HOMEWORK #6: Laplace Transform Network Analysis

1. Sketching s-Domain Equivalents of Time-Domain Networks

Consider the second order network shown below with $v_s(t) = 24 - 36u(t)$.

(a) The network below depicts the s-Domain equivalent of the 2^{nd} order network with each energy storage element replaced by its <u>Thevenin model</u>.

Compute the following:

i.
$$V_S(s)$$

ii.
$$Z_{\mathcal{C}}(s)$$
 and $Z_{L}(s)$

iii.
$$V_1(s)$$
 and $V_2(s)$

(b) The network shown depicts the s-Domain model of the 2^{nd} network with each energy storage element replaced by its <u>Norton model</u>. Compute $I_1(s)$ and $I_2(s)$.

2. s-Domain Analysis of Networks with Initial Conditions

(a) Consider the second order network below. The switch moves to position (b) at t=0 after being at position (a) for a long time.

- i. Draw the **s**-Domain equivalent network valid for $t > 0^-$.
- ii. Compute $V_o(s)$, the Laplace Transform of the complete response voltage $v_o(t)$ for $t>0^-$.
- iii. Compute $I_L(s)$, the Laplace Transform of the complete response current $i_L(t)$ for $t > 0^-$.
- iv. Compute the complete response voltage $v_o(t)$ for $t>0^-$. Identify the transient response portion $v_{o,TR}(t)$ and steady state response portion $v_{o,SS}(t)$ of $v_o(t)$. Is the transient response un-damped, under-damped, critically-damped, or over-damped?
- v. Compute the complete response current $i_L(t)$ for $t>0^-$. Identify the transient response portion $i_{L,TR}(t)$ and steady state response portion $i_{L,SS}(t)$ of $i_L(t)$. Is the transient response un-damped, under-damped, critically-damped, or over-damped?
- (b) Consider the second order network below. The switch moves to position (b) at t=0 after being in position (a) for a long time.

- i. Draw the **s**-Domain equivalent network valid for $t > 0^-$.
- ii. Compute $V_o(s)$, the Laplace Transform of the complete response voltage $v_o(t)$ for $t>0^-$.
- iii. Compute the complete response voltage $v_o(t)$ for $t>0^-$. Identify the transient response portion $v_{o,TR}(t)$ and steady state response portion $v_{o,SS}(t)$ of $v_o(t)$. Is the transient response un-damped, under-damped, critically-damped, or over-damped?

(c) Consider the second order network shown below. The independent voltage sources have expressions $v_{S1}(t) = 5e^{-2t}u(t)V$ and $v_{S2}(t) = 3u(-t)V$. Compute the complete response current $i_o(t)$ for $t > 0^-$.

(d) Consider the magnetically coupled network shown below. The "make-before-break" switch moves to position (b) after being in position (a) for a long time. Compute the complete response current $i_o(t)$ for $t>0^-$.

3. s-Domain Analysis of Relaxed Networks

(a) Consider the second order <u>relaxed</u> ideal op-amp network with voltage source expressions $v_{g1}(t)=40u(t){
m V}$ and $v_{g2}(t)=16u(t){
m V}$.

- i. Compute the complete response voltage $v_o(t)$ for $t>0^-$. Identify the transient response portion $v_{o,TR}(t)$ and steady state response portion $v_{o,SS}(t)$ of $v_o(t)$. Is the transient response un-damped, under-damped, critically-damped, or over-damped?
- ii. Will the output voltage saturate? If so, at what time?

(b) Consider the second order relaxed network shown with source expressions $v_s(t)=4u(t)V$, $i_{s1}(t)=e^{-2t}u(t)A$, and $i_{s2}(t)=2u(t)A$. Apply Thevenin's Theorem to compute the complete response voltage $v_o(t)$ for $t>0^-$. Assume the 1Ω resistor is the load network.

(c) Consider the second order <u>relaxed</u> network shown with $v_s(t) = 20u(t)V$.

- i. Compute the s-Domain Thevenin impedance $Z_{TH}(s)$ and Thevenin voltage $V_{TH}(s)$,.
- ii. Use the **s**-Domain Thevenin equivalent network found in part (i) to compute the **s**-Domain load current $I_L(s)$. Do not take the inverse Laplace transform of $I_L(s)$.
- (d) Consider the second order <u>relaxed</u> ideal transformer network shown.
 - i. Reflect the primary s-Domain equivalent network to the secondary of the transformer and compute $V_o(s)$, the Laplace Transform of the complete response voltage $v_o(t)$ for $t>0^-$.

- ii. Compute the complete response voltage $v_o(t)$ for $t>0^-$.
- (e) Consider the 2nd order **relaxed** network shown below with $v_s(t)$ depicted by the plot.

- i. Compute $V_s(s)$, the Laplace Transform of the source voltage $v_s(t)$.
- ii. Compute $\pmb{V_o(s)}$, the Laplace Transform of the complete voltage response $\pmb{v_o(t)}$.
- iii. Compute the complete voltage response $v_o(t)$ for $t>0^-$. Identify the transient response portion $v_{o,TR}(t)$ and steady state response portion $v_{o,SS}(t)$ of $v_o(t)$. Is the transient response un-damped, under-damped, critically-damped, or over-damped?