## **Functional Analysis**

Ikhan Choi

October 15, 2023

# **Contents**

| Ι  | Top                       | pological vector spaces                                 | 3  |  |  |
|----|---------------------------|---------------------------------------------------------|----|--|--|
| 1  | Locally convex spaces     |                                                         |    |  |  |
|    | 1.1                       | Vector topologies                                       | 4  |  |  |
|    | 1.2                       | Seminorms and convex sets                               | 4  |  |  |
|    | 1.3                       | Continuous linear functionals                           | 4  |  |  |
| 2  | Barreled spaces           |                                                         |    |  |  |
|    | 2.1                       | Uniform boundedness principle                           | 6  |  |  |
|    | 2.2                       | Baire category theorem                                  | 6  |  |  |
|    | 2.3                       | Open mapping theorem                                    | 7  |  |  |
| 3  | Weak topologies           |                                                         |    |  |  |
|    | 3.1                       | Dual spaces                                             | 9  |  |  |
|    | 3.2                       | Weak compactness                                        | 10 |  |  |
|    | 3.3                       | Weak density                                            | 10 |  |  |
|    | 3.4                       | Krein-Milman theorem                                    | 10 |  |  |
|    | 3.5                       | Polar topologies                                        | 10 |  |  |
| II | Ba                        | nnach spaces                                            | 12 |  |  |
| 4  | Ope                       | erators on Banach spaces                                | 13 |  |  |
|    | 4.1                       | Bounded operators                                       | 13 |  |  |
|    | 4.2                       | Compact operators                                       | 13 |  |  |
|    | 4.3                       | Fredholm operators                                      | 13 |  |  |
|    | 4.4                       | Nuclear operators                                       | 14 |  |  |
| 5  | Geometry of Banach spaces |                                                         |    |  |  |
|    | 5.1                       | Tensor products                                         | 15 |  |  |
|    | 5.2                       | Approximation property                                  | 15 |  |  |
| 6  |                           |                                                         | 16 |  |  |
| II | I S                       | pectral theory                                          | 17 |  |  |
| 7  | One                       | erators on Hilbert spaces                               | 18 |  |  |
| ,  | 7.1                       | Hilbert spaces  Hilbert spaces                          | 18 |  |  |
|    | 7.1                       | Spectral theorems                                       | 19 |  |  |
|    | 7.2                       | Decomposition of spectrum                               | 20 |  |  |
|    |                           | Operator topologies                                     | 20 |  |  |
|    | / • T                     | Operator topologico i i i i i i i i i i i i i i i i i i |    |  |  |

| 8  | Unb  | oounded operators                 | 22 |
|----|------|-----------------------------------|----|
|    | 8.1  | Closed operators                  | 22 |
|    | 8.2  | Spectral theorems                 | 23 |
|    | 8.3  | Decomposition of spectrum         | 24 |
| 9  |      | erator theory                     | 25 |
|    | 9.1  | Toeplitz operators                | 25 |
| IV | 0    | perator algebras                  | 26 |
| 10 | Ban  | ach algebras                      | 27 |
|    | 10.1 | Spectra of elements               | 27 |
|    | 10.2 | 2 Ideals                          | 29 |
|    | 10.3 | B Holomorphic functional calculus | 30 |
|    | 10.4 | Gelfand theory                    | 30 |
| 11 |      | algebras                          | 32 |
|    | 11.1 | $C^*$ identity                    | 32 |
|    | 11.2 | 2 Continuous functional calculus  | 32 |
|    | 11.3 | B Positive elements               | 34 |
|    | 11.4 | Representations of C*-algebras    | 35 |
| 12 | Von  | Neumann algebras                  | 37 |
|    | 12.1 | Density theorems                  | 37 |
|    | 12.2 | 2 Borel functional calculus       | 38 |
|    | 12.3 | 3 Predual                         | 39 |

# Part I Topological vector spaces

# Locally convex spaces

#### 1.1 Vector topologies

- 1.1 (Canonical uniformity and bornology).
- 1.2 (Metrizability). Birkhoff-Kakutani
- 1.3 (Boundedness of linear operators).

