

#### Early Course Evaluation

- What do you like about the course?
- What do you dislike about the course?
- Suggestions for the lectures?
- Suggestions for the exercise sessions?
- Any other comments?

#### Review

Cyclic Groups (revise for next lecture)

Attacks on the network stack: no confidentiality and integrity!

Denial of Service attacks: undermining availability!

Firewalls: still no confidentiality and integrity!

#### Plan

- Symmetric Encryption for Confidentiality
  - Caesar's cipher
  - Perfect secrecy
  - Block cipher
- Hash and MAC for Integrity and Authenticity
  - Hash definitions
  - MAC
  - Applications

#### Motivation

- Protect data confidentiality, integrity and availability on insecure networks.
- Based on strong mathematical foundations: proven to be secure instead of conjectured.
- We use cryptography every day to access web sites and services securely.
- Our goal: understand the main cryptographic tools and how they are used in practice.



# Symmetric Encryption confidentiality



Source: vsco.co

#### Encryption - Fundamentals

- Science of transforming a given string into a different one that is semantically equivalent (encryption) because the latter can be transformed back to the original one (decryption)
- An algorithm  $c = \mathcal{E}(m,k)$  to encrypt a plaintext m producing a ciphertext c
- An algorithm  $m = \mathcal{D}(c,k')$  to decrypt a ciphertext c producing a plaintext m
- It is not necessarily k = k'
  - k = KeyGen() being a random string
- Symmetric vs Asymmetric (aka Public key)

#### Symmetric Encryption

#### **Definition**

- The same key as the one that was used to create a ciphertext by encrypting a plaintext shall be used to decrypt the ciphertext back as the plaintext
- Goal: confidentiality
- Correctness:  $\mathcal{D}(\mathcal{E}(m,k),k) = m$
- Security:  $\forall k'. k' \neq k \longrightarrow \mathcal{D}(\mathcal{E}(m,k),k') \neq m$
- Examples:
  - Caesar's cipher, DES, 3DES, AES
  - Typical key length: 128/256 bits
  - Good performance

#### **Encryption Question**

#### Select the **correct** option:

- a) Encryption guarantees message authenticity.
- b) Symmetric encryption can be used by two parties who each know a different encryption key.
- c) Symmetric encryption protects confidentiality of encrypted messages.
- d) Dolev—Yao adversaries can read messages encrypted under a symmetric encryption scheme.

- *k* = *KeyGen()*
- $c = \mathcal{E}(m,k)$
- $m = \mathcal{D}(c,k)$



Source: pinterest

- k = KeyGen(): rotation of the wheel
  - E.g. A->F, then B->G, C->H, F->K etc.
- $c = \mathcal{E}(m,k)$ : look at the inner wheel
- $m = \mathcal{D}(c,k)$ : look at the outer wheel



Source: pinterest

Example

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- A->N, B->O, C->P, ..., N->A, O->B, etc. ← key : shift(13)
- $\mathcal{E}$ (hamburgers the cornerstone of any nutritious breakfast, shift(13)) = unzohetref gur pbearefgbar bs nal ahgevgvbhf oernxsnfg

