Scopoli's shearwaters movements

Pierre Cottais & An Hoàng

15/12/2021

Contents

1	Dat	a exploration	1			
	1.1	Generalisation data set	1			
	1.2	"Training" data set (Puffin's movements)	2			

1 Data exploration

1.1 Generalisation data set

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: jeu., janv. 13, 2022 - 11:11:50

Table 1:	Extrait du jei	u de données du	28 juin 2	2011*

	Longitude	Latitude	Cell	Date	Day	year	month
2011-06-28.1	2.034	44.475	1	2011-06-28	2011-06-28	2011	06
2011-06-28.2	2.101	44.475	2	2011-06-28	2011-06-28	2011	06
2011-06-28.3	2.169	44.475	3	2011-06-28	2011-06-28	2011	06
2011-06-28.4	2.236	44.475	4	2011-06-28	2011-06-28	2011	06
2011 - 06 - 28.5	2.304	44.475	5	2011-06-28	2011-06-28	2011	06
2011-06-28.14666	12.699	40.025	14,666	2011-06-28	2011-06-28	2011	06
2011-06-28.14667	12.766	40.025	14,667	2011-06-28	2011-06-28	2011	06
2011-06-28.14668	12.834	40.025	14,668	2011-06-28	2011-06-28	2011	06
2011-06-28.14669	12.901	40.025	14,669	2011-06-28	2011-06-28	2011	06
2011-06-28.14670	12.969	40.025	14,670	2011-06-28	2011-06-28	2011	06

^{*}Six premières colonnes sur les 41 colonnes du jeu de données

Grid giving tempretures and bathymetry data for each one of the 95 days.

1.1.1 Visualisation of the grid

```
mediterranean <- make_bbox(lat = Latitude, lon = Longitude, data = grid_day1)
map.day1 <- get_map(location = mediterranean) %>% ggmap()
map.day1 + geom_point(data = grid_day1, aes(x = Longitude, y = Latitude), size = 0.5)
```


1.2 "Training" data set (Puffin's movements)

Les données de traçage sont récoltées sur 62 jours, du 2011-08-02 au 2012-08-31.

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: jeu., janv. 13, 2022 - 11:11:53

Get the grid dataframe corresponding to the first observed day

```
bool <- FALSE
i <- 0
while (!bool) {
   i <- i + 1
   if(grid_oceano[[i]]$Date[[1]] == dates_2011[1]) {
      bool <- TRUE</pre>
```

Table 2: Extrait du jeu de données*

	Site	trip_ID	Time	ID	Longitude	Latitude	Bathy
2011-08-02.129998	Riou	$ID2R_1$	2011-08-02 00:20:56	ID2R	5.330	43.166	95.950
2011-08-02.129999	Riou	$ID2R_1$	2011-08-02 00:22:56	ID2R	5.327	43.168	95.950
2011-08-02.130000	Riou	$ID2R_1$	2011-08-02 00:24:56	ID2R	5.326	43.168	95.950
2011-08-02.130001	Riou	$ID2R_1$	2011-08-02 00:26:56	ID2R	5.325	43.169	102.450
2011-08-02.130002	Riou	$ID2R_1$	2011-08-02 00:28:56	ID2R	5.325	43.169	102.450
2011-09-03.90287	Lavezzi	$ID21L_1$	2011-09-03 03:42:22	ID21L	8.751	41.008	58
2011-09-03.90288	Lavezzi	$ID21L_1$	2011-09-03 03:45:22	ID21L	8.752	41.008	58
2011-09-03.90289	Lavezzi	$ID21L_1$	2011-09-03 03:48:22	ID21L	8.752	41.008	58
2011-09-03.90290	Lavezzi	$ID21L_1$	2011-09-03 03:51:22	ID21L	8.752	41.008	58
2011-09-03.90291	Lavezzi	$ID21L_1$	2011-09-03 03:54:22	ID21L	8.752	41.008	58

^{*}Dix premières colonnes sur les 25 colonnes du jeu de données

```
grid_day1 <- grid_oceano[[i]]
}

tab_extract.bird %>%
  left_join(grid_day1, by = c("Longitude", "Latitude")) %>%
  select(Site, Time, Date, ID, Longitude, Latitude, Bathy.x, Bathy.y)
```

1.2.1 Data visualisation

Number of individuals (doesn't match with the "breeding pairs" of Clara's paper)

```
bird1 <- ALL2011 %>%
  # filter(!is.na(Site)) %>%
  amt::select(x = Longitude, y = Latitude, t = Time, id = ID, Bathy = Bathy,
              SST1 = SST1, logCHLA1 = logCHLA1) %>%
  amt::filter(id == "ID1R")
track1 <- bird1 %>%
  amt::make\_track(.x = x, .y = y, .t = t, crs = "epsg:2154", bathy = Bathy,
                  sst1 = SST1, logchla1 = logCHLA1, all_cols = FALSE)
summarize_sampling_rate(track1)
stps <- track1 %>%
  amt::track_resample(rate = minutes(10), tolerance = seconds(60)) %>%
  amt::filter_min_n_burst(min_n = 3) %>%
  amt::steps_by_burst(keep_col = 'both') %>%
  select(-c("burst__start", "burst__end")) # removing these 2 auto created col.
  # amt::time_of_day(include.crepuscule = FALSE)
# str(stps)
```

