Finite Volume Methods for Hyperbolic Problems

Approximate Riemann Solvers

- HLL method
- Linearized Jacobian approach
- Roe solvers
- Shallow water example
- HLLE method and positivity
- Harten-Hyman entropy fix

Riemann Problems and Jupyter Solutions Theory and Approximate Solvers for Hyperbolic PDEs

David I. Ketcheson, RJL, and Mauricio del Razo

General information and links to book, Github, Binder, etc.: bookstore.siam.org/fa16/bonus

View static version of notebooks at: www.clawpack.org/riemann_book/html/Index.html

In particular see: Shallow_water_approximate.ipynb

For flux-differencing methods: Compute approximation to flux at interface between cells.

Obtain high resolution via higher-order time stepping with flux limiter.

For flux-differencing methods: Compute approximation to flux at interface between cells.

Obtain high resolution via higher-order time stepping with flux limiter.

For wave-propagation algorithm: Approximate true Riemann solution by set of waves consisting of finite jumps propagating at constant speeds.

Can then apply high-resolution wave limiters.

For flux-differencing methods: Compute approximation to flux at interface between cells.

Obtain high resolution via higher-order time stepping with flux limiter.

For wave-propagation algorithm: Approximate true Riemann solution by set of waves consisting of finite jumps propagating at constant speeds.

Can then apply high-resolution wave limiters.

May require entropy fix if a wave should be transonic rarefaction.

Wave propagation methods

• Solving Riemann problem gives waves $\mathcal{W}_{i-1/2}^p,$

$$Q_i - Q_{i-1} = \sum_p \mathcal{W}_{i-1/2}^p$$

and speeds $s_{i-1/2}^p$. (Usually approximate solver used.)

 These waves update neighboring cell averages depending on sign of s^p (Godunov's method) via fluctuations.

Wave propagation methods

• Solving Riemann problem gives waves $\mathcal{W}^p_{i-1/2}$,

$$Q_i - Q_{i-1} = \sum_p \mathcal{W}_{i-1/2}^p$$

and speeds $s_{i-1/2}^p$. (Usually approximate solver used.)

- These waves update neighboring cell averages depending on sign of s^p (Godunov's method) via fluctuations.
- Waves also give (characteristic) decomposition of slopes:

$$q_x(x_{i-1/2}, t) \approx \frac{Q_i - Q_{i-1}}{\Delta x} = \frac{1}{\Delta x} \sum_{p} W_{i-1/2}^p$$

Wave propagation methods

• Solving Riemann problem gives waves $\mathcal{W}^p_{i-1/2}$,

$$Q_i - Q_{i-1} = \sum_p \mathcal{W}_{i-1/2}^p$$

and speeds $s_{i-1/2}^p$. (Usually approximate solver used.)

- These waves update neighboring cell averages depending on sign of s^p (Godunov's method) via fluctuations.
- Waves also give (characteristic) decomposition of slopes:

$$q_x(x_{i-1/2}, t) \approx \frac{Q_i - Q_{i-1}}{\Delta x} = \frac{1}{\Delta x} \sum_{p} W_{i-1/2}^p$$

- Apply limiter to each wave to obtain $\widetilde{\mathcal{W}}_{i-1/2}^p$.
- Use limited waves in second-order correction terms.

Some approaches to approximating Riemann solution by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use only Hugoniot loci to construct weak solution.

Some approaches to approximating Riemann solution by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate states.

Some approaches to approximating Riemann solution by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate states.

Harten – Lax – van Leer (HLL): Use only 2 waves with speeds and intermediate state chosen to be conservative.

Some approaches to approximating Riemann solution by a set of jump discontinuities:

All-shock Riemann solution: Ignore integral curves and use only Hugoniot loci to construct weak solution.

May still require solving nonlinear equation(s) for intermediate states.

Harten – Lax – van Leer (HLL): Use only 2 waves with speeds and intermediate state chosen to be conservative.

