

Sistemas Operacionais

Introdução

Disciplina: Sistemas Operacionais

Carga horária: 60h

• Início: 13/07/2021

Término: 21/10/2021

Horário: 10h às 12h

Professor: Herbert Oliveira Rocha, Dr.

e-mail: herbert.rocha@ufrr.br

github: https://github.com/hbgit

home page: https://hbgit.github.io/

Site da Disciplina: SIGAA UFRR

Roteiro

- Por que é necessário um sistema operacional?
- O que é um Sistema Operacional?
- Histórico;

Por quê?

- Sistemas de computadores modernos são compostos por diversos dispositivos:
 - Processadores;
 - Memória;
 - Controladoras;
 - Monitor;
 - Teclado;
 - Mouse;
 - Impressoras;

Por quê?

- Com tantos dispositivos, surge a necessidade de gerenciamento e manipulação desses diversos dispositivos;
 - Tarefa difícil

SISTEMAS OPERACIONAIS

O que é um SO?

- Software responsável por gerenciar dispositivos que compõem um sistema computacional e realizar a interação entre o usuário e esses dispositivos;
- Hardware
 - Processador;
 - Memória Principal;
 - Dispositivos de Entrada/Saída;
- Software
 - Programas de Aplicação;
 - Programas do Sistema;

Sistemas de Banco	Navegadores Web	Reserva de Passagens		APLICATIVOS
Compiladores	Editores	Interpretadores de Comando		PROGRAMAS DO
SISTEMA OPERACIONAL				SISTEMA
Linguagem de Máquina				
Micro Arquitetura				HARDWARE
Dispositivos Físicos			V	8

Área de atuação do SO

- Distinção entre um Sistema Operacional x Software normal;
- Modo Núcleo ou Supervisor x Modo usuário;

- Hardware: Diversas camadas de dispositivos físicos:
 - Circuitos (chips)
 - Cabos
 - Transistores
 - Capacitores
 - Memória
 - Disco rígido
 - o etc...

- Micro Arquitetura: dispositivos físicos são agrupados para formar unidades funcionais:
 - CPU processamento;
 - ULA (Unidade Lógica Aritmética) operações aritméticas. Essas operações podem ser controladas por software (micro programas) ou por circuitos de hardware; 11

- Linguagem de Máquina: conjunto de instruções interpretadas pelos dispositivos que compõem a micro arquitetura;

 - Realiza operações por meio de registradores;
 - Baixo nível de abstração;
 - Ex.: Assembly.

Sistema Operacional

- Pode atuar de duas maneiras diferentes:
 - Como máquina estendida (top-down) tornar uma tarefa de baixo nível mais fácil de ser realizada pelo usuário;
 - Como gerenciador de recursos (bottom-up) gerenciar os dispositivos que compõem o computador;

Histórico de Evolução (SO)

Anos 40....

- Nenhum Sistema Operacional
- Instruções por fios e válvulas
- Painel de controle
- Operador = Programador
- Para compartilhar a máquina planilha de horários
- Ex. ENIAC (Electronic Numerical Integrator And Computer)

Problema no ENIAC: inseto (BUG) entre fio de saída e de entrada impedia envio dos dados -> erro

Histórico de Evolução (SO)

Anos 50....

- Surge a idéia de Jobs e cartões perfurados;
- Os programas eram codificados nos cartões e sua leitura era feita por máquina -> operadores de máquina;

Operador é responsável por carregar montadores, compiladores, etc. e ativar job com programa desenvolvido pelo programador

Histórico de Evolução (SO)

Anos 50....

- Operação: cada programa (job) ou conjunto de programas escrito e perfurado por um programador era entregue ao operador da máquina para que o mesmo fosse processado – alto custo;
- Sistemas em Batch (lote)
 - Consistia em coletar um conjunto de jobs e fazer a gravação desse conjunto para uma fita magnética;

Histórico de Evolução (SO)

Anos 50....

Sistemas em Batch (lote)

Histórico de Evolução (SO)

Anos 60....

Multiprogramação

- Dividir a memória em diversas partes e alocar a cada uma dessas partes um job.
- Manter na memória simultaneamente uma quantidade de jobs suficientes para ocupar 100% do tempo do processador, diminuindo a ociosidade.

