Differentiation

February 25, 2024

This is the begining of my notes on Differentiation that i took during the lectures in the spring semester in UoN

Contents

- Basic Definitions and Examples
- 2 Lecture 10 1

1

1 Basic Definitions and Examples

Definition 1.1 (A function being differentiable at x_0)

Let I be a non-degenerate interval (i.e. containing more than one point) in R, $x_0 \in I$ and let $f: I \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

exists and is finite. This limit $f(x_0)$ is then called the derivative of f at x_0 . (In the case where x_0 is an endpoint of I this is a one-sided limit)

Definition 1.2

Let I be an interval in \mathbb{R} , $X_0 \in I$ and let $f: I \to \mathbb{R}$ be a function. We say that f is differentiable at x_0 from the left if the limit

$$(left\ derivative) = \lim_{x \to x_0^-} \frac{f\left(x\right) - f\left(x_0\right)}{x - x_0}.$$

exists and is finite. Similarly, f is differentiable at x_0 from the right if the limit

$$(right\ derivative) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

exists and is finite.

2 Lecture 10

Theorem 2.1 (Chain Rule)

Let $I, J \subseteq \mathbb{R}$ be intervals and $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ functions such that $f(I) \subset J$. Assume that f is differentiable at $x_0 \in I$ and g is differentiable at $f(x_0)$. Then $g \circ f$ is differentiable at x_0 and $(g \circ f)'(x_0) = g'(f(x_0)) f'^{(x_0)}$.

Proof. Since f is differentiable at x_0 , there is a (chord function) $\hat{f}: I \to \mathbb{R}$ such that \hat{f} is continuous at x_0 ,

$$f(x) - f(x_0) = (x - x_0)\hat{f}(x)$$
 (1)

for all x in I, and

$$\hat{f}\left(x_{0}\right) = f^{'}\left(x_{0}\right)$$

Since g is differentiable at $f(x_0)$, there is a (chord function) $\hat{g}: J \to \mathbb{R}$ such that \hat{g} is continuous at $f(x_0)$,

$$g(y) - g(f(x_0)) = (y - f(x_0))\hat{g}(y)$$
 (2)

for all y in J and

$$\hat{g}(f(x_0)) = g'(f(x_0)).$$

Can we find a suitable chord function $g \circ f$?

Set $h(x) = g(f(x_0))$ $(x \in I)$ and so $h = g \circ f$. We are looking for a chord function $\hat{h}: I \to \mathbb{R}$ such that

- \hat{h} is continious at x_0
- $h(x) h(x_0) = (x x_0) \hat{h}(x) (x \in I)$

If we can do this, what we know about chord functions tells us h is differentiable at x_0 , and $h^{'}(x_0) = \hat{h}(x_0)$.

We have $h(x) - h(x_0) = g(f(x)) - g(f(x_0))$ (Apply (2) with y = f(x)) and so $h(x) - h(x_0) = (f(x) - f(x_0)) \hat{g}(f(x))$

$$= (x - x_0) \hat{f}(x) \hat{g}(f(x)).$$

Claim $haht(x) = \hat{f}(x) \hat{g}(f(x))$ works.

 \hat{f} is continious at x_0 because f is differentiable at x_0 (see above). $\hat{f}(x_0) = f'(x_0)$.

Since f is differentiable at x_0 , we also have f is continious at x_0 . Since \hat{g} is continious at $f(x_0)$ with $\hat{g}(f(x_0)) = g'(f(x_0))$ is continious at x_0

Conclusion: $h = g \circ f$ is differentiable at x_0 , and

$$h'(x_0) = \hat{h}(x_0)$$
 = $\hat{f}(x_0) \hat{g}(f(x_0)) = f dt'(x_0) \hat{g}'(f(x_0))$.