

Learning Goals

Understanding the:

Basics of Reiter's Default Logic (RDL)

Limitations of RDL

Default Logic

 Standard logic can only express that something is true or that something is false.

 Default logic is proposed to formalize reasoning with default assumptions.

- It can express facts like
 - "by default, something is true".

Unicorns

Given:

- If the unicorn is mythical, then it is immortal.
- If it is not mythical, then it is a mortal mammal.
- If it is either immortal or a mammal, then it is horned.
- The unicorn is <u>magical</u> if it is horned.

Question:

– Based on Modus Ponens, can we show that the unicorn is mythical, magical and horned?

Unicorns

• KB:

Mythical \Rightarrow ¬ Mortal

 \neg Mythical \Rightarrow Mortal

 \neg Mythical \Rightarrow Mammal

 \neg Mortal \Rightarrow Horned

 $Mammal \Rightarrow Horned$

Horned \Rightarrow Magical

Assumptions

I can believe

: Mythical Mythical

or

:¬Mythical
¬Mythical

Mythical

- Mortal

Horned

Magical

Mythical

Mammal

Horned

Magical

Default Logic

 $\frac{\text{Prerequisite}: \text{Justification}_1, \dots, \text{Justification}_n}{\text{Conclusion}}$

According to this default:

- If we believe that <u>Prerequisite</u> is true;
- AND each of <u>Justifications</u> is consistent with our current beliefs;
- THEN, we are led to believe that the <u>Conclusion</u> is true.

Default Logic Syntax

prerequisite
$$\alpha(x): \beta_1(x), ..., \beta_n(x) \ \gamma(x)$$
 conclusion

where $\mathbf{x} = x_1, ..., x_m$, and $\alpha(\mathbf{x}), \beta_1(\mathbf{x}), ..., \beta_n(\mathbf{x}), \gamma(\mathbf{x})$ are formulae whose free variables are among $x_1, ..., x_m$.

The default is **applied** by substituting **c** (the ground instance) into α and β to infer γ :

- Trigger: $\alpha(c)$ belongs to our set of beliefs.
- Justification: the set of our beliefs is <u>consistent</u> with each $\beta(c)$.

entail $\neg \beta(c)$

Default Theory

Delta: Set of Defaults $\langle \Delta, \Phi \rangle$ Phi: Set of "Facts"

Example – the default rule that "birds typically fly":

•
$$\Delta = \left\{ \frac{bird(x) : flies(x)}{flies(x)} \right\}$$

- This rule means that, "if x is a bird, and it can be assumed that x flies, then we can conclude that x flies".
- $\Phi = \{bird(Tweety), cat(Sylvester)\}$

Default Theory

A common default assumption:

- What is not known to be true is believed to be false.
- This is known as the <u>Closed-World Assumption</u>.
- It is formalized in default logic using a default as follows for every fact F.

$$\frac{: \neg F}{\neg F}$$

Types of Defaults

• Normal Defaults: $\frac{\alpha(x) : \gamma(x)}{\gamma(x)}$

• <u>Semi-Normal Defaults</u>: $\frac{\alpha(x) : \beta(x)}{\gamma(x)}$, where $\beta(x) \vdash \gamma(x)$

E.g.,
$$\frac{bird(x):flies(x) \land \neg swim(x)}{flies(x)},$$

where $flies(x) \land \neg swim(x) \vdash flies(x)$

Types of Defaults

 Open Defaults (Default Schemas) have unbounded variables, e.g., x

$$\frac{\alpha(x) : \beta_1(x), \dots, \beta_n(x)}{\gamma(x)}$$

Closed (Grounded) Defaults use ground terms, e.g., x=c

$$\frac{\alpha(c) : \beta_1(c), \dots, \beta_n(c)}{\gamma(c)}$$

Reiter Inference with Default Theory

- Guess the extension Ξ (pronounced as "Xi")
- Initialise beliefs $\Xi^* = \Phi$
- (loop over) c-ground instance of an (unused) default $\frac{\alpha(x) : \beta(x)}{\gamma(x)}$:
 - Check two conditions
 - Triggered?: $\Xi^* \vdash \alpha(c)$
 - Justified?: $\beta(c)$ is consistent with Ξ
 - If yes: update beliefs $\Xi^* \leftarrow \Xi^* \cup \{\gamma(c)\}$
- (end loop)
- If $\Xi = \Xi^*$ then extension found/confirmed

