UNIVERSIDADE DO VALE DO ITAJAÍ

MATHEUS BRAZ OENNING DA SILVA

AVALIAÇÃO 1 SIMULAÇÃO E RESOLUCÃO CIRCUITOS DA AULA E LABORATÓRIO

Relatório apresentado como requisito parcial para a obtenção da M1 da disciplina de Eletrônica aplicada do curso de Engenharia da computação pela Universidade do Vale do Itajaí da Escola do Mar, Ciência e Tecnologia.

Prof. Walter Gontijo

Itajaí 2022

Regulador serie: Modelo fonte de tensão

Temos que calcular: Iz, Vo, Ptr, Pz

Equações corrente:

It = Ic + Ir

IRs = Ib + Iz

le = IRI

Tbj:

Ic = B*Ib

le = lb + lc

le = (B+1)lb

Equações tensão:

Vi = Vr + Vz

Vr = Ir*Rs

Vi = Vcb + Vz

Vo = Ie*RI

VCE = VC - VE = Vi - Vo

Potências:

Ptr = VCE*Ic

Pz = Vz*Iz

Com isso obtemos a seguinte tabela:

Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)
12	5,5	0,047233	0,35035	0,292847
13,2 (10%)	5,5	0,057233	0,41503	0,354847
12 (RI = 40 Ohms)	5,5	0,045583	0,875875	0,282617

$$Pz = \frac{1}{2} \text{ w e Vz} = 6.2;$$

Sabendo que:

Pz = Vz*Iz

 $\frac{1}{2} = 6.2 \text{ lz}$

Iz = 80mA

Sabemos que se Iz > 80mA, o componente queima!

Sabemos que se Iz < 8mA(10%), não polariza!

0,045583 | 0,875875 | 0,282617

Calculado x simulado:

_										
	Calculado						Simula	ado		
	Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)	Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)
						12	5,34	0,0471	0,348318	0,29202
	12	5,5	0,047233	0,35035	0,292847					
						13,2	5,34	0,0571	0,411864	0,35402
	13,2(10%)	5,5	0,057233	0,41503	0,354847					
	12 (RI =					12	5.32	0.0455	0.8684	0.2821

Modelo Linear

Com o modelo linear consideramos uma resistência a mais no zener, que acarreta uma mudança do valor de Vz para diferentes entradas Vi. Para calcular Vz teremos que utilizar de:

Irs = Iz + Ib

Sendo:

40 Ohms)

Irs = Vi -Vz/Rs;

Iz = Vz - Vzo / Rz;

Ib = Vz - VBE/RI;

Por fim teremos:

Vi - Vz/RI = Vz - Vzo/Rz + Vz - VBE/RI

Isolando Vz nessa equação temos o seu valor. Com isso obtemos a seguinte tabela:

Calculado Simulado

Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)	Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)
					12	5,79	0,0433	0,353	0,29
12	6	0,045	0,35	0,3					
					13,2	5,96	0,0518	0,424	0,3547
13,2(10%)	6,14	0,052	0,43	0,36					
12 (RI =					12	5,73	0,0418	0,883	0,278
40 Ohms)	5,93	0,0415	0,88	0,27					

Regulador paralelo:

Equações:

Vo = Vz + VBE

VCE = Vo

lb = lz

It = Iz + Ic + IrI

It = Vi-Vo / Rs

Linear:

It = Iz + Ic + IrI

Vi - Vo / Rs = Vo - (Vzo + VBE)/Rz + B(Vo - Vzo + VBE)/Rz + Vo/RL Com Com isso obtemos a seguinte tabela:

Calculado	Simulado

Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)	Vi(v)	Vo(v)	Iz(A)	Ptr(w)	Pz(w)
					12	7	0,0175	1.7	0.013
12	6.9	0,00372	1.26	0,023					
					12	8.3	0,001	1.52	0,07
12(Linear)	8.26	0.005	2.02	0,03					

Circuito regulador completo:

Equações:

Irs2 = lct2+lbt1

le = lr + lrl

Vo' = Vo + VBE

It = Irs1 + Irs2 + Ict1

Iz = Irs1 + Iet2

Vf = Vz + VBE

VF = Vbt2

Irs1 = Vi - Vz / Rs1

Irs2 = Vi - Vo' / Rs2

lct2 = Irs2 - Ibt1

Pt = Vt*It Pz = Vz*IzVo = Vf * Ra + Rb / Rb

Com isso obtemos a seguinte tabela:

	Calculado	Simulado
Vo(V)	8.6	8.9
Vf(V)	6.9	7
Irs1(mA)	47	41
Irs2(mA)	7.8	7.77
IBt1(mA)	17	9
Iz(mA)	37.8	40.5
Irl(mA)	860	891
le	868	1000
Pt1(W)	4.6	4.8
Pt2(W)	92	150

CI:

Equações:

IL = Vo / RL

Pci = Vi - Vo *IL

Vo = Vci (1+RB/RA)

 $VRB = iL^*RB$

Com isso obtemos a seguinte tabela:

Para 1.25 < Vo < 20:

	Calculado	Simulado
Vo(V)	1.25	1.25
Irl(mA)	62.5	62.68
Pci(W)	Entre 1.48 e 1.6	Entre 1.5 e 1.6

	Calculado	Simulado
Vo(V)	20	20.6
Irl(mA)	1000	1000
Pci(W)	Entre 5 e 7	Entre 4.5 e 6.6

Amplificador TBJ:

Equações:

 $-IB^*Rb-VBE-2*IE*RF+VEE = 0$

A (v2-v1) = Vo

A = Rc/2*26

Com isso obtemos a seguinte tabela:

	Calculado	Simulado
le(mA)	0.99	0.97
lb(mA)	0.019	0.019
Ic(mA)	0.97	0.97
VB(V)	-0.2	-0.2
VE(V)	-0.9	-0.9
VC(V)	8.4	8.4

A(Ganho total)	130.8	126.7
----------------	-------	-------

Amp-op:

Equações:

A(v2-v1) = Vo

Inversor:

Vo/vi = (1/(1/A - 1)/Rf + (1/A)/R1)/R1

Com isso obtemos a seguinte tabela:

Α	Af
Infinito	-2
100000	-2.002
10000	-2.002
1000	-2.002
100	-2.002