RADIATIVE BOW SHOCK MODELS OF HERBIG-HARO OBJECTS¹

PATRICK HARTIGAN

Department of Planetary Sciences, University of Arizona

AND

JOHN RAYMOND AND LEE HARTMANN Harvard-Smithsonian Center for Astrophysics Received 1986 July 17; accepted 1986 October 15

ABSTRACT

We have constructed bow shock models of HH objects from a collection of 43 radiative planar shock models. The bow shock models are used to predict the line ratios and line profiles expected from HH objects, and comparison of the model with four different regions containing HH objects indicates that a single unifying model—a radiating bow shock formed around a "bullet" of dense gas plowing into the ambient medium—can account for the bulk of the existing observations. Spectral line profiles expected from stationary cloudlets and moving bullets are discussed for a variety of shock velocities, orientation angles, and emission lines. We show that for particular bow shock orientations double-peaked profiles are predicted in spatially unresolved spectra, and that such models provide a natural explanation for the spectra of HH 32 and the HH objects in Cepheus A. In general, analysis of many bright HH objects is consistent with the interstellar bullet model, although one object in particular is better fitted with a shocked cloudlet model. We present a simple analytic formula that can be used to estimate the shock velocity and bow shock orientation from a single high-resolution observation of a low-excitation line.

Subject headings: line formation — line profiles — radiative transfer — shock waves — stars: pre-main-sequence

I. INTRODUCTION

Herbig-Haro (HH) objects are semistellar emission-line sources usually located near bipolar flows from pre-mainsequence stars. The large proper motions (Luyten 1971; Cudworth and Herbig 1979; Herbig and Jones 1981) and radial velocities (Schwartz and Dopita 1980) of HH objects imply supersonic motions, and the general accepted model for the radiation from these objects is that the emission lines occur as gas cools behind a shock (see Schwartz 1983 for a review). Several authors (e.g., Dopita 1978; Raymond 1979) have modeled the observed emission-line ratios from HH objects using plane-parallel shocks. These attempts have only been partially successful in reproducing the observed UV and visible line strengths. The major problem is the presence of bright lines of highly ionized species like C IV in addition to prominent low-excitation lines like S II and O I. The result is that no single plane-parallel model fits the observed data. Some HH objects exhibit extraordinary line profiles. Line widths in HH objects can approach 500 km s⁻¹ for a single knot (see Hartigan *et al.* 1986). How can such line widths be present in an object of at most a few Earth masses that is only 1500 AU in diameter? Line profiles of HH objects in Cepheus A and HH 32 are double-peaked for the low excitation lines of H, N II, and S II. This structure can not be explained satisfactorily by any plane-parallel model (Hartigan, Mundt, and Stocke, 1986).

One possible resolution to these puzzles would be to have the emission from HH objects arise from the cooling region behind a bow shock (Schwartz 1978). The bow shock could form either around a dense clump of gas ejected into the

¹ Observations obtained at the Multiple Mirror Telescope Observatory (MMTO) operated jointly by the University of Arizona and the Smithsonian Institution.

ambient cloud (as in the "bullet" model; Norman and Silk 1979 and Tenorio-Tagle and Rózyczka 1984), or from a supersonic stellar wind impinging upon a clump of gas in the flow (as in the "shocked cloudlet" model; Schwartz 1978). The bow shock geometry produces a mixture of shock velocities because only the component of motion perpendicular to the bow is slowed, and this perpendicular kinetic energy converted into line emission. Such a senario could explain the failure of plane-parallel models to predict the observed line ratios from HH objects. In addition, a bow shock will splatter material away from the central obstacle, producing large line widths from a small volume. The double-peaked line profiles might arise from viewing the bow shock from oblique angles.

Previous work on bow shocks indicates that this line of reasoning could be quite fruitful. Hartmann and Raymond (1984) found that a model based on approximating the oblique shock regions of the bow shock by a series of plane-parallel shock models was able to produce large line widths, as well as line ratios that agreed better with the observations than planar shock models. Several authors (Choe, Böhm, and Solf 1985; Raga and Böhm 1985; Raga 1986) have constructed position-velocity diagrams from bow shocks and have found fairly good agreement with observations.

In this work we present more refined bow shock models than those of Hartmann and Raymond (1984). The present models are constructed from a set of 43 planar shock models which sample a wide range of shock velocities (20 km s⁻¹ \leq $V_s \leq$ 400 km s⁻¹). We also explore a variety of bow shapes, preshock densities, and preshock ionization conditions. The bow shock model is discussed in § II, and the planar shock models are presented in § III. In § IV the bow shock models are used to predict the emission-line ratios expected for various shock velocities, and also to predict the emission-line profiles

when the bow shock is viewed from an arbitrary angle. Both the shock velocity and bow orientation can be estimated from a simple analytic formula we present in § IV. The predictions are then applied to individual regions containing HH objects in § V, where we compare the model predictions with new and existing high-resolution spectra of HH objects. Although the bow shock models were constructed with the intent to model HH objects, they might also be useful in other astrophysical contexts (such as galactic jets).

II. THE BOW SHOCK MODEL

a) Geometry and Kinematics

Figure 1 depicts the geometry of a bowshock. One must know the postshock velocity V_2 and angle θ of the emitting gas to model bow shock line profiles. In the frame of reference of the bow shock, the preshock material is incident from the left at the shock velocity V_s and enters the bowshock at an angle ξ from vertical. This angle is determined once a bow shape Z(R)is chosen. All models assume axial symmetry. The observer views the bow shock at an angle ϕ from the bow's apex. To calculate the line emission the bow shock is divided into 200 annuli of constant ξ . The emission from each annulus is taken to be that from a plane-parallel shock of velocity V_1 (the planar models are discussed in § III) weighted by the area of the annulus. Co-addition of the annuli over the entire bow gives the expected emission-line profiles and ratios from the object. The parallel component V_{\parallel} of the incident velocity is continuous across the shock, and immediately behind the shock the perpendicular velocity V_{\perp} diminishes according to the shock jump conditions (by a factor of 4 for a strong shock). The hot $(\gtrsim 10^5$ K for shock velocities of interest) gas must cool to about 10⁴ K before optical line radiation becomes visible. The gas becomes denser as it cools, and since ρv is conserved the velocity must decrease. A complete analysis would require solving the two-dimensional hydrodynamic flow problem inside the volume bounded by the bow shock with radiative cooling included. This problem has been solved, but only with simplified radiative cooling rates, and without the detailed photoionization and time-dependent ionization calculations needed to compute accurate line intensities and profiles (Sandford and Whitaker 1983; Rózyczka and Tenorio-Tagle

1985a, b). Therefore we use existing numerical calculations of the bow shock shape to make the following approximate models for the emission lines.

We assume the cooling distance to be small compared with the size of the bow shock, so that the radiation originates in a narrow shell next to the bow (see § III for a discussion of this point). Guided by the planar shock models, we choose a fixed temperature for the line of interest (typically 10⁴ K for optical lines) and calculate the expected postshock V_1 taking into account both the jump conditions at the shock interface (velocity decrease by a factor of 4 for a strong shock) and the effect of cooling (decrease by an additional factor of about 10). Taking V_{\parallel} to be unchanged during cooling allows the velocity V_2 and deflection angle θ to be calculated. Hence, the line profile consists of the co-addition of a series of expanding rings of emitting material (Fig. 1). The final line profile is calculated by smoothing the points with a Gaussian whose width arises from thermal motions of the emitting ion plus any instrumental broadening.

b) Line Profiles

We begin construction of theoretical line profiles by calculating a probability distribution for the radial velocity of a particle on an expanding ring of material. The probability distribution must then be weighted by the area of the ring and the line intensity as obtained from the planar shock models.

From Figure 1, the radial velocity of a particle on the ring at azimuthal angle ψ is given by

$$V_r = V_2(\cos\theta\cos\phi + \sin\theta\sin\phi\cos\psi). \tag{1}$$

Emission from HH objects is optically thin except perhaps for the resonance lines Ly α , C II λ 1335, and C IV λ 1550. Thus, for an axially symmetric ring, the probability distribution of radial velocity is proportional to $(\partial \psi/\partial V_r)_{\theta,\phi,V_2}$, so the probability of a given radial velocity $P(V_r)$ is given by

$$P(V_r) = \frac{1}{\pi} \left[w_2^2 - (V_r - w_1)^2 \right]^{-1/2} , \qquad (2)$$

where $w_1 = V_2 \cos \theta \cos \phi$, and $w_2 = V_2 \sin \theta \sin \phi$. The probability distribution is double-peaked (Fig. 2), with the two peaks corresponding to the extreme radial velocities on the

© American Astronomical Society • Provided by the NASA Astrophysics Data System

No. 1, 1987

Fig. 2.—Probability distribution of radial velocities observed from the expanding ring of material in Fig. 1. The radial velocities between the dashed lines are excluded when the spectrograph slit is narrower than the emitting ring. The parameters d and D are the ring and slit diameters, respectively.

ring. The probability distribution (2) assumes the entire expanding ring to be included in the observing aperture. Since spectroscopic observations are usually obtained through a slit, we would like to know how the distribution alters when a slit is positioned along the z-axis. The effect of such a slit will be to exclude emission fron azimuthal angles between ψ_c and $\pi - \psi_c$, and also between $-\psi_c$ and $-\pi + \psi_c$, where $\psi_c = \sin^{-1}(D/d)$, D is the diameter of the slit projected on the sky, and d is the diameter of the emission ring. Thus, there is a set of radial velocities of width $2V_2 \sin \theta \sin \phi [1 - (D/d)^2]^{1/2}$ centered at $V_2 \cos \theta \cos \phi$ which is no longer seen (Fig. 2). As the slit narrows, the excluded region widens until only the extreme radial velocities are seen (at the front and back of the ring).

The probability formalism easily accounts for the effects of a finite slit, and we have included this capability in our models. However, since spectrographic slit widths are typically 1".5, seeing 1"-2", and telescope tracking errors ~ 1 ", the observed line profiles probably include emission over areas 2"-3" at least. Since this is on the order of the sizes of many HH objects, the line profiles reported in this work typically include the entire emission from the bow shock.

c) Bow Shock Shape

The bow shape Z(R) is one of the input parameters to the bow shock models. We have investigated the shape proposed by DeYoung and Axford (1967) (hereafter the DA shape) as well as a class of shapes similar to that proposed by Raga (1986). Raga used an inverse method assuming postshock ionization equilibrium to determine the bow shape near the apex produced by a spherical obstacle. Normalizing the coordinates R and Z by the obstacle radius R_0 ($z = \lfloor Z/R_0 \rfloor$, $r = \lfloor R/R_0 \rfloor$) we can write the Raga shape as

$$z(r) = \frac{0.42r^2 + 0.136r^4}{1 + 0.273(M^2 - 1)^{-1/2}r^3}.$$
 (3)

Some difficulties are encountered with the shape at large R and Z, since it does not approach the Mach angle, and the incident angle ξ decreases, instead of increasing uniformly as one proceeds from the apex. Since the shape (3) never reaches the Mach angle ($V_{\perp}=Cs=$ sound speed), the bow shock never terminates.

If we disregard the denominator term, we retain Raga's paraxial solution and achieve a shape that reaches the Mach angle at some (r, z) where line emission must cease. We have used this modified Raga shape $(z = 0.42r^2 + 0.136r^4)$ to model bow shock line emission. Since the obstacle may not be spherical, we would like to be able to investigate general shapes of the form $z = Ar^2 + Br^4$. To this end we parameterize a class of bow shapes according to

$$z(r) = \alpha r^2 + \alpha^3 \beta r^4$$
, α and β constants. (4)

With this parameterization β has a clearly defined physical significance. The quadratic and quartic terms in equation (4) are of equal magnitude when $r = \alpha^{-1}\beta^{-1/2}$. At this value of r the incident angle ξ_c is given by $\tan \xi_c = (dz/dr)_{r=\alpha^{-1}\beta^{-1/2}}$, so that

$$\xi_c = \tan^{-1}(6\beta^{-1/2}) \ . \tag{5}$$

This critical angle represents the point where the quadratic shape gives way to the steeper quartic shape. Incident angles exceeding ξ_c lie on the quartic curve and have less relative importance to the final emission line profile.

Suppose we were to normalize the shape Z(R) by $\bar{R}_0 = kR_0$, where k is a constant. Then with $z = Z/R_0 = z/k$ and $r = R/R_0 = r/k$ we find $\bar{z}(\bar{r}) = (k\alpha)\bar{r}^2 + (k\alpha)^3\beta\bar{r}^4$ so that $\bar{\alpha} = k\alpha$ and $\bar{\beta} = \beta$. Hence, although β is independent of the normalization, the value of α depends upon the choice of the normalization constant R_0 . Any two shapes with the same value of β are therefore the same for modeling purposes. For example, the

shapes $z_1 = 0.5r_1^2 + 0.1r_1^4$ and $z_2 = r_2^2 + 0.8r_2^4$ produce identical line profiles for each emission line and identical line ratios. The parameter α has a physical significance only if a physical significance is attached to R_0 . For instance, if R_0 is always chosen to be the radius of a spherical obstacle, then the bow shock flairs away from the obstacle more for smaller values of α . In the models, R_0 is chosen to make the angular diameter of the radiating bow shock a few arcseconds, consistent with the observed sizes of HH objects. Once a value of R_0 is chosen, the absolute flux of H β as seen from Earth can be calculated and compared with observed values.

Rózyczka and Tenorio-Tagle (1985a, b) have computed the shapes of bow shocks using a two-dimensional numerical hydrodynamics code. They find that radiative cooling makes the shape of a 200 km s⁻¹ bow shock much narrower than either the 100 or 400 km s⁻¹ bow shocks, greatly reducing the importance of the bow shock wings. They also find that if one begins with a spherical obstacle, the cloud shock flattens the obstacle and produces a progressively more blunt bow shock. Evolution into a more flattened shape requires several hundred years for typical cloud parameters, and on that time scale the cloud is likely to be disrupted by Rayleigh-Taylor instabilities (Rózyczka and Tenorio-Tagle 1985b). While transit times inferred from proper motions of HH object knots from the exciting stars to their present positions are hundreds of years, some knots are observed to turn on and fade away with lifetimes of a few decades (Herbig and Jones 1981). If we interpret this to mean that these knots move out in a low-density flow of similar velocity until they reach the high-density ambient medium at the end of the cavity cleared by the outflow, then the observed lifetimes of a few decades are appropriate, and we do not expect significant flattening or disruption of the clouds. However, such short lifetimes cast some doubt on the correctness of the assumption of a steady state bow shock shape.

Not all shapes can be represented accurately by a quartic polynomial, however. The DA shape is given by

$$z(r) = -2 \ln \left[\cos \left(\frac{r}{2} \right) \right], \tag{6}$$

where $R_0 = h$ is the scale height for normalization. Expanding equation (6) in powers of r near r = 0 we find $\alpha = 0.25$, $\beta = 0.667$, and $\xi_c = 82^{\circ}3$. Since ξ_c is larger for DA than for Raga (where $\xi_c = 77^{\circ}.3$), we might expect DA to emphasize low velocity shocks away from the apex more than the Raga shape. The opposite is in fact true—DA is more blunt-shaped than Raga, giving rise to larger fluxes in the high-excitation lines like O III and C IV as compared to H β . The problem is that the DA shape cannot be approximated by a quartic polynomial far from the apex $(r \approx \pi)$. The shape $z(r) = 0.42r^2 + 1.0r^4$ (hereafter shape A) reproduces the observed line profiles fairly well and is used extensively in the bow shock models. Shape A has a critical angle of 58°5, so the higher shock velocities near the apex are relatively more important to the final line profile for this shape than for the Raga shape. As for the other shapes, the numerical integration terminates when shape A reaches the Mach angle.

d) The Obstacle

For simplicity we neglect absorption of far-side bow shock emission by dust in the obstacle. We can estimate the amount of absorption likely to be present as follows. Schwartz (1978) showed that for $\gamma = 5/3$, the pressure P_0 in the obstacle is

related to the incident ram pressure by $P_0 = 0.88 \eta_w V_s^2$. This relation imposes a constraint on the number density (η_0) and temperature (T_0) in the obstacle in terms of the preshock number density (η_w) and the shock velocity (V_s) of the wind. We find

$$\eta_0 T_0 = 2.1 \times 10^8 \left(\frac{\eta_w}{100 \text{ cm}^{-3}} \right) \left(\frac{V_s}{200 \text{ km s}^{-1}} \right)^2 \text{ cm}^{-3} \text{ K}.$$
 (7)

The number density in the obstacle must exceed that of the shocked wind, so we take $\eta_0 > 3 \times 10^4$ cm⁻³ (Brugel, Böhm, and Mannery 1981). The temperature of the obstacle exceeds the ambient cloud's temperature, about 30 K. Using equation (7), we find $\eta_0 < 7 \times 10^6$ cm⁻³ and $T_0 < 7 \times 10^3$ K. Adopting $\eta_0 = 10^5$ cm⁻³, and 1500 AU for the obstacle diameter yields an obstacle mass of 160 M_{\oplus} , and a maximum hydrogen column density for the obstacle of 2.2×10^{21} cm⁻². Using Spitzer's (1978) relation between $N_{\rm H}$ and $E_{B-V} = 0.38$, so that $A_v = 1.1$ along the center of the obstacle, suggesting that the obstacle could have some influence on the line profiles, especially in the UV. Seab and Shull (1983) showed that about 50% of silicate grains and up to 85% of graphite grains can be expected to survive a 100 km s⁻¹ shock. Hence, extinction due to postshock grains could in principle affect the line profiles, although the column density of this material should be about 10 times less than the maximum column density through the obstacle.

We also ignore the shock propagating into the cloudlet in our calculations. Following Schwartz (1978), for $V_w = 200$ km s⁻¹, $\eta_0 = 10^5$ cm⁻³ and $\eta_w = 100$ cm⁻³ we find 6 km s⁻¹ for this "cloudlet shock" velocity. This is a very weak shock and should not affect the line profiles significantly, except perhaps for the neutral lines. The shock will take about 600 yr to traverse the obstacle, on the order of the sound crossing time for $T_0 = 10^3$ K.

III. PLANAR SHOCK MODELS

a) Input Parameters

The planar shock models used in this work are described in detail by Raymond (1979) and Cox and Raymond (1985). A grid of shock models closely spaced in velocity is needed to accurately model bow shock emission since the effective shock velocity V_{\perp} varies markedly across the bow. Our planar models were typically computed every 20 km s⁻¹ to follow the variation of line fluxes with shock velocity.

The ionization state of the preshock gas greatly influences the line fluxes and ratios expected from a shock (see Cox and Raymond 1985). Unfortunately, the preshock ionization conditions in front of a bow shock are not easily determined. Some very hard UV radiation escapes near the apex where V_{\perp} is large, and if this radiation succeeds in fully ionizing all the incident material, then we should employ a set of fully preionized (H⁺, He⁺⁺) planar models in the bow shock calculations. On the other hand, the situation could resemble "equilibrium" preionization, where the ionized state of the preshock gas is the same as that in front of a planar shock of velocity V_{\perp} . With such a scenario, the preshock ionization can vary from fully ionized at the apex to neutral near the edges of the bow. To investigate these two cases we initially compiled a set of fully preionized (H⁺, He⁺⁺) shock models and a set of equilibrium preionization shock models with preshock number density 100 cm⁻³. When it became clear (see § IVb) that equilibrium preionization models fit the data somewhat better than the

fully preionized case, we compiled another set of equilibrium preionized models with higher preshock density (1000 cm⁻³) to determine the importance of collisional deexcitation for the emission lines.

An approximate calculation of the ionization state of gas entering a 200 km s⁻¹ bow shock shows the gas to be 50%–70% neutral for $V_{\perp}=40$ –160 km s⁻¹, and a significant ionized fraction persists even for very small effective shock velocities in the bow shock wings. Based on the methods described by Cox and Raymond (1985), we find that this more realistic preshock ionization state implies a 15% increase in the absolute H β flux, little change in the [O III]/H β ratio, and a 50% increase in [O II]/H β . The strength of the two photon continuum is roughly doubled.

We fixed the logarithmic abundance ratios H:He:C:N: O:Ne:Mg:Si:S:Ar:Ca:Fe:Ni at the following "cosmic" 12.0:10.93:8.52:7.96:8.82:8.12:7.52:7.62:7.20:6.90: 6.30:7.50:6.30 for all planar models except A100, a 100 km s⁻¹ model with abundances of Fe and Si reduced by 10^{1/2} to give an indication of the effects of depletion of refractory elements due to dust condensation. This depletion is similar to what occurs after sputtering and grain-grain collisions in the postshock flow have destroyed most of the grains (Seab and Shull 1983), although the actual depletion factor depends on the shock velocity since higher velocity shocks destroy grains more effectively than low-velocity shocks. The preshock magnetic field was taken to be negligible (0.1 μ G) in all models except B100, where $B = 10 \mu G$. The preshock temperature was fixed at 10^4 K for all models. A radiative transfer parameter $R_{\rm max}$ (Cox 1972) was taken to be 1, a value more appropriate for the nonplanar geometry of a bowshock than the planar value of 3. For cases where the cooling distance approaches R_0 , an even smaller value of R_{max} might be appropriate. Differences between fluxes reported here and those of Cox and Raymond (1985) are principally due to this parameter. Calculation of emission-line fluxes was terminated when the gas temperature reached 103 K.

