International Journal of Environment, Ecology, Family and Urban Studies (IJEEFUS) ISSN(P): 2250-0065; ISSN(E): 2321-0109

© TJPRC Pvt. Ltd.

Vol. 5, Issue 1, Feb 2015, 1-8

ENVIRONMENTAL STUDY OF WATER AND SOIL REGIME ON SUSTAINABLE AGRICULTURE OF LUDHIANA DISTRICT, PUNJAB, INDIA

SHARDASHAKHA¹, BRAR, K, KARANJOT², KAUR GURMEET³ & MADHURI, S. RISHI⁴

^{1,4}Department of Environment Studies, Punjab University, Chandigarh, India ²Department of Geography, Punjab University, Chandigarh, India ³Department of Geology, Punjab University, Chandigarh, India

ABSTRACT

Ludhiana district, the metropolitan state of Punjab, is the most vibrant and business center. The present investigation is to examine the suitability of soil and groundwater quality for irrigation purpose and factor prevailing hydrochemistry by collecting 44 groundwater samples during pre and post monsoon. The physical and chemical analyses result shows that at some locations the concentration of EC, TDS, Ca²⁺, Mg²⁺, F and NO₃²⁻ exceeded the desirable limits of BIS which gives us cautions. The groundwater is safe for agricultural purpose with respect to %Na, RSC, SAR, MR, KI and Ca²⁺/Mg²⁺ except for PI. The soil samples of the study area are within the limits except for Cadmium and Lead at some places. As per Wilcox majority of the groundwater samples are under good to permissible category. The USSL findings revealed that the groundwater samples falls under C 2S 1 and C 3S 1 category. The findings call for proper and immediate management plan to achieve agricultural sustainability and also to protect the invaluable resources of the study area.

KEYWORDS: Ludhiana, Groundwater Quality, Agricultural Sustainability, Management Plan

INTRODUCTION

Developing countries are facing acute problems of water resources in terms of quality and quantity. Groundwater irrigation started in 1950-51 on 6.5 million hectares (CGWB, 1992), which was increased to 46.5 million hectares in 2000-01 meeting about 70% of irrigation water requirements of the country. Groundwater is the major source of drinking water in both urban and rural areas in India. Unplanned urbanization, industrialization, overexploitation and unscientific disposal of treated and untreated effluent directly affect the quality and quantity of groundwater regime (Simeonov et al, 2003). Large stretches of water are heavily polluted by the adsorption and transportation of industrial, domestic and agricultural wastes ultimately results in environmental degradation and sustainability. The Green Revolution technology in the field of agriculture had put a great pressure on ecological balance, resulting in the fall of ground water table, soil resources deterioration and environmental pollution from farm chemicals. This imbalance results in global warming and ozone depletion through agricultural practices and also poisoned the environment.

editor@tjprc.org www.tjprc.org

SITE DESCRIPTION

Figure 1: a) Map of India

b) Map of Study Area

Ludhiana district is bounded between north latitude 30⁰ 33' and 31⁰ 01' and east longitude 75⁰ 25' and 76⁰ 27' falls in central part of Punjab. The district has four sub-divisions viz-Ludhiana, Khanna, Samrala and Jagraon and eleven development blocks viz.- Ludhiana, Mangat, Doraha, Khanna, Dehlon, Pokhwal, Samrala, Machiwara, Jagraon, Sidhwanbet and Sudhar. The climate of Ludhiana district is tropical steppe, hot and semi-arid with dry and very hot summer and cold winter except during monsoon season when moist air of oceanic origin penetrate into the district. There are four seasons in a year with hot season starts from mid March to last week of the June followed by the south west monsoon which lasts up to September. The transition period from September to November forms the post-monsoon season and the winter season starts late in November and remains up to first week of March. The normal annual rainfall of the district is 680 mm which is unevenly distributed over the area in 34 days. The south west monsoon, sets in from last week of June and withdraws in end of September, contributed about 78% of annual rainfall. July and August are the wettest months. Rest 22% rainfall is received during non-monsoon period in the wake of western disturbances and thunder storms. Generally rainfall in the district increases from southwest to northeast. Mean maximum temperature is 1.2°C (May & June) and mean minimum is 5.8°C (January).

