

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Materials Research Bulletin 38 (2003) 1773-1779

Materials Research Bulletin

www.elsevier.com/locate/matresbu

Structural and vibrational studies of NaZr₂(AsO₄)₃

M. Chakir^a, A.El. Jazouli^{a,*}, D.de Waal^b

^aLaboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M'Sik, UH2M,
Boulevard Idriss El Harti, B.P. 7955 Casablanca, Morocco

^bDepartment of Chemistry, University of Pretoria, 0002 Pretoria, South Africa

Received 31 May 2002; received in revised form 5 November 2002; accepted 29 January 2003

Abstract

The structure of NaZr₂(AsO₄)₃, which belongs to the Nasicon-type family, was solved by the Rietveld method in the $R\bar{3}c$ space group, from X-ray powder diffraction data. The hexagonal unit cell parameters are $a_h = 9.1518(2)$ Å and $c_h = 23.1097(4)$ Å. The structure is formed by a three-dimensional network of AsO₄ tetrahedra and ZrO₆ octahedra sharing corners. Na atoms occupy totally the M1 site. Raman and infrared spectra were recorded and assignments of the As–O stretching and bending modes were made.

© 2003 Elsevier Ltd. All rights reserved.

Keywords: A. Inorganic compound; C. X-ray diffraction; C. Infrared spectroscopy; C. Raman spectroscopy

1. Introduction

Nasicon-type materials have been extensively studied in context of various fields of solid state chemistry: solid electrolytes, electrode materials, low thermal expansion ceramics, etc. [1–9]. Their structure was initially described for NaA₂(PO₄)₃ (A = Ti, Zr, Ge) [1]. It consists of a three-dimensional (3D) network built up of PO₄ tetrahedra sharing corners with AO₆ octahedra. Within the 3D-framework, two sites, usually labelled M1 and M2, are available for the alkali metal cations. The M1 site is an antiprism formed by the triangular faces of two AO₆ octahedra along c-axis of the hexagonal cell. Thus, the network of NaA₂(PO₄)₃ can be considered as made up of infinite ribbons of composition (O₃AO₃M1(Na)O₃AO₃) $_{\infty}$ connected by PO₄ tetrahedra. The M2 sites are located between these ribbons in large cavities with a eight-fold coordination. The M1 and M2 sites may be completely empty as in NbTi(PO₄)₃ [10], partially occupied as in NaZr₂(PO₄)₃ [1] and Na₃CaTi(PO₄)₃ [11], or fully occupied as in Na₅Ti(PO₄)₃ [12]. In contrast to the extensive studies of the Nasicon-type phosphates and silicates, only a few investigations have been reported for the arsenates analogues. To our knowledge only X-ray

E-mail address: a.eljazouli@univh2m.ac.ma (A.El. Jazouli).

0025-5408/\$ – see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0025-5408(03)00104-1

^{*} Corresponding author. Fax: +212-22-70-46.

Table 1 Crystallographic data for NaZr₂(AsO₄)3

Wavelength (Å)	$\lambda_{K\alpha 1} = 1.5406; \ \lambda_{K\alpha 2} = 1.5444$
Step width (°); counting time (s)	0.02; 30
Angular range (°)	10–100
Pseudo-Voigt function	$PV = \eta L + (1-\eta)G; \ \eta = 0.71(2);$
Caglioti law parameters	U = 0.062(2); V = -0.003(1); W = 0.013(1)
Number of reflections	401
Number of refined parameters	33
System; space group	Hexagonal; $R\bar{3}c$
a (Å); c (Å); V (Å ³); Z	9.1518(2); 23.1097(4); 1676.26(1); 6
R_{F} ; R_{B} ; R_{P} ; R_{WP} ; χ^2	0.02; 0.03; 0.08; 0.11; 1.97

powder diffraction patterns have been reported for $MTi_2(AsO_4)_3$ (M = Li, Na, Ag, K), $M_{0.5}Ti_2(AsO_4)_3$ (M = Mg, Ca, Sr) [13] and $MeZr_2(As_{1-x}P_xO_4)_3$ (Me = Na, K) [14]. The structures of $KZr_2(AsO_4)_3$ [15] and $Na_3Sc_2(AsO_4)_3$ [16] have been determined from single crystal X-ray diffraction data. Structural [17,18], electrochemical [19] and vibrational [20,21] studies of $A_3M_2(AsO_4)_3$ (A = Li, Na; M = Al, Fe, In) have been reported. Recently we initiated a program on arsenate compounds in order to compare their properties to those of the phosphates. The present paper reports on the crystal structure and vibrational spectra of $NaZr_2(AsO_4)_3$.