Planar shock models require an input radiation field in order to calculate the ionization state of the preshock gas for each element. This input radiation field was taken to be the output radiation field from a planar shock of similar velocity. Although the shock code predicts the preshock ionization state of H and He, for the equilibrium models we chose to fix these values using the results of Shull and McKee (1979), who performed a somewhat more detailed analysis of the preshock ionization problem. It is especially important to choose the correct value for the incident fraction of He⁺, since He II λ304 is an important coolant. Step sizes in the program were carefully chosen to adequately sample the temperatures near 10⁴ K where the cooling gas becomes optically thick to Lymancontinuum radiation. Undersampling of this region can lead to as much as a factor of 2 smaller fluxes for the bright optical forbidden lines. Due to the absence of molecular cooling in the models, the 20 km s⁻¹ results could be somewhat inaccurate. Without molecular cooling it is difficult to predict the lowexcitation infrared emission-line fluxes accurately—the fluxes from these lines are probably overestimated in the models. Numerical difficulties plague the shock models for $V_s > 300 \text{ km}$ s⁻¹, and these model fluxes are more uncertain than the fluxes predicted for low-velocity shocks, especially for the neutral lines (O I, N I, and C I). Moreover, shocks faster than 200 km s⁻¹ are thermally unstable (McCray, Stein, and Kafatos 1975; Innes, Giddings, and Falle 1986). Effects of this instability on

the average emission-line spectrum are not yet understood, but an additional turbulent contribution to the line widths is likely. Comparison of various theoretical shock models with similar preshock conditions and elemental abundances at the Workshop on Nebulae (Péquinot 1986) indicated a typical scatter in predicted line ratios of 30% for the strong lines, though the model codes occasionally disagree by as much as a factor of 3.

Several complications must be kept in mind when comparing model shocks with observations. Resonance line photons are scattered within the emitting gas and in the intervening interstellar gas when the gas is optically thick (as can occur for resonant lines of abundant ions). This severely attenuates the C II $\lambda 1335$ and C IV $\lambda 1550$ lines in the spectra of supernova remnants (Raymond et al. 1981). The large line widths and cylindrical symmetry of HH objects will reduce the importance of resonance line scattering within the emitting region, but the interstellar C II absorption line is strong enough to affect the observed intensity of the $\lambda 1335$ line significantly. Intensities of the He II $\lambda 1640$, 4686 lines depend on the radiative transfer of He II Lyman photons, which is not treated in detail. We assume case B for recombination, which occurs primarily at low temperatures and velocities, and case A for excitation, which occurs in the high-temperature region just behind the shock. These assumptions introduce about a factor of 2 uncertainty in the predicted line intensities. The present model also ignores excitation from the metastable 1s2s ³S level of He I, so the intensity of the \$\lambda 10830 line is underestimated (Raymond

b) Planar Shock Results

Since the shock velocity was the only parameter varied within a given set of planar shock models, our results clarify how the shock velocity, preshock density, and preshock ionization state individually influence the emission line fluxes. Results of the equilibrium preionization models with $\eta = 100$ cm⁻³ (E models), and the equilibrium preionization with $\eta = 1000 \,\mathrm{cm}^{-3}$ (D models) appear in Table 1. The fully preionized (I models) are shown in Table 2. Equilibrium models reach complete preionization for shock velocities > 180 km s⁻¹. There are significant differences between equilibrium and fully preionized models at lower shock velocities, however, especially for the O I and O II lines. Increasing the preshock density in the equilibrium models makes all lines brighter (the H β flux scales linearly with η), but by differing amounts depending upon the importance of collisional deexcitation for a given line. The $[O II] \lambda 3727/H\beta$ ratio, for example, decreases dramatically due to collisional quenching when η is increased from 100 cm⁻³ to 1000 cm⁻³. Ratios of the permitted UV lines to H β are quite insensitive to η .

For $V_s > 60$ km s⁻¹ the optical forbidden lines tend to increase monotonically in strength relative to H β with increasing shock velocity until the postshock density becomes large enough to collisionally deexcite the lines. The UV lines are typically invisible until V_s becomes large enough to create the ion of interest, and then suddenly become prominant. As V_s increases the UV lines slowly decrease in intensity relative to H β . These trends reflect the increasing amount of ionizing photons produced at the higher postshock temperatures as V_s increases. Recombining hydrogen at 10^4 K absorbs these photons, and the energy is radiated away in the Balmer lines (lowering the UV/H β ratio for a given UV line) and optical forbidden lines (increasing the ratios of [O I]/H β , [N II]/H β , etc.). This behavior apparently continues at very high shock

PREDICTED ENERGY FLUXES FROM PLANAR SHOCKS WITH EQUILIBRIUM PREIONIZATION

MODEL E400 E350 E200 E260 E220 E220 E200 E180 E140 E130 E130 E120 D250 D220 D220 D180 D140 D120 D120	E350 E300 E280 E240 E220 E200 E180 E160 E140 E130 D260 D220 D180 D140	E350 E300 E280 E240 E220 E200 E180 E160 E140 E130 D260 D220 D180 D140	E300 E280 E280 E240 E220 E200 E180 E160 E140 E130 D260 D220 D220 D180 D140	E280 E240 E220 E200 E180 E160 E140 E130 D260 D220 D180 D140	E240 E220 E200 E180 E160 E140 E130 D220 D180 D140	E220 E200 E180 E160 E140 E130 D220 D180 D140 D140	E200 E180 E160 E140 E130 D180 D140	E180 E160 E140 E130 D180 D140	E160 E140 E130 D140	E140 E130 D140	E130		E120 D120		E110	E100 D100	E90	E80 D80	E60 D60	E40 D40	E30 D30	E20 D20	1 _{A100}	2 B100
000 000 000 000	000 000 000 000	000 000 000 000	000		000	000			;				1						1	1			1	
400 350 300 280 250 240 220 200	550 500 280 280 240 220 200 0 0 0 0 0 0 0	550 500 280 280 240 220 200 0 0 0 0 0 0 0	280 260 240 220 200	250 240 220 200	240 220 200	0 2.7.0	90.5		200			91		071		100						20	100	100
0					000	00	0		0		0	• •	0			0.66	0.02		_				0.31	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0 0 0 0 0	0 0 0 0	0 0 0	0 0	0			0.30		0.75	_	0.88		0.34						0	0.34	0.34
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100	100 100 100 100 100 100 100	100 100 100 100 100	100 100 100 100	100 100 100	100 100	100			100		100		100		100						100	100	100
1000	1000	1000	1000	1000	1000	1000			_	8		1000		000		000		_				1000		
833	4630 2230 1720 1250 839 549	4630 2230 1720 1250 839 549	1720 1250 839 549	1250 839 549	839 549	549		323		120		58	22	56		17						2540	56	61
126 57	126 57	126 57	126 57	126 57	57	57		906		41 :				9.0		67i 0	,					357	1	
4050 2250 1/10 1250 820	4050 2250 1/10 1250 820 532	4050 2250 1/10 1250 820 532	1710 1250 820 532	1250 826 552	250 028	552		908		7 -	44	g -	=	o -	01	⊃ o						809	œ.	9.4
7 ₂ (yr) 564 421 437 329 334 469 567 493	421 437 329 334 469 567	421 437 329 334 469 567	329 334 469 567	334 469 567	469 567	567	•	493		411	281	297	248	1.0 268	260	0.8 149	06		0.T 83	334	3.3	61 5760	006	. 691
46 123	46 123	46 123	46 123	46 123	123	123				106		38		84		53						936	2	
103	374 221 181 142 103 73	374 221 181 142 103 73	181 142 103 73	142 103 73	103 73	73		49		23	13	8.0	8 .9	8.9	7.0	7.1	5.9					299	8.0	7.9
14 7.4	14 7.4	14 7.4	14 7.4	14 7.4	7.4	7.4				2.3		8.0		0.7		8.0						22		
$F_{H}\beta$ 26.5 23.1 17.9 15.5 13.7 11.8 10.0 8.32	23.1 17.9 15.5 13.7 11.8 10.0	23.1 17.9 15.5 13.7 11.8 10.0	17.9 15.5 13.7 11.8 10.0	15.5 13.7 11.8 10.0	11.8 10.0	10.0		8.32		6.9	5.59	3.93	3.52	3.01	2.58	3.55	3.44					9.4-3	3.59	3.29
136						9.66	9.66			9.69		39.2		30.0		35.3		27.6				9.8-2		
1150	1420 1280 1260 1210 1150 1120 1	1420 1280 1260 1210 1150 1120 1	1260 1210 1150 1120	1210 1150 1120	1150 1120	1120		080	-		3450 6	5520	6940		0899	816	13					0	856	010
1230 1130	1230 1130	1230 1130	1230 1130	1230 1130	1130	1130			_		_	6550	_			825						0		
286	402 463 501 539 586 653	402 463 501 539 586 653	501 539 586 653	539 586 653	586 653	653		730		757	764 1	1740	1870		0961	957	154					0	1020	1050
694	577 694	577 694	577 694	577 694	694	694		9		\$04		1780		1930		696						0		
201 26 26 27	102 103 110	100 100 110	102 120	102 120	120	120		671		132	707	24 1	190	191	001	83	4.0					0 0	82	83
O VI 1035 ³ 4140 3990 6320 6750 6780 7000 7010 6940	4140 3990 6320 6750 6780 7000 7010	3990 6320 6750 6780 7000 7010	6750 6780 7000 7010	6780 7000 7010	7000 7010	7010		1940	4	4510	656	11	1.1	0	0	0	0		0	0	0	0	0	0
6820 7020	6820 7020	6820 7020	6820 7020	6820 7020	7020	7020			47	1550		=		0		0						0		
131	86 88 101 110 118 131 149	88 101 110 118 131 149	110 118 131 149	118 131 149	131 149	149		156		83	46	8.9	1.9	0.5	0.1	0	0					0	0	0
149	119 149	119 149	119 149	119 149	149	149		9		4 5		7.0		0.5		0 ;						0		
00 04 8/ 104 111 118	111 119 152	111 119 152	104 111 119 152	111 119 152	119 152	135		140		152	9/1	042	767	100	199	611	41					0 0	125	121
129	87 103 111 120 129 144	103 111 120 129 144	111 120 129 144	120 129 144	129 144	144		161		173	187	283	158	205	506	340	190					-	-	G G
128 154	128 154	128 154	128 154	128 154	154	154		1		184		96		210		351						- c	711	208
3870	4640 4130 4010 3940 3870 3840	4640 4130 4010 3940 3870 3840	4010 3940 3870 3840	3940 3870 3840	3870 3840	3840	•	1840	e.		3840 3	3860	3840	••	3860		5540 6			-		24800	5230	5060
4340 4090	4340 4090	4340 4090	4340 4090	4340 4090	4090	4090			4			4020										24800	230	3
451	305 347 379 406 451 510	305 347 379 406 451 510	379 406 451 510	406 451 510	451 510	510		809		738	523	108	38	13	4.0	0	0					0	0	0
408 512	408 512	408 512	408 512	408 512	512	512				742		107		13		0						0	,	,
473	293 297 365 392 420 473 532	297 365 392 420 473 532	392 420 473 532	420 473 532	473 532	532		909		550	718	145	45	12	4.4	0	0					0	0	0
425 535	425 535	425 535	425 535	425 535	535	535				553		147		15		0						0		
CII 1336 97 106 124 132 144 153 173 195	106 124 132 144 153 173	106 124 132 144 153 173	132 144 153 173	144 153 173	153 173	173		195		214	223	343	404	433	464	303	167					93	339	317
						159	159			200		342		463		323						93		

NOTE.—All fluxes are normalized to $H\beta = 100$. The parameters X, Y_0 , and Y_1 , refer to the ionization state of the preshock gas, N_0 is the preshock density; d_{c3} and d_{c4} are the distances between the shock and the position where $T = 10^3$ and 10^4 K, respectively; and t_{c3} and t_{c4} are the corresponding cooling times.

Abundance of Fe and Si depleted by $\sqrt{10}$.

 $^{^{2}}B = 10 \,\mu G$.

³ Line is a doublet.

⁴ The *P=2P intersystem transitions consist of five closely spaced lines (Mendoza 1983). There are seven lines of O Iv] and Si Iv] between 1393 Å and 1407 Å.

⁵ 10^{-4} ergs cm⁻² s⁻¹ through front of shock.

B100	163) }	6.2	4.4	93	c	•	0.3	7.3	;	611	45	9	887	445		14	937		7.0	1.9		36	55	3	2.6	271	;	177	ç	8	13		15	•	61	4.4	
A100	75	;	2.0	3.7	42	•	>	0.2	9.7	•	112	46	į	6	450		15	265	3	2.7	1.5		45	~	;	5.8	302		184	ç	48	56		16	ē	91	5.1	
E20	6	0	00	0 0	00	-	0	0 0	0	0	0	0	0 0	00	0	0	0.5	2.0	637	92	84 0	0	4.0	2490	2370	106	12	14	18	20	0 0	629	805	0	0 8	103	25	90
E30	6	0	00	0 0	0 0	-	. 0																															
E40		0	0 0	0 0	, 0 0	o c	. 0	0 0	0												9.6 0																	D.4
E60 I		0	0 0	0		0 0	0	0 0	. 0	0 0																												
E80 1			0 0		000	-	0			0 0											5.5																	1.8
E90	7.6	?	0	0	1.3	-	•	0	0	G	7.0	3.8	-	161	128		14	168	2	6.7	0.1		40	65		5.6	290	:	186	į	14	16		4.4	6	02	1.4	
E100	149	152	0.5	3.5	79	9.0	0	0.3	5.8	9.4	103	43	44	295	420	429	14	240	265	7.6	9.1 2.1	1.3	41	69	102	2.9	27.1	100	165	39	0 2 9	17	35	16	16	22 23	2.9	0.9
E110	914		108	40	150	c		9.8	29		707	92	07.1		753		21	378		8.6	26		09	122		56	378		210		6/	84		22		64	15	
E120	142	139	147 151	20	580 1	029	0.1	41 7	68	68	201	92	77	203 216	719	740	21	364	413	8.6	84 84	73	197	138	298	36	355	108	188	38	7 7	114	221	23	25	169	17	7.7
Continued E130	28	•	195	64	0608	- 60	3	19	901	9	717	81	170	2	682		21	336	3	6.6	108		63	150		42	336		172	ç	69	134		22	Ļ	ç <u>s</u>	18	
1 6					2600 20	9 0	0.7	تن د د				. 6				92	ន្តន			8.3			<u>@</u> 9	2 5	: x2	æ :	× 5	. 8	92	22 :	€ 7	. 23	37	54	8 8	8 T	91 92	8
=			58 58 58	5 -	260			Ç4 7	" =	= 8	2 2		= =	~ ~	, <u>e</u>					_			-															
E160	55	8	487	111	1250	8	s .	35	81	ő	780	80	901	791	320		18	666	;	6	175		89	198		46	291		138	Ē	7.7	169		23	5	S.	17	
E180	19	63	438 441	26	1040	1050	7.7	37	28	71	243 247	22	58	181	314	320	15	221	255	10	18	156	99 0	247	499	51	247	54	110	13	208	204	325	55	53	114	8 8	17
E200	69		361	09	846	~	2	41	20	0	503	55		/61	304		14	217		11	197		63	166		09	210		88	9	99	243		21	101	lei	22	
E220	92	57	325 326	54	830	840	1 2	88 4	55	56	194	20	53	155	279	311	13	213	256	12	19 179	144	62	360	707	74	184	36	75	17	7.	298	471	20	23	263	56	10
E240	25	3	598	20	758	Ξ	1	34	9	ţ	6/1	46	-	161	256		12	211	;	13	162		90	441		91	163		65	3	04	359		20	140	6/1	30	
E260	46	8	277 280	46	902	719	9.6	32	2 . 89	69	164	43	46	133	238	268	13	219	283	15	27 150	114	9 %	553	1080	119	150	27	28	6.5	66 18	442	654	22	56	350	36	70
E280	43	1	264	44	670	œ	9	31	92	, ,	961	41	- -	611	526		13	858	ì	19	142		09	969		128	138		53	ì	e/	485		24	960	067	30	
E300	40	2	245	41	618	¢	3	53	85	,	140	39	106	100	210		11	240		22	130		09	853		156	128		48	ā	8	565		27	110	777	38	
E350	35	5	222	38	547	7.0	•	27	107		061	35	5	70	191		11	267		32	115		61	1200		119	105		38	3	10 4	494		33	000	7007	16	
E400	33	3	220	38	533	1	•	27	109	9	061	35	0	n o	194		11	252		53	1111		09	1060		83	77		27	3	101	356		32	90	190	10	
MODEL	S: IV 1397 ³		O IV] 1402*	N IV] 1486	$_{ m C~IV}$ 1549 3	[No V] 1574	F 101 (1 2 1)	[Ne IV] 1601	He II 1640	60003	0 111] 1865	N III] 1750 ⁴	1001 [11]	1801 [111 10	C III] 1908	۳	N II] 2141	C II 23264		$Si\ II]\ 2340^4$	[Ne IV] 2423 ³	. 1	[O II] 2470	Mg II 2799 ³		Mg I 2852	[O II] 3726		[O II] 3729	0000 [111 [14]	[Ne III] 3869	Ca II 3945 ³		[Ne III] 3968	50701 [11 0]	[5 11] 4072	Ca I 4227	

329

9010	B100	19	9.5	001	3	80	į	233	6.9	60 70	}	11	21		Ţ:,	33	284	F 0.	96	;	87.	42	14	:	4.4	0.7	3	22	0	0.4	1.9		g. 0.0	18		18	5.5	,
914	AIOO	19	3.4	9	3	43		528	11	4	,	=	46	Ā		36	686		105	į	34	57	14	:	8.5	76	.	27	-	0.1	4.7		6.9	18		40	119	;
060	D20	0	0.1	0.1	100	0	0 (0 0	614	719	0	0	1100	1340 368	448	1.9	2.2	613	5.5	6.4	1090	587	0	0	132	167	0.3	0.2	0.5	. 48	2.1	14.2	7. O O	0.4	0	19	57	464
E90	D30	0 (0.1	0.5	100	0	0 (00	134	112	1.6	0	304	313	104	23	25 456	444	69	74	203	151	1/2	0.2	17	2, 0	0.5	0.3	19.4	16	3.1	6.2	= =	58	28	35 or	104	254
540	D40	0	0.5	0 2	100	0	0 0	0 0	45	34	Ξ.	0	134	155 45	25	55	388	383	65	22	29	8 22 8	85 0.5	0.1	8.0	11	1:1	0.5	6.0 8	9.5	2.7	5.2	16 5.4	#	14	34	102	189
PRO	D60	0 0	0.5	1.00	100	0	0 0	- 0	80. 80.	3.4 4.8	0.0	0.9	4 :	54 15	81	17	320	327	20	4:	7 9	. 23	0.6	0.4	8. r	5.0	3.5	1.4	20 62 20 73	4.1	1.7	& . & .	0 6. 2 4.	18	8.9	3 21	62	64
Peo	D80	0 0	2.3	100	100	0	0.1	0.2	3.8	1.0	1.4	1.1	19	979	, 00 00	16	310	307	48	30	2.6	41	0.0	9.0	3.0	5.7	11	4.6	2. 6 2. 4	3.1	2.0	7.4	5.0	15	13	<u>~</u> =	47	33
FOO	OB:T	9.0	9.4	001		2.4	t	0.7	4.4	8. 8.	t	7.0	16	6.] - 5	31	289		91	-	FI.	32	4.5		3.9	30	}	24	2.1	:	8.7	,	4.0	12		19	28	
F100	D100	18	10	II 8	100	75	75	219 219	6.4	3.1	5.0	9.8	828	98	19	32	283	281	92	76	* 8 4	45	14	15	5.2	31	54	25	43 2.4	3.8	3.3	00 c	0.0 7.3	17	19	2 %	: 88	63
F110	DI I	34	13	001		143		417	34	5.8	3	*	152	12	1	- 19	300		179	7	.	125	22		30	45	ì	36	7.7		12	9	01	45		92	281	
F190	D120	33	94 11	100	100	139	139	406 405	38	14 5.8	3.5	2 2	188	787 9 3	97	63	43 298	297	188	145	97 20	137	55	23	æ ç	2 4 7 4	77	37	70 10	18	15	833	8.0	47	21	107 58	317	171
F130	200	34	9.7	001		142	•	413	39	5.9	ž	3	211	20		99	297		193	94	0	139	21		4 3	47	i	38	12		17	5	61	49		110	328	
916	D140	45	43 9.7	= 5	901	160	159	46 6 46 3	31	9.1 6.2	8.5	2 2	193	280 84	97	99	47 297	295	193	138	8 %	121 ::	21	55	38	3 5	5 6 8	41	8 9	19	55	20.5	5 5 7	84	28	166 9.1	494	569
E160	E100	43	9.5	100	3	152		443	56	5.7	ţ	7.	208	69	3	72	296		211	5	90	110	18		47	75	;	41	13) •	24		c T	39		144	426	
D100	D180	98 8	8.9 8.9	9 9	100	130	127	378 368	25	6.9 4.4	8.8	17	234	321 78	107	73	294	295	215	115	5 1	108	32 16	17	54	49	73	39	58 15	33	56	51	14 16	36	42	146 75	432	221
F900	0077	32	8.4	001		117	9	340	32	5.5	5	ST.	293	86	3	74	293		219	3	04	124	15		65	47	i.	38	18	ì	33	ţ	7.	45		193	571	
	D220	29	7.7	0	100			302	41	14 5.6	9.4	77		517 124	172	77				103	22	146	15	15	80	46	65	37	55 55	34	44	81	, 61 80 80	09	72	249 126		
F940		27	7.1	90	3	104	Š	301	51	5.8			455	152		80	291		235		76	166	14		94	45		36	27		26	Ġ		75		290	098	
Forn		25	6.8 6.8	8.1	100	86	06 Z	284 262	89	17 6.1	10	22	583	194	245	85	291	293	243	96	107 27	203	14	15	113	143	61	36	34	51	75	119	90 43	92	111	358 123	1060	364
F980	0077	25	6.5	001		96	0	8/7	55	6.4	ć	3	609	203		82	290		251	9	e e	174	14		116	45	;	36	40		83	ç	5	111	;	300	890	
F300	2002	23	6.2	100		06	0	700	92	6.7	, ;	10	765	255		84	291		255	7	114	224	14		135	44		36	47		105	ī	10	133		400	1190	
F350	0000	21	5.7	001		98	97.0	243	56	8.0	ć	i	631	210		93	295		275	6	Ro	68	15		26	45		36	84		93	5	e c	153		139	412	
F400		55	5.7	100	7	06	600	203	10	8.7	G	77	446	149		83	299		243	9	0	41	16		65	45		36	57		63	ī	10	132	,	26	165	
MODEL	TOTO IN	[O III] 4363	[Fe III] 4658	$H\beta$ 4861		O III] 4959	F002 [III O]	/006 [III O]	[N I] 5200 ³	[N II] 5755	U. 1 5076	0.000 1.011	O I] 6300	O I) 6363		[N II] 6548	$H\alpha$ 6563		[N II] 6583	9129 [II S]	0170 [11 6]	[S II] 6731	Ar III] 7136		[Ca II] 7307	[O II] 7320	-	[O II] 7331	[Fe II] 8617		[C I] 8727	0900 [III 3]	6006 [III C]	[S III] 9532	î	[C I] 9823	[C I] 9850	

