

PCT

世界知的所有権機関
国際事務局

特許協力条約に基づいて公開された国際出願

B69

(51) 国際特許分類7 C12N 15/55, 9/16, C07K 16/40, C12Q 1/68, A61K 38/46	A1	(11) 国際公開番号 WO00/63392
		(43) 国際公開日 2000年10月26日(26.10.00)
(21) 国際出願番号 PCT/JP00/02455		(81) 指定国 AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)
(22) 国際出願日 2000年4月14日(14.04.00)		
(30) 優先権データ 特願平11/108842 1999年4月16日(16.04.99) JP		
(71) 出願人 (米国を除くすべての指定国について) 協和醸酵工業株式会社 (KYOWA HAKKO KOGYO CO., LTD.)[JP/JP] 〒100-8185 東京都千代田区大手町一丁目6番1号 Tokyo, (JP)		
(72) 発明者 ; および		
(75) 発明者／出願人 (米国についてのみ) 清水憲二(SHIMIZU, Kenji)[JP/JP] 〒703-8282 岡山県岡山市平井三丁目592番6号 Okayama, (JP)		
<p>添付公開書類 国際調査報告書 明細書とは別に規則13の2に基づいて提出された生物材料の寄託に関する表示。</p>		

(54)Title: NOVEL TYROSINE PHOSPHATASE

(54)発明の名称 新規チロシンフォスファターゼ

(57) Abstract

A novel tyrosine phosphatase encoded by the human chromosome 3p21-site the deletion of which is frequently observed in human lung cancer and thus which is assumed as having an antioncogen therein. Use of this tyrosine phosphatase and its gene makes it possible to diagnose and treat cancer.

(57)要約

本発明は、ヒト肺癌において高頻度に欠失が観察され、癌抑制遺伝子の存在が推定されているヒト染色体3p21部位にコードされる、新規チロシンフォスファターゼに関する。該チロシンフォスファターゼおよびその遺伝子を用いることにより、癌の診断および治療が可能となる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE アラブ首長国連邦	DM ドミニカ	KZ カザフスタン	RU ロシア
AG アンティグア・バーブーダ	DZ アルジェリア	LC セントルシア	SD スーダン
AL アルバニア	EE エストニア	LI リヒテンシュタイン	SE スウェーデン
AM アルメニア	ES スペイン	LK スリ・ランカ	SG シンガポール
AT オーストリア	FI フィンランド	LR リベリア	SI スロヴェニア
AU オーストラリア	FR フランス	LS レソト	SK スロヴァキア
AZ アゼルバイジャン	GA ガボン	LT リトアニア	SL シエラ・レオネ
BA ボスニア・ヘルツェゴビナ	GB 英国	LU ルクセンブルグ	SN セネガル
BB バルバドス	GD グレナダ	LV ラトヴィア	SZ スウェーデン
BE ベルギー	GE グルジア	MA モロッコ	TD チャード
BF ブルガニア・ファン	GH ガーナ	MC モナコ	TG トガ
BG ブルガリア	GM ガンビア	MD モルドavia	TJ タジキスタン
BH ペナン	GN ギニア	MG マダガスカル	TM トルクメニスタン
BR ブラジル	GR ギリシャ	MK マケドニア旧ユーゴスラヴィア	TR トルコ
BY ベラルーシ	GW キニニア・ビサオ	共和国	TT トリニダッド・トバゴ
CA カナダ	HR クロアチア	ML マリ	TZ タンザニア
CF 中央アフリカ	HU ハンガリー	MN モンゴル	UA ウクライナ
CG コンゴー	ID インドネシア	MR モーリタニア	UG ウガンダ
CH スイス	IE アイルランド	MW マラウイ	US 米国
CI コートジボアール	IL イスラエル	MX メキシコ	UZ ウズベキスタン
CM カメルーン	IN インド	MZ モザンビーク	VN ベトナム
CN 中国	IS アイスランド	NE ニジニーノヴォシチ	YU ユーローラシア
CR コスタ・リカ	IT イタリア	NL オランダ	ZA 南アフリカ共和国
CU キューバ	JP 日本	NO ノルウェー	ZW ジンバブエ
CY キプロス	KE ケニア	NZ ニュー・ジーランド	
CZ チェコ	KG キルギスタン	PL ポーランド	
DE ドイツ	KP 北朝鮮	PT ポルトガル	
DK デンマーク	KR 韓国	RO ルーマニア	

明細書

新規チロシンフォスファターゼ

技術分野

本発明は癌抑制遺伝子と推定される、ヒト染色体3p21にコードされている新規チロシンフォスファターゼに関する。

背景技術

癌抑制遺伝子の不活性化は、癌の発症に重要な役割を果たしている。ゲノム上の遺伝子は対立遺伝子として2コピー存在するので、癌抑制遺伝子の不活性化は、多くの場合、一方の遺伝子に染色体欠失 (loss of heterozygosity: 以下、LOHと略す)、もう一方の遺伝子に突然変異がおこることによるものとされている。したがって、癌細胞において高頻度にLOHの観察される部位には癌抑制遺伝子が存在している可能性が高いと考えられる。ヒトの肺癌において、LOHが高頻度でおこる部位が報告されているが、その中でも第3染色体短腕 (3p) は、肺の小細胞癌の100%近くに、また非小細胞癌においても60%に欠失が見られることから、肺癌の発症に関与する遺伝子の存在部位と考えられている [Oncogene, 7, 445 (1992)]。LOHは3pのいろいろな領域で観察されているが、その中でも3p14、3p21、3p25は多くの肺癌で共通して欠失が見られる領域であり、これらの領域には癌抑制遺伝子が存在すると推定されている [Oncogene, 7, 445 (1992)]。これらの領域の欠失は肺癌発症過程の初期からみられるが、悪性化に伴い欠失範囲が拡大していくという報告 [Oncogene, 11, 2591 (1995)] や、非小細胞癌、特に肺腺癌の不良な予後因子である報告もある。これまでにこれらの領域にマッピングされた癌抑制遺伝子として、3p14ではFHIT (Fragile histidine triad) 遺伝子 [Cell, 84, 587 (1996)、Cell, 85, 17 (1996)] が、3p25ではVHL (von Hippel-Lindau) 遺伝子 [Science, 260, 1317 (1993)、Proc. Natl. Acad.

Sci., 88, 2864 (1991)] が報告されている。3p21では、DNAミスマッチ修復遺伝子MLH1 [MutL homologue; Nature, 368, 258 (1994)]、アミノアシラーゼ-1 [Genomics, 8, 149 (1990)、J. Biol. Chem., 268, 1710 (1993)]、3pK [mitogen-activated protein kinase-activated protein kinase; Chromosome Research, 4, 310 (1996)]、セマフォリン [Oncogene, 12, 1289 (1996)]、アルギニンリッチ蛋白質 [Oncogene, 12, 1931 (1996)]、ユビキチン活性化蛋白質、Wnt-5a [J. Biol. Chem., 270, 31225 (1995)、Cell Growth & Differentiation, 8, 417 (1997)] などが候補遺伝子としてマッピングされているが、肺癌での遺伝子変異と関連付けられる決定的な癌抑制遺伝子は見出されていない。また、ヒト第3染色体とマウスA9細胞の雑種融合細胞クローニングのうち、SCIDマウスに移植した場合に腫瘍形成を示すような2種類の雑種融合細胞クローニングにおいて、共通して欠失しているヒト第3染色体上の領域を解析した論文 [Genes, Chromosome & Cancer, 18, 200 (1997)、Genes, Chromosome & Cancer, 20, 329 (1997)] では、欠失部分はヒト第3染色体上の3p21.3の領域内であり、領域の大きさとして1.6cM (センチモルガン) まで (染色体マーカーD3S1029とD3S643の間) 特定されている。この欠失領域には腫瘍形成に直接関与する癌抑制遺伝子が存在すると考えられているが、その遺伝子は特定されるまでには至っていない。

発明の開示

ヒトの肺癌において高頻度に欠失が観察される、ヒト染色体3p21部位にコードされている癌抑制遺伝子を明らかにすることが望まれている。

本発明者らは、高頻度に欠失が観察される、ヒト染色体3p21部位にコードされている癌抑制遺伝子に関して鋭意検討し、癌抑制に関与する新規チロシンフェヌアターゼHD-PTP (histidine domain-protein tyrosine phosphatase; 以下、HD-PTPと略すこともある) をコードするcDNAをヒト細胞株よりクローニング

することに成功し、本発明を完成するに至った。

すなわち、本発明は、以下の(1)～(20)を提供するものである。

- (1) 配列番号2記載のアミノ酸配列からなる蛋白質。
- (2) 配列番号2記載の蛋白質の有するアミノ酸配列において1個以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつチロシンフォスファターゼ活性を有する蛋白質。

上記(2)の配列番号2記載の蛋白質の有するアミノ酸配列において1個以上のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつチロシンフォスファターゼ活性を有する蛋白質は、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) (以下、モレキュラー・クローニング第2版と略す)、Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) (以下、カレント・プロトコールズ・イン・モレキュラー・バイオロジーと略す)、Nucleic Acids Research, 10, 6487 (1982)、Proc. Natl. Acad. Sci. USA, 79, 6409 (1982)、Gene, 34, 315 (1985)、Nucleic Acids Research, 13, 4431 (1985)、Proc. Natl. Acad. Sci. USA, 82, 488 (1985)等に記載の部位特異的変異導入法を用いて、例えば配列番号2で示されるアミノ酸配列を有するポリペプチドをコードするDNAに部位特異的変異を導入することにより、取得することができる。

欠失、置換もしくは付加されるアミノ酸の数は特に限定されないが、上記の部位特異的変異法等の周知の方法により欠失、置換もしくは付加できる程度の数であり、1個から数十個、好ましくは1～20個、より好ましくは1～10個、さらに好ましくは1～5個である。

また、本発明のポリペプチドがチロシンフォスファターゼ活性を有するためには、配列番号2記載のアミノ酸配列と、BLAST [J. Mol. Biol., 215, 403 (1990)] やFASTA [Methods in Enzymology, 183, 63-98 (1990)] 等を用いて計算したときに、少なくとも60%以上、通常は80%以上、特に95%

以上の相同意を有していることが好ましい。

具体的には配列番号2のアミノ酸配列のN末端1～3番目の3アミノ酸を欠失したアミノ酸配列を有する蛋白質、この3アミノ酸が欠失したアミノ酸配列のN末にT7やFlag等のtagペプチドの配列を付加したアミノ酸配列を有する蛋白質などをあげることができる。

- (3) 上記(1)または(2)記載の蛋白質をコードするDNA。
- (4) 配列番号1、3、40または41記載の塩基配列を有するDNA。
- (5) 上記(3)または(4)記載のDNAとストリンジェントな条件下でハイブリダイズし、かつチロシンfosファターゼ活性を有する蛋白質をコードするDNA。

上記(5)の「ストリンジェントな条件下でハイブリダイズし、かつチロシンfosファターゼ活性を有する蛋白質をコードするDNA」とは、配列番号1、3、40または41で表される塩基配列を有するDNAをプローブとして、コロニー・ハイブリダイゼーション法、ブラーク・ハイブリダイゼーション法あるいはサザン・プロット・ハイブリダイゼーション法等を用いることにより得られるDNAを意味し、具体的には、コロニーあるいはブラーク由来のDNAを固定化したフィルターを用いて、0.7～1.0 mol/LのNaCl存在下、65°Cでハイブリダイゼーションを行った後、0.1×～2×SSC (saline-sodium citrate) 溶液 [1×SSC溶液 (150 mmol/L NaCl, 15 mmol/Lクエン酸ナトリウム); n×はn倍濃度の溶液を示す。] を用い、65°C条件下でフィルターを洗浄することにより同定できるDNAをあげることができる。

ハイブリダイゼーションは、モレキュラー・クローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University Press (1995) (以下、DNAクローニング1と略記する) 等の実験書に記載されている方法に準じて行うことができる。ハイブリダイズ可能なDNAとして具体的には、配

列番号1、3、40または41で表される塩基配列と少なくとも80%以上の相同意を有するDNA、好ましくは95%以上の相同意を有するDNAをあげができる。

(6) 上記(3)～(5)のいずれか1項に記載のDNAとベクターDNAを含有する組換え体DNA。

(7) 上記(6)記載の組換え体DNAを宿主細胞に導入して得られる形質転換体。

(8) 上記(7)記載の形質転換体を培地に培養し、培養物中に上記(1)または(2)記載の蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする上記(1)または(2)記載の蛋白質の製造方法。

(9) 上記(1)または(2)記載の蛋白質を有効成分として含む、癌の治療薬。

(10) 上記(3)～(5)のいずれか1項に記載のDNAを有効成分とする癌の治療薬。

(11) 上記(3)～(5)のいずれか1項に記載のDNAを含有する、癌の遺伝子治療用ベクター。

(12) 上記(3)～(5)のいずれか1項に記載のDNAの塩基配列のうち、連続した10～60残基の塩基配列を有するオリゴヌクレオチド、または該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチド、およびこれらオリゴヌクレオチドの誘導体であるオリゴヌクレオチド誘導体。

(13) 配列番号24、25、28または29で表される塩基配列を有する上記(12)記載のオリゴヌクレオチド。

(14) 上記(12)または(13)記載のオリゴヌクレオチドを用いた、癌の診断方法。

(15) 上記(12)または(13)記載のオリゴヌクレオチドを含有する、癌の診断薬。

- (16) 上記(1)または(2)記載の蛋白質を認識する抗体。
- (17) 上記(16)記載の抗体を用いて、上記(1)または(2)記載の蛋白質を免疫学的に検出する方法。
- (18) 上記(16)記載の抗体を用いて、上記(1)または(2)記載の蛋白質を免疫学的に定量する方法。
- (19) 上記(16)記載の抗体を用いる、癌の判定方法。
- (20) 上記(16)記載の抗体を有効成分とする、癌の診断薬。

以下、本発明を詳細に説明する。

[1]本発明のDNAの調製

本発明のHD-PTPをコードするcDNAは、以下のような形質転換アッセイ法によって得られる、癌関連遺伝子の候補となる遺伝子の断片をプローブとしてcDNAライブラリーをスクリーニングすることにより取得することができる。

以下、詳細に説明する。

(1) 癌関連遺伝子断片のスクリーニング

ヒト癌細胞は、無限増殖性の獲得（不死化）、細胞増殖時の接触阻止現象の喪失、足場非依存性の増殖、増殖における血清要求性の低下、細胞接着能の減弱、ヌードマウスに移植した場合の腫瘍形成能など、正常細胞とは異なる性質を有しているので、ヒト癌細胞の染色体DNA中には、上述の性質の原因となる変異があると考えられる。このような原因遺伝子をスクリーニングする方法の一つとして、形質転換アッセイ法があげられる。

形質転換アッセイ法は、正常細胞、または上述した癌細胞の形質のうち、無限増殖以外の癌形質（造腫瘍性、軟寒天内増殖能など）を有さない正常細胞と同様の性質を示す宿主細胞に、ヒト癌細胞の染色体DNA由来のDNA断片を導入して発現させ、正常な形質からヒト癌細胞の示す形質への変化を指標に細胞クローンを選択し、該細胞から形質転換の原因となった染色体DNA断片（原因遺伝子）を単離する方法である。

ヒト癌細胞としては、染色体DNAを抽出できるヒト癌細胞であればいかなる細胞でも用いることができる。本発明では、ヒト癌細胞としてヒトB細胞リンパ腫の細胞株であるKAL-1 [Cancer Res., 51, 5392 (1991)] を用いている。

ヒト癌細胞から染色体DNAを単離する方法としては、プロテイナーゼK／フェノール－クロロホルム抽出法（モレキュラー・クローニング第2版）等をあげることができる。

上記で得られた染色体DNA由来のDNA断片を宿主細胞に導入する際には、導入された細胞を選択するためにマーカーとなる薬剤耐性遺伝子を有するプラスミドを共導入することが望ましい。該プラスミドとしては、マーカーとなる薬剤耐性を有しているプラスミドであればいかなるプラスミドでも用いることができる。具体的には、ハイグロマイシン耐性遺伝子を有するpHyg [Mol. Cel. Biol., 5, 410 (1985)]などをあげることができる。

染色体DNA由来のDNA断片とプラスミドの導入方法としては、宿主細胞へDNAを導入する方法であればいずれも用いることができるが、例えば、エレクトロボレーション法 [Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法（特開平2-227075）、リボフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。

宿主細胞としては、繰り返し継代しても細胞の形質が変化せずに無限増殖し、他の形質は癌細胞とは区別可能な非ヒト動物細胞であり、培養が簡易かつ高効率でDNAの導入が可能な細胞が好ましい。

癌細胞と区別可能な形質として、上述したヒト癌細胞に特異的な性質と相対する性質、例えば、足場依存性増殖、細胞増殖時の接触阻止、増殖時の血清要求性等をあげることができる。また、後述のように、宿主細胞由来のDNAと、外来のヒト癌細胞由来のDNAを区別して解析する必要があるため、非ヒト動物細胞を宿主細胞に用いることが好ましい。外来のヒトの遺伝子が宿主細胞内で発現し、該遺伝子を含んでいた細胞と同様の機能を有する形質転換細胞を獲得する

ためには、分類上あまりヒトとかけ離れていない動物、好ましくはヒト以外の哺乳動物の細胞をあげることができる。具体的には、マウスの纖維芽細胞株 NIH3T3（理化学研究所細胞開発銀行 RCB0150）、ラット纖維芽細胞株Rat-2 [*Virology*, 113, 408 (1981)、ATCC CRL-1764] をあげることができる。

以上の方針により、形質転換された細胞、すなわち癌細胞由来の原因遺伝子が導入された細胞は、軟寒天培地などの培地中でコロニーを形成することが可能となる。

例えば、軟寒天培地中では生育できない足場依存性増殖を示す纖維芽細胞に、ヒト癌細胞株の染色体DNA由來のDNA断片を導入した後、軟寒天培地中で培養すると、ヒト癌細胞株の有する足場非依存性の形質を獲得した細胞は軟寒天中でコロニーを形成する。該コロニー形成を指標にすることにより、形質転換細胞を容易に単離することが可能となる。

上記で単離されたコロニー形成細胞を用い、常法に従いDNA分析することにより、ヒト癌遺伝子を特定し、取得することができる。すなわち、EcoRI等の適当な制限酵素で該細胞の染色体DNAを切断後、サザンプロット解析（モレキュラー・クローニング第2版、DNAクローニング1）を行うことよりヒト癌遺伝子を特定し、取得することができる。

サザンプロット解析に用いるプローブとしては、ヒトの遺伝子で特異的な配列として普遍的にヒトゲノム遺伝子内に存在するAlu配列を有する、BLUR8[Proc. Natl. Acad. Sci. USA, 77, 1398 (1980)]などを用いることができるが、任意のヒト細胞から染色体DNAを単離し、放射性同位体、酵素などで標識したDNA断片を用いることもできる。Alu配列は、ヒトゲノムのインtronに特異的に見られる配列であり、かつヒトゲノムDNA中に30万コピーと他の塩基配列と比較して圧倒的多数を占めるため、標識されたDNAの大部分はAlu配列であると考えられる。従って、標識した染色体DNA断片を、癌遺伝子中のインtronを特定するためのプローブとして用いることができる。

ササンプロットによる解析の結果、同一の長さのバンドが検出されたコロニーを選択した後、該コロニーより染色体DNAを単離し、該染色体DNA由来のDNA断片を用い、上述の宿主細胞への導入からササンプロットまでの操作を繰り返す。そして、選択したコロニー由来の染色体DNA断片が、形質転換を引き起こすこと、ササンプロットによる解析で、最初と同じ長さのバンドが検出されることを確認することにより、該DNA断片により、癌形質が誘発されることがわかる。

形質転換された細胞より染色体DNAを単離したのち、EcoRI等の適当な制限酵素で数kb～20kb程度に部分的に切断する。該DNA断片をクローニングベクターに組み込み、宿主細胞に導入することによりDNAライブラリーを作製する。

具体的なDNAライブラリー作製法としては、モレキュラー・クローニング第2版等に記載された方法等があげられる。

DNAライブラリーを作製するためのクローニングベクターとしては、大腸菌K12株中で自律複製できるものであれば、ファージベクター、プラスミドベクター等いずれも使用できる。

具体的には、ZAP Express [Stratagene社製、Strategies, 5, 58 (1992)]、pBluescript II SK(+) [Nucleic Acids Research, 17, 9494 (1989)]、Lambda ZAP II (Stratagene社製)、 λ gt10、 λ gt11 [DNA Cloning, A Practical Approach, 1, 49 (1985)]、 λ TriplEx (Clonetech社製)、 λ ExCell (Pharmacia社製)、 λ DASH II (Stratagene社製)、該 λ DASH IIファージベクターを基に構築した λ PSL、pT7T318U (Pharmacia社製)、pcD2 [Mol. Cell. Biol., 3, 280 (1983)]等、9～23kbの長いDNAを挿入可能なベクターをあげることができる。

宿主微生物としては、大腸菌Escherichia coliに属する微生物であればいずれも用いることができる。具体的には、Escherichia coli XL1-Blue MR' [Stratagene社製、Strategies, 5, 81 (1992)]、Escherichia coli C600 [Genetics, 39, 440 (1954)]、Escherichia coli Y1088 [Science, 222, 778 (1983)]、Escherichia coli Y1090 [Science, 222, 778 (1983)]、Escherichia coli NM522

[*J. Mol. Biol.*, 166, 1 (1983)]、Escherichia coli K802 [*J. Mol. Biol.*, 16, 118 (1966)]、Escherichia coli JM105 [*Gene*, 38, 275 (1985)] および Escherichia coli LE392 (モレキュラー・クローニング第2版) 等を用いることができる。

上述のように調製したDNAライブラリーに対し、前述のプローブを用いてコロニー・ハイブリダイゼーションあるいはブラーク・ハイブリダイゼーション (モレキュラー・クローニング第2版) を行うことより、該DNAライブラリーより目的とするDNAクローンを取得することができる。

該クローンより得られたヒト癌細胞由来の癌遺伝子を含むDNA断片は、染色体DNA由来であるため、インtronも含まれていると考えられる。該遺伝子がコードする蛋白質の構造を明らかにするために、該遺伝子のcDNAを、cDNAライブラリーをスクリーニングすることによって取得する。

(2) 新規チロシンフォスファターゼ cDNAの取得

cDNAライブラリーを作製するために、適切な細胞または組織より全RNAあるいはmRNAを調製する。例えば、細胞としてヒト胃癌セルラインMKN45 [Jpn. J. Cancer Res. 77, 849 (1986)、理化学研究所細胞開発銀行 RCB1001]などをあげることができる。

全RNAを調製する方法として、ヒト細胞からチオシアン酸グアニジントリフルオロ酢酸セシウム法 [Methods in Enzymol., 154, 3 (1987)]、酸性チオシアン酸グアニジン・フェノール・クロロホルム法 [Analytical Biochemistry, 162, 156 (1987)]などを用いることができる。

全RNAからポリ(A)⁺RNAとしてmRNAを調製する方法として、オリゴ(dT)セルロース法 (モレキュラー・クローニング第2版)などを用いることができる。

あるいは、Fast Track mRNA Isolation Kit (Invitrogen社)、Quick Prep mRNA Purification Kit (Pharmacia社) 等のキットを用いてヒト細胞から直接mRNAを調製することもできる。

cDNAを調製し、該cDNAを適當なベクターに組み込み、宿主細胞に導入することによりcDNAライブラリーを作製する。具体的なcDNAライブラリー作製法としては、モレキュラー・クローニング第2版等に記載された方法、GublerとHoffmanの方法〔Gene, 25, 263 (1983)〕、あるいは市販のキット、例えばSuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning (ライフ・テクノロジーズ社製) やZAP-cDNA Synthesis Kit (Staratagene社製) を用いる方法等があげられるが、前述(1)でのDNAライブラリーの作製方法に準じて行うことができる。

調製したcDNAライブラリーに対してコロニー・ハイブリダイゼーションあるいはブラーク・ハイブリダイゼーション(モレキュラー・クローニング第2版)を行うことより新規ヒト癌遺伝子を含有するcDNAクローンを得ることができる。

プローブとしては、(1)で得られた癌遺伝子を含む染色体DNA断片を用いることができる。この場合ハイブリダイゼーションのバックグラウンドを減らすために、上記の染色体DNA断片から200bp～2 kb程度の長さでエクソンを含む断片を以下のようにして単離してプローブに用いるのが望ましい。

すなわち、上記の染色体DNA断片を適當な制限酵素で切断して200bp～2 kbの長さのDNA断片を単離し、プローブとする。上述(1)で取得したクローンより、上述の方法でRNAまたはmRNAを単離する。単離した該DNA断片および該RNAを用いてノーザン・プロット・ハイブリダイゼーションを行ない、はっきりとしたバンドが得られた断片をエクソンを含む断片として選択し、プローブとして使用する。

このようにして得られたcDNAクローン中に存在する新規ヒト癌遺伝子のcDNAの塩基配列を、後述(3)の方法により決定することができる。決定された塩基配列より、全長のcDNAが得られていないと考えられる場合には以下の方法で全長cDNAを取得することができる。すなわち、前述の方法で得たcDNAの両端に

アダプターを付加し、このアダプターの塩基配列と得られたcDNAの塩基配列に基づいたプライマーでPCRを行う5'-RACE(rapid amplification of cDNA ends)および3'-RACE [Proc. Natl. Acad. Sci. USA, 85, 8998 (1988)]により、プライマーに用いた配列よりも5'末端側および3'末端側のcDNA断片を得ることができる。得られたcDNA断片をcDNAクローンのcDNAと連結させることにより、本発明の全長cDNAを取得することができる。

(3) cDNAの塩基配列の解析

得られたcDNAをそのまま、あるいは該cDNA部分を適当な制限酵素で切断後、pUC118等の適当なクローニングベクターにサブクローニングした後、通常用いられる塩基配列解析方法、例えばSangerらのジデオキシ法 [Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] あるいは373A・DNAシークエンサー (Perkin Elmer社製) 等の塩基配列分析装置を用いて分析することにより、塩基配列を決定することができる。

決定された塩基配列より、該cDNAがコードする蛋白質のアミノ酸配列を知ることができます。

該塩基配列の新規性に関しては、BLAST等の相同意検索プログラムを用いて、GenBank、EMBLおよびDDBJ等の塩基配列データベースを検索することにより、確認することができる。

上記方法により決定される塩基配列として、HD-PTPをコードするcDNAの有する配列番号1に示される塩基配列をあげることができる。

(4) ゲノムDNAの取得

ゲノムDNAは、ヒトゲノムDNAを錫型にして、上記(3)で得られたcDNAの塩基配列に基づいて設計・合成できるDNAをプライマーに用いたPCR (PCR, A practical Approach, Oxford University Press (1991))によって取得することができる。また、Clonetech社等から購入できるヒトゲノムDNAライブラリーから(3)で得られたcDNAをプローブにしてゲノムDNAクローンを得ることもで

きる。

(5) HD-PTPをコードするDNAの調製

HD-PTPのcDNAの塩基配列に基づいて設計したプライマーDNAを合成し、ヒト組織あるいは細胞から(3)と同様にして調製したcDNAあるいはcDNAライブリーやを錠型として、PCRを行うことによりHD-PTPをコードするDNA(以下、HD-PTP DNAと略す)を増幅し取得することができる。

また決定されたDNAの塩基配列に基づいて、DNA合成機で化学合成することによってHD-PTP DNAを調製することもできる。DNA合成機としては、フォスフォアミダイト法を利用したPerkin Elmer社製のDNA合成機model392等をあげることができる。

(6) HD-PTPオリゴヌクレオチドの調製

上述の方法で取得した本発明のDNAおよびDNA断片を用いて、常法あるいは上述のDNA合成機により、本発明のDNAの一部の配列を有するオリゴヌクレオチドあるいは相補的な塩基配列をもつオリゴヌクレオチド(これらを以下、HD-PTPオリゴヌクレオチドと称する)を調製することができる。

HD-PTPオリゴヌクレオチドとしては、具体的には、配列番号1、3、40または41で表される塩基配列中の連続した10~60塩基と同じ配列を有するDNAまたは該DNAと相補的な配列を有するDNAをあげることができる。センスプライマーおよびアンチセンスプライマーとして用いる場合には、両者の融解温度および塩基数が極端に変わることのない上述のオリゴヌクレオチドが好ましい。アンチセンスプライマーとしては、具体的には、配列番号24、25、28または29で表される塩基配列を有するDNAをあげることができる。

さらに、これらオリゴヌクレオチドの誘導体も本発明のオリゴヌクレオチドとしてあげることができる。該オリゴヌクレオチドの誘導体としては、オリゴヌクレオチド中のリン酸ジエステル結合がホスフォロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル

