Table des matières

Avant-propos v					
1	Polynômes minimal et caractéristique. Sous espaces caractéris-				
	tiqu	ies	1		
	1.1	Définitions et premières propriétés	2		
	1.2	Localisation des valeurs propres d'une matrice complexe	7		
	1.3	Matrice compagnon d'un polynôme	10		
	1.4	Le théorème de Cayley-Hamilton	13		
	1.5	Méthodes de calcul du polynôme caractéristique d'une matrice com-			
		plexe	14		
	1.6	Sous espaces caractéristiques	17		
	1.7	Exercices	21		
2	Réduction des endomorphismes et des matrices 3				
	2.1	Trigonalisation	31		
	2.2	Diagonalisation	33		
	2.3	Espaces vectoriels euclidiens	34		
	2.4	Réduction des matrices orthogonales	40		
	2.5	Réduction des matrices symétriques réelles	42		
	2.6	Tridiagonalisation des matrices symétriques réelles. Méthode de Hou-			
		seholder	44		
	2.7	Espaces vectoriels hermitiens	46		
	2.8	Réduction des matrices normales	49		
	2.9	Forme réduite de Jordan	52		
	2.10	Exercices	56		
3	L'es	${f pace}$ vectoriel normé ${\mathcal M}_n\left({\mathbb K} ight)$ (${\mathbb K}={\mathbb R}$ ou ${\mathbb C}$)	73		
	3.1	Norme matricielle induite par une norme vectorielle	73		
	3.2	Le groupe topologique $GL_n(\mathbb{K})$	77		
	3.3	Propriétés topologiques de l'ensemble des matrices diagonalisables			
		de $\mathcal{M}_n(\mathbb{C})$	83		
	3.4	Rayon spectral d'une matrice complexe	86		
	3.5	Conditionnement d'une matrice	94		
	3.6	Quotient de Rayleigh-Ritz et Hausdorffien	96		
	3.7	Conditionnement des problèmes de valeurs propres	99		
	3.8		102		

4	Mat	rices positives et irréductibles	123	
	4.1	Matrices positives	123	
	4.2	Matrices strictement positives et théorème de Perron-Frobenius	128	
	4.3	Matrices irréductibles	134	
	4.4	Matrices primitives	139	
	4.5	Matrices stochastiques et bistochastiques	141	
	4.6	Exercices	154	
5	Systèmes linéaires			
	5.1	Position des problèmes et notations	161	
	5.2	Problèmes numériques liés à la résolution des systèmes linéaires	162	
	5.3	Cas des matrices triangulaires	164	
	5.4	Matrices de dilatation et de transvection. Opérations élémentaires	164	
	5.5	Méthode des pivots de Gauss	168	
	5.6	Résolution des systèmes linéaires à coefficients entiers $\dots \dots$	170	
	5.7	Décomposition LR ou méthode de Crout	171	
	5.8	Décomposition LD tL des matrices symétriques réelles	174	
	5.9	Décomposition de Cholesky des matrices symétriques réelles définies		
		positives	175	
		Méthode d'élimination de Gauss-Jordan	176	
		Méthodes itératives de résolution des systèmes linéaires	177	
		Méthode de Jacobi	178	
		Méthode de Gauss-Seidel	179	
		Méthode de relaxation	181	
		Méthodes de descente et de gradient	188	
	5.16	Exercices	196	
6		cul approché des valeurs et vecteurs propres	209	
	6.1	Introduction	209	
	6.2	Méthode de la puissance itérée	209	
	$6.3 \\ 6.4$	Méthode de Jacobi pour les matrices symétriques	$\frac{213}{218}$	
	6.5			
	0.5	Exercices	223	
7	Systèmes différentiels linéaires et exponentielle d'une matrice			
	7.1	Systèmes différentiels linéaires à coefficients constants $\ \ldots \ \ldots$	229	
	7.2	L'exponentielle d'une matrice	233	
	7.3	Un algorithme de calcul de l'exponentielle d'une matrice	239	
	7.4	Equations différentielles linéaires d'ordre n à coefficients constants	240	
	7.5	Systèmes différentiels linéaires à coefficients non constants	242	
	7.6	Méthode de variation des constantes	245	
	7.7	Surjectivité et injectivité de l'exponentielle matricielle	247	
	7.8	Exercices	251	

Avant-propos

Cet ouvrage, qui pourrait s'intituler « Matrices réelles et complexes, propriétés algébriques et topologiques, applications » est consacré à l'étude de l'espace vectoriel $\mathcal{M}_n(\mathbb{K})$ des matrices carrées d'ordre n à coefficients réels ou complexes du point de vue algébrique et topologique. Cette étude est un préalable important à tout bon cours d'analyse numérique.