330

	B100	9	9	0.9		1.1		56		47		35		83		158		39		1550	
	A100	=	:	10		2.3		56		55		53		41		114		116		1600	
	E20 D20	36	45	33	41	50	22	0.5	0.5	23	3.1	0	0	2080	2680	10300	12700	2770	3870	12450	12450
	E30 D30		1.5																		
	E40 D40		01																		
	E60 D60		7.5																		
	E80 D80	75.	6.5	2.3	5.9	0.9	1.9	3.8	3.8	27	52	2.5	1.0	29	45	43	8.2	22	10	2170	2170
	E90	α 92) ;	6.2		1.5		53		27		12		63		88		35		1720	
	E100 D100	ος •	19	8.0	18	1.7	4.0	56	56	47	53	31	50	06	92	153	22	99	20	1580	1620
	E110	23	ì	21		5.8		30		166		09		301		376		182		1350	
p	E120 D120	27	28	24	54	7.6	18	31	32	183	190	61	40	351	317	372	149	191	131	1340	1400
TABLE 1—Continued	E130	30		27		8.8		31		190		61		375		337		188		1340	
BLE 1—	E140 D140	29	09	56	22	8.3 8.3	19	87	87	198	193	28	36	340	244	37	6.9	216	94	1340	1410
TA	E160	35		32		6.6		21		167		20		339		31		182		1320	
	E180 D180	40	89	36	63	12	21	19	21	173	175	53	32	363	506	58	4.9	223	247	1320	1420
	E200	46		42		14		24		228		77		425		30		283		1320	
	E220 D220	54	91	49	84	18	33	53	30	281	291	111	7.5	206	325	32	6.4	308	330	1330	1460
	E240	63		22		22		35		301		149		266		34		241		1340	
	E260 D260	16	121	69	112	53	25	36	36	314	278	195	113	649	419	41	9.0	219	23	1370	1590
	E280	83		75		35		37		287		214		691		42		148		1420	
	E300	97		68		42		43		345		274		815		48		211		1480	
	E350	91		83		45		33		195		237		519		27		45		1770	
	E400	89		63		32		32		129		169		292		11		18		1960	
Θ	MODEL	[S II] 10289	+10339	[S II] 10323	+10373	[NI] 10402°		He I 10830		$[Ne II] 12.8\mu$		[Ne III] 15.6μ		$[\text{Fe II}] 26.0 \mu$	۰.	$[Si\ II]\ 35.3\mu$		O I] 63.2μ		2 photon	

TABLE 2
PREDICTED ENERGY FLUX FROM PLANAR SHOCKS

MODEL	I 180	I 160	I 140	I 120	I 100	I 80	I 60	I 40	I 20
V _s (km/s)	180	160	140	120	100	80	60	40	20
$N(cm^{-3})$	100	100	100	100	100	100	100	100	100
d_{c3} (AU)	154	92	63	46	36	32	38	161	16
d _{c4} (AU)	142	80	54	35	26	24	26	31	-
$\tau_{\rm c3}~({ m yr})$	354	337	202	202	177	149	119	188	397
$\tau_{\rm c4} ({\rm yr})$	27	18	16	13	12	14	17	22	-
$F_{H\beta}^{-1}$	6.98	5.72	4.75	3.16	2.18	1.54	1.07	0.66	0.31
He II 304	929	803	710	646	512	412	394	395	364
C III 977	777	785	860	2420	3840	2600	497	1.1	0
N III 991	133	148	242	312	305	214	29	0.1	0
O VI 1035	5350	1980	239	68	0	0	0	0	0
Ne V 1141	108	69	31 206	6.0 269	$\begin{array}{c} 0.2 \\ 279 \end{array}$	0 290	0 159	0 3.5	0 0
S III 1198 Si III 1206	155 174	159 184	194	209	390	996	543	65	0.1
Ly α 1216	3830	3830	3780	3850	3940	4080	4190	3980	3270
O V] 1218	743	711	396	108	6.0	0	0	0	0
NV 1240	570	697	590	149	7.0	ő	ŏ	ŏ	Ö
C II 1336	214	224	229	367	593	691	759	196	0.7
Si IV 1397	63	66	76	165	321	230	11	0.2	0
O IV] 1402	427	512	500	411	181	13	0	0	0
N IV] 1486	59	76	139	141	72	9.3	0	0	0
C IV 1549	1080	1290	1820	3590	2210	180	0.6	0	0
[Ne V] 1574	8.8	5.7	2.7	0.6	0	0	0	0	0
[Ne IV] 1601	40	37	36	31	14	0.6	0	0	0
He II 1640	43	40	39	45	51	53	54	54	51
O III] 1663	236	281	290	327	334	262	33	0.8	0
N III] 1750	57	62	93	118	119	$\frac{100}{721}$	24 537	0.1 143	$0 \\ 2.1$
Si III] 1891	168 319	$\frac{178}{325}$	186 334	210 707	307 1170	1000	370	3.5	0
C III] 1908 N II] 2141	15	323 16	19	24	26	30	40	17	0.3
C II 2326	220	220	214	296	432	494	560	310	17
Si II] 2340	9.7	8.8	8.5	8.2	9.5	16	18	13	1.7
[Ne IV] 2423	194	185	182	169	84	3.9	0	0	0
O II 2470	65	68	65	69	68	71	88	40	2.9
Mg IÍ 2799	234	187	127	100	100	127	165	517	79
Mg I 2852	49	41	31	16	4.2	5.1	6.1	9.3	12
[O II] 3726	242	286	314	379	438	552	791	527	114
[O II] 3729	108	135	159	209	268	392	690	504	123
[Ne III] 3869	69	71	72	85	99	98	25	5	0.1
Ca II 3945	196	160	110	58	23	28	32	33	51
[Ne III] 3968	22	22	23 76	27	31	31	7.9	1.6 30	0 8.3
[S II] 4072 Ca I 4227	111 18	94 16	76 14	58 11	40 4.6	$\begin{array}{c} 38 \\ 2.6 \end{array}$	$\begin{matrix} 36 \\ 2.8 \end{matrix}$	2.6	3.6
O III 4363	35	42	43	49	51	42	6.3	0.2	0
Fe III] 4658	8.9	9.2	9.0	11	16	20	23	20	3.9
$H\beta$ 4861	100	100	100	100	100	100	100	100	100
[O III] 4959	127	147	153	178	188	167	32	1.8	0.1
O III] 5007	370	428	445	518	546	487	92	5.1	0.4
[N I] 5200	24	21	19	17	9.6	9.0	14	23	23
[N II] 5755	5.4	5.3	5.5	6.3	6.7	7.4	9.5	5.6	0.4
He I 5876	14	13	12	13	14	15	15	16	17
[O I] 6300	226	184	142	98	43	29	32	31	18
[O I] 6363	75 	61	47	33	14	9.6	11	10	6.0
[N II] 6548	71	69	65	59	54	59	69	58	14
$H\alpha$ 6563	294	296	296	299	305	309	311	311	304
[N II] 6583 [S II] 6716	211	203	190	175	160	173	204	172	40
[S II] 6716	53 106	50 99	48 93	48 87	39 67	45 70	65 88	89 100	49 45
Ar III] 7136	16	17	18	22	25	27	26	1.6	0.1
[Ca II] 7307	53	44	34	21	7.4	7.1	7.8	7.8	12
[O II] 7320	48	50	48	51	50	53	65	30	2.2
O II] 7331	39	40	38	41	41	42	53	24	1.8
[Fe II] 8617	15	12	8.9	5.4	3.3	4.1	4.7	4.7	2.7
[C I] 8727	25	21	14	8.4	3.9	4.3	5.2	5.0	3.3
[S III] 9069	13	12	10	12	12	12	11	3.3	0.5
[S III] 9532	34	30	27	30	30	31	28	8.7	1.4
[C I] 9823	144	122	79	61	33	30	42	45	36
[C I] 9850	426	361	235	180	98	88	123	135	108

_	-		•	a :	
1 4	۱н	L.H.	7-	-Continued	

MODEL	I 180	I 160	I 140	I 120	I 100	I 80	I 60	I 40	I 20
[S II] 10289 +10339	39	33	27	20	14	13	13	11	2.9
[S II] 10323 +10373	35	30	24	19	13	12	11	9.7	2.7
[N I] 10402	11	8.9	6.4	4.3	2.5	2.7	2.8	2.6	1.1
He I 10830	18	16	15	16	16	17	16	17	18
[Ne II] 12.8μ	166	132	100	90	75	64	64	50	27
Ne III 15.6μ	53	45	42	48	55	56	18	6.9	0.7
Fe II] 26.0μ	351	313	263	205	140	128	131	141	135
Si II] 35.3μ	28	28	227	276	282	245	171	238	346
O I] 63.2μ	214	193	126	133	117	86	63	63	55
2 photon	1320	1320	1300	1340	1390	1470	1530	1420	1100

Note.—The incident material is fully ionized (H⁺, He⁺⁺). All variables are defined as for Table 1

velocities (1000 km s⁻¹; Binette, Dopita, and Touhy 1985). We include predictions for a large number of bright emission lines in the extreme UV and far-IR which may become observable in the near future with space-borne instruments.

c) Cooling Distances

Our bow shock models assume that the cooling distance is small compared with the size of the emitting bow shock (typically 1500 AU). We can use the plane-parallel models to determine the cooling distance as a function of shock velocity and preshock density (Table 1). The equilibrium preionization results are fitted well by a power law when $V_s > 60 \text{ km s}^{-1}$. We find

$$d_{c3} = 12 \left(\frac{V_s}{100 \text{ km s}^{-1}} \right)^{4.67} \left(\frac{100 \text{ cm}^{-3}}{\eta} \right) \text{AU} ,$$
 (8)

where d_{c3} is the distance between the planar shock and the point where $T=10^3$ K, η is the preshock number density of neutrals plus ions, and V_s is the shock velocity. For $\eta=300$ cm⁻³, the cooling distance exceeds 1500 AU for $V_s>350$ km s⁻¹. Hence, the assumption of small cooling distances is valid unless V_s is large and η small. Even for large V_s the assumption of small cooling distances will be valid over most of the bow shock since $V_{\perp}\approx V_s$ only near the apex of the bow.

IV. BOW SHOCK RESULTS

a) Estimating the Shock Velocity and Orientation Angle of an Arbitrary Radiating Bow Shock from a Single Observation

The shock velocity V_s and orientation angle ϕ are two of the most important physical parameters in any bow shock model. For a stationary cloudlet or for a bullet colliding with a stationary medium, the shock velocity represents the speed of the outflowing material. Knowledge of the shock velocity enables one to estimate the stellar mass outflow rate as well as predict emission-line fluxes and ratios from a bow shock. Together, the orientation angle and shock velocity determine the flow's age and enable one to predict line profiles and proper motions for the HH object. In what follows we show that for a wide range of bow shocks both V_s and ϕ can be estimated from a single high-resolution spectrum.

Assume that the cooling distance is small compared with the size of the bow shock (see § III), so that the emission arises from a thin surface of revolution about the z-axis. Let us calculate

the full width of an emission line (FWZI) as seen by an observer at angle ϕ . For a given emitting ring (Fig. 1), the radial velocity reaches a maximum at the top of the ring, and a minimum at the bottom. Hence, to find the extreme radial velocities of the bow shock emission it is sufficient to search along the curve defined by the intersection of the bow and the xz plane.

Since the perpendicular component of the incident velocity diminishes by a factor of ~ 40 by the time the gas radiates (see § IIa), this velocity is negligible compared with V_s , and we take it to be zero, so that $V_2 = V_{\parallel}$, and $\theta = (\pi/2) - \xi$. The radial velocity of the emitting gas in the xz plane is then (cf. eq. [1])

$$V_r = V_s \sin \zeta (\sin \xi \cos \phi \pm \cos \xi \sin \phi), \qquad (9)$$

where the + and - signs refer to the top and bottom halves of the curve, respectively. Next set $\partial V_r/\partial \xi = 0$ to obtain the extreme maximum radial velocity along the top half of the bow. This occurs when $\xi = (\pi/2) - (\phi/2)$, and substituting this value into equation (9) we find the maximum radial velocity $MX = (V_s/2)[1 + \cos \phi]$. The maximum radial velocity will be reached for all viewing angles ϕ provided ξ ranges from 0 to $\pi/2$, i.e., the line profile of interest radiates over the entire bow shock. The highest excitation lines (e.g., C IV) violate this condition since they exist only near the apex where V_\perp is large. A similar calculation for the minimum radial velocity MN can be performed on the bottom half of the bow, and this extreme radial velocity occurs when $\xi = \phi/2$, so that $MN = -(V_s/2)[1 - \cos \phi]$.

Since the formulae for MX and MN were derived in the frame of reference of the bow shock, the observed maximum and minimum radial velocities will shift by the radial velocity γ of the bow shock with respect to the exciting star. For a stationary cloudlet $\gamma = 0$, whereas for a bullet plowing into a stationary medium $\gamma = -V_s \cos \phi$. The observed maximum and minimum radial velocities from a bow shock become

$$MX = \frac{V_s}{2} (1 + \cos \phi) + \gamma$$

and

$$MN = -\frac{V_s}{2}(1 - \cos\phi) + \gamma. \tag{10}$$

The full width of an emission line is just

$$FWZI = MX - MN = V_s. (11)$$

¹ H β flux in units of 10^{-4} ergs cm⁻² s⁻¹ out of the front of the shock.

Equations (10) and (11) are remarkably simple, and the results are independent of the most uncertain aspects of bow shock modeling, such as preshock density, bow shock shape, the ionization state and temperature of the incident gas, the elemental abundances, reddening, etc. Hence, the shock velocity can be estimated from a single high-resolution line profile of any lowexcitation line (e.g., $H\alpha$). If one invokes either the bullet or cloudlet models, and the velocity of the exciting source with respect to the observer is known (for example from CS, NH₃ or CO line observations), then the maximum or minimum radial velocity observed gives the orientation angle of the outflow. However, such estimates of ϕ are not always precise, since MXand MN determine the cosine of ϕ (eq. [10]), so that ϕ can be measured accurately when $\phi \approx 90^{\circ}$ (flows approximately in the plane of the sky), but all oblique flows (0° < ϕ < 45°, $135^{\circ} < \phi < 180^{\circ}$) have values of MX or MN near zero radial

Using equation (10), the centroid radial velocity (average between MX and MN) is

$$V_c = \frac{MX + MN}{2} = \frac{V_s}{2}\cos\phi + \gamma , \qquad (12)$$

so that this velocity is *not* the radial velocity γ of the HH object, as has been widely assumed in the past. V_c and γ differ since the radiating gas moves with respect to the obstacle causing the bow shock. The relations (10) and (11) are extremely useful diagnostics and provide a starting point for any line profile analysis. Including instrumental and thermal broadening, and nonzero V_{\perp} in the numerical models discussed in the next section alters the analytical results only slightly.

b) Theoretical Line Profiles

The line profiles discussed in this section were generated using the bow shock model in § II. Figure 3 presents a series of theoretical line profiles. Figures 3a-3g display the effect of varying orientation angles while keeping the other variables fixed. The Ha line profile is symmetrical about zero velocity when the HH object moves in the plane of the sky $\phi \approx 90^{\circ}$; Fig. (3a), but as ϕ decreases the profile becomes increasingly asymmetric, with two distinct peaks appearing for viewing angles less than 45°. When $\phi = 0$ the two peaks arise from different areas on the bow shock; the high radial velocity component arises from near the bow apex, and the low radial velocity from the wings (for the bullet model). When $\phi = 45^{\circ}$ the distinction between peaks is no longer as clear, since the expansion of postshock material distributes emission over a range of radial velocities (Figs. 1 and 2). The line width at $\phi = 90^{\circ}$ arises solely from this expansion.

Axial symmetry of the bow shock models not only dictates the symmetry about zero radial velocity for all lines when $\phi = 0$ but also ensures a relationship between profiles observed at angle ϕ and those observed at $180 - \phi$. The radial velocities of each expanding ring of material simply change sign when viewed at $180 - \phi$ (Fig. 1). Hence, the line profiles from $180 - \phi$ are reflections about zero of the profiles viewed at angle ϕ (Figs. 3g and 3h).

As the previous section predicts, the FWZI of the $H\alpha$ emission line remains constant as ϕ varies. This width exceeds the shock velocity slightly for each spectrum in Figure 3. The maximum radial velocity is somewhat larger and the minimum radial velocity somewhat more negative in the model than the analytic predictions (eqs. [10] and [11]) due to the instrumen-

tal and thermal broadening present in the models. The bow shock models show that relations (10) and (11) can still be used to estimate V_s and ϕ provided the values of MX and MN are measured as follows. Let the FWHM of the smoothing Gaussian be SM. This width contains both instrumental and thermal broadening terms. Let MX0.1 and MN0.1 represent the observed maximum and minimum radial velocities at 0.1 of the peak intensity. Set

$$MX = MX0.1 - SM/2$$

and

$$MN = MN0.1 + SM/2$$
. (13)

Equations (10), (11), and (13) are used in § V as the starting points for the analysis of individual regions containing HH objects. Although estimates of V_s obtained in this manner are quite accurate, estimates of ϕ can be uncertain when the angle is small. From equation (10), the difference between MX and MN for $\phi = 0^{\circ}$ and $\phi = 30^{\circ}$ is only 0.067 V_s , so that any small shift of the line profile (which might be caused by a bullet plowing into a moving, instead of fixed, medium, for example) can influence the estimated ϕ markedly.

Figures 3i-3p present 100 km s⁻¹ and 400 km s⁻¹ line profiles identical in every other respect with the 200 km s⁻¹ models in Figures 3a-3h. As with the previous models, the line widths slightly exceed the shock velocity for all orientation angles, and equations (10), (11), and (13) successfully predict V_s and ϕ for each profile. When plotted logarithmically, the H α flux increases more rapidly at lower shock velocities (Table 1). This behavior causes the apex emission to become relatively more important at lower bow shock velocities. The 100 km s⁻¹ profiles exhibit only a single peak at oblique ϕ since the high radial velocity apex emission has increased and merged with the low radial velocity emission. In general, double-peak H α profiles occur only when $V_s > 150$ km s⁻¹ km s⁻¹ and $\phi < 45^\circ$.

Figures 3q and 3r illustrate the effect of bow shape on the line profile. The high radial velocity emission is more pronounced for the DA shape (Fig. 3q) than for shape A (Fig. 3e). The Raga shape (Fig. 3r) has the weakest high radial velocity component. These trends follow from the remarks regarding shape in § IIc.

