Lista I

João Pedro Silva de Sousa 122122366 Pedro Henrique Honorio Saito 122149392

Questão 1

Considere um conjunto X de fórmulas da LC construídas a partir do conjunto $C = \{\land, \lor, \rightarrow, \leftrightarrow\}$ de conectivos. Desejamos provar que, para $\varphi \in X$, temos que:

Proposição: Para todo $k \in \mathbb{N}$, se φ possui k ocorrências de símbolos proposicionais, então o comprimento de φ é dado por 4k-3.

Por indução sobre as fórmulas de *X*:

- Base: Seja φ um símbolo proposicional pertencente à X. Assim, temos que

$$|\varphi| = 4(1) - 3 = 1. \quad \blacksquare \tag{1}$$

• Recursivo: Dada uma fórmula $F \in X$ de tamanho m e uma fórmula básica γ da LC, a operação $*(F, \gamma)$ resultará em:

$$(F * \gamma)$$
, tal que $|(F * \gamma)| = m + 4$ (2)

• Hipótese de Indução: Para toda fórmula $F \in X$ com $n \le k-1$ símbolos proposicionais, o comprimento da fórmula é dado por

$$|F_n| = 4n - 3, (3)$$

onde F_n indica uma fórmula com n símbolos proposicionais.

Portanto, partindo da Equação 3, substituindo n = k - 1 obteremos:

$$F_{k-1}$$
, tal que $|F_{k-1}| = 4(k-1) - 3$. (4)

Aplicando uma operação binária qualquer $*(F_{k-1}, \varphi)$ teremos como resultado:

$$|(F_{k-1} * \varphi)| = (4(k-1) - 3) + 4 \quad \text{por } (2)$$

$$|(F_{k-1} * \varphi)| = 4(k-1+1) - 3$$

$$|(F_{k-1} * \varphi)| = 4k - 3$$
(5)

Desse modo, concluímos que a expressão 4k-3 é válida para representar o comprimento de qualquer fórmula da linguagem LC_C com k símbolos proposicionais.

Questão 3

Item C

Vamos provar o seguinte resultado:

Proposição: Nenhum cografo possui P_4 como subgrafo induzido.

Por indução na estrutura de cografos:

Base: Somente um vértice, logo nada a demonstrar.

Hipótese de Indução: Suponha que F seja a união disjunta ou o join de outros dois cografos G e H que não admitem P_4 como subgrafo induzido. Assim, vamos analisar cada um dos casos:

- União disjunta: Se F é a união disjunta dos cografos G e H, por hipótese de indução vale que G e H não possuem P₄ como subgrafo induzido. Se F tivesse P₄ como subgrafo induzido, os vértices desse caminho estariam todos em G ou em H, o que é impossível, já que a hipótese de indução vale para ambos.
- Join: Se F é construído a partir do *join* de G e H, então seja E o conjunto das arestas adicionadas entre os vértices de G e H para gerar F. Suponhamos por contradição que P_4 com vértices $\{v_1, v_2, v_3, v_4\}$ seja um subgrafo induzido em F. Por hipótese de indução, não pode ocorrer de todos os vértices estarem em G ou H, disso seguem-se dois casos.

I - Sem perda de generalidade, se ocorre que $v_1 \in G$ e $v_4 \in H$, então $\{v_1, v_4\} \in E$, porém $\{v_1, v_4\}$ não é uma aresta do caminho, o que contradiz a afirmação que P_4 é um subgrafo induzido.

II - Se $v_1, v_4 \in G$, então, sem perda de generalidade, teríamos três outras possibilidades

Figura 1: Possibilidades de distribuição dos vértices de P_4 entre G e H. Os marcados em azul pertencem a G, e os de vermelho a H

No primeiro, temos que $v_2 \in H$ e $v_4 \in G$, logo $\{v_2, v_4\} \in E$, porém essa aresta não está nas arestas de P_4 . Nos outros dois, temos $v_1 \in G$ e $v_3 \in H$, de modo que $\{v_1, v_3\} \in E$, mas essa aresta também não está em P_4 em ambos os casos.

