойдёт на изготовление трубы длиной 4 м и диаметром 20 см, если на швы необходимо добавить 2,5% площади её боковой поверхности?
- **341** Угол между образующей цилиндра и диагональю осевого сечения равен ϕ , площадь основания цилиндра равна S. Найдите площадь боковой поверхности цилиндра.
- 342 Угол между диагоналями развёртки боковой поверхности цилиндра равен ϕ , диагональ равна d. Найдите площади боковой и полной поверхностей цилиндра.

- 343 Из квадрата, диагональ которого равна d, свёрнута боковая поверхность цилиндра. Найдите площадь основания этого цилиндра.
- **344** Цилиндр получен вращением квадрата со стороной a вокруг одной из его сторон. Найдите площадь:
 - а) осевого сечения цилиндра; б) боковой поверхности цилиндра;
 - в) полной поверхности цилиндра.
- 345 Один цилиндр получен вращением прямоугольника ABCD вокруг прямой AB, а другой цилиндр вращением этого же прямоугольника вокруг прямой BC. а) Докажите, что площади боковых поверхностей этих цилиндров равны. б) Найдите отношение площадей полных поверхностей этих цилиндров, если AB = a, BC = b.

Конус

40 Понятие конуса

Рассмотрим окружность L с центром O и прямую OP, перпендикулярную к плоскости α этой окружности. Через точку P и каждую точку окружности проведём прямую. Поверхность, образованная этими прямыми, называется конической поверхностью (рис. 106), а сами прямые — образующими конической поверхности. Точка P называется вершиной, а прямая OP — осью конической поверхности.

Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом (рис. 107). Круг называется основанием конуса, вершина конической поверхности — вершиной конуса, отрезки образующих, заключённые между вершиной и основанием, — образующими конуса, а образованная ими часть конической поверхности — боковой поверхностью конуса. Ось конической поверхности называется осью конуса, а её отрезок, заключённый между вершиной и основанием, — высотой конуса. Отметим, что все образующие конуса равны друг другу (обоснуйте это).

Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. На рисунке 108 изображён конус, полученный вращением прямоугольного треугольника ABC вокруг катета AB. При этом боковая поверхность конуса образуется вращением гипотенузы AC, а основание — вращением катета BC.

Коническая поверхность

Рис. 106

Конус

Рис. 107

Конус получен вращением прямоугольного треугольника ABC вокруг катета AB

Осевое сечение конуса — равнобедренный треугольник

Сечение конуса плоскостью α , перпендикулярной к его оси, — круг с центром O_1

радиуса
$$r_1 = \frac{PO_1}{PO}r$$

Рис. 110

Рис. 108

Рис. 109

Рассмотрим сечения конуса различными плоскостями. Если секущая плоскость проходит через ось конуса (рис. 109), то сечение представляет собой равнобедренный треугольник, основание которого — диаметр основания конуса, а боковые стороны — образующие конуса. Это сечение называется осевым.

Если секущая плоскость перпендикулярна к оси OP конуса (рис. 110), то сечение конуса представляет собой круг с центром O_1 , расположенным на оси конуса. Радиус r_1 этого круга

равен $\frac{PO_1}{PO}r$, где r — радиус основания конуса, что

легко усмотреть из подобия прямоугольных треугольников POM и PO_1M_1 . Доказательство этого факта приведено в решении задачи 355.

Развёртка боковой поверхности конуса

Рис. 111

41 Площадь поверхности конуса

Боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав её по одной из образующих (рис. 111, a, δ). Развёрткой боковой поверхности конуса является круговой сектор (см. рис. 111, δ), радиус которого равен образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь $S_{\text{бок}}$ боковой поверхности конуса через его образующую l и радиус основания r. Площадь кругового сектора — развёртки боковой поверхности конуса (см. рис. 111, δ) — равна $\frac{\pi l^2}{360}\alpha$, где α — градусная мера дуги ABA', поэтому

$$S_{\text{for}} = \frac{\pi l^2}{360} \alpha. \tag{1}$$

Выразим α через l и r. Так как длина дуги ABA' равна $2\pi r$ (длине окружности основания конуса), то $2\pi r = \frac{\pi l}{180}\alpha$, откуда $\alpha = \frac{360r}{l}$. Подставив это выражение в формулу (1), получим

$$S_{\text{бок}} = \pi r l.$$
 (2)

Таким образом, площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. Для вычисления площади $S_{\rm кон}$ полной поверхности конуса получается формула

$$S_{\text{KOH}} = \pi r (l+r)$$
.

42 Усечённый конус

Возьмём произвольный конус и проведём секущую плоскость, перпендикулярную к его оси. Эта плоскость пересекается с конусом по кругу и разбивает конус на две части. Одна из частей (верхняя на рисунке 112) представляет собой конус, а другая называется усечённым конусом. Основание исходного конуса и круг, полученный в сечении этого конуса плоскостью, называются основаниями усечённого конуса, а отрезок, соединяющий их центры, — высотой усечённого конуса.

Часть конической поверхности, ограничивающая усечённый конус, называется его боковой поверхностью, а отрезки образующих конической поверхности, заключённые между основаниями, называются образующими усечённого конуса. Все образующие усечённого конуса равны друг другу (докажите это самостоятельно).

Рис. 112

Усечённый конус может быть получен вращением прямоугольной трапеции вокруг её боковой стороны, перпендикулярной к основаниям. На рисунке 113 изображён усечённый конус, полученный вращением прямоугольной трапеции ABCD вокруг стороны CD, перпендикулярной к основаниям AD и BC. При этом боковая поверхность образуется вращением боковой стороны AB, а основания усечённого конуса — вращением оснований CB и DA трапеции.

Докажем, что площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую, т. е.

$$S_{\text{бок}} = \pi (r + r_1) l,$$

где r и r_1 — радиусы оснований, l — образующая усечённого конуса.

ightharpoonup Пусть P — вершина конуса, из которого получен усечённый конус, AA_1 — одна из образующих усечённого конуса, $r > r_1$, точки O и O_1 — центры оснований (рис. 114). Используя формулу (2), получаем

$$S_{\text{бок}} = \pi r \cdot PA - \pi r_1 \cdot PA_1 = \pi r (PA_1 + AA_1) - \pi r_1 \cdot PA_1.$$

Отсюда, учитывая, что $AA_1 = l$, находим

$$S_{\text{бок}} = \pi r l + \pi (r - r_1) P A_1.$$
 (3)

Выразим PA_1 через $l,\ r$ и r_1 . Прямоугольные треугольники PO_1A_1 и POA подобны, так как имеют общий острый угол P, поэтому

$$\frac{PA_1}{PA} = \frac{r_1}{r},$$

или

$$\frac{PA_1}{PA_1+l} = \frac{r_1}{r}.$$

Отсюда получаем

$$PA_1 = \frac{lr_1}{r - r_1}.$$

Подставив это выражение в формулу (3), приходим к формуле

$$S_{\text{бок}} = \pi (r + r_1) l$$
. \triangle

Усечённый конус получен вращением прямоугольной трапеции *ABCD* вокруг стороны *CD*

Рис. 113

Рис. 114

Задачи

- 346 Высота конуса равна 15 см, а радиус основания равен 8 см. Найдите образующую конуса.
- 347 Образующая конуса, равная 12 см, наклонена к плоскости основания под углом α . Найдите площадь основания конуса, если: а) $\alpha = 30^\circ$; б) $\alpha = 45^\circ$; в) $\alpha = 60^\circ$.
- 348 Высота конуса равна 8 дм. На каком расстоянии от вершины конуса надо провести плоскость, параллельную основанию, чтобы площадь сечения была равна: а) половине площади основания; б) четверти площади основания?
- 349 Осевое сечение конуса прямоугольный треугольник. Найдите площадь этого сечения, если радиус основания конуса равен 5 см.
- 350 Осевое сечение конуса правильный треугольник со стороной 2r. Найдите площадь сечения, проведённого через две образующие конуса, угол между которыми равен: а) 30° ; б) 45° ; в) 60° .
- **351** Высота конуса равна *h*, а угол между высотой и образующей конуса равен 60°. Найдите площадь сечения конуса плоскостью, проходящей через две взаимно перпендикулярные образующие.
- 352 Найдите высоту конуса, если площадь его осевого сечения равна 6 дм^2 , а площадь основания равна 8 дм^2 .
- 353 Образующая конуса равна l, а радиус основания равен r. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу: а) в 60° ; б) в 90° .
- 354 Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу в 60° , если плоскость сечения образует с плоскостью основания конуса угол: а) 30° ; б) 45° ; в) 60° .
- 355 Основанием конуса с вершиной P является круг радиуса r с центром O. Докажите, что если секущая плоскость α перпендикулярна к оси конуса, то сечение конуса представляет собой круг с центром O_1 радиуса r_1 , где O_1 точка пересечения плоскости α с осью PO, а $r_1 = \frac{PO_1}{PO}r$ (см. рис. 110).

Рашаниа

Докажем сначала, что любая точка M_1 , лежащая в плоскости α на окружности радиуса r_1 с центром O_1 , лежит на некоторой образующей конуса, т. е. является точкой рассматриваемого сечения. Обозначим буквой M точку пересечения луча PM_1 с плоскостью основания конуса. Из подобия прямоугольных треугольников PO_1M_1 и POM (они подобны, так как имеют общий острый угол P) находим: $OM = \frac{PO}{PO_1} \cdot O_1M_1 = \frac{PO}{PO_1} r_1 = r$, т. е. точка M лежит на

окружности основания конуса. Следовательно, отрезок PM, на котором лежит точка M_1 , является образующей конуса.

Докажем теперь, что любая точка M_1 , лежащая как в плоскости α , так и на боковой поверхности конуса, лежит на окружности радиуса r_1 с центром O_1 . Действительно, из подобия треугольников PO_1M_1 и POM (PM — образующая, проходящая через точку M_1) имеем $O_1M_1=\frac{PO_1}{PO}\cdot OM=\frac{PO_1}{PO}r=r_1$. Таким образом, окружность

радиуса r_1 с центром O_1 является сечением боковой поверхности конуса плоскостью α , поэтому круг, границей которого является эта окружность, представляет собой сечение конуса плоскостью α .

- 356 Две секущие плоскости перпендикулярны к оси конуса. Докажите, что площади сечений конуса этими плоскостями относятся как квадраты расстояний от вершины конуса до этих плоскостей.
- 357 Развёрткой боковой поверхности конуса является сектор с дугой α . Найдите α , если высота конуса равна 4 см, а радиус основания равен 3 см.
- 358 Найдите дугу сектора, представляющего собой развёртку боковой поверхности конуса, если образующая конуса составляет с плоскостью основания угол в 60° .
- 359 Найдите угол при вершине осевого сечения конуса, если развёрткой его боковой поверхности является сектор с дугой, равной: а) 180° ; б) 90° ; в) 60° .
- 360 Вычислите площадь основания и высоту конуса, если развёрткой его боковой поверхности является сектор, радиус которого равен 9 см, а дуга равна 120° .
- 361 Угол между образующей и осью конуса равен 45°, образующая равна 6,5 см. Найдите площадь боковой поверхности конуса.
- 362 Площадь осевого сечения конуса равна 0,6 см². Высота конуса равна 1,2 см. Вычислите площадь полной поверхности конуса.
- 363 Образующая конуса наклонена к плоскости основания под углом φ . В основание конуса вписан треугольник, у которого одна сторона равна a, а противолежащий угол равен α . Найдите площадь полной поверхности конуса.
- 364 Прямоугольный треугольник с катетами 6 см и 8 см вращается вокруг меньшего катета. Вычислите площади боковой и полной поверхностей образованного при этом вращении конуса.
- 365 Равнобедренный треугольник, боковая сторона которого равна m, а угол при основании равен ф, вращается вокруг основания. Найдите площадь поверхности тела, полученного при вращении треугольника.
- 366 Найдите образующую усечённого конуса, если радиусы оснований равны 3 см и 6 см, а высота равна 4 см.
- 367 Радиусы оснований усечённого конуса равны 5 см и 11 см, а образующая равна 10 см. Найдите: а) высоту усечённого конуса; б) площадь осевого сечения.

- **368** Радиусы оснований усечённого конуса равны R и r, где R > r, а образующая составляет с плоскостью основания угол в 45° . Найлите плошаль осевого сечения.
- 369 Площадь боковой поверхности конуса равна 80 см². Через середину высоты конуса проведена плоскость, перпендикулярная к высоте. Найдите площадь боковой поверхности образовавшегося при этом усечённого конуса.
- 370 Дана трапеция ABCD, в которой $\angle A = 90^\circ$, $\angle D = 45^\circ$, BC = 4 см, $CD = 3\sqrt{2}$ см. Вычислите площади боковой и полной поверхностей усечённого конуса, образованного вращением данной трапеции вокруг стороны AB.
- 371 Ведро имеет форму усечённого конуса, радиусы оснований которого равны 15 см и 10 см, а образующая равна 30 см. Сколько килограммов краски нужно взять для того, чтобы покрасить с обеих сторон 100 таких вёдер, если на 1 м² требуется 150 г краски? (Толщину стенок вёдер в расчёт не принимать.)

Сфера

43 Сфера и шар

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки (рис. 115).

Данная точка называется **центром сферы** (точка O на рисунке 115), а данное расстояние — **радиусом сферы**. Радиус сферы часто обозначают латинской буквой R.

Любой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы. Очевидно, диаметр сферы равен 2R. Отметим, что сфера может быть получена вращением полуокружности вокруг её диаметра (рис. 116).

Тело, ограниченное сферой, называется **шаром**. Центр, радиус и диаметр сферы называются также **центром**, **радиусом** и **диаметром шара**. Очевидно, шар радиуса R с центром O содержит все точки пространства, которые расположены от точки O на расстоянии, не превышающем R (включая и точку O), и не содержит других точек.

Сфера радиуса R с центром O

Сфера получена вращением полуокружности *АСВ* вокруг диаметра *АВ*

Рис. 116

44 Взаимное расположение сферы и плоскости

Исследуем взаимное расположение сферы и плоскости в зависимости от соотношения между радиусом сферы и расстоянием от её центра до плоскости.

Радиус сферы обозначим буквой R, а расстояние от её центра (точка O) до плоскости α — буквой d. Если точка O не лежит в плоскости α , то проведём перпендикуляр OA к этой плоскости (рис. 117). Его длина равна расстоянию от точки O до плоскости α , т. е. OA = d.

Возможны три случая.

1) d < R. Рассмотрим произвольную точку M, лежащую как на сфере, так и в плоскости α (рис. 117, a). Так как OM = R, OA = d и $OA \perp AM$ (поскольку $OA \perp \alpha$), то по теореме Пифагора

$$AM = \sqrt{OM^2 - OA^2} = \sqrt{R^2 - d^2}.$$

Полученное равенство означает, что любая общая точка сферы и плоскости α лежит на расположенной в этой плоскости окружности с центром A и радиусом $r = \sqrt{R^2 - d^2}$.

Верно и обратное: любая точка этой окружности лежит на сфере. Действительно, если точка M лежит на указанной окружности, то $AM=\sqrt{R^2-d^2},$ а так как OA=d и $OA\perp AM,$ то по теореме Пифагора

$$OM = \sqrt{AM^2 + OA^2} = \sqrt{R^2 - d^2 + d^2} = R$$

т. е. точка M лежит на данной сфере.

Таким образом, если расстояние d от центра сферы до плоскости меньше радиуса R сферы, то сечение сферы плоскостью (т. е. множество всех общих точек сферы и плоскости) есть окружность радиуса $r = \sqrt{R^2 - d^2}$.

Ясно, что сечение шара плоскостью есть круг. Заметим также, что если плоскость проходит через центр шара (случай d=0), то в сечении шара получится круг радиуса R, т. е. радиус круга равен радиусу шара. Такой круг называется большим кругом шара (рис. 118).

2) d = R. В этом случае OA = R, откуда следует, что точка A лежит на сфере (рис. 117, δ),

a) OM = R, OA = d < R, $AM = r = \sqrt{R^2 - d^2}$

OA = d = R, OM > R

B)

OA = d > R

Рис. 117

а для любой точки M плоскости α , отличной от точки A, выполняется неравенство OM > OA (наклонная больше перпендикуляра), т. е. OM > R и, следовательно, точка M не лежит на сфере.

Таким образом, если расстояние от центра сферы до плоскости равно радиусу сферы, то сфера и плоскость имеют только одну общую точку.

3) d > R. В этом случае точка A, как и любая другая точка плоскости α , расположена вне сферы (рис. 117, θ). Следовательно, если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.

45 Касательная плоскость к сфере

Рассмотрим более подробно случай, когда сфера и плоскость имеют только одну общую точку. Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

На рисунке 119 плоскость α — касательная к сфере с центром O, A — точка касания. Касательная плоскость к сфере обладает свойством, аналогичным свойству касательной к окружности. Оно выражено в следующей теореме:

Плоскость α — касательная к сфере

Рис. 119

Теорема

Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство

Рассмотрим плоскость α , касающуюся сферы с центром O в точке A (рис. 119). Докажем, что радиус OA перпендикулярен к плоскости α .

Предположим, что это не так. Тогда радиус OA является наклонной к плоскости α , и, следовательно, расстояние от центра сферы до плоскости α меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Но это противоречит тому, что плоскость α — касательная, т. е. сфера и плоскость α имеют только одну общую точку. Полученное противоречие доказывает, что радиус OA перпендикулярен к плоскости α . Теорема доказана.

Докажем обратную теорему.

Теорема

Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.

Доказательство

Из условия теоремы следует, что данный радиус является перпендикуляром, проведённым из центра сферы к данной плоскости. Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, и, следовательно, сфера и плоскость имеют только одну общую точку. Это и означает, что данная плоскость является касательной к сфере. Теорема доказана.

46 Площадь сферы

В отличие от боковой поверхности цилиндра или конуса сферу нельзя развернуть на плоскость, и, следовательно, для неё непригоден способ определения и вычисления площади поверхности с помощью развёртки. Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара), если сфера касается всех его граней¹. При этом сфера называется вписанной в многогранник. На рисунке 120 изображены описанные около сферы тетраэдр и куб.

Рассмотрим последовательность описанных около данной сферы многогранников, в которой число граней многогранника неограниченно возрастает и при этом наибольший размер каждой грани² многогранника стремится к нулю. За площадь сферы примем предел последовательности площадей поверхностей этих многогранников.

В п. 62 мы докажем, что этот предел существует, и получим следующую формулу для вычисления площади сферы радиуса R:

$$S=4\pi R^2$$
.

Тетраэдр и куб описаны около сферы

¹ Говорят, что сфера касается грани многогранника, если плоскость грани является касательной к сфере и точка касания принадлежит грани.

² Наибольшим размером грани мы называем наибольшее расстояние между двумя точками грани. Так, например, если грань является прямоугольником, то её наибольший размер равен диагонали.

Исследуем взаимное расположение сферы с центром O и прямой a в зависимости от соотношения между радиусом сферы R и расстоянием d от центра сферы до прямой a.

Проведём через центр сферы и прямую a плоскость α (если центр сферы лежит на прямой a, то в качестве плоскости α возьмём любую плоскость, проходящую через прямую a). Она пересекает сферу по окружности L с центром O радиуса R. Ясно, что все общие точки сферы и прямой a (если они есть) лежат в плоскости α и, следовательно, на окружности L. Возможны три случая:

- 1) d > R. В этом случае окружность L и прямая a не имеют общих точек, поэтому сфера и прямая a также не имеют общих точек (рис. 121, a).
- 2) d = R. В этом случае окружность L и прямая a имеют ровно одну общую точку, поэтому сфера и прямая a также имеют ровно одну общую точку (рис. 121, δ).
- 3) d < R. В этом случае окружность L и прямая a имеют ровно две общие точки, поэтому сфера и прямая a также имеют ровно две общие точки (рис. 121, a).

Прямая, имеющая со сферой ровно одну общую точку, называется касательной к сфере, а общая точка — точкой касания прямой и сферы.

Докажите самостоятельно, что:

радиус сферы, проведённый в точку касания сферы и прямой, перпендикулярен к этой прямой;

если радиус сферы перпендикулярен к прямой, проходящей через его конец, лежащий на сфере, то эта прямая является касательной к сфере.

Рассмотрим теперь две касательные к сфере с центром O, проходящие через точку A и касающиеся сферы в точках B и C (рис. 122). Отрезки AB и AC назовём отрезками касательных, проведёнными из точки A. Они обладают следующим свойством: отрезки касательных к сфере, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр сферы.

Рис. 121

Рис. 122

Это следует из равенства прямоугольных треугольников АВО и АСО (они имеют общую гипотенузу AO и катеты OB и OC, равные радиусу сферы).

48* Сфера, вписанная в цилиндрическую поверхность

Говорят, что сфера вписана в цилиндрическую поверхность, если она касается всех её образующих.

Рассмотрим цилиндр, ограниченный кругами с центрами O и O_1 радиуса r и цилиндрической поверхностью, а также сферу S с центром Oрадиуса r (рис. 123). Поскольку расстояние от точки О до каждой из образующих равно радиусу сферы, то эта сфера касается всех образующих, т. е. является сферой, вписанной в цилиндрическую поверхность. Отметим также, что множество всех общих точек сферы S и цилиндрической поверхности представляет собой окружность основания цилиндра.

Рассмотрим теперь какую-нибудь плоскость α, пересекающую одну из образующих нашей цилиндрической поверхности и, следовательно, пересекающую все образующие. Докажем, что существует сфера, касающаяся плоскости α и цилиндрической поверхности.

Проведём из точки O перпендикуляр OH к плоскости α (случай, когда плоскость α проходит через точку O, рассмотрите самостоятельно) и обозначим буквой A точку пересечения луча OH и сферы S (рис. 124, a). Если точки Aи H совпадают, то сфера S — искомая (обоснуйте это). Если же точки A и H не совпадают, то проведём через точку A прямую, параллельную образующей, и обозначим буквой B точку её пересечения с плоскостью α . Переместим сферу Sвдоль оси OO_1 цилиндрической поверхности так, чтобы точка \bar{A} перешла в точку B (рис. 124, δ). При этом перемещении сфера S перейдёт в сферу S' радиуса r с центром O' на прямой OO_1 , причём OO' = AB и сфера S' касается цилиндрической поверхности. Расстояние от точки O' до плоскости α равно O'B = OA (объясните почему), т. е. равно радиусу r. Следовательно, сфера S' касается плоскости а, т. е. является искомой. Утверждение доказано.

Сфера вписана в цилиндрическую поверхность

Рис. 124

б)

49* Сфера, вписанная в коническую поверхность

Говорят, что **сфера вписана в кони- ческую поверхность**, если она касается всех её образующих.

Рассмотрим конус с вершиной P, ограниченный кругом с центром O и конической поверхностью (рис. 125). Пусть ϕ — угол между прямой PO и образующей, S — сфера с центром O радиуса $PO \cdot \sin \phi$.

Поскольку расстояние от точки O до каждой из образующих конуса равно радиусу сферы, то эта сфера касается всех образующих конуса, т. е. является сферой, вписанной в коническую поверхность.

Отметим также, что множество всех общих точек сферы S и конической поверхности представляет собой окружность, лежащую в плоскости, параллельной плоскости основания конуса, и удалённой от вершины конуса на расстояние $PO \cdot \cos^2 \varphi$ (пользуясь рисунком 125, докажите это самостоятельно).

Пусть PA — одна из образующих конуса. Рассмотрим какую-нибудь плоскость α , пересекающую образующую PA конической поверхности в точке B, лежащей на луче PA (рис. 126). Докажем, что существует сфера, касающаяся плоскости α и конической поверхности.

Проведём из точки O перпендикуляр OH к плоскости α (случай, когда плоскость α проходит через точку O, рассмотрите самостоятельно) и обозначим буквой C точку пересечения луча OH и сферы S (см. рис. 126).

Если точки C и H совпадают, то сфера S — искомая (обоснуйте это).

Если же точки C и H не совпадают, то обозначим буквой D точку пересечения луча PC с плоскостью α . Через точку D проведём прямую, параллельную прямой OH и, следовательно, перпендикулярную к плоскости α . Она пересекается с прямой PO в некоторой точке O'.

Так как $O'D \perp \alpha$, то сфера S' с центром O' радиуса O'D касается плоскости α . Эта сфера касается также конической поверхности (докажите это).

Следовательно, сфера S' — искомая. Утверждение доказано.

Сфера вписана в коническую поверхность

Рис. 125

Рис. 126

50* Сечения цилиндрической поверхности

Мы знаем, что если секущая плоскость перпендикулярна к образующей цилиндрической поверхности, то сечением этой поверхности является окружность. Если секущая плоскость параллельна образующей цилиндрической поверхности, то сечением являются две параллельные прямые (объясните почему). А что представляет собой сечение этой поверхности плоскостью α , проходящей под углом ϕ к образующей при $0 < \phi < 90^{\circ}$?

Пусть M — произвольная точка сечения, F_1 — точка касания плоскости α и сферы S_1 , касающейся цилиндрической поверхности, L_1 — окружность, состоящая из точек касания сферы и цилиндрической поверхности, M_1 — точка окружности L_1 , лежащая на одной образующей с точкой M (рис. 127, a). Отрезки MF_1 и MM_1 являются отрезками касательных, проведёнными из точки M к сфере S_1 , поэтому

$$MF_1 = MM_1$$
.

Рассмотрим теперь сферу S_2 , касающуюся цилиндрической поверхности по окружности L_2 , а плоскости α — в некоторой точке F_2 (сфера S_2 расположена по другую сторону от плоскости α , нежели сфера S_1). Пусть M_2 — точка окружности L_2 , лежащая на одной образующей с точкой M. Отрезки MF_2 и MM_2 , будучи отрезками касательных, проведёнными из точки M к сфере S_2 , равны:

$$MF_2 = MM_2$$
.

Таким образом,

$$MF_1 + MF_2 = MM_1 + MM_2 = M_1M_2$$
.

Мы видим, что для любой точки M рассматриваемого сечения сумма $MF_1 + MF_2$ равна M_1M_2 , т. е. равна расстоянию между параллельными плоскостями окружностей L_1 и L_2 , и поэтому не зависит от выбора точки M. Поэтому все точки сечения лежат на эллипсе с фокусами F_1 и F_2 , расположенном в плоскости α (см. п. 97).

Докажем теперь, что любая точка N указанного эллипса является точкой сечения. Проведём через точку N какую-нибудь плоскость β , проходящую через две образующие цилиндра (например, плоскость осевого сечения). Она пересекает рассматриваемое сечение в двух точках, лежащих

Рис. 127

на линии a пересечения плоскостей α и β , причём каждая из этих точек (согласно доказанному) принадлежит эллипсу. Но прямая a не может иметь более двух общих точек с эллипсом (см. п. 97). Следовательно, точка N является одной из этих двух точек, т. е. является точкой сечения.

Итак, сечением цилиндрической поверхности плоскостью α является эллипс.

Замечание

Тот факт, что все точки сечения лежат на эллипсе с фокусом F_1 , можно установить иначе. Пусть b — линия пересечения плоскости α с плоскостью окружности L_1 , MH — перпендикуляр, проведённый из точки M сечения к прямой b (рис. 127, δ ; на этом рисунке изображением прямой b служит точка b1). Тогда b2 и поэтому

 $\frac{MM_1}{MH} = \cos \varphi.$

Но $MM_1=MF_1$. Следовательно, отношение расстояния от каждой точки M сечения до точки F_1 к расстоянию от точки M до прямой b равно числу $\cos \varphi$, не зависящему от точки M и меньшему 1. Иными словами, каждая точка сечения лежит на эллипсе с фокусом F_1 , директрисой b и эксцентриситетом, равным $\cos \varphi$.

51* Сечения конической поверхности

Рассмотрим сечения конической поверхности различными плоскостями. Если секущая плоскость проходит через вершину конической поверхности, то сечением являются либо две образующие, либо одна образующая, либо одна точка — вершина конической поверхности (объясните почему). А как выглядит сечение плоскостью α, не проходящей через вершину?

Пусть ϕ — угол между плоскостью α и осью конической поверхности (т. е. осью какогонибудь конуса, ограниченного кругом и этой поверхностью). Если $\phi = 90^\circ$, то, как мы знаем, сечением является окружность. Пусть $\phi \neq 90^\circ$, θ — угол между осью конической поверхности и её образующей, M — произвольная точка сечения, F — точка касания плоскости α и сферы S, касающейся конической поверхность, состо-

ящая из точек касания сферы и конической поверхности, M_1 — точка окружности L, лежащая на одной образующей с точкой M (рис. 128). Отрезки MF и MM_1 являются отрезками касательных, проведёнными из точки M к сфере S, поэтому $MF = MM_1$.

Проведём из точки M перпендикуляр MK к плоскости β окружности L, обозначим буквой b линию пересечения плоскостей α и β и проведём из точки M перпендикуляр MH к прямой b. Тогда $\angle KMM_1 = \theta$, $\angle KMH = \phi$ и из прямоугольных треугольников MKM_1 и MKH находим: $MK = MM_1 \cos \theta$, $MK = MH \cos \phi$. Учитывая, что $MM_1 = MF$, приходим к равенству:

$$\frac{MF}{MH} = \frac{\cos \varphi}{\cos \theta}$$
.

Мы видим, что если $\cos \varphi < \cos \theta$, то все точки сечения лежат на эллипсе с фокусом F и директрисой b, если $\cos \varphi = \cos \theta$, то на параболе с фокусом F и директрисой b, а если $\cos \varphi > \cos \theta$, то на гиперболе с фокусом F и директрисой b. Доказательство того, что каждая точка указанных линий является точкой сечения (аналогичное соответствующему доказательству в п. 50), проведите самостоятельно.

Итак, в зависимости от угла между секущей плоскостью и осью конической поверхности сечение может быть эллипсом, параболой или гиперболой. По этой причине эллипс, параболу и гиперболу часто объединяют общим названием конические сечения.

Замечания

- 1. В случае $\cos \phi \neq \cos \theta$ можно рассмотреть ещё одну сферу, касающуюся плоскости α и конической поверхности, и привести ещё одно доказательство того, что каждая точка сечения лежит либо на эллипсе, либо на гиперболе. Подумайте, как это сделать.
- 2. Из доказанного утверждения следует, что центральной проекцией окружности может быть либо эллипс, либо парабола, либо одна из ветвей гиперболы (объясните почему). Этот факт хорошо известен нам из опыта. Так, ближний свет автомобильной фары освещает часть асфальта, ограниченную эллипсом, а дальний гиперболой.

Рис. 128

Задачи

- 372 Точки A и B лежат на сфере с центром $O \notin AB$, а точка M лежит на отрезке AB. Докажите, что: а) если M середина отрезка AB, то $OM \perp AB$; б) если $OM \perp AB$, то M середина отрезка AB.
- 373 Точка M середина отрезка AB, концы которого лежат на сфере радиуса R с центром O. Найдите: а) OM, если R=50 см, AB=40 см; б) OM, если R=15 мм, AB=18 мм; в) AB, если R=10 дм, OM=60 см; г) AM, если R=a, OM=b.
- 374 Точки A и B лежат на сфере радиуса R. Найдите расстояние от центра сферы до прямой AB, если AB=m.
- 375 Шар радиуса 41 дм пересечён плоскостью, находящейся на расстоянии 9 дм от центра шара. Найдите площадь сечения.
- 376 Вершины треугольника ABC лежат на сфере радиуса 13 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB=6 см, BC=8 см, AC=10 см.
- 377 Вершины прямоугольника лежат на сфере радиуса 10 см. Найдите расстояние от центра сферы до плоскости прямоугольника, если его диагональ равна 16 см.
- 378 Стороны треугольника касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если его стороны равны 10 см, 10 см и 12 см.
- 379 Все стороны треугольника ABC касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если AB=13 см, BC=14 см, CA=15 см.
- 380 Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см. Найдите расстояние от центра сферы до плоскости ромба.
- **381** Отрезок OH высота тетраэдра OABC. Выясните взаимное расположение сферы радиуса R с центром O и плоскости ABC, если: а) R=6 дм, OH=60 см; б) R=3 м, OH=95 см; в) R=5 дм, OH=45 см; г) R=3,5 дм, OH=40 см.
- 382 Расстояние от центра шара радиуса R до секущей плоскости равно d. Вычислите: а) площадь S сечения, если R=12 см, d=8 см; б) R, если площадь сечения равна 12 см², d=2 см.
- 383 Через точку, делящую радиус сферы пополам, проведена секущая плоскость, перпендикулярная к этому радиусу. Радиус сферы равен *R*. Найдите: а) радиус получившегося сечения; б) площадь боковой поверхности конуса, вершиной которого является центр сферы, а основанием полученное сечение.
- 384 Секущая плоскость проходит через конец диаметра сферы радиуса R так, что угол между диаметром и плоскостью равен α . Найдите длину окружности, получившейся в сечении, если: а) R=2 см, $\alpha=30^\circ$; б) R=5 м, $\alpha=45^\circ$.
- 385 Через точку сферы радиуса R, которая является границей данного шара, проведены две плоскости, одна из которых является касательной к сфере, а другая наклонена под углом ϕ к касательной плоскости. Найдите площадь сечения данного шара.

- 386 Сфера касается граней двугранного угла в 120° . Найдите радиус сферы и расстояние между точками касания, если расстояние от центра сферы до ребра двугранного угла равно a.
- 387 Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.
- 388 Найдите площадь сферы, радиус которой равен: а) 6 см; б) 2 дм; в) $\sqrt{2}$ м; г) $2\sqrt{3}$ см.
- 389 Площадь сечения сферы, проходящего через её центр, равна 9 м². Найдите площадь сферы.
- **390** Площадь сферы равна 324 см². Найдите радиус сферы.
- **391** Докажите, что площади двух сфер пропорциональны квадратам их радиусов.
- **392** Вычислите радиус круга, площадь которого равна площади сферы радиуса 5 м.
- 393 Радиусы двух параллельных сечений сферы равны 9 см и 12 см. Расстояние между секущими плоскостями равно 3 см. Найдите площадь сферы.
- **394** Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r_1 и r_2 . Найдите площадь сферы, если сечения имеют единственную общую точку.
- 395 Докажите, что площадь полной поверхности цилиндра, полученного при вращении квадрата вокруг одной из его сторон, равна площади сферы, радиус которой равен стороне квадрата.

Вопросы к главе IV

- 1 Чему равен угол между плоскостью основания цилиндра и плоскостью, проходящей через образующую цилиндра?
- 2 Что представляет собой сечение цилиндра плоскостью, параллельной его образующей?
- 3 На основаниях цилиндра взяты две не параллельные друг другу хорды. Может ли кратчайшее расстояние между точками этих хорд быть: а) равным высоте цилиндра; б) больше высоты цилиндра; в) меньше высоты цилиндра?
- 4 Две цилиндрические детали покрываются слоем никеля одинаковой толщины. Высота первой детали в два раза больше высоты второй, но радиус её основания в два раза меньше радиуса основания второй детали. На какую из деталей расходуется больше никеля?
- 5 Равны ли друг другу углы между образующими конуса и: a) плоскостью основания; б) его осью?
- **6** Что представляет собой сечение конуса плоскостью, проходящей через его вершину?
- 7 Точки A и B принадлежат шару. Принадлежит ли этому шару любая точка отрезка AB?

- 8 Могут ли все вершины прямоугольного треугольника с катетами 4 см и $2\sqrt{2}$ см лежать на сфере радиуса $\sqrt{5}$ см?
- 9 Могут ли две сферы с общим центром и с неравными радиусами иметь общую касательную плоскость?
- 10 Что представляет собой множество всех точек пространства, из которых данный отрезок виден под прямым углом?

Дополнительные задачи

- **396** Площадь осевого сечения цилиндра равна *S*. Найдите площадь сечения цилиндра плоскостью, проходящей через середину радиуса основания перпендикулярно к этому радиусу.
- 397 Вершины A и B прямоугольника ABCD лежат на окружности одного из оснований цилиндра, а вершины C и D на окружности другого основания. Вычислите радиус цилиндра, если его образующая равна a, AB = a, а угол между прямой BC и плоскостью основания равен 60° .
- 398 Докажите, что если плоскость параллельна оси цилиндра и расстояние между этой плоскостью и осью равно радиусу цилиндра, то плоскость содержит образующую цилиндра, и притом только одну. (В этом случае плоскость называется касательной плоскостью к цилиндру.)
- 399 При вращении прямоугольника вокруг неравных сторон получаются цилиндры, площади полных поверхностей которых равны S_1 и S_2 . Найдите диагональ прямоугольника.
- **400** Найдите отношение площадей полной и боковой поверхностей цилиндра, если осевое сечение цилиндра представляет собой: а) квадрат; б) прямоугольник ABCD, в котором AB:AD=1:2.
- 401 Площадь боковой поверхности цилиндра равна площади круга, описанного около его осевого сечения. Найдите отношение радиуса цилиндра к его высоте.
- **402** Найдите высоту и радиус цилиндра, имеющего наибольшую площадь боковой поверхности, если периметр осевого сечения цилиндра равен 2p.
- 403 Толщина боковой стенки и дна стакана цилиндрической формы равна 1 см, высота стакана равна 16 см, а внутренний радиус равен 5 см. Вычислите площадь полной поверхности стакана.
- **404** Четверть круга свёрнута в коническую поверхность. Докажите, что образующая конуса в четыре раза больше радиуса основания.
- 405 Найдите косинус угла при вершине осевого сечения конуса, имеющего три попарно перпендикулярные образующие.
- **406** Площадь основания конуса равна S_1 , а площадь боковой поверхности равна S_0 . Найдите площадь осевого сечения конуса.
- 407 Отношение площадей боковой и полной поверхностей конуса равно $\frac{7}{8}$. Найдите угол между образующей и плоскостью основания конуса.

- 408 Через вершину конуса и хорду основания, стягивающую дугу в 120° , проведено сечение, составляющее с плоскостью основания угол в 45° . Найдите площадь сечения, если радиус основания равен 4 см.
- 409 Найдите угол между образующей и высотой конуса, если развёрткой его боковой поверхности является сектор с дугой 270° .
- **410** Прямоугольный треугольник с катетами *a* и *b* вращается вокруг гипотенузы. Найдите площадь поверхности полученного тела.
- 411 Равнобедренная трапеция, основания которой равны 6 см и 10 см, а острый угол 60° , вращается вокруг большего основания. Вычислите площадь поверхности полученного тела.
- 412 Высота конуса равна 4 см, а радиус основания равен 3 см. Вычислите площадь полной поверхности правильной n-угольной пирамиды, вписанной в конус¹, если: а) n=3; б) n=4; в) n=6.
- 413 Диагонали осевого сечения усечённого конуса перпендикулярны. Одно из оснований осевого сечения равно 40 см, а его площадь равна 36 дм². Вычислите площади боковой и полной поверхностей усечённого конуса.
- 414 Докажите, что: а) центр сферы является центром симметрии сферы; б) любая прямая, проходящая через центр сферы, является осью симметрии сферы; в) любая плоскость, проходящая через центр сферы, является плоскостью симметрии сферы.
- 415 Вершины прямоугольного треугольника с катетами 1,8 см и 2,4 см лежат на сфере. а) Докажите, что если радиус сферы равен 1,5 см, то центр сферы лежит в плоскости треугольника. б) Найдите расстояние от центра сферы до плоскости треугольника, если радиус сферы равен 6,5 см.
- 416 Точка A лежит на радиусе данной сферы с центром O и делит этот радиус в отношении 1:2, считая от центра сферы. Через точку A проведена плоскость α так, что радиус сферы с центром O, касающейся плоскости α , в 6 раз меньше радиуса данной сферы. Найдите: а) угол между прямой OA и плоскостью α ; б) отношение площади сечения данной сферы плоскостью α к площади самой сферы.
- 417 Два прямоугольника лежат в различных плоскостях и имеют общую сторону. Докажите, что все вершины данных прямоугольников лежат на одной сфере.
- 418 Расстояние между центрами двух равных сфер меньше их диаметра. а) Докажите, что пересечением этих сфер является окружность. б) Найдите радиус этой окружности, если радиусы сфер равны R, а расстояние между их центрами равно 1,6R.
- 419 Точки A, B, C и D лежат на сфере радиуса R, причём $\angle ADB = \\ = \angle BDC = \angle CDA = 2\varphi$, AD = BD = CD. Найдите: а) AB и AD; б) площадь сечения сферы плоскостью ABC.

¹ Пирамида называется вписанной в конус, если её основание вписано в основание конуса, а вершина пирамиды совпадает с вершиной конуса.

- **420** Вне сферы радиуса 10 см дана точка M на расстоянии 16 см от ближайшей точки сферы. Найдите длину такой окружности на сфере, все точки которой удалены от точки M на расстояние 24 см.
- 421 Тело ограничено двумя сферами с общим центром. Докажите, что площадь его сечения плоскостью, проходящей через центры сфер, равна площади сечения плоскостью, касательной к внутренней сфере.

Разные задачи на многогранники, цилиндр, конус и шар

Поясним некоторые термины, которые встречаются в задачах этого раздела. Напомним, что многогранник называется описанным около сферы, если сфера касается всех его граней. При этом сфера называется вписанной в многогранник. Многогранник называется вписанным в сферу, если все его вершины лежат на сфере. При этом сфера называется описанной около многогранника.

- 422 Докажите, что если одна из граней вписанной в цилиндр треугольной призмы 1 проходит через ось цилиндра, то две другие грани взаимно перпендикулярны.
- 423 В конус высотой 12 см вписана пирамида, основанием которой является прямоугольник со сторонами 6 см и 8 см. Найдите отношение площадей полных поверхностей пирамиды и конуса.
- 424 В усечённый конус вписана правильная усечённая n-угольная пирамида (т. е. основания пирамиды вписаны в основания усечённого конуса). Радиусы оснований усечённого конуса равны 2 см и 5 см, а высота равна 4 см. Вычислите площадь полной поверхности пирамиды при: а) n=3; б) n=4; в) n=6.
- 425 Докажите, что если в правильную призму можно вписать сферу, то центром сферы является середина отрезка, соединяющего центры оснований этой призмы.
- **426** Докажите, что центр сферы, вписанной в правильную пирамиду, лежит на высоте этой пирамиды.
- 427 Найдите площадь полной поверхности описанного около сферы радиуса R многогранника, если этот многогранник: а) куб; б) правильная шестиугольная призма; в) правильный тетраэдр.
- **428** Около сферы радиуса R описана правильная четырёхугольная пирамида, плоский угол при вершине которой равен α .
 - а) Найдите площадь боковой поверхности пирамиды.
 - б) Вычислите эту площадь при R=5 см, $\alpha=60^{\circ}$.
- **429** Докажите, что если в правильную усечённую четырёхугольную пирамиду можно вписать сферу, то апофема пирамиды равна полусумме сторон оснований её боковой грани.
- 430 Докажите, что центр сферы, описанной около: а) правильной призмы, лежит в середине отрезка, соединяющего центры оснований этой призмы; б) правильной пирамиды, лежит на высоте этой пирамиды или её продолжении.

 $^{^1}$ Призма называется вписанной в цилиндр, если её основания вписаны в основания цилиндра.

- **431** Докажите, что: а) около любого тетраэдра можно описать сферу; б) в любой тетраэдр можно вписать сферу.
- 432 Радиус сферы равен R. Найдите площадь полной поверхности: а) вписанного в сферу куба; б) вписанной правильной шестиугольной призмы, высота которой равна R; в) вписанного правильного тетраэдра.
- **433** В правильной треугольной пирамиде сторона основания равна a, а боковое ребро равно 2a. Найдите радиусы вписанной и описанной сфер.
- 434 В правильной четырёхугольной пирамиде радиусы вписанной и описанной сфер равны 2 см и 5 см. Найдите сторону основания и высоту пирамиды.
- 435 Сфера вписана в цилиндр (т. е. она касается оснований цилиндра и каждой его образующей, рис. 129, *a*). Найдите отношение площади сферы к площади полной поверхности цилиндра.
- 436 В конус с углом φ при вершине осевого сечения и радиусом основания r вписана сфера радиуса R (т. е. сфера касается основания конуса и каждой его образующей, рис. 129, δ). Найдите: а) r, если известны R и φ ; δ) R, если известны r и φ ; θ) φ , если R=1 см, $r=\sqrt{3}$ см.
- 437 В конус вписана сфера радиуса r. Найдите площадь полной поверхности конуса, если угол между образующей и основанием конуса равен α .
- 438 Цилиндр вписан в сферу (т. е. основания цилиндра являются сечениями сферы, рис. 130, а). Найдите отношение площади полной поверхности цилиндра к площади сферы, если высота цилиндра равна диаметру основания.
- 439 Конус с углом φ при вершине осевого сечения и радиусом основания r вписан в сферу радиуса R (т. е. вершина конуса лежит на сфере, а основание конуса является сечением сферы, рис. 130, δ). Найдите: а) r, если известны R и φ ; δ) R, если известны r и φ ; в) φ , если R = 2r.

Рис. 129 Рис. 130

Глава V Объёмы тел

Объём прямоугольного параллелепипеда

52 Понятие объёма

Понятие объёма тела вводится по аналогии с понятием площади плоской фигуры. Из курса планиметрии известно, что каждый многоугольник имеет площадь, которая измеряется с помощью выбранной единицы измерения площадей. В качестве единицы измерения площадей обычно берут квадрат, сторона которого равна единице измерения отрезков.

Аналогично будем считать, что каждое из рассматриваемых нами тел имеет объём, который можно измерить с помощью выбранной единицы измерения объёмов. За единицу измерения объёмов примем куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см называют кубическим сантиметром и обозначают см³. Аналогично определяются кубический метр (м³), кубический миллиметр (мм³) и т. д.

Процедура измерения объёмов аналогична процедуре измерения площадей. При выбранной единице измерения объём каждого тела выражается положительным числом, которое показывает, сколько единиц измерения объёмов и частей единицы содержится в данном теле. Ясно, что число, выражающее объём тела, зависит от выбора единицы измерения объёмов, и поэтому единица измерения объёмов указывается после этого числа. Например, если в качестве единицы измерения объёмов взят $1~{\rm cm}^3$ и при этом объём V некоторого тела оказался равным 2, то пишут $V=2~{\rm cm}^3$.

Если два тела равны, то каждое из них содержит столько же единиц измерения объёмов и её частей, сколько и другое тело, т. е. имеет место следующее свойство объёмов:

1°. Равные тела имеют равные объёмы. Замечание

Равенство двух фигур, в частности двух тел, в стереометрии определяется так же, как

и в планиметрии: два тела называются равными, если их можно совместить наложением. Примерами равных тел являются два прямоугольных параллелепипеда с соответственно равными измерениями (рис. 131, a), две прямые призмы с равными основаниями и равными высотами, две правильные n-угольные пирамиды, у которых соответственно равны стороны оснований и высоты (рис. 131, δ). В каждом из указанных случаев равенство двух тел можно доказать на основе аксиом наложения и равенства фигур (см. приложение 2).

Рассмотрим ещё одно свойство объёмов. Пусть тело составлено из нескольких тел. При этом мы предполагаем, что любые два из этих тел не имеют общих внутренних точек, но могут иметь общие граничные точки (см. рисунок 132, на котором цилиндр Q и конус F имеют общие граничные точки их общего основания). Ясно, что объём всего тела складывается из объёмов составляющих его тел. Итак,

 2^{0} . Если тело составлено из нескольких тел, то его объём равен сумме объёмов этих тел.

Свойства 1^0 и 2^0 называют основными свойствами объёмов. Напомним, что аналогичными свойствами обладают длины отрезков и площади многоугольников. В дальнейшем на основе этих свойств мы выведем формулы для вычисления объёмов параллелепипеда, призмы, пирамиды, цилиндра, конуса, шара.

ды, цилиндра, конуса, шара. Предварительно отметим одно следствие из свойств 1^0 и 2^0 . Рассмотрим куб, принятый за единицу измерения объёмов. Его ребро равно единице измерения отрезков. Разобьём каждое ребро этого куба на n равных частей (n — произвольное целое число) и проведём через точки разбиения плоскости, перпендикулярные к этому ребру. Куб разобьётся на n^3 равных маленьких кубов с ребром $\frac{1}{n}$. Так как сумма объёмов всех ма-

леньких кубов равна объёму всего куба (свойство 2^0), т. е. равна 1, то объём каждого из маленьких кубов равен $\frac{1}{n^3}$ (объёмы маленьких кубов

равны друг другу по свойству 1^0). Итак, объём куба с ребром $\frac{1}{n}$ равен $\frac{1}{n^3}$.

Равные прямоугольные параллелепипеды

Равные пирамиды

Рис. 131

Рис. 132

Этот факт нам понадобится в следующем пункте при выводе формулы объёма прямоугольного параллелепипеда.

53 Объём прямоугольного параллелепипеда

Теорема

Объём прямоугольного параллелепипеда равен произведению трёх его измерений.

Доказательство

Обозначим измерения прямоугольного параллелепипеда P буквами a, b, c, а его объём буквой V и докажем, что V = abc.

Могут представиться два случая.

1) Измерения a, b и c представляют собой конечные десятичные дроби, у которых число знаков после запятой не превосходит n (можно считать, что $n \ge 1$). В этом случае числа $a \cdot 10^n$, $b \cdot 10^n$ и $c \cdot 10^n$ являются целыми. Разобьём каждое ребро параллелепипеда на равные части дли-

ны $\frac{1}{10^n}$ и через точки разбиения проведём плоско-

сти, перпендикулярные к этому ребру. Параллелепипед P разобъётся на $abc \cdot 10^{3n}$ равных кубов

с ребром
$$\frac{1}{10^n}$$
.

Так как объём каждого такого куба равен $\frac{1}{10^{3n}}$ (см. п. 52), то объём всего параллелепи-

педа P равен $abc \cdot 10^{3n} \cdot \frac{1}{10^{3n}} = abc$.

Итак,
$$V = abc$$
.

(2) Хотя бы одно из измерений a, bи с представляет собой бесконечную десятичную дробь. Рассмотрим конечные десятичные дроби a_n , b_n , c_n , которые получаются из чисел a, b, c, если отбросить в каждом из них все цифры после запятой, начиная с (n+1)-й. Очевидно, $a_n \le a \le a'_n$,

где
$$a'_n = a_n + \frac{1}{10^n}$$
, и аналогичные неравенства спра-

ведливы для b и c. Перемножив эти неравенства, получим

$$a_n b_n c_n \leqslant abc \leqslant a'_n b'_n c'_n, \tag{1}$$

где
$$b'_n = b_n + \frac{1}{10^n}$$
, $c'_n = c_n + \frac{1}{10^n}$.

По доказанному в первом случае левая часть (1) представляет собой объём V_n прямоугольного параллелепипеда P_n с измерениями a_n , b_n , c_n , а правая часть — объём V'_n прямоугольного параллелепипеда P'_n с измерениями a'_n , b'_n , c'_n . Так как параллелепипед P содержит в себе параллелепипед P_n , а сам содержится в параллелепипеде P'_n (рис. 133), то объём V параллелепипеда P заключён между $V_n = a_n b_n c_n$ и $V'_n = a'_n b'_n c'_n$, т. е.

$$a_n b_n c_n \leq V \leq a'_n b'_n c'_n. \tag{2}$$

Будем неограниченно увеличивать n. Тогда число $\frac{1}{10^n}$ будет становиться сколь угодно малым, и по-

этому число $a'_nb'_nc'_n$ будет сколь угодно мало отличаться от числа $a_nb_nc_n$. Отсюда в силу неравенств (1) и (2) следует, что число V сколь угодно мало отличается от числа abc. Значит, они равны: V=abc, что и требовалось доказать. \triangle

Рис. 133

Следствие 1

Объём прямоугольного параллелепипеда равен произведению площади основания на высоту.

В самом деле, примем грань с рёбрами a и b за основание. Тогда площадь S основания равна ab, а высота h параллелепипеда равна c. Следовательно,

$$V = abc = Sh$$
.

Следствие 2

Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

Для доказательства этого утверждения дополним прямую треугольную призму с основанием ABC ($\angle A$ прямой) до прямоугольного параллелепипеда так, как показано на рисунке 134. В силу следствия 1 объём этого параллелепипеда равен $2S_{ABC} \cdot h$, где S_{ABC} — площадь треугольни-

ка ABC, h — высота призмы. Плоскость B_1BC разбивает параллелепипед на две равные прямые призмы, одна из которых — данная. (Эти призмы равны, так как имеют равные основания и равные высоты.) Следовательно, объём V данной призмы равен половине объёма параллелепипеда, т. е. $V = S_{ABC} \cdot h$, что и требовалось доказать.

Замечание

Рассмотрим квадрат со стороной a. По теореме Пифагора его диагональ равна $\sqrt{2}a$, поэтому площадь построенного на ней квадрата вдвое больше площади данного квадрата. Таким образом, не составляет труда построить сторону квалрата, площадь которого вдвое больше площади данного квадрата.

Рассмотрим теперь куб со стороной a. Возникает вопрос: можно ли с помощью циркуля и линейки построить сторону куба, объём которого вдвое больше объёма данного куба, т. е. построить отрезок, равный $\sqrt[3]{2}a$? Эта задача, получившая название задача об удвоении куба, была сформулирована ещё в глубокой древности. И лишь в 1837 г. французский математик Пьер Лоран Ванцель (1814—1848) доказал, что такое построение невозможно. Одновременно им была доказана неразрешимость ещё одной задачи на построение задачи о трисекции угла (произвольный данный угол разделить на три равных угла). Напомним, что к числу классических неразрешимых задач на построение относится также задача о квадратуре круга (построить квадрат, площадь которого равна площади данного круга). Невозможность такого построения была доказана в 1882 г. немецким математиком Карлом Луизом Фердинандом Линдеманом (1852—1939).

Рис. 134

Задачи

- 440 Тело R состоит из тел P и Q, имеющих соответственно объёмы V_1 и V_2 . Выразите объём V тела R через V_1 и V_2 , если:
 - а) тела P и Q не имеют общих внутренних точек;
 - б) тела P и Q имеют общую часть, объём которой равен $\frac{1}{2}V_1$.
- 441 Найдите объём прямоугольного параллелепипеда, стороны основания которого равны a и b, а высота равна h, если:
 - a) a = 11, b = 12, h = 15;
- 6) $a = 3\sqrt{2}, b = \sqrt{5}, h = 10\sqrt{10};$
- B) a = 18, $b = 5\sqrt{3}$, h = 13; r) $a = 3\frac{1}{3}$, $b = \sqrt{5}$, h = 0.96.

- 442 Найдите объём куба $ABCDA_1B_1C_1D_1$, если: а) AC=12 см; б) $AC_1=3\sqrt{2}$ м; в) DE=1 см, где E середина ребра AB.
- 443 Измерения прямоугольного параллелепипеда равны 8 см, 12 см и 18 см. Найдите ребро куба, объём которого равен объёму этого параллелепипеда.
- 444 Кирпич имеет форму прямоугольного параллелепипеда с измерениями 25 см, 12 см и 6.5 см. Плотность кирпича равна 1.8 г/см 3 . Найдите его массу.
- **445** Найдите объём прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, если $AC_1=13$ см, BD=12 см и $BC_1=11$ см.
- 446 Диагональ прямоугольного параллелепипеда равна $18~{\rm cm}$ и составляет угол в 30° с плоскостью боковой грани и угол в 45° с боковым ребром. Найдите объём параллелепипеда.
- **447** Диагональ прямоугольного параллелепипеда составляет угол α с плоскостью боковой грани и угол β с плоскостью основания. Найдите объём параллелепипеда, если его высота равна h.
- **448** Стороны основания прямоугольного параллелепипеда равны a и b. Диагональ параллелепипеда составляет с боковой гранью, содержащей сторону основания, равную b, угол в 30° . Найдите объём параллелепипеда.
- 449 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ диагональ B_1D составляет с плоскостью основания угол в 45°, а двугранный угол A_1B_1BD равен 60°. Найдите объём параллелепипеда, если диагональ основания равна 12 см.
- **450** Найдите объём прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, если: а) $AC_1=1$ м, $\angle C_1AC=45^\circ$, $\angle C_1AB=60^\circ$; б) $AC_1=24$ см, $\angle C_1AA_1=45^\circ$, диагональ AC_1 составляет угол в 30° с плоскостью боковой грани.
- **451** Найдите объём прямой призмы $ABCA_1B_1C_1$, если $\angle BAC = 90^\circ$, BC = 37 см, AB = 35 см, $AA_1 = 1,1$ дм.

Объёмы прямой призмы и цилиндра

54 Объём прямой призмы

Теорема

Объём прямой призмы равен произведению площади основания на высоту.

▼ Доказательство

Сначала докажем теорему для треугольной прямой призмы, а затем — для произвольной прямой призмы.

1. Рассмотрим прямую треугольную призму $ABCA_1B_1C_1$ с объёмом V и высотой h. Проведём такую высоту треугольника ABC (отрезок BD на рисунке 135), которая разделяет этот треугольник на два треугольника (по крайней мере, одна высота треугольника этому условию удовлетворяет). Плоскость BB_1D разделяет данную призму на две призмы, основаниями которых являются прямоугольные треугольники ABD и BDC. Поэтому объёмы V_1 и V_2 этих призм соответственно равны $S_{ABD} \cdot h$ и $S_{BDC} \cdot h$. По свойству 2^0 объёмов $V = V_1 + V_2$, т. е. $V = S_{ABD} \cdot h + S_{BDC} \cdot h = (S_{ABD} + S_{BDC}) \cdot h$. Таким образом,

$$V = S_{ABC} \cdot h. \tag{1}$$

2. Докажем теорему для произвольной прямой призмы с высотой h и площадью основания S. Такую призму можно разбить на прямые треугольные призмы с высотой h. Например, на рисунке 136 изображена выпуклая пятиугольная призма, которая разбита на три прямые треугольные призмы. Выразим объём каждой треугольной призмы по формуле (1) и сложим эти объёмы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы, Таким образом, объём исходной призмы равен произведению $S \cdot h$. Теорема доказана. \triangle

Рис. 135

Рис. 136

55 Объём цилиндра

Говорят, что призма вписана в цилиндр, если её основания вписаны в основания цилиндра (рис. 137, a), и призма описана около цилиндра, если её основания описаны около оснований цилиндра (рис. 137, δ). Ясно, что высота любой призмы, вписанной в цилиндр или описанной около него, равна высоте самого цилиндра.

Теорема

Объём цилиндра равен произведению площади основания на высоту.

