PSY792F SEM

Week 13 – Multilevel SEM

Mark A. Prince, PhD, MS

Advantages of SEM

- Represents hypotheses as a system of simultaneous equations
- Permits the estimation of direct and indirect regression effects
- Tests the entire model as a global hypothesis
- Separates error variance from reliable variance, automatically correcting effects for attenuation due to unreliability
- *Most statistical methods are special cases of SEM

Limitations of (traditional) SEM

- It is difficult to handle clustered (i.e., hierarchically nested) data
- Nesting violates core assumptions of SEM making estimates untrustworthy
 - Especially the independence assumption

Advantages of MLM

- Handles an arbitrary number of nesting levels
- · Partitions variance in the dependent variable to account for nesting
- Flexibly handles predictor variables at any level of measurement

Limitations of (traditional) MLM

- Multivariate models are possible, but difficult to specify
- Latent variables are (nearly) impossible to include, and require all factor loadings = 1
 - Ignores measurement error
- Model fit indices are not available
 - · Only a few model selection criteria
- The within and between effects are often conflated, and if steps are taken to separate them, bias is introduced
- Level two outcomes are not an option

Multilevel SEM (MSEM)

- The combination of SEM and MLM
- Not a single method, but a collection of methods designed to permit SEMlike modeling with clustered/multilevel data
- Allows us to view SEM and MLM as a special case of a more general framework
- Most critical limitations MSEM overcomes
 - SEM does not consider clustering
 - MLM assumes variables are measured without error

Gaining additional knowledge

- MLM is often used without decomposing the effects of a level-1 predictor into within and between effects.
 - Then, the level-1 slope is a weighted average of the between-cluster and withincluster effects of the level-1 predictor
 - If these effects are different the research will be ignorant to the level-specific effects
- For example: if the within effect is negative and the between effect is positive the weighted average will be near 0

• Within schools, students with better Spanish skills had higher academic achievement. Yet, schools with the highest proportion of Spanish speakers performed poorest.

Spanish language skills

Two more examples

- Heart Attacks & Exercise:
 - Within persons
 - risk of heart attack increases with exercise
 - Between persons
 - · As average exercise increases, overall risk of heart attack is lower

- Income & Crime
 - Between level (neighborhood level)
 - · Higher crime is associated with lower income
 - Within level (individuals)
 - Within a neighborhood those who engage in crime may have higher income (e.g., a drug dealer in a poor neighborhood)

MSEM centering

- In MLM, to obtain within and between effects, we need to manually group mean center in a data management step, and include group means in the model specification
- In MSEM, group mean centering is done by default in a model-based way, rather than in a data management step
 - MSEM uses random intercepts (i.e., latent cluster means) in lieu of manually computed centered means
 - Thus, you do not need to center in MSEM

MSEM History

- First proposed in William Schmidt's (1969) dissertation as a way to combine SEM and MLM
- Since there have been at least 18 methods for combining SEM and MLM
 - Methods vary along dimensions of speed/efficiency, generality, flexibility, ease of implementation, software availability
- Mplus Muthen and Asparouhov (2009)
 - Very general model of 2-level SEM
 - Developed by Muthen starting in the late 1980s
 - Accommodates random intercepts and random slopes
 - Accommodates missing data and unbalanced cluster sizes
 - Provides overall and level-specific fit indices (for fixed slope models)
 - Accommodates 2 or 3 levels
 - Separates between and within by default
 - · Easily handles continuous, count, ordinal, binary data
 - Computationally efficient
 - Uses MLR which does not require normality
 - · Yields robust asymptotic covariances of parameter estimates and chi-square
 - · Can incorporate discrete latent variables (i.e., mixtures)
 - · Allows both frequentist or Bayesian Estimation

