ECON 591: Lecture #4

Topic 4: Multivariable Calculus

A. Klis

Northern Illinois University September 23, 2019

From Last Time...

Functions are rules that assign objects from one space to individual objects in another space.

- Motivating example: Production Function
- Linear
 - ▶ Level sets in linear \rightarrow hyperplanes ax = b
 - ► Common for econ: budget sets

From Last Time...

Functions are rules that assign objects from one space to individual objects in another space.

- Motivating example: Production Function
- Linear
 - ▶ Level sets in linear \rightarrow hyperplanes ax = b
 - ► Common for econ: budget sets
- Next up... Quadratic forms

$$f(x) = bx^2$$

Definition 4.D

A quadratic form on \mathbb{R}^k is a real-valued function of the form

$$Q(x_1,...,x_k) = \sum_{i,j=1}^k a_{ij}x_ix_j.$$

$$f(x) = bx^2$$

Definition 4.D

A quadratic form on \mathbb{R}^k is a real-valued function of the form

$$Q(x_1,...,x_k) = \sum_{i,j=1}^k a_{ij}x_ix_j.$$

Level curve: $a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 = b$

ightarrow ellipse, hyperbola, pair of lines, empty set (i.e. conic sections)

Common for econ: indifference curves

$$f(x) = bx^2$$

Definition 4.D

A quadratic form on \mathbb{R}^k is a real-valued function of the form

$$Q(x_1,...,x_k) = \sum_{i,j=1}^k a_{ij}x_ix_j.$$

Level curve: $a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 = b$

 \rightarrow ellipse, hyperbola, pair of lines, empty set (i.e. conic sections)

Common for econ: indifference curves

Matrix Representation ("Expansion around a matrix")

$$\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

3 / 24

A. Klis (NIU) #4 (Topic 4) September 23, 2019

Theorem 4.3

The general quadratic form $Q(x_1,...,x_n) = \sum_{i \leq j} a_{ij}x_ix_j$ can be written as

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} a_{11} & \frac{1}{2}a_{12} & \dots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{12} & a_{22} & \dots & \frac{1}{2}a_{2n} \\ \vdots & & \ddots & \vdots \\ \frac{1}{2}a_{1n} & \frac{1}{2}a_{2n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

or $x^T A x$, where A is a unique symmetric matrix. Conversely, if A is a symmetric matrix, then $Q(x) = x^T A x$ is a quadratic form.

Polynomials

Linear and quadratic are special cases of polynomials.

Polynomials

Linear and quadratic are special cases of polynomials.

Definition 4.E

A function $f: \mathbb{R}^k \to \mathbb{R}^1$ is a monomial if it can be written as

$$f(x_1,...,x_k) = cx_1^{a_1}x_2^{a_2}...x_k^{a_k}$$

where c is a scalar and the exponents $a_1, ..., a_k$ are nonnegative integers. The sum of exponents is called the degree of the monomial.

Polynomials

Linear and quadratic are special cases of polynomials.

Definition 4.E

A function $f: \mathbb{R}^k \to \mathbb{R}^1$ is a <u>monomial</u> if it can be written as

$$f(x_1,...,x_k) = cx_1^{a_1}x_2^{a_2}...x_k^{a_k}$$

where c is a scalar and the exponents $a_1, ..., a_k$ are nonnegative integers. The sum of exponents is called the degree of the monomial.

Definition 4.F

A function $f: \mathbb{R}^k \to \mathbb{R}^1$ is a <u>polynomial</u> if f is the finite sum of monomials on \mathbb{R}^k . The highest degree which occurs among the monomials is the degree of the polynomial.

A function $f: \mathbb{R}^k \to \mathbb{R}^m$ is called a polynomial if each of its component functions is a real-valued polynomial.

Definition 4.G

Let f be a function from \mathbb{R}^k to \mathbb{R}^m . Let x_0 be a vector in \mathbb{R}^k , and $y = f(x_0)$ its image. The function f is continuous at x_0 if wherever $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^k which converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R}^m converges to $f(x_0)$.

The function is said to be <u>continuous</u> if it is continuous at every point in its domain.

