

BEST AVAILABLE COPY

157313

申請日期	79.2.2
案號	79100720
類別	Hf/L (1)

公告本

A4
C4

(以上各欄由本局填註)

(請先閱讀背面之注意事項再填寫本頁各欄)

發明專利說明書

一、發明 創作	中文	「在酸處理器中用氫氟酸氣體蝕刻晶片之方法」
	英文	"HF GAS ETCHING OF WAFERS IN AN ACID PROCESSOR"
二、發明人 創作	姓名	1. 丹尼爾·傑·西佛森 DANIEL J. SYVERSON
	籍貫 (國籍)	2 理查·伊·諾華克 RICHARD E. NOVAK (皆)美國
三、申請人	住、居所	美國明尼蘇達州羅賓莎戴市北比德街 4210 號 美國明尼蘇達州普利茅斯市方登街 2000 號
	姓名 (名稱)	美商艾福斯埃國際公司 FSI INTERNATIONAL, INC.
經濟部中央標準局印製	籍貫 (國籍)	
	住、居所 (事務所)	美國明尼蘇達州查士卡市約拿散工業中心湖 哈士汀街 322 號
	代表人 姓名	理查·哈·賈克森 RICHARD H. JACKSON

157313

A5
B5

四、中文發明摘要(發明之名稱：在酸處理器中用氫氟酸氣體蝕刻晶片之方法)

利用氣相蝕刻以無水氯化氫氣體在晶片載體內晶體間流動分批處理半導體晶片。蝕刻可在一盤內進行，晶片載體裝在密閉盤內一轉片上。蝕刻劑可含少量水汽與無水氯化氫一起，因開始蝕刻製程時可能須要。安排晶片於晶片載體內堆架中並沿旋轉軸或在其上可進行蝕刻。

(請先閱讀背面之注意事項再填寫本頁各欄)

英文發明摘要(發明之名稱：HF GAS ETCHING OF WAFERS IN AN ACID PROCESSOR)

Batch processing of semiconductor wafers utilizing a gas phase etching with anhydrous hydrogen fluoride gas flowing between wafers in a wafer carrier. The etching may take place in a bowl with the wafer carrier mounted on a rotor in the closed bowl. The etchant gas may include a small amount of water vapor, along with the anhydrous hydrogen fluoride gas, as may be needed to commence the etching process. The etching may take place with the wafers arranged in a stack in the wafer carrier and extending along or on the rotation axis.

經濟部中央標準局印製

附註：本發已向 美 國(地區) 申請專利，申請日期：1989.4.7 索號：334,343

甲4(210×297公釐)

- 2 -

78. 8. 9,000

157313

A6
B6

五、發明說明(1)

本發明係關矽晶片之氣體蝕刻，較詳言之係關裝在線型晶片載體內並在封閉室中旋轉之此項分批晶片蝕刻。

發明之背景

電路晶方製造中半導體矽晶片之類處理時晶片表面上氧化物層或膜之蝕刻為處理的重要特色。

以往晶片處理多用濕蝕刻法，包括限制在能耐強烈化學品如酸類的塑膠製晶片載體內的矽晶片上噴霧以液態酸及其他液態化學品與脫離子水。

一個或多個此等晶片載體裝在一酸處理機的密閉盤內之變速轉盤或轉片上。此項機器對其操作有許多可變相，包括轉片速度變化、連續噴霧各種液態處理化學品、及氮氣供乾燥晶片、各項濕處理相間盤與轉片。美國專利3,990,462中示範說明一種酸處理器形式。美國專利4,609,575; 4,682,615 及 4,691,722 等亦見濕蝕刻法用噴嘴排列與其他設備之變化等。美國專利4,682,614 中亦見一近於臥式的機器。

矽晶片曾經用某些氣體的電漿完成蝕刻。美國專利3,879,597 內曾發表許多晶片同時用電漿技術蝕刻。

有些早期工作用氣態 $\text{HF}/\text{H}_2\text{O}$ 分批蝕刻 SiO_2 經 K.D. Beyer 與 M.H. Whitehill 在 IBM Technical Disclosure Bulletin, Vol. 19, No. 7, 1976 年 12 月號內發表。淺盤中許多晶片置放 HF 溶液上，在 DI - 水中沖洗，最後浸入硝酸液。

