

Session Objectives

By the end of this session you will

- Understand why a new version of RTA was needed
- Be able to describe the differences between RTA2 and RTA3
- Know how Q-Scores are assigned on the NovaSeq
- Be aware of software that is compatible with RTA3 outputs

Why Create Another RTA?

of pixels to process are roughly the distance to pluto in feet

Processing Speed

Run time 44 hours (158,400 pixels per second)

2.5x increase in speed required

RTA3 and RTA 2: What Is The Same?

Review of Algorithms Shared Between RTA2 and RTA3

Rigid Registration For Patterned Flow Cells

Preset hexagonal lattice of cluster locations is aligned to the images

2 Color Base Calling Normalization

Scale all intensities so their P05 and P95 intensities represent 0 and 1

Background subtracted, Spatial Base call Normalized

Normalized Intensities	<u>Intensities</u>
99	1
P95 =1 98	1
97	0.99
85	0.87
84	0.86
79	0.89
76	0.76
71	0.72
63	0.69
62	0.63
61	0.62
50	0.51
48	0.49
25	0.25
22	0.22
20	0.20
15	0.15
13	0.13
$[P05 = 0 \ 10]$	0
3	0

2 Color Population-based Base Calling

- Scatterplot of 4 distinct populations (nucleotides) is created from extracting intensities from one image versus the other image
- Base calls are made according to which channel is on (1) or off (0) for each cluster according to (x, y):
 - $-(1,0) \rightarrow C$
 - $-(0,1) \rightarrow T$
 - $-(1, 1) \rightarrow A$
 - $-(0,0) \rightarrow G$

2-Color Calculating Clusters Passing Filter

Pass filter is:

$$C = 1 - \frac{D_1}{D_1 + D_2}$$

- The ratio of the sum of the most prominent and second most prominent population intensities
- Calculated for each cluster over the first 25 bases of the sequence
- Filters cluster by signal purity
 - Removes overlapping and low-intensity clusters

Passing Chastity value: ≥ 0.63

Introducing RTA3

What's New - RTA 3

Distributed Compute Architecture

Distributed Compute Architecture

Single Board Computer (SBC)

- •Windows 10
- •Responsible for:
 - User Interface (hardware and software)
 - UCS (New Run Copy Service)
 - NovaSeq Control Software
 - Storage of logs

Compute Engine (CE)

- Powerful Linux Box
- Responsible for
 - RTA 3
 - Temp run folder

Folder and File Structure Differences

Folder and File structure differences

Run Folder Structure

- More efficient base calling format
- 2 base calls per byte before zipping

*.CBCL format (Concatenated)

- Nonpassing filter clusters removed after cycle 25
- Dramatically smaller through compression
- Aggregated by surface and lane

InterOp Folder Format

- Per Cycle InterOp Files
- Open-source library to parse new InterOp:
 - github.com/Illumina/interop

Compute Framework Changes

Compute Framework

Written fully in C++

- Mix of C++ and C# converted to C++
- One language results in better CPU utilization

Vectorization

- Execute the same task on multiple values simultaneously
- "Eat 1 candy vs. Eat all the candies"

Data "Traffic Flow" Optimizations

- Any tile can be worked on by any thread
- Every tile owns its own cache

Historic Q-Score Generation And Binning

Quality Score Reporting

LookUp Table

Binning reduces data footprint, however the large lookup table is a processing bottleneck

RTA3 Outputs Four Quality Scores

Quality Score Reporting

Simplified Q-Score Assignment

We will discuss how Q-Scores are assigned in more details in subsequent slides

Q Score	Probability Base C of Incorrect Accura Base	
2	Qscore no	t assigned
12	6.3 in 100	~94%
23	5 in 1,000	~99.5%
37	2 in 10,000	~99.98%

Actual Q-scores subject to change

Fewer reported quality scores reduce data footprint

Why Only Four Quality Scores?

