Tables de lois de probabilités usuelles

Ces tables présentent les principales caractéristiques des lois de probabilité les plus usuelles. Pour chaque loi de probabilité, on donne son nom usuel, son symbole, son support et son espérance. Les lois discrètes sont définies par les probabilités élémentaires et la fonction génératrice, les lois continues par la densité et la fonction caractéristique. Pour les lois unidimensionnelles, on donne la variance, et pour les lois multidimensionnelles, on donne la matrice de covariance.

Les fonctions spéciales suivantes sont utilisées :

- la fonction Gamma est définie pour a > 0 par $\Gamma(a) = \int_0^{+\infty} e^{-x} x^{a-1} dx$. Propriétés : $\forall n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$, $\Gamma(1) = 1$, $\Gamma(1/2) = \sqrt{\pi}$, $\forall a > 1$, $\Gamma(a) = (a-1)\Gamma(a-1)$.
- la fonction Béta est définie pour a > 0 et b > 0 par $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 x^{a-1} (1-x)^{b-1} dx$.

Table 1 : Variables aléatoires réelles discrètes

Nom et Symbole	Support	Probabilités élémentaires $P(X = k)$	Espérance	Variance	Fonction génératrice
Loi de Bernoulli $B(p)$ $p \in]0,1[$	{0,1}	P(X = 0) = 1 - p $P(X = 1) = p$	p	<i>p</i> (1 – <i>p</i>)	1-p+pz
Loi binomiale $B(n, p)$ $p \in]0,1[, n \in \mathbb{N}^*]$	{0,1,, <i>n</i> }	$C_n^k p^k (1-p)^{n-k}$	пр	np(1-p)	$(1-p+pz)^n$
Loi binomiale négative $BN(n, p)$ $p \in]0,1[, n \in \mathbb{N}^*]$	${n,n+1,}$	$C_{k-1}^{n-1} p^n (1-p)^{k-n}$	$\frac{n}{p}$	$\frac{n(1-p)}{p^2}$	$\left(\frac{pz}{1-(1-p)z}\right)^n$
Loi de Poisson $P(\lambda)$ $\lambda \in \mathbb{R}^{+*}$	N	$e^{-\lambda} \frac{\lambda^k}{k!}$	λ	λ	$e^{\lambda(z-1)}$
Loi géométrique $G(p)$ $p \in]0,1[$	N*	$p(1-p)^{k-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pz}{1-(1-p)z}$
Loi hypergéométrique $H(N, m, n)$ $N \in \mathbb{N}^*$, $(m, n) \in \{1,, N\}^2$	$\left\{0,,\min(m,n)\right\}$	$\frac{C_m^k C_{N-m}^{n-k}}{C_N^n}$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	

