QM/MM

Dr. Marek Freindorf Southern Methodist University QM/MM Workshop December 2014

2013 Nobel Prize in Chemistry M. Karplus, M. Levitt, A. Warshel

Warshel, A., Karplus, M. "Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization" *J. Am. Chem. Soc.* **92** (1972) 5612–5625.

Warshel, A., Levitt, M. "Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme". *J. Mol. Biol.* **103** (1976) 227–249.

QM - Calculations (electrons involved)

Advantage: Very accurate, based on first principles (ab initio, DFT - there are not

empirical parameters involved)

Disadvantage: Time consuming, limited to small molecular systems (~ 100 atoms, Born-

Oppenheimer approximation)

MM - Calculations (electrons not involved)

Advantage: Very fast, capable to calculate entire proteins, DNA or solutions (~ 4*1012

atoms, molecular dynamics)

Disadvantage: Less accurate, based on empirical parameters, not capable to calculate

chemical reactions (bond breaking or formation)

QM part (an active site of a protein) is calculated at the quantum-mechanical level of theory

MM part (the rest of the protein) is calculated at the molecular-mechanical level of theory

The idea: the QM calculation is done in the MM environmental perturbation (point charges with vdW spheres)

$$E_{\mathit{OM}/\mathit{MM}} = E_{\mathit{ele}} + E_{\mathit{vdW}}$$

$$\begin{split} E_{ele} &= -\sum \frac{q_s}{r_{si}} + \sum \frac{q_s Z_m}{R_{sm}} \\ E_{vdW} &= \sum 4\varepsilon_{sm} \left[\left(\frac{\sigma_{sm}}{R_{sm}} \right)^{12} - \left(\frac{\sigma_{sm}}{R_{sm}} \right)^6 \right] \end{split}$$

AMBER (Assisted Model Building with Energy Refinement) (http://ambermd.org/)

What is AMBER

- A collective name for a suite of programs that allow users to carry out molecular dynamic simulations
- · A set of molecular mechanical force fields for the simulation of biomolecules
- Along with CHARMM, AMBER is the most used molecular mechanical software for protein dynamics

What can AMBER do

- Classical molecular dynamics simulations (NVT, NPT, etc)
- Explicit Solvent Models with particle-mesh Ewald sum (PME)
- · Implicit Solvent models with Poisson-Boltzmann
- Generalized Born approach
- Enhanced sampling (replica exchange MD, Locally Enhanced Sampling)
- Free energy calculation (MM/PBSA, etc.)
- · Structural and trajectory analysis
-
- Well parallelized up to 64 processors

Molecular dynamics simulations

- Calculates the motion of atoms in a molecular system using Newtonian dynamics, to determine the net force and acceleration experienced by each atom
- Each atom i at position r_i , is treated as a point with a mass m_i , a fixed charge q_i , and and a fixed van der Walls potential
- Interactions between atoms (bonded and non-bonded) are calculated according to a particular force field, which is specific for each molecular mechanical program

$$\begin{split} E_{total} &= \sum\nolimits_{bonds} K_r (r - r_{eq})^2 + \sum\nolimits_{angles} K_{\theta} (\theta - \theta_{eq})^2 + \sum\nolimits_{dihedrals} \frac{V_n}{2} [1 + \cos(n\phi - \gamma)] \\ &+ \sum \left[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_i q_j}{\varepsilon R_{ij}} \right] \end{split}$$

AMBER parameters

/grid/software/amber/amber14/dat/leap/parm/parm99EP.dat

```
PARM99 for DNA,RNA,AA, organic molecules, TIP3P wat. Polariz.& LP incl.23/06/99
C 12.01
                  0.616
                                       sp2 C carbonyl group
                                        sp2 C pure aromatic (benzene)
CA 12.01
                  0.360
                                       sp2 aromatic C, 5&6 membered ring junction
sp2 aromatic C, 5 memb. ring HIS
CB 12.01
                  0.360
CC 12.01
                  0.360
CD 12.01
                  0.360
                                        sp2 C atom in the middle of: C=CD-CD=C
        HO N
                 NA NB
                         NC N2 NT N2 N3 N* O
                                                       OH OS P
    Н
OW-HW 553.0
                 0.9572
                            ! TIP3P water
HW-HW 553.0
                              TIP3P water
                 1.5136
C -C
       310.0
                 1.525
                              Junmei et al, 1999
C -CA
       469.0
                 1.409
                              JCC,7,(1986),230; (not used any more in TYR)
C -CB
       447.0
                 1.419
                              JCC,7,(1986),230; GUA
C -CM
       410.0
                 1.444
                              JCC,7,(1986),230; THY,URA
C -CT
       317.0
                 1.522
                              JCC,7,(1986),230; AA
       490.0
                 1.335
                              JCC,7,(1986),230; AA
C -N
HW-OW-HW
            100.0
                       104.52
                                  TIP3P water
HW-HW-OW
              0.0
                        127.74
                                  (found in crystallographic water with 3 bonds)
             80.0
                        120.00
                                  Junmei et al, 1999 acrolein
C -C -0
             80.0
                        120.00
                                  Junmei et al, 1999
C -C -OH
CA-C -CA
CA-C -OH
CB-C -NA
                        120.00
                                  changed from 85.0 bsd on C6H6 nmodes; AA
             63.0
             70.0
                        120.00
                                  AA (not used in tyr)
             70.0
                        111.30
                                  NA
```