Des connaissances de base en algèbre linéaire et en topologie sont amplement suffisantes pour la lecture de cet ouvrage.

Le public visé est celui des étudiants du deuxième cycle universitaire et des candidats à l'Agrégation externe et interne de Mathématiques.

La synthèse proposée est un bon moyen de réviser ses connaissances sur les espaces vectoriels normés et l'algèbre linéaire. Les candidats à l'agrégation trouveront tout au long de cet ouvrage de nombreux exemples d'applications des résultats classiques souvent proposés dans les leçons d'oral. Par exemple, si dans une leçon sur le groupe orthogonal on pense à mentionner la compacité de $\mathcal{O}_n(\mathbb{R})$ il faut avoir réfléchi à quelques exemples d'applications de ce résultat. En suivant cette idée, je me suis efforcé de faire suivre chaque résultat classique et important d'un certain nombre d'applications.

Chaque chapitre est suivi d'une liste d'exercices corrigés. Une bonne utilisation de ces exercices consiste bien évidemment à les chercher au préalable, puis à confronter les résultats obtenus aux solutions proposées.

L'étude des propriétés topologiques de l'espace vectoriel \mathcal{M}_n (\mathbb{K}) et l'application aux méthodes itératives de résolution des systèmes linéaires et de recherche des valeurs et vecteurs propres utilisent quelques résultats de base sur les espaces vectoriels normés de dimension finie. On pourra se reporter à [18] pour l'étude des espaces vectoriels normés. En particulier, le théorème du point fixe de Banach est utilisé dans l'étude des systèmes différentiels linéaires.

Les chapitre 1 et 2 sont consacrés à l'étude des valeurs et vecteurs propres des matrices réelles ou complexes. Les résultats importants sont le théorème de décomposition des noyaux et les divers théorèmes de réduction à la forme triangulaire ou diagonale.

C'est au chapitre 3 qu'on aborde l'étude des propriétés topologiques de l'espace vectoriel $\mathcal{M}_n(\mathbb{K})$. On y introduit les notions de norme matricielle induite par une norme vectorielle et on démontre quelques résultats classiques de densité et de connexité.

vi Avant-propos

Pour ce qui est des applications de ce chapitre, je me suis limité à l'analyse numérique linéaire. Pour une application aux groupes de Lie, le lecteur intéressé pourra consulter l'ouvrage de Mnéimné et Testard [12].

Le chapitre 4, qui n'était pas présent dans la première édition, est consacré à l'étude des matrices à coefficients positifs ou strictement positifs avec pour application une étude des matrices stochastiques et doublement stochastiques qui interviennent en théorie des probabilités.

Les chapitres 5 et 6 sont deux chapitres importants de l'analyse numérique linéaire. On s'intéresse aux méthodes directes et itératives de résolution des systèmes linéaires et aux méthodes de calcul approché des valeurs et vecteurs propres d'une matrice carrée réelle ou complexe.

Enfin le chapitre 7 est une application à l'étude des systèmes différentiels linéaires à coefficients constants ou non et à l'exponentielle d'une matrice. L'exponentielle d'une matrice y est définie à partir de l'étude des systèmes différentiels linéaires à coefficients constants.

Cette deuxième édition différe de la première par la suppression du premier chapitre sur les espaces vectoriels normés et l'ajout d'un chapitre sur les matrices réelles positives. On renvoie à [18], publié chez le même éditeur, pour les résultats sur les espaces vectoriels normés utilisés dans cet ouvrage.

Je tiens à remercier les éditions EDP Sciences pour la confiance qu'ils m'accordent en publiant une deuxième édition de ce travail.