PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6:		(11) International Publication Number: WO	99/58674
C12N 15/12, 15/62, C07K 14/705, A61K 38/17	A2	(43) International Publication Date: 18 November 199	9 (18.11.99)
(21) International Application Number: PCT/US (22) International Filing Date: 13 May 1999 ((30) Priority Data: 60/085,487 14 May 1998 (14.05.98) 60/110,836 3 December 1998 (03.12.98) (71) Applicant (for all designated States except US): IM CORPORATION [US/US]; 51 University Street WA 98101 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): ANDERSON, [US/US]; 3616 N.W. 64th Sueet, Seattle, WA 981 GALIBERT, Laurent, J. [US/US]: 617 5th Aven Seattle, WA 98119 (US). (74) Agent: HENRY, Janis, C.; Immunex Corporation, La 51 University Street, Seattle, WA 98101 (US).	I3.05.9 IMUNE , Seatt Dirk, 1 107 (U) ue We	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MMN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VZW, ARIPO patent (GH, GM, KE, LS, MW, UG, ZW), Eurasian patent (AM, AZ, BY, KRU, TJ, TM), European patent (AT, BE, CH, CES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT patent (BF, BJ, CF, CG, CI, CM, GA, GN, GV, NE, SN, TD, TG). Published Without international search report and to be upon receipt of that report.	ES, FI, GB, IP, KE, KG, D, MG, MK, , SE, SG, SI, 'N, YU, ZA, SD, SL, SZ, G, KZ, MD, CY, DE, DK, ', SE), OAPI W, ML, MR,

- (54) Title: METHOD OF INHIBITING OSTEOCLAST ACTIVITY
- (57) Abstract

Isolated soluble RANK receptors, DNAs encoding such receptors, and pharmaceutical compositions made therefrom, are disclosed. The isolated receptors can be used to regulate osteoclastogenesis, and hence treat disease in which there is excess bone loss.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	1.5	Lesotho	SI	Slovenia
	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ.	Azerhagan	GB	United Kingdom	MC	Monaco	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
l	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
l	Вј	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
1	BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda
	BY	Belanis	IS	feeland	MW	Malawi	US	United States of America
l	CA	Canada	IT	Italy	MX	Mexico	UZ.	Uzbekistan
1	CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NÓ	Norway	zw	Zimbabwe
	Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
'	CM	Cymarian		Republic of Korea	PL	Poland		
					2 * 1	23 - 4 - 4 - 1		

TITLE

METHOD OF INHIBITING OSTEOCLAST ACTIVITY

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of cytokine receptors, and more specifically to cytokine receptor/ligand pairs having osteoclast regulatory activity.

BACKGROUND OF THE INVENTION

RANK (Receptor Activator of NF-kB) and its ligand (RANKL) are a recently-described receptor/ligand pair that play an important role in an immune response. The cloning of RANK and RANKL is described in USSN 08/996,139 and USSN 08/995,659, respectively. It has recently been found that RANKL binds to a protein referred to as osteoprotegerin (OPG), a member of the Tumor Necrosis Factor Receptor (TNFR) family. Yasuda et al. (*Proc. Nail. Acad. Sci.* 95:3597; 1998) expression cloned a ligand for OPG, which they referred to as osteoclastogenesis inhibitory factor. Their work was repeated by Lacey et al. (*Cell* 93:165; 1998). In both cases, the ligand they cloned turned out to be identical to RANKL.

In osteoclastogenesis, the interaction of an osteoblast or stromal cell with an osteoclast precursor leads to the differentiation of the precursor into an osteoclast. OPG was known to inhibit this differentiation. A model has been proposed in which RANKL on the osteoblast or stromal cell surface interacts with a specific receptor on an osteoclast progenitor surface, signaling a differentiation event. OPG effectively blocks the interaction of RANKL with a receptor on osteoclast progenitors in vitro, and has been shown to ameliorate the effects of ovariectomy on bone-loss in mice. However, OPG is also known to bind other ligands in the TNF family, which may have a deleterious effect on the activities of such ligands in vivo. Moreover, the presence of other ligands that bind OPG in vivo may require high dosages of OPG to be administered in order to have sufficient soluble OPG available to inhibit osteoclastogenesis.

Accordingly, there is a need in the art to identify soluble factors that specifically bind RANKL and inhibit the ability of RANKL to induce osteoclastogenesis without reacting with other ligands.

SUMMARY OF THE INVENTION

The present invention provides processes associated with the use of a novel receptor, referred to as RANK (for receptor activator of NF-kB), that is a member of the TNF receptor superfamily. RANK is a Type I transmembrane protein having 616 amino

10

15

20

25

triggering of RANK results in the upregulation of the transcription factor NF-kB, a ubiquitous transcription factor that is most extensively utilized in cells of the immune system.

Soluble forms of the receptor can be prepared and used to interfere with signal transduction through membrane-bound RANK. Inhibition of RANKL-mediated signal transduction will be useful in ameliorating the effects of osteoclastogenesis and osteoclast activity in disease conditions in which there is excess bone break down. Examples of such conditions include osteoporosis, Paget's disease, cancers that may metastasize to bone and induce bone breakdown (i.e., multiple myeloma, breast cancer, some melanomas; see also Mundy, C. Cancer Suppl. 80:1546; 1997), and cancers that do not necessarily metastasize to bone, but result in hypercalcemia and bone loss (e.g. squamous cell carcinomas).

10

15

20

25

30

35

Soluble forms of RANK comprise the extracellular domain of RANK or a fragment thereof that binds RANKL. Fusion proteins of RANK may be made to allow preparation of soluble RANK. Examples of such fusion proteins include a RANK/Fc fusion protein, a fusion protein of a zipper moiety (i.e., a leucine zipper), and various tags that are known in the art. Other antagonists of the interaction of RANK and RANKL (i.e., antibodies to RANKL, small molecules) will also be useful in the inventive methods. These and other aspects of the present invention will become evident upon reference to the following detailed description of the invention.

DETAILED DESCRIPTION OF THE INVENTION

A novel partial cDNA insert with a predicted open reading frame having some similarity to CD40 was identified and was used to hybridize to colony blots generated from a dendritic cell (DC) cDNA library containing full-length cDNAs. SEQ ID NO:1 shows the nucleotide and amino acid sequence of a predicted full-length protein.

RANK is a member of the TNF receptor superfamily; it most closely resembles CD40 in the extracellular region. RANK is expressed on epithelial cells, some B cell lines, and on activated T cells. However, its expression on activated T cells is late, about four days after activation. This time course of expression coincides with the expression of Fas, a known agent of apoptosis. RANK may act as an anti-apoptotic signal, rescuing cells that express RANK from apoptosis as CD40 is known to do. Alternatively, RANK may confirm an apoptotic signal under the appropriate circumstances, again similar to CD40. RANK and its ligand are likely to play an integral role in regulation of the immune and inflammatory response. The isolation of a DNA encoding RANK is

incorporated by reference herein. USSN 08/996,139 describes several forms of RANK that are useful in the present invention.

Soluble RANK comprises the signal peptide and the extracellular domain (residues 1 to 213 of SEQ ID NO:2) or a fragment thereof. Alternatively, a different signal peptide can be substituted for the native leader, beginning with residue 1 and continuing through a residue selected from the group consisting of amino acids 24 through 33 (inclusive) of SEQ ID NO:2. Moreover, fragments of the extracellular domain will also provide soluble forms of RANK.

Fragments can be prepared using known techniques to isolate a desired portion of the extracellular region, and can be prepared, for example, by comparing the extracellular region with those of other members of the TNFR family (of which RANK is a member) and selecting forms similar to those prepared for other family members. Alternatively, unique restriction sites or PCR techniques that are known in the art can be used to prepare numerous truncated forms which can be expressed and analyzed for activity.

Other derivatives of the RANK proteins within the scope of this invention include covalent or aggregative conjugates of the proteins or their fragments with other proteins or polypeptides, such as by synthesis in recombinant culture as N-terminal or C-terminal fusions. For example, the conjugated peptide may be a signal (or leader) polypeptide sequence at the N-terminal region of the protein which co-translationally or post-translationally directs transfer of the protein from its site of synthesis to its site of function inside or outside of the cell membrane or wall (e.g., the yeast α -factor leader).

