Algorithm Design

Scheduling Algorithms

Part 2

Parallel machines.

Open-shop Scheduling.

Job-shop Scheduling.

Parallel Machines

- n jobs need to be scheduled on m machines, $M_1, M_2, ..., M_m$.
- Each machine can process at most one job at any time.
- Each job can be processed by at most one machine at any time.
- Identical machines (denoted P) all the machines have the same rate. Processing time of job j = p_i
- Uniform machines (denoted Q) each machine has a rate, s_i , uniform for all the jobs processed on it. Processing time of job $j = p_j/s_i$.
- Unrelated machines (denoted R) Specific values of $p_{i,j}$, $p_{i,j}$ = The processing time of job j on machine i.

Parallel Machines, the problem $P||\sum_{j}C_{j}$

Theorem: SPT is optimal for P|| $\sum_{j} C_{j}$

Proof: Assume n=zm (w.l.o.g we can add jobs with $p_j=0$, why?)

Index the jobs such that $p_1 \le p_2 \le ... \le p_n$.

In SPT the m jobs $J_{(k-1)m+1},...J_{km}$, are scheduled in the k^{th} locations on each of the m machines. Their processing time is 'counted' z+1-k times in $\sum_j \mathcal{C}_j$.

Note: We can switch jobs in the k^{th} location on different machines without affecting $\sum_{j} C_{j}$

SPT for P|| $\sum_{j} C_{j}$. Example.

m=2, 6 jobs with processing times 1,2,3,4,5,6

Parallel Machines, the problem $P||\sum_{j}C_{j}$

 $\sum_{j} C_{j}$ is the result of the following vector multiplication:

$$(z,...,z,z-1,...,z-1,...,1)(p_1,p_2,...,p_n)$$
m times m times

The left vector is non-increasing, so the multiplication value is minimized if the other vector is non-decreasing, as implied by SPT.

The problem $P||\sum_{j}w_{j}C_{j}$

- This problem is NP-hard.
- It can be solved using dynamic programming or branch and bound.
- In any optimal solution, the jobs scheduled on one machine are scheduled according to WSPT rule $(p_1/w_1 \le p_2/w_2 \le ...)$ otherwise exchanges can improve the objective function.
- However, the problem of partitioning the jobs among the machines is NP-hard.

The problem $P||C_{max}$

Theorem: The problem $P||C_{max}$ is NP-hard

Proof: Reduction from Partition.

Reminder: The partition problem:

Input: a set of n numbers, $A = \{a_1, a_2, ..., a_n\}$, such that $\sum_{j \in A} a_j = 2B$.

Output: Is there a subset A' of A such that $\sum_{j \in A'} a_j = B$?

Example: $A=\{5, 5, 7, 3, 1, 9, 10\}$; B=20

A possible partition: A'={10,5,5}, A-A'={7,3,1,9}

The problem $P||C_{max}$

Reduction from Partition to $P||C_{max}$:

- Given an instance for partition, $A = \{a_1, a_2, ..., a_n\}$ such that $\sum_{j \in A} a_j = 2B$.
- Build an instance for $P2||C_{max}$ such that the makespan is B if and only if there is a partition.

There are n jobs, the processing time of J_i is a_i .

If there is a schedule with makespan =B the jobs scheduled on M_1 corresponds to items in S' - their total size must be B.

The problem $P||C_{max}|$

List Scheduling [Graham 1966]:

A greedy algorithm: always schedule a job on the least loaded machine.

