练习题 1

一、判断题

1.	令 p : 太阳从东方升起, q : $2+2\neq 4$,则命题"如果太阳从东方升起,那么
	2+2≠4"可符号化为 $p→q$. ()
2.	设 $F(x)$: x 是人, $Q(x)$: x 爱发脾气。则命题"有人爱发脾气"在一阶逻辑中可
	符号化为 $\neg\exists x(F(x) \rightarrow \neg Q(x))$.(个体域为全总个体域) ()
3.	公式 $\forall x F(x) \rightarrow \exists x G(x)$ 是永真公式. ()
4.	设个体域 $A=\{a,b\}$,公式 $\exists x F(x)$ 在 A 中消去量词后为 $F(a) \land F(b)$.(
5.	集合 $A=\{a,b,c\}$ 上的二元关系 I_A 具有自反性、对称性和传递性. ()
6.	集合 A={a, b, c}上的关系 R={ <a, a="">,<a,b>}具有反自反性. ()</a,b></a,>
7.	设 Z^+ 为正整数集,-是普通的减法运算,则< Z^+ , ->是一个群. ()
8.	设 G 是一个 5 阶的群,则 G 中任何元素的阶等于 1 或者 5 . ()
9.	设无向图 $G=$ 中, $V=\{v_1,v_2,\cdots,v_n\}$,且图中有 m 条边,那么所有顶点
	的度数之和与边的数目满足关系 $\Sigma_{i=1}^n d(v_i) = 2m$. ()
10	. 设有整数数列(3,1,1,1),那么,此整数数列是可图化的。 ()
=	、填空题
1.	设 $p:2$ 是素数, $q:4$ 是素数。则命题,"2 与 4 都是素数,这是不对的"可符号
	化为,其真值为。
2.	假设含 3 命题变项的命题公式 A 的成真赋值为 001 , 010 , 011 , 那么其主析
	取范式为。
3.	假设个体域为 $D = \{1,2\}$,那么谓词公式 $\forall x(F(x) \rightarrow G(x))$ 是
	(填: 永真公式、永假公式或者可满足式)
4.	设有集合 $A = \{1,2,3\}$ 上的二元关系 $R = \{<1,1>,<1,2>\}$,那么 R^2 的集合表达式
	是。(。表示关系的合成运算)
5.	设有一个具有 3 个命题变项的命题公式,其主合取范式为 M_7 ,那么该公式的
	成假赋值为。
6.	设集合 $S = \{2,3,4,5,6\}$, S 中的运算*定义为: $a*b = \max(a,b)$,则*运算的单位
	元是,零元是。
7.	设 $G = < Z_{13}^*, \otimes >, Z_{13}^* = \{1, 2, \cdots, 12\}, $ 对 $\forall x, y \in Z_{13}^*, x \otimes y = (xy) \ mod \ 13$,那么
	G 是一个群。请问 G 有
8.	设 $G = \langle Z_6, \oplus \rangle$,其中 $Z_6 = \{0,1,2,3,4,5\}$,对 $\forall x,y \in G, x \oplus y = (x+y) \bmod 6$ 。那
	么群 G 的生成元是(写出一个即可),元素 2 的阶是。
9.	已知在图 1 的无向图中,有 2 个割点,它们分别是和。
9.	已知在图 1 的无向图中,有 2 个割点,它们分别是和。

图 1

- 10. 给定解释I和 I 下的赋值 σ 如下:
- (1) 个体域D = N(自然数集).
- (2) 特定元素 $\bar{a} = 2$.
- (3) N上的函数 $\overline{g}(x,y) = x \cdot y$.
- (4) 谓词公式 $\overline{F}(x,y)$:x = y.
- (5) $\sigma(y) = 3$.

那么,公式 $\forall x F(g(x,a),y)$ 在 I 和 σ 下被解释为_____

三、求命题公式 $(p \to q) \land (\neg q \to r)$ 的真值表、主析取范式和主合取范式

四、在自然推理系统中构造下面推理的证明。

如果小张和小王去看电影,那么小李也去看电影;小赵不去看电影或小张去看电影;小王去看电影。所以,当小赵去看电影时,小李也去。请完成下列内容:

(1) 命题符号化.

设命题 p:小张	
----------	--

r:小李	,	s:小赵	_ 0
(2) 推理的形式结构.			
前提:			
/+·^			

(3) 证明过程(请换行写出证明过程.)

五、设 $A = \{1,2,3,4\}$ 及A上的二元关系 $R = \{<1,3>,<1,4>,<2,3>,<2,4>,<3,4>\}$.

- (1) 写出R的关系矩阵 M_R ;
- (2) 分别写出 R 的自反、对称和传递闭包的关系矩阵 $M_{r(R)}, M_{s(R)}, M_{t(R)}$;
- (3) 写出t(R)具有的性质.

次、 波
$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

(1) 证明 G 关于矩阵普通乘法构成一个群;

(2) 求
$$G$$
 中元素 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 的阶;

(3) 求出由
$$G$$
 中元素 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 生成的子群 H ;

(4) G 是否是循环群.

