Решение нормальных систем ОДУ

Метод Эйлера для нормальных систем ОДУ. Применительно к нормальным системам ОДУ рассмотрим метод Эйлера на примере задачи Коши для системы второго порядка:

$$\begin{cases} y_1' = f_1(x, y_1, y_2), & (4.7) \\ y_2' = f_2(x, y_1, y_2), & (4.8) \\ y_1(x_0) = y_{10}, & (4.9) \\ y_2(x_0) = y_{20}. & (4.10) \end{cases}$$

Выбирая шаг h численного интегрирования $h = x_{i+1} - x_i$, запишем алгоритм для каждого уравнения системы ОДУ $(4.7), (4.8) \ (i = 0, 1, 2, \dots)$:

$$\begin{cases} y_{1i+1} = y_{1i} + h f_1(x_i, y_{1i}, y_{2i}) + O(h^2), y_{10} = y_1(x_0); & (4.11) \\ y_{2i+1} = y_{2i} + h f_2(x_i, y_{1i}, y_{2i}) + O(h^2), y_{20} = y_2(x_0). & (4.12) \end{cases}$$

Выражения (4.11), (4.12) описывают алгоритм метода Эйлера численного решения задачи Коши для нормальной системы ОДУ (4.7)–(4.10).

Пояснение.

Интегрируя уравнение чим

на отрезке $h = x_{i+1} - x_i$, полу-

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x, y(x)) dx.$$

К интегралу в правой части этого выражения применим формулу прямоугольников:

$$y_{i+1} = y_i + h f(x_i, y_i) + O(h^2), \ y_0 = y(x_0), \ i = 0, 1, 2, \dots$$

Если задана задача Коши для ОДУ n-го порядка, то она сводится к задаче Коши для нормальных систем. Рассмотрим это на примере задачи Коши для n=2.

$$\begin{cases} y'' = f(x, y, y'), \\ y(x_0) = y_0, \\ y'(x_0) = y_1, \end{cases} \leftrightarrow \begin{cases} y' = z, \\ z' = f(x, y, z), \\ y(x_0) = y_0, \\ z(x_0) = y_0, \\ z(x_0) = y_1. \end{cases}$$
(4.13)

К задаче (4.13)–(4.16) можно применить алгоритм (4.11), (4.12), если обозначить $f_1(x,y,z) \equiv z$, $f_2(x,y,z) \equiv f(x,y,z)$, причем неизвестными функциями в этой системе являются функции z(x), y(x).

Метод Эйлера-Коши для нормальных систем. Рассмотрим метод применительно к задаче Коши для нормальных систем ОДУ 2-го порядка (4.7)–(4.10).

Каждый этап алгоритма используется сразу для всех неизвестных (в данном случае y_1, y_2), при этом $y_{10} = y_1(x_0)$, $y_{20} = y_2(x_0), x_{i+1} = x_i + h, i = 0, 1, 2, \dots$

$$\begin{cases} \widetilde{y}_{1i+1} = y_{1i} + h f_1(x_i, y_{1i}, y_{2i}), \\ \widetilde{y}_{2i+1} = y_{2i} + h f_2(x_i, y_{1i}, y_{2i}), \\ y_{1i+1} = y_{1i} + \frac{h}{2} [f_1(x_i, y_{1i}, y_{2i}) + f_1(x_{i+1}, \widetilde{y}_{1i+1}, \widetilde{y}_{2i+1})], \end{cases}$$
(4.20)

$$y_{1i+1} = y_{1i} + \frac{h}{2} [f_1(x_i, y_{1i}, y_{2i}) + f_1(x_{i+1}, \widetilde{y}_{1i+1}, \widetilde{y}_{2i+1})], \quad (4.22)$$

$$y_{2i+1} = y_{2i} + \frac{h}{2} [f_2(x_i, y_{1i}, y_{2i}) + f_2(x_{i+1}, \widetilde{y}_{1i+1}, \widetilde{y}_{2i+1}).$$
 (4.23)

Выражения (4.20)–(4.23) — алгоритм метода Эйлера-Коши решения задачи Коши (4.7)-(4.10) для нормальной системы (4.7), (4.8) второго порядка.

Метод Рунге–Кутта для нормальных систем ОДУ. Метод Рунге–Кутта для нормальных систем рассмотрим на примере задачи Коши для нормальной системы ОДУ второго порядка (4.7)–(4.10):

$$\begin{cases} y_1' = f_1(x, y_1, y_2), \\ y_2' = f_2(x, y_1, y_2), \\ y_1(x_0) = y_{10}, \\ y_2(x_0) = y_{20}. \end{cases}$$

Будем обозначать частные приращения для искомой функции $y_1(x)$ через k_i^1 , k_i^2 , k_i^3 , k_i^4 , а для искомой функции $y_2(x)$ — через l_i^1 , l_i^2 , l_i^3 , l_i^4 . Поскольку правые части системы ОДУ $f_1(x,y_1,y_2)$, $f_2(x,y_1,y_2)$ зависят от всех искомых функций (в данном случае от y_1 и y_2), то приращения для $y_1(x)$ и $y_2(x)$ на каждом этапе вычисляются одновременно. Тогда метод Рунге—Кутта четвертого порядка точности для нормальной системы ОДУ второго порядка примет вид

$$\begin{cases} y_{1i+1} = y_{1i} + \Delta y_{1i}, & (4.33) \\ y_{2i+1} = y_{2i} + \Delta y_{2i}, & (4.34) \\ \Delta y_{1i} = \frac{1}{6} (k_i^1 + 2k_i^2 + 2k_i^3 + k_i^4), & (4.35) \\ \Delta y_{2i} = \frac{1}{6} (l_i^1 + 2l_i^2 + 2l_i^3 + l_i^4), & (4.36) \end{cases}$$

$$\begin{cases} k_i^1 = h f_1(x_i, y_{1i}, y_{2i}), & (4.37) \\ l_i^1 = h f_2(x_i, y_{1i}, y_{2i}), & (4.38) \\ k_i^2 = h f_1\left(x_{i+1/2}, y_{1i} + \frac{k_i^1}{2}, y_{2i} + \frac{l_i^1}{2}\right), & (4.39) \end{cases}$$

$$\begin{cases} l_i^2 = h f_2\left(x_{i+1/2}, y_{1i} + \frac{k_i^1}{2}, y_{2i} + \frac{l_i^1}{2}\right), & (4.40) \\ k_i^3 = h f_1\left(x_{i+1/2}, y_{1i} + \frac{k_i^2}{2}, y_{2i} + \frac{l_i^2}{2}\right), & (4.41) \end{cases}$$

$$\begin{cases} l_i^3 = h f_2\left(x_{i+1/2}, y_{1i} + \frac{k_i^2}{2}, y_{2i} + \frac{l_i^2}{2}\right), & (4.42) \\ k_i^4 = h f_1(x_{i+1}, y_{1i} + k_i^3, y_{2i} + l_i^3), & (4.43) \\ l_i^4 = h f_2(x_{i+1}, y_{1i} + k_i^3, y_{2i} + l_i^3), & (4.44) \end{cases}$$

где $x_{i+1/2} = x_i + h/2$, $x_{i+1} = x_i + h$.

Алгоритм (4.33)–(4.44) метода Рунге–Кутта для нормальных систем ОДУ 2-го порядка легко распространяется на нормальные системы 3-го, 4-го и т. д. порядков. Например, для нормальной системы 3-го порядка имеются три неизвестные функции $y_1(x)$, $y_2(x)$, $y_3(x)$, причем для каждой из них вводятся свои частные приращения, а именно: k_i^1 , k_i^2 , k_i^3 , k_i^4 для $y_1(x)$; l_i^1 , l_i^2 , l_i^3 , l_i^4 для $y_2(x)$; m_i^1 , m_i^2 , m_i^3 , m_i^4 для $y_3(x)$. Тогда в методе (4.33)– (4.44) к каждой паре формул добавляется еще одна для неизвестной $y_3(x)$.

Выбор шага численного интегрирования задач Коши

При численном решении задач Коши для ОДУ и систем ОДУ шаг численного решения можно выбирать апостериорно и априорно. В обоих случаях первоначальное значение шага h задается.

При апостериорном выборе шага последний изменяется в процессе счета на основе получаемой информации о поведении решения и на основе заданной точности ε .

Пусть ε — заданная точность численного решения, и пусть h — первоначально выбранный шаг. Тогда алгоритм дальнейшего выбора шага следующий.

