Systèmes multi-agents

Cours 5 – Agents logiques et hybrides

Cédric Buron

cedric.buron@yahoo.fr | buron.cedric.free.fr

Ingénieur de recherche décision

THALES

RAPPEL DES ÉPISODES **PRÉCÉDENTS**

Agent cognitif

Cédric Buron SMA Cours 5 3 / 27

Agent cognitif

Cédric Buron SMA Cours 5 3 / 27

Agent réactif

Agent réactif

AGENTS LOGIQUES

Architecture générale

Cédric Buron SMA Cours 5 6 / 27

Exemple: Agent de diagnostique

$$AD \quad A_1 \quad A_2 \quad A_3 \quad A_4$$

$$beliefs \qquad \qquad actions$$

$$fievre(A) \land infl_gorge(A) \implies angine_blanche(A)$$

$$fievre(A) \land infl_oreilles(A) \implies otite_bact(A) \qquad examiner gorge(A)$$

$$angine_blanche(A) \lor otite_bact(A) \iff bact(A) \qquad examiner oreilles(A)$$

$$\neg fievre(A) \land infl_gorge(A) \implies angine_rouge(A) \qquad suivant()$$

$$\neg fievre(A) \land infl_oreilles(A) \implies otite_vir(A) \qquad prescrire antibio(A)$$

$$angine_rouge(A) \lor otite_vir(A) \iff viral(A) \qquad prescrire physio(A)$$

$$bact(A) \iff \neg viral(A) \qquad bact(A) \implies Do(precrire(antibio, A))$$

$$viral(A) \implies Do(precrire(antibio, A))$$

$$prescrit(A) \implies \neg Do(suivant())$$

$$\neg prescrit(A) \implies \neg Do(suivant())$$

Exemple: Agent de diagnostique

Exemple: Agent de diagnostique

$$AD \quad A_1 \quad A_2 \quad A_3 \quad A_4$$

$$beliefs \qquad \qquad actions$$

$$fievre(A) \land infl_gorge(A) \implies angine_blanche(A) \qquad examiner fievre(A)$$

$$fievre(A) \land infl_oreilles(A) \implies otite_bact(A) \qquad examiner gorge(A)$$

$$angine_blanche(A) \lor otite_bact(A) \iff bact(A) \implies angine_rouge(A)$$

$$\neg fievre(A) \land infl_gorge(A) \implies angine_rouge(A) \qquad suivant()$$

$$\neg fievre(A) \land infl_oreilles(A) \implies otite_vir(A) \qquad prescrire antibio(A)$$

$$angine_rouge(A) \lor otite_vir(A) \iff viral(A) \qquad prescrire physio(A)$$

$$bact(A) \iff \neg viral(A) \qquad \neg infl_gorge(A_1) \qquad infl_gorge(A_1)$$

$$viral(A) \implies Do(precrire(antibio, A)) \qquad infl_oreille(A_1)$$

$$viral(A) \implies Do(precrire(antibio, A)) \qquad prescrit(A) \implies \neg Do(suivant())$$

$$\neg prescrit(A) \implies \neg Do(suivant())$$

Exemple : Agent de diagnostique

Exemple : Agent de diagnostique

$$AD \quad A_1 \quad A_2 \quad A_3 \quad A_4$$

$$beliefs \qquad \qquad actions$$

$$fievre(A) \land infl_gorge(A) \implies angine_blanche(A) \qquad examiner fievre(A)$$

$$fievre(A) \land infl_oreilles(A) \implies otite_bact(A) \qquad examiner gorge(A)$$

$$angine_blanche(A) \lor otite_bact(A) \iff bact(A) \qquad examiner oreilles(A)$$

$$\neg fievre(A) \land infl_gorge(A) \implies angine_rouge(A) \qquad suivant()$$

$$\neg fievre(A) \land infl_oreilles(A) \implies otite_vir(A) \qquad prescrire_antibio(A)$$