Example: $m=3 \sigma = 7 3 4 5 6 10$

Makespan = 17

List Scheduling for $P||C_{max}$

- Theorem: List Scheduling provides a $(2 \frac{1}{m})$ -approximation for the problem $P||C_{max}$.
- Proof: Let H_j denote the last completion time on the j^{th} machine. Let k be the job that finishes last and determines C_{LS} .
- All the machines are busy when k starts its processing, thus, $\forall j$, $H_j \geq C_{LS}$ p_k .
- For at least one machine (that processes k) $H_j = C_{LS}$.

$$\rightarrow \sum_{i} p_{i} = \sum_{j} H_{j} \ge (m-1) (C_{LS} - p_{k}) + C_{LS}$$

$$\rightarrow \sum_{i} p_{i} + (m-1)p_{k} \geq mC_{LS}$$

List Scheduling for $P||C_{max}$

$$\rightarrow C_{LS} \leq 1/m \sum_{i} p_{i} + p_{k} (m-1)/m$$
.

Consider an optimal schedule.

 $C_{\text{opt}} \ge \max_i p_i \ge p_k$ (some machine must process the longest job).

 $C_{\text{opt}} \ge 1/m \sum_{i} p_{i}$ (if the load is perfectly balanced). Therefore,

$$C_{LS} \le C_{opt} + C_{opt} (m-1)/m = (2-1/m) C_{opt}$$

Longest Processing Time Rule

The (2-1/m)-ratio is for arbitrary order of the jobs. If the jobs are known in advance (offline problem) it is possible to determine the assignment order.

LPT algorithm: List scheduling where the jobs are arranged in non-increasing order of $p_1 \ge p_2 \ge ... \ge p_n$.

Makespan = 13

Longest Processing Time (LPT) Rule

Theorem: LPT provides a $(\frac{4}{3} - \frac{1}{3m})$ - approximation for the problem $P||C_{max}$.

Proof: In class.

This analysis is tight: Consider n = 2m + 1 jobs, p = [2m - 1, 2m - 1, 2m - 2, 2m - 2, ..., m + 1, m + 1, m, m, m]. An optimal schedule and an LPT schedule are (m=3):

The problem $P|pmtn|C_{max}$

When preemptions are allowed, the problem is optimally solvable in poly-time.

We have two lower bounds for opt:

 $C_{\text{opt}} \ge \max_i p_i$ (some machine must process the longest job).

 $C_{\text{opt}} \ge 1/m \sum_{i} p_{i}$ (if the load is perfectly balanced).

Let w=max(max_i p_i , $1/m \sum_{i} p_{i}$)

An optimal algorithm for $P|pmtn|C_{max}$

- 1. Calculate w=max(max_i p_i , 1/m \sum_i p_i)
- 2. Consider the jobs in arbitrary order, schedule the jobs one after the other on the machines. Move to M_{i+1} after M_i allocated w processing units (maybe preempt the last job on M_i).

Example: m=3, Jobs lengths are 6,2,5,3,4,8,5

w=max(7,11)=11

The problem P|prec, $p_i=1|C_{max}$

prec - There are precedence constraints.

Given as an acyclic graph.

On a single machine any topological sort can do. $C_{max} = n$

Example:

Possible topo-sort and schedule: A-B-F-C-D-E

$$C_{\text{max}} = 6$$

The problem is still simple if jobs have different lengths. However, on parallel machines the problem in NP-hard even for unit-length jobs.

P|tree, $p_j = 1 | C_{max}$

The precedence constraints graph is a tree.
There are two special cases:

In-tree: each job has at most one consecutive (out-degree at most 1).

Hu's Algorithm for in-tree.

Phase 1: Labeling

- 1. Label with 1 each 'sink job' (with out-degree=0)
- 2. For every labeled job j, find the jobs that immediately precede j and label each of them with label(j)+1.

Hu's Algorithm for in-tree.

Phase 2: scheduling

- If the number of source-jobs is at most m, schedule them and leave the non-used machines idle.
- Otherwise, schedule the m source-jobs with the largest labels.
- 3. Remove the scheduled jobs from the instance and return to step 1. 6 5 4 3 2

Hu's Algorithm for in-tree.