Esgotadas as possibilidades, concluímos então que não é possível P_4 ser um subgrafo induzido de um cografo. Uma vez que provamos para F, então pelo Princípio de Indução Finita, essa propriedade vale para todo cografo . \blacksquare

Item D

Com efeito, se ao removermos v_2 e as arestas que esse vértice participa, obteremos um subgrafo induzido P_4 , e o grafo acima não pode ser, pois, um cografo pelo que foi provado no item anterior.

Questão 9

Sejam J o conjunto dos jogadores do torneio T onde todos os jogadores enfrentam os demais em partidas que não admitem empates, e D uma relação binária em J tal que, se $A,B\in J$ são jogadores e $(A,B)\in D$, dizemos que "A perdeu para B". Se T é um par ordenado (J,D), então T é um grafo de torneio, isto é, um grafo direcionado anti-simétrico e completo.

Proposição: Em um torneio T sempre há um jogador $A \in J$ tal que, para qualquer outro jogador $B \in J$, pelo menos uma das afirmações abaixo é satisfeita

$$I - (B, A) \in D$$

II - Existe um jogador $C \in J$ tal que $(B, C) \in D$ e $(C, A) \in D$

Um jogador A que satisfaz a proposição acima será referido daqui em diante como $piv\hat{o}$. Dessa forma provaremos a proposição por indução no número $n \geq 2$ de jogadores no torneio.

Base: Com n=2, se $(B,A)\in D$, então I é satisfeita com o pivô A. Do contrário, temos que $(A,B)\in D$, e I é satisfeito para B como pivô.

Hipótese de Indução: Suponha que a proposição vale para um torneio de n > 2 jogadores.

Seja T um torneio de n+1 jogadores e T' um subtorneio de n jogadores de T obtido ao se desconsiderar um jogador $K \in J$ e todas as suas partidas. Em outras palavras, T' é um subgrafo induzido de T ao se remover o vértice rotulado por K.

Pela hipótese de indução, T' possui um pivô $A \in J$. A partir disso, teremos três casos para o torneio T:

I. $(K, A) \in D$, então <u>I</u> é satisfeita. Disso segue que a proposição vale para T com o pivô A.

II. $\exists \ C \in J, ((K,C) \in D \ \text{e} \ (C,A) \in D)$, nesse caso a afirmação II é satisfeita. Portanto, para esse caso, também vale que A é um pivô do torneio T.

III. $\forall B \in J, ((B,K) \in D \text{ ou } (A,B) \in D)$, ou seja, para qualquer jogador B, se K perdeu para B, então A perdeu para B. Se o consequente dessa condição é verdadeiro, então pela hipótese de indução existe $C \in J$ tal que

$$(B,C) \in D \quad \mathbf{e} \quad (C,A) \in D \tag{6}$$

Uma vez que C perdeu para A, então temos que C deve ter perdido para K visto o que está sendo afirmado em III. Por conseguinte, temos que B perdeu para "alguém" que perdeu para K. Concluímos então que, para todo B, uma das afirmações é verdadeira

B perdeu para K

B perdeu para alguém que perdeu para K.

Portanto, a proposição vale para o torneio T com o jogador K como o pivô, e portanto, para um torneio de n+1 jogadores. Pelo Princípio de Indução, como vale para um para n=2 e para n+1 com n>2, então vale para todo $n\geq 2$. \blacksquare

Questão 13

Item H

Antes de provarmos o resultado da proposição de conectivos completos, vamos estabelecer a seguinte definição:

Conjuntos de Conectivos Completos: Seja C um conjunto de conectivos, dizemos que C é completo se, para qualquer conjunto Prop de proposições, para toda fórmula φ da LC(Prop), existe $\psi \in \mathrm{LC}_{\mathrm{C(Prop)}}$ tal que $(\varphi \vDash \psi \land \psi \vDash \varphi)$.