Protein fusions can comprise peptides added to facilitate purification or identification of RANK proteins and homologs (e.g., poly-His). The amino acid sequence of the inventive proteins can also be linked to an identification peptide such as that described by Hopp et al., *Bio/Technology* 6:1204 (1988; FLAGTM). Such a highly antigenic peptide provides an epitope reversibly bound by a specific monoclonal antibody, enabling rapid assay and facile purification of expressed recombinant protein. The sequence of Hopp et al. is also specifically cleaved by bovine mucosal enterokinase, allowing removal of the peptide from the purified protein.

Fusion proteins further comprise the amino acid sequence of a RANK linked to an immunoglobulin Fc region. An exemplary Fc region is a human IgG₁ having a nucleotide an amino acid sequence set forth in SEQ ID NO:3. Fragments of an Fc region may also be used, as can Fc muteins. For example, certain residues within the hinge region of an Fc region are critical for high affinity binding to Fc₇RI. Canfield and Morrison (*J. Exp. Med.* 173:1483; 1991) reported that Leu₍₂₃₄₎ and Leu₍₂₃₅₎were critical to high affinity

5

10

15

20

25

30

some the combination of the same

for FcR. Depending on the portion of the Fc region used, a fusion protein may be expressed as a dimer, through formation of interchain disulfide bonds. If the fusion proteins are made with both heavy and light chains of an antibody, it is possible to form a protein oligomer with as many as four RANK regions.

5

10

15

20

25

30

35

In another embodiment, RANK proteins further comprise an oligomerizing peptide such as a zipper domain. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, 1988). Zipper domain is a term used to refer to a conserved peptide domain present in these (and other) proteins, which is responsible for multimerization of the proteins. The zipper domain comprises a repetitive heptad repeat, with four or five leucine, isoleucine or valine residues interspersed with other amino acids. Examples of zipper domains are those found in the yeast transcription factor GCN4 and a heat-stable DNA-binding protein found in rat liver (C/EBP; Landschulz et al., Science 243:1681, 1989). Two nuclear transforming proteins, fos and jun, also exhibit zipper domains, as does the gene product of the murine proto-oncogene, c-myc (Landschulz et al., Science 240:1759, 1988). The products of the nuclear oncogenes fos and jun comprise zipper domains that preferentially form a heterodimer (O'Shea et al., Science 245:646, 1989; Turner and Tjian, Science 243:1689, 1989). A preferred zipper moiety is that of SEQ ID NO:6 or a fragment thereof. This and other zippers are disclosed in US Patent 5,716,805.

Other embodiments of useful proteins include RANK polypeptides encoded by DNAs capable of hybridizing to the DNA of SEQ ID NO:1 under moderately stringent conditions (prewashing solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0) and hybridization conditions of 50°C, 5 X SSC, overnight) to the DNA sequences encoding RANK, or more preferably under stringent conditions (for example, hybridization in 6 X SSC at 63°C overnight; washing in 3 X SSC at 55°C), and other sequences which are degenerate to those which encode the RANK. In one embodiment, RANK polypeptides are at least about 70% identical in amino acid sequence to the amino acid sequence of native RANK protein as set forth in SEQ ID NO:2 for human RANK and NO:6 for murine RANK. In a preferred embodiment, RANK polypeptides are at least about 80% identical in amino acid sequence to the native form of RANK; most preferred polypeptides are those that are at least about 90% identical to native RANK.

Percent identity may be determined using a computer program, for example, the GAP computer program described by Devereux et al. (*Nucl. Acids Res.* 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). For fragments derived from the RANK protein, the identity is calculated based on that portion

The PANK protein that is present in the fragment

ardin 's steams.

Examples herein. Suitable assays include, for example, an enzyme immunoassay or a dot blot, and assays that employ cells expressing RANKL. Suitable assays also include, for example, inhibition assays, wherein soluble RANK is used to inhibit the interaction of RANKL with membrane-bound or solid-phase associated RANK (i.e., signal transduction assays). Such methods are well known in the art.

RANKL and RANK are important factors in osteoclastogenesis. RANK is expressed on osteoclasts and interacts with RANK ligand (RANKL) to mediate the formation of osteoclast-like (OCL) multinucleated cells. This was shown by treating mouse bone marrow preparations with M-CSF (CSF-1) and soluble RANKL for 7 days in culture. No additional osteoclastogenic hormones or factors were necessary for the generation of the multinucleated cells. Neither M-CSF nor RANKL alone led to the formation of OCL. The multinucleated cells expressed tartrate resistant acid phosphatase and were positive for [125]- calcitonin binding. The tyrosine kinase c-src was highly expressed in multinucleated OCL and a subset of mononuclear cells as demonstrated by immunofluorescence microscopy. (See Example 2).

Purification of Recombinant RANK

5

10

15

20

25

30

35

Purified RANK, and homologs or analogs thereof are prepared by culturing suitable host/vector systems to express the recombinant translation products of the DNAs of the present invention, which are then purified from culture media or cell extracts. For example, supernatants from systems which secrete recombinant protein into culture media can be first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit.

Following the concentration step, the concentrate can be applied to a suitable purification matrix. For example, a suitable affinity matrix can comprise a counter structure protein or lectin or antibody molecule bound to a suitable support. Alternatively, an anion exchange resin can be employed, for example, a matrix or substrate having pendant diethylaminoethyl (DEAE) groups. The matrices can be acrylamide, agarose, dextran, cellulose or other types commonly employed in protein purification. Alternatively, a cation exchange step can be employed. Suitable cation exchangers include various insoluble matrices comprising sulfopropyl or carboxymethyl groups. Sulfopropyl groups are preferred. Gel filtration chromatography also provides a means of purifying the inventive proteins.

Affinity chromatography is a particularly preferred method of purifying RANK and homologs thereof. For example, a RANK expressed as a fusion protein comprising manufacturing the region can be purified using Protein A or Protein G affinity

official Walls

zipper domain. Monoclonal antibodies against the RANK protein may also be useful in affinity chromatography purification, by utilizing methods that are well-known in the art. A ligand may also be used to prepare an affinity matrix for affinity purification of RANK.

Finally, one or more reversed-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify a RANK composition. Suitable methods include those analogous to the method disclosed by Urdal et al. (*J. Chromatog.* 296:171, 1984). Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a homogeneous recombinant protein.

Recombinant protein produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more concentration, salting-out, aqueous ion exchange or size exclusion chromatography steps. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of recombinant protein can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Fermentation of yeast which express the inventive protein as a secreted protein greatly simplifies purification.

Protein synthesized in recombinant culture is characterized by the presence of cell components, including proteins, in amounts and of a character which depend upon the purification steps taken to recover the inventive protein from the culture. These components ordinarily will be of yeast, prokaryotic or non-human higher eukaryotic origin and preferably are present in innocuous contaminant quantities, on the order of less than about I percent by weight. Further, recombinant cell culture enables the production of the inventive proteins free of other proteins which may be normally associated with the proteins as they are found in nature in the species of origin.

Uses and Administration of RANK Compositions

5

10

15

20

25

30

35

1. 15. 171

The present invention provides methods of using therapeutic compositions comprising a protein and a suitable diluent and carrier. These methods involve the use of therapeutic compositions of RANK or soluble fragments of RANK for regulating an immune or inflammatory response. Further included within the present invention are methods for regulating osteoclast activity by administering therapeutic compositions of RANK or soluble RANK fragments to an individual in amounts sufficient to decrease excess bone resorption. Typically, the individual is inflicted with excess bone resorption and suffers from the effects of hypercalcemia, has symptoms of hypercalcemia, or is

activity, regulating osteoclast generation and inhibiting osteoclast generation in individuals inflicted with excess bone resorption. In connection with the methods described herein, the present invention contemplates the use of RANK in conjunction with soluble cytokine receptors or cytokines, or other osteoclast/osteoblast regulatory molecules.

