ASSIGNMENT 1

Assume that you are given a grayscale aerial image (106.jp2) and the related information, as given below (the spectral bands are ignored purposefully!). Note that the image is free from errors due to intrinsic parameters (i.e. no camera related distortions exist).

Camera	Focal length	Flying height above Ground		Side lap	GSD	Spectral bands	Radiometric resolution
DMC	120 mm	900 m	60 %	60 %	8 cm	IR-R-G	11 bit

Table 1: Flight parameters of the Vaihingen 8 cm DMC block. GSD: Ground Sampling Distance.

	file coordinate system			camera coordinate system			nivel cize
Camera	row _{PP} [pixel]	col _{PP} [pixel]	f [pixel]	X _{PP} [mm]	<i>y_{PP}</i> [mm]	<i>f</i> [mm]	pixel size ∆ [mm]
Intergraph/ZI DMC	6912.0	3840.0	10000.0	0.000	0.000	120.000	0.012

Table 3: Interior orientation of the digital images of the Vaihingen Block.

Strip	lmage file	Pro	ojection Centre	Rotation Angles (ω: primary, x; φ: secondary, y; κ: tertiary, z)			
		X₀ [m]	Y ₀ [m]	Z ₀ [m]	<i>ω</i> [gon]	φ [gon]	κ[gon]
3	10030060.tif	496803.043	5420298.566	1163.983	2.50674	0.73802	199.32970
	10030061.tif	497049.238	5420301.525	1163.806	2.05968	0.67409	199.23470
	10030062.tif	497294.288	5420301.839	1163.759	1.97825	0.51201	198.84290
	10030063.tif	497539.821	5420299.469	1164.423	1.40457	0.38326	198.88310
4	10040081.tif	496558.488	5419884.008	1181.985	-0.87093	-0.36520	-199.20110
	10040082.tif	496804.479	5419882.183	1183.373	-0.26935	-0.63812	-198.97290
	10040083.tif	497048.699	5419882.847	1184.616	0.34834	-0.40178	-199.44720
	10040084.tif	497296.587	5419884.550	1185.010	0.81501	-0.53024	-199.35600
	10040085.tif	497540.779	5419886.806	1184.876	1.38534	-0.46333	-199.85010
5	10050103.tif	496573.389	5419477.807	1161.431	-0.48280	-0.03105	-0.23869
	10050104.tif	496817.972	5419476.832	1161.406	-0.65210	-0.06311	-0.17326
	10050105.tif	497064.985	5419476.630	1159.940	-0.74655	0.11683	-0.09710
	10050106.tif	497312.996	5419477.065	1158.888	-0.53451	-0.19025	-0.13489
	10050107.tif	497555.389	5419477.724	1158.655	-0.55312	-0.12844	-0.13636

Besides, you are also given a patch of DSM data (ALS.tif) generated from LiDAR point clouds belonging to a part of the aerial image 106.jp2.

1- (15 Points) You are required to download the "buildings" layer available from the Open Street Map (OSM) and visualize them over the LiDAR DSM data. The geographic coordinates of the area of interest are given as:

	48.93338	
8.95946		8.96406
	48.93157	

longitudes 48.93338 - 48.93157 , latitudes 8.95946 - 8.96406

2- (20 Points) You are required to extract elevation values (Z coordinates) from the LiDAR DSM for each building you locate in the OSM database for the given area of interest in step 1. Please note that the elevation values for a building polygon must be extracted for each **vertex** of the building polygon. (You are free to utilize any GIS software you like to complete this step!)

3- (35 Points) For each building, you are required to perform the Object Space -> Image Space transformation with the help of the Projection Matrix in homogeneous coordinates for the grayscale aerial image (106.jp2).

In order to that, first, generate the Projection Matrix with the information given above, and second, perform the transformation using x = P.X formulation.

You are allowed to use any kind of programming language, but using the MatLab Environment is encouraged. <u>However, in any case, utilizing an external library is strictly forbidden!!!</u>

Hint: Compute the rotation matrix formulation as

```
%rotation matrix
R(1,1) = cos(phi)*cos(kappa) + sin(phi)*sin(omega)*sin(kappa);
R(1,2) = cos(omega)*sin(kappa);
R(1,3) = -sin(phi)*cos(kappa) + cos(phi)*sin(omega)*sin(kappa);
R(2,1) = -cos(phi)*sin(kappa) + sin(phi)*sin(omega)*cos(kappa);
R(2,2) = cos(omega)*cos(kappa);
R(2,3) = sin(phi)*sin(kappa) + cos(phi)*sin(omega)*cos(kappa);
R(3,1) = sin(phi)*cos(omega);
R(3,2) = -sin(omega);
R(3,3) = cos(omega)*cos(phi);
```

and note that the angles are in "gons" (so, convert appropriately)

4- (10 Points) You are required to plot the projected boundaries of all buildings on image 106.jp2. (You are free to utilize any external library to complete this step!)

5- (20 Points) Please comment/discuss/explain the problems/reasons/causes you face in the output building boundaries projected on image 106.jp2.

ADDITIONAL INSTRUCTIONS FOR REPORT PREPARATION AND SUBMISSION

- 1. The homework report must be in pdf format.
- 2. All submitted files should include student's name and number in the file name.
- 3. Explanations for the code should be given in the code <u>as comments</u> and also in the report.
- 4. Attach all files (except the images 106.jp2 and ALS.tif) in a single zip file.
- 5. Although collaborations are encouraged, plagiarism will not be tolerated!