Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

United States Department of Agriculture

Forest Service

Tongass National Forest

R-10-MB-199

December 1992

North Revilla Draft Environmental Impact Statement

CA+/5/A

Ketchikan Pulp Company
Long-Term Timber Sale Contract
Volume II

ACRONYMS AND SYMBOLS

ADF&G	Alaska Department of Fish and Game
AHMU	Aquatic Habitat Management Unit
ANCSA	Alaska Native Claims Settlement Act
ANILCA	Alaska National Interest Lands Conservation Act
ASQ	Allowable Sale Quantity
BBF	One billion board feet
BMP	Best Management Practice
CEQ	Council on Environmental Quality
CFL	Commercial Forest Land
CFR	Code of Federal Regulations
CZMA	Coastal Zone Management Act of 1976
DBH	Diameter at Breast Height
DEIS	Draft Environmental Impact Statement
EIS	Environmental Impact Statement
EPA	Environmental Protection Agency
EVC	Existing/Expected Visual Condition
FEIS	Final Environmental Impact Statement
FSH	Forest Service Handbook
FSM	Forest Service Manual
GIS	Geographic Information System
IDT	Interdisciplinary Team
KPC	Ketchikan Pulp Company
KV	Knutsen-Vandenberg Act
LTF :	Log-Transfer Facility
LUD	Land Use Designation
LWD	Large Woody Debris (same as LOD)
MBF	One thousand board feet
MELP	Multi-Entry Layout Process
MIS	Management Indicator Species
MM	Maximum Modification
MMBF	One million board feet
NEPA	National Environmental Policy Act
NFMA	National Forest Management Act
NMFS	National Marine Fisheries Service
NOI	Notice of Intent
P	Primitive
PR	Partial retention
R	Retention
RM	Roaded modified
RN	Roaded natural
ROD	Record of decision
ROS	Recreation Opportunity Spectrum
SHPO	State Historic Preservation Officer
SPM	Semi-primitive motorized
SPNM	Semi-primitive nonmotorized
TLMP	Tongass Land Management Plan
TRUCS	Tongass Resource Use Cooperative Survey
TTRA	Tongass Timber Reform Act
USDA	United States Department of Agriculture
USDI	United States Department of the Interior
USFWS	United States Fish and Wildlife Service
VCU	Value Comparison Unit
VQO	Visual Quality Objective
WAA	Wildlife Analysis Area

${\bf Acknowledgements}$

Front cover: By Cindy Ross Barber, 1992. The cover design illustrates the range of interconnected issues addressed in this EIS.

Appendicies

- A. Reasons For Scheduling
- B. Units Greater than 100 Acres
- C. AHMU Prescriptions
- D. Biological Assessment
- E. Transportation
- F. Perspective Plots
- G. LTF Reconnaissance Report, National Marine Fisheries Service Report, and Alaska Timber Task Force Siting Guidelines
- H. Silviculture Diagnosis
 - I. Sale Area Improvements /KV Opportunities
- J. Mitigation and Monitoring Measures
- K. Unit Cards

Appendix A

Reasons For Scheduling the Environmental Analysis of the North Revilla Project Area

Reasons For Scheduling The Environmental Analysis Of The North Revilla Project Area

KPC Long-term Timber Sale Contract Offerings

This appendix explains why the North Revilla Project Area is scheduled for environmental analysis at this time.

Summary

Reasons for scheduling the North Revilla Project Area at this time, for detailed consideration of timber harvest under the Ketchikan Pulp Company Long-term Timber Sale Contract, may be summarized as follows:

- 1. The North Revilla Project Area is within the Contract Area Boundary of the "F" Allotment Primary area, for the Ketchikan Pulp Company Long-term Timber Sale Contract, and contains a sufficient amount of harvestable timber volume designated as LUD III or IV, and therefore appropriate for harvest under the Tongass National Forest Land Management Plan (TLMP). Available information indicates harvest of the amount of timber being considered for this project can occur consistent with Forest Plan Standards and Guidelines and other requirements for resource protection. Consideration of areas outside the designated sale area at this time would not meet Ketchikan Pulp Company Contract requirements and is otherwise not necessary or reasonable.
- 2. Other areas with available timber inside the designated sale area will be necessary for harvest within the remainder of the Ketchikan Pulp Company Contract term (by 2004) in order to meet contract volume requirements. Effects on subsistence resources are projected to differ little according to which sequence these areas are subjected to harvest. Harvesting other areas on the Tongass National Forest with available timber is expected to have similar potential effects on resources, including those used for subsistence because of widespread distribution of subsistence use. Harvest of these other areas is foreseeable, in any case, over the forest planning horizon under either the existing or proposed revised Forest Plan.
- 3. Providing substantially less timber volume than required by the Ketchikan Pulp Company Contract in order to avoid harvest in the North Revilla Project Area or other project areas would not meet contract requirements and is otherwise not necessary or reasonable.
- 4. It is reasonable to schedule harvest in the North Revilla Project Area at present rather than other areas in terms of previous harvest entry and access, level of controversy over subsistence and other effects, and the ability to complete the National Environmental Policy Act (NEPA) process and make timber available to meet contract requirements by the time it is reasonably necessary to do so. Other areas that are reasonable to consider for harvest in the near future are the subject of other project EIS's that are currently ongoing or scheduled to begin soon.
- 5. A 200 MMBF total offering is consistent with cumulative effects assessment of the TLMP Revision (SDEIS).

More detail regarding the scheduling of the environmental analysis for the North Revilla Project Area is presented in this appendix in three subsections:

Ketchikan Pulp Company Contract Requirements Tongass Land Management Plan Forest Plan Implementation

Ketchikan Pulp Company Contract Requirements

Contract Background

In 1951, the Forest Service and Ketchikan Pulp Company (KPC) entered into a contract for sale and harvest of timber in Southeast Alaska for a 50-year period beginning in 1954 and ending in 2004. A primary function of this long-term contract was to "establish a new industrial enterprise which will be an important and significant step in the industrial development of Alaska" (Forest Service 1956).

The current management situation consists of a valid contract between the Forest Service and KPC, contract number A10fs-1042. This contract bestows rights and obligations on both parties. One obligation for the Forest Service is to provide the agreed upon volume from an identified contract sale area on the Tongass National Forest. Contract section B0.62 states in part "Forest Service shall seek to specify sufficient Offerings to maintain a Current Timber Supply in all Offering Areas that total at least three years of operations hereunder or until the contract termination date, whichever comes first, and which meets the the production requirements of Purchaser's manufacturing facilities." This three year supply equates to approximately 615 million board feet.

"Current Timber Supply" is defined in the contract generally as timber which the Forest Service has specified according to Forest Service planning procedures and for which the NEPA process has been completed. The Forest Service specifies timber through approving in writing a timber "Offering" under the contract, comparable to an independent timber sale. This approval in writing is represented by issuance of an "A Division" contract document for the Offering. An EIS such as the North Revilla Project Area EIS may cover one or up to several such Offerings, which may be specified by the Forest Service and therefore added to the contract "Current Timber Supply" concurrently or sequentially after issuance of the Record of Decision for the Project. Generally, layout on the ground of roads and harvest units selected in the Record of Decision (ROD) will be completed for each Offering prior to issuance of the "A Division" approval document.

The Forest Service Timber Sale Preparation Handbook (FSH 2409.18 Chapter 10) details the process utilized to prepare timber sales. This process also guides the preparation of timber Offerings under the KPC Contract. The timber sale preparation process is summarized below. Included in brackets is information describing modifications to the process specific to the KPC Contract. The Handbook states:

The timber sale preparation process begins with the identification of the sale area and ends with the award of the timber sale contract (as described above, the process for the KPC Contract ends with the issuance of an "A Division" contract document for the Offering]. These activities pass through specific stages, called "gates", each of which requires specific outputs before proceeding to the next gate. Following are descriptions of work processes at each gate.

Gate 1. Begin sale preparation activities with scoping or position statement development. Identify the purpose and need for the project, public issues, interested outside parties, management issues, resource opportunities in the sale area, a range of possible volume targets, and initial transportation system needs. . .

Gate 2. During the sale area design (environmental analysis) phase, develop alternative designs and analyze them for environmental effects. Concurrently, develop an analysis file to store the information that is gathered. Once a course of action is selected, develop a sale implementation plan that provides detailed instructions for field layout of all sale elements. The end product of the sale area design phase is the selection of the preferred alternative and signature of the decision notice by the official authorized to approve the project. . .

Gate 3. Activities leading to sale plan implementation include the data gathering and the on-the-ground marking, designating, and delineating needed to properly support the appraisal, the preparation of the contract, and post-award sale administration efforts. The sale passes through gate 3 when the field work is completed. . .

Gate 4. After gathering all necessary engineering design work, cruise (volume) information, logging costs, environmental protection costs, and other elements of the timber appraisal. . . [a final timber appraisal is prepared for the offering(s) and an "A Division" contract document is issued].

Contract provisions require KPC to harvest timber, construct and operate a mill for primary manufacture and to recruit labor from residents of Southeast Alaska. To fulfill this obligation KPC operates a sawmill and a pulp mill in Ketchikan and a sawmill in Metlakatla.

Why Areas Outside The Primary Sale Area Boundary Are Not Considered In Detail

Since authorization of the KPC contract in 1951, several laws have decreased the land from which the authorized timber volume could be removed. The Alaska Native Claims Settlement Act (ANCSA) authorized substitution to replace areas selected by the Native Corporations. The Alaska National Interest Lands Conservation Act (ANILCA) authorized substitution for areas designated by Congress as Wilderness in that statute which were in the primary sale area. The substitutions for Native selections and Wilderness selections were accomplished prior to the North Revilla Project Area environmental analysis process.

Section B0.3 of the contract, Description of Timber, states in part:

The Ketchikan Pulp & Paper Company . . . ,hereby agrees to purchase from an area definitely designated on the attached maps which are part of this agreement, within pulptimber Allotments E, F, and G. . . The estimated amount to be cut under the methods of marking described in B2.3 is 1,500,000,000 cubic feet of western hemlock, Sitka spruce, western redcedar, Alaska cedar, and other species of timber, more or less.

Section B0.31 of the contract, *Additional Areas*, states in part:

In the event the quantity of timber available for cutting within the above described area is insufficient for full scale operation until June 30, 2004 . . . the Regional Forester shall designate additional cutting areas within Pulptimber Allotments E, F, and G to meet such needs of such plans for the period ending June 30, 2004, provided, that the Regional Forester is not obligated to make available for cutting more than the 1,500,000,000 cubic feet of material covered by this agreement. . .

Section B0.61 of the Contract, Timber Offering Schedule, provides in part:

"To the extent authorized by law, Offering Areas may be identified for harvest outside the sale area, as needed to meet sale volume requirements."

The North Revilla Project Area lies within the "primary sale area" in Primary Allotment F. described in contract section B0.3. Current data indicates that there remains sufficient timber available within the designated sale area, including the additional areas described in Contract section B0.31 above, to provide the remaining unharvested portion of the total contract volume of 1,500,000,000 cubic feet, consistent with Forest Plan Standards and Guidelines and other requirements for environmental protection. The most recent Supplement to the Draft EIS for the Tongass Land Management Revision (TLMP SDEIS), which considers reductions in timber base due to the Tongass Timber Reform Act (TTRA), indicates this for the "current direction" alternative. For the current preferred alternative for the TLMP revision, the TLMP SDEIS indicates that there is at present enough available volume within the primary designated sale area to meet contract volume requirements for the next several years at least, while still meeting all constraints associated with the alternative. At some point in the future however, volume will also be required from the contingency areas to fulfill the contract volume requirments. This evaluation is incorporated by reference and further described in the last section in this Appendix, Forest Plan Implementation.

Therefore, providing volume outside of the primary sale area is not necessary at this time under the terms of the contract. Modifying the contract does not meet the purpose and need for the project. Although KPC has indicated that the Forest Service has the discretion to consider obtaining volume from outside the designated sale area, it has not expressed an interest obtaining timber from other areas in lieu of the North Revilla Project Area. The criteria for modification in 36 CFR 223.112,113 have not been met, considering the information in the TLMP SDEIS, and this EIS. Congress in enacting the Tongass Timber Reform Act declined to modify the contract sale area, and by directing in section 301(e) of the statute that the Secretary of Agriculture report to Congress on the effects of eliminating the sale area, indicated an intent to reserve this decision to the legislature.

Why Providing Less Than The Contract Volume Was Not Considered In Detail

Congress in section 301(e) of the TTRA also indicated its intent to reserve to itself the question of providing less than the contract volume obligation to KPC. Providing less than the contract volume would not meet the purpose and need for the North Revilla Project. The Forest Service can expect a large monetary claim from KPC for not meeting contract volume obligations, for which there is no current funding. To the contrary, recent federal appropriations legislation has dedicated additional money to providing additional timber offerings to KPC and other Tongass National Forest timber purchasers. Volume from independent timber sales or sources outside the Tongass National Forest do not fulfill KPC Contract requirements. In any case, there is not sufficient projected volume from other sources to meet KPC volume requirements.

Logs from Native Corporations lands cannot substantially meet the total needs of KPC. Owners of private timberland are able to sell their sawlogs on the export market for much higher prices than can be paid by local manufacturing. KPC is not prohibited under the Contract from purchasing timber from Native Corporations or other sources, subject to

the requirement that, "... at least three-fourths of the pulpwood requirements of the pulp manufacturing plant and other processing facilities operated in conjunction with this sale shall be cut from the areas covered by this agreement during the period prior to July 1. 1964, and during each 5-year operating period sebsequent to that date. " (KPC contract B0.53). There are no provisions in the Contract to offset such purchases by adjusting the Contract timber volume. Harvest from Native Corporations lands is decreasing, reducing potential pulp as well as sawlog availability from these lands (TLMP SDEIS page 3-339). Projections are that harvest from Native lands will decrease to above 100 MMBF of which about 40 MMBF will help meet the pulp requirements of the 360 MMBF pulp capacity is SE Alaska. (Haynes/Brooks 8/92)

Canadian timber has been mentioned in the past as a source of supply for Southeast mills. Southeast Alaska pulp mills have purchased pulp logs from British Columbia (BC) in the past. However, the political and economic situation in British Columbia has changed to decrease the likelihood of substantial supply from this source. The June 1988 issue of British Columbia Lumberman, page W14, states that a substantial increase in demand for BC forest products is expected to decrease log exports. The Forest Minister stated: "Our main objective is to use BC timber to manufacture wood products in this province." It has been more recently stated that British Columbia is considering prohibiting log exports and is facing increased environmental pressures (TLMP SDEIS, page 3-339).

Trying to meet the long-term volume contractual obligations from outside the long-term timber sale boundaries would decrease the availability of timber for the independent timber sale program, including the Small Business Set Aside Program; obtaining a substantial portion of long-term contract timber from outside the designated sale areas would probably decrease the independent sale program by an equivalent amount under the current TLMP allowable sale quantity. Under the current Plan, an annual average of 271 MMBF net sawlog of the Forest-wide ASQ is needed to meet the long-term sale requirements, leaving an annual average of 179 MMBF net sawlog for the independent program.

The TLMP SDEIS (table 3-134, page 3-368) shows for the current Plan as amended by the TTRA (Alternative C) the contribution to ASQ net sawlog (MMBF) by Allotment Area. Contingency Areas of Allotment E, F, and G of the KPC contract area contribute 125 MMBF annual average (28%) to the ASQ. Designating any part of this volume for the long-term sale would directly reduce the portion of the ASQ available for the independent program. The timber volume included in the action alternatives in the North Revilla Project Area EIS and scheduled from this area in the TLMP for the long-term contract is greater than the current yearly size of the entire Small Business Administration timber sale program agreed to with the SBA, 80 MMBF. Section 105 of the Tongass Timber Reform Act reflects Congressional intent that the SBA program continue.

Lack of an adequate timber supply to support these programs could affect the existing mill infrastructures and employment. The TLMP SDEIS (table 3-118, page 3-337) shows that lumber mill capacity for independent operators is about 220 MMBF annually (380 MMBF minus the Wrangell and KPC Sawmills). During good market conditions, the short term sales program has purchased up to 174 MMBF and harvested up to 149 MMBF annually which translates into about 67 percent of the mill capacity (TLMP SDEIS, table 3-114, page 3-325). Therefore, under good market conditions, the existing infrastructure can absorb the available supply. Elimination of short term sales under the independent and set-aside programs would translate into a loss of between 815 and 1144 timber-related jobs (TLMP SDEIS page 3-370, 3-610).

Current Timber Supply And Contract Volume Needs

This section provides an updated look at the long-term contract timber volume projected to be available to KPC. It includes a tentative schedule projecting how volume is to be made available to meet contract obligations which states; "Forest Service shall seek to specify sufficient Offerings to maintain a Current Timber Supply in all Offering Areas that totals at least three years of operations hereunder or until contract termination date, whichever comes first, and which meets the production requirements of the Purchaser's manufacturing facilities." (Contract Section B0.62).

Generally, there is a need for approximately 2.5 BBF of timber volume remaining over the life of the KPC contract. This equates to an average of approximately 205 million board feet per year.. Table 1 shows the volume available as of January 1, 1992 and displays how timber volume would be scheduled through 1996 to help meet current timber supply needs.

Table 1
Current Timber Supply and Projected Harvest to 1996.

Project Area and Offerings	1992 Tim- ber Sup- ply	1993 Harv.	1993 Tim- ber Sup- ply			
Volume Available under Contract CPOW (290) LAB Bay (85) Polk Inlet (125) North Revilia (200)	120	120 85	205 85 125 200			
Total Volume	120	205	615			

Numbers shown in parentheses indicate EISs in progress.

The North Revilla Project Area EIS offers volume to help meet KPC contract obligations starting in 1994. This amount of volume is reasonably necessary to help maintain a three year Current Timber Supply of at least 615 million board feet of timber. Based on the scenario shown in table 1, operations in North Revilla Project Area could begin in 1994 with all operations substantially complete by 1998.

Tongass Land Management Plan

TLMP As Amended Winter 1985-86

Chapter 1 of this EIS includes an explanation of how this project relates to the Tongass Land Management Plan. That section describes the Land Use Designations (LUDs) which allocate land areas to different types of management. Chapter 1 also explains that these LUDs were assigned to land areas known as Value Comparison Units (VCUs), and that one or more contiguous VCUs were formed into Management Areas (MAs). This section

¹ All volume figures shown include sawlog and utility volume and are in MMBF.

also describes the management emphasis for the Management Area affected by the North Revilla Project.

The Tongass Land Management Plan, As Amended Winter 1985-1986, detailed Management Direction/Emphasis for the Management Area. It also scheduled specific Management Activities for specific time periods. The ten year sale action plan updates proposed timber management activities to reflect the latest information regarding timber sale preparation activities. The current ten year sale plan schedules 200 million board feet to be offered begining in 1994.

The Allowable Sale Quantity (ASQ), calculated in TLMP and used in Congressional deliberations and decisions on ANILCA, assumed harvest in all LUD III and LUD IV VCUs, in compliance with the Southeast Area Guide, on a three entry, 100 year rotation. Some selected areas were scheduled for 4 entries in 120 years (LUD IV) and 6 entries in 200 years (LUD III) for visual considerations. A three entry rotation assumes the first entry will be made within 30 to 40 years. If areas are not entered, and the ASQ is harvested, other areas will have to receive a heavier entry, resulting in a pattern of high percentage first entries being established, and therefore creating conditions under which the three-entry rotation may not be achievable.

The TLMP as amended, also scheduled as anticipated management outputs from the Ketchikan Administrative Area, timber volume ranging from 195.0 million to 220.3 million annually (Tongass Land Management Plan Amended Winter 1985-86, page 5).

Supplemental TLMP Revision Draft EIS (TLMP SDEIS)

Sufficient Volume for KPC Contract Needs in TLMP SDEIS.

The TLMP SDEIS Chapter 3 section on timber (pages 3-354 and 355) provides the following summary statements in terms of the timber supply and the long-term timber sale programs.

If utility volume is included, Alternatives B, C, D, and P would meet or exceed the projected demand for National Forest timber (400 MMBF). Alternative A would provide 89 percent of the projected demand.

All (100 percent) of the first-decade Allowable Sale Quantity (ASQ, sawlog) in Alternative A would be needed to satisfy the long-term contracts; Alternative B would need 82 percent of the ASQ; Alternative C, 69 percent; Alternative D, 66 percent; and Alternative P, 75 percent.

These statements show that timber supply exceeds the level which is required to satisfy the long-term timber sale contracts (both APC and KPC). The data to support these statements is displayed in table 3-127 on page 3-355 and table 3-135 on page 3-371 of TLMP SDEIS. Table 3-135, in particular, shows the Long-Term and Short-Term Sales program volumes for the decade.

TLMP SDEIS also presents a discussion of timber supply within the KPC long-term contract sale area. As of October 1991 the remaining KPC Long-term Timber Sale Contract volume requirement was 2,405 MMBF, including utility. TLMP SDEIS alternatives A, B, C, D, and P provide, respectively, 3,800 MMBF, 4,180 MMBF, 5,930 MMBF, 5,920 MMBF and 5,480 MMBF, including utility, from the KPC designated sale area (allotments E, F, and G) per TLMP SDEIS, table 3-133, page 3-366. This information demonstrates that all the alternatives in the TLMP SDEIS include more than sufficient timber still available in the designated

KPC sale area to meet remaining contract volume requirements, consistent with resource protection requirements and other constraints projected in the document.

Further analysis in TLMP SDEIS is related to suitable-available acres. These are acres of forest that are identified as suitable for timber harvest and which are assigned management prescriptions within the TLMP SDEIS that allow consideration of timber harvest. For each alternative, TLMP SDEIS analysis confirms that the identified suitable-available acres contain more than enough potentially available timber within the sale area to meet the remaining volume commitment. These figures appear in table 3-134, pages 3-368 and 3-369, TLMP SDEIS and are summarized in the following table.

Table 3 Standing Timber Volume Available Within The Contract Area

Alt.	Allotment Area	Sultable- Avallable (Acres)	Old Growth Standing Vol (MMBF)
A	E-Primary F-Primary G-Primary Rest of E Rest of F Rest of G	141,194 38,960 101,493 39,166 129,743 157,426 	2,098 698 1,499 826 2,891 2,806
В	E-Primary F-Primary G-Primary Rest of E Rest of F Rest of G	154,484 42,193 122,586 45,926 147,347 153,245 	2,408 793 1,868 984 3,291 2,678
С	E-Primary F-Primary G-Primary Rest of E Rest of F Rest of G	169,584 47,769 139,423 75,551 234,232 227,707 	2,772 915 2,223 1,702 5,367 4,407
D	E-Primary F-Primary G-Primary Rest of E Rest of F Rest of G	179,257 49,889 145,925 47,065 213,401 240,790 	2,931 939 2,356 1,010 4,853 4,676
Р	E-Primary F-Primary G-Primary Rest of E Rest of F Rest of G	161,578 45,262 135,737 65,954 217,768 199,856 826,155	2,586 859 1,401 1,462 4,981 3,809 15,098

Furthermore, TLMP SDEIS displays the number of acres of tentatively suitable lands that are scheduled to be harvested over the planning horizon for each Management Area (TLMP SDEIS, table 3-138, page 3-378). This table indicates that the scheduling of the North Revilla Project Area and other project areas within the KPC sale area to meet contract volume requirements over the next several years is anticipated. In addition, this table shows that there are adequate suitable acres in these Management Areas.

2. **Cumulative Effects**

The TLMP SDEIS considers the cumulative effects for forest-wide acres managed for timber production for both the long-term and short-term timber sale programs. These effects are discussed on pages 3-371 through 3-381. Cumulative effects for other resources are discussed at the end of their respective sections.

Analysis points to the need to schedule harvest in VCUs assigned management prescriptions which permit consideration of timber harvest, including the VCU's within the North Revilla Project Area. These VCU's in the current Forest plan, and in the draft revised Forest Plan would be needed to help meet the Tongass National Forest Allowable Sale Quantity, and also the contractual timber volume needs for the KPC Long-term Timber Sale. The forest-wide cumulative effects analysis in the TLMP SDEIS supports the conclusion that this harvest can be accomplished within existing and proposed revised TLMP standards and guidelines and other requirements for resource protection.

3. Subsistence

With the passage of the ANILCA, Congress recognized the importance of subsistence resources to rural residents of Alaska. In particular, prior to any disposition of public lands, an agency must first complete a subsistence effects evaluation, including consideration of the availability of other lands (ANILCA 810 (a)).

Based on a review of available harvest volumes for each VCU in the KPC contract area, it appeared that in order to meet contract volume commitments, most of the LUD III and IV VCU's would need some level of harvest prior to the end of the KPC contract in 2004. A tentative offering schedule was developed and approved for implementation based on this analysis. In short, almost all LUD III and IV VCU's in the KPC Long-term Sale would be scheduled for harvest within the next 10 to 15 years, indicating a level of impact to all subsistence use areas. However, the most significant impacts on the subsistence resource habitat would not occur until 20 to 30 years after the timber harvest when the second growth canopy closes. When those impacts to subsistence resources are viewed from a reference point 20 years in the future, the particular importance of which areas are scheduled first during a 5-year period appears to be minor.

In considering communities that may be most affected by any proposed timber harvest in the North Revilla Project Area, Metlakatla, Meyers Chuck, Thorne Bay, Saxman, and Wrangell appear to have the strongest cultural and subsistence ties to the area. Each community has its own level of reliance on subsistence as well as its own level of reliance on the North Revilla Project Area for supplying subsistence resources. Information regarding subsistence use by these communities is provided in chapter 3 of the North Revilla Project EIS.

Extensive forest-wide cumulative effect analysis has been included in the TLMP SDEIS (TLMP SDEIS pages 3-628 through 3-765). That analysis, and the tables of data shown in appendix K of TLMP SDEIS are incorporated by reference into this document. The data in appendix K and L indicates subsistence hunting of deer and other uses in virtually every area of the Tongass with substantial quantities of harvestable timber. The following information is extracted directly out of the Tongass Land Management Plan Revision, Supplement to the Draft Environmental Impact Statement, pages 3-762 and 3-763;

In conducting the subsistence evaluation it is determined that, in combination with other past present and reasonably foreseeable future actions, none of the alternatives would pose a significant possibility of significant restriction for salmon, other finfish, marine mammals, invertebrates, plants, mountain goat, moose, waterfowl, sea birds, or other small game. Together these resources account for an average of 79 percent of the total harvest of subsistence resources (Kruse and Muth, 1990).

In considering the impacts of future actions that may take place under the proposed alternatives on deer, two types of analysis was conducted. Potential effects were first determined for those WAA's where residents have successfully harvested deer, then for those WAA's where residents have ever gone to harvest deer. Both 10 percent and 20 percent harvest levels of the deer population were used.

Considering only those WAA's where residents successfully harvested deer and assuming a harvest level of 10 percent of the population, there would be sufficient deer in all alternatives for the next 50 years to meet all subsistence needs for all communities except Gustavus, Hoonah, Kake, Pelican, Sitka, and Yakutat (appendix K). For these communities, there would be insufficient habitat capability to support harvest by all subsistence users (regardless of the community of orgin). However, at 20 percent of the population, all subsistence needs for these communities would be met by all alternatives for the next 50 years (appendix K).

If instead of considering only those WAA's in which hunters were successful, we consider all WAA's ever hunted by community residents, then there would be sufficient deer habitat capability to support all subsistence hunters in the WAA's used for hunting by all subsistence communities except for Pelican and Gustavus. If instead of assuming a 10 percent harvest level, a 20 percent harvest level is used, there would be sufficient habitat capability to support all subsistence harvest in all WAA's used for hunting by all subsistence communities.

As a result of the analysis of the impacts of projects that would be permissible under each of the alternatives considered for adoption in the Forest Plan, it has been determined that all of the alternatives, if all permissible projects were fully implemented, have the potential to impact subsistence uses of deer, black bear, and furbearers (specifically martens) due to potential effects of projects on abundance/distribution, and competition.

The analysis shown in chapter 3 of this EIS is supported by the analysis shown above in the TLMP SDEIS. The conclusion stated above, "it has been determined that all of the alternatives, if all of the permissible projects were fully implemented, have the potential to impact subsistence uses of deer. . . ", supports the conclusion that any environmental analysis area within the Tongass would have a similar chance of having a significant possibility of a significant restriction on subsistence resources for Sitka Black-tailed deer, and other mammals.

The analysis for ANILCA section 810 are shown in the Subsistence section of chapter 3, in this EIS. The determinations made from the ANILCA section 810 analysis and findings are a part of the Record of Decision for this project and were developed in conjunction with the Final EIS.

Forest Plan Implementation

Review of Available Volume

A review was conducted of each VCU within the designated sale area for available volume. This analysis was based on computer inventories and Allowable Sale Quantity (ASQ) calculations from TLMP SDEIS (1991a).

The review used the following guidelines to identify likely areas to schedule for environmental analysis in the near future:

- (1) Evaluate by area the total available volume within the designated sale area. Between 1991 and 1993, there is a need to identify a potential harvest of 700 MMBF.
- (2) Identify a tentative operating schedule which addresses volume to be offered from the Ketchikan Administrative Area.
- (3) Prepare a schedule of environmental analysis areas which shows how the Ketchikan Area will meet the tentative operating schedule from 1991 through the end of the contract. This schedule must provide a minimum of 615 MMBF 'current timber supply' through the end of the contract.

The results of the first step by the working group analysis are presented in Table 5. The results of this volume review, further supported by TLMP revision information, provided the basis for scheduling the next series of environmental analyses.

Table 5 Available Volume By VCU in The KPC Contract Boundary (9/89).

Project Area	MAs in Analysis Area	(MMBF)
AA i Central Prince of Wales		
Central Prince of Wales	K03 (Portion), K07, K08, K09, K10	291
Ratz (2nd Entry)	K09 (Portion)	40
Honker (2nd Entry)	K08 (Portion)	141
Luck Lake (2nd Entry)	K08 (Portion), K09 (Portion)	70
Tuxekan (2nd Entry)	K07	105
AA 2 - Lab Bay		
Lab Bay	K01, K03 (Portion)	85
North POW (2nd Entry)	K01, K03 (Portion)	150
AA 3 - Polk inlet	144= 1440	
Polk Inlet	K17, K18	125
Chomondeley (2nd Entry)	K18, K19	80
AA 4 - North Revilla	I/OO (Bartian)	000
North Revilla	K32 (Portion)	200
AA 6 - Sea Level	1/05	07
Sea Level AA 7 - Control Lake	K35	67
Control Lake	KOE KOO	187
	K05, K08	107
AA 8 - Upper Carrol Upper Carrol	K32 (Portion)	130
AA 9 - Three Creeks	K32 (Portion)	130
Three Creeks	K39	49
AA 10 - Vixen injet	1 109	43
Vixen Inlet	K29	175
AA 11 - Port Stewart	1123	1/3
Port Stewart	K30	135
AA 12 - Lower Carroi	1.65	100
Lower Carrol	K34, K35	41
AA 13 - Kosciusko	1161,1166	''
Kosciusko	K05	36
AA 14 - South POW		
South Pow	K28	80
AA 15 - Heceta		
Heceta	K ₁₁	76
AA 16 - Chasina		
Chasina	K24	164
AA 17 - Moira		
Moira	K25	17

Analysis Area Reviews

For each area identified as having sufficient volume available to consider for further environmental analysis at this time, a review was conducted to decide which areas to schedule first, considering the current TLMP and proposed revised TLMP schedule, and other factors described below. The results of this review and supporting reasons for each area appear below:

Central Prince of Wales - This project area is located within TLMP management areas K03, K07, K08, K09 and K10. The area has had extensive harvesting in the past. No additional log transfer facilities (LTF's) are required to harvest timber in this area. The majority of the road system is already in place, only limited additional road construction would be required. The area is entirely within the primary sale area. This area was give the highest priority due to it's location within primary sale area, ease of access, prior harvest and no additional LTF construction.

Polk Inlet - This project area is located within TLMP management area K17 and K18. The K17 portion of the area is located within the primary sale area. The area has had extensive harvesting in the past. Roads have been developed previously into the area but construction is difficult due to the terrain. A logging system transportation analysis was completed for the area as part of the 1989-1994 EIS. Three LTF's will be required enter the area but they have already been approved for construction under the 1989-1994 EIS and their required permits have been acquired or in process. The area was given a high priority since it has a large portion located within primary sale area, has had previous harvest, and has had prior road development. The area was not given highest priority due to LTF construction and difficult access.

Lab Bay - This project area is located within TLMP management area K01 and K03. The area has had extensive harvesting in the past. One additional LTF will be required, other timber will utilize two existing LTF's. The vast majority of timber will have to pass through these two existing LTFs. The limited number of additional LTF's in the area could create a bottle neck getting wood from the field into the water. The area was given a high priority since it is in the primary sale area, has current road access, and has had previous harvest. It was not given highest priority due to a limited number of LTF's to put logs into the water.

North Revilla - This project area is located within TLMP management area K32. The area has had extensive harvesting in the past. It is located within the primary sale area. A large amount of new road construction will be needed in the area. Road construction into the area is difficult due to steep terrian and unstable slopes. Nine LTF's will be required to access the area, of which three will require new construction. The area was given high priority since it is within the primary sale area, has had prior harvest and road construction, and a logging system transportation analysis had already been completed for the area. It was not given highest priority due to the requirement of three new LTF's and difficult road construction.

Sea Level - This project area is located within TLMP management area K35. The area has had limited harvesting in the past. The area is within the KPC long term contract, however it is outside primary sale area boundary. Road construction is difficult in the area but no new LTF's are required to access the timber. This area was given a moderate priority for scheduling due to being within the timber sale contract and not requiring any new LTF's.

Control Lake - This project area is located within TLMP management area K08 and K05. The area has had extensive harvesting in the past. No additional log transfer facilities (LTF's) are required in to harvest timber in this area. The majority of the road system is already in place, only limited additional road construction would be required. The area is within the long-term contract area, but not within the primary sale area portion. This area was given a moderate priority since it had ease of access, prior harvest and no additional LTF construction but was not within the primary sale area.

Heceta - This project area is located within TLMP management area K11. The area has had extensive harvesting in the past. The area is within the KPC long term contract, however it is outside primary sale area boundary. Remaining volume available for harvest in the area is low. The project areas is a small island off the west coast of Prince of Wales Island and faces the open ocean. This makes the logistics associated with timber harvest activities difficult. This area was given a moderate priority for scheduling due not being in the primary sale are, low potential volume, and difficult logistic problems.

Upper Carrol - This project area is located within TLMP management area K32. The area has had limited harvesting in the past. The area is within the KPC long term contract, however it is outside primary sale area boundary. Road access in the area is difficult. One new LTF will be required. Road construction associated with this project may help complete the linkage for the transportation utility corridor planned for the area. This area was given a moderate priority for scheduling despite the potential transportation utility corridor due difficult access and not being in the primary sale area.

Three Creeks - This project area is located within TLMP management area K39. The area has had limited harvesting in the past. The area is immediately behind the community of Ketchikan and as is heavily used for recreation. The area is within the KPC long term contract, however it is outside primary sale area boundary. This area was given a moderate priority for scheduling despite good timber harvest economics due to low potential volume and high recreation values.

Vixen Inlet - This project area is located within TLMP management area K29. The area has had limited harvesting in the past. There is potentially a large amount of volume available in the area, although it is somewhat scattered. This will require a high ratio of miles of road construction per MBF of timber harvest. The area is within the KPC long term contract, however it is outside primary sale area boundary. The project is on Cleveland Peninsula which has important wildlife and recreation values. There is currently no road access into the area. There are no existing LTF's and one new LTF would be required. This area was given a moderate priority for scheduling due the large amount of potential volume and since it is within the long term sale boundary. It was not given a high priority since it is not within the primary sale area and has high recreation and wildlife values.

Port Stewart - This project area is located within TLMP management area K30. The area has had limited harvesting in the past. There is potentially a large amount of volume available in the area, although it is somewhat scattered. This will require a high ratio of miles of road construction per MBF of timber harvest. The area is within the KPC long term contract, however it is outside primary sale area boundary. The project is on Cleveland Peninsula which has important wildlife and recreation values. There is currently no road access into the area. There are no existing LTF's and one new LTF would be required. This area was given a moderate priority for scheduling due the large amount of potential volume and since it is within the long term sale boundary. It was not given a high priority since it is not within the primary sale area and has high recreation and wildlife values.

Lower Carrol - This project area is located within TLMP management area K34 and K35. The area has had limited harvesting in the past. The area is within the KPC long term contract, however it is outside primary sale area boundary. The area was recently analyzed as part of the Shelter Cove EIS. As part of that EIS a logging system transportation analysis was developed for the area. Remaining volume potentially available for harvest from this area is low. This area was given a low priority for scheduling due to not being in the primary sale area, low amount of potential volume, and having been recently analyzed as part of another EIS.

Kosciusko - This project area is located within TLMP management area K05. The area has had extensive harvesting in the past. The area is within the KPC long term contract, however only a small portion is within the primary sale area boundary. This area was recently analyzed as part of the Sea Otter Sound project. As part of the settlement agreement on that EIS, the area is currently not available for harvest as part of the long-term sale. This area was given a low priority for scheduling due to not being included in the primary sale area and since it was recently analyzed in an EIS.

South POW - This project area is located within TLMP management area K28. The area has had extensive harvesting in the past. The area is within the KPC long term contract, however it is outside primary sale area boundary. There is no existing logging system transportation analysis available for the area. The area would require the construction of three new LTF's. Road construction in the area would be very difficult. The quality and quantity of timber in the area is not very high. The result is that timber harvest in the area is likely to be economically marginal. As a result of these factors, this area was given a low priority for scheduling.

Results of Analysis

Upon completion of the above analysis, four Project Areas were identified and scheduled for environmental analysis. The four timber projects were initiated which had a high priority and were within the KPC "Primary Sale Area". The KPC contract provides direction to seek to find timber supplies within the Primary Sale Area before seeking volume within contingency areas. These four projects were needed to produce sufficient volume to provide KPC with 205 MMBF for the 1993 logging season, as well as to provide a three-year timber supply of 615 MMBF. There is expected to be 120 MMBF of timber volume remaining from previous projects which will be available to KPC by the beginning of the 1993 operating season. Therefore, these four timber projects need to produce a total of 700 MMBF, which, when combined with the 120 MMBF currently available, will provide volume for the 1993 logging season, plus a three-year timber supply.

This 700 MMBF was divided among the four timber projects based on the size of the project areas, as well as on their relative abilities to produce timber volume in an expedient fashion. Other factors considered in making this volume determination for the different projects included: (1) consistency with the sale schedule in the TLMP (1979a, as amended); (2) volume determined to be available in the project areas; (3) amount of road network in place; (4) the number and location of Log Transfer Facilities (LTF's) and their relative ability to handle this volume of timber within a three-year time frame; (5) presence of existing KPC-operated logging camps within the project areas to handle this volume; and (6) consistency with the sale schedule in TLMP Draft Revision (1991a).

Subsequently, a schedule of additional project level environmental analysis was identified for fiscal years 1993 through 2000 to complete the Long-term Sale.. This schedule has been reviewed and reaffirmed and is shown in the following memo.

Forest Service Region 10 Tongass National Forest Ketchikan Area Federal Building Ketchikan, Alaska 99901 (907-225-3101)

Reply To: 1950 Date: Oct. 10, 1992

Subject: Timber Sale NEPA Documents

To: Forest Supervisor

The following schedule of NEPA documents represents the proposed NEPA analysis needed to fullfill the timber sale action plan. This memo is intended to update the July 7, 1992 sale schedule memo.

KETCHIKAN AREA DRAFT SALE SCHEDULE NEPA DOCUMENT SUMMARY

Year			
Complete	EIS Name	Management Area	MMBF
1993	Central Prince of Wales	K03, K07, K08, K09, K10	290
1993	Lab Bay	K01, K03	85
1993	Polk Inlet	K17, K18	125
1993	North Revilla	K32	200
1994	Sea Level	K35	67
1995	Control Lake	K05, K08	187
1995	Heceta	K11	75
1996	Upper Carrol	K32	130
1996	Three Creeks	K39	49
1996	Vixen Inlet	K29	175
1996	Port Stewart	K30	135
1998	Lower Carrol	K34, K35	41
1998	Chasina	K24	166
1998	North POW	K01, K03	103
1999	Chomondeley	K18, K19	75
1999	Ratz	K09	40
1999	Honker	K08	119
1999	Luck Lake	K08 ,K09	107
1999	Tuxekan	K07	59
1999	Moira	K25	119
2000	South Pow	K28	80

KETCHIKAN AREA DRAFT SALE SCHEDULE OFFERING AREAS

Offering Area	Year Offered	Volume	Management Area	EIS Name
CPOW #1	1993	28	K08	CPOW
CPOW #3	1993	28	K07	CPOW
CPOW #4	1994	44	K07	CPOW
CPOW #2	1994	39	K03	CPOW
Lab Bay #1	1994	39	K01	Lab Bay
N. Fire Cove	1994	29	K32	Revilla
CPOW #8	1995	28	K09	CPOW
CPOW #7	1995	34	K08	CPOW
CPOW #6	1995	34	K07	CPOW
CPOW #5	1995	25	K07	CPOW
Lab Bay #2	1995	46	K03	Lab Bay
Polk #2	1995	34	K18	Polk
Polk #1	1995	22	K18	Polk
S. Margaret	1995	44	K32	Revilla
Sea Level #1	1995	33	K35	Sea Level
CPOW #9	1996	30	K10	CPOW
Granite Creek	1996	50	K30	Port Stewart
Polk #3	1996	20	K17	Polk
Polk #4	1996	49	K18	Polk
N. Margaret	1996	46	K32	Revilla
Control Lake #1	1997	47	K15	Control Lake
Easy Cove	1997	17	K32	Revilla
Hassler Island	1997	15	K32	Revilla
N. Trators	1997	19	K32	Revilla
S. Fire Cove	1997	30	K32	Revilla
Upper Shoal Creek	1997	07	K35	Sea Level
Licking Creek	1997	11	K35	Sea Level
S.W. Honker	1998	40	K08	Honker
Heceta #1	1998	35	K11	Heceta
Whipple Creek	1998	06	K39	Three Creeks
North POW #1	1998	46	K01	North POW
Snail Point	1998	35	K30	Port Stewart
Second Level	1998	16	K35	Sea Level
Falls Creek	1998	25	K32	Upper Carroll
Control Lake #2	1999	50	K08	Control Lake
Heceta #2	1999	40	K11	Heceta
North POW #3	1999	30	K03	North POW
North POW #2	1999	27	K03	North POW
Stewart	1999	50	K30	Port Stewart
~				

Cholmondeley #1	1999	40	K24	Chasina
Cholmondeley #2	2000	40	K24	Chasina
Control Lake #4	2000	30	K08	Control Lake
Control Lake #3	2000	40	K08	Control Lake
North Salt Creek	2000	25	K39	Lower Carrol
Moira #1	2000	30	K25	Moira Bay
Wolf Lake	2000	08	K39	Three Creeks
South POW #1	2000	50	K28	South POW
Cleveland #4	2000	50	K29	Vixen Inlet
Oleveiand # 4	2000	00	1420	VIXOIT IIIICE
Cholmondeley #3	2001	42.4	K24	Chasina
Polk Inlet #5	2001	30	K18	Cholmondeley
Polk Inlet #7	2001	20	K18	Cholmondeley
Polk Inlet #6	2001	25	K19	Cholmondeley
Moira #2	2001	30	K25	Moira Bay
Ratz	2001	40	K09	Ratz
South POW #2	2001	30	K28	South POW
Cleveland #6	2001	25	K29	Vixen Inlet
Cleveland #5	2001	50	K29	Vixen Inlet
Cholmondeley #4	2002	44	K24	Chasina
Hatchery Lake	2002	40	K08	Honker
Barnes Lake	2002	39	K08	Honker
Baird Peak	2002	45	K09	Luck Lake
Moira #4	2002	29.2	K25	Moira Bay
Moira #3	2002	30	K25	Moira Bay
Staney Creek	2002	47	K07	Tuxekan
Carroll Creek	2002	75	K32	Upper Carroll
Garron Greek	2002	, 0	1102	opper ourren
Control Lake #5	2003	20	K15	Control Lake
Buckhorne #1	2003	08	K35	Lower Carroll
Buckhorne #2	2003	08	K39	Lower Carroll
Luck Lake #1	2003	30	K08	Luck Lake
Luck Lake #2	2003	32	K09	Luck Lake
Harriet Hunt	2003	12	K39	Three Creeks
Lunch Creek	2003	08	K39	Three Creeks
Moser Bay	2003	15	K39	Three Creeks
Winter Harbor	2003	12	K07	Tuxekan
Bluff Lake	2003	30	K32	Upper Carroll
Cleveland #7	2003	50	K29	Vixen Inlet
JIJ VOIGITG # 1	_000	30	1420	AIVOLLILIO

DAVID ARRASMITH IDT PLANNING STAFF OFFICER

Appendix B Harvest Units Over 100 Acres in Size By Alternative

NFMA regulations provide that 100 acres is the maximum size of created openings to be allowed for the hemlock-Sitka spruce forest type of coastal Alaska, unless excepted under specific conditions. The Alaska Regional Guide (page 3-20) provides---

Recognizing that harvest units must be designed to accomplish management goals, created openings may be larger where larger units will produce a more desirable contribution of benefits. Factors to be considered to determine when a larger size may be permitted are:

- 1. Topography
- 2. Relationship of units to other natural or artificial openings and proximity of units
- 3. Coordination and consistency with adjacent management areas
- 4. Effect on water quality and quantity
- 5 Visual absorption capacity
- 6 Effect on wildlife and fish habitat
- 7. Regeneration requirements for desirable tree species, based upon latest research
- 8. Transportation and harvesting system requirements
- 9. Natural and biological hazards to the survival of residual trees and surrounding stands
- Relative total costs of preparation, logging, and administration of harvest cuts

Where it is determined by the interdisciplinary team that exceptions to the size limitation are warranted, the actual size limitation of openings may be up 100 percent greater for factor 9 and up to 50 percent greater for all other factors with the approval of the Forest Supervisor.

Exceptions to the 100 acre size limit in excess of 50 percent greater (100 percent greater for factor 9) are permitted on an individual timber sale basis after 60 days public notice, and review and approval by the Regional Forester.

The following tables display the units by alternative which exceed 100 acres in size. The reasons for exceeding the size limits are also displayed.

Units Over 100 Acres in Size

HARVEST			ALTE	RNA	TIVE	NUM	BER
UNIT#	ACRES	REASON	2	3	4	5	6
3003	106	1,8,10	2				
3004	145	1,8,10	2				
3006	119	1,6,8,10	2	3	4		6
3027	102	1,8,10				5	
5023	101	1,6,8,10	2		4		
5027	103	1,8,10		3			6
5051	146	1,6,8,10			4		
6026	117	1,8,10		3			
6031	127	1,6,8,10		3	4		6
7094	134	1,6,8,10			4		
8029	106	1,8,10	2				
8038	134	1,8,10	2				
8040	103	1,8,10	2				
8069	117	1,8,10		3			6
8076	131	1,8,10		3			6
8079	114	1,8,10		3			
8104	135	1,8,10				5	
8112	146	1,6,8,10			4		
8113	107	1,6,8,10			4		
9029	103	1,8,10	2				
9038	114	1,8,10	2				
9057	108	1,8,10		3		5	6
9059	108	1,8,10		3			6
9084	144	1,8,10				5	
9096	134	1,6,8,10			4		
9101	131	1,6,8,10			4		
0	anos be a	1+	0	0	0	4	7
over 100 A	Over 100 Acres by Alternative 9 9 9 4 7						

Appendix C

Aquatic Habitat Management Unit Prescriptions

Stream and Lake Protection Low Gradient Floodplain Process Group (Channel types B1, B8, C1, C3, C4, C6, D4, D5, D8)

Stream Class

Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no measurable reduction in smolt habitat capability except when change is a result of natural processes - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species - Maintain long-term supplies of large woody debris sources within the process group - Allow no activities which may cause floodplain destabilization
Harvest Control	 Allow no commercial timber harvest within 100 feet in width on each side of all channel types Allow single tree selection harvest within 100 to 200 feet in width on each side of B1 or B8 channel types not associated with other channel types Allow no programmed commercial timber harvest within 100 to 200 feet in width on each side for remainder of channel types Consider all harvest methods, on a case-by-case basis, in the riparian area beyond 200 feet if the riparian area is greater than 200 feet
Harvest Rate	- Beyond 100 feet from the stream, strive to maintain 90% of the normal basal area with trees 16°+ dbh within areas with no programmed commercial timber harvest.
Salvage	Allow no salvage in the "no commercial timber harvest" areas unless needed to meet process group objectives (e.g., windthrown trees restricting fish passage in streams) Allow salvage in other areas while meeting objectives
Roading	- Locate roads in this process group only when other reasonably feasible routes do not exist.

NOTES:

- A primary consideration for timber harvest within this Land Use Designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed, but will be limited to uneven-aged silvicultural systems.
- Commercial timber harvest guidelines beyond 100 feet may vary, based on site-specific analysis, in order to meet process group objectives.
- Beyond 100 feet of the stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g., for bridge stringers, totem poles, etc.).
- Stream Classes II and III do not normally occur in this process group. If they should occur, harvest control must meet management objectives for Class II and III of the Alluvial Fan Process Group.

Stream and Lake Protection Alluvial Fan Process Group (Channel types A3, B5, D1, D6)

Stream Class

	1	11	111
Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no measurable reduct ion in smolt habitat capability except when change is a result of natural processes	- Maintain habitat capability for resident fish to the extent practicable - Assure the protection of riparian habitat - Allow no activities which may cause floodplain destabilization	Allow no activities which may cause floodplain destabilization Assure the protection of riparian habitat Minimize the effects of timber harvest and related land disturbance activities on the beneficial uses of water by applying Best Management Practices.
	- Allow no activities which may cause floodplain destabilization - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species		
Harvest Control	- Allow no commercial timber harvest within active portion of fan or 100 feet of channel, whichever is greater - All harvest methods are available on remaining inactive portion of fan while meeting objectives	Allow no commercial timber harvest within active portion of fan or 100 feet of channel, if the stream flows directly into a Class I stream (25 feet if not tributary to a Class I stream). Allow single tree selection harvest within 25 to 60 feet from streambank if not within active portion of fan and not flowing directly into a Class I stream. All harvest methods are available on remaining inactive portion of fan while meeting objectives.	- Allow no programmed commercial timber harvest within active portion of fan or 25 feet of streambank, whichever is greater - All harvest methods are available on remaining inactive portion of fan while meeting objectives
Harvest Rate	Beyond 100 feet of the stream, strive to maintain 90% of the normal basal area with trees 16°+ dbh within areas with "no programmed commercial timber harvest" (see note below)	- Harvest should not exceed 509 fan. Remaining forested land created openings contain 5 (approximately 30 yrs.)	is not to be harvested until

Stream Class

	1	11 11				
Salvage	unless needed to meet windthrown trees restricting	- Allow no salvage in the no commercial timber harvest area unless needed to meet process group objectives (e.g., windthrown trees restricting fish passage in streams) - Allow salvage in other areas while meeting objectives				
Roading	- Anticipate stream meander	ing In determining the feasibility and	or most practical road locations,			

NOTES:

- A primary consideration for timber harvest within this Land Use Designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly Into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).

Stream and Lake Protection Mixed Control Moderate Gradient Process Group

(Channel types B2, B3, D3)

Stream Class

	1	II	III
Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no measurable reduct ion in smolt habitat capability except when change is a result of natural processes	- Maintain habitat capability for resident fish to the extent practicable - Assure the protection of riparian habitat - Allow no activities which may cause floodplain destabilization	Allow no activities which may cause floodplain destabilization Assure the protection of riparian habitat Minimize the effects of timber harvest and related land disturbance activities on the beneficial uses of water by applying Best
	- Allow no activities which may cause floodplain destabilization - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species		Management Practices.
Harvest Control	- Allow no commercial timber harvest within 100 feet of channels.	- Allow no commercial timber harvest within 100 feet of streams which flow directly into Class I streams. For other streams, allow single tree selection harvest within 25 feet of B2 channels and 60 feet of B3 and D3 channels.	- Allow single tree selection within 25 feet of B2 channels
	- Allow single tree selection on remainder of the area.	- All harvest methods are available on remaining area; where timber harvest is allowed within 100 feet of the stream, final harvest should incorporate undulating unit boundaries to limit the amount of continuous disturbance parallel to the streambank	- All harvest methods are available on remaining area while meeting objectives
Harvest Rate	- Forest-wide Standards and Gu	uidelines for timber apply	

Stream Class

	I I	11	011
Salvage	unless needed to meet pro windthrown trees restricting	- Allow no salvage in the "no commercial timber harvest areas" unless needed to meet process group objectives (e.g., windthrown trees restricting fish passage in streams) - Allow salvage in other areas while meeting objectives	
Roading	- Special road construction to	chniques may be required to ensu	re fish passage

- A primary consideration for timber harvest within this Land Use Designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).

Stream and Lake Protection Large Low Gradient Contained Process Group (Channel types C2, C5)

Stream Class

	1	II			
Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no activities which may cause floodplain destabilization - Allow no measurable reduction in smolt habitat capability except when change is a result of natural processes - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species	Maintain habitat capability for resident fish to the extent practicable Assure the protection of riparian habitat Allow no activities which may cause flood plain destabilization			
Harvest Control	- Allow no commercial timber harvest within 100 feet - All harvest methods are available on remain Ing area while meeting objectives - Full suspension yarding is required to cross stream channel	Allow no commercial timber harvest within 100 feet of streams which flow directly into Class I streams Allow no programmed commercial timber harvest within 25 feet of other streams All silvicultural systems are available on remaining area while meeting objectives Minimize soil disturbance associated with yarding within inner gorge Full suspension yarding is required to cross stream channel			
Salvage	group objectives (e.g., windthrown trees restr	Allow no salvage in the "no commercial timber harvest" areas unless needed to meet proces group objectives (e.g., windthrown trees restricting fish passage in streams) Allow salvage in other areas while meeting objectives			
Roading	- Road construction is generally not appropriate in this process group; where road crossings are required, minimize erosion and sedimentation associated with road crossing approaches within inner gorge				

- A primary consideration for timber harvest within the Land Use Designation Is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to unever-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, Incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).
- Stream Class III does not normally occur in this process group. If it should occur, Harvest Control must meet Management Objectives for Class III of the Moderate Gradient Contained Process Group.

Stream and Lake Protection Moderate Gradient Contained Process Group

(Channel types B4, B6, B7)

Stream Class

	1	II	Ш
Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no measurable reduction in smolt habitat capability except when change is a result of natural processes - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Allow no activities which may cause floodplain destabilization - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species	- Maintain habitat capability for resident fish to the extent practicable - Assure the protection of riparian habitat - Allow no activities which may cause floodplain destabilization	- Allow no activities which may cause floodplain destabilization - Assure the protection of riparian habitat - Minimize the effects of timber harvest and related land disturbance activities on the beneficial uses of water by applying Best Management Practices.
Harvest Control	- Allow no commercial timber harvest within 100 feet	Allow no commercial timber harvest within 100 feet of streams which flow directly into Class I streams	- All harvest methods are available while meeting objectives
	- Beyond 100 feet, selectively leave trees with crowns that do not extend above the slope break - Minimize soil disturbance associated with yarding within the inner gorge - Full suspension yarding required to cross stream channel - Maintain near-natural snag component of stand	- Selectively leave trees with crowns that do not extend above the slope break along streams which do not flow directly Into Class I streams and beyond 100 feet for other streams - Minimize soil disturbance associated with yarding within Inner gorge - Full suspension yarding required to cross stream channel	

Stream Class

	ī	11	111			
Salvage	group objectives (e.g., windt	- Allow no salvage in the 'no commercial timber harvest areas' unless needed to meet process group objectives (e.g., windthrown trees restricting fish passage in streams) - Allow salvage in other areas while meeting objectives				
Roading		- Road construction is generally not appropriate in this process group; where road crossings are required, minimize erosion and sedimentation associated with road crossing approaches within the inner gorge				

- A primary consideration for timber harvest within this land use designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).

Stream and Lake Protection **High Gradient Contained Process Group**(Channel types A1, A2, A4, A5, A6, A7, D2, D7)

Stream Class

	Itt
Objectives	- Assure the protection of riparian habitat - Minimize the effects of timber harvest and related land disturbance activities on the beneficial uses of water by applying Best Management Practices Allow no activities which may cause floodplain destabilization
Harvest Control	- Allow harvest to streambank while meeting objectives - Full suspension required to cross stream channel
Harvest Rate	- Harvest rate not to exceed 25% of the acres every 20 years of a 3rd order or larger watershed (note: this guideline applies only to those acres associated with this land use designation)
Salvage	- Allow salvage while meeting objectives

- Commercial timber harvest guidelines may vary, based on site-specific analysis, In order to meet process group objectives.
- Stream Classes I and II do not normally occur in this process group. If they should occur, Harvest Control must meet Management Objectives for Class I and II of the Moderate Gradient Contained Process Group.

Stream and Lake Protection Placid or Glide Streams Process Group

(Channel types L1, L2)

Stream Class

	1	11			
Objectives	- Maintain or Improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no activities which may cause floodplain destabilization - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Allow no measurable reduction in smolt habitat capability except when change is a result of natural processes - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species	Maintain habitat capability for resident fish to the extent practicable Assure the protection of riparian habitat Allow no activities which may cause flood plain destabilization			
Harvest Control	- Allow no commercial timber harvest within 100 feet - Allow no programmed commercial timber harvest beyond 100 feet	Allow no commercial timber harvest within 100 feet of streams which flow directly into Class I streams Allow no programmed commercial timber harvest along other streams and, for all streams, beyond 100 feet			
Salvage	- Allow no salvage in the "no commercial timber group objectives (e.g., windthrown trees restricted a salvage in other areas using non-ground e.g. helicopter)	icting fish passage in streams)			
Roading	- Roading is generally not appropriate in this process group				

- A primary consideration for timber harvest within this land use designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).
- Stream Class III does not normally occur in this process group. If it should occur, Harvest Control must meet Management Objectives for Class III of the Moderate Gradient Contained Process Group.

Stream and Lake Protection Lakes and Ponds Process Group

(Channel types L, L3, L4, L5)

Stream Class

	1	11	111
Objectives .	Maintain or improve aquatic biological productivity Assure the protection of	Maintain habitat capability for resident fish to the extent practicable Assure the protection of	Minimize the effects of timber harvest and related land disturbance activities on the beneficial uses of water by applying Best Management Practices. Assure the protection of
	inparian habitat Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability Allow no measurable reduction in smolt habitat capability except when change is a result of natural change Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species	riparian habitat	riparian habitat
Harvest Control	- Allow no commercial timber harvest within 100 feet	- Allow no commercial timber harvest within 100 feet in wldth of lakes and ponds which: 1) flow directly into a Class I stream, or 2) flow into a Class II stream which flows directly into a Class I stream	- Maintain a minimum of 50% of natural shading vegeta- tion for temperature sen- sitive lakes or channels
	- Allow uneven-aged manage ment 100 to 500 feet of lake, pond or L channel, or the extent of this land use designation, whichever is less	- For lakes and ponds not flowing directly into a Class I stream, allow uneven-aged management within 100 feet of lakes and ponds less 50 acres or L channels	
	- Any silvicultural system applies for remainder of area while meeting object ives.	- Allow uneven-aged manage ment 100 to 500 feet, or extent of land use designation whichever is less, of lakes greater than 50 acres Any silvicultural systems apply for the remainder of the area while meeting objectives.	- All silvicultural systems available while meeting objec tives
		- Treat as the adjacent land use designation if lake or pond is less than 5 acres	- Treat as the adjacent land use designation if lake or pond is less than 5 acres

Stream Class

	1	II	111
Salvage			- Allow salvage in all areas while meeting objectives
Roading	- Roads may be allowed if other water body for recreation or	practical alternatives are not avail other needs	lable or if needed to access the

- A primary consideration for timber harvest within this land use designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly into a Class I stream, commercial timber harvest guidelines may vary, based on site-specific analysis, in order to meet process group objectives.
- Except within 100 feet of a Class I stream and 100 feet of a Class II stream which flows directly Into a Class I stream, Incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g. for bridge stringers, totem poles, etc.).

Stream and Lake Protection Estuarine Process Group (Channel types E1, E2, E3, E4, E5)

Stream Class

	1			
Objectives	- Maintain or improve aquatic biological productivity - Assure the protection of riparian habitat - Allow no measurable reduction in smolt habitat capability except when change is a result of natural processes - Restore stream and/or watershed condition where habitat capability has been reduced from the natural capability - Maintain/manage old-growth characteristic habitat for riparian-associated wildlife species			
Harvest Control	- Allow no commercial timber harvest within 100 feet - Allow no programmed commercial timber harvest within 100 to 500 feet of E1 and E5 estuarine channels, or the extent of this land use designation, whichever is less - Allow no programmed commercial timber harvest within 100 to 200 feet of E2 and E3 estuarine channels, or the extent of this land use designation, whichever is less - Allow uneven-aged silvicultural system for remainder of area			
Harvest Rate	- Beyond 100' from the stream, strive to maintain 90% of the normal basal area with trees 16°+ dbh within areas with no programmed commercial timber harvest (see note below)			
Saivage	- Allow no salvage in the 'no commercial timber harvest areas' unless needed to meet process group objectives (e.g., windthrown trees restricting fish passage in streams) - Allow salvage in other areas while meeting objectives			
Roading	- Juvenile fish passage may require special attention - Generally, no roading should occur in estuarine wetland areas			

- A primary consideration for timber harvest within this land use designation is to maintain windfirmness of the unharvested trees. Where additional distance is required to provide for reasonable assurance of windfirmness, harvest may be allowed but will be limited to uneven-aged silvicultural systems.
- Commercial timber harvest guidelines beyond 100 feet may vary, based on site-specific analysis, in order to meet process group objectives.
- Beyond 100 feet of the stream, incidental cutting of trees may be allowed in areas not programmed for commercial timber harvest on a case-by-case basis (e.g., for bridge stringers, totem poles, etc.).
- Stream Classes II and III do not normally occur in this process group. If they should occur, Harvest Control must meet Management Objectives for Class II and III of the Lakes and Ponds Process Group.

Appendix D

Biological Assessment

Appendix D

Biological Assessment

This appendix was not available at the time of publication. Informal consultation is currently underway with the U.S. Fish and Wildlife Service regarding the Biological Assessment. The completed Biological Assessment will be incorporated into the Final North Revilla Environmental Impact Statement. The environmental consequences on threatened and endangered species and on category 2 candidate species are presented in Chapter 3 of this Draft EIS. Upon its completion, copies of the Biological Assessment will be available upon request.

Appendix E

Transportation

APPENDIX E

Transportation Facilities

Traffic Service Levels

The U.S. Forest Service operates an extensive road system throughout the United States. The agency developed a concept describing significant traffic characteristics and operating conditions. These "traffic service levels" are used in setting maintenance levels throughout the National Forest System.

	Α "	В	C	D
FLOW	Free flowing with adequate passing facilities.	Congested during heavy traffic such as during peak logging or recreation activities.	slowed by the road	Flow is slow or may be blocked by an activity. Two-way traffic is difficult and may require backing to.
VOLUMES	Uncontrolled: will accommodate the expected traffic volumes.	Occasionally controlled during heavy use periods.	Erratic: frequently controlled as the capacity is reached.	Intermittent and usually controlled. Volume is limited to that associated with the single purpose.
VEHICLE TYPES	Mixed: includes the critical vehicle and all vehicles normally found on public roads.	Mixed: includes the critical vehicle and all vehicles normally found on public roads.	Controlled mix: accommodates all vehicle types including the critical vehicle. Some use may be controlled to minimize conflicts between vehicle types.	Single Use: not designed for mixed
CRITICAL VEHICLE	Clearances are adequate to allow free travel. Overload permits are required.	Traffic controls needed where clearances are marginal. Overload	Special provisions may be needed. Some vehicles will have difficulty negotiating	Some vehicles may not be able to negotiate. Loads may have to be off-loaded and walked in.
SAFETY	Safety features are a part of the design.	High priority in design. Some protection is accomplished by	Most protection is provided by traffic management.	The need for protection is minimized by low speeds and strict traffic controls.
MANAGEMENT TRAFFIC	Normally limited to regulatory, warning, and guide signs and permits.	Employed to reduce traffic volume and conflicts.	Traffic controls are frequently needed during periods of high use by the dominant	Used to discourage or prohibit traffic other than that associated with the single purposes.
USER COSTS	Minimize: transportation efficiency is important.	Generally higher than "A" because of slower speeds and increased delays.	Not important: efficiency of travel may be traded for lower construction costs.	Not considered.
ALOGNMENT	Design speed is the predominant factor within feasible topographic limitations.	Influenced more strongly by topography than by speed and efficiency.	Generally dictated by topographic features and environmental factors. Design speeds are generally low.	Dictated by topography environmental factors, and the design and critical vehicle limitations. Speed is not important.
ROAD SURFACE	Stable and smooth with little or no dust, considering the normal season of use.	predominant traffic for the normal use	May not be stable under all traffic or weather conditions during the normal use season. Surface rutting, roughness, and dust may be present, but controlled for environmental or investment protections.	

Road Development

Table A-1 displays the existing and proposed roads by VCU, miles, and clearing acres for each alternative including the Total Rotation (2140). Discrepancies may be found between tables due to rounding.

Table A-1 Existing and New Roads

Alternative 2

	Existin	g Roads	Proposed	d Roads	Total	Development
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	6.9	63	6.9	63
733	6.7	61	15.5	141	22.2	202
735	1.8	16	16.4	149	18.2	165
736	6.7	61	14.2	129	20.9	190
737	10.2	93	26.4	240	36.6	333
738	21.2	193	37.3	339	58.5	532
739	23.0	209	34.2	311	57.2	520
740	0.0	0	2.4	22	2.4	22
Total	69.6	633	153.3	1,394	222.9	2,027

	Existin	g Roads	Proposed	d Roads	Total De	velopment
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	0.0	0	0.0	0
733	5.6	51	10.6	96	16.2	147
735	1.9	17	11.0	100	12.9	117
736	5.0	46	12.6	114	17.6	160
737	3.3	30	8.2	74	11.5	104
738	13.9	126	30.2	274	44.1	400
739	19.3	176	29.1	264	48.4	440
740	0.0	0	0.6	6	0.6	6
Total	49.0	446	102.3	928	151.3	1,374

	Existin	g Roads	Proposed	d Roads	Total	Development
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	0.0	0	0.0	0
733	6.7	61	12.5	114	19.2	175
735	1.6	14	13.2	120	14.8	134
736	6.5	59	14.0	127	20.5	186
737	10.8	98	27.4	249	38.1	347
738	14.1	128	15.4	140	29.5	268
739	19.2	174	26.9	244	46.1	418
740	0.0	0	2.9	26	2.9	26
Total	58.9	534	112.3	1,020	171.0	1,554

Alternative 5

	Existir	ng Roads	Propose	d Roads	Total	Development
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	6.7	61	6.7	61
733	6.7	61	14.6	133	21.3	194
735	1.8	16	12.7	116	14.5	132
736	3.4	31	17.6	160	21.0	191
737	11.5	104	31.7	288	43.2	392
738	13.7	124	34.4	313	48.1	437
739	19.1	174	26.8	244	45.9	418
740	0.0	0	2.9	26	2.9	26
Total	56.2	510	147.4	1,340	203.6	1,851

	Existin	g Roads	Proposed	d Roads	Total	Development
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	0.0	0	0.0	0
733	6.4	58	11.7	106	18.1	164
735	1.9	17	11.0	100	12.9	117
736	5.0	46	11.8	107	16.9	153
737	3.3	30	9.4	86	12.7	116
738	13.9	126	25.7	234	39.7	360
739	19.2	174	29.4	267	48.8	441
740	0.0	0	0.6	6	0.6	6
Total	49.7	451	99.6	906	149.7	1,357

Total Rotation (2140)

	Existing	Roads	Proposed	Roads	Total	Development
VCU	Miles	Acres	Miles	Acres	Miles	Acres
732	0.0	0	9.3	84	9.3	84
733	8.2	74	20.1	183	28.3	257
735	2.1	19	21.5	196	23.6	215
736	14.0	127	33.0	300	47.0	. 427
737	14.0	127	45.0	409	59.0	536
738	28.9	263	60.4	549	89.3	812
739	27.2	247	59.5	541	86.7	788
740	13.2	120	16.6	151	29.8	270
Total	107.6	977	265.4	2,413	373.0	3,389

Coordination of Construction With Fish and Wildlife

Table A-2 displays existing, proposed reconstructed and new road development within the 1/2 mile eagle disturbance zone by VCU for each alternative including total rotation (2140).

There are no existing or planned roads within a 330 foot radius of any eagle trees in any alternative. By the year 2140, (in total rotation), 160 - feet of planned road is within 330 - feet of an eagle tree.

Existing roads include those that need reconstruction.

Table A-2 Eagle Disturbance Zones

	Exis	ting	Recons	truction	Plar	nned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	7,860	14	5,300	9	8,920	15
736	6,020	10	1,840	3	23,880	41
737	7,380	13	7,240	12	10,220	18
738	25,270	44	3,610	6	20,570	35
739	2,550	4	0	0	12,200	21
740	0	0	0	0	0	0
Total	49,080	85	17,990	31	75,790	130
Miles	9	.3	3	.4	14.	. 4

	Exis	ting	Reconst	ruction	Plann	ned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	8,380	14	5,820	10	10.120	17
736	10,150	17	1,840	3	22,500	39
737	7,040	12	6,900	12	5,020	9
738	16,870	29	3,610	6	13,270	23
739	890	2	0	0	11,280	19
740	0	0	0	0	0	0
Total	43,330	74	18,170	31	62,190	107
Miles	8	.2	3.	4	11.	.8

Alternative 4

	Exis	ting	Reconst	ruction	Planr	ned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	6,910	12	4,350	7	4,280	7
736	5,690	10	1,510	3	20,270	35
737	7,040	12	6,900	12	10,950	19
738	16,870	29	2,980	5	1,170	2
739	890	2	0	0	4,670	8
740	0	0	0	0	0	0
Total	37,400	65	15,740	27	41,340	71
Miles	7	. 1	3.	0	7	. 8

	Exist	ting	Reconst	ruction	Plann	ned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	7,860	14	5,300	9	7,330	13
736	1,510	3	1,510	3	19,860	34
737	7,380	13	7,240	12	12,890	22
738	16,190	28	3,610	6	21,060	36
739	2,550	4	0	0	11,440	20
740	0	0	0	0	0	0
Total	35,490	62	17,660	30	72,580	125
Miles	6	.7	3.	3	13.	8

Alternative 6

	Exist	ing	Reconst	ruction	Planr	ned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	8,380	14	5,820	10	10,120	17
736	10,150	17	1,840	3	20,880	36
737	7,040	12	6,900	12	5,020	9
738	16,870	29	2,980	5	13,270	23
739	890	2	0	0	11,280	19
740	0	0	0	0	0	0
Total	43,330	74	17,540	30	60,570	104
Miles	8.	2	3	.3	11.	•5

Total Rotation (2140)

(There are 160' of planned road within 330' of an eagle tree in VCU 739. The other VCU's have no roads in the 330' zone.)

	Exis	ting	Reconst	ruction	Plan	ned
VCU	Feet*	Acres	Feet*	Acres	Feet*	Acres
732	0	0	0	0	0	0
733	0	0	0	0	0	0
735	8,990	15	6,430	11	15,780	27
736	14,350	25	2,980	5	35,760	62
737	8,440	15	6,900	12	17,000	29
738	30,890	53	3,160	5	36,880	64
739	4,380	8	0	0	20,800	36
740	16,400	28	0	0	21,2000	36
Total	83,450	144	19,470	33	147,420	254
Miles	15	.8	3.	7	27	.9

^{*} Linear feet

Table A-3 displays identified AHMU stream crossings by VCU and stream classification for each alternative.

Table A-3 Identified AHMU Stream Crossings

VCU	I	II	III	Total
732	1	1	2	4
733	3	7	5	15
735	3	5	10	18
736	3	2	16	21
737	11	5	18	34
738	9	7	50	66
739	11	12	35	58
740	0	0	3	3
Total	41	39	139	

Alternative 3

VCU	I	II	III	Total
732	0	0	0	0
733	2	7	2	11
735	2	4	7	13
736	3	3	15	21
737	0	2	2	4
738	2	5	39	46
739	10	12	31	53
740	0	0	1	1
Total	19	33	97	

Alternative 4

VCU	I	II	III	Total
732	0	0	0	0
733	2	7	4	13
735	3	4	8	15
736	3	1	14	18
737	13	5	15	33
738	1	4	25	30
739	9	8	22	39
740	Ó	0	2	2
Total	31	29	90	

VCU	I	II	III	Total
732	1	0	2	3
733	3	7	2	12
735	2	4	7	13
736	3	2	16	21
737	13	5	20	38
738	2	8	41	51
739	12	9	25	46
740	0	0	3	3
Total	36	35	116	

Alternative 6

VCU	I	II	III	Total
732	0	0	0	0
733	3	7	2	12
735	2	4	7	13
736	3	3	15	21
737	0	2	3	5
738	2	4	32	38
739	10	12	32	54
740	0	0	1	1
Total	20	32	92	

Total Rotation (2140)

VCU	I	II	III	Total
732	1	1	3	5
733	3	7	5	15
735	4	6	12	22
736	4	4	29	37
737	14	6	28	48
738	9	9	65	83
739	14	15	51	80
740	1	0	15	16
Total	50	48	208	

Table A-4 portrays the identified fish timing, passage, and non-passage by alternative and VCU.