GEOMORPHOLOGY & SOIL TYPE

The district area is occupied by Indo-Gangetic alluvium. Mainly the area is plain and major drains are Satluj and its tributaries and Budhanala. The soil of this zone has developed under semi-arid condition. The soil is sandy loam to clayey with normal reaction (pH from 7.8 to 8.5).

HYDROGEOLOGY

In general the Ground water of the district is fresh except in and around Ludhiana city where the ground water is polluted due to industrial effluents. The lithological data of the boreholes indicate the presence of the first aquifer generally occurs between 10 and 30m. The second is between 50 and 120m. Third between 150-175m, the forth between 200-250m

and the fifth between 300-400m.

MATERIALS AND METHODS

Figure 2: Map Showing Groundwater and Soil Sampling Points of Ludhiana District, Punjab, India

44 Groundwater samples were collected during May 2013 and October 2013 and were analyzed in laboratory. The water sampling has been carried out following the standard procedures. Good qualities, air tight plastic bottles with cover lock were used for sample collection and safe transfer to the laboratory for analysis. Analysis were done for pH and EC and the major ions (Na⁺, K⁺, Ca²⁺, Mg²⁺, SO₄²⁻, Cl⁻, HCO₃²⁻, CO₃²⁻ and NO₃²⁻) using standard method. Temperature, pH, EC were determined at the time of sampling in the site. The determinations of immediate parameters were made within 2 days after sampling. Ca²⁺, Mg²⁺, CO₃²⁻ and HCO₃²⁻ were analyzed by titration. Na⁺ and K⁺ were measured by flame photometry and NO₃²⁻ and SO₄²⁻ by U.V Spectrophotometer. HCO₃²⁻ and Ca²⁺were analyzed within 24 hour of sampling. The concentration of various soil parameters are calculated with ICAP-AES which means Inductively Coupled Argon Plasma – Atomic Emission Spectrometry

Table 1: Common Indices for Agricultural Water Quality Evaluation

SI. No.	Water Quality Indices	Sources		
1.	Hardness (as $CaCO_3$)= $Ca^{2+}X 2.50 + Mg^{2+}X4.12$	Hounslow,1995		
2.	$SAR = Na^{+}/\sqrt{((Ca^{2+} + Mg^{2+})/2)}$	Richards (1954)		
3.	$%Na = ((Na^{+} + K^{+})x100)/(Ca^{2+} + Mg^{2+} + Na^{+} + K^{+})$	Wilcox (1948)		
4.	RSC= $(HCO_3^- + CO_3^{2-})$ - $(Ca^{2+} + Mg^{2+})$	Eaton (1950)		
5.	$PI = ((Na^{+} + \sqrt{HCO_{3}})x100)/(Ca^{2+} + Mg^{2+} + Na^{+})$	Doneen (1964)		
6.	$KI = Na^{+}/(Ca^{2+} + Mg^{2+})$	Kelly (1963)		
7.	$MR = (Mg^{2+}x100)/(Ca^{2+} + Mg^{2+})$	Paliwal (1972)		
*for 1, all cations and anions are expressed in mg/l and for 2-7 all are in meq/l				

RESULTS AND DISCUSSIONS

44 groundwater samples were collected from the study area for physico-chemical analysis and their results have been presented in **Table 2 and 3**. The brief details of quality parameters are as under:

www.tjprc.org editor@tjprc.org

Table 2: Showing Various Agricultural Parameters of Ground Water during Pre Monsoon

