





## Olimpiada Națională de Matematică Etapa Națională, Huşi, 3 aprilie 2024

## CLASA a VIII-a – soluții și bareme

**Problema 1.** Determinați numerele întregi n pentru care există o rearanjare  $a_1, a_2, \ldots, a_{1013}$  a numerelor  $1012, 1013, \ldots, 2024$ , astfel încât să aibă loc egalitatea  $a_1 \cdot n^{1012} + a_2 \cdot n^{1011} + \ldots + a_{1012} \cdot n + a_{1013} = 0$ .

Dacă n = -k, cu  $k \ge 2$ , atunci  $a_1 \cdot n^{1012} + a_2 \cdot n^{1011} + \ldots + a_{1012} \cdot n + a_{1013} = k^{1011} (a_1 \cdot k - a_2) + k^{1009} (a_3 \cdot k - a_4) + \ldots + k (a_{1011} \cdot k - a_{1012}) + a_{1013} > 0$ , deoarece  $a_{1013} > 0$  și  $a_i \cdot k - a_{i+1} \ge 2a_i - a_{i+1} \ge 2 \cdot 1012 - 2024 = 0$ , pentru orice  $i \in \{1, 2, \ldots, 1011\}$ . Așadar, nu există soluții de acest tip ....... 2p Arătăm că n = -1 este soluție.

**Problema 2.** Spunem că o funcție de gradul întâi  $f: \mathbb{R} \to \mathbb{R}$  este *utilă*, dacă are proprietățile:

- (i)  $|f(x)| \le 2$ , pentru orice număr real x cu  $|x| \le 2$ .
- (ii)  $|f(x)| \ge 1$ , pentru orice număr real x cu  $|x| \le 1$ .

Fie  $x_0 \in \mathbb{R}$ . Demonstrați că există o funcție utilă cu  $f(x_0) = 0$ , dacă și numai dacă  $|x_0| \ge 4$ .

Inegalitatea (ii) conduce la situațiile: I)  $f(-1) \le -1$ ,  $f(1) \le -1$  sau II)  $f(-1) \ge 1$ ,  $f(1) \ge 1$  (situația f(-1) < 0 < f(1) ar conduce la  $-1 < -\frac{b}{a} < 1$ 

În cazul **I** obținem  $-a + b \le -1$  (3) şi  $a + b \le -1$  (4). Înmulțind (4) cu 2 şi adunând cu (2) rezultă  $4a + b \le 0$ , adică  $x_0 = -\frac{b}{a} \ge 4 \dots \mathbf{1}$ 

**Problema 3.** Fie ABCA'B'C' o prismă triunghiulară regulată, cu muchiile laterale AA', BB', CC'. Considerăm mijlocul D al muchiei BC și construim paralelogramul ADB'E. Fie F proiecția ortogonală a punctului A' pe dreapta AE, d dreapta de intersecție a planelor (ADE) și (A'CF) și P intersecția dreptei d cu planul (ABC). Demonstrați că P este centrul de greutate al triunghiului ABC dacă și numai dacă  $AB = AA'\sqrt{2}$ .



**Problema 4.** Fie a și b două numere naturale distincte, mai mari decât 1, astfel încât  $D = b^2 + a - 1$  divide  $M = a^2 + b - 1$ .

- a) Arătați că există numere care îndeplinesc condițiile de mai sus.
- b) Demonstrați că D are cel puțin doi divizori primi.