AUTONOMOUS DRIVING

Shiqi Lin & Fanxuan Guo

COMPUTE DISPARITY

Method 1: Implementation based on lecture

- Patch Size 10
- Max disparity 16
- Store seen right image vectorized patch in matrix
- Bad: Slow when patch size or max disparity is large

Method 2: Opency Library

- Patch Size 5
- Disparity Range (4, 132)
- Good: Fast under any condition

Method 1 Disparity -> Depth

Method 2 Disparity -> Depth

COMPUTE DEPTH

Formula From Lecture:

$$Depth = \frac{\text{focal length*baseline}}{\text{disparity}}$$

ROAD DETECTION

METHOD 1

- Proposed Result:
 - Enhances feature extractions
 - Highest Accuracy and Less Processing Time among existing road segmentation algorithm: MAP, StixelNet, Up-Conv-Poly
- Input:
 - 5-channel Image (RGB + XY coord)
 - Processed by pyramid prediction scheme
- TRAINING:
 - CNN LSTM model
 - Encoder → Feature Processor → Decoder
- Output:
 - Road boundary vector

ROAD DETECTION

METHOD 2

- U-NET Convolutional Network:
 - It has encoder and decoder
 - Takes in grayscale image and generate a ground truth mask
- Batch size = 20
- Data split = 80% training + 20% validation

CNN-LSTM:

U-NET:

COMPARISON

· CNN-LSTM:

long training time (3 hours) and is biased on the road location

U-Net:

fast to train (10 minutes) but prediction is unstable, 80% accuracy

Why CNN?

Old-school algorithms use rigid algorithms and require human intervention.

FIT GROUND LANE

- Disparity → Depth → 3D Location
 - Formula: $X = \frac{\bar{Z} x * Px}{f}$, $Y = \frac{Z y * Py}{f}$
- Filter point cloud through road prediction mask
- RANSAC with 3000 iterations and 0.02 distance threshold
 - Each time fit a plane with build-in lstsq
 - Input 5 random chosen points
 - Keep the list of inliers index if the current plane produces the max number of inliers so far
- Fit the plane using lstsq with the best match
- Good: robust to outliers
- Bad: Not stable

Road 3D Points with Plane

Road 3D Points with Plane

3D POINT CLOUD

Plot 3D point cloud of all image pixels and the estimated ground plane with Open3d

CAR DETECTION

 Did research for pre-trained model only for KITTI dataset

 Faster CNN from Torchvision pre-trained model

VIEWPOINT CLASSIFIER

Using common CNN for image classification

 Validation accuracy is around 94%, training accuracy is 98%

VISUALIZATION

Using car detection to get image patches for cars, then feed in patches into pretrained viewpoint model to get predicted angle.