5

10

15

20

25

30

35

In connection with the methods described herein, RANK ligand (RANKL) on osteoblasts or stromal cells is known to interact with RANK on osteoclast progenitor surfaces signaling an event that leads to the differentiation of osteoclast precursors into osteoclasts. (See Example 2 below.) Thus, RANK, and in particular soluble forms of RANK, is useful for the inhibition of the RANKL-mediated signal transduction that leads to the differentiation of osteoclast precursors into osteoclasts. Soluble forms of RANK are also useful for the regulation and inhibition of osteoclast activity, e.g. bone resorption. By interfering with osteoclast differentiation, soluble forms of RANK are useful in the amelioration of the effects of osteoclastogenesis in disease conditions in which there is excess bone break down. Such disease conditions include Paget's disease, osteoporosis, and cancer. Many cancers metastasize to bone and induce bone breakdown by locally disrupting normal bone remodeling. Such cancers can be associated with enhanced numbers of osteoclasts and enhanced amount of osteoclastic bone resorption resulting in hypercalcemia. These cancers include, but are not limited to, breast cancer, multiple myeloma, melanomas, lung cancer, prostrate, hematologic, head and neck, and renal. (See Guise et al. Endocrine Reviews, 19(1):18-54, 1998.) Soluble forms of RANK can be administered to such cancer patients to disrupt the osteoclast differentiation pathway and result in fewer numbers of osteoclast, less bone resorption, and relief from the negative effects of hypercalcemia.

Other cancers do not metastasize to bone, but are known to act systemically on bone to disrupt bone remodeling and result in hypercalcemia. (See Guise et al. Endocrine Reviews, 19(1):18-54, 1998.) In accordance with this invention, RANKL has been found on the surface of certain squamous cells that do not metastasize to bone but are associated with hypercalcemia. (See Example 3 below) Squamous cells that are associated with hypercalcemia also express M-CSF (CSF-1), a cytokine that, together with RANKL, stimulates the proliferation and differentiation of osteoclast precursors to osteoclasts. In accordance with the present invention, it has been discovered that M-CSF directly upregulates RANK on surfaces of osteoclast precursors. When squamous cells release excessive amounts of CSF-1, increased expression of RANK occurs on the surfaces of osteoclast precursors. Thus, there is a higher probability that RANK will interact with

In addition to the ameliorating the effects of cancers that metastasize to bone, the present invention provides methods for ameliorating the systemic effects, e.g. hypercalcemia, of cancers that are associated with excess osteoclast activity (e.g. squamous cell carcinomas). Such methods include administering soluble forms of RANK in amounts sufficient to interfere with the RANK/RANKL signal transduction that leads to the differentiation of osteoclast precursors into osteoclasts. Fewer osteoclasts lead to reduced bone resorption and relief from the negative effects of hypercalcemia.

For therapeutic use, purified protein is administered to an individual, preferably a human, for treatment in a manner appropriate to the indication. Thus, for example, RANK protein compositions administered to regulate osteoclast function can be given by bolus injection, continuous infusion, sustained release from implants, or other suitable technique. Typically, a therapeutic agent will be administered in the form of a composition comprising purified RANK, in conjunction with physiologically acceptable carriers, excipients or diluents. Such carriers will be nontoxic to recipients at the dosages and concentrations employed.

Ordinarily, the preparation of such protein compositions entails combining the inventive protein with buffers, antioxidants such as ascorbic acid, low molecular weight (less than about 10 residues) polypeptides, proteins, amino acids, carbohydrates including glucose, sucrose or dextrins, chelating agents such as EDTA, glutathione and other stabilizers and excipients. Neutral buffered saline or saline mixed with conspecific serum albumin are exemplary appropriate diluents. Preferably, product is formulated as a lyophilizate using appropriate excipient solutions (e.g., sucrose) as diluents. Appropriate dosages can be determined in trials. The amount and frequency of administration will depend, of course, on such factors as the nature and severity of the indication being treated, the desired response, the condition of the patient, and so forth.

Soluble forms of RANK and other RANK antagonists such as antagonistic monoclonal antibodies can be administered for the purpose of inhibiting RANK-induced osteoclastogenesis. It is desirable to inhibit osteoclastogenesis in various disease states in which excess bone loss occurs. Examples include osteoporosis, Pagett's disease, and various cancers. Various animal models of these diseases are known in the art; accordingly, it is a matter of routine experimentation to determine optimal dosages and routes of administration of soluble RANK, first in an animal model and then in human clinical trials.

The following examples are offered by way of illustration, and not by way of the invention.

These skilled in the art will recognize that variations of the invention

retence could be 't'

10

15

20

25

PCT/US99/10588

This example describes a plate binding assay useful in comparing the ability of various ligands to bind receptors. The assay is performed essentially as described in Smith et al., Virology 236:316 (1997). Briefly, 96-well microtiter plates are coated with an antibody to human Fc (i.e., polyclonal goat anti human Fc). Receptor/Fc fusion proteins are then added, and after incubation, the plates are washed. Serial dilutions of the ligands are then added. The ligands may be directly labeled (i.e., with ¹²⁵I), or a detecting reagent that is radioactively labeled may be used. After incubation, the plates are washed, specifically bound ligands are released, and the amount of ligand bound quantified.

Using this method, RANK/Fc and OPG/Fc were bound to 96-well plates. In an indirect method, a RANKL/zipper fusion is detected using a labeled antibody to the zipper moiety. It was found that human OPG/Fc binds mRANKL at 0.05 nM, and human RANK/Fc binds mRANKL at 0.1 nM. These values indicate similar binding affinities of OPG and RANK for RANKL, confirming the utility of RANK as an inhibitor of osteoclast activity in a manner similar to OPG.

EXAMPLE 2

The following describes the formation of osteoclast like cells from bone marrow cell cultures using a soluble RANKL in the form of soluble RANKL/leucine zipper fusion protein (RANKL LZ).

Using RANKL LZ at 1µg/ml, osteoclasts were generated from murine bone marrow (BM) in the presence of CSF-1. These osteoclasts are formed by the fusion of macrophage-like cells and are characterized by their TRAP (tartrate-resistant acid phosphatase) positivity. No TRAP+ cells were seen in cultures containing CSF-1 alone or in cultures containing CSF-1 and TRAIL LZ (a control for the soluble RANKL LZ). Even though human and monkey bone marrow contains more contaminating fibroblasts than murine bone marrow, osteoclasts were generated from murine and monkey bone marrow with the combination of CSF-1 and soluble RANKL LZ. In a dose-response study using murine bone marrow and suboptimal amounts of CSF-1 (40ng/ml), the effects of soluble RANKL LZ plateaued at about 100ng/ml.

The effect of soluble RANKL LZ on proliferation of cells was studied in the same cultures using Alamar Blue. After 5 days, the proliferative response was lower in cultures containing CSF-1 and RANKL LZ than in those containing CSF-1 alone. The supports

10

15

20

25

30

survive if recultured in CSF-1. When RANKL LZ was added to these cultures there was no added benefit. Thus, the combination of CSF-1 and RANKL are required for the generation of osteoclast. Additionally, once formed, CSF-1 is sufficient to maintain their survival in culture.

Finally, using human bone marrow, soluble anti-human RANK mAb and immobilized anti-human RANK mAb were compared to RANKL LZ for the generation of osteoclasts in the presence of CSF-1. Immobilized M331 and RANKL LZ were found to be equally effective for osteoclast generation while soluble M331 was superior to both immobilized antibody and RANKL LZ. This confirms that the osteoclast differentiating activity of RANKL is mediated through RANK rather than via an alternative receptor.

Since osteoclasts cannot readily be harvested and analyzed by flow cytometry, 125I-labeled calcitonin binding assays were used to identify osteoclasts (the calcitonin receptor is considered to be an osteoclast-specific marker). Osteoclasts generated from murine BM cultured with CSF-1 and RANKL LZ for 9 days showed binding of radiolabeled calcitonin confirming their osteoclast identity.

EXAMPLE 3

In order to determine RANKL expression by either of two different squamous cell carcinomas, standard Western blot and RT-PCR studies were performed on MH-85 and OKK cells. One of these carcinoma cells, the MH-85 cells, is associated with hypercalcemia.

The results confirmed that MH-85 and OKK squamous cells express RANKL. MH-85 cells, in addition to being linked with hypercalcemia in patients inflicted with this carcinoma, also express M-CSF (CSF-1). It was also determined that CSF-1 upregulates RANK expression on osteoclast precursors. The enhanced amount of CSF-1 in MH-85 type squamous cell cancer patients can lead to an upregulation of RANK and increased RANK interaction with RANKL. Signals transduced by RANK and RANKL interaction result in increased numbers of mature osteoclasts and bone breakdown. Since soluble forms of RANK can inhibit the RANK/RANKL interaction, administering a soluble form of RANK (c.g. the extracellular region of RANK fused to an Fc) to a squamous cell cancer patient provides relief from adverse effects of this cancer, including hypercalcemia.

