Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Лабораторная работа №3

по дисциплине "Математическая статистика"

Обучающаяся: А.Д. Балакшина $({\rm группа} \ 5030102/20101)$

Преподаватель: А.Н. Баженов

Санкт-Петербург

Содержание

1	Формулировка задачи Формализация			3	
2				3	
	2.1	Довер	ерительные интервалы для параметров нормального		
		еделения	3		
			Доверительный интервал для математического ожида	RNE	
			m	3	
		2.1.2	Доверительный интервал для среднего квадратическог	O.	
			отклонения σ	3	
	2.2	Асимі	птотический подход для произвольного распределения	3	
		2.2.1	Доверительный интервал для математического ожида	ВИЕ	
			m	3	
		2.2.2	Доверительный интервал для среднего квадратическог	O ^r .	
			отклонения σ	4	
3	Вы	Выполнение работы		4	
4	Рез	ультат	ъ	5	
	4.1	Довер	оительные интервалы для параметров нормального		
			еделения	5	
	4.2		рительные интервалы для параметров произвольного		
			еделения (асимптотический подход)	5	
	4.3		ы для нормального распределения	5	
	4.4		ы для асимптотического подхода	5	
5	Выводы		6		

1 Формулировка задачи

Для выборок мощностью n = 20 и n = 100:

- 1. Найти доверительные интервалы для параметров:
 - нормального распределения и
 - произвольного распределения, используя асимптотический подход.
- 2. Результаты представить в виде таблиц с порядком по включению.

2 Формализация

2.1 Доверительные интервалы для параметров нормального распределения

2.1.1 Доверительный интервал для математического ожидания m

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,$$

где:

- \overline{x} выборочное среднее,
- \bullet *s* выборочное среднее квадратическое отклонение,
- $t_{1-\alpha/2}(n-1)$ квантиль распределения Стьюдента с n-1 степенями своболы

2.1.2 Доверительный интервал для среднего квадратического отклонения σ

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha,$$

где $\chi^2_{\alpha/2}(n-1)$ и $\chi^2_{1-\alpha/2}(n-1)$ — квантили распределения хи-квадрат с n-1 степенями свободы.

2.2 Асимптотический подход для произвольного распределения

2.2.1 Доверительный интервал для математического ожидания m

$$P\left(\overline{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \overline{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma,$$

где $u_{1-lpha/2}$ — квантиль стандартного нормального распределения.

2.2.2 Доверительный интервал для среднего квадратического отклонения σ

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2},$$

или

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U),$$

где

$$U = u_{1-\alpha/2} \sqrt{\frac{e+2}{n}},$$

а $e = \frac{m_4}{s^4} - 3$ — выборочный эксцесс.

3 Выполнение работы

Лабораторная работа выполнена на языке программирования Python 3.12 с использованием библиотек numpy, mathplotlib.

Были сгенерированны выборки, выполнены вычисления. Программа отработала корректно.

4 Результаты

4.1 Доверительные интервалы для параметров нормального распределения

Таблица 1: Доверительные интервалы для параметров нормального распределения

n=20	m	σ
	-0.68 < m < 0.41	$0.88 < \sigma < 1.69$
n = 100	m	σ
	-0.10 < m < 0.23	$0.73 < \sigma < 0.97$

4.2 Доверительные интервалы для параметров произвольного распределения (асимптотический подход)

Таблица 2: Доверительные интервалы для параметров произвольного распределения

n=20	m	σ
	-0.63 < m < 0.36	$0.93 < \sigma < 1.56$
n = 100	m	σ
	-0.09 < m < 0.23	$0.74 < \sigma < 0.96$

4.3 Твины для нормального распределения

Таблица 3: Твины для нормального распределения

n=20	$x_{ m inner}$	$x_{ m outer}$
	[0.21, -0.47]	[-2.37, 2.10]
n = 100	$x_{ m inner}$	$x_{ m outer}$
	[0.64, -0.50]	[-1.06, 1.20]

4.4 Твины для асимптотического подхода

Таблица 4: Твины для асимптотического подхода

n=20	$x_{ m inner}$	$x_{ m outer}$
	[0.30, -0.57]	[-2.18, 1.92]
n = 100	$x_{ m inner}$	$x_{ m outer}$
	[0.65, -0.51]	[-1.06, 1.20]

5 Выводы

На основании проведённого анализа доверительных интервалов для параметров нормального и произвольного распределений можно сделать следующие выводы:

- 1. Для выборки малого объёма (n=20):
 - Доверительные интервалы для нормального распределения оказались шире, чем для асимптотического подхода:
 - По математическому ожиданию: [-0.68, 0.41] против [-0.63, 0.36]
 - По СКО: [0.88, 1.69] против [0.93, 1.56]
 - Твины для нормального распределения демонстрируют большую изменчивость ([-2.37, 2.10]) по сравнению с асимптотическим подходом ([-2.18, 1.92])
- 2. Для выборки большого объёма (n=100):
 - Интервалы для обоих подходов практически совпадают:
 - По математическому ожиданию: [-0.10, 0.23] и [-0.09, 0.23]
 - По СКО: [0.73, 0.97] и [0.74, 0.96]
 - Твины для обоих методов практически идентичны ([-1.06, 1.20])
- 3. Наблюдается ожидаемое сужение доверительных интервалов с увеличением объёма выборки:
 - Для n=20 ширина интервала для m: около 1.09 (норм.) и 0.99 (асимпт.)
 - Для n=100 ширина интервала для m: около 0.33 для обоих методов
- 4. Асимптотический подход даёт более точные результаты при больших объёмах выборки, что подтверждается практическим совпадением интервалов при n=100

Таким образом, проведённый анализ подтверждает теоретические положения:

- Для малых выборок предпочтительнее использовать точные методы (для нормального распределения)
- При больших объёмах данных асимптотический подход становится эквивалентным точным методам
- Увеличение объёма выборки закономерно приводит к уменьшению ширины доверительных интервалов