Local linearization: Replace $q_t + f(q)_x = 0$ by

$$q_t + \hat{A}q_x = 0,$$
 where $\hat{A} = \hat{A}(q_l, q_r) \approx f'(q_{ave}).$

Eigenvectors give waves. Roe solver ⇒ conservative

HLL Solver

Harten – Lax – van Leer (1983): Given $Q_{\ell}, Q_r \in \mathbb{R}^m$ for $m \geq 2$, Use only 2 waves with a single interediate state Q^* .

 $s^1 \approx {\rm minimum}$ characteristic speed $s^2 \approx {\rm maximum}$ characteristic speed

$$\mathcal{W}^1 = Q^* - Q_\ell, \qquad \mathcal{W}^2 = Q_r - Q^*$$

HLL Solver

Harten – Lax – van Leer (1983): Given $Q_{\ell}, Q_r \in \mathbb{R}^m$ for $m \geq 2$, Use only 2 waves with a single interediate state Q^* .

 $s^1 \approx \text{minimum}$ characteristic speed $s^2 \approx \text{maximum}$ characteristic speed

$$\mathcal{W}^1 = Q^* - Q_\ell, \qquad \mathcal{W}^2 = Q_r - Q^*$$

Conservation implies unique value for middle state Q^* :

$$s^{1}\mathcal{W}^{1} + s^{2}\mathcal{W}^{2} = f(Q_{r}) - f(Q_{\ell})$$

$$\implies Q^{*} = \frac{f(Q_{r}) - f(Q_{\ell}) - s^{2}Q_{r} + s^{1}Q_{\ell}}{s^{1} - s^{2}}.$$

HLL Solver

Harten – Lax – van Leer (1983): Given $Q_{\ell}, Q_r \in \mathbb{R}^m$ for $m \geq 2$, Use only 2 waves with a single interediate state Q^* .

 $s^1 \approx \text{minimum}$ characteristic speed $s^2 \approx \text{maximum}$ characteristic speed

$$\mathcal{W}^1 = Q^* - Q_\ell, \qquad \mathcal{W}^2 = Q_r - Q^*$$

Conservation implies unique value for middle state Q^* :

$$s^{1}\mathcal{W}^{1} + s^{2}\mathcal{W}^{2} = f(Q_{r}) - f(Q_{\ell})$$

$$\implies Q^{*} = \frac{f(Q_{r}) - f(Q_{\ell}) - s^{2}Q_{r} + s^{1}Q_{\ell}}{s^{1} - s^{2}}.$$

Choice of speeds:

- Max and min of expected speeds over entire problem,
- Max and min of eigenvalues of $f'(Q_{\ell})$ and $f'(Q_r)$.

HLL Solver for Shallow Water Equations

$$h_t + (hu)_x = 0$$
$$(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = 0$$

Choose e.g.

$$s^{1} = u_{\ell} - \sqrt{gh_{\ell}},$$

$$s^{2} = u_{r} + \sqrt{gh_{r}}$$

HLL Solver for Shallow Water Equations

$$h_t + (hu)_x = 0$$
$$(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = 0$$

Choose e.g.

$$s^{1} = u_{\ell} - \sqrt{gh_{\ell}},$$

$$s^{2} = u_{r} + \sqrt{gh_{r}}$$

Then

$$Q^* = \frac{f(Q_r) - f(Q_\ell) - s^2 Q_r + s^1 Q_\ell}{s^1 - s^2}$$

$$= \frac{1}{s^1 - s^2} \begin{bmatrix} h_r u_r - h_\ell u_\ell - s^2 h_r + s^1 h_\ell \\ (h_r u_r^2 + \frac{1}{2}gh_r^2) - (h_\ell u_\ell^2 + \frac{1}{2}gh_\ell^2) - s^2 h_r u_r + s^1 h_\ell u_\ell \end{bmatrix}$$

If we use the shock speeds from the exact two-shock solution, looks perfect:

Using
$$s_1 = \lambda^1(q_\ell)$$
 and $s_2 = \lambda^2(q_r)$:

Using
$$s_1 = \lambda^1(q_\ell)$$
 and $s_2 = \lambda^2(q_r)$:

Using different choice of s_1, s_2 :

If $\Delta Q=Q_r-Q_\ell$ is small, then eigenvalues nearly constant. For smooth flow, HLL is very accurate (for m=2).