Importante: o hardware é que protegia cada um dos jobs contra acesso indevidos de outros jobs.

Histórico de Evolução (SO)

Anos 60....

TimeSharing

- Cada usuário tem um terminal on-line à disposição:
 - Primeiro sistema TimeSharing: CTSS (Compatible Time Sharing System) – 7094 modificado;
 - Cada usuário tem a sensação de possuir o computador apenas para ele;
 - Ex.: se 20 usuários estão ativos e 17 estão ausentes,
 o processador é alocado a cada um dos 3 jobs que estão sendo executados;

Histórico de Evolução (SO)

Anos 70....

- Cada máquina possuía um Sistema Operacional diferente
 - Por exemplo, OS/360 para o System/360; MULTICS (GE);
 - Incompatibilidade;

Sistemas Operacionais de Propósito Geral

Histórico de Evolução (SO)

Anos 70.... Sistemas Operacionais de Propósito Geral

- **Unics**
 - □ Time Sharing System;
 - Proposto por Ken Thompson;
 - Setembro/1969;
 - Baseado no MULTICS;
 - Deu origem ao Unix;

Histórico de Evolução (SO)

Anos 80....

Sistemas Operacionais de Propósito Geral

- DOS (Disk Operating System)
 - □ IBM procurou Bill Gates solicitando SO para o IBM PC;
 - Bill Gates comprou a empresa que desenvolvia o DOS, a Seattle Computer Products; Desenvolvedor: Tim Paterson;

Histórico de Evolução (SO)

Anos 80....

Sistemas Operacionais de Propósito Geral

- DOS (Disk Operating System)
 - □ Lançado em 1981;
 - Monousuário;
 - Desenvolvido para computadores pessoais;
 - Linha de comando;

Histórico de Evolução (SO)

Anos 80.... Sistemas Operacionais de Propósito Geral

- Macintosh Operating System (Mac OS)
 - Lançado em 1984;
 - Sistemas baseados em janelas (GUI Graphical User) Interface);

Histórico de Evolução (SO)

Anos 80.... Sistemas Operacionais de Propósito Geral

- Windows
 - □ Lançado em 1985;
 - Iniciou como uma interface gráfica para o DOS;
 - Multiprogramação;

Histórico de Evolução (SO)

Anos 90....

Sistemas Operacionais de Propósito Geral

- Linux
 - □ Lançado em 1991;
 - Desenvolvido voluntariamente por programadores de todo o mundo;
 - Multiusuário;

Histórico de Evolução (SO)

Anos 90....

- Era da computação distribuída:
 - um processo é dividido em subprocessos;
 - que executam em sistemas multiprocessados e em redes de computadores ou até mesmo em sistemas virtualmente paralelos;

Histórico de Evolução (SO)

Anos 90....

- Sistemas Operacionais Distribuídos :
 - Apresenta-se como um sistema operacional centralizado, mas que, na realidade, tem suas funções executadas por um conjunto de máquinas independentes;
- Sistemas Operacionais em Rede;
 - Usuários conhecem a localização dos recursos que estão utilizando e não têm a visão de um sistema centralizado;
- Vários outros...

Tipos de Sistemas Operacionais

- Sistemas Operacionais de Tempo Real
 - Importante:
 - Gerenciamento de Tempo;
 - Gerenciamento de processos críticos (aviões, caldeiras);

RTLinux (Real Time Linux).

Tipos de Sistemas Operacionais

Anos 2000....

- Sistemas Operacionais Orientados a Objetos
 - Reuso;
 - Interface orientada a objetos;
- JavaOS
 - Portabilidade;
- Sistemas Operacionais Embarcados: telefones, aparelhos eletrodomésticos; PDAs.

Tipos de Sistemas Operacionais

Sistemas Operacionais para dispositivos móveis:

Sistemas Paralelos

- Máquinas que possuem mais de um processador;
- Tipos:
 - Sistemas fortemente acoplados
 - Processadores compartilham memória e relógios comuns;
 - Comunicação é realizada através da memória;
 - Sistemas fracamente acoplados
 - Processadores não compartilham memória;
 - Comunicação é realizada através da troca de mensagens;

Sistemas Paralelos

