Vertical Referencing for 2D Modeling of Water Levels

OCS Storm Surge Modeling Perspective

Problem Definition

- We're using a 2D model for estimating water levels during extreme events
- Law requires the public results to be disseminated in certain vertical reference
- We'd like to know:
 - What vertical reference to use for bathymetry of the model?
 - How to convert acquired water levels to different vertical references?
- Does the same approach/assumptions work for 3D models?
 - The short answer is yes, but still there might be Topography of LMSL (TSS, signed distance between sea surface and the Geoid) errors to be accounted for
 - Still there might be practical differences, but let's focus on 2D modeling in this document

Bathymetry

- Different source of bathymetry use different vertical reference levels
- All of the hydrodynamic models initialize at "sea at rest" for cold start
 - This sea at rest is Model Zero (MZ)
 - This means starting from a geopotential surface of sea, i.e. 0 in a Geoid model

Water Levels

- Should we assume the datum for water levels we get from the model is the same as the bathymetry vertical datum?
 - How to take into account the general model bias when comparing obs vs model (even in 3D)
 - The model has bias due to simplification of the physics. The vertical referencing is a post-processing step to remove the bias and to disseminate the results (and it take into account the model bias).
 - In 2D barotropic models some of the geostrophic balancing forces as well as vertically-varying density are missing
 - There will always be a vertical offset between model and observed water level due to the limitation of 2D barotropic modeling, which can not reproduce the TSS well (LMSL to Geoid).

Solution Overview

- Use Geoid for the bathymetry for the model input
 - i.e. Model Zero (MZ) == Geoid
- De-mean the results based on the average of a long run simulation.
 - The long run simulation yields the Model Local Mean Sea Level (M-LMSL)
 - Note again that this M-LMSL is already referenced to Model Zero (MZ)
 - The long run (e.g. multi-year or multi-month, etc.) simulation should include all the forcing
 - In specific since **NHC collaboration** currently only takes vortex and tidal into account we can do a long run with **tides only**
- Assume deviation from M-LMSL is equivalent to deviation from Observed Local Mean Sea Level (Obs-LMSL)
- Look at deviations from the M-LMSL (assumed == Obs-LMSL; all is relative)
 - Calculate "model output M-LMSL" (i.e. model output minus the mean from the long running simulation); this is model results w.r.t. the M-LMSL
- Convert from M-LMSL-referenced results to target datum, e.g. NAVD88
- For comparison one may de-mean obs as well
 - o If the obs is not a timeseries then we can just use it as it is
 - This is what VDatum modeling team uses for tidal datums comparison, but might not be needed for operational use.

Terms

- See https://vdatum.noaa.gov/docs/datums.html#navd88
- Obs-LMSL: The arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name, e.g., monthly mean sea level and yearly mean sea level.
- M-LMSL: The hourly arithmetic mean using gridded output
 - Possible to use 6 minute data
- Geoid: The geoid is a specified equipotential surface, defined in the Earth's gravity field, which best fits, in a least squares sense, global mean sea level (MSL).
- TSS (Topography of sea surface): Signed distance between LMSL and the Geoid
 - o TSS used in VDatum: Geoid-LMSL.
 - Positive means GEOID above LMSL; negative means GEOID is below LMSL
- NAVD88: A vertical reference. The North American Vertical Datum 1988 was affirmed as the official civilian vertical datum for surveying and mapping activities in the United States in June 24, 1993

Height Relationships

^{*} Seroka, (AMS 2025)

Lingering Questions!

- Should we do all comparisons in relative M-LMSL vs Obs-LMSL or can we take M-LMSL and transform it to NAVD88 (using transformation from LMSL) and then compare
 - We can take M-LMSL data and transform it to NAVD88 to compare to NAVD88 obs (e.g. from COOPS API)
- Can any obs given as MSL be taken as given in Obs-LMSL without de-meaning for comparison sake? Especially if it's a single time data point?
 - Yes, single data observation in MSL is Obs-LMSL