結合がN 3' - P 5' ホスフォアミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合がペプチド核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5チアゾールウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがC-5プロピニルシトシンで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン (phenoxazine-modified cytosine) で置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースが2' - O-プロビルリボースで置換されたオリゴヌクレオチド誘導体、あるいはオリゴヌクレオチド中のリボースが2' - メトキシエトキシリボースで置換されたオリゴヌクレオチド誘導体等をあげることができる〔細胞工学, 16, 1463 (1997)〕。

[2] 遺伝子組換え技術を用いた、HD-PTPの調製

HD-PTPは、モレキュラー・クローニング第2版やカレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された方法を用い、例えば以下の方法により、上記[1]に記載の方法により取得したHD-PTP DNAを宿主細胞で発現させて、調製することができる。

HD-PTP DNAを適当な発現ベクターのプロモータ一下流に挿入した組換え体DNAを造成する。該組換え体DNAを宿主細胞に導入することにより、HD-PTP蛋白質を発現する形質転換体を得ることができる。

宿主細胞としては、細菌、酵母、動物細胞、昆虫細胞、植物細胞等、目的とする遺伝子を発現できるものであればいずれも用いることができる。

発現ベクターとしては、上記宿主細胞において自律複製可能ないしは染色体中への組込が可能で、HD-PTP DNAを転写できる位置にプロモーターを含有しているものが用いられる。

細菌等の原核生物を宿主細胞として用いる場合は、該組換え体DNAは原核生物中で自律複製可能であると同時に、プロモーター、リボソーム結合配列、HD-PTP DNA、転写終結配列、より構成されていることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

発現ベクターとしては、例えば、pKK233-2 (Pharmacia社)、pSE280 (Invitrogen社)、pGEMEX-1 (Promega社)、pQE-8(QIAGEN社)、pKYP10 (特開昭58-110600)、pKYP200 [Agricultural Biological Chemistry, 48, 669 (1984)]、pLSA1 [Agric. Biol. Chem., 53, 277 (1989)]、pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)]、pBluescript II SK(-) (Stratagene社)、pGEX (Pharmacia社)、pET-3 (Novagen社) 等をあげることができる。

プロモーターとしては、大腸菌や枯草菌等の宿主細胞中で発現できるものであればいかなるものでもよい。例えば、trpプロモーター (P_{trp})、lacプロモーター、 P_l プロモーター、 P_B プロモーター、T7プロモーター等の、大腸菌やファージ等に由来するプロモーターをあげることができる。また P_{trp} を2つ直列させたプロモーター ($P_{trp} \times 2$)、tacプロモーター、lacT7プロモーター、letIプロモーターのように人為的に設計改変されたプロモーター等も用いることができる。

リボソーム結合配列であるShine-Dalgarno配列と開始コドンとの間を適当な距離（例えば6～18塩基）に調節したプラスミドを用いることが好ましい。

本発明の組換えベクターにおいては、本発明のDNAの発現には転写終結配列は必ずしも必要ではないが、構造遺伝子の直下に転写終結配列を配置することが好ましい。

宿主細胞としては、エシェリヒア属、バチルス属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、セラチア属、等に属する微生物、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia

coli No.49、Escherichia coli W3110、Escherichia coli NY49、Serratia ficaria、Serratia fonticola、Serratia liquefaciens、Serratia marcescens、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium ammoniagenes、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、Pseudomonas sp. D-0110等をあげることができる。

組換え体DNAの導入方法としては、前記宿主細胞へDNAを導入する方法であればいずれも用いることができ、例えば、塩化カルシウム法〔Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)〕、プロトプラスト法（特開昭63-248394）、エレクトロボレーション法〔Gene, 17, 107 (1982)、Molecular & General Genetics, 168, 111 (1979)〕等をあげることができる。

酵母菌株を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEpl3 (ATCC37115)、YEpl24 (ATCC37051)、YCP50 (ATCC37419)、pHS19、pHS15等を用いることができる。

プロモーターとしては、酵母菌株中で発現できるものであればいずれのものを用いてもよく、例えば、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、gal 1プロモーター、gal 10プロモーター、ヒートショックポリペプチドプロモーター、MFα1 プロモーター、CUP 1プロモーター等のプロモーターをあげることができる。

宿主細胞としては、サッカロマイセス属、シゾサッカロマイセス属、クルイペロミセス属、トリコスボロン属、シワニオミセス属、ビヒア属等に属する酵母菌株をあげることができ。具体的には、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Trichosporon pullulans、Schwanniomyces alluvius、Pichiapastoris等をあげることができる。

組換え体DNAの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Methods in Enzymol., 194, 182 (1990)]、スフェロプラスト法 [Proc. Natl. Acad. Sci. USA, 81, 4889 (1984)]、酢酸リチウム法 [Journal of Bacteriology, 153, 163 (1983)] 等をあげることができる。

動物細胞を宿主として用いる場合の発現ベクターとしては、宿主動物細胞で転写を行なうプロモーター、HD-PTP DNA、転写の終止と転写物のポリアデニル化のシグナルの配列を含有しているものが用いられる。またベクターの作製や維持を容易にするため、Escherichia. coli内でも自律複製と遺伝子導入マークーとなる薬剤耐性遺伝子を発現できるものが望ましい。

プロモーターとしては、動物細胞中で転写を行なえるものであればいずれも用いることができるが、SV40の初期プロモーター、ヒトサイトメガロウイルス (CMV) のIE (immediate early) 遺伝子のプロモーター、ラウス肉腫ウイルス (Rous sarcoma virus; RSV) 、ヒト免疫不全ウイルス (human immunodeficiency virus; HIV) 、モロニーマウス白血病ウイルス (Moloney mouse leukemia virus; MMLV) 等レトロウイルスのロング・ターミナル・リピート (long terminal repeat ; LTR) などのウイルス由来の配列を有するプロモーター、SV40の初期プロモーターにヒトT細胞白血病ウイルス I のLTRを人為的につなげたSR α プロモーター、またはメタロチオネイン遺伝子や β -アクチン遺伝子、伸長因子 (Elongation factor) - 1 遺伝子などの動物細胞由来の遺伝子のプロモーター等をあげることができる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。

動物細胞を宿主として用いる場合には、発現ベクターとして、例えば、pAGE107 [特開平3-22979、Cytotechnology, 3, 133, (1990)]、pAS3-3 (特開平2-227075) 、pCDM8 [Nature, 329, 840, (1987)] 、pcDNA1/Amp (Invitrogen社製) 、pREP4 (Invitrogen社製) 、pAGE103 [Journal of Biochemistry, 101, 1307 (1987)]

]、pCDL81等が用いられる。pCDL81は、ハイグロマイシン耐性遺伝子およびEBウイルス複製起点をもつベクターEB0-pcD [Mol. Cell. Biol., 8, 2837 (1988)]にSR α プロモーターを組み込み、さらにマルチクローニングサイト (XbaI-NotI-XbaI-KpnI-BamH) およびPoly Aシグナルの塩基配列を有するDNAを挿入して作製したベクターである。

宿主細胞としては、マウス・ミエローマ細胞、ラット・ミエローマ細胞、マウス・ハイブリドーマ細胞、マウス繊維芽細胞であるNIH3T3細胞、ラット繊維芽細胞であるRat-2細胞、ヒトの細胞であるナマルバ (Namalwa) 細胞、ヒト胎児腎臓細胞、ヒト白血病細胞、アフリカミドリザル腎臓細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637 (特開昭63-299) 等をあげることができる。

マウス・ミエローマ細胞としては、SP2/0、NS0等、ラット・ミエローマ細胞としてはYB2/0等、ヒトの細胞であるナマルバ (Namalwa) 細胞としてはNamalwa KJM-1細胞、ヒト胎児腎臓細胞としてはHEK293(ATCC:CRL-1573)、ヒト白血病細胞としてはBALL-1、アフリカミドリザル腎臓細胞としてはCOS-1、COS-7等をあげることができる。

組換え体DNAの導入方法としては、動物細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法 [Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法 (特開平2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)] 等をあげることができる。

宿主染色体DNAにHD-PTP DNAが組み込まれた恒常的なHD-PTP発現細胞は、G418、ハイグロマイシン等の薬剤に対する耐性遺伝子を発現できる配列を含むHD-PTP発現ベクターを宿主細胞に導入し、薬剤の存在下で培養することにより選択することができる。また、宿主細胞中でのHD-PTPの生産量を上昇させるために、ジヒドロ葉酸レダクターゼ (dihydrofolate reductase; dhfr) 遺伝子を発現で

きるような配列を含むHD-PTP恒常的発現ベクターを宿主細胞に導入し、dhfr阻害剤であるメトトレキセート (methotrexate) の濃度を段階的に上げながら培養することにより、dhfr遺伝子とともにHD-PTP DNAのコピー数を増幅させることもできる。このdhfr遺伝子を用いた遺伝子増幅を行なう場合の宿主細胞としては、dhfr遺伝子が機能していない細胞、例えばCHO/dhfr- (ATCC:CRL-9096)などを用いる。

昆虫細胞を宿主として用いる場合には、例えばBaculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York (1992) (以下、バキュロウイルス・イクスピレッション・ベクターズ・ア・ラボラトリ・マニュアルと略す)、Bio/Technology, 6, 47 (1988)、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載された方法によって、ポリペプチドを発現することができる。

すなわち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させることにより、蛋白質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII (ともにInvitrogen社製) 等をあげることができる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレア・ポリヘドロシス・ウイルス (*Autographa californica nuclear polyhedrosis virus*) などを用いることができる。

昆虫細胞としては、*Spodoptera frugiperda*の卵巣細胞であるSf9、Sf21 (バキュロウイルス・イクスピレッション・ベクターズ・ア・ラボラトリ・マニュアル)、*Trichoplusia ni*の卵巣細胞であるHigh 5 (Invitrogen社製) 等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベク

ターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法（特開平2-227075）、リポフェクション法〔Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)〕等をあげることができる。

遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合蛋白質発現等を行うことができる。

酵母、動物細胞、昆虫細胞、植物細胞または植物体で発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。

以上のようにして得られる形質転換体を培地に培養し、培養物中に本発明の蛋白質を生成蓄積させ、該培養物から採取することにより、本発明の蛋白質を製造することができる。

また、患者の生体内から採取した細胞に、適切な本発明の蛋白質を発現させるための発現ベクターを導入した後、細胞を生体内に戻すことにより、本発明の蛋白質を患者の生体内に発現させることもできる。

本発明の形質転換体を培地に培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。

大腸菌等の原核生物あるいは酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、該生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。

炭素源としては、該生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパンノールなどのアルコール類等を用いることができる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸もしくは有機酸のアンモニウム

塩、その他の含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コンスチーブリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体、およびその消化物等を用いることができる。

無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。

培養は、通常振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は15~40°Cがよく、培養時間は、通常16~96時間である。培養中pHは3.0~9.0に保持する。pHの調整は、無機または有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

また、培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロビル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。

動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているRPMI1640培地〔The Journal of the American Medical Association, 199, 519 (1967)〕、EagleのMEM培地〔Science, 122, 501 (1952)〕、DMEM培地〔Virology, 8, 396 (1959)〕、199培地〔Proceeding of the Society for the Biological Medicine, 73, 1 (1950)〕またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。

培養は、通常5%CO₂存在下等の条件下で行う。培養温度は35~37°Cがよく、培養時間は、通常3~7日間である。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

昆虫細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されているTNM-FH培地（Pharmingen社製）、Sf-900 II SFM培地（LifeTechnologies社製）、ExCell400、ExCell405（いずれもJRH Biosciences社製）等を用いることができる。

培養温度は25～30°Cがよく、培養時間は、通常1～4日間である。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

上記形質転換体の培養液から、上記方法により発現させた蛋白質を単離精製するためには、通常の蛋白質の単離、精製法を用いればよい。

例えば、本発明の蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん濁後、超音波破碎機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破碎し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル（DEAE）－セファロース、DIAION HPA-75（三菱化学社製）等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF（Pharmacia社製）等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティーコロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

また、該蛋白質が細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破碎し、遠心分離を行うことにより得られた沈殿画分として該蛋白質の

不溶体を回収後、該蛋白質の不溶体を蛋白質変性剤で可溶化する。該可溶化液を、蛋白質変性剤を含まないあるいは蛋白質変性剤の濃度が蛋白質が変性しない程度に希薄な溶液に希釈、あるいは透析し、該蛋白質を正常な立体構造に復元させた後、上記と同様の単離精製法により精製標品を得ることができる。

本発明の蛋白質あるいはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清に該蛋白質あるいはその糖鎖付加体等の誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

また、本発明の蛋白質は、Fmoc法（フルオレニルメチルオキシカルボニル法）、tBoc法（t-ブチルオキシカルボニル法）等の化学合成法によっても製造することができる。また、Advanced ChemTech社、Perkin Elmer社、Pharmacia社、Protein Technology Instrument社、Synthecell-Vega社、PerSeptive社、島津製作所等のペプチド合成機を利用し化学合成することもできる。

精製した本発明の蛋白質の構造解析は、蛋白質化学で通常用いられる方法、例えば遺伝子クローニングのためのタンパク質構造解析（平野久著、東京化学同人発行、1993年）に記載の方法により実施可能である。

[3] HD-PTP蛋白質を認識する抗体の調製

・抗体産生株の作製

上記[2]に記載の方法により取得したHD-PTP蛋白質の全長または部分断片の精製標品、あるいはHD-PTP蛋白質の部分ペプチド（ペプチド合成機を利用し化学合成できる）を抗原として免疫する。免疫する方法としては、動物の皮下、静脈内または腹腔内に抗原をそのまま投与してもよいが、抗原性の高いキャリアタンパク質を結合させて投与したり、あるいは適当なアジュバントとともに抗原を投与することが好ましい。

キャリアタンパク質としては、スカシガイヘモシアニン、キーホールリンベ

ットヘモシアニン、牛血清アルブミン、牛チログロブリン等があげられ、アジュバンドとしては、フロイントの完全アジュvant(Complete Freund's Adjuvant)、水酸化アルミニウムゲルと百日咳菌ワクチン等があげられる。

免疫動物としては、ウサギ、ヤギ、3～20週令のマウス、ラット、ハムスターなどの非ヒト哺乳動物があげられる。

抗原の投与は、1回目の投与の後、1～2週間毎に3～10回行う。抗原の投与量は動物1匹当たり50～100 μ gが好ましい。各投与後、3～7日目に免疫動物の眼底静脈叢あるいは尾静脈より採血し、該血清の抗原との反応性について、酵素免疫測定法〔酵素免疫測定法(ELISA法)：医学書院刊(1976年)〕などで確認する。

そして、該血清が十分な抗体価を示した非ヒト哺乳動物を、血清または抗体産生細胞の供給源とする。

ポリクローナル抗体は、該血清を分離、精製することにより調製することができる。

モノクローナル抗体は、該抗体産生細胞と非ヒト哺乳動物由来の骨髄腫細胞とを融合させてハイブリドーマを作製し、該ハイブリドーマを培養するか、動物に投与して該細胞を腹水癌化させ、該培養液または腹水を分離、精製することにより調製することができる。

抗体産生細胞は、抗原投与された非ヒト哺乳動物脾細胞、リンパ節、末梢血などから採取する。

骨髄腫細胞としては、マウスから得られた株化細胞である、8-アザグアニン耐性マウス(BALB/c由来)骨髄腫細胞株P3-X63Ag8-U1(P3-U1)〔Europ. J. Immunol., 6, 511 (1976)〕、SP2/0-Ag14(SP-2)〔Nature, 276, 269 (1978)〕、P3-X63-Ag8653(653)〔J. Immunol., 123, 1548 (1979)〕、P3-X63-Ag8(X63)〔Nature, 256, 495 (1975)〕など、イン・ビトロ(*in vitro*)で増殖可能な骨髄腫細胞であればいかなるものでもよい。これらの細胞株の培養および継代につ

いてはアンチボディーズ・ア・ラボラトリー・マニュアル [Antibodies -A Laboratory Manual, Cold Spring Harbor Laboratory, (1988)、以下、アンチボディーズ・ア・ラボラトリー・マニュアルと略す] に従い、細胞融合時までに 2×10^7 個以上の細胞数を確保する。

上記で得られた抗体産生細胞と骨髄腫細胞とを洗浄したのち、ポリエチレングライコール-1000(PEG-1000)などの細胞凝集性媒体を加え、細胞を融合させ、培地中に懸濁させる。細胞の洗浄にはMEM培地またはPBS(リン酸二ナトリウム1.83g、リン酸一カリウム0.21g、食塩7.65g、蒸留水1リットル、pH7.2)などを用いる。また、融合細胞を懸濁させる培地としては、目的の融合細胞のみを選択的に得られるように、HAT培地[正常培地(RPMI-1640培地に1.5mmol/Lグルタミン、 5×10^{-5} mol/L 2-メルカプトエタノール、10μg/mlジエンタマイシンおよび、10%牛胎児血清(FCS)(CSL社製)を加えた培地]に 10^{-4} mol/Lヒポキサンチン、 1.5×10^{-5} mol/L チミジンおよび 4×10^{-7} mol/L アミノブテンを加えた培地]を用いる。

培養後、培養上清の一部をとり、酵素免疫測定法により、抗原蛋白質に反応し、非抗原蛋白質に反応しないサンプルを選択する。ついで、限界希釈法によりクローニングを行い、酵素免疫測定法により安定して高い抗体価の認められたものをモノクローナル抗体産生ハイブリドーマ株として選択する。

・酵素免疫測定法

抗原蛋白質あるいは抗原蛋白質を発現した細胞などを96ウェルプレートにコートし、ハイブリドーマ培養上清もしくは上述の方法で得られる精製抗体を第一抗体として反応させる。

第一抗体反応後、プレートを洗浄して第二抗体を添加する。

第二抗体とは、第一抗体のイムノグロブリンを認識できる抗体を、ビオチン、酵素、化学発光物質あるいは放射線化合物等で標識した抗体である。具体的にはハイブリドーマ作製の際にマウスを用いたのであれば、第二抗体としては、

マウスイムノグロブリンを認識できる抗体を用いる。

反応後、第二抗体を標識した物質に応じた反応を行ない、抗原に特異的に反応するモノクローナル抗体を生産するハイブリドーマとして選択する。

モノクローナル抗体は、ハイブリドーマ細胞を培養して得られる培養液、またはブリストン処理 [2,6,10,14-テトラメチルペントタデカン(Pristane)0.5ml] を腹腔内投与し、2週間飼育する] した8~10週令のマウスまたはヌードマウスに、モノクローナル抗体産生ハイブリドーマ細胞を腹腔内投与して腹水癌化させた腹水から、分離、精製することにより調製できる。

モノクローナル抗体を分離、精製する方法としては、遠心分離、40~50% 飽和硫酸アンモニウムによる塩析、カプリル酸沈殿法、DEAE-セファロースカラム、陰イオン交換カラム、プロテインAまたはG- カラムあるいはゲルfiltrationカラム等を用いるクロマトグラフィー等を、単独または組み合わせて行う方法があげられる。この方法により、IgG あるいはIgM 画分を回収し、精製モノクローナル抗体を取得することができる。

精製モノクローナル抗体のサブクラスの決定は、モノクローナル抗体タイピングキットなどを用いて行うことができる。蛋白質量は、ローリー法あるいは280nmでの吸光度より算出することができる。

なお、抗体のサブクラスとは、クラス内のアイソタイプのことで、マウスでは、IgG1、IgG2a、IgG2b、IgG3、ヒトでは、IgG1、IgG2、IgG3、IgG4があげられる。

[4] HD-PTP、HD-PTP DNA、HD-PTPを認識する抗体の利用

(1) [1] に記載したHD-PTP DNAをプローブに用いたノーザンプロット・ハイブリダイゼーション法、HD-PTP DNAの一部の塩基配列を基にしたオリゴヌクレオチドをプライマーに用いたRT-PCR法等を行うことによりHD-PTPのmRNAを検出または定量することができる。該mRNAを検出または定量することにより、HD-PTP遺伝子の発現している組織や細胞を検出すること、HD-PTP遺伝子発現の誘導ま

たは抑制等の情報の取得ができる。したがって、これらのDNAはHD-PTPの発現を測定し、癌の診断薬、HD-PTPの研究用試薬として用いることができる。

(2) [1]記載のHD-PTP DNAあるいはHD-PTPオリゴヌクレオチドを用いてHD-PTP遺伝子の欠失、コピー数の変化、染色体転座等の異常および該遺伝子の塩基配列の置換、欠失、付加等の変異を検出することができる。

HD-PTP遺伝子の欠失、コピー数の変化、染色体転座等の異常の検出方法としては、ササン・ハイブリダイゼーション法があげられる。すなわち、HD-PTP DNAをプローブにして、適当な制限酵素で切断した染色体DNAをササン・ハイブリダイゼーションすることにより、HD-PTP遺伝子の欠失、コピー数の変化、染色体転座等の異常を確認することができる。

HD-PTP遺伝子の塩基配列の置換、欠失、付加等の変異の検出方法としては、ササン・ハイブリダイゼーション法、PCR法、SSCP (single-strand conformation polymorphism) 法 [Proc. Natl. Acad. Sci. USA, 86, 2766 (1989)]などを用いた方法があげられる。

癌細胞で共通して見出される変異が存在する場合は、この変異部位とハイブリダイズするオリゴヌクレオチドプローブにより染色体DNAをササン・ハイブリダイゼーション解析することにより、癌の診断を行なうことができる。

(3) [1]記載のHD-PTPのDNAを用いて、ラジエーション・ハイブリッド法[Science, 250, 245 (1990)]やin situハイブリダイゼーション法[Annals of Human Genetics, 45, 135 (1981)、Cell, 52, 51 (1988)]により、HD-PTP遺伝子の染色体上の位置を決定することができる。

ラジエーション・ハイブリッド法とは、Gene-Bridge 4などのヒト染色体断片をもつ多数のパネル（どの部分の染色体断片が含まれているか染色体マーカーにより解析されているもの）DNAに対し、HD-PTP遺伝子を特異的に增幅させるポリメラーゼ・チェイン・リアクション (Polymerase Chain Reaction、以下、PCRと略す) を行い、増幅結果を解析することにより詳細な染色体の位置を特定す

る方法である。

in situハイブリダイゼーション法では、まず、ヒト染色体の標本に対し、HD-PTPのDNAをプローブとしてハイブリダイズしたシグナルを検出し、標本上のシグナルの位置を特定する。これにより、HD-PTP遺伝子の存在する染色体の番号だけでなく、その染色体上での物理的な位置を特定することができる。プローブは、放射性同位体³Hやビオチンにより標識し、³H標識ではオートラジオグラフにより、ビオチン標識では蛍光色素FITC（フルオロセインイソチオシアネート）で標識したアビシンを用いてシグナルを検出することができる。

(4) [1]記載のHD-PTP DNAを用いて、[2]に記載した方法により、HD-PTPを生産し取得することができる。

(5) HD-PTP遺伝子の異常は発癌に関与しており、該異常遺伝子のコードする蛋白質が発癌に起因していると考えられているため、正常なHD-PTPを投与することにより、癌の治療薬として利用することができる。

本発明のHD-PTPを含有する医薬は、治療薬として単独で投与することも可能ではあるが、通常は薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが望ましい。

投与経路は、治療に際して最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内等の非経口投与をあげることができ、抗体製剤の場合、望ましくは静脈内投与をあげることができる。

投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤等があげられる。

経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤等があげられる。

乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、

果糖等の糖類、ポリエチレングリコール、プロピレングリコール等のグリコール類、ごま油、オリーブ油、大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、ストロベリーフレーバー、ペパーミント等のフレーバー類等を添加剤として用いて製造できる。

カプセル剤、錠剤、散剤、顆粒剤等は、乳糖、ブドウ糖、ショ糖、マンニトール等の賦形剤、デンプン、アルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤、脂肪酸エステル等の界面活性剤、グリセリン等の可塑剤等を添加剤として用いて製造できる。

非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤等があげられる。

注射剤は、塩溶液、ブドウ糖溶液、あるいは両者の混合物からなる担体等を用いて調製される。

座剤はカカオ脂、水素化脂肪またはカルボン酸等の担体を用いて調製される。

また、噴霧剤は該化合物そのもの、ないしは受容者の口腔および気道粘膜を刺激せず、かつ該化合物を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製される。

担体として具体的には乳糖、グリセリン等が例示される。該化合物および用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。

投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、通常成人1日当たり $10\text{ }\mu\text{g}/\text{kg}$ ～ $8\text{ mg}/\text{kg}$ である。

(6) (5)においてHD-PTPを外から投与するかわりに、[1]記載のHD-PTP DNAを組み込んだ遺伝子治療用のベクターを患者に投与し、ターゲットとなる細胞内でHD-PTP DNAを発現させることにより、癌の治療を行うことができる。

(7) [2]記載のHD-PTPを抗原として用い、[3]記載の方法によりHD-PTPを認識する抗体を製造することができる。

(8) [3]記載の抗体を用いてHD-PTPを検出することができる。具体的にはマイクロタイタープレートを用いるELISA法・蛍光抗体法、ウェスタンプロット法、免疫組織染色等を用いた検出法をあげることができる。

(9) [3]記載の抗体を用いてHD-PTPを定量することができる。具体的には、液相中でHD-PTPと反応する抗体のうち、エピトープが異なる2種類のモノクローナル抗体を用いたサンドイッチELISA法、¹²⁵I等の放射性同位体で標識したHD-PTPとHD-PTPを認識する抗体を用いるラジオイムノアッセイ法等をあげることができる。

図面の簡単な説明

第1図 細胞株KAL1の染色体DNAクローン入SA2-26の挿入DNA断片の制限酵素地図を示す図である。A : AvaI、B : BamHI、E : EcoRI、Rv : EcoRV、S : SalI、X : XhoIの各制限酵素サイトの位置を示す。図の内部の数字は、各EcoRI断片の長さをkbで表わしたものであり、灰色の断片はAluIプローブとハイブリダイズした断片を示す。図の下部の線は、KAL1のmRNAのノーザン・プロット・ハイブリダイゼーションのプローブに用いた、10種類の断片の位置を示す。*をつけた断片は、KAL1のmRNAとハイブリダイズし約6kbのバンドを検出した、エクソンを含むと考えられる断片である。

第2図 MKN45のcDNAライブラリーの作製に用いた入ファージベクターλPSL1の構造およびcDNAの挿入位置を示す図である。H : HindIII、N : NotIの制限酵素サイト、A-Jは入ファージの遺伝子AからJに位置する遺伝子群を示す。KH54とnin5は入ファージベクターに用いられる遺伝子マーカーである。下に入PSL1の作製に用いたプラスミドベクターpCDL81の構造を示した。SR α : SR α プロモーター、PolyA : polyAシグナル、hph : ハイグロマイシン耐性遺伝子、Ap : アンビシリソ

耐性遺伝子を示す。

第3図 HD-PTPと他の蛋白質チロシンフォスファターゼ(PTP)のチロシンフォスファターゼドメインのアミノ酸配列の比較を示す図である。

HD-PTPのチロシンフォスファターゼドメイン（配列番号2の1212～1331番めに相当）のアミノ酸配列と同じアミノ酸を*で示した。+は、各PTPで保存されている活性中心付近のアミノ酸配列の位置を示す。比較した13種類のPTP中12以上のPTPで保存されているにもかかわらず、HD-PTPでは保存されていないアミノ酸を#で示した。比較したPTPの蛋白質データベースSWISS-PROTのアクセス番号（ただしPTP-Hのみは蛋白質データベースPIRのアクセス番号である）を以下に示す。かっこ内は、各アミノ酸配列中のチロシンフォスファターゼドメインの位置である。PTP-1B:P18031(35～279)、PTP-H1:P26045(665～903)、MEG1:P29074(674～913)、PTP- α :P18433(260～503)、PTP- β :P23467(1722～1965)、PTP- δ :P23468(1375～1614)、PTP- ε :P23469(154～396)、LAR:P10586(1360～1599)、PTP- γ :P23470(869～1121)、PTP- ζ :P23471(1744～1993)、PTP-2C:Q06124(268～523)、PTP-H:A49724(841～1083)、CD45:P08575(670～912)。

第4図 HD-PTPとラットPTP-TD14のアミノ酸配列の比較を示す図である。

上段がHD-PTPのアミノ酸配列であり、下段がラットPTP-TD14のアミノ酸配列で一致しているアミノ酸は*で示し、一致していないアミノ酸は表記した。-は対応するアミノ酸配列がないことを示す。数字は各蛋白質のN末端からの位置を示す。

第5図 HD-PTP蛋白質の構造を示す模式図である。

AはHD-PTP蛋白質の一次構造上の特徴を示した図で、NがN末端側、CがC末端側である。下の数字はアミノ酸配列の番号を示す。Yはチロシンキナーゼによりリン酸化を受ける可能性のあるチロシン残基の位置、SはセリンスレオニンキナーゼであるMAPキナーゼによりリン酸化を受ける可能性のあるアミノ酸残基の位置、SHBはSH3と結合する可能性のあるモチーフを示す。ヒスチジンド

