AIS 系统的构成及信息处理

史 键

(长江南京通信管理局, 江苏 南京 210011)

摘 要: 文中对 AIS 系统的主要功能及组成部分进行了简单的介绍,详细的分析了 AIS 数据信息的内容,格式和解码,对解码流程进行深入研究,通过实例对 AIS 信息的解析过程进行分析。

关键词: AIS; 系统构成; SOTDMA; 内容与分类; 信息解析

中图分类号: U698

文献标识码: A

文章编号: 1006-7973 (2010) 10-0091-02

一、引言

船 舶 自 动 识 别 系 统 (Automatic Identification System) AIS 在航海安全与通信中体现出来的强大功能和良好的发展前景,已被很多业内人士熟知。AIS 是国际电信联盟 (ITU)、国际海事组织 (IMO) 和国际航标协会 (IALA) 等国际组织共同研究开发的,可用于水上交通联络和指挥的岸与船、船与岸、船与船之间的识别通信系统。

二、AIS 系统构成

AIS 系统主要由船台设备和岸台系统两部分组成。

1 躯么沿名

船台设备是一种 VHF 海上頻段的船载广播式应答器。典型的 AIS 船台是由 1 台 VHF 发射机、2 台 VHF TDMA 接收机、1 台 VHF DSC 接收机、1 台带有标准的船用电子通信接口 (IED 61162/NMEA0183/200) 的信息处理控制装置以及各种必要的传感器组成。船舶配备了 AIS 以后,在向外播发本船航行信息的同时还可以接收到 VHF 覆盖范围以内其他船舶的航行信息以及基站发送的信息。

2. 岸台系统

AIS 基站是 AIS 通信网的接收和发射装置,在 AIS 基站范围内实时采集所有 AIS 船台的动静态信息并将其发送给主基站,同时将主基站的指令发送给水域内的 AIS 船台。

一个典型的岸台由 VHF TDMA 收发机、VHF DSC 接收机、基站控制器 (BSC)、网络设备、控制软件和应用软件组成。AIS 基站收发机遵从 ITU-RM.1371 建议案 «AIS 技术特性标准》,可安装在 VIS 系统中或作为 AIS 网络的核心单元。借助基站控制器 (BSC),基站收发机可以相互连接实现对海岸线或者内河的覆盖。

三、AIS 信息处理

AIS 信息采集

用户接口采用 RS422 通信协议, 先将信号经过 RS422/R S232 转换器转换, 转换后的信号送入 PC 机串口,由 PC 机完成信号的采集和处理。

2. SOTDMA 消息结构

AIS 系统的通信采用的是自组织时分多址技术 (SOTDMA)。SOTDMA 是实现 AIS 自主连续数据通信的 核心技术,在自组织时分多址技术中,信道时间被分为固定 长度的时间间隔 (每一个间隔称为一帧)。一个时帧包括一组 时隙,这些时隙在时域上互不重叠。

AIS 中每一帧的长度为 1min,被划分为 2250 (0—2249) 个时隙,每个时隙长 26.67ms,工作于 87B (161.975mhz)、88B (162.025mhz)两个信道,传输带 宽为 25khz 或 12.5khz,信道传输速率为 9,600bps,所以每个时隙为 256 比特且每一帧的开始和结束以卫星提供的世界时 UTC 时间为标志。

3. AIS 信息的内容与分类

AIS 信息的内容主要包括: 船舶向基站和其他船舶播发的消息, 岸台管理中心向船舶播发的信息。

- (1) 静态信息:海上移动业务标识码 (MMSI),呼号, 船名,船长,船宽,船舶类型,船上定位天线的位置等。
- (2) 动态信息: 具有精度指示和完整性状态的船位,对地速度 (SOG),对地航向,航行状态(如失控(NUC)、锚泊等),转向率,UTC时间(由接收设备生成日期)等。
- (3) 航行信息: 船舶吃水,目的港,預到时间 (ETA), 危险货物类型等。
 - (4) 安全信息: 有关船舶航行相关的安全信息。

以上不同类型的信息以不同的时间周期进行播发。

按照 ITU-R M.1371 的有关规定和具体的信息内容, AIS 信息分为 22 种不同的信息报文,包括传输信息、支持各种其他系统或数据链路(包括消息确认、询问、分配、管理命令)的功能等。主要消息的类型及说明如表 1 所示:

表 1 主要消息的类型及说明

消息标识	名称	说明			
1, 2, 3	船位报告	自主的、分配的或轮询响应			
4	基地台报告	基地台的位置、UTC /日期和当前时隙号			
		定时的静态数据和与航次相关			
5	静态和与航次相关数据	的船舶数据报告			
6, 7, 8	二进制信息	编址、确认或广播			
	and the second second second	仅为搜寻与羧助中运行的机截台			
9	标准搜赖飞机位置报告	站使用的位置报告			
10, 11	UTC/日期	询何和响应			
12、13 、14	安全相关信息	寻址、确认或广播			
15	讷问	查询具体的消息类型			

收稿日期: 2010-08-04

作者简介: '史 健 (1982-), 长江南京通信管理局助理工程师, 研究方向为 AIS 硬件以及 AIS 软件开发。

续表1				
消息标识	名称	说明		
16	分配模式指令	由主管部门用基地台指定某种报告行为		
17	DGNSS 广播二进制信息	由基地台提供的 DGNSS 修正		
18、19	B类设备位置报告	标准及扩展报告		
20	数据链管理信息	为基地台预留的时隙		
21	助航报告	助航设备的位置和状态报告		
22	信道管理	基地台关于信道和收发机状态的管理		