Count	pН	EC	TDS	TH	Ca	K	Mg	Na	HCO3 CI		SO4 I	NO3	PO4	F	%Na	RSC	SAR	KI	PI	MB	Ca/Mq
L1	6.98					29.21	35.84	50.31	109	18.13	13.61	91.84	0.13	1.03					19.7954		
L2	6.12	127	6 1890	455.932	94.86	26.24	34.07	48.12	103	13.8	10.16	85.01	0.11	1.02	28.1313	-5.37364	1.18566	0.29641	20.652	39.6867	1.51974
L3	6.32	112	3 1245	427.64	96.25	29.8	32.46	40.11	105	12.46	13.02	74.43	0.098	0.9	26.3911	-5.27083	0.99819	0.24955	19.8346	38.19	1.61849
L4	5.98					23.31	33.91	38.46	107	13.02	10.23	75.52	0.078	0.99	23.3841				18.813		1.66518
L5	6.24	98	2 1296			28.87	33.21	43.02	103	13.24	9.1	80.23	0.084	0.87	27.5158				20.3502		
L6	6.1					22.84	32.17	45.01	103	12.86	11.13	65.23	0.1	0.91	28.3123				21.7179		
Ld1	7.	1 116	0 1367	7 468.289		20.84	27.83	39.06	105	13.23	12.05	50.85	0.095	0.78	26.6248			0.27623	21.7831		
Ld2	6.42					18.13	30.94	30.82	103	12.32	9.46	47.23	0.095	1.1	22.0562				19.6253		
Ld3	7.0				78.21	17.35	30.12	35.16	103	13.48	9.05	41.26	0.087	0.97	24.7802				21.3973		
Ld4	6.2					16.8	31.25	34.83	105	12.57	8.34	40.57	0.11	0.82	24.2541				21.3224		
Ld5	6.1				84.79	12.83	31.86	32.64	103	10.87	7.13	45.08	0.093	0.78	21.379				19.802		
Ld6	5.87					11.83	28.21	35.74	105	9.45	8.11	40.05	0.084	0.63	23.86				21.8926		1.5539
Ld7	6.2					8.32	31.04	38.11	103	10.6	7.4	40.06	0.056	0.71	23,4456				21.5439		
Ld8	5.89					10.56	27.83	37.03	102	8.9	6.3	42.2	0.078	0.78	24.5705				22.2253		
Ld9	5.98					9.84	26.61	42.56	103	10.83	8.11	38.02	0.088	0.93	27.4528				23.8877		
M1	6.34				74.02	8.1	29.12	43.31	105	9.83	8.02	37.89	0.092	0.79	26.7746				23.7076		
M2	6.56					8.9	28.11	45.13	107	9.23	7.8	41.04	0.045	0.92	27.3186				23.8519		
M3	6.02				72.01	9.05	26.12	41.17	103	9.01	7.5	35.04	0.067	0.98	27.313				24.2519		
M4	6.16					10.03	23.11	45.22	105	8.03	6.8	37.9	0.066	0.53	30.024				25.7925		
M5	6.56					9.01	27.01	37.83	103	8.13	5.45	35.08	0.063	0.56	25.6745			0.30301	23.5554	40.9115	
M6	6.14					8.11	26.08	42.21	103	7.3	6.1	38.08	0.089	0.81	27.3475			0.33822	24.2553		