Posto isso, desejamos provar a proposição abaixo:

Conjuntos de Conectivos Completos: Mostre que o conjunto C de conectivos $\{\bot, \top, \text{IF-THEN-ELSE}\}$ é completo.

Por indução em φ da LC(Prop) usual com todos os conectivos:

• Base: Se φ é básica, isto é, $\varphi\in {\rm Prop},$ então φ está em ${\rm LC}_{{\rm C}({\rm Prop})}$ também. \blacksquare

• Indutivos: Agora provaremos para cada um dos conectivos $\{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$ da $LC_C(Prop)$.

 $R \neg$) Se φ é $(\neg \psi)$, então pela hipótese de indução existe $\beta \in LC_C(\operatorname{Prop})$ de modo que $\psi \dashv \!\!\! \vdash \beta$. Logo, podemos concluir que (IF β THEN \top ELSE \bot) $\dashv \!\!\! \vdash (\neg \psi)$.

 $R \wedge)$ Considerando φ igual à $(\alpha \wedge \beta)$ e $\dot{\alpha}, \dot{\beta} \in LC_{C}(Prop)$ de modo que $\alpha \dashv \vdash \dot{\alpha}$ e $\beta \dashv \vdash \dot{\beta}$. Logo, podemos concluir que (IF $\dot{\alpha}$ THEN $\dot{\beta}$ ELSE \bot) $\dashv \vdash (\alpha \wedge \beta)$.

 $R \vee)$ Considerando φ igual à $(\alpha \vee \beta)$ e $\dot{\alpha}, \dot{\beta} \in LC_{C}(Prop)$ de modo que $\alpha + \dot{\alpha}$ e $\beta + \dot{\beta}$. Logo, podemos concluir que $(IF \dot{\alpha} THEN \top ELSE \dot{\beta}) + (\alpha \vee \beta)$.

 $R \to) \text{ Considerando } \varphi \text{ igual à } (\alpha \to \beta) \text{ e } \dot{\alpha}, \dot{\beta} \in LC_C(\text{Prop}) \text{ de modo que } \alpha \dashv \vdash \dot{\alpha} \text{ e } \beta \dashv \vdash \dot{\beta}. \text{ Logo, podemos concluir que } \left(\text{IF } \dot{\alpha} \text{ THEN } \dot{\beta} \text{ ELSE } \top\right) \dashv \vdash (\alpha \to \beta).$

 $\begin{array}{l} R \leftrightarrow) \text{ Considerando } \varphi \text{ igual à } (\alpha \leftrightarrow \beta) \text{ e } \dot{\alpha}, \dot{\beta} \in LC_{C}(\text{Prop}) \text{ de modo que } \alpha \dashv \vdash \dot{\alpha} \text{ e } \beta \dashv \vdash \dot{\beta}. \text{ Logo, podemos concluir que } \left(\text{IF } \dot{\alpha} \text{ THEN } \dot{\beta} \text{ ELSE } \left(\text{IF } \dot{\beta} \text{ THEN } \bot \text{ ELSE } \top\right)\right) \dashv \vdash (\alpha \leftrightarrow \beta). \end{array}$

Para averiguarmos as operação realizadas, podemos montar a tabela verdade para cada um dos conectivos.

$\dot{oldsymbol{eta}}$	IF \dot{eta} THEN ot ELSE ot
V	F
F	V

Tabela 1: *Tabela verdade equivalente a* $(\neg \beta)$.

\dot{lpha}	$\dot{oldsymbol{eta}}$	IF \dot{lpha} THEN \dot{eta} ELSE ot			
V	V				
V	F	F			
F	V	F			
F	F	F			

Tabela 2: *Tabela verdade equivalente a* $(\alpha \wedge \beta)$.

