Test 7 6 Jan 2021

1. A particle P is sliding down a frictionless hemispherical bowl. It passes the point A at t = 0. At this instant of time, the horizontal component of its velocity is v. A bead Q of the same mass as P is ejected from A at t = 0 along the string AB, with speed v. Friction between the bead and the string may be neglected. Let t_p and t_q be the respective times taken by P and Q. Then

- (a) $t_p < t_q$
- (b) $t_p > t_q$
- (c) $t_p = t_q$
- (d) $\frac{t_p}{t_q} = \frac{\text{length of arch(ACB)}}{\text{length of chord AB}}$

2. In the arrangement shown in the following figure, the ends P and Q of an unstretchable string move downwards with uniform speed U. Pulleys A and B are fixed. Then the mass M moves with the speed

- (a) $2U\cos\theta$
- (b) $\frac{U}{\cos\theta}$
- (c) $\frac{2U}{\cos\theta}$
- (d) $U\cos\theta$

- 3. The coordinates of a particle moving in a plane are given by x(t) = acos(pt) and y(t) = bsin(pt) where a and b(< a) and p are positive constants of appropriate dimensions. Then
 - (a) The path of the particle is an ellipse
 - (b) The velocity and acceleration of the particle are normal to each other at $t = \frac{\pi}{2p}$
 - (c) the acceleration of the particle is always directed towards a focus
 - (d) the distance travelled by the particle in time interval t=0 to $t=\frac{\pi}{2p}$ is a