PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 23. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 24. do 32. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 23. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Liczba, której 3% jest równe $\left(\frac{1}{9}\right)^{-1}$, to:

A. 300

C. 0,09

 $\mathbf{D.}\,0,27$

Zadanie 2. (*1 pkt*)

Zdanie: "Liczba x jest o 6 większa od podwojonego kwadratu liczby a" zapisane w postaci równania

A. $x = 6 \cdot 2a^2$

B. $x = 6 + (2a)^2$ **C.** $x + 6 = 2a^2$ **D.** $x = 6 + 2a^2$

Zadanie 3. (1 pkt)

Liczba $x = \frac{\sqrt{10} + \sqrt{2}}{\sqrt{5} + 1}$ jest równa:

C. $2\sqrt{2}$

D. 2

Zadanie 4. (*1 pkt*)

W pewnej szkole liczącej 400 uczniów 65% uczy się języka angielskiego, 47% – języka rosyjskiego, a 24% uczy się obu tych języków. Wynika stąd, że liczba uczniów, którzy nie uczą się żadnego z tych jezyków, to:

A.144

B. 96

C. 48

D. 24

Zadanie 5. (1 *pkt*)

Wielomian $W(x) = x^3 - x^2 - x + 1$ można przedstawić w postaci:

A. $W(x) = (x-1)^2(x+1)$ **B.** $W(x) = x^2(x-1)$ **C.** $W(x) = (x+1)^2(x-1)$ **D.** $W(x) = x^2(x+1)$

Zadanie 6. (*1 pkt*)

Liczba $a = 3 \log_5 2 + \log_5 7$ jest równa:

A. $\log_5(2^3 + 7)$ **B.** $\log_5(2 \cdot 7)^3$ **C.** $\log_5(2^3 \cdot 7)$ **D.** $\log_5(2 + 7)^3$

Zadanie 7. (*1 pkt*)

Dane jest równanie ax - b = cx + a. Zatem:

 $\mathbf{A} \cdot x = \frac{b+a}{ac}$

B. $x = \frac{b+a}{a-c}$ **C.** $x = \frac{a-b}{ac}$ **D.** $x = \frac{a-b}{a-c}$

Zadanie 8. (*1 pkt*)

Wyrażenie $W = (x^{-3} + 2x^{-5})^2$ jest równe: **A.** $x^{-6} + 4x^{15} + 4x^{-10}$ **B.** $x^{-6} + 4x^{-8} + 4x^{-10}$ **C.** $x^9 + 4x^{15} + 4x^{25}$ **D.** $x^9 + 4x^{-8} + 4x^{25}$

Zadanie 9. (*1 pkt*)

Liczba rozwiązań równania $\frac{(x^2-9)(x-\sqrt{3})}{x^3-27}$ jest równa:

A. 0

D. 3

Zadanie 10. (1 pkt)

Wierzchołek paraboli będącej wykresem funkcji y = (x - 4)(x + 6) ma współrzędne:

$$A.(4,-6)$$

B.
$$(1, -21)$$

$$C.(-4,6)$$

$$\mathbf{D.}(-1, -25)$$

Zadanie 11. (*1 pkt*)

Liczba liczb pierwszych należących do przedziału będącego rozwiązaniem nierówności $x^2 - 11x \le 0$ to:

A. nieskończenie wiele B. 4

Zadanie 12. (*1 pkt*)

Dany jest ciąg (a_n) określony wzorem $a_n = n^2 - 9$. Liczba ujemnych wyrazów tego ciągu jest równa:

B. 5

Zadanie 13. (*1 pkt*)

Ciągiem geometrycznym jest ciąg określony wzorem:

A.
$$a_n = -2^n$$

B.
$$a_n = -2 + 5n$$
 C. $a_n = \frac{1}{n}$

C.
$$a_n = \frac{1}{n}$$

D.
$$a_n = (n+1)^2$$

Zadanie 14. (*1 pkt*)

Dany jest ciąg o wzorze ogólnym $a_n = \frac{45}{n} + 1$. Wartość $\frac{3}{2}$ ma wyraz:

A. szesnasty

B. osiemnasty

C. trzydziesty pierwszy D. dziewiećdziesiaty

Zadanie 15. (*1 pkt*)

Jeżeli sinus kąta ostrego α jest pięć razy większy od jego cosinusa, to:

$$\mathbf{A.} \sin \alpha = \frac{\sqrt{6}}{6}$$

B.
$$\cos \alpha = \frac{\sqrt{6}}{6}$$

$$\mathbf{D.}\cos\alpha = \frac{\sqrt{26}}{26}$$

Zadanie 16. (*1 pkt*)

Jeżeli kąt ostry α jest o 40° mniejszy od kąta przyległego do niego, to:

$$\mathbf{A} \cdot \boldsymbol{\alpha} = 70^{\circ}$$

$$\mathbf{B} \cdot \alpha = 140^{\circ}$$

C.
$$\alpha = 110^{\circ}$$

D.
$$\alpha = 80^{\circ}$$

Zadanie 17. (1 pkt)

