CLAIM OR CLAIMS

1

2	1.	A method for differential compression of a body of data S with respect to a body of data T
3		comprising the steps of:
4		initializing a sliding window W of size $MAX\{m,n\}+K$
5		so that its rightmost m characters are S ,
6		where K is an integer such that $0 \le K < MIN\{m,n\}$;
7		performing sliding window compression of T with window W ,
8		to produce a sequence of pointers,
9		where each of said pointers represents a single character
10		or represents a copy of an earlier substring of T
11		or represents a copy of a substring of S ,
12		such that at least one of said pointers represents a copy of a substring of S ;
13		transmitting each pointer of said sequence of pointers to a utilization device
14		that contains a copy of S ;
15		upon receiving each of said pointers at said utilization device,
16		performing an additional sliding window decoding step in the recovery of T ,
17		in such a way that the size of the memory used is no more than $MAX\{m,n\} + K$,
18		and such that after the last pointer is received T is fully recovered.
19	2.	A method according to Claim 1, further comprising the step of:
20		Rearranging substrings of S to that S is better aligned with T .
21	3.	A method according to Claim 1 where $K \leq MIN\{m,n\}/2$.
22	4.	A method according to Claim 1 where K is $O(\sqrt{MIN\{m,n\}})$.
23	5.	A method according to Claim 1 where $K=0$.

- 1 6. A method for representing a first body of data T of size n by a second body of data S of size
- 2 m and a sequence of pointers,
- where each of said pointers represents a single character or represents a copy of an earlier
- 4 substring of T or represents a copy of a substring of S,
- such that at least one of said pointers represents a copy of a substring of S,
- so that it is possible to recover T from S by processing said sequence of pointers
- 7 and overwriting S from left to right,
- 8 in such a way that the size of the memory used is no more than $MAX\{m,n\} + K$,
- 9 where K is an integer such that $0 \le K < MIN\{m,n\}$.
- 7. A method according to Claim 6, further comprising the step of:
- Rearranging substrings of S to that S is better aligned with T.
- 12 8. A method according to Claim 6 where $K \leq MIN\{m,n\}/2$.
- 13 9. A method according to Claim 6 where K is $O(\sqrt{MIN\{m,n\}})$.
- 14 10. A method according to Claim 6 where K=0.
- 15 11. A method of recovering a first body of data T of size n from a second body of data S of size
- 16 m and a sequence of pointers, where each of said pointers represents a single character or
- represents a copy of an earlier substring of T or represents a copy of a substring of S,
- such that at least one of said pointers represents a copy of a substring of S,
- by processing said sequence of pointers and overwriting S from left to right,
- in such a way that the size of the memory used is no more than $MAX\{m,n\} + K$,
- where K is an integer such that $0 \le K < MIN\{m,n\}$.
- 22 12. A method according to Claim 11, further comprising the step of:
- Rearranging substrings of S to that S is better aligned with T.
- 24 13. A method according to Claim 11 where $K \le MIN\{m,n\}/2$.
- 25 **14.** A method according to Claim 11 where K is $O(\sqrt{MIN\{m,n\}})$.
- 26 **15.** A method according to Claim 11 where K=0.

1	16. A system for differential compression of a body of data S with respect to a body of data T
2	comprising the steps of:
3	means for initializing a sliding window W of size $MAX\{m,n\}+K$
4	so that its rightmost m characters are S ,
5	where K is an integer such that $0 \le K < MIN\{m,n\}$;
6	means for performing sliding window compression of T with window W ,
7	to produce a sequence of pointers,
8	where each of said pointers represents a single character
9	or represents a copy of an earlier substring of T
10	or represents a copy of a substring of S,
11	such that at least one of said pointers represents a copy of a substring of S;
12	means for transmitting each pointer of said sequence of pointers to a utilization device
13	that contains a copy of S ;
14	means for upon receiving each of said pointers at said utilization device,
15	performing an additional sliding window decoding step in the recovery of T ,
16	in such a way that the size of the memory used is no more than $MAX\{m,n\} + K$,
17	and such that after the last pointer is received T is fully recovered.
18	17. A system as in Claim 16, further comprising the step of:
19	Rearranging substrings of S to that S is better aligned with T .
20	18. A method according to Claim 16 where $K \leq MIN\{m,n\}/2$.
21	19. A method according to Claim 16 where K is $O(\sqrt{MIN\{m,n\}})$.
22	20. A method according to Claim 16 where K=0

- 21. A system for recovering a first body of data T of size n from a second body of data S of size
- 2 m and a sequence of pointers,
- 3 where each of said pointers represents a single character or represents a copy of an earlier
- 4 substring of T or represents a copy of a substring of S,
- 5 such that at least one of said pointers represents a copy of a substring of S,
- 6 with means for:
- 7 processing said sequence of pointers and overwriting S from left to right,
- 8 in such a way that the size of the memory used is no more than $MAX\{m,n\} + K$.
- 9 22. A system as in Claim 21, further comprising the step of:
- Rearranging substrings of S to that S is better aligned with T.
- 23. A system for differential compression and decompression of a body of data T with respect to
- a body of data S comprising means for:
- computing strongly aligned moves and using an off-the-shelf compression and
- decompression method to represent the portions of T not represented by substring moves
- within S, in such a way that the size of the memory used when decoding is no more than
- 16 MAX $\{m,n\}$ + K, where K is an integer such that $0 \le K < MIN\{m,n\}$.