- 1. Выбранным методом на отрезке $x \in [x_0, x_1], x_1 = x_0 + h$ решается задача Коши с шагом h с получением значения $y_{x=h}^h$.
- 2. Тем же методом с шагом h/2 решается задача Коши с получением $y_{x=h/2}^{h/2}$

3. Анализируется неравенство

$$\left| y_{x=h}^h - y_{x=h}^{h/2} \right| \leqslant \varepsilon. \tag{4.45}$$

Если неравенство (4.45) удовлетворяется, то значение шага численного интегрирования на следующем шаге увеличивается вдвое по сравнению с первоначально выбранным шагом, т.е. становится равным 2h, и алгоритм повторяется начиная с п. 1.

4. Если неравенство (4.45) не выполняется, то счет ведется с шагом h/4 начиная с отрезка $x\in [x_0,x_0+h/4]$ и после получения значения $y_{x=h/2}^{h/4}$ анализируется неравенство

$$\left| y_{x=h/2}^{h/2} - y_{x=h/2}^{h/4} \right| \leqslant \varepsilon.$$

Если оно удовлетворяется, то дальнейший счет ведется с шагом h/2 и т. д.

При априорном выборе шага расчет ведется с первоначально выбранным шагом h с получением функции $[y(x_i)]_h$, $i=0,1,2,\ldots$, и с шагом h/2 с получением функции $[y(x_{2i})]_{h/2}$, $i=0,1,2,\ldots$ Затем анализируется неравенство

$$\max_{i} \left| [y(x_i)]_h - [y(x_{2i})]_{h/2} \right| \leqslant \varepsilon. \tag{4.46}$$

Если оно выполнено, то решение $[y(x_i)]_{h/2}$, $i=1,2,3,\ldots$, принимается за истинное, в противном случае расчет повторяется с шагом h/4 и сравниваются по норме (4.46) функции $[y(x_i)]_{h/2}$ и $[y(x_{2i})]_{h/4}$ и т. д.

Процедура Рунге оценки погрешности и уточнения численного решения задач Коши

У всех рассмотренных методов численного решения задачи Коши порядок погрешности относительно шага h на всем интервале решения на единицу ниже порядка погрешности на одном шаге h.

 $Onpedenehue.\ Порядком$ метода назовем показатель p степени h^p в главном члене погрешности метода.

В методе Эйлера главный член погрешности на шаге h пропорционален h^2 , а на всем интервале пропорционален шагу h. Поэтому метод Эйлера — метод 1-го порядка. По той же причине метод Эйлера—Коши — метод 2-го порядка, метод Рунге—Кутта — метод 4-го порядка (здесь порядок метода в точности совпадает с порядком соответствующей квадратурной формулы численного интегрирования).

Пусть задача Коши решается методом p-го порядка с шагом h с получением численных значений y_h и главным членом погрешности $\varphi(x)h^p$, пропорциональным h^p . Тогда неизвестное точное решение y(x) можно представить в виде

$$y(x) = y_h + \varphi(x)h^p + O(h^{p+1}).$$
 (4.47)

Аналогичное равенство с шагом h/2 представим следующим образом:

$$y(x) = y_{h/2} + \varphi(x)(h/2)^p + O(h^{p+1}). \tag{4.48}$$

Определим $\varphi(x) \left(\frac{h}{2}\right)^p$ вычитанием (4.47) из (4.48):

$$\varphi(x)\left(\frac{h}{2}\right)^p = \frac{y_{h/2} - y_h}{2^p - 1} \tag{4.49}$$

Выражение (4.49) дает апостериорную оценку погрешности численного решения. Подставляя (4.49) в (4.48), получим уже метод (p+1)-порядка:

$$y(x) = y_{h/2} + \frac{y_{h/2} - y_h}{2^p - 1} + O(h^{p+1}), \qquad (4.50)$$

так как главный член погрешности в алгоритме (4.50) пропорционален степени h^{p+1} .

Процедура (4.50) называется процедурой Рунге уточнения численного решения задачи Коши. Для ее применения задачу необходимо решать дважды с шагами h и h/2.

Процесс уточнения с применением формулы (4.50) можно применять и дальше, проводя расчеты с шагами h/4, h/8 и т. д., пока не выполнится условие

$$\max |y_{h/2^{k-1}} - y_{h/2^k}| \le \varepsilon, \quad k = 1, 2, \dots$$

Пример Методами Эйлера, Эйлера-Коши и Рунге-Кутта с шагом h = 0,1 численно проинтегрировать следующую задачу Коши для нормальной системы второго порядка до значения x = 0,2 включительно (т. е. два шага):

$$\begin{cases} y_1' = x + 2y_1 + y_2, \\ y_2' = 2x + y_1 + 2y_2, \\ y_1(0) = 1, \\ y_2(0) = 1. \end{cases}$$

Задача допускает аналитическое решение, которое имеет вид

$$y_1(x) = \frac{7}{6}e^{3x} - \frac{1}{2}e^x + \frac{1}{3},$$

$$y_2(x) = \frac{7}{6}e^{3x} + \frac{1}{2}e^x - x - \frac{2}{3};$$

$$y_1(0) = 1; \ y_1(0,1) = 1,355583; \ y_1(0,2) = 1,848438;$$

$$y_2(0) = 1; \ y_2(0,1) = 1,36075; \ y_2(0,2) = 1,86984.$$

Метод Эйлера.

$$\begin{cases} y_{1i+1} = y_{1i} + h (x_i + 2y_{1i} + y_{2i}), \\ y_{2i+1} = y_{2i} + h (2x_i + y_{1i} + 2y_{2i}), \\ y_{10} = 1, y_{20} = 1; \\ \underline{i = 0}; x_0 = 0; y_{10} = 1; y_{20} = \underline{1}; \end{cases}$$

$$y_{11} = y_{10} + h (x_0 + 2y_{10} + y_{20}) = 1 + 0,1 (0 + 2 \cdot 1 + 1) = 1,3;$$

$$y_{21} = y_{20} + h (2x_0 + y_{10} + 2y_{20}) = 1 + 0,1 (2 \cdot 0 + 1 + 2 \cdot 1) = 1,3;$$

$$\underline{i = 1; x_1 = 0,1; y_{11} = 1,3; y_{21} = 1,3}:$$

$$y_{12} = y_{11} + h \cdot (x_1 + 2y_{11} + y_{21}) =$$

$$= 1,3 + 0,1 (0,1 + 2 \cdot 1,3 + 1,3) = 1,7;$$

$$y_{22} = y_{21} + h \cdot (2 \cdot x_1 + y_{11} + 2y_{21}) =$$

$$= 1,3 + 0,1 (2 \cdot 0,1 + 1,3 + 2 \cdot 1,3) = 1,71;$$

Метод Эйлера-Коши.

$$\begin{cases} \widetilde{y}_{1\,i+1} = y_{1i} + h\left(x_i + 2y_{1i} + y_{2i}\right), \\ \widetilde{y}_{2\,i+1} = y_{2i} + h\left(2x_i + y_{1i} + 2y_{2i}\right), \end{cases}$$

$$\begin{cases} y_{1\,i+1} = y_{1i} + \frac{h}{2}\left[\left(x_i + 2y_{1i} + y_{2i}\right) + \left(x_{i+1} + 2\widetilde{y}_{1\,i+1} + \widetilde{y}_{2\,i+1}\right)\right], \\ y_{2\,i+1} = y_{2i} + \frac{h}{2}\left[\left(2x_i + y_{1i} + 2y_{2i}\right) + \left(2x_{i+1} + \widetilde{y}_{1\,i+1} + 2\widetilde{y}_{2i+1}\right)\right], \\ y_{10} = 1, \quad y_{20} = 1; \\ \underline{i = 0}; \ x_0 = 0; \ x_1 = 0, 1; \ y_{10} = 1; \ y_{20} = 1 : \end{cases}$$

$$\begin{cases} \widetilde{y}_{1\,1} = y_{10} + h\left(x_0 + 2y_{10} + y_{20}\right) = 1 + 0, 1\left(0 + 2 \cdot 1 + 1\right) = 1, 3; \\ \widetilde{y}_{2\,1} = y_{20} + h\left(2x_0 + y_{10} + 2y_{20}\right) = 1 + 0, 1\left(2 \cdot 0 + 1 + 2 \cdot 1\right) = 1, 3; \end{cases}$$

