Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Севастопольский государственный университет»

Системы счисления и представление данных в памяти ЭВМ

Методические указания по выполнению расчетно-графической работы по дисциплине «Алгоритмизация и программирование» для студентов направлений 09.03.02 — «Информационные системы и технологии» и 09.03.03 — «Прикладная информатика»

Севастополь

УДК 681.3 (075)

Системы счисления и представление данных в памяти ЭВМ: методические указания по выполнению расчетно-графической работы по дисциплине «Алгоритмизация и программирование» для студентов направлений 09.03.02 — «Информационные системы и технологии» и 09.03.03 — «Прикладная информатика» / Сост. Т.И. Сметанина, В. Н. Бондарев. — Севастополь: Изд-во СевГУ, 2019. — 32с.

Методические указания составлены в соответствии с требованиями программы дисциплины «Алгоритмизация и программирование» для студентов направлений 09.03.02 — «Информационные системы и технологии» и 09.03.03 — «Прикладная информатика» и утверждены на заседании кафедры «Информационные системы» (протокол $\mathbb{N}_{\mathbb{Q}}$ от

Допущено научно-методической комиссией института информационных технологий и систем управления в технических системах в качестве методических указаний.

Рецензент: Кожаев Е.А., к.т.н., доцент кафедры информационных технологий и компьютерных систем

СОДЕРЖАНИЕ

1 Позиционные системы счисления и перевод чисел в десятичную систему	
счисления	4
2 Перевод целых чисел из десятичной системы в иные системы	6
3 Перевод дробных чисел из десятичной системы в иные системы	8
4 Непосредственный перевод чисел, представленных в системах с основани-	
ем 2, 8 и 16	10
5 Выполнение арифметических операций в различных системах	11
6 Дополнительный код числа	14
7 Кодирование целых чисел	16
8 Кодирование вещественных чисел	19
9 Кодирование текстовой информации	24
10 Выбор варианта задания и требования к оформлению	26
Библиографический список	28
Приложение А. Варианты заданий	29

1 ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ И ПЕРЕВОД ЧИСЕЛ В ДЕСЯТИЧНУЮ СИСТЕМУ СЧИСЛЕНИЯ

Система счисления (СС) — совокупность приёмов обозначения чисел.

Системы счисления делятся на 2 группы:

- позиционные (пример десятичные числа);
- непозиционные (пример римские числа).

В *позиционных СС* значение каждой цифры в изображении числа зависит от её положения (позиции) в последовательности цифр, изображающих число.

Номер позиции цифры считается справа налево в целой части числа (рис. 1.1):

Рисунок 1.1 — Позиции цифр в записи целого числа

Основанием СС (p) называют количество цифр, использующихся для записи числа. Ниже приведены цифры и символы, используемые для записи чисел в десятичной (p=10), восьмеричной (p=8), шестнадцатеричной (p=16) и двоичной (p=2) СС.

$$p = 10;$$
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;
 $p = 8;$ 0, 1, 2, 3, 4, 5, 6, 7;
 $p = 16;$ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F;
 $p = 2;$ 1, 0.

В таблице 1.1 приведены примеры записи целых чисел в различных СС.

Известно, что числа можно записывать в виде разложения по степеням основания, например:

$$(523,7)_{10} = 5 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0 + 7 \cdot 10^{-1}$$
.

Такая запись называется *расширенной записью числа*. В общем случае для записи числа в расширенной форме используется формула:

$$N = C_n \cdot p^n + C_{n-1} \cdot p^{n-1} + \dots + C_1 \cdot p^1 + C_0 \cdot p^0 + C_{-1} \cdot p^{-1} + C_{-2} \cdot p^{-2} + \dots, \quad (1.1)$$

где C_i — цифра в i-ой позиции числа, p — основание СС, в которой записано число.

Расширенную запись числа используют для перевода чисел из других систем счисления в десятичную.

Пример 1.1 Перевести числа в десятичную СС: a)
$$(1011)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = (11)_{10}$$
;

10001111200 171	1		
Десятичная СС	Восьмеричная СС	Шестнадцатеричная СС	Двоичная СС
0	0	0	00
1	1	1	01
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	10	8	1000
9	11	9	1001
10	12	A	1010
11	13	В	1011

 \mathbf{C}

D

E

F

Таблица 1.1 — Числа в различных системах счисления

6)
$$(341)_8 = 3 \cdot 8^2 + 4 \cdot 8^1 + 1 \cdot 8^0 = (225)_{10}$$
;

B)
$$(FA)_{16} = 15 \cdot 16^1 + 10 \cdot 16^0 = (250)_{10}$$
;

$$\Gamma$$
) $(10,11)_2 = 1 \cdot 2^1 + 0 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = (2,75)_{10}$;

д)
$$(34,1)_8 = 3 \cdot 8^1 + 4 \cdot 8^0 + 1 \cdot 8^{-1} = (28,125)_{10}$$
;

e)
$$(F,A)_{16} = 15 \cdot 16^0 + 10 \cdot 16^{-1} = (15,625)_{10}$$
.

Формула расширенной записи числа может применяться и для обратного перевода, но при этом придется выполнять математические операции по правилам той системы, в которую выполняется перевод.

Пример 1.2 Перевести десятичные числа в двоичную СС:

a)
$$(9)_{10} = (1\ 001)_2$$
;

6)
$$(17)_{10} = 1 \cdot 10^1 + 7 \cdot 10^0 + = (1010)_2 + (111)_2 = (10\ 001)_2$$
.

Задача 1.1 Перевести числа в десятичную СС:

a)
$$(1010)_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = (10)_{10}$$
;

6)
$$(101,11)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = (5,25)_{10}$$
;

B)
$$(72,2)_8 = 7 \cdot 8^1 + 2 \cdot 8^0 + 2 \cdot 8^{-1} = (58,25)_{10}$$
;

$$\Gamma$$
) $(1B,C)_{16} = 1 \cdot 16^1 + 11 \cdot 16^0 + 12 \cdot 16^{-1} = (27,75)_{10}$.

2 ПЕРЕВОД ЦЕЛЫХ ЧИСЕЛ ИЗ ДЕСЯТИЧНОЙ СИСТЕМЫ В ИНЫЕ СИСТЕМЫ

Рассмотрим перевод целого десятичного числа N в систему счисления с основанием p.

Представим целое N в расширенной форме записи:

$$N = C_n \cdot p^n + \dots + C_1 \cdot p^1 + C_0 \cdot p^0$$
 (2.1)

Если поделить N на основание p, то частное от деления будет равно

$$Q = C_n \cdot p^{n-1} + C_n \cdot p^{n-2} \dots + C_1 p^0, \tag{2.2}$$

а остаток будет равен C_0 , т.е цифре в нулевой позиции.

Если полученное частное Q опять поделить на p, то остаток от деления будет равен C_1 , т.е цифре в первой позиции.

Если продолжить процесс деления частного на основание p, то на n шаге получим набор остатков C_0 , C_1 , C_2 , ..., C_n , которые соответствуют цифрам в записи числа N ϵ новой системе счисления.

Т.к. мы получили цифры в обратном порядке, то правильная запись числа требует инверсии порядка следования цифр:

$$N_p = (C_n C_{n-1} \dots C_1 C_0)_p. (2.3)$$

Правило перевода целого числа из десятичной системы в систему с основанием р:

- последовательно выполнять деление целого десятичного числа и получаемых целых частных на p до тех пор, пока не получится частное, меньшее p;
 - записать полученные остатки в обратной последовательности.

Пример 2.1 Перевести число 11 из десятичной системы счисления в двоичную систему.

