Practical 4: The Three Project Types

In this course you have to produce a report based on one out of three different kinds of research question:

- a correlation,
- a comparison of means
- comparison of proportions.

To help you get an idea of what is required for each, we will use the R Scripts used in the last practical but this time we will look in much greater depth:

https://github.com/stivb/practical3 n 4.git

The files we particularly we want you to look at are:

- Comparison_of_means.R
- Comparison of proportions.R
- Correlation.R

These try to analyse the data from a survey last year made of students on this course.

If you havent already done this year's survey of Masters' students, do it now at: https://forms.office.com/e/UCWxNfT11s

There are more questions and also the data will be fresher. So if you want to get an understanding of how much your peers spend on food and transport, how much homework they do, what are their favorite music genres etc, then use the other dataset which will be released dependin on how many students fill it in.

By now you should have chosen (or at least have some idea of) your research question. Choose one of the R files above, which is the most relevant to your own research question. Then open it, and run them — not quite line by line — but at least the parts between comments. Select those parts, and then press the "Run" button. Each time you do that, try to work out, by yourself, or speaking to your neighbours, what is actually happening in that line. You might also want to look in the environment window to see the value of certain variables, and you might also wish to do that by typing the variables into the console. Then read the relevant section below

Preparing Your Data in Your R Script

Your script will often start by importing data, and then renaming the columns in order to make it easier to query the data. The following lines appear in all the 3 scripts above.

Code	Explanation

library(readr)	This allows you to bring in	libraries with sp	ecific
	functions. Usually you just	t need one line:	
	library(tidyverse) since that	t has all the imp	ortant
	libraries in it. In order to u	ise any library, y	ou need
	to have imported it into yo	our system first.	To do
	this use:		
	install.packages	("tidyver	se").
survey_data <- read_csv("survey_data.csv")	The first line here reads in	a dataset	
df<-survey_data	The second line just renam	nes it to df. Onc	e you
	have read items into a data	aset variable yo	u can
	query them easily. For ins	tance in the con	isole
	window just type		
names(df)[7] <- "award"	This is an example of what	is called "wran	gling" -
names(df)[8] <- "gender"	namely changing the data	to make it more	e easy to
names(df)[9] <- "height"	use. The actual survey date	ว has column he	raders
names(df)[10] <- "continent"	which are very long and ty	ping them each	time we
names(df)[11] <- "pe_minutes"	wished to use them would	be tedious and	error
names(df)[12] <- "miles"	prone.		
names(df)[13] <- "gbptransport"			What is
names(df)[14] <- "get2campusminutes"	Which Award Are You Studying For in UH	What is	your height
names(df)[15] <- "gbpfood"	(choose nearest one	your gender	in cm (just
	if yours is not here)	gender	put a
			number)
	You'll notice we can now r	-	•
	height" With just a single	e word "height"	

To see the value of this, after running these lines just go into the console and type mean(df\$height) - this will give us the average

To get a feel for any dataset, the best thing to do is run the "summary" command over the whole dataset

summary(df)

If you do that, you will get a description of all the columns in the dataset and also information (such as mean) about any of the numerical columns.

Research Question About Comparison of Means (Comparison_of_means.R)

Lets start with a simple question: do Asian students spend more on food each week than non-Asian students?

df\$isAsian<-	Firstly we do some wrangling – because the
ifelse(df\$continent=="Asia","Asia","Not Asia")	number of African and European students on
	their own are too small to make a meaningful
	comparison – lets create a field call isAsian which
	will have just two values "Asia" or "Not Asia"
df2<-subset(df,gbpfood<150)	Because some respondents have said they spend
	over £200 per week on food,(implausible) lets

