## **CCE5205: Computer Vision**

# **Fundamentals of Compute Vision**



Reuben Farrugia



reuben.farrugia@um.edu.mt



https://www.um.edu.mt/staff/reuben.farrugia



#### **Today's Agenda**

During this lecture we will do the following

- Convolution of Images
- Image Gradients (Sobel and Laplacian)
- Image Pyramids (Gaussian, Laplacian)
- Linear Algebra
- Image Registration



The convolution of 2D signals is computed using

$$y[m,n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} x[i,j] h[m-i,n-j] = x[n] * h[n]$$

where x[i,j] is the image and h[i,j] is the filter (or kernel).



#### Example of kernels

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |

| 1 | 4  | 7  | 4  | 1 |
|---|----|----|----|---|
| 4 | 16 | 26 | 16 | 4 |
| 7 | 26 | 41 | 26 | 7 |
| 4 | 16 | 26 | 16 | 4 |
| 1 | 4  | 7  | 4  | 1 |

3x3 Mean kernel

5x5 Gaussian kernel



Note that the kernel is rotated around both m and n direction





Note that the kernel is rotated around both m and n direction





| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

#### Note that the kernel is rotated around both m and n direction



| 1x1          | 1x0 | 1x1 | 0 | 0 |
|--------------|-----|-----|---|---|
| 0x0          | 1x1 | 1x0 | 1 | 0 |
| 0 <b>x</b> 1 | 0x0 | 1x1 | 1 | 1 |
| 0            | 0   | 1   | 1 | 0 |
| 0            | 1   | 1   | 0 | 0 |

| 4 |  |
|---|--|
|   |  |
|   |  |

#### **Convolution of Images: Gaussian Kernel**

The kernel of a Gaussian filter is given by

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

| 0.0008 | 0.0030 | 0.0065 | 0.0084 | 0.0065 | 0.0030 | 0.0008 |
|--------|--------|--------|--------|--------|--------|--------|
| 0.0030 | 0.0108 | 0.0232 | 0.0299 | 0.0232 | 0.0108 | 0.0030 |
| 0.0065 | 0.0232 | 0.0498 | 0.0643 | 0.0498 | 0.0232 | 0.0065 |
| 0.0084 | 0.0299 | 0.0643 | 0.0830 | 0.0643 | 0.0299 | 0.0084 |
| 0.0065 | 0.0232 | 0.0498 | 0.0643 | 0.0498 | 0.0232 | 0.0065 |
| 0.0030 | 0.0108 | 0.0232 | 0.0299 | 0.0232 | 0.0108 | 0.0030 |
| 0.0008 | 0.0030 | 0.0065 | 0.0084 | 0.0065 | 0.0030 | 0.0008 |



### **Convolution of Images: Gaussian Kernel**

Comparing the Mean and Gaussian filters



Noisy image



Mean filter



Gaussian filter ( $\sigma$ =2)

#### **Convolution of Images: Sobel Kernel**

Computing the Image Gradient using the Sobel Kernel (1st Order Derivative)

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$|\nabla f(x,y)| = \sqrt{g_x(x,y)^2 + g_y(x,y)^2}$$
$$\alpha(x,y) = atan\left(\frac{g_y(x,y)}{g_x(x,y)}\right)$$



#### **Convolution of Images: Sobel Kernel**

The Sobel kernel has two kernels: one for the vertical gradients and another for the horizontal gradients. These gradients can be computed using

$$G_{x} = k_{x}^{*} I$$

$$G_{y} = k_{x}^{*} I$$

$$|\nabla f(x,y)| = \sqrt{g_x(x,y)^2 + g_y(x,y)^2}$$



Original Image



Sobel

#### **Convolution of Images: Laplacian Kernel**

The 2nd order derivative (also known as Laplacian) is derived using

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

In digital form this is defined as

$$\frac{\partial^2 f}{\partial x^2} = f(x - 1, y) + f(x + 1, y) - 2f(x, y)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x, y - 1) + f(x, y + 1) - 2f(x, y)$$

$$\nabla^2 f = f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) - 4f(x,y)$$

#### **Convolution of Images: Laplacian Kernel**

$$\nabla^2 f = f(x-1,y) + f(x+1,y) + f(x,y-1) + f(x,y+1) - 4f(x,y)$$

| 0 | 1  | 0 |
|---|----|---|
| 1 | -4 | 1 |
| 0 | 1  | 0 |

Laplacian Kernel



Original Image



Laplacian

#### **Image Pyramids**

- Each level of the Gaussian Pyramid is obtained by blurring and downsampling (Reduce) the image from the previous level by a factor of 2. The Gaussian Pyramid is very useful for coarse-to-fine optimizations.
- The Laplacian Pyramid is more useful to detect difference in texture across different scales. This is obtained by expanding (upscaling) the lower level (L-1) image by a factor of 2 and subtracting it from the image within the Gaussian Pyramid at level L. This is useful in data compression.