Table 2 : Variables aléatoires réelles continues

Nom et Symbole	Support	Densité $f_X(x)$	Espérance	Variance	Fonction
Loi uniforme $U[a,b]$ $[a,b] \subset \mathbb{R}$	[a,b]	$\frac{1}{b-a} \ 1_{[a,b]}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	caractéristique $\frac{e^{ibt} - e^{iat}}{i(b-a)t}$
Loi normale ou de Gauss $N(m, \sigma^2)$ $m \in \mathbb{R}, \ \sigma \in \mathbb{R}^{+*}$	R	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-\frac{\sigma^2t^2}{2}}$
Loi gamma $G(\alpha, \lambda)$ $\alpha \in \mathbb{R}^{+*}, \ \lambda \in \mathbb{R}^{+*}$	\mathbb{R}^+	$\frac{\lambda^{\alpha}}{\Gamma(\alpha)}e^{-\lambda x}x^{\alpha-1}$	$\frac{lpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(1-\frac{it}{\lambda}\right)^{-\alpha}$
Loi exponentielle $\exp(\lambda) = G(1,\lambda)$ $\lambda \in \mathbb{R}^{+*}$	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{1 - \frac{it}{\lambda}}$
Loi du chi-deux $\chi_n^2 = G\left(\frac{n}{2}, \frac{1}{2}\right)$ $n \in \mathbb{N}^*$	\mathbb{R}^+	$\frac{1}{\Gamma\left(\frac{n}{2}\right)^{\frac{n}{2}}}e^{-\frac{x}{2}}x^{\frac{n}{2}-1}$	n	2 <i>n</i>	$(1-2it)^{-n/2}$
Loi béta de 1 ^{ère} espèce $\beta_1(a,b)$ $a \in \mathbb{R}^{+*}, b \in \mathbb{R}^{+*}$	[0,1]	$\frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1} 1_{[0,1]}(x)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	
Loi béta de $2^{\text{ème}}$ espèce $\beta_2(a,b)$ $a \in \mathbb{R}^{+*}, b \in \mathbb{R}^{+*}$	\mathbb{R}^+	$\frac{1}{\beta(a,b)} \frac{x^{a-1}}{(1+x)^{a+b}}$	$\frac{a}{b-1}$ si $b > 1$	$\frac{a(a+b-1)}{(b-1)^2(b-2)}$ si $b > 2$	
Loi de Weibull $W(\eta, \beta)$ $\eta \in \mathbb{R}^{+*}, \ \beta \in \mathbb{R}^{+*}$	\mathbb{R}^+	$\frac{\beta}{\eta^{\beta}} x^{\beta - 1} e^{-\left(\frac{x}{\eta}\right)^{\beta}}$	$\eta\Gamma\left(1+\frac{1}{\beta}\right)$	$\eta^{2} \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma \left(1 + \frac{1}{\beta} \right)^{2} \right]$	

Table 3 : Vecteurs aléatoires (en dimension d)

Nom et Symbole	Support	Probabilité ou Densité	Espérance	Matrice de covariance	Fonction
					caractéristique
Loi uniforme $U_d(A)$	A	$\frac{1}{Leb(A)} 1_A(x)$			
A borélien borné de \mathbb{R}^{d}		Leb(A)			
Loi normale $N_d(m,\Sigma)$	${ m I\!R}^d$	$\frac{1}{e^{-\frac{1}{2}(x-m)}\Sigma^{-1}(x-m)}$	m	Σ	$i^{t}mt-\frac{1}{2}t\Sigma t$
$m \in \mathbb{R}^d$, $\Sigma \in \mathcal{M}_{d,d}$	IIX.	$\frac{1}{(2\pi)^{d/2}\sqrt{\det\Sigma}}e$	m	2	e 2
Loi multinomiale $M_d(n, p)$	$k \in \mathbb{N}^{d}$	$n!$ k_1 k_2		$c_{i,i} = np_i(1 - p_i)$	$\begin{bmatrix} d \end{bmatrix}^n$
$n \in \mathbb{N}^*, \ p \in]0,1[^d, \sum_{i=1}^d p_i = 1]$	$\sum_{i=1}^{d} k_i = n$	$\frac{n!}{k_1!k_d!} p_1^{k_1}p_d^{k_d}$	пр	$c_{i,i} = np_i(1 - p_i)$ $c_{i,j} = -np_i p_j, i \neq j$	$\left[\sum_{i=1}^{d} p_i z_i\right]^n$

TABLE 1 DE LA LOI NORMALE CENTREE REDUITE

U étant une variable aléatoire de loi N(0,1), la table donne la valeur de $\Phi(u) = P(U \le u)$. Sous S+, la commande correspondante est pnorm(u).

и	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Grandes valeurs de u

и	3.0	3.5	4.0	4.5
$\Phi(u)$	0.9987	0.99977	0.999968	0.999997

TABLE 2 DE LA LOI NORMALE CENTREE REDUITE

U étant une variable aléatoire de loi N(0,1) et α un réel de [0,1], la table donne la valeur

$$u_{\alpha} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$
, telle que $P(|U| > u_{\alpha}) = \alpha$.

Sous S+, la commande correspondante est qnorm(1-alpha/2).

