FUZZY CLUSTERING

By Alessandro Gentili and Jakub Swistak

Content

- > Clustering
- > K-Means Clustering
- > Fuzzy C-Means Clustering
- > Possibilistic Fuzzy C-Means Clustering
- > KNN Clustering
- > Fuzzy KNN Clustering
- > Fuzzy Scaling Process

What is clustering?

- > Clustering is the task of partitioning a set of elements into groups (clusters) such that the elements belonging to the same group are similar (in some way)
- > Elements are represented as **vectors**
- > We can compare elements using distance

Preliminaries

- > Set of vectors:
- Centroid:
- > Distance:
- > Loss function:

$$x = \{x_1, x_2, ..., x_n\}$$

$$\mathbf{c} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

$$d_{Euclidean}(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} d_{Manhattan}(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} |a_i - b_i|$$

$$\mathcal{L}(x, c) = \sum_{k=1}^{K} \sum_{i=1}^{n} ||x_i - c_k||^2$$

Distance matter

If we change the distance we change the **decision boundaries**, therefore we get different clustering results

K-Means Algorithm – step 1

- > Select k the number of clusters
- > Assign k random centroids
- Assign each point to the closest centroid and create the clusters

K-Means Algorithm – step 2

- Compute centroids for the new clusters
- Reassign each point to the closest centroid

K-Means Algorithm – step 3

 Repeat the process until convergence, meaning that the loss does not improve significantly any more

K-Means Algorithm – parameter tuning

K-Means Algorithm – parameter tuning

Fuzzy C-Means – additional elements

> We need a new data structure:

$$U = [u_{ij}] \qquad 0 \le u_{ij} \le 1, \quad \sum_{j=1}^k u_{ij} = 1, \quad \forall i$$

> For each cluster the centroid is computed as follows:

$$c_j = \frac{\sum_{i=1}^{N} u_{i,j}^m x_i}{\sum_{i=1}^{N} u_{i,j}^m}$$

> For each element the degree of membership is updated as follows:

$$u_{i,j} = \left(\sum_{k=1}^{c} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}}\right)^{-1}$$

Fuzzy C-Means - algorithm

- > Select the number of clusters to detect
- > Assign centroids randomly
- > Assign to each point a degree of membership to each cluster
- > Repeat untill convergence:
 - Compute the new centroids
 - Assign each point a new degree of membership to each cluster

Fuzzy C-Means – parameter tuning

Fuzzy C-Means – parameter tuning

Fuzzy C-Means – pros and cons

- Computationally more expensive
 Possible overlapping clusters
- > Choosing the right number of clusters is hard
- Difficulty in handling outliers

Possibilistic Fuzzy C-Means – additionalities

- > We introduce a new parameter $t_{i,j}$, called **typicality**, that measure how much each elements fits each cluster, without consider the others (it is not require that them sum to 1).
- > a and b are additional hyperparameters. They define the relative importance of fuzzy membership and typicality.
- \rightarrow An additional hyperparameters defined for each clusters: δ_i

Possibilistic Fuzzy C-Means – steps

> Compute centroids:

$$c_j = \frac{\sum_{i=1}^{N} (au_{i,j}^m + bt_{i,j}^{\eta})x_i}{\sum_{i=1}^{N} (au_{i,j}^m + bt_{i,j}^{\eta})}$$

> Compute membership values based on new clusters:

$$u_{i,j} = \left(\sum_{k=1}^{c} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}}\right)^{-1}$$

> Compute typicality values based on new centroids:

$$t_{i,j} = \left(1 + \left(\frac{b||x_i - c_j||^2}{\delta_j}\right)^{\frac{1}{\eta - 1}}\right)^{-1}$$