#### 1.2 Seminorms and convex sets

1.4 (Seminorms).

$$\bigcap_{i=1}^{m} \{: p(i) < 1\}$$

Equivalent conditions on the continuity of seminorms

Proof. □

boundedness by seminorms, normability

#### 1.3 Continuous linear functionals

- **1.5.** Let  $\overline{x^*} = (x_1^*, \dots, x_n^*) \in X^{*n}$ .  $\overline{x^*} : X \to \mathbb{F}^n$ . If  $x^* \in X^*$  vanishes on  $\bigcap_{i=1}^n \ker x_i^*$ , then  $x^*$  is a linear combination of  $\{x_i^*\}$ .
- **1.6** (Hahn-Banach extension). Let X be a real vector space. Suppose V is a linear subspace of X and  $l:V\to\mathbb{R}$  is a linear functional dominated by a sublinear functional  $q:X\to\mathbb{R}$ , that is,  $l(v)\leq q(v)$  for all  $v\in V$ .
  - (a) There is a linear functional  $\tilde{l}: X \to \mathbb{R}$  that extends l.
  - (b) There is a linear functional  $\tilde{l}: X \to \mathbb{R}$  that extends l and is dominated by q if  $\dim X/V = 1$ .
  - (c) There is a linear functional  $\tilde{l}: X \to \mathbb{R}$  that extends l and is dominated by q.

*Proof.* (a) It can be done by the Hamel basis.

(b) Let  $e \in X \setminus V$  so that every vector  $x \in X$  can be uniquely written as x = v + te with  $v \in V$  and  $t \in \mathbb{R}$ . For  $v_1, v_2 \in V$ ,

$$l(v_1) + l(v_2) = l(v_1 + v_2) \le q(v_1 + v_2) \le q(v_1 - e) + q(v_2 + e)$$

implies

$$l(v_1) - q(v_1 - e) \le -l(v_2) + q(v_2 + e).$$

Define a linear functional  $\tilde{l}: X \to \mathbb{R}$  such that  $\tilde{l}(v) = v$  and

$$l(v) - q(v - e) \le \widetilde{l}(e) \le -l(v) + q(v + e)$$

for all  $v \in V$ . Since

$$\tilde{l}(v+te) = l(v) + t\tilde{l}(e) \le l(v) + t(-l(t^{-1}v) + q(t^{-1}v + e)) = q(v+te)$$

if  $t \ge 0$  and

$$\tilde{l}(v+te) = l(v) + t\tilde{l}(e) \le l(v) + t(l(-t^{-1}v) - q(-t^{-1}v - e)) = q(v+te)$$

if  $t \le 0$ , we have  $\tilde{l}(x) \in q(x)$  for all  $x \in X$ .

(c) With X and q, Consider a partially ordered set

$$\{(\widetilde{V},\widetilde{l}) \mid V \leq \widetilde{V} \leq X, \ \widetilde{l} : \widetilde{V} \to \mathbb{R} \text{ is a linear extension of } l \text{ dominated by } q\}$$

such that  $(V_1, l_1) \prec (V_2, l_2)$  if and only if  $V_1 \leq V_2$  and  $|l_2|_{V_1} = l_1$ . The nonemptyness and the chain condition is easily satisfied, so it has a maximal element  $(\widetilde{V}, \widetilde{l})$  by the Zorn lemma. By the part (b), we have  $\widetilde{V} = X$ .

1.7 (Complex linear functionals). Let X be a complex vector space. Consider a map

$$\{\mathbb{C}\text{-linear functionals on }X\} \rightarrow \{\mathbb{R}\text{-linear functionals on }X\}$$

$$l \mapsto \mathbb{R}e\,l.$$

Let p be a seminorm on X and l a complex linear functional on X.

- (a) The above map is bijective.
- (b)  $|l(x)| \le p(x)$  if and only if  $|\operatorname{Re} l(x)| \le p(x)$ .

*Proof.* (b) There is  $\lambda$  such that  $|\lambda| = 1$  and  $l(\lambda x) \ge 0$ . Then,

$$|l(x)| = |\lambda^{-1}l(\lambda x)| = l(\lambda x) = \operatorname{Re} l(\lambda x) \le p(\lambda x) = p(x).$$

1.8 (Hahn-Banach separation).

#### **Exercises**

1.9 (Topology of compact convergence).

5

# **Barreled spaces**

#### 2.1 Uniform boundedness principle

- **2.1** (Barreled spaces). Let *X* be a topological vector space. A *barrel* is an absorbing, balanced, convex, and closed subset of *X*. A *barreled space* is a topological space in which every barrel is a neighborhood of zero.
- **2.2** (Uniform boundedness principle). Let *X* and *Y* be topological vector spaces. Let  $\mathcal{F}$  be a family of continuous linear operator from *X* to *Y*. Suppose  $\bigcup_{T \in \mathcal{F}} Tx$  is bounded for each  $x \in D$ , where  $D \subset X$ .
  - (a) If *D* is dense in *X*, then  $\bigcap_{T \in \mathcal{F}} T^{-1}\overline{U}$  is absorbing.
  - (b) If X is barreled, then  $\mathcal{F}$  is equicontinuous.

