Exercise 1: 1.12.3.10 Intersection of sigma algebras

 \mathcal{F}_1 and \mathcal{F}_2 are two sigma algebras of subsets of Ω . Show that

$$\mathcal{F}_1 \cap \mathcal{F}_2 \tag{1.1}$$

is a sigma algebra of subsets of Ω .

Solution.

Definition 1.2 (Sigma algebra). A collection \mathcal{A} of subsets of Ω is called a **sigma algebra** if it satisfies.

$$\Omega \in \mathcal{A} \tag{1.3}$$

$$A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A} \tag{1.4}$$

$$A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A} \tag{1.5}$$

In other words, non-empty (1.3) and has closure under both complement (1.4) and union (1.4). *Identity* 1.6 (De Morgan's rule).

$$A \cap B = (A^c \cup B^c)^c \tag{1.7}$$

TODO introduce \mathcal{F} is this on the right level? corner casees? compare to the general case

$$A,B\in\mathcal{A}\stackrel{(1.4)}{\Longrightarrow}A^{c},B^{c}\in\mathcal{A}\stackrel{(1.5)}{\Longrightarrow}(A^{c}\cup B^{c})\in\mathcal{A}\stackrel{(1.7)}{\Longrightarrow}(A\cap B)^{c}\in\mathcal{A}\stackrel{(1.4)}{\Longrightarrow}A\cap B\in\mathcal{A}\quad\Box\quad(1.8)$$

Exercise 2: 2.6.5.6 Use Chen's Lemma

 $X \in Po(\lambda)$. Show that

$$\operatorname{E}\left[X^{n}\right] = \lambda \sum_{k=0}^{n-1} {n-1 \choose k} \operatorname{E}\left[X^{k}\right]. \tag{2.1}$$

Aid: Use Chen's Lemma with suitable H(x).

Solution.

Lemma 2.2 (Chen's Lemma). $X \in Po(\lambda)$ and H(x) is a bounded Borel function, then

$$E[XH(X)] = \lambda E[H(X+1)]. \tag{2.3}$$

Identity 2.4 (Binomial identity).

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$
 (2.5)

$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
 (2.6)

We choose $H(X) = X^{n-1}$ to show (2.1).

$$E[X^{n}] = E[XH(X)] \Big|_{H(X) = X^{n-1}} \stackrel{(2.2)}{=} \lambda E[H(X+1)] \Big|_{H(X) = X^{n-1}} = \lambda E[(X+1)^{n-1}]$$
(2.7)

$$\lambda \mathbf{E}\left[(X+1)^{n-1}\right] \stackrel{(2.6)}{=} \lambda \mathbf{E}\left[\sum_{k=0}^{n-1} \binom{n-1}{k} X^k\right] = \{\mathbf{E} \text{ linear operator}\} = \lambda \sum_{k=0}^{n-1} \binom{n-1}{k} \mathbf{E}\left[X^k\right] \quad \Box$$

$$(2.8)$$

Exercise 3: 3.8.3.1 Joint Distributions & Conditional Expectations

Let (X, Y) be a bivariate random variable, where X is discrete and Y is continuous. (X, Y) has a joint probability mass - and density function given by

$$f_{X,Y}(k,y) = \begin{cases} \frac{\partial P(X=k,Y \le y)}{\partial y} = \lambda \frac{(\lambda y)^k}{k!} e^{-2\lambda y} &, k \in \mathbb{Z}_{\ge 0}, y \in [0,\infty) \\ 0 &. \end{cases}$$
(3.1)

(a) Check that

$$\sum_{k=0}^{\infty} \int_{0}^{\infty} f_{X,Y}(k,y) dy = \int_{0}^{\infty} \sum_{k=0}^{\infty} f_{X,Y}(k,y) dy = 1$$
 (3.2)

(b) Compute the mixed moment E[XY] defined as

$$E[XY] = \sum_{k=0}^{\infty} \int_{0}^{\infty} ky f_{X,Y}(k,y) dy.$$
(3.3)

Answer: $\frac{2}{\lambda}$

- (c) Find the marginal p.m.f. of X. Answer: $X \in Ge(\frac{1}{2})$
- (d) Compute the marginal density of Y here defined as

$$f_Y(y) = \begin{cases} \sum_{k=0}^{\infty} f_{X,Y}(k,y) & , y \in [0,\infty) \\ 0 & . \end{cases}$$
 (3.4)

Answer: $Y \in \text{Exp}(\frac{1}{\lambda})$

(e) Find

$$p_{X|Y}(k|y) = p(X = k|Y = y), k \in \mathbb{Z}_{\geq 0}$$
 (3.5)

Answer: $X|Y = y \in Po(\lambda y)$.

(f) Compute E[X|Y=y] and then E[XY] using double expectation. Compare your results with (b).

Solution. (a)

- (b)
- (c)
- (d)
- (e)
- (f)
- (g)

Exercise 4: 3.8.3.14 Computations on a distribution

Let (P, Y) be a bivariate r.v. such that

$$Y|P = p \in F_{S}(p), \quad f_{P}(p) = 3p^{2}, \quad p \in [0, 1].$$
 (4.1)

Compute: E [Y], Var [Y], Cov (P, Y) and the p.m.f. of Y. Answer: E [Y] = $\frac{3}{2}$, Var [Y] = $\frac{9}{4}$, Cov (P, Y) = $-\frac{1}{8}$, and $p_Y(k) = \frac{18}{(k+3)(k+2)(k+1)k}$, $k \ge 1$.

