

A code generator for ODE-based models

-package rodeo

david.kneis@tu-dresden.de

Special seminar of the Systems Analysis and Modelling group at EAWAG, 2016-05-03

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

- ► Lake eutrophication
- ► Flood management
- Operational runoff forecasting
- ► Early diagenesis of lake sediments
- ► Fate of antibiotic resistant bacteria

- ► Lake eutrophication
- ► Flood management
- Operational runoff forecasting
- ► Early diagenesis of lake sediments
- ► Fate of antibiotic resistant bacteria

- ► Lake eutrophication
- ► Flood management
- Operational runoff forecasting
- ► Early diagenesis of lake sediments
- ► Fate of antibiotic resistant bacteria

- ► Lake eutrophication
- ► Flood management
- Operational runoff forecasting
- ► Early diagenesis of lake sediments
- ► Fate of antibiotic resistant bacteria

- ► Lake eutrophication
- ► Flood management
- Operational runoff forecasting
- ► Early diagenesis of lake sediments
- ► Fate of antibiotic resistant bacteria

→ Several years of model/software development

Re-invention of the wheel?

- ► Best way to learn modeling is via model development.
- 'Monolithic codes' are hard to extend.
- ► Rising interest in structural uncertainty
 - \rightarrow Need for Re-implementations

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

Objectives Documentation

- ► Often incomplete or outdated
- ► Mistakes in published equations
- ► Source code alone not sufficient
- \rightarrow Embedded / automatic documentation

Objectives Portability & life time

- ► Implementation in specific language / framework
- ► Impedes collaborative development
- ► Software undergoes aging
- \rightarrow True portability
- ightarrow Equations to be separated from source code

Objectives Handling of large arrays

- ► Access by index: Hard to read / maintain
- ► Access by name: Slow
- \rightarrow Combine the two options

Computational efficiency

- ► Interpreted code is convenient but relatively slow
- ▶ Need for high-performance (Optimization, Uncertainty, ...)
- \rightarrow Use compiled code sections

Objectives Redundant terms

- ► Repeated evaluation wastes time
- ► Code is difficult to maintain
- \rightarrow Use proper notation to reduce redundancies
- ightarrow Let the compiler eliminate them

Objectives Various model interfaces

- ► Effort for users
- ► Individual pre-/post-processors
- ► Impedes coupling of models
- \rightarrow Unified interface

Objectives Wish list

- ► Built-in documentation
- ► True portability
- ► Save & fast array access

- ► Compiled code sections
- ► Less redundancies
- ► Unified interface

ightarrow rodeo is one attempt, among others, to achieve this

Scope

► Models built on simultaneous ODE

$$\frac{d}{dt}Y_1 = f(time, Y, parameters)$$
...
 $\frac{d}{dt}Y_n = f(time, Y, parameters)$

► Numerical integration or steady-state estimation

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

Two pillars

- (1) Use of a table-based standard notation for ODE
 - ► Built-in documentation
 - ► Less redundancies
 - ► Unified interface

Two pillars

(1) Use of a table-based standard notation for ODE

- ► Built-in documentation
- ► Less redundancies
- ► Unified interface

(2) Automatic code generation

- ► Save & fast array access
- ► Use of compiled code
- ► Portability

Concepts Overview

Table-based model definition

Overview

Table-based model definition

Components of *tex* or *html* documents

Fortran code

Overview

24

Overview

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

- ► Mixed reactor with constant volume V and flow rate Q
- ▶ Two species (X_1, X_2) competing for dissolved resource S

Corresponding ODE

$$\frac{d}{dt}X_{1} = r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - X_{1} \cdot \frac{Q}{V} \qquad \text{Growth}$$

$$\frac{d}{dt}X_{2} = r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} - X_{2} \cdot \frac{Q}{V}$$

$$\frac{d}{dt}S = -c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} + (S_{in} - S) \cdot \frac{Q}{V}$$

