

ЦИФРОВОЕ ТЕМПЕРАТУРНОЕ РЕЛЕ ТР-100

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Перед использованием устройства внимательно ознакомьтесь с Руководством по эксплуатации.

Перед подключением устройства к электрической сети выдержите его в течение двух часов при условиях эксплуатации.

Для чистки устройства не используйте абразивные материалы или органические соединения (спирт. бензин, растворители и т.д.).

ЗАПРЕЩАЕТСЯ САМОСТОЯТЕЛЬНО ОТКРЫВАТЬ И РЕМОНТИРОВАТЬ УСТРОЙСТВО. Компоненты устройства могут находиться под напряжением сети.

ЗАПРЕЩАЕТСЯ ОТКРЫВАТЬ И РЕМОНТИРОВАТЬ ЗАЩИЩАЕМОЕ ОБОРУДОВАНИЕ, ЕСЛИ ОНО ПОДКЛЮЧЕНО К ВЫХОДНЫМ КОНТАКТАМ УСТРОЙСТВА.

ЗАПРЕЩАЕТСЯ ЭКСПЛУАТИРОВАТЬ УСТРОЙСТВО В УСЛОВИЯХ ВЫСОКОЙ ВЛАЖНОСТИ ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ УСТРОЙСТВА С МЕХАНИЧЕСКИМИ ПОВРЕЖДЕНИЯМИ КОРПУСА.

НЕ ДОПУСКАЕТСЯ ПОПАДАНИЕ ВОДЫ В УСТРОЙСТВО.

ВНИМАНИЕ! УСТРОЙСТВО НЕ ПРЕДНАЗНАЧЕНО ДЛЯ КОММУТАЦИИ НАГРУЗКИ ПРИ КОРОТКИХ ЗАМЫКАНИЯХ. ПОЭТОМУ УСТРОЙСТВО ДОЛЖНО ЭКСПЛУАТИРОВАТЬСЯ В ЭЛЕКТРИЧЕСКОЙ СЕТИ, ЗАЩИЩЕННОЙ АВТОМАТИЧЕСКИМ ВЫКЛЮЧАТЕЛЕМ (ПРЕДОХРАНИТЕЛЕМ) С ТОКОМ ОТКЛЮЧЕНИЯ НЕ БОЛЕЕ 10 А КЛАССА В.

При соблюдении правил эксплуатации температурное реле безопасно для использования.

Руководство по эксплуатации предназначено для ознакомления с устройством, принципом действия, правилами эксплуатации и настройки температурного реле TP-100.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

TP-100 предназначен для измерения и контроля температуры устройства по четырем датчикам, подключаемым по двух - или трех проводной схеме, с последующим отображением температуры на дисплее и выдачей сигналов тревоги при выходе каких либо параметров за установленные пределы.

Может применяться для защиты:

- трехфазных сухих трансформаторов с дополнительным контролем температуры сердечника или окружающей среды;
- двигателей и генераторов.

TP-100 имеет *универсальное* питание и может использовать любое напряжение от 24 до 260В, независимо от полярности.

В качестве датчиков температуры ТР100 может использовать следующие типы:

- РТ100 платиновый датчик с номинальным сопротивлением 100 Ом, при 0 °C;
- РТ1000 платиновый датчик с номинальным сопротивлением 1000 Ом, при 0 °C;
- КТҮ83 кремниевый датчик с номинальным сопротивлением 1000 Ом, при 25 °C;
- КТҮ84 кремниевый датчик с номинальным сопротивлением 1000 Ом, при 100 °C;
- РТС (1, 3, 6 последовательное включение) холодное сопротивление датчика 20-250 Ом.

1.2 Технические характеристики

1.2.1 Основные технические характеристики указаны в таблице 1.