Phase 2: scheduling

- If the number of source-jobs is at most m, schedule them and leave the non-used machines idle.
- Otherwise, schedule the m source-jobs with the largest labels.
- 3. Remove the scheduled jobs from the instance and return to step 1. $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

\mathbf{M}_3	17	12
\mathbf{M}_2	15	13
$M_{\scriptscriptstyle 1}$	16	14

Hu's Algorithm for in-tree.

Phase 2: scheduling

- If the number of source-jobs is at most m, schedule them and leave the non-used machines idle.
- 2. Otherwise, schedule the m source-jobs with the largest labels.
- 3. Remove the scheduled jobs from the instance and return to step 1. $_6$ $_5$ $_4$ $_3$

M_3	17	12	8
M_2	15	13	9
M_1	16	14	10

Plin-tree, $p_j = 1 | C_{max}$

Hu's Algorithm for in-tree.

Phase 2: scheduling

- If the number of source-jobs is at most m, schedule them and leave the non-used machines idle.
- Otherwise, schedule the m source-jobs with the largest labels.
- Remove the scheduled jobs from the instance and return to step 1.

M_3	17	12	8	5
M_2	15	13	9	6
M_1	16	14	10	11

Hu's Algorithm for in-tree.

Phase 2: scheduling

- If the number of source-jobs is at most m, schedule them and leave the non-used machines idle.
- 2. Otherwise, schedule the m source-jobs with the largest labels.
- 3. Remove the scheduled jobs from the instance and return to step 1. $\frac{1}{6}$

M_3	17	12	8	5	2		
	15				3		
M_1	16	14	10	11	7	4	1

Plout-tree, $p_j=1|C_{max}$

Phase 1: labeling

Label(j)=number of jobs waiting for j.

Phase 2: scheduling

same as in in-tree.

j	1	2	3	4	5	6
Label(j)	5	0	1	1	0	0

M_2		3	2	
M_1	1	4	5	6

More on $P|p_j=1|C_{max}$

- Scheduling forests: A forest consisting of in-trees can be scheduled by adding a dummy task that is an immediate successor of only the roots of in-trees, and then by applying Hu's Algorithm.
- Scheduling out-forests: A schedule for an out-tree can be constructed by changing the orientation of edges, applying Hu's Algorithm to the obtained intree and then reading the schedule backwards, i.e. from right to left.
- Remark: The problem of scheduling opposing forests (that is, combinations of in-trees and out-trees) on an arbitrary number of processors is NP-hard.

- An NP-hard problem (P|| C_{max} is already NP-hard)
- List scheduling algorithm: Schedule the jobs greedily according to some topological sort.
- LS have unexpected behavior: the schedule length may increase if:
- the number of processors increases,
- task processing times decrease,
- precedence constraints are weakened, or
- the priority list changes.

Given: Job set T with

- vector of processing times p
- precedence constraints θ
- priority list L
- m identical processors

Let C_{max} be the length of the list schedule.

On the other hand, let the above parameters be changed:

- vector of processing times $p' \le p$ (component-wise),
- relaxed precedence constraints $\theta' \subseteq \theta$,
- priority list L'
- and another number of processors m'

Let the new value of schedule length be C'_{max} .

(a) A task set, m = 2, $L = (T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8)$,

13

15

9

17

(b) an optimal schedule

4 5

3

0

A new list $L' = (T_1, T_2, T_3, T_4, T_5, T_6, T_8, T_7)$.

Processing times decreased; $p'_j = p_j - 1$, j = 1, 2, ..., n.

(a) Precedence constraints weakened, (b) resulting list schedule.

Number of processors increased, m = 3

The 'paradox' is limited:

Theorem [Gra66] Under the above assumptions,

$$\frac{C'_{max}}{C_{max}} \le 1 + \frac{m-1}{m'}$$

The Problem R|| $\Sigma_j C_j$

- Unrelated machines: for each machine i and job j the time p_{ij} is specified.
- For a single machine $1||\sum_{j}C_{j}$ is solvable by SPT rule.
- The problems $P|| \Sigma_j C_j$ and $Q|| \Sigma_j C_j$ are solvable by variants of SPT.
- For related machines, the processing times cannot be sorted.