Jeśli a, b, c są długościami odcinków, to istnieje trójkąt o bokach a, b, c, jeżeli:

A.
$$a = 7, b = 9, c = 4$$

B.
$$a = 7, b = 9, c = 2$$
 C. $a = 7, b = 4, c = 3$ **D.** $a = 5, b = 9, c = 3$

C.
$$a = 7, b = 4, c = 3$$

D.
$$a = 5, b = 9, c = 3$$

Zadanie 18. (*1 pkt*)

Przeciwległe wierzchołki kwadratu mają współrzędne A = (-5, -1), C = (1, 3). Promień okręgu wpisanego w ten kwadrat jest równy:

A.
$$2\sqrt{13}$$

B.
$$\sqrt{13}$$

$$\mathbf{C.}\sqrt{26}$$

D.
$$\frac{1}{2}\sqrt{26}$$

Zadanie 19. (*1 pkt*)

Środkiem okręgu o równaniu $x^2 + y^2 - 10y = 25$ jest punkt:

A.
$$S = (1, 5)$$

B.
$$S = (0,5)$$

$$\mathbf{C} \cdot S = (1, -5)$$
 $\mathbf{D} \cdot S = (0, -5)$

D.
$$S = (0, -5)$$

Zadanie 20. (1 pkt)

Nie jest prawdziwe zdanie:

- A. Środek okręgu wpisanego w trójkąt to punkt przecięcia się dwusiecznych kątów trójkąta.
- **B.** Środkowe trójkąta dzielą się w stosunku 1 : 2.
- C. Środek okręgu opisanego na trójkącie to punkt przecięcia się symetralnych boków trójkąta.
- D. Środek ciężkości trójkąta to punkt przecięcia się wysokości trójkąta.

Zadanie 21. (1 pkt)

Liczba przekątnych jest równa liczbie boków w:

A. prostokącie

B. pięciokącie

C. sześciokacie

D. siedmiokacie

Zadanie 22. (1 pkt)

Rzucamy dwukrotnie sześcienną kostką do gry. Prawdopodobieństwo zdarzenia, że na każdej kostce wypadnie co najmniej 5 oczek, jest równe:

A. $\frac{1}{36}$

B. $\frac{2}{36}$

 $C.\frac{3}{38}$

D. $\frac{4}{36}$

Zadanie 23. (1 pkt)

Liczba ścian graniastosłupa, który ma 12 wierzchołków, jest równa:

A.12

B. 8

C. 6

D. 4

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 24. do 32. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 24. (2 *pkt*)

Wyznacz równanie prostej prostopadłej do prostej o równaniu y = -2x + 4 przecinającej oś OX w punkcie o odciętej 4.

Zadanie 25. (2 *pkt*)

Wyznacz równanie okręgu o środku S = (-2,3) stycznego do prostej l o równaniu 3x + 4y + 14 = 0.

Zadanie 26. (2 *pkt*)

Stosunek pól dwóch trójkątów podobnych jest równy 4, a suma ich obwodów 12. Wyznacz obwód każdego z tych trójkątów.

Zadanie 27. (2 *pkt*)

Wykaż, że nie istnieją liczby x i y, takie, że $\begin{cases} x^2 + 2xy = 1 \\ 4xy - y^2 = 4 \end{cases}$

Zadanie 28. (2 pkt)

W kwadrat o boku 2 wpisano drugi kwadrat w ten sposób, że bok wpisanego kwadratu tworzy z bokiem danego kąt 30°. Oblicz mniejszą odległość wierzchołków tych kwadratów.

Zadanie 29. (2 *pkt*)

Oblicz wartość wyrażenia $W = \left(\operatorname{tg} \alpha + \frac{1}{\operatorname{tg} \alpha} \right) \sin \alpha \cos \alpha$.

Zadanie 30. (*4 pkt*)

Księgarz kupił w hurtowni 20 przewodników i 30 map za 1020 zł. Przewodniki sprzedał z zyskiem 20%, a mapy z zyskiem 25%. W ten sposób zarobił 240 zł. Oblicz, w jakiej cenie księgarz kupił w hurtowni przewodniki, a w jakiej mapy.

Zadanie 31. (*6 pkt*)

Podstawa AB trójkąta równobocznego ABC zawarta jest w prostej $y = \frac{3}{4}x + 1$, a wierzchołek C = (-1, 4). Wyznacz współrzędne wierzchołków A, B tego trójkąta.

Zadanie 32. (*5 pkt*)

Podstawą graniastosłupa prostego jest romb. Krótsza przekątna rombu tworzy z krawędzią podstawy kąt 60° i ma długość $4\sqrt{3}$. Dłuższa przekątna graniastosłupa tworzy z dłuższą przekątną rombu kąt 60° . Oblicz objętość graniastosłupa.