メイン内の線は、Zn-leaf様構造を取るための繰り返し構造を示す。

BはHD-PTP蛋白質のZn-leaf様構造を含む模式図であり、HおよびCはヒスチジンドメイン中で金属イオンが配位しZn-leaf様構造をとるための、ヒスチジンおよびシステイン残基を表わす。Yはチロシンキナーゼによりリン酸化を受ける可能性のあるチロシン残基、SH3はSH3と結合する可能性のあるモチーフを示す。
第6図 HD-PTPとBR01のアミノ酸配列の比較を示す図である。上段がHD-PTPのアミノ酸配列で下段がBR01のアミノ酸配列を示し、一致しているアミノ酸は|で、類似のアミノ酸は・で示した。数字は各蛋白質のN末端からの位置を示す。

発明を実施するための最良の形態

以下、実施例を示す。

実施例 1 HD-PTPのcDNAのクローン化

(1) プローブとなるDNA断片のクローン化

ヒトB細胞リンパ腫セルラインKAL-1 [Cancer Res., 51, 5392 (1991)] から、プロテイナーゼK／フェノールークロロホルム抽出法（モレキュラー・クローニング第2版）によりヒト染色体DNAを単離し、該DNAをエタノール沈殿（モレキュラー・クローニング第2版）により精製した。

ラット繊維芽細胞系セルラインRat-2 [Virology, 113, 408 (1981)、ATCC CRL-1764] を5%の仔ウシ血清を含むダルベッコ改変MEM培地で、10cmディッシュ3枚に培養した。

培養後、ディッシュ1枚あたり、取得されたKAL-1のヒト染色体DNA 30 μ gおよびDNA導入マーカーとなるハイグロマイシン耐性遺伝子をもつプラスミドpHyg [Mol. Cel. Biol., 5, 410 (1985)] のDNA 500ngとを、リン酸カルシウム法により10cmディッシュ内の細胞に共導入させた。

導入後、32時間培養し、得られたディッシュ1枚当たりの培養細胞を8枚の培養ディッシュにまきかえた（計24枚）。該細胞を16時間培養した後、培地に終

濃度 $250\mu\text{g}/\text{ml}$ のハイグロマイシンを添加して培養を続けた。DNAが導入された細胞はハイグロマイシン耐性となり、ハイグロマイシン含有培地で増殖し、コロニーを形成する。該培養の結果、約400個のコロニーが形成された。

上記24枚の培養ディッシュで、コロニーを形成した細胞を各ディッシュごとにまとめて回収した。これら回収した細胞を0.5%軟寒天培地（0.5%の寒天および10%のウシ胎児血清を含むDMEM培地）の上にさらに寒天濃度0.33%の軟寒天培地を上層した培地の上に載せて3週間培養した。コロニーを形成した細胞について顕微鏡観察を行い、50細胞以上の細胞数のコロニーを形成した細胞を単離した。

単離した細胞について、上述の方法を用いて染色体DNAを抽出した。該DNA $10\mu\text{g}$ をEcoRIで切断後、アガロースゲル電気泳動を行った。泳動後、ゲル中のDNAをフィルターに転写し、KAL-1の染色体DNAをランダムプライマー法により ^{32}P で標識したものをヒトAlu配列に対応するプローブ（以下、Alu配列プローブという）を用いてサザン・ハイブリダイゼーションを行い、コロニーに含まれるヒトDNAの分析を行った。

その結果、独立した4個のコロニー由来のDNAが、該プローブとハイブリダイズする7kbのDNA断片を有することがわかった。得られた4つのコロニーから2つを選び、該コロニー由来の染色体DNAを単離・精製した。

再度、上記と同様の操作を繰り返した。すなわち、該DNAをプラスミドpHygとRat-2細胞に共導入し、ハイグロマイシン耐性コロニーを選択した。取得されたコロニーから同様にして染色体DNAを抽出し、抽出したDNA $10\mu\text{g}$ をEcoRIで切断後、アガロースゲル電気泳動を行い、ゲル中のDNAをフィルターに転写後、ヒトAlu配列プローブを用いてサザン・ハイブリダイゼーションを行い、最初に得られた4個のコロニー由来のDNAと同様にハイブリダイズする、7kbのEcoRI断片を有する6個の独立したコロニーを選択した。

該コロニー由来の染色体DNAをEcoRIで部分的に切断し、該DNA断片と、入ファ

ージベクターである入DASH II (Stratagene社) のEcoRI切断アームとライゲーションし、インビトロパッケージングを行った後、大腸菌株LE392 [モレキュラーカローニング第2版] に導入し、DNAライブラリーを作製した。

6×10^5 ブラークについて、上記と同じヒトAlu配列プローブを用いてブラーク・ハイブリダイゼーションによりスクリーニングし、約20kbの挿入DNAを持つポジティブクローン2個を単離した。

これら2つのポジティブクローンの挿入DNAを、EcoRIで切断後、アガロースゲル電気泳動を行い、ゲル中のDNAをフィルターに転写後、ヒトAlu配列プローブを用いてササン・ハイブリダイゼーションを行った。

2つのポジティブクローンとも、挿入DNAは、EcoRIで7.2kb、7.0kb、3.1kb、1.5kb、1.0kb、0.2kbの6断片に切断され、3断片(7.2kb、7.0kb、0.2kb)がAlu配列プローブとハイブリダイズし、残りの3断片(3.1kb、1.0kb、1.5kb)はAlu配列プローブとハイブリダイズしなかった。

さらに、これらポジティブクローンの1つ(λSA2-26)について、第1図に示す制限酵素地図を作成した。各制限酵素で切断したDNA断片について、Alu配列プローブでササン・プロット・ハイブリダイゼーションを行った。その結果、下記10種類の断片はAlu配列プローブとハイブリダイズせず、Alu配列を含んでいないと判断された。

#6 : 1.0kb EcoRI-EcoRI断片

#7 : EcoRI-BamHI断片

#8 : BamHI-XbaI断片

#9 : XbaI-EcoRV断片

#10 : XbaI-SmaI断片

#11 : XbaI-EcoRI断片

#12 : 1.5kb EcoRI-EcoRI断片

#13 : EcoRI-ApaI断片

#15 : ApaI-BamHI断片

#16 : BamHI-EcoRI断片

上記10種類のDNA断片をそれぞれプローブにして、KAL-1のmRNAに対してノーザン・プロット・ハイブリダイゼーションを行い、KAL-1のmRNAとハイブリダイズするDNA断片をスクリーニングした。その結果6種類の断片（#6、#8、#11、#13、#15、#16）が6kbのmRNAとハイブリダイズし、エクソンを含む断片であると推定された。これらのDNA断片のうち、#13（0.5kb）と#15（1.0kb）を選択し、下記に述べるcDNAクローニングのプローブとして用いた。

（2）HD-PTP cDNAのクローン化

ヒト胃癌セルラインMKN45 [Jpn. J. Cancer Res. 77, 849 (1986)、理化学研究所細胞開発銀行 RCB1001] のcDNAライブラリーをGublerとHoffmanの方法 [Gene, 25, 263 (1983)] に基づいて作製した。

ベクターとして、λPSL1を用いた。λPSL1は以下の方法で構築した。

実施例7に後述したpCDL81を制限酵素HindIIIで切断した。得られた約7.9kbのDNA断片2コピーを連結し、該DNAをλDASH II (Stratagene社製) のHindIIIサイト間に挿入し、ベクターλPSL1を構築した。

λPSL1の構造を第2図に示した。さらに、第2図にあるように、λPSL1をNotIで切断し、pCDL81を1コピー相当分除いたNotI切断DNA断片にcDNAを挿入し、該プラスミドを宿主大腸菌株LE392に挿入してcDNAライブラリーを作製した。この方法は、ベクターに0.5~13kbのDNAが挿入されない場合には、ほとんどファージの生育がみられないため、短いcDNAのクローンを除くことができる。

(1)で得られたDNA断片#13および#15をプローブにして、上述のcDNAライブラリーについて常法（モレキュラー・クローニング第2版）に従ってブラーク・ハイブリダイゼーションを行った。その結果、2つのポジティブクローン [cKAL11 (4kb) およびcKAL16 (5.4kb)] が得られた。

これら2つのクローンのcDNAの制限酵素地図を作成し、構造が異なることが

推定されたため、両者の塩基配列をdye terminator cycle sequencing法により決定し、比較した。

cKAL16の塩基配列を配列番号4に示した。該塩基配列の塩基番号1～3759番目に、1253アミノ酸をコードするオープン・リーディング・フレーム(ORF)が存在していた。

cKAL11の塩基配列を配列番号5に示した。cKAL11は、cKAL16の塩基配列にイントロンが挿入された構造を有していた。すなわち、配列番号5の塩基番号141～529番目、676～960番目、1273～1347番目、1655～1740番目、3680～3773番目、3959～4084番目、4190～4273番目、4413～4504番目、4619～4696番目にイントロンが挿入されていた。

したがってcKAL11はcKAL16と同じ遺伝子由来だが、イントロンが残ったままの不完全なスプライシングのmRNAから合成されたcDNAクローンであると考えられる。

該cKAL16のcDNAの塩基配列の新規性を、塩基配列データベースGenBankに対し解析プログラムBLAST〔J. Mol. Biol., 215, 403 (1990)〕を用いて検索した結果、新規な塩基配列であることが判明した。また、ラットで最近報告された蛋白質チロシンフォスファターゼ(protein tyrosine phosphatase; 以下、PTPと略す)であるPTP-TD14〔J. Biol. Chem., 273, 21077 (1998)〕のcDNAと全体にわたって高い相同意を示し、新規なヒトのPTPをコードするcDNAであることが推測された。cKAL16のcDNA中のORFのアミノ酸配列のC末端側829～1071番目の領域には、図3に示すように他のPTPのフォスファターゼ領域と相同意をもつ領域が存在し、新規PTPをコードしているcDNAと考えられた。しかし、cKAL16のORFはcDNAの5'末端から開始しており5'非翻訳領域がないこと、そのアミノ酸配列がPTP-TD14のアミノ酸配列の途中240番目以降と高い相同意を示すことから、cKAL16は完全長のcDNAクローンではなく、完全長のcDNAはさらに5'末端側に延長しているものと考えられた。

そこで、cKAL16の塩基配列をもとにして、5'-RACE法 [Proc. Natl. Acad. Sci. USA, 85, 8998 (1988)] により、さらに5'末端側に延長したcDNA断片を増幅し、クローン化した。cDNA断片の塩基配列を決定し、cKAL16の塩基配列とつなげたものを完全長のcDNAの塩基配列とし、配列番号1に示した。なお、この配列番号1の塩基配列とcKAL11の塩基配列を比較することにより、cKAL11の塩基配列の1~74番目もイントロン配列であることがわかった。配列番号1の塩基配列の64~4971番目には、1636アミノ酸からなるORFが存在しており、この領域をヒト新規PTPをコードする領域とし、そのアミノ酸配列を配列番号2に示した。このヒト新規PTPのアミノ酸配列を前述したラットPTP-TD14と比較すると、ラットPTP-TD14に比べてN末端が180アミノ酸長いが、図4に示すようにアミノ酸配列の181番目以降は部分的に挿入や欠失があるものの相同性を有していた。181番目以降部分のアミノ酸配列の相同性は83%であった。

該ヒト新規PTPのアミノ酸配列のC末端側1212~1454番目には、他のPTPと相同性をもつフォスファターゼ領域が存在した。ただし、第3図に示すように他のPTPの活性中心領域では保存されているアミノ酸配列 [Val His Cys Ser Ala Gly (Val/Ile) Gly Arg (Thr/Ser) Gly, J. Biol. Chem., 267, 140 (1992)] 内のアラニンがセリンに変換していた。また他のPTPでは保存されているが、該新規PTPでは保存されていないアミノ酸が14ヶ所存在した。また、770~1128番目には、ヒスチジンあるいはシスティンを先頭に、プロリンに富んだ20~50アミノ酸からなる構造が15回繰り返す領域が存在した。該領域のヒスチジンおよびシスティンに亜鉛などの金属イオンが配位するため、第5図に示すようなユニークな構造 (Zn-leaf様構造) をとると考えられる。本発明では、該繰り返し領域をヒスチジンドメイン (His Domain ; HD)と名付け、新規PTPをHD-PTPとした。

また、N末端の778アミノ酸は、第6図に示すように、酵母のMAPキナーゼ情報伝達経路に関与する蛋白質であるBR01 [Mol. Cell. Biol., 16, 2585 (1996)] とも相同性を有する。さらに、BR01、BR01と相同性を有するラットPTP-TD14、

および線虫*C.elegans*の第3染色体の塩基配列解析からR10E12.1遺伝子（GenBankアクセス番号；Z29561）にコードされていると推定される98kDa蛋白質〔Nature, 368, 32 (1994)〕で共に保存されているアミノ酸配列モチーフ Lys Asp Asn Asp Phe Ile Tyr His Glu Xaa Val (Ser/Pro)が314～325番目に存在した。

また、配列番号2の719～730番目、745～750番目、898～905番目、950～957番目、1051～1058番目、1093～1102番目、1139～1145番目のHD付近には、SH3結合ドメインと考えられる配列が存在する。

また、配列番号2の414、665、679、922、924、998、990、1243番目のチロシン残基は、チロシンキナーゼによりリン酸化を受ける可能性のあるチロシン残基が存在する。

また、膜結合部位と考えられるような疎水性の高い領域がないため、細胞質に存在するタイプの fosfotásera と考えられた。

以上の特徴を考え合わせると、HD-PTPは他の蛋白質と相互作用を行い、細胞内の情報伝達に関与しているPTPの可能性を有する。

また、C末端側には代謝回転の速い蛋白質に特異的に見出される配列である、プロリン、グルタミン酸、セリン、スレオニンからなるクラスターであるPEST配列〔Science, 234, 364 (1986)〕が存在する。

実施例2 HD-PTP遺伝子の染色体位置の決定

配列番号3記載のHD-PTP遺伝子の584～604番目および2167～2186番目に相当する配列番号6および7に示すDNAをプライマーとして、ヒトゲノムDNAを錆型にしてPCRを行ない、1.6kbのDNA断片が増幅することを確認した。PCRの温度条件は、94°Cで4分間加熱後、1サイクルが94°Cで1分間-64°Cで4分間からなる反応を35サイクル繰り返し、最後に72°Cで7分間加熱した。

Research Genetics社製のラディエーション・ハイブリッド・パネル(radiation hybrid panel) Gene-Bridge 4を購入し、93個のラディエーション・ハイブリッドクローンのDNA各25ngを錆型にして、上記のPCRを行い、その結果をWhitehead

Institute/MIT Center for Genome ResearchのインターネットWebサイト（URL : <http://www-genome.wi.mit.edu/cgi-bin/contig/rhMapper.pl>）を利用して解析することにより、詳細な染色体マッピングを行った。

その結果、HD-PTP遺伝子はWhitehead 研究所の染色体上の位置を示すマーカーWI-11814とWI-16174の間にあることが判明した。この位置は、第3染色体短腕（3p）の3p21.3に存在するマーカーD3S3888（テロメア側）とD3S3334（セントロメア側）の間であった。3p21.3という染色体位置は、肺癌をはじめ、頸部癌や大腸癌で高頻度にLOHがみられる位置と一致していた。またこの位置は、SCIDマウスで腫瘍性を示すような、ヒト第3染色体およびマウスA9細胞の雑種融合細胞で共通して欠失している、ヒト第3染色体上の1.6cM（センチモルガン）の領域〔*Genes, Chromosome & Cancer*, 20, 329 (1997)〕内にあり、まだ見出されていない3p21.3に存在する癌抑制遺伝子と考えられた。

実施例3 HD-PTP遺伝子のゲノムDNAの塩基配列

実施例1で得られたcKAL11は、インtronが残存しているcDNAクローンであるので、大部分はゲノムDNAの塩基配列と一致すると考えられたが、一部のインtronがスプライスされている可能性もある。そこで、ヒトゲノムDNAを鋳型にして、cKAL11の各エクソンと考えられた領域を含む断片をPCRによって増幅し、その塩基配列をcKAL11の塩基配列と比較することにより、そのエクソン内にインtronが存在しないかどうかを確認した。ただし、配列番号5の塩基配列1741～3679番目に相当するエクソンは長いので、6分割して増幅することにした。

配列番号8～37に記載した塩基配列を有する15組のプライマーセット（配列番号8と9、配列番号10と11、配列番号12と13、配列番号14と15、配列番号16と17、配列番号18と19、配列番号20と21、配列番号22と23、配列番号24と25、配列番号26と27、配列番号28と29、配列番号30と31、配列番号32と33、配列番号34と35、配列番号36と37）を用いてPCRを行った結果、配列番号4の塩基配列1348～1654番目に相当するエクソン中に99bpからなる1インtron、塩基配列

1741～3679番目に相当するエクソン中に93bpからなる1イントロンがさらに存在することがわかった。また、上述の方法により得られたHD-PTPゲノムDNAよりもさらに5'側のHD-PTPゲノムDNAの塩基配列を、実施例1で得られたHD-PTPのcDNAの塩基配列を利用したプライマー・ウォーキングにより解析した。その結果、配列番号1の塩基配列を有するcDNAは25エクソンからなり、エクソン間に24イントロンが挿入されていることが明らかとなった。第1エクソンと第2エクソンの間の第1イントロンは約5.5kb、また第2エクソンと第3エクソンの間の第2イントロンは約8kbと長大なものであり、第1エクソンから第25エクソンまで約22kbに渡っていた。この2つの長いイントロンについては、エクソンと隣接する領域の塩基配列のみ決定した。HD-PTP遺伝子のゲノムDNAのうち、配列番号40に第1エクソンおよび隣接する第1イントロンの5'端の領域、配列番号41に第2エクソンおよび隣接する第1イントロンの3'端と第2イントロンの5'端の領域、配列番号3に第2イントロンの3'端とそれに隣接する第3エクソンから第25エクソンまでの領域の塩基配列をそれぞれ示した。配列番号40の1～131（エクソン1）、配列番号41の404～478（エクソン2）、配列番号42の529～656（エクソン3）、881～957（エクソン4）、1625～1674（エクソン5）、1791～1922（エクソン6）、2201～2281（エクソン7）、2357～2488（エクソン8）、2579～2626（エクソン9）、3006～3062（エクソン10）、3185～3243（エクソン11）、3381～3460（エクソン12）、3573～3687（エクソン13）、3766～3831（エクソン14）、4221～4366（エクソン15）、4652～4963（エクソン16）、5039～5193（エクソン17）、5293～5444（エクソン18）、5531～5710（エクソン19）、5804～7562（エクソン20）、7657～7841（エクソン21）、7968～8072（エクソン22）、8157～8295（エクソン23）、8388～8501（エクソン24）および8580～9307番目（エクソン25）がエクソンに当たる領域である。

実施例4 肺癌細胞でのHD-PTP遺伝子の変異の検出

（1）肺癌患者における染色体3p21.3のLOH

文献 [Cancer Res., 57, 1344 (1997)] の方法に基づいて、PCRによりヒト染色体の3p21.3に存在するマイクロサテライトマーカーであるD3S3564、D3S3559、D3S3582、D3S1568についてマイクロサテライト多型を解析することにより、3p21.3付近のLOHの有無について、肺癌患者の癌組織と正常組織30組を調べた。

その結果、調べた癌組織の約40%において1つ以上のマーカーの欠失がみられた。

(2) 肺小細胞癌セルラインにおけるHD-PTP遺伝子の変異の検出

SSCP (single strand conformational polymorphism) 法 [Proc. Natl. Acad. Sci., 86, 2766 (1989)] により、肺小細胞癌のゲノムDNA中のHD-PTP遺伝子の塩基配列の変異の検出を試みた。

実施例3で用いたエクソン増幅用のPCRプライマーを用いて、肺小細胞癌系セルライン [Lu-130 (理化学研究所細胞銀行 RCB0465)、Lu-135 (理化学研究所細胞銀行 RCB0468)、NCI-H69 (ATCC HTB-119)、NCI-H82 (ATCC HTB-175)、NCI-N417 (ATCC CRL-5809)、RERF-LC-MA (JCRB/HSRRB細胞バンク JCRB0812)、SBC-5 (JCRB/HSRRB細胞バンク JCRB0819)、NCI-H526 (ATCC CRL-5811)、NCI-H209 (ATCC HTB-172)、NCI-H841 (ATCC CRL-5845)、NCI-H774 (ATCC CRL-5842)、MS-18] のゲノムDNAを鋳型として用い、PCRを行った。PCR後、得られた反応サンプルを用い、非変性条件下でポリアクリラミドゲル電気泳動を行った。泳動後、ゲルを銀染色した。

正常なHD-PTP遺伝子を用いた場合と比較し、移動度の変化したPCR増幅DNA断片をゲルから抽出した。該DNAを鋳型として用い、再度、上記操作を繰り返し、増幅DNA断片を精製した。

該DNA断片を鋳型として用い、PCRプライマーを利用した塩基配列の決定を行った。

その結果、RERF-LC-MAにおいては、配列番号3の塩基番号6969番目、配列番号1の塩基番号3358番目に相当する塩基がCからTに変異していた。この変異に

より、コードするアミノ酸残基がプロリンからセリンに置換される。該プロリン残基は、SH3結合モチーフ部位中に存在するため、セリンへの変異により、HD-PTPが正常に機能しない可能性がある。

また、癌細胞系セルラインあるいは患者癌組織のサンプル（合計総数325）について、さらに同様の解析を行なったところ、6個のサンプル（全体の1.8%に相当）において、配列番号3の塩基番号7724番目、配列番号1の塩基番号4019番目に相当する塩基がCからTに変異していた。この変異により、コードするアミノ酸残基がアラニンからバリンに置換される。

実施例5 癌細胞におけるHD-PTP遺伝子の発現量の変動

9種類のヒト癌細胞系セルライン〔胃癌；MKN1 (RCB1003)、MKN28 (RCB1000)、MKN45、MKN74 (RCB1002)、KATO III (ATCC HTB-103)、腎癌；KPK1 (Journal of Urology, 128, 1117 (1982))、KPK13 (Journal of Urology, 128, 1117 (1982))、口腔癌；KB (ATCC CCL-17)、リンパ腫；KAL-1〕および正常纖維芽細胞セルラインWI-38 (ATCC CCL-75) から全RNAあるいはpoly A RNAを常法により抽出した。全RNAを20μgまたはpoly A RNAを2μg用いて、実施例1で得られたcKAL16をプローブにしてノーザンプロットを行なった。2種類の胃癌細胞系セルラインMKN74およびKATO IIIでは、全くバンドがみられず、HD-PTP遺伝子が発現していないと考えられた。

実施例6 各組織でのHD-PTP遺伝子の発現

オス成体ラットの脳、肺、心臓、耳下腺、胃、小腸、大腸、肝臓、脾臓、腎臓、膀胱、精巣、精巣上体、精嚢、脾臓、胸腺、リンパ球、甲状腺および副腎からそれぞれ全RNAを常法により抽出し、実施例5に記載の方法に準じて、実施例1で得られたcKAL16をプローブとして用い、ノーザン・プロット・ハイブリダイゼーションを行なった。

ハイブリダイゼーションの結果、RNAの分解が激しかった脾臓と脾臓を除く全ての臓器で、ラットHD-PTP mRNAと考えられるバンドが検出されたため、HD-PTP

遺伝子は全ての臓器で普遍的に発現していると考えられた。

HD-PTPは細胞内フォスファターゼであり、全ての臓器に普遍的に存在すると考えられるため、HD-PTPは細胞内での情報伝達に重要な役割を果たしている分子である可能性が高い。

実施例7 遺伝子組換え法による動物細胞でのHD-PTPの発現

ハイグロマイシン耐性遺伝子およびEBウイルス複製起点を有するベクターEB0-pcd [Mol. Cell. Biol., 8, 2837 (1988)] に、ヒトT細胞白血病ウイルスIのLTR由来のプロモーターであるSR α プロモーター [Mol. Cell. Biol., 8, 466 (1988)] を組み込んだプラスミドpCD-EB (九州大学 早川浩博士より供与) のSR α プロモーターの直後のXbaI/BamHIサイト間にマルチクローニングサイト (XbaI-NotI-XbaI-KpnI-BamHI) を挿入し、動物細胞発現用ベクターpCDL81を作製した。マルチクローニングサイトは、配列番号38および39に示した塩基配列をDNA合成機で合成し、作製した。pCDL81に実施例1でクローン化したcKAL16のHD-PTP cDNAを挿入し、HD-PTP発現プラスミドpDKL4fを作製した。なお、HD-PTP発現プラスミドpDKL4fを含有する形質転換体Escherichia coli DH5 α /pDKL4fは、平成10年9月11日付けで工業技術院生命工学工業技術研究所（日本国茨城県つくば市東1丁目1番3号 郵便番号305-8556）にFERM BP-6499として寄託されている。

リン酸カルシウム法を用いて、マウス細胞株NIH3T3あるいはラット細胞株Rat-2に発現プラスミドDNAを導入し、ハイグロマイシン耐性により形質転換細胞を選択した。選択された形質転換細胞から常法によりDNAを抽出し、アガロースゲル電気泳動を行い、ゲルをフィルターに転写後、cKAL16 cDNAをプローブとしてサザン・プロット・ハイブリダイゼーションを行い、形質転換細胞に導入したヒトHD-PTP cDNAが保持されていることを確認した。また形質転換細胞から常法によりRNAを抽出し、実施例4と同様にしてノーザン・プロット・ハイブリダイゼーションを行い、導入したヒトHD-PTP遺伝子の発現を検出した。

ヒトHD-PTP遺伝子の発現の認められた形質転換細胞は、実施例1でみられたような軟寒天中でのコロニー形成を示すようになった。このコロニー形成能はノーザンプロットによってHD-PTP遺伝子の発現量が高いものほど強い傾向にあった。この形質転換細胞 2×10^7 個を、放射線照射した胸腺欠損ヌードマウスの皮下に注入し、腫瘍形成するかどうか60日間観察したが、注入後腫瘍を形成したマウスはいなかった。したがってこのコロニー形成能は腫瘍形成能とは無関係の性質であると考えられた。

これらの形質転換細胞の細胞抽出液を用いて、文献 [J. Biol. Chem., 269, 13614 (1994)] の方法に基づいた、p-ニトロフェノールリン酸を基質として fosfotransferase 活性の測定を行った。形質転換していない細胞の細胞抽出液と比較してHD-PTP遺伝子で形質転換した細胞のfosfotransferase活性は約2倍に上昇していた。

実施例8 HD-PTPの細胞内の局在

GFP (Green fluorescent protein) との融合蛋白発現用ベクターpEGFP-N1 (Clonetech社) のAccIサイトにHD-PTP cDNAを挿入し、HD-PTPのC末端側にGFPを融合させた蛋白質 (HD-PTP/GFP融合蛋白質) を発現させるプラスミドを作製した。該プラスミドをヒト細胞株293tsA1609neo [Mol. Cell. Biol., 7, 379 (1987)] に導入し、HD-PTP/GFP融合蛋白質を発現させた。形質転換細胞を蛍光顕微鏡で観察し、GFPの蛍光を検出することにより、HD-PTP/GFP融合蛋白質の細胞内の局在を調べた。

該検出の結果、HD-PTP/GFP融合蛋白質は、細胞膜、特に核近傍の細胞質に複数の塊状になって存在しており、細胞膜や核には存在しないことがわかった。このことは特定の細胞内器官に局在する可能性を示唆した。

HD-PTPのアミノ酸配列から推定した分子量は約150kDaであり、SDS-PAGEによる分子量測定でも、HD-PTP/GFP融合蛋白質は、予想される分子量に近い150kDaの位置に検出された。該融合蛋白質は、非変性条件のPAGEでは70kDaの位置に検

出されたことより、HD-PTPは天然の非変性状態では非常にコンパクトな球状の構造を有すると推察された。

産業上の利用可能性

本発明の新規チロシンフォスファターゼおよびその遺伝子を用いることにより、癌の診断および治療が可能となる。

「配列表フリーテキスト」

配列番号 6－人工配列の説明：HD-PTP遺伝子増幅のためのセンスプライマー

配列番号 7－人工配列の説明：HD-PTP遺伝子増幅のためのアンチセンスプライマー

配列番号 8－人工配列の説明：エクソン14を含むHD-PTP遺伝子の配列番号3における3692-3939位増幅のためのセンスプライマー

配列番号 9－人工配列の説明：エクソン14を含むHD-PTP遺伝子の配列番号3における3692-3939位増幅のためのアンチセンスプライマー

配列番号10－人工配列の説明：エクソン15を含むHD-PTP遺伝子の配列番号3における4159-4421位増幅のためのセンスプライマー

配列番号11－人工配列の説明：エクソン15を含むHD-PTP遺伝子の配列番号3における4159-4421位増幅のためのアンチセンスプライマー

配列番号12－人工配列の説明：エクソン16を含むHD-PTP遺伝子の配列番号3における4625-5002位増幅のためのセンスプライマー

配列番号13－人工配列の説明：エクソン16を含むHD-PTP遺伝子の配列番号3における4625-5002位増幅のためのアンチセンスプライマー

配列番号14－人工配列の説明：エクソン17および18を含むHD-PTP遺伝子の配列番号3における5014-5473位増幅のためのセンスプライマー

配列番号15－人工配列の説明：エクソン17および18を含むHD-PTP遺伝子の配列番号3における5014-5473位位増幅のためのアンチセンスプライマー

配列番号16－人工配列の説明：エクソン19および20の一部を含むHD-PTP遺伝子の配列番号3における5499-5984位増幅のためのセンスプライマー

配列番号17－人工配列の説明：エクソン19および20の一部を含むHD-PTP遺伝子の配列番号3における5499-5984位増幅のためのアンチセンスプライマー

配列番号18－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における5943-6281位増幅のためのセンスプライマー

