L'algoritmo di Dijkstra

(https://en.wikipedia.org/wiki/Edsger W. Dijkstra)

Classi seconde Scientifico - opzione scienze applicate
Bassano del Grappa, Maggio 2023
Prof. Giovanni Mazzocchin

<u>s</u>, <u>r</u>, <u>t</u>, <u>x</u>, <u>y</u>: nodi (vertices) del grafo G
<u>s->r</u>; <u>r->t</u>; <u>t->y</u>; <u>s->x</u>; <u>t->x</u>; <u>s->t</u>; <u>x->y</u>: archi (edges) del grafo G
ad ogni arco è associato un costo (numero in corsivo vicino gli archi)

vogliamo trovare il cammino di costo minimo (<u>shortest path</u>) dal nodo **s** al nodo **y**

pensate ad alcune applicazioni informatiche (o nel campo delle telecomunicazioni) che potrebbero aver bisogno di trovare cammini minimi...

- path(s, y): s->r->t->y; cost: 10
- path(s, y): s->x->y; cost: 12
- etc...

all'interno di un nodo **v** scriveremo il costo del percorso **s->v** di costo minimo noto finora

prima di applicare un qualunque algoritmo, assumiamo che il costo di **s->v** (con v != s) sia +infinito; ovviamente il costo del percorso minimo **s->s** è 0 e non cambierà mai

L'algoritmo di Dijkstra – descrizione in lingua naturale Initialization steps:

- 1. Consider a directed, weighted graph $\underline{G} = (V, E)$, where \underline{V} is the set of vertices, \underline{E} is the set of edges;
- 2. Select a source node \underline{s} . Shortest paths will be computed with \underline{s} as source;
- 3. Each \underline{v} of \underline{V} will contain the minimum cost of $\underline{s->v}$ computed so far (+inf at the beginning);
- 4. Create a set called Q and put Q = V (i.e. assign the set of vertices of G to Q);

5. NB: costs must be all >= 0

L'algoritmo di Dijkstra – descrizione in lingua naturale Procedure:

```
As long as Q is not empty:

1. extract the node of Q with minimum cost, call it v

2. for each u, successor of v:
    if v.cost + cost(v, u) < u.cost:
        set u.cost = v.cost + cost(v, u)
        update Q accordingly
```


vertice da cui parte la visita ai successori

Q: (s,0), (r,inf), (t,inf), (x,inf), (y,inf)

vertice da cui parte la visita ai successori

vertici visitati ed eventualmente aggiornati

vertice da cui parte la visita ai successori

vertici visitati ed eventualmente aggiornati

vertice da cui parte la visita ai successori

vertici visitati ed eventualmente aggiornati

Q: (t,6), (y,12)

vertice da cui parte la visita ai successori

vertici visitati ed eventualmente aggiornati

Q: (y,9) pred(y): t

Scriviamolo in Python!

- Rappresentiamo il grafo con un dizionario
- Vanno memorizzate anche le informazioni relative ai costi minimi dalla sorgente scelta, per ogni vertice
- Cerchiamo di scrivere un codice leggibile e simile allo pseudocodice
- Non è facile, ma con qualche dritta si può fare

• https://github.com/Cyofanni/high-school-cs-class/blob/main/python/graphs/dijkstra.py