For a stationary cloudlet, the centroid of the radiating gas will be blueshifted when $\phi > 90^{\circ}$ (eq. [12]), so the orientation angle of the cloudlet in Figure 3s is taken to be 150° to facilitate comparison with the bullet model in Figure 3e ($\phi = 30^{\circ}$). The two profiles have identical velocity centroids and widths (eqs. [10] and [12]), but the cloudlet profile is the mirror image of the bullet profile. In general, line profiles from a stationary cloudlet with orientation angle ϕ will mirror those produced by a bullet with orientation angle $180 - \phi$. This follows from the axial symmetry of the problem. From Figure 2, the emission from a single emitting ring of material from a bullet with orientation angle $180 - \phi$ is symmetrical, and it is centered at radial velocity $W = -V_2 \cos \theta \cos \phi$. If the bullet is viewed at an angle ϕ , the emission shifts to $V_2 \cos \theta \cos \phi$, and coverting to cloudlet geometry we obtain $U = V_2 \cos \theta \cos \phi + V_s \cos \phi$ as the center. Hence, the average of U and W is simply V_c (cf. eq. [12]), the centroid velocity, so that the emission from a single emitting ring of material is reflected about V_c . Since the line profile consists of the co-addition of many such rings, it too is reflected about V_c when one changes from bullet to cloudlet geometry.

Fig. 3.—Theoretical line profiles from the bow shock models. Radial velocities in km s⁻¹ with respect to the exciting source are plotted vs. relative fluxes (normalized to unity at the peak). (a) Shows H α from a 200 km s⁻¹ shock with equilibrium preionization, bullet geometry, orientation angle (cf. Fig. 1) ϕ = 90°, bow shock shape A, slit wider than the HH object, T = 10⁴ K, preshock density 300 cm⁻³, and instrumental broadening 12 km s⁻¹ FWHM. The remaining profiles have the following variations: (b) ϕ = 75°. (c) ϕ = 60°. (d) ϕ = 45°. (e) ϕ = 30°. (f) ϕ = 15°. (g) ϕ = 0°. (h) ϕ = 180°. (i) V_s = 100 km s⁻¹, ϕ = 90°. (j) V_s = 100 km s⁻¹, ϕ = 60°. (l) V_s = 100 km s⁻¹, ϕ = 30°. (l) V_s = 100 km s⁻¹, ϕ = 90°. (m) V_s = 400 km s⁻¹, ϕ = 60°. (o) V_s = 400 km s⁻¹, ϕ = 30°. (p) V_s = 400 km s⁻¹, ϕ = 30°. (d) ϕ = 30°, DA shape. (r) ϕ = 30°, Raga shape. (s) ϕ = 150°, cloudlet geometry. (t) ϕ = 30°, slit/HH = 0.4. (u) ϕ = 30°, fully preionized. (v) [O III] λ 5007, ϕ = 30°, T = 3 × 10⁴ K.

If the slit is narrower than the HH object the predicted line profiles alter radically. The ratio of slit/HH size was taken to be 0.4 for the profile in Figure 3t. A narrow slit removes a large fraction of the emission from the wings of the bow (radial velocities between -40 and 10 km s^{-1} . The fully preionized model in Figure 3u emphasizes the low velocity shocks more (see also Tables 1 and 2). Finally, Figure 3v shows that the high-excitation line $[O \text{ III}] \lambda 5007$ can differ significantly from H α , since $[O \text{ III}] \lambda 5007$ forms only in regions where V_{\perp} is large.

c) Theoretical Line Ratios

Table 3 lists line ratios for various bow shocks. Results show a mixture of high-excitation and low-excitation lines, as

expected from an object containing a variety of shock velocities. The high-excitation line [O III] $\lambda 5007$ only appears when $V_s > 100$ km s⁻¹ (Table 1). Table 3 shows that the bow shape also influences this line, however; more blunt shapes (like DA) have stronger O III emission. The strength of the [O II] $\lambda 3726/3729$ lines would be a reliable measure of the preshock number density (the lines are sensitive to collisional deexcitation) were it not for the effect of the preionization state. The [O II] lines are much stronger when the incident gas is fully preionized. As discussed in § IIIb, the low-excitation optical forbidden lines ([O I], [S II], [N II]) generally increase in strength relative to H β as shock velocity increases until collisional deexcitation becomes important.

336

V. APPLICATION OF THE BOW SHOCK MODEL TO REGIONS CONTAINING HH OBJECTS

a) The HH 1/2 Region

The group of HH objects comprising HH 1 and 2 in some ways constitute an ideal laboratory for testing bow shock models of HH objects. There are a dozen or so HH objects in this region, all intrinsically bright, making high-resolution optical observations and UV flux measurements feasible. In fact, HH 2H is the only object for which reliable reddening corrected fluxes exist in the ultraviolet, and hence is the only object that can be compared directly against the predicted line ratios from the bowshock models. Since HH 1 and 2 lie on opposite sides of the exciting source (Pravdo et al. 1985; Strom

et al. 1985) and the HH objects show large proper motions away from the exciting source (Herbig and Jones 1981), the flow must be oriented nearly in the plane of the sky. The source velocity is also known (+9 km s⁻¹ $V_{\rm lsr}$; Torrelles *et al.* 1985*a*). This information is needed for the line profile analysis since radial velocities must be referenced to the source velocity.

Some facets of HH 1 and 2 complicate study of this outflow, however. Herbig and Jones (1981) have shown the morphology of HH 1 to vary substantially on time scales of decades. Since the emission from HH 1 is clumpy, a single aperture probably includes emission from more than one clump, each of which could represent a radiating bow shock. The situation for HH 2 is less severe, since the HH objects are more distinct for that group. Extended background emission also complicates

analysis of HH 1 and 2 (Böhm and Solf 1985; Strom et al. 1985). Such emission alters the observed line profiles, and also affects estimates of V_s and ϕ (§ IVa) since background emission will make any extended line wings appear less significant.

Several high-resolution studies of HH 1 and 2 exist in the literature (Schwartz 1981; Hartmann and Raymond 1984; Böhm and Solf 1985). For each HH object the observed profiles are centered near zero radial velocity and are roughly symmetrical, precisely the behavior predicted by the bow shock models for $\phi \sim 90^{\circ}$. Figure 4 presents a number of line profiles of HH 1 and 2 taken with the facility echelle on the MMT. This instrument has a resolution of 12 km s⁻¹ as determined from the FWHM of the calibration ThAr lines, and an effective aperture of 1".5 × 2".5 on the sky. Positions for the objects can be found in Herbig and Jones (1981).

We begin the analysis by extracting MX and MN from each observed profile and computing V_s and ϕ as prescribed in § IVb. Results appear in Table 4. In this table we also include spectra from Hartmann and Raymond (1984) for $H\alpha$ and [N II] as well as some unpublished [O I] line profiles. The angle ϕ was measured assuming the bullet model with a stationary ambient medium ($\gamma = -V_s \cos \phi$ in eq. [10]).

The velocity widths for different lines within a given knot are quite similar, in agreement with the bow shock prediction. However, the strict equality of line widths predicted by equation (11) is not precisely obeyed. A clear trend is apparent, in the sense that the $[O \ II]$ line widths are always larger than $H\alpha$ and $[N \ II]$. The $[S \ II]$ and $[O \ I]$ widths are also generally slightly smaller than $H\alpha$, although the differences are small and may be affected by the lower signal-to-noise in spectra of these

lines and possible contamination from narrow background emission components (Fig. 4a).

Differences in emission widths are direct indications of the failure of the assumption that the emission region can be approximated by a combination of individual planar shocks. Thermally unstable cooling of the highest velocity shocks might create substantial turbulent velocities, decaying rapidly enough to affect [O III] proportionately more than Ha. It is more likely that longer cooling times near the bow shock's apex make it possible for some of the velocity of this gas to be deflected normal to the bow shock axis while the gas is still hot (and emitting [O III]).

The two knots that have the largest discrepancy between [O III] and H\alpha widths, HH 1F and HH 2A', may reflect additional complexities. HH 1 is composed of several different knots quite close together spatially (Herbig and Jones 1981), so that a single aperture might include emission from portions of several bow shocks. The line profile for HH 2A' is strongly asymmetric (Fig. 4; also Hartmann and Raymond 1984), and Herbig and Jones (1981) suggested that this knot has appeared relatively recently, so perhaps time-dependent effects as well as lack of symmetry may have something to do with departures from the simple bow shock model. Choe, Böhm, and Solf (1985) claimed HH 1 was a single bow shock. However, in this case the observing slits would easily resolve the object, and the line profiles would be strongly double-peaked. The present data, as well as the line profiles presented by Böhm and Solf (1985) and Hartmann and Raymond (1984) for other positions in HH 1 (1A, 1C, 1D), provide no evidence for double peaks. Choe, Böhm, and Solf (1985) were forced to adopt very large

turbulent velocities to avoid this problem. We feel it is much simpler to assume that the bow shocks present must be no more than 3"-4" in size.

Orientation angles predicted from the various lines remain remarkably constant within each knot. MX and MN are sensitive to small changes in ϕ for $\phi \sim 90^{\circ}$ (§ IVb), so the orientation angles are easy to estimate accurately for HH 1 and 2. Centroid radial velocities for nine of the 12 knots observed in HH 1 and 2 are negative, with HH 2M, 2E, and 2C the only exceptions (Table 4). The 45° dispersion of orientation angles within HH 2 is peculiar, but it is undeniably real. Since the objects only subtend $\sim 20^{\circ}$ as seen from the source, the flow's opening angle apparently increases with distance. The objects comprising HH 2 seem to outline a cone of opening angle $\sim 50^{\circ}$ (see Herbig and Jones 1981; or Strom et al. 1985), and perhaps the objects move within this cone. The wide opening angle can be taken to suggest either that a bullet has broken up, perhaps by the Rayleigh-Taylor instability shown in the plots of Rózyczka and Tenorio-Tagle (1985b), or that the flow resembles the focused wind predicted by Cantó and Rodríguez

Using $\phi = 75^{\circ}$ and $V_s = 160 \text{ km s}^{-1}$ (Table 4) we can generate theoretical line profiles for HH 2H. These are shown in Figures 4e and 4f for H α and [O III] λ 5007 along with observed profiles. We used a 160 km s⁻¹ bow shock with equilibrium preionization, shape A, preshock density 500 cm⁻³, bullet geometry, $\phi = 75^{\circ}$, slit wider than the HH object, 12 km s⁻¹ instrumental broadening, $T = 10^4$ K for H α , and $T = 3 \times 10^4$ K for [O III] λ 5007. The overall agreement is good, although the model profiles are somewhat too boxy in shape. These

 ${\bf TABLE} \ 3$ ${\bf Predicted \ Line \ Ratios \ from \ the \ Bow \ Shock \ Model}$

5 6 7 8 9 10 11 12 13 Model ² Obs. 200 200 200 30 50 100 150 300 400 40 A <														
A A	1 2 3 4	3	4	ъ	9	7	∞	6	10	11	12	13	Model ²	Obs^2
200 30 50 100 150 200 400 160 160 100 300	RAGA A		4	A	A	V	A	A	A	A	A	A	A	
Eq Eq<	200 200 200 100		100	200	200	30	50	100	150	200	300	400	160	
100 300 <td>Eq Ion</td> <td></td> <td>lon</td> <td>$\mathbf{E}_{\mathbf{q}}$</td> <td>Eq</td> <td>젚</td> <td>Eq</td> <td>Eq</td> <td>젎</td> <td>Eq</td> <td>Ed</td> <td>Eq</td> <td>Eq</td> <td></td>	Eq Ion		lon	$\mathbf{E}_{\mathbf{q}}$	Eq	젚	Eq	Eq	젎	Eq	Ed	Eq	Eq	
174 0.24 2.2 4.4 82 191 340 85 1741 0 1.7 2270 1732 1457 1446 2204 615 0 0 1.7 2270 1732 1457 506 672 615 0 0 1.7 2270 1732 1460 520 672 615 0 0 0 0 1.7 506 672 672 1417 0 0 0 0 0 4 7.3 520 672 1417 0 0 0 0 0 4 7.3 470 672 672 1417 0 0 0 0 0 4 4 4 7.4 7.4 8 8 1417 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9	300 300		300	1000	100	300	300	300	300	300	300	300	200	
1741 0 157 2270 1732 1457 1446 2204 615 0 1 217 711 616 547 506 672 84 0 0 17 38 1410 773 568 672 34 0 0 0 4 34 53 55 8 34 0 0 0 4 34 53 55 8 122 0 0 0 4 34 53 55 8 5689 10 0 0 4 34 53 58 8 112 0 0 0 4 34 53 58 96 5689 1589 116 127 146 523 8 9 5689 158 16 122 113 114 12 12 12 12 12 12 12 <td< td=""><td>77 41</td><td></td><td>10</td><td>272</td><td>27</td><td>0.24</td><td>2.2</td><td>22</td><td>44</td><td>83</td><td>191</td><td>340</td><td>82</td><td>309</td></td<>	77 41		10	272	27	0.24	2.2	22	44	83	191	340	82	309
615 0 1 217 711 616 547 506 672 1417 0 0 17 80 84 73 506 672 1417 0 0 17 80 84 73 506 672 34 0 0 0 4 34 53 563 88 122 0 0 0 4 34 53 563 88 1689 10 0 0 0 4 34 53 58 88 98 88 98 88 98 88 98 98 88 98 <td></td> <td></td> <td>403</td> <td>1737</td> <td>1741</td> <td>0</td> <td>0</td> <td>157</td> <td>2270</td> <td>1732</td> <td>1457</td> <td>1446</td> <td>2204</td> <td></td>			403	1737	1741	0	0	157	2270	1732	1457	1446	2204	
84 0 17 80 84 79 74 86 147 0 0 1 3 140 573 5638 98 34 0 0 0 4 34 53 5638 98 34 0 0 0 4 34 53 53 88 366 0 1 32 92 96 91 86 94 5182 0 0 6 66 511 113 150 96 96 5182 153 516 513 523 6022 902	581 753		940	630	615	0	-	217	711	616	547	206	672	
1417 0 0 38 1410 2773 2658 98 34 0 0 0 4 34 53 53 88 34 0 0 9 4 34 53 58 88 366 0 1 32 16 12 113 104 120 1122 0 0 95 116 122 131 104 120 214 0 0 0 0 213 227 221 902 211 0 0 0 0 0 203 224 122 120 120 170 0 0 0 0 0 203 173 170 182<	76 92		74	98	84	0	0	17	80	84	42	74	98	
34 0 0 4 34 55 55 8 156 0 1 32 96 91 86 94 126 0 9 16 12 113 104 120 5689 15533 9632 6867 6098 5741 5493 5523 6022 214 0 0 0 46 213 221 90 214 0 0 0 46 213 523 6022 214 0 0 0 46 213 221 90 117 45 20 106 186 171 139 182 182 170 0 0 0 0 0 44 42 51 51 170 0 0 0 0 0 0 12 14 4 4 11 11 11 11 11 <t< td=""><td>918 1105</td><td></td><td>0</td><td>1415</td><td>1417</td><td>0</td><td>0</td><td>0</td><td>38</td><td>1410</td><td>2773</td><td>2638</td><td>86</td><td></td></t<>	918 1105		0	1415	1417	0	0	0	38	1410	2773	2638	86	
96 0 1 32 92 96 91 86 94 122 0 0 0 45 116 120 120 5689 15533 9632 6867 6086 5116 122 123 6022 214 0 0 0 46 213 227 221 90 214 0 0 0 6 20 234 523 6022 211 0 0 0 6 6 20 234 122 90 112 10 0 0 0 6 4 12 122 120 182 183 183 183 183 183 183 183 183 183 <td>23 27</td> <td></td> <td>0</td> <td>34</td> <td>34</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>34</td> <td>53</td> <td>53</td> <td>∞</td> <td></td>	23 27		0	34	34	0	0	0	4	34	53	53	∞	
122 0 95 116 122 113 104 120 588 1553 9632 6867 6098 5741 5523 6022 214 0 0 60 60 57 227 221 902 211 0 0 0 62 209 234 224 122 211 0 0 0 62 209 234 224 122 172 45 20 106 186 171 151 139 182 170 0 0 0 1 28 33 33 32 31 170 0 0 0 0 0 4 4 4 11 180 0 0 0 0 0 0 0 11 11 11 11 11 11 11 11 11 11 11 11 11	87 108		101	86	96	0	-	32	36	96	91	98	94	
5689 15533 9632 6887 6098 5741 5493 5523 6022 214 0 0 0 46 213 227 221 90 211 0 0 0 62 209 234 122 172 45 20 106 186 171 151 139 182 50 0 0 0 30 52 50 46 42 51 50 0 0 0 9 173 170 124 50 0 0 0 9 169 173 170 124 50 0 0 0 0 3 4 4 11 15 0 0 0 0 0 3 4 4 11 18 0 0 0 0 0 3 4 4 11 18	114 208		586	127	122	0	0	95	116	122	113	104	120	
214 0 0 46 213 227 221 90 211 0 0 0 62 209 234 224 122 172 45 20 106 186 171 151 139 182 50 0 0 30 52 50 46 42 51 170 0 0 0 0 46 173 170 182 170 0 0 0 0 1 28 33 32 31 150 0 0 0 1 28 13 12 124 12 114 14 4 4 1 1 1 1 14 14 4 4 1	6020 3766		3790	5837	5689	15533	9632	2989	8609	5741	5493	5523	6022	
211 0 0 62 209 234 224 122 172 45 20 106 186 171 151 139 182 170 0 0 30 52 60 42 182 170 0 0 0 93 169 173 170 182 170 0 0 0 1 28 33 32 31 182 665 0 0 1 28 33 32 31 184 194 124 114 114 116 184 4 1 1 184 18 18 18 18 11 1 1 18 18 118	160 178		-	213	214	0	0	0	46	213	227	221	06	
172 45 20 106 186 171 151 139 182 50 0 0 30 52 50 46 42 51 170 0 0 0 0 15 711 662 599 563 99 665 0 0 15 711 662 599 563 699 18 0 0 15 711 662 599 563 699 18 0 0 0 16 19 3 4 4 1 1 18 0 0 0 0 18 16 19 11	161 177 1	-		509	211	0	0	0	62	508	234	224	122	
50 0 30 52 50 46 42 51 170 0 0 93 169 173 170 124 35 0 0 0 1 28 33 33 32 31 665 0 0 15 711 662 593 563 699 3 0 0 0 0 4 4 4 1 15 0 0 0 0 3 4 4 1 15 0 0 0 0 1 4 4 1 1 122 0 0 0 90 114 119 115 115 115 115 115 115 115 116 116 116 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118	164 264 336	336		172	172	45	20	106	186	171	151	139	182	46;108
170 0 0 93 169 173 170 124 35 0 0 1 28 33 32 31 65 0 0 15 711 662 599 563 699 15 0 0 0 3 4 4 1 15 0 0 0 8 16 19 11 15 0 0 0 1 36 43 54 37 122 0 0 0 21 97 122 119 115 109 118 0 0 0 114 119 115 118 118 119 118 118 119 118 118 119 118 118 118 118 118 118 124 44 44 418 44 418 118 118 118 118 118 118	47 59 76	92		20	20	0	0	30	52	20	46	42	51	49;168
35 0 0 1 28 33 32 31 665 0 0 15 711 662 599 563 699 31 15 0 0 0 0 3 4 4 1 15 0 0 0 0 1 36 16 19 11 122 0 0 0 21 36 36 37 37 122 0 0 0 21 36 15 11 249 1 3 112 278 252 231 105 118 11 2 2 7 11 </td <td>139 153 26</td> <td>56</td> <td></td> <td>170</td> <td>170</td> <td>0</td> <td>0</td> <td>0</td> <td>93</td> <td>169</td> <td>173</td> <td>170</td> <td>124</td> <td></td>	139 153 26	56		170	170	0	0	0	93	169	173	170	124	
665 0 15 711 662 599 563 699 3 3 0 0 0 0 3 4 4 1 15 0 0 0 0 8 16 19 19 11 15 0 0 0 1 36 36 43 54 37 122 0 0 0 21 97 112 115 115 116 115 116 116 117 116 118	29 34 11	11		30	35	0	0	1	58	33	33	32	31	
3 0 0 0 4 4 1 15 0 0 0 8 16 19 19 11 15 0 0 0 1 36 16 19 11 122 0 0 21 97 122 119 115 109 13 0 0 90 114 119 115 105 118 249 1 3 112 278 252 231 105 118 111 2 2 7 11	596 654 317	317		665	665	0	0	15	711	662	599	563	669	385;521
15 0 0 8 16 19 19 11 36 0 0 1 36 36 43 54 37 122 0 0 21 36 36 43 54 37 13 0 0 9 14 19 115 109 249 1 3 112 278 252 231 116 118 249 1 3 112 278 252 231 219 269 11 2 2 7 11	2 2 0	0		က	က	0	0	0	0	က	4	4	-	
36 0 1 36 36 43 54 37 1122 0 0 21 97 122 119 115 109 37 0 0 9 14 12 13 115 109 118 249 1 3 112 278 252 231 105 118 118 119 11 <	12 13 2	5		18	15	0	0	0	∞	16	19	19	11	
122 0 0 21 97 122 115 109 37 0 0 9 35 37 33 37 118 0 0 9 114 119 112 105 118 249 1 3 112 278 252 231 219 269 11 2 7 1 1 1 1 11 <td>32 50</td> <td></td> <td>53</td> <td>37</td> <td>36</td> <td>0</td> <td>0</td> <td>1</td> <td>36</td> <td>36</td> <td>43</td> <td>54</td> <td>37</td> <td>56;66</td>	32 50		53	37	36	0	0	1	36	36	43	54	37	56;66
37 0 9 35 37 35 37 118 0 0 90 114 119 112 118 249 1 1 11 11 11 11 11 17 242 2 7 11 11 11 12 17 242 84 118 181 192 204 185 17 242 84 118 183 17 9 185 77 0 0 0 41 74 82 80 49 156 636 165 90 135 184 351 506 46 164 23 38 10 5 19 25 59 23 164 23 31 169 164 142 12 14 164 23 27 80 93 85 71 63 23 <td>106 123</td> <td></td> <td>82</td> <td>123</td> <td>122</td> <td>0</td> <td>0</td> <td>21</td> <td>26</td> <td>122</td> <td>119</td> <td>115</td> <td>109</td> <td>74;255</td>	106 123		82	123	122	0	0	21	26	122	119	115	109	74;255
118 0 0 90 114 119 112 105 118 249 1 3 112 278 252 231 219 269 11 2 2 7 11 11 11 11 12 17 242 84 118 183 181 192 204 185 9 31 11 8 9 10 17 48 45 156 636 165 90 135 184 351 506 164 26 38 10 5 19 28 55 59 23 196 17 31 130 169 164 142 128 140 104 23 27 80 93 85 71 63 73 102 18 13 13 13 14 16 128 140 104 </td <td>33 39</td> <td></td> <td>33</td> <td>37</td> <td>37</td> <td>0</td> <td>0</td> <td>6</td> <td>35</td> <td>37</td> <td>32</td> <td>33</td> <td>37</td> <td>38;59</td>	33 39		33	37	37	0	0	6	35	37	32	33	37	38;59
249 1 3 112 278 252 231 219 269 11 2 2 7 11 11 11 12 17 242 84 118 183 181 192 204 185 9 31 11 8 9 10 17 9 156 636 165 90 135 184 351 506 44 26 38 10 5 19 28 55 59 23 196 17 31 130 169 164 142 128 140 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 104 25 54 116 255 59 23 35	111 200		257	126	118	0	0	06	114	119	112	105	118	-;76
11 2 2 7 11 11 11 11 12 177 242 84 118 183 181 192 204 185 30 7 31 11 8 9 10 13 17 9 77 0 0 0 41 74 82 80 49 156 03 185 38 44 47 48 45 166 165 90 135 184 351 506 164 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	237 285		348	264	249	1	က	112	278	252	231	219	569	163;392
177 242 84 118 183 181 192 204 185 30 9 31 11 8 9 10 13 17 9 77 0 0 0 41 74 82 80 49 39 1 2 23 38 44 47 48 45 156 636 165 90 135 184 55 59 23 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 255 254 94	11 16		18	12	11	63	63	7	11	11	11	11	12	
9 31 11 8 9 10 13 17 9 77 0 0 41 74 82 80 49 39 1 2 23 38 44 47 48 45 156 636 165 90 135 184 50 50 164 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	174 248		293	199	177	242	84	118	183	181	192	204	185	308;854
77 0 0 41 74 82 80 49 39 1 2 23 38 44 47 48 45 156 636 165 90 135 184 351 506 164 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	6		10	12	6	31	=	∞	6	10	13	17	6	
39 1 2 23 38 44 47 48 45 164 164 17 164 23 23 23 140 21 104 23 27 80 93 85 71 63 73 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	60 66 12	12		65	77	0	0	0	41	74	82	80	49	
156 636 165 90 135 184 351 506 164 26 38 10 5 19 28 55 59 23 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	40 47 43	43		62	39	1	5	23	38	44	47	48	45	
26 38 10 5 19 28 55 59 23 196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	167 216 215	215		282	156	636	165	06	135	184	351	206	164	
196 17 31 130 169 164 142 128 140 21 104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	24 20 9	6		35	56	38	10	2	19	58	55	29	23	
104 23 27 80 93 85 71 63 73 39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	159 358		424	28	196	17	31	130	169	164	142	128	140	211;222
39 0 0 13 33 39 46 56 35 102 186 51 27 74 116 225 254 94	85 280		361	22	104	23	27	80	93	85	7.1	63	73	
102 186 51 27 74 116 225 254 94	49 35 38 32		32	40	39	0	0	13	33	39	46	26	35	16;15
	08 66		37	166	102	186	51	27	74	116	225	254	94	16;48

