Sensitivity Analysis: Omitting Subsets of Variables

Alvin Sheng

Contents

CAR model results, Coronary Heart Disease, Omitting SVI
Beta samples
Examining sigma2, nu2, rho
Examining a sample of the 3108 phi parameters
Inference
Credible Interval plots for the coefficients, in ggplot
CAR model results, High Blood Pressure, Omitting SVI Inference
CAR model results, Asthma, Omitting SVI
Inference
CAR model results, Poor Mental Health, Omitting SVI
Inference

```
library(here)
## Warning in readLines(f, n): line 1 appears to contain an embedded nul
## Warning in readLines(f, n): incomplete final line found on '/Volumes/
## ALVINDRIVE2/flood-risk-health-effects/._flood-risk-health-effects.Rproj'
## here() starts at /Volumes/ALVINDRIVE2/flood-risk-health-effects
library(coda)
library(CARBayes)
## Loading required package: MASS
## Loading required package: Rcpp
## Registered S3 method overwritten by 'GGally':
    method from
##
    +.gg
           ggplot2
library(ggplot2)
library(tidyverse)
## -- Attaching packages -----
                                                  ----- tidyverse 1.3.1 --
## v tibble 3.1.8
                       v dplyr 1.0.10
## v tidyr 1.2.1
                      v stringr 1.4.0
           2.1.1
                       v forcats 0.5.1
## v readr
## v purrr
           0.3.4
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
## x dplyr::select() masks MASS::select()
fhs_model_df <- readRDS("intermediary_data/fhs_model_df_fr_and_pollute_pc.rds")</pre>
var_names <- c("Intercept", names(fhs_model_df[, 19:(ncol(fhs_model_df) - 4)]))</pre>
names_omit_svi <- var_names[!(var_names %in% c("EP_POV", "EP_UNEMP", "EP_PCI", "EP_NOHSDP",</pre>
                                             "EP_AGE65", "EP_AGE17", "EP_DISABL", "EP_SNGPNT",
                                             "EP_MINRTY", "EP_LIMENG", "EP_MUNIT", "EP_MOBILE",
                                             "EP_CROWD", "EP_NOVEH", "EP_GROUPQ"))]
Function for post-processing the inference
pc idx <- 2:6
pc2flip \leftarrow c(-1, 1, -1, -1, -1)
post_flip <- function(beta_inf_subset, pc2flip) {</pre>
 names_temp <- colnames(beta_inf_subset)</pre>
 beta inf subset[pc2flip == -1, ] <- beta inf subset[pc2flip == -1, c(1, 3, 2)]
 colnames(beta_inf_subset) <- names_temp</pre>
 return(sweep(beta_inf_subset, 1, pc2flip, FUN = "*"))
}
```

CAR model results, Coronary Heart Disease, Omitting SVI

Inference is based on 3 markov chains, each of which has been run for 110000 samples, the first 10000 of which has been removed for burn-in. The remaining 100000 samples are thinned by 2, resulting in 150000 samples for inference across the 3 Markov chains.

```
load(here("modeling_files/sensitivity_analysis/omit_subsets_of_variables/CHD_omit_SVI.RData"))
```

Beta samples

```
beta_samples <- mcmc.list(chain_list[[1]] samples beta, chain_list[[2]] samples beta,
                     chain_list[[3]]$samples$beta)
effectiveSize(beta_samples)
##
                           var3
                                               var5
                                                        var6
        var1
                 var2
                                     var4
var12
##
                 var8
                           var9
                                    var10
                                              var11
        var7
## 25122.6708
            1077.2927
                        629.9440
                                 818.3618
                                           310.6115
                                                     604.5310
##
       var13
  12494.0905
```

