School of Computing and Information Systems COMP30026 Models of Computation Problem Set 2

Content: types, Haskell, propositional logic, truth tables, validity & satisfiability

P2.1 In Haskell, the product of two types a and b is a type written (a,b), and its inhabitants are pairs of the form (x,y), where x :: a and y :: b. Given any function $f :: (a,b) \rightarrow c$, there is an "equivalent" curried function cf :: a -> (b -> c), with the property that

$$(cf x) y == f (x,y)$$

for any x :: a and y :: b. Notice the different ways these functions accept their arguments. Write a function which takes a function like f as input and produces its curried version. Then write a function that *un-curries* a function like cf.

- P2.2 What is the type of f defined below? Is it well-typed? Did somebody forget the square brackets in the last equation? Explain the function's behaviour in English.
 - f[] = 0

f yAssignment Project Exam Help

- P2.3 For each of the following pairs, indicate whether the two formulas have the same truth table.
 - (a) $\neg P \Rightarrow Q$ and $Q \Rightarrow P \Rightarrow R$ (b) $\neg P \Rightarrow Q$ and $Q \Rightarrow P \Rightarrow R$ (c) $P \Rightarrow Q \Rightarrow R$ and $Q \Rightarrow P \Rightarrow R$

- (c) $\neg P \Rightarrow Q$ and $\neg Q \Rightarrow P$ (g) $(P \land Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$ (d) $(P \Rightarrow Q) \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$
- P2.4 Define your own binary connective \square by writing out a truth table for $P \square Q$ (fill in the middle column however you like). Can you write a formula with the same truth table using only $P, Q, \neg, \wedge, \vee, \Rightarrow$? Repeat this exercise a few times.
- P2.5 How many distinct truth tables are there involving two fixed propositional letters? In other words, how many meaningfully distinct connectives could we have defined in the previous question?
- P2.6 Find a formula that is equivalent to $(P \land \neg Q) \lor P$ but simpler, that is, using fewer symbols.
- P2.7 Find a formula that is equivalent to $P \Leftrightarrow (P \land Q)$ but simpler, that is, using fewer symbols.
- P2.8 Find a formula that is equivalent to $(\neg P \lor Q) \land R$ using only \Rightarrow and \neg as logical connectives.
- P2.9 Recall that \oplus is the "exclusive or" connective. Show that $(P \oplus Q) \oplus Q$ is logically equivalent
- P2.10 Consider the formula $P \Rightarrow \neg P$. Is that a contradiction (is it unsatisfiable)? Can a proposition imply its own negation?
- P2.11 By negating a satisfiable proposition, can you get a tautology? A satisfiable proposition? A contradiction? Illustrate your affirmative answers.

- P2.12 For each of the following propositional formulas, determine whether it is satisfiable, and if it is, whether it is a tautology:
 - (a) $P \Leftrightarrow ((P \Rightarrow Q) \Rightarrow P)$
 - (b) $(P \Rightarrow \neg Q) \land ((P \lor Q) \Rightarrow P)$
 - (c) $((P \Rightarrow Q) \Rightarrow Q) \land (Q \oplus (P \Rightarrow Q))$
- P2.13 Complete the following sentences, using the words "satisfiable, valid, non-valid, unsatisfiable".
 - (a) F is satisfiable iff F is not _____
- (e) F is satisfiable iff $\neg F$ is _____
- (b) F is valid iff F is not _____
- (f) F is valid iff $\neg F$ is _____
- (c) F is non-valid iff F is not _____ (g) F is non-valid iff $\neg F$ is _____
- (d) F is unsatisfiable iff F is not _____
- (h) F is unsatisfiable iff $\neg F$ is _____
- P2.14 Show that $P \Leftrightarrow (Q \Leftrightarrow R) \equiv (P \Leftrightarrow Q) \Leftrightarrow R$. This tells us that we could instead write

$$P \Leftrightarrow Q \Leftrightarrow R \tag{1}$$

without introducing any ambiguity. Mind you, that may not be such a good idea, because many people (incorrectly) tend to read " $P \Leftrightarrow Q \Leftrightarrow R$ " as

Assignmentd Project a Extant Help (2)

Show that (1) and (2) are incomparable, that is, neither is a logical consequence of the other.

- P2.15 Let F and G be propositional formulas. What is the difference between ' $F \equiv G$ ' and ' $F \Leftrightarrow G$ '? Show that $F \Leftrightarrow G$ is valid iff $F \equiv G$.
- P2.16 Is this claim correct: $(P \land Q) \Leftrightarrow P$ is logically equivalent to $(P \lor Q) \Leftrightarrow Q$? That is, do we have Add WeChat powcoder
- P2.17 (Challenge) We can encode a matrix as a list of lists, where each list represents a row of the matrix. For example, the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

would be represented by the list [[1,2,3],[4,5,6],[7,8,9]] :: [[Int]]. Write a function mytranspose :: [[a]] -> [[a]], which transposes the matrix, i.e. swaps the rows and columns. For example, the transpose of the above matrix would be.

$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

If you are familiar with matrix multiplication, use mytranspose to write a function

which multiplies two matrices (assume the inputs are sensible).