AMBER MD protocol

- Preparation of AMBER residue parameter and topology file (hydrogen addition, water solvation, neutralization by counter-ions)
- Initial energy minimization
- Heating dynamics to a temperature 300K
- Equilibration dynamics at a constant temperature
- Production dynamics (collecting data)
- Analyzing equilibrium trajectory
- · Annealing dynamics (cooling) to a temperature 0K

ONIOM (Own N-layered Integrated Orbital and Molecular Mechanics) (http://www.gaussian.com/g_whitepap/oniom_technote.htm)

What is ONIOM

- A computational technique models large molecules by defining two or three layers within the structure that are treated at different levels of accuracy
- Usually the High level is a quantum-mechanical method (for example DFT) and the Low level is a molecular-mechanical method (for example AMBER), which leads to the combined QM/MM approach.
- · Distributted as a part of Gaussian programing suite

What can ONIOM do

- Quantum chemistry style implementation of the QM/MM method
- · Analytical 1st and 2d energy derivatives
- · Internal force fields: Amber, UFF, Dreiding
- MM force field parameters can be specified via input
- · Library of potential functions
-
- · Well parallelized up to 16 processors

There is a new implementation of geometry optimization where QM is optimized in the full QM/MM space (keyword: quadmacro)

Partition in QM and MM parts in ONIOM

- The link atom substitutes the link atom host
- The bond length for the link atom is scaled
- · Double bonds should not be broken

auto matich

Potential energy surface in ONIOM

ONIOM energy

$$E_{ONIOM} = E_{Real}^{MM} - E_{Model}^{MM} + E_{Model}^{QM} \label{eq:energy}$$

ONIOM gradient

$$G_{ONIOM} = G_{Real}^{MM} - G_{Model}^{MM} \times J + G_{Model}^{QM} \times J$$

ONIOM hessian

$$H_{oNIOM} = H_{Real}^{MM} - J^{Tr} \times H_{Model}^{MM} \times J + J^{Tr} \times H_{Model}^{QM} \times J$$

Jacobian ${\it J}$ projects the forces on the link atoms onto the link atoms hosts. ${\it J}$ is the function of the atomic coordinates of the model system and link atoms hosts

QM/MM Examples

A) AMBER minimization of HCN in water solution

1. Preparation file for HCN (hcn.in)

2. Modification of the preparation file for HCN (hcn.in)

3. Parameter file for HCN (hcn.par)

Force constant is express $kcal/mol/A^2$, equilibrium angle in Degree, and equilibrium distance in A

The parameters can be taken from experimental data, from ab-initio calculations, or from a similar molecular system of the AMBER database

4. Preparation input files for AMBER calculations (*hcn.top*, *hcn.xyz*)

\$ tleap

- > loadAmberParams hcn.par
- > loadAmberPrep hcn.in
- > P = loadPdb hcn-ini.pdb
- > solvateCap P TIP3PBOX { 0.0, 0.0, 0.0 } 12.0
- > savePdb P hcn.pdb
- > saveAmberParm P hcn.top hcn.xyz

> quit

Topology file

Coordinates file

Checking Unit. Building topology. Building atom parameters. Building bond parameters. Building angle parameters. Building proper torsion parameters. Building improper torsion parameters. old PREP-specified impropers: total Ø improper torsions applied 0 improper torsions in old prep form Building H-Bond parameters. Incorporating Non-Bonded adjustments. Not Marking per-residue atom chain types. Marking per-residue atom chain types. (Residues lacking connect0/connect1 these don't have chain types marked: total affected res WAT 212 (no restraints) quit **S**uit