▼ Доказательство

Впишем в данный цилиндр P радиуса r и высоты h правильную n-угольную призму P_n

a) Призма вписана в цилиндр

Призма описана около цилиндра

Рис. 138

Рис. 137

(рис. 138). Площадь S_n основания этой призмы выражается формулой

$$S_n = nr \sin \frac{180^{\circ}}{n} r \cos \frac{180^{\circ}}{n}.$$

Наряду с призмой P_n рассмотрим призму Q_n , описанную около цилиндра P (рис. 139). Площадь её основания равна

$$nr \operatorname{tg} \frac{180^{\circ}}{n} r = \frac{S_n}{\cos^2 \frac{180^{\circ}}{n}}.$$

Поскольку призма P_n содержится в цилиндре P, а цилиндр P содержится в призме Q_n , то объём V цилиндра P удовлетворяет неравенствам

$$S_n \cdot h < V < \frac{S_n}{\cos^2 \frac{180^\circ}{r}} \cdot h. \tag{2}$$

Будем неограниченно увеличивать число n. Так как при $n\to\infty$ $\cos\frac{180^\circ}{n}\to 1$, а $S_n\to\pi r^2$, то правая и левая части неравенств (2) стремятся к величине $\pi r^2 h$. Следовательно,

$$V = \pi r^2 h. \tag{3}$$

Обозначив площадь πr^2 основания цилиндра буквой S, из формулы (3) получим $V = S \cdot h$. Теорема доказана. \triangle

Рис. 139

Вопросы и задачи

- **452** Найдите объём прямой призмы $ABCA_1B_1C_1$, если:
 - а) $\angle BAC = 120^{\circ}$, AB = 5 см, AC = 3 см и наибольшая из площадей боковых граней равна 35 см²:
 - б) $\angle AB_1C = 60^\circ$, $AB_1 = 3$, $CB_1 = 2$ и двугранный угол с ребром BB_1 прямой.
- **453** Найдите объём прямой призмы $ABCA_1B_1C_1$, если AB=BC=m, $\angle ABC = \emptyset$ и $BB_1 = BD$, где BD — высота треугольника ABC.
- **454** Найдите объём прямой призмы $ABCA_1B_1C_1$, если AB = BC, $\angle ABC = \alpha$, диагональ A_1C равна l и составляет с плоскостью основания угол β .
- 455 Основанием прямой призмы является параллелограмм. Через сторону основания, равную а, и противолежащую ей сторону другого основания проведено сечение, составляющее угол В с плоскостью основания. Площадь сечения равна Q. Найдите объём призмы.
- **456** Найдите объём правильной n-угольной призмы, у которой каждое ребро равно a, если: a) n=3; б) n=4; в) n=6; г) n=8.
- 457 В правильной треугольной призме через сторону нижнего основания и противолежащую ей вершину верхнего основания проведено сечение, составляющее угол в 60° с плоскостью основания. Найдите объём призмы, если сторона основания равна a.
- 458 Наибольшая диагональ правильной шестиугольной призмы равна 8 см и составляет с боковым ребром угол в 30° . Найдите объём призмы.
- **459** Пусть V, r и h соответственно объём, радиус и высота цилиндра. Найдите:
 - а) V, если $r = 2\sqrt{2}$ см, h = 3 см;
 - б) r, если V = 120 см³, h = 3.6 см:
 - в) h, если r = h, $V = 8\pi$ см³.
- 460 Алюминиевый провод диаметром 4 мм имеет массу 6,8 кг. Найдите длину провода (плотность алюминия 2,6 г/см³).
- 461 Какое количество нефти (в тоннах) вмещает цилиндрическая цистерна диаметром 18 м и высотой 7 м, если плотность нефти равна 0.85 r/cm^3 ?
- **462** Площадь основания цилиндра равна Q, а площадь его осевого сечения равна S. Найдите объём цилиндра.

- 463 Свинцовая труба (плотность свинца 11,4 г/см3) с толщиной стенок 4 мм имеет внутренний диаметр 13 мм. Какова масса трубы, если её длина равна 25 м?
- 464 В цилиндр вписана правильная п-угольная призма. Найдите отношение объёмов призмы и цилиндра, если: a) n=3; б) n=4; в) n = 6; г) n = 8; д) n — произвольное целое число.
- 465 В цилиндр вписана призма, основанием которой является прямоугольный треугольник с катетом a и прилежащим к нему углом α . Найдите объём цилиндра, если высота призмы равна h.

56 Вычисление объёмов тел с помощью определённого интеграла

Рассмотрим способ вычисления объёмов тел, основанный на понятии интеграла, которое известно из курса алгебры и начал анализа.

Пусть тело T, объём которого нужно вычислить, заключено между двумя параллельными плоскостями α и β (рис. 140). Введём ось Ox так, чтобы она была перпендикулярна к плоскостям α и β , и обозначим буквами a и b координаты точек пересечения оси Ox с этими плоскостями (a < b). Будем считать, что тело таково, что его сечение $\Phi(x)$ плоскостью, проходящей через точку с координатой x и перпендикулярной к оси Ox, является либо кругом, либо многоугольником для любого $x \in [a; b]$ (при x = a и x = b сечение может вырождаться в точку, как, например, при x = a на рисунке 140). Обозначим площадь фигуры $\Phi(x)$ через S(x) и предположим, что S(x) — непрерывная функция на числовом отрезке [a; b].

Разобьём числовой отрезок [a; b] на n равных отрезков точками $a=x_0, x_1, x_2, ..., x_n=b$ и через точки с координатами x_i проведём плоскости, перпендикулярные к оси Ox (рис. 141). Эти плоскости разбивают тело T на n тел: $T_1, T_2, ..., T_n$.

Рис. 140

Рис. 141

Если сечение $\Phi(x_i)$ — круг, то объём тела T_i (выделенного красным цветом на рисунке 141) приближённо равен объёму цилиндра с основани-

ем
$$\Phi(x_i)$$
 и высотой $\Delta x_i = x_i - x_{i-1} = \frac{b-a}{n}$.

Если $\Phi(x_i)$ — многоугольник, то объём тела T_i приближённо равен объёму прямой призмы с основанием $\Phi(x_i)$ и высотой Δx_i .

И в том и в другом случае объём тела T_i приближённо равен $S(x_i) \cdot \Delta x_i$, а объём V всего тела Т можно приближённо вычислить по формуле

$$V \approx V_n = \sum_{i=1}^n S(x_i) \Delta x_i.$$

Приближённое значение V_n объёма тела T тем точнее, чем больше n и, следовательно, меньше Δx_i . Примем без доказательства, что $\lim_{n \to \infty} V_n$ равен объёму тела, т. е. $V = \lim_{n \to \infty} V_n$.

 ${\bf C}$ другой стороны, сумма V_n является интегральной суммой для непрерывной функции S(x) на числовом отрезке [a; b], поэтому

$$\lim_{n\to\infty}V_n=\int\limits_a^bS(x)\,dx.\ \triangle$$

В результате получается следующая формула для вычисления объёма тела с помощью интеграла:

$$V = \int_{a}^{b} S(x) \, dx.$$

Назовём её основной формулой для вычисления объёмов тел. Пользуясь этой формулой, вычислим объёмы некоторых тел, изученных нами в главах III и IV.

57 Объём наклонной призмы

Теорема

Объём наклонной призмы равен произведению площади основания на высоту.

▼ Доказательство

Докажем сначала теорему для треугольной призмы, а затем — для произвольной призмы.

1. Рассмотрим треугольную призму с объёмом V, площадью основания S и высотой h. Отметим точку О на одном из оснований призмы и направим ось Ох перпендикулярно к основаниям (рис. 142, а). Рассмотрим сечение призмы плоскостью, перпендикулярной к оси Ox и, значит, параллельной плоскости основания. Обозначим буквой х координату точки пересечения этой плоскости с осью Ox, а через S(x) — площадь получившегося сечения.

Докажем, что площадь S(x) равна площади S основания призмы. Для этого заметим, что треугольники ABC (основание призмы) и $A_1B_1C_1$ (сечение призмы рассматриваемой плоскостью) равны. В самом деле, четырёхугольник AA_1B_1B параллелограмм (отрезки AA_1 и BB_1 равны и параллельны), поэтому $A_1B_1 = AB$. Аналогично доказывается, что $B_1C_1 = BC$ и $A_1C_1 = AC$.

Итак, треугольники $A_1B_1C_1$ и ABC равны по трём сторонам. Следовательно, S(x) = S. Применяя теперь основную формулу для вычисления объёмов тел при a = 0 и b = h, получаем

$$V = \int_{0}^{h} S(x) dx = \int_{0}^{h} S dx = S \int_{0}^{h} dx = S \cdot x|_{0}^{h} = S \cdot h.$$

2. Докажем теперь теорему для произвольной призмы с высотой h и площадью основания S. Такую призму можно разбить на треугольные призмы с общей высотой h (на рисунке 142, σ показано разбиение для выпуклой пятиугольной призмы). Выразим объём каждой треугольной призмы по доказанной нами формуле и сложим эти объёмы. Вынося за скобки общий множитель h, получим в скобках сумму площадей оснований треугольных призм, т. е. площадь S основания исходной призмы. Таким образом, объём исходной призмы равен $S \cdot h$. Теорема доказана. \triangle

Замечание

Для наклонной призмы существует и другой способ вычисления объёма, а именно: объём наклонной призмы равен произведению бокового ребра на площадь сечения призмы плоскостью, перпендикулярной к боковым рёбрам и пересекающей их. Коротко говорят так: объём наклонной призмы равен произведению бокового ребра на плошаль перпенликулярного ему сечения (см. задачу 475).

Рис. 142

58 Объём пирамиды

Теорема

Объём пирамиды равен одной трети произведения площади основания на высоту.

Доказательство

Сначала докажем теорему для треугольной пирамиды, а затем — для произвольной пирамилы.

1. Рассмотрим треугольную пирамиду OABC с объёмом V, площадью основания S и высотой h. Проведём ось Ox (рис. 143, a, где OM — высота пирамиды) и рассмотрим сечение $A_1B_1C_1$ пирамиды плоскостью, перпендикулярной к оси Ox и, значит, параллельной плоскости основания. Обозначим через x координату точки M_1 пересечения этой плоскости с осью Ox, а через S(x) — площадь сечения. Выразим S(x) через S, h и x. Заметим, что треугольники $A_1B_1C_1$ и ABC подобны. В самом деле, $A_1B_1 \parallel AB$, поэтому $\triangle OA_1B_1 \cong \triangle OAB$. Сле-

довательно,
$$\frac{A_1B_1}{AB}=\frac{OA_1}{OA}$$
. Прямоугольные треуголь-

ники OA_1M_1 и OAM также подобны (они имеют общий острый угол с вершиной O). Поэтому

$$\frac{OA_1}{OA} = \frac{OM_1}{OM} = \frac{x}{h}$$
. Таким образом, $\frac{A_1B_1}{AB} = \frac{x}{h}$. Ана-

логично доказывается, что
$$\frac{B_1C_1}{BC}=\frac{x}{h}$$
 и $\frac{C_1A_1}{CA}=\frac{x}{h}.$

Итак, треугольники $A_1B_1C_1$ и ABC подобны с коэффициентом подобия $\frac{x}{h}$. Следователь-

но,
$$\frac{S(x)}{S} = \left(\frac{x}{h}\right)^2$$
, или $S(x) = \frac{S}{h^2}x^2$.

Применяя теперь основную формулу для вычисления объёмов тел при $a=0,\ b=h,$ получаем

$$V = \int_{0}^{h} S(x) dx = \int_{0}^{h} \frac{S}{h^{2}} x^{2} dx = \frac{S}{h^{2}} \int_{0}^{h} x^{2} dx = \frac{S}{h^{2}} \frac{x^{3}}{3} \Big|_{0}^{h} = \frac{1}{3} S \cdot h.$$

2. Докажем теперь теорему для произвольной пирамиды с высотой h и площадью основания S. Такую пирамиду можно разбить на треугольные пирамиды с общей высотой h (на ри-

Рис. 143

сунке 143, σ показано разбиение для выпуклой пятиугольной пирамиды). Выразим объём каждой треугольной пирамиды по доказанной нами формуле и сложим эти объёмы. Вынося за скобки общий множитель $\frac{1}{3}h$, получим в скобках сумму площадей оснований треугольных пирамидь. Таким

площадей основании треугольных пирамид, т. е. площадь S основания исходной пирамиды. Таким образом, объём исходной пирамиды равен $\frac{1}{3}Sh$. Теорема доказана. \triangle

Следствие

Объём V усечённой пирамиды, высота которой равна h, а площади оснований равны S и S_1 , вычисляется по формуле

$$V = \frac{1}{3}h\left(S + S_1 + \sqrt{S \cdot S_1}\right).$$

Пользуясь тем, что усечённая пирамида получается из обычной пирамиды путём отсечения от неё меньшей пирамиды и, следовательно, объём усечённой пирамиды равен разности объёмов данной пирамиды и отсечённой, выведите эту формулу самостоятельно.

59 Объём конуса

Теорема

Объём конуса равен одной трети произведения площади основания на высоту.

▼ Доказательство

Рассмотрим конус с объёмом V, радиусом основания R, высотой h и вершиной в точке O. Введём ось Ox так, как показано на рисунке 144 (OM — ось конуса). Произвольное сечение конуса плоскостью, перпендикулярной к оси Ox, является кругом с центром в точке M_1 пересечения этой плоскости с осью Ox (п. 40). Обозначим радиус этого круга через R_1 , а площадь сечения через S(x), где x — координата точки M_1 . Из подобия прямоугольных треугольников OM_1A_1 и OMA следует, что

$$rac{OM_1}{OM} = rac{R_1}{R}$$
, или $rac{x}{h} = rac{R_1}{R}$,

Рис. 144

откуда $R_1 = \frac{R}{h} x$. Так как $S(x) = \pi R_1^2$, то

$$S(x) = \frac{\pi R^2}{h^2} x^2.$$

Применяя основную формулу для вычисления объёмов тел при $a=0,\ b=h,$ получаем

$$V=\int\limits_0^h rac{\pi R^2}{h^2} x^2 \ dx =rac{\pi R^2}{h^2} \int\limits_0^h x^2 \ dx =rac{\pi R^2}{h^2} rac{x^3}{3}igg|_0^h =rac{1}{3}\pi R^2 h.$$

Площадь S основания конуса равна πR^2 ,

поэтому $V=rac{1}{3}Sh$. Теорема доказана. \triangle

Рис. 145

Следствие

Объём V усечённого конуса, высота которого равна h, а площади оснований равны S и S_1 , вычисляется по формуле

$$V = \frac{1}{3}h\left(S + S_1 + \sqrt{S \cdot S_1}\right).$$

Пользуясь рисунком 145, выведите эту формулу самостоятельно.

Задачи

- **466** Сечение тела, изображённого на рисунке 146, плоскостью, перпендикулярной к оси Ox и проходящей через точку с абсциссой x, является квадратом, сторона которого равна $\frac{1}{x}$. Найдите объём этого тела.
- **467** Фигура, заштрихованная на рисунке 147, вращается вокруг оси Ox. Найдите объём полученного тела.
- **468** Фигура, заштрихованная на рисунке 148, вращается вокруг оси Oy. Найдите объём полученного тела.
- 469 Найдите объём наклонной призмы, у которой основанием является треугольник со сторонами 10 см, 10 см и 12 см, а боковое ребро, равное 8 см, составляет с плоскостью основания угол в 60° .
- **470** Найдите объём наклонной призмы $ABCA_1B_1C_1$, если AB=BC=CA=a, ABB_1A_1 ромб, $AB_1 < BA_1$, $AB_1=b$, двугранный угол с ребром AB прямой.
- 471 Основанием призмы $ABCA_1B_1C_1$ является равносторонний треугольник ABC со стороной m. Вершина A_1 проектируется в центр этого основания, а ребро AA_1 составляет с плоскостью основания угол φ . Найдите объём призмы.

- 472 Основанием наклонной призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с катетами AB=7 см и AC=24 см. Вершина A_1 равноудалена от вершин A, B и C. Найдите объём призмы, если ребро AA_1 составляет с плоскостью основания угол в 45° .
- **473** Основанием наклонного параллелепипеда является прямоугольник со сторонами a и b. Боковое ребро длины c составляет со смежными сторонами основания углы, равные ϕ . Найдите объём параллелепипеда.
- **474** Все грани параллелепипеда равные ромбы, диагонали которых равны 6 см и 8 см. Найдите объём параллелепипеда.
- 475 Докажите, что объём наклонной призмы равен произведению бокового ребра на площадь сечения призмы плоскостью, перпендикулярной к боковым рёбрам и пересекающей их.
- 476 Найдите объём наклонной треугольной призмы, если расстояния между её боковыми рёбрами равны $37~{\rm cm},\,13~{\rm cm}$ и $30~{\rm cm},\,$ а площадь боковой поверхности равна $480~{\rm cm}^2.$
- **477** Найдите объём пирамиды с высотой h, если:
 - а) h = 2 м, а основанием служит квадрат со стороной 3 м;
 - б) h = 2,2 м, а основанием служит треугольник ABC, в котором AB = 20 см, BC = 13,5 см, $\angle ABC = 30^{\circ}$.
- 478 Найдите объём правильной треугольной пирамиды, высота которой равна 12 см, а сторона основания равна 13 см.
- **479** Найдите объём правильной треугольной пирамиды с боковым ребром l, если:
 - а) боковое ребро составляет с плоскостью основания угол ϕ ;
 - б) боковое ребро составляет с прилежащей стороной основания угол α ;
 - в) плоский угол при вершине равен β.
- 480 В правильной треугольной пирамиде плоский угол при вершине равен φ, а сторона основания равна *a*. Найдите объём пирамиды.
- 481 Найдите объём правильной четырёхугольной пирамиды, если:
 - а) её высота равна H, а двугранный угол при основании равен β ;
 - б) сторона основания равна m, а плоский угол при вершине равен α .

- **482** Боковое ребро правильной четырёхугольной пирамиды равно m и составляет с плоскостью основания угол ϕ . Найдите объём пирамиды.
- 483 Найдите объём и площадь боковой поверхности правильной шестиугольной пирамиды, если её боковое ребро равно 13 см, а диаметр круга, вписанного в основание, равен 6 см.
- 484 Основание пирамиды равнобедренный треугольник ABC, в котором AB = BC = 13 см, AC = 10 см. Каждое боковое ребро пирамиды образует с её высотой угол в 30° . Вычислите объём пирамиды.
- 485 Основанием пирамиды является прямоугольный треугольник с катетами *а* и *b*. Каждое её боковое ребро наклонено к плоскости основания под углом ф. Найдите объём пирамиды.
- 486 Докажите, что если в пирамиду можно вписать шар, то объём V пирамиды можно вычислить по формуле $V=\frac{1}{3}\,S\cdot r$, где S площадь полной поверхности пирамиды, а r радиус вписанного в пирамиду шара.
- **487** Основанием пирамиды является ромб со стороной 6 см. Каждый из двугранных углов при основании равен 45° . Найдите объём пирамиды, если её высота равна 1,5 см.
- 488 Найдите объём треугольной пирамиды SABC, если: а) $\angle CAB = 90^{\circ}$, BC = c, $\angle ABC = \varphi$ и каждое боковое ребро составляет с плоскостью основания угол θ ;
 - б) AB = 12 см, BC = CA = 10 см и двугранные углы при основании равны 45° ;
 - в) боковые рёбра попарно перпендикулярны и имеют длины a, b и c.
- 489 Основанием пирамиды DABC является треугольник, в котором AB=20 см, AC=29 см, BC=21 см. Грани DAB и DAC перпендикулярны к плоскости основания, а грань DBC составляет с ней угол в 60° . Найдите объём пирамиды.
- **490** Стороны оснований правильной усечённой треугольной пирамиды равны a и 0.5a, апофема боковой грани равна a. Найдите объём усечённой пирамиды.
- **491** Основания усечённой пирамиды равнобедренные прямоугольные треугольники, гипотенузы которых равны m и n (m > n). Две боковые грани, содержащие катеты, перпендикулярны к основанию, а третья составляет с ним угол ϕ . Найдите объём усечённой пирамиды.
- 492 Основанием пирамиды является прямоугольный треугольник, катеты которого равны 24 дм и 18 дм. Каждое боковое ребро равно 25 дм. Пирамида пересечена плоскостью, параллельной плоскости основания и делящей боковое ребро пополам. Найдите объём полученной усечённой пирамиды.
- 493 В правильной усечённой четырёхугольной пирамиде стороны оснований равны 6 см и 4 см, а площадь сечения пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани, равна 15 см². Найдите объём усечённой пирамиды.

- **494** Пусть h, r и V соответственно высота, радиус основания и объём конуса. Найдите:
 - а) V, если h = 3 см, r = 1.5 см;
 - б) h, если r = 4 см, $V = 48\pi$ см³:
 - в) r, если h = m, V = p.
- 495 Высота конуса равна 5 см. На расстоянии 2 см от вершины его пересекает плоскость, параллельная основанию. Найдите объём исходного конуса, если объём меньшего конуса, отсекаемого от исходного, равен 24 см³.
- **496** Найдите объём конуса, если площадь его основания равна Q, а площадь боковой поверхности равна P.
- 497 Высота конуса равна диаметру его основания. Найдите объём конуса, если его высота равна H.
- 498 Найдите объём конуса, если его образующая равна 13 см, а площадь осевого сечения равна 60 см².
- 499 Высота конуса равна 12 см, а его объём равен 324π см³. Найдите угол сектора, который получится, если боковую поверхность конуса развернуть на плоскость.
- 500 Площадь полной поверхности конуса равна 45π дм². Развёрнутая на плоскость боковая поверхность конуса представляет собой сектор с углом в 60° . Найдите объём конуса.
- 501 Радиусы оснований усечённого конуса равны 3 м и 6 м, а образующая равна 5 м. Найдите объём усечённого конуса.
- **502** В усечённом конусе известны высота h, образующая l и площадь S боковой поверхности. Найдите площадь осевого сечения и объём усечённого конуса.

Объём шара и площаль сферы

60 Объём шара

Теорема

Объём шара радиуса R равен $\frac{4}{3}\pi R^3$.

▼ Доказательство

Рассмотрим шар радиуса R с центром в точке O и выберем ось Ox произвольным образом (рис. 149). Сечение шара плоскостью, перпендикулярной к оси Ох и проходящей через точку M этой оси, является кругом с центром в точке M. Обозначим радиус этого круга через r, а его площадь через S(x), где x — координата точки M. Выразим S(x) через x и R. Из прямоугольного треугольника OMC находим

$$r = \sqrt{OC^2 - OM^2} = \sqrt{R^2 - x^2}$$
.

Так как $S(x) = \pi r^2$, то

$$S(x) = \pi (R^2 - x^2).$$
 (1)

Заметим, что эта формула верна для любого положения точки M на диаметре AB, т. е. для всех x, удовлетворяющих условию $-R \le x \le R$. Применяя основную формулу для вычисления объёмов тел при a=-R, b=R, получаем:

$$V = \int_{-R}^{R} \pi (R^2 - x^2) dx = \pi R^2 \int_{-R}^{R} dx - \pi \int_{-R}^{R} x^2 dx =$$

$$= \pi R^2 x \Big|_{-R}^{R} - \frac{\pi x^3}{3} \Big|_{-R}^{R} = \frac{4}{3} \pi R^3.$$

Теорема доказана. 🛆

61 Объёмы шарового сегмента, шарового слоя и шарового сектора

а) Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью. На рисунке 150 секущая плоскость α , проходящая через точку B, разделяет шар на два шаровых сегмента. Круг, получившийся в сечении, называется основанием каждого из этих сегментов, а длины отрезков AB и BC диаметра AC, перпендикулярного к секущей плоскости, называются высотами сегментов.

Если радиус шара равен R, а высота сегмента равна h (на рисунке $150\ h=AB$), то объём V шарового сегмента вычисляется по формуле

$$V = \pi h^2 \left(R - \frac{1}{3} h \right).$$

▼ Действительно, проведём ось Ox перпендикулярно к плоскости α (см. рис. 150). Тогда площадь S(x) произвольного сечения шарового сегмента плоскостью, перпендикулярной к оси Ox, выражается формулой (1) при $R-h \le x \le R$. При-

Рис. 149

Шаровой сегмент

Рис. 150

меняя основную формулу для вычисления объёмов тел при a = R - h, b = R, получаем:

$$V = \pi \int_{R-h}^{R} (R^2 - x^2) dx = \pi \left(R^2 x - \frac{x^3}{3} \right) \Big|_{R-h}^{R} = \pi h^2 \left(R - \frac{1}{3} h \right). \quad \triangle$$

б) Шаровым слоем называется часть шара, заключённая между двумя параллельными секущими плоскостями (рис. 151). Круги, получившиеся в сечении шара этими плоскостями, называются основаниями шарового слоя, а расстояние между плоскостями — высотой шарового слоя.

Объём шарового слоя можно вычислить как разность объёмов двух шаровых сегментов. Например, объём шарового слоя, изображённого на рисунке 151, равен разности объёмов шаровых сегментов, высоты которых равны AC и AB.

в) Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 90° , вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов (рис. 152). Шаровой сектор состоит из шарового сегмента и конуса. Если радиус шара равен R, а высота шарового сегмента равна h, то объём V шарового сектора вычисляется по формуле

$$V=\frac{2}{3}\pi R^2h.$$

Выведите эту формулу самостоятельно.

62* Площадь сферы

В п. 46 мы привели без доказательства формулу для вычисления площади S сферы радиуса R:

$$S = 4\pi R^2$$
.

Выведем эту формулу, пользуясь формулой для объёма шара.

Рассмотрим сферу радиуса R с центром в точке O и описанный около неё многогранник, имеющий n граней. Занумеруем грани в произвольном порядке и обозначим через S_i площадь i-й грани ($i=1,\,2,\,...,\,n$). Соединив центр O сферы отрезками со всеми вершинами многогранника,

Рис. 151

Шаровой сектор

Рис. 152

получим n пирамид с общей вершиной O, основаниями которых являются грани многогранника, а высотами — радиусы сферы, проведённые в точки касания граней многогранника со сферой. Следовательно, объём i-й пирамиды равен $\frac{1}{3}S_iR$, а объём V_n всего описанного многогранника равен:

$$V_n = \sum_{i=1}^n \frac{1}{3} S_i R = \frac{1}{3} R \sum_{i=1}^n S_i = \frac{1}{3} R P_n,$$

где $P_n = \sum_{i=1}^n S_i$ — площадь поверхности многогранника. Отсюда получаем:

$$P_n = \frac{3V_n}{R}. (2)$$

Будем теперь неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани описанного многогранника стремился к нулю. При этом объём V_n описанного многогранника будет стремиться к объёму шара. В самом деле, если наибольший размер каждой грани описанного многогранника не превосходит δ , то описанный многогранник содержится в шаре радиуса $R+\delta$ с центром в точке O. С другой стороны, описанный многогранник содержит исходный шар радиуса R. Поэтому

$$\frac{4}{3}\pi R^3 < V_n < \frac{4}{3}\pi (R+\delta)^3.$$

Так как
$$\frac{4}{3}\pi(R+\delta)^3 \rightarrow \frac{4}{3}\pi R^3$$
 при $\delta \rightarrow 0$,

то и
$$V_n \to \frac{4}{3} \pi R^3$$
 при $\delta \to 0$ $(n \to \infty)$.

Переходя затем к пределу в равенстве (2), получаем:

$$\lim_{n\to\infty}P_n=\lim_{n\to\infty}\frac{3V_n}{R}=\frac{3}{R}\lim_{n\to\infty}V_n=\frac{3}{R}\cdot\frac{4}{3}\pi R^3=4\pi R^2.$$

По определению площади сферы $S = \lim_{n \to \infty} P_n$, следовательно,

$$S = 4\pi R^2$$

Вопросы и задачи

- 503 Пусть V объём шара радиуса R, а S площадь его поверхности. Найдите: а) S и V, если R = 4 см; б) R и S, если V = 113,04 см³; в) R и V, если S = 64 π см².
- 504 Диаметр Луны составляет (приблизительно) четвёртую часть диаметра Земли. Сравните объёмы Луны и Земли, считая их шарами.
- **505** Шар и цилиндр имеют равные объёмы, а диаметр шара равен диаметру основания цилиндра. Выразите высоту цилиндра через радиус шара.
- 506 Стаканчик для мороженого конической формы имеет глубину 12 см и диаметр верхней части 5 см. На него сверху положили две ложки мороженого в виде полушарий диаметром 5 см. Переполнит ли мороженое стаканчик, если оно растает?
- 507 В цилиндрическую мензурку диаметром 2,5 см, наполненную водой до некоторого уровня, опускают 4 равных металлических шарика диаметром 1 см. На сколько изменится уровень воды в мензурке?
- **508** Сколько кубометров земли потребуется для устройства клумбы, имеющей форму шарового сегмента с радиусом основания 5 м и высотой 60 см?
- 509 Два равных шара расположены так, что центр одного лежит на поверхности другого. Как относится объём общей части шаров к объёму одного шара?
- **510** Найдите объём шарового сегмента, если радиус окружности его основания равен 60 см, а радиус шара равен 75 см.
- 511 Диаметр шара разделён на три равные части и через точки деления проведены плоскости, перпендикулярные к диаметру. Найдите объём получившегося шарового слоя, если радиус шара равен *R*.
- 512 В шаре проведена плоскость, перпендикулярная к диаметру и делящая его на части 6 см и 12 см. Найдите объёмы двух полученных частей шара.
- 513 Найдите объём шарового сектора, если радиус окружности основания соответствующего шарового сегмента равен 60 см, а радиус шара равен 75 см.
- **514** Круговой сектор с углом 30° и радиусом R вращается вокруг одного из ограничивающих его радиусов. Найдите объём получившегося шарового сектора.
- 515 Вода покрывает приблизительно $\frac{3}{4}$ земной поверхности. Сколько квадратных километров земной поверхности занимает суша? (Радиус Земли считать равным 6375 км.)
- **516** Сколько кожи пойдёт на покрышку футбольного мяча радиуса 10 см? (На швы добавить 8% от площади поверхности мяча.)
- 517 Докажите, что площадь сферы равна площади полной поверхности конуса, высота которого равна диаметру сферы, а диаметр основания равен образующей конуса.

Вопросы к главе V

- 1 Каким соотношением связаны объёмы V_1 и V_2 тел P_1 и P_2 , если: а) тело P_1 содержится в теле P_2 ;
 - б) каждое из тел P_1 и P_2 составлено из n кубов с ребром 1 см?
- 2 Какую часть объёма данной прямой треугольной призмы составляет объём треугольной призмы, отсечённой от данной плоскостью, проходящей через средние линии оснований?
- 3 Изменится ли объём цилиндра, если диаметр его основания увеличить в 2 раза, а высоту уменьшить в 4 раза?
- 4 Как изменится объём правильной пирамиды, если её высоту увеличить в n раз, а сторону основания уменьшить в n раз?
- 5 Основаниями двух пирамид с равными высотами являются четырёхугольники с соответственно равными сторонами. Равны ли объёмы этих пирамид?
- 6 Как относятся объёмы двух конусов, если их высоты равны, а отношение радиусов оснований равно 2?
- 7 Из каких тел состоит тело, полученное вращением равнобедренной трапеции вокруг большего основания?
- 8 Один конус получен вращением неравнобедренного прямоугольного треугольника вокруг одного из катетов, а другой конус вращением вокруг другого катета. Равны ли объёмы этих конусов?
- 9 Диаметр одного шара равен радиусу другого. Чему равно отношение: а) радиусов этих шаров; б) объёмов шаров?
- **10** Сколько нужно взять шаров радиуса 2 см, чтобы сумма их объёмов равнялась объёму шара радиуса 6 см?
- 11 Во сколько раз объём шара, описанного около куба, больше объёма шара, вписанного в этот же куб?
- 12 Как изменится площадь сферы, если её радиус: а) уменьшить в 2 раза; б) увеличить в 3 раза?
- 13 Отношение объёмов двух шаров равно 8. Как относятся площади их поверхностей?
- 14 В каком отношении находятся объёмы двух шаров, если площади их поверхностей относятся как $m^2:n^2$?

Дополнительные задачи

- 518 Площади трёх попарно смежных граней прямоугольного параллелепипеда равны $S_1,\ S_2,\ S_3.$ Выразите объём этого параллелепипеда через $S_1,\ S_2,\ S_3$ и вычислите его при $S_1=6$ дм², $S_2=12$ дм², $S_3=18$ дм².
- 519 В прямоугольном параллелепипеде диагонали трёх граней, выходящие из одной вершины, равны 7 см, 8 см и 9 см. Найдите объём параллелепипеда.
- 520 Боковое ребро прямоугольного параллелепипеда равно a. Сечение, проведённое через две стороны разных оснований, является квадратом с площадью Q. Найдите объём параллелепипеда.

- 521 Стороны основания прямого параллелепипеда равны 7 см и $3\sqrt{2}$ см, а острый угол основания равен 45° . Меньшая диагональ параллелепипеда составляет угол в 45° с плоскостью основания. Найдите объём параллелепипеда.
- 522 В прямом параллелепипеде $ABCDA_1B_1C_1D_1$ диагонали BD_1 и A_1C взаимно перпендикулярны и равны 6 см и 8 см, AB=3 см. Найдите объём параллелепипеда.
- 523 В прямой призме, основанием которой является прямоугольный треугольник, пять рёбер равны a, а остальные четыре ребра равны друг другу. Найдите объём призмы.
- 524 Объём прямой призмы, основанием которой является прямоугольный треугольник, равен 3 м³, а наименьшая и наибольшая из площадей боковых граней равны 3 м² и $3\sqrt{5}$ м². Найдите длины рёбер призмы.
- 525 Диагональ боковой грани правильной треугольной призмы равна d и составляет угол ϕ с плоскостью другой боковой грани. Найдите объём призмы.
- 526 Докажите, что объём треугольной призмы равен половине произведения площади боковой грани на расстояние от этой грани до параллельного ей ребра.
- 527 На трёх данных параллельных прямых, не лежащих в одной плоскости, отложены три равных отрезка AA_1 , BB_1 и CC_1 . Докажите, что объём призмы, боковыми рёбрами которой являются эти отрезки, не зависит от положения отрезков на данных прямых.
- 528 Площади боковых граней наклонной треугольной призмы пропорциональны числам 20, 37, 51. Боковое ребро равно 0,5 дм, а площадь боковой поверхности равна 10,8 дм². Найдите объём призмы.
- **529** Найдите объём правильной треугольной пирамиды, если боковая грань составляет с плоскостью основания угол ϕ , а не лежащая в этой грани вершина основания находится на расстоянии m от неё.
- 530 Боковое ребро правильной четырёхугольной пирамиды составляет с основанием угол ϕ , а середина этого ребра удалена от основания пирамиды на расстояние, равное m. Найдите объём пирамиды.
- 531 Высота правильной треугольной пирамиды равна h, а двугранный угол, ребром которого является боковое ребро пирамиды, равен 2ϕ . Найдите объём пирамиды.
- 532 В правильной n-угольной пирамиде плоский угол при вершине равен α , а сторона основания равна a. Найдите объём пирамиды.
- 533 Основанием пирамиды является треугольник, два угла которого равны ϕ_1 и ϕ_2 . Высота пирамиды равна h, а каждое боковое ребро составляет с плоскостью основания угол ϕ_3 . Найдите объём пирамиды.

- 534 Основанием четырёхугольной пирамиды, высота которой равна H, является параллелограмм. Диагонали параллелограмма пересекаются под углом α . Попарно равные противоположные боковые рёбра пирамиды образуют с плоскостью основания углы β и γ . Найдите объём пирамиды.
- 535 Основанием пирамиды является ромб со стороной *а*. Две боковые грани пирамиды перпендикулярны к плоскости основания и образуют тупой двугранный угол φ. Две другие боковые грани составляют с плоскостью основания двугранные углы θ. Найдите объём пирамиды.
- 536 Два ребра тетраэдра равны *b*, а остальные четыре ребра равны *a*. Найдите объём тетраэдра, если рёбра длины *b*: а) имеют общие точки: б) не имеют обших точек.
- 537 В усечённой пирамиде соответственные стороны оснований относятся как 2:5. В каком отношении делится её объём плоскостью, проходящей через середину высоты этой пирамиды параллельно основаниям?
- 538 Найдите объём цилиндра, если: а) площадь боковой поверхности равна S, а площадь основания равна Q; б) осевое сечение является квадратом, а высота равна h; в) осевое сечение является квадратом, а площадь полной поверхности равна S.
- 539 Докажите, что объёмы двух цилиндров, у которых площади боковых поверхностей равны, относятся как их радиусы.
- 540 Конический бак имеет глубину 3 м, а его круглый верх имеет радиус 1,5 м. Сколько литров жидкости он вмещает?

Разные задачи на многогранники, цилиндр, конус и шар

- **541** В конус вписана пирамида, основанием которой является прямоугольник. Меньшая сторона прямоугольника равна a, а острый угол между его диагоналями равен ϕ_1 . Боковая грань, содержащая меньшую сторону основания, составляет с плоскостью основания двугранный угол ϕ_2 . Найдите объём конуса.
- 542 Основанием пирамиды является ромб со стороной a и острым углом ϕ . В пирамиду вписан конус, образующая которого составляет с плоскостью основания угол θ . Найдите объём конуса.
- 543 В цилиндр вписан шар. Найдите отношение объёмов цилиндра и шара.
- **544** Найдите объём конуса, если радиус его основания равен 6 дм, а радиус вписанной в конус сферы равен 3 дм.
- 545 В конус, радиус основания которого равен r, а образующая равна l, вписана сфера. Найдите длину линии, по которой сфера касается боковой поверхности конуса.
- ${f 546}~~{
 m B}$ усечённый конус, радиусы оснований которого равны r и r_1 , вписан шар. Найдите отношение объёмов усечённого конуса и шара.

- 547 В правильную треугольную пирамиду с двугранным углом с при основании вписан шар объёма V. Найдите объём пирамиды.
- $548~{
 m B}$ пирамиду, основанием которой является ромб со стороной aи углом а, вписан шар. Найдите объём шара, если каждая боковая грань пирамиды составляет с основанием угол β.
- 549 В сферу радиуса R вписан цилиндр, диагональ осевого сечения которого составляет с основанием угол а. Найдите объём цилиндра.
- В шар вписан цилиндр, в котором угол между диагоналями осевого сечения равен α . Образующая цилиндра равна l. Найдите объём шара.
- 551 В шар вписан конус, радиус основания которого равен r, а высота равна Н. Найдите площадь поверхности и объём шара.
- 552 В шар вписана пирамида, основанием которой является прямоугольный треугольник с гипотенузой, равной 2 см. Найдите плошадь поверхности и объём шара, если каждое боковое ребро пирамилы составляет с основанием угол α.
- 553 В шар вписана пирамида, основанием которой является прямоугольник с диагональю 10 см. Каждое боковое ребро пирамилы составляет с основанием угол В. Найдите площадь поверхности и объём шара.
- 554 Пистерна имеет форму пилиндра, к основаниям которого присоелинены равные шаровые сегменты. Радиус пилиндра равен 1.5 м. а высота сегмента равна 0,5 м. Какой длины должна быть образующая цилиндра, чтобы вместимость цистерны равнялась 50 м³?
- 555 Куб, шар, цилиндр и конус (у двух последних тел диаметры оснований равны высоте) имеют равные площади поверхностей. Какое из этих тел имеет наибольший объём и какое — наименьший?
- 556 Будет ли плавать в воде полый медный шар, диаметр которого равен 10 см, а толшина стенки: а) 2 мм; б) 1.5 мм? (Плотность меди 8.9 Γ/cm^3 .)

Глава VI Векторы в пространстве

Понятие вектора в пространстве

63 Понятие вектора

В курсе планиметрии мы познакомились с векторами на плоскости и действиями над ними. Основные понятия для векторов в пространстве вводятся так же, как и для векторов на плоскости.

Отрезок, для которого указано, какой из его концов считается началом, а какой — концом, называется вектором. Направление вектора (от начала к концу) на рисунках отмечается стрелкой. Любая точка пространства также может рассматриваться как вектор. Такой вектор называется нулевым. Начало и конец нулевого вектора совпадают, и он не имеет какого-либо определённого направления. На рисунке 153, a изображены ненулевые векторы \overrightarrow{AB} и \overrightarrow{CD} и нулевой вектор \overrightarrow{TT} , а на рисунке 153, 6 — ненулевые векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} , имеющие общее начало. Нулевой вектор обозначается также символом $\overrightarrow{0}$.

Длиной ненулевого вектора \overrightarrow{AB} называется длина отрезка AB. Длина вектора \overrightarrow{AB} (вектора \overrightarrow{a}) обозначается так: $|\overrightarrow{AB}|(|\overrightarrow{a}|)$. Длина нулевого вектора считается равной нулю: $|\overrightarrow{0}| = 0$.

Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Если два ненулевых вектора \overrightarrow{AB} и \overrightarrow{CD} коллинеарны и если при этом лучи AB и CD сонаправлены, то векторы \overrightarrow{AB} и \overrightarrow{CD} называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы \overrightarrow{AB} и \overrightarrow{CD} называются противоположно направленными. Нулевой вектор условимся считать сонаправленным с любым вектором. Запись $\overrightarrow{a} \uparrow \uparrow \overrightarrow{b}$

Рис. 153

Рис. 154

обозначает, что векторы \vec{a} и \vec{b} сонаправлены, а запись $\vec{c} \uparrow \downarrow \vec{d}$ — что векторы \vec{c} и \vec{d} противоположно направлены. На рисунке 154 изображён параллелепипед. На этом рисунке $\overrightarrow{AM} \uparrow \uparrow \overrightarrow{DK}$, $\overrightarrow{AD} \uparrow \uparrow \overrightarrow{EK}$, $\overrightarrow{AB} \uparrow \downarrow \overrightarrow{DC}$; векторы \overrightarrow{AD} и \overrightarrow{AM} не являются ни сонаправленными, ни противоположно направленными, так как они не коллинеарны.

Изучая векторы на плоскости, мы отмечали, что многие физические величины, например сила, перемещение, скорость, являются векторными величинами. При изучении электрических и магнитных явлений появляются новые примеры векторных величин. Электрическое поле, создаваемое в пространстве зарядами, характеризуется в каждой точке пространства вектором напряжённости электрического поля. На рисунке 155, а изображены векторы напряжённости электрического поля положительного точечного заряда.

Электрический ток, т. е. направленное движение зарядов, создаёт в пространстве магнитное поле, которое характеризуется в каждой точке пространства вектором магнитной индукции. На рисунке 155, б изображены векторы магнитной индукции магнитного поля прямого проводника с током.

64 Равенство векторов

Векторы называются **равными**, если они сонаправлены и их длины равны. На рисунке 154 $\overrightarrow{AE} = \overrightarrow{DK}$, так как $\overrightarrow{AE} \uparrow \uparrow \overrightarrow{DK}$ и $|\overrightarrow{AE}| = |\overrightarrow{DK}|$, а $\overrightarrow{AB} \neq \overrightarrow{DC}$, так как $\overrightarrow{AB} \uparrow \downarrow \overrightarrow{DC}$.

Если точка A — начало вектора \vec{a} , то говорят, что вектор \vec{a} отложен от точки A. Нетрудно доказать, что от любой точки можно отложить вектор, равный данному, и притом только один. В самом деле, пусть \vec{a} — данный вектор, M — данная точка (рис. 156). Проведём через начало и конец вектора \vec{a} и точку M плоскость и в этой плоскости построим вектор $\overrightarrow{MN} = \vec{a}$. Очевидно, что вектор \overrightarrow{MN} искомый. Из построения ясно также, что \overrightarrow{MN} — единственный вектор с началом M, равный вектору \vec{a} .

Электрическое поле \vec{E}

Магнитное поле \vec{B}

Рис. 155

Рис. 156

Векторы в пространстве

Вопросы и задачи

- 557 В тетраэдре ABCD точки M, N и K середины рёбер AC, BC и CD соответственно, AB=3 см, BC=4 см, BD=5 см. Найдите длины векторов:
 - a) \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{BD} , \overrightarrow{NM} , \overrightarrow{BN} , \overrightarrow{NK} ;
 - 6) \overrightarrow{CB} , \overrightarrow{BA} , \overrightarrow{DB} , \overrightarrow{NC} , \overrightarrow{KN} .
- 558 Измерения прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ имеют следующие значения: $AD=8\,$ см, $AB=9\,$ см и $AA_1=12\,$ см. Найдите длины векторов:
 - a) $\overrightarrow{CC_1}$, \overrightarrow{CB} , \overrightarrow{CD} ;
- 6) $\overrightarrow{DC_1}$, \overrightarrow{DB} , $\overrightarrow{DB_1}$.
- 559 На рисунке 157 изображён параллелепипед $ABCDA_1B_1C_1D_1$. Точки M и K середины рёбер B_1C_1 и A_1D_1 . Укажите на этом рисунке все пары:
 - а) сонаправленных векторов;
 - б) противоположно направленных векторов;
 - в) равных векторов.
- 560 На рисунке 158 изображён тетраэдр ABCD, рёбра которого равны. Точки M, N, P и Q середины сторон AB, AD, DC, BC.

Рис. 157

Рис. 158

- а) Выпишите все пары равных векторов, изображённых на этом рисунке.
- б) Определите вид четырёхугольника MNPQ.
- 561 Справедливо ли утверждение:
 - а) два вектора, коллинеарные ненулевому вектору, коллинеарны между собой;
 - б) два вектора, сонаправленные с ненулевым вектором, сонаправлены;
 - в) два вектора, коллинеарные ненулевому вектору, сонаправлены?
- **562** Известно, что $\overrightarrow{AA_1} = \overrightarrow{BB_1}$. Как расположены по отношению друг к другу:
 - а) прямые AB и A_1B_1 ;
 - б) прямая AB и плоскость, проходящая через точки A_1 и B_1 ;
 - в) плоскости, одна из которых проходит через точки A и B, а другая проходит через точки A_1 и B_1 ?
- 563 На рисунке 157 изображён параллелепипед, точки M и K середины рёбер B_1C_1 и A_1D_1 . Назовите вектор, который получится, если отложить:
 - а) от точки C вектор, равный DD_1 ;
 - б) от точки D вектор, равный \overrightarrow{CM} ;
 - в) от точки A_1 вектор, равный \overrightarrow{AC} ;
 - г) от точки C_1 вектор, равный \overrightarrow{CB} ;
 - д) от точки M вектор, равный $\overline{KA_1}$.

Сложение и вычитание векторов. Умножение вектора на число

65 Сложение и вычитание векторов

Введём правило сложения двух произвольных векторов \vec{a} и \vec{b} . Отложим от какой-нибудь точки A вектор \overrightarrow{AB} , равный \vec{a} (рис. 159). Затем от точки B отложим вектор \overrightarrow{BC} , равный \vec{b} . Вектор \overrightarrow{AC} называется суммой векторов \vec{a} и \vec{b} : $\overrightarrow{AC} = \vec{a} + \vec{b}$.

Это правило сложения векторов называется правилом треугольника. Рисунок 159, а поясняет это название. Отметим, что по этому же правилу складываются и коллинеарные векторы, хотя при их сложении и не получается треугольника. Рисунки 159, б, в иллюстрируют сложение коллинеарных векторов.

Точно так же, как в планиметрии, доказывается, что сумма $\vec{a} + \vec{b}$ не зависит от выбора точки A, от которой при сложении откладывается вектор \vec{a} . Иными словами, если при сложении векторов \vec{a} и \vec{b} по правилу треугольника точку Aзаменить другой точкой A_1 , то вектор \overrightarrow{AC} заменится равным ему вектором $\overrightarrow{A_1C_1}$ (рис. 160). Докажите это утверждение самостоятельно.

Правило треугольника можно сформулировать в такой форме: для любых трёх точек A, B и C имеет место равенство

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
.

Для сложения двух неколлинеарных векторов можно пользоваться также **правилом параллелограмма**, известным из курса планиметрии. Это правило пояснено на рисунке 161.

Свойства сложения векторов, изученные в планиметрии, имеют место и для векторов в пространстве. Напомним их.

Для любых векторов $\vec{a},\,\vec{b}$ и \vec{c} справедливы равенства:

 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (переместительный закон); $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (сочетательный закон).

Сложение векторов

Рис. 159

Рис. 160

Векторы в пространстве

Правило параллелограмма сложения двух неколлинеарных векторов

 \overrightarrow{AB} и \overrightarrow{BA} — противоположные векторы

Рис. 161

Рис. 162

Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены. Вектором, противоположным нулевому вектору, считается нулевой вектор. Очевидно, вектор \overrightarrow{BA} является противоположным вектору \overrightarrow{AB} (рис. 162).

Разностью векторов \vec{a} и \vec{b} называется такой вектор, сумма которого с вектором \vec{b} равна вектору \vec{a} . Разность $\vec{a} - \vec{b}$ векторов \vec{a} и \vec{b} можно найти по формуле

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}), \tag{1}$$

где $(-\vec{b})$ — вектор, противоположный вектору \vec{b} .

На рисунках 163, a, δ представлены два способа построения разности двух данных векторов \vec{a} и \vec{b} .

Доказательства справедливости законов сложения и равенства (1) для векторов в пространстве ничем не отличаются от доказательств для векторов на плоскости.

66 Сумма нескольких векторов

Сложение нескольких векторов в пространстве выполняется так же, как и на плоскости: первый вектор складывается со вторым, затем их сумма — с третьим вектором и т. д. Из законов сложения векторов следует, что сумма нескольких векторов не зависит от того, в каком порядке они складываются.

На рисунке 164 показано построение суммы трёх векторов $\vec{a}, \ \vec{b}$ и \vec{c} : от произвольной

Разность векторов

Рис. 163

Рис. 164

Векторы в пространстве точки O отложен вектор $\overrightarrow{OA} = \vec{a}$, затем от точки A отложен вектор $\overrightarrow{AB} = \vec{b}$, и, наконец, от точки B отложен вектор $\overrightarrow{BC} = \vec{c}$. В результате получается вектор \overrightarrow{OC} , равный $\vec{a} + \vec{b} + \vec{c}$.

Аналогично можно построить сумму любого числа векторов. На рисунке 165 построена сумма \overrightarrow{OE} пяти векторов: \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} и \overrightarrow{e} . Это правило построения суммы нескольких векторов называется **правилом многоугольника**. Заметим, однако, что, в отличие от случая векторов на плоскости, «многоугольник», который получается при построении суммы векторов в пространстве, может оказаться пространственным, т. е. таким, у которого не все вершины лежат в одной плоскости. Таковым является, например, «четырёхугольник» OABC на рисунке 164, с помощью которого построен вектор \overrightarrow{OC} .

Правило многоугольника можно сформулировать также следующим образом: если $A_1, A_2, ..., A_n$ — произвольные точки, то

$$\overrightarrow{A_1A_2} + \overrightarrow{A_2A_3} + \dots + \overrightarrow{A_{n-1}A_n} = \overrightarrow{A_1A_n}.$$

Это правило проиллюстрировано на рисунке 166 для n=7. Отметим, что если точки A_1 и A_n , т. е. начало первого вектора и конец последнего, совпадают, то сумма векторов равна нулевому вектору.

67 Умножение вектора на число

Произведением ненулевого вектора \vec{a} на число k называется такой вектор \vec{b} , длина которого равна $|k|\cdot|\vec{a}|$, причём векторы \vec{a} и \vec{b} сонаправлены при k>0 и противоположно направлены при k<0. Произведением нулевого вектора на любое число считается нулевой вектор.

Произведение вектора \vec{a} на число k обозначается так: $k\vec{a}$. Из определения произведения вектора на число следует, что для любого числа k и любого вектора \vec{a} векторы \vec{a} и $k\vec{a}$ коллинеарны. Из этого определения следует также, что произведение любого вектора на число нуль есть нулевой вектор.

Напомним основные свойства умножения вектора на число, известные нам для векто-

 $\overrightarrow{OE} = \vec{a} + \vec{b} + \vec{c} + \vec{d} + \vec{e}$

Рис. 165

Рис. 166

ров на плоскости. Они имеют место и для векторов в пространстве.

Для любых векторов \vec{a}, \vec{b} и любых чисел k, l справедливы равенства:

 $(kl)\vec{a} = k(l\vec{a})$ (сочетательный закон);

 $k(\vec{a}+\vec{b})=k\vec{a}+k\vec{b}$ (первый распределительный закон); $(k+l)\vec{a}=k\vec{a}+l\vec{a}$ (второй распределительный закон).

Отметим, что $(-1)\vec{a}$ является вектором, противоположным вектору \vec{a} , т. е. $(-1)\vec{a}=-\vec{a}$. Действительно, длины векторов $(-1)\vec{a}$ и \vec{a} равны: $|(-1)\vec{a}|=|-1|\cdot|\vec{a}|=|\vec{a}|$. Кроме того, если вектор \vec{a} ненулевой, то векторы $(-1)\vec{a}$ и \vec{a} противоположно направлены.

Точно так же, как в планиметрии, можно доказать, что если векторы \vec{a} и \vec{b} коллинеарны и $\vec{a} \neq \vec{0}$, то существует число k такое, что $\vec{b} = k\vec{a}$.

Залачи

- 564 На рисунке 157 изображён параллелепипед $ABCDA_1B_1C_1D_1$. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: a) $\overrightarrow{AB} + \overrightarrow{A_1D_1}$; б) $\overrightarrow{AB} + \overrightarrow{AD_1}$; в) $\overrightarrow{DA} + \overrightarrow{B_1B}$; г) $\overrightarrow{DD_1} + \overrightarrow{DB}$; д) $\overrightarrow{DB_1} + \overrightarrow{BC}$.
- 565 Дан тетраэдр \overrightarrow{ABCD} . Докажите, что: a) $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{CD}$; б) $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{DC} + \overrightarrow{AD}$; в) $\overrightarrow{DC} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BA}$.
- **566** Назовите все векторы, образованные рёбрами параллелепипеда $ABCDA_1B_1C_1D_1$, которые: а) противоположны вектору \overrightarrow{CB} ; б) противоположны вектору $\overrightarrow{B_1A}$; в) равны вектору $-\overrightarrow{DC}$; г) равны вектору $-\overrightarrow{A_1B_1}$.
- 567 Нарисуйте параллелепипед $ABCDA_1B_1C_1D_1$ и обозначьте векторы $\overrightarrow{C_1D_1}, \overrightarrow{BA_1}, \overrightarrow{AD}$ соответственно через $\vec{a}, \vec{b}, \vec{c}$. Изобразите на рисунке векторы: а) $\vec{a} \vec{b}$; б) $\vec{a} \vec{c}$; в) $\vec{b} \vec{a}$; г) $\vec{c} \vec{b}$; д) $\vec{c} \vec{a}$.
- **568** Пусть ABCD параллелограмм, а O произвольная точка пространства. Докажите, что: а) $\overrightarrow{OB} \overrightarrow{OA} = \overrightarrow{OC} \overrightarrow{OD}$; б) $\overrightarrow{OB} \overrightarrow{OC} = \overrightarrow{DA}$.
- 569 На рисунке 157 изображён параллелепипед $ABCDA_1B_1C_1D_1$. Представьте векторы $\overrightarrow{AB_1}$ и \overrightarrow{DK} в виде разности двух векторов, начала и концы которых совпадают с отмеченными на рисунке точками.
- 570 В пространстве даны четыре точки A, B, C и D. Назовите вектор с началом и концом в данных точках, равный сумме векторов: а) $(\overrightarrow{AB} + \overrightarrow{CA} + \overrightarrow{DC}) + (\overrightarrow{BC} + \overrightarrow{CD})$; б) $(\overrightarrow{AB} \overrightarrow{AC}) + \overrightarrow{DC}$.

