Universidad de Granada	Fundamentos Físicos y Tecnológicos D.G.I.I.M. y D.G.I.I.M.	Examen de Teoría 19 de Febrero de 2021	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- Los datos de los problemas están en función de los dígitos de tu DNI. Así si una resistencia vale $(D_1 + 1) * 2k\Omega$, el valor de esa resistencia lo tendrás que calcular sumando uno al primer dígito de tu DNI y multiplicando el resultado por dos. La magnitud resultate está expresada en kilo Ω .
- Cuando hayas terminado los ejercicios escanéalos con tu dni al menos en una de las hojas que entregues y sube el archivo resultante en pdf al enlace correspondiente de la plataforma PRADO.
- 1. En el circuito de la figura 1:
 - a) Calcula y **dibuja** los equivalentes Thevenin y Norton del circuito visto desde los puntos A y G si todas las resistencias valen R=1k Ω **excepto** la que se encuentra entre los nudos F y G cuyo valor es (D_1+3) k Ω , $I_1=(D_1+1)$ mA, $I_2=(D_1+2)$ mA, $V_1=(D_2+1)$ V, $V_2=(D_2+2)$ V y $V_3=(D_2+3)$ V. Para calcular V_{th} usa el camino sombreado y los nombres de los nudos asignados en la figura. (**1.4 puntos**).
 - b) Calcula la potencia de las fuentes I_1 , I_2 , V_3 y V_2 del circuito justificando si son consumidas o suministradas. (0.8 puntos)
 - c) Razona cómo cambiaría el resultado si entre los nudos A y B se colocara una bobina de autoinducción 1mH.(0.2 puntos)

Figura 1: Circuito para el problema 1

- 2. En el circuito de la figura 2, $R_1=R_2=100\Omega$, $R=(D_5+1)k\Omega$, $C_1=C_2=(D_5+2)nF$ y $L_1=L_2=(D_5+3)mH$.
 - a) Calcula la función de transferencia, su módulo y su argumento. (1 punto)
 - b) Pinta el diagrama de Bode en módulo y argumento de la función de transferencia y explica su significado. ¿Existe alguna frecuencia para la que la salida sea diez veces más pequeña que la entrada? ¿Existe alguna frecuencia para la que no haya desfase entre salida y entrada? Justifica tu respuesta y, si es afirmativa, calcula estos valores. (0.75 puntos)
 - c) ¿Cuáles serían las potencias media e instantánea en la bobina L_2 si la entrada fuera $v_i(t) = 5 \sin(10^5 t + \frac{\pi}{3})V$? (0.45 puntos)

Figura 2: Circuito para el problema

- d) ¿Cuál sería la intensidad que sale del AO si la entrada fuera $v_i(t)=5\,\sin(10^5t+\frac{\pi}{3})V?$ (0.4 puntos)
- 3. Se quiere utilizar una fuente real de tensión V=4,85· (D_3+2) V y resistencia interna R_i =2,71· (D_4+1) k Ω para alimentar el circuito de la figura 3.
 - a) Justifica cómo tienen que establecerse las conexiones entre los bornes de la fuente y los nodos X e Y para intentar que el transistor de la figura 3 conduzca. Dibuja el circuito resultante.
 - b) Una vez en conducción, calcular razonadamente el punto de polarización del transistor así como su potencia.

Datos: V_T =0.1V, R=1k Ω , V_1 =(D_3 + 1)V y k=2 10⁻³ $\frac{A}{V^2}$. (2 puntos)

Figura 3: Circuito para el problema