Выполним процесс деления.

Соберем остатки от деления в направлении, указанном стрелкой, начиная с последней единицы, и получим число в двоичной системе счисления:

$$(11)_{10} = (1011)_{2}$$

Сравните полученный результат с данными табл. 1.1.

Пример 2.2 Перевести число 28 из десятичной системы счисления в двоич-

Результат $(28)_{10} = (11100)_2$.

Пример 2.3 Перевести число 363 из десятичной СС в двоичную СС. Процесс деления удобно представлять в табличной форме (рисунок 2.1):

Число \ частное	363	181	90	45	22	11	5	2	1
Делитель	2	2	2	2	2	2	2	2	2
Остаток	1	1	0	1	0	1	1	0	1

Рисунок 2.1 — Перевод числа 363 из десятичной СС в двоичную СС

Собрав остатки от деления, в направлении, указанном стрелкой, получим число в двоичной системе счисления: $(363)_{10} = (101\ 101\ 011)_2$

Пример 2.4 Перевести число 363 из десятичной системы счисления в восьмеричную систему.

Решение:

Результат $(363)_{10} = (553)_8$.

Пример 2.5 Перевести число 363 из десятичной системы счисления в шестнадцатеричную систему.

Решение:

Результат $(363)_{10} = (16B)_{16}$.

Обратите внимание, что чем больше р, тем короче запись числа и проще вычисления!

Задача 2.1 Перевести десятичные числа в двоичную СС с использованием формулы расширенной записи числа:

a)
$$(15)_{10} = 1 \cdot 10^1 + 5 \cdot 10^0 = (1010)_2 + (101)_2 = (1111)_2$$
;
6) $(243)_{10} = 2 \cdot 10^2 + 4 \cdot 10^1 + 3 \cdot 10^0 = (10)_2 \cdot (1010)_2^2 + (100)_2 \cdot (1010)_2 + (11)_2 = (10)_2 \cdot (1\ 100\ 100)_2 + (101\ 000)_2 + (11)_2 = (11\ 110\ 011)_2$.

3 ПЕРЕВОД ДРОБНЫХ ЧИСЕЛ ИЗ ДЕСЯТИЧНОЙ СИСТЕМЫ В ИНЫЕ СИСТЕМЫ

Рассмотрим перевод правильной десятичной дроби в двоичную систему счисления. Пусть A_{op} — правильная десятичная дробь, тогда её можно записать в виде:

$$A_{\partial p} \approx a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + \dots$$

Если $A_{\partial p}$ умножить на 2, то в правой части получим $a_{-1}+a_{-2}\cdot 2^{-1}+a_{-3}\cdot 2^{-2}+...$, где a_{-1} — целая часть, она и даст нам старший коэффициент в разложении числа $A_{\partial p}$ по степеням 2. Оставшуюся дробную часть снова умножим на 2 и получим

$$a_{-2} + a_{-3} \cdot 2^{-1} + \dots$$

где a_{-2} — второй коэффициент после запятой в двоичном представлении числа. Процесс продолжается до тех пор, пока в правой части не получим 0 или не будет достигнута требуемая точность вычислений.

Правило перевода правильной десятичной дроби в систему с основанием р:

- последовательно выполнять умножение десятичной дроби и получаемых дробных частей произведения на p до тех пор, пока не получится нулевая дробная часть или не будет достигнута требуемая точность;
 - записать полученные целые части произведения в порядке их вычисления.

Пример 3.1 Перевести число 0,75 из десятичной системы счисления в двоичную систему. Решение: $0.75 \cdot 2 = 11.15$

 $0,75 \cdot 2 = \begin{vmatrix} 1 & 5 \\ 0,50 \cdot 2 = \end{vmatrix} , \begin{vmatrix} 5 \\ 0 \end{vmatrix}$

Результат: $(0,75)_{10} = (0,11)_2$.

Сделаем проверку: $(0,11)_2 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 1/2 + 1/4 = 0,5 + 0,25 = 0,75$.

Пример 3.2 Перевести число 0,24 из десятичной системы счисления в двоичную систему. Решение:

 $0,24 \cdot 2 = \begin{vmatrix} 0, & 48 \\ 0,48 \cdot 2 = & 0, & 96 \\ 0,96 \cdot 2 = & 1, & 92 \\ 0,92 \cdot 2 = & 1, & 84 \\ 0,84 \cdot 2 = & 1, & 68 \end{vmatrix}$

Результат: $(0,24)_{10} \approx (0,00111)_2$.

Этот процесс может продолжаться бесконечно, его обрывают на том шаге, когда считают, что получена требуемая точность.

Обратите внимание, что в общем случае дробные десятичные значения представляются в двоичной СС приблизительно, т.е. с погрешностью.

Пример 3.3 Перевести число 0,24 из десятичной системы счисления в восьмеричную СС. Решение:

 $0,24 \cdot 8 = 1, 92 \\
0,92 \cdot 8 = 7, 36 \\
0,36 \cdot 8 = 2, 88 \\
0,88 \cdot 8 = 7, 04 \\
0,04 \cdot 8 = 0, 32$

Результат: $(0,24)_{10} \approx (0,17270)_8$.

Пример 3.4 Перевести число 0,24 из десятичной системы счисления в шестнадцатеричную СС.

Решение:

$$\begin{array}{c|cccc}
0,24 & \cdot & 16 & = & 3, & 84 \\
0,84 & \cdot & 16 & = & 13, & 44 \\
0,44 & \cdot & 16 & = & 7, & 04 \\
0,04 & \cdot & 16 & = & 0, & 64 \\
0,64 & \cdot & 16 & = & 10, & 24
\end{array}$$

Результат: $(0,24)_{10} \approx (0,3D70A)_8$.

Обратите внимание, что чем больше р, тем выше точность при одном и том же количестве цифр после запятой!

А если число смешанное? Тогда нужно отдельно перевести целую часть и отдельно — дробную.

Правило перевода смешанного десятичного числа в системы с основанием р:

- перевести целую часть;
- перевести дробную часть;
- сложить полученные результаты.

Пример 3.5 Перевести число $(17,225)_{10}$ из десятичной системы счисления в двоичную систему. $0,225 \cdot 2 = |0,|45$

Решение:

Результат: $(17,225)_{10} \approx (10001,0011100)_2$.

Пример 3.6 Перевести число $(17,225)_{10}$ из десятичной системы счисления в восьмеричную систему.

Решение:

Результат: $(17,25)_{10} \approx (21,163)_8$.

Пример 3.7 Перевести число $(17,225)_{10}$ из десятичной системы счисления в шестнадцатеричную систему.

Решение:

Результат: $(17,25)_{10} \approx (11,399)_{16}$.

Задача 3.1 Перевести числа из десятичной СС в двоичную СС, в восьмеричную СС и шестнадцатеричную СС:

Ответы: a) (75,25)₁₀ \approx (4B,4)₁₆ \approx (1 001 011,01)₂ \approx (113,2)₈;

б) (
$$13,32$$
)₁₀ \approx (D,51)₁₆ \approx (1 101, 010 100 011)₂ \approx (15,243)₈;

B)
$$(32,62)_{10} \approx (20,9E)_{16} \approx (100\ 000,100\ 111\ 10)_2 \approx (40,47)_8$$
.

4 НЕПОСРЕДСТВЕННЫЙ ПЕРЕВОД ЧИСЕЛ, ПРЕДСТАВЛЕННЫХ В СИСТЕМАХ С ОСНОВАНИЕМ 2, 8 И 16

Для непосредственного перевода чисел из двоичной в восьмеричную и обратно (из восьмеричной в двоичную) используется *правило триад*: каждая десятичная цифра записывается тремя двоичными и наоборот.

