Московский авиационный институт (Национальный исследовательский университет) Факультет информационных технологий и прикладной математики

Курсовая работа

Нахождение минимального потока в транспортной сети

Студент:	Кажекин Д.А
Группа:	М8О-102Б-21
Преподаватель: Смо	ерчинская С. О.
Оценка:	•
Дата:	

Задание №1

Определить для орграфа, заданного матрицей смежности:

- а) матрицу односторонней связанности;
- б) матрицу сильной смежности;
- в) компоненты сильной смежности;
- г) матрицу контуров;
- д)изображение графа и компонент сильной связности.

$$A = egin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad$$
 - матрица смежности;

Решение:

а) Матрица односторонней связанности вычисляется по формуле $T = E \lor A \lor A^2 \lor A^3$

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} * \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$T = E \lor A \lor A^{2} \lor A^{3} = \begin{vmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

б) Матрица сильной связанности вычисляется по формуле

$$S = T \wedge T^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \wedge \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

в) Ищем компоненты сильной связанности

г) Матрица контуров вычисляется по формуле

$$K = S \wedge A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \wedge \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Ответ: а)
$$T = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
; б) $S = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$; в) $V_1 = \{v_1, v_3\}, V_2 = \{v_2\}, V_3 = \{v_4\};$ г) $K = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ д) T раф T раф T сильной связности

Задание №2

Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

Решение:

Используя алгоритм Терри, найдём возможные варианты замкнутого маршрута, начиная с вершины 1 в каждом случае.

Other: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 2 \rightarrow 1$;

Залание №3

Используя алгоритм «фронта волны», найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix} \quad \text{- матрица смежности}$$

Решение:

Два кратчайших путей:

$$V \xrightarrow{1 \rightarrow V} \xrightarrow{6 \rightarrow V} \xrightarrow{3 \rightarrow V} \xrightarrow{5 \rightarrow V} \xrightarrow{2 \rightarrow V} \xrightarrow{8} ;$$

 $V \xrightarrow{1 \rightarrow V} \xrightarrow{7 \rightarrow V} \xrightarrow{3 \rightarrow V} \xrightarrow{5 \rightarrow V} \xrightarrow{2 \rightarrow V} \xrightarrow{8}$

OTBET:
$$V_1 \rightarrow V_6 \rightarrow V_3 \rightarrow V_5 \rightarrow V_2 \rightarrow V_8;$$

$$V_1 \rightarrow V_7 \rightarrow V_3 \rightarrow V_5 \rightarrow V_2 \rightarrow V_8;$$

Задание №4

Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.

$$A = \begin{pmatrix} \infty & 2 & 5 & \infty & 6 & \infty & \infty & \infty \\ \infty & \infty & 2 & 7 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & 3 & 1 & \infty & \infty & \infty \\ 9 & \infty & \infty & \infty & \infty & 4 & 5 & \infty \\ \infty & \infty & \infty & \infty & \infty & 3 & \infty & 4 \\ \infty & \infty & \infty & \infty & \infty & \infty & 2 & 9 \\ \infty & 8 \\ 2 & \infty & \infty & 3 & 5 & \infty & 8 & \infty \end{pmatrix} - \text{матрица длин дуг}$$

Решение:

Составим таблицу итераций:

V	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	$\lambda_i^{(0)}$	$\lambda_i^{(1)}$	$\lambda_i^{(2)}$	$\lambda_i^{(3)}$	$\lambda_i^{(4)}$	$\lambda_i^{(5)}$	$\lambda_i^{(6)}$	$\lambda_i^{(7)}$
\overline{V}_1	∞	2	5	∞	6	∞	∞	∞	0	0	0	0	0	0	0	0
V_2	∞	∞	2	7	∞	∞	∞	∞	∞	2	2	2	2	2	2	2
$V_{\scriptscriptstyle 3}$	∞	∞	∞	3	1	∞	∞	∞	∞	5	4	4	4	4	4	4
$V_{\scriptscriptstyle 4}$	9	∞	∞	∞	∞	4	5	∞	∞	∞	8	7	7	7	7	7
${V}_{\scriptscriptstyle 5}$	∞	∞	∞	∞	∞	3	∞	4	∞	6	6	5	5	5	5	5
${V}_{\scriptscriptstyle 6}$	∞	∞	∞	∞	∞	∞	2	9	∞	∞	9	9	8	8	8	8
V_7	∞	8	∞	∞	∞	11	11	10	10	10						
${V}_{\scriptscriptstyle 8}$	2	∞	∞	3	5	∞	8	∞	∞	∞	10	10	9	9	9	9

Ответ: минимальный путь:

