# Contents

| 1 | Wprowadzenie do Rachunku Różniczkowego | 2 |
|---|----------------------------------------|---|
|   | 1.1 Algebra                            |   |
| 2 | Rachunek różniczkowo-całkowy           | 3 |
|   | Algebra liniowa 3.1 Wektory            | 3 |

## 1 Wprowadzenie do Rachunku Różniczkowego

#### 1.1 Algebra

#### 1.2 Trygonometira

W $\triangle$ prostokątnym dany jest kąt  $\theta.$  Wyraża się 4 funkcje trygonometryczne:

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

$$\cot \theta = \frac{b}{a}$$



Funkcje trygonometryczne również posiadają tożsamości trygonometryczne takie jak np.

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\operatorname{tg} \theta = \frac{\sin \theta}{\cos \theta}$$

$$\operatorname{ctg} \theta = \frac{\cos \theta}{\sin \theta}$$

$$\operatorname{tg} \theta \cdot \operatorname{ctg} \theta = 1$$

Funkcje trygonometryczne można konwertować na inne funkcje:

$$\sin(90^{\circ} - \theta) = \cos \theta$$
$$\cos(90^{\circ} - \theta) = \sin \theta$$
$$\tan(90^{\circ} - \theta) = \cot \theta$$
$$\cot(90^{\circ} - \theta) = \tan \theta$$

## 2 Rachunek różniczkowo-całkowy

## 3 Algebra liniowa

#### 3.1 Wektory

Wektor to uporządkowana para liczb. Jeśli wektor ma początek to jest to, wektor zaczepiony który jest oznaczany symbolem  $\overrightarrow{AB}$ . Jeżeli dane są punkty  $A = (x_1, y_1)$  oraz  $B = (x_2, y_2)$ , to współrzędne wektora  $\overrightarrow{AB}$  określa wzór:

$$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1]$$

Jeśli natomiast wektor nie ma początku to jest to wektor swobodny który jest oznaczany symbolem  $\overrightarrow{v}, \overrightarrow{u}, \overrightarrow{w}$ .

$$\overrightarrow{u} = \overrightarrow{w} \iff u_x = w_x \wedge u_y = w_y$$

Na rysunku poniżej został przedstawiony wygląd wektora [3,2] i [-2,4] w układzie współrzędnych:



Długość wektora  $\overrightarrow{w}$  oraz  $\overrightarrow{AB}$  można zapisać następująco:

$$|\overrightarrow{w}| = \sqrt{w_x^2 + w_y^2}$$

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 (y_2 - y_1)^2}$$

gdzie:

•  $A(x_1,y_1)$  i  $B(x_2,y_2)$  to długości wektora  $\overrightarrow{AB}$ 

Sumą, różnicą, iloczynem  $\overrightarrow{u} = [u_x, u_y]$ i $\overrightarrow{w} = [w_x, w_y],$ wyraża się wzorem:

$$\overrightarrow{u} + \overrightarrow{w} = [u_x + w_x, u_y + w_y]$$



$$\overrightarrow{u} - \overrightarrow{w} = [u_x - w_x, u_y - w_y]$$



$$a \cdot \overrightarrow{w} = [a \cdot w_x, a \cdot w_y], \quad \text{gdzie } a \in \mathbb{R}$$



Wektory  $\overrightarrow{u} = [u_x, u_y]$  i  $\overrightarrow{w} = [w_x, w_y]$ , są przeciwne wtedy, gdy suma wektorów  $\overrightarrow{u}$  i  $\overrightarrow{w}$  jest wektorem zerowym, czyli:

$$\overrightarrow{u} = -\overrightarrow{w} \Longleftrightarrow u_x + w_x = 0 \land u_y + w_y = 0$$

Iloczyn skalarny wektorów  $\overrightarrow{u} = [u_1, u_2]$  i  $\overrightarrow{w} = [w_1, w_2]$  to liczba, którą można uzyskać dodając iloczyny odpowiednich współrzędnych:

$$\overrightarrow{u} \cdot \overrightarrow{w} = u_1 \cdot w_1 + u_2 \cdot w_2$$

Iloczyn skalarny wektorów można również wyliczyć znając długości wektorów  $|\overrightarrow{u}|$  i  $|\overrightarrow{w}|$  oraz kąt  $\theta$  między nimi:

$$\overrightarrow{u} \cdot \overrightarrow{w} = |\overrightarrow{u}| \cdot |\overrightarrow{w}| \cdot \cos \theta$$