α	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	+ 8	2.5758	2.3263	2.1701	2.0537	1.9600	1.8808	1.8119	1.7507	1.6954
0.1	1.6449	1.5982	1.5548	1.5141	1.4758	1.4395	1.4051	1.3722	1.3408	1.3106
0.2	1.2816	1.2536	1.2265	1.2004	1.1750	1.1503	1.1264	1.1031	1.0803	1.0581
0.3	1.0364	1.0152	0.9945	0.9741	0.9542	0.9346	0.9154	0.8965	0.8779	0.8596
0.4	0.8416	0.8239	0.8064	0.7892	0.7722	0.7554	0.7388	0.7225	0.7063	0.6903
0.5	0.6745	0.6588	0.6433	0.6280	0.6128	0.5978	0.5828	0.5681	0.5534	0.5388
0.6	0.5244	0.5101	0.4959	0.4817	0.4677	0.4538	0.4399	0.4261	0.4125	0.3989
0.7	0.3853	0.3719	0.3585	0.3451	0.3319	0.3186	0.3055	0.2924	0.2793	0.2663
0.8	0.2533	0.2404	0.2275	0.2147	0.2019	0.1891	0.1764	0.1637	0.1510	0.1383
0.9	0.1257	0.1130	0.1004	0.0878	0.0753	0.0627	0.0502	0.0376	0.0251	0.0125

Petites valeurs de α

α	0.002	0.001	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	10 ⁻⁸	10 ⁻⁹
u_{α}	3.0902	3.2905	3.8906	4.4171	4.8916	5.3267	5.7307	6.1094

Pour
$$p < \frac{1}{2}$$
, $\Phi^{-1}(p) = -u_{2p}$
Pour $p \ge \frac{1}{2}$, $\Phi^{-1}(p) = u_{2(1-p)}$

TABLE DE LA LOI DU χ^2

X étant une variable aléatoire de loi du χ^2 à n degrés de liberté, et α un réel de [0,1], la table donne la valeur $z_{n,\alpha} = F^{-1}_{\chi^2_n}(1-\alpha)$, telle que $P(X > z_{n,\alpha}) = \alpha$.

Sous S+, la commande correspondante est qchisq(1-alpha,n).

