

LOGICA DE ORDINUL I

Limbaje de ordinul I

Un limbaj \mathcal{L} de ordinul I este format din:

- ▶ o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- paranteze: (,);
- simbolul de egalitate =;
- ▶ cuantificatorul universal ∀:
- ▶ o mulțime R de simboluri de relații;
- ▶ o mulţime F de simboluri de funcţii;
- ▶ o mulţime C de simboluri de constante;
- o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- \mathcal{L} este unic determinat de cvadruplul $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- ightharpoonup au se numește signatura lui $\mathcal L$ sau vocabularul lui $\mathcal L$ sau alfabetul lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

Fie \mathcal{L} un limbaj de ordinul I.

• Mulţimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x, y, z, v, \ldots , simbolurile de relații cu $P, Q, R \ldots$, simbolurile de funcții cu f, g, h, \ldots și simbolurile de constante cu c, d, e, \ldots
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 \mathcal{F}_m := mulțimea simbolurilor de funcții de aritate m;

 \mathcal{R}_m := mulțimea simbolurilor de relații de aritate m.

Limbaje de ordinul I

Definiția 2.1

Mulțimea $Expr_{\mathcal{L}}$ a expresiilor lui \mathcal{L} este mulțimea tuturor șirurilor finite de simboluri ale lui \mathcal{L} .

- Expresia vidă se notează λ.
- **L**ungimea unei expresii θ este numărul simbolurilor din θ .

Definiția 2.2

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui \mathcal{L} , unde $\theta_i \in Sim_{\mathcal{L}}$ pentru orice i.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ ;
- Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .

Definiția 2.3

Mulțimea $Trm_{\mathcal{L}}$ a termenilor lui \mathcal{L} este intersecția tuturor mulțimilor de expresii Γ care satisfac următoarele proprietăți:

- orice variabilă este element al lui Γ;
- orice simbol de constantă este element al lui Γ;
- ▶ dacă $m \ge 1$, $f \in \mathcal{F}_m$ și $t_1, \ldots, t_m \in \Gamma$, atunci $ft_1 \ldots t_m \in \Gamma$.

Notații:

- ► Termeni: $t, s, t_1, t_2, s_1, s_2, ...$
- ightharpoonup Var(t) este mulțimea variabilelor care apar în termenul t.
- Scriem $t(x_1,...,x_n)$ dacă $x_1,...,x_n$ sunt variabile și $Var(t) \subseteq \{x_1,...,x_n\}$.

Definiția 2.4

Un termen t se numește închis dacă $Var(t) = \emptyset$.

Propoziția 2.5 (Inducția pe termeni)

Fie Γ o mulțime de termeni care are următoarele proprietăți:

- Γ conţine variabilele şi simbolurile de constante;
- ▶ dacă $m \ge 1$, $f \in \mathcal{F}_m$ și $t_1, \ldots, t_m \in \Gamma$, atunci $ft_1 \ldots t_m \in \Gamma$.

Atunci $\Gamma = Trm_{\mathcal{L}}$.

Este folosită pentru a demonstra că toți termenii au o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor termenilor care satisfac \mathcal{P} și aplicăm inducția pe termeni pentru a obține că $\Gamma = \mathit{Trm}_{\mathcal{L}}$.

Citire unică (Unique readability)

Dacă *t* este un termen, atunci exact una din următoarele alternative are loc:

- ightharpoonup t = x, unde $x \in V$;
- ▶ t = c, unde $c \in C$;
- ▶ $t = ft_1 \dots t_m$, unde $f \in \mathcal{F}_m$ $(m \ge 1)$ și t_1, \dots, t_m sunt termeni.

Mai mult, scrierea lui t sub una din aceste forme este unică.

Formule

Definiția 2.6

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- (s = t), unde s, t sunt termeni;
- ▶ $(Rt_1 ... t_m)$, unde $R \in \mathcal{R}_m$ și $t_1, ..., t_m$ sunt termeni.