Приведем примеры перевода из двоичной СС в восьмеричную и обратно:

Пример 4.1

(2
$$\longrightarrow$$
 8): $011 \ 100 = (3 \ 4)_8$

3 4 011 100

Пример 4.2

(2 \longrightarrow 8): $111 \ 101 \ 001 = (7 \ 5 \ 1)_8$

7 5 1 111 101 001

Для перевода чисел из двоичной СС в шестнадцатеричную СС применяется *правило тетрад*: каждая шестнадцатеричная цифра записывается четырьмя двоичными и наоборот. Приведем примеры перевода чисел из двоичной СС в шестнадцатеричную СС и обратно:

Пример 4.3

Пример 4.4

$$(1010 \ 0101 \ 0011)_2 = (A \ 5 \ 3)_{16}$$
A 5 3 $1010 \ 0101 \ 0011$

Для быстрого перевода десятичного числа в двоичную систему следует его сначала перевести в шестнадцатеричную систему, а затем, используя правило тетрад — в двоичную.

Пример 4.5 Перевести число 2367,1 из десятичной СС в двоичную СС:

Результат: $(2367,1)_{10}\approx (93F,199)_{16}=(\underline{1001}\ \underline{0011}\ \underline{1111,0001}\ \underline{1001}\ \underline{1001})_2\approx (93F,199)_{16}$ **Задача 4.1** Перевести числа из двоичной СС в восьмеричную СС и шестнадиатеричную СС, используя правила триад и тетрад: а) 1101,11; б) 10110,01.

Ответы: a) $(1\ 101,11)_2 \approx (15,6)_8 \approx (D,12)_{16};$ б) $(10\ 110,01)_2 \approx (26,2)_8 \approx (16,4)_{16}.$

Задача **4.2** Перевести числа из шестнадцатеричной СС в двоичную СС и восьмеричную СС, используя правила триад и тетрад: a) 5A6; б) 8F,21.

Ответы: a) $(5A6)_{16} \approx (101\ 1010\ 0110)_2 \approx (2646)_8$; б) $(8F,21)_{16} \approx (10\ 001\ 111,001\ 000\ 01)_2 \approx (217,102)_8$.

5 ВЫПОЛНЕНИЕ АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ В РАЗЛИЧНЫХ СИСТЕМАХ

Арифметические операции в позиционных системах счисления выполняются с помощью таблиц сложения и умножения.

Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел:

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 10 \end{array}.$$

При сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда значение числа в нем становится равным или больше основания.

Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа:

Проверка:
$$1011_2 + 101_2 = 11_{10} + 5_{10} = 16_{10} = 10000_2$$
; $101011_2 + 10110_2 = 43_{10} + 22_{10} = 65_{10} = 1000 \ 001_2$.

Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой:

$$0-0 = _0;$$

 $0-1 = 11;$
 $1-0 = 1;$
 $1-1 = 0.$

Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел:

Проверка:
$$110_2 - 11_2 = 6_{10} - 3_{10} = 3_{10} = 11_2$$

 $101011_2 - 10110_2 = 43_{10} - 22_{10} = 21_{10} = 10101_2$.

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел:

 x
 0
 1

 0
 0
 0

 1
 0
 1

Умножение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления с последовательным умножением множимого на цифры множителя. В качестве примера рассмотрим умножение двоичных чисел:

Проверка:
$$110_2 \cdot 11_2 = 6_{10} \cdot 3_{10} = 18_{10} = 10\ 010_2$$

 $1011_2 \cdot 101_2 = 11_{10} \cdot 5_{10} = 55_{10} = 110\ 111_2$

По сути, умножение сводится к суммированию сдвинутых копий первого сомножителя с самим собой, т.е. в двоичной системе умножение реализуется с помощью суммирования и сдвигов.

Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 110_2 на 11_2 :

Проверка: $1001_2 / 11_2 = 9_{10} / 3_{10} = 3_{10} = 11_2$.

Аналогично можно выполнять арифметические действия в восьмеричной и шестнадцатеричной системах счисления. Необходимо только помнить, что перенос в следующий разряд при сложении и заем из старшего разряда при вычитании производится с учетом значения основания СС.

+	1	2	3	4	5	6	7
1	2	3	4	5	6	7	10
2	3	4	5	6	7	10	11
3	4	5	6	7	10	11	12
4	5	6	7	10	11	12	13
5	6	7	10	11	12	13	14
6	7	10	11	12	13	14	15
7	10	11	12	13	14	15	16

Рисунок 5.1 — Сложение в восьмеричной СС

1	1						
2	2	4					
3	3	6	11				
4	4	10	14	20			
5	5	12	17	24	31		
6	6	14	22	30	36	44	
7	7	16	25	34	43	52	61
X	1	2	3	4	5	6	7

Рисунок 5.2 — Умножение в восьмеричной СС

Пример: Выполним операции сложения, вычитания и умножения в восьмеричной СС.

Для проведения арифметических операций над числами, представленными в различных системах счисления, необходимо предварительно перевести их в одну систему.

Задача 5.1 Выполнить сложение, вычитание, умножение двоичных чисел $(101\ 010\)_2$ и $(110\)_2$.

Ответы: a) (
$$101\ 010\)_2 + (\ 110\)_2 = (110\ 000)_2;$$

б) ($101\ 010\)_2 - (\ 110\)_2 = (100\ 100)_2;$
в) ($101\ 010\)_2\ x\ (\ 110\)_2 = (11\ 111\ 100)_2$

Задача 5.2 Выполнить сложение и умножение восьмеричных чисел (32)8 и $(12)_{8.}$

Ответы: a) (32)
$$_8$$
 + (12) $_8$ = (44) $_8$; б) (32) $_8$ x (12) $_8$ = (404) $_8$.

Задача 5.3 Выполнить сложение чисел (32)₈ и (32)_{16.}

Otbet:
$$(32)_8 + (32)_{16} = (4C)_{16} = (114)_8$$
.

6 ДОПОЛНИТЕЛЬНЫЙ КОД ЧИСЛА

Дополнением n-разрядного числа называется число, которое необходимо добавить к исходному числу, чтобы получить нули во всех его n разрядах и единицу в (n+1) разряде.

Например, 362 +*дополнение*= 1000.

Отсюда ∂ ополнение = 1000 - 362 = 638. Число 638 является ∂ ополнением до 1000 числа 362.

Дополнение позволяет заменить операцию вычитания сложением.

Пример: x - y = x + (1000 - y) - 1000. При этом последнее вычитание сводится к отбрасыванию цифры переноса, если результат получен в прямом коде. Пусть требуется найти разность 987 - 362. Тогда

Если требуется вычислить 362 - 987, то

$$-\frac{362}{-987}$$
 или $+\frac{13}{375}$ дополнение до 1000 числа 987 -> результат получен в доп. коде $-\frac{1000}{-625}$ -> прямой код

Результат 362 - 987 = 362 + 13 = 375 получен в дополнительном коде. Чтобы перевести его в прямой код необходимо вычесть 1000, т.е. 375 - 1000 = -625.

В компьютере целые отрицательные числа хранятся в дополнительном коде.

Рассмотрим пример для двоичной СС, вычислим $(1111)_2 - (1010)_2$

Выполним эту же операцию с использованием дополнительного кода:

В двоичной системе справедлива формула (рисунок 6.1):

$$\mathcal{A}$$
ополнительный код = \mathbf{O} братный код + $\mathbf{1}$.