Possibilistic Fuzzy C-Means - Pros and Cons

- > Requires carefully choosing more hyperparameters
- > Able to detect more patterns in the data
- > Handles outliers better than the fuzzy c-means clustering

kNN clustering

- Red stars and green triangles are classified
- Calculate distances and find k nearest neighbours
- Assign label to the unknown points based on k-closest labels

kNN clustering - How to Compute

Point	X	Υ	Class	
Α	1.0	1.0	Red	$ \sqrt{(3.0 - 1.0)^2 + (2.0 - 1.0)^2} = 2.24 $
В	2.0	1.0	Red	
C	4.0	4.0	Red	$ \sqrt{(3.0 - 4.0)^2 + (2.0 - 4.0)^2} = 2.24 $
D	5.0	5.0	Blue	$ \sqrt{(3.0 - 5.0)^2 + (2.0 - 5.0)^2} = 3.61 $
Е	4.5	3.5	Blue	
New Point	3.0	2.0	?	

Fuzzy kNN (K = 3)

Point	X	Υ	Class	
Α	8.0	0.8	Α	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 0.8)^2} = 2.50$
В	8.0	1.2	Α	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 1.2)^2} = 1.23$
С	3.8	2.8	В	$\sqrt{(3.0-3.8)^2+(2.0-2.8)^2} = 2.16$
D	4.2	3.2	В	$\sqrt{(3.0-4.2)^2+(2.0-3.2)^2}=2.34$
Е	4.5	3.5	Α	$\sqrt{(3.0-4.5)^2+(2.0-3.5)^2}=1.96$
New Point	3.0	2.0	?	

Point	X	Υ	Class	
Α	0.8	0.8	Α	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 0.8)^2} = 2.50$
В	0.8	1.2	Α	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 1.2)^2} = 1.23$
C	3.8	2.8	В	$\sqrt{(3.0-3.8)^2+(2.0-2.8)^2}=2.16$
D	4.2	3.2	В	$\sqrt{(3.0-4.2)^2+(2.0-3.2)^2}=2.34$
Е	4.5	3.5	Α	$\sqrt{(3.0 - 4.5)^2 + (2.0 - 3.5)^2} = 1.96$
New Point	3.0	2.0	?	

$$\mu_i(P) = rac{\sum_{j=1}^k \mu_{ij} \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}{\sum_{j=1}^k \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}$$

Point	X	Υ	Class	
Α	8.0	0.8	A	$\sqrt{(3.0-0.8)^2+(2.0-0.8)^2}=2.$
В	8.0	1.2	A	$\sqrt{(3.0-0.8)^2+(2.0-1.2)^2}=1.$
С	3.8	2.8	В	$\sqrt{(3.0-3.8)^2+(2.0-2.8)^2}=2.$
D	4.2	3.2	В	$\sqrt{(3.0-4.2)^2+(2.0-3.2)^2}=2.$
Е	4.5	3.5	A	$\sqrt{(3.0-4.5)^2+(2.0-3.5)^2}=1.$
New Point	3.0	2.0	?	

$$\mu_i(P) = rac{\sum_{j=1}^k \mu_{ij} \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}{\sum_{j=1}^k \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}$$

Point	X	Υ	Class	
A	8.0	0.8	Α	$\sqrt{(3.0-0.8)^2+(2.0-0.8)^2}=2.50$
В	8.0	1.2	Α	$\sqrt{(3.0-0.8)^2+(2.0-1.2)^2}=1.23$
С	3.8	2.8	В	$\sqrt{(3.0-3.8)^2+(2.0-2.8)^2} = 2.16$
D	4.2	3.2	В	$\sqrt{(3.0-4.2)^2+(2.0-3.2)^2}=2.34$
Е	4.5	3.5	Α	$\sqrt{(3.0-4.5)^2+(2.0-3.5)^2}=1.96$
New Point	3.0	2.0	?	

