Cheat Sheet for 2320

1	2	3	4		
$\log_a x = \frac{\log_b x}{\log_b a}$	$a^{\log_b x} = x^{\log_b a}$	$(x^a)^b = (x^b)^a$ $x^a * x^b = x^{a+b}$	$lg(x^a) = a(lg x)$ $lg(xy) = lgx + lgy$		

- a) Summation of consecutive values: $1+2+3+...+n=\sum_{k=1}^{n}k=\frac{n(n+1)}{2}$
- b) Summation of squares: $1+2^2+3^2+...+n^2=\sum_{k=1}^n k^2=\frac{n(n+1)(2n+1)}{6}$
- c) Summation of Arithmetic series (where $a_i = a_1 + (i-1)d$): $\sum_{i=1}^n a_i = n \frac{(a_1 + a_n)}{2} = \frac{n}{2} [2a_1 + (n-1)d]$
- d) Summation of Geometric Series: $1+x+x^2+...x^n$

0 <x<1< th=""><th>x>1</th><th>x=1</th></x<1<>	x>1	x=1
$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} < \frac{1}{1 - x}$	$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$	$\sum_{k=0}^{n} 1^k = n+1$

- e) Harmonic series: $\ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1$
- e2) $\sum_{k=0}^{\infty} \frac{1}{k!} = e = 2.718281... \approx 2.72$

Updated: 4/7/2020

- f) $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$, for |x| < 1 (CLRS pg.1148)
- g) Approximation by integrals (CLRS, 1154):

f(x) monotonically increasing or	f(x) monotonically increasing:	f(x) is monotonically decreasing:	
decreasing (but not both)	$x \le y \Rightarrow f(x) \le f(y)$	$x \le y \Rightarrow f(x) \ge f(y)$	
$\sum_{k=S}^{N} f(k) = \Theta(F(N) - F(S))$ Where F is the antiderivative of f. (unofficial formula)	$\int_{m-1}^{n} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m}^{n+1} f(x)dx$	$\int_{m}^{n+1} f(x)dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x)dx$	

- h) Radix sort (optimal r): $r = min\{b, floor(lg N)\}\$
- i) Master Theorem (CLRS): Let $a \ge 1$ and b > 1, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence: T(n) = aT(n/b) + f(n), where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Let c_{crit} = log_ba.

Notation

 $f(n) = \omega(g(n))$

k)

Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^c)$ for some constant $c < c_{crit}$, then $T(n) = O(n^{c_{crit}})$.
- 2. If $f(n) = \Theta((n^{c_{crit}} \log^k n))$, for some constant $k \ge 0$ then $T(n) = \Theta(n^{c_{crit}} \log^{(k+1)} n)$.
 - 2a) if k>-1, then $T(n) = \Theta(n^{c_{crit}} \log^{(k+1)} n)$.
 - 2b) if k=-1, then $T(n) = \Theta(n^{c_{crit}} \log \log n)$.

Limit theorem

- 2c) if k<-1, then $T(n) = \Theta(n^{c_{crit}})$.
- 3. If $f(n) = \Omega(n^c)$, for some $c > c_{crit}$, and if $af(n/b) \le kf(n)$ for some k < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Definition with constants

For any positive constant c_0 , there exist n_0 s.t.:

for all $n \ge n_0$

j) L'Hospital rule: if $\lim_{n\to\infty} f(n)$ and $\lim_{n\to\infty} g(n)$ are both 0 or $\pm \infty$, and if $\lim_{n\to\infty} \frac{f'(n)}{g'(n)}$ is a constant or $\pm \infty$, then $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$.

,		Notation	Littlic tricorciti	Definition with constants
	1		$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c \neq 0$	There exist <u>positive</u> constants c_0 , c_1 and n_0 s.t.: $c_0 g(n) \le f(n) \le c_1 g(n)$ for all $n \ge n_0$
	2		$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \text{ or } c$	There exist <u>positive</u> constants c_1 and n_0 such that: $f(n) \le c_1 g(n)$ for all $n \ge n_0$
	3	$f(n) = \Omega(g(n))$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ or } c$	There exist <u>positive</u> constants c_0 and n_0 such that: $c_0 g(n) \le f(n)$ for all $n \ge n_0$
	4	f(n) = o(g(n))	$ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 $	For any <u>positive</u> constant c_1 , there exists n_0 s.t.: $f(n) < c_1 g(n)$ for all $n \ge n_0$