- 571 Дан прямоугольный параллелепипед $KLMNK_1L_1M_1N_1$. Докажите, что: а) $|\overrightarrow{MK} + \overrightarrow{MM_1}| = |\overrightarrow{MK} \overrightarrow{MM_1}|;$ б) $|\overrightarrow{K_1L_1} \overrightarrow{NL_1}| = |\overrightarrow{ML} + \overrightarrow{MM_1}|;$ в) $|\overrightarrow{NL} \overrightarrow{M_1L}| = |\overrightarrow{K_1N} \overrightarrow{LN}|.$
- 572 Упростите выражение: а) $\overrightarrow{AB} + \overrightarrow{MN} + \overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{PQ} + \overrightarrow{NM}$; б) $\overrightarrow{FK} + \overrightarrow{MQ} + \overrightarrow{KP} + \overrightarrow{AM} + \overrightarrow{QK} + \overrightarrow{PF}$; в) $\overrightarrow{KM} + \overrightarrow{DF} + \overrightarrow{AC} + \overrightarrow{FK} + \overrightarrow{CD} + \overrightarrow{CA} + \overrightarrow{MP}$; г) $\overrightarrow{AB} + \overrightarrow{BA} + \overrightarrow{CD} + \overrightarrow{MN} + \overrightarrow{DC} + \overrightarrow{NM}$.
- 573 Даны точки A, B, C и D. Представьте вектор \overrightarrow{AB} в виде алгебраической суммы следующих векторов: a) \overrightarrow{AC} , \overrightarrow{DC} , \overrightarrow{BD} ; б) \overrightarrow{DA} , \overrightarrow{DC} , \overrightarrow{CB} ; в) \overrightarrow{DA} , \overrightarrow{CD} , \overrightarrow{BC} .
- 574 Упростите выражение: a) $\overrightarrow{OP} \overrightarrow{EP} + \overrightarrow{KD} \overrightarrow{KA}$; б) $\overrightarrow{AD} + \overrightarrow{MP} + \overrightarrow{EK} \overrightarrow{EP} \overrightarrow{MD}$; в) $\overrightarrow{AC} \overrightarrow{BC} \overrightarrow{PM} \overrightarrow{AP} + \overrightarrow{BM}$.
- **575** Дан параллелепипед $ABCDA_1B_1C_1D_1$. Докажите, что $\overrightarrow{OA} + \overrightarrow{OC_1} = \overrightarrow{OC} + \overrightarrow{OA_1}$, где O— произвольная точка пространства.
- 576 Дан параллелепипед $ABCDA_1B_1C_1D_1$. Укажите вектор \vec{x} , начало и конец которого являются вершинами параллелепипеда, такой, что: a) $\overrightarrow{DC} + \overrightarrow{D_1A_1} + \overrightarrow{CD_1} + \vec{x} + \overrightarrow{A_1C_1} = \overrightarrow{DB}$; б) $\overrightarrow{DA} + \vec{x} + \overrightarrow{D_1B} + \overrightarrow{AD_1} + \overrightarrow{BA} = \overrightarrow{DC}$.
- 577 Дана треугольная призма $ABCA_1B_1C_1$. Укажите вектор \vec{x} , начало и конец которого являются вершинами призмы, такой, что: а) $\overrightarrow{AA_1} + \overrightarrow{B_1C} \vec{x} = \overrightarrow{BA}$; б) $\overrightarrow{AC_1} \overrightarrow{BB_1} + \vec{x} = \overrightarrow{AB}$; в) $\overrightarrow{AB_1} + \vec{x} = \overrightarrow{AC} \vec{x} + \overrightarrow{BC_1}$.
- 578 Основанием четырёхугольной пирамиды с вершиной P является трапеция ABCD. Точка O— середина средней линии трапеции. Докажите, что $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{PO}$.
- 579 Точка P вершина правильной шестиугольной пирамиды. Докажите, что сумма всех векторов с началом в точке P, образованных боковыми рёбрами пирамиды, равна сумме всех векторов с началом в точке P, образованных апофемами.
- 580 Известно, что $\overrightarrow{AO} = \frac{1}{2} \overrightarrow{AB}$. Докажите, что точки A и B симметричны относительно точки O.
- **581** Диагонали куба $ABCDA_1B_1C_1D_1$ пересекаются в точке O. Найдите число k, такое, что: а) $\overrightarrow{AB} = k \cdot \overrightarrow{CD}$; б) $\overrightarrow{AC_1} = k \cdot \overrightarrow{AO}$; в) $\overrightarrow{OB_1} = k \cdot \overrightarrow{B_1D}$.
- **582** Точки E и F середины оснований AB и BC параллелограмма ABCD, а O произвольная точка пространства. Выразите: а) вектор \overrightarrow{OA} \overrightarrow{OC} через вектор \overrightarrow{EF} ; б) вектор \overrightarrow{OA} \overrightarrow{OE} через вектор \overrightarrow{DC} .
- 583 Точки M и N середины сторон AB и CD трапеции \overrightarrow{ABCD} , а O произвольная точка пространства. Выразите вектор \overrightarrow{OM} \overrightarrow{ON} через векторы \overrightarrow{AD} и \overrightarrow{BC} .
- **584** Упростите: a) $2(\vec{m} + \vec{n}) 3(4\vec{m} \vec{n}) + \vec{m}$; б) $\vec{m} 3(\vec{n} 2\vec{m} + \vec{p}) + 5(\vec{p} 4\vec{m})$.
- **585** Докажите, что в параллелепипеде $ABCDA_1B_1C_1D_1$ $\overrightarrow{AC_1}$ + $\overrightarrow{B_1D}$ = $2\overrightarrow{BC}$.

586 Три точки A, B и M удовлетворяют условию $\overrightarrow{AM} = \lambda \cdot \overrightarrow{MB}$, где $\lambda \neq -1$. Докажите, что эти точки лежат на одной прямой и для любой точки O пространства выполняется равенство $\overrightarrow{OM} = \frac{\overrightarrow{OA} + \lambda \cdot \overrightarrow{OB}}{1 + \lambda}$.

Решение

Из равенства $\overrightarrow{AM} = \lambda \cdot \overrightarrow{MB}$ следует, что векторы \overrightarrow{AM} и \overrightarrow{MB} коллинеарны, поэтому прямые AM и MB либо параллельны, либо совпадают. Так как эти прямые имеют общую точку M, то они совпадают, и, следовательно, точки A, B и M лежат на одной прямой. Поскольку $\overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA}$, $\overrightarrow{MB} = \overrightarrow{OB} - \overrightarrow{OM}$, то из равенства $\overrightarrow{AM} = \lambda \cdot \overrightarrow{MB}$ имеем $\overrightarrow{OM} - \overrightarrow{OA} = \lambda (\overrightarrow{OB} - \overrightarrow{OM})$, или $(1 + \lambda) \overrightarrow{OM} = \overrightarrow{OA} + \lambda \cdot \overrightarrow{OB}$. Отсюда, разделив на $1 + \lambda$, получаем искомое равенство.

- **587** Известно, что $\vec{p} = \vec{a} + \vec{b} + \vec{c}$, причём векторы \vec{a} , \vec{b} и \vec{c} попарно не сонаправлены. Докажите, что $|\vec{p}| = |\vec{a}| + |\vec{b}| + |\vec{c}|$.
- **588** Векторы \vec{a} и \vec{c} , а также \vec{b} и \vec{c} коллинеарны. Докажите, что коллинеарны векторы: а) $\vec{a} + \vec{b}$ и \vec{c} ; б) $\vec{a} \vec{b}$ и \vec{c} ; в) $\vec{a} + 3\vec{b}$ и \vec{c} ; г) $-\vec{a} + 2\vec{b}$ и \vec{c} .
- **589** Векторы $\vec{a} + \vec{b}$ и $\vec{a} \vec{b}$ коллинеарны. Докажите, что векторы \vec{a} и \vec{b} коллинеарны.
- **590** Векторы $\vec{a}+2\vec{b}$ и $\vec{a}-3\vec{b}$ коллинеарны. Докажите, что векторы \vec{a} и \vec{b} коллинеарны.
- **591** Докажите, что если векторы $\vec{a} + \vec{b}$ и $\vec{a} \vec{b}$ и не коллинеарны, то не коллинеарны и векторы: а) \vec{a} и \vec{b} ; б) $\vec{a} + 2\vec{b}$ и $2\vec{a} \vec{b}$.

Компланарные векторы

68 Компланарные векторы

Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. Другими словами, векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.

Ясно, что любые два вектора компланарны; три вектора, среди которых имеются два коллинеарных, также компланарны (объясните почему), а три произвольных вектора могут быть как компланарными, так и не компланарными. На рисунке 167 изображён параллелепипед. Векторы $\overrightarrow{BB_1}$, \overrightarrow{OD} и \overrightarrow{OE} компланарны, так как если отложить от точки O вектор, равный $\overrightarrow{BB_1}$, то получит-

Рис. 167

ся вектор \overrightarrow{OC} , а векторы \overrightarrow{OC} , \overrightarrow{OD} и \overrightarrow{OE} лежат в одной плоскости OCE. Векторы \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} не компланарны, так как вектор \overrightarrow{OC} не лежит в плоскости OAB. Рассмотрим признак компланарности трёх векторов.

Если вектор \vec{c} можно разложить по векторам \vec{a} и \vec{b} , т. е. представить в виде

$$\vec{c} = x\vec{a} + y\vec{b},\tag{1}$$

где x и y — некоторые числа, то векторы \vec{a} , \vec{b} и \vec{c} компланарны.

Докажем это утверждение. Будем считать, что векторы \vec{a} и \vec{b} не коллинеарны (если векторы \vec{a} и \vec{b} коллинеарны, то компланарность векторов \vec{a} , \vec{b} и \vec{c} очевидна). Отложим от произвольной точки \vec{O} векторы $\overrightarrow{OA} = \vec{a}$ и $\overrightarrow{OB} = \vec{b}$ (рис. 168). Векторы \overrightarrow{OA} и \overrightarrow{OB} лежат в плоскости OAB. Очевидно, в этой же плоскости лежат векторы $\overrightarrow{OA}_1 = x \cdot \overrightarrow{OA}$ и $\overrightarrow{OB}_1 = y \cdot \overrightarrow{OB}$, а следовательно, и их сумма — вектор $\overrightarrow{OC} = x \cdot \overrightarrow{OA} + y \cdot \overrightarrow{OB}$, равный вектору \vec{c} . Итак, векторы $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$ лежат в одной плоскости, т. е. векторы \vec{a} , \vec{b} и \vec{c} компланарны.

Справедливо и обратное утверждение: если векторы \vec{a} , \vec{b} и \vec{c} компланарны, а векторы \vec{a} и \vec{b} не коллинеарны, то вектор \vec{c} можно разложить по векторам \vec{a} и \vec{b} (т. е. представить в виде (1)), причём коэффициенты разложения (т. е. числа x, y в формуле (1)) определяются единственным образом. Пользуясь теоремой о разложении вектора по двум неколлинеарным векторам, известной из курса планиметрии, докажите это утверждение самостоятельно.

69 Правило параллелепипеда

Для сложения трёх некомпланарных векторов можно пользоваться так называемым **правилом параллелепипеда.** Опишем его. Пусть \vec{a} , \vec{b} , \vec{c} — некомпланарные векторы. Отложим от произвольной точки O пространства векторы $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $\overrightarrow{OC} = \vec{c}$ и построим параллелепипед так,

Рис. 168

чтобы отрезки OA, OB и OC были его рёбрами (см. рис. 167). Тогда диагональ OD этого параллеленипеда изображает сумму векторов \vec{a} , \vec{b} и \vec{c} : $\overrightarrow{OD} = \vec{a} + \vec{b} + \vec{c}$. Действительно,

$$\overrightarrow{OD} = \overrightarrow{OE} + \overrightarrow{ED} = (\overrightarrow{OA} + \overrightarrow{AE}) + \overrightarrow{ED} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} =$$

$$= \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}.$$

70 Разложение вектора по трём некомпланарным векторам

Если вектор \vec{p} представлен в виде

$$\vec{p} = x\vec{a} + y\vec{b} + z\vec{c},\tag{2}$$

где x, y и z — некоторые числа, то говорят, что вектор \vec{p} разложен по векторам \vec{a} , \vec{b} и \vec{c} . Числа x, y, z называются коэффициентами разложения.

Докажем теорему о разложении вектора по трём некомпланарным векторам.

Теорема

Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.

Доказательство

Пусть \vec{a} , \vec{b} и \vec{c} — данные некомпланарные векторы. Докажем сначала, что любой вектор \vec{p} можно представить в виде (2).

Отметим произвольную точку O и отложим от этой точки векторы (рис. 169):

$$\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}, \overrightarrow{OC} = \overrightarrow{c}, \overrightarrow{OP} = \overrightarrow{p}.$$
 (3)

Через точку P проведём прямую, параллельную прямой OC, и обозначим через P_1 точку пересечения этой прямой с плоскостью AOB (если $P \in OC$, то в качестве точки P_1 возьмём точку O). Затем через точку P_1 проведём прямую, параллельную прямой OB, и обозначим через P_2 точку пересечения этой прямой с прямой OA (если $P_1 \in OB$, то в качестве точки P_2 возьмём точку O). По правилу многоугольника

$$\overrightarrow{OP} = \overrightarrow{OP_2} + \overrightarrow{P_2P_1} + \overrightarrow{P_1P}. \tag{4}$$

Рис. 169

Векторы $\overrightarrow{OP_2}$ и \overrightarrow{OA} , $\overrightarrow{P_2P_1}$ и \overrightarrow{OB} , $\overrightarrow{P_1P}$ и \overrightarrow{OC} коллинеарны, поэтому существуют числа x, y, z такие, что $\overrightarrow{OP_2} = x \cdot \overrightarrow{OA}$, $\overrightarrow{P_2P_1} = y \cdot \overrightarrow{OB}$, $\overrightarrow{P_1P} = z \cdot \overrightarrow{OC}$. Подставив эти выражения в равенство (4), получим:

$$\overrightarrow{OP} = x \cdot \overrightarrow{OA} + y \cdot \overrightarrow{OB} + z \cdot \overrightarrow{OC}$$
.

Отсюда, учитывая равенства (3), приходим к равенству (2).

Докажем теперь, что коэффициенты разложения в формуле (2) определяются единственным образом. Допустим, что наряду с разложением (2) имеется другое разложение вектора \vec{p} : $\vec{p} = x_1 \vec{a} + y_1 \vec{b} + z_1 \vec{c}$. Вычитая это равенство из равенства (2) и используя свойства действий над векторами, получаем:

$$\vec{0} = (x - x_1)\vec{a} + (y - y_1)\vec{b} + (z - z_1)\vec{c}$$
.

Это равенство выполняется только тогда, когда $x-x_1=0,\ y-y_1=0,\ z-z_1=0.$ В самом деле, если предположить, например, что $z-z_1\neq 0$, то из этого равенства находим:

$$\vec{c} = -\frac{x - x_1}{z - z_1} \vec{a} - \frac{y - y_1}{z - z_1} \vec{b},$$

откуда следует, что векторы \vec{a} , \vec{b} и \vec{c} компланарны. Но это противоречит условию теоремы. Значит, наше предположение неверно, и $x=x_1$, $y=y_1$, $z=z_1$. Следовательно, коэффициенты разложения (2) определяются единственным образом. Теорема доказана.

Если векторы \vec{p} , \vec{a} и \vec{b} компланарны, то z=0 (объясните почему), и вектор \vec{p} оказывается фактически разложенным по двум векторам \vec{a} и \vec{b} .

Вопросы и задачи

- **592** Дан параллелепипед $\overrightarrow{ABCDA_1B_1C_1D_1}$. Какие из следующих трёх векторов компланарны: а) $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$, $\overrightarrow{BB_1}$; б) \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AD} , $\overrightarrow{AA_1}$; в) $\overrightarrow{B_1B}$, \overrightarrow{AC} , $\overrightarrow{DD_1}$; г) \overrightarrow{AD} , $\overrightarrow{CC_1}$, $\overrightarrow{A_1B_1}$?
- 593 Точки E и F середины рёбер AC и BD тетраэдра \overrightarrow{ABCD} . Докажите, что $2\overrightarrow{FE} = \overrightarrow{BA} + \overrightarrow{DC}$. Компланарны ли векторы \overrightarrow{FE} , \overrightarrow{BA} и \overrightarrow{DC} ?
- **594** Даны параллелограммы ABCD и $AB_1C_1D_1$. Докажите, что векторы $\overrightarrow{BB_1}$, $\overrightarrow{CC_1}$ и $\overrightarrow{DD_1}$ компланарны.

- 595 Дан параллелепипед $ABCDA_1B_1C_1D_1$. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: a) $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA_1}$; б) $\overrightarrow{DA} + \overrightarrow{DC} + \overrightarrow{DD_1}$; в) $\overrightarrow{A_1B_1} + \overrightarrow{C_1B_1} + \overrightarrow{BB_1}$; г) $\overrightarrow{A_1A} + \overrightarrow{A_1D_1} + \overrightarrow{AB}$; д) $\overrightarrow{B_1A_1} + \overrightarrow{BB_1} + \overrightarrow{BC}$.
- 596 Дан параллелепипед $\overrightarrow{ABCDA_1B_1C_1D_1}$. а) Разложите вектор $\overrightarrow{BD_1}$ по векторам \overrightarrow{BA} , \overrightarrow{BC} и $\overrightarrow{BB_1}$. б) Разложите вектор $\overrightarrow{B_1D_1}$ по векторам $\overrightarrow{A_1A}$, $\overrightarrow{A_1B}$ и $\overrightarrow{A_1D_1}$.
- **597** В вершинах A_1 , B и D куба $ABCDA_1B_1C_1D_1$, ребро которого равно a, помещены точечные заряды q. а) Выразите результирующую напряжённость создаваемого ими электрического поля в точках A и C_1 через вектор $\overrightarrow{AC_1}$. б) Найдите абсолютную величину результирующей напряжённости в точках C, B_1 , в центре грани $A_1B_1C_1D_1$ и в центре куба.
- **598** Диагонали параллелепипеда $\overrightarrow{ABCDA_1B_1C_1D_1}$ пересекаются в точке \overrightarrow{O} . Разложите векторы \overrightarrow{CD} и $\overrightarrow{D_1O}$ по векторам $\overrightarrow{AA_1}$, \overrightarrow{AB} и \overrightarrow{AD} .
- **599** Точка K середина ребра \overrightarrow{BC} тетраэдра \overrightarrow{ABCD} . Разложите вектор \overrightarrow{DK} по векторам $\overrightarrow{a} = \overrightarrow{DA}$, $\overrightarrow{b} = \overrightarrow{AB}$ и $\overrightarrow{c} = \overrightarrow{AC}$.

Решение

Так как точка K — середина отрезка BC, то $\overrightarrow{DK} = \frac{1}{2}(\overrightarrow{DB} + \overrightarrow{DC})$. Но $\overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{DC} = \overrightarrow{DA} + \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{c}$. Поэтому

$$\overrightarrow{DK} = \frac{1}{2} (\vec{a} + \vec{b} + \vec{a} + \vec{c}) = \vec{a} + \frac{1}{2} \vec{b} + \frac{1}{2} \vec{c}.$$

- 600 Основанием пирамиды с вершиной O является параллелограмм ABCD, диагонали которого пересекаются в точке M. Разложите векторы \overrightarrow{OD} и \overrightarrow{OM} по векторам $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$ и $\overrightarrow{c} = \overrightarrow{OC}$.
- 601 Точка K середина ребра B_1C_1 куба $ABCDA_1B_1C_1D_1$. Разложите вектор \overrightarrow{AK} по векторам $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AD}$, $\overrightarrow{c} = \overrightarrow{AA}_1$ и найдите длину этого вектора, если ребро куба равно m.
- **602** Вне плоскости параллелограмма ABCD взята точка O. Точка M середина AB, а точка K середина MD. Разложите векторы \overrightarrow{OM} и \overrightarrow{OK} по векторам $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$, $\overrightarrow{c} = \overrightarrow{OC}$.
- 603 Докажите, что если M точка пересечения медиан треугольника ABC, а O произвольная точка пространства, то

$$\overrightarrow{OM} = \frac{1}{3} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}). \tag{5}$$

 $^{^1}$ Если в точке O находится точечный заряд q, то напряжённость \overrightarrow{E} создаваемого им электрического поля в точке M выражается формулой $\overrightarrow{E} = \frac{kq}{OM^3} \cdot \overrightarrow{OM},$ где коэффициент k зависит от выбора системы единиц.

Решение

По теореме о точке пересечения медиан треугольника $\overrightarrow{AM} = 2\overrightarrow{MA_1}$, где AA_1 — медиана треугольника АВС (рис. 170). Согласно за-

даче 586
$$\overrightarrow{OM} = \frac{\overrightarrow{OA} + 2\overrightarrow{OA}_1}{1+2} = \frac{\overrightarrow{OA} + 2\overrightarrow{OA}_1}{3}$$
. Ho

$$\overrightarrow{OA}_1 = \frac{1}{2} (\overrightarrow{OB} + \overrightarrow{OC})$$
 (объясните почему), по-

этому
$$\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}$$
.

Рис. 170

Рис. 171

- 606 Медианы грани ABC тетраэдра OABC пересекаются в точке M. Разложите вектор \overrightarrow{OA} по векторам \overrightarrow{OB} , \overrightarrow{OC} . \overrightarrow{OM} .
- 607 Высоты AM и DN правильного тетраэдра ABCD пересекаются в точке K. Разложите по векторам $\vec{a} = \overrightarrow{DA}$, $\vec{b} = \overrightarrow{DB}$ и $\vec{c} = \overrightarrow{DC}$ вектор: a) \overrightarrow{DN} ; б) \overrightarrow{DK} ; в) \overrightarrow{AM} ; г) \overrightarrow{MK} .
- 608 В тетраэдре ABCD медианы грани BCD пересекаются в точке O. Докажите, что длина отрезка AO меньше одной трети суммы длин рёбер с общей вершиной A.
- Докажите, что диагональ AC_1 параллелепипеда $ABCDA_1B_1C_1D_1$ 609 проходит через точки пересечения медиан треугольников A_1BD и CB_1D_1 и делится этими точками на три равных отрезка (рис. 171).

Решение

Обозначим через M_1 точку пересечения медиан треугольника A_1BD . Применив формулу (5) к тетраэдру AA_1BD , получим $\overrightarrow{AM_1} = \frac{1}{2}(\overrightarrow{AA_1} + \overrightarrow{AB} + \overrightarrow{AD})$. По правилу параллелепипеда $\overrightarrow{AA_1} + \overrightarrow{AB} + \overrightarrow{AB}$ $+\overrightarrow{AD}=\overrightarrow{AC_1}$, поэтому $\overrightarrow{AM_1}=rac{1}{2}\overrightarrow{AC_1}$. Отсюда следует, что точка M_1 принадлежит диагонали AC_1 и $AM_1 = \frac{1}{2} AC_1$.

Точно так же можно доказать, что точка M_2 пересечения медиан треугольника CB_1D_1 принадлежит диагонали AC_1 и $C_1M_2 = \frac{1}{2}AC_1$.

Из равенств $AM_1 = \frac{1}{3} AC_1$ и $C_1M_2 = \frac{1}{3} AC_1$

следует, что точки M_1 и M_2 делят диагональ AC_1 параллелепипеда на три равных отрезка AM_1 , M_1M_2 и M_2C_1 .

Рис. 172

- $=\frac{1}{3}\,(AA_1+BB_1+CC_1)$. Останется ли верным равенство, если какието стороны треугольника ABC пересекаются с плоскостью α ?
- **611** Отрезки AB и CD не лежат в одной плоскости, точки M и N середины этих отрезков. Докажите, что $MN < \frac{1}{2}(AC + BD)$.
- **612** В тетраэдре ABCD точки K и M середины рёбер AB и CD. Докажите, что середины отрезков KC, KD, MA и MB являются вершинами некоторого параллелограмма.

Вопросы к главе VI

- 1 Справедливо ли утверждение: а) любые два противоположно направленных вектора коллинеарны; б) любые два коллинеарных вектора сонаправлены; в) любые два равных вектора коллинеарны; г) любые два сонаправленных вектора равны; д) если $\vec{a} \uparrow \downarrow \vec{b}$, $\vec{b} \uparrow \downarrow \vec{c}$, то $\vec{a} \uparrow \downarrow \vec{c}$; е) существуют векторы \vec{a} , \vec{b} и \vec{c} такие, что \vec{a} и \vec{c} не коллинеарны, \vec{b} и \vec{c} не коллинеарны?
- **2** Точки A и C симметричны относительно точки O и $\overrightarrow{AD} = \overrightarrow{BC}$. Симметричны ли точки B и D относительно точки O?
- 3 Точки A и C симметричны относительно прямой a и $A\dot{D}=B\dot{C}$. Могут ли точки B и D быть: a) симметричными относительно прямой a?
- 4 Точки A и C, а также точки B и D симметричны относительно плоскости α . Могут ли векторы \overrightarrow{AB} и \overrightarrow{CD} быть: а) равными; б) неравными?
- **5** Известно, что векторы \vec{a} и \vec{a} + \vec{b} коллинеарны. Коллинеарны ли векторы \vec{a} и \vec{b} ?
- 6 Может ли длина суммы двух векторов быть меньше длины каждого из слагаемых?
- 7 Может ли длина суммы нескольких ненулевых векторов быть равной сумме длин этих векторов?
- 8 Может ли длина разности двух ненулевых векторов быть равной сумме длин этих векторов?

- 9 Может ли длина разности двух ненулевых векторов быть равной разности длин этих векторов?
- 10 Может ли длина суммы двух ненулевых векторов быть равна длине разности этих векторов?
- 11 На какое число нужно умножить ненулевой вектор \vec{a} , чтобы получить вектор \vec{b} , удовлетворяющий следующим условиям:

a) $\vec{b} \uparrow \uparrow \vec{a}$ m $|\vec{b}| = |\vec{a}|$; 6) $\vec{b} \uparrow \downarrow \vec{a}$ m $|\vec{b}| = 3|\vec{a}|$; B) $\vec{b} \uparrow \downarrow \vec{a}$ m $|\vec{b}| = k|\vec{a}|$; T) $\vec{b} = \vec{0}$?

- 12 Известно, что $\overrightarrow{AB} = k \cdot \overrightarrow{CD}$, причём точки A, B и C не лежат на одной прямой. При каком значении k прямые AC и BD являются: а) параллельными; б) пересекающимися? Могут ли прямые AC и BD быть скрещивающимися?
- 13 Компланарны ли векторы: a) \vec{a} , \vec{b} , $2\vec{a}$, $3\vec{b}$; б) \vec{a} , \vec{b} , $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$?
- 14 Известно, что векторы \vec{a} , \vec{b} и \vec{c} компланарны. Компланарны ли векторы: a) \vec{a} , $2\vec{b}$, $3\vec{c}$; б) $\vec{a} + \vec{b}$, $\vec{a} + 2\vec{c}$, $2\vec{b} 3\vec{c}$?
- **15** Точки A, B и C лежат на окружности, а точка O не лежит в плоскости этой окружности. Могут ли векторы \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} быть компланарными?

Дополнительные задачи

613 Дан параллелепипед $MNPQM_1N_1P_1Q_1$. Докажите, что:

a)
$$\overrightarrow{MQ} + \overrightarrow{M_1Q_1} = \overrightarrow{N_1P_1} + \overrightarrow{NP}$$
;

$$\vec{PQ} + \overrightarrow{NP_1} = \overrightarrow{NQ_1};$$

B)
$$\overrightarrow{Q_1P_1} + \overrightarrow{QQ_1} = \overrightarrow{QP_1}$$
.

614 На рисунке 173 изображён правильный октаэдр. Докажите, что:

a)
$$\overrightarrow{AB} + \overrightarrow{FB} = \overrightarrow{DB}$$
; 6) $\overrightarrow{AC} - \overrightarrow{CF} = \overrightarrow{EC}$;

B)
$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} = 2\overrightarrow{AF}$$
.

615 Докажите, что разность векторов \vec{a} и \vec{b} выражается формулой $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Рис. 173

 ${f 616}~$ Дан тетраэдр ${\it ABCD}.~$ Найдите сумму векторов:

a)
$$\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC}$$
;

6)
$$\overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{DC}$$
:

B)
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} + \overrightarrow{DA}$$
.

617 Дан параллелепипед $ABCDA_1B_1C_1D_1$. Найдите сумму векторов:

a)
$$\overrightarrow{AB} + \overrightarrow{B_1C_1} + \overrightarrow{DD_1} + \overrightarrow{CD}$$
;

6)
$$\overrightarrow{B_1C_1} + \overrightarrow{AB} + \overrightarrow{DD_1} + \overrightarrow{CB_1} + \overrightarrow{BC} + \overrightarrow{A_1A}$$
;

B)
$$\overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{DC} + \overrightarrow{DA}$$
.

618 Даны треугольники ABC, $A_1B_1C_1$ и две точки O и P пространства. Известно, что $\overrightarrow{OA} + \overrightarrow{OP} = \overrightarrow{OA_1}$, $\overrightarrow{OB} + \overrightarrow{OP} = \overrightarrow{OB_1}$, $\overrightarrow{OC} + \overrightarrow{OP} = \overrightarrow{OC_1}$. Докажите, что стороны треугольника $A_1B_1C_1$ соответственно равны и параллельны сторонам треугольника ABC.

- 619 При каких значениях k в равенстве $\vec{a} = k\vec{b}$, где $\vec{b} \neq \vec{0}$, векторы \vec{a} и \vec{b} : а) коллинеарны; б) сонаправлены; в) противоположно направлены; г) являются противоположными?
- 620 Числа k и l не равны друг другу. Докажите, что если векторы $\vec{a} + k\vec{b}$ и $\vec{a} + l\vec{b}$ не коллинеарны, то: а) векторы \vec{a} и \vec{b} не коллинеарны; б) векторы $\vec{a} + k_1\vec{b}$ и $\vec{a} + l_1\vec{b}$ не коллинеарны при любых неравных числах k_1 и l_1 .
- 621 Точки A_1 , B_1 и C_1 середины сторон BC, AC и AB треугольника ABC, точка O произвольная точка пространства. Докажите, что $\overrightarrow{OA_1} + \overrightarrow{OB_1} + \overrightarrow{OC_1} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.
- 622 Отрезки, соединяющие середины противоположных сторон четырёхугольника ABCD, пересекаются в точке M. Точка O произвольная точка пространства. Докажите, что справедливо равенство $\overrightarrow{OM} = \frac{1}{4} \, (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$.
- 623 Диагонали параллелограмма ABCD пересекаются в точке O. Докажите, что для любой точки M пространства справедливо неравенство $MO < \frac{1}{4} \, (MA + MB + MC + MD)$.
- 624 Три точки M, N и P лежат на одной прямой, а точка O не лежит на этой прямой. Выразите вектор \overrightarrow{OP} через векторы \overrightarrow{OM} и \overrightarrow{ON} , если: а) $\overrightarrow{NP} = 2\overrightarrow{MN}$; б) $\overrightarrow{MP} = -\frac{1}{2}\overrightarrow{PN}$; в) $\overrightarrow{MP} = k \cdot \overrightarrow{MN}$, где k данное число.
- **625** Докажите, что векторы \vec{p} , \vec{a} и \vec{b} компланарны, если: а) один из данных векторов нулевой; б) два из данных векторов коллинеарны.
- 626 На двух скрещивающихся прямых отмечены по три точки: A_1 , A_2 , A_3 и B_1 , B_2 , B_3 , причём $\overrightarrow{A_1A_2} = k \cdot \overrightarrow{A_1A_3}$, $\overrightarrow{B_1B_2} = k \cdot \overrightarrow{B_1B_3}$. Докажите, что прямые A_1B_1 , A_2B_2 , A_3B_3 параллельны некоторой плоскости.
- 627 Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, в котором AB=AD=a, $AA_1=2a$. В вершинах B_1 и D_1 помещены заряды q, а в вершине A заряд 2q. Найдите абсолютную величину результирующей напряжённости электрического поля: а) в точке A_1 ; б) в точке C; в) в центре грани $A_1B_1C_1D_1$; г) в центре грани ABCD.
- 628 В тетраэдре ABCD точка K середина медианы BB_1 грани BCD. Разложите вектор \overrightarrow{AK} по векторам $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AC}$, $\overrightarrow{c} = \overrightarrow{AD}$.
- 629 На трёх некомпланарных векторах $\vec{p} = \overrightarrow{AB}$, $\vec{q} = \overrightarrow{AD}$, $\vec{r} = \overrightarrow{AA_1}$ построен параллелепипед $ABCDA_1B_1C_1D_1$. Разложите по векторам \vec{p} , \vec{q} и \vec{r} векторы, образованные диагоналями этого параллелепипеда.

- **630** В параллелепипеде $ABCDA_1B_1C_1D_1$ точка K середина ребра CC_1 . Разложите вектор: а) \overrightarrow{AK} по векторам \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AA}_1 ; б) \overrightarrow{DA}_1 по векторам \overrightarrow{AB}_1 , \overrightarrow{BC}_1 и \overrightarrow{CD}_1 .
- **631** В параллелепипеде $ABCDA_1B_1C_1D_1$ диагонали грани DCC_1D_1 пересекаются в точке M. Разложите вектор \overrightarrow{AM} по векторам \overrightarrow{AB} , \overrightarrow{AD} и $\overrightarrow{AA_1}$.
- **632** Докажите, что если точки пересечения медиан треугольников ABC и $A_1B_1C_1$ совпадают, то прямые AA_1 , BB_1 и CC_1 параллельны некоторой плоскости.
- 633 В тетраэдре ABCD точка M середина ребра BC. Выразите через векторы $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{AC}$ и $\vec{d} = \overrightarrow{AD}$ следующие векторы: \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DB} и \overrightarrow{DM} .
- 634 В тетраэдре ABCD точки M и N являются соответственно точками пересечения медиан граней ADB и BDC. Докажите, что $MN \parallel AC$, и найдите отношение длин этих отрезков.
- **635** Треугольники ABC, $A_1B_1C_1$ и $A_2B_2C_2$ расположены так, что точки A, B, C являются серединами отрезков A_1A_2 , B_1B_2 , C_1C_2 соответственно. Докажите, что точки пересечения медиан треугольников ABC, $A_1B_1C_1$ и $A_2B_2C_2$ лежат на одной прямой.
- **636** Докажите, что треугольник, вершинами которого являются точки пересечения медиан боковых граней тетраэдра, подобен основанию тетраэдра.

Глава VII Метод координат в пространстве. Движения

Координаты точки и координаты вектора

71 Прямоугольная система координат в пространстве

Если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из них выбрано направление (оно обозначается стрелкой) и выбрана единица измерения отрезков¹, то говорят, что задана прямоугольная система координат в пространстве (рис. 174). Прямые с выбранными на них направлениями называются осями координат, а их общая точка — началом координат. Она обозначается обычно буквой O. Оси координат обозначаются так: Ox, Oy, Oz — и имеют названия: ось абсцисс, ось ординат, ось аппликат. Вся система координат обозначается Охуг. Плоскости, проходящие соответственно через оси координат Ox и Oy, Oy и Oz, Oz и Ox, называются координатными плоскостями и обозначаются Oxy, Oyz, Ozx.

Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч — отрицательной полуосью.

В прямоугольной системе координат каждой точке M пространства сопоставляется тройка чисел, которые называются её координатами. Они определяются аналогично координатам точек на плоскости. Проведём через точку M три плоскости, перпендикулярные к осям координат, и обозначим через M_{1} , M_{2} и M_{3} точки пересечения этих плоскостей соответственно с осями абсцисс, ординат и аппликат (рис. 175). Первая

Система координат Охиг

Рис. 174

Рис. 175

¹ Напомним, что при выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом. В данной главе под длиной отрезка подразумевается это число.

координата точки M (она называется абсциссой и обозначается обычно буквой x) определяется так: $x = OM_1$, если M_1 — точка положительной полуоси; $x = -OM_1$, если M_1 — точка отрицательной полуоси; x = 0, если M_1 совпадает с точкой O. Аналогично с помощью точки M_2 определяется вторая координата (ордината) y точки M, а с помощью точки M_3 — третья координата (аппликата) z точки M. Координаты точки M записываются в скобках после обозначения точки: M(x; y; z), причём первой указывают абсциссу, второй — ординату, третьей — аппликату. На рисунке 176 изображены шесть точек A(9; 5; 10), B(4; -3; 6), C(9; 0; 0), D(4; 0; 5), E(0; 3; 0), F(0; 0; -3).

Если точка M(x; y; z) лежит на координатной плоскости или на оси координат, то некоторые её координаты равны нулю. Так, если $M \in Oxy$, то аппликата точки M равна нулю: z = 0. Аналогично если $M \in Oxz$, то y = 0, а если $M \in Oyz$, то x = 0. Если $M \in Ox$, то ордината и аппликата точки M равны нулю: y = 0 и z = 0 (например, у точки C на рисунке 176). Если $M \in Oy$, то x = 0 и x = 0 если x = 0 и x = 0 если x = 0 и x = 0 если x = 0 если

Рис. 176

72 Координаты вектора

Зададим в пространстве прямоугольную систему координат Oxyz. На каждой из положительных полуосей отложим от начала координат единичный вектор, т. е. вектор, длина которого равна единице. Обозначим через \vec{i} единичный вектор оси абсцисс, через \vec{j} — единичный вектор оси ординат и через \vec{k} — единичный вектор оси аппликат (рис. 177). Векторы \vec{i} , \vec{j} , \vec{k} назовём координатными векторами. Очевидно, эти векторы не компланарны. Поэтому любой вектор \vec{a} можно разложить по координатными векторам, т. е. представить в виде

$$\vec{a} = x\vec{i} + y\vec{j} + z\vec{k},$$

причём коэффициенты разложения x, y, z определяются единственным образом.

Коэффициенты \vec{x} , y и z в разложении вектора \vec{a} по координатным векторам называются

Координатные векторы $\vec{i},\ \vec{j},\ \vec{k}$

Рис. 177

координатами вектора \vec{a} в данной системе координат. Координаты вектора \vec{a} будем записывать в фигурных скобках после обозначения вектора: $\vec{a}\{x;\ y;\ z\}$. На рисунке 178 изображён прямоугольный параллелепипед, имеющий следующие измерения: $OA_1=2,\ OA_2=2,\ OA_3=4$. Координаты векторов, изображённых на этом рисунке, таковы: $\vec{a}\{2;\ 2;\ 4\},\ \vec{b}\{2;\ 2;\ -1\},\ \overrightarrow{A_3A}\{2;\ 2;\ 0\},\ \vec{i}\{1;\ 0;\ 0\},\ \vec{j}\{0;\ 1;\ 0\},\ \vec{k}\{0;\ 0;\ 1\}.$

Так как нулевой вектор можно представить в виде $\vec{0} = 0\vec{i} + 0\vec{j} + 0\vec{k}$, то все координаты нулевого вектора равны нулю. Далее, координаты равных векторов соответственно равны, т. е. если векторы $\vec{a}\{x_1;\ y_1;\ z_1\}$ и $\vec{b}\{x_2;\ y_2;\ z_2\}$ равны, то $x_1 = x_2,\ y_1 = y_2$ и $z_1 = z_2$ (объясните почему).

Рассмотрим правила, которые позволяют по координатам данных векторов найти координаты их суммы и разности, а также координаты произведения данного вектора на данное число.

- ${f 1}^0$. Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов. Другими словами, если $\vec{a}\{x_1;\ y_1;\ z_1\}$ и $\vec{b}\{x_2;\ y_2;\ z_2\}$ данные векторы, то вектор $\vec{a}+\vec{b}$ имеет координаты $\{x_1+x_2;\ y_1+y_2;\ z_1+z_2\}$.
- 2^0 . Каждая координата разности двух векторов равна разности соответствующих координат этих векторов. Другими словами, если $\vec{a}\{x_1;y_1;z_1\}$ и $\vec{b}\{x_2;y_2;z_2\}$ данные векторы, то вектор $\vec{a}-\vec{b}$ имеет координаты $\{x_1-x_2;y_1-y_2;z_1-z_2\}$.
- 3^0 . Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. Другими словами, если $\vec{a}\{x;\ y;\ z\}$ данный вектор, α данное число, то вектор $\alpha \vec{a}$ имеет координаты $\{\alpha x;\ \alpha y;\ \alpha z\}$.

Утверждения 1^0 — 3^0 доказываются точно так же, как и для векторов на плоскости.

Рассмотренные правила позволяют находить координаты любого вектора, представленного в виде алгебраической суммы данных векторов, координаты которых известны. Рассмотрим пример.

Рис. 178

Задача

Найти координаты вектора $\vec{p} = 2\vec{a} - \frac{1}{3}\vec{b} + \vec{c}$,

если $\vec{a}\{1; -2; 0\}$, $\vec{b}\{0; 3; -6\}$, $\vec{c}\{-2; 3; 1\}$.

Решение

По правилу 3^0 вектор $2\vec{a}$ имеет коорди-

наты
$$\{2;\ -4;\ 0\}$$
, а вектор $\left(-\frac{1}{3}\vec{b}\right)$ — координаты

$$\{0;\,-1;\,2\}$$
. Так как $\vec{p}=(2\vec{a})+\left(-\frac{1}{3}\vec{b}\right)+\vec{c}$, то его коор-

динаты $\{x; y; z\}$ можно вычислить по правилу 1^0 : x = 2 + 0 - 2 = 0, y = -4 - 1 + 3 = -2, z = 0 + 2 + 1 = 3. Итак, вектор \vec{p} имеет координаты $\{0; -2; 3\}$.

73 Связь между координатами векторов и координатами точек

Вектор, конец которого совпадает с данной точкой, а начало — с началом координат, называется радиус-вектором данной точки. Докажем, что координаты любой точки равны соответствующим координатам её радиус-вектора.

Обозначим координаты данной точки M через (x; y; z). Пусть M_1, M_2, M_3 — точки пересечения с осями координат плоскостей, проходящих через точку M перпендикулярно к этим осям (рис. 179). Тогда

$$\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{OM_2} + \overrightarrow{OM_3}. \tag{1}$$

Докажем, что $\overrightarrow{OM_1} = x \overrightarrow{i}$. В самом деле, если точка M_1 лежит на положительной полуоси абсцисс, как на рисунке 179, то $x = OM_1$, а векторы $\overrightarrow{OM_1}$ и \overrightarrow{i} сонаправлены. Поэтому $\overrightarrow{OM_1} = OM_1 \cdot \overrightarrow{i} = x \overrightarrow{i}$. Если точка M_1 лежит на отрицательной полуоси абсцисс, то $x = -OM_1$, а векторы $\overrightarrow{OM_1}$ и \overrightarrow{i} противоположно направлены. Поэтому $\overrightarrow{OM_1} = -OM_1 \cdot \overrightarrow{i} = x \overrightarrow{i}$. Наконец, если точка M_1 совпадает с точкой O, то x = 0, $\overrightarrow{OM_1} = \overrightarrow{0}$. Поэтому $x \overrightarrow{i} = \overrightarrow{0}$, и снова справедливо равенство $\overrightarrow{OM_1} = x \overrightarrow{i}$. Таким образом, в любом случае $\overrightarrow{OM_1} = x \overrightarrow{i}$. Аналогично доказывается, что $\overrightarrow{OM_2} = y \overrightarrow{j}$, $\overrightarrow{OM_3} = z \overrightarrow{k}$.

Рис. 179

Подставив эти выражения в равенство (1), получим $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$.

Отсюда следует, что координаты вектора \overrightarrow{OM} равны $\{x; y; z\}$, т. е. координаты точки M равны соответствующим координатам её радиусвектора \overrightarrow{OM} , что и требовалось доказать.

Пользуясь доказанным утверждением, выразим координаты вектора \overrightarrow{AB} через координаты его начала A и конца B. Пусть точка A имеет координаты $(x_1; y_1; z_1)$, а точка B — координаты $(x_2; y_2; z_2)$. Вектор \overrightarrow{AB} равен разности векторов \overrightarrow{OB} и \overrightarrow{OA} (рис. 180), поэтому его координаты равны разностям соответствующих координат векторов \overrightarrow{OB} и \overrightarrow{OA} .

Но координаты векторов \overrightarrow{OB} и \overrightarrow{OA} совпадают с соответствующими координатами точек B и A: \overrightarrow{OB} $\{x_2; y_2; z_2\}$, \overrightarrow{OA} $\{x_1; y_1; z_1\}$. Поэтому вектор \overrightarrow{AB} имеет координаты $\{x_2 - x_1; y_2 - y_1; z_2 - z_1\}$. Итак, каждая координата вектора равна разности соответствующих координат его конца и начала.

74 Простейшие задачи в координатах

а) Координаты середины отрезка. В системе координат Oxyz отметим точку A с координатами $(x_1; y_1; z_1)$ и точку B с координатами $(x_2; y_2; z_2)$. Выразим координаты (x; y; z) середины C отрезка AB через координаты его концов (рис. 181). Так как точка C — середина данного отрезка AB, то

$$\overrightarrow{OC} = \frac{1}{2} (\overrightarrow{OA} + \overrightarrow{OB}). \tag{2}$$

(Это было доказано в курсе планиметрии.)

Координаты векторов \overrightarrow{OC} , \overrightarrow{OA} и \overrightarrow{OB} равны соответствующим координатам трёх точек C, A и B: $\overrightarrow{OC}\{x;\ y;\ z\}$, $\overrightarrow{OA}\{x_1;\ y_1;\ z_1\}$ и $\overrightarrow{OB}\{x_2;\ y_2;\ z_2\}$. Записав равенство (2) в координатах, получим

$$x = \frac{1}{2}(x_1 + x_2), \ y = \frac{1}{2}(y_1 + y_2), \ z = \frac{1}{2}(z_1 + z_2).$$

Таким образом, каждая координата середины отрезка равна полусумме соответствующих координат его концов.

Рис. 180

Рис. 181

б) Вычисление длины вектора по его координатам. Докажем, что длина вектора $\vec{a} \{x; y; z\}$ вычисляется по формуле

$$|\vec{a}| = \sqrt{x^2 + y^2 + z^2}.$$
 (3)

Отложим на осях координат векторы $\overrightarrow{OA_1} = x\overrightarrow{i}$, $\overrightarrow{OA_2} = y\overrightarrow{j}$, $\overrightarrow{OA_3} = z\overrightarrow{k}$ и рассмотрим вектор $\overrightarrow{OA} = \overrightarrow{OA_1} + \overrightarrow{OA_2} + \overrightarrow{OA_3} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k} = \overrightarrow{a}$ (рис. 182). Длина вектора \overrightarrow{OA} выражается через длины векторов $\overrightarrow{OA_1}$, $\overrightarrow{OA_2}$ и $\overrightarrow{OA_3}$ следующим образом:

$$|\overrightarrow{OA}| = \sqrt{|\overrightarrow{OA_1}|^2 + |\overrightarrow{OA_2}|^2 + |\overrightarrow{OA_3}|^2}.$$
 (4)

В самом деле, если точка A не лежит на координатных плоскостях (см. рис. 182), то равенство (4) справедливо в силу свойства диагонали прямоугольного параллелепипеда:

$$OA^2 = OA_1^2 + OA_2^2 + OA_3^2$$
.

Во всех других случаях расположения точки A (точка A лежит на координатной плоскости или на оси координат) равенство (4) также верно (рассмотрите эти случаи самостоятельно).

Так как $|\overrightarrow{OA_1}| = |x\overrightarrow{i}| = |x|$, $|\overrightarrow{OA_2}| = |y|$, $|\overrightarrow{OA_3}| = |z|$ и $\overrightarrow{OA} = \overrightarrow{a}$, то из равенства (4) получаем формулу (3):

$$|\vec{a}| = \sqrt{|x|^2 + |y|^2 + |z|^2} = \sqrt{x^2 + y^2 + z^2}.$$

в) Расстояние между двумя точками. Рассмотрим две произвольные точки: точку M_1 с координатами $(x_1;\ y_1;\ z_1)$ и точку M_2 с координатами $(x_2;\ y_2;\ z_2)$ (рис. 183). Выразим расстояние d между точками M_1 и M_2 через их координаты.

С этой целью рассмотрим вектор $\overrightarrow{M_1M_2}$. Его координаты равны $\{x_2-x_1;\ y_2-y_1;\ z_2-z_1\}$. По формуле (3)

$$|\overrightarrow{M_1M_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Ho $d = |\overrightarrow{M_1M_2}|$.

Таким образом, расстояние между точками $M_1(x_1;\,y_1;\,z_1)$ и $M_2(x_2;\,y_2;\,z_2)$ вычисляется по формуле

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Рис. 182

Рис. 183

75 Уравнение сферы

Пусть задана прямоугольная система координат Oxyz и дана некоторая поверхность F, например сфера. Уравнение с тремя переменными x, y, z называется **уравнением поверхности** F, если этому уравнению удовлетворяют координаты любой точки поверхности F и не удовлетворяют координаты никакой точки, не лежащей на этой поверхности. Отметим, что понятие уравнения поверхности аналогично понятию уравнения линии, введённому в курсе планиметрии.

Выведем уравнение сферы радиуса R с центром $C(x_0; y_0; z_0)$ (рис. 184).

Расстояние от произвольной точки M(x; y; z) до точки C вычисляется по формуле

$$MC = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}.$$

Если точка M лежит на данной сфере, то MC = R, или $MC^2 = R^2$, т. е. координаты точки M удовлетворяют уравнению

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = R^2.$$
 (1)

Если же точка M(x; y; z) не лежит на данной сфере, то $MC^2 \neq R^2$, т. е. координаты точки M не удовлетворяют уравнению (1).

Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром $C(x_0; y_0; z_0)$ имеет вид

$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$$
.

Вопросы и задачи

- 637 Даны точки A(3; -1; 0), B(0; 0; -7), C(2; 0; 0), D(-4; 0; 3), E(0; -1; 0), F(1; 2; 3), G(0; 5; -7), $H(-\sqrt{5}; \sqrt{3}; 0)$. Какие из этих точек лежат на: а) оси абсцисс; б) оси ординат; в) оси аппликат; г) плоскости Oxy; д) плоскости Oyz; е) плоскости Oxz?
- 638 Найдите координаты проекций точек A(2; -3; 5), $B\left(3; -5; \frac{1}{2}\right)$ и $C\left(-\sqrt{3}; -\frac{\sqrt{2}}{2}; \sqrt{5} \sqrt{3}\right)$ на: а) координатные плоскости Oxz, Oxy и Oyz; б) оси координат Ox, Oy и Oz.
- 639 Даны координаты четырёх вершин куба $ABCDA_1B_1C_1D_1$: A (0; 0; 0), B (0; 0; 1), D (0; 1; 0) и A_1 (1; 0; 0). Найдите координаты остальных вершин куба.

Рис. 184

Рис. 185

Рис. 186

- 640 Запишите координаты векторов: $\vec{a} = 3\vec{i} + 2\vec{j} 5\vec{k}$, $\vec{b} = -5\vec{i} + 3\vec{j} \vec{k}$, $\vec{c} = \vec{i} \vec{j}$, $\vec{d} = \vec{j} + \vec{k}$, $\vec{m} = \vec{k} \vec{i}$, $\vec{n} = 0, 7\vec{k}$.
- 641 Даны векторы \vec{a} {5; -1; 2}, \vec{b} {-3; -1; 0}, \vec{c} {0; -1; 0}, \vec{d} {0; 0; 0}. Запишите разложения этих векторов по координатным векторам \vec{i} , \vec{j} , \vec{k} .
- 642 На рисунке 185 изображён прямоугольный параллелепипед, у которого $\overrightarrow{OA} = 2$, $\overrightarrow{OB} = 3$, $\overrightarrow{OO_1} = 2$. Найдите координаты векторов $\overrightarrow{OA_1}$, $\overrightarrow{OO_1}$, \overrightarrow{OC} , \overrightarrow{OC} , $\overrightarrow{OC_1}$, $\overrightarrow{BC_1}$, $\overrightarrow{AC_1}$, $\overrightarrow{O_1C}$ в системе координат Oxyz.
- **643** Докажите, что каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.
- **644** Даны векторы \vec{a} {3; -5; 2}, \vec{b} {0; 7; -1}, \vec{c} $\left\{\frac{2}{3}; 0; 0\right\}$ и \vec{d} {-2,7; 3,1; 0,5}. Найдите координаты векторов: a) $\vec{a} + \vec{b}$; б) $\vec{a} + \vec{c}$; в) $\vec{b} + \vec{c}$; г) $\vec{d} + \vec{b}$; д) $\vec{d} + \vec{a}$; e) $\vec{a} + \vec{b} + \vec{c}$; ж) $\vec{b} + \vec{a} + \vec{d}$; з) $\vec{a} + \vec{b} + \vec{c} + \vec{d}$.
- 645 По данным рисунка 186 найдите координаты векторов \overrightarrow{AC} , \overrightarrow{CB} , \overrightarrow{AB} , \overrightarrow{MN} , \overrightarrow{NP} , \overrightarrow{BM} , \overrightarrow{OM} , \overrightarrow{OP} , если OA = 4, OB = 9, OC = 2, а M, N и P середины отрезков AC, OC и CB.
- 646 Даны векторы $\vec{a}\{5;-1;1\}$, $\vec{b}\{-2;1;0\}$, $\vec{c}\{0;0,2;0\}$ и $\vec{d}\left\{-\frac{1}{3};2\frac{2}{5};-\frac{1}{7}\right\}$. Найдите координаты векторов: a) $\vec{a}-\vec{b};$ б) $\vec{b}-\vec{a};$ в) $\vec{a}-\vec{c};$ г) $\vec{d}-\vec{a};$ д) $\vec{c}-\vec{d};$ е) $\vec{a}-\vec{b}+\vec{c};$ ж) $\vec{a}-\vec{b}-\vec{c};$ з) $2\vec{a};$ и) $-3\vec{b};$ к) $-6\vec{c};$ л) $-\frac{1}{3}\vec{d};$ м) $0,2\vec{b}$.
- 647 Даны векторы \vec{a} {-1; 2; 0}, \vec{b} {0; -5; -2} и \vec{c} {2; 1; -3}. Найдите координаты векторов $\vec{p} = 3\vec{b} 2\vec{a} + \vec{c}$ и $\vec{q} = 3\vec{c} 2\vec{b} + \vec{a}$.
- 648 Даны векторы \vec{a} {-1; 1; 1}, \vec{b} {0; 2; -2}, \vec{c} {-3; 2; 0} и \vec{d} {-2; 1; -2}. Найдите координаты векторов: a) $3\vec{a}+2\vec{b}-\vec{c}$; б) $-\vec{a}+2\vec{c}-\vec{d}$; в) $0,1\vec{a}+3\vec{b}+0,7\vec{c}-5\vec{d}$; г) $(2\vec{a}+3\vec{b})-(\vec{a}-2\vec{b})+2(\vec{a}-\vec{b})$.
- 649 Найдите координаты векторов, противоположных следующим векторам: \vec{i} , \vec{j} , \vec{k} , \vec{a} {2; 0; 0}, \vec{b} {-3; 5; -7}, \vec{c} {-0,3; 0; 1,75}.

650 Коллинеарны ли векторы: а) \vec{a} {3; 6; 8} и \vec{b} {6; 12; 16}; б) \vec{c} {1; -1; 3} и \vec{d} {2; 3; 15}; в) \vec{i} {1; 0; 0} и \vec{j} {0; 1; 0}; г) \vec{m} {0; 0; 0} и \vec{n} {5; 7; -3}; д) \vec{p} $\left\{\frac{1}{3}; -1; 5\right\}$ и \vec{q} {-1; -3; -15}?

Решение

- а) Координаты вектора \vec{a} {3; 6; 8} пропорциональны координатам вектора \vec{b} {6; 12; 16}: $\frac{3}{6} = \frac{6}{12} = \frac{8}{16} = k$, где $k = \frac{1}{2}$. Поэтому $\vec{a} = k\vec{b}$,
- и, следовательно, векторы \vec{a} и \vec{b} коллинеарны.
- б) Координаты вектора $\vec{c}\{1; -1; 3\}$ не пропорциональны координатам вектора $\vec{d}\{2; 3; 15\}$, например $\frac{1}{2} \neq -\frac{1}{3}$. Поэтому векторы \vec{c} и \vec{d}

не коллинеарны. В самом деле, если предположить, что векторы \vec{c} и \vec{d} коллинеарны, то существует такое число k, что $\vec{c} = k\vec{d}$. Но тогда координаты вектора \vec{c} пропорциональны координатам вектора \vec{d} , что противоречит условию задачи.

- 651 Найдите значения m и n, при которых следующие векторы коллинеарны: a) \vec{a} {15; m; 1} и \vec{b} {18; 12; n}; б) \vec{c} {m; 0,4; -1} и \vec{d} $\left\{-\frac{1}{2}$; n; 5 $\right\}$.
- 652 Компланарны ли векторы: а) \vec{a} {-3; -3; 0}, \vec{i} и \vec{j} ; б) \vec{b} {2; 0; -3}, \vec{i} и \vec{j} ; в) \vec{c} {1; 0; -2}, \vec{i} и \vec{k} ; г) \vec{d} {1; -1; 2}, \vec{e} {-2; 0; 1} и \vec{f} {5; -1; 0}; д) \vec{m} {1; 0; 2}, \vec{n} {1; 1; -1} и \vec{p} {-1; 2; 4}; е) \vec{q} {0; 5; 3}, \vec{r} {3; 3} и \vec{s} {1; 1; 4}?

Решение

г) Векторы \vec{d} {1; -1; 2} и \vec{e} {-2; 0; 1} не коллинеарны, так как координаты одного не пропорциональны координатам другого. Если вектор \vec{f} {5; -1; 0} можно разложить по векторам \vec{d} и \vec{e} , то векторы \vec{d} , \vec{e} и \vec{f} компланарны. Если же вектор \vec{f} нельзя разложить по векторам \vec{d} и \vec{e} , то векторы \vec{d} , \vec{e} и \vec{f} не компланарны (в противном случае вектор \vec{f} можно было бы разложить по векторам \vec{d} и \vec{e}). Таким образом, для решения задачи нужно установить, можно ли вектор \vec{f} разложить по векторам \vec{d} и \vec{e} , т. е. существуют ли числа x и y такие, что $\vec{f} = x\vec{d} + y\vec{e}$. Записывая это равенство в координатах, получаем: 5 = x - 2y, -1 = -x, 0 = 2x + y.

Если эта система уравнений имеет решение относительно x и y, то вектор \vec{f} можно разложить по векторам \vec{d} и \vec{e} , а если не имеет решения, то вектор \vec{f} разложить нельзя. В данном случае система имеет решение: $x=1,\ y=-2$. Поэтому вектор \vec{f} можно разложить по векторам \vec{d} и \vec{e} , и, значит, векторы \vec{d} , \vec{e} и \vec{f} компланарны.

- 653 Даны векторы $\overrightarrow{OA}\{3;\ 2;\ 1\},\ \overrightarrow{OB}\{1;\ -3;\ 5\}$ и $\overrightarrow{OC}\Big\{-\frac{1}{3};\ 0.75;\ -2\frac{3}{4}\Big\}$. Запишите координаты точек $A,\ B$ и C, если точка O начало координат.
- 654 Даны точки A (2; -3; 0), B (7; -12; 18) и C (-8; 0; 5). Запишите координаты векторов \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} , если точка O начало координат.
- 655 Найдите координаты вектора \overrightarrow{AB} , если: а) A(3;-1;2), B(2;-1;4); б) A(-2;6;-2), B(3;-1;0); в) $A\left(1;\frac{5}{6};\frac{1}{2}\right)$, $B\left(\frac{1}{2};\frac{1}{3};\frac{1}{4}\right)$.
- 656 Вершины треугольника ABC имеют координаты: A(1; 6; 2), B(2; 3; -1), C(-3; 4; 5). Разложите векторы \overrightarrow{AB} , \overrightarrow{BC} и \overrightarrow{CA} по координатным векторам \overrightarrow{i} , \overrightarrow{j} и \overrightarrow{k} .
- 657 Даны точки A (3; -1; 5), B (2; 3; -4), C (7; 0; -1) и D (8; -4; 8). Докажите, что векторы \overrightarrow{AB} и \overrightarrow{DC} равны. Равны ли векторы \overrightarrow{BC} и \overrightarrow{AD} ?
- 658 Лежат ли точки A, B и C на одной прямой, если: а) A (3; -7; 8), B (-5; 4; 1), C (27; -40; 29); б) A (-5; 7; 12), B (4; -8; 3), C (13; -23; -6); в) A (-4; 8; -2), B (-3; -1; 7), C (-2; -10; -16)?