\dot{lpha}	$\dot{m{eta}}$	IF $\dot{\alpha}$ THEN \top ELSE $\dot{\beta}$		
V	V			
V	F	V		
F	V	V F		
F	F			

Tabela 3: *Tabela verdade equivalente a* $(\alpha \lor \beta)$.

$\dot{m{lpha}}$	$\dot{m{eta}}$	IF \dot{lpha} THEN \dot{eta} ELSE $ op$	
V	V	V	
V	F	F	
F	V	V	
F	F	V	

Tabela 4: *Tabela verdade equivalente a* $(\alpha \rightarrow \beta)$.

\dot{lpha}	$\dot{m{eta}}$	IF \dot{lpha} THEN \dot{eta} ELSE (IF \dot{eta} THEN ot ELSE ot)
V	V	V
V	F	F
F	V	F
F	F	V

Tabela 5: Tabela verdade equivalente a $(\alpha \leftrightarrow \beta)$.

Questão 14

Item B

Vamos demonstrar o seguinte resultado:

 $\label{eq:proposição: Seja C o conjunto de conectivos $\{\land,\lor,\to,\leftrightarrow\}$ e $\varphi\in LC_C(Prop)$ uma fórmula construída a partir dos conectivos de C. Se $p_0,p_1,...,p_n$ são as subfórmulas atômicas de φ, então podemos afirmar que$

$$p_0, p_1, ..., p_n \vDash \varphi. \tag{7}$$

Por indução sobre as fórmulas de X:

• Base: Se φ é uma fórmula atômica, então $\varphi=p_i$ para algum $i\in\{0,...,n\}$. Logo, qualquer contexto c_i que torne verdadeiros todos os $p_0,p_1,...,p_n$ satisfaz em particular p_i , ou seja,

$$c_i(p_0) = \ldots = c_i(p_n) = \mathbf{V} \Rightarrow p_0, p_1, \ldots, p_n \vDash \varphi \qquad \forall \, \varphi = p_i. \quad \blacksquare \tag{8}$$

• Hipótese de Indução: Sejam α e β subfórmulas de φ construídas a partir de C, assumiremos, pela hipótese de indução, que

$$\{p_0, p_1, ..., p_n\} \vDash \alpha \ \ \mathbf{e} \ \ \{p_0, p_1, ..., p_n\} \vDash \beta. \tag{9}$$

Queremos mostrar que, sob a mesma condição, vale $c(\varphi) = V$. Analisando cada caso:

• Caso $(\varphi = \alpha \wedge \beta)$:

$$c(\alpha \land \beta) = V \Leftrightarrow c(\alpha) = V \quad e \quad c(\beta) = V$$
 (10)

Mas pela hipótese de indução, temos que $c(\alpha) = c(\beta) = V$, logo $c(\varphi) = V$.

• Caso $(\varphi = \alpha \vee \beta)$:

$$c(\alpha \lor \beta) = V \Leftrightarrow c(\alpha) = V \text{ ou } c(\beta) = V$$
 (11)

Novamente, pela HI, temos que $c(\alpha) = c(\beta) = V$, logo $c(\varphi) = V$.

• Caso $(\varphi = \alpha \rightarrow \beta)$:

$$c(\alpha \to \beta) = V \Leftrightarrow c(\alpha) = F \text{ ou } c(\beta) = V$$
 (12)

Assim, como $c(\beta) = V$, logo $c(\varphi) = V$.

• Caso $(\varphi = \alpha \leftrightarrow \beta)$:

$$c(\alpha \leftrightarrow \beta) = V \Leftrightarrow c(\alpha) = c(\beta) \tag{13}$$

Em todos os casos $c(\alpha) = c(\beta) = V$, temos que $c(\varphi) = V$.

Portanto, para quaisquer fórmulas de $p_0,p_1,...,p_n$ e quaisquer combinação dos conectivos de C, teremos que $p_0,p_1,...,p_n \models \varphi$. \blacksquare

Item C

Vamos provar a seguinte proposição:

Proposição: O conjunto $C = \{\lor, \land, \rightarrow, \leftrightarrow\}$ de conectivos não é completo.