Table A-4 Identified Fish Timing, Passage and Non-passage

Alternative 2

VCU	Timing	Passage	Non-passage
732	0	2	2
733	3	10	5
735	3	8	10
736	4	5	16
737	4	16	18
738	12	16	50
739	6	22	16
740	0	0	3
Total	32	79	140

VCU	Timing	Passage	Non-passage
732	0	0	0
733	2	9	2
735	2	6	7
736	4	6	15
737	0	2	2
738	4	7	36
739	6	21	32
740	0	0	1
Total	18	51	95

Alternative 4

VCU	Timing	Passage	Non-passage
732	0	0	0
733	2	9	4
735	3	7	8
736	3	4	14
737	6	18	15
738	2	5	25
739	4	16	23
740	0	0	2
Total	20	59	91

Alternative 5

VCU	Timing	Passage	Non-passage
732	0	1	2
733	3	10	2
735	2	6	7
736	4	5	16
737	6	18	20
738	4	10	41
739	5	20	26
740	0	0	3
Total	24	70	117

VCU	Timing	Passage	Non-passage
732	0	0	0
733	3	10	2
735	3	6	7
736	4	6	15
737	0	2	3
738	3	6	32
739	6	21	33
740	0	0	3
Total	19	51	93

Total Rotation (2140)

VCU	Timing	Passage	Non-passage
732	0	2	3
733	3	10	5
735	4	10	12
736	6	8	29
737	6	20	28 .
738	12	18	65
739	8	28	52
740	1	1	15
Total	40	97	209

TTRA and AHMU Prescription Zones

Tables A-5 thru A-11 display the existing and planned roads within the various TTRA and AHMU prescription zones for each alternative. The zones are as follows:

TTRA Stream Zones (Tongass Timber Reform Act)

TTRA Lake Zones (Tongass Timber Reform Act)

AHMU Lake Prescription Zone (TLMP Revision)

Estuarine Prescription Zone (Beach Fringe and Estuarine Prescription, TLMP Revision)

Beach Fringe Prescription Zone (Beach Fringe and Estuarine Prescription, TLMP Revision)

AHMU Stream Prescription Zone (No Cut) (TLMP Revision)

AHMU Stream Prescription Zone (Partial Cut) (TLMP Revision)

Table A-5 displays the existing and planned roads within the TTRA Stream Buffer by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-5
Planned and Existing Roads in the TTRA Stream Zone

	Exis	sting	Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	820	1
733	5,290	9	170	1
735	140	1	1,490	3
736	0	0	0	0
737	2,750	5	1,360	2
738	5,970	10	1,870	3
739	2,890	5	1,150	2
740	0	0	0	0
Total	17,040	29	6,860	11
Miles	3.2		1.	3

	Exis	sting	Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,510	4	80	1
735	140	1	490	1
736	0	0	0	0
737	0	0	340	1
738	1,330	2	930	2
739	2,730	5	1,140	2
740	0	0	0	0
Total	6,710	11	2,980	6
Miles	1.3		0.	.6

Alternative 4

	Exis	Planr	ned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	5,560	10	90	1
735	140	1	1,300	2
736	0	0	0	0
737	2,760	5	1,360	2
738	1,580	3	0	0
739	2,560	4	570	1
740	0	0	0	0
Total	12,600	22	3,320	5
Miles	2.	. 4	0.	.6

	Exis	sting	Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	820	1
733	5,290	9	170	1
735	140	1	1,430	2
736	0	0	0	0
737	2,750	5	1,360	2
738	1,600	3	980	2
739	2,730	5	1,160	2
740	0	0	0	0
Total	12,510	22	5,920	9
Miles	2.	. 4	1.	. 1

Alternative 6

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	5,290	9	170	1
735	140	1	490	1
736	0	0	0	0
737	0	0	340	1
738	980	2	360	1
739	2,730	5	1,150	2
740	0	0	0	0
Total	9,140	16	2,510	5
Miles	1.	.7	0.	.5

Total Rotation (2140)

	Existing		Plani	ned
VCU	Feet	Acres	Feet	Acres
732	0	0 _	820	1
733	7,570	13	230	1
735	600	1	2,000	3
736	470	1	0	0
737	2,910	5	2,080	4
738	6,140	11	2,010	3
739	3,360	6	1,860	3
740	7,440	13	380	1
Total	28,490	50	9,380	15
Miles	5	4	1	.8

Table A-6 displays the existing and planned roads within the TTRA Lake Zone by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-6 Planned and Existing Roads in the TTRA Lake Zone

Alternative 2

Existing			Plar	nned
VCU	Feet	Acres	Feet	Acres
732	0	0	220	1
733	0	0	140	1
735	0	0	490	1
736	0	0	0	0
737	0	0	0	0
738	690	1	0	0
739	0	0	0	0
740	0	0	0	0
Total	690	1	850	1
Miles	0.	.1	0.	.2

	Existing		Plar	nned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	490	1
736	0	0	0	0
737	0	0	0	0
738	90	1	0	0
739	0	0	0	0
740	0	0	0	0
Total	90	1	490	1
Miles	0.	.1	0.	. 1

	Exis	sting	Plar	nned
VCU	Feet	Acres 0	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	490	1
736	0	0	0	0
737	0	0	0	0
738	0	0	0	0
739	0	0	0	0
740	0	0	0	0
Total	0	0	490	1
Miles	0.	.0	0.	. 1

Alternative 5

	Existing		Plan	nned
VCU	Feet	Acres	Feet	Acres
732	0	0	220	1
733	0	0	140	1
735	0	0	490	1
736	0	0	0	0
737	0	0	0	0
738	0	0	0	0
739	0	0	0	0
740	0	0	0	0
Total	0	0	850	1
Miles	0.	0	0	.2

Alternative 6

	Exis	Plar	nned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	490	1
736	0	0	0	0
737	0	0	0	0
738	0	0	0	0
739	0	0	0	0
740	0	0	0	0
Total	0	0	490	1
Miles	0.	.0	0	.1

Total Rotation (2140)

	Exis	sting		Planr	ned
VCU	Feet	Acres		Feet	Acres
732	0		0	220	1
733	0		0	140	1
735	0		0	490	1
736	0		0	0	0
737	140		1	340	1
738	380		1	0	0
739	0		0	0	0
740	180		1	0	0
Total	700	1		1,190	2
Miles	(0.1		0.2	2

Table A-7 displays the existing and planned roads within the AHMU Lake Prescription Zone by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-7 Planned and Existing Roads in the AHMU Lake Prescription Zone

Δ ٦	tann	ative	2
VΤ	rem	autve	_

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	11,650	20
733	1,400	2	4,580	8
735	0	0	3,370	6
736	0	0	3,230	6
737	3,360	6	0	2
738	6,160	11	1,440	2
739	6,450	11	830	1
740	0	0	0	0
Total	17,370	30	25,100	45
Miles	3.	3	4.	.8

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,400	2	1,250	2
735	0	0	2,530	4
736	0	0	3,270	6
737	0	0	0	0
738	790	1	1,440	2
739	6,090	11	1,290	2
740	0	0	0	0
Total	8,280	14	9,780	16
Miles	1.	.6	1.	.8

Alternative 4

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,400	2	1,200	2
735	0	0	2,510	4
736	0	0	3,230	6
737	3,070	5	0	0
738	710	1	0	0
739	6,030	10	1,290	2
740	0	0	0	0
Total	11,210	18	8,280	14
Miles	2.	. 1	1.	.6

	Exis	sting	Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	11,060	19
733	1,400	2	3,840	7
735	0	0	2,510	4
736	0	0	1,290	2
737	3,070	5	0	0
738	710	1	1,440	2
739	6,160	11	1,770	3
740	0	0	0	0
Total	11,340	19	21,910	37
Miles	2.	.2	4.	.2

Alternative 6

Existing			Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,400	2	1,250	2
735	0	0	2,510	4
736	0	0	3,230	6
737	0	0	0	0
738	710	1	0	0
739	5,950	10	1,290	2
740	0	0	0	0
Total	8,060	13	8,280	14
Miles	1.	.5	1	.6

Total Rotation (2140)

	Exis	sting	Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	13,280	23
733	1,400	2	4,580	8
735	0	0	3,460	6
736	310	1	3,470	6
737	5,640	10	2,070	4
738	5,930	10	1,440	2
739	6,160	11	1,770	3
740	3,420	6	410	1
Total	22,860	40	30,480	53
Miles	4.	3	5	.8

Table A-8 display the existing and planned roads within the Estuarine Prescription Zone by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-8 Planned and Existing Roads in the Estuarine Prescription Zone

Alternative 2

	Existing		Plan	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,440	4	160	1
735	780	1	4,840	8
736	0	0	0	0
737	3,270	6	1,520	3
738	4,590	8	600	1
739	0	0	3,430	6
740	0	0	0	0
Total	11,080	19	10,550	18
Miles	2.	. 1	2.	.0

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,460	4	120	1
735	810	1	2,740	5
736	0	0	0	0
737	630	1	0	0
738	4,550	8	600	1
739	0	0	120	1
740	0	0	0	0
Total	8,450	14	3,580	6
Miles	1.	.6	0.	.7

Alternative 4

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,440	4	160	1
735	780	1	3,850	7
736	0	0	0	0
737	3,160	5	1,440	2
738	4,550	8	0	0
739	0	0	0	0
740	0	0	0	0
Total	10,930	18	5,450	9
Miles	2.	. 1	1.	.0

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,440	4	160	1
735	780	1	3,970	7
736	0	0	0	0
737	3,160	5	1.440	2
738	4,550	8	0	0
739	0	0	530	1
740	0	0	0	0
Total	10,930	18	6,100	10
Miles	2.	.1	1.	2

Alternative 6

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	100	1	1,670	3
736	1,770	3	990	2
737	660	1	0	0
738	0	0	6,360	11
739	0	0	1,860	3
740	0	0	0	0
Total	4,030	7	10,880	19
Miles	0.	.8	2	. 1

Total Rotation (2140)

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,440	4	360	1
735	780	1	5,620	10
736	0	0	0	0
737	3,150	5	1,440	2
738	4,550	8	890	2
739	0	0	9,960	17
740	0	0	0	0
Total	10,920	18	18,270	32
Miles	2.	.1	3.	5

Table A-9 displays the existing and planned roads within the Beach Fringe Prescription Zone by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-9
Planned and Existing Roads in the Beach Fringe Prescription Zone

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	100	1	1,670	3
736	1,770	3	650	1
737	1,020	2	830	1
738	0	0	6,360	11
739	0	0	2,060	4
740	0	0	0	0
Total	4,390	8	11,570	20
Miles	0.	.8	2.	.2

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	100	1	1,670	3
736	1,770	3	990	2
737	660	1	0	0
738	0	0	6,360	11
739	0	0	1,860	3
740	0	0	0	0
Total	4,030	7	10,880	19
Miles	0.8		2.	. 1

Alternative 4

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	120	1	1,670	3
736	1,800	3	650	1
737	1,020	2	370	1
738	0	0	280	1
739	0	0	0	0
740	0	0	0_	0
Total	4,440	8	2,970	5
Miles	0.8		0.6	

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	120	1	1,670	3
736	0	0	650	1
737	1,020	2	370	1
738	0	0	6,080	10
739	0	0	2,070	4
740	0	0	0	0
Total	2,640	5	10,840	19
Miles	0.5		2.1	

Alternative 6

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,440	4	160	1
735	780	1	2,740	5
736	0	0	0	0
737	630	1	0	0
738	4,550	8	600	1
739	0	0	120	1
740	0	0	0	0
Total	8,400	14	3,620	6
Miles	1.6		0.7	

Total Rotation (2140)

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	1,500	3	0	0
735	120	1	2,380	4
736	3,840	7	4,730	8
737	1,360	2	830	1
738	5,420	9	7,480	13
739	0	0	2,060	4
740	880	2	0	0
Total	13,120	23	17,480	30
Miles	2.5		3	3

Table A-10 displays the existing and planned roads within the AHMU Prescription zone (No Cut) by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-10 Planned and existing Roads in the AHMU Stream Prescription Zone (No Cut)

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,950	5	0	0
735	0	0	250	1
736	0	0	0	0
737	230	1	340	1
738	2,660	5	0	0
739	3,110	5	0	0
740	0	0	0	0
Total	8,950	15	590	1
Miles	1.7		0.	. 1

Alternative 3

	Existing		Plan	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,950	5	0	0
735	0	0	250	1
736	0	0	0	0
737	0	0	0	0
738	1,980	3	0	0
739	3,120	5	0	0
740	0	0	0	0
Total	8,050	13	250	1
Miles	1.	5	0	. 1

Alternative 4

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,900	5	0	0
735	0	0	250	1
736	0	0	0	0
737	230	1	340	1
738	1,980	3	0	0
739	3,120	5	0	0
740	0	0	0	0
Total	8,230	13	590	1
Miles	1.	.6	0.	. 1

Alternative 5

	Exis	sting	Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,950	5	0	0
735	0	0	250	1
736	0	0	0	0
737	230	1	340	1
738	1,980	3	0	0
739	3,120	5	80	1
740	0	0	0	0
Total	8,280	13	670	1
Miles	1.	.6	0.	. 1

Alternative 6

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	2,950	5	0	0
735	0	0	250	1
736	0	0	0	0
737	0	0	0	0
738	1,980	3	0	0
739	3,110	5	0	0
740	0	0	0	0
Total	8,040	13	250	1
Miles	1	.5	0	.1

Total Rotation (2140)

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	3,180	5	0	0
735	0	0	250	1
736	0	0	0	0
737	230	1	700	1
738	2,910	5	60	1
739	2,980	5	80	1
740	0	0	0	0
Total	9,300	15	1,090	1
Miles	1.	.8	0	.2

Table A-11 displays the existing and planned roads within the AHMU Prescription Zone (Partial Cut) by VCU, road segment in miles, and clearing limit acreage for each alternative.

Table A-11 Planned and Existing Roads in the AHMU Stream Prescription Zone (Partial Cut)

	ative	

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	580	1
733	0	0	0	0
735	0	0	0	0
736	0	0	0	0
737	0	0	0	0
738	740	1	210	1
739	1,110	2	0	0
740	0	0	0	0
Total	1,850	3	790	1
Miles	0.	. 4	0.	.2

Alternative 3

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	0	0
736	0	0	0	0
737	0	0	0	0
738	740	1	210	1
739	1,110	2	0	0
740	0	0	0	0
Total	1,850	3	210	1
Miles	0.	. 4	0	. 1

Alternative 4

	Existing		Plan	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	0	0
736	0	0	0	0
737	0	0	0	0
738	730	1	0	0
739	950	2	0	0
740	0	0	0	0
Total	1,680	3	0	0
Miles	0.	3	0	.0

Alternative 5

	Exis	sting	Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	580	1
733	0	0	0	0
735	0	0	0	0
736	0	0	0	0
737	0	0	0	0
738	740	1	190	1
739	950	2	0	0
740	0	0	0	0
Total	1,690	3	770	1
Miles	0.	3	0.	.2

Alternative 6

	Existing		Planned	
VCU	Feet	Acres	Feet	Acres
732	0	0	0	0
733	0	0	0	0
735	0	0	0	0
736	0	0	0	0
737	0	0	0	0
738	740	1	0	0
739	1,110	2	0	0
740	0	0	0	0
Total	1,850	3	0	0
Miles	0.	. 4	0	.0

Total Rotation 2140

	Existing		Planr	ned
VCU	Feet	Acres	Feet	Acres
732	0	0	580	1
733	0	0	0	0
735	0	0	0	0
736	510	1	0	0
737	0	0	0	0
738	740	1	210	1
739	1,360	2	0	0
740	260	1	0	0
Total	2,870	4	790	1
Miles	0.	5	0	.2

Appendix F

Perspective Plots

PERSPECTIVE PLOTS Effects of the Alternatives

(Aerial perspective overlooking Francis Cove valley from West Behm Canal)

North Revilla Project Area Sample Viewpoint Locations

7. NW Neets Bay

8. Inner Neets Bay

15. North Hassler Island

16. South Hassler Pass

1. Behm Canal at Indian Point - Indian Point to Francis Cove

This 2,036-acre saltwater viewshed is the first in the Project Area encountered while traveling north from the Clover Pass Scenic Area near Ketchikan, and can be seen from the North Point Higgins area. It is adjacent to the Naha Roadless Area. The landscape character consists of an area one-half to one mile in width with less than 25 percent slopes on interspersed hills and knobs. The landform then rises steeply to 2,500-foot ridge tops in the middleground. These slopes face southwest to west towards the Naha and Clover Pass areas and Point Francis on the Cleveland Peninsula across Behm Canal. The visual sensitivity of this viewshed makes it a focal point and a subject for much public concern.

Due to the scope and scale of recent harvest (1990) on these highly visible slopes, this area does not meet the proposed VQO of Modification in the middleground. However, the foreground areas do meet the proposed VQO of Partial Retention.

Alternative 1 - No Action

The Existing Visual Condition (EVC) of this viewshed is heavily altered (V). Of the existing 255 acres of timber harvest, 231 acres (or 11.3 percent of this viewshed) remain visually disturbed. It, however, will meet the VQO sooner if mitigating actions (through rehabilitation) are taken to change the shape of the largest harvest unit (119 acres) from its geometric appearance to one that resembles a natural opening (one that borrows from naturally established forms and lines). Without these changes, the Future Visual Condition (FVC) for this viewshed would remain heavily altered (V) for the next 20--25-years.

2. Behm Canal at Traitors Cove - Francis Cove to Bushy Point

This 4,079-acre saltwater viewshed continues with the mile-wide shelf in the foreground with moderate slopes to under 1,500-foot elevation. The "viewframe" is bisected by the entrance to Traitors Cove with background views of terrain inside the cove. The most recent harvest (1990) is seen on the south-side of the entrance (VCU 740), as shown in the above graphic, and is located on steep sloped knobs facing the viewer. Currently, this area does not meet the proposed VQO of Modification.

The north-side of the cove (VCU 738), due to its flat terrain in the foreground mile-wide shelf, is mostly unseen as well as unaltered (not shown in above graphic). The middleground consists of steep slopes rising to nearly 1,500-foot ridgetop and faces southwest towards the viewer. These slopes were harvested in 1958, have regenerated to approximately 50 to 55 feet high.

Currently, this part of the viewshed meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition this viewshed ranges from natural condition (I) to slightly altered (III) on the north-side of the Cove entrance to moderately altered (IV) south of the entrance. Although 890 acres have been harvested since the late 1950's, 371 seen acres (or 9.1 percent of this viewshed) remain visually disturbed, mostly on the south-side. The Future Visual Condition (FVC) would remain the same except for continuing change in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

3. Traitors Cove Viewshed - From Virgin Bay to Margaret LTF

This 2,713-acre saltwater viewshed is comprised of a 270 degree "viewframe" from a westerly view of Behm Canal to just north of an existing Log Transfer Facility (LTF) on the eastern shore of the cove. This viewshed consists of moderate to steep slopes angled toward the viewer in a bowl effect. Past harvest has occurred along the west-shore in the late 1950's; on middleground slopes above the north-shore in the mid-1980's; and on the east-shore middleground slopes in the early 1960's.

Currently, this viewshed meets the proposed VQO's of Modification in the foreground and Maximum Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed ranges from slightly altered (III) to moderately altered (IV). Of the 725 seen acres harvested since 1958, 126 acres (or 4.6 percent of the viewshed) remain visually disturbed. The FVC would remain the same except for a change in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

4. Margaret Cove Viewshed

Located southeast of Traitors Cove, this 2,021-acre saltwater viewshed consists of a deeply indented canyon with extensive harvesting in evidence along a wide bottomed valley straddling Margaret Creek and Lake. The view from saltwater is located near the existing LTF on the eastern shore. Due to the wide flat-bottom nature of this viewshed, over 66 percent is unseen. Primarily, the immediate foreground (private land) and the far distant middleground slopes from the 500 to 1,000-foot elevations are the only areas visible.

This viewshed currently meets the proposed VQO's of Modification in the foreground and Maximum Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this saltwater viewshed is slightly altered (III). Of 509 seen acres harvested since 1957, only 18 acres (or .9 percent of the viewshed) remain visually disturbed. The Future Visual Condition would remain the same, except for changes in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

5. Inner Traitors Cove Viewshed - At the head of Traitors Cove

This 8,078-acre saltwater viewshed has some unique features in the context of the Project Area. Public scoping revealed a concern for the scenic quality in this area. It begins at a salt chuck, twists and turns for four miles, averaging one-quarter mile in width, and features the earliest timber harvest entry on the Project Area (1942). The landscape character can best be described as intimate, owing to the vertical nature of the canyon walls, heavy old-growth forest close to the viewer, and the absence of any long views.

This viewshed, the largest in the Project, is primarily located on either side of the cove up to 1,000 to 1,500-foot elevations. Middleground views are found at the head of the cove above Traitors Creek. In addition to the 1942 entry, this viewshed has seen activity in all decades for a total of 1,077 seen acres. Most of the visible harvest occurred along the shorelines.

Currently, this viewshed meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed ranges from slightly altered (III) on the north, northeast, and southwest shore; moderately altered (IV) on the northwest and southeast shore; and natural condition (I) on the upper middleground slopes at the head of the cove. Of the 1,077 seen acres harvested, 788 acres (or 9.8 percent of the viewshed) remain visually disturbed. The FVC would remain the same, except for a change in tree height, color and texture.

Alternative 6

6. Behm Canal at Southwest Neets Bay - Bushy Pt. to Bug Island

This 2,114-acre saltwater viewshed is located in VCU 736. All harvest in this area has occurred since 1985 on the middleground slopes and draws much attention due to the sharp differences in color, edge and line contrasts, and scale of harvest, resulting in heavily altered visual impacts.

Due to this recent harvest, this area currently does not meet the proposed Modification VQO for middleground views. However, it meets the proposed VQO of Partial Retention for foreground views.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed is heavily altered (V). Of the 476 seen acres harvested since 1960, 412 acres (or 19.5 percent of the viewshed) remain visually disturbed. The Future Visual Condition would remain the same, except for continuing change in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

7. Behm Canal at NW Neets Bay - Brow Point to Bug Island

This 5,256-acre saltwater viewshed features the prominent Chin Point, a local landmark. After a boater rounds the headland of SW Neets Bay, the view of Chin Point and the ridge tops at the 2,000- to 2,500-foot elevations, remain in the "viewframe" for an extended time. Harvesting has not occurred in this area since the mid-1970's.

Currently, this viewshed meets the proposed VQO's as noted below. The western-half of this saltwater viewshed is considered more sensitive visually to Behm Canal observers. The proposed VQO's in this area are Partial Retention in the foreground and Modification in the middleground. The eastern half has proposed VQO's of Modification in the foreground, and Maximum Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed appears as slightly altered (III) in both foreground and middleground. Of 408 seen acres harvested since 1960, only 113 (or 2.1 percent of the viewshed) remain visually disturbed. Left unchanged, the FCVD would improve to a natural appearing condition (II).

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

8. Inner Neets Bay - Bug Island to Easy and Vox Points

This 3,834-acre saltwater viewshed is located between Behm Canal and the head of Neets Bay along both north and south shores of Neets Bay. Its terrain features are similiar to both NW and SW Neets Bay viewsheds as discussed above. Although harvest has occurred in this area since 1955, most has regenerated to 48 to 58 feet.

Currently, this viewshed meets the proposed VQO's of Modification in the foreground and Maximum Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed ranges from slightly altered (III) on the north side of the bay to moderately altered (IV) on the south side. Of the 1,148 seen acres harvested since 1955, only 142 acres (or 3.7 percent of the viewshed) remains visually disturbed. The Future Visual Condition would remain the same except for the continuing change in tree height, color and texture.

9. Head of Neets Bay - Easy Point to SSRAA Fish Hatchery

This 6,036-acre saltwater viewshed is located within VCU 737. An anchorage and private fish hatchery are located at the head of this bay resulting in moderate boating activity.

Currently, this viewshed meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed ranges from slightly altered (III) to moderately altered (IV). Of the 1,545 seen acres harvested since 1953, only 85 acres (or 1.4 percent of the viewshed) remain visually disturbed. The Future Visual Condition and landscape mosaic would remain the same except for continuing changes in tree height, color and texture.

10. Behm Canal at Gedney Pass - Brow Point to Dress Point

This 4,018-acre saltwater viewshed comprises the south shore of Gedney Pass and the south shore of Hassler Island (southern half of VCU 735). Harvest occurred along the shorelines in late 1950's to early 1960's, and is approximately 50 feet in height. The slopes above these harvested areas rise steeply and evenly without much variation, except for rock outcrops, to 2,000 to 2,500-foot ridge tops.

This viewshed currently meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of Hassler Island appear as moderately altered (IV), and the south shore of Gedney Pass appears as slightly altered (III). Of the 1,035 acres of original harvest, only 224 acres (or 5.6 percent of the viewshed) remain visually disturbed. The Future Visual Condition and landscape mosaic would remain the same except for continuing changes in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

11. Shrimp Bay - Dress Point to Orchard Lake Falls

This 3,812-acre saltwater viewshed comprises the shorelines near Dress Point and the south shores of Shrimp Bay, including a heavily altered peninsula. Harvested in the late 1950's, regeneration has been slowed from the effects of poor soil characteristics and a wildfire. Extremely steep slopes are found north of Shrimp Bay while south to southeast views are of 400 to 600-foot cliffs rising to a flattened shelf, then rising steeply to 2600-foot ridgetops in the middleground.

Currently, this viewshed meets the proposed VQO's of Partial Retention in foreground and Modification in middleground.

Alternative 1 - No Action

The Existing Visual Condition is from natural appearing (II) on the south shore's middleground slopes to moderately altered (IV) along the north shorelines. Of the 868 seen acres harvested. only 182 acres (or 4.8 percent of the viewshed) remain visually disturbed. The Future Visual Condition and landscape mosaic will remain the same except for continuing changes in tree height, color and texture.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

12. Klu Bay Viewshed - Off of Shrimp Bay

This 2,473-acre saltwater viewshed is located just north of the Orchard Lake waterfalls at the head of Shrimp Bay. Visually, it is affected by the burned peninsula mentioned above as well as 35-year-old harvest areas in the immediate foreground.

Currently, this viewshed meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition ranges from natural condition (I) on the northwestern and northern slopes to moderately altered (IV) on the eastern and southeastern slopes. Of the 342 seen acres harvested since 1957, only 88 acres (or 3.6 percent of the viewshed) remain visually disturbed. Left unchanged, the Future Visual Condition and landscape mosaic would remain the same except for continuing change in tree height, color and textures.

13. Orchard Lake - Upstream from waterfalls at Shrimp Bay

This 3,464-acre viewshed is the only freshwater viewshed considered. During the public scoping comment period in the fall of 1991, residents and visitors alike commented on its uniqueness. There are two Forest Service cabins on the lake: one near the waterfalls outlet (Plenty Cutthroat) and the other at the head of the lake (Orchard Lake). This latter cabin is outside the Project Area. This viewshed's visual appearance is in a natural condition (Type I) with unaltered far-middleground views of mountaintops of the Shrimp Bay viewshed to the west and Klu Bay viewshed to the north and northeast.

Although timber harvest is precluded in this viewshed, any future recreational facility or management activities are proposed to meet the Partial Retention VQO.

14. Behm Canal at West Hassler - Gedney Island to Black Island

This 1,695-acre saltwater viewshed is viewed from the entrance to Yes Bay across Behm Canal west of Hassler Island. Three islands are in this viewframe: Gedney Island on the right, Hassler Island in the middle, and Black Island on the left. Hassler Island's visually sensitive (low VAC) slopes as seen from this vantage point are primarily those above Blind Pass (between Black and Hassler Islands) and the western face of of the island.

No harvest activities are proposed on either Black or Gedney Islands in this EIS.

Currently, this viewshed meets the proposed VQO's of Retention in the foreground and Partial Retention in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed ranges from natural condition (I) to natural appearing (II). Of the 22 acres harvested in the early 1950's along the shoreline, none remain visually disturbed. Undisturbed, the Future Visual Condition would remain the same except for continuing change in tree height, color, and textures.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

15. Behm Canal at North Hassler - Black Island to Curlew Point

This 1,316-acre saltwater viewshed is viewed from northwest Behm Canal near Snipe Point on Bell Island. From this viewpoint, all of the northern portions of Hassler Island and Black Island can be seen between Hassler Pass and northwest Behm Canal.

Currently, this viewshed meets the proposed VQO's of Retention in the foreground and Partial Retention in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed is in a natural condition (I). Left as is, the Future Visual Condition would remain the same except for continuing change in tree height, color, and textures.

Alternative 2

Alternative 3

Alternative 4

Alternative 5

Alternative 6

16. South Hassler Pass - Fin Point to the Hassler Island LTF

This 574-acre saltwater viewshed, the smallest in this Project Area, is viewed from the opposite shore of Hassler Pass just north of Gedney Pass near Dress Point. Hassler Pass is very similar in visual character to Inner Traitors Cove viewshed. This is due to its narrow (less than a mile wide) waterway surrounded by very steep slopes rising from water line to nearly 2,000-foot on the west and 3,000-foot on the east. The above graphic depicts a western view of Hassler Island.

Currently, this viewshed meets the proposed VQO's of Partial Retention in the foreground and Modification in the middleground.

Alternative 1 - No Action

The Existing Visual Condition of this viewshed is natural appearing (II). Although 118 acres of timber harvest occurred in 1977, from this vantage point, they are not apparent due to the screening effects of vegetation on the foreground ridge line. The Future Visual Condition (FVC) will remain the same except for continuous change in tree height, color, and texture.

LTF Reconnaissance Report
USDC National Marine Fisheries Service Report
Alaska Timber Task Force Siting Guidelines

NORTH REVILLAGIGEDO

PROPOSED LOG TRANSFER SITE Reconnaissance Report

March 23, 1992

Conducted by: Jim Rhodes

Transportation Planner, SO

John Weis

Project Engineer, KRD

Bob Demmert

Transportation Planner, SO

LOG TRANSFER SITES INVESTIGATED

Following are preliminary reconnaissance reports concerning Log Transfer sites investigated in the project area. Sites that were eliminated did not meet numerous siting guidelines. The preferred sites were investigated and are proposed for use in the various alternatives considered in this document.

Relocation of existing sites was generally not considered as the existing sites meet most siting guidelines. Additionally, relocation of the sites would cause impacts in new areas unnecessarily. However, several existing sites considered do not meet numerous current siting guidelines. Where possible, the areas served by such sites were considered for connection by road to an acceptable existing site or to a new site that will meet guidelines.

NORTH REVILLA

LTF RECONNAISSANCE REPORT

March 23, 1992

The general area lies on northwest Revillagigedo Island (see Map 1). The various LTF sites examined are located on Hassler Island in Hassler Pass, Shrimp Bay, Neets Bay, and Traitors Cove.

SUMMARY:

It is recommended that low-angle slide systems be used at North Neets and NW Traitors Cove. All other sites will need to be developed as A-frame systems with guide rails and bulkhead due to the terrain and bathymetry. Following are general discussions concerning the rationale for the above-named recommendations.

Only Shrimp Bay, Fire Cove, and Margaret Bay LTFs serve significant timber volumes which range 25-to-80 MMBF for the currently planned second entry. The third entry will yield less volume then the second.

North Revillagigedo contains very steep mountains and fjords. Because of such steep terrain and bathymetry, very few beach areas are suitable for low-angle slides. Accordingly, many A-frame type LTFs are proposed for very small timber yield areas.

OTHER CRITERIA:

Where possible, existing sites were used rather than new sites to reduce overall effects. In several instances, existing sites did not meet current siting guide lines, nor could they be modified to do so. In such cases, new sites on road connections to other sites, if feasible, are recommended.

Detailed information concerning each site that was investigated is contained in subsequent discussions.

HASSLER ISLAND Site #1

Location: SE 1/4, SW 1/4, Sec. 15, T. 69 S., R.90 E. KTN D-5

55° 52′ 57" N, 131° 36′ 07" W.

Proposed Volume: 20 MMBF

Facility Type: Proposed low-angle slide.

Upland Area: Ample, moderate ground for developing an operations area.

Rafting Area: Ample deep water rafting area. Water depth area is

relatively protected from extreme marine and weather actions.

Barge Off-Loading: Initial landings will need to be made near a rock source for

construction. A temporary skid trail from beach to the rock source will be needed until a road linking the LTF and rock source is built. A brow log with a small embankment will be needed at both the temporary and final barge landings. The temporary barge landing will be located when a suitable rock

source is found.

Camp Facilities: It is expected that Hassler Island will be served by use of a

floating camp. Numerous protected float camp sites are available within boating distance from the LTF. Such areas are Shrimp Bay, Klu Bay, Dress Point, and areas adjacent to

the LTF.

Access: Uplands are moderate and will accommodate moderate grades in

and out of the LTF area.

Marine Conditions: The beach is rocky and drops quickly, then flattens out for

200 ft, and then drops to extreme depths. This site is ideal for a 10 percent slide system. The lower end of the slide would be at the point where the terrain breaks to extreme

depths.

Fisheries: Nearest cataloged fish stream is 3/4 mile southeast of the

site. Another stream lies 3/8 mile northwest of the site.

This stream is not a cataloged fish stream.

Other

Environmental: Site is relatively well-protected from heavy wind and wave

action. Hassler Pass is 500 to 600 feet deep.

The site is visual from about 1/2 of Hassler Pass. The LTF is not visual from Behm Canal. However, rafting and float camp facilities would be visible from Behm Canal and Gedney

Pass. The LTF is not visual from Gedney Pass.

Tideland Plane: There are no current tideland plans for this area.

Recommendations: Conduct a marine investigation.

Develop Site #1 as a low-angle slide to accommodate very small infrequent harvest operations.

HASSLER ISLAND Site #2

Location: NE 1/4, SE 1/4, Sec. 22, T. 69 S., R. 90 E. KTN D-5.

55° 52′ 17" N, 131° 35′ 21" W.

Proposed Volume: 20 MMBF

Facility Type: Existing steep slide, last used in 1977. Requires

conversion to an A-frame and bulkhead with guide rails. This site will not accommodate a low-angle slide system.

Upland Area: Ample moderately sloped ground for operating area.

Existing site will require major excavation to accommodate an A-frame system with bulkhead.

Rafting Area: Ample area for rafting . Hassler Pass is very deep and

well-protected from heavy seas and wind actions.

Barge Off-Load: Existing site is adequate for barge landings.

Camp Facilities: It is expected that Hassler Island operations will be

served by use of a floating camp. Numerous float camp sites are available within boating distance from the LTF. Such areas as Shrimp Bay, Dress Point, and

adjacent to the LTF.

Access: The existing road will need to be relocated to

accommodate an A-frame with bulkhead. The existing road is 15 to 18 percent favorable. The existing road would need to be undercut to accommodate an A-frame system, thus the road will need to be relocated for about 500

feet. Grades will be between 15 and 18 percent

favorable.

Marine Conditions: The site has a very steep, rocky beach suitable for

development of an A-frame system. The bathymetry is steep allowing bark deposit to move to extreme depths.

Fisheries: The nearest cataloged fish stream is #101-80-13. This

stream is 1/4 mile NE of the site.

Other

Environmental: This site is protected from adverse marine and weather

action. The LTF is highly visible from a small portion of Hassler Pass. An eagle tree is immediately south of the existing LTF site. Reconstruction will require reconnaissance activities to determine the proximity of

the eagle tree.

Tideland Plans: This area is not covered in a detailed state tideland

plan.

Recommendations:

Conduct marine investigation to determine if site has fully recovered or highly impacted.

This existing site is not recommended as it cannot be converted to a low-angle slide. This island will require small operations to clean-up and maintain the Forest. Hassler Island is small (7 or 8 square miles, thus, not supporting a large operation. Re-entries will be infrequent; small equipment and small operations will be used to harvest the area.

DRESS POINT Site #3

SW 1/4 NW 1/4 Sec. 25, T. 69 S., R. 90 E. KTN D-5 55° 51' 26" N. 131 $^{\circ}$ 33' 21" W. Location:

Proposed Volume: Not being used.

Facility Type: Existing steep slide. Used in 1976.

> This facility is not being considered for reuse in this plan: No timber volume tributary to this site is being scheduled.

> > * * * * *

KLU BAY Site #4

N 1/2 SW 1/4 Sec. 34, T. 69 S., R. 91 E. KTN D-5 55° 50' 30" N. 131° 27' 11" W. Location:

16 MMBF Proposed Volume:

Facility Type: Existing A-frame lift off with bulkhead and guide rails.

> This facility may require minor reconstruction including bulkhead reconstruction and installation of an A-frame life-off machine.

> > * * * * * * * * * *

Shrimp Bay Site #5

SE 1/4 NW 1/4 Sec. 5, T. 70 S., R. 91 E. KTN D-5 55° 49' 57" N. 131° 29' 57" W. Location:

Proposed Volume: 14-33 MMBF

Existing A-frame lift-off system with bulkhead and guide Facility Type:

rails.

This facility may require minor reconstruction including bulkhead and quide rail replacement and installation of an A-frame lift-off machine.

CHIN POINT Site #6

SE $_{0}^{1/4}$ NW $_{1/4}$ Sec. 18, T. 70 S., R. 90 E. KTN D-6 55 $_{0}^{47}$ 59" N. 131 $_{0}^{40}$ 40' 53 ". Location:

18 MMBF Proposed Volume:

Facility Type: Existing float-off system. Logs are dragged onto the

beach and floated off. A ramp will need to be

developed.

The uplands are moderately sloped allowing for Upland Area:

developable upland operating area.

Ample water depth for rafting. This area is highly Rafting Area:

> exposed to wind and wave action. Log boom may need to be built in such a way to make it serve as a floating

breakwater.

Initial landings will need to be made at high tide on Barge Off-Load:

the existing road. Subsequent landings can be made at

the LTF site.

This area can be served by both upland or floating Camp Facilities:

> camps. It is expected that this area will be served by float camps located in more protected areas such as Fire Cove, Southwest Neets Bay, or an area 2 to 3 miles east

of NW Neets site Site #6.

Access: An abandoned existing road accesses this site. Grades

are moderate. The existing road will require major

reconstruction.

The beach slopes at 10 percent. The LTF structure would Marine Conditions:

lie on the edge of the gentle sloping gravel segment of the beach. The end of the LTF ramp would be at the

break in slope of the beach.

A cataloged fish stream #101-90-02 is close to the LTF Fisheries:

site. Another cataloged fish stream #101-90-03 lies 1/4

mile east of the site.

Other

Environmental: Eagle trees lie about 1/8 mile west and 1/2 mile east of

the site.

This site is highly exposed to prevailing storms and

wave action.

Visually, this site can be seen from most of Neets Bay and from Behm Canal. This site is low in profile,

including the uplands, thus, minimizing visual impacts.

Tideland Plans:

There are no current tideland plans for this area.

Recommendations:

Conduct a marine investigation to determine suitability for this facility.

Determine proximity of fish stream in accordance with siting guidelines.

Determine proximity of eagle trees.

Develop this site as a low-angle slide to accommodate small operations.

Investigate possibility of using LTF sites #7, #8, or #9 in place of this site as only one LTF is needed.

CHIN POINT Site #7

NW 1/4 SE 1/4 Sec 18 T.70 S. R.90 E KTN D-6 55° 48' 0" N. 131° 40' 19" W. Location:

18 MMBF Proposed Volume:

Low-angle Slide Facility Type:

Uplands are moderately sloped allowing for developable Upland Area:

upland area.

Ample water depth for rafting. This area is highly Rafting Area:

> exposed to wind and wave action. Log boom may need to be build in such a way to make it serve as a floating

breakwater.

Initial landings can be made at existing Site #8. Barge Off-Load:

Subsequent landings can be made at Site #7.

Camp Facilities: This area can be served by both upland or floating

> camps. It is served by float camps located in more protected areas such as Fire Cove, Southwest Neets bay, or an area two-to-three miles east of NW Neets, Site #6.

Uplands are moderated allowing for easily developed Access:

access.

Marine Conditions: The beach slopes at 10-to-12 percent. The LTF structure

would be close to the point where the bottom becomes

steep.

Fisheries: Cataloged fish stream # 101-90-03 lies approximately 550

west of the site.

Other

Environmental: An eagle tree is located 570' east of the site. Visual,

the site will have a very low profile as the beach will

require a minimal structure and the uplands are

relatively flat. The site operating area is within an

existing clear cut.

Tideland Plans: There are no current tideland plans for this area.

Recommendations: Conduct a marine investigation to determine site

suitability. Develop this site as a low-angle slide to

accommodate small operations.

Locate the structure alignment as close to S. 17° E as possible to situate the lower end of the structure further away from the fish stream as possible. This will also place the lower end of the structure closer to the point where the bathymetry changes to steep slopes.

NORTH NEETS Site #8

NW 1/4 NE 1/4 Sec. 20, T. 70 S., R. 90 E. KTN D-5 55° 47' 32" N. 131 $^{\circ}$ 38' 48" W. Location:

Proposed Volume: 18 MMBF

Facility Type: Existing Steep Slide.

The upland area is a small level area approximately 50' Upland Area:

> X 70', backed by a large rock cut. This site cannot be converted to a low-angle slide. Conversion to an

> A-frame system would require a very large fill to reach appropriate water depths. Otherwise, the site could

only be used during high tide levels.

Rafting Area: Ample rafting area and water depth. This area is

relatively exposed to high winds and water action.

Barge Off-Load: Initial Landing can be made during high tide levels at

the existing LTF.

Camp Facilities: It is expected that Hassler Island will be served by use

of a floating camp. Numerous protected float camp areas are available within boating distance from the LTF. Such areas are Shrimp Bay, Klu Bay, Dress Point, and

others.

This site contains an existing road that will require Access:

> major reconstruction. If possible, this road system will be connected to NW Neets Bay site #6, thus,

eliminating the need for this site.

Marine Conditions: The beach is rocky and steep; then it flattens out for

125 feet, after which it drops to extreme depths.

site will require a very large fill, bulkhead, and

footprint to reach adequate water depths.

Fisheries: Cataloged fish streams #101-90-04 and #101-90-05 lie

west and east from the LTF respectively.

Other

Environmental: The nearest eagle tree is approximately 1/4 mile west of

the LTF site.

Site #8 would be visible from the western 1/4 of Neets Bay and from Behm Canal. This site is invisible to the

remainder of Neets Bay.

Tideland Plans: There are no current tideland plans for this area.

Recommendations: Conduct a marine investigation.

Develop a site as an A-frame lift-off system with bulkhead and guide rails. This site will not accommodate a slide-type system due to the terrain.

Investigate possibility of using sites #6, #7, or #9 as only one of these sites is needed to serve the tributary timbeR. It would be preferable to use site #6 as this tributary area is small. The slide system at site #6 would accommodate small operations and equipment.

NORTH NEETS Site #9

NW 1/4 NE 1/4 Sec. 20, T. 70. S., R. 90 E. KTN D-5 53° 47' 29" N. 131° 38' 36" W. Location:

Proposed Volume: 18 MMBF

Facility Type: A-frame with bulkhead.

The uplands are steep for 30 to 60 feet, then level off Upland Area:

into rolling terrain. A large excavation will be

necessary.

Rafting Area: Ample rafting area and water depth. This area is

relatively exposed to high winds and wave action.

Barge Off-Load: Initial landings can be made at Site #8. Then a barge

landing can be developed at the Site #9 site.

Camp Facilities:

Same as Site #8: It is expected that Hassler Island will be served by use of a floating camp. Numerous protected float camp areas are available within boating distance from the LTF. Such areas are Shrimp Bay, Klu

Bay, Dress Point, and others.

About 500 feet of road will need to be built from Site Access:

#8 to Site #9.

Marine Conditions: Same as Site #8: The beach is rocky and steep; then it

> flattens out for 125 feet, after which it drops to extreme depths. This site will require a very large fill, bulkhead, and footprint to reach adequate water depths. However, the footprint in the tidal area would

be slightly smalleR.

Fisheries: Cataloged fish stream #101-90-05 lies 1/2 mile east of

Site #9 and #101-90-04 lies 3/4 mile west.

Other

Environmental: The nearest eagle tree is about 3/8 mile west of Site

Site #9 is exposed to heavy wind and wave action.

Visually, this site is visible from the western 1/4 of

Neets Bay and from Behm Canal.

Tideland Plans: There are no current tideland plans for this area.

Recommendations: Conduct a marine investigation. Develop a site as an A-frame lift-off system with bulkhead and guide rails. This site will not accommodate a slide type system due to terrain.

Investigate possibility of using Sites #6, #7, or #8 as only one of these sites is needed to serve the tributary timber. It would be preferable to use Site #6 as the tributary area is small. The slide system at Site #6 would accommodate small operations and equipment.

CLAM ISLAND Site #10

SE 1/4 NE 1/4 Sec. 21, T. 70 S., R. 90 E. KTN D-5 55° 47' 07" N. 131 $^{\circ}$ 36' 55" W. Location:

Proposed Volume: 7 MMBF

Existing steep slide. Can be converted to a low-angle Facility Type:

slide.

Upland Area: Area is confined in a narrow draw. Considerable

excavation will be required to expand the operating area

for truck off-loading.

Ample rafting area with deep water. Area is somewhat Rafting Area:

exposed to wind and wave action.

Barge Off-Load: Barge off-loading can be developed adjacent to the LTF.

A small brow log and embankment will be needed for the

barge landing.

Camp Facilities: Same as for Sites #6, #7, #8., and #9.

No upland area is available for a land camp.

Additionally, there are no adequate water sources near

this site.

Access: The existing road enters the site at an 18 percent

> grade. The access way is a narrow draw with a natural grade of 18 percent. This route will require major

reconstruction.

The beach is gentle sloping with large rock out-crops. Marine Conditions:

Approximately 200 feet seaward the bottom drops to

depths greater than 50 feet.

Modification of the steep slide will expand the current footprint to approximately twice its current size. The

current fill will be incorporated into the new slide and

barge off-load ramp.

Site #10 is relatively protected at the LTF site.

Nearest cataloged fish stream is 1/2 mile west of the Fisheries:

site.

Other

An eagle tree lies 1/4 mile east of Site #10. The site Environmental:

will not be of use at +2 ft. and lower tide levels

because the beach is too steep to build on.

The site is visible from a narrow corridor in Neets Bay. The site lies in a narrow bight confining the visual angle.

Tideland Plans:

There are no current tideland plans in this area.

Recommendations:

Conduct a marine investigation to assess the current marine conditions.

Construct a low-angle slide as this site serves a very small isolated area that will require very few re-entry operations over the rotational harvest period.

This site will not facilitate use at +2 feet and lower tidal levels due to the nature of the beach.

SAME COVE Site #11

NW 1/4 SE 1/4 Sec. 14, T. 70 S., R. 90 E. KTN D-5 55° 47' 52" N. 131 $^{\circ}$ 34' 19" W. Location:

Proposed Volume: 10 MMBF

Existing steep slide will require converting into an Facility Type:

A-frame with bulkhead and guide rails. This site cannot

be converted to a low-angle slide.

The site is situated in a small confined bowl-shaped Upland Area:

> area surrounded by high ridges. Additional area will need to be excavated to convert the site to an A-frame

and bulkhead system.

Rafting Area: Ample rafting area with deep water. LTF site is

protected from weather; However, the rafting area is

somewhat more exposed.

Barge Off-Load: Initial off-loading can be done at the existing LTF.

Subsequent landings can be accomplished adjacent to the

LTF.

Same as for Sites #6, #7, #8, #9, and #10: No upland Camp Facilities:

area is available for a land camp. Additionally, there

are no adequate water sources near this site.

The existing road will require major reconstruction. Access:

> Some modification of the alignment may be necessary to convert the existing LTF to accommodate an A-frame

system.

Marine Conditions: The site lies at the head of a small cove with depths of

50 to 60 feet. A large rock lies in the center of the

cove which will confine towing operations.

The LTF site is protected from weather.

Fisheries: No cataloged fish streams are near the site.

Other

Environmental: No eagle trees are near the site.

> The site is visually obscured from Neets Bay due to its location in the small cove. The log rafts would be visible from the west 1/2 of Neets Bay as the log rafts

would be located outside of the small cove.

Tideland Plans: There are no current tideland plans for this area.

Recommendations: Conduct marine investigation. Construct an A-frame lift-off system with bulkhead and guide rails.

EASY Sites #12, #13, & 14

Location:

Site #12: SE 1/4 NW 1/4 Sec. 13, T. 70 S., R. 90 E. KTN D-5 55° 48' 05" N. 131 33' 07" W.

Site #13: NW 1/4 NW 1/4 Sec. 13, T. 70 S., R. 90 E. KTN D-5 55° 48' 13" N. 131 33' 12" W.

Site #14: NW 1/4 NW 1/4 Sec. 13, T. 70 S., R. 90 E. KTN D-5 55° 48' 16" N. 131 $^{\circ}$ 33' 13" W.

These sites were investigated. However, the beach characteristics did not lend to development of either a low-angle slide or an A-frame lift-off system with bulkhead. The beach characteristics would require a very large footprints and embankments for an A-frame system. Low-angle slides could not be constructed at these sites because the beach does not provide sufficient runout for such structures. Also, these sites would require additional new road construction to reach the harvest areas.

EAST NEETS Site #15

SE SW4 NW 1/4 Sec. 17, T. 70 S., R. 91 E. KTN D-5 55 47' 34" N. 131 29' 48" W. Location:

20 MMBF Proposed Volume:

Site #15 is situated within the Neets Bay fish hatchery Facility Type:

> operation. The existing LTF serves as access to several fish holding pens. This is an unauthorized situation as Site #15 is not within the special use permit area.

The site is adjacent to high-value estuarine habitat.

Site #15 is relatively shallow.

The fish holding pens are in the area that serve as a Barge Off-Load:

log booming and rafting operations originally.

Three residential units, with associated children play Access:

areas, are located directly on the edge of the access road, leaving minimal clearance for trucks. This access route is the route that could serve as an eventual power

transmission corridor access facility.

It is recommended that this site not be reactivated due to the proximity of high-value estuarine habitat, expected interference between fish holding pens, and rating operations and truck traffic through hatchery residential area.

EAST NEETS Site #15a

Location:

NE 1/4 NE 1/4 Sec. 13 T. 70 S. R. 90 E. KTN D-5 55° 48' 19"N. 131° 32' 06" W.

Proposed Volume:

20 MMBF

Facility Type:

Site #15a would accomodate an A-frame system. The site

has a very steep sloped beach.

Upland Area:

Rafting Area:

Barge Off-Load

Camp Facilities

Access:

Access would require 2.5 miles of additional road that would traverse several steep slopes to reach tidewater. It is feasible to connect East Neets Bay to the Shrimp Bay LTF by developing three miles of additional road. This road would need to be located between the 200 to 500 feet elevation to avoid numerous steep areas that a road to Site #15a would need to traverse.

The route to Shrimp Bay could also serve as a power transmission facility corridor. This would facilitate both timber resource management and power transmission facility construction and maintenance.

Marine Conditions:

Fisheries:

Other

Environmental:

Tideland Plans:

Recommendations:

It is recommended that Site #15a is eliminated from further study to consolidate LTF sites, reduce additional difficult road development, and accommodate possible power transmission facilities.

FIRE COVE Site #16

NW 1/4 NW 1/4 Sec. 25, T. 70 S., R 90 E. KTN D-5 55° 46' 29" N. 131 33' 19" W. Location:

70 MMBF Proposed Volume:

Existing A-frame lift-off system with bulkhead and guide Facility Type:

rails.

The existing bulkhead and guide rails will require replacement. The original deep water rafting area will be used for this entry. An A-frame lift will need to be

installed.

* * * * *

SOUTH WEST NEETS BAY Site #17

SW 1/4 SW 1/4 Sec. 31, T. 70 S., R. 89 E. KTN D-6 55 $^{\circ}$ 45' 09" N. 131 $^{\circ}$ 41' 24" W. Location:

Proposed Volume:

Existing A-frame lift-off with bulkhead. Facility Type:

The existing facility will require minor repairs and

re-installation of an A-frame.

The original deep water rafting site will again be used.

CHIN POINT Site #18

SW 1/4 SE 1/4 Sec. 18, T. 71 S., R. 90 E. KTN C-6 55° 42′ 22" N. 131° 40′ 23" W. Location:

Proposed Volume: 20 MMBF

Facility Type: Proposed low-angle slide. This facility serves a very

small isolated harvest area.

The uplands are of moderate terrain which will allow Upland Area:

development of an operating area.

Rafting Area: Rafting area can be developed immediately off shore from

the site. This site depth of 120 feet and more.

Barge Off-Load: An initial landing site will need to be identified when

> an adequate rock source is found. After a road from rock source to LTF is developed, subsequent barge

landings can be made adjacent to the LTF.

Camp Facilities: It is anticipated that this site will be served by a float camp in Margaret Bay. However, depending upon the

operation logging this area, a float camp site may be needed near the site. A small float camp could be

placed in a small bay north of Site #18.

Access routes would be of moderate grades as the terrain Access:

> adjacent to Site #18 is moderate. The State of Alaska has selected lands in this area. The selection has been approved by the Regional Forester. However, title has not been transferred to the State. The Forest Service will need to retain an easement for the LTF and roads in the selection. See attached map of the state selection

area.

Marine Conditions: The beach contains large cobbles with rock outcrops.

> The beach drops at 11 percent for 125 feet. The bottom is of gentle slope for another 150 feet, then drops to very deep water. The lower end of the slide would be close to the point of where the bottom drops to extreme

depths.

The nearest fish streams are 3/8 mile north and 1 mile Fisheries:

west of the site. These are #101-90-02 and #101-90-19

respectively.

Other

Environmental: An eagle tree is located about 1/8 mile east of the

site.

The site would be visible from Margaret Bay, the west 1/4 of Traitors Cove, and obscured from Behm Canal. This site is located outside of a small bay to the north. Rafting and transferring of logs would be as far from the bay as practical.

Tideland Plans:

There are no current tideland plans for this area.

Recommendations:

Conduct a marine investigation.

Develop this site as low-angle slide.

Sites #18 and #19 are tributary to this harvest area. Recommend using Site #18 as Site #19 would not support a low-angle slide and would require a large embankment and bulkhead footprint for an A-frame system. The slide system at Site #18 would be preferable as this is a small isolated area requiring small operations and equipment.

Verify the location of the eagle tree.

Initiate easement retention process.

NORTHWEST TRAITORS COVE Site #19

Location:

SW 1/4 SE 1/4 Sec. 18, T. 71 S., R. 90 E. KTN C-6 55° 42' 32" N. 131° 40' 19" W.

Proposed Volume:

20 MMBF

Facility Type:

The terrain does not lend to either a low-angle slide or A-frame with bulkhead. The beach is too steep for a slide. However, a very large embankment would be required for an A-frame.

Site #19 is within a small bay and has an eagle tree.

Site #19 is tributary to the same area as site #18. Only one site is needed.

Recommendations:

It is recommended that Site #19 not be considered further. The terrain, its location in a small bay, and the proximity to the eagle tree are not desirable features. Also, an A-frame system would not meet the needs for small operations.

* * * * *

NORTHWEST TRAITORS COVE #20 AND #21

Location

Site #20: SW 1/4 SW 1/4 Sec. 8, T. 71 S., R. 90 E. KTN C-5. 55 43' 21" N. 131 39' 38" W.

Site #21: NW 1/4 SW 1/4 Sec. 8, T. 71 S., R. 90 E. KTN C-5. 55° 43' 30" N. 131° 39' 31" W

Facility Type:

These sites were field investigated and found unsuitable for development as slides or A-frame with bulkhead systems.

Sites #20 and #21 were expected to serve the area tributary to Sites #20, #21, #22, and #23. From a photo map and cursory field reconnaissance, it appears that Sites #20 and #21 cannot be accessed from the area being harvested due to difficult terrain.

Recommendations:

It is recommended that these sites not be considered further. $\ensuremath{\text{}}$

NORTH TRAITORS COVE Site #22

Location: SE 1/4 NE 1/4 Sec. 8, T. 71 S., R. 90 E. KTN C-5

55° 43′ 44" N. 131° 38′ 29" W.

Proposed Volume: 10 MMBF

Facility Type: A-frame with bulkhead and guide rails. The terrain and

bathymetry do not lend to development of a slide.

Upland Area: The uplands are 35-to-40 percent slopes. Development of

an operating area will require a large excavation.

Rafting Area: Rafting may require several stages due to the excessive water currents. This may include use of a log boom at the LTF site, then move each day's cut to a rafting site

> 3/8 mile southwest or 1/2 mile across Traitors Cove. Currents in the area are very heavy due to the outlet of

the salt chuck 3/4 mile west of the site.

Barge Off-Load: Initial landings would be made at the site. Subsequent

landings would be made adjacent to the LTF site.

Camp Facilities: It is anticipated this area will be served by a float

camp at Margaret Bay. This would require a two mile

boat commute.

No land camp areas are available at this site.

Access: The access route into Site #22 will be steep (18 percent

> and up and will have tight curves). Road cuts and LTF excavation will be large. The terrain the tributary area is very steep limiting opportunities to access the

shore line.

Marine Conditions: The beach is very steep and Traitors Cove is over 100

> feet deep in this area. Tidal currents are very strong due to the outlet of the salt chuck 1/2 mile east of the

site. This will insure flushing.

An eagle tree is located 1/4 mile southwest of the site.

Fisheries: Nearest cataloged fish streams are 1/2 mile east and

west of the site.

Other

Environmental: Visually, Site #22 can only be seen from the west end of

> Traitors Cove. Visitors viewing the "gate," outlet of the salt chuck, will be able to see both the LTF and access road. Site #22 is obscured from the main body of

Traitors Cove.

Tideland Plans:

There are no current tideland plans for this area.

Recommendations:

Conduct a marine investigation for the site and a segregated rafting area.

Due to the tight configuration of the LTF and access road concerning alignment and grade, it is recommended that field road location be accomplished prior to selection of this site. It appears that Site #23 is more roadable than Site #22.

NORTH TRAITORS COVE Site #23

NW 1/4 NW 1/4 Sec. 9, T. 71 S., R. 90 E. KTN C-5 55° 43' 57" N. 131° 38' 01" W. Location:

Proposed Volume: 10 MMBF

A-frame with bulkhead and guide rails. The terrain does Facility Type:

not lend to use of a flow-angle slide.

The upland area contains steep slopes of 35-to-40 Upland Area:

percent. Development of an operating area will require

a large rock cut.

Rafting Area: Rafting may require several stages due to excessive

> water currents. This might include use of a log boom at the LTF site, then move each day's cut to a rafting area 3/4 mile southwest or 1/2 mile southeast across the bay.

Initial and subsequent barge landings can be Barge Off-Load:

accomplished adjacent to the site.

Camp Facilities: Same as for Site #22: The access route will be steep

> (18 percent and up and will have tight curves). Road cuts and LTF excavation will be large. The terrain the tributary area is very steep limiting opportunities to

access the shore line.

The access route entering the operating will be at about Access:

12 percent grade.

Site #23 is situated to take advantage of a small valley that allows a route to access the tributary harvest area via more desirable terrain. Such access opportunities in this tributary harvest area are very limited due to

the extensive steep terrain in the area.

Marine Conditions: The beach is of large cobbles on 35 percent side slope.

Tidal currents are very strong at the site due to the outlet of the slat chuck 1/2 mile southeast of the

site. This will insure flushing.

Fisheries: Cataloged fish stream #101-90-22 lies approximately 100

feet east of the site.

Other

Environmental: Site #23 will be visible from part of the central

> portion of Traitors Cove and highly visible from directly east of the salt chuck outlet. The shoreline is steep which provides favorable characteristics for

minimizing the footprint on the tidelands.

APPENDIX G

Tideland Plans:

There are no current tideland plans for this area.

Recommendations:

Conduct a marine investigation for the site and a

segregated rafting area.

Verify proximity of fish stream #101-90-22 with respect

to the site.

Site #23 is the preferred site due to suitable access

opportunities.

MARGARET BAY Site #24

SW 1/4 NW 1/4 Sec. 21, T. 71 S., R. 90 E. KTN C-5 55 $^{\circ}$ 42' 04" N. 131 $^{\circ}$ 38' 01" W. Location:

Proposed Volume: 81 MMBF

Existing A-frame lift-off with bulkhead and guide rails. Facility Type:

This facility is currently in operation.

The existing facility is located on Forest Service lands within a State selection area. Easements have been retained for both the LTF and Forest access roads within

the selection area.

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service P.O. Box 21668

Juneau, Alaska 99802-1668

June 17, 1992

Mr. James Rhodes U.S. Forest Service, Ketchikan Area Federal Building Ketchikan, Alaska 99901

Dear Mr. Rhodes:

Enclosed are the results of the May 1992 log transfer facility investigations for Thorne Island, Stevenson Island, Hassler Island, and Neets Bay and Traitors Cove on Revillagigedo Island. If you have any questions regarding the report you may contact Duane Petersen in Juneau at 586-7235.

Thank you for your support and cooperation during the site investigations.

Sincerely,

Steven T. Zimmerman, Ph.D., Chief

Protected Resources Management Division

cc: FWS, Juneau, Ketchikan

ADFG Habitat, Juneau, Ketchikan

EPA, Anchorage

U.S. Department of Commerce
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Protected Resources Management Division
Juneau, Alaska

and

U.S. Department of the Interior Fish and Wildlife Service Southeast Alaska Ecological Services Juneau, Alaska

Report of Field Investigations
Thorne Island, Stevenson Island, Hassler Island, and Neets Bay
and Traitors Cove on Revillagigedo Island

May 11-14, 1992

In response to a request from Mr. James Rhodes, Ketchikan Area, USDA Forest Service (FS), personnel from the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) investigated, in concert, the intertidal/subtidal habitats of locations in Whale Passage and Kashevarof Passage (Figure 1), and Behm Canal (Figure 2), for proposed log transfer facilities (LTF). Copies of aerial photographs of the proposed LTF sites are shown in Appendix A.

Our records show that an investigation of other protential LTF sites on Thorne Island and Stevenson Island was done in September 1976. A copy of that report is enclosed for your information.

Over the years the timber industry has employed the technique of placing logs in marine waters, constructing log rafts, storing the rafts, and towing rafts to processing centers. While not always obvious, a significant bark loss results from such activities. What happens to the dislodged bark is dependent on numerous variables, but most often bark is found to accumulate in areas of high log handling activity in quantities sufficient to smother bottom dwelling organisms. The effects of such losses can be reflected through the food chain.

There are two approaches to lessening the harmful effects of concentrated bark deposits: 1) to select sites where prevailing features or conditions will facilitate bark dispersal, and 2) to select sites which display relatively low biological resource value. Our site selection techniques are designed to consider each approach, and where possible, identify sites which satisfy criteria for both.

OBJECTIVES

Investigations were directed at achieving the following study objectives:

- 1. Investigate subtidal habitat at potential log transfer sites to determine: a) the physical characteristics including depth, slope, substrate, and current patterns; and b) the biological characteristics of productivity and diversity.
- 2. Analyze information collected on each site, and compare results both with the Timber Task Force log transfer facility siting guidelines and with results on other nearby sites.
- 3. Present a recommendation relative to the use of the investigated sites for log transfer activities.

METHODS

A transect line, 100-meters long, was extended seaward from the proposed site perpendicular to the shoreline. Self Contained Underwater Breathing Apparatus (SCUBA) was employed to gather intertidal/subtidal information along the transect line as well as in the general area of potential impact. Observations of physical and biological characteristics were made at 5-meter intervals along the transect line. Observations included water depth, substratum composition, plant species, animal species, and obvious changes in zonation. In addition, the general characteristics of the area, and evidence of current flow patterns, or the lack thereof, were noted subjectively.

RESULTS AND RECOMMENDATIONS

A discussion for each area investigated follows. Species observed in each area are listed in Table 1.

W. Thorne Island

The investigation occurred on the west side of Thorne Island. A bottom profile of the underwater transect is shown in Figure 3. The physical attributes of the site are characterized as being shallow, 11.1-meters deep at the end of the transect. Substratum is composed of bedrock/cobble from the extreme high water line to 40 meters from shore giving way to a silt/cobble bottom to the end to the transect. Flushing potential is low as evidenced by the presence of silt within the bottom composition.

^{1985,} Log Transfer Facility Siting, Construction, Operation and Monitoring/Reporting Guidelines, Governor's Timber Task Force.

Transfer Facility at W Thorne Island #1, May 11, 1992. Dive Transect Depth-Distance Profile at Proposed Log Figure 3,

M001

Table 1. List of plant and animal species observed along underwater transects at Thorne Island (A), Stevenson Island (B), Hassler Island (C), N.W. Neets Bay (D), N.W. Traitors Cove (E), and N. Traitors Cove (F), May 11-14, 1992.

Aguatic Plants	Common Namo	78	P	_	D	TP.	12
Aquatic Plants	Common Name	A	В	C	ט	Ľ	T.
Agarum cribrosum	Brown algae			x		х	v
Alaria marginata	Brown algae	v	x	^		^	^
Constantinea simplex	Red algae	^	^				~
Desmarestia spp	Brown algae	v	х	v		х	X
Enteromorpha intestinalis	Green algae	A	A	Α.			X
Filamentous Brown					X	X	
	Brown algae			X		X	X
Filamentous Green	Green algae		X				
Fucus spp	Brown algae		X	Х	Х	Х	X
Halosaccion glandiforme	Red algae	X					
Laminaria spp	Brown algae	x	Х	X		X	X
Lithothamniom spp	Encrusting algae					X	X
Odonthalia spp	Red algae	X	X	X			X
Palmeria spp	Red algae	X				X	X
Ralfsia pacifica	Brown algae		Х				Х
<u>Ulva/Monostroma</u> <u>spp</u>	Green algae	X	Х	X		X	X
Zostera marina	Eelgrass			х	Х		
	_						
						_	
Aquatic Invertebrates	Common Name	A	В	C	D	E	F
Archidoris ohdeneri	White doris					X	
Balanus spp	Barnacle	X	X	X	X	X	X
Cancer productus	Red rock crab			X			
Ceratostoma foliatum	Foliated Thorn Purpura		X	Х			X
Chlamys spp	Pink scallop					X	X
Cnemidocarpa finmarkiensis	Smooth red tunicate						X
Collisella pelta	Shield limpet	X	Х	х		Х	х
Corella willmeriana	Glass tunicate			Х			
Coryphella spp	Small eolis					Х	
Cucumaria miniata	Orange sea cucumber		х			х	х
Dendronotus dalli	Dall's fron eolis						х
Dermasterias imbricata	Leather star					x	Х
Elassochirus tenuimanus	Big-clawed hermit crab				Y	x	
Evasterias troschelii	Molted star	v	x			x	
Fusitriton oregonensis	Oregon triton		^			X	
						^	v
Halocynthia aurantium	Sea peach		37			37	X
Hyas lyratus	Lyre crab		X				X
Limpet	Limpet	Х	X			Х	X
Mediaster aequalis	Vermillion star						X
Metridium senile	Fine-tentacled anemone	Х				Х	
Mytilus edulis	Blue mussel	X	X	X		X	X
Ophiura spp	Serpent stars		X				
Oregonia gracilis	Decorator crab		X		X	X	
Orthasterias koehleri	Spiney star			x		X	X
Orthasterias <u>koehleri</u> Pachycerianthus <u>fimbriatus</u>	Spiney star			X	x	Х	X

Table 1. (Continued(List of plant and animal species observed along underwater transects at Thorne Island (A), Stevenson Island (B), Hassler Island (C), N.W. Neets Bay (D), N.W. Traitors Cove (E), and N. Traitors Cove (F), May 11-14, 1992.

Aquatic Invertebrates	Common Name	A B	С	D	E	F
Pagurus spp	Hermit crab	x x	X	X	X	X
<u>Pandalus</u> <u>danae</u>	Dock shrimp	хх				X
Pandalus platyceros	Spot shrimp	x				
Parastichopus californicus		хх	X		X	X
<u>Pisaster</u> <u>brevispinus</u>	Pink short-spined star			X		X
Ptilosarcus gurneyi	Sea pen					х
Pteraster tesselatus	Slime star					Х
Pycnopodia helianthoides	Sunflower star	хх			x	х
Serpula vermicularis	Common serpulid	хх	x		х	х
Snail	Snail	хх	x	х	х	х
Strongylocentrotus d.	Green sea urchin	x				
Telmessus cheiragonus	Horse crab	x			x	х
Thais spp	Snail	хх				
Tonicella spp	Chiton				х	х
Marine Fish	Common Name	ΑB	С	D	E	F
<u>Lumpenus</u> <u>sagitta</u>	Snake prickleback	x				
Pholis laeta	Crescent Gunnel	x				
Hexagrammos spp	Greenling				X	x
Sebastes spp	Rockfish					X
Lepidopsetta bilineata	Rock sole				X	

Animal and plant species observed were those common to this type of habitat. Species variety was low with barnacles (<u>Balanus spp</u>), mussels (<u>Mytilus edulis</u>) being most abundant. The most abundant algae species noted was the brown algae <u>Laminaria spp</u>.

This site does not meet the Timber Task Force LTF siting guidelines for water depth and potential bark accumulation. However, the site is low in overall productivity and we would not have any objection to the construction and operation of a LTF at this location.

Stevenson Island, Site #2

The site is exposed to the north. A bottom profile of the underwater transect is shown in Figure 4. The physical attributes of the site are characterized as a shallow slope of cobble and bedrock to 60 meters (water depth of 8.4 meters) from the extreme high tide line. From 60 meters to the end of the transect the bottom is composed of silt with a mix of cobble. Water depth at the end of the transect was 16.5 meters. Flushing potential is low at the end of the transect as evidenced by the silty bottom. Flushing along the first 60 meters should be good because of exposure to the north and rock bottom.

Animal and plant species observed were those common to this type of habitat with one exception, the spot shrimp (Pandalus platyceros. Overall species abundance and variety was low with barnacles (Balanus spp), and the sea mop cucumber (Parastichopus californicus) being most abundant. The two most abundant algae species noted were Fucus spp and Laminaria spp.

This site does not meet the Timber Task Force LTF siting guidelines for water depth because of the shallow sloping bottom and for the potential for bark accumulation along the last 40 meters of the transect. However, biological productive is low and this location is appropriate for the construction and operation of a LTF.

Hassler Island, Site # 1

The underwater investigation occurred about 945 meters northwest of the existing LTF. A bottom profile of the transect is shown in Figure 5. The physical attributes of the site are characterized as a very shallow slope (5.1 meters deep at the end of the transect). The bottom is comprised of bedrock and a cobble/pebble mixture to 35 meters from the extreme high water line. From 35 meters to the end of the transect, the bottom was composed of sand with a few pebbles. Flushing potential would be moderate as evidenced by the presence of clean sand.

Animal and plant species observed were common to this type of habitat. Species variety was low with barnacles (<u>Balanus spp</u>) and snails being most abundant. The most abundant algae was <u>Laminaria spp</u>. Eelgrass (<u>Zostera marina</u>) occurred in a dense

Substrate Types

Figure 4. Dive Transect Depth-Distance Profile at Proposed Log Transfer Facility at Stevenson Island #2, May 12,

Dive Transect Depth-Distance Profile at Proposed Log Transfer Facility at Hassler Island #1, May 12, 1992.

band from 42 meters from the extreme high tide line to 93 meters along the transect.

This site does not meet the Timber Task Force LTF siting guidelines, including the criteria for water depth and site productivity. We recommend this site not be used for the transfer of timber. Use of the existing facility is preferred.

N.W. Neets Bay, Site #7

The previously used LTF, N.W. Neets Bay #6 is on a cataloged anadromous fish stream, therefore, we conducted an underwater investigation of this alternative location. The transect began at the extreme high tide line. Physical attributes of the site are characterized as a cobble substratum to 40 meters grading into sand to the end of the transect. The slope is shallow with a water depth of 5.1 meters at 80 meters along the transect tape. Beyond 80 meters the slope increased rapidly with a depth of 13.5 meters at the end of the 100-meter long transect tape and beyond. The last 10 meters of the transect was covered with logging debris. It was evident that log storage occurred in this area in the past. With exposure to the south, flushing potential is good to the drop-off, about 85 meters from shore, as evidenced by the lack of silt within the bottom material. A bottom profile is shown in Figure 6.

Animal and plant species observed were few. Abundance was low in both animal and plant species. A sparse band of eelgrass occurred from the 75 meter mark to the 87 meter mark of the transect line. The most abundant animal species noted were snails and barnacles in the intertidal zone.

This site meets the Timber Task Force Guidelines for siting of a LTF except for the shallow slope. However, with little biological productivity noted in the area we find this site suitable for the construction and operation of a log transfer facility.

N.W. Traitors Cove, Site #18

This site was the most productive of the sites visited on the trip. Extensive beds of blue mussels (Mytilus edulis) and barnacles (Balanus spp) inhabited to intertidal and shallow subtidal. Commercial quantities of sea cucumbers (Parastichopus californicus) were noted in the area. The large macrophytes Laminaria spp and Agarum cribrosum covered the rocky bottom. A bottom profile of the transect is shown in Figure 7. Physical attributes of the site are characterized as being moderately sloping with a water depth of 14.1 meters at the end of the transect. The substratum is composed of cobble/pebble/bedrock to the 50 meter mark on the transect line which graded in a sand/boulder/cobble to the end of the transect. No current was noted during the investigation and logging debris is not expected to disperse.

Cobble -Boulder-BedrockSubstrate Types

Substrate Types

Figure 7. Dive Transect Depth-Distance Profile at Proposed Log Transfer Facility at NW Traitors Cove #18, May 13, 1992.

This site is very productive in terms of biomass. Plant and animal species are diverse and numerous. This site does not meet the Timber Task Force LTF siting guidelines, including the criteria for water depth, site productivity, and potential bark accumulation. We do not recommend construction of a LTF at this site. However, if the LTF is moved to the southwest shore of the bight the footprint of the LTF would be significantly smaller. This would reduce the bottom area covered which will reduce the effects of LTF construction on the aquatic environment. The exact location of the preferred site along with its alinement was coordinated with Jim Rhodes, USDA Forest Service.

N. Traitors Cove, Site #22

A bottom profile of the underwater transect is shown in Figure 8. The physical attributes of the site are characterized as being with a fairly constant slope. Water depth was 19.5 meters at the end of the transect. Substratum is composed of bedrock from the extreme high water line to 40 meters giving way to a sand/pebble bottom to the end to the transect. Flushing potential is moderate as evidenced by the presence of a sandy bottom.

Animal and plant species observed were those common to this type of habitat. Commercial quantities of the sea cucumber (Parastichopus californicus) were noted in the area. Species variety was normal with the sea cucumber and the tube anemone (Pachycerianthus fimbriatus) being most abundant. The most abundant algae species noted were the brown algae Agarum cribrosum and Laminaria spp. The encrusting algae Lithothamnion spp covered much of the exposed bed rock surface.

Biologically, this site is quite productive and does not meet the Timber Task Force LTF siting guidelines because of the large number of sea cucumbers. However, we believe with the amount of timber proposed to be transferred, this site is appropriate for the construction and operation of a LTF.

CAVEAT

The recommendations of the proposed sites indicated as suitable for LTFs are based upon observations of estuarine habitat made during a limited time period. It should be noted the observations over time were not made and as a result, seasonal changes in habitat use, including fish and shellfish spawning occurrences were not observed. Further, recommendations offered relate to aquatic observations only. Use of adjacent uplands by animals or birds, including bald eagles, was not considered.

Substrate Types

Figure 8. Dive Transect Depth-Distance Profile at Proposed Log Transfer Facility at N Traitors Cove #22, May 14, 1992.

ACKNOWLEDGEMENTS

Duane Petersen, NMFS Juneau, Alaska, Chuck Osborn, FWS Ketchikan, and Ed Grossman, FWS Juneau, Alaska, were the principle investigators for these field investigations and were responsible for preparation of this report.

Jim Rhodes, FS Ketchikan, Alaska, represented the FS. Richard Guhl, FS Ketchikan, Alaska, served as skipper aboard the FS vessel M/V Tongass Ranger.

NATIONAL MARINE FISHERIES SERVICE

Duane H. Petersen, Diver/Biologist

Steven T. Zimmerman, Ph.D., Chief

Protected Resources Management Division

U.S. FISH AND WILDLIFE SERVICE

Chuck Osborn, Diver/Biologist

Ed Grossman, Diver/Biologist

Nevin D. Holmberg, Field Supervisor Ecological Services, Juneau, Alaska

APPENDIX A Aerial Photographs of Proposed Log Transfer Facility Sites

Appendix A-1. W Thorne Island proposed LTF location.

Appendix A-2. Stevenson Island proposed LTF location.

Appendix A-3. Hassler Island #1 proposed LTF location.

Apendix A-4. NW Neets Bay #7 proposed LTF location.

Apendix A-5. NW Traitors Cove #18 proposed LTF location.

Apendix A-6. N Traitors Cove #22 proposed LTF location.

LOG TRANSFER SITE EVALUATION

Log transfer sites were selected and evaluated with respect to the interagency Log Transfer Siting Guidelines. Following are the siting guidelines used to evaluate the Log Transfer Sites.

SITING GUIDELINES

<u>Proximity to Rearing and Spawning Areas</u>: Siting of log storage and transfer facilities within 300 feet of mouths of anadromous fish streams or in areas known to be important for fish spawning or rearing is normally prohibited.

<u>Protected Locations</u>: Log transfer and log raft storage facilities should be sited in weather protected waters with bottoms suitable for anchoring and at least 20 acres for temporary log storage and booming.

<u>Upland Facility Requirements</u>: Log transfer facilities should be sited near at least five acres of relatively flat uplands. There should also be a body of water sufficient to provide a minimum of 60 linear foot facility face.

<u>Safe Access to a Facility From the Uplands</u>: To provide safe access to the log transfer facility and adjoining log sort yard, the facility should be sited where access roads can maintain a grade of 10 percent or less for trucks and four percent specialized equipment.

<u>Bark Dispersal</u>: Log transfer facilities should be sited along or adjacent to straits and channels or deep bays where currents may be strong enough to disperse sunken or floating wood debris. Siting log transfer facilities in embankments with sills or other natural restrictions to tidal exchange should be avoided.

<u>Site Productivity</u>: Sites for in-water storage and/or transfer of logs should be located in areas having the least productive inter-tidal and sub-tidal zones.

TOTAL TOTAL TOTAL CONTRACTOR OF THE STATE OF

<u>Sensitive Habitats</u>: Log transfer facilities and log raft storage areas should not be sited on or adjacent to extensive tide flats, flat marshes, kelp, or eel grass beds, seaweed harvest areas, or shellfish concentration areas.

<u>Safe Marine Access to Facilities</u>: Log rafting and storage facilities should be accessible to tug boats with log rafts at most tides and on most days.

Storage and Rafting: Logs, log bundles, or log rafts should be stored in areas where they will not ground at low tide. A minimum depth of forty feet or deeper, measured at mean lower low water (MLLW), for log raft storage is preferred.

Avoid Bald Eagle Nest Trees: Site log transfer facilities to avoid Bald eagle nests. No project construction or operations should be closer than 330 feet to any Bald Eagle nest tree.

Additional interagency guidelines concerning LTF site construction and monitoring are included in Appendix E.

Existing sites were examined in accordance with the interagency siting guidelines to evaluate current adequacy. The existing sites do not necessarily meet all guides. For instance, several sites within the Project Area may be located within 300 feet of an anadromous fish stream.

An additional log transfer siting guideline dealing with recreation and visual considerations is as follows: log transfer facilities should be located where conflicts with existing boat anchorages will be minimized and views of the facility will be considered as seen from travel routes and use areas.

Table A-1 presents an evaluation of each site considered. Not that an N indicates that the site does not meet an individual guideline, accordingly a Y indicates that it does meet the individual guideline. An OK indicates that though the site does not fully meet an individual guideline, it is workable or a compromise.

In the case of Siting Guidelines S6 and S7, numerical evaluations are estimated on a scale of 1 to 10, 10 being high sensitivity or productivity, and 1 being low sensitivity or productivity.

Table A-1

LOG TRANSFER SITE EVALUATION

Alaska Timber Task Force Siting Guidelines

Site Status						1	1/	1/			
Name and Number		S1	S2	S3	S4	_S5	S6	s7	S8	S9	S10
P Hassler N.	1	Y	Y	Y	Y	ок	7	6	Y	Y	Y
E Hassler	2	Y	OK	OK	Y	Y	5	5	Y	Y	Y
E Dress Point	3	}	Exist:	ing -	Not 1	used :	in any	/ alte	ernat	ives	
E Klu Bay	4		Exist:							ation	
E Shrimp Bay	5		Exist:	ing -	Curre	ent t	idelar	nd lea	ase		
E Chin Point	6	N	OK	Y	Y	OK	7	6	ок	Y	Y
P N.W. Neets	7	Y	OK	Y	Y	OK	7	5	OK	Y	Y
E N.W. Neets	8	Y	OK	N	Y	N	6	5	OK	Y	Y
P N.W. Neets	9	Y	OK	N	Y	N	6	5	OK	Y	N
E Clam Island	10		Exist								
E Same Cove	11	:	Exist:	ing -	Not 1			i	ernat	ives	
D Easy	12	Y	Y	Y	N	OK	5	5	Y	Y	Y
D Easy	13	Y	Y	Y	N	OK	5	5	Y	Y	Y
D Easy	14	Y	Y	Y	N	OK	5	5	Y	Y	Y
										2/	
E E. Neets	15	Y	Y	N	Y	N	9	9	ОК	Y	Y
P E. Neets	15 (a)	Y	Y	Y	Y	Y	4	4	Y	Y	Y
E Fire Cove	16		Exist:								
E S.W. Neets	17		Exist	ing -	Curre	ent T	idelar	nd lea	ase		1
							_	_			
P N.W. Traitors	18	Y	Y	Y	Y	OK	7	5	Y	Y	Y
P N.W. Traitors	19	Y	Y	Y	Y	OK	8	6	Y	Y	Y
P N.W. Traitors	20	Y	Y	Y	Y	N	7	9	Y	Y	Y
P N.W. Traitors	21	Y	Y	Y	Y	N	7	9	Y	Y	Y
D. W. Mars ! have	0.0	**						-		,,	
P N. Traitors	22	Y	N	N	Y	Y	7	5	Y	Y	Y
P N. Traitors	23	N	N	N	Y	Y	7	7	Y	Y	Y
E Vouceuch Ber	2.4		l Budati		C	l and to	 dele	, d)		j j	
E Margaret Bay	24		Existi	ing -	Curre	ent t	rderar	id Tea	ase		

^{1/} High productivity or sensitivity = 10. Low productivity or sensitivity = 1 on a scale of 1 to 10.

^{2/} Rafting would interfere with SSRA operations and facilities.