M7	5.89				73.02	7.98	25.84	46.11	105	9.3	7.1	37.01	0.092	0.91	29.0232				25.1467		
M8	6.24					8.15	30.01	43.02	104	8.5	6.09	38.01	0.09	0.93	26.6175				23.51		
M9	6.42					8.05	25.13	45.01	103	6.7	7.9	37.02	0.1	0.84	29.1852				25.2918		
S1	7.1		8 923			8.11	26.22	40.5	102	6.7	8.12	34.11	0.74	0.81	26.7246				23.9744		
S2	6.54					10.03	27.89	37.02	103	6.92	5.22	35.04	0.083	0.79					23.5142		
S3	6.6					9.8	30.02	35.84	105	7.13	5.63	36.08	0.078	0.87		-4.02754			22.4425		
S 4	7.12					10.05	29.11	37.8	103	8.04	7.11	35.83	0.096	0.93	25.4221				23.0721		
S5	7.02					9.34	29.01	41.01	107	7.13	6.02	34.83	0.045	0.76	26.7983				24.1999		
S6	7.0					9.15	30.98	42.05	103	6.19	5.12	34.09	0.063	0.82	26.8057			0.3247	23,5663		
D1	6.98					8.22	27.65	45.22	105	7.23	6.04	38.05	0.023	0.75	28.8367			0.3661	25.1224		
D2	7.02				70.04	9.13	26.17	41.05	102	6.01	7.4	35.08	0.029	0.83	27.5963				24.406		1.46083
D3	6.86					8.14	28.01	42.23	103	7.13	5.08	37.01	0.062	0.91	27.6095				24.4829		
D4	6.93					9.17	25.12	42.83	102	6.18	6.03	36.17	0.068	0.57	29.1818			0.366	25.4181		
D5	7.0					10.15	25.01	45.43	103	7.11	5.9	33.84	0.061	0.85	31.3575				26.6682		
D6	6.87					10.03	26.11	41.03	102	6.12	5.02	33.01	0.094	0.7	29.0797				25.5547		
K1	6.98					9.12	27.04	37.09	103	6.11	5.06	38.13	0.011	0.86	25.0934				23,1666		
K2	7.0					11.14	24.12	39.16	102	6.7	5.19	39.01	0.011	0.96	27.4109				24.2166		
K3	7.					10.02	29.05	42.01	103	7.16	5.02	39.06	0.016	0.91	27.3287				23.8567		
K4	6.98					9.54	27.11	41.83	103	5.96	5.18	40.31	0.082	0.68	27.8156		1.35915		24.4454		
K5	6.87					9.93	27.17	43.01	105	6.19	5.07	40.03	0.078	0.85	28.147				24.6182		
K6	6.98					9.22	25.79	43.48	103	6.13	5.16	39.1	0.091	0.81	28.9305				25.1486		
K7	7.04					10.02	27.18	43.11	105	6.25	5.03	41.05	0.09	0.74	28.2778		1.3875		24.6943		
K8	7.0	1 81	5 1245	345.585	68.15	9.28	26.93	42.21	103	6.08	5.17	38.14	0.087	0.63	28.2152	-3.58703	1.39228	0.34807	24.7795	41.9939	1.3813