n^{α}	0.995	0.990	0.975	0.95	0.9	0.8	0.7	0.5	0.3	0.2	0.1	0.05	0.025	0.01	0.005	0.001
1	0.00004		0.001	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	5.02	6.63	7.88	10.80
2	0.01	0.02	0.05	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	7.38	9.21	10.60	13.82
3 4	0.07 0.21	0.11	0.22 0.48	0.35 0.71	0.58 1.06	1.01 1.65	1.42 2.19	2.37 3.36	3.66 4.88	4.64 5.99	6.25 7.78	7.81 9.49	9.35 11.14	11.34 13.28	12.84 14.86	16.27 18.47
5	0.21	0.55	0.48	1.15	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	12.83	15.28	16.75	20.52
6	0.68	0.87	1.24	1.64	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	14.45	16.81	18.55	22.46
7	0.99	1.24	1.69	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	16.01	18.48	20.28	24.32
8	1.34	1.65	2.18	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	17.53	20.09	21.95	26.12
9	1.73	2.09	2.70	3.33	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	19.02	21.67	23.59	27.88
10	2.16	2.56	3.25	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	20.48	23.21	25.19	29.59
11	2.60	3.05	3.82	4.57	5.58	6.99	8.15	10.34	12.90	14.63	17.28	19.68	21.92	24.72	26.76	31.26
12	3.07	3.57	4.40	5.23	6.30	7.81	9.03	11.34	14.01	15.81	18.55	21.03	23.34	26.22	28.30	32.91
13	3.57	4.11	5.01	5.89	7.04	8.63	9.93	12.34	15.12	16.98	19.81	22.36	24.74	27.69	29.82	34.53
14	4.07	4.66	5.63	6.57	7.79	9.47	10.82	13.34	16.22	18.15	21.06	23.68	26.12	29.14	31.32	36.12
15	4.60	5.23	6.26	7.26	8.55	10.31	11.72	14.34	17.32	19.31	22.31	25.00	27.49	30.58	32.80	37.70
16	5.14	5.81	6.91	7.96	9.31	11.15	12.62	15.34	18.42	20.47	23.54	26.30	28.85	32.00	34.27	39.25
17	5.70	6.41	7.56	8.67	10.09	12.00	13.53	16.34	19.51	21.61	24.77	27.59	30.19	33.41	35.72	40.79
18	6.26	7.01	8.23	9.39	10.86	12.86	14.44	17.34	20.60	22.76	25.99	28.87	31.53	34.81	37.16	42.31
19 20	6.84	7.63	8.91	10.12	11.65	13.72	15.35	18.34	21.69	23.90	27.20	30.14	32.85	36.19	38.58	43.82
-	7.43	8.26	9.59	10.85	12.44	14.58	16.27	19.34	22.77	25.04	28.41	31.41	34.17	37.57	40.00	45.31
21	8.03	8.90	10.28	11.59	13.24	15.44	17.18	20.34	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46.80
22	8.64	9.54	10.98	12.34	14.04	16.31	18.10	21.34	24.94	27.30	30.81	33.92	36.78	40.29	42.80	48.27
23	9.26	10.20	11.69	13.09	14.85	17.19	19.02	22.34	26.02	28.43	32.01	35.17	38.08	41.64	44.18	49.73
24 25	9.89 10.52	10.86	12.40	13.85	15.66	18.06	19.94	23.34	27.10	29.55	33.20	36.42	39.36	42.98	45.56	51.18
		11.52	13.12	14.61	16.47	18.94	20.87	24.34	28.17	30.68	34.38	37.65	40.65	44.31	46.93	52.62
26	11.16	12.20	13.84	15.38	17.29	19.82	21.79	25.34	29.25	31.79	35.56	38.89	41.92	45.64	48.29	54.05
27	11.81	12.88	14.57	16.15	18.11	20.70	22.72	26.34	30.32	32.91	36.74	40.11	43.19	46.96	49.64	55.48
28	12.46	13.56	15.31	16.93 17.71	18.94 19.77	21.59 22.48	23.65 24.58	27.34 28.34	31.39	34.03 35.14	37.92 39.09	41.34	44.46 45.72	48.28 49.59	50.99	56.89
29 30	13.12 13.79	14.26 14.95	16.05 16.79	17.71	20.60	22.48	24.58	28.34	32.46 33.53	36.25	39.09 40.26	42.56 43.77	45.72	49.59 50.89	52.34 53.67	58.30 59.70
30	13.19	14.73	10.79	10.49	20.00	43.30	23.31	49.34	33.33	30.23	40.∠0	43.77	40.28	30.09	33.07	39.70

Pour
$$n > 30$$
, on admet que : $z_{n,\alpha} \approx \frac{1}{2} \left(u_{2\alpha} + \sqrt{2n-1} \right)^2 \text{ si } \alpha < \frac{1}{2}$
$$z_{n,\alpha} \approx \frac{1}{2} \left(\sqrt{2n-1} - u_{2(1-\alpha)} \right)^2 \text{ si } \alpha \geq \frac{1}{2}$$

TABLE DE LA LOI DE STUDENT

X étant une variable aléatoire de loi St(n) et α un réel de [0,1],

la table donne la valeur $t_{n,\alpha} = F_{St(n)}^{-1} \left(1 - \frac{\alpha}{2} \right)$ telle que $P(|X| > t_{n,\alpha}) = \alpha$.

Sous S+, la commande correspondante est qt (1-alpha/2, n). $t_{+\infty,\alpha} = u_0$