Definition 4.G

Let f be a function from \mathbb{R}^k to \mathbb{R}^m . Let x_0 be a vector in \mathbb{R}^k , and $y = f(x_0)$ its image. The function f is continuous at x_0 if wherever $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^k which converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R}^m converges to $f(x_0)$.

The function is said to be <u>continuous</u> if it is continuous at every point in its domain.

We can write this as $f \in C^0$.

Definition 4.G

Let f be a function from \mathbb{R}^k to \mathbb{R}^m . Let x_0 be a vector in \mathbb{R}^k , and $y = f(x_0)$ its image. The function f is continuous at x_0 if wherever $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^k which converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R}^m converges to $f(x_0)$.

The function is said to be <u>continuous</u> if it is continuous at every point in its domain.

We can write this as $f \in C^0$.

Theorem 4.4

Let $f = (f_1, ..., f_m)$ be a function from \mathbb{R}^k to \mathbb{R}^m . Then f is continuous at x iff each of its component functions $f_i : \mathbb{R}^k \to \mathbb{R}^1$ is continuous at x.

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Proof.

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x.

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Proof.

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x. By continuity, $f(x_n)$ converges to f(x) and $g(x_n)$ converges to g(x).

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Proof.

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x. By continuity, $f(x_n)$ converges to f(x) and $g(x_n)$ converges to g(x). From earlier, $f(x_n) + g(x_n) = (f+g)(x_n) \to \text{this converges to}$ f(x) + g(x) = (f+g)(x).

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Proof.

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x. By continuity, $f(x_n)$ converges to f(x) and $g(x_n)$ converges to g(x). From earlier, $f(x_n) + g(x_n) = (f+g)(x_n) \to \text{this converges to}$ f(x) + g(x) = (f+g)(x). Therefore f+g is continuous at x as well.

Theorem 4.5

Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m . Suppose f and g are continuous at x. Then f+g, f-g and $f\cdot g$ are all continuous at x.

Proof.

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence converging to x. By continuity, $f(x_n)$ converges to f(x) and $g(x_n)$ converges to g(x). From earlier, $f(x_n) + g(x_n) = (f+g)(x_n) \to \text{this converges to}$ f(x) + g(x) = (f+g)(x). Therefore f+g is continuous at x as well.

Ditto for f - g, $f \cdot g$.

Definition 4.H

A function $f: S \to \mathbb{R}^m$, where S is an open set in \mathbb{R}^n , is said to be <u>differentiable</u> at a point $x \in S$ s.t. \exists an $m \times n$ matrix A s.t. $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $y \in S$ and $||x - y|| < \delta$ $\Rightarrow ||f(x) - f(y) - A(x - y)|| < \varepsilon ||x - y||$.

Equivalently, f is differentiable at $x \in S$ if

$$\lim_{y \to x} \left(\frac{||f(y) - f(x) - A(y - x)||}{||y - x||} \right) = 0$$

where y represents \forall sequences $y_k \rightarrow x$.

The matrix A is called the <u>derivative</u> of f at x and is denoted Df(x).

When n = m = 1 (so $S \in \mathbb{R}$ and $f : S \to \mathbb{R}$) denote Df(x) as f'(x).

A. Klis (NIU) #4 (Topic 4) September 23, 2019 8 / 24

Definition 4.1

When f is differentiable on S, the derivative Df itself forms a function from S to $\mathbb{R}^{m\times n}$. If $Df:S\to\mathbb{R}^{m\times n}$ is a continuous function, then f is said to be continuously differentiable on S, and we say f is C^1 .

Differentiable everywhere gives some idea of continuity, but is not the same thing as continuously differentiable.

Definition 4.1

When f is differentiable on S, the derivative Df itself forms a function from S to $\mathbb{R}^{m\times n}$. If Df : $S\to\mathbb{R}^{m\times n}$ is a continuous function, then f is said to be continuously differentiable on S, and we say f is C^1 .

Differentiable everywhere gives some idea of continuity, but is not the same thing as continuously differentiable.

Theorem 4.6

If $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are both differentiable at point $x \in \mathbb{R}^n$, then so is (f+g); and in fact D(f+g)(x) = Df(x) + Dg(x).

Proof.

