Package 'bvpa'

August 8, 2023

Type Package

Title Bivariate Pareto Distribution

Version 1.0.0

Date 2023-08-07

Maintainer Biplab Paul <paul.biplab497@gmail.com>

Description Implements the EM algorithm with one-step Gradient Descent method to estimate the parameters of the Block-Basu bivariate Pareto distribution with location and scale. We also found parametric bootstrap and asymptotic confidence intervals based on the observed Fisher information of scale and shape parameters, and exact confidence intervals for location parameters. Details are in Biplab Paul and Arabin Kumar Dey (2023) <doi:10.48550/arXiv.1608.02199>
"An EM algorithm for absolutely continuous Marshall-Olkin bivariate Pareto distribution with location and scale";

distribution with location and scale"; E L Lehmann and George Casella (1998) <doi:10.1007/b98854> ``Theory of Point Estimation";

"An Introduction to the Bootstrap";

A P Dempster, N M Laird and D B Rubin

(1977) <www.jstor.org/stable/2984875> ``Maximum Likelihood from Incomplete Data via the EM Algorithm".

Bradley Efron and R J Tibshirani (1994) <doi:10.1201/9780429246593>

License GPL (>= 2)

Imports numDeriv, stats

RoxygenNote 7.2.3

Author Biplab Paul [aut, cre], Arabin Kumar Dey [aut]

Encoding UTF-8

LazyData true

NeedsCompilation no

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2023-08-08 14:50:02 UTC

2 bvpa-package

R topics documented:

bvpa	-package	Bivariate Pareto Distribution	
Index			18
	rbb.bvpa		17
	pseu.logL		16
	precipitation		15
	pctl.fun		14
	param.boot3		13
	param.boot		12
	$mLf2 \dots \dots$		11
	mLfl		11
	logL		10
	intliz		8
	estimates3		6
	estimates		4
	conf.intv3		4
	conf.intv		3
	bvpa-package		2

Description

Implements the EM algorithm with one-step Gradient Descent method to estimate the parameters of the Block-Basu bivariate Pareto distribution with location and scale. We also found parametric bootstrap and asymptotic confidence intervals based on the observed Fisher information scale, shape parameters, and exact confidence intervals for location parameters.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

References

Biplab Paul and Arabin Kumar Dey (2023). An EM algorithm for absolutely continuous Marshall-Olkin bivariate Pareto distribution with location and scale, Preprint.

E L Lehmann and George Casella (1998). Theory of Point Estimation, Springer, New York, doi.org/10.1007/b98854.

Bradley Efron and R J Tibshirani (1994). An Introduction to the Bootstrap, CRC press, New York, doi.org/10.1201/9780429246593.

A P Dempster, N M Laird and D B Rubin (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the royal statistical society: series B (methodological), www.jstor.org/stable/2984875.

conf.intv 3

conf.intv	Observed Fisher information based confidence interval of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Observed Fisher information based confidence interval of Bivariate BBBVPA distribution.

Usage

```
conf.intv(
  object,
  conf.lev = 0.95,
  tol = 1e-04,
  intv.m1 = c(0, 2),
  intv.m2 = c(0, 2)
)
```

Arguments

Value

A matrix of lower and upper confidence interval limits (in the first and second column respectively). The matrix rows are labeled by the parameter names (if any) and columns by the corresponding distribution quantiles.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
# see the example of estimation
```

4 estimates

conf.intv3	Observed	Fisher	information	based	confidence	interval	of	3-
	parameter	Block-B	asu Bivariate	Pareto	(BBBVPA) di	istribution	!	

Description

Observed Fisher information based confidence interval of 3-parameter BBBVPA distribution.

Usage

```
conf.intv3(object, conf.lev = 0.95, tol = 1e-04)
```

Arguments

object "bbbvpa" class object.

conf. lev confidence level, 0.95 (default).

tol convergence tolerance for confidence intervals, 0.0001 (default).

Value

A matrix of lower and upper confidence interval limits (in the first and second column respectively). The matrix rows are labeled by the parameter names (if any) and columns by the corresponding distribution quantiles.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
dat <- rbb.bvpa(500, 0, 0, 1.0, 1.0, 2.0, 0.4, 0.5) conf.intv3(estimates3(dat, 2.4, 0.3, 0.6))
```

estimates

Estimation of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Parameters estimation of BBBVPA distribution.

estimates 5

Usage

```
estimates(
    I,
    s1.int,
    s2.int,
    a0.int,
    a1.int,
    a2.int,
    tol.est = 1e-05,
    MxIter.no = 2000,
    rate = 1e-04,
    condition = "log.L"
)
```

Arguments

I	bivariate observations.
s1.int	initial choice of σ_1 .
s2.int	initial choice of σ_2 .
a0.int	initial choice of α_0 .
a1.int	initial choice of α_1 .
a2.int	initial choice of α_2 .
tol.est	convergence tolerance, 0.00001 (default).
MxIter.no	maximum number of iterations, 2000 (default).
rate	step size or learning rate for gradient descent, 0.0001 (default).
condition	convergence criterion, "log.L" (default) and "p.logL".