Model		23	က	4	ro	9	7	×	6	10	11	12	13	Model ²	Obs^2
[Ne III] 3968	16	=======================================	12	10	13	12	0	0	4	11	12	15	18	11	6;5
S II] 4072	78	59	48	56	108	28	44	18	19	48	69	120	137	62	73:70
Ca I 4227	12	6	∞	ဇ	12	10	6	8	63	∞	11	17	14	6	
[O III] 4363	24	17	19	14	19	19	0	0	4	16	19	19	18	17	13:15
Fe III 4658	∞	9	12	15	7	9	0	0	5	9	7	9	9	7	·
$H\beta$ 4861	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100:100
O III 4959	91	63	70	53	20	7.1	0	0	15	61	7.1	70	20	99	27:29
O III) 5007	264	183	203	154	203	208	0	0	43	178	206	204	203	191	83:81
[N I] 5200	19	58	21	18	18	30	228	19	20	27	27	36	31	25	9:11
[N II] 5755	5	4	v	2	ъ	4	1	-	63	4	4	τĊ	9	4	5:7
He I 5876	13	6	16	16	10	11	0	0	8	10	11	15	16	10	7:7
[O I] 6300	160	146	83	58	204	150	471	159	09	125	162	298	329	142	113,138
O I 6363	53	49	28	6	89	20	157	53	20	42	54	66	110	47	36,50
[N II] 6548	47	38	51	45	30	45	19	19	22	36	42	48	51	35	-:47
$H\alpha$ 6563	301	317	304	308	312	314	485	379	318	317	314	310	310	316	283;343
N II 6583	139	113	149	133	87	133	28	55	99	105	122	142	151	103	133;182
[S II] 6716	40	20	59	90	30	55	334	91	35	49	20	61	52	44	38;43
S II 6731	73	69	83	72	43	81	246	7.7	38	29	73	86	82	61	67;85
[Ar III] 7136	13	6	12	11	11	10	0	0	4	10	10	11	11	10	2;-
$[Ca\ II]$	34	27	21	6	42	58	41	13	7	21	31	26	57	56	-:58
0782 [II O] 4C	40	53	35	32	46	53	0	-	17	82	32	34	36	33	67;96
0 [1]	32	24	58	56	36	23	0	-	14	23	56	28	29	27	
[Fe II] 8617	11	12	7	4	16	11	92	18	7	10	12	20	24	11	
[C I] 8727	19	13	10	4	27	13	4	က	က	11	16	37	46	14	
6906 [III S]	12	11	œ	9	11	12	6	6	9	11	11	20	56	11	
[S III] 9532	32	58	19	15	53	30	24	24	17	58	30	52	29	27	6;-
[C I] 9823	98	29	89	38	52	82	47	33	23	20	77	135	110	57	-; -
[C I] 9850	255	198	201	113	155	250	140	86 ·	99	173	528	400	326	170	8; -
S II] 10314	58	21	17	6	38	20	15	9	7	17	24	42	48	22	-;11
[S II] 10348	25	19	15	∞	35	18	14	9	9	16	22	88 83	44	20	
[N I] 10402	∞	9	o	7	12	9	∞	က	7	3	7	16	21	7	-;12
He I 10830	20	16	18	17	16	17	-	-	13	17	16	55	24	16	-;105
$[Ne II] 12.8\mu$	128	110	80	20	119	121	194	101	49	102	121	171	155	105	
$[Ne\ III]\ 15.6\mu$	36	56	28	20	20	33	1	1	6	24	30	92	06	22	
$[\text{Fe II}]$ 26.0 μ	240	241	197	136	211	265	934	324	134	224	254	361	340	222	
$[Si\ II]$ 35.3 μ	132	362	219	270	244	331	4179	1154	360	374	317	277	247	330	
$[0 \ I]$ 63.2 μ	148	168	109	71	179	175	955	270	100	148	177	176	143	150	
2 photon	1690	2194	1314	1336	2110	2061	7235	3956	2435	2212	2081	1994	2067	2180	-;12900

¹ The H β flux in units of 10^{-15} ergs cm⁻² s⁻¹ seen at Earth from the entire radiating bow shock at a distance of 500 pc using $R_0 = 1.5 \times 10^{16}$ cm for shape A, 8.1×10^{15} cm for the Raga shape, and 5.6×10^{15}

cm for shape DA. These choices for R_0 lead to angular diameters $\sim 4''$ for the HH objects.

Two independent sets of dereddened fluxes are given for HH 2H for both the ultraviolet and visible lines. The UV data come from Böhm-Vitense et al. (1982) and Brugel, Shull, and Seab (1982). The optical data is taken from Brugel, Böhm, and Mannery (1981) and Dopita, Binette, and Schwarz (1982). IIDS fluxes are used from Brugel, Böhm, and Mannery (1981) except for $\lambda > 7200$ Å, where only MCSP observations are available. The disaments between the two sets of ultraviolet data arise primarily from the different reddening corrections applied. The value of 67 listed for [O II] 7320 refers to the sum of [O II] 7320 and [O II] 7320 and [O II] 7320 and [O II] 7320 and [O II] 7320 listed for [O II] 7320 and the observed values for [O II] 3726 include the flux from [O II] 3729 also.