#### **Image Pyramids**

- Each level of the Gaussian Pyramid is obtained by blurring and downsampling (Reduce) the image from the previous level by a factor of 2. The Gaussian Pyramid is very useful for coarse-to-fine optimizations.
- The Laplacian Pyramid is more useful to detect difference in texture across different scales. This is obtained by expanding (upscaling) the lower level (L-1) image by a factor of 2 and subtracting it from the image within the Gaussian Pyramid at level L. This is useful in data compression.



#### **Linear Algebra: Least Squares**

The least squares problem is of the form

$$Ax = b$$

The least squares problem can be formulated using

$$argmin_x ||Ax - b||^2$$

This can be derived using calculus by computing the gradient and set it equal to zero i.e.

$$f(x) = (Ax - b)^2$$

$$\nabla f(x) = 2A^T (Ax - b) = 0$$

From this it implies that

$$x = \left(A^T A\right)^{-1} A^T b$$

#### **Linear Algebra: Least Squares**

Derive the least squares solution of the following problem

$$Ax = b$$

where

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 3 \\ 3 \\ 5 \end{bmatrix}$$

Solution: 
$$x = \begin{bmatrix} 0 \\ \frac{6}{5} \end{bmatrix}$$

#### **Linear Algebra: Inverse of a 3x3 Matrix**

Calculate the inverse of the following 3x3 matrix

$$A = \begin{bmatrix} 13 & 18 & 14 \\ 9 & 15 & 10 \\ 12 & 11 & 7 \end{bmatrix}$$

Solution: 
$$A^{-1} = \begin{bmatrix} 0.0067 & -0.1319 & 0.175 \\ -0.0767 & 0.1036 & 0.0054 \\ 0.109 & 0.0633 & -0.1655 \end{bmatrix}$$

The Least Squares problem can be derived when the square matrix A<sup>T</sup>A is invertible. A<sup>T</sup>A is invertible if and only if A<sup>T</sup>A is of full rank. Now, let's consider the previous example

$$A^T A = \begin{bmatrix} 2 & -2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

The Least Squares problem can be derived when the square matrix A<sup>T</sup>A is invertible. A<sup>T</sup>A is invertible if and only if A<sup>T</sup>A is of full rank. Now, let's consider the previous example

$$A^T A = \begin{bmatrix} 2 & -2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

The matrix is a rank-3 matrix and thus is a full-rank matrix. This means that the  $A^TA = \begin{bmatrix} 2 & -2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$  rows and columns are linearly independent. This can be computed using the numpy library np.linalg.matrix\_rank(). This matrix is thus invertible.

The Least Squares problem can be derived when the square matrix A<sup>T</sup>A is invertible. A<sup>T</sup>A is invertible if and only if A<sup>T</sup>A is of full rank. Now, let's consider the previous example

$$A^T A = \begin{bmatrix} 2 & -2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

The matrix is a rank-3 matrix and thus is a full-rank matrix. This means that the  $A^TA = \begin{bmatrix} 2 & -2 & 5 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$  rows and columns are linearly independent. This can be computed using the numpy library np.linalg.matrix\_rank(). This matrix is thus invertible.

The inverse of this matrix exists and can be computed using the np.linalg.inv() function.

$$(A^T A)^{-1} = \begin{bmatrix} -2 & 5 & -4 \\ 0 & 0 & 1 \\ 1 & -2 & 2 \end{bmatrix}$$

Now, let's consider the following matrix

$$(A^T A)^{-1} = \begin{bmatrix} 2 & -2 & 4 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

Now, let's consider the following matrix

$$(A^T A)^{-1} = \begin{bmatrix} 2 & -2 & 4 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$

 $(A^TA)^{-1} = \begin{bmatrix} 2 & -2 & 4 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$  The matrix is a rank-2 matrix and thus is not a full-rank matrix. This means that the rows and columns are not linearly independent. This can be computed using the numpy library np.linalg.matrix\_rank(). This matrix is thus non-invertible.