Suponha, por contradição, que o conjunto C de conectivos é completo. Então, para toda fórmula $\varphi \in LC(\operatorname{Prop})$, existe $\psi \in LC_{C(\operatorname{Prop})}$ tal que $(\varphi \models \psi \land \psi \models \varphi)$.

Logo, basta encontrar uma fórmula $\varphi \in LC(Prop)$ que não seja semanticamente equivalente a nenhuma fórmula em $LC_C(Prop)$. Considere $\varphi = (\neg p_0)$. Desejamos encontrar $\psi \in LC_{C(Prop)}$ tal que $(\varphi \vDash \psi)$ e vice-versa.

Note que, como C contém apenas conectivos binários, qualquer fórmula em $\mathrm{LC}_{\mathbf{C}}(\mathsf{Prop})$ deve ter a forma:

$$(p_0 \wedge p_1) \qquad (p_0 \vee p_1) \qquad (p_0 \to p_1) \qquad (p_0 \leftrightarrow p_1)$$

Se p_0 e p_1 forem semanticamente verdadeiros em algum contexto, então toda a fórmula também o será (como provado na Questão 14 b). Nesse caso, $(\neg p_0)$ seria falsa, o que gera contradição com a hipótese de equivalência. Portanto, não existe $\psi \in LC_C(\operatorname{Prop})$ tal que $\psi \vDash \neg p_0$, e C não é completo.

Questão 17

Item A

Considerando os julgamentos $\Gamma=\{(p\vee q):V,(p\to r):V,(q\to r):V,r:F\}$, vamos montar uma árvore de avaliação:

Figura 2: Árvore de avaliação com ramos fechados e outros saturados.

Onde cada nó segue o modelo:

$$f\acute{o}rmula: julgamento(origem)^{\acute{i}ndice}$$
 tal que $\checkmark = mexido$ e $X = fechado$ (14)

Uma vez que a árvore fechou, então temos que r é consequência sintática do conjunto de fórmulas $\{(p \lor q), (p \to r), (q \to r)\}.$

Item C

Seja o conjunto de julgamentos $\Gamma = \{p \leftrightarrow (q \leftrightarrow r) : V, (p \land (q \land r)) \lor ((\neg p) \land ((\neg q) \land (\neg r))) : F\}$, uma árvore de avaliação para Γ é dada abaixo.

$$p \leftrightarrow (q \leftrightarrow r) : V(\Gamma)^{1} \checkmark$$

$$(p \land (q \land r)) \lor ((\neg p) \land ((\neg q) \land (\neg r))) : F(\Gamma)^{2} \checkmark$$

$$p : V(1)^{3} \qquad p : F(1)^{4}$$

$$q \leftrightarrow r : V(1)^{5} \checkmark \qquad q \leftrightarrow r : F(1)^{6}$$

$$q : V(5)^{7} \qquad q : F(5)^{8}$$

$$q : V(5)^{9} \qquad r : F(5)^{10}$$

$$p \land (q \land r) : F(2)^{11} \qquad \neg p \land ((\neg q) \land (\neg r)) : F(2)^{12} \checkmark$$

$$\neg p : F(12)^{13} \checkmark \qquad (\neg q) \land (\neg r) : F(12)^{14}$$

$$p : V(12)^{14}$$

Por definição, o ramo do nó 14 está aberto e saturado, de modo que Γ é satisfazível e, portanto, temos que

$$p \leftrightarrow (q \leftrightarrow r) \not\vdash (p \land (q \land r)) \lor ((\neg p) \land ((\neg q) \land (\neg r))) \tag{15}$$

Questão 18

Item C

Seja C o conjunto de conectivos $\{\top, \bot, \mathtt{IF-THEN-ELSE}\}$, vamos encontrar as regras de manipulação de árvores de avaliação para esses conectivos e que sejam *corretas*, isto é, que preservem a satisfabilidade das árvores.