Examining sigma2, nu2, rho

Examining a sample of the 3108 phi parameters

```
effectiveSize(phi_samples_subset)
##
        var1
                  var2
                            var3
                                      var4
                                                var5
                                                           var6
                                                                     var7
                                                                               var8
                       12741.53 83225.89 136580.70 90191.29
                                                                60974.97
##
  55330.46
              28272.73
                                                                           90332.31
##
        var9
                 var10
## 111332.19 57230.14
Inference
beta_samples_matrix <- rbind(chain_list[[1]] $samples$beta, chain_list[[2]] $samples$beta,
                          chain list[[3]]$samples$beta)
colnames(beta samples matrix) <- names omit svi
beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5)
# flipping the inference results according to the flipped PCs
beta_inference[pc_idx, ] <- post_flip(beta_inference[pc_idx, ], pc2flip)</pre>
beta_inference
##
                            50%
                                    2.5%
                                            97.5%
## Intercept
                        6.66851 6.66278 6.67424
## flood_risk_pc1
                        0.06123 0.04511 0.07725
## flood_risk_pc2
                        0.00238 -0.01557 0.02047
## flood_risk_pc3
                        0.02183 0.00824 0.03552
## flood_risk_pc4
                       -0.00109 -0.01345 0.01117
## flood_risk_pc5
                        0.02138 0.00951 0.03318
## EP_UNINSUR
                       -0.06841 -0.08513 -0.05166
## pollute_conc_pc1
                       -0.24288 -0.30096 -0.18375
## pollute_conc_pc2
                       -0.51017 -0.59414 -0.42923
## pollute_conc_pc3
                       -0.36204 -0.43589 -0.28392
                        0.02246 -0.10094 0.14309
## tmmx
## rmax
                        0.11529 0.02433 0.20249
## Data Value CSMOKING 0.87054 0.84991 0.89070
saveRDS(beta_inference, file = here("modeling_files/sensitivity_analysis/omit_subsets_of_variables/beta
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "Intercept"
                              "flood_risk_pc1"
                                                     "flood_risk_pc3"
  [4] "flood_risk_pc5"
                              "EP UNINSUR"
                                                     "pollute_conc_pc1"
## [7] "pollute conc pc2"
                              "pollute_conc_pc3"
                                                     "rmax"
## [10] "Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
```

```
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                            post_median = `50%`,
                            post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta inference df$var name <- factor(beta inference df$var name, levels = beta inference df$var name)
p <- ggplot(beta_inference_df[-1, ], aes(x = var_name, y = post_median)) +
  geom_point() +
  ylim(c(-1, 2)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 25)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4)) +
  geom_vline(xintercept = c(5.5, 6.5, 9.5, 11.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 1.45, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("Flood PC 1", "Flood PC 2", "Flood PC 3", "Flood PC 4", "Flood PC 5",
                              "Uninsured",
                              "Pollution PC 1", "Pollution PC 2", "Pollution PC 3",
                              "Maximum Temperature", "Maximum Humidity",
                              "Smoking")) + ggtitle("95% Credible Intervals, Coronary Heart Disease, St.
p
```

95% Credible Intervals, Coronary Heart Disease, Stratified on All RPL The


```
ggsave(here("figures/final_figures/sensitivity_analysis/CHD_omit_SVI.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, High Blood Pressure, Omitting SVI

```
load(here("modeling_files/sensitivity_analysis/omit_subsets_of_variables/BPHIGH_omit_SVI.RData"))
```

Inference