Таблица 1

Напряжение питания, В	24 – 260 AC/DC
Рекомендованный предохранитель для защиты прибора, А	1 – 2
Тип датчиков, используемых для измерения температуры	PT100, PT1000, KTY83, KTY84, PTC
Количество подключаемых датчиков, шт.	1 – 4*
Схема подключения датчиков	2 / 3 проводная
Длина провода датчика в зависимости от схемы включения, м	2-х проводная до 5 3-х проводная до 100
Количество выходных реле, шт.	4
Время хранения данных, лет, не менее	15
Погрешность измерения температуры, °С	± 3
Диапазон измеряемых температур, °С	от минус 40 до +240
Тест выходных реле	есть
Тест индикации	есть
RS-485 MODBUS RTU	есть
Время измерения, сек.	≤ 2
Степень защиты: - корпуса	IP30
- клеммника	IP20
Климатическое исполнение	УХЛ3.1
Потребляемая мощность (под нагрузкой), ВА, не более	4,0
Масса, кг, не более	0,370
Габаритные размеры, мм	90 x 139 x 63
Диапазон рабочих температур, °С	от минус 40 до +55
Температура хранения, °С	от минус 50 до +60
Допустимая степень загрязнения	II
Категория перенапряжения	II
Номинальное напряжение изоляции, В	450
Номинальное импульсное выдерживаемое напряжение, кВ	2,5
Сечение проводников подсоединительных клемм, мм ²	0,5-2
Максимальный момент затяжки винтов клемм, Н*м	0,4
Коммутационный ресурс выходных контактов:	100
- электрический ресурс 10А 250В АС, раз, не менее	100 тыс.

- электрический ресурс 10A 24B DC, раз, не менее	100 тыс.			
Монтаж на стандартную DIN-рейку 35мм				
Положение в пространстве произвольное				
* примечание – датчики РТС могут включаться последовательно по (1, 3, 6 шт.)				

Характеристика выходных контактов

Cos φ	Макс. Ток при U∼250 В	Макс. Мощн.	Макс. Напр.~	Макс. Ток при Uпост=30 В
1,0	10 A	2500 BA	440 B	3 A

Вредные вещества в количестве, превышающем предельно допустимые концентрации, отсутствуют.

1.2.2 Внешний вид и габаритные размеры приведены на рисунке 1.

- 1 индикатор включения реле расцепления;
- 2 индикатор включения реле тревоги или включения режима программирования;
- 3 индикатор отказа прибора и включения реле неисправности;
- 4 индикатор включения реле вентиляции;
- 5 индикатор включения и активности связи по RS-485;
- 6 индикаторы номера текущего канала отображения;
- 7 цифровой дисплей;
- 8 кнопка теста индикации прибора;
- 9 кнопка входа в режим просмотра и программирования устройства;
- 10 кнопка записи и выхода из режима программирования;
- 11 кнопка вверх;
- 12 кнопка вниз.

Рисунок 1 – внешний вид и габаритные размеры

В режиме меню, индикаторы (4, 5, 6) отображают соответствующий им параметр (вкл. / выкл.), (FR_0 , rSR, rSR

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Подготовка ТР-100 к использованию
- 2.1.1 Меры безопасности

Все подключения должны выполняться при обесточенном ТР-100.

<u>При проведении испытаний изоляции трансформаторов на пробой необходимо отключать все датчики температуры от температурного реле TP-100.</u>

2.1.2 Подключить ТР-100 согласно рисунку 2.

Корпус ТР-100 имеет класс изоляции II не требующий подключения заземления.

Клеммы 3, 4, 5 и 6 предназначены для подключения заземления в случае, когда показания прибора некорректны из-за влияния помех на измерительные линии или внутренние элементы TP-100, и подключением заземления удается снизить их влияние.

ВНИМАНИЕ! Все кабели, передающие сигналы измерения от датчиков температуры, в обязательном порядке должны быть:

- изготовлены из экранированного кабеля типа витая пара (тройка) сечением не менее 0,5мм²;
- экраны кабелей датчиков должны быть подключены к заземлению;
- прочно присоединены к клеммам прибора;
- маршрут соединения кабелей должен быть отделен от кабелей высокого напряжения и от кабелей, питающих индуктивную нагрузку;
- все кабели должны быть одинаковой длины.

Рисунок 2 – электрические соединения ТР-100

2.1.3 Включить питание и установить, при необходимости, режимы работы согласно таблице 3.

2.2 Использование ТР-100

Когда температура одного из четырех датчиков превышает температуру установленного порога *температуру* установленное время ط الله включается реле *температуру* с соответствующей индикацией.

То же самое происходит при превышении температурного порога *расцепления* (上 Г Р): реле *расцепления* включается с соответствующей индикацией.