Key-space is too small: unzohetref gur pbearefgbar bs nal ahgevgvbhf oernxsnfg

| +1  | tmyngdsqde ftq oadzqdefazq ar mzk zgfdufuage ndqmwrmef | +13 | hamburgers the cornerstone of any nutritious breakfast |
|-----|--------------------------------------------------------|-----|--------------------------------------------------------|
| +2  | slxmfcrpcd esp nzcypcdezyp zq lyj yfectetzfd mcplvqlde | +14 | gzlatqfdqr sgd bnqmdqrsnmd ne zmx mtsqhshntr aqdzjezrs |
| +3  | rkwlebqobc dro mybxobcdyxo yp kxi xedbsdsyec lbokupkcd | +15 | fykzspecpq rfc amplcpqrmlc md ylw lsrpgrgmsq zpcyidyqr |
| +4  | qjvkdapnab cqn lxawnabcxwn xo jwh wdcarcrxdb kanjtojbc | +16 | exjyrodbop qeb zlokbopqlkb lc xkv krqofqflrp yobxhcxpq |
| +5  | piujczomza bpm kwzvmzabwvm wn ivg vcbzqbqwca jzmisniab | +17 | dwixqncano pda yknjanopkja kb wju jqpnepekqo xnawgbwop |
| +6  | ohtibynlyz aol jvyulyzavul vm huf ubaypapvbz iylhrmhza | +18 | cvhwpmbzmn ocz xjmizmnojiz ja vit ipomdodjpn wmzvfavno |
| +7  | ngshaxmkxy znk iuxtkxyzutk ul gte tazxozouay hxkgqlgyz | +19 | bugvolaylm nby wilhylmnihy iz uhs honlcnciom vlyuezumn |
| +8  | mfrgzwljwx ymj htwsjwxytsj tk fsd szywnyntzx gwjfpkfxy | +20 | atfunkzxkl max vhkgxklmhgx hy tgr gnmkbmbhnl ukxtdytlm |
| +9  | leqfyvkivw xli gsvrivwxsri sj erc ryxvmxmsyw fvieojewx | +21 | zsetmjywjk lzw ugjfwjklgfw gx sfq fmljalagmk tjwscxskl |
| +10 | kdpexujhuv wkh fruqhuvwrqh ri dqb qxwulwlrxv euhdnidvw | +22 | yrdslixvij kyv tfievijkfev fw rep elkizkzflj sivrbwrjk |
| +11 | jcodwtigtu vjg eqtpgtuvqpg qh cpa pwvtkvkqwu dtgcmhcuv | +23 | xqcrkhwuhi jxu sehduhijedu ev qdo dkjhyjyeki rhuqavqij |
| +12 | ibncvshfst uif dpsofstupof pg boz ovusjujpvt csfblgbtu | +24 | wpbqjgvtgh iwt rdgctghidct du pcn cjigxixdjh qgtpzuphi |
|     |                                                        | +25 | voapifusfg hvs qcfbsfghcbs ct obm bihfwhwcig pfsoytogh |
|     |                                                        |     |                                                        |

# Caesar cipher – Brute force

Key-space is too small: unzohetref gur pbearefgbar bs nal ahgevgvbhf oernxsnfg

| +1  | tmyngdsqde ftq oadzqdefazq ar mzk zgfdufuage ndqmwrmef | +13 | hamburgers the cornerstone of any nutritious breakfast |
|-----|--------------------------------------------------------|-----|--------------------------------------------------------|
| +2  | slxmfcrpcd esp nzcypcdezyp zq lyj yfectetzfd mcplvqlde | +14 | gzlatqfdqr sgd bnqmdqrsnmd ne zmx mtsqhshntr aqdzjezrs |
| +3  | rkwlebqobc dro mybxobcdyxo yp kxi xedbsdsyec lbokupkcd | +15 | fykzspecpq rfc amplcpqrmlc md ylw lsrpgrgmsq zpcyidyqr |
| +4  | qjvkdapnab cqn lxawnabcxwn xo jwh wdcarcrxdb kanjtojbc | +16 | exjyrodbop qeb zlokbopqlkb lc xkv krqofqflrp yobxhcxpq |
| +5  | piujczomza bpm kwzvmzabwvm wn ivg vcbzqbqwca jzmisniab | +17 | dwixqncano pda yknjanopkja kb wju jqpnepekqo xnawgbwop |
| +6  | ohtibynlyz aol jvyulyzavul vm huf ubaypapvbz iylhrmhza | +18 | cvhwpmbzmn ocz xjmizmnojiz ja vit ipomdodjpn wmzvfavno |
| +7  | ngshaxmkxy znk iuxtkxyzutk ul gte tazxozouay hxkgqlgyz | +19 | bugvolaylm nby wilhylmnihy iz uhs honlcnciom vlyuezumn |
| +8  | mfrgzwljwx ymj htwsjwxytsj tk fsd szywnyntzx gwjfpkfxy | +20 | atfunkzxkl max vhkgxklmhgx hy tgr gnmkbmbhnl ukxtdytlm |
| +9  | leqfyvkivw xli gsvrivwxsri sj erc ryxvmxmsyw fvieojewx | +21 | zsetmjywjk lzw ugjfwjklgfw gx sfq fmljalagmk tjwscxskl |
| +10 | kdpexujhuv wkh fruqhuvwrqh ri dqb qxwulwlrxv euhdnidvw | +22 | yrdslixvij kyv tfievijkfev fw rep elkizkzflj sivrbwrjk |
| +11 | jcodwtigtu vjg eqtpgtuvqpg qh cpa pwvtkvkqwu dtgcmhcuv | +23 | xqcrkhwuhi jxu sehduhijedu ev qdo dkjhyjyeki rhuqavqij |
| +12 | ibncvshfst uif dpsofstupof pg boz ovusjujpvt csfblgbtu | +24 | wpbqjgvtgh iwt rdgctghidct du pcn cjigxixdjh qgtpzuphi |
|     |                                                        | +25 | voapifusfg hvs qcfbsfghcbs ct obm bihfwhwcig pfsoytogh |

