Finite Element Analysis (FEA) Tutorial

Project 2: 2D Plate with a Hole Problem

Problem

Analyze the following plate with hole using FEA tool ABAQUS

- Determine:
 - The stress concentration factor
 - The factor of safety
- Plot:
 - Deformed shape
 - Stress contour
 - Stress diagram along a line

Dimensions:

t = 3 mm

w = 50 mm

d = 10 mm

L = 100 mm

P = 5 kN = 5000 N

Allowable Stress:

 σ_{allow} = 120 MPa

Preprocessing

Creating the Geometry

- Open ABAQUS/CAE and create a new part: Plate
- Using rectangle tool, create a rectangle using two corner points (-50,-25) and (50,25)
- Create a circle using center at (0,0) and a perimeter point at (5,5); Click Add
 Dimension and put 5 as Radius

Creating the Materials

 Double click Materials under Model tree to create

Material-1

- Edit Material window will pop up
- Click Mechanical > Elasticity >Elastic
- Write down the properties:

Young's Modulus: 200E3

Poisson's Ratio: 0.25

Click Ok

Creating the Section and Section Assignments

- Double click Sections under Model tree to create Section-1
 - Create Section window will pop up
 - Modify as following and click Continue

Name: Section-1

Category: Solid

Type: Homogeneous

- Edit Section window will pop up
- Select Material-1 from the Material drop down list
- Put 3 in the Plane stress/strain thickness and click Ok
- Create a Section Assignment using Section-1 (Ref. Truss Problem Tutorial)

Creating an Assembly

- Under Model-1, go to
 Assembly > Double click
 Instances to create an instance
- Create Instance window
 will pop up
 - Click Ok
 - Tips: Plate will turn into blue

Creating Mesh (Partitioning)

- Before generating mesh, the geometry needs to be partitioned-
 - Mapped mesh can be applied
 - Less number of elements will be required
- Go to Parts > Plate and double click
 Mesh (Empty) to enter in the Mesh module
- Go to Tool>Partition
 - Create Partition window will pop up
 - Type: Face
 - Method: Sketch
 - Click 'x' to close the Create Partition window

Creating Mesh (Partitioning)

- Create 1 vertical and 1 horizontal line through the center of the hole
- Create 2 arbitrary vertical and 2 arbitrary horizontal lines
- Using **Add Dimension**, set the lines 10 mm apart from the center lines
- Click the middle mouse button/Done to complete partitioning

Creating Mesh (Meshing)

- Select Mesh > Element Type from the menu bar
 - Select the whole plate by holding the left mouse button, dragging and releasing the left mouse button
 - Tips: Zoom out to make the plate smaller
 - Hit Done
- Element Type window will pop up
 - From the Family select Plate Stress and hit Ok
- Select Mesh > Control from the menu bar
 - Select the whole plate; Mesh Control window will pop up
 - Element Shape: Quad
 - Technique: Structured

Creating Mesh (Meshing)

- Select Seed > Edge from the menu bar
 - Select the top left horizontal line section
 - Click middle mouse button
 - Local Seeds window will pop up
 - Method: By number
 - Sizing Controls →Number of elements: 10
- Using the same method, complete seeding all the lines as following
- Important Tips: Hold the Shift button to select multiple lines for seeding them altogether

Creating Mesh (Meshing)

- Go to Mesh>Part
 - Click **Ok** to generate mesh

Creating a Step

- Double click Steps under Model tree and Create Step window will pop up
 - Keep the properties in default
 - Name: Step-1
 - Procedure Type: General
 - Static, General
 - Hit Continue
- Edit Step window will pop up
 - Hit **Ok**

Creating Boundary Conditions (BCs)

- Go to Steps > Step-1 and double click BCs to create boundary condition BC-1
- Create Boundary Condition window will pop up

- Name: BC-1

Steps: Step-1

Category: Mechanical

Types for Selected Step: Displacement/Rotation

- Hit Continue, select the horizontal centerline and hit Done
- Edit Boundary Condition window will pop up
 - Click the check box U2 and put 0 in the right side box
- Create BC-2 by selecting vertical centerline
 - U1 = 0, U2 = 0

Edit Boundary Condition	
Name: BC-1	
Type: Displacement/Rotation	
Step: Step-1 (Static, General)	
Region: Set-1	
CSYS: (Global) 🍃 🙏	
Distribution:	Uniform
□ U1:	
▼ U2:	0
UR3:	radians
Amplitude:	(Ramp)
Note: The displacement value will be maintained in subsequent steps.	
OK Cancel	

Creating Loads

- Go to **Steps > Step-1** and double click **Loads** to create load
- Create Load window will pop up

Name: Load-1

Steps: Step-1

Category: Mechanical

Types for Selected Step: Pressure

- Hit **Continue**, select the left and right vertical lines at the edges, and hit Done
- Edit Load window will pop up. Put,
 - **Magnitude = -33.33**
 - Hit **Ok**

Pressure = P/(w*t) =5000/(50*3) = 33.33 MPa

Solving

Create a Job

- Under Analysis, double click Jobs to create a job
- Create Job window will pop up
 - Name: Job-1
 - Hit Continue
 - Hit Ok

Submit the Job

- In order to conduct the analysis, the job needs to be submit for solving
- Right click Job-1 under Jobs and click Submit
- The following solver status of the job will appear right next to Job-1 in a parenthesis
 - Submitted
 - Running
 - Completed

Postprocessing

Deformed Shape and Stress Contour

Stress along a line (Create a Path)

- From the Results tree, double click Paths
 - Create Path window will pop up, hit Continue
- Edit Node List Path window will pop up, hit Add Before...
- Click all the nodes of the vertical centerline from top to bottom (maintain order)
 - Hit Done and Ok

Stress along a line (Create XY Data)

- From the Results tree, double click XYData
 - Create XY Data window will pop up
 - Select Path, and hit Continue
- XY Data from Path window will pop up, hit Save
 As
- Save XY Data As window will pop up
 - Hit Ok
- Click 'x' or Cancel button to close the window

Stress along a line

- Click '+' button of the XY Data from Results tree
 - Double click the XYData-1
- Flie>Print>Destination: File to save the Stress vs.
 True distance along path curve

Maximum Stress

- Maximum Stress value is required to obtain to calculate stress concentration factor and factor of safety
- Click the **Deformed Shape** button
- Click the Contour Options button
 - Go to Limit Tab
 - The Maximum stress value can be obtained from here
 - Check the **Show location** to see the maximum/minimum stress location in the stress contour plot

FEA using Quarter Model

- Follow the same steps to conduct a finite element analysis for the quarter model
- Tips:

- ✓ Create circle at the bottom left corner of the rectangle and use Auto-trim button
- ✓ Seed the geometry as following
- ✓ Apply -33.33/2 = -16.665 MPa pressure for Loading

