Wydział WFIIS	Imię i nazwisko 1.Mateusz Kulig 2. Przemysław R		Rok 2021	Grupa 1	Zespół 3
PRACOWNIA FIZYCZNA WFIIS AGH	Temat: Opraco	Nr ćwiczenia 0			
Data wykonania 10.10.2021	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia Ćwiczenie nr 0: Opracowanie danych pomiarowych	OCENA

W sprawozdaniu opisaliśmy pomiary wartości przyspieszenia grawitacyjnego obliczone przy pomocy wahadła matematycznego i wzoru na okres jego drgań. Pomiaru dokonaliśmy dla trzech długości nici, do zagadnienia podeszliśmy dwiema różnymi metodami z czego pierwsza wywodząca się bezpośrednio ze wzoru dała wynik mieszczący się w wartościach tablicowych, druga zaś z prostej regresji takowego nie dała.

1. Wstęp teoretyczny.

Wahadło matematyczne jest to prosty model fizyczny, który reprezentuje ciało punktowe o masie M zawieszone na nieważkiej, nierozciągliwej nici o długości I. Jeśli wychylimy ciało z położenia równowagi o mały kąt θ to zacznie działać na niego siła wypadkowa prostopadła do siły naciągu nici i skierowana zawsze w stronę położenia równowagi. Z tego powodu ciało zacznie oscylować wokół położenia równowagi i poruszać się ruchem jednostajnie przyspieszonym.

Rys. 1. Schemat działania wahadła matematycznego. Masa punktowa *M* po wychyleniu z położenia równowagi (linia przerywana) doznaje wypadkowej siły **F**′_w skierowanej prostopadle do kierunku naciągu nici. Siła powodująca ruch jest siłą wypadkową siły ciężkości **G** oraz naciągu nici **N**′, działającej na ciało. Siła ta powoduje ruch wahadła zawsze w kierunku położenia równowagi. W położeniu równowagi siła wypadkowa **F**_w=0 oraz **G**=**N** – naciąg nici równoważy siłę ciężkości.

Siła wypadkowa w momencie odchylenia o kąt heta ma wartość wyrażoną wzorem

$$F_{w} = -Mgsin(\theta). \tag{1}$$

Z drugiej zasady dynamiki Newtona otrzymujemy równanie różniczkowe opisujące ruch wahadła

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0. {(2)}$$

Jest to równanie nieliniowe, jednak dla małych kątów sin $\theta \approx \theta$ więc równanie (2) przyjmie postać

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0. ag{3}$$

Rozwiązaniem tego równania jest funkcja

$$x = A\cos\left(\sqrt{\frac{g}{l}}t + \varphi\right). \tag{4}$$

Jest to równanie ruchu punktu materialnego zawieszonego na wahadle. Otrzymujemy z niego wzór na okres drgań wahadła

$$T = 2\pi \sqrt{\frac{l}{g}}. ag{5}$$

Po prostych przekształceniach powyższego wzoru otrzymujemy formułę na przyspieszenie ziemskie

$$g = 4\pi^2 \frac{l}{T^2}. (6)$$

Znając więc długość wahadła I i jego okres T jesteśmy w stanie za pomocą wzoru (6) wyznaczyć przyśpieszenie grawitacyjne.

2. Aparatura

- Stoper marki Q&Q Dokładność pomiarowa tego stopera wynosi 0,01 [s]. Jednak ze względu
 na szybkość reakcji ludzkiego organizmu wynosząca 0,1 [s] to właśnie tę liczbę przyjmiemy
 jako żądaną niepewność.
- Linijka (marka nieznana) Dokładność pomiarowa 0,01 [m]. Jest to niepewność związana z najmniejszą możliwą do odczytu podziałką na linijce.
- Statyw z kulką zawieszoną na nitce Odchyleniem od teorii fizycznej jest nie punktowy rozkład
 masy, oraz nić która posiada masę i nie jest idealnie nierozciągliwa. Możliwym źródłem
 niepewności jest również trudność w dokładnym odczytaniu odległości miedzy punktem
 zawieszenia nici i środkiem metalowej kulki. Na błąd pomiaru wpłynąć mogło również
 wychylenie ciała o zbyt duży kąt od położenia równowagi.

