Lecture 12

COMP207

Overview

- Relational algebra
- Query plans
- Do things faster
- Index

Practical SQL assignment FAQ part 2

- The most common question is still: Am I allowed to use this method not covered in the course?
 - Use the following flowchart to figure it out:

Does it work on CodeGrade?

Yes

No

You may use it

You may not use it

Algebra

- An algebra is about abstract sets that allow operations such as multiplication, addition and scalar multiplication
 - The key thing is that given one or two objects (and sometimes other things), you can produce a new object
 - E.g. if you have the object 3, the object 4, then the + operation between them can produce the object 3+4=7
- It does not need to be numbers

Relational algebra

Algebra, but with tables instead of other objects

 Table R cross-product table S = a table, that for each pair of rows r,s, with r in R and s in S, has a row (r,s)

Cartesian Product (X)

• $R_1 \times R_2$ = pairs each tuple in R_1 with each tuple in R_2

Natural Join (⋈)

Employees

birthday	first_name	family_name	e_id
1990-11-10	Anne	Smith	1
2000-02-05	David	Jones	2
1995-05-09	William	Taylor	3

• $R_1 \bowtie R_2$ = pairs each tuple in R_1 with each tuple in R_2

with matching common attributes

SELECT DISTINCT *

FROM Employees NATURAL JOIN

Transactions;

t_id	c_id	e_id
1	3	1
2	6	1
3	19	3

translates into

Employees ⋈ **Transactions**

Relational algebra expression

birthday	first_name	family_ name	e_id	t_id	c_id
1990-11-10	Anne	Smith	1	1	3
1990-11-10	Anne	Smith	1	2	6
1995-05-09	William	Taylor	3	3	19

Projection (π)

• $\pi_{\text{attribute list}}(\mathbf{R})$ = restricts \mathbf{R} to the attributes in attribute list **Employees**

SQL query

SELECT DISTINCT family_name,

birthday

FROM Employees;

birthday	first_name	family_name
1990-11-10	Anne	Smith
2000-02-05	David	Jones
1995-05-09	William	Taylor

Taylor

translates into $\pi_{\text{family_name,birthday}}(\text{Employees})$ Relational algebra expression

family_name	birthday
Smith	1990-11-10
Jones	2000-02-05
Taylor	1995-05-09

Renaming (ρ)

• ρ_{A1→B1,A2→B2,...}(R) = renames attribute A1 to B1, attribute A2 to B2, ... _{Employees}

SQL query

SELECT DISTINCT birthday AS bday, first_name, family_name FROM Employees;

_	birthday	first_name	family_name
	1990-11-10	Anne	Smith
	2000-02-05	David	Jones
	1995-05-09	William	Taylor
			_

		translates into	
	$\rho_{birthday}$	→	
Relational algebra expression			

bday	first_name	family_name
1990-11-10	Anne	Smith
2000-02-05	David	Jones
1995-05-09	William	Taylor

Selection (σ)

The SELECT keyword in SQL has nothing to do with the selection operator!

 $\sigma_{\text{condition}}(\mathbf{R})$ = set of all tuples in **R** that satisfy the condition

SQL query

SELECT DISTINCT *

FROM Employees WHERE first_name='Anne'; **Employees**

birthday	first_name	family_name
1990-11-10	Anne	Smith
2000-02-05	David	Jones
1995-05-09	William	Taylor

translates into

 $\sigma_{\text{first_name='Anne'}}$ (Employees)

birthday	first_name	family_name
1990-11-10	Anne	Smith

Relational algebra expression

Index in MySQL

- CREATE INDEX indR USING BTREE ON R (value);
- CREATE INDEX indRHash USING HASH ON R (value);