	remove them from the dataset and create a	
	second dataset called df2	
hist(df2\$gbpfood) #Having put the limit at 150 we get something	Histogram of df2\$gbpfood	
#that is a bit normal but not convincingly. (If we #had put the limit at 80 it does appear more #normal but still not very good.	0 20 40 60 80 100 120	
t.test(df2\$gbpfood ~ df2\$isAsian)	This is the t test. Its for normal data so not really advisable. But it is included here since the case is arguable.	
data: df2\$gbpfood by df2\$isAsian t = 2.4931, df = 30.309, p-value = 0.01835 alternative hypothesis: true difference in means between group Asia and group Not Asia is not equal to 0 95 percent confidence interval: 2.091904 21.002018 sample estimates: mean in group Asia mean in group Not Asia 45.54696 34.00000	According to the data, Asian students spent £45 a week on food, and the non asians £34. The p-value is 0.018 meaning this could happen by chance 1.8 times every 100 times this number of students were asked this question. Since this is quite low (below 0.05) we can say this is a significant result and we can discard the null hypothesis.	
However, this is not completely convincing since the should be if people filled in the form responsibly).	•	

However, this is not completely convincing since the data does not look very normal (although it should be if people filled in the form responsibly). So lets do a wilcox test which compares the rankings of the non-Asians against Asians. Are most of the Asians in the top food spenders and most of the non-Asians in the more thrifty rankings?

wilcox.test(df2\$gbpfood ~ df2\$isAsian)	This is the test to compare the rankings of non-
	Asians and Asians regarding food expenditure
data: df2\$gbpfood by df2\$isAsian W = 2123.5, p-value = 0.2016 alternative hypothesis: true location shift is not equal to 0	The wilcox test does not give us actual values for the two distributions (Asian vs Non-Asian) but it does give us a number 0.2016 which the probability of the null hypothesis being true. (In other words that it was a fluke). And here its quite high (greater than 0.05) - and therefore we have to conclude that we can't actually reject the null hypothesis. If you want to see the actual median values of the two groups of consumers use the aggregate function like this: aggregate(gbpfood ~ isAsian, df2, median)

So concluding, if we decide the data is not normal, and we use a Wilcox test, then based on the data, even though there is a difference in the median values for money spent on food, it is not a significant one and we would not be able to quote it in a paper.

Research Question About Comparison of Proportions (correlation.R)

Next lets look at the number of students who choose different awards. Are the proportions of awards chosen by women different to those chosen by men? The test statistic we use to answer this question is the Chi Squared Test which totals up the numbers for the whole population – the choices of men and women. Then compares it with the choices made by just men, and then the choices made by just women. And then it comes up with a number to say whether gender really does influence the choice of course.

df2<-subset(df,gender=="Man"	Here a wrangling to start. The survey itself	
gender=="Woman")	allowed non-binary and prefer not to say as an	
	answer. However, the numbers in those groups	
	are too small to make a meaningful comparison.	
	So we reduce our dataset to just those who	
	declared themselves to be "Man" or "Woman"	
	(this is a purely mathematical rationale – and	
	should not be taken as any kind of traditionalism	
	on the part of the author).	
pt <- table(df2\$gender,df2\$award)	Whenever you do chi squared you first have to	
	turn the data into a table of categories and	
	counts. The two categories are gender (m/w)	
	and awards (data science/AI etc). The table will	
	look like below	
Advanced Computer Science Artificial Intelli Man 45 13	gence Cybersecurity Data Science Software Engineering 65 18 15	
Woman 17 6	20 7 2	
chisq.test(pt)	The result we have has a p value which is quite	
X-squared = 2.4384 , df = 4, p-value = 0.6557	high (it says 65.5 times per hundred, the result	
	we obtained would satisfy the null hypothesis) -	

which means we definitely cannot reject the null hypothesis (that gender makes no difference) colnames(pt) = c("Adv CS", "AI", "CyberSec", Just some wrangling to make the groups easier to "Data Sci.", "Soft Eng.") display when we put them on a graph (renaming columns to make them shorter) percentages <- prop.table(pt, margin=2) * 100 In order to make the stacked barchart – the typical way to display comparisons of proportion, we us the prop table function which turns all the numbers in the table above into percentages Adv CS AI CyberSec Data Sci. Soft Eng. 72.58065 68.42105 76.47059 72.00000 88.23529 Woman 27.41935 31.57895 23.52941 28.00000 11.76471 barplot(percentages, col = c("blue", "pink"), xlab Stacked Bar Of Awards by Men v Women 100 = "Awards", ylab = "Percentage",