配列番号19－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における5943-6281位増幅のためのアンチセンスプライマー

配列番号20－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6191-6579位増幅のためのセンスプライマー

配列番号21－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6191-6579位増幅のためのアンチセンスプライマー

配列番号22－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6478-6908位増幅のためのセンスプライマー

配列番号23－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6478-6908位増幅のためのアンチセンスプライマー

配列番号24－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6866-7290位増幅のためのセンスプライマー

配列番号25－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における6866-7290位増幅のためのアンチセンスプライマー

配列番号26－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における7244-7639位増幅のためのセンスプライマー

配列番号27－人工配列の説明：エクソン20の一部を含むHD-PTP遺伝子の配列番号3における7244-7639位増幅のためのアンチセンスプライマー

配列番号28－人工配列の説明：エクソン21を含むHD-PTP遺伝子の配列番号3における7628-7888位増幅のためのセンスプライマー

配列番号29－人工配列の説明：エクソン21を含むHD-PTP遺伝子の配列番号3における7628-7888位増幅のためのアンチセンスプライマー

配列番号30－人工配列の説明：エクソン22を含むHD-PTP遺伝子の配列番号3における7897-8131位増幅のためのセンスプライマー

配列番号31－人工配列の説明：エクソン22を含むHD-PTP遺伝子の配列番号3における7897-8131位増幅のためのアンチセンスプライマー

配列番号32－人工配列の説明：エクソン23を含むHD-PTP遺伝子の配列番号3における8091-8379位増幅のためのセンスプライマー

配列番号33－人工配列の説明：エクソン23を含むHD-PTP遺伝子の配列番号3における8091-8379位増幅のためのアンチセンスプライマー

配列番号34－人工配列の説明：エクソン24を含むHD-PTP遺伝子の配列番号3における8317-8562位増幅のためのセンスプライマー

配列番号35－人工配列の説明：エクソン24を含むHD-PTP遺伝子の配列番号3における8317-8562位増幅のためのアンチセンスプライマー

配列番号36－人工配列の説明：エクソン25の一部を含むHD-PTP遺伝子の配列番号3における8492-8905位増幅のためのセンスプライマー

配列番号37－人工配列の説明：エクソン25の一部を含むHD-PTP遺伝子の配列番号3における8492-8905位増幅のためのアンチセンスプライマー

配列番号38－人工配列の説明：マルチクローニングサイト (XhoI NotI XbaI KpnI BamH) リンカーのための合成DNA

配列番号39－人工配列の説明：マルチクローニングサイト (XhoI NotI XbaI KpnI BamH) リンカーのための合成DNA

請求の範囲

1. 配列番号 2 記載のアミノ酸配列からなる蛋白質。
2. 配列番号 2 記載の蛋白質の有するアミノ酸配列において 1 もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなり、かつチロシンフォスファターゼ活性を有する蛋白質。
3. 請求項 1 または 2 記載の蛋白質をコードするDNA。
4. 配列番号 1、3、4 0 または 4 1 記載の塩基配列を有するDNA。
5. 請求項 3 または 4 記載のDNAとストリンジエントな条件下でハイブリダイズし、かつチロシンフォスファターゼ活性を有する蛋白質をコードするDNA。
6. 請求項 3～5 のいずれか 1 項に記載のDNAとベクターDNAとを含有する組換え体DNA。
7. 請求項 6 記載の組換え体DNAを宿主細胞に導入して得られる形質転換体。
8. 請求項 7 記載の形質転換体を培地に培養し、培養物中に請求項 1 または 2 記載の蛋白質を生成蓄積させ、該培養物から該蛋白質を採取することを特徴とする請求項 1 または 2 記載の蛋白質の製造方法。
9. 請求項 1 または 2 記載の蛋白質を有効成分として含む、癌の治療薬。
10. 請求項 3～5 のいずれか 1 項に記載のDNAを有効成分とする癌の治療薬。
。
11. 請求項 3～5 のいずれか 1 項に記載のDNAを含有する、癌の遺伝子治療用ベクター。
12. 請求項 3～5 のいずれか 1 項に記載のDNAの塩基配列のうち、連続した 10～60 残基の塩基配列を有するオリゴヌクレオチド、または該オリゴヌクレオチドと相補的な配列を有するオリゴヌクレオチド、およびこれらオリゴヌクレオチドの誘導体であるオリゴヌクレオチド誘導体。
13. 配列番号 2 4、2 5、2 8 または 2 9 で表される塩基配列を有する請求項 1 2 記載のオリゴヌクレオチド。

14. 請求項 1 2 または 1 3 記載のオリゴヌクレオチドを用いた、癌の診断方法。
15. 請求項 1 2 または 1 3 記載のオリゴヌクレオチドを含有する、癌の診断薬。
16. 請求項 1 または 2 記載の蛋白質を認識する抗体。
17. 請求項 1 6 記載の抗体を用いて、請求項 1 または 2 記載の蛋白質を免疫学的に検出する方法。
18. 請求項 1 6 記載の抗体を用いて、請求項 1 または 2 記載の蛋白質を免疫学的に定量する方法。
19. 請求項 1 6 記載の抗体を用いる、癌の判定方法。
20. 請求項 1 6 記載の抗体を有効成分とする、癌の診断薬。

第1図

第2図

181 MLGQAQECLL EKSMLDNRKS FLYRISAQV VDYYKEACRA LENPDATASLL GRIGKDWKKL VGMKITYYFAA VAHLHMGKQA EEEQQKFGGERV AFQFQSALEKDP NEAIKLAKKGQ PDTVQDAIRF
 1 *****
 301 TMDVIGGYN SAKKNDDFY HEAVPALDTL QPVKGAPLVK PLPVNPTDPA VTGPDIYAKL VPMAHEASS LYSEEKAELL REMMAKIEDK NEVDQFMDS MQLDPETVDN LDAYSHIPQ
 100 A*****
 421 LMEKCAALSV RPPDTVRNL YQ SMQVLSGVFT DVEASLKDTR DLLEDELLE QKFQEAVGQA GAISSTS--K AELAEVRREW AKYMEHEKA SFTNSELHRA MNLHVGNLRL LSGPLDQVRA
 241 *****K*****
 539 ALPTPALSPE DKAVLQNLKR ILAKVQEMRD QRVSLEQQLR ELIQKDDITA SLVTDDSEM KKLFEQLKK YDQLKVYLEQ NLAQDQRVLC ALTEANVQYA AVRVLSDLD QKWNSTLQTL
 361 *****T**
 659 VASYEAYEDL MKKSQEGRDF YADESKVAA LLERTQSTCQ AREAARQOLL DRELKKK-PP PRPTAKPKLL PREESEAVE AGDPPFEELRS LPPDMVAQSPR LPDIFLGSAT PLHFPSSPF
 481 *****K**
 778 SSTGGPHYL SGPLPPGTYS GPITOLIQPRA PGPHAMPVAP GPALYPAPAY TPELGLVPRPS SPCHGWSSP YYGVGPAPPV AGLPSAPPQ FSGPELAMAV RPATTVDSI QAPIPSHTAP
 601 G****AT***
 898 RPNPTPAPPP PCFP----- VPPPQPLP TPYTYPAGAK Q---PIPAQ HHFSSGIPAG FPAPRIG----
 717 **G*A*** ***V*W** ****M*** *HLTG*L*-# ***PP***TS ****SI** *HLTG*L*-# ***PP***TS ****SI** *A****PQ* I V*****
 977 PLQHPHLFPQ QAPGLLPQQS PYYAPQPQGV LGOPPPPLHT QLYPGPAQDP LPAHSGALPF PSPGPPQDPH PPLAYGPAPS TRPMGPQAAP LTIGPSSAG QSTPSPHLVP SPAPSPGP
 836 PFQHPHLFPS QAPGLLTTPP PYPFTQPGV LGOPPPPTHT QLYPGPPDT LPPHSGALPF PSPGPP-HPH PTLAYGPAPS PRPLGPQATP VSIRGPAPPN QPAPSPHILVP SPAPSPGDP
 1097 VPPRPPAAEP PPCLRRGAAA ADLSSSPES QHGSGTQSPEG GQPLLQPTKV DAEGRRPQA LRLIERDYE HPERLRLQIQQ ELEAFRGQLG DVGALDTWR ELQDAQEHDIA RGRSIAIARC
 955 **S**T**
 1217 YSLKMRHADV MPYDSNRVVL RSGKDYYINA SCVEGLSPYC PPLVATQPL PGTADEFMLM VHEQKVSIV MLVSEAEVKM QKVARYFPTE RGQPMVHGA SLAASSVRST ETHVERVLSL
 1075 *****
 1337 QFRDQSLKRS LYHLHFPTWP ELLGPDSPSN LLRFITQEVHA HYLHQRLHIT PIIVHCSSGV GRIGFAEALLY AAVQEVEAGN GIPELPQLVR RMRCQKAKML QEKLHURFCY EAVERHVEQV
 1195 *****
 1457 LQRHGPPPC KPLASASISQ KNHL-PQDSQ DLVGGDVP I SSIQ---ATI AKLSIRPPGG LESPVASLPG PAEPGGLPPA SLPESTIPS SSPPPLSSPL PEAPQKEEP PVPEAPSSGP
 1311 CGAGPA*RR AASWQ*CGGH ERQ*LEPP*S G*PGS*PWWR RAH*LHSGYH CQAR***L** D***A***S LV*****
 1573 PSSSLELLAS LTPEAFSLDS SLRGKQRMKS NFLOAHNGQ GLRATRPSD PLSLLDPLWT LNKT 1636
 1431 ***** Q*****

1 MEAVPRMPVIWLDLKEAGDFHQPRAVKKFVLRQNA--EAYNE-ELKKLELLRQNA--VRVPDFFEGSW-LRKYLGQLHY-LQSRVPMGSGQEAAVPVTWTEIFSGKSVAHEDIYE
 1 MKPYLFDLKLKDTEKLDWKKGLOSSYLUKSYGSSQWRFTYDEKATS ELDHLRNANGELAPSSL SEQNLKYYSFLEHL YFRLGSKGSRLKMDFTWDAEYSSAQKGLKYTQHTLAFE

114 QACILYNLGALHSMLGAMDKRVSEEGMKVSCTHFQCAAGAFAYLREHFPQAISVDMRSQQLTLNWNMLGQAQECLEKSMLD--NRKSF-LVARISAOVWYYKEACRALENPOTASLL
 117 KSCTLNIAVI---FTQIARENINEDYKNSIANLTKAFCSEYLSNFNSLPQSENTRFLANICHAEAQELFVLKLNDQISSKQYTILISKLSRATCNLF-QKCHDFMKIEIDDDVA

231 GRIQKDWWKKLYQMK1YYAAVAHLMHGKQAEQQKFGERVAYFQSALDKPNEAKLAKGQDPTWQ-DALRFTMDVIGGKYNSAKKKONDFTYHEAVPA--DTL-PVKGAPLVKPLP
 233 YGEPKWKTITVTCLKHFYKSLSAYYHGLHLEEENRGEAIAFLDFSMQQLISSLPFKTTLVEFI DFGF KETLE--KKQKELIKNDFTYHESVPAWQVDSIKALDAIKSPTWKILE

343 VNPTDPAVTGPDI~~FAKL~~VPMMAHEASSLYSEEAKLREMMAKIEDKNEVLDQFMDSMQLDPETVDNLDAYSHIPQMLMEKAALSVRPD~~T~~TVRNVLQSMQVLSGVFTDEASLKD~~I~~RDL
 350 PYMQDYVANKYDLSYRGITIPLDVYEKESIYSEEAKTLRKVEETETANLEYSSFIFTNL-PRLSDLEKQFSDGNIFSNTDTQGQLMRDQIQTWCKFIQ--TNEFRDIEQWMKI--VF

463 EEDELLEQKQEAVGQAGAISITSKAEAEVREWAKYMEVHEKASFTNSELHRAMMLHVGNLRLLSGPLDQVRAALPTPALSPEDK-AVLQNLKRI~~L~~AKVQEMRDQRVSLEQQLRELQ
 465 KRQQILEILSALPNDQKENVT-KLKSSLVAANSDEKLFAC-VKPHIVEINLLNDNGKIKWKKDEFNRNTPQPSLIDDDTKNDKILELLKQVKGHADLRTLKEERSRNLSELREIN

582 KDDITASL-VTTDHS--EMKKL~~FEEQLK~~KVLEGQNLAAQDRVL---CALTE--ANVQYA~~AVRRVL~~SOLDQKWNSTLQTLVASYEAYEDLMKKSQEGRDFYADLESKV~~A~~LLERT
 583 NDDITKLII~~N~~GKSDVELKDLFEVELEK~~F~~EPPLSTR~~E~~ATIYKQSSMIDD~~I~~KAKLDEIFHLSNFKD~~S~~GGEEKFLEDRKNFDFKLQEA~~V~~KSFSIFASDLPKGIEFVDSL~~F~~NMSRDLAERV

693 QSTCQAREAARQQLDRELKKPPRPTAPKPLLPRREES-EAVEAGDPPEELRSLLPPDMVAGRPLPDTFLGSATPLHFPPSPFSS 778

703 RVAKQTEDSTANS~~P~~APPPLP~~D~~SKASVVGPP~~L~~PQKSAAFQSLSRQGLNLGDQFQNLKISAGSDL~~P~~QG--PGIPRRTYEASPYAAT 787

35	40	45	
ctg gag ttg ctc aga cag aat gct gtc cgt gtc cca cga gac ttt gag 252			
Leu Glu Leu Leu Arg Gln Asn Ala Val Arg Val Pro Arg Asp Phe Glu			
50	55	60	
ggc tgt agt gtc ctc cgc aag tac ctc ggc cag ctt cat tac ctg cag 300			
Gly Cys Ser Val Leu Arg Lys Tyr Leu Gly Gln Leu His Tyr Leu Gln			
65	70	75	
agt cgg gtc ccc atg ggc tcg ggc cag gag gcc gct gtc cct gtc acc 348			
Ser Arg Val Pro Met Gly Ser Gly Gln Glu Ala Ala Val Pro Val Thr			
80	85	90	95
tgg aca gag atc ttc tca ggc aag tct gtg gcc cat gag gac atc aag 396			
Trp Thr Glu Ile Phe Ser Gly Lys Ser Val Ala His Glu Asp Ile Lys			
100	105	110	
tac gag cag gcc tgt att ctc tac aac ctt gga gcg ctg cac tcc atg 444			
Tyr Glu Gln Ala Cys Ile Leu Tyr Asn Leu Gly Ala Leu His Ser Met			
115	120	125	
ctg ggg gcc atg gac aag cgg gtg tct gag gag ggc atg aag gtc tcc 492			
Leu Gly Ala Met Asp Lys Arg Val Ser Glu Glu Gly Met Lys Val Ser			
130	135	140	
tgt acc cat ttc cag tgc gca gcc ggc gcc ttc gcc tac cta cgg gag 540			
Cys Thr His Phe Gln Cys Ala Ala Gly Ala Phe Ala Tyr Leu Arg Glu			
145	150	155	
cac ttc cct caa gcc tac agc gtc gac atg agc cgc cag atc ctt acg 588			
His Phe Pro Gln Ala Tyr Ser Val Asp Met Ser Arg Gln Ile Leu Thr			
160	165	170	175
ctc aac gtc aac ctc atg ctg ggc cag gct cag gag tgc ctc ctg gag 636			
Leu Asn Val Asn Leu Met Leu Gly Gln Ala Gln Glu Cys Leu Leu Glu			
180	185	190	
aag tcg atg ttg gac aac agg aag agc ttt ctg gtg gcc cgc atc agt 684			
Lys Ser Met Leu Asp Asn Arg Lys Ser Phe Leu Val Ala Arg Ile Ser			
195	200	205	

配列表

SEQUENCE LISTING

<110> KYOWA HAKKO KOGYO CO., LTD

<120> Novel tyrosine phosphatase

<130> 11201W01

<140>

<141>

<150> JP 99/108842

<151> 1999-4-16

<160> 39

<170> PatentIn Ver. 2.0

<210> 1

<211> 5234

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (64)..(4971)

<400> 1

tggctgagcc agcagctgca gcagctgcgg gagtggccgg gtggccggcg ggtgccaccc 60

gcc atg gag gcc gtg ccc cgc atg ccc gtg atc tgg ctg gac ctg aag	108
Met Glu Ala Val Pro Arg Met Pro Val Ile Trp Leu Asp Leu Lys	
1 5 10 15	

gag gcc ggt gac ttt cac ttc cag cca gct gtg aag aag ttt gtc ctg	156
Glu Ala Gly Asp Phe His Phe Gln Pro Ala Val Lys Lys Phe Val Leu	
20 25 30	

aag aat tat gga gag aac cca gaa gcc tac aat gaa gaa ctg aag aag	204
Lys Asn Tyr Gly Glu Asn Pro Glu Ala Tyr Asn Glu Glu Leu Lys Lys	

35	40	45	
ctg gag ttg ctc aga cag aat gct gtc cgt gtc cca cga gac ttt gag 252			
Leu	Glu	Leu	Leu Arg Gln Asn Ala Val Arg Val Pro Arg Asp Phe Glu
50	55	60	
ggc tgt agt gtc ctc cgc aag tac ctc ggc cag ctt cat tac ctg cag 300			
Gly	Cys	Ser	Val Leu Arg Lys Tyr Leu Gly Gln Leu His Tyr Leu Gln
65	70	75	
agt cgg gtc ccc atg ggc tcg ggc cag gag gcc gct gtc cct gtc acc 348			
Ser	Arg	Val	Pro Met Gly Ser Gly Gln Glu Ala Ala Val Pro Val Thr
80	85	90	95
tgg aca gag atc ttc tca ggc aag tct gtg gcc cat gag gac atc aag 396			
Trp	Thr	Glu	Ile Phe Ser Gly Lys Ser Val Ala His Glu Asp Ile Lys
100	105	110	
tac gag cag gcc tgt att ctc tac aac ctt gga gcg ctg cac tcc atg 444			
Tyr	Glu	Gln	Ala Cys Ile Leu Tyr Asn Leu Gly Ala Leu His Ser Met
115	120	125	
ctg ggg gcc atg gac aag cgg gtg tct gag gag ggc atg aag gtc tcc 492			
Leu	Gly	Ala	Met Asp Lys Arg Val Ser Glu Glu Gly Met Lys Val Ser
130	135	140	
tgt acc cat ttc cag tgc gca gcc ggc gcc ttc gcc tac cta cgg gag 540			
Cys	Thr	His	Phe Gln Cys Ala Ala Gly Ala Phe Ala Tyr Leu Arg Glu
145	150	155	
cac ttc cct caa gcc tac agc gtc gac atg agc cgc cag atc ctt acg 588			
His	Phe	Pro	Gln Ala Tyr Ser Val Asp Met Ser Arg Gln Ile Leu Thr
160	165	170	175
ctc aac gtc aac ctc atg ctg ggc cag gct cag gag tgc ctc ctg gag 636			
Leu	Asn	Val	Asn Leu Met Leu Gly Gln Ala Gln Glu Cys Leu Leu Glu
180	185	190	
aag tcg atg ttg gac aac agg aag agc ttt ctg gtg gcc cgc atc agt 684			
Lys	Ser	Met	Leu Asp Asn Arg Lys Ser Phe Leu Val Ala Arg Ile Ser
195	200	205	

gca cag gtg gta gat tac tac aag gag gca tgc cgg gcc ttg gag aac		732
Ala Gln Val Val Asp Tyr Tyr Lys Glu Ala Cys Arg Ala Leu Glu Asn		
210	215	220
ccc gac act gcc tca ctg ctg ggc cgg atc cag aag gag tgg aag aaa		780
Pro Asp Thr Ala Ser Leu Leu Gly Arg Ile Gln Lys Asp Trp Lys Lys		
225	230	235
ctt gtg cag atg aag atc tac tac ttc gca gcc gtg gct cat ctg cac		828
Leu Val Gln Met Lys Ile Tyr Tyr Phe Ala Ala Val Ala His Leu His		
240	245	250
atg gga aag cag gcc gag gag cag cag aag ttc ggg gag cgg gtt gca		876
Met Gly Lys Gln Ala Glu Glu Gln Gln Lys Phe Gly Glu Arg Val Ala		
260	265	270
tac ttc cag agc gcc ctg gac aag ccc aat gaa gcc atc aag ttg gcc		924
Tyr Phe Gln Ser Ala Leu Asp Lys Pro Asn Glu Ala Ile Lys Leu Ala		
275	280	285
aag ggc cag cct gac act gtg caa gac gcg ctt cgc ttc act atg gat		972
Lys Gly Gln Pro Asp Thr Val Gln Asp Ala Leu Arg Phe Thr Met Asp		
290	295	300
gtc att ggg gga aag tac aat tct gcc aag aag gac aac gac ttc att		1020
Val Ile Gly Gly Lys Tyr Asn Ser Ala Lys Lys Asp Asn Asp Phe Ile		
305	310	315
tac cat gag gct gtc cca gca ttg gac acc ctt cag cct gta aaa gga		1068
Tyr His Glu Ala Val Pro Ala Leu Asp Thr Leu Gln Pro Val Lys Gly		
320	325	330
335		
gcc ccc ttg gtg aag ccc ttg cca gtg aac ccc aca gac cca gtc gtt		1116
Ala Pro Leu Val Lys Pro Leu Pro Val Asn Pro Thr Asp Pro Ala Val		
340	345	350
aca ggc cct gac atc ttt gcc aaa ctg gta ccc atg gct gcc cac gag		1164
Thr Gly Pro Asp Ile Phe Ala Lys Leu Val Pro Met Ala Ala His Glu		
355	360	365
gcc tcg tca ctg tac agt gag gag aag gcc aag ctg ctc cgg gag atg		1212
Ala Ser Ser Leu Tyr Ser Glu Glu Lys Ala Lys Leu Leu Arg Glu Met		

370	375	380	
atg gcc aag att gag gac aag aat gag gtc ctg gac cag ttc atg gat Met Ala Lys Ile Glu Asp Lys Asn Glu Val Leu Asp Gln Phe Met Asp			
385	390	395	1260
tca atg cag ttg gat ccc gag acg gtg gac aac ctt gat gcc tac agc Ser Met Gln Leu Asp Pro Glu Thr Val Asp Asn Leu Asp Ala Tyr Ser			
400	405	410	1308
cac atc cca ccc cag ctc atg gag aag tgc gcg gct ctc agc gtc cgg His Ile Pro Pro Gln Leu Met Glu Lys Cys Ala Ala Leu Ser Val Arg			
420	425	430	1356
ccc gac act gtc agg aac ctt gta cag tcc atg caa gtg ctg tca ggt Pro Asp Thr Val Arg Asn Leu Val Gln Ser Met Gln Val Leu Ser Gly			
435	440	445	1404
gtg ttc acg gat gtg gag gct tcc ctg aag gac atc aga gat ctg ttg Val Phe Thr Asp Val Glu Ala Ser Leu Lys Asp Ile Arg Asp Leu Leu			
450	455	460	1452
gag gag gat gag ctg cta gag cag aag ttt cag gag gcg gtg ggc cag Glu Glu Asp Glu Leu Leu Glu Gln Lys Phe Gln Glu Ala Val Gly Gln			
465	470	475	1500
gca ggg gcc atc tcc atc acc tcc aag gct gag ctg gca gag gtg agg Ala Gly Ala Ile Ser Ile Thr Ser Lys Ala Glu Leu Ala Glu Val Arg			
480	485	490	1548
cga gaa tgg gcc aag tac atg gaa gtc cat gag aag gcc tcc ttc acc Arg Glu Trp Ala Lys Tyr Met Glu Val His Glu Lys Ala Ser Phe Thr			
500	505	510	1596
aac agt gag ctg cac cgt gcc atg aac ctg cac gtc ggc aac ctg cgc Asn Ser Glu Leu His Arg Ala Met Asn Leu His Val Gly Asn Leu Arg			
515	520	525	1644
ctg ctc agc ggg ccg ctt gac cag gtc cggt gct gcc ctg ccc aca ccg Leu Leu Ser Gly Pro Leu Asp Gln Val Arg Ala Ala Leu Pro Thr Pro			
530	535	540	1692

gcc ctc tcc cca gag gac aag gcc gtg ctg caa aac cta aag cgc atc 1740
 Ala Leu Ser Pro Glu Asp Lys Ala Val Leu Gln Asn Leu Lys Arg Ile
 545 550 555

ctg gct aag gtg cag gag atg cgg gac cag cgc gtg tcc ctg gag cag 1788
 Leu Ala Lys Val Gln Glu Met Arg Asp Gln Arg Val Ser Leu Glu Gln
 560 565 570 575

cag ctg cgt gag ctt atc cag aaa gat gac atc act gcc tcg ctg gtc 1836
 Gln Leu Arg Glu Leu Ile Gln Lys Asp Asp Ile Thr Ala Ser Leu Val
 580 585 590

acc aca gac cac tca gag atg aag aag ttg ttc gag gag cag ctg aaa 1884
 Thr Thr Asp His Ser Glu Met Lys Lys Leu Phe Glu Glu Gln Leu Lys
 595 600 605

aag tat gac cag ctg aag gtg tac ctg gag cag aac ctg gcc gcc cag 1932
 Lys Tyr Asp Gln Leu Lys Val Tyr Leu Glu Gln Asn Leu Ala Ala Gln
 610 615 620

gac cgt gtc ctc tgt gca ctg aca gag gcc aac gtg cag tac gca gcc 1980
 Asp Arg Val Leu Cys Ala Leu Thr Glu Ala Asn Val Gln Tyr Ala Ala
 625 630 635

gtg cgg cgg gta ctc agc gac ttg gac caa aag tgg aac tcc acg ctg 2028
 Val Arg Arg Val Leu Ser Asp Leu Asp Gln Lys Trp Asn Ser Thr Leu
 640 645 650 655

cag acc ctg gtg gcc tcg tat gaa gcc tat gag gac ctg atg aag aag 2076
 Gln Thr Leu Val Ala Ser Tyr Glu Ala Tyr Glu Asp Leu Met Lys Lys
 660 665 670

tcg cag gag ggc agg gac ttc tac gca gat ctg gag agc aag gtg gct 2124
 Ser Gln Glu Gly Arg Asp Phe Tyr Ala Asp Leu Glu Ser Lys Val Ala
 675 680 685

gct ctg ctg gag cgc acg cag tcc acc tgc cag gcc cgc gag gct gcc 2172
 Ala Leu Leu Glu Arg Thr Gln Ser Thr Cys Gln Ala Arg Glu Ala Ala
 690 695 700

cgcc cag cag ctc ctg gac agg gag ctg aag aag aag ccg ccg cca ccg 2220
 Arg Gln Gln Leu Leu Asp Arg Glu Leu Lys Lys Pro Pro Pro Arg