Value

```
object of class "bbbvpa", a list consisting of
mu1, mu2, sigma1, sigma2, alpha0, alpha1, alpha2, iter.no
estimates of parameters and number of iteration.
data the supplied data I.
```

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
# Read data
data(precipitation)
data <- as.vector(precipitation[,2])
data[is.na(data)]<-0
n <- length(data)</pre>
```

6 estimates3

```
# Construct the three-dimensional data set
data3d <- function(data){</pre>
u <- 12
Y \leftarrow c()
indx \leftarrow indx1 \leftarrow indx2 \leftarrow indx3 \leftarrow 0
 r <- 5
 i <- 2
 while(i < n){
   i < -i + 1
   if(data[i] > u \mid | sum(data[(i-1):i]) > u \mid | sum(data[(i-2):i]) > u){
     if(data[i] > u){imax <- i}
   if(sum(data[(i-1):i]) > u)\{imax <- i - 3 + which(data[(i-1):i] == max(data[(i-1):i]))[1]\}
   if(sum(data[(i-2):i]) > u)\{imax <- i - 3 + which(data[(i-2):i] == max(data[(i-2):i]))[1]\}
     if(max(indx) > (imax-r)){
       cluster <- data[(max(indx)+3):(imax+r)]</pre>
     } else{
       cluster <- data[(imax-r):(imax+r)]</pre>
     cluster2 <- sapply(c(1:(length(cluster)-1)), function(j) sum(cluster[j:(j+1)]))</pre>
     cluster3 <- sapply(c(1:(length(cluster)-2)), function(j) sum(cluster[j:(j+2)]))</pre>
     indx1 <- append(indx1,imax-r-1+which(cluster==max(cluster))[1])</pre>
     indx2 <- append(indx2,imax-r-1+which(cluster2==max(cluster2)))</pre>
     indx3 <- append(indx3,imax-r-1+which(cluster3==max(cluster3)))</pre>
     Y <- rbind(Y, c(max(cluster), max(cluster2), max(cluster3)))
     indx <- append(indx,imax)</pre>
     i <- i + r
   }
}
return(Y)
I <- data3d(data)[,c(1,3)]</pre>
iniz <- intliz(I)</pre>
est <- estimates(I, iniz[1], iniz[2], iniz[3], iniz[4], iniz[5])</pre>
param.boot(I, iniz[1], iniz[2], iniz[3], iniz[4], iniz[5])
conf.intv(est)
```

estimates3

Estimation of 3-parameter Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Parameters estimation of 3-parameter BBBVPA distribution.

estimates3 7

Usage

```
estimates3(
    I,
    a0.int,
    a1.int,
    a2.int,
    tol.est = 1e-05,
    MxIter.no = 2000,
    condition = "log.L"
)
```

Arguments

I	bivariate observations.
a0.int	initial choice of α_0 .
a1.int	initial choice of α_1 .
a2.int	initial choice of α_2 .
tol.est	convergence tolerance, 0.0001 (default).
MxIter.no	maximum number of iterations, 2000 (default).
condition	convergence criterion, "log.L" (default) and "p.logL".

Value

```
Object of class "bbbvpa3", a list consisting of
alpha0, alpha1, alpha2, iter.no
estimates of parameters and number of iteration.
data the supplied data I.
```

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
dat <- rbb.bvpa(500, 0, 0, 1.0, 1.0, 2.0, 0.4, 0.5) estimates3(dat, 2.4, 0.3, 0.6)[-5]
```

8 intliz

intliz

Initialization of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Return initial choice parameters of BBBVPA distribution.