A Little Bit Of Computer Science

- Smaller decimals require fewer bits to store in binary
 - Bit is short for "binary digit"
 - 8 bits per byte
- RTA3 *.CBCL files Math:

2 bits to store each base

+ 2 bits to store its Q-score

4 bits for each base in a *.CBCL (two bases per byte)

		Decimal	Translat	ed to Binary
		0	0	
		1	1	2 bits
		2	10	per Q- score
	RTA3	3	11	30010
		4	100	
		5	101	3 bits
	Q-score	6	110	per Q- score
Binning		7	111	330.0
		8	1000	71.
N.	0.0	16	10000	7 bits per Q-
	on- nned	32	100000	score
_	-scores	64	1000000	

Quality Score Reporting Advantages

Quality Score Reporting

Time

Smaller lookup table = faster lookup

Disk Space

• 4 scores = reduced data footprint

Data Transfer

 Reduced data footprint = reduces bandwidth required compared to what it would have been

Q-Score Assignment on NovaSeq

How Illumina Generated Data to Train NovaSeq Q-Tables

1

 Well Characterized Samples sequenced on NovaSeq

2

NovaSeq results aligned to reference genome

3

Known variants are filtered out

How Illumina Trained NovaSeq Q-Tables

Multiple features predictive of quality plotted

Phred-Scale Quality Scores are Logarithmic

Group	Error Rate	Q-Score
А	6.3 in 100	12
В	5 in 1,000	23
С	2 in 10,000	37

Actual Q-scores reported are subject to change

4

Basecalls are divided into 3 groups based on predictive features

Quality score assigned based on group's empirical error rate

How Q-Tables Provides Quality Prediction

Quality Scores are assigned according to which group the data behaves like most

Feature Behavior Similar to Group:	Q Score Assigned
Α	37
В	23
С	12
No Call Assigned	2

Comparing the empirical Q-Score to the predicted Q-Score in new samples show the tables are well trained

Platform Comparison %Q30 by Cycle

Note: Runs use an updated, although not final, Q-table which may affect the accuracy of the quality scores.

Waterfall in % Q30 Data By Cycle

Jumps between Q Score groups are clearly separated

 Visual artifact thought to be caused by groups of tiles shifting together

More tile based features used in NovaSeq

 Previous Q tables used more cluster-based features which resulted in smoother plots

Comparing HiSeq X and NovaSeq data

- Shows comparable human genome build quality
- Suggests this is a cosmetic issue, not a data quality issue

Advice From Illumina's Data Analysis Experts

Visual artifact makes the % ≥Q30 per cycle plot less informative

Q20 per cycle plots correlate better with error rate

Overall %≥Q30, Q20 per cycle, and error rate are better measures of data quality

Bioinformatics Details - Quality Scores

Data set comparisons show extremely high correlation between down stream analysis regardless of how this plot looks

Chr20	8 Q-score (HiSeq X)	4 Q-score (NovaSeq)
Total variant positions	100,795	100,875
In Platinum regions	83,659	83,669
In Platinum regions and PASSes FILTER	82,473	82,442
In Platinum regions and PASSes FILTER and not in other vcf	361	371
In Platinum regions and PASSes FILTER only in 8score/4Qscore	184	216

Human Genome Performance on NovaSeq

Genome build quality highly concordant with HiSeq

	NovaSeq (n4)	HiSeq X (n2)	HiSeq v4 (n2)	NextSeq (n2)
Genome Coverage (x)	30.6	30.5	29.8	30.1
Autosome Coverage	95%	95%	91%	94%
Autosome Callability	95%	95%	93%	93%
Autosome Exon Callability	98%	98%	91%	95%
SNV Precision	100%	100%	100%	100%
SNV Recall	97%	97%	96%	96%
Indel Precision	97%	98%	97%	96%
Indel Recall	95%	95%	88%	88%

Coverage And Callability Defined

Coverage

- Better defined as the mean mapped read depth
- Sum of mapped read depths divided by the number of known (sequenceable) bases in the reference

Callability

 Can the genotype be definitively determined at a specified confidence threshold after multiple filters (such as read depth and Q Score) have been applied

Callable States:

- -Did the base have enough coverage?
- -Was the read able to be mapped?
- -Was the reference base an N?

Precision and Recall Defined

Precision and Recall

- Precision: What percent of variant calls made are correct?
- Recall: What percent of known variants were detected?

New Software To Support RTA3

New Software to Support RTA3

NCS

- Combines

 BaseSpace
 Broker and
 Run Copy
 Service
- More robust, unlimited retries, seamless restart

SAV

- New version required to handle new InterOp Folder Structure
- Not preinstalled on instrument
- Does not Autolaunch when starting a run

CL2FastQ2

 Not required if sending data to BaseSpace Sequence Hub

Questions?

Revision History

Version	Updates
В	 Updated slide 4 to clarify content and remove typos Changed slide 11 to prevent people from thinking there are 4 bins Added Slides 19-29 to better explain how RTA3 assigns Q-Scores Changed "reduced Quality Score Bins" to "Quality Score Reporting" Updated info on UCS on slide 31