Решение

- а) Если векторы \overrightarrow{AB} и \overrightarrow{AC} коллинеарны, то точки A, B и C лежат на одной прямой, а если не коллинеарны, то точки A, B и C не лежат на одной прямой. Найдём координаты этих векторов: $\overrightarrow{AB}\{-8;\ 11;\ -7\},\ \overrightarrow{AC}\{24;\ -33;\ 21\}.$ Очевидно, $\overrightarrow{AC}=-3\overrightarrow{AB},$ поэтому векторы \overrightarrow{AB} и \overrightarrow{AC} коллинеарны, и, следовательно, точки A, B и C лежат на одной прямой.
- 659 Лежат ли точки A, B, C и D в одной плоскости, если: а) A (-2; -13; 3), B (1; 4; 1), C (-1; -1; -4), D (0; 0; 0); б) A (0; 1; 0), B (3; 4; -1), C (-2; -3; 0), D (2; 0; 3); в) A (5; -1; 0), B (-2; 7; 1), C (12; -15; -7), D (1; 1; -2)?
- **660** Докажите, что точка пересечения медиан треугольника ABC с вершинами $A(x_1; y_1; z_1)$, $B(x_2; y_2; z_2)$, $C(x_3; y_3; z_3)$ имеет координаты

$$\left(\frac{x_1+x_2+x_3}{3}; \frac{y_1+y_2+y_3}{3}; \frac{z_1+z_2+z_3}{3}\right).$$

- 661 Точка M середина отрезка AB. Найдите координаты: а) точки M, если A (0; 3; -4), B (-2; 2; 0); б) точки B, если A (14; -8; 5), M (3; -2; -7); в) точки A, если B (0; 0; 2), M (-12; 4; 15).
- 662 Середина отрезка AB лежит на оси Ox. Найдите m и n, если: а) A(-3; m; 5), B(2; -2; n); б) A(1; 0, 5; -4), B(1; m; 2n); в) A(0; m; n+1), B(1; n; -m+1); г) A(7; 2m+n; -n), B(-5; -3; m-3).

- 663 Найдите длину вектора \overrightarrow{AB} , если: а) A(-1; 0; 2), B(1; -2; 3); б) A(-35; -17; 20), B(-34; -5; 8).
- **664** Найдите длины векторов: $\vec{a}\{5; -1; 7\}$, $\vec{b}\{2\sqrt{3}; -6; 1\}$, $\vec{c} = \vec{i} + \vec{j} + \vec{k}$, $\vec{d} = -2\vec{k}$, $\vec{m} = \vec{i} 2\vec{j}$.
- 665 Даны векторы \vec{a} {3; -2; 1}, \vec{b} {-2; 3; 1} и \vec{c} {-3; 2; 1}. Найдите: а) $|\vec{a} + \vec{b}|$; 6) $|\vec{a}| + |\vec{b}|$; в) $|\vec{a}| |\vec{b}|$; г) $|\vec{a} \vec{b}|$; д) $|3\vec{c}|$; е) $\sqrt{14}$ $|\vec{c}|$; ж) $|2\vec{a} 3\vec{c}|$.
- **666** Даны точки M (-4; 7; 0) и N (0; -1; 2). Найдите расстояние от начала координат до середины отрезка MN.
- 667 Даны точки $A\left(\frac{3}{2}; 1; -2\right)$, B(2; 2; -3) и C(2; 0; -1). Найдите: а) периметр треугольника ABC; б) медианы треугольника ABC.
- 668 Определите вид треугольника ABC, если: a) A (9; 3; -5), B (2; 10; -5), C (2; 3; 2); б) A (3; 7; -4), B (5; -3; 2), C (1; 3; -10); в) A (5; -5; -1), B (5; -3; -1), C (4; -3; 0); г) A (-5; 2; 0), B (-4; 3; 0), C (-5; 2; -2).
- 669 Найдите расстояние от точки A(-3; 4; -4) до: а) координатных плоскостей; б) осей координат.
- 670 На каждой из координатных плоскостей найдите такую точку, расстояние от которой до точки A(-1; 2; -3) является наименьшим среди всех расстояний от точек этой координатной плоскости до точки A.
- 671 На каждой из осей координат найдите такую точку, расстояние от которой до точки $B(3; -4; \sqrt{7})$ является наименьшим среди всех расстояний от точек этой оси до точки B.
- **672** Даны точки A(1; 0; k), B(-1; 2; 3) и C(0; 0; 1). При каких значениях k треугольник ABC является равнобедренным?
- 673 Даны точки A (4; 4; 0), B (0; 0; 0), C (0; 3; 4) и D (1; 4; 4). Докажите, что ABCD равнобедренная трапеция.
- 674 Найдите точку, равноудалённую от точек A(-2; 3; 5) и B(3; 2; -3) и расположенную на оси: а) Ox; б) Oy; в) Oz.
- **675** Даны точки A(-1; 2; 3), B(-2; 1; 2) и C(0; -1; 1). Найдите точку, равноудалённую от этих точек и расположенную на координатной плоскости: а) Oxy; б) Oyz; в) Ozx.
- **676** Даны точки O (0; 0; 0), A (4; 0; 0), B (0; 6; 0), C (0; 0; -2). Найдите: а) координаты центра и радиус окружности, описанной около треугольника AOB; б) координаты точки, равноудалённой от вершин тетраэдра OABC.
- 677 Отрезок CD длины m перпендикулярен к плоскости прямоугольного треугольника ABC с катетами AC=b и BC=a. Введите подходящую систему координат и с помощью формулы расстояния между двумя точками найдите расстояние от точки D до середины гипотенузы этого треугольника.
- 678 Напишите уравнение сферы радиуса R с центром A, если: а) A(2; -4; 7), R=3; б) $A(0; 0; 0), R=\sqrt{2};$ в) A(2; 0; 0), R=4.

- 679 Напишите уравнение сферы с центром A, проходящей через точку N, если: a) A(-2; 2; 0), N(5; 0; -1); б) A(-2; 2; 0), N(0; 0; 0); в) A(0; 0; 0), N(5; 3; 1).
- **680** Найдите координаты центра и радиус сферы, заданной уравнением: а) $x^2 + y^2 + z^2 = 49$; б) $(x-3)^2 + (y+2)^2 + z^2 = 2$.
- **681** Докажите, что каждое из следующих уравнений является уравнением сферы. Найдите координаты центра и радиус этой сферы: а) $x^2 4x + y^2 + z^2 = 0$; б) $x^2 + y^2 + z^2 2y = 24$; в) $x^2 + 2x + y^2 + z^2 = 3$; г) $x^2 x + y^2 + 3y + z^2 2z = 2,5$.

Скалярное произведение векторов

76 Угол между векторами

Возьмём два произвольных вектора \vec{a} и \vec{b} . Отложим от какой-нибудь точки O векторы $\overrightarrow{OA} = \vec{a}$ и $\overrightarrow{OB} = \vec{b}$. Если векторы \vec{a} и \vec{b} не являются сонаправленными, то лучи OA и OB образуют угол AOB (рис. 187). Градусную меру этого угла обозначим буквой α и будем говорить, что угол между векторами \vec{a} и \vec{b} равен α . Если же векторы \vec{a} и \vec{b} сонаправлены, в частности один из них или оба нулевые, то будем считать, что угол между ними равен 0° . Если угол между векторами равен 90° , то векторы называются перпендикулярными. Угол

между векторами \vec{a} и \vec{b} обозначается так: $\vec{a}\,\vec{b}$.

На рисунке 188 изображено несколько векторов. Углы между ними таковы: $\overrightarrow{ab} = 30^\circ$, $\overrightarrow{ac} = 120^\circ$, $\overrightarrow{ad} = 60^\circ$, $\overrightarrow{bc} = 90^\circ$, $\overrightarrow{df} = 0^\circ$, $\overrightarrow{dc} = 180^\circ$. На этом рисунке $\overrightarrow{b} \perp \overrightarrow{c}$, $\overrightarrow{b} \perp \overrightarrow{d}$, $\overrightarrow{b} \perp \overrightarrow{f}$.

Угол между векторами \vec{a} и \vec{b} равен α

Рис. 187

Рис. 188

77 Скалярное произведение векторов

Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними. Скалярное произведение векторов \vec{a} и \vec{b} обозначается так: \vec{a} \vec{b} . Таким образом,

$$\vec{a}\vec{b} = |\vec{a}| \cdot |\vec{b}| \cos(\vec{a}\vec{b}).$$

Как и в планиметрии, справедливы следующие утверждения:

скалярное произведение ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны;

скалярный квадрат вектора (т. е. скалярное произведение вектора на себя) равен квадрату его длины.

Докажите их самостоятельно.

Скалярное произведение двух векторов можно вычислить, зная координаты этих векторов: скалярное произведение векторов $\vec{a}\{x_1;\ y_1;\ z_1\}$ и $\vec{b}\{x_2;\ y_2;\ z_2\}$ выражается формулой

$$\vec{a}\vec{b} = x_1x_2 + y_1y_2 + z_1z_2.$$

Это утверждение доказывается точно так же, как в планиметрии.

Косинус угла α между ненулевыми векторами $\vec{a}\{x_1;\ y_1;\ z_1\}$ и $\vec{b}\{x_2;\ y_2;\ z_2\}$ вычисляется по формуле

$$\cos\alpha = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$
 (1)

В самом деле, так как

$$\vec{a}\vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \alpha$$

то

$$\cos\alpha = \frac{\vec{a}\vec{b}}{|\vec{a}|\cdot|\vec{b}|}.$$

Подставив сюда выражения для $\vec{a}\vec{b}$, $|\vec{a}|$ и $|\vec{b}|$ через координаты векторов \vec{a} и \vec{b} , получим формулу (1).

Сформулируем основные свойства скалярного произведения векторов.

Для любых векторов $\vec{a}, \ \vec{b}, \ \vec{c}$ и любого числа k справедливы соотношения:

10. $\vec{a}^2 \ge 0$, причём $\vec{a}^2 > 0$ при $\vec{a} \ne \vec{0}$.

 2^{0} . $\vec{a}\vec{b} = \vec{b}\vec{a}$ (переместительный закон).

 3^{0} . $(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$ (распределительный закон).

 4^{0} . $k(\vec{a}\vec{b}) = (k\vec{a})\vec{b}$ (сочетательный закон).

Утверждения 1^0 — 4^0 доказываются точно так же, как в планиметрии.

Нетрудно доказать, что распределительный закон имеет место для любого числа слагаемых. Например, $(\vec{a} + \vec{b} + \vec{c}) \vec{d} = \vec{a} \vec{d} + \vec{b} \vec{d} + \vec{c} \vec{d}$ (см. задачу 699).

78 Вычисление углов между прямыми и плоскостями

Для вычисления угла между двумя прямыми, а также между прямой и плоскостью во многих случаях удобно использовать скалярное произведение. Прежде чем рассмотреть две такие задачи на вычисление углов, введём понятие направляющего вектора прямой.

Ненулевой вектор называется направляющим вектором прямой a, если он лежит либо на прямой a, либо на прямой, параллельной a.

Задача 1

Найти угол между двумя прямыми (пересекающимися или скрещивающимися), если известны координаты направляющих векторов этих прямых.

Решение

Пусть $\vec{p}\{x_1; y_1; z_1\}$ и $\vec{q}\{x_2; y_2; z_2\}$ — направляющие векторы прямых a и b. Обозначим буквой ϕ искомый угол между этими прямыми. Для решения задачи достаточно найти $\cos \phi$, так как значение $\cos \phi$ позволяет найти угол ϕ .

Введём обозначение: $\theta = \overrightarrow{pq}$. Тогда либо $\varphi = \theta$, если $\theta \le 90^{\circ}$ (рис. 189, a), либо $\varphi = 180^{\circ} - \theta$, если $\theta > 90^{\circ}$ (рис. 189, δ).

Поэтому либо $\cos \varphi = \cos \theta$, либо $\cos \varphi = -\cos \theta$. В любом случае $|\cos \varphi| = |\cos \theta|$, а так как $\varphi \leq 90^\circ$, то $\cos \varphi \geq 0$, и, следовательно, $\cos \varphi = |\cos \theta|$. Используя формулу (1) п. 77, получаем

$$\cos \varphi = \frac{|x_1 x_2 + y_1 y_2 + z_1 z_2|}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}.$$
 (2)

Задача 2

Найти угол между прямой и плоскостью, если известны координаты направляющего вектора прямой и координаты ненулевого вектора, перпендикулярного к плоскости.

Решение

Пусть $\vec{p}\{x_1; y_1; z_1\}$ — направляющий вектор прямой a, $\vec{n}\{x_2; y_2; z_2\}$ — ненулевой вектор, перпендикулярный к плоскости α . Это означает, что прямая, на которой лежит вектор \vec{n} , перпендикулярна к плоскости α . Обозначим буквой ϕ искомый угол между прямой a и плоскостью α , а буквой θ — угол $\vec{p}\vec{n}$.

Рис. 189

Пользуясь рисунком 190, нетрудно доказать (сделайте это самостоятельно), что $\sin \varphi = |\cos \theta|$. Поэтому для $\sin \varphi$ получается такое же выражение, как и в правой части равенства (2). Зная $\sin \varphi$ и учитывая, что $\varphi \leq 90^\circ$, можно найти угол φ .

79* Уравнение плоскости

Выведем уравнения плоскости α , проходящей через точку $M_0(x_0; y_0; z_0)$ и перпендикулярной к ненулевому вектору $\vec{n}\{a; b; c\}$ (рис. 191).

Если точка M(x;y;z), отличная от M_0 , принадлежит плоскости α , то векторы $\vec{n}\{a;b;c\}$ и $\overrightarrow{M_0M}\{x-x_0;y-y_0;z-z_0\}$ взаимно перпендикулярны, поэтому их скалярное произведение равно нулю:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0.$$
 (3)

Отметим, что координаты точки M_0 также удовлетворяют этому уравнению. Если же точка M(x; y; z) не принадлежит плоскости α , то угол между векторами \vec{n} и $\overrightarrow{M_0M}$ отличается от 90° (на величину угла между прямой M_0M и плоскостью α), и поэтому скалярное произведение этих векторов отлично от нуля и, следовательно, равенство (3) не выполняется.

Итак, уравнению (3) удовлетворяют координаты любой точки плоскости α и не удовлетворяют координаты никакой точки, не лежащей в этой плоскости. Поэтому уравнение (3) является уравнением плоскости, проходящей через точку $M_0(x_0; y_0; z_0)$ и перпендикулярной к ненулевому вектору $\vec{n}\{a; b; c\}$.

Замечание

в виде

Уравнение (3) можно записать также

$$ax + by + cz + d = 0,$$

где $a^2 + b^2 + c^2 \neq 0$. Таким образом, уравнение плоскости в прямоугольной системе координат является уравнением первой степени.

Уравнение плоскости можно использовать для вычисления расстояния от данной точки до этой плоскости.

Рис. 190

 $\overrightarrow{M_0M}$ $\{x-x_0;y-y_0;z-z_0\}$ Если $M\in\alpha$, то $\overrightarrow{n}\perp\overrightarrow{M_0M}$

Рис. 191

Задача 3

Найти расстояние от точки до плоскости, если известны координаты точки и уравнение плоскости.

Решение

Пусть $M_0(x_0; y_0; z_0)$ — данная точка, ax+by+cz+d=0 ($a^2+b^2+c^2\neq 0$) — уравнение данной плоскости α , $M_1(x_1; y_1; z_1)$ — проекция точки M_0 на плоскость α (рис. 192). Поскольку точка M_1 лежит в плоскости α , то её координаты удовлетворяют уравнению этой плоскости:

$$ax_1 + by_1 + cz_1 + d = 0.$$
 (4)

Вектор $\overrightarrow{M_0M_1}\{x_1-x_0;\ y_1-y_0;\ z_1-z_0\}$ (если $\overrightarrow{M_0M_1}\neq \overrightarrow{0}$), как и вектор $\overrightarrow{n}\{a;\ b;\ c\}$, перпендикулярен к плоскости α , поэтому $\overrightarrow{M_0M_1}\parallel\overrightarrow{n}$ (если $\overrightarrow{M_0M_1}=\overrightarrow{0}$, то также $\overrightarrow{M_0M_1}\parallel\overrightarrow{n}$). Следовательно, существует такое число k, что $\overrightarrow{M_0M_1}=k\overrightarrow{n}$. Запишем это равенство в координатах:

$$x_1 - x_0 = ka$$
, $y_1 - y_0 = kb$, $z_1 - z_0 = kc$. (5)

Заметим, наконец, что искомое расстояние l равно длине вектора $\overrightarrow{M_0M_1}$, т. е. равно $\sqrt{(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2}$. Таким образом, с учётом равенств (5) получаем:

$$l = |k| \sqrt{a^2 + b^2 + c^2}.$$
 (6)

Выразим теперь координаты точки M_1 из уравнений (5) и подставим их в уравнение (4):

$$a(ka + x_0) + b(kb + y_0) + c(kc + z_0) + d = 0.$$

Отсюда находим

$$k = -\frac{ax_0 + by_0 + cz_0 + d}{a^2 + b^2 + c^2}.$$

Таким образом, формула (6) принимает следующий вид:

$$l = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

$$\alpha : ax + by + cz + d = 0$$

$$\overrightarrow{n} \perp \alpha$$

$$\overrightarrow{M_0 M_1} \perp \alpha$$

$$\overrightarrow{M_0 M_1} \parallel \overrightarrow{n}$$

Рис. 192

Задачи

- 682 Дан куб $\overrightarrow{ABCDA_1B_1C_1D_1}$. Найдите угол между векторами: а) $\overrightarrow{B_1B}$ и $\overrightarrow{B_1C}$; б) \overrightarrow{DA} и $\overrightarrow{B_1D_1}$; в) $\overrightarrow{A_1C_1}$ и $\overrightarrow{A_1B}$; г) \overrightarrow{BC} и \overrightarrow{AC} ; д) $\overrightarrow{BB_1}$ и \overrightarrow{AC} ; е) $\overrightarrow{B_1C}$ и $\overrightarrow{AD_1}$; ж) $\overrightarrow{A_1D_1}$ и \overrightarrow{BC} ; з) $\overrightarrow{AA_1}$ и $\overrightarrow{C_1C}$.
- 683 Угол между векторами \overrightarrow{AB} и \overrightarrow{CD} равен φ . Найдите углы $\overrightarrow{BA}\overrightarrow{DC}$, $\overrightarrow{BA}\overrightarrow{CD}$, $\overrightarrow{AB}\overrightarrow{DC}$.
- 684 Ребро куба $ABCDA_1B_1C_1D_1$ равно a, точка O_1 центр грани $A_1B_1C_1D_1$. Вычислите скалярное произведение векторов: a) \overrightarrow{AD} и $\overrightarrow{B_1C_1}$; б) \overrightarrow{AC} и $\overrightarrow{C_1A_1}$; в) $\overrightarrow{D_1B}$ и \overrightarrow{AC} ; г) $\overrightarrow{BA_1}$ и $\overrightarrow{BC_1}$; д) $\overrightarrow{A_1O_1}$ и $\overrightarrow{A_1C_1}$; е) $\overrightarrow{D_1O_1}$ и $\overrightarrow{B_1O_1}$; ж) $\overrightarrow{BO_1}$ и $\overrightarrow{C_1B}$.
- **685** Даны векторы \vec{a} {1; -1; 2}, \vec{b} {-1; 1; 1} и \vec{c} {5; 6; 2}. Вычислите $\vec{a}\vec{c}$, $\vec{a}\vec{b}$, $\vec{b}\vec{c}$, $\vec{a}\vec{a}$, $\sqrt{\vec{b}\,\vec{b}}$.
- **686** Даны векторы $\vec{a} = 3\vec{i} 5\vec{j} + \vec{k}$ и $\vec{b} = \vec{j} 5\vec{k}$. Вычислите: a) $\vec{a}\vec{b}$; б) $\vec{a}\vec{i}$; в) $\vec{b}\vec{j}$; г) $(\vec{a} + \vec{b})\vec{k}$; д) $(\vec{a} 2\vec{b})(\vec{k} + \vec{i} 2\vec{j})$.
- 687 Даны векторы \vec{a} {3; -1; 1}, \vec{b} {-5; 1; 0} и \vec{c} {-1; -2; 1}. Выясните, какой угол (острый, прямой или тупой) между векторами: а) \vec{a} и \vec{b} ; б) \vec{b} и \vec{c} ; в) \vec{a} и \vec{c} .
- 688 Дан вектор $\vec{a}\{3; -5; 0\}$. Докажите, что: a) $\vec{a}\vec{i} < 90^\circ;$ б) $\vec{a}\vec{j} > 90^\circ;$ в) $\vec{a}\vec{k} = 90^\circ.$
- 689 Даны векторы \vec{a} {-1; 2; 3} и \vec{b} {5; x; -1}. При каком значении x выполняется условие: a) \vec{a} \vec{b} = 3; б) \vec{a} \vec{b} = -1; в) \vec{a} \perp \vec{b} ?
- **690** Даны векторы $\vec{a} = m\vec{i} + 3\vec{j} + 4\vec{k}$ и $\vec{b} = 4\vec{i} + m\vec{j} 7\vec{k}$. При каком значении m векторы \vec{a} и \vec{b} перпендикулярны?
- **691** Даны точки A(0; 1; 2), $B(\sqrt{2}; 1; 2)$, $C(\sqrt{2}; 2; 1)$ и D(0; 2; 1). Докажите, что ABCD квадрат.
- 692 Вычислите угол между векторами: а) $\vec{a}\{2; -2; 0\}$ и $\vec{b}\{3; 0; -3\};$ б) $\vec{a}\{\sqrt{2}; \sqrt{2}; 2\}$ и $\vec{b}\{-3; -3; 0\};$ в) $\vec{a}\{0; 5; 0\}$ и $\vec{b}\{0; -\sqrt{3}; 1\};$ г) $\vec{a}\{-2,5; 2,5; 0\}$ и $\vec{b}\{-5; 5; 5\sqrt{2}\};$ д) $\vec{a}\{-\sqrt{2}; -\sqrt{2}; -2\}$ и $\vec{b}\left\{\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}; -1\right\}.$
- **693** Вычислите углы между вектором $\vec{a}\{2;\ 1;\ 2\}$ и координатными векторами.
- **694** Даны точки A(1; 3; 0), B(2; 3; -1) и C(1; 2; -1). Вычислите угол между векторами \overrightarrow{CA} и \overrightarrow{CB} .
- **695** Найдите углы, периметр и площадь треугольника, вершинами которого являются точки A(1; -1; 3), B(3; -1; 1) и C(-1; 1; 3).
- 696 Дан куб $\overrightarrow{ABCDA_1B_1C_1D_1}$. Вычислите косинус угла между векторами: а) $\overrightarrow{AA_1}$ и $\overrightarrow{AC_1}$; б) $\overrightarrow{BD_1}$ и $\overrightarrow{DB_1}$; в) \overrightarrow{DB} и $\overrightarrow{AC_1}$.

- **697** Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, в котором AB=1, $BC=CC_1=2$. Вычислите угол между векторами $\overrightarrow{DB_1}$ и $\overrightarrow{BC_1}$.
- **698** Известно, что $\overrightarrow{ac} = \overrightarrow{bc} = 60^\circ$, $|\vec{a}| = 1$, $|\vec{b}| = |\vec{c}| = 2$. Вычислите $(\vec{a} + \vec{b})\vec{c}$.
- 699 Докажите справедливость равенства $(\vec{a} + \vec{b} + \vec{c})\vec{d} = \vec{a}\vec{d} + \vec{b}\vec{d} + \vec{c}\vec{d}$. Решение Запишем сумму трёх векторов \vec{a} , \vec{b} и \vec{c} в виде $\vec{a} + \vec{b} + \vec{c} = (\vec{a} + \vec{b}) + \vec{c}$. Пользуясь распределительным законом скалярного произведения векторов, получаем $(\vec{a} + \vec{b} + \vec{c})\vec{d} = ((\vec{a} + \vec{b}) + \vec{c})\vec{d} = (\vec{a} + \vec{b})\vec{d} + \vec{c}\vec{d} = (\vec{a}\vec{d} + \vec{b}\vec{d}) + \vec{c}\vec{d} = \vec{a}\vec{d} + \vec{b}\vec{d} + \vec{c}\vec{d}$.
- 700 Векторы \vec{a} и \vec{b} перпендикулярны к вектору \vec{c} , $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$. Вычислите: а) скалярные произведения $(\vec{a} + \vec{b} + \vec{c})(2\vec{b})$ и $(\vec{a} \vec{b} + \vec{c})(\vec{a} \vec{c})$; б) $|\vec{a} \vec{b}|$ и $|\vec{a} + \vec{b} \vec{c}|$.
- 701 Докажите, что координаты ненулевого вектора \vec{a} в прямоугольной системе координат равны $\{|\vec{a}|\cos\phi_1; |\vec{a}|\cos\phi_2; |\vec{a}|\cos\phi_3\}$, где $\phi_1 = \overrightarrow{ai}$, $\phi_2 = \overrightarrow{aj}$, $\phi_3 = \overrightarrow{ak}$.

Решение

Если вектор \vec{a} имеет координаты $\{x;\ y;\ z\}$, то $\vec{a}=x\vec{i}+y\vec{j}+z\vec{k}$. Умножив это равенство скалярно на \vec{i} и используя свойства скалярного произведения, получим $\vec{a}\,\vec{i}=(x\vec{i}+y\vec{j}+z\vec{k})\,\vec{i}=x\,(\vec{i}\,\vec{i})+y\,(\vec{j}\,\vec{i})+z\,(\vec{k}\,\vec{i})$. Так как $\vec{i}\,\vec{i}=1,\ \vec{j}\,\vec{i}=0,\ \vec{k}\,\vec{i}=0,$ то $\vec{a}\,\vec{i}=x$. С другой стороны, по определению скалярного произведения $\vec{a}\,\vec{i}=|\vec{a}\,|\,|\vec{i}\,|\cos\phi_1=|\vec{a}\,|\cos\phi_1$. Таким образом, $x=|\vec{a}\,|\cos\phi_1$. Аналогично получаем равенства $y=|\vec{a}\,|\cos\phi_2$, $z=|\vec{a}\,|\cos\phi_3$.

- 702 Все рёбра тетраэдра ABCD равны друг другу. Точки M и N середины рёбер AD и BC. Докажите, что $\overrightarrow{MN} \cdot \overrightarrow{AD} = \overrightarrow{MN} \cdot \overrightarrow{BC} = 0$.
- 703 В параллелепипеде $ABCDA_1B_1C_1D_1 \ AA_1 = AB = AD = 1, \angle DAB = 60^\circ, \ \angle A_1AD = \angle A_1AB = 90^\circ.$ Вычислите:

 а) $\overrightarrow{BA} \cdot \overrightarrow{D_1C_1};$ б) $\overrightarrow{BC_1} \cdot \overrightarrow{D_1B};$ в) $\overrightarrow{AC_1} \cdot \overrightarrow{AC_1};$ г) $|\overrightarrow{DB_1}|;$ д) $|\overrightarrow{A_1C}|;$
 - e) $\cos{(\overrightarrow{DA_1}\overrightarrow{D_1B})};$ ж) $\cos{(\overrightarrow{AC_1}\overrightarrow{DB_1})}.$
- 704 В тетраэдре ABCD противоположные рёбра AD и BC, а также BD и AC перпендикулярны. Докажите, что противоположные рёбра CD и AB также перпендикулярны.

Решение

Введём векторы $\vec{a} = \overrightarrow{DA}$, $\vec{b} = \overrightarrow{DB}$, $\vec{c} = \overrightarrow{DC}$. Тогда $\overrightarrow{AB} = \vec{b} - \vec{a}$, $\overrightarrow{AC} = \vec{c} - \vec{a}$, $\overrightarrow{BC} = \vec{c} - \vec{b}$. По условию $AD \perp BC$ и $BD \perp AC$, поэтому $\vec{a} \perp (\vec{c} - \vec{b})$ и $\vec{b} \perp (\vec{c} - \vec{a})$. Следовательно, $\vec{a} \cdot (\vec{c} - \vec{b}) = 0$ и $\vec{b} \cdot (\vec{c} - \vec{a}) = 0$. Отсюда получаем $\vec{ac} = \vec{ab}$ и $\vec{bc} = \vec{ba}$. Из этих двух равенств следует, что $\vec{ac} = \vec{bc}$, или $(\vec{b} - \vec{a}) \cdot \vec{c} = 0$. Но $\vec{b} - \vec{a} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{DC}$, поэтому $\vec{AB} \cdot \vec{DC} = 0$, и, значит, $\vec{AB} \perp CD$, что и требовалось доказать.

- 705 Вычислите угол между прямыми AB и CD, если: a) A (3; -2; 4), B (4; -1; 2), C (6; -3; 2), D (7; -3; 1); б) A (5; -8; -1), B (6; -8; -2), C (7; -5; -11), D (7; -7; -9); в) A (1; 0; 2), B (2; 1; 0), C (0; -2; -4), D (-2; -4; 0); г) A (-6; -15; 7), B (-7; -15; 8), C (14; -10; 9), D (14; -10; 7).
- 706 Дана правильная треугольная призма $ABCA_1B_1C_1$, в которой $AA_1==\sqrt{2}AB$ (рис. 193, a). Найдите угол между прямыми AC_1 и A_1B . Решение

Пусть AB=a, тогда $AA_1=a\sqrt{2}$. Введём прямоугольную систему координат так, как показано на рисунке 193, δ . Вершины A, B, A_1 , C_1 имеют следующие координаты (объясните почему): $A\left(\frac{a\sqrt{3}}{2}; \frac{a}{2}; 0\right)$,

$$B(0; a; 0), A_1\left(\frac{a\sqrt{3}}{2}; \frac{a}{2}; a\sqrt{2}\right), C_1(0; 0; a\sqrt{2}).$$

Отсюда находим координаты векторов $\overrightarrow{AC_1}$ и $\overrightarrow{BA_1}$:

$$\overrightarrow{AC_{1}} \bigg\{ -\frac{a\sqrt{3}}{2} \, ; \, -\frac{a}{2} \, ; \, a\sqrt{2} \bigg\}, \ \overrightarrow{BA_{1}} \bigg\{ \frac{a\sqrt{3}}{2} \, ; \, -\frac{a}{2} \, ; \, a\sqrt{2} \bigg\}.$$

Векторы $\overrightarrow{AC_1}$ и $\overrightarrow{BA_1}$ являются направляющими векторами прямых AC_1 и A_1B . Искомый угол ϕ между ними можно найти с помощью формулы (2):

$$\cos\phi = \frac{\left|-\frac{3}{4}a^2 + \frac{1}{4}a^2 + 2a^2\right|}{\sqrt{\frac{3}{4}a^2 + \frac{1}{4}a^2 + 2a^2} \cdot \sqrt{\frac{3}{4}a^2 + \frac{1}{4}a^2 + 2a^2}} = \frac{1}{2}, \text{ откуда } \phi = 60^\circ.$$

707 В кубе $ABCDA_1B_1C_1D_1$ точка M лежит на ребре AA_1 , причём $AM: MA_1=3:1$, а точка N — середина ребра BC. Вычислите косинус угла между прямыми: а) MN и DD_1 ; б) MN и BD; в) MN и B_1D ; г) MN и A_1C .

Рис. 193

178

- 708 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ $AB=BC=\frac{1}{2}\,AA_1.$ Найдите угол между прямыми: а) BD и CD_1 ; б) AC и $AC_1.$
- 709 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ AB=1, BC=2, $BB_1=3$. Вычислите косинус угла между прямыми: а) AC и D_1B ; б) AB_1 и BC_1 ; в) A_1D и AC_1 .
- 710 В кубе $ABCDA_1B_1C_1D_1$ диагонали грани ABCD пересекаются в точке N, а точка M лежит на ребре A_1D_1 , причём $A_1M:MD_1=1:4$. Вычислите синус угла между прямой MN и плоскостью грани: а) ABCD; б) DD_1C_1C ; в) AA_1D_1D .
- 711 В тетраэдре $ABCD \angle ABD = \angle ABC = \angle DBC = 90^{\circ}$, AB = BD = 2, BC = 1. Вычислите синус угла между прямой, проходящей через середины рёбер AD и BC, и плоскостью грани: a) ABD; б) DBC; в) ABC.
- 712 Докажите, что угол между скрещивающимися прямыми, одна из которых содержит диагональ куба, а другая диагональ грани куба, равен 90° .
- **713** Дан куб $MNPQM_1N_1P_1Q_1$. Докажите, что прямая PM_1 перпендикулярна к плоскостям MN_1Q_1 и QNP_1 .
- 714 Лучи *OA*, *OB* и *OC* образуют три прямых угла *AOB*, *AOC* и *BOC*. Найдите угол между биссектрисами углов *COA* и *AOB*.
- **715** В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1 \angle BAC_1 = \angle DAC_1 = 60^\circ$. Найдите $\varphi = \angle A_1AC_1$.

Решение

Зададим прямоугольную систему координат Oxyz так, как показано на рисунке 194, и рассмотрим единичный вектор \vec{a} , сонаправленный с вектором $\overrightarrow{AC_1}$. Вектор \vec{a} имеет координаты $\{\cos 60^\circ; \; \cos 60^\circ; \; \cos \phi\}$, или $\left\{\frac{1}{2}; \; \frac{1}{2}; \; \cos \phi\right\}$. Так как $|\vec{a}| = 1$, то получим ра-

венство
$$\frac{1}{4} + \frac{1}{4} + \cos^2 \phi = 1$$
. Отсюда $\cos^2 \phi = \frac{1}{2}$, Рис. 194

- или $\cos \phi = \pm \frac{\sqrt{2}}{2}$. Так как угол ϕ острый, то $\cos \phi = \frac{\sqrt{2}}{2}$, откуда $\phi = 45^\circ$.
- 716 В тетраэдре DABC DA=5 см, AB=4 см, AC=3 см, $\angle BAC=90^\circ$, $\angle DAB=60^\circ$, $\angle DAC=45^\circ$. Найдите расстояние от вершины A до точки пересечения медиан треугольника DBC.
- 717 Угол между диагональю AC_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ и каждым из рёбер AB и AD равен 60° . Найдите $\angle CAC_1$.
- 718 Проекция точки K на плоскость квадрата ABCD совпадает с центром этого квадрата. Докажите, что угол между прямыми AK и BD равен 90° .

80 Центральная симметрия

В курсе планиметрии мы познакомились с движениями плоскости, т. е. отображениями плоскости на себя, сохраняющими расстояния между точками. Введём теперь понятие движения пространства. Предварительно разъясним, что понимается под словами отображение пространства на себя. Допустим, что каждой точке M пространства поставлена в соответствие некоторая точка M_1 , причём любая точка M_1 пространства оказалась поставленной в соответствие какой-то точке M. Тогда говорят, что задано **отображение** пространства на себя. Говорят также, что при данном отображении точка М переходит (отображается) в точку M_1 . Под движением пространства понимается отображение пространства на себя, при котором любые две точки A и B переходят (отображаются) в какие-то точки A_1 и B_1 так, что $A_1B_1 = AB$. Иными словами, движение пространства — это отображение пространства на себя, сохраняющее расстояния между точками. Приме-

ром движения может служить центральная симметрия — отображение пространства на себя, при котором любая точка M переходит в симметричную ей точку M_1 относительно данного центра O.

Докажем, что центральная симметрия является движением. Обозначим буквой O центр симметрии и введём прямоугольную систему координат Oxyz с началом в точке O. Установим связь между координатами двух точек M(x; y; z) и

нат середины отрезка
$$\frac{x+x_1}{2}=0, \frac{y+y_1}{2}=0, \frac{z+z_1}{2}=0,$$

откуда $x_1 = -x$, $y_1 = -y$, $z_1 = -z$. Эти формулы верны, если точки M и O совпадают (объясните почему). Рассмотрим теперь две точки $A(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$ и докажем, что расстояние между

симметричными им точками A_1 и B_1 равно AB. Точки A_1 и B_1 имеют координаты $A_1(-x_1; -y_1; -z_1)$ и $B_1(-x_2; -y_2; -z_2)$. По формуле расстояния между двумя точками находим:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2},$$

$$A_1B_1 = \sqrt{(-x_2 + x_1)^2 + (-y_2 + y_1)^2 + (-z_2 + z_1)^2}.$$

Ясно, что $AB = A_1B_1$, что и требовалось доказать.

81 Осевая симметрия

Осевой симметрией с осью a называется такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей точку M_1 относительно оси a.

Докажем, что осевая симметрия является движением. Для этого введём прямоугольную систему координат Oxyz так, чтобы ось Oz совпала с осью симметрии, и установим связь между координатами двух точек M(x; y; z) и $M_1(x_1; y_1; z_1)$, симметричных относительно оси Oz. Если точка M не лежит на оси Oz, то ось Oz: 1) проходит через середину отрезка MM_1

и 2) перпендикулярна к нему. Из первого условия по формулам для координат середины отрез-

ка получаем
$$\frac{x+x_1}{2}=0$$
 и $\frac{y+y_1}{2}=0$, откуда $x_1=-x$

и $y_1 = -y$. Второе условие означает, что аппликаты точек M и M_1 равны: $z_1 = z$. Полученные формулы верны и в том случае, когда точка M лежит на оси Oz (объясните почему).

Рассмотрим теперь любые две точки $A(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$ и докажем, что расстояние между симметричными им точками A_1 и B_1 равно AB. Точки A_1 и B_1 имеют координаты $A_1(-x_1; -y_1; z_1)$ и $B_1(-x_2; -y_2; z_2)$. По формуле расстояния между двумя точками находим:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2},$$

$$A_1B_1 = \sqrt{(-x_2 + x_1)^2 + (-y_2 + y_1)^2 + (z_2 - z_1)^2}.$$

Ясно, что $AB = A_1B_1$, что и требовалось доказать.

82 Зеркальная симметрия

Зеркальной симметрией (симметрией относительно плоскости α) называется такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей относительно плоскости α точку M_1

Докажем, что зеркальная симметрия является движением. Для этого введём прямо- угольную систему координат Oxyz так, чтобы плоскость Oxy совпала с плоскостью симметрии, и установим связь между координатами двух точек M(x;y;z) и $M_1(x_1;y_1;z_1)$, симметричных относительно плоскости Oxy. Если точка M не лежит в плоскости Oxy, то эта плоскость: 1) проходит через середину отрезка MM_1 и 2) перпендикулярна к нему. Из первого условия по формуле коорди-

нат середины отрезка получаем
$$\frac{z+z_1}{2}=0$$
, откуда

 $z_1 = -z$. Второе условие означает, что отрезок MM_1 параллелен оси Oz, и, следовательно, $x_1 = x$, $y_1 = y$. Полученные формулы верны и в том случае, когда точка M лежит в плоскости Oxy (объясните почему).

Рассмотрим теперь две точки $A(x_1;y_1;z_1)$ и $B(x_2;y_2;z_2)$ и докажем, что расстояние между симметричными им точками A_1 и B_1 равно AB. Точки A_1 и B_1 имеют координаты $A_1(x_1;y_1;-z_1)$ и $B_1(x_2;y_2;-z_2)$. По формуле расстояния между двумя точками находим:

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2},$$

$$A_1B_1 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (-z_2 + z_1)^2}.$$

Из этих соотношений ясно, что $AB = A_1B_1$, что и требовалось доказать.

83 Параллельный перенос

Приведём ещё пример движения пространства. Возьмём какой-нибудь вектор \vec{p} . Параллельным переносом на вектор \vec{p} называется отображение пространства на себя, при котором любая точка M переходит в такую точку M_1 , что $\overrightarrow{MM_1} = \vec{p}$ (рис. 195, a).

Докажем, что параллельный перенос является движением. При параллельном

переносе на вектор \vec{p} любые две точки A и B переходят в точки A_1 и B_1 , такие, что $\overrightarrow{AA_1} = \vec{p}$ и $\overrightarrow{BB_1} = \vec{p}$. Требуется доказать, что $A_1B_1 = AB$. По правилу треугольника $\overrightarrow{AB_1} = \overrightarrow{AA_1} + \overrightarrow{A_1B_1}$. С другой стороны, $\overrightarrow{AB_1} = \overrightarrow{AB} + \overrightarrow{BB_1}$ (рис. 195, δ). Из этих двух равенств получаем $\overrightarrow{AA_1} + \overrightarrow{A_1B_1} = \overrightarrow{AB} + \overrightarrow{BB_1}$, или $\overrightarrow{p} + \overrightarrow{A_1B_1} = \overrightarrow{AB} + \overrightarrow{p}$, откуда $\overrightarrow{A_1B_1} = \overrightarrow{AB}$. Следовательно, $A_1B_1 = AB$, что и требовалось доказать.

Можно доказать (это делается так же, как и в планиметрии), что при любом движении отрезок переходит в отрезок, прямая — в прямую, плоскость — в плоскость. Можно доказать также, что понятие наложения, с помощью которого в нашем курсе вводится равенство фигур (см. приложение 2), совпадает с понятием движения, т. е. любое наложение является движением и, обратно, любое движение является наложением. Это утверждение доказывается аналогично тому, как это делалось в планиметрии.

Рис. 195

84* Преобразование подобия

Центральным подобием (гомотетией) с центром O и коэффициентом $k \neq 0$ называется отображение пространства на себя, при котором каждая точка M переходит в такую точку M_1 , что $\overrightarrow{OM_1} = k\overrightarrow{OM}$.

Нетрудно доказать, что если при центральном подобии с коэффициентом k точки A и B переходят в точки A_1 и B_1 , то $A_1B_1 = kAB$ (см. приложение 1). Из этого, в частности, следует, что при центральном подобии треугольник переходит в подобный ему треугольник, плоскость, проходящая через точку O, переходит в себя, не проходящая через точку O— в параллельную ей плоскость, а сфера с центром C радиуса r— в сферу с центром C_1 радиуса kr, где $\overrightarrow{OC_1} = k\overrightarrow{OC}$, т. е. C_1 — та точка, в которую переходит точка C. Докажите эти утверждения самостоятельно.

Центральное подобие является частным случаем так называемого преобразования подобия. Преобразованием подобия с коэффициентом k>0 называется отображение пространства на себя, при котором любые две точки A и B пере-

ходят в такие точки A_1 и B_1 , что $A_1B_1=k\cdot AB$. Примерами преобразования подобия являются, очевидно, движение (при этом k=1), центральное подобие, а также результат их последовательного выполнения.

Оказывается, верно и обратное утверждение: любое преобразование подобия представляет собой результат последовательного выполнения движения и центрального подобия.

Докажем это. Рассмотрим преобразование подобия с коэффициентом k. Произвольные точки A и B переходят при нём в такие точки A_1 и B_1 , что $A_1B_1=k\cdot AB$. Рассмотрим теперь центральное подобие с произвольным центром O и коэффициентом $\frac{1}{k}$. Точки A_1 и B_1 переходят при нём в такие точки A_2 и B_2 , что $A_2B_2=\frac{A_1B_1}{k}$. Тем

самым в результате последовательного выполнения преобразования подобия и центрального подобия произвольные точки A и B переходят в та-

кие точки
$$A_2$$
 и B_2 , что $A_2B_2=\frac{k\cdot AB}{k}=AB$. Это

означает, что результатом последовательного выполнения указанных преобразований является движение. В свою очередь, в результате последовательного выполнения этого движения и центрального подобия с центром O и коэффициентом k точки A и B (взятые произвольно) переходят в теже точки A_1 и B_1 , что и при исходном преобразовании подобия. Но это и означает, что исходное преобразование подобия является результатом последовательного выполнения указанного движения и центрального подобия с центром O и коэффициентом k. Утверждение доказано.

Преобразование подобия часто используется в геометрии. С его помощью, например, можно ввести понятие подобия произвольных тел: два тела называются подобными, если существует такое преобразование подобия, при котором одно из них переходит в другое.

▼ Замечание

Из основной формулы для вычисления объёмов тел (см. п. 56) следует, что отношение объёмов подобных тел равно кубу коэффициента подобия. Подумайте, как это доказать. △

Задачи

- 719 Найдите координаты точек, в которые переходят точки A(0; 1; 2), B(3; -1; 4), C(1; 0; -2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координатных плоскостей.
- 720 Докажите, что при центральной симметрии: а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую; б) прямая, проходящая через центр симметрии, отображается на себя.
- 721 Докажите, что при центральной симметрии: а) плоскость, не проходящая через центр симметрии, отображается на параллельную ей плоскость; б) плоскость, проходящая через центр симметрии, отображается на себя.
- 722 Докажите, что при осевой симметрии: а) прямая, параллельная оси, отображается на прямую, параллельную оси; б) прямая, образующая с осью угол ф, отображается на прямую, также образующую с осью угол ф.
- 723 При зеркальной симметрии прямая a отображается на прямую a_1 . Докажите, что прямые a и a_1 лежат в одной плоскости.
- 724 При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β_1 . Докажите, что если: а) $\beta \parallel \alpha$, то $\beta_1 \parallel \alpha$; б) $\beta \perp \alpha$, то β_1 совпадает с β .
- 725 Докажите, что при параллельном переносе на вектор \vec{p} , где $\vec{p} \neq \vec{0}$: а) прямая, не параллельная вектору \vec{p} и не содержащая этот вектор, отображается на параллельную ей прямую; б) прямая, параллельная вектору \vec{p} или содержащая этот вектор, отображается на себя.
- 726 Треугольник $A_1B_1C_1$ получен параллельным переносом треугольника ABC на вектор \vec{p} . Точки M_1 и M соответственно точки пересечения медиан треугольников $A_1B_1C_1$ и ABC. Докажите, что при параллельном переносе на вектор \vec{p} точка M переходит в точку M_1 .
- 727 Докажите, что при движении: а) прямая отображается на прямую; б) плоскость отображается на плоскость.
- 728 Докажите, что при движении: a) отрезок отображается на отрезок; б) угол отображается на равный ему угол.
- 729 Докажите, что при движении: а) параллельные прямые отображаются на параллельные прямые; б) параллельные плоскости отображаются на параллельные плоскости.
- 730 Докажите, что при движении: а) окружность отображается на окружность того же радиуса; б) прямоугольный параллелепипед отображается на прямоугольный параллелепипед с теми же измерениями.

Вопросы к главе VII

- 1 Как расположена точка относительно прямоугольной системы координат, если: а) одна её координата равна нулю; б) две её координаты равны нулю?
- 2 Объясните, почему все точки, лежащие на прямой, параллельной плоскости Oxy, имеют одну и ту же аппликату.
- 3 Даны точки A(2; 4; 5), B(3; x; y), C(0; 4; z) и D(5; t; u). При каких значениях x, y, z, t и u эти точки лежат: а) в плоскости, параллельной плоскости Oxy; б) в плоскости, параллельной плоскости Oxz; в) на прямой, параллельной оси Ox?
- 4 Найдите координаты вектора \overrightarrow{CA} , если $\overrightarrow{AB}\{x_1;y_1;z_1\}$, $\overrightarrow{BC}\{x_2;y_2;z_2\}$.
- 5 Первая и вторая координаты ненулевого вектора \vec{a} равны нулю. Как расположен вектор \vec{a} по отношению к оси: a) Oz; б) Ox; в) Oy?
- 6 Первая координата ненулевого вектора \vec{a} равна нулю. Как расположен вектор \vec{a} по отношению: а) к плоскости Oxz; б) к оси Ox?
- 7 Коллинеарны ли векторы: a) \vec{a} {-5; 3; -1} и \vec{b} {6; -10; -2}; б) \vec{a} {-2; 3; 7} и \vec{b} {-1; 1,5; 3,5}?
- 8 Длина радиус-вектора точки M равна 1. Может ли абсцисса точки M равняться: a) 1; б) 2?
- 9 Длина вектора \vec{a} равна 3. Может ли одна из координат вектора \vec{a} равняться: a) 3; 6) 5?
- 10 Абсцисса точки M_1 равна 3, а абсцисса точки M_2 равна 6. а) Может ли длина отрезка M_1M_2 быть равной 2? б) Как расположен отрезок M_1M_2 по отношению к оси Ox, если его длина равна 3?
- 11 Векторы \vec{a} и \vec{b} имеют длины a и b. Чему равно скалярное произведение векторов \vec{a} и \vec{b} , если: а) векторы \vec{a} и \vec{b} сонаправлены; б) векторы \vec{a} и \vec{b} противоположно направлены; в) векторы \vec{a} и \vec{b} перпендикулярны; г) угол между векторами \vec{a} и \vec{b} равен 60° ; д) угол между векторами \vec{a} и \vec{b} равен 120° ?
- 12 При каком условии скалярное произведение векторов \vec{a} и \vec{b} : а) положительно; б) отрицательно; в) равно нулю?
- 13 Дан куб $\overrightarrow{ABCDA_1B_1C_1D_1}$. Перпендикулярны ли векторы: а) \overrightarrow{AD} и $\overrightarrow{D_1C_1}$; б) \overrightarrow{BD} и $\overrightarrow{CC_1}$; в) $\overrightarrow{A_1C_1}$ и \overrightarrow{AD} ; г) \overrightarrow{DB} и $\overrightarrow{D_1C_1}$; д) \overrightarrow{BB} и \overrightarrow{AC} ?
- 14 Первые координаты векторов \vec{a} и \vec{b} равны соответственно 1 и 2. Может ли скалярное произведение векторов \vec{a} и \vec{b} быть: а) меньше 2; б) равно 2; в) больше 2?
- **15** Какие координаты имеет точка A, если при центральной симметрии с центром A точка B(1; 0; 2) переходит в точку C(2; -1; 4)?
- 16 Как расположена плоскость по отношению к осям координат Ox и Oz, если при зеркальной симметрии относительно этой плоскости точка M(2; 1; 3) переходит в точку $M_1(2; -2; 3)$?
- 17 В правую или левую перчатку переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?

Дополнительные задачи

- 731 Даны векторы \vec{a} {-5; 0; 5}, \vec{b} {-5; 5; 0} и \vec{c} {1; -2; -3}. Найдите координаты вектора: a) $3\vec{b} 3\vec{a} + 3\vec{c}$; б) $-0,1\vec{c} + 0,8\vec{a} 0,5\vec{b}$.
- 732 Коллинеарны ли векторы: а) $\vec{a}\{-5; \ 3; \ -1\}$ и $\vec{b}\{6; \ -10; \ -2\};$ б) $\vec{a}\{-2; \ 3; \ 7\}$ и $\vec{b}\{-1; \ 1,5; \ 3,5\};$ в) $\vec{a}\left\{-\frac{2}{3}; \ \frac{5}{9}; \ -1\right\}$ и $\vec{b}\{6; \ -5; \ 9\};$ г) $\vec{a}\{0,7; \ -1,2; \ -5,2\}$ и $\vec{b}\{-2,8; \ 4,8; \ -20,8\}$?
- 733 Даны точки A (-5; 7; 3) и B (3; -11; 1). а) На оси Ox найдите точку, ближайшую к середине отрезка AB. б) Найдите точки, обладающие аналогичным свойством, на осях Oy и Oz.
- 734 Компланарны ли векторы: а) \vec{a} {-1; 2; 3}, \vec{i} + \vec{j} и \vec{i} \vec{k} ; б) \vec{b} {2; 1; 1,5}, \vec{i} + \vec{j} + \vec{k} и \vec{i} \vec{j} ; в) \vec{a} {1; 1; 1}, \vec{b} {1; -1; 2} и \vec{c} {2; 3; -1}?
- 735 Даны точки A (3; 5; 4), B (4; 6; 5), C (6; -2; 1) и D (5; -3; 0). Докажите, что ABCD параллелограмм.
- 736 Даны точки A(2; 0; 1), B(3; 2; 2) и C(2; 3; 6). Найдите координаты точки пересечения медиан треугольника ABC.
- 737 Даны координаты четырёх вершин параллелепипеда $ABCDA_1B_1C_1D_1\colon A$ (3; 0; 2), B (2; 4; 5), A_1 (5; 3; 1), D (7; 1; 2). Найдите координаты остальных вершин.
- 738 Середина отрезка AB лежит в плоскости Oxy. Найдите k, если: a) A(2;3;-1), B(5;7;k); б) A(0;4;k), B(3;-8;2); в) A(5;3;k), B(3;-5;3k).
- 739 Найдите координаты единичных векторов, сонаправленных соответственно с векторами $\vec{a}\{2; 1; -2\}$ и $\vec{b}\{1; 3; 0\}$.
- **740** Длина вектора $\vec{a}\{x;\,y;\,z\}$ равна 5. Найдите ординату вектора \vec{a} , если $x=2,\;z=-\sqrt{5}$.
- 741 Даны точки M(2; -1; 3), N(-4; 1; -1), P(-3; 1; 2) и Q(1; 1; 0). Вычислите расстояние между серединами отрезков MN и PQ.
- **742** Найдите расстояние от точки $B(-2; 5; \sqrt{3})$ до осей координат.
- 743 На оси ординат найдите точку, равноудалённую от точек A (13; 2; -1) и B (-15; 7; -18).
- 744 Найдите координаты центра окружности, описанной около треугольника с вершинами A(0; 2; 2), B(2; 1; 1), C(2; 2; 2).
- 745 Найдите координаты точек пересечения сферы, заданной уравнением $(x-3)^2+y^2+(z+5)^2=25$, с осями координат.
- 746 Найдите радиус сечения сферы $x^2 + y^2 + z^2 = 36$ плоскостью, проходящей через точку M(2; 4; 5) и перпендикулярной к оси абсписс.
- 747 Вершины треугольника ABC расположены по одну сторону от плоскости α и находятся от этой плоскости на расстояниях 4 дм, 5 дм и 9 дм. Найдите расстояние от точки пересечения медиан треугольника до плоскости α .

- 748 Медианой тетраэдра называется отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани. Докажите, что медианы тетраэдра пересекаются в одной точке, которая делит каждую медиану в отношении 3:1, считая от вершины.
- 749 Даны векторы \vec{a} {-1; 5; 3}, \vec{b} {3; 0; 2}, \vec{c} {0,5; -3; 4} и \vec{d} {2; 1; 0}. Вычислите: a) $\vec{a}\vec{b}$; б) $\vec{a}\vec{c}$; в) $\vec{d}\vec{d}$; г) $(\vec{a}+\vec{b}+\vec{c})\vec{d}$; д) $(\vec{a}-\vec{b})(\vec{c}-\vec{d})$.
- 750 В тетраэдре DABC DA = DB = DC, $\angle ADB = 45^{\circ}$, $\angle BDC = 60^{\circ}$. Вычислите угол между векторами: а) \overrightarrow{DA} и \overrightarrow{BD} ; б) \overrightarrow{DB} и \overrightarrow{CB} ; в) \overrightarrow{BD} и \overrightarrow{BA} .
- 751 Все рёбра тетраэдра ABCD равны друг другу, D_1 проекция точки D на плоскость ABC. Перпендикулярны ли векторы: а) $\overrightarrow{D_1B}$ и $\overrightarrow{D_1D}$; б) $\overrightarrow{DD_1}$ и \overrightarrow{BC} ; в) \overrightarrow{DA} и \overrightarrow{BC} ; г) $\overrightarrow{D_1B}$ и \overrightarrow{DC} ?
- 752 Вычислите косинус угла между прямыми AB и CD, если: a) A(7; -8; 15), B(8; -7; 13), C(2; -3; 5), D(-1; 0; 4); б) A(8; -2; 3), B(3; -1; 4), C(5; -2; 0), D(7; 0; -2).
- 753 В кубе $ABCDA_1B_1C_1D_1$ точка M центр грани BB_1C_1C . Вычислите угол между векторами: а) $\overrightarrow{A_1D}$ и \overrightarrow{AM} ; б) \overrightarrow{MD} и $\overrightarrow{BB_1}$.
- 754 В параллелепипеде $ABCDA_1B_1C_1D_1 \angle BAA_1 = \angle BAD = \angle DAA_1 = 60^\circ$, $AB = AA_1 = AD = 1$. Вычислите длины векторов $\overrightarrow{AC_1}$ и $\overrightarrow{BD_1}$.
- 755 Проекция точки M на плоскость ромба ABCD совпадает с точкой O пересечения его диагоналей. Точка N середина стороны BC, AC=8, DB=MO=6. Вычислите косинус угла между прямой MN и прямой: а) BC; б) DC; в) AC; г) DB.
- 756 В кубе $ABCDA_1B_1C_1D_1$ точка M лежит на ребре BB_1 , причём $BM: MB_1=3:2$, а точка N лежит на ребре AD, причём AN: ND=2:3. Вычислите синус угла между прямой MN и плоскостью грани: а) $DD_1C_1C_1$; б) $A_1B_1C_1D_1$.
- 757 Лучи OA, OB, OC и OM расположены так, что $\angle AOB = \angle BOC = \\ = \angle COA = 90^\circ$, $\angle AOM = \phi_1$, $\angle BOM = \phi_2$, $\angle COM = \phi_3$. Докажите, что $\cos^2\phi_1 + \cos^2\phi_2 + \cos^2\phi_3 = 1$.
- 758 Лучи OA, OB и OC расположены так, что $\angle BOC = \angle BOA = 45^{\circ}$, $\angle AOC = 60^{\circ}$. Прямая OH перпендикулярна к плоскости AOB. Найдите угол между прямыми OH и OC.
- 759 Дан двугранный угол CABD, равный ϕ (ϕ <90°). Известно, что $AC \perp AB$ и $\angle DAB = \theta$. Найдите $\cos \angle CAD$.
- 760 Отрезки CA и DB перпендикулярны к ребру двугранного угла CABD, равного 120° . Известно, что AB=m, CA=n, BD=p. Найдите CD.
- 761 При движении прямая a отображается на прямую a_1 , а плоскость α на плоскость α_1 . Докажите, что: а) если $a \parallel \alpha$, то $a_1 \parallel \alpha_1$; б) если $a \perp \alpha$, то $a_1 \perp \alpha_1$.
- 762 При зеркальной симметрии относительно плоскости α плоскость β отображается на плоскость β_1 . Докажите, что если плоскость β образует с плоскостью α угол ϕ , то и плоскость β_1 образует с плоскостью α угол ϕ .

763 Докажите, что при параллельном переносе на вектор \vec{p} : а) плоскость, не параллельная вектору \vec{p} и не содержащая этот вектор, отображается на параллельную ей плоскость; б) плоскость, параллельная вектору \vec{p} или содержащая этот вектор, отображается на себя.