Usage

```
intliz(
  data,
  ini.run = 100,
  tol.ini = 0.001,
  proc = "ML",
  intv.s1 = c(0, 5),
  intv.s2 = c(0, 5),
  intv.a0 = c(0, 5),
  intv.a1 = c(0, 5),
  intv.a2 = c(0, 5),
  ...
)
```

Arguments

```
data
                    bivariate observations.
                    number of random initializations.
ini.run
tol.ini
                    convergence tolerance, 0.001 (default)..
                    different procedures, "ML" (default) and "S.EM".
proc
intv.s1
                    interval for random initialization of \sigma_1.
intv.s2
                    interval for random initialization of \sigma_2.
intv.a0
                    interval for random initialization of \alpha_0.
intv.a1
                    interval for random initialization of \alpha_1.
intv.a2
                    interval for random initialization of \alpha_2.
                    further arguments to pass to estimates.
```

Value

numeric vector.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
# see the example of estimation
```

intliz3

intliz3	Initialization of 3-parameter Block-Basu Bivariate Pareto (BBBVPA)
	distribution

Description

Return initial choice parameters of 3-parameter BBBVPA distribution.

Usage

```
intliz3(
  data,
  ini.run = 100,
  tol.ini = 0.001,
  proc = "ML",
  intv.a0 = c(0, 5),
  intv.a1 = c(0, 5),
  intv.a2 = c(0, 5),
  ...
)
```

Arguments

Value

numeric vector.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
dat <- rbb.bvpa(500, 0, 0, 1.0, 1.0, 2.0, 0.4, 0.5) intliz3(dat)
```

logL

logL	Log-likelihood function of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Return the log likelihood value.

Usage

```
logL(I, mu1, mu2, s1, s2, a0, a1, a2)
```

Arguments

I	baivariate observations.
mu1	value of μ_1 .
mu2	value of μ_2 .
s1	value of σ_1 .
s2	value of σ_2 .
a0	value of α_0 .
a1	value of α_1 .
a2	value of α_2 .

Value

a list consisting of

```
logLik A scalar numeric, log likelihood of the model. n1, n2 n_1 and n_2.
```

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
dat <- rbb.bvpa(500, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5) logL(dat, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5)
```

mLf1 11

mLf1

Marginal log-liklihood function of variable X1

Description

Return the marginal log-liklihood value of variable X_1 .

Usage

```
mLf1(I, mu1, s1, a0, a1, a2)
```

Arguments

I	baivariate observations.
mu1	value of μ_1 .
s1	value of σ_1 .
a0	value of α_0 .
a1	value of α_1 .
a2	value of α_2 .

Value

A scalar numeric, the marginal log-liklihood value of variable X_1 .

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
dat <- rbb.bvpa(500, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5) mLf1(dat, 0.1, 0.8, 2.0, 0.4, 0.5)
```

mLf2

Marginal log-liklihood function of variable X2

Description

Return the marginal log-liklihood value of variable X_2 .

Usage

```
mLf2(I, mu2, s2, a0, a1, a2)
```

12 param.boot

Arguments

I	baivariate observations
mu2	value of μ_2 .
s2	value of σ_2 .
a0	value of α_0 .
a1	value of α_1 .
a2	value of α_2 .

Value

A scalar numeric, the marginal log-liklihood value of variable X_2 .

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
dat <- rbb.bvpa(500, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5) mLf2(dat, 0.1, 0.8, 2.0, 0.4, 0.5)
```

param.boot

Parametric bootstrap confidence intervals of parameters of Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Parametric bootstrap confidence interval of parameters of BBBVPA distribution.

Usage

```
param.boot(
   data,
   s1.int,
   s2.int,
   a0.int,
   a1.int,
   a2.int,
   conf.lev = 0.95,
   intv.m1 = c(0, 2),
   intv.m2 = c(0, 2),
   no.paboot = 100,
   tol = 1e-04,
   ...
)
```

param.boot3

Arguments

data	bivariate observations.
s1.int	initial choice of σ_1 .
s2.int	initial choice of σ_2 .
a0.int	initial choice of α_0 .
a1.int	initial choice of α_1 .
a2.int	initial choice of α_2 .
conf.lev	confidence level, defult 0.95.
intv.m1	interval related to confidence interval of μ_1 , $c(0,2)$ (default).
intv.m2	interval related to confidence interval of μ_1 , $c(0,2)$ (default).
no.paboot	number of bootstrap samples, 100 (default).
tol	convergence tolerance for confidence interval of μ_1 . and μ_2 , 0.0001 (default).
	further arguments to pass to estimates.

Value

A matrix of lower and upper confidence interval limits (in the first and second column respectively). The matrix rows are labeled by the parameter names (if any) and columns by the corresponding distribution quantiles.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
# see the example of estimation
```

param.boot3	Parametric bootstrap confidence intervals of parameters of 3-
	parameter Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Parametric bootstrap confidence interval of parameters of 3-parameter BBBVPA distribution.