Choose some $\varepsilon > 0$. f differentiable

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $y \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $v \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

g differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}$, $\exists \delta_g > 0$ s.t. for $y \in S$ $||x - y|| < \delta_g \Rightarrow ||g(x) - g(y) - Dg(x)|| \leq \frac{\varepsilon}{2}||x - y||$

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $v \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

g differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}, \exists \delta_g > 0$ s.t. for $y \in S$

$$||x-y|| < \delta_g \Rightarrow ||g(x)-g(y)-Dg(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

Let $\delta = \min\{\delta_f, \delta_g\}$.

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $g \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

g differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}$, $\exists \delta_g > 0$ s.t. for $y \in S$ $||x - y|| < \delta_g \Rightarrow ||g(x) - g(y) - Dg(x)|| \leq \frac{\varepsilon}{2}||x - y||$

Let
$$\delta = \min\{\delta_f, \delta_g\}$$
. Then $||x - y|| < \delta \Rightarrow$ $||f(x) - f(y) - Df(x)|| + ||g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $g \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

$$g$$
 differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}$, $\exists \delta_g > 0$ s.t. for $y \in S$
$$||x - y|| < \delta_g \Rightarrow ||g(x) - g(y) - Dg(x)|| \leq \frac{\varepsilon}{2}||x - y||$$

Let
$$\delta = \min\{\delta_f, \delta_g\}$$
. Then $||x - y|| < \delta \Rightarrow$
 $||f(x) - f(y) - Df(x)|| + ||g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$
 $||f(x) - f(y) - Df(x) + g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $g \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

$$g$$
 differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}$, $\exists \delta_g > 0$ s.t. for $y \in S$
$$||x - y|| < \delta_g \Rightarrow ||g(x) - g(y) - Dg(x)|| \leq \frac{\varepsilon}{2} ||x - y||$$

Let
$$\delta = \min\{\delta_f, \delta_g\}$$
. Then $||x - y|| < \delta \Rightarrow$

$$||f(x) - f(y) - Df(x)|| + ||g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$$

$$||f(x) - f(y) - Df(x) + g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$$

$$||(f + g)(x) - (f + g)(y) - (Df(x) + Dg(x))|| \le \varepsilon ||x - y||$$

Proof.

Choose some $\varepsilon > 0$. f differentiable $\Rightarrow \exists Df(x)$ s.t. $\forall \varepsilon$ (particularly $\frac{\varepsilon}{2}$), $\exists \delta_f > 0$ s.t. for $g \in S$

$$||x-y|| < \delta_f \Rightarrow ||f(x)-f(y)-Df(x)|| \leq \frac{\varepsilon}{2}||x-y||$$

g differentiable $\Rightarrow \exists Dg(x)$ s.t. for $\frac{\varepsilon}{2}$, $\exists \delta_g > 0$ s.t. for $y \in S$ $||x - y|| < \delta_g \Rightarrow ||g(x) - g(y) - Dg(x)|| \leq \frac{\varepsilon}{2}||x - y||$

Let
$$\delta = \min\{\delta_f, \delta_g\}$$
. Then $||x - y|| < \delta \Rightarrow$
 $||f(x) - f(y) - Df(x)|| + ||g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$
 $||f(x) - f(y) - Df(x) + g(x) - g(y) - Dg(x)|| \le \varepsilon ||x - y||$
 $||(f + g)(x) - (f + g)(y) - (Df(x) + Dg(x))|| \le \varepsilon ||x - y||$

Then
$$(Df(x) + Dg(x)) = D(f + g)(x)$$
.

Definition 4.J

The image of C under f is: $f(C) \equiv \{b \in B : b = f(a) \text{ for some } a \in C\}$

The <u>preimage</u> is the set of all points in the domain whose image is in V: $f^{-1}(V) \equiv \{a \in A : f(a) \in V\}$

Definition 4.J

The <u>image</u> of C under f is: $f(C) \equiv \{b \in B : b = f(a) \text{ for some } a \in C\}$

The <u>preimage</u> is the set of all points in the domain whose image is in V: $f^{-1}(V) \equiv \{a \in A : f(a) \in V\}$

 \Rightarrow image and preimage are inverses of each other

Definition 4.J

The <u>image</u> of C under f is: $f(C) \equiv \{b \in B : b = f(a) \text{ for some } a \in C\}$

The <u>preimage</u> is the set of all points in the domain whose image is in V: $f^{-1}(V) \equiv \{a \in A : f(a) \in V\}$

 \Rightarrow image and preimage are inverses of each other

Definition 4.K

If $\forall b \in B$, $\exists a \in A$ s.t. b = f(a), or if the target space of f is the image of f, we say f maps onto B or that f is surjective.