705	710	715													
ccc aca gcc cca aag ccg ctg ctg ccc cgc agg gag gag agt gag gca 2268															
Pro	Thr	Ala	Pro	Lys	Pro	Leu	Leu	Pro	Arg	Arg	Glu	Glu	Ser	Glu	Ala
720			725			730			735						
gtg gaa gca gga gac ccc cct gag gag ctg cgc agc ctc ccc cct gac 2316															
Val	Glu	Ala	Gly	Asp	Pro	Pro	Glu	Leu	Arg	Ser	Leu	Pro	Pro	Asp	
	740			745			750								
atg gtg gct ggc cca cga ctg cct gac acc ttc ctg gga agt gcc acc 2364															
Met	Val	Ala	Gly	Pro	Arg	Leu	Pro	Asp	Thr	Phe	Leu	Gly	Ser	Ala	Thr
	755			760			765								
ccg ctc cac ttt cct ccc agc ccc ttc ccc agc tcc aca ggc cca gga 2412															
Pro	Leu	His	Phe	Pro	Pro	Ser	Pro	Phe	Pro	Ser	Ser	Thr	Gly	Pro	Gly
	770			775			780								
ccc cac tat ctc tca ggc ccc ttg ccc cct ggt acc tac tcg ggc ccc 2460															
Pro	His	Tyr	Leu	Ser	Gly	Pro	Leu	Pro	Pro	Gly	Thr	Tyr	Ser	Gly	Pro
	785			790			795								
acc cag ctg ata cag ccc agg gcc cca ggg ccc cat gca atg ccc gta 2508															
Thr	Gln	Leu	Ile	Gln	Pro	Arg	Ala	Pro	Gly	Pro	His	Ala	Met	Pro	Val
	800			805			810			810			815		
gca cct ggg cct gcc ctc tac cca gcc cct gca tac aca ccg gag ctg 2556															
Ala	Pro	Gly	Pro	Ala	Leu	Tyr	Pro	Ala	Tyr	Thr	Pro	Glu	Leu		
	820			825			830								
ggc ctt gtg ccc cga tcc tcc cca cag cat ggc gtg gtg agc agt ccc 2604															
Gly	Leu	Val	Pro	Arg	Ser	Ser	Pro	Gln	His	Gly	Val	Val	Ser	Ser	Pro
	835			840			845								
tat gtg ggg gta ggg ccg gcc cca cca gtt gca ggt ctc ccc tcg gcc 2652															
Tyr	Val	Gly	Val	Gly	Pro	Ala	Pro	Pro	Val	Ala	Gly	Leu	Pro	Ser	Ala
	850			855			860								
cca cct cct caa ttc tca ggc ccc gag ttg gcc atg gcg gtt cgg cca 2700															
Pro	Pro	Pro	Gln	Phe	Ser	Gly	Pro	Glu	Leu	Ala	Met	Ala	Val	Arg	Pro
	865			870			875								

gcc acc acc aca gta gat agc atc cag gcg ccc atc ccc agc cac aca Ala Thr Thr Thr Val Asp Ser Ile Gln Ala Pro Ile Pro Ser His Thr 880 885 890 895	2748
gcc cca cgg cca aac ccc acc cct gct cct ccc ccg ccc tgc ttc cct Ala Pro Arg Pro Asn Pro Thr Pro Ala Pro Pro Pro Pro Cys Phe Pro 900 905 910	2796
gtg ccc cca ccg cag cca ctg ccc acg cct tac acc tac cct gca ggg Val Pro Pro Pro Gln Pro Leu Pro Thr Pro Tyr Thr Tyr Pro Ala Gly 915 920 925	2844
gct aag caa ccc atc cca gca cag cac cac ttc tct tct ggg atc ccc Ala Lys Gln Pro Ile Pro Ala Gln His His Phe Ser Ser Gly Ile Pro 930 935 940	2892
gca ggt ttt cca gcc cca agg att ggg ccc cag ccc cag ccc cat cct Ala Gly Phe Pro Ala Pro Arg Ile Gly Pro Gln Pro Gln Pro His Pro 945 950 955	2940
cag ccc cat cct tca caa gcg ttt ggg cct cag ccc cca cag cag ccc Gln Pro His Pro Ser Gln Ala Phe Gly Pro Gln Pro Pro Gln Gln Pro 960 965 970 975	2988
ctt cca ctc cag cat cca cat ctc ttc cca ccc cag gcc cca gga ctc Leu Pro Leu Gln His Pro His Leu Phe Pro Pro Gln Ala Pro Gly Leu 980 985 990	3036
cta ccc cca caa tcc ccc tac ccc tat gcc cct cag cct ggg gtc ctg Leu Pro Pro Gln Ser Pro Tyr Pro Tyr Ala Pro Gln Pro Gly Val Leu 995 1000 1005	3084
ggg cag ccg cca ccc ccc cta cac acc cag ctc tac cca ggt ccc gct Gly Gln Pro Pro Pro Pro Leu His Thr Gln Leu Tyr Pro Gly Pro Ala 1010 1015 1020	3132
caa gac cct ctg cca gcc cac tca ggg gct ctg cct ttc ccc agc cct Gln Asp Pro Leu Pro Ala His Ser Gly Ala Leu Pro Phe Pro Ser Pro 1025 1030 1035	3180
ggg ccc cct cag cct ccc cat ccc cca ctg gca tat ggt cct gcc cct Gly Pro Pro Gln Pro Pro His Pro Pro Leu Ala Tyr Gly Pro Ala Pro	3228

1040	1045	1050	1055	
tct acc aga ccc atg ggc ccc cag gca gcc cct ctt acc att cga ggg 3276 Ser Thr Arg Pro Met Gly Pro Gln Ala Ala Pro Leu Thr Ile Arg Gly				
1060	1065	1070		
ccc tcg tct gct ggc cag tcc acc cct agt ccc cac ctg gtg cct tca 3324 Pro Ser Ser Ala Gly Gln Ser Thr Pro Ser Pro His Leu Val Pro Ser				
1075	1080	1085		
cct gcc cca tct cca ggg cct ggt ccg gta ccc cct cgc ccc cca gca 3372 Pro Ala Pro Ser Pro Gly Pro Gly Pro Val Pro Pro Arg Pro Pro Ala				
1090	1095	1100		
gca gaa cca ccc cct tgc ctg cgc cga ggc gcc gca gct gca gac ctg 3420 Ala Glu Pro Pro Pro Cys Leu Arg Arg Gly Ala Ala Ala Ala Asp Leu				
1105	1110	1115		
ctc tcc tcc agc ccg gag agc cag cat ggc ggc act cag tct cct ggg 3468 Leu Ser Ser Ser Pro Glu Ser Gln His Gly Gly Thr Gln Ser Pro Gly				
1120	1125	1130	1135	
ggg ggg cag ccc ctg ctg cag ccc acc aag gtg gat gca gct gag ggt 3516 Gly Gly Gln Pro Leu Leu Gln Pro Thr Lys Val Asp Ala Ala Glu Gly				
1140	1145	1150		
cgt cgg ccg cag gcc ctg cgg ctg att gag cgg gac ccc tat gag cat 3564 Arg Arg Pro Gln Ala Leu Arg Leu Ile Glu Arg Asp Pro Tyr Glu His				
1155	1160	1165		
cct gag agg ctg cgg cag ttg cag cag gag ctg gag gcc ttt cgg ggt 3612 Pro Glu Arg Leu Arg Gln Leu Gln Gln Glu Leu Glu Ala Phe Arg Gly				
1170	1175	1180		
cag ctg ggg gat gtg gga gct ctg gac act gtc tgg cga gag ctg caa 3660 Gln Leu Gly Asp Val Gly Ala Leu Asp Thr Val Trp Arg Glu Leu Gln				
1185	1190	1195		
gat gcg cag gaa cat gat gcc cga ggc cgt tcc atc gcc att gcc cgc 3708 Asp Ala Gln Glu His Asp Ala Arg Gly Arg Ser Ile Ala Ile Ala Arg				
1200	1205	1210	1215	

tgc tac tca ctg aag aac cgg cac cag gat gtc atg ccc tat gac agt 3756
 Cys Tyr Ser Leu Lys Asn Arg His Gln Asp Val Met Pro Tyr Asp Ser
 1220 1225 1230

aac cgt gtg gtg ctg cgc tca ggc aag gat gac tac atc aat gcc agc 3804
 Asn Arg Val Val Leu Arg Ser Gly Lys Asp Asp Tyr Ile Asn Ala Ser
 1235 1240 1245

tgc gtg gag ggg ctc tcc cca tac tgc ccc ccg cta gtg gca acc cag 3852
 Cys Val Glu Gly Leu Ser Pro Tyr Cys Pro Pro Leu Val Ala Thr Gln
 1250 1255 1260

gcc cca ctg cct ggc aca gct gct gac ttc tgg ctc atg gtc cat gag 3900
 Ala Pro Leu Pro Gly Thr Ala Ala Asp Phe Trp Leu Met Val His Glu
 1265 1270 1275

cag aaa gtg tca gtc att gtc atg ctg gtt tct gag gct gag atg gag 3948
 Gln Lys Val Ser Val Ile Val Met Leu Val Ser Glu Ala Glu Met Glu
 1280 1285 1290 1295

aag caa aaa gtg gca cgc tac ttc ccc acc gag agg ggc cag ccc atg 3996
 Lys Gln Lys Val Ala Arg Tyr Phe Pro Thr Glu Arg Gly Gln Pro Met
 1300 1305 1310

gtg cac ggt gcc ctg agc ctg gca ttg agc agc gtc cgc agc acc gaa 4044
 Val His Gly Ala Leu Ser Leu Ala Leu Ser Ser Val Arg Ser Thr Glu
 1315 1320 1325

acc cat gtg gag cgc gtg ctg agc ctg cag ttc cga gac cag agc ctc 4092
 Thr His Val Glu Arg Val Leu Ser Leu Gln Phe Arg Asp Gln Ser Leu
 1330 1335 1340

aag cgc tct ctt gtg cac ctg cac ttc ccc act tgg cct gag tta ggc 4140
 Lys Arg Ser Leu Val His Leu His Phe Pro Thr Trp Pro Glu Leu Gly
 1345 1350 1355

ctg ccc gac agc ccc agc aac ttg ctg cgc ttc atc cag gag gtg cac 4188
 Leu Pro Asp Ser Pro Ser Asn Leu Leu Arg Phe Ile Gln Glu Val His
 1360 1365 1370 1375

gca cat tac ctg cat cag cgg ccg ctg cac acg ccc atc att gtg cac 4236
 Ala His Tyr Leu His Gln Arg Pro Leu His Thr Pro Ile Ile Val His

	1380	1385	1390	
tgc agc tct ggt gtg ggc cgc acg gga gcc ttt gca ctg ctc tat gca Cys Ser Ser Gly Val Gly Arg Thr Gly Ala Phe Ala Leu Leu Tyr Ala	1395	1400	1405	4284
gct gtg cag gag gtg gag gct ggg aac gga atc cct gag ctg cct cag Ala Val Gln Glu Val Glu Ala Gly Asn Gly Ile Pro Glu Leu Pro Gln	1410	1415	1420	4332
ctg gtg cgg cgc atg cgg cag cag aga aag cac atg ctg cag gag aag Leu Val Arg Arg Met Arg Gln Gln Arg Lys His Met Leu Gln Glu Lys	1425	1430	1435	4380
ctg cac ctc agg ttc tgc tat gag gca gtg gtg aga cac gtg gag cag Leu His Leu Arg Phe Cys Tyr Glu Ala Val Val Arg His Val Glu Gln	1440	1445	1450	4428
gtc ctg cag cgc cat ggt gtg cct cct cca tgc aaa ccc ttg gcc agt Val Leu Gln Arg His Gly Val Pro Pro Pro Cys Lys Pro Leu Ala Ser	1460	1465	1470	4476
gca agc atc agc cag aag aac cac ctt cct cag gac tcc cag gac ctg Ala Ser Ile Ser Gln Lys Asn His Leu Pro Gln Asp Ser Gln Asp Leu	1475	1480	1485	4524
gtc ctc ggt ggg gat gtg ccc atc agc tcc atc cag gcc acc att gcc Val Leu Gly Gly Asp Val Pro Ile Ser Ser Ile Gln Ala Thr Ile Ala	1490	1495	1500	4572
aag ctc agc att cgg cct cct ggg ggg ttg gag tcc ccg gtt gcc agc Lys Leu Ser Ile Arg Pro Pro Gly Gly Leu Glu Ser Pro Val Ala Ser	1505	1510	1515	4620
ttg cca ggc cct gca gag ccc cca ggc ctc ccg cca gcc agc ctc cca Leu Pro Gly Pro Ala Glu Pro Pro Gly Leu Pro Pro Ala Ser Leu Pro	1520	1525	1530	4668
gag tct acc cca atc cca tct tcc cca ccc ccc ctt tcc tcc cca Glu Ser Thr Pro Ile Pro Ser Ser Pro Pro Pro Leu Ser Ser Pro	1540	1545	1550	4716

cta cct gag gct ccc cag cct aag gag gag ccg cca gtg cct gaa gcc 4764
 Leu Pro Glu Ala Pro Gln Pro Lys Glu Glu Pro Pro Val Pro Glu Ala
 1555 1560 1565

 ccc agc tcg ggg ccc ccc tcc tcc tcc ctg gaa ttg ctg gcc tcc ttg 4812
 Pro Ser Ser Gly Pro Pro Ser Ser Leu Glu Leu Leu Ala Ser Leu
 1570 1575 1580

 acc cca gag gcc ttc tcc ctg gac agc tcc ctg cgg ggc aaa cag cgg 4860
 Thr Pro Glu Ala Phe Ser Leu Asp Ser Ser Leu Arg Gly Lys Gln Arg
 1585 1590 1595

 atg agc aag cat aac ttt ctg cag gcc cat aac ggg caa ggg ctg cgg 4908
 Met Ser Lys His Asn Phe Leu Gln Ala His Asn Gly Gln Gly Leu Arg
 1600 1605 1610 1615

 gcc acc cgg ccc tct gac gac ccc ctc agc ctt ctg gat cca ctc tgg 4956
 Ala Thr Arg Pro Ser Asp Asp Pro Leu Ser Leu Leu Asp Pro Leu Trp
 1620 1625 1630

 aca ctc aac aag acc tgaacagggtt ttgcctacct ggtccttaca ctacatcatc 5011
 Thr Leu Asn Lys Thr
 1635

 atcatctcat gcccacctgc ccacacccag cagagcttct cagtggcac agtctttac 5071

 tcccatttct gctgccttg gccctgcctg gcccagcctg caccctgtg gggtgaaat 5131

 gtactgcagg ctctgggtca ggttctgctc ctttatggga cccgacattt tttagcttt 5191

 tgctattgaa ataataaaacc accctgttct gtaaaaaaaaaaa aaa 5234

<210> 2
 <211> 1636
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Glu Ala Val Pro Arg Met Pro Val Ile Trp Leu Asp Leu Lys Glu
 1 5 10 15

Ala Gly Asp Phe His Phe Gln Pro Ala Val Lys Lys Phe Val Leu Lys
20 25 30

Asn Tyr Gly Glu Asn Pro Glu Ala Tyr Asn Glu Glu Leu Lys Lys Leu
35 40 45

Glu Leu Leu Arg Gln Asn Ala Val Arg Val Pro Arg Asp Phe Glu Gly
50 55 60

Cys Ser Val Leu Arg Lys Tyr Leu Gly Gln Leu His Tyr Leu Gln Ser
65 70 75 80

Arg Val Pro Met Gly Ser Gly Gln Glu Ala Ala Val Pro Val Thr Trp
85 90 95

Thr Glu Ile Phe Ser Gly Lys Ser Val Ala His Glu Asp Ile Lys Tyr
100 105 110

Glu Gln Ala Cys Ile Leu Tyr Asn Leu Gly Ala Leu His Ser Met Leu
115 120 125

Gly Ala Met Asp Lys Arg Val Ser Glu Glu Gly Met Lys Val Ser Cys
130 135 140

Thr His Phe Gln Cys Ala Ala Gly Ala Phe Ala Tyr Leu Arg Glu His
145 150 155 160

Phe Pro Gln Ala Tyr Ser Val Asp Met Ser Arg Gln Ile Leu Thr Leu
165 170 175

Asn Val Asn Leu Met Leu Gly Gln Ala Gln Glu Cys Leu Leu Glu Lys
180 185 190

Ser Met Leu Asp Asn Arg Lys Ser Phe Leu Val Ala Arg Ile Ser Ala
195 200 205

Gln Val Val Asp Tyr Tyr Lys Glu Ala Cys Arg Ala Leu Glu Asn Pro
210 215 220

Asp Thr Ala Ser Leu Leu Gly Arg Ile Gln Lys Asp Trp Lys Lys Leu
225 230 235 240

Val Gln Met Lys Ile Tyr Tyr Phe Ala Ala Val Ala His Leu His Met
 245 250 255

Gly Lys Gln Ala Glu Glu Gln Gln Lys Phe Gly Glu Arg Val Ala Tyr
 260 265 270

Phe Gln Ser Ala Leu Asp Lys Pro Asn Glu Ala Ile Lys Leu Ala Lys
 275 280 285

Gly Gln Pro Asp Thr Val Gln Asp Ala Leu Arg Phe Thr Met Asp Val
 290 295 300

Ile Gly Gly Lys Tyr Asn Ser Ala Lys Lys Asp Asn Asp Phe Ile Tyr
 305 310 315 320

His Glu Ala Val Pro Ala Leu Asp Thr Leu Gln Pro Val Lys Gly Ala
 325 330 335

Pro Leu Val Lys Pro Leu Pro Val Asn Pro Thr Asp Pro Ala Val Thr
 340 345 350

Gly Pro Asp Ile Phe Ala Lys Leu Val Pro Met Ala Ala His Glu Ala
 355 360 365

Ser Ser Leu Tyr Ser Glu Glu Lys Ala Lys Leu Leu Arg Glu Met Met
 370 375 380

Ala Lys Ile Glu Asp Lys Asn Glu Val Leu Asp Gln Phe Met Asp Ser
 385 390 395 400

Met Gln Leu Asp Pro Glu Thr Val Asp Asn Leu Asp Ala Tyr Ser His
 405 410 415

Ile Pro Pro Gln Leu Met Glu Lys Cys Ala Ala Leu Ser Val Arg Pro
 420 425 430

Asp Thr Val Arg Asn Leu Val Gln Ser Met Gln Val Leu Ser Gly Val
 435 440 445

Phe Thr Asp Val Glu Ala Ser Leu Lys Asp Ile Arg Asp Leu Leu Glu
 450 455 460

Glu Asp Glu Leu Leu Glu Gln Lys Phe Gln Glu Ala Val Gly Gln Ala
465 470 475 480

Gly Ala Ile Ser Ile Thr Ser Lys Ala Glu Leu Ala Glu Val Arg Arg
485 490 495

Glu Trp Ala Lys Tyr Met Glu Val His Glu Lys Ala Ser Phe Thr Asn
500 505 510

Ser Glu Leu His Arg Ala Met Asn Leu His Val Gly Asn Leu Arg Leu
515 520 525

Leu Ser Gly Pro Leu Asp Gln Val Arg Ala Ala Leu Pro Thr Pro Ala
530 535 540

Leu Ser Pro Glu Asp Lys Ala Val Leu Gln Asn Leu Lys Arg Ile Leu
545 550 555 560

Ala Lys Val Gln Glu Met Arg Asp Gln Arg Val Ser Leu Glu Gln Gln
565 570 575

Leu Arg Glu Leu Ile Gln Lys Asp Asp Ile Thr Ala Ser Leu Val Thr
580 585 590

Thr Asp His Ser Glu Met Lys Lys Leu Phe Glu Glu Gln Leu Lys Lys
595 600 605

Tyr Asp Gln Leu Lys Val Tyr Leu Glu Gln Asn Leu Ala Ala Gln Asp
610 615 620

Arg Val Leu Cys Ala Leu Thr Glu Ala Asn Val Gln Tyr Ala Ala Val
625 630 635 640

Arg Arg Val Leu Ser Asp Leu Asp Gln Lys Trp Asn Ser Thr Leu Gln
645 650 655

Thr Leu Val Ala Ser Tyr Glu Ala Tyr Glu Asp Leu Met Lys Lys Ser
660 665 670

Gln Glu Gly Arg Asp Phe Tyr Ala Asp Leu Glu Ser Lys Val Ala Ala
675 680 685

Leu Leu Glu Arg Thr Gln Ser Thr Cys Gln Ala Arg Glu Ala Ala Arg
 690 695 700

 Gln Gln Leu Leu Asp Arg Glu Leu Lys Lys Lys Pro Pro Pro Arg Pro
 705 710 715 720

 Thr Ala Pro Lys Pro Leu Leu Pro Arg Arg Glu Glu Ser Glu Ala Val
 725 730 735

 Glu Ala Gly Asp Pro Pro Glu Glu Leu Arg Ser Leu Pro Pro Asp Met
 740 745 750

 Val Ala Gly Pro Arg Leu Pro Asp Thr Phe Leu Gly Ser Ala Thr Pro
 755 760 765

 Leu His Phe Pro Pro Ser Pro Phe Pro Ser Ser Thr Gly Pro Gly Pro
 770 775 780

 His Tyr Leu Ser Gly Pro Leu Pro Pro Gly Thr Tyr Ser Gly Pro Thr
 785 790 795 800

 Gln Leu Ile Gln Pro Arg Ala Pro Gly Pro His Ala Met Pro Val Ala
 805 810 815

 Pro Gly Pro Ala Leu Tyr Pro Ala Pro Ala Tyr Thr Pro Glu Leu Gly
 820 825 830

 Leu Val Pro Arg Ser Ser Pro Gln His Gly Val Val Ser Ser Pro Tyr
 835 840 845

 Val Gly Val Gly Pro Ala Pro Pro Val Ala Gly Leu Pro Ser Ala Pro
 850 855 860

 Pro Pro Gln Phe Ser Gly Pro Glu Leu Ala Met Ala Val Arg Pro Ala
 865 870 875 880

 Thr Thr Thr Val Asp Ser Ile Gln Ala Pro Ile Pro Ser His Thr Ala
 885 890 895

 Pro Arg Pro Asn Pro Thr Pro Ala Pro Pro Pro Pro Cys Phe Pro Val
 900 905 910

Pro Pro Pro Gln Pro Leu Pro Thr Pro Tyr Thr Tyr Pro Ala Gly Ala
915 920 925

Lys Gln Pro Ile Pro Ala Gln His His Phe Ser Ser Gly Ile Pro Ala
930 935 940

Gly Phe Pro Ala Pro Arg Ile Gly Pro Gln Pro Gln Pro His Pro Gln
945 950 955 960

Pro His Pro Ser Gln Ala Phe Gly Pro Gln Pro Pro Gln Gln Pro Leu
965 970 975

Pro Leu Gln His Pro His Leu Phe Pro Pro Gln Ala Pro Gly Leu Leu
980 985 990

Pro Pro Gln Ser Pro Tyr Pro Tyr Ala Pro Gln Pro Gly Val Leu Gly
995 1000 1005

Gln Pro Pro Pro Pro Leu His Thr Gln Leu Tyr Pro Gly Pro Ala Gln
1010 1015 1020

Asp Pro Leu Pro Ala His Ser Gly Ala Leu Pro Phe Pro Ser Pro Gly
025 1030 1035 104

Pro Pro Gln Pro Pro His Pro Pro Leu Ala Tyr Gly Pro Ala Pro Ser
1045 1050 1055

Thr Arg Pro Met Gly Pro Gln Ala Ala Pro Leu Thr Ile Arg Gly Pro
1060 1065 1070

Ser Ser Ala Gly Gln Ser Thr Pro Ser Pro His Leu Val Pro Ser Pro
1075 1080 1085

Ala Pro Ser Pro Gly Pro Gly Pro Val Pro Pro Arg Pro Pro Ala Ala
1090 1095 1100

Glu Pro Pro Pro Cys Leu Arg Arg Gly Ala Ala Ala Ala Asp Leu Leu
105 1110 1115 112

Ser Ser Ser Pro Glu Ser Gln His Gly Gly Thr Gln Ser Pro Gly Gly
1125 1130 1135

Gly Gln Pro Leu Leu Gln Pro Thr Lys Val Asp Ala Ala Glu Gly Arg
 1140 1145 1150

Arg Pro Gln Ala Leu Arg Leu Ile Glu Arg Asp Pro Tyr Glu His Pro
 1155 1160 1165

Glu Arg Leu Arg Gln Leu Gln Gln Glu Leu Glu Ala Phe Arg Gly Gln
 1170 1175 1180

Leu Gly Asp Val Gly Ala Leu Asp Thr Val Trp Arg Glu Leu Gln Asp
 1185 1190 1195 120

Ala Gln Glu His Asp Ala Arg Gly Arg Ser Ile Ala Ile Ala Arg Cys
 1205 1210 1215

Tyr Ser Leu Lys Asn Arg His Gln Asp Val Met Pro Tyr Asp Ser Asn
 1220 1225 1230

Arg Val Val Leu Arg Ser Gly Lys Asp Asp Tyr Ile Asn Ala Ser Cys
 1235 1240 1245

Val Glu Gly Leu Ser Pro Tyr Cys Pro Pro Leu Val Ala Thr Gln Ala
 1250 1255 1260

Pro Leu Pro Gly Thr Ala Ala Asp Phe Trp Leu Met Val His Glu Gln
 1265 1270 1275 128

Lys Val Ser Val Ile Val Met Leu Val Ser Glu Ala Glu Met Glu Lys
 1285 1290 1295

Gln Lys Val Ala Arg Tyr Phe Pro Thr Glu Arg Gly Gln Pro Met Val
 1300 1305 1310

His Gly Ala Leu Ser Leu Ala Leu Ser Ser Val Arg Ser Thr Glu Thr
 1315 1320 1325

His Val Glu Arg Val Leu Ser Leu Gln Phe Arg Asp Gln Ser Leu Lys
 1330 1335 1340

Arg Ser Leu Val His Leu His Phe Pro Thr Trp Pro Glu Leu Gly Leu
 1345 1350 1355 136

Pro Asp Ser Pro Ser Asn Leu Leu Arg Phe Ile Gln Glu Val His Ala
1365 1370 1375

His Tyr Leu His Gln Arg Pro Leu His Thr Pro Ile Ile Val His Cys
1380 1385 1390

Ser Ser Gly Val Gly Arg Thr Gly Ala Phe Ala Leu Leu Tyr Ala Ala
1395 1400 1405

Val Gln Glu Val Glu Ala Gly Asn Gly Ile Pro Glu Leu Pro Gln Leu
1410 1415 1420

Val Arg Arg Met Arg Gln Gln Arg Lys His Met Leu Gln Glu Lys Leu
425 1430 1435 144

His Leu Arg Phe Cys Tyr Glu Ala Val Val Arg His Val Glu Gln Val
1445 1450 1455

Leu Gln Arg His Gly Val Pro Pro Pro Cys Lys Pro Leu Ala Ser Ala
1460 1465 1470

Ser Ile Ser Gln Lys Asn His Leu Pro Gln Asp Ser Gln Asp Leu Val
1475 1480 1485

Leu Gly Gly Asp Val Pro Ile Ser Ser Ile Gln Ala Thr Ile Ala Lys
1490 1495 1500

Leu Ser Ile Arg Pro Pro Gly Gly Leu Glu Ser Pro Val Ala Ser Leu
505 1510 1515 152

Pro Gly Pro Ala Glu Pro Pro Gly Leu Pro Pro Ala Ser Leu Pro Glu
1525 1530 1535

Ser Thr Pro Ile Pro Ser Ser Ser Pro Pro Pro Leu Ser Ser Pro Leu
1540 1545 1550

Pro Glu Ala Pro Gln Pro Lys Glu Glu Pro Pro Val Pro Glu Ala Pro
1555 1560 1565

Ser Ser Gly Pro Pro Ser Ser Ser Leu Glu Leu Leu Ala Ser Leu Thr
1570 1575 1580

Pro Glu Ala Phe Ser Leu Asp Ser Ser Leu Arg Gly Lys Gln Arg Met
585 1590 1595 160

Ser Lys His Asn Phe Leu Gln Ala His Asn Gly Gln Gly Leu Arg Ala
1605 1610 1615

Thr Arg Pro Ser Asp Asp Pro Leu Ser Leu Leu Asp Pro Leu Trp Thr
1620 1625 1630

Leu Asn Lys Thr
1635

<210> 3

<211> 9309

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (529)..(656)

<220>

<221> exon

<222> (881)..(959)

<220>

<221> exon

<222> (1625)..(1674)

<220>

<221> exon

<222> (1791)..(1922)

<220>

<221> exon

<222> (2201)..(2281)

<220>
<221> exon
<222> (2357)..(2488)

<220>
<221> exon
<222> (2579)..(2626)

<220>
<221> exon
<222> (3006)..(3062)

<220>
<221> exon
<222> (3185)..(3243)

<220>
<221> exon
<222> (3381)..(3460)

<220>
<221> exon
<222> (3573)..(3687)

<220>
<221> exon
<222> (3766)..(3831)

<220>
<221> exon
<222> (4221)..(4366)

<220>
<221> exon
<222> (4652)..(4963)

<220>

<221> exon
<222> (5039)..(5193)

<220>
<221> exon
<222> (5293)..(5444)

<220>
<221> exon
<222> (5531)..(5710)

<220>
<221> exon
<222> (5804)..(7562)

<220>
<221> exon
<222> (7657)..(7841)

<220>
<221> exon
<222> (7968)..(8072)

<220>
<221> exon
<222> (8157)..(8295)

<220>
<221> exon
<222> (8388)..(8501)

<220>
<221> exon
<222> (8580)..(9309)

<220>
<221> intron

<222> (1)..(528)

<220>

<221> intron

<222> (657)..(880)

<220>

<221> intron

<222> (958)..(1624)

<220>

<221> intron

<222> (1675)..(1790)

<220>

<221> intron

<222> (1923)..(2200)

<220>

<221> intron

<222> (2282)..(2356)

<220>

<221> intron

<222> (2488)..(2578)

<220>

<221> intron

<222> (2627)..(3005)

<220>

<221> intron

<222> (3063)..(3184)