SEM Equations

$$\mathbf{Y}_i = \mathbf{v} + \mathbf{\Lambda} \mathbf{\eta}_i + \mathbf{K} \mathbf{X}_i + \mathbf{\varepsilon}_i$$
 measurement model
$$\mathbf{\eta}_i = \mathbf{\alpha} + \mathbf{B} \mathbf{\eta}_i + \mathbf{\Gamma} \mathbf{X}_i + \mathbf{\zeta}_i$$
 structural model

$$\boldsymbol{\varepsilon}_i \sim MVN(\mathbf{0}, \boldsymbol{\Theta})$$

$$\boldsymbol{\zeta}_i \sim MVN(\mathbf{0}, \boldsymbol{\Psi})$$

MSEM Equations

MSEM begins with the single-level equations from earlier and simply adds *j* subscripts to denote that contents of these matrices may vary across clusters:

$$\begin{aligned} \mathbf{Y}_{ij} &= \mathbf{v}_j + \mathbf{\Lambda}_j \mathbf{\eta}_{ij} + \mathbf{K}_j \mathbf{X}_{ij} + \mathbf{\epsilon}_{ij} \\ \mathbf{\eta}_{ij} &= \mathbf{\alpha}_j + \mathbf{B}_j \mathbf{\eta}_{ij} + \mathbf{\Gamma}_j \mathbf{X}_{ij} + \mathbf{\zeta}_{ij} \\ \mathbf{\eta}_j &= \mathbf{\mu} + \mathbf{\beta} \mathbf{\eta}_j + \mathbf{\gamma} \mathbf{X}_j + \mathbf{\zeta}_j \end{aligned} \qquad \text{Level-1 structural model} \\ \mathbf{\eta}_j &= \mathbf{\mu} + \mathbf{\beta} \mathbf{\eta}_j + \mathbf{\gamma} \mathbf{X}_j + \mathbf{\zeta}_j \end{aligned} \qquad \textbf{Level-2 structural model (NEW!)}$$

- η_i is an $(s \times 1)$ vector of level-2 random coefficients
- μ is an ($s \times 1$) vector of means of level-2 random coefficients
- β is an $(s \times s)$ matrix of level-2 structural regression slopes
- $oldsymbol{\gamma}$ contains slopes for level-2 exogenous covariates in the vector \mathbf{X}_j
- ζ_i is a vector of level-2 error terms (random effects)

MSEM equations continued

$$\mathbf{Y}_{ij} = \mathbf{v}_{j} + \mathbf{\Lambda}_{j} \mathbf{\eta}_{ij} + \mathbf{K}_{j} \mathbf{X}_{ij} + \mathbf{\epsilon}_{ij}$$
 Level-1 measurement model
$$\mathbf{\eta}_{ij} = \mathbf{\alpha}_{j} + \mathbf{B}_{j} \mathbf{\eta}_{ij} + \mathbf{\Gamma}_{j} \mathbf{X}_{ij} + \mathbf{\zeta}_{ij}$$
 Level-1 structural model
$$\mathbf{\eta}_{i} = \mathbf{\mu} + \mathbf{\beta} \mathbf{\eta}_{i} + \mathbf{\gamma} \mathbf{X}_{i} + \mathbf{\zeta}_{i}$$
 Level-2 structural model (NEW!)

Furthermore, $\mathbf{\epsilon}_{ij} \sim MVN(0, \mathbf{\Theta})$ $\mathbf{\zeta}_{ij} \sim MVN(0, \mathbf{\Psi})$ $\mathbf{\zeta}_{ij} \sim MVN(0, \mathbf{\Psi})$ $\mathbf{\zeta}_{j} \sim MVN(0, \mathbf{\Psi})$ Level-2 structural residual covariances (NEW!)

MSEM equations continued 2

$$\mathbf{Y}_{ij} = \boldsymbol{\Lambda} \boldsymbol{\eta}_{ij} \qquad \text{Links observed variables to "between"} \\ \boldsymbol{\eta}_{ij} = \boldsymbol{\alpha}_j + \mathbf{B}_j \boldsymbol{\eta}_{ij} + \boldsymbol{\zeta}_{ij} \qquad \text{Links "within" LVs to each other, and} \\ \boldsymbol{\eta}_j = \boldsymbol{\mu} + \boldsymbol{\beta} \boldsymbol{\eta}_j + \boldsymbol{\zeta}_j \qquad \text{Links "between" LVs to each other} \\ \boldsymbol{\eta}_j = \boldsymbol{\mu} + \boldsymbol{\beta} \boldsymbol{\eta}_j + \boldsymbol{\zeta}_j \qquad \text{Links "between" LVs to each other} \\ \end{array}$$

Almost all MSEM models can be expressed using a reduced set of equations that eliminate some matrices.

One common simplification is to treat all variables as if they were endogenous (dependent), which removes $\mathbf{K}_{i}\mathbf{X}_{ij}$, $\mathbf{\Gamma}_{i}\mathbf{X}_{ij}$, and $\mathbf{\gamma}\mathbf{X}_{j}$ from the model.

