HOMEWORK

In general, we always assume that a ring R is commutative with an unit 1 without special mention.

1. Let G be a set with an operation \cdot such that

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

for any $a, b, c \in G$. Then if G satisfies that

- (1) there exists $e \in G$, such that $a \cdot e = a$ for any $a \in G$;
- (2) for any $a \in G$, there exists $b \in G$ such that $a \cdot b = e$. Then (G, \cdot, e) is a group.
- 2. Let $G := \{(a_{ij})_{n \times n} \mid a_{ij} \in \mathbb{Z} \text{ and } |(a_{ij})_{n \times n}| = 1 \text{ or } -1\}$. Prove that G is a group respect to the matrix multiplication.
- 3. Let J be a fixed $n \times n$ matrix over \mathbb{R} with $|J| \neq 0$. Prove that

$$G := \{ A \mid A \in \mathbb{R}^{n \times n}, \ AJA^T = J \}$$

is a group respect to the matrix multiplication.

4. Let M be an arbitrary set, and P(M) be the set consisting of all the subsets of M. Prove that P(M) is a group respect to the operation

$$A \cdot B = (A - B) \cup (B - A)$$

5. Let G be a group with operation \cdot , and S be a nonempty set. Let M(S,G) be the set consisting of all the map $f:S\to G$ with the operation

$$f * g : S \to G,$$

 $s \mapsto f(s) \cdot g(s)$

Prove that M(S,G) is a group respect to above operation *.

6. Prove that: for any abelian group G, we have

$$\circ(ab) \le \circ(a) \circ (b)$$

2

for any $a, b \in G$. On the same time, point out there exists non-abelian group such that above equality is not valid.

- 7. Prove that the group $(\mathbb{Q}, 0, +)$ is not isomorphic to $(\mathbb{Q}^* := \mathbb{Q} \{0\}, 1, \times)$.
- 8. Prove that there exists no simple group G of order |G| = 56.
- 9. Prove that any group G of order |G| = 35 is cyclic, namely G = (a) for some $a \in G$.
- 10. Let $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$, and $U(\mathbb{Z}_n)$ be the group of all units (invertible elements in \mathbb{Z}_n). Prove that

$$\bar{m} \in U(\mathbb{Z}_n) \Leftrightarrow (m,n) = 1.$$

- 11. Let G = (a) be a cyclic group of order n. Prove that its group of isomorphisms $Aut(G) \cong U(\mathbb{Z}_n)$. In particular, when n = p is a prime number, Aut(G) is also cyclic.
- 12. Let R be a (noncommutative) ring, and 1 ab is invertible. Prove that 1 ba is also invertible.
- 13. Let R be a ring, then a non-zero element x is called by a nilpotent element if $x^n = 0$ for some $n \in \mathbb{Z}^+$. Prove:
 - (1) If x is nilpotent, then 1-x is invertible.
- (2) The ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ has a nilpotent element if and only if m can be divisible by p^2 for some $p \in \mathbb{Z}^+$.
- 14. Let $m, n \in \mathbb{Z}$ be positive. Prove that the great common divisor $(m, n) \in \mathbb{Z}$ equals to $(m, n) \in \mathbb{Z}[i]$.
- 15. Let R be a ring. Prove that $f(x) \in R[x]$ is a zero divisor if and only if $r \cdot f(x) = 0$ for some $r \neq 0 \in R$.
- 16. Prove that $\mathbb{C}[x,y]/(x^2+y^2-1)$ is an Euclidean ring.
- 17. Prove that $\mathbb{R}[x,y]/(x^2+y^2-1)$ is not an UFD.
- 18. Prove that $\mathbb{C}[x,y]/(x^2-y^3)$ is not an UFD.

- 19. Prove that R[x] is an UFD, provided R is so.
- 20. Let $F \subset E$ and $E \subset K$ be two finite algebraic extensions. Prove that $F \subset K$ is a finite algebraic extension.
- 21. Prove that the isomorphisms of \mathbb{Q} and \mathbb{R} are both trivial (only identities).
- 22. Let $\mathbb{R} \subset K$ be a finite algebraic extension with $[K : \mathbb{R}] = 2$. Prove that K is isomorphic to \mathbb{C} .
- 23. Let $\mathbb{Q}[\sqrt{2}]$, $\mathbb{Q}[\sqrt{5}] \subset \mathbb{R}$ be subfields. Prove that $\mathbb{Q}[\sqrt{2}]$ is not isomorphic to $\mathbb{Q}[\sqrt{5}]$.
- 24. Let F be a finite field, and $F^* := F \{0\}$. Prove that $(F^*, \times, 1)$ is a cyclic group.
- 25. Construct a non-separable polynomial.
- 26. Prove that one can construct regular 17-gons using straight-edge and compass.
- 27. Prove that one can not construct regular 7-gons using straight-edge and compass.
- 28. Let $K \subset L$ be a Galois extension, and $K \subset E \subset L$. Prove that E/K is Galois if and only if $Gal(L/E) \subset Gal(L/K)$ is a normal subgroup.
- 29. Prove that $f(x) = x^n 1 \in \mathbb{Q}[x]$ can be solved by radicals.
- 30. Construct a polynomial $f(x) \in \mathbb{Q}[x]$, which cannot be solved by radicals.
- 31. Prove (by a direct computation) that $\mathbb{Q} = (\mathbb{Q}[\sqrt{2}, \sqrt{11}])^G$ where $G = Gal(\mathbb{Q}[\sqrt{2}, \sqrt{11}]/\mathbb{Q})$ is the Galois group.