- Idea: Let's do a random permutation
- k = KeyGen()
  - E.g. A->N, B->F, C->S, ...
- $c = \mathcal{E}(m,k)$
- $m = \mathcal{D}(c,k)$



What about the key space?

**ABCDEFGHIJKLMNOPORSTUVWXYZ** 

- Idea: Let's do a random permutation
- *k* = *KeyGen()* 
  - E.g. A->N, B->F, C->S, ...
- $c = \mathcal{E}(m,k)$
- $m = \mathcal{D}(c,k)$



•  $26!=26*25*24*23*...*1 > 4*10^{26}$ 



VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ' 'ETAOINSRHDLUCMFYWGPBVKXQJZ

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ' 'ETAOINSRHDLUCMFYWGPBVKXQJZ

Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ' 'ETAOINSRHDLUCMFYWGPBVKXQJZ

Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

CE CEHE SOWECREHE AHOUND VAHSTOC ON TRE EDYE OB TRE DESEHT CREN TRE DHUYS VEYAN TO TAJE ROLDF I HEWEWVEH SAGINY SOWETRINY LIJE XI BEEL A VIT LIYRTREADED; WAGVE GOU SROULD DHIZEF F FX AND SUDDENLG TREHE CAS A TEHHIVLE HOAH ALL AHOUND US AND TRE SJG CAS BULL OB CRAT LOOJED LIJE RUYE VATSQ ALL SCOOKINY AND SMHEEMRINY AND DIZINY AHOUND TRE MAHQ CRIMR CAS YOINY AVOUT A RUNDHED WILES AN ROUH CITR TRE TOK DOCN TO LAS ZEYASF

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): '' ETAOINSRHDLUCMFYWGPBVKXQJZ

Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

CE CEHE SOWECREHE AHOUND VAHSTOC ON TRE EDYE OB TRE DESEHT CREN TRE DHUYS VEYAN TO TAJE ROLDF I HEWEWVEH SAGINY SOWETRINY LIJE XI BEEL A VIT LIYRTREADED; WAGVE GOU SROULD DHIZEF F FX AND SUDDENLG TREHE CAS A TEHHIVLE HOAH ALL AHOUND US AND TRE SJG CAS BULL OB CRAT LOOJED LIJE RUYE VATSQ ALL SCOOKINY AND SMHEEMRINY AND DIZINY AHOUND TRE MAHQ CRIMR CAS YOINY AVOUT A RUNDHED WILES AN ROUH CITR TRE TOK DOCN TO LAS ZEYASF