30

5

10

15

20

CLAIMS

We claim:

- 1. A method of regulating osteoclast activity, the method comprising causing a soluble RANK to bind RANKL.
- 2. The method of claim 1, wherein the soluble RANK is encoded by a DNA selected from the group consisting of:
- (a) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:2, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 33, inclusive, of SEQ ID NO:62, and a carboxy terminus selected from the group consisting an amino acid between amino acid 196 and amino acid 616, inclusive;
- (b) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:6, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 30, inclusive, of SEQ ID NO:6, and a carboxy terminus selected from the group consisting an amino acid between amino acid 197 and amino acid 625, inclusive;
- (c) DNA molecules capable of hybridization to the DNA of (a) or (b) under stringent conditions, and which encode RANK polypeptides that bind RANKL; and
- (d) DNA molecules encoding fragments of proteins encoded by the DNA of (a), (b) or (c), wherein the fragments of RANK polypeptides bind RANKL.
- 3. The method of claim 2, wherein the RANK is at least about 80% identical in amino acid sequence to native RANK
- 4. The method of claim 3, wherein the RANK further comprises a polypeptide selected from the group consisting of an immunoglobulin Fc domain, an immunoglobulin Fc mutein, a FLAGTM tag, a peptide comprising at least about 6 His residues, a leucine zipper, and combinations thereof.
- 5. A method of ameliorating effects of excess bone loss, comprising administering a soluble RANK polypeptide composition to an individual at risk for excess bone loss, and allowing the soluble RANK to bind RANKL and inhibit binding thereof to cells expressing RANK.

6. The method of claim 5, wherein the individual is at risk from or suffers from a condition selected from the group consisting of osteoporosis, Pagett's disease, and bone cancer, and cancers associated with hypercalcemia.

- 7. The method of claim 5, wherein the soluble RANK is encoded by a DNA selected from the group consisting of:
- (a) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:2, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 33, inclusive, of SEQ ID NO:62, and a carboxy terminus selected from the group consisting an amino acid between amino acid 196 and amino acid 616, inclusive;
- (b) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:6, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 30, inclusive, of SEQ ID NO:6, and a carboxy terminus selected from the group consisting an amino acid between amino acid 197 and amino acid 625, inclusive;
- (c) DNA molecules capable of hybridization to the DNA of (a) or (b) under stringent conditions, and which encode RANK polypeptides that bind RANKL; and
- (d) DNA molecules encoding fragments of proteins encoded by the DNA of (a), (b) or (c), wherein the fragments of RANK polypeptides bind RANKL.
- 8. The method of claim 7, wherein the RANK is at least about 80% identical in amino acid sequence to native RANK
- 9. The method of claim 8, wherein the RANK further comprises a polypeptide selected from the group consisting of an immunoglobulin Fc domain, an immunoglobulin Fc mutein, a FLAGTM tag, a peptide comprising at least about 6 His residues, a leucine zipper, and combinations thereof.
- 10. The method of claim 6, wherein the soluble RANK is encoded by a DNA selected from the group consisting of:
- (a) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:2, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 33, inclusive, of SEQ ID NO:62, and a carboxy terminus selected from the group consisting an amino acid between amino acid

(b) a DNA encoding a protein having an amino acid sequence as set forth in SEQ ID NO:6, wherein the protein has an amino terminus selected from the group consisting of an amino acid between amino acid 1 and amino acid 30, inclusive, of SEQ ID NO:6, and a carboxy terminus selected from the group consisting an amino acid between amino acid 197 and amino acid 625, inclusive;

- (c) DNA molecules capable of hybridization to the DNA of (a) or (b) under stringent conditions, and which encode RANK polypeptides that bind RANKL; and
- (d) DNA molecules encoding fragments of proteins encoded by the DNA of (a), (b) or (c), wherein the fragments of RANK polypeptides bind RANKL.
- 11. The method of claim 10, wherein the RANK is at least about 80% identical in amino acid sequence to native RANK
- 12. The method of claim 11, wherein the RANK further comprises a polypeptide selected from the group consisting of an immunoglobulin Fc domain, an immunoglobulin Fc mutein, a FLAGTM tag, a peptide comprising at least about 6 His residues, a leucine zipper, and combinations thereof.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (ii) TITLE OF INVENTION: METHOD OF INHIBITING OSTEOCLAST ACTIVITY
- (iii) NUMBER OF SEQUENCES: 6
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Immunex Corporation, Law Department
 - (B) STREET: 51 University Street
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98101
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) INT'L APPLICATION NUMBER: --to be assigned--
 - (B) FILING DATE: 13 May 1999
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Henry, Janis C.
 - (B) REGISTRATION NUMBER: 34,347
 - (C) REFERENCE/DOCKET NUMBER: 2874-WO
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206)587-0430
 - (B) TELEFAX: (206)233-0644
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3136 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:

PCT/US99/10588 WO 99/58674

(B) CLONE: FULL LENGTH RANK

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 39..1886

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CCGC'	TGAG	GC C	:GCGG	CGCC	C GC	CAGO	CTGT	r ccc	CGCGC	CC AT	G GC et Al	CC CC La Pr	CG CC	GC GC	C La 5	53
CGG (CGG Arg	CGC Arg	CGC Arg	CCG Pro 10	CTG Leu	TTC Phe	GCG Ala	CTG Leu	CTG Leu 15	CTG Leu	CTC Leu	TGC Cys	GCG Ala	CTG Leu 20	CTC Leu	101
GCC (CGG Arg	CTG Leu	CAG Gln 25	GTG Val	GCT Ala	TTG Leu	CAG Gln	ATC Ile 30	GCT Ala	CCT Pro	CCA Pro	TGT Cys	ACC Thr 35	AGT Ser	GAG Glu	149
ĀĀG Lys	CAT His	TAT Tyr 40	GAG Glu	CAT His	CTG Leu	gga Gly	CGG Arg 45	TGC Cys	TGT Cys	AAC Asn	AAA Lys	TGT Cys 50	GAA Glu	CCA Pro	GGA Gly	197
AAG Lys	TAC Tyr 55	ATG Met	TCT Ser	TCT Ser	AAA Lys	TGC Cys 60	ACT Thr	ACT Thr	ACC Thr	TCT Ser	GAC Asp 65	AGT Ser	GTA Val	TGT Cys	CTG Leu	245
CCC Pro 70	TGT Cys	GGC Gly	CCG Pro	GAT Asp	GAA Glu 75	Tyr	TTG Leu	GAT Asp	AGC Ser	TGG Trp 80	AAT Asn	GAA Glu	GAA Glu	GAT Asp	AAA Lys 85	293
TGC Cys	TTG Leu	CTG Leu	CAT His	AAA Lys 90	GTT Val	TGT Cys	GAT Asp	ACA Thr	GGC Gly 95	AAG Lys	GCC Ala	CTG Leu	GTG Val	GCC Ala 100	GTG Val	341
GTC Val	GCC Ala	GGC Gly	AAC Asn 105	AGC Ser	ACG Thr	ACC Thr	CCC Pro	CGG Arg 110	CGC Arg	TGC Cys	GCG Ala	TGC Cys	ACG Thr 115	GCT Ala	GGG Gly	389
TAC Tyr	CAC His	TGG Trp 120	AGC Ser	CAG Gln	GAC Asp	TGC Cys	GAG Glu 125	TGC Cys	TGC Cys	CGC Arg	CGC Arg	AAC Asn 130	ACC Thr	GAG Glu	TGC Cys	437
GCG Ala	CCG Pro 135	GGC Gly	CTG Leu	GGC Gly	GCC Ala	CAG Gln 140	CAC His	CCG Pro	TTG Leu	CAG Gln	CTC Leu 145	AAC Asn	AAG Lys	GAC Asp	ACA Thr	485
CTG Val 150	TGC Cys	AAA Lys	CCT Pro	TGC Cys	CTT Leu 155	GCA Ala	GGC Gly	TAC Tyr	TTC Phe	TCT Ser 160	GAT Asp	GCC Ala	TTT Phe	TCC Ser	TCC Ser 165	533
ACG Thr	GAC Asp	AAA Lys	TGC Cys	AGA Arg 170	Pro	TGG Trp	ACC Thr	AAC Asn	TGT Cys 175	ACC Thr	TTC Phe	CTT Leu	GGA Gly	AAG Lys 180	AGA Arg	581
GTA Val	GAA Glu	CAT His	CAT His 185	GGG Gly	ACA Thr	GAG Glu	AAA Lys	TCC Ser 190	Asp	GCG Ala	GTT Val	TGC Cys	AGT Ser 195	TCT Ser	TCT Ser	629