- 1) us V_1 & V_2 : $V_1 \rightarrow V_2 = 2$;
- 2)u3 V_1 & V_3 : $V_1 \rightarrow V_2 \rightarrow V_3 = 4$;
- 3) us V_1 & V_4 : $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 = 7$;
- 4) us V_1 & V_5 : $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_5 = 5$;
- 5) us V_1 s V_6 : $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_5 \rightarrow V_6 = 8$;
- 6) us V_1 & V_7 : $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_5 \rightarrow V_6 \rightarrow V_7 = 10$;
- 7) us V_1 is V_8 : $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_5 \rightarrow V_8 = 9$;

Задание №5

Найти остовное дерево с минимальной суммой длин входящих в него ребёр.

Ответ: остовное дерево с минимальной суммой длин L(D) = 36. входящих в него рёбер

Задание №6

Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.

Решение:

1) Зададим на графе произвольную ориентацию

2) Построим произвольное остовное дерево D заданного графа.

3) Найдём базис циклов, добавляя к остовному дереву по одному не вошедшему в него ребру. Затем найдём соответствующие вектор-циклы.

$$\begin{array}{lll} (D+2)\colon \ \mu_1\colon \ V_2 \!\!\to\!\! V_3 \!\!\to\!\! V_5 \!\!\to\!\! V_2 \ \Rightarrow \ c\big(\mu_1\big) \!\!=\!\! \big(0,\!1,\!0,\!0,\!0,\!0,\!-1,\!0,\!1,\!0\big);\\ (D+4)\colon \ \mu_2\colon \ V_3 \!\!\to\!\! V_4 \!\!\to\!\! V_3 \ \Rightarrow \ c\big(\mu_2\big) \!\!=\!\! \big(0,\!0,\!-1,\!-1,\!0,\!0,\!0,\!0,\!0,\!0\big);\\ (D+5)\colon \ \mu_3\colon \ V_1 \!\!\to\!\! V_2 \!\!\to\!\! V_3 \!\!\to\!\! V_4 \!\!\to\!\! V_1 \ \Rightarrow \ c\big(\mu_3\big) \!\!=\!\! \big(1,\!1,\!-1,\!0,\!-1,\!0,\!0,\!0,\!0,\!0\big);\\ (D+6)\colon \ \mu_4\colon \ V_5 \!\!\to\!\! V_1 \!\!\to\!\! V_4 \!\!\to\!\! V_3 \!\!\to\!\! V_5 \ \Rightarrow \ c\big(\mu_4\big) \!\!=\!\! \big(0,\!0,\!1,\!0,\!1,\!1,\!0,\!0,\!1,\!0\big);\\ (D+8)\colon \ \mu_5\colon \ V_4 \!\!\to\!\! V_1 \!\!\to\!\! V_2 \!\!\to\!\! V_4 \ \Rightarrow \ c\big(\mu_5\big) \!\!=\!\! \big(1,\!0,\!0,\!0,\!-1,\!0,\!0,\!1,\!0,\!0\big);\\ (D+10)\colon \ \mu_6\colon \ V_4 \!\!\to\!\! V_5 \!\!\to\!\! V_1 \!\!\to\!\! V_4 \ \Rightarrow \ c\big(\mu_6\big) \!\!=\!\! \big(0,\!0,\!0,\!0,\!1,\!1,\!0,\!0,\!0,\!1\big). \end{array}$$

4) Цикломатическая матрица графа имеет вид:

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

5) Закон Кирхгофа для напряжений:

$$\begin{vmatrix} 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{vmatrix} * \begin{vmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \\ U_7 \\ U_8 \\ U_9 \\ U_{10} \end{vmatrix} = 0 \implies \begin{vmatrix} U_2 - U_7 + U_9 = 0, \\ -U_3 - U_4 = 0, \\ U_1 + U_2 - U_3 - U_5 = 0, \\ U_3 + U_5 + U_6 + U_9 = 0, \\ U_1 - U_5 + U_8 = 0, \\ U_5 + U_6 + U_{10} = 0. \end{vmatrix}$$

6) Найдём матрицу инцидентности В орграфа:

$$B = \begin{pmatrix} -1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

По закону Кирхгофа для токов:

$$\begin{vmatrix} -1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 1 & 1 \end{vmatrix} * \begin{vmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \\ I_7 \\ I_8 \\ I_9 \\ I_{10} \end{vmatrix} = 0 \Rightarrow \begin{cases} -I_1 - I_5 + I_6 = 0, \\ I_1 - I_2 - I_7 - I_8 = 0, \\ I_2 + I_3 - I_4 - I_9 = 0, \\ I_3 + I_4 + I_5 + I_8 - I_{10} = 0, \\ -I_6 + I_7 + I_9 + I_{10} = 0, \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} -I_1 - I_5 + I_6 = 0, \\ I_1 - I_2 - I_7 - I_8 = 0, \\ I_2 + I_3 - I_4 - I_9 = 0, \\ -I_6 + I_7 + I_9 + I_{10} = 0. \end{cases}$$