4. AIS 信息解码

AIS 输出的信息符合ITU-R M. 137121 和IEC6116222 协议, AIS 的信息报文分为明码和暗码。明码以"\$"字符开始,可以直接看出其代表的意思。IEC(国际电工委员会)对明码有明确的字符数限制(一个句子加终止符不超过82个字符)。暗码是封装的信息包,以"!"开头。其格式为:

! AACCC, X, Y, Z, U, C-C, V*HH <CR><LF> 其中 AACCC 为标识符, 指明本条句子封装的背景信息, X, Y, Z 分别表示发送这一信息需要的句子总数 (1-9)、本句的句子序数 (1-9) 和连续信息的识别 (0-9); U表示 A IS 信道号; C-C 为封装信息, 为数据部分; V表示填充的 BIT 数, 因为封装的字符需要是 6 的整数倍, 若不满足需填充 0-5 个字符; HH表示检验字段。

- >!AIVDM, 1, 1,, B, 169L7WP01K8cdWNB2P4sUa 9j0@Qi, 0*43

比如,以上数据是 AIS 设备接收到的 AIS 信息数据,这 些数据都是经过数字化或压缩编码,要获得其中包含的文字 信息,需要进行解码。这些封装电文的字符是符合规定的有 效字符,共 64 个。将这 64 个字符与其对应的 6bit 二进制 字段一一对应,就可以方便的解析出这些暗码。

表 2 8bitASCII 码转 6bit 二进制表

Ī	0	000000	=	001101		011010	w	100111	1	110100
_	1	000001	>	001110	K	011011	•	101000	m	110101
	2	000010	?	001111	L	011100	2	101001	n	110110
	3	000011	@	010000	М	011101	b	101010	o	110111
	4	000100	A	010001	Ń	011110	c	101011	p	111000
	5	000101	В	010010	0	011111	đ	101100	q	111001
	6	000110	С	010011	P	100000	e	101101	r	111010
	7	000111	D	010100	Q	100001	f	101110		111011
	8	001000	E	010101	R	100010	g	101111	t	111100
	9	001001	F	010110	s	100011	h	110000	u	111101
	:	001010	G	010111	т	100100	i	110001	v	111110
	;	001011	Н	011000	U	100101	j	110010	w	111111
	<	001100	I	011001	v	100110	k	110011		

现在根据表 2 来解析例子中的第一条信息:

>!AIVDM, 1, 1,, B, 169L7WP01K8cdWNB2P4sUa9j0@Qi, 0*43

根据封装数据部分的第一位可知消息识别码为 1, 根据 其消息结构 (见表 3), 对封状信息进行解析。

表 3 消息 1, 2, 3 的消息结构

参数	比特数	说明
消息识别码	6	消息 1, 2或 3 的标识符
转发指示符	2	消息被转发的次数,默认=0;3=不再转发
用户识别码	30	MMSI 号码
		0=在航(主机推动); 1=锚泊; 2=失控; 3=操纵受限;
		5=靠泊;6=搁浅;7=捕捞作业;8=靠帆船提供动力;
航行状态	4	9=为将来 HSC 航行状态修正所保留;
		10=为将来 WIG 航行状态修正所保留;
		11-14=为将来使用保留;15=未定义、缺省
特向車 ROT	8	ROT 为转向率(720 度/min)由外部传感器显示
对地航速	10	对地航途,以 1/10Kn 距为单位
船位精确度	1	1=高;0=低。
经度	28	经度
纬度	27	纬度
对地航向	12	对地航向
真航向	9	度数 (0~359)
时间标记	6	报告发出时的 UTC 时间
为地区性应用所保留	4	保留由地方政府管理部门定义
备用位	1	未用,应设为 0
RAIM 标志	1	电子定位设备的 RAIM 标志 ()=未使用=默认; 1=使用
通信状态	19	SOTDMA 或者 ITDMA 通信状态
总比特数	168	

封装的数据转换为 6 位的二进制数据后,根据表中对各 参数分配的比特数可以得到船舶船位报告的相关数据。

通过分析各消息的消息结构,可以得到船舶其他的相关信息,如船舶的 IMO 号码,船名,呼号,船舶和载货类型,船舶的长宽,目的地等关于船舶静态和航行相关的信息。

5. AIS 信息的显示

以上内容均是针对代码进行分析的。对于使用和操作者, 需要一个平台将这些数据以标绘船位的电子海图和显示船舶 的各种信息的文字的形式显示出来。可以通过编程处理各消 息间的转换,最终达到对船舶动态的监控。

四、结束语

AIS 系统大大增强了对船舶的识别能力,为水上搜救中心提供了便利,对提高航行安全和效率,保护水域环境发挥了重要作用。相信随着技术的提高和法规的不断完善,AIS 技术必将得到更大的应用和发展,把我们带到一个新的航运时代。

参考资料

- [1] Technical characteristics for a universal shipborne automatic identification system using time division multiple access in the VHF maritime mobile band Rec. ITU-R M.1371-1 1998-2001
- [2] Single talker and multiple listeners-Extra requirements to IEC61162-1 for the UAIS. IEC/PAS61162-100 2002, 04.
- [3]朱金发. 船载自动识别系统手册[M]. 人民交通出版社, 2005, 06.
- [4] 黄丽卿, 胡稳才, 邵哲平. AIS 輸出數据包的解包技术研究[]]. 集美大学学报(自然科学版), 2005, 10, (1): 37241.