Observation: If J_j is is the k^{th} from last job to run on a machine, it contributes exactly k times its processing time to the sum of completion times.

k=3, p_{ij} is counted 3 times in $\Sigma_j C_j$

Tool: Bipartite matching

Given a bipartite graph on two sets of vertices A and B, and an edge set $E \subseteq A \times B$, a matching M is a subset of the edges, such that each vertex in A and B is an endpoint of at most one edge of M.

The optimal algorithm for $R||\Sigma_j C_j$ will match jobs to locations in the schedule.

Tool: Bipartite Matching

A perfect matching: $|M|=|A| \le |B|$ (w.l.o.g $|A| \le |B|$)

•It is possible to assign weights to the edges, and define the weight of a matching to be the sum of the weights of the matching edges.

When a perfect matching exists, it is possible to compute in polynomial time a minimum weight perfect matching.

The Problem R|| $\Sigma_j C_j$

- Define a bipartite with $V=A\cup B$ as follows:
- A represents the set of n jobs (a single node per job).
- B consists of nm nodes, w_{ik} , where vertex w_{ik} represents the k^{th} from last position on machine i, for i=1,...,m and k=1,...n.
- The edges set E contains an edge (v_j, w_{ik}) for every node in A and every node in B (a complete bipartite).

The weight of (v_j, w_{ik}) is kp_{ij}

The Problem R|| $\Sigma_j C_j$

Example:

n=3, m=2

p _{ij}	J_1	J ₂	J_3
M_1	4	5	7
M_2	8	6	2

The weight of (v_1,w_{21}) is 4 – the contribution of J_1 to $\Sigma_j C_j$ if scheduled as last on M_2 .

- ← last position on M₂
- before-lastposition on M₂

The weight of (v_2,w_{22}) is 6*2=12 - the contribution of J_2 to $\Sigma_j C_j$ if scheduled as 2^{nd} from last on M_2

The Problem R|| $\Sigma_j C_j$

Theorem: a minimum weight perfect matching corresponds to an optimal schedule.

Proof: In class

Note: With identical machines we get (as

expected) SPT.

Open-shop Scheduling

- Job J_j consists of m operations, to be processed non-preemptively on each of the m machines.
- The order in which the different operations are performed is not important.
- Two operations of the same jobs cannot be processed simultaneously.
- · Example:

$$m=2$$

	Bob	Dan	Anna
Bank	8	4	5
Post-office	3	9	2

Bank	Bob		Anna		Da	ın	
P.office	Dan		Bob		Anna		•
()	3	9	12 1	13 1:	5 1	7

The Problem $O||C_{max}|$

- The problem $O||C_{max}|$ is NP-hard for any m>2.
- We will see:
 - 1. A 2-approximation for any number of machines
 - 2. An optimal algorithm for $O_2 || C_{\text{max}}$
- Two basic lower bounds:
 - 1. P_{max} maximum total processing time of a job (total length of operations composing this job)
 - 2. L_{max} maximum total processing time required from a single machine
- Clearly: C_{max} (opt) is at least max(P_{max} , L_{max})

	Bob	Dan	Anna
Bank	8	4	5
P.office	3	9	2

$$L_{\text{max}} = 17 \text{ (Bank)}$$

The Problem $O||C_{max}|$

A busy schedule for $O||C_{max}$: Whenever possible, schedule some operation of some job on a machine.

Can be implemented by a simple greedy algorithm.

Theorem: Any busy schedule is 2-approximation.

Proof: Consider the machine M' that finishes last. Let j' be the last job on M'. At any time during the schedule, either M' is processing a job, or j' is being processed by some other machine (why?).

The total time in which j' is processed is at most P_{max} During the remaining time, M' is busy. But M' is busy at most L_{max} time units.