Matrix notation

$$\frac{d}{dt}X_{1} = r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - X_{1} \cdot \frac{Q}{V} \qquad \text{Growth}$$

$$\frac{d}{dt}X_{2} = r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} - X_{2} \cdot \frac{Q}{V}$$

$$\frac{d}{dt}S = -c_{1} \cdot r_{1} \cdot X_{1} \cdot \frac{S}{S+h_{1}} - c_{2} \cdot r_{2} \cdot X_{2} \cdot \frac{S}{S+h_{2}} + (S_{in} - S) \cdot \frac{Q}{V}$$

$$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ S \end{bmatrix} = \begin{bmatrix} 1 & 0 & -X_1 \\ 0 & 1 & -X_2 \\ -c_1 & -c_2 & S_{in} - S \end{bmatrix} \cdot \begin{bmatrix} r_1 \cdot X_1 \cdot S/(S + h_1) \\ r_2 \cdot X_2 \cdot S/(S + h_2) \\ Q/V \end{bmatrix}$$

Table of Processes

$$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ S \end{bmatrix} = \begin{bmatrix} 1 & 0 & -X_1 \\ 0 & 1 & -X_2 \\ -c_1 & -c_2 & S_{in} - S \end{bmatrix} \cdot \begin{bmatrix} r_1 \cdot X_1 \cdot S/(S + h_1) \\ r_2 \cdot X_2 \cdot S/(S + h_2) \\ Q/V \end{bmatrix}$$

0	o model.xlsx - LibreOffice Calc										X			
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	F <u>o</u> rmat	Tools	Data	<u>W</u> indow	<u>H</u> elp						
	A			В		С		D			-			
1	name		u	unit		description			expression					
2	grow	thX1	C	ells/ml	./h	дгом	th of 2	(1	г1 з	* X1	* m	onod(S,	h1)	
3	grow	thX2	C	ells/ml	./h	дгом	th of	(2	г2 з	* X2	* m	onod(S,	h2)	
4	flushing		1,	1/h		flushing		Q / V						
HED	H Vars	pars /funs	pros (st	oi / 💠 /					-					

Table of stoichiometric factors

$$\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \\ S \end{bmatrix} = \begin{bmatrix} 1 & 0 & -X_1 \\ 0 & 1 & -X_2 \\ -c_1 & -c_2 & S_{in} - S \end{bmatrix} \cdot \begin{bmatrix} r_1 \cdot X_1 \cdot S/(S + h_1) \\ r_2 \cdot X_2 \cdot S/(S + h_2) \\ Q/V \end{bmatrix}$$

model.xlsx - LibreOffice Calc										
<u>F</u> ile	Edit View Insert	Format Tools C	Data <u>W</u> indow <u>H</u> elp							
	G	Н	I	J	K					
1	proc. \ var.	X1	X2	S						
2	growthX1	1	0	-c1						
3	growthX2	Θ	1	-c2						
4	flushing	-X1	-X2	Sin - S	•					
5										
6										
7										
8										
Heb	H vars /pars /funs /pros s	toi 💠			,					

Minimalistic example

Tables with declarations

Parameters												
0	model.xlsx - LibreOffice Calc											
<u>F</u> ile	<u>E</u> dit <u>V</u>	iew	Insert	F <u>o</u> rmat	Tools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp				
	А			В			C		D	E	-	
1	name		unit		descr	ipti	on		tex	html		
2	г1		1/h		growt	h ra	te 1		r_1	r _{1<td>)></td>})>	
3	г2		1/h		growth rate 2				Γ_2	r ₂		
4	h1 mg/		mg/m	ι	half sat. spec. 1			1	h_1	h _{1<td>></td>}	>	
5	h2 mg/ml		ι	half sat. spec. 2			2	h_2	h _{2<td>)></td>})>		
6	c1		mg/cell		stoich. of X1				c_1	c _{1<td>></td>}	>	
7	c2		mg/cell		stoich. of X2				c_2	c _{2<td>></td>}	>	
8	Q ml		ml/h		flow	rate			Q	Q		
9	٧	/ ml		volume				V	V			
10	Sin mg/ml		substrate in inflow			low	S_{in}	S _{in<td>ıb></td>}	ıb>			
HER	N () N vars pars (funs (pros/stoi / ф/											