Appendix H

Silviculture Diagnosis

_		_										
PAGE 1 OF 25	PROPOSED FUTURE MANAGEMENT	FH, RS, R&W, 2-SW	PB, PLANT(RC&YC), SS, CC PB, PLANT(RC&YC), SS, CC RS, TMPCT, CC	RS,CC PLANT(YC),SS,CT,SW	RS, R&W, CC	RS, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC	RS, CC	FH,RS,R&W,2-SW	RS, R&W, CC	RS, WLPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, TMPCT, CC
	AE AE VH	AS.	888	ខ្លួ	ဗ္ဗ	8888	88	္ပ	ပ္ပ	SWD	ပ္ပ	8888888
	€ d E ₹	뽀	S S S	RS SL	SS.	8 8 8 8 8 8 8 8	SL RS	RS	뽀	뽀	뽀	S S S S S S S S S S S S S S S S S S S
	A H B H R B	z	2 2 2	zz	z	2 Z Z Z	zz	z	z	z	z	ZZZZZZZ
	I SN ID TE WET EX HAB	78 SEC	75 FIW 75 FIW 75 FIW	100 FW	81 FNW	83 FNW 85 FNW 85 FNW 85 FNW	90 FIW 90 FIW	90 FIW	OBS 69	75 FIW	77 FNW	85 FNW 85 FNW 85 FNW 85 FNW 85 FNW 85 FNW 85 FNW
	∑ ∪ ∪	м	444		_	N 4 4 4		-	M	4	4	444444
	ΣΣ∺	-	ммм	7 7	7	иммм	m m	М	_	2	-	MMMMMM
	CODE	CMM	S 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	999	SOO	S H H S H S H S H S H S H S H S H S H S	WHS	WHS	NWE	SOO	WHC	WHS
	SMU	25	330 330 330	780	820DE	528E 528E 528E 528E	35E 35E	35E	86CD	33E	29EF	528E 528E 528F 528F 528F 528F
	T WH IR MAX NO ELEV DW	20 M	1000	12 T M	15 M	20 H 20 H 20 H	15 H T	10 M	20 H	5 H	20 H	4 C C 8 8 8 C C
	MIN	=	9 0 0	=======================================	15	20 20 20 20	0 6	4	15	Μ	15	0 4 0 4 0 9 0
	пього	m	000	2 2	7	иммм	мм	М	М	2	М	M M 4 4 M 4 4
#5	V@0	운	오 오 오	운 운	웆	오 요 요 요	운 운	운	웆	웆	웆	A A A A A A A A A A A A A A A A A A A
ALTERNATIVE #2	ASPECT	WEST	SOUTH SOUTH SOUTH	EAST	WEST	WEST WEST WEST	NORTH	NORTH	SOUTH	SOUTH	SOUTH	SOUTH WEST WEST WEST WEST
NOSIS - ALT	VOLUME	1,174.00	332.00 276.00 200.00 808.00	376.00 878.00 1254.00	941.00	563.00 200.00 402.00 283.00	945.00 408.00 1353.00	125.00	602.00	847.00	3,101.00	1,035.00 382.00 622.00 488.00 596.00 851.00 4475.00
AGNO	TOTAL	27	12 27 12	12 28 40	30	13 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13	4	20	27	106	33 10 20 17 17 19 29
SILVICULTURE DIAG	V 0 L T0 C7 AC	0	000	00 0	0	0000	00 0	0	0	0	0	0000000000
LVICUL	> 0 1	0	000	00 0	0	0000	00 0	0	0	0	0	0 0 0 0 0 1 2
SI		0	9 8 4 21	12 28 40	30	10 4 4 9 9 35	11 13 24	4	16	27	71	33 10 10 12 19 20 16
	>0~3	25	0 - m 9	00 0	0	10 1 41	24	0	4	0	35	77 77 77 77 77 77 77 77 77 77 77 77 77
	L RL U EU D VD	3 TP	3 3 3 4 4 4 4 4 4	3 T P T P	3 TP	3 3 1 P T T T T T T T T T T T T T T T T T T	3 3 7	3 TP	3 ML	3 ML	3 ML	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
= 3	RN VI X X X X X X X X X X X X X X X X X X	2001	2002 2002 2002 2002	2003 2003 2003	2004	2005 2005 2005 2005 2005	2006 2006 2006	2007	3001	3002	3003	3004 3004 3004 3004 3004 3004 3004
	n co	732	732 732 732	732	732	732 732 732 732 732	732	732	733	733	733	333333333333333333333333333333333333333

_									
PAGE 2 OF 25	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC	RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC	RS,CC RS,CC RS,WLPCT,CC RS,WLPCT,CC	RS, R&W, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC
PAGE	_								
	HM AE RT	22	888	8888	88	္မ	8888	8888	8888
	H LE	SL RS	2 2 2 2	프 프 공 공	RS RS	로	!! !! !! !!	RS H H	S S S H
	R AA H	2 2	2 2 2	Z Z Z Z	ZZ	Z	Z Z Z Z	Z Z Z Z	2 2 2 2
	I SN ID TE WET	85 FNW 85 FNW	85 FNW 85 FNW 85 FNW	51 FW 35 SES 65 FW 66 FW	80 SEC 89 FNW	65 FW	87 FNW 86 FNW 87 FNW 74 FNW	78 FNW 97 FNW 85 FNW 85 FNW	97 FNW 85 FNW 83 MP 100 FNW
	E O G	44	444	7 2		_	W 4 W W	W 0 4 4	74
	ΣΣΗ	мм	ммм	7 - 7 -	2 2	7	мммм	− w w w	N T N
	EC0 C00E	KHS KHS	S S S	WHC WHC	KDW KDC	WHC	KHS KHS	KHS KHS	E N N N N N N N N N N N N N N N N N N N
	SMU	528F 528F	528F 528F 528F	190 23 190 29EF	32	9	528F 528F 528F 528F	29EF 528F 528F 528F	110 528F 21A 110
	T WH IR MAX NO LEV DW	H 2	9	12 H 12 H 15 H 20 H	15 m M	15 H	15 H 20 H 15 H	8766	5 H T T H T T H
	ш	3.5	401-	112 21 21	11		11 ° 51	N N N 4	4250
	ш								
	- S L O O VQO E	PR 4 PR 4	7 7 7 7 7 7	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	M M M M	₩ 2	PR 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	M M M M M M M M M M M M M M M M M M M	2 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4
#5	. ×		E E E	ΣΣΣΣ	ΣΣ	Σ			
ERNATIVE	ASPECT	SOUTH	EAST EAST EAST	SOUTH SOUTH SOUTH SOUTH	WEST	WEST	NORTH NORTH NORTH	SOUTH SOUTH WEST WEST	NORTH NORTH NORTH NORTH
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	VOLUME	399.00 399.00 798.00	1,988.00 482.00 771.00 3241.00	224.00 150.00 906.00 1,190.00 2470.00	462.00 787.00 1249.00	917.00	\$02.00 483.00 312.00 207.00	559.00 538.00 132.00 112.00	438.00 157.00 376.00 927.00 1898.00
IAGNO	TOTAL	16 16 32	74 19 26 119	9 36 40 191	31	54	16 11 7 50	19 19 4 46	16 12 31
URE D	0 C7 A	0 0	000 0	0000	00 0	0	0000	0000	0000
LVICULI	> 0 - 1 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 °	00 0	000	0000	00 0	17	0000	0000	0000
SI	. v	0 0	19 42	30	7 7	7	16 13 6 5 5	10 10 2 2 30	6 12 24 47
	> 0 1 75	16 16 32	52 18 7	9 33 10 	16 29 :	0	0 2 2 2 0	16 4 2 5	00 0 7 1 7 1
	L EU D VD	3 Z Z Z	보고	3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP TP	3 TP	보도로로	유도로	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
=	AU VI EI T#	3005 3005 3005	3006 3006 3006 3006	3007 3007 3007 3007 3007	3008 3008 3008	3009	3010 3010 3010 3010	3011 3011 3011 3011	3012 3012 3012 3012 3012
	NGV	733	33333	2222	33 33	733	33333	8888	2222

		l														
PAGE 3 OF 25	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC	RS, CC RS, CC RS, CC		RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS,R&W,CC RS,CC RS,R&W,CC		RS,CC RS,CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC		RS, CC RS, CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	
b b	A A E A Y	2	888		8888		888		ខ្លួ		88888		888			
	G G L ™	RS	로로로		= = = =		R S S		로로		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		로 로 =	! ± :	로 로 로	
	R AA RB	z	222		2222		2 2 2		ZZ		* * * * * *		222	: 2 :	zzz	
	I SN ID TE WET EX HAB	100 FNW	68 SEC 71 FNW 45 SEC		100 FNW 100 FNW 100 FNW 100 FNW		56 SEC 65 FNW 60 NWH		40 FNW 10 AM		85 FNV 75 FIV 85 FNV 73 FIV 77 FIV		44 FNW 44 FNW 70 ETU			
	∑ ∪∪	-					204		7.		4444		777) — (7	
	ΣΣ∺	2	1 2 1		0000		K				0 M 0 M M		r	, – ,	- 2 2	
	ECO CODE	Z.H.M	CAMA		####		CM WHC WHC		WHC		KHS CCS CCS		S S S	SH.		
	SMU	110	25 74E 25		74E 74E 74E		25 29EF 43EF		29EF 245E		5280 330 5280 330 330		888	510	5 8 8	
	T WH IR MAX NO ELEV DW	# 8	777		7 H S H		30 M 20 H 20 H		20 H 20 H		0 0 8 0 0 T T T T T		7 7 7		11,	
	MIN	2	444		9547		222		20		4004W		777	0 0	0 = =	
	RPOLS	м	122		мммм		M 4 4		4 W		00000		225	1 7 1	v ~ ~	
#5	000	Σ	X X X		### ##		$\overline{\Sigma}$ $\overline{\Sigma}$ $\overline{\Sigma}$		₹₹		22222		₩₩₩	2 2 2	X	
- ALTERNATIVE #2	ASPECT	NORTH	EAST EAST EAST		WEST WEST WEST WEST		SOUTH SOUTH SOUTH		WEST		NORTH NORTH NORTH NORTH		WEST	NORTH	NOR TH NORTH	
SIS - ALT	VOLUME	847.00	175.00 207.00 100.00	482.00	246.00 370.00 220.00 206.00	1042.00	1,103.00 370.00 493.00	1966.00	325.00	425.00	471.00 251.00 220.00 784.00 564.00	2290.00	350.00	314.00	220.00 339.00	1911.00
DIAGNO	TOTAL	27	7	18	2000	27	36	25	13	17	15 7 25 18	23	7 4 7	199	11	69
TURE	> 0 C7	0	000	0	0000	0	000	0	00	0	00000	0	000	000	000	0
SILVICULTURE DIAGNOSIS	20 ح	0	0 7 0	2	000n	50	0 6 2	21	00	0	00000	0	000	000	000	0
S	- 0 0 CS	27	000	0	00/0	_	32 0 0	32	00	0	15 8 7 25 18	23	000	10.	10 7 0	59
	> 0 7 2	0	7 5 4	16	0000	0	400	4	13	17	00000	0	4 4 5	10	-01	40
	L RL U EU D VD	3 TP	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3 TP 3 TP		3 3 3 ML 3 3 8 ML 3 3 8 ML 3 8 8 ML 3		3 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3			
± :	AU RN VI EI ST	3013	3014 3014 3014	3014	3015 3015 3015 3015	3015	4005 4002 4002	4005	4004	4004	5001 5001 5001 5001	5001	5002	5002	5002 5002 5002	5002
_	NCU NCU	733	3333		2222		072 072 270		740		333333		333	132	3333	

									22,8							
PAGE 4 OF 25	PROPOSED FUTURE MANAGEMENT	RS, IMPCT, CC	RS, IMPCT, CC RS, IMPCT, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC		RS,TMPCT,CC RS,CC		RS, R&W, CC	RS,TMPCT,CC PB,PLANT(RC&YC),SS,CC		RS,WLPCT,CC	RS, TMPCT, CC	RS,R&W,CC RS,TMPCT,CC RS,R&W,CC		RS,CC RS,CC	
1	AE AE VH	၁၁	8888	2 2		ខ្លួ		ပ္ပ	ខ្លួ		ပ္ပ	ပ္ပ	888		ខ្លួ	
	G O L E M	Ħ	R R S R S	보보		로로		SL	RS SL		뿦	RS	S 2 S		로로	
	RB AA	z	z z z z	2 2		zz		z	zz		z	z	z z z		zz	
	I SN ID TE WET EX HAB	85 FNW	90 FNW 90 FNW 82 SEC 85 FNW	85 FNW 85 FNW		85 FNW 74 FNW		72 FNW	85 FNW 81 FNW		85 FNW	90 FNW	85 SEC 65 FW 75 FW		76 FW 76 FW	
	∑ ∪ଓ	4	44M4	4 4		4 2		m	4 2		4	4	4 - 2		2 2	
	ΣΣ∺	2	2757	2.2		2 %		-	7 -		7	2	- 2 2		мм	
	ECO	WHS	KHS CMM S MHS	WHS WHS		WHS		WHC	WHS		WHS	WHS	CM WHC WHC		2 H2	
	SMU	5280	540 25 540	5280 5280		5280 528E		29EF	528D 28		5280	240	25 190 190		19E 19E	
	T WH IR MAX NO ELEV DW	10 H	15 H 11 H 20 H	6 6 H H		6 6 H H		H 6	11 H 10 H		H 9	7 H	₹ 5 ₹ # ₹		9 9 # #	
	MIN ELEV E	œ	5 0 0 5	00		99		2	6		2	4	0 N N		9 9	
	N - O - E - E	2	0000	2 2		2 2		m	2 -		2	2	222		мм	
#2	VQO	PR	$X \times X \times X$	8 8		88		A.	8 8		æ	Σ	R R &		오오	
ERNATIVE	ASPECT	NORTH	NORTH NORTH NORTH NORTH	NORTH		NORTH		WEST	WEST		SOUTH	NORTH	NORTH NORTH NORTH		EAST	
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	VOLUME	452.00	124.00 810.00 446.00 662.00	125.00	470.00	355.00	848.00	1,472.00	690.00	1944.00	752.00	376.00	972.00 659.00 1,129.00	2760.00	251.00	339.00
AGNO	TOTAL	13	28 15 25 15 15 15 15 15 15 15 15 15 15 15 15 15	7 4 1	15	11	23	94	75 40		54	12		88	ω w	=
TURE DI	V 0 1 C7 A6	0	0000	00	0	00	0	0	00	0	0	0	000	. 0	0 0	0
LVICUL	% ۵ - ۵	œ	0000	00	0	5	17	7	0 0	0	0	0	000	0	00	0
SIL	> 0 C	0	25 11 2	0 4 1	15	00	0	33	75	62	54	12	31 36	88	8 7	9
	>0 - 2	72	2 + 4 1 1	, 00	0	90	. 9	9	00	0	0	0	000	0	0 -	-
	L RL D EU	3 ML	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 R R		3 SV 3 SV		3 SV	3 SV 3 ML		3 ML	3 SV	3 S S S		3 TP	
H 4	RN KI EI	5003	5004 5004 5004 5004	5005	5005	5006	2006	2005	5008	5008	2009	5010	5011 5011 5011	5011	5012 5012	5012
	non	735	35.25.25.25.25.25.25.25.25.25.25.25.25.25	735		735		735	735 735		735	735	25 25 25 25 25 25 25 25 25 25 25 25 25 2		355	

	L Z				AS AS		
PAGE 5 OF 25	PROPOSED FUTURE MANAGEMENT	RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, CC RS, CC RS, WLPCT, CC	RS, TMPCT, CC RS, CC	RS,WLPCT,CT,CT,SW RS,IMPCT,CC RS,WLPCT,CT,CT,SW RS,IMPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, TMPCT, CC RS, CC
d	A P R A F W	8888	888888	ខ ខ	8888	888	888888
	E G C E M	<u> </u> 보 로 로 로	로 로 로 로 로 로	로 로	RS RS	SL RS	로로로로로
	R A PH	2222	22222	2 2	2222	2 2 2	Z Z Z Z Z Z
	SN ID TE WET	78 FW 75 FIW 75 FIW 75 FIW	75 51W 75 51W 75 51W 75 51W 75 51W	75 FIW 84 FNW	75 FIW 84 FNW 75 FIW 80 FIW	83 FIW 90 FNW 75 FNW	90 FNW 65 FW 81 FNW 80 FW 90 FW 80 FW
	∑ ∪ ∪	M 4 4 4	4444M4	4 6	4444	444	4-8-4-
	ΣΣΗ	0 M M M	0 M M D M M	2 3	M M M M	M 0 W	000404
	EC0 C00E	CCS CCS CCS	S S S S S S S S S S S S S S S S S S S	CCS	WHS CCS CCS	CCS	WHS WHS CCD WHS CCD CCD
	SMU	190 330 330 330	330 330 330 330 330	33E 540	330 540 330 33E	33E 540 528E	540 190 540 18E 18E
	T WH IR MAX NO ELEV DW	8444	0 W W 4 W W L L L L L L L L L L L L L L L	2 8 H	2 T T T T T T T T T T T T T T T T T T T	20 M 15 H 30 H	000000 =======
	MIN ELEV E	9 M 4 M	0 m m m 0 m	2 2	2046	8 17 12	9 8 7 9 0
	N D O M M	0000	707-707-	2 3	2008	M 0 M	N N N N 7 N
7#	VaO	X X X X	222552	포 오	555 %	5 5 g	88888
ERNAT I VE	ASPECT	EAST EAST EAST EAST	EAST SOUTH SOUTH SOUTH SOUTH	FLAT	WEST WEST WEST EAST	NORTH NORTH EAST	EAST EAST EAST EAST EAST EAST
IAGNOSIS - ALTERNATIVE #2	VOLUME	846.00 183.00 175.00 112.00	107.00 200.00 195.00 250.00 388.00 251.00	100.00	363.00 726.00 439.00 407.00	903.00 226.00 976.00 2105.00	283.00 188.00 283.00 283.00 157.00 95.00
AGNO	TOTAL	30	48 70 13 8	4 24	244 1 2 2 2 3 4 4 4 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3,883	9 9 9 E E E E E E E E E E E E E E E E E
- ۱	V 0 L TC C7 AC	0000 0	00000	0 0	0000	000	000000000
SILVICULTURE	% د ه <	0000	00000	0 0	0000	000 0	000000
SII	C C C	15 4 2 5 2 6 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 8 18	0 6	10 12 9 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28 4 4 44	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	>072	15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33 - 33 - 33 - 33 - 33 - 33 - 33 - 33	4 15	2 0 0 5	24	000000
	L RL D EU	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	% % % % % % % % % % % % % % % % % % %	3 SV 3 SV	% % % % % % % %	3 SV 3 ML	333333 345 375 375 375 375 375 375 375 375 375 37
H 2	R VI # T X X	5013 5013 5013 5013	5014 5014 5014 5014 5014 5014	5015	5017 5017 5017 5017	5018 5018 5018 5018	5019 5019 5019 5019 5019 5019
	חטא	25 25 25 25 25 25 25 25 25 25 25 25 25 2	3333333	735 735 735	£ £ £ £ £	25 25 25 25 25 25	222222

PAGE 6 OF 25	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC	RS,CC RS,TMPCT,CC	Rs,cc	RS, WLPCT, CC RS, WLPCT, CC		RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	FH,RS,R&W,2-SW FH,RS,R&W,2-SW	PB, PLANT(RC&YC), SS, CC RS, CC RS, WLPCT, CC RS, R&W, CC PB, PLANT(RC&YC), SS, CC	RS,TMPCT,CC RS,WLPCT,CC
۵	A P E H	ខ្លួ	ខ ខ	23	88		8888	AS SE	88888	88
	GOLEM	로 로	로 로	뽀	고모		로 로 로 로	뽀 뽀	S H H S S	S S
	RB AA	2 2	z z	z	2 2		2222	zz	2222	2 2
	I SN ID TE WET EX HAB	85 FNW 85 FNW	75 SE 90 FNW	62 FNW	100 FNW 100 FNW		89 FNW 100 FNW 100 FNW 100 FNW	74 FW 70 FW	97 FU 89 FNU 100 FNU 82 FNU 75 SE	100 FNW 100 FNW
	Σ Ω@	44	1 4	2						
	ΣΣ∺	2 2	- 2	-	мм		2000	мм	M W W W ←	мм
	ECO CODE	Z KHS	CMC	VHC	200		2223	000		99
	SMU	5280 5280	24D 540	29EF	3E 3E		8888	4E 4E	36 36 240	38 38
	FRES	ΞΞ	= =	=	= =		= ===	ΣΣ	====	= =
	MAX	4 W	- 9	20	5 7		W W W W	20	V 10 4 4 W	0, 80
	MIN ELEV E	4 W	← 10	7	м 4		W W W W	9 2	444M0	φ.rv
	N D O L N	2 2	1 2	4	2 8		0000	мм	M M M M M	мм
#2	000	g g	R R	P.	R R		8888	88	8 8 8 8 8	g. g.
- ALTERNATIVE #2	ASPECT	EAST	EAST	EAST	SOUTH		NORTH NORTH NORTH NORTH	EAST	SOUTH SOUTH SOUTH SOUTH SOUTH	SOUTH
GNOSIS - ALT	VOLUME	251.00 157.00 	75.00	01 3,033.00	350.00	00.009	633.00 183.00 263.00 182.00	1,411.00 847.00 	1,002.00 312.00 100.00 458.00 439.00 2311.00	251.00 502.00 753.00
AGNO	TAL	5 - 13	м /	101	10 1	54	22 6 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	45 27	34 11 14 15 18	16 24
E DI	V O L TOT	0010	0 0	0	00	0	000010	00:0	0000000	00 0
LTUR	000									
SILVICULTURE DIA	رو د د ه د	00 0	0 0	0	00	0	0000:0	00 0	000000	00 0
"	, >012	5 13	0	80	00	0	13 6 6 1 25 25	45 27 72	24 6 0 13 14 17 57	16
	>013	00 0	м ~	21	70	54	9 - K 9 9	00 0	10 2 2 1 2 1	00 0
	L RL U EU D VD	3 AL AL	3 SV	3 ML	4 ML		7 7 7 7 7 7 7 7	7 7 7 7 7 8	H H H H H H H	4 4 H H
= :	RN VI	5020 5020 5020	5021	5023	6001	6001	6002 6002 6002 6002 6002	6003 6003 6003	\$000 \$000 \$000 \$000 \$000 \$000 \$000	6005 6005 6005
	VCU	735	735	735	736 736		32 32 32 33 33 34 35	736	328 328 328 328 328	736

PAGE 7 OF 25	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC	FH,RS,R&W,2-SW	RS, CC RS, WLPCT, CC RS, WLPCT, CC RS, CC RS, CC	RS, CC RS, WLPCT, CC RS, CC RS, WLPCT, CC RS, CC	RS,R&W,CC RS,R&W,CC RS,CC	RS, WLPCT, CT, CT, SW RS, WLPCT, CT, CT, SW
۵	A A E A Y	888	AS.	88888	88888	888	8888888
	GH OT GH	RS RS	뿦	로 로 로 로 로	로로로로로	RS H	<u> </u>
	RB RB	222	z	22222	2222	222	2222222
	I SN ID TE WET EX HAB	85 FNW 85 FNW 85 FNW	72 FW	50 FW 65 FW 57 FW 55 FW 55 FW	70 FW 80 FNW 76 FNW 80 FNW 76 FNW	67 FW 76 FW 70 FIW	85 FNW 85 FNW 85 FNW 75 FIW 75 FIW 85 FNW 85 FNW
	Συσ	444	м		2-2-2	- 0 W	NNN44NN
	X X H	222	м			222	00000000
	ECO CODE	WHS WHS	8	CMB CMB CMB	2000 S S S S S S S S S S S S S S S S S S	CMB	
	SMU	750 750 750	8	910 190 190 200 200	20C 28 28 290 290	200 200 330	6 6 3330 6 6 6
	T WH IR MAX NO ELEV DW	8 9 9	Z0 M	W 4 4 4 0 T T T T T	044W4 HHHHH	10 H 8 H	0040000 TTTTTTT
	MIN	N 4 7	5	MM444	4 W W W W	0	44440004
	S O C E	222	m			000	44440044
7#	Vao	2 2 2	윷	2222	****	要要	****
- ALTERNATIVE #2	ASPECT	SOUTH SOUTH SOUTH	SOUTH	SOUTH SOUTH SOUTH SOUTH SOUTH	SOUTH SOUTH SOUTH SOUTH SOUTH	EAST WEST WEST	WEST WEST WEST WEST WEST WEST
SIS - ALT	VOLUME	631.00 745.00 574.00		408.00 488.00 545.00 250.00 356.00	607.00 250.00 251.00 238.00 433.00	563.00 813.00 784.00 2160.00	95.00 312.00 75.00 187.00 188.00 157.00 182.00 187.00
IAGNOSIS	TOTAL	24 28 23		13 14 17 74	22 9 8 8 14 16	25 25 76	27 27 64
	V 0 L TC C7 AC	000	0 0	00000	00000	000	0000000
SILVICULTURE	۵-0<	000	0 0	00000	00000	000	00000000
S i	ې د ه <	5 0	12 22	13 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 8 8 13 6 4 0 4	6 10 25 41	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	>012	19 23	63	0 118 13 13	22 12 22 13	15 20 0	24,
	L RL U EU VO	4 ML 4 ML 4 TP	4 TP	4 4 4 4 4	4444	4 4 4 TP 4 TP	4444444
# 4	# SELIEN	9009	6006	8009 8009 8009 8009 8009	6009 6009 6009 6009	6010 6010 6010 6010	6011 6011 6011 6011 6011 6011 6011
	אכה	3,2,3	736	33333	33333	35 35 36 36	333333333

PAGE 8 OF 25	I R SN I M HM M ID PH LE AE C TE WET AA OT RT PROPOSED G EX HAB RB GH VH FUTURE MANAGEMENT	1 85 FW N HL CC RS,CC 1 79 FW N HL CC RS,CC 1 100 FWW N RS CC RS,TMPCT,CC 1 68 SE N HL CC RS,CC	1 80 FW N HL CC PLANT(YC), SS, CT, SW 1 100 FWW N HL CC RS, TMPCT, CC 1 100 FWW N RS CC RS, TMPCT, CC 1 100 FWW N HL CC RS, CC 1 100 FWW N HL CC RS, CC 1 100 FWW N HL CC RS, CC 1 5 ADD N HL CC RS, CC	4 85 FNW N RS CC RS,TMPCT,CC 2 95 FNW N RS CC RS,CC 1 100 FNW N RS CC RS,TMPCT,CC	4 75 FIW N RS CC RS,CC	FNW N RS CC	1 92 FW N RS CC RS,CC 1 92 FW N RS CC RS,CC 1 100 FNW N RS CC RS,TMPCT,CC	1 45 SEC N HL CC RS,CC 1 45 SEC N HL CC RS,CC	1 100 FNW N HE CC RS, TMPCT, CC
	ΣΣ∺	n n n −	0 m m m m m n	ммм	и и	m	ммм		М
	ECO	CCD CCD CCD CCD	M W D C C W W D C W W D C W W D C C W W D C C W W D C C W W D C C W W D C C W W D C C W W D C C W W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C W D C C C W D C C C W D C C C W D C C C W D C C C C	WHS	CCS	Σ Ξ	Z H Z K K K K K K K K K K K K K K K K K	CMM	MDC
	SMU	180 180 1E 24AC	40 16 16 37 16 16 2466	528F 53E 53E	33E 19E	24E	19E 19E 54F	22 23	3E
	T WH IR MAX NO ELEV DW	2 2 7 4 H H H H	20 H H H H H H H H H H H H H H H H H H H	15 H 14 H	20 M	-	101	10 H	10 H
	MIN	4 W Q 4	15 15 20 20 20	12 9	15	Ξ	555	∞ ο	9
	пього	1322	0 M M 4 M M M	4 M M	20 20	m	444		м
#5	V ₀ 0	X X X X	999999	∑	₹ ₹	<u>O</u>	五五五	₩ ₩ ₩ ₩	A.
RNATIVE	ASPECT	NORTH NORTH NORTH NORTH	NORTH NORTH NORTH NORTH NORTH	NORTH NORTH NORTH	WEST	WEST	WEST WEST WEST	WEST	NORTH
IAGNOSIS - ALTERNATIVE #2	VOLUME	382.00 463.00 402.00 275.00	288.00 245.00 95.00 534.00 207.00 182.00 91.00	487.00 407.00 113.00	869.00	713.00	63.00 263.00 408.00 734.00	150.00 450.00 600.00	00.069
IAGNO	TOTAL	14 16 13 11 54	10 8 3 17 7 7 7 7 7 56	15 15 39	24	30	13	18	22
	V 0 0 C7 AC	0000	000000	000	0 0	0 0	000 0	00 0	0
SILVICULTURE	۵ د ه د	0000	000000000000000000000000000000000000000	000 0	12	15	000 0	00 0	0
SI	> 0 CS	5 10 12 0 0	5 17 17 17 18 19	5 0 7	12	15	2 13 21	00 0	22
	۵۵، د د	9 6 11 11 27 27	4 + 0 0 0 2 5 7 1 7 1 7 1	10 10 5	0 0	0 0	0 0 0 m	18	0
	L RL U EU D VD	4 TP 4 TP 4 TP 4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P 4 1P 4 1P	4 TP		도 보 보 도 보 보	4 ML	4 ML
Ξ.	RN VI ST #1	6012 6012 6012 6012 6012	6013 6013 6013 6013 6013 6013	6014 6014 6014 6014	6015	6016	6017 6017 6017 6017	6018 6018 6018	6019
	אכה	736 736 736 736	33,53,53,53,53,53,53,53,53,53,53,53,53,5	736 736 736	736	736	32%	736	736

_		ī													
PAGE 9 OF 25	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, R&W, CC RS, R&W, CC	RS, CC RS, CC		RS, WLPCT, CC RS, WLPCT, CC	7	RS,TMPCT,CC RS,TMPCT,CC		RS,CC RS,CC		Rs, CC	RS,CC RS,CC RS,WLPCT,CC		RS, WLPCT, CT, CT, SW RS, WLPCT, CT, CT, SW RS, WLPCT, CC	
۵	AE AE VH	ខខខខ	ខខ		88	ć	3 88		ខ្លួ		23	888		888	
	G H G	7 7 S S	포 포		SL	3	F & F		로로		로	로 로 로		및 및 및	
	P H A B	2222	2 2		2 2	2			2 2		z	2 Z Z		222	
	I SN ID TE WET EX HAB	65 FW 68 FW 88 FNW 70 FW	74 FNW 70 FW		65 FI 52 FW	0			72 FW 71 FW		80 FW	60 SE 60 SE 100 FNW		85 FNW 85 FNW 85 FNW	
	∑ ∪ ७	W 0/			1	-	- 44		ω -		←			404	
	ΣΣ∺	мммм	1 2		22	C	N N N		2 2		2	2 1 1		222	
	CODE	8888	CCS		CCS	Š			WHC		000	CMC CMC WHW		CCS CCS WHS	
	SMU	4E 4E 3F 4E	28 40		630 190	ć C	528F 75E		19c 19c		180	24E 24E 74E		6 6 750	
	T WH IR MAX NO ELEV DW	121111111111111111111111111111111111111	1 6 H H		4 4 4	7			7 4 4		4 H	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		332	
	MIN ELEV E	12 11 8	01		44	c	MM V		2 4		2	6 7 7		222	
	пього	NMMM	2 2		2 -	-	- 4 W		2 -		-	ммм		M 4 W	
7#	00/	E E C C	2 2		% %	Ĉ	£ 22		8 8		Σ	X X X		R R R	
ERNATIVE		EAST EAST EAST EAST	EAST		WEST	TAP	EAST EAST		WEST		SOUTH	SOUTH SOUTH SOUTH		SOUTH SOUTH SOUTH	
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	NOL M	256.00 487.00 564.00 924.00	2231.00 471.00 564.00	1035.00	564.00	1160.00	521.00 314.00	835.00	564.00	1003.00	502.00	125.00 188.00 125.00	438.00	220.00 502.00 690.00	1412.00
IAGNOS	TOTAL	10 18 23	66 13 18	33	9 6	37	10 10		1 2	32	16	494	14	7 16 22	45
TURE (> 0 1	0000	0 00	0	00	0 0	00	0	00	0	0	000	0	000	0
SILVICUL	>0 - 0%	20 21	78	0	00	0 0	0 0 0	. 2	00	0	0	000	0	000	0
S	> o ¬ ?	- 0 2 2	21 15 18	33	19 18	37	17 10	24	18	32	16	404	14	7 16 22	45
	>013	0.800	0 0	0	00	0 0	000	0	0 0	0	0	000	0	000	0
	L EU D VO	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 ML 4 ML		4 ML 4 TP	4			4 TP 4 TP		4 ML	4 4 4 M M T		4 ML 4 ML	
± ₹	RN VI XI	7007 7001 7001	7001	7002	7003	7003	7005	7005	7006	2006	7007	7008 7008 7008	7008	7009 7009 7009	7009
	VCU	33,55	7.85 7.87		737	7	5 75 75 75 75 75 75 75 75 75 75 75 75 75		737 737		737	737 737 757		757 757 757	

PAGE 10 OF 25	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,WLPCT,CC RS,WLPCT,CC	RS,R&W,CC	RS,CC RS,CC PB,PLANT(RC&YC),SS,CC PB,PLANT(RC&YC),SS,CC	RS,TMPCT,CC RS,TMPCT,CC RS,CC RS,CC	RS,TMPCT,CC RS,TMPCT,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC	RS, TMPCT, CC	RS,TMPCT,CC RS,TMPCT,CC	PLANT(YC), SS, CT, SW PLANT(YC), SS, CT, SW RS, CC PLANT(YC), SS, CT, SW RS, TMPCT, CC
	AE VH	8888	ວ	2222	8888	88888	ວ	ខ្លួ	88888
	GH OT	RS H H	RS	목 목 목 목	로 로 로 로	로 로 로 로 로	로	RS H	로 로 로 로 &
	A P H B	2222	z	2222	z z z z	22222	z	2 2	z z z z z
	I SN ID TE WET EX HAB	87 FNW 91 FNW 100 FNW 100 FNW	93 FNW	92 FNW 80 FW 92 FW 86 FW	60 FW 60 SE 60 SE 80 SE	100 FNW 100 FNW 75 FNW 100 FNW 60 SE	60 FW	100 FNW 100 FNW	93 FW 92 FW 77 SEC 91 FW 100 FWW
	Σ ∪ග		-			0	-		
	ΣΣΗ	m	М	2222		72225	-	мм	M W – W W
	ECO	000	NO.	0000	C C E E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WHS	W H M	E C C C C C C C C C C C C C C C C C C C
	SMU	36 36 36	3E	20 180 180	510 510 24AC 24AC	24 AC 22 24 AC 25 25 25 25 25 25 25 25 25 25 25 25 25	51C	300	180 180 180 300 300
	T M NO NO DE	= = = =	=	IIII	===	=== =	Ŧ	= =	EEIEI
	MAX ELEV	N N N N	ω	N N O O	M M 4 70	NN400	2	7 7	2
	MIN ELEV E	44 N N	2	יטיטיטי	mm∾-	4 N W N N	4	77	55257
	N O C H	M W W W	М	2 + 2 2		7000-		2 2	M M M M M
2#	700	2222	Ŧ	EXEX	$\overset{\mathbf{Y}}{\circ}\overset{\mathbf{Y}}{\circ}\overset{\mathbf{Y}}{\circ}\overset{\mathbf{Y}}{\circ}$	# # # # # # # # # # # # # # # # # # #	Ŧ	ΣΣ	# # # # # # # # # # # # # # # # # # #
- ALTERNATIVE #2	ASPECT	WEST WEST WEST WEST	EAST	SOUTH SOUTH SOUTH SOUTH	EAST EAST EAST EAST	EAST EAST EAST EAST EAST	NORTH	WEST	WEST WEST WEST WEST
GNOSIS - ALT	VOLUME	224.00 250.00 100.00 100.00 674.00	674.00	325.00 150.00 413.00 270.00 1158.00	157.00 188.00 514.00 407.00 1266.00	188.00 188.00 534.00 188.00 63.00	408.00	283.00 283.00 566.00	328.00 534.00 240.00 1,009.00 531.00
OTAGNO	TOTAL	9 10 4 4 27	27	13 of 15 th 14 th 14 th 15 th	5 6 118 16 45	6 17 17 6 6 2 37	13	9 81	26 77 16 70
TURE I	V C7	00000	0	0000	000010	00000:0	0	00 0	00000:0
SILVICULTURE DIA	> 0 - 9	0000	0	0000	0000	00000	0	00 0	13 20 20 3 46
SI	0 c c c	0000	0	000000	5 10 22 22	6 6 2 2 3 7 3 7 5	13	9 8 8	13
	> 0 J	9 4 4 27	27	13 6 9 7 7 35 35	0 0 8 15	00000	0	00 0	00000
	L RL U EU D VD	7 M M W W W W W W W W W W W W W W W W W	4 TP	4 17 4 17 4 17 4 17 4 17 4 17 4 17 6 17 6	4 A A A A A A A A A A A A A A A A A A A	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 M M	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Ŧ =	RN VI ST ST	7010 7010 7010 7010	7011	7012 7012 7012 7012	7013 7013 7013 7013	7014 7014 7014 7014 7014	7015	7016 7016 7016	7017 7017 7017 7107 7107
	NCU	757 757 757 757 757 757 757 757 757 757	737	737 737 739	25. 25. 25. 25. 25. 25.	22,22,23	737	737	22,22,22

_				1														
PAGE 11 OF 25			PROPOSED FUTURE MANAGEMENT		PLANT(YC), SS, CT, SW RS CC	RS, TMPCT, CC		RS,CC RS,CC		RS,CC RS,CC		RS, R&W, CC RS, TMPCT, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC		RS,CC RS,TMPCT,CC	RS, TMPCT, CC RS, CC RS TMPCT CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC
4		AE E	Z ¥	;	3 5	23		88		88		88888	3	888	3888		88888	2
		E m	OH 9		N 0	뽀		보보		로 로		E RS RS	<u> </u>	H S H	R S S S	2	S S 크 크 크	±
	~	- H	AA RB	;	z 2	z		zz		zz		22222	2	2 2 2	2 2 2 2	:	Z Z Z Z Z	z
	I		C TE WET G EX HAB		1 95 FW			4 86 FNW 2 82 FW		1 100 FNW 1 81 FW		1 100 FW 1 70 FW 1 70 FW		100	5 85 FNW 1 70 FW		4 85 FNW 4 75 FIW 4 85 FNW 4 85 FNW 4 85 FNW	82
		Σ	Σ ⊷	,	9 K	1 10		28		мм		ммммм	1	2 10 10	1227	ı	мимии	M
			EC0 C00E		200	E H		WHS		M M		MHC CCD CCD	P	WDC	S S S S		WHS WHS	₩ HS
			SMU	4	3 F	24E		5280 180		1E 19E		19E 4E 4E	į	35	3 4 6 5	3	528F 33E 528F 528F 528F	528F
	-	₹ ∺	MAX NO ELEV DW		200			15 H 12 H		20 H 20 H		2122 H H M H H			2 - 6 %		10110 HHHHH	
			MIN ELEV E	;	<u>ი</u> რ	15		==		20		50 51 0		8 9 4	+ ~ ∞ α)	7 01 9 8	Ξ
	S	٥ د	Фm	'	n 4	М		22		мм		ммммм)	2 10 10	1400	ı	4 M 4 4 4	
#5			V@O	}	ΞΞ	Σ		오오		% %		E E E O C	2	오오 오	2 2 2 2	2	2222	£
- ALTERNATIVE #2			ASPECT		NORTH	NORTH		NORTH		WEST		SOUTH EAST SOUTH EAST	į į	NORTH	NORTH NORTH		NORTH NORTH NORTH NORTH	NORTH
			VOLUME		765,00	332.00	1336.00	563.00	813.00	187.00 275.00	462.00	502.00 502.00 220.00 213.00	1845.00	175.00	150.00	799.00	784.00 251.00 283.00 534.00 283.00	188.00
IAGNO			TOTAL	;	<u> </u>	Ξ	39	20	30	7	18	51 57 7	23	~ ~ ~ ~	1 0 W U	32	25 8 9 17	9 74 7
TURE		> 0	L 70	,	-	0	0	00		00	0	00000		000	000		00000	0 0
SILVICULTURE DIAGNOSIS		> 0	۵ د	;	<u> </u>	0	13	00	0	00	0	00000	0	000	0000	0	00000	0 0
SI		> 0	CS	'	- 2	0	54	6 0		0 0	2	55 - 95	58	000	0000	0	25 8 9 17	9 42
		> 0	L C%		-	2	2	000	50	1 5	16	000-0	· -	L L 7	1 0 W L	32	00000	0 0
			D C		4 4 4 4			4 TP 4 TP		4 ML 4 TP		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			1 4 4 4 2 4 4 4 5		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
± 4	2 N	E I	ST #	10.5	7018	7018	7018	7019	7019	7020 7020	7020	7021 7021 7021 7021	7021	7022	7022	7022	7023 7023 7023 7023 7023	7023
			VCU		3 2	737		737 737		757 757		22222		752	2666		25	737

PAGE 12 OF 25	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC	RS,CC	RS, TMPCT, CC	PLANT(YC),SS,CT,SW RS,CC	RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, CC RS, CC RS, CC RS, CC
9	AE AE VH	888	23	888	သ	ည	ខួខ	8888	88888	8888
	S O T E	뽀 뽀 뽀	뽀	<u> </u>	포	뽀	로로	로 로 로 궁	8 8 8 8 8 8 8 8 8 8	R S R
	R A H H R	222	z	222	z	z	2 2	2222	Z Z Z Z Z	2222
	I SN ID TE WET EX HAB	85 FNW 85 FNW 85 FNW	90 FIW	85 FNW 85 FNW 85 FNW	24 FNW	85 FNW	75 FNW 70 FW	70 FV 83 FV 90 FIW 78 FV	85 FNU 85 FNU 85 FNU 85 FNU 85 FNU	70 FW 77 FNW 47 FW 20 FEF
	£ 0 0	444	-	444	2	4			4444	
	ΣΣΗ	ммм	4	ммм	М	M	~ w	мммм	0000	m m m ←
	ECO	WHS WHS WHS	MHB	WHS WHS	WHS	NHS.	S 22	CCD SCC	E E E E E E E E E E E E E E E E E E E	CCD
	SMU	528F 528F 528F	35F	528F 528F 528F	528F	528F	28 5500	5500 5500 350 5500	5280 5280 5280 5280 5280 5280	5500 53E 5500 490
	P R R S B	xxx	I	= = =	=	I	ΣI	EETE		zzzz
	MAX	10 12 15	30	2 2 2 2 1 2 1	15	15	15	20 20 20 20	25 25 25	o 11 8
	MIN.	12 11 11	20	12	9	12	11	27 27 27 27 27	15 10 15 21	8011
	0 L N	444	4	444	4	4	7	0000	0000	2222
#2	VQO	¥¥¥	Σ	운 운 운	웆	Σ	8 8 8	2222	2222	5555
- ALTERNATIVE #2	ASPECT	NORTH NORTH NORTH	WEST	NORTH NORTH NORTH	NORTH	NORTH	NORTH	WEST WEST WEST WEST	SOUTH SOUTH SOUTH SOUTH SOUTH	WEST WEST WEST
	VOLUME	125.00 188.00 502.00 815.00	532.00	471.00 1,223.00 471.00 2165.00	1,098.00	439.00	270.00	320.00 245.00 188.00 532.00	314.00 95.00 188.00 274.00 328.00	200.00 331.00 645.00 350.00
DIAGNOSIS	OTAL CRES	4 9 1 5 8	20	339		14	10	118961	35	23 23 23 28 28
TURE D	V 0 L TO' C7 ACI	000 0	0	000	0	0	00	0000	00000	0000
SILVICULTURE	> 0 L	000 0	0	000	0	0	00	0000	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000
SI	0 c	4 6 1 16 2 2 5 2 5 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1	2	15 39 15 69	35	14	3	20 50	10 4 4 0 0 23	12 0 12
	رد ه د د ه د	000 0	15	000 0	0	0	0 2 2	10000	0000-0	42 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14
	L RL U EU D VD	4 4 WL	4 TP	4 1P 4 1P 4 1P	4 TP	4 TP	4 TP	4 4 4 4 TP 4 TP 4 TP 4 TP 4 TP 4 TP 4 T	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H	RN VI ST ST	7024 7024 7024 7024	7025	7026 7026 7026 7026	7027	7028	7029	7030 7030 7030 7030 7030	7031 7031 7031 7031 7031	7032 7032 7032 7032 7032
	ncon	757 757 757	737	757 757 757	737	737	737	737 737 737	5555	22,23

_		-								
PAGE 13 OF 25	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, CC RS, TMPCT, CC	PLANT(YC),SS,CT,SW RS,CC	RS, CC RS, CC RS, CC RS, CC	RS, R&W, CC RS, CC RS, R&W, CC	RS,CC RS,TMPCT,CC	RS, TMPCT, CC FH, RS, R&W, 2-SW	RS, IMPCT, CC	RS,CC RS,CC RS,TMPCT,CC	RS, WLPCT, CC
۵	AE AT VH	888	ខ្លួន	8888	222	ខ្លួ	SE CC	23	888	23
	GH GH	RS RS LS	S S	S 크 크 크	뽀 뽀 뽀	뽀 뽀	뽀 뽀	뿦	로 로 로	로
	R A H H B	222	2 2	z z z z	2 2 2	zz	zz	z	2 2 2	z
	I SN ID TE WET EX HAB	85 FNW 87 FNW 85 FNW	80 FW 80 FW	85 FNW 85 FNW 85 FNW 85 FNW	93 FNW 85 FNW 89 FNW	85 FNW 85 FNW	100 FNW 73 FW	100 FNW	61 FW 45 SEC 100 FNW	1 100 FNW
	x 0 0	444		4444	04 W	44		_		
	ΣΣ∺	m o m	mм	мммм	ммм	мм	ΝM	2	3 - 8	м
	EC0 C00E	WHS WHS	999	R R R R R	WHS WHS WHS	XHS NHS	CCD	ZHW	CMB	MOC
	SMU	528E 528D 528E	180 180	528F 528F 528F 528F 528F	528F 528F 528F	75F 528F	740 5500	74D	40 3E	3E
	T WH IR MAX NO ELEV DW	15 H 12 H 15 H	15 M H 01	30 H 20 H 20 H 20 H	15 H 20 H 20 H	20 H 20 H	10 H M 21	15 H	4 W W T T T	5 H
	MIN ELEV 8	12 8 21	1 6	50 50 50 50 50	51 51	15	10	15	40%	4
	R P O L S	w 0 w	2 2	4444	M 4 4	44	2 2	2	3 - 2	м
#5	V@0	운 운 운	& &	\mathcal{L}	9 9 9	운 운	8 8	웊	888	8
ERNATIVE	ASPECT	SOUTH SOUTH SOUTH	EAST	SOUTH SOUTH SOUTH SOUTH	SOUTH SOUTH SOUTH	WEST	SOUTH	SOUTH	NORTH NORTH NORTH	WEST
AGNOSIS - ALTERNATIVE #2	VOLUME	238.00 582.00 75.00 895.00	399.00	325.00 175.00 212.00 100.00	275.00 499.00 375.00	646.00 395.00 1041.00	1,003.00 627.00 1630.00	345.00	220.00 439.00 188.00	125.00
AGNO	TAL	21 2 3	16 8	13 4 4 32 32	11 20 15	13	32 20 52	1	14 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
URE DI	V 0 L TO	000:0	00 0	0000	000 0	00 0	00 0	0	000	0
SILVICULTURE	ر رود ه	000	00 0	0000 0	000 0	00 0	00 0	0	000	0
SI		9 11	00 0	0000	000 0	11 28	32 20 52	1	14 6	4
	> 0 - 2	7 12 3 	16 8 	13 6 6 30 30	11 20 15	2 6	00 0	0	000	0
	L RL U EU D VD	4 TP 4 TP 4 TP	4 TP 4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	W W W W V V V V V V V V V V V V V V V V	7 M 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 ML	4 ML	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP
= :	R V I N S T T T T T T T T T T T T T T T T T T	7033 7033 7033 7033	7034 7034 7034	7035 7035 7035 7035 7035	7036 7036 7036 7036	7037 7037 7037	7038 7038 7038	7039	8001	8002
	VGU	25.55	737	737 737 737	23.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25	737	737	737	738	738

	EMENT								
PAGE 14 OF 25	PROPOSED FUTURE MANAGEMENT	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, TMPCT, CC RS, MLPCT, CC RS, WLPCT, CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, CC RS, TMPCT, CC RS, MLPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, MLPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS, CC RS, CC
-	A A E K	888888	23	88	888888	8888	S	888	ខខ
	SOFE	RS R	로	로 로	로 로 로 로 로 로	R R S S S S	뿦	RS RS	로 로
	RB AA	*****	×	2 2	*****	2222	Z	222	2 2
	I SN M ID C TE WET G EX HAB	1000 FWW NW N	1 100 FNW	5 85 FNW 5 85 FNW	1 100 FNW 1 100 FNW 1 100 FNW 1 91 SEC 1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW	1 70 FW 1 72 FW
	ΣΣ∺	m m m m m m	м	2 2	- m m m - m	мммм	2	ммм	2 2
	ECO	00000	MDC	SOO		0000	MDC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CMB CMB
	SMU	36 36 36	3E	9 9	240 35 35 35 35 35	35 35	3F	388	07 74 07
	T WH IR MAX NO ELEV DW	V 8 V 6 V 9	15 H	15 M H	Σ τ ο τ ο τ ο τ ο τ ο τ ο τ ο τ ο τ ο τ	Σ ο Σ Σ	30 H	76 S	N M
	MIN PELEV EL	277477	0	8 ==	0 0 0 0 51	0 0 2 0	0	444	2 2
	S L E E E	ммммм	4	4 4	4444M4	1111	4	ммм	
#5	VQO	* * * * * *	Ð	₩ ₩	¥ ¥ ¥ ¥ ¥ ¥ ¥	¥ ¥ ¥ ¥	õ	오 오 오	Æ Q
- ALTERNATIVE #2	ASPECT	SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH	WEST	WEST	WEST WEST WEST WEST WEST	SOUTH SOUTH SOUTH SOUTH	SOUTH	SOUTH SOUTH SOUTH	WEST
	VOLUME	125.00 376.00 534.00 627.00 125.00 345.00	534.00	784.00 345.00 1129.00	681.00 574.00 548.00 328.00 623.00 534.00	574.00 483.00 396.00 521.00	1,825.00	299.00 350.00 558.00 1207.00	420.00 645.00 1065.00
AGNO	TAL RES	4 17 17 20 4 4 11	17	11 38	18 15 18 13 13 86	12 12 16 17 18	28	12 14 20 46	15 23 38 38
SILVICULTURE DIAGNOSIS	V 0 L TO] C7 ACF	000000	0	00 0	000000	0000	0	000	00 0
LVICUL	>0 -0 %	000000	0	00 0	14 14 8 8 8 13 63	11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	000	00 0
IS :	> 0 -1 53	4 17 17 20 4 4 11	17	25 11 36	12 02 02	10 17 17 17 17 17 17 17 17 17 17 17 17 17	58	004 4	7 1 8
	> 0 - 3	00000	0	00 0	m 0 0 0 0 m	0000	0	14 14 16 16 16 16 16 16 16 16 16 16 16 16 16	12 - 20 -
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 7 7 7 7 7 7 7 7 7 7	4 TP	d1 7 d1 7	4 TP
Ξ -	R X X X X X X X X X X X X X X X X X X X	8003 8003 8003 8003 8003 8003	8004	8005 8005 8005	8006 8006 8006 8006 8006 8006	8007 8007 8007 8007	8008	8009 8009 8009 8009	8010 8010 8010
	אכח	738 738 738 738 738	738	738	738 738 738 738 738	738 738 738	738	23 8 KZ 23 8 KZ	738

PAGE 15 OF 25	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,CC RS,CC RS,CC	RS, WLPCT, CC RS, WLPCT, CC RS, CC PB, PLANT (RC&YC), SS, CC PB, PLANT (RC&YC), SS, CC	RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	RS,CC RS,CC	RS,CC RS,CC RS,IMPCI,CC	RS,CC RS,TMPCT,CC	RS,R&W,CC RS,TMPCT,CC
-	AE AT VH	888888	88888	8888	ខម	888	2 2	22
	G O E	SS 프 프 프 프 SS	SS 프 프 프	목 목 목 로	목 로	= = =	크 크	SL RS
	R AA RB	22222	z z z z z	2222	zz	222	2 2	ZZ
	I SN M ID C TE WET G EX HAB	1 51 SE 1 50 SE 1 60 SE 1 89 FNW 1 60 SE	1 100 FNU 1 100 FNU 1 93 FNU 1 80 FU	1 89 FNW 1 90 FIC 1 90 FIC	1 70 FW 1 70 FW	1 94 FNW 1 94 FNW 1 90 FIC	1 95 FIC 1 90 FIC	1 70 FW 1 90 FIC
	ΣΣΗ		ммммм	2222	мм	N 0 N	N N	2 10
	ECO			MH COM	99	MHC NHC	VHC VHC	CMB
	SMU	24AC 24AC 24AC 1C 24AC 24AC 24AC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2E 331C 331C 331C	5500 5500	10 10 3310	331c 331b	4D 331D
	T WH IR MAX NO ELEV DW	NOWWOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 8 ₹ 2 2 2 X X X X X X X X X X	10 E E	0 0 0	W W	8 H 7 H
	MIN	000000	991119	8867	0 0	8 8 6	4 10	7 7
	0 E P O L S		N N M M M	2	2 2	000	м 0	4 0
2# :	VQO		2222	9999	오 오	₹ ₹ ₹	운 앞	운 앞
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	ASPECT	NORTH NORTH NORTH NORTH NORTH	SOUTH SOUTH WEST WEST	EAST EAST EAST EAST	EAST	WEST WEST WEST	NORTH	NORTH
SIS - ALT	VOLUME	407.00 251.00 163.00 270.00 107.00 474.00	268.00 432.00 396.00 295.00 275.00	325.00 150.00 224.00 275.00	338.00 362.00 700.00	100.00 275.00 100.00 475.00	784.00 464.00 1248.00	878.00 200.00 1078.00
IAGNO	TOTAL	15 8 6 10 19	111 101 101 151	11 9 6 1 1 39	14 14 26	4 1 1 9 1 9 1	15 40	28 7 35
TURE C	V C7 /	0000	0.0000	0000	00 0	000	00 0	00 0
LVICUL	۵۵۰ د ۰ د	0000	20 0	0000	00 0	000 0	00 0	00 0
IS :	5 د ه <	19	2 2 3 4 1 1 1 1	0000	8 2 8	000	25 14 39	28 4 4
	>012	10 0 7 7 7 7 4 4 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 12 18	11 4 - 19 - 19	0 - -	3 3 9
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 17 4 4 17 4 4 17 4 17 4 17 4 17 4 17	4 TP 4	4 TP 4 TP
H	RN VI ST ST	8011 8011 8011 8011 8011	8012 8012 8012 8012 8012 8012	8013 8013 8013 8013	8014 8014 8014	8015 8015 8015 8015	8016 8016 8016	8017 8017 8017
	ncn vcn	738 738 738 738 738	738 738 738 738	738 738 738	738	738 738 738	738	738

		ī														
PAGE 16 OF 25	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC RS,WLPCT,CC	RS, R&W, CC	RS,WLPCT,CC	RS,CC RS,CC		RS,CC RS,CC RS,CC RS,TMPCT,CC		RS,TMPCT,CC	RS, TMPCT, CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC		RS,CC	RS,CC	RS, CC	RS, CC RS, R&W, CC RS, CC RS, CC RS, R&W, CC
PA	AE AE VH	88	22	္ပ	88		8888		္ပ	23	ខ្លួន		ວ	ပ္ပ	23	
	GH GH	# %	뽀	뽀	RS RS		로로 로로		뽀	RS	RS SL RS		ሦ	里	로	R H H S
	R AA H R	2 2	z	z	zz		2222		z	z	222		z	z	z	22222
	I SN ID TE WET EX HAB	100 FNW 100 FNW	89 FIW	86 FNW	70 FW 70 FW		56 FW 80 FW 90 FNW 85 FNW		88 FNW	85 FNW	85 FNW 85 FNW 85 FNW		14 SE	80 FW	80 FW	80 FV 97 FV 97 FV 70 FV
	∑ 00		М	4			0444		7	4	444		0	-	-	
	ΣΣΗ	мм	4	М	44		2002		М	М	ммм		_	М	2	мммм
	ECO CODE	00 M	MHB	WHS	999		CCS CCS WHS		MHS	WHS	KHS KHS KHS		CMC	CCD	CCD	000 M 3
	SMU	35	35F	528F	4F 4F		80 80 540 75F		528F	528F	528F 528F 528F 528F		240	180	180	180 180 180 54F 19E
	T WH IR MAX NO ELEV DW	15 H 7	30 H	Н О	0 0 H H		15 H H OI		30 H	15 H	15 th		15 H	15 M	A	3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H 3 H
	MIN ELEV 6	0 %	0	0	80 00		7 7 7 10 10 10		0	0	5 2 5		0	0	М	15 20 20 20 11
	S I O E B	44	4	4	44		4 C 3 A -		м	4	444		0	0	-	0 M 4 4 4
7 :	VQO	운 운	Ξ	Ξ	오오		오오오오		웆	₽	오오오		포	윷	웆	¥ ¥ ¥ ¥ 9
- ALTERNATIVE #2	ASPECT	SOUTH	EAST	WEST	NORTH		NORTH NORTH NORTH		WEST	WEST	EAST EAST EAST		WEST	NORTH	EAST	WEST WEST WEST EAST
SIS - ALT	VOLUME	1,881.00 471.00 2352.00	1,066.00	722.00	314.00 439.00	00.00	326.00 1,044.00 157.00 250.00	1777.00	2,961.00	471.00	388.00 383.00 534.00	1305.00	596.00	1,756.00	220.00	220.00 376.00 690.00 408.00 1,400.00
IAGNO	TOTAL	85 K	34	23	10 10 12 12	ż	12 41 5	68	89	15	13 77	43	19	26	7	7 12 22 13 13 52
URE D	V 0 L T C7 A	00 0	0	0	00	>	0000	0	0	0	000	0	0	0	0	00000
SILVICULTURE DIAGNOSIS	> 0 V	00 0	0	0	00	>	0000	0	21	0	000	0	0	0	0	00000
IS:	V 0 0 CS	55 27	34	23	0 4 %	47	4 W W O	12	63	15	0 6 7	36	19	99	7	7 22 22 23 24 25 24 2
	> 0 J	00 0	0	0	00	>	88 000	22	2	0	M 4 0	7	0	0	0	36 00 00 36 36 36 36 36 36 36 36 36 36 36 36 36
	L RL U EU D VD	41 7 41 7	4 TP	4 TP	4 TP		d d d d d d d d d d d d d d d d d d d		4 TP	4 TP	4 T P		4 TP	4 TP	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H	RN VI EI ST	8018 8018 8018	8019	8020	8021	1 700	8022 8022 8022 8022 8022	8022	8023	8024	8025 8025 8025	8025	8026	8027	8028	8029 8029 8029 8029 8029 8029
	VCU	738	738	738	738		738 738 738 738		738	738	738 738 738		738	738	738	238 238 238 238 238 238 238

_		ī								
PAGE 17 OF 25	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC	RS,CC RS,CC	RS, TMPCT, CC RS, TMPCT, CC	RS, CC	RS,R&W,CC RS,CC	RS,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC	FH,RS,R&W,2-SW	RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS, R&W, CC RS, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, R&W, CC
	A A E A Y	23	88	2 2	သ	88	8888	MS	8888	888888
	G G L ™	RS	로 로	로 로	로	SLS	RS RS	뿦	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	RS SL SL RS
	R AA RB	z	2 2	2 2	z	2 2	2222	z	2222	Z Z Z Z Z Z
	I SN ID TE WET EX HAB	86 FNW	80 FW 80 FW	100 FNW 100 FNW	HAN 09	98 FNW 100 FNW	88 SEC 75 SEC 81 FNW 87 SEC	19 EM	95 FNW 93 SEC 87 FNW 95 SEC	82 FNW 100 FNW 100 FNW 82 FNW 100 FNW 64 FNW
	Σ ∪0	4			4			-		2 2 - 2
	ΣΣ∺	2	мм	мм	М	мм	M -	_	W - W -	w w w w w ←
	EC0 C00E	WHS	999	S H M	ÆH	NO NO	NA WAE	CMM	N W E C	W W W W W W W W W W W W W W W W W W W
	SMU	528F	180 180	54F 54F	43EF	35	86CD 86CD 54F 86CD	84C	1E 86CD 1E 86CD	1F 1E 1E 1E 29EF
	PNRHH	=	ΣΣ	ΣΣ	Σ	= =	###	Σ	T T T T	####
	MAX ELEV	2	9 9	25	15	15	o	20	20 7 15 8	30 20 30 30 30 30
	MIN	4	99	15 2	12	9 21	9 10 11	15	01000	20 15 11 11 15
	RPOLS	4	2 2	7 7	4	44	M M 4 N	-	MMMM	448888
#5	V@0	₽	₹ €	₹ &	£	₩ ₩	$\overset{\mathbf{V}}{\circ}\overset{\mathbf{V}}{\circ}\overset{\mathbf{V}}{\circ}\overset{\mathbf{V}}{\circ}$	Σ	$\Sigma \Sigma \Sigma \Sigma$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ERNATIVE	ASPECT	SOUTH	NORTH	WEST	NORTH	WEST	NORTH NORTH NORTH NORTH	NORTH	EAST EAST EAST EAST	NORTH EAST EAST NORTH NORTH SOUTH
AGNOSIS - ALTERNATIVE #2	VOLUME	439.00	124.00	376.00 138.00 514.00	251.00	815.00 408.00 1223.00	200.00 499.00 499.00 2499.00	1,108.00	815.00 677.00 752.00 564.00 2808.00	1,170.00 444.00 200.00 925.00 350.00 932.00
AGNO	TAL	14	2 9 1 =	12 5 7	œ	26 13 39	20 50 50 50 50 50 50 50 50 50 50 50 50 50	, 22	26 22 24 24 18	34 , 12 , 8 , 30 , 14 , 36 , 134 ,
TURE DI	V 0 L TO	0	00 0	00 0	0	00 0	0000	0	0000	000000
SILVICULTURE	>0 7	0	00 0	00 0	0	00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27	0000 0	20 9 0 111 0 0 2 42 42
SI	: > 0 J	14	00 0	12 2 1	∞	26 13 39	22 0 0 22 22 22 22 22 22 22 22 22 22 22	0	26 20 24 18	000000
	> 0 - 3	0	2 9 1	0 m m	0	00 0	8 13 20 20 	0	0 0 0 0 0 0 0 0	41 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	L RL U EU D VO	4 ML	4 TP 4 TP	4 TP	4 TP	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 TP	4 1 1 P 4 1
=	AU RN VI ST T#	8030	8031 8031 8031	8032 8032 8032	8033	8034 8034 8034	8035 8035 8035 8035 8035	8036	8037 8037 8037 8037 8037	8038 8038 8038 8038 8038 8038
	ncon	738	738 738	738 738	738	738 738	738 738 738 738	738	738 738 738 738	738 738 738 738 740

25	NAGEMENT		, ,,,8,,					
PAGE 18 OF	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC	RS,CC RS,R&W,CC RS,CC RS,R&W,CC RS,R&W,CC RS,TMPCT,CC RS,TMPCT,CC	RS, CC RS, CC RS, CC	RS, CC RS, CC RS, CC	RS,CC RS,CC RS,CC	RS,CC RS,CC RS,CC	RS, CC
14	AR AE	88	8888888	8888	888	888	888	23
	G G E M	R S S	H RS	로 로 로 로	로 로 로	로 로 로	독 로 로	¥
	R AA RB	ZZ	Z Z Z Z Z Z Z	Z Z Z Z	222	222	222	z
	I SN ID TE WET EX HAB	63 FNW 61 FNW	60 SE 60 SE 76 SE 76 SE 84 FNU 94 FNU 75 FNU 75 FNU	50 SE 60 SE 70 SE 76 SE	75 SE 78 FNW 76 FNW	60 SE 70 FW 86 FNW	63 SE 68 FW 70 FW	60 SE
	Συσ	2 3	M-44					-
	ΣΣΗ		M		- 22	7 2 7	- 22	-
	ECO CODE	WHC	CMC CMC CMC WHC WHC	O C C C C C C C C C C C C C C C C C C C	MDC MDC	CMC	CMB	CMC
	SMU	29EF 29EF	24AC 24AC 24AC 29EF 1E 29EF 29EF	24AC 24AC 24AC 24AC 24AC	24AC 2E 2E	24AC 4C 2D	24D 4C	24AC
	T WH IR MAX NO ELEV DW	20 H	ωω ο ο ο ι τ Σ τ Σ Σ Σ Σ Σ	NW44 EEEE	K 4 K H H H	232	4 4 4 T T T	2 H
	MIN ELEV E	15	7748417	0 0 m m	222	777	4 M 4	2
	ΝΙΟΕШ	мм	0xxx4		000	2	777	_
#2	V@0	₩ Ð	Q Q Q Q Q Q	오 오 오 오	2 2 2	888	888	8
RNATIVE	ASPECT	NORTH	EAST EAST EAST EAST EAST EAST	EAST EAST EAST EAST	NORTH NORTH NORTH	NORTH NORTH NORTH	WEST WEST WEST	NORTH
DIAGNOSIS - ALTERNATIVE #2	VOLUME	383.00 407.00 790.00	257.00 41.00 877.00 283.00 657.00 433.00 972.00	283.00 314.00 345.00 439.00	649.00 625.00 474.00 1748.00	100.00 275.00 224.00 599.00	200.00 488.00 232.00	250.00
IAGNOS	TOTAL ACRES	13 16 29	23 29 16 14 14 103	1100	26 25 19	11 6 1 2 2 4 2 4	17 17 8 8 33	10
	, v C7 A	00 0	0000000	0000	000	000	000	0
SILVICULTURE	>0 -0 %	00 0	16 0 0 0 0 33	0000	0000	000 0	0000	0
SI	> 0 - 5	6 10	31	11 14 44	000 0	000	0 0 5 5	0
	> 0 - 2	4 5 6	40000-0	0000	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	411 6 1 2 5 2 5 2	3 7 8 1 8	10
	L RL U EU D VD	4 TP 4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P 4 1P 4 1P 4 1P	4 TP 4 TP 4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP 4 TP	4 TP
± =	RN VI ST #	8039 8039 8039	8040 8040 8040 8040 8040 8040	8041 8041 8041 8041	8042 8042 8042 8042	8043 8043 8043 8043	8044 8044 8044 8044	8045
	VGU	738 738	738 738 738 738 738 738 738	738 738 738 738	738 738 738	738 738 738	738 738 738	738

		ī									
PAGE 19 OF 25	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, CC	RS,CC RS CC	RS,WLPCT,CC	RS,CC	RS, R&W, CC RS, R&W, CC	RS,CC	RS,CC RS,TMPCT,CC RS,R&W,CC RS,R&W,CC RS,CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS,R&W,CC	RS,TMPCT,CC RS,WLPCT,CC RS,WLPCT,CC
9	AE AE VH	ខួខួខួ	8 8	8	23	88	8	88888	2 2 2 2	ည	888
	₩ 3 L B	로로로	로 =	. ₹	¥	S 25	SS.	보 보 & & 보	R S S S S S S	뽀	뽀 뽀 뽀
	R A H H B	222	2 2	z	z	2 2	z	22222	2222	z	222
	SN SN TD C TE WET G EX HAB	1 74 FW 1 67 FW 1 65 FW	1 64 SE		1 60 SE	1 79 FW 1 76 FW	4 79 FIW	1 45 SEC 1 100 FNW 1 78 FNW 3 93 FNW 3 89 FNW	4 90 FNW 4 90 FNW 4 85 FNW 4 87 FNW	HMN 22 7	4 84 FNW 4 85 FNW 4 87 FNW
	ΣΣΗ	222		M	_	4 4	2	7222	0 0 M M	м	ммм
	EC0 C00E	C W B W C C C C C C W B W B C C C C C C	CMC		CMC	000	SOO	E E E E E E E E E E E E E E E E E E E	S H H H	MHC	S H H
	SMU	18C 4D 4D	24AC	3E	24AC	18E 18E	33E	25 74E 74E 74E 528E	540 540 528E 528F	43EF	528F 528F 528F
	T WH IR MAX NO ELEV DW	4 4 K	W 4	=	±	20 M	20 M	8 / 8 / 9	~ 4 8 8 ∓ ∓ ∓ ∓	15 H 4	2 2 2 2 4 4
	MIN ELEV	mm N	2 %	5	М	5 5	15	8 ~ 9 4 12	M M 40 M	0	2 2 2
	S - O G =	122		m	-	мм	м	- m a m m	0 0 M M	м	44M
#5	000	% % %	% &	8	8	오 오	8	2222	2222	8	유 유 유
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	ASPECT	SOUTH SOUTH SOUTH	WEST	WEST	SOUTH	WEST	SOUTH	WEST NORTH WEST SOUTH SOUTH	SOUTH SOUTH SOUTH SOUTH	WEST	SOUTH SOUTH SOUTH
SIS - ALT	VOLUME	375.00 224.00 325.00 	375.00	299.00	224.00	761.00 749.00 1510.00	616.00	220.00 396.00 937.00 985.00 944.00	821.00 590.00 475.00 417.00 2303.00	1,208.00	752.00 564.00 345.00
AGNO	TOTAL	15 9 13 	15	12	0	21 21 27 27 27	19	24 24 23 33 39	20 13 13 62	43	24 11 11 53
LTURE DI	V 0 L TC C7 AC	000 0	0 0	0	0	00 0	0	000000	00000	0	0000
SILVICU	> 0 C6	000	0 0	0	0	7 14 21	2	0 19 24 23 23	20 9 7 1 1 37	0	0000
IS	\ 0 CS	000	0 0	0	0	00 0	17	7 10 5 0 0	0 7 6 12 12 25	21	24 18 11 53
	> 0 C	15 9 13 13 37	15	12	0	7 - 19	0	00000	0000	22	000 0
	L RL U EU D VD	4 1P 4 1P 4 1P	4 ML		4 TP	4 ML	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	B B B 로 로 로
± =	RN VI #	8046 8046 8046 8046	8047	8049	8050	8051 8051 8051	8052	8053 8053 8053 8053 8053 8053	8054 8054 8054 8054 8054	8055	9001
	NCU	738	738	738	738	738	738	738 738 738 738 738	738 738 738 738	738	739

		ī																	ū
PAGE 20 0F 25	PROPOSED FUTURE MANAGEMENT	RS, WLPCT, CC	RS, R&W, CC	RS, TMPCT, CC	RS, WLPCT, CC RS, WLPCT, CC RS, CC RS, CC RS, WLPCT, CC		RS,WLPCT,CC	RS,WLPCT,CC	RS,WLPCT,CC	RS,R&W,CC RS,IMPCT,CC RS,WLPCT,CC RS,CC		RS,WLPCT,CC PLANT(S),SS,CC		RS, CC	RS,TMPCT,CC PLANT(YC),SS,CT,SW RS,CC		FH,RS,R&W,2-SW	RS,R&W,CC FH,RS,R&W,2-SW	MODIU DEVILLA DOMET
۵	AE AE VH	2	2	ဗ	8888		23	ខ	ຽ	2222		ខ្លួ		22	888		AS	AS CC	
	GH OT	RS	S	뿦	R S S		≢	RS	ร	R R H H		로로		로	S S S		뽀	뽀 뽀	
	RB AA	2	Z	Z	***		2	Z	Z	2222		z >		2	* * *		z	2 2	
	I SN ID TE WET EX HAB	90 FNW	81 FNW	100 FNW	100 FNW 100 FNW 83 FNW 100 FNW		60 FW	100 FNW	100 FNW	76 SEC 100 FNW 100 FNW 70 SEC		100 FNW 100 FNW		100 FNW	100 FNW 78 FW 92 FNW		57 FW	96 FNU 73 FW	
	E O G	4	3	-			-	-	-					-			-		
	ΣIH	2	-	М	2009		-	2	4	- 4 4 -		7 -		M	200		М	мм	
	ECO	WHS	MDC	Z H	K K K K K K K K K K K K K K K K K K K		WHS	MDC	WHC	CMMCCMM		WDC		MHN.	MDC CMB KDC		CCD	NDC CCD	
	SMU	540	10	74 F	3F 74C 74E 2D		510	23	50F	25 50F 50F 25		50D 10		24E	30 3E 3E		4E	1E 4E	
	T WH IR MAX NO ELEV DW	5 H	Н 7	15 H	2000 2000 2000		5 H	¥ 9	5 H	9977		8 7 H		20 H	15 H H 75 H		20 M	20 H 20 M	
	MIN	м	2	=	4 4 M W		2	9	2	2658		~ ~		20	111		20	20	
	N T O F H	2	-	4	4 - 2 8		-	2	М	M 4 4 0		2 2		M	228		М	m ~	
#2	VQO	₽	£	8	8888		Σ	8	₽	2222		오오		æ	오오오		æ	오오	
- ALTERNATIVE #2	ASPECT	SOUTH	SOUTH	SOUTH	SOUTH SOUTH SOUTH SOUTH		WEST	SOUTH	SOUTH	SOUTH SOUTH SOUTH SOUTH		SOUTH		SOUTH	WEST WEST WEST		SOUTH	SOUTH	
	VOLUME	596.00	701.00	827.00	627.00 408.00 439.00 439.00	1913.00	408.00	275.00	876.00	713.00 527.00 376.00 314.00	1930.00	485.00	628.00	565.00	485.00 502.00 439.00	1426.00	439.00	651.00	1176.00
AGNO:	TOTAL	19	25	28	20 14 14	. 19	13	=	27	25 12 11	62	5	22	14	16 14	47	14	23	777
SILVICULTURE DIAGNOSIS	V 0 L TO	0	0	0	0000	0	0	0	0	0000	0	00	0	0	000	0	0	00	0
LVICUL	> 0 - 0 %	0	0	0	0000	0	0	0	٣	0000	6	00	0	13	000	0	0	90	9
SIS	> 0 CS	19	12	20	20 13 14	61	13	0	54	25 12 11	53	5	22	-	17 16 17	24	14	0	_
	> 0 C4	0	13	œ	0000	0	0	1	0	0000	0	00 :	0	0	000	0	0	10	31
	L RL U EU D VD	3 ML	3 ML	3 ML	8888 독도독		3 ML	3 TP	3 ML	3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3 TP 3 TP		3 ML	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3 ML	3 3 ¥	=
H	R VI	9005	9003	9006	9005 9005 9005 9005	9006	9006	2006	8006	6006 6006 6006	6006	9010	9010	9011	9012 9012 9012	9012	9013	9014	9014
	NGU	739	739	739	739 739 739		739	739	739	739		739		739	739 739 739		739	739	5

_	1	i										
PAGE 21 OF 25	PROPOSED FUTURE MANAGEMENT	FH,RS,R&W,2-SW	RS,CC	RS, CC	RS,TMPCT,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC		RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC
9	AE AE VH	MS	ပ္ပ	္ပ	8888		8888		8888	222	88	888
	G C E M	뽀	뽀	로	H H S S		RS RS		SL RS HL	로 로 로	문망	SL SL SL
	R A A H B	z	z	z	2222		2222		2222	222	2 2	z z z
	I SN M ID C TE WET G EX HAB	1 93 FW	1 98 FNW	2 98 FNW	1 100 FNW 2 96 FNW 1 100 FNW 5 85 FNW		4 85 FNW 1 100 FNW 1 100 FNW 1 100 FNW		4 85 FNW 4 85 FNW 4 85 FNW 1 70 FW	1 100 FNW 1 100 FNW 1 100 FNW	4 85 FNW 3 91 FNW	1 100 FNW 1 100 FNW 1 100 FNW
	ΣΣ∺	2	м	2	0000		0000		MMMN	222	мм	mm N
	ECO	CMB	MDC	MDC	WDC WDC CCS		2000		CAB S	MD C MD C MD C	WHS	WDC WHS
	SMU	Q5	3E	30	35 35 35 6		2E 2E 2E		528F 528F 528F 40	2 2 2	528F 528F	3E 3E 530
	T WH IR MAX NO ELEV DW	20 M	20 H	H 7	M M & &		2 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 ×		15 H 15 H 14 M	N 4 4 E E E	20 8 M	0 0 0 E E E
	MIN ELEV E	15	12	М	MW40		41000		7 15 15 8	M 4 4	15	001
	прого	2	м	2	0 M 4 4		4 W W W		4440	000	4 W	0 M 0
#5	V@0	₩ W	æ	₩	¥ ¥ ¥ ¥ ¥		오오오오		X X X X	222	8 8	Q E E
ERNATIVE	ASPECT	WEST	SOUTH	NORTH	EAST EAST EAST EAST		EAST EAST EAST EAST		NORTH NORTH NORTH	SOUTH SOUTH SOUTH	EAST	NORTH NORTH NORTH
AGNOSIS - ALTERNATIVE #2	VOL UME MMBF	474.00	702.00	521.00	261.00 408.00 471.00 283.00	1423.00	439.00 408.00 157.00 188.00	1192.00	590.00 125.00 251.00 157.00	471.00 157.00 132.00 760.00	858.00 554.00 1412.00	560.00 519.00 633.00 1712.00
I A GNO	OTAL	19	54	16	ឧប្ប	45	4 5 6	38	19 4 4 5 5 5 36	5 2 8	31 16 47	15 18
TURE DI	V 0 L TO	0	0	0	0000	0	0000	0	0000	000 0	00 0	0 0 0
SILVICULTURE	۵۱۰ د ۱۰	0	0	2	-000	-	0000	0	0000	000 0	0 9 9	5 7 18
SI	: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	16	14	× 21 6	747	4 5 5 9	38	18 4 8 5 5 35	15	13	10 10 11 11 11 11
	> 0 - 1 2	19	œ	0	0000	0	0000	0	-000	0 0 4 4	18	000 0
	L RL U EU D VD	3 ML	3 ML	3 TP	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3		3333	3 1 P P T P	3 TP 3 TP	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
± 3	RN VI EI ST	9015	9016	9017	9018 9018 9018 9018	9018	9019 9019 9019 9019	9019	9020 9020 9020 9020	9021 9021 9021	9022 9022 9022	9023 9023 9023 9023
	NCU NCU	739	739	739	73.9 73.9 73.9 73.9		73.9 73.9 73.9 73.9		25. 25. 25. 25. 25. 25.	739 739 739	739	739

_		i						
PAGE 22 OF 25	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC	RS,RRW,CC RS,RRW,CC PLANT(S),SS,CC PLANT(S),SS,CC	PLANT(S), SS, CC	PLANT(S), SS, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC RS, CC RS, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC
A	HM RT VH	8888	222	222	8888	23	888888888	888
	풍리본프	보&보보	S S I	S S S	8 8 8 8 8 8 8 8	로	R R S S S S S S S S S S S S S S S S S S	S S H
	AA AA BB B	2222	2 2 2	2 2 2	z z > >	>	> z z z z z z z z	222
	I SN N ID C TE WET G EX HAB	1 71 FNW 1 83 FNW 1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW	1 90 FW 1 83 FNW 1 100 FNW 3 94 FNW	1 98 FNW	1 70 FW 1 70 FW 1 70 FW 1 100 FW 1 75 FW 1 87 FW 1 83 FW	5 65 FNU 5 65 FNU 4 65 FNU
	ΣΣ∺	0000	ммм	ммм	M 01	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	ECO	N H N N H N N N N N N N N N N N N N N N	WHS WHC WHS	S RHS S RHS S RHS	CCD SSR SSR SSR	SSR	S S S C W B	N KHC CHC CHC CHC
	SMU	530 530 530 530	53E 53E 53E	53E 53E 53E	180 530 10 10	10	10 40 40 40 11 11 40 40	29EF 29EF 29EF
	T WH IR MAX NO ELEV DW	25 25 25 X X X X X X X X X X X X X X X X	12 M 15 M	55 T X X X X X X X X X X X X X X X X X X	8 - 0 0 E E E E	H 7	7.0000-1-1000 7.0000-1-1000	9 H 20 H
	MIN ELEV I	2522	10 0	0 0 5	9 8 10	2	wuguto010	۰ <u>۲</u> ۰
	R P O L S	- 222	M 4 W	ммм	N - N - N	M	NUNUNUNUN	44M
#2	VQO	####	¥ Q ¥	E E E	X X X X	Σ	*******	¥ ¥ ¥
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	ASPECT	WEST WEST WEST WEST	WEST WEST WEST	WEST WEST WEST	WEST WEST WEST	WEST	NORTH NORTH NORTH EAST EAST EAST EAST EAST	NORTH NORTH WEST
SIS - ALT	VOLUME	177.00 573.00 249.00 123.00	287.00 350.00 270.00	382.00 325.00 250.00	784.00 532.00 282.00 282.00 1880.00	722.00	941.00 124.00 338.00 112.00 188.00 382.00 232.00 551.00	408.00 314.00 1,022.00 1744.00
IAGNO	OTAL CRES	16 7 7 31	11 14 10 35	10 10 88	25 10 10 63	23	30 25 12 4 4 14 18 8 8 18 103	13 10 34 57
LTURE D	V 0 L TO	0000	000	000 0	0000	0	000000000	000 0
LVICU	> 0 C	3 3 3 4 5 1 5 1	000 0	000:0	0000;0	0	00000000000	000 0
IS :	0 O CS	3 7 7 0 0	3 3 2	100	25 13 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	23	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 10 27 50
	> 0 ° C	0 - 0 0 -	7 7 30	113	0 2 2 5	0	00 00 00 00 00 00 00 00 00 00 00 00 00	00 2 7
	L RL U EU D VD	3 17 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 17 3 17 3 17	3 17 3 17 17 17	3333	3 TP	W W W W W W W W W W W W W W W W W W W	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
# 4	EI ST	9024 9024 9024 9024 9024	9025 9025 9025 9025	9026 9026 9026 9026	9027 9027 9027 9027 9027	9028	9029 9029 9029 9029 9029 9029 9029	9030 9030 9030
	VCU	33,33	739	739	339	739	233333333333333333333333333333333333333	33 33 33

