Peter Smith, Introduction to Formal Logic (CUP, 2nd edition)

Exercises 16: More about tautological entailment

- (a*) Our book definition says that $\alpha_1, \alpha_2, \ldots, \alpha_n \vDash \gamma$ if and only if there is no valuation of the atoms *involved in the relevant wffs* which makes the α s all true and γ false. Show that we could equivalently have said: The wffs $\alpha_1, \alpha_2, \ldots, \alpha_n \vDash \gamma$ if and only if there is no valuation of *all the language's atoms* which makes the α s all true and γ false. (Hint: use the fact that the values of atoms that don't appear in a wff can't affect the value of that wff.)
- (b*) Why are the following true? (Hint: make use of the previous exercise.)
 - (1) Any two tautologies are tautologically equivalent.
 - (2) If $\alpha \vDash \gamma$, then $\alpha, \beta \vDash \gamma$.
 - (3) If $\alpha, \beta \vDash \gamma$ and β is a tautology, then $\alpha \vDash \gamma$.
 - (4) If $\alpha \vDash \beta$ and $\beta \vDash \gamma$, then $\alpha \vDash \gamma$.
 - (5) Suppose $\beta \approx \beta'$ (i.e. $\beta \models \beta'$ and $\beta' \models \beta$). Then for any wffs α, γ both (i) $\alpha \models \beta$ if and only if $\alpha \models \beta'$, and (ii) $\beta \models \gamma$ if and only if $\beta' \models \gamma$.
 - (6) Replacing a subformula of a wff by an equivalent expression results in a new wff equivalent to the original one.
- (c*) Some new notation. Alongside the use of lower-case Greek letters for individual wffs, it is common to use upper-case Greek letters such as ' Γ ' (Gamma) and ' Δ ' (Delta) to stand in for some wffs zero, one, or many.

Further, we use ' Γ , α ' for the wffs Γ together with α . We also use ' $\Gamma \cup \Delta$ ' for the wffs Γ together with the wffs Δ .

Now prove these generalized versions of the some of the claims in (b):

- (1) If $\Gamma \vDash \gamma$, then $\Gamma, \alpha \vDash \gamma$.
- (2) If $\Gamma, \alpha \vDash \gamma$ and α is a tautology, then $\Gamma \vDash \gamma$.
- (3) If $\Gamma \vDash \beta$ and $\Delta, \beta \vDash \gamma$, then $\Gamma \cup \Delta \vDash \gamma$.
- (4) State and prove a general version of (b5) which allows for inferences with multiple premisses.

We will normally be interested in cases where we are dealing with only finitely many wffs Γ . But would (1) to (3) still be true if Γ and/or Δ were infinitely many?

- (d*) Given the results
 - (1') $(\alpha \wedge \beta) \approx (\beta \wedge \alpha)$
 - $(2') \quad (\alpha \wedge (\beta \wedge \gamma)) \approx ((\alpha \wedge \beta) \wedge \gamma)$
- (3') $(\alpha \land (\beta \lor \gamma)) \approx ((\alpha \land \beta) \lor (\alpha \land \gamma))$

it can be said 'conjunction is commutative', 'conjunction is associative', 'conjunction distributes over disjunction'. Investigate and explain. What parallel claims apply to disjunction?

(e*) Find out more about the idea of 'working backwards' (touched on in Ch. 16) by looking at the online supplement on propositional truth trees.