#### 2.2 Baire category theorem

- **2.3** (Baire spaces). A topological space is called a *Baire space* if the countable intersection of open dense subsets is always dense.
  - (a) If a topological vector space is Baire, then it is barreled.
  - (b) A Baire space is second category in itself.
  - (c) A topological group that is second category in itself is Baire.
- **2.4** (Absorbing sets). Let X be a topological vector space that is Baire. A subset  $U \subset X$  is said to be absorbing if for every  $x \in X$  there is a sufficiently large t > 0 such that  $x \in tU$ . Let  $U \subset X$ .
  - (a) If *U* is closed and absorbing, then *U* has a non-empty open subset.
  - (b) If U is closed and absorbing, then U U is a neighborhood of zero.
  - (c) If U is closed, convex, and absorbing, then U is a neighborhood of zero.
- **2.5** (Baire category theorem). The Baire category theorem proves many exmples of topological vector space are Baire, in particular barreled.
  - (a) A complete metric space is Baire.
  - (b) A locally compact Hausdorff space is Baire.

#### 2.3 Open mapping theorem

- **2.6** (Open mapping theorem). Let X be a F-space and Y a barreled space. Suppose  $T: X \to Y$  is a continuous and surjective linear operator.
  - (a)  $\overline{TU}$  is a neighborhood of zero.
  - (b) *TU* is a neighborhood of zero.

*Proof.* (a) Let U' be a neighborhood of zero such that  $U\supset U'-U'$ . Because T is surjective, the set  $\overline{TU'}$  is a closed absorbing set, so it contains a non-empty open subset, since Y is barreled. Thus,  $\overline{TU}\supset \overline{TU'}-\overline{TU'}$  is a neighborhood of zero.

(b) We claim  $\overline{TU_{2^{-1}}} \subset TU_1$ . Take  $y_1 \in \overline{TU_{2^{-1}}}$ .

Assume  $y_n \in \overline{TU_{2^{-n}}}$ . Since  $\overline{TU_{2^{-(n+1)}}}$  is a neighborhood of zero, we have

$$(y_n + \overline{TU_{2^{-(n+1)}}}) \cap TU_{2^{-n}} \neq \emptyset.$$

Then, there is  $x_n \in U_{2^{-n}}$  such that  $Tx_n \in y_n + \overline{TU_{2^{-(n+1)}}}$ . Define

$$y_{n+1} := y_n - Tx_n.$$

Then,  $\sum_{n=1}^{\infty} x_n$  clearly converges to  $x \in U_1$ . Therefore,

$$Tx = \sum_{n=1}^{\infty} Tx_n = \sum_{n=1}^{\infty} (y_n - y_{n+1}) = y_1.$$

#### **Exercises**

- **2.7.** Let  $(T_n)$  be a sequence in B(X,Y). If  $T_n$  coverges strongly then  $||T_n||$  is bounded by the uniform boundedness principle.
- **2.8.** There is a closed absorbing set in  $\ell^2(\mathbb{Z}_{>0})$  that is not a neighborhood of zero;

$$\overline{B}(0,1)\setminus\bigcup_{i=2}^{\infty}B(i^{-1}e_i,i^{-2})$$

is a counterexample.

- **2.9.** There is no metric d on C([0,1]) such that  $d(f_n,f) \to 0$  if and only if  $f_n \to f$  pointwise as  $n \to \infty$  for every sequence  $f_n$ . Note that this problem is slightly different to the non-metrizability of the topology of pointwise convergence.
- **2.10.** We show that there is no projection from  $\ell^{\infty}$  onto  $c_0$ .
- **2.11** (Schur property).  $\ell^1$
- **2.12.** Let  $\varphi: L^{\infty}([0,1]) \to \ell^{\infty}(\mathbb{N})$  be an isometric isomorphism. Suppose  $\varphi$  is realised as a sequence of bounded linear functionals on  $L^{\infty}$ .
  - (a) Show that  $\varphi^*(\ell^1) \subset L^1$  where  $\ell^1$  and  $L^1$  are considered as closed linear subspaces of  $(\ell^{\infty})^*$  and  $(L^{\infty})^*$  respectively.
  - (b) Show that  $\varphi^*$  is indeed an isometric isomorphism, and deduce  $\varphi$  cannot be realised as bounded linear functionals on  $L^{\infty}$ .
- **2.13** (Daugavet property). (a) The real Banach space C([0,1]) satisfies the Daugavet property.