Definition 4.J

The <u>image</u> of C under f is: $f(C) \equiv \{b \in B : b = f(a) \text{ for some } a \in C\}$

The <u>preimage</u> is the set of all points in the domain whose image is in V: $f^{-1}(V) \equiv \{a \in A : f(a) \in V\}$

 \Rightarrow image and preimage are inverses of each other

Definition 4.K

If $\forall b \in B$, $\exists a \in A \text{ s.t. } b = f(a)$, or if the target space of f is the image of f, we say f maps onto B or that f is surjective.

Definition 4.L

A function $f: A \to B$ is <u>one-to-one</u> (or <u>injective</u>) on a subset C of A iff $\forall x, y \in C$, $f(x) = f(y) \Rightarrow x = y$. f is <u>one-to-one</u> on $C \subseteq A$ if each $b \in f(c)$ is the image of precisely one element of C.

Surjective (onto) & Injective (one-to-one)

Importance for f(x) = b

- f is onto if f(x) = b has at least one solution for each b
- f is one-to-one if f(x) = b has at most one solution for each b

Surjective (onto) & Injective (one-to-one)

Importance for f(x) = b

- f is onto if f(x) = b has at least one solution for each b
- f is one-to-one if f(x) = b has at most one solution for each b

Definition 4.M

A bijective function is a one-to-one and onto mapping of A to B.

A bijection has an inverse for sure, but other functions can as well.

A. Klis (NIU) #4 (Topic 4) September 23, 2019 12 / 24

Vocabulary

Surjective (onto) & Injective (one-to-one)

Importance for f(x) = b

- f is onto if f(x) = b has at least one solution for each b
- f is one-to-one if f(x) = b has at most one solution for each b

Definition 4.M

A bijective function is a one-to-one and onto mapping of A to B.

A bijection has an inverse for sure, but other functions can as well.

Definition 4.N

When $f:A\to B$ is one-to-one on a set $C\subseteq A$, there is a natural function that takes f(C) back to C which assigns to each $b\in f(C)$ the unique point in C which is mapped to it. This map is called the <u>inverse</u> of f on C and is written as $f^{-1}(C):f(C)\to C$.

Composition of Functions

Definition 4.0

Let $f:A\to B$ and $g:C\to D$ be two functions. Suppose that B, the image of A is a subset of C, the domain of g. Then the <u>composition</u> of f with $g,g\circ f:A\to D$ is defined as $(g\circ f)(x)=g(f(x))$ $\forall x\in A$.

Composition of Functions

Definition 4.0

Let $f:A\to B$ and $g:C\to D$ be two functions. Suppose that B, the image of A is a subset of C, the domain of g. Then the <u>composition</u> of f with $g,g\circ f:A\to D$ is defined as $(g\circ f)(x)=g(f(x))$ $\forall x\in A$.

Theorem 4.7

Let $f: \mathbb{R}^k \to \mathbb{R}^m$ be a continuous function at $x \in \mathbb{R}^k$. Let $g: \mathbb{R}^m \to \mathbb{R}^n$ be a continuous function at $f(x) \in \mathbb{R}^m$. Then the composition $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ is a continuous function at $x \in \mathbb{R}^k$.

Composition of Functions

Definition 4.0

Let $f:A\to B$ and $g:C\to D$ be two functions. Suppose that B, the image of A is a subset of C, the domain of g. Then the <u>composition</u> of f with $g,g\circ f:A\to D$ is defined as $(g\circ f)(x)=g(f(x))$ $\forall x\in A$.

Theorem 4.7

Let $f: \mathbb{R}^k \to \mathbb{R}^m$ be a continuous function at $x \in \mathbb{R}^k$. Let $g: \mathbb{R}^m \to \mathbb{R}^n$ be a continuous function at $f(x) \in \mathbb{R}^m$. Then the composition $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ is a continuous function at $x \in \mathbb{R}^k$.