近年來曾用無水氯化氫氣達成蝕刻矽晶片上的氧化物膜

(請先閱讀背面之注意事項再填寫本頁)

裝

訂

除

157313

五、發明說明(2)

見美國專利 4,749,440。蝕刻劑氣化氫氣常以乾氮氣稀釋。少量溫度隨意為水汽與氣化氫氣混合或在待蝕刻的氧化物膜含有係必須存在以與膜內氧化物反應俾起動蝕刻程序。

此項矽晶片上氧化物膜之以往氣相蝕刻在設計進行僅一晶片之室內每次僅在一片晶片上完成。見前述美國 4,749,440 專利並參閱 1989 年 3 月 2 日提出與本申請案共有者在美國專利及商標局之申請案 S.N. 020,473

發明之概要

本發明之目的在改進半導體晶片之分批氣態蝕刻以除去表面上至少一部份氧化物膜或層以促進此項晶片之更快處理。

本發明之特色為半導體晶片之分批處理法，包括利用氣態含無水氣化氫蝕刻劑在一密閉室內蝕刻其上一部份氧化膜或層。

本發明之另一特色為此法處理裝在晶片載體內的衆多矽晶片，曝露晶片於蝕刻劑氣體，同時晶片與載體於一酸處理機之密閉室內在轉盤或轉片上旋轉以脫除晶片上氧化物膜部份。晶片由其背面鄰接周緣支承，自所有沿晶片載體內鬆堆晶片的來源噴霧。無產生電漿氣體之電漿存在。

獲得之優點為可同時蝕刻許多半導體晶片而保持在其普通裝載及輸送的晶片載體內，而且改進的氣相蝕刻可在原已可用的設備及晶片處理公司之製造工場中完成。

此外所用“蝕刻氣”一辭計劃包括蝕刻晶片表面上部份

(請先閱讀背面之注意事項再填寫本頁)

裝

訂

案

157313

五、發明說明(3)

氧化物膜或層使用之一切氣相化學品，此項化學物可包括活性氣態化學品如無水氯化氫氣、一稀釋劑氣如氮氣，及有些例案中若晶片上膜或氧化物層內不含水氣時少量^為蒸汽式之水份。

圖之簡單說明

圖 1 為一酸處理機之透視圖。

圖 2 為透過一型酸處理機的盤與轉片之剖視圖，此機能沿轉片或轉盤的周圍攜帶許多晶片載體。

圖 3 為另一型能實行本發明用酸處理機的空盤之俯視平面圖，顯視單一晶片載體帶堆架的晶片位置於旋轉軸之實質同心處及其上。

圖 4 為於圖 3 的 4—4 附近所取之部份詳細剖視圖。

圖 5 為另一型能完成本發明用酸處理機的正視圖，其盤與轉片配置與水平成輕微角度致使旋轉軸近於水平。

圖 6 為一晶片載體之詳細部份側邊正視圖，載體支持根據本發明經處理的晶片。

詳細說明

圖 1 與 2 大概示範一種酸處理機能用以實現文內所述方法，酸處理機 10 級屬安裝及攜帶衆多晶片載體或晶片卡 11 與旋轉軸成間隔關係，其中攜帶晶片成圍繞旋轉軸軌道。

圖 3 與 4 說明一不同型酸處理機一般用數字 12 指示，安裝一晶片載體 11 或圖示 11.1，約在機器之旋轉軸上。

圖 5 示範之第三型式中數字 13 指示之酸處理機能用以完成文內所述方法，在此例中晶片載體 11 裝在轉片 14 上繞軸

(請先閱讀背面之注意事項再填寫本頁)

裝

訂

線

157313

五、發明說明(4)