2. Experimental

 $NaZr_2(AsO_4)_3$ arsenate powder was prepared from Na_2CO_3 dissolved in dilute nitric acid solution (I) and aqueous solutions of $ZrOCl_2 \cdot 8H_2O$ (II) and $(NH_4)H_2AsO_4$ (III) in stoichiometric proportions. After addition of (III) in (I + II) mixture at room temperature and slow evaporation at about 60 °C, the resulting powder was heated progressively at different temperatures, between 200 and 800 °C, with intermitting regrinding. The powder of $NaZr_2(AsO_4)_3$ is white.

Powder X-ray diffraction data were collected at room temperature on a Philips PW 3040 $(\theta-\theta)$ diffractometer (40 kV, 40 mA). The structure of NaZr₂(AsO₄)₃ was refined with the Rietveld method using the program Fullprof [22]. The experimental conditions are given in Table 1.

Raman spectra were recorded using a Dilor XY Raman microprobe. The crystalline samples were excited with the 514.5 nm line of an Argon ion laser (Coherent model Innova 300). The spectral resolution was 3 cm⁻¹, the laser output power was 110 mW and the integration time 60 s. Infrared spectra were recorded on a Bruker IFS 113 v FTIR spectrometer as KBr pellets.

3. Results and discussion

3.1. Structural determination

X-ray powder diffraction pattern of NaZr₂(AsO₄)₃ is similar to that of NaZr₂(PO₄)₃ with a shift of the peaks toward lower values of 2θ Bragg's angles (Fig. 1). It was indexed assuming a hexagonal cell: $a_h = 9.1518(2)$ Å and $c_h = 23.1097(4)$ Å. All of the observed reflections are compatible with the $R\bar{3}c$

Fig. 1. X-ray powder patterns of NaZr₂(AsO₄)₃ and NaZr₂(PO₄)₃.

space group. The initial atomic coordinates used for the refinement of the structure of NaZr₂(AsO₄)₃ were those of the isostructural compound NaZr₂(PO₄)₃. After the refinement of 33 parameters (fractional atomic coordinates, temperature factors, scale factor, zero point, unit cell parameters, six background terms, profile parameters), the conventional reliability factors were: $R_p = 0.08$, $R_{wp} = 0.11$, $R_F = 0.02$ and $R_B = 0.03$. The results of the refinement as well as different structural parameters are given in Tables 1 and 2. Fig. 2 shows good agreement between the observed and calculated patterns.

The structure of NaZr₂(AsO₄)₃ (Fig. 3) is similar to that of NaZr₂(PO₄)₃ [1]. The Zr–O (2.08 Å) and As–O (1.67 Å) distances of the covalent anionic framework [Zr₂(AsO₄)₃] are slightly smaller than those calculated from the ionic radii (Zr–O: 2.12 Å, As–O: 1.73 Å) [23]. Consequently the Na–O bond length

Fig. 2. Final observed (...), calculated (—) and difference X-ray profiles for NaZr₂(AsO₄)₃.

Fig. 3. Structure of NaZr₂(AsO₄)₃.

(2.50 Å) is larger than that obtained from the ionic radii sum of Na⁺ and O²⁻ (2.42 Å) reflecting a higher degree of ionicity. Valence bond sums, $\sigma_i = \sum \exp[(R_{ij} - d_{ij})/b]$ with b = 0.37 Å [24], based on bond-strength analysis (Na: 0.90; Zr: 4.054; As: 5.24; O₁: 2.07; O₂: 2.05), are in good agreement with the expected formal oxidation state of Na⁺, Zr⁴⁺, As⁵⁺ and O²⁻ ions.

Fig. 4. Raman spectra of NaZr₂(PO₄)₃ (a) and NaZr₂(AsO₄)₃ (b).

