parth.pandey13103347@gmail.com_10_C

June 21, 2020

0.1 Task-C: Regression outlier effect.

Objective: Visualization best fit linear regression line for different scenarios

0.1.1 Imports

```
[1]: # you should not import any other packages
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import numpy as np
from sklearn.linear_model import SGDRegressor
from IPython.display import Latex
```

0.1.2 Data Creation Functions

```
[176]: import numpy as np
       import scipy as sp
       import scipy.optimize
       def angles_in_ellipse(num,a,b):
           assert(num > 0)
           assert(a < b)
           angles = 2 * np.pi * np.arange(num) / num
           if a != b:
               e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
               tot_size = sp.special.ellipeinc(2.0 * np.pi, e)
               arc_size = tot_size / num
               arcs = np.arange(num) * arc_size
               res = sp.optimize.root(
                   lambda x: (sp.special.ellipeinc(x, e) - arcs), angles)
               angles = res.x
           return angles
```

```
phi = angles_in_ellipse(n, a, b)
e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
arcs = sp.special.ellipeinc(phi, e)

fig = plt.figure()
ax = fig.gca()
ax.axes.set_aspect('equal')
ax.scatter(b * np.sin(phi), a * np.cos(phi))
plt.show()
```


0.1.3 Generating Data

```
[178]: x_train= b * np.sin(phi)
y_train= a * np.cos(phi)
```

0.1.4 Steps to achieve Objective

0.1.5 Observation on checking the documentation of loss functions of Linear Models.

- On checking out the https://scikit-learn.org/stable/modules/linear_model.html

 It was brought into light that the regression implementation with regularization is called ridge regression
- "This classifier is sometimes referred to as a Least Squares Support Vector Machines with a linear kernel."

Here the documentation says that Linear SVM is pretty similar to the current implementation.

0.1.6 Formula Used in the Self Implementation of Linear Regression

Linear Regression Loss Function Used

• Loss Function

$$\min_{w} (1/N) * ||X.w - y||_{2}^{2} + \alpha ||w||_{2}^{2}$$

• Gradient for w

$$\delta L/\delta w_{w_{old}} = 2*X*((w.X) + b - y) + 2\alpha w$$

- Gradient for b $\delta L/\delta b_{bold} = 2*((w.X)+b-y)$

Defining Functions for the above formula

```
[179]: # Weight Intialization
       def init_weights(x_train):
           w = np.zeros_like(x_train)
           b = 0
           return w,b
       def sigmoid(z):
           return 1/(1+ np.exp(-z))
       # gradient function
       # Loss = Square Loss
       def gradient_dw(x, y, w, b, param, N):
           return x * ((np.dot(w,x) + b) - y) * (1/N) + 2 * (param) * w
       def gradient_db(x, y, w, b, param, N):
           return ((np.dot(w,x) + b) - y)/N
       def loss(y_true,y_pred):
           return np.sum((y_true- y_pred)**2)
       def draw line(coef,intercept, mi, ma, ax, color='green', label=''):
           # for the separating hyper plane ax+by+c=0, the weights are [a, b] and the
        \hookrightarrow intercept is c
           # to draw the hyper plane we are creating two points
           # 1. ((b*min-c)/a, min) i.e ax+by+c=0 ==> ax = (-by-c) ==> x = (-by-c)/a_{l}
        \rightarrowhere in place of y we are keeping the minimum value of y
           # 2. ((b*max-c)/a, max) i.e ax+by+c=0 ==> ax = (-by-c) ==> x = (-by-c)/a_{\square}
        \rightarrowhere in place of y we are keeping the maximum value of y
           points=np.array([(mi, (coef*mi + intercept)),(ma, (coef*ma + intercept))])
           ax.plot(points[:,0], points[:,1], color=color, label=label)
```

Defining train function

```
[180]: def train(x_train, y_train, epochs, param, eta):
    w,b = init_weights(x_train[0])
    epoch_loss = 0
    N = x_train.shape[0]
    for epoch in range(1,epochs+1):
        for x, y in zip(x_train, y_train):
            dw = gradient_dw(x,y,w,b,param, N)
            db = gradient_db(x,y,w,b,param, N)
```

```
w = w - (eta * dw)
b = b - (eta * db)
y_pred = []
for x in x_train:
    y_pred.append(np.dot(w,x) + b)
old_loss = epoch_loss
epoch_loss = loss(y_train, y_pred)
if epoch_loss==old_loss:
    break
return w,b
```

0.1.7 Linear Regression Implementation

Training with Original Data

```
[181]: # training on original data
       _, ax = plt.subplots(1,1,figsize=(5,5))
       w, b = train(x_train, y_train, 1000, 0.0001, 0.001)
       clf =SGDRegressor(loss='squared_loss', alpha=0.0001, eta0=0.001,
       →learning_rate='constant', random_state=0)
       clf.fit(x_train.reshape(-1,1), y_train)
       ax.scatter(x_train, y_train)
       draw_line(w,b,np.min(x_train),np.max(x_train),ax,color='red', label='Selfu
       →Linear Regression')
       draw_line(clf.coef_[0],clf.intercept_[0],np.min(x_train),np.max(x_train),ax,u
       →label='SGD Regression')
       ax.set_title('Training without Outliers')
       ax.legend(loc=1)
       ax.set_xlabel('Feature x')
       ax.set_ylabel('Feature y')
       plt.show()
```


Training with outliers

```
[182]: outliers = [(0,2),(21, 13), (-23, -15), (22,14), (23, 14)] hyperparams = [0.0001, 1, 100]
```

```
draw_line(w,b,np.min(x_train_temp),np.max(x_train_temp),ax[i][j],u

color='red', label='Self Linear Regression')
    ax[i][j].set_title('Training on Param {} adding Outlier = {}'.

format(param, ele))
    ax[i][j].set_xlabel('Feature x')
    ax[i][j].set_ylabel('Feature y')

plt.tight_layout()

plt.show()
```


0.1.8 Observations based on self implementation of SGDRegressor

• As the hyperparameter is increasing the hyperplane becomes less sensitive towards the outliers but the model still shifts towards the outliers but only by a small margin.\

- Reason for happening is \backslash

$$w_n = w_o - \frac{w_o^t x + b}{N} + \frac{y}{N} - 2\lambda w_o$$

as the value of λ increases there is more stringent increase in the value of w_n , hence weights are much less affected in presence of an outlier.