Mathematics 1A HSLU, Semester 1

Matteo Frongillo

September 17, 2024

Contents

Ι	Week 1	3
1	The set theory 1.1 Definition of a set 1.2 Logical symbols 1.2.1 Definition 1.2.2 Equal 1.2.3 Belongs to 1.2.4 Does not belong to 1.2.5 Inclusion and contains 1.2.6 For all/any 1.2.7 Implication 1.2.8 Inference 1.2.9 If and only if 1.3 Numerical sets 1.3.1 Inclusion of sets	3 3 3 3 3 3 3 4 4 4 4 4 4 4
2	Intervals in the real line 2.1 Examples	5 5 5
3	The extended line 3.1 Properties 3.2 Operation in the extended line 3.2.1 Additions 3.2.2 Moltiplications	5 5 5 6
4		6 6 6
5	Union and Intersection 5.1 Logical symbols AND, OR and NOT 5.2 Universe symbol 5.3 Venn diagram 5.3.1 Union $A \cup B$ 5.3.2 Intersection $A \cap B$ 5.3.3 The complementary element \overline{A} 5.3.4 Difference between sets 5.3.5 Empty set \emptyset	7 7 7 7 7 8 8 9
6	The absolute value function	9

6.2	Properties	ć
6.3	Triangolar inequalities	Ç

Part I

Week 1

1 The set theory

1.1 Definition of a set

A set is a collection of objects or elements.

Remark: The collection of all sets is not a set.

1.2 Logical symbols

1.2.1 Definition

Braces and the definition symbol ":=" are used to define a set giving all its elements:

$$A := \{a, b, c, d, e\}$$

1.2.2 Equal

In this case, the equal symbol means that the set A is equal to the set B:

$$A = B$$

1.2.3 Belongs to

The symbols \in and \ni describe an element which is part of the set:

$$a \in A \Longleftrightarrow A \ni a$$

1.2.4 Does not belong to

The symbols \notin mean that an element does not belong to the set:

$$f \notin A$$

1.2.5 Inclusion and contains

The symbols \subset and \supset mean that a set has another set included in its set:

$$\mathbb{N}\subset\mathbb{Z}\Longleftrightarrow\mathbb{Z}\supset\mathbb{N}$$

1.2.6 For all/any

The symbol \forall means that we are considering any type of element:

$$\forall x \in \mathbb{R}, \ x > 0$$

In this case, we've defined a new set.

1.2.7 Implication

The symbol \Rightarrow means that by setting a rule, we imply an event or an action:

if
$$x = 1 \Longrightarrow x \in \mathbb{N}$$
, but if $x \in \mathbb{N}$ we do not know if $x = 1$

With the implication, it is <u>sufficient</u> to claim action "A" in order to claim action "B".

1.2.8 Inference

The symbol ← means that by having an event or an action, we have a rule.

$$x \in \mathbb{R}^+ \Longleftrightarrow x > 0$$

With the inference, it is necessary to have claim the action "A" in order to have claim the action "B"

1.2.9 If and only if

The symbol \Leftrightarrow means that two events happen simultaneously (double implication):

$$x \in \mathbb{N}, \ x \neq 0 \Longleftrightarrow x \in \mathbb{N}^*$$

Example:

$$x = 2 \Longleftrightarrow x^2 - 4x + 4 = 0$$

Proof

$$x = 2 \Rightarrow (x - 2) = 0 \Rightarrow (x - 2)^2 = 0 \cdot (x - 2) \Rightarrow x^2 - 4x + 4 = 0$$

This happens because x = 2

1.3 Numerical sets

- $\mathbb{N} := \text{Natural numbers (including 0)};$
- $\mathbb{Z} := \text{Integer numbers};$
- $\mathbb{Q} := \text{Rational numbers};$
- $\mathbb{R} := \text{Real numbers} := \mathbb{Q} \cup \{ \text{irrational numbers} \}$.

Notation: The "*" symbol means that the set does not include 0.

1.3.1 Inclusion of sets

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

$$B := \{\pi, 1, -1, 0\};$$

$$C := \{\pi, 1\};$$

$$D := \{\pi\}$$
.

Then we write some examples: $\pi \in B, \ D \subset B, \ C \subset B, \ B \not\subset C, \ 0 \in B, \ 0 \notin C.$

2 Intervals in the real line

Intervals describe what happens between two or more elements.

2.1 Examples

2.1.1 Interval sets

We have 4 cases:

- $(a,b) = {\forall x \in \mathbb{R} \mid a < x < b};$
- $[a,b) = \{ \forall x \in \mathbb{R} \mid a \le x < b \};$
- $(a,b] = \{ \forall x \in \mathbb{R} \mid a < x \le b \};$
- $[a,b] = {\forall x \in \mathbb{R} \mid a \le x \le b}.$

Notation: a and b are often called the "end points" of the interval;

2.1.2 Graphical examples

 $\forall x \in \mathbb{R}, \ x \in [a, b]$

3 The extended line

In the real line \mathbb{R} we add $\pm \infty$.