HH2G [SI]6716

© American Astronomical Society • Provided by the NASA Astrophysics Data System

TABLE 4
RESULTS

N II 5883 300 -49 79 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 76 77 77 76 77 77 77 77 77 75 75	Object	Line	¹ MX(km/s)	¹ MN(km/s)	² Vs (km/s)	$^2\Phi$	$^3V_1(km/s)$
$ N \ II 6883 30 \ -49 \ 79 \ 76 \ 77 \ 76 \ 77 \ 77 \ O \ I \ 6300 \ 25 \ -58 \ 83 \ 67 \ 77 \ 77 \ O \ I \ 6300 \ 25 \ -58 \ 83 \ 67 \ 77 \ 77 \ 76 \ 77 $	HH 1A	Нα	20	-49	69	65 °	63
HH 1C Hα 46 -89 135 71 122 136 137 75 132 (O I) 6300 26 -52 78 71 74 74 141 1D Hα 39 -98 137 64 122 126 59 108 127 128 129 129 129 129 129 129 129 129 129 129		[N II] 6583					77
N 6583 51 -86 137 75 132 130 120			25	-58	83		76
N	HH 1C	Нα	46	-89	135	71°	128
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[N II] 6583		-86			132
N				-52			74
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HH 1D	$_{ m Hlpha}$	39	-98	137	64°	123
HH 1F $\frac{1}{16}$ $\frac{1}{16}$ $\frac{42}{16}$ $\frac{1}{2}$ 1			33	-95	128	61°	112
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		O I 6300	48	-82	130	75°	126
N II 6583	HH 1F	$_{ m Hlpha}$	42	-106	148	65°	134
$ \begin{bmatrix} N & $			49	-99	148	70°	139
$ \begin{bmatrix} \text{O I 3000} & 31 & -95 & 126 & 59 \\ \text{O III 5007} & 81 & -131 & 212 & 76 \\ \text{S II 6716} & 23 & -82 & 105 & 56 \\ \text{S II 6731} & 26 & -83 & 109 & 59 \\ \text{S II 6731} & 26 & -83 & 109 & 59 \\ \text{S II 6731} & 26 & -83 & 109 & 59 \\ \text{S II 6731} & 26 & -83 & 109 & 59 \\ \text{S II 6731} & 26 & -83 & 109 & 59 \\ \text{S II 6583} & 98 & -109 & 207 & 87 \\ \text{IN II 6583} & 90 & -100 & 190 & 87 \\ \text{IN II 6583} & 74 & -122 & 196 & 76 \\ \text{IN II 6583} & 74 & -122 & 196 & 76 \\ \text{IN II 6583} & 74 & -122 & 196 & 76 \\ \text{IN II 6583} & 74 & -122 & 266 & 73 \\ \text{S II 6716} & 68 & -90 & 158 & 82 \\ \text{S II 6731} & 69 & -101 & 170 & 79 \\ \text{IN II 6583} & 47 & -95 & 142 & 70 \\ \text{IN II 6583} & 47 & -95 & 142 & 70 \\ \text{IN II 6583} & 47 & -95 & 142 & 70 \\ \text{IN II 6563} & 60 & -45 & 105 & 98 \\ \text{IO I 6300} & 20 & -61 & 81 & 60 \\ \text{IO I 6300} & 37 & -20 & 57 & 107 \\ \text{S II 6716} & 68 & -118 & 156 & 59 \\ \text{IM II 6583} & 41 & -25 & 66 & 104 \\ \text{IO I 6300} & 37 & -20 & 57 & 107 \\ \text{S II 6731} & 28 & -125 & 153 & 51 \\ \text{IN II 6583} & 41 & -25 & 66 & 104 \\ \text{IO I 6300} & 37 & -20 & 57 & 107 \\ \text{S II 6716} & 29 & -98 & 127 & 57 \\ \text{IN II 6583} & 32 & -116 & 148 & 55 \\ \text{IN II 6583} & 32 & -116 & 148 & 55 \\ \text{IN II 6583} & 32 & -116 & 148 & 55 \\ \text{IN II 6583} & 32 & -116 & 148 & 55 \\ \text{II 6716} & 29 & -98 & 127 & 57 \\ \text{III 2H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 12H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 12H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 12H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 12H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 12H} & H\alpha & 60 & -102 & 162 & 75 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 13000} & 49 & -91 & 140 & 73 \\ \text{III 1400} & -4 & -115 & 161 & 65 \\ \text{III 140} & -4 & -112 & 108 & -4 \\ \text$		[N II] 6583	41	-100	141	61°	128
$ \begin{vmatrix} O & \text{III} \\ & \text{IDI} \\ & \text{IDII} \\ & \text{IDIII} \\ & \text{IDII} \\ & \text{IDIII} $			43	-88	131	70°	123
$ S \ $		[O I] 6300	31	-95	126	59°	108
[S II] 6731		[O III] 5007	81	-131	212	76°	206
HH 2A' $H\alpha$ 98 -109 207 87' 206 R 201 R		[S II] 6716	23	-82	105	56°	87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[S II] 6731	26	-83	109	59°	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HH 2A'	$_{ m Hlpha}$	98	-109	207	87°	206
$ \begin{bmatrix} \mathbf{N} \ \mathbf{II} \ 5883 \\ \mathbf{N} \ \mathbf{II} \ 6583 \\ \mathbf{O} \ \mathbf{II} \ 6500 \\ \mathbf{O} \ \mathbf{III} \ 5007 \\ \mathbf{O} \ \mathbf{III} \ 5008 \\ \mathbf{O} \ \mathbf{III} \ $							201
$ \begin{bmatrix} \mathbf{N} \mathbf{II} & 5833 & 74 & -122 & 196 & 76 & 190 \\ \mathbf{O} & 1 & 6300 & 77 & -82 & 159 & 88 & 159 \\ \mathbf{O} & 11 & 5007 & 94 & -172 & 266 & 73 & 254 \\ \mathbf{S} & \mathbf{II} & 6716 & 68 & -90 & 158 & 82 & 156 \\ \mathbf{S} & \mathbf{II} & 6731 & 69 & -101 & 170 & 79 & 167 \\ \mathbf{HH} & 2\mathbf{B} & \mathbf{H}\alpha & 52 & -81 & 133 & 77 & 130 \\ \mathbf{N} & \mathbf{II} & 6583 & 47 & -95 & 142 & 70 & 133 \\ \mathbf{HH} & 2\mathbf{C} & \mathbf{H}\alpha & 62 & -52 & 114 & 95 & 114 \\ \mathbf{N} & \mathbf{II} & 6563 & 60 & -45 & 105 & 98 & 104 \\ \mathbf{HH} & 2\mathbf{D} & \mathbf{H}\alpha & 41 & -79 & 120 & 72 & 114 \\ \mathbf{N} & \mathbf{II} & 6563 & 19 & -83 & 102 & 51 & 79 \\ \mathbf{O} & 1 & 6300 & 20 & -61 & 81 & 60 & 70 \\ \mathbf{HH} & 2\mathbf{E} & \mathbf{H}\alpha & 40 & -32 & 72 & 96 & 72 \\ \mathbf{N} & \mathbf{II} & 6583 & 41 & -25 & 66 & 104 & 64 \\ \mathbf{O} & 1 & 6300 & 37 & -20 & 57 & 107 & 55 \\ \mathbf{HH} & 2\mathbf{G} & \mathbf{H}\alpha & 38 & -118 & 156 & 59 & 134 \\ \mathbf{H}\alpha & 28 & -125 & 153 & 51 & 119 \\ \mathbf{N} & \mathbf{II} & 6583 & 32 & -116 & 148 & 55 & 121 \\ \mathbf{N} & \mathbf{II} & 6583 & 17 & -123 & 140 & 41 & 92 \\ \mathbf{O} & 1 & 6300 & 29 & -115 & 144 & 53 & 115 \\ \mathbf{S} & \mathbf{II} & 6711 & 23 & -118 & 141 & 48 & 105 \\ \mathbf{III} & 2\mathbf{H} & \mathbf{A}\alpha & 60 & -102 & 162 & 75 & 157 \\ \mathbf{H}\alpha & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 49 & -110 & 159 & 67 & 146 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 53 & -105 & 158 & 71 & 149 \\ \mathbf{N} & \mathbf{II} & 6583 & 112 & -63 & 175 & 106 & 168 \\ \mathbf{S} & \mathbf{II} & 6731 & 46 & -115 & 161 & 65 & -146 \\ \mathbf{H}\mathbf{H} & 2\mathbf{M} & \mathbf{H}\alpha & -4 & -112 & 108 & -4 & -4 \\ \mathbf{H}\mathbf{H} & 2\mathbf{M} & \mathbf{H}\alpha & -4 & -112 & 108 & -4 & -4 \\ \mathbf{H}\mathbf{H} & \mathbf{H} & \mathbf{H}$							189
$ \begin{bmatrix} 0 & 1 & 300 & 77 & -82 & 159 & 88 & 159 \\ 0 & III \end{bmatrix} 5007 & 94 & -172 & 268 & 73 & 254 \\ S & II & 6716 & 68 & -90 & 158 & 82 & 156 \\ S & II & 6731 & 69 & -101 & 170 & 79 & 167 \\ \end{bmatrix} $ $ HH 2B & H\alpha & 52 & -81 & 133 & 77 & 130 \\ N & II & 6583 & 47 & -95 & 142 & 70 & 133 \\ \end{bmatrix} $ $ HH 2C & H\alpha & 62 & -52 & 114 & 95 & 114 \\ N & II & 6563 & 60 & -45 & 105 & 98 & 104 \\ \end{bmatrix} $ $ HH 2D & H\alpha & 41 & -79 & 120 & 72 & 114 \\ N & II & 6563 & 19 & -83 & 102 & 51 & 79 \\ O & I & 6300 & 20 & -61 & 81 & 60 & 70 \\ \end{bmatrix} $ $ HH 2E & H\alpha & 40 & -32 & 72 & 96 & 72 \\ N & II & 6583 & 41 & -25 & 66 & 104 & 64 \\ O & I & 6300 & 37 & -20 & 57 & 107 & 55 \\ \end{bmatrix} $ $ HH 2G & H\alpha & 38 & -118 & 156 & 59 & 134 \\ H\alpha & 28 & -125 & 153 & 51 & 119 \\ N & II & 6583 & 17 & -123 & 140 & 41 & 92 \\ O & I & 6300 & 29 & -115 & 144 & 53 & 115 \\ S & II & 6716 & 29 & -98 & 127 & 57 & 107 \\ S & II & 6716 & 29 & -98 & 127 & 57 & 107 \\ S & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ N & II & 6583 & 53 & -105 & 158 & 71 & 149 \\ O & III & 5070 & 63 & -128 & 191 & 70 & 180 \\ S & II & 6701 & 36 & -121 & 157 & 57 & 132 \\ S & II & 6731 & 46 & -115 & 161 & 65 & 168 \\ S & II & 6731 & 149 & -48 & 167 & 115 & 151 \\ HH 2M & H\alpha & -4 & -112 & 108 & -4 & -4 \\ HH 2M & H\alpha & -7 & -133 & 126 & -4 & -4 \\ HH 2M & H\alpha & -7 & -133 & 126 & -4 & -4 \\ HH 10B & H\alpha & -9 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96 & 76 & -4 & -4 \\ HH 10B & H\alpha & -90 & -96$		N II 6583	74				
$ \begin{bmatrix} \text{O III} \\ \text{S II} \\ \text{O III} \\ O III$		O I 6300					
$ \begin{bmatrix} S & II \\ S & II \end{bmatrix} 6716 & 68 \\ S & 1I \end{bmatrix} 6731 & 69 & -101 & 170 & 79 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 167 \\ 167 & 197 & 197 \\ 167 & 197 $			94		266	73 °	
$ \begin{bmatrix} \mathbf{S} & \mathbf{II} \end{bmatrix} & 6731 & 69 & -101 & 170 & 79 \\ \mathbf{HH} & 2\mathbf{B} & \mathbf{H}\alpha & 52 & -81 & 133 & 77 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6583 & 47 & -95 & 142 & 70 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6583 & 47 & -95 & 142 & 70 \\ \mathbf{HH} & 2\mathbf{C} & \mathbf{H}\alpha & 62 & -52 & 114 & 95 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6563 & 60 & -45 & 105 & 98 \\ \mathbf{HH} & 2\mathbf{D} & \mathbf{H}\alpha & 41 & -79 & 120 & 72 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6563 & 19 & -83 & 102 & 51 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6563 & 19 & -83 & 102 & 51 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6563 & 19 & -83 & 102 & 51 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6563 & 41 & -25 & 66 & 104 \\ \mathbf{O} & \mathbf{I} \end{bmatrix} & 6300 & 37 & -20 & 57 & 107 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6583 & 41 & -25 & 66 & 104 \\ \mathbf{O} & \mathbf{I} \end{bmatrix} & 6300 & 37 & -20 & 57 & 107 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 118 & 156 & 59 \\ \mathbf{HH} & 2\mathbf{G} & \mathbf{H}\alpha & 38 & -118 & 156 & 59 \\ \mathbf{IN} & \mathbf{II} \end{bmatrix} & 6583 & 32 & -116 & 148 & 55 \\ \mathbf{IN} & \mathbf{II} \end{bmatrix} & 119 \\ \mathbf{IN} & \mathbf{II} \end{bmatrix} & 6583 & 32 & -116 & 148 & 55 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 119 \\ \mathbf{II} \end{bmatrix} & 6583 & 17 & -123 & 140 & 41 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 144 & 53 & 115 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 29 & -98 & 127 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6731 & 23 & -118 & 141 & 48 \\ \mathbf{IN} & \mathbf{II} \end{bmatrix} & 6583 & 49 & -110 & 159 & 67 \\ \mathbf{H}\alpha & 53 & -105 & 158 & 71 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6583 & 49 & -110 & 159 & 67 \\ \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6731 & 46 & -115 & 161 & 65 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6731 & 46 & -115 & 161 & 65 \\ \mathbf{HH} & 2\mathbf{M} & \mathbf{H}\alpha & 123 & -61 & 184 & 110 \\ \mathbf{N} & \mathbf{II} \end{bmatrix} & 6583 & 112 & -63 & 175 & 106 \\ \mathbf{S} & \mathbf{II} \end{bmatrix} & 6731 & 119 & -48 & 167 & 115 \\ \mathbf{HH} & 7 & \mathbf{H}\alpha & -4 & -112 & 108 & - \\ \mathbf{HH} & 8 & \mathbf{H}\alpha & -7 & -133 & 126 & - \\ \mathbf{HH} & 8 & \mathbf{H}\alpha & -7 & -133 & 126 & - \\ \mathbf{HH} & 8 & \mathbf{H}\alpha & -7 & -133 & 126 & - \\ \mathbf{HH} & 10\mathbf{B} & \mathbf{H}\alpha & -20 & -96 & 76 & - \\ \mathbf{HH} & 10\mathbf{B} & \mathbf{H}\alpha & -20 & -96 & 76 & - \\ \mathbf{HH} & 10\mathbf{B} & \mathbf{H}\alpha & -20 & -96 & 76 & - \\ \mathbf{HH} & 10\mathbf{B} & \mathbf{H}\alpha & -20 & -96 & 76 & - \\ \mathbf{HH} & \mathbf{H}\alpha & $							
$ [N \ II] \ 6583 \qquad 47 \qquad -95 \qquad 142 \qquad 70 ^{\circ} \qquad 133 $ $ HH \ 2C \qquad H\alpha \qquad \qquad 62 \qquad -52 \qquad 114 \qquad 95 ^{\circ} \qquad 114 $ $ [N \ II] \ 6563 \qquad 60 \qquad -45 \qquad 105 \qquad 98 ^{\circ} \qquad 104 $ $ HH \ 2D \qquad H\alpha \qquad \qquad 41 \qquad -79 \qquad 120 \qquad 72 ^{\circ} \qquad 114 $ $ [N \ II] \ 6563 \qquad 19 \qquad -83 \qquad 102 \qquad 51 ^{\circ} \qquad 79 $ $ [O \ I] \ 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60 ^{\circ} \qquad 70 $ $ HH \ 2E \qquad H\alpha \qquad \qquad 40 \qquad -32 \qquad 72 \qquad 96 ^{\circ} \qquad 72 $ $ [N \ II] \ 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 ^{\circ} \qquad 64 $ $ [O \ I] \ 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 ^{\circ} \qquad 55 $ $ HH \ 2G \qquad H\alpha \qquad \qquad 38 \qquad -118 \qquad 156 \qquad 59 ^{\circ} \qquad 134 $ $ H\alpha \qquad \qquad 28 \qquad -125 \qquad 153 \qquad 51 ^{\circ} \qquad 119 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -115 \qquad 144 \qquad 45 ^{\circ} \qquad 115 $ $ [S \ II] \ 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57 ^{\circ} \qquad 107 $ $ [S \ II] \ 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48 ^{\circ} \qquad 105 $ $ [S \ II] \ 6731 \qquad 23 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 148 $ $ [N \ II] \ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 ^{\circ} \qquad 146 $ $ [N \ II] \ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 ^{\circ} \qquad 146 $ $ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 149 $ $ [O \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 149 $ $ [O \ II] \ 60300 \qquad 49 \qquad -91 \qquad 140 \qquad 73 ^{\circ} \qquad 134 $ $ [O \ III] \ 5007 \qquad 63 \qquad -128 \qquad 191 \qquad 70 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 160 \qquad -4 \qquad -112 \qquad 108 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -90 \qquad -96 \qquad 76 \qquad -4 \qquad -4 $		[S II] 6731	69				167
$ [N \ II] \ 6583 \qquad 47 \qquad -95 \qquad 142 \qquad 70 ^{\circ} \qquad 133 $ $ HH \ 2C \qquad H\alpha \qquad \qquad 62 \qquad -52 \qquad 114 \qquad 95 ^{\circ} \qquad 114 $ $ [N \ II] \ 6563 \qquad 60 \qquad -45 \qquad 105 \qquad 98 ^{\circ} \qquad 104 $ $ HH \ 2D \qquad H\alpha \qquad \qquad 41 \qquad -79 \qquad 120 \qquad 72 ^{\circ} \qquad 114 $ $ [N \ II] \ 6563 \qquad 19 \qquad -83 \qquad 102 \qquad 51 ^{\circ} \qquad 79 $ $ [O \ I] \ 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60 ^{\circ} \qquad 70 $ $ HH \ 2E \qquad H\alpha \qquad \qquad 40 \qquad -32 \qquad 72 \qquad 96 ^{\circ} \qquad 72 $ $ [N \ II] \ 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 ^{\circ} \qquad 64 $ $ [O \ I] \ 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 ^{\circ} \qquad 55 $ $ HH \ 2G \qquad H\alpha \qquad \qquad 38 \qquad -118 \qquad 156 \qquad 59 ^{\circ} \qquad 134 $ $ H\alpha \qquad \qquad 28 \qquad -125 \qquad 153 \qquad 51 ^{\circ} \qquad 119 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 ^{\circ} \qquad 121 $ $ [N \ II] \ 6583 \qquad 32 \qquad -115 \qquad 144 \qquad 45 ^{\circ} \qquad 115 $ $ [S \ II] \ 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57 ^{\circ} \qquad 107 $ $ [S \ II] \ 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48 ^{\circ} \qquad 105 $ $ [S \ II] \ 6731 \qquad 23 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 148 $ $ [N \ II] \ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 ^{\circ} \qquad 146 $ $ [N \ II] \ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 ^{\circ} \qquad 146 $ $ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 149 $ $ [O \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 ^{\circ} \qquad 149 $ $ [O \ II] \ 60300 \qquad 49 \qquad -91 \qquad 140 \qquad 73 ^{\circ} \qquad 134 $ $ [O \ III] \ 5007 \qquad 63 \qquad -128 \qquad 191 \qquad 70 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 ^{\circ} \qquad 136 $ $ [S \ II] \ 6731 \qquad 160 \qquad -4 \qquad -112 \qquad 108 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad -4 \qquad -4 $ $ [H \ 10B \qquad H\alpha \qquad -90 \qquad -96 \qquad 76 \qquad -4 \qquad -4 $	HH 2B	$_{ m Hlpha}$	52	-81	133	77 °	130
$[N \ II] 6563 \qquad 60 \qquad -45 \qquad 105 \qquad 98 \ ^{\circ} \qquad 104$ $[N \ II] 6563 \qquad 19 \qquad -83 \qquad 102 \qquad 51 \ ^{\circ} \qquad 79$ $[O \ I] 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60 \ ^{\circ} \qquad 70$ $[N \ II] 6563 \qquad 19 \qquad -83 \qquad 102 \qquad 51 \ ^{\circ} \qquad 79$ $[O \ I] 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60 \ ^{\circ} \qquad 70$ $[N \ II] 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 \ ^{\circ} \qquad 64$ $[O \ I] 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 \ ^{\circ} \qquad 55$ $[N \ II] 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 \ ^{\circ} \qquad 64$ $[O \ I] 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 \ ^{\circ} \qquad 55$ $[N \ II] 6583 \qquad 32 \qquad -118 \qquad 156 \qquad 59 \ ^{\circ} \qquad 134$ $[N \ II] 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 \ ^{\circ} \qquad 121$ $[N \ II] 6583 \qquad 17 \qquad -123 \qquad 140 \qquad 41 \ ^{\circ} \qquad 92$ $[O \ I] 6300 \qquad 29 \qquad -115 \qquad 144 \qquad 53 \ ^{\circ} \qquad 115$ $[S \ II] 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57 \ ^{\circ} \qquad 107$ $[S \ II] 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48 \ ^{\circ} \qquad 105$ $[III] 2H \qquad H \alpha \qquad 60 \qquad -102 \qquad 162 \qquad 75 \ ^{\circ} \qquad 157$ $[H\alpha \qquad 53 \qquad -105 \qquad 158 \qquad 71 \ ^{\circ} \qquad 149$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -115 \qquad 158 \qquad 71 \ ^{\circ} \qquad 149$ $[O \ II] 5007 \qquad 63 \qquad -128 \qquad 191 \qquad 70 \ ^{\circ} \qquad 180$ $[S \ II] 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57 \ ^{\circ} \qquad 132$ $[S \ II] 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 \ ^{\circ} \qquad 146$ $[S \ II] 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115 \ ^{\circ} \qquad 151$ $[HH \ 2M \qquad H\alpha \qquad \qquad 123 \qquad -61 \qquad 184 \qquad 110 \ ^{\circ} \qquad 173$ $[N \ II] 6583 \qquad 112 \qquad -63 \qquad 175 \qquad 106 \ ^{\circ} \qquad 168$ $[S \ II] 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115 \ ^{\circ} \qquad 151$ $[HH \ 2M \qquad H\alpha \qquad \qquad -4 \qquad -112 \qquad 108 \qquad - \qquad - \qquad -4$ $[HH \ 2M \qquad H\alpha \qquad -4 \qquad -112 \qquad 108 \qquad - \qquad - \qquad - \qquad -4$ $[HH \ 2M \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad - \qquad $							133
$[N \ II] 6563 \qquad 60 \qquad -45 \qquad 105 \qquad 98 \ ^{\circ} \qquad 104$ $HH \ 2D \qquad H\alpha \qquad 41 \qquad -79 \qquad 120 \qquad 72 \ ^{\circ} \qquad 114$ $[N \ II] 6563 \qquad 19 \qquad -83 \qquad 102 \qquad 51 \ ^{\circ} \qquad 79$ $[O \ I] 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60 \ ^{\circ} \qquad 70$ $HH \ 2E \qquad H\alpha \qquad 40 \qquad -32 \qquad 72 \qquad 96 \ ^{\circ} \qquad 72$ $[N \ II] 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 \ ^{\circ} \qquad 64$ $[O \ I] 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 \ ^{\circ} \qquad 55$ $HH \ 2G \qquad H\alpha \qquad 38 \qquad -118 \qquad 156 \qquad 59 \ ^{\circ} \qquad 134$ $H\alpha \qquad 28 \qquad -125 \qquad 153 \qquad 51 \ ^{\circ} \qquad 119$ $[N \ II] 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 \ ^{\circ} \qquad 121$ $[N \ II] 6583 \qquad 17 \qquad -123 \qquad 140 \qquad 41 \ ^{\circ} \qquad 92$ $[O \ I] 6300 \qquad 29 \qquad -115 \qquad 144 \qquad 53 \ ^{\circ} \qquad 115$ $[S \ II] 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57 \ ^{\circ} \qquad 107$ $[S \ II] 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48 \ ^{\circ} \qquad 105$ $[HII] \ 2H \qquad H\alpha \qquad 60 \qquad -102 \qquad 162 \qquad 75 \ ^{\circ} \qquad 157$ $H\alpha \qquad 53 \qquad -105 \qquad 158 \qquad 71 \ ^{\circ} \qquad 149$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \ ^{\circ} \qquad 146$ $[N \ II] 6583 \qquad 49 \qquad -91 \qquad 140 \qquad 73 \ ^{\circ} \qquad 134$ $[O \ III] 5007 \qquad 63 \qquad -128 \qquad 191 \qquad 70 \ ^{\circ} \qquad 180$ $[S \ II] 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57 \ ^{\circ} \qquad 132$ $[S \ II] 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65 \ ^{\circ} \qquad 146$ $[S \ II] 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115 \ ^{\circ} \qquad 151$ $[HH \ 2M \qquad H\alpha \qquad 123 \qquad -61 \qquad 184 \qquad 110 \ ^{\circ} \qquad 173$ $[N \ II] 6583 \qquad 112 \qquad -63 \qquad 175 \qquad 106 \ ^{\circ} \qquad 168$ $[S \ II] 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115 \ ^{\circ} \qquad 151$ $[HH \ 2M \qquad H\alpha \qquad -4 \qquad -112 \qquad 108 \qquad - \qquad -4 \qquad -4 \qquad -112 \qquad 108 \qquad - \qquad -4 \qquad -4 \qquad -4 \qquad -4 \qquad -4 \qquad -4 \qquad -4$	HH 2C	$_{ m Hlpha}$	62	-52	114	95 °	114
$ \begin{bmatrix} [N \ II] \ 6563 & 19 & -83 & 102 & 51 \\ [O \ I] \ 6300 & 20 & -61 & 81 & 60 \\ \end{bmatrix} & 70 $ $ HH \ 2E H\alpha \qquad 40 \qquad -32 \qquad 72 \qquad 96 \\ [N \ II] \ 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104 \\ [O \ I] \ 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107 \\ \end{bmatrix} & 55 \\ HH \ 2G H\alpha \qquad 38 \qquad -118 \qquad 156 \qquad 59 \\ [N \ II] \ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55 \\ [N \ II] \ 6583 \qquad 17 \qquad -123 \qquad 140 \qquad 41 \\ [N \ II] \ 6583 \qquad 17 \qquad -123 \qquad 140 \qquad 41 \\ [N \ II] \ 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57 \\ [S \ II] \ 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48 \\ \end{bmatrix} & 105 \\ HIII \ 2H \qquad H\alpha \qquad 60 \qquad -102 \qquad 162 \qquad 75 \\ [N \ II] \ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71 \\ [N \ II] \ 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57 \\ [S \ II] \ 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57 \\ [S \ II] \ 6711 \qquad 46 \qquad -115 \qquad 161 \qquad 65 \\ [S \ II] \ 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115 \\ [S \ II] \ 6731 \qquad 119 \qquad -48 \qquad 167 $							104
$ [O\ I]\ 6300 \qquad 20 \qquad -61 \qquad 81 \qquad 60° \qquad 70 $ $ HH\ 2E \qquad H\alpha \qquad 40 \qquad -32 \qquad 72 \qquad 96° \qquad 72 $ $ [N\ II]\ 6583 \qquad 41 \qquad -25 \qquad 66 \qquad 104° \qquad 64 $ $ [O\ I]\ 6300 \qquad 37 \qquad -20 \qquad 57 \qquad 107° \qquad 55 $ $ HH\ 2G \qquad H\alpha \qquad 38 \qquad -118 \qquad 156 \qquad 59° \qquad 134 $ $ H\alpha \qquad 28 \qquad -125 \qquad 153 \qquad 51° \qquad 119 $ $ [N\ II]\ 6583 \qquad 32 \qquad -116 \qquad 148 \qquad 55° \qquad 121 $ $ [N\ II]\ 6583 \qquad 17 \qquad -123 \qquad 140 \qquad 41° \qquad 92 $ $ [O\ I]\ 6300 \qquad 29 \qquad -115 \qquad 144 \qquad 53° \qquad 115 $ $ [S\ II]\ 6716 \qquad 29 \qquad -98 \qquad 127 \qquad 57° \qquad 107 $ $ [S\ II]\ 6731 \qquad 23 \qquad -118 \qquad 141 \qquad 48° \qquad 105 $ $ HH\ 2H\ \qquad H\alpha \qquad 60 \qquad -102 \qquad 162 \qquad 75° \qquad 157 $ $ H\alpha \qquad 53 \qquad -105 \qquad 158 \qquad 71° \qquad 149 $ $ [N\ II]\ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67° \qquad 146 $ $ [N\ II]\ 6583 \qquad 49 \qquad -110 \qquad 159 \qquad 67° \qquad 146 $ $ [N\ II]\ 6583 \qquad 53 \qquad -105 \qquad 158 \qquad 71° \qquad 149 $ $ [O\ III]\ 5007 \qquad 63 \qquad -128 \qquad 191 \qquad 70° \qquad 180 $ $ [S\ II]\ 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57° \qquad 132 $ $ [S\ II]\ 6716 \qquad 36 \qquad -121 \qquad 157 \qquad 57° \qquad 132 $ $ [S\ II]\ 6731 \qquad 46 \qquad -115 \qquad 161 \qquad 65° \qquad 146 $ $ HH\ 2M \qquad H\alpha \qquad 123 \qquad -61 \qquad 184 \qquad 110° \qquad 173 $ $ [N\ II]\ 6583 \qquad 112 \qquad -63 \qquad 175 \qquad 106° \qquad 168 $ $ [S\ II]\ 6731 \qquad 119 \qquad -48 \qquad 167 \qquad 115° \qquad 151 $ $ HH\ 7 \qquad H\alpha \qquad -4 \qquad -112 \qquad 108 \qquad - \qquad - \qquad HH\ 8 \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad - \qquad - \qquad HH\ 8 \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad - \qquad - \qquad - \qquad HH\ 8 \qquad H\alpha \qquad -7 \qquad -133 \qquad 126 \qquad - \qquad - \qquad - \qquad - \qquad HH\ 10B \qquad H\alpha \qquad -20 \qquad -96 \qquad 76 \qquad - \qquad $	HH 2D	$_{ m Hlpha}$	41	-79	120	72°	114
HH 2E $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[N II] 6563	19	-83	102	51°	79
$ \begin{bmatrix} N & II \end{bmatrix} 6583 & 41 & -25 & 66 & 104 \\ O & I \end{bmatrix} 6300 & 37 & -20 & 57 & 107 \\ & 55 \\ HH & 2G & H\alpha & 38 & -118 & 156 & 59 \\ H\alpha & 28 & -125 & 153 & 51 \\ N & II \end{bmatrix} 6583 & 32 & -116 & 148 & 55 \\ O & I \end{bmatrix} 6583 & 17 & -123 & 140 & 41 \\ O & I \end{bmatrix} 6583 & 17 & -123 & 140 & 41 \\ S & II \end{bmatrix} 6716 & 29 & -98 & 127 & 57 \\ S & II \end{bmatrix} 6731 & 23 & -118 & 141 & 48 \\ IIII & 2H & H\alpha & 60 & -102 & 162 & 75 \\ H\alpha & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6583 & 49 & -110 & 159 & 67 \\ IV & II \end{bmatrix} 6583 & 49 & -110 & 159 & 67 \\ IV & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ IV & II \end{bmatrix} 6716 & 36 & -121 & 157 & 57 \\ IV & II \end{bmatrix} 6716 & 36 & -121 & 157 & 57 \\ IV & II \end{bmatrix} 6716 & 36 & -121 & 157 & 57 \\ IV & II \end{bmatrix} 6731 & 46 & -115 & 161 & 65 \\ IV & II \end{bmatrix} 6731 & 119 & -48 & 167 & 115 \\ HH & 2M & H\alpha & 123 & -61 & 184 & 110 \\ IV & II \end{bmatrix} 6583 & 112 & -63 & 175 & 106 \\ IV & II \end{bmatrix} 6731 & 119 & -48 & 167 & 115 \\ IV & II \end{bmatrix} 6731 & 119 & -48 & 167 & 115 \\ IV & II \end{bmatrix} 6731 & 119 & -48 & 167 & 115 \\ HH & 7 & H\alpha & -4 & -112 & 108 & - & - \\ HH & 8 & H\alpha & -7 & -133 & 126 & - & - \\ HH & 8 & H\alpha & -7 & -133 & 126 & - & - \\ HH & 10B & H\alpha & -20 & -96 & 76 & - & - \\ HH & 10B $		[O I] 6300	20	-61	81	60°	70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HH 2E		40	-32	72	96°	72
HH 2G H α 38 -118 156 59 134 H α 28 -125 153 51 119 [N II] 6583 32 -116 148 55 122 [N II] 6583 17 -123 140 41 92 [O I] 6300 29 -115 144 53 115 [S II] 6716 29 -98 127 57 107 [S II] 6731 23 -118 141 48 105 [N II] 6583 49 -110 159 67 146 [N II] 6583 49 -110 159 67 146 [N II] 6583 53 -105 158 71 149 [N II] 6583 53 -105 158 71 149 [O II] 5007 63 -128 191 70 180 [S II] 6716 36 -121 157 57 132 [S II] 6731 46 -115 161 65 146 HH 2M H α 123 -61 184 110 73 [N II] 6583 112 -63 175 106 168 [S II] 6731 119 -48 167 115 151 HH 7 H α -4 -112 108 HH 8 H α -7 -133 126 HH 10B H α -20 -96 76		[N Π] 6583	41	-25		104°	64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[O I] 6300	37	-20	57	107°	55
$ \begin{bmatrix} N & II \end{bmatrix} 6583 & 32 & -116 & 148 & 55 \\ N & II \end{bmatrix} 6583 & 17 & -123 & 140 & 41 \\ O & I \end{bmatrix} 6300 & 29 & -115 & 144 & 53 \\ S & II \end{bmatrix} 6716 & 29 & -98 & 127 & 57 \\ S & II \end{bmatrix} 6731 & 23 & -118 & 141 & 48 \\ 105 \\ IIII 2H & H & & 60 & -102 & 162 & 75 \\ H & & 53 & -105 & 158 & 71 \\ N & II \end{bmatrix} 6583 & 49 & -110 & 159 & 67 \\ N & II \end{bmatrix} 6583 & 49 & -110 & 159 & 67 \\ N & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ N & II \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ O & I \end{bmatrix} 6300 & 49 & -91 & 140 & 73 \\ O & II \end{bmatrix} 5007 & 63 & -128 & 191 & 70 \\ S & II \end{bmatrix} 6716 & 36 & -121 & 157 & 57 \\ S & II \end{bmatrix} 6731 & 46 & -115 & 161 & 65 \\ I & II \end{bmatrix} 6731 & 46 & -115 & 161 & 65 \\ I & II \end{bmatrix} 6731 & 119 & -48 & 167 & 115 \\ I & II \end{bmatrix} 6731 & 119 & 119 \\ I & II \end{bmatrix} 6731 & 119 & 119 \\ I & II \end{bmatrix} $	HH 2G	$_{ m Hlpha}$	38	-118	156	59°	134
$ \begin{bmatrix} \text{N II} \\ 6583 \\ [\text{O I}] 6300 \\ 29 \\ -115 \\ [\text{III}] 44 \\ 53 \\ 115 \\ [\text{S II]} 6716 \\ 29 \\ -98 \\ 127 \\ 57 \\ 107 \\ [\text{S II]} 6731 \\ 23 \\ -118 \\ 141 \\ 48 \\ 105 \\ 10$		$_{ m Hlpha}$	28	-125	153	51°	119
$ \begin{bmatrix} \text{N II} \\ 6583 \\ [\text{O I}] 6300 \\ 29 \\ -115 \\ [\text{III}] 44 \\ 53 \\ 115 \\ [\text{S II]} 6716 \\ 29 \\ -98 \\ 127 \\ 57 \\ 107 \\ [\text{S II]} 6731 \\ 23 \\ -118 \\ 141 \\ 48 \\ 105 \\ 10$		[N II] 6583	32		148	55°	121
$ \begin{bmatrix} O & I \end{bmatrix} & 6300 & 29 & -115 & 144 & 53 & 115 \\ S & II \end{bmatrix} & 6716 & 29 & -98 & 127 & 57 & 107 \\ S & II \end{bmatrix} & 6731 & 23 & -118 & 141 & 48 & 105 \\ \end{bmatrix} \\ HII 2H & H & \alpha & 60 & -102 & 162 & 75 & 157 \\ H & \alpha & 53 & -105 & 158 & 71 & 149 \\ N & II \end{bmatrix} & 6583 & 49 & -110 & 159 & 67 & 146 \\ N & II \end{bmatrix} & 6583 & 53 & -105 & 158 & 71 & 149 \\ O & I \end{bmatrix} & 6300 & 49 & -91 & 140 & 73 & 134 \\ O & III \end{bmatrix} & 5007 & 63 & -128 & 191 & 70 & 180 \\ S & II \end{bmatrix} & 6716 & 36 & -121 & 157 & 57 & 132 \\ S & II \end{bmatrix} & 6731 & 46 & -115 & 161 & 65 & 146 \\ \end{bmatrix} \\ HH & 2M & H & 123 & -61 & 184 & 110 & 173 \\ N & II \end{bmatrix} & 6583 & 112 & -63 & 175 & 106 & 168 \\ S & II \end{bmatrix} & 6731 & 119 & -48 & 167 & 115 & 151 \\ \end{bmatrix} \\ HH & 7 & H & -4 & -112 & 108 & - & - \\ HH & 8 & H & -7 & -133 & 126 & - & - \\ \end{bmatrix} \\ HH & 8 & H & -7 & -133 & 126 & - & - \\ \end{bmatrix} \\ HH & 10B & H & -20 & -96 & 76 & - & - \\ \end{bmatrix}$			17	-123	140	41 °	92
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		O I 6300	29	-115	144	53°	115
IIII 2H H α 60 -102 162 75 157 Hα 53 -105 158 71 149 [N II] 6583 49 -110 159 67 146 [N II] 6583 53 -105 158 71 149 [O II] 6583 53 -105 158 71 149 [O II] 6500 49 -91 140 73 134 [O III] 6500 63 -128 191 70 180 [S II] 6716 36 -121 157 57 132 [S II] 6731 46 -115 161 65 146 HH 2M Hα 123 -61 184 110 173 [N II] 6583 112 -63 175 106 168 [S II] 6731 119 -48 167 115 151 HH 7 Hα -4 -112 108 HH 8 Hα -7 -133 126 HH 8 Hα -7 -133 126		S II] 6716	29	-98	127	57 °	107
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[S II] 6731	23	-118	141	48°	105
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IIII 2H	H α	60	-102	162	75°	157
$ \begin{bmatrix} \text{N II} \end{bmatrix} 6583 & 53 & -105 & 158 & 71 \\ \text{O I} \end{bmatrix} 6300 & 49 & -91 & 140 & 73 \\ \text{O III} 5007 & 63 & -128 & 191 & 70 \\ \text{S II] } 6716 & 36 & -121 & 157 & 57 \\ \text{S II] } 6731 & 46 & -115 & 161 & 65 \\ \text{HH } 2M & H\alpha & 123 & -61 & 184 & 110 \\ \text{N II] } 6583 & 112 & -63 & 175 & 106 \\ \text{S II] } 6731 & 119 & -48 & 167 & 115 \\ \text{HH } 7 & H\alpha & -4 & -112 & 108 & - \\ \text{HH } 8 & H\alpha & -7 & -133 & 126 & - \\ \text{HH } 10B & H\alpha & -20 & -96 & 76 & - \\ \text{HH } 10B & H\alpha & -20 & -96 & 76 & - \\ \end{bmatrix} $			53	-105		71 °	149
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[N II] 6583	49			67°	146
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							149
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							134
$ \begin{bmatrix} \text{S II} \\ \text{S II} \\ \text{S II} \end{bmatrix} \begin{bmatrix} 6716 \\ 6731 \\ 46 \end{bmatrix} \begin{bmatrix} 36 \\ -121 \\ 65 \end{bmatrix} \begin{bmatrix} 157 \\ 57 \\ 161 \\ 65 \end{bmatrix} \begin{bmatrix} 132 \\ 65 \\ 146 \end{bmatrix} $ HH 2M $ \begin{bmatrix} \text{H}\alpha \\ \text{II} \end{bmatrix} \begin{bmatrix} 123 \\ -63 \\ 175 \\ 106 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 167 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 \\ 168 \\ 168 \\ 168 \end{bmatrix} \begin{bmatrix} 173 \\ 168 $			63			70°	180
HH 2M $H\alpha$ 123 -61 184 110 173 [N II] 6583 112 -63 175 106 168 [S II] 6731 119 -48 167 115 151 HH 7 Hα -4 -112 108 HH 8 Hα -7 -133 126 HH 10B Hα -20 -96 76		S II 6716	36	-121	157	57°	132
$ \begin{bmatrix} \text{N II} \end{bmatrix} \ 6583 \\ \text{[S II]} \ 6731 \\ \end{bmatrix} \ 119 \\ -48 \\ -48 \\ \end{bmatrix} \ 175 \\ 167 \\ 115 \\ \end{bmatrix} \ 166 \\ \cdot \\ 167 \\ \end{bmatrix} \ 168 \\ - \\ - \\ - \\ 14H \ 17 \\ \end{bmatrix} $		[S II] 6731	46	-115	161	65°	146
	HH 2M	$_{ m Hlpha}$	123	-61	184	110°	173
							168
HH 8 H $lpha$ -7 -133 126 HH 10B H $lpha$ -20 -96 76				-48			151
HH 10B H $lpha$ -20 -96 76	HH 7	$_{ m Hlpha}$	-4	-112	108		-
HH 10B $H\alpha$ -20 -96 76	НН 8	$_{ m Hlpha}$	-7	-133	126	-	_
	HH 10B	H α	-20	-96	76	4	-
HH 11 H $lpha$ -124 -246 122							
	HH 11	нα	-124	-246	122	-	-

