

图像分类任务 (2)

叶山 中国地质大学(北京)

yes@cugb.edu.cn

数据驱动的图像分类

数据驱动的分类步骤

构建数据集 设计分类器 训练分类器 分类器决策

分类器的设计

分类器的设计

分类器的设计

图像表示

- 像素表示
- 全局特征表示(比如GIST)
- 局部特征表示(比如bag of feature模型)

像素表示

最简单、最基本的图像表示。

全局特征表示

将图像划分为若干个小区域(通常是4*4共16 个单元格)。

使用一系列不同的Gabor滤波器组成的滤波 器组、对图像进行滤波。

计算每个单元格内的部分对每个滤波器的响 应值,并计算平均值。

最终得到的GIST描述符的大小为4*4*N、其 中N是滤波器组里的滤波器个数。

Gabor滤波器组 5个频率4个方向

结果

原图 划分为16个网格

GIST图像表示: 是一种宏观意义 的场景特征描述, 可以识别如 "大街上有一些行人"这样的非 细节的总体场景, 无需关注图像 中具体有多少个对象。

局部特征表示

局部特征表示

Bag of words 词袋模型 早期自然语言处理

图像表示

抓住重点维度,去掉和问题无关的维度。

分类器

近邻分类器 (KNN)

贝叶斯分类器

线性分类器

支持向量机 (SVM)

随机森林 (RF)

人造神经网络 (ANN)

自适应增强 (AdaBoost)

给输入图像打上分类标签,输出预测值

损失函数

0-1损失

多类支持向量机 损失

交叉熵损失

L1损失

(平均绝对误差)

L2损失

(均方误差)

评估预测值和真实值之间的差距

优化算法

一阶算法

- 梯度下降
- 随机梯度下降
- 小批量随机梯度下降

二阶算法

- 牛顿法
- 拟牛顿法 (如DFP)
- BFGS
- L-BFGS

指导模型在学习过程中的参数迭代更新

训练过程

数据集划分

数据预处理

数据增强

欠拟合和过拟合

超参数和调参

模型集成

Pop Quiz

- 1. Gaussian滤波器的频带宽度由什么决定?
- A. 标准差 | B. 均值 | C. 极差 | D. 中位数
- 2. 以下哪个边缘检测器的边缘定位最不精准?
- A. Sobel | B. Prewitt | C. Laplacian | D. Canny
- 3. 以下哪个方法被直接用于平滑图像、去除噪声?
- A. 高通滤波 | B. 低通滤波 | C. 快速傅里叶变换 | D. 小波变换
- 4. 跨越语义隔阂指的是建立从______的映射?
- A. 像素到语义 | B. 语义到像素 | C. 维度到语义 | D. 语义到维度
- 5. 发明时间最早、波形最简单的小波是?
- A. Morlet | B. Meyer | C. Haar | D. Daubechies

图像分类任务的评价指标

正确率Accuracy

分类正确的样本数占全部样本 数之比。

- 优点: 计算简单、易于理解
- 缺点:对于不平衡的数据集, 因为majority class的影响, 正确率的评估效果可能不好
- 需要额外指标: Precision (精准度), Recall (召回 率)和F1-score

混淆矩阵Confusion matrix

		分类结果	
		N 阴性	P 阳性
真实值	N 阴性	TN 真阴性	FP 假阳性 Type 1 Error
	P 阳性	FN 假阴性 Type 2 Error	TP 真阳性

True Positive (TP): 把阳性样本正确地分为阳性类。 True Negative (TN): 把阴性样本正确地分为阴性类。 False Positive (FP): 把阴性样本错误地分为阳性类。 False Negative (FN): 把阳性样本错误地分为阴性类。

Accuracy = (TP + TN) / (TP + TN + FP + FN)

精准度Precision和召回率Recall

		分类结果	
		N 阴性	P 阳性
真实值	N 阴性	TN 真阴性	FP 假阳性 Type 1 Error
	P 阳性	FN 假阴性 Type 2 Error	TP 真阳性

Precision: 在所有被分类为阳性的数据中, 真实的阳性数据占多少?

Recall: 在所有真实值为阳性的数据中,有大比例被 正确分类为阳性?

Precision =
$$TP / (TP + FP)$$

Recall = $TP/(TP + FN)$

F1 score

		分类结果	
		N 阴性	P 阳性
真实值	N 阴性	TN 真阴性	FP 假阳性 Type 1 Error
	P 阳性	FN 假阴性 Type 2 Error	TP 真阳性

综合考虑Precision和Recall。

F1 = (2 * Precision * Recall) / (Precision + Recall)

多于两类的情况

Predicted

	Cat	Dog	Pig
Cat	40	20	10
Dog	35	85	40
Pig	0	10	20

每个类别分别计算:

Precision = TP / (TP + FP)

Recall = TP/(TP + FN)

F1 = (2 * Precision * Recall) / (Precision + Recall)

Macro平均: 求每个类别的Precision、Recall、

F1 score的均值。

Weighted平均:根据每个类别的样本数,每个

类别的Precision、Recall、F1 score的加权均值。

Predicted

	Cat	Dog	Pig
Cat			FP
Dog			FP
Pig	FN	FN	TP

	TP	FN	FP
Cat	40	30	35
Dog	85	75	30
Pig	20	10	50

Actua

