Отображения

- 1. В какой трёхмерный многогранник перейдёт четырёхмерный единичный куб при факторизации $\mathbb{R}^4 \to \mathbb{R}^3$ по одномерному подпространству, порождённому суммой стандартных базисных векторов?
- **2.** Чему равна композиция отражений векторного пространства относительно координатных гиперплоскостей?
- **3.** Зафиксируем на аффинной плоскости две точки $P \neq Q$. Является ли аффинным отображение, переводящее каждую точку плоскости X в центр треугольника PQX?
- **4.** Чему равна композиция двух гомотетий аффинной плоскости (с разными центрами и коэффициентами)?

Группы

- **5.** Проверьте, что $SO_2(\mathbb{R})$ коммутативна, но $O_2(\mathbb{R})$ нет.
- **6.** Покажите, что группа $SO_3(\mathbb{R})$ порождается поворотами на 180°, и все такие повороты сопряжены друг другу. Докажите, что $SO_3(\mathbb{R})$ проста.
- 7. Найдите линейную оболочку $\mathrm{SL}_n(\mathbb{R})$ в пространстве матриц $\mathrm{Mat}_{n\times n}(\mathbb{R})$.
- 8. (Движения в \mathbb{R}^3) Пусть T_v , S_H , $R_{v,\varphi}$ обозначают соответственно параллельный перенос на вектор v, отражение относительно гиперплоскости H и поворот вокруг прямой с направляющим вектором v на угол φ против часовой стрелки. Выясните, когда имеют места написанные ниже равенства, и во всех случаях, когда они верны, выразите параметры движения в правой части через параметры движений из левой
 - a) $S_{H_1} \circ S_{H_2} = R_{v,\varphi}$,
 - b) $S_{H_1} \circ S_{H_2} = T_v$,
 - c) $S_H \circ R_{v,\varphi} \circ S_H = R_{u,\psi}$,
 - d) $R_{v_1,\varphi_1} \circ R_{v_2,\varphi_2} = T_v \circ R_{u,\psi},$
 - e) $R_{u,\varphi} \circ S_{H_1} \circ R_{u,-\varphi} = S_{H_2}$.
- 9. Пусть $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ некоторое движение. Найти движения
 - a) $F \circ T_v \circ F^{-1}$,
 - b) $F \circ S_H \circ F^{-1}$,
 - c) $F \circ R_{v,\varphi} \circ F^{-1}$.

Проективная геометрия

- **10.** Рассмотрим на проективной плоскости . Укажите три точки $A, B, C \in \mathbb{P}^2$ так, чтобы точки A' = (1:0:0), B' = (0:1:0), C' = (0:0:1) лежали соответственно на прямых (CB), (AC), (AB), а прямые (AA'), (BB'), (CC') пересекались в точке (1:1:1).
- 11. Опишите все такие преобразования из PGL₂, что
 - a) $\infty \to \infty$,
 - b) $\infty \to \infty$, $0 \to 0$,
 - c) $\infty \to 0$, $0 \to \infty$, $1 \to 1$,
 - d) $\infty \to 1$, $0 \to 0$, $1 \to \infty$,

e)
$$\infty \to \infty$$
, $0 \to 1$, $1 \to 0$.

- **12.** (Теорема Паппа) Пусть точки a_1, b_1, c_1 коллинеарны и точки a_2, b_2, c_2 коллинеарны. Докажите, что точки пресечений прямых $(a_1b_2) \cap (a_2b_1), (a_1c_2) \cap (a_2c_1), (c_1b_2) \cap (c_2b_1)$ тоже коллинеарны.
- 13. Сформулируйте двойственное утверждение к теореме Паппа.
- **14.** Покажите, что для любых двух проективных подпространств $U, V \subset \mathbb{P}^n$ выполняется неравенство $\dim(U \cap V) \geqslant \dim U + \dim V n$ (в частности, любые две прямые на \mathbb{P}^n пересекаются).