Рисунок 6.1 — Формула вычисления дополнительного кода

Тогда, складывая число $(1111)_2$ с дополнительным кодом числа $(1010)_2$, получим

Если при сложении дополнительного кода с некоторым числом возникает перенос в старший разряд, то этот перенос отбрасывается, и результат получается в прямом коде. Если переноса не возникает, то это означает, что полученный результат представлен в дополнительном коде.

7 КОДИРОВАНИЕ ЦЕЛЫХ ЧИСЕЛ

Числовая информация, как и любая другая, хранится и обрабатывается в компьютерах в двоичной системе счисления.

Существуют два вида чисел и два способа их представления: форма с фиксированной запятой (точкой) и форма с плавающей запятой (точкой). Форма с фиксированной точкой применяется для целых чисел, форма с плавающей точкой — для вещественных (действительных) чисел.

ЭВМ оперирует с числами, содержащими конечное число двоичных цифр (разрядов). Количество разрядов ограничено длиной разрядной сетки машины. Под разрядной сеткой понимается совокупность двоичных разрядов, предназначенных для хранения и обработки машинных слов (двоичных кодов).

Количество двоичных разрядов и положение запятой в разрядной сетке машины определяют такие важные характеристики ЭВМ, как точность и диапазон представляемых чисел. Кроме бита и байта, для указания длины формата чисел используется машинное слово, полуслово и двойное слово.

Целые числа без знака (положительные) — для их хранения может отводиться последовательность из 8, 16 или 32-х бит памяти. Целые числа в памяти ЭВМ представляются в формате с фиксированной запятой.

Рисунок 7.1 — Представление целого числа в памяти компьютера

Например, максимальное 8-битное число $X_2 = 111111111$ будет храниться следующим образом (прямой код):

	1	1	1	1	1	1	1	1	I
--	---	---	---	---	---	---	---	---	---

Рисунок 7.2 — Представление максимального 8-битового числа

Для 8-разрядных целых положительных чисел максимально возможное значение равно 2^8 - 1 = 255, для 16-разрядных : 2^{16} - $1 = 65\,535$, для 32-разрядных: 2^{32} - $1 = 4\,294\,967\,295$.

Целые числа со знаком также хранятся в формате с фиксированной запятой. Старший бит обозначает знак числа: 0 — положительное, 1 — отрицательное.

Рисунок 7.3 — Представление целого числа в памяти компьютера

Пример 7.1 Рассмотрим как представляется число $(39)_{10}$ в памяти компьютера в формате с ф.з. при N=16: $(39)_{10}$ = $(27)_{16}$ = $(10\ 0111)_2$.

Число размещают, начиная с крайней правой позиции формата.

Шестнадцатеричное представление шестнадцати разрядного формата: 0027.

Пример 7.2 Рассмотрим представление числа $(329)_{10}$ в памяти компьютера: $(329)_{10}$ = $(149)_{16}$ = $(101001001)_2$.

При хранении отрицательных чисел используется не прямой, а дополнительный код двоичного числа, равный $2^N - X$, где N — разрядность числа, X — прямой код двоичного числа. Для нахождения дополнительного кода в двоичной системе счисления используют формулу:

$$X_{\partial on} = X_{o\delta p} + 1 \tag{7.1}$$

Отрицательные числа представляются в дополнительном коде, при этом дополнение выполняют до количества разрядов формата. Незначащие позиции числа (старшие биты) в дополнительном коде заполняются битом знака (знакорасширение), т.е. единицей! А в прямом коде они заполняются нулем.

Пример 7.3 Рассмотрим представление числа $(-39)_{10}$ в памяти компьютера: $(-39)_{10} = (-0010\ 0111)_2$.

$$+$$
 $0000\ 0000\ 0010\ 0111\ -$ прямой код; $-$ обратный код; $-$ обратный код; $-$ 1111\ 1111\ 1101\ 1001\ $-$ дополнительный код. $-$ F D 9 $-$ результат

Пример 7.4 Рассмотрим представление числа $(-329)_{10}$ в памяти компьютера: $(-329)_{10} = (-149)_{16} = (-0000\ 0001\ 0100\ 1001\)_2$;

Задача 7.1 Представить десятичные числа 839 и -839 в шестнадцатиразрядном формате с фиксированной запятой, результат записать шестнадцатеричными цифрами.

Переведем 839 в шестнадцатеричную СС:

Получим $(839)_{10} = (347)_{16}$, используя правило тетрад, переведем число в дво-ичную СС: $(347)_{16} = (0000\ 0011\ 0100\ 0111)_2$. Результат запишем шестнадцатеричными цифрами: **0347**.

Для представления числа (— 839) $_{10}$ в памяти ЭВМ найдем его дополнительный код:

8 КОДИРОВАНИЕ ВЕЩЕСТВЕННЫХ ЧИСЕЛ

Экспоненциальная форма записи числа

$$X = \pm m \cdot p^n \,, \tag{8.1}$$

где n — порядок, p — основание системы счисления, m — дробь, которая называется m

Например: $103,45 \cdot 10^{0} = 10,345 \cdot 10^{1} = 1,0345 \cdot 10^{2}$

В памяти вычислителя запоминают отдельно мантиссу и порядок.

Существует единственная мантисса, удовлетворяющая условию:

$$\frac{1}{p} \le m < 1.0. \tag{8.2}$$

Такая мантисса называется нормализованной.

Например: $0,10345 \cdot 10^3$

В этом случае в старшем числовом разряде мантиссы стоит цифра, отличная от нуля. Мантисса представляется в памяти в виде числа со знаком, а порядок – в виде целого числа без знака.

Пример 8.1 Представим число 65,7 в нормализованной экспоненциальной форме: $65,7=0,657\cdot 10^2$, n=2, m=657.

Мантисса всегда хранится в прямом коде независимо от того, положительное ли число, или отрицательное.

Рассмотрим 2 основных формата представления вещественных чисел в памяти ЭВМ: IBM-360 и IEEE 754-2008.

Формат IBM-360. Содержимое 32-битного формата представлено на рис. 8.1. **Характеристика** С предназначена для хранения **порядка** числа и равна:

$$C = (40)_{16} + (n)_{16} = (64)_{10} + (n)_{10} = (1000000)_2 + (n)_2.$$
 (8.3)

Характеристика (экспонента) занимает 7 бит.

Рисунок 8.1 — Формат ІВМ-360

Пример 8.2 Требуется представить число 15,5 в формате ІВМ-360.

Переведем число из десятичной СС в шестнадцатеричную СС: $(15,5)_{10}$ = = (F,8)₁₆. Представим полученное число в нормализованной экспоненциальной форме: $F,8 = 0,F8 \cdot 16^1$; порядок равен 1; F8 — значение и цифры мантиссы. На следующем шаге вычислим значение характеристики: $C = 40 + 1 = (41)_{16}$.

В двоичном коде формат запишется в виде, изображенном на рис. 8.2.

Рисунок 8.2 — Представление числа 15,5 в формате ІВМ-360

Для сокращения записи часто формат представляют шестнадцатеричными числами, т.е. $(15,5)_{10} \rightarrow 41F8\ 0000$.

Пример 8.3 Требуется представить число -15,5 в формате ІВМ-360.

Выполним аналогичные действия: $(-15,5)_{10} = (-F,8)_{16}$. В двоичном коде формат запишется в виде, изображенном на рис. 8.3.

Рисунок 8.3 — Представление числа –15,5 в формате ІВМ-360

Запишем число шестнадцатеричными числами $(-15,5)_{10} \rightarrow C1F80000$.

