ps2

Boyu Chen

2023-04-24

Question 1

```
source("ps2_q1_fn.R")
```

In ps2_q1_fn.R, I write some functions to help my analysis, I will show them in the appendix.

read data

After reading the data, I aggregated the presence of each firms, and called it total.N. Then we select the second to eighth columns of the data, called it true.n And I write a function get_XX_and_Z.mat_and_Y(), it is nothing but just for saving space and generate XX, Z_mat and Y. Where XX is an n.mktx3 matrix, Z_mat is a n.mktx12 matrix, Y is a n.mktx1 vector.

```
XX = \begin{bmatrix} 1 & \text{marketdistance} & \text{marketsize} \end{bmatrix} Z = \begin{bmatrix} Z1 & Z2 & Z3 & Z4 & Z5 & Z6 \end{bmatrix} Y = (total.N_1, total.N_2, \dots, total.N_{n.mkt})
```

In XX, we have 2742 rows, each row recorded the "constant term", "market distance" and "market size" for market i, i =1,..., 2742 In Z, we have 2742 rows, for each row we have [z1, ..., z6] and z1 has 2 elements, one is "market presence" and the other is "min distance from hub" for firm 1. Similarly, z2,...,z6 have also 2 elements and stand for the same meaning. In Y, we have 2742 rows, and each row recorded the total number of the firms entered the market.

ordered probit

When we conduct ordered probit, we only consider the market characteristics and the number of entered firms ,so the profit equation is

$$\pi_i(N) = X_i\beta + \delta ln(N) + u_{i0}$$

Where X_i is the market characteristics and N is the potential number of entered firms in the market. Let N_i^* denote the actual number of entered firms, we can inference the profitability of each firm by calculate the conditional probability given N_i . For the case $N_i = 0$, we can infer that no any potential firm can earn money in the market i. Thus, the probability of $N_i^* = 0$ is

$$P(N_i^* = 0) = P(\pi_i(1) \le 0) = P(X_i\beta - \delta \ln(1) + u_{i0} \le 0) = \Phi(-X_i\beta)$$

For the case $N_i = 6$, we can infer that all firms can earn money in the market i. Thus, the probability of $N_i^* = 6$ is

$$P(N_i^* = 6) = P(\pi_i(6) \ge 0) = 1 - P(\pi_i(6) \le 0) = 1 - \Phi(-X_i\beta + \delta \ln(6))$$

For the rest of cases, $N_i = 1, 2, ..., 5$, the probability is

$$P(N_i^* = N_i) = \Phi(-X_i\beta + \delta \ln(N_i + 1)) - \Phi(-X_i\beta + \delta \ln(N_i))$$

And the log-likelihood function is

$$\mathcal{L} = \sum_{i=1}^{2742} \sum_{k=0}^{6} \mathbf{1}_i(k) ln(P(N_i^* = k))$$

In like_oprobit, we calculate the log-likelihood for the above problem.

```
like_oprobit<- function(init){</pre>
    XX <- XX %>% as.matrix()
    beta.mat <- init[1:3] %>% as.matrix(, ncol=1)
    delta <- init[4]</pre>
    f <- 0
    for (i in 1:n.mkt){
        if (Y[i] == 0){
            p = pnorm(-XX[i,]%*% beta.mat)
        }
        else if (Y[i] == 6){
            p = 1 - pnorm(-XX[i,] %*% beta.mat + delta*log(Y[i]))
        }
        else{
              = pnorm(-XX[i,] %*% beta.mat + delta*log(Y[i]+1)) -
                 pnorm(-XX[i,] %*% beta.mat + delta*log(Y[i]))
        }
    }
    f \leftarrow f - log(p)
    return(f)
}
```

```
set.seed(1234)
init <- c(1,1,1,1)
fit <- optim(fn = like_oprobit, par = init, method = "BFGS")</pre>
```

```
par_df <- data.frame(value = fit[["par"]])
rownames(par_df) <- c("b0", "b1", "b2", "d")
kable(par_df)</pre>
```

	value
b0	1.648658
b1	1.587684
b2	1.561012
d	12.974703

MSM

We consider the firm specific characteristic (Z_{ik}) . The profit equation become

$$\pi_i(N) = X_i\beta + Z_{ik}\alpha + \delta ln(N) + \sigma u_{ik} + \rho u_{i0}$$