Reiter Extension: Compact Description

Given a default theory $\langle \Delta, \Phi \rangle$, Ξ is an extension if and only if

$$\Xi = \operatorname{Cn}\left(\bigcup_{i=1}^{\infty} \Xi_i\right)$$

where:

Cn means applying any known inference rules to expand the KB

•
$$\Xi_0 = \Phi$$

•
$$\Xi_{i+1} = \Xi_i \cup$$

$$\left\{ \gamma(c) \middle| \frac{\alpha(x): \beta_1(x), \dots, \beta_n(x)}{\gamma(x)} \in \Delta, \Xi_i \vdash \alpha(c), \neg \beta_1(c), \dots, \neg \beta_n(c) \notin \Xi \right\}$$

Example

Given Theory:
$$T = \left\langle \Delta = \left\{ \frac{bird(x) : flies(x)}{flies(x)} \right\}, \Phi = \left\{ bird(Tweety), cat(Sylvester) \right\} \right\rangle$$

- Guess the extension = $Cn(\{flies(Tweety)\} \cup \Phi)$
- Our initial knowledge is $F = \Phi$
- Sylvester-instance of default not applicable:
 - not hold $\Phi \vdash bird(Sylvester)$
- $\Phi \vdash bird(Tweety)$ and flies(Tweety) is consistent with F
- $F = \Phi \cup \{flies(Tweety)\}$
- No more default rules to apply
- An extension is reached

Implications of Default Theory

- A default rule can be applied to a theory
 - if its precondition is entailed by the theory; and
 - its justifications are all consistent with the theory.
- The application of a default rule leads to the addition of its consequence to the theory.
- Other default rules may then be applied to the resulting theory.
- When the theory is such that no other default can be applied, the theory is called an <u>extension</u> of the default theory.

Nixon Diamond

The default rules may be applied in <u>different orders</u>, and this may lead to <u>different extensions</u>. E.g.:

Let Theory $T = \langle \Delta, \Phi \rangle$

$$= \left\{ \frac{quaker(x) : pacifist(x)}{pacifist(x)}, \\ \frac{republican(x) : \neg pacifist(x)}{\neg pacifist(x)} \right\}$$

•
$$\Phi = \{quaker(Nixon), republican(Nixon)\}$$

Nixon Diamond

Given $\langle \Delta, \Phi \rangle$

- $\Delta = \begin{cases} quaker(x) : pacifist(x) \\ pacifist(x) \end{cases}$, $republican(x) : \neg pacifist(x) \\ \neg pacifist(x) \end{cases}$
- $\Phi = \{quaker(Nixon), republican(Nixon)\}$

There are **two** extensions:

- 1. One that contains: pacifist(Nixon)
- 2. .. and the one that contains: ¬ pacifist(Nixon)

Entailment

- A default theory can have 0, 1 or more extensions.
- Entailment of a formula from a default theory can be defined in one of two ways:
 - <u>Skeptical</u>:
 - a formula is entailed by a default theory if it is entailed by all its extensions.
 - Credulous:
 - a formula is entailed by a default theory if it is entailed by at least one of its extensions.

Example

- The Nixon diamond example theory has two extensions:
 - one in which Nixon is a pacifist; and
 - one in which Nixon is not a pacifist.
- Thus, we have:
 - Neither Pacifist(Nixon) nor ¬Pacifist(Nixon) are skeptically entailed.
 - Both Pacifist(Nixon) and ¬Pacifist(Nixon) are credulously entailed.
- The credulous extensions of a default theory can be inconsistent with each other.

Thank you!