Задачи для повторения

- **764** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 6 см, а боковое ребро равно 3 см.
 - а) Найдите площадь сечения призмы плоскостью ABC_1 .
 - б) Докажите, что прямая A_1B_1 параллельна плоскости AC_1B .
 - в) Найдите угол, который составляет прямая $B_1 C$ с плоскостью ABC.
 - г) Найдите угол между плоскостями AB_1C и ABC.
 - д) Найдите длину вектора $\overrightarrow{BB_1} \overrightarrow{BC} + 2\overrightarrow{A_1A} \overrightarrow{C_1C}$.
 - е) Найдите объём призмы.
- **765** В правильной четырёхугольной пирамиде MABCD сторона AB основания равна $6\sqrt{2}$ см, а боковое ребро MA равно 12 см. Найдите:
 - а) площадь боковой поверхности пирамиды;
 - б) объём пирамиды;
 - в) угол наклона боковой грани к плоскости основания;
 - г) угол между боковым ребром и плоскостью основания;
 - д) скалярное произведение векторов $(\overrightarrow{AB} + \overrightarrow{AD}) \overrightarrow{AM}$;
 - е) площадь сферы, описанной около пирамиды.
- 766 В правильной треугольной пирамиде DABC высота DO равна 3 см, а боковое ребро DA равно 5 см. Найдите:
 - а) площадь полной поверхности пирамиды;
 - б) объём пирамиды;
 - в) угол между боковым ребром и плоскостью основания;
 - г) угол наклона боковой грани к плоскости основания;
 - д) скалярное произведение векторов $\frac{1}{2}(\overrightarrow{DB}+\overrightarrow{DC})\overrightarrow{MA}$, где M середина ребра BC;
 - е) радиус шара, вписанного в пирамиду.
- 767 В правильной четырёхугольной пирамиде MABCD боковое ребро MA, равное 8 см, наклонено к плоскости основания под углом 60° . Найдите:
 - а) площадь боковой поверхности пирамиды;
 - б) объём пирамиды;
 - в) угол между противоположными боковыми гранями;
 - г) угол между боковой гранью и плоскостью основания;
 - д) скалярное произведение векторов $\frac{1}{2}(\overrightarrow{MB}+\overrightarrow{MD})\overrightarrow{MK}$, где K середина ребра AB;
 - е) радиус описанного около пирамиды шара.

Задачи повышенной трудности

- 768 В основании пирамиды MABC лежит треугольник ABC, в котором $\angle C = 90^\circ$, AC = 4 см, BC = 3 см. Грань MAC перпендикулярна к плоскости основания, а две другие боковые грани составляют равные углы с плоскостью основания. Расстояние от основания высоты MH пирамиды до грани MBC равно $\frac{3\sqrt{2}}{4}$ см. Найдите площадь боковой поверхности пирамиды.
- 769 Докажите, что если одна из высот тетраэдра проходит через точку пересечения высот противоположной грани, то и остальные высоты этого тетраэдра проходят через точки пересечения высот противоположных граней.
- 770 Все плоские углы тетраэдра OABC при вершине O равны 90° . Докажите, что площадь треугольника AOB равна среднему геометрическому площадей треугольников ABC и O_1AB , где O_1 проекция точки O на плоскость ABC.
- 771 Через ребро тетраэдра проведена плоскость, разделяющая двугранный угол при этом ребре пополам. Докажите, что она делит противоположное ребро тетраэдра в отношении, равном отношению площадей граней, заключающих этот двугранный угол.
- 772 Сколько существует плоскостей, каждая из которых равноудалена от четырёх данных точек, не лежащих в одной плоскости?
- 773 Докажите, что прямая, пересекающая две грани двугранного угла, образует с ними равные углы тогда и только тогда, когда точки пересечения равноудалены от ребра.
- 774 Докажите, что сечением куба может быть правильный треугольник, квадрат, правильный шестиугольник, но не может быть правильный пятиугольник и правильный многоугольник с числом сторон более шести.
- 775 Докажите, что сумма квадратов расстояний от вершин куба до прямой, проходящей через его центр, не зависит от положения этой прямой.
- 776 Разбейте куб на шесть равных тетраэдров.
- 777 Комната имеет форму куба. Паук, сидящий в середине ребра, хочет, двигаясь по кратчайшему пути, поймать муху, сидящую в одной из самых удалённых от паука вершин куба. Как должен двигаться паук?
- 778 Докажите, что в кубе можно вырезать сквозное отверстие, через которое можно протащить куб таких же и даже больших размеров.
- 779 Площадь боковой грани правильной шестиугольной пирамиды равна S. Найдите площадь сечения пирамиды плоскостью, проходящей через середину высоты пирамиды и параллельной плоскости боковой грани.
- 780 Какую наибольшую длину может иметь ребро правильного тетраэдра, который помещается в коробку, имеющую форму куба с ребром 1 см?

- 781 Дан куб $ABCDA_1B_1C_1D_1$. Докажите, что пересечение тетраэдров AB_1CD_1 и C_1BA_1D есть правильный октаэдр.
- 782 Докажите, что из конечного числа попарно различных кубов нельзя составить прямоугольный параллелепипед.
- 783 Внутри куба с ребром 1 см расположена ломаная, причём любая плоскость, параллельная любой грани куба, пересекает её не более чем в одной точке. Докажите, что длина ломаной меньше 3 см. Докажите, что можно построить ломаную, обладающую указанным свойством, длина которой сколь угодно мало отличается от 3 см.
- 784 Отрезки AB и CD перемещаются по скрещивающимся прямым. Докажите, что объём тетраэдра ABCD при этом не изменяется.
- 785 Докажите, что центры граней правильного додекаэдра являются вершинами правильного икосаэдра.
- 786 Докажите, что центры граней правильного икосаэдра являются вершинами правильного додекаэдра.
- 787 В правильном треугольнике ABC сторона равна a. Отрезок AS длины a перпендикулярен к плоскости ABC. Найдите расстояние и угол между прямыми AB и SC.
- 788 В правильном треугольнике ABC сторона равна a. На сонаправленных лучах BD и CE, перпендикулярных к плоскости ABC, взяты точки D и E так, что $BD=\frac{a}{\sqrt{2}}$, $CE=a\sqrt{2}$. Докажите, что треугольник ADE прямоугольный, и найдите угол между плоскостями ABC
- 789 Используя векторы, докажите, что сумма квадратов четырёх диагоналей параллелепипеда равна сумме квадратов двенадцати его рёбер.
- 790 Основание *ABC* тетраэдра *OABC* прозрачное, а все остальные грани зеркальные. Все плоские углы при вершине *O* прямые. Докажите, что луч света, вошедший в тетраэдр через основание *ABC* под произвольным углом к нему, отразившись от граней, выйдет в противоположном направлении по отношению к входящему лучу. (На этом свойстве основано устройство уголкового отражателя, который, в частности, был запущен на Луну для измерения расстояния до неё с помощью лазера.)
- 791 Из точки A исходят четыре луча AB, AC, AD и AE так, что $\angle BAC = 60^\circ$, $\angle BAD = \angle DAC = 45^\circ$, а луч AE перпендикулярен к плоскости ABD. Найдите угол CAE.
- 792 Докажите, что высоты тетраэдра пересекаются в одной точке тогда и только тогда, когда его противоположные рёбра перпендикулярны.
- 793 Три боковых ребра тетраэдра равны друг другу. Докажите, что прямая, образующая равные углы с этими рёбрами и пересекающая плоскость основания, перпендикулярна к этой плоскости.
- 794 Все плоские углы тетраэдра OABC при вершине O прямые. Докажите, что проекция вершины O на плоскость ABC есть точка пересечения высот треугольника ABC.

- 795 Из точки сферы проведены три попарно перпендикулярные хорды. Докажите, что сумма их квадратов не зависит от положения этих хорд.
- 796 Найдите множество центров всех сечений шара плоскостями, проходящими через данную прямую, не пересекающую шар.
- 797 Найдите множество всех таких точек, из которых можно провести к данной сфере три попарно перпендикулярные касательные прямые.
- 798 В тетраэдр с высотами h_1 , h_2 , h_3 , h_4 вписан шар радиуса R. Докажите, что $\frac{1}{R}=\frac{1}{h_1}+\frac{1}{h_2}+\frac{1}{h_3}+\frac{1}{h_4}$.
- 799 Какому условию должны удовлетворять радиусы трёх шаров, попарно касающихся друг друга, чтобы к ним можно было провести общую касательную плоскость?
- 800 На плоскости лежат четыре шара радиуса R, причём три из них попарно касаются друг друга, а четвёртый касается двух из них. На эти шары положены сверху два шара меньшего радиуса r, касающиеся друг друга, причём каждый из них касается трёх больших шаров. Найдите радиус маленьких шаров.
- 801 На плоскости лежат три шара радиуса R, попарно касающиеся друг друга. Основание конуса лежит в указанной плоскости, а данные шары касаются его извне. Высота конуса равна λR . Найдите радиус его основания.
- 802 Плоскости AB_1C_1 и A_1BC разбивают треугольную призму $ABCA_1B_1C_1$ на четыре части. Найдите отношение объёмов этих частей.
- 803 Докажите, что объём тетраэдра равен $\frac{1}{6}abc\sin\varphi$, где a и b противоположные рёбра, а φ и c соответственно угол и расстояние между ними.
- 804 Докажите, что плоскость, проходящая через ребро и середину противоположного ребра тетраэдра, разделяет его на две части, объёмы которых равны.
- 805 Основанием пирамиды OABCD является параллелограмм ABCD. В каком отношении делит объём пирамиды плоскость, проходящая через прямую AB и среднюю линию грани OCD?
- 806 Даны три параллельные прямые, не лежащие в одной плоскости. На одной из них взят отрезок AB, а на двух других точки C и D соответственно. Докажите, что объём тетраэдра ABCD не зависит от выбора точек C и D.
- 807 Точки E и F середины рёбер DC и BB_1 куба $ABCDA_1B_1C_1D_1$ с ребром 1 см. Найдите объём тетраэдра AD_1EF .

808 В двух параллельных плоскостях взяты два многоугольника. Их вершины соединены отрезками так, что у полученного многогранника все боковые грани — трапеции, треугольники и параллелограммы. Докажите, что

$$V = \frac{h}{6}(S_1 + S_2 + 4S_3),$$

где V — объём многогранника, h — его высота, S_1 и S_2 — площади оснований, а S_3 — площадь сечения плоскостью, параллельной плоскостям оснований и равноудалённой от них.

- 809 Два равных цилиндра, высоты которых больше их диаметров, расположены так, что их оси пересекаются под прямым углом и точка пересечения осей равноудалена от оснований цилиндров. Найдите объём общей части этих цилиндров, если радиус каждого из них равен 1 см.
- 810 Вокруг данного шара описан конус с углом α при вершине осевого сечения. При каком значении α конус имеет наименьший объём?
- 811 В конус вписан шар. Докажите, что отношение объёмов конуса и шара равно отношению площадей полной поверхности конуса и сферы, являющейся границей шара.
- 812 Правильная четырёхугольная пирамида, у которой сторона основания равна *a*, а плоский угол при вершине равен α, вращается вокруг прямой, проходящей через вершину параллельно стороне основания. Найдите объём полученного тела вращения.
- 813 Шар образован вращением полукруга вокруг прямой, содержащей диаметр. При этом поверхность, образованная вращением некоторой хорды, один конец которой совпадает с концом данного диаметра, разбивает шар на две равные по объёму части. Найдите косинус угла между этой хордой и диаметром.
- 814 Все высоты тетраэдра пересекаются в точке H. Докажите, что точка H, центр O описанной сферы и точка G пересечения отрезков, соединяющих вершины с точками пересечения медиан противоположных граней тетраэдра, лежат на одной прямой (прямая Эйлера), причём точки O и H симметричны относительно точки G.
- 815 Дан тетраэдр, все высоты которого пересекаются в одной точке. Докажите, что точки пересечения медиан всех граней, основания высот тетраэдра и точки, которые делят каждый из отрезков, соединяющих точку пересечения высот с вершинами, в отношении 2:1, считая от вершины, лежат на одной сфере, центр которой расположен на прямой Эйлера (сфера Эйлера).

Глава VIII* Некоторые сведения из планиметрии

Углы и отрезки, связанные с окружностью

85 Угол между касательной и хордой

Мы знаем, что вписанный угол измеряется половиной дуги, на которую он опирается. Докажем теорему об угле между касательной и хордой.

Теорема

Угол между касательной и хордой, проходящей через точку касания, измеряется половиной заключённой в нём дуги.

Доказательство

Пусть AB — данная хорда, CC_1 — касательная, проходящая через точку A. Если AB — диаметр (рис. 196, a), то заключённая внутри угла BAC (и также угла BAC_1) дуга является полуокружностью. С другой стороны, углы BAC и BAC_1 в этом случае — прямые, поэтому утверждение теоремы верно.

Пусть теперь хорда AB не является диаметром. Ради определённости будем считать, что точки C и C_1 на касательной выбраны так, что угол CAB — острый, и обозначим буквой α величину заключённой в нём дуги (рис. 196, δ). Проведём диаметр AD и заметим, что треугольник ABD — прямоугольный, поэтому $\angle ADB = 90^{\circ} - \angle DAB = \angle BAC$. Поскольку угол ADB — вписанный, то $\angle ADB = \frac{\alpha}{2}$, а значит, и $\angle BAC = \frac{\alpha}{2}$. Итак, угол BAC

 $\frac{1}{2}$, и опачит, и $\frac{1}{2}$ $\frac{1}{2}$. Итак, угол $\frac{1}{2}$ между касательной AC и хордой AB измеряется

половиной заключённой в нём дуги. Аналогичное утверждение верно в отношении угла BAC_1 . Действительно, углы BAC и

$$\angle BAC_1 = 180^{\circ} - \frac{\alpha}{2} = \frac{360^{\circ} - \alpha}{2}$$
.

 BAC_1 — смежные, поэтому

Рис. 196

С другой стороны, $(360^{\circ}-\alpha)$ — это величина дуги ADB, заключённой внутри угла BAC_1 . Теорема доказана.

86 Две теоремы об отрезках, связанных с окружностью

Из теоремы о вписанном угле следует, что вписанные углы, опирающиеся на одну и ту же дугу, равны. Воспользуемся этим наблюдением для доказательства теоремы об отрезках пересекающихся хорд.

Теорема 1

Произведение отрезков одной из двух пересекающихся хорд равно произведению отрезков другой хорды.

Доказательство

Пусть хорды AB и CD пересекаются в точке E (рис. 197). Докажем, что $AE \cdot BE = CE \cdot DE$.

Треугольники ADE и CBE подобны по первому признаку подобия треугольников: $\angle 1 = \angle 2$, так как эти вписанные углы опираются на одну и ту же дугу BD, углы 3 и 4 равны как вертикальные.

Следовательно,
$$\frac{AE}{CE} = \frac{DE}{BE}$$
, или $AE \cdot BE = CE \cdot DE$.

Теорема доказана.

Важным следствием из теоремы об угле между касательной и хордой является теорема о квадрате касательной.

Рис. 197

Теорема 2

Если через точку M проведены секущая, пересекающая окружность в точках A и B, и касательная MK (K — точка касания), то $MA \cdot MB = MK^2$.

Кратко эту теорему формулируют так: произведение секущей на её внешнюю часть равно квадрату касательной.

Доказательство

Проведём отрезки AK и BK (рис. 198). Треугольники AKM и KBM подобны: угол M у них — общий, а углы AKM и B равны, так как

Рис. 198

Некоторые сведения из планиметрии каждый из них измеряется половиной дуги AK. Следовательно, $\frac{MK}{MA} = \frac{MB}{MK}$, или $MA \cdot MB = MK^2$.

Теорема доказана.

Замечание

Из доказанной теоремы следует, что если точка M лежит вне окружности и через неё проведена секущая, пересекающая окружность в точках A и B, то произведение $MA \cdot MB$ не зависит от положения секущей — это произведение равно квадрату касательной, проведённой из точки M. С другой стороны, квадрат касательной MK равен $OM^2 - R^2$, где O — центр окружности, R — её радиус (рис. 199, a). Итак,

$$MA \cdot MB = OM^2 - R^2. \tag{1}$$

Рассмотрим теперь точку M, лежащую внутри окружности. Проведём через неё какуюнибудь хорду AB (рис. 199, δ). Из теоремы 1 следует, что произведение $MA \cdot MB$ не зависит от положения хорды — оно равно произведению отрезков диаметра, проходящего через точку M, т. е. равно $(R+OM)\cdot(R-OM)=R^2-OM^2$. Итак, в этом случае

$$MA \cdot MB = R^2 - OM^2. \tag{2}$$

Формулы (1) и (2) похожи друг на друга. Если воспользоваться скалярным произведением векторов, то их можно объединить в одну формулу:

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = OM^2 - R^2$$
.

87 Углы с вершинами внутри и вне круга

Теоремы о вписанном угле и об угле между касательной и хордой позволяют выразить углы с вершинами внутри и вне круга через заключённые внутри них дуги. Рассмотрим примеры таких углов.

Угол между двумя пересекающимися хордами измеряется полусуммой заключённых между ними дуг.

В самом деле, рассмотрим хорды AC и BD, пересекающиеся в точке M, и проведём хорду BC (рис. 200). Так как $\angle AMB$ — внешний угол

Рис. 199

Рис. 200

треугольника BMC, то $\angle AMB = \angle 1 + \angle 2$. По теореме о вписанном угле $\angle 1 = \frac{1}{2} \cup CLD$, $\angle 2 = \frac{1}{2} \cup AKB$, поэтому

$$\angle AMB = \frac{1}{2} (\bigcirc CLD + \bigcirc AKB),$$

что и требовалось доказать.

Угол между двумя секущими, проведёнными из одной точки, измеряется полуразностью заключённых внутри него дуг.

Обратимся к рисунку 201. Угол 1—внешний угол треугольника AMQ, поэтому $\angle 1 =$ $= \angle 2 + \angle AMB$. Поскольку углы 1 и 2—вписанные, то $\angle 1 = \frac{1}{2} \cup AB$, $\angle 2 = \frac{1}{2} \cup PQ$. Следовательно,

$$\angle AMB = \frac{1}{2} (\cup AB - \cup PQ),$$

что и требовалось доказать.

Угол между касательной и секущей, проведёнными из одной точки, измеряется полуразностью заключённых внутри него дуг.

Обратимся к рисунку 202, a. Угол 1 является внешним углом треугольника AMK, поэтому $\angle 1 = \angle 2 + \angle AMK$. По теореме об угле между касательной и хордой $\angle 1 = \frac{1}{2} \cup AK$, а по теореме о вписанном угле $\angle 2 = \frac{1}{2} \cup BK$. Следовательно,

$$\angle AMK = \frac{1}{2} (\cup AK - \cup BK),$$

что и требовалось доказать.

Угол между двумя касательными, проведёнными из одной точки, равен 180° минус величина заключённой внутри него дуги, меньшей полуокружности.

В самом деле, поскольку отрезки касательных, проведённые из одной точки, равны, то треугольник KML на рисунке 202, σ равнобедренный. По теореме об угле между касательной и хордой сумма углов K и L при его основании равна G

$$\angle KML = 180^{\circ} - \bigcirc KL$$
.

что и требовалось доказать.

Рис. 201

Рис. 202

б)

88 Вписанный четырёхугольник

Напомним, что многоугольник, все вершины которого лежат на окружности, называется вписанным в окружность, а окружность — описанной около этого многоугольника.

В отличие от треугольника около четырёхугольника не всегда можно описать окружность. Если же около четырёхугольника можно описать окружность, то такой четырёхугольник является выпуклым (докажите это), а его углы обладают следующим замечательным свойством: в любом вписанном четырёхугольнике сумма противоположных углов равна 180°.

Это свойство легко установить, если обратиться к рисунку 203 и воспользоваться теоремой о вписанном угле. В самом деле,

$$\angle A = \frac{1}{2} \cup BCD, \ \angle C = \frac{1}{2} \cup BAD,$$

поэтому

$$\angle A + \angle C = \frac{1}{2}(\neg BCD + \neg BAD) = \frac{1}{2} \cdot 360^{\circ} = 180^{\circ}.$$

Оказывается, верно и обратное утверждение (признак вписанного четырёхугольника): если сумма противоположных углов четырёхугольника равна 180°, то около него можно описать окружность.

Действительно, рассмотрим выпуклый четырёхугольник ABCD, в котором $\angle A + \angle C = 180^\circ$, и докажем, что вершина C лежит на окружности, проходящей через точки A, B и D (см. рис. 203).

Предположим, что это не так. Тогда прямые CB и CD либо являются касательными к указанной окружности (рис. 204, a), либо хотя бы одна из них, например прямая CB, является секущей по отношению к этой окружности (рис. 204, δ , δ).

Рассмотрим эти случаи в отдельности. Если прямые CB и CD — касательные, то $\angle C = 180^{\circ} - \bigcirc BD$ (см. п. 87), поэтому

$$\angle A + \angle C = \frac{1}{2} \cup BD + 180^{\circ} - \cup BD =$$

= $180^{\circ} - \frac{1}{2} \cup BD < 180^{\circ},$

а это противоречит условию.

Рис. 203

Рис. 204

Если же прямая CB — секущая, то она пересекает окружность ещё в одной точке E (см. рис. 204, δ , δ). Поскольку четырёхугольник ABED — вписанный, то $\angle A + \angle E = 180^\circ$. Но $\angle E \neq \angle C$, так как один из этих углов является углом треугольника DCE, а другой — внешним углом этого треугольника. Следовательно, в этом случае $\angle A + \angle C \neq 180^\circ$, и мы снова приходим к противоречию с условием.

Таким образом, вершина C лежит на окружности, проходящей через точки A, B и D, что и требовалось доказать.

Замечание

Из доказанного утверждения, в частности, следует, что если углы A и C четырёхугольника ABCD прямые, то около него можно описать окружность, причём диагональ AC является диаметром этой окружности (объясните почему). Иными словами, точки B и D лежат на окружности с диаметром AC. Справедливо и более общее утверждение: множество точек плоскости, состоящее из двух данных точек A и B и всех таких точек M, для которых угол AMB—прямой, представляет собой окружность с диаметром AB.

В самом деле, поскольку для любой точки M окружности с диаметром AB, отличной от A и B, вписанный угол AMB — прямой (рис. 205), то любая точка этой окружности принадлежит указанному множеству. Осталось доказать, что если точка M принадлежит рассматриваемому множеству, то она лежит на окружности с диаметром AB. Докажем это.

Рассмотрим окружность, описанную около треугольника AMB (см. рис. 205). Угол AMB, вписанный по отношению к этой окружности, — прямой, поэтому отрезок AB — её диаметр. Таким образом, точка M лежит на окружности с диаметром AB, что и требовалось доказать.

Отметим, что множество всех точек, обладающих каким-либо геометрическим свойством, иногда называют геометрическим местом точек. Можно сказать, в частности, что геометрическим местом точек M, для которых угол AMB прямой (A и B — данные точки), является окружность с диаметром AB, из которой удалены точки A и B.

Рис. 205

89 Описанный четырёхугольник

Напомним, что многоугольник, все стороны которого касаются окружности, называется описанным около окружности, а окружность — вписанной в этот многоугольник.

В отличие от треугольника не в любой четырёхугольник можно вписать окружность. Если же в четырёхугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством: в любом описанном четырёхугольнике суммы противоположных сторон равны.

В самом деле, обратимся к рисунку 206, на котором одними и теми же буквами обозначены равные отрезки касательных. Мы видим, что

$$AB + CD = a + b + c + d$$
, $BC + AD = a + b + c + d$, поэтому $AB + CD = BC + AD$.

Справедливо и обратное утверждение (признак описанного четырёхугольника): если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.

Действительно, рассмотрим выпуклый четырёхугольник ABCD, в котором AB+CD=BC+AD. Точка O пересечения биссектрис углов A и B равноудалена от сторон AB, AD и BC, поэтому можно провести окружность с центром O, касающуюся указанных трёх сторон (рис. 207, a). Докажем, что эта окружность касается также стороны CD и, значит, является вписанной в четырёхугольник ABCD.

Предположим, что это не так. Тогда прямая CD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (рис. 207, б). Проведём касательную C'D', параллельную стороне CD (C' и D' — точки пересечения касательной со сторонами BC и AD). Так как ABC'D' — описанный четырёхугольник, то AB + C'D' = BC' + AD', или

$$AB + C'D' = BC - C'C + AD - D'D$$
.

Заменяя в правой части этого равенства сумму BC + AD на сумму AB + CD, приходим к равенству C'D' + C'C + D'D = CD, т. е. в четырёхугольнике C'CDD' одна сторона равна сумме трёх других сторон. Но этого не может быть, и, значит, наше предположение (о том, что прямая CD и окружность не имеют общих точек) неверно.

Рис. 206

Рис. 207

Аналогично доказывается, что прямая CD не может быть секущей по отношению к окружности. Следовательно, окружность касается стороны CD, что и требовалось доказать.

Задачи

- 816 Через точку D, лежащую на радиусе OA окружности с центром O, проведена хорда BC, перпендикулярная к OA, а через точку B проведена касательная к окружности, пересекающая прямую OA в точке E. Докажите, что луч BA биссектриса угла CBE.
- 817 Две окружности имеют единственную общую точку M. Через эту точку проведены две секущие, пересекающие одну окружность в точках A и A_1 , а другую в точках B и B_1 . Докажите, что $AA_1 \parallel BB_1$.
- 818 Прямая AC касательная к окружности с центром O_1 , а прямая BD касательная к окружности с центром O_2 (рис. 208). Докажите, что: а) $AD \parallel BC$; б) $AB^2 = AD \cdot BC$; в) $BD^2 : AC^2 = AD : BC$.
- 819 Точка M лежит внутри четырёхугольника ABCD. Докажите, что $\angle AMD = \angle ABM + \angle MCD$ тогда и только тогда, когда окружности, описанные около треугольников ABM и MCD, имеют в точке M общую касательную.
- 820 Окружность касается сторон AB и AC треугольника ABC и пересекает сторону BC в точках P и Q, BP = CQ. Докажите, что треугольник ABC равнобедренный.
- 821 Окружность отсекает на двух прямых, которые пересекаются в точке, не лежащей на окружности, равные хорды. Докажите, что расстояния от точки пересечения этих прямых до концов той и другой хорды соответственно равны между собой.
- 822 Через точку K, лежащую на окружности с центром O, проведены хорда KA и касательная KB, а через точку O проведена прямая, перпендикулярная к прямой OA и пересекающая хорду KA в точке M, а касательную KB— в точке N. Докажите, что NK = NM.
- 823 Точки B_1 и C_1 середины дуг AB и AC (рис. 209). Докажите, что AM = AN.
- 824 Точки A, B, C и D лежат на одной окружности, луч BD содержит биссектрису BM треугольника ABC. Докажите, что $\angle AMD = \angle BAD$.
- 825 Хорды AB и CD взаимно перпендикулярны, луч AB является биссектрисой угла DAE. Докажите, что $AE \perp BC$. Рассмотрите все возможные случаи.
- 826 Отрезки AA_1 и BB_1 высоты треугольника ABC. Докажите, что точки A, B, A_1 и B_1 лежат на одной окружности.

Рис. 208

Рис. 209

- 827 Докажите, что если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов противоположных сторон четырёхугольника равна квадрату диаметра описанной окружности.
- 828 В четырёхугольнике ABCD, вписанном в окружность, биссектрисы углов A и B пересекаются в точке, лежащей на стороне CD. Докажите, что CD = BC + AD.
- **829** Докажите, что в любом четырёхугольнике, вписанном в окружность, произведение диагоналей равно сумме произведений противоположных сторон (теорема Птолемея).
- 830 На окружности даны четыре точки A, B, C и D в указанном порядке. Точка M середина дуги AB, K точка пересечения хорд AB и MD, E точка пересечения хорд AB и MC. Докажите, что около четырёхугольника CDKE можно описать окружность.
- 831 Противоположные стороны выпуклого четырёхугольника продолжены до пересечения. Докажите, что около четырёхугольника можно описать окружность тогда и только тогда, когда биссектрисы образовавшихся углов взаимно перпендикулярны.
- 832 Докажите, что в выпуклый многоугольник можно вписать окружность тогда и только тогда, когда окружности, вписанные в два треугольника, на которые он разделяется диагональю, касаются этой диагонали в одной точке.
- 833 Докажите, что площадь прямоугольной трапеции, описанной около окружности, равна произведению её оснований.
- 834 В трапецию ABCD с основаниями AB и CD (AB > CD) вписана окружность. Найдите площадь трапеции, если CD = a, DK = b и AK = d, где K точка касания окружности и стороны AD.
- 835 На каждой из сторон выпуклого четырёхугольника отмечены две точки. Эти точки соединены отрезками так, как показано на рисунке 210. Известно, что в каждый из закрашенных четырёхугольников можно вписать окружность. Докажите, что и в исходный четырёхугольник можно вписать окружность.

Рис. 210

Решение треугольников

90 Теорема о медиане

Напомним, что решением треугольника называется нахождение его элементов по трём данным элементам, определяющим треугольник. Для решения треугольников используются, как правило, теоремы синусов и косинусов. Приведём пример теоремы, доказательство которой основано на решении треугольников.

Теорема

Квадрат медианы AM треугольника ABC выражается формулой $AM^2 = \frac{AB^2}{2} + \frac{AC^2}{2} - \frac{BC^2}{4}$.

Доказательство

Эная стороны треугольника ABC, можно найти, например, косинус угла B. Для этого нужно воспользоваться теоремой косинусов (рис. 211): $AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cos B$, откуда

$$\cos B = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC}.$$

Рассмотрим теперь треугольник ABM. Учитывая, что $BM = \frac{BC}{2}$, по теореме косинусов находим:

Рис. 211

$$\begin{split} AM^2 &= AB^2 + \frac{BC^2}{4} - 2AB \cdot \frac{BC}{2} \cdot \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \\ &= \frac{AB^2}{2} + \frac{AC^2}{2} - \frac{BC^2}{4} \,. \end{split}$$

Теорема доказана.

Следствие

Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

В самом деле, рассмотрим параллелограмм ABCD, диагонали которого пересекаются в точке O (рис. 212). Поскольку диагонали параллелограмма точкой пересечения делятся пополам, то отрезок AO, равный половине AC, является медианой треугольника ABD. Следовательно,

$$AC^2 = 4AO^2 = 2AB^2 + 2AD^2 - BD^2$$

откуда

$$AC^2 + BD^2 = 2AB^2 + 2AD^2 = AB^2 + CD^2 + AD^2 + BC^2$$
,

что и требовалось доказать.

Рис. 212

91 Теорема о биссектрисе треугольника

Теорема

Биссектриса треугольника делит его сторону на части, пропорциональные двум другим сторонам.

Доказательство

Пусть AD — биссектриса треугольника

$$ABC$$
. Докажем, что $\frac{DB}{AB} = \frac{DC}{AC}$ (рис. 213).

Рассмотрим сначала треугольник АВД.

По теореме синусов $\frac{DB}{\sin \angle 1} = \frac{AB}{\sin \angle 3}$, откуда

$$\frac{DB}{AB} = \frac{\sin \angle 1}{\sin \angle 3}.$$

Рис. 213

Аналогично, рассматривая треугольник ACD, получаем:

$$\frac{DC}{AC} = \frac{\sin \angle 2}{\sin \angle 4}.$$

 $Ho\ \angle 2=\angle 1$ по условию, $\angle 4=180^{\circ}-\angle 3$, поэтому $\sin\angle 2=\sin\angle 1$ и $\sin\angle 4=\sin\angle 3$. Следовательно, $\frac{DB}{AB}=\frac{DC}{AC}$. Теорема доказана.

Следствие

В треугольнике ABC со сторонами AB=c, BC=a, CA=b и биссектрисой AD имеют место равенства:

$$DB = \frac{ac}{b+c}, \quad DC = \frac{ab}{b+c}.$$
 (1)

В самом деле, из доказанной теоремы следует, что $DB \cdot b = DC \cdot c$. Кроме того, DB + DC = a. Выражая из этих двух равенств DB и DC, приходим к формулам (1).

Воспользуемся этим следствием для решения следующей задачи.

Задача

Выразить биссектрису AD треугольника ABC через стороны AB=c, AC=b и угол A.

Решение

Пусть BC = a. Применяя теорему косинусов к треугольнику ABD и используя первую формулу из (1), получаем (см. рис. 213):

$$\frac{a^2c^2}{(b+c)^2} = AD^2 + c^2 - 2c \ AD \cos \frac{A}{2}.$$
 (2)

Аналогично из треугольника ACD на-

ходим:

$$\frac{a^2b^2}{(b+c)^2} = AD^2 + b^2 - 2b \ AD \cos \frac{A}{2}.$$
 (3)

Умножая равенства (2) и (3) соответственно на b^2 и $-c^2$, а затем складывая их, приходим к равенству

$$0 = AD^{2}(b+c)(b-c) - 2bc(b-c)AD\cos\frac{A}{2}.$$

Таким образом, при $b \neq c$ получаем:

$$AD = \frac{2bc}{b+c}\cos\frac{A}{2}. (4)$$

Формула (4) верна и при b=c (проверьте это самостоятельно).

Замечания

1. Пусть K — точка пересечения прямой, проходящей через точку D перпендикулярно к AD, с большей из сторон AB и AC (со стороной AC на рисунке 214). Из формулы (4) следует, что длина отрезка AK зависит только от длин этих сторон и не зависит от величины угла A:

$$AK = \frac{AD}{\cos \frac{A}{2}} = \frac{2bc}{b+c}$$
. Этот факт можно усмотреть

и непосредственно. В самом деле, пусть AE = AB. Тогда отрезок DK — биссектриса треугольника DCE (докажите это самостоятельно). Следовательно,

$$\frac{AK-c}{b-AK} = \frac{EK}{KC} = \frac{DE}{DC} = \frac{DB}{DC} = \frac{c}{b},$$

откуда $AK = \frac{2bc}{b+c}$.

2. Если величину $\cos \frac{A}{2}$ выразить из формулы (4) и подставить в формулу (2), то полу-

Рис. 214

чится формула, связывающая биссектрису AD со сторонами треугольника:

$$AD^2 = bc - \frac{a^2bc}{(b+c)^2}.$$

С учётом формулы (1) она принимает совсем простой вид:

$$AD^2 = AB \cdot AC - DB \cdot DC$$
.

92 Формулы площади треугольника

Теорема 1

Площадь S треугольника выражается формулой

$$S = pr, (5)$$

где p — полупериметр треугольника, r — радиус вписанной в него окружности.

Доказательство

Соединим вершины треугольника с центром вписанной в него окружности (рис. 215). Тогда треугольник окажется разделённым на три треугольника, площадь каждого из которых равна половине произведения соответствующей стороны на радиус r вписанной окружности. Складывая эти

площади и вынося общий множитель $\frac{r}{2}$ за скобки,

приходим к формуле (5). Теорема доказана.

Итак, мы получили формулу, связывающую площадь треугольника с радиусом вписанной в него окружности. Чтобы найти формулу, связывающую площадь треугольника с радиусом описанной около него окружности, докажем следующую теорему, уточняющую теорему синусов.

Рис. 215

Теорема 2

В треугольнике ABC со сторонами AB = c, BC = a и CA = b имеют место равенства

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,$$

где R — радиус окружности, описанной около треугольника ABC.

Доказательство

В треугольнике АВС хотя бы один из углов — острый. Пусть, например, острым является угол A. Проведём диаметр BD (рис. 216) и рассмотрим треугольник DBC. Угол C этого треугольника — прямой, $\angle D = \angle A$, поскольку указанные вписанные углы опираются на одну и ту же дугу BC. Следовательно, $a = BC = BD \sin A = 2R \sin A$, откуда $\frac{a}{\sin A} = 2R$. Пользуясь теоремой синусов,

Рис. 216

получаем:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$

Теорема доказана.

Следствие 1

Площадь S треугольника со сторонами a, b и c выражается формулой

 $S=\frac{abc}{AR},$ (6)

где *R* — радиус описанной около него окружности.

В самом деле, если A — угол, противолежащий стороне a, то $S = \frac{1}{2}bc \sin A$, a $\sin A = \frac{a}{2B}$, откуда и получается указанная формула.

Следствие 2

Площадь S треугольника ABC выражается формулой $S = 2R^2 \sin A \sin B \sin C$.

где R — радиус описанной около него окружности.

Для доказательства этого утверждения достаточно воспользоваться формулой (6) и теоремой 2.

93 Формула Герона

В этом пункте мы выведем формулу площади S треугольника со сторонами a, b и c, которую связывают с именем древнегреческого математика и инженера Герона Александрийского (ок. I в. н. э.): $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$ — полупериметр треугольника.

Рассмотрим треугольник ABC со сторонами AB=c, BC=a и CA=b и выразим его площадь S через a, b и c. Поскольку

$$S = \frac{1}{2} bc \sin A, \tag{7}$$

то достаточно найти $\sin A$. Это можно сделать, пользуясь теоремой косинусов и основным тригонометрическим тождеством. В самом деле, из тео-

ремы косинусов следует, что
$$\cos A = \frac{1}{2bc}(b^2 + c^2 - a^2)$$
.

Учитывая, что $\sin A \ge 0$, из основного тригонометрического тождества находим:

$$\sin A = \sqrt{1 - \cos^2 A} = \frac{1}{2bc} \sqrt{4b^2c^2 - (b^2 + c^2 - a^2)^2}.$$

Подкоренное выражение можно разложить на множители следующим образом:

$$(2bc + b^2 + c^2 - a^2)(2bc - b^2 - c^2 + a^2) =$$

$$= (b + c + a)(b + c - a)(a - b + c)(a + b - c) =$$

$$= 2p \cdot 2(p - a) \cdot 2(p - b) \cdot 2(p - c).$$

Подставляя полученное выражение для $\sin A$ в формулу (7), приходим к формуле Герона.

Замечание

Пусть h_a , h_b и h_c — высоты треугольника, проведённые к сторонам a, b и c, S — его площадь, R и r — радиусы описанной и вписанной окружностей. Поскольку

$$h_a = \frac{2S}{a}$$
, $h_b = \frac{2S}{b}$, $h_c = \frac{2S}{c}$, $R = \frac{abc}{4S}$, $r = \frac{2S}{a+b+c}$

(см. п. 92), то формула Герона позволяет выразить величины $h_a,\ h_b,\ h_c,\ R$ и r через стороны треугольника.

94 Задача Эйлера

В этом пункте мы приведём решение одной из красивейших задач геометрии, получившей название задача Эйлера. Начнём, однако, с такого определения: центральным подобием (гомотетией) с центром O и коэффициентом $k \neq 0$ называется отображение плоскости на себя, при котором каждая точка M переходит в такую точку M_1 , что $\overrightarrow{OM_1} = \overrightarrow{kOM}$.

208

Нетрудно доказать, что если при центральном подобии с коэффициентом k точки A и B переходят в точки A_1 и B_1 , то $\overrightarrow{A_1B} = k\overrightarrow{AB}$.

В самом деле,

$$\overrightarrow{A_1B_1} = \overrightarrow{OB_1} - \overrightarrow{OA_1} = k\overrightarrow{OB} - k\overrightarrow{OA} = k(\overrightarrow{OB} - \overrightarrow{OA}) = k\overrightarrow{AB}.$$

Из этого следует, что при центральном подобии прямая, проходящая через точку O, переходит в себя, не проходящая через точку O — в параллельную ей прямую, отрезок переходит в отрезок, треугольник — в подобный ему треугольник, а окружность с центром C радиуса r — в окружность с центром C_1 радиуса |k|r, где $\overrightarrow{OC}_1 = \overrightarrow{kOC}$. Докажите эти утверждения самостоятельно.

Перейдём теперь к задаче Эйлера.

Задача Эйлера

Доказать, что в произвольном треугольнике:

- 1) точки, симметричные точке H пересечения высот (или их продолжений) относительно сторон треугольника и их середин, лежат на описанной окружности;
- 2) середины сторон, основания высот и середины отрезков, соединяющих точку H с вершинами, лежат на одной окружности, центром которой является середина отрезка, соединяющего точку H с центром описанной окружности, а её радиус в два раза меньше радиуса описанной окружности (эта окружность называется окружностью Эйлера);
- 3) точка пересечения медиан лежит на отрезке, соединяющем точку H с центром описанной окружности, и делит этот отрезок в отношении 1:2, считая от центра описанной окружности (прямая, на которой лежат четыре точки точка H, точка пересечения медиан, центр описанной окружности и центр окружности Эйлера, называется прямой Эйлера);
- 4) точки, симметричные центру описанной окружности относительно прямых, содержащих средние линии треугольника, лежат на окружности Эйлера.

Решение

Пусть ABC — данный треугольник (рис. 217). Условимся о следующих обозначениях:

G — точка пересечения медиан, O — центр описанной окружности, R — её радиус, A_1 , B_1 и C_1 — середины сторон BC, CA и AB, A_2 , B_2 и C_2 — основания высот, проведённых к этим сторонам, A_3 , B_3 и C_3 — середины отрезков AH, BH и CH, A_4 , B_4 и C_4 — точки, симметричные точке H относительно сторон треугольника, A_5 , B_5 и C_5 — точки, симметричные точке H относительно середин этих сторон, A_6 , B_6 и C_6 — точки, симметричные точке O относительно прямых C_5 0 — середин этих сторон, C_6 1 — середин этих сторон, C_6 2 — середин этих сторон, C_6 3 — середин этих сторон, C_6 4 — середин этих сторон, C_6 5 — точки, симметричные точке C_6 6 — точки, симметричные точке C_6 7 — точки, симметричные точке C_6 8 — точки, симметричные точке C_6 9 — точки C_6 9 — точки C

1) Если один из углов треугольника ABC, например угол A, — прямой, то точки H, B_4 и C_4

совпадают с точкой A, точка B_5 — с точкой C, а точка C_5 — с точкой B. Поскольку $\angle BA_4C=$ = $\angle BA_5C=\angle A=90^\circ$, то точки A, A_4 и A_5 лежат на окружности с диаметром BC (см. п. 88). Таким образом, точки A_4 , A_5 , B_4 , B_5 , C_4 , C_5 лежат на окружности, описанной около треугольника ABC.

Допустим, что треугольник ABC не является прямоугольным. Поскольку $\angle AB_2H=$ = $\angle AC_2H=90^\circ$, то точки B_2 и C_2 лежат на окружности с диаметром AH (см. п. 88). Следовательно, вписанные по отношению к этой окружности углы B_2AC_2 и B_2HC_2 , а значит, и углы BAC и BHC, либо равны, либо составляют в сумме 180° . И в том, и в другом случае $\sin \angle BHC = \sin \angle BAC$.

Пусть R_1 — радиус окружности, описанной около треугольника HBC. В соответствии с теоремой 2 из п. 92 $BC = 2R_1 \sin \angle BHC = 2R \sin \angle BAC$. Но $\sin \angle BHC = \sin \angle BAC$. Значит, $R_1 = R$. Из этого следует, что окружности, описанные около треугольников ABC и HBC, симметричны относительно прямой BC и относительно середины отрезка BC. Точка H лежит на окружности, описанной около треугольника HBC. Следовательно, симметричные ей точки A_4 и A_5 лежат на окружности, описанной около треугольника ABC. Аналогично доказывается, что точки B_4 , B_5 , C_4 и C_5 также лежат на этой окружности.

2) Рассмотрим центральное подобие с центром H и коэффициентом $\frac{1}{2}$. При этом подобии описанная окружность переходит в окружность радиуса $\frac{R}{2}$, центр O_9 которой является се-

рединой отрезка OH (см. рис. 217), а точки A_5 , B_5 , C_5 , A_4 , B_4 , C_4 , A, B, C описанной окружности переходят соответственно в точки A_1 , B_1 , C_1 (середины сторон), A_2 , B_2 и C_2 (основания высот), A_3 , B_3 и C_3 (середины отрезков AH, BH, CH). Следовательно, точки A_1 , B_1 , C_1 , A_2 , B_2 , C_2 , A_3 , B_3 , C_3 лежат на окружности с центром O_9 радиуса $\frac{R}{2}$.

3) Рассмотрим теперь центральное подобие с центром G и коэффициентом $-\frac{1}{2}$. Медианы треугольника ABC делятся точкой G в отно-

шении 1:2, поэтому при рассматриваемом центральном подобии вершины A, B и C перейдут в середины A_1 , B_1 и C_1 противоположных сторон. Следовательно, прямые, содержащие высоты треугольника, перейдут в прямые, перпендикулярные к его сторонам и проходящие через их середины, т. е. в серединые перпендикуляры к сторонам. Поэтому точка H перейдёт в центр O описанной окружности. Это означает, что точка G лежит на отрезке OH и делит его в отношении 1:2, считая от точки O, что и требовалось доказать.

4) Как только что отмечалось, при центральном подобии с центром G и коэффициентом $-\frac{1}{2}$ вершины $A,\ B$ и C переходят в середи-

ны A_1 , B_1 и C_1 противоположных сторон, а точка H переходит в точку O. Из этого следует, что: а) окружность, описанная около треугольника ABC, переходит в окружность Эйлера; б) точки A_4 , B_4 и C_4 описанной окружности, симметричные точке H относительно прямых BC, CA и AB, переходят в точки A_6 , B_6 и C_6 окружности Эйлера, симметричные точке O относительно прямых B_1C_1 , C_1A_1 и A_1B_1 . Таким образом, точки A_6 , B_6 и C_6 лежат на окружности Эйлера.

Задачи

- 836 На стороне BC треугольника ABC отмечена точка D так, что BD:AB=DC:AC. Докажите, что отрезок AD биссектриса треугольника ABC.
- 837 Биссектриса внешнего угла при вершине A треугольника ABC пересекает прямую BC в точке D. Докажите, что BD:AB=DC:AC.
- 838 Биссектрисы AA_1 , BB_1 и CC_1 треугольника ABC со сторонами AB=c, BC=a и CA=b пересекаются в точке O. а) Найдите отношения $\frac{AO}{OA_1}$, $\frac{BO}{OB_1}$, $\frac{CO}{OC_1}$. б) Докажите, что $\frac{AO}{AA_1}+\frac{BO}{BB_1}+\frac{CO}{CC_1}=2$, $\frac{AO_1}{AA_1}+\frac{BO_1}{BB_1}+\frac{CO_1}{CC_1}=1$. в) Может ли хотя бы одна из биссектрис треугольника делиться точкой O пополам? г) Докажите, что одна из биссектрис делится точкой O в отношении O0 в отношении O1, считая от вершины, тогда и только тогда, когда одна из сторон треугольника равна полусумме двух других сторон.
- 839 Докажите, что произведение двух сторон треугольника равно произведению высоты, проведённой к третьей стороне, на диаметр описанной окружности.

- 840 Внутри треугольника ABC взята точка M. Докажите, что площади треугольников BAM и BCM равны тогда и только тогда, когда точка M лежит на медиане треугольника ABC, проведённой из вершины B.
- 841 Докажите, что из медиан данного треугольника можно построить треугольник, и найдите отношение его площади к площади данного треугольника.
- 842 Найдите площадь треугольника, если его высоты равны 3 см, 4 см и 6 см.
- 843 Найдите площадь треугольника, если его медианы равны 9 см, 12 см и 15 см.
- 844 Окружность, вписанная в треугольник ABC, касается его сторон в точках L, M и N. Докажите, что отношение площади треугольника LMN к площади треугольника ABC равно отношению радиуса окружности, вписанной в треугольник ABC, к диаметру окружности, описанной около этого треугольника.
- 845 Окружность, касающаяся стороны треугольника и продолжений двух других сторон, называется вневписанной. Докажите, что: а) площадь S треугольника ABC выражается формулой $S=r_a(p-a)$, где r_a радиус вневписанной окружности, касающейся стороны $BC=a,\ p$ полупериметр треугольника;
 - б) $S=\sqrt{rr_ar_br_c}, \quad \frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{1}{r}, \quad$ где r радиус окружности, вписанной в треугольник, $r_a,\ r_b,\ r_c$ радиусы вневписанных окружностей.
- 846 Докажите, что площадь S выпуклого четырёхугольника со сторонами a, b, c, d и полупериметром p выражается формулой $S = r_a (p-a) + r_c (p-c)$, где r_a и r_c радиусы вневписанных окружностей, касающихся сторон, равных a и c (рис. 218).
- 847 Докажите, что: а) квадрат площади S выпуклого четырёхугольника со сторонами a, b, c, d и полупериметром p выражается формулой $S^2 = (p-a)(p-b)(p-c)(p-d) abcd \cos^2\frac{B+D}{2};$ б) площадь S вписанного четырёхугольника выражается формулой $S = \sqrt{(p-a)(p-b)(p-c)(p-d)};$ исходя из этой формулы, получите формулу Герона для площади треугольника.
- 848 Докажите, что: а) площадь S четырёхугольника со сторонами a, b, c, d, описанного около окружности, выражается формулой

Рис. 218

 $S = \sqrt{abcd} \sin \frac{B+D}{2}$; б) если четырёхугольник со сторонами a, b,с, а является одновременно описанным и вписанным, то его плошаль S выражается формулой $S = \sqrt{abcd}$.

- 849 Отрезки AD, AH и AM биссектриса, высота и медиана треугольника ABC, вписанная в треугольник окружность касается стороны BC в точке K. Докажите, что $MK^2 = MD \cdot MH$.
- 850 В треугольнике ABC со сторонами AB=c, BC=a и CA=b r и R радиусы вписанной и описанной окружностей, S — площадь, точка O — центр описанной окружности, H — точка пересечения высот, отрезки AD и AM — высота и медиана. Докажите, что:

a)
$$a + b = 4R \sin \frac{A+B}{2} \cos \frac{|A-B|}{2}$$
;

a)
$$a+b=4R\sin\frac{A+B}{2}\cos\frac{|A-B|}{2};$$
 6) $|a-b|=4R\cos\frac{A+B}{2}\sin\frac{|A-B|}{2};$

B)
$$\frac{|a-b|}{a+b} = \frac{\lg \frac{1}{2} |A-B|}{\lg \frac{1}{2} (A+B)};$$

$$r) \frac{a^2 - b^2}{c} = a \cos B - b \cos A;$$

д)
$$a+b+c=8R\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2};$$

e)
$$\cos^2 A = \sin^2 B + \cos^2 C - 2 \sin A \sin B \cos C$$
;

ж)
$$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2};$$
 3) $r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}};$

$$3) r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}};$$

и)
$$AH = \frac{a}{4S}(b^2 + c^2 - a^2)$$
; к) $OH^2 = 9R^2 - a^2 - b^2 - c^2$; л) $DM = \frac{|b^2 - c^2|}{2a}$.

Теоремы Менелая и Чевы

Теорема Менелая

Рассмотрим треугольник ABC и отметим на прямых $A\hat{B}$, $B\hat{C}$ и $\hat{C}A$ точки C_1 , A_1 , B_1 , не совпадающие с его вершинами (рис. 219). Пусть $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$, $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$, $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$. Поскольку точки C_1 , A_1 , B_1 не совпадают с вершинами треугольника ABC, то числа p, q, r отличны от нуля. Кроме того, каждое из этих чисел отлично от -1. В самом деле, если, например, p=-1, то $\overrightarrow{AC_1}=-\overrightarrow{C_1B}$, откуда $\overrightarrow{AC_1} + \overrightarrow{C_1B} = \overrightarrow{AB} = \overrightarrow{0}$, т. е. вершины A и B совпадают, а это противоречит условию.

Рис. 219

214

Поставим теперь такой вопрос: при каком соотношении между числами p, q, r точки C_1, A_1, B_1 лежат на одной прямой? Ответ на этот вопрос даёт теорема, связанная с именем Менелая Александрийского, древнегреческого математика и астронома, жившего в I в. н. э.

Теорема

Пусть на сторонах или продолжениях сторон AB, BC и CA треугольника ABC отмечены точки C_1 , A_1 , B_1 , не совпадающие с его вершинами, причём $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$, $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$, $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$. Тогда если точки C_1 , A_1 , B_1 лежат на одной прямой, то $\overrightarrow{pqr} = -1$; обратно: если $\overrightarrow{pqr} = -1$, то точки C_1 , A_1 , B_1 лежат на одной прямой.

Доказательство

1) Допустим сначала, что точки C_1 , A_1 , B_1 лежат на одной прямой, и докажем, что pqr=-1. Введём прямоугольную систему координат Oxy так, чтобы точки C_1 , A_1 , B_1 лежали на оси Oy (рис. 220). Пусть a, b и c — абсциссы точек A, B и C. Из равенства $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$ следует, что 0-a=p(b-0), т. е. a=-pb. Аналогичным образом из равенств $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$ и $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$ получаем: b=-qc и c=-ra. Таким образом, a=-pb=pqc==-pqra, или a (pqr+1) = 0, поэтому либо a=0, либо pqr=-1. Если a=0, то c=-ra=0 и b=-qc=0, т. е. точки A, B и C лежат на одной прямой (оси Oy), а это противоречит условию. Следовательно, pqr=-1, что и требовалось доказать.

2) Допустим теперь, что pqr=-1, и докажем, что точки C_1 , A_1 , B_1 лежат на одной прямой. Введём прямоугольную систему координат Oxy так, чтобы точки C_1 и A_1 лежали на оси Oy (см. рис. 220). Пусть, как и прежде, a, b и c — абсциссы точек A, B и C, x — абсцисса точки B_1 . Из равенств $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$ и $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$, как мы видели, следует, что a = -pb и b = -qc. Таким образом, a = pqc. Из равенства $\overrightarrow{CB_1} = rB_1A$ следует, что x - c = r(a - x). Умножая обе части этого равенства на pq и учитывая, что pqr = -1, pqc = a, получаем: pqx - a = -a + x, или (pq - 1)x = 0. Если pq = 1, то из равенства pqr = -1 следует, что r = -1, а этого, как отмечалось в начале пункта, не может быть.

Рис. 220

Таким образом, $pq \neq 1$, а значит, x = 0. Следовательно, точки C_1 , A_1 , B_1 лежат на одной прямой (оси Oy). Теорема доказана.

96 Теорема Чевы

Вновь рассмотрим треугольник ABC и отметим на прямых AB, BC и CA точки C_1 , A_1 , B_1 , не совпадающие с его вершинами (см. рис. 219). Пусть $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$, $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$, $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$. При этом p, q, $r \neq 0$ и p, q, $r \neq -1$ (см. п. 95). Поставим такой вопрос: при каком соотношении между числами p, q и r прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке? Ответ на этот вопрос даёт теорема, связанная с именем итальянского математика и инженера Джованни Чевы (1648—1734).

Теорема

Пусть на сторонах или продолжениях сторон AB, BC и CA треугольника ABC отмечены точки C_1 , A_1 , B_1 , не совпадающие с его вершинами, причём $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$, $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$, $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$. Тогда если прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке или попарно параллельны, то pqr = 1; обратно: если pqr = 1, то прямые AA_1 , BB_1 , CC_1 пересекаются в одной точке или попарно параллельны.

Доказательство

1) Допустим сначала, что прямые AA_1 , BB_1 и CC_1 пересекаются в некоторой точке O (рис. 221, a, δ). Условимся обозначать через S(L, M, N) площадь треугольника LMN, взятую со знаком «+», если обход вершин L, M, N осуществляется против часовой стрелки, и со знаком «-» — в противоположном случае. Поскольку $\frac{S(A, B, A_1)}{S(A, A_1, C)} = q \quad \text{и} \quad \frac{S(O, B, A_1)}{S(O, A_1, C)} = q \quad \text{(обоснуйте эти равенства), то } S(A, B, A_1) = qS(A, A_1, C) \quad \text{и} S(O, B, A_1) = qS(O, A_1, C). Следовательно, }$

$$\begin{split} \frac{S\left(A,\,B,\,O\right)}{S\left(A,\,O,\,C\right)} &= \frac{S\left(A,\,B,\,A_{1}\right) - S\left(O,\,B,\,A_{1}\right)}{S\left(A,\,A_{1},\,C\right) - S\left(O,\,A_{1},\,C\right)} = \\ &= q\,\frac{S\left(A,\,A_{1},\,C\right) - S\left(O,\,A_{1},\,C\right)}{S\left(A,\,A_{1},\,C\right) - S\left(O,\,A_{1},\,C\right)} = q. \end{split}$$

Рис. 221

Таким образом,
$$q = \frac{S(A, B, O)}{S(A, O, C)}$$
. Анало-

гично
$$r = \frac{S(B, C, O)}{S(B, O, A)}$$
 и $p = \frac{S(C, A, O)}{S(C, O, B)}$. Перемно-

жая эти равенства и замечая, что

$$S(A, B, O) = S(B, O, A),$$

 $S(A, O, C) = S(C, A, O),$
 $S(B, C, O) = S(C, O, B),$

получаем:

$$pqr = \frac{S(C, A, O)}{S(C, O, B)} \cdot \frac{S(B, O, A)}{S(C, A, O)} \cdot \frac{S(C, O, B)}{S(B, O, A)} = 1,$$

что и требовалось доказать.

Допустим теперь, что прямые AA_1 , BB_1 и CC_1 попарно параллельны. Введём прямоугольную систему координат Oxy так, чтобы ось Oyбыла параллельна прямой AA_1 . Пусть a- абсцисса точек A и A_1 , b — абсцисса точек B и B_1 , c — абсцисса точек C и C_1 (рис. 222). Из равенств $\overrightarrow{AC_1} = \overrightarrow{pC_1B}$, $\overrightarrow{BA_1} = \overrightarrow{qA_1C}$ и $\overrightarrow{CB_1} = \overrightarrow{rB_1A}$ следует, что (c-a) = p(b-c), (a-b) = q(c-a) и (b-c) = r(a-b). Учитывая, что $c \neq b$, $c \neq a$ и $a \neq b$ (иначе точки A, Bи С оказались бы лежащими на прямой, параллель-

ной оси
$$Oy$$
), получаем: $p = \frac{c-a}{b-c}, \ q = \frac{a-b}{c-a}, \ r = \frac{b-c}{a-b},$

и, следовательно,
$$pqr = \frac{c-a}{b-c} \cdot \frac{a-b}{c-a} \cdot \frac{b-c}{a-b} = 1$$
, что и требовалось доказать.

2) Допустим теперь, что pqr=1, и докажем, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке, или попарно параллельны.

Если никакие две из трёх указанных прямых не имеют общих точек, то они попарно параллельны.