7) Подставим закон Ома:

$$\begin{vmatrix} 0 = I_2 R_2 - I_7 R_7 + I_9 R_9, \\ 0 = -I_3 R_3 - I_4 R_4, \\ E_1 = -I_2 R_2 + I_3 R_3 + I_5 R_5, \\ E_2 = -I_3 R_3 - I_6 R_6 - I_9 R_9, \\ 0 = I_1 R_1 - I_5 R_5 + I_8 R_8, \\ 0 = I_5 R_5 + I_6 R_6 + I_{10} R_{10}. \end{vmatrix}$$

Ответ: Совместная система имеет вид:

$$-I_{1}-I_{5}+I_{6}=0,$$

$$I_{1}-I_{2}-I_{7}-I_{8}=0,$$

$$I_{2}+I_{3}-I_{4}-I_{9}=0,$$

$$-I_{6}+I_{7}+I_{9}+I_{10}=0,$$

$$0=I_{2}R_{2}-I_{7}R_{7}+I_{9}R_{9},$$

$$0=-I_{3}R_{3}-I_{4}R_{4},$$

$$E_{1}=-I_{2}R_{2}+I_{3}R_{3}+I_{5}R_{5},$$

$$E_{2}=-I_{3}R_{3}-I_{6}R_{6}-I_{9}R_{9},$$

$$0=I_{1}R_{1}-I_{5}R_{5}+I_{8}R_{8},$$

$$0=I_{5}R_{5}+I_{6}R_{6}+I_{10}R_{10}.$$

Десять уравнений и десять неизвестных — токи I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 , I_9 , I_{10} ; ЭДС E_1 , E_2 и сопротивления R_2 , R_3 , R_4 , R_6 , R_7 , R_8 , R_9 , R_{10} известны.

Задание №7

Построить максимальный поток по транспортной сети.

Решение:

1) Ищем пути из источника в сток, не содержащие насыщенных дуг.

- 1. v1 v2 v3 v4 v9 $min\{5, 5, 10, 14\} = 5;$
- 2. v1 v6 v7 v8 v9 $min\{5, 5, 8, 11\} = 5$;
- 3. v1 v5 v9 $min\{6, 5\} = 5;$
- 4. v1 v3 v4 v9 $min\{11, 10-5, 14-5\} = 5;$
- 5. v1 v7 v8 v9 $min\{8, 8-5, 11-5\} = 3;$
- 6. v1 v5 v8 v9 $min\{6-5, 2, 11-8\} = 1;$

Построение полного потока.

Величина полного потока $\Phi_{\text{пол.}} = 5+5+5+5+3+1 = 24$;

2) Найдем увеличивающие цепи.

- 1. v1 v3 v2 v5 v4 v9 $\Delta_1 = \min\{6, \underline{5}, 4, 5, 4\} = 4$ (по подчёркнутой дуге можно уменьшить поток)
- 2. v1 v7 v6 v5 v8 v9 $\Delta_2 = \min\{5, 5, 3, 1, 2\} = 1$ (по подчёркнутой дуге можно уменьшить поток);

Построение максимального потока

Величина потока увеличилась на 4+1 = 5; Величина максимального потока $\Phi_{\text{макс.}}$ = 29;

Задание 8

Нахождение минимального потока в транспортной сети.

Теоретические сведения

Определение 1. Транспортной сетью называется орграф $G = <V, X>, V = \{v1, ..., vn\}$, для которого выполняется:

- 1) \exists единственная вершина v_1 (источник): $\Gamma_{-1}v_1 = \emptyset$;
- 2) \exists единственная вершина v_n (сток): $\Gamma v_n = \emptyset$;
- 3) для каждой дуги х є X задана пропускная способность с(х)=сіј≥0.

Определение 2. Функцией потока (потоком в транспортной сети G) называется функция

- $\phi: X \to R_+ \cup \{0\}$, удовлетворяющая следующим условиям:
- 1) для каждой дуги < v_i , $v_j > \epsilon$ X выполняется $0 \le \varphi(x) \le c_{ij} \ \forall i,j = 1, \dots, n;$
- 2) для любой промежуточной вершины и:

$$\sum_{v \in \Gamma^{-1} \mathbf{u}} \varphi(v, \mathbf{u}) = \sum_{v \in \Gamma \mathbf{u}} \varphi(\mathbf{u}, v)$$

Определение 3. Дугу называют насыщенной, если $\phi(x) = c(x)$.