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ' 'ETAOINSRHDLUCMFYWGPBVKXQJZ

Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

CE CERE SOWECHEHE AHOUND VAHSTOC ON THE EDYE OB THE DESERT CHEN THE DHUYS VEYAN TO TAJE HOLDF I HEWEWVEH SAGINY SOWETHINY LIJE XI BEEL A VIT LIYHTHEADED; WAGVE GOU SHOULD DHIZEF F FX AND SUDDENLG THEHE CAS A TEHHIVLE HOAH ALL AHOUND US AND THE SJG CAS BULL OB CHAT LOOJED LIJE HUYE VATSQ ALL SCOOKINY AND SMHEEMHINY AND DIZINY AHOUND THE MAHQ CHIMH CAS YOINY AVOUT A HUNDHED WILES AN HOUH CITH THE TOK DOCN TO LAS ZEYASF

# Can you finish decrypting?

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ' 'ETAOINSRHDLUCMFYWGPBVKXQJZ

Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

CE CERE SOWECHEHE AHOUND VAHSTOC ON THE EDYE OB THE DESERT CHEN THE DHUYS VEYAN TO TAJE HOLDF I HEWEWVEH SAGINY SOWETHINY LIJE XI BEEL A VIT LIYHTHEADED; WAGVE GOU SHOULD DHIZEF F FX AND SUDDENLG THEHE CAS A TEHHIVLE HOAH ALL AHOUND US AND THE SJG CAS BULL OB CHAT LOOJED LIJE HUYE VATSQ ALL SCOOKINY AND SMHEEMHINY AND DIZINY AHOUND THE MAHQ CHIMH CAS YOINY AVOUT A HUNDHED WILES AN HOUH CITH THE TOK DOCN TO LAS ZEYASF

VGUVGOGUZLWGVIGOGUCOLRNFUTCOZQLVULNUQIGUGFHGULBUQIGUFGZGOQUVIGNUQIGFORHZUTGHCNU QLUQCYGUILMF3UKUOGWGWTGOUZCXKNHUZLWGQIKNHUMKYGU"KUBGGMUCTKQUMKHIQIGCFGF;UWCXT GUXLRUZILRMFUFOKSG333U3"UCNFUZRFFGNMXUQIGOGUVCZUCUQGOOKTMGUOLCOUCMMUCOLRNFURZU CNFUQIGUZYXUVCZUBRMMULBUVICQUMLLYGFUMKYGUIRHGUTCQZ2UCMMUZVLLJKNHUCNFUZDOGGDIKNH UCNFUFKSKNHUCOLRNFUQIGUDCO2UVIKDIUVCZUHLKNHUCTLRQUCUIRNFOGFUWKMGZUCNUILROUVKQIUQI GUQLJUFLVNUQLUMCZUSGHCZ3U

Symbols by frequency (English): ''ETAOINSRHDLUCMFYWGPBVKXQJZ Symbols by frequency (cipher): UGQCLKNZIOFMRVD3HWXnBTJ"2YS

WE WERE SOMEWHERE AROUND BARSTOW ON THE EDGE OF THE DESERT WHEN THE DRUGS BEGAN TO TAKE HOLD. I REMEMBER SAYING SOMETHING LIKE "I FEEL A BIT LIGHTHEADED; MAYBE YOU SHOULD DRIVE. . . . " AND SUDDENLY THERE WAS A TERRIBLE ROAR ALL AROUND US AND THE SKY WAS FULL OF WHAT LOOKED LIKE HUGE BATS, ALL SWOOPING AND SCREECHING AND DIVING AROUND THE CAR, WHICH WAS GOING ABOUT A HUNDRED MILES AN HOUR WITH THE TOP DOWN TO LAS VEGAS.

