CSE 6367

Assignment 2

Solution 1:

Solution 2:

Solution 3:

Let R be n-dimensional rotation matrix.

We know that rotation can be represented as orthogonal matrices.

Therefore, for R acting on Rⁿ,

1. $R^T = R^{-1}$ Rotation is an orthogonal matrix.

2. $det(RR^T) = det(In)$... Taking determinants of both sides.

3. $det(R) det(R^T) = 1$...From (3)

4. $det(R)^2 = 1$... As $det(R) = det(R^{-1})$

5. $(det(R))^2 - 1 = 0$

6. (det(R) + 1) (det(R) - 1) = 0

7. det(R) + 1 = 0 or det(R) - 1 = 0

8. det(R) = 1 or det(R) = -1

Solution 4:

(a) Let R1 and R2 be two rotation matrices on the plane. Prove or disprove the following: R1R2 = R2R1.

Let R1 =
$$[0, -1;$$

 $[0, -1;$
 $[-1, 0;$
 $[0, -1];$

Multiplying them, we get:

Hence proved that R1R2 = R2R1.

Explanation: Matrices commute if they preserve each other's *eigenspaces*.

In a plane, no matter what, the eigenvectors of a rotation matrix are [i,1] and [-i,1]. So, since all such matrices have the same eigenvectors, they will always commute.

(b) Let R1 and R2 be two rotation matrices in 3D space. Prove or disprove the following: R1R2=R2R1.

Hence, disproved that R1R2 ≠ R2R1.

Explanation: In *three* dimensions, there's always one real eigenvalue for a rotation matrix, so that eigenvalue has a real eigenvector associated with it: the axis of rotation. This eigenvector doesn't share values with the rest of the eigenvectors for the rotation matrix. So, the axis is an eigenspace of dimension 1, so **rotations with different axes can't share eigenvectors**, so they cannot commute.