Review: Linear Algebra

Danish (<u>ddanish@cs.cmu.edu</u>)

Office Hours: Wed 1:30 PM (outside GHC 8009)

01/26/2017

Slide/Content Courtesy: Dr. Zico Kolter

Overview

- Vector Space
- Matrix (Vector) properties and operations
 - Trace
 - Norms
 - Inverse
 - Rank (and linear independence)
 - Orthogonality
 - Eigenvalues and Eigenvectors
 - Quadratic Forms and Positive Semidefinite Matrices

The Trace

• $\operatorname{tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$

$$\operatorname{tr} A = \sum_{i=1}^{n} A_{ii}$$

Some properties

-
$$\operatorname{tr} A = \operatorname{tr} A^T$$
, $A \in \mathbb{R}^{n \times n}$

-
$$\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B$$
, $A, B \in \mathbb{R}^{n \times n}$

-
$$\operatorname{tr} AB = \operatorname{tr} BA$$
, $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times m}$

Norms

- ullet A vector norm is any function $f:\mathbb{R}^n \to \mathbb{R}$ with
 - 1. $f(x) \ge 0$ and $f(x) = 0 \Leftrightarrow x = 0$
 - 2. f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - 3. $f(x+y) \le f(x) + f(y)$

ullet ℓ_2 norm

$$||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

ullet ℓ_1 norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• ℓ_{∞} norm

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Norms

- Geometric Interpretation
- Norms for matrices?

The Matrix Inverse

 \bullet Inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ denoted A^{-1}

$$AA^{-1} = I = A^{-1}A$$

 May not exist (non-singular matrix has inverse, singular matrix does not)

$$A^{-1}$$
 exists $\iff Ax \neq 0$ for all $x \neq 0$

 \bullet Some important properties for $A,B\in\mathbb{R}^{n\times n}$ non-singular

$$- (A^{-1})^{-1} = A$$

$$- (AB)^{-1} = B^{-1}A^{-1}$$

$$- (A^T)^{-1} = (A^{-1})^T$$

Solving Linear Equations

Two linear equations

$$4x_1 - 5x_2 = -13 \\
-2x_1 + 3x_2 = 9$$

• In vector form, Ax = b, with

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

Solution using inverse

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$x = A^{-1}b$$

 Won't worry here about how to compute inverse, but it's very similar to the standard method for solving linear equations

A set of vectors $x_1, x_2, ... x_n \subset \mathbb{R}^m$ are linearly independent if no vector can be represented as a linear combination of the remaining vectors. The rank of a matrix is the cardinality of the largest subset of the columns of some matrix A that is a linearly independent set.

How to compute (row) Rank of a matrix?

- How to compute (row) Rank of a matrix?
- Column Rank == Row Rank?

- How to compute (row) Rank of a matrix?
- Column Rank == Row Rank?
- Maximum rank of a Matrix of size m x n?

Orthogonality

• Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if

$$x^T y = 0$$

• They are *orthonormal* if, in addition,

$$||x||_2 = ||y||_2 = 1$$

• A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all it's columns are orthonormal, i.e.,

$$U^T U = I = U U^T$$

Columns of an orthogonal matrix are linearly independent

Eigenvalues and Eigenvectors

• For $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue and $x \in \mathbb{C}^n \neq 0$ an eigenvector if

$$Ax = \lambda x$$

- Satisfied if $(\lambda I A)x = 0$, which we know exists if and only if $\det(\lambda I A) = 0$
- $\det(\lambda I A)$ is a polynomial (of degree n) in λ , its n roots are the n eigenvalues of A

Diagonalization

ullet Write equations for all n eigenvalues as

$$A \begin{bmatrix} | & | & | \\ x_1 & \cdots & x_n \\ | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ x_1 & \cdots & x_n \\ | & | \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

• Write as $AX = X\Lambda$, which implies

$$A = X\Lambda X^{-1}$$

if X is invertible (A diagonalizable)

Important properties of eigenvectors/eigenvalues

$$- \operatorname{tr} A = \sum_{i=1}^{n} \lambda_i$$

$$- \det A = \prod_{i=1}^n \lambda_i$$

- $-\operatorname{rank}(A) = \operatorname{number} \operatorname{of} \operatorname{non-zero} \operatorname{eigenvalues}$
- Eigenvalues of A^{-1} are $1/\lambda_i$, $i=1,\ldots,n$, eigenvectors are the same

Eigenvalues and Eigenvectors for Symmetric Matrices

- All eigenvalues are real
- The eigenvectors are orthonormal

Quadratic Forms

ullet A quadratic form is a function $f:\mathbb{R}^n \to \mathbb{R}$

$$f(x) = x^T A x$$

for some $A \in \mathbb{R}^{n \times n}$

ullet Can take A to be symmetric, since

$$x^{T}Ax = (x^{T}Ax)^{T} = x^{T}A^{T}x = x^{T}\frac{1}{2}(A + A^{T})x$$

- $A \in \mathbb{R}^{n \times n}$ is positive definite (positive semidefinite) if $x^T A x > 0$ ($x^T A x \ge 0$) for all $x \in \mathbb{R}^n \ne 0$
- $A \in \mathbb{R}^{n \times n}$ is negative definite (negative semidefinite) if $x^T A x < 0$ ($x^T A x \leq 0$) for all $x \in \mathbb{R}^n \neq 0$
- A is indefinite if neither positive nor negative semidefinite

- $\bullet\,$ Definiteness is characterized by eigenvalues of A
 - A positive definite $\Leftrightarrow \lambda_i > 0, \ \forall i$
 - A positive semidefinite $\Leftrightarrow \lambda_i \geq 0, \ \forall i$
 - A negative definite $\Leftrightarrow \lambda_i < 0, \ \forall i$
 - A negative semidefinite $\Leftrightarrow \lambda_i \leq 0, \ \forall i$

ullet Definiteness is characterized by eigenvalues of A

- A positive definite $\Leftrightarrow \lambda_i > 0, \ \forall i$
- A positive semidefinite $\Leftrightarrow \lambda_i \geq 0, \ \forall i$
- A negative definite $\Leftrightarrow \lambda_i < 0, \ \forall i$
- A negative semidefinite $\Leftrightarrow \lambda_i \leq 0, \ \forall i$

$$x^T A x = x^T U \Lambda U^T x = y^T \Lambda y = \sum_{i=1}^n \lambda_i y_i^2$$