Chapter: Quadrilateral

Page no.: 185 Exercise: 15

Question 1:

(i)

Solution: A quadrilateral has 4 Sides.

(ii)

Solution: A quadrilateral has 4 Angles.

(iii)

Solution: A quadrilateral has 4 Vertices, no three of which are co-linear.

(iv)

Solution: A quadrilateral has A quadrilateral has 2 Diagonals

(v)

Solution: A diagonal of a quadrilateral is a line segment that joins two opposite vertices of the quadrilateral.

(vi)

Solution: The sum of the angles of a quadrilateral is 360° .

Question 2:

(i)

Solution: There are four pairs of adjacent sides, namely (AB, BC), (BC, CD), (CD, DA) and (DA, AB).

(ii)

Solution: There are two pairs of opposite sides, namely (AB, DC) and (AD, BC).

(iii)

Solution: There are four pairs of adjacent angles, namely $\angle A$, $\angle B$, $\angle B$, $\angle C$, $\angle C$, $\angle C$ and $\angle D$, $\angle A$.

(iv)

Solution: There are two pairs of opposite angles, namely $\angle A$, $\angle C$ and $\angle B$, $\angle D$

(v)

Solution: There are two diagonals, namely *AC* and *BD*.

Question 3:

Solution:

Let *ABCD* be a quadrilateral.

Join A and C.

Now, we know that the sum of the angles of a triangle is 180° .

For $\triangle ABC$: $\angle 2 + \angle 4 + \angle B = 180^{\circ}$... (1)

For $\triangle ADC$: $\angle 1 + \angle 3 + \angle D = 180^{\circ}$... (2)

Adding (1) and (2):

 $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle B + \angle D = 360^{\circ}$

or $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

Hence, the sum of all the angles of a quadrilateral is 360° .

Question 4:

Solution: Sum of all the four angles of a quadrilateral is 360° .

Let the unknown angle be x° .

$$76^{\circ} + 54^{\circ} + 108^{\circ} + x = 360^{\circ}$$
$$238^{\circ} + x = 360^{\circ}.$$
$$X = 122^{\circ}$$

the fourth angle measures 122° .

Question 5:

Solution:

Let the measures of the angles of the given quadrilateral be $(3x)^{\circ}$, $(5x)^{\circ}$, $(7x)^{\circ}$ and $(9x)^{\circ}$. Sum of all the angles of a quadrilateral is 360° .

$$∴3x+5x+7x+9x=360^{\circ}$$

$$24x = 360^{\circ}$$

$$X = \frac{360^{\circ}}{24}$$

$$x = 15$$

Angles measure:
$$(3 \times 15)^o = 45^o$$

 $(5 \times 15)^o = 75^o$
 $(7 \times 15)^o = 105^o$
 $(9 \times 15)^o = 135^o$

Question 6:

Solution:

Sum of the four angles of a quadrilateral is 360° .

If the unknown angle is x° , then:

$$75 + 75 + 75 + x = 360^{\circ}$$
.

$$X = 360^{\circ} - 225^{\circ}$$

$$X = 135^{\circ}$$

the fourth angle measures 135°

Question 7:

Solution:

Let the three angles measure x° each.

Sum of all the angles of a quadrilateral is 360°

$$x + x + x + 120^{\circ} = 360^{\circ}$$

$$3x + 120^{\circ} = 360^{\circ}$$

$$3x = 240^{\circ}$$

$$X = \frac{240^{\circ}}{3}$$

$$x = 80^{\circ}$$

each of the equal angles measure 80°

Question 8:

Solution:

Let the two unknown angles measure x^o each.

Sum of the angles of a quadrilateral is 360°

$$\therefore 85^{\circ} + 75^{\circ} + x + x = 360^{\circ}$$

$$160^{\circ} + 2x = 360^{\circ}$$

$$2x = 360^{\circ} - 160^{\circ}$$

$$2x = 200^{\circ}$$

$$X=\frac{200^{\circ}}{2}$$

$$X = 100^{\circ}$$

each of the equal angle measures 100° .

Question 9:

Solution:

Sum of the angles of a quadrilateral is 360° .

$$\therefore \angle A + \angle B + 60^{\circ} + 100^{\circ} = 360^{\circ}$$

$$\angle A + \angle B = 360^{\circ} - 100^{\circ} - 60^{\circ} = 200^{\circ}$$

Or

$$\frac{1}{2} \angle A + \angle B = 100^{\circ} \qquad \dots (1)$$

Sum of the angles of a triangle is 180°.

In $\triangle APB$:

$$\frac{1}{2} \angle A + \angle B + \angle P = 180^{\circ}$$
 (because AP and PB are bisectors of $\angle A$ and $\angle B$)

Using equation (1):

$$100^{\circ} + \angle P = 180^{\circ}$$

$$\angle P = 80^{\circ}$$

$$\angle APB = 80^{\circ}$$