<220>

<221> intron

<222> (3244)..(3380)

<220>
<221> intron
<222> (3461)..(3572)

<220>
<221> intron
<222> (3688)..(3765)

<220>
<221> intron
<222> (3832)..(4220)

<220>
<221> intron
<222> (4367)..(4651)

<220>
<221> intron
<222> (4964)..(5038)

<220>
<221> intron
<222> (5194)..(5292)

<220>
<221> intron
<222> (5445)..(5530)

<220>
<221> intron
<222> (5711)..(5803)

<220>
<221> intron
<222> (7563)..(7656)

<220>

<221> intron

<222> (7842)..(7967)

<220>

<221> intron

<222> (8073)..(8156)

<220>

<221> intron

<222> (8296)..(8387)

<220>

<221> intron

<222> (8502)..(8579)

<400> 42

tttgcaaatg ttttcagatg tctttagatg gggctggca cagtggttca tgccctgtat 60

cccaggactt cgagaggctg aggccgggtgg atcacaagtt caagtgttcg agaccagcct 120

ggccaaaatg ggaaacccgc cttctactaa aaatacaaaaa tttagccaggc atgggtggcgt 180

gtgcctgttag tctcagctaa ttgggaggct gaggcaggag aattgcttga acccaggagg 240

ttgcagtgaa tactgcattc cagccctgggt gacagaatga gactctttt tttttttttt 300

tttaaaaaag gaaaaactat gtggataga ttcatcgcc cagctgccag cctggcttgt 360

ggaatgtttt gttgaacgac tataggtata gccatggact ttttggatc cttgggtgt 420

tgcatcgcc cagctgtat gcattttcct ggcatttgt agttagctgg cctgcgtgtc 480

cactgccccca tatgacaaca ggcctgcttc tcccatcctg ccccccag aat gct gtc 537

Asn Ala Val

cgt gtc cca cga gac ttt gag ggc tgt agt gtc ctc cgc aag tac ctc 585
 Arg Val Pro Arg Asp Phe Glu Gly Cys Ser Val Leu Arg Lys Tyr Leu
 5 10 15

ggc cag ctt cat tac ctg cag agt cgg gtc ccc atg ggc tcg ggc cag 633
 Gly Gln Leu His Tyr Leu Gln Ser Arg Val Pro Met Gly Ser Gly Gln
 20 25 30 35

gag gcc gct gtc cct gtc acc tg gtgagagccg caggcaggc tggaggatcc 686
 Glu Ala Ala Val Pro Val Thr Trp
 40

cacggggagt ctgggtggtg ggggtgtcc tccccctccct tcccccttct ccttgctgca 746

taggatggga atggcctcat atggccccc caggcctccc cacatcccc caatgggtg 806

ttagtcccc ttacctaatac tcagggccct ggctagctcc tgccctttagataagtgggg 866

tgccatgtct gcag g aca gag atc ttc tca ggc aag tct gtg gcc cat gag 917
 Thr Glu Ile Phe Ser Gly Lys Ser Val Ala His Glu
 45 50 55

gac atc aag tac gag cag gcc tgt att ctc tac aac ctt g gtgagctgcc 967
 Asp Ile Lys Tyr Glu Gln Ala Cys Ile Leu Tyr Asn Leu
 60 65

tgatcccttc ccccgccct actccccagt cctgccagcc tagctttagat ctcttagat 1027

ggccacaaaag gcagtggct gataaaggga ggactccagg attccggcc ctccactgac 1087

ctccccacag ccctgccagc tcctccactg tttctggc tggcccggt gggagcctct 1147

gctggggcga ggctctactg ggctggctgc cacacagagt tgccactgtg tgctctgtct 1207

gggagagagg gcctttttc tttgactgga cagcccccc ccactgttgt tttgggctgc 1267

ttcaggcagg aggagagtgt ggctggcctc agcttaccct gctagtcagc cttagcctgg 1327

ctcaagggag aagcttgggg agccccagag ttctgtcaa acatccctga agcttcaaga 1387

ttggaccctt tggacaggag cccttccatc ctctgccaaa tgcatgcag gagactgagg 1447

gctgggcagg acttctgagt ttccctgttc cctccagctt gggtgtcctt ggactcggt 1507

ccctggttct cagagccatg ttgtctgtat tgtggataac agcagtgcgc cctctgtctc 1567

acccacat ggggtgtgagc agccccaggc ccctaacaact gtccccc tccccag ga 1626
Gly

gcg ctg cac tcc atg ctg ggg gcc atg gac aag cgg gtg tct gag gag 1674
Ala Leu His Ser Met Leu Gly Ala Met Asp Lys Arg Val Ser Glu Glu
70 75 80 85

gtgaggagag gggcagtagt ggaacatgtg gacataccag ggagggcag cctccaaagt 1734

atggatgaat cctgaccat ggagtggaca caggccatcc tccccactccc tcccaagc ggc 1793
Gly

atg aag gtc tcc tgt acc cat ttc cag tgc gca gcc ggc gcc ttc gcc 1841
Met Lys Val Ser Cys Thr His Phe Gln Cys Ala Ala Gly Ala Phe Ala
90 95 100

tac cta cggtt gag cac ttc cct caa gcc tac agc gtc gac atg agc cgc 1889
Tyr Leu Arg Glu His Phe Pro Gln Ala Tyr Ser Val Asp Met Ser Arg
105 110 115

cag atc ctt acg ctc aac gtc aac ctc atg ctg gtgaggagc gcctgggttg 1942
Gln Ile Leu Thr Leu Asn Val Asn Leu Met Leu
120 125

gagtggatgtt gaatccaggag aaggatgg ccaggaggaggg ggcagttggg cctggatcct 2002

ggaccaaggc agtggggac aagcaagggg ccttggcttt gttaatcag gagcacgggt 2062

gtgctgcttg gagtggggc agctgggga gagggcagtg aagagggatc ctcagtcgt 2122
 cccctggga aggataaagg gaaggggaag cgggaggcct tgggtgagcg agggagtgca 2182
 cctcacgtgt cgccccag ggc cag gag tgc ctc ctg gag aag tcg 2233
 Gly Gln Ala Gln Glu Cys Leu Leu Glu Lys Ser
 130 135 140
 atg ttg gac aac agg aag agc ttt ctg gtg gcc cgc atc agt gca cag 2281
 Met Leu Asp Asn Arg Lys Ser Phe Leu Val Ala Arg Ile Ser Ala Gln
 145 150 155
 gtagggacgg ggctgagggg aggccttcac ttactgctg actccccac tcattggcc 2341
 ccaccctgtt ctcag gtg gta gat tac tac aag gag gca tgc cgg gcc ttg 2392
 Val Val Asp Tyr Tyr Lys Glu Ala Cys Arg Ala Leu
 160 165
 gag aac ccc gac act gcc tca ctg ctg ggc cgg atc cag aag gac tgg 2440
 Glu Asn Pro Asp Thr Ala Ser Leu Leu Gly Arg Ile Gln Lys Asp Trp
 170 175 180
 aag aaa ctt gtg cag atg aag atc tac tac ttc gca gcc gtg gct cat 2488
 Lys Lys Leu Val Gln Met Lys Ile Tyr Tyr Phe Ala Ala Val Ala His
 185 190 195 200
 gtgagggcct gggcccccag ggcggggcag ggcggggctg agtggccaca gctcaggaag 2548
 caagtcgtgg cgtctttct tctttccag ctg cac atg gga aag cag gcc gag 2602
 Leu His Met Gly Lys Gln Ala Glu
 205
 gag cag cag aag ttc ggg gag cgg gtgagctaca gcgaggaggg gactgggac 2656
 Glu Gln Gln Lys Phe Gly Glu Arg
 210 215

caatggcagc cttcagttag atgcccgtgt gctcccgctc ttacacacacc atggggtgtgc 2716
 cttctctgttc tcaccctggc catcacccctg ctggaggcct ggtgtttaa gtgttgtccc 2776
 atctgtgcag ccctcgccc tcggggtctg aggaggtggg gcaggctcca tacagagcag 2836
 gtggctgggg cagggtgtgg cgccacccctg ctgctgttgg ctggggtggt gcccggtgc 2896
 ctcctgagct gcttgcacat tcatggacag gcagggccgg gtgggaggca ggaggagaaa 2956
 ggttccaaggc agaggaggac agaggcaggct ttccctgccac cctccacag gtt gca tac 3014
 Val Ala Tyr
 ttc cag agc gcc ctg gac aag ccc aat gaa gcc atc aag ttg gcc aag 3062
 Phe Gln Ser Ala Leu Asp Lys Pro Asn Glu Ala Ile Lys Leu Ala Lys
 220 225 230 235
 gtaaaagctga ggaaggcctg gctgcctga ggttatagga gcaagccccgg taggactgag 3122
 ggggtgtcct ggtgccagcc ttggtagtg ctaaggcccc accccctgtcc ctaacccac 3182
 ag ggc cag cct gac act gtt caa gac gcg ctt cgc ttc act atg gat 3229
 Gly Gln Pro Asp Thr Val Gln Asp Ala Leu Arg Phe Thr Met Asp
 240 245 250
 gtc att ggg gga aa gtgagtcgtt ggggggtggcc ctggttccct cttttgtga 3283
 Val Ile Gly Gly Lys
 255
 agggtcttgt ccctctgctg gcatctacat gggaaagtagg ttctggatcc ccacggacac 3343
 cccgtgactg cccactcccc ctgctcctga tccccag g tac aat tct gcc aag 3396
 Tyr Asn Ser Ala Lys
 260
 aag gac aac gac ttc att tac cat gag gtc cca gca ttg gac acc 3444
 Lys Asp Asn Asp Phe Ile Tyr His Glu Ala Val Pro Ala Leu Asp Thr

265

270

275

ctt cag cct gta aaa g gtcggggagc tgagaggtgg gggcagaggt gacggtgggg 3500
 Leu Gln Pro Val Lys

280

tggggacagg acacaggagg ctgcctcaag gactctgcgt gggcctgatc tccacaattc 3560

ccacccccc ag ga gcc ccc ttg gtg aag ccc ttg cca gtg aac ccc aca 3610
 Gly Ala Pro Leu Val Lys Pro Leu Pro Val Asn Pro Thr

285

290

gac cca gct gtt aca ggc cct gac atc ttt gcc aaa ctg gta ccc atg 3658
 Asp Pro Ala Val Thr Gly Pro Asp Ile Phe Ala Lys Leu Val Pro Met
 295 300 305 310

gct gcc cac gag gcc tcg tca ctg tac ag gtgggtggag ggtggcacag 3707
 Ala Ala His Glu Ala Ser Ser Leu Tyr Ser
 315 320

aggaggtgg ggtgtcttga gatgtgggtc ttcatcaaat gctctgtcgc ttctgcag t 3766

gag gag aag gcc aag ctg ctc cgg gag atg atg gcc aag att gag gac 3814
 Glu Glu Lys Ala Lys Leu Leu Arg Glu Met Met Ala Lys Ile Glu Asp
 325 330 335

aag aat gag gtc ctg ga gtgagtgtgg gacttggca gggaggcgaa 3861
 Lys Asn Glu Val Leu Glu
 340

ggcaggcagc acttccggg cctctgggg cccaggcgt gcctatgctg ggagaggaat 3921

gaaatgtcca ttccaaacag gtttccaaat gctgccttcc cgcccggtt ggtggggcta 3981

gtgtgttaagg caggagtcat gtcttggag gaggaggtgc cttctttcc actgtttcca 4041

gcagtgcctt gggcatgttc tgtgagacca ggccagacct ggttagtaggg gtccgaggc 4101

acaatggct ctctgctgag acctcagatt gagtggtgag gcttgcctta gcggctccctt 4161

tgacatggtc agagttggat cagcacccag cacccacctg gccctgttgc tccccacag 4220

c cag ttc atg gat tca atg cag ttg gat ccc gag acg gtg gac aac ctt 4269
Gln Phe Met Asp Ser Met Gln Leu Asp Pro Glu Thr Val Asp Asn Leu
345 350 355

gat gcc tac agc cac atc cca ccc cag ctc atg gag aag tgc gcg gct 4317
Asp Ala Tyr Ser His Ile Pro Pro Gln Leu Met Glu Lys Cys Ala Ala
360 365 370

ctc agc gtc cgg ccc gac act gtc agg aac ctt gta cag tcc atg caa g 4366
Leu Ser Val Arg Pro Asp Thr Val Arg Asn Leu Val Gln Ser Met Gln
375 380 385 390

gtgatgttggaa ggcagagcaa gcaggatggaa gggatgtgg aggtcatcta ctgtggcctc 4426

ctccgtgtcc ctggtaactg aggtatggaga ctgcacccct ctagccctg gcttggcat 4486

ccacacccac tcctctgaat cagcataacct cttgcaccct gctcagtgtg cgctggcct 4546

cacttaagcc ctgacacctgag gggcggttc tgtctttgg gggaggggcc catgggtgcc 4606

cggtaaggct gcctcagggg ctgcctgtac aatccacaac cccag tg ctg tca ggt 4662
Val Leu Ser Gly

gtg ttc acg gat gtg gag gct tcc ctg aag gac atc aga gat ctg ttg 4710
Val Phe Thr Asp Val Glu Ala Ser Leu Lys Asp Ile Arg Asp Leu Leu
395 400 405 410

gag gag gat gag ctg cta gag cag aag ttt cag gag gcg gtg ggc cag 4758
Glu Glu Asp Glu Leu Leu Glu Gln Lys Phe Gln Glu Ala Val Gly Gln
415 420 425

gca ggg gcc atc tcc atc acc tcc aag gct gag ctg gca gag gtg agg 4806

Ala Gly Ala Ile Ser Ile Thr Ser Lys Ala Glu Leu Ala Glu Val Arg
 430 435 440

cga gaa tgg gcc aag tac atg gaa gtc cat gag aag gcc tcc ttc acc 4854
 Arg Glu Trp Ala Lys Tyr Met Glu Val His Glu Lys Ala Ser Phe Thr
 445 450 455

aac agt gag ctg cac cgt gcc atg aac ctg cac gtc ggc aac ctg cgc 4902
 Asn Ser Glu Leu His Arg Ala Met Asn Leu His Val Gly Asn Leu Arg
 460 465 470

ctg ctc agc ggg ccg ctt gac cag gtc cgg gct gcc ctg ccc aca ccg 4950
 Leu Leu Ser Gly Pro Leu Asp Gln Val Arg Ala Ala Leu Pro Thr Pro
 475 480 485 490

gcc ctc tcc cca g gtgagccccca ccagacccca ttgggagact cgagctgggg 5003
 Ala Leu Ser Pro

gtttctctgg cctcaccgac cactgetgcc cacag ag gac aag gcc gtg ctg caa 5058
 Glu Asp Lys Ala Val Leu Gln
 495 500

aac cta aag cgc atc ctg gct aag gtg cag gag atg cgg gac cag cgc 5106
 Asn Leu Lys Arg Ile Leu Ala Lys Val Gln Glu Met Arg Asp Gln Arg
 505 510 515

gtg tcc ctg gag cag cag ctg cgt gag ctt atc cag aaa gat gac atc 5154
 Val Ser Leu Glu Gln Gln Leu Arg Glu Leu Ile Gln Lys Asp Asp Ile
 520 525 530

act gcc tcg ctg gtc acc aca gac cac tca gag atg aag gtgggctggg 5203
 Thr Ala Ser Leu Val Thr Thr Asp His Ser Glu Met Lys
 535 540 545

tgagcagggt agaggggctc tggctccggg ccccacccctt aggagtcgag gccctgagtg 5263

tccgtccctg gcccccaccc cttcctcag aag ttg ttc gag gag cag ctg aaa 5316

Lys Leu Phe Glu Glu Gln Leu Lys
550

aag tat gac cag ctg aag gtg tac ctg gag cag aac ctg gcc gcc cag 5364
Lys Tyr Asp Gln Leu Lys Val Tyr Leu Glu Gln Asn Leu Ala Ala Gln
555 560 565 570

gac cgt gtc ctc tgt gca ctg aca gag gcc aac gtg cag tac gca gcc 5412
Asp Arg Val Leu Cys Ala Leu Thr Glu Ala Asn Val Gln Tyr Ala Ala
575 580 585

gtg cgg cgg gta ctc agc gac ttg gac caa aa gtcagtcccc agtcctctgt 5464
Val Arg Arg Val Leu Ser Asp Leu Asp Gln Lys
590 595

ccttcccg agccacctgg agccagcccc catggttcac ctggagctgg cccttctgcc 5524

caccag g tgg aac tcc acg ctg cag acc ctg gtg gcc tcg tat gaa gcc 5573
Trp Asn Ser Thr Leu Gln Thr Leu Val Ala Ser Tyr Glu Ala
600 605 610

tat gag gac ctg atg aag aag tcg cag gag ggc agg gac ttc tac gca 5621
Tyr Glu Asp Leu Met Lys Lys Ser Gln Glu Gly Arg Asp Phe Tyr Ala
615 620 625

gat ctg gag agc aag gtg gct gct ctg ctg gag cgc acg cag tcc acc 5669
Asp Leu Glu Ser Lys Val Ala Ala Leu Leu Glu Arg Thr Gln Ser Thr
630 635 640

tgc cag gcc cgc gag gct gcc cgc cag cag ctc ctg gac ag gtttgtgtgg 5720
Cys Gln Ala Arg Glu Ala Ala Arg Gln Gln Leu Leu Asp Arg
645 650 655

ccctgggct gtggcggcgt tcgggtccag acaggctggg gtgatgggag cctggcccca 5780

cttttcctt gcctgttgca cag g gag ctg aag aag aag ccg ccg cca cgg 5831
Glu Leu Lys Lys Pro Pro Pro Arg

	660	665	
ccc aca gcc cca aag ccg ctg ctg ccc cgc agg gag gag agt gag gca Pro Thr Ala Pro Lys Pro Leu Leu Pro Arg Arg Glu Glu Ser Glu Ala			5879
670	675	680	
gtg gaa gca gga gac ccc cct gag gag ctg cgc agc ctc ccc cct gac Val Glu Ala Gly Asp Pro Pro Glu Glu Leu Arg Ser Leu Pro Pro Asp			5927
685	690	695	
atg gtg gct ggc cca cga ctg cct gac acc ttc ctg gga agt gcc acc Met Val Ala Gly Pro Arg Leu Pro Asp Thr Phe Leu Gly Ser Ala Thr			5975
700	705	710	
ccg ctc cac ttt cct ccc agc ccc ttc ccc agc tcc aca ggc cca gga Pro Leu His Phe Pro Pro Ser Pro Phe Pro Ser Ser Thr Gly Pro Gly			6023
715	720	725	730
ccc cac tat ctc tca ggc ccc ttg ccc cct ggt acc tac tcg ggc ccc Pro His Tyr Leu Ser Gly Pro Leu Pro Pro Gly Thr Tyr Ser Gly Pro			6071
735	740	745	
acc cag ctg ata cag ccc agg gcc cca ggg ccc cat gca atg ccc gta Thr Gln Leu Ile Gln Pro Arg Ala Pro Gly Pro His Ala Met Pro Val			6119
750	755	760	
gca cct ggg cct gcc ctc tac cca gcc cct gca tac aca ccg gag ctg Ala Pro Gly Pro Ala Leu Tyr Pro Ala Pro Ala Tyr Thr Pro Glu Leu			6167
765	770	775	
ggc ctt gtg ccc cga tcc tcc cca cag cat ggc gtg gtg agc agt ccc Gly Leu Val Pro Arg Ser Ser Pro Gln His Gly Val Val Ser Ser Pro			6215
780	785	790	
tat gtg ggg gta ggg ccg gcc cca cca gtt gca ggt ctc ccc tcg gcc Tyr Val Gly Val Gly Pro Ala Pro Pro Val Ala Gly Leu Pro Ser Ala			6263
795	800	805	810

cca cct cct caa ttc tca ggc ccc gag ttg gcc atg gcg gtt cgg cca			6311
Pro Pro Pro Gln Phe Ser Gly Pro Glu Leu Ala Met Ala Val Arg Pro			
815	820	825	
gcc acc acc aca gta gat agc atc cag gcg ccc atc ccc agc cac aca			6359
Ala Thr Thr Thr Val Asp Ser Ile Gln Ala Pro Ile Pro Ser His Thr			
830	835	840	
gcc cca cgg cca aac ccc acc cct gct cct ccc ccg ccc tgc ttc cct			6407
Ala Pro Arg Pro Asn Pro Thr Pro Ala Pro Pro Pro Cys Phe Pro			
845	850	855	
gtg ccc cca ccg cag cca ctg ccc acg cct tac acc tac cct gca ggg			6455
Val Pro Pro Pro Gln Pro Leu Pro Thr Pro Tyr Thr Tyr Pro Ala Gly			
860	865	870	
gct aag caa ccc atc cca gca cag cac cac ttc tct tct ggg atc ccc			6503
Ala Lys Gln Pro Ile Pro Ala Gln His His Phe Ser Ser Gly Ile Pro			
875	880	885	890
gca ggt ttt cca gcc cca agg att ggg ccc cag ccc cag ccc cat cct			6551
Ala Gly Phe Pro Ala Pro Arg Ile Gly Pro Gln Pro Gln Pro His Pro			
895	900	905	
cag ccc cat cct tca caa gcg ttt ggg cct cag ccc cca cag cag ccc			6599
Gln Pro His Pro Ser Gln Ala Phe Gly Pro Gln Pro Pro Gln Gln Pro			
910	915	920	
ctt cca ctc cag cat cca cat ctc ttc cca ccc cag gcc cca gga ctc			6647
Leu Pro Leu Gln His Pro His Leu Phe Pro Pro Gln Ala Pro Gly Leu			
925	930	935	
cta ccc cca caa tcc ccc tac ccc tat gcc cct cag cct ggg gtc ctg			6695
Leu Pro Pro Gln Ser Pro Tyr Pro Tyr Ala Pro Gln Pro Gly Val Leu			
940	945	950	

ggg cag ccg cca ccc ccc cta cac acc cag ctc tac cca ggt ccc gct 6743
 Gly Gln Pro Pro Pro Pro Leu His Thr Gln Leu Tyr Pro Gly Pro Ala
 955 960 965 970

caa gac cct ctg cca gcc cac tca ggg gct ctg cct ttc ccc agc cct 6791
 Gln Asp Pro Leu Pro Ala His Ser Gly Ala Leu Pro Phe Pro Ser Pro
 975 980 985

ggg ccc cct cag cct ccc cat ccc cca ctg gca tat ggt cct gcc cct 6839
 Gly Pro Pro Gln Pro Pro His Pro Pro Leu Ala Tyr Gly Pro Ala Pro
 990 995 1000

tct acc aga ccc atg ggc ccc cag gca gcc cct ctt acc att cga ggg 6887
 Ser Thr Arg Pro Met Gly Pro Gln Ala Ala Pro Leu Thr Ile Arg Gly
 1005 1010 1015

ccc tcg tct gct ggc cag tcc acc cct agt ccc cac ctg gtg cct tca 6935
 Pro Ser Ser Ala Gly Gln Ser Thr Pro Ser Pro His Leu Val Pro Ser
 1020 1025 1030

cct gcc cca tct cca ggg cct ggt ccg gta ccc cct cgc ccc cca gca 6983
 Pro Ala Pro Ser Pro Gly Pro Gly Pro Val Pro Pro Arg Pro Pro Ala
 1035 1040 1045 1050

gca gaa cca ccc cct tgc ctg cgc cga ggc gcc gca gct gca gac ctg 7031
 Ala Glu Pro Pro Pro Cys Leu Arg Arg Gly Ala Ala Ala Asp Leu
 1055 1060 1065

ctc tcc tcc agc ccg gag agc cag cat ggc ggc act cag tct cct ggg 7079
 Leu Ser Ser Ser Pro Glu Ser Gln His Gly Gly Thr Gln Ser Pro Gly
 1070 1075 1080

ggt ggg cag ccc ctg ctg cag ccc acc aag gtg gat gca gct gag ggt 7127
 Gly Gly Gln Pro Leu Leu Gln Pro Thr Lys Val Asp Ala Ala Glu Gly
 1085 1090 1095

cgt cgg ccg cag gcc ctg cgg ctg att gag cgg gac ccc tat gag cat 7175

Arg Arg Pro Gln Ala Leu Arg Leu Ile Glu Arg Asp Pro Tyr Glu His
 1100 1105 1110

cct gag agg ctg cgg cag ttg cag cag gag ctg gag gcc ttt cgg ggt 7223
 Pro Glu Arg Leu Arg Gln Leu Gln Gln Glu Leu Glu Ala Phe Arg Gly
 1115 1120 1125 1130

cag ctg ggg gat gtg gga gct ctg gac act gtc tgg cga gag ctg caa 7271
 Gln Leu Gly Asp Val Gly Ala Leu Asp Thr Val Trp Arg Glu Leu Gln
 1135 1140 1145

gat gcg cag gaa cat gat gcc cga ggc cgt tcc atc gcc att gcc cgc 7319
 Asp Ala Gln Glu His Asp Ala Arg Gly Arg Ser Ile Ala Ile Ala Arg
 1150 1155 1160

tgc tac tca ctg aag aac cgg cac cag gat gtc atg ccc tat gac agt 7367
 Cys Tyr Ser Leu Lys Asn Arg His Gln Asp Val Met Pro Tyr Asp Ser
 1165 1170 1175

aac cgt gtg gtg ctg cgc tca ggc aag gat gac tac atc aat gcc agc 7415
 Asn Arg Val Val Leu Arg Ser Gly Lys Asp Asp Tyr Ile Asn Ala Ser
 1180 1185 1190

tgc gtg gag ggg ctc tcc cca tac tgc ccc ccg cta gtg gca acc cag 7463
 Cys Val Glu Gly Leu Ser Pro Tyr Cys Pro Pro Leu Val Ala Thr Gln
 1195 1200 1205 1210

gcc cca ctg cct ggc aca gct gct gac ttc tgg ctc atg gtc cat gag 7511
 Ala Pro Leu Pro Gly Thr Ala Ala Asp Phe Trp Leu Met Val His Glu
 1215 1220 1225

cag aaa gtg tca gtc att gtc atg ctg gtt tct gag gct gag atg gag 7559
 Gln Lys Val Ser Val Ile Val Met Leu Val Ser Glu Ala Glu Met Glu
 1230 1235 1240

aag gtgagaagag ggggtgggtgc ccccgaggca gtgtgggtg gcagggcagg 7612
 Lys

ggatcctgga aaaccaggc tgtctggct tatctgtccc tcag caa aaa gtg gca 7668
 Gln Lys Val Ala
 1245

cgc tac ttc ccc acc gag agg ggc cag ccc atg gtg cac ggt gcc ctg 7716
 Arg Tyr Phe Pro Thr Glu Arg Gly Gln Pro Met Val His Gly Ala Leu
 1250 1255 1260

agc ctg gca ttg agc agc gtc cgc agc acc gaa acc cat gtg gag cgc 7764
 Ser Leu Ala Leu Ser Ser Val Arg Ser Thr Glu Thr His Val Glu Arg
 1265 1270 1275

gtg ctg agc ctg cag ttc cga gac cag agc ctc aag cgc tct ctt gtg 7812
 Val Leu Ser Leu Gln Phe Arg Asp Gln Ser Leu Lys Arg Ser Leu Val
 1280 1285 1290 1295

cac ctg cac ttc ccc act tgg cct gag tt gtgagtccac tgctctggat 7861
 His Leu His Phe Pro Thr Trp Pro Glu Leu
 1300 1305

ggtggttggg ggtctaagtg ctgtccagtc ctgggtgctg ggagggatga gagcctcagg 7921

tcagggctgg ctcataaggct ctccctggcc ccacccctgtc ccacag a ggc ctg ccc 7977
 Gly Leu Pro

gac agc ccc agc aac ttg ctg cgc ttc atc cag gag gtg cac gca cat 8025
 Asp Ser Pro Ser Asn Leu Leu Arg Phe Ile Gln Glu Val His Ala His
 1310 1315 1320

tac ctg cat cag cgg ccg ctg cac acg ccc atc att gtg cac tgc ag 8072
 Tyr Leu His Gln Arg Pro Leu His Thr Pro Ile Ile Val His Cys Ser
 1325 1330 1335 1340

gtagagggtg ggcctgaggg tctctccctt atgggctt ggcctagcct cataccccgg 8132

cctcataacc ctttcttggc acag c tct ggt gtg ggc cgc acg gga gcc ttt 8184

Ser Gly Val Gly Arg Thr Gly Ala Phe
1345

gca ctg ctc tat gca gct gtg cag gag gtg gag gct ggg aac gga atc 8232
Ala Leu Leu Tyr Ala Ala Val Gln Glu Val Glu Ala Gly Asn Gly Ile
1350 1355 1360 1365

cct gag ctg cct cag ctg gtg cg^g cgc atg cg^g cag cag aga aag cac 8280
Pro Glu Leu Pro Gln Leu Val Arg Arg Met Arg Gln Gln Arg Lys His
1370 1375 1380

atg ctg cag gag aag gtgatgtatct gggcatatgg ggctggatg ggcattctgt 8335
Met Leu Gln Glu Lys
1385

cccgaggta cggccccctg cccagctgac ctggccaaat gcacctgtgc ag ctg cac 8393
Leu His

ctc agg ttc tgc tat gag gca gtg gtg aga cac gtg gag cag gtc ctg 8441
Leu Arg Phe Cys Tyr Glu Ala Val Val Arg His Val Glu Gln Val Leu
1390 1395 1400

cag cgc cat ggt gtg cct cct cca tgc aaa ccc ttg gcc agt gca agc 8489
Gln Arg His Gly Val Pro Pro Pro Cys Lys Pro Leu Ala Ser Ala Ser
1405 1410 1415 1420

atc agc cag aag gtgaggaagg ttccgtgaa gctgctggaa gagccacagc 8541
Ile Ser Gln Lys

cttggaaatc cctctcctca ctcactctgt cttctcag aac cac ctt cct cag gac 8597
Asn His Leu Pro Gln Asp
1425 1430

tcc cag gac ctg gtc ctc ggt ggg gat gtg ccc atc agc tcc atc cag 8645
Ser Gln Asp Leu Val Leu Gly Gly Asp Val Pro Ile Ser Ser Ile Gln
1435 1440 1445

gcc acc att gcc aag ctc agc att cgg cct cct ggg ggg ttg gag tcc 8693
 Ala Thr Ile Ala Lys Leu Ser Ile Arg Pro Pro Gly Gly Leu Glu Ser
 1450 1455 1460

ccg gtt gcc agc ttg cca ggc cct gca gag ccc cca ggc ctc ccc cca 8741
 Pro Val Ala Ser Leu Pro Gly Pro Ala Glu Pro Pro Gly Leu Pro Pro
 1465 1470 1475

gcc agc ctc cca gag tct acc cca atc cca tct tcc tcc cca ccc ccc 8789
 Ala Ser Leu Pro Glu Ser Thr Pro Ile Pro Ser Ser Pro Pro Pro
 1480 1485 1490

ctt tcc tcc cca cta cct gag gct ccc cag cct aag gag gag ccg cca 8837
 Leu Ser Ser Pro Leu Pro Glu Ala Pro Gln Pro Lys Glu Glu Pro Pro
 1495 1500 1505 1510

gtg cct gaa gcc ccc agc tcg ggg ccc ccc tcc tcc tcc ctg gaa ttg 8885
 Val Pro Glu Ala Pro Ser Ser Gly Pro Pro Ser Ser Leu Glu Leu
 1515 1520 1525

ctg gcc tcc ttg acc cca gag gcc ttc tcc ctg gac agc tcc ctg cgg 8933
 Leu Ala Ser Leu Thr Pro Glu Ala Phe Ser Leu Asp Ser Ser Leu Arg
 1530 1535 1540

ggc aaa cag cgg atg agc aag cat aac ttt ctg cag gcc cat aac ggg 8981
 Gly Lys Gln Arg Met Ser Lys His Asn Phe Leu Gln Ala His Asn Gly
 1545 1550 1555

caa ggg ctg cgg gcc acc cgg ccc tct gac gac ccc ctc agc ctt ctg 9029
 Gln Gly Leu Arg Ala Thr Arg Pro Ser Asp Asp Pro Leu Ser Leu Leu
 1560 1565 1570

gat cca ctc tgg aca ctc aac aag acc tgaacagggtt ttgcctacct 9076
 Asp Pro Leu Trp Thr Leu Asn Lys Thr
 1575 1580

ggtccttaca ctacatcatc atcatctcat gcccacctgc ccacacccag cagagcttct 9136

cagtggcac agtctttac tcccatattct gctgccttg gccctgcctg gcccagcctg 9196

caccctgtg gggtaaat gtactgcagg ctctggtca gtttcgttc ctttatggg 9256

ccgacattt tttagcttt tgctattgaa ataataaacc accctgttct gtg 9309

<210> 4

<211> 4022

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(3759)