Table 3: Showing Various Agricultural Parameters of Ground Water during Post Monsoon

Count	pН	EC	TDS	TH	Ca	Mg	K	Na	HCO3	CI	SO4	NO3	PO4	F	%Na	RSC	SAR	KI	PI	MB	Ca/Mq
L1	7.58	13	7 1893	587.437	109.63	34.21	30.05	50.31	110	20.05	13.61	92.01	0.091	1.1	27.6514		1.13151	0.28288	31.1329	36.3745	1.74918
L2	6.42	128	6 189		95.88	33.01	25.43	48.12	103	14.08	10.18	85.4	0.062	0.98	28.0981		1.19265	0.29816	32.2298	38.6787	1.5854
L3	6.7	112	7 1282	556,798	97.35	40.21	29.8	35.47	108	12.89	13.11	79.23	0.066	0.73	23.0871	-5.9086	0.80375	0.20094	26.3294	43.076	
L4	6.48	106	3 1279	577.731	105.74	35.53	28.11	39.01	109	15.05	13.09	81.9	0.054	0.71	23.9508		0.88492		27.6512		
L5	6.95	10	2 1294		94.87	38.87	31.63	41.65	108	14.89		85.8	0.029	0.96			0.97184	0.24296	29.0956		
L6	6.58	93	4 1276	521.294	83.12		23.21	45.21	103	13.36		67.74	0.045	1	26.9453		1.13334		31,5539	46.2317	
Ld1	7.24	116	4 1342	530.002	86.61	34.46	21.54	35.23	105	14	12.05	55.32	0.032	0.83	23,6555	-5.0025	0.91173	0.22793	28.9848	42.161	
Ld2	6.59	108	3 1269	536,364	89.16	35.5	20.01	30.82	109	14.03	10.15	50.06	0.038	0.68	21,1071	-5.137	0.77456	0.19364	27.0314	42.1784	1.37088
Ld3	6.98	95	6 1276	511,539	79.21	32.37	19.34	33.21	103	13.89	9.65	43.65	0.019	0.76	23.7687	-4.5311	0.92913	0.23228	29.8636	42.8145	1.33566
Ld4	6.57	84	2 1266	513,535	80.01	30.21	18.43	32.08	105	14.42	9.25	40.34	0.024	0.92	23,4979	-4.3566	0.91845	0.22961	30,1881	40.8896	1.44561
Ld5	6.72	86	9 129	538,485	90.01	31.34	15.97	30.01	103	14.0	9.19	46.62	0.023	0.98	20.5656	-4.9313	0.78884	0.19721	27.1236	38,9461	1.56765
Ld6	6.43	97	6 1306	535.99	89.01	32.45	11.54	32.61	105	13.87	9.02	43.61	0.026	0.79	20.4501	-4.9449	0.85122	0.21281	28,1901		1.49721
Ld7	6.53	8	71 1283	519.024	82.21	33.45	9.05	39.54	103	13.9	9.32	40.31	0.048	0.84	23.2469	-4.7547	1.06785	0.26696	31.4116	42.7079	1.34149
Ld8	6.4	85	6 1244	526,509	85.21	31.51	11.87	34.01	102	12.9	8.45	44.12	0.032	0.91	21.7409	-4.7462	0.92206	0.23052	29.3176	40.387	1.47605
Ld9	6.42	86	5 1249	501.135	75.04	29.06	10.97	40.32	103	12.85	8.32	38.75	0.024	0.8	26.1018	-4.0716	1.21805	0.30451	34.5769	41.503	1.40947
MI	6.84	9	4 1760	503.206	75.87	31.11	11.08	45.06	105	10.53	13.34	40.07	0.03	0.95	27.3285	-4.2447	1.31426	0.32856	35.5875	42.8972	
M2	6.78	9	5 1684	513.809	80.12	28.11	9.07	47.01	107	11.43	10.37	42.06	0.028	0.97	27.8121	-4.156	1.38412	0.34603	36.7307	39.1276	1.55574
M3	6.64	8	6 1536		74.83	27.21	10.02	45.16	103	10.04	11.07	39.54	0.019	0.84	28.4016		1.40365	0.35091	37.1372	39.9827	1.50108
M4	6.83	94	9 1248	501,334	75.12	30.01	11.02	49.02	105	11.03	12.26	44.17	0.015	0.78	29,2424	-4.1206	1,46015	0.36504	37,5331	42.26	1,3663
M5	6.79	9	1187	495.072	72.61	29.01	9.11	43.22	103	9,53		40.11	0.093	0.79	27,2311	-3,9584	1,33184	0.33296	36,1936	42.2623	1.36618
M6	6.62	82	9 1239	500,586	74.82	28.01	9.04	40.11	103	8.32	7.9	39,86	0.013	0.7	25,8649	-3.9754	1,2323	0.30807	34,9455	40.6832	1,45802
M7	6.59	8	21 1319	496,344	73.12	26,74	8.23	47.21	105	10.09	7.04	38,86	0.024	0.69	29,226	-3,7618	1,49826	0.37456	38,6674	40,1194	1,49256