Now, let's consider the following matrix

$$(A^TA)^{-1} = \begin{bmatrix} 2 & -2 & 4 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$
 The matrix is a rank-2 matrix and thus is not a full-rank matrix. This means that the rows and columns are not linearly independent. This can be computed using the numpy library np.linalg.matrix\_rank(). This matrix is thus non-invertible.

This can be solved using the following constrained minimization which enforces the values of the least squares solution to have small values i.e.

$$argmin_x ||Ax - b||^2 + \lambda ||x||^2$$

This has a closed form solution that is given by

$$x = (A^T A + \lambda I)^{-1} A^T b$$

where I is the identity matrix and lambda is a small value (1E-6).

Find the non-trivial solution to the system of homogeneous linear equations of the form

$$Ax = 0$$

where

$$A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 3 & 5 & 5 \\ 2 & 4 & 7 & 1 \\ -1 & -2 & -6 & 7 \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Solution: 
$$x = \begin{bmatrix} 7k \\ -9k \\ 3k \\ k \end{bmatrix}$$

The numerically best way to solve this problem is to perform Singular Value Decomposition (SVD) on the matrix A. Singular Vector Decomposition (SVD) factors the matrix into a diagonal matrix D and two orthogonal matrices U, V such that

$$A = UDV^T$$

The diagonal entries of D are related to eigenvalues of A<sup>T</sup>A.

$$D = \begin{bmatrix} 12.5441 & 0.0 & 0.0 & 0.0 \\ 0.0 & 8.9586 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.6229 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

This means that matrix A has 3 linearly-independent equations and thus is a rank-3 matrix. The solution to this problem can be obtained from the last column of V that corresponds to the column with 0 eigenvalue.

$$V = \begin{bmatrix} -0.2068 & 0.0202 & -0.7790 & 0.5916 \\ -0.4516 & 0.1.18 & -0.4551 & -0.7606 \\ -0.8678 & -0.0725 & 0.4211 & 0.2536 \\ -0.0128 & 0.9920 & 0.0934 & 0.0845 \end{bmatrix}$$

The numerically best way to solve this problem is to perform Singular Value Decomposition (SVD) on the matrix A. Singular Vector Decomposition (SVD) factors the matrix into a diagonal matrix D and two orthogonal matrices U, V such that

$$A = UDV^T$$

The diagonal entries of D are related to eigenvalues of A<sup>T</sup>A.

$$D = \begin{bmatrix} 12.5441 & 0.0 & 0.0 & 0.0 \\ 0.0 & 8.9586 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.6229 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

This means that matrix A has 3 linearly-independent equations and thus is a rank-3 matrix. The solution to this problem can be obtained from the last column of V that corresponds to the column with 0 eigenvalue.

$$V = \begin{bmatrix} -0.2068 & 0.0202 & -0.7790 & 0.5916 \\ -0.4516 & 0.1.18 & -0.4551 & -0.7606 \\ -0.8678 & -0.0725 & 0.4211 & 0.2536 \\ -0.0128 & 0.9920 & 0.0934 & 0.0845 \end{bmatrix}$$

Previous Solution: 
$$x = \begin{bmatrix} 7k \\ -9k \\ 3k \\ k \end{bmatrix}$$

The numerically best way to solve this problem is to perform Singular Value Decomposition (SVD) on the matrix A. Singular Vector Decomposition (SVD) factors the matrix into a diagonal matrix D and two orthogonal matrices U, V such that

$$A = UDV^T$$

The diagonal entries of D are related to eigenvalues of  $A^{T}A$ .

$$D = \begin{bmatrix} 12.5441 & 0.0 & 0.0 & 0.0 \\ 0.0 & 8.9586 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.6229 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{bmatrix}$$

This means that matrix A has 3 linearly-independent equations and thus is a rank-3 matrix. The solution to this problem can be obtained from the last column of V that corresponds to the column with 0 eigenvalue.