*Proof.* Let T be a finite rank operator on C([0,1]), and  $e_i$  be a basis of im T. Then, for some measures  $\mu_i$ ,

$$Tf(t) = \sum_{i=1}^{n} \int_{0}^{1} f \, d\mu_{i} e_{i}(t).$$

Let  $M := \max ||e_i||$ .

Take  $f_0$  such that  $\|f_0\| = 1$  and  $\|Tf_0\| > \|T\| - \frac{\varepsilon}{2}$ . Reversing the sign of  $f_0$  if necessary, take an open interval  $\Delta$  such that  $Tf_0(t) \geq \|T\| - \frac{\varepsilon}{2}$  and  $|\mu_i|(\Delta) \leq \frac{\varepsilon}{4nM}$  for all i. Define  $f_1$  such that  $f_0 = f_1$  on  $\Delta^c$ ,  $f_1(t_0) = 1$  for some  $t_0 \in \Delta$ , and  $\|f_1\| = 1$ . Then,  $\|Tf_1 - Tf_0\| \leq \frac{\varepsilon}{2}$  shows  $Tf_1 \geq \|T\| - \varepsilon$  on  $\Delta$ . Therefore,

$$\|1+T\| \geq \|f_1+Tf_1\| \geq f_1(t_0) + Tf_1(t_0) \leq 1 + \|T\| - \varepsilon.$$

**2.14** (Bartle-Graves theorem). Let E be a Banach space and N a closed subspace. For  $\varepsilon > 0$ , there is a continuous homogeneous map  $\rho : E/N \to E$  such that  $\pi \rho(y) = y$  and  $\|\rho(y)\| \le (1+\varepsilon)\|y\|$  for all  $y \in E/N$ .

*Proof.* We want to construct a continuous map  $\psi: S_{E/N} \to E$  with  $||\psi(y)|| \le 1 + \varepsilon$  for all  $y \in S_{E/N}$ . If then,  $\rho$  can be made from  $\psi$ .

For each  $y_0 \in S_{E/N}$ , choose  $x_0 \in \pi^{-1}(y_0) \cap B_{1+\varepsilon}$ . There is a neighborhood  $V_{y_0} \subset S_{E/N}$  of  $y_0$  such that  $y \in V_{y_0}$  implies  $x_0$  belongs to  $(\pi^{-1}(y) \cap B_{1+\varepsilon}) + U_{2^{-1}}$ , which is convex. With a locally finite subcover  $V_{y_\alpha}$  and a partition of unity  $\eta_\alpha(y)$ , define  $\psi_1(y) = \sum_\alpha \eta_\alpha(y) x_\alpha$ . Then,  $\psi_1(y) \in (\pi^{-1}(y) \cap B_{1+\varepsilon}) + U_{2^{-1}}$ .

For  $i \le 2$ , choose for each  $y_0$  the element  $x_0$  in  $\pi^{-1}(y_0) \cap B_{1+\varepsilon} \cap (\psi_{i-1}(y_0) + U_{2^{-i-1}})$ . Then, we obtain

$$\psi_i(y) \in (\pi^{-1}(y) \cap B_{1+\varepsilon} \cap (\psi_{i-1}(y_0) + U_{2^{-i-1}})) + U_{2^{-i}}.$$

Therefore,  $\|\psi_i(y) - \psi_{i-1}(y)\| < 2^{-i-2}$ , so it converges uniformly to  $\psi$  such that  $\psi(y) \in \pi^{-1}(y) \cap B_{1+\varepsilon}$ .

#### **Problems**

**2.15.** Let *T* be an invertible linear operator on a normed space. Then,  $T^{-2} + ||T||^{-2}$  is injective if it is surjective.

## Weak topologies

#### 3.1 Dual spaces

- 3.1 (Bidual).
- **3.2.** Let X be a locally convex space. The *weak topology* is the topology w on X defined by the family of seminorms  $\{x \mapsto |\langle x, \xi \rangle|\}_{\xi \in X^*}$ . The *weak\* topology* is the topology  $w^*$  on  $X^*$  defined by the family of seminorms  $\{\xi \mapsto |\langle x, \xi \rangle|\}_{x \in X}$ . Let  $J: X \to X^{**}$  be the canonical embedding.
  - (a) (X, w) and  $(X^*, w^*)$  are locally convex.
  - (b)  $(X, w)^* = X^*$ .
  - (c)  $(X^*, w^*)^* = X$ . Every locally convex space is a dual of a locally convex space.

*Proof.* (a) The Hahn-Banach theorem implies the Hausdorffness.

