**Definition 1.** A function  $h \in \mathcal{FP}$  is called proof system for a language L if the range of h is L. A string w with h(w) = x is called an h-proof for x.

With this definition, a proof system for L is basically a polynomial-time bounded function that enumerates L. To give an example, let sat be defined by

$$sat(x) = \begin{cases} \varphi & (x = \langle \alpha, \varphi \rangle \text{ and } \alpha \text{ is an satisfying assignment for } \varphi), \\ \bot & (\text{otherwise}). \end{cases}$$

Then h is a proof system for SAT.

Notice, in spite of its time bound against the input, the shortest proof of a string  $w \in L$  can be be very long. There may be various proof systems for a language L. In order to make them comparable, we define the notion of *simulation* of proof systems.

**Definition 2.** Let h and h' be proof systems for a language L. If there is a polynomial p and a function f such that for all  $w \in \Sigma^*$ 

$$h(f(w)) = h'(w)$$

and  $|f(w)| \le p(|w|)$ , then h simulates h'.

Informally speaking, f translates h-proofs into polynomial length bounded h'-proofs. Notice, f could be hard or even impossible to calculate.

**Definition 3.** A proof system h for a language L is called optimal, if it simulates every proof system for L.

**Definition 4.** Let OPT be the complexity class of all languages that have an optimal proof system.