Если же какие-нибудь две из них, например прямые AA_1 и BB_1 , пересекаются в некоторой точке O, то поступим так. Проведём прямую CO (см. рис. 221). Поскольку pqr = 1 и $p \neq -1$, то, согласно доказанному в пункте 1,

$$qr = \frac{S(A, B, O)}{S(A, O, C)} \cdot \frac{S(B, C, O)}{S(B, O, A)} =$$

$$= \frac{S(B, C, O)}{S(A, O, C)} = -\frac{S(B, C, O)}{S(A, C, O)} \neq -1,$$

Рис. 222

поэтому $S(B, C, O) \neq S(A, C, O)$. Из этого следует, что прямые CO и AB не параллельны (объясните почему). Пусть C_2 — точка их пересечения, $\overrightarrow{AC_2} = t\overrightarrow{C_2B}$. Так как прямые AA_1 , BB_1 и CC_2 пересекаются в одной точке, то, по доказанному в 1), tqr=1, откуда $t=\frac{1}{qr}=p$. Таким образом, $\overrightarrow{AC_1} = p\overrightarrow{C_1B}$ и $\overrightarrow{AC_2} = p\overrightarrow{C_2B}$. Вычитая одно равенство из другого, получаем: $\overrightarrow{AC_2} - \overrightarrow{AC_1} = p(\overrightarrow{C_2B} - \overrightarrow{C_1B})$, или $\overrightarrow{C_1C_2} = -p\overrightarrow{C_1C_2}$, т. е. $(p+1)\overrightarrow{C_1C_2} = \overrightarrow{0}$. Учитывая, что $p \neq -1$, приходим к равенству $\overrightarrow{C_1C_2} = \overrightarrow{0}$. Следовательно, точки C_1 и C_2 совпадают. Но это и означает, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке (в точке O). Теорема доказана.

Задачи

- 851 Отрезки AA_1 и BB_1 биссектрисы треугольника ABC, луч CC_1 биссектриса его внешнего угла, причём точка C_1 лежит на прямой AB. Докажите, что точки A_1 , B_1 и C_1 лежат на одной прямой.
- 852 Биссектрисы внешних углов A, B и C треугольника ABC пересекают продолжения противоположных сторон в точках A_1 , B_1 и C_1 . Докажите, что точки A_1 , B_1 и C_1 лежат на одной прямой.
- 853 На сторонах BC, CA и AB треугольника ABC или их продолжениях отмечены соответственно точки A_1 , B_1 и C_1 , лежащие на одной прямой. Докажите, что точки A_2 , B_2 и C_2 , симметричные соответственно точкам A_1 , B_1 и C_1 относительно середин сторон BC, CA и AB, также лежат на одной прямой.
- 854 Докажите, что середины оснований трапеции, точка пересечения её диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.
- 855 На сторонах AB, BC, CD и DA четырёхугольника ABCD отмечены соответственно точки K, L, M и N, не совпадающие с вершинами четырёхугольника. Докажите, что: а) прямые KL, MN и AC пересекаются в одной точке или параллельны друг другу тогда и только тогда, когда $\frac{AK}{KB} \cdot \frac{BL}{LC} \cdot \frac{CM}{MD} \cdot \frac{DN}{NA} = 1$; б) прямые KL, MN и AC пересекаются в одной точке или параллельны друг другу тогда и только тогда, когда это же верно в отношении прямых KN, LM и BD.
- 856 Окружность, вписанная в четырёхугольник ABCD, касается сторон AB, BC, CD и DA соответственно в точках P, Q, R и S. Докажите, что прямые PQ, RS и AC пересекаются в одной точке или параллельны друг другу.
- 857 Окружность с центром O касается двух неравных окружностей с центрами O_1 и O_2 в точках A_1 и A_2 соответственно. Докажите,

- что прямая A_1A_2 проходит через точку пересечения прямой O_1O_2 и общей касательной (внешней или внутренней) к окружностям с центрами O_1 и O_2 .
- 858 Треугольники ABC и $A_1B_1C_1$ расположены так, что прямые AB и A_1B_1 , BC и B_1C_1 , CA и C_1A_1 пересекаются в точках P, Q, R. Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке или попарно параллельны тогда и только тогда, когда точки P, Q и R лежат на одной прямой (теорема Дезарга).
- 859 На стороне BC треугольника ABC отмечены точки A_1 и A_2 , симметричные относительно середины BC, а на сторонах AC и AB отмечены соответственно точки B_1 , B_2 и C_1 , C_2 , симметричные относительно середин этих сторон. Докажите, что отрезки AA_1 , BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда отрезки AA_2 , BB_2 и CC_2 пересекаются в одной точке.
- 860 Окружность пересекает сторону BC треугольника ABC в точках A_1 и A_2 , сторону AC в точках B_1 и B_2 , сторону AB в точках C_1 и C_2 . Докажите, что отрезки AA_1 , BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда отрезки AA_2 , BB_2 и CC_2 пересекаются в одной точке.
- 861 На стороне AC треугольника ABC отмечены точки P и E, а на стороне BC точки M и K, причём AP:PE:EC=CK:KM:MB. Отрезки AM и BP пересекаются в точке O, а отрезки AK и BE в точке T. Докажите, что точки O, T и C лежат на одной прямой.
- 862 На сторонах AB, BC и CA треугольника ABC (либо на одной из сторон и продолжениях двух других сторон) отмечены соответственно точки C_1 , A_1 и B_1 . Докажите, что прямые AA_1 , BB_1 и CC_1 пересекаются в одной точке тогда и только тогда, когда:
 - a) $\frac{\sin \angle ACC_1}{\sin \angle C_1CB} \cdot \frac{\sin \angle BAA_1}{\sin \angle A_1AC} \cdot \frac{\sin \angle CBB_1}{\sin \angle B_1BA} = 1;$
 - б) для любой точки O, не лежащей на прямых AB, BC и CA, выполняется равенство $\frac{\sin \angle AOC_1}{\sin \angle C_1OB} \cdot \frac{\sin \angle BOA_1}{\sin \angle A_1OC} \cdot \frac{\sin \angle COB_1}{\sin \angle B_1OA} = 1.$

Эллипс, гипербола и парабола

97 Эллипс

Эллипс, по-видимому, был известен ещё в глубокой древности, когда облик геометрии соответствовал дословному переводу её названия. В те времена основными инструментами для выполнения построений на местности были колья и верёвки, позволявшие проводить прямые и окружности, а значит, и выполнять все те построения,

которые теперь называют построениями с помощью циркуля и линейки.

Ясно, как с помощью указанных инструментов построить окружность: нужно закрепить один из концов верёвки и в натянутом состоянии прочертить вторым концом линию. Напрашивается вопрос: а что получится, если закрепить оба конца ненатянутой верёвки, а затем в натянутом состоянии прочертить линию? Получится эллипс. Таким образом, мы приходим к следующему определению.

Определение

Эллипсом называется множество всех таких точек плоскости, для которых сумма расстояний до двух фиксированных точек постоянна.

Фиксированные точки называются фокусами эллипса.

Пусть 2c — расстояние между фокусами, 2a — сумма расстояний от точки эллипса до фокусов. Введём прямоугольную систему координат Oxy так, чтобы фокусы F_1 и F_2 имели координаты $F_1(-c; 0)$ и $F_2(c; 0)$ (рис. 223), и выведем уравнение эллипса в этой системе координат. Стоящую перед нами задачу можно сформулировать так: найти множество всех таких точек M(x; y), для которых

y▲

Рис. 223

$$MF_1 + MF_2 = 2a$$
.

Из неравенства треугольника следует, что $MF_1+MF_2\geqslant F_1F_2$, т. е. $a\geqslant c$. При a=c эллипс вырождается в отрезок F_1F_2 , поэтому будем считать, что a>c. Поскольку

$$MF_1 = \sqrt{(x+c)^2 + y^2}, MF_2 = \sqrt{(x-c)^2 + y^2},$$

то уравнение эллипса имеет вид

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$
 (1)

Умножим обе части этого равенства на разность фигурирующих в нём корней, а затем разделим на 2a. В результате получим:

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} =$$

$$= \frac{1}{2a} ((x+c)^2 - (x-c)^2) = \frac{2cx}{a}.$$

Пользуясь этим уравнением и уравнением (1), можно выразить каждый из корней:

$$\sqrt{(x+c)^2 + y^2} = a + \frac{cx}{a},\tag{2}$$

$$\sqrt{(x-c)^2 + y^2} = a - \frac{cx}{a}.$$
 (3)

Возведя обе части равенства (2) в квадрат и приведя подобные члены, получим:

$$x^{2} + c^{2} + y^{2} = a^{2} + \frac{c^{2}}{a^{2}}x^{2}.$$
 (4)

Возведение в квадрат обеих частей равенства (3) даёт тот же результат.

Запишем уравнение (4) в виде

$$\frac{a^2-c^2}{a^2}x^2+y^2=a^2-c^2.$$

Поскольку $a \neq c$, то полученное равенство можно переписать так:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1, (5)$$

или, с учётом условия a > c, так:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,\tag{6}$$

гле $b^2 = a^2 - c^2 < a^2$.

При возведении в квадрат обеих частей равенств (2) и (3) могли появиться лишние корни, соответствующие случаю $a \pm \frac{cx}{a} < 0$.

этого не происходит: как видно из уравнения (6),

$$|x| \le a$$
, поэтому $\left| \frac{cx}{a} \right| \le c < a$, и значит, $a \pm \frac{cx}{a} > 0$.

Таким образом, уравнение (6) эквивалентно уравнению (1). Оно называется каноническим уравнением эллипса.

Уравнение (6) позволяет обнаружить следующие свойства эллипса.

1. Эллипс имеет центр симметрии (начало координат О) и две взаимно перпендикулярные оси симметрии (оси Ox и Oy). Эти оси называются осями эллипса: та из них, на которой лежат фокусы, называется большой осью, а другая — малой осью; величины а и в называются большой и малой полуосями.

2. Поскольку

$$\frac{x^2}{a^2} = 1 - \frac{y^2}{b^2} \le 1$$
 и $\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} \le 1$,

то эллипс целиком содержится в прямоугольнике ($|x| \le a, |y| \le b$), стороны которого параллельны его осям.

3. При $x \ge 0$, $y \ge 0$ уравнение (6) может быть записано в виде:

$$y = b\sqrt{1 - \frac{x^2}{a^2}}.$$

Функция y(x) монотонно убывает от значения y=b при x=0 до значения y=0 при x=a. С учётом установленных нами симметрий это позволяет изобразить эллипс (рис. 224, a).

Замечания

1. Обратимся к уравнению (2):

$$\sqrt{(x+c)^2+y^2}=a+\frac{cx}{a}.$$

Из него, как мы помним, получается уравнение (6). С другой стороны, из уравнения (6) следует равенство (4) и неравенство $a + \frac{cx}{a} > 0$. Записывая уравнение (4) в виде

$$(x+c)^2 + y^2 = \left(a + \frac{cx}{a}\right)^2$$

и учитывая неравенство $a + \frac{cx}{a} > 0$, приходим к уравнению (2). Таким образом, уравнение (2) равносильно уравнению (6). Перепишем его так:

$$\frac{\sqrt{(x+c)^2+y^2}}{x+\frac{a^2}{c}}=\frac{c}{a}.$$

Числитель левой части этого уравнения равен MF_1 , а её знаменатель равен расстоянию от точки M до прямой, заданной уравнением $x=-\frac{a^2}{c}$ (рис. 224, б). Эта прямая называется ди-

ректрисой эллипса, соответствующей фокусу F_1 . Отметим также, что левая часть равенства не зависит от точки M и меньше 1. Таким образом,

Эллипс

Директрисы эллипса

эллипс является множеством всех таких точек плоскости, для которых отношение расстояния до фиксированной точки (фокуса) к расстоянию до фиксированной прямой (директрисы) постоянно и меньше единицы.

Указанное отношение $\left(\text{равное } \frac{c}{a} \right)$ на-

зывается эксцентриситетом эллипса.

Рассуждения, применённые к уравнению (2), можно применить и к уравнению (3). Следовательно, уравнение (3) также равносильно уравнению (6). Его можно записать так:

$$\frac{\sqrt{(x-c)^2+y^2}}{\frac{a^2}{c}-x}=\frac{c}{a}.$$

Таким образом, фокусу F_2 соответствует директриса, задаваемая уравнением $x=\frac{a^2}{c}$.

2. Рассмотрим произвольную прямую, заданную в нашей системе координат уравнением px + qy + r = 0, где $p^2 + q^2 \neq 0$. Пусть, например, $p \neq 0$. Выражая из уравнения прямой x через y и подставляя его в уравнение (6), получим для y квадратное уравнение, которому удовлетворяют ординаты всех общих точек прямой и эллипса. Квадратное уравнение не может иметь больше двух решений. Следовательно, любая прямая имеет с эллипсом не более двух общих точек.

98 Гипербола

Возникает естественный вопрос: что получится, если в определении эллипса сумму расстояний заменить модулем их разности? Получится линия, называемая гиперболой. Таким образом, мы приходим к следующему определению.

Определение

Гиперболой называется множество всех таких точек плоскости, для которых модуль разности расстояний до двух фиксированных точек есть постоянная положительная величина.

Фиксированные точки называются фокусами гиперболы.

Пусть 2c — расстояние между фокусами, 2a — модуль разности расстояний от точки гипер-

болы до фокусов. Введём прямоугольную систему координат Oxy так, чтобы фокусы F_1 и F_2 имели координаты $F_1(-c;\ 0)$ и $F_2(c;\ 0)$ (см. рис. 223), и выведем уравнение гиперболы в этой системе координат. Стоящую перед нами задачу можно сформулировать так: найти множество всех таких точек M(x;y), для которых разность MF_1-MF_2 равна либо 2a, либо -2a, т. е. $MF_1-MF_2=\pm 2a$.

Из неравенства треугольника следует, что $|MF_1 - MF_2| \le F_1F_2$, т. е. $a \le c$. При a = c гипербола вырождается в два луча прямой F_1F_2 , поэтому будем считать, что a < c.

В координатах уравнение гиперболы принимает вид: $\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm 2a$.

Умножим обе части этого равенства на сумму фигурирующих в нём корней, а затем разделим на $\pm 2a$. В результате получим:

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=\pm\frac{2cx}{a},$$

причём в правой части будет такой же знак (плюс или минус), как и в первом уравнении. Теперь можно выразить каждый из корней:

$$\sqrt{(x+c)^2+y^2} = \left|a + \frac{cx}{a}\right|, \sqrt{(x-c)^2+y^2} = \left|a - \frac{cx}{a}\right|.$$
 (7)

Возведём обе части любого из этих равенств в квадрат (докажите, что при этом лишних корней не появится) и преобразуем его к виду:

$$\frac{a^2 - c^2}{a^2} x^2 + y^2 = a^2 - c^2.$$

Поскольку $a \neq c$, то полученное равенство можно переписать так:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1.$$

Это и есть искомое уравнение гиперболы. Сравнивая полученный результат с уравнением (5), мы приходим к весьма неожиданному выводу: гипербола имеет точно такое же уравнение, как и эллипс! Однако существенное различие состоит в том, что для эллипса a > c, а для гиперболы a < c. С учётом этого условия уравнение гиперболы можно переписать так:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,\tag{8}$$

где $b^2 = c^2 - a^2$.

Уравнение (8) называется каноническим уравнением гиперболы. Оно позволяет обнаружить следующие свойства гиперболы.

- 1. Гипербола имеет центр симметрии (начало координат *O*) и две взаимно перпендикулярные оси симметрии (оси *Ox* и *Oy*). Эти оси называются осями гиперболы: та из них, на которой лежат фокусы, называется вещественной осью, а другая мнимой осью; величины *a* и *b* называются вещественной и мнимой полуосями.
- 2. Поскольку $\frac{x^2}{a^2} = 1 + \frac{y^2}{b^2} \geqslant 1$, то в полосе (|x| < a), содержащей мнимую ось гиперболы, точек гиперболы нет.

3. Поскольку $\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1 < \frac{x^2}{a^2}$, то в об-

ласти между двумя пересекающимися прямыми $\left(|y|\geqslant \frac{b}{a}|x|\right)$ точек гиперболы также нет.

4. При $x \geqslant a, \ y \geqslant 0$ уравнение (8) может быть записано в виде $y = b\sqrt{\frac{x^2}{a^2} - 1}$.

Функция y(x) монотонно и неограниченно возрастает от значения y=0 при x=a.

5. Ясно, что при $x \to +\infty$ функция y(x) становится приближённо равной $\frac{b}{a}x$. Уточним это свойство. Имеем:

$$0 < \frac{b}{a}x - \frac{b}{a}\sqrt{x^2 - a^2} = \frac{b}{a} \cdot \frac{x^2 - x^2 + a^2}{x + \sqrt{x^2 - a^2}} =$$

$$= \frac{ab}{x + \sqrt{x^2 - a^2}} \leqslant \frac{ab}{x} \to 0 \text{ при } x \to +\infty.$$

Таким образом, гипербола имеет асимп-

Toty
$$(y = \frac{b}{a}x)$$
.

Теперь изобразим гиперболу (рис. 225, a). Мы видим, в частности, что гипербола имеет две ветви.

Замечания

1. Уравнения (7) можно записать так:

$$\frac{\sqrt{(x+c)^2 + y^2}}{\left| x + \frac{a^2}{c} \right|} = \frac{c}{a}, \quad \frac{\sqrt{(x-c)^2 + y^2}}{\left| x - \frac{a^2}{c} \right|} = \frac{c}{a}.$$

Гипербола

Директрисы гиперболы

Рис. 225

Некоторые сведения из планиметрии Каждое из этих уравнений равносильно уравнению (8) (докажите это) и, следовательно, также является уравнением гиперболы. Рассуждения, аналогичные проведённым в замечании 1 п. 97, приводят нас к выводу: гипербола является множеством всех таких точек плоскости, для которых отношение расстояния до фиксированной точки (фокуса) к расстоянию до фиксированной прямой (директрисы) постоянно и больше единицы (поскольку для гиперболы c > a).

Указанное отношение называется эксцентриситетом гиперболы. Фокусу F_1 соответствует директриса, задаваемая уравнением $x=-\frac{a^2}{c}$, а фокусу F_2 — директриса, задаваемая уравнением $x=\frac{a^2}{c}$ (рис. 225, δ).

- 2. Нетрудно доказать (сделайте это самостоятельно), что любая прямая имеет с гиперболой не более двух общих точек.
- 3. В курсе алгебры гиперболой называлась кривая, заданная в прямоугольной системе координат Oxy уравнением $y=\frac{k}{x}$ ($k\neq 0$). В системе координат Ox'y', которая получается поворотом осей Ox и Oy вокруг точки O на 45° против часовой стрелки, уравнение этой гиперболы при k>0 (рис. 226) имеет канонический вид

$$\frac{x'^2}{(\sqrt{2k})^2} - \frac{y'^2}{(\sqrt{2k})^2} = 1.$$

Докажите это самостоятельно.

Рис. 226

99 Парабола

Мы знаем, что эллипс (гипербола) является множеством всех таких точек плоскости, для которых отношение расстояния до фиксированной точки к расстоянию до фиксированной прямой постоянно и меньше (больше) единицы.

Сам собой напрашивается вопрос: какая кривая соответствует отношению, равному 1? Эта кривая называется параболой. Таким образом, мы приходим к следующему определению.

Определение

Параболой называется множество всех таких точек плоскости, для которых расстояние до фиксированной точки равно расстоянию до фиксированной прямой, не проходящей через эту точку.

Фиксированная точка называется фокусом, а фиксированная прямая — директрисой параболы.

Пусть p — расстояние от фокуса F до директрисы. Введём прямоугольную систему координат так, чтобы фокус имел координаты $F\left(\frac{p}{2};\ 0\right)$,

а директриса задавалась уравнением $x = -\frac{p}{2}$

(рис. 227, a). В этой системе координат уравнение параболы имеет вид

$$\sqrt{\left(x-\frac{p}{2}\right)^2+y^2} = \left|x+\frac{p}{2}\right|.$$

Возводя обе части этого равенства в квадрат (докажите, что при этом лишних корней не появится), приходим к уравнению

$$y^2 = 2px. (9)$$

Это уравнение называется каноническим уравнением параболы. Оно позволяет обнаружить следующие свойства параболы.

- 1. Парабола имеет одну ось симметрии (ось Ox). Эта ось называется осью параболы, а точка её пересечения с параболой вершиной параболы.
 - . 2. Поскольку $x=\frac{y^2}{2p}\geqslant 0$, то парабола

целиком содержится в полуплоскости ($x \ge 0$), граница которой перпендикулярна к оси параболы.

3. При $x \geqslant 0$ уравнение (9) может быть записано в виде $y = \sqrt{2 \, px}$.

Функция y(x) монотонно и неограниченно возрастает от значения y=0 при x=0. С учётом симметрии это позволяет изобразить параболу (рис. 227, δ).

Нетрудно доказать (сделайте это самостоятельно), что любая прямая имеет с параболой не более двух общих точек.

Парабола

Эллипс, гипербола и парабола встречаются в самых разнообразных ситуациях. Так, тень футбольного мяча ограничена эллипсом, брошенный камень движется по параболе, а движение небесных тел (планет, комет, метеоритов и т. д.) под действием притяжения Солнца происходит по эллипсу или гиперболе. Конечно, небесные тела испытывают воздействие не только Солнца, но и других тел, поэтому их истинные траектории не являются в точности эллипсами или гиперболами, но весьма близки к этим линиям. Так, каждая планета Солнечной системы, в том числе наша Земля, движется по орбите, близкой к эллиптической, причём Солнце находится в одном из фокусов эллипса.

Залачи

- 863 Расстояние между двумя фокусами эллипса равно $4\sqrt{2}$, а отношение большой и малой полуосей равно 3. а) Напишите уравнение этого эллипса в системе координат Oxy, где O— середина отрезка, соединяющего фокусы, лежащие на оси Ox. б) Найдите эксцентриситет эллипса. в) Напишите уравнения директрис эллипса в системе координат Oxy.
- 864 Исследуйте взаимное расположение эллипса $\frac{x^2}{9} + \frac{y^2}{4} = 1$ и прямой, проходящей через точки с координатами (1;-1) и (3;1).
- 865 Исследуйте взаимное расположение эллипса $\frac{x^2}{16} + \frac{y^2}{4} = 1$ и: а) окружности радиуса $\sqrt{7}$ с центром в начале координат; б) окружности радиуса 2 с центром в точке (2; 0).
- 866 Асимптоты гиперболы проходят через начало координат и составляют с осью Ox углы в 60° . Расстояние между фокусами, лежащими на оси Ox, равно 4. а) Напишите уравнение этой гиперболы в системе координат Oxy. б) Найдите эксцентриситет гиперболы. в) Напишите уравнения директрис гиперболы в системе координат Oxy.
- **867** Исследуйте взаимное расположение эллипса $\frac{x^2}{9} + \frac{y^2}{4} = 1$ и гиперболы $y = \frac{2\sqrt{2}}{r}$.
- 868 Найдите эксцентриситет и напишите уравнения директрис гиперболы $y=rac{k}{r}$ (k>0).
- 869 Парабола задана уравнением $y = ax^2 + by + c$. Напишите уравнение директрисы этой параболы и найдите координаты её фокуса.
- 870 Исследуйте взаимное расположение параболы $y = x^2$ и окружности радиуса R с центром в точке (0; R) в зависимости от R.

Задачи для подготовки к ЕГЭ

3

- 1 Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки $1 \text{ cm} \times 1 \text{ cm}$ (рис. 228).
- 2 Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки $1 \text{ cm} \times 1 \text{ cm}$ (рис. 229).
- 3 Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки $1 \text{ cm} \times 1 \text{ cm}$ (рис. 230).

Рис. 228

Рис. 229

Рис. 230

- 4 Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки $1~{\rm cm}\times 1~{\rm cm}$ (рис. 231).
- 5 Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки $1 \text{ см} \times 1 \text{ см}$ (рис. 232).
- 6 Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки 1 см × 1 см (рис. 233).

Рис. 231

Рис. 232

 $^{^{1}}$ Нумерация заданий соответствует нумерации контрольных измерительных материалов ЕГЭ по математике профильного уровня.

Рис. 235

Рис. 236

- 7 Найдите площадь трапеции, изображённой на клетчатой бумаге с размером клетки $1 \text{ см} \times 1 \text{ см}$ (рис. 234).
- 8 Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки $1 \text{ cm} \times 1 \text{ cm}$ (рис. 235).
- 9 Найдите площадь квадрата, изображённого на клетчатой бумаге с размером клетки $1 \text{ см} \times 1 \text{ см}$ (рис. 236).
- 10 Найдите площадь S части круга, изображённой на клетчатой бумаге с размером клетки 1 см \times 1 см (рис. 237). В ответе укажите число, равное $\frac{S}{\pi}$.
- 11 Найдите диагональ квадрата, если его площадь равна 2.
- 12 Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 150° .
- 13 Найдите площадь параллелограмма, если две его стороны равны 6 и 8, а угол между ними равен 30° .
- 14 Площадь прямоугольного треугольника равна 12, а один из его катетов равен 6. Найдите другой катет.
- 15 Основания трапеции равны 1 и 3, а высота равна 1. Найдите площадь трапеции.
- 16 Периметры двух подобных многоугольников относятся как 3:5. Площадь меньшего многоугольника равна 36. Найдите площадь большего многоугольника.
- 17 Найдите площадь круга, длина окружности которого равна $\sqrt{\pi}$.
- 18 Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.
- 19 Найдите площадь прямоугольника, если его периметр равен 16 и одна сторона на 2 меньше другой.

Рис. 237

- 20 Периметр прямоугольника равен 34, а площадь равна 60. Найдите диагональ этого прямоугольника.
- 21 Стороны параллелограмма равны 9 и 15. Высота, проведённая к первой стороне, равна 10. Найдите высоту, проведённую ко второй стороне параллелограмма.
- 22 Периметр треугольника равен 12, а радиус вписанной окружности равен 1. Найдите площадь этого треугольника.
- 23 Основания прямоугольной трапеции равны 2 и 8. Её площадь равна 30. Найдите острый угол этой трапеции. Ответ дайте в градусах.
- **24** Найдите абсциссу точки, симметричной точке A(5; 9) относительно оси Oy.
- 25 Найдите ординату середины отрезка, соединяющего точки A(3; 7) и B(-1; 3).
- **26** Найдите длину вектора \vec{a} {6; 8}.
- 27 Найдите угловой коэффициент прямой, проходящей через точки с координатами (3; 0) и (0; 3).
- **28** Точки O(0; 0), A(8; 6), B(12; -2) и C являются вершинами параллелограмма OBAC. Найдите ординату точки C.
- 29 Найдите абсциссу точки пересечения прямой, заданной уравнением 3x + 2y = 6, с осью Ox.
- 30 Найдите ординату точки пересечения прямых, заданных уравнениями 3x + 2y = 6 и y = -x.
- 31 Какого радиуса должна быть окружность с центром в точке P(7; 5), чтобы она касалась оси абсцисс?
- 32 Найдите абсциссу центра окружности, описанной около треугольника, вершины которого имеют координаты (6; 0), (0; 10) и (6; 10).
- 33 Найдите площадь треугольника, вершины которого имеют координаты (1; 1), (4; 3) и (4; 5).
- 34 Две стороны прямоугольника ABCD равны 6 и 8. Найдите $|\overrightarrow{AB} + \overrightarrow{AD}|$.
- 35 Диагонали ромба ABCD равны 12 и 16. Найдите $|\overrightarrow{AB}|$.
- 36 Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите скалярное произведение векторов \overrightarrow{AO} и \overrightarrow{BO} .
- 37 Сторона равностороннего треугольника ABC равна $\sqrt{3}$. Найдите $|\overrightarrow{AB} + \overrightarrow{AC}|$.
- 38 Сторона равностороннего треугольника \overrightarrow{ABC} равна 1. Найдите скалярное произведение векторов \overrightarrow{AB} и \overrightarrow{AC} .

6

- 1 В треугольнике ABC угол C прямой. Найдите $\sin B$, если $\sin A = \frac{7}{25}$.
- 2 В треугольнике ABC угол C прямой. Найдите AC, если BC=6 и $\operatorname{tg} A=0,5$.
- 3 В треугольнике ABC угол C прямой. Найдите высоту CH, если AB=13 и tg A=0,2.

- **4** Основание AB равнобедренного треугольника ABC равно 9,6. Найдите AC, если $\sin A = \frac{7}{25}$.
- 5 Основание AB равнобедренного треугольника ABC равно 40. Найдите $\sin A$, если AC = 25.
- 6 В треугольнике ABC угол C прямой, высота CH равна 7. Найдите $\cos A$, если BH = 24.
- 7 В треугольнике ABC угол C прямой. Найдите косинус внешнего угла при вершине B, если $\operatorname{tg} A = \frac{24}{7}$.
- 8 В параллелограмме $ABCD \cos A = \frac{\sqrt{51}}{10}$. Найдите $\sin B$.
- 9 Основания равнобедренной трапеции равны 31 и 45, а боковая сторона равна 25. Найдите синус острого угла трапеции.
- 10 Основания равнобедренной трапеции равны 6 и 12, а синус острого угла трапеции равен 0,8. Найдите боковую сторону.
- 11 Найдите синус угла AOB (рис. 238). В ответе укажите значение синуса, умноженное на $\sqrt{5}$.

- 12 Один из углов равнобедренного треугольника равен 98°. Найдите один
- угольника равен 98°. Найдите один из других его углов. Ответ дайте в градусах.
- 13 В треугольнике ABC отрезок AD биссектриса, угол C равен 30° , угол BAD равен 18° . Найдите угол ADB. Ответ дайте в градусах.
- 14 Углы A и B треугольника ABC равны 58° и 72° , высоты AA_1 и BB_1 пересекаются в точке O. Найдите величину угла A_1OB_1 . Ответ дайте в градусах.
- **15** Найдите острый угол между биссектрисами острых углов прямоугольного треугольника.
- 16 В прямоугольном треугольнике угол между высотой и медианой, проведёнными из вершины прямого угла, равен 20°. Найдите больший из острых углов этого треугольника. Ответ дайте в градусах.
- 17 Найдите высоту ромба, сторона которого равна $2\sqrt{3}$, а острый угол равен 60° .
- 18 Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
- 19 В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 18. Найдите её среднюю линию.
- 20 Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

- **21** Угол A четырёхугольника ABCD, вписанного в окружность, равен 54° . Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
- **22** Сторона правильного треугольника равна $\sqrt{3}$. Найдите радиус окружности, вписанной в этот треугольник.
- 23 Найдите радиус окружности, вписанной в правильный шестиугольник со стороной $\sqrt{3}$.
- **24** Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 23° .
- 25 Боковая сторона равнобедренного треугольника равна 5, а основание равно 6. Найдите радиус вписанной в треугольник окружности.

8

- 1 Найдите квадрат расстояния между вершинами D и B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=3, AD=8 и $AA_1=5$.
- 2 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны рёбра: AB = 5, AD = 4, $AA_1 = 4$. Найдите угол C_1BC . Ответ дайте в градусах.
- 3 В правильной треугольной пирамиде SABC с вершиной S точка R середина ребра BC. Найдите площадь боковой поверхности пирамиды, если AB=1, SR=2.
- 4 В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M. Объём пирамиды равен 1. Найдите площадь треугольника ABC, если MS=1.
- 5 Диагональ основания правильной четырёхугольной пирамиды равна 6, высота пирамиды равна 4. Найдите длину бокового ребра.
- 6 В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 23. Найдите расстояние между точками D и F_1 .
- 7 В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 49. Найдите угол E_1EA_1 . Ответ дайте в градусах.
- 8 Высота конуса равна 4, а диаметр основания равен 6. Найдите образующую конуса.
- 9 Площадь боковой поверхности цилиндра равна 2π , а диаметр основания равен 1. Найдите высоту цилиндра.
- 10 Во сколько раз увеличится объём куба, если все его рёбра увеличить в 3 раза?
- **11** Диагональ грани куба равна $\sqrt{8}$. Найдите его объём.
- 12 Объём прямоугольного параллелепипеда равен 60, а площадь одной из его граней равна 12. Найдите ребро параллелепипеда, перпендикулярное к этой грани.
- 13 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объём параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

- 14 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро призмы равно 5. Найдите объём призмы.
- 15 Через среднюю линию основания треугольной призмы, объём которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объём отсечённой треугольной призмы.
- 16 Найдите объём правильной шестиугольной призмы, сторона основания которой равна 1, а боковое ребро равно $\sqrt{3}$.
- 17 Найдите объём призмы, основанием которой является правильный шестиугольник со стороной, равной 2, а боковое ребро равно $2\sqrt{3}$ и наклонено к плоскости основания под углом в 30° .
- 18 Боковые рёбра треугольной пирамиды попарно перпендикулярны, и каждое из них равно 3. Найдите объём пирамиды.
- 19 Основанием пирамиды является прямоугольник со сторонами 3 и 4, а её объём равен 16. Найдите высоту этой пирамиды.
- 20 Высота правильной четырёхугольной пирамиды равна 12, а объём пирамиды равен 200. Найдите боковое ребро пирамиды.
- 21 Найдите объём пирамиды, вершинами которой являются вершины A_1 , B, C, C_1 , B_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого AB=4, AD=3 и $AA_1=4$.
- 22 Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна к плоскости основания, а каждая из трёх других боковых граней наклонена к плоскости основания под углом в 60° . Высота пирамиды равна 6. Найдите объём пирамиды.
- 23 Объём прямоугольного параллелепипеда, описанного около сферы, равен 216. Найдите радиус сферы.
- 24 Объём первого цилиндра равен 12 м³. У второго цилиндра высота в 3 раза больше, а радиус основания в 2 раза меньше, чем у первого. Найдите объём второго цилиндра. Ответ дайте в м³.
- 25 Высота конуса равна 6, а образующая равна 10. Найдите отношение объёма конуса к числу π .
- 26 Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90° . Найдите отношение объёма конуса к числу π .
- 27 Во сколько раз увеличится площадь поверхности куба, если все его рёбра увеличить в 2 раза?
- 28 Площадь полной поверхности данного правильного тетраэдра равна $80~{\rm cm}^2$. Найдите площадь полной поверхности правильного тетраэдра, ребро которого в 4 раза меньше ребра данного тетраэдра. Ответ дайте в ${\rm cm}^2$.
- 29 Площадь боковой поверхности конуса равна 16 см². Радиус основания конуса уменьшили в 4 раза, а образующую увеличили в 2 раза. Найдите площадь боковой поверхности получившегося конуса. Ответ дайте в см².

- 1 Дан куб $ABCDA_1B_1C_1D_1$. Найдите тангенс угла между прямой AC_1 и плоскостью BCC_1 .
- **2** Дан куб $ABCDA_1B_1C_1D_1$. Найдите косинус угла между прямой AA_1 и плоскостью BC_1D .
- 3 Дан куб $ABCDA_1B_1C_1D_1$. Найдите угол между плоскостями AB_1C_1 и A_1B_1C .
- 4 В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ известны длины рёбер: $AA_1=5$, AB=12 и AD=8. Найдите тангенс угла между плоскостью ABC и плоскостью, проходящей через точку B перпендикулярно к прямой AK, где точка K середина ребра C_1D_1 .
- 5 Основанием прямой призмы $ABCA_1B_1C_1$ является прямоугольный треугольник ABC с гипотенузой AC. Найдите тангенс угла между плоскостью $A_1B_1C_1$ и плоскостью, проходящей через середину ребра AA_1 и прямую BC, если AB=4, $BB_1=12$.
- 6 В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 1. Найдите косинус угла между прямыми AB_1 и BC_1 .
- 7 В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 1. Найдите косинус угла между прямыми AB и A_1C .
- 8 В правильной треугольной призме $ABCA_1B_1C_1$ все рёбра равны 1. Найдите тангенс угла между плоскостями ABC и CA_1B_1 .
- 9 Сторона основания правильной треугольной призмы $ABCA_1B_1C_1$ равна 2, а диагональ боковой грани равна $\sqrt{5}$. Найдите угол между плоскостью A_1BC и плоскостью основания призмы.
- 10 Основанием прямой треугольной призмы $ABCA_1B_1C_1$ является равнобедренный треугольник ABC, в котором AB=BC=10, AC=16. Боковое ребро призмы равно 24, точка P— середина ребра BB_1 . Найдите тангенс угла между плоскостями $A_1B_1C_1$ и ACP.
- 11 Основание прямой четырёхугольной призмы $ABCDA_1B_1C_1D_1$ прямоугольник ABCD, в котором AB=5, $AD=\sqrt{33}$. Найдите тангенс угла между плоскостью AA_1D_1 и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B_1D , если расстояние между прямыми A_1C_1 и BD равно $\sqrt{3}$.
- 12 В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 1. Найдите тангенс угла между плоскостями ABC и DB_1F_1 .
- 13 В правильной шестиугольной призме $ABCDEFA_1B_1C_1D_1E_1F_1$ все рёбра равны 1. Найдите расстояние от точки A до плоскости DEA_1 .
- **14** В правильном тетраэдре ABCD точка E середина ребра BD. Найдите синус угла между прямой AE и плоскостью ABC.
- 15 Высота правильной треугольной пирамиды равна 20, а медиана её основания равна 6. Найдите тангенс угла, который боковое ребро образует с плоскостью основания.

- 16 Основание пирамиды DABC равнобедренный треугольник ABC, в котором AB=BC=13, AC=24. Ребро DB перпендикулярно к плоскости основания и равно 20. Найдите тангенс двугранного угла DACB.
- 17 Ребро AD пирамиды DABC перпендикулярно к плоскости ABC. Найдите расстояние от вершины A до плоскости, проходящей через середины рёбер AB, AC и AD, если $AD = 2\sqrt{5}$, AB = AC = 10, $BC = 4\sqrt{5}$.
- 18 В пирамиде DABC известны длины рёбер: AB = AC = DB = DC = 10, BC = DA = 12. Найдите расстояние между прямыми DA и BC.
- 19 В правильной четырёхугольной пирамиде SABCD все рёбра равны 1. Найдите косинус угла между прямой AB и плоскостью SAD.
- 20 В правильной шестиугольной пирамиде SABCDEF сторона основания равна 1, а боковое ребро равно 2. Найдите косинус угла между прямыми SB и AE.
- 21 В правильной шестиугольной пирамиде SABCDEF сторона основания равна 1, а боковое ребро равно 2. Найдите косинус угла между прямой AC и плоскостью SAF.
- 22 Диаметр основания цилиндра равен 20, а образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Найдите тангенс угла между этой плоскостью и плоскостью основания цилиндра.

16

- 1 В прямоугольном треугольнике ABC гипотенуза AB равна c и $\angle ABC = \alpha$. Найдите все медианы этого треугольника.
- 2 В равнобедренном треугольнике ABC с основанием AC на стороне BC взята точка D так, что BD:DC=1:4. В каком отношении прямая AD делит высоту BE треугольника ABC, считая от вершины B?
- 3 В равнобедренном треугольнике основание и боковая сторона равны соответственно 5 и 20. Найдите биссектрису, проведённую к боковой стороне треугольника.
- 4 Две стороны треугольника равны 3 и 6, а угол между ними равен 60° . Найдите биссектрису треугольника, проведённую из вершины этого угла.
- 5 Высоты треугольника ABC пересекаются в точке H. Известно, что CH = AB. Найдите угол ACB.
- 6 В треугольнике ABC проведены высоты BM и CN, точка O центр вписанной в треугольник окружности. Известно, что BC=24, MN=12. Найдите радиус окружности, описанной около треугольника BOC.
- 7 Точки A_1 , B_1 и C_1 основания высот треугольника ABC. Углы треугольника $A_1B_1C_1$ равны 90° , 60° и 30° . Найдите углы треугольника ABC.

- 8 Углы A и C треугольника ABC равны 45° и 60° . Отрезки AM, BN и CK высоты треугольника. Найдите отношение $\frac{MN}{KN}$.
- 9 В треугольнике ABC проведена медиана BM. Известно, что $\frac{\sin \angle ABM}{\sin \angle CBM} = \frac{1}{2}.$ Найдите отношение $\frac{BC}{AB}$.
- 10 Точки M и N середины сторон BC и CD параллелограмма ABCD. Отрезки AM и BN пересекаются в точке O. Найдите отношение $\frac{MO}{OA}$.
- 11 Средняя линия трапеции равна 4, углы при одном из оснований равны 40° и 50° . Найдите основания трапеции, если отрезок, соединяющий середины оснований, равен 1.
- 12 Диагональ равнобедренной трапеции равна 10 и образует угол в 60° с основанием трапеции. Найдите среднюю линию трапеции.
- 13 В выпуклом четырёхугольнике ABCD отрезки, соединяющие середины противоположных сторон, пересекаются под углом 60° , а их длины относятся как 1:3. Чему равна меньшая диагональ четырёхугольника ABCD, если большая равна $\sqrt{39}$?
- 14 Четырёхугольник ABCD трапеция с основаниями AD и BC. Найдите AC, если AB=27, CD=28, BC=5 и $\cos \angle BCD=-\frac{2}{7}$.
- 15 Окружность с центром O касается двух параллельных прямых. Касательная к окружности пересекает эти прямые в точках A и B. Найдите угол AOB.
- 16 Через точку M, лежащую вне окружности с центром O и радиусом R, проведены касательные MA и MB к этой окружности (A и B точки касания). Прямые OA и MB пересекаются в точке C. Найдите OC, если известно, что отрезок OM делится окружностью пополам.
- 17 Трапеция с основаниями 14 и 40 вписана в окружность радиуса 25. Найдите высоту трапеции.
- 18 Три окружности разных радиусов попарно касаются друг друга извне. Отрезки, соединяющие их центры, образуют прямоугольный треугольник. Найдите радиус меньшей окружности, если радиусы двух других равны 6 и 4.
- 19 В прямоугольном треугольнике точка касания вписанной окружности и гипотенузы делит гипотенузу на отрезки, равные 5 и 12. Найдите катеты треугольника.
- **20** Окружности с центрами O_1 и O_2 пересекаются в точках A и B. Известно, что $\angle AO_1B=90^\circ$, $\angle AO_2B=60^\circ$ и $O_1O_2=a$. Найдите радиусы окружностей.
- 21 Окружности радиусов 2 и 4 касаются в точке B. Через точку B проведена прямая, пересекающая меньшую окружность в точке A, а большую в точке C (A и C отличны от B). Найдите отрезок BC, если $AC = 3\sqrt{2}$.

- 22 Окружности S_1 и S_2 радиусов R и r соответственно (R > r) касаются в точке A. Через точку B, лежащую на окружности S_1 , проведена прямая, касающаяся окружности S_2 в точке M. Найдите отрезок BM, если известно, что AB = a.
- 23 Точка O центр окружности радиуса 2. На продолжении радиуса OM за точку M взята точка A. Через точку A проведена прямая, касающаяся окружности в точке K. Известно, что $\angle AOK = 60^\circ$ Найдите радиус окружности, вписанной в угол OAK и касающейся данной окружности извне.
- **24** Прямая касается окружностей радиусов R и r в точках A и B. Известно, что расстояние между центрами окружностей равно a, причём r < R и r + R < a. Найдите AB.
- **25** Около треугольника ABC описана окружность с центром O, угол AOC равен 60° . В треугольник ABC вписана окружность с центром M. Найдите угол AMC.
- **26** Треугольник ABC вписан в окружность радиуса 12, AB=6 и BC=4. Найдите AC.
- 27 На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4.
- 28 Найдите радиусы вписанной и описанной окружностей треугольника со сторонами 13, 13 и 24 и расстояние между центрами этих окружностей.
- 29 Окружность S_1 проходит через центр окружности S_2 и пересекает её в точках A и B. Хорда AC окружности S_1 касается окружности S_2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7. Найдите градусные меры дуг, на которые окружность S_2 делится окружностью S_1 .
- 30 На стороне BA угла ABC, равного 30° , взята такая точка D, что AD=2 и BD=1. Найдите радиус окружности, проходящей через точки A, D и касающейся прямой BC.
- 31 В прямоугольном треугольнике ABC катеты AB и AC равны 4 и 3, точка D середина гипотенузы BC. Найдите расстояние между центрами окружностей, вписанных в треугольники ADC и ABD.
- 32 Окружности с центрами O_1 и O_2 касаются друг друга извне в точке C. Прямая касается этих окружностей в точках A и B, отличных от точки C. Найдите угол AO_2B , если $\operatorname{tg} \angle ABC = \frac{1}{2}$.
- 33 Окружности радиусов 4 и 9 касаются друг друга извне, лежат по одну сторону от некоторой прямой и касаются этой прямой. Найдите радиус окружности, касающейся двух данных окружностей и данной прямой.
- 34 На стороне AB треугольника ABC отмечена точка D так, что $\angle BCD = \angle BAC$. Найдите CD, если BC = a, AC = b и AB = c.

- 35 На сторонах AB, BC и AC треугольника ABC отмечены точки K, L и M так, что $AK:KB=2:3,\ BL:LC=1:2$ и CM:MA=3:1. В каком отношении точка пересечения отрезков KL и BM делит отрезок BM?
- 36 Сторона треугольника равна 36. Прямая, параллельная этой стороне, разделяет треугольник на две равновеликие части. Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.
- 37 Отрезки, соединяющие середины сторон выпуклого четырёхугольника, равны. Найдите площадь четырёхугольника, если его диагонали равны 8 и 12.
- 38 В треугольнике ABC медиана AD и биссектриса BE перпендикулярны и пересекаются в точке F. Площадь треугольника DEF равна 5. Найдите площадь треугольника ABC.
- 39 Основания трапеции равны *а* и *b*. Прямая, параллельная основаниям, разбивает трапецию на две трапеции, площади которых относятся как 2:3. Найдите длину отрезка этой прямой, заключённого внутри трапеции.
- 40 Окружность, построенная на стороне AC треугольника ABC как на диаметре, проходит через середину стороны BC и пересекает в точке D продолжение стороны AB за точку A, причём $AD = \frac{2}{3}AB$. Найдите площадь треугольника ABC, если AC = 1.
- 41 Найдите площадь трапеции с основаниями, равными 18 и 13, и боковыми сторонами, равными 3 и 4.
- 42 На продолжении за точку B диаметра AB окружности отложен отрезок BC, равный диаметру. Прямая, проходящая через точку C, касается окружности в точке M. Найдите площадь треугольника ACM, если радиус окружности равен R.
- 43 Медиана AM и биссектриса CD треугольника ABC с прямым углом B пересекаются в точке O. Найдите площадь треугольника ABC, если CO=9 и OD=5.

Задачи с практическим содержанием

- 1 Можно ли из прямолинейных реек изготовить звезду, изображённую на рисунке 239?
- 2 Ученик изобразил тетраэдр, в котором проведено сечение (рис. 240). Правилен ли его чертёж?
- 3 Как с помощью линейки измерить диагональ кирпича, если есть несколько одинаковых кирпичей? (Требуется непосредственно измерить диагональ, а не вычислить её, измерив длину, ширину и высоту.)
- 4 Можно ли куб с ребром 10 см завернуть в квадратный платок со стороной 30 см?
- 5 По четырём дорогам, никакие две из которых не параллельны и никакие три не проходят через одну точку, с постоянными скоростями идут 4 пешехода. Известно, что первый пешеход встретился со вторым, третьим и четвёртым, а второй с третьим и четвёртым. Докажите, что третий пешеход встретился с четвёртым.

Рис. 239

Рис. 240

- 6 Три свинцовых куба, рёбра которых равны 3 см, 4 см и 5 см, расплавили и изготовили из них один куб. Найдите его ребро.
- 7 Кирпич размером $25 \text{ см} \times 12 \text{ см} \times 6,5 \text{ см}$ весит 3,51 кг. Найдите его плотность в граммах на кубический сантиметр.
- 8 Сечение железнодорожной насыпи, перпендикулярное к рельсам, имеет вид трапеции с нижним основанием 12 м, верхним основанием 6 м и высотой 2 м. Найдите объём 10-метрового участка насыпи.
- 9 Сечение реки, перпендикулярное к течению реки, представляет собой трапецию с основаниями 20 м и 16 м и высотой 2 м. Скорость течения воды в реке 2 м/с. Сколько кубических метров воды проходит через это сечение за 1 мин?
- 10 Почему (при одинаковой глубине) в узких местах русла реки её течение быстрее, чем в широких? А что будет, если ширина одинаковая, а глубина разная?

- 11 Сделайте рисунок пробки, которой можно заткнуть отверстия трёх видов: треугольное, квадратное и круглое.
- 12 Из одного цилиндрического сосуда диаметром 15 см жидкость перелита в другой цилиндрический сосуд диаметром 5 см. Во сколько раз уровень жидкости в узком сосуде выше, чем в широком?
- 13 Найдите диаметр медной проволоки, $100 \,\mathrm{m}$ которой весят $700 \,\mathrm{r}$ (плотность меди $8.9 \,\mathrm{r/cm^3}$).
- 14 Найдите пропускную способность (в кубических метрах за 1 ч) круглой водосточной трубы диаметром $10\,\mathrm{cm}$, если скорость течения воды равна $2\,\mathrm{m/c}$.
- 15 В бочку, имеющую цилиндрическую форму, налита вода. Как можно выяснить (не выливая из бочки воды и не производя вычислений), наполнена бочка больше или меньше чем наполовину?
- 16 Куча песка имеет форму конуса, у которого длина окружности основания равна 31,4 м, а образующая равна 5,4 м. Сколько трёхтонных машин потребуется для перевозки этого песка, если 1 м³ песка весит 2 т?
- 17 Сколько весит сено, сложенное в стог в форме цилиндра с коническим верхом, если радиус и высота цилиндрической части стога равны соответственно 3 м и 2 м, а высота конической части равна 2 м (плотность сена 0,07 г/см³)?
- 18 Ведро имеет форму усечённого конуса, радиусы оснований которого равны 15 см и 10 см, а образующая равна 30 см. Сколько килограммов краски нужно для того, чтобы покрасить с обеих сторон 100 таких вёдер, если на 1 м² требуется 150 г краски? (Толщину стенок ведра не учитывать.)
- 19 Во сколько раз объём Земли больше объёма Луны? (Диаметр Земли считать равным 12 740 км, а диаметр Луны 3474 км.)
- 20 Восемь свинцовых шаров радиуса 1 см расплавили и изготовили из них один шар. Найдите его радиус.
- 21 Человек прошёл километр на север, затем километр на запад и километр на юг. Мог ли он при этом вернуться в исходное положение?
- 22 При каких условиях расход жести на изготовление консервных банок цилиндрической формы заданной ёмкости будет наимень-

шим? Другими словами, найдите размеры цилиндра данного объёма V, площадь поверхности которого наименьшая.

- 23 Почему, когда мы смотрим в зеркало, правое и левое меняются местами, а верх и низ нет? А что произойдёт, если мы встанем на зеркальный пол?
- 24 Вырежите из прямоугольного листа бумаги фигуру, изображённую на рисунке 241. (Клеем не пользоваться.)

Рис. 241

Исследовательские задачи

1 Тетраэдр называется **ортоцентрическим**, если его высоты пересекаются в одной точке (ортоцентр тетраэдра).

Докажите, что тетраэдр является ортоцентрическим тогда и только тогда, когда выполнено любое из следующих условий:

- а) противоположные рёбра тетраэдра перпендикулярны;
- б) основанием одной из высот тетраэдра является ортоцентр грани (при этом таким же свойством обладают и три другие высоты тетраэдра);
- в) три **бимедианы**¹ тетраэдра равны друг другу;
- г) суммы квадратов противоположных рёбер тетраэдра равны;
- д) произведения косинусов противоположных двугранных углов тетраэдра равны.
- 2 Тетраэдр называется равногранным, если все его грани равны друг другу.

Докажите, что тетраэдр является равногранным тогда и только тогда, когда выполнено любое из следующих условий:

- а) противоположные рёбра тетраэдра равны;
- б) сумма плоских углов при каждой вершине тетраэдра равна 180°;
- в) бимедианы тетраэдра попарно перпендикулярны;
- г) бимедианы тетраэдра являются общими перпендикулярами прямых, содержащих противоположные рёбра тетраэдра;
- д) центры вписанной и описанной сфер тетраэдра совпадают;
- е) центр описанной сферы и центр масс (т. е. точка пересечения медиан) тетраэдра совпадают;
- ж) центр вписанной сферы и центр масс тетраэдра совпадают;
- з) четыре медианы тетраэдра равны друг другу;
- и) четыре высоты тетраэдра равны друг другу;
- к) грани тетраэдра равновелики.

¹ Отрезок, соединяющий середины двух противоположных (скрещивающихся) рёбер тетраэдра, называется его бимедианой.

- 3 Тетраэдр называется каркасным, если существует сфера, касающаяся всех рёбер тетраэдра.
 - Докажите, что тетраэдр является каркасным тогда и только тогда, когда выполнено любое из следующих условий:
 - а) суммы длин противоположных рёбер тетраэдра равны;
 - б) суммы двугранных углов при противоположных рёбрах тетраэдра равны;
 - в) окружности, вписанные в грани тетраэдра, попарно касаются друг друга (это означает, что каждые две окружности, вписанные в грани тетраэдра с общим ребром, касаются этого ребра в одной и той же точке);
 - г) все четырёхугольники, получающиеся на развёртке тетраэдра, являются описанными;
 - д) четыре прямые, каждая из которых проходит через центр вписанной в грань тетраэдра окружности и перпендикулярна к этой грани, пересекаются в одной точке.
- 4 Найдите число попарно неравных друг другу равносторонних треугольников, все вершины которых принадлежат окружностям оснований цилиндра радиуса R с высотой h.
- 5 Исследуйте, сколько различных точек может быть среди тех 12 точек, через которые проходит сфера Эйлера.

Темы рефератов и докладов

- 1. Об аксиомах геометрии.
- 2. Ортоцентрический тетраэдр и его свойства.
- 3. Равногранный тетраэдр и его свойства.
- 4. Каркасный тетраэдр и его свойства.
- 5. Теоремы синусов и косинусов для трёхгранного угла.
- 6. Правильные многогранники и элементы их симметрии.
- 7. Полуправильные многогранники.
- 8. Метод проекций в задачах на сечения многогранников.
- 9. Сечения цилиндрической и конической поверхностей (эллипс, гипербола, парабола).
- 10. Прямая и сфера Эйлера.
- 11. Применение геометрических преобразований при решении задач.
- 12. Сферическая геометрия.

Список литературы

- 1. Адамар Ж. Элементарная геометрия. В 2 ч. Ч. 2. Стереометрия / Ж. Адамар. Учпедгиз, 1952.
- 2. Александров П. С. Энциклопедия элементарной математики. В 5 кн. Кн. 4. Геометрия / П. С. Александров, А. И. Маркушевич, А. Я. Хинчин. М.: Физматгиз, 1963.
- 3. Александров П.С. Энциклопедия элементарной математики. В 5 кн. Кн. 5. Геометрия / П.С. Александров, А.И. Маркушевич, А.Я. Хинчин. М.: Наука, 1966.
- 4. Геометрия. 7—9 классы / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина. М.: Просвещение, 2013—2016.
- 5. Бутузов В. Ф. Геометрия. 10—11 классы / В. Ф. Бутузов, В. В. Прасолов. М.: Просвещение, 2014—2016.
- 6. Гельфанд И. М. Метод координат / И. М. Гельфанд, Е. Г. Глаголева, А. А. Кириллов. — М.: МЦНМО, 2009.
- 7. Клейн Ф. Элементарная математика с точки зрения высшей. В 2 т. Т. 2. Геометрия / Ф. Клейн. М.: Наука, 1987.
- Коксетер Г. С. М. Введение в геометрию / Г. С. М. Коксетер. М.: Наука, 1966.
- 9. Прасолов В. В. Задачи по стереометрии / В. В. Прасолов. М.: МЦНМО, 2010.
- Прасолов В. В. Задачи по стереометрии / В. В. Прасолов, И.Ф. Шарыгин. — М.: Наука, 1989.
- 11. Шарыгин И.Ф. Сборник задач по геометрии. 5000 задач с ответами / И.Ф. Шарыгин, Р.К. Гордин. М.: Астрель, АСТ, 2001.

Интернет-ресурсы

- 1. http://ilib.mccme.ru/
- 2. http://window.edu.ru/library
- 3. http://www.problems.ru/
- 4. http://kvant.mccme.ru/
- 5. http://www.etudes.ru/

Интернет-ресурсы на английском языке

- 1. http://mathworld.wolfram.com/
- 2. http://forumgeom.fau.edu/

Приложения

1 Изображение пространственных фигур

При изучении стереометрии важное значение имеет изображение пространственных фигур на чертеже. Мы познакомимся здесь с некоторыми правилами построения изображений. С этой целью введём сначала понятие параллельной проекции фигуры, а затем с его помощью понятие изображения фигуры и рассмотрим примеры изображений плоских и пространственных фигур.

1 Параллельная проекция фигуры

Пусть π — некоторая плоскость, а l — пересекающая эту плоскость прямая. Отметим произвольную точку A_0 пространства. Если точка A_0 не лежит на прямой l, то проведём через A_0 прямую, параллельную прямой l, и обозначим через A точку пересечения этой прямой с плоскостью π (рис. 242). Если же A_0 — точка прямой l, то обозначим через A точку пересечения прямой l с плоскостью π . Точка A называется проекцией точки A_0 на плоскость π при проектировании параллельно прямой l. Обычно предполагается, что плоскость π и прямая l заданы, поэтому точку A кратко называют параллельной проекцией точки A_0 .

Пусть F_0 — плоская или пространственная фигура. Параллельные проекции всех точек фигуры F_0 образуют некоторую фигуру F на плоскости π (см. рис. 242). Фигура F называется параллельной проекцией фигуры F_0 . Говорят также, что фигура F получена из фигуры F_0 параллельным проектированием.

Сформулируем основные свойства параллельного проектирования при условии, что проектируемые отрезки и прямые не параллельны прямой l.

Рис. 242

Проекция прямой m_0 есть прямая m

Проекция отрезка A_0B_0 есть отрезок AB

l A_0 C_0 B_0 D_0 A C π

Проекции параллельных отрезков A_0B_0 и C_0D_0 есть параллельные отрезки AB и CB

Рис. 246

Рис. 244

Рис. 245

1⁰. Проекция прямой есть прямая (рис. 243).

 2^{0} . Проекция отрезка есть отрезок (рис. 244).

3⁰. Проекции параллельных отрезков — параллельные отрезки (рис. 245) или отрезки, принадлежащие одной прямой.

4⁰. Проекции параллельных отрезков, а также проекции отрезков, лежащих на одной прямой, пропорциональны самим отрезкам (рис. 246).

 $ildе{ { }}$ Из свойства 4^0 следует, что проекция середины отрезка есть середина проекции отрезка.

