Spatial methods for extreme value analysis

Samuel A. Morris

January 9, 2015

Motivation

- Average behavior is important to understand, but it does not paint the whole picture
 - e.g. When constructing river levees, engineers need to be able to estimate a 100-year or 1000-year flood levels
 - e.g. Probability of exceeding a certain threshold level
- Spatial methods borrow information across space to estimate spatial correlation and make predictions by Kriging at unknown locations
- ▶ Want to explore similar methods for extremes

Introduction to extremes

- ▶ Max-stable processes (Cooley et al., 2012):
 - Consider a spatial process $x_t(\mathbf{s})$, t = 1, ..., T.
 - ▶ Let $M_T(\mathbf{s}) = \left\{\bigvee_{t=1}^T x_t(\mathbf{s}_1), \dots, \bigvee_{t=1}^T x_t(\mathbf{s}_n)\right\}$
 - ▶ If there exists normalizing sequences $a_T(\mathbf{s})$ and $b_T(\mathbf{s})$ such that for all sites, $\mathbf{s}_i, i = 1, ..., d$,

$$a_T^{-1}(\mathbf{s})\left\{M_T(\mathbf{s})-b_T(\mathbf{s})\right\}\stackrel{d}{\to}Y(\mathbf{s})$$

which has a non-degenerate distribution, then $Y(\mathbf{s})$ is a max-stable process.

Standard analysis - Block maxima

- ▶ Uses yearly maxima
- Discards many observations
- Models are fit using the generalized extreme value distribution
- ► For a spatial analysis, max-stable processes give an appropriate limiting distribution

Standard analysis - Peaks over threshold

- Incorporates more data than block maxima
- Select a threshold, T, and use the Generalized Pareto distribution (GPD) to model the exceedances
- ► Temporal dependence may be an issue between observations (e.g. flood levels don't dissipate overnight)

Multivariate representations

- Multivariate distributions:
 - Assume common standardized max-stable marginal, like unit-Fréchet

$$\Pr(Z < z) = exp(-z^{-1})$$

▶ The multivariate representation for the GEV is

$$\mathsf{Pr}(\mathbf{Z} \leq \mathbf{z}) = G^*(\mathbf{z}) = \exp(-V(\mathbf{z}))$$
 $V(\mathbf{s}) = d \int_{\Delta_d} \bigvee_{i=1}^d rac{w_i}{z_i} H(\mathsf{d}w)$

where

- ▶ H is a probability measure on Δ_d

Multivariate analysis

- Multivariate max-stable and GPD models have nice features, but they are
 - computationally challenging to work with
 - joint distribution only available in low dimension
- Bayesian hierarchical model
- ▶ Pairwise likelihood approach (Huser and Davison, 2014)

Model objectives

- Our objective is to build a model that
 - ▶ has marginal distribution with a flexible tail
 - has asymptotic spatial dependence
 - has computation on the order of Gaussian models for large space-time datasets

Thresholding data

- ▶ We threshold the observed data at a high threshold T.
- Thresholded data:

$$Y_t^*(s) = \left\{ egin{array}{ll} Y_t(s) & Y_t(s) > T \ T & Y_t(s) \leq T \end{array}
ight.$$

Allows tails of the distribution to speak for themselves.

χ coefficient

- \blacktriangleright The χ coefficient is a measure of extremal dependence
- Specifically, we focus on $\chi(\mathbf{h})$ for the upper tail given by

$$\chi(\mathsf{h}) = \lim_{c \to \infty} \Pr(Y(\mathsf{s}) > c \mid Y(\mathsf{s} + \mathsf{h}) > c)$$

- ▶ If $\chi(\mathbf{h}) = 0$, then observations are asymptotically independent at distance \mathbf{h} .
- We expect $\lim_{\mathbf{h}\to\infty}\chi(\mathbf{h})=0$.

