Teacher's Signature:	
Date:	

Fig. 01

United International University

Name: _____ ID: ____

Section: _____ Batch: _____ Date: _____

Experiment No. 08

Name of the Experiment: Determination of the moment of inertia of the given disc using Torsion pendulum by the method of oscillations (Dynamic Method).

Theory:

A body suspended by a thread or wire which twists first in one direction and then in the reverse direction, in the horizontal plane is called a torsional pendulum. The first torsion pendulum was developed by Robert Leslie in 1793. A simple schematic representation of a torsion pendulum is given here, Fig. 01.

If a heavy body is supported by a vertical wire of length l and radius r so that the axis of the wire passes through its center of gravity, and if the body is turned through an angle and released, it will execute torsional oscillations about a vertical axis. If, at any instant, the angle of twist is θ , the moment of the torsional couple exerted by the wire will be,

$$\frac{n\pi r^4}{2l\theta} = C\theta \dots \dots (1)$$

Where, $\frac{n\pi r^4}{2l} = C$ is a constant and n is the modulus of rigidity of the material of the wire.

Therefore, the motion is simple harmonic and of fixed period.

$$T = 2\pi \sqrt{\frac{I}{C}} \dots \dots (2)$$

Where, *I* is the moment of inertia of the body.

From equations (1) and (2), we have,

$$T^2 = \frac{4\pi^2 I}{C} = \frac{8\pi I}{nr^4}l$$
 Or, $n = \frac{8\pi I}{T^2r^4}l$ dynes/cm²

Note: For a cylindrical object, having mass M and radius a, the moment of inertia is given as, $I = \frac{1}{2}Ma^2$

Now, let I_0 be the moment of inertia of the disc alone and I_1 & I_2 be the moment of inertia of the disc with identical masses at distances d_1 & d_2 respectively. If I_1 is the moment of inertia of each identical mass about the vertical axis passing through its centre of gravity, then

$$I_1 = I_0 + 2 I^1 + 2md_1^2 \dots (3)$$

$$I_2 = I_0 + 2I^1 + 2md_2^2 \dots (4)$$

$$I_2 - I_1 = 2m(d_2^2 - d_1^2)..........(5)$$

Physics Laboratory

But from equation (2),

Fig.02: A torsional pendulum with disc.

$$T_0^2 = 4\pi^2 \frac{I_0}{C}$$
....(6)

$$T_1^2 = 4\pi^2 \frac{I_1}{C}$$
....(7)

$$T_2^2 = 4\pi^2 \frac{I_2}{C}$$
....(8)

$$T_2^2 - T_1^2 = \frac{4\pi^2}{C}(I_2 - I_1)....(9)$$

Where T_0 , T_1 , T_2 are the periods of torsional oscillation without identical mass, with identical pass at position d_1 , d_2 respectively. Dividing equation (6) by (9) and using (5),

$$\frac{T_0^2}{\left(T_2^2 - T_1^2\right)} = \frac{I_0}{\left[I_2 - I_1\right]} = \frac{I_0}{2m\left(d_2^2 - d_1^2\right)}....(10)$$

Therefore, the moment of inertia of the disc using identical masses,

$$I_0 = 2m(d_2^2 - d_1^2) \frac{T_0^2}{(T_2^2 - T_1^2)} \dots (11)$$

Procedure for Simulation

- 1. The radius of the suspension wire is measured using a screw gauge.
- 2. The length of the suspension wire is adjusted to suitable values like 0.3m, 0.4m, 0.5m,.....0.9m, 1m etc.
- 3. The disc is set in oscillation. Find the time for 20 oscillations twice and determine the mean period of oscillation ' T_0 '.
- 4. The two identical masses are placed symmetrically on either side of the suspension wire as close as possible to the centre of the disc, and measure d₁ which is the distance between the centres of the disc and one of the identical masses.
- 5. Find the time for 20 oscillations twice and determine the mean period of oscillation 'T₁'.
- 6. The two identical masses are placed symmetrically on either side of the suspension wire as far as possible to the centre of the disc, and measure d₂ which is the distance between the centres of the disc and one of the identical masses.

Physics Laboratory

- 7. Find the time for 20 oscillations twice and determine the mean period of oscillation 'T₂'.
- 8. Find the moment of inertia of the disc using the given formulae.

Apparatus:

- A uniform wire
- Two identical cylindrical masses
- Suitable clamp
- Stopwatch
- Screw gauge
- Given torsional pendulum
- Vernier scale
- Meter scale etc.

Experimental Data:

- (A) Mass of each identical masses, m =
- (B) Length of the suspension wire, l =
- (C) Radius of the suspension wire, r =
- and $d_2=$ (D) $d_1 =$

(E) Radius of the disc, a =

- (F) Mass of the disc or cylinder, M=
- (G) Moment of Inertia of the cylinder (using simulator), $I = \frac{1}{2}Ma^2 =$
- (H) Table for the time period, T

	· /			e time p											1
		Time for 20 oscillations (s)													
No. of obs.	Length of the suspen sion wire, <i>l</i> (cm)	Without mass (to s)			With mass at d ₁ (t ₁ s)			With mass at d ₂ (t ₂ s)			Period of oscillation (s)			$T_0^2/$ $(T_2^2-T_1^2)$	Mean $T_o^2/(T_2^2-T_1^2)$
		1 (s)	2 (s)	Mea n (s)	1 (s)	2 (s)	Mea n (s)	1 (s)	2 (s)	Mean (s)	T _o (s)	T ₁ (s)	T ₂ (s)		
1	30														
2	40														
3	50														
4	60														
5	70														
6	80														

Calculation:

$$T_0 = \dots s$$

$$T_1 =s$$

$$T_2 = \dots s$$

Moment of inertia of the given disc is,
$$I_0 = 2m({d_2}^2 - {d_1}^2) \frac{{T_0}^2}{({T_2}^2 - {T_1}^2)} =$$

Physics Laboratory

Difference = [(Experimental Result - Theoretical Result)/Theoretical Result] x 100% =
Accuracy= 100% - % Difference =
Result:
The moment of inertia of the given disc is, $I_0 =$
Discussions:
Q: How do the length and diameter of the wire affect the period of oscillation of a torsional pendulum?
Q: What type of oscillation did you observe in this experiment? Explain.
Q: On what factors does the time period of oscillation depend?
Q: Does the period of oscillation depend on the amplitude of oscillation of the cylinder?

Physics Laboratory
Q: How will the period of oscillation be affected if the bob of the pendulum be made heavy

Q: On what factors does the degree accuracy of the result depend?