Arquitectura de computadores

Jurgen Heysen

¿Por qué lo estudiamos?

¿Qué es un computador?

¿Cómo funciona? ¿Qué cosas son importantes?

¿Cómo afecta el computador a las tareas que quiero que ejecute?

¿Qué es un computador?

Dónde estamos parados

Historia

Todo comienza con Claude Shannon, que en 1937 nota la relación entre la lógica booleana y los números binarios.

Con ello, describe físicamente los operadores lógicos AND, OR y NOT utilizando Relés.

Relés de la época eran muy grandes

Historia

Luego comienza la mejora tecnológica, donde de relés se pasa a tubos de vacío, transistores y finalmente microtransistores

Pasamos del orden de los centímetros a los micrómetros

Actualmente se juega en el rango de los 10nm

Ley de Moore

¿Y qué tiene un computador por dentro?

¿Y las instrucciones?

Ya tenemos un panorama claro sobre el aspecto físico, al menos a nivel teórico

Recordemos que un computador se define por su capacidad de ejecutar programas

Y los programas son secuencias de instrucciones

¿Y las instrucciones?

Las instrucciones se almacenan en memoria RAM

Luego, son secuencias de 1s y 0s

Quiere decir que se debe fijar una forma de interpretarlas, ya que cada instrucción que el computador pueda ejecutar debe ser asociada a una secuencia de 1s y 0s particular.

Ciclo de vida general de una instrucción

- Obtener desde memoria: Fetch
- 2. Entender lo que significa: Decode
- 3. Obtener datos necesarios para ejecutarla desde memoria o registros: Mem
- 4. Ejecutar la operación: Execute
- 5. Escribir los resultados en algún lado: Write-Back

Arquitectura de un computador

Resultado de considerar en conjunto su aspecto físico (Microarquitectura) con el aspecto de software (ISA)

Un computador no está restringido a sólo una ISA

- Se pueden dividir en dos grandes grupos
 - a. Arquitectura Harvard: Datos e instrucciones residen en memorias separada
 - b. Arquitectura Von Neumann: Una memoria para todo, programas se pueden modificar en tiempo de ejecución

Además, por el tipo de instrucciones

- RISC: Instrucciones pequeñas y simples, ayuda a mantener un hardware simple, complejidad la tiene el software.
- CISC: Instrucciones son complejas, lleva a que microarquitectura tiene un nivel de complejidad mucho mayor.

Finalmente, por su relación con los datos

- MIMD: Múltiples instrucciones sobre múltiples datos a procesar
- SIMD: Una sola instrucción se ejecuta sobre muchos datos
- MISD: Múltiples instrucciones a un solo dato
- SISD: Una instrucción sobre un dato