_		Ī									
PAGE 23 OF 25	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,R&W,CC RS,TMPCT,CC	RS,TMPCT,CC RS,CC RS,TMPCT,CC RS,WLPCT,CC	RS, TMPCT, CC	RS,R&W,CC RS,R&W,CC RS,R&W,CC	RS,CC	RS,TMPCT,CC RS,TMPCT,CC	RS, TMPCT, CC	RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC		RS,R&W,CC
	A A E A H	888	8888	2	888	2	88	2	888888		8
	GH CH	R S S	로로로로	RS.	S S S	RS	로 로	로	H S S H H S		뿦
	RB AA	222	z z z z	z	222	z	2 2	z	****		z
	I SN ID TE WET EX HAB	62 SEC 81 FW 85 FNW	100 FNW 76 FNW 100 FNW 80 FNW	100 FNW	88 FW 91 FW 90 FW	81 FNW	85 FNW 85 FNW	100 FNW	68 FV 100 FNW 100 FNW 92 FNW 65 FW 100 FNW		87 FNW
	∑ ∪0	4 2 3		_		-	4 4	-			2
	.	— w w	2222	М	222	M	мм	М	мммммм		М
	ECO J CODE	CCD	M K K K K K K K K K K K K K K K K K K K	WHC	CMB	MHC	Y WHS	WHC	H H H H H H H H H H H H H H H H H H H		MDC
	T WH IR NO DW SMU	25 18D 528E	2828	11E	9 9 9	53F	528F 528F	11E	19F 11E 11E 19F 11E		3F
	MAX N ELEV D	0 0 L	21 0 1 0 0 E M M M M M M M M M M M M M M M M M	15 M	7 5 7 E E E E	0	15 M	10 M	30 15 M		15 M
	MIN ELEV E	7 8 10	9 8 0 8	10	000	0	8 7	œ	00000		0
	прого	4 2 2	2222	М	ммм	м	44	М	W W W W 4 W		4
#5	000	E E E	X X X X	Ξ	ΣΣΣ ΣΣΣ	Σ	ΣΞ	Ξ	E E E E E E		Ξ
- ALTERNATIVE #2	ASPECT	EAST EAST EAST	WEST WEST WEST	EAST	EAST EAST EAST	WEST	NORTH	EAST	EAST EAST EAST EAST EAST		NORTH
NOSIS - AL	VOLUME	867.00 376.00 408.00 	251.00 251.00 283.00 188.00	540.00	439.00 376.00 288.00 1103.00	502.00	314.00 444.00 758.00	659.00	971.00 439.00 659.00 601.00 519.00 188.00	3377.00	2,269.00
DIAGNO	TOTAL	27 12 13 52	8 8 9 9	16	14 12 10 36	16	16	21	33 14 21 21 19 6	114	69
LTURE	, o C7	000	00000	0	000:0	0	00:0	0	00000	0	0
SILVICULTURE DIAGN	رد ه د	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	4	0000	0	00 0	0	000000	0	=
SI	> 0 - S	25 12 13	8 8 9 9 15	12	14 12 6 32	16	10 7 7 17	21	23 21 21 7 7 7	83	28
	رد o <	000 0	0000 0	0	0 0 4 4	0	0 6 6	0	00 00 12 00 1	31	0
	L RL D EU O VD	333	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 TP	8 8 8 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP	3 3 4 7 4 7	3 TP	333333		3 TP
± 5	# # T I I I	9031 9031 9031	9032 9032 9032 9032	9033	9034 9034 9034 9034	9035	9036 9036 9036	9037	9038 9038 9038 9038 9038	9038	9039
	אכה	25. 25. 25. 25. 25.	55 55 55 50 55 55 50 55 55 50 55 55 50 50 55 50 5	739	739	739	739	739	2232333		739

	LN							
PAGE 24 OF 25	PROPOSED FUTURE MANAGEMENT	RS, WLPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC	RS, WLPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC RS, CC RS, CC
۵	AE RT VH	888	ខួខ	23	2 2	8888	88888	888
	CH CH	R S S	R S	RS	로 로	RS RS	RS RS RS	표 S 크
	R AA RB	zzz	zz	z	zz	zzzz	z z z z z	z z z
	SN SN 1 ID TE WET 5 EX HAB	100 FNW 100 FNW 100 FNW	100 FNW 100 FNW	85 FNW	100 FNW 100 FNW	100 FNW 97 FNW 100 FNW	100 FNW 100 FNW 92 FNW 80 FNW	100 FNW 93 SE 85 FNW
	∑ ∪ ∪			7				
	II-	ммм	2 2	2	мм	мммм	0 M 0 0 M	2 - 2
	EC0 J C00E	3 3 3 0 0 0	3 S	WHS	3 g	3333 0000	99999	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	SMU	3.5 3.5 3.5	30	75F	1	1 1 1 1 1	5 + 5 5 +	10 240 10
	T WH IR MAX NO	8 0 0 M M M	7 Z	12 H	9 S E E	15 H 15 H 7 H	8 T T R H H T T H H T T H H	150 H 0 H
	MIN MAX ELEV ELEV	N 80	- 2	4	4 0	NO 0 0	7 0 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	000
	S L P E E E	444	2 2	4	мм	M M 4 M	0 4 0 M M	000
O.I	00 0	222	¥ ¥	¥	¥ ¥	E & O &		999
/E #								
- ALTERNATIVE #2	ASPECT	WEST WEST WEST	NORTH	NORTH	NORTH	NORTH NORTH NORTH NORTH	WEST WEST WEST WEST WEST	EAST EAST EAST
	VOLUME	220.00 534.00 512.00 1266.00	321.00 352.00 673.00	655.00	471.00 163.00 634.00	328.00 1,034.00 760.00 608.00 2730.00	251.00 314.00 251.00 651.00 1,058.00	376.00 583.00 345.00 1304.00
IAGNOSIS	TOTAL	17 16 16 40	10	19	15	27 19 16 16	10 8 22 37 37	119
rure di	0 C7 A	000 0	00 0	0	00 0	0000 0	00000	000 0
SILVICULTURE	>0 18	0 7 - 1 8	44 8	9	00 0	8 20 17 11 56	00000	000 0
S	>0~S	12 15 15 34	5 11	13	15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 10 16 21 51	17 17 40
	>0-2	0 m 0 m	0 0 0	0	0 4 4	0 - 0 0 -	0 0 0 0 1 16 2 2 2 2 2 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	L RL U EU D VD	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 T P	3 ML	3 A A	B B B B B B B B B B B B B B B B B B B	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 3 1 P P
Ŧ :	RN VI ST T#	0706 0706 0706	9041 9041 9041	9042	9043 9043 9043	5044 5044 5044 5044 6044	5706 50042 60042 60042 60042	9706 9706 9706
	אכה	739	739	739	739	739 739 739	739	739

_								
PAGE 25 OF 25	PROPOSED MANAGEMENT		RS, R&W, CC	RS, WLPCT, CC	RS,CC	RS,R&W,CC		
4	R A E	5	ပ္ပ	္ပ	ပ္ပ	ပ္ပ		
	R I M AAA OT			N H				
	SN SN ID TE WET	ă	76 SE	100 FNW	71 FW	62 SE		
	Σ O C		_		7	_		
	ECO PAGE		CMC	MDC	CMB	CMC		
	3		4AC	3E	۵	4AC		
		1	4 H 2	4 H 3	7 H 7	3 H 2		
	S T WH L WH C D IR D D IR D D D D D D D D D D D D D D	ברבי בר	7	M	2	2		
#2	S 10 6	0.00	PR 2	PR 3	PR 2	PR 1		
RNATIVE		ASPECI	NORTH	WEST	NORTH	NORTH		ų.
SILVICULTURE DIAGNOSIS - ALTERNATIVE #2	TAL VOLUME	A SEE	439.00	627.00	296.00	439.00	67 2101.00	8585 259,939 MBF
IAGNO	TOTAL	SE L	14	20	19	14	29	8585
rure D	V 0		0	0	0	0		0
LVICUL	>07	3	0	0	0	0	0	762
SI	>07	3	14	20	19	14	29	
	>0~	3	0	0	0	0	0	2,579 5,245
	L RL U EU	0 0	3 ML	3 ML	3 ML	3 ML		ii ~
Ŧ	AU RN VI EI	*	2506	2506	2506	2506	2706	
			739	739	739	739		

PAGE 1 OF 18	HM AE RT PROPOSED VH FUTURE MANAGEMENT	CC RS,WLPCT,CC CC RS,WLPCT,CC	CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, CC CC RS, CC CC RS, CC	CC RS,WLPCT,CC CC RS,WLPCT,CC CC RS,WLPCT,CC	CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, R&W, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, R&W, CC	CC RS,R&W,CC CC RS,R&W,CC
	GH GH	SS RS	2 2 2	목 로 로	폭 폭 품	RS S	RS RS RS RS	R S
	RB AA	2 2	222	222	222	2 2	2222	2 2
	WET HAB	F N Y	NNN	SEC FNW SEC	N N N N N N N N N N N N N N N N N N N	N N	A NA MA	N N N N N N N N N N N N N N N N N N N
	S I ID ID ID	85	85 85	68 71 45	900	100	100 97 83 83	78
	∑ U Ü	44	444			4 -	1477	N 0
	ΣΣΗ	мм	ммм	- 0 -	000	M 6	7 3 2 5 5	~ w
	ECO	WHS	KHS KH	CMM W	E E E	SHR HH MH MH	N E E E E E E E E E E E E E E E E E E E	KHC KHC
	SMU	528F 528F	528F 528F 528F	25 74E 25	74E 74E 74E	528F 11D	110 110 110 528F 21A	29EF 528F
	T WH IR IX NO	H 2	911 1119	444	7 H Z H	7 8 H H	4 N N V V	# # 9
	N MAX V ELEV	ın m	401	444	426	9 15	M W 4 V W	ν ν
	MIN ELEV							
	S L O O P P	44	444	700	MMM	4 W	0000	N 0
£		8 8 8	T T T	X X X	YYY	N X	9999	₩ ₩ ₩ ₩
ALTERNATIVE	ASPECT	SOUTH	EAST EAST EAST	EAST EAST EAST	WEST WEST WEST	NORTH	NORTH NORTH NORTH NORTH	SOUTH
	VOLUME	399.00	1,988.00 482.00 771.00 3,241.00	175.00 207.00 100.00 482.00	246.00 370.00 206.00 822.00	345.00 847.00 1,192.00	444.00 100.00 438.00 157.00 376.00 1,515.00	559.00 538.00 1,097.00
IAGNOSIS	TOTAL	16 16 32	26 19 119	7 4 18	20	11 27 38	16 16 17 17 18	18 19 37
URE D	V 0 L C7 A	00 0	000 0	000	000 0	00 0	00000	00 0
SILVICULTURE	0 0 0 0 0 0	00 0	000 0	0 7 0 7 7	20 5	00 0	00000	00 0
SII	v 0 C5	00 0	19 - 42	000	000	11 27 38	7 0 0 1 2 2 3 0	10 10 27
	v 0 0 C	16 16 32	52 18 7	7 5 4 9	000 0	00 0	6 4 0 0 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 0
	L RL U EU D VD	3 ML 3 ML	3 3 A E A E A E A E A E A E A E A E A E	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 TP 3 TP 4 TP 4 TP 4 TP 4 TP 4 TP 4 T	3 TP 3 TP	4 4 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	8 분 목 본
H AU	RN VI EI ST VCU T#	733 3005 733 3005 3005	733 3006 733 3006 733 3006 3006	733 3014 733 3014 733 3014 3014	733 3016 733 3016 733 3016 3016	733 3017 733 3017 3017	733 3018 733 3018 733 3018 733 3018 731 3018	733 3019 733 3019 3019

		1									
PAGE 2 OF 18	HM AE RT PROPOSED VH FUTURE MANAGEMENT	CC RS, TMPCT, CC CC RS, WLPCT, CC CC RS, TMPCT, CC	CC RS,WLPCT,CC CC RS,WLPCT,CC CC RS,WLPCT,CC	CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, CC CC RS, R&W, CC	CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, IMPCT, CC CC PB, PLANT (RC&YC), SS,	CC RS, IMPCT, CC	CC RS,R&W,CC CC RS,CC		
	CH OT E	RS SL SL	고고도	S 2	R S	로 로	S S	≢	SL RS		
	R A H H	222	zzz	2 2	zz	zz	zz	Z	2 2		
	WET	333	333	38	3.5	NA S	N N	N.	333		
	SN ID	85 85	85 85	65	22	85 55	81	8	72 69		
	E 0 0	444	444	7 2	4 0	4 4	4 0	4	M 0		
	ΣΣΗ	ммм	ммм	1 2		2 2	1 5	2	− w		
	ECO	WHS WHS WHS	WHS WHS WHS	WHC	WHC	WHS	CCS	WHS	WHC		
	SMU	528F 528F 528F	528E 528E 528E	190 29EF	29EF 29EF	528D 528D	528D 28	240	29EF 550D		
	FRES	### 0 m 0	2 4 Z	= =	ΞΞ	= = 0 0	= = = 0	Н 9	T T		
	MAX ELEV	01 80	01710	15 20	30	0.0	11	•	0.0		
	MIN	849	222	10	15	00	6	2	6 21		
	S O E P	444	ммм	2 2	4 W	2 2	1	2	мм		
#3	V V V V V	E E E	A ₹ ₹	至至	8 8	2 2	2 2	PR	2 2		
ALTERNATIVE	NUME ASPECT	622.00 WEST 488.00 WEST 851.00 WEST	722.00 SOUTH 1,035.00 SOUTH 382.00 SOUTH 2,139.00	906.00 SOUTH 1,190.00 SOUTH 2,096.00	597.00 SOUTH 932.00 SOUTH 1,529.00	125.00 NORTH 345.00 NORTH 	690.00 WEST 1,254.00 WEST 1,944.00	175.00 NORTH	1,472.00 WEST 861.00 WEST	2,333.00	
- SIS	Š	888	1	1,19	93	34	1,25	1,	1,4,	2,33	
DIAGNO	TOTAL	20 17 17 29 29	23 33 10 66	36 40 76	36	11 15	22 40 62	7	46 21	29	
LTURE	رح د درح	000:0	0 0 0	00:0	00 0	00:0	0 0	0	00	0	
SILVICULTURE DIAGNOSIS	>018	0000	0 0 7	00 0	2 2 2	00 0	00 0	0	21	28	
SI	, o o c	10 10 20	33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35	30	00 0	11 2	22 40 62	0	33	33	
	> 0 - 2	9	000	35 10 45	19 34 53	00 0	00 0	7	90	9	
	L RL U EU D VD	3 AL 3 AL 7 P	3 3 3 F F	3 TP TP	3 7 7 7	3 R R	3 SV 3 ML	3 SV	3 SV 3 SV		
± \$	RN RN VI EI ST VCU T#	733 3020 733 3020 733 3020 3020	733 3021 733 3021 733 3021 3021	733 3022 733 3022 3022	740 4006 740 4006 740 4006	735 5005 735 5005 5005	735 5008 735 5008 5008	735 5022	735 5024 735 5024	5024	

PAGE 3 OF 18 HM AE RT PROPOSED VH FUTURE MANAGEMEN	CC RS, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, R&W, CC	CC RS, TMPCT, CC CC RS, CC CC RS, CC CC RS, CC CC RS, TMPCT, CC		CC RS, TMPCT, CC	CC RS, TMPCT, CC
LE OT	로 로 로 S	S 보 보 보 보	RS R	요 폭폭폭	로	SL	로
R AA AA	2222	z z z z z	Z Z Z Z Z Z Z	z zzz	z	z	z
I SN ID TE WET EX HAB	70 FW 65 FW 65 FW 85 FW	90 FNW 90 FNW 71 SEC 88 FNW 90 FNW	90 FNW 90 FNW 90 FNW 90 FNW 85 SEC	65 FW 76 FW 76 FW 90 FW	82 FNW	80 FIW	85 FNW
∑ ∪ ∪	24	44M44	44M4444	- 224	4	4	4
ΣΣ∺	- 000	22-22	700000-	0 mm0	2	M	7
ECO CODE	WHS WHS	WHS CMM WHS WHS	WHS KHRS CAHS	KH KH	WHS	SOO	WHS
SMU	510 190 190 5280	540 25 540 540 540	540 540 540 540 540 540	190 19E 19E 540	540	33E	528D
T MH IR	====	****	IIIIII X	H H H H		=	=
MAX ELEV	×11 ×	120004	6 7 8 8 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	W 0 0 N	4	4	4
MIN	9 = 1 = 4	04440	0440880	0 99M	7	23	М
S D O E D	2222	00000	000000	0 мм0		M	2
#3	A A A O	M M M M M	M M M M M M M M M M M M M M M M M M M	g & & & & & & & & & & & & & & & & & & &	₽	Σ	P.R
SIS - ALTERNATIVE	175.00 NORTH 220.00 NORTH 339.00 NORTH 200.00 NORTH 934.00	810.00 NORTH 251.00 NORTH 283.00 NORTH 283.00 NORTH 188.00 NORTH	188.00 NORTH 376.00 NORTH 576.00 NORTH 502.00 NORTH 251.00 NORTH 972.00 NORTH 3,229.00	659.00 NORTH 251.00 EAST 88.00 EAST 175.00 EAST		463.00 NORTH	63.00 EAST
DIAGNOSIS TOTAL VA	7 7 1 8 1 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	26 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	21 12 16 18 18 31 31	21 8 3	32	17	7
ш :	0000 0	00000	0000000	0 000	0 0	0	0
SILVICULTUR	0000	00000	000000000000000000000000000000000000000	0 000	0 0	0	0
S11 V 0 C5	0 10 0	25 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 12 12 16 18 8 31 103	21 8 0 0	- =	9	7
> 0 0 C4	7 0 0 1 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	-0000	0000000	0 0 1 2	13	1	0
L RL U EU D VD	3 SV 3 SV 3 SV 3 ML	3 SV 3 SV 3 SV 3 SV	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 S S S T P P P P P P P P P P P P P P P P		3 TP	3 ML
H AU RN VI EI ST VCU T#	735 5025 735 5025 735 5025 735 5025 735 5025	735 5026 735 5026 735 5026 735 5026 735 5026	735 5027 735 5027 735 5027 735 5027 735 5027 735 5027 735 5027	735 5028 735 5029 735 5029 735 5029		735 5030	735 5031

PAGE 4 OF 18	HM AE RT PROPOSED VH FUTURE MANAGEMENT	CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, CC	CC RS,CC CC RS,WLPCT,CC CC RS,WLPCT,CC CC RS,CC CC RS,CC	CC RS,CC CC RS,CC CC RS,TMPCT,CC	CC RS, CC	CC RS,R&W,CC CC RS,CC
	E G C E ■	& 목 목 목 목 로 로 로	로 로	RS	로 로 로 로 로	R S S S	로로	S I
	R A H H	2222222	2 2	z	2222	222	2 2	2 2
	I SN M ID C TE WET G EX HAB	4 88 FNW 4 90 FNW 1 65 FW 4 90 FNW 1 80 FNW 4 85 FNW 4 85 FNW	4 90 FNW 4 90 FNW	4 85 FNW	1 50 FU 1 65 FU 1 57 FU 1 54 FU 1 55 FU	1 92 FW 1 92 FW 1 100 FNW	1 50 SES 1 60 SE	1 60 SE 1 60 SE
	Σ Σ∺	0040400	2 2	2	- 2 2	ммм		
	CODE	WHS CCD CCD WHS MHS	WHS	NHS	CMC WHC CMB CMB	WHC	CMC	CMC
	SMU	5280 540 190 186 540 186 5280 5280	540	240	910 190 190 200 200	19E 19E 54F	23 24AC	24AC 24AC
	T WH IR MAX NO ELEV DW	2000004W	H H	80	M 4 4 4 6	10 H 11 H	10 H 8 H	H 4
	MIN	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4	2	M M 4 4 4	100	ο, ∞	2 %
	N T O C H	22424722	2 2	2		444	7 -	
£	000	* * * * * * * * *	2 2	8		X X X	<u>&</u> &	₹ A
IS - ALTERNATIVE	VOLUME MMBF ASPECT	376.00 EAST 283.00 EAST 188.00 EAST 283.00 EAST 157.00 EAST 95.00 EAST 157.00 EAST 157.00 EAST	1,790.00 188.00 EAST 220.00 EAST 408.00	659.00 SOUTH	408.00 SOUTH 488.00 SOUTH 545.00 SOUTH 250.00 SOUTH 356.00 SOUTH 356.00 SOUTH	63.00 WEST 263.00 WEST 408.00 WEST 734.00	425.00 EAST 282.00 EAST 707.00	944.00 WEST 511.00 WEST
DIAGNOSIS	TOTAL	2700000000	57 6 7 13	21	13 16 21 10 14 74	13	17	36
	> 0 - C	0000000	0 00 0	0	00000 : 0	000:0	00:0	0 0
SILVICULTURE	> 0 7	0000000	0 00 0	0	00000	000	00 0	0 0
S	C C C	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57 6 7 13	21	13	21 21 21	0 - -	7 2
	> 0 7 %	0000000	0 00 0	0	118 119 143	0 0 0 1 0	17 10 27	29
	L RL U EU D VD	2333333 2333333 72777 7	S Z 로 로	3 ML	4 1P 4 1P 4 1P	W W 7	4 ML	4 ML
± =	RN VI EI VCU T#	735 5032 735 5032 735 5032 735 5032 735 5032 735 5032 735 5032	5032 735 5033 735 5033 5033	735 5034	736 6008 736 6008 736 6008 736 6008 736 6008	736 6017 736 6017 736 6017 6017	736 6020 736 6020 6020	736 6021 736 6022

PAGE 5 OF 18	HM AE RT PROPOSED VH FUTURE MANAGEMENT	CC RS, CC CC RS, CC		CC RS, CC CC RS, CC		CC RS, TMPCT, CC CC RS, CC		CC RS,WLPCT,CC	CC RS,WLPCT,CC		CC RS, WLPCT, CC	cc Rs,cc		CC RS, CC	CC NS, IMPCI, CC	CC RS. TMPCT, CC	CC RS, WLPCT, CC				CC_RS,WLPCT,CC		CC RS, WLPCT, CC	CC RS,WLPCT,CC	
	LE OT	로로		로로	로 =	RS H		SL	≓ ∃	=	±	로		≢ :	= =	₫ =	S	RS	로 :	≓ :	로로		呈	로로	
	R PH AA RB	2 2		zz	z 2	2 2 2		z	z 2	2 2	z	z		2 :	2 2	. 2	2	Z	z :	2 :	z z		z	z z	
	I SN M ID C TE WET G EX HAB	60 SE 60 SE				100,88			100 FNU		100	. 68 FW		89 FNW		100 FNW				100 FNW	100 FNW		100 FNW	100 76	
			Ì		~ .				M W					010		,			•	- 4					
	ECO M	CMC				WDC 3			250					NOC NO							MDC 2			WDC 2	
	SMU CI	24AC (24AC (24AC 24AC		()			3E					320										30 1	
	T WH IR MAX NO ELEV DW	2 H 2 H				7 C 4			E .												4 K		=	2 H	
	MIN ELEV E	2 2	ı	7 Y	4 h	7 4 6		М	4 1	* w	m	4		20	4 C	٦ ٧	ľ	2	4	4、	7 7		2	7 -	
	S O P O E		•			7 W C			N												7 N			7	
#3	VQO	8 8		R R	8 8	2 2 2		R	<u>8</u>	7 9	£ &	8		8 c	F 6	2 2	웊	웊	운	운 :	€ €		P.	# #	
SIS - ALTERNATIVE	VOLUME MMBF ASPECT	45.00 EAST 182.00 EAST			382.00 NORTH		1,954.00		250.00 SOUTH			213.00 SOUTH	1,338.00	633.00 NORTH							439.00 SOUTH	3,488.00	157.00 SOUTH	188.00 SOUTH 376.00 SOUTH	721.00
DIAGNOSIS	TOTAL	28	9	19	7 7	13.5	71	14	5 4	0 00	^	7	52	22	0 0	^	32	_	∞ ι	1 1	14	117	2	12	23
	0 0 C7	00	0	00	00	000	0	0	00	O	0	0	0	00	> <	0	0	0	0	0 0	00	0	0	00	0
SILVICULTURE	> 0 7	00	0	00	00	000	0	0	00	o c	0	0	0	00	o c	0	0	0	0	0 0	00	0	0	00	0
S	V 0 0 C5	00	0	0 -	2 5	0 2 2	58	0	00	o	0	9	9	13	۸ ر	· -	31	7	ω ι	Y) (7	88	2	12 6	23
	> 0 C	8	10	9	٥ ٧	0-5	43	14	5 4	0 00	7	-	94	۰,	- 14	. vo	-	0	0	1 5	0	53	0	00	0
	L RL U EU D VD	4 ML				4 4 4		4		1 4 1 4				₩ ¥ ×	t ~	1 4	4	4	4 .	4 .	4 4		4	4 M 4 ML	
H	RN VI EI ST VCU T#	736 6023			736 6024	736 6024	6024	736 6025			736 6025	736 6025	6025	736 6026							736 6026	9209		736 6027 736 6027	6027

PAGE 6 OF 18	HM AE RT PROPOSED VH FUTURE MANAGEMENT	CC PB,PLANT(RCC),SS,CC CC RS,WLPCT,CC	CC RS,WLPCT,CC CC RS,WLPCT,CC	CC RS, TMPCT, CC CC PLANT(YC), SS, CT, SW		CC PLANT(YC), SS,CT,SW CC PLANT(YC),SS,CT,SW CC RS,TMPCT,CC CC PLANT(YC),SS,CT,SW		CC RS, CC CC RS, WLPCT, CC CC RS, CC		CC RS,WLPCT,CC CC RS,WLPCT,CC		CC RS, TMPCT, CC	CC RS, IMPCT, CC CC RS, IMPCT, CC	
	G G E M	로 로	RS S	SL RS		S L SL		폭 폭 로		SL		≢	RS H	
	R A H H R	2 2	2 2	2 2		2222		2 2 2		2 2		z	2 2	
	WET	3 3	FNE	E E		33333		383		ΕÆ		3	N. A.	
	SN ID	% <u>6</u>	85	80		3888		55 8 2		65 52		09	001	
	∑ ∪ ∪	- 2	44					7 4 -		7 -		_		
	ΣΣΗ	22	2.2			M				2 2		-	мм	
	ECO	SCS SCS	WHS	S 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		S S S S S S S S S S S S S S S S S S S		CMB CCS CMB		CCS		WHS	3 3 H H H H	
	SMU	30	750 750	78 78 78		28 28 28 180		20C 28 20C		630 190		510	300 300	
	- HR SB	= =	= =	ΣΣ		EEEE		= = =		= =		=	==	
	MAX	4 W	9 9	51		55		6 7 5		4 4		5	===	
	MIN ELEV 6	8 8	4 W	8 21		50 8 51		4 rv rv		44		4	===	
	S O E	m ~	2 2			0		127		1		_	2 2	
#	VQO	8 8	2 2	운 운		오 오 오 오		E E E		% %		Ŧ	X X	
IS - ALTERNATIVE	VOLUME MMBF ASPECT	726.00 SOUTH 587.00 SOUTH	1,313.00 745.00 SOUTH 574.00 SOUTH	1,319.00 1,048.00 SOUTH 350.00 SOUTH	1,398.00	674.00 EAST 1,152.00 EAST 1,003.00 EAST 700.00 EAST	3,529.00	607.00 SOUTH 1,066.00 SOUTH 283.00 SOUTH	1,956.00	564.00 WEST 596.00 WEST	1,160.00	408.00 NORTH	283.00 WEST 283.00 WEST	266.00
IAGNOSIS	TOTAL	26 22	78 73 73	51 42 14	26	27 40 32 28	127	22 34 9	99	18 6	37	13	00	18
U.S.E.	, C7	00	0 00	0 00	0	0000	0	000	0	0 0	0	0	0 0	0
SILVICULTURE DIAG	>01%	00	0 00	0 00	0	0000	0	000	0	0 0	0	0	0 0	0
SI	, v c5	12 6	7 0	0 0	. 0	24 32 0	26	9 4 6	52	18	37	13	00	18
	> 0 7 %	14 16	30 21 23	44 42 14	26	27 16 0 28	71	£ 0 0	13	00	0	0	00	0
	L RL U EU D VD	4 ML 4 ML	4 ML 4 TP	4 TP		4 1P 4 1P 4 1P		4 TP 4 TP 4 TP		4 ML 4 TP		4 TP	4 ML	
# 4	RN VI VI ST C			6029 736 6030 4 736 6030 4	6030	736 6031 4 736 6031 4 736 6031 4 736 6031 4	6031	736 6032 4 736 6032 4 736 6032 4	6032	737 7003 4 737 7003 4	7003	737 7015 4	737 7016 4 737 7016 4	7016

	L											22,28			
7 OF 18	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC	RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC		RS,CC RS,CC RS,R&W,CC		RS,CC RS,R&W,CC RS,R&W,CC RS,WLPCT,CC RS,WLPCT,CC		RS,R&W,CC RS,CC		PB,PLANT(RCC),SS,CC PB,PLANT(RCC),SS,CC		RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC	RS, CC
PAGE	AE AE VH	ខខ	ខ	2 2		888		88888		8 8		22 22		8888	
	E 리 쁜 프	로 로	RS	RS HL		포 포 궁		LS RS RS HH		RS H		로로		RS H S S	로
	RB AA	zz	z	zz		zzz		z z z z z		zz		zz		zzzz	z
	WET	N 3	FNE	FNE		222		NANA NA		FNE		22		SANA	S
	SN 1	100	83	85		8 80		83 87 91 100 100		23		88		001 001 001 001	
	∑ 00			4 4		 ω									-
	ΣΣΗ	m m	М	2 3		222		ммимм		N 0		2 %		2222	-
	EC0 C00E	MHC €	MDC	WHS WHS		888		99999		WDC		888		S M S M	CMC
	SMU	1E 19E	3E	528F 75E		18C 18C 18C		35 35 35 35 35 35 35 35 35 35 35 35 35 3		3E 4D		18C 18D		20 110 20 110	24AC
	TR IR	H H	7 H	3 E		T T T		20000 T T T T T		8 6 H H		H H		N 4 N N	
	MAX	20	,-	ואוט		444		O UI UI UI UI		wo		0.0		01 9 01 0	. 4
	MIN	20	М	мм		223		N 4 4 N N		10.00		70.70		4440	4
	N O O E H	mm	2	4 K		7 - 7		0 m 0 m m		M 64		2 2		2 - 2 2	ı
₩;	VQO	# #	R	운 운		E E E		88888		ΣΣ		ΣΣ		8 8 8 8	2
ALTERNATIVE #3	ASPECT	WEST	EAST	EAST		SOUTH SOUTH SOUTH		WEST WEST WEST WEST WEST		EAST		SOUTH		NORTH NORTH NORTH	NORTH
ALTERN		187.00 t 275.00 t 	1,091.00 E	521.00 E	835.00	502.00 8	2.00	88888	1,205.00	674.00 E	906.00	413.00 8	683.00	307.00 N 188.00 N 182.00 N	
- SISO	VOLUME	18 27 	1,09	31,	83	1,19	2,195.00	22 22 10 10 10	1,20	67, 23	06	41.	89	30 8 8 0	95
DIAGNO	TOTAL	11	32	16	56	16 16 38	20	21 9 4 4	48	27	36	10	25	1 9 7 8	35
		0	0	0 0	0	000	0	00000	0	0 0	0	0 0	0	0000	
SILVICULTURE	0 C C	00 0	٥	0	2	000	0	00000	0	00	0	00	0	0000	
SII	V 0 0 C5	2 0 2	23	10	54	38	20	-0000	-	0 -	-	9 M	٥	29-0	12
	\ 0 C4	111	0	00	0	000	0	20 00 4 4	25	27	35	٥ ٢	16	0000	23
	L RL U EU D VD	4 ML 4 TP	4 TP	4 TP 4 ML		4 TP 4 ML 4 ML		M M M M M M M M M M M M M M M M M M M		4 TP 4 ML		4 TP 3 TP			. 4 □
=	RN VI EI T#	7020 7020 7020	7040	7041	7041	7042 7042 7042	7042	7043 7043 7043 7043 7043	7043	7044	7044	7045	7045	7046 7046 7046 7046	7046
# 4	VCU IS E	7.57 7.7.7 7.7	7.37	737 7	7	737 7 737 7 757 7	7	7367	2	737 7	7	737 7	7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

E 8 OF 18	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS,CC PLANT(YC),SS,CT,SW	PLANT(YC),SS,CT,SW	RS, TMPCT, CC PLANT (YC), SS, CT, SW RS, CC RS, CC	RS,WLPCT,CC	RS,WLPCT,CC RS,WLPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,WLPCT,CC RS,WLPCT,CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC
PAGE	AE AT VH	888888	88	23	8888	ខ	888888	888
	LE OT	로 로 로 로 로 로 로	로 로	S _S	RS RS	로	HL RS RS RS RS	R S S S
	R A H H R	22222	2 2	z	2222	z	22222	222
	SN M ID C TE WET G EX HAB	1 60 SE 5 65 FNW 1 100 FNW 1 100 FNW 2 75 FNW	1 77 SEC 1 91 FW	1 83 FW	1 100 FNW 1 82 FW 1 73 FW 1 70 FW	1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW
	ΣΣΗ	11122	~ w	м	manm	м	мммммм	ммм
	ECO	CAM CAM CAM CAM CAM CAM CAM CAM CAM CAM	CCD	933	CCD CCD CCD	MDC		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	SMU	24AC 25 29E F 20 20 20	25 180	180	16 40 19E 4E			
	F H H S S S	200000000000000000000000000000000000000	ΞΞ 2,3	Σ 22	# # # # # # # # # # # # # # # # # # #	H 3E	333333	333
	MAX N	9 2 2 2 3 4	12 12 15 14	15	25 25 25	5	787979	200
	MIN ELEV I	NN N 4 N W	12	12	51 51 51	4	VV 4 V V S	444
	N O O E H	7-4000	мм	2	мммм	m	мммммм	ммм
#3	V@0	E E E E E E E	ΣΣ	Σ	X X X X	PR	22222	₹ ₹ 9
OSIS - ALTERNATIVE #3	VOLUME MMBF ASPECT	251.00 EAST 188.00 EAST 220.00 EAST 188.00 EAST 188.00 EAST 534.00 EAST	1,569.00 240.00 WEST 1,009.00 WEST	1,249.00 821.00 NORTH	251.00 SOUTH 695.00 SOUTH 502.00 SOUTH 220.00 SOUTH	1,668.00 125.00 WEST	125.00 SOUTH 376.00 SOUTH 534.00 SOUTH 627.00 SOUTH 125.00 SOUTH 345.00 SOUTH	299.00 SOUTH 350.00 SOUTH 558.00 SOUTH 1,207.00
IAGNOS	TOTAL ACRES	8 9 7 9 1 1 1 1 1 1 1	50 26	33 33	8 24 16 7	55	20 20 4 11 88	12 20 46
URE D	V 0 L T C7 A	00000	0 00	0 0	0000	0 0	000000	
SILVICULTURE DIAGN	, o	00000	0 70 70 70 70 70 70 70 70 70 70 70 70 70	22 20	0000	0 0	000000	000 0
SI	. v 0 0 C5	8 7 7 71	50 5	- 0	8 15 7	7 7	12 17 20 20 4 11	004 4
	> 0 J	00000	0 00	0 0	0600	6 0	00000	12 14 14 16 1
	L RL U EU D VD	41 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 TP	4 ML 4 TP 4 TP 4 TP	4 TP	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P 4 1P 4 1P
= 3	RN VI EI ST VCU T#	737 7047 737 7047 737 7047 737 7047 737 7047	7047 737 7048 737 7048	737 7049	737 7050 737 7050 737 7050 737 7050	738 8002	738 8003 738 8003 738 8003 738 8003 738 8003 738 8003	

×
×
9
APPE
×.
4
34

9 OF 18	PROPOSED FUTURE MANAGEMENT	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	RS, CC RS, CC	RS,CC RS,CC RS,TMPCT,CC	RS,CC RS,TMPCT,CC	RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	RS,WLPCT,CC RS,CC	RS, WLPCT, CC RS, CC RS, CC
PAGE	AE AE VH Y	888888	2 2	888	ដ	888	S . S	222
	GH GH	S H H H H S	로 로	로 로 로	로 로	RS RS RS	RS I	로 로 로
	R A P H R	zzzzz	2 2	222	2 2	222	z z	222
	I SN I ID TE WET	51 SE 50 SE 60 SE 89 FNW 60 SE 60 SE	70 FW 70 FW	94 FNW 94 FNW 90 FIC	95 FIC 90 FIC	85 FNW 85 FNW 85 FNW	86 FNW 60 SE	100 FNW 70 FW 65 SE
	∑ ∪0					444	4 -	
	ΣΣΗ		мм	300	2 %	ммм	2 -	7 2 3
	ECO CODE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88	M V V V V V V V V V V V V V V V V V V V	WHC WHC	KHS X	WHS CMC	CMC
	SMU	24AC 24AC 24AC 1C 24AC 24AC	5500 5500	10 10 3310	331c 3310	528F 528F 528F	528F 24AC	3E 4D 24AC
	T WH IR MAX NO ELEV DW	NUWWUW	10 M	0 0 0 T E E	W W	15 H 21 H	2 H	W W W
	MIN ELEV E	000000	55	∞ ∞ ο	4 2	51 21	4 2	0 M M
	N N O M M		2.0	000	м 2	444	4 -	M 0 ←
#3	V ₀ 0	$\overset{\bullet}{\circ}\overset{\bullet}{\circ}\overset{\bullet}{\circ}\overset{\bullet}{\circ}\overset{\bullet}{\circ}\overset{\bullet}{\circ}$	오오	X X X	오오	999	₹	888
ALTERNATIVE #3	ASPECT	NORTH NORTH NORTH NORTH NORTH	EAST EAST	WEST WEST WEST	NORTH	EAST EAST EAST	439.00 SOUTH 250.00 NORTH	WEST WEST WEST
NOSIS - ALTE	VOLUME	407.00 251.00 163.00 270.00 107.00 474.00	338.00 362.00 700.00	100.00 275.00 100.00 475.00	784.00 464.00 1,248.00	388.00 383.00 534.00 1,305.00	439.00	299.00 375.00 924.00 1,598.00
OIAGNO	TOTAL	15 8 8 4 4 19 62	12 14 26	11 4 4 19	15	13 13 17	10	15 15 37 64
TURE	v v C7 .	000000	00 0	0000	00 0	000:0	0 0	000 0
SILVICULTURE DIAG	۵ د ه <	000000	00 0	000	00 0	000	0 0	000
SI	> 0 - S	22 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8	000	25 14 39	10 9 17 36	4 0	000 0
	> 0 J	10 0 4 7 7 19 19 19 19 19 19 19 19 19 19 19 19 19	12	4 4 11 19	0 - -	0 1	0 0	15 15 37 64
	L RL U EU D VD	7 7 7 7 7 7 4 7 4 7 4 7 4 7 7 7 7 7 7 7	4 1P	4 4 1P 4 1P	4 1P	4 1P 4 1P 4 1P	4 ML	4 4 ML
ΗĀ	RN VI VI ST CCU T#	738 8011 738 8011 738 8011 738 8011 738 8011	738 8014 738 8014 8014	738 8015 738 8015 738 8015 8015	738 8016 738 8016 8016	738 8025 738 8025 738 8025 8025	738 8030 738 8045	738 8056 738 8056 738 8056 8056

	AGEMENT						u uu	
PAGE 10 OF 18	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, CC RS, CC RS, CC RS, CC	RS, CC RS, CC	RS, CC RS, CC	RS, CC RS, CC	RS, R&W, CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC	RS, R&W, CC RS, CC
PAG	A E H	8888888	ខួខ	88	88	္ပ	8888888	88
	GH GH	로로로로로로	로 로	로로	RS S	SL	H H S S S H H	# S
	R AA R	Z Z Z Z Z Z Z	ZZ	zz	zz	z	Z Z Z Z Z Z Z	zz
	I SN ID TE WET EX HAB	74 FW 65 FW 65 FW 67 FW 67 FW 67 SE 68 FW 70 FW 70 FW 65 SE 65 SE	60 SE 70 FW	75 SE 78 FNW	100 FNW 91 FNW	79 FW	85 FNW 45 SEC 48 FIW 85 FNW 85 FNW 45 SEC 45 SEC	93 FNW 89 FNW
	∑ ∪∪					_	744	мм
	ΣΣH	700-00-	- 2	7 2	мм	4	M ← W W W ← ←	N W
	ECO CODE		CMC	S S	3 g	000	CAM CAM WHS WHS CAM CAM	WHW
	SMU	18C 4D 4D 24AC 4D 4D 4D 24AC	24AC 4C	24AC 2E	3E 3E	18E	528 F 25 33E 528 F 528 F 25 25	74E 528E
	×× NO W	###### 7 4 6 4 4 4 6 7 7 8	3.2	E 7	20 H 20 H	20 M	πον που που που που που που που που που που	H 4 9
	MAX FLEV	N M N 7 M 7 N	2.2	2.2			00000	4 rv
	MIN ELEV		1010		15	15	0.0.0.0.0.20.0.	
	S L O O VQO E	227272	~ ~	22	m m	0	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	M M
£ :		# # # # # # # # # # # # # # # # # # #	8 8	% % %	₽ ₽	운	# # # # # # # # #	8. 8.
RNATIV	ASPECT	SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH	NORTH	NORTH	NORTH	WEST	SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH	SOUTH
AGNOSIS - ALTERNATIVE #3	VOLUME	375.00 224.00 325.00 275.00 250.00 150.00 299.00	1,898.00 100.00 275.00 375.00	649.00 625.00 1,274.00	471.00 659.00 1,130.00	761.00 WEST	1,026.00 188.00 659.00 623.00 729.00 157.00 3 539.00	985.00 944.00 1,929.00
DIAGNO	TOTAL	2 6 5 1 1 2 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1	76 4 11 115	26 25 51	21 21 36	56	25 6 2 1 2 1 3 1 3 2 3 3 4	24 23 24 47
	> 0 V	0000000	0 00 0	00 0	00:0	0	0000000	00 0
SILVICULTURE	> 0 - 9	000000	0 00 0	00 0	00 0	7	25 0 0 177 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 23 47
IS :	5 − ٥ <	000000	0 00 0	00 0	21 21 36	0	0 0 21 12 12 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2	00 0
	> 0 J	£ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	76 11 15	26 25 51	00 0	19	000000	
	L RL D EU O VO	444444	4 TP 4 TP	4 TP 4 TP	4 ML	4 ML	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP
# 4	RN VI VI ST VCU T#	738 8057 738 8057 738 8057 738 8057 738 8057 738 8057	8057 738 8058 738 8058 8058	738 8059 738 8059 8059	738 8060 738 8060 8060	738 8061	738 8062 738 8062 738 8062 738 8062 738 8062 738 8062 738 8062	738 8063 738 8063 8063

		I					
ie 11 of 18	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC RS,WLPCT,CC RS,WLPCT,CC	RS,TMPCT,CC RS,WLPCT,CC	RS,TMPCT,CC RS,TMPCT,CC RS,CC	RS, CC RS, R&W, CC	RS, R&W, CC RS, CC RS, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	PB,PLANT(RCC),SS,CC PB,PLANT(RCC),SS,CC PB,PLANT(RCC),SS,CC
PAGE	AE RT VH	ខខខ	88	888	ដ ដ	8888888	2 2 2
	GH CH	8 8 8 8 8 8	로 로	표 표 S	푹 공	오 로 로 로 로 로 8	크 크 크
	R A H H R	222	2 2	222	2 2	222222	2 2 2
	WET	383	SS	333	3 3	3333888	222
	EX E EX	85 85 87	100	85 85 95	22	545256	80 08
	⊻ບບ	444		20 20 01			
	EE-	ммм	мм	222	2 2	MMMMMMM	ммм
	ECO CODE	WHS WHS	200	\$33 \$33 \$33	CMB	2000 E E E E E E E E E E E E E E E E E E	0000
	SMU	528F 528E 528F	3E 3E	999	4C	19E 18D 18D 18D 54F 54F	180 180 180
	IR IN DE	= = =	II	ΣΞΣ	ΣΣ		ΣΣΣ
	MAX ELEV	15 8 8	0 0	11 15	2 15	20 8 10 115 115	6 7 7
	MIN	5 9 2	00	8 L L	~ ∞	11 8 8 8 8 7 5 7 6	N N A
	пъогм	4 W W	4 4	444	← ∞		222
# :	VQO	2 2 2	운 운	₹ ₹ ₹	₹ 9	999999	오 오 오
IOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	1,041.00 SOUTH 475.00 SOUTH 417.00 SOUTH 1,933.00	534.00 WEST 443.00 WEST 977.00	784.00 WEST 345.00 WEST 345.00 WEST 1,474.00	420.00 WEST	1,400.00 EAST 358.00 EAST 289.00 EAST 326.00 EAST 151.00 EAST 432.00 EAST 432.00 EAST 3,204.00	382.00 WEST 295.00 WEST 275.00 WEST 275.00 WEST
	TOTAL ACRES	27 13 13	17 13 30	11 11 47	15	52 12 12 13 14 15 15 15 17 17 17 17 17 17 17 17 17 17 17 17 17	11 10 35
E D	V 0 L TC C7 A6	000 0	00 0	000 0	0 0	0000000	000:0
l I	7010						
SILVICULTURE DIAGN	> 0 - 0 %	20 7 1 1 28	0 7	000 0	0 0	0000000	000 0
IS:	0 CS	7 6 12 25	17	25 11 11 47	7	51 0 0 4 4 9 9 4 4	4 4 2
	> 0 \ C4	000 0	0 5 5	000 0	∞ ∞	36 12 8 12 8 13 13 13 13 13 13 13 13 13 13 13 13 13	6 8 6 23
	R EU FR	444	4 £	444	4 4		4 4 4
	סכר	444	4 4	444	4 4	444444	444
H A	RN VI EI ST VCU T#	738 8064 738 8064 738 8064 8064	738 8065 738 8065 8065	738 8066 738 8066 738 8066 8066	738 8067		738 8070 738 8070 738 8070 8070

	MENT						
PAGE 12 OF 18	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, CC RS, CC	RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,CC	RS, R&W, CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC	RS, R&W, CC RS, TMPCT, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC
PAGE	AE AT VH	888888	2222	2	222	8888	888888
	G C E	로로로로로	로 로 로 로	SL	R S S	로 크 크 움	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	R A H H	22222	2222	z	222	2222	22222
	WET	STREET	F1C F1C F1C	2	555	FNE SEC SEC	FNW SEC FNW FNW FNW
	SN ID	001 100 100 80 80	90 8 8 8 8 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9	2	222	100 100 79 79	89 86 93 93 87
	∑ ∪ ∪			-			
	ΣΣΗ	00000m	M N N N	7	444	M W	M + M + W + W
	ECO	200000000000000000000000000000000000000	WHC WHC	CMB	999	ADC NME NME	WDC CAM NO COM N
	SMU	26 26 26 26 180	3310 3310 3310 3310	Q 7	4F 4F 4F	1E 1E 86CD 86CD	1E 1E 25 1E 86CD 1E
	T WH IR MAX NO ELEV DW	77070 74070	00 00 EEEE	8 H	10 H H H H	8 0 8 9 H H H H	20 H 7 H 20 H 7 H 7 H 15 H
	MIN ELEV E	778000	√ 0 ∞ ∞ 0 √	2	~ ~ 6	8 7 7	<u>π</u> ουουο
	пього	мммммм		4	444	N N N N	M M M M M M M
#3	V@0	오오오오오오	오 오 오 오	æ	오 오 오	9999	\mathcal{Q} \mathcal{Q} \mathcal{Q} \mathcal{Q} \mathcal{Q} \mathcal{Q}
ALTERNATIVE	ASPECT	NORTH NORTH NORTH NORTH NORTH	EAST EAST EAST EAST	NORTH	NORTH NORTH NORTH	EAST EAST EAST EAST	EAST EAST EAST EAST EAST EAST
	VOLUME	312.00 169.00 81.00 238.00 263.00 112.00	150.00 224.00 275.00 325.00 974.00	878.00 NORTH	596.00 376.00 439.00 1,411.00	314.00 314.00 806.00 494.00 1,928.00	370.00 762.00 407.00 815.00 677.00 3,783.00
DIAGNOSIS	TOTAL	11 3 8 8 4 4 1 1 4 4 1	11 139	28	12 14 15 15 15 15 15 15 15 15 15 15 15 15 15	10 10 22 14	14 29 16 22 22 24 24 131
	V V CZ /	000000	0000	0	000	0000	000000
SILVICULTURE	0 c	00000	0000 0	0	000 0	0 0 12 9	000000
SI	V 0 0 C5	24.	0000	28	12 14 14 45	10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	26 26 24 26 26 26 26 26 26 26 26 26 26 26 26 26
	ر در در	22 22 27 71	11 13	0	000 0	0 0 0 0	11 23 0 0 0 15
	RL VD	44444	4444	۵	444	4 4 4 4	44444
	٦	44444	4444	4	444	4444	44444
Ξ.	RN VI VI ST VCU T#	738 8071 738 8071 738 8071 738 8071 738 8071 738 8071	738 8072 738 8072 738 8072 738 8072 8072	738 8073	738 8074 738 8074 738 8074 8074	738 8075 738 8075 738 8075 738 8075	738 8076 738 8076 738 8076 738 8076 738 8076 738 8076

	NAGEMENT	S		3		ນ	8888
13 OF 18	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,R&W,CC RS,TMPCT,CC RS,CC	RS,CC RS,CC RS,CC	RS, CC RS, R&W, CC RS, R&W, CC RS, CC RS, TMPCT, CC RS, R&W, CC	RS, CC RS, CC	RS,WLPCT,CC RS,R&W,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC
PAGE	AE RT VH	88888	888	222222	ខួខ	8 8	S.S S S
	GH OT	포 포 포 포 포	로 로 로	RS R	RS H	S S	RS RS RS
	S & E = 8	ZZZZZ	2 2 2	zzzzz	zz	z z	z z z z
	I SN ID TE WET EX HAB	65 FNW 65 FNW 93 FNW 100 FNW 100 FNW	60 SE 70 SE 76 SE	78 SE 84 FNW 84 FNW 86 FNW 75 FNW 75 FNW 17	93 FNW 67 SE	90 FNW 81 FNW	85 FNW 100 FNW 100 FNW 100 FNW
	∑ ∪ ∪	2227-		- M 4 4	7 -	4 6	4
	ΣΣ∺	M M		M M	w –	7 7	0000
	ECO	2	2 2 2	WHO COME	MDC	WHS	2 2 2 2
	SMU	29EF 29EF 29EF 1F	24AC 24AC 24AC	24AC 29EF 1E 1E 29EF 29EF	1E 24AC	540 1C	2E 2E 2E
	T WH IR MAX NO ELEV DW	30 H 20 H 20 H 20 H 20 H	W 4 4 E E E	οοο <u>υ</u> τυ ΕΕΕΕΕΕ	4 4 E E	7 H	0 × 8 8 ± ₹ ± ±
	MIN P	20 20 20 15 15	NMM	7 11 10 4 6 7	2 2	2 3	4 N N N
	S - O G E	444M4		0 m m m m 4	v −	2 -	4 W W W
ţ	V@0	오 오 오 오 오	오오오	8 8 8 8 8 8	8 8	오 오	오오오오
ALTERNATIVE #3		.00 EAST .00 EAST .00 EAST .00 EAST .00 EAST	.00 EAST .00 EAST .00 EAST	877.00 EAST 283.00 EAST 657.00 EAST 614.00 NORTH 433.00 EAST 972.00 EAST 836.00	.00 EAST .00 EAST	596.00 SOUTH 701.00 SOUTH	439.00 EAST 408.00 EAST 157.00 EAST 188.00 EAST 192.00
	VOLUME	358.00 345.00 938.00 289.00 444.00	314.00 345.00 439.00 1,098.00	877.00 283.00 657.00 614.00 433.00 972.00	534.00 728.00 1,262.00	596	439.00 408.00 157.00 188.00
DIAGNOSIS	TOTAL	12 29 9 12 73	10 11 14 14 35	23 9 16 21 14 31	17 22 22 39	19	14 13 5 5 6 38
	> 0 C7 A	00000	000	000000	00 0	0 0	0000
SILVICULTURE	>019	0 0 0 7 7 7	000 0	16 0 0 0 0 32	0 4 4	0 0	00000
SIL	> 0 C	26 26 5 0 0	10 11 14 35	7 9 0 14 13 31	17 18 	12	14 13 5 5 6
	> 0 J	M000M 8	000 0	000710	00 0	0 13	0000
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP 4 TP -	3 AL	#### #### ####
± 4	RN VI EI ST T#	8077 8077 8077 8077 8077 8077	8078 8078 8078 8078	8079 8079 8079 8079 8079 8079	8080 8080 8080	9002	9019 9019 9019 9019
	VCU	38 23 20 38 23 20 38 23 20 20 20 20 20 20 20 20 20 20 20 20 20	738	738 738 738 738 738 738 738 738	738	739	33333

		i							
PAGE 14 OF 18	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	PLANT(S),SS,CC	RS,R&W,CC RS,R&W,CC RS,IMPCI,CC	RS, IMPCT, CC	RS, WLPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,TMPCT,CC RS,TMPCT,CC	RS,TMPCT,CC RS,TMPCT,CC
PAG	A A E	888	2 2 2	23	888	23	888	88	22
	GH GH	로 로 로	R S S	로	R S S	보	RS S	R S S	로 로
	8 P P F 8	2 2 2	2 2 2	>	222	z	222	2 2	2 2
	WET	333	333	N.	SEC FNE	N.	333	33	33
	SN I	100	900	98	85 85	100	966	9 6	90
	∑ 00			-	4 5 5	-			
	ΣΣ∺	222	ммм	-	- w w	М	ммм	2.2	мм
	ECO CODE	MDC MDC MDC	S E E	SSR	CCCD	WHC	WDC WDC	A VOC	200
	SMU	3 2 3	53E 53E 53E	10	25 180 528E	11E	3F 3F	30	1 E
	E S S E	EEE	ΣΣΣ	=	ΣΣΣ	Σ	EEE	= =	= =
	MAX ELEV	044	5 5 5	4	991	10	01	2.0	9 5
	MIN	M 4 4	0 0 51	2	7 8 10	œ	~ ∞ 	7	410
	0 E P O	222	ммм	М	+ 2 W	М	444	2 2	мм
#:	VaO	R R R	EEE	Σ	EEE	Σ	E E E	ΣΞ	ΣE
HOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	471.00 SOUTH 157.00 SOUTH 132.00 SOUTH 760.00	382.00 WEST 325.00 WEST 250.00 WEST 957.00	722.00 WEST	867.00 EAST 376.00 EAST 408.00 EAST 1,651.00	659.00 EAST	220.00 WEST 534.00 WEST 512.00 WEST 1,266.00	321.00 NORTH 352.00 NORTH 673.00	471.00 NORTH 163.00 NORTH 634.00
IAGNO	TOTAL	15 5 5 25	25 5 5 8 8	23	27 12 13	21	17 16 16 40	90 6	15
URE D	V 0 1 T C7 A	0	000 0	0	000 0	0	000 0	00 0	00 0
SILVICULTURE DIAG	> 0 - 9	000	000 0	0	700 7	0	0 0 - 10	44 8	00 0
SIL	> 0 - S	15 1 21	-00 -	23	25 12 13	21	12 15 15	2 1	15 2
	>012	0 0 7	14 13 10 37	0	000 0	0	0 m 0 m	00 0	0 7 7
	L RL D VD	3 TP 3 TP 4 TP 4 TP 4 TP 4 TP 4 TP 4 TP	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP	3 1P 3 1P	3 3 4 4 4 4	3 AL AL
H A	RN VI EI ST VCU T#	739 9021 739 9021 739 9021	739 9026 739 9026 739 9026 9026	739 9028	739 9031 739 9031 739 9031	739 9037	739 9040 739 9040 739 9040	739 9041 739 9041 9041	739 9043 739 9043 9043

PAGE 15 OF 18	F PROPOSED FUTURE MANAGEMENT	C RS, TMPCT, CC C RS, R&W, CC C RS, TMPCT, CC C RS, TMPCT, CC	RS, WLPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC	RS, WLPCT, CC RS, CC RS, WLPCT, CC RS, CC RS, WLPCT, CC	S RS, WLPCT, CC	C RS, WLPCT, CC C RS, TMPCT, CC	PLANT(YC), SS, CT, SW PLANT(YC), SS, CT, SW RS, CC RS, WLPCT, CC RS, WLPCT, CC
4	AE AE VH	8888	888888	88888	88	88 .	88888
	SOFE	HR RS RS	RS RS H	오 오 포 포 포	R S S	R S S	S = S = =
	R A P H R	2222	2 2 2 2 Z Z	2 2 2 Z Z	2 2	zz	z z z z >
	I SN M ID C TE WET G EX HAB	1 100 FNW 1 97 FNW 1 100 FNW 1 100 FNW	1 100 FNW 1 100 FNW 1 92 FNW 1 80 FNW 1 100 FNW	1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW	1 100 FNW	1 83 FW 1 93 FW 1 100 FWW 1 100 FWW 1 100 FWW
	EE-	мммм	242242	2227	2 2	4 4	~ ~ ~ ~ ~ ~
	ECO CODE	7	99999	K K K K K K K K K K K K K K K K K K K	WHW	WHC C	CCD CCD WHM WDC SSR
	SMU	1 1 1 1 1	110011	74C 74E 20 51C 20	20 110	50F 50F	180 180 506 10
	T WH IR MAX NO ELEV DW	7 H 15 H 15 H 7 H	8	ひろうひょ	4 7 H	10 H	25 25 8 7 E E E E E E E E E E E E E E E E E E
	MIN	K000	7 0 7 6 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	4 M M 4 M	9 9	2 7	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	N N O G H	M M 4 M	040mm4	7 2 2 2 2 7	2 2	4 4	00000
#3	VQO	A A A A	5 5 5 5 5 K	2222	8 8	8 8	O O O O O
ALTERNATIVE #3	ASPECT	O NORTH O NORTH O NORTH O NORTH	0 WEST 0 WEST 0 WEST 0 WEST 0 WEST	0 SOUTH 0 SOUTH 0 SOUTH 0 SOUTH	O SOUTH	0 WEST 0 WEST -	SOUTH O SOUTH O SOUTH O SOUTH O SOUTH
- 1	VOLUME	328.00 1,034.00 760.00 608.00 2,730.00	251.00 314.00 251.00 651.00 1,058.00 376.00 2,901.00	408.00 439.00 439.00 314.00 439.00 2,039.00	275.00 549.00 824.00	596.00 892.00 1,488.00	815.00 413.00 754.00 485.00 143.00 2,610.00
DIAGNOSIS	TOTAL	8 27 19 16	10 10 8 22 37 37 12	13 10 10 10 10 10 10 10 10 10 10 10 10 10	11 22 33	31	26 11 24 17 17 5
	0 C7	0	000000	0000010	00:0	00:0	0000010
SILVICULTURE	> 0 7 %	8 20 17 11 56	000000	00000	00 0	0- -	7 2 8 0 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17
σ i	> 0 − ℃	0 6 2 5 5 13	8 10 12 12 12 75	£4404 1 2 6 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	00 0	30	26 4 4 16 17 17 5
	۲۰۱۶	0 0 1	16	00000	11 22	00 0	00000
	L RL U EU O VD	3 M 3 M 3 M	3337 3377 7477 7477	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 TP 3 ML	3 3 R R	3 3 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H	RN VI VCU T#	739 9044 739 9044 739 9044 739 9044	739 9045 739 9045 739 9045 739 9045 739 9045	739 9048 739 9048 739 9048 739 9048	739 9049 739 9049	739 9050 739 9050 9050	739 9051 739 9051 739 9051 739 9051 739 9051

PAGE 16 OF 18	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,UPCT,CC RS,CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS,TMPCT,CC PLANT(YC),SS,CT,SW RS,R&W,CC RS,R&W,CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC PLANT(S), SS, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC
PAGE	AE RT VH	888888	888	2222	8888888	222
	LE OT	RS RS RY HT	로 로 로	S 2 S S	F F S S S F F	로 로 로
	RB AA	22222	222	zzzz	ZZZZ>ZZ	222
	WET	SEC FNW FNW FNW SEC	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	NA N	NA NA
	S I S I	87 100 100 100 100 100 100 100 100 100 10	1000	100 78 92 85 85	001 96 1001 1001 1001	1000
	∑ ∪ ७				1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ΣΣΗ	-4444-	444	MM N N	NN→NNNN	ммм
	ECO	CHE KHO	WHC	WD C MD C	N N N N N N N N N N N N N N N N N N N	WDC WHS WDC
	SMU	25 50F 50F 50F 50F 25	50F 50F 50F	3E 36	30 30 30 30	35 3516 36
	T WH IR MAX NO ELEV DW	44444	0 N N H H H	77 77 77 T E T T	NN 00 00 N N N N N N N N N N N N N N N	999
	MIN ELEV E	827297	91210	11 10 2	WW40UUU	N N N
	пього	N44440	444	2325	00044000	ммм
#3	Vão	£ £ £ £ £ £	888	$\Sigma \Sigma \Sigma \Sigma$	X X X X X X X X	888
ALTERNATIVE #3	ASPECT	SOUTH SOUTH SOUTH SOUTH SOUTH SOUTH	SOUTH SOUTH SOUTH	WEST WEST WEST	EAST EAST EAST EAST EAST EAST EAST	NORTH NORTH
	VOLUME	713.00 527.00 376.00 439.00 376.00 314.00	261.00 196.00 157.00 614.00	485.00 502.00 439.00 784.00 2,210.00	261.00 408.00 471.00 283.00 534.00 261.00 323.00	376.00 251.00 314.00
DIAGNOSIS	TOTAL	25 14 12 14 11 11	8 5 18	14 14 25	8 113 71 71 8 01 	12 8 10 30
	V 0 1 L T C7 A	00000	000 0	0000 0	0000000	000 0
SILVICULTURE	> 0 J	060000	1 6 6	0000 0	- 0 0 0 0 1 m	000 0
SI	> 0 1 CS	25 12 14 12 11	7 1 5 1 13	72 25	71 15 15 15 17 17	12 8 10 30 30
	> 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000000	000 0	0000	000000000000000000000000000000000000000	000 0
	L RL U EU D VD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	888 88 88	8888 독독독	####### ########	3 3 ML 3 ML 3 ML
± 2	RN VI ST VCU T#	739 9052 739 9052 739 9052 739 9052 739 9052 739 9052	739 9053 739 9053 739 9053 9053	739 9054 739 9054 739 9054 739 9054	739 9055 739 9055 739 9055 739 9055 739 9055 739 9055 739 9055	739 9056 739 9056 739 9056 9056

PAGE 17 OF 18	Ξ	LE AE	₹ ₹	2	ည	HL CC RS, TMPCT, CC	ප ප				ပ္ပ	RS CC RS, R&W, CC	3			္ပ		2 2				္ဗ	HL CC PLANT(S),SS,CC	3		SL CC PLANT(S), SS, CC	S.		HL CC RS,TMPCT,CC	3	
	∝ ⊢	HA *	RB R	z	z	2:	2 :	z		2	z	2 2	z		2	2	z :	2 :	2 2	: z	2	z	≻ 2	2		>	2	z	2 2		
		t	HAB	3	FNE	FNE	₹ :	3		3	3	2 2	2		3	₹	3	2 :			3	3	3 3	ı.		FNE	FNE	₹			
	H 2					00 F																	00 100 11			97 FI			00 8 E E		
	,		טנ	_	7	= ,		-		_	~		_		1	7	· ·	= ·			~	~ ;	<u>-</u> -	-		-	1	_		-	
		Σ	E H	м	м	M I	M 1	1		2	~	ر د	J		м	м	۱ ہے	7 N	n r	۱ ۸	2	m ·	- ر	J		_	2	2	~ ~	J	
		0	CODE			NHC :				CMB	CMB	CAB	Ē							CWB			SSR			SSR			2 E		
			SMU	19F	11	11	<u> </u>	<u> </u>		Ģ	Ģ.	5 5	⊋		SE.	11	6 년	Ä :	<u> </u>		Ģ	щ:	9 9	ž		10	٥	e	2 6	2	
	트	N I				E :				-		Z I	-		Σ				E 3				· ·			_			E =		
			ELEV	30	15	15	20	00		0	5	τ τ	<u> </u>		œ	1	= '	מ ה	ה ל	7 =	0	∞ ·	6 ت	2		7	12	٥	~ ~)	
		7		0	0	9	0 0	-		0	0	0 0	>		2	Ξ	۰ ۱	~ <	5 =	Ξ	0	ω :	շ է	2		m	9	ω	2 «	•	
	s _			M	M	m i	ν.	4		m	M	M M	n		м	M	ا 2	٠ ر _د	1 P	n ~	2	M	۰ -	J		2	2	~	۸ د	J	
£			Vão	Σ	¥	¥	£ :	E		Ξ	Ξ	Į,	E		Ŧ	¥	Ŧ	Ŧ	E 3	Ξ	Ŧ	Ŧ	Ŧ	Ē		Σ	Σ	Ξ	Ŧ	Ē	
ALTERNATIVE #			ASPECT					EASI				EAST						EAST					EAST			941.00 NORTH	WEST	WEST	WEST		
-		107	MMBF	971.00	439.00	659.00	601.00	01%10	3,189.00	163.00	439.00	376.00	00.002	1,266.00	144.00	188.00	382.00	408.00	551.00	308.00	163.00	363.00	251.00	7.7.7	3,202.00	941.00	251.00	251.00	283.00		973.00
AGNOSIS		TATO	ACRES	33	14	22	2 5	<u>-</u>	108	9	14	2 5	2 ¦	75	2	9	4 !	<u>د</u> د	ο α	2 0	9	15	∞ α	· :	108	30	æ	∞	۰ ۷	· :	31
ZE D	>	0 -		0	0	0	0 0	; - :	0	0	0	0 0	; ; •	0	0	0	0	-	-	0	0	0	0 0	; ;	0	0	0	0	0 0	; ;	0
ULTUI																														;	
SILVICULTURE		0 -	۵ د	0	0	0 (0 0	1	0	0	0	0 0	•	0	0	0	0 (> c	o c	0	0	0	0 0	1	0	0	0	0	0 0	:	0
S		0 -	CS	23	14	21	12	`	22	2	14	7 4	۰ :	34	м	9	∿ i	<u> </u>	٠ ٢	0	7	9	∞ ^	J :	62	30	œ	œ	o 4	;	31
	>	0 -	5 ر	10	0	0 (ۍ ژ	7	31	4	0	o <	†	∞	2	0	0.0	> N	n c	ı —	4	2	0 4		53	0	0	0	0 0		0
		7 E	Q Q			3 TP						3 TP											2 2 2 4			3 TP			2 2 2 4 4 5		
			د ر						2					80											6						-
Ŧ =	S S S	EI	#L NON			739 9057			2506			739 9058		306			739 9059			739 9059			739 9059		6506	739 9060			739 9061		.906

		<u>.</u>								
E 18 OF 18	PROPOSED FUTURE MANAGEMENT	RS, R&W, CC RS, R&W, CC PLANT(S), SS, CC PLANT(S), SS, CC RS, CC RS, CC	RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS,TMPCT,CC RS,CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC RS, TMPCT, CC	RS, TMPCT, CC	RS,TMPCT,CC RS,CC	
PAGE	AE RT VH	888888	၁၁	222222	88	ည	88888	22	22 23	
	LE OT GH	RS RS RS HL HL	SL	S	RS S	SL	포 포 S 포 포	RS	로 로	
	RB AA	ZZ>>ZZ	z	zzzzz	2 2	z	Z Z Z Z Z	z	ZZ	
	I SN M ID C TE WET G EX HAB	1 90 FW 1 83 FNW 1 100 FNW 3 94 FNW 1 83 FNW 1 89 FNW	3 91 FNW	1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 2 93 FNW	4 85 FNW 3 89 FNW	1 100 FNW	1 100 FNW 1 100 FNW 1 93 SE 1 85 FNW 1 100 FNW	4 85 FNW	1 100 FNW 3 92 FNW	
	ΣΣΗ	W 01 - 1 0 0	М	N N N N N N	M 6/	М	20-00	М	- K	
	ECO	CCD WHS SSR SSR WHS	WHS	WHS WHS WHS WHS WHS WHS	WHS	NOC.	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	WHS	WHW	
	SMU	180 530 10 10 530 530	528F	38 530 530 530 530	528F 530	3F	10 240 10 10	528F	11c 528E	
	T WH IR MAX NO ELEV DW	8	φ	0000 <u>5</u>	12 M 15 M	15 M	τ ο τ ο τ π π π π π	3 #	9 80 H H	
	MIN ELEV E	2 x x 5 r 2	2	018180	12	٥	20000	2	2 2	
	R P O L S	004-200	М	M W W W W W	4 W	4	00000	4	- 2	
#	VQO	* * * * * * *	A.	¥ ¥ ¥ ¥ ¥ ¥	포 포	£	오 오 오 오 오	A.	오오	
IS - ALTERNATIVE	VOLUME MMBF ASPECT	784.00 WEST 532.00 WEST 282.00 WEST 282.00 WEST 351.00 WEST 529.00 WEST 529.00 WEST	554.00 EAST	519.00 NORTH 633.00 NORTH 227.00 NORTH 622.00 NORTH 345.00 NORTH 553.00 NORTH 553.00	125.00 NORTH 395.00 NORTH 520.00	791.00 NORTH	408.00 EAST 376.00 EAST 583.00 EAST 345.00 EAST 476.00 EAST	376.00 EAST	218.00 EAST 1,395.00 EAST	
DIAGNOSIS	TOTAL	25 18 10 10 12 18	16	15 6 6 11 17 17 183	13	54	12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	12	34	0 11 0
TURE	, L , C , V	000000	0	000000	00 0	0	00000	0	00	0 0
SILVICULTURE	> 0 - 0 %	0000	9	5 4 4 13 00 0 21 - 31 -	00 0	4	00000	0	34	37
S	o o c	25 13 5 5 10 66	٥	11 2 2 11 15 15 15 15 15 15 15 15 15 15 15 15	4 1 1 5	20	12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	12	мо	3,489
	>013	7 4 4 28 - 28 - 28 - 28 - 28 - 28 - 28 -	-	000-00	0 2 2	0	0000	0	00	0 ===== == 1,774 3
	7 E C	22222	₽	44444	7 T	T P	4444	3 ML	7 T P	
H	RN VI EI L ST U VCU T# D	739 9062 3 739 9062 3 739 9062 3 739 9062 3 739 9062 3 739 9062 3	739 9063 3	739 9064 3 739 9064 3 739 9064 3 739 9064 3 739 9064 3 739 9064 3	739 9065 3 739 9065 3 9065	739 9066 3	739 9067 3 739 9067 3 739 9067 3 739 9067 3 739 907 3	739 9068 3	739 9069 3 739 9069 3	6906

1 OF 19	PROPOSED FUTURE MANAGEMEN	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC		RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC		RS,TMPCT,CC RS,TMPCT,CC RS,CC RS,CC		RS, TMPCT, CC RS, WLPCT, CC RS, TMPCT, CC		RS, TMPCT, CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC		RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC
PAGE	AE RT P VH F	0000 0000		2000		2222		888		22	888		888888
	GH GH	75 TS		H H S S		뽀뽀뽀		RS RS SL		뽀	RS S		로로로로로로
	R AA RB	222		2222		2222		222		z	222		zzzzz
	I SN ID TE WET EX HAB	85 FNW 85 FNW 85 FNW		51 FW 35 SES 65 FW 66 FNW		87 FNW 86 FNW 87 FNW 74 FNW		85 FNW 85 FNW 85 FNW		85 FNW	80 SEC 89 FNW 88 FNW		100 FNW 100 FNW 100 FNW 100 FNW 100 FNW
	Συσ	444		7 2		W 4 W W		444		4	w		
	ΣΣΗ	ммм		7 - 2 -		wwww		ммм		M	- 22		000000
	ECO CODE	WHS WHS		WHC WHC		WHS WHS		WHS		WHS	WHS WHS		* # # # # # # # # # # # # # # # # # # #
	SMU	528F 528F 528F		190 23 190 29EF		528F 528F 528F 528F 528F		528F 528F 528F		528F	25 30 75E		372 372 374 374 374 374 374
	T W NO N	9 T T H		12 H 12 H 15 H 20 H		15 H 20 H 15 H		10 H 10 H		11 H	75 T X X X X X X X X X X X X X X X X X X		4 T T T T T T T T T T T T T T T T T T T
	MAX ELEV									-			
	MIN	401		112 10 12		15 21		849		М	11 8		991100
	S O C B	444		26-22		4446		444		М	222		мммммм
#:	ΛαΟ	¥ ¥ ¥		# # # # #		2 2 2 2		五五五		A.	X X X		#######
IS - ALTERNATIVE	VOLUME MMBF ASPECT	1,988.00 EAST 482.00 EAST 771.00 EAST	3,241.00	224.00 SOUTH 150.00 SOUTH 906.00 SOUTH 1,190.00 SOUTH	2,470.00	502.00 NORTH 483.00 NORTH 312.00 NORTH 207.00 NORTH	1,504.00	622.00 WEST 488.00 WEST 851.00 WEST	1,961.00	1,568.00 ѕо∪тн	462.00 WEST 787.00 WEST 675.00 WEST	1,924.00	370.00 WEST 246.00 WEST 370.00 WEST 206.00 WEST 287.00 WEST 83.00 WEST
DIAGNOSIS	TOTAL	74 19 26	119	9 3 4 4 0	91	16 17 7	20	20 17 29	99	20	18 31 24	12	0 0 0 0 0 0
	\ 0 0 0 0	000	0	0000	0	0000	0	000	0	0	000	0	000000
SILVICULTUR	> 0 - 20	000	0	0000	0	0000	0	000	0	0	000	0	0 4 0 0 0 0 0
S:	> 0 J	22	45	30	31	15 6 5	0,4	10 20 20	64	20	2 2 2 2	16	00000
	>013	52 18 7	12	9 6 35 10	09	0 M W 0	10	- 1 0	17	0	16 29 12	25	00000
	L RL U EU D VD	3 AL 3 AL 3 AL		3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3 M 3 M 1 P		3 ML	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
π P	RN VI EI ST VCU T#	733 3006 733 3006 733 3006	3006	733 3007 733 3007 733 3007 733 3007	3007	733 3010 733 3010 733 3010 733 3010	3010	733 3020 733 3020 733 3020	3020	733 3023	733 3024 733 3024 733 3024	3024	733 3035 733 3035 733 3035 733 3035 733 3035 733 3035

E 2 OF 19	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC	RS,WLPCT,CC RS,WLPCT,CC	RS,CC RS,IMPCT,CC	RS,R&W,CC RS,TMPCT,CC	RS,R&W,CC RS,CC RS,R&W,CC	RS,CC RS,CC	RS,CC RS,R&W,CC RS,TMPCT,CC RS,R&W,CC
PAGE	AE RT VH	8888	2	88	ខ្លួ	2 2	888	22	8888
	GH GH	로 로 로 로	SL	고 보	RS HE	# S	RS RS RS	로 로	RS SL SL
	R AA AA	2222	z	2 2	zz	2 2	2 2 2	zz	2222
	I SN 1 ID TE WET EX HAB	86 FNW 68 SEC 71 FNW 45 SEC	1 100 FNW	85 FNW 85 FNW	1 83 MP 1 100 FNW	2 97 FNW 1 100 FNW	3 56 SEC 5 65 FNW 4 60 NWH	40 FNW	4 64 FNW 2 64 FNW 2 61 FNW 1 70 SEC
	∑ ∪ 0			44				— — ₩ ←	
	ΣΣH	2 + 2 +	М	MM	1 2	2 3	N		~~~
	ECO	C C C C C C M M M M M M M M M M M M M M	WHW	WHS	WHM	KH3	WHC WHC	WHC	NA WHO NA
	T WH IR MAX NO ELEV DW SMU	6 H 74E 4 H 25 4 H 74E 4 H 25	15 H 54E	4 H 528E 2 H 528E	7 H 21A 15 H 11D	20 H 528F 8 H 11D	30 M 25 20 H 29EF 20 H 43EF	20 H 29EF 20 H 245E	30 H 29EF 30 H 29EF 15 H 29EF 15 H 86CD
	MIN ELEV E	V 4 4 4	œ	0 0	12 0	5	20 50 50	20 50	20 15 12 15
	N N O M M	7227	2	mm	2 2	мм	M 4 4	4 W	4 K O T
#	VaO	E E E E	₽	ΣΣ	ΣΣ	오포	ΣΣΣ	ΣΣ	2 2 2 2 2
- ALTERNATIVE	VOLUME MMBF ASPECT	411.00 WEST 175.00 EAST 207.00 EAST 100.00 EAST 2,455.00	1,518.00 NORTH	1,035.00 SOUTH 382.00 SOUTH 1,417.00	376.00 NORTH 927.00 NORTH 1.303.00	1,694.00 NORTH 847.00 NORTH 2,541.00	1,103.00 SOUTH 370.00 SOUTH 493.00 SOUTH 1,966.00	325.00 WEST 100.00 WEST 	597.00 SOUTH 932.00 SOUTH 700.00 SOUTH 224.00 SOUTH 2,453.00
IAGNOS	TOTAL	12 7 7 4 	37	33 10 43	31	53 27 80	36 9 12 	13 4	22 36 28 28 95
URE D	V 0 0 L T C7 A	0000	0	00:0	00 0	00 0	000 0	00 0	0000 0
SILVICULTURE DIAGNOSIS	در د ه <	7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37	0 7	00 0	80 8	0 9 12 12	00 0	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SI	> 0 J	0000	0	33	12 24 36	38 27 65	32 0 0 32	00 0	0000
	> 0 J	5 7 4 4 21	0	00 0	7	0 7	400 4	13 4	19 34 28 28 9
	L RL U EU D VD	3 3 1P 3 1P 3 1P	3 TP	3 3 M M	3 SP 3 TP	3 ML 3 TP	3 TP 7 TP	3 TP 3 TP	3 ML 3 TP 3 ML
± 3	RN VI VI ST VCU T#	733 3035 733 3035 733 3035 733 3035 3035		733 3037 733 3037 3037	733 3038 733 3038 3038	733 3039 733 3039 3039	740 4002 740 4002 740 4002 4002	700 7007 240 7007 240 7007	740 4007 740 4007 740 4007 740 4007

0	PROPOSED FUTURE MANAGEMENT	333 333 331 331		, ,	88 8				20,		3,		ິດ	g		20,	38	
E 3 OF 19	PROPOSED FUTURE M	RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,R&W,CC RS,TMPCT,CC		RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC	RS, CC		RS,CC	RS, TMPCT, CC	RS,CC	RS, TMPCT, CC	RS,CC	RS, R&W, CC	RS,R&W,CC	RS,CC RS,CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	
PAGE	AE AT	88888		2	88888	S		2	ខ	ខ	2	2	2	2	88	8 5	888	
	CH CH M	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		로	로 로 로 로 로	로		로	土	뮢	SL	뿦	포	SF	로로	로 =	불로로	
	RB AA B	22222		Z	ZZZZZ	Z		Z	Z	Z	Z	Z	Z	Z	z z	2 2	2 2 2	
	I SN ID TE WET EX HAB	85 FNW 75 FIW 85 FNW 73 FIW 77 FIW		85 FNW	90 FWW 65 FW 81 FWW 80 FW 90 FWW			90 FNW	90 FNW	62 FNW	65 FW	65 FNW	70 FNW	85 SEC			65 FW 65 FW	
	ΣΟυ	44444		4	4-8-4	_		4	4	Ŋ	_	5	4	4	28	ر ر	1 — —	
	ΣΣΗ	OMOMM		2	00040	4		2	2	_	2	_	_	_	− ₩		- 2 2	
	ECO CODE	WHS CCS WHS CCS CCS		WHS	WHS WHC CCD WHS	CCO		000	WHS	WHC	WHC	WHC	WHC	₩ CM	SSS	WHS	# # # # # # # # # # # # # # # # # # #	
	SMU	5280 330 5280 5280 330 330		528D	540 190 540 186 540	18E		240	240	29E F	190	29E F	29E F	52	290 330	51c	5 6 8	
	T WH IR MAX NO ELEV DW	0 0 8 0 0 H H H H		10 H	00000 THHHH	I		9 H	Н 9	20 H	5 H	20 H	6 E	15 M	ΞΞ	= =	11	
	MIN PELEV EL	4084K		œ	00×0	10		2	2	7	2	15	4	٥	2 %	9 4	. = =	
	пьогх	00000		2	2427	М		2	2	4	2	4	М	2	2 2	20	22	
# :	700	* * * * * *		A.	% % % % %	8		8	8	8	8	8	8	8	₹ %	8 8	2 2 2	
S - ALTERNATIVE	VOLUME MMBF ASPECT	471.00 NORTH 251.00 NORTH 220.00 NORTH 784.00 NORTH 564.00 NORTH	2,290.00	452.00 NORTH			1,289.00	75.00 NORTH	175.00 NORTH	3,033.00 EAST	659.00 NORTH	1,378.00 NORTH	1,843.00 NORTH	972.00 NORTH	100.00 WEST 413.00 NORTH	314.00 NORTH		1,561.00
DIAGNOSIS		15 8 7 25 18	12	<u>~</u>	00000	;	41	м	7	101	21	45	61	31	7 9	٥٢	17	55
DIAC	TOTAL			•		į	•			=		7	•	1-1	,	•	,	-
LTURE	V C7	00000	0	0	00000	0	0	0	0	0	0	0	0	0	00	00	000	0
SILVICULTURE	> 0 C6	00000	0	œ	00000	0	0	0	0	0	0	0	0	0	00	00	000	0
IS :	> 0 C5	15 7 25 18	K	0	0.0000	۳ !	41	0	0	80	21	70	20	31	0 2	5 0	10 7 0	8
	> 0 U	00000	0	2	00000	0	0	M	7	21	0	2	=======================================	0	7 7	۷ ٥	-0-	56
	L RL U EU D VD	3 ML 3 SV 3 SV 3 SV 3 SV		3 ML	3 3 A A A A A A A A A A A A A A A A A A			m	3 SV	3 ML	3 SV	3 ML	3 ML	3 SV	mm	MK	3 20	
# 5	RN VI EI ST VCU T#	735 5001 735 5001 735 5001 735 5001 735 5001	5001	735 5003	735 5019 735 5019 735 5019 735 5019 735 5019		5019	735 5021	735 5022	735 5023	735 5028	735 5037	735 5038	735 5044		735 5050	735 5050	5050

