Weekly Meeting

Topic: fix s111 stratification for property lpha with k=6; find property eta

Presenter: Heng-Tse Chou @ NTHU STAT

Date: May 29, 2024

Issues

- 1. s111 stratification for property lpha with k=6.
- 2. Construct property β .

Breaking down property eta

 (a_i, a_j, a_u, b_u) being OA with strength 4 implies

- 1. $a_i a_j a_u \neq I \rightarrow A$ is resolution IV.
- 2. $a_ia_jb_u
 eq I o B$ contains no 2fi from A.
- 3. $a_i a_u b_u
 eq I
 ightarrow (B', B'') \subseteq ar{A}$
- 4. $a_i a_j a_u b_u \neq I \rightarrow B'$ and B'' contains no 2fi from A.

Breaking down property β

Therefore, SOA(n, m, 27, 3) has property β iff:

- 1. A is resolution IV.
- 2. $(B, B', B'') \subseteq \bar{A}$.
- 3. (B, B', B'') contains no 2fi from A.

Construction for property β

Take k=4 for example.

$$P_0 = (e_3, e_4, e_3e_4, e_3e_4^2) \ P = (I, P_0, P_0^2)$$

$$egin{aligned} A &= e_1 P \ B &= e_2 P \ B' &= e_1 e_2 P \ B'' &= e_1 e_2^2 P
ightarrow S = (P_0, A, B, B', B'') \end{aligned}$$

Construction for property β

This construction passed s11 and s21 but not passing s111 and s211.

Reason: Duplicated P_0 in A.

This is similar to why our construction for property lpha with k=6 is not passign $\,$ s111 $\,$.

Setup for property α with k=6

$$A_6 = (A_4, e_5 A_4, e_5^2 A_4, e_6 A_4, e_6^2 A_4, e_5 e_6 A_4, e_5^2 e_6^2 A_4, e_5 e_6^2 A_4, e_5^2 e_6 A_4)$$

Possible workaround: similar to how we construct grouping with k=4.

ightarrow Divide into 2 groups that any 2 columns from group 1 won't form I with any 1 column from group 2.

Grouping with k=4

α	β	$lpha \cdot eta$	$lpha \cdot eta^2$
14	23	1234	12^23^24
1^24	2^23	1^22^234	1^223^24
24	1^23	1^2234	$123^{2}4$
2^24	13	$12^{2}34$	$1^2 2^2 3^2 4$
123	12^24	$1^{2}34$	2^234^2
$1^2 2^2 3$	$1^{2}24$	134	234^2
12^23	$1^2 2^2 4$	234	1^234^2
$1^{2}23$	124	$2^{2}34$	134^2

Grouping with k=6

α	5.?	$5^2\cdot ?$	6.?	$6^2 \cdot ?$	56.?	$5^26^2 \cdot ?$	$56^2 \cdot ?$	$5^26\cdot$?
β	$6\cdot$?	$6^2\cdot ?$	$5^2\cdot$?	5.?	$56^2 \cdot ?$	$5^{6}2\cdot ?$	$5^26^2 \cdot ?$	$56\cdot$?
$\alpha \cdot \beta$	56.?	$5^26^2 \cdot ?$	$5^26\cdot?$	$56^2 \cdot ?$	$5^2 \cdot ?$	5.?	6.?	$6^2 \cdot ?$
$\alpha \cdot eta^2$	$56^2 \cdot ?$	$5^{2}6\cdot ?$	56.?	$5^26^2 \cdot ?$	$6^2 \cdot ?$	6.?	$5^2 \cdot ?$	5.?

Building blocks: A_4, A_4^*, B_4, B_4^*

$$A_4B_4=B'$$
 $A_4B_4^*=A_4B_4^2=B''$
 $A_4^*B_4=A_4^2B_4=A_4B_4^2=B''$
 $A_4^*B_4^*=A_4^2B_4^2=A_4B_4=B'$

After Meating

α	eta	$lpha \cdot eta$	$lpha \cdot eta^2$
$5 \cdot A$	$6 \cdot B$	$56 \cdot AB$	$56^2 \cdot AB^2$
$5 \cdot A^2$	$6\cdot B^2$	$oxed{56\cdot A^2B^2}$	$56^2 \cdot A^2 B$
$5 \cdot B$	$6\cdot A^2$	$56 \cdot A^2 B$	$56^2 \cdot AB$
$5 \cdot B^2$	$6\cdot A$	$56 \cdot AB^2$	$56^2 \cdot A^2 B^2$
$6 \cdot AB$	$5 \cdot AB^2$	$56 \cdot A^2$	$5^26\cdot B^2$
$6 \cdot A^2 B^2$	$5 \cdot A^2 B$	$56 \cdot A$	$5^26\cdot B$
$6 \cdot AB^2$	$5 \cdot A^2 B^2$	$56 \cdot B$	$5^26\cdot A^2$
$6 \cdot A^2 B$	$5 \cdot AB$	$56 \cdot B^2$	$5^26\cdot A$

After Meeting

- A, A^*, B, B^* idea is essentially re-ordering columns, so not working.
- ullet Permutate by A and B seems good but still not working.

To-do

- 1. Verify A, B permutations (not working).
- 2. Use permutation idea to solve β property.
- 3. Write clearly about β property's construction.