TTA Leu	ATA Ile 215	ATT Ile	CTG Leu	CTT Leu	CTC Leu	TTC Phe 220	GCG Ala	TCT Ser	GTG Val	GCC Ala	CTG Leu 225	GTG Val	GCT Ala	GCC Ala	ATC Ile	725
ATC Ile 230	TTT Phe	GGC Gly	GTT Val	TCC Cys	ТАТ Туг 235	AGG Arg	AAA Lys	AAA Lys	GGG Gly	AAA Lys 240	GCA Ala	CTC Leu	ACA Thr	GCT Ala	AAT Asn 245	773
TTG Leu	TGG Trp	CAC His	TGG Trp	ATC Ile 250	AAT Asn	GAG Glu	GCT Ala	TGT Cys	GGC Gly 255	CGC Arg	CTA Leu	AGT Ser	GGA Gly	GAT Asp 260	AAG Lys	821
GAG Glu	TCC Ser	TCA Ser	GGT Gly 265	GAC Asp	AGT Ser	TGT Cys	GTC Val	AGT Ser 270	ACA Thr	CAC His	ACG Thr	GCA Ala	AAC Asn 275	TTT Phe	GGT Gly	869
CAG Gln	CAG Gln	GGA Gly 280	GCA Ala	TGT Cys	GAA Glu	GGT Gly	GTC Val 285	TTA Leu	CTG Leu	CTG Leu	ACT Thr	CTG Leu 290	GAG Glu	GAG Glu	AAG Lys	917
ACA Thr	TTT Phe 295	CCA Pro	GAA Glu	GAT Asp	ATG Met	TCC Cys 300	TAC Tyr	CCA Pro	GAT Asp	CAA Gln	GGT Gly 305	GGT Gly	GTC Val	TGT Cys	CAG Gin	965
GGC Gly 310	ACG Thr	TGT Cys	GTA Val	GGA Gly	GGT Gly 315	GGT Gly	CCC Pro	TAC Tyr	GCA Ala	CAA Gln 320	GGC Gly	GAA Glu	GAT Asp	GCC Ala	AGG Arg 325	1013
ATG Met	CTC Leu	TCA Ser	TTG Leu	GTC Val 330	AGC Ser	AAG Lys	ACC Thr	GAG Glu	ATA Ile 335	GAG Glu	GAA Glu	GAC Asp	AGC Ser	TTC Phe 340	AGA Arg	1061
CAG Gln	ATG Met	CCC Pro	ACA Thr 345	GAA Glu	GAT Asp	GAA Glu	TAC Tyr	ATG Met 350	GAC Asp	AGG Arg	CCC Pro	TCC Ser	CAG Gln 355	CCC Pro	ACA Thr	1109
GAC Asp	CAG Gln	TTA Leu 360	CTG Leu	TTC Phe	CTC Leu	ACT Thr	GAG Glu 365	CCT Pro	GGA Gly	AGC Ser	AAA Lys	TCC Ser 370	ACA Thr	CCT Pro	CCT Pro	1157
TTC Phe	TCT Ser 375	GAA Glu	CCC Pro	CTG Leu	GAG Glu	GTG Val 380	GGG Gly	GAG Glu	AAT Asn	GAC Asp	AGT Ser 385	TTA Leu	AGC Ser	CAG Gln	TGC Cys	1205
TTC Phe 390	ACG Thr	GGG Gly	ACA Thr	CAG Gln	AGC Ser 395	ACA Thr	GTG Val	GGT Gly	TCA Ser	GAA Glu 400	AGC Ser	TGC Cys	AAC Asn	TGC Cys	ACT Thr 405	1253
GAG Glu	CCC Pro	CTG Leu	TGC Cys	AGG Arg 410	Thr	GAT Asp	TGG Trp	ACT Thr	CCC Pro 415	ATG Met	TCC Ser	TCT Ser	GAA Glu	AAC Asn 420	TAC Tyr	1301
TTG Leu	CAA Gln	AAA Lys	GAG Glu 425	GTG Val	GAC Asp	AGT Ser	GGC Gly	CAT His 430	TGC Cys	CCG Pro	CAC	TGG Trp	GCA Ala 435	GCC Ala	AGC Ser	1349
CCC	AGC Ser	CCC Pro 440	Asn	TGG Trp	GCA Ala	GAT Asp	GTC Val 445	TGC Cys	ACA Thr	GGC Gly	TGC Cys	CGG Arg 450	Asn	CCT Pro	CCT Pro	1397

CCC Pro 470	CAG Gln	TGC Cys	GCC Ala	TAT Tyr	GGC Gly 475	ATG Met	GGC Gly	CTT Leu	CCC Pro	CCT Pro 480	GAA Glu	G AA Glu	GAA Glu	GCC Ala	AGC Ser 485	1493
AGG Arg	ACG Thr	GAG Glu	GCC Ala	AGA Arg 490	GAC Asp	CAG Gln	CCC Pro	GAG Glu	GAT Asp 495	GGG Gly	GCT Ala	GAT Asp	GGG Gly	AGG Arg 500	CTC Leu	1541
CCA Pro	AGC Ser	TCA Ser	GCG Ala 505	AGG Arg	GCA Ala	GGT Gly	GCC Ala	GGG Gly 510	TCT Ser	GGA Gly	AGC Ser	TCC Ser	CCT Pro 515	GGT Gly	GGC Gly	1589
CAG Gln	TCC Ser	CCT Pro 520	GCA Ala	TCT Ser	GGA Gly	AAT Asn	GTG Val 525	ACT Thr	GGA Gly	AAC Asn	AGT Ser	AAC Asn 530	TCC Ser	ACG Thr	TTC Phe	1637
ATC Ile	TCC Ser 535	AGC Ser	GGG Gly	CAG Gln	GTG Val	ATG Met 540	AAC Asn	TTC Phe	AAG Lys	GGC Gly	GAC Asp 545	ATC Ile	ATC Ile	GTG Val	GTC Val	1685
TAC Tyr 550	GTC Val	AGC Ser	CAG Gln	ACC Thr	TCG Ser 555	CAĞ Gln	GAG Glu	GGC Gly	GCC Ala	CCG Ala 560	gça Ala	GCT Ala	GCG Ala	GAG Glu	CCC Pro 565	1733
ATG Met	GGC Gly	CGC Arg	CCG Pro	GTG Val 570	CAG Gln	GAG Glu	GAG Glu	ACC Thr	CTG Leu 575	GCG Ala	CGC Arg	CGA Arg	GAC Asp	TCC Ser 580	TTC Phe	1781
GCG Ala	GGG Gly	AAC Asn	GGC Gly 585	CCG Pro	CGC Arg	TTC Phe	CCG Pro	GAC Asp 590	CCG Pro	TGC Cys	GGC Gly	GGC	CCC Pro 5 9 5	GAG Glu	GGG Gly	1829
CTG Leu	CGG Arg	GAG Glu 600	Pro	GAG Glu	AAG Lys	GCC Ala	TCG Ser 605	AGG Arg	CCG Pro	GTG Val	CAG Gln	GAG Glu 610	GIN	GGC Gly	GGG Gly	1877
	AAG Lys 615		TGA	GCGC(CCC (CCAT	GCT(GG G.	AGCC	CGAA	G CT	CGGA	GCCA			1926
GGG	CTCG	CGA	GGGC.	AGCA	CC G	CAGC	CTCT	G CC	CCAG	CCCC	GGC	CACC	CAG	GGAT	CGATCG	1986
GTA	CAGT	CGA	GGAA	GACC.	AC C	CGGC.	ATTC'	т ст	GCCC	ACTT	TGC	CTTC	CAG	GAAA	TGGGCT	2046
TTT	CAGG	AAG	TGAA	TTGA	TG A	GGAC	TGTC	c cc	ATGC	CCAC	GGA	TGCT	CAG	CAGC	CCGCCG	2106
CAC	TGGG	GCA	GATG	TCTC	CC C	TGCC	ACTC	С ТС	AAAC	TCGC	AGC	AGTA	TTA.	TGTG	GCACTA	2166
TGA	CAGC	TAT	TTTT	ATGA	CT A	TCCT	GTTC	T GT	GGGG	GGGG	GGT	CTAT	GTT	TTCC	CCCCAT	2226
ATT	TGTA	TTC	CTTT	TCAT	AA C	TTTT	CTTG	А ТА	TCTT	TCCT	CCC	TCTT	TTT	TAAT	GTAAAG	2286
GTT	TTCT	CAA	AAAT	TCTC	CT A	AAGG	TGAG	G GT	CTCT	TTCT	TTT	CTCT	$\mathbf{T}\mathbf{T}\mathbf{T}$	CCTT	TTTTTT	2346
TTC	TTTT	TTT	GGCA	ACCT	GG C	TCTG	GCCC	A GG	CTAG	AGTG	CAG	TGGI	GCG	ATTA	TAGCCC	2406
GGT	GCAG	CCT	СТАА	CTCC	TG G	GCTC	AAGC	A AT	CCAV	GTGA	TCC	TCCC	ACC	TCAA	CCTTCG	2466
CAC	:ጥሊርር	TGG	GATO	'ለሮእር	ርጥ G	CAGG	CCAC	G CC	CAGO	TTCC	TCC	cccc	GAC	TCCC	CCCCCC	252€