4. PDB file of the starting structure of the molecular system (*hcn.pdb*)

ATOM	1	C	HCN	1	0,000	0.000	-0.513	1.00	0.00
ATOM	2	Н	HCN	1	0.000	0.000	-1.578	1.00	00.00
MOTA	3	N	HCN	1	0.000	0.000	0.665	1.00	0.00
TER									
ATOM	4	0	WAT	2	2.674	6.039	3.843	1.00	0.00
ATOM	5	H1	WAT	Z	1.785	6.381	3.741	1.00	0.00
ATOM	6	HZ	WAT	Z	2.958	5.839	2.951	1.00	0.00
TER									
ATOM	7	0	TAW	3	4.850	4.623	4.877	1.00	0.00
ATOM	8	H1	WAT	3	4.956	5.523	5.184	1.00	0.00
ATOM	9	HZ	WAT	3	3.939	4.574	4.586	1.00	0.00
TER									
ATOM	10	0	WAT	4	8.338	1.430	7.807	1.00	0.90
ATOM	11	H1	WAT	4	8.646	0.875	7.091	1.00	0.00
ATOM	12	HZ	WAT	4	7.408	1.565	7.625	1.00	0.00
TER									
ATOM	13	0	WAT	5	3.033	8.916	4.826	1.00	0.00
ATOM	14	HI	WAT	5	2.912	9.642	4.214	1.00	0.00
ATOM	15	# HZ	WAT	7 5	2.723	8.146	4.349	1.00	0.00
L	7			_		111111			
	/			, D = = ! al. (a					
Atomic				Residue					
				name					
name	35								

Avogadro can be used for visualization of this molecular system

5. Input file for energy minimization (*min.in*)

```
2000 steps of minimization of HCN &cntrl
imin=1, ntmin=2, drms=0.03, ntb=0, cut=12, ntc=1, ntf=1, ntpr=100, maxcyc=2000,
```

6. Running energy minimization with SANDER

7. Converting the AMBER coordination file into a PDB file

Avogadro can be used for visualization of the final PDB file

B) ONIOM calculations of HCN in water solution

Installation of toolkit to assist ONIOM (TAO) (http://www.chem.wayne.edu/schlegel/Software.html)

- Move this toolkit package to a location you usually install application softwares.
- Edit *install.sh* in the home folder of TAO (taopackage). Change path ~/bin in line 14 *USERPATH=*~/bin to the path that you want the symbolic links to TAO scripts to be installed. e.g. *USERPATH=*/home/myhome/bin/oniomtool. Please make sure this path is in your search *PATH* of the .bash_profile file.
- Run ./install.sh in the home folder of TAO (taopackage) to install this package.

1. Geometry optimization in mechanical embedding

\$ pdb2oniom -i hcn.min.pdb -o hcn-opt.g09

Initial geometry in a PDF format

Initial ONIOM input

There are unknown atom types for ONIOM/ AMBER force filed

%chk=hcn-opt.g09.chk %mem=3700MB %nprocshared=4

#P ONIOM(B3LYP/6-31G(d):AMBER=HardFirst) geom=connectivity nosymm iop(2/15=3) test

ONIOM inputfile generated by pdb2oniom from PDB file hcn.min.pdb. No connectivity generated. Please use GaussView read hcn-opt.g09, and generate connectivity information.

010101 C-UDF-0.000000 0.2610000 -0.6550000 0.5010000 H-UDF-0.000000 0.6110000 0.2910000 0.1550000 Ĺ N-UDF-0.000000 0 -0.1260000 -1.7050000 0.8810000 0-0W--0.834000 Ø 2.7090000 5.7990000 3.8930000 H-HW-0.417000 1.7480000 5.9510000 3.6990000 H-HW-0.417000 0 3.0300000 5.7190000 2.9650000 0-0W--0.834000 4.9420000 4.6180000 5.0030000 H-HW-0.417000 5.1180000 5.3910000 5.5860000 H-HW-0.417000 4.0440000 4.8640000 4.6780000 0-0W--0.834000 7.9150000 1.7270000 7.2140000

2. Molecular mechanical parameters for HCN in ONIOM input

- 3. Geometry optimization in mechanical embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst) int(ultrafine) opt(maxcycles=100)

- 4. Frequency calculation in mechanical embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst) geom(allcheck) guess(read) int(ultrafine) freq
- 5. Geometry optimization in mechanical and electronic embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst)=EmbedCharge geom(allcheck) guess(read) int(ultrafine) opt(maxcycles=100)
- **6.** Frequency calculation in mechanical and electronic embedding)
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst)=EmbedCharge geom(allcheck) guess(read) int(ultrafine) freq

C) AMBER minimization of yellow protein (2PHY)

- · There are two protein conformers A and B
- Initial geometry of the protein does not have hydrogen atoms (will be added automatically by *tleap*)
- Atoms, atomic types and parameters of the chromophore in the active site are unknown by AMBER force field (must by created by hand)

