International Rectifier

IRF7842PbF

HEXFET® Power MOSFET

Αľ	pplications	
•	Synchronous MOSFET for Notebook	

- Processor Power
- Secondary Synchronous Rectification for Isolated DC-DC Converters
- Synchronous Fet for Non-Isolated DC-DC Converters
- Lead-Free

Benefits

- Very Low R_{DS(on)} at 4.5V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	V _{DSS} R _{DS(on)} max			
40V	5.0 m Ω @ $V_{GS} = 10V$	33nC		

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	40	V
V _{GS}	Gate-to-Source Voltage	± 20	
D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	18	
D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	14	A
DM	Pulsed Drain Current ①	140	
P _D @T _A = 25°C	Power Dissipation ④	2.5	W
P _D @T _A = 70°C	Power Dissipation ®	1.6	
	Linear Derating Factor	0.02	W/°C
Γ _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ^⑤		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @ 5		50	

IRF7842PbF

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.037		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		4.0	5.0	mΩ	V _{GS} = 10V, I _D = 17A ③
			4.7	5.9		V _{GS} = 4.5V, I _D = 14A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35		2.25	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		- 5.6		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 32V, V_{GS} = 0V$
				150		$V_{DS} = 32V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	81			S	$V_{DS} = 20V, I_{D} = 14A$
Q_g	Total Gate Charge		33	50		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		9.6		İ	$V_{DS} = 20V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.8		nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge		10			I _D = 14A
Q _{godr}	Gate Charge Overdrive		10.6		1	
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		12.8			
Q _{oss}	Output Charge		18		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.3	TBD	Ω	
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = 20V, V _{GS} = 4.5V ③
t _r	Rise Time		12		İ	I _D = 14A
t _{d(off)}	Turn-Off Delay Time		21		ns	Clamped Inductive Load
t _f	Fall Time		5.0		1	
C _{iss}	Input Capacitance		4500			V _{GS} = 0V
C _{oss}	Output Capacitance		680		pF	V _{DS} = 20V
C _{rss}	Reverse Transfer Capacitance		310		1	f = 1.0 MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		50	mJ
I _{AR}	Avalanche Current ①		14	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		_	3.1		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			140		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 14A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		99	150	ns	$T_J = 25$ °C, $I_F = 14A$, $V_{DD} = 20V$
Q _{rr}	Reverse Recovery Charge		11	17	nC	di/dt = 100A/µs ③

IRF7842PbF

International

TOR Rectifier

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM INC		HES	MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	D .189 .1968		4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International IOR Rectifier

IRF7842PbF

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION: MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.5mH $R_G = 25\Omega$, $I_{AS} = 14A$.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- When mounted on 1 inch square copper board

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