M8	6.57	8	5 1196	497,442	73,56	27.03	9.11	43,31	104	9.05	6.09	39.01	0.015	0.84	27.6967	-3.8218	1,36364	0.34091	36,9251	40,2344	1,48543
M9	6.53	95	4 1216	494,274	72.29	25,21	8.05	45.12	103	7.07	8.02	37.84	0.026	0.68	28,9599	-3,6314	1.47584	0.36896	38,5428	38,9837	1,56518
S1	6.95	115	3 829	496,369	73.13	23,41	7.01	41.25	102	6.7	8.12	36.11	0.021	0.79	27,4768	-3,5375	1.37784	0.34446	37,5558	36,9671	1,70511
S2	6.68	120	4 856	494,673	72.45	26.02	9.32	38.23	103	7.02	5.22	37.04	0.086	0.73	26.0643	-3,7052	1.23336	0.30834	35,5292	39,6856	1.51981
S3	6.69	114	9 86	500,586	74.82	28.14	11.03	36.22	105	8.32	6.23	38.03	0.068	0.74	24.6635	-3.9533	1,11069	0.27767	33,6016	40.795	1.45128
S4	6.94	10	21 857	489,334	70.31	29.02	10.11	39.85	103	9.0	7.23	38.23	0.075	0.69	26,4326	-3.8559	1.25068	0.31267	35,4178	43.0581	1.32244
S5	6.79	97	8 828	494.324	72.31	27.84	9.64	40.03	107	7.1	5.86	35.5	0.073	0.84	26,4172	-3.7831	1.25798	0.31449	35,9731	41.3615	1.41771
S6	6.9	78	3 854	485,516	68.78	23.06	9.05	42.85	103	7.05	5.22	34.26	0.069	0.75	29.5936	-3.297	1.49563	0.37391	39.5388	38.0514	1.62802
D1	7.04	55	7 1017	486.09	69.01	25.83	8.22	45.22	105	7.23	6.04	38.05	0.017	0.81	29,4201	-3.5024	1.50637	0.37659	39.3239	40.6786	1.45829
D2	7.08	6	5 786	488.835	70.11	28.01	9.22	40.44	102	8.1	8.9	36.31	0.022	0.92	26,7881	-3.7803	1.29063	0.32266	35.9862	42.2613	1.36623
D3	6.9	5	4 82	486.14	69.03	29.56	9.23	42.23	103	9.03	8.03	37.42	0.018	0.87	27.2619	-3.8429	1.3285	0.33213	36.388	43.9628	1.27465
D4	7.03	54	6 916	480.801	66.89	28.11	8.21	41.84	104	8.04	6.03	35.01	0.02	0.79	27.635	-3.6111	1.36956	0.34239	37.4498	43,5001	1.29885
D5	7.08	64	9 1019	474.114	64.21	27.14	10.03	43.76	105	7.83	6.01	34.33	0.021	0.68	29.6887	-3.3946	1.48845	0.37211	39.3786	43.642	
D6	7.08	55	2 1015	471.669	63.23	28.23	8.01	40.32	103	6.22	5.02	33.12	0.017	0.95	27.5105		1.3593	0.33983	37.5698	44.9932	1.22256
K1	7.08	8	31 1212	501.883	75.34	29.54	9.22	38.57	106	9.22	5.09	40.23	0.0149	0.93	24.7668	-4.0754	1.15457	0.28864	33.9958	41.8041	1.39211
K2	7.12	82	4 1209	499.613	74.43	28.35	8.23	37.83	103	6.99		39.11	0.011	0.86	24.6486		1.16011	0.29003	34.0141	41.1012	1.43302
K3	7.13	94	2 974	496,569	73.21	27.21	10.02	43.22	107	7.16	5.02	41.09	0.016	0.95	27.8826	-3.7717	1.36103	0.34026	37.2282	40.509	1.46859
K4	7.1	5	91 998	488.61	70.02	28.21	9.22	41.83	103	6.04	6.01	42.11	0.014	0.87	27.3326		1.33196	0.33299	36.5688	42.4664	1.3548
K5	7.08	9	982	493.65	72.04	29.23	7.08	43.07	105	7.96	5.07	40.89	0.015	0.91	26.7049				36.3925		1.34525
K6	7.	82	9 1194	488,71	70.06	28.11	8,71	44.02	103	8.02	6.83	41,35	0.016	0.94	28,1424	-3,7699	1,40334	0.35084	37,4203	42,3657	1.3604
K7	7.13		11 108	1 496,968	73,37	29,63	9.06	43.02	107	6.04	5,86	42.36	0.015	0.87	26,8425	-3,9779	1,30598	0.3265	36,1465	42.5244	1,35159
K8	7.08	82	5 121	488.161	69.84	28.53	7.89	40.89	103	6.08	5.03	40.23	0.013	0.96	26.5365	-3.7945	1.29769	0.32442	36.1197	42.8052	1.33617