15 旋轉，此軸接近水平但與水平成一微角。此三型酸處理機皆能用以完成文內所述方法。

圖 1 與 2 說明之酸處理機內機器 10 納入盤 16 界定一處理室 17，由蓋 18 封閉。盤與蓋較佳塑膠製如 Teflon PFA，惟可用不銹鋼製。此型中轉片 19 亦可用 Teflon PFA 或不銹鋼製，界定衆多隔間 20，對稱地佈置在轉片 19 的邊緣周圍並等距離自轉片之旋轉軸，此軸支承於軸 21 上裝在軸承 22 內。轉片 19 之隔間由頂板 23 與底板 24 連接一起，其大小在容納並封閉如此一裝載矽晶片 25 的晶片載體 11。矽晶片排列在堆架內，其中每一晶片與鄰接的晶片對齊並面對面，又其中每一晶片配置橫對轉片 19 的旋轉軸而垂直。其中晶片載體 11 及晶片 25 隔離旋轉軸而隨轉片繞旋轉軸旋轉。

圖 6 中可見晶片載體本質上留細長孔、開口或有小孔且有敞頂 26，當按裝在機器的轉片 19 而直立時構成載體之正面。晶片載體 11 素 PFA Teflon 製，或者稱作全氟烷氧溶融可加工的塑膠，對強烈化學品如酸類之破壞影響具高度抗性，於載體的向內分枝的較低部份 28 之間亦有一敞開的底 27 用以支承晶片於凹槽 29 中構成帶進晶片載體之晶片用底座。數溝 29 間有許多肋條或齒 30 自較低部份全部向上延伸伸出側壁於是保持晶片相互成間隔而對齊的關係。其中納入齒或助 30 之側壁設有許多長孔 32 以便利蝕刻劑氣通過晶片載體而得以接近限制於其中的晶片 25。晶片載體 11 放進轉片時晶片的背面由肋條 30 在其邊部處支承使晶片的整個正面或上面暴露於室 17 之氣氛並實質暴露載體背面之所

(請先閱讀背面之注意事項再填寫本頁)

裝
訂
線

157313

五、發明說明(5)

有部份於室 17 內的氣氛。

晶片載體 11 亦有一端壁包括橫桿 33 可有任何多種構態，且可有突緣 34 使其加強。橫桿 33 伸展完全橫越晶片載體，側壁 31 可用擋板 35 相對橫桿以加強。

圖 2 內所見機器 10 內一中央噴霧柱 36 自蓋 18 中伸出，於近轉片 19 之旋轉軸處向下並沿晶片載體及其中晶片 25 之堆架沿伸。噴霧柱內有許多噴嘴 37 引導製程氣體包括蝕刻劑氣於晶片隨轉片在盤 16 內旋轉時於其上。蝕刻氣與其他氣體經集管 37.1 供應，連接至數氣體管線 38, 38.1，氣體經其供應至噴嘴 37 噴霧於晶片上及沿盤內晶片堆架之全長。

轉片由變速馬達 39 驅動，連接於由皮帶 40 傳動的軸 21。以此形式軸管 21 內有流通 21.1 供送交流體入歧管 42 與噴嘴 43。此等噴嘴 43 特別適用於須要時引導清洗或清潔用流體如脫離子水等供室 17 用及乾燥氣體如氮以確保處理期間盤 16 的內部維持乾燥。排氣風筒 44 設置以排出室 17 之廢氣使須要時可供應不斷氣流。排水管 45 亦設置以除去可能須要的某些清潔作業期間之清洗或清潔用流體。

須知當晶片載體 11 裝在轉片上時晶片 25 相互由空間 25.1 隔開使氣體可送過晶片表面以達成蝕刻程序。

晶片載體 11 與美國專利 3,961,877 中說明者相似，但應了解此機器內可用其他類似載體以實現所述及文內申請之製程。

明細蝕刻過程在美國專利 4,749,440 中敘述相當詳盡，本文引作參考，不須贅述以了解本發明。蝕刻氣體經噴嘴

(請先閱讀背面之注意事項再填寫本頁)

禁

打

線

157313

五、發明說明(6)

(請先閱讀背面之注意事項再填寫本頁)