• There is a chemical bond between the chromophore and the protein

Initial geometry of yellow protein based on the x-ray PDB file (2PHY entry, yel-exp.pdb)

yel-exp.p	db			Pr	otein d	conforme	r .				
file	\			/Δ	or B)						
	\			1/~	OI D)						
	4										
	ATOM	1002	NH2A	ARG	124	6.581	-8.471	-12.051	0.50	22.72	2PHY1170
	ATOM	1003	NH2E	ARG	124	12.639	-10.284	-12.567	0.50	10.52	2PHY1171
	ATOM	1004	N	VAL	125	9.327	-4.261	-6.724	1.00	7.57	2PHY1172
	ATOM	1005	CA	VAL	125	8.473	-3.870	-5.599	1.00	9.05	2PHY1173
	ATOM	1006	C	VAL	125	7.036	-4.381	-5.798	1.00	10.17	2PHY1174
	MOTA	1007	0	VAL	125	6.661	-4.668	-6.955	1.00	10.64	2PHY1175
	ATOM	1008	CB	VAL	125	8.418	-2.327	-5.369	1.00	10.05	2PHY1176
	ATOM	1009	CG1	VAL	125	9.758	-1.812	-4.898	1.00	10.78	2PHY1177
	ATOM	1010	CG2	VAL	125	7.983	-1.605	-6.619	1.00	11.14	2PHY1178
	ATOM	1011	OXT	VAL	125	6.302	-4.456	-4.787	1.00	10.75	2PHY1179
	TER	1012		VAL	125						2PHY1180
	HETATM	1013	C1	HC4	69	12.122	2.891	-19.679	1.00	6.11	2PHY1181
	HETATM	1014	01	HC4	69	12.301	3.233	-20.854	1.00	6,03	2PHY1182
	HETATM	1015	C2	HC4	69	13.054	1.988	-18.909	1.00	4.33	2PHY1183
	HETATM	1016	C3	HC4	69	13.834	1.190	-19.584	1.00	5.19	2PHY1184
	HETATM	1017	C1'	HC4	69	14.870	0.383	-18.885	1.00	5.06	2PHY1185
	HETATM	1018	C21	HC4	69	15.720	-0.403	-19.660	1.00	5.22	2PHY1186
	HETATM	1019	C3 ¹	HC4	69	16.777	-1.097	-19.080	1.00	5.17	2PHY1187
	HETATM	1020	C4*	HC4	69	/ 16.983	-0.994	-17.723	1.00	5.43	2PHY1188
	HETATM	1021	C5'	HC4	69	/ 16.155	-0.224	-16.933	1.00	5.66	2PHY1189

Protein chromophore in the active site

Atoms of the B protein conformer should be removed by hand from the PDB file

1. Making a complete structure of the chromophore (with Avogadro)

HETATM	1013	C1	HC4	69	12.122	2.891 -19.679
HETATM	1014	01	HC4	69	12.301	3.233 -20.854
НЕТАТМ	1015	CZ	HC4	69	13.054	1.988 -18.909
HETATM	1016	C3	HC4	69	13.834	1.190 -19.584
HETATM	1017	C1'	HC4	69	14.870	0.383 -18.885
HETATM	1018	CZ'	HC4	69	15.720	-0.403 -19.660
HETATM	1019	C3 '	HC4	69	16.777	-1.097 -19.080
HETATM	1020	C4 1	HC4	69	16.983	-0.994 -17.723
HETATM	1021	C5'	HC4	69	16.155	-0.224 -16.933
HETATM	1022	C6'	HC4	69	15.106	0.456 -17.515
HETATM	1023	04 *	HC4	69	17.939	-1.579 -17.197

Experimental coordinates of the chromophore

ATOM	1	C1	HC4	69	12.122	2.891 -19.679
ATOM	2	01	HC4	69	12.301	3.233 -20.854
ATOM	3	C2	HC4	69	13.054	1.988 -18.909
ATOM	4	C3	HC4	69	13.834	1.190 -19.584
ATOM	5	C1'	HC4	69	14.870	0.383 -18.885
ATOM	6	C2.	HC4	69	15.720	-0.403 -19.660
ATOM	7	C3'	HC4	69	16.777	-1.097 -19.080
ATOM	8	C4 '	HC4	69	16.983	-0.994 -17.723
ATOM	9	C5°	HC4	69	16.155	-0.224 -16.933
ATOM	10	C61	HC4	69	15.106	0.456 -17.515
ATOM	11	04'	HC4	69	17.939	-1.579 -17.197
HETATM	12	H	LIG	1	11.282	3.Z45 -19.195
HETATM	13	H	LIG	1	13.074	2.002 -17.877
HETATM	14	H	LIG	1	13.732	1.118 -20.608
HETATM	15	Н	LIG	1	15.563	-0.471 -20.678
HETATM	16	H	LIG	1	17.399	-1.682 -19.660
HETATM	17	H	LIG	1.	16.319	-0.157 -15.916
HETATM	18	H	LIG	1	14.484	1.030 -16.924