<400> 4

atg	gcc	aag	att	gag	gac	aag	aat	gag	gtc	ctg	gac	cag	ttc	atg	gat	48
Met	Ala	Lys	Ile	Glu	Asp	Lys	Asn	Glu	Val	Leu	Asp	Gln	Phe	Met	Asp	
1	5								10					15		

tca	atg	cag	ttg	gat	ccc	gag	acg	gtg	gac	aac	ctt	gat	gcc	tac	agc	96
Ser	Met	Gln	Leu	Asp	Pro	Glu	Thr	Val	Asp	Asn	Leu	Asp	Ala	Tyr	Ser	
20								25					30			

cac	atc	cca	ccc	cag	ctc	atg	gag	aag	tgc	gcg	gct	ctc	agc	gtc	cgg	144
His	Ile	Pro	Pro	Gln	Leu	Met	Glu	Lys	Cys	Ala	Ala	Leu	Ser	Val	Arg	
35								40					45			

ccc	gac	act	gtc	agg	aac	ctt	gta	cag	tcc	atg	caa	gtg	ctg	tca	ggt	192
Pro	Asp	Thr	Val	Arg	Asn	Leu	Val	Gln	Ser	Met	Gln	Val	Leu	Ser	Gly	
50							55					60				

gtg	ttc	acg	gat	gtg	gag	gct	tcc	aag	gac	atc	aga	gat	ctg	ttg	240	
Val	Phe	Thr	Asp	Val	Glu	Ala	Ser	Leu	Lys	Asp	Ile	Arg	Asp	Leu	Leu	
65							70				75		80			

gag	gag	gat	gag	ctg	cta	gag	cag	aag	ttt	cag	gag	gct	gtg	ggc	cag	288
Glu	Glu	Asp	Glu	Leu	Leu	Glu	Gln	Lys	Phe	Gln	Glu	Ala	Val	Gly	Gln	
85								90					95			

gca ggg gcc atc tcc atc acc tcc aag gct gag ctg gca gag gtg agg	336		
Ala Gly Ala Ile Ser Ile Thr Ser Lys Ala Glu Leu Ala Glu Val Arg			
100	105	110	
cga gaa tgg gcc aag tac atg gaa gtc cat gag aag gcc tcc ttc acc	384		
Arg Glu Trp Ala Lys Tyr Met Glu Val His Glu Lys Ala Ser Phe Thr			
115	120	125	
aac agt gag ctg cac cgt gcc atg aac ctg cac gtc ggc aac ctg cgc	432		
Asn Ser Glu Leu His Arg Ala Met Asn Leu His Val Gly Asn Leu Arg			
130	135	140	
ctg ctc agc ggg ccg ctt gac cag gtc cgg gct gcc ctg ccc aca ccg	480		
Leu Leu Ser Gly Pro Leu Asp Gln Val Arg Ala Ala Leu Pro Thr Pro			
145	150	155	160
gcc ctc tcc cca gag gac aag gcc gtg ctg caa aac cta aag cgc atc	528		
Ala Leu Ser Pro Glu Asp Lys Ala Val Leu Gln Asn Leu Lys Arg Ile			
165	170	175	
ctg gct aag gtg cag gag atg cgg gac cag cgc gtg tcc ctg gag cag	576		
Leu Ala Lys Val Gln Glu Met Arg Asp Gln Arg Val Ser Leu Glu Gln			
180	185	190	
cag ctg cgt gag ctt atc cag aaa gat gac atc act gcc tcg ctg gtc	624		
Gln Leu Arg Glu Leu Ile Gln Lys Asp Asp Ile Thr Ala Ser Leu Val			
195	200	205	
acc aca gac cac tca gag atg aag ttg ttc gag gag cag ctg aaa	672		
Thr Thr Asp His Ser Glu Met Lys Lys Leu Phe Glu Glu Gln Leu Lys			
210	215	220	
aag tat gac cag ctg aag gtg tac ctg gag cag aac ctg gcc gca cag	720		
Lys Tyr Asp Gln Leu Lys Val Tyr Leu Glu Gln Asn Leu Ala Ala Gln			
225	230	235	240
gac cgt gtc ctc tgt gca ctg aca gag gcc aac gtg cag tac gca gcc	768		
Asp Arg Val Leu Cys Ala Leu Thr Glu Ala Asn Val Gln Tyr Ala Ala			
245	250	255	
gtg cgg cgg gta ctc agc gac ttg gac caa aag tgg aac tcc acg ctg	816		

Val Arg Arg Val Leu Ser Asp Leu Asp Gln Lys Trp Asn Ser Thr Leu			
260	265	270	
cag acc ctg gtg gcc tcg tat gaa gcc tat gag gac ctg atg aag aag	864		
Gln Thr Leu Val Ala Ser Tyr Glu Ala Tyr Glu Asp Leu Met Lys Lys			
275	280	285	
tcg cag gag ggc agg gac ttc tac gca gat ctg gag agc aag gtg gct	912		
Ser Gln Glu Gly Arg Asp Phe Tyr Ala Asp Leu Glu Ser Lys Val Ala			
290	295	300	
gct ctg ctg gag cgc acg cag tcc acc tgc cag gcc cgc gag gct gcc	960		
Ala Leu Leu Glu Arg Thr Gln Ser Thr Cys Gln Ala Arg Glu Ala Ala			
305	310	315	320
cgc cag cag ctc ctg gac agg gag ctg aag aag aag ccg ccg cca cgg	1008		
Arg Gln Gln Leu Leu Asp Arg Glu Leu Lys Lys Pro Pro Pro Arg			
325	330	335	
ccc aca gcc cca aag ccg ctg ctg ccc cgc agg gag gag agt gag gca	1056		
Pro Thr Ala Pro Lys Pro Leu Leu Pro Arg Arg Glu Glu Ser Glu Ala			
340	345	350	
gtg gaa gca gga gac ccc cct gag gag ctg cgc agc ctc ccc cct gac	1104		
Val Glu Ala Gly Asp Pro Pro Glu Glu Leu Arg Ser Leu Pro Pro Asp			
355	360	365	
atg gtg gct ggc cca cga ctg cct gac acc ttc ctg gga agt gcc acc	1152		
Met Val Ala Gly Pro Arg Leu Pro Asp Thr Phe Leu Gly Ser Ala Thr			
370	375	380	
ccg ctc cac ttt cct ccc agc ccc ttc ccc agc tcc aca ggc cca gga	1200		
Pro Leu His Phe Pro Pro Ser Pro Phe Pro Ser Ser Thr Gly Pro Gly			
385	390	395	400
ccc cac tat ctc tca ggc ccc ttg ccc cct ggt acc tac tcg ggc ccc	1248		
Pro His Tyr Leu Ser Gly Pro Leu Pro Pro Gly Thr Tyr Ser Gly Pro			
405	410	415	
acc cag ctg ata cag ccc agg gcc cca ggg ccc cat gca atg ccc gta	1296		
Thr Gln Leu Ile Gln Pro Arg Ala Pro Gly Pro His Ala Met Pro Val			
420	425	430	

gca cct ggg cct gcc ctc tac cca gcc cct gca tac aca ccg gag ctg Ala Pro Gly Pro Ala Leu Tyr Pro Ala Pro Ala Tyr Thr Pro Glu Leu	435	440	445	1344
ggc ctt gtg ccc cga tcc tcc cca cag cat ggc gtg gtg agc agt ccc Gly Leu Val Pro Arg Ser Ser Pro Gln His Gly Val Val Ser Ser Pro	450	455	460	1392
tat gtg ggg gta ggg ccg gcc cca cca gtt gca ggt ctc ccc tcg gcc Tyr Val Gly Val Gly Pro Ala Pro Pro Val Ala Gly Leu Pro Ser Ala	465	470	475	1440
cca cct cct caa ttc tca ggc ccc gag ttg gcc atg gcg gtt cgg cca Pro Pro Pro Gln Phe Ser Gly Pro Glu Leu Ala Met Ala Val Arg Pro	485	490	495	1488
gcc acc acc aca gta gat agc atc cag gcg ccc atc ccc agc cac aca Ala Thr Thr Thr Val Asp Ser Ile Gln Ala Pro Ile Pro Ser His Thr	500	505	510	1536
gcc cca cgg cca aac ccc acc cct get cct ccc ceg ccc tgc ttc cct Ala Pro Arg Pro Asn Pro Thr Pro Ala Pro Pro Pro Cys Phe Pro	515	520	525	1584
gtg ccc cca ccg cag cca ctg ccc acg cct tac acc tac cct gca ggg Val Pro Pro Pro Gln Pro Leu Pro Thr Pro Tyr Thr Tyr Pro Ala Gly	530	535	540	1632
gct aag caa ccc atc cca gca cag cac cac ttc tct tct ggg atc ccc Ala Lys Gln Pro Ile Pro Ala Gln His His Phe Ser Ser Gly Ile Pro	545	550	555	1680
gca ggt ttt cca gcc cca agg att ggg ccc cag ccc cag ccc cat cct Ala Gly Phe Pro Ala Pro Arg Ile Gly Pro Gln Pro Gln Pro His Pro	565	570	575	1728
cag ccc cat cct tca caa gcg ttt ggg cct cag ccc cca cag cag ccc Gln Pro His Pro Ser Gln Ala Phe Gly Pro Gln Pro Pro Gln Gln Pro	580	585	590	1776
ctt cca ctc cag cat cca cat ctc ttc cca ccc cag gcc cca gga ctc				1824

Leu Pro Leu Gln His Pro His Leu Phe Pro Pro Gln Ala Pro Gly Leu
 595 600 605

cta ccc cca caa tcc ccc tac ccc tat gcc cct cag cct ggg gtc ctg 1872
 Leu Pro Pro Gln Ser Pro Tyr Pro Tyr Ala Pro Gln Pro Gly Val Leu
 610 615 620

ggg cag ccg cca ccc ccc cta cac acc cag ctc tac cca ggt ccc get 1920
 Gly Gln Pro Pro Pro Pro Leu His Thr Gln Leu Tyr Pro Gly Pro Ala
 625 630 635 640

caa gac cct ctg cca gcc cac tca ggg gct ctg cct ttc ccc agc cct 1968
 Gln Asp Pro Leu Pro Ala His Ser Gly Ala Leu Pro Phe Pro Ser Pro
 645 650 655

ggg ccc cct cag cct ccc cat ccc cca ctg gca tat ggt cct gcc cct 2016
 Gly Pro Pro Gln Pro Pro His Pro Pro Leu Ala Tyr Gly Pro Ala Pro
 660 665 670

tct acc aga ccc atg ggc ccc cag gca gcc cct ctt acc att cga ggg 2064
 Ser Thr Arg Pro Met Gly Pro Gln Ala Ala Pro Leu Thr Ile Arg Gly
 675 680 685

ccc tcg tct gct ggc cag tcc acc cct agt ccc cac ctg gtg cct tca 2112
 Pro Ser Ser Ala Gly Gln Ser Thr Pro Ser Pro His Leu Val Pro Ser
 690 695 700

cct gcc cca tct cca ggg cct ggt ccg gta ccc cct cgc ccc cca gca 2160
 Pro Ala Pro Ser Pro Gly Pro Gly Pro Val Pro Pro Arg Pro Pro Ala
 705 710 715 720

gca gaa cca ccc cct tgc ctg cgc cga ggc gcc gca gct gca gac ctg 2208
 Ala Glu Pro Pro Cys Leu Arg Arg Gly Ala Ala Ala Ala Asp Leu
 725 730 735

ctc tcc tcc agc ccg gag agc cag cat ggc ggc act cag tct cct ggg 2256
 Leu Ser Ser Ser Pro Glu Ser Gln His Gly Gly Thr Gln Ser Pro Gly
 740 745 750

ggt ggg cag ccc ctg ctg cag ccc acc aag gtg gat gca gct gag ggt 2304
 Gly Gly Gln Pro Leu Leu Gln Pro Thr Lys Val Asp Ala Ala Glu Gly
 755 760 765

cgt	cg	ccg	cag	gcc	ctg	cg	ctg	att	gag	cg	gac	ccc	tat	gag	cat	2352	
Arg	Arg	Pro	Gln	Ala	Leu	Arg	Leu	Ile	Glu	Arg	Asp	Pro	Tyr	Glu	His		
770															780		
cct	gag	agg	ctg	cg	cag	ttg	cag	cag	gag	ctg	gag	gcc	ttt	cg	ggt	2400	
Pro	Glu	Arg	Leu	Arg	Gln	Leu	Gln	Gln	Glu	Leu	Glu	Ala	Phe	Arg	Gly		
785															800		
cag	ctg	ggg	gat	gtg	gga	gct	ctg	gac	act	gtc	tgg	cga	gag	ctg	caa	2448	
Gln	Leu	Gly	Asp	Val	Gly	Ala	Leu	Asp	Thr	Val	Trp	Arg	Glu	Leu	Gln		
805															815		
gat	gc	cg	cag	gaa	cat	gat	gc	cga	ggc	cg	tcc	atc	gc	att	gc	cg	2496
Asp	Ala	Gln	Glu	His	Asp	Ala	Arg	Gly	Arg	Ser	Ile	Ala	Ile	Ala	Arg		
820															830		
tgc	ta	tc	ctg	aag	aa	cgg	ca	cag	gat	gtc	atg	cc	tat	gac	agt	2544	
Cys	Tyr	Ser	Leu	Lys	Asn	Arg	His	Gln	Asp	Val	Met	Pro	Tyr	Asp	Ser		
835															845		
aac	cgt	gtg	gtg	ctg	cgc	tca	ggc	aag	gat	gac	tac	atc	aat	gc	ag	2592	
Asn	Arg	Val	Val	Leu	Arg	Ser	Gly	Lys	Asp	Asp	Tyr	Ile	Asn	Ala	Ser		
850															860		
tgc	gtg	gag	ggg	ctc	tcc	cca	ta	tgc	cc	ccg	cta	gtg	gca	acc	cag	2640	
Cys	Val	Glu	Gly	Leu	Ser	Pro	Tyr	Cys	Pro	Pro	Leu	Val	Ala	Thr	Gln		
865															880		
gcc	cc	ct	cct	ggc	aca	gct	gct	gac	ttc	tgg	ctc	atg	gtc	cat	gag	2688	
Ala	Pro	Leu	Pro	Gly	Thr	Ala	Ala	Asp	Phe	Trp	Leu	Met	Val	His	Glu		
885															895		
cag	aaa	gtg	tca	gtc	att	gtc	atg	ctg	gtt	tct	gag	gct	gag	atg	gag	2736	
Gln	Lys	Val	Ser	Val	Ile	Val	Met	Leu	Val	Ser	Glu	Ala	Glu	Met	Glu		
900															910		
aag	caa	aaa	gtg	gca	cgc	tac	ttc	ccc	acc	gag	agg	ggc	cag	ccc	atg	2784	
Lys	Gln	Lys	Val	Ala	Arg	Tyr	Phe	Pro	Thr	Glu	Arg	Gly	Gln	Pro	Met		
915															925		
gtg	cac	ggt	gc	ctg	agc	ctg	gca	ttg	agc	agc	gtc	cgc	agc	acc	gaa	2832	

Val His Gly Ala Leu Ser Leu Ala Leu Ser Ser Val Arg Ser Thr Glu			
930	935	940	
acc cat gtg gag cgc gtc agc ctg cag ttc cga gac cag agc ctc			2880
Thr His Val Glu Arg Val Leu Ser Leu Gln Phe Arg Asp Gln Ser Leu			
945	950	955	960
aag cgc tct ctt gtg cac ctg cac ttc ccc act tgg cct gag tta ggc			2928
Lys Arg Ser Leu Val His Leu His Phe Pro Thr Trp Pro Glu Leu Gly			
965	970	975	
ctg ccc gac agc ccc agc aac ttg ctg cgc ttc atc cag gag gtg cac			2976
Leu Pro Asp Ser Pro Ser Asn Leu Leu Arg Phe Ile Gln Glu Val His			
980	985	990	
gca cat tac ctg cat cag cgg ccg ctg cac acg ccc atc att gtg cac			3024
Ala His Tyr Leu His Gln Arg Pro Leu His Thr Pro Ile Ile Val His			
995	1000	1005	
tgc agc tct ggt gtg ggc cgc acg gga gcc ttt gca ctg ctc tat gca			3072
Cys Ser Ser Gly Val Gly Arg Thr Gly Ala Phe Ala Leu Leu Tyr Ala			
1010	1015	1020	
gct gtg cag gag gtg gag gct ggg aac gga atc cct gag ctg cct cag			3120
Ala Val Gln Glu Val Ala Gly Asn Gly Ile Pro Glu Leu Pro Gln			
1025	1030	1035	1040
ctg gtg cgg cgc atg cgg cag cag aga aag cac atg ctg cag gag aag			3168
Leu Val Arg Arg Met Arg Gln Gln Arg Lys His Met Leu Gln Glu Lys			
1045	1050	1055	
ctg cac ctc agg ttc tgc tat gag gca gtg gtg aga cac gtg gag cag			3216
Leu His Leu Arg Phe Cys Tyr Glu Ala Val Val Arg His Val Glu Gln			
1060	1065	1070	
gtc ctg cag cgc cat ggt gtg cct cct cca tgc aaa ccc ttg gcc agt			3264
Val Leu Gln Arg His Gly Val Pro Pro Cys Lys Pro Leu Ala Ser			
1075	1080	1085	
gca agc atc agc cag aag aac cac ctt cct cag gac tcc cag gac ctg			3312
Ala Ser Ile Ser Gln Lys Asn His Leu Pro Gln Asp Ser Gln Asp Leu			
1090	1095	1100	

gtc ctc ggt ggg gat gtg ccc atc agc tcc atc cag gcc acc att gcc 3360
 Val Leu Gly Gly Asp Val Pro Ile Ser Ser Ile Gln Ala Thr Ile Ala
 1105 1110 1115 1120

aag ctc agc att cg^g cct cct ggg ggg ttg gag tcc ccg gtt gcc agc 3408
 Lys Leu Ser Ile Arg Pro Pro Gly Gly Leu Glu Ser Pro Val Ala Ser
 1125 1130 1135

ttg cca ggc cct gca gag ccc cca ggc ctc ccg cca gcc agc ctc cca 3456
 Leu Pro Gly Pro Ala Glu Pro Pro Gly Leu Pro Pro Ala Ser Leu Pro
 1140 1145 1150

gag tct acc cca atc cca tct tcc tcc cca ccc ccc ctt tcc tcc cca 3504
 Glu Ser Thr Pro Ile Pro Ser Ser Ser Pro Pro Pro Leu Ser Ser Pro
 1155 1160 1165

cta cct gag gct ccc cag cct aag gag gag ccg cca gtg cct gaa gcc 3552
 Leu Pro Glu Ala Pro Gln Pro Lys Glu Glu Pro Pro Val Pro Glu Ala
 1170 1175 1180

ccc agc tcg ggg ccc ccc tcc tcc ctg gaa ttg ctg gcc tcc ttg 3600
 Pro Ser Ser Gly Pro Pro Ser Ser Leu Glu Leu Leu Ala Ser Leu
 1185 1190 1195 1200

acc cca gag gcc ttc tcc ctg gac agc tcc ctg cgg ggc aaa cag cgg 3648
 Thr Pro Glu Ala Phe Ser Leu Asp Ser Ser Leu Arg Gly Lys Gln Arg
 1205 1210 1215

atg agc aag cat aac ttt ctg cag gcc cat aac ggg caa ggg ctg cgg 3696
 Met Ser Lys His Asn Phe Leu Gln Ala His Asn Gly Gln Gly Leu Arg
 1220 1225 1230

gcc acc cgg ccc tct gac gac ccc ctc agc ctt ctg gat cca ctc tgg 3744
 Ala Thr Arg Pro Ser Asp Asp Pro Leu Ser Leu Leu Asp Pro Leu Trp
 1235 1240 1245

aca ctc aac aag acc tgaacagg^t ttgcctacct ggtccttaca ctacatcatc 3799
 Thr Leu Asn Lys Thr
 1250

atcatctcat gcccacactgc ccacacccag cagagcttct cagtggcac agtctttac 3859

tcccatttct gctgccttg gccctgcctg gcccagcctg caccctgtg gggtggaaat 3919
gtactgcagg ctctgggtca gtttctgttc ctttatggga cccgacattt ttcagcttt 3979
tgctattgaa ataataaaacc accctgttct gtgaaaaaaaaaaa aaa 4022

<210> 5
<211> 5434
<212> DNA
<213> Homo sapiens

<220>
<221> exon
<222> (75)..(140)

<220>
<221> exon
<222> (530)..(675)

<220>
<221> exon
<222> (961)..(1272)

<220>
<221> exon
<222> (1348)..(1654)

<220>
<221> exon
<222> (1741)..(3679)

<220>
<221> exon
<222> (3774)..(3958)

<220>
<221> exon
<222> (4085)..(4189)

<220>

<221> exon
<222> (4274)..(4412)

<220>
<221> exon
<222> (4505)..(4618)

<220>
<221> exon
<222> (4697)..(5436)

<220>
<221> intron
<222> (1)..(74)
<220>
<221> intron
<222> (141)..(529)

<220>
<221> intron
<222> (676)..(960)

<220>
<221> intron
<222> (1273)..(1347)

<220>
<221> intron
<222> (1655)..(1740)

<220>
<221> intron
<222> (3680)..(3773)

<220>
<221> intron
<222> (3959)..(4084)

<220>
<221> intron
<222> (4190)..(4273)

<220>

<221> intron

<222> (4413)..(4504)

<220>

<221> intron

<222> (4619)..(4696)

<400> 5

gtggagggtg gcacagaggg aggtgggtg tcttgagatg tgggtcttca gcaaatgctc 60

tgtcgcttct gcag t gag gag aag gcc aag ctg ctc cgg gag atg atg 108
Ser Glu Glu Lys Ala Lys Leu Leu Arg Glu Met Met
1 5 10gcc aag att gag gac aag aat gag gtc ctg ga gtgagtgtgg gacttggca 160
Ala Lys Ile Glu Asp Lys Asn Glu Val Leu Asp
15 20

gggaggcggga ggcaggcagc acttcccgaa cctctggggg ccccagggt gcctatgctg 220

ggagaggaat gaaatgtcca ttccaaacag gtttccaaat gtcgccttcc cgcccggtt 280

ggtggggcta gtgtgttaagg caggagtcat gtcttggag gaggagggtc cttctgttcc 340

actgtttcca gcagtgcctt gggcatgttc tgtgagacca ggccagacct ggttagtaggg 400

gtcccgaggc acaatttgct ctctgctgag acctcagatt gagtggtgag gcttgcctta 460

gcggctcctt tgacatggc agagttggat cagcacccag cacccacctg gccctgttgc 520

ccccacag c cag ttc atg gat tca atg cag ttg gat ccc gag aeg gtg 569
Gln Phe Met Asp Ser Met Gln Leu Asp Pro Glu Thr Val
25 30 35gac aac ctt gat gcc tac agc cac atc cca ccc cag ctc atg gag aag 617
Asp Asn Leu Asp Ala Tyr Ser His Ile Pro Pro Gln Leu Met Glu Lys
40 45 50tgc gcg gct ctc agc gtc cgg ccc gac act gtc agg aac ctt gta cag 665
Cys Ala Ala Leu Ser Val Arg Pro Asp Thr Val Arg Asn Leu Val Gln
55 60 65

tcc atg caa g gtgagtaagg ggcagagcaa gcagggtggaa gggagtgtgg 715
 Ser Met Gln
 70

aggcatcta ctgtggcctc ctccgtgtcc ctggtcactg aggtggaga ctgcacccct 775
 ctaggccctg gcttgggcat ccacacccac tcctctgaat cagcataacct ctgcacccct 835
 gctcagtgtg cgctgggcct cacttaagcc ctgacctgag gggcggttc tgtctttgg 895
 gggaggggcc catgggtgcc cggtcagcct gcctcagggg ctgcctgtac aatccacaac 955
 cccag tg ctg tca ggt gtg ttc acg gat gtg gag gct tcc ctg aag gac 1004
 Val Leu Ser Gly Val Phe Thr Asp Val Glu Ala Ser Leu Lys Asp
 75 80 85

atc aga gat ctg ttg gag gag gat gag ctg cta gag cag aag ttt cag 1052
 Ile Arg Asp Leu Leu Glu Glu Asp Glu Leu Leu Glu Gln Lys Phe Gln
 90 95 100

gag gcg gtg ggc cag gca ggg gcc atc tcc atc acc tcc aag gct gag 1100
 Glu Ala Val Gly Gln Ala Gly Ala Ile Ser Ile Thr Ser Lys Ala Glu
 105 110 115

ctg gca gag gtg agg cga gaa tgg gcc aag tac atg gaa gtc cat gag 1148
 Leu Ala Glu Val Arg Arg Glu Trp Ala Lys Tyr Met Glu Val His Glu
 120 125 130

aag gcc tcc ttc acc aac agt gag ctg cac cgt gcc atg aac ctg cac 1196
 Lys Ala Ser Phe Thr Asn Ser Glu Leu His Arg Ala Met Asn Leu His
 135 140 145 150

gtc ggc aac ctg cgc ctg ctc agc ggg ccg ctt gac cag gtc cgg gct 1244
 Val Gly Asn Leu Arg Leu Leu Ser Gly Pro Leu Asp Gln Val Arg Ala
 155 160 165

gcc ctg ccc aca ccg gcc ctc tcc cca g gtgagccccca ccagacccca 1292
 Ala Leu Pro Thr Pro Ala Leu Ser Pro
 170 175

ttgggagact cgagctgggg gtttctctgg cctcaccgac cactgctgcc cacag ag 1349

Glu

gac aag gcc gtg ctg caa aac cta aag cgc atc ctg gct aag gtg cag		1397
Asp Lys Ala Val Leu Gln Asn Leu Lys Arg Ile Leu Ala Lys Val Gln		
180	185	190
gag atg cgg gac cag cgc gtg tcc ctg gag cag cag ctg cgt gag ctt		1445
Glu Met Arg Asp Gln Arg Val Ser Leu Glu Gln Gln Leu Arg Glu Leu		
195	200	205
atc cag aaa gat gac atc act gcc tcg ctg gtc acc aca gac cac tca		1493
Ile Gln Lys Asp Asp Ile Thr Ala Ser Leu Val Thr Thr Asp His Ser		
210	215	220
gag atg aag aag ttg ttc gag gag cag ctg aaa aag tat gac cag ctg		1541
Glu Met Lys Lys Leu Phe Glu Glu Gln Leu Lys Lys Tyr Asp Gln Leu		
225	230	235
aag gtg tac ctg gag cag aac ctg gcc gcc cag gac cgt gtc ctc tgt		1589
Lys Val Tyr Leu Glu Gln Asn Leu Ala Ala Gln Asp Arg Val Leu Cys		
245	250	255
gca ctg aca gag gcc aac gtg cag tac gca gcc gtg cgg cgg gta ctc		1637
Ala Leu Thr Glu Ala Asn Val Gln Tyr Ala Ala Val Arg Arg Val Leu		
260	265	270
agc gac ttg gac caa aa gtcagtcccc agtcctctgt cctttccgg		1684
Ser Asp Leu Asp Gln Lys		
275		
agccacctgg agcccagccc catggttcac ctggagctgg cccttctgcc caccag g		1741
tgg aac tcc acg ctg cag acc ctg gtg gcc tcg tat gaa gcc tat gag		1789
Trp Asn Ser Thr Leu Gln Thr Leu Val Ala Ser Tyr Glu Ala Tyr Glu		
280	285	290
gac ctg atg aag aag tcg cag gag ggc agg gac ttc tac gca gat ctg		1837
Asp Leu Met Lys Lys Ser Gln Glu Gly Arg Asp Phe Tyr Ala Asp Leu		
295	300	305
gag agc aag gtg gct gct ctg gag cgc acg cag tcc acc tgc cag		1885