		ī					
3E 4 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC FH, RS, R&W, 2-SW RS, TMPCT, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, WLPCT, CC
PAGE	AE AE VH		88	22	88	222222	222222
	G G E M	를 보고 등 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SL RS	RS	로로	로 로 로 로 로 로 로	S S = = = = =
	R A A H H R	222222	2 2	z	zz	222222	22222
	WET	NE SERE	A I I	3	33	3333333	333333
	SN ID	88 3 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83	80	23	2282828	&&&&& &&
	E 0 0	44W444	4 4	4	4 4	0404600	44444
	ΣEH	22722	м 2	м	мм	M M M M M M M	M M M M M M
	ECO	E E E E E E E E E E E E E E E E E E E	CCS	SOO	SOO	E C E E E E E E E E E E E E E E E E E E	\$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20
	T WH IR K NO V DW SMU	9 H 528D 9 H 528D 0 M 25 2 H 540 10 H 540 10 H 540 5 H 540	0 M 33E 5 H 540	10 H 33E	8 H 33E 6 H 33E	6 H 19E 6 H 19E 6 H 19E 7 H 540 6 H 19E 6 H 19E	5 H 330 2 H 330 2 H 330 3 H 330 3 H 330 3 H 330
	MAX	W - 227 -	20				
	MIN	9 9 21 21 21	8 21	10	w 40	0000000	MUUNMM
	O E P O	0000000	м 0	м	мм	M M M M M M M	7 7 7 7 7 7
7#	000	* * * * * * * *	운 운	8	8 8	222222	22222
IS - ALTERNATIVE #4	VOLUME MMBF ASPECT	125.00 NORTH 345.00 NORTH 2,303.00 NORTH 283.00 NORTH 564.00 NORTH 519.00 NORTH	4,263.00 903.00 NORTH 226.00 NORTH	1,129.00 407.00 EAST	50.00 EAST 300.00 EAST 350.00	251.00 EAST 88.00 EAST 175.00 EAST 356.00 EAST 50.00 EAST 75.00 EAST 63.00 EAST 1,058.00	326.00 EAST 338.00 EAST 107.00 EAST 200.00 EAST 195.00 SOUTH 251.00 SOUTH 1,417.00
SILVICULTURE DIAGNOSIS	TOTAL	4 11 80 9 19 19	29 146	37	11	25 1 2 2 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	12 4 4 8 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
ZE DI	V 0 C7 AC	0000000	0 00	0 0	00:0	000000000	000000
SULTUR		000000		0 0		00000000	0000000
SILVI	>078						
	, > 0 1 S	48 48 9 18 7 0	97	9 32	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000013131	4 6 1 1 3 8 8 22
	> 0 U	0 32 0 0 12 5	4 4	v v	2 6	13 13 2 2 2 2 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	L RL U EU D VD	3 S S S S S S S S S S S S S S S S S S S	3 SV 3 SV	3 SV	3 88	3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	2
± 3	RN VI EI ST VCU T#	735 5051 735 5051 735 5051 735 5051 735 5051 735 5051 735 5051	5051 735 5052 735 5052	5052	735 5054 735 5054 5054	735 5055 735 5055 735 5055 735 5055 735 5055 735 5055 735 5055	735 5056 735 5056 735 5056 735 5056 735 5056 735 5056

PAGE 5 OF 19	PROPOSED FUTURE MANAGEMENT	RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	FH,RS,R&W,2-SW FH,RS,R&W,2-SW	PB, PLANT(RC&YC), SS, CC RS, CC RS, WLPCT, CC RS, CC RS, CC	FH,RS,R8W,2-SW	RS,TMPCT,CC RS,CC RS,TMPCT,CC	RS,CC RS,CC RS,TMPCT,CC	RS, CC RS, CC RS, CC RS, CC RS, TMPCT, CC RS, CC
PA	HA RT VH	8888	#S #S	88888	MS	888	888 .	2 2 2 2 2 2
	G G G E	로 로 로 로	뽀 뽀	SL HL RS RS	포	R S S	R S S	4 4 4 4 8 4
	R AA H R	Z Z Z Z	2 2	****	z	ZZZ	222	****
	SN SN M ID C TE WET G EX HAB	1 89 FNW 1 100 FNW 1 100 FNW 1 100 FNW	1 74 FW 1 70 FW	1 97 FW 1 89 FNW 1 100 FNW 1 82 FNW 1 75 SE	3 72 FW	4 85 FNW 2 95 FNW 1 100 FNW	1 92 FW 1 92 FW 1 100 FNW	1 60 SE 1 60 SE 1 85 FW 1 79 FW 1 100 FNW 1 68 SE
	ΣΣΗ	0000	мм	w w w w ←	M	ммм	ммм	~ ~ w w w ~
	ECO (MDC MDC MDC	000		CCD	2 2 3 8 8 8 8 8 8	S H H	C C C C C C C C C C C C C C C C C C C
	T WH IR MAX NO ELEV DW SMU	5 H 3D 2 H 3D 3 H 3D 3 H 3D	20 M 4E 15 M 4E	7 H 4E 5 H 3E 4 H 3E 4 H 3E 3 H 24D	20 M 18D	15 H 528F 15 H 53E 14 H 53E	10 H 19E 10 H 19E 11 H 54F	4 H 24AC 4 H 24AC 5 H 18D 5 H 18 7 H 1E 4 H 24AC
	MIN	2223	9 21	444m0	10	12 9	5 6 6	M 4 4 M 0 4
	N T O T M	0000	мм	M M M M M	M	4 W W	444	0 0 M -
7#	VgO	8888	88	% % % % %	윤	운 모 오	X X X	X X X X X X
ALTERNATIVE	ASPECT	NORTH NORTH NORTH	EAST EAST	SOUTH SOUTH SOUTH SOUTH	SOUTH	NORTH NORTH	WEST WEST WEST	NORTH NORTH NORTH NORTH NORTH
NOSIS - ALTE	VOLUME	633.00 183.00 263.00 182.00 1,261.00	1,411.00 847.00 2,258.00	1,002.00 312.00 100.00 458.00 439.00	2,311.00	487.00 407.00 113.00 1,007.00	63.00 263.00 408.00 734.00	282.00 150.00 382.00 463.00 402.00 275.00
IAGNC	TOTAL	22 6 6 9 7 7 7 44	45 27 72	34 11 15 15	78	15 15 39	13	11 13 17 17 17
URE D	0 C7 A	0 0 0	00 0	00000	0 0	000	000 0	000000
SILVICULTURE DIAG	> 0 7 %	0000 0	00 0	00000	. 0	000 0	000 0	000000
S	> 0 C	13 6 7 25 25	45 27 72	24 6 13 14	57	7 0 2 7	13	10 10 12 12 18 28
	> 0 - 2	9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	00 0	0 2 4 2 0	24	10 10 5	0 8 0 8	11 6 9 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	L RL U EU D VD	M	4 ML	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 1P 4 1P 4 1P	4 ML	d d d d d d d d d d d d d d d d d d d
± \$	RN VI EI ST VCU T#	736 6002 736 6002 736 6002 736 6002	736 6003 736 6003 6003	736 6004 736 6004 736 6004 736 6004 736 6004	6004	736 6014 736 6014 736 6014 6014	736 6017 736 6017 736 6017 6017	736 6024 736 6024 736 6024 736 6024 736 6024 736 6024

		S						
PAGE 6 OF 19	PROPOSED FUTURE MANAGEMENT	PB, PLANT(RC&YC), SS, CC RS, WLPCT, CC	RS,WLPCT,CC RS,WLPCT,CC	PLANT(YC), SS,CT, SW PLANT(YC), SS,CT, SW RS, TMPCT, CC PLANT(YC), SS,CT, SW	RS, CC RS, TMPCT, CC	RS,TMPCT,CC PLANT(YC),SS,CT,SW RS,CC RS,CC	RS, CC	RS, CC RS, CC
PAG	AE AE VH	88	2 2	8888	88	8888	2	88
	CH CH	로 로	S S	S S S S S S S S S S S S S S S S S S S	& S S	RS RS H	爿	로로
	R A P ™ R	2 2	2 2	Z Z Z Z	zz	2222	Z	ZZ
	I SN ID TE WET EX HAB	96 FNW 100 FNW	85 FNW 85 FNW	80 FNW 80 FNW 73 FW	93 SEC 100 FNW	80 FNW 76 FNW 72 FNW 71 FNW	70 FIW	100 FNW 5 ADD
	∑ 00	2 +	4 4				~	
	ΣΣ⊷	2.2	2 2	~ ~ ~ W	← w		М	2 3
	EC0 C00E	CCS	WHS	SSS GSS GSS GSS GSS GSS GSS GSS GSS GSS	WDC	\$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33	SOO	WDC MHA
	T WH IR MAX NO ELEV DW SMU	4 H 6 3 H 3D	6 H 750 6 H 750	15 M 28 15 M 28 15 M 28 15 M 18D	12 H 86CD 11 H 3E	15 M 28 15 M 28 9 H 28 6 H 28	8 H 33D	20 H 1E 20 H 246E
	MIN ELEV E	M 6	4 W	12 8 2 2 2	10	8 27 2 2	9	20
	N T O F H	2 3	2 2	0	2 8		2	mm
1 1	VQO	P. R.	88	유 유 유 유	% %	오 오 오 오	æ	오 오
IS - ALTERNATIVE #4	VOLUME MMBF ASPECT	726.00 SOUTH 587.00 SOUTH 1,313.00	745.00 SOUTH 574.00 SOUTH 1,319.00	674.00 EAST 1,152.00 EAST 1,003.00 EAST 700.00 EAST 3,529.00	314.00 SOUTH 376.00 SOUTH 690.00	1,048.00 SOUTH 350.00 SOUTH 576.00 SOUTH 326.00 SOUTH 2,300.00	784.00 WEST	182.00 NORTH 91.00 NORTH 273.00
AGNOS	TOTAL	22 48 48	23	27 40 32 28 28	12 22	42 14 19 11	52	4 11
URE DI	V 0 0 C7 AC	00 0	00 0	0000	00 0	0000	0	00 0
SILVICULTURE DIAGNOSIS	8 د ٥ <	00 0	00 0	0000	00 0	0000	0	00 0
SIL	>075	12 6	0 2	24 32 0 56	10 12 22	0 16 8 24	52	-0 -
	2 د ه <	16	23	27 16 0 28 71	00 0	42 14 3 3	0	4 4 10
	L RL U EU D VD	4 ML	4 ML 4 TP	4 4 4 4 TP	4 4 F F	4 4 4 1P 4 TP 4 TP 4 TP 4 TP 4 TP 4 TP 4	4 TP	4 TP
Ξ.	RN VI ST CCU T#	736 6028 736 6028 6028	736 6029 736 6029 6029	736 6031 736 6031 736 6031 736 6031	736 6038 736 6038 6038	736 6052 736 6052 736 6052 736 6052	736 6053	736 6054 736 6054 6054

se 7 of 19	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC RS,WLPCT,CC RS,WLPCT,CC	RS, TMPCT, CC	RS,CC RS,CC RS,WLPCT,CC	RS, WLPCT, CT, CT, SW RS, WLPCT, CT, CT, SW RS, WLPCT, CC	RS, TMPCT, CC	RS, IMPCT, CC RS, IMPCT, CC	RS,CC RS,CC	RS, CC RS, CC RS, CC
PAGE	AE AT A	22222	ည	222	888	ည	88	88.	2222
	₩ H D H W	H RS RS H H	Ŧ	로 로 로	뽀뽀뽀	로	RS HL	로 로	포 포 포 공
	RB AA	22222	Z	222	222	Z	2 2	2 2	2222
	I SN M ID C TE WET G EX HAB	1 100 FNU 1 83 FNU 1 87 FNU 1 91 FNU 1 100 FNU	1 100 FNW	1 60 SE 1 60 SE 1 100 FNW	4 85 FNW 5 85 FNW 4 85 FNW	1 60 FW	1 100 FNW	1 100 FNW 1 81 FW	1 70 FU 83 FU 1 90 FIU 1 78 FU
	XX-	m m m o m m	2	2 - 1 -	222	_	мм	мм	мммм
	EC0 CODE	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MDC	CMC CMC CHM	S S S H A	WHS	E E	MHC MHC	00 0 H 00 00 00 00 00 00 00 00 00 00 00
	T WH IR IR MAX NO ELEV DW SMU	6 4 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 H 3D	7 H 24E 7 H 24E 6 H 74E	2 H 6 3 H 6 3 H 750	5 H 51C	11 H 30D 11 H 30D	20 H 1E 20 H 19E	15 M 550D 20 M 550D 20 H 35D 20 M 550D
	MIN ELEV B	404400	2	6 7 7	222	4	==	20	5 5 5 5
	N T O T N	m	2	ммм	M 4 M	-	22	мм	0000
# :	V ₀ 0	22222	Š.	¥ ¥ ¥	2 2 2	Ξ	ΞΞ	8 8	9999
ALTERNATIVE	NLUME MMBF ASPECT	345.00 NORTH 531.00 WEST 224.00 WEST 250.00 WEST 100.00 WEST 1,550.00	439.00 EAST	125.00 SOUTH 188.00 SOUTH 125.00 SOUTH 	220.00 SOUTH 502.00 SOUTH 690.00 SOUTH ,	408.00 NORTH	283.00 WEST 283.00 WEST	187.00 WEST 275.00 WEST 462.00	320.00 WEST 245.00 WEST 188.00 WEST 532.00 WEST 1,285.00
SIS -	VOLUME	34 25 25 10 10 10 10 10	4.3	131	50 20 20 20 20 20 20 20 20 20 20 20 20 20	7	22 22	27.	32, 1,28
IAGNOSIS	TOTAL	11 21 9 10 4 4 4 59	14	4 4 14	7 16 22 22 45	13	9 1 8 1 8 1	111	11 8 9 19 19 144
TURE D	V 0 1 1 1 C 7 P	000000	0	000	000	0	00 0	00 0	0000
SILVICULTURE	> 0 C	0000000	0	000	000 0	0	00 0	00 0	0000
S:	0 CS	11 0 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17	14	4 9 4 4	16 22 22 45	13	9 8 8	20 2	29
	> 0 C	0 20 9 4 4 4 77	0	000 0	000	0	00 0	11	10 10
	L RL U EU D VD	ML 4 ML 4 ML 4 7 ML	4 ML	4 4 M M M M M M M M M M M M M M M M M M	4 ML 4 ML 4 ML	4 TP	4 M 4 M 4	4 ML 4 1P	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
H	RN VI EI VCU T#	736 6055 736 6055 737 6055 737 6055 737 6055 737 6055	737 7000	737 7008 737 7008 737 7008 7008	737 7009 737 7009 737 7009 7009	737 7015	737 7016 737 7016 7016	737 7020 737 7020 7020	737 7030 737 7030 737 7030 737 7030

		Ī	3					20,00
8 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	PLANT(YC),SS,CT,SW RS,CC	RS, CC RS, CC RS, CC RS, CC	RS, R&W, CC RS, CC RS, R&W, CC	RS,CC RS,CC RS,R&W,CC	RS,R&W,CC RS,CC	PB,PLANT(RC&YC),SS,CC PB,PLANT(RC&YC),SS,CC
PAGE	AE AE VH	88888	ខ្លួ	8888	888	222	88	ខ្លួ
	LE OT GH	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	S S	& 프 프 프	<u> </u>	표표당	E S	로로
	RB AA H	22222	zz	z z z z	z z z	Z Z Z	zz	zz
	I SN ID TE WET EX HAB	85 FNW 85 FNW 85 FNW 85 FNW 85 FNW	80 FW 80 FW	85 FNW 85 FNW 85 FNW 85 FNW	93 FNW 85 FNW 89 FNW	80 FW 80 FW 83 FW	93 FNW 70 FW	92 FW 86 FW
	∑ ∪ ∪	44444		4444	0 4 W	M		
	ΣΣΗ	00000	мм	мммм	ммм	000	N 0	NW
	ECO CODE	S E E E E E E E E E E E E E E E E E E E	88	WHS WHS WHS	WHS	999	WDC	999
	SMU	5280 5280 5280 5280 5280	8 8	528F 528F 528F 528F	528F 528F 528F	18C 18C 18C	3E 4D	18C 18D
	T WH IR MAX NO ELEV DW	25 25 25 H H H H H	10 H	30 H H S S S S S S S S S S S S S S S S S	15 H 20 H 20 H	7 7 7 7 7 7	ω o.	9 9 T T
	MIN ELEV E	51 51 51 51 51	<u> </u>	20 50 50 50 50 50 50 50 50 50 50 50 50 50	21 21	M M M	rv 0	rv rv
	S O C B	22222	2 2	4444	M 4 4	C - C	N 0	2 2
7#	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	운 운	8888	888	¥ ¥ ¥	₹ ¥	¥ ¥
IS - ALTERNATIVE #4	VOLUME MMBF ASPECT	314.00 SOUTH 95.00 SOUTH 188.00 SOUTH 274.00 SOUTH 328.00 SOUTH 1,199.00	399.00 EAST 200.00 EAST 599.00	325.00 SOUTH 175.00 SOUTH 212.00 SOUTH 100.00 SOUTH 812.00	275.00 SOUTH 499.00 SOUTH 375.00 SOUTH 1,149.00	502.00 SOUTH 502.00 SOUTH 1,191.00 SOUTH 2,195.00	674.00 EAST 232.00 EAST 906.00	413.00 SOUTH 270.00 SOUTH 683.00
DIAGNOS	TOTAL	10 3 8 8 8	16 8 8	13 7 8 8 4 4 32 - 32	11 20 15 46	16 16 38 70	27 9	15 10 25
rure	0 c7 c7	00000	00:0	0000 0	000:0	000 0	00:0	00 0
SILVICULTURE DIAGNOSIS	, o ,	0 0 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 0	0000	000 0	000	00 0	00 0
SI		10 3 6 4 0	00 0	0000	000 0	16 16 38 70	0- -	omio
	> 0 L	0 0 1	16 8 24	13 6 6 4 4 4 30	11 20 15	000	27 8 35	7 16
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP 4 TP	4 4 ML 4 ML 4 ML 4 ML 4 ML	4 ML 4 ML 4 ML	4 TP 4 ML 4 ML	4 TP	4 TP 3 TP
Ŧ	RN RN VI EI ST VCU T#	737 7031 737 7031 737 7031 737 7031 737 7031	737 7034 737 7034 7034	737 7035 737 7035 737 7035 737 7035	737 7036 737 7036 737 7036 7036	737 7042 737 7042 737 7042 7042	737 7044 737 7044 7044	737 7045 739 7045 7045

E 9 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS, TMPCT, CC PLANT(YC), SS, CT, SW RS, CC RS, CC	RS,WLPCT,CC RS,WLPCT,CC DFH,RS,R&W,2-SW	RS, R&W, CC	RS,R&W,CC RS,TMPCI,CC RS,TMPCI,CC RS,R&W,CC	RS, WLPCT, CC	RS,CC RS,CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS, CC
PAGE	AE RT VH	88888	8888		ပ္ပ	8888	22	8. 8	888	23
	G G E	RS RS RS	RS RS	당당里	RS	SR RS H SS	빂	RS R	RS RS	로
	R A P H R	****	x	* * *	z	2222	z	z z	2 2 2	z
	I SN M ID C TE WET G EX HAB	1 100 FNW 1 76 FNW 1 100 FNW 1 100 FNW 1 60 SE	1 100 FNU 1 82 FU 1 73 FU 1 70 FU	2 65 FI 1 52 FW 5 65 FI	1 91 FNW	1 70 FW 4 85 FNW 4 85 FNW 1 70 FW	1 100 FNW	1 100 FNW	1 49 SEC 1 45 SEC 1 45 SEC	4 85 FNW
	ΣΣH	7222-	M M M M	222	2	M M M M	2	2 8		M
	ECO	CMC WHW	CCD CCD CCD	CCS CCS	E E	CCD WHS	Z H Z	H H	CAM	WHS.
	T WH IR MAX NO ELEV DW SMU	5 H 2D 4 H 11D 5 H 2D 5 H 11D 4 H 24AC	15 H 1E 15 M 4D 15 H 19E 15 M 4E	4 H 63D 4 H 19D 9 M 63D	20 H 74D	12 H 4E 5 H 528F 3 H 75E 7 H 4E	0 н 540	20 H 74D 20 H 54E	30 M 25 30 M 25 20 M 25	30 H 75F
	MIN ELEV E	44404	51 51 51	441	15	0 M M W	М	15	200	20
	s – o – ш	2-22-	m m m m	2 - 2	2	M 4 M M	2	2 8		4
#	Vao	44444	$\Sigma \Sigma \Sigma \Sigma$	2 2 2	Ð	오 오 오 오	8	₩ &	오 오 오	운
ALTERNATIVE	ASPECT	NORTH NORTH NORTH NORTH	SOUTH SOUTH SOUTH	WEST WEST WEST	SOUTH	NORTH EAST EAST NORTH	SOUTH	551.00 WEST	SOUTH SOUTH	102.00 283.00 NORTH
- 1	VOLUME	307.00 188.00 182.00 200.00 75.00	251.00 695.00 502.00 220.00 1,668.00	564.00 596.00 871.00 2,031.00	1,348.00	849.00 521.00 314.00 422.00	1,976.00	551.00	695.00 232.00 175.00	1,102.00
IAGNO	TOTAL	11 6 6 7 7 35 35 35	8 24 16 7 7	18 19 30 67	94	24 10 11 11	63	1 19	24 9 7	6
SILVICULTURE DIAGNOSIS	V 0 L T C7 A	00000	0000	000 0	0	0000	0	0 0	000	0 0
LVICUL	> 0 7	00000	0000	000	0	10 2 0 8	0	0 0	000	0 0
SIL	. v 0 C5	5 6 0 0	15 16 7 7 46	18 19 28	31	14 10 3	63	12	15	9 6
	> 0 7	6 6 8 8 8 23 23	0000	00= ===================================	15	0000	0	7 10	087	24
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 ML 4 TP 4 TP 7 TP	4 ML 4 TP 3 ML	4 ML	4 TP 4 TP 4 ML 4 TP	4 ML	7 M 7	4 A M L 4 A M L	4 ML
± 3	RN VI EI EI ST VCU T#	737 7046 737 7046 737 7046 737 7046 737 7046	737 7050 737 7050 737 7050 737 7050	737 7053 737 7053 735 7053 7053	737 7056	737 7085 737 7085 737 7085 737 7085	737 7086	737 7087	737 7089 737 7089 737 7089	737 7090

		ī				
PAGE 10 OF 19	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC RS, CC RS, CC RS, CC RS, TMPCT, CC	RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, R&W, CC	RS, CC RS, CC RS, CC RS, CC RS, CC RS, CC RS, CC	RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	RS,CC RS,TMPCT,CC RS,CC
PAG	AE RT VH	88888	8888	22222222	88888	2 2 2
	CH GH	로 & 로 뽀 뽀	RS R	R S S L H L L S S S S S S S S S S S S S S	 	보 보보
	R AA RB	2222	2 2 2 Z	ZZZZZZZZ	2 2 2 Z Z	z zz
	WET	SSSSS	SSSS	323332	33333	AN A
	SN ID ID EX F	85 1 2 8 8 5 1 8 5 1 8 8 5 1 8 8 5 1	85 87 85 93	2647339	35 1 24 1 35 1 35 1 1 35 1 1 35 1 1 35 1 35 1 1 35 1 35 1 1 35 1 35 1 1 35 1 35 1 1 35	87 I 85 I 87 I
	∑ ∪ ∪	4444	4440	- M	44400	w 4w
	ΣΣ∺	ммммм	M M M M	m м м м м м ←	ммммм	м мм
	ECO	WHS WHS WHS WHS WHS	S H H S H H	CCD	S H M M M M M M M M M M M M M M M M M M	WHS WHS
	T WH IR MAX NO ELEV DW SMU	20 H 75F 30 H 75F 20 H 528F 20 H 75F 20 H 75F	15 H 528E 12 H 528D 15 H 528E 15 H 528D	15 M 5500 15 H 5280 15 H 14EF 15 M 5500 9 H 5500 11 H 53E 11 H 5500 8 H 490	15 H 528F 20 H 528F 11 H 528F 15 H 528F 15 H 528F	30 H 528F 6 H 528F 20 H 528F
	MIN ELEV E	20 20 20 15 12	12 8 12 0	27 5 5 5 6 6 7 7	10 10 12 12	5 2 5
	пРого	4444	мммм	00400000	4444	4 44
7#	V@0	2222	S S S S	\bigcirc	2 2 2 2 2	₩ ₩ ₩ ₩
ALTERNATIVE	ASPECT	WEST WEST WEST WEST SOUTH	SOUTH SOUTH SOUTH SOUTH	NORTH NORTH NORTH WEST WEST WEST	NORTH NORTH NORTH NORTH NORTH	WEST NORTH NORTH
NOSIS - ALTE	VOLUME	564.00 488.00 144.00 646.00 395.00	238.00 582.00 75.00 727.00 1,622.00	299.00 373.00 263.00 100.00 200.00 331.00 645.00 350.00	1,098.00 941.00 471.00 1,223.00 471.00	1,912.00 157.00 978.00 1,135.00
DIAGNO	TOTAL	18 17 22 22 13	21 23 3 24 257	13 9 8 13 23 23 96	35 30 15 39 15 134	62 5
URE	7 0 0 C2	00000	0000:0	000000000	00000	0 00 0
SILVICULTURE	> 0 V	00000	0000	0-00000	000000	0 00 0
SI	. v 0 c5	18 10 3 15 11 	20 20 31	5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35 30 15 39 15 15	57 28 28 33
	> 0 - 2	2 2 2 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	12 3 4 4 26	27 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000	5 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	L RL U EU D VD	7 7 7 7 W W W W W W W W W W W W W W W W	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	W W W W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Ŧ	AU RN VI EI ST VCU T#	737 7091 737 7091 737 7091 737 7091 737 7091	737 7092 737 7092 737 7092 737 7092 737 7092	737 7093 737 7093 737 7093 737 7093 737 7093 737 7093 737 7093 737 7093	737 7094 737 7094 737 7094 737 7094 737 7094	737 7095 737 7096 737 7096 7096

PAGE 11 OF 19	I R HM SN I M HM M ID PH LE AE M C TE WET AA OT RT PROPOSED I G EX HAB RB GH VH FUTURE MANAGEMENT	3 4 85 FNW N RS CC RS,CC 3 4 85 FNW N LS CC RS,CC 3 4 85 FNW N RS CC RS,CC 3 4 85 FNW N RS CC RS,CC 3 5 66 FIW N RS CC RS,CC 3 4 85 FNW N RS CC RS,CC	3 1 93 FW N RS CC PLANT(YC),SS,CT,SW 3 1 93 FWW N RS CC RS,CC	3 1 100 FNW N RS CC RS, WLPCT, CC 3 1 100 FNW N HL CC RS, WLPCT, CC	3 1 100 FNW N HL CC RS, WLPCT, CC 3 1 100 FNW N HL CC RS, WLPCT, CC 3 1 100 FNW N RS CC RS, TMPCT, CC 3 1 100 FNW N RS CC RS, TMPCT, CC 3 1 100 FNW N HL CC RS, WLPCT, CC 3 1 100 FNW N RS CC RS, WLPCT, CC	3 1 100 FNW N HE CC RS, TMPCT, CC	3 1 100 FNW N RS CC RS,WLPCT,CC 3 1 100 FNW N RS CC RS,WLPCT,CC 3 1 100 FNW N RS CC RS,WLPCT,CC	1 51 SE N RS CC RS, CC 1 1 50 SE N HL CC RS, CC 1 1 60 SE N HL CC RS, CC 1 1 89 FNW N HL CC RS, CC 1 1 60 SE N RS CC RS, CC 1 1 60 SE N RS CC RS, CC
	CODE	WHS WHS CCS	000 000 M	20 A		D CM	000	CMC CMC CMC CMC
	T WH IR MAX NO ELEV DW SMU	20 H 528E 20 H 528F 20 H 528F 30 H 528F 20 M 33E 20 H 528E	20 M 18D 20 H 3F	4 H 3E 5 H 3E	2 H 3E 3 H 3E 4 A 4 A 5 B 4 A 5 B 6 A 6 A 6 A 6 A 6 A 6 A 6 A 6 A 6 A 6	30 H 3F	5 M 3E 6 M 3E 7 M 3E	2 M 24AC 2 M 24AC 3 M 24AC 3 M 10 2 M 24AC 3 M 24AC 3 M 24AC
	MIN ELEV E	15 20 20 15 20	51	ъ 4	V V 4 V V V	0	444	000000
	мпоσп	M444MM	m 4	м м	мммммм	4	ммм	
#	VQO	# # # # # # # # # # # # # # # # # # #	Σ×	Æ K	X X X X X X	웊	오 오 오	999999
- ALTERNATIVE #4	ASPECT	NORTH NORTH WEST WEST NORTH	NORTH	WEST	SOUTH SOUTH SOUTH SOUTH SOUTH	SOUTH	SOUTH SOUTH SOUTH	NORTH NORTH NORTH NORTH NORTH
	VOLUME	338.00 826.00 300.00 545.00 457.00 175.00	2,641.00 565.00 439.00 1,004.00	471.00 WEST	125.00 376.00 534.00 627.00 125.00 345.00	2,132.00	299.00 350.00 558.00 1,207.00	407.00 251.00 163.00 270.00 107.00 474.00
IAGNOSIS	OTAL CRES	12 29 10 20 20 17	28 1 28 28	4 4	4 5 1 7 5 7 5 7 1 1 4 5 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1	68	14 14 20 46	25 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
TURE DIV	V 0 L TO	00000	0 00 0	0 0	000000	0	000	000000
SILVICULTUR	% د ٥ د	00000	0 51 . 51	0 0	000000	0 0	0 0 0 0	00000
SI	5 د ه<	6 16 8 7 5 0	45 14 15	15	4 1 50 50 50 50 50 50 50 50 50 50 50 50 50	68 58	004 4	28287
	> 0 J Z	6 13 2 13 12 7	53	0 0	000000	0 0	12 14 14 16	10 0 7 7 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	L RL U EU D VD	4 TP	4 1P	4 ML	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 4 4 T B T B T B T B T B T B T B T B T	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
± P	RN VI EI ST VCU T#	737 7097 737 7097 737 7097 737 7097 737 7097 737 7097	7097 737 7098 737 7098	737 7099	738 8003 738 8003 738 8003 738 8003 738 8003 738 8003	8003	738 8009 738 8009 738 8009 8009	738 8011 738 8011 738 8011 738 8011 738 8011

	<u> </u>								
12 OF 19	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,TMPCT,CC	RS,CC RS,TMPCT,CC	RS,TMPCT,CC RS,WLPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,CC RS,CC	RS, CC RS, CC RS, CC	Rs, CC Rs, CC	RS,TMPCT,CC RS,WLPCT,CC
PAGE	AE NT VH	ដូដូដ	ដដ	ដូដ	888	8 8	8888	22	22
	CH GH	로 로 로	로 로	RS E	RS RS	<u></u> 및	로로로로	S S	로 로
	R A H H	2 2 2	2 2	2 2	222	2 2	2222	zz	zz
	SN ID TE WET EX HAB	94 FNW 94 FNW 90 FIC	95 FIC 90 FIC	100 FNW 100 FNW	85 FNW 85 FNW 85 FNW	14 SE 80 FW	50 70 76	100 FNW 91 FNW	100 FNW 100 FNW
	∑ 00				444	0 -			
	ΣΣH	208	0 W	мм	ммм			мм	мм
	ECO	WDC WDC WHC	M W W W W W W W W W W W W W W W W W W W	N N N N N N N N N N N N N N N N N N N	WHS WHS WHS	CMC	CMC	M M OC	MOC
	T WH IR MAX NO ELEV DW SMU	9 H 1D 9 M 1D 9 M 331D	7 M 331C 7 M 331D	15 H 3F 7 H 3F	15 H 528F 15 H 528F 15 H 528F	15 H 24D 15 H 18D	2 M 24AC 3 M 24AC 4 M 24AC 4 M 24AC	20 H 3E 20 H 3E	15 H 3E 0 H 3E
	MIN ELEV E	880	4 10	0 9	12 21	0 %	2222	15	00
	N T O F M	222	m 0	44	444	0 -		мм	44
7#	VQO	E E E	오 오	오오	오오오	¥ 9	2222	운 앞	& &
ALTERNATIVE	ASPECT	WEST WEST WEST	NORTH	SOUTH	EAST EAST EAST	WEST	EAST EAST EAST EAST	NORTH	WEST
	VOLUME	100.00 275.00 100.00 475.00	784.00 464.00 1,248.00	1,881.00 471.00 2,352.00	388.00 383.00 534.00 1,305.00	596.00 WEST	283.00 314.00 345.00 439.00 1,381.00	471.00 659.00 1,130.00	534.00 443.00 977.00
LAGNO	TOTAL	4 11 4 19	15 15 60	60 15	13 13 17 17	19	01 17 14	15 21 36	13
RE D	V 0 L TC C7 A(000 0	00 0	00 0	000 0	0 0	0000 0	00 0	00 0
SILVICULTURE DIAGNOSIS	> 0 - 0 ° C	000 0	00 0	00 0	000 0	0 0	0000	00 0	7 7
SIL	ده د دې	000	25 14 14 39	60 15	10 9 17 36	19	9 10 11 44	15 21 36	118
	> 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 11 4 19	0- -	00 0	M 40 V	0 0	0000	00 0	2 2
	L RL U EU D VD	4 1 P	4 TP 4 TP	4 TP	4 TP 4 TP	4 TP	4 1P 4 1P 4 1P	4 ML	4 TP
± 3	RN VI VI ST (738 8015 738 8015 738 8015 8015	738 8016 738 8016 8016	738 8018 738 8018 8018	738 8025 738 8025 738 8025 8025	738 8026	8041 8041 8041 8041 8041	738 8060 738 8060 8060	738 8065 738 8065 8065

		ĺ											
E 13 OF 19	PROPOSED FUTURE MANAGEMENT	RS, R&W, CC	RS, R&W, CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC		RS, CC	RS, CC	RS,TMPCT,CC RS,CC RS,CC RS,REW,CC RS,CC RS,REW,CC RS,REW,CC RS,REW,CC		RS,R&W,CC RS,IMPCT,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC		RS,CC RS,RW,CC RS,TMPCT,CC RS,CC RS,CC	
PAGE	AE AT VH	ည	ပ္ပ	ននន		သ	ខ	88888888		88888		888888	
	G OT G	SL	SF	R S S		뿦	뉲	F F F S F F S S S S S S		R S S S S S		RS H RS	
	RB A H H	Z	Z	2 2 2		Z	Z	*****		22222		ZZZZZZ	
	I SN M ID C TE WET G EX HAB	1 70 FW	1 98 FNW	1 70 FW 1 70 FW 1 70 FW		1 80 FW	1 70 FW	1 100 FNW 1 96 SEC 1 79 SEC 1 75 SEC 1 75 SEC 1 81 FNW 87 SEC		1 89 FNW 1 100 FNW 1 86 SEC 1 95 FNW 1 93 SEC		5 65 FNW 2 93 FNW 1 100 FNW 1 100 FNW	
	E E H	2	м	444		-	м	M W M -		- M - M W		mmm	
	ECO	CMB	MDC	999		000	000	W W W W C C C C C C C C C C C C C C C C		W C C W C C W C C W C C W C C W C C W C C W C C W C C C W C C C W C		S S S S S S S S S S S S S S S S S S S	
	T WH IR MAX NO ELEV DW SMU	8 H 4D	15 H 3F	9 H 4F 10 H 4F 10 H 4F		20 M 18D	11 M 550D	8 H 1E 10 H 1E 8 H 86CD 9 H 86CD 9 H 86CD 15 H 86CD 15 H 84CD		20 H 1E 12 H 1E 7 H 25 20 H 1E 7 H 86CD		30 H 29EF 30 H 29EF 20 H 29EF 15 H 1F 20 H 1E 15 H 1E	
	MIN ELEV E	2	٥	8 ~ 0		10	10	80 7		<u> </u>		20 20 20 15 15	
	пъоги	4	4	444		7	7	MM00MM40		M M M M M		444M4W	
#	۸۵٥	윤	õ	오오오		웆	웊	99999999		오오오오오		86666	
SIS - ALTERNATIVE #4	VOLUME MMBF ASPECT	878.00 NORTH	815.00 WEST	314.00 NORTH 596.00 NORTH 439.00 NORTH	1,349.00	1,448.00 WEST	362.00 EAST	314.00 EAST 314.00 EAST 806.00 EAST 494.00 EAST 200.00 NORTH 4,99.00 NORTH 499.00 NORTH	4,427.00	370.00 EAST 762.00 EAST 407.00 EAST 815.00 EAST 677.00 EAST	3,031.00	358.00 EAST 345.00 EAST 938.00 EAST 289.00 EAST 444.00 EAST 200.00 EAST	2,574.00
IAGNOSIS	TOTAL	28	56	10 17 71	43	40	14	10 10 10 10 10 10 10 10 10 10 10 10 10 1	146	14 29 16 22 22	107	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8
URE D	V 0 0 L T C Z A	0	0	000	0	0	0	0000000	0	00000	0	000000	0
SILVICULTURE DIA	> 0 l	0	0	000	0	50	0	00500000	78	00000	0	00 0 0 0 0 0	14
SI	0 0 C5	28	56	199	43	20	2	55500%00	52	3 6 1 26 20	26	26 20 0	51
	> 0 L	0	0	000	0	0	12	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99	11 23 15 0 0	51	m000m8	16
	L RL U EU D VD	4 TP	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 TP	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
± 5	RN VI ST ST ST	738 8073	738 8102	738 8109 738 8109 738 8109	8109	738 8110	738 8111	738 8112 738 8112 738 8112 738 8112 738 8112 738 8112 738 8112	8112	738 8113 738 8113 738 8113 738 8113 738 8113	8113	738 8114 738 8114 738 8114 738 8114 738 8114	8114

14 OF 19	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,IMPCT,CC RS,R&W,CC RS,IMPCT,CC RS,R&W,CC	RS, TMPCT, CC	RS,TMPCT,CC RS,CC	RS, TMPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	N3-6 N80 30 N3	RS, CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC	PLANT(S),SS,CC	RS,R&W,CC RS,R&W,CC RS,TMPCT,CC	
PAGE 1	T ,										
PA	HM RT VH	88888	23	88	2223	5	5 2	888	ວ	888	
	CH OT	RS RS RS	RS	RS RS	뽀뽀뽀	Ä	분 뿐	R S S	≢	R S S	
	R AA RB	Z Z Z Z Z	z	ZZ	Z Z Z Z	2		222	>-	222	
	WET	WA WA	N. S.	FNW	NA NA	3		ANA ANA	N 3		
	SN 1D 1D EX	86 86 75 75	65	93	001	0	8	900	86	62 81 85	
	Σ ∪ ७	W 2 L 4 4	м	4 0		-			-	- 24	
	ΣΣΗ	M	-	− ₩	мммм	C	3 6	иии	-	~ W W	
	EC0 CODE	W W W W W W W W W W W W W W W W W W W	WHC	WHC	W K C C C C C C C C C C C C C C C C C C	ğ	M C	WHS WHS WHS	SS	CCD	
	SMU	29EF 29EF 1E 29EF 29EF	29EF	29EF 1E	74F 74F 3F 3F	4	3E	53E 53E 53E	10	25 180 528E	
	H H H O M	ETEEE	=	ΣΣ	= = = =	3	= =	ΣΣΣ	Ξ-	ΣΣΣ	
	MAX ELEV	9 2 2 2 2 2	15	9 4	15 6 7 6	5	20	5 5 5	4	9 0 1	
	MIN ELEV (6 11 11 7	6	9 0	12 9 9	ń	5 5	0 0 51	2	7 8 10	
	о В Р О Г	M4WW4	4	4 10	4444	,		ммм	М		
7#	VQO	5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8	8 8	2222	3	₹ \$	X X X	Σ	E E E	
IS - ALTERNATIVE	VOLUME MMBF ASPECT	283.00 EAST 150.00 EAST 614.00 NORTH 433.00 EAST 972.00 EAST	2,452.00 878.00 NORTH	534.00 EAST 534.00 EAST	1,068.00 827.00 SOUTH 408.00 SOUTH 534.00 SOUTH 314.00 SOUTH	2,083.00	702.00 SOUTH	382.00 WEST 325.00 WEST 250.00 WEST	957.00 722.00 WEST	867.00 EAST 376.00 EAST 408.00 EAST	1,651.00
IAGNOSIS	TOTAL	9 6 21 14 31	81	17	34 28 13 10	68	54	51 01	38		52
TURE	V 0 L 1 C 7 A	00000	0 0	00	0 0000	0	0	000	0 0	000	0
SILVICULTURE DIAG	> 0 C	00000	0 0	00	0 0000	0	0	000	0 0	000	2
SI	> 0 C	9 14 13 31	67	72	34 20 13 10	09	2 9	-00	1 23	25 12 13	20
	> 0 V	0 9 7 - 0	14	00	0 8000	ω <u>ξ</u>	<u> </u>	13 10	37	000	0
	L RL U EU D VD	4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP	4 TP 4 TP	3 A R R	5		3 TP TP TP	3 TP		
± <	RN VI EI ST VCU T#	738 8115 738 8115 738 8115 738 8115 738 8115	8115	738 8117 738 8117	8117 739 9000 739 9000 739 9000	9000	739 9016	739 9026 739 9026 739 9026	9026		9031

		į							
E 15 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, WLPCT, CC	RS, R&W, CC	RS, WLPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, R&W, CC RS, R&W, CC	RS, WLPCT, CC RS, CC RS, WLPCT, CC RS, CC RS, WLPCT, CC	RS,WLPCT,CC RS,WLPCT,CC	RS,WLPCT,CC RS,TMPCT,CC	PLANT(YC), SS, CT, SW PLANT(YC), SS, CT, SW RS, CC RS, WLPCT, CC PLANT(S), SS, CC	
PAGE	AE RT VH	8888	2	88888	88888	23	88.	88888	
	LE OT GH	로 로 로 로	뽀	RS RS RS RS	7 Z H H H	RS RS	R S	R H S H H	
	R PH RB	2222	z	22222	2222	zz	zz	2222>	
	I SN M ID C TE WET G EX HAB	1 100 FNW 1 76 FNW 1 100 FNW 1 80 FNW	5 87 FNW	1 100 FNU 1 100 FNU 1 100 FNU 1 92 FNU 1 80 FNU	1 100 FNU 1 83 FNU 1 100 FNU 1 84 FU 1 100 FNU	1 100 FNW 1 100 FNW	1 100 FNW 1 100 FNW	83 FW 1 93 FW 1 96 FNW 1 100 FNW	
	ΣΣ∺	0000	М	0 M 0 0 M M	2 - 2 5 5	22	4 4	-2333A	
	ECO	W W W W W W W W W W W W W W W W W W W	MDC	O O O O O M	E E E E E E E E E E E E E E E E E E E	MHW C	WHC	CCD CCD WHM WDC SSR	
	T WH IR MAX NO ELEV DW SMU	12 M 10 9 M 70 11 M 10 07 H 8	15 M 3F	8 H 10 8 H 10 11 H 10 15 H 16	5 H 74C 5 H 74E 5 H 2D 5 H 51C 4 H 2D	6 H 2D 7 H 11D	7 H 50F 10 H 50F	15 M 18D 15 M 18D 15 H 54E 8 H 50D 7 H 10	
	MIN ELEV E	6 10 8	0	10 7 8 12 12 12	4 M M 4 M	9 9	2 7	9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	S T O T E	2222	4	24088	- 0 0 0 0	2 2	4 4	00000	
7#	700	X X X X	Σ	2 2 2 2 2 2 2 2 2 2 2	22222	8 8	2 2	99999	
SIS - ALTERNATIVE	VOLUME MMBF ASPECT	251.00 WEST 251.00 WEST 283.00 WEST 188.00 WEST 973.00	2,269.00 NORTH	251.00 WEST 314.00 WEST 251.00 WEST 651.00 WEST 1,058.00 WEST 2,525.00	408.00 SOUTH 439.00 SOUTH 439.00 SOUTH 314.00 SOUTH 439.00 SOUTH	275.00 SOUTH 549.00 SOUTH 824.00	596.00 WEST 892.00 WEST 1,488.00	815.00 SOUTH 413.00 SOUTH 754.00 SOUTH 485.00 SOUTH 143.00 SOUTH	2,610.00
AGNOSI	TOTAL	8 8 9 6	69	8 10 8 22 37 37	13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	22	31 50	26 11 24 17 5	83
RE DI	V 0 1 1 C C AC	0000	0	00000	00000	00 0	00 0	00000	0
SILVICULTURE DIAGN	> 0 C6	0000	=	00000	000000	00 0	0- -	0 0 8 4 0	15
SI	. v C5	8 8 9 6	58	8 10 16 16 16 	13 14 14 10 14 16 65	00 0	30	26 4 17 17 5	89
	> 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0000	0	0 0 0 0 146	00000	22	00 0	00000	0
	L RL U EU D VD	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP	3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	33333 5444 7444 7444 7444 7444 7444 7444	3 TP	3 Z Z	3333 337 757 757 757 757 757 757 757 757	
= =	AU RN VI EI ST VCU T#	739 9032 739 9032 739 9032 739 9032	739 9039	739 9045 739 9045 739 9045 739 9045 9045	739 9048 739 9048 739 9048 739 9048	739 9049 739 9049 9049	739 9050 739 9050 9050	739 9051 739 9051 739 9051 739 9051 739 9051	9051

		.						
PAGE 16 OF 19	PROPOSED FUTURE MANAGEMENT	RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, CC	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC	RS, TMPCT, CC PLANT(YC), SS, CT, SW RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, TMPCT, CC	RS,TMPCT,CC RS,CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC
PA	AE AT N	888888	888	8888	88888	88	88	22
	GH CH	R R S R S H H H H H H H H H H H H H H H	로 로 로	S S S S	보 로 & 크 코	로 로	RS H	뿦
	R A H H R	22222	2 2 2	2 2 Z Z	Z Z Z Z Z	ZZ	ZZ	Z
	SN M ID C TE WET G EX HAB	1 76 SEC 1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 1 70 SEC	1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW 1 78 FW 1 92 FNW 1 85 FNW	1 100 FNW 1 100 FNW 1 93 SE 1 85 FNW 1 100 FNW	1 100 FNW 3 92 FNW	1 100 FNW 1 100 FNW	1 100 FNW
	X X H	-4444-	444	2222	22-22	7 2	m m	М
	ECO	WEELE C	WHO	MDC CMB	O O O O O O O O O O O O O O O O O O O	WHW WHS	WHS	MDC
	T WH IR MAX NO ELEV DW SMU	9 H 25 9 H 50F 9 H 50F 7 H 50F 7 H 25	6 H 50F 5 H 50F 5 H 50F	15 H 30 15 H 40 15 H 3E 15 H 3E	15 H 10 0 H 10 15 H 240 0 H 10 15 H 10	6 H 11C 8 H 528E	12 M 53E 10 M 53E	15 M 3F
	MIN	827297	5 5 5	11 10 2	0 0 0	70 70	100	0
	м п о ч п	N44440	444	0000	00000	- 2	m m	4
5#	- VQO	% % % % % % %	8 8 8 8	오오오오	2222	오 오	至至	Σ
- ALTERNATIVE	VOLUME MMBF ASPECT	713.00 SOUTH 527.00 SOUTH 376.00 SOUTH 439.00 SOUTH 376.00 SOUTH 314.00 SOUTH 2,745.00	261.00 SOUTH 196.00 SOUTH 157.00 SOUTH 614.00	485.00 WEST 502.00 WEST 439.00 WEST 784.00 WEST 2,210.00	408.00 EAST 376.00 EAST 583.00 EAST 345.00 EAST 476.00 EAST 2,188.00	218.00 EAST 1,395.00 EAST 1,613.00	287.00 WEST 270.00 WEST 557.00	1,944.00 EAST
SISONS		117 117 117 117 117 1188	& τν i δ 	17 16 14 25 	7 6 1 9 2 3	×0 ׆ 1 O	-0:2	29
DIAC	TOTAL	N 8		12.17		8 4	2	v
rure	رر د د	0000000	000:0	000010	00000:0	00:0	00 0	0
SILVICULTURE DIAG	8 ده د	060000	- 40 2	0000	00000	34	00 0	0
S	, > 0 - 2	25 12 14 11 11	V-2 £	14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	12 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	MOIM	28 28	95
	ر کرره د	00000000	0000	0000 0	00000	00 0	9 7 16	0
	L RL U EU D VD	8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 공 3 공 공 3 공	8 8 8 8 8 주 독 즉 즉	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 3 4	3 3 4 4	3 TP
.	RN VI ST ST ST	739 9052 739 9052 739 9052 739 9052 739 9052 739 9052	739 9053 739 9053 739 9053 9053	739 9054 739 9054 739 9054 739 9054	739 9067 739 9067 739 9067 739 9067	739 9069 739 9069 9069	739 9083 739 9083 9083	739 9089

E 17 OF 19	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC	RS, CC RS, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, R&W, CC RS, R&W, CC PLANT(S), SS, CC RS, R&W, CC RS, CC RS, CC RS, CC
PAGE	HM RT VH	88888	88888	8888888888	888888 8
	CH GH	RS SR	규 도 S	SL HL HL RS RS RS RS RS	R R R R R R R R R R R R R R R R R R R
	R AAA RB	2222	Z Z Z Z Z	*****	zz>>zz z
	I SN ID TE WET EX HAB	100 FNW 96 FNW 100 FNW 85 FNW 100 FNW	45 SEC 71 FNW 83 FNW 100 FNW	100 FNW 100 FNW 100 FNW 100 FNW 93 FNW 88 FNW 85 FNW 89 FNW	90 FW 83 FWW 94 FWW 83 FWW 89 FWW 86 FW
	∑ ∪ ७	12121		M 4 4 W N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	w
	ΣΣΗ	00000	- 2 2 2 2	M W W W W W W W W W W W	W 0 0 0
	ECO	MDC MDC MDC MDC MDC	CMM WHS WHS	WH WH WH WH WE WE WAS SO WHEN WE WAS SO WHEN WHEN WE WAS SO WHEN WHEN WE WANT SO WHE	CCC WHS SSR SSR WHS WHS CMB
	T WH IR MAX NO ELEV DW SMU	3 H 3D 3 H 3D 8 H 3F 8 H 6 2 H 3D	15 M 25 15 M 530 15 M 530 15 M 530 15 M 530	9 M 3E 9 M 53D 8 M 53D 8 M 53D 11 M 53D 15 M 53D 15 M 528F 15 M 528F 15 M 528F	8 M 18D 11 M 53D 9 M 10 6 M 53D 8 M 53D
	MIN	WW400	0 12 12 12 0	8 C 8 C 8 C 2 C C C C C C C C C C C C C	δαα <u></u> 5 τ δ ο
	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 10 4 4 00		W W W W W W W W W W W W W W W W W W W	4 20 M 20 D
#	000	E E E E E	X X X X X		
ALTERNATIVE	ASPECT	EAST EAST EAST EAST EAST EAST	WEST WEST WEST WEST	N O O O O O O O O O O O O O O O O O O O	WEST WEST WEST WEST WEST WEST WEST WEST
	VOLUME	261.00 408.00 471.00 283.00 323.00	182.00 177.00 573.00 249.00 123.00	519.00 633.00 622.00 622.00 345.00 553.00 627.00 439.00 125.00 395.00	784.00 WEST 532.00 WEST 282.00 WEST 282.00 WEST 351.00 WEST 529.00 WEST 527.00 WEST 7,654.00 WEST
IAGNOSIS	TOTAL	13 15 15 10 10	7 16 7 2 3 3 3 8 3 8	15 18 16 11 17 17 17 17 13 13 13	25 10 10 10 12 12 18 18 18 18 18 18 18 18 18 18 18 18 18
TURE D	V 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	00000	00000	0000000000	00000000
SILVICULTURE DIA	> 0 - 0 C	1000	0 2 8 8 3 4 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	22 22 00 00 00 00 00 00 00 00 00 00 00 0	00000-
SI	> 0 0 CS	13 15 9 9 53 -	1 2 4 4 15 -	111220011111111111111111111111111111111	255 133 5 5 66 66
	>012	00000	90-00-2	N 000000000000000000000000000000000000	26 7 7 1 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	L RL U EU D VD	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################	444444444	2333333 244444 244444444444444444444444
π =	RN VI EI ST VCU T#	739 9094 739 9094 739 9094 739 9094 739 9094	739 9095 739 9095 739 9095 739 9095 739 9095	739 9096 739 9096 739 9096 739 9096 739 9096 739 9096 739 9096 739 9096 739 9096	739 9097 739 9097 739 9097 739 9097 739 9097 7909 87

PAGE 18 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, CC RS, R&W, CC RS, TMPCT, CC RS, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, CC	RS, TMPCT, CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC RS, CC RS, TMPCT, CC RS, IMPCT, CC	RS,CC RS,TMPCT,CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC
PA	AE AT VH	8888888888	23	888888888	2 2	88	2222
	GH OT GH	H RS	표	H H R S H H H	RS HL	로로	R R R S S S
	R A H H R	222222222	z	22222222	2 2	ZZ	2222
	I SN ID TE WET EX HAB	85 FWW 88 FWW 70 FW 100 FWW 75 FW 87 FWW 82 FW 82 FW 83 FW 70 FW	85 FNW	100 FNW 100 FNW 92 FNW 65 FNW 100 FNW 100 FNW	94 FNW 100 FNW	100 FNW 100 FNW	100 FNW 97 FNW 100 FNW 100 FNW
	∑ ∪ ິ	4	4		1 2	~ ~	
	ΣΣΗ	ммимимими	М	**************************************	2.2	mm	MMMM
	EC0 C0DE	KHS CAB CAB CAB CAB CAB CAB CAB CAB	WHS	*********	7 D A	WHS	200
	T WH IR MAX NO ELEV DW SMU	15 H 528F 15 M 11E 8 M 4D 11 M 11E 11 M 4D 15 M 11E 11 M 4D 0 M 4D	15 H 528F	30 M 11E 30 M 11E 15 M 11E 15 M 11E 15 M 11E 15 M 11E	3 H 2E 1 H 2E	6 H 3E 6 H 351E	11 H 16 15 H 16 7 H 16
	MIN ELEV E	00071001	0	00000001		N N	0 0 0 9
	R P O L S	4 W U W U W W U U U	4	M M M M M M M M M	MM	мм	мммм
7#	VQO	* * * * * * * * * * * * * * * * * * *	Æ	Σ	ΣΨ	R R	P P P P P
- ALTERNATIVE	VOLUME MMBF ASPECT	125.00 WEST 476.00 EAST 112.00 EAST 188.00 EAST 382.00 EAST 232.00 EAST 551.00 EAST 163.00 EAST 212.00 EAST	2,749.00 207.00 WEST	169.00 EAST 407.00 EAST 502.00 EAST 601.00 EAST 471.00 EAST 519.00 EAST 734.00 EAST 734.00 EAST 734.00 EAST	3,905.00 727.00 EAST 135.00 EAST 	376.00 NORTH 251.00 NORTH 627.00	493.00 NORTH 1,034.00 NORTH 782.00 NORTH 608.00 NORTH 2,917.00
DIAGNOSIS	TOTAL	4 2 4 0 4 8 8 5 0 0 8	94	6 15 15 15 19 6 24 10	131	12 8 8 20	12 27 20 20 16
	V 0 L T C7 A	000000000	0 0	00000000	14 3	00 0	0000
SILVICULTURE	>0~0%	000000000	0 0	00000000	0 00 0	00 0	12 20 16 11 11
SI	> 0 C5	4 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63	20 10 10 10 10	% MO ! M	12 8	0 9 7 13
	> 0 7	0410000000	31	2000 000 000 000	32	00 0	0-00
	L RL U EU D VD	44444444	3 TP	44444444	3 TP TP	3 R R	보고 보고 로 프 프 프
± 4	RN VI VI ST VCU T#	739 9099 739 9099 739 9099 739 9099 739 9099 739 9099 739 9099	9099	739 9101 739 9101 739 9101 739 9101 739 9101 739 9101	9101 739 9102 739 9102 9102	739 9103 739 9103 9103	739 9104 739 9104 739 9104 739 9104

		MENT									
PAGE 19 OF 19	CH SO	FUTURE MANAGEMENT	RS,CC	RS, CC	RS, TMPCT, CC		RS, TMPCT, CC	RS, TMPCT, CC	RS, CC		
PAGE	A E E	. ₹		ည				ຽ			
	E H F	; 5	로	로	土		RS	RS	로		
	P I R			z				z			
	<u> </u>	HAB	SE	SEC	FNM			FNE			
	N O I		99	45	9 9		85	85	2		
	E C		_	_	_		2	3 4	~		
			•	`	•		101	1-1			
	CO	C00E	CMC	CMM	WHC		MHS	MHS	CMB		
		SMU	24AC	Н 25	29EF		528F	528F	Q.		
	⊢ ¥ R S	VQO E ELEV ELEV DW	. H	5 H	Ξ.		7 E	15 H S	E 4		
	M	ELE									
	2	ELEV	5	2	2		15	15	æ		
	0 L S	. ш	~	_	4			4			
#			Ŧ	Ŧ	Ŧ			Ŧ			
AGNOSIS - ALTERNATIVE #4		ASPECT	EAST	EAST	220.00 EAST		125.00 NORTH	NORTH	NORTH		14.
ALTER	Ē.	i #	9.	3.00	0.0	659.00	5.00	9.	7.00	533.00	#B 7
- SIS	VOLUME	MMBF	52	188	22(626	125	, 22	15.	533	6,884 207,417 MBF
IAGNO	OTAL	ACRES	Ø	9	7	21	7	ထ	2	17	6,884
URE (> 0 -	C2	0	0	0	0	0	0	0	0	
SILVICULTURE DI	> 0 -	. %	0	0	0	0	0	0	0	0	438 17
SI	> 0 -	. S	ω	9	7	21	4	œ	2	17	.457
	> 0 -	75	0	0	0	0	0	0	0	0	1,972 4,457
	L RL	9		4 TP				3 TP			
± =	R V I S	#L NCN T#		737 9105		9105	739 9106			9106	

		i									23							
ie 1 of 23	PROPOSED FUTURE MANAGEMENT	FH, RS, R&W, 2-SW	PLANT(YC), SS, CT, SW RS, CC		RS, TMPCT, CC RS, TMPCT, CC		RS,CC PLANT(YC),SS,CT,SW		RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC		PB, PLANT(RC&YC), SS, CC	RS, R&W, CC	RS, CC	PLANT(S), SS, CC	RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC		RS,R&W,CC RS,R&W,CC	
PAGE	AE AE VH	AS	ខ្លួ		នួន		88		8888		2	2	သ	ន	8888		88	
	CH OT E	뿦	SL RS		SL		님		RS RS		SL	SL	RS	RS	보 보 당 당		RS	
	R A H H	z	2 2		2 2		2 2		2222		z	Z	z	>-	Z Z Z Z		22	
	I SN ID TE WET EX HAB	78 SEC	33		90 FIW 90 FIW		63 FIW 75 FIW		89 FIW 90 FIW 90 FIW 90 FIW		75 FIW	75 FNW	83 FNW	97 FNW	51 FW 35 SES 65 FW 66 FNW		80 SEC 89 FNW	
	∑ ∪ ∪	м					۳ 4				4	~	2	2	7 2		~ ~	
	ΣΣΗ	-	2 2		мм		мм		мммм		м	м	м	_	7777		1 2	
	ECO	CMM	000		WHS		SCS		WHS WHS		SOO	WHS	WHS	SSR	WHC WHC		CMM	
	SMU	25	780		35E 35E		330		35E 35E 35E 35E		330	528E	528E	10	190 23 190 29EF		22 82	
	T WH IR MAX NO ELEV DW	20 M	15 M 12 H		15 H 15 H		12 H 15 M		20 H 8 M 10 M		11 H	20 H	20 H	15 H	12 H 12 H 15 H 20 H		15 M	
	MIN ELEV	1	===		9		12		01 8 8 4		0	15	12	12	12 12 21		12	
	E P O L S	м	2 2		мм		2 2		m m m m		2	2	2	—	227		2 2	
£	VQO	æ	운 운		오오		오오		2222		£	₽	운	æ	EEEE		¥ ¥	
S - ALTERNATIVE	VOLUME MMBF ASPECT	1,174.00 WEST	878.00 EAST 376.00 EAST	1,254.00	945.00 NORTH 408.00 NORTH	1,353.00	282.00 SOUTH 513.00 SOUTH	795.00	1,856.00 NORTH 238.00 NORTH 169.00 NORTH 125.00 NORTH	2,388.00	614.00 SOUTH	1,037.00 WEST	563.00 WEST	732.00 WEST	224.00 SOUTH 150.00 SOUTH 906.00 SOUTH 1,190.00 SOUTH	2,470.00	462.00 WEST 787.00 WEST	1,249.00
AGNOSIS	TOTAL	24	28	07	35	8 [†]	0 6	62	20 9 4	. 6	21	39	20	28	6 36 40	91	18	67
RE D	V 0 L TC C7 A(0	00	0	00		0 0	0	0000	. 0	0	0	0	0	0000	. 0	00	. 0
SILVICULTURE DIAGN	> 0 - 0 ° C	0	00	0	00	0	0 0	0	0000	0	0	0	0	0	0000	0	00	0
SIL	0 0 CS	0	28	07	13	24	6 5	1	6 M M 4	18	14	10	10	2	30	31	2 2	7
	0 c	25	00	0	24	54	13	18	63	ĸ	7	59	10	23	9 85 10	09	16 29	45
	L RL U EU D VD	3 TP	3 3 TP		3 3 4 P		3 TP		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3 TP	3 TP	3 TP	3 TP	3333		3 TP	
H	RN VI EI ST VCU T#	732 2001	732 2003 732 2003	2003	732 2006 732 2006	2006	732 2008 732 2008	2008	732 2009 732 2009 732 2009 732 2009	2009	732 2010	732 2011	732 2012	732 2013	733 3007 733 3007 733 3007 733 3007	3007	733 3008 733 3008	3008

OF 23	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,R&W,CC RS,WLPCT,CC RS,WLPCT,CC	RS,TMPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,TMPCT,CC	55 150 25	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS,WLPCT,CC	RS, TMPCT, CC RS, TMPCT, CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, RW, CC RS, TMPCT, CC RS, TMPCT, CC RS, RW, CC	
2	PRC	RS RS RS RS	RS R	0	RS S	RS	RS	RS			
PAGE	AE AL	8888	88888	۶	3 8	88	23	ខខ		8888888	
	LE OT	RS FF FF	RS SL SL SL	2	RS RS	22 22	22	뽀 뽀		H H H RS SS	
	R AA RB	2222	22222	2	2 2	zz	z	2 2		222222	
	WET	3333	33333		Z Z	N N N	FNE	FNE		A S S S S S S S S S S S S S S S S S S S	
	SN ID ID TE V	78 97 85 85	88888	u a		85	85 1	87		97 F 85 F 83 N	
	∑ ∪ ७	M 0/4/4	44444	· ·		44	4	۳ 4			
	ΣE ∺	← ₩ ₩ ₩	MMMMM	۲	n m	мм	м	мм		7 8 8 8 8 8 8	
	ECO	E E E E E E E E E E E E E E E E E E E	WHS WHS WHS WHS	000	SHW SHW	WHS WHS	WHS	WHS		NF S S S S S S S S S S S S S S S S S S S	
				7000	. H		528F W				
	SMU	29EF 528F 528F 528F	528F 528F 528F 528F 528F 528F	200	528F	528F 528F	528	528F 528F		110 110 110 110 528F 21A	
	T WH IR MAX NO ELEV DW	0 0 0 0 H H H H	0 8 8 8 0 T H H H H H H H	u u		1 T	5 #	15 H 15 H		4446677	
	MIN M ELEV EL	2004	84949	c	v vo	٥ ٢	м	12 0		4480470	
	E R	M 0 4 4	44844		1 4	44	4	4 4		040000	
10.	VQO		E E C C E	9		E E	8	8 8 8 8		999999	
VE #		T T									
NATI	ASPECT	SOUTH SOUTH WEST WEST	WEST WEST WEST WEST WEST	5	SOUTH	EAST	SOUT	NORTH		NORTH NORTH NORTH NORTH NORTH	
IS - ALTERNATIVE #5	VOLUME	559.00 538.00 132.00 112.00	1,341.00 622.00 488.00 501.00 596.00 851.00	3,058.00	625.00	482.00	1,253.00 795.00 SOUTH	502.00	985.00	138.00 107.00 444.00 100.00 438.00 157.00 376.00	1,760.00
DIAGNOSIS	TOTAL	18 7 7 7 7	46 20 17 19 29	102	25	19	45	5 5	32	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	62
	V 0 L TC C7 AC	0000	0 00000	:0 9	0	00	0 0	00	0	0000000	0
SILVICULTURE	> 0 1 9	0000	0 00000			00	0 0	00	0	000000	0
SILV	0 CS	17 10 1 2	30 10 11 20 20	08	n 0	19	20	13	59	27 20 125 125	33
										:	
	> 0 C4	1 6 4 5	16 17 10 10 10	22	25	18 7	25	3	М	2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	59
	L RL U EU D VD	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ē	n m	3 M 2 M	3 ML	3 3 A		S S S S S S S S S S S S S S S S S S S	
# 4	RN VI EI ST VCU T#	733 3011 733 3011 733 3011 733 3011	3011 733 3027 733 3027 733 3027 733 3027 733 3027	3027		733 3030 733 3030	3030	733 3032 733 3032	3032	733 3033 733 3033 733 3033 733 3033 733 3033 733 3033	3033

se 3 of 23	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, CC RS, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, R&W, CC	RS, CC RS, R&W, CC RS, CC	RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, R&W, CC	RS,TMPCT,CC
PAGE	A E E E	88		2 2 2	88 88	3 88	888	23
	LE OT	RS RS	로로로로로로로로로	S S S	8 S = = =	RS RS	동당당	로
	R A A H	zz	*****	z z:	zz z:	z zz	22	z
	I SN ID TE WET EX HAB	85 FNW FNW	FNW FNW FNW FNW FNW FNW 68 SEC 71 FNW 45 SEC		65 FNW 60 NWH 40 FNW	10 AM 64 FNW 64 FNW	61 FNW 70 SEC	85 FNW
	∑ ∪ ∪	1		← w.r	N.4 W.	- 40	121	4
	EEH	2 3	-10-10-10-10-10-10-10-10-10-10-10-10-10-	м г	- M			2
	ECO CODE	E HS	OK CHARACA KA	H W	HE HE	E 33		WHS
	SMU	528F 11D	74E 74E 74E 74E 74E 74E 74E 74E	54E	29EF	29EF	29EF 86CD	528D WHS
	T WH IR MAX NO ELEV DW	7 H 8 H	0 / 0 / 0 0 0 4 4 4 T T T T T T T T T T T T T T T T T T T		20 SO 30 S		15 H 15 H	10 H
	MIN ELEV E	9 12	00NF00N444	8 70 8	22 23	20 2	5 2 5	ω
	пРого	4 W		m m·	44 41	o 4 k	750	2
£	V@O	₽ ₩	# # # # # # # # # # # # # # # # # # #	9 ∑	EE E	E 0.0	2 2 2	8
ALTERNATIVE #5	ASPECT	NORTH	WEST WEST WEST WEST WEST WEST EAST EAST			SOUTH SOUTH		452.00 NORTH
	VOLUME	345.00 847.00 1,192.00	370.00 246.00 370.00 287.00 83.00 411.00 175.00 207.00 100.00	2,455.00 1,518.00 NORTH 1,103.00 SOUTH	370.00 493.00 1,966.00 325.00	425.00	700.00 224.00 2,453.00	452.00
DIAGNOSIS	TOTAL	11 27 38	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 37 36	12 57 13	17 17 22 35 36	288	13
	V 0 0 L T C 7 A C C 7 A	0	000000000	0 0 0	00 00		0000	0
SILVICULTURE	0 c	00 0	0000000000	37	21 - 21 - 0	0 %	0 0 1 2	∞
SI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11 27 38	000000000	0 0	35 0			0
	>0 - 2	0 0	000000004	21 0 0	13 4	17 19 32	6 6 6	2
	L RL U EU D VD	3 TP			22 23 24 45 25 45		3 T P	3 ML
± 3	AU RN VI EI ST ST	733 3034 733 3034 3034	733 3035 733 3035 733 3035 733 3035 733 3035 733 3035 733 3035 733 3035		740 4002 740 4002 740 4004 740 4004	7007 072 7007 072		735 5003

			O								
SILVICULTURE DIAGNOSIS - ALTERNATIVE #5	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC	RS,TMPCT,CC PB,PLANT(RC&YC),SS,CC	RS, CC RS, CC	RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC	RS, TMPCT, CC RS, CC RS, CC RS, CC	RS,CC	RS,TMPCT,CC RS,TMPCT,CC	RS,CC	RS, TMPCT, CC RS, R&W, CC	
	A A E K	22 22	22 23	23 23	ដូដូដូ	2222	ដ	3 °	S	88	
	B cl E 포	로로	RS SL	로로	S H S	로 로 로 로	로	보 고	RS	RS SL	
	R A A H B	2 2	2 2	2 2	222	2 2 2 Z		zz	z	zz	
	I SN ID TE WET EX HAB	85 FNW 85 FNW	85 FNW 81 FNW	76 FW 76 FW	90 FNW 75 FNW 83 FIW	81 FNW 80 FW 80 FW	0	90 FNW 65 FW	85 FNW	85 FNW 72 FNW	
	≖ ∪∪	4 4	4 0	2 2	444	- x	0	7 -	4	4 K	
	XX-	2 2	2 -	мм	2 2 2	0044	0	2 2	2	7 -	
	ECO	WHS WHS	CCS	Z E	CCS S	CCD S		WHS	WHS	WHS	
	SMU	5280 5280	528D 28	19E 19E	540 528E 33E	19C 540 18E 18E		540 190	540	5280 29EF	
	T WH IR MAX NO ELEV DW	0 0 T T	10 H H	0 0 T T	15 H 30 H 20 M	0 8 9 0 H H H H	Ξ	6 H 5 H	ω π	10 H 9 H	
	MIN ELEV E	00	~ 9	o o	£ £ 8	9 7 0		2 2	2	φ. rv	
	N O O O O	22	2 -	мм	225	- 0 K K	0	2 2	2	2 20	
	VQO	2 2	g g	운 앞	A C A	2222	8	g g	8	88	
	ASPECT	NORTH	WEST	EAST	NORTH EAST NORTH	EAST EAST EAST EAST		175.00 NORTH 659.00 NORTH	SOUTH	WEST	
	VOLUME	125.00 345.00 470.00	690.00 1,254.00 1,944.00	251.00 88.00 339.00	226.00 976.00 903.00 2,105.00	188.00 283.00 283.00 95.00 849.00	75.00	175.00 NORTH 659.00 NORTH	659.00 SOUTH	351.00 WEST 1,472.00 WEST 1,823.00	
	TOTAL	11	22 40 62	8 2 1 1	38 38 33 33 33 33 33 33 33 33 33 33 33 3	9 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	M	7 21	21	12 46 58	
	V 0 0 L T C A A C C A A	0 0	00 0	00 0	000	0000	0	0 0	0	00 0	
	۵ د ه د	0 0	00 0	00 0	000 0	0000	0	0 0	0	0 7	
	> 0 ° C	11	75 40 62	2 2 10	75 75 75 75 75 75 75 75 75 75 75 75 75 7	9 6 8 72	0	0 21	21	33	
	>0-5	0 0	00 0	0- -	24 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0000	m	7 0	0	6 - 10	
	L RL U EU V VO	3 AL 3	3 SV 3 SV	3 TP TP	3 SV 3 ML 3 SV	3 % AL 3	m	3 SV	3 ML	3 SV 3 SV	
H AU RN VI EI ST VCU T#		735 5005 735 5005 5005	735 5008 735 5008 5008	735 5012 735 5012 5012	735 5018 735 5018 735 5018 5018	735 5019 735 5019 735 5019 735 5019	735 5021	735 5022 735 5028	735 5034	735 5039 735 5039 5039	

E 5 OF 23	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC	RS,TMPCT,CC RS,TMPCT,CC	RS, TMPCT, CC RS, CC RS, CC	RS,CC RS,TMPCT,CC	RS, R&W, CC	RS, WLPCT, CC RS, WLPCT, CC RS, CC RS, WLPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC
PAGE	A A E H	ខខ	ខខ	888	88	ပ္ပ	8888	88	888	8
	eder≖	로 로	로 로	RS S	RS S	SL	로로로로	RS S	로 로 로	RS
	R A P ∺ R	2 2	2 2	222	2 2	2	2222	2 2	222	z
	I SN ID TE WET EX HAB	65 FW 65 FW	88 FNW 90 FNW	90 FNW 82 SEC 85 FNW	77 FNW 90 FNW	85 SEC	75 FIW 75 FIW 69 FIW 75 FIW	75 FIW 75 FIW	75 FIW 75 FIW 75 FIW	80 FIW
	Σ ೧ a		44	4 M 4	w 4	4	44M4	4 4	7 7 7	4
	ΣΣΗ	2 2	2 2	2 - 2	2 2	←	0 M M 0	мм	ммм	м
	ECO CODE	S E E	WHS	CAR	WHS	CMM	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SUU	S S S S S S S S S S S S S S S S S S S	SOO
	SMU	88	540	540 25 540	540	25	330 330 330 330	330	33E 33E 33E	33E
	T WH IR MAX NO ELEV DW		9 4	15 H 10 H 20 H	9 80 T T	15 M	W 4 W W T T T T	N N	N 80 40	10 H
	MIN ELEV E	=======================================	4 0	51 0 51	4 9	٥	MMMM	мм	w w %	10
	R P O L S	2 2	2 2	222	2 2	2	-22-	- 2	ммм	m
#2	V ₀	% %	ΣΞ	只 至 至	ΣΣ	8	$\mathbb{R} \otimes \mathbb{R}$	五四	888	8
- ALTERNATIVE	VOLUME MMBF ASPECT	220.00 NORTH 339.00 NORTH 559.00	283.00 NORTH 188.00 NORTH 471.00	124.00 NORTH 446.00 NORTH 662.00 NORTH 1,232.00	376.00 NORTH 502.00 NORTH 	972.00 NORTH	195.00 SOUTH 250.00 SOUTH 388.00 SOUTH 251.00 SOUTH 1,084.00	426.00 EAST 326.00 EAST 752.00	375.00 EAST 50.00 EAST 300.00 EAST 725.00	407.00 EAST
DIAGNOSIS	TOTAL	71 18	6 6 15	15 26 26 46	12 16 28	31	7 10 13 8 38	15 12 27	11 28	14
	0 C7 A	00 0	00 0	000 0	00 0	0	0000	00 0	000	0
SILVICULTURE	۵ د ه <	00 0	00 0	000	00 0	0	0000	00 0	000	0
SI	>018	10	6 2 5	11 2 13	12 16	31	8 17	8 4 12	004 4	٥
	>0-2	0- -	00 0	24 24 33	00 0	0	10 10 8 8 22	8	15 2 24 24	2
	L RL D EU VO	% % % %	3 S 3 S 3 S	2	3 TP 3 SV	3 SV	2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3	3 8 8	2 S S S S S S S S S S S S S S S S S S S	3 SV
H 4	RN VI VI ST	735 5040 735 5040 5040	735 5041 735 5041 5041	735 5042 735 5042 735 5042 5042	735 5043 735 5043 5043	735 5044	735 5046 735 5046 735 5046 735 5046 5046	735 5047 735 5047 5047	735 5048 735 5048 735 5048 5048	735 5049

											8					
E 6 OF 23	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC	RS, TMPCT, CC	RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC		RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC RS,CC		RS, WLPCT, CC	RS,WLPCT,CC RS,WLPCT,CC		RS,CC RS,WLPCT,CC RS,CC PB,PLANT(RC&YC),SS,CC		RS,WLPCT,CC	RS,WLPCT,CC	RS,CC RS,TMPCT,CC	
PAGE	AE AE VH VH VH	ပ္ပ	ပ္ပ	8888		8888		ខ	ខ្លួ		8888		ි.	ន	ខ្ល	
	GH CF M	로	로	로 로 로 로		====		SL	표표		프 프 怒 怒		Ħ	RS	RS S	
	R A A H B B B B B B B B B B B B B B B B B	z	z	2222		2222		z	zz		2222		z	z	zz	
	I SN ID TE WET EX HAB	85 FNW	85 FNW	89 FNW FNW FNW FNW		FNW FNW FNW 76 SE		FNE	FNE		89 FNW FNW 82 FNW 75 SE		FNE	85 FNW	93 SEC FNW	
	∑ ∪ ∪	4	4					-					-	4		
	ΣΣΗ	2	2	0000		7227		2	2 3		w w w ←		2	2	- K	
	EC0 - CODE	5280 WHS	SHM O			0 K K K		MDC	202		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MDC	WHS	NAE WDC	
	SMU	528	5280	***		30 30 30 24AC		3E	38		3E 3E 3E 24D		30	750	86CD 3E	
	T WH IR MAX NO ELEV DW	3 #	H 7	M M M S S		2223		Н 9	3 H		2 H H H 3 H H		3 H	Н 9	12 H 11 H	
	MIN ELEV E	М	٣	M M M M		7227		2	4 W		7 7 M C		2	2	11	
	M P O L S	2	7	0000		7227		7	m 7		mmm N		2	7	N W	
₩;	VaO	8	8	8 8 8 8 8 8 8 8		2222		8	8 8		8888		8	8	8 8	
NOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	157.00 EAST	63.00 EAST	633.00 NORTH 183.00 NORTH 263.00 NORTH 182.00 NORTH	1,261.00	439.00 SOUTH 157.00 SOUTH 188.00 SOUTH 376.00 SOUTH	1,160.00	350.00 SOUTH	150.00 SOUTH 175.00 SOUTH	325.00	312.00 SOUTH 100.00 SOUTH 458.00 SOUTH 439.00 SOUTH	1,309.00	587.00 SOUTH	574.00 SOUTH	314.00 SOUTH 376.00 SOUTH	00.069
IAGNOS	TOTAL	2	2	22 6 6 7	77	4 c o 51	37	14	9	13	15 4 1	777	22	23	12	22
URE D	0 C C 7	0	0	0000	0	0000	0	0	00	0	0000	0	0	0	00	0
SILVICULTURE DIAG	د ٥ <	0	0	0000	0	0000	0	0	00	0	0000	0	0	0	00	0
SI	> 0 - 0 5	2	7	₽° 2 0 −	52	4 2 2 2	37	0	00	0	6 0 13 4	33	9	0	12	22
	>0 - 2	0	0	0 - W 9	19	0000	0	14	6	13	N400	=	16	23	00	0
	L RL D EU O VD	3 ML	3 ML	M M M M M M M M M M M M M M M M M M M		4 4 ML		4 ML	4 ML		M		4 ML	4 TP	4 ML	
H =	RN VI ST	735 5050	735 5051	736 6002 736 6002 736 6002 736 6002	6002	736 6027 736 6027 736 6027 736 6027	6027	736 6033	736 6034 736 6034	9034	736 6035 736 6035 736 6035 736 6035	6035	736 6036	736 6037	736 6038 736 6038	6038