Therefore $C_{\text{max}} = C_{j}' \leq P_{\text{max}} + L_{\text{max}} \leq 2 C_{\text{max}}(Opt)$

Open-shop Scheduling

- In general, $O||C_{\text{max}}$ is NP-hard
- We will see an optimal schedule for $O_2||C_{\text{max}}|$
- Denote $p_{j1} = a_j$, $p_{j2} = b_j$ (Time to process j on M_1 and M_2 respectively)
- Let $T_1 = \Sigma_j a_j$, $T_2 = \Sigma_j b_j$
- A lower bound for C_{max} is $\max(T_1, T_2, \max_j(a_j + b_j))$
- The algorithm achieves this lower bound.

Let $A=\{j \mid a_j \geq b_j\}$ [need more time on M_1] Let $B=\{j \mid a_j < b_j\}$ [need more time on M_2] Select a job $J_r \in A$ such that $a_r \geq \max\{b_j \mid j \in A\}$. Select a job $J_l \in B$ such that $b_l \geq \max\{a_j \mid j \in B\}$. Let $A'=A-\{r\}$, $B'=B-\{l\}$

Example:

	1	2	3	4	5	6	T_{j}
a_{j}	10	7	3	1	12	6	39
bj	6	9	8	2	7	6	38

 $A=\{1,5,6\},\ B=\{2,3,4\}$ $a_r \geq \max{\{b_j | j \in A\}}$ is true for r=1,5. Select r=1 $b_l \geq \max{\{a_j | j \in B\}}$ is true for l=2,3. Select l=2

Possible schedules for $A' \cup \{r\}$ and $B' \cup \{l\}$:

The jobs in A' and B' are in a fixed, arbitrary, order.

Note: There is no idle on any of the machines. (why?)

Let us 'glue' the two schedules.

Will meet on M_1 if $T_1-a_1 > T_2-b_r$

'Slide' the jobs B' and J_1 on M_2 to the right.

A valid schedule (why?)

Move J_r to be first on M_2

If $a_r \le T_2 - b_r$ The schedule length is max (T_1, T_2)

If $a_r > T_2 - b_r$, the schedule length is $max(T_1, a_r + b_r)$.

If $T_1-a_1 \le T_2-b_{r_1}$ then when gluing, the schedules meet on M_2 and the analysis is symmetric.


```
Let A=\{j|a_j \geq b_j\} [need more time on M_1]

Let B=\{j|a_j < b_j\} [need more time on M_2]

If A=\varnothing or B=\varnothing the problem is easy (why?)

Select a job J_r \in A such that a_r \geq \max\{b_j | j \in A\}.

Select a job J_l \in B such that b_l \geq \max\{a_j | j \in B\}.

Let A'=A-\{r\}, B'=B-\{l\}.
```

```
If T_1-a_1 > T_2-b_r then the optimal schedule is:
On M_1: (I,B',A',r), on M_2: (r,I,B',A').
Else, the optimal schedule is
On M_1: (B',A',r,I), on M_2: (I,B',A',r).
```

	1	2	3	4	5	6	T_{j}
1	10	7	3	1	12	6	39
2	6	9	8	2	7	6	38

$$A=\{1,5,6\}, B=\{2,3,4\}$$

$$a_r \ge \max \{b_j | j \in A\}$$
. Select r=1

$$b_1 \ge \max \{a_j | j \in B\}$$
. Select I=2

$$A'=\{5,6\}, B'=\{3,4\}$$

		A'(18)	r(10)	
I(7) B'(4)			A'(13)	r(6)
1(9)	B'(10)		

B'(4)	A'(18)		r(10)	l(7)	
l(9)	B'(10)		A'(13)	r(6)	

$$C_{\text{max}} = T_1 = 39$$

Flow-shop Scheduling

In a flow-shop schedule with m machines, $M_1,M_2,...,M_m$, all the jobs must be processed by all the machines in the same order (which is, w.l.o.g., $M_1,M_2,...,M_m$). For each job j and machine i, $p_{j,i}$ is the processing time required by J_j on M_i .