Complete chromophore structure

1. Making (by hand) an initial geometry of the chromophore (pct.pdb)

pct.pdb - Initial
geometry of the
chromophore \

1	C1	HC4	69	12.122	2.891 -19.679
2	01	HC4	69	12.301	3.233 -20.854
3	CZ	HC4	69	13.054	1.988 -18.909
4	C3	HC4	69	13.834	1.190 -19.584
5	C1'	HC4	69	14.870	0.383 -18.885
6	C2*	HC4	69	15.720	-0.403 -19.660
7	C3 '	HC4	69	16.777	-1.097 -19.080
8	C4 1	HC4	69	16.983	-0.994 -17.723
9	C5 '	HC4	69	16.155	-0.224 -16.933
10	C6'	HC4	69	15.106	0.456 -17.515
11	04 *	HC4	69	17.939	-1.579 -17.197
1.2	H	LIG	1	11.282	3.245 -19.195
13	H	LIG	1	13.074	2.002 -17.877
14	Н	LIG	1	13.732	1.118 -20.608
15	H	LIG	1.	15.563	-0.471 -20.678
16	H	LIG	1	17.399	-1.682 -19.660
17	+1	LIG	1	16.319	-0.157 -15.916
18	H	LIG	1	14.484	1.030 -16.924
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	2 01 3 C2 4 C3 5 C1' 6 C2' 7 C3' 8 C4' 9 C5' 10 C6' 11 O4' 12 H 13 H 14 H 15 H 16 H 17 H	2 01 HC4 3 C2 HC4 4 C3 HC4 5 C1' HC4 6 C2' HC4 7 C3' HC4 8 C4' HC4 9 C5' HC4 10 C6' HC4 11 O4' HC4 12 H LIG 13 H LIG 14 H LIG 15 H LIG 16 H LIG 17 H LIG	2 01 HC4 69 3 C2 HC4 69 4 C3 HC4 69 5 C1' HC4 69 6 C2' HC4 69 7 C3' HC4 69 8 C4' HC4 69 9 C5' HC4 69 10 C6' HC4 69 11 04' HC4 69 12 H LIG 1 13 H LIG 1 15 H LIG 1 16 H LIG 1 17 H LIG 1	2 01 HC4 69 12.301 3 C2 HC4 69 13.054 4 C3 HC4 69 13.834 5 C1' HC4 69 14.870 6 C2' HC4 69 15.720 7 C3' HC4 69 16.777 8 C4' HC4 69 16.983 9 C5' HC4 69 16.155 10 C6' HC4 69 15.106 11 04' HC4 69 17.939 12 H LIG 1 11.282 13 H LIG 1 13.732 15 H LIG 1 13.732 15 H LIG 1 17.399 17 H LIG 1 17.399 17 H LIG 1 16.319

MOTA	1	01 PCT	1	12.301	3.233 -20.854
ATOM	2	C1 PCT	1	12.122	2.891 -19.679
ATOM	3	HZ3 PCT	1.	11.282	3.245 -19.195
ATOM	4	C2 PCT	1	13.054	1.988 -18.909
ATOM	5	HZ5 PCT	1	13.074	2.002 -17.877
ATOM	6	C3 PCT	1	13.834	1.190 -19.584
ATOM	7	H27 PCT	. 1	13.732	1.118 -20.608
ATOM	8	C1' PCT	1	14.870	0.383 -18.885
ATOM	9	CZ' PCT	1	15.720	-0.403 -19.660
ATOM	10	HZ9 PCT	1	15.563	-0.471 -20.678
ATOM	11	C3' PCT	1	16.777	-1.097 -19.080
ATOM	12	H31 PCT	1	17.399	-1.682 -19.660
ATOM	13	C4' PCT	1	16.983	-0.994 -17.723
ATOM	14	04° PCT	1	17.939	-1.579 -17.197
ATOM	15	C5' PCT	1	16.155	-0.224 -16.933
ATOM	16	H33 PCT	1	16.319	-0.157 -15.916
ATOM	17	C6' PCT	1	15.106	0.456 -17.515
ATOM	18	H35 PCT	1.	14.484	1.030 -16.924