$$\begin{cases} y_{11} = y_{10} + \frac{h}{2} \left[(x_0 + 2y_{10} + y_{20}) + (x_1 + 2\widetilde{y}_{11} + \widetilde{y}_{21}) \right] = \\ = 1 + \frac{0,1}{2} \left[(0 + 2 \cdot 1 + 1) + (0,1 + 2 \cdot 1,3 + 1,3) \right] = 1,35; \\ y_{21} = y_{20} + \frac{h}{2} \left[(2x_0 + y_{10} + 2y_{20}) + (2x_1 + \widetilde{y}_{11} + 2\widetilde{y}_{21}) \right] = \\ = 1 + \frac{0,1}{2} \left[(2 \cdot 0 + 1 + 2 \cdot 1) + (2 \cdot 0,1 + 1,3 + 2 \cdot 1,3) \right] = 1,355; \\ \underline{i = 1; \ x_1 = 0,1; \ x_2 = 0,2; \ y_{11} = 1,35; \ y_{21} = 1,355 :} \end{cases}$$

$$\begin{cases} \widetilde{y}_{12} = y_{11} + h \left(x_1 + 2y_{11} + y_{21} \right) = \\ = 1,35 + 0,1 \left(0,1 + 2 \cdot 1,35 + 1,355 \right) = 1,7655; \\ \widetilde{y}_{22} = y_{21} + h \left(2x_1 + y_{11} + 2y_{21} \right) = \\ = 1,355 + 0,1 \left(2 \cdot 0,1 + 1,35 + 2 \cdot 1,355 \right) = 1,781; \end{cases}$$

$$y_{12} = y_{11} + \frac{h}{2} \left[(x_1 + 2y_{11} + y_{21}) + (x_2 + 2\tilde{y}_{12} + \tilde{y}_{22}) \right] =$$

$$= 1,35 + \frac{0,1}{2} \left[(0,1 + 2 \cdot 1,35 + 1,355) + (0,2 + 2 \cdot 1,7655 + 1,781) \right] = 1,8334;$$

$$y_{22} = y_{21} + \frac{h}{2} \left[(2x_1 + y_{11} + 2y_{21}) + (2x_2 + \widetilde{y}_{12} + 2\widetilde{y}_{22}) \right] =$$

$$= 1,355 + \frac{0,1}{2} \left[(2 \cdot 0, 1 + 1, 35 + 2 \cdot 1, 355) + (2 \cdot 0, 2 + 1, 7655 + 2 \cdot 1, 781) \right] = 1,8544;$$

Метод Рунге-Кутта.

$$\begin{cases} y_{1\,i+1} = y_{1i} + \Delta y_{1i}, \\ y_{2i+1} = y_{2i} + \Delta y_{2i}, \end{cases}$$

$$\begin{cases} \Delta y_{1i} = \frac{1}{6} \left(k_i^1 + 2k_i^2 + 2k_i^3 + k_i^4 \right), \\ \Delta y_{2i} = \frac{1}{6} \left(l_i^1 + 2l_i^2 + 2l_i^3 + l_i^4 \right), \end{cases}$$

$$\begin{cases} k_i^1 = h \cdot \left[x_i + 2y_{1i} + y_{2i} \right], \\ l_i^1 = h \cdot \left[2x_i + y_{1i} + 2y_{2i} \right], \end{cases}$$

$$\begin{cases} k_i^2 = h\left[\left(x_i + \frac{h}{2}\right) + 2\left(y_{1i} + \frac{k_i^1}{2}\right) + \left(y_{2i} + \frac{l_i^1}{2}\right)\right], \\ l_i^2 = h\left[2\left(x_i + \frac{h}{2}\right) + \left(y_{1i} + \frac{k_i^1}{2}\right) + 2\left(y_{2i} + \frac{l_i^1}{2}\right)\right], \end{cases}$$

$$\begin{cases} k_i^3 = h\left[\left(x_i + \frac{h}{2}\right) + 2\left(y_{1i} + \frac{k_i^2}{2}\right) + \left(y_{2i} + \frac{l_i^2}{2}\right)\right], \\ l_i^3 = h\left[2\left(x_i + \frac{h}{2}\right) + \left(y_{1i} + \frac{k_i^2}{2}\right) + 2\left(y_{2i} + \frac{l_i^2}{2}\right)\right], \\ \begin{cases} k_i^4 = h \cdot \left[(x_i + h) + 2\left(y_{1i} + k_i^3\right) + \left(y_{2i} + l_i^3\right)\right], \\ l_i^4 = h \cdot \left[2\left(x_i + h\right) + \left(y_{1i} + k_i^3\right) + 2\left(y_{2i} + l_i^3\right)\right]; \end{cases} \\ i = 0; \ x_0 = 0; \ x_{0+1/2} = 0,05; \ x_1 = 0,1; \ y_{10} = 1; \ y_{20} = 1: \end{cases} \\ \begin{cases} y_{11} = y_{10} + \Delta y_{10} = 1 + 0,35558 = 1,35558; \\ y_{21} = y_{20} + \Delta y_{20} = 1 + 0,36073 = 1,36073; \end{cases}$$

$$\begin{cases} \Delta y_{10} = \frac{1}{6} \left(k_0^1 + 2k_0^2 + 2k_0^3 + k_0^4 \right) = \\ = \frac{1}{6} \left(0.3 + 2 \cdot 0.35 + 2 \cdot 0.3578 + 0.4179 \right) = 0.35558; \\ \Delta y_{20} = \frac{1}{6} \left(l_0^1 + 2l_0^2 + 2l_0^3 + l_0^4 \right) = \\ = \frac{1}{6} \left(0.3 + 2 \cdot 0.355 + 2 \cdot 0.363 + 0.4284 \right) = 0.36073; \end{cases}$$

$$\begin{cases} k_0^1 = h \cdot [x_0 + 2y_{10} + y_{20}] = 0, 1 (0 + 2 \cdot 1 + 1) = 0, 3; \\ l_0^1 = h \cdot [2x_0 + y_{10} + 2y_{20}] = 0, 1 (2 \cdot 0 + 1 + 2 \cdot 1) = 0, 3; \end{cases}$$

$$\begin{cases} k_0^2 = h\left[\left(x_0 + \frac{h}{2}\right) + 2\left(y_{10} + \frac{k_0^1}{2}\right) + \left(y_{20} + \frac{l_0^1}{2}\right)\right] = \\ = 0.1\left[0.05 + 2\left(1 + \frac{0.3}{2}\right) + \left(1 + \frac{0.3}{2}\right)\right] = 0.35; \\ l_0^2 = h\left[2\left(x_0 + \frac{h}{2}\right) + \left(y_{10} + \frac{k_0^1}{2}\right) + 2\left(y_{20} + \frac{l_0^1}{2}\right)\right] = \\ = 0.1\left[2 \cdot 0.05 + \left(1 + \frac{0.3}{2}\right) + 2\left(1 + \frac{0.3}{2}\right)\right] = 0.355; \end{cases}$$

$$\begin{cases} k_0^3 = h\left[\left(x_0 + \frac{h}{2}\right) + 2\left(y_{10} + \frac{k_0^2}{2}\right) + \left(y_{20} + \frac{l_0^2}{2}\right)\right] = \\ = 0.1\left[0.05 + 2\left(1 + \frac{0.35}{2}\right) + \left(1 + \frac{0.355}{2}\right)\right] = 0.3578; \\ l_0^3 = h\left[2\left(x_0 + \frac{h}{2}\right) + \left(y_{10} + \frac{k_0^2}{2}\right) + 2\left(y_{20} + \frac{l_0^2}{2}\right)\right] = \\ = 0.1\left[2 \cdot 0.05 + \left(1 + \frac{0.35}{2}\right) + 2\left(1 + \frac{0.355}{2}\right)\right] = 0.363; \end{cases}$$

$$\begin{cases} k_0^4 = h \cdot \left[(x_0 + h) + 2 \left(y_{10} + k_0^3 \right) + \left(y_{20} + l_0^3 \right) \right] = \\ = 0.1 \left[0.1 + 2 \left(1 + 0.3578 \right) + \left(1 + 0.363 \right) \right] = 0.4179; \\ l_0^4 = h \cdot \left[2 \left(x_0 + h \right) + \left(y_{10} + k_0^3 \right) + 2 \left(y_{20} + l_0^3 \right) \right] = \\ = 0.1 \left[2 \cdot 0.1 + \left(1 + 0.3578 \right) + 2 \left(1 + 0.363 \right) \right] = 0.4284; \end{cases}$$