Item-level intercepts and residual variances usually can be estimated as part of the "between" model, which removes \mathbf{v}_i and $\mathbf{\varepsilon}_{ii}$.

New Path Diagrams (Preacher et al., 2010)

MSEM Perceived Helpfulness of MPS (EMA Ratings)

MSEM with latent factors

How to write the code...

- You have essentially already learned all the code
 - Use the code from SEM, MLM, Mixtures
 - On, with, by, %within%, %between%, s |, constraints

• Example:

- · We'll walk through the marijuana example from the previous slide
 - But, we'll save the mediation tests for next week.

Method

- Participants participated in one of two treatment conditions
 - Motivational Interviewing (MI) or MI+exercise
- Provided data on marijuana quantity, use of marijuana protective strategies (MPS), and helpfulness of MPS at every use episode (could be multiple times per day) across 21 days.

MSEM Perceived Helpfulness of MPS (EMA Ratings)


```
VARIABLE:
NAMES ARE
ID TOTALJOINTS USESTRAT USEOTHSTRAT HELPFULSTRAT
LIKELYUSESTRAT condition;
```

MISSING = ALL (-999);

USEVARIABLES ARE ID TOTALJOINTS USESTRAT HELPFULSTRAT condition cuse chelp;

Between are cuse chelp condition; Within are USESTRAT HELPFULSTRAT: When a variable is listed as within or Between all of its variance is put on that Level – unlisted variables are treated On both levels

Cluster is ID;

Define: cuse = cluster_mean (usestrat); chelp = cluster_mean (helpfulstrat); Manually disaggregated variables To use on between level Necessary because of mediation test

Analysis: Type is Twolevel;

No random specification – thus fixed effects model

Model:
%WITHIN%
TOTALJOINTS on usestrat (cw);
TOTALJOINTS on helpfulstrat (bw);
helpfulstrat on usestrat (aw);

This code specifies the within level Mediation paths (i.e., the triangle on the Bottom)

%BETWEEN%
TOTALJOINTS on cuse (cb);
TOTALJOINTS on chelp (bb);
chelp on cuse (ab);
totaljoints on condition;

This code specifies the between level Mediation paths (i.e., the triangle on the Top) and the direct effect from condition To marijuana use (which we are treating As normal for simplicity)

ICC

Number of missing data patterns Number of clusters

34

Average cluster size

26.000

Estimated Intraclass Correlations for the Y Variables

Intraclass Intraclass
Variable Correlation Variable Correlation

TOTALJOI 0.306 HELPFULS 0.000

There are 34 clusters with an average size of 26 (i.e., the typical participant reported 26 use episodes in 3 weeks)

31% of the variance in marijuana use is between Persons and 69% is within persons

100% of the variance of helpfulness is within Persons, because we specified it that way

MODEL FIT INFORMATION	
Number of Free Parameters	14
Loglikelihood	
H0 Value H0 Scaling Correction Factor for MLR	-3216.328 7.6584
H1 Value H1 Scaling Correction Factor	-3216.161 7.2070

Information Criteria

Akaike (AIC)	6460.657
Bayesian (BIC)	6527.639
Sample-Size Adjusted BIC	6483.178
(n* = (n + 2) / 24)	

Chi-Square Test of Model Fit

for MLR

Value	0.378
Degrees of Freedom	1
P-Value	0.5385
Scaling Correction Factor	0.8867
for MLR	

The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.0	000
	0.1	

CFI/TLI

CFI	1.000
TLI	1.011

Chi-Square Test of Model Fit for the Baseline Model

Value		472.108
Degrees of F	reedom:	8
P-Value		0.0000

SRMR (Standardized Root Mean Square Residual)

Value	for	Within	0.000
Value	for	Between	0.023

This should all look familiar. At the top are comparative fit indices At the bottom are model specific indices

