



15-22 Octobre 2021, Montpellier, France

First steps into IBM Quantum Computing

**IBM Client Center Montpellier** 

JM Torres | torresjm@fr.ibm.com

October 2021

#### Part 1

Guided tour of the IBM Quantum devices,

and Quantum « Hello World! »

## 0



1

classical bit

#### qubit: quantum bit

$$h\nu \sim \downarrow$$
  $E_{g}$ 

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$



## NOT Buffer AND NAND OR NOR XOR

## Controlling a qubit

#### « PAULI » Operators

rotation around x axis



$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 qc. x(qr[n])



$$\begin{pmatrix}
\cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\
-i\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{pmatrix}$$

rotation around y axis





 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  qc. id(qr[n])



$$\begin{pmatrix}
\cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\
\sin\frac{\theta}{2} & \cos\frac{\theta}{2}
\end{pmatrix}$$

rotation around z axis

Identity





$$\begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}$$

#### superposition

(X+Z)Hadamard gate



$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{qc. h(qr[n])}$$

More operators are available from giskit (S, T, swap, cswap, ccx, cz, ... )



**CNOT**: flips target qubit according to control qubit state.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

#### **Bloch Sphere** $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$





measurement measures quantum state in quantum register into classical register (0/1)



#### quantum operators:

**H operator (Hadamard)** 

$$|0\rangle$$
  $+$   $|1\rangle$ 

creates equal superposition of states |0| and |1|

#### **Control-Not operation**



target qubit state is flipped if and only if the control qubit is in state |1>

creates quantum entanglement of two qubits

#### **Hello World!**



#### Hello World! example

Hadamard gate applied to  $q_0$ , then Control-Not applied to  $q_1$ , controlled by  $q_0$ 



This produces the « Bell-State »

#### With words:

System starts in  $|00\rangle$  (both  $q_0$  and  $q_1$  in state  $|0\rangle$ ).

Then q<sub>0</sub> goes through Hadamard and gets into equal superposition of 10 and |1>.

After  $q_0$  controls  $q_1$ , the state of  $q_1$  is in a superposition of  $|0\rangle \& |1\rangle$ ,  $(q_1 \text{ stays at})$  $|0\rangle$  when  $q_0$  is  $|0\rangle$ , and  $q_1$  goes  $|1\rangle$  when  $q_0$  is  $|1\rangle$ ).

So: both  $q_0$  and  $q_1$  are in  $|0\rangle$  (state  $|00\rangle$ ) or both  $q_0$  and  $q_1$  are in  $|1\rangle$  (state  $|11\rangle$ ). Our system is in equal superposition of |00\rand |11\rangle.

The two qubits are entangled: if you measure one of the qubits, you immediately know the state of the other.

#### In between:

System starts in |00, then:

$$H|00\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$$

Applying CNOT: left part of the sum stays as is, right term goes to |11> resulting state is  $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ .

One can easily prove there are no  $\alpha, \beta, \gamma, \delta$  such that:

$$(\alpha|0\rangle + \beta|1\rangle) \otimes (\gamma|0\rangle + \delta|1\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle$$

So, the resulting state is not the product of two quantum states, instead this is an entangled state.

© 2021 IBM Corporation

#### With maths:

Stage 1 (H on q0):

$$(H \bigotimes I) |00\rangle =$$

$$\begin{vmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Stage 2: CNOT(0,1)

$$(\alpha |0\rangle + \beta |1\rangle) \otimes (\gamma |0\rangle + \delta |1\rangle) = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \times \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
So, the resulting state is not the

$$=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$



### **Quantum Circuit**









# Demo: Bell state on a quantum machine

#### Part 2

# using qiskit library to run quantum program with Python.

## **Programing**

```
In [1]:
            from qiskit import QuantumCircuit, Aer, execute
                                                                       # imports
                                                                       # select a device for execution
            backend = Aer.get backend('qasm simulator')
            qc = QuantumCircuit(2,2)
                                                                       # create a quantum circuit having 2 qubits and 2 cbits
                                                                       # buid the circuit by
            qc.h(0)
                                                                       # adding operators on gubits
            qc.cx(0,1)
            qc.measure([0,1],[0,1])
                                                                       # use measurement gates to retrieve results
         10
            d = execute(qc,backend).result().get counts()
                                                                       # execute gc on backend and get cumulated results into
         12 print(d)
                                                                       # a dictionnary
```

```
{'00': 491, '11': 533}
```



### **Historic Quantum Algorithms**

| Deutsch            | 1985 | 2 -> 1                         |
|--------------------|------|--------------------------------|
| Bernstein-Vazirani | 1992 | N → 1                          |
| Deutsch-Josza      | 1992 | $2^{N-1} + 1 \rightarrow 1$    |
| Shor               | 1994 | $e^{N} \rightarrow (LogN)^{3}$ |
| Grover             | 1996 | $N \rightarrow \sqrt{N}$       |

More and new ones on quantumalgorithmzoo.org/