#### Perfect Secrecy

- Vernam cipher or One-time pad
- Idea: use the properties of XOR (⊕) to encrypt and decrypt
- k = KeyGen() : random
- c=  $\mathcal{E}(m,k) = m \oplus k$
- m =  $\mathcal{D}(c,k)$  =  $m \oplus k \oplus k$  = m



Source: Bansky

#### Perfect Secrecy

- Vernam cipher or One-time pad
- Idea: use the properties of XOR  $(\bigoplus)$  to encrypt and decrypt
- k = KeyGen() : random
- c=  $\mathcal{E}(m,k) = m \oplus k$
- $m = \mathcal{D}(c, k) = m \oplus k \oplus k = m$
- 01010111010111010101010  $\leftarrow k$
- $\mathcal{E}(1101010000111101011, k) = 1101010000111101011 \oplus 0101011101011101010 \oplus 1000001101100000001$

## Perfect Secrecy

- Knowing the ciphertext tells you nothing about the message
  - For each ciphertext exists a key that maps to any plaintext
- Problem 1: key length = message length (impossible to have smaller keys)
  - The encryption of a 500GB hard drive would require 500GB RAM!
- Problem 2: the key can be used only once. Why?

## Perfect Secrecy Question

#### Select the **correct** option:

- a) A one-time pad key is agreed upon once and used many times.
- b) A one-time pad is secure even against adversaries with unlimited computational power.
- c) The length of the key in a one-time pad is independent from the message length.
- d) One-time pads guarantee message integrity.

# Block Cipher

- Problem 1: key length = message length
  - Idea: agree on a short key and generate fixed-length permutations from the key
- Problem 2: the key can be used only once.
  - Idea: use a random value on each encryption (aka initialisation vector)
- Multiple variants of block cipher exists



# Cipher Block Chaining



Cipher Block Chaining (CBC) mode encryption

## Block Cipher

• Security: A block cipher is secure if it is a good *pseudorandom* permutation function.

#### Pseudorandom permutation (very informal)

The output of a secure cipher cannot be distinguished from a random permutation

How can we build a secure cipher?

#### Confusion



Make the connection between ciphertext and key as complicated as possible

#### Diffusion



Flipping a single bit of the plaintext (statistically) produces a flipping of half of the bits in the ciphertext

## Block Cipher Question

#### Select the **incorrect** option:

- a) It is possible to encrypt messages of any size with one call to a block cipher.
- b) Confusion and Diffusion layers in block ciphers make the ciphertext highly uncorrelated with the message.
- c) The key length in block ciphers used in CBC mode has no relation to the message length.
- d) Block ciphers do not guarantee message authenticity.

#### **AES**

- Advanced Encryption Standard
  - State-of-the-art symmetric encryption algorithm
- Block length= 128 bits
  - Messages that are not multiple of block length are padded.
- Key length= 128, 192, or 256 bits
- Number of rounds= 10, 12, or 14
  - Each round consists of *layers*
- NSA classifies as TOP SECRET AES192 and AES256
  - No practical attack known on AES, when correctly implemented
- We focus on AES128

#### AES

Byte Substitution layer (S-Box)

Diffusion layer

Key Addition layer



### AES

AES(K,M) // |M|=128 and |K|=128 ( $K_0$ ,..., $K_{10}$ )<- KeySchedule(K) // | $K_i$ |=128  $s \leftarrow M \oplus K_0$ for r=1 to 10  $s \leftarrow S(s)$   $s \leftarrow ShiftRows(s)$ if  $r \le 9$  then  $s \leftarrow MixCols(s)$ 

Return s

S

 $s \leftarrow s \oplus K_r$ 

| S <sub>00</sub> | S <sub>10</sub> | S <sub>20</sub> | S <sub>30</sub> |
|-----------------|-----------------|-----------------|-----------------|
| S <sub>01</sub> | S <sub>11</sub> | S <sub>21</sub> | S <sub>31</sub> |
| S <sub>02</sub> | S <sub>12</sub> | S <sub>22</sub> | S <sub>32</sub> |
| S <sub>03</sub> | S <sub>13</sub> | S <sub>23</sub> | S <sub>33</sub> |