New atomic names (H) and a new residue name 2. Combining (by hand) the experimental PDB file of the protein (*yel-exp.pdb*) with the initial geometry of the chromophore (*pct.pdb*) and making the initial PDB file of the entire system (*yel-ini.pdb*)

yel-ini.pdb file, the initial structure of the entire system

ATOM	1008	CB	VAL	125	8.418	-2.327	-5.369
ATOM	1009	CG1	VAL	125	9.758	-1.812	-4.898
ATOM	1010	CG2	VAL	125	7.983	-1.605	-6.619
ATOM	1011	OXT	VAL	125	6.302	-4.456	-4.787
TER	1012		VAL	125			
ATOM	1	01	PCT	1	12.301	3.233	-20.854
ATOM	2	C1	PCT	1	12.122	2.891	-19.679
ATOM	3	H23	PCT	1	11.282	3.245	-19.195
ATOM	4	C2	PCT	1	13.054	1.988	-18.909
ATOM	5	H25	PCT	1	13.074	2.002	-17.877
MOTA	6	C3	PCT	1	13.834	1.190	-19.584
ATOM	7	H27	PCT	1	13.732	1.118	-20.608
ATOM	8	C1'	PÇT	1	14.870	0.383	-18.885
ATOM	9	CZ1	PCT	1	15.720	-0.403	-19.660
ATOM	10	H29	PCT	1	15.563	-0.471	-20.678
ATOM	11	C3 '	PCT	1	16.777	-1.097	-19.080
ATOM	12	H31	PCT	1	17.399	-1.682	-19.660
ATOM	13		PCT	1	16.983	-0.994	-17.723
ATOM	14	04 '	PCT	1	17.939	-1.579	-17.197
ATOM	15	C5'	PCT	1	16.155	-0.224	-16.933
ATOM	16		PCT	1	16.319	-0.157	-15.916
ATOM	17		PCT	1	15.106	0.456	-17.515
ATOM	18	H35	PCT	1	14.484	1.030	-16.924
TER							
HETATM			HOH	200	21.132		-3.329
HETATM	1025		HOH	201	23.447	4.398	0.293
HETATM	1026		HOH	202	2.697	-10.636	-17.802
HETATM	1027	0	HOH	203	6.966	5.068	-16.994

3. Preparation file for the chromophore (*pct.in*)

pct.in file

chromophore

for the

\$ antechamber -i pct.pdb -fi pdb -o pct.in -fo prepi -c bcc -nc -1 Total charge

This is a remark line molecule.res PCT INT CORRECT OMIT DU BEG 0.0000 DUMM DU 0 -1 -2 0.000 .0 .0 .00000 DUMM .00000 DU М 0 1.449 .0 .0 DUMM DU 1.523 111.21 .0 .00000 -180.000 -0.665300 01 0 1.540 111.208 5 1.237 C1 C М 81.678 -73.772 0.586100 6 H23 H1 1.032 117.936 -31.407 -0.055800 CZ CA 1.509 124.117 148.548 -0.430000 H25 1.032 120.930 157.255 0.114000 9 C3 CA 1.304 118.130 -22.707 0.086000 10 H27 НΑ 1.032 119.824 -6.397 0.108000 11 CI CA 1.488 120.347 173.606 -0.295000 12 C2" CA 11 1.393 118.005 -176.887 -0.014000 13 H29 HA E 12 11 119.535 9 1.032 -5.194 0.092500 14 C3* CA 12 11 1.391 120.870 174.806 -0.346700 15 H31 14 12 HA E 11 1.032 120.418 179.621 0.110000 16 C41 14 12 1.376 119.172 -0.371 0.569500 ČA 11 -178.218 -0.700100 17 04' 16 14 12 1.238 119.938 18 C51 CA 16 14 12 1.379 121.104 0.457 -0.346700 H33 19 HA 18 16 14 1.032 120.338 179.848 0.110000 20 C61 CA 18 16 14 1.379 119.354 -0.174 -0.014000 119.402 H35 20 1.032 21 HA 18 16 179.800 0.092500 New atomic types LOOP (modified by hand) C1'C6*

4. Parameter file for the chromophore (*pct.par*)

The parameters for the chromophore are taken from the AMBER database, based on the same (similar) atomic types