```
beta_samples_matrix <- rbind(chain_list[[1]] $samples$beta, chain_list[[2]] $samples$beta,
                          chain_list[[3]]$samples$beta)
colnames(beta_samples_matrix) <- names_omit_svi</pre>
beta_inference <- round(t(apply(beta_samples_matrix, 2, quantile, c(0.5, 0.025, 0.975))),5)
# flipping the inference results according to the flipped PCs
beta inference[pc idx, ] <- post flip(beta inference[pc idx, ], pc2flip)
beta inference
##
                            50%
                                    2.5%
                                            97.5%
## Intercept
                       32.36136 32.34803 32.37465
## flood_risk_pc1
                       0.05729 0.00802 0.10586
## flood_risk_pc2
                       -0.04157 -0.09604 0.01290
## flood_risk_pc3
                       0.05554 0.01386 0.09699
## flood_risk_pc4
                       0.01926 -0.01802 0.05619
## flood_risk_pc5
                       0.07317 0.03716 0.10898
## EP_UNINSUR
                       -0.27171 -0.32183 -0.22105
## pollute_conc_pc1
                       -1.00816 -1.19056 -0.82774
## pollute_conc_pc2
                      -2.41100 -2.67566 -2.14600
## pollute_conc_pc3
                      -0.30876 -0.55987 -0.06857
## tmmx
                        0.01861 -0.41729 0.41541
                        0.10795 -0.19944 0.39392
## rmax
## Data_Value_CSMOKING 2.15956 2.09580 2.22193
saveRDS(beta_inference, file = here("modeling_files/sensitivity_analysis/omit_subsets_of_variables/beta
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "Intercept"
                             "flood_risk_pc1"
                                                   "flood_risk_pc3"
## [4] "flood_risk_pc5"
                             "EP_UNINSUR"
                                                   "pollute_conc_pc1"
## [7] "pollute_conc_pc2"
                             "pollute_conc_pc3"
                                                   "Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                            post_median = `50%`,
                            post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta_inference_df$var_name <- factor(beta_inference_df$var_name, levels = beta_inference_df$var_name)
p <- ggplot(beta_inference_df[-1, ], aes(x = var_name, y = post_median)) +
  geom_point() +
 ylim(c(-3, 5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
       plot.margin = margin(5.5, 5.5, 5.5, 25)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4)) +
  geom_vline(xintercept = c(5.5, 6.5, 9.5, 11.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("Flood PC 1", "Flood PC 2", "Flood PC 3", "Flood PC 4", "Flood PC 5",
                              "Uninsured",
                              "Pollution PC 1", "Pollution PC 2", "Pollution PC 3",
                              "Maximum Temperature", "Maximum Humidity",
                              "Smoking")) + ggtitle("95% Credible Intervals, High Blood Pressure, Strat
```

95% Credible Intervals, High Blood Pressure, Stratified on All RPL Theme


```
ggsave(here("figures/final_figures/sensitivity_analysis/BPHIGH_omit_SVI.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Asthma, Omitting SVI

```
load(here("modeling files/sensitivity analysis/omit subsets of variables/CASTHMA omit SVI.RData"))
```

Inference

```
## flood_risk_pc1
                       -0.01258 -0.01838 -0.00675
                       -0.01449 -0.02099 -0.00807
## flood_risk_pc2
## flood_risk_pc3
                       0.00440 -0.00055 0.00931
## flood_risk_pc4
                        0.01729 0.01292 0.02169
## flood_risk_pc5
                       0.00326 -0.00096 0.00750
## EP UNINSUR
                      -0.06175 -0.06763 -0.05571
## pollute_conc_pc1
                      0.16658 0.14446 0.18857
## pollute_conc_pc2
                      -0.18127 -0.21124 -0.15203
## pollute_conc_pc3
                       -0.12326 -0.15211 -0.09590
## tmmx
                       0.01235 -0.03431 0.06046
## rmax
                       -0.11750 -0.14901 -0.08471
## Data_Value_CSMOKING 1.30143 1.29417 1.30874
saveRDS(beta_inference, file = here("modeling_files/sensitivity_analysis/omit_subsets_of_variables/beta
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "Intercept"
                              "flood_risk_pc1"
                                                     "flood_risk_pc2"
## [4] "flood_risk_pc4"
                              "EP_UNINSUR"
                                                     "pollute_conc_pc1"
## [7] "pollute_conc_pc2"
                              "pollute_conc_pc3"
                                                    "rmax"
## [10] "Data_Value_CSMOKING"
```

Credible Interval plots for the coefficients, in ggplot

```
# first, process the beta_inference matrix in a form ggplot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta_inference_df <- mutate(beta_inference_df, var_name = row.names(beta_inference_df))
beta_inference_df <- rename(beta_inference_df,</pre>
                            post median = `50%`,
                            post_2.5 = 2.5\%,
                            post_97.5 = `97.5\%`)
beta_inference_df$var_name <- factor(beta_inference_df$var_name, levels = beta_inference_df$var_name)
p <- ggplot(beta_inference_df[-1, ], aes(x = var_name, y = post_median)) +
  geom_point() +
  ylim(c(-1, 1.5)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 25)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4)) +
  geom_vline(xintercept = c(5.5, 6.5, 9.5, 11.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 0.95, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("Flood PC 1", "Flood PC 2", "Flood PC 3", "Flood PC 4", "Flood PC 5",
                              "Uninsured",
                              "Pollution PC 1", "Pollution PC 2", "Pollution PC 3",
                              "Maximum Temperature", "Maximum Humidity",
```