Отключение реле *тревоги* и *расцепления* произойдет при снижении температуры всех датчиков, ниже чем Ясс - dFA (тревога) и EcP - dFE (расцепление). Эти реле отключаются с отключением светодиодных индикаторов.

TP-100

2.2.1 Управление ТР-100

В исходном состоянии ТР-100 поочередно, с интервалом 4с, отображает температуру включенных датчиков, и номер соответствующего канала (при установленном значении 2 параметра d 5 P).

Управление устройством осуществляется следующим образом:

- для переключения между каналами используются кнопки 🔄 📤;
- для проверки всех светодиодных индикаторов кнопка [тест];
- для входа в режим просмотра параметров кнопка [МЕНЮ];
- для входа в режим изменения параметров нажать и удерживать в течение 7с кнопку
- при отсутствии нажатий любой из кнопок в течение 20с, TP-100 отобразит надпись ЕНЬ (в течении 1 с), и перейдет в исходное состояние.

2.2.1.1 Просмотр параметров

Для просмотра параметров необходимо однократно нажать кнопку (при этом включится светодиод "Отказ" (рис.1 п.3) и на дисплее отобразится первый параметр из таблицы 3. Листание параметров кнопками , вход в параметр – кнопка (при отсутствии нажатий любой из кнопок в течение 20сек., ТР-100 перейдет в исходное состояние. В режиме просмотра параметров изменение параметров невозможно.

2.2.1.2 Изменение параметров

Для изменения параметров необходимо нажать и удерживать в течение 7сек. кнопку ШЕНО, при этом:

- если был установлен пароль, введите его. Изменение значения текущего разряда кнопки , переход к следующему разряду кнопка нопка вода пароля кнопка вода пароля при отсутствии нажатий любой из кнопок в течение 20се, ТР-100 перейдет в исходное состояние.
- если введенный пароль верный, включится светодиод "Тревога" (рис.1 п.2) и на дисплее отобразится первый параметр из таблицы 3.
- если введенный пароль не верный, ТР-100 вернется в исходное состояние.
- если параметр PRS установлен в "000" проверка пароля не осуществляется. Включится светодиод "Тревога" (рис.1 п.2) и на дисплее отобразится первый параметр из таблицы 3.

Листание параметров кнопками , вход в параметр – кнопка в изменение параметра – кнопками , запись параметра и переход обратно в меню – кнопка , переход обратно в меню без записи – кнопка , При отсутствии нажатия любой из кнопок в течение 20сек., ТР-100 переходит в исходное состояние.

2.2.2 Восстановление заводских установок

Для восстановления заводских установок есть два способа:

- в режиме изменения параметров установить параметр ¬ ¬ В в 1 и нажать кнопку вод, при этом ТР-100 произведет перезапуск с заводскими установками. В данном способе пароль не сбрасывается.
- подать напряжение питания на TP-100, удерживая одновременно нажатыми кнопки Держать их нажатыми более 2сек., при этом на дисплее отобразится надпись □ В ∪, отпустить кнопки. Выключить питание. Заводские установки восстановлены, в том числе и пароль (пароль отключен).

2.2.3 Тестирование ТР-100

2.2.3.1 Тестирование светодиодной индикации

Нажать кнопку | тест |, при этом должны загореться на 2 сек. все светодиодные индикаторы. Если хотя бы один из индикаторов не будет функционировать, TP-100 считается неисправным и нуждается в ремонте. Во время тестирования индикации TP-100 продолжает свое нормальное функционирование.

2.2.3.2 Тестирование выходных реле

В ТР-100 предусмотрено тестирование как всех реле вместе, так и каждого реле по отдельности, для этого необходимо:

- в режиме изменения параметров установить значение параметра $^{ ar{L} \, ar{L} \, }$ в соответствии с таблицей 3 и нажать кнопку $^{ar{BOQ}}$, при этом на дисплее отобразится надпись $^{ar{L} \, ar{L} \, }$ (означающая, что тестируемые реле находятся в нормально разомкнутом (выключенном) состоянии), отключатся все светодиодные индикаторы.
- однократным нажатием кнопки выми меняется состояние тестируемых реле:

 □ F реле находятся в нормально разомкнутом (выключенном) состоянии;

 □ □ реле находятся в нормально замкнутом (включенном) состоянии.

Для перехода обратно в меню нажать кнопку [МЕНЮ]. При отсутствии нажатия любой из кнопок в течение 20сек., TP-100 перейдет в исходное состояние.