Theorem 4.8

Let $f: \mathbb{R}^k \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^n$. Let $x \in \mathbb{R}^k$. If f is differentiable at x, and g is differentiable at f(x), then $g \circ f$ is itself differentiable at x, and its derivative may be obtained through the "chain rule" as $D(g \circ f)(x) = Dg(f(x))Df(x).$

Calculus of Several Variables

$$F: \mathbb{R}^n \to \mathbb{R}$$
 $F(x_1, ..., x_n) = y$

We're interested in how changes in x_i affect F.

Partial derivative of F wrt x_i denoted $\frac{\partial F}{\partial x_i}$.

Recall that for one variable function f(x), the derivative was defined as:

$$\frac{df(x_0)}{dx} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Calculus of Several Variables

$$F: \mathbb{R}^n \to \mathbb{R}$$

$$F: \mathbb{R}^n \to \mathbb{R}$$
 $F(x_1, ..., x_n) = y$

We're interested in how changes in x_i affect F.

<u>Partial derivative</u> of F wrt x_i denoted $\frac{\partial F}{\partial x_i}$.

Recall that for one variable function f(x), the derivative was defined as:

$$\frac{df(x_0)}{dx} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Definition 4.P

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then $\forall x_i$ at each point $x^0 = (x_1^0, ..., x_n^0)$ in the domain of f, the partial derivative of f wrt x_i is

$$\frac{\partial f(x_1^0,...,x_n^0)}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1^0,...,x_i+h,...,x_n^0) - f(x_1^0,...,x_i^0,...,x_n^0)}{h}.$$

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At
$$K = 10,000$$
 and $L = 625$, $Q = 20,000$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K}$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right)$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right) = 3\left(\frac{L}{K}\right)^{\frac{1}{4}} \quad (MPK)$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right) = 3\left(\frac{L}{K}\right)^{\frac{1}{4}} \quad (MPK)$$

$$\frac{\partial Q}{\partial I}$$

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right) = 3\left(\frac{L}{K}\right)^{\frac{1}{4}} \qquad (MPK)$$

$$\frac{\partial Q}{\partial L} = \left(4K^{\frac{3}{4}}\right) \left(\frac{1}{4}L^{-\frac{3}{4}}\right)$$

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right) = 3\left(\frac{L}{K}\right)^{\frac{1}{4}} \qquad (MPK)$$

$$\frac{\partial Q}{\partial L} = \left(4K^{\frac{3}{4}}\right) \left(\frac{1}{4}L^{-\frac{3}{4}}\right) = \left(\frac{K}{L}\right)^{\frac{3}{4}} \qquad (MPL)$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

where K is capital and L is labor

At K = 10,000 and L = 625, Q = 20,000 Let's take the partial derivatives:

$$\frac{\partial Q}{\partial K} = \left(4L^{\frac{1}{4}}\right) \left(\frac{3}{4}K^{-\frac{1}{4}}\right) = 3\left(\frac{L}{K}\right)^{\frac{1}{4}} \qquad (MPK)$$

$$\frac{\partial Q}{\partial L} = \left(4K^{\frac{3}{4}}\right) \left(\frac{1}{4}L^{-\frac{3}{4}}\right) = \left(\frac{K}{L}\right)^{\frac{3}{4}} \qquad (MPL)$$

At (10,000, 625), $\frac{\partial Q}{\partial K} = 1.5, \frac{\partial Q}{\partial L} = 8.$

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

hold x₂ fixed

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Combining these, we see if we move in two directions at once:

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Combining these, we see if we move in two directions at once:

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

A. Klis (NIU) #4 (Topic 4) September 23, 2019 16 / 24

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Combining these, we see if we move in two directions at once:

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Like describing a plane

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Combining these, we see if we move in two directions at once:

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

- Like describing a plane
 - ⇒ derivatives are slopes

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

• Combining these, we see if we move in two directions at once:

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

- Like describing a plane
 - ⇒ derivatives are slopes
 - ⇒ changes are vectors

We are interested in the behavior of function $F(x_1, x_2)$ in a neighborhood of a given point (x_1^*, x_2^*) . **Drawing.**

