

planetmath.org

Math for the people, by the people.

inverse of matrix with small-rank adjustment

 ${\bf Canonical\ name} \quad {\bf InverseOfMatrixWithSmallrankAdjustment}$

Date of creation 2013-03-22 15:46:06 Last modified on 2013-03-22 15:46:06

Owner kshum (5987) Last modified by kshum (5987)

Numerical id 8

Author kshum (5987) Entry type Theorem Classification msc 15A09 Suppose that an $n \times n$ matrix B is obtained by adding a small-rank adjustment XRY^T to matrix A,

$$B = A + XRY^T,$$

where X and Y are $n \times r$ matrices, and R is an $r \times r$ matrix. Assume that the inverse of A is known and r is much smaller than n. The following formula for B^{-1} is often useful,

$$B^{-1} = A^{-1} - A^{-1}X(R^{-1} + Y^TA^{-1}X)^{-1}Y^TA^{-1}$$

provided that all inverses in the formula exist. In particular, when r = 1 and A = I, we have

$$(I + xy^T)^{-1} = I - \frac{xy^T}{1 + y^Tx}$$

for any $n \times 1$ column vectors x and y such that $1 + y^T x \neq 0$.