2.2.4 Использование вентиляции

TP-100 может управлять включением, отключением вентилятора, для этого необходимо установить значение параметра ^F ^Я □ отличное от 0 (см. Таблицу 3):

- Режим 1 в этом режиме температура определяется по трем датчикам 1,2,3. Как только температура одного из датчиков превысит температуру установленного порога включения вентиляции № Пп, реле вентиляции включается с соответствующей индикацией (мигание светодиода 4 рис.1). Отключение реле вентиляции произойдет, если температура всех трех датчиков опустится ниже, чем № Пп d № .
- Режим 2 аналогичен режиму 1, только температура определяется по четырем датчикам 1,2,3,4.
- Режим 3 если канал 4 включен (с ҺЧ = 1 см. Таблицу 3). В этом режиме температура определяется по четвертому датчику. Как только температура датчика превысит температуру установленного порога включения вентиляции БО¬, реле вентиляции включается с соответствующей индикацией (мигание светодиода 4 рис.1). Отключение реле вентиляции произойдет, если температура датчика опустится ниже, чем БО¬ d F F.

Примечание: светодиод 4 (рис.1) горит, когда контроль вентиляции включен и мигает, когда температура одного из датчиков превысит температуру установленного порога ^{F.}☐ п (таблица 3)

2.2.5 Просмотр максимально достигнутой температуры

В TP-100 предусмотрено запоминание максимально достигнутой температуры каналов. Для просмотра максимальной температуры необходимо:

2.2.6 Система аварийных состояний

Реле *температур*. Реле *только* при достижении порога установленных температур.

Реле *отказ* работает в нормально замкнутом состоянии. Включается, когда прибор включен в сеть и отключается при наличии неисправности датчиков или при отключении питающей электроэнергии, а индикация неисправности включается при неполадках TP-100 или неисправности датчиков. В случаи поломки одного из датчиков температуры, подключенных к TP-100, индикаторы "расцепление", "тревога", "отказ" 1,2,3 (рис.1) начинают мигать, на дисплей выводится код неисправности (^{F ⊂ ⊂} / ^{F □ ⊂}), и дальнейшая работа TP-100 зависит от установленного параметра ^{Я ⊂ ⊢} (см. таблицу 3).

Виды неисправностей приведены в таблице 2.

TP-100

Таблица 2

НЕИСПРАВНОСТЬ	ПРИМЕЧАНИЕ
	ТР-100 вместо ошибочного параметра загружает заводскую
Ошибка параметра	установку, при этом на дисплей выводится надпись Е г Р и ТР-
	100 продолжает нормальное функционирование.
Отказ EEPROM	Все реле выключаются, и на дисплей выводится надпись ЕЕР
	Выключается реле "отказ" с соответствующей индикацией,
Замыкание любого датчика	индикаторы тревоги и расцепления начинают мигать.
	На дисплей выводится надпись ^F ⊂ ⊂
Обрыв любого датчика	Выключается реле "отказ" с соответствующей индикацией,
(кроме РТС)	индикаторы тревоги и расцепления начинают мигать.
(кроме г гс)	На дисплей выводится надпись ^F о с
Превышение температуры	Включается реле расцепления с соответствующей индикацией
расцепления	на канале.
Превышение температуры	Включается реле тревоги с соответствующей индикацией на
тревоги	канале.
Превышение температуры	Включается реле вентиляции с соответствующей индикацией
вентиляции	на канале.
Потеря связи RS-485	Индикатор "связь RS-485" мигает с интервалом 0,5с.

2.2.7 Программируемые и используемые параметры ТР-100 Программируемые и используемые параметры приведены в таблице 3.