BOND				
C -H1	370.0	1.01	Junmei et al, 1999	1
CA- 0	570.0	1.26	JCC.7.(1986),230; AA,CYT.GUA,THY,URA	
S - C	230.0	1.79	changed from 222.0 based on dimethylS nmodes	
ANGLE				fc
O -CA-CA	70.0	123.00	replacement in tyr	1
H1- C-CA	70.0	120.00	AA (not used in tyr)	T cl
0 - C-H1	50.0	120.00	Jurmei et al. 1999	
0 - C-CA	80.0	128.00	•	
S - C- 0	50.0	118.00	AA CYX (SCHERAGA JPC 79,1428)	
S - C-CA	50.0	114.00	AA CYX (SCHERAGA JPC 79,1428)	
CT- S -C	70.0	110.00	AA CYX (SCHERAGA JPC 79,1428)	
2C- S -C	70.0	110.00	AA CYX (SCHERAGA JPC 79,1428)	ĺ
DIHEDRAL				
X -C -S -	X 2	3.00	180.000 2.000	

pct.par file for the chromophore

5. Preparation input files for AMBER calculations

\$ tleap

> loadAmberParams frcmod.ionsjc_spce > loadAmberParams pct.pai Loadin extra parameters for counter ions (Na⁺, Cl⁻) > loadAmberPrep pct.in Information about chromophore > P = loadPdb yel-ini.pdb (resid 126) > desc P.126 Removing extra hydrogen atom from chromophore > remove P P.126.3 Information about cysteine > desc P.69 -(resid 69) Making a bond between > bond P.69.8 P.126.2 chromophore and cysteine > addlons P Na+ 7 Neutralizing the entire protein by Na⁺ > savePdb P yel.pdb > saveAmberParm P yel.top yel.xyz > quit

6. The input file for AMBER minimization of the yellow protein (*min.in*)

```
2000 steps of hydrogen minimization &cntrl imin=1, ntmin=2, drms=0.03, ntb=0, cut=12, ntc=1, ntf=1, ntpr=100, maxcyc=2000, ntr=1, restraint_wt=500.0, restraintmask='(!@H=)',
```

- 7. Running energy minimization with SANDER
- \$ condor_submit yel.min.submit

- 8. Converting the AMBER coordination file into a PDB file
- \$ ambpdb -p yel.top < yel.min.xyz > yel.min.pdb

Topology file

Coordinates file

Final coordinates in a PDB format

Avogadro can be used for visualization of the final PDB file

- D) ONIOM calculations of yellow protein
- 1. Geometry optimization in mechanical embedding

\$ pdb2oniom -i yel.min.pdb -o yel-opt.g09

Initial geometry in a PDF format

Initial ONIOM input

ONIOM input file generated by the pdb2oniom script

```
@chk=yel-opt.g09.chk
%mem=3700M8
%nprocshared=4
#P ONIOM(B3LYP/6-31G(d):AMBER=HardFirst) geom=connectivity nosymm iop(Z/15=3) test
ONIOM inputfile generated by pdb2oniom from PDB file yel.min.pdb. No connectivity
Please use GaussView read yel-opt.g09, and generate connectivity information.
010101
                         26.3500000
 N-N--0.394918
                                                         -3.5000000 L
                                        -16.3130000
 UDF-UDF-0.000000
                                 26.5140000
                                                -16.4700000
                                                                 -2.5140000
                                                                              L
 UDF-UDF-0.000000
                                 27.2430000
                                                -16.3690000
                                                                 -3.9810000
                                                                              L
 UDF-UDF-0.000000
                                 25,7160000
                                                -17.0030000
                                                                 -3.8720000
 C-CT--0.087681 0
                         25.8230000
                                        -14.9520000
                                                         -3.6780000
                                                                     L
 H-H1-0.123080
                         25.8960000
                                        -14.6880000
                                                         -4.7340000
```

There are atoms which are unknown by ONIOM

The original input file needs to be modified by hand

2. Connectivity between atoms in ONIOM

The connectivity between atoms can be provided by GaussView, by reading the original ONIOM input file *yel-opt.g09*, and saving as a new input file

yel-connect.txt / file with connectivity between atoms

```
0-0W--0.834000
                          2.9920000
                                          -3.1830000
                                                          -7.9670000
H-HW-0.417000
                 0
                          2.6140000
                                          -3.9860000
                                                          -7.5630000
                                          -3.2670000
                                                          -7.6840000
H-HW-0.417000
                 0
                          3.9240000
1 2 1.0 3 1.0 4 1.0 5 1.0
5 6 1.0 7 1.0 18 1.0
  8 1.0 9 1.0 10 1.0
```

3. Molecular mechanical parameters for chromophore in ONIOM input

MM atomic types of the chromophore should correspond to the *pct.in* and *pct.par* from AMBER calculation

4. A link atom for chromophore in ONIOM input

H-H1-0.078951	0	9.9670000	4.3300000	-20.7460000	L	<u> </u>
S-S0.132272	0	11.0400000	3.8150000	-18.6640000	L H-H1 1	1913
C-C-0.624788	0	11.5580000	6.8850000	-19.0320000	L	

