	Week 5-2: Principal component analysis Last time Loss function K-means GMM
	 GMM (cont'd) PCA, probabilistic PCA, functional PCA, sparse PCA, factor analysis Reference Ch 14.5 of ESL HDS: Ch8 of Wainwright, M. J. (2019). High-dimensional Statistics. Cambridge Series in Statistical and Probabilistic Mathematics
	 Baik, J and J. Silverman (2004). Eigenvalues of Large Sample Covariance Matrices of Spiked Population Models. <i>Journal of Multivariate Analysis</i> 97:13821408 Y. Guan and J. Dy (2009). Sparse Probabilistic Principal Component Analysis. <i>Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics</i>, PMLR 5:185-192 D. Paul (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. <i>Statistica Sinica</i> 17:16171642 M. E. Tipping and C. M. Bishop (1999). Probabilistic principal component analysis. <i>JRSSB</i> 61:611622 Ning (2021). Spike and slab Bayesian sparse principal component analysis. <i>arXiv: 2102.00305</i> Ročková, V. and E. I. George (2016). Fast Bayesian factor analysis via automatic rotations to sparsity. <i>JASA</i> 111:1608–1622. H. Zou, T. Hastie, and Robert Tibshirani (2006). Sparse Principal Component Analysis. <i>JCGS</i> 15:265286 Gaussian mixture model See notes for the GM model
In [1]:	<pre>import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture mouse = pd.read_csv('mouse.csv', sep = " ", header = None) X = np.array([mouse[0], mouse[1]]) GM = GaussianMixture(n_components=3, random_state=0).fit(np.transpose(X))</pre>
In [2]: In [3]:	<pre>GM_predict = GM.predict(np.transpose(X)) mouse_GM_pred = np.transpose(np.array([mouse[0], mouse[1], GM_predict])) mouse_head_GM_pred = mouse_GM_pred[mouse_GM_pred[:, 2] == 0] mouse_EL_GM_pred = mouse_GM_pred[mouse_GM_pred[:, 2] == 1] mouse_ER_GM_pred = mouse_GM_pred[mouse_GM_pred[:, 2] == 2]</pre>
<pre>In [4]: Out[4]:</pre>	<pre># plot data with predicted label plt.scatter(mouse_head_GM_pred[:, 0], mouse_head_GM_pred[:, 1], c='b', label=0) plt.scatter(mouse_EL_GM_pred[:,0], mouse_EL_GM_pred[:,1], c='r', label=1) plt.scatter(mouse_ER_GM_pred[:,0], mouse_ER_GM_pred[:,1], c='g', label=2) <matplotlib.collections.pathcollection 0x7fc067819f40="" at=""></matplotlib.collections.pathcollection></pre>
	0.8
	Principal component analysis Principal component analysis (PCA) is often used to reduce the dimensionality of a data set consisting of a large number of interrelated variables through orthogonal linear transformation. As a result the variation present in the data set can be retained as much as possible. Recall the (thin) singular value decomposition (SVD) for $X=UDV'$. The left eigenvectors $U'U=I$ and D is a diagonal matrix containing eigenvalues and $V'V=VV'=I$. For a dataset $x^n=(x_1,\ldots,x_n)$, the q -th pricipal axes (v_j) are the q dominant eigenvectors (i.e., those associated with $\lambda_1,\ldots\lambda_q$) of the sample covariance $S=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})(x_i-\bar{x})'.$
	• The q -th principal component (PCs) is the q -th eigenvector of the covariance matrix S • The q -th Loadings is $v_q \times d_q$. • PC scores are the positions of each observation in this new coordinate system of principal components given by XV . Yale Face Database Eigenspectrum of sample covariance
	0.8
