NumPy Operations

Arithmetic

You can easily perform array with array arithmetic, or scalar with array arithmetic. Let's see some examples:

```
import numpy as np
In [2]:
        arr = np.arange(0,10)
In [3]:
        arr + arr
        array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
Out[3]:
        arr * arr
In [4]:
        array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
Out[4]:
In [5]:
        arr - arr
        array([0, 0, 0, 0, 0, 0, 0, 0, 0])
Out[5]:
In [6]: # Warning on division by zero, but not an error!
        # Just replaced with nan
        arr/arr
        C:\Users\admin\AppData\Local\Temp\ipykernel 1964\2878212635.py:3: RuntimeWarning: inv
        alid value encountered in true divide
          arr/arr
        array([nan, 1., 1., 1., 1., 1., 1., 1., 1.])
Out[6]:
        # Also warning, but not an error instead infinity
In [7]:
        1/arr
        C:\Users\admin\AppData\Local\Temp\ipykernel 1964\1360216608.py:2: RuntimeWarning: div
        ide by zero encountered in true_divide
          1/arr
        array([
                     inf, 1. , 0.5 , 0.33333333, 0.25
Out[7]:
                        , 0.16666667, 0.14285714, 0.125 , 0.11111111])
        arr**3
In [8]:
        array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729], dtype=int32)
Out[8]:
```

Universal Array Functions

Numpy comes with many Universal Array Functions, which are essentially just mathematical operations you can use to perform the operation across the array. Let's show some common

ones:

```
#Taking Square Roots
 In [9]:
         np.sqrt(arr)
         array([0.
                                      , 1.41421356, 1.73205081, 2.
                          , 1.
Out[9]:
                2.23606798, 2.44948974, 2.64575131, 2.82842712, 3.
                                                                          ])
         #Calcualting exponential (e^)
In [10]:
         np.exp(arr)
         array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
Out[10]:
                5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,
                2.98095799e+03, 8.10308393e+03])
         np.max(arr) #same as arr.max()
In [11]:
Out[11]:
In [12]:
         np.sin(arr)
                           , 0.84147098, 0.90929743, 0.14112001, -0.7568025,
         array([ 0.
Out[12]:
                -0.95892427, -0.2794155, 0.6569866, 0.98935825, 0.41211849])
         np.log(arr)
In [13]:
         C:\Users\admin\AppData\Local\Temp\ipykernel 1964\3120950136.py:1: RuntimeWarning: div
         ide by zero encountered in log
           np.log(arr)
         array([
                      -inf, 0.
                                 , 0.69314718, 1.09861229, 1.38629436,
Out[13]:
                1.60943791, 1.79175947, 1.94591015, 2.07944154, 2.19722458])
         arrTranspose = arr.T
In [18]:
         arrTranspose
         array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Out[18]:
         arr2 = [[1,0],[0,1]]
In [22]:
         np.linalg.inv(arr2) # Inverse of a matrix
         array([[1., 0.],
Out[22]:
                [0., 1.]])
```