銳孔 37 供應引向晶片 25 各邊，經過晶片中間隔 25.1 橫越晶片表面而完成各晶片面上氧化物之蝕刻。載體 11 中所裝許多晶片同時完成蝕刻因噴霧柱 36 中有許多散發氣體之位置，圖中可見沿噴霧柱 36 表面排列成行的銳孔 37。當然當轉片轉動時圍繞轉片 19 周邊間隔的幾個載體 11 中之晶片將逐漸接受由中央噴霧柱散發的蝕刻氣噴霧。

以下表 I 報告在一大致與圖 2 相似的酸處理器內進行氣相蝕刻所得結果。

表 1
試驗摘要

試驗	時間	N ₂ 1/分鐘	水汽 cc/分鐘	HF /分鐘	除去的 氧化物	轉速 /RPM	%CV	粒子	殘餘
1	5.0°	7.51	3.01	125cc	全除			2292	有
2	4.0°	7.51	3.01	125cc	全除			2572	有
3	3.0°	7.51	3.01	125cc	全除			1585	有
4	1.0°	7.51	3.01	375cc	全除			678	有
5	20°	7.51	3.01	375cc	269A	(25)	9.3	437	無
6	20°	7.51	3.01	375cc	243A	(17.8)	7.3	311	無
7	20°	7.51	3.01	125cc	36A		1.7	744	無
8	20°	7.51	3.01	125cc	21A		0.8	554	無
9	40°	7.51	3.01	125cc	108A	(5.8)	5.4		無
10	20°	7.51	1.51	125cc			No Etch		
11	60°	7.51	1.51	125cc	270	(27)	10.0		無
12	20°	15.01	1.51	125cc			No Etch		
13	60°	15.01	1.51	125cc	879	(111)	12.7		有
14	60°	15.01	1.51	125cc	491	(107)	21.9		有

圖 3 及 4 中說明相似但稍異形式之處理機器及用一稍異形式之晶片載體 11.1。此晶片載體 11.1 另有細長孔 32.1

五、發明說明(7)

與 32.2 使晶片載體之側壁極為多孔以提供最小限制予噴霧蝕刻氣體之流動。晶片載體 11 與 11.1 可在此處說明的幾型機器內交換使用。在圖 3 處理機形式中可見以與圖 2 內晶片載體實質相同的形式支承，晶片隨載體 11.1 旋轉如箭頭 "a" 所指圍繞旋轉軸 46 沿堆架中配置的晶片伸展並通過之。盤 47 亦有蓋 48 用以關閉內室 49。蝕刻氣霧可自噴嘴 50, 51 等中一個或多個散發，沖洗此室中稀釋氣亦可經文內所述噴嘴 50 等之一嘴供應。由圖 3 式處理機中可見晶片 25 隨載體 11.1 旋轉如箭頭 "a" 所指圍繞旋轉軸 46 沿堆架中配置的晶片伸展並通過。盤 47 亦有蓋 48 關閉內室 49。蝕刻氣霧可自噴嘴 50, 51 等中一個或多個散發，沖洗此室中稀釋氣亦可經噴嘴 50 之一供應，膜或層可在晶片的面上。

設置風筒 53 使氣體得以視需要逸出而提供循環，又設置排水管使能放出清洗室內用之液體。但應認知在用氣相蝕刻處理之普通過程中不常用液體噴霧於晶片上。不過有些例案中可繼以脫離子水噴霧脫除細粒。

圖 5 說明的形式中配置盤 55 於接近水平位置以接納轉片 14 之旋轉軸 15。一能開的蓋 56 幫助獲得進入盤或室 57 之內部。又晶片 25 定位於沿旋轉軸 15 之堆架中，此例中晶片為旋轉軸橫斷。盤的側壁內噴嘴 57 引導蝕刻氣入室向晶片之邊以橫越室內裝在多孔晶片載體內的晶片表面。盤 55 內轉片 14 及晶片載體稍做傾斜使晶片支承在載體的肋中如有開圖 2 所說明。

(請先閱讀背面之注意事項再填寫本頁)

卷

打

線

157813

五、發明說明(8)