95% Credible Intervals, Asthma, Stratified on All RPL Themes


```
ggsave(here("figures/final_figures/sensitivity_analysis/CASTHMA_omit_SVI.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```

CAR model results, Poor Mental Health, Omitting SVI

load(here("modeling files/sensitivity analysis/omit subsets of variables/MHLTH omit SVI.RData"))

Inference

```
## Intercept
                       14.26066 14.25834 14.26298
## flood_risk_pc1
                       -0.00082 -0.01187 0.01005
                        0.00330 -0.00879 0.01539
## flood_risk_pc2
## flood_risk_pc3
                       -0.01693 -0.02603 -0.00790
## flood_risk_pc4
                        0.00957 0.00141 0.01773
## flood_risk_pc5
                       -0.00766 -0.01558 0.00022
## EP UNINSUR
                        0.06135 0.05031 0.07251
                      0.69398 0.65341 0.73471
## pollute_conc_pc1
## pollute_conc_pc2
                      0.40920 0.35179 0.46701
## pollute_conc_pc3
                       -0.52482 -0.57923 -0.47073
## tmmx
                        0.05782 -0.03127 0.14021
## rmax
                       -0.08589 -0.15206 -0.01127
## Data_Value_CSMOKING 3.34308 3.32955 3.35698
saveRDS(beta inference, file = here("modeling files/sensitivity analysis/omit subsets of variables/beta
List of significant beta coefficients:
colnames(beta_samples_matrix)[sign(beta_inference[, 2]) == sign(beta_inference[, 3])]
## [1] "Intercept"
                             "flood_risk_pc3"
                                                   "flood_risk_pc4"
## [4] "EP_UNINSUR"
                             "pollute_conc_pc1"
                                                   "pollute_conc_pc2"
## [7] "pollute_conc_pc3"
                             "rmax"
                                                   "Data_Value_CSMOKING"
Credible Interval plots for the coefficients, in ggplot
# first, process the beta_inference matrix in a form applot can understand
beta_inference_df <- as.data.frame(beta_inference)</pre>
beta inference df <- mutate(beta inference df, var name = row.names(beta inference df))
beta inference df <- rename(beta inference df,
                            post_median = `50%`,
                            post_2.5 = `2.5\%`,
                            post 97.5 = ^97.5\%)
beta_inference_df$var_name <- factor(beta_inference_df$var_name, levels = beta_inference_df$var_name)
p <- ggplot(beta_inference_df[-1, ], aes(x = var_name, y = post_median)) +
  geom_point() +
  ylim(c(-1.5, 4)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), axis.title.x = element_blank(), axi
        axis.text=element_text(size=12),
        plot.margin = margin(5.5, 5.5, 5.5, 25)) +
  geom_errorbar(aes(ymin = post_2.5, ymax = post_97.5, width = 0.4)) +
  geom_vline(xintercept = c(5.5, 6.5, 9.5, 11.5), col = "blue") +
  geom_hline(yintercept = 0, col = "red") +
  annotate(geom = "text", x = 3, y = 3.75, label = "Flood\nRisk",
           col = "blue", size = 4.5) +
  scale_x_discrete(labels = c("Flood PC 1", "Flood PC 2", "Flood PC 3", "Flood PC 4", "Flood PC 5",
```

beta_inference

50%

2.5%

97.5%

##

```
"Uninsured",
"Pollution PC 1", "Pollution PC 2", "Pollution PC 3",
"Maximum Temperature", "Maximum Humidity",
"Smoking")) + ggtitle("95% Credible Intervals, Poor Mental Health, Stratic
```

95% Credible Intervals, Poor Mental Health, Stratified on All RPL Themes


```
ggsave(here("figures/final_figures/sensitivity_analysis/MHLTH_omit_SVI.pdf"),
    plot = p, device = "pdf",
    width = 8, height = 6, units = "in")
```