2622 Matematik for Økonomer

Eric Hillebrand

Opgavesæt 2

Opgave 1

Du vil gerne beregne korrelationen mellem daglige afkast for to aktier. Du har elleve datapunkter for priserne $p_{1,t}$ and $p_{2,t}$.

$\mathrm{Dag}\ t$	$p_{1,t}$	$p_{2,t}$
1	100.00	100.00
2	101.75196	99.02018
3	102.05262	98.95108
4	102.64926	99.10753
5	102.07722	100.87813
6	100.99975	100.24103
7	100.40538	101.68745
8	96.95554	100.43030
9	96.07364	103.07275
10	96.06832	103.65973
11	97.09132	103.60093

1. Beregn daglige afkasttidsrækker

$$r_t = \frac{p_t - p_{t-1}}{p_{t-1}}$$

for begge aktier.

2. Beregn og fortolk kovariansen og korrelationen for denne stikprøve af to afkasttidsrækker. Hvilke to vektorer i beregningen af kovariansen er ortogonale?

Opgave 2

Beregn ||x||, ||y||, $\langle x, y \rangle$ og bestem en vektor z der er ortogonal til x og y, ||z|| = 1.

1.
$$x = (1, -2, 3), y = (7, -3, 5),$$

2.
$$x = (2, -1, -1), y = (1, -3, -3),$$

3.
$$x = (3, 4, -4), y = (2, -2, 5).$$

Opgave 3

Bestem determinanten af matricen

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Opgave 4

Lad Y være produktion og, i ligevægten, forbrugsudgifter. Lad r betegne rentesatsen. Stephen Hicks IS-LM analyse er en model for ligevægtskoordinaterne (Y_0, r_0) som skæringspunkt af to funktioner: IS kurven, der beskriver ligevægten i markedet for goder (I = S), og LM kurven, der beskriver ligevægten i pengemarkedet $(M_D = M_S)$. Vi har definitionerne

$$C = bY$$
$$I = I_m - ar,$$

hvor b er den marginale forbrugstilbøjelighed, I_m er den maksimale investering når rentesatsen er nul, a er den marginale kapitaleffektivitet. Ligevægtsbetingelsen er

$$Y = C + I + G = C + S + G.$$

Når vi indsætter definitionerne i ligevægtsbetingelsen og rydder op på leddene får vi IS kurven

$$sY + ar = I_m + G$$

hvor s=1-b er den marginale opsparingstilbøjelighed.

På pengemarkedet er pengeefterspørgslen givet ved transaktionsefterspørgslen og spekulationsefterspørgslen

$$M_D = M_t + M_s$$
.

Transaktionsefterspørgslen er en del af indtægterne,

$$M_t = mY$$
,

spekulationsefterspørgslen er en funktion der afhænger negativt af rentesatsen,

$$M_s = M_m - hr,$$

hvor M_m er det maksimale beløb allokeret til spekulation i tilfældet af nulrenten (dvs. nul alternativomkostninger). Ligevægtsbetingelsen er $M_S = M_D$, hvor pengeudbuddet M_S er sat eksogent ved centralbanken. Derved gælder at

$$M_S = M_D = mY + M_m - hr,$$

eller (LM):

$$mY - hr = M_S - M_m.$$

Den simultane ligevægt i markedet for goder og i pengemarkedet er derved givet som løsning af det følgende system af lineære ligninger, som kaldes for IS-LM,

$$sY + ar = I_m + G$$

$$mY - hr = M_S - M_m.$$

Løs systemet for Y_0 og r_0 ved hjælp af Cramers regel.¹ Diskutér afhængigheden af Y og r af parametrene.

¹Typisk fungerer Cramers regel bedre end Gaussisk elimination for små matricer der indeholder parameter. For tal og store matricer anbefales Gaussisk elimination.

8-minutters foredrag

- 1. Skalarprodukt
- 2. Determinant