$$\underline{i=1}; \quad \underline{x_1=0,1};$$

$$\underline{x_{1+1/2}=0,15}; \quad \underline{x_2=0,2}; \quad \underline{y_{11}=1,35558}; \quad \underline{y_{21}=1,36073}:$$

$$\begin{cases} y_{12}=y_{11}+\Delta y_{11}=1,35558+0,49283=1,8484;\\ y_{22}=y_{21}+\Delta y_{21}=1,36073+0,5090=1,8698; \end{cases}$$

$$\begin{cases} \Delta y_{11} = \frac{1}{6} \left(k_1^1 + 2k_1^2 + 2k_1^3 + k_1^4 \right) = \\ = \frac{1}{6} \left(0.41719 + 2 \cdot 0.4853 + 2 \cdot 0.4958 + 0.57756 \right) = \\ = 0.49283; \\ \Delta y_{21} = \frac{1}{6} \left(l_1^1 + 2l_1^2 + 2l_1^3 + l_1^4 \right) = \\ = \frac{1}{6} \left(0.4277 + 2 \cdot 0.5013 + 2 \cdot 0.5121 + 0.5997 \right) = 0.5090; \end{cases}$$

$$\begin{cases} k_1^1 = h \cdot [x_1 + 2y_{11} + y_{21}] = \\ = 0.1 (0.1 + 2 \cdot 1.35558 + 1.36073) = 0.41719; \\ l_1^1 = h \cdot [2x_1 + y_{11} + 2y_{21}] = \\ = 0.1 (0.2 + 1.35558 + 2 \cdot 1.36073) = 0.4277; \end{cases}$$

$$\begin{cases} k_1^2 = h\left[\left(x_1 + \frac{h}{2}\right) + 2\left(y_{11} + \frac{k_1^1}{2}\right) + \left(y_{21} + \frac{l_1^1}{2}\right)\right] = \\ = 0,1\left[0,15 + 2\left(1,35558 + \frac{0,41719}{2}\right) + \\ + \left(1,36073 + \frac{0,4277}{2}\right)\right] = 0,4853; \\ l_1^2 = h\left[2\left(x_1 + \frac{h}{2}\right) + \left(y_{11} + \frac{k_1^1}{2}\right) + 2\left(y_{21} + \frac{l_1^1}{2}\right)\right] = \\ = 0,1\left[2 \cdot 0,15 + \left(1,35558 + \frac{0,41719}{2}\right) + \\ + 2\left(1,36073 + \frac{0,4277}{2}\right)\right] = 0,5013; \end{cases}$$

$$\begin{cases} k_1^3 = h\left[\left(x_1 + \frac{h}{2}\right) + 2\left(y_{11} + \frac{k_1^2}{2}\right) + \left(y_{21} + \frac{l_1^2}{2}\right)\right] = \\ = 0,1\left[0,15 + 2\left(1,35558 + \frac{0,4853}{2}\right) + \\ + \left(1,36073 + \frac{0,5013}{2}\right)\right] = 0,4958; \\ l_1^3 = h\left[2\left(x_1 + \frac{h}{2}\right) + \left(y_{11} + \frac{k_1^2}{2}\right) + 2\left(y_{21} + \frac{l_1^2}{2}\right)\right] = \\ = 0,1\left[2 \cdot 0,15 + \left(1,35558 + \frac{0,4853}{2}\right) + \\ + 2\left(1,36073 + \frac{0,5013}{2}\right)\right] = 0,5121; \end{cases}$$

$$\begin{cases} k_1^4 = h \cdot \left[(x_1 + h) + 2 \left(y_{11} + k_1^3 \right) + \left(y_{21} + l_1^3 \right) \right] = \\ = 0.1 \left[0.2 + 2 \left(1.35558 + 0.4958 \right) + \\ + \left(1.36073 + 0.5121 \right) \right] = 0.57756; \\ l_1^4 = h \cdot \left[2 \left(x_1 + h \right) + \left(y_{11} + k_1^3 \right) + 2 \left(y_{21} + l_1^3 \right) \right] = \\ = 0.1 \left[2 \cdot 0.2 + \left(1.35558 + 0.4958 \right) + \\ + 2 \left(1.36073 + 0.5121 \right) \right] = 0.5997. \end{cases}$$

Таким образом, метод Эйлера для заданной системы ОДУ (решение которой растет по экспоненте) дает погрешность уже в первой цифре после запятой, метод Эйлера–Коши — во второй, и только метод Рунге–Кутта выдерживает теоретическую точность, сохраняя верными четыре цифры после запятой.

Обусловленность численных методов решения обыкновенных дифференциальных уравнений

хорошо обусловленный численный метод приводит к несущественному отклонению получаемых приближенных решений от истинных. С позиций теории погрешностей (см. разд. 3.1) в этом случае говорят об устойчивости применяемого численного (приближенного) метода. В любом случае исследование устойчивости численных методов оказывается весьма полезным и позволяет, как будет показано, дать рекомендации по выбору величины шага при решении дифференциальных уравнений.

Численная устойчивость явного метода Эйлера

Точное решение y_i^* (i = 0, 1, ..., n) обыкновенного дифференциального уравнения первого порядка с начальным условием в i-м узле сетки независимой переменной с учетом необходимых требований для разложения в ряд Тейлора имеет вид

$$y_{i+1}^* = y_i^* + h y_i^{**} + \frac{h^2}{2!} y_i^{***} + \dots, \quad i = 0, 1, \dots, n-1.$$
 (3.5.33)

В качестве приближения точного решения используется формула явного метода Эйлера

$$y_{i+1} = y_i + hf(x_i, y_i), \quad i = 0, 1, ..., n-1.$$
 (3.5.34)

С учетом общего выражения дифференциального уравнения для бесконечного ряда Тейлора может быть записано:

$$y_i^* = f(x_i, y_i^*)$$
. (3.5.35)

Для определения ошибки численного метода в сравнении с точным решением (3.5.33) вычитаем из (3.5.34) значение (3.5.35), пренебрегая членами разложения со второй и более высокого порядка производными и опуская x_i :

$$y_{t+1} - y_{t+1}^* = y_t - y_t^* + h[f(y_t) - f(y_t^*)], \tag{3.5.36}$$

обозначая ошибки:

$$\varepsilon_{i+1} = y_{i+1} - y_{i+1}^*$$
 u $\varepsilon_i = y_i - y_i^*$ (3.5.37)

и для простоты рассматривая модельное уравнение (3.5.35), устойчивое по Ляпунову (см. раздел «Обусловленность задачи решения системы обыкновенных дифференциальных уравнений. Стационарные точки решения. Устойчивость решений дифференциальных уравнений по Ляпунову») вида (3.5.66):

$$y' = -ay \quad (a > 0),$$
 (3.5.38)

где a — некоторый постоянный коэффициент, в соответствии с формулами (3.5.34) и (3.5.33) (с учётом того, что f(x, y) = -ay) будет справедливо:

$$y_{i+1} = y_i + h(-ay_i) = (1-ah)y_i;$$
 (3.5.39)

и с учётом (3.5.33) и (3.5.36):

$$y_{i+1} - y_{i+1}^* = y_i - y_i^* + ha(y_i - y_i^*); (3.5.40)$$

с учётом (3.5.37):

$$\varepsilon_{i+1} = \varepsilon_i - ha\varepsilon_i = (1 - ha)\varepsilon_i. \tag{3.5.41}$$

Достаточное условие устойчивости численного метода следующее: ошибка каждого следующего шага решения $\varepsilon_{,,}$ меньше или равна ошибки предыдущего шага $\varepsilon_{,}$:

$$|1-ha| \le 1$$
. (3.5.42)

Раскрывая это неравенство:

$$-1 \le (1-ha) \le 1$$

и учитывая, что a > 0, получаем:

$$ha \le 2. \tag{3.5.43}$$

Таким образом, для определения величины шага в случае модельного уравнения (3.5.38) можно применять следующую формулу:

$$h \le 2/a \,. \tag{3.5.44}$$

Отсюда следует, что при больших значениях коэффициента *а* величина шага решения дифференциального уравнения явным методом Эйлера должна быть весьма незначительной.

Аналогичные выводы справедливы и для других явных методов типа Эйлера и Рунге-Кутта, что сужает области их широкого применения.