Get the grid dataframe corresponding to the observed day of stps dataframe

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: jeu., janv. 13, 2022 - 11:11:53

Table 3: Extrait des données de mouvements générées*

	$\mathrm{burst}_$	x1	x2	y1	y2	sl
1	1	5.3196583956044	5.31904454347826	43.1936886043956	43.192251923913	0.0015623268677988
2	1	5.31904454347826	5.31857008695652	43.192251923913	43.1914647391304	0.0009191130904145
3	1	5.31857008695652	5.3182886875	43.1914647391304	43.19137221875	0.0002962189644840
4	1	5.3182886875	5.28038525	43.19137221875	43.18753025	0.0380976547597399
5	1	5.28038525	5.25684440217391	43.18753025	43.1810203586956	0.024424377190959
6	2	5.11868041304348	5.1407792173913	43.2877600869565	43.2995260434783	0.025035871993523
7	2	5.1407792173913	5.17050696703297	43.2995260434783	43.2985096043956	0.029745121401108
8	2	5.17050696703297	5.22882837362637	43.2985096043956	43.2237628461538	0.0948075120161423
9	2	5.22882837362637	5.2848227032967	43.2237628461538	43.2121182417582	0.057192322620782
10	2	5.2848227032967	5.29179266666667	43.2121182417582	43.187891	0.025209911395894

^{*}observed steps

```
# bool <- FALSE
# i <- 0
# while (!bool) {
# i <- i + 1
# if(grid_oceano[[i]]$Date[[1]] == date(stps$t1_)[1]) {
# bool <- TRUE
# grid_day1_bird1 <- grid_oceano[[i]]
# }
# }</pre>
```

closest starting point to existing grid points

```
# point1 <- stps[1, c("x2_", "y2_")]
# names(point1) <- c("Longitude", "Latitude")
# matrx <- grid_day1_bird1[, c("Longitude", "Latitude")] %>% as.matrix()
# nearest_pt <- Rfast::dista(point1, matrx, k = 1, index = TRUE)
# grid_day1_bird1[nearest_pt,]
# stps[1,]</pre>
```

adding random steps

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: jeu., janv. 13, 2022 - 11:11:54

```
get_habitat <- function(step, mutate_var = "bathy_end", covariate = "Bathy", output){
    # get 1 habitat covariate for a random ENDGING point (default Bathy)
    grid_day <- grid_oceano[[which(grid_Oceano_Date == date(step$t2_))]]
    matrx <- grid_day[, c("Longitude", "Latitude")] %>% as.matrix()
    nearest_id <- Rfast::dista(step[,c("x2_", "y2_")], matrx, k = 1, index = TRUE)
    step[, mutate_var] <- grid_day[nearest_id, covariate]
    return(step)
}</pre>
```

```
for (i in 1:nrow(rdm_stps)){
  if (rdm_stps[i, "case_"] == FALSE){
    rdm_stps[i,] <- get_habitat(rdm_stps[i,],</pre>
```

Table 4: Extrait des données de mouvements aléatoires générées*

	burst_	x1	x2	y1	y2	sl
1	1	5.31904454347826	5.31857008695652	43.192251923913	43.1914647391304	0.0009191130904145
2	1	5.31904454347826	5.32702638410633	43.192251923913	43.1907216063212	0.0081272167279902
3	1	5.31904454347826	5.32416896844003	43.192251923913	43.1902153966654	0.0055142700712894
4	1	5.31904454347826	5.31745743573299	43.192251923913	43.1892734946752	0.0033749002532656
5	1	5.31904454347826	5.30836293449869	43.192251923913	43.1682550624209	0.0262668256907
6	2	5.2848227032967	5.28486038513963	43.2121182417582	43.2121261207569	3.84967519031979e-0
7	2	5.2848227032967	5.32199227284001	43.2121182417582	43.2263010709105	0.039783533563484
8	2	5.2848227032967	5.28496782684468	43.2121182417582	43.2121556645877	0.00014987098566759
9	2	5.2848227032967	5.28816110605142	43.2121182417582	43.2116614196375	0.0033695132293418
10	2	5.2848227032967	5.28530895678268	43.2121182417582	43.2030931112311	0.0090382201501840

^{*}observed and random steps

amt::iSS function to run survival::clogit function usable in pipe workflow

[%] Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu

[%] Date and time: jeu., janv. 13, 2022 - 11:12:06

Table 5: Résumé du modèle de régression logistique conditionnel*

	$Dependent\ variable:$		
	rep(1, 1890)		
sl	-0.195		
	(4.107)		
ta_	0.088		
	(0.102)		
log_sl	-0.004		
	(0.075)		
bathy_end	-0.026***		
v —	(0.006)		
sst1 end	-1.324^{**}		
_	(0.567)		
logchla1_end	-2.328***		
S —	(0.715)		
Observations	1,864		
$ m R^2$	0.018		
Max. Possible R ²	0.369		
Log Likelihood	-412.116		
Wald Test	$27.240^{***} (df = 6)$		
LR Test	$34.373^{***} (df = 6)$		
Score (Logrank) Test	$25.734^{***} (df = 6)$		
Note	*n<0.1: **n<0.05: ***n<0.01		

Note: *p<0.1; **p<0.05; ***p<0.01