TTTACGTATT	TTCTTTTGTG	CCCCTGCTCA	CAGTGTTTTA	GAGATGGCTT	TCCCAGTGTG	2706
TGTTCATTGT	AAACACTTTT	GGGAAAGGC	TAAACATGTG	AGGCCTGGAG	ATAGTTGCTA	2766
AGTTGCTAGG	AACATGTGGT	GGGACTTTCA	TATTCTGAAA	AATGTTCTAT	ATTCTCATTT	2826
TTCTAAAAGA	AAGAAAAAAG	GAAACCCGAT	TTATTTCTCC	TGAATCTTTT	TAAGTTTGTG	2886
TCGTTCCTTA	AGCAGAACTA	AGCTCAGTAT	GTGACCTTAC	CCGCTAGGTG	GTTAATTTAT	2946
CCATGCTGGC	AGAGGCACTC	AGGTACTTGG	TAAGCAAATT	TCTAAAACTC	CAAGTTGCTG	3006
CAGCTTGGCA	TTCTTCTTAT	TCTAGAGGTC	TCTCTGGAAA	AGATGGAGAA	AATGAACAGG	3066
ACATGGGGCT	CCTGGAAAGA	AAGGCCCGG	GAAGTTCAAG	GAAGAATAAA	GTTGAAATTT	3126
ТАААААААА						3136

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 616 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Ala Pro Arg Ala Arg Arg Arg Pro Leu Phe Ala Leu Leu Leu 10 15
- Leu Cys Ala Leu Leu Ala Arg Leu Gln Val Ala Leu Gln Ile Ala Pro 20 25 30
- Pro Cys Thr Ser Glu Lys His Tyr Glu His Leu Gly Arg Cys Cys Asn 35 40 45
- Asp Ser Val Cys Leu Pro Cys Gly Pro Asp Glu Tyr Leu Asp Ser Trp 65 70 75 80
- Asn Glu Glu Asp Lys Cys Leu Leu His Lys Val Cys Asp Thr Gly Lys 85 90 95
- Ala Leu Val Ala Val Val Ala Gly Asn Ser Thr Thr Pro Arg Arg Cys 100 105 110
- Ala Cys Thr Ala Gly Tyr His Trp Ser Gln Asp Cys Glu Cys Cys Arg 115 120 125
- Arg Asn Thr Glu Cys Ala Pro Gly Leu Gly Ala Gln His Pro Leu Gln 130 135 140
- Leu Asn Lys Asp Thr Val Cys Lys Pro Cys Leu Ala Gly Tyr Phe Ser

Phe	Leu	Gly	Lys 180	Arg	Val	Glu	His	His 185	Gly	Thr	Glu	Lys	Ser 190	Asp	Ala
Val	Суз	Ser 195	Ser	Ser	Leu	Pro	Ala 200	Arg	Lys	Pro	Pro	Asn 205	Glu	Pro	His
Val	Туг 210	Leu	Pro	Gly	Leu	11e 215	Ile	Leu	Leu	Leu	Phe 220	Ala	Ser	Val	Ala
Leu 225	Val	Ala	Ala	Ile	11e 230	Phe	Gly	Val	Cys	Tyr 235	Arg	Lys	Lys	Gly	Lys 240
Ala	Leu	Thr	Ala	Asn 245	Leu	Trp	His	Trp	11e 250	Asn	Glu	Ala	Cys	Gly 255	Arg
			260					265			Cys		270		
		275					280				Gly	285			
	290					295					300 CA≅				
305					310					315	Gly				320
				325					330		Lys			335	
			340					345			Glu		350		
		355					360				Thr	365			
	370					375					Val 380				
385					390					395	Thr				400
				405					410		Asp			415	
Ser	Ser	Glu	Asn 420	Tyr	Leu	Gln	Lys	Glu 425	Val	Asp	Ser	Gly	His 430	Cys	Pro
		435					440				Asp	445			
Cys	Arg 4 50		Pro	Pro	Gly	Glu 4 55	Asp	Cys	Glu	Pro	Leu 460	Val	Gly	Ser	Pro
Lys 465	Arg	Gly	Pro	Leu	Pro 4 70	Gln	Cys	Ala	Tyr	Gly 475	Met	Gly	Leu	Pro	Pro 480
Glu	Glu	Glu	Λla	Ser 485	Arg	Thr	Glu	Ala	Arg 490	Asp	Gln	Pro	Glu	Asp 49 5	Gly
												• 1 .	41.	Car	Cly

- Ser Ser Pro Gly Gly Gln Ser Pro Ala Ser Gly Asn Val Thr Gly Asn 515 520 525
- Ser Asn Ser Thr Phe Ile Ser Ser Gly Gln Val Met Asn Phe Lys Gly 530 535 540
- Asp Ile Ile Val Val Tyr Val Ser Gln Thr Ser Gln Glu Gly Ala Ala 545 550 560
- Ala Ala Glu Pro Met Gly Arg Pro Val Gln Glu Glu Thr Leu Ala 565 575
- Arg Arg Asp Ser Phe Ala Gly Asn Gly Pro Arg Phe Pro Asp Pro Cys 580 585
- Gly Gly Pro Glu Gly Leu Arg Glu Pro Glu Lys Ala Ser Arg Pro Val 595 600 605
- Gln Glu Gln Gly Gly Ala Lys Ala 610 615
- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Human
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: IgG1 Fc mutein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- Glu Pro Arg Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala 1 5 10 15
- Pro Glu Ala Glu Gly Ala Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25 30
- Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val 35 40 45
- Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 60
- Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 65 70 75 80
- Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln $85 \ 90 \ 95$
- Asp Trp Leu Asn Gly Lys Asp Tyr Lys Cys Lys Val Ser Asn Lys Ala

Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ar 165 His Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Ty 175 Lys Thr Thr Pro 180 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe 195 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Ly 215 Ser Leu Ser Leu Ser Pro Gly Lys 230	Arg	Glu 130	Pro	Gln	Val	Tyr	Thr 135	Leu	Pro	Pro	Ser	Arg 140	Asp	Glu	Leu	Thi
Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Ty 180 Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Ph 205 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Ly 210 Ser Leu Ser Leu Ser Pro Gly Lys	_	Asn	Gln	Val	Ser		Thr	Cys	Leu	Val	Lys 155	Gly	Phe	Tyr	Pro	Arg 160
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Ph 195 Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Ly 210 Ser Leu Ser Leu Ser Pro Gly Lys	His	Ile	Ala	Val		Trp	Glu	Ser	Asn		Gln	Pro	Glu	Asn	Asn 175	Туз
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Ly 210 215 220 Ser Leu Ser Leu Ser Pro Gly Lys	Lys	Thr	Thr		Pro	Val	Leu	Asp		Asp	Gly	Ser	Phe	Phe 190	Leu	Ту
210 215 220 Ser Leu Ser Leu Ser Pro Gly Lys	Ser	Lys		Thr	Val	Asp	Lys		Arg	Trp	Gln	Gln	Gly 205	Asn	Val	Phe
	Ser		Ser	Val	Met	His		Ala	Leu	His	Asn	His 220	Tyr	Thr	Gln	Lys
		Leu	Ser	Leu	Ser		Gly	Lys								