Численная устойчивость неявного метода Эйлера

Формула неявного метода Эйлера для приближения точного решения имеет вид (3.5.16):

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1}), \quad i = 0, 1, ..., n-1.$$
 (3.5.45)

Или для выбранного модельного уравнения (3.5.38):

$$y_{i+1} = y_i + h(-ay_{i+1}).$$

Если преобразовать последнее уравнение к виду

$$y_{i+1}(1+ah) = y_i (3.5.46)$$

и вычесть из него выражение для точного решения (3.5.38) с учётом соотношений для ошибок (3.5.37), будет справедливо:

$$\varepsilon_{i+1} = \frac{\varepsilon_i}{1 + h\alpha} \tag{3.5.47}$$

Отсюда вытекает следующее достаточное условие устойчивости неявного метода Эйлера (3.5.42):

$$|1 + ha| \ge 1. \tag{3.5.48}$$

Так как величина шага решения h>0 и величина коэффициента a>0 (3.5.38), для выбора величины шага в неявном методе Эйлера для выбранного модельного уравнения следует использовать неравенство:

$$ha \ge 0, \tag{3.5.49}$$

из которого следует, что при любом шаге решения h и для любых положительных коэффициентов a для модельного уравнения (3.5.38) неявный метод Эйлера будет численно устойчивым.

Аналогичные выводы будут справедливы и для других неявных методов решения обыкновенных дифференциальных уравнений.

Поэтому в большинстве случаев, несмотря на трудоёмкость, неявные методы считаются более надёжными, чем явные методы.

Обусловленность задачи решения системы обыкновенных дифференциальных уравнений. Стационарные точки решения. Устойчивость решений дифференциальных уравнений по Ляпунову

Рассмотрим систему дифференциальных уравнений первого порядка:

$$\frac{dy_{t}}{dx} = f_{t}(x, y_{t}(x), ..., y_{n}(x)), \quad t = 1, ..., n$$
(3.5.50)

с начальными условиями

$$y_{i}(x_{0}) = y_{i0}, \quad i = 1, ..., n.$$

В результате ее решения могут быть получены функции со *стационарными точками решения*, так называемые решения устойчивые в «большом», когда после некоторого значения независимой переменной x, например x_s , величина искомой функции-решения становится константой, т.е.

$$y_i(x) = const^{(i)}$$
 (i = 1, ..., n) (3.5.51)

и, соответственно:

$$\frac{dy_i}{dx} = 0 \qquad (i = 1, ..., n) \tag{3.5.52}$$

при всех $x \ge x_s$.

Таким образом, *устойчивые решения* дифференциальных уравнений (кривая 1 на рис. 3.28) представляют собой функции, состоящие из двух частей:

- области стационарности (I), в которой они не меняются и их значения равны соответствующим стационарным точкам решения;
- области нестационарности (II) (так называемые области «переходного процесса»), в которой значения функций изменяются с изменением величины независимой переменной х.

Hеустойчивые решения (кривая 2 на рис. 3.28) не содержат стационарных точек решения и всегда изменяются с изменением независимой переменной x.

Очевидно, что больший интерес представляют устойчивые решения дифференциальных уравнений (решения, устойчивые «в большом»), которые с изменением независимой переменной х достигают областией стационарности. Эти области соответствуют областям нормальной эксплуатации большей части химико-технологических процессов в непрерывных режимах.

Рис. 3.28. Графическое изображение устойчивых и неустойчивых в «большом» решений обыкновенных дифференциальных уравнений

Поэтому анализ обусловленности задачи решения систем дифференциальных уравнений (устойчивости «в малом»), в большинстве случаев, выполняется для систем с устойчивыми «в большом» решениями и в двух областях решений — области стационарности (чаще всего) и области нестационарности (реже). По-существу, в этом случае речь идет о влиянии незначительных возмущений (поэтому говорят об устойчивости в «малом») на результаты решения задачи. Если результаты решения (искомые функции) изменяются также незначительно, то задача решения обыкновенного дифференциального уравнения считается хорошо обусловленной, в противном случае — плохо обусловленной.

Хорошо обусловленные системы называются устойчивыми в смысле Ляпунова. В этом случае каждое частное решение системы (3.5.4) может быть истолковано как координата движущейся материальной точки в n-мерном пространстве, зависящая от времени x.

В результате анализируемая СОДУ записывается в виде

$$\frac{dy_i}{dt} = f_i(x, y_1, ..., y_n), \quad i = 1, ..., n.$$
 (3.5.53)

Пусть функции $f_i(i=1,2,...,n)$ имеют непрерывные частные производные 1-го порядка. Обозначим через $y_i = y_i(x,x_0,y_1^{(0)},...,y_n^{(0)})$, i=1,...,n решение данной системы с начальными условиями $y_{i,0}$ при $x=x_0$, т.е.

$$y_{i0} = y_i(x_0, y_{i0}, ..., y_{n0})$$
 (i = 1, ..., n). (3.5.54)

В результате можно привести строгое определение устойчивости в смысле Ляпунова: движение точки с координатами $y_i = y_i(x, x_0, y_1^{(0)}, ..., y_n^{(0)})$ называется устойчивым в смысле Ляпунова, если для каждого $\varepsilon > 0$ можно найти такое $\delta > 0$, что для всех $|y_{i0} - \widetilde{y}_{i0}| < \delta$ (i = 1, ..., n) в промежутке $x_0 \le x < \infty$ будет справедливо неравенство:

$$|\tilde{y}_{\iota}(x, x_0, \tilde{y}_{10}, ..., \tilde{y}_{n0}) - y_{\iota}(x, x_0, y_{10}, ..., y_{n0})| < \varepsilon, \quad \iota = 1, ..., n.$$
 (3.5.55)

Каждое движение, которое не является устойчивым, называется неустойчивым. Решение $y_i = y_i(x, x_0, y_1^{(0)}, ..., y_n^{(0)})$ называется невозмущенным, а $\tilde{y}_i = \tilde{y}_i(x, x_0, \tilde{y}_1^{(0)}, ..., \tilde{y}_n^{(0)})$ — возмущенным решением.

Геометрически устойчивость означает, что в каждый момент времени $x \ge x_0$ точка трасктории возмущенного движения (решения) лежит в достаточно малой окрестности соответствующей точки невозмущенного движения.

Для вывода условий устойчивости в смысле Ляпунова запишем для возмущенного решения ($\frac{\tilde{y}}{\tilde{y}}$) равенство в векторном виде (для простоты выкладок умышленно опускаем переменные в скобках):

$$\tilde{\bar{y}} = \bar{y}^* + \Delta \bar{y}, \qquad (3.5.56)$$

где \bar{y}^* — вектор невозмущенного решения, $\Delta \bar{y}$ — вектор возмущения решения, физически обоснованный колебаниями, например, режимных параметров реальных процессов. Тогда для невозмущенного решения будет справедливо:

$$\frac{d\overline{y}^*}{dx} = \overline{f}(\overline{y}^*) , \qquad (3.5.57)$$

а для возмущенного:

$$\frac{d(\overline{y}^* + \Delta \overline{y})}{dx} = \overline{f}(\overline{y}^* + \Delta \overline{y}). \tag{3.5.58}$$

Раскладывая правую часть последней системы в ряд Тейлора и ограничиваясь членами с первыми производными, можно записать:

$$f_i(\overline{y}^* + \Delta \overline{y}) \approx f_i(\overline{y}^*) + \sum_{i=1}^n \frac{\partial f_i}{\partial y_i}(\overline{y}^*) \Delta y_j \qquad i = 1, ..., n$$
 (3.5.59)

или в виде матриц:

$$\begin{bmatrix}
f_{1}(\bar{y}^{*} + \Delta \bar{y}) \\
\vdots \\
f_{n}(\bar{y}^{*} + \Delta \bar{y})
\end{bmatrix} \approx \begin{bmatrix}
\frac{\partial f_{1}}{\partial y_{1}}(\bar{y}^{*}) \dots \frac{\partial f_{1}}{\partial y_{n}}(\bar{y}^{*}) \\
\vdots \\
\frac{\partial f_{n}}{\partial y_{1}}(\bar{y}^{*}) \dots \frac{\partial f_{n}}{\partial y_{n}}(\bar{y}^{*})
\end{bmatrix} \begin{bmatrix}
\Delta y_{1} \\
\vdots \\
\Delta y_{n}
\end{bmatrix} + \begin{bmatrix}
f_{1}(\bar{y}^{*}) \\
\vdots \\
f_{n}(\bar{y}^{*})
\end{bmatrix},$$
(3.5.60)

или в векторно-матричной форме:

$$\tilde{f}(\bar{y}^* + \Delta \bar{y}) \approx \tilde{A}(\bar{y}^*)\Delta \bar{y} + \tilde{f}(\bar{y}^*),$$
(3.5.61)

где $\overline{A}(\overline{y}^*)$ — матрица частных производных с элементами:

$$a_{ij} = \frac{\partial f_{i}}{\partial y_{i}}(\overline{y}^{*}), \quad i = 1, ..., n, \quad j = 1, ..., n.$$
 (3.5.62)

Если невозмущенные значения функций неизвестны, то приходится рассчитывать производные при их возмущенных значениях.