Solution.

$$p_{Y}(k) = \int_{p=0}^{1} p_{Y|P=p}(k) df_{P}(p) = 3 \int_{p=0}^{1} p^{3} (1-p)^{k-1} dp = \left\{ \begin{cases} q = 1-p \\ dq = -dp \end{cases} \right\}$$

$$= 3 \int_{q=0}^{1} (1-q)^{3} q^{k-1} dq = 3 \int_{q=0}^{1} (-q^{3} + 3q^{2} - 3q + 1) q^{k-1} dq$$

$$= 3 \int_{q=0}^{1} -q^{k+2} + 3q^{k+1} - 3q^{k} + q^{k-1} dq$$

$$= 3 \left(-\frac{1}{k+3} + \frac{3}{k+2} - \frac{3}{k+1} + \frac{1}{k} \right)$$

$$= \frac{18}{(k+3)(k+2)(k+1)k}, k \ge 1$$

$$(4.2)$$

$$E[Y] \stackrel{\triangle}{=} \sum_{k=1}^{\infty} k \frac{18}{(k+3)(k+2)(k+1)k} = \sum_{k=1}^{\infty} \frac{18}{(k+3)(k+2)(k+1)}$$
$$= \frac{3}{2}$$
(4.3)

$$\operatorname{Var}[Y] \stackrel{\triangle}{=} \sum_{k=1}^{\infty} (k - \operatorname{E}[Y])^2 \frac{18}{(k+3)(k+2)(k+1)k} = \frac{9}{4}$$
 (4.4)

$$E[P] = \int_{p=0}^{1} 3p^2 dp = \frac{3}{4}$$
 (4.5)

$$\operatorname{Cov}(P,Y) \stackrel{\triangle}{=} \int \sum (k - \operatorname{E}[Y])(p - \operatorname{E}[P])... = -\frac{1}{8}$$
(4.6)

Exercise 5: 4.7.2.4 Equidistribution

Let $\{X_k\}_{k=1}^n$ be independent and identically distributed. Furthermore $\{a_k\}_{k=1}^n$, $a_k \in \mathbb{R}$. Set

$$Y_1 = \sum_k a_k X_k \tag{5.1}$$

and

$$Y_2 = \sum_k a_{n-k+1} X_k. (5.2)$$

Show that

$$Y_1 \stackrel{d}{=} Y_2. \tag{5.3}$$

Solution. TODO needs background identies and theorems for all the steps for all X exists unq varphiX uniquess of varphiX (=> varphiX = varphiXk) varphi sum varphi scale Xk is all identically distributed product is reorderable due to (countable?) commutativity and associative of multiplication anything more? TODO compare with FS8.3

Identity 5.4 (Permuted coefficients). $\{X_k\}, X$ is independent and identically distributed. σ is any permutation.

$$\varphi_{\left(\sum_{k\in K} a_{\sigma(k)} X_k\right)}(t) = \prod_{k\in K} \varphi_X(a_k t) = \varphi_{\left(\sum_{k\in K} a_k X_k\right)}(t) \tag{5.5}$$

Proof.

$$\varphi TODO$$
 (5.6)

Using Theorem 5.4 with $\sigma: k \to n-k+1$

$$\varphi_{Y_1} = \varphi_{\left(\sum_k a_k X_k\right)} = \varphi_{\left(\sum_k a_{n-k+1} X_k\right)} = \varphi_{Y_2} \tag{5.7}$$

And with uniqueness theorem of blablabla we have

$$\{\varphi_{Y_1} = \varphi_{Y_2}\} \Rightarrow \{Y_1 \stackrel{d}{=} Y_2\} \quad \Box$$
 (5.8)

Exercise 6: 5.8.3.11 Laplace distribution

Let $\{X_k\}_{k=1}^n$ be independent and identically distributed with $X_k \in L(a), k \in [1, N_p], N_p \in Fs(p)$. N_p is independent of the varibles $\{X_k\}$. We set

$$S_{N_p} = \sum_{k=1}^{N_p} X_k. (6.1)$$

Show that $\sqrt{p}S_{N_p} \in L(a)$.

Solution.

Exercise 7: 7.6.1.1 Mean square convergence

Assume $X_n, Y_n \in L_2(\Omega, \mathcal{F}, P) \, \forall n$ and

$$X_n \xrightarrow{2} X$$
, $Y_n \xrightarrow{2} Y$ as $n \to \infty$ (7.1)

Let $a, b \in \mathbb{R}$. Show that

$$aX_n + bY_n \xrightarrow{2} aX + bY \quad \text{as} \quad n \to \infty$$
 (7.2)

You should use the definition of mean square convergence and suitable properties of ||X|| as defined in (LN 7.3).

Solution. From the definition of mean square convergence:

$$X_n \xrightarrow{2} X \Rightarrow \mathbb{E}\left[\|X_n - X\|^2\right] \to 0,$$
 (7.3)

$$Y_n \xrightarrow{2} Y \Rightarrow \mathbb{E}[\|Y_n - Y\|^2] \to 0.$$
 (7.4)

Via the parallelogram rule and (7.3), (7.4)

$$E[\|(aX_n + bY_n) - (aX + bY)\|^2] = E[\|a(X_n - X) + b(Y_n - Y)\|^2]$$

$$\leq 2a^2 E[\|X_n - X\|^2] + 2b^2 E[\|Y_n - Y\|^2]$$

$$\to 0$$
(7.5)

Again from the definition of mean square convergence and (7.5) we get

$$E\left[\|(aX_n + bY_n) - (aX + bY)\|^2\right] \to 0 \Rightarrow aX_n + bY_n \xrightarrow{2} aX + bY \quad \Box$$
 (7.6)