Approximate Riemann Solvers — Local Linearization

Approximate true Riemann solution by set of waves consisting of finite jumps propagating at constant speeds.

Local linearization:

Replace $q_t + f(q)_x = 0$ by

$$q_t + \hat{A}q_x = 0,$$

where $\hat{A} = \hat{A}(q_l, q_r) \approx f'(q_{ave})$.

Then decompose

$$q_r - q_l = \alpha^1 \hat{r}^1 + \dots + \alpha^m \hat{r}^m$$

to obtain waves $\mathcal{W}^p = \alpha^p \hat{r}^p$ with speeds $s^p = \hat{\lambda}^p$.

How to use?

One approach: determine $Q^* = \text{state along } x/t = 0$,

$$Q^* = Q_{i-1} + \sum_{p:s^p < 0} \mathcal{W}^p, \quad F_{i-1/2} = f(Q^*),$$

$$\mathcal{A}^{-}\Delta Q = F_{i-1/2} - f(Q_{i-1}), \quad \mathcal{A}^{+}\Delta Q = f(Q_i) - F_{i-1/2}.$$

How to use?

One approach: determine $Q^* = \text{state along } x/t = 0$,

$$Q^* = Q_{i-1} + \sum_{p:s^p < 0} \mathcal{W}^p, \quad F_{i-1/2} = f(Q^*),$$

$$A^{-}\Delta Q = F_{i-1/2} - f(Q_{i-1}), \quad A^{+}\Delta Q = f(Q_i) - F_{i-1/2}.$$

Or, sometimes can use:

$$\mathcal{A}^{-}\Delta Q = \sum_{p:s^{p} < 0} s^{p} \mathcal{W}^{p}, \qquad \mathcal{A}^{+}\Delta Q = \sum_{p:s^{p} > 0} s^{p} \mathcal{W}^{p}.$$

Conservative only if $A^-\Delta Q + A^+\Delta Q = f(Q_i) - f(Q_{i-1})$.

This holds for Roe solver.

Given q_ℓ,q_r , solve $q_t+\hat{A}q_x=0$ where \hat{A} chosen to satisfy $\hat{A}(q_r-q_\ell)=f(q_r)-f(q_\ell).$

Then:

Good approximation for weak waves (smooth flow)

Given q_ℓ, q_r , solve $q_t + \hat{A}q_x = 0$ where \hat{A} chosen to satisfy

$$\hat{A}(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

Then:

- Good approximation for weak waves (smooth flow)
- Single shock captured exactly:

$$f(q_r) - f(q_\ell) = s(q_r - q_\ell) \implies q_r - q_\ell$$
 is an eigenvector of \hat{A}

Given q_ℓ, q_r , solve $q_t + \hat{A} q_x = 0$ where \hat{A} chosen to satisfy

$$\hat{A}(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

Then:

- Good approximation for weak waves (smooth flow)
- Single shock captured exactly:

$$f(q_r) - f(q_\ell) = s(q_r - q_\ell) \implies q_r - q_\ell$$
 is an eigenvector of \hat{A}

Wave-propagation algorithm is conservative since

$$\begin{split} \mathcal{A}^- \Delta Q_{i-1/2} &= \sum (s_{i-1/2}^p)^- \mathcal{W}_{i-1/2}^p, \\ \mathcal{A}^+ \Delta Q_{i+1/2} &= \sum (s_{i+1/2}^p)^+ \mathcal{W}_{i+1/2}^p, \quad \Longrightarrow \end{split}$$

Given q_ℓ, q_r , solve $q_t + \hat{A}q_x = 0$ where \hat{A} chosen to satisfy

$$\hat{A}(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

Then:

- Good approximation for weak waves (smooth flow)
- Single shock captured exactly:

$$f(q_r) - f(q_\ell) = s(q_r - q_\ell) \implies q_r - q_\ell$$
 is an eigenvector of \hat{A}

