

SORTING ALGORITHMS

PRESENTER: MUHAMMAD UMER

Sorting algorithm is an algorithm that puts elements of a list/array in a certain order.

INPUT:

A sequence of n numbers a_1, a_2, \ldots, a_n

OUTPUT:

A permutation (reordering) a_1' , a_2' , ..., a_n' of the input sequence such that $a_1' \le a_2' \le \cdots \le a_n'$

BUBBLE SORT

PRESENTER: MUHAMMAD UMER

Bubble Sort: Idea

Idea: Bubbles in water

 Bubbles in water move upwards and when bubble moves upward the water from above will move downward to fill in the space left by the bubble

Traverse a collection of elements

- Move from the front to the end
- "Bubble" the largest value to the end using pair-wise comparisons and swapping

Subscribe: https://www.youtube.com/TheEducationWorldUS

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

No need to swap

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

- Traverse a collection of elements
 - Move from the front to the end
 - "Bubble" the largest value to the end using pair-wise comparisons and swapping

42	35	12	77	5	101
----	----	----	----	---	-----

Largest value correctly placed

ITEMS OF INTEREST

- Notice that only the largest value is correctly placed
- All other values are still out of order
- So we need to repeat this process

42 35 12 77 5 101

Largest value correctly placed

REPEAT "BUBBLE UP" HOW MANY TIMES?

Subscribe: https://www.youtube.com/TheEducationWorldUS

REPEAT "BUBBLE UP" HOW MANY TIMES?

If we have N elements...

- And if each time we bubble an element, we place it in its correct location...
- Then we repeat the "bubble up" process N - I times.

This guarantees we'll correctly place all N elements.

Subscribe: https://www.youtube.com/TheEducationWorldUS

BUBBLE SORT – PSEUDO CODE

```
A = [x1, x2, x3, ....] for i = 1 to A.length - 1 for j = 1 to A.length - i if A[j] > A[j+1] swap A[j] with A[j+1]
```


YOUR TASK !!!

- Implement Bubble Sort Algorithm for sorting the list in descending order.
- Is there any way that we can make our Bubble Sort Algorithm more time efficient?
 Think about it ...

IMPROVED BUBBLE SORT

PRESENTER: MUHAMMAD UMER

First of all lets see what improvements we can do in our previously build bubble sort Algorithm

Subscribe: https://www.youtube.com/TheEducationWorldUS

ALREADY SORTED COLLECTIONS?

- What if the collection was already sorted?
- What if only a few elements were out of place and after a couple of "bubble ups," the collection was sorted?
- We want to be able to detect this and "stop early"!

5 12 35 42 77	101
---------------	-----

USING A BOOLEAN "FLAG"

- We can use a boolean variable to determine if any swapping occurred during the "bubble up."
- If no swapping occurred, then we know that the collection is already sorted!
- This boolean "flag" needs to be reset after each "bubble up."

Education World!

Subscribe: https://www.youtube.com/TheEducationWorldUS

Subscribe: https://www.youtube.com/TheEducationWorldUS

Education World!

Education World!

Education World 1

Education World!

Education World 1

Education World 1

AN ANIMATED EXAMPLE

AN ANIMATED EXAMPLE

AN ANIMATED EXAMPLE

AFTER FIRST PASS OF OUTER LOOP

Subscribe: https://www.youtube.com/TheEducationWorldUS

Subscribe: https://www.youtube.com/TheEducationWorldUS

Education

THE SECOND "BUBBLE UP"

Subscribe: https://www.youtube.com/TheEducationWorldUS

Subscribe: https://www.youtube.com/TheEducationWorldUS

AFTER SECOND PASS OF OUTER LOOP

Education World 1

Education World 1

Education World

AFTER THIRD PASS OF OUTER LOOP

Ed

3

AFTER FOURTH PASS OF OUTER LOOP

Education World!

Education World 1

Education World 1

Education World!

AFTER FIFTH PASS OF OUTER LOOP

Education World!

FINISHED "EARLY"

We didn't do any swapping, so all of the other elements must be correctly placed.

We can "skip" the last two passes of the outer loop.

- "Bubble Up" algorithm will move largest value to its correct location (to the right)
- Repeat "Bubble Up" until all elements are correctly placed:
 - Maximum of N-I times
 - Can finish early if no swapping occurs
- We reduce the number of elements we compare each time one is correctly placed

YOUR TASK

Compare the Running time of the two versions of Bubble Sort that I taught you previously (i.e Conventional Bubble Sort and Improved Bubble Sort) [Hint: Use Python's time Module]