	Thermodynami	que				
Température						
Conversion en Kelvin	$T = \theta + 273.15$					
Changement de température	$\Delta \theta = \theta_f - \theta_i$	i initial, f final				
	Chaleur					
Bilan calorifique	$\sum Q_i = 0$					
	$Q=mc\Delta\theta$	c chaleur massique				
	$Q = \mu \Delta \theta$	μ capacité calorifique				
	Q = mH	H pouvoir calorifique				
	Q = mL	L chaleur latente				
	Phénomènes de dil	atation				
Linéique	$\Delta L = L_0 \alpha \Delta \theta$					
Volumique	$\Delta V = V_0 \gamma \Delta \theta$	$\gamma = 3\alpha$				
Loi des gaz parfaits	pV = nRT	n nbr. de moles				
	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	nbr. de moles constant				
Électricité						
Lois de	$\sum I_i = 0$	nœuds				
Kirchhoff	$\sum U_i = 0$	mailles				
Loi d'Ohm	U = RI					
conducteur ohmique	$R = \rho \frac{\ell}{S}$	ρ résistivité				
Résistance en parallèle	$\frac{1}{R_{\text{\'equ}}} = \frac{1}{R_1} + \frac{1}{R_2}$	$\frac{1}{2} + \cdots \frac{1}{R_n}$				
Résistance en série	$R_{\text{\'equ}} = R_1 + R_2 -$	$+\cdots R_n$				
Énergie	$E = UI\Delta t$					
Puissance	P = UI					
Constantes physiques						
Constante de Planck		$h = 6.626 \cdot 10^8 \text{ J s}$				
Vitesse de la lumière dans le vide		$c = 2.9979 \cdot 10^8 \ \mathrm{m s^{-1}}$				
Constante de gravitation universelle		$G = 6.67 \cdot 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$				
Pesanteur terrestre		$g = 9.81 N kg^{-1}$				
Charge élémentaire		$e = 1.602 \cdot 10^{-19} C$				
Nombre d'Avogadro		$N_{\rm A} = 6.022 \cdot 10^{23} \rm mol^{-1}$				
Volume molaire des gaz parfaits (TPN)		$22.4 \ell \mathrm{mol}^{-1}$				
Température normale		$T_0 = 273.15 \mathrm{K}$				
Pression normale		$p_0 = 1.013 \cdot 10^5 Pa$				
	$R = 8.3144 \mathrm{J} \mathrm{mol}^{-1} \mathrm{K}^{-1}$					

Service de la formation professionnelle Amt für Berufsbildung Formulaire de Physique 2022/23 Formelsammlung Physik 2022/23

Amt für Bei	mt für Berufsbildung			Formelsammlung Physik 2022/23					
Substance	Masse	Dilat	ation	Tempé	erature		Chaleur		Résistivit
Solides et liquides : $\theta = 20^{\circ}$	Masse volumique	Coefficient de dilatation volumique	Coefficient de dilatation linéaire	Température de fusion	Température d'ébullition	Chaleur massique	Chaleur latente de fusion	Chaleur latente de vaporisation	Résistivité
G	ho	γ	α	$ heta_f$	$ heta_e$	c	L_f	L_v	ho
Gaz : p=1013hPa et $\theta=0^{\circ}$	${\rm kg}{\rm m}^{-3}$	$^{\circ}\mathrm{C}^{-1}$	$^{\circ}\mathrm{C}^{-1}$	$^{\circ}\mathrm{C}$	$^{\circ}\mathrm{C}$	$\rm Jkg^{-1}\circ C^{-1}$	$\rm Jkg^{-1}$	$ m Jkg^{-1}$	$\Omega\mathrm{m}$
Acier	$7.85 \cdot 10^3$		$11 \cdot 10^{-6}$	1515	2500	$0.46 \cdot 10^3$			$12 \cdot 10^{-8}$