+ Functions

Code & document generation

Auto-generated GUI

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

Support for PDE

$$\frac{\partial c}{\partial t} = D \cdot \frac{\partial^2 c}{\partial x^2} - u \cdot \frac{\partial c}{\partial x} + R$$
Dispersion Advection Reactions

Support for PDE

$$\frac{\partial c}{\partial t} = D \cdot \frac{\partial^2 c}{\partial x^2} - u \cdot \frac{\partial c}{\partial x} + R$$
Dispersion Advection Reactions

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{(c_{i+1} - c_i) - (c_i - c_{i-1})}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{\left(c_{i+1} - c_i\right) - \left(c_i - c_{i-1}\right)}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Support for PDE

Method-of-lines

$$\frac{dc_i}{dt} = D \cdot \frac{(c_{i+1} - c_i) - (c_i - c_{i-1})}{\Delta x^2} - u \cdot \frac{c_i - c_{i-1}}{\Delta x} + R_i$$

Function-like syntax to access adjacent cells, e.g.

$$u / dx * (c - left(c))$$

Forcing functions

foo(time) can appear in right hand side expressions

Actual functions must be defined

Analytical Interpolation

- Use approxFun in R-based models
- Use rodeo-generated Fortran code

Specific features & limitations Known limitations

- ► No forced documentation for user-function arguments
- ► No built-in support for 2D or 3D models
- ▶ Generated code uses a Fortran 2008 feature

Specific features & limitations Known limitations

CRAN Package Check Results for Package rodeo

Last updated on 2016-04-28 06:47:39.

Flavor	Version	T _{install}	T _{check}	T _{total}	Status	Flags
r-devel-linux-x86_64-debian-gcc	0.3	1.18	18.93	20.11	OK	
r-devel-linux-x86_64-fedora-clang	0.3			34.64	OK	
r-devel-linux-x86_64-fedora-gcc	0.3			22.28	OK	
r-devel-osx-x86_64-clang	0.3			37.30	OK	
r-devel-windows-ix86+x86_64	0.3	5.00	59.00	64.00	OK	
r-patched-linux-x86_64	0.3	1.19	18.58	19.77	OK	
r-patched-solaris-sparc	0.3			184.30	WARN	
r-patched-solaris-x86	0.3			41.20	WARN	
r-release-linux-x86_64	0.3	1.36	21.82	23.18	OK	
r-release-osx-x86_64-mavericks	0.3				OK	
r-release-windows-ix86+x86_64	0.3	5.00	72.00	77.00	OK	
r-oldrel-windows-ix86+x86_64	0.3	5.00	82.00	87.00	OK	

WARN: Compiler doesn't implement pointer initialization yet

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

Applications rodeo-based projects

Existing

- ► Lake ecology (0D)
- ► Sediment diagenesis
- ▶ Dynamics of E. coli
- ► Prey-predator systems

..

Existing

- ► Lake ecology (0D)
- ► Sediment diagenesis
- ▶ Dynamics of E. coli
- ► Prey-predator systems

Planned

- ► Lake ecology (1D)
- ► Activated sludge model

Existing

- ► Lake ecology (0D)
- ► Sediment diagenesis
- ▶ Dynamics of E. coli
- ► Prey-predator systems

Planned

- ► Lake ecology (1D)
- ► Activated sludge model

Ecological lake model

- ► Heavily based on BELAMO
- ► Applied to a shallow lake, 1.3 km², z_{mean} 2.1 m

Contribution of N₂-fixation to Nitrogen balance?