Подставляя линеаризованную правую часть (3.5.61) в (3.5.58) с учетом (3.5.57) вводим:

$$\frac{d\overline{y}^*}{dx} + \frac{d(\Delta \overline{y})}{dx} = \overline{\overline{A}}(\overline{y}^*)\Delta \overline{y} + \overline{f}(\overline{y}^*)$$
 (3.5.63)

и, как результат, получаем однородное дифференциальное уравнение, решаемое относительно $\Delta \bar{y}$, следующего вида:

$$\frac{d(\Delta \bar{y})}{dx} \approx \bar{A} \Delta \bar{y} , \qquad (3.5.64)$$

(зависимость элементов матрицы \overline{A} от \overline{y}^* (3.5.62) для простоты выкладок опущена).

Условием устойчивости в смысле Ляпунова является стремление всех элементов вектора $\Delta \bar{y}$ к нулю, т.е. с использованием понятия нормы вектора должно быть справедливо:

$$\|\Delta \overline{y}\| \le \varepsilon. \tag{3.5.65}$$

Система (3.5.64) имеет аналитическое решение. Однако, прежде чем его привести рассмотрим аналогию: вместо вектора $\Delta \bar{y}$ рассмотрим Δy , а вместо матрицы \bar{A} — число λ :

$$\frac{d(\Delta y)}{dx} = \lambda \Delta y \ . \tag{3.5.66}$$

Общее решение (3.5.64) имеет вид:

$$\Delta y = Ce^{\lambda x} , \qquad (3.5.67)$$

где C — произвольная постоянная, а λ — некоторое число.

Из последнего равенства следует, что для того чтобы уравнение было устойчивым в смысле Ляпунова, вещественная часть λ , т.е. $Re(\lambda)$, должна быть меньше 0:

$$Re(\lambda) < 0. \tag{3.5.68}$$

Решение системы уравнений (3.5.64), по аналогии с (3.5.67), может быть записано:

$$\Delta \overline{y} = \overline{C}e^{\lambda x}, \qquad (3.5.69)$$

и для обеспечения устойчивости в смысле Ляпунова для всех $\lambda_1, ..., \lambda_n$ по аналогии с (3.5.68) необходимо выполнение условий:

$$Re(\lambda_{r}) < 0, \qquad (3.5.70)$$

т.е. вещественные части всех λ_i (i = 1, ..., n) должны быть меньше нуля.

Для определения значений $\bar{\lambda}$ подставим выражение для решения (3.5.69) в исходное дифференциальное уравнение (3.5.64):

$$\lambda \bar{C} \, \varrho^{\lambda C} = \bar{A} \bar{C} \, \varrho^{\lambda C} \,, \tag{3.5.71}$$

в результате чего получается однородная система линейных алгебраических уравнений (см. разд. 3.2.1):

$$\left(\overline{A} - \lambda \overline{\overline{E}}\right) \overline{C} = \overline{0} . \tag{3.5.72}$$

Ее решениями являются собственные векторы матрицы \overline{A} — векторы \overline{C} , число которых не ограничено.

Для получения бесчисленного множества нетривиальных решений \overline{C} необходимо выполнение условия, в соответствии с которым определитель матрицы $(\overline{A} - \lambda \overline{E})$ должен быть равен нулю (3.2.19):

$$\left| \overline{A} - \lambda \overline{E} \right| = 0. \tag{3.5.73}$$

Это условие рассматривается как уравнение для определения $\lambda_1,...,\lambda_n$ и называется ся характеристическим уравнением матрицы \overline{A} , а определяемые конкретные величины (элементы вектора $\overline{\lambda}$) называется собственными значениями или собственными числами матрицы \overline{A} .

Пояснение.

характеристическое уравнение

можно переписать в виде равенства нулю характеристического многочлена $P(\lambda)$:

$$P(\lambda) \equiv \det(\overline{A} - \lambda \overline{E}) \equiv |\overline{A} - \lambda \overline{E}| = (-\lambda)^n + b_1(-\lambda)^{n-1} + \ldots + b_{n-1}(-\lambda) + b_n = 0, \qquad (3.2.20)$$

где $b_1, ..., b_n$ — известные коэффициенты получающегося характеристического многочлена.

Следует отметить, что левая часть характеристического уравнения представляет собой многочлен (полином) степени n (3.2.20). Определение всех его корней, среди которых могут быть кратные и комплексные корни, часто непростая задача.

Поэтому был *предложен критерий Рауса—Гурвица*, который путем анализа коэффициентов упоминаемого многочлена позволяет установить, будут ли все вещественные части собственных чисел λ_i ($i \approx 1, ..., n$) отрицательными.

Для использования критерия Payca—Гурвица характеристическое уравнение представляется в следующем виде:

$$b_n \lambda^n + b_{n-1} \lambda^{n-1} + \dots + b_1 \lambda + b_0 = 0, \qquad (3.5.74)$$

где $b_0 > 0$ и условия отрицательной действительной части всех его корней (устойчивости в смысле Ляпунова) будут выполняться тогда и только тогда, когда станут положительными все определители вида:

Определение условий устойчивости в смысле Ляпунова для двух обыкновенных дифференциальных уравнений

Запишем выведенную выше систему (3.5.64) дифференциальных уравнений для возмущений ($\Delta y_1, \Delta y_2$):

$$\begin{bmatrix}
\frac{d(\Delta y_1)}{dx} \\
\frac{d(\Delta y_2)}{dx}
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \begin{bmatrix}
\Delta y_1 \\
\Delta y_2
\end{bmatrix}$$
(3.5.7)

и в соответствии с (3.5.69) будем искать решения в виде:

$$\Delta y_2 = C_2 e^{\lambda x}$$
. (3.5.77) Подстановка этих решений в исходные уравнения приводит к следующим соот-

 $\Delta y_1 = C_1 e^{\lambda x}$;

Подстановка этих решений в исходные уравнения приводит к следующим соотношениям: $\lambda C_1 e^{\lambda x} = a_{11} C_1 e^{\lambda x} + a_{12} C_2 e^{\lambda x};$

$$\lambda C_2 e^{\lambda x} = a_{21} C_1 e^{\lambda x} + a_{22} C_2 e^{\lambda x},$$
(3.5.78)

в результате чего получается однородная система линейных алгебраических уравнений:

в результате чего получается однородная система линейных алгебраических уравнений
$$(a_{11} - \lambda)C_1 + a_{12}C_2 = 0;$$

 $a_{1}C_{1}+(a_{1},-\lambda)C_{1}=0$

которая может быть записана в матричном виде:
$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} - a_{22} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

(3.5.80)

(3.5.79)

(3.5.76)

Для получения нетривиальных решений этой системы — собственных векторов матрицы \overline{A} необходимо, чтобы определитель матрицы ее коэффициентов был равен нулю:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0. \tag{3.5.81}$$

Полученное уравнение называется характеристическим уравнением и решается относительно неизвестных λ_1 и λ_2 , в результате чего устанавливается отрицательность или не отрицательность действительных частей корней λ_1 и λ_2 , т.е. определяется выполнение условия устойчивости СОДУ в смысле Ляпунова (3.5.70).

Получим выражение для определителя (3.5.81):

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0 (3.5.82)$$

и запишем характеристическое уравнение (3.5.82) в виде квадратного уравнения

$$\lambda^{2} + \underbrace{\left[-(a_{11} + a_{22})\right]\lambda}_{2p} + \underbrace{a_{11}a_{22} - a_{12}a_{21}}_{q} = 0. \tag{3.5.83}$$

С учетом принятых обозначений p и q решение квадратного уравнения можно представить в виде:

$$\lambda_1 = -p + \sqrt{p^2 - q}; \quad \lambda_2 = -p - \sqrt{p^2 - q}.$$
 (3.5.84)

С учетом принятых обозначений p и q и сравнивая с (3.5.83), для полученных решений будет справедливо:

$$(\lambda - \lambda_1)(\lambda - \lambda_2) \equiv \lambda^2 + \underbrace{[-(\lambda_1 + \lambda_2)]}_{2n} \lambda + \underbrace{\lambda_1 \lambda_2}_{n} = 0.$$
 (3.5.85)

Условие отрицательности вещественных частей корней λ_1 и λ_2 может быть установлена путем сравнения уравнений (3.5.83) и (3.5.85).