Таблица 3

	Таолица з						
АДРЕС	ПАРАМЕТР	МНЕМОНИКА	мин./макс.	УСТАНОВКА	ДЕЙСТВИЕ		
hex	Общие						
0x100	Тревога	ALr	50/240 °C	140	Температура срабатывания реле тревоги		
0x102	Диф. тревоги	9 Ł'B	1/200 °C	10	Дифференциал отключения тревоги		
0x104	Расцепление	FrP	50/240 °C	160	Температура срабатывания реле расцепления		
0x106	Диф. расцепления	dF.E	1/200 °C	10	Дифференциал отключения расцепления		
0x108	Реле вентиляции	FAn	0/3	1	Режим работы реле вентиляции: 0 – всегда отключено; 1 – работает по каналам 1,2,3; 2 – работает по каналам 1,2,3,4; 3 – работает по каналу 4 (если канал включен).		
0x10A	Вкл. вентиляции	F.On	30/240 °C	90	Температура включения вентиляции		
0x10C	Диф. вентиляции	4F.F	1/200 °C	20	Дифференциал отключения вентиляции		
0x10E	Задержка	9FB	0/300 сек.	4	Задержка вкл. реле при аварии по температуре		
0x110	Неисправность датчика	Act	0/2	0	Действие прибора при неисправности датчика: 0 – индикация с включением реле <i>отказа</i> ; 1 – п.0 + вкл. реле <i>тревога</i> ; 2 – п.1 + вкл. реле <i>расцепление</i> .		
	RS-485						
0x112	Включение	r <u>S</u> A	0/2	0	Включение/Отключение RS-485: 0 – отключено; 1 – включено; 2 – включено (удаленное управление силовыми реле).		
0x114	Идентификатор	r <u>S</u> n	1/247	1	Номер устройства (сетевой адрес)		
0x116	Скорость	r <u>5</u> 5	0/3	2	Скорость передачи данных: 0 – 2400 (бит/с); 1 – 4800 (бит/с). 2 – 9600 (бит/с); 3 – 19200 (бит/с).		
0x118	Четность	r <u>5</u> P	0/3	0	Контроль четности и стоповые биты: 0 – Нет : 2 стоп бита		

TP-100 NOVATEK-ELECTRO

					1 – Да : Чет : 1 стоп бит	
					2 – Да : Нечет : 1 стоп бит	
					Обнаружение потери связи (сек.):	
0x11A	Таймаут	r <u>S.</u> L	0/300	0	0 – запрещено. (любое другое значение	
	,				включает данный режим)	
					Выполняемое действие после потери связи:	
0x11C	Потеря связи	AcL	0/1	0	0 – только индикация;	
	•				1 – индикация с включением реле <i>отказа</i> .	
	Системные					
					Режим работы индикации прибора:	
					0 – отображается самая высокая	
	Режим		- 1-	_	температура с номером канала;	
0x11E	индикации	45P	0/2	2	1 – оператор вручную просматривает	
	''' '				температуру;	
					2 – ТР-100 поочередно, с интервалом 4сек,	
					отображает температуру вкл. датчиков.	
					Тестирование выходных реле ТР-100: 0 – тестировать реле расцепление;	
					1 – тестировать реле расцепление,	
0x120	Тест реле	Ł5Ł	0/4*	0	2 – тестировать реле тревога,	
					3 – тестировать реле отказ;	
					4 – тестировать все реле.	
2 422		0.0.5	000/000#		000 – пароль отключен, любое другое	
0x122	Пароль	PR5	000/999*	000	значение активирует пароль	
					Сброс всех настроек на заводские.	
0x124	Сброс	r S Ł	0/1	0	0 – не выполнять сброс;	
					1 – сбросить все установки на заводские.	
0x126	Версия	υEr	*	25	Версия устройства	
	Канал 1					
					Использование канала 1:	
0x128	Вкл. канала	ch l	0/1	1	0 – канал отключен;	
					1 – канал включен;	
0x12A	Калибровка	c R I	-9/9 °C	0	Сдвиг шкалы на СА1 относительно	
OX 127	паллоровка		0,00	Ŭ	измеренной датчиком температуры	
					Тип используемого датчика:	
					0 – PT100 (100 Om);	
0x12C	Тип	c E. T	0/4	0	1 – PT1000 (1000 Ом);	
					2 – KTY83 (1000 OM);	
					3 – KTY84 (1000 Ом); 4 – PTC (1, 3, 6);	
0x12E	Макс. канала	د آ	*	-40	Максимально достигнутая температура	
UNIZL	Канал 2	<u> </u>		-40	тиаксимально достигнутая температура	
	Капал 2				Использование канала 2:	
0x130	Вкл. канала	c h2	0/1	1	0 – канал отключен;	
OXTOO	Dioi. Ranasia	C1(C	0,1		1 – канал включен;	
			2/2.22	_	Сдвиг шкалы на СА2 относительно	
0x132	Калибровка	c 82	-9/9 °C	0	измеренной датчиком температуры	
					Тип используемого датчика:	
					0 — PT100 (100 Ом);	
0.404	T	. 7	0/4		1 – PT1000 (1000 О́м);	
0x134	Тип	c F'5	0/4	0	2 – KTY83 (1000 Ом);	
					3 – KTY84 (1000 Ом);	
					4 – PTC (1, 3, 6);	
0x136	Макс. канала	ديح	*	-40	Максимально достигнутая температура	
	Канал 3					
					Использование канала 3:	
0x138	Вкл. канала	ch3	0/1	1	0 – канал отключен;	
					1 – канал включен;	
0x13A	Калибровка	c R 3	-9/9 °C	0	Сдвиг шкалы на САЗ относительно	
			3.00		измеренной датчиком температуры	
					Тип используемого датчика:	
0.400	T	, 7	0/0		0 – PT100 (100 Om);	
0x13C	Тип	c Ł. 3	0/3	0	1 – PT1000 (1000 Ом);	
					2 – KTY83 (1000 OM);	
0v42F	Make keriese		*	40	3 – KTY84 (1000 OM);	
0x13E	Макс. канала	<u> </u>	<u>"</u>	-40	Максимально достигнутая температура	