	Figure 8.2 (a) Samples of face images from the Yale Face Database. (b) First 100 eigenvalues of the sample covariance matrix. (c) First 25 eigenfaces computed from the sample covariance matrix. (d) Reconstructions based on the first 25 eigenfaces
	plus the average face. (Source: P239 of HDS) Probabilistic principal component analysis and factor analysis Consider the model $x_i = \mu + \theta w_i + \sigma^2 \varepsilon_i,$
	where $\theta \in \mathbb{R}^{p \times r}$ is the loadings matrix (i.e., $\theta = VD$), $w_i \overset{\text{i.i.d}}{\sim} N(0, I_r)$, and $\varepsilon_i \overset{\text{i.i.d}}{\sim} N(0, I_p)$. One can check that $x_i \sim N(\mu, \Sigma)$, $\Sigma = \theta \theta' + \sigma^2 I_p$. The p -th eigenvalue of Σ is $\ \theta_{\cdot p}\ ^2 + \sigma^2$ and p -th eigenvector is $\frac{\theta_{\cdot p}}{\ \theta_{\cdot p}\ }$. When $r < p$, there are r "spikes" (d_1^2, \ldots, d_r^2) in the spectrum of Σ , the covariance matrix is called spiked-covariance matrix. The model is then known at the spiked-covariance model. How to estimate θ and σ^2 ? Factor analysis $x_i = \mu + \beta w_i + \sigma^2 \varepsilon_i,$
	where $\beta \in \mathbb{R}^{p \times p}$ are the factor loadings matrix (i.e., $\theta = VDO'$, $O'O = I_r$), $w_i \overset{\text{i.i.d}}{\sim} N(0, I_p)$, and $\varepsilon_i \overset{\text{i.i.d}}{\sim} N(0, \Psi)$. Thus, $x_i \sim N(\mu, \beta \beta' + \Psi)$ Difference between PCA and FA • PCA asserts that all variance in a data set is common variance but FA does not • PCA is used to decompose the data into a smaller number of orthogonal components; FA is used to understand the underlying 'cause which these factors (latent or constituents) capture much of the information of a set of variables in the dataset data.
In [5]:	• The aim of PCA is to explain the variance while that of FA is to explain the covariance between the variables. Read more here and here $ \begin{aligned} & \text{High-dimensional setting} \\ & \text{In the classical setting } n \gg p \text{, the sample covariance matrix } \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n x_i x_i' \text{ is an unbiased estimator. Consider the } \ell_2\text{-norm } \ \hat{\Sigma} - \Sigma\ _2 \\ & \text{the largest eigenvalue of } \hat{\Sigma} - \Sigma \text{, converges to zero almost surely as } n \to \infty. \end{aligned} $ Question: what happens when $p/n = \alpha \in (0,1)$? $ \begin{aligned} & \text{import numpy as np import matplotlib.pyplot as plt} \\ & \text{np.random.seed (2022)} \\ & \text{n} = 4000 \\ & \text{d} = 800 \end{aligned} $
<pre>In [6]: Out[6]:</pre>	<pre>alpha = d/n mean = np.zeros(d) cov = np.identity(d) x = np.random.multivariate_normal(mean, cov, n) x.shape (4000, 800)</pre>
<pre>In [7]: In [8]: Out[8]:</pre>	eigen_val, eigen_vec = np.linalg.eig(sample_cov)
In [9]:	0.0
In [10]: In [11]:	<pre>mean = np.zeros(d) cov = np.identity(d) x = np.random.multivariate_normal(mean, cov, n) sample_cov = x.T @ x / n eigen_val, eigen_vec = np.linalg.eig(sample_cov) plt.hist(eigen val, bins = 20, range = (0, 3), density = True, color = "gray")</pre>
Out[11]:	(array([0.31
	In Ch 6 of HDS, it provides an upper bound for the maximum eigenvalue $\gamma_1(\hat{\Sigma})$ given by $P(\gamma_1(\hat{\Sigma}) \geq (1+\sqrt{p/n}+\delta)^2) \leq \exp(-n\delta^2/2),$ for all $\delta \geq 0$.
