Ricerca Operativa

Sebastiano Sanson

A.A. 2022/2023

Contents

1	Mo	delli di Programmazione Lineare	3
	1.1	Formulazione standard	3
		1.1.1 Domini	3
	1.2	Alcuni schemi base di modellazione	3
		1.2.1 Modelli di copertura di costo minimo	3
		1.2.2 Modelli di mix ottimo di produzione	3
		1.2.3 Modelli di trasporto	3
	1.3	Tipologia di Funzioni Obiettivo	3
	1.4	Modelli con vincoli di tipo logico	4
2	\mathbf{Pro}	ogrammazione Lineare e Metodo del Simplesso	4

1 Modelli di Programmazione Lineare

1.1 Formulazione standard

- Insiemi: $I = \{1, 2, ..., n\}, J = \{1, 2, ..., m\}.$
- Parametri: a_{ij} , b_i , c_i .
 - $-a_{ij}$: coefficienti tecnologici della matrice dei vincoli.
 - $-b_i$: termini noti dei vincoli.
 - $-c_i$: coefficienti di costo della funzione obiettivo.
- Variabili decisionali: x_1, x_2, \ldots, x_n .
- Vincoli:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1,$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2, \ldots,$
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m.$

• Funzione obiettivo: $z = c_1x_1 + c_2x_2 + \ldots + c_nx_n$.

1.1.1 Domini

- $a_{ij} \in \mathbb{R}, b_i \in \mathbb{R}, c_i \in \mathbb{R}$.
- $x_i \in \mathbb{R}^+, [x_i \in \mathbb{Z}^+, x_i \in \{0, 1\}].$

1.2 Alcuni schemi base di modellazione

1.2.1 Modelli di copertura di costo minimo

$$\begin{aligned} & \min \sum_{i \in I} C_i x_i \\ & s.t. \\ & \sum_{i \in I} a_{ij} x_i \geq D_j, \forall j \in J \\ & x_i \in \mathbb{R}^+, \, [x_i \in \mathbb{Z}^+, \, x_i \in \{0,1\}]. \end{aligned}$$

1.2.2 Modelli di mix ottimo di produzione

$$\begin{aligned} \max \sum_{i \in I} P_i x_i \\ s.t. \\ \sum_{i \in I} a_{ij} x_i &\leq Q_j, \forall j \in J \\ x_i &\in \mathbb{R}^+, \, [x_i \in \mathbb{Z}^+, \, x_i \in \{0,1\}]. \end{aligned}$$

1.2.3 Modelli di trasporto

$$\begin{aligned} & \min \sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij} \\ & s.t. \\ & \sum_{j \in J} x_{ij} \leq O_i, \forall i \in I \\ & \sum_{i \in I} x_{ij} \geq D_j, \forall j \in J \\ & x_{ij} \in \mathbb{R}^+, \left[x_{ij} \in \mathbb{Z}^+, x_{ij} \in \{0, 1\} \right]. \end{aligned}$$

1.3 Tipologia di Funzioni Obiettivo

- Funzione obiettivo di minimizzazione: $minz = c_1x_1 + c_2x_2 + \ldots + c_nx_n$.
- Funzione obiettivo di massimizzazione: $maxz = c_1x_1 + c_2x_2 + \ldots + c_nx_n$.
- Funzione obiettivo di minimizzazione e massimizzazione: min-max $\{e_1,...,e_n\}$, può essere formulata come miny con $y = max\{e_1,...,e_n\}$.
- Funzione obiettivo di massimizzazione e minimizzazione: max-min $\{e_1, ..., e_n\}$, può essere formulata come maxy con $y = min\{e_1, ..., e_n\}$.
- Funzione obiettivo di minimizzazione e valore assoluto: min-abs(e), può essere formulata come miny con y>=e, y>=-e.

1.4 Modelli con vincoli di tipo logico

	Corretto			
formu	lazioni NON LINEA	Vincoli	Domini	
if $x_1 > 0$ then $x_2 = 0$	$nand(y_1, y_2)$	$x_1x_2 = 0$	$x_1 \leq My_1$	$x_1, x_2 \ge 0$
and		$y_1y_2 = 0$	$x_2 \leq My_2$	$y_1, y_2 \in \{0, 1\}$
if $x_2 > 0$ then $x_1 = 0$			$y_1 + y_2 \le 1$	$(M \to \infty)$
if $x > 0$ then $y = 1$	$(x > 0) \to (y = 1)$	x(1 - y) = 0	$x \leq My$	$x \ge 0, y \in \{0, 1\}$
$y_1 = 1 \text{ or } y_2 = 1$	$y_1 \lor y_2$	$(1-y_1)(1-y_2)=0$	$y_1 + y_2 \ge 1$	$y_1, y_2 \in \{0, 1\}$
$y_1 = 1$ and $y_2 = 1$	$y_1 \wedge y_2$	$y_1y_2 = 1$	$y_1 + y_2 = 2$	$y_1, y_2 \in \{0, 1\}$
$y_1 = 1$ only if $y_2 = 1$	$y_1 \rightarrow y_2$	$y_1(1 - y_2) = 0$	$y_1 \leq y_2$	$y_1, y_2 \in \{0, 1\}$
$y_1 = 1$ only if $y_2 = 0$	$y_1 o \overline{y_2}$	$y_1y_2 = 0$	$y_1 \le (1 - y_2)$	$y_1, y_2 \in \{0, 1\}$
$y_1 = 1 \text{ xor } y_2 = 1$	$y_1 \neq y_2$		$y_1 + y_2 = 1$	$y_1, y_2 \in \{0, 1\}$
	etc. etc. etc.			
Queste formulazi	Queste formulazioni sono corrette a patto di			
N	- SPECIFICARE I DOMINI - ATTIVARE le var. logiche			
in un mod		Ü		

2 Programmazione Lineare e Metodo del Simplesso