Where $\sigma = \sqrt{1 - \rho^2}$, Thus, we have

$$\pi_i(N) = X_i \beta + Z_{ik} \alpha + \delta \ln(N) + \sqrt{1 - \rho^2} u_{ik} + \rho u_{i0}$$

For firm k, the simulated profit is

$$\hat{\pi}_{ik}(N, \hat{u}_i) = X_i \beta + Z_{ik} \alpha + \delta ln(N) + \sqrt{1 - \rho^2} \hat{u}_{ik} + \rho \hat{u}_{i0}$$

That is, we generate \hat{u}_{ik} and \hat{u}_{i0} from

$$u_{i0}, u_{i1}, ..., u_{ik} \stackrel{i.i.d.}{\sim} N(0, 1)$$

and use the simulated error term to calculate the simulated profit $\hat{\pi}_{ik}(N, \hat{u}_i)$.

An unbiased pf the expected number of firms is

$$\hat{n}(W_i, \theta, \hat{u}_i) = \max_{0 \le n \le K_i} [n : \#k : \hat{\pi}_{ik}(N, \hat{u}_i) \ge 0 \ge n]$$

Averaging across T draws gives

$$\hat{N}(W_i, \theta, \{\hat{u}_i^t\}) = \frac{1}{T} \sum_{t=1}^{T} \hat{n}(W_i, \theta, \hat{u}_i^t)$$

The prediction error for market i is

$$v_{i0}(N_i^*, W_i, \theta) = N_i^* - \hat{N}(W_i, \theta, \{\hat{u}_i^t\})$$

The moment condition for MSM is

$$E[v_{i0}(N_i^*, W_i, \theta)|W_i, \theta = \theta^*] = 0$$

The sample analog of moment condition is

$$g_n = \frac{1}{n} \sum_{i=1}^{2742} \hat{N}_i X_i$$

$$g_n = \frac{1}{n} \sum_{i=1}^{2742} \begin{bmatrix} \hat{N}_i X_i & \hat{N}_{i1}[X_i Z_{i1}] & \hat{N}_{i2}[X_i Z_{i2}] & \hat{N}_{i3}[X_i Z_{i3}] & \hat{N}_{i4}[X_i Z_{i4}] & \hat{N}_{i5}[X_i Z_{i5}] & \hat{N}_{i6}[X_i Z_{i6}] \end{bmatrix}^T$$

Where \hat{N}_{ik} , k = 1, ..., 6 are scalar, X_i is a row vector with 3 elements, Z_{ik} is row vector with 2 elements. Thus, the dimension of g_n \$ is 33×1 vector.

$$\hat{\theta}_{MM} = argmin_{\beta}g_n(\theta)'g_n(\theta)$$

```
T <- 1
set.seed(2048)
init.param = c(1, 1, 1.5, -1, 2, 2.5, 1.5)
msm.fit <- optim(fn = obj.fn, par = init.param, method = "BFGS")

par_df <- data.frame(value = msm.fit[["par"]])
rownames(par_df) <- c("a1", "a2", "b0", "b1", "b2", "d", "rho")</pre>
```

	value
a1	30.003195
a2	-6.239594
b0	-12.562804
b1	4.546098
b2	-2.824197
d	-4.765315
$_{\mathrm{rho}}$	-9.678895

Question 2

kable(par_df)

DGP

```
# DGP
set.seed(123)
x <- c(rnorm(3000, 20, 5), rnorm(2000, 10, 3))
df <- data.frame(x = x)</pre>
```