	Marčenko-Pastur law Let $\hat{\Sigma}$ be the sample covariance matrix given above, denote $\gamma(\hat{\Sigma}) \in \mathbb{R}^p$ be the vector of eigenvalues of $\hat{\Sigma}$, suppose $p/n \to \alpha \in (0,1)$, then $f_{MP}(\gamma) \propto \sqrt{\frac{(t_1(\alpha) - \gamma)(\gamma - t_2(\alpha))}{\gamma}},$ where $t_1(\alpha) = (1 - \sqrt{\alpha})^2$ and $t_2(\alpha) = (1 + \sqrt{\alpha})^2$, and f_{MP} is supported on the interval $[t_1(\alpha), t_2(\alpha)]$. Empirical vs MP law $(\alpha = 0.2)$ 1.0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
In [46]:	<pre># set alpha = 0.5 n = 4000 d = 20 mean = np.zeros(d) cov = np.identity(d) x_low = np.random.multivariate_normal(mean, cov, n) sample_cov = x_low.T @ x_low / n eigen_val, eigen_vec = np.linalg.eig(sample_cov) plt.hist(eigen_val, range = (0.5, 1.5), density = True, color = "gray")</pre>
Out[46]:	(array([0., 0., 0., 0.5, 5., 3.5, 1., 0., 0., 0.]), array([0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.4, 1.5]), <pre></pre>
	Spiked-covariance model The spiked-covariance model assumes the eigenvalues of $\Sigma=(\gamma_1,\ldots,\gamma_r,1,1,\ldots,1)$, $\gamma_1\geq\gamma_2\geq\ldots,\gamma_r>1$. Again, we assume $p/n=\alpha\in(0,1)$. According to Baik & Silverman (2006): $\bullet \text{If }1\leq\gamma_v\leq1+\sqrt{\alpha},p/n\to\alpha\in(0,1)\text{, then}$ $\hat{\gamma}_v\to(1+\sqrt{\alpha})^2,$ almost surely as $n\to\infty$
	$\hat{\gamma}_v \to \gamma_v \Big(1+\frac{\alpha}{\gamma_v-1}\Big),$ almost surely as $n\to\infty$ How about eigenvectors? According to Debashis Paul (2007):
	• If $\gamma_v>1+\sqrt{\alpha}$, $p/n\to\alpha\in(0,1)$, let p_v be the v -th eigenvector associated with the eigenvalue γ_v and \hat{p}_v be the estimated value, then $ \langle\hat{p}_v,p_v\rangle \to\sqrt{\frac{\left(1-\frac{\alpha}{(\gamma_v-1)^2}\right)}{\left(1+\frac{\alpha}{\gamma_v-1}\right)}}$ element surely as p_v and p_v be the estimated value, then
	almost surely as $n \to \infty$ • If $1 \le \gamma_v \le 1 + \sqrt{\alpha}$, $p/n \to \alpha \in (0,1)$, let p_v be the v -th eigenvector associated with the eigenvalue γ_v and \hat{p}_v be the estimated value, then $ \langle \hat{p}_v, p_v \rangle \to 0,$ almost surely as $n \to \infty$.
	Sparse PCA ldea: imposing sparsity on loadings. Assume there are s non-zero coordinates in each eigenvector and the remaining $p-s$ coordinates at all 0. Typically, we need $rs\log p \ll n$ (one might can improve it a bit by $rs\log(ep/s)$. 1. 'Naive' approach let $Z_i = U_i D_{ii}$,
	$\hat{\beta} = arg \min_{\beta} \ Z_i - X\beta\ ^2 + \mathrm{Pen}_{\lambda}(\beta),$ then obtain $V_i = \hat{\beta}/\ \hat{\beta}\ .$ 1. "Self-contained" approach (Zou, Hastie, Tibshirani (2006))
	$(\hat{A},\hat{B}) = arg \min_{A,B} \ X - XBA'\ ^2 + \mathrm{Pen}_{\lambda}(\beta),$ s.t. $A'A = I_{r \times r}$ (2) Algorithm: • Given A , solve B as in the regression setting • Given B , we minimize $\ X - XBA'\ ^2$ given $A'A = I_r$. That is, we compute SVD $(X'X)B = UDV'$ and let $\hat{A} = UV'$.
In [55]:	Other methods: • Joint-row sparse for sparse PCA • Sparse Probabilistic Principal Component Analysis by Guan and Dy (2009). • Bayseian methods for sparse PCA and factor analysis [Rockova and George (2016); Ning (2021)] Sparse PCA in action SparsePCA is aviilable in scikit-learn see here The method is based on Zou et al (2006)'s paper, the elastic net penalty is added. from sklearn.decomposition import SparsePCA spca = SparsePCA (n_components = 30, ridge_alpha = 0.01)
In [56]:	<pre>n = 200 d = 50 mean = np.zeros(d) cov = np.identity(d) x = np.random.multivariate_normal(mean, cov, n) spca.fit(x) t_spca = spca.transform(x) p_spca = spca.componentsT</pre>
In [57]:	<pre>import matplotlib.pyplot as plt plt.imshow(p_spca) plt.colorbar() plt.show()</pre>
	- 0.75 - 0.50 - 0.25 - 0.00 - 0.25 - 0.00 - 0.25 - 0.75