

MEDICIÓN E INSTRUMENTACIÓN

ARDUINO

Roberto Giovanni Ramírez-Chavarría

rg.unam.sysid@gmail.com

Facultad de Ingeniería, UNAM

Semestre 2020-1

Introducción ARDUINO

Implementación física del problema básico de estimación

Caracterización del ruido en las entradas analógicas de un Arduino.

Arduino es una TARJETA DE DESARROLLO

Arduino es una TARJETA DE DESARROLLO con ...

- Microcontrolador ATMEL (ATMega328) de 8 bits 16 MHz
- 8 canales analógicos con resolución de 10 bits
- 13 entradas/salidas digitales
- Temporizadores y contadores
- Módulos de comunicación Serial Periphal Interfance (SPI), Inter-Integrated Circui (I2C) y UART (Universal Asynchronous Receiver Transmitter).

Nosotros la usaremos como una tarjeta de ADQUISICIÓN DE DATOS

Conversión Analógica a Digital.

Realizar un programa en Arduino que lea UNA entrada analógica del convertidor ADC (Analog to Digital Converter). El resultado de la conversión deberá ser convertido a volts y enviado por el puerto USB/UART hacia una PC.

El dato deberá ser recibido en la PC mediante un programa en MATLAB el cual sea capaz de graficar y almacenar al menos 1000 datos de voltaje.

Conversión Analógica a Digital.

Resolución de un ADC r: Voltaje mínimo que puede ser digitalizado. Depende del número de bits m y del voltaje de referencia $V_{\rm ref}$.

$$r = \frac{V_{\mathsf{ref}}}{2^m - 1}$$

Por ejemplo, si m=8 y $V_{\text{ref}}=5$ V

Conversión Analógica a Digital.

Resolución de un ADC r: Voltaje mínimo que puede ser digitalizado. Depende del número de bits m y del voltaje de referencia $V_{\rm ref}$.

$$r = \frac{V_{\mathsf{ref}}}{2^m - 1}$$

Por ejemplo, si m=8 y $V_{\text{ref}}=5$ V

$$r = \frac{5V}{2^8 - 1} = 0.0196V \approx 19.6$$
mV

¿Como podemos aumentar la resolución?

Conversión Analógica a Digital.

Resolución de un ADC r de Arduino: m = 10 y $V_{ref} = 5$ V.

Conversión Analógica a Digital.

Resolución de un ADC r de Arduino: m = 10 y $V_{ref} = 5$ V.

 $r \approx 4.88$ mV

Solo podemos leer en pasos de 4.88mV en un rango entre 0 y 5V. Cada paso tiene un código **binario** asociado y un número decimal

Conversión Analógica a Digital.

Resolución de un ADC r de Arduino

decimal	código (10 bits)	Voltaje medido (V)
0	00000 00000	0
1	00000 00001	0.0049
2	00000 00010	0.0098
:	i:	:
1023	11111 11111	≈5000

Conversión de código binario o número a voltaje en Volts

$$V = \frac{decimal * 5}{1023}$$

Conversión Analógica a Digital.

```
En Arduino empleamos la función analogRead (Canal); para leer una entrada analógica, donde Canal=AX; X = \{0, 1, 2, ..., 7\}.
```

El algoritmo básico es

```
int dato;
float voltaje;
dato=analogRead(A0);
voltaje=dato*5/1023;
```


Conversión Analógica a Digital.

En Arduino empleamos la función

Serial.print(variable); para enviar una variable por el puerto UART.

El algoritmo básico es

Serial.print (voltaje); Sí queremos que después de enviar la variable, automáticamente se envíe un comando equivalente a presionar la tecla Enter. entonces

Serial.println(voltaje);

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

• ¿Es posible tener una fuente de corriente?

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

- ¿Es posible tener una fuente de corriente?
- Usando una fuente de voltaje. Medir el voltaje aplicado y la corriente inducida

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

- ¿Es posible tener una fuente de corriente?
- Usando una fuente de voltaje. Medir el voltaje aplicado y la corriente inducida
- ¿Cómo medir corriente?

La idea es

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

1 Los 5V los podemos suministrar con Arduino

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

- Los 5V los podemos suministrar con Arduino
- 2 Colocamos una resistencia R_s (*Resistor Shunt*) de valor conocido en serie con nuestra resistencia a estimar R.

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

$$V_i = V_1 + V_2$$
$$V_2 = V_i - RI$$

Pero la corriente I es igual en los 2 resistores y midiendo $V_2 \propto I$

$$V_2 = R_s I \longrightarrow I = \frac{V_2}{R_s}$$
 $V_2 = V_i - R \frac{V_2}{R_s}$

Despejando R y haciendo $V_i \approx V_1$

$$R = \left(\frac{V_1}{V_2} - 1\right) R_s$$

Parte 2. Estimación de un Resistor con mediciones de voltaje y corriente

Con Arduino y MATLAB

- 1 Medir V_1 y V_2 con dos canales analógicos para mínimo N=2000 datos
- 2 Calcular la corriente I a partir de las mediciones
- 3 Usando el modelo obtenido implementar dos estimadores, similares a los que estudiamos previamente.

Gracias!

Contact: https://rgunam.github.io

rg.unam.sysid@gmail.com