(c) We will only show  $(X^*, w^*)^* \subset X$ . If  $u \in (X^*, w^*)^*$ , then there are  $x_1, \dots, x_m \in X$  such that

$$|\langle u, \xi \rangle| \le \sum_{i=1}^{m} |\langle x_i, \xi \rangle|$$

for all  $\xi \in X^*$ . If we let  $\ker \vec{x} := \bigcap_{i=1}^m \ker x_i$ , then it is a closed subspace of  $X^*$  such that  $\ker \vec{x} \subset \ker u$ , so we have  $u \in \operatorname{span} \vec{x} \subset X$ .

3.3. closure and weak closure of convex subsets

Proof. Hahn-Banach

3.4 (Polar).

boundedness, incompleteness

- **3.5** (Weak convergence by dense set). Let X be a Banach space,  $D^*$  a subset of  $X^*$ , and  $\overline{D^*}$  the norm closure of  $D^*$ . For example, if X has a predual  $X_* \subset X^*$  and  $D^*$  is dense in  $X_*$ , then  $\sigma(X, \overline{D^*})$  is the weak\* topology.
  - (a) There is a squence  $x_n \in X$  converges to zero in  $\sigma(X, D^*)$  but not in  $\sigma(X, \overline{D^*})$ .
  - (b) A bounded sequence  $x_n \in X$  converges to zero in  $\sigma(X, \overline{D^*})$  if in  $\sigma(X, D^*)$ .

*Proof.* (b) Let  $\xi \in \overline{D^*}$  and choose  $\eta \in D^*$  such that  $\|\xi - \eta\| < \varepsilon$ . Then,

$$|\langle x_n, \xi \rangle| \le ||x_n|| ||\xi - \eta|| + |\langle x_n, \eta \rangle| \lesssim \varepsilon + |\langle x_n, \eta \rangle| \to \varepsilon.$$

#### 3.2 Weak compactness

3.6 (Banach-Alaoglu theorem).

Proof. Consider

$$B_{X^*} \to \prod_{x \in X} ||x||B: l \mapsto (l(x))_{x \in X}.$$

Since it is an embedding into a compact space, it suffices to show the closedness of image: for  $l(x) := \lim_{\alpha} l_{\alpha}(x)$ , we have

$$||l(x)|| \le ||l(x) - l_{\alpha}(x)|| + ||x|| \xrightarrow{\alpha \to \infty} ||x||,$$

so l is contained in the range.

- 3.7 (Eberlein-Šmulian theorem).
- 3.8 (James' theorem).

#### 3.3 Weak density

Bishop-Phelps theorem

**3.9** (Goldstine theorem). Let X be a Banach space. Then,  $B_X$  is weakly\* dense in  $B_{X^{**}}$ .

*Proof.* Take  $x^{**} \in B_{X^{**}} \setminus \overline{B_X}^{w^*}$ . By the Hahn-Banach separation, there are  $x^* \in X^*$  and  $r \in \mathbb{R}$  such that

$$\operatorname{Re}\langle x, x^* \rangle \le r < \operatorname{Re}\langle x^{**}, x^* \rangle$$

for every  $x \in B_X$ . Since the left hand side can approximate  $||x^*||$ , we have  $||x^*|| \le r$  and obtain a contradiction

$$r < \operatorname{Re}\langle x^{**}, x^* \rangle \le ||x^*|| \le r.$$

#### 3.4 Krein-Milman theorem

Choquet theory

#### 3.5 Polar topologies

Mackey-Arens

#### **Exercises**

- 3.10 (James' space). not reflexive but isometrically isomorphic to bidual
- **3.11** (Preduals). Let X be a Banach space. A *predual* of X is a Banach space F together with an isometric isomorphism  $\varphi: X \to F^*$ . Two preduals  $\varphi_1: X \to F_1^*$  and  $\varphi_2: X \to F_2^*$  are said to be equivalent if there is an isometric isomorphism  $\theta: F_1 \to F_2$  such that  $\theta^* = \varphi_1 \varphi_2^{-1}$ .
  - (a) There is a one-to-one correspondence between the equivalence class of preduals of X and the set of closed subspaces  $X_*$  of  $X^*$  such that  $B_X$  is compact and Hausdorff in  $(X, \sigma(X, X_*))$ . Such a subspace  $X_*$  is also called a predual of X.
  - (b) If X admits a predual  $X_* \subset X^*$ , then a  $\sigma(X, X_*)$ -closed subspace V of X also admits a predual  $X_*|_V$ .

*Proof.* (a) Goldstine theorem for surjectivity.