2 Изображение фигуры

Выберем некоторую плоскость π и назовём её **плоскостью изображений**. Затем возьмём прямую l, пересекающую плоскость π , и спроектируем данную фигуру F_0 на плоскость π параллельно прямой l. Полученную плоскую фигуру F' и также любую ей подобную фигуру F на плоскости π будем называть **изображением фигуры** F_0 (рис. 247). Построенное таким образом изображение фигуры соответствует зрительному восприятию фигуры при рассмотрении её из точки, расположенной далеко от неё.

Выбирая различные плоскости изображений и различные направления проектирования (т. е. различные прямые l), будем получать различные изображения данной фигуры. Обычно берётся такое изображение фигуры, которое являет-

Рис. 247

ся наиболее наглядным и удобным для выполнения на нём дополнительных построений. Это изображение и воспроизводится на чертеже.

3 Изображение плоских фигур

Построение изображений фигур основано на свойствах параллельного проектирования, сформулированных в п. 1. Рассмотрим некоторые примеры изображений плоских фигур.

Отрезок

По свойству 2^0 проекция отрезка есть отрезок, поэтому изображением отрезка является отрезок. Ясно, что произвольный отрезок на чертеже можно считать изображением данного отрезка.

При рассмотрении изображений треугольника, параллелограмма и т. д. будем считать, что плоскости этих фигур не параллельны направлению проектирования (прямой l).

Треугольник

Пусть $A_0B_0C_0$ — треугольник, расположенный в пространстве, A', B' и C' — проекции точек A_0 , B_0 и C_0 на плоскость π (рис. 248, a). Так как проекция отрезка есть отрезок, то треугольник A'B'C' (а также любой треугольник ABC, подобный треугольнику A'B'C') является изображением треугольника $A_0B_0C_0$. Можно доказать, что в качестве изображения данного треугольника на чертеже можно брать произвольный треугольник. Например, на рисунке 248, δ изображением прямоугольного равнобедренного треугольника $A_0B_0C_0$ служит разносторонний треугольник ABC.

Параллелограмм

Так как проекциями равных параллельных отрезков являются равные параллельные отрезки (свойства 3^0 и 4^0 п. 1), то изображением параллелограмма является параллелограмм. Можно доказать, что произвольный параллелограмм на чертеже можно считать изображением данного параллелограмма, в частности изображением данного прямоугольника, ромба, квадрата (рис. 249).

Трапеция

Нетрудно видеть, что изображением трапеции $A_0B_0C_0D_0$ с основаниями A_0B_0 и C_0D_0 является трапеция ABCD, причём по свойству 4^0 п. 1

$$\frac{AB}{A_0B_0} = \frac{CD}{C_0D_0},\tag{1}$$

Рис. 248

 $A_0B_0C_0D_0$ — прямоугольник. ABCD параллелограмм

т. е. основания изображения трапеции пропорциональны основаниям самой трапеции. Поэтому не любую трапецию можно считать изображением данной трапеции. Укажем способ построения изображения данной трапеции $A_0B_0C_0D_0$. С этой целью рассмотрим вспомогательный отрезок C_0E_0 , параллельный отрезку A_0D_0 и разбивающий трапецию на параллелограмм $A_0D_0C_0E_0$ и треугольник $B_0C_0E_0$ (рис. 250, а). В качестве изображения параллелограмма $A_0D_0C_0E_0$ возьмём произвольный параллелограмм ADCE (рис. 250, б). Так как AE = DC, то пропорцию (1) можно записать так:

$$\frac{AB}{A_0B_0} = \frac{AE}{C_0D_0}. (2)$$

Используя пропорцию (2), нетрудно построить теперь точку B — изображение точки B_0 . Это построение выполнено на рисунке 250, δ , где $AA_2 = C_0D_0$, $AA_1 = A_0B_0$. Построенная трапеция ABCD является изображением трапеции $A_0B_0C_0D_0$ (для неё выполнена пропорция (1)).

Отметим, что изображением равнобедренной трапеции $A_0B_0C_0D_0$ может быть и неравнобедренная трапеция ABCD. При этом изображением оси симметрии равнобедренной трапеции является прямая EF, проходящая через середины оснований AD и BC, и, следовательно, отрезок EF является изображением высоты равнобедренной трапеции (рис. 251).

Окружность

Как следует из п. 50, параллельной проекцией окружности является эллипс (рис. 252). Окружность — частный случай эллипса, поскольку её проекция на плоскость, параллельную плоскости окружности, есть окружность, равная данной (объясните почему). Из свойств параллельного проектирования следует, что проекция центра O данной окружности является центром симметрии эллипса (точка O' на рисунке 252). Эту точку называют центром эллипса.

Таким образом, изображением окружности является эллипс, причём изображением центра окружности является центр эллипса.

Эллипс используется при изображении на плоскости цилиндров, конусов, усечённых конусов и сфер (см. главы IV и V). Понятие эллипса часто встречается и в различных вопро-

Рис. 250

Рис. 251

Рис. 252

сах естествознания. Например, движение планет вокруг Солнца происходит по орбитам, близким к эллипсам.

4 Изображение пространственных фигур

Рассмотрим теперь изображения на плоскости некоторых многогранников при условии, что ни одна из плоскостей граней не параллельна направлению проектирования. При этом под изображением многогранника будем понимать фигуру, состоящую из проекций всех его рёбер.

Тетраэдр

Пусть $A_0B_0C_0D_0$ — произвольный тетраэдр, A, B, C и D — параллельные проекции его вершин на плоскость изображений (рис. 253). Отрезки AB, BC, CA, AD, BD, CD служат сторонами и диагоналями четырёхугольника ABCD. Фигура, образованная из этих отрезков (или любая другая фигура, подобная ей), является изображением тетраэдра $A_0B_0C_0D_0$.

Можно доказать, что фигура, состоящая из сторон и диагоналей любого (выпуклого или невыпуклого) четырёхугольника, является изображением тетраэдра при соответствующем выборе плоскости изображений и направления проектирования (рис. 254, a, δ , ϵ). (На этих рисунках невидимые рёбра изображены штриховыми линиями.)

Параллелепипед

Для построения изображения произвольного параллелепипеда $A_0B_0C_0D_0A_0'B_0'C_0'D_0'$ заметим, что точки A_0 , B_0 , D_0 и A_0 являются вершинами тетраэдра $\tilde{A_0}B_0\tilde{D}_0A_0'$ (рис. 255). Поэтому в качестве их изображения можно взять вершины произвольного четырёхугольника АВDA'. Другими словами, любые три отрезка AB, AD и AA'плоскости изображения с общим концом A, никакие два из которых не лежат на одной прямой, можно считать изображением рёбер A_0B_0 , A_0D_0 и $A_0 A_0'$ параллелепипеда. Но тогда изображения остальных рёбер строятся однозначно, так как все грани параллелепипеда являются параллелограммами, и, следовательно, их изображения также будут параллелограммами. На рисунке 255 параллелепипед ABCDA'B'C'D' является изображением параллелепипеда $A_0B_0C_0D_0A_0'B_0'C_0'D_0'$.

Рис. 253

Рис. 254

Рис. 255

Пирамида

Изображение основания пирамиды строят по описанным в п. 3 правилам, а за изображение вершины можно принять любую точку, не принадлежащую сторонам изображения основания. На рисунке 256 дано изображение правильной пирамиды $S_0A_0B_0C_0D_0$, основанием которой служит квадрат $A_0B_0C_0D_0$. Изображением основания является параллелограмм ABCD.

Замечание

Частным случаем параллельной проекции фигуры является **прямоугольная проекция** (см. п. 21). Прямоугольные проекции широко используются в техническом черчении. Какая-либо деталь обычно проектируется на две плоскости — горизонтальную и вертикальную, и обе проекции изображаются в плоскости чертежа. На рисунке 257 изображены две проекции цилиндрической втулки.

Рис. 257

2 Об аксиомах геометрии

Аксиомы геометрии представляют собой исходные положения, на основе которых строится вся геометрия, т. е. путём логических рассуждений устанавливаются свойства геометрических фигур. В аксиомах выражены свойства основных геометрических понятий. К таковым в нашем курсе относятся понятия точки, прямой и плоскости, понятие «лежать между» для точек прямой и понятие наложения. Кроме того, в аксиомах геометрии и вытекающих из них утверждениях исполь-

зуются такие общематематические понятия, как «принадлежать» (или «лежать на»), «множество», «число» и т. д.

Здесь мы приведём все аксиомы геометрии, включая и те три аксиомы о взаимном расположении точек, прямых и плоскостей, которые были сформулированы во введении, а также дадим доказательства на основе аксиом некоторых наглядно очевидных утверждений, которые использовались в курсе стереометрии.

Первая группа аксиом характеризует взаимное расположение точек, прямых и плоскостей.

- 1. На каждой прямой и в каждой плоскости имеются по крайней мере две точки.
- 2. Имеются по крайней мере три точки, не лежащие на одной прямой, и по крайней мере четыре точки, не лежащие в одной плоскости.
- 3. Через любые две точки проходит прямая, и притом только одна.
- 4. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
- 5. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости.
- 6. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
- 7. Из трёх точек прямой одна, и только одна, лежит между двумя другими.

Иногда вместо слов «точка B лежит между точками A и C» говорят, что точки A и C лежат по разные стороны от точки B, или точки A и B лежат по одну сторону от точки C (аналогично точки B и C лежат по одну сторону от точки A).

8. Каждая точка О прямой разделяет её на две части — два луча — так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О. При этом точка О не принадлежит ни одному из указанных лучей.

Напомним, что отрезком AB называется геометрическая фигура, состоящая из точек A и B и всех точек прямой AB, лежащих между

ними. Если отрезок АВ и прямая а лежат в одной плоскости и не имеют общих точек, то говорят, что точки A и B лежат по одну сторону от прямой a; если же отрезок AB пересекается с прямой a в некоторой точке, лежащей между A и B, то говорят, что точки A и B лежат по разные стороны от прямой a.

> 9. Каждая прямая a, лежащая в плоскости, разделяет эту плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой a, а любые две точки разных полуплоскостей лежат по разные стороны от прямой а. При этом точки прямой а не принадлежат ни одной из этих полуплоскостей.

Прямая а называется границей каждой из полуплоскостей.

Если отрезок не имеет общих точек с данной плоскостью, то говорят, что концы отрезка лежат по одну сторону от плоскости; если же отрезок пересекается с плоскостью в некоторой своей внутренней точке, то говорят, что концы отрезка лежат по разные стороны от плоскости.

> 10. Каждая плоскость а разделяет пространство на две части (два полупространства) так, что любые две точки одного и того же полупространства лежат по одну сторону от плоскости α, а любые две точки разных полупространств лежат по разные стороны от плоскости а. При этом точки плоскости α не принадлежат ни одному из указанных полупространств.

Плоскость а называется границей каждого из полупространств.

Следующая группа аксиом относится к понятиям наложения и равенства фигур.

Под наложением мы понимаем отображение пространства на себя. Однако не всякое отображение пространства на себя называется наложением.

Наложения — это такие отображения пространства на себя, которые обладают свойствами, выраженными в аксиомах 11—17. В формулировках этих аксиом используется понятие равенства фигур, которое определяется так: пусть Ф и Φ_1 — две фигуры; если существует наложение,

при котором фигура Φ отображается на фигуру Φ_1 , то мы говорим, что фигуру Φ можно совместить наложением с фигурой Φ_1 или что фигура Φ равна фигуре Φ_1 .

- 11. Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
- 12. На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
- 13. От любого луча в данную полуплоскость можно отложить угол, равный данному неразвёрнутому углу, и притом только один.
- 14. Два равных угла hk и h_1k_1 , лежащие в плоскостях, являющихся границами полупространств P и P_1 , можно совместить наложением так, что при этом совместятся полупространства P и P_1 , причём это можно сделать двумя способами: в одном случае совместятся лучи h и h_1 , k и k_1 , а в другом лучи h и k_1 , k и k_1 .
- 15. Любая фигура равна самой себе.
- 16. Если фигура Φ равна фигуре Φ_1 , то фигура Φ_1 равна фигуре Φ .
- 17. Если фигура Φ_1 равна фигуре Φ_2 , а фигура Φ_2 равна фигуре Φ_3 , то фигура Φ_1 равна фигуре Φ_3 .

Следующие две аксиомы связаны с измерением отрезков. Прежде чем их сформулировать, напомним, как измеряются отрезки. Пусть AB — измеряемый отрезок, PQ — выбранная единица измерения отрезков. На луче АВ отложим отрезок $AA_1 = PQ$, на луче A_1B — отрезок $A_1A_2 =$ =PQ и т. д. до тех пор, пока точка A_n не совпадёт с точкой В либо точка В не окажется лежащей между A_n и A_{n+1} . В первом случае говорят, что длина отрезка AB при единице измерения PQ выражается числом n (или что отрезок PQ укладывается в отрезке AB n раз). Во втором случае можно сказать, что длина отрезка AB при единице измерения РО приближённо выражается числом n. Для более точного измерения отрезок PQделят на равные части, обычно на 10 равных частей, и с помощью одной из этих частей измеряют описанным способом остаток $A_n B$. Если при этом десятая часть отрезка PQ не укладывается целое число раз в измеряемом остатке, то её также делят на 10 равных частей и продолжают процесс измерения. Мы утверждаем, что таким способом можно измерить любой отрезок, т. е. выразить его длину при данной единице измерения конечной или бесконечной десятичной дробью. Это утверждение кратко сформулируем так:

18. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.

Кроме того, мы принимаем аксиому существования отрезка данной длины.

19. При выбранной единице измерения отрезков для любого положительного числа существует отрезок, длина которого выражается этим числом.

И наконец, последняя аксиома в стереометрии, как и в планиметрии, есть аксиома параллельных прямых.

- 20. В любой плоскости через точку, не лежащую на данной прямой этой плоскости, проходит только одна прямая, параллельная данной.
- В 9 классе (Геометрия, 7—9, приложение 1) мы уже говорили о том, что, опираясь на аксиомы, можно решать задачи и доказывать теоремы без привлечения каких-либо интуитивных представлений о свойствах геометрических фигур. В качестве примера приводилось доказательство теоремы, выражающей первый признак равенства треугольников, основанное на аксиомах. Приведём ещё несколько примеров.

Задача 1

Доказать, что на каждом луче есть хотя бы одна точка.

Решение

Рассмотрим луч с началом A, являющийся частью прямой a. На прямой a есть хотя бы одна точка B, отличная от точки A (аксиома 1). Если точка B лежит на луче (рис. 258, a), то она и является той точкой, существование которой мы доказываем. Если же точка B лежит на продолжении луча (рис. 258, δ), то поступим так: на луче от его начала отложим отрезок AC = AB (аксиома 12). Тогда точка C будет лежать на луче. Утверждение доказано.

Рис. 258

Залача 2

Доказать, что если точка A лежит на прямой a, а точка B не лежит на этой прямой, то все точки луча AB лежат в одной полуплоскости с границей a.

Решение

Пусть C — произвольная точка луча AB, отличная от B (а есть ли такая точка? Ответ на этот вопрос найдите самостоятельно). Докажем, что точка C лежит в той же полуплоскости с границей a, что и точка B. Поскольку точки B и Cлежат по одну сторону от точки A, то по аксиоме 7точка A не лежит на отрезке BC. Поэтому если предположить, что точки B и C лежат в разных полуплоскостях с границей a, то получится, что прямая a пересекает отрезок BC в точке D, отличной от A. Иными словами, окажется, что через точки A и D проходят две прямые: a и AB. Но это противоречит аксиоме 3. Следовательно, наше предположение ошибочно — точки В и С лежат в одной полуплоскости с границей a, что и требовалось доказать.

При изучении геометрии мы неоднократно использовали понятие внутренней области неразвёрнутого угла, опираясь при этом на наглядные представления об углах. Приведём теперь определение этого понятия.

Внутренней областью неразвёрнутого угла AOB называется общая часть двух полуплоскостей: полуплоскости с границей OA, содержащей точку B, и полуплоскости с границей OB, содержащей точку A.

Задача 3

Доказать, что если луч исходит из вершины неразвёрнутого угла и проходит через точку внутренней области этого угла, то все точки луча лежат во внутренней области угла.

Решение

Рассмотрим угол AOB и луч OC, проходящий через точку C внутренней области этого угла (рис. 259). Поскольку точка C принадлежит полуплоскости с границей OA, содержащей точку B, то все точки луча OC также принадлежат этой полуплоскости (см. задачу 2). По аналогичной причине все точки луча OC принадлежат полуплоскости с границей OB, содержащей точку A.

Рис. 259

Следовательно, все точки луча OC принадлежат общей части указанных полуплоскостей, т. е. внутренней области угла AOB. Утверждение доказано.

Залача 4

Доказать, что если прямая пересекает сторону AB треугольника ABC и не проходит через вершину этого треугольника, то она пересекает либо сторону BC, либо сторону AC.

Решение

Данная прямая разделяет плоскость на две полуплоскости (аксиома 9), причём точки A и B лежат в разных полуплоскостях. Поэтому если точка C лежит в одной полуплоскости с точкой A, то точки B и C лежат в разных полуплоскостях, а значит, данная прямая пересекает отрезок BC. Если же точка C лежит в одной полуплоскости с точкой B, то точки A и C лежат в разных полуплоскостях, а значит, данная прямая пересекает отрезок AC. Утверждение доказано.

Задача 5

Доказать, что если луч исходит из вершины неразвёрнутого угла и проходит через точку внутренней области этого угла, то он делит этот угол на два угла.

Решение

Рассмотрим угол AOB, через точку C внутренней области которого проведён луч OC (рис. 260). Требуется доказать, что внутренние области углов AOC и BOC лежат по разные стороны от прямой OC.

Пусть D — произвольная точка луча с началом O, являющегося продолжением луча OA. Точки A, B и D не лежат на прямой OC, и эта прямая пересекает сторону AD треугольника ABD. Следовательно, она пересекает либо сторону AB, либо сторону BD (см. задачу 4). Но точка D не лежит во внутренней области угла AOB — она лежит в полуплоскости с границей OB, не содержащей точку A. Поэтому все точки луча $B\bar{D}$ не принадлежат внутренней области угла АОВ (см. задачу 2), а значит, луч OC не может пересечь сторону BD — все точки этого луча принадлежат внутренней области угла АОВ (см. задачу 3). Следовательно, он пересекает сторону AB. Это означает, что точки A и B, а значит, и лучи OA и OB (см. задачу 2), лежат по разные стороны от прямой OC.

Рис. 260

Но тогда и внутренние области углов AOC и BOC лежат по разные стороны от прямой OC. Утвержление доказано.

Как уже отмечалось во введении, из аксиом геометрии следует, что признаки равенства и подобия треугольников, известные из курса планиметрии, справедливы и для треугольников, расположенных в разных плоскостях. Докажем, например, теорему, выражающую первый признак равенства треугольников.

Теорема

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство

Пусть треугольник АВС расположен в плоскости α , а треугольник $A_1B_1C_1$ — в плоскости α_1 и $AB=A_1B_1$, $AC=A_1C_1$, $\angle A=\angle A_1$. Докажем, что $\triangle ABC = \triangle A_1B_1C_1$, имея в виду, что под треугольником в стереометрии обычно понимают фигуру, содержащую не только три стороны, но и соответствующую внутреннюю область. Рассмотрим наложение, при котором угол A совмещается с углом A_1 так, что луч AB совмещается с лучом A_1B_1 , а луч AC — с лучом A_1C_1 . Такое наложение существует в силу аксиомы 14. Так как по аксиоме 12 на луче A_1B_1 можно отложить от его начала только один отрезок, равный отрезку AB, то точка B совместится с точкой B_1 . Аналогично точка C совместится с точкой C_1 . Следовательно, по аксиоме 11 совместятся отрезки ABи A_1B_1 , AC и A_1C_1 , BC и B_1C_1 , т. е. совместятся стороны треугольников ABC и $A_1B_1C_1$.

Докажем теперь, что при указанном наложении внутренняя область треугольника ABC совместится с внутренней областью треугольника $A_1B_1C_1$. Для этого нужно доказать, что любая точка внутренней области треугольника ABC совместится с некоторой точкой внутренней области треугольника $A_1B_1C_1$, и обратно: на любую точку внутренней области треугольника $A_1B_1C_1$ наложится некоторая точка внутренней области треугольника ABC. Пусть M — произвольная точка

внутренней области треугольника АВС. Проведём через точку M какой-нибуль отрезок PQ с концами на сторонах AB и AC треугольника ABC. Так как сторона AB совмещается со стороной A_1B_1 , то точка P совместится с некоторой точкой P_1 на стороне A_1B_1 . Аналогично точка Q совместится с некоторой точкой Q_1 на стороне A_1C_1 . Поэтому по аксиоме 11 отрезок PQ совместится с отрезком P_1Q_1 , а значит, точка M отрезка PQ совместится с некоторой точкой M_1 отрезка P_1Q_1 , т. е. наложится на точку M_1 внутренней области треугольника $A_1B_1C_1$. Таким же образом можно доказать и обратное: на любую точку внутренней области треугольника $A_1B_1\tilde{C}_1$ наложится некоторая точка внутренней области треугольника АВС. Итак, при указанном наложении треугольники ABC и $A_1B_1C_1$ полностью совместятся, т. е. они равны. Теорема доказана.

Задача 6

Доказать, что если основание и высота одной прямой треугольной призмы соответственно равны основанию и высоте другой прямой треугольной призмы, то такие призмы равны.

Решение

Пусть прямые призмы ABCDEF и $A_1B_1C_1D_1E_1F_1$ имеют равные основания ABC и $A_1B_1C_1$ и равные высоты AD и A_1D_1 , причём $AB=A_1B_1$, $AC=A_1C_1$ и $\angle A=\angle A_1$. Полупространство, границей которого является плоскость ABC, содержащее точки D, E и F, обозначим буквой H, а полупространство, границей которого является плоскость $A_1B_1C_1$, содержащее точки D_1 , E_1 и F_1 , обозначим H_1 .

Рассмотрим наложение, при котором угол A совмещается с углом A_1 так, что луч AB совмещается с лучом A_1B_1 , луч AC— с лучом A_1C_1 , а полупространство H совмещается с полупространством H_1 . Такое наложение существует в силу аксиомы 14. При этом наложении треугольник ABC (т. е. его стороны и внутренняя область) совместится с равным ему треугольником $A_1B_1C_1$. Далее, луч AD совместится с некоторым лучом A_1D_2 , расположенным в полупространстве H_1 , поэтому углы DAB и DAC совместятся соответственно с углами $D_2A_1B_1$ и $D_2A_1C_1$. Но так как углы DAB и DAC прямые, то углы $D_2A_1B_1$ и $D_2A_1C_1$ также прямые, а, значит, луч A_1D_2 пер-

пендикулярен к плоскости $A_1B_1C_1$ и, следовательно, совпадает с лучом A_1D_1 . Итак, при указанном наложении луч AD совместится с лучом A_1D_1 , а так как $AD = A_1D_1$, то точка D совместится с точкой D_1 . Аналогично точки E и F совместятся соответственно с точками E_1 и F_1 .

Следовательно, основание DEF и боковые рёбра одной призмы совместятся соответственно с основанием $D_1E_1F_1$ и боковыми рёбрами другой призмы. Нетрудно доказать теперь, что при этом совместятся и соответствующие боковые грани, а также внутренние точки призмы. Это можно сделать подобно тому, как при доказательстве теоремы о первом признаке равенства треугольников было доказано совмещение внутренних областей треугольников ABC и $A_1B_1C_1$. Таким образом, призмы ABCDEF и $A_1B_1C_1D_1E_1F_1$ полностью совместятся, т. е. они равны.

Аналогично можно доказать равенство двух прямоугольных параллелепипедов с соответственно равными измерениями и равенство двух правильных пирамид с равными основаниями и равными высотами.

В 9 классе (Геометрия, 7—9, приложение 1) мы уже говорили о том, что некоторые из принятых нами аксиом могут быть доказаны на основе остальных аксиом, т. е. фактически эти утверждения являются теоремами, а не аксиомами. Так, теоремами являются утверждения аксиом 5, 8 и 10. Убедитесь в этом самостоятельно.

Если стремиться к тому, чтобы свести количество аксиом к минимуму, то аксиому 17 следует сформулировать иначе:

Если фигура Φ_1 равна фигуре Φ_3 и фигура Φ_2 равна фигуре Φ_3 , то фигура Φ_1 равна фигуре Φ_2 .

При такой формулировке можно будет отказаться от аксиомы 16 — она превратится в теорему. В самом деле, допустим, что фигура Φ равна фигуре Φ_1 , и докажем, что тогда и фигура Φ_1 равна фигуре Φ . Имеем: $\Phi_1 = \Phi_1$ (аксиома 15), $\Phi = \Phi_1$ по условию. Следовательно, $\Phi_1 = \Phi$, что и требовалось доказать.

Таким образом, для построения курса геометрии было бы достаточно сформулировать 16, а не 20 аксиом.

Ответы и указания

Введение

3. а) Да; б) нет; в) нет; г) нет. 5. Бесконечное множество. 7. Нет. Указание. Воспользоваться аксиомой A_2 . 8. а) Нет; б) да. 9. Да. 10. а) Да; б) нет. 12. Да. 13. а) Нет; б) нет; в) да. 14. Три плоскости, если прямые не лежат в одной плоскости, и одна плоскость, если прямые лежат в одной плоскости.

Глава І

17. 26 cm. 18. a) 3,5 cm; б) 12 cm. 20. Her. 27. 48 cm. 28. $8\frac{1}{3}$ cm.

29. 6 см. 33. У казание. Пусть α , β и γ — данные плоскости, а a— линия пересечения плоскостей α и β . Рассмотреть взаимное расположение прямой a и плоскости γ . 34. а), б) Пересекаются; в), г) параллельны; д), е) скрещивающиеся. 37. а) Пересекаются; б) скрещивающиеся. 40. а) Нет; б) да, прямая MN. 41. Нет. 42. а) Параллельны; б) 100 см. 44. а) 40° ; б) 45° ; в) 90° . 45. а) 50° ; б) 59° . 46. а) 90° ; б) 64° . 49. Нет. 54. б) 12 см². 56. У казание. Воспользоваться задачей 55. 57. У казание. Воспользоваться задачей 56. 60. У казание. Воспользоваться задачей 56. 63. а) AA_2 = 18 см, AB_2 = 15 см; б) A_2B_2 = 54 см, AA_2 = 72 см. 65. а) Параллелограммы. 66. Три пары рёбер. 67. а) ≈ 17 см, ≈ 23 см, ≈ 29 см; б) ≈ 146 см², ≈ 210 см², ≈ 180 см². 72. У казание. а) Учесть, что секущая плоскость проходит через середины рёбер DB и DC тетраэдра; б) учесть, что секущая плоскость пересекает боковые грани тетраэдра по отрезкам, параллельным сторонам треугольника ABC.

73. 22 см. 74. б) $\frac{4}{9}$. 75. б) 6 см². 77. 8 см, 10 см, 12 см. 79. а) Па-

раллелограмм ABC_1D_1 ; б) параллелограмм ACC_1A_1 . 81. Точка пересечения прямых: а) MN и BC; б) AM и A_1B_1 . 82. У к а з а н и е. Задача решается аналогично задаче 2, п. 14. 83. У к а з а н и е. Сначала построить отрезок, по которому секущая плоскость пересекает грань: а) AA_1D_1D ; б) ABCD. 84. У к а з а н и е. Сначала построить отрезок, по которому секущая плоскость пересекает грань ABCD. 85. Параллелограмм BKD_1L . 86. У к а з а н и е. Сначала построить точку пересечения секущей плоскости с ребром DD_1 . 87. У к а з ан и е. Сначала построить отрезок, по которому секущая плоскость пересекает: а) грань BCC_1B_1 ; б) грань AA_1D_1D . 88. б) 12 см. 90. Прямая CD: а) параллельна плоскости α ; б) пересекает плоскость α . 92. У к а з а н и е. Использовать свойство 2^0 , п. 6. 93. MN и b — скрещивающиеся прямые. 94. Да. 95. У к а з а н и е. Использовать за-

дачу 55. 98. Существует только одна плоскость. 100. У казание. Использовать вторую теорему п. 7 и задачу 59. 102. $10(2\sqrt{3}+1)$ см и $25\sqrt{11}$ см². 103. $4\frac{4}{9}$ см². 108. Указание. Предварительно доказать, что плоскости ADA_1 , BDB_1 и CDC_1 пересекаются по прямой. 112. Указание. Учесть, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон. **113.** Прямая BD_1 .

Глава II

118. $\angle AOB$, $\angle MOC$ и $\angle DOA$. 120. $\frac{\sqrt{4b^2+2a^2}}{2}$. 121. 13 см. 122. KA = $=KB=20\,$ см, $DA=DB=32\,$ см. **125.** 9 см. **126.** Прямоугольный. **130.** a) $MA = \sqrt{m^2 + n^2}$, MB = m, $MC = \sqrt{m^2 + n^2}$, $MD = \sqrt{m^2 + 2n^2}$; б) $\sqrt{m^2 + \frac{1}{2}n^2}$, m. 136. У казание. Воспользоваться задачей 134. 138. а) $\frac{d}{\cos \varphi}$, $d \lg \varphi$; б) $m \cos \varphi$, $m \sin \varphi$. 140. 3 см. 141. 3 см. 142. 2,5 см или 1.5 см. 143. 2 см. 145. б) $\sqrt{a^2+b^2}$. 146. У казание. Воспользоваться теоремой о трёх перпендикулярах и обратной к ней. 149. 4 см и $4\sqrt{10}$ см. 150. a) 2 см; б) $4\sqrt{2}$ см. 152. 8 дм, 8 дм, $4\sqrt{5}$ дм, $4\sqrt{5}$ дм, 8 дм, $6\sqrt{2}$ дм. **154.** a) 15 см; б) 75 см². **155.** 6 см. **156.** $\sqrt{n^2 + m^2 \sin^2 \varphi}$. 157. б) 5,1 дм. 158. 12,5 см, 12,5 см, 25 см, 25 см. 160. 12 см. 161. Указание. Использовать перпендикуляры, проведённые из точки A к прямым BC и BD и к плоскости CBD. 163. a) $\frac{d\sqrt{2}}{2}$; б) $\frac{d}{2}$; в) $\frac{d\sqrt{3}}{2}$. 164. 60°. 165. 3d. 168. $\frac{d}{\sin \phi}$. 170. 1 см и $\frac{\sqrt{2}}{2}$ см. 171. 45°. 172. $6\sqrt{3}$ cm. 173. 90°, 45° μ 60°. 174. 60°. 175. $\cos \alpha = \frac{1}{2}$, $\alpha \approx 70^{\circ}32'$. 176. $8\sqrt{2}$. 179. Указание. Воспользоваться задачей 178. 180. Указ а н и е. Воспользоваться задачей 179. 182. б) $\sqrt{m^2 + n^2}$. 184. а) $5\sqrt{6}$ см; 6) $5\sqrt{2}$ cm. 187. a) $\sqrt{6}$; 6) 17; B) 13. 188. $a\sqrt{3}$. 189. a) $\frac{m\sqrt{2}}{2}$; 6) $\frac{d\sqrt{3}}{3}$. **190.** a) 90°; б) 45°; в) tg $\varphi = \frac{1}{2}$, $\varphi \approx 26^{\circ}34'$. **192.** $\frac{\sqrt{2}}{2}$. **193.** a) $\sqrt{d^2 - m^2}$; б) $\sqrt{m^2-n^2}$; в) $\frac{n\sqrt{m^2-n^2}}{m}$. 194. а) $\frac{a\sqrt{2}}{2}$; б) $\frac{d\sqrt{6}}{6}$. 195. 6 см, 6 см и $6\sqrt{2}$ см. 198. 4 см. 199. Указание. Пусть точка O — проекция точки S на плоскость треугольника. Доказать, что точка O совпадает с точкой $M.\ 201.\ 90^{\circ}.\ 202.\ 5\sqrt{3}$ см. У к а з а н и е. Воспользоваться задачей 199. 203. 5 см. 204. а) $\frac{a}{\sin \varphi}$, $\frac{a}{2 \log \varphi} \sqrt{1 + 4 \log^2 \varphi}$; б) $\frac{2\pi a}{\lg \varphi}$; в) $\frac{3\sqrt{3}a^2}{4\lg^2 \varphi}$. 205. 3,5 дм². 206. 25 см. 207. 8 см. 208. $9\sqrt{6}$ см. 209. Расстояние от точки B до плоскости α меньше расстояния от точки C до этой плоскости. 211. $a\sqrt{2}$. 213. $\cos \varphi = \frac{1}{3}$, $\varphi \approx 70^\circ 33'$. 214. 60° . 215. $\frac{1}{2}\sqrt{217}$ см. 216. 2a. 217. $2\sqrt{122}$ дм.

Глава III

219. 13 cm. 220. 26 cm. 221. $8\sqrt{21}$ cm². 222. 45°, 135°, 45°, 135°. 223. 8 cm и $8\sqrt{3}$ cm. 224. $16\sqrt{7}$ cm². 225. 45°. 226. $2\sqrt{3}$ cm². 228. $80\sqrt{2}$ cm². 229. a) 450 cm² и ≈536 cm²; б) 384 дм² и 672 дм²; в) 69 дм² и ≈97 дм²; г) 0,2 м² и ≈0,8 м². 230. 75 см². 231. $20(23+6\sqrt{3})$ cm². 232. $2d^2\sin\varphi(\sqrt{\cos^2\varphi-\sin^2\alpha}+\sin\alpha)$.

233. 180 cm². 234. 580 cm². 235.
$$\frac{2\sqrt{2}\cos\left(\frac{\phi}{2}-\frac{\pi}{4}\right)\sin\theta}{\sin\frac{\phi}{2}}$$
. 236. У каза-

н и е. Учесть, что боковые грани наклонной призмы являются параллелограммами. 237. 240 см². У к а з а н и е. Воспользоваться задачей 236. 238. 2016 см². 239. $\sqrt{58}$ см, $\sqrt{58}$ см, $\sqrt{65}$ см, $\sqrt{65}$ см. 240. 768 см². 241. $(2\sqrt{34} + 22)$ м². 242. а) $4\sqrt{3}$ см; б) $48(\sqrt{2} + 1)$ см². 243. 192 см². 244. 790 см². 245. $8(3 + 3\sqrt{3} + \sqrt{6})$ см². 246. б) 189 см². 248. $48\sqrt{2}$ см². 250. $64\sqrt{3}$ см². 251. 13 см. 252. 12 см. 253. 12 см.

254. а)
$$\frac{\sqrt{9H^2+3a^2}}{3}$$
; б) $2\arcsin\frac{3a}{2\sqrt{9H^2+3a^2}}$; в) $\arctan\frac{\sqrt{3}H}{a}$; г) $\arctan\frac{2\sqrt{3}H}{a}$;

д)
$$2 \operatorname{arctg} \frac{\sqrt{3H^2 + a^2}}{3H}$$
. **255.** $\frac{4}{\operatorname{tg} \frac{\varphi}{2}} \sqrt{1 - \frac{1}{3} \operatorname{tg}^2 \frac{\varphi}{2}}$. **256.** a) $\frac{m \cos \alpha}{2 \sin \frac{\alpha}{2}}$; б) $\frac{m}{2 \sin \frac{\alpha}{2}}$;

B)
$$\arccos\left(\operatorname{tg}\frac{\alpha}{2}\right);$$
 Γ) $2\arcsin\left(\frac{\sqrt{2}}{2\cos\frac{\alpha}{2}}\right).$ $257.$ $3\sqrt{3}\left(1+\sqrt{2}\right)h^2.$

258. 72 (1 + $\sqrt{7}$) см². **259.** $3\sqrt{5}$ см. **263.** а) Трапеция. **264.** $3a^2$. **265.** 54 см². **266.** 13 дм². **268.** $\sqrt{7}$ дм. **269.** $\frac{2}{3}\sqrt{6}$ дм, $\sqrt{3}$ дм. **270.** 16 см².

276. a) Один; б) не имеет; в) не имеет; г) один. 277. a) Бесконечное множество; б) 3; в) 9. 278. a) 5; б) 4; в) 3 или 6. 279. 60°. 280. Площадь сечения, проходящего через диагонали смежных

граней, равна $\frac{a^2\sqrt{3}}{2}$. Площадь сечения, проходящего через диагонали противоположных граней, равна $a^2\sqrt{2}$. $281.\sqrt{3}$. 282.90° . 283. а) $\frac{a^2\sqrt{3}}{9}$; б) $\frac{a^2\sqrt{2}}{9}$. 284. Правильный октаэдр. 286. а) $m=\frac{\sqrt{6}}{2}h$; б) $n=\frac{1}{3}m$. 287. а) $a\sqrt{2}$; б) $\frac{\sqrt{2}}{3}a$; в) $\frac{a\sqrt{6}}{3}$. 290. $2\sqrt{2}$ l^2 $\frac{\cos\left(\phi-\frac{\pi}{4}\right)}{\cos\theta}\times$ $\times\sqrt{\sin\left(\theta+\phi\right)\sin\left(\theta-\phi\right)}$. 291. $2d^2\sin\phi\left(\cos\theta+\sqrt{\sin\left(\theta+\phi\right)\sin\left(\theta-\phi\right)}\right)$. 292. 4,8 см. 294. $4\sqrt{S_0^2-a^4}$ или $2\sqrt{2}S_0$. 296. $\frac{\sqrt{3}h^2\cos\phi}{\sin^2\phi}$. У к а з а н и е. Учесть, что искомое сечение является трапецией. 298. $2a^2+2a\sqrt{4b^2-a^2}$. 299. 0,5m. 300. Прямоугольник, $S=\frac{ab}{4}$. 301. $4\sqrt{6}$ см. 302. 5 см, 5 см, 6 см, 6 см. 303. $288(3+\sqrt{3})$ см². 305. $2h^2$ tg α . 306. $4h^2$ tg² $\phi\times\left(1+\frac{1}{\sin\phi}\right)$. 307. а) $\frac{\sqrt{2}}{4}ab.$ 308. 4 см, 4 см, 4 см, 4 см. 309. $\frac{80}{3}$ дм². 310. 540 см². 311. а) 315 см²; б) 7,2 см. 312. tg ϕ cos $\frac{180^\circ}{n}$. 313. 54 дм². 314. 56 см, 24 см. 319. Три.

Глава IV

320. 5 м. 321. а) 24 см; б) $12\sqrt{3}$ см; в) 432π см². 322. а) $10\sqrt{2}$ см; б) 50π см². 323. Нет. 324. $\sqrt{5\pi}$ м. 325. а) 30°; б) 60° . 326. а) 5 дм; б) 3 см. 328. 64 см². 329. 8 см. 330. 15 дм. 331. $\frac{1}{\cos\varphi}$. 332. $\sqrt{S^2-4h^2d^2}$. 333. $2\sqrt{3}\,dh$. 334. 40 см². 335. $S\sqrt{2}$. 336. π^2 м². 337. $\frac{S}{\pi}$. 338. $1,125\pi$ кг. 339. 6 см, 18 см. 340. $0,82\pi\approx2,58$ м². 341. 4S · ctg φ . 342. $S_{60\kappa}==\frac{1}{2}d^2\sin\varphi$, $S_{\text{цил}}=\frac{1}{2}d^2\sin\varphi+\frac{1}{2\pi}d^2\sin^2\frac{\varphi}{2}$ или $S_{\text{цил}}=\frac{1}{2}d^2\sin\varphi+\frac{1}{2\pi}d^2\cos^2\frac{\varphi}{2}$. 343. $\frac{d^2}{8\pi}$. 344. а) $2a^2$; б) $2\pi a^2$; в) $4\pi a^2$. 345. б) $\frac{b}{a}$. 346. 17 см. 347. а) 108π см²; б) 72π см²; в) 36π см². 348. а) $4\sqrt{2}$ дм; б) 4 дм. 349. 25 см². 350. а) r^2 ; б) $r^2\sqrt{2}$; в) $r^2\sqrt{3}$. 351. $2h^2$. 352. $6\sqrt{\frac{\pi}{8}}$ дм. 353. а) $\frac{r\sqrt{4l^2-r^2}}{4}$; б) $\frac{r\sqrt{2l^2-r^2}}{2}$. 354. а) 200 см²; б) $\frac{100}{3}\sqrt{6}$ см²;

B) $\frac{200\sqrt{3}}{9}$ cm². 357. $\alpha = 216^{\circ}$. 358. 180° . 359. a) 60° ; 6) $2 \arcsin \frac{1}{4}$; B) $2 \arcsin \frac{1}{6}$. $360.\ 9\pi\ \text{cm}^2$, $6\sqrt{2}\ \text{cm}$. $361.\ \frac{169\,\pi\sqrt{2}}{8}\ \text{cm}^2$. $362.\ 0.9\pi\ \text{cm}^2$. $363. \ \frac{\pi a^2 \cos^2 \frac{\phi}{2}}{2 \sin^2 \alpha \cos^2 \alpha}. \ 364. \ S_{\text{50K}} = 80\pi \ \text{cm}^2, \ S_{\text{KOH}} = 144\pi \ \text{cm}^2. \ 365. \ 2\pi m^2 \sin \phi.$ **366.** 5 cm. **367.** a) 8 cm; б) 128 cm². **368.** $R^2 - r^2$. **369.** 60 cm². **370.** $33\sqrt{2}\pi$ cm². $(33\sqrt{2}+65)\,\pi\,\,\mathrm{cm}^2$. 371. $2,55\pi\approx 8,011\,\,\mathrm{kg}$. 373. a) $10\sqrt{21}\,\,\mathrm{cm};\,\,6)\,\,12\,\,\mathrm{mm};\,\,6$ в) 16 дм; г) $\sqrt{a^2-b^2}$. 374. $\frac{\sqrt{4R^2-m^2}}{2}$. 375. 1600 π дм². 376. 12 см. 377. 6 см. 378. 4 см. 379. 3 см. 380. 8 см. 381. а) Плоскость является касательной к сфере; б), в) плоскость пересекает сферу; г) плоскость и сфера не имеют общих точек. 382. a) $80\pi \text{ cm}^2$; б) $\sqrt{\frac{12}{\pi}} + 4 \text{ cm}$. 383. a) $\frac{\sqrt{3}}{2}R$; 6) $\frac{\pi\sqrt{3}}{2}R^2$. 384. a) $2\sqrt{3}\pi$ cm; 6) $5\sqrt{2}\pi$ m. 385. $\pi R^2 \sin^2 \varphi$. 386. $\frac{a\sqrt{3}}{2}$, $\frac{a\sqrt{3}}{2}$. 387. 1 см. 388. a) 144 π см²; б) 16 π дм²; в) 8 π м²; r) 48π cm². 389. 36 m². 390. $\frac{9}{\sqrt{\pi}}$ cm. 392. 10 m. 393. 900π cm². **394.** $4\pi(r_1^2+r_2^2)$. **396.** $\frac{\sqrt{3}S}{2}$. **397.** $\frac{a\sqrt{3}}{3}$. **399.** $\sqrt{\frac{S_1^2+S_2^2}{2\pi(S_1+S_2)}}$. **400.** a) $\frac{3}{2}$; б) 2 или $\frac{5}{4}$. 401. $\frac{2\pm\sqrt{3}}{2}$. 402. $\frac{p}{2}$ или $\frac{p}{4}$. 403. 414 π см². 405. $-\frac{1}{3}$. 406. $\frac{\sqrt{S_0^2 - S_1^2}}{\pi}$. 407. $\arccos \frac{1}{7}$. 408. $4\sqrt{6}$ cm². 409. $\arcsin \frac{3}{4}$. 410. $\frac{\pi ab (a+b)}{\sqrt{a^2 + b^2}}$. 411. $40\sqrt{3}\pi$ cm². 412. a) $\frac{9\sqrt{3}}{4}(\sqrt{73}+3)$ cm²; б) $(18+6\sqrt{41})$ cm²; в) $\frac{9}{2}(\sqrt{91}+3\sqrt{3})$ см². **413.** $12\sqrt{10}\pi$ дм², $4(3\sqrt{10}+5)\pi$ дм². **415.** а) У к азание. Доказать, что диаметр сферы равен гипотенузе треугольника; б) $2\sqrt{10}$ см. **416.** а) 30° ; б) $\frac{35}{144}$. **418.** б) 0.6R. **419.** а) $2R\sqrt{\frac{3-4\sin^2\varphi}{3}}$, $4R\sin\phi\sqrt{\frac{3-4\sin^2\phi}{3}};$ 6) $\frac{16}{9}\pi R^2\sin^2\phi (3-4\sin^2\phi).$ 420. $\frac{240}{13}\pi$ cm. 423. $\frac{4\sqrt{10}+4\sqrt{17}+8}{15\pi}$. 424. a) $\frac{3\sqrt{3}}{4}$ (29 + 7 $\sqrt{73}$) cm²; б) (58 + 14 $\sqrt{41}$) cm²; B) $\frac{21\sqrt{91}+87\sqrt{3}}{2}$ cm². 427. a) $24R^2$; 6) $12\sqrt{3}R^2$; B) $24\sqrt{3}R^2$.

428. а)
$$\frac{4R^2\cos\alpha}{(1-\sin\alpha)\lg\frac{\alpha}{2}}$$
; б) $100\sqrt{3}$ (2 + $\sqrt{3}$) см². 429. Указание. Рас-

смотреть сечение данной пирамиды плоскостью, проходящей через середину стороны основания перпендикулярно к ней. 432. a) $8R^2$;

б)
$$\frac{21\sqrt{3}}{4}R^2$$
; в) $\frac{8\sqrt{3}}{3}R^2$. 433. $\frac{3\sqrt{5}-1}{4\sqrt{33}}a$, $\frac{2\sqrt{33}}{11}a$. 434. $4\sqrt{3}$ см, 6 см или

$$4\sqrt{2}$$
 cm, 8 cm. 435. $\frac{2}{3}$. 436. a) $R \operatorname{tg}\left(\frac{\pi}{4} + \frac{\varphi}{4}\right)$; 6) $r \operatorname{tg}\left(\frac{\pi}{4} - \frac{\varphi}{4}\right)$; B) 60° .

437.
$$\frac{2\pi r^2\cos^2\frac{\alpha}{2}}{\operatorname{tg}^2\frac{\alpha}{2}\cos\alpha}$$
. 438. $\frac{3}{4}$. 439. a) $R\sin\varphi$; б) $\frac{r}{\sin\varphi}$; в) 30° или 150°.

Глава V

440. a)
$$V = V_1 + V_2$$
; б) $V = \frac{2}{3}V_1 + V_2$. **441.** a) 1980; б) 300; в) $1170\sqrt{3}$;

г)
$$3.2\sqrt{5}$$
. 442. a) $432\sqrt{2}$ см³; б) $6\sqrt{6}$ м³; в) $0.32\sqrt{5}$ см³. 443. 12 см.

444. 3,51 kg. 445. 240
$$\sqrt{2}$$
 cm³. 446. 729 $\sqrt{2}$ cm³. 447. $\frac{h^3 \sin \alpha \sqrt{\cos^2 \beta - \sin^2 \alpha}}{\sin^2 \beta}$.

448.
$$ab\sqrt{3a^2-b^2}$$
. **449.** $432\sqrt{3}$ cm³. **450.** a) $\frac{1}{8}\cdot\sqrt{2}$ m³; 6) $1728\sqrt{2}$ cm³.

451. 2310 cm³. **452.** a)
$$\frac{75\sqrt{3}}{4}$$
 cm³; б) 1,5 $\sqrt{2}$. **453.** 0,5 $m^3 \sin \varphi \cos \frac{\varphi}{2}$.

454.
$$\frac{l^3 \sin \beta \cdot \cos^2 \beta}{4 \log \frac{\alpha}{2}}$$
. **455.** $\frac{Q^2 \sin 2\beta}{2a}$. **456.** a) $\frac{\sqrt{3}a^3}{4}$; б) a^3 ; в) $1,5\sqrt{3}a^3$;

г)
$$\frac{2a^3}{\text{tg }22^\circ30'}$$
. **457**. $\frac{3\sqrt{3}a^3}{8}$. **458**. 72 см³. **459**. a) 24π см³; б) $\frac{10}{\sqrt{3\pi}}$ см; в) 2 см.

460.
$$\approx$$
208 м. 461. \approx 1513 т. 462. $\frac{1}{2}S\sqrt{\pi Q}$. 463. \approx 61 кг. 464. a) $3\sqrt{3}:4\pi;$

б)
$$2:\pi$$
; в) $3\sqrt{3}:2\pi$; г) $2\sqrt{2}:\pi$; д) $\left(\frac{1}{2}n\cdot\sin\frac{360^{\circ}}{n}\right):\pi$. **465.** $\frac{\pi a^2h}{4\cos^2\alpha}$.

466. 0,5. **467.**
$$\frac{\pi}{2}$$
. **468.** $\frac{\pi}{5}$. **469.** $192\sqrt{3}$ cm³. **470.** $\frac{ab\sqrt{12a^2-3b^2}}{8}$.

471.
$$\frac{1}{4}m^3 \operatorname{tg} \varphi$$
. 472. 1050 cm³. 473. $abc\sqrt{-\cos 2\varphi}$. 474. $V = 18\sqrt{39} \operatorname{cm}^3$.

477. a) 6
$$\text{ M}^3$$
; б) 4950 cm^3 . **478.** $169\sqrt{3}$ cm^3 . **479.** a) $\frac{\sqrt{3}}{8}l^3\sin 2\varphi\cos\varphi$;

б)
$$\frac{1}{3}l^3\cos^2\alpha\sqrt{3-4\cos^2\alpha}$$
; в) $\frac{1}{3}l^3\sin^2\frac{\beta}{2}\sqrt{3-4\sin^2\frac{\beta}{2}}$. 480. $\frac{a^3\sqrt{3-4\sin^2\frac{\phi}{2}}}{24\sin\frac{\phi}{2}}$.

481. a) $\frac{4H^3}{3 \lg^2 \beta}$; 6) $\frac{m^3 \sqrt{\cos \alpha}}{6 \sin \frac{\alpha}{2}}$. **482.** $\frac{2}{3} m^3 \cos^2 \phi \cdot \sin \phi$. **483.** $6\sqrt{471} \text{ cm}^3$, $6\sqrt{498} \text{ cm}^2$. 484. $\frac{845\sqrt{3}}{6} \text{ cm}^3$. 485. $\frac{1}{12}ab\sqrt{a^2+b^2} \text{ tg } \phi$. 487. 9 cm³. **488.** a) $\frac{1}{24}c^3\sin 2\phi$ tg θ ; δ) 48 cm³; B) $\frac{1}{6}abc$. **489.** 1400 $\sqrt{3}$ cm³. 490. $\frac{7\sqrt{47}a^3}{192}$. **491.** $\frac{1}{24}$ ($m^3 - n^3$) tg φ . **492.** 1260 дм³. **493.** 38 $\sqrt{2}$ см³. **494.** a) 2,25 π см³; б) 9 см; в) $\sqrt{\frac{3p}{\pi m}}$. 495. 375 см³. 496. $\frac{\sqrt{\pi Q(P^2-Q^2)}}{3\pi}$. 497. $\frac{1}{12}\pi H^3$. **498.** 240 π см³ или 100 π см³. **499.** 216°. **500.** $\frac{225\pi}{7}$ дм³. **501.** 84 π м³. **502.** $\frac{Sh}{\pi l}$, $\frac{1}{12}\pi h \left(l^2 - h^2 + \frac{3S^2}{\pi^2 l^2}\right)$. **503.** a) 64π cm², $\frac{256}{3}\pi$ cm³; 6) ≈ 3 cm, $pprox 36\pi$ см 2 ; в) 4 см, $\frac{256}{2}\pi$ см 3 . **504.** Объём Земли в 64 раза больше объёма Луны. **505.** $H = \frac{4}{3}R$, где H — высота цилиндра, R — радиус шара. 506. Нет. 507. Уровень воды повысится на $\frac{32}{75}$ см. 508. $\frac{942}{125}$ π м³. **509.** 5:16. **510.** 58 500 π см³ или 504 000 π см³. **511.** $\frac{52}{91}\pi R^3$. **512.** 252 π см³ и 720 π см³. 513. 112 500 π см³. 514. $\frac{2-\sqrt{3}}{3}\pi R^3$. 515. 6375 $^2\pi\approx 1,28\times$ $imes 10^8 \ \mathrm{km}^2 = 128 \cdot 10^6 \ \mathrm{km}^2$. **516**. $432\pi \approx 1357 \ \mathrm{cm}^2$. **518**. $\sqrt{S_1 \cdot S_2 \cdot S_3}$, 36 дм³. **519.** $48\sqrt{11}$ cm³. **520.** $a\sqrt{Q^2-Qa^2}$. **521.** 105 cm³. **522.** $16\sqrt{11}$ cm³. **523.** $\frac{a^3}{4}$. **524.** 1 M, 2 M, $\sqrt{5}$ M, 3 M, 3 M, 3 M. $525.\frac{1}{3}d^3\sin^2\varphi\sqrt{3\cos^2\varphi-\sin^2\varphi}$ или $\frac{1}{2}d^3\sin^2\varphi\sqrt{3-4\sin^2\varphi}$. **526.** Указание. Достроить треугольную призму до параллелепипеда. 527. У казание. Воспользоваться задачей 526. 528. 6,12 дм³. Указание. Воспользоваться задачей 475. **529.** $\frac{m^3\sqrt{3}}{27\sin^2\varphi\cos\varphi}$. **530.** $\frac{16m^3}{3\lg^2\varphi}$. **531.** $\frac{\sqrt{3}}{4}\,h^3$ (3 $\lg^2\varphi-1$). $\mathbf{532.} \ \ \, \frac{a^3n}{24\,\mathrm{tg}\, \frac{180^\circ}{}} \cdot \sqrt{\frac{1}{\mathrm{tg}^2\, \frac{\alpha}{2}} - \frac{1}{\mathrm{tg}^2\, \frac{180^\circ}{}}}. \qquad \mathbf{533.} \ \ \, \frac{2h^3\, \mathrm{sin}\, \phi_1 \cdot \mathrm{sin}\, \phi_2 \cdot \mathrm{sin}\, (\phi_1 + \phi_2)}{3\,\mathrm{tg}^2\, \phi_3}.$ 534. $\frac{2H^3 \sin \alpha}{3 \tan \theta \cdot \tan \alpha}$. 535. $\frac{1}{3} a^3 \sin^2 \phi \tan \theta$. 536. a) $\frac{a}{12} \sqrt{4a^2b^2 - a^4 - b^4}$; б) $\frac{b^2}{12}\sqrt{4a^2-2b^2}$. 537. 31:73. 538. a) $\frac{S}{2}\sqrt{\frac{Q}{\pi}}$; б) $\frac{\pi h^3}{4}$; в) $\frac{S}{6}\sqrt{\frac{2S}{3\pi}}$.

$$\mathbf{540.} \approx \! 7065 \ \text{m.} \quad \mathbf{541.} \quad \frac{\pi a^3 \operatorname{tg} \phi_2}{24 \sin^2 \frac{\phi_1}{2} \cdot \operatorname{tg} \frac{\phi_1}{2}}. \quad \mathbf{542.} \quad \frac{a^3 \pi}{24} \sin^3 \phi \operatorname{tg} \theta. \quad \mathbf{543.} \quad \frac{3}{2}.$$

544. 96
$$\pi$$
 дм³. **545.** $2\pi r \frac{l-r}{l}$. **546.** $\frac{r^2+rr_1+r_1^2}{2rr_1}$. **547.** $\frac{3\sqrt{3}}{4\pi}$ tg α ctg³ $\frac{\alpha}{2} \cdot V$.

$$\mathbf{548.} \, \frac{\pi}{6} a^3 \sin^3 \alpha \, \mathrm{tg}^3 \frac{\beta}{2}. \, \, \mathbf{549.} \, \pi R^3 \sin 2\alpha \cos \alpha. \, \, \mathbf{550.} \, \frac{\pi l^3}{6 \cos^3 \frac{\alpha}{2}}. \, \, \mathbf{551.} \, \frac{\pi}{H^2} (H^2 + r^2)^2,$$

$$\frac{\pi}{6H^3}(H^2+r^2)^3. \quad \mathbf{552.} \ \, \frac{4\pi}{\sin^2 2\alpha} \ \, \mathrm{cm}^2, \quad \frac{4\pi}{3\sin^3 2\alpha} \ \, \mathrm{cm}^3. \quad \mathbf{553.} \ \, \frac{100\pi}{\sin^2 2\beta} \ \, \mathrm{cm}^2,$$

$$\frac{500\pi}{3\sin^3 2\beta}$$
 см 3 . **554.** $pprox 6,56$ м. **555.** Наибольший объём имеет шар, наи-

меньший объём имеет конус. 556. а) Нет; б) да. У казание. Сравнить плотность шара, считая его однородным, с плотностью воды.

