A few notes on circuits for addition and subtraction

Timothy Bourke

École normale supérieure

10 November 2020

1. Unsigned 4-bit arithmetic

- UINT_MIN = 0
- UINT_MAX = $15(2^4 1)$

Unsigned 4-bit arithmetic (1)

- We add two unsigned integers: 3 + 2.
- The unsigned result is between 0 and 15 (inclusive).
- So there's no problem and the "carry out" flag is 0.

Unsigned 4-bit arithmetic (2)

- We add two unsigned integers: 10 + 7.
- The unsigned result is too big to be represented with 4 bits.
- So there's a problem and the "carry out" flag is 1.

Unsigned 4-bit arithmetic (3)

- We substract two unsigned integers: 9-5.
- The unsigned result is between 0 and 15 (inclusive).
- So there's no problem and the "carry out" flag is 0 (...as long as we XOR with SUB).

Unsigned 4-bit arithmetic (4)

- We subtract two unsigned integers: 4-9.
- The result is negative and cannot be represented as an unsigned integer. (The result is correct modulo 2^4 : $-5 + 16 = 11 = 1011_2$)
- So there's a problem and the "carry out" flag is 1 (... as long as we XOR with SUB).

Unsigned 4-bit arithmetic (3b)

- The XOR with SUB on the "carry out" of a 4-bit unit composes well with the "carry in" of another 4-bit unit to create an 8-bit unit.
- This extension still does not permit the representation of negative values as unsigned integers.

1. Signed 4-bit arithmetic

- INT_MIN = -8 (-2^3)
- INT_MAX = $7(2^3 1)$

- We use the same circuit to calculate with signed integers.
- It's the interpretation of the result and the flags that changes.
- The "carry out" flag is not used for signed arithemetic.
- A new "overflow" flag is needed.
- There are two operands a and b and a result s. So there are eight cases to consider:

```
ADD
       b
              s
                   OK
pos.
      pos.
            pos.
                   KO: Adding two positive numbers should never give a negative one!
pos.
      pos.
            neg.
                   OK
            pos.
pos.
     neg.
                   0K
pos. neg.
            neg.
                   OK
neg. pos.
            pos.
                  OK
      pos.
            neg.
neg.
                   KO: Adding two negative numbers should never give a positive one!
neg.
      neg.
            pos.
                   0K
      neg.
            neg.
neg.
```

(The calculation for pos.+ pos. is correct if one adds 2^n to it and similarly for neg.+ neg. if one subtracts 2^n from it.)

- We use the same circuit to calculate with signed integers.
- It's the interpretation of the result and the flags that changes.
- The "carry out" flag is not used for signed arithemetic.
- A new "overflow" flag is needed.
- Notice that in two's complement the most significant bit signifies whether a value is positive or negative:

<i>a</i> ₃	b_3	<i>s</i> ₃	ADD
0	0	0	overflow = 0
0	0	1	overflow = 1
0	1	0	overflow = 0
0	1	1	overflow = 0
1	0	0	overflow = 0
1	0	1	overflow = 0
1	1	0	overflow = 1
1	1	1	overflow = 0

<i>a</i> ₃	b_3	<i>s</i> ₃	ADD
0	0	0	overflow = 0
0	0	1	overflow = 1
0	1	0	overflow = 0
0	1	1	overflow = 0
1	0	0	overflow = 0
1	0	1	overflow = 0
1	1	0	overflow = 1
1	1	1	overflow = 0

• Consider the four cases for a_3 , b_3 , and s_3 :

There is only a problem in case 1 when x = 1 and in case 2 when x = 0. An overflow must be signalled iff $cout_3 \neq cin_3$.

a 3	b_3	<i>s</i> ₃	ADD
0	0	0	overflow = 0
0	0	1	overflow = 1
0	1	0	overflow = 0
0	1	1	overflow = 0
1	0	0	overflow = 0
1	0	1	overflow = 0
1	1	0	overflow = 1
1	1	1	overflow = 0

• Consider the four cases for a_3 , b_3 , and s_3 :

There is only a problem in case 1 when x = 1 and in case 2 when x = 0. An overflow must be signalled iff $cout_3 \oplus cin_3 = 1$.

- Does the same definition work for subtraction?
- Consider the eight cases:

a	Ь	S	SUB
pos.	pos.	pos.	OK
pos.	pos.	neg.	OK
pos.	neg.	pos.	OK
pos.	neg.	neg.	KO: $x - (-y) = x + y \ge 0!$
neg.	pos.	pos.	KO: $(-x) - y \le 0!$
neg.	pos.	neg.	OK
neg.	neg.	pos.	OK
neg.	neg.	neg.	OK

- Does the same definition work for subtraction?
- Consider the eight cases:

a 3	b_3	s 3	SUB
0	0	0	overflow = 0
0	0	1	overflow = 0
0	1	0	overflow = 0
0	1	1	overflow = 1
1	0	0	overflow = 1
1	0	1	overflow = 0
1	1	0	overflow = 0
1	1	1	overflow = 0

- Does the same definition work for subtraction?
- and then invert b_3 :

a_3	$\bar{b_3}$	<i>s</i> ₃	SUB
0	1	0	overflow = 0
0	1	1	overflow = 0
0	0	0	overflow = 0
0	0	1	overflow = 1
1	1	0	overflow = 1
1	1	1	overflow = 0
1	0	0	overflow = 0
1	0	1	overflow = 0

Signed 4-bit arithmetic: overflow • Does the same definition work for subtraction?

SUB

and then invert b_3 :

overflow = 0 $\alpha_{\text{verflow}} = 0$

overflow = 0

	U	1	1	overnow = 0
	0	0	0	overflow = 0
	0	0	1	overflow = 1
	1	1	0	overflow = 1
	1	1	1	overflow = 0
	1	0	0	overflow = 0
	1	0	1	overflow = 0
	_			
•	at	ter a s	slight	reordering:
•	at	ter a $ar{b_3}$	slight s ₃	reordering: SUB
•		_	_	_
•	<i>a</i> ₃	$\bar{b_3}$	<i>s</i> ₃	SUB
•	$\frac{a_3}{0}$	$\bar{b_3}$	<i>s</i> ₃	SUB overflow = 0

53

b₃ __

 a_3

0 1 overflow = 0 1 0 overflow = 1overflow = 0

ullet We end up with the same table as before and thus the same definition. $_{9/14}$

Signed 4-bit arithmetic (1)

- We add two signed integers: 4 + 3.
- The signed result is between -8 and 7 (inclusive).
- So there's no problem and the "overflow" flag is 0.

Signed 4-bit arithmetic (2)

- We add two signed integers: -4 + (-5).
- The signed result is too small to be represented in 4 bits.
- So there's a problem and the "overflow" flag is 1.

Signed 4-bit arithmetic (3)

- We add two signed integers: 4 + 5.
- The signed result is too big to be represented in 4 bits.
- So there's a problem and the "overflow" flag is 1.

Signed 4-bit arithmetic (4)

- We subtract two signed integers: -5-5.
- The signed result is too small to be represented in 4 bits.
- So there's a problem and the "overflow" flag is 1.

• To read: Ian D. Allen's notes (http://teaching.idallen.com/dat2343/10f/notes/040_overflow.txt)