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1878 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iv) ANTI-SENSE: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Murine
- (vii) IMMEDIATE SOURCE:
 - (A) LIBRARY: Murine Fetal Liver Epithelium
 - (B) CLONE: muRANK
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1875
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- ATG GCC CCG CGC GCC CGG CGC CGC CGC CAG CTG CCC GCG CCG CTG CTG Met Ala Pro Arg Ala Arg Arg Arg Gln Leu Pro Ala Pro Leu Leu 10
- GCG CTC TGC GTG CTG CTC GTT CCA CTG CAG GTG ACT CTC CAG GTC ACT Ala Leu Cys Val Leu Leu Val Pro Leu Gln Val Thr Leu Gln Val Thr 25

AGC A	AGA Arg 50	TGC Cys	GAA Glu	CCA Pro	GGA Gly	AAG Lys 55	TAC Tyr	CTG Leu	TCC Ser	TCT Ser	AAG Lys 60	TGC Cys	ACT Thr	CCT Pro	ACC Thr	192
TCC (Ser / 65	GAC Asp	AGT Ser	GTG Val	TGT Cys	CTG Leu 70	CCC Pro	TGT Cys	GGC Gly	CCC Pro	GAT Asp 75	GAG Glu	TAC Tyr	TTG Leu	GAC Asp	ACC Thr 80	240
TGG 7	AAT Asn	GAA Glu	GAA Glu	GAT Asp 85	AAA Lys	TGC Cys	TTG Leu	CTG Leu	CAT His 90	AAA Lys	GTC Val	TGT Cys	GAT Asp	GCA Ala 95	GGC Gly	288
AAG (GCC Ala	CTG Leu	GTG Val 100	GCG Ala	GTG Val	GAT Asp	CCT Pro	GGC Gly 105	AAC Asn	CAC His	ACG Thr	GCC Ala	CCG Pro 110	CGT Arg	CGC Arg	336
TGT (GCT Ala	TGC Cys 115	ACG Thr	GCT Ala	GGC Gly	TAC Tyr	CAC His 120	TGG Trp	AAC Asn	TCA Ser	GAC Asp	TGC Cys 125	GAG Glu	TGC Cys	TGC Cys	384
CGC . Arg .	AGG Arg 130	AAC Asn	ACG Thr	GAG Glu	TGT Cys	GCA A1a 135	CCT Pro	GGC Gly	TTC Phe	GGA Cly	GCT Ala 140	CAG Gln	CAT His	CCC Pro	TTG Leu	432
CAG Gln 145	CTC Leu	AAC Asn	AAG Lys	GAT Asp	ACG Thr 150	GTG Val	TGC Cys	ACA Thr	CCC Pro	TGC Cys 155	CTC Leu	CTG Leu	GGC Gly	TTC Phe	TTC Phe 160	480
TCA Ser	GAT Asp	GTC Val	TTT Phe	TCG Ser 165	TCC Ser	ACA Thr	GAC A sp	AAA Lys	TGC Cys 170	AAA Lys	CCT Pro	TGG Trp	ACC Thr	AAC Asn 175	TGC Cys	528
ACC Thr	CTC Leu	CTT Leu	GGA Gly 180	AAG Lys	CTA Leu	GAA Glu	GCA Ala	CAC His 185	CAG Gln	GGG Gly	ACA Thr	ACG Thr	GAA Glu 190	TCA Ser	GAT A sp	576
GTG Val	GTC Val	TGC Cys 195	AGC Ser	TCT Ser	TCC Ser	ATG Met	ACA Thr 200	CTG Leu	AGG Arg	AGA Arg	CCA Pro	CCC Pro 205	AAG Lys	GAG Glu	GCC Ala	624
CAG Gln	GCT Ala 210	TAC Tyr	CTG Leu	CCC Pro	AGT Ser	CTC Leu 215	ATC Ile	GTT Val	CTG Leu	CTC Leu	CTC Leu 220	TTC Phe	ATC Ile	TCT Ser	GTG Val	672
GTA Val 225	GTA Val	GTG Val	GCT Ala	GCC Ala	ATC Ile 230	ATC Ile	TTC Phe	GGC Gly	GTT Val	TAC Tyr 235	TAC Tyr	AGG Arg	AAG Lys	GGA Gly	GGG Gly 240	720
AAA Lys	GCG Ala	CTG Leu	ACA Thr	GCT Ala 245	AAT Asn	TTG Leu	TGG Trp	AAT Asn	TGG Trp 250	GTC Val	AAT Asn	GAT Asp	GCT Ala	TGC Cys 255		768
AGT Ser	CTA Leu	AGT Ser	GGA Gly 260	AAT Asn	AAG Lys	GAG Glu	TCC Ser	TCA Ser 265	GGG Gly	GAC Asp	CGT Arg	TGT Cys	GCT Ala 270	GGT Gly	TCC Ser	816
CAC His	TCG Ser	GCA Ala 275	ACC Thr	TCC Ser	AGT Ser	CAG Gln	CAA Gln 280	GAA Glu	GTG Val	TGT Cys	GAA Glu	GGT Gly 285	ATC Ile	TTA Leu	CTA Leu	864
												/ */ */TI	473	CTC	سرنس	912

GGG Gly 305	CCT Pro	GTG Val	TGT Cys	GCG Ala	GCA Ala 310	GGT Gly	GGG Gly	CCC Pro	TGG Trp	GCA Ala 315	GAA Glu	GTC Val	AGA Arg	GAT Asp	TCT Ser 320	960
AGG Arg	ACG Thr	TTC Phe	ACA Thr	CTG Leu 325	GTC Val	AGC Ser	GAG Glu	GTT Val	GAG Glu 330	ACG Thr	CAA Gln	GGA Gly	GAC Asp	CTC Leu 335	TCG Ser	1008
AGG Arg	AAG Lys	ATT Ile	CCC Pro 340	ACA Thr	GAG Glu	GAT Asp	GAG Glu	TAC Tyr 345	ACG Thr	GAC Asp	CGG Arg	CCC Pro	TCG Ser 350	CAG Gln	CCT Pro	1056
TCG Ser	ACT Thr	GGT Gly 355	TCA Ser	CTG Leu	CTC Leu	CTA Leu	ATC Ile 360	CAG Gln	CAG Gln	GGA Gly	AGC Ser	AAA Lys 365	TCT Ser	ATA Ile	CCC Pro	1104
CCA Pro	TTC Phe 370	CAG Gln	GAG Glu	CCC Pro	CTG Leu	GAA Glu 375	GTG Val	GGG Gly	GAG Glu	AAC Asn	GAC Asp 380	AGT Ser	TTA Leu	AGC Ser	CAG Gln	1152
тст Суз 385	TTC Phe	ACC Thr	GGG Gly	ACT Thr	GAA Glu 390	AGC Ser	ACG Thr	GTG val	GAT Asp	TCT Ser 395	GAG Glu	GGC Cly	TGT Cys	GAC Asp	TTC Phe 400	1200
ACT Thr	GAG Glu	CCT Pro	CCG Pro	AGC Ser 405	AGA Arg	ACT Thr	GAC Asp	TCT Ser	ATG Met 410	CCC Pro	GTG Val	TCC Ser	CCT Pro	GAA Glu 415	AAG Lys	1248
CAC His	CTG Leu	ACA Thr	AAA Lys 420	GAA Glu	ATA Ile	GAA Glu	GGT Gly	GAC Asp 425	AGT Ser	TGC Cys	CTC Leu	CCC Pro	TGG Trp 430	GTG Val	GTC Val	1296
AGC Ser	TCC Ser	AAC Asn 435	TCA Ser	ACA Thr	GAT Asp	GGC Gly	TAC Tyr 440	ACA Thr	GGC Gly	AGT Ser	GGG Gly	AAC Asn 445	ACT Thr	CCT Pro	GGG Gly	1344
GAG Glu	GAC Asp 450	CAT His	GAA Glu	CCC Pro	TTT Phe	CCA Pro 455	GGG Gly	TCC Ser	CTG Leu	AAA Lys	TGT Cys 460	GGA Gly	CCA Pro	TTG Leu	CCC Pro	1392
CAG Gln 465	TGT Cys	GCC Ala	TAC Tyr	AGC Ser	ATG Met 470	GGC Gly	TTT Phe	CCC Pro	AGT Ser	GAA Glu 475	GCA Ala	GCA Ala	GCC Ala	AGC Ser	ATG Met 480	1440
GC A Ala	GAG Glu	GCG Ala	GGA Gly	GTA Val 485	CGG Arg	CCC Pro	CAG Gln	GAC Asp	AGG Arg 490	GCT Ala	GAT Asp	GAG Glu	AGG Arg	GGA Gly 495	GCC Ala	1488
TCA Ser	GGG Gly	TCC Ser	GGG Gly 500	AGC Ser	TCC Ser	CCC	AGT Ser	GAC Asp 505	CAG Gln	CCA Pro	CCT Pro	GCC Ala	TCT Ser 510	GGG Gly	AAC Asn	1536
GTG Val	ACT Thr	GGA Gly 515	AAC Asn	AGT Ser	AAC Asn	TCC Ser	ACG Thr 520	TTC Phe	ATC Ile	TCT Ser	AGC Ser	GGG Gly 525	CAG Gln	GTG Val	ATG Met	1584
AAC Asn	TTC Phe 530	AAG Lys	GGT Gly	GAC Asp	ATC Ile	ATC Ile 535	GTG Val	GTG Val	TAT Tyr	GTC Val	AGC Ser 540	CAG Gln	ACC Thr	TCG Ser	CAG Gln	1632
												******	2212	~~~	000	1690