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
Within Level				
TOTALJOINT ON USESTRAT HELPFULSTR	0.109 -0.059	0.178 0.027	0.611 -2.176	0.541 0.030
HELPFULSTR ON USESTRAT	-3.185	0.393	-8.096	0.000
Intercepts HELPFULSTR	9.777	0.615	15.906	0.000
Residual Variances TOTALJOINT HELPFULSTR	1.064 3.789	0.409 0.370	2.601 10.239	0.009
Between Level				
TOTALJOINT ON CUSE CHELP CONDITION	0.093 0.016 0.046	0.657 0.108 0.263	0.141 0.151 0.174	0.888 0.880 0.862
CHELP ON CUSE	-4.137	0.729	-5.674	0.000
Intercepts CHELP TOTALJOINT	11.268 1.514	1.077 1.459	10.463 1.038	0.000 0.299
Residual Variances CHELP TOTALJOINT	1.524 0.483	0.364 0.103	4.189 4.708	0.000

Because everything is fixed, we can use typical interpretations

Within:

During a given use episode, the helpfulness of protective strategies was negatively associated with marijuana use, but the sheer use of strategies was not

Between:

For the average person, across episodes neither having a tendency to use strategies or having a tendency to rate strategies as helpful were predictive of marijuana use. Treatment did not have on effect on marijuana use.

MSEM with latent factors

MSEM with latent variables code

TITLE: this is an example of a two-level SEM with continuous factor indicators and a random slope for a factor

DATA: FILE IS ex9.10.dat; W is a between only variable VARIABLE: NAMES ARE y1-y5 w clus; Allow random intercepts and slopes BETWEEN = w;CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL RANDOM; ALGORITHM = INTEGRATION; INTEGRATION = 10; Specifying the within level latent variable MODEL: %WITHIN% Creating a random slope fw BY y1-y4; s | v5 ON fw; Specifying the between level latent variable %BETWEEN% fb BY y1-y4; ◀ Fixing between level random variance to 0 y1-y4@0; _____ y5 s ON fb w; ___ Between level regression paths OUTPUT: TECH1 TECH8;

					Est./S.E.	Two-Tailed	Within factor loadings:
			Estimate	S.E.	EST./S.E.	P-Value	within factor loadings.
With	nin Le	vel					Factor structure on a typical
FW		BY	4 —				
	Y1	_	1.000	0.000	999.000	999.000	assessment occasion
	Y2		1.286	0.119	10.813	0.000	
	Y3		1.199	0.098	12.282	0.000	(think states)
1	Y4		1.262	0.096	13.201	0.000	(think states)
var	iance:	s					
	FW		0.732	0.112	6.539	0.000	
Res	idual	Variances					
	Y1		1.041	0.083	12.502	0.000	
	Y2		0.911	0.060	15.276	0.000	
	Y3		0.983	0.081	12.151	0.000	
	Y4		0.995	0.069	14.392	0.000	D
1	Y5		0.475	0.046	10.400	0.000	Between factor loadings:
Betw	een L	evel					
							Factor structure across assessments
FB	37.1	BY	1.000	0.000	999.000	999.000	(think twoits)
	Y1						(think traits)
	Y2		0.978	0.094	10.403	0.000	, ,
	Y3		1.085	0.093	11.628	0.000	
	Y4		1.007	0.125	8.045	0.000	
s		ON]	
	FB		-0.029	0.192	-0.151	0.880	
s		ON					Dotres on marine asiana
	W		0.366	0.109	3.350	0.001	Between regressions
Y5		ON				Γ	
	FB		0.450	0.142	3.181	0.001	
Y5		ON					
i	W		0.630	0.072	8.801	0.000	
Int	ercep	ts				-	
	Y1 -		-0.074	0.096	-0.765	0.444	
	Y2		-0.015	0.096	-0.154	0.878	
	Y3		0.005	0.103	0.044	0.965	
	Y4		-0.029	0.099	-0.294	0.769	
	Y5		-0.026	0.089	-0.286	0.775	A ',1' 1 1 1
	s		1.232	0.122	10.070	0.000	Average within level slope
Var	iance:	s					Also, the regression of Y5 on Fw
	FB		0.455	0.111	4.110	0.000	Also, the regression of 15 on rw
Res	idual	Variances					
	Y1		0.000	0.000	999.000	999.000	
	Y2		0.000	0.000	999.000	999.000	
	¥3		0.000	0.000	999.000	999.000	
	¥4		0.000	0.000	999.000	999.000	
	¥5		0.203	0.057	3.554	0.000	
i	s		0.579	0.124	4.657	0.000	

How to write up the results...

- Same as always.
 - Data decisions
 - Hypotheses
 - Model fit (if available)
 - Model building
 - Within and between specific parameter estimates
- Be careful with the language you use.