Glu	Ser	Lys	Val	Ala	Ala	Leu	Leu	Glu	Arg	Thr	Gln	Ser	Thr	Cys	Gln	
315								320						325		
gcc cgc gag gct gcc cgc cag cag ctc ctg gac agg gag ctg aag aag															1933	
Ala	Arg	Glu	Ala	Ala	Arg	Gln	Gln	Leu	Leu	Asp	Arg	Glu	Leu	Lys	Lys	
330								335						340		
aag ccg ccg cca cgg ccc aca gcc cca aag ccg ctg ctg ccc cgc agg															1981	
Lys	Pro	Pro	Pro	Arg	Pro	Thr	Ala	Pro	Lys	Pro	Leu	Leu	Pro	Arg	Arg	
345								350						355		
gag gag agt gag gca gtg gaa gca gga gac ccc cct gag gag ctg cgc															2029	
Glu	Glu	Ser	Glu	Ala	Val	Glu	Ala	Gly	Asp	Pro	Pro	Glu	Glu	Leu	Arg	
360								365						370		
agc ctc ccc cct gac atg gtg gct ggc cca cga ctg cct gac acc ttc															2077	
Ser	Leu	Pro	Pro	Asp	Met	Val	Ala	Gly	Pro	Arg	Leu	Pro	Asp	Thr	Phe	
375								380						385		
														390		
ctg gga agt gcc acc ccg ctc cac ttt cct ccc agc ccc ttc ccc agc															2125	
Leu	Gly	Ser	Ala	Thr	Pro	Leu	His	Phe	Pro	Pro	Ser	Pro	Phe	Pro	Ser	
395								400						405		
tcc aca ggc cca gga ccc cac tat ctc tca ggc ccc ttg ccc cct ggt															2173	
Ser	Thr	Gly	Pro	Gly	Pro	His	Tyr	Leu	Ser	Gly	Pro	Leu	Pro	Pro	Gly	
410								415						420		
acc tac tcg ggc ccc acc cag ctg ata cag ccc agg gcc cca ggg ccc															2221	
Thr	Tyr	Ser	Gly	Pro	Thr	Gln	Leu	Ile	Gln	Pro	Arg	Ala	Pro	Gly	Pro	
425								430						435		
cat gca atg ccc gta gca cct ggg cct gcc ctc tac cca gcc cct gca															2269	
His	Ala	Met	Pro	Val	Ala	Pro	Gly	Pro	Ala	Leu	Tyr	Pro	Ala	Pro	Ala	
440								445						450		
tac aca ccg gag ctg ggc ctt gtg ccc cga tcc tcc cca cag cat ggc															2317	
Tyr	Thr	Pro	Glu	Leu	Gly	Leu	Val	Pro	Arg	Ser	Ser	Pro	Gln	His	Gly	
455								460						465		
														470		
gtg gtg agc agt ccc tat gtg ggg gta ggg ccg gcc cca cca gtt gca															2365	
Val	Val	Ser	Ser	Pro	Tyr	Val	Gly	Val	Gly	Pro	Ala	Pro	Pro	Val	Ala	
475								480						485		

ggt ctc ccc tcg gcc cca cct cct caa ttc tca ggc ccc gag ttg gcc		2413	
Gly Leu Pro Ser Ala Pro Pro Pro Gln Phe Ser Gly Pro Glu Leu Ala			
490	495	500	
atg gcg gtt cg ^g cca gcc acc acc aca gta gat agc atc cag gcg ccc		2461	
Met Ala Val Arg Pro Ala Thr Thr Thr Val Asp Ser Ile Gln Ala Pro			
455	510	515	
atc ccc agc cac aca gcc cca cgg cca aac ccc acc cct gct cct ccc		2509	
Ile Pro Ser His Thr Ala Pro Arg Pro Asn Pro Thr Pro Ala Pro Pro			
520	525	530	
ccg ccc tgc ttc cct gtg ccc cca ccg cag cca ctg ccc acg cct tac		2557	
Pro Pro Cys Phe Pro Val Pro Pro Pro Gln Pro Leu Pro Thr Pro Tyr			
535	540	545	550
acc tac cct gca ggg gct aag caa ccc atc cca gca cag cac cac ttc		2605	
Thr Tyr Pro Ala Gly Ala Lys Gln Pro Ile Pro Ala Gln His His Phe			
555	560	565	
tct tct ggg atc ccc gca ggt ttt cca gcc cca agg att ggg ccc cag		2653	
Ser Ser Gly Ile Pro Ala Gly Phe Pro Ala Pro Arg Ile Gly Pro Gln			
570	575	580	
ccc cag ccc cat cct cag ccc cat cct tca caa gcg ttt ggg cct cag		2701	
Pro Gln Pro His Pro Gln Pro His Pro Ser Gln Ala Phe Gly Pro Gln			
585	590	595	
ccc cca cag cag ccc ctt cca ctc cag cat cca cat ctc ttc cca ccc		2749	
Pro Pro Gln Gln Pro Leu Pro Leu Gln His Pro His Leu Phe Pro Pro			
600	605	610	
cag gcc cca gga ctc cta ccc cca caa tcc ccc tac ccc tat gcc cct		2797	
Gln Ala Pro Gly Leu Leu Pro Pro Gln Ser Pro Tyr Pro Tyr Ala Pro			
615	620	625	630
cag cct ggg gtc ctg ggg cag ccg cca ccc ccc cta cac acc cag ctc		2845	
Gln Pro Gly Val Leu Gly Gln Pro Pro Pro Pro Leu His Thr Gln Leu			
635	640	645	
tac cca ggt ccc gct caa gac cct ctg cca gcc cac tca ggg gct ctg		2893	

Tyr Pro Gly Pro Ala Gln Asp Pro Leu Pro Ala His Ser Gly Ala Leu			
650	655	660	
cct ttc ccc agc cct ggg ccc cct cag cct ccc cat ccc cca ctg gca	2941		
Pro Phe Pro Ser Pro Gly Pro Pro Gln Pro Pro His Pro Pro Leu Ala			
665	670	675	
tat ggt cct gcc cct tct acc aga ccc atg ggc ccc cag gca gcc cct	2989		
Tyr Gly Pro Ala Pro Ser Thr Arg Pro Met Gly Pro Gln Ala Ala Pro			
680	685	690	
ctt acc att cga ggg ccc tcg tct gct ggc cag tcc acc cct agt ccc	3037		
Leu Thr Ile Arg Gly Pro Ser Ser Ala Gly Gln Ser Thr Pro Ser Pro			
695	700	705	710
cac ctg gtg cct tca cct gcc cca tct cca ggg cct ggt ccg gta ccc	3085		
His Leu Val Pro Ser Pro Ala Pro Ser Pro Gly Pro Gly Pro Val Pro			
715	720	725	
cct cgc ccc cca gca gca gaa cca ccc cct tgc ctg cgc cga ggc gcc	3133		
Pro Arg Pro Pro Ala Ala Glu Pro Pro Pro Cys Leu Arg Arg Gly Ala			
730	735	740	
gca gct gca gac ctg ctc tcc tcc agc ccg gag agc cag cat ggc ggc	3181		
Ala Ala Ala Asp Leu Leu Ser Ser Ser Pro Glu Ser Gln His Gly Gly			
745	750	755	
act cag tct cct ggg ggt ggg cag ccc ctg ctg cag ccc acc aag gtg	3229		
Thr Gln Ser Pro Gly Gly Gln Pro Leu Leu Gln Pro Thr Lys Val			
760	765	770	
gat gca gct gag ggt cgt cgg ccg cag gcc ctg cgg ctg att gag cgg	3277		
Asp Ala Ala Glu Gly Arg Arg Pro Gln Ala Leu Arg Leu Ile Glu Arg			
775	780	785	790
gac ccc tat gag cat cct gag agg ctg cgg cag ttg cag cag gag ctg	3325		
Asp Pro Tyr Glu His Pro Glu Arg Leu Arg Gln Leu Gln Glu Leu			
795	800	805	
gag gcc ttt cgg ggt cag ctg ggg gat gtg gga gct ctg gac act gtc	3373		
Glu Ala Phe Arg Gly Gln Leu Gly Asp Val Gly Ala Leu Asp Thr Val			
810	815	820	

tgg cga gag ctg caa gat gcg cag gaa cat gat gcc cga ggc cgt tcc		3421
Trp Arg Glu Leu Gln Asp Ala Gln Glu His Asp Ala Arg Gly Arg Ser		
825	830	835
atc gcc att gcc cgc tgc tac tca ctg aag aac cgg cac cag gat gtc		3469
Ile Ala Ile Ala Arg Cys Tyr Ser Leu Lys Asn Arg His Gln Asp Val		
840	845	850
atg ccc tat gac agt aac cgt gtg gtg ctg cgc tca ggc aag gat gac		3517
Met Pro Tyr Asp Ser Asn Arg Val Val Leu Arg Ser Gly Lys Asp Asp		
855	860	865
870		
tac atc aat gcc agc tgc gtg gag ggg ctc tcc cca tac tgc ccc ccg		3565
Tyr Ile Asn Ala Ser Cys Val Glu Gly Leu Ser Pro Tyr Cys Pro Pro		
875	880	885
cta gtg gca acc cag gcc cca ctg cct ggc aca gct gct gac ttc tgg		3613
Leu Val Ala Thr Gln Ala Pro Leu Pro Gly Thr Ala Ala Asp Phe Trp		
890	895	900
ctc atg gtc cat gag cag aaa gtg tca gtc att gtc atg ctg gtt tct		3661
Leu Met Val His Glu Gln Lys Val Ser Val Ile Val Met Leu Val Ser		
905	910	915
gag gct gag atg gag aag gtgagaagag ggggtgggtgc ccccgaggca		3709
Glu Ala Glu Met Glu Lys		
920		
gtgtgggtg gcagggcagg ggatcctgga aaaccaggta tgcattggct tatctgtccc	3769	
tca gaa aaa gtg gca cgc tac ttc ccc acc gag agg ggc cag ccc atg		3818
Gln Lys Val Ala Arg Tyr Phe Pro Thr Glu Arg Gly Gln Pro Met		
925	930	935
gtg cac ggt gcc ctg agc ctg gca ttg agc agc gtc cgc agc acc gaa		3866
Val His Gly Ala Leu Ser Leu Ala Leu Ser Ser Val Arg Ser Thr Glu		
940	945	950
955		
acc cat gtg gag cgc gtg ctg agc ctg cag ttc cga gac cag agc ctc		3914
Thr His Val Glu Arg Val Leu Ser Leu Gln Phe Arg Asp Gln Ser Leu		
960	965	970

aag cgc tct ctt gtg cac ctg cac ttc ccc act tgg cct gag tt 3958
 Lys Arg Ser Leu Val His Leu His Phe Pro Thr Trp Pro Glu Leu
 975 980 985

gtgagtccac tgctctggat ggtgggtggg ggtctaagtg ctgtccagtc ctgggtctg 4018
 ggagggatga gaggcctcagg tcaggcctgg ctcataggct cttccctggcc ccatcctgtc 4078

ccacag a ggc ctg ccc gac ccc agc aac ttg ctg cgc ttc atc cag 4127
 Gly Leu Pro Asp Ser Pro Ser Asn Leu Leu Arg Phe Ile Gln
 990 995 1000

gag gtg cac gca cat tac ctg cat cag cgg ccg ctg cac acg ccc atc 4175
 Glu Val His Ala His Tyr Leu His Gln Arg Pro Leu His Thr Pro Ile
 1005 1010 1015

att gtg cac tgc ag gtagagggtg ggcctgaggg tctctcctt atggctt 4229
 Ile Val His Cys Ser
 1020

ggcctagcct catacccccgg cctcataacc cttcttggc acag c tct ggt gtg 4283
 Ser Gly Val

ggc cgc acg gga gcc ttt gca ctg ctc tat gca gct gtg cag gag gtg 4331
 Gly Arg Thr Gly Ala Phe Ala Leu Leu Tyr Ala Ala Val Gln Glu Val
 1025 1030 1035 1040

gag gct ggg aac gga atc cct gag ctg cct cag ctg gtg cgg cgc atg 4379
 Glu Ala Gly Asn Gly Ile Pro Glu Leu Pro Gln Leu Val Arg Arg Met
 1045 1050 1055

cgg cag cag aga aag cac atg ctg cag gag aag gtgatgatct gggcatatgg 4432
 Arg Gln Gln Arg Lys His Met Leu Gln Glu Lys
 1060 1065

ggctgggatg ggccttctgt cccagggtaa cggccccctg cccagctgac ctggccaaat 4492

gcacctgtgc ag ctg cac ctc agg ttc tgc tat gag gca gtg gtg aga cac 4543
 Leu His Leu Arg Phe Cys Tyr Glu Ala Val Val Arg His
 1070 1075 1080

gtg gag cag gtc ctg cag cgc cat ggt gtg cct cct cca tgc aaa ccc		4591
Val Glu Gln Val Leu Gln Arg His Gly Val Pro Pro Pro Cys Lys Pro		
1085	1090	1095
ttg gcc agt gca agc atc agc cag aag gtgaggaaagg ttccgtggaa		4638
Leu Ala Ser Ala Ser Ile Ser Gln Lys		
1100	1105	
gctgctggga gagccacagc cttggaaatc cctctcctca ctcactctgt cttctcag		4696
aac cac ctt cct cag gac tcc cag gac ctg gtc ctc ggt ggg gat gtg		4744
Asn His Leu Pro Gln Asp Ser Gln Asp Leu Val Leu Gly Gly Asp Val		
1110	1115	1120
ccc atc agc tcc atc cag gcc acc att gcc aag ctc agc att cgg cct		4792
Pro Ile Ser Ser Ile Gln Ala Thr Ile Ala Lys Leu Ser Ile Arg Pro		
1125	1130	1135
cct ggg ggg ttg gag tcc ccg gtt gcc agc ttg cca ggc cct gca gag		4840
Pro Gly Gly Leu Glu Ser Pro Val Ala Ser Leu Pro Gly Pro Ala Glu		
1140	1145	1150
ccc cca ggc ctc ccg cca gcc agc ctc cca gag tct acc cca atc cca		4888
Pro Pro Gly Leu Pro Pro Ala Ser Leu Pro Glu Ser Thr Pro Ile Pro		
1155	1160	1165
tct tcc tcc cca ccc ccc ctt tcc cca cta cct gag gct ccc cag		4936
Ser Ser Ser Pro Pro Leu Ser Ser Pro Leu Pro Glu Ala Pro Gln		
1170	1175	1180
cct aag gag gag ccg cca gtg cct gaa gcc ccc agc tcg ggg ccc ccc		4984
Pro Lys Glu Pro Pro Val Pro Glu Ala Pro Ser Ser Gly Pro Pro		
1190	1195	1200
tcc tcc tcc ctg gaa ttg ctg gcc tcc ttg acc cca gag gcc ttc tcc		5032
Ser Ser Ser Leu Glu Leu Leu Ala Ser Leu Thr Pro Glu Ala Phe Ser		
1205	1210	1215
ctg gac agc tcc ctg cgg ggc aaa cag cgg atg agc aag cat aac ttt		5080
Leu Asp Ser Ser Leu Arg Gly Lys Gln Arg Met Ser Lys His Asn Phe		
1220	1225	1230

ctg cag gcc cat aac ggg caa ggg ctg cgg gcc acc cgg cct tct gac	5128	
Leu Gln Ala His Asn Gly Gln Gly Leu Arg Ala Thr Arg Pro Ser Asp		
1235	1240	1245
gac ccc ctc agc ctt ctg gat cca ctc tgg aca ctc aac aag acc	5173	
Asp Pro Leu Ser Leu Leu Asp Pro Leu Trp Thr Leu Asn Lys Thr		
1250	1255	1260
tgaacagggtt ttgcctacct ggtccttaca ctacatcatc atcatctcat gcccacctgc	5233	
ccacacccag cagagcttct cagtggcac agtctttac tccatttct gtcgccttg	5293	
gccctgcctg gcccagcctg caccctgtg gggtaaaat gtactgcagg ctctgggtca	5353	
ggttctgctc ctttatggga cccgacattt ttcagcttt tgctattgaa ataataaacc	5413	
accctgttct gtaaaaaaaaaaa aaa	5436	

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene

<400> 6

ctacagccac atccccacccc a

21

<210> 7

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene

<400> 7

cctcactctc ctccctgcgg

20

<210> 8

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 1-248 containing exon 1.

<400> 8

gtggagggtg gcacagaggg

20

<210> 9

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 1-248 containing exon 1.

<400> 9

gtttggaatg gacatttcat tcct

24

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 468-730 containing exon 2.

<400> 10

cttgacatg gtcagagttg gat

23

<210> 11

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 468-730 containing exon 2.

<400> 11

cacagtagat gacctccaca ct

22

<210> 12

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 934-1311 containing exon 3.

<400> 12

ggctgcctgt acaatccaca ac

22

<210> 13

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 934-1311 containing exon 3.

<400> 13

cccagctcga gtctcccaat g

21

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
1323-1782 containing exon 4 and exon 5.

<400> 14

cctcaccgac cactgctgcc

20

<210> 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position
1323-1782 containing exon 4 and exon 5.

<400> 15

cgggaaagga cagaggactg g

21

<210> 16

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
1808-2293 containing exon 6 and part of exon 7.

<400> 16

gttcacctgg agctggccct t

21

<210> 17

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position

1808-2293 containing exon 6 and part of exon 7.

<400> 17

gtggagcggg gtggcacttc

20

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
2252-2590 containing part of exon 7.

<400> 18

cgactgcctg acacccctc g

21

<210> 19

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position
2252-2590 containing part of exon 7.

<400> 19

tgagaattga ggagggtgggg c

21

<210> 20

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
2500-2888 containing part of exon 7.

<400> 20

acagcatggc gtggtgagca g

21

<210> 21

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 2500-2888 containing part of exon 7.

<400> 21

gcccaaacgc ttgtgaagga tg

22

<210> 22

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 2787-3217 containing part of exon 7.

<400> 22

agcaccactt ctcttctggg at

22

<210> 23

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 2787-3217 containing part of exon 7.

<400> 23

ggactggcca gcagacgagg

20

<210> 24

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
3175-3599 containing part of exon 7.

<400> 24

agccctctt accattcgag g

21

<210> 25

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position
3175-3599 containing part of exon 7.

<400> 25

catcatgttc ctgcgcatct tg

22

<210> 26

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position
3553-3948 containing part of exon 7.

<400> 26

tctggacact gtctggcgag a

21

<210> 27

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 3553-3948 containing part of exon 7.

<400> 27

caagacagac ctggtttcc ag

22

<210> 28

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 3937-4179 containing exon 8.

<400> 28

aggctgtct tggcttatct gt

22

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 3937-4179 containing exon 8.

<400> 29

ccaaccacca tccagagcag t

21

<210> 30

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 4206-4440 containing exon 9.

<400> 30

tgctgggagg gatgagagcc

20

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 4206-4440 containing exon 9.

<400> 31

cgggttatga ggctaggcca

20

<210> 32

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> sense primer for amplification of HD-PTP gene position 4400-4688 containing exon 10.

<400> 32

ggtctctcct ctatggctc t

21

<210> 33

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> antisense primer for amplification of HD-PTP gene position 4400-4688 containing exon 10.

<400> 33
gtgcatttgg ccaggtcagc t

21

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> sense primer for amplification of HD-PTP gene position 4626-4878 containing exon 11.

<400> 34
gctgggatgg gccttctgtc

20

<210> 35
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense primer for amplification of HD-PTP gene position 4626-4878 containing exon 11.

<400> 35
agagtgagtg aggagaggga tt

22

<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> sense primer for amplification of HD-PTP gene position 4801-5214 containing part of exon 12.

<400> 36
cagccagaag gtgaggaagg tt

22

<210> 37
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> antisense primer for amplification of HD-PTP gene position 4801-5214 containing part of exon 12.

<400> 37
tctgggtca aggaggccag c

21

<210> 38
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic DNA for the multicloning site (XhoI NotI XbaI KpnI BamHI) linker

<400> 38
tcgagcggcc gctctagagg taccg

25

<210> 39
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic DNA for the multicloning site (XhoI NotI XbaI KpnI BamHI) linker

<400> 39
gatccggta ctc tagagcg gccgc

25

<210> 40
<211> 297
<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (1)..(131)

<220>

<221> intron

<222> (132)..(297)

<400> 40

tgcaagcagt gcgaggatgg ccgggtggcc ggccgggtgcc acccgcc atg gag gcc 56

Met Glu Ala

1

gtg ccc cgc atg ccc gtg atc tgg ctg gac ctg aag gag gcc ggt gac 104

Val Pro Arg Met Pro Val Ile Trp Leu Asp Leu Lys Glu Ala Gly Asp

5

10

15

ttt cac ttc cag cca gct gtg aag aag gtgagcttgc cttccatctt 151

Phe His Phe Gln Pro Ala Val Lys Lys

20

25

ccccctata cgccgcgtat ctccgtcgta tgcaagcgcg tgacgcccc ctgcgcgccc 211

atcacctctt caggccccgt cgcaagggtcc ggtgaggcca ggagggccct tcgcgcgttt 271

tcctcagcct gtccccacacc ccggcg

297

<210> 41

<211> 1024

<212> DNA

<213> Homo sapiens

<220>

<221> exon

<222> (404)..(478)

<220>

<221> intron

<222> (1)..(403)

<220>

<221> intron

<222> (479)..(1024)

<400> 41

tcttgccatgc agttgctatc agcttaggtt atggtagtca ccccacaacg cagcaggccc 60

aatcttcttag ggaggcttga gttcgtagacc ctttctggaa tcccttatttta ggacccatt 120

tcagtcgct gagttcccttg gcttcctgag ctggcagact cctggacttt gtagagagac 180

tgcagcgtta ggaggacctg ccagagtgtt ggtgcagggt caaggctctc gtcaagcattt 240

tggtgctgcc tggtcaggag gcgaagttcc tggtggtcca ggagacacgc ttatggttgt 300

aggctgcac ttaatcctga gtcctggttt gtcgttgcgg aggactcaga gggcaaggcg 360

gggtcttct ctgccactgg cttatgttct tctctctctg tag ttt gtc ctg aag 415

Phe Val Leu Lys

1

aat tat gga gag aac cca gaa gcc tac aat gaa gaa ctg aag aag ctg 463

Asn Tyr Gly Glu Asn Pro Glu Ala Tyr Asn Glu Glu Leu Lys Lys Leu

5

10

15

20

gag ttg ctc aga cag gtaggaggat agtattatct ttttatgcat gggtagacag 518

Glu Leu Leu Arg Gln

25

gattggtttg atagggagat aaagaaaactg cctaggctgg gcatggtgcc tcaacgccta 578

taatcccacc actttgggag gccgagggtgg gcagatcatt tgaggtcagg agtttgagac 638
cagcctggcc aacatggtga aaccccatct ctactaaaaa tacaaaaatt aggagggtgt 698
ggtgtcatgt gcctgttagtt ccggctactc aggagtctga agcaggataa ttgcttcaac 758
ccaggagggtg gaggttgcatt ttagctgaga tcattccact gcactccagc ctgggtgata 818
gagcgagact ccatctcaaa aacaacaaaa aagaaaccac ctggcccttt ctagctttg 878
atgtaa~~gt~~tg aaagacagct ggatgtgtga ctcatgccta ttagccacc actttgggag 938
gc~~ca~~aaggcag gaggatttgt tcctcctgga gttcaggccc aggagttga gacccctca 998
acattgtgag gccctgtctc tataga 1024

国際調査報告

国際出願番号 PCT/JP00/02455

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C12N15/55, 9/16, C07K16/40, C12Q1/68,
A61K38/46

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N15/00-15/90

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

GENBANK/EMBL/DDBJ/GENESEQ
PIR/SWISSPROT/GENESEQ

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	The Journal of Biological Chemistry, 273(33), Aug. 1998 Linguang Cao et al., "A Novel Putative Protein-tirosine Phosphatase contains a BR01-like domain and suppresses Ha-ras-mediated transformation", p. 21077-21083	1-13, 15-18, 20
X	WO, 98/49317, A2 (SUGEN INC.) 05. 11月. 1998 (05. 11. 98) p. 160-164 & EP, 979288, A2 & AU, 9872600, A	1-13, 15-18, 20

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献
 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

21. 06. 00

国際調査報告の発送日

04.07.00

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

鈴木 恵理子

印

4B

9838

電話番号 03-3581-1101 内線 3448

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 14, 19 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、

請求の範囲14, 19は、人の診断方法であるから、PCT17条(2)(a)
(I) 及びPCT規則39.1(IV)の規定により、この国際調査機関が調査することを要しない対象に係るものである。

2. 請求の範囲 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。

2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。

3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。

4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

追加調査手数料の納付と共に出願人から異議申立てがあった。
 追加調査手数料の納付と共に出願人から異議申立てがなかった。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/02455

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl⁷ C12N15/55, 9/16, C07K16/40, C12Q1/68,
 A61K38/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl⁷ C12N15/00-15, /00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 GENBANK/EMBL/DDBJ/GENESFO
 PIR/SWISSPROT/GENESEQ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	The Journal of Biological Chemistry, 273(33), Aug.1998 Linguang Cao et al., "A Novel Putative Protein-tyrosine Phosphatase contains a BRO1-like domain and suppresses Ha-ras-mediated transformation", p.21077-21083	1-13,15-18,20
X	WO, 98/49317, A2 (SUGEN INC.), 05 November, 1998 (05.11.98), p.160-164 & EP, 979288, A2 & AU, 9872600, A	1-13,15-18, 20

 Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
---	--

Date of the actual completion of the international search
 21 June, 2000 (21.06.00)Date of mailing of the international search report
 04 July, 2000 (04.07.00)Name and mailing address of the ISA/
 Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/02455

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 14,19
because they relate to subject matter not required to be searched by this Authority, namely:

The subject matter of claims 14,19 relates to a method for diagnosis of the human body, which does not require an international search report by this International Search Authority in accordance with PCT Article 17(2)(a)(i) and Rule 39.1(iv)..
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.