Ecological lake model

Data: BTU & WSA, Model: Omlin et al. (2001) modified by J. Feldbauer, M. Nisotaki, Y. Zhao

Concentration

- increases
- decreases
- goes up or down

DIP: Dissolved inorg. P IMP: Immobile inorg. P ODU: Mn²⁺, Fe²⁺, HS⁻, ...

Basic concepts borrowed from Soetaert et al. (1996)

- Phosphorus in pore water, observed
- /// Simulated with different model structures

Obs. data: Björn Grüneberg, BTU

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on par

Summary

Scope Implementation of ODE models (+ 1D PDE)

Concepts Table-based notation & code generation

Benefit Simplicity and performance

Uses Project work & teaching

Package https://cran.r-project.org/package=rodeo

https://github.com/dkneis/rodeo

Examples http://dkneis.github.io

http://limno-live.hydro.tu-dresden.de/

Thanks!

Sponsored by the Federal Ministry of Education and Research, Germany, Grant no. 0033W015EN, 02WU1351A

Outline

Introduction

Objectives

Concepts

Minimalistic example

Specific features & limitations

Applications

Summary

Hands-on part

- ► Recent R version
- ▶ Developer tools (Rtools on Windows)
- ► R packages
 - ▶ install.packages('deSolve')
 - ▶ install.packages('readxl')
 - ▶ install.packages('rodeo')

Link to instructions on http://dkneis.github.io

https://cran.r-project.org/package=rodeo

▶ rodeo class is a 'reference class'

► Creation: object <- new('rodeo', <data>)

► Usage: object\$method()

https://cran.r-project.org/package=rodeo

```
► rodeo class is a 'reference class'
```

```
► Creation: object <- new('rodeo', <data>)
```

► Usage: object\$method()

```
install.packages('rodeo') # done this already?
library('rodeo')
?rodeo
vignette('rodeo')
```

https://cran.r-project.org/package=deSolve

- ► Switch between stiff and non-stiff methods
- ► Structure of Jacobian can be specified
- ► Works with compiled code in shared library

https://cran.r-project.org/package=deSolve

- ► Switch between stiff and non-stiff methods
- Structure of Jacobian can be specified
- ► Works with compiled code in shared library

```
install.packages('deSolve') # done this already?
library('deSolve')
?lsoda
?ode
```

Demo examples

- ► See links on http://dkneis.github.io
- ► Available in latest rodeo package (not on CRAN yet)

Streeter, W. H. and Phelps, W. B. (1925): A study of the pollution and natural purification of the Ohio River. Public Health Bull. 146, US Public Health Service, Washington DC.

ightarrow Essential extensions developed in past 90 years

Streeter-Phelps

$$\frac{d}{dt}OM = -k_d \cdot OM$$

$$\frac{d}{dt}DO = -k_d \cdot OM \cdot s$$

$$+k_a \cdot (DO_{sat} - DO)$$

Symbol	Units	Descr.
k_d	d^{-1}	Decay rate
k_a	d^{-1}	Aeration rate
S	Mass ratio	DO consumed per degraded OM
DO_{sat}	mg/L	O ₂ saturation level

deSolve output for OD rodeo models


```
is.matrix(out) # TRUE

ncol(out) == 1 + m$lenVars() + m$lenPros() # m: model

colnames(out) == c('time', m$namesVars(), m$namesPros())
```


deSolve output for 1D rodeo models

	State variables				Process rates					
time	A.1	A.2		C.1	C.2	X.1	X.2		Z.1	Z.2

ncol(out) == 1 + m\$lenVars() * nBox + m\$lenPros() * nBox

deSolve output for 1D rodeo models

- Snapshot of spatial distribution
- ☐ Breakthrough curve at particular station

Table file formats

Delimited text

- ► Powerful editors (regular exp., syntax highlight)
- ▶ Version control
- ► Many processing options (ATEX, data base, ...)
- ► Portable (but newline & encoding issues)

- Spreadsheet ► Tabular view
 - ► All tables kept in a single file
 - ► Portable (different issues)
- → Best used in combination