	-																
E 7 OF 23	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC	RS,WLPCT,CC	PLANT(YC),SS,CT,SW PLANT(YC),SS,CT,SW RS,CC		RS, TMPCT, CC	RS, CC	RS,CC RS,CC		RS,CC RS,CC RS,CC		RS,CC RS,CC		RS, TMPCT, CC	RS,TMPCT,CC RS,CC RS,CC		RS, TMPCT, CC
PAGE	AE AE Y	33	ន	888		2	2	22		222		88		CC	888		22
	E G CE M	RS H	≢	SL RS		로	로	로로		로 로 로		로로		RS	& 분 분		뿦
	RB AA	2 2	z	z z z		z	z	2 2		222		22		z	222		z
	SN ID TE WET EX HAB	72 FNW 71 FNW	84 FNW	80 FNU 73 FU 67 FU		FNU	68 SE	60 SE 60 SE		FNW FNW 5 ADD		70 FE		85 FNW	85 FNW 85 FNW 85 FNW		FNE
	Σ ΩΩ		7			-	_					~ ~		4	444		_
	ΣΣ∺		-	- K 0		М	_			M M 0		2 2		М	ммм		M
	ECO J CODE	S S S S S S S S S S S S S S S S S S S	SOO	CCS		MDC	VC CMC	VC CMC		WDC WDC SE MHA		CMB		SF WHS	SE WHS		WHS
	SMU	78	28	28 180 200		3E	24AC	24AC 24AC		1E 1E 246E		40		528F	528E 528E 528F		53E
	T WH IR MAX NO ELEV DW	6 4 2 ± ±	7 H	15 M 115 H 11 H		H 7	H 7	H 7		20 H 20 H 20 H		1 T		15 H	18 H 20 H 20 H		5 H
	MIN	2 2	2	120		4	4	м 4		20 20 20		11		11	0 5 5		4
	s по е п		2	7 2 7		М	-			ммм		2 2		4	m 4 m		m
₩ ;	Vao	₽ ₽	Ŧ	오오포		P.	R	8 8		오오오		운 운		MO	오오오		MO
SIS - ALTERNATIVE #5	VOLUME MMBF ASPECT	576.00 SOUTH 326.00 SOUTH 902.00	1,066.00 SOUTH	1,152.00 EAST 700.00 EAST 563.00 EAST	2,415.00	345.00 NORTH	275.00 NORTH	282.00 NORTH 150.00 NORTH	432.00	207.00 NORTH 182.00 NORTH 91.00 NORTH	480.00	175.00 WEST 200.00 WEST	375.00	487.00 NORTH	287.00 NORTH 738.00 NORTH 474.00 NORTH	1,499.00	627.00 NORTH
I AGNO	TOTAL	11 130	34	40 28 21	89	11	11	17 9	17	477	18	8 7	15	19	7 81	77	20
rure D	V 0 0 C7 A C	00 0	0	000	0	0	0	0 0	0	000	0	0 0	0	0	000	0	0
SILVICULTURE DIAGNOSIS	>018	00 0	0	000	0	0	0	00	. 0	000	0	00	0	0	18 0	25	0
SI	, o o c	16 8 24	34	24 0	30	11	0	-0	-	2 - 0	9	0 0	0	2	000	0	20
	>013	mm 9	0	16 28 15	59	0	1	0 9	16	794	12	8 7	15	17	0 0 6	19	0
	r RL U EU D VD	41 7 4 1 7 4 1 7	4 TP	4 TP 4 TP 4 TP		4 TP	4 TP	4 TP 4 TP		4 TP 4 TP 4 TP		4 TP 4 TP		4 TP	4 TP 4 TP 4 TP		4 TP
± ₹	RN VI ST ST ST	736 6039 736 6039 6039	736 6040	736 6041 736 6041 736 6041	6041	736 6042	736 6043	736 6044 736 6044	7709	736 6045 736 6045 736 6045	6045	736 6046 736 6046	9709	736 6047	736 6048 736 6048 736 6048	9709	736 6049

	GEMENT																
E 8 OF 23	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC RS,TMPCT,CC	TOUR	RS, CC RS, CC RS, CC		RS,CC RS,CC RS,R&W,CC RS,R&W,CC		RS,CC RS,CC		RS,WLPCT,CC RS,WLPCT,CC		RS, CC	RS, TMPCT, CC RS, TMPCT, CC		Rs, cc	RS,CC RS,CC RS,WLPCT,CC	
PAGE	AE AT VH	2 2	ç	888		8888		2 2		22		ပ္ပ	88	•	23	888	
	G G E	RS RS	ć	S S S		로 로 S S		로 로		รร		呈	RS H		呈	로로로	
	R AA B R B	22	=	z z z		Z Z Z Z		2 2		zz		z	2 Z		z	z z z	
	I SN ID TE WET EX HAB	FNU	ž	87 FNW 75 FIW		65 FW 68 FW 88 FNW 70 FW		74 FNW 70 FW		65 F1 52 FW		80 FW	85 FNW 85 FNW		80 FW	60 SE 60 SE FNW	
	∑ ∪ 0		•	- M 4		22-1				2 +		-	44		~		
	ΣΣH	2 2	^	n n r		мммм		- 2		22		2	8 2		2	← ← 0	
	EC0 C00E	NOC NOC		CCS				CCS		CCS		000	WHS WHS		000	CMC CMC	
	SMU	38	7	34E 33E		4E 4E 3F		28 40		630 190		180	528F 75E		180	24E 24E 74E	
	T WH IR MAX NO ELEV DW	9 H 15 H		20 H		1122		11 6 H H		H 4		3 H	3 H		Н 7	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	MIN ELEV I	9	Á	5 = 5		11 8 7		10		44		2	mm		2	6 7 7	
	N T O G H	2 2		าทท		NMMM		2 2		7 -		-	4 K		_	ммм	
¥	V90	운 운	9	운 운 운		¥ ¥ % &		88		88		8	운 운		Ŧ	ŦŦŦ	
ALTERNATIVE #5	ASPECT	00 WEST 00 WEST 		00 WEST	. 0	00 EAST 00 EAST 00 EAST 00 EAST	. 0	O EAST	: Q	0 WEST 0 WEST	. 0	690.00 EAST	O EAST		N SOUTH	O SOUTH	. 0
	VOLUME	246.00	1,578.00	540.00 869.00	2,006.00	256.00 487.00 564.00 924.00	2,231.00	471.00	1,035.00	596.00	1,160.00	0.069	521.00 314.00	835.00	502.00	125.00 188.00 125.00	438.00
IAGNOSIS	OTAL	36	42	19 19 19	26	10 13 23	99	15 8	33	8 6	37	22	5 0	56	16	404	14
URE DI	V 0 L TO' C7 ACI	0	0 0	000	0	0000	. 0	00	0	00	0	0	00	0	0	000	0
SILVICULTURE	د د د د د	6 27	33	12 4 5	32	0 7 0 12		00	0	00	0	0	0 0	7	0	000	0
IS :	0 c c C	00	0 0	272	54	180	21	15	33	18	37	22	10	54	16	404	4
	2 د ه د	00	o	000	0	0000	17	00	0	00	0	0	00	0	0	000	0
	L RL U EU D VD	4 ML		4 ML 4 TP		4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4		3 ML 4 ML		4 ML 4 TP		4 TP	4 TP 4 ML		4 ML	4 4 4 M M L	
H	RN VI EI VCU T#	736 6050 736 6050		736 6051 736 6051 736 6051	6051	736 7001 736 7001 737 7001 737 7001	7001	735 7002 737 7002	7002	737 7003 737 7003	7003	737 7004	737 7005 737 7005	2002	737 7007	737 7008 737 7008 737 7008	7008

E 9 OF 23	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC PB,PLANT(RC&YC),SS,CC PB,PLANT(RC&YC),SS,CC	RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC		PLANT(YC),SS,CT,SW RS,CC RS,TMPCT,CC		RS,CC RS,CC		RS,CC RS,CC		RS, R&W, CC RS, IMPCT, CC RS, R&W, CC RS, R&W, CC RS, TMDCT, CC	22, 12, 12, 12, 12, 12, 12, 12, 12, 12,	Rs, CC	RS, TMPCT, CC
PAGE	AE AT A	8888	2	88		888		88		ខ្លួ		88888	3	23	23
	LE OT GH	로 로 로 로	로	RS H		R S H		로 로		로 로		8 8 8 8 E	Ę	뿦	포
	R A H H	z z z z	z	zz		z z z		zz		2 2		Z Z Z Z Z	E	z	z
	I SN ID TE WET EX HAB	80 FW 92 FNW 92 FW 86 FW	60 FW	N N		93 FW 93 FNW FNW		86 FNW 82 FW		FNW 81 FW		73 FW FNW 70 FW		90 FIW	85 FNW
	ΣUU		-					4 2					-	_	4
	ΣΣ∺	2008	_	мм		ммм		2 2		мм		M M M M	1	4	M
	ECO	00000	KHS	M M		CCC FECCO FE FECCO FE FECCO FECCO FE FECCO FE FECCO FE FECCO FECCO FE FE FECCO FE FE FE FE FE FE FE FE FE FE FE FE FE		WHS		¥BC ¥HC		2 C C C C C C C C C C C C C C C C C C C	¥	MHB	WHS
	SMU	18C 2D 18C 18D	510	300		180 3F 54E		5280 180		1E 19E		19E 1E 4E 4E	<u> </u>	35F	528F
	T WH IR MAX NO ELEV DW	N N 0 0	Σ Ξ	11 H H		20 H 23 H		15 H 12 H		20 H 20 H		12 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2		30 H	15 H
	MIN	N N N N	4	===		5 5 2		===		20		ε ο ε Ε ο	•	20	12
	N T O F M	- 2 2 Z	-	22		M 4 W		2 2		мм		m m m m m	1	4	4
¥	V@0	XXXX	Σ	ΣΞ		X X X		운 운		% %		E E E O	Ē	Σ	Ξ
S - ALTERNATIVE #5	VOLUME MMBF ASPECT	150.00 SOUTH 325.00 SOUTH 413.00 SOUTH 270.00 SOUTH	1,158.00 408.00 NORTH	283.00 WEST 283.00 WEST	266.00	565.00 NORTH 439.00 NORTH 332.00 NORTH	1,336.00	563.00 NORTH 250.00 NORTH	813.00	187.00 WEST 275.00 WEST	462.00	502.00 SOUTH 502.00 EAST 220.00 SOUTH 213.00 EAST		532.00 WEST	439.00 NORTH
IAGNOSIS	TOTAL	9 E 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13	66	18	14 11	36	20	30	71	18	91 7 7 7 1	2 65	20	14
URE D	V 0 1 1 1 C 1 1 C 1 1 1 1 1 1 1 1 1 1 1 1	0000	0 0	00	0	000		00	0	00	0	00000	0	0	0
SILVICULTURE DIAGN	> 0 - C	0000	0 0	00	0	13	13	0 0	0	0 0	0	00000	; ;	0	0
SII	0 CS	0098	9 ك	66	18	14 9	54	0 0	10	0 2	7	51 2 2 2 2 2	2 82	2	14
	> 0 - 2	9 2 2	35	00	0	007	2	55	20	11	16	000-0	-	15	0
	L RL U EU D VD	3 4 4 4 3 4 1 1 P	4 TP	4 ML		4 TP 4 TP 4 TP		4 TP 4 TP		4 ML 4 TP		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 TP	4 TP
± ₹	RN VI ST VCU T#	737 7012 737 7012 737 7012 739 7012	7012 737 7015	737 7016 737 7016	7016	737 7018 737 7018 737 7018	7018	737 7019 737 7019	7019	737 7020 737 7020	7020	737 7021 737 7021 737 7021 737 7021		737 7025	737 7028

No. No. No. No.														
Hard	10 OF	PROPOSED FUTURE MANAGEMENT	PLANT(YC),SS,CT,SW RS,CC	RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC RS, IMPCT, CC	Rs, cc Rs, cc Rs, cc Rs, cc		PLANT(YC),SS,CT,SW RS,CC		RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC		RS,CC	RS,R&W,CC	FH,RS,R&W,2-SW RS,R&W,CC	
Name	PAGE	AE AE VH	2 2		8888		200			٠	23	23	SK	
H S SILVICULTURE DIAGNOSIS - ALTERNATIVE #5 FILL IR. V V V V V V V V V V V V V V V V V V V		LE OT	로로	R S S S S	RS RS		RS RS		<u> </u>		로	빞	R S	
HANDER HALLING DIAGNOSIS - ALITERNATIVE #5 ELI LRL V V V V V V V V V V V V V V V V V V		RB AA H	2 2	22222	2222		zz		22222		2	z	2 2	
HANDER HALLING DIAGNOSIS - ALITERNATIVE #5 ELI LRL V V V V V V V V V V V V V V V V V V		ET AB	3 3	33333	3 3 3 5		3 3				3	3	3 3	
Name														
Name											~	1		
Name			- 10		10 10 10 -						0.1		10.01	
HANDER HANDER OF A CALTURE DIAGNOSIS - ALTERNATIVE #5 RN H EI		22 11	← t₁	1010101010	די ויו ויו ויי		נא נא				10	[4]	M) (V)	
HANDER HANDER OF A CONTRINE BY AND HANDER BY		ECO CODE					0.0				CCD	WHS		
H S SILVITOLI TURE DIAGNOSIS - ALITERNATIVE #5 AU No.		SMU	28 5500	5280 5280 5280 5280 5280 5280	5500 53E 5500 490		180 180		24AC 25 29EF 20 20 20		180	35E	550b 74D	
HAUNTEN PROMINE DIAGNOSIS - ALTERNATIVE #5 NUMBER NU		PA NO M	ΣI	====	===		ΣΙ		==== =		×	±	ΣI	
HAUNTEN PROMINE DIAGNOSIS - ALTERNATIVE #5 NUMBER NU		4AX LEV	15	55 55 55	۶		10		δ ΩΩΩΩ4		4	20	15	
NOTE OF The Color			11	15 10 15 15 15 15 15 15 15 15 15 15 15 15 15	8677		5 0		NN N4 NM		м	15	5 5	
## AU AU V V V V V V V V V		R P O L S	- 2	00000	2222		2 2		77777		-	2	2 2	
H AU	₩:	V@O	8 8	$\overset{\mathbf{Y}}{\circ}\mathbf{$	$\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} $		운 운		X X X X X X X		Σ	Ð	꽃 운	
H SILVICULTURE DIAGNOSIS - AU NI	NATIVE	ASPECT	NORTH	SOUTH SOUTH SOUTH SOUTH SOUTH	WEST WEST WEST WEST		EAST		EAST EAST EAST EAST EAST EAST		SOUTH	SOUTH	SOUTH	
H SILVICULTURE DIAGNOSIS - AU NI	LTER	111 14-	00:00	88888	8888	8	88	9.	888888	0	0.	00.	88	8
AU NI VI VI VI VI VI VI VI VI VI V		VOLUME	220 270 270 490	314, 95, 188, 274, 328,	200 331 645 350	1,526	399	299	251 188 220 188 188 534	1,569	505	1,439	1,348	1,975
HANN VI VI STLVICULTURE AU NO	IAGNOS	OTAL	10	5 × 0 × 8 × 7.	8 13 14	28	5 8	54	8 7 9 71	20	16	54	50 46	99
AU RN VI TO V VI TO V TO ST TO			00 0	00000	0000	. 0	00	0	000000	. 0	0	0	00	0
AU RN VI TO V VI TO V TO ST TO	LT.	7010			1									
AU RN VI TO V VI TO V TO ST TO	וראוכח	, v 0 0 0 0 0 0	00 0	0008	0000	0	00	0	00000	0	0	0	00	0
AU RN VI ST UEU TO29 4 TP 7029 4 TP 7029 4 TP 7029 4 TP 7031 4 TP 7031 4 TP 7031 4 TP 7031 4 TP 7032 4 TP 7032 4 TP 7034 4 TP 7034 4 TP 7034 4 TP 7034 4 TP 7034 4 TP 7037 4 TP 7047 4 TP	S i	V CS	3	0 4 9 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0-10	12	00	0	8 7 6 77	20	16	14	31	51
H AU RN VI		> 0 J	0 2	000-0	8 2 2 2 4	97	8 8	54	00000	0	0	40	15	15
AU AU RN VI		7 E R	4 4	4444	4444		4 4		44444		٩	¥	포포	
		٥٦٦		4444										
	H 4					7032		7034		7047				7056

		i																		
E 11 OF 23	PROPOSED FUTURE MANAGEMENT	RS, CC	RS,R&W,CC RS,CC		RS, IMPCT, CC	RS, R&W, CC	RS, CC	RS, CC	RS, CC	RS,CC	RS,CC	RS, TMPCT, CC RS, TMPCT, CC		RS,CC RS,CC RS,CC		RS,CC RS,CC RS,CC		RS, R&W, CC	RS,CC	RS, TMPCT, CC
PAGE	A A E H	ដ	នួន		ន	ន	ដ	ដ	ည	ដ	23	ខ្លួ		នួនន		888		22	22	22
	중리면포	RS	고표		뿦	뿦	Η	RS	RS	로	RS	RS		SL RS RS		로 로 로		里	里	뿦
	8 A P + R	z	zz		z	z	Z	Z	z	Z	z	2 2		z z z		ZZZ		Z	z	z
	I SN ID TE WET EX HAB	FNW	95 FNW 85 FNW		85 FNW	89 FNW	85 FNW	OBS 65	85 FNW	85 FNW	87 FNW	85 FNW 85 FNW		79 FNW 10 BH 70 FW		90 FIW 68 FEF 90 FIW		69 FNW	36 FNW	2 FNW
	ΣΩΩ Ω <u> </u>	_	2 9		89	8	89	1 4	8	80	8	8 8		3 7 1 1 7		9 6 9		3 6	2 3	4 85
	ΣΣΗ	м	мм		м	м	м	-	м	2	2	mм		NMM		m - m		m	м	м
	ECO CODE	WHM	WHW WHS		WHS	WHS	WHS	CMM	WHS	WHS	WHS	WHS		WHS SSU CCD		WHS		WHS	WHS	WHS
	SMU	54E 1	54E 1		528F	528F	75F	25 (528F	528F	5280	528E 1 528E 1		5280 1 14EF 5500 (350 1 490 350 1		528F	528F	528F 1
	T WH IR MAX NO ELEV DW	20 H	20 H 20 H		20 H	20 H	30 H	30 M	30 H	20 H	12 H	15 H 15 H		15 H E		20 H 15 M 20 H		20 H	20 H	15 H
	MIN F	20	20		12	15	20	50	20	50	œ	11		5 5 5		20 15 20		6	10	12
	S L C L S E L C L S E L C L C L C L C L C L C L C L C L C L	ъ	۲ A		4	4	4	_	4	4	2	мм		242		222		4	4	4
Æ	, Vao	오	₹ €		웆	£	윷	₽	8	웆	£	% %		오오오		E E E		Σ	₩	Q
- ALTERNATIVE	VOLUME MMBF ASPECT	282.00 SOUTH	922.00 WEST 564.00 WEST	1,486.00	395.00 SOUTH	375.00 SOUTH	283.00 NORTH	495.00 souтн	224.00 SOUTH	175.00 SOUTH	582.00 SOUTH	283.00 SOUTH 283.00 SOUTH	566.00	373.00 NORTH 263.00 NORTH 100.00 NORTH	736.00	100.00 WEST 288.00 WEST 95.00 WEST	483.00	1,568.00 WEST	941.00 NORTH	471.00 NORTH
DIAGNOSIS	TOTAL	11	31	67	13	15	6	54	6	7	21	00	18	9 4	56	4 0 6	17	20	30	15
URE D	V 0 1 TC C7 A(0	00	. 0	0	0	0	0	0	0	0	00	. 0	000	0	000	0	0	0	0
SILVICULTURE	0 C6	0	00	0	0	0	0	0	0	0	0	00	0	-00	-	000	0	0	0	0
SII	> 0 1 5	1	23	41	11	0	0	15	0	0	6	00	18	r 40	=======================================	0 9 %	6	20	30	15
	> 0 7 5	10	80	. 00	2	15	0	٥	6	7	12	0 0	0	~ M →	14	440	. 00	0	0	0
:	L RL U EU D VD	4 ML	1M 7		4 ML	4 ML	4 ML	4 ML	4 ML	4 ML	4 TP	4 TP 4 TP		4 TP 4 TP 4 TP		4 TP 4 TP 4 TP		4 TP	4 TP	4 TP
= =	AU RN VI EI ST VCU T#	737 7057	737 7058 737 7058	7058	737 7059	737 7060	737 7061	737 7062	737 7063	737 7064	737 7066	737 7067 737 7067	7907	737 7068 737 7068 737 7068	7068	737 7069 737 7069 737 7069	2069	737 7070	737 7071	737 7072

PAGE 12 OF 23	SN I M HM ID PH LE AE TE WET AA OT RT PROPOSED EX HAB RB GH VH FUTURE MANAGEMENT	85 FNW N HE CC RS, TMPCT, CC 87 FNW N HE CC RS, CC	85 FNW N RS CC RS,CC 85 FNW N LS CC RS,CC 85 FNW N RS CC RS,CC 85 FNW N RS CC RS,CC 85 FNW N RS CC RS,CC	91 FW N HL CC PLANT(YC),SS,CT,SW	FNW N HL CC RS,WLPCT,CC FNW N RS CC RS,WLPCT,CC 80 FW N HL CC PB,PLANT(RC&YC),SS,CC 80 FW N LS CC PB,PLANT(RC&YC),SS,CC		RS E	F N H	70 FW N HL CC RS, CC 90 FIW N HL CC RS, CC 76 FNW N HL CC RS, CC 83 FW N HL CC RS, CC 78 FW N SL CC RS, CC	45 SEC N HL CC RS,CC
	ΣOQ	4444M	4444	-						-
	E E H	ммммм	ммммм	М	мммм		ν ,		M M M M M	-
	ECO	W W W W W W W W W W W W W W W W W W W	S H H H H H H H H H H H H H H H H H H H	000	C C C C C C C C C C C C C C C C C C C		NO K		CCD WHS CCD CCD	W C
	SMU	528F 528F 528F 528F 528F	528F 528F 528F 528F 528E	180	2F 2F 18D 180		3E	51C	5500 350 110 5500 5500	52
	T WH IR MAX NO ELEV DW	10 H 15 H 20 H	20 H 20 H 20 H 20 H	15 M	7 H 7 H 10 H			2 ×	15 M 20 H 20 M 20 M	- E
	MIN	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 20 20 20	12	0000		м ,	- w	5 5 4 5 5	4
	N T O T M	4444	M 4 4 4 M	M	4400		m •		22-22	-
₩ ;	VQO	M M M M M	XXXXX	¥	₹ ¥ % %		X S	€ €	5 5 % 5 6	9 8
NOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	125.00 NORTH 188.00 NORTH 502.00 NORTH 157.00 NORTH 978.00 NORTH 1,950.00	338.00 NORTH 826.00 NORTH 300.00 WEST 545.00 WEST 175.00 NORTH	1,009.00 WEST	370.00 WEST 451.00 WEST 150.00 WEST 235.00 WEST	1,206.00	471.00 WEST	407.00 EAST	320.00 WEST 188.00 WEST 188.00 NORTH 245.00 WEST 532.00 WEST	1,473.00 275.00 EAST
AGNOS	TOTAL	4 6 16 32 32 63	12 29 10 20 7 7	56	9 1 9 7	33	5	9	6 8 6 1	11 20
SILVICULTURE DIAG	V 0 L TC C7 AC	00000	00000	0	000m	m	0 0	0	00000	0 0
וראוכחר	> 0 1 %	00000	00000	20	0100	50	0 (0	00000	0 0
S i	>015	76 16 28 28 59	6 16 8 7 7 0 37	9	0000	0	15	- 9	6 7 6 6 7	35
	> 0 - 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00004 4	13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	0	0094	10	0 4	<u> </u>	4 0 0 10	11
	L RL U EU D VD	보보보보 7 7 7 7 7	4 TP 4 ML 4 TP 4 T	4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			4 M	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP
H	RN VI VI ST VCU T#	207 727 207 727 207 727 207 727 207 727 207 727	737 7074 737 7074 737 7074 737 7074 737 7074	737 7075	737 7076 737 7076 737 7076 737 7076	7076	737 7077	737 7079	737 7080 737 7080 737 7080 737 7080 737 7080	737 7081

		İ																
E 13 OF 23	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC		RS, CC	RS, TMPCT, CC RS, TMPCT, CC		RS, TMPCT, CC RS, TMPCT, CC		RS, TMPCT, CC	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS, CC	RS, CC	RS, CC	RS, CC		RS,CC RS,CC	
PAGE	A A E	ខខ		ပ္ပ	ខ្ល		ខ្ល		သ	888		ន	3 23	ე :	3 8		22 23	
	LE M	로로		RS	H RS		로 로		里	RS RS		RS =	≟ ≓	≓ ≡	RS		로 로	
	% - 4 & 8	22		z	zz		22		z	222		2 2	: z	z :	2 2		2 2	
	I SN ID TE WET EX HAB	HNE		87 FNW	NA NA		85 FNW 85 FNW		FNW	NA NA		51 SE		89 FNW	80 SE		70 FW 70 FW	
	E U U			-			NN		-			 -						
	ΣΣ∺	мм		М	2 2		2 2		M	ммм				- -			мм	
	ECO COOE	MDC		MDC	202		SSS		MDC	200		CMC		22.5			999	
	SMU	3E 3E		3E	38		9 9		3F	3E 3E		24AC	24AC	10	24AC		5500 5500	
	T WH IR MAX NO ELEV DW	ν. π. π.		± 5	7 T T		15 M		30 H	7 6 V		C) C	ı M				10 m	
	MIN ELEV E	10 10		4	2 2		8 T		0	444		2 0	1 W	۲ د	2		0 0	
	N T O F M	мм		М	2 2		44		4	ммм							2 2	
£	VQO	8 8		8	오포		포 포		ð	오 오 오		운요	운	₽ 9	€ €		운 운	
IS - ALTERNATIVE #5	VOLUME MMBF ASPECT	100.00 WEST 100.00 WEST	200.00	224.00 WEST	439.00 EAST 814.00 EAST	1,253.00	784.00 WEST 345.00 WEST	1,129.00	1,825.00 SOUTH	299.00 SOUTH 350.00 SOUTH 558.00 SOUTH	1,207.00	407.00 NORTH		270.00 NORTH	474.00 NORTH	1,672.00	338.00 EAST 362.00 EAST	700.00
CONOS	AL	7 7		٥	14 28	42	25	36	58	12 14 20	94	57 x	9	6 ~	19 4	- 29	12	58
URE DIA	V O L TOTAL C7 ACRES	0 0	0	0	00	0	00	0	0	000	. 0	00	0	0 0	00	0	0 0	0
SILVICULTURE DIAGNOSIS	> 0 C6	0	0	0	00	0	00	0	0	000	2	00	0	0 0	00	0	00	0
SII	V 0 0 C5	0	0	0	4 51	32	25	36	58	004	4	ıνα	2	M t	- 0	19	9 2	, co
	> 0 L	44	8	٥	0 0	10 1	00	0	0	15 4 1	40	5 0	7	~ ~	19	43	12	18
	L RL U EU D VD	4 ML		4 ML	4 M 4 M		4 TP		4 TP	4 TP 4 TP 4 TP		4 TP	4 TP	4 TP			4 TP 4 TP	
π.	RN VI EI ST VCU T#	737 7082 737 7082	7082	737 7083	737 7084 737 7084	7084	738 8005 738 8005	8005	738 8008	738 8009 738 8009 738 8009	8009	738 8011				8011	738 8014 738 8014	8014

14 OF 23	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,TMPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, CC	RS,CC RS,CC	RS,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC	RS, CC RS, CC RS, CC RS, CC	RS, CC RS, CC RS, CC	RS, CC RS, CC RS, CC
PAGE	VH AE	888	888	23	ម ម	8888	8888	888	888
	중리본족	로로로	RS RS	뽀	보 로	RS RS	로로로로	로로로	로로로
	RB AA H	222	zzz	z	z z	2222	2222	222	222
	WET	FNW	FNE	SE	2 3	SEC SEC FNW SEC	8 8 8 8	S T T	333
	S I I I I I I I I I I I I I I I I I I I	94 F 90 F	85 F 85 F	14 S	80 F	88 S 75 S 81 F 87 S	50 S 60 S 70 S 76 S	63 S 70 F	74 FI 67 FI 65 FI
	×0Ω	200	444	0	 w	8878	77162	766	799
	_								
	ΣΣH	222	ммм	-	2 3	M-		2 2	222
	ECO CODE	WDC WDC WHC	WHS	CMC	9 9	NAM WAH WAH WAH WAH WAH WAH WAH WAH WAH WAH	C WC C WC	C W B C C W C	CWB
	SMU	10 10 3310	528F 528F 528F	240	180 180	86CD 86CD 54F 86CD	24AC 24AC 24AC 24AC 24AC	24D 40 4C	18C 4D 4D
		33	10 10 10	57	2 2	8 2 8 8	2222	07 70 70 70	18(40 40
	T WH IR MAX NO ELEV DW	000	15 H 15 H 15 H	15 H	15 M 4 M	9 H 25 H 27	UW44 EEEE	# # # 4 4 4	7 T H 3 T H
	MIN ELEV E	∞ ∞ ∘	15 15	0	0 %	9 10 11	0 0 M M	4 M 4	m m N
	проги	222	444	0		m m 4 0		7 2 7	727
₩ ;	V@O	ΣΣΣ	& & & & & & & & & & & & & & & & & & &	Σ	& &	<u> </u>	8888	222	222
ALTERNATIVE	ASPECT	WEST WEST WEST	EAST EAST EAST	WEST	NORTH	NORTH NORTH NORTH	EAST EAST EAST EAST	WEST WEST WEST	SOUTH SOUTH
٠, ١	VOLUME	100.00 275.00 100.00 475.00	388.00 383.00 534.00 1,305.00	596.00 WEST	1,756.00 NORTH 220.00 EAST	200.00 1,301.00 499.00 499.00 2,499.00	283.00 314.00 345.00 439.00 1,381.00	200.00 488.00 232.00 920.00	375.00 224.00 325.00 924.00
IAGNOSIS	TOTAL	4 1 4 9	13 17 17 43	19	56		11 14 14	17 8 8 33	13
Œ DI.	V 0 0 C7 A	000:0	000!0	0	0 0	0000:0	0000:0	000 0	000:0
Ë	7010								
SILVICULTURE	> 0 1 9	0000	000 0	0	0 0	0 0 1	0000	000 0	00010
S	> 0 1 S	0000	10 9 17 36	19	56	22 0 0	111111111111111111111111111111111111111	10 2 5	000 0
	>013	11 4 4	7	0	0 0	8 13 20 20 20 61	0000	3 - 18	15 9 13 37
	7 D 6	4 4 4	4 4 4	۵	4 4	4444	4444	444	222
	- D - D	444	444	4	4 4	4444	4444	444	444
# 5	RN VI EI ST VCU T#	738 8015 738 8015 738 8015 8015	738 8025 738 8025 738 8025 8025	738 8026	738 8027 738 8028	738 8035 738 8035 738 8035 738 8035	738 8041 738 8041 738 8041 738 8041	738 8044 738 8044 738 8044 8044	738 8046 738 8046 738 8046 8046

		į	22,8 22,8 22,8													
15 OF 23	PROPOSED FUTURE MANAGEMENT	RS,CC	PB,PLANT(RC&YC),SS,CC PB,PLANT(RC&YC),SS,CC PB,PLANT(RC&YC),SS,CC		RS, R&W, CC	RS,CC RS,CC RS,R&W,CC RS,TMPCT,CC		RS, CC RS, CC		RS,CC RS,CC		Rs,cc	RS, CC	RS,CC RS,CC RS,CC RS,CC RS,CC		RS, CC
PAGE 15	HM AE VH F	S	222		CC	20000		200		200		CC	CC	22222		CC
<u>a.</u>																
	H LE B GH	로	로 로 로		SL	로 크 S 크		로 로		로 로		로	Ħ	로 로 로 로 로		RS
	R I PH T AA B RB	2	222		2	3333		ZZ		ZZ		2	2	33		2
	I SN ID TE WET EX HAB	65 SE	80 FW 80 FW 80 FW		70 FW	65 FNW 65 FNW 93 FNW FNW		60 SE 70 FW		64 SE 65 FW		64 SE	70 FW	75 SE 78 FNW 76 FNW 82 SE 70 FW		48 FIW
	צטט	-			←	2 2 2 +						-				-
	ΣΣ∺	-	ммм		2	M		1 2		1 2		-	2	- 2 2 - 2		М
	EC0 C00E	CMC	888		CMB	E E E E		CAB		CAG		CMC	CMB	CA CA CA		SOO
	SMU	24AC	81 81 81		Q7	29EF 29EF 29EF 1F		24AC 4C		24AC 4C		24AC	07	24AC 2E 2E 24AC 4C		33E
	T WH IR MAX NO ELEV DW	5 H	7 K 9		8 H	30 H 30 H 20 H 15 H		3 H 4 H		3 H		2 H	H 7	22344 22344 3344 3344 3444 3444 3444 34		15 M
	MIN ELEV E	M	N N 0		2	20 20 12 15		мм		2 2		2	7	00000		0
	S J O G H	-	000		4	444M						-	2	77777		-
£	V@0	PR	오오오		£	오오오오		R R		8 8		PR	PR	# # # # # #		R
SIS - ALTERNATIVE #5	VOLUME MMBF ASPECT	924.00 WEST	382.00 WEST 295.00 WEST 275.00 WEST	952.00	878.00 NORTH	358.00 EAST 345.00 EAST 938.00 EAST 289.00 EAST	1,930.00	224.00 SOUTH 332.00 SOUTH	556.00	375.00 WEST 275.00 WEST	650.00	600.00 SOUTH	150.00 SOUTH	649.00 NORTH 625.00 NORTH 474.00 NORTH 124.00 NORTH 275.00 NORTH	2,147.00	659.00 SOUTH
DIAGNOSIS	TOTAL	37	11 10	35	28	12 11 29 9	61	9	21	11	56	54	9	26 25 19 5	86	21
	V V	0	000	0	0	0000	0	00	0	00	0	0	0	00000	0	0
SILVICULTURE	در ٥ <	0	000	0	0	00%2	2	00	0	00	0	0	0	00000	0	0
S	. > 0 L	0	ω m 4	12	28	26 26 5	51	0 50	2	00	0	0	0	00000	0	21
	>012	37	0, 00, 40	23	0	N 0 0 N	2	٥٢	16	11	56	54	9	26 25 19 5	98	0
	S EU R	¥	444		T P	4444		무물		토토		ا	TP	4444		4
	L C C	7 8	4 4 4	0	3 4	7 7 7 7	2	2 7 7	2	3 3	М	7 7	5 4	44444	9	7 4
± =	RN VI VI ST VCU T#	738 8048	738 8070 738 8070 738 8070	8070	738 8073	738 8077 738 8077 738 8077 738 8077	8077	738 8082 738 8082	8082	738 8083 738 8083	8083	738 8084	738 8085	738 8086 738 8086 738 8086 738 8086 738 8086	8086	738 8087

PAGE 16 OF 23 HM AE RT PROPOSED VH FUTURE MANAGEMENT	RS,CC RS,R&W,CC RS,WLPCT,CC RS,WLPCT,CC	RS,CC RS,CC	RS,CC RS,TMPCT,CC	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC RS, CC	RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,CC	RS, TMPCT, CC
PAG HM AE VH	8888	2 2	ខម	8888	888888	88888	ន
LE OT	H & H S	RS S	로로	국 -	로 로 로 로 로 로	로 로 로 로 로	로
R AA AA AA	2222	2 2	2 2	z z z z	Z Z Z Z Z Z	****	z
I SN ID TE WET EX HAB	45 SEC 78 FNW FNW 85 FNW	79 FIW 79 FIW	45 SEC FNW	HERMAN	FNW FNW 80 FW 80 FW 80 FW	83 FW 90 FIC 90 FIC 62 FIC	90 FIC
≖ ∪ග	4	4 4					-
ΣΣΗ	222	мм	- x	мммм	000000	m 0 0 0 m	М
ECO	CMM CHM CHN CHN	S S S S S S S S S S S S S S S S S S S	CMM	999 <u>9</u>		M K K C C C C C C C C C C C C C C C C C	3310 WHC
SMU	25 74E 74E 528E	33E 33E	3E 3E	3E 3E 3E	2E 2E 180 180 180	180 3310 3310 3310 3310	331
T WH IR MAX NO ELEV DW	****	20 M	3 3	7 8 7 9 H H H H	V 0 V 0 00 E E E E E E E	F = E = E	7 M
MIN ELEV E	8977	20	3.2	V V 4 10	99	V 9 8 8 6 ~	5
S J O G H	4 2 8 8	mm	7 2	мммм	N N N N N N	8	2
#5	% % % %	2 2	P. R.	2222	99999	99999	웊
ALTERNATIVE	WEST WEST WEST WEST	EAST EAST	NORTH NORTH	SOUTH SOUTH SOUTH	NORTH NORTH NORTH NORTH	EAST EAST EAST EAST EAST	464.00 NORTH
OLU MM	220.00 937.00 451.00 410.00 2,018.00	497.00 994.00	439.00 188.00 627.00	125.00 376.00 534.00 345.00 1,380.00	312.00 169.00 81.00 112.00 325.00 124.00	224.00 150.00 224.00 275.00 325.00 1,198.00	764.00
DIAGNOSIS TOTAL V	24 11 10 52	14 28 42	44 6 20	4 2 2 1 1 2 4	13 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15
	0000	00 0	00 0	0000	00000	00000	0
SILVICULTURE V V O O L L C C	11000	6 12 18 18	00 0	0000	000000	00000	0
SIL SIL V 0 C C5	50 0 12	16	14 6	12 17 17 17 44	3 1 2 0 0 12	00000	14
> 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0000	00 0	00 0	0000	20 23 20 20 20 20 20 20 20 20 20 20 20 20 20	6 6 7 1 1 3 4 8 4 8	-
L RL U EU D VD	4 4 4 4 TD DD	4 4 1 4	4 TP	4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 TP
H AU RN VI EI ST VCU T#	738 8088 738 8088 738 8088 738 8088	738 8089 738 8089 8089	738 8090 738 8090 8090	738 8091 738 8091 738 8091 738 8091	738 8092 738 8092 738 8092 738 8092 738 8092 738 8092	738 8093 738 8093 738 8093 738 8093 738 8093	738 8094

		ī																
PAGE 17 OF 23	PROPOSED FUTURE MANAGEMENT	RS, CC	RS, TMPCT, CC RS, TMPCT, CC		RS, CC	RS, CC RS, CC	RS, CC	RS, IMPCT, CC	RS, CC RS, TMPCT, CC RS, CC		RS,CC RS,CC		RS, CC RS, R&W, CC	RS, CC RS, CC		RS, CC	RS, R&W, CC	RS,CC
PAG	A T T X	ខ	ខម		ວ	ខ្លួ	8 8	888	388		នួន		88	88		ည	ខ	2
	G 1 F ₹	RS S	로로		Ħ	로로	≢ ₹	₹ ± 8	오 로 로		로로		R S	로로		로	SL	로
	8 A H H 8	z	22		z	z z	2 2	: z :	z z z		2 2		zz	zz		z	z	z
	I SN ID TE WET EX HAB	70 FW	N N		WH 09	91 FW 74 FW	71 FW FNU		65 FW 51 SEC		80 FE		80 FW 95 FW	97 FW 88 FNW		91 FNW	98 FNW	96 SEC
	± ∪∪	-			4											-	-	_
	ΣΣ∺	4	мм		М	мм	MK	M 1	0 W ←		мм		MM	MM		2	М	-
	EC0 CODE	8	3 3 E E		AHC.	88	03	3	E H E		999		8 8	E CCD		MDC	MDC	MME
	SMU	4.F	54F 54F		43EF	08 08 1	180 54.F	54F	195		180 180		8 8	18D 54F		10	3F	86CD
	T WH IR MAX NO ELEV DW	10 H	15 M		15 M				 		₹ ₹			20 H		∑	15 H	8
	MIN ELEV E	٥	15		12	∞ ∞	α τ	. τ υ ο	, 20		9 9		15	15		4	0	7
	E P O L	4	4 4		4				0 4 V		2 2		2 8	44		2	4	2
₩ ;	VQO	웊	운 운		₽	운 운	₽ ⊊	문문	운 운 운		운 운		¥ ¥	¥ ¥		X	Ã	₽
S - ALTERNATIVE	VOLUME MMBF ASPECT	439.00 NORTH	376.00 WEST 138.00 WEST	514.00	251.00 NORTH	326.00 EAST 358.00 EAST	299.00 EAST		432.00 EAST 200.00 EAST 275.00 EAST	2,279.00	124.00 NORTH 150.00 NORTH	274.00	220.00 WEST 376.00 WEST	690.00 WEST 408.00 WEST	1,694.00	564.00 NORTH	815.00 WEST	806.00 EAST
DIAGNOSIS	TOTAL	14	12 5	17	ø	5 5	5 7	, ∞ f	<u>,</u> ∞ =	84	6 51	1 = 1	7 21	13	54	18	56	22
	V 0 0 L T	0	0 0	0	0	00	00	000	000	0	00	0	00	00	0	0	0	0
SILVICULTURE	> 0 J	0	00	0	0	00	00	000	000	0	00	0	00	00	0	0	0	12
SII	0 c5 c5	14	12	14	œ	4 ιν	0 4	· v o c	000	788	00	0	7	22	54	18	56	10
	> 0 7 %	0	Om	м	0	ထထ	12	- 72 -	° ∞ =	26	rv 40	=======================================	00	00	0	0	0	0
	L RL U EU VO	4 TP	4 TP		4 TP				4 4 4 1 4 4		4 TP 4 TP			4 TP 4 TP		4 TP	4 TP	4 TP
# \$	RN VI VCU T#	738 8095	738 8096 738 8096	8096	738 8097	8098 8098	8098	8098		8098	738 8099 738 8099	8099	738 8100 738 8100	738 8100 738 8100	8100	738 8101	738 8102	738 8103

	4ENT								
: 18 OF 23	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS,CC RS,TMPCT,CC	RS,CC RS,CC RS,CC	RS,CC RS,TMPCT,CC	RS,R&W,CC RS,CC RS,CC	RS,TMPCT,CC RS,WLPCT,CC	RS, WLPCT, CC	RS,WLPCT,CC RS,WLPCT,CC
PAGE	VH AE	22222	22	888	88	888	3 ÷	ខ	88
	GH GH	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	S S	로 로 S	RS E	S 보 보	포 로	SL	로로
	R AA AA	22222	22	222	2 2	222	2 2	z	> z
	WET	SEC FNW SEC FNW SEC	AN A	FE	SE	SE SE	FN S	¥.	NE NE
	SN I	86 95 93 93 95	88	65 65 65 65	99	60 67 55	09		
	∑ ∪0		- 4	мми	- x			-	
	EE-	W - W - W -	M ←	~ w ~			w -	4	- 2
	ECO CODE	WDC WDC WDC WDC WME	WDC	WHC WHC	E HC	CMC	WHW SHA	VHC	SSR
	SMU	16 25 16 86CD 16 86CD	1E 29EF	29EF 19F 29EF	24D 29EF	24AC 24AC 24AC	74F 51C	50F	10 500
	T WH IR MAX NO ELEV DW	12 H 7 H 7 H 7 H 15 H	75 M M	20 H 20 H 20 H	12 H 15 H	W 4 W T E E	15 H 5 H	5 H	7 H H H
	MIN	000000	1 1	5 5 5	9 2	222	1 2	м	~ ~
	N O O E E E	m	mm	444	7 4		4 -	M	22
₩:	V ₀ 0	99999	₹ 5	2 2 2	2 2	A 4 4	7 ₹ 8	윷	₽ ₽
ALTERNATIVE #5	ASPECT	EAST EAST EAST EAST EAST EAST	NORTH	EAST EAST EAST	NORTH	EAST EAST EAST	827.00 SOUTH 408.00 WEST	876.00 SOUTH	SOUTH
GNOSIS - ALTE	VOLUME	762.00 407.00 815.00 677.00 752.00 564.00	614.00 433.00 1	408.00 408.00 534.00 1,350.00	95.00 878.00 973.00	41.00 728.00 384.00 1,153.00	827.00 SOUT 408.00 WEST	876.00	143.00 485.00 628.00
IAGNO	TOTAL	29 16 26 22 24 18	21 14 35	13 17 15	28	22 11 34	28	27	17
URE D	V 0 1 L T C7 A	0 0 0 0 0	00 0	000 0	00 0	000	0 0	0	00 0
SILVICULTURE DIA	> 0 7	00000	00 0	000 0	00 0	44 6	0 0	М	00 0
SI	> 0 CS	6 26 20 24 18	14 13 27	13 17 17 43	3 31	18 7 7 	20	54	17
	> 0 7	23 15 0 0 0 40	r - 1 8	000 0	00 0	000	8 0	0	00 0
	L RL U EU D VD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P	4 1 1 4 1 4 1 5 4	4 1P 4 1P	4 1P 4 1P 4 1P	3 ML 3 ML	3 ML	3 3 1 P
± 5	RN VI EI VCU T#	738 8104 738 8104 738 8104 738 8104 738 8104 738 8104	738 8105 738 8105 8105	738 8106 738 8106 738 8106 8106	738 8107 738 8107 8107	738 8108 738 8108 738 8108 8108	739 9004	739 9008	739 9010 739 9010 9010

		i														
E 19 OF 23	PROPOSED FUTURE MANAGEMENT	FH,RS,R&W,2-SW	RS,R&W,CC FH,RS,R&W,2-SW		FH,RS,R&W,2-SW	RS, CC	RS, IMPCT, CC RS, CC RS, IMPCT, CC	אט, ושארו, נכ	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS,CC RS,CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC		PLANT(S),SS,CC PLANT(S),SS,CC RS,CC RS,CC	
PAGE	A A E W	MS	SE		MS	23	8888	3	888		22		888		8888	
	GH GT	뿦	뽀 뽀		뿦	뿦	를 볼 & 8	ç	폭 폭 포		문문		RS RS		R R R S S S S S	
	R A H H B	z	zz		z	z	2222	Z	222		2 2		222		>> Z Z	
	WET	2	FE		3	¥	SER	Z Z	N N N		FNE		NA BAN		3333	
	SN ID	57	38		93	86	96 4	6			95				94 90 83	
	∑ ∪ ∪	-			-	-	- 2 - 4	n			3 6				- w	
	ΣΣΗ	м	мм		2	М	222	V	000		мм		ммм		m 2	
	ECO CODE	9	CCD		CMB	MOC	2002	2	200		WHS		WHS WHS WHS		SSR CCD WHS	
	SMU	4E	1E 4E		Q	3E	35 35	0	3 2 2		528F 528F		53E 53E 53E		10 10 180 530	
	T WH IR MAX NO ELEV DW	20 M	20 H 20 M		20 M	50 н	M M M O		N 4 4		20 M 6 M		15 M 15 M 15 M		9 M 01 M 8 H 11	
	MIN ELEV E	20	20		15	12	M M 4 4	0	M 4 4		5 2		0 0 21		8 6 8	
	E P O L S	м	w 0		2	m	0 M 4 4	1	000		4 W		ммм		- M 0 0	
老	VQO	웊	오오		æ	웊	¥ ¥ ¥ ¥ §	E	888		8 8		¥¥¥		EFFE	
ALTERNATIVE #5	ASPECT	0 ѕо∪тн	O SOUTH	. 0	474.00 WEST	о ѕолтн	0 EAST 0 EAST 0 EAST		0 SOUTH 0 SOUTH 0 SOUTH	. 0	0 EAST 0 EAST	. 0	0 WEST 0 WEST 0 WEST	. 0	0 WEST 0 WEST 0 WEST 0 WEST	. 0
GNOSIS - ALT	VOLUME	439.00	651.00	1,176.00	474.0	702.00	261.00 408.00 471.00	1,423.00	471.00 157.00 132.00	760.00	858.00	1,412.00	382.00 325.00 250.00	957.00	282.00 282.00 784.00 532.00	1,880.00
IAGNO	TOTAL	14	23	717	19	54	∞ΣΣ	45	2 2	25	31	47	15 01	38	10 10 25 18	63
TURE	, CZ ,	0	00	0	0	0	0000		000	0	0 0		000	0	0000	0
SILVICULTURE DIA	0 0 0 0	0	90	9	0	0	-000		000	0	0 %	9	000	0	0000	0
SI	. v 0 C5	14	٥ م	_	0	16	7 21 3	444	2 5	21	13	. 22	-00	-	5 25 13	. 84
	> 0 - 2	0	10	31	19	80	0000	0	004	7	18	19	14 13 10	37	N N O N	15
	L RL U EU D VO	3 ML	3 M M		3 ML	3 ML	4444		3 3 3 1 P 1 P		3 TP		3 3 3 4 P P P P P P P P P P P P P P P P		3333	
= 3	RN VI EI ST VCU T#	739 9013	739 9014 739 9014	9014	739 9015	739 9016	739 9018 739 9018 739 9018		739 9021 739 9021 739 9021	9021	739 9022 739 9022	9022	739 9026 739 9026 739 9026	9056	739 9027 739 9027 739 9027 739 9027	9027

PAGE 20 OF 23	НМ AE RT PROPOSED VH FUTURE MANAGEMENT	CC RS,R&W,CC CC RS,R&W,CC CC RS,TMPCT,CC	CC RS, R&W, CC CC RS, R&W, CC CC RS, R&W, CC	CC RS,R&W,CC	CC RS, TMPCT, CC CC RS, TMPCT, CC	CC RS, WLPCT, CC	CC RS,WLPCT,CC CC RS,WLPCT,CC CC RS,WLPCT,CC	CC RS, R&W, CC CC RS, TMPCT, CC CC RS, TMPCT, CC CC RS, R&W, CC CC RS, TMPCT, CC	CC RS, TMPCT, CC
۵									
	G C E M	R R S	R S S	뽀	로 로	RS S	로 로 로	RS H RS RS	RS
	PH AA RB	222	222	Z	ZZ	2 2	222	z z z z z	z
	I SN ID TE WET EX HAB	62 SEC 81 FW 85 FNW	93 FE 90 FE	87 FNW	NA NA	IN I	HEN	68 FW FNW FNW 92 FNW 65 FW	85 FNW
	∑ 00	4 2 4		2					4
	ΣΣΗ	- n n	222	2	мм	22	444	ммммм	M
	ECO	CCD CCD E WHS	C C C B B	MDC	¥ 50	S H	3 3 3	######################################	528F WHS
	SMU	25 180 528E	9 9 9	3F	# #	110	50F 50F 50F	19F 11E 11E 19F	528
	T WH IR MAX NO ELEV DW	0 0 L EEE	15 M M T T T T T T T T T T T T T T T T T	15 M	6 H 5 H	6 H 7 H	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 M 15 M 30 M	3 #
	MIN ELEV I	7 8 10	000	0	4 70	9 9	9 52 52	00500	2
	N T O F M	3 2 3	ммм	4	мм	2 2	444	M M M M 4	4
₩;	\ \ \ \	ΣΣΣ	ΣΣΣ	Σ	ΣΣ	88	222	X X X X X	8
NOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	867.00 EAST 376.00 EAST 408.00 EAST 1,651.00	439.00 EAST 376.00 EAST 288.00 EAST 1,103.00	2,269.00 NORTH	471.00 NORTH 163.00 NORTH 634.00	275.00 SOUTH 549.00 SOUTH 824.00	261.00 SOUTH 196.00 SOUTH 157.00 SOUTH 614.00	971.00 EAST 439.00 EAST 659.00 EAST 601.00 EAST 519.00 EAST	376.00 EAST
	TOTAL	27 12 13 13	12 10 36	69	15	22	8 2 2 8	33 14 21 21 19	12
SILVICULTURE DIAG	V 0 L TO C7 AC	000	000 0	0	00 0	00 0	000 0	00000	0
ראוכחר.	> 0 V	2 0 0	000 0	11	00 0	00 0	1 0 0	00000	0
IS	. v 0 0 CS	25 12 13 	14 12 6 32	28	15 2	00 0	7 1 5 13 .	23 24 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15
	, o ,	0000	004 4	0	4 4	11 22 33	000	00 00 00 12 12 12 12	. 0
	L RL U EU D VD	3 TP 3 TP 3 TP	3 1 P T T T T T T T T T T T T T T T T T T	3 TP	3 Z Z Z	3 TP 3 AL	3 3 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	33333 3477 3777 3777	3 ML
± 3	RN VI VI ST VCU T#	739 9031 739 9031 739 9031	739 9034 739 9034 739 9034 9034	739 9039	739 9043 739 9043 9043	739 9049 739 9049 9049	739 9053 739 9053 739 9053 9053	739 9057 739 9057 739 9057 739 9057 730 9057	739 9068

		i							
PAGE 21 OF 23	E E T PROPOSED H FUTURE MANAGEMENT	CC RS,TMPCT,CC CC RS,CC	CC RS,WLPCT,CC CC RS,R&W,CC CC RS,WLPCT,CC	SW FH,RS,R8W,2-SW SW FH,RS,R8W,2-SW CC RS,CC SW FH,RS,R8W,2-SW	CC RS,WLPCT,CC CC RS,WLPCT,CC CC RS,CC CC RS,MLPCT,CC	CC RS,TMPCT,CC CC RS,TMPCT,CC	CC RS, R&W, CC CC RS, TMPCT, CC CC RS, WLPCT, CC CC RS, CC	CC RS,CC	C RS,WLPCT,CC
Ь	AE AT VH	55	000	ធ្លាក្ស	0000	ōō	8888	ŭ ŭ	2
	LE OT GH	폭 포	R S S	또 또 또 또	의 프 프 프	로 로	RS H H	로 로	≢
	AA AA	22	222	2222	2222	2 2	2222	zz	Z
	I SN ID TE WET EX HAB	FNW 92 FNW	FNW 95 FNW 90 FNW	87 FNW 87 FNW FNW 85 FNW	FNW 84 FW FNW	X X	76 SEC FNW FNW 70 SEC	71 FW FNW	N.
	∑ ∪ ७	~ w	- 2 4	27-5					-
	ΣΣΗ	- м	m m N	0000	2 - 2 - 2	44	1441	mm	M
	ECO	WHW	WDC WDC WHS	S S S S S S S S S S S S S S S S S S S	K K K K K K K K K K K K K K K K K K K	M S S	C K K C C K C C K C C K C C K C C K C C C K C	WHW	MOC
	SMU	11c 528E	3E 3E 540	6 3 F 6	74C 20 51C 20	50F 50F	25 50F 50F 25	180 54E	3E
	T WH IR MAX NO ELEV DW	9 8 H H	7 Z H	15 H 20 H 16 M	N N N 4	4 W H H	00//	20 M	H 7
	MIN ELEV 8	יט יט	NMM	15 20 12	4 M 4 M	мм	2000	15 20	4
	S T O G E	- 2	M M 0	4444	- m 0 m	4 4	W 4 4 0	0 M	M
ŧ:	VQO	운 앞	오 오 오	오 오 오 오	8 8 8 8	요 요	%	오 오	£
ALTERNATIVE #5	ASPECT	D EAST	SOUTH SOUTH	EAST C EAST C EAST C EAST	SOUTH SOUTH SOUTH	D EAST	SOUTH SOUTH SOUTH	SOUTH	251.00 SOUTH
	VOLUME	218.00	314.00 847.00 596.00 1,757.00	555.00 75.00 467.00 104.00	408.00 439.00 314.00 439.00 1,600.00	328.00 287.00 615.00	713.00 439.00 376.00 314.00 1,842.00	439.00 565.00 1,004.00	251.0
IAGNO	TOTAL	34	10 27 19 56	13 13 35	13 10 14 14 51	7 7 15	25 14 12 11 62	14 14 28	∞
TURE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	000 0	0000	0000	00 0	0000	00 0	0
SILVICULTURE DIAGNOSIS	> 0 - 0 %	34	000	23 - 23	0000	7 7 15	0000	13	0
IS :	5 د ه <	m 0 m	10 27 19 56	9 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 10 14 14 15	00 0	25 14 12 11 11 62	14	œ
	> 0 - 3	0	000	0000	0000	00 0	0000	00 0	0
	L RL U EU D VD	3 TP 3 TP	2 2 2 2 2 3 3 3	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3333 7 7 7 7	3 3 F F	3 3 7 E S 3 3 T E S 4 T E S 4 T E S 5	도 도 로	3 ML
H A	RN VI EI ST VCU T#	739 9069 739 9069 9069	739 9075 739 9075 739 9075	739 9076 739 9076 739 9076 739 9076	739 9077 739 9077 739 9077 739 9077	739 9078 739 9078 9078	739 9079 739 9079 739 9079 739 9079	739 9080 739 9080 9080	739 9081

3E 22 0F 23	PROPOSED FUTURE MANAGEMENT	RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC	PLANT(S),SS,CC PLANT(S),SS,CC RS,CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC	PLANT(S),SS,CC RS,TMPCT,CC RS,TMPCT,CC
PAGE	AE AE VH	222	88	8888888888	888	888.	888
	GH CE	로 로 로	RS H	SL SL SC SC SC SC SC SC SC SC SC SC SC SC SC	도 S 도	R S S	SR RS
	RB AA H	222	zz	22222222	> > z	222	> ≥ ≥
	I SN ID TE WET EX HAB	N T T N T N T N T N T N T N T N T N T N	N N	FNU FNU FNU FNU FNU 88 FNU 85 FNU 89 FNU	94 FNW 97 FNW 70 FW	87 FNU 91 FNU 83 FU	84 FNU 65 FNU 65 FNU
	∑ ი ი			M F F M N	2		Wroro
	ΣΣΗ	2 2 3	мм	M M M M M M M M M M M M M M M M M M M	1 - 2	M M W	
	ECO CODE	2 P P P P P P P P P P P P P P P P P P P	NHS NHS	H K K K K K K K K K K K K K K K K K K K	SSR CMB	WHC	SSR
	SMO	32 32	53E 53E	38 38 530 530 530 530 528f 528f	10 40 40	11E 11E 40	10 29EF 29EF
	T WH IR MAX NO ELEV DW	3 6 6	12 M	0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1	7 H 7 W W	75 T E E	55 H 20 H 31 H 32
	MIN ELEV E	222	1 6	9977891121	0 M 00	0 1 0	2 6 5
	м п о с м	222	мм	NWNNNW444W	M M M	M M W	M 4 4
¥ ;	V@O	9 9 9	ΣΣ	$0 \times	ΣΕΣΕ	E E E	E E E
ALTERNATIVE	ASPECT	SOUTH SOUTH SOUTH	WEST	NORTH NORTH NORTH NORTH NORTH NORTH NORTH	NORTH NORTH NORTH	EAST EAST EAST	NORTH NORTH NORTH
	VOLUME	796.00 114.00 616.00 1,526.00	287.00 270.00 557.00	560.00 519.00 633.00 622.00 345.00 553.00 627.00 439.00 125.00 395.00	1,152.00 941.00 157.00 2,250.00	232.00 551.00 163.00	1,442.00 408.00 314.00 2,164.00
AGNOSIS	TAL RES	22 3 15 15	12 21	15 18 11 17 17 17 17 17 17	30 30 50 50 66	18 6 5 32	13 10 10 69
SILVICULTURE DIA	V 0 L TOT. C7 ACR	000 0	00 0	00000000000	ت 0 1	000	000
-VICUL	> 0 J	11 2 15 15	00 0	2 × × × × × × × × × × × × × × × × × × ×	000 0	000	000 0
SIIS	> 0 - S	12 0 12	2 8 2	10 11 11 11 14 14 14 16 108	18 30 5	5 16 23	46 13 10 69
	۷ د د	000	9 7 16	N N N N N N N N N N N N N N N N N N N	000 0	W 0 4 0	000
	L RL U EU D VD	33 TP 37 TP 37 TP	3 TP TP		3 3 1P 3 1P 3 1P	3 3 3 1 4 4 1 5 4 6	3 1 P T P T P T P T P T P T P T P T P T P
H A	RN VI EI VCU T#	739 9082 739 9082 739 9082 9082	739 9083 739 9083 9083	739 9084 739 9084 739 9084 739 9084 739 9084 739 9084 739 9084 739 9084	739 9085 739 9085 739 9085	739 9086 739 9086 739 9086 9086	739 9087 739 9087 739 9087 9087

TURE DIAGNOSIS - ALTERNATIVE #5	V L L WH SN I M HM O O IR M M ID PH LE AE L TOTAL VOLUME P MIN MAX NO ECO M C TE WET AA OT RT PROPOSED C7 ACRES MMBF ASPECT VQO E ELEV ELEV DW SMU CODE I G EX HAB RB GH VH FUTURE MANAGEMENT	0 8 251.00 WEST MM 2 8 9 M 7D WHM 2 1 76 FNW N HL CC RS,CC 0 6 188.00 WEST MM 2 8 8 H 7D WHM 2 1 80 FNW N HL CC RS,WLPCT,CC	0 14 439.00	0 62 1,944.00 EAST MM 4 0 15 M 3F WDC 3 1 FNW N HE CC RS,TMPCT,CC	0 8 328.00 NORTH MM 3 7 7 H 1E WDC 3 1 FNW N HL CC RS,TMPCT,CC 0 16 608.00 NORTH PR 3 6 7 H 1E WDC 3 1 FNW N RS CC RS,TMPCT,CC	0 24 936.00	251.00 WEST MO 2 7 8 H	251.00 WEST MO 2 7 8 H 1D WDC 2 1 FNW N RS CC	251.00 WEST PR 2 4 4 H 10 WDC 2 1 FNW N 251.00 WEST PR 2 5 5 H 10 WDC 2 1 FNW N	125.00 WEST PR 2 4 4 H 10 WDC 2 1 FNW N HL CC	L L	0 76 2,383.00	0 20 627.00 WEST PR 3 3 4 H 3E WDC 3 1 FNW N HL CC RS, WLPCT, CC	9	
	ASPECT		439.00		NORTH	936.00	WEST	WEST	WEST	WEST	WEST	,383.00		SOUTH	
RE DIAGNOSIS	TOTAL	8 9	0 14	95	0 8 0 16	-	8 0 0	8 9	Z 8 0	7 0	0 20	:		9	
SILVICULTURE DI	> 0 1 %	00	0	0	8 11	19	00	0	0	0	00	0	0		
SI	v 0 0 C5	8 9	14	62	0 10	. 2	బ రై	, &	2 8	4	50 6		20		
	> 0 1 2	00	0	0	00	0	00	0	0	0	00	0	0		
	L RL U EU D VD	3 TP		3 TP	3 ML			3 TP			3 3 TP		3 ML	3 TP	
H 4	RN VI EI ST VCU T#	739 9088 739 9088	9088	739 9089	739 9090	0606	739 9091				739 9091 739 9091	9091	739 9092	739 9093	

E 1 OF 19	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC		RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC		RS,TMPCT,CC RS,TMPCT,CC RS,CC RS,CC		RS,CC RS,CC RS,CC		RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS,R&W,CC RS,R&W,CC		RS,TMPCT,CC RS,WLPCT,CC RS,TMPCT,CC	
PAGE	A P A E A Y	88		នួនន		8888		888		888		ខ្ល	•	888	
	GH GH	SL RS		S S S		및 및 및 및		로 로 로		로 로 로		RS		RS RS SL	
	RB AA	22		222		2222		222		222		2 2		222	
	I SN ID TE WET EX HAB	85 FNW 85 FNW		85 FNW 85 FNW 85 FNW		87 FNW 86 FNW 87 FNW 74 FNW		68 SEC 71 FNW 45 SEC		100 FNW 100 FNW 100 FNW		78 FNW 97 FNW		85 FNW 85 FNW 85 FNW	
	≖ບບ	44		444		W 4 W W						м и		444	
	EX-	мм		ммм		мммм		- 2 -		222		~ w		ммм	
	ECO	WHS		WHS WHS WHS		X H X X X H X X X H X X X H X X X H X X X X H X		CAMA		333		WHS		WHS WHS	
	SMU	528F 528F		528F 528F 528F		528F 528F 528F 528F		25 74E 25		34E 74E 34E		29EF 528F		528F 528F 528F	
	T WH IR MAX NO ELEV DW	7 H 7 H		4119		15 H 20 H 15 H		7 7 7		7 H 5 H 7 H		9 H H H H		10 8 H H H H	
	MIN ELEV E	'nΜ		401		1 6 5 5		444		4 N V		r. r.		80 4 90	
	пьоги	44		444		444M		7 7 7		ммм		M 64		444	
¥ :	V@O	88		X X X		2222		X X X		X X X		운 운		X X X	
IS - ALTERNATIVE	VOLUME MMBF ASPECT	399.00 SOUTH 399.00 SOUTH	798.00	1,988.00 EAST 482.00 EAST 771.00 EAST	3,241.00	502.00 NORTH 483.00 NORTH 312.00 NORTH 207.00 NORTH	1,504.00	175.00 EAST 207.00 EAST 100.00 EAST	482.00	246.00 WEST 370.00 WEST 206.00 WEST	822.00	559.00 SOUTH 538.00 SOUTH	1,097.00	622.00 WEST 488.00 WEST 851.00 WEST	1,961.00
IAGNOS	TOTAL	51	32	74 19 26	119	51 7 7	20	677	18	90 V	50	18	37	20 17 29	%
TURE D	V V 0 C7 Ti	00	0	000	0	0000	0	000	0	000	0	00	0	000	0
SILVICULTURE DIAGNOSIS	> 0 J	00	0	000	0	0000	0	0 7 0	7	905	20	00	0	000	0
SI	> 0 L	0 0	0	22 1	42	δ Σ Σ 2 2 2	40	000	0	000	0	10	27	10 20 20	67
	>0 - 2	91 91	32	52 18 7	11	0 2 2 0 0	10	7 5 4	16	000	0	-0	5	-10	17
	L RL U EU D VD	3 Z Z Z Z		2 2 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전		3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3 3 1 P		3 SP		3 M 3 M 1 P	
H	RN VI VI ST VCU T#	733 3005 733 3005	3005	733 3006 733 3006 733 3006	3006	733 3010 733 3010 733 3010 733 3010	3010	733 3014 733 3014 733 3014	3014	733 3016 733 3016 733 3016	3016	733 3019 733 3019	3019	733 3020 733 3020 733 3020	3020

															ပ္ပ	
E 2 OF 19	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS, TMPCT, CC RS, TMPCT, CC		RS, IMPCT, CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC		RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, R&W, CC RS, R&W, CC		RS,R&W,CC RS,IMPCI,CC RS,IMPCI,CC		RS,CC RS,R&W,CC		RS,TMPCT,CC PB,PLANT(RC&YC),SS,CC	
PAGE	AE AT VH	ខខខ		នួន		2	ននន		888888		888		ខ្លួ		ខ្លួ	
	G CI E M	요요록		ร ร		뿦	S S S		# & & & & #		RS RS		RS S		RS SL	
	R AA RB	222		zz		z	z z z		22222		z z z		2 2		zz	
	WET	335		3 3		¥.	SEC		MAN MAN MAN		N N N		N N		N N	
	E H D S I	888		8 %		82	8 8 8		100 100 100 100		97 85 100		2,2		81	
	∑ ∪ ७	444		1 2		4	~ ~ w		114511		7 4 1		7 7		4 %	
	ΣΣΗ	ммм		1 2		М	- 2 2		0 - 4 0 0 0 0		M M 0				1	
	ECO	S H S S H S		WHC		WHS	WDC		M M H M H M H M H M H M H M H M H M H M		WHS WHS WHS		WHC		WHS	
	SMU	528E 528E 528E		190 29EF		528F	25 35 75 75		110 110 110 528F 21A 110		528F 528F 110		29EF 29EF		528D 28	
	P R R B B	= ==		T T		Ŧ	EEE				= = =		T T		x x	
	MAX ELEV	2 4 2		15		=	5 5 2		4 2 2 7 7 51		20 7 8		30		10	
	MIN	222		12		М	12 12 8		WW47W9		01 6 5		20		6 7	
	пъого	ммм		2 2		М	222		000400		M 4 W		4 K		2	
9#	VaO	₹ ₹ ₹		Σ¥		8	¥ ¥ ¥				오오포		R R		8 8	
IOSIS - ALTERNATIVE #6	VOLUME MMBF ASPECT	722.00 SOUTH 1,035.00 SOUTH 382.00 SOUTH	2,139.00	906.00 SOUTH 1,190.00 SOUTH	2,096.00	1,568.00 SOUTH	462.00 WEST 787.00 WEST 675.00 WEST	1,924.00	444.00 NORTH 100.00 NORTH 438.00 NORTH 157.00 NORTH 376.00 NORTH 927.00 NORTH	2,442.00	1,694.00 NORTH 345.00 NORTH 847.00 NORTH	2,886.00	597.00 SOUTH 932.00 SOUTH	1,529.00	690.00 WEST 1,254.00 WEST	1,944.00
IAGNOS	TOTAL	23 33	%	36	92	20	18 31 24		31 5 5 15 31 5 5 5 15	84	53 11 27	91	36	58	22 40	62
rure D	V 0 0 L T T C 7 A	000	0	00	0	0	000	. 0	000000	0	000	0	00	0	00	0
SILVICULTURE DIAGN	> 0 J	0 0	~	00	0	0	000	0	000000	0	800	. ∞	23	2	00	0
SI	> 0 L C C C	33 23	26	30	31	20	2 2 2	16	7 0 6 12 24	54	38 11 27	92	00	0	55 40	62
	>0-2	000	0	35 10	57	0	15 29 12	57	045007	30	7 0 0	7	19 34	53	00	0
	L RL D EU VO	333 24 24		3 TP		3 ML	3 3 1 P		4 8 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3 ML 3 TP 3 TP		3 3 F F		3 SV 3 ML	
± 4	RN VI VI ST VCU T#	733 3021 733 3021 733 3021	3021	733 3022 733 3022	3022	733 3023	733 3024 733 3024 733 3024	3024	733 3025 733 3025 733 3025 733 3025 733 3025	3025	733 3026 733 3026 733 3026	3026	740 4006 740 4006	4004	735 5008 735 5008	5008

	GEMENT																							
3 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC	RS, R&W, CC RS, R&W, CC		RS, CC	RS, TMPCT, CC RS, TMPCT, CC		RS, TMPCT, CC	RS, CC	RS, TMPCT, CC RS, TMPCT, CC		RS, TMPCT, CC	RS, TMPCT, CC	RS, K&W, CC.	RS. TMPCT, CC	RS, TMPCT, CC	NO, NOW, LL		RS, TMPCT, CC	RS, CC	RS TMPCT CC	RS, TMPCT, CC		RS, TMPCT, CC
PAGE	AE AT VH	ຽ	88		2 2	3 8 8	}	23 8	3 8	88		2	23 8	ე ე	3 2	23 8	ر د		23	23 5	3 5	8 8		23
	G T LE	呈	SL RS		∃ 3	∃ ± ‰		RS	로 로	로로		RS	RS	S o	2 ≢	≢ 5	2		SL	≢ :	=	! ±		S
	R A H H	z	2 2		2 2	2 2 2	:	2 :	zz	zz		z	z :	Z 2	2 2	z :	Z		z	2 :	z 2	2 2		z
	I SN ID TE WET EX HAB	90 FNW	72 FNW 69 FW		70 FW			90 FNW	71 SEC	88 FNW 90 FNW		90 FNW		C FNU	90 FNE				65 FW	76 FW	00 FN			80 FIW
	∑ ೧@	4	2 3		2 -	4		4	4 W	44		4	41	٠ ×	1 4	4	1		-	2 (V 4	4		4
	ΣXΗ	2	~ ×		← 0	1 ~ ~	ı	2 0	ν -	2 2		2	2 (~ c	u ~	7	-		2	Μ,	<u>م</u> د	2		М
	ECO CODE	WHS	WHC		SHA	H H		WHS	C E	WHS		WHS	WHS	NHS OF	CHN SHA	SHS	E S		WHC	MHC.	E H	WHS		CCS
	SMU	540	29EF 550D		510	18 18 18 18 18 18 18 18 18 18 18 18 18 1		540	25 25	540 540		540	540	240	240	540	G		190	196	7 7	240		33E
	™ IR	± 9	0 O			===				7 7 7						= :			2 H	H :		: =		T 7
	MAX ELEV					11,										12								
	MIN	2	20.00		95	11.4	•	٠0٠	7	4 6		9	4.	4 4	0 00	- ∞ (•		2	۰0 ۰	0 M	· ~		М
	M P O L N	7	мм			2 0 0				7 7						100			2	М				M
¥	. 700	A.	8 8		æ 8	£ & £	2	₹ :	ΕΞ	¥¥		Ŧ	¥ :	Ξį	EX	E 8	Ž		PR	운 :	E 3	운		E
ALTERNATIVE #6	ASPECT	175.00 NORTH	WEST		NORTH				NORTH	NORTH		NORTH		NORTH			N N		NORTH		EAST			463.00 NORTH
- 1	VOLUME	175.00	1,472.00	7,333.00	175.00	339.00	934.00	810.00	283.00	283.00 188.00	1,815.00	188.00	376.00	376.00	564.00	251.00	00.27%	3,229.00	659.00	251.00	175 00	356.00	870.00	463.00
DIAGNOSIS	TOTAL	2	21	ò	~ ~	- = «	33	56	ο ο -	0.9	58	9	12	12	<u> </u>	ω,	ā	103	21	∞ ι	0 L	14	32	17
	V V C7 A	0	00	>	00	000		0	00	00		0	0	0 0	o c	00	- ; ·	>	0	0 (> c	0	0	0
SILVICULTURE	> 0 - 90 C	0	21	07	00	000	0	0	0	00	0	0	0	0 0	o c	00	> ; <	>	0	0 (>	0	0	0
S i	> 0 L	0	33	c c	10	- 6 -	12	52	∞ ο	0.0	57	9	15	75	2 ∞	0 5	7 : 5	202	21	∞ (V C	- 0	Ξ	9
	ر در د د د	7	90	٥	~ 0	o ← ∞	16	- 0	0	00	-	0	0	0 0	o c	00		>	0	0	- ^	13	21	1
	L RL U EU D VD	3 SV	3 SV 3 SV			3 S V				3 SV 3 SV						3 SV			3 SV	3 TP				3 TP
# 4	RN VI EI VCU T#	735 5022	735 5024 735 5024	2054		735 5025				735 5026 735 5026	5026					735 5027		205	735 5028	735 5029			5029	735 5030

		-																		
	MENT												3						33	
4 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC	RS, TMPCT, CC	RS, TMPCT, CC	RS, CC	RS, TMPCT, CC	RS,CC RS,TMPCT,CC RS.TMPCT.CC		RS, TMPCT, CC RS, TMPCT, CC		RS, CC	RS, R&W, CC	RS,TMPCT,CC RS,TMPCT,CC FH,RS,R&W,2-SW		RS, CC	RS, R&W, CC	RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC		FH,RS,R&W,2-SW FH,RS,R&W,2-SW	
PAGE	HM RT VH	23					888		ខ្លួ		2	23	2 2 3		္ဌ	23	8888		AS AS	
	CH GH	≢	RS	≓ =	로로	로 :	로로로		로 로		RS	뿦	로 로 뽀		뿦	뮢	목 로 로 로		뽀뽀	
	R AA H	z	z	2:	zz	2	2 Z Z		2 2		z	z	222		z	z	2222		zz	
	I SN ID TE WET EX HAB	85 FNW			80 S		85 FW 85 FW 85 FW		90 FNW 90 FNW		85 FNW	75 FNW	85 FNW 85 FNW 64 SEC		65 FNW	70 FNW	89 FNW 100 FNW 100 FNW 100 FNW		74 FW 70 FW	
	∑ ∪ ७	4					- 4 4		44		4	4	44W		2	4				
	ΣΣΗ	2	2	2 0	V 4	۷ .	4 70 70		2 2		2	2	22-		_	-	2222		mm	
	ECO	WHS	WHS	NHS	5 00	MHS	S # #		SH'S		WHS	WHS	WHS		NHC NHC	WHC			88	
	SMU	5280	5280	540	18 18	240	18E 5280 5280		540		240	528E	5280 5280 25		29EF	29EF	32 32		4E 4E	
	T WH IR MAX NO ELEV DW	H 4					0 4 W		H 7		ω	30 H	9 H 9 H 30 M		20 H	6	3 3 3 5 5		20 M	
	MIN PELEVE	м	м	9 0	^ ~	9	0 4 v		4 4		2	15	9 9 51		15	4	M 0 0 0		9	
	S T O F E	2	2	2 -	- M	7	2 2 3		2 2		2	m	000		4	M	2222		мм	
¥	Vao	8	A.	Z 8	¥ %	PR.	Z Z Z		% %		R.	A.	8 8 8		PR	PR	P		R R	
ALTERNATIVE	ASPECT	63.00 EAST	EAST				EAST EAST EAST		EAST		659.00 SOUTH	EAST	NORTH NORTH NORTH		NORTH	NORTH	NORTH NORTH NORTH		EAST	
GNOSIS - ALTE	VOLUME	63.00	376.00	283.00	283.00	157.00	251.00	1,790.00	188.00	408.00	659.00	976.00	125.00 345.00 2,303.00	2,773.00	1,378.00	1,843.00	633.00 183.00 263.00 182.00	1,261.00	1,411.00	2,258.00
DIAGNO	TOTAL	2	12	٥ ٧	0 0	N I	w & ru	57	9 2	13	: 12	36	4 11 80	95	45	61	22 6 9	777	45	72
	, c ₇	0	0	00	0	0	000	. 0	00	: 0	0	0	000	0	0	0	0000	0	00	0
SILVICULTURE	> 0 J	0	0	00	0	0	000	. 0	00	. 0	0	0	000		0	0	0000	0	00	0
S	> 0 - C	2	12	٥ ٧	۰ ٥	ľO I	M & M	57	9 ~	13	: 12	12	4 11 48	63	40	20	5 2 4	25	45	72
	> 0 J	0	0	00	0	0	000	0	00	0	0	54	32 0	32	2	11	0 - W 0	19	00	0
	L RL U EU D VD	3 ML					ĸ w w		보지		3 ML	3 ML	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		3 ML	3 ML	4 4 4 4 M		4 ML	
* 5	RN VI EI ST VCU T#	735 5031					735 5032 735 5032 735 5032		735 5033 735 5033		735 5034	735 5035	735 5036 735 5036 735 5036	5036	735 5037	735 5038	736 6002 736 6002 736 6002 736 6002	6002	736 6003 736 6003	6003

