Name:	Date:	

PSTAT 5A: Discussion Worksheet 06

Spring 2023, with Ethan P. Marzban

- **1.** (a) If $X \sim \mathcal{N}(-3, 1.5)$, what is $\mathbb{P}(X \le -2)$?
 - **(b)** Find $\pi_{0.77}$, the value such that $\mathbb{P}(Z \leq \pi_{0.77}) = 0.77$ where $Z \sim \mathcal{N}(0, 1)$.
 - (c) Find the 21.77th percentile of the standard normal distribution.
 - (d) Find the 10th percentile of the t_{21} distribution.
 - **(e)** If $T \sim t_{37}$, what is $\mathbb{P}(T \leq -2.03)$?
 - **(f)** If $T \sim t_{50}$, what is $\mathbb{P}(T \leq 2.03)$? **Hint:** Draw a picture!
- **2.** Mark is interested in performing inference on the true proportion of UCSB students that use *Venmo*. As such, he takes a representative sample of 92 UCSB students and finds that 57% of these students use *Venmo*.
 - (a) Identify the population.
 - **(b)** Identify the sample.
 - (c) Define the parameter of interest.
 - (d) Define the random variable of interest.
 - **(e)** Construct a 95% confidence interval for the true proportion of UCSB students that use *Venmo*. Be sure to check any/all relevant conditions, and interpret your interval.
 - **(f)** Construct a 77% confidence interval for the true proportion of UCSB students that use *Venmo*.
- **3.** A quality-control checker takes a representative sample of 35 *GauchoSnip*-brand scissors and finds that the sampled scissors have an average weight of 6 oz and a standard deviation of 1.4 oz.
 - (a) Define the parameter of interest.
 - (b) Define the random variable of interest.
 - **(c)** Construct a 95% confidence interval for the true average weight of *GauchoSnip*-brand scissors, and interpret your interval.