以此方式直接連接一馬達58於轉片14以產生轉片及其裝載的晶片之必要轉動。

須知本文發表在一酸處理機內處理衆多半導體矽晶片之方法，此機經正常結構供濕蝕刻液體使用者。蝕刻氣體供應入室供橫越其中所處理的晶片表面。此所述方法亦可與供應入室的電漿形成氣體之電漿聯合使用。可能轉片相對噴嘴轉動已如前述，惟噴嘴亦可繞裝載晶片堆架的晶片載體旋轉以產生散發蝕刻氣的噴霧氣體來源與轉片及晶片載體所裝晶片間之必要相對旋轉。當然噴嘴及盤與其中其他硬體必須具備能耐強烈蝕刻氣之敗壞影響。

(請先閱讀背面之注意事項再填寫本頁)

裝

奇

錄

157313

公告本

A7
B7
C7
D7

六、申請專利範圍

1. 在半導體晶片之氣相蝕刻技術上脫除此等晶片上部份氧化物膜之方法，包括：裝載許多此項半導體晶片於一晶片載體內其中晶片相互間隔成面對面關係，供應含無水氟化氫氣的蝕刻氣體在晶片間流動，並暴露部份晶片於蝕刻氣以蝕刻其上氧化物膜部份。
2. 根據申請專利範圍第1項之方法並轉動晶片載體與其中晶片。
3. 根據申請專利範圍第2項之方法，其中係繞一橫越該晶片等伸張的軸旋轉。
4. 根據申請專利範圍第3項之方法，其中晶片係在通過晶片之軸上。
5. 根據申請專利範圍第3項之方法，其中晶片鄰近而與軸隔離。
6. 在半導體晶片之氣相蝕刻技術上脫除此等晶片上部份氧化物膜之方法，包括：裝載許多此項晶片的晶片載體安裝在處理機的盤內之轉片上；供應蝕刻氣於此盤內，並轉動此轉片及載體與晶片等使晶片部份暴露於氣體以蝕刻晶片上的氧化物膜部份。
7. 根據申請專利範圍第6項之方法，其中蝕刻氣含無水氟化氫氣。
8. 根據申請專利範圍第6項之方法，其中蝕刻氣引導向此等衆多晶片之間。
9. 在半導體晶片之氣相蝕刻技術上脫除此等晶片正面中氧化物膜部份之方法，包括：安裝衆多此等晶片相互成間

(請先閱讀背面之注意事項再填寫本頁)

157313

六、申請專利範圍

隔而面對面關係，將每一晶片自其背面支承於鄰近其邊之其外周緣處；並供應蝕刻氣於晶片中間及須蝕刻之該部份上。

10. 根據申請專利範圍第9項之方法並暴露晶片之正及反二面部份於蝕刻氣以蝕刻。
11. 在半導體晶片之氣相蝕刻技術上脫除此等晶片上氧化物膜部份之方法，包括：安裝衆多此項半導體相互成間隔的面對面關係；並由衆多噴霧來源供應及導引蝕刻氣朝向許多晶片部份使蝕刻劑在晶片之間流動，且暴露氧化物膜部份於此氣體藉以蝕刻。
12. 根據申請專利範圍第11項之方法並在晶片與某些噴霧來源之間產生相對旋轉運動。
13. 在半導體晶片之氣相蝕刻技術上脫除此等晶片上氧化物膜部份之方法，包括：組集並排列衆多此項晶片相互成間隔對齊及面對面的相對固定關係於一寬鬆而延長的晶片堆架內；豎直移動晶片堆架入一能關閉的盤並限制堆架於盤內；及供應蝕刻氣於盤中使晶片部份暴露於此氣供蝕刻晶片上的氧化物膜部份。
14. 根據申請專利範圍第13項之方法並於至少部份晶片暴露於氣體期間旋轉堆架。
15. 根據申請專利範圍第13項之方法，其中蝕刻氣含一部份無水氣化氫氣。
16. 根據申請專利範圍第13項之方法，其中蝕刻氣不含電漿產生氣體之電漿。

(請先閱讀背面之注意事項再填寫本頁)