Definiția 2.7

Mulţimea $Form_{\mathcal{L}}$ a formulelor lui \mathcal{L} este intersecţia tuturor mulţimilor de expresii Γ care satisfac următoarele proprietăţi:

- orice formulă atomică este element al lui Γ;
- ▶ Γ este închisă la \neg : dacă $\varphi \in \Gamma$, atunci $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow : dacă $\varphi, \psi \in \Gamma$, atunci $(\varphi \to \psi) \in \Gamma$;
- ▶ Γ este închisă la $\forall x$ (pentru orice variabilă x): dacă $\varphi \in \Gamma$, atunci ($\forall x \varphi$) $\in \Gamma$ pentru orice variabilă x.

Notații

- Formule: $\varphi, \psi, \chi, \ldots$
- ▶ $Var(\varphi)$ este mulțimea variabilelor care apar în formula φ .

Convenție

Ca și în cazul logicii propoziționale, de obicei renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Atunci când nu e pericol de confuzie, scriem s=t în loc de (s=t), $Rt_1 \ldots t_m$ în loc de $(Rt_1 \ldots t_m)$, $\forall x \varphi$ în loc de $(\forall x \varphi)$, etc..

Propoziția 2.8 (Inducția pe formule)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- Γ conţine toate formulele atomice;
- ▶ Γ este închisă la \neg , \rightarrow și $\forall x$ (pentru orice variabilă x).

Atunci $\Gamma = Form_{\mathcal{L}}$.

Este folosită pentru a demonstra că toate formulele satisfac o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor formulelor care satisfac \mathcal{P} și aplicăm inducția pe formule pentru a obține că $\Gamma = Form_{\mathcal{L}}$.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\varphi = (s = t)$, unde s, t sunt termeni;
- $ho = (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m$ și t_1, \dots, t_m sunt termeni;
- $\varphi = (\neg \psi)$, unde ψ este formulă;
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule;
- $\varphi = (\forall x \psi)$, unde x este variabilă și ψ este formulă.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Formule

Conectori derivați

Conectorii \lor , \land , \leftrightarrow și cuantificatorul existențial \exists sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := ((\neg \varphi) \to \psi)
\varphi \land \psi := \neg(\varphi \to (\neg \psi)))
\varphi \leftrightarrow \psi := ((\varphi \to \psi) \land (\psi \to \varphi))
\exists x \varphi := (\neg \forall x (\neg \varphi)).$$

Conventii

- Se aplică aceleași convenţii ca la logica propoziţională LP în privinţa precedenţei conectorilor ¬, →, ∨, ∧, ↔.
- ► Cuantificatorii ∀, ∃ au precedență mai mare decât ceilalți conectori.
- ▶ Aşadar, $\forall x \varphi \to \psi$ este $(\forall x \varphi) \to \psi$ şi nu $\forall x (\varphi \to \psi)$.

De multe ori identificăm un limbaj \mathcal{L} cu mulțimea simbolurilor sale non-logice și scriem $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$.

- Scriem de multe ori $f(t_1, \ldots, t_m)$ în loc de $ft_1 \ldots t_m$ și $R(t_1, \ldots, t_m)$ în loc de $Rt_1 \ldots t_m$.
- ▶ Pentru simboluri f de operații binare scriem t_1ft_2 în loc de ft_1t_2 .
- Analog pentru simboluri R de relații binare: scriem t_1Rt_2 în loc de Rt_1t_2 .

Definiția 2.9

O \mathcal{L} -structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- A este o mulţime nevidă;
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ este o mulțime de operații pe A; dacă f are aritatea m, atunci $f^{\mathcal{A}} : A^m \to A$;
- ▶ $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulțime de relații pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- $\mathcal{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathcal{C} \}.$
- A se numește universul structurii A. Notație: A = |A|
- ► $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește denotația sau interpretarea lui f (respectiv R, c) în \mathcal{A} .

