SIO 209: Signal Processing for Ocean Sciences Class 18

Florian Meyer

Scripps Institution of Oceanography Electrical and Computer Engineering Department University of California San Diego

UC San Diego

JACOBS SCHOOL OF ENGINEERING

0

The Narrowband Beamformer

• The narrowband beamformer takes the narrowband array measurement vector and produces a scalar output

Goal: Design $\underline{\boldsymbol{w}}_{\theta}(\omega_0)$ such that signal with angle of incidence θ and frequency ω_0 adds constructively and signals from other directions add destructively

How to Choose Beamforming Weights

$$\underline{\underline{\boldsymbol{x}}}(\omega_0) \longrightarrow \underline{\underline{\boldsymbol{w}}}_{\theta}(\omega_0)^H \longrightarrow \underline{\underline{\boldsymbol{w}}}_{\theta}(\omega_0)^H \underline{\underline{\boldsymbol{x}}}(\omega_0)$$
 Normalized Plane Wave Replica

$$\underline{\boldsymbol{w}}_{\theta}(\omega_0) = \frac{1}{N} \underline{\boldsymbol{v}}_{\theta}(\omega_0)$$

Narrowband Plane Wave

$$\underline{\boldsymbol{x}}(\omega_0) = a(\omega_0) \underbrace{\begin{bmatrix} e^{j\frac{\omega_0 z_0}{\mathbb{C}}\cos\theta} \\ e^{j\frac{\omega_0 z_1}{\mathbb{C}}\cos\theta} \end{bmatrix}}_{\text{Scalar amplitude}} \underbrace{\begin{bmatrix} e^{j\frac{\omega_0 z_0}{\mathbb{C}}\cos\theta} \\ e^{j\frac{\omega_0 z_{N-1}}{\mathbb{C}}\cos\theta} \end{bmatrix}}_{\underline{\boldsymbol{v}}_{\theta}(\omega_0)}^{\text{Propagation Speed}}$$

Phase shifts in $\underline{\boldsymbol{v}}_{\theta}(\omega_0)$ correspond to phase shifts in planewave with frequency ω_0 and angle of incidence θ

Bank of Beamformers

- A single beamformer provides output for a single "look direction" $\boldsymbol{\theta}$

$$\underline{\boldsymbol{x}}(\omega_0) \longrightarrow \underline{\boldsymbol{w}}_{\theta}(\omega_0)^H \longrightarrow \underline{\boldsymbol{w}}_{\theta}(\omega_0)^H \underline{\boldsymbol{x}}(\omega_0)$$

 \bullet Scanned response consists of bank of beamformers to look in $M{\rm\,directions}$

4

SWMFEx21 Experiment

- Performed on research vessel Sally Ride
- Mid-frequency vertical line array with 64 elements
- Moored and towed acoustic sources

SWMFEx21: Spectrogram Example • 1 minute of data SWMFEx21 Experiment 29-Aug-2021 00:40:30 12000 • Sampling frequency is 25 kHz 10000 • Distance source array is approx. 3 km 8000 • Middle of array is 130 m deep 6000 • The source transmitted 7 tones 4000 at frequencies 1503 Hz, 2503 Hz, 2000 3503 Hz, 4503 Hz, 5503 Hz, 6503 Hz, and 7503 Hz

6

SwellEx-96 – Source Localization Results

- Bayesian Estimation
 - compute source and velocity estimates from direction of arrival measurements
 - see class ECE275A: Parameter Estimation
- Data from SwellEx-96 experiment
 - available online (swellex96.ucsd.edu)