Air	1.29	$3.7 \cdot 10^{-3}$		-220	-194	$1.0 \cdot 10^3$			
Aluminium	$2.7{\cdot}10^3$		$25 \cdot 10^{-6}$	660	2467	$0.9 \cdot 10^3$	$3.96 \cdot 10^5$		$2.7 \cdot 10^{-8}$
Argent	$10.5{\cdot}10^3$		$19 \cdot 10^{-6}$	962	2212	$0.23 \cdot 10^3$	$1 \cdot 10^5$		$1.6 \cdot 10^{-8}$
Bois(chêne)	$0.7{\cdot}10^3$		$50 \cdot 10^{-6}$			$2.4 \cdot 10^3$			10^{11}
Constantan	$8.9 \cdot 10^3$		$15 \cdot 10^{-6}$	200		$0.41 \cdot 10^3$			$49 \cdot 10^{-8}$
Cuivre	$8.92 \cdot 10^3$		$17 \cdot 10^{-6}$	1083	2567	$0.39 \cdot 10^3$	$2.05 \cdot 10^5$		1.63.10
Eau	$1.00 \cdot 10^3$	$0.2 \cdot 10^{-3}$		0	100	$4.18 \cdot 10^3$		$23 \cdot 10^5$	$2 \cdot 10^5$
Essence	$0.7 \cdot 10^3$	$1.0 \cdot 10^{-3}$							
Ethanol	$0.79 \cdot 10^3$	$1.1 \cdot 10^{-3}$		-117	78.5	$2.46 \cdot 10^3$	$1.09 \cdot 10^5$	$8.5 \cdot 10^5$	
Fer	$7.86 \cdot 10^3$		$12 \cdot 10^{-6}$	1535	2750	$0.44 \cdot 10^3$	$2.67 \cdot 10^5$	$63.1 \cdot 10^5$	$9.71 \cdot 10^{-3}$
Glace	$0.917 \cdot 10^3$			0		$2.06 \cdot 10^3$	$3.3 \cdot 10^5$		
Hélium	0.178	$3.66 \cdot 10^{-3}$		-272	-269	$5.2 \cdot 10^3$	$0.04 \cdot 10^5$	$0.25 \cdot 10^5$	
Huile	$0.88 \cdot 10^3$	$0.7 \cdot 10^{-3}$		~ -10	~ 300	$2 \cdot 10^{3}$			
Invar	$8.13 \cdot 10^3$		$2 \cdot 10^{-6}$	1450		$0.5 \cdot 10^3$			
Liège	$0.2 \cdot 10^3$								
Mercure	$13.6 \cdot 10^3$	$0.18 \cdot 10^{-3}$		-39	357	$0.14 \cdot 10^3$	$0.11 \cdot 10^5$	3.10^{5}	98.4.10
Nickel	$8.9 \cdot 10^3$		$13 \cdot 10^{-6}$	1455	2730	$0.44 \cdot 10^3$	3.10^{5}		6.84.10
Or	$18.9 \cdot 10^3$		$14 \cdot 10^{-6}$	1064	3080	$0.13 \cdot 10^3$	$0.64 \cdot 10^5$		$2.21 \cdot 10^{-8}$
Plomb	$11.3 \cdot 10^3$		$29 \cdot 10^{-6}$	327	1740	$0.12 \cdot 10^3$	$0.25 \cdot 10^5$		20.6.10
Vapeur d'eau	$0.60 \cdot 10^3$					$2.08 \cdot 10^3$			
Verre	$2.6 \cdot 10^3$		9.10^{-6}			$0.84 \cdot 10^3$			10^{12}

	Mécanique		
(Cinématique du centre de masse		
Vitesse moyenne	$v_m = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$	x position, t instant	
Accélération moyenne	$a_m = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$		
Vitesse de B relative à ${\cal A}$	$ec{v}_r = ec{v}_B - ec{v}_A$		
I	Mouvement Rectiligne Uniforme		
	$x_2 = v\Delta t + x_1$		
Mouver	nent Rectiligne Uniformément Acc	éléré	
	$v_2 = a\Delta t + v_1$		
	$x_2 = \frac{1}{2}a\Delta t^2 + v_1\Delta t + x_1$		
	$v_2^2 - v_1^2 = 2a\Delta x$		
	$v_m = \frac{v_1 + v_2}{2}$		
1	Mouvement Circulaire Uniforme		
Vitesse angulaire	$\omega = \frac{\Delta \varphi}{\Delta t} = \frac{2\pi}{T} = \frac{v}{r}$	φ angle, r rayon du cercle	
Période	$T = \frac{2\pi}{\omega}$		
Fréquence	$f = \frac{1}{T} = \frac{\omega}{2\pi}$		
Accélération centripète	$a_c = \frac{v^2}{r} = \omega^2 r$		
