线性代数 作业 21

2025 年 10 月 10 日

说明:晚自习请独立完成一部分作业并上交,鼓励大家独立完成更多。 剩余带回家继续完成。请将答案写在答题纸上,不要写在试卷上,答题纸上 交,试卷可以带走。

完成度不好的作业题,需要重写解答。助教会在批改之后标记需要重写的题号。

请写下必要的解答过程以及理由,直接写答案的题目会被扣分。

1 晚自习完成的题目

题 1. 求如下矩阵 A 的 QR 分解

$$A = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 4 & 1 \end{pmatrix}$$

题 2. 设实对称矩阵 A 满足 $A^5 = I_n$, 证明 $A = I_n$.

题 3. 假设 A 和 B 是 n 阶正定实对称方阵,证明 $\det(A+B) > \det(A)$.

题 4. 假设 A 和 B 是 n-阶实对称矩阵,且 A 正定,证明存在可逆实矩阵 P 使得 P^TAP 和 P^TBP 均为对角矩阵.

题 5. 假设 A 是实对称矩阵,证明 A 正定当且仅当 A 的特征值均为正实数.

题 6. 假设 A 是正定实对称矩阵,证明存在唯一的正定实对称矩阵 B 使得 $B^2 = A$.

题 7. 考虑 $m \times n$ 实矩阵组成的线性空间 $V = M_{m \times n}(\mathbb{R})$ 和内积 $g(A, B) = \operatorname{tr}(A^T B)$. 假设 P 和 Q 分别为 m 阶和 n 正交实矩阵,证明 $T_{P,Q}(A) = PAQ$ 定义了一个 V 上的正交变换.

题 8. 假设 $A \in n$ -阶反对称矩阵,证明存在正交矩阵 Q 使得

$$Q^{T}AQ = \begin{pmatrix} 0 & -\lambda_{1} & & & & \\ \lambda_{1} & 0 & & & & \\ & & 0 & -\lambda_{2} & & \\ & & \lambda_{2} & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

其中 $\lambda_1, \lambda_2, \dots \geq 0$.

2 可以带回家做的题目

题 9. 对内积空间 V 中的子空间 W,有正交补 W^{\perp} ,且 $V = W \oplus W^{\perp}$,因此任意 $v \in V$ 有唯一的分解 $v = v_1 + v_2$,其中 $v_1 \in W, v_2 \in W^{\perp}$. 定义线性变换 $Proj_W: v \mapsto v_1$ 为到 W 的投影映射. 证明 $Proj_W$ 是自伴随变换.

题 10. 定义内积空间 E 中任意两个子集 X,Y 之间的距离为

$$\operatorname{dist}(X,Y) = \inf\{|x-y| \mid x \in X, y \in Y\}.$$

对 E 中的向量 v 和子空间 W, 证明

$$\operatorname{dist}(\{v\}, W) = |v - \operatorname{Proj}_{W}(v)|.$$

题 11 (Courant-Fischer-Weyl min-max principle). 设 $(E, \langle \cdot, \cdot \rangle)$ 是一个 n 维 实内积空间. 假设 T 是 E 的一个自伴随变换,有实特征值 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. 证明 T 的特征值可以由如下的 Min-Max 方法给出.

 $\lambda_k = \min \left\{ \max \left\{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \right\} : W_k \subset E$ 子空间, $\dim W_k = k - 1 \right\}$

这里先固定 k-1 维子空间 W_k , 取出对应的最大值

$$\max \left\{ \langle T(x), x \rangle : x \perp W_k, |x| = 1 \right\}.$$

然后让 W_k 取遍 k-1 维子空间, 取出这些值中的最小值。

或者可以证明如下特殊情形: 设 A 为 n 阶实对称矩阵, v 为任意 n 维实列向量, 且 |v| 表示在标准内积下的向量长度。设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 A 的全体特征值, 求证:

$$|Av| \le \max\{|\lambda_1|, |\lambda_2|, \cdots, |\lambda_n|\}|v|.$$

题 12 (柯西交错定理). 设 A 为一个 $n \times n$ 的实对称矩阵,B 为 A 的一个 $m \times m$ 阶主子矩阵,其中 m < n。若 A 的特征值为 $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$,B 的特征值为 $\mu_1 \geqslant \mu_2 \geqslant \cdots \geqslant \mu_m$,则对所有 $1 \leqslant i \leqslant m$,有

$$\lambda_i \geqslant \mu_i \geqslant \lambda_{i+n-m}$$
.

(提示: 使用前面的 Courant-Fischer-Weyl 极小极大原理)

题 13 (Sylvester 判则). 利用柯西交错定理证明西尔维斯特判则: 一个对称 矩阵是正定的, 当且仅当其所有顺序主子式均为正。