Lesson 2 Derivative of General Exponential Function.notebook

Lesson 2 - The Derivative of the General Exponential Function $y = b^x$

PART A: Investigation

You will be working on the investigation on page 235-236 from the textbook. Use the tables and space below to record your work.

A. Table for $f(x) = 2^x$

7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
x	f(x)	f'(x)	$\frac{f'(x)}{f(x)}$	
-2	<u>1</u>	0.173	0.693	
-1	1/2	0.347	0.693	
0	1	0.693	0.693	
1	2	1.386	0.693	
2	4	2.773	0.693	
3	8	5.545	0.693	

F. ii) the ratio is the same

F. iii) less than 1

Grid for graph of $f(x) = 2^x$ and f'(x)

G. Table for $f(x) = 3^x$

x	f(x)	f'(x)	$\frac{f'(x)}{f(x)}$
-2	<u>1</u> 9	0.122	1.099
-1	<u>1</u> 3	0.366	1.099
0	1	1.099	1.099
1	3	3.296	1.099
2	9	9.888	1.099
3	27	29.663	1.099

F. ii) the ratio is the same

F. iii) greater than 1

Grid for graph of $f(x) = 3^x$ and f'(x)

The derivative of $f(x) = a^x$ is a multiple of a^x .

J. If a > e, the multiple is larger than 1 If a < e, the multiple is smaller than 1

Lesson 2 Derivative of General Exponential Function.notebook

PARTB: Summary of Investigation

In general, for the exponential function $f(x) = b^x$, we can conclude the following:

- f(x) and f'(x) are both exponential functions
- Slope of the tangent at a point on the curve is proportional to the value of the function at this point
- f'(x) is a vertical stretch or compression of f(x), (depends on value of b)
- The ratio $\frac{f'(x)}{f(x)}$ is a constant and is equivalent to the stretch/compression factor

Lesson 2 Derivative of General Exponential Function.notebook

Derivative of $f(x) = b^x$

if
$$f(x) = b^x$$
, then $f'(x) = (lnb) \times b^x$

PART C: Examples

Example 1: Determine the derivative of the following functions:

a)
$$f(x) = 4^{x}$$

 $f'(x) = (2 \land 4)4^{x}$

b)
$$f(x) = 125 \left(\frac{1}{2}\right)^{x}$$

 $f'(\chi) = |25(\ln \frac{1}{2})(\frac{1}{2})^{x}$

PART D: Derivative of composite exponential functions

Derivative of $f(x) = b^{g(x)}$ if $f(x) = b^{g(x)}$, then $f'(x) = (lnb) \times b^{g(x)} \times g'(x)$

Example 2: Determine the derivative of $f(x) = 6x(2)^{2x^2-5x}$

$$f(x) = 6x (2)^{2x^2 - 5x}$$

$$g(x) h(x)$$

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$

$$= 6(2)^{2x^{2}-5x} + 6x(\ln 2 \cdot 2^{2x^{2}-5x} \cdot (4x-5))$$

$$= 6(2)^{2x^{2}-5x} \left(1 + \ln 2(4x-5)x\right)$$