

How good is your model?

Classification metrics

- Measuring model performance with accuracy:
 - Fraction of correctly classified samples
 - Not always a useful metric

Class imbalance example: Emails

- Spam classification
 - 99% of emails are real; 1% of emails are spam
- Could build a classifier that predicts ALL emails as real
 - 99% accurate!
 - But horrible at actually classifying spam
 - Fails at its original purpose
- Need more nuanced metrics

Diagnosing classification predictions

Confusion matrix

Actual: Spam Email

Actual: Real Email

Predicted: Spam Email	Predicted: Real Email	
True Positive	False Positive	
False Negative	True Negative	

• Accuracy:
$$\dfrac{tp+tn}{tp+tn+fp+fn}$$

Metrics from the confusion matrix

• Precision:
$$\dfrac{tp}{tp+fp}$$

• Recall:
$$\frac{tp}{tp+fn}$$

• F1 score:
$$2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- High precision: Not many real emails predicted as spam
- High recall: Predicted most spam emails correctly

Confusion matrix in scikit-learn

```
In [1]: from sklearn.metrics import classification_report
In [2]: from sklearn.metrics import confusion_matrix
In [3]: knn = KNeighborsClassifier(n_neighbors=8)
In [4]: X_train, X_test, y_train, y_test = train_test_split(X, y, ...: test_size=0.4, random_state=42)
In [5]: knn.fit(X_train, y_train)
In [6]: y_pred = knn.predict(X_test)
```


Confusion matrix in scikit-learn

```
In [7]: print(confusion_matrix(y_test, y_pred))
[52
 [ 3 112]]
  [8]: print(classification_report(y_test, y_pred))
            precision recall f1-score
                                        support
                0.95
                     0.88
                                   0.91
                                             59
                0.94
                     0.97
                                   0.96
                                             115
                0.94
                     0.94
                                   0.94
                                             174
avg / total
```


Let's practice!

Logistic regression and the ROC curve

Logistic regression for binary classification

- Logistic regression outputs probabilities
- If the probability 'p' is greater than 0.5:
 - The data is labeled '1'
- If the probability 'p' is less than 0.5:
 - The data is labeled 'o'

Linear decision boundary

Logistic regression in scikit-learn

```
In [1]: from sklearn.linear_model import LogisticRegression
In [2]: from sklearn.model_selection import train_test_split
In [3]: logreg = LogisticRegression()
In [4]: X_train, X_test, y_train, y_test = train_test_split(X, y, ...: test_size=0.4, random_state=42)
In [5]: logreg.fit(X_train, y_train)
In [6]: y_pred = logreg.predict(X_test)
```


Probability thresholds

- By default, logistic regression threshold = 0.5
- Not specific to logistic regression
 - k-NN classifiers also have thresholds
- What happens if we vary the threshold?

The ROC curve

Plotting the ROC curve

```
In [1]: from sklearn.metrics import roc_curve
In [2]: y_pred_prob = logreg.predict_proba(X_test)[:,1]
In [3]: fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
In [4]: plt.plot([0, 1], [0, 1], 'k--')
In [5]: plt.plot(fpr, tpr, label='Logistic Regression')
In [6]: plt.xlabel('False Positive Rate')
In [7]: plt.ylabel('True Positive Rate')
In [8]: plt.title('Logistic Regression ROC Curve')
In [9]: plt.show();
```


Plotting the ROC curve

logreg.predict_proba(X_test)[:,1]

Let's practice!

Area under the ROC curve

Area under the ROC curve (AUC)

Larger area under the ROC curve = better model

AUC in scikit-learn

```
In [1]: from sklearn.metrics import roc_auc_score
In [2]: logreg = LogisticRegression()
In [3]: X_train, X_test, y_train, y_test = train_test_split(X, y,
   ...: test_size=0.4, random_state=42)
In [4]: logreg.fit(X_train, y_train)
In [5]: y_pred_prob = logreg.predict_proba(X_test)[:,1]
In [6]: roc_auc_score(y_test, y_pred_prob)
Out[6]: 0.997466216216
```


AUC using cross-validation

Let's practice!

Hyperparameter tuning

Hyperparameter tuning

- Linear regression: Choosing parameters
- Ridge/lasso regression: Choosing alpha
- k-Nearest Neighbors: Choosing n_neighbors
- Parameters like alpha and k: Hyperparameters
- Hyperparameters cannot be learned by fitting the model

Choosing the correct hyperparameter

- Try a bunch of different hyperparameter values
- Fit all of them separately
- See how well each performs
- Choose the best performing one
- It is essential to use cross-validation

Grid search cross-validation

	0.1	0.2	0.3	0.4
0.1	0.698	0.692	0.688	0.675
0.2	0.706	0.705	0.704	0.701
0.3	0.721	0.726	0.713	0.703
0.4	0.699	0.702	0.698	0.702
0.5	0.701	0.703	0.697	0.696

Alpha

GridSearchCV in scikit-learn

```
In [1]: from sklearn.model_selection import GridSearchCV
In [2]: param_grid = {'n_neighbors': np.arange(1, 50)}
In [3]: knn = KNeighborsClassifier()
In [4]: knn_cv = GridSearchCV(knn, param_grid, cv=5)
In [5]: knn_cv.fit(X, y)
In [6]: knn_cv.best_params_
Out[6]: {'n_neighbors': 12}
  [7]: knn_cv.best_score_
Out[7]: 0.933216168717
```


Let's practice!

Hold-out set for final evaluation

Hold-out set reasoning

- How well can the model perform on never before seen data?
- Using ALL data for cross-validation is not ideal
- Split data into training and hold-out set at the beginning
- Perform grid search cross-validation on training set
- Choose best hyperparameters and evaluate on hold-out set

Let's practice!