МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет»

Кафедра «Информационные системы»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

по дисциплине
«Компьютерная схемотехника»
Вариант 8

Выполнил:

Донец Н.О.

Проверил:

Кудрявченко И.В.

Севастополь

2023 г.

Цель работы:

Экспериментальные исследования функционирования различных типов триггеров, параллельных регистров и двоичных счетчиков. Приобретение практических навыков исследования последовательных устройств и регистрации временных диаграмм с помощью электро и радиоизмерительных приборов.

Задание:

- 1) Составить на рабочем поле схему для исследования универсального синхронного D-триггера (микросхема ТТЛ 7474) с асинхронной установкой S и сбросом R. Установить тактовую частоту генератора импульсов 1Гц и амплитуду импульсов 3В.
- 2) Подавая активные сигналы на входы R и S, исследовать изменение состояния триггера. Измерить амплитуду сигнал логической 1 и логического нуля.
- 3) Замкнуть цепь обратной связи (с инверсного выхода триггера на его информационный вход) и подключить генератор импульсов ко входу синхронизации. Исследовать состояние триггера.
- 4) Увеличить частоту генератора до 10 кГц и зарисовать сигналы генератора и триггера. Измерить частоту импульсов на выходе триггера.
- 5) Составить на рабочем поле схему для исследования универсального синхронного ЈК-триггера (микросхема ТТЛ 74107) с асинхронным сбросом R. Установить тактовую частоту генератора импульсов 1Гц и амплитуду импульсов 3В.
- 6) Подавая активные сигналы в различной комбинации на входы ЈК триггера и подавая путем кратковременного нажатия соответствующей кнопки импульсы синхронизации с генератора тактовых импульсов, исследовать состояние триггера. Измерить уровни сигналов 1 и 0.

- 7) Установить частоту генератора 1000 Гц. Подать на входы JK единичные уровни сигналов и исследовать с помощью осциллографа форму импульсов на выходах генератора и триггера, а также измерить частоты сигналов.
- 8) Создать на рабочем поле симулятора схему исследования 4-разрядного двоичного счетчика. Для построения счетчика применить D триггеры типа TTL 7474. В качестве источника использовать генератор прямоугольных импульсов частотой 100 кГц и амплитудой 3 В. Для индикации выходных сигналов использовать виртуальный осциллограф.
- 9) Зарисовать форму сигналов на выходе генератора импульсов и каждого триггера и измерить амплитуду и частоту импульсов на выходе каждого триггера. Записать двоичный код на выходе счетчика на каждом такте генератора.

Ход работы:

На рабочем поле симулятора была создана схема для исследования универсального синхронного D-триггера с асинхронной установкой S и сбросом R. Были установлены тактовая частота генератора импульсов 1Гц и амплитуда импульсов 3В. (Рисунок 1).

Рисунок 1 — Схема для исследования универсального синхронного D триггера

Подавая активные сигналы на входы R и S, было исследовано изменение состояния триггера. Также были измерены амплитуды сигналов логической единицы и логического нуля, которые составил 2.20 В и -2.20 В соответственно (рисунки 2-3).

Рисунок 2 – Измерение уровня логической единицы

Рисунок 3 – Измерение уровня логического нуля

Частота генератора была увеличена до 10 кГц, после чего был измерен период импульса на выходе триггера для нахождения частоты (Рисунок 4).

Рисунок 4 — Измерение периода импульса на выходе D триггера

Период одного импульса составил 200 μ S. Была вычислена амплитуда по формуле $\frac{1}{T} = \frac{1}{200*10^{-6}} = 5$ кГц.

Была составлена схема для исследования универсального синхронного ЈК-триггера с асинхронным сбросом R, тактовая частота генератора импульсов и амплитуда импульсов были установлены в 1 Гц и 3 В соответственно (Рисунок 5).

Рисунок 5 — Схема для исследования универсального синхронного JK триггера

Также были измерены амплитуды сигналов логической единицы и логического нуля, которые составили 2.10 В и -2.10 В соответственно (Рисунок 6).

Рисунок 6 – Измерение амплитуды сигналов логической единицы и логического нуля

Частота генератора была увеличена до 1 кГц, после чего был измерен период импульса на выходе триггера для нахождения частоты (Рисунок 7).

Рисунок 7 – Измерение периода импульса на выходе ЈК триггера

Период одного импульса составил 3.5 мс -1.5 мс =2 мс. Была вычислена амплитуда по формуле $\frac{1}{T} = \frac{1}{2*10^{-3}} = 500$ Гц.

Также на рабочем поле симулятора была собрана схема для исследования четырёхразрядного двоичного счетчика. Для построения счетчика были применены D триггеры типа TTL 7474. В качестве источника был использован генератор прямоугольных импульсов частотой 100 кГц и амплитудой 3 В. Для индикации выходных сигналов был использован виртуальный осциллограф (Рисунок 8).

Рисунок 9 – Схема для исследования четырёхразрядного двоичного счетчика

Была измерена амплитуда и частота импульсов на выходе каждого триггера (Рисунок 10), амплитуда для всех выходов составила 3.25 В. Были сняты периоды сигналов на выходах всех триггеров. Для первого триггера он составил $100~\mu c-80~\mu c=20~\mu c$, для второго $120~\mu c-80~\mu c=40~\mu c$, для третьего $160~\mu c-80~\mu c=80~\mu c$, для четвёртого $240~\mu c-80~\mu c=160~\mu c$. С помощью уже использованной ранее формулы $\frac{1}{T}$ находим частоту для каждого триггера. Для первого триггера получаем частоту равную $\frac{1}{20*10^{-6}}$ = $50~\kappa \Gamma$ ц, для второго триггера получаем частоту равную $\frac{1}{40*10^{-6}}$ = $25~\kappa \Gamma$ ц, для

третьего триггера получаем частоту равную $\frac{1}{80*10^{-6}}=12.5$ к Γ ц, для четвёртого триггера получаем частоту равную $\frac{1}{160*10^{-6}}=6.25$ к Γ ц.

Рисунок 10 — Осциллограмма схемы с двоичным четырёхразрядным счётчиком

Также были записаны состояния триггеров и состояния счётчика для каждого такта генератора (Таблица 1).

Такт	Триггер	Триггер	Триггер	Триггер	Состояние
генератора	4	3	2	1	счётчика
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	10

11	1	0	1	1	11
12	1	1	0	0	12
13	1	1	0	1	13
14	1	1	1	0	14
15	1	1	1	1	15
16	0	0	0	0	0

Таблица 1 – Состояния триггеров и счётчика

Выводы

В ходе лабораторной работы были проведены экспериментальные исследования функционирования различных типов триггеров, параллельных регистров и двоичных счетчиков. Были приобретены практические навыки исследования последовательных устройств и регистрации временных диаграмм с помощью электро и радиоизмерительных приборов. Были собраны схемы для исследования D триггера, JK триггера, а также четырёхразрядного двоичного счётчика. Были измерены периоды, частоты и амплитуды на выходах всех триггеров. Были исследованы состояния триггеров, а также состояния счётчика для каждого такта процессора.