Wave-propagation algorithm is conservative since

$$\mathcal{A}^{-}\Delta Q_{i-1/2} = \sum (s_{i-1/2}^{p})^{-} \mathcal{W}_{i-1/2}^{p},$$

$$\mathcal{A}^{+}\Delta Q_{i+1/2} = \sum (s_{i+1/2}^{p})^{+} \mathcal{W}_{i+1/2}^{p}, \implies$$

$$\mathcal{A}^{-}\Delta Q_{i-1/2} + \mathcal{A}^{+}\Delta Q_{i-1/2} = \sum_{i=1/2} s_{i-1/2}^{p} \mathcal{W}_{i-1/2}^{p} = \hat{A} \sum_{i=1/2} \mathcal{W}_{i-1/2}^{p}$$
$$= \hat{A}(q_{r} - q_{\ell}) = f(q_{r}) - f(q_{\ell}).$$

Shallow water equations

h(x,t) = depth u(x,t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum hu gives system of two equations.

mass flux = hu, momentum flux = (hu)u + p where p = hydrostatic pressure

$$h_t + (hu)_x = 0$$
$$(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = 0$$

Jacobian matrix:

$$f'(q) = \begin{bmatrix} 0 & 1 \\ gh - u^2 & 2u \end{bmatrix}, \qquad \lambda = u \pm \sqrt{gh}.$$

Roe solver for Shallow Water

Given h_{ℓ} , u_{ℓ} , h_{r} , u_{r} , define

$$\bar{h} = \frac{h_{\ell} + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_{\ell}}u_{\ell} + \sqrt{h_r}u_r}{\sqrt{h_{\ell}} + \sqrt{hr}}$$

Then

 $\hat{A} = \mbox{Jacobian matrix evaluated at this average state}$

satisfies

$$\hat{A}(q_r - q_\ell) = f(q_r) - f(q_\ell).$$

- Roe condition is satisfied,
- Isolated shock modeled well.
- Wave propagation algorithm is conservative,
- High resolution methods obtained using corrections with limited waves.

Roe solver for Shallow Water

Given h_l , u_l , h_r , u_r , define

$$\bar{h} = \frac{h_l + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_l}u_l + \sqrt{h_r}u_r}{\sqrt{h_l} + \sqrt{hr}}$$

Eigenvalues of $\hat{A} = f'(\hat{q})$ are:

$$\hat{\lambda}^1 = \hat{u} - \hat{c}, \quad \hat{\lambda}^2 = \hat{u} + \hat{c}, \quad \hat{c} = \sqrt{g\bar{h}}.$$

Eigenvectors:

$$\hat{r}^1 = \left[egin{array}{c} 1 \\ \hat{u} - \hat{c} \end{array}
ight], \qquad \hat{r}^2 = \left[egin{array}{c} 1 \\ \hat{u} + \hat{c} \end{array}
ight].$$

Roe solver for shallow water

Roe solver for shallow water

Dam break problem with Roe solver

Note that rarefaction replaced by jump.

Example from RpJs

Widgets can be used to experiment.

Nonphyiscal solution with Roe solver

For data that gives near dry state in Q_m , Roe solver may give negative depth.

Example from RpJs

HLLE preserves positivity

For data that gives near dry state in Q_m , Roe solver may give negative depth.

Choosing s_1, s_2 as characteristic speeds in HLL does much better in this case.

Example from RpJs

HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Based on characteristic speeds and Roe averages:

$$\begin{split} s_{i-1/2}^1 &= \min_{p}(\min(\lambda_{i-1}^p, \hat{\lambda}_{i-1/2}^p)), \\ s_{i-1/2}^2 &= \max_{p}(\max(\lambda_{i}^p, \hat{\lambda}_{i-1/2}^p)). \end{split}$$

where

 λ_i^p is the pth eigenvalue of the Jacobian $f'(Q_i)$,

 $\hat{\lambda}_{i-1/2}^p$ is the pth eigenvalue using Roe average $f'(\hat{Q}_{i-1/2})$

HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Can also show that:

 If Riemann solution consists of single shock, then Roe speed is used ⇒ exact solution in this case.

HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Can also show that:

- If Riemann solution consists of single shock, then Roe speed is used ⇒ exact solution in this case.
- No entropy fix needed.
 (More diffusive than Roe solver.)

For any wave splitting $Q_i - Q_{i-1} = \sum W^p$, with speeds $\hat{\lambda}^p$.

$$q_{\ell}^{k} = Q_{i-1} + \sum_{p=1}^{k-1} \mathcal{W}^{p}, \qquad q_{r}^{k} = q_{\ell}^{k} + \mathcal{W}^{k}$$

For any wave splitting $Q_i - Q_{i-1} = \sum W^p$, with speeds $\hat{\lambda}^p$.

Define

$$q_{\ell}^{k} = Q_{i-1} + \sum_{p=1}^{k-1} \mathcal{W}^{p}, \qquad q_{r}^{k} = q_{\ell}^{k} + \mathcal{W}^{k}$$

If
$$\lambda_\ell^k \equiv \lambda^k(q_\ell^k) < 0 < \lambda^k(q_r^k) \equiv \lambda_r^k$$
 then replace \mathcal{W}^k by

$$\begin{split} \mathcal{W}^k_\ell &= \beta \mathcal{W}^k, & \text{speed} &= \lambda^k_\ell < 0, \\ \mathcal{W}^k_r &= (1-\beta) \mathcal{W}^k, & \text{speed} &= \lambda^k_r > 0. \end{split}$$

For any wave splitting $Q_i - Q_{i-1} = \sum W^p$, with speeds $\hat{\lambda}^p$.

Define

$$q_{\ell}^{k} = Q_{i-1} + \sum_{p=1}^{k-1} \mathcal{W}^{p}, \qquad q_{r}^{k} = q_{\ell}^{k} + \mathcal{W}^{k}$$

If $\lambda_\ell^k \equiv \lambda^k(q_\ell^k) < 0 < \lambda^k(q_r^k) \equiv \lambda_r^k$ then replace \mathcal{W}^k by

$$\begin{split} \mathcal{W}^k_\ell &= \beta \mathcal{W}^k, & \text{speed} &= \lambda^k_\ell < 0, \\ \mathcal{W}^k_r &= (1-\beta) \mathcal{W}^k, & \text{speed} &= \lambda^k_r > 0. \end{split}$$

Conservation requires:

$$\lambda_{\ell}^{k} \mathcal{W}_{\ell}^{k} + \lambda_{r}^{k} \mathcal{W}_{r}^{k} = \hat{\lambda}^{k} \mathcal{W}^{k}, \qquad \Longrightarrow \beta = \frac{\lambda_{r}^{k} - \hat{\lambda}^{k}}{\lambda_{r}^{k} - \lambda_{\ell}^{k}}$$

R. J. LeVeque, University of Washington

Sec. 15.3

In wave propagation algorithm, leave \mathcal{W}^k alone for high-resolution correction terms (with limiters).

Similar to entopy fix for scalar problem:

Only need to modify the fluctuations in the "Godunov update"

In wave propagation algorithm, leave \mathcal{W}^k alone for high-resolution correction terms (with limiters).

Similar to entopy fix for scalar problem:

Only need to modify the fluctuations in the "Godunov update"

$$\mathcal{A}^{-}\Delta Q = \sum_{p=1}^{m} (\lambda^p)^{-} \mathcal{W}^p, \qquad \mathcal{A}^{+}\Delta Q = \sum_{p=1}^{m} (\lambda^p)^{+} \mathcal{W}^p,$$

Usually $(\lambda^p)^- = \min(\lambda^p, 0), \qquad (\lambda^p)^+ = \max(\lambda^p, 0).$

Modify for field k:

$$(\lambda^k)^- = \beta \lambda_\ell^k < 0, \qquad (\lambda^k)^+ = (1 - \beta) \lambda_r^k > 0,$$

so that

$$(\lambda^k)^- \mathcal{W}^k = \lambda_\ell^k \beta \mathcal{W}^k \qquad (\lambda^k)^+ \mathcal{W}^k = \lambda_r^k (1 - \beta) \mathcal{W}^k$$