В знаковом бите 0 заменяется на 1, т.к. число отрицательное. Таким образом, отрицательные числа, записанные в шестнадцатеричной форме, начинаются с С, D, Е или F.

Задача 8.1 Представить следующие десятичные числа в тридцатидвухразрядном (ІВМ-360) формате представления чисел с плавающей точкой в памяти ЭВМ. Записать окончательный результат шестнадцатеричными цифрами:

a) 2225,25;

б) –2225,25;

Ответы: a) $2225,25 \rightarrow 43 \ 8B1400;$ б) $-2225,25 \rightarrow C3 \ 8B1400.$

Стандарт IEEE 754-2008.

Стандарт описывает:

- формат чисел с плавающей точкой: мантисса, показатель степени, знак числа;
- представление положительного и отрицательного нуля, плюс и минус бесконечностей, а также нечисла (англ. Not-a-Number, NaN);
- методы, используемые для преобразования числа при выполнении математических операций;
- исключительные ситуации: деление на нуль, переполнение, потеря значимо-
 - операции: арифметические, режимы округления.

Этот формат также использует для представления числа формулу (8.1), где $1 \le m < 2$. При этом старший бит мантиссы всегда равен 1 и поэтому не хранится, его называют скрытым битом. Экспонента (характеристика) занимает 8 бит и вычисляется по формуле:

$$C = e = (127)_{10} + (n)_{10} = (0111\ 1111)_2 + (n)_2 = (7F)_{16} + (n)_{16}. \tag{8.4}$$

Рисунок 8.4 — Формат IEEE 754

Мантисса дополнительно включает скрытый единичный бит, который на рис. 8.4 показан условно. Скрытый бит расширяет точность представления мантиссы с 23-разрядов до 24-разрядов. Значения экспоненты находятся в диапазоне от 0 до 255.

Особые числа в формате IEEE-754:

- 1. Число **00 00 00 00** hex считается числом **+0**, число **80 00 00 00** hex считается числом **-0**.
- 2. Число **7F 80 00 00** hex считается числом $+\infty$, число **FF 80 00 00** hex считается числом $-\infty$.
- 3. Коды **7F** (**1xxx**)**X XX XX** hex

FF (1xxx)X XX XX hex — это не числа (NAN), кроме случая п.2.

Код (x)..X, представленный в битах с 0...22, может быть любым, кроме 0 (т.е. $+\infty$ и $-\infty$);

4. Числа (**x000**) (**000**) (**0xxx**)**X XX Xx** hex считаются **денормализованными**, за исключением чисел п.1 (т.е. -0 и +0). Мантиссы денормализованных чисел лежат в диапазоне $0.1 \le m \le 1$. Используются для хранения чисел близких к нулю ($\sim 1,4~10^{-45} - 1.17~10^{-38}$).

Рисунок 8.5 — Представление денормализованных чисел в формате IEEE-754

Пример 8.4 Требуется представить число 53,203 в 32-х битовом формате IEEE 754.

Сначала переведем число в двоичную СС: $53,203_{10} = 110101,001101_2$.

Полученное число представим в следующем виде:

 $110101,001101_2 = \underline{1}, 10101001101\cdot 2^5$, где целая часть — это скрытый бит, а дробная часть — это мантисса. Тогда n=5, а характеристика

$$C = 127 + 5 = 0111 \ 1111 + 101 = 1000 \ 0100.$$

Число в памяти компьютера будет храниться в виде, изображенном на рисунке 8.6:

Рисунок 8.6 — Представление числа 53,203 в формате IEEE 754

Запись числа шестнадцатеричными цифрами: $(53,203)_{10} \rightarrow 4254D000$.

Пример 8.5 Требуется представить число –53,203 в формате IEEE 754.

Выполним аналогичные действия. Результат представим в виде, изображенном на рис. 8.7.

Рисунок 8.7 — Представление числа –53,203 в формате IEEE 754

Запись числа шестнадцатеричными цифрами: $(-53,203)_{10} \rightarrow C254D000$. Сравнение форматов IBM-360 и IEEE 754 приведено в табл. 8.1.

Таблица 8.1 — Сравнение форматов

1	<u> </u>	
параметр	Формат IBM-360 (32 бита)	Формат IEEE 754(32 бита)
Размер <i>С</i>	7 бит	8 бит
Размер q	24	23
Диапазон \mathbf{q}	$1/p \le q < 1.0$	1 <= q < 2
Запятая	слева от мантиссы	справа от старшего бита мантис-
Sairiar		сы
Примор	$F,8=0,F8 \cdot (16)^1$	$101,101 = \underline{1},01101 \cdot (2)^2$
Пример:	q=F8; p=16; n=1	q=01101; p=2; n=2
Формула C	$C = (40)_{16} + (n)_{16} = (64)_{10} + (n)_{10} =$	$C = (127)_{10} + (n)_{10} = (011111111)_2 +$
	$= (100\ 0000)_2 + (n)_2.$	$+(n)_2 = (7A)_{16} + (n)_{16}$

Пример 8.6 Представить числа 42,25 и –42,25 в формате IBM-360. Переведем в шестнадцатеричную СС целую часть:

$$\begin{array}{c|c}
42 & 16 \\
\hline
32 & 2 \\
\hline
10 & \\
\end{array}$$

Переведём дробную часть: $0.25 \cdot 16 = 4.0$.

Запишем число в нормализованной экспоненциальной форме:

 $(42,25)_{10} = (2A,4)_{16} = 0,2A4 \cdot 16^2.$

Тогда n = 2 и характеристика $C = 40 + 2 = (42)_{16} = (100\ 0010)_2$.

Запишем результат шестнадцатеричными цифрами $(42,25)_{10} \rightarrow 422A4000$ (рисунок 8.8).

	0	100	0010 0010		1010	0100	0000	0000	0000
4		4	2	2	A	4	0	0	0

Рисунок 8.8 — Представление числа 42,25 в формате IBM-360

Выполним аналогичные действия для представления числа –42,25. Получим: $(-42,25)_{10} \rightarrow C22A4000$ (pucyhok 8.9)

1	100	0010	0010	1010	0100	0000	0000	0000
	C	2	2	A	4	0	0	0

Рисунок 8.9 — Представление числа –42,25 в формате IBM-360

Пример 8.7 Представить числа 42,25 и –42,25 в формате IEEE 754.

Переведем число в двоичную СС и представим в виде:

$$(42,25)_{10} = (0010\ 1010\ ,\ 0100)_2 = \underline{1},\ 010100100 \cdot 2^5.$$

Тогда n = 5, характеристика C = 127 + 5 = 011111111 + 101 = 1000 0100.

Запишем результат шестнадцатеричными цифрами:

 $(+42,25)_{10} \rightarrow 12290000$ (puc. 8.10).

C	100)()	010	0	010	0101 0010			000	0000 000			0000	000)
	4 2		2		2		9		0		0		0	0	

Рисунок 8.10 — Представление числа 42,25 в формате IEEE 754

Выполним аналогичные действия для представления числа –42,25. Получим: $(-42,25)_{10} \rightarrow C2290000$ (puc. 8.11)

1	100	0 00	100	0 0101		0010		0000		0000		0000	000	
	C			2	(9		0		0		0	0	

Рисунок 8.11 — Представление числа -42,25 в формате IEEE 754

Задача 8.2 Представить следующие десятичные числа в тридцатидвухразрядном (IEEE 754) формате представления чисел с плавающей точкой в памяти ЭВМ:

б) –2225,25.

Ответы: a) $2225,25 \rightarrow 45 \text{ 0B}1400$; 6) $-2225,25 \rightarrow \text{C5 0B}1400$.