Real line: $(-\infty, +\infty) = \mathbb{R}$

Extended real line: $[-\infty, +\infty] = \overline{\mathbb{R}}$

Remark: $\pm \infty \notin \mathbb{R}$

3.1 Properties

$$\forall x \in \mathbb{R} \mid \infty > x \mid -\infty < 0$$

3.2 Operation in the extended line

If $a, b \in \mathbb{R}$, then a + b, a - b, $a \cdot b$, $\frac{a}{b}$ (with $b \neq 0$) stay the same

3.2.1 Additions

Let $\forall a \in \mathbb{R}$:

- $a + \infty := \infty$;
- $a-\infty:=-\infty$;
- $+\infty + \infty := +\infty;$
- $-\infty \infty := -\infty$;
- $+\infty \infty :=$ undefined.

3.2.2 Moltiplications

Let $\forall a \in \mathbb{R}$:

•
$$+\infty \cdot +\infty := +\infty;$$

•
$$-\infty \cdot +\infty := -\infty;$$

•
$$-\infty \cdot (-\infty) := \infty;$$

•
$$a \cdot \infty := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & \text{undefined} \end{cases}$$

•
$$a \cdot (-\infty) := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & \text{undefined} \end{cases}$$

•
$$\frac{a}{+\infty} = \frac{a}{-\infty} := 0;$$

$$\bullet \quad \frac{+\infty}{a} := \begin{cases} a > 0 & +\infty \\ a < 0 & -\infty \\ a = 0 & +\infty \end{cases}$$

$$\bullet \quad \frac{-\infty}{a} := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & -\infty \end{cases}$$

•
$$\frac{-\infty}{a} := \begin{cases} a > 0 & -\infty \\ a < 0 & +\infty \\ a = 0 & -\infty \end{cases}$$

•
$$\frac{\infty}{\infty}$$
 := undefined.

Intervals including $\pm \infty$

Intervals describe what happens between two or more elements, including $\pm \infty$.

4.1 Examples

4.1.1 Interval sets

Let $a \in \mathbb{R}$, then:

$$\bullet \ \ (-\infty,a) = \{ \forall x \in \mathbb{R} \mid x < a \};$$

•
$$(a, +\infty) = \{ \forall x \in \mathbb{R} \mid x > a \};$$

•
$$(-\infty, a] = \{ \forall x \in \mathbb{R} \mid x \le a \};$$

•
$$[a, +\infty] = \{ \forall x \in \mathbb{R} \mid x \ge a \};$$

•
$$(-\infty, +\infty) = \mathbb{R}$$
;

•
$$[-\infty, +\infty] = \overline{\mathbb{R}}$$
.

4.1.2 Graphical examples

$$\forall x \in \mathbb{R}, \ x \in [a, b] \cup [c, +\infty[$$

<u>Notation</u>: The union of two or more intervals where $x \in \mathbb{R}$ is denoted by the symbol \cup .

5 Union and Intersection

5.1 Logical symbols AND, OR and NOT

- $\wedge = AND;$
- $\vee = OR;$
- $\neg = NOT$.

5.2 Universe symbol

The symbol \bigcup := Universe describes a big set which contains all sets involved in our discussions (not always). Let A, B be two sets $[A \subset \bigcup, B \subset \bigcup]$. Then:

- $A \cup B = \text{union of } A \text{ and } B \Longrightarrow \{ \forall x \in \bigcup \mid x \in A \lor x \in B \};$
- $A \cap B =$ intersection between A and $B \Longrightarrow \{ \forall x \in \bigcup \ | \ x \in A \land x \in B \}.$

5.3 Venn diagram

5.3.1 Union $A \cup B$

5.3.2 Intersection $A \cap B$

5.3.3 The complementary element \overline{A}

$1-A=\overline{A}$

5.3.4 Difference between sets

$$A \mathop{\backslash} B = \{ \forall x \in \bigcup \ | \ x \in A, \ x \not \in B \}$$

COLORARE TUTTO A PARTE $A \cup B!!$

5.3.5 Empty set \emptyset

 $\emptyset :=$ the set containing zero elements: $A \cup B = \emptyset$

<u>Definition</u>: $A \triangle B = (A \setminus B) \cup (B \setminus A)$

6 The absolute value function

The absolute value is an operator which turns positive the sign of the result of the function.

Let $x \in \mathbb{R}$, then:

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ x & \text{if } -x \le 0 \end{cases}$$

6.1 Graph of absolute value functions

Let's plot the function y = |x|:

6.2 Properties

Let $a, b \in \mathbb{R}$, then:

- $\bullet \ |a\cdot b|=|a|\cdot |b|;$
- $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$ for $b \neq 0$;
- $|a \pm b| \neq |a| \pm |b|$.

6.3 Triangolar inequalities

Let $a, b \in \mathbb{R}$, then:

$$|a|+|b| \ge |a+b|$$
$$|a|-|b| \le |a-b|$$

9