There is a link atom *H* of the *H1* type (can have a charge) which links the *S* atom of the protein with the *C* atom of the chromophore (atom number 1913)

- 5. Geometry optimization in mechanical embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst) int(ultrafine) opt(maxcycles=100)
- 6. Frequency calculation in mechanical embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst) geom(allcheck) guess(read) int(ultrafine) freq
- 7. TD-DFT calculation (4-roots) in mechanical embedding
- # ONIOM(B3LYP/6-31G(d,p)/Auto TD=(NStates=4):AMBER=SoftFirst) int(ultrafine) geom(allcheck) guess(read) sp
- 8. Geometry optimization in mechanical and electronic embedding
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst)=EmbedCharge geom(allcheck) guess(read) int(ultrafine) opt(maxcycles=100)

- 9. Frequency calculation in mechanical and electronic embedding)
- # ONIOM(B3LYP/6-31G(D,P):AMBER=SoftFirst)=EmbedCharge geom(allcheck) guess(read) int(ultrafine) freq
- 10. TD-DFT calculation (4-roots) in mechanical and electronic embedding
- # ONIOM(B3LYP/6-31G(d,p)/Auto TD=(NStates=4):AMBER=SoftFirst)=EmbedCharge int(ultrafine) geom(allcheck) guess(read) sp

QM/MM Projects

- All calculations will be done on schem1a1.systems.smu.edu cluster
- Modify your .bashrc_profile file for AMBER calculations, logout and login again to update your shell environment
- Install TAO package (from the internet) on your cluster account, and modify your .bashrc_profile file for TAO scripts, logout and login again to update your shell environment
- Download initial files for the HCN and yellow protein projects from CATCO wiki website (QM/MM Workshop)
- Ask Rob to install on your local computer GaussView (if you consider you will be doing QM/MM calculations in the future)

Project A: QM/MM calculations of HCN in TIP3P water solution

- 1. Starting from an initial geometry of HCN (hcn-ini.pdb) make the preparation file (hcn.in) using antechamber
- 2. Based on the AMBER database, make a parameter file for HCN (hcn.par)
- 3. Using *tleap*, solvate HCN with TIP3P water molecules and save the topology (*hcn.top*) and coordinate (*hcn.xyz*) files
- 4. Run energy minimization of HCN in a water sphere using AMBER input file (min.in)
- 5. Using TAO script (pdb2oniom) generate an initial ONIOM input file for HCN in water (hcn-opt.g09)
- 6. Modify the ONIOM input file for HCN in water (hcn-opt.g09)
- 7. Run ONIOM geometry optimization of HCN in water in mechanical embedding
- 8. Based on the optimal geometry, run ONIOM frequency calculation of HCN in water in mechanical embedding
- 9. Based on the optimal geometry from mechanical embedding, run ONIOM geometry optimization of HCN in water in electronic embedding
- 10. Based on the optimal geometry from electronic embedding, run ONIOM frequency of HCN in water in electronic embedding
- 11. Report in a table interatomic distances and frequencies of HCN in the gas phase and in water with mechanical and electronic embedding
- 12. Compare the results

Project B: QM/MM calculations of the chromophore in yellow protein

- 1. Starting from geometry of the protein chromophore (pct.pdb) make the preparation file (pct.in) using antechamber
- 2. Based on the AMBER database, make a parameter file for the chromophore (pct.par)
- 3. Using tleap, make the topology (yel.top) and coordinate (yel.xyz) files for the entire protein
- 4. Run energy minimization of the protein using AMBER input file (min.in)
- 5. Using TAO script (pdb2oniom) generate an initial ONIOM input file for the protein (yel-opt.g09)
- 6. Modify the ONIOM input file (yel-opt.g09) including atomic connectivity (yel-connect.txt)
- 7. Run ONIOM geometry optimization of the protein in mechanical embedding
- 8. Based on the optimal geometry, run ONIOM frequency calculation of the protein in mechanical embedding
- 9. Based on the optimal geometry, run ONIOM TD-DFT calculation of the protein in mechanical embedding
- 10. Based on the optimal geometry from mechanical embedding, run ONIOM geometry optimization of the protein in electronic embedding
- 11. Based on the optimal geometry from electronic embedding, run ONIOM frequency of the protein in electronic embedding
- 12. Based on the optimal geometry from electronic embedding, run ONIOM TD-DFT calculation of the protein in electronic embedding
- 13. Report in a table interatomic distance and frequency of $C_{Tail} = C_{Tail}$, and electronic excitation (${}^{1}X \rightarrow {}^{1}A$) of the chromophore the gas phase and in the protein with mechanical and electronic embedding
- 14. Compare the results