Byte Substitution layer (S-Box)

Diffusion layer

**Key Addition layer** 

The state *s* is arranged in a 4x4 matrix

### AES



```
AES(K,M) // |M| = 128 and |K| = 128
(K_0,...,K_{10}) < - \text{KeySchedule}(K) // |K_i| = 128
s \leftarrow M \oplus K_0
for r=1 to 10
           s \leftarrow S(s)
           s \leftarrow ShiftRows(s)
           if r \le 9 then
                       s \leftarrow MixCols(s)
           s \leftarrow s \oplus K_r
Return s
```

## AES — Byte Substitution layer (S-Box)

- An S-box has the following property
  - Identical i.e. same s-boxes per round
  - Nonlinear i.e.  $S(s)+S(s') \neq S(s+s')$
  - Bijective i.e. ∃<sub>1</sub> 1-to-1 mapping of input and output bytes
    - S-box can be uniquely reversed
  - Implemented as a lookup table

|    | 9  | 5  |    |   |    | 9  | 5  |    |
|----|----|----|----|---|----|----|----|----|
| EA | 04 | 65 | 85 |   | 87 | F2 | 4D | 97 |
| 83 | 45 | 5D | 96 | S | EC | 6E | 4C | 90 |
| 5C | 33 | 98 | В0 |   | 4A | C3 | 46 | E7 |
| F0 | 2D | AD | C5 |   | 8C | D8 | 95 | A6 |

|   | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | А  | В  | С  | D  | E  | F  |
|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0 | 63 | 7C | 77 | 7B | F2 | 6B | 6F | C5 | 30 | 01 | 67 | 2B | FE | D7 | AB | 76 |
| 1 | CA | 82 | C9 | 7D | FA | 59 | 47 | F0 | AD | D4 | A2 | AF | 9C | A4 | 72 | CO |
| 2 | В7 | FD | 93 | 26 | 36 | 3F | F7 | СС | 34 | A5 | E5 | F1 | 71 | D8 | 31 | 15 |
| 3 | 04 | C7 | 23 | C3 | 18 | 96 | 05 | 9A | 07 | 12 | 80 | E2 | EB | 27 | B2 | 75 |
| 4 | 09 | 83 | 2C | 1A | 1B | 6E | 5A | A0 | 52 | 3B | D6 | В3 | 29 | E3 | 2F | 84 |
| 5 | 53 | D1 | 00 | ED | 20 | FC | B1 | 5B | 6A | СВ | BE | 39 | 4A | 4C | 58 | CF |
| 6 | D0 | EF | AA | FB | 43 | 4D | 33 | 85 | 45 | F9 | 02 | 7F | 50 | 3C | 9F | A8 |
| 7 | 51 | А3 | 40 | 8F | 92 | 9D | 38 | F5 | вс | B6 | DA | 21 | 10 | FF | F3 | D2 |
| 8 | CD | 0C | 13 | EC | 5F | 97 | 44 | 17 | C4 | A7 | 7E | 3D | 64 | 5D | 19 | 73 |
| 9 | 60 | 81 | 4F | DC | 22 | 2A | 90 | 88 | 46 | EE | B8 | 14 | DE | 5E | 0B | DB |
| Α | E0 | 32 | 3A | 0A | 49 | 06 | 24 | 5C | C2 | D3 | AC | 62 | 91 | 95 | E4 | 79 |
| В | E7 | C8 | 37 | 6D | 8D | D5 | 4E | A9 | 6C | 56 | F4 | EA | 65 | 7A | AE | 08 |
| С | ВА | 78 | 25 | 2E | 1C | A6 | B4 | C6 | E8 | DD | 74 | 1F | 4B | BD | 8B | 8A |
| D | 70 | 3E | B5 | 66 | 48 | 03 | F6 | 0E | 61 | 35 | 57 | В9 | 86 | C1 | 1D | 9E |
| E | E1 | F8 | 98 | 11 | 69 | D9 | 8E | 94 | 9B | 1E | 87 | E9 | CE | 55 | 28 | DF |
| F | 8C | A1 | 89 | 0D | BF | E6 | 42 | 68 | 41 | 99 | 2D | 0F | B0 | 54 | ВВ | 16 |