$$angine_rouge(A) \lor otite_vir(A) \iff viral(A) \qquad prescrire_physio(A)$$

$$bact(A) \iff \neg viral(A) \qquad \neg infl_gorge(A_1) \qquad infl_gorge(A_1)$$

$$viral(A) \implies Do(precrire(antibio, A)) \qquad infl_oreille(A_1) \qquad \neg fievre(A_1)$$

$$\neg bact(A) \implies \neg Do(precrire(antibio, A)) \qquad otite_vir(A_1)$$

$$\neg bact(A) \implies \neg Do(suivant()) \qquad \neg bact(A_1)$$

$$\neg prescrit(A) \implies \neg Do(suivant()) \qquad \neg Do(precrire(antibio, A_1))$$

$$Do(precrire(sympt, A))$$

Implémentations

Agent Oriented Programming & AGENTO (Shoham, 1993)

Implémentation d'un agent logique accessible

- Composants :
 - ensemble de croyances,
 - capacités (i.e. actions),
 - engagements,
 - règles d'engagement.
- Comportement de l'agent basé sur les règles d'engagement :

```
regle\_engagement: (message, croyance) \rightarrow engagement
```

- Messages :
 - request/unrequest : changement d'engagement,
 - ▶ inform : changement de croyances.
- Actions privées ou communicatives (messages).

Logique temporelle (FOL + opérateurs temporels) :

- ullet $\Box \phi$: ϕ sera toujours vrai
- ullet ϕ : ϕ a toujours été vrai
- $\circ \phi$: ϕ sera vrai au prochain pas de temps
- $\mathbf{O}\phi$: ϕ était vrai au dernier pas de temps
- $\Diamond \phi$: ϕ sera vrai à un moment dans le futur
- $\diamond \phi$: ϕ a été vrai à un moment dans le *passé
- $\phi U \psi : \phi$ est vrai jusqu'à ce que ψ soit vrai
- $\phi W \psi$: ϕ est vrai à moins que ψ soit vrai
- $\phi S \psi$: ϕ est vrai depuis que ψ est vrai
- $\phi Z \psi$: ϕ est ou sera vrai à partir du moment où ψ est ou sera vrai

Exemples:

 « Si on vient de me demander la ressource r, je donne la ressource r au pas de temps suivant »

 « Si on vient de me demander la ressource r, je fournit la ressource r jusqu'à ce qu'on me demande d'arrêter »

ullet « Si j'ai fourni la ressource r, r ne sera plus jamais disponible ${f *}$

Cédric Buron SMA Cours 5 10 / 27

Exemples:

- « Si on vient de me demander la ressource r, je donne la ressource r au pas de temps suivant »
- $Odemande(r) \implies Ofournit(r)$
- « Si on vient de me demander la ressource r, je fournit la ressource r jusqu'à ce qu'on me demande d'arrêter »
- $Odemande(r) \implies fournit(r) \ U \ stop(r)$
- ullet « Si j'ai fourni la ressource $r,\ r$ ne sera plus jamais disponible ${ullet}$
- \diamond fournit $(r) \implies \Box [\neg disponible(r)]$

◆ロト ◆個ト ◆注ト ◆注ト 注 りへの

Cédric Buron SMA Cours 5 10 / 27

Boucle d'exécution

Cédric Buron SMA Cours 5 11 / 27

Agents logiques : Bilan

Résumé:

- agents dotés d'une base de propositions logiques (premier ordre/temporelle)
- règles permettant de déclencher des actions
- pas de différenciation entre désirs, croyances...

Implémentations:

- Agent0 : logique du premier ordre
- Concurrent MetateM : logique temporelle

Cédric Buron SMA Cours 5 12 / 27

Agents cognitifs : carte des idées

AGENTS HYBRIDES

Principe

Agents cognitifs:

- capables de résoudre des problèmes complexes,
- capables de proactivité,
- processus long.