GTG CAG GAG GAG ACG CTG GCA CAC AGA GAC TCC TTT GCG GGC ACC GCG 1728 Val Gln Glu Glu Thr Leu Ala His Arg Asp Ser Phe Ala Gly Thr Ala 570 CCG CGC TTC CCC GAC GTC TGT GCC ACC GGG GCT GGG CTG CAG GAG CAG 1776 Pro Arg Phe Pro Asp Val Cys Ala Thr Gly Ala Gly Leu Gln Glu Gln 585 GGG GCA CCC CGG CAG AAG GAC GGG ACA TCG CGG CCG GTG CAG GAG CAG Gly Ala Pro Arg Gln Lys Asp Gly Thr Ser Arg Pro Val Gln Glu Gln 600 595 GGT GGG GCG CAG ACT TCA CTC CAT ACC CAG GGG TCC GGA CAA TGT GCA Gly Gly Ala Gln Thr Ser Leu His Thr Gln Gly Ser Gly Gln Cys Ala 615 610 1878 GAA TGA Glu 625

- (2) INFORMATION FOR SEQ ID NO.5.
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 625 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Ala Pro Arg Ala Arg Arg Arg Gln Leu Pro Ala Pro Leu Leu 1 5 10 15

Ala Leu Cys Val Leu Leu Val Pro Leu Gln Val Thr Leu Gln Val Thr 20 25 30

Pro Pro Cys Thr Gln Glu Arg His Tyr Glu His Leu Gly Arg Cys Cys
45

Ser Arg Cys Glu Pro Gly Lys Tyr Leu Ser Ser Lys Cys Thr Pro Thr 50 60

Ser Asp Ser Val Cys Leu Pro Cys Gly Pro Asp Glu Tyr Leu Asp Thr 65 70 75 80

Trp Asn Glu Glu Asp Lys Cys Leu Leu His Lys Val Cys Asp Ala Gly
85 90 95

Lys Ala Leu Val Ala Val Asp Pro Gly Asn His Thr Ala Pro Arg Arg 100 105 110

Cys Ala Cys Thr Ala Gly Tyr His Trp Asn Ser Asp Cys Glu Cys Cys 115 120 125

Arg Arg Asn Thr Glu Cys Ala Pro Gly Phe Gly Ala Gln His Pro Leu 130 135 140

Gln Leu Asn Lys Asp Thr Val Cys Thr Pro Cys Leu Leu Gly Phe Phe

Thr	Leu	Leu	Gly 180	Lys	Leu	Clu	Ala	His 185	Gln	Gly	Thr	Thr	Glu 190	Ser	Asp
Val	Val	Cys 195	Ser	Ser	Ser	Met	Thr 200	Leu	Arg	Arg	Pro	Pro 205	Lys	Glu	Ala
Gln	Ala 210	Tyr	Leu	Pro	Ser	Leu 215	Ile	Val	Leu	Leu	Leu 220	Phe	Ile	Ser	Val
Val 225	Val	Val	Ala	Ala	11e 230	Ile	Phe	Gly	Val	Туг 235	Tyr	Arg	Lys	Gly	Gly 240
Lys	Ala	Leu	Thr	Ala 245	Asn	Leu	Trp	Asn	Trp 250	Val	Asn	Asp	Ala	Cys 255	Ser
Ser	Leu	Ser	Cly 260	Asn	Lys	Glu	Ser	Ser 265	Gly	Asp	Arg	Суз	Ala 270	Gly	Ser
His	Ser	Ala 275	ጥኪዮ	Ser	Ser	Gln	Gln 280	Glu	Val	Суѕ	Glu	Gly 285	Ile	Leu	Leu
Met	Thr 290	Arg	Glu	Glu	Lys	Met 295	Val	Pro	Glu	Asp	Gly 300	Ala	Gly	Val	Cys
Gly 305	Pro	Val	Cys	Ala	Ala 310	Gly	Gly	Pro	Trp	Ala 315	Glu	Val	Arg	Asp	Ser 320
Arg	Thr	Phe	Thr	Leu 325	Val	Ser	Glu	Val	Glu 330	Thr	Gln	Gly	Asp	Leu 335	Ser
Arg	Lys	Ile	Pro 340	Thr	Glu	Asp	Glu	Tyr 345	Thr	Asp	Arg	Pro	Ser 350	Gln	Pro
Ser	Thr	Gly 355	Ser	Leu	Leu	Leu	11e 360	Gln	Gln	Gly	Ser	Lys 365	Ser	Ile	Pro
Pro	Phe 370	Gln	Glu	Pro	Leu	Glu 375	Val	Gly	Glu	Asn	Asp 380	Ser	Leu	Ser	Gln
Cys 385	Phe	Thr	Gly	Thr	Glu 390	Ser	Thr	Val	Asp	Ser 395	Glu	Gly	Cys	Asp	Phe 400
Thr	Glu	Pro	Pro	Ser 405	Arg	Thr	Asp	Ser	Met 410	Pro	Val	Ser	Pro	Glu 415	Lys
His	Leu	Thr	Lys 420	Glu	Ile	Glu	Gly	Asp 425	Ser	Cys	Leu	Pro	Trp 430	Val	Val
Ser	Ser	Asn 435	Ser	Thr	Asp	Gly	Туг 44 0	Thr	Gly	Ser	Gly	Asn 445	Thr	Pro	Gly
Glu	Asp 450		Glu	Pro	Phe	Pro 45 5	Gly	Ser	Leu	Lys	Cys 460	Gly	Pro	Leu	Pro
Gln 465		Ala	Tyr	Ser	Met 470	Gly	Phe	Pro	Ser	Glu 47 5	Ala	Ala	Ala	Ser	Met 480
Ala	Glu	Ala	Gly	Val 485		Pro	Gln	Asp	Arg 4 90	Ala	Asp	Glu	Arg	Gly 49 5	Ala

Val Thr Gly Asn Ser Asn Ser Thr Phe Ile Ser Ser Gly Gln Val Met 515 520 525

- Asn Phe Lys Gly Asp Ile Ile Val Val Tyr Val Ser Gln Thr Ser Gln 530 535 540
- Glu Gly Pro Gly Ser Ala Glu Pro Glu Ser Glu Pro Val Gly Arg Pro 545 550 555 560
- Val Gln Glu Glu Thr Leu Ala His Arg Asp Ser Phe Ala Gly Thr Ala 565 570 575
- Pro Arg Phe Pro Asp Val Cys Ala Thr Gly Ala Gly Leu Gln Glu Gln 580 585 590
- Gly Ala Pro Arg Gln Lys Asp Gly Thr Ser Arg Pro Val Gln Glu Gln 595 600 605
- Gly Gly Ala Gln Thr Ser Leu His Thr Gln Gly Ser Gly Gln Cys Ala 610 620

Glu 625

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Arg Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile
- Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu 20 25 30

Arg