 $\label{eq:main} \mbox{main} = \mbox{"Stacked Bar Of Awards by} \\ \mbox{Men v Women", ylim} = \mbox{c(0, 100)},$

legend.text = c("Man", "Woman"),
args.legend = list(x = "topright"))

But is this the best way to display the data? Instead of having gender by color and awards by bars, we could invert it to have awards by color and gender by bars

tpercentages<-prop.table(t(pt), margin=2) * 100

The t() function transposes the data (changes columns to rows and rows to columns).

barplot(tpercentages, col = c("red", "green",
"yellow", "pink", "blue"), xlab = "Awards", ylab =
"Percentage",

main = "Stacked Bar Of Awards by Men v Women", ylim = c(0, 100),

legend.text = rownames(tpercentages),
args.legend = list(x = "topright"))

To be honest – it could be displayed either way – because the reality is – that the preferences for award titles between women and men are not very significant at all. Cybersecurity and Advanced Data Science are the more popular award titles for both men and women. But being a man or a woman does not really influence this very much.

Research Questions about Correlation (correlation.R)

Here is our correlation question. Is there a relationship between the distance from university in miles and the amount spent by students on transport.

Code	Explanation
------	-------------

df2<-subset(df,miles<100 & gbptransport<150)	Here we use the subset function to filter the data.
	Because (in most surveys) there will always be
	people who answer flippantly. So we have to
	remove data. So if someone said they lived more
	than 100 miles away then its likely that this is either mistaken or frivolous. And probably if they
	say they spend greater than 150 pounds on
	transport that is probably untrue (or the person is
	extremely rich and takes taxis all the time)
hist(df2\$gbptransport, main = "Histogram of Transport Costs")	10 20 20 40 50 60
	0 20 40 60 80 100 120
	A histogram can tell us by sight – how "normal"
	the data is. This is clearly not normal. >60
	people spend less than £10 per week, just over
	40 people spend £10-20 and £20-30, only 11
Why is this important? Because if the data is norm	people spend £30-40
miles and amount spent in pounds), but if it not no	· ·
rankings. E.g does ones position in the rankings	•
the rankings of amount spent?	
cor.test(df2\$miles, df2\$gbptransport,	Because the data is not normal, we use a
method="spearman")	spearman correlation (if it was normal, we would use a pearson correlation)
data: df2\$miles and df2\$gbptransport	When you get this result there are two really
S = 522932, p-value < 2.2e-16	important values. The actual correlation 0.635 is
alternative hypothesis: true rho is not equal to 0	quite high. Indicating that there really is a
sample estimates:	relationship between distance and spending. But
rho	can we be confident that this was not just a
0.6357956	fluke? The way we measure the robustness of
	the result is through the p. value which we wish to be as low as possible. Here it is 2.2e-16 (which
	basically means 22 preceded by 16 zeros) i.e.
	0.00000000000000022
	Which means there is a very low probability the
	null hypothesis is valid (it would come up 22
-1-+ (1500m-11 1500 1 - 1	times every quadrillian trials)
<pre>plot(df2\$miles, df2\$gbptransport, xlab = "Miles to Campus", ylab = "Weekly Transport Cost £s", main = "Scatterplot of Distance to Campus vs Transport Cost") # adds the dots</pre>	These two lines produce a scatterplot – the best graph for cases of correlation.

Once you have had a look, try to answer a corresponding quiz form:

- Quiz about Comparison of means.R
- Quiz about Comparison of proportions.R
- Quiz about Correlation.R

Now you have looked through these – look at the results instead of data from this year's survey. What interesting correlations, or comparisons of means or proportions can you find?