Plot histogram

Histogram of Mixed Vector

init param

```
mu <- c(8, 15)
sigma <- c(5, 5)
pi <- c(0.5, 0.5)
```

functions

```
# E-step
estep <- function(x, mu, sigma, pi) {
    n <- length(x)
    k <- length(mu)
    post <- matrix(0, n, k)
    for (i in 1:n) {
        for (j in 1:k) {
            post[i, j] <- dnorm(x[i], mu[j], sigma[j]) * pi[j]
        }
        post[i, ] <- post[i, ] / sum(post[i, ])
    }
    return(post)
}</pre>
```

```
# M-step
mstep <- function(x, post) {</pre>
    n <- nrow(post)</pre>
    k <- ncol(post)</pre>
    mu <- numeric(k)</pre>
    sigma <- numeric(k)</pre>
    pi <- numeric(k)</pre>
    for (j in 1:k) {
        mu[j] <- sum(post[, j] * x) / sum(post[, j])</pre>
        sigma[j] \leftarrow sqrt(sum(post[, j] * (x - mu[j])^2) / sum(post[, j]))
        pi[j] <- sum(post[, j]) / n</pre>
    return(list(mu = mu, sigma = sigma, pi = pi))
}
# EM
em <- function(x, mu, sigma, pi, tol = 1e-6, maxiter = 100) {
    loglik <- numeric(maxiter)</pre>
    for (iter in 1:maxiter) {
         # E-step
        post <- estep(x, mu, sigma, pi)</pre>
         # M-step
        params <- mstep(x, post)</pre>
        # update parameters
        mu <- params$mu
        sigma <- params$sigma
        pi <- params$pi
         # calculate log-likelihood
        loglik[iter] <- sum(post[,1]* log(pi[1]) + dnorm(x, mu[1], sigma[1], log=TRUE)+</pre>
                                   post[,2]* log(pi[2]) + dnorm(x, mu[2], sigma[2], log=TRUE))
         # check convergence
         if (iter > 1 && abs(loglik[iter] - loglik[iter - 1]) < tol) {</pre>
             break
        }
    }
    return(list(mu = mu, sigma = sigma, pi = pi, loglik = loglik[1:iter]))
}
```

EM Result Table

```
result <- em(x, mu, sigma, pi)
res_df <- data.frame(mu = result$mu, sigma = result$sigma, pi = result$pi)
rownames(res_df) <- c('x1', 'x2')
kable(res_df)</pre>
```

	mu	sigma	pi
$\overline{x1}$	9.927575	2.960945	0.3983197
x2	20.042762	4.986873	0.6016803

EM Result Histogram

```
df$y <- result$pi[1]*dnorm(df$x, mean = result$mu[1], sd = result$sigma[1])
df$z <- result$pi[2]*dnorm(df$x, mean = result$mu[2], sd = result$sigma[2])

ggplot(df, aes(x = x)) +
    geom_line(aes(y = y), color = "blue") +
    geom_line(aes(y = z), color = "red") +
    geom_histogram(aes(y = after_stat(density)), bins = 50, alpha = 0.5) +
    theme_minimal()</pre>
```