Глава VI

557. a) 3 cm, 4 cm, 5 cm, 1,5 cm, 2 cm, 2,5 cm; 6) 4 cm, 3 cm, 5 cm, 2 см, 2,5 см. **558.** а) 12 см, 8 см, 9 см; б) 15 см, $\sqrt{145}$ см, 17 см. **560.** a) $\overrightarrow{MN} = \overrightarrow{QP}$, $\overrightarrow{QM} = \overrightarrow{PN}$, $\overrightarrow{DP} = \overrightarrow{PC}$; б) квадрат. **561.** a) Да; б) да; в) нет. 562. а) Параллельны или совпадают; б) прямая параллельна плоскости или лежит в ней; в) плоскости параллельны, пересекаются или совпадают. **563.** a) $\overrightarrow{CC_1}$; б) \overrightarrow{DK} ; в) $\overrightarrow{A_1C_1}$; г) $\overrightarrow{C_1B_1}$; д) $\overrightarrow{MB_1}$. **564.** a) \overrightarrow{AC} ; б) $\overrightarrow{AC_1}$; в) $\overrightarrow{C_1B}$; г) $\overrightarrow{DB_1}$; д) $\overrightarrow{DC_1}$. **566.** a) \overrightarrow{BC} , \overrightarrow{AD} , $\overrightarrow{A_1D_1}, \overrightarrow{B_1C_1}; \ \texttt{6}) \ \overrightarrow{AB_1}, \ \overrightarrow{DC_1}; \ \texttt{B}) \ \overrightarrow{CD}, \ \overrightarrow{BA}, \ \overrightarrow{B_1A_1}, \ \overrightarrow{C_1D_1}; \ \texttt{r}) \ \overrightarrow{B_1A_1}, \ \overrightarrow{C_1D_1};$ \overrightarrow{CD} , \overrightarrow{BA} . 570. a) $\overrightarrow{0}$; 6) \overrightarrow{DB} . 572. a) \overrightarrow{PQ} ; 6) \overrightarrow{AK} ; B) \overrightarrow{CP} ; Γ) $\overrightarrow{0}$. 573. a) $\overrightarrow{AC} - \overrightarrow{DC} - \overrightarrow{BD}$; 6) $\overrightarrow{DC} + \overrightarrow{CB} - \overrightarrow{DA}$; B) $-(\overrightarrow{DA} + \overrightarrow{CD} + \overrightarrow{BC})$. 574. a) $\overrightarrow{AD} + \overrightarrow{OE}$; б) \overrightarrow{AK} ; в) $\overrightarrow{0}$. 575. Указание. Учесть, что $\overrightarrow{OA} - \overrightarrow{OA}_1 =$ $=\overrightarrow{OC}-\overrightarrow{OC_1}$. 576. a) $\overrightarrow{C_1B}$; 6) \overrightarrow{AC} . 577. a) \overrightarrow{AC} ; 6) \overrightarrow{CB} ; B) \overrightarrow{BC} . 581. a) -1; 6) 2; B) $-\frac{1}{2}$. 582. a) $-2\overrightarrow{EF}$; 6) $-\frac{1}{2}\overrightarrow{DC}$. 583. $-\frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC})$. 584. a) $5\overrightarrow{n} - 9\overrightarrow{m}$; б) $2\vec{p} - 13\vec{m} - 3\vec{n}$. **592.** а), в). **593.** Да. **595.** а) $\overrightarrow{AC_1}$; б) $\overrightarrow{DB_1}$; в) $\overrightarrow{DB_1}$; r) $\overrightarrow{A_1C}$; $\overrightarrow{BD_1}$. **596.** a) $\overrightarrow{BD_1} = \overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{BB_1}$; $\overrightarrow{BD_1} = \overrightarrow{A_1A} - \overrightarrow{A_1B} + \overrightarrow{BC} + \overrightarrow{BC}$ $+\overrightarrow{A_1D_1}$. 597. a) $-\frac{kq}{a^3}\overrightarrow{AC_1}$, $\frac{\sqrt{2}kq}{2a^3}\overrightarrow{AC_1}$; 6) $\frac{kq}{3a^2}\sqrt{19+4\sqrt{3}}$, $\frac{kq}{3a^2}\sqrt{19+4\sqrt{3}}$, $\frac{2kq}{\alpha_{\sigma^2}}\sqrt{105}, \quad \frac{4kq}{3\sigma^2}. \quad 598. \overrightarrow{CD} = 0 \cdot \overrightarrow{AA_1} - \overrightarrow{AB} + 0 \cdot \overrightarrow{AD}, \quad \overrightarrow{D_1O} = -\frac{1}{2}\overrightarrow{AA_1} + \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AA_1} + \frac{1}{2}\overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AA_1} + \frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2}\overrightarrow{AA_1} + \frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2}\overrightarrow{AB_1} + \frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2}\overrightarrow{AB_1} + \frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2}\overrightarrow{AB_1} + \frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2}\overrightarrow{AB_1} = -\frac{1}{2$ $-\frac{1}{2} \overrightarrow{AD}$. 600. $\overrightarrow{OD} = \vec{a} - \vec{b} + \vec{c}$, $\overrightarrow{OM} = \frac{1}{2} \vec{a} + 0 \cdot \vec{b} + \frac{1}{2} \vec{c}$. 601. $\overrightarrow{AK} = \vec{a} + 0 \cdot \vec{b} + \frac{1}{2} \vec{c}$. $+\frac{1}{2}\vec{b}+\vec{c}, |\overrightarrow{AK}| = \frac{3}{2}m.$ 602. $\frac{1}{2}\vec{a}+\frac{1}{2}\vec{b}+0\cdot\vec{c}, \frac{3}{4}\vec{a}-\frac{1}{4}\vec{b}+\frac{1}{2}\vec{c}.$ 604. $\overrightarrow{DK}=0.7\overrightarrow{DA}+$

$$+0.15\overrightarrow{DB}+0.15\overrightarrow{DC}$$
. **605.** a) $\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}$; 6) $\overrightarrow{CM}=-\frac{1}{2}\overrightarrow{AB}-\overrightarrow{AD}$;

в)
$$\overrightarrow{C_1N} = -\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AD};$$
 д) $\overrightarrow{A_1N} = 0 \cdot \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD};$ ж) $\overrightarrow{MD} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD}.$

606.
$$\overrightarrow{OA} = 3\overrightarrow{OM} - \overrightarrow{OB} - \overrightarrow{OC}$$
. **607.** a) $\overrightarrow{DN} = \frac{1}{3}\vec{a} + \frac{1}{3}\vec{b} + \frac{1}{3}\vec{c}$; 6) $\overrightarrow{DK} = \frac{1}{4}\vec{a} + \frac{1}{3}\vec{b}$

$$+\frac{1}{4}\vec{b}+\frac{1}{4}\vec{c}; \text{ B}) \overrightarrow{AM} = -\vec{a}+\frac{1}{3}\vec{b}+\frac{1}{3}\vec{c}; \text{ F}) \overrightarrow{MK} = \frac{1}{4}\vec{a}-\frac{1}{12}\vec{b}-\frac{1}{12}\vec{c}.$$
 608. \forall K a-

зание. Воспользоваться задачами 587 и 603. 610. Нет. У казание. Сначала доказать, что M_1 — точка пересечения медиан треугольника $A_1B_1C_1$, а затем воспользоваться задачей 603. 616. а) \overrightarrow{AC} ;

б) \overrightarrow{AB} ; в) $\overrightarrow{0}$. **617**. а) $\overrightarrow{AD_1}$; б) $\overrightarrow{AC_1}$; в) \overrightarrow{DB} . **618**. Указание. Сначала доказать, что $\overrightarrow{AB} = \overrightarrow{A_1B_1}$, $\overrightarrow{BC} = \overrightarrow{B_1C_1}$, $\overrightarrow{CA} = \overrightarrow{C_1A_1}$. **619**. а) k — любое число; б) $k \ge 0$; в) k < 0; г) k = -1. **623**. Указание. Сначала доказать, что $\overrightarrow{MO} = \frac{1}{4}(\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD})$. **624**. а) $3\overrightarrow{ON} - 2\overrightarrow{OM}$; б) $2\overrightarrow{OM} - \overrightarrow{ON}$;

в) $k\overrightarrow{ON} + (1-k) \cdot \overrightarrow{OM}$. **626.** Сначала доказать компланарность векто-

ров
$$\overrightarrow{A_1B_1}$$
, $\overrightarrow{A_2B_2}$ и $\overrightarrow{A_3B_3}$. **627.** a) $\frac{3}{2a^2}kq$; б) $\frac{\sqrt{143+10\sqrt{10}}}{5\sqrt{5}a^2}kq$; в) $\frac{4}{9a^2}kq$;

r)
$$\frac{4\sqrt{737}}{27a^2}kq$$
. **628.** $\overrightarrow{AK} = \frac{1}{2}\vec{a} + \frac{1}{4}\vec{b} + \frac{1}{4}\vec{c}$. **629.** $\overrightarrow{AC_1} = \vec{p} + \vec{q} + \vec{r}$; $\overrightarrow{CA_1} = -\vec{p} - \vec{q}$

$$-\vec{q}+\vec{r}; \overrightarrow{BD_1} = \vec{q}-\vec{p}+\vec{r}; \overrightarrow{DB_1} = -\vec{q}+\vec{p}+\vec{r}.$$
 630. a) $\overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AA_1};$

6)
$$\overrightarrow{DA_1} = \overrightarrow{AB_1} - \overrightarrow{BC_1} + \overrightarrow{CD_1}$$
. 631. $\overrightarrow{AM} = \frac{1}{2} \overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2} \overrightarrow{AA_1}$. 632. У κ a-

зание. Сначала доказать компланарность векторов $\overrightarrow{AA_1}, \overrightarrow{BB_1}$ и $\overrightarrow{CC_1}.$

633.
$$\overrightarrow{BC} = \vec{c} - \vec{b}$$
, $\overrightarrow{CD} = \vec{d} - \vec{c}$, $\overrightarrow{DB} = \vec{b} - \vec{d}$, $\overrightarrow{DM} = \frac{1}{2}\vec{b} + \frac{1}{2}\vec{c} - \vec{d}$. **634.** $\frac{1}{3}$.

635. Указание. Воспользоваться задачей **603. 636.** Указание. Воспользоваться задачей **634.**

Глава VII

637. a) C; б) E; в) B; г) A, C, E, H; д) B, E, G; e) B, C, D. **639.** $B_1(1;\ 0;\ 1)$, $C(0;\ 1;\ 1)$, $C_1(1;\ 1;\ 1)$, $D_1(1;\ 1;\ 0)$. **640.** \vec{a} {3; 2; -5}, \vec{b} {-5; 3; -1}, \vec{c} {1; -1; 0}, \vec{d} {0; 1; 1}, \vec{m} {-1; 0; 1}, \vec{n} {0; 0; 0,7}.

646. a)
$$\{7; -2; 1\};$$
 б) $\{-7; 2; -1\};$ в) $\{5; -1, 2; 1\};$ г) $\left\{-5\frac{1}{3}; 3\frac{2}{5}; -1\frac{1}{7}\right\};$

д)
$$\left\{\frac{1}{3};\; -2,2;\; \frac{1}{7}\right\};\; e)$$
 $\{7;\; -1,8;\; 1\};\; ж)$ $\{7;\; -2,2;\; 1\};\; з)$ $\{10;\; -2;\; 2\};\; и)$ $\{6;\; -3;\; 0\};$

к) $\{0; -1, 2; 0\}; \pi\}$ $\left\{\frac{1}{9}; -\frac{4}{5}; \frac{1}{21}\right\}; M\}$ $\{-0, 4; 0, 2; 0\}$. **647.** $\vec{p}\{4; -18; -9\}$, \vec{q} {5; 15; -5}. **648.** a) {0; 5; -1}; 6) {-3; 2; 1}; B) {7,8; 2,5; 4,1}; r) $\{-3; 9; -3\}$. 649. $-\vec{i}\{-1; 0; 0\}$, $-\vec{i}\{0; -1; 0\}$, $-\vec{k}\{0; 0; -1\}$, $-\vec{a}\{-2; 0; 0\}$, $-\vec{b}$ {3; -5; 7}, $-\vec{c}$ {0,3; 0; -1,75}. **650**. в) Нет; г) да; д) нет. **651**. а) m = 10, $n=1\frac{1}{\pi}$; б) $m=0,1,\ n=-2$. **652.** а) Да; б) нет; в) да; д) нет; е) нет. **655.** a) $\{-1; 0; 2\}; 6$) $\{5; -7; 2\}; B$) $\left\{-\frac{1}{2}; -\frac{1}{2}; -\frac{1}{4}\right\}$. **656.** $\overrightarrow{AB} = \overrightarrow{i} - 3\overrightarrow{j} - 3\overrightarrow{k}$, $\overrightarrow{BC} = -5\overrightarrow{i} + \overrightarrow{j} + 6\overrightarrow{k}$, $\overrightarrow{CA} = 4\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$. **657.** Да. **658.** б) Да; в) нет. 659. а) Да; б) нет; в) да. 660. Указание. Воспользоваться задачей 603. 661. a) M(-1; 2,5; -2); б) B(-8; 4; -19); в) A(-24; 8; 28).**662.** a) m=2, n=-5; b) m=-0.5, n=2; b) m=1, n=-1; г) m=2, n = -1. **663.** a) 3; 6) 17. **664.** $|\vec{a}| = 5\sqrt{3}$, $|\vec{b}| = 7$, $|\vec{c}| = \sqrt{3}$, $|\vec{d}| = 2$, $|\vec{m}| = \sqrt{5}$. 665. a) $\sqrt{6}$; б) $2\sqrt{14}$; в) 0; г) $5\sqrt{2}$; д) $3\sqrt{14}$; е) 14; ж) $\sqrt{326}$. **666.** $\sqrt{14}$. **667.** а) $3 + 2\sqrt{2}$; б) 0,5; $\frac{\sqrt{73}}{4}$; $\frac{\sqrt{73}}{4}$. **668.** а) Правильный; б) прямоугольный разносторонний; в) прямоугольный разносторонний; г) прямоугольный равнобедренный. **669.** a) 4, 4, 3; б) $4\sqrt{2}$, 5, 5. 670. (0; 2; -3), (-1; 2; 0), (-1; 0; -3). 671. (3; 0; 0), (0; -4; 0), $(0; 0; \sqrt{7})$. 672. 3,75; 2; 4; $1-2\sqrt{2}$ и $1+2\sqrt{2}$. 673. Указание. Доказать, что: a) точки A, B и C не лежат на одной прямой; б) \overrightarrow{AB} и \overrightarrow{DC} — неравные сонаправленные векторы; в) $|\overrightarrow{AD}| = |\overrightarrow{CB}|$. **674.** a) (-1,6; 0; 0); б) (0; 8; 0); в) (0; 0; 1). **675.** a) $\left(\frac{3}{8}; \frac{17}{8}; 0\right)$; 6) $\left(0; 1; \frac{3}{2}\right)$; B) $\left(-\frac{1}{3}; 0; \frac{17}{6}\right)$. 676. a) (2; 3; 0), $\sqrt{13}$; 6) (2; 3; -1). **677.** $\sqrt{\frac{a^2}{4} + \frac{b^2}{4} + m^2}$. **678.** a) $(x-2)^2 + (y+4)^2 + (z-7)^2 = 9$; 6) $x^2 + y^2 +$ + z^2 = 2; B) $(x-2)^2 + y^2 + z^2 = 16$. 679. a) $(x+2)^2 + (y-2)^2 + z^2 = 54$; 6) $(x+2)^2 + (y-2)^2 + z^2 = 8$; B) $x^2 + y^2 + z^2 = 35$. 680. a) (0; 0; 0), 7; 6) $(3; -2; 0), \sqrt{2}$. 681. a) (2; 0; 0), 2; 6) (0; 1; 0), 5; B) <math>(-1; 0; 0), 2;г) $\left(\frac{1}{2}; -\frac{3}{2}; 1\right)$, $\sqrt{6}$. 682. a) 45°; б) 135°; в) 60°; г) 45°; д) 90°; е) 90°; ж) 0°; з) 180°. **683.** $\overrightarrow{BADC} = \varphi$, $\overrightarrow{BACD} = \overrightarrow{ABDC} = 180° - \varphi$. **684.** a) a^2 : б) $-2a^2$; в) 0; г) a^2 ; д) a^2 ; е) $-\frac{a^2}{2}$; ж) $-\frac{3}{2}a^2$. 685. $\vec{a}\vec{c}=3$, $\vec{a}\vec{b}=0$, $\vec{b}\vec{c}=3$, $\vec{a}\vec{a}=6,\ \sqrt{\vec{b}\,\vec{b}}=\sqrt{3}.$ 686. а) –10; б) 3; в) 1; г) –4; д) 28. 687. а) Тупой; б) острый; в) прямой. **689.** а) 5,5; б) 3,5; в) 4. **690.** m = 4. **691.** У к а з ание. Доказать, что $\overrightarrow{AB} = \overrightarrow{DC}$, $\overrightarrow{AB} \cdot \overrightarrow{AD} = 0$, $|\overrightarrow{AB}| = |\overrightarrow{AD}|$. 692. a) 60°;

6) 135°; в) 150°; г) 45°; д) 90°. **693.** $\overrightarrow{ai} \approx 50^{\circ}46'$, $\overrightarrow{aj} \approx 63^{\circ}26'$, $\overrightarrow{ak} \approx 50^{\circ}46'$. **694.** 60°. **695.** $\angle A = 120^{\circ}$, $\angle B = \angle C = 30^{\circ}$, $P = 2\sqrt{2}(2 + \sqrt{3})$,

 $S = 2\sqrt{3}$. **696.** a) $\frac{\sqrt{3}}{3}$; 6) $-\frac{1}{3}$; B) 0. **697.** 90°. **698.** 3. **700.** a) 1, $\frac{1}{2}$;

б) $\sqrt{3}$, $\sqrt{2}$. 702. Указание. Выразить векторы \overrightarrow{MN} и \overrightarrow{BC} через векторы $\overrightarrow{a} = \overrightarrow{DA}$, $\overrightarrow{b} = \overrightarrow{DB}$, $\overrightarrow{c} = \overrightarrow{DC}$. 703. a) -1; б) -1,5; в) 4; г) $\sqrt{2}$; д) 2;

e) $-\frac{1}{4}$; ж) $\frac{\sqrt{2}}{4}$. **705.** a) 30° ; б) 60° ; в) 0° ; г) 45° . **707.** a) $\frac{3}{\sqrt{29}}$; б) $\frac{2}{\sqrt{58}}$;

B) $\frac{1}{\sqrt{87}}$; Γ) $\frac{3\sqrt{3}}{\sqrt{29}}$. **708.** a) \approx 71°34′; 6) \approx 59°44′. **709.** a) $\frac{3}{\sqrt{70}}$; 6) $\frac{9}{\sqrt{130}}$;

B) $\frac{5}{\sqrt{182}}$. 710. a) $\frac{10}{\sqrt{134}}$; 6) $\frac{3}{\sqrt{134}}$; B) $\frac{5}{\sqrt{134}}$. 711. a) $\frac{1}{3}$; 6) $\frac{2}{3}$; B) $\frac{2}{3}$.

712. У казание. Пусть $ABCDA_1B_1C_1D_1$ — данный куб. Требуется, например, доказать, что $\overrightarrow{AC_1} \perp A_1B$. Разложить векторы $\overrightarrow{AC_1}$ и $\overrightarrow{A_1B}$ по векторам $\overrightarrow{a} = \overrightarrow{AB}$, $\overrightarrow{b} = \overrightarrow{AD}$, $\overrightarrow{c} = \overrightarrow{AA_1}$ и доказать, что $\overrightarrow{AC_1} \cdot \overrightarrow{A_1B} = 0$.

714. 60° . 716. $\frac{1}{3}\sqrt{70+15\sqrt{2}}$. 717. 45° . 718. Указание. Доказать,

что $\overrightarrow{AK} \cdot \overrightarrow{BD} = 0$. 720. Указание. Рассмотреть плоскость, проходящую через центр симметрии и данную прямую, и свести задачу к задаче 1149 из учебника «Геометрия, 7—9». 722. Указание. Воспользоваться следующими свойствами движений: при движении прямая отображается на прямую, параллельные прямые — на параллельные прямые, а угол — на равный ему угол. 725. Указание. Учесть, что параллельный перенос есть движение, поэтому при параллельном переносе прямая отображается на прямую. 726. У к а з а н и е. Доказать, что $\overrightarrow{MM_1} = \overrightarrow{AA_1} = \overrightarrow{p}$. 728. У к азание. Утверждения доказываются точно так же, как в теореме п. 118 и в задаче 1150 из учебника «Геометрия, 7—9». **729**. У к азание. а), б) Доказательство провести методом от противного. 731. a) $\{3; 9; -24\};$ б) $\{-1,6; -2,3; 4,3\}$. 732. a) Нет; б) да; в) да; г) нет. 733. a) (-1; 0; 0); б) (0; -2; 0), (0; 0; 2). 734. a) Да; б) да; в) нет. **735.** У казание. Доказать, что: а) точки A, B и C не лежат на одной прямой; б) середины отрезков AC и BD совпадают.

736. $\left(\frac{7}{3}; \frac{5}{3}; 3\right)$. **737.** C(6; 5; 5), $D_1(9; 4; 1)$, $B_1(4; 7; 4)$, $C_1(8; 8; 4)$.

738. а) 1; б) –2; в) 0. 739. $\left\{\frac{2}{3}; \frac{1}{3}; -\frac{2}{3}\right\}$, $\left\{\frac{1}{\sqrt{10}}; \frac{3}{\sqrt{10}}; 0\right\}$. 740. 4 или –4.

741. 1. **742.** $2\sqrt{7}$, $\sqrt{7}$, $\sqrt{29}$. **743.** (0; 42,4; 0). **744.** (1; 1,5; 1,5). Указание. Учесть, что $\angle ACB = 90^{\circ}$. **745.** (3; 0; 0), (0; 0; -9), (0; 0; -1).

 $746.4\sqrt{2}$. 747. 6 дм. 748. У казание. Ввести систему координат и обозначить координаты вершин данного тетраэдра ABCDтак: $A(x_1; y_1; z_1)$, $B(x_2; y_2; z_2)$, $C(x_3; y_3; z_3)$, $D(x_4; y_4; z_4)$. Учесть,

что точка пересечения медиан имеет координаты $\left(\frac{x_1 + x_2 + x_3 + x_4}{4}\right)$;

$$\frac{y_1+y_2+y_3+y_4}{4}$$
; $\frac{z_1+z_2+z_3+z_4}{4}$. **749.** a) 3; б) -3,5; в) 5; г) 7; д) -10.

750. а) 135° ; б) 60° ; в) $67^{\circ}30'$. **751.** а) Да; б) да; в) да; г) нет.

752. a)
$$\frac{2}{\sqrt{114}}$$
; 6) $\frac{5}{9}$. 753. a) 90°; 6) $\approx 114^{\circ}06'$. 754. a) $\sqrt{6}$; 6) $\sqrt{2}$.

755. a)
$$\frac{7}{65}$$
; б) $\frac{5}{13}$; в) $\frac{4}{13}$; г) $\frac{3}{13}$. **756.** a) $\frac{2}{\sqrt{38}}$; б) $\frac{3}{\sqrt{38}}$. **758.** 45°.

759. $\sin \theta \cos \varphi$. 760. $\sqrt{n^2 + m^2 + p^2 + pn}$. 761. Указание. а) Доказать методом от противного; б) пусть M — точка пересечения прямой a с плоскостью α , A — точка на прямой a, B и C — точки в плоскости α , отличные от точки M. К треугольникам AMBи АМС применить теорему Пифагора. 762. Указание. Рассмотреть линейные углы двугранных углов, образованных плоскостями α и β , α и β_1 . 763. Указание. Взять на плоскости α две пересекающиеся прямые и воспользоваться задачей 725.

Задачи для повторения

764. a) $9\sqrt{3}$ см²; в) $\arctan 0.5$; г) $\arctan \frac{\sqrt{2}}{2}$; д) 6 см; е) $27\sqrt{3}$ см².

765. a) $72\sqrt{7}$ cm²; б) $144\sqrt{3}$ cm³; в) arctg $\sqrt{6}$; г) 60° ; д) 72; e) 192π cm².

766. a) $6\sqrt{3} (2 + \sqrt{13}) \text{ cm}^2$; 6) $12\sqrt{3} \text{ cm}^3$; B) $\arcsin 0.6$; r) $\arctan 1.5$;

д) 12; e)
$$(12-6\sqrt{3})$$
 см. 767. a) $32\sqrt{7}$ см²; б) $\frac{128\sqrt{3}}{3}$ см³; в) $\arctan\sqrt{6}$;

г) $2 \arctan \frac{\sqrt{6}}{6}$; д) 48; е) $\frac{8\sqrt{3}}{2}$ см.

Задачи повышенной трудности

768. $3(1+2\sqrt{2})$ см². **769.** Указание. Допустим, что вершина тетраэдра проектируется в точку пересечения высот основания. Тогда любое ребро тетраэдра перпендикулярно к противоположному ребру. Затем применить обратную теорему о трёх перпендикулярах. 770. У казание. Учесть, что O_1 — точка пересечения высот треугольника ABC. 771. Указание. Воспользоваться формулой объёма тетраэдра. 772. Семь. 773. Указание. Через биссектрису линейного угла данного двугранного угла и его ребро провести плоскость и спроектировать точку пересечения данной прямой с этой плоскостью на грани. Затем воспользоваться равенством полученных треугольников. **775.** Указание. Пусть A — произвольная

вершина, O — центр куба, A_1 — проекция точки A на данную прямую. Тогда $AA_1 = OA \cdot \sin \varphi$, где φ — угол между OA и OA_1 . Записать сумму квадратов расстояний от прямой OA_1 до вершин куба и воспользоваться теоремой косинусов. 776. У к а з а н и е. Указанные тетраэдры имеют общую вершину, а их основания — равнобедренные прямоугольные треугольники, катеты которых равны ребру куба. 777. У к а з а н и е. Рассмотреть развёртку куба. 778. У к а з ан и е. Взять в качестве оси отверстия диагональ куба. 779. $\frac{25}{16}S$.

 $780.\sqrt{2}$ см. У к а з а н и е. Воспользоваться тем, что тетраэдр должен находиться внутри сферы, описанной около куба. 781. У к а з ан и е. Доказать, что все вершины полученного многогранника — середины граней куба. 782. У к а з а н и е. Взять какую-нибудь грань параллелепипеда, выбрать наименьший куб, примыкающий к этой грани, и выяснить, как к нему могут быть приставлены остальные кубы. 783. У к а з а н и е. Спроектировать вершины ломаной на три ребра куба с общей вершиной и воспользоваться соотношениями между сторонами треугольника. 784. У к а з а н и е. Сначала доказать, что объём тетраэдра не изменится, если отрезок AB неподвижен, а отрезок CD перемещается. 785. У к а з а н и е. Воспользоваться симметрией.

787. $\sqrt{\frac{3}{7}}a$, $\arccos\frac{\sqrt{2}}{4}$. 788. $\arccos\frac{\sqrt{3}}{3}$. 789. Указание. Выразить

векторы, задающие диагонали, через векторы, задающие рёбра. **790.** У к а з а н и е. Рассмотреть векторы, определяющие направления падающего и отраженного лучей. **791.** Два решения: 45° и 135° . **792.** У к а з а н и е. Исходя из условия задачи, записать соотношения для векторов, задающих три ребра тетраэдра с общим концом. **793.** У к а з а н и е. Рассмотреть вектор, образующий равные углы с боковыми рёбрами, и доказать, что он перпендикулярен к векторам, задающим два ребра основания. **794.** У к а з а н и е. Пусть O_1 — проекция O на плоскость ABC. Доказать, что $\overrightarrow{O_1A} \cdot \overrightarrow{BC} = \overrightarrow{BO_1} \cdot \overrightarrow{AC} = \overrightarrow{CO_1} \cdot \overrightarrow{AB} = 0$. **795.** У к а з а н и е. Доказать, что эта величина равна квадрату диаметра шара. **796.** Дуга окружности, расположенная внутри шара, диаметр которой равен расстоянию от центра шара до данной прямой, а плоскость окружности перпендикулярна к данной прямой. **797.** Сфера, центр которой совпадает с центром данной сферы, а радиус равен $\frac{\sqrt{6}}{2}R$, где R — радиус данной сферы.

799. $r_3 \geqslant \frac{r_1 r_2}{\left(\sqrt{r_1} + \sqrt{r_2}\right)^2}$, где r_3 — радиус меньшего из шаров. 800. $r = \frac{\sqrt{3}}{3}R$.

801.
$$\frac{2\sqrt{3}(\lambda-1)-\sqrt{9\lambda^2-18\lambda+12}}{3(\lambda-2)}R$$
 при $\lambda \neq 2$ и $\frac{\sqrt{3}}{6}R$ при $\lambda = 2$. 802. $\frac{1}{12}V$,

 $\frac{1}{4}V, \ \frac{1}{4}V$ и $\frac{5}{12}V,$ где V — объём призмы. 803. У казание. Достро-

ить тетраэдр до треугольной призмы и воспользоваться задачей 526. 804. У казание. Доказать, что полученные тетраэдры имеют общее основание и равные высоты. 805. 5:3. 806. У казание. Взяв за основание какую-нибудь грань с ребром AB, заметить, что ни её площадь, ни высота тетраэдра не зависят от положения точек C и D. 807. $\frac{5}{24}$ см 3 . У казание. Воспользоваться задачей 803. 808. У казание. Взять точку A внутри сечения и разбить многогранник на пирамиды с общей вершиной A. 809. $\frac{16}{3}$ см 3 . У казание. Рассмот-

реть сечение фигуры плоскостями, параллельными осям цилинд-

ров. **810.** 2
$$\arcsin \frac{1}{3}$$
. **812.** $\frac{\pi a^3}{12} \left(3 \operatorname{ctg}^2 \frac{\alpha}{2} - \frac{\cos \alpha}{\sin^2 \frac{\alpha}{2}} \right)$. **813.** $\sqrt[4]{\frac{1}{2}}$. **814.** Ука-

зание. Рассмотреть плоскость, в которой лежат вершина тетраэдра и прямая Эйлера противоположной грани (см. п. 94). 815. У казание. Рассмотреть центральное подобие с центром G (см. задачу 814) и коэффициентом $-\frac{1}{3}$, а также центральное подобие с центром H и коэффициентом $\frac{1}{3}$.

Глава VIII

817. Указание. Использовать общую касательную к окружностям в точке M. 818. У к а з а н и е. Сначала доказать, что $\triangle ABC \cong \triangle BAD$. 820. Указание. Воспользоваться теоремой 2 из п. 86. 821. Указание. Рассмотреть два случая: точка пересечения прямых лежит внутри круга и вне круга и воспользоваться теоремами 1 и 2 из п. 86. 822. У казание. Сначала доказать, что $\angle NMK = \angle MKN$. **823.** У к а з а н и е. Сначала доказать, что $\angle AMN = \angle ANM$. **825.** У к азание. Рассмотреть два случая: прямая AE — секущая и прямая AE — касательная к окружности. **826.** У к а з а н и е. Воспользоваться признаком вписанного четырёхугольника. 827. У к а з а н и е. Пусть ABCD — данный четырёхугольник. Провести диаметр BB_1 и сначала доказать, что $AB_1 = CD$. 828. У казание. Через точку пересечения указанных биссектрис провести прямую, параллельную AB и пересекающую прямые AD и BC в точках E и F, и доказать, что EF = CD. 829. У казание. В четырёхугольнике ABCDна диагонали AC отметить такую точку K, что $\angle ABK = \angle CBD$, и далее использовать подобие треугольников ABK и DBC, BCK и ABD. 830. У казание. Найти сумму углов C и K четырёхугольника СОКЕ. 831. Указание. Выразить угол между указанными биссектрисами через два противоположных угла четырёхугольника. 833. У казание. Пусть основания трапеции равны a и b. Сначала доказать, что радиус вписанной окружности равен $\frac{ab}{a+b}$.

834. $\frac{a^2 + a(d-b)}{a-b}\sqrt{bd}$. 835. Указание. Воспользоваться равенством

отрезков касательных к окружности, проведённых из одной точки, а также равенством отрезков внешних касательных к двум окружностям. 836. У к а з а н и е. Воспользоваться теоремой о биссектрисе треугольника (п. 91). 837. У к а з а н и е. Воспользоваться тем, что отношение площадей треугольников ABD и ACD равно, с одной стороны, отношению отрезков BD и CD, а с другой стороны, отношению высот, проведённых из вершин B и C. 838. а) $\frac{AO}{OA_1} = \frac{b+c}{a}$,

 $\frac{BO}{OB_1}=\frac{c+a}{b}, \ \frac{CO}{OC_1}=\frac{a+b}{c}.$ Указание. Для нахождения отношения

 $rac{AO}{OA_1}$ провести отрезок A_1D , параллельный BB_1 (точка D лежит на

стороне AC), и далее использовать подобие получившихся треугольников и теорему о биссектрисе треугольника (п. 91). в) Нет. У к а з а н и е. В пунктах б), в), г) использовать формулы пункта а). 839. У к а з а н и е. Воспользоваться формулой (6) из п. 92. 840. У к а з а н и е. Пусть прямая BM пересекает сторону AC в точке D. Воспользоваться тем, что треугольники AMD и CMD имеют общую высоту. 841. 3:4. У к а з а н и е. Достроить данный треугольник до параллелограмма. 842. $\frac{16\sqrt{15}}{5}$ см². 843. 72 см². У к а з а н и е. Вос-

пользоваться результатом задачи 841. 844. У к а з а н и е. Пусть точка L лежит на стороне AB, M — на стороне AC, O — точка пересечения биссектрис треугольника ABC, OL = OM = r. Воспользоваться

равенством
$$\frac{S_{LOM}}{S_{ABC}} = \frac{\frac{1}{2}r^2 \cdot \sin \angle LOM}{\frac{1}{2}AB \cdot AC \cdot \sin A} = \frac{r^2}{AB \cdot AC}$$
, аналогичными равен-

ствами для отношений $\frac{S_{MON}}{S_{ABC}}$ и $\frac{S_{NOL}}{S_{ABC}}$ и формулами (5) и (6) из

п. 92. 845. б) У к а з а н и е. Воспользоваться формулой из пункта а), а также формулой (5) из п. 92. 846. У к а з а н и е. Продолжить стороны b и d до пересечения и воспользоваться результатом задачи 845 а). Если же стороны b и d параллельны, то воспользоваться формулой площади трапеции. 847. У к а з а н и е. а) Воспользоваться тем, что $S = S_{ABC} + S_{ADC}$; б) воспользоваться формулой из п. а). 848. У к а з а н и е. а) Воспользоваться результатом задачи 847 а) и свойством сторон описанного четырёхугольника (п. 89); б) воспользоваться формулой из пункта а). 849. У к а з а н и е. Сначала выразить отрезки BD, BH, DM и BK через стороны треугольника ABC. 851. У к а з а н и е. Воспользоваться теоремой о биссектрисе треугольника (п. 91), результатом задачи 837 и теоремой Менелая. 852. У к а з а н и е. Воспользоваться результатом задачи 837

и теоремой Менелая. 853. Указание. Воспользоваться теоремой Менелая. 854. Указание. Дважды используя теорему Менелая, доказать, что прямая, проходящая через точку пересечения диагоналей трапеции и точку пересечения продолжений боковых сторон, проходит через середины оснований. 855. Указание. Воспользоваться теоремой Менелая применительно к треугольникам ABC и ADC. 856. Указание. Воспользоваться свойством сторон описанного четырёхугольника (п. 89) и результатом задачи 855 а). 857. Указание. Воспользоваться теоремой Менелая применительно к треугольнику OO_1O_2 . 858. У казание. Воспользоваться теоремой Менелая. 859. У к а з а н и е. Воспользоваться теоремой Чевы. 860. Указание. Воспользоваться теоремой Чевы. 861. Указание. Пусть луч CT пересекает сторону AB в точке C_1 , а луч COпересекает сторону AB в точке C_2 . Используя теорему Чевы, доказать, что точки C_1 и C_2 делят отрезок AB в одном и том же отношении и, следовательно, совпадают. 862. Указание. а) Сначала доказать, что $\frac{\sin \angle ACC_1}{\sin \angle C_1CB} \cdot \frac{\sin \angle BAA_1}{\sin \angle A_1AC} \cdot \frac{\sin \angle CBB_1}{\sin \angle B_1BA} = \frac{AC_1}{C_1B} \cdot \frac{BA_1}{A_1C} \cdot \frac{CB_1}{B_1A},$ а затем воспользоваться теоремой Чевы. б) Задача решается аналогично задаче из пункта a). 863. a) $\frac{x^2}{9} + y^2 = 1$; б) $\frac{2\sqrt{2}}{3}$; в) $x = -\frac{9\sqrt{2}}{4}$ и $x = \frac{9\sqrt{2}}{4}$. 864. Пересекаются в точках (0; -2) и $\left(\frac{36}{13}; \frac{10}{13}\right)$. **865.** а) Пересекаются в четырёх точках: $(-2; -\sqrt{3}), (-2; \sqrt{3}), (2; -\sqrt{3}),$ (2; $\sqrt{3}$); б) касаются в точке (4; 0), пересекаются в точках $\left(\frac{4}{3}; -\frac{4\sqrt{2}}{3}\right)$ и $\left(\frac{4}{3}; \frac{4\sqrt{2}}{3}\right)$. 866. a) $x^2 - \frac{y^2}{3} = 1$; б) 2; в) $x = -\frac{1}{2}$ и $x = \frac{1}{2}$. 867. Пересекаются в четырёх точках: $\left(-\sqrt{6}; -\frac{2}{\sqrt{3}}\right), \left(-\sqrt{3}; -2\sqrt{\frac{2}{3}}\right), \left(\sqrt{3}; 2\sqrt{\frac{2}{3}}\right),$ $\left(\sqrt{6}; \frac{2}{\sqrt{3}}\right)$. 868. Эксцентриситет равен $\sqrt{2}$, уравнения директрис: $y + x - \sqrt{2k} = 0$ и $y + x + \sqrt{2k} = 0$. Указание. Воспользоваться замечанием 3 п. 98. 869. Уравнение директрисы $y = \frac{4ac - b^2 - 1}{4a}$; координаты фокуса $\left(-\frac{b}{2a}; \frac{4ac-b^2+1}{4a}\right)$. Указание. Сначала сделать параллельный перенос осей координат так, чтобы начало координат совпало с вершиной параболы. 870. При $R = \frac{1}{2}$ касаются в точке (0; 0), при $R > \frac{1}{2}$ касаются в точке (0; 0) и пересекаются в точках $(-\sqrt{2R-1}; 2R-1)$ и $(\sqrt{2R-1}; 2R-1)$.

Задачи для подготовки к ЕГЭ

- 3 1. 10 cm². 2. 6 cm². 3. 10 cm². 4. 5,5 cm². 5. 12 cm². 6. 12 cm². 7. 14 cm². 8. 10 cm². 9. 10 cm². 10. 12. 11. 2. 12. 24. 13. 24. 14. 4. 15. 2. 16. 100. 17. 0,25. 18. 1. 19. 15. 20. 13. 21. 6. 22. 6. 23. 45°. 24. -5. 25. 5. 26. 10. 27. -1. 28. 8. 29. 2. 30. -6. 31. 5. 32. 3. 33. 34. 10. 35. 10. 36. 0. 37. 3. 38. 0,5.
- 6 1. $\frac{24}{25}$. 2. 12. 3. 2,5. 4. 5. 5. 0,6. 6. $\frac{7}{25}$. 7. $-\frac{24}{25}$. 8. 0,7. 9. $\frac{24}{25}$.
- **10.** 5. **11.** 2. **12.** 41°. **13.** 48°. **14.** 130°. **15.** 45°. **16.** 55°. **17.** 3. **18.** 5. **19.** 18. **20.** 30°. **21.** 126°. **22.** 0,5. **23.** 1,5. **24.** 46°. **25.** 1,5.
- 8 1. 98. 2. 45°. 3. 3. 4. 3. 5. 5. 6. 46. 7. 60°. 8. 5. 9. 2. 10. B 27 pas. 11. 8. 12. 5. 13. 4. 14. 120. 15. 8. 16. 4,5. 17. 18. 18. 4,5. 19. 4. 20. 13. 21. 16. 22. 48. 23. 3. 24. 9. 25. 128. 26. 9. 27. B 4 pasa. 28. 5. 29. 8.
- 14 1. $\frac{\sqrt{2}}{2}$. 2. $\sqrt{\frac{2}{3}}$. 3. 60°. 4. 2. 5. 1,5. 6. 0,25. 7. $\frac{1}{2\sqrt{2}}$. 8. $\frac{2}{\sqrt{3}}$. 9. 30°.
- **10.** 2. **11.** $\frac{6}{5}$. **12.** $\frac{2}{3}$. **13.** $\frac{\sqrt{3}}{2}$. **14.** $\frac{\sqrt{2}}{3}$. **15.** 5. **16.** 4. **17.** 2. **18.** $2\sqrt{7}$.
- 19. $\frac{\sqrt{3}}{3}$. 20. $\frac{\sqrt{3}}{4}$. 21. $\frac{1}{\sqrt{5}}$. 22. 2 или 14.
- 16 1. $\frac{c}{2}$, $\frac{c}{2} \cdot \sqrt{1 + 3\cos^2\alpha}$, $\frac{c}{2} \cdot \sqrt{1 + 3\sin^2\alpha}$. 2. 1:2. 3. 6. 4. $2\sqrt{3}$.
- **5.** 45°. **6.** $8\sqrt{3}$ или 24. **7.** 75°, 60° и 45°; 120°, 15° и 45°; 105°, 45° и
- 30°; 135°, 30° и 15°. 8. $\frac{\sqrt{3}}{2}$. 9. $\frac{1}{2}$. 10. $\frac{1}{4}$. 11. 3 и 5. 12. 5. 13. $\sqrt{21}$.
- **14.** 28 или $\sqrt{724}$. **15.** 90°. **16.** 2*R*. **17.** 39 или 9. **18.** 2.
- 19. 8 и 15. 20. $\frac{\sqrt{2}a}{1+\sqrt{3}}$ и $\frac{2a}{1+\sqrt{3}}$. 21. $2\sqrt{2}$. 22. $a\sqrt{1+\frac{r}{R}}$ или $a\sqrt{1-\frac{r}{R}}$.
- 23. $2 + \frac{4\sqrt{2}}{3}$ или $2 \frac{4\sqrt{2}}{3}$. 24. $\sqrt{a^2 (R-r)^2}$ или $\sqrt{a^2 (R+r)^2}$.
- **25.** 105° или 165°. **26.** $\sqrt{35} + \sqrt{15}$ или $\sqrt{35} \sqrt{15}$. **27.** $\frac{12}{5}$. **28.** 2,4; 16,9; 14,3. **29.** 150° и 210°. **30.** 1 или 7. **31.** $\frac{5\sqrt{13}}{12}$. **32.** 45°. **33.** 1,44
- или 36. 34. $\frac{ab}{c}$. 35. 1 : 1. 36. $18\sqrt{2}$. 37. 48. 38. 60. 39. $\sqrt{\frac{2a^2+3b^2}{5}}$ или
- $\sqrt{\frac{3a^2+2b^2}{5}}$. 40. $\frac{\sqrt{5}}{6}$. 41. 37,2. 42. $\frac{4}{3}\sqrt{2}R^2$. 43. $\frac{1323}{20}$.

Предметный указатель

А Абсцисса точки 161 Аксиомы стереометрии 4, 251 Апофема правильной пирамиды 74 — усечённой пирамиды 75 Аппликата точки 161 В Бимедиана тетраэдра 242 Боковая грань параллелепипеда 26 — пирамиды 72 — призмы 67 — усечённой пирамиды 74 — поверхность конуса 94 — усечённого конуса 96 — цилиндра 90 Боковые рёбра параллелепипеда 27 — пирамиды 73 — призмы 67 — усечённой пирамиды 74 Большой круг шара 101 В Вектор 142 — единичный 161 — нулевой 142 — противоположный данному 146 Вершина конуса 94 — конической поверхности 94 — пирамиды 72 Вершины многогранника 63 Взаимное расположение сферы и плоскости 101 — — и прямой 104 Внутренняя точка фигуры 64	— усечённого конуса 96 — усечённой пирамиды 75 — цилиндра 90 — шарового сегмента 134 — — слоя 135 Вычисление длины вектора по его координатам 165 — объёмов тел с помощью определённого интеграла 125 — расстояния между двумя точками 165 — углов между прямыми и плоскостями 173 Вычитание векторов 145 Г Геометрическое тело 65 Гипербола 223 Гомотетия 183, 208 Градусная мера двугранного угла 51 Граница геометрической фигуры 64 Граничная точка фигуры 64 Грань двугранного угла 50 — многогранника 63 Д Движения 180 Двугранный угол 50 Диагональ многогранника 63 — параллелепипеда 26 Диаметр сферы (шара) 100 Длина вектора 142 Додекаэдр правильный 82 Е Единица измерения объёмов 116
Высота конуса 94	_
— пирамиды 73	3
— призмы 67	Задача Эйлера 209
	278 Предметный указатель

И

Измерения прямоугольного параллелепипеда 54

Изображение плоских фигур 248

— пространственных фигур 250

— фигуры 247

Икосаэдр правильный 81

К.

Касательная к сфере 104 — плоскость к сфере 102 Коллинеарность векторов 142 Компланарность векторов 150 Коническая поверхность 94 Конические сечения 109 Конус 94

Координатные векторы 161

плоскости 160

Координаты вектора 161

— середины отрезка 164

— точки 160

Куб 81

Кубический метр, миллиметр, сантиметр 116

Л

Линейный угол двугранного угла 51

Медиана тетраэдра 188 Многогранник 63

- вписанный в сферу 114
- выпуклый 63
- невыпуклый 64
- описанный около сферы 103, 114
- правильный 80

Многогранный угол 56

Наклонная, проведённая из точки к плоскости 43 Наложение фигур 253 Наложения и движения 183 Направляющий вектор прямой 173 Начало координат 160

Образующая конуса 94

— конической поверхности 94

- усечённого конуса 96
- пилиндра 90
- цилиндрической поверхности 89

Объём конуса 129

- наклонной призмы 126
- пирамиды 128
- прямой призмы 121
- прямоугольного параллелепипеда 118
- усечённого конуса 130
- усечённой пирамиды 129
- цилиндра 122

Объём тела, основные свойства 116, 117

- шара 133
- шарового сегмента 134
- сектора 135
- слоя 135

Октаэдр 63

правильный 81

Ордината точки 161

Ортогональная проекция 45

Осевое сечение конуса 95

— цилиндра 90

Оси координат 160

Основание конуса 94

- наклонной 43
- перпендикуляра 43
- пирамиды 72
- шарового сегмента 134

Основания параллелепипеда 26

- призмы 67
- усечённого конуса 96
- усечённой пирамиды 74
- цилиндра 90
- шарового слоя 135

Ось конуса 94

- конической поверхности 94
- симметрии фигуры 79
- цилиндра 90
- цилиндрической поверхности 89

Откладывание вектора от точки 143

П

Парабола 227

Параллелепипед 26

прямоугольный 53

Параллельная проекция точки 246 — — фигуры 246 Параллельность плоскостей 21 отрезков 10 — прямой и плоскости 12 — прямых 9 Параллельный перенос 182 Переместительный закон скалярного произведения векторов 172 — — сложения векторов 145 Пересекающиеся плоскости 6 прямая и плоскость 6 Перпендикуляр, проведённый из точки к плоскости 43 Перпендикулярность векторов 171 плоскостей 52 — прямой и плоскости 36 — прямых 36 Пирамида 72 — правильная 73 Плоскость 3 — симметрии фигуры 79 Площадь боковой поверхности конуса 96 — — пирамиды 73 — — призмы 68 — — — усечённого конуса **9**7 — — усечённой пирамиды 75 — — цилиндра 91 Площадь полной поверхности конуса 96 — — пирамиды 73 — — призмы 68 — — цилиндра 92 — сферы 103, 135 Поверхность геометрического тела 65 Подобные тела 184 Правило многоугольника сложения векторов 147 — параллелепипеда 151 — параллелограмма 145 — треугольника 145 Преобразование подобия 183 Призма 67 — наклонная 67 — правильная 67 — прямая 67

Признак параллельности двух плоскостей 21 — прямой и плоскости 12 — перпендикулярности двух плоскостей 52 — прямой и плоскости 38 скрещивающихся прямых 15 Проекция наклонной на плоскость 43 — точки на плоскость 45 фигуры на плоскость 45 Пространственная теорема Пифагора 70 Противоположно направленные векторы 142 Прямая 3 — Эйлера 193 Прямоугольная проекция 45 — система координат в простран-

F

стве 160

Равенство векторов 143 — фигур в пространстве 253 Радиус сферы (шара) 100 — цилиндра 90 Развёртка боковой поверхности конуса 95 — — цилиндра 91 Разложение вектора по трём некомпланарным векторам 152 Разность векторов 146 Распределительный закон скалярного умножения векторов 172 Распределительные законы умножения вектора на число 148 Расстояние между двумя параллельными плоскостями 44 — — точками 165 — прямой и плоскостью 44 — скрещивающимися прямы-— от точки до плоскости 43, 175 Ребро двугранного угла 50 — многогранника 63

C

Секущая плоскость 28, 63, 65 Сечение конуса 95

Сечение конической поверхности 108

- многогранника 63
- параллелепипеда 28
- сферы 101
- тела 65
- тетраэдра 28
- цилиндра 90
- цилиндрической поверхности 107

Симметрия зеркальная 182

- осевая 181
- центральная 180

Скалярное произведение векторов 171

Скалярный квадрат вектора 172 Скрещивающиеся прямые 15

Сложение векторов 145

Сонаправленные векторы 142

— лучи 17

Сочетательный закон скалярного произведения векторов 172

- — сложения векторов 145
- — умножения вектора на

число 148

Стереометрия 3

Сумма векторов 145

Сфера 100

- вписанная в коническую поверхность 106
- — в многогранник 103, 114
- — в цилиндрическую поверхность 105
- описанная около многогранника 114
- Эйлера 193

T

Теорема Менелая 206

- о трёх перпендикулярах 46
- Чевы 207
- Эйлера 65

Тетраэдр 25

- каркасный 243
- ортоцентрический 242
- правильный 81
- равногранный 242

Точка 3

Точки, симметричные относительно плоскости (прямой, точки) 78, 79 Трёхгранный угол 55

\mathbf{v}

Угол между векторами 171

- пересекающимися плоскостями 52
- прямой и плоскостью 46, 173
- скрещивающимися пря-

мыми 19, 173

Умножение вектора на число 147

Уравнение плоскости 174

- поверхности 166
- сферы 166

Усечённая пирамида 74

— — правильная 75

Усечённый конус 96

Фигура ограниченная 64

связная 64

Центр симметрии фигуры 79

— сферы (шара) 100

Центральная проекция 47

Центральное подобие 183, 208

Цилиндр 90

Цилиндрическая поверхность 89

Ш

Шар 100

Шаровой сегмент 134

- сектор 135
- слой 135

Э

Элементы симметрии многогранника 80

— правильных многогранни-

ков 83

Эллипс 220

Оглавление

введ	цение
	1. Предмет стереометрии
2	2. Аксиомы стереометрии
	3. Некоторые следствия из аксиом
]	Вопросы и задачи
Глан	ва І
Пар	аллельность прямых и плоскостей
	Параллельность прямых, прямой и плоскости 9 4. Параллельные прямые в пространстве — 5. Параллельность трёх прямых 10 6. Параллельность прямой и плоскости 11 Вопросы и задачи 15
§ 2.]	Взаимное расположение прямых в пространстве. Угол между двумя прямыми
	Параллельность плоскостей 21 10. Параллельные плоскости — 11. Свойства параллельных плоскостей 22 Вопросы и задачи 25
: : :	Гетраэдр и параллелепипед 25 12. Тетраэдр. — 13. Параллелепипед 26 14. Задачи на построение сечений 28 Задачи 31 Вопросы к главе І 35 Дополнительные задачи 34
Глаг Пер	ва II пендикулярность прямых и плоскостей
	15. Перпендикулярные прямые в пространстве —
	16. Параллельные прямые, перпендикулярные к плоскости —

	17. Признак перпендикулярности прямой и плоскости	38 40 41
§ 2.	Перпендикуляр и наклонные. Угол между прямой и плоскостью 19. Расстояние от точки до плоскости	43 - 44
	21. Угол между прямой и плоскостью	45
	Задачи	47
§ 3.	Двугранный угол. Перпендикулярность плоскостей	50
	23. Признак перпендикулярности двух плоскостей	52
	24. Прямоугольный параллелепипед	53
	25*. Трёхгранный угол	55
	26*. Многогранный угол	56
	Задачи	57
	Вопросы к главе II	60
	Дополнительные задачи	61
Мн	ава III огогранники Понятие многогранника. Призма. 27. Понятие многогранника 28*. Геометрическое тело 29*. Теорема Эйлера.	63 64 65
	30. Призма	67
	31*. Пространственная теорема Пифагора	68
	Задачи	70
§ 2.	Пирамида	72
	33. Правильная пирамида	 73
	34. Усечённая пирамида	74
	Задачи	75
§ 3.	Правильные многогранники	78
	35. Симметрия в пространстве	- 80
	36. Понятие правильного многогранника	83
	Практические задания	84
	Вопросы и задачи	_
	Вопросы к главе III	85
	Дополнительные задачи	86

Глава IV **Цилиндр, конус и шар**

§ 1.	Цилиндр	89
	38. Понятие цилиндра	0.1
	39. Площадь поверхности цилиндра	91
	Задачи	92
§ 2.	Конус	94
	40. Понятие конуса	_
	41. Площадь поверхности конуса	95
	42. Усечённый конус	96
	Задачи	98
§ 3.	Сфера	100
	43. Сфера и шар	_
	44. Взаимное расположение сферы и плоскости	101
	45. Касательная плоскость к сфере	102
	46. Площадь сферы	103
	47*. Взаимное расположение сферы и прямой	104
	48*. Сфера, вписанная в цилиндрическую поверхность	105
	49*. Сфера, вписанная в коническую поверхность	106
	50*. Сечения цилиндрической поверхности	107
	51*. Сечения конической поверхности	108
	Задачи	110
	Вопросы к главе IV	111
	Дополнительные задачи	112
	Разные задачи на многогранники, цилиндр, конус и шар	114
Гла	ва V	
Объ	ёмы тел	
§ 1.	Объём прямоугольного параллелепипеда	116
	52. Понятие объёма	_
	53. Объём прямоугольного параллелепипеда	118
	Задачи	120
§ 2.	Объёмы прямой призмы и цилиндра	121
Ü	54. Объём прямой призмы	_
	55. Объём цилиндра	122
	Вопросы и задачи	124
ድ 2		125
y 0.	Объёмы наклонной призмы, пирамиды и конуса 56. Вычисление объёмов тел с помощью определённого интеграла	170
		100
	57. Объём наклонной призмы	126

	58. Объём пирамиды 59. Объём конуса Задачи	128 129 130
§ 4.	Объём шара и площадь сферы 60. Объём шара 61. Объёмы шарового сегмента, шарового слоя и шарового сектора 62*. Площадь сферы Вопросы и задачи Вопросы к главе V Дополнительные задачи Разные задачи на многогранники, цилиндр, конус и шар	133 134 135 137 138 —
	ава VI к торы в пространстве	
§ 1.	Понятие вектора в пространстве 63. Понятие вектора. 64. Равенство векторов 80. Вопросы и задачи 80.	142 143 144
§ 2.	Сложение и вычитание векторов. Умножение вектора на число 65. Сложение и вычитание векторов 66. Сумма нескольких векторов 67. Умножение вектора на число Задачи	145 146 147 148
§ 3.	Компланарные векторы	150
	ава VII тод координат в пространстве. Движения	
	Координаты точки и координаты вектора	160 161 163 164 166

§ 2.	Скалярное произведение векторов	171 —
	78. Вычисление углов между прямыми и плоскостями	173
	79*. Уравнение плоскости	174
	Задачи	176
0.0		
§ 3.	Движения	180
	80. Центральная симметрия	_
	81. Осевая симметрия	181
	82. Зеркальная симметрия	182
	83. Параллельный перенос	
	84*. Преобразование подобия	183
	Задачи	185
	Вопросы к главе VII	186
	Дополнительные задачи	187
	Задачи для повторения	189
	Задачи повышенной трудности	190
	ава VIII* которые сведения из планиметрии	
		104
3 1.	Углы и отрезки, связанные с окружностью	194
	85. Угол между касательной и хордой	105
	86. Две теоремы об отрезках, связанных с окружностью	195
	87. Углы с вершинами внутри и вне круга	196
	88. Вписанный четырёхугольник	198
	89. Описанный четырёхугольник	200
	Задачи	201
§ 2.	Решение треугольников	202
	90. Теорема о медиане	_
	91. Теорема о биссектрисе треугольника	204
	92. Формулы площади треугольника	206
	93. Формула Герона	207
	94. Задача Эйлера	208
	Задачи	212
8.3	Теоремы Менелая и Чевы	214
3 0.	95. Теорема Менелая	214
	96. Теорема Чевы	216
	-	218
	Задачи	
§ 4.	Эллипс, гипербола и парабола	219
	97. Эллипс	200
	98. Гипербола	223
	99. Парабола	226
	Задачи	228

Задачи для подготовки к ЕГЭ	229
Задачи с практическим содержанием	240
Исследовательские задачи	242
Темы рефератов и докладов	244
Список литературы	245
Приложения	
1. Изображение пространственных фигур	246
1. Параллельная проекция фигуры	_
2. Изображение фигуры	247
3. Изображение плоских фигур	248
4. Изображение пространственных фигур	250
2. Об аксиомах геометрии	251
Ответы и указания	261
Продмощи и хикарамали	278

Учебное издание

Серия «МГУ — школе»

Атанасян Левон Сергеевич Бутузов Валентин Фёдорович Кадомцев Сергей Борисович Позняк Эдуард Генрихович Киселёва Людмила Сергеевна

МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА. ГЕОМЕТРИЯ

ГЕОМЕТРИЯ 10—11 классы

Учебник для общеобразовательных организаций Базовый и углублённый уровни

Редакция математики и информатики Заведующий редакцией Е. В. Эргле Ответственный за выпуск Л. В. Кузнецова Редактор Л. В. Кузнецова Младший редактор Е. А. Андреенкова Художеники О. М. Шмелёв, О. П. Богомолова Художественный редактор Т. В. Глушкова Фотографии ООО «Лори»

Техническое редактирование и компьютерная вёрстка А. Г. Хуторовской Корректоры Т. А. Дич, Е. В. Павлова

Налоговая льгота — Общероссийский классификатор продукции ОК 005-93—953000. Изд. лиц. Серия ИД № 05824 от 12.09.01. Подписано в печать 29.03.19. Формат $70 \times 90^1/_{16}$. Бумага офсетная. Гарнитура Школьная. Печать офсетная. Уч.-изд. л. 17,22. Тираж 60 000 экз. Заказ № .

Акционерное общество «Издательство «Просвещение». Российская Федерация, 127473, г. Москва, ул. Краснопролетарская, д. 16, стр. 3, этаж 4, помещение I.

Предложения по оформлению и содержанию учебников — электронная почта «Горячей линии» — fpu@prosv.ru.

Отпечатано в России.

Отпечатано по заказу АО «ПолиграфТрейд» в филиале «Смоленский полиграфический комбинат» ОАО «Издательство «Высшая школа». 214020, г. Смоленск, ул. Смольянинова, 1. Тел.: +7(4812) 31-11-96. Факс: +7(4812) 31-31-70. E-mail: spk@smolpk.ru http://www.smolpk.ru