14 pctl.fun

Usage

```
param.boot3(
   data,
   a0.int,
   a1.int,
   a2.int,
   conf.lev = 0.95,
   no.paboot = 100,
   ...
)
```

Arguments

data	bivariate observations.
a0.int	initial choice of α_0 .
a1.int	initial choice of α_1 .
a2.int	initial choice of α_2 .
conf.lev	confidence level, defult 0.95.
no.paboot	number of bootstrap samples, 100 (default).
	further arguments to pass to estimates3.

Value

A matrix of lower and upper confidence interval limits (in the first and second column respectively). The matrix rows are labeled by the parameter names (if any) and columns by the corresponding distribution quantiles.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
dat <- rbb.bvpa(500, 0, 0, 1.0, 1.0, 2.0, 0.4, 0.5) param.boot3(dat, 2.4, 0.3, 0.6)
```

pctl.fun

Survival functions of pivots of estimators of locations.

Description

Survival functions of pivots of estimators of locations μ_1 and μ_2 . These are required to calculate the critical value of confidence intervals for μ_1 and μ_2 .

precipitation 15

Usage

```
pctl.fun(z, n, a0, a1, a2, pct, select = 1)
```

Arguments

Z	quantiles.
n	number of observations.
a0	value of α_0 .
a1	value of α_1 .
a2	value of α_2 .
nct	probabilities

Allows to select the function for different location parameters. a single model

term to be selected for printing. e.g. if you just want the function for μ_1 set

select = 1 (default).

Value

select

return a function.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

Examples

```
uniroot(pctl.fun, interval=c(0,2), n = 500, a0 = 2.0, a1 = 0.4, a2 = 0.5, pct = 0.025, tol = 0.0001)[[1]]
```

precipitation

Precipitation data

Description

The dataset contains daily accumulated precipitation data (in mm) from Abisko Scientific Research Station in northern Sweden for 100 years, from 1st January 1913 to 31st December 2012.

Usage

```
data(precipitation)
```

Format

A data frame with 36524 rows and 2 columns and the following variables:

Time 1st column represents Day.

Precipitation..mm. 2nd column represents daily accumulated precipitation (in mm) of the day.

pseu.logL

Source

https://www.polar.se/stoed-till-polarforskning/abisko-naturvetenskapliga-station/

Examples

```
data(precipitation)
```

pseu.logL	Pseudo log-likelihood function of Block-Basu Bivariate Pareto (BBB-
	VPA) distribution

Description

Return the pseudo log likelihood value.

Usage

```
pseu.logL(I, mu1, mu2, s1, s2, a0, a1, a2)
```

Arguments

Ι	baivariate observations
mu1	value of μ_1 .
mu2	value of μ_2 .
s1	value of σ_1 .
s2	value of σ_2 .
a0	value of α_0 .
a1	value of α_1 .
a2	value of α_2 .

Value

A scalar numeric, pseudo log likelihood of the model.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
dat <- rbb.bvpa(500, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5) pseu.logL(dat, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5)
```

rbb.bvpa 17

rbb.bvpa	Simulate from a Block-Basu Bivariate Pareto (BBBVPA) distribution

Description

Produces one or more samples from the specified BBBVPA distribution.

Usage

```
rbb.bvpa(n, mu1, mu2, sig1, sig2, alp0, alp1, alp2)
```

Arguments

_	
n	number of observations.
mu1	value of μ_1
mu2	value of μ_2
sig1	value of σ_1
sig2	value of σ_2
alp0	value of α_0
alp1	value of α_1
alp2	value of α_2

Value

numeric matrix.

Author(s)

Biplab Paul <paul.biplab497@gmail.com> and Arabin Kumar Dey <arabin@iitg.ac.in>

```
cor(rbb.bvpa(500, 0.1, 0.1, 0.8, 0.8, 2.0, 0.4, 0.5))
```

Index

```
* datasets
    precipitation, \\ 15
* package
    bvpa-package, 2
bvpa (bvpa-package), 2
bvpa-package, 2
conf.intv, 3
conf.intv3, 4
estimates, 4
estimates3, 6
intliz, 8
intliz3, 9
logL, 10
mLf1, 11
mLf2, 11
param.boot, 12
param.boot3, 13
pctl.fun, 14
precipitation, 15
pseu.logL, 16
rbb.bvpa, 17
```