		-					
E 5 OF 19	PROPOSED FUTURE MANAGEMENT	RS, CC RS, WL PCT, CC RS, WL PCT, CC RS, CC RS, CC	RS, WLPCT, CT, CT, SW RS, WLPCT, CT, CT, SW	RS, CC RS, CC RS, TMPCT, CC	RS, CC RS, CC	RS,R&W,CC RS,CC	RS, CC RS, CC
PAGE	AE RT VH	88888	88888888	888	22	2 2	88
	CH GH	로 로 로 로 로		R S S S	로 로	고 포	로 로
	AA H A B B B B B B B B B B B B B B B B B	z z z z z	Z Z Z Z Z Z Z Z	2 2 2	zz	zz	z z
	I SN ID TE WET EX HAB	50 FW 65 FW 57 FW 54 FW 55 FW	85 FNU 85 FNU 85 FNU 75 FIU 75 FIU 85 FNU 85 FNU	92 FW 92 FW 100 FNW	50 SES 60 SE	60 SE 60 SE	60 SE 60 SE
	ΣUU		N N N N 4 4 N N				
	XX-	-22	0000mm00	ммм			
	ECO	CMC WHC CMB CMB	S S S S S S S S S S S S S S S S S S S	H H H	CMC	CMC	CMC
	SMU	910 190 200 200	6 6 6 330 6 6	19E 19E 54F	23 24AC	24AC 24AC	24AC 24AC
	H N N N N N N N N N N N N N N N N N N N	====		===	==	= =	= =
	MAX ELEV	W 4 4 4 W	004000N	101	01 8	4 4	0.0
	MIN	M M 4 4 4	4444004	555	o- xo	3 2	0 0
	S J O G B		4440044	444	7 -		
9#	VQO	오오오오오	* * * * * * * * *	E E E	모 모	₹ %	2 2
NOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	408.00 SOUTH 488.00 SOUTH 545.00 SOUTH 250.00 SOUTH 356.00 SOUTH 2,047.00	95.00 WEST 312.00 WEST 75.00 WEST 187.00 WEST 157.00 WEST 157.00 WEST 187.00 WEST 187.00 WEST 187.00 WEST 187.00 WEST	63.00 WEST 263.00 WEST 408.00 WEST 734.00	425.00 EAST 282.00 EAST 707.00	944.00 WEST 511.00 WEST	45.00 EAST 182.00 EAST 227.00
AGNOS	TOTAL	13 16 10 17 74	11 3 7 7 7 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	13	11 28	36	10
JRE D	V 0 L TC C7 AC	00000	000000000000000000000000000000000000000	000 0	00 0	0 0	00 0
SILVICULTURE DIAGA	, c	00000	000000000000000000000000000000000000000	000 0	00 0	0 0	00 0
SILV	•	113 14 10 11 11	25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -	2 13 21	0- -	2	00 0
	\ 0 C C	0 2 1 1 10 13 13 43	000000000000000000000000000000000000000	0 0 0 0	10 10 27	29	8 10
	L RL U EU D VD	4 4 4 4 4 D	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 7 7 7 8 8	7 M T 7	4 ML	₩ ₩ ₩
Ξ =	AU RN VI EI ST VCU T#	736 6008 736 6008 736 6008 736 6008 736 6008	736 6011 736 6011 736 6011 736 6011 736 6011 736 6011	736 6017 736 6017 736 6017 6017	736 6020 736 6020 6020	736 6021	736 6023 736 6023 6023

		-					2					
3E 6 OF 19	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,CC RS,CC RS,TMPCT,CC RS,CC		RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, CC		RS, WLPCT, CC RS, WLPCT, CC RS, WLPCT, CC RS, CC	PB,PLANT(RC&YC),SS,CC RS,WLPCT,CC		RS, WLPCT, CC RS, WLPCT, CC		RS, TMPCT, CC PLANT(YC), SS, CT, SW	
PAGE	AE AE Y	888888		888888		8888	2 2		22 23		33	
	£ 9 d € ₹	로로로로&로		오목목목		로 로 로 로	로 로		R S		SL RS	
	R A H H	22222		22222		zzz z	22		2 2		2 2	
	I SN I ID TE WET	60 SE 60 SE 85 FW 79 FW 100 FNW 68 SE		1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 8 68 FW		100 FNW 100 FNW 76 SE	2 96 FNW 1 100 FNW		85 FNW 85 FNW		80 FNW 76 FNW	
	Σ Ου								44			
	ΣΣΗ	www-		MMMUUM		7 7 7 7	2.2		2 2			
	EC0 CODE					C W W W	SOOM		WHS		SCS	
	SMU	24AC 24AC 24AC 18D 18D 1E 24AC		45 38 28 38 48 48 48 48 48 48 48 48 48 48 48 48 48		30 30 30 24AC	30		750		28 28 28	
	FRES			= =====		===	= =		==		ΣΣ	
	MAX ELEV	4400/4		4WW4V16		W 01 01 01	4 W		9 9		15	
	MIN ELEV R	M44M04		M44WM4		7227	m ~		3 4		12	
	O E P	00M-		0 M M O O M		7777	2 3		22			
9#	VQO	* * * * * * * *		X X X X X X		2 2 2 2	8 8		2 2		오 오	
ALTERNATIVE	ASPECT	NORTH NORTH NORTH NORTH	0	SOUTH SOUTH SOUTH SOUTH SOUTH		SOUTH SOUTH SOUTH	SOUTH SOUTH	. 0	SOUTH		SOUTH	
IOSIS - ALTE	VOLUME	282.00 150.00 382.00 463.00 275.00	1,954.00	350.00 250.00 150.00 200.00 175.00 213.00	1,338.00	439.00 157.00 188.00 376.00	1,160.00 726.00 587.00	1,313.00	745.00	1,319.00	1,048.00	1,398.00
DIAGNO	TOTAL	1244611	71	41 00 80 7	52	5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 26 22	7.8	28	51	42	26
TURE	> 0 C	000000	0	000000	0	0000	0 00	0	00	0	00	0
SILVICULTURE	۵ د ه <	000000	0	000000	0	0000	0 00	0	00	0	00	0
SI	> 0 - C2	102020	28	000000	9	4 2 6 12	37 12 6	18	٥ م	7	00	0
	>013	5 0 0 0 - 1	43	41008	97	0000	0 41	30	23	777	42	26
	L RL U EU D VD	01 01 01 01 01 01 01 01 01 01 01 01 01 0		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		7 M H W H V V V V V V V V V V V V V V V V V	4 ML		4 ML 4 TP		4 TP	
Ξ.	RN VI ST VCU T#	736 6024 736 6024 736 6024 736 6024 736 6024 736 6024	9054	736 6025 736 6025 736 6025 736 6025 736 6025 736 6025	6025	736 6027 736 6027 736 6027 736 6027	6027 736 6028 736 6028	6028	736 6029 736 6029	6059	736 6030 736 6030	9030

PAGE 7 OF 19	PROPOSED FUTURE MANAGEMENT	PLANT(YC),SS,CT,SW PLANT(YC),SS,CT,SW RS,TMPCT,CC PLANT(YC),SS,CT,SW		RS,CC RS,WLPCT,CC RS,CC		RS, WLPCT, CT, CT, SW RS, WLPCT, CT, CT, SW RS, WLPCT, CC		RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC		RS,CC RS,CC		RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC		RS, CC RS, CC	KS, K&W, CC	
PAG	AE RT VH	8888		888		888		သ	200		22		သ	88		ខ្លួ	2	
	GH CE	RS SL SL SL		로 로 로		뽀 뽀 뽀		로	RS H		로로		RS	RS H		로 로 :	Z.	
	R A H H H H H H H H	2222		222		222		z	22		z z		z	22		22	z	
	I SN ID C TE WET G EX HAB	1 80 FNW 1 80 FNW 1 80 FNW 1 73 FW		2 70 FW 4 84 FNW 1 55 FW		4 85 FNW 5 85 FNW 4 85 FNW		1 60 FW	1 100 FNW 1 100 FNW		1 100 FNW 1 81 FW		1 83 FNW	4 85 FNW 4 85 FNW		80 FW	SS.	
	EE H	7 W				222		-	мм		мм		м	2 4		222		
	ECO N	\$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33 \$33		CCS		CCS CCS WHS		WHS	WH3 3		WDC		MDC	WHS		000		
	SMU	28 28 28 180		20C 28 20C		6 6 750		510	300		1E 19E		3E	528F 75E		18C	180	
	T WH IR MAX NO ELEV DW	25 E		5 H 4 6 H 4 H 4 H 4 H 4 H 4 H 4 H 4 H 4 H		M W N		5 H	11		20 H 20 H		H 2	3.5		# # :		
	MIN ELEV	50 8 51		4 70 70		222		4	===		20		М	мм		M 67	2	
	E P O L S	2		- 2 -		M 4 M		-	2 2		мм		2	4 W			~	
9# :	Vão	S S S S		E E E		2 2 2		Σ	ΣΞ		8 8		A W	운 운		ΣΞ	Σ	
RNATIVE	ASPECT	EAST EAST EAST EAST	0	SOUTH SOUTH SOUTH		SOUTH SOUTH SOUTH		408.00 NORTH) WEST) WEST) EAST	D EAST		SOUTH	SOUTH	0
GNOSIS - ALTERNATIVE #6	VOLU	674.00 1,152.00 1,003.00 700.00	3,529.00	607.00	1,956.00	220.00 502.00 690.00	1,412.00	408.00	283.00	566.00	187.00 275.00	462.00	1,091.00 EAST	521.00	835.00	502.00	1,191.00	2,195.00
DIAGNOS	TOTAL	27 40 32 28	127	34 9	65	7 16 22	45	13	00	18	7 11	18	32	10	56	5 5 5	38	02
TURE D		0000	0	000	0	000	0	0	00	0	00	0	0	00	0	00	0 :	0
SILVICULTURE	> 0 V	0000	0	000	0	000	0	0	00	0	00	0	0	0 5	2	00	0	0
SI	V 0 C5	0 24 32 0	26	34	52	7 16 22	45	13	00	18	0	2	23	10	54	9 2 5	38 :	02
	> 0 V	27 16 0 28	71	<u>د</u> 000	13	000	0	0	00	0	11	16	0	00	0	00	0	0
	L RL U EU D VD	4 1P 4 1P 4 1P 4 1P		4 1P 4 1P 4 1P		4 ML 4 TP 4 ML		4 TP	4 ML		4 ML 4 TP		4 TP	4 TP 4 ML		4 TP	4	
H	RN VI EI ST VCU T#	736 6031 736 6031 736 6031 736 6031	6031	736 6032 736 6032 736 6032	6032	737 7009 737 7009 737 7009	2007	737 7015	737 7016 737 7016	7016	737 7020 737 7020	7020	737 7040	737 7041 737 7041	7041	737 7042		7042

		Ī		ន៍ន៍			
ie 8 of 19	PROPOSED FUTURE MANAGEMENT	RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, WLPCT, CC RS, WLPCT, CC	RS, R&W, CC RS, CC	PB, PLANT(RC&YC), SS, CC PB, PLANT(RC&YC), SS, CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,TMPCT,CC RS,CC	RS,CC PLANT(YC),SS,CT,SW
PAGE	AE AT A	88888	88	88	88888	8888888	88
	CH OT	LS RS H H H	SS 포	로 로	RS RS HL	로 로 로 로 로 로	로 로
	R A H H B	22222	2 2	zz	2 Z Z Z Z	zzzzz	2 2
	WET	N A N A N A N A N A N A N A N A N A N A	FE	3.3	FNW FNW FNW SE	SE SEC FINE FINE FINE	SEC
	SN 1D SN 1E X 1E	83 87 91 100 100	70	88	00 10 10 10 10 10 10 10 10 10 10 10 10 1	65 100 100 75	77
	∑ ∪ ∪		~ ~				~ ~
	ΣΣ∺	mm0mm	м 0	2 20	7 2 2 2 7		- ω
	ECO		CMB CMB	000	E WENT COME OF THE	CMC WDC WDC WDC	CCD
	SMU	35 35 35 35 35 35 35 35 35 35 35 35 35 3	3E 4D	18C 18D	20 110 20 110 24AC	24AC 25 29EF 20 20 20	25 180
	P N N N N N N N N N N N N N N N N N N N	=====	==	= =	= = = = =	====	ΞΞ
	MAX ELEV	40 N N N N	∞ 0-	99	N 4 N N 4	40 N N N N 4	15
	MIN	N44NN	10.00	77.77	44404	N N N 4 N W	12
	R P O L S	NWNWW	ь с	2 2	7527	77777	мм
9#	V60	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ΣΣ	五五	%	X X X X X X	Æ Æ
S - ALTERNATIVE	VOLUME MMBF ASPECT	531.00 WEST 224.00 WEST 250.00 WEST 100.00 WEST 100.00 WEST	674.00 EAST 232.00 EAST 906.00	413.00 SOUTH 270.00 SOUTH 683.00	307.00 NORTH 188.00 NORTH 182.00 NORTH 75.00 NORTH 75.00 NORTH	251.00 EAST 188.00 EAST 220.00 EAST 188.00 EAST 188.00 EAST 534.00 EAST 1,569.00	240.00 WEST 1,009.00 WEST 1,249.00
DIAGNOSIS	TOTAL V	21 20 4 4 4 8	27 9	15 25	111 6 7 7 7 35 35 35 35	. 88 9 2 9 0	26
RE D)	V 0 1 C 7 C 7 A C	00000	00 0	00 0	00000;0	000000	00 0
SILVICULTURE	>0 -1 %	00000	00 0	00 0	00000	000000	2 20
SILV			_				
	> 0 CS	-00001-	0-1-	9 8 9	5 0 0 12	8 6 7 7 6 6 6 6 7 71	6 11
	> 0 7	20 20 4 4 4 4 7 7 4 7 4 7 4 7 4 7 4 7 4 7 4	27 8 8 35	9 7 16	98 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000000	00 0
	L RL U EU D VD	7 7 7 7 W	4 TP	4 1P 3 1P	4 1P 4 1P 4 1P 4 1P	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P 4 1P
r	AU RN VI EI VCU T#	736 7043 737 7043 737 7043 737 7043 737 7043	737 7044 737 7044 737 7044	737 7045 739 7045 7045	737 7046 737 7046 737 7046 737 7046 737 7046	737 7047 737 7047 737 7047 737 7047 737 7047 737 7047	737 7048 737 7048 7048

	AGEMENT	SS,CT,SW	SS,CT,SW	SS,CT,SW	As-S				0	00000			
E 9 OF 19	PROPOSED FUTURE MANAGEMENT	RS,TMPCT,CC PLANT(YC),SS,CT,SW RS,CC RS,CC	PLANT(YC),SS,CT,SW RS,CC	PLANT(YC),SS,CT,SW	RS,WLPCT,CC RS,WLPCT,CC FH,RS,R&W,2-SW		RS, CC RS, CC RS, CC		RS, WLPCT, CC	RS, WLPCT, CC RS, WLPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, WLPCT, CC		RS,CC RS,CC	
PAGE	AE AE VH	2222	ខខ	ខ	OHS OHS		8888		23	888888		22	
	G C E M	RS RS	RS S	SS SS	SSH		RS RS		로	7 H S S H S		로로	
	R A H H B	2222	2 2	z	222		2222		z	Z Z Z Z Z Z		2 2	
	I SN ID TE WET EX HAB	100 FNW 82 FW 73 FW 70 FW		83 FV	65 FI 52 FW 65 FI		85 FNW 85 FNW 66 FIW 85 FNW		100 FNW	100 FNW 100 FNW 100 FNW 100 FNW		70 FW 70 FW	
	Σοο			-	2 + 2		44M4		-				
	ΣΣΗ	m ~ m m	мм	м	000		мммм		M	M M M M M M		мм	
	EC0 C00E	WDC CMB WHC CCD	CCD	99	CCS WHC CCS		KHS CCS WHS		MDC	55555		99	
	SMU	1E 4D 19E 4E	180 3F	180	630 190 630		528E 528F 33E 528E		3E	******		5500 5500	
	T WH IR MAX NO ELEV DW	15 15 H E	20 M 20 H		440 H H E		20 20 20 H M H M H M H M H M H M H M H M H M H		5 H	V 8 V 9 V 9 V		10 7 M	
	MIN ELEV E	51 51 51	5 5	12	44		15 15 20		4	V V 4 V V V		5 6	
	прого	мммм	M 4	7	2 - 2		M 4 M M		М	mmmmm		2 2	
9# :	VQO	E E E E	X X	Ξ	R R R		E E E E		PR	* * * * * * *		9 €	
ALTERNATIVE #6	ASPECT	00 SOUTH 00 SOUTH 00 SOUTH 00 SOUTH		00 NORTH	00 WEST 00 WEST 00 WEST	: 8	00 NORTH 00 NORTH 00 NORTH 00 NORTH	: 8	125.00 WEST	00 SOUTH 00 SOUTH 00 SOUTH 00 SOUTH 00 SOUTH	: 8	338.00 EAST 362.00 EAST	: 8
GNOSIS - AL	VOLUME	251.00 695.00 502.00 220.00	1,668.00 565.00 439.00	821.00	564.00 596.00 871.00	2,031.00	338.00 826.00 457.00 175.00	1,796.00	125.	125.00 376.00 534.00 627.00 125.00 345.00	2,132.00	338.	700.00
DIAGNO	TOTAL	8 24 16 7	55 14 14	20	18 19 30	29	12 29 17	65	4	4 17 20 4 11	99	12	56
	ر د د	0000	0 00	0 : 0	000	0	0000	0	0	00000	0	00	0
SILVICULTURE	> 0 1 %	0000	0 12 0	8 8	000	0	0000	0	0	00000	0	00	0
S	> 0 1 CS	8 15 16 7	17 79	. 15	8 6 6	26	م 5 د د د	27	4	12 17 17 11 11	89	9 %	ω
	> 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0600	٥ 00	0 0	001	=======================================	۵ 5 5 7 7	38	0	00000	0	12	18
	L RL U EU D VD	4 ML 4 TP 4 TP 4 TP 4 TP	4 TP 4 TP		4 ML 4 TP 3 ML		4 TP 4 TP 4 TP 4 TP		4 TP	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4 TP 4 TP	
H	RN VI EI ST VCU T#	737 7050 737 7050 737 7050 737 7050	7050 737 7052 737 7052		737 7053 737 7053 735 7053	7053	737 7057 737 7057 737 7057 757 7057	7057	738 8002	738 8003 738 8003 738 8003 738 8003 738 8003	8003	738 8014 738 8014	8014

PAGE 10 OF 19	PROPOSED FUTURE MANAGEMENT	RS,CC RS,CC RS,TMPCT,CC	RS,CC RS,TMPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,CC	Rs, CC	RS,WLPCT,CC	RS, WLPCT, CC RS, CC RS, CC	8 8 8 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAG	HM RT VH	888	88	888	2	23	22 2	3 8 8 8	8888888
	LE GH	로 로 로	북 붚	RS RS	뽀	뽀	% =	로로로	로 로 로 로 로 로 로
	RB AA H	222	2 2	z z z	z	z	z 2		Z Z Z Z Z Z Z
:	I SN ID TE WET EX HAB	94 FNW 94 FNW 90 FIC	95 FIC 90 FIC	85 FNW 85 FNW 85 FNW	14 SE	80 FW	86 FNW		74 FW 67 FW 67 SE 68 FW 70 FW 65 SE
	∑ ∪ ∪			444	0	-	4 -		
	ΣΣ∺	228	N W	ммм	-	-	ν -	- N W -	77777
	EC0 C00E	WDC WHC	WHC	S H S H	CMC	CMC	SH'N	C C C C C C	
	SMU	10 10 3310	331C 331D	528F 528F 528F	240	180	528F	3E 4D 24AC	18C 4D 4D 24AC 4D 4D 4D 24AC
	T WH IR MAX NO ELEV DW	0 0 0 T E E	E E	5 5 5 H H H	15 H	15 M	7 C		7 7 M 7 7 7 M
	MIN ELEV E	80 80 O	4 10	5 2 5	0	М	4 0	MMN I	N C M C N M M
	νпоеп	000	M 0	444	0	-	4 -	- M W -	0000
#	V@O	E E E	오 오	오 오 오	Ŧ	웊	€ 8		222222
IS - ALTERNATIVE #6	VOLUME MMBF ASPECT	100.00 WEST 275.00 WEST 100.00 WEST 475.00	784.00 NORTH 464.00 NORTH 1,248.00	388.00 EAST 383.00 EAST 534.00 EAST 1,305.00	596.00 WEST	1,756.00 NORTH	439.00 SOUTH	299.00 WEST 375.00 WEST 924.00 WEST 1,598.00	375.00 SOUTH 224.00 SOUTH 325.00 SOUTH 275.00 SOUTH 150.00 SOUTH 150.00 SOUTH 150.00 SOUTH 1,898.00
I AGNOS I S	TOTAL	4 4 19	15 40	13 17 17 43	19	26	4 0	12 15 37 64	15 11 10 10 76
URE D	C7 A6	000	00 0	000 0	0	0	0 0	000 0	0000000
SILVICULTURE DIA	%ده<	000 0	00 0	000 0	0	0	0 0	000 0	000000
IS	o <	000 0	25 14 39	10 9 17 36	19	26	71 0	000 0	0000000
	>0-0%	11 4 4 19	0- -	M 7 0 1	0	0	0 [12 15 37 64	15 9 113 110 10 12 76
	L RL U EU D VD	4 TP 4 TP 4 TP	4 TP	4 LP 4	4 TP	4 TP	4 ML		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
± ₹	RN VI VI ST VCU T#	738 8015 738 8015 738 8015 8015	738 8016 738 8016 8016	738 8025 738 8025 738 8025 8025	738 8026	738 8027	738 8030		738 8057 738 8057 738 8057 738 8057 738 8057 738 8057 738 8057

	NAGEMENT										888	l	88			
SE 11 OF 19	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC		RS,CC RS,CC		RS,CC RS,CC		RS, R&W, CC	RS,R&W,CC RS,CC		RS, TMPCT, CC RS, WLPCT, CC RS, WI PCT, CC		RS, TMPCT, CC RS, WLPCT, CC		RS, CC	RS, R&W, CC
PAGE	AE AT VH	88		2 2		2 2		ပ္ပ	ខ្ល		888	}	2 2		ວ	:
	GH GH	로로		로 로		RS S		SL	RS		RS RS		로로		呈	S
	RB AA H	zz		22		zz		z	zz		z z z	:	zz		z	z
	I SN ID TE WET EX HAB	60 SE 70 FW		75 SE 78 FNW		100 FNW 91 FNW		79 FW	93 FNW 89 FNW		85 FNW 85 FNW 87 FNW		100 FNW 100 FNW		70 FW	92 FNW
	ΣOΩ							-	мм		444	•			-	-
	ΣΣΗ	7		1		мм		4	3.2		ммк)	мм		2	7
	ECO	CMC		CMC		2 P C C C C C C C C C C C C C C C C C C		9	WHW		S H H S		FDC		CMB	MDC
	SMU	24AC 4C		24AC 2E		3E 3E		18E	74E 528E		528F 528E 528E		3E 3E		4C	9
	T WH IR MAX NO ELEV DW	32		4 H		20 H 20 H		20 M	7 H		7 H H H		15 H 0 H		Z M	15 M
	MIN MAX ELEV ELEV	22		2 2		51		15	7 5		0.00	1	00		2	80
	S O E E			2 2		мм		23	мм		4 W K)	44		_	8
9#	000	% %		R R		₩ Q		₽	R R		8 8 8	:	오오		Σ	₩
ALTERNATIVE #6	ASPECT	NORTH		NORTH		NORTH		WEST	SOUTH		SOUTH		WEST		WEST	NORTH
	VOLUME	100.00	375.00	649.00	1,274.00	471.00	1,130.00	761.00 WEST	985.00	1,929.00	1,041.00 475.00 475.00	1,933.00	534.00	977.00	420.00 WEST	985.00 NORTH
IAGNOS	TOTAL	11	15	25	51	15	36	56	24	25	13	53	17	30	15	33
URE D	V 0 L T C7 A	00	0	00	0	00	0	0	00	0	000	0	00	0	0	0
SILVICULTURE DIAGNOSIS	> 0 L	00	0	00	0	0 0	0	7	23	24	20 7	788	0 2	7	0	0
SII	ري د د د د	00	0	00	0	15	36	0	00	0	r 9 C	52	17	85	7	25
	گ د o <	11	15	28 25	51	00	0	19	00	0	000		20	2	ω	œ
	L RL U EU D VD	4 TP 4 TP		4 TP 4 TP		4 ML		4 ML	4 TP 4 TP		4 4 TP		4 TP 4 TP		4 TP	4 TP
Ŧ	RN VI VCU T#	738 8058 738 8058	8058	738 8059 738 8059	8059	738 8060 738 8060	8060	738 8061	738 8063 738 8063	8063	738 8064 738 8064 738 8064		738 8065 738 8065	8065	738 8067	738 8068

-						
	L N					
PAGE 12 OF 19	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,CC RS,CC RS,CC RS,TMPCT,CC RS,TMPCT,CC RS,R&W,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS, R&W, CC RS, R&W, CC RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC
PAG	A A E A H	8888888	888888	2222	22 22 22	8888
	G O E	S 로 로 로 로 로 S	로로로로로	로 로 로 로	SR RS RS	프로크 S
	RB AA H	222222	222222	2222	2 222	2222
	WET HAB	3333333	333333	F1C F1C F1C	2 222	FNE
	EX TE	5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 100 80 80	90 80 80 80 80 80 80 80 80 80 80 80 80 80	2 222	100 100 79 79
	∑ ∪ ७					
	ΣΣ∺	ммммммм	00000m	M N N N	0 444	M M ← ←
	ECO CODE	H E E C C C C E E E E E E E E E E E E E		3 3 3 3 3	8 0000	N W C C
	SMU	19E 180 180 180 54F 54F	26 26 26 26 26 180	3310 3310 3310 3310	4 F 6 F 6 F 6 F 6 F 6 F 6 F 6 F 6 F 6 F	1E 1E 86CD 86CD
	T WH IR MAX NO ELEV DW	20 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V 0 0 V V	00 00 EEEE	H 0 0 H H H H H H H H H H H H H H H H H	8 0 0 8 9 H H H H H H H H H H H H H H H H H H
	MIN ELEV E	<u></u> 8 8 8 1 7 5 0	99 877	0 80 80 b	0 110	8 1 7 7
	N T O G H	40WW44W	M M M M M N		4 444	M M N N
9#	V ₀ 0	888888	오 오 오 오 오	오 오 오 오	8 8 8 8	오 오 오 오
ALTERNATIVE #6	ASPECT	EAST EAST EAST EAST EAST EAST EAST	NORTH NORTH NORTH NORTH NORTH	EAST EAST EAST EAST	NORTH NORTH NORTH	EAST EAST EAST EAST
	VOLUME	1,400.00 358.00 299.00 326.00 151.00 238.00 432.00	312.00 169.00 81.00 238.00 263.00 112.00	150.00 224.00 275.00 325.00 974.00	878.00 NORTH 596.00 NORTH 376.00 NORTH 439.00 NORTH 1,411.00	314.00 314.00 806.00 494.00
DIAGNOSIS	TOTAL	52 12 12 12 5 8 8 15	11 4 9 8 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39	28 19 12 14 45	10 10 22 14
	V 0 0 C7 A	00000	00000	0000	0 00 0	0000
SILVICULTURE	>0 -0%	0000000	000000	0000	0 00 0	00 00 00 00 00 00 00 00 00 00 00 00 00
SI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16 5 7 4 4 6 7 7 1	24 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	0000 0	28 19 12 14 45	100 100 1
	>0-2	36 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	22 2 2 2 7 7	4 11 9 6 11 39 1	0 000 0	0000
	S E E	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22222	4444	4 4 4	4 4 4 4
	700	444444	44444	4444	M 444 4	4444
± =	R KI T X I	8 8069 8 8069 8 8069 8 8069 8 8069 8 8069 8 8069		8 8072 8 8072 8 8072 8 8072 8 8072	3 8073 3 8074 3 8074 3 8074 8074	8 8075 8 8075 8 8075 8 8075
	אכח	33333333	2233333	38 238	738 738 738 738	338 338 338 338

ie 13 of 19	PROPOSED FUTURE MANAGEMENT	RS,R&W,CC RS,TMPCT,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC	RS,CC RS,CC RS,R&W,CC RS,TMPCT,CC RS,CC	RS, CC RS, CC RS, CC	RS,CC RS,CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC	RS, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC RS, R&W, CC
PAGE	AE AT VH	888888	88888	888	2 2	8888	
	CH GH	R R S S S S S S S S S S S S S S S S S S	SE E S	로 로 로	RS H	S S S S	RS RS RS
	RB AA	22222	2222	z z z	zz	2222	2222
	I SN M ID C TE WET G EX HAB	1 89 FNU 1 100 FNU 1 86 SEC 1 95 FNU 1 93 SEC 1 87 FNU	5 65 FNU 5 65 FNU 2 93 FNU 1 100 FNU 1 100 FNU	1 60 SE 1 70 SE 1 76 SE	2 93 FNW 1 67 SE	4 85 FNW 1 48 FIW 4 85 FNW 4 85 FNW	1 76 SE 3 84 FNU 1 94 FNU 4 64 FNU 4 75 FNU
	ΣΣ Η	n n − n − n	w w		m ←	мммм	m
	ECO	S S S S S S S S S S S S S S S S S S S	WHC WHC WDC WDC	CMC	MD CMC	E E C C E	CMC WHC WHC WHC
	SMU	16 16 25 16 16 86CD	29EF 29EF 29EF 1F 1E	24AC 24AC 24AC	1E 24AC	528F 33E 528F 528F	24AC 29EF 1E 29EF 29EF
	T WH IR MAX NO ELEV DW	20 H 12 H 20 H 20 H 35 H 36 H 37 H 38 H	30 H 20 H 20 H 20 H	M44	7 7 E E	5 5 5 5 = = = =	00 00 TEENE
	MIN	55 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20 20 20 15 15	0 M M	0 0	9 9 0	4 6 4 1 7
	N O C M	m m m m m m	444M4		ν ←	4-44	0 M M M 4
9#	V@O		<u> </u>	₽ ₽ ₽	g g	2222	2222
OSIS - ALTERNATIVE #6	VOLUME MMBF ASPECT	370.00 EAST 762.00 EAST 407.00 EAST 815.00 EAST 677.00 EAST 752.00 EAST 752.00 EAST 752.00 EAST	358.00 EAST 345.00 EAST 938.00 EAST 289.00 EAST 444.00 EAST 2,374.00	314.00 EAST 345.00 EAST 439.00 EAST 1,098.00	534.00 EAST 728.00 EAST 1,262.00	1,026.00 SOUTH 659.00 SOUTH 623.00 SOUTH 729.00 SOUTH 3,037.00	877.00 EAST 283.00 EAST 657.00 EAST 433.00 EAST 972.00 EAST 3,222.00
AGNOS	TOTAL	14 29 16 22 22 24 24	2129212	11 14 35	17 22 22 39	25 21 18 18 82	31 31 33
IRE DI	V 0 10 10 10 10 10 10 10 10 10 10 10 10 1	000000	00000	000 0	00 0	0000	00000
SILVICULTURE DIAGN	, o c	00000	00 00 22 47	000	0 4 4	25 0 6 17 48	16 0 0 0 0 32 32
SI	> 0 C5	3 6 7 26 20 24 24	26 26 5	11 14 35	18 18 35	21 12 13 34	7 9 0 13 31
	۷ م در	11 23 15 0 0 2 0	m000m 80	000 0	00 0	0000 0	000001
	L RL U EU D VD	4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 1P	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
± ₹	RN VI EI ST VCU T#	738 8076 738 8076 738 8076 738 8076 738 8076 738 8076	738 8077 738 8077 738 8077 738 8077 738 8077	738 8078 738 8078 738 8078 8078	738 8080 738 8080 8080	738 8081 738 8081 738 8081 738 8081	738 8082 738 8082 738 8082 738 8082 738 8082

		i													
PAGE 14 OF 19	PROPOSED FUTURE MANAGEMENT	RS,WLPCT,CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC		RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC		RS,CC RS,CC		RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	20 00 VOXENA 10	RS, R&W, CC RS, R&W, CC	RS, TMPCT, CC	RS, TMPCT, CC	RS,WLPCT,CC RS,TMPCT,CC RS,TMPCT,CC	
PAG	AE RT VH	23	8888		ខ្លួន		22		888	ć	8 88	ដ	23	888	
	CH GH	RS .	RS H SS		로 로 로		를 S		8 8 8 8 S S	3	s s	SS S	붚	R S S	
	RB A H	z :	2 2222		zzz		2 2		222	>		z	z	222	
	I SN ID TE WET EX HAB		85 FNW 100 FNW 100 FNW 100 FNW		100 FNW 100 FNW 100 FNW		85 FNW 91 FNW		100 FNW 100 FNW 100 FNW	00			100 FNW	100 FNW 100 FNW 100 FNW	
	∑ ∪ ∪	7 1	2 4				4 W			-	- ~	4	-		
	ΣΣ∺	2 ,	- 2222		000		мм		ммм	-	- ← w	м	2	mmm	
	ECO	SHA S			2 2 2		WHS		N H N N N N N N N N N N N N N N N N N N	ů	COMM	WHS	WHC	200 200 200 200 200 200 200 200 200 200	
	SMU	540	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		888		528F 528F		53E 53E 53E	ç	5 25 55	528E	11E	3F 3F	
	T WH IR MAX NO ELEV DW		4 4 7 8 8 H H H H H H H H H H H H H H H H H		044 ΣΣΣ		20 M		15 T X X	2			10 M	8 0 0 0 m m m m m m m m m m m m m m m m	
	MIN ELEV	м	7 4 10 10 10		M 4 4		5		0 0 15	۲	1 / 8	10	œ	~ ∞ o	
	м п о ч		7 7 7 7		222		4 W		ммм		0	м	М	444	
9#	VQ0	₽ 9	2 2 2 2 2		888		8 8		¥ ¥ ¥	3	ΣΞ	Σ	¥	888	
SIS - ALTERNATIVE	VOLUME MMBF ASPECT		439.00 EAST 408.00 EAST 157.00 EAST 188.00 EAST	1,192.00	471.00 SOUTH 157.00 SOUTH 132.00 SOUTH	760.00	858.00 EAST 554.00 EAST	1,412.00	382.00 WEST 325.00 WEST 250.00 WEST	957.00			659.00 EAST	220.00 WEST 534.00 WEST 512.00 WEST	1,266.00
IAGNOS	TOTAL		C 4π ω ο	38	τινν	. 23	31	24	25.50	38	27	13	21	7 2 5 9 1	707
TURE D	> 0 C7 A	0 0	0000	0	000	0	00	0	000	0	00	0 0	0	000	0
SILVICULTURE DIAGNOSIS	> 0 7	0 0	0000	0	000	0	0.0	9	000	0 0	0 00	0 2	0	120	m
S	> o ¬ 2	9 9	7 4 E c o	38	5 -	21	5 6	22	-00	1 22	1 25 2	13	21	7 21 21	34
	>0-2	0 [2 0000	0	004	4	18	19	14 13 10	37	00	0 0	0	0 M O	2
	L RL D EU VD		3 2 2 2 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4		3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3 TP 3 TP		8 8 8 8 9 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9	40			3 TP	3 3 3 TP	
± 4	AU RN VI EI ST VCU T#		739 9019 739 9019 739 9019 739 9019	9019	739 9021 739 9021 739 9021	9021	739 9022 739 9022	9022	739 9026 739 9026 739 9026	9056			739 9037	739 9040 739 9040 739 9040	9040

E 15 OF 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC	RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC	RS, WLPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, R&W, CC RS, R&W, CC RS, TMPCT, CC	RS, WLPCT, CC RS, CC RS, WLPCT, CC RS, CC RS, WLPCT, CC	RS,WLPCT,CC RS,WLPCT,CC	RS,WLPCT,CC RS,TMPCT,CC
PAGE	A A E A T A	88	22 23	2222	888888	88888	22 22	2 2
	GH GH	S S S	로로	RS RS	R S S H	3 3 로 로 로	RS S	R S S
	R A H H H H H H H H H H H H H H H H H H	2 2	2 2	2222	z z z z z z	z z z z z	zz	2 2
	WET	FNW	38	MANA	NA N	TENE THE TENE	FNE	33
	SN 1D 1D TE	100	100	100 100 100	92 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	100 83 100 100 100 100 100 100 100 100 100 10	9 0 0	100
	E 0 0							
	ΣΣμ	2.0	мм	мммм	MM00MM	2755	2 2	4 4
	ECO	D D D M	N NOC	M W W W W W W W W W W W W W W W W W W W	999999	E E E E E E E E E E E E E E E E E E E	WHW	WHC
	SMU	32	1 1 1	1 + + 1	0 + 0 0 + 0	74C 74E 2D 51C 2D	20 110	50F 50F
	P NO NO NO NO	==	==	= = = =	xxxxx	***	==	x x
	MAX ELEV	0.0	40 rv	21 21 7	8 1 2 1 5 1 1 8	νννν 4	9 ~	10
	MIN ELEV I	- 2	4 0	K000	r 0 r 0 2 1 0	4 W W 4 W	99	2 2
	S T O F H	2.0	мм	M M 4 M	N4 NM N4	7 2 2 2 2 7	2 2	4 4
% :	V@0	至至	要要	A A A A	&	2 2 2 2 2	P P	2 2
SIS - ALTERNATIVE #6	VOLUME MMBF ASPECT	321.00 NORTH 352.00 NORTH 673.00	471.00 NORTH 163.00 NORTH 634.00	328.00 NORTH 1,034.00 NORTH 760.00 NORTH 608.00 NORTH 2,730.00	251.00 WEST 314.00 WEST 251.00 WEST 651.00 WEST 1,058.00 WEST 376.00 WEST 2,901.00	408.00 SOUTH 439.00 SOUTH 439.00 SOUTH 314.00 SOUTH 439.00 SOUTH 2,039.00	275.00 SOUTH 549.00 SOUTH 824.00	596.00 WEST 892.00 WEST 1,488.00
DIAGNOSIS	TOTAL	9 1 61	15	27 19 16 70	10 8 22 37 37 12	13 14 16 10 10 16 16 16 16 16 16 16 16 16 16 16 16 16	11 22 33	31
URE	> 0 C7	00 0	00:0	000010	000000	0000010	00:0	00 0
SILVICULTURE	> 0 1 93	44 8	00 0	8 20 17 11 56	000000	00000	00 0	0 - -
SI	> 0 - 0 22	2 11	15 2 17 17	0 6 2 7 13 13	8 10 16 12 12 12 77	13 14 17 10 10 16 16 16 16 16 16 16 16 16 16 16 16 16	00 0	30
	> 0 7 2	00 0	0 7 7	0 - 0 0 -	0 0 0 0 16 16 16 12 22 - 22	00000	22	00 0
	L RL U EU D VD	3 TP	3 M M	3 3 3 3 4 K K K K K K K K K K K K K K K	33333 4477 4477 4477 4477	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 TP 3 ML	3 A A A
H	RN VI EI ST VCU T#	739 9041 739 9041 9041	739 9043 739 9043 9043	739 9044 739 9044 739 9044 739 9044	739 9045 739 9045 739 9045 739 9045 739 9045 739 9045	739 9048 739 9048 739 9048 739 9048 739 9048	739 9049 739 9049 9049	739 9050 739 9050 9050

		ī				
E 16 OF 19	PROPOSED FUTURE MANAGEMENT	PLANT(YC),SS,CT,SW PLANT(YC),SS,CT,SW RS,CC RS,WLPCT,CC PLANT(S),SS,CC	RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, WLPCT, CC RS, CC	RS,WLPCT,CC RS,WLPCT,CC RS,WLPCT,CC	RS,TMPCT,CC PLANT(YC),SS,CT,SW RS,CC RS,CC	RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, TMPCT, CC PLANT(S), SS, CC RS, TMPCT, CC RS, TMPCT, CC
PAGE	AE AT A	22222	888888	888	8888	8888888
	GH GH	& 글 & 글 글	R R S R S H H H H H R R S	로 로 로	S S S	H R S S S H H
	RB AA	2222 >	****	222	z z z z	z z z z > z z
	I SN M ID C TE WET G EX HAB	1 83 FU 1 93 FU 1 96 FNU 1 100 FNU 1 100 FNU	1 76 SEC 1 100 FNU 1 100 FNU 1 100 FNU 1 100 FNU 1 70 SEC	1 100 FNW 1 100 FNW 1 100 FNW	1 100 FNW 1 78 FW 1 92 FNW 1 85 FNW	1 100 FNU 2 96 FNU 5 85 FNU 1 100 FNU 1 100 FNU
	ΣΣH	-20 mm	-4444-	444	3355	0080-00
	ECO CODE	CCD CCD WHW WDC SSR	O E E E E E C	W K K	E E E E E E E E E E E E E E E E E E E	MDC MDC CCS SSR MDC MDC
	SMU	180 180 506 10	25 50F 50F 50F 50F 25	50F 50F 50F	35 30 32	30 30 30 30
	T WH IR MAX NO ELEV DW	₹ £ £ £ £ £	111111	4 N N E E E	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	7 7 7 8 8 8 8 8
	MIN	21 8 7 7	8 57 50 97	0 N N	11 11 2	WW49000
	S O C H	25222	M 4 4 4 4 0	444	0000	00044000
9#	700	99999	* * * * * * *	2 2 2	\mathcal{L}	* * * * * * * * * *
OSIS - ALTERNATIVE #6	VOLUME MMBF ASPECT	815.00 SOUTH 413.00 SOUTH 754.00 SOUTH 485.00 SOUTH 143.00 SOUTH 2,610.00	713.00 SOUTH 527.00 SOUTH 376.00 SOUTH 439.00 SOUTH 376.00 SOUTH 314.00 SOUTH	261.00 SOUTH 196.00 SOUTH 157.00 SOUTH 614.00	485.00 WEST 502.00 WEST 439.00 WEST 784.00 WEST 2,210.00	261.00 EAST 408.00 EAST 471.00 EAST 283.00 EAST 534.00 EAST 261.00 EAST 323.00 EAST 25.541.00
DIAGNOS	TOTAL	26 11 24 17 17 5	25 14 12 12 11 13	8 2 2 8	17 16 14 25	13 15 17 17 10 80
URE	o o c	0000010	000000	000 0	0000 0	000000000
SILVICULTURE DIAGN	> 0 - 8	0 0 2	000000	-40 N	0000	-0000 m
S	> 0 L C	26 4 16 17 17 5	25 24 27 1 5	2 2 2	17 16 14 25	51 57 77 77
	> 0 1 2	00000	00000	000	0000	00000000
	L RL U EU D VD	8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 3 3 3 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 3 3 F F F	8888 444 444	3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4
H	RN VI VI ST ST VCU T#	739 9051 739 9051 739 9051 739 9051 739 9051	739 9052 739 9052 739 9052 739 9052 739 9052 739 9052	739 9053 739 9053 739 9053	739 9054 739 9054 739 9054 739 9054	739 9055 739 9055 739 9055 739 9055 739 9055 739 9055

se 17 of 19	PROPOSED FUTURE MANAGEMENT	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS, R&W, CC RS, TMPCT, CC RS, TMPCT, CC RS, R&W, CC RS, TMPCT, CC	RS,CC RS,R&W,CC RS,R&W,CC RS,R&W,CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, R&W, CC RS, CC	RS, R&W, CC RS, TMPCT, CC RS, CC RS, TMPCT, CC RS, WLPCT, CC
PAGE	AE AE VH	888	88888	8888	88888888888	8 8888
	GH CH	로로로	R S H H R S	RS RS	H	ス 로로로로
	R A H B	222	z z z z z	2222	zzzzzzzzzz	> ZZZZ
	WET	333	33333	2222	NESSEE SEE	N N N N N N N N N N N N N N N N N N N
	SN 15 TE TE EX	100	68 100 92 65	88 91 90	100 100 100 82 83 83 87 100 100	97 100 100 80
	Σပေဖ					
	ΣΣ∺	ммм	ммммм	0000	M M M M M M M M M M M M M M M M M M M	7 2 2 2 7
	ECO CODE	WDC WDC	33333	CAB B B CAB CAB CAB CAB CAB CAB CAB CAB	CMB	SSR WDC WHM WHM
	SMU	35 351e 3e	19F 11E 11E	9 9 9 9	38 116 116 40 40 40 40 40	2 2828
	⊢ H N N A	H H H	EEEEE	EEEE	EFFEFFFF	I EEEI
	MAX	999	30 15 30 30	0 25 25	8 1 1 1 8 5 1 1 0 0 8 9 5 1	7 20 20 8 8
	MIN	יט יט יט	0000	0000	2100011008551	5 8 0 0 8 8
	S 0 E 0	MMM	M M M M 4	мммм	wwawwwww. ∪ - woowwwoww	0 0000
9#	VQO	P. P. P.	E E E E E	E E E E		M M M M M M
ALTERNATIVE #6	ASPECT	NORTH NORTH NORTH	EAST EAST EAST EAST EAST	EAST EAST EAST EAST	EAST EAST EAST EAST EAST EAST EAST EAST	941.00 NORTH 251.00 WEST 251.00 WEST 283.00 WEST 188.00 WEST
:	VOLUME	376.00 251.00 314.00	971.00 439.00 659.00 601.00 519.00 3,189.00	163.00 439.00 376.00 288.00 1,266.00	144.00 188.00 382.00 408.00 232.00 551.00 308.00 163.00 251.00 251.00 212.00	941.00 251.00 251.00 283.00 188.00
DIAGNOSIS	TOTAL	12 8 10 .	33 14 21 21 19 108	12 12 10 42	5 6 6 7 13 13 13 14 15 10 10 10 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	30 8 8 9 9 11 11 11 11 11 11 11 11 11 11 11 11
	V C7	000 0	00000 0	0000 0	000000000000000000000000000000000000000	0 0000 0
SILVICULTURE	> 0 J	000 0	00000	0000	00000000000	0 0000 0
SI	CS C	12 10 30	23 14 21 12 7	14 12 6 34	κου <u>τυδου</u> σου 6	30 8 8 9 9 9 1 2 1 2 1 2 1
	> 0 J 2	000 0	10000	4004 8	000000000000000000000000000000000000000	0 0000 0
	L RL U EU D VD	3 3 Z Z Z Z	# # # # # # # # # # # # # # # # # # #	3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	244444444 444444444	W W W W W W A A A A A A A A A A A A A A
H	RN VI E1 ST VCU T#	739 9056 739 9056 739 9056 9056	739 9057 739 9057 739 9057 739 9057 739 9057	739 9058 739 9058 739 9058 739 9058	739 9059 739 9059 739 9059 739 9059 739 9059 739 9059 739 9059 739 9059 739 9059 739 9059	739 9060 739 9061 739 9061 739 9061 739 9061

		-					
PAGE 18 OF 19	PROPOSED FUTURE MANAGEMENT	RS, CC RS, CC PLANT(S), SS, CC RS, CC RS, CC RS, CC	RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC RS, TMPCT, CC	RS,TMPCT,CC RS,CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC RS, CC RS, CC RS, TMPCT, CC	RS, TMPCT, CC RS, TMPCT, CC RS, CC	RS, TMPCT, CC RS, R&W, CC
PAG	AE AT A	888888	22222	88	22222	8 88	88
	G C E	8 8 8 8 F F	2 Z H H Z Z	RS S	로 로 & 로 로	S HH	S 포
	R A H H R	zz->zz	22222	2 2	ZZZZZ	2 22	2 2
	I SN M ID C TE WET G EX HAB	1 90 FU 1 83 FNU 1 100 FNU 3 94 FNU 1 83 FNU 1 89 FNU	1 100 FNW 1 100 FNW 1 100 FNW 1 100 FNW 2 93 FNW	4 85 FNW 3 89 FNW	1 100 FNU 1 100 FNU 1 93 SE 1 85 FNU 1 100 FNU	4 85 FNW 1 100 FNW 3 92 FNW	1 100 FNW 5 87 FNW
	ΣΣ ∺	8090	M M M M M M	m 0	22-25	w -w	мм
	ECO	CCD WHS SS S	FESS	WHS	WDC WDC WDC	S HH S	ND C
	SMU	180 530 10 10 530 530	3£ 530 530 530 530 530	528F 530	10 240 10 10	528F 11C 528E	35
	P N N N N N N N N N N N N N N N N N N N	EEEEEE	EFFFFF	ΣΣ	= = = = =	= = =	ΣΣ
	MAX	8 1 0 0 8	9 8 8 1 5 1	5 5	र <u>्</u>	W 98	15
	MIN	2 8 8 5 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5	0 / 8 / 8 0	2 2	0000	2 17 12	0.0
	N J O G H	004-W00	m n n n n n m	4 W	00000	4 - 2	44
9#	VQO	*****	X X X X X X X	ΣΣ	22222	A O O	N E
IOSIS - ALTERNATIVE	VOLUME MMBF ASPECT	784.00 WEST 532.00 WEST 282.00 WEST 282.00 WEST 351.00 WEST 529.00 WEST 2.760.00	519.00 NORTH 633.00 NORTH 227.00 NORTH 622.00 NORTH 553.00 NORTH 553.00 NORTH 2,899.00	125.00 NORTH 395.00 NORTH 520.00	408.00 EAST 376.00 EAST 583.00 EAST 345.00 EAST 476.00 EAST 2,188.00	376.00 EAST 218.00 EAST 1,395.00 EAST	791.00 NORTH 2,269.00 NORTH 3,060.00
TAGNOS	TOTAL ACRES	25 18 10 10 12 18	15 18 16 16 17 17	13	11 19 11 11 11 11 11 11 11 11 11 11 11 1	12 6 34	24 69 93
URE	2 0 C7	000000	000000	00 0	00000;0	0 00 0	00 0
SILVICULTURE DIAGN	در ٥ <	00000-	5 4 4 13 13 0 0 0 2 1 13 1 13 1 13 1 13 1 13	00 0	00000	34	11 15
SI	۰ د د د	25 13 5 5 8 8 10	11 2 2 11 11 11 11 11 11 11 11 11 11 11	11 15	127 177 177 178	12 3	20 28 78 78
	> 0 7	26	000-00	0 2 2	00000	0 00	
	L RL U EU D VD	######################################	44444	3 3 4	3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 TP 3 TP 3 TP 4 TP 4 TP 4 TP 4 TP 4 TP	3 3 TP TP
± ₹	RN VI EI ST VCU T#	739 9062 739 9062 739 9062 739 9062 739 9062 739 9062	739 9064 739 9064 739 9064 739 9064 739 9064 739 9064	739 9065 739 9065 9065	739 9067 739 9067 739 9067 739 9067 730 9067	739 9068 739 9069 739 9069	739 9070 739 9070 9070

u	,
ř	
ü	L
DOAET	
<	į
0	Ľ
C	2
<	۲
_	
-	
DEVILLA	
1	ĺ
ă	2
DITOU	
-	i
9	Ľ
C	3

		i				
PAGE 19 OF 19	PROPOSED FUTURE MANAGEMENT	SWD FH,RS,R&W,2-SW	RS,TMPCT,CC RS,CC		RS, CC	RS,R&W,CC
PAG	HM RT VH	QMS	88		23	8
	CH GH	뿦	뽀 뽀		里	뿦
	RB AA	2	2 2		z	z
	I SN ID TE WET EX HAB	4 1 87 FW	1 100 FNW 1 98 FNW		85 FNW	86 FW
	∑ ∪ ©	-			4	-
	EE-	7	2 %		2	~
	ECO	000	WDC		WHS	CMB
	T H S D J S MU	4.F	35		528F	Q 5
	S L WH O IR P MIN MAX NO VQO E ELEV ELEV DW	15 H 4F	30 H 3D 20 H 3E		30 M	20 M
	MIN ELEV E	7	11		15	0
	S L O P D E E	MO 3	2 %		4	←
#:		Æ	운 운		A.	Σ
NOSIS - ALTERNATIVE #6	VOLUME MMBF ASPECT	2,175.00 ѕо∪тн	1,537.00 SOUTH 702.00 SOUTH	2,239.00	1,542.00 EAST	1,654.00 WEST ==== ======== ,676 201,808.00
GNOS	AL ES	72	75 76 76	ĸ	20	676
JRE DIA	V O L TOTAI C7 ACRES	0	00	0	0	0 55
SILVICULTURE DIAG	v 0 0 0 0 0 0	0	00	0	0	0 ===== 536
SIL	v 0 CS	59	49	65	97	11 44 ===== ===== 1,931 4,209
	> 0 1 C4	13	0 8	æ	4	11 ===== 1,931
	L RL U EU D VD	3 ML	3 TP 3 ML		3 TP	3 TP
H	RN VI EI ST VCU T#	739 9071	739 9072 739 9072	9072	739 9073	739 9074

Appendix I

Sale Area Improvements/KV Opportunities

Ketchikan Area

Ketchikan Pulp Company Long-Term Sale

North Revilla Project Area

Recommended Sale Area Improvement Projects

I. ESSENTIAL REFORESTATION

A. Natural Regeneration Surveys

Objective/Justification: Monitor the occurrence of natural regeneration stocking following timber harvest. The National Forest Management Act of 1976 states that "It is the policy of Congress that all forested lands in the National Forest system shall be maintained in appropriate forest cover with species of trees, degree of stocking, rate of growth, and condition of stand designed to secure the maximum benefits of multiple use sustained yield management in accordance with land management plans".

<u>Treatment</u>: Stocking surveys shall be conducted three growing seasons following harvest to assure that satisfactory levels of natural stocking have been achieved as prescribed in the stocking level guides, Chapter 9, FSH 2409.17. The reporting and record keeping required to track and monitor the harvesting, regeneration, certification process is included in the regeneration survey costs.

<u>Needs/Cost</u>: Conduct natural regeneration stocking surveys at a direct cost of \$8.50/acre. See the enclosed detailed listing of stands in need of surveys by alternative.

 $$8.50/\text{acre X } 1.04^{5}(1.22) = 10.37 \text{ X } 1.3798(OH) = $14.31/\text{acre}$

Work Summary:

Regeneration Surveys

Alternative	#2	\$14.31	acre	8,222	acres	\$1	117,657	cost
Alternative	#3	\$14.31	acre	5,308	acres	\$	75,957	cost
Alternative	#4	\$14.31	acre	6,521	acres	\$	93,316	cost
Alternative	#5	\$14.31	acre	6,648	acres	\$	95,133	cost
Alternative	#6	\$14.31	acre	6,202	acres	\$	88,751	cost

B. Cone Collection

Objective/Justification: Collect an adequate amount of tree seed from the appropriate seed zones to accomplish required artificial regeneration under this plan. All seed will be collected from phenotypically superior trees which exhibit desirable characteristics such as form, height, branch angle, resistance to insects and disease, etc. Ketchikan Area has sufficient spruce seed on hand to meet its spruce planting needs. The Area, however, lacks seed for Alaska and western redcedar planting. Planting roughly 300 acres of cedar (western redcedar and Alaska yellow cedar) in all action alternatives will require (300 AC X 300 TPA) 90,000 seedlings. Approximately 40,000 seedlings can be produced per pound of clean seed. Therefore 2.25 pounds of clean seed or 11 bushels (5 bushels/lb seed) of cones must be collected.

Treatment: Cone collections will occur in moderate or good cone collecting years based on field surveys. Collections will be done by force account crews in the fall after the cones have matured. Collection will involve identifying phenotypically superior trees, felling the tree, picking and bagging the cones, tagging the bags and transporting the cones to Petersburg where the seed will be cleaned and stored until needed. Seed collections will be stratified by seed zones to make sure the planting stock is adapted to location where it will be planted.

Needs/Cost: Collect 11 bushels of seed from the appropriate seed zones at a direct cost of \$190.40/bushel.

 $$190.40/Bul \times 1.04^{2} (1.08) = $205.63 \times 1.3798(OH) = $283.73/Bul}$

Work Summary:

Cone Collection

All Action Alternatives

Alternatives \$284/bushel 11 bushels \$ 3,124 cost

C. Planting

Objective/Justification: Planting will occur only on those sites where natural regeneration will not result in a fully stocked stand of desirable species within 5 years after harvest as required under the National Forest Management Act of 1976.

The requirements and guidelines for minimum acceptable stocking are listed in FSH 2409.17 Silvicultural Practices Handbook. Appendix A displays the harvest unit, acres and species to be planted on a site specific basis.

The sites to be planted fall under three general categories:

- 1. Floodplains and Alluvial Fans These areas usually have deep well drained soils with poorly developed horizons due to periodic flooding. Mature stands rarely support more than 100-150 stems per acre. Species composition is primarily spruce growing on raised hummocks. Perturbation results in heavy brush (alder, salmonberry, and devils club) competition that will delay natural regeneration and suppress tree growth for a period of 20 to 50 years following harvest. The vast majority of the Tonowek and Tuxekan soil series have been excluded from harvesting in recent years, but small inclusions will be treated in this operating period. These sites will be planted with Sitka spruce.
- 2. Dense Brush or Inadequate Seed Source Sparsely stocked sites with an established ground cover of dense vegetation such as salmonberry or devils club will retard stocking and growth for at least 20 years. Sites lacking a satisfactory seed source, including high elevation sites, sites adjacent to muskegs or lakes and immature stands where natural regeneration cannot be assured or even reasonably expected within 5 years after harvest. These sites will be planted with Sitka spruce.
- 3. Somewhat Poorly Drained to Poorly Drained Soils, Low Productivity Cedar Sites These sites currently support decadent, low-quality sawtimber with cedar making up at least 10 percent of the canopy. Getting natural cedar regeneration on these sites is unlikely because:
 - a. Cedar has limited capabilities to disperse seed over long distances from the parent tree. Alaska-cedar seed dispersion is limited to 300-400 feet.
 - b. Alaska cedar is not a prolific seed producer. Cone crops are infrequent and germination rates are low.
 - c. Unlike "down-south" cedar, southeast Alaska cedar display a greater degree of intolerance to shade. Local cedar is unable to regenerate under its own canopy and advance cedar reproduction is generally absent on the forest floor.
 - d. Low-volume cedar stands often result in heavy slash accumulation which can inhibit natural reproduction.

APPENDIX I

Prescribed burning may be required to lower slash levels for planting ease.

Therefore, planting of western redcedar and/or Alaska-cedar to improve productivity and maintain tree species diversity, shall be addressed in the silvicultural prescription for cedar stands. "Relationship of Forest Plant Association to Soils Series...Ketchikan Area" tables, which are found in the back of <u>Preliminary Forest Plant Association Management Guide</u>, Ketchikan Area, was used to identify potential sites.

Treatment: Floodplains/alluvial fans and dense shrub/inadequate seed source planting areas will be planted with 1-0 Sitka spruce stock. The low productivity/Cedar sites will be planted with 1-0 western redcedar or Alaska-cedar as specified in Appendix A. Generally a mixture of western redcedar and Alaska yellow cedar will be planted on sites below 800 feet in elevation on North and East Aspects, and below 1000 feet on South and West aspects. Cedar sites with elevations above those listed have been scheduled for Alaska yellow cedar planting only.

<u>Needs/Cost</u>: The direct cost of planting is \$330.00 per acre. See enclosed detailed listing of stands requiring treatment/alternative.

 $$330.00/\text{acre X } 1.04^3 \ (1.13) = $372.90 \ X \ 1.3798(OH) = $514.53/\text{acre}$

Work Summary:

Planting

Alternative	#2	\$515/acre	363	acres	\$186,945	cost
Alternative	#3	\$515/acre	461	acres	\$237,415	cost
Alternative	#4	\$515/acre	363	acres	\$186,945	cost
Alternative	#5	\$515/acre	520	acres	\$267,800	cost
Alternative	#6	\$515/acre	474	acres	\$244,110	cost

D. Plantation Survival Surveys

Objective/Justification: Monitor the survival and condition of planted trees one and three growing seasons following planting and certify that minimum stocking levels are achieved per NFMA.

<u>Treatment</u>: Establish and survey plantation survival stake rows the first and third growing seasons following planting. The third year survey will also determine the overall stocking, both planted and established natural regeneration.

<u>Needs/Cost</u>: First and third year survival surveys will be required at a direct cost of \$14.00 per acre. See enclosed detailed listing of stands needing surveys by alternative.

\$14.00/acre X 1.04 (1.17) = \$12.43 X 1.3798(OH) = \$22.60/acre

Work Summary:

Plantation Survival Surveys

Alternative	#2	\$23/acre	363	acres	\$	8,349	cost
Alternative	#3	\$23/acre	461	acres	\$:	10,603	cost
Alternative	#4	\$23/acre	363	acres	\$	8,349	cost
Alternative	#5	\$23/acre	520	acres	\$.	11,960	cost
Alternative	#6	\$23/acre	474	acres	\$.	10,902	cost

E. Site Preparation

Objective/Justification: Prescribed burning for site preparation has limited application in Southeast Alaska. Incidences where prescribed burning is a useful silvicultural tool is:

- When planting is prescribed and slash levels, particularly in cedar stands, must be reduced to clear planting spots and provide planting crew access onto the planting site.
- When removal of advance hemlock regeneration or hemlock residuals is desirable because they are infected with dwarf mistletoe, or hemlock fluting is a concern and it would be prudent to convert the stand to mostly spruce.

Treatment: Prior to implementing a prescribed burn a silvicultural prescription, verified by an on-site visit (prior to harvest and after the unit is harvested) will be prepared by a certified silviculturist. A prescribed burning plan, which contains a fuels analysis, a certified burning prescription designed to meet the specified objectives, etc., will be prepared prior to burning. Specified harvest units will be prescribe burned within 3 years following harvest.

Prescribed burning for natural regeneration is not recommended until more is learned about natural regeneration and burning. Past experience has shown that minimum stocking levels may not be achieved within 5 years through natural regeneration alone. Planting shall follow prescribed burning treatments.

<u>Needs/Cost</u>: Prescribed burning prior to planting of western red cedar or Alaska-cedar Direct cost estimate is \$110.00 per acre.
See enclosed detailed listing of potential prescribed burning acres.

From previous prescribed-burning programs, \$110.00/acre $\times 1.04^2$ (1.08) = \$118.80 $\times 1.3798$ (OH) = \$163.93/acre

Work Summary:

Prescribe Burning

Alternative	#2	\$164/acre	154	acres	\$25,256	cost
Alternative	#3	\$164/acre	126	acres	\$20,664	cost
Alternative	#4	\$164/acre	99	acres	\$16,236	cost
Alternative	#5	\$164/acre	182	acres	\$29,848	cost
Alternative	#6	\$164/acre	125	acres	\$20,500	cost

F. Release and Weed

Objective/Justification: Remove high numbers of poor form or diseased submerchantable hemlock whips.

Soil prescriptions for units call for partial suspension on high mass movement index MMI = 4 soils during yarding operations (very high mass movement index MMI=4 soils are no longer considered suitable). In some cases, many undesirable residuals remain standing following partial or full suspension yarding. Hemlock residuals diseased with mistletoe can reinfect the new regeneration if they are allowed to remain in the stand. Residuals are often of poor form, may contain heart rot, or are damaged during logging and therefore, rarely contribute to the volume of the new stand. When in great numbers, residuals will compete for growing space and can result in a loss in volume at the end of the next rotation.

Region 10 has no contractual requirement for the logger to sever residual trees. Removing hemlock residuals in a precommercial thinning treatment has not been all that successful because of widely fluctuating funding and targets.

<u>Treatment</u>: Sever the hemlock residuals following harvest. As a rule, about 20 percent of the acres, which require partial or full suspension, will need residuals severed. Treatment of less than 5 acres per site was not considered economically feasible and was therefore not scheduled.

Stands likely needing release and weeding are listed by alternative.

Needs/Cost: Hemlock residuals will require severing of mistletoe infected stems at a direct cost of \$121.12 per acre.

 $$121.12/ac. \times 1.4^{3} (1.13) = 136.87 \times 1.3798(OH) = 188.85

Work Summary:

Release

Alternative	#2	\$189/acre	358	acres	\$ 67,662	cost
Alternative	#3	\$189/acre	241	acres	\$ 45,549	cost
Alternative	#4	\$189/acre	291	acres	\$ 54,999	cost
Alternative	#5	\$189/acre	242	acres	\$ 45,738	cost
Alternative	#6	\$189/acre	287	acres	\$ 54,243	cost

II. MITIGATION

A. Debris Slides Stabilization and Rehabilitation and Debris Slide Rehabilitation Monitoring

Objective/Justification: Stabilize and rehabilitate harvest-activity initiated landslides within units and along roads which are no longer the responsibility of the purchaser to treat.

Approximately one debris slide, 5 acres or larger, occurs for every 2,240 harvested acres Tongass wide (DEIS Tongass Land Management Plan Revision, June 1990). If slides smaller than 5 acres are included, than the number of debris slides occurring for every 2,240 harvested acres would increase one and one half fold. Average size of slides on the Ketchikan Area are 5 acres (Loggy 1974).

The majority of these slides normally occur within a 5 to 10 year period after cutting or roading from the following combined impacts:

- 1. Over steepen side slopes,
- 2. Storms with high wind and /or intensive rain fall, and
- 3. Where roots of severed trees have lost their holding strength in 3 to 5 years.

Approximately 5,769 to 8,585 acres are proposed for harvest this period. This would equate to 2.6 to 3.8 natural slides or 4 to 6 slides with harvest. At 5 acres per slide this would equate to 20 - 30 acres of soil disturbance that would need stabilizing and rehabilitation.

<u>Treatment</u>: Slides that have occurred will be rehabilitated with introduced grasses and/or herbaceous vegetation. Follow up monitoring will be done for two (2) years after initial rehabilitation to insure stabilization has been accomplished.

The treatment is to stabilize surface soil erosion to prevent or reduce further sediment introduction into streams and/or lost in soil productivity of the remaining soil on the slide trace.

Needs/Cost: Stabilize 30 acres of landslides at a direct cost of \$1200 per acre. Monitor each stabilized landslide for 2 years after initiation stabilization at \$150 per slide, per year.

 $$1,200/ac. \times 1.04^{6} (1.27) = 1,524 \times 1.3798(OH) = $2,102.82/ac.$

 $$300/ea. \times 1.04^{6} (1.27) = 381 \times 1.3798(OH) = $525.70/Slide$

Work Summary: All Alternatives use 6 slides and 30 acre estimate.

Slide Rehabilitation \$2,103/acre 30 acres \$63,090 cost Monitor stabilized \$526/slide 6 slides \$3,156 cost

B. Wildlife Seeding of Roads - 50 Acres

Objective/Justification: This project is consistent with Regional and Forest direction to maintain or enhance wildlife habitat capability. The Long-Term Sale FEIS prescribed wildlife seeding as a mitigation measure.

The objective is to increase forage production within and adjacent to harvest units to benefit Sitka Black-tailed Deer, Black Bear, Blue Grouse, Dusky and Vancouver Canada Geese, and successional nongame birds.

Treatment: Ketchikan Pulp Co. is responsible for seeding all temporary roads and landings used during the current operating period. However, we anticipate that there will be some seeding failures. Therefore, treatment will include re-seeding of temporary roads, and landings where initial seeding attempts failed; and seeding specified roads, which have been closed to vehicle access. Seed mixture will contain birds-foot Trefoil 12#/ac, Vetch 12#/ac, Panic Grass 8#/ac, Reed Canary Grass 8#/ac, and Alta Fescue 6#/ac, or a mixture of other plants.

System roads designated for closure and wildlife forage seeding are displayed in the North Revilla DEIS under transportation.

Needs/Costs: The direct cost for hand seeding is \$300 per acre. \$300/acre X 1.04 2 (1.08) = \$324/acre X 1.3798(OH) = \$447/acre

Approximately 50 acres will be treated under all of the action alternatives

Work Summary:

Wildlife Seeding \$447/acre 50 acres \$22,350 cost

III. MAINTENANCE

A. Precommercial Thinning for Wildlife -

Objective/Justification: This project is consistent with Regional and Forest direction to maintain wildlife habitat capability. The North Revilla DEIS prescribed precommercial thinning of stands as a mitigation measure.

Precommercial thinning will delay crown closure and ultimately will prolong the existence of understory vegetation. Normal precommercial thinning to a 12'x12' spacing will delay crown closure and eventual loss of understory to approximately stand age of 35-40 years. Crown closure in unthinned stands occurs about stand age of 20 years. The objective of "wildlife thinning" is to delay crown closure even for longer periods by thinning to wider spacings of up to 16x16 feet. Complete crown closure does not occur for 16x16 foot spacing until approximately 50 years of stand age (SI = 110 for 100 yr.).

The forage is intended to benefit Sitka Black-tailed Deer and Black Bear, with secondary benefits to Timber Wolves, Pine Marten, and successional bird species.

Treatment: Second-growth timber release is prescribed for 12-18 year old stands within important deer/bear habitat. Thinning will be done throughout the unit at a spacing of 12x12 feet to 16x16 feet dependent on the species of forage to be released within the second-growth stand. Prescriptions calling for spacings of 16x16 feet or more shall weigh the wildlife benefits against estimated volume loss of 10-12 percent, extended rotation time, and loss of wood quality due to the large limbs.

Residual trees will not be girdled unless the trees are mistletoe infested that will infect the second growth or are of very poor form. Some critical second-growth stands will have 5 percent of the units left unthinned to provide thermal cover for Sitka Black-tailed Deer and Pine Marten.

The southerly and westerly facing candidate stands proposed for wildlife habitat precommercial thinning are listed below.

Needs/Costs: The direct cost of the project is \$340.09 per acre.

 $$340.09/\text{acre X } 1.04^{5}$ (1.22) = 414.91 X 1.3798(OH) = \$572.49/acre

Work Summary:

Precommercial

Thinning \$572/acre 1925 acres \$1,101,100.00cost

High Priority Stands: (South/West Aspects <800' elevation)</pre>

Stand Number	Total Acres	Stand Number	Total Acres
73305 67	12.46	73901 124	106.24
73602 74	37.23	73905 86	25.71
73602 76	100.00	73906 77	34.27

Medium Priority Stands: (South/West Aspects <1500' elevation)

Stand	Number	Total Acres	Stand	Number	Total Acres
73301	59	106.98	73903	69	54.51
73305	66	125.61	73904	89	27.85
73602	75	159.38	73904	90 .	53.93
73603	137	44.47	73904	94	111.59
73701	124	70.84	73905	87	91.00
73801	68	36.55	73906	73	21.32
73901	120	55.02	73906	74	81.76
73901	121	66.25	73906	75	103.71
73901	122	118.30	73906	76	33.09
73902	45	247.13			

B. Precommercial Thinning

Objective/Justification: The objectives of precommercial thinning is: (1) Increase timber yields by delaying the occurrence of competition for growing space between fast growing young trees. The site's wood growing potential is distributed over a few trees instead of many. This results in larger diameter steams over a shorter time

span. (2) Increase the stand's spruce composition and ultimate yield and value through favoring spruce as future crop trees. (3) Remove the deformed, diseased trees. (4) And, prolong the understory vegetation for wildlife use by delaying crown closure.

Second-growth stands in southeast Alaska suffer from excessive competition for light because of large number of young trees that invade a clearcut. Because hemlock and spruce are shade tolerant, the young stands have low mortality rates and trees do not express strong dominance in the first half of a rotation. Significant natural thinning through competition occurs late in the stand's life. Precommercial thinning will result in larger diameter trees over a shorter time period, increase sawlog yields about 10-12 per cent, and reduce the economic rotation length by 10-20 years.

<u>Treatment</u>: Precommercial Thinning will occur in stands of 15-20 years of age. Crop tree spacing will generally be 12x12 feet but can very according to the silviculture prescription. Stands planned for treatment are listed below.

Needs/Costs: The direct cost of the project is \$289.68 per acre.

 $$340.09/ac. \times 1.04^{5} (1.22) = 414.91 \times 1.3798(OH) = $572.49/ac.$

Work Summary:

Precommercial

Thinning \$572/acre 1,710 acres \$ 978,120.00 cost

<u>Timber PCT Stands</u>: (High/Medium productivity sites 15-20 years old not scheduled for wildlife thinning.

Stand Number	Total Acres	Stand Number	Total Acres
73301 61	12.46	73901 125	89.57
73301 62	37.23	73901 128	186.83
73501 39	100.00	73901 129	93.12
73601 48	106.98	73901 131	79.80
73603 127	125.61	73903 67	26.31
73603 130	159.38	73903 68	77.97
73603 131	44.47	73903 70	45.22
73603 132	70.84	73903 71	55.97
73701 126	36.55	73904 91	64.01
73701 127	55.02	73904 92	32.49
73801 71	135.34	73904 93	120.33
73901 123	23.14		

IV. IMPROVEMENT

A. Fish Habitat Enhancement/Monitoring: Margaret Creek Fish Pass (KRD)

Objective/Justification: The KV funded Margaret Creek Fish Pass was constructed in 1989 and started operations in 1990. During the planning process, AGF&G raised concerns around the monitoring of the project. Questions that needed answering were: (1.) What would be the impact to the resident fish with the introduction of salmon into the stream system? (2.) What levels of returning salmon would result from the installation of the fish pass?

These concerns were addressed in the Margaret Creek Fish Pass decision memo, which was signed April 18, 1989. The decision memo stated that: "The Forest Service will be responsible for future monitoring of the resident fish populations, adult salmon returns, and contracting to ADF&G acoustical surveys. ADF&G will establish self sustaining runs of coho and sockeye salmon. A memorandum of understanding (MOU) will be initiated to finalize agency involvement."

To meet the concerns over monitoring, in May 1989, the Forestry Sciences Laboratory began a study of the resident salmonid species in Margaret Lake to establish base line conditions prior to the introduction of sockeye salmon fry into the lake and the completion of the fish ladder. The study was expanded in 1990 to include the distribution of cutthroat trout and Dolly Varden char and their uses of stream habitat in the primary tributary of Margaret Lake and a study of the zooplankton populations that serve as the primary food source for juvenile samonids in the lake.

With the start up of the fish pass operation in 1990, additional monitoring of the effectiveness of the fish pass began. Monitoring included:

- Identification of species and numbers of anadromous salmonids moving up the ladder.
- 2. Determination of the timing and duration of the adult returns.
- 3. Counting the number of smolt of sockeye and coho leaving the lake/stream system.
- 4. Determination of the smolt and pink salmon fry survival during migration over the 23 foot falls in lower Margaret Creek.

The results from the monitoring and study will provide the first quantitative evaluation of a fish ladder project and an introduction of sockeye salmon into a lake and their effect on resident salmonid populations. At present, there is no data that identify critical factors which determine the success or failure of fish ladder projects that introduce anadromous salmonids into a non-anadromous lake/stream system. This same project is listed on the 1989-94 Longterm Sale KV Plan. Price fluctuations and effective purchaser credit may result in all or part of the project being unfunded through KV. Yearly updates (as required) will need to make sure that duplicate collections do not occur.

<u>Treatment:</u>

The answers being sought in this project will require a long-term study and monitoring effort. Intensive study will be needed in 1991-92 to provide sound data to which change will be measured against. Items which will be studied and monitored during this period include monthly sampling of cutthroat trout and Dolly Varden for numbers, growth, feeding and age structure; seasonal limnological sampling of zooplankton and phytoplankton populations; and to enumerate adult salmon migration up the fish ladder and beyond into the lake and stream sections of the Margaret system.

Less intensive monitoring will take place during 1993-96 where samples will be gathered on an <u>annual</u> basis or during the migration period. Intensive study and monitoring will resume in 1997 or some year after depending on funding and the results of the ongoing monitoring and study.

A detailed study plan can be obtained through Mason (Buck) Bryant at FSL in Juneau. Planning Record contains: 1. Decision Memo for Margaret Creek Fish Pass; 2. Memorandum of Understanding 91-001; 3. A Proposal for Continuing Studies; 4. Progress Report for 1990; and 5. Cost Estimate.

Needs/Cost: See Planning Record

Work Summary: Project Costs: (inflation and OH is included)

ADF&G 72,000 X 1.22 X 1.3798 (OH) = 121.200 FORESTRY SCIENCES LAB. 539,200 X 1.13 X 1.3798 (OH) = 907,670 DISTRICT COSTS 243,700 X 1.13 X 1.3798 (OH) = 410,230

GRAND TOTAL PROJECT COST

= 1,439,100

E. Margaret Creek Fish Pass and Trail Interpretive Sign (KRD)

Objective/Justification: To provide a trailhead sign and an interpretive sign for the Fish Pass Trail to the Margaret Lake fish pass.

In 1989, the Margaret Creek fish steep pass and connecting trail were constructed using K-V funds. July 1990, the fish pass was opened to pink and coho salmon. Sockeye fry were introduced into Margaret Lake starting in 1988 and the first return of adults is expected in 1991. Visits to the fish pass by sports fishing residents of Ketchikan is expected to increase as the runs of returning salmon increase over the next few years. Margaret Creek is about 30 water miles north of Ketchikan. This same project is listed on the 1989-94 Longterm Sale KV Plan. Price fluctuations and effective purchaser credit may result in all or part of the project being unfunded through KV. Yearly updates (as required) will need to make sure that duplicate collections do not occur.

<u>Treatment</u>: One sign will be placed at the trail head. A series of interpretive signs, depicting the life cycles of different salmon species, will be mounted at the fish pass viewing platform.

 $\underline{\text{Needs/Cost}}$: One GS-7 recreation technician for one week and one GS-5 recreation technician for two days to construct interpretive signs and place them on location.

1 hr helicopter @ \$500/hr	\$ 500.00
Personnel	740.00
Interpretive signs and monument	2,000.00
Trailhead sign	300.00
Total cost for 1990 is	\$3,540.00

Expected accomplishment year: 1992.

\$3,540 x 1.04² (1.08) x 1.3798(OH) \$5,275

Work Summary:

Interpretive Signs \$5,275/Proj Project \$5,275 cost

Page 1

Project Name	Personnel - Includes Contract Prep and Administration	Subsistence	Travel - FW, Helicopter, Boat, Vehicle, other	Other - Facilities, Equipment, Contracts, etc.	Rate (Cost/Unit) Total Expenses
I. ESSENTIAL REFORESTATION					
A. Natural Regeneration Surveys (3 & 5 Years)	\$ 4.88/Ac. 2/	\$ 0.48	\$ 0.64	\$ 2.50 3/	\$ 8.50/Acre
B. Cone Collection	\$140.40/Bushel	\$ 0.00	\$10.00	00.07 \$	\$190.40/Bushel
C. Planting	\$ 70.00/Ac.	\$ 0.00	/ 7 00°05\$	\$210.00 5/	\$330.00/Acre
D. Plantation Survival Surveys (1 & 3 Years)	\$ 8.00/Ac.	\$ 0.48	\$ 4.02	\$ 1.50	\$ 14.00/Acre
E. Site Preparation W/Prescribed Burning	\$ 25.00/Ac.	\$ 0.00	/9 00.09\$	\$ 25.00	\$110.00/Acre
F. Release & Weeding (Dwarf Mistletoe Sanitation)	\$ 50.00/Ac.	\$ 0.00	\$ 0.00	\$ 70.48 (contract)	\$121.00/Acre
II.MITIGATION					
A. Slide Stabilization Plus 2 Year Monitoring	\$200.00/Ac. \$200.00/Slide		(Helicopter) \$850.00 \$ 75.00	(Seed & Fert.) \$150.00 \$ 25.00	\$1,200/Acre \$ 300/Slide
B. Wildlife Road Seeding	\$191.00/Ac.		\$ 19.00	\$ 90.00	\$ 300/Acre

1/ A 15% facilities support charge not included in overhead calulations has been assigned here.
2/ Includes office and field work associated with surveys, plus database updates & record keeping.
3/ The prorated cost of reprocuring aerial photography necessary during the regeneration process & database updates 4/ Includes the cost of personnel travel and transportation of the seedlings.
5/ Includes the cost of the planting contract, seedlings, coolers, and other facilities.
6/ Includes the cost of the presonnel travel and helicopter use during the firing operation.