Comecemos pelos conectivos \top e \bot , que são avaliados diretamente para verdadeiro e falso, respectivamente. Como não dependem de subfórmulas, definiremos suas regras como:

- Regra ⊤: Se A é árvore de avaliação para um conjunto de julgamentos Γ e r é um ramo aberto com o nó ainda não mexido (⊤: V), então nenhuma ação é necessária pois ⊤ é avaliado diretamente para verdadeiro independentemente. Por outro lado, se nos depararmos com o nó (⊤: F), fechamos imediatamente a árvore pois isso representa uma contradição.
- Regra ⊥: Análogo ao caso anterior, isto é, para (⊥ : F) não há nada a se fazer e, se encontrarmos (⊥ : V), fechamos a árvore pois isso indica uma contradição.

Por fim, a regra para o conectivo IF-THEN-ELSE pode ser facilmente identificada ao analisarmos sua tabela verdade:

α	$\boldsymbol{\beta}$	γ	IF $lpha$ THEN eta ELSE γ
V	V	V	V
V	V	\mathbf{F}	V
V	\mathbf{F}	V	F
V	\mathbf{F}	\mathbf{F}	F
F	V	V	V
F	V	F	F
F	\mathbf{F}	V	V
F	F	F	F

Tabela 6: Tabela verdade para IF-THEN-ELSE.

Como podemos perceber, para IF-THEN-ELSE verdadeiro temos duas opções:

- 1. α e β são verdadeiros, sendo γ indeterminado pois pode assumir tanto V quanto F.
- 2. α falso e γ verdadeiro, sendo que β pode assumir tanto V quanto F.

Por outro lado, para IF-THEN-ELSE falso temos outras duas opções:

- 1. α e γ são falsos, tal que β pode assumir tanto V quanto F.
- 2. α verdadeiro e β falso, sendo que γ varia entre V e F.

Assim, para uma árvore de avaliação A com nó ainda não mexido (IF α THEN β ELSE γ) : V ou (IF α THEN β ELSE γ) : F, teremos as regras:

Figura 4: Regra de conectivo para IF-THEN-ELSE verdadeiro e falso.

Questão 19

Item A

Antes de provarmos o resultado da proposição, iremos provar o seguinte lema

Lema: Seja r um ramo de uma árvore de avaliação e φ : * um julgamento que ocorre como rótulo nesse ramo. Se r' é a extensão do ramo r ao se aplicar uma regra de conectivo a φ : *, e c um contexto que satisfaz r', então c satisfaz φ : *

Demonstração: Provaremos observando cada regra da árvore de avaliação.

 $\mathbf{R} \neg$) Seja $\varphi = (\neg \psi)$, como r é saturado, então $\psi : \overline{*}$ ocorre como rótulo em r por definição. Uma vez que c satisfaz $\psi : \overline{*}$ por hipótese, então temos que $c(\psi) = \overline{*} \Longrightarrow c(\varphi) = *$, e $\varphi : *$ é satisfeito

 $\mathbf{R} \wedge \mathbf{0} \mathbf{V}$: Se $\varphi = \alpha \wedge \beta$, então $\alpha : \mathbf{V}$ e $\beta : \mathbf{V}$ ocorrem como rótulos em r. Como $c(\alpha) = \mathbf{V}$ e $c(\beta) = \mathbf{V}$, então $c(\varphi) = \mathbf{V}$.

 $R \wedge F$: Temos que $\alpha : F$ ou $\beta : F$ ocorrem como rótulos em r. Como vale que c satisfaz o julgamento de α ou β por hipótese, então teremos que $c(\alpha \wedge \beta) = c(\varphi) = F$.

 $\mathbb{R} \vee \mathbb{C} \times \mathbb{C} = \alpha \vee \beta$, então $\alpha : \mathbb{V}$ ou $\beta : \mathbb{V}$ ocorrem como rótulos em r. Como $c(\alpha) = \mathbb{V}$ ou $c(\beta) = \mathbb{V}$, então $c(\varphi) = \mathbb{V}$.