## AES – Diffusion Layer

- **Diffusion** over all input state bits
  - ShiftRows provides permutation of the data
  - Linear i.e. ShiftRows(s)+ShiftRows(s') = ShiftRows(s+s')
    - Similarly applies to *MixCols*

|                 | S               |                 |                 |           |                 |                 | S               |                 |
|-----------------|-----------------|-----------------|-----------------|-----------|-----------------|-----------------|-----------------|-----------------|
| S <sub>00</sub> | S <sub>10</sub> | S <sub>20</sub> | S <sub>30</sub> |           | S <sub>00</sub> | S <sub>10</sub> | S <sub>20</sub> | S <sub>30</sub> |
| S <sub>01</sub> | S <sub>11</sub> | S <sub>21</sub> | S <sub>31</sub> | ShiftRows | S <sub>11</sub> | S <sub>21</sub> | S <sub>31</sub> | S <sub>01</sub> |
| S <sub>02</sub> | S <sub>12</sub> | S <sub>22</sub> | S <sub>32</sub> | ŕ         | S <sub>22</sub> | S <sub>32</sub> | S <sub>02</sub> | S <sub>12</sub> |
| S <sub>03</sub> | S <sub>13</sub> | S <sub>23</sub> | S <sub>33</sub> |           | S <sub>33</sub> | S <sub>03</sub> | S <sub>13</sub> | S <sub>23</sub> |

## AES – Diffusion Layer

- **Diffusion** over all input state bits
  - ShiftRows provides permutation of the data
  - Linear i.e. ShiftRows(s)+ShiftRows(s') = ShiftRows(s+s')
    - Similarly applies to *MixCols*
  - MixCols provides mix of blocks of 4 bytes



## AES – Key Addition Layer



### AES

- S-Boxes provide confusion
- ShiftRows and MixCols provide diffusion
- Key Addition Layer protects against inverting attacks

#### AES is considered secure because

- conjectured to be a good pseudorandom permutation function
- got no serious cryptoanalysis attacks so far

### **AES Question**

#### Select the **correct** option:

- a) AES uses keys with 64 bits.
- b) AES has no known practical attacks against it.
- c) AES is mathematically proven to be secure if factoring large prime integers is hard.
- d) AES can use keys of any length.

## Hash and MAC integrity



Source: Bansky

### Hash functions

### Common building block of security mechanisms

- compare by hash
- virus protection
- OTP
- storing passwords
- fundamental ingredient for many crypto primitives

### Hash functions

#### **Definition (Hash function)**

• A function  ${\cal H}$  that takes an arbitrary block of data and returns a fixed-size bit string (digest)

```
E.g. \mathcal{H}(\text{'fox'}) = b99c21513df8309c021977902526e2f3881758a1 E.g. \mathcal{H}(\text{'The red fox jumps over the blue dog'}) = 0504e140d01c8c8cad73ac18873fd7944e236f90 E.g. <math>\mathcal{H}(\text{'The red fox bumps over the blue dog'}) = 78e883a20497df7af2ba0d4dff062a26137c024d E.g. <math>\mathcal{H}(\text{'The red fox jumps over the blue dogs'}) = 8ee7cb3ea20307bbb68bee60fd1c3068aa28b455
```

Goal: integrity. How?