• hold x_2 fixed \Rightarrow how does x_1 change moving along the curve?

$$F(x_1^* + \Delta x_1, x_2^*) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1$$

• hold x_1 fixed, how does x_2 change?

$$F(x_1^*, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

Combining these, we see if we move in two directions at once:

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

- Like describing a plane
 - ⇒ derivatives are slopes
 - ⇒ changes are vectors
 - ⇒ linear approximation of a curve

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

Put in matrix format:

$$\begin{pmatrix} \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} & \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix}$$

We call this matrix of derivatives the <u>Jacobian</u> (4.Q): $J = \{J_{ij} = \frac{\partial f_i}{\partial x_i}\}$

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

Put in matrix format:

$$\begin{pmatrix} \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} & \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix}$$

We call this matrix of derivatives the <u>Jacobian</u> (4.Q): $J = \{J_{ij} = \frac{\partial f_i}{\partial x_j}\}$ \rightarrow here just one F, 2 variables; expand to multivariable:

$$DF_x = \begin{pmatrix} \frac{\partial F(x^*)}{\partial x_1} & \dots & \frac{\partial F(x^*)}{\partial x_n} \end{pmatrix}$$

$$F(x_1^* + \Delta x_1, x_2^* + \Delta x_2) - F(x_1^*, x_2^*) \approx \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} \Delta x_1 + \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \Delta x_2$$

Put in matrix format:

$$\begin{pmatrix} \frac{\partial F(x_1^*, x_2^*)}{\partial x_1} & \frac{\partial F(x_1^*, x_2^*)}{\partial x_2} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \Delta x_2 \end{pmatrix}$$

We call this matrix of derivatives the <u>Jacobian</u> (4.Q): $J = \{J_{ij} = \frac{\partial f_i}{\partial x_j}\}$ \rightarrow here just one F, 2 variables; expand to multivariable:

$$DF_{x} = \begin{pmatrix} \frac{\partial F(x^{*})}{\partial x_{1}} & \dots & \frac{\partial F(x^{*})}{\partial x_{n}} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \dots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \dots & \frac{\partial f_{n}}{\partial x_{n}} \end{pmatrix}$$

Inverse Function Theorem

We can think of the Jacobian as its own function, in some ways.

For $F: \mathbb{R}^n \to \mathbb{R}^m$ which is C^1 , where $F(x^*) = b$ and $DF(x^*)$ is the $m \times n$ Jacobian, then if

- $DF(x^*)$ is onto, then F is locally onto.
- $DF(x^*)$ is one-to-one, then F is locally one-to-one.

Inverse Function Theorem

We can think of the Jacobian as its own function, in some ways.

For $F: \mathbb{R}^n \to \mathbb{R}^m$ which is C^1 , where $F(x^*) = b$ and $DF(x^*)$ is the $m \times n$ Jacobian, then if

- $DF(x^*)$ is onto, then F is locally onto.
- $DF(x^*)$ is one-to-one, then F is locally one-to-one.

Theorem 4.9

(Inverse Function Theorem) Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function with $F(x^*) = y^*$. If $DF(x^*)$ is nonsingular, then \exists on an open ball $B_r(x^*)$ about x^* and on open set V about y^* s.t. F is a one-to-one and onto map from $B_r(x^*)$ to V. The natural inverse map $F^{-1}: V \to B_r(x^*)$ is also C^1 and $D(F(x^*)^{-1}) = (DF(x^*))^{-1}$.

Inverse Function Theorem

We can think of the Jacobian as its own function, in some ways.

For $F: \mathbb{R}^n \to \mathbb{R}^m$ which is C^1 , where $F(x^*) = b$ and $DF(x^*)$ is the $m \times n$ Jacobian, then if

- DF(x*) is onto, then F is locally onto.
- $DF(x^*)$ is one-to-one, then F is locally one-to-one.

Theorem 4.9

(Inverse Function Theorem) Let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 function with $F(x^*) = y^*$. If $DF(x^*)$ is nonsingular, then \exists on an open ball $B_r(x^*)$ about x^* and on open set V about y^* s.t. F is a one-to-one and onto map from $B_r(x^*)$ to V. The natural inverse map $F^{-1}: V \to B_r(x^*)$ is also C^1 and $D(F(x^*)^{-1}) = (DF(x^*))^{-1}$.