七、一个公司在城市 A、城市 B、城市 C、城市 D、城市 E 各有一个计算机中心。 现在公司计划建立一个计算机网络来连接它的五个计算机中心。公司可租用 通信线路来连接这些中心的任何一对。已知在每对中心之间租用通信线路的 费用如表 1 所示:

表 1 第七题表

费用(单位:元)	城市对	费用(单位:元)
900	(B,D)	1600
1200	(B,E)	1400
2000		1000
2200		700
		800
	900	900 (B,D) 1200 (B,E) 2000 (C,D) 2200 (C,E)

问:应当在哪些城市之间建立通信连接,以便保证在任何两个城市之间都有通路,且通信网络的总费用最低?(要求写出详细的过程)

八、

给定有向图D=<V,E>,如图2所示。

(1) 写出 D 的邻接矩阵;

图 2 第八题图

(2) $D 中 v_2 到 v_5$ 长度是 2 的通路有几条?

(3) D 中长度为 3 的通路共有几条?

练习题 2

一、判断题

- 1. 已知命题公式 A 中含 3 个命题变项 p, q, r, 并知道它的成真赋值分别为 001, 010, 111, 则 A 的主析取范式为 $m_1 \lor m_2 \lor m_7$ 。 ()

- 5. 设 A={a, b, c}, $R \subseteq A \times A$ 且 R={<a, b>, <a, c>}, 则 R 是传递的。 ()
- 6. 若无向连通图 G 中存在桥,则 G 的点连通度和边连通度都是 1。 ()
- 7. 集合 A={1,2}的任何关系 R 不可能既是对称的,又是反对称的。 ()
- 8. 设 G 是一个 8 阶的群,则 G 中存在阶等于 5 的元素. ()

- 9. **G** 的导出子图。 ()
- 10. 循环群的生成元一定是唯一的。 ()

二、填空题

1. 在个体域 D={a, b, c}中,与公式 \forall xA(x) 等价又不含量词的公	式
是。	
2. 谓词公式∀x(P(x)∨∃yR(y))→Q(x)中量词∀x 的辖域是)
3. 对公式(\forall x)(P(x)→Q(x, y)) \land R(x, y)中的自由变元使用代入规则后,公式	变
为。	
4. 设 A={a, b, c}, A 上二元关系 R={< a, a > , < a, b >, < a, c >, < c, c>},则对称	闭
包 s(R)=	
5. 设 $X = \{a,b,c\}$, X 上的关系 R 的关系矩阵是 $M_R = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$,	
则合成运算 $R^{\circ}R$ 的矩阵 $M_{R \circ R} = $ 。	
6. 设 G 为 9 阶无向图,每个结点度数不是 5 就是 6,则 G 中至少有个 度结点。	_5
7. 代数系统 < A, * > 是群,则它满足: ①运算 * 在 A 上封闭,② * 在 A 上可	结
合,③*在A上,④。 8.设G={1,2,3,4,5,6,8,9,10},G关于模11乘法构成群,群G的单位元	是
, 元素 2 的逆元为。	
9. 如图 1 的有向图 D,则 D 的邻接矩阵 A(D) =。	
V1 V2	

V3 V4

图 1

10. 有向图的邻接矩阵中,行元素之和是对应结点的______,列元素之和是对应结点的_____。

三、求公式 $(p \lor (q \land r))$ $\rightarrow (p \land q \land r)$ 的真值表、主析取范式和成假赋值。

四、在自然推理系统中构造下面推理的证明。

只要 A 曾到过受害者房间并且 11 点以前没离开, A 就是谋杀嫌犯。A 曾到过受害者房间。如果 A 在 11 点以前离开, 看门人会看见他。看门人没有看见他。所以, A 是谋杀嫌犯。

请完成下列内容:

117 8/94 1 7 4 1 4 1 1		
(1) 命题符号化.		
p: A 到过	_, q: A 在	
r: A 是	_,s: 看门	
(2) 推理的形式结构.		
前提:		 0
结论:	o	
(3) 证明过程(请换行写出证明过程	!.)	

五、设 $A = \{1,2,3,4\}$ 及A上的二元关系 $R = \{<1,3>,<1,4>,<2,3>,<2,4>,<3,4>\}.$

(1) 写出R的关系矩阵 M_R ;

(2) 分别写出 R 的自反、对称和传递闭包的关系矩阵 $M_{r(R)}, M_{s(R)}, M_{t(R)}$;

(3) 写出t(R)具有的性质.

六、(14分)

读
$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

(1) 证明 G 关于矩阵普通乘法构成一个群;

(2) 求 G 中元素 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 的阶;

(3) 求出由 G 中元素 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 生成的子群 H;

(4) G 是否是循环群.

七、一个公司在城市 A、城市 B、城市 C、城市 D、城市 E 各有一个计算机中心。 现在公司计划建立一个计算机网络来连接它的五个计算机中心。公司可租用 通信线路来连接这些中心的任何一对。已知在每对中心之间租用通信线路的 费用如表 1 所示:

表 1 第七题表

城市对	费用(单位:元)	城市对	费用(单位:元)
(A,B)	900	(B,D)	1600
(A,C)	1200	(B,E)	1400
(A,D)	2000	(C,D)	1000
(A,E)	2200	(C,E)	700
(B,C)	1300	(D,E)	800

问:应当在哪些城市之间建立通信连接,以便保证在任何两个城市之间都有通路,且通信网络的总费用最低?(要求写出详细的过程)