Week 3: Where do all these references come from, anyway? (de novo assembly)

Why to assemble?

Why to assemble?

- Sequencing data
 - Billions of short reads
 - Sequencing errors
 - Contaminants

- Assembly
 - ✓ Corrects sequencing errors
 - ✓ Much longer sequences
 - ✓ Each genomic region is presented only once
 - May introduce errors

Why to assemble?

when the genome of an organism of interest is unknown

(no reference)

non-model species

conservation biology

very divergent species

Li, 2009

Assembly basics

Assembly in a perfect world

Assembly in real world

De novo whole genome assembly

De novo whole genome assembly

Early days

- Sanger sequencing
 - Long reads
 - Low coverage

- Overlap-Layout-Consensus (OLC)
 - Find overlaps between all reads (BLAST)
 - Order reads according to the overlaps
 - Merge reads into consensus string

NGS and OLC

- Overlap-Layout-Consensus is not applicable
 - Hard to find overlaps between short reads
 - Impossible to scale to such amount of reads
- De Bruijn graph approach
 (Pevzner et al., 2001)
 (Zerbino et al., 2008)
- String Graph approach (Meyers, 2005)
 (Simpson, Durbin 2011)

ACGTCCGTAA

Condensed de Bruijn graph

Repeats in de Bruijn graph

Repeats in de Bruijn graph

Repeats in de Bruijn graph

Eulerian path with multiplicities

De Bruijn graph in a nutshell

Oh, repeats...

- Ribosomal operons (5-8 kbp)
- ALU, SINEs
 - < 1 kbp, extremely high multiplicity</p>
- LINEs
 - ~ 6-7 kbp, high multiplicity
- Tandem repeats

Oh, repeats...

NCBI contains assemblies with 100K+ scaffolds!

"These are not the genomes I wanted you to assemble" Gene Meyers

Paired reads

Real life

Part of *E.coli* genome, K = 99

Genome assembly evaluation with QUAST

Center for Algorithmic Biotechnology SPbU

Assembly in a perfect world

Assembly in real world

Which assembler to use?

- ABySS
- ALLPATHS-LG
- CLC
- IDBA-UD
- MaSuRCA
- MIRA
- Ray
- SOAPdenovo
- SPAdes
- Velvet
- and many more...

Which assembler to use?

- Different technologies (Illumina, 454, IonTorrent, ...)
- Genome type and size (bacteria, insects, mammals, plants, ...)
- Type of prepared libraries (single reads, paired-end, mate-pairs, combinations)
- Type of data (multicell, metagenomic, single-cell)

There is no best assembler

Which assembler to use?

- Assemblathon 1 & 2
 - Simulated and real datasets
 - More than 30 teams competing
- Independent studies
 - Papers (GAGE, GAGE-B, GABenchToB)
 - Web-sites (nucleotid.es, ...)
 - Surveys
- Genome assembly evaluation tools
 - QUAST
 - GAGE

Assembly evaluation

- Basic evaluation
 - No extra input
 - Very quick
- Reference-based evaluation
 - A lot of metrics
 - Very accurate
- De novo evaluation
 - Advanced analysis of de novo assemblies

Basic statistics

- Only assemblies are needed (no additional input)
- Very fast to compute

Number of contigs

- Number of contigs
- Number of large contigs (i.e. > 1000 bp)

- Number of contigs
- Number of large contigs (i.e. > 1000 bp)
- Largest contig length

- Number of contigs
- Number of large contigs (i.e. > 1000 bp)
- Largest contig length
- Total assembly length

Cumulative length plot

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

The maximum length X for which the collection of all contigs of length >= X covers at least 50% of the assembly

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

390

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

N50

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

N50

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

N50

The maximum length **X** for which the collection of all contigs of length >= **X** covers at least **50**% of the assembly

$$N50 = 60$$

L50

The minimum number **X** such that **X** longest contigs cover at least **50**% of the assembly

$$L50 =$$

L50

The minimum number **X** such that **X** longest contigs cover at least **50**% of the assembly

$$L50 = 3$$

- N25, N75
- L25, L75

$$N25 = , N75 =$$

 $L25 = , L75 =$

- N25, N75
- L25, L75

- N25, N75
- L25, L50, L75

- N25, N75
- L25, L50, L75
- Nx, Lx

Other

- Number of N's per 100 kbp
- GC %
- Distributions of GC % in small windows:

Other

Reference-based metrics

- A lot of metrics
- Accurate assessment

- Reference length
- Reference GC %
- Number of chromosomes

- Reference length
- Reference GC %
- Number of chromosomes

$$NG50 = 40$$

 $LG50 = 4$

Assembly

Reference genome

- Genome fraction %
- Duplication ratio
- Number of gaps
- Largest alignment length
- Number of unaligned contigs (full & partial)

- Genome fraction %
- Duplication ratio
- Number of gaps
- Largest alignment length
- Number of unaligned contigs (full & partial)
- Number of mismatches/indels per 100 kbp
- Number of genes/operons (full & partial)

Misassemblies

Contig

Reference genome

Chromosome 1

Chromosome 2

Misassemblies

NB!

There is **no** best metric

Assembly A

Assembly B

Assembly A

100

Error Correction

To correct the sequencing errors, we can

- 1) analyze k-mer distribution in sequencing data
- 2) use high abundance k-mers to correct data

/informatics - de novo assembly

/informatics k-mer error correction

I) use k-mer distribution to identify suspicious (unique) k-mers

/informatics k-mer error correction

I) use k-mer distribution to identify suspicious (unique) k-mers

2) use good (high abundance) k-mers that are only I or 2 mutations away, and rewrite the suspicious k-mer

/informatics k-mer error correction

I) use k-mer distribution to identify suspicious (unique) k-mers

2) use good (high abundance) k-mers that are only I or 2 mutations away, and rewrite the suspicious k-mer

/informatics k-mer distribution

k-mer distribution for a given length k-mer in actual sequencing data

ie: k-mer = 30

/informatics k-mer distribution

Which arrow is pointing to the sequencing errors?

/informatics k-mer distribution

Which arrow is pointing to the kmers from repeated regions?

Case study - *E.coli* outbreak

ESCHERICHIA COLI OUTBREAK

Hemolytic-uremic syndrome (HUS) is a serious complication of a type of E. coli known as Shiga toxin-producing E. coli (STEC)

Percent of imports from Spain

*First quarter

Sources: isotype, media reports

transport or in Germany

REUTERS

WHERE IT HAS STRUCK SWEDEN NORWAY (B) infected 1 infected F with HUS NETHERLANDS death RUSSIA 8 infected DENMARK has banned 4 with HUS 17 infected imports of 7 with HUS GERMANY UNITED STATES vegetables 2 infected 1755 infected from all EU with HUS countries UK 18 deaths 11 infected CZECH REPUBLIC B with HUS 1 infected AUSTRIA FRANCE Outbreak centre 2 infected Ginfected Suspected cases SWITZERLAND Other countries affected 2 infected Cases of E.coli SPAIN Cases of haemolytic 1 infected

uraemic syndrome (HUS)

- What is the genome sequence of *E.coli* X?
- What strain of *E.coli* is *E.coli* X most similar to? (Where did it come from?)
- What are the genes that E.coli X contains?
- Which of these genes make *E.coli* X distinct?
- How did E.coli X evolve to obtain these genes?
- How did E.coli X become pathogenic?