 \Rightarrow follows from the above properties

Parameterized Curves

Definition 4.Q

A <u>curve</u> in \mathbb{R}^n is an n-tuple of continuous functions

$$x(t) = (x_1(t), ..., x_n(t))$$

where each $x_i : \mathbb{R} \to \mathbb{R}$. The functions $x_i(t)$ are called <u>coordinate functions</u> and t is the parameter describing the curve.

EX// if t is elapsed time, then x(t) gives the position in \mathbb{R}^n on its trajectory at time t

- ightarrow distance, a common econ problem for traffic
- ightarrow any cts line segment

Parameterized Curves

Definition 4.R

The tangent vector at t is the component vector of first derivatives of x, i.e. $x'(t) = (x'_1(t), ..., x'_n(t))$

 \Rightarrow get us back to the idea of continuously differentiable when these tangent vectors form a continuous function themselves

Parameterized Curves

Definition 4.R

The tangent vector at t is the component vector of first derivatives of x, i.e. $x'(t) = (x'_1(t), ..., x'_n(t))$

 \Rightarrow get us back to the idea of continuously differentiable when these tangent vectors form a continuous function themselves

Theorem 4.10

[Chain Rule.] Let $F: \mathbb{R}^n \to \mathbb{R}^m$ and let $a: \mathbb{R}^1 \to \mathbb{R}^n$ be C^1 functions. Then, the composible function g(t) = F(a(t)) is a C^1 function from $\mathbb{R}^1 \to \mathbb{R}^m$ and

$$g_i'(t) = \sum_i \frac{\partial f_i}{\partial x_j} \left(a_1(t), ..., a_n(t) \right) a_j'(t) = Df_i(a(t)) \cdot a'(t)$$

This gives the vector equation $g'(t) = D(F \circ a)(t) = DF(a(t)) \cdot a'(t)$.

Higher-Order Derivatives

Recall C^1 , continuously differentiable.

If f'(x) has a continuous derivative, then f is twice-continuously differentiable (4.T), C^2 .

Recall C^1 , continuously differentiable.

If f'(x) has a continuous derivative, then f is twice-continuously differentiable (4.T), C^2 .

If for all derivatives,
$$C^{\infty}$$

EX// $f(x) = e^{x}$
 $f(x) = \frac{1}{1+x^{2}}$

Recall C^1 , continuously differentiable.

If f'(x) has a continuous derivative, then f is twice-continuously differentiable (4.T), C^2 .

If for all derivatives, C^{∞}

EX//
$$f(x) = e^{x}$$

 $f(x) = \frac{1}{1+x^{2}}$

If we have at least C^1 , we can calculate some higher order derivatives.

 $\frac{\partial f}{\partial x_i}$ is the change in f wrt x_i \rightarrow what if this is something like MPK, where we might be interested in how the variable changes that?

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$Q=4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$\frac{\partial MPK}{\partial L}$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$\frac{\partial MPK}{\partial L} = \frac{3}{4}L^{-\frac{3}{4}}K^{-\frac{1}{4}}$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$\frac{\partial MPK}{\partial L} = \frac{3}{4} L^{-\frac{3}{4}} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}}$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$\begin{split} \frac{\partial MPK}{\partial L} &= \frac{3}{4} L^{-\frac{3}{4}} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}} \\ \frac{\partial MPK}{\partial K} &= -\frac{3}{4} L^{\frac{1}{4}} K^{-\frac{5}{4}} \end{split}$$

$$Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$$

$$MPK = \frac{\partial Q}{\partial K} = 3L^{\frac{1}{4}}K^{-\frac{1}{4}}$$

How does MPK change with respect to labor? capital?

$$\begin{split} \frac{\partial MPK}{\partial L} &= \frac{3}{4} L^{-\frac{3}{4}} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}} \\ \frac{\partial MPK}{\partial K} &= -\frac{3}{4} L^{\frac{1}{4}} K^{-\frac{5}{4}} = -\frac{3}{4} \frac{L^{\frac{1}{4}}}{K^{\frac{5}{4}}} \end{split}$$

