Formula

11–18. Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *x*-axis.

11.
$$y = \sqrt{25 - x^2}$$
, $y = 3$

Solution

$$V = \pi \int_{-4}^{4} \left[\left(\sqrt{25 - x^2} \right)^2 - 3^2 \right] dx$$

$$= \pi \int_{-4}^{4} (16 - x^2) dx$$

$$= \pi \left(16x - \frac{x^3}{3} \right) \Big|_{-4}^{4} = \pi \left[\left(64 - \frac{64}{3} \right) - \left(-64 + \frac{64}{3} \right) \right] = \frac{256}{3} \pi$$

12.
$$y = 9 - x^2$$
, $y = 0$

Solution

$$V = \pi \int_{-3}^{3} (9 - x^2)^2 dx$$
$$= \pi \int_{-3}^{3} (81 - 18x^2 + x^4) dx$$
$$= \pi \left(81x - 6x^3 + \frac{x^5}{5} \right) \Big|_{-3}^{3} = \frac{1296}{5} \pi$$

13.
$$x = \sqrt{y}, \ x = y/4$$

$$V = \pi \int_0^4 [(4x)^2 - (x^2)^2] dx$$
$$= \pi \int_0^4 (16x^2 - x^4) dx$$
$$= \pi \left(\frac{16}{3}x^3 - \frac{1}{5}x^5\right)\Big|_0^4 = \frac{2048}{15}\pi$$

14.
$$y = \sin x$$
, $y = \cos x$, $x = 0$, $x = \pi/4$

Solution

$$V = \pi \int_0^{\frac{\pi}{4}} [(\cos x)^2 - (\sin x)^2] dx$$

$$=\frac{\pi}{2}$$

15.
$$y = e^x$$
, $y = 0$, $x = 0$, $x = \ln 3$

Solution

$$V = \pi \int_0^{\ln 3} (e^x)^2 dx$$

 $=4\pi$

21–26. Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *y*-axis.

22.
$$y = x^2$$
, $x = y^2$

Solution

23.
$$x = y^2$$
, $x = y + 2$

$$V = \pi \int_{-1}^{2} [(y+2)^2 - (y^2)^2] \, dy$$

$$=\frac{92}{15}\pi$$

24.
$$x = 1 - y^2$$
, $x = 2 + y^2$, $y = -1$, $y = 1$

Solution

$$V = \pi \int_{-1}^{1} [(2+y^2)^2 - (1-y^2)^2] \, dy$$

 $=10\pi$

25.
$$y = \ln x$$
, $x = 0$, $y = 0$, $y = 1$

$$V = \pi \int_0^1 (e^y)^2 \, dy$$

$$=\frac{\pi}{2}(e^2-1)$$

31. Find the volume of the solid that results when the region above the x-axis and below the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (a > 0, b > 0)$$

is revolved around the *x*-axis.

Solution

$$V = \pi \int_{-a}^{a} \left[b \sqrt{1 - \frac{x^2}{a^2}} \right]^2 dx$$

$$= b^2 \pi \int_{-a}^{a} \left(1 - \frac{x^2}{a^2} \right) dx$$

$$= b^2 \pi \times \left(x - \frac{x^3}{3a^2} \right) \Big|_{-a}^{a}$$

$$= b^2 \pi \times \left[\left(a - \frac{a^3}{3a^2} \right) - \left(-a + \frac{a^3}{3a^2} \right) \right]$$

$$= b^2 \pi \times \frac{4a}{3}$$

$$V = \frac{4}{3} \pi a b^2$$

33. Find the volume of the solid generated when the region enclosed by

$$y = \sqrt{x+1}$$
, $y = \sqrt{2x}$, and $y = 0$

is revolved about the *x*-axis.

$$V_{1} = \pi \int_{-1}^{0} \left[\sqrt{x+1} \right]^{2} dx = \pi \int_{-1}^{0} (x+1) dx = \frac{\pi}{2}$$

$$V_{2} = \pi \int_{0}^{1} \left[\left(\sqrt{x+1} \right)^{2} - \left(\sqrt{2x} \right)^{2} \right] dx = \pi \int_{0}^{1} (1-x) dx = \frac{\pi}{2}$$

$$\boxed{V = V_{1} + V_{2} = \pi}$$

Alternative

$$V = \pi \int_{-1}^{1} (\sqrt{x+1})^2 dx - \pi \int_{0}^{1} (\sqrt{2x})^2 dx = \pi \int_{-1}^{1} (x+1) dx - \pi \int_{0}^{1} 2x dx = \pi$$

34. Find the volume of the solid generated when the region enclosed by

$$y = \sqrt{x}$$
, $y = 6 - x$, and $y = 0$

is revolved about the *x*-axis.

$$V_1 = \pi \int_0^4 \left(\sqrt{x}\right)^2 dx = 8\pi$$

$$V_2 = \pi \int_{4}^{6} (6 - x)^2 dx$$

$$=\frac{8\pi}{3}$$

$$V = 8\pi + \frac{8\pi}{3} = \frac{32\pi}{3}$$