(b) It is easy if we apply the part (a). We can show more directly. If we let  $V_* := X_*|_V$  the image of  $X_*$  under the map  $X^* \to V^*$ , then we have isometric injections  $V \to (V_*)^* \to X$ . We can show V is  $\sigma(X,X_*)$  dense in  $(V_*)^*$ , hence the closedness proves the bijectivity of  $V \to (V_*)^*$ .

3.12 (Mazur's lemma).

# Part II Banach spaces

## **Operators on Banach spaces**

#### 4.1 Bounded operators

- **4.1** (Bounded belowness in Banach spaces). Let  $T \in B(X, Y)$  for Banach spaces X and Y. The following statements are equivalent:
  - (a) T is bounded below.
  - (b) *T* is injective and has closed range.
  - (c) *T* is a topological isomorphism onto its image.
- **4.2** (Bounded belowness in Hilbert spaces). Let  $T \in B(H,K)$  for Hilbert spaces H and K. The following statements are equivalent:
  - (a) T is bounded below.
  - (b) *T* is left invertible.
  - (c)  $T^*$  is right invertible.
  - (d)  $T^*T$  is invertible.
- **4.3** (Injectivity and surjectivity of adjoint). Let  $T \in B(X, Y)$  for Banach spaces X and Y.
  - (a)  $T^*$  is injective if and only if T has dense range.
  - (b)  $T^*$  is surjective if and only if T is bounded below.

#### 4.2 Compact operators

K(X,Y) is closed in B(X,Y). K(X) is an ideal of B(X). adjoint is  $K(X,Y) \to K(Y^*,X^*)$ . integral operators are compact. riesz operator, quasi-nilpotent operator.

### 4.3 Fredholm operators

- **4.4.** A bounded linear operator  $T: X \to Y$  between Banach spaces is called a *Fredholm* operator if its kernel is finite dimensional and its range is finite codimensional.
  - (a) A Fredholm operator *T* has closed range.

*Proof.* (a) Let C be a finite dimensional subsapce of Y such that  $\operatorname{im} T \oplus C = Y$ . Let  $\widetilde{T}: X/\ker T \to Y$  be the induced operator of T. Define  $S: (X/\ker T) \oplus C \to Y$  such that  $S(x + \ker T, c) := \widetilde{T}(x + \ker T) + c$ . Then, S is an topological isomorphism between Banach spaces by the open mapping theorem, so  $S(X/\ker T \oplus \{0\}) = \operatorname{im} \widetilde{T} = \operatorname{im} T$  is closed.

- **4.5** (Atkinson's theorem). An operator  $T \in B(X, Y)$  is Fredholm if and only if there is  $S \in B(Y, X)$  such that TS I and ST I is finite rank.
- **4.6** (Fredholm index). locally constant, in particular, continuous. composition makes the addition of indices.

#### 4.4 Nuclear operators

tensor products

#### **Exercises**

- **4.7** (Completely continuous operators). On reflexive spaces, completely continuous operators are same with compact operators.
- **4.8** (Dunford-Pettis property). A Banach space X is said to have the *Dunford-Pettis property* if all weakly compact operators  $T: X \to Y$  to any Banach space Y is completely continuous.
  - (a) X has the Dunford-Pettis property if and only if for every sequences  $x_n \in X$  and  $x_n^* \in X^*$  that converge to x and  $x^*$  weakly we have  $x_n^*(x_n) \to x^*(x)$ .
  - (b)  $C(\Omega)$  for a compact Hausdorff space  $\Omega$  has the Dunford-Pettis property.
  - (c)  $L^1(\Omega)$  for a probability space  $\Omega$  has the Dunford-Pettis property.
  - (d) Infinite dimensional reflexive Banach space does not have the Dunfor-Pettis property.

#### **Problems**

1. If  $T \in B(L^2([0,1]))$  is a compact operator, then for any  $\varepsilon > 0$  there is a constant  $C_{\varepsilon} > 0$  such that

$$||Tf||_{L^2} \le \varepsilon ||f||_{L^2} + C_{\varepsilon} ||f||_{L^1}.$$

*Proof.* 1. Suppose there is  $\varepsilon > 0$  such that we have sequence  $f_n \in L^2$  satisfying  $||f_n||_2 = 1$  and

$$||Tf_n||_2 > \varepsilon + n||f_n||_1$$
.

By the compactness of T, there is a subsequence  $Tf_{n_k}$  converges to  $g \neq 0$  in  $L^2$ . Then,  $||f_{n_k}||_1 \to 0$  implies  $f_{n_k} \to 0$  weakly in  $L^2$ , hence also for  $Tf_{n_k}$ . It means g = 0, which contradicts to the assumption.

