

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination-May 2021

Max. Marks:- 60 **Duration: 2 Hours** Class: SE(Comp and IT) **Semester:- IV**

Course Code:- MA201 Branch:- COMP & IT

Name of the Course: Linear Algebra

Instructions:

1) All Questions are Compulsory.

2) Assume suitable data if necessary.

Q No.		Max. Marks	СО
Q.1	a) Let R^3 have the Euclidean inner product. Use the Gram Schmidt process to transform the basis $\{u_1, u_2, u_3\}$ into orthonormal basis where $u_1 = (1,0,0)$, $u_2 = (3,7,-2)$, $u_3 = (0,4,1)$.	5	4
	a) For what value of λ , the following vectors are linearly dependent? $ (\lambda, -\frac{1}{2}, -\frac{1}{2}), (-\frac{1}{2}, \lambda, -\frac{1}{2}), (-\frac{1}{2}, -\frac{1}{2}, \lambda). $	5	4
	b) Find the highest Page Rank from the given directed graph. Do till 3 iterations.	5	6
	c) Using a suitable 2 x 2 matrix, Encode and decode the message NOW * STUDY	5	3

Q.2	a) Apply Crout's Method to solve the following equations $x - y + 2 z = 2$ $3x + 2y - 3z = 2$ $4x - 4y + 2z = 2$	8	2
	b) Check whether the following set of vectors is a basis for P_2 . $S = \{1 - 3x + 2x^2, 1 + x + 4x^2, 1 - 8x + x^2\}$ Find the coordinate vector of $p = 1 - 2x + x^2$ with respect to the above basis.	7	4
	OR b) Find the basis for null -space, column space and row space for $A = \begin{bmatrix} 2 & -4 & 1 & 2 & -2 & -3 \\ -1 & 2 & 0 & 0 & 1 & -1 \\ 10 & -4 & -2 & 4 & -2 & 4 \end{bmatrix}$	7	4
Q.3	a) Show that the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ is diagonalizable. Find the Transforming matrix and the Diagonal matrix.	8	5
	b) Solve the system of differential equation $y' = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$ y using diagonalizable with initial conditions $y_1(0) = 1$ and $y_2(0) = 6$.	7	6
Q.4	a) Fit a curve of the form $y = a + b x + c x^2$ for the following data using Least square Method. $X : 0 1 2 3 4$ $Y : 1 1.8 1.3 2.5 6.3$	7	4

b) Determine the dimension of the solution space of the following	4	4
homogeneous system		
x - y + 2z = 0,		
2x + y = 0,		
x - 4y + 6z = 0		
c) If x_1, x_2, x_3 , x_4 are the number of vehicles travelling through		
each road per hour. Find x_1, x_2, x_3, x_4 from the traffic diagram	4	1
given below :-		
300		
1200 X1 800		
x1		
1300 X3 1400 700 D C 400		
700		

********* All the Best *******