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

- ullet with j=i, this is $rac{\partial^2 f}{\partial x_i^2}
 ightarrow$ second derivative wrt i
- with $j \neq i$, this is a cross partial

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

- with j=i, this is $\frac{\partial^2 f}{\partial x_i^2} o$ second derivative wrt i
- with $j \neq i$, this is a cross partial

A function of n variables has n^2 partial derivatives

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

- with j=i, this is $\frac{\partial^2 f}{\partial x_i^2} \to \text{second derivative wrt } i$
- with $j \neq i$, this is a cross partial

A function of n variables has n^2 partial derivatives

 \rightarrow put in a matrix called the **Hessian (4.U)** whose (ij)th entry is $\frac{\partial^2 f(x^*)}{\partial x_j \partial x_i}$:

$$H \equiv D^{2} f_{x} = \begin{pmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\ \vdots & & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{pmatrix}$$

Theorem 4.11

[Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

Theorem 4.11

[Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

EX// Recall Cobb-Douglas: $Q = 4L^{\frac{1}{4}}K^{\frac{3}{4}}$ which had $\frac{\partial MPK}{\partial L} = \frac{3}{4}\frac{1}{L^{\frac{3}{4}}K^{\frac{1}{4}}}$

Theorem 4.11

[Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

EX// Recall Cobb-Douglas: $Q = 4L^{\frac{1}{4}}K^{\frac{3}{4}}$ which had $\frac{\partial MPK}{\partial L} = \frac{3}{4}\frac{1}{L^{\frac{3}{4}}K^{\frac{1}{4}}}$

$$\frac{\partial Q}{\partial I} = L^{-\frac{3}{4}} K^{\frac{3}{4}}$$

Theorem 4.11

[Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

EX// Recall Cobb-Douglas: $Q = 4L^{\frac{1}{4}}K^{\frac{3}{4}}$ which had $\frac{\partial MPK}{\partial L} = \frac{3}{4}\frac{1}{L^{\frac{3}{4}}K^{\frac{1}{4}}}$

$$\frac{\partial Q}{\partial L} = L^{-\frac{3}{4}} K^{\frac{3}{4}}$$

$$\frac{\partial}{\partial K} \left(\frac{\partial Q}{\partial L} \right) = L^{-\frac{3}{4}} \cdot \frac{3}{4} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}}$$

Theorem 4.11

Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

EX// Recall Cobb-Douglas: $Q = 4L^{\frac{1}{4}}K^{\frac{3}{4}}$ which had $\frac{\partial MPK}{\partial L} = \frac{3}{4}\frac{1}{L^{\frac{3}{4}}L^{\frac{1}{4}}}$

$$\frac{\partial Q}{\partial L} = L^{-\frac{3}{4}} K^{\frac{3}{4}}$$

$$\frac{\partial}{\partial K} \left(\frac{\partial Q}{\partial L} \right) = L^{-\frac{3}{4}} \cdot \frac{3}{4} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}}$$

#4 (Topic 4)

⇒ the Hessian is a symmetric matrix

Theorem 4.11

[Young's Theorem.] Suppose that $y = f(x_1, x_2, ..., x_n)$ is C^2 on an open region J in \mathbb{R}^n . Then $\forall x \in J$ and for each pair (i, j):

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$$

EX// Recall Cobb-Douglas: $Q = 4L^{\frac{1}{4}}K^{\frac{3}{4}}$ which had $\frac{\partial MPK}{\partial L} = \frac{3}{4}\frac{1}{L^{\frac{3}{4}}K^{\frac{1}{4}}}$

$$\frac{\partial Q}{\partial L} = L^{-\frac{3}{4}} K^{\frac{3}{4}}$$

$$\frac{\partial}{\partial K} \left(\frac{\partial Q}{\partial L} \right) = L^{-\frac{3}{4}} \cdot \frac{3}{4} K^{-\frac{1}{4}} = \frac{3}{4} \frac{1}{L^{\frac{3}{4}} K^{\frac{1}{4}}}$$

 \Rightarrow the Hessian is a symmetric matrix

Higher orders: if a function is C^3 , then third order partials exist and are continuous and Young's Theorem holds