	Statique du solide		
Première loi de Newton	$\sum ec{F} = ec{0}$		
Équilibre statique en translation	$\sum F_x = 0$ et $\sum F_y = 0$		
Équilibre statique en rotation	$\sum M_i = 0$		
Force de pesanteur	$F_p = mg$	g pesanteur	
Force élastique	F = kx	\boldsymbol{k} raideur du ressort	
		x élongation	
Force normale	F_n	perp. à la surface	
Force de frottement statique	$F_f \le \mu_0 F_n$	μ_0 coefficient de frottement statique	
Force de frottement dynamique	$F_f = \mu F_n$	μ coefficient de frottement dynamique	
Moment	$M = \pm rF\sin(\alpha)$	r distance, F force α angle entre r et F	
	$M=Fd_{\perp}$	d_{\perp} bras de levier	
Masse volumique	$\rho = \frac{m}{V}$	m masse, V volume	

	Statique des fluides						
Pression ⊥ aux parois	$p = \frac{F_{\perp}}{A}$	A aire					
Variation de pression	$\Delta p = \rho_{\rm fluide} g \Delta h$	Δh différence de hauteur					
Force d'Archimède	$F_A = ho_{ m fluide} g V_{ m d\'eplac\'e}$	$\rho_{\rm fluide}$ masse volumique fluide					
	Dynamique						
Deuxième loi de Newton	$\sum \vec{F} = m \vec{a}$	mouvements rectilignes					
Force centripète	$F_c = m\frac{v^2}{r} = m\omega^2 r$	mouvements circulaires uniformes					
Énergie							
Conservation d'énergie	$\sum E_i = \sum E_f$	i initial, f final					
	$\Delta E = 0$	$\Delta E = \sum E_f - \sum E_i$					
Variation de l'énergie	$\Delta E = W$	\boldsymbol{W} travail : frottement, moteur					
Énergie cinétique	$E_c = \frac{1}{2}mv^2$						
Énergie potentielle de pesanteur	$E_p = mgh$						
Énergie potentielle d'un ressort	$E_r = \frac{1}{2}kx^2$						
Travail d'une force constante	$W = Fd\cos(\alpha) = F_{\parallel}d$	F force, d déplacement α angle entre F et d					
Puissance en général	$P = \frac{\Delta E}{\Delta t}$						
Puissance en translation	$P = F_{\parallel} v$	v vitesse					
Rendement global	$\eta_{ ext{global}} = \eta_1 \eta_2 \cdots \eta_n$						
Rendement	$\eta = rac{W_{ m utile}}{W_{ m absorb\acute{e}e}} = rac{P_{ m utile}}{P_{ m absorb\acute{e}e}}$						
	Ondes						
Oscillation harmonique	$A(t) = A_0 \sin(\omega t + \varphi)$	A élongation, A_0 amplitude φ phase initiale $-\frac{\varphi}{\omega}$ déplacement horizontal					
pulsation	$\omega = 2\pi f = \frac{2\pi}{T}$	f fréquence, T période					
Onde harmonique	$A(x,t) = A_0 \sin \left(2\pi \left(\frac{x}{\lambda} - \frac{t}{T}\right)\right)$	x position, λ longueur d'onde t instant, T période					
Vitesse de propagation	$c = \lambda f = \frac{\lambda}{T}$						
Interférence constructive	$\Delta d = n\lambda$	Δd différence de trajet					
Interférence destructive	$\Delta d = \left(n + \frac{1}{2}\right)\lambda$	$n=0,1,2\dots$					
Énergie d'un photon	E = hf	h Constante de Planck					