 $\mathbb{R} \vee \mathbb{R} = \mathbb{R}$: Neste caso ocorrem tanto $\alpha : \mathbb{R} = \mathbb{R}$ quanto $\beta : \mathbb{R} = \mathbb{R}$: Uma vez que esses julgamentos são satisfeitos, então $c(\varphi) = \mathbb{R}$.

 $R \to V$: Se $\varphi = \alpha \to \beta$, então $\alpha : F$ ou $\beta : V$ ocorrem como rótulos em r. Se c satisfaz ao menos um desses julgamentos, então c irá satisfazer $\varphi : V$

 $\mathbf{R}\leftrightarrow$) V: Se $\varphi=\alpha\leftrightarrow\beta$, então temos que ou $\alpha:$ V e $\beta:$ V ocorrem em r, ou $\alpha:$ F e $\beta:$ F ocorrem no mesmo ramo. Para ambos os casos, como os julgamentos são satisfeitos, é verdade que $c(\varphi)=$ V, e c satisfaz $\varphi:$ V

 $R \leftrightarrow)$ F: Por fim, se $\varphi = \alpha \leftrightarrow \beta$, então ou $\alpha : V \in \beta : F$ ocorre em r, ou $\alpha : F \in \beta : V$ ocorre em r. Como para qualquer um dos casos, c satisfaz esses julgamentos, teremos que $c(\varphi) = F$.

Agora provando o resultado seguinte.

Proposição: Se r é um ramo aberto e saturado numa árvore de avaliação A para Γ , e c_r é um contexto construído como

$$c_r(p) = \begin{cases} \mathbf{V}, \text{ se } p : \mathbf{V} \\ \mathbf{F}, \text{ se } p : \mathbf{F} \end{cases} \tag{16}$$

em que p são fórmulas básicas que ocorrem em julgamentos que rotulam os vértices de r, então c_r satisfaz todos os julgamentos que ocorrem em r.

Demonstração: Se φ : * é um julgamento que ocorre em r, então provaremos por indução na estrutura sintática de φ

Base: Se φ é uma fórmula básica, então c_r satisfaz $\varphi:*$ por construção.

Hipótese de Indução: Se $\varphi = (\neg \psi)$ ou $\varphi = (\alpha * \beta)$ e temos por definição de r saturado que rótulos envolvendo ψ , α ou β ocorrem em r, suponha que o teorema vale para esses rótulos.

Com efeito, se esses rótulos ocorrem em r, então isso se deve ao fato de termos aplicado uma regra de conectivos $\varphi: *$, e como os julgamentos desses rótulos são satisfeitos por hipótese de indução, então $\varphi: *$ deve ser satisfeito visto o lema anterior. Pelo Princípio de Indução Finita, então todo julgamento de r é satisfeito por c_r .

Item C

A prova do teorema da completude do sistema de provas por árvores de avaliação se dará sobre a suposição de que o conjunto de fórmulas Σ é finito.

Teorema:
$$\Sigma \not \vdash \varphi \Longrightarrow \Sigma \not \vDash \varphi$$

Demonstração: Por hipótese, uma árvore de avaliação para Γ tal que

$$\Gamma = \{ \sigma : V \mid \sigma \in \Sigma \} \cup \{ \varphi : F \}$$

$$\tag{17}$$

terá pelo menos um ramo r aberto e saturado (sob a hipótese de que Σ é finito). Com efeito, se c_r é o contexto construído conforme a Equação 16, então c_r satisfaz todos os julgamentos que ocorrem como rótulos no ramo pela proposição do item anterior. Portanto, existe um contexto $c=c_r$ tal que

$$\forall \sigma \in \Sigma, (c(\sigma) = V) \ e \ c(\varphi) = F$$
 (18)

donde concluímos que

$$\Sigma \nvDash \varphi \tag{19}$$

11