Table 4: Showing Ground Water Parameters above Desirable and Permissible Limits

Parameters	Maximum Permissible Limit for Drinking Water	Desirable Limit for Drinking Water	No. of Ground Water Samples Analysed	No. of Samples above Permissible Limit	No. of Samples above Desirable Limit
EC	0-2000μS/cm	750μS/cm	44	Nil	09
TDS	2000mg/l	500mg/l	44	Nil	44
pН	No Relaxation	6.5 -8.5	44	Nil	Nil
Ca ²⁺	200mg/l	75mg/l	44	Nil	21
Mg ²⁺	100 mg/l	30 mg/l	44	Nil	12
Na ⁺	No Guidelines		44	Nil	Nil
K ⁺	No Guidennes		44	Nil	Nil
Cl	1000mg/l	250mg/l	44	Nil	Nil
F	1.5	1	44	Nil	03
SO_4^{2-}	400	200	44	Nil	Nil
NO ₃	No relaxation	45mg/l	44	Nil	08

Impact Factor (JCC): 3.0965

Table 5: Showing Ground Water Parameters Suitable for Agriculture During Pre Monsoon

Parameters	Minimum	Maximum	Average
%Na	20.45	29.68	26.21
RSC	-5.93	-3.29	-4.24
SAR	0.77	1.50	1.21
KI	0.19	0.37	0.30
PI	26.32	39.53	34.28
MR	36.37	46.23	41.33
Ca/Mg	1.16	1.74	1.42

Table 6: Showing Ground Water Parameters Suitable for Agriculture during Post Monsoon

Parameters	Minimum	Maximum	Average
%Na	21.37	31.35	26.79
RSC	-6.06	-3.20	-4.06
SAR	0.84	1.61	1.25
KI	0.21	0.40	0.31
PI	18.81	26.66	23.21
MR	36.68	45.23	40.7
Ca/Mg	1.21	1.72	1.46

The ionic dominance pattern is in the order of $Ca^{2+} > Mg^{2+} > Na^+ > K^+$ among cations and $HCO_3^- > NO_3^- > F^- > PO_4^{3-}$ among anions in both pre monsoon and post monsoon. The % Na and SAR value in the groundwater samples ranged from falls from 21.37meq/l to 31.35meq/l and 0.84meq/l to 1.61meq/l respectively which means that underground water is under good category. The RSC value rangedfrom-0.06meq/l to -3.20meq/l and thus falls under safe category.

Water can also be classified for agriculture suitability based on Kelly's Index. According to Kelly (1940) and Paliwal (1967) KI more than 1 indicates an excess level of sodium in waters and are unsuitable and less than 1 are suitable for agriculture. The values of KI in studied samples are less than 1 which revealed that groundwater is suitable for agriculture. Doneen (1964) evolved a criteria for assessing the suitability of water for agriculture based on Permeability Index (PI). According to PI value, water can be classified as Class I, Class II and Class III. The PI value of the most of the studied water samples falls under Class III category which means that water is unsuitable for agriculture.

Calcium and magnesium normally maintain the equilibrium in most of the water ecosystems. More of the magnesium, more effect on the crop yield (Sundary et al, 2009). Paliwal (1972) introduced an important ratio called an index of magnesium hazard. MR more than 50% indicated that water is unsuitable for agriculture and thus adversely affect the agriculture. The MR value ranged from 36.68meq/l to 45.23meq/l indicated that water is suitable for agriculture. The calcium/magnesium ratio is more than 1 which means that groundwater is calcium dominant.

In addition, graphical methods, Wilcox diagram and USSL diagram were adopted in the present study to verify the suitability of groundwater for agricultural use.

www.tjprc.org editor@tjprc.org

Figure 3: Wilcox Classification for Ground Water of Ludhiana District, Punjab, India

Figure 4: US Salinity Laboratory Classification of Ground Water of Ludhiana District, Punjab, India

The above figure indicated that as per Wilcox diagram16% of groundwater samplesfall under excellent to good category and 84% of groundwater samples falls under good to permissible category. As per USSL diagram 23% of the groundwater samples in pre and post monsoon falls under C_2 - S_1 class which indicates medium salinity hazard but low alkali hazard and 73% of the samples falls under C_3 - S_1 class which stands for high salinity hazard and low sodium hazard.