Gaussian spatial model

- ▶ In geostatistics Y(s) are often modeled using a Gaussian process with mean function $\mu(s)$ and covariance function $\rho(h)$.
- ► Model properties:
 - Nice computing properties (closed-form likelihood)
 - For a Gaussian spatial model $\lim_{c\to\infty} \chi(\mathbf{h}) = 0$ regardless of the strength of the correlation in the bulk of the distribution
 - ► Tail is not flexible (Gaussian is light tailed)

Spatial skew-t distribution

Assume observed data $Y_t(\mathbf{s})$ come from a skew-t (Zhang and El-Shaarawi, 2012)

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \alpha z_t + v_t(\mathbf{s})$$

where

- \bullet $\alpha \in \mathcal{R}$ controls the skewness
- $ightharpoonup z_t \stackrel{iid}{\sim} N_{(0,\infty)}(0,\sigma_t^2)$ is a random effect
- $v_t(\mathbf{s})$ is a Gaussian process with variance σ_t^2 and Matérn correlation

Spatial skew-t distribution

- ▶ Conditioned on z_t and σ_t^2 , $Y_t(s)$ is a Gaussian spatial model
- Can use standard geostatistical methods to fit this model
- Predictions can be made through Kriging
- ▶ Marginalizing over z_t and σ_t^2 (via MCMC),

$$Y_t(\mathsf{s}) \sim \mathsf{skew-t}(\mu, \Sigma^*, \alpha, \mathsf{df} = 2\mathsf{a})$$

where

- $\blacktriangleright \mu$ is the location
- a, b are the IG parameters for σ_t^2
- $\Sigma^* = \frac{b}{a} \Sigma$ is a scale matrix, and Σ is a Matérn covariance matrix
- $ightharpoonup \alpha \in \mathcal{R}$ controls the skewness

Spatial skew-t distribution

- Model properties
 - Has flexible tail controlled by skewness α and degrees of freedom 2a
 - For a skew-t distribution $\lim_{c\to\infty}\chi(\mathbf{h})>0$ (Padoan, 2011)
 - ▶ Computation that is on the order of Gaussian computation
- ▶ For this distribution, $\chi(\mathbf{h})$ shows asymptotic dependence that does not approach 0 as $\mathbf{h} \to \infty$
- ▶ This occurs because all observations (near and far) share the same z_t and σ_t^2
- ► We deal with this through a daily random partition (similar to Huser and Davison)

Daily random partition

▶ Daily random partition allows z_t and σ_t^2 to vary by site

$$Y_t(s) = X_t(s)\beta + \alpha z_t(s) + \sigma(s)v_t(s)$$

▶ Consider a set of daily knots $\mathbf{w}_{tk} \sim \text{Uniform that define a}$ random daily partition P_{t1}, \ldots, P_{tK} such that

$$P_{tk} = \{ s : k = \arg\min_{\ell} ||\mathbf{s} - \mathbf{w}_{t\ell}|| \}$$

▶ For $\mathbf{s} \in P_{tk}$

$$z_t(\mathbf{s}) = z_{tk}$$

 $\sigma_t^2(\mathbf{s}) = \sigma_{tk}^2$

Within each partition Y_t(s) has the same MV skew-t distribution as before

Example daily partition

Figure: Two sample partitions (number is at partition center)

Simulated $\widehat{\chi}(h)$ plots

Sample simulated datasets

Figure: Gaussian and t with 3 partitions

Sample simulated datasets

Figure: Gaussian and skew-t with 3 partitions

MCMC details

- ► Three main steps:
 - 1. Impute censored data below T
 - 2. Update parameters with standard random walk Metropolis Hastings or Gibbs sampling
 - 3. Make spatial predictions
- Priors are selected to be conjugate when possible

Data analysis

- Data analysis uses
 - max 8-hour ozone measurements
 - ▶ 85 sites
 - ▶ 92 days

Figure: Ozone monitoring station locations

Data analysis

Figure: Max 8-hour ozone measurements at 85 sites in NC, SC, and GA for days 5 and 34