9 КОДИРОВАНИЕ ТЕКСТОВОЙ ИНФОРМАЦИИ

Для кодирования текстов за каждым символом закрепляют его числовой код с помощью стандартизированных кодовых таблиц.

7-битовая кодовая таблица *ASCII* (American Standard Code for Information Interchange) предложена в 1963г. американским национальным институтом стандартов *ANSI* (American National Standards Institute). Таблица содержит коды управляющих символов (от 0 до 31) и 96 кодов (от 32 до 127) для знаков, достаточных для работы с английскими текстами.

1 aos	ища	ι).1	-	код	овал	Tac	лиц	anı							
sp	ļ	«	#	\$	%	&	E	()	*	+	,	-		/
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
0	1	2	3	4	5	6	7	8	9	:	- ,	<	=	>	?
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
@	Α	В	С	D	Е	F	G	Н	-	J	K	L	M	Ν	0
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
Р	Q	R	S	Т	U	V	W	X	Υ	Z	[\]	٨	_
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
•	a	b	С	d	е	f	g	h	i	j	k	- 1	m	n	0
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
p	q	r	S	t	u	٧	W	Х	у	Z	{		}	~	ڤ
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Таблица 9.1 — Кодовая таблица **ASCII**

Современные кодовые таблицы включают в себя международную и национальную части, т. е. содержат буквы латинского и национального алфавитов и являются 8-битовыми (коды от 128 до 255).

Один из стандартов кодирования кириллицы КОИ8-Р.

129 130 131 135 136 128 132 133 134 137 138 139 $1\overline{4}0$ 141 142 143 nbsp ≥ • 145 146 147 148 144 149 150 151 152 153 154 155 156 157 158 159 | F 161 162 163 164 165 166 167 168 160 169 170 171 172 173 174 175 ‡ 188 ╡ 178 1 π 183 182 176 179 180 181 184 185 177 186 187 189 190 191 Д ф Й 0 193 194 195 197 198 199 200 201 203 204 192 196 202 205 206 207 Ш Щ 208 209 210 211 212 213 218 219 220 214 215 216 217 221 222 223 Б Ε Γ И Й Л Н 0 Ю Α Ц Д Φ X К M 224 | 225 | 226 | 227 | 228 229 230 231 232 233 234 235 236 237 238 239 Я C Ж В Ы Ш Э Щ Ъ 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 251 252 250

Таблица 9.2 — Стандарт кодирования кириллицы КОИ8-Р

Для поддержки **кириллицы** существует несколько кодовых таблиц (CP – code page), которые используются различными операционными системами (таблица 9.3).

Кодовая страница (стандарт)	Операционная система (ОС)	Примечание
CP866 (Code Page 866)	MS DOS, OS/2	Используется в компьютерах в сеансе работы <i>MS DOS</i> для совместимости со старыми приложениями, для кодирования одного символа используется 8 бит
КОИ8-Р	UNIX	Исторически сложившаяся кодиров- ка, используется в русифицирован- ных версиях операционной системы UNIX, для кодирования одного символа используется 8 бит
CP1251 (Code Page 1251)	MSWindows	Кодировка использумая в ОС Windows, для кодирования одного символа используется 8 бит
CP10007 (Code Page 10007)	Mac OS	Кодировка использумая в ОС Macintosh фирмы Apple, для кодиро- вания одного символа используется 8 бит
ISO-8859-5	UNIX	ISO (International Standards Organization), кодировка утвержден- ная в качестве стандарта русского языка

Таблица 9.3 — Виды кодовых таблиц в различных ОС

В 1991г. появился новый международный стандарт Unicode (Юникод), позволяющий представить знаки почти всех языков. Здесь символы кодируются несколькими байтами.

Unicode резервируют 1 112 064 ($2^{20}+2^{16}-2048$) символов кода (диапазон кодов 0x000000-0x10FFFF) (пока реально используется 110 000 символов).

Для обозначения символов Unicode используется запись вида «U+xxxx» (для кодов 0...FFFF), или «U+xxxxx» (для кодов 10000...10FFFF), где xxx— шестнадцатиричные цифры. Например, символ «я» (U+044F) имеет код 044F.

Область с кодами от U+0000 до U+007F содержит символы набора ASCII. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+04FF (кириллица), от 0500 до U+052F(старославянский), от U+2DE0 до U+2DFF (расширение A — церковнославянский), от U+A640 до U+A69F (расширение B - доп. символы церковнославянский).

Юникод имеет несколько форм представления (*Unicode transformation format, UTF*): **UTF-8, UTF-16** (UTF-16BE, UTF-16LE) и **UTF-32** (UTF-32BE, UTF-32LE) (BE-*big-endian*, LE- *little-endian* — задают следования порядок байтов)

MS Windows NT и её потомках (Win 2003, XP, Vista,...) в основном используются **UTF-16LE**. В UNIX-подобных операционных системах используют для файлов **UTF-8** и **UTF-32** или **UTF-8** для обработки символов в оперативной памяти.

UTF-8 — представление Юникода, обеспечивающее наилучшую совместимость со старыми системами, использовавшими 8-битные символы. Текст, состоящий только из символов с номером меньше 128, при записи в UTF-8 превращается в обычный текст ASCII. Остальные символы Юникода изображаются последовательностями длиной от 2 до 4 байт.

10 ВЫБОР ВАРИАНТА ЗАДАНИЯ И ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ

Номер варианта индивидуального задания назначается преподавателем. Пример задания для 1 варианта приведен ниже. Студенту необходимо решить 18 задач. Исходные данные для расчета выбираются из таблицы A.1 по заданному варианту.

Расчетно-графическая работы (РГР) оформляется на листах белой бумаги стандартного формата $A4~(210^{\times}297~\text{мм})$ с одной стороны листа. Выполненное задание может быть написано от руки или напечатано на принтере. РГР должно содержать титульный лист (рис. 10.1) и решенные задания с промежуточными вычислениями.

Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет»

Кафедра ИС

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине «Алгоритмизация и программирование» вариант №

Выполнил: ст. гр. ПИ/б-19-1-о Иванов И.И. Проверил: Петров В.В.

Севастополь 2019

Пример РГР:

ревода:

a) $(101\ 010)_2 = ()_{10}$;

a) $(246)_8 = ()_{10}$;

a) $(B05)_{16} = ()_{10}$;

a) $(25)_{10} = ()_2$;

Вариант 1

4 Перевести числа из десятичной СС в двоичную СС, используя алгоритм пе-

5 Перевести числа из десятичной СС в восьмеричную СС, используя алгоритм

б) $(11010,01101)_2 = ()_{10}$.

6) $(643,52)_8 = ()_{10}$.

6) $(5F,5)_{16} = ()_{10}$.

6) $(321)_{10} = ()_2$.

