Ensemble, application et relation

1. Ensemble

Exercice 1.1

Que dire de deux sous-ensembles A et B de E tels que $A \cup B = A \cap B$?

Exercice 1.2

Soient A, B, C trois ensembles. Montrer que $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.

Exercice 1.3

Soient A, B, C trois ensembles. Montrer que $\begin{cases} A \cup B \subset A \cup C \\ A \cap B \subset A \cap C \end{cases} \Rightarrow B \subset C.$

Exercice 1.4

Soient E et F deux ensembles. Quelle relation y-a-t-il :

- 1. Entre $\mathcal{P}(E \cup F)$ et $\mathcal{P}(E) \cup \mathcal{P}(F)$?
- 2. Entre $\mathcal{P}(E \cap F)$ et $\mathcal{P}(E) \cap \mathcal{P}(F)$?
- Entre P(E × F) et P(E) × P(F)?

Exercice 1.5

Soit E un ensemble et A une partie de E, on note :

$$\chi_A : E \longrightarrow \{0,1\}$$

$$x \mapsto \begin{cases}
1 & \text{si } x \in A \\
0 & \text{si } x \notin A
\end{cases}$$

 χ_A est appelée la fonction caractéristique de la partie A.

Montrer que pour toute parties A et B de E, on a :

- 1. $A \subset B \iff \chi_A \leqslant \chi_B$
- 2. $A = B \iff \chi_A = \chi_B$
- 3. $\chi_A^2 = \chi_A$
- 4. $\chi_{A \cap B} = \chi_A \chi_B$
- 5. $\chi_{\overline{A}} = 1 \chi_A$
- 6. $\chi_{A \cup B} = \chi_A + \chi_B \chi_{A \cap B}$
- 7. $\chi_{A \setminus B} = \chi_A (1 \chi_B)$
- 8. $\chi_{A\Delta B} = \chi_A + \chi_B 2\chi_A \chi_B$