Page 2

Personnel - Includes Contract Contract Prep and Administration Subsistence other
\$ 60.00/Ac. \$ 0.40 \$ 2.65 \$ \$277.40 \$340.09/Acre \$540.00/Proj. \$ 0.00 \$500.00 \$2,300.00 \$3,540.00/Proj.
\$ 0.40 \$ 2.65 \$277.40 PLANNING RECORD FOR DETAILED COST BREAKDOWN (including Inj. \$ 0.00 \$500.00
\$ 0.40 \$ 2.65 \$277.40 PLANNING RECORD FOR DETAILED COST BREAKDOWN (including Inj. \$ 0.00 \$500.00
3.00/Ac. \$ 0.40 \$ 2.65 \$277.40 \$340.09/Acre SEE PLANNING RECORD FOR DETAILED COST BREAKDOWN (including Inflation & OH)
\$ 0.40
\$ 0.40
\$ 2.65
Travel - FW, Other - Helicopter, Facilities, Boat, Vehicle, Equipment, ration Subsistence other

ALTERNATIVE 2

Page 1 of 6

HU2 UNIT#	UNIT ACRES	SITE	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
2001	47	0.00	0.00		0.00	0.00	47
2002	27	20.00	20.00	(RC&YC)	20.00	0.00	7
2003	40	0.00	28.00	(YC)	28.00	0.00	12
2004	30	0.00	0.00		0.00	6.00	30
2005	49	0.00	0.00		0.00	0.00	49
2006	48	0.00	0.00		0.00	0.00	48
2007	4	0.00	0.00		0.00	0.00	4
3001	20	0.00	0.00		0.00	0.00	20
3002	27	0.00	0.00		0.00	0.00	27
3003	106	0.00	0.00		0.00	21.20	106
3004	145	0.00	0.00		0.00	0.00	145
3005	32	0.00	0.00		0.00	0.00	32
3006	119	0.00	0.00		0.00	0.00	119
3007	91	0.00	0.00		0.00	0.00	91
3008	49	0.00	0.00		0.00	9.80	49
3009	24	0.00	0.00		0.00	0.00	24
3010	50	0.00	0.00		0.00	0.00	50
3011	46	0.00	0.00		0.00	7.40	46
3012	64	0.00	0.00		0.00	5.60	64
3013	27	0.00	0.00		0.00	0.00	27
3014	18	0.00	0.00		0.00	0.00	18
3015	27	0.00	0.00		0.00	0.00	27
4002	57	0.00	0.00		0.00	9.60	57
4004	17	0.00	0.00		0.00	0.00	17
5001	73	0.00	0.00		0.00	5.00	73
5002	69	0.00	0.00		0.00	0.00	69
5003	13	0.00	0.00		0.00	0.00	13
5004	72	0.00	0.00		0.00	0.00	72
5005	15	0.00	0.00		0.00	0.00	15
5006	23	0.00	0.00		0.00	0.00	23
5007	46	0.00	0.00		0.00	9.20	46
5008	62	40.00	40.00	(RC&YC)	40.00	0.00	22
5009	24	0.00	0.00		0.00	0.00	24
5010	12	0.00	0.00		0.00	0.00	12
5011	88	0.00	0.00		0.00	13.40	88
5012	11	0.00	0.00		0.00	0.00	11
5013	46	0.00	0.00		0.00	6.00	46
5014	50	0.00	0.00		0.00	0.00	50
5015	4	0.00	0.00		0.00	0.00	4
5016	24	0.00	0.00		0.00	0.00	24
5017	66	0.00	0.00		0.00	0.00	66

ALTERNATIVE 2

Page 2 of 6

HU2 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
5018	73	0.00	0.00		0.00	7.20	73
5019	41	0.00	0.00		0.00	0.00	41
5020	13	0.00	0.00		0.00	0.00	13
5021	3	0.00	0.00		0.00	0.00	3
5022	7	0.00	0.00		0.00	0.00	7
5023	101	0.00	0.00		0.00	0.00	101
6001	24	0.00	0.00		0.00	0.00	24
6002	44	0.00	0.00		0.00	0.00	44
6003	72	0.00	0.00		0.00	0.00	72
6004	78	48.00	48.00	(RC&YC)		0.00	30
6005	24	0.00	0.00		0.00	0.00	24
6006	75	0.00	0.00		0.00	0.00	75
6007	48	0.00	0.00		0.00	0.00	48
6008	74	0.00	0.00		0.00	0.00	74
6009	61	0.00	0.00		0.00	0.00	61
6010	76	0.00	0.00		0.00	10.20	76
6011	49	0.00	0.00		0.00	0.00	49
6012	54	0.00	0.00		0.00	0.00	54
6013	56	0.00	10.00	(YC)	10.00	0.00	46
6014	39	0.00	0.00		0.00	0.00	39
6015	24	0.00	0.00		0.00	0.00	24
6016	30	0.00	0.00		0.00	0.00	30
6017	24	0.00	0.00		0.00	0.00	24
6018	24	0.00	0.00		0.00	0.00	24
6019	22	0.00	0.00		0.00	0.00	22
7001	66	0.00	0.00		0.00	8.20	66
7002	33	0.00	0.00		0.00	0.00	33
7003	37	0.00	0.00		0.00	0.00	37
7004	22	0.00	0.00		0.00	0.00	22
7005	26	0.00	0.00		0.00	0.00	26
7006	32	0.00	0.00		0.00	0.00	32
7007	16	0.00	0.00		0.00	0.00	16
7008	14	0.00	0.00		0.00	0.00	14
7009	45	0.00	0.00		0.00	0.00	45
7010	27	0.00	0.00		0.00	0.00	27
7011	27	0.00	0.00		0.00	5.40	27
7012	44	25.00	25.00	(RC&YC)	25.00	0.00	19
7013	45	0.00	0.00		0.00	0.00	45
7014	37	0.00	0.00		0.00	0.00	37
7015	13	0.00	0.00		0.00	0.00	13
7016	18	0.00	0.00		0.00	0.00	18

ALTERNATIVE 2

Page 3 of 6

HU2 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
7017	70	0.00	47.00	(YC)	47.00	0.00	23
7018	39	0.00	14.00	(YC)	14.00	0.00	25
7019	30	0.00	0.00		0.00	0.00	30
7020	18	0.00	0.00		0.00	0.00	18
7021	59	0.00	0.00		0.00	6.00	59
7022	32	0.00	0.00		0.00	0.00	32
7023	74	0.00	0.00		0.00	0.00	74
7024	26	0.00	0.00		0.00	0.00	26
7025	20	0.00	0.00		0.00	0.00	20
7026	69	0.00	0.00		0.00	0.00	69
7027	35	0.00	0.00		0.00	0.00	35
7028	14	0.00	0.00		0.00	0.00	14
7029	17	0.00	0.00		0.00	0.00	17
7030	44	0.00	0.00		0.00	0.00	44
7031	35	0.00	0.00		0.00	0.00	35
7032	58	0.00	0.00		0.00	0.00	58
7033	33	0.00	0.00		0.00	0.00	33
7034	24	0.00	16.00	(YC)	16.00	0.00	8
7035	32	0.00	0.00		0.00	0.00	32
7036	46	0.00	0.00		0.00	5.20	46
7037	35	0.00	0.00		0.00	0.00	35
7038	52	0.00	0.00		0.00	0.00	52
7039	11	0.00	0.00		0.00	0.00	11
8001	27	0.00	0.00		0.00	0.00	27
8002	4	0.00	0.00		0.00	0.00	4
8003	68	0.00	0.00		0.00	0.00	68
8004	17	0.00	0.00		0.00	0.00	17
8005	36	0.00	0.00		0.00	0.00	36
8006	86	0.00	0.00		0.00	0.00	86
8007	54	0.00	0.00		0.00	0.00	54
8008	58	0.00	0.00		0.00	0.00	58
8009	46	0.00	0.00		0.00	0.00	46
8010	38	0.00	0.00		0.00	0.00	38
8011	62	0.00	0.00		0.00	0.00	62
8012	51	21.00		(RC&YC)	21.00	0.00	30
8013	39	0.00	0.00		0.00	0.00	39
8014	26	0.00	0.00		0.00	0.00	26
8015	19	0.00	0.00		0.00	0.00	19
8016	40	0.00	0.00		0.00	0.00	40
8017	35	0.00	0.00		0.00	5.60	35
8018	75	0.00	0.00		0.00	0.00	75

ALTERNATIVE 2

Page 4 of 6

HU2 UNIT#	UNIT ACRES	SITE PREP	PLANT	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
8019	34	0.00	0.00	0.00	6.80	34
8020	23	0.00	0.00	0.00	0.00	23
8021	24	0.00	0.00	0.00	0.00	24
8022	68	0.00	0.00	0.00	0.00	68
8023	89	0.00	0.00	0.00	0.00	89
8024	15	0.00	0.00	0.00	0.00	15
8025	43	0.00	0.00	0.00	0.00	43
8026	19	0.00	0.00	0.00	0.00	19
8027	56	0.00	0.00	0.00	0.00	56
8028	7	0.00	0.00	0.00	0.00	7
8029	106	0.00	0.00	0.00	12.80	106
8030	14	0.00	0.00	0.00	0.00	14
8031	11	0.00	0.00	0.00	0.00	11
8032	17	0.00	0.00	0.00	0.00	17
8033	8	0.00	0.00	0.00	0.00	8
8034	39	0.00	0.00	0.00	5.20	39
8035	90	0.00	0.00	0.00	16.40	90
8036	27	0.00	0.00	0.00	0.00	27
8037	90	0.00	0.00	0.00	18.00	90
8038	134	0.00	0.00	0.00	20.00	134
8039	29	0.00	0.00	0.00	0.00	29
8040	103	0.00	0.00	0.00	11.40	103
8041	44	0.00	0.00	0.00	0.00	44
8042	70	0.00	0.00	0.00	0.00	70
8043	24	0.00	0.00	0.00	0.00	24
8044	33	0.00	0.00	0.00	0.00	33
8045	10	0.00	0.00	0.00	0.00	10
8046	37	0.00	0.00	0.00	0.00	37
8047	15	0.00	0.00	0.00	0.00	15
8048	37	0.00	0.00	0.00	0.00	37
8049	12	0.00	0.00	0.00	0.00	12
8050	9	0.00	0.00	0.00	0.00	9
8051	47	0.00	0.00	0.00	9.40	47
8052 8053	19	0.00	0.00	0.00	0.00	19
	90 62	0.00	0.00	0.00	9.60	90
8054		0.00	0.00	0.00	0.00	62
8055 9001	43 53	0.00 0.00	0.00	0.00	8.60	43
			0.00	0.00	0.00	53
9002 9003	19 25	0.00	0.00	0.00	0.00	19 25
	25	0.00	0.00	0.00	5.00	25
9004	28	0.00	0.00	0.00	0.00	28

ALTERNATIVE 2

Page 5 of 6

HU2 UNIT#	UNIT ACRES	SITE	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
9005	61	0.00	0.00		0.00	0.00	61
9006	13	0.00	0.00		0.00	0.00	13
9007	11	0.00	0.00		0.00	0.00	11
9008	27	0.00	0.00		0.00	0.00	27
9009	62	0.00	0.00		0.00	5.00	62
9010	22	0.00		(SS)	5.00	0.00	17
9011	14	0.00	0.00		0.00	0.00	14
9012	47	0.00	16.00	(YC)	16.00	6.00	31
9013	14	0.00	0.00		0.00	0.00	14
9014	44	0.00	0.00		0.00	0.00	44
9015	19	0.00	0.00		0.00	0.00	19
9016	24	0.00	0.00		0.00	0.00	24
9017	16	0.00	0.00		0.00	0.00	16
9018	45	0.00	0.00		0.00	0.00	45
9019	38	0.00	0.00		0.00	0.00	38
9020	36	0.00	0.00		0.00	0.00	36
9021	25	0.00	0.00		0.00	0.00	25
9022	47	0.00	0.00		0.00	0.00	47
9023	49	0.00	0.00		0.00	0.00	49
9024	31	0.00	0.00		0.00	0.00	31
9025	35	0.00	0.00		0.00	0.00	35
9026	38	0.00	0.00		0.00	0.00	38
9027	63	0.00	20.00	(SS)	20.00	8.60	43
9028	23	0.00	23.00	(SS)	23.00	0.00	0
9029	103	0.00	30.00	(SS)	30.00	10.60	73
9030	57	0.00	0.00		0.00	6.80	57
9031	52	0.00	0.00		0.00	7.80	52
9032	31	0.00	0.00		0.00	0.00	31
9033	16	0.00	0.00		0.00	0.00	16
9034	36	0.00	0.00		0.00	7.20	36
9035	16	0.00	0.00		0.00	0.00	16
9036	26	0.00	0.00		0.00	0.00	26
9037	21	0.00	0.00		0.00	0.00	21
9038	114	0.00	0.00		0.00	10.80	114
9039	69	0.00	0.00		0.00	13.80	69
9040	40	0.00	0.00		0.00	0.00	40
9041	19	0.00	0.00		0.00	0.00	19
9042	19	0.00	0.00		0.00	0.00	19
9043	21	0.00	0.00		0.00	0.00	21
9044	70	0.00	0.00		0.00	5.40	70

ALTERNATIVE 2

Page 6 of 6

HU2	UNIT	SITE	PLANT	PLANT	RELEASE	REGEN
UNIT#	ACRES	PREP		SURVEY	& WEED	SURVEY
9045	85	0.00	0.00	0.00	11.80	85
9046	42	0.00	0.00	0.00	0.00	42
9047	67	0.00	0.00	0.00	5.60	67
,	8,585	154.00	363.00	363.00	357.60	8.222

ALTERNATIVE 3

Page 1 of 4

HU3 UNIT#	UNIT ACRES	SITE PREP	PLANT	r 	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
3005	32	0.00	0.00		0.00	0.00	32
3006	119	0.00	0.00		0.00	0.00	119
3014	18	0.00	0.00		0.00	0.00	18
3016	20	0.00	0.00		0.00	0.00	20
3017	38	0.00	0.00		0.00	0.00	38
3018	53	0.00	0.00		0.00	5.60	53
3019	37	0.00	0.00		0.00	7.40	37
3020	66	0.00	0.00		0.00	0.00	66
3021	66	0.00	0.00		0.00	0.00	66
3022	76	0.00	0.00		0.00	0.00	76
4006	58	0.00	0.00		0.00	7.20	58
5005	15	0.00	0.00		0.00	0.00	15
5008	62	40.00	40.00	(RC&YC)	40.00	0.00	22
5022	7	0.00	0.00		0.00	0.00	7
5024	67	0.00	0.00		0.00	13.40	67
5025	33	0.00	0.00		0.00	0.00	33
5026	58	0.00	0.00		0.00	0.00	58
5027	103	0.00	0.00		0.00	8.60	103
5028	21	0.00	0.00		0.00	0.00	21
5029	32	0.00	0.00		0.00	0.00	32
5030	17	0.00	0.00		0.00	0.00	17
5031	2	0.00	0.00		0.00	0.00	2
5032	57	0.00	0.00		0.00	0.00	57
5033	13	0.00	0.00		0.00	0.00	13
5034	21	0.00	0.00		0.00	0.00	21
6008	74	0.00	0.00		0.00	0.00	74
6017	24	0.00	0.00		0.00	0.00	24
6020	28	0.00	0.00		0.00	0.00	28
6021	36	0.00	0.00		0.00	7.20	36
6022	22	0.00	0.00		0.00	0.00	22
6023	10	0.00	0.00		0.00	0.00	10
6024	71	0.00	0.00		0.00	0.00	71
6025	52	0.00	0.00		0.00	0.00	52
6026	117	0.00	0.00		0.00	0.00	117
6027	23	0.00	0.00		0.00	0.00	23
6028	48	26.00	26.00	(RC&YC)	26.00	0.00	22
6029	51	0.00	0.00		0.00	0.00	51
6030	56	0.00	14.00	(YC)	14.00	0.00	42
6031	127	0.00	95.00		95.00	0.00	32
6032	65	0.00	0.00		0.00	0.00	65
7003	37	0.00	0.00		0.00	0.00	37

ALTERNATIVE 3

Page 2 of 4

HU3 UNIT#	UNIT ACRES	SITE PREP	PLANT	r	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
7015	13	0.00	0.00		0.00	0.00	13
7016	18	0.00	0.00		0.00	0.00	18
7020	18	0.00	0.00		0.00	0.00	18
7040	32	0.00	0.00		0.00	6.40	32
7041	26	0.00	0.00		0.00	0.00	26
7042	70	0.00	0.00		0.00	7.60	70
7043	48	0.00	0.00		0.00	8.00	48
7044	36	0.00	0.00		0.00	5.40	36
7045	25	25.00	25.00	(RC&YC)	25.00	0.00	0
7046	35	0.00	0.00		0.00	0.00	35
7047	50	0.00	0.00		0.00	0.00	50
7048	33	0.00	26.00	(YC)	26.00	0.00	7
7049	20	0.00	20.00	(YC)	20.00	0.00	0
7050	55	0.00	24.00	(YC)	24.00	0.00	31
8002	4	0.00	0.00		0.00	0.00	4
8003	68	0.00	0.00		0.00	0.00	68
8009	46	0.00	0.00		0.00	0.00	46
8011	62	0.00	0.00		0.00	0.00	62
8014	26	0.00	0.00		0.00	0.00	26
8015	19	0.00	0.00		0.00	0.00	19
8016	40	0.00	0.00		0.00	0.00	40
8025	43	0.00	0.00		0.00	0.00	43
8030	14	0.00	0.00		0.00	0.00	14
8045	10	0.00	0.00		0.00	0.00	10
8056	64	0.00	0.00		0.00	0.00	64
8057	76	0.00	0.00		0.00	0.00	76
8058	15	0.00	0.00		0.00	0.00	15
8059	51	0.00	0.00		0.00	0.00	51
8060	36	0.00	0.00		0.00	0.00	36
8061	26	0.00	0.00		0.00	5.20	26
8062	98	0.00	0.00		0.00	0.00	98
8063	47	0.00	0.00		0.00	0.00	47
8064	53	0.00	0.00		0.00	0.00	53
8065	30	0.00	0.00		0.00	0.00	30
8066	47	0.00	0.00		0.00	0.00	47
8067	15	0.00	0.00		0.00	0.00	15
8068	33	0.00	0.00		0.00	6.60	33
8069	117	0.00	0.00		0.00	13.40	117
8070	35	35.00	35.00	(RC&YC)	35.00	0.00	0
8071	41	0.00	0.00		0.00	0.00	41
8072	39	0.00	0.00		0.00	0.00	39

ALTERNATIVE 3

Page 3 of 4

HU3 UNIT#	UNIT ACRES	SITE PREP	PLAN'	r 	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
8073	28	0.00	0.00		0.00	5.60	28
8074	45	0.00	0.00		0.00	9.00	45
8075	56	0.00	0.00		0.00	0.00	56
8076	131	0.00	0.00		0.00	20.40	131
8077	73	0.00	0.00		0.00	5.80	73
8078	35	0.00	0.00		0.00	0.00	35
8079	114	0.00	0.00		0.00	15.40	114
8080	39	0.00	0.00		0.00	0.00	39
9002	19	0.00	0.00		0.00	0.00	19
9003	25	0.00	0.00		0.00	5.00	25
9019	38	0.00	0.00		0.00	0.00	38
9021	25	0.00	0.00		0.00	0.00	25
9026	38	0.00	0.00		0.00	0.00	38
9028	23	0.00	23.00	(S)	23.00	0.00	0
9031	52	0.00	0.00		0.00	7.80	52
9037	21	0.00	0.00		0.00	0.00	21
9040	40	0.00	0.00		0.00	0.00	40
9041	19	0.00	0.00		0.00	0.00	19
9043	21	0.00	0.00		0.00	0.00	21
9044	70	0.00	0.00		0.00	5.40	70
9045	97	0.00	0.00		0.00	11.80	97
9048	65	0.00	0.00		0.00	0.00	65
9049	33	0.00	0.00		0.00	0.00	33
9050	50	0.00	0.00		0.00	0.00	50
9051	83	0.00	42.00	(S&YC)	42.00	0.00	41
9052	88	0.00	0.00		0.00	5.00	88
9053	18	0.00	0.00		0.00	0.00	18
9054	72	0.00	16.00	(YC)	16.00	7.80	56
9055	80	0.00	17.00	(S)	17.00	0.00	63
9056	30	0.00	0.00		0.00	0.00	30
9057	108	0.00	0.00		0.00	10.80	108
9058	42	0.00	0.00		0.00	7.20	42
9059	108	0.00	8.00	(S)	8.00	10.80	100
9060	30	0.00	30.00		30.00	0.00	0
9061	31	0.00	0.00	` '	0.00	0.00	31
9062	93	0.00	20.00	(S)	20.00	8.60	68
9063	16	0.00	0.00		0.00	0.00	16
9064	83	0.00	0.00		0.00	0.00	83
9065	17	0.00	0.00		0.00	0.00	17
9066	24	0.00	0.00		0.00	0.00	24

ALTERNATIVE 3

Page 4 of 4

HU3	UNIT T# ACRES	SITE PREP	PLANT	PLANT SURVEY	RELEASE & WEED	E REGEN SÜRVEY
906 906 906	8 12	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	71 12 40
	5,769	126.00	461.00	461.00	241.20	5,308

ALTERNATIVE 4

Page 1 of 4

HU4 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
3006	119	0.00	0.00		0.00	0.00	119
3007	91	0.00	0.00		0.00	0.00	91
3010	50	0.00	0.00		0.00	0.00	50
3020	66	0.00	0.00		0.00	0.00	66
3023	50	0.00	0.00		0.00	0.00	50
3024	73	0.00	0.00		0.00	14.60	73
3035	68	0.00	0.00		0.00	0.00	68
3036	37	0.00	0.00		0.00	0.00	37
3037	43	0.00	0.00		0.00	0.00	43
3038	43	0.00	0.00		0.00	0.00	43
3039	80	0.00	0.00		0.00	10.60	80
4002	57	0.00	0.00		0.00	9.60	57
4004	17	0.00	0.00		0.00	0.00	17
4007	95	0.00	0.00		0.00	9.00	95
5001	73	0.00	0.00		0.00	5.00	73
5003	13	0.00	0.00		0.00	0.00	13
5019	41	0.00	0.00		0.00	0.00	41
5021	3	0.00	0.00		0.00	0.00	3
5022	7	0.00	0.00		0.00	0.00	7
5023	101	0.00	0.00		0.00	0.00	101
5028	21	0.00	0.00		0.00	0.00	21
5037	45	0.00	0.00		0.00	0.00	45
5038	61	0.00	0.00		0.00	12.20	61
5044	31	0.00	0.00		0.00	6.20	31
5050	55	0.00	0.00		0.00	0.00	55
5051	146	0.00	0.00		0.00	0.00	146
5052	37	0.00	0.00		0.00	0.00	37
5053	14	0.00	0.00		0.00	0.00	14
5054	13	0.00	0.00		0.00	0.00	13
5055	39	0.00	0.00		0.00	0.00	39
5056	51	0.00	0.00		0.00	0.00	51
6002	44	0.00	0.00		0.00	0.00	44
6003	72	0.00	0.00		0.00	0.00	72
6004	78	48.00	48.00	(RC&YC)	48.00	0.00	30
6007	48	0.00	0.00		0.00	0.00	48
6014	39	0.00	0.00		0.00	0.00	39
6017	24	0.00	0.00		0.00	0.00	24
6024	71	0.00	0.00		0.00	0.00	71
6028	48	26.00	26.00	(RC&YC)	26.00	0.00	22
6029	51	0.00	0.00		0.00	0.00	51
6031	127	0.00	95.00	(YC)	95.00	0.00	32

ALTERNATIVE 4

Page 2 of 4

HU4 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
6038	22	0.00	0.00		0.00	0.00	22
6052	86	0.00	14.00	(YC)	14.00	0.00	72
6053	25	0.00	0.00		0.00	0.00	25
6054	11	0.00	0.00		0.00	0.00	11
6055	59	0.00	0.00		0.00	8.00	59
7000	14	0.00	0.00		0.00	0.00	14
7008	14	0.00	0.00		0.00	0.00	14
7009	45	0.00	0.00		0.00	0.00	45
7015	13	0.00	0.00		0.00	0.00	13
7016	18	0.00	0.00		0.00	0.00	18
7020	18	0.00	0.00		0.00	0.00	18
7030	44	0.00	0.00		0.00	0.00	44
7031	35	0.00	0.00		0.00	0.00	35
7034	24	0.00	16.00	(YC)	16.00	0.00	8
7035	32	0.00	0.00		0.00	0.00	32
7036	46	0.00	0.00		0.00	5.20	46
7042	70	0.00	0.00		0.00	7.60	70
7044	36	0.00	0.00		0.00	5.40	36
7045	25	25.00	25.00	(RC&YC)	25.00	0.00	0
7046	35	0.00	0.00		0.00	0.00	35
7050	55	0.00	24.00	(YC)	24.00	0.00	31
7053	67	0.00	0.00		0.00	6.00	67
7056	46	0.00	0.00		0.00	9.20	46
7085	61	0.00	0.00		0.00	7.00	61
7086	63	0.00	0.00		0.00	0.00	63
7087	19	0.00	0.00		0.00	0.00	19
7088	11	0.00	0.00		0.00	0.00	11
7089	40	0.00	0.00		0.00	8.00	40
7090	9	0.00	0.00		0.00	0.00	9
7091	75	0.00	0.00		0.00	0.00	75
7092	57	0.00	0.00		0.00	9.00	57
7093	96	0.00	0.00		0.00	0.00	96
7094	134	0.00	0.00		0.00	0.00	134
7095	62	0.00	0.00		0.00	0.00	62
7096	37	0.00	0.00		0.00	0.00	37
7097	95	0.00	0.00		0.00	0.00	95
7098	28	0.00	14.00	(YC)	14.00	5.60	14
7099	15	0.00	0.00		0.00	0.00	15
8002	4	0.00	0.00		0.00	0.00	4
8003	68	0.00	0.00		0.00	0.00	68
8008	58	0.00	0.00		0.00	0.00	58

ALTERNATIVE 4

Page 3 of 4

HU4 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
8009	46	0.00	0.00		0.00	0.00	46
8011	62	0.00	0.00		0.00	0.00	62
8015	19	0.00	0.00		0.00	0.00	19
8016	40	0.00	0.00		0.00	0.00	40
8018	75	0.00	0.00		0.00	0.00	75
8025	43	0.00	0.00		0.00	0.00	43
8026	19	0.00	0.00		0.00	0.00	19
8027	56	0.00	0.00		0.00	0.00	56
8041	44	0.00	0.00		0.00	0.00	44
8060	36	0.00	0.00		0.00	0.00	36
8065	30	0.00	0.00		0.00	0.00	30
8073	28	0.00	0.00		0.00	5.60	28
8102	26	0.00	0.00		0.00	5.20	26
8109	43	0.00	0.00		0.00	8.60	43
8110	40	0.00	0.00		0.00	0.00	40
8111	14	0.00	0.00		0.00	0.00	14
8112	146	0.00	0.00		0.00	19.20	146
8113	107	0.00	0.00		0.00	15.60	107
8114	81	0.00	0.00		0.00	5.80	81
8115	81	0.00	0.00		0.00	12.20	81
8116	28	0.00	0.00		0.00	0.00	28
8117	34	0.00	0.00		0.00	0.00	34
9000	68	0.00	0.00		0.00	0.00	68
9015	19	0.00	0.00		0.00	0.00	19
9016	24	0.00	0.00		0.00	0.00	24
9026	38	0.00	0.00		0.00	0.00	38
9028	23	0.00	23.00	(S)	23.00	0.00	0
9031	52	0.00	0.00		0.00	7.80	52
9032	31	0.00	0.00		0.00	0.00	31
9039	69	0.00	0.00		0.00	13.80	69
9045	85	0.00	0.00		0.00	11.80	85
9048	65	0.00	0.00		0.00	0.00	65
9049	33	0.00	0.00		0.00	0.00	33
9050	50	0.00	0.00		0.00	0.00	50
9051	83	0.00		(S&YC)	42.00	0.00	41
9052	88	0.00	0.00		0.00	5.00	88
9053	18	0.00	0.00		0.00	0.00	18
9054	72	0.00	16.00	(YC)	16.00	0.00	56
9067	71	0.00	0.00		0.00	0.00	71
9069	40	0.00	0.00		0.00	0.00	40
9083	21	0.00	0.00		0.00	0.00	21

ALTERNATIVE 4

Page 4 of 4

HU4 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
9089	62	0.00	0.00		0.00	0.00	62
9094	55	0.00	0.00		0.00	0.00	55
9095	38	0.00	0.00		0.00	0.00	38
9096	134	0.00	0.00		0.00	10.00	134
9097	93	0.00	20.00	(S)	20.00	10.60	73
9098	55	0.00	0.00		0.00	11.00	55
9099	94	0.00	0.00		0.00	9.20	94
9100	7	0.00	0.00		0.00	0.00	7
9101	131	0.00	0.00		0.00	0.00	131
9102	20	0.00	0.00		0.00	0.00	20
9103	20	0.00	0.00		0.00	0.00	20
9104	75	0.00	0.00		0.00	5.40	75
9105	21	0.00	0.00		0.00	0.00	21
9106	17	0.00	0.00		0.00	0.00	17
	6,884	99.00	363.00		363.00	291.20	6,521

ALTERNATIVE 5

Page 1 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
2001	47	0.00	0.00		0.00	0.00	47
2003	40	0.00	28.00	(YC)	28.00	0.00	12
2006	48	0.00	0.00		0.00	0.00	48
2008	29	0.00	19.00	(YC)	19.00	0.00	10
2009	91	0.00	0.00		0.00	0.00	91
2010	21	21.00	21.00	(RC&YC)	21.00	0.00	0
2011	39	0.00	0.00		0.00	7.80	39
2012	20	0.00	0.00		0.00	0.00	20
2013	28	0.00	28.00	(S)	28.00	0.00	0
3007	91	0.00	0.00		0.00	0.00	91
3008	49	0.00	0.00		0.00	9.80	49
3011	46	0.00	0.00		0.00	7.40	46
3027	102	0.00	0.00		0.00	0.00	102
3028	21	0.00	0.00		0.00	0.00	21
3029	25	0.00	0.00		0.00	0.00	25
3030	45	0.00	0.00		0.00	0.00	45
3031	29	0.00	0.00		0.00	0.00	29
3032	32	0.00	0.00		0.00	0.00	32
3033	62	0.00	0.00		0.00	5.60	62
3034	38	0.00	0.00		0.00	0.00	38
3035	-68	0.00	0.00		0.00	0.00	68
3036	37	0.00	0.00		0.00	0.00	37
4002	57	0.00	0.00		0.00	9.60	57
4004	17	0.00	0.00		0.00	0.00	17
4007	95	0.00	0.00		0.00	9.00	95
5003	13	0.00	0.00		0.00	0.00	13
5005	15	0.00	0.00		0.00	0.00	15
5008	62	40.00	40.00	(RC&YC)	40.00	0.00	22
5012	11	0.00	0.00		0.00	0.00	11
5018	73	0.00	0.00		0.00	7.20	73
5019	27	0.00	0.00		0.00	0.00	27
5021	3	0.00	0.00		0.00	0.00	3
5022	7	0.00	0.00		0.00	0.00	7
5028	21	0.00	0.00		0.00	0.00	21
5034	21	0.00	0.00		0.00	0.00	21
5039	58	0.00	0.00		0.00	9.20	58
5040	18	0.00	0.00		0.00	0.00	18
5041	15	0.00	0.00		0.00	0.00	15
5042	46	0.00	0.00		0.00	0.00	46
5043	28	0.00	0.00		0.00	0.00	28
5044	31	0.00	0.00		0.00	6.20	31

ALTERNATIVE 5

Page 2 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
5046	38	0.00	0.00		0.00	0.00	38
5047	27	0.00	0.00		0.00	0.00	27
5048	28	0.00	0.00		0.00	0.00	28
5049	14	0.00	0.00		0.00	0.00	14
5050	5	0.00	0.00		0.00	0.00	5
5051	2	0.00	0.00		0.00	0.00	2
6002	44	0.00	0.00		0.00	0.00	44
6027	37	0.00	0.00		0.00	0.00	37
6033	14	0.00	0.00		0.00	0.00	14
6034	13	0.00	0.00		0.00	0.00	13
6035	44	14.00		(RC&YC)	14.00	0.00	30
6036	22	0.00	0.00		0.00	0.00	22
6037	23	0.00	0.00		0.00	0.00	23
6038	22	0.00	0.00		0.00	0.00	22
6039	30	0.00	0.00		0.00	0.00	30
6040	34	34.00	34.00	(RC&YC)	34.00	0.00	0
6041	89	0.00	68.00	(YC)	68.00	0.00	21
6042	11	0.00	0.00		0.00	0.00	11
6043	11	0.00	0.00		0.00	0.00	11
6044	17	0.00	0.00		0.00	0.00	17
6045	18	0.00	0.00		0.00	0.00	18
6046	15	0.00	0.00		0.00	0.00	15
6047	19	0.00	0.00		0.00	0.00	19
6048	44	0.00	0.00		0.00	0.00	44
6049	20	0.00	0.00		0.00	0.00	20
6050	42	0.00	0.00		0.00	0.00	42
6051	56	0.00	0.00		0.00	0.00	56
7001	66	0.00	0.00		0.00	8.20	66
7002	33	0.00	0.00		0.00	0.00	33
7003	37	0.00	0.00		0.00	0.00	37
7004	22	0.00	0.00		0.00	0.00	22
7005	26	0.00	0.00		0.00	0.00	26
7007	16	0.00	0.00		0.00	0.00	16
7008	14	0.00	0.00		0.00	0.00	14
7012	44	25.00	25.00	(RC&YC)	25.00	0.00	19
7015	13	0.00	0.00		0.00	0.00	13
7016	18	0.00	0.00		0.00	0.00	18
7018	39	0.00	14.00	(YC)	14.00	0.00	25
7019	30	0.00	0.00		0.00	0.00	30
7020	18	0.00	0.00		0.00	0.00	18
7021	59	0.00	0.00		0.00	6.00	59

ALTERNATIVE 5

Page 3 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
7025	20	0.00	0.00		0.00	0.00	20
7028	14	0.00	0.00		0.00	0.00	14
7029	17	0.00	7.00	(YC)	7.00	0.00	10
7031	35	0.00	0.00		0.00	0.00	35
7032	58	0.00	0.00		0.00	0.00	58
7034	24	0.00	16.00	(YC)	16.00	0.00	8
7047	50	0.00	0.00		0.00	0.00	50
7054	16	0.00	0.00		0.00	0.00	16
7055	54	0.00	0.00		0.00	10.80	54
7056	66	0.00	0.00		0.00	9.20	66
7057	11	0.00	0.00		0.00	0.00	11
7058	49	0.00	0.00		0.00	6.20	49
7059	13	0.00	0.00		0.00	0.00	13
7060	15	0.00	0.00		0.00	0.00	15
7061	9	0.00	0.00		0.00	0.00	9
7062	24	0.00	0.00		0.00	0.00	24
7063	9	0.00	0.00		0.00	0.00	9
7064	7	0.00	0.00		0.00	0.00	7
7066	21	0.00	0.00		0.00	0.00	21
7067	18	0.00	0.00		0.00	0.00	18
7068	26	0.00	0.00		0.00	0.00	26
7069	17	0.00	0.00		0.00	0.00	17
7070	50	0.00	0.00		0.00	10.00	50
7071	30	0.00	0.00		0.00	0.00	30
7072	15	0.00	0.00		0.00	0.00	15
7073	63	0.00	0.00		0.00	0.00	63
7074	78	0.00	0.00		0.00	0.00	78
7075	26	0.00	26.00		26.00	0.00	0
7076	33	13.00		(RC&YC)	13.00	0.00	20
7077	15	0.00	0.00		0.00	0.00	15
7078	16	0.00	0.00		0.00	0.00	16
7079	6	0.00	0.00		0.00	0.00	6
7080	50	0.00	0.00		0.00	0.00	50
7081	11	0.00	0.00		0.00	0.00	11
7082	8	0.00	0.00		0.00	0.00	8
7083	9	0.00	0.00		0.00	0.00	9
7084	42	0.00	0.00		0.00	0.00	42
8005	36	0.00	0.00		0.00	0.00	36
8008	58	0.00	0.00		0.00	0.00	58
8009	46	0.00	0.00		0.00	0.00	46
8011	62	0.00	0.00		0.00	0.00	62

ALTERNATIVE 5

Page 4 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT	PLANT SURVEY	RELEASE & WEED	REGEN
8014	26	0.00	0.00	0.00	0.00	26
8015	19	0.00	0.00	0.00	0.00	19
8025	43	0.00	0.00	0.00	0.00	43
8026	19	0.00	0.00	0.00	0.00	19
8027	56	0.00	0.00	0.00	0.00	56
8028	7	0.00	0.00	0.00	0.00	7
8035	90	0.00	0.00	0.00	16.40	90
8041	44	0.00	0.00	0.00	0.00	44
8044	33	0.00	0.00	0.00	0.00	33
8046	37	0.00	0.00	0.00	0.00	37
8048	37	0.00	0.00	0.00	0.00	37
8070	35	35.00	35.00	(RC&YC) 35.00	0.00	0
8073	28	0.00	0.00	0.00	5.60	28
8077	61	0.00	0.00	0.00	5.80	61
8082	21	0.00	0.00	0.00	0.00	21
8083	26	0.00	0.00	0.00	0.00	26
8084	24	0.00	0.00	0.00	0.00	24
8085	6	0.00	0.00	0.00	0.00	6
8086	86	0.00	0.00	0.00	0.00	86
8087	21	0.00	0.00	0.00	0.00	21
8808	52	0.00	0.00	0.00	0.00	52
8089	42	0.00	0.00	0.00	0.00	42
8090	20	0.00	0.00	0.00	0.00	20
8091	44	0.00	0.00	0.00	0.00	44
8092	42	0.00	0.00	0.00	0.00	42
8093	48	0.00	0.00	0.00	0.00	48
8094	15	0.00	0.00	0.00	0.00	15
8095	14	0.00	0.00	0.00	0.00	14
8096	17	0.00	0.00	0.00	0.00	17
8097	8	0.00	0.00	0.00	0.00	8
8098	84	0.00	0.00	0.00	0.00	84
8099	11	0.00 0.00	0.00	0.00	0.00 0.00	11
8100	54 10	0.00	0.00	0.00		54 18
8101 8102	18 26	0.00	0.00	0.00	0.00 5.20	
8102	26 22	0.00	0.00	0.00	0.00	26 22
8103	135	0.00	0.00	0.00	21.20	135
8105	35	0.00	0.00	0.00	0.00	35
8106	43	0.00	0.00	0.00	0.00	43
8107	31	0.00	0.00	0.00	0.00	31
8108	34	0.00	0.00	0.00	0.00	34
0100	0.4	0.00	3.00	0.00	3.00	J 1

ALTERNATIVE 5

Page 5 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
9004	28	0.00	0.00		0.00	0.00	28
9006	13	0.00	0.00		0.00	0.00	13
9008	27	0.00	0.00		0.00	0.00	27
9010	22	0.00	5.00	(S)	5.00	0.00	17
9013	14	0.00	0.00		0.00	0.00	14
9014	44	0.00	0.00		0.00	4.60	44
9015	19	0.00	0.00		0.00	0.00	19
9016	24	0.00	0.00		0.00	0.00	24
9018	45	0.00	0.00		0.00	0.00	45
9021	25	0.00	0.00		0.00	0.00	25
9022	47	0.00	0.00		0.00	0.00	47
9026	38	0.00	0.00		0.00	0.00	38
9027	63	0.00	20.00	(S)	20.00	0.00	43
9031	52	0.00	0.00		0.00	7.80	52
9034	36	0.00	0.00		0.00	7.20	36
9039	69	0.00	0.00		0.00	13.80	69
9043	21	0.00	0.00		0.00	0.00	21
9049	33	0.00	0.00		0.00	0.00	33
9053	18	0.00	0.00		0.00	0.00	18
9057	108	0.00	0.00		0.00	10.80	108
9068	12	0.00	0.00		0.00	0.00	12
9069	40	0.00	0.00		0.00	0.00	40
9075	56	0.00	0.00		0.00	5.40	56
9076	35	0.00	0.00		0.00	0.00	35
9077	51	0.00	0.00		0.00	0.00	51
9078	15	0.00	0.00		0.00	0.00	15
9079	62	0.00	0.00		0.00	5.00	62
9080	28	0.00	0.00		0.00	0.00	28
9081	8	0.00	0.00		0.00	0.00	8
9082	40	0.00	0.00		0.00	0.00	40
9083	21	0.00	0.00		0.00	0.00	21
9084	144	0.00	0.00		0.00	10.00	144
9085	66	0.00	61.00	(S)	61.00	0.00	5
9086	32	0.00	0.00	. ,	0.00	0.00	32
9087	69	0.00	46.00	(S)	46.00	0.00	23
9088	14	0.00	0.00	` '	0.00	0.00	14
9089	62	0.00	0.00		0.00	0.00	62

ALTERNATIVE 5

Page 6 of 6

HU5 UNIT#	UNIT ACRES	SITE PREP	PLANT	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
9090	24	0.00	0.00	0.00	0.00	24
9091	76	0.00	0.00	0.00	0.00	76
9092	20	0.00	0.00	0.00	0.00	20
9093	6	0.00	0.00	0.00	0.00	6
	7,168	182.00	520.00	520.00	242.20	6,648

ALTERNATIVE 6

Page 1 of 4

HU6 UNIT#	UNIT ACRES	SITE PREP	PLANT	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
3005	32	0.00	0.00	0.00	0.00	32
3006	119	0.00	0.00	0.00	0.00	119
3010	50	0.00	0.00	0.00	0.00	50
3014	18	0.00	0.00	0.00	0.00	18
3016	20	0.00	0.00	0.00	0.00	20
3019	37	0.00	0.00	0.00	7.40	37
3020	66	0.00	0.00	0.00	0.00	66
3021	66	0.00	0.00	0.00	0.00	66
3022	76	0.00	0.00	0.00	0.00	76
3023	50	0.00	0.00	0.00	0.00	50
3024	73	0.00	0.00	0.00	14.60	73
3025	84	0.00	0.00	0.00	5.60	84
3026	91	0.00	0.00	0.00	10.60	91
4006	58	0.00	0.00	0.00	7.20	58
5008	62	40.00	40.00 (RC&YC)	40.00	0.00	22
5022	7	0.00	0.00	0.00	0.00	7
5024	67	0.00	0.00	0.00	13.40	67
5025	33	0.00	0.00	0.00	0.00	33
5026	58	0.00	0.00	0.00	0.00	58
5027	103	0.00	0.00	0.00	8.60	103
5028	21	0.00	0.00	0.00	0.00	21
5029	32	0.00	0.00	0.00	0.00	32
5030	17	0.00	0.00	0.00	0.00	17
5031	2	0.00	0.00	0.00	0.00	2
5032	57	0.00	0.00	0.00	0.00	57
5033	13	0.00	0.00	0.00	0.00	13
5034	21	0.00	0.00	0.00	0.00	21
5035	36	0.00	0.00	0.00	7.20	36
5036	95	0.00	0.00	0.00	0.00	95
5037	45	0.00	0.00	0.00	0.00	45
5038	61	0.00	0.00	0.00	12.20	61
6002	44	0.00	0.00	0.00	0.00	44
6003	72	0.00	0.00	0.00	0.00	72
6008	74	0.00	0.00	0.00	0.00	74
6011	49	0.00	0.00	0.00	0.00	49
6017	24	0.00	0.00	0.00	0.00	24
6020	28	0.00	0.00	0.00	0.00	28
6021	36	0.00	0.00	0.00	7.20	36
6022	22	0.00	0.00	0.00	0.00	22
6023	10	0.00	0.00	0.00	0.00	10
6024	71	0.00	0.00	0.00	0.00	71

ALTERNATIVE 6

Page 2 of 4

HU6 UNIT#	UNIT ACRES	SITE PREP	PLANT	י	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
6025	52	0.00	0.00		0.00	0.00	52
6027	37	0.00	0.00		0.00	0.00	37
6028	48	26.00	26.00	(RC&YC)	26.00	0.00	22
6029	51	0.00	0.00		0.00	0.00	51
6030	56	0.00	14.00	(YC)	14.00	0.00	42
6031	127	0.00	95.00	(YC)	95.00	0.00	32
6032	65	34.00	34.00	(RC&YC)	34.00	0.00	31
7009	45	0.00	0.00		0.00	0.00	45
7015	13	0.00	0.00		0.00	0.00	13
7016	18	0.00	0.00		0.00	0.00	18
7020	18	0.00	0.00		0.00	0.00	18
7040	32	0.00	0.00		0.00	6.40	32
7041	26	0.00	0.00		0.00	0.00	26
7042	70	0.00	0.00		0.00	7.60	70
7043	48	0.00	0.00		0.00	8.00	48
7044	36	0.00	0.00		0.00	5.40	36
7045	25	25.00	25.00	(RC&YC)	25.00	0.00	0
7046	35	0.00	0.00		0.00	0.00	35
7047	50	0.00	0.00		0.00	0.00	50
7048	33	0.00	26.00	(YC)	26.00	0.00	7
7050	55	0.00	24.00	(YC)	24.00	0.00	31
7052	48	0.00	34.00	(YC)	34.00	0.00	44
7053	67	0.00	0.00		0.00	0.00	64
7057	65	0.00	0.00		0.00	0.00	65
8002	4	0.00	0.00		0.00	0.00	4
8003	68	0.00	0.00		0.00	0.00	68
8014	26	0.00	0.00		0.00	0.00	26
8015	19	0.00	0.00		0.00	0.00	19
8016	40	0.00	0.00		0.00	0.00	40
8025	43	0.00	0.00		0.00	0.00	43
8026	19	0.00	0.00		0.00	0.00	19
8027	56	0.00	0.00		0.00	0.00	56
8030	14	0.00	0.00		0.00	0.00	14
8045	10	0.00	0.00		0.00	0.00	10
8056	64	0.00	0.00		0.00	0.00	58
8057	76	0.00	0.00		0.00	0.00	55
8058	15	0.00	0.00		0.00	0.00	15
8059	51	0.00	0.00		0.00	0.00	51
8060	36	0.00	0.00		0.00	0.00	36
8061	26	0.00	0.00		0.00	5.20	21
8063	47	0.00	0.00		0.00	0.00	47

ALTERNATIVE 6

Page 3 of 4

HU6 UNIT#	UNIT ACRES	SITE	PLANT	·	PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
8064	53	0.00	0.00		0.00	0.00	53
8065	30	0.00	0.00		0.00	0.00	30
8067	15	0.00	0.00		0.00	0.00	15
8068	33	0.00	0.00		0.00	6.60	33
8069	117	0.00	0.00		0.00	13.40	117
8071	41	0.00	0.00		0.00	0.00	41
8072	39	0.00	0.00		0.00	0.00	39
8073	28	0.00	0.00		0.00	5.60	28
8074	45	0.00	0.00		0.00	9.00	45
8075	56	0.00	0.00		0.00	0.00	56
8076	131	0.00	0.00		0.00	20.40	131
8077	73	0.00	0.00		0.00	5.80	73
8078	35	0.00	0.00		0.00	0.00	35
8080	39	0.00	0.00		0.00	0.00	39
8081	82	0.00	0.00		0.00	0.00	82
8082	93	0.00	0.00		0.00	11.20	93
9002	19	0.00	0.00		0.00	0.00	19
9003	25	0.00	0.00		0.00	5.00	25
9019	38	0.00	0.00		0.00	0.00	38
9021	25	0.00	0.00		0.00	0.00	25
9022	47	0.00	0.00		0.00	0.00	47
9026	38	0.00	0.00	(0)	0.00	0.00	38
9028	23	0.00		(S)	23.00	0.00	0
9031	52	0.00	0.00		0.00	7.80	52
9037	21	0.00	0.00		0.00	0.00	21 40
9040	40	0.00	0.00		0.00	0.00	
9041	19	0.00	0.00		0.00	0.00	19 21
9043	21	0.00	0.00		0.00	5.40	70
9044 9045	70	0.00 0.00	0.00		0.00	11.80	97
	97 65	0.00	0.00		0.00	0.00	65
9048 9049	33	0.00	0.00		0.00	0.00	33
9050	50	0.00	0.00		0.00	0.00	50
9051	83	0.00		(S&YC)	42.00	0.00	41
9052	88	0.00	0.00	(3010)	0.00	5.00	88
9052	18	0.00	0.00		0.00	0.00	18
9054	72	0.00	16.00	(YC)	16.00	0.00	56
9055	80	0.00	17.00	(S)	17.00	0.00	63
9056	30	0.00	0.00	(5)	0.00	0.00	30
9057	108	0.00	0.00		0.00	10.80	108
9058	42	0.00	0.00		0.00	7.20	42
7030	74	0.00	0.00		0.00	,	

ALTERNATIVE 6

Page 4 of 4

HU6 UNIT#	UNIT ACRES	SITE PREP	PLANT		PLANT SURVEY	RELEASE & WEED	REGEN SURVEY
9059	108	0.00	8.00	(S)	8.00	10.80	100
9060	30	0.00	30.00	(S)	30.00	0.00	0
9061	31	0.00	0.00		0.00	0.00	31
9062	93	0.00	20.00	(S)	20.00	0.00	73
9064	83	0.00	0.00		0.00	0.00	83
9065	17	0.00	0.00		0.00	0.00	17
9067	71	0.00	0.00		0.00	0.00	71
9068	12	0.00	0.00		0.00	0.00	12
9069	40	0.00	0.00		0.00	0.00	40
9070	93	0.00	0.00		0.00	13.80	93
9071	72	0.00	0.00		0.00	0.00	72
9073	50	0.00	0.00		0.00	0.00	50
9074	55	0.00	0.00		0.00	11.00	55
	6,676	125.00	474.00		474.00	287.20	6,202

Appendix J

Mitigation and Monitoring Measures

DRAFT

APPENDIX J TABLE J-2

MITIGATION MEASURES WATERSHED

Timber Management Requiring
Mitigation Measures
Areas Requiring Full or Partial Suspension
(Soil and Water Conservation Practice)

Harvest Unit Number	Areas of Harvest on MMI=3 Soils (P 13.5) Acres	Areas Requiring Partial or Full Suspension (P 13.9) Acres	Areas of Wetlands (P 13.15) Acres	Areas of McGilvery Soils (P 13.19) Acres	Alternatives Included In
2001	33	47	9	34	2,5
2001	27	26	0	26	2
2002	0	40	0	0	2,5
2004	0	20	8	12	2
2005	34	41	7	34	2
2006	46	49	49	0	2
2007	4	4	4	0	2
2008*	23	29	29	0	5
2009	71	91	81	10	5
2010	22	29	29	0	5
2011	20	38	19	20	5
2012	7	20	6	7	5
2013	6	12	0	6	5
3001	3	20	9	11	2
3002	26	27	26	0	2
3003	9	106	20	97	2
3004*	144	144	1	82	2,3
3005	32	32	0	0	2,3,6
3006	117	119	2	0	2,3,4,6
3007*	0	90	82	8	2,4,5
3008	29	49	13	0	2,5
3009*	0	24	23	1	2
3010	32	50	14	5	2,4,6
3011*	10	25	0	15	2,5
3012	27	31	4	0	2
3013	2	3	1	0	2
3014*	0	12	12	0	2,3,6
3015*	0	4	4	0	2,3
3016*	0	2	2	0	3,6
3017	12	13	1	0	3
3018*	10	14	4	0	3

3020 64 65 1 0 4,6 3021* 0 23 0 0 3,6 3022 0 75 67 8 3,6 3023 0 50 0 0 4,6 3025* 27 31 4 0 6 3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 1 0 0 5 3031 28 29 1 0 5 3032 2 0 5 3032 23 32 9 0 5 3033* 10 14 4 0 5 3033* 10 14 4 0 5 3033* 1 0 4,5 3033* 1 0 4,5 3033*	3019	0	19	0	0	3,6
3021* 0 23 0 0 3,6 3023 0 50 0 0 4,6 3024 0 24 0 0 4,6 3025* 27 31 4 0 6 3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 1 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3033 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17	3020	64	65		0	
3022 0 50 50 0 0 4,6 3023 0 50 0 0 4,6 3025* 27 31 4 0 6 3026* 0 64 0 0 0 6 3027 100 101 1 177 5 3028 21 21 0 0 0 5 3029 25 25 25 1 0 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 0 5 3032* 23 32 9 0 5 3033* 10 14 4 4 0 5 3034 12 13 1 0 0 5 3034 12 13 1 0 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 0 4,5 3037 42 42 42 0 42 42 42 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3039 51 52 1 0 0 4,5 3030 3,6 4004 0 17 9 8 2,4,5 5001 43 48 38 0 2,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 0 2,4,4,5 5001 43 48 38 22 66 2 5002* 5 73 61 17 2 5004 7 71 11 60 2 5005* 0 15 2 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,5 5008 0 62 0 62 2,3,5 5008 0 62 0 62 2,3,5 5008 0 62 0 0 62 2,3,5 5011* 0 88 22 66 2 5012* 6 11 6 93 2,4,5 5011* 0 88 22 66 2 5012* 6 11 6 93 2,4,5 5011* 0 13 0 13 2 5026* 0 13 0 0 3,6 5026* 0 32 0 0 0 3,6 5027* 0 26 0 0 0 3,6 5028 0 0 22 4 18 3,4,5,6 5020* 13 31 14 25 3,6 5020* 13 31 14 25 3,6 5020* 13 31 14 25 3,6 5020* 13 31 14 25 3,6	3021*	0	23	0	0	
3023 0 50 0 4,6 3025* 27 31 4 0 4,6 3025* 27 31 4 0 6 3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3030 44 46 2 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3037 42 2 0 4 4	3022	0	75	67		
3024 0 24 0 0 4,6 3025* 27 31 4 0 6 3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 25 1 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3032* 23 32 9 0 5 3033* 10 14 4 0 5 3034 12 13 1 0 4,5 3037 1 0 4,5 3038 19 20 2 0 42 <t< td=""><td></td><td>0</td><td></td><td></td><td></td><td></td></t<>		0				
3025* 27 31 4 0 6 3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 1 0 0 5 3030 44 46 2 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3033 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3039 51 52 1 0 4,5 3039 51 52 1<		0				
3026 0 64 0 0 6 3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 25 1 0 2,5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3032 23 32 9 0 5 3033* 10 14 4 0 5 3034 12 13 1 0 5 3037 42 42 0 42 4 3038 19 20 2 0 4 4 4002 11 57 16 41 2,4,5 4 4004* 0 17 9 8 2,4,5 4 <t< td=""><td></td><td>27</td><td></td><td></td><td></td><td></td></t<>		27				
3027 100 101 1 17 5 3028 21 21 0 0 5 3029 25 25 1 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 5 3032 23 32 9 0 5 3034 10 14 4 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 407 5 95 54						
3028 21 21 0 0 5 3029 25 25 1 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3031 28 29 1 0 5 3033 10 14 4 0 5 3034 12 13 1 0 5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 4002 11 57 16 41 2,4,5 4004 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 5001 43 48 38 0 2,4 5002* 5 73 61						
3029 25 25 25 1 0 2,5 3030 44 46 2 0 5 3031 28 29 1 0 5 3032 23 32 9 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006* 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002** 5						
3030 44 46 2 0 5 3031 28 29 1 0 5 3032 23 32 9 0 5 3033* 10 14 4 0 5 3035* 0 17 17 0 4,5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3038 19 20 2 0 4 3038 19 20 2 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5003* 5 73 6						
3031 28 29 1 0 5 3032 23 32 9 0 5 3033* 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5002* 5 73 61 17 2 5002* 5 73 61 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3032 23 32 9 0 5 3033* 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003** 0 13						
3033* 10 14 4 0 5 3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5 5001 43 48 38 0 2,4 5 5001** 7 71 11 60 2 2,4 5004** 7 71 11 60 2 2 1						
3034 12 13 1 0 5 3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 2 3 2,3,5 5 5 5 6 13 2,3,5 5 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
3035* 0 17 17 0 4,5 3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5005* 0 15 2 13 2,3,5 5005* 0 15 2 13 2,3,5 5006* 16 23						
3036 36 37 1 0 4,5 3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 11 60 2 2,3,5 5005* 0 15 2 13 2,3,5 5 5006* 16 23 9 14 2 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
3037 42 42 0 42 4 3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5011 0 88						
3038 19 20 2 0 4 3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 2,5 5005* 0 15 2 13 2,3,5 5 5006* 16 23 9 14 2 2 5 5007 24 46 24 21 2 2 5 5 5 13 2,3,5 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
3039 51 52 1 0 4 4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 2 5 5006* 16 23 9 14 2 2 4 5 5 5 70 14 2 2 4 4 2 3,5 5 5 5 73 6 1 1 6 2 4 2 1 0 2 4 2 1 0 2 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4002 11 57 16 41 2,4,5 4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3						
4004* 0 17 9 8 2,4,5 4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5018* 50 73 14 23						
4006 0 58 28 30 3,6 4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5018 50 73 14 23						
4007 5 95 54 36 4,5 5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5010 0 62 0 62 2,3,6 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
5001 43 48 38 0 2,4 5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017* 45 65 45 20 2 5018* 50 73 14 23						
5002* 5 73 61 17 2 5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017* 45 65 45 20 2 5018* 50 73 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
5003* 0 13 1 12 2,4 5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,4,5 5020* 0 13 <						
5004 7 71 11 60 2 5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 3 2,4,5 5021* 0 3 0 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
5005* 0 15 2 13 2,3,5 5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 3 0 3 2,4,5 5021* 0 3						
5006* 16 23 9 14 2 5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4						
5007 24 46 24 21 2 5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5025* 0 8 0 0 <						
5008 0 62 0 62 2,3,6 5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5025* 0 8 0 0 3,6 5026* 0 0 3,6 0						
5010 0 12 2 10 2 5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5022* 0 7 1 6 2,3,4,5,6 5025* 0 8 0 0 3,6 5026* 0 32		24		24		
5011 0 88 22 66 2 5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5025* 0 8 0 0 3,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6	5008	0	62	0	62	2,3,6
5012* 6 11 6 4 2,5 5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6	5010	0	12	2	10	2
5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5029* 13 31 14 25 3,6 5030 0 42 0 0	5011	0	88	22	66	2
5013* 29 47 35 41 2 5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,5,6 5025* 0 8 0 0 3,5,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5030 0 42 0 0	5012*	6	11	6	4	2,5
5014* 34 50 47 3 2 5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5030 0 42 0 0 3,6	5013*	29	47	35	41	
5015* 4 4 4 0 2 5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6	5014*	34	50		3	2
5017 45 65 45 20 2 5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 2,4,5 5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 3 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6		4		4		
5018 50 73 14 23 2,5 5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6		45		45	20	
5019* 0 41 19 23 2,4,5 5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5020* 0 13 0 13 2 5021* 0 3 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5021* 0 3 2,4,5 5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5022* 0 7 1 6 2,3,4,5,6 5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5023 6 101 6 93 2,4 5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5024 0 21 0 0 3,6 5025* 0 8 0 0 3,5,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5025* 0 8 0 0 3,5,6 5026* 0 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5026* 0 32 0 0 3,6 5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5027* 0 26 0 0 3,6 5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5028 0 22 4 18 3,4,5,6 5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5029* 13 31 14 25 3,6 5030 0 42 0 0 3,6						
5030 0 42 0 0 3,6						
5031* 0 3,6						
	5031*	U	2	U	U	3,0

5032*	0	12	0	0	3,6
5033*	0	13	0	0	3,6
5034	0	21	3	18	3,5,6
5035	29	36	4	3	6
5036*	58	95	73	22	6
5037	0	45	5	40	4,6
5038	0	61	0	0	4,6
5039	24	58	25	34	5
5040*	0	18	16	2	5
5041*	0	14	0	14	5
5042	7	45	9	42	5
5043	0	28	4	24	5
5044	0	31	4		
				27	4,5
5046*	22	38	37	36	5
5047	17	26	26	0	5
5048*	27	27	27	0	5
5049	9	14	9	0	5
5050*	0	5	0	5	4,5
5051*	0	80	0	0	4
5052	21	36	10	5	4
5053	9	14	9	0	4
5054*	13	13	13	0	4
5055*	19	39	21	9	4
5056*	37	50	50	0	4
6001*	14	28	0	14	2
6002*	0	44	7	37	2,4,5,6
6003	62	72	58	4	2,4,6
6004*	54	77	20	3	2,4
6006	0	53	0	53	2
6007	25	48	28	20	2,4
6008*	0	74	73	1	2,3,6
6009*	0	62	10	52	2
6010*	30	77	52	25	2
6011	16	50	16	34	2,6
6012*	40	53	31	0	2
6013*	46	57	9	1	2
6014	39	39	0	1	2,4
				5	
6015	17	24	19		2
6016	25	30	15	0	
6017	24	25	25	0	2,3,4,6
6018*					
6019	18	22	0	4	2
6020*	0	28	0	0	3,6
6021	0	36	0	0	3,6
6022*	0	23	0	0	3,6
6023*	0	10	0	0	3,6
6024*	0	18	0	0	3,4,6
6025*	21	28	3	4	3,6
6026*	0	58	0	0	3
6027*	0	37	0	0	3,5,6
6028*	0	46	0	0	3,4,6
6029	0	43	0	43	3,4,6
6030	0	56	0	0	3,6
6031	0	127	0	0	3,4,6
	_				

6032*	0	43	0	0	3,6
6033	7	7	0	0	5
6034*	3	4	0	1	5
6035*	20	36	16	0	5
6037	0	24	0	24	5
6038	0	24	0	0	3,4,5
6039*	0	30	18	12	5
6040*	1	34	1		
				34	5
6041	18	89	38	51	5
6042*	10	11	1	0	5
6043*	4	11	11	0	5
6044*	1	18	17	0	5
6045*	15	18	2	1	5
6046*	1	15	13	0	5
6047	19	19	0	1	5
6048	44	44	0	26	5
6049	20	20	0	2	5
6051	46	56	30	23	5
6052*	2	86	24	63	4
6053*	18	25	25	0	4
6054*	8	11	2	1	4
6055*	36	59	18	0	4
7001*	57	66	55	0	2,5
7002*	0	33	27	5	2,5
7003	0	37	36	1	2,3,5
7004*	0	22			
			21	1	2,5
7005*	9	26	1	17	2,5
7006*	10	32	32	0	2
7007*	0	16	14	2	2,5
7008*	0	15	15	0	2,4,5
	0				
7009		44	0	44	2,4,6
7010*	14	27	8	0	2
7011	14	36	22	0	2
7012*	17	45	27	2	2,5
7013*	0	45	45	0	2
7014*	0	15	12	3	2
7015*	0	13	13	0	2,3,4,5,6
7016*	11	19	4	3	2,3,4,5,6
7017*	61	69	29	0	2
7018	38	40	10	0	2,5
7019*	12	29	7	20	2,5
7020*	15	18	9	0	2,3,4,5,6
7021*	60	60	29	3	2,5
7022*	8	32	15	6	2
7023*	66	75	10	22	2
7024	25	25	1	0	2
7025	0	20	20	0	2,5
7026	69	69	0	0	2
7027	35	35	0	0	2
7028	13	13	0	0	2,5
7029*	12	17	12	5	2,5
7030*	44	44	44	0	2,4
7031	0	35	0	35	2,4,5
7032*	33	58	53	0	
7032"	33	30	55	U	2,5

7033	18	33	0	29	2
7034	22	24	24	0	2,4,5
7035*	32	32	0	0	2,4
7036	45	45	0	0	2,4
7037	34	34	0	4	2
7038	17	52	16	0	2
7040	23	31	20	1	3,6
7041*	9	26	1	17	3,6
7042*	0	70	50	20	3,4,6
7043*	0	32	0	0	3,6
7044*	14	36	22	0	3,4,6
7045*	17	26	15	2	3,4,6
7046*	0	34	0	0	3,4,6
7047*	0	33	23	10	3,5,6
7048*	29	32	17	0	3,6
7049	0	20	0	0	3
7050*	0	78	0	0	3,4,6
7052	47	48	27	0	
					6
7053	0	30	0	0	4,6
7054*	0	16	16	0	5
7055	34	54	35	0	5
7056	28	66	28	3	4,5
7057	11	11	0	0	5,6
7058*	48	50	2	30	5
7059	12	12	0	0	5
7060	15	15	0	0	5
7061*	8	8	0	8	5
7062	2	24	22	2	5
7063	9	9	0	0	5
7064*	7	7	0	0	5
7066	8	21	0	17	5
7067	15	18	0	18	5
7068	21	27	13	6	5
7069*	11	16	15	1	5
7070	50	50	0	0	5
7071	30	30	0	0	5
7072	15	15	0	0	5
7073	59	62	13	3	5
7074	75	77	11	30	5
7075*	25	26	14	0	5
7076*	30	33	13	0	5
7077	12	15	1	0	5
7078*	0	15	15	0	5
7079*	0	4	4	0	5
7080*	44	51	47	1	5
7081*	0	11	11	0	5
7081*	6	8	2	0	5
7083	5	9	4	0	5
7084*	0	1	1	0	5
7085*	0	35	0	0	4
7086	8	8	0	0	4
7088	11	11	0	0	4
7089	4	40	36	2	4
7090*	8	8	0	8	4

			_		
7091*	83	83	0	36	4
7092	30	56	0	40	4
7093*	66	97	77	7	4
7094	134	134	0	0	4
7095	53	62	9	0	4
7096	33	37	12	3	4
7097	88	94	23	44	
					4
7098	27	28	10	0	4
7099	12	15	1	1	4
8001*	4	27	26	0 .	2
8002*	4	4	0	0	3,4,6
8003*	69	69	0	0	2,3,4,6
8004*	17	17	0	0	2
8005*	2	36	0	34	2,5
8006*	76	84	8	1	2
	53	53			
8007			0	0	2
8008	58	58	0	0	2,4,5
8009	45	45	0	0	2,3,4,5
8010*	4	37	37	0	2
8011*	0	51	51	0	2,3,4,5
8012*	49	50	25	0	2
8013*	9	39	34	0	2
8014*	24	26	25	0	2,3,5,6
	12	19			
8015*			15	0	2,3,4,5,6
8016*	33	39	27	0	2,3,4,6
8017	6	36	34	0	2
8018	70	75	5	0	2,4
8021	0	24	24	0	2,6
8022*	40	69	11	45	2
8023	36	89	1	52	2
8024	15	15	0	0	2
8025	40	43	2		
				0	2,3,4,5,6
8026	0	20	20	0	2,4,5,6
8027	0	3	3	0	2,4,5,6
8028*	0	7	7	0	2,5
8029*	106	107	61	0	2
8030	10	14	3	3	2,3,6
8031*	9	11	9	0	2
8032*	16	17	1	0	2
8033*	8	8	0	8	2
			7	0	2
8034	35	40			
8035*	51	90	39	0	2,5
8036	5	27	22	0	2
8037	67	89	22	0	2
8038*	66	134	33	36	
8039	1	29	16	13	2
8040*	36	103	29	37	2
8041*	1	43	42	0	2,4,5
8042*		47	47	0	2
	0				
8043*	0	18	18	0	2
8044*	0	34	34	0	2,5
8045*	0	10	10	0	2,3,6
8046*	0	36	36	0	2,5
8047*	0	15	15	0	2

8048*	0	37	37	0	2,5
8049*	7	12	12	0	2
8050*	0	9	9	0	2
8051	0	47	47	0	2
8052	18	20	11	10	2
8053*	21	90	90	0	2
8054	21	61	61	0	2
8055	27	43	0	36	2
8056*	8	64	64	0	3,6
8057*	· ·	39	39	0	3,6
8058*	0	14	14		
8059*	0			0	3,6
		35	35	0	3,6
8060	0	36	0	0	3,6
8061	0	26	26	0	3,6
8062*	61	98	39	11	3
8063*	21	47	47	0	3,6
8064	47	53	27	22	3,6
8065*	29	29	1	0	3,4,6
8066*	10	47	0	37	3
8067*	2	15	15	0	3,6
8068	33	33	0	0	3,6
8069*	59	84	24	0	3,6
8070*	31	35	34	0	3,5
8071*	41				
		41	0	0	3,6
8072*	7	39	39	0	3,6
8073	0	28	27	0	3,4,5,6
8074	0	45	45	0	3,6
8075*	0	56	56	0	3,6
8076	59	59	0	0	3,6
8077*	60	60	0	0	3,5,6
8078*	1	33	32	0	3,6
8079*	50	114	28	37	3
8080*	16	39	21	3	3,6
8081	61	82	23	10	6
8082*	0	21	21	0	5,6
8083*	0	26	26	0	5
8084*	0	24	24	0	5
8085*	0	6	6	0	5
8086*	5	63	58	0	5
8087	5	21	19	3	5
8088*	11	53	43	11	5
8089	42	42	26	0	5
8090*	3	20	20	0	5
8091*	44	44	0	0	5
8092*	23	43	25	0	5
8093*	14	49	48	0	5
8094*	13	15	15	0	5
8095	0	14	14	0	5
8096*	16	17	1	0	5
			0	8	5
8097*	8	8			
8098*	72	84	59	0	5
8099*	9	11	9	0	5
8100*	53	54	16	0	5
8101*	0	6	6	0	5

8102 23 26 4 0 4,5 8103* 13 22 5 0 5 8104 107 134 27 0 5 8105* 14 35 10 11 5 8106* 10 42 13 29 5 8107* 13 31 20 11 5 8109 0 43 43 0 4 8110 0 1 1 0 4 8110 0 1 1 0 4 8112* 84 147 58 0 4 8112* 84 147 58 0 4 8113* 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116* 13 28 17<	04.00	0.0	0.5			
8104 107 134 27 0 5 8105 14 35 10 11 5 8106* 10 42 13 29 5 8107* 13 31 20 11 5 8108 5 34 30 0 4 8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113* 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116* 13 28 17 11 4 8117* 12 34 5 17 4 9000 68 68 40						
8105 14 35 10 11 5 8106* 10 42 13 29 5 8108* 5 34 30 0 5 8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8111* 12 14 14 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113* 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116* 13 28 17 11 4 9000 68 68 40 0 4 817* 12 9 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8106* 10 42 13 29 5 8107* 13 31 20 11 5 8108* 5 34 30 0 4 8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113* 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 068 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0	8104	107	134	27	0	5
8106* 10 42 13 29 5 8107* 13 31 20 11 5 8108* 5 34 30 0 4 8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113* 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 8000 4 4 5 17 4 8116 13 3 7 2 9 9002 1 19 0	8105	14	35	10	11	5
8107* 13 31 20 11 5 8108* 5 34 30 0 5 8110 0 43 43 0 4 8111* 12 14 14 0 4 8111* 12 14 14 0 4 8111* 12 14 14 0 4 8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116* 13 28 17 11 4 8117* 12 34 5 17 4 9000 68 68 40 0 0 4 9001 46 53 3 3 7 2 9,6 9002* 1 19 0 18 2,3,6 0 2 <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td>		10				
8108* 5 34 30 0 5 8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113 86 105 20 0 4 8115* 28 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9005* 16 16 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
8109 0 43 43 0 4 8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13						
8110 0 1 1 0 4 8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113 86 105 20 0 4 8114* 53 80 1 26 4 8116* 13 28 17 11 4 8116* 13 28 17 11 4 8000 68 68 68 40 0 4 9001 46 53 3 7 2 2 9002 1 19 0 18 2,3,6 9 9003 2 25 13 10 2,3,6 9 9004 28 28 1 0 2,5 9 9005* 16 16 16 5 0 2 5 9007 0 11 1						
8111* 12 14 14 0 4 8112* 84 147 58 0 4 8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 28 1 0 2,5 9005* 16 16 16 5 0 2 9006* 0 13 13 0 2,5 9009* <						
8112* 84 147 58 0 4 8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9005* 16 16 5 0 2 9005* 16 16 5 0 2 5 9005* 16 16 5 0 2 5 900* 2,5 9 900* 2 5 900* 2,5 9 900* <						4
8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 28 1 0 2,5 9005* 16 16 16 5 0 2 9007* 0 11 1 10 2,5 9008 17 17 17 0 2 2 9010* 2 2 0 0 2,5 9 9011* 13 14 5 0 2 9 9010* <td>8111*</td> <td>12</td> <td>14</td> <td>14</td> <td>0 .</td> <td>4</td>	8111*	12	14	14	0 .	4
8113 86 105 20 0 4 8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 28 1 0 2,5 9005* 16 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008* 17 17 0 2 2 9010* 2	8112*	84	147	58	0	4
8114* 53 80 1 26 4 8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 3,6 9002 1 19 0 18 2,3,6 9004 2 23,6 9004 2 2,3,6 9004 2 2,5 9004 2 2,5 9005 16 16 16 5 0 2 2,5 9006* 0 2,5 9006* 0 2,5 9007 0 11 1 10 2 2 0 0 2,5 9008* 17 17 0 2 2 9009** 0 2,5 9001** 2 9010** 2 2 0	8113	86	105	20		4
8115* 28 80 10 42 4 8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13 10 2,5 9007 0 11 1 10 2 9008* 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9012 9 17 17 17 0 2 9013 8 14 1 4						
8116 13 28 17 11 4 8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 28 1 0 2,3,6 9004 28 28 28 1 0 2,3,6 9005 16 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008* 17 17 0 0 2,5 9010** 2 2 0 0 2,5 9011** 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14<						
8117 12 34 5 17 4 9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9005* 16 16 5 0 2 9005* 16 16 5 0 2 9007 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 90010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012* 9 17 17 0 2 9012 9 17 17 0 2 9013 8 14 14						
9000 68 68 40 0 4 9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012* 9 17 17 0 2 9013 8 14 14 14 0 2,5 9014 33 43 28 0 2,5 9016* 24						
9001 46 53 3 7 2 9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009* 0 17 17 0 2 5 9010* 2 2 0 0 2,5 9 9 9 17 17 0 2 5 9 9 17 17 0 2 5 9 9 17 17 0 2 2,5 9 9 9 17 17 0 2 2,5 9 9 9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9002 1 19 0 18 2,3,6 9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008* 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9012* 9 17 17 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 <td>9001</td> <td>46</td> <td>53</td> <td>3</td> <td>7</td> <td>2</td>	9001	46	53	3	7	2
9003 2 25 13 10 2,3,6 9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012* 9 17 17 0 2 9012* 9 17 17 0 2 9012* 9 17 17 0 2 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016* 24 24 24	9002	1	19	0	18	2,3,6
9004 28 28 1 0 2,5 9005* 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 24 0 4,5 9017* 3 16 16 0 2 2 9018* 15 44 44	9003	2	25	13	10	
9005* 16 16 5 0 2 9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 24 0 4,5 9017* 3 16 16 0 2 9 9018* 15 44 44 0 2,5 9 9019** 6 14 9 1 2,3,6 9 9021* 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9006* 0 13 13 0 2,5 9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009** 0 17 17 0 2 9010** 2 2 0 0 2,5 9011** 13 14 5 0 2 9012** 9 17 17 0 2 9013** 8 14 14 0 2,5 9014** 33 43 28 0 2,5 9015** 0 19 18 1 2,4,5 9016** 24 24 24 0 4,5 9017** 3 16 16 0 2 9018** 15 44 44 40 2,5 9019** 6 14 9 1 2,3,6 9021** 0 25						
9007 0 11 1 10 2 9008 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 24 0 4,5 9017* 3 16 16 0 2 5 9018* 15 44 44 4 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9022*<						
9008 17 17 0 0 2,5 9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 44 0 2,5 9018* 15 44 44 49 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 25 0 2,3,5,6 9022* 40 47 47 0 2,5,6 9023 14						
9009* 0 17 17 0 2 9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 3,5,6 9021* 0 25 25 0 2,3,5,6 2 9 9 2 9 9 9 2 9 9 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9010* 2 2 0 0 2,5 9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8	9008	17	17	0	0	
9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022* 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 <	9009*	0	17	17	0	2
9011* 13 14 5 0 2 9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022* 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 <	9010*	2	2	0	0	2,5
9012 9 17 17 0 2 9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 3 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4	9011*	13				
9013 8 14 14 0 2,5 9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9025* 34 34 0 0 2 9027 7 64 56 4 2,5 9028* 0 3 0 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>						2
9014 33 43 28 0 2,5 9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9030 9 57 6 49						
9015 0 19 18 1 2,4,5 9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 2,3,4,5,6 9030 9 57 6 49 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
9016 24 24 24 0 4,5 9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 2,3,4,6 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2						
9017* 3 16 16 0 2 9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2						
9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9030* 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9035 12 16 <td< td=""><td>9016</td><td>24</td><td>24</td><td>24</td><td>0</td><td>4,5</td></td<>	9016	24	24	24	0	4,5
9018* 15 44 44 0 2,5 9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 <t< td=""><td>9017*</td><td>3</td><td>16</td><td>16</td><td>0</td><td>2</td></t<>	9017*	3	16	16	0	2
9019* 6 14 9 1 2,3,6 9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0<	9018*	15	44	44		2,5
9020* 28 36 7 0 2 9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,5,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9021* 0 25 25 0 2,3,5,6 9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9035 12 16 4 0 2 9036* 26 26 0 0 0 2						
9022 40 47 47 0 2,5,6 9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9023 14 49 49 0 2 9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 0 2						
9024* 1 8 7 0 2 9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9025* 34 34 0 0 2 9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9026 28 38 38 0 2,3,4,5,6 9027 7 64 56 4 2,5 9028* 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2	9024*	1	8	7	0	
9027 7 64 56 4 2,5 9028* 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2	9025*	34	34	0	0	2
9027 7 64 56 4 2,5 9028* 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2	9026	28	38	38	0	2,3,4,5,6
9028* 0 3 2,3,4,6 9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9029* 52 96 44 0 2 9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9030 9 57 6 49 2 9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9031 26 52 23 15 2,3,4,5,6 9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9032* 0 7 4 3 2,4 9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2						
9033 14 16 2 0 2 9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2	9032*	0	7	4	3	2,4
9034 24 36 13 0 2,5 9035 12 16 4 0 2 9036* 26 26 0 0 2	9033	14	16			
9035 12 16 4 0 2 9036* 26 0 0 2						
9036* 26 0 0 2						
903/* 15 0 0 2,3,6						
	903/*	15	15	U	U	2,3,6

9038*	101	114	36	0	2
9039	8	69	0	61	2,4,5
9040	40	40	24	0	2,3,6
9041	2	19	19	0	2,3,6
9042	19	19	19	0	2
9043*	19	19	4	0	2,3,5,6
9044*	68	71	4	0	2,3,6
9045*	43	59	16	0	2,3,4,6
9046*	0	9	9	0	2
9047*	18	67	67	0	2
9048*	0	9	9	0	3,4,6
9049	0	1	0	1	
9050					3,4,6
	8	12	4	0	3,4,6
9051*	50	84	34	0	3,4,6
9052*	0	17	17	0	3,4,6
9053*	0	18	9	0	2,3,4,5,6
9054	21	50	29	0	3,4,6
9055*	0	35	0	0	3,6
9056*	0	30	0	0	3,6
9057*	95	108	36	0	3,6
9058*	6	6	0	0	3,6
9059*	57	102	45	0	3,6
9060	19	22	3	0	3,6
9061*	0	6	4	2	3,6
9062*	0	30	0	0	3,6
9063	9	16	16	0	3
9064*	0	50	0	0	3,6
9065	0	17	0	0	3,6
9066	24	24	0	0	3
				0	
9067*	16	16	0		3,4,6
9068	0	18	0	0	3,5,6
9069*	0	34	0	0	3,4,5,6
9071	32	93	0	61	6
9072	64	73	28	8	6
9073	50	50	1	0	6
9074	3	20	17	0	6
9075	26	56	0	30	5
9076	17	36	8	11	5
9077*	0	5	5	0	5
9079*	0	17	17	0	5
9080*	22	28	19	0	5
9081*	4	6	2	0	5
9082*	8	8	0	0	5
9083*	21	21	0	0	4,5
9084*	61	149	149	0	5
9085	44	52	8	0	5
9086	19	32	13	0	5
				42	5
9087	24	69	0		
9088*	0	6	4	2	5
9089	62	62	59	2	4,5
9090*	22	22	0	0	5
9091*	37	60	24	0	5
9092*	16	20	20	0	5
9093*	4	6	0	4	5

APPENDIX J

9094*	15	54	54	12	4
9095*	3	15	12	2	4
9096*	58	140	140	0	4
9097*	16	93	86	4	4
9098	55	55	0	0	4
9099*	45	95	50	0	4
9100*	8	8	0	0	4
9101*	129	132	22	0	4
9102*	0	20	20	0	4
9103*	20	20	20	0 .	4
9104	73	76	3	0	4
9105*	0	20	13	7	4
9106*	10	17	7	0	4

^{*}These harvest units contain high-lead settings, a combination of up-hill yarding and short-span (less than 400 feet) down-hill yarding. Units will be reviewed during Phase II layout to assess the capability of the proposed yarding systems to meet soil resource protection needs.