	Канал 4				
0x140	Вкл. канала	chY	0/1	0	Использование канала 4: 0 – канал отключен; 1 – канал включен;
0x142	Калибровка	c 84	-9/9 °C	0	Сдвиг шкалы на СА4 относительно измеренной датчиком температуры
0x144	Тип	cŁY	0/4	0	Тип используемого датчика: 0 – РТ100 (100 Ом); 1 – РТ1000 (1000 Ом); 2 – КТY83 (1000 Ом); 3 – КТY84 (1000 Ом); 4 – РТС (1, 3, 6);
0x146	Макс. канала	دبً۲	*	-40	Максимально достигнутая температура

2.2.8 Датчики.

2.2.8.1 Датчики типа РТ100

Платиновый датчик с номинальным сопротивлением 100 Ом при 0 °С. При использовании датчиков данного типа погрешность измерения составляет ±3 °С, датчики подключаются к каналам 1,2,3,4 по 2-х или 3-х проводной схеме (рис. 2) с последующей настройкой значения "0" параметра с Е 1/с Е 2/с Е 3/с Е Ч согласно таблице 3.

Диапазон измеряемых температур (от минус 40 до 240 °C).

ТР-100 определяет обрыв и замыкание измерительных линий.

2.2.8.2 Датчики типа РТ1000

Диапазон измеряемых температур (от минус 40 до 240 °C).

ТР-100 определяет обрыв и замыкание измерительных линий.

2.2.8.3 Датчики типа КТҮ83

Кремниевый датчик с номинальным сопротивлением от 990 Ом до 1010 Ом при 25 °C. При использовании датчиков данного типа погрешность измерения составляет:

- при минус 40°C (± 4°C);
- при 0°C (± 3 °C);
- при 175°C (± 7 °C).

. Диапазон измеряемых температур (от минус 40 до 175 °C).

ТР-100 определяет обрыв и замыкание измерительных линий.

2.2.8.4 Датчики типа КТҮ84

Кремниевый датчик с номинальным сопротивлением от 970 Ом до 1030 Ом при 100 °C. При использовании датчиков данного типа погрешность измерения составляет:

- при минус 40°C (± 7°C);
- при 0°C (± 6 °C);
- при 240°C (± 12°C).

Диапазон измеряемых температур (от минус 40 до 240 °C).

ТР-100 определяет обрыв и замыкание измерительных линий.

^{* -} параметр доступен только для чтения.

2.2.8.5 Датчики типа РТС

Полупроводниковые резисторы, резко меняющие свое электрическое сопротивление при изменении температуры на поверхности корпуса в пределах диапазона чувствительности. Холодное сопротивление датчиков составляет 20 Ом – 250 Ом. Датчики могут соединяться последовательно до 6 (1-3-6) шт. на 1 канал.

Датчики классифицируются на разные HTC* от 60 до 180°C, с шагом 10 °C.