Exemple - Limbajul egalității $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, unde

- $\mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- \triangleright $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide

Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

$$\mathcal{L}_{\textit{ar}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $\mathcal{R} = \{\dot{<}\}; \dot{<}$ este simbol de relație binară, adică are aritatea 2;
- ▶ $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de operații binare și \dot{S} este simbol de operație unar (adică are aritatea 1);
- $C = \{\dot{0}\}.$

Scriem
$$\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$$
 sau $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

Exemplul natural de \mathcal{L}_{ar} -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde $S: \mathbb{N} \to \mathbb{N}, S(m) = m+1$ este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}}=<,\ \dot{+}^{\mathcal{N}}=+,\ \dot{\times}^{\mathcal{N}}=\cdot,\ \dot{S}^{\mathcal{N}}=S,\ \dot{0}^{\mathcal{N}}=0.$$

• Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\}, <, \vee, \wedge, \neg, 1)$.

Exemplu - Limbajul cu un simbol de relație binar

$$\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \{R\}; R \text{ simbol binar}$
- $\mathcal{F} = \mathcal{C} = \emptyset$
- L-structurile sunt mulțimile nevide împreună cu o relație binară
- ▶ Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- ▶ Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul $\dot{<}$ în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- ▶ Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .
- ▶ Dacă suntem interesați de structuri (A, \in) , folosim simbolul \in în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

Exemple - Limbajul grupurilor \mathcal{L}_{Gr}

$$\mathcal{L}_{Gr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $\triangleright \mathcal{R} = \emptyset;$
- $\mathcal{F} = \{\dot{*}, \dot{-1}\}; \dot{*} \text{ simbol binar, } \dot{-1} \text{ simbol unar}$
- $\mathcal{C} = \{\dot{e}\}.$

Scriem
$$\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$$
 sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G} = (G, \cdot, ^{-1}, e)$. Prin urmare, $\dot{*}^{\mathcal{G}} = \cdot, \dot{^{-1}}^{\mathcal{G}} = ^{-1}$, $\dot{e}^{\mathcal{G}} = e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \emptyset$:
- $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $\mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$

SEMANTICA

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o $\mathcal L$ -structură.

Definiția 2.10

O interpretare sau evaluare a (variabilelor) lui $\mathcal L$ în $\mathcal A$ este o funcție $e:V\to A$.

În continuare, e:V o A este o interpretare a lui $\mathcal L$ in $\mathcal A.$

Definiția 2.11 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

- ▶ dacă $t = x \in V$, atunci $t^{A}(e) := e(x)$;
- ▶ dacă $t = c \in C$, atunci $t^{A}(e) := c^{A}$;
- lacktriangledown dacă $t=ft_1\dots t_m$, atunci $t^{\mathcal{A}}(e):=f^{\mathcal{A}}(t_1^{\mathcal{A}}(e),\dots,t_m^{\mathcal{A}}(e)).$

Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac} \check{a} & s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \operatorname{altfel}. \end{array}
ight. \ (Rt_1 \ldots t_m)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac} \check{a} & R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \ldots, t_m^{\mathcal{A}}(e)) \\ 0 & \operatorname{altfel}. \end{array}
ight.$$

Negația și implicația

- $(\neg \varphi)^{\mathcal{A}}(e) = \neg \varphi^{\mathcal{A}}(e);$
- $(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e).$

Prin urmare.

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0$
- $\bullet \ (\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff \big(\ \varphi^{\mathcal{A}}(e) = 0 \ \mathsf{sau} \ \psi^{\mathcal{A}}(e) = 1 \big).$

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretarea $e_{x \leftarrow a}: V \to A$ prin

$$e_{x \leftarrow a}(v) = \left\{ egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v = x. \end{array}
ight.$$

Interpretarea formulelor

$$(\forall x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \mathsf{dac}\check{a} \ \varphi^{\mathcal{A}}(e_{\mathsf{x}\leftarrow a}) = 1 \ \mathsf{pentru\ orice}\ a \in A \\ 0 & \mathsf{altfel}. \end{cases}$$