α													
n	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	0.158	0.325	0.510	0.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.62
2	0.142	0.289	0.445	0.617	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599
3	0.137	0.277	0.424	0.584	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	0.134	0.271	0.414	0.569	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.132	0.267	0.408	0.559	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.265	0.404	0.553	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.130	0.263	0.402	0.549	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.130	0.262	0.399	0.546	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.129	0.261	0.398	0.543	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	0.129	0.260	0.397	0.542	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.129	0.260	0.396	0.540	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.128	0.259	0.394	0.538	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.128	0.258	0.393	0.537	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.128	0.258	0.393	0.536	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.128	0.258	0.392	0.535	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.128	0.257	0.392	0.534	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
18	0.127	0.257	0.392	0.534	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	0.127	0.257	0.391	0.533	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.127	0.257	0.391	0.533	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	0.127	0.257	0.391	0.532	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	0.127	0.256	0.390	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.127	0.256	0.390	0.532	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.768
24	0.127	0.256	0.390	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
27	0.127	0.256	0.389	0.531	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	0.127	0.256	0.389	0.530	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.659
30	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.646
40	0.126	0.255	0.388	0.529	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.551
80	0.126	0.254	0.387	0.527	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.416
120	0.126	0.254	0.386	0.526	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373
+∞	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291

TABLES DE LA LOI DE FISHER-SNEDECOR

X étant une variable aléatoire de loi $F(v_1, v_2)$, les tables donnent les valeurs

$$f_{v_1,v_2,\alpha} = F_{F(v_1,v_2)}^{-1}(1-\alpha)$$
 telles que $P(X > f_{v_1,v_2,\alpha}) = \alpha$ pour $\alpha = 5\%$ et $\alpha = 1\%$.

Sous S+, la commande correspondante est qf(1-alpha,nu1,nu2).

$$f_{v_2,v_1,\alpha} = \frac{1}{f_{v_1,v_2,1-\alpha}}$$

Table 1 : $\alpha = 5\%$

v_1	1	2	3	4	5	6	7	8	10	12	16	20	24	40	60	100	+∞
1	161.5	199.5	215.7	224.6	230.2	234.0	236.8	238.9	241.9	243.9	246.5	248.0	249.1	251.1	252.2	253.0	254.2
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37		19.41	19.43	19.45	19.45	19.47	19.48	19.49	19.49
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.79	8.74	8.69	8.66	8.64	8.59	8.57	8.55	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	5.96	5.91	5.84	5.80	5.77	5.72	5.69	5.66	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.74	4.68	4.60	4.56	4.53	4.46	4.43	4.41	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.06	4.00	3.92	3.87	3.84	3.77	3.74	3.71	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.64	3.57	3.49	3.44	3.41	3.34	3.30	3.27	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.35	3.28	3.20	3.15	3.12	3.04	3.01	2.97	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.14	3.07	2.99	2.94	2.90	2.83	2.79	2.76	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	2.98	2.91	2.83	2.77	2.74	2.66	2.62	2.59	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.85	2.79	2.70	2.65	2.61	2.53	2.49	2.46	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.75	2.69	2.60	2.54	2.51	2.43	2.38	2.35	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.67	2.60	2.51	2.46	2.42	2.34	2.30	2.26	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.60	2.53	2.44	2.39	2.35	2.27	2.22	2.19	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.54	2.48	2.38	2.33	2.29	2.20	2.16	2.12	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.49	2.42	2.33	2.28	2.24	2.15	2.11	2.07	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.45	2.38	2.29	2.23	2.19	2.10	2.06	2.02	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.41	2.34	2.25	2.19	2.15	2.06	2.02	1.98	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.38	2.31	2.21	2.16	2.11	2.03	1.98	1.94	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.35	2.28	2.18	2.12	2.08	1.99	1.95	1.91	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.32	2.25	2.16	2.10	2.05	1.96	1.92	1.88	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.30	2.23	2.13	2.07	2.03	1.94	1.89	1.85	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.27	2.20	2.11	2.05	2.01	1.91	1.86	1.82	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.25	2.18	2.09	2.03	1.98	1.89	1.84	1.80	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.24	2.16	2.07	2.01	1.96	1.87	1.82	1.78	1.71
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.16	2.09	1.99	1.93	1.89	1.79	1.74	1.70	1.62
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.08	2.00	1.90	1.84	1.79	1.69	1.64	1.59	1.51
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.03	1.95	1.85	1.78	1.74	1.63	1.58	1.52	1.44
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	1.99	1.92	1.82	1.75	1.70	1.59	1.53	1.48	1.39
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	1.95	1.88	1.77	1.70	1.65	1.54	1.48	1.43	1.32
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.93	1.85	1.75	1.68	1.63	1.52	1.45	1.39	1.28
+∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.83	1.75	1.64	1.57	1.52	1.39	1.32	1.24	1.00