1 Перевести числа из двоичной СС в десятичную СС:

2 Перевести числа из восьмеричной СС в десятичную СС:

3 Перевести числа из шестнадцатеричной СС в десятичную СС:

перевода: $a) (25)_{10} = ()_8;$	6) $(321)_{10} = ()_8$.
6 Перевести числа из десятичной СС в и	пестнадцатеричную СС, используя ал-
горитм перевода: а) $(25)_{10} = ()_{16}$;	6) $(321)_{10} = ()_{16}$.
7 Используя правила триад и тетрад, по	еревести числа из шестнадцатеричной
СС в двоичную СС и в восьмеричную СС:	
a) $(75)_{16} = ()_2 = ()_8;$	6) $(1A05)_{16} = ()_2 = ()_8$.
8 Используя правила триад и тетрад, по	еревести числа из восьмеричной СС в
двоичную СС и в шестнадцатеричную СС:	
a) $(75)_8 = ()_2 = ()_{16}$;	6) $(105)_8 = ()_2 = ()_{16}$.
9 Перевести числа из десятичной СС в д	двоичную СС, используя алгоритм пе-
ревода: a) $(25,125)_{10} = ()_2;$ б) $(12)_{10} = ()_2;$	$(23,123)_{10} = ()_2.$
10 Перевести числа из десятичной СС	в восьмеричную СС, используя алго-
ритм перевода: а) $(25,125)_{10} = ()_8;$	6) $(123,123)_{10} = ()_8$.
11 Перевести числа из десятичной СС	в шестнадцатеричную СС, используя
алгоритм перевода: a) $(25,125)_{10} = ()_{16}$;	6) $(123,123)_{10} = ()_{16}$.
12 Выполнить сложение, вычитание, уми	ножение двоичных чисел:
а) $(1001)_2$ и $(101)_2$;	б) (110 010) ₂ и (1001) ₂ .
13 Выполнить сложение, вычитание и ум	иножение восьмеричных чисел:
a) $(54)_8$ μ $(13)_8$;	б) (451) ₈ и (131) ₈ .
14 Выполнить сложение $16_8 + 16_{16} = ()_8$	$=()_{16}.$
15 Выполнить вычитание $16_{16} - 16_8 = ()_8$	$_{3}=(\)_{16}.$
16 Представить следующие десятичные	числа в шестнадцатиразрядном фор-
мате представления целых чисел в памяти ЭВ	М. Записать окончательный результат
шестнадцатеричными цифрами:	
a) 1234;	б) — 1234.
17 Представить следующие десятичные	
(ІВМ-360) формате представления чисел с пла	
Записать окончательный результат шестнадца	
a) 1234,25;	6) – 1234,25.
18 Представить следующие десятичные	
(IEEE 754) формате представления чисел с пла	
Записать окончательный результат шестнадца	
a) 1234,25;	6) – 1234,25.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Акулов О.А. Информатика: базовый курс : учебн. пособие для вузов / О.А. Акулов, Н.В. Медведев, 2-е изд. М.: Омега-Л, 2005. 552c.
- 2. Грошев А.С. Информатика: учебник для вузов [Электронный ресурс] / А.С. Грошев.— Архангельск: АГТУ, 2010. 470с. Режим доступа: http://narfu.ru/university/library/books/0690.pdf
- 3. Вирт, Н. Алгоритмы и структуры данных. Новая версия для Оберона [Электронный ресурс] : учебное пособие / Н. Вирт. Электрон. дан. Москва : ДМК Пресс, 2010. 272 с. Режим доступа: https://e.lanbook.com/book/1261.
- 4. Медведик, В.И. Практика программирования на языке Паскаль (задачи и решения) [Электронный ресурс] : учебное пособие / В.И. Медведик. Электрон. дан. Москва : ДМК Пресс, 2013. 590 с. Режим доступа: https://e.lanbook.com/book/58700.
- 5. Подбельский, В.В. Курс программирования на языкеСи [Электронный ресурс]: учебник / В.В. Подбельский, С.С. Фомин. Электрон. дан. Москва: ДМК Пресс, 2012. 384 с. Режим доступа: https://e.lanbook.com/book/4148.
- 6. Андрианова, А.А. Алгоритмизация и программирование. Практикум [Электронный ресурс] : учебноепособие / А.А. Андрианова, Л.Н. Исмагилов, Т.М. Мухтарова. Электрон. дан. Санкт-Петербург : Лань, 2019. 240 с. Режим доступа: https://e.lanbook.com/book/113933
- 7. Кауфман, В.Ш. Языки программирования. Концепции и принципы [Электронный ресурс] / В.Ш. Кауфман. Электрон. дан. Москва : ДМК Пресс, 2010. 464 с. Режим доступа: https://e.lanbook.com/book/1270.

приложение а

Таблица А.1 — Варианты РГР

	1 0 0 0 1 1 1	.1 — Бариант	<u> </u>								
Номер варианта				3a,	дания						
Ho	1a	16	2a	26	3a	3б	4a	4б	5a	5б	6a
1	10000001	1000,0001	246	246,02	88	A1,1	25	231	25	231	25
2	10000010	1000,0101	241	521,32	99	1A,1	26	233	26	233	26
3	10000011	1001,0011	242	522,64	AA	1B,2	27	234	27	234	27
4	10000100	1000,0101	243	523,07	BB	2B,3	28	235	28	235	28
5	10000101	1001,0101	244	340,32	CC	4C,C	29	341	29	341	29
6	10000110	1001,0111	245	341,64	DD	5D,C	30	342	30	342	30
7	10000111	1000,0111	246	343,04	EE	3A,3	31	441	31	441	31
8	10010001	1111,0001	247	250,64	FF	81,7	32	401	32	401	32
9	10010000	1010,1001	260	520,32	81	A1,B	33	402	33	402	33
10	10010010	1001,0011	341	521,32	82	2A,A	34	403	34	403	34
11	10010011	1000,0011	342	251,16	83	4B,1	35	481	35	481	35
12	10010110	1001,0011	343	252,64	84	1D,C	36	408	36	408	36
13	10010101	1001,0101	344	255,07	85	1C,D	37	482	37	482	37
14	10011001	1001,1001	345	541,16	86	1B,7	38	493	38	493	38
15	10011010	1001,1111	346	254,07	87	B7,1	39	182	39	182	39
16	10011011	1001,1011	347	241,64	90	D1,C	40	821	40	821	40
17	10011111	1101,1111	361	422,32	91	D2,A	41	394	41	394	41
18	10011110	1100,1111	362	201,32	A9	17,B	42	324	42	324	42
19	10101011	1010,1011	351	203,64	92	A8,C	43	351	43	351	43
20	10110011	1011,0011	221	206,32	93	8A,C	44	352	44	352	44
21	10000001	1000,0001	246	246,02	88	A1,1	25	231	25	231	25
22	10000010	1000,0101	241	521,32	99	1A,1	26	233	26	233	26
23	10000011	1001,0011	242	522,64	AA	1B,2	27	234	27	234	27
24	10000100	1000,0101	243	523,07	BB	2B,3	28	235	28	235	28
25	10000101	1001,0101	244	340,32	CC	4C,C	29	341	29	341	29
26	10000110	1001,0111	245	341,64	DD	5D,C	30	342	30	342	30
27	10000111	1000,0111	246	343,04	EE	3A,3	31	441	31	441	31
28	10010001	1111,0001	247	250,64	FF	81,7	32	401	32	401	32
29	10010000	1010,1001	260	520,32	81	A1,B	33	402	33	402	33
30	10010010	1001,0011	341	521,32	82	2A,A	34	403	34	403	34

