Matematično-fizikalni praktikum

1. naloga: Airyjevi funkciji

Tadej Tomažič

8. oktober 2024

Kazalo

1	Nal	oga	2
2	Reš	tiev	3
Slike			
	1	Funkciji $\operatorname{Ai}(x)$ in $\operatorname{Bi}(x)$	3
	2	Funkciji $\operatorname{Ai}(x)$ in $\operatorname{Bi}(x)$ razviti po taylorju	4
	3	Funkciji $\operatorname{Ai}(x)$ in $\operatorname{Bi}(x)$ asimptotsko razvit	6
	4	Funkcija $\operatorname{Ai}(x)$ absolutna in relativna napaka	7
	5	Funkcija $Bi(x)$ absolutna in relativna napaka	8

1 Naloga

Z uporabo kombinacije Maclaurinove vrste in asimptotskega razvoja poišči čim učinkovitejši postopek za izračun vrednosti Airyjevih funkcij Ai in Bi na vsej realni osi z **absolutno** napako, manjšo od 10^{-10} . Enako naredi tudi z **relativno** napako in ugotovi, ali je tudi pri le-tej dosegljiva natančnost, manjša od 10^{-10} . Pri oceni napak si pomagaj s programi, ki znajo računati s poljubno natančnostjo, na primer z MATHEMATICO in/ali paketi MPMATH in DECIMAL v programskem jeziku PYTHON.

2 Reštiev

Najprej narišemo funkciji Ai in Bi z uporabo builtin funkcij v knjižnjici mpmath in matplotlib.

Slika 1: Funkciji Ai(x) in Bi(x)

Nato sem risal za majhne x s pomočjo razvojem Ai ter Bi v Maclaurinovo vrsto.

$$\operatorname{Ai}(x) = \alpha f(x) - \beta g(x), \qquad \operatorname{Bi}(x) = \sqrt{3} \left[\alpha f(x) + \beta g(x) \right], \tag{1}$$

kjer v x=0 veljata zvezi $\alpha={\rm Ai}(0)={\rm Bi}(0)/\sqrt{3}\approx 0.355028053887817239$ in $\beta=-{\rm Ai}'(0)={\rm Bi}'(0)/\sqrt{3}\approx 0.258819403792806798$. Vrsti za f in g sta

$$f(x) = \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)_k \frac{3^k x^{3k}}{(3k)!}, \qquad g(x) = \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)_k \frac{3^k x^{3k+1}}{(3k+1)!}, \tag{2}$$

kjer je

$$(z)_k = \Gamma(z+k)/\Gamma(z)$$
, $(z)_0 = 1$. (3)

Enačbo (3) lahko še naprej razpišemo.

$$\Gamma(z+k)/\Gamma(z) = \frac{(z+k-1)!}{(z-1)!} \tag{4}$$

Fakulteta za necela števila za večja od 1, velja isto rekurzivno pravilo kot za cela števila. Za števila med 0 in 1 se fakulteto izračuna numerično. Tako potreubujemo vrednosti:

$$\left(\frac{1}{3}\right)! = \Gamma(4/3) = 0.89297951156924921$$
 (5)

$$\left(\frac{2}{3}\right)! = \Gamma(5/3) = 0.90274529295093361$$
 (6)

Vstavimo dobljeno (4) v sumand (2).

$$f(x) = 1 + \sum_{k=1}^{\infty} \frac{1}{3} \frac{\left(\frac{1}{3} + k - 1\right)!}{\left(\frac{1}{3}\right)!} \frac{3^k x^{3k}}{(3k)!} = 1 + \frac{1}{3\left(\frac{1}{3}\right)!} \sum_{k=1}^{\infty} \left(\frac{1}{3} + k - 1\right)! \frac{3^k x^{3k}}{(3k)!}$$
(7)

Na zvit način se pa jih znebimo, če še naračunamo do k=1, namreč $(\frac{1}{3})!$ se pokrajša. Podobno naredimo za funkcijo g(x). Graf funkcije dobimo in izgleda takole:

Slika 2: Funkciji Ai(x) in Bi(x) razviti po taylorju

Za velike vrednosti |x| Airyjevi funkciji aproksimiramo z njunima asimptotskima razvojema. Z novo spremenljivko $\xi = \frac{2}{3}|x|^{3/2}$ in asimptotskimi vrstami

$$L(z) \sim \sum_{s=0}^{\infty} \frac{u_s}{z^s}, \qquad P(z) \sim \sum_{s=0}^{\infty} (-1)^s \frac{u_{2s}}{z^{2s}}, \qquad Q(z) \sim \sum_{s=0}^{\infty} (-1)^s \frac{u_{2s+1}}{z^{2s+1}},$$
 (8)

s koeficienti

$$u_s = \frac{\Gamma(3s + \frac{1}{2})}{54^s s! \Gamma(s + \frac{1}{2})} \tag{9}$$

za velike pozitivne x izrazimo

$$\operatorname{Ai}(x) \sim \frac{e^{-\xi}}{2\sqrt{\pi}x^{1/4}} L(-\xi) , \qquad \operatorname{Bi}(x) \sim \frac{e^{\xi}}{\sqrt{\pi}x^{1/4}} L(\xi) ,$$
 (10)

za po absolutni vrednosti velike negativne \boldsymbol{x} pa

$$Ai(x) \sim \frac{1}{\sqrt{\pi}(-x)^{1/4}} \left[\sin(\xi - \pi/4) Q(\xi) + \cos(\xi - \pi/4) P(\xi) \right], \tag{11}$$

$$Bi(x) \sim \frac{1}{\sqrt{\pi}(-x)^{1/4}} \left[-\sin(\xi - \pi/4) P(\xi) + \cos(\xi - \pi/4) Q(\xi) \right]. \tag{12}$$

Koeficiente (9) lahko izrazimo:

$$\frac{\Gamma(3s + \frac{1}{2})}{\Gamma(s + \frac{1}{2})} = \frac{(3s - \frac{1}{2})!}{(s - \frac{1}{2})!}$$
(13)

Dobimo naslednjo sliko za asimptotski približek funkciji.

Slika 3: Funkciji $\mathrm{Ai}(x)$ in $\mathrm{Bi}(x)$ asimptotsko razvit

Iz samega grafa ne vidimo odstopanja od prave vrednosti, zato si poglejmo absolutno napako in relativno.

Slika 4: Funkcija Ai(x) absolutna in relativna napaka

Kar zadošča nalogi na intervalu $x \in [-\infty, 8]$. Poglejmo si še za funckijo $\mathrm{Bi}(x)$.

(a) Absolutna napaka

Slika 5: Funkcija $\mathrm{Bi}(x)$ absolutna in relativna napaka