Agents réactifs :

- rapides,
- capables d'émergence,
- limitations.

Objectif: concilier les avantages des deux approches

Deux possibilités :

- architectures cognitives/réactives dans une architecture réactive (couches horizontales)
- architectures cognitives/réactives dans une architecture cognitive (couches verticales)

Cédric Buron SMA Cours 5 15 / 27

Couches horizontales

Problématiques :

Cédric Buron SMA Cours 5 16 / 27

Couches horizontales

Problématiques :

- Quels modules?
- Comment choisir quel module décide?

Cédric Buron SMA Cours 5 16 / 27

Couches verticales Architecture à une passe

Problématiques :

Cédric Buron SMA Cours 5 17 / 27

Couches verticales Architecture à une passe

Problématiques :

- Quelles couches?
- Que se passe-t-il en cas de problème dans une couche?

Cédric Buron SMA Cours 5 17 / 27

Couches verticales Architecture à deux passes

Cédric Buron SMA Cours 5 18 / 27

Application Machines de Touring

Application Machines de Touring

couche réactive système de règles :

- ullet règle o action (pas de prédicat)
- pas de représentation du monde,
- pas d'accès à l'historique

couche plannification exécution de plans :

- utilise une librairie de plans
- assemble des plans de différents niveaux pour obtenir un plan global
- détermine des plans à partir de buts

Cédric Buron SMA Cours 5 20 / 27

Application Machines de Touring

couche modèle modélisation du monde

- représentation de l'agent, des autres agents etc.
- détecte les conflits
- génère de nouveaux buts et les soumet à la couche plannif.

système de contrôle gère les entrées/sorties

- décide quelle couche agit,
- système à base de règles
- capable de supprimer une entrée ou censurer une sortie

Cédric Buron SMA Cours 5 21 / 27

Applications InteRRaP

Applications InteRRaP

- chaque couche reliée à une base de connaissance pertinente
- couche composée de 2 fonctions :
 - reconnaissance de situation et activation de but : en fonction des bases de connaissances
 - planification : en utilisant les plans à sa disposition
- déroulement :
 - couche activée : utilisation des fonctionnalités fournies par la couche inférieure pour accomplir le plan
 - couche non activée : envoi de l'information à la couche supérieure
- responsabilité des couches :

couche comportementale comportement réactif vis à vis de l'environnement couche plannification locale comportement cognitif vis à vis de l'environnement couche plannification sociale comportement cognitif vis à vis des autres agents

Bilan

• Comparaison des architectures hybrides

	architecture horizontale	architecture verticale
complexité	m ⁿ	$m^2 \cdot (n-1)$
tolérance aux fautes	\checkmark	×
concept	simple	complexe
exemple	InteRRaP	machines de Touring

Cédric Buron SMA Cours 5 24 / 27

Bilan

Carte des idées

TP

Téléchargeable/clonable depuis

https://gitlab.data-ensta.fr/buron/2020-2021-ia310-cours-5

 Cédric Buron
 SMA Cours 5
 26 / 27

Références I

- Yoav Shoham. "Agent-oriented programming". Artificial intelligence, 60.1, pp.51-92, 1993.
- Michael Fisher et Howard Barringer. "Concurrent METATEM processes—A language for distributed AI." In Proceedings of the European Simulation Multiconference. 1991.
- Innes A Ferguson. "Touring machines: Autonomous agents with attitudes". *Computer*, 25.5, pp.51-55, 1992.
- Jörg P Müller et Markus Pischel. "The agent architecture inteRRaP : Concept and application." rapport de l'université de la Sarre, 1993.
- R. Peter Bonasso, David Kortenkamp, and Troy Whitney. "Using a robot control architecture to automate space shuttle operations." *In AAAI/IAAI*, pp. 949-956. 1997.

Cédric Buron SMA Cours 5 27 / 27