Продолжение таблицы А.1

11P 5 7	родолжение таолицы А.1											
Номер варианта	Задания											
Ho	6б	7a	7б	8a	8б	9a	9б	10a	106	11a		
1	231	88	A115	24	246,02	25,25	231,125	25,25	231,125	25,25		
2	233	99	1A51	41	521,32	26,45	233,175	26,45	·	26,45		
3	234	AA	1B52	42	522,64	27,75	234,135	27,75		27,75		
4	235	BB	2B53	43	523,64	28,35	235,265	28,35	235,265	28,35		
5	341	CC	4CC5	44	340,32	29,65	341,345	29,65		29,65		
6	342	DD	5DC5	45	341,64	30,25	342,845	30,25	342,845	30,25		
7	441	EE	3A35	46	343,04	31,35	441,625	31,35	441,625	31,35		
8	401	FF	817A	47	250,64	32,35	401,145	32,35	401,145	32,35		
9	402	81	A11B	60	520,32	33,35	402,155	33,35		33,35		
10	403	82	2A2A	34	521,32	34,35	403,135	34,35	403,135	34,35		
11	481	83	4B11	32	251,16	35,35	481,325	35,35		35,35		
12	408	84	1D1C	33	252,64	36,15	408,175	36,15	408,175	36,15		
13	482	85	1C5D	31	255,64	37,25	482,185	37,25	482,185	37,25		
14	493	86	1B57	35	541,16	38,35	493,135	38,35	493,135	38,35		
15	182	87	B751	36	254,16	39,45	182,125	39,45	182,125	39,45		
16	821	90	D15C	37	241,64	40,25	821,145	40,25	821,145	40,25		
17	394	91	D25A	61	422,32	41,55	394,235	41,55	394,235	41,55		
18	324	A9	175B	62	201,32	42,65	324,215	42,65	324,215	42,65		
19	351	92	A84C	51	203,64	43,45	351,365	43,45	351,365	43,45		
20	352	93	8A5C	52	206,32	44,45	352,245	44,45	352,245	44,45		
21	231	88	A115	24	246,02				231,125	25,25		
22	233	99	1A51	41	521,32	26,45	233,175	26,45	233,175	26,45		
23	234	AA	1B52	42	522,64	27,75	234,135	27,75	234,135	27,75		
24	235	BB	2B53	43	523,64	28,35	235,265	28,35	235,265	28,35		
25	341	CC	4CC5	44	340,32	29,65	341,345	29,65	341,345	29,65		
26	342	DD	5DC5	45	341,64	30,25	342,845	30,25	342,845	30,25		
27	441	EE	3A35	46	343,04	31,35	441,625	31,35	441,625	31,35		
28	401	FF	817A	47	250,64	32,35	401,145	32,35	401,145	32,35		
29	402	81	A11B	60	520,32	33,35	402,155	33,35	402,155	33,35		
30	403	82	2A2A	34	521,32	34,35	403,135	34,35	403,135	34,35		

Продолжение таблицы А.1

1 1	одолжение таолицы А.1												
Номер варианта	Задания												
Номер н	11б	12	!a	126	5	13a		136		14		15	
1	231,125	1101	100	110101	1001	21	10	430	25	20	20	20	20
2	233,175	1010	101	101001	1010	22	11	431	20	21	21	21	21
3	234,135	1001	110	100111	1011	23	12	432	30	23	23	23	23
4	235,265	1011	111	101110	1100	24	13	433	35	25	25	25	25
5	341,345	1101	100	110100	1110	25	14	434	40	26	26	26	26
6	342,845	1001	101	100101	1111	26	15	435	45	30	30	30	30
7	441,625	1010	110	101011	1000	30	10	541	25	31	31	31	31
8	401,145	1011	111	101101	1001	31	11	542	20	32	32	32	32
9	402,155	1100	100	110010	1010	32	12	543	30	33	33	33	33
10	403,135	1101	101	110100	1011	33	13	544	35	34	34	34	34
11	481,325	1110	110	111011	1100	34	14	545	40	35	35	35	35
12	408,175	1001	111	100101	1101	35	15	546	45	36	36	36	36
13	482,185	1010	100	101010	1110	36	10	550	25	40	40	40	40
14	493,135	1011	101	101111	1111	40	11	511	20	41	41	41	41
15	182,125	1100	110	110011	1000	41	12	512	30	42	42	42	42
16	821,145	1101	111	110101	1001	42	13	513	35	43	43	43	43
17	394,235	1110	100	111011	1010	43	14	514	40	44	44	44	44
18	324,215	1111	101	111110	1011	44	15	521	45	45	45	45	45
19	351,365	1001	110	100110	1100	45	10	515	20	46	46	46	46
20	352,245	1101	111	110111	1011	46	11	520	30	50	50	50	50
21	231,125	1101	100	110101	1001	21	10	430	25	20	20	20	20
22	233,175	1010	101	101001	1010	22	11	431	20	21	21	21	21
23	234,135	1001	110	100111	1011	23	12	432	30	23	23	23	23
24	235,265	1011	111	101110	1100	24	13	433	35	25	25	25	25
25	341,345	1101	100	110100	1110	25	14	434	40	26	26	26	26
26	342,845	1001	101	100101	1111	26	15	435	45	30	30	30	30
27	441,625	1010	110	101011	1000	30	10	541	25	31	31	31	31
28	401,145	1011	111	101101	1001	31	11	542	20	32	32	32	32
29	402,155	1100	100	110010	1010	32	12	543	30	33	33	33	33
30	403,135	1101	101	110100	1011	33	13	544	35	34	34	34	34

Продолжение таблицы А.1

	СПИСТИ	таолицы А	.• 1								
мант	Задания										
Baţ											
Номер варианта	16a	16б	17a	176	18a	18б					
1	1234	-1234	1234,25	-1234,25	1234,25	-1234,25					
2	1335	-1335	1335,26	-1335,26	1335,26	-1335,26					
3	1436	-1436	1436,27	-1436,27	1436,27	-1436,27					
4	1537	-1537	1537,28	-1537,28	1537,28	-1537,28					
5	1638	-1638	1638,29	-1638,29	1638,29	-1638,29					
6	1739	-1739	1739,31	-1739,31	1739,31	-1739,31					
7	1840	-1840	1840,31	-1840,31	1840,31	-1840,31					
8	1941	-1941	1941,31	-1941,32	1941,32	-1941,32					
9	2042	-2042	2042,32	-2042,33	2042,33	-2042,33					
10	2143	-2143	2143,34	-2143,34	2143,34	-2143,34					
11	2244	-2244	2244,34	-2244,35	2244,35	-2244,35					
12	2345	-2345	2345,36	-2345,36	2345,36	-2345,36					
13	2446	-2446	2446,36	-2446,37	2446,37	-2446,37					
14	2547	-2547	2547,38	-2547,38	2547,38	-2547,38					
15	2648	-2648	2648,38	-2648,39	2648,39	-2648,39					
16	2749	-2749	2749,41	-2749,41	2749,41	-2749,41					
17	2850	-2850	2850,41	-2850,41	2850,41	-2850,41					
18	2951	-2951	2951,41	-2951,41	2951,41	-2951,41					
19	3052	-3052	3052,42	-3052,42	3052,42	-3052,42					
20	3153	-3153	3153,42	-3153,43	3153,43	-3153,43					
21	3254	-3254	3254,44	-3254,44	3254,44	-3254,44					
22	3355	-3355	3355,44	-3355,45	3355,45	-3355,45					
23	3456	-3456	3456,46	-3456,46	3456,46	-3456,46					
24	3557	-3557	3557,46	-3557,47	3557,47	-3557,47					
25	3658	-3658	3658,48	-3658,48	3658,48	-3658,48					
26	3759	-3759	3759,48	-3759,49	3759,49	-3759,49					
27	3860	-3860	3860,51	-3860,51	3860,51	-3860,51					
28	3961	-3961	3961,51	-3961,51	3961,51	-3961,51					
29	4062	-4062	4062,52	-4062,52	4062,52	-4062,52					
30	4163	-4163	4163,52	-4163,53	4163,53	-4163,53					

Заказ №	om «	<i>»</i>	2019г. Тираж	экз.
		Изд-во	$Cer\Gamma V$	