Table 2				
Atomic coordinates	and	isotropic	temperatures	factors

Atom	Wyckof site	х	у	z	$B_{\rm iso.}$ ($\mathring{\rm A}^2$)	Occ.
Na	6b	0.00	0.00	0.00	3.73	1
Zr	12c	0.00	0.00	0.1436	0.09	1
As	18e	0.2903	0.00	0.2500	0.42	1
O(1)	36f	0.1811	-0.0171	0.1902	0.35	1
O(2)	36f	0.1855	0.1611	0.0833	0.45	1

Table 3 compares the cell parameters of NaZr₂(AsO₄)₃, NaZr₂(PO₄)₃ [1] and KZr₂(AsO₄)₃ [15]. The observed variations can be explained in the context of the Nasicon-type structure which can be considered as built of $(O_3ZrO_3M1O_3ZrO_3)$ units connected by XO₄ tetrahedra (X = As, P) in three dimensions. When X is As, the lengths of the O–O tetrahedron edges increase, consequently the cell parameters of NaZr₂(AsO₄)₃ are superior to those of NaZr₂(PO₄)₃. For AZr₂(AsO₄)₃ (A = Na, K), the increase of c_h when sodium is replaced by potassium in M1 sites, located in the ribbons along this axis, is due to the size of K⁺ (r = 1.16 Å) which is larger than that of Na⁺ (r = 1.00 Å). The decrease of a_h is due to the elasticity of the network formed by polyhedra linked together only by corners. Therefore, an elongation in one direction (c_h) induces compression in the perpendicular direction (a_h).

Fig. 5. Deconvoluted Raman spectrum of NaZr₂(AsO₄)₃ in the range of 750–1000 cm⁻¹.

Table 3			
Lattice parameters	of NaZr ₂ (PO ₄) ₃ ,	$NaZr_2(AsO_4)_3$	and KZr ₂ (AsO ₄) ₃

$MZr_2(XO_4)_3$	$r(X^{5+}) (\mathring{A})$	$R(M^+)$ (Å)	a _h (Å)	c _h (Å)	$V(\mathring{A}^3)$
$NaZr_2(PO_4)_3$ [1]	0.170	1.02	8.80	22.75	1526
$NaZr_2(AsO_4)_3$	0.335	1.02	9.15	23.11	1677
$KZr_2(AsO_4)_3$ [15]	0.335	1.38	9.03	24.40	1722

3.2. Vibrational spectroscopy

Vibrational analysis for an isolated AsO_4^{3-} anion with point group Td leads to four modes: $A_1[(v_1:v_s(AsO_4)], E[(v_2:\delta_s(AsO_4)], 2F_2[v_3:v_{as}(AsO_4)]]$ and $[v_4:\delta_{as}(AsO_4)]$. All of them are Raman active whereas only v_3 and v_4 are infrared active. In $NaZr_2(AsO_4)_3$ ($R\bar{3}c$ space group) the arsenic site has a C_2 symmetry; therefore, we expect six Raman-active modes for the stretching vibrations; $2v_1(A_{1g}, E_g) + 4v_3(A_{1g}, E_g)$ and six IR-active modes; $v_1(E_u) + 5v_3(A_{2u}, E_u)$. For the bending vibrations we achieved eight Raman-active modes; $4v_2(A_{1g}, E_g) + 4v_4(A_{1g}, E_g)$ and seven IR-active modes; $2v_2(E_u) + 5v_4(A_{2u}, E_u)$. The external modes consist of the translational vibrations of the Na^+ , Zr^{4+} and AsO_4^{3-} ions.

Fig. 4 compares Raman spectra of NaZr₂(PO₄)₃ and NaZr₂(AsO₄)₃. The shift of the peaks, toward the lower energy in the arsenate, is due to longer As–O bonds compared to P–O bonds. The high frequency part (800–1050 cm⁻¹) of the Raman spectrum of NaZr₂(AsO₄)₃ (Fig. 5) corresponds to the stretching vibrations of the AsO₄ tetrahedra and exhibits six peaks at 979, 951, 867, 863, 856 and 837 cm⁻¹, in good agreement with results of the factor group analysis. For the infrared spectrum (Fig. 6), four peaks (1017, 953, 870 and 855 cm⁻¹) and a shoulder (906 cm⁻¹) are observed in this region. The six Raman peaks

Fig. 6. Infrared spectrum of NaZr₂(AsO₄)₃.

observed at 470, 446, 390, 362, 339 and 300 cm⁻¹ are assigned to the As–O bending vibrations, the predicted ones are eight. The peaks situated below 300 cm⁻¹ are attributed to the external modes; seven Raman peaks (255, 236, 179, 153, 124, 115 and 63 cm⁻¹) are observed between 250 and 50 cm⁻¹.