Table 7: Shows the Results of Various Soil Parameters of the Study Area

Soil Parameters	Range
Nitrogen	Lies between 49 -175(kg/hectare)
Phosphorus	Lies between 5.61 -18.1(kg/hectare)
Potassium	Lies between 115 -213(kg/hectare)
Zinc	Lies between 0.18 – 0.98 (mg/kg soil)
Iron	Lies between 3.6 – 12.2(mg/kg soil)
Copper	Lies between 0.05 -0.9(mg/kg soil)
Manganese	Lies between 1.63 -5.98(mg/kg soil)
Chloride	Lies between 0.1 – 1.21(mg/kg soil)
Cadmium	Lies between 0.05 – 10.9(ppm)
Lead	Lies between 0.41 – 9.9(ppm)

The results of various soil parameters are within the prescribed limit range except in some places high levels of cadmium and lead toxicity prevails. This may be attributed due to the leaching of metals in the soil due to industrial wastes.

CONCLUSIONS

Groundwater and quality of soil was evaluated for the agricultural sustainability of Ludhiana district. The physical and chemical analyses result shows that at some locations the concentration of EC, TDS, Ca²⁺, Mg²⁺, F⁻ and NO₃²⁻ exceeded the desirable limits of BIS which gives us cautions. The groundwater is safe for agricultural purpose with respect to %Na, RSC, SAR, MR, KI and Ca²⁺/Mg²⁺ except for PI. The soil samples of the study area are within the limits except for Cadmium and Lead at some places. As per Wilcox majority of the groundwater samples are under good to permissible category. The USSL findings revealed that the groundwater samples falls under C ₂S ₁i.e. medium salinity and low alkali hazard and C ₃S ₁ i.e. high salinity and low sodium hazard category. The findings call for proper and immediate management plan to achieve agricultural sustainability and also to protect the invaluable resources of the study area.

REFERENCES

- 1. American Public Health Association 1995. Standard Methods for the Examination of Water and Waste Water, 18th Edition, APHA, Washington, D.C, USA.
- 2. Bureau of Indian Standard 1999. Indian standard specification for drinking water: 1-4.
- 3. CGWB. (1992). Groundwater In: Proceedings of 3rd national Water Commission, Nagpur, India, Central Ground Water Board, Govt. of India.
- 4. Doneen, L. D, (1964), Notes on water quality in agriculture. In Davis, C.A, Water science and Engineering, University of California.
- 5. Eaton, F.M, (1950), significance of carbonates in irrigation water, Soil science, 69, pp 123-133.
- 6. Hounslow, A.W, (1995), Water quality data analysis and interpretation, Lewis publishers, USA.
- 7. Kelley, W.P. (1963), Use of saline irrigation water, soil science, 95, pp 355-391.
- 8. Koumtzis, T.(2003). Assessment of the surface water quality in Northern Greece, Water Resources, 37(17): 4119-4124.
- 9. Naarajan, R, Rajmohan, N, Mahendran, U. and Senthamilkumar, S, (2010), Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India, doi: 10.1007/s 10661-009-1279-9
- 10. Paliwal, K.V, (1972), Irrigation with saline water, I.A.R.I. Monogram no. 2 (New series), New Delhi, 198.
- 11. Simeonov, V.J. Stratis, C.J. Samara, G.J. Zachariadis, E. Voutsa, A. Anthemidis, M. sofriniou, T. Richards, L.A, (1954), Diagnosis and improvement of saline and alkali soils. USDA Handbook, No.60.
- 12. Singh, A.K. (2002).Quality assessment of surface and subsurface water of Damodar river basin, Indian journal of environment and health,44(1):41-4.
- 13. Sundaray, S.K, Nayak, B.B. and Bhatta, D, (2009), Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India-a case study, Environmental Monitoring and Assessment, 155, pp 227-243.

www.tjprc.org editor@tjprc.org

- 14. Tiwana, N.S, Jerath, N, Saxena, N.K, Nangia, P. and Parwana, H.K. (2005): State of Environment: Punjab, 2005.Punjab State Council for Science and Technology, Chandigarh.
- 15. Tiwari, T.N. and Manzoor, A, (1988), River pollution in Kathmandu valley (Nepal) suitability of river water for irrigation, Indian journal of environmental protection, 8 (4), pp 269-274.
- 16. Wilcox, L.V, (1948), the quality for water for irrigation uses. US department of agriculture, Technical bulletin, Washington, DC.