A7
B7
C7
D7

157313

六、申請專利範圍

17. 一種蝕刻半導體晶片上氧化物膜或層部份之方法，包括：堆積並保持衆多此項晶片使相互成對齊間隔關係；將堆架的晶片裝在一處理機盤內之轉片上，使堆架沿旋轉軸定向俾晶片橫越旋轉軸放置；及噴霧蝕刻氣入盤內朝向晶片之邊，同時轉動轉片與晶片使氣態蝕刻劑移動橫過晶片上氧化物膜部份而產生此等部份之蝕刻。
18. 根據申請專利範圍第17項之蝕刻方法，其中該蝕刻氣之噴霧經引導橫過轉動晶片之表面。
19. 根據申請專利範圍第17項之蝕刻方法，其中該噴霧自衆多地點沿晶片堆架散發。
20. 根據申請專利範圍第17項之蝕刻方法，其中堆架晶片之安裝包括放置該堆架離開轉片之旋轉軸並成間隔關係。
21. 根據申請專利範圍第20項之蝕刻方法，該蝕刻氣之噴霧自鄰近轉片的旋轉軸之位置散發，由其處向外至堆架的晶片上。
22. 根據申請專利範圍第18項之蝕刻方法，該蝕刻氣之噴霧自旋轉軸遠隔的地點散發。
23. 根據申請專利範圍第17項之蝕刻方法，其中該堆架晶片之安裝包括沿轉片之旋轉軸放置堆架晶片及其中之軸延伸過堆架內的晶片。
24. 根據申請專利範圍第17項之蝕刻方法，其中該晶片之堆積與保持包括限制晶片於多孔晶片載體中能容蝕刻氣接近晶片。
25. 在氣相蝕刻砂及類似物之技術上脫除此等晶片上氧化物

(請先閱讀背面之注意事項再填寫本頁)

157313

A7
B7
C7
D7

六、申請專利範圍

膜部份之方法，包括：將裝有衆多此項晶片的多孔晶片載體安裝在處理機的盤內；由噴嘴中噴霧蝕刻氣入盤中朝向晶片之邊使蝕刻氣移行橫過晶片上氧化物膜部份以產生此等部份之蝕刻；及在晶片載體與噴嘴之間繞一旋轉軸沿伸至晶片堆架之末端而產生相對旋轉。

26. 根據申請專利範圍第25項之方法，其中蝕刻氣之供應自沿晶片堆架之衆多地點處之許多位置與噴嘴散發。 |

(請先閱讀背面之注意事項再填寫本頁)

BEST AVAILABLE COPY

23768

ABSTRACT OF DISCLOSURE

Batch processing of semiconductor wafers utilizing a gas phase etching with anhydrous hydrogen fluoride gas flowing between wafers in a wafer carrier. The etching may take place in a bowl with the wafer carrier mounted on a rotor in the closed bowl. The etchant gas may include a small amount of water vapor, along with the anhydrous hydrogen fluoride gas, as may be needed to commence the etching process. The etching may take place with the wafers arranged in a stack in the wafer carrier and extending along or on the rotation axis.

22780-216

D14/0001/v

BEST AVAILABLE COPY

A
HF GAS ETCHING OF WAFERS IN AN ACID PROCESSOR

This invention relates to gaseous etching of silicon wafers and more particularly to such etching of batches of wafers carried in linear wafer carriers and revolved in an enclosed chamber.

BACKGROUND OF THE INVENTION

In the processing of semiconductor wafers of silicon and the like in the manufacture of circuit chips, etching of oxide layers or films on the surface of the wafer is an important aspect of the processing.

Much of the wafer processing in the past has utilized a wet etching process which involves the spraying of liquid acids and other liquid chemicals and deionized water onto silicon wafers confined in wafer carriers of plastic capable of withstanding the deteriorating effects of strong chemicals such as acids.

One or more such wafer carriers is carried on a variable speed turntable or rotor in a closed bowl of an acid processor machine. Such a machine has many variable phases to its operation including varying the speed of the rotor, sequentially spraying various liquid processing chemicals, and nitrogen gas for drying the wafers, bowl and rotor between various wet processing phases. One form of acid processor is illustrated and described in U.S. Patent 3,990,462. Also see U.S. Patents 4,609,575; 4,682,615 and 4,691,722 for variations in spray nozzle arrangements and other facilities for wet etch processing. Also see U.S. Patent 4,682,614 for a nearly horizontal machine.

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.