# **Geometry of Banach spaces**

#### 5.1 Tensor products

#### 5.2 Approximation property

dual is Banach. Basis problem, Mazur' duck.

- **5.1** (Approximation property). Every compact operator is a limit of finite-rank operators.
  - (a) An Hilbert space has the AP.

(b)

*Proof.* (a) Let H be a Hilbert space and  $K \in K(H)$ . Since  $\overline{KB_H}$  is a compact metric space, it is separable, which means  $\overline{KH}$  is separable. Let  $(e_i)_{i=1}^{\infty}$  be an orthonormal basis of  $\overline{KH}$ , and let  $P_n$  be the orthogonal projection on the space spanned by  $(e_i)_{i=1}^n$ . If we let  $K_n := P_n K$ , then  $K_n \to K$  strongly and  $K_n$  has finite rank. Take any  $\varepsilon > 0$  and find, using the totally boundedness of  $KB_H$ , a finite subset  $\{x_j\} \subset B_H$  such that for any  $x \in B_H$  there is  $x_j$  satisfying  $||Kx - Kx_j|| < \frac{\varepsilon}{2}$ . Then,

$$\begin{split} \|Kx-K_nx\| &\leq \|Kx-Kx_j\| + \|Kx_j-K_nx_j\| + \|P_n(Kx_j-Kx)\| \\ &\leq \frac{\varepsilon}{2} + \|Kx_j-K_nx_j\| + \frac{\varepsilon}{2}. \end{split}$$

By taking the supremum on  $x \in B_H$ , we have

$$||K - K_n|| \le \max_j ||Kx_j - K_n x_j|| + \varepsilon,$$

which deduces  $K_n \to K$  in norm.

**Exercises** 

Tingley problem

# Part III Spectral theory

## **Operators on Hilbert spaces**

#### 7.1 Hilbert spaces

Projections. Reducing subspaces. Hilbert space classification by cardinal. Riesz representation theorem.

- **7.1.** (a) A Banach space *X* is isometrically isomorphic to a Hilbert space if there is a bounded linear projection on every closed subspace of *X*.
- **7.2** (Riesz representation theorem). Let H be a Hilbert space over a field  $\mathbb{K}$ , which is either  $\mathbb{R}$  of  $\mathbb{C}$ .

We use the bilinear form  $\langle -, - \rangle : X \times X^* \to \mathbb{K}$  of canonical duality. The Riesz representation theorem states that a continuous linear functional on a Hilbert space is represented by the inner product with a vector.

- (a) For each  $x^* \in H^*$ , there is a unique  $x \in H$  such that  $\langle y, x^* \rangle = \langle y, x \rangle$  for every  $y \in H$ .
- (b)  $H \to H^* : x \mapsto \langle -, x \rangle$  is a natural linear and anti-linear isomorphism if  $\mathbb{K} = \mathbb{R}$  and  $\mathbb{C}$ , respectively.

Let H be a separable Hilbert space. Find a positive sequence  $a_n$  such that every sequence  $x_n$  of unit vectors of H satisfying  $|\langle x_i, x_j \rangle| \le a_j$  for all i < j converges weakly to zero.

- **7.3** (Normal operators). For  $T \in B(H)$ , we have an obvious fact  $(\operatorname{im} T)^{\perp} = \ker T^*$ . Suppose T is normal.
  - (a)  $\ker T = \ker T^*$ .
  - (b) *T* is bounded below if and only if *T* is invertible.
  - (c) If T is surjective, then T is invertible.
- **7.4** (Invariant and Reducing subsapces). Let *K* be a closed subspace of *H*.
  - (a) K is reducing for T if and only if K is invariant for T and  $T^*$ .
  - (b) K is reducing for T if and only if TP = PT, where P is the orthogonal projection on K.
- **7.5** (Trace class operators). Let  $K \in B(H)$  The *trace* of K is

$$\operatorname{Tr}(K) := \sum_{i} \langle Ke_i, e_i \rangle,$$

where  $(e_i) \subset H$  is an orthonormal basis. The operator K is said to be in the *trace-class* if  $\text{Tr}(|K|) < \infty$ .

- (a) The trace does not depend on the choice of  $(e_i)$ .
- (b) K is a trace class if and only if  $K = \sum_{i=1}^{\infty} \lambda_i \theta_{x_i, y_i}$  for some  $(\lambda_i)_{i=1}^{\infty} \subset \ell^1(\mathbb{N})$  and orthogonal sequences  $(x_i)_{i=1}^{\infty}, (y_i)_{i=1}^{\infty} \subset H$ .

(c)  $B(H) \to L^1(H)^* : T \mapsto Tr(T)$  is an isometric isomorphism.