Рассмотрим три случая:

- 1) если q < 0 и p < 0, то λ_1 и λ_2 являются вещественными числами и имеют разные знаки;
- 2) если q > 0 и p < 0, то λ_1 и λ_2 являются или вещественными положительными числами, или комплексными числами с положительными вещественными частями;
- 3) если q > 0 и p > 0, то λ_1 и λ_2 являются или вещественными отрицательными числами, или комплексными числами с отрицательными вещественными частями (что соответствует условию устойчивости в смысле Ляпунова).

Таким образом, как следует из уравнения (3.5.83) для двух обыкновенных дифференциальных уравнений, система будет устойчива в смысле Ляпунова, если для ее коэффициентов будут выполняться два неравенства:

$$-(a_{11} + a_{22}) > 0;$$

$$a_{11}a_{22} - a_{12}a_{21} > 0.$$
(3.5.86)

Отметим, что коэффициенты в этих неравенствах для произвольных правых частей дифференциальных уравнений (3.5.76) определяются как частные производные (3.5.60) по искомым функциям (y_1 и y_2), и их величины зависят от значений функций-решений, при которых производные рассчитывались.

Можно легко проверить, что полученные условия устойчивости в смысле Ляпунова для двух обыкновенных дифференциальных уравнений полностью соответствуют условиям Рауса—Гурвица (3.5.75).

Жесткие системы обыкновенных дифференциальных уравнений

Сущность явления жесткости для систем дифференциальных уравнений состоит в том, что существуют решения (искомые функции), которые меняются медленно и которые нужно определять; однако одновременно существуют и очень быстро меняющие (затухающие) решения (функции). Наличие последних затрудняет получение медленно меняющихся решений численными методами.

Сильно меняющиеся компоненты решения называются жесткой компонентой решения и их считают переходной частью решения. Медленно меняющиеся компоненты часто называются непереходными или гладкими. Термин «гладкие» используется в том смысле, что производные от этих компонент решения значительно меньше производных от переходных компонент решения.

Свойство жесткости является свойством системы дифференциальных уравнений и для неоднородных линейных систем вида:

$$\frac{d\bar{y}}{dx} = A\bar{y}(x) + \bar{r}(x) \tag{3.5.87}$$

может быть установлено путем анализа собственных значений матрицы ее коэффициентов $\overline{\overline{A}}$.

Определение. Асимптотически устойчивая система дифференциальных уравнений (3.5.87) с постоянной матрицей $A(m \times m)$ называется жесткой, если выполняются следующие условия:

- 1) Re $\lambda_k < 0$, k = 1, 2, ..., m (здесь Re λ_k действительная часть собственного значения λ_k);
 - 2) велико отношение

$$S = \frac{\max_{1 \le k \le m} |\operatorname{Re} \lambda_k|}{\min_{1 \le k \le m} |\operatorname{Re} \lambda_k|}.$$

Число S называется числом жесткости системы (3.5.87). Однако величина S, начиная с которой система становится жесткой, не указывается, она определяется конкретной физической постановкой задачи.

Если матрица A зависит от x, то ее собственные числа являются функциями x— $\lambda_k = \lambda_k(x), \ k = 1, 2, ..., m$. При каждом x можно определить число жесткости

$$S(x) = \frac{\max_{1 \le k \le m} |\operatorname{Re} \lambda_k(x)|}{\min_{1 \le k \le m} |\operatorname{Re} \lambda_k(x)|},$$

которое также зависит от x.

В этом случае система уравнений (3.5.87)

$$\frac{d\overline{y}}{dx} = \overline{A}\overline{y}(x) + \overline{r}(x)$$

с матрицей, зависящей от x, A(x), называется жесткой на интервале $(x_0, X]$, если $Re \lambda_k(x) < 0$, k = 1, 2, ..., m, для всех $x \in (x_0, X)$ и число $\sup S(x)$ велико.

Таким образом, решение жесткой системы содержит как быстро, так и медленно убывающие составляющие. Начиная с некоторого $x > x_0$, решение системы почти полностью определяется медленно убывающей составляющей. Однако в случае явных схем быстро убывающая составляющая накладывает жесткие ограничения на условия устойчивости, что вынуждает брать шаг интегрирования слишком мелким.

Задачу можно назвать жесткой, если среди собственных значений матрицы \overline{A} :

- существуют λ, для которых Re(λ,) << 0;
- существуют λ, умеренной величины, чьи абсолютные величины малы по сравнению с абсолютными величинами собственных значений, удовлетворяющих, предыдущему условию;
- не существует λ, с большой положительной вещественной частью;
- не существует λ_i с большой мнимой частью, для которых не выполняется условие $\text{Re}(\lambda_i) << 0$.

На практике, для определения жесткости СОДУ обычно используется первое из перечисленных условий. Можно показать, что выполнение этого условия соответствует матрице коэффициентов системы $\frac{1}{A}$ (3.5.64) с сильно различающимися по модулю элементами (на 3 и более порядков).

На примере исследования кинетики последовательной реакции:

$$A \xrightarrow{k_1} P \xrightarrow{k_2} S \tag{3.5.88}$$

с кинетическими константами $k_1 = 1000$ и $k_2 = 1$ покажем, что применение явного метода Эйлера приводит к появлению жесткой компоненты решения и, соответственно, искажению («раскачке») гладкой компоненты решения.

На самом деле применяемый при решении жестких систем уравнений численный метод должен быть в состоянии подавить эти возмущения. Применение неявных методов, в частности, неявного метода Эйлера, позволяет успешно справиться с этой проблемой.

В соответствии с представленной кинетической схемой последовательной реакции и заданными значениями констант скоростей k_1 и k_2 СОДУ, которая описывает скорости образования (расходования) компонентов A (соответствует компоненте 1) и P (соответствует компоненте 2), имеет следующий вид:

$$\begin{cases} \frac{dy_1}{dx} = -k_1 y_1; \\ \frac{dy_2}{dx} = k_1 y_1 - k_2 y_2 \end{cases}$$
 (3.5.89)

с начальными условиями:

$$y_2(x_0) = y_{20} \equiv 0.$$
 (3.5.90) При этом $y_1 = y_1(x)$ и $y_2 = y_2(x)$ — искомые переменные (функции решений), соот-

 $y_1(x_0) = y_{10} \equiv 1;$

ветствующие изменению концентраций компонентов A и P, т.е. $y_1 = [A]$ и $y_2 = [P]$. Аналитическое решение этой системы имеет вид:

$$\begin{cases} y_1 = C^{-k_1 x}; \\ y_2 = \frac{k_1}{k_2 - k_1} (e^{-k_1 x} - e^{-k_2 x}). \end{cases}$$
 (3.5.91)

Исследуемая система может быть представлена в матричном виде:

$$\begin{bmatrix} \frac{dy_1}{dx} \\ \frac{dy_2}{dx} \end{bmatrix} = \begin{bmatrix} -k_1 & 0 \\ k_1 & -k_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}. \tag{3.5.92}$$

Собственные числа матрицы коэффициентов системы определяются из характеристического уравнения:

$$\left| \overline{A} - \lambda \overline{E} \right| = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = \begin{vmatrix} -k_1 - \lambda & 0 \\ k_1 & -k_2 - \lambda \end{vmatrix} = 0,$$
 (3.5.93)

откуда следует, что

$$(k_1 + \lambda)(k_2 + \lambda) = 0.$$
 (3.5.94)

Результатом решения характеристического уравнения являются собственные числа:

$$\lambda_1 = -k_1 = -1000 \quad \text{M} \quad \lambda_2 = -k_2 = -1,$$
 (3.5.95)

т.е. для одного из собственных значение будет справедливо:

$$Re(\lambda_1) << 0. \tag{3.5.96}$$

Таким образом, выполняется первое из приведенных выше условий жесткости системы дифференциальных уравнений. Легко установить, что остальные три условия жесткости также справедливы для этого случая, и поэтому СОДУ (3.5.89) с коэффициентами $k_1 = 1000$ и $k_2 = 1$ можно считать жесткой.