### Cryptographic Hash functions

#### Cryptographic hash function requirements

- Pre-image resistance (one-way): Given  $h=\mathcal{H}(m)$  is infeasible to find m
- Second pre-image resistance: Given  $m_1$  is infeasible to find  $m_2 \neq m_1$ . $\mathcal{H}(m_1) = \mathcal{H}(m_2)$ 
  - Second pre-image implies pre-image resistance (why?)
- Collision resistance: It is infeasible to find  $\mathcal{H}(m_1) = \mathcal{H}(m_2)$  and  $m_1 \neq m_2$ 
  - Collision resistance implies second pre-image resistance (why?)

Industry Sandards: SHA2 (being deprecated), SHA3

### Hash Functions Question

#### Select the **correct** option:

- a) Hash functions protect message confidentiality.
- b) Hash function output length depends on the input length.
- c) Given a hash function output its hard to find the input that yields that output.
- d) It is easy to find two inputs of a hash function that yield the same output.

### **Storing passwords**

| UserID | password  |
|--------|-----------|
| brun   | qwerty949 |
| rosg   | incorrect |
| rikj   | asdfg     |
| maca   | 944aaa    |
| debois | asdfg     |

• What if db is compromised?

### **Storing passwords**

| UserID | ${\mathcal H}(password)$ |
|--------|--------------------------|
| brun   | 1977902526e2f3881758a1   |
| rosg   | 73ac18873fd7944e236f90   |
| rikj   | ba0d4dff062a26137c024d   |
| maca   | 68bee60fd1c3068aa28b45   |
| debois | ba0d4dff062a26137c024d   |

• Is it fixed now?

### **Storing passwords**

| UserID | ${\cal H}$ (password)  |
|--------|------------------------|
| brun   | 1977902526e2f3881758a1 |
| rosg   | 73ac18873fd7944e236f90 |
| rikj   | ba0d4dff062a26137c024d |
| maca   | 68bee60fd1c3068aa28b45 |
| debois | ba0d4dff062a26137c024d |

• It is possible to identify users who have the same password.

### Storing passwords - Salting

| UserID | Salt    | ${\mathcal H}(password   salt)$ |
|--------|---------|---------------------------------|
| brun   | 4738295 | 3881758a11977902526e2f          |
| rosg   | 3727283 | jej48929dj38d833838ddj39        |
| rikj   | 3838759 | dkkeoe33392lj39d84939dk         |
| maca   | 9048040 | 4849dj29d9ke93304kf94k4         |
| debois | 2872900 | 48d83jj9d2kk334449dk9s9         |

• A random string called a ``salt'' is concatenated with the password.

## Message Authentication Codes (MAC)

- Goal: integrity + authenticity
  - No confidentiality!

## Message Authentication Codes (MAC)

- Goal: integrity + authenticity
  - No confidentiality!

- An algorithm tag = mac(m,k)
- An algorithm d = ver(tag, m, k)
  - *k* = KeyGen() being a random string
- Correctness: ver(mac(m,k),m,k) = true

### **HMAC**



### HMAC



 $\mathsf{MAC} = \mathcal{H}((k \oplus const1) \mid \mathcal{H}(k \oplus const2 \mid m))$ 

• const1 and const2 constants and public

## MAC Application

#### **Smart Token**



Clocks should be synchronized

### Hash Functions Question

#### Select the **incorrect** option:

- a) MACs protect message integrity.
- b) MACs do not require keys.
- c) MACs have constant output length.
- d) HMAC can be constructed from any cryptographically strong hash function (e.g. SHA3).

## Limitations of symmetric cryptography

• Sender and Receiver should meet in person and choose k

 Need a key for each pair of agents who want to communicate securely

 How to share a secret key securely between two agents over an insecure network?

### Summary

- Symmetric Cryptography
  - Definition: correctness and security
  - AES: 3 layers
  - Limitations: how to share a key?
- Hashing and MAC
  - Definition: collision resistance
  - HMAC: goals
  - Applications: TOTP, password storing
- Next lecture: key exchange and asymmetric cryptography.