Подключение датчиков РТС возможно только к каналам 1,2,4 по 2-х или 3-х проводной схеме (рис. 2) с последующей настройкой значения "4" параметра с المراجة المراجة المراجة على المراجة المراج

В параметрах <u>LCP/RLC/F.On</u> (каналы 1,2,4 соответственно) устанавливается значение температуры соответствующее HTC* датчика.

TP-100 определяет только замыкание <u>измерительных линий</u>. При обрыве датчика срабатывает соответствующая ему авария по температуре.

Рисунок 3 – График зависимости сопротивления от температуры РТС датчиков

В зоне температур до HTC* на дисплее отображается - - . При достижении HTC* и выше, на дисплей выводится значение HTC* датчика.

*HTC (номинальная температура срабатывания) — это температура, при которой датчик резко изменяет свое электрическое сопротивление.

2.2.9 Работа с интерфейсом RS-485 по протоколу MODBUS RTU

TP-100 позволяет выполнять обмен данными с внешним устройством по последовательному интерфейсу (протокол MODBUS см. Руководство по программированию TP100-MODBUS).

Программное обеспечение, позволяющее отображать текущее состояние TP100 на дисплее персонального компьютера (ПК), можно скачать с сайта: www.novatek-electro.com в разделе продукция "Цифровое температурное реле TP-100".

Адреса регистров программируемых параметров в hex виде приведены в таблице 3.

Дополнительные регистры и их назначение приведены в таблице 4.

Таблица 4

Таблиц		LIAOUAUEUUE	EDIAME::::::
АДРЕС	НАИМЕНОВАНИЕ	НАЗНАЧЕНИЕ	ПРИМЕЧАНИЕ
		bit 0 0 – нет аварии;	
		1 – авария (код в регистре аварии).	
		bit 1 0 – реле расцепления отключено;	
		 1 – реле расцепления включено. 	bit 5 – bit 15
0x150	Регистр состояния ТР-	bit 2 0 – реле тревоги отключено;	зарезервиро
0.7100	100	 1 – реле тревоги включено. 	ваны
		bit 3 0 – реле вентиляции отключено;	Daribi
		 1 – реле вентиляции включено. 	
		bit 4 0 – реле отказа отключено;	
		1 – реле отказа включено.	
		bit 0 0 – нет аварии;	
		1 – отказ EEPROM. EEP	
		bit 1 0 – нет аварии;	
		ок т 1 – замыкание датчика(ов). <u>Гсс</u>	
		bit 2 0 – нет аварии;	
		^{ыт ∠} 1 – обрыв датчика(ов).	
		0 – нет аварии;	bit 7 – bit 15
0x152	Deriveth openius	bit 3 1 – превышение порога расцепления.	
UXIOZ	Регистр аварии	E-P	зарезервиро
		U - HET SESDININ.	ваны
		bit 4 1 – превышение порога тревоги. Я	
		0 – нет аварии;	
		bit 5 1 – превышение порога вентиляции.	
		F.O.	
		U - HET SBSDINN.	
		bit 6 1 — потеря связи RS-485. <u>Г</u> <u>5</u> <u>L</u>	
		∩ _ µet abanni	
		bit 0 1 — замыкание датчика	
		0 – нет аварии	
		bit 1	
		0 – нет аварии	
	Регистр состояния	bit 2 1 – превышение темп. расцепления	bit 5 – bit 15
0x154	датчика 1	E-P	зарезервиро
	H 11110	О нет зварии	ваны
		bit 3 1 – превышение темп. тревоги ПЕ-	
		0 – нет аварии	
		bit 4 1 – превышение темп. вентиляции	
		F.O.	
_	Регистр состояния		
0x156	датчика 2	Аналогично регистру состояния датчика 1	
•	Регистр состояния		
0x158	датчика 3	Аналогично регистру состояния датчика 1	
	Регистр состояния	_	
0x15A	датчика 4	Аналогично регистру состояния датчика 1	
0x15C	Температура датчика 1		
0x15E	Температура датчика 1		
0x160	Температура датчика 3		
0x160	Температура датчика 4		
	Регистр управления реле	0х0000 – реле отключено;	
0x200	"Расцепление"	0х0000 – реле отключено,	Integer
	Регистр управления реле	0x0000 — реле включено: 0x0000 — реле отключено;	
0x202	"Тревога"	0x0000 – реле отключено, 0x0001 – реле включено.	Integer
	Регистр управления реле	0x0000 — реле включено: 0x0000 — реле отключено;	
0x204	"Вентиляция"	0x0000 – реле отключено, 0x0001 – реле включено.	Integer
			-
0x206	Регистр управления реле "Отказ"	0x0000 – реле отключено; 0x0001 — реде включено	Integer
	Отказ	0х0001 – реле включено.	