Table 2 : $\alpha = 1\%$

<i>v</i> ₁	1	2	3	4	5	6	7	8	10	12	16	20	24	40	60	100	+∞
v_2	1052	4000	5.402	5624	57(1	5050	5020	5001	(05)	(10((170	(200	(225	(207	(212	(224	(2(0
1	4052	4999	5403 99.2	5624 99.2	5764 99.3	5859	5928 99.4	5981	6056	6106 99.4	6170 99.4	6209	6235	6287	6313	6334	6368
2 3	98.5	99.0				99.3		99.4	99.4			99.4	99.5	99.5	99.5	99.5	99.5
4	34.1 21.2	30.9	29.5	28.7	28.2	27.9	27.7	27.5	27.2	27.1	26.8	26.7	26.6	26.4	26.3	26.2	26.1
		18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.6	14.4	14.2	14.0	13.9	13.8	13.7	13.6	13.5
5	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.0	9.89	9.68	9.55	9.47	9.29	9.20	9.13	9.02
6	13.8	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.87	7.72	7.52	7.40	7.31	7.14	7.06	6.99	6.88
7	12.3	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.62	6.47	6.28	6.16	6.07	5.91	5.82	5.75	5.65
8	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.81	5.67	5.48	5.36	5.28	5.12	5.03	4.96	4.86
9	10.6	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.26	5.11	4.92	4.81	4.73	4.57	4.48	4.41	4.31
10	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.85	4.71	4.52	4.41	4.33	4.17	4.08	4.01	3.91
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.54	4.40	4.21	4.10	4.02	3.86	3.78	3.71	3.60
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.30	4.16	3.97	3.86	3.78	3.62	3.54	3.47	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.10	3.96	3.78	3.66	3.59	3.43	3.34	3.27	3.17
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	3.94	3.80	3.62	3.51	3.43	3.27	3.18	3.11	3.00
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.80	3.67	3.49	3.37	3.29	3.13	3.05	2.98	2.87
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.69	3.55	3.37	3.26	3.18	3.02	2.93	2.86	2.75
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.59	3.46	3.27	3.16	3.08	2.92	2.83	2.76	2.65
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.51	3.37	3.19	3.08	3.00	2.84	2.75	2.68	2.57
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.43	3.30	3.12	3.00	2.92	2.76	2.67	2.60	2.49
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.37	3.23	3.05	2.94	2.86	2.69	2.61	2.54	2.42
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.31	3.17	2.99	2.88	2.80	2.64	2.55	2.48	2.36
21 22	7.95	5.72	4.87	4.31	3.99	3.76	3.59	3.45	3.26	3.17	2.99	2.83	2.75	2.58	2.50	2.48	2.30
23	7.88	5.66	4.76	4.26	3.94	3.70	3.54	3.43	3.20	3.12	2.89	2.83	2.73	2.54	2.45	2.42	2.26
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.17	3.07	2.85	2.74	2.66	2.49	2.40	2.37	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.17	2.99	2.83	2.70	2.62	2.45	2.36	2.29	2.17
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	2.98	2.84	2.66	2.55	2.47	2.30	2.21	2.13	2.01
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.80	2.66	2.48	2.37	2.29	2.11	2.02	1.94	1.80
50	7.17	5.06	4.20	3.72	3.41	3.19	3.02	2.89	2.70	2.56	2.38	2.27	2.18	2.01	1.91	1.82	1.68
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.63	2.50	2.31	2.20	2.12	1.94	1.84	1.75	1.60
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.55	2.42	2.23	2.12	2.03	1.85	1.75	1.65	1.49
100	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.50	2.37	2.19	2.07	1.98	1.80	1.69	1.60	1.43
+∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.32	2.18	2.00	1.88	1.79	1.59	1.47	1.36	1.00