3. Analiza danych

Przeprowadzenie doświadczenia polegało na odchyleniu kulki o mały kąt dla którego $\sin(x) \approx x$. Następnie by ograniczyć wpływ reakcji eksperymentatora zmierzyliśmy czas potrzebny na wykonanie przez wahadło 10 okresów więc otrzymany wynik należy podzielić przez 10. Pomiar okresu przeprowadziliśmy dla trzech różnych długości wahadła i dla każdej wykonaliśmy 10 pomiarów. Wyniki pomiarów zebrane zostały w poniższych tabelach.

Tab. 1. Tabela wyników pomiaru okresu dla trzech różnych długości.

	L ₁ =0,505[m]		L ₂ =0,395 [m]		L ₃ =0,310 [m]	
N	10 T ₁ [s]	T ₁ [s]	10 T ₂ [s]	T ₂ [s]	10 T ₃ [s]	T ₃ [s]
1	13,65	1,365	12,48	1,248	11,22	1,122
2	14,12	1,412	12,52	1,252	11,13	1,113
3	14,37	1,437	12,58	1,258	11,16	1,116
4	14,06	1,406	12,52	1,252	11,14	1,114
5	14,18	1,418	12,39	1,239	11,19	1,119
6	14,28	1,428	12,45	1,245	11,04	1,104
7	14,28	1,428	12,48	1,248	11,22	1,122
8	14,25	1,425	12,55	1,255	11,29	1,129
9	14,26	1,426	12,33	1,233	11,19	1,119
10	14,09	1,409	12,33	1,233	11,21	1,121

Okres który użyjemy do obliczeń będzie średnią wartością dla 10 pomiarów. Tak więc:

$$=1,4154[s]$$

$$=1,2463$$
 [s]

$$=1,1179[s]$$

Metoda I

Podstawiając wartość średnią <T₃> za okres T do wzoru (6) otrzymujemy przyspieszenie ziemskie

$$g = 9,7930 \left[\frac{m}{s^2} \right].$$

Niepewność związaną z wyliczanym przyspieszeniem grawitacyjnym obliczymy za pomącą wzoru na prawo przenoszenia niepewności

$$u(g) = \sqrt{\left(\frac{dg}{dT} * u(T)\right)^2 + \left(\frac{dg}{dl} * u(l)\right)^2} = \sqrt{\left(\frac{-8\pi^2 l}{T^3} * u(T)\right)^2 + \left(\frac{4\pi^2}{T^2} * u(l)\right)^2}.$$

Po podstawieniu danych liczbowych otrzymujemy wartość niepewności $u(g) = 1,7803 \left[\frac{m}{s^2} \right]$.

Metoda II

W wyniku zastosowania drugiej metody obliczania przyspieszenia ziemskiego za pomocą prostej regresji i obliczenia jej współczynników otrzymaliśmy wzór

$$y = 3,8758x + 0,0389.$$
 (7)

Współczynnik kierunkowy A jest powiązany z przyspieszeniem grawitacyjnym wzorem

$$g = \frac{4\pi^2}{A}. ag{8}$$

Podstawiając wartości liczbowe otrzymaliśmy wartość g równą 10,1862 $\left[\frac{m}{s^2}\right]$ i niepewność z nim związaną równą wartości współczynnika B prostej u(g)=0,0389 $\left[\frac{m}{s^2}\right]$.

Rys. 1. Wykres zawierający trzy punkty pomiarowe odpowiadające trzem różnym długościom wahadła. Na wykresie widoczna jest prosta regresji daną wzorem (7).

4. Podsumowanie

W wyniku zastosowania dwóch metod wyznaczenia przyspieszenia grawitacyjnego dla pierwszej z metod po uwzględnieniu niepewności pomiarowej otrzymaliśmy wartość g = 9,7930 \pm 1,7803 $\left[\frac{m}{s^2}\right]$, która jest zgodna z wartością tablicową dla Krakowa (9,8105 $\left[\frac{m}{s^2}\right]$). Niestety druga z metod nie była tak efektywna jak pierwsza i odbiega od wartości tablicowej.

5. Literatura

[1] http://www.fis.agh.edu.pl/~pracownia_fizyczna/pomoce/Uwagi%20do%20sprawozdan.pdf - 11.10.2021