$$V = \begin{bmatrix} -0.2068 & 0.0202 & -0.7790 & 0.5916 \\ -0.4516 & 0.1.18 & -0.4551 & -0.7606 \\ -0.8678 & -0.0725 & 0.4211 & 0.2536 \\ -0.0128 & 0.9920 & 0.0934 & 0.0845 \end{bmatrix}$$

$$V = \begin{bmatrix} -0.2068 & 0.0202 & -0.7790 & 0.5916 \\ -0.4516 & 0.1.18 & -0.4551 & -0.7606 \\ -0.8678 & -0.0725 & 0.4211 & 0.2536 \\ -0.0128 & 0.9920 & 0.0934 & 0.0845 \end{bmatrix} \quad \text{Previous Solution: } x = \begin{bmatrix} 7k \\ -9k \\ 3k \\ k \end{bmatrix} \text{ If } k = 0.00845 \quad x = \begin{bmatrix} 0.5916 \\ -0.7606 \\ 0.2536 \\ 0.0845 \end{bmatrix}$$

#### **Image Registration**

Image registration is the process of transforming different sets of data (pixels from different images) into one coordinate system.







#### **Image Registration**

Image registration is the process of transforming different sets of data (pixels from different images) into one coordinate system.







All the landmark points occur roughly at the same location -> they share the same coordinate system.















Mathematically, this can be formulated as

$$[x_i, y_i, 1] = [v_i, w_i, 1] \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

L-Università ta' Malta



Now, in this case we have six points and therefore the equation needs to be rewritten as

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$  Given that the pixel coordinates for the six points are known at both source and reference image, the only parameters that are unknown are  $t_{1,1}$ ,  $t_{1,2}$ ,  $t_{1,3}$ ,  $t_{2,1}$ ,  $t_{2,2}$ ,  $t_{2,3}$ .

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} \\ t_{2,1} \\ t_{3,1} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix} \begin{bmatrix} t_{1,2} \\ t_{2,2} \\ t_{3,2} \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$  Given that the pixel coordinates for the six points are known at both source and reference image, the only parameters that are unknown are  $t_{1,1}$ ,  $t_{1,2}$ ,  $t_{1,3}$ ,  $t_{2,1}$ ,  $t_{2,2}$ ,  $t_{2,3}$ .



$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix} \begin{bmatrix} t_{1,2} \\ t_{2,2} \\ t_{3,2} \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$  Given that the pixel coordinates for the six points are known at both source and reference image, the only parameters that are unknown are  $t_{1,1}$ ,  $t_{1,2}$ ,  $t_{1,3}$ ,  $t_{2,1}$ ,  $t_{2,2}$ ,  $t_{2,3}$ .



$$\begin{bmatrix} t_{1,1} \\ t_{2,1} \\ t_{3,1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix}$$



$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$  Given that the pixel coordinates for the six points are known at both source and reference image, the only parameters that are unknown are  $t_{1,1}$ ,  $t_{1,2}$ ,  $t_{1,3}$ ,  $t_{2,1}$ ,  $t_{2,2}$ ,  $t_{2,3}$ .



$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \\ x_6 & y_6 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$$

 $\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ x_4 & y_4 & 1 \\ x_5 & y_5 & 1 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \end{bmatrix} \begin{bmatrix} t_{1,1} & t_{1,2} & 0 \\ t_{2,1} & t_{2,2} & 0 \\ t_{3,1} & t_{3,2} & 1 \end{bmatrix}$  Given that the pixel coordinates for the six points are known at both source and reference image, the only parameters that are unknown are  $t_{1,1}$ ,  $t_{1,2}$ ,  $t_{1,3}$ ,  $t_{2,1}$ ,  $t_{2,2}$ ,  $t_{2,3}$ .



$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \end{bmatrix} = \begin{bmatrix} v_1 & w_1 & 1 \\ v_2 & w_2 & 1 \\ v_3 & w_3 & 1 \\ v_4 & w_4 & 1 \\ v_5 & w_5 & 1 \\ v_6 & w_6 & 1 \end{bmatrix} \begin{bmatrix} t_{1,2} \\ t_{2,2} \\ t_{3,2} \end{bmatrix}$$

Solution using Least Squares

$$x = (A^T A)^{-1} A^T b$$
$$y = (A^T A)^{-1} A^T c$$

## Thank you for your attention.

If you have any questions, now is the right time to ask! Contact me on the details below for further info:



Reuben Farrugia



(+356) 2340 3088



https://www.um.edu.mt/staff/reuben.farrugia



reuben.farrugia@um.edu.mt