RADIATIVE BOW SHOCK MODELS OF HH OBJECTS

TABLE 4—Continued

Object	Line	$^{1}MX(km/s)$	$^{1}MN(km/s)$	$^2\mathrm{V_s}(\mathrm{km/s})$	$^2\Phi$	$^{3}V_{1}(km/s)$
HH 32A	Ηα	353	0	353	149°	182
1111 0221	[N II] 6583	356	11	345	157°	135
	O III] 5007	380	10	370	157°	145
	[S II] 6716	333:	8	325:	154°:	142:
	S II 6731	351:	8	343:	154°:	150:
HH 32B	$_{ m Hlpha}$	393	-21	414	141°	261
	[N II] 6583	400	-13	413	145°	237
	[S II] 6716	405	-6	411	148°	218
	[S II] 6731	408	-11	419	146°	234
HH 32C	$_{ m Hlpha}$	12:	-344:	356:	32°:	189:
HH 32D	H $lpha$	379	0:	379:	0 .:	0
Cep A-A	$_{ m Hlpha}$	12	-107	119	37 °	72
	[N II] 6583	6	-105	111	27 °	50
Сер А-В	$_{ m Hlpha}$	4	-170	174	17°	51
	[N II] 6583	26	-169	195	43 °	133
Cep A-C	$H\alpha$	10	-197	207	25°	87
Cep A-D	$_{ m Hlpha}$	25	-214	239	38°	147
Сер А-Е	$_{ m Hlpha}$	16	-376	392	23°	153
Cep A-F	$_{ m Hlpha}$	25	-96	121	54°	98
	[N II] 6583	7	-72	79	35°	45
Cep A-G ⁴	$_{ m Hlpha}$	57:	-77:	134:	81 °	132:
Сер А-Н	$H\alpha$	54	-326	380	44°	264
Cep A-HW	Ηα	16	-460	476	21 °	171
Cep A-S	$_{ m Hlpha}$	39	-317	356	39°	224
•	N II] 6583	35	-318	353	37 °	212

¹ Values of MX and MN were extracted from the high-resolution spectra according to the procedure described in § IVb. Values of SM used were 26 km s⁻¹, 14 km s⁻¹, 18 km s⁻¹, and 12 km s⁻¹, respectively, for the lines of H, N II, O III, and S II. Multiple listings for some lines were obtained from separate spectra and are included to show the degree of consistency among different measurements.

same model parameters can be used to predict the emissionline fluxes expected from HH 2H. Results appear in Table 3 along with two sets of observed optical and UV line ratios corrected for reddening. The predicted bow shock fluxes generally agree for most of the bright lines throughout both the ultraviolet (Böhm-Vitense et al. 1982; Brugel, Shull, and Seab 1982) and visible (Brugel, Böhm, and Mannery 1981; Dopita, Binette, and Schwartz 1982) portions of the spectrum. Exceptions include [O III] $\lambda 5007/4959$ and Ca II $\lambda 3945$ (predicted to be about twice as bright as observed), and [C I] $\lambda 9850/9823$, which is greatly overestimated in the models. The lack of prominent [C I] lines in HH 2H may reflect the lack of molecular cooling in the models. Some disagreement also appears between the observed and predicted two photon continuum fluxes, but this discrepancy is not serious since the observations are difficult to obtain accurately, and the model fluxes vary if the bow shape is altered. Emission from a cloudlet shock could also enhance the two photon flux.

The agreement between observed and predicted line ratios is the best to date for any shock model of HH objects. Choosing a normalization $R_0 = 1.5 \times 10^{16}$ cm to fix the size of HH 2H at 4" (D = 500 pc) we predict the absolute H β flux to be 8.5×10^{-14} ergs cm⁻² s⁻¹ at Earth. Brugel, Böhm, and Mannery report 3.1×10^{-13} ergs cm⁻² s⁻¹ for HH 2H. The discrepancy can be reduced if the preshock density (500 cm⁻³) is increased, since the H β flux scales linearly with density. If the preshock density is chosen too large, however, the [O II] λ3726/3729 lines will suffer enhanced collisional deexcitation and will become unacceptably weak compared with observed values (Tables 1 and 3; § IVc). A more accurate bow shock model including correct preionization should raise the [O II]/ $H\beta$ ratio (§ IIIa), so that a larger preshock number density can be used to increase the predicted H β flux. The H β flux of HH 2H is 2.7 times intrinsically brighter than that of HH 32A (which has a shock velocity $\approx 400 \text{ km s}^{-1}$), and 62 times brighter than HH 11 (distances from Herbig and Jones 1983;

² The shock velocity was found from eq. (11). The orientation angle given is that of a bullet ramming into a stationary medium for HH 1/2 and Cep A; the medium is taken to move 25 km s^{-1} radially for HH 32A, B, and C. HH 32D assumed to be a stationary cloudlet for calculation

of Φ .

3 Predicted proper motion for the values of V_s and Φ in the table ($V_1 = V_s \sin \Phi$). ⁴ A spike in the line profile of this object confuses the calculation of MX and MN, but the line profile is definitely centered near zero radial velocity.

fluxes from Brugel, Böhm, and Mannery 1981), so the large luminosities of HH 1 and 2 may be peculiar to the region.

Since a single bow shock model reproduces the observed line profiles and ratios quite well, the model must be generally correct. The observations of HH 1 and 2 provide direct evidence favoring a bullet model for HH objects. Proper motions of HH objects ejected in the plane of the sky must equal the shock velocities for the bullet model. The predicted proper motions (Table 4) are roughly the same as the observed values, although there is some tendency for the observed motions to exceed the predicted values. The approximate equality of predicted and observed proper motions favors the bullet model, since in the cloudlet model any such agreement would be coincidental. The physical parameters derived for HH 1 and 2 are in general agreement with earlier studies, but more precise. Hartmann and Raymond (1984) did not consider their models accurate enough for a detailed fit to observed line intensities, but their 160 and 200 km s⁻¹ bow shock models resembled the observed line strengths and widths more closely than a 300 km s⁻¹ model. A recent study of the line fluxes in HH 2 by Cantó and Rodríguez (1986) reveals a correlation between Ha fluxes and the square of the total velocity, consistent with the present bow shock and planar shock models (Tables 1, 2, and 3). This correlation provides additional support for the bullet model. The analyses of Choe, Böhm, and Solf (1985), Raga and Böhm (1985), Böhm and Solf (1985), and Hartmann and Raymond (1984) favored the bullet model over the shocked cloudlet model, in agreement with the present results.

b) HH 32/AS 353A

The T Tauri star AS 353A and its associated HH objects present a difficult challenge for any model of HH emission. Four HH objects are present; HH 32A, B, and D are redshifted and located west of AS 353A, while HH 32C is blueshifted and situated east of the star (Mundt, Stocke, and Stockman 1983). Each HH object possesses line widths exceeding 350 km s⁻¹, with double-peaked profiles evident for most of the low-excitation lines (Hartigan, Mundt, and Stocke 1986; Solf, Böhm, and Raga 1986). Ha line profiles of HH 32A and B differ markedly from that of D. In addition, the [O III] λ 5007 and Ha line profiles differ in HH 32A, with [O III] λ 5007 showing only a single peak. The number density in the two-velocity peaks appears identical for each HH object. The system also has a redshifted linear jet (Hartigan, Mundt, and Stocke 1986).

Since extinction apparently increases dramatically from west to east across the source, reliable dereddened line ratios are difficult to obtain, but the presence of C IV $\lambda1549$ indicates large shock velocities (Böhm and Böhm-Vitense 1984; Brugel, Böhm, and Mannery 1981). Although proper motions of HH 32A and B are directed away from AS 353A, the inferred velocities are quite different (54 and 202 km s⁻¹, respectively), but the uncertainties in these values are also large ($\pm 3 \sigma$) uncertainties are 45 km s⁻¹; Herbig and Jones 1983). AS 353A is located about 300 pc from the sun (Herbig and Jones 1983), has a $V_{\rm isr}$ velocity of $+ 8 {\rm ~km~s^{-1}}$ (Edwards and Snell 1982), and a luminosity 6.6 L_{\odot} (Cohen et al. 1984).

Despite widely varying line profiles for the different emission lines of HH 32A, B, C, and D, the lines have the same FWZI for a given object (see Fig. 7 of Hartigan, Mundt, and Stocke 1986, and also Table 4 of this work), as predicted by the bow shock models. The inferred shock velocities for HH 32A, B, C, and D are (Table 4) 360, 415, 360, and 380 km s⁻¹, respectively. These shock velocities are close to the terminal wind velocity of

AS 353A (Hartigan, Mundt, and Stocke 1986). Line profiles for all four HH objects diminish rapidly near zero radial velocity, implying an oblique angle for the flow (135° < ϕ < 180°). We were able to match the HH 32A line profiles best with a bullet plowing into a medium moving +25 km s⁻¹ radially, and with an orientation angle 150°. Model and observed line profiles for HH 32A are presented together in Figures 5a–5e. The large shock velocity and oblique viewing angle for HH 32A cause the double-peaked model line profiles (§ IVb). The models fit the data reasonably well, with double-peaked profiles predicted for H α , [N II] λ 6583, and the red [S II] doublet. The [O III] λ 5007 line is observed to have a single broad peak, and the models also predict a more symmetrical profile for this line.

The models predict the high radial velocity peak to occur at somewhat larger velocities than is observed. The discrepancy could result due to the assumption of small cooling distances in the model (see § IIIc). This assumption becomes more suspect at large shock velocities. The cooling distance behind a 360 km s⁻¹ shock with preshock density 1000 cm⁻³ is 475 AU from equation (8). This distance corresponds to 1".6 at 300 pc, approximately one-third the size of the HH objects. The first effect of a larger cooling distance for the bullet model will be to shift the apex emission to lower radial velocity, precisely the observed discrepancy in Figure 5. The models predict the [S II] $\lambda 6731/6716$ ratio (which increases monotonically with density) to be somewhat larger for the high radial velocity peak than for the low radial velocity peak. The observed constancy of this ratio could also be a cooling distance effect, since the highest radial velocity gas (near the apex) should expand as the cooling distance grows, lowering the [S II] $\lambda 6731/\lambda 6716$ ratio for the high-velocity peak.

Since the low radial velocity peak outshines the high radial velocity peak for HH 32A, B, and C, these objects must be bullets. The peculiar HH 32D line profile agrees well with a stationary cloudlet model (Fig. 5f). If HH 32D is a cloudlet instead of a bullet, then the preshock density is that of the stellar wind, which is probably lower than the density of the ambient cloud (the preshock material in the bullet model). Hence, the cooling distance is larger for the cloudlet model, and we should observe a greater deviation from the model for HH 32D than HH 32A for the apex emission (which is near zero radial velocity for a stationary cloudlet). Figure 5f supports this hypothesis. HH 32D will also be fainter than the other knots (as observed) if its preshock density is lower.