Неприемлемость явного метода Эйлера для решения жесткой системы из-за возможной ее «раскачки» и отсутствия сходимости

Явный метод Эйлера (3.5.15) для решения систем двух обыкновенных дифференциальных уравнений может быть записан:

$$\begin{cases} \frac{\Delta y_1^{(k+1)}}{h} = f_1(y_1^{(k)}, y_2^{(k)}) \equiv -k_1 y_1^{(k)}; \\ \frac{\Delta y_2^{(k+1)}}{h} = f_2(y_1^{(k)}, y_2^{(k)}) \equiv k_1 y_1^{(k)} - k_2 y_2^{(k)}, \end{cases}$$
(3.5.97)

где k — номер шага решения; h — величина шага решения.

С учетом значений кинетических коэффициентов $(k_1 = 1000 \text{ и } k_2 = 1)$ эти уравнения принимают вид:

$$\begin{cases} y_1^{(k+1)} = y_1^{(k)} + h(-1000y_1^{(k)}) = y_1^{(k)}[1 - 1000h]; \\ y_2^{(k+1)} = y_2^{(k)} + h(1000y_1^{(k)} - y_2^{(k)}) = \underbrace{1000hy_1^{(k)}}_{\text{KOMIOHERTA}} + (1 - h)y_2^{(k)}, \end{cases}$$
(3.5.98)

где
$$k = 0, 1, 2, ...$$

Рис. 3.29. Схематическое представление функций решения явным методом Эйлера для жесткой системы дифференциальных уравнений

На рис. 3.29 схематически представлены функции-решения [сплошные линии — точные решения (3.5.91), а пунктирные линии получены явным методом Эйлера (3.5.98)].

«Раскачка» решения, а затем и отсутствие сходимости численного явного метода Эйлера при получении приближенного решения $y_2 = y_2(x)$ (пунктирная линия на рис. 3.29) обусловлены наличием ее жесткой компоненты во втором уравнении явного метода Эйлера. Эта жесткая компонента становится все «жестче» при переходе к каждому следующему шагу решения, так как в соответствии с первым уравнением (3.5.97)

$$y_1^{(k)} = y_{10}(1-1000h)^k$$
, (3.5.99)

а подстановка ее во второе уравнение приводит к следующему результату:

$$y_2^{(k+1)} = \underbrace{1000h(1-1000h)^k y_{10}}_{\text{TATTER POLYBOURDS}} + (1-h)y_2^{(k)}. \tag{3.5.100}$$

Из-за степенного выражения в жесткой компоненте приближенного решения явным методом Эйлера становится понятным отсутствие сходимости и его непригодность для решения жестких систем дифференциальных уравнений.

Приемлемость неявного метода Эйлера для решения жестких систем обыкновенных дифференциальных уравнений

При решении жесткой системы уравнений (3.5.89) неявным методом Эйлера можно записать соотношение (3.5.17):

$$\begin{cases}
\frac{\Delta y_1^{(k+1)}}{h} = f_1(y_1^{(k+1)}, y_2^{(k+1)}) \equiv k_1 y_1^{(k+1)}; \\
\frac{\Delta y_2^{(k+1)}}{h} = f_2(y_1^{(k+1)}, y_2^{(k+1)}) \equiv k_1 y_1^{(k+1)} - k_2 y_2^{(k+1)}.
\end{cases}$$
(3.5.101)

С учетом значений кинетических коэффициентов ($k_1 = 1000$ и $k_2 = 1$) эти уравнения принимают вид:

$$\begin{cases} y_1^{(k+1)} = y_1^{(k)} + h(-1000y_1^{(k+1)}); \\ y_2^{(k+1)} = y_2^{(k)} + h(1000y_1^{(k+1)} - y_2^{(k+1)}), \end{cases}$$
(3.5.102)

путем преобразования которых получается:

$$\begin{cases} y_1^{(k+1)} = \frac{y_1^{(k)}}{(1+1000h)}; \\ y_2^{(k+1)} = \frac{y_2^{(k)}}{1+h} + \frac{1000hy_1^{(k+1)}}{1+h} = \frac{y_2^{(k)}}{1+h} + \frac{1000hy_1^{(k)}}{(1+h)(1+1000h)}. \end{cases}$$
(3.5.103)

Второе уравнение в системе (3.5.103) — представление приближенного решения $y_2 = y_2(x)$ неявным методом Эйлера, может быть записано в следующем виде:

$$y_2^{(k+1)} = \frac{y_1^{(k)}}{(1+h)(1+\frac{0,001}{h})} + \frac{y_2^{(k)}}{1+h}.$$
 (3.5.104)

Таким образом, это решение $y_2 = y_2(x)$ уже не содержит жесткой компоненты [в отличие от явного метода Эйлера (3.5.98)], тем более что с учетом пошаговой реализации метода из первого уравнения (3.5.103) следует:

$$y_1^{(k)} = \frac{y_1^{(0)}}{(1+1000h)^k},\tag{3.5.105}$$

и после подстановки в (3.5.104) уравнение для расчета приближения $y_2^{(k+1)}$ на (k+1) шаге принимает вид:

$$y_2^{(k+1)} = \frac{y_1^{(0)}}{(1+h)(1+\frac{0.001}{h})(1+1000h)^k} + \frac{y_2^{(k)}}{1+h}.$$
 (3.5.106)

Таким образом, неявный метод Эйлера при решении жестких систем дифференциальных уравнений из-за степенной функции в знаменателе первого слагаемого в (3.5.106) не допускает «раскачки» решения $y_2 = y_2(x)$ в сравнении с явным методом Эйлера [см. (3.5.100) и рис. 3.29]. Этим объясняется его пригодность для решения

жестких систем обыкновенных дифференциальных уравнений.

Задания

1. Методами Эйлера, модифицированным Эйлера и Рунге-Кутта 4 порядка с шагом h=0.1 до $x_{\text{кон}}$ = 1 решить следующую задачу Коши для нормальной системы второго порядка:

$$\begin{cases} y_1' = y_1 e^{-x^2} + xy_2 \\ y_2' = 3x - y_1 + 2y_2 \\ y_1(0) = 1 \\ y_2(0) = 1 \end{cases}$$

Оценку жёсткости системы производить на каждом шаге h. Вывести на один график результаты всех трёх методов методов.

2. Решить следующую задачу Коши для нормальной системы второго порядка методами явным Эйлера и неявным Эйлера с шагом h=0.1 до $x_{\text{кон}}$ = 3:

$$\begin{cases} y_1' = y_1 e^{x^2} + xy_2 \\ y_2' = 3x - y_1 + 2y_2 \\ y_1(0) = 1 \\ y_2(0) = 1 \end{cases}$$

Оценку жёсткости системы производить на каждом шаге h. Вывести на один график результаты обоих методов.

Литература

- 1. Т.Н.Гартман, Д.В. Клушин. Основы компьютерного моделирования химикотехнологических процессов: Учебное пособие для вузов. М.: ИКЦ «АКАДЕМКНИГА», 2006. 415 с.
- 2. В.М. Вержбицкий. Основы численных методов: Учебник для вузов. М.: Высш. шк., 2009. 840 с.
- 3. Кетков Ю.Л., Кетков А.Ю., Шульц М.М. МАТLAB 7: программирование, численные методы. СПб.: БХВ-Петербург, 2005. 752 с.
- 4. В.Ф. Формалев, Д.Л. Ревизников. Численные методы. М.: ФИЗМАТЛИТ, 2004. -400 с.
- 5. И.Б. Петров, А.И. Лобанов. Лекции по вычислительной математике: Учебное пособие. М.: БИНОМ. Лаборатория знаний, 2006. 522 с.
- 6. К.Э.Плотников. Вычислительные методы. Теория и практика в среде MATLAB. М.: «Горячая линия-Телеком», 2009. 496 с.
- 7. Е.Р. Алексеев, О. В.Чеснокова. Решение задач вычислительной математики в пакетах Mathcad 12, MATLAB 7, Maple 9. М.: НТ Пресс, 2006. 496 с.
- 8. В. Г. Потемкин. Система инженерных и научных расчётов MATLAB. Справочное пособие. В 2-х т. М.: ДИАЛОГ-МИФИ, 1999. 670 с.
- 9. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. М., 2002. 632 с.