4. Conclusion

The arsenate NaZr₂(AsO₄)₃ has been synthesised and characterized by mean of X-ray diffraction and vibrational spectroscopy. Its structure has been solved in $R\bar{3}c$ space group. It is formed by a 3D network of ZrO₆ octahedra and AsO₄ tetrahedra linked by corners. The sodium is at the centre of the antiprism located between tow ZrO₆ octahedra. Assignments of internal modes of the AsO₄ tetrahedra have been made. The number of the peaks observed, in Raman and infrared spectra, is in good agreement with that predicted by the factor group analysis of the $R\bar{3}c$ space group.

Acknowledgements

The authors would like to thank Dr. J.P. Chaminade (ICMCB-CNRS, France) and Professor A. Lachgar (Wake Forest University, USA) for their useful support.

References

- [1] L.O. Hagman, P. Kierkegaard, Acta Chem. Scan. 22 (1968) 1822.
- [2] H.Y.-P. Hong, Mater. Res. Bull. 11 (1976) 173.
- [3] J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas, Mater. Res. Bull. 11 (1976) 203.
- [4] F. Cherkaoui, J.C. Viala, C. Delmas, P. Hagenmuller, Solid State Ionics 21 (1986) 333.
- [5] C. Delmas, A. Nadiri, J.L. Soubeyroux, Solid State Ionics 28-30 (1988) 419.
- [6] J.L. Rodrigo, P. Carrasco, J. Alamo, Mater. Res. Bull. 24 (1989) 611.
- [7] I. Bussereau, R. Olazcuaga, J.M. Dance, C. Delmas, G. Le Flem, A. El Jazouli, J. Alloys and Compounds 188 (1992) 120.
- [8] B.L. Cushing, J.B. Goodenough, J. Solid State Chem. 162 (2001) 176.
- [9] A. Aatiq, C. Delmas, A. El Jazouli, J. Solid State Chem. 158 (2001) 169.
- [10] R. Masse, A. Durif, J.C. Guitel, I. Tordjmman, Bull. Soc. Mineral. Crystallogr. 95 (1972) 45.
- [11] S. Krimi, A. El Jazouli, A. Lachgar, L. Rabardel, D. de Waal, J. R. Ramos-Barrado, Ann. Chim. Sc. Mat. 25 (Suppl.) (2000) S75.
- [12] S. Krimi, I. Mansouri, A. El Jazouli, J.P. Chaminade, P. Gravereau, G. Le Flem, J. Solid State Chem. 105 (1993) 561.
- [13] A. Yaakoubi, T. Jouini, N. Jouini, C. R. Acad. Sci. Paris T312 (1991) 451.
- [14] D. Mazza, M. Lucco-Borlea, S. Ronchetti, Powder Diff. 13 (1998) 227.
- [15] M. El Brahimi, J. Durand, Z. Anorg. Allg. Chem 584 (1990) 178.
- [16] W.T.A. Harrison, M.L.F. Phillips, Acta Cryst. C57 (2001) 2.
- [17] C. Masquelier, F. d'Yvoire, G. Collin, J. Solid State Chem. 118 (1995) 33.
- [18] K. H Lii, J. Ye, J. Solid State Chem. 131 (1997) 131.
- [19] C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Solid State Chem. 135 (1998) 228.
- [20] S. Khorari, A. Rulmont, P. Tarte, J. Solid State Chem. 134 (1997) 31.
- [21] J.M. Winand, A. Rulmont, P. Tarte, J. Solid State Chem. 87 (1990) 83.
- [22] J. Rodriguez Carvajal, Collected Abstract of Powder Diffraction Meeting, vol. 127. Toulouse, France, 1990.
- [23] R.D. Shannon, Acta Cryst. A32 (1976) 751.
- [24] I.D. Brown, D. Altermatt, Acta Cryst. B41 (1985) 244.