From Table 4 we predict the following tangential motions for HH 32A, B, C, and D: 150 km s⁻¹, 240 km s⁻¹, 190 km s⁻¹, and 0 km s⁻¹. HH 32D should have no proper motion if it is indeed a shocked cloudlet as we suggest. The observed 202 km s⁻¹ proper motion for object B agrees well with the predicted value, but matching the 54 km s⁻¹ motion of HH 32A requires an orientation angle of 171° instead of 150° for $V_s = 360$ km s⁻¹. These flow parameters agree well with the position-velocity results of Solf, Böhm, and Raga (1986), and Raga and Böhm (1986) who found $V_s = 300$ km s⁻¹ and $\phi = 160^\circ$ for HH 32A. More precise proper motion measurements of HH 32A will clarify if a more oblique angle is indeed required for this object.

The ability of a single bow shock model to match the varied line profiles present in this region is strong evidence favoring the overall correctness of the model. How does the redshifted jet fit into this picture? A spectrum of the jet (Hartigan, Mundt, and Stocke 1986) revealed primarily $H\alpha$ emission. It is not clear how much, if any, of the $H\alpha$ in the jet is reflected from the

Fig. 5.—Model and observed line profiles for HH 32A and D. The observations were taken from Hartigan, Mundt, and Stocke (1986). For the HH 32A line profiles in (a)–(e), the model is a 360 km s⁻¹ bow shock with equilibrium preionization, shape A, preshock density 1000 cm^{-3} , bullet geometry with a medium moving outward 25 km s⁻¹ radially, $\phi = 150^{\circ}$, slit wider than the HH object, 12 km s^{-1} instrumental broadening, T = 30,000 K for [O III], and T = 10,000 K for the other lines. (f) employs the same model for HH 32D, but with $\phi = 30^{\circ}$ using a stationary cloudlet.

 $H\alpha$ emission line of AS 353A, but if the jet emission arises from shocks, then Tables 1 and 2 suggest low shock velocities with substantial preionization. Landau (1945) has shown that a weak shock must occur in the wake of a passing bullet, and the jet emission could arise from this shock. Alternatively, oblique shocks in a jet of material flowing outward in the bullet's wake would also contribute emission.

c) Cepheus A

A complex mixture of continuum peaks, masers, and molecular outflow characterizes the star formation region Cepheus A

(see Hartigan and Lada 1985 for a review). Heavy obscuration conceals the luminous $(2.5 \times 10^4~L_\odot)$; Evans et al. 1981) source(s) driving the molecular outflow (Rodríguez, Ho, and Moran 1980). An area of nebulae 1'.5 (0.3 pc for a 725 pc distance; Garmany 1973) west of the IR source contains 10 HH objects and two groups of reflection nebulae (Hartigan and Lada 1985). The HH objects are blueshifted even though they lie in the direction of the redshift molecular outflow (Lenzen, Hodapp, and Solf 1984), raising the possibility of differing driving sources for the CO outflow and HH emission. Highresolution H α and [N II] spectra of the HH objects (Hartigan

et al. 1986) reveal line profiles similar to HH 32; double-peaked profiles are evident in the spectra of knots E and S. The HH objects exhibit an extraordinary range of line widths, from nearly 500 km s⁻¹ (the largest for any HH object) for knot HW, to a mere 100–140 km s⁻¹ for knots A, F, and G. No flow orientation angle can be guessed a priori since no redshifted HH objects are seen, and no proper motions available. No line ratios have yet been measured for the HH objects either.

Values of MX and MN from the H α profiles for each object are reproduced in Table 4 using $V_{\rm lsr} = -12$ km s⁻¹ for Cepheus A (Torrelles *et al.* 1985b) and indicate a variety of shock velocities. The highest shock velocities (largest line widths) occur in objects HW (476 km s⁻¹), E (392 km s⁻¹), H (380 km s⁻¹), and S (355 km s⁻¹). These four knots are aligned roughly east-west and apparently define the flow's axis. The knots north of this axis, A, F, and G, have the smallest line widths (115 km s⁻¹, 100 km s⁻¹, and :134 km s⁻¹, respectively), while objects B, C, and D possess intermediate line widths.

The presence of double-peaked and highly asymmetrical line profiles for objects HW, E, H, and S demonstrates that HH 32A-D are not anomalous in this regard. Moreover, the maximum radial velocities seen in Cepheus A are near zero for each object except G. The emission from HH 32A-D also vanishes near zero radial velocity. The bow shock models show (§ IVa) that one extreme radial velocity should be near zero for an oblique flow. Such behavior is also apparent in the [O I] profiles of HH objects in M42 (Taylor et al. 1986), where one finds broad, asymmetrical line profiles that vanish near zero radial velocity and have a prominent low-velocity component. Double-peaked profiles occur for oblique ϕ only when V_s > 150 km s⁻¹, as observed in Cepheus A. The inferred orientation angles (Table 4) lie between 20° and 45° for all objects except G. Although MX and MN are somewhat uncertain for G, the emission from this object is definitely centered near zero radial velocity, indicating motion nearly in the plane of the sky.

Objects S, H, HW, and E must be bullets since the strongest emission occurs in the low radial velocity peak. A bow shock model of object S is shown in Figure 6 together with a high-resolution H α line profile from Hartigan *et al.* (1986). As for HH 32A, the position of the high radial velocity peak is not quite correct, perhaps due to the model's assumption of small cooling distances (§ Vb), but the model does agree qualitatively with the data. The largest predicted proper motions are 264 km s⁻¹ for H and 220 km s⁻¹ for S. Object S outshines the other knots and might be bright enough to be seen in the UV, where high-excitation lines like C IV λ 1549 should be visible. A comprehensive model for these objects awaits unambiguous identification of the exciting source and precise proper motion measurements of the HH objects.

d) HH 7-11

The B205 dark cloud lies 350 pc distant (Herbig and Jones 1983) and contains a variety of HH objects including a string of low-excitation knots labeled HH 7, 8, 9, 10A, 10B, and 11. The exciting star, SVS 13 (Strom, Vrba, and Strom 1976), has a luminosity of $66 L_{\odot}$ (Cohen, Harvey, and Schwartz 1985) and drives a bipolar molecular outflow (Snell and Edwards 1981). The Herbig-Haro objects are located in the blueshifted part of the flow. A dense torus aligned perpendicular to the string of HH objects apparently collimates the outflow (Hodapp 1984). The gas surrounding SVS 13 is centered at $+7.8 \text{ km s}^{-1} V_{\text{lsr}}$. Only HH 11 exhibits detectable proper motion; this object moves away from SVS 13 at 58 km s⁻¹ in the plane of the sky (Herbig and Jones 1983). Proper motion of HH 7 is more difficult to measure since this object is more extended than HH 11.

HH 7 and 11, along with HH 43, 34, and 47, make up a distinct class of low-excitation HH objects (see Böhm, Brugel, and Olmsted 1983; Böhm, Brugel, and Mannery 1980; Reipurth *et al.* 1986). These objects show [S II] λ 4072 and [N I] λ 5200 comparable to, or greater than, H β and have [S II]

Fig. 6.—H α line profile and bow shock model for object S in Cepheus A. The model is the same as the one displayed in Fig. 5, except here we employ bullet geometry with a stationary medium and $\phi = 45^{\circ}$.

 λ 6716/6731 and [O I] λ 6300/6363 fluxes exceeding H α . In addition, no [O III] λ 5007 emission is seen, the [N II] λ 6583/6548 lines are weak, and [C I] λ 9850/9823 can be as much as 6 times stronger than H β . The only lines present in the ultraviolet appear to be H₂, C II], [O II], and Mg II. A perusal of Table 1 reveals that these observed characteristics are all predicted accurately by the equilibrium planar shock models; specifically, the E20 and E30 models bracket the observations, with E30 fitting the data somewhat better (see also Table 3). The agreement between shock theory and observations indicates that emission from this peculiar class of low-excitation HH objects also arises from radiative shocks.

The low excitation spectra of HH 7 and 11 impose severe constraints on any bow shock model for these objects. Shock velocities of $\sim 30 \text{ km s}^{-1}$ imply similar line widths for a bow shock. The line profiles of HH 7-11 in Figure 7 are indeed narrower than those of HH 1 and 2, but at 120 km s⁻¹ (Table 4) they are still much too broad to arise from a 30 km s⁻¹ bow shock. One way to explain the low-excitation spectra and the broad-line profiles in a single model would be to have a cloudlet shock be responsible for the bulk of the observed emission while the radiating bow shock contributes only to a broad underlying pedestal. It is also possible that a 100 km s⁻¹ shock in molecular gas produces an emission-line spectrum resembling that of a much slower shock, since a substantial fraction of the postshock thermal energy is required to dissociate H₂ and additional thermal energy would be radiated away by the molecules.

The maximum radial velocity seen in the H α profile of HH 11 is negative (Fig. 7). This cannot be explained with a bullet ramming into a stationary medium or with a stationary cloudlet, since both these models have positive maximum radial velocities with respect to the driving star (§ IVa). Assuming the

Fig. 7.—H α line profiles of HH 7, 8, 10B, and 11 taken 1983 November 29 with the MMT echelle. The abscissa is radial velocity (km s⁻¹) with respect to SVS 13, the exciting star.

FWZI to arise from bow shock emission, we examine the possibility of an accelerated cloudlet model for HH 11. The radial velocity of a moving cloudlet would have to exceed 110 km s⁻¹ (blueshifted) to make HH 11 compatible with any cloudlet model. The 58 km s⁻¹ tangential motion implies a space velocity exceeding 125 km s⁻¹ for HH 11 with respect to SVS 13. Since the shock velocity for HH 11 is \sim 120 km s⁻¹, the emerging stellar wind from SVS 13 must exceed 245 km s⁻¹. Unless a highly variable stellar wind is invoked, such a large wind velocity contradicts observations of HH 7, 8, and 10B (Fig. 7). These objects exhibit narrow (\sim 100 km s⁻¹) line widths indicating low bow shock velocities, have low radial velocities, and show no detectable motion.

The velocities of HH 11 can also be explained by a bullet plowing into a medium which is already moving 110 km s⁻¹ radially. With this picture, HH 7 would be the first ejected bullet; it, and subsequent bullets, would evacuate a cavity into which stellar wind material could flow, thereby providing a moving medium for the next bullet.

The line profile of HH 7 is consistent with a bullet plowing into a stationary medium, and although the equations from \S IVa cannot be used to calculate an orientation angle due to the inferred contaminating cloudlet emission, the near-zero maximum radial velocity indicates that this object is angled considerably from the plane of the sky ($\phi \lesssim 45^{\circ}$). Such an oblique angle implies that any proper motions observed should be small, as is observed.

In summary, the emission from Herbig-Haro objects 7 through 11 appears to arise mainly from 20–30 km s⁻¹ shocks. The observed linewidths (100–120 km s⁻¹) are much too large for a 30 km s⁻¹ bow shock, however. A model including both the cloudlet shock and bow shock emission may explain both the low-excitation spectra and the large line widths. Molecular cooling not included in our calculations might also help to eliminate the discrepancy. Assuming the FWZI of the emission lines to arise from a stationary cloudlet or from a bullet plowing into a stationary medium leads to a direct contradiction for the HH 11 line profile. The only acceptable picture for the HH 7–11 region is a bullet model where a stellar wind follows the initial bullets (HH 7, 8, 10), producing a moving medium for subsequent bullets.

VI. SUMMARY

We have investigated the kinematics, geometry, and physical parameters of radiating bow shocks as applied to HH objects. Three grids of radiative planar shock models completed clearly illustrate the dependence of the line fluxes on shock velocity, preshock density, and the preshock ionization state. The bow shock models incorporate the planar results into bow shock geometry and predict the line fluxes, ratios, and profiles expected from HH objects.

Results show that a mixture of high-excitation and low-excitation lines is expected from a bow shock. Any low-excitation line profile can be used to estimate the shock velocity and orientation angle of a bow shock. The shock velocity equals the FWZI for radiating bow shocks independent of orientation angle, preshock density, bow shock shape, and preshock ionization state. Orientation angles can be inferred from the position of maximum and minimum radial velocity assuming either a bullet or stationary cloudlet model provided the velocity of the exciting star is known. Inclusion of thermal and instrumental broadening alters the formulae for shock velocity and orientation angle only slightly. Double-

peaked emission line profiles arise naturally from bow shocks for high (>150 km s⁻¹) shock velocities and oblique (0° < ϕ < 45°, 135° < ϕ < 180°) orientation angles. Line profiles for the cloudlet model are simply reflections of bullet profiles about the centroid radial velocity. The centroid radial velocity of a line profile does not equal the radial velocity of the HH object, since the radiating gas moves with respect to the obstacle.

The bow shock model has been applied to four regions containing HH objects. From the line profiles of HH 1 and 2, we infer shock velocities on the order of the observed proper motions, suggesting that these objects are bullets. The orientation angles obtained from the profiles indicate ejection in the plane of the sky, consistent with the location of HH objects on both sides of the exciting star. Using the 160 km s⁻¹ shock velocity deduced from the line profiles for HH 2H, the model reproduces the observed dereddened line ratios from the nearinfrared to the ultraviolet for most lines. The HH objects in Cepheus A and HH 32 show very broad, and in many cases double-peaked, line profiles, indicative of large shock velocities and oblique orientation angles. The radial velocity peak near zero is stronger for each double-peaked object except HH 32D. Hence, only HH 32D agrees with the shocked cloudlet model, with the other objects apparently bullets.

Emission from the extremely low excitation objects HH 7-11 appears to arise from 20-30 km s⁻¹ shocks. The much larger line widths of nearly 120 km s⁻¹ pose a severe dilemma for any model. A combination of bow and cloudlet shocks can in principle account for the linewidths and line ratios. The best

explanation for the observed radial velocities in HH 11 is a bullet shot into a moving medium.

Existing observations of HH objects such as line fluxes, line ratios, line asymmetries, double-peaked profiles, angular sizes, and proper motions provide numerous stringent constraints upon any model for HH emission. We have shown in this paper that a single unifying model—a radiating bow shock around a bullet—can explain most of the observations. The bullet model succeeds for objects with a wide range of shock velocities and orientations.

The bow shock models presented here could be improved with the inclusion of a cloudlet shock, molecular cooling, obstacle reddening, and more detailed preionization calculations. In addition, including a finite cooling distance in the calculations should modify the predicted line profiles somewhat when the shock velocity is large. It would be useful to develop a quantitative model for jet emission to see how this phenomenon relates to ejected bullets. Finally, more detailed investigation into the physics of bullet formation should be undertaken.

P. H. was funded by a NASA Graduate Research Fellowship during the course of this work. P. H. would like to thank C. Lada for his continuing support of the project and J. Stocke for assistance with the observations and useful comments on a preliminary draft of this paper. This research was supported in part by the Visitors Program of the Smithsonian Astrophysical Observatory.

Norman, C., and Silk, J. 1979, Ap. J., 228, 197.

REFERENCES

```
Binette, L., Dopita, M. A., and Touhy, I. R. 1985, Ap. J., 297, 476.
Böhm, K.-H., and Böhm-Vitense, E. 1984, Ap. J., 277, 216.
Böhm, K.-H., Brugel, E. W., and Mannery, E. 1980, Ap. J. (Letters), 235, L137.
Böhm, K.-H., Brugel, E. W., and Olmsted, E. 1983, Astr. Ap., 125, 23.
Böhm, K.-H., and Solf, J. 1985, Ap. J., 294, 533.
Böhm-Vitense, E., Böhm, K.-H., Cardelli, J. A., and Nemec, J. M. 1982, Ap. J., 262, 224.
Brugel, E. W., Böhm, K.-H., and Mannery, E. 1981, Ap. J. Suppl., 47, 117.
Brugel, E. W., Shull, J. M., and Seab, C. G. 1982, Ap. J. (Letters), 262, L35.
Cantó, J., and Rodríguez, L. F. 1980, Ap. J., 239, 982.
——. 1986, Rev. Mexicana Astr. Ap., in press.
Choe, S.-U., Böhm, K.-H., and Solf, J. 1985, Ap. J., 288, 338.
Cohen, M., Harvey, P. M., and Schwartz, R. D. 1985, Ap. J., 296, 633.
Cohen, M., Harvey, P. M., Schwartz, R. D., and Wilking, B. A. 1984, Ap. J., 278, 671.
Cox, D. P. 1972, Ap. J., 178, 143.
Cox, D. P., and Raymond, J. C. 1985, Ap. J., 298, 651.
Cudworth, K. M., and Herbig, G. H. 1979, A.J., 84, 548.
DeYoung, D. S., and Axford, W. I. 1967, Nature, 216, 129.
Dopita, M. A. 1978, Ap. J. Suppl., 37, 117.
Dopita, M. A., Binette, L., and Schwartz, R. D. 1982, Ap. J., 261, 183.
Edwards, S., and Snell, R. L. 1982, Ap. J., 261, 151.
Evans, N. J., II, et al. 1981, Ap. J., 244, 115.
Garmany, C. D. 1973, A.J., 78, 185.
Hartigan, P., and Lada, C. J. 1985, Ap. J. Suppl., 59, 383.
Hartigan, P., and Lada, C. J. 1985, Ap. J. Suppl., 59, 383.
Hartigan, P., Mundt, R., and Stocke, J., and Tapia, S. 1986, A.J., 92, 1155.
Hartmann, L., and Raymond, J. C. 1984, Ap. J., 276, 560.
Herbig, G. H., and Jones, B. F. 1981, A.J., 86, 1232.
——. 1983, A.J., 88, 1040.
Hodapp, K.-W. 1984, Astr. Ap., 141, 255.
Innes, D., Giddings, J. R., and Falle, S. A. E. G. 1986, in Workshop on Model Nebulae, ed. D. Péquinot (Paris: Observatoire de Paris), p. 153.
Landau, L. 1945, J. Phys. U.S.S. R., 9, 496.
Lenzen, R., Hodapp, K.-W., and Solf, J. 1984, Astr. Ap., 137, 202.
Luyten, W. J. 1971, The Hyades (Minneapolis: University of Minnesota
```

```
Péquinot, D. 1986, in Workshop on Model Nebulae, ed. D. Péquinot (Paris: Observatoire de Paris), p. 363.
Pravdo, S. H., Rodríguez, L. F., Curiel, S., Cantó, J., Torrelles, J. M., Becker, R. H., and Sellgren, K. 1985, Ap. J. (Letters), 293, L35.
Raga, A. C. 1986, Ph.D. thesis, University of Washington.
Raga, A. C., and Böhm, K.-H. 1985, Ap. J. Suppl., 58, 201.
——. 1986, Ap. J., 308, 829.
Raymond, J. C. 1979, Ap. J. Suppl., 39, 1.
Raymond, J. C., Black, J. H., Dupree, A. K., Hartmann, L., and Wolff, R. S. 1981, Ap. J., 246, 100.
Reipurth, B., Bally, J., Graham, J. A., Lane, A. P., and Zealey, W. J. 1986, Astr. Ap., 164, 51.
Rodríguez, L. F., Ho, P. T. P., and Moran, J. M. 1980, Ap. J. (Letters), 240, L149.
Rózyczka, M., and Tenorio-Tagle, G. 1985a, Astr. Ap., 147, 220.
——. 1985b, Acta Astr. 35, 213.
Sandford, M. T., II, and Whitaker, R. W. 1983, M.N.R.A.S., 205, 105.
Schwartz, R. D. 1978, Ap. J., 223, 884.
——. 1981, Ap. J., 243, 197.
——. 1983, Ann. Rev. Astr. Ap., 21, 209.
Schwartz, R. D., and Dopita, M. A. 1980, Ap. J., 236, 543.
Seab, C. G., and Shull, J. M. 1983, Ap. J., 275, 652.
Shull, J. M., and McKee, C. F. 1979, Ap. J., 227, 131.
Snell, R. L., and Edwards, S. 1981, Ap. J., 251, 103.
Solf, J., Böhm, K.-H., and Raga, A. C. 1986, Ap. J., 305, 795.
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: John Wiley and Sons).
Strom, S. E., Strom, K. M., Grasdalen, G. L., Sellgren, K., Wolff, S., Morgan, J., Stocke, J., and Mundt, R. 1985, A.J., 90, 2281.
Strom, S. E., Strom, K. M., Grasdalen, G. L., Sellgren, K., Wolff, S., Morgan, J., Stocke, J., and Mundt, R. 1985, A.J., 90, 2281.
Strom, S. E., Vrba, F. J., and Strom, K. M. 1976, A.J., 81, 314.
Taylor, K., Dyson, J. E., Axon, D. J., and Hughes, S. 1986, M.N.R.A.S., 221, 155.
Tenorio-Tagle, G., and Rózyczka, M. 1984, Astr. Ap., 141, 351.
Torrelles, J. M., Cantó, J., Rodríguez, L. F., Ho, P. T. P., and Moran, J. M. 1985a, Ap. J. (Letters), 294, L117.
Torrelles, J. M., Ho, P. T. P., Rodríguez, L. F., and Cantó, J. 1985b, Ap. J., 288, 200.
```

PATRICK HARTIGAN: Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721

LEE HARTMANN and JOHN RAYMOND: Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138