Example:

Two machines, three jobs.

	pizza	pie	cake
chef	8	10	4
oven	5	20	30

Flow-shop Scheduling

- The problem $F_m||C_{max}$ is NP-hard for any m > 2.
- We will see a simple optimal algorithm for m=2 (Johnson 1954).

Observations for F_2 :

- In any F_2 -schedule, the machine M_2 is first idle, then it processes jobs, then it may be idle again, process again, and so on, depending on the flow of jobs from M_1 .
- M_1 is never idle (or idles can be removed).
- Since all jobs are available at time t=0, our goal is to reduce the time in which M_2 is idle, waiting for the job currently processed by M_1 .

Flow-shop Scheduling on Two Machines

Definition: A permutation schedule is a schedule in which the jobs are processed in the same order by M_1 and M_2 .

Lemma: There exists an optimal schedule which is a permutation schedule.

Proof idea: if J_j precedes J_k on M_1 , then J_j is available to M_2 before J_k and so, if J_k precedes J_j on M_2 we can swap their processing on M_2 without hurting the makespan.

$$J_k J_j \rightarrow M_1 \rightarrow J_k J_j \rightarrow M_2$$

Flow-shop Scheduling on Two Machines

Denote $p_{j1} = a_j, p_{j2} = b_j$.

Let A be the set of jobs j for which $a_i \le b_i$.

Let B be the set of jobs j for which $a_j > b_j$.

Johnson Rule: Sort the jobs in the following way: first the jobs of A in non-decreasing order of a_j , then the jobs of B in non-increasing order of b_j . Schedule the jobs on the two machines according to this order.

Example:

 $A = \{ pie, cake \}$

 $B = \{pizza\}$

	pizza	pie	cake
chef	8	10	4
oven	5	20	30

Optimal order = {cake, pie, pizza}

- For a given permutation schedule, number the jobs according to the order they are scheduled.
- Let J_k be the first job on M_2 after its last idle section. J_k is not waiting between M_1 and M_2 .
- $C_k = a_1 + a_2 + ... + a_k + b_k$.
- M_2 is not idle when the rest of the jobs are processed, thus, $C_{max} = a_1 + ... + a_k + b_k + b_{(k+1)} + ... + b_n$.
- → The makespan is determined by n+1 values.
- → For any c, we can reduce c from all the p_{ij} values, without changing the relative performance of different permutation schedules.

Theorem: Johnson rule is optimal for $F_2||C_{\text{max}}$.

Proof: By induction on the number of jobs, n.

Base: For n=1, any schedule with no idle is optimal.

Step: Assume that Johnson rule is optimal for n-1 jobs, and consider an instance with n jobs.

Let $c = \min_j \{\min\{a_j, b_j\}\}$. Reduce c from all p_{ji} values. As a result, there exists a job, with $a_j = 0$ or $b_j = 0$. If $a_j = 0$ then $j \in A$ and it is first in the Johnson-order of A. If $b_j = 0$ then $j \in B$ and it is last in the Johnson-order of B.

Lemma: If $a_j=0$, then there exist an optimal schedule in which j is first, If $b_j=0$, then there exists an optimal schedule in which j is last.

Proof: If $a_j=0$ and J_j is not first, assume it is processed after J_k . The jobs J_j and J_k can be swapped without hurting the makespan.

The proof for b_j=0 is similar

Back to induction step: Recall that J_j is a job with a_j =0 or b_j =0.

If a_j =0, then there exist an optimal schedule in which j is first (and can be processed by M_2 with no delay), and if b_j =0, then there exists an optimal schedule in which j is last (and do not cause any delay to the makespan of M_2).

By the induction hypothesis, Johnson rule is optimal for J-{j}. By the above, Johnson rule places j optimally.