Les miroirs sphériques (MS)

<u>Définition</u>: C'est une surface sphérique (calotte) réfléchissante défini par son axe optique, son centre et son sommet 5. On distingue deux types de miroirs sphériques.

Relations de conjugaison pour un MS

Dans l'approximation de Gauss H et S sont confondus

Formule de conjugaison

avec origine au sommet

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$$

Formule de conjugaison

avec origine au centre

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}}$$

$$C \xrightarrow{MS(S,C)} C$$

Grandissement linéaire

Grandissement linéaire avec <u>origine au sommet</u>

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}}$$

Grandissement linéaire avec <u>origine au centre</u>

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

$$\frac{n}{\overline{SA}} - \frac{n'}{\overline{SA'}} = \frac{n - n'}{\overline{SC}}$$

$$\frac{n'}{\overline{CA}} - \frac{n}{\overline{CAI}} = \frac{n' - n}{\overline{CS}}$$

$$\gamma = \frac{\overline{CA'}}{\overline{CA}}$$

 $\overline{\mathbf{AB}}$

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}} \qquad \gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}}$$

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}} \qquad \gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

Les relations de conjugaison et de grandissement d'un MS se déduisent de celles d'un DS en posant : n' = -n

n/ SA

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$$

* Foyer objet (F)

$$\begin{array}{ccc}
A & \xrightarrow{MS(S,C)} & A' \\
F & & \infty
\end{array}$$

$$\frac{1}{\overline{SF}} = \frac{2}{\overline{SC}} \implies \overline{SF} = \frac{\overline{SC}}{2}$$

Le foyer objet est au milieu de SC

$$f = \overline{SF} = \frac{\overline{SC}}{2}$$

f: distance focale objet du MS

Foyer image (F')

$$A \xrightarrow{MS(S,C)} A'$$

$$\infty \qquad F'$$

$$\frac{1}{SF'} = \frac{2}{\overline{SC}} \qquad \overline{\overline{SF'}} = \frac{\overline{SC}}{2}$$

Le foyer image est au milieu de SC

$$f' = \overline{SF'} = \frac{\overline{SC}}{2} \qquad \qquad f = f'$$

f': distance focale image du MS

Construction de l'image d'un objet

Règles de construction :

- * Tout rayon passant par le centre du miroir se réfléchit sur lui même;
- ♣ Tout rayon parallèle à l'axe optique est réfléchi en passant par le foyer F' \(\text{\text{\text{\text{\text{\text{e}}}}}\) F du miroir ;
- * Tout rayon qui passe par le foyer F, est réfléchi parallèlement à l'axe optique.

Formules de conjugaison et Grandissements linéaire γ avec origine aux Foyers pour un MS Formules de Newton

$$\frac{\overline{F'A'}}{\overline{F'S}} = \frac{\overline{A'B'}}{\overline{AB}} \quad \text{et} \quad \frac{\overline{FS}}{\overline{FA}} = \frac{\overline{A'B'}}{\overline{AB}}$$

$$\overline{SI} = \overline{AB} \ et \ \overline{SI'} = \overline{A'B'}$$

$$\overline{FA} \overline{F'A'} = \overline{SF} \overline{SF'} = f^2 = f'^2$$

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} \qquad \qquad \gamma = -\frac{\overline{F'A'}}{\overline{SF'}} = -\frac{\overline{SF}}{\overline{FA}}$$

•
$$\gamma = -\frac{\overline{F'A'}}{f'} = -\frac{f}{\overline{FA}}$$

Vergence d'un miroir sphérique

Si le miroir est baigné dans l'air assimilé au vide d'indice 1

$$n_s$$
=-1 et n_e =1

$$V = \frac{n_s}{f'} = -\frac{n_e}{f} = \frac{-1}{f'} = -\frac{1}{f'} = -\frac{1}{f}$$

$$f = f'$$
 Pour le MS

La vergence du miroir sphérique :

$$V = -\frac{1}{\overline{SF'}} = -\frac{1}{\overline{SF}} = -\frac{2}{\overline{SC}}$$

L'unité S.I de vergence est le m⁻¹ ou dioptrie (δ).

• Un miroir concave (\overline{SC} < 0) est convergent (V > 0),

•Un miroir convexe ($\overline{SC} > 0$) est divergent (V < 0).

foyers secondaires: Objet et image

Le plan perpendiculaire à l'axe optique en F est le plan focal objet.

Le plan perpendiculaire à l'axe optique en F' est le plan focal image.

Dioptre Sphérique

φ: foyer secondaire objet

 ϕ' : foyer secondaire image

Construction de l'émergent d'un incident quelconque pour un DS

(En utilisant le foyer secondaire image T')

Dioptre convergent (n > n')

Construction de l'émergent d'un incident quelconque

(En utilisant le foyer secondaire objet 4)

Dioptre convergent (n > n')

Construction de l'émergent d'un incident quelconque (Dioptre divergent)

(En utilisant le foyer secondaire objet et image ϕ et ϕ')