Appendix: Functions for Question 1

```
get_XX_and_Z.mat_and_Y <- function(...){
    XX <<- dat2[, market.regressors]

Z1 <<- dat2[, firm.regressors.i]
    Z2 <<- dat2[, firm.regressors.i +1]
    Z3 <<- dat2[, firm.regressors.i +2]
    Z4 <<- dat2[, firm.regressors.i +3]
    Z5 <<- dat2[, firm.regressors.i +4]
    Z6 <<- dat2[, firm.regressors.i +5]</pre>
```

```
Z.mat <<- cbind(Z1, Z2, Z3, Z4, Z5, Z6)
           Y <<- dat2$N
           true.n <<- dat2 %>% select(airlineAA:N)
}
draw_u <- function(...){</pre>
           u_ik <<- matrix(rnorm(n.mkt * 6), ncol=6)</pre>
           u_i0 <<- rnorm(n.mkt)</pre>
}
like_oprobit<- function(init){</pre>
           beta.mat <- init[1:3]</pre>
           delta <- init[4]</pre>
           f <- 0
           for (i in 1:n.mkt){
                       if (Y[i] == 0){
                                  p = pnorm(-t(XX[i,])%*% beta.mat)
                       else if (Y[i] == 6){
                                  p = 1 - pnorm(-t(XX[i,]) %*% beta.mat + delta*log(Y[i]))
                       else{
                                  p = pnorm(-t(XX[i,]) %*% beta.mat + delta*log(Y[i]+1)) - pnorm(-t(XX[i,]) %*% beta.mat + delta*log(Y[i,]+1)) - pnorm(-t(XX[i,]) %*% beta.mat + delta*log(Y[i,]+1)) - pnorm(-t(XX[i,]) %*% beta.mat + delta*log(Y[i,]+1)) - pnorm(-t(XX[i,]+1)) - pnorm(-t(X
           }
           f <- f -log(p)
single.sim.process <- function(A, B, d, rho){</pre>
           n_pred <- matrix(nrow=n.mkt, ncol=7)</pre>
           for (mkt.i in 1:n.mkt){ # 1:n.mkt
                       Z <- Z.mat[mkt.i, ] %>% as.numeric() %>% matrix(ncol = 2, byrow = TRUE)
                      rho <- 1 / (1 + exp(-rho)) # keep rho between 0 and 1
                       for (n.try in 0:6){
                                  profit <- Z %*% A + sqrt(1-rho^2) * u_ik[mkt.i, ] + as.numeric((XX[mkt.i, ] %>% as.numeric(
                                  total.in <- sum(profit > 0)
                                  if (total.in < n.try){</pre>
                                              n_pred[mkt.i, 7] <- n.try - 1</pre>
                                              n_pred[mkt.i, 1:6] <- is.in</pre>
                                              break
                                  is.in <- as.numeric(profit > 0)
                                  if (total.in == 6 & n.try == 6){
                                              n_pred[mkt.i, 7] <- n.try</pre>
                                              n_pred[mkt.i, 1:6] \leftarrow is.in
                                  }
```

```
return(n_pred)
get.n_hat <- function(A,B,d,rho){</pre>
    container <- matrix(0, nrow=n.mkt, ncol=7)</pre>
    for (t in 1:T){
         draw_u()
         container <- container + single.sim.process(A,B,d,rho)</pre>
    n_hat<- container / T</pre>
    return(n_hat)
}
pred.error <- function(n_hat){</pre>
    v \leftarrow true.n - n_hat
    return(v)
}
g_n.fn <- function(v){</pre>
    v <- as.matrix(v)</pre>
    E_vox = v[,7] * xx
    E_v1Z = v[,1] * cbind(XX, Z1)
    E_v2Z = v[,2] * cbind(XX, Z2)
    E_v3Z = v[,3] * cbind(XX, Z3)
    E_v4Z = v[,4] * cbind(XX, Z4)
    E_v5Z = v[,5] * cbind(XX, Z5)
    E_v6Z = v[,6] * cbind(XX, Z6)
    v_i_hat <- cbind(E_v0X, E_v1Z, E_v2Z, E_v3Z, E_v4Z, E_v5Z, E_v6Z)</pre>
    g_n <- colMeans(v_i_hat)</pre>
    return(g_n)
}
obj.fn <- function(para){</pre>
    A <- para[1:2] %>% as.matrix()
    B <- para[3:5] %>% as.matrix()
    d <- para[6]</pre>
    rho <- para[7]
    n_hat <- get.n_hat_parallel(A,B,d,rho, T, num_cores = 4)</pre>
    v <- pred.error(n_hat)</pre>
    g_n \leftarrow g_n.fn(v)
    mom <- t(g_n) %*% g_n
    return(mom)
}
```