$$\mu_A(P) = \frac{\frac{1}{1.23^2} + \frac{0}{2.16^2} + \frac{1}{1.96^2}}{\frac{1}{1.23^2} + \frac{1}{2.16^2} + \frac{1}{1.96^2}} \approx 0.811$$

$$\mu_B(P) = \frac{\frac{0}{1.23^2} + \frac{1}{2.16^2} + \frac{0}{1.96^2}}{\frac{1}{1.23^2} + \frac{1}{2.16^2} + \frac{1}{1.96^2}} \approx 0.189$$

$$\mu_i(P) = rac{\sum_{j=1}^k \mu_{ij} \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}{\sum_{j=1}^k \left(rac{1}{d(P_i, X_j)^{rac{2}{m-1}}}
ight)}$$

Point	X	Υ	Class	
Α	0.8	0.8	A	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 0.8)^2} = 2.50$
В	8.0	1.2	Α	$\sqrt{(3.0 - 0.8)^2 + (2.0 - 1.2)^2} = 1.23$
С	3.8	2.8	В	$\sqrt{(3.0-3.8)^2+(2.0-2.8)^2}=2.16$
D	4.2	3.2	В	$\sqrt{(3.0 - 4.2)^2 + (2.0 - 3.2)^2} = 2.34$
Е	4.5	3.5	Α	$\sqrt{(3.0 - 4.5)^2 + (2.0 - 3.5)^2} = 1.96$
New Point	3.0	2.0	?	

$$\mu_A(P) = \frac{\frac{1}{1.23^2} + \frac{0}{2.16^2} + \frac{1}{1.96^2}}{\frac{1}{1.23^2} + \frac{1}{2.16^2} + \frac{1}{1.96^2}} \approx 0.811$$

$$\mu_B(P) = \frac{\frac{0}{1.23^2} + \frac{1}{2.16^2} + \frac{0}{1.96^2}}{\frac{1}{1.23^2} + \frac{1}{2.16^2} + \frac{1}{1.96^2}} \approx 0.189$$

Fuzzy Scaling Process - Main Idea

- > *T*he most basic algorithm for fuzzy clustering:
- > For each pair x_i , x_j determine their similarity $s_{i,j}$
- \rightarrow Define a matrix $S = (s_{i,j})_{n \times n}$
- \rightarrow Calculate the transitive closure R = tc(S)
- \rightarrow *Calculate* the α *cut* R_{α}
- > If i—th and j—th rows of R_{α} are equal x_i and x_j are in the same cluster

Fuzzy Scaling Process - Example

> Let's take 3 colors sky blue, light blue and green

Fuzzy Scaling Process - Example

- > Let's take 3 colors sky blue, light blue and green
- Let's pick some distance metric which will return the distance between two colors

Fuzzy Scaling Process - Example

- > Let's take 3 colors sky blue, light blue and green
- Let's pick some distance metric which will return the distance between two colors
- > Let's fill the matrix with the distances between colors

$$S = egin{bmatrix} 1 & 0.9 & 0.2 \ 0.9 & 1 & 0.3 \ 0.2 & 0.3 & 1 \end{bmatrix}$$

Fuzzy Scaling Process - Pros and Cons

> We have to obtain R

$$R = \begin{bmatrix} 1.0 & 0.9 & 0.3 \\ 0.9 & 1.0 & 0.3 \\ 0.3 & 0.3 & 1.0 \end{bmatrix}$$

Fuzzy Scaling Process - Pros and Cons

> We have to obtain R

$$R = egin{bmatrix} 1.0 & 0.9 & 0.3 \ 0.9 & 1.0 & 0.3 \ 0.3 & 0.3 & 1.0 \end{bmatrix}$$

> We have to perform alpha-cut (let's take 0.5)

Fuzzy Scaling Process - Pros and Cons

> We have to obtain R

$$R = egin{bmatrix} 1.0 & 0.9 & 0.3 \ 0.9 & 1.0 & 0.3 \ 0.3 & 0.3 & 1.0 \end{bmatrix}$$

> We have to perform alpha-cut (let's take 0.5)

$$R_lpha = egin{bmatrix} 1.0 & 0.9 & 0 \ 0.9 & 1.0 & 0 \ 0 & 0 & 1.0 \end{bmatrix}$$

THANK YOU FOR YOUR ATTENTION!