Exploratory data analysis

Figure: $\widehat{\chi}$ -plot for sample quantiles of ozone observations

Model comparisons

- 9 different analysis methods incorporating
 - ▶ Gaussian vs t vs skew-t marginal distribution
 - K = 1 partition vs K = 3 partitions
 - ightharpoonup No thresholding vs thresholding at T=0.90 sample quantile
- lacktriangle All methods use a Matérn or exponential covariance (
 u=0.5)
- Compare quantile and Brier scores using 5-fold cross validation (Gneiting and Raftery, 2007)
- Mean function modeled as

$$\beta_0 + \beta_1 \cdot \text{lat} + \beta_2 \cdot \text{long} + \beta_3 \cdot \text{lat}^2 + \beta_4 \cdot \text{long}^2 + \beta_5 \cdot \text{lat} \cdot \text{long}$$

Quantile score for cross-validation

▶ The quantile score for the τ th quantile is

$$2\{I[y<\widehat{q}(\tau)]-\tau\}(\widehat{q}-y)$$

where:

- y is a test set value
- $ightharpoonup \widehat{q}(au)$ is the estimated auth quantile

Brier score

▶ The Brier score for predicting exceedance of threshold *c* is

$$[e(c) - P(c)]^2$$

where

- ▶ y is a test set value
- e(c) = I[y > c]
- ightharpoonup P(c) is the predicted probability of exceeding c

Five-fold cross-validation results

					au		
Marginal	K	T	0.950	0.980	0.990	0.995	0.999
Gaussian	1	0	39.820	17.539	9.167	4.720	1.057
t	1	0	31.008	13.898	7.229	3.405	0.879
t	3	0	31.213	13.920	7.218	3.498	0.918
t	1	0.9	32.221	14.519	7.549	3.604	0.896
t	3	0.9	38.842	16.781	8.434	4.180	1.020
skew-t	1	0	31.845	14.542	7.533	3.645	0.844
skew-t	1	0.9	32.132	14.296	7.484	3.497	0.890
skew-t	3	0	33.653	15.453	8.119	4.338	1.188
skew-t	3	0.9	32.157	14.727	7.794	3.825	0.917

Table: Brier score for predicting exceedance of $c = \hat{q}(\tau)$ from five-fold cross-validation (×1000)

Quantile score results are similar

Predicted 95th quantile

Figure: Predicted 95th quantile using Gaussian and t

Predicted 95th quantile

Figure: Predicted 95th quantile using t and t thresholded at T = 0.9

Predicted 99th quantile

Figure: Predicted 99th quantile using Gaussian and t

Predicted 99th quantile

Figure: Predicted 99th quantile using t and t thresholded at T = 0.9

Probability of exceedance

Figure: Probability of exceeding the 75 ppb ozone standard using Gaussian and t

Probability of exceedance

Figure: Probability of exceeding the 75 ppb ozone standard using t and t thresholded at T=0.9

Simulation study

- 6 different data settings:
 - ► Gaussian vs t vs skew-t marginal distribution
 - K = 1 partition vs K = 5 partitions
- Preliminary results are inconclusive

Future Work

- ▶ Different ways to incorporate the temporal dependence
 - ► Three dimensional covariance model for $v_t(\mathbf{s})$ (e.g. Huser and Davison, 2014)
 - Use a temporal structure for $z_t(\mathbf{s})$:
 - ► AR(1)
 - Moving average
 - ▶ Association between $\mathbf{w}_{t,k}$ and $\mathbf{w}_{t+1,k}$
- Comparison with extreme value analysis methods

Questions

- Questions?
- ▶ Thank you for your attention.
- Acknowledgment: This work was funded by EPA STAR award R835228

References

- ▶ Demarta, S. and McNeil, A. J. (2007) The *t* copula and related copulas. *International Statistical Review*, **73**, 111–129.
- ► Huser, R. and Davison, A. C. (2014) Space-time modelling of extreme events. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **76**, 439–461.
- Padoan, S. A. (2011) Multivariate extreme models based on underlying skew-t and skew-normal distributions. *Journal of Multivariate Analysis*, 102, 977–991.
- ➤ Zhang, H. and El-Shaarawi, A. (2010) On spatial skew-Gaussian processes and applications. *Environmetrics*, **21**, 33–47.