Для начала опишем задачу о **максимальном потоке:** Требуется найти такую $\phi(x)$, функция ϕ принимает максимальное значение.

Определение 4. Пусть цепь \bar{v} не является путем. Если ориентация дуги совпадает с направлением прохождения цепи, то обозначим ее через \vec{x} , в противном случае \vec{x} .

Определение 5. Поток, обладающий наименьшей величиной, среди всех потоков по данной транспортной сети называется называется **минимальным.**

Положим

$$\delta(x) = c(x) - \phi(x)$$

$$\phi^* = \min \phi(x^{\leftrightarrow})$$

$$\delta^* = \min \delta(x^{\rightarrow})$$

$$\varepsilon^* = \min[\delta^*, \phi^*]$$

Теорема I. Если все дуги пути от v1 до vn ненасыщенные, то ϕ можно увеличить, на $\min(c(x) - \phi(x))$

Теорема II. Если $\varepsilon^*>0$, то увеличивая поток на ε^* на каждой дуге \vec{v} , и уменьшая на \vec{v} , поток ϕ увеличится на ε^* .

Теорема III. Если не существует цепи \bar{v} с $\epsilon^*>0$, то поток больше нельзя увеличить, т.е. он **максимальный.**

(Алгоритм построения максимального потока легко трансформируется в алгоритм построения минимального потока)

Блок-схема

Описание алгоритма

- 1) Отыскивают такой поток $\Phi(1)(x)$, что $(\forall u \in \mathbf{U}) \, \varphi^{(1)}(u) \geqslant c \, (u)$.
- 2) Полагают $c'(u) = \varphi^{(1)}(u) c(u)$ и находят по слегка измененному алгоритму Форда Фалкерсона такой поток $\Phi(2)(x)$, что $(\forall u \in U) \varphi^{(2)}(u) \leq c'(u)$.

Изменение следующее: если X[i] – помеченная вершина, то помечают символом [-X[i]] любую непомеченную вершину X[j], если существует дуга (X[j], X[i]). Уменьшают поток через дугу (X[j], X[i]) даже в том случае, если этот поток нулевой. Допускают также отрицательные потоки, что нарушает условие неотрицательности.

3) Поток $\Phi = \Phi(1) - \Phi(2)$ – искомый минимальный поток

(Кофман.А. «Введение в прикладную комбинаторику», стр.373)

Описание программы и инструкции по работе с ней

Я реализовал все 3 пункта алгоритма: Нашел поток с'(x), реализовал функцию "max_flow()" по несколько измененному алгоритму Форда-Фалкерсона (алгоритм, пункт 2), которая находит максимальный поток, чтобы выполнить 3 пункт алгоритма и вычислить искомый минимальный поток. Таким образом, программа выдает правильный ответ на всех тестах. В целях удобства написан интерфейс на подачу входных данных и вывода графического ответа

Что касается выполнения программы: запуская программу, открывается окно взаимодействия с пользователем, чтобы ввести количество вершин:

После ввода количества вершин, предлагается ввести матрицу весов

А далее мы вводим матрицу пропускных способностей

Программа выводит ответ, а вместе с ним графическую интерпретацию

графа до и после всех преобразований

Оценка сложности алгоритма

Сложность алгоритма $O(n^2)$, где n- количество элементов в графе.

Тестовый пример с решением

Для простоты записи будем писать над ребром $c(x)/\phi(x)$.

Дан граф:

Путем ручных вычислений находим минимальный поток для заданного графа:

Общий поток $\phi = 5 + 7 + 5 = 17$.

При задании матриц весов и пропускных способностей этого графа программа выдает правильный ответ.

Пример прикладной задачи

Бригаде рабочих необходимо выполнить ряд задач (р) в конкретный день. Для каждой задачи і известны время начала $\tau(i)$ и время окончания $\tau'(i)$ для $i=1,2,\ldots,n$. Кроме того, необходимо время установки $\tau 2(i,j)$, чтобы рабочий переключился с задачи і на задачу ј. Конкретный рабочий не должен работать более чем над одной конкретной задачей одновременно, и одна конкретная задача должна выполняться одним рабочим. Задача состоит в том, чтобы найти минимальное количество рабочих для выполнения требуемых задач в соответствии с указанными выше правилами. Задачу можно сформулировать как задачу о минимальном потоке в сети, где значением минимального потока является минимальное количество необходимых работников.