2.2.9.1 Удаленное управление силовыми реле

При установке параметра СБР = 2 (таблица 3) ТР-100 переводится в режим удаленного управления силовыми реле. Регистры управления указаны в таблице 4 (0x200 – 0x206). Записав в эти регистры значения 0 или 1 можно включить или отключить соответствующие реле.

После включения режима "Удаленного управления силовыми реле", ТР-100 продолжает работать в обычном режиме, исключением является то, что управление силовыми реле передается удаленному оператору.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Меры безопасности

При проведении технического обслуживания ТР-100 питание должно быть отключено.

3.2 Порядок технического обслуживания

Рекомендуемая периодичность технического обслуживания – каждые шесть месяцев.

Техническое обслуживание состоит из визуального осмотра, в ходе которого проверяется надежность подсоединения проводов к клеммам ТР-100, отсутствие сколов и трещин на его корпусе.

4 СРОКИ СЛУЖБЫ, ХРАНЕНИЯ И ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Срок службы ТР-100 15 лет. По истечении срока службы обратиться к изготовителю.

Срок хранения — 3 года.

- 4.1 Гарантийный срок эксплуатации изделия составляет 36 месяцев со дня продажи.
- В течение гарантийного срока эксплуатации производитель бесплатно ремонтирует изделие при соблюдении потребителем требований Руководства по эксплуатации.
 - 4.2 Изделие не подлежит гарантийному обслуживанию в следующих случаях:

окончание гарантийного срока; наличие механических повреждений;

наличие следов воздействия влаги или попадание посторонних предметов внутрь изделия; вскрытие и самостоятельный ремонт изделия;

повреждение, вызванное электрическим током либо напряжением, значения которых были выше указанных в Руководстве по эксплуатации.

- 4.3 Гарантийное обслуживание производится по месту приобретения.
- 4.4 Гарантия производителя не распространяется на возмещения прямых или непрямых убытков, утрат или вреда, связанных с транспортировкой изделия до места приобретения или до производителя.
 - 4.5 Послегарантийное обслуживание (по действующим тарифам) производится производителем.

5 ТРАНСПОРТИРОВАНИЕ

Транспортирование ТР-100 в упаковке может производиться любым видом транспорта в соответствии с требованиями и правилами перевозки, действующими на данных видах транспорта.

При транспортировании, погрузке и хранении на складе ТР-100 должен оберегаться от ударов, толчков и воздействия влаги.

TP-100

Приложение А.

1. Юстировка прибора

1.1 Общие указания

Юстировка должна производиться только квалифицированными специалистами метрологических служб при увеличении погрешности измерения входных параметров сверх установленных значений.

1.2 Юстировка ТР-100

1.2.1 Подключить ко входу прибора вместо датчика магазин сопротивлений с классом точности не хуже 0,05 (например МСР-63) по трехпроводной линии (рисунок А.1). Сопротивления проводов в линии должны быть равны друг другу и каждое не должно превышать величины 15 Ом. Установить на магазине сопротивлений:

R=100,00 при использовании датчиков типа Pt100;

R=1000,00 при использовании датчиков типа Pt1000;

R=820,00 при использовании датчиков типа KTY83;

R=498,00 при использовании датчиков типа KTY84;

Рисунок А.1

1.2.2 Подать питание на ТР-100. Через 20-30 секунд произвести юстировку прибора. Убедиться, что значение температуры,

соответствующее сопротивлению 100, 1000, 820, 498 (в зависимости от типа используемого датчика), равно 0 °C. Предел допустимой абсолютной погрешности ±3 для датчиков Pt100, Pt1000 °C.

1.2.3 Установить значение параметра [R](R2,R3,R3), равное по величине отклонению температуры, но взятое с противоположным знаком. Проверить правильность заданного значения, для чего, не изменяя значения сопротивления на магазине, дождаться пока прибор перейдет в режим измерения температуры и убедиться, что при этом его показания равны 0 ± 1 °C.