*Proof.* (b) Conversely, we can check the diagonalization  $K^*K = \sum_{i=1}^{\infty} |\lambda_i|^2 \theta_{y_i}$ , which implies  $|K| = \sum_{i=1}^{\infty} |\lambda_i| \theta_{y_i}$ . Thus,

$$Tr(|K|) = \sum_{j=1}^{\infty} \langle |K|y_j, y_j \rangle = \sum_{i=1}^{\infty} |\lambda_i| < \infty.$$

#### 7.2 Spectral theorems

**7.6** (Spectral measure). Let  $(\Omega, A)$  be a measurable space and H a Hilbert space. A *projection-valued measure* on  $\Omega$  for H is a map  $E : A \to B(H)$  with  $E(\emptyset) = 0$  such that E(A) is a projection for every  $A \in A$ , and one of the following equivalent conditions hold:

- (i) the set function  $E_{x,y}: A \to \mathbb{C}: A \mapsto \langle E(A)x, y \rangle$  is a complex measure on  $\Omega$  for each  $x, y \in H$ .
- (ii) the countable additivity holds, i.e.  $E(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} E(A_i)$  in the strong operator topology of B(H) for  $(A_i)_{i=1}^{\infty} \subset \mathcal{M}$ .
- (a)  $E(A \cap B) = E(A)E(B)$  for  $A, B \in \mathcal{M}$ .

7.7. Let  $T \in B(H)$  be a normal operator. Then, there exists a projection-valued measure E on  $\sigma(T)$  for H such that

$$T = \int_{\sigma(T)} \lambda \, dE(\lambda).$$

This spectral measure *E* is also called the *resolution of the identity*.

Let *E* be the spectral measure of a normal operator  $T \in B(H)$ . If we choose  $\xi \in E(B(\lambda, n^{-1}))H$ , then since  $E(B(\lambda, n^{-1})^c)\xi = 0$ , or since  $E(B(\lambda, n^{-1}))\xi = \xi$ , we have

$$\begin{aligned} \|(\lambda - T)\xi\|^2 &= \int |\lambda - z|^2 d\langle E(z)\xi, \xi \rangle \\ &= \int_{B(\lambda, n^{-1})} |\lambda - z|^2 d\langle E(z)\xi, \xi \rangle \\ &\leq n^{-2} \int_{B(\lambda, n^{-1})} d\langle E(z)\xi, \xi \rangle \\ &\leq n^{-2} \int d\langle E(z)\xi, \xi \rangle \\ &= n^{-2} \|\xi\|^2. \end{aligned}$$

**7.8** (Spectral representation). Let T be a bounded normal operator on a Hilbert space H. Then, the unital  $C^*$ -algebra  $C^*(T)$  generated by T is \*-isomorphic to  $C(\sigma(T))$ , and it has a canonical faithful representation  $\pi: C(\sigma(T)) \to B(H)$ . Decompose  $\pi = \bigoplus_{\alpha} \pi_{\alpha}$  to cyclic representations  $\pi_{\alpha}: C(\sigma(T)) \to B(H_{\alpha})$  with cyclic unit vectors  $\psi_{\alpha}$ . Each vector state  $\psi_{\alpha}$  induces a probability measure  $\mu_{\alpha}$  on  $\sigma(T)$ . It is called the spectral measure associated to the cyclic vector  $\psi_{\alpha}$ . We can check that the GNS-representation of  $\mu_{\alpha}$  is unitarily equivalent to  $\pi_{\alpha}$ . The direct sum  $C(\sigma(T)) \to \bigoplus_{\alpha} B(L^2(\mu_{\alpha}))$  can be defined.

The bounded normal operator T is always unitarily equivalent to the multiplication operator on a finite measure space. However, in order for T to be unitarily equivalent to the multiplication operator by the identity function of  $\mathbb{C}$ , T must be multiplicity free, equivalently, T must have a cyclic vector.

On a C\*-algebra  $\mathcal{A}$ , each state  $\omega$  defines a von Neumann algebra  $\pi_{\omega}(\mathcal{A})''$ , which is the start of measure theory.

Two bounded normal operators are unitarily equivalent if and only if the sequence of multiplicity measure classes are identical.

Two spectral theorems: Multiplication operator form(unitary equivalence), Projection-valued measure form(functional calculus).

#### 7.3 Decomposition of spectrum

$$\sigma = \sigma_p \sqcup \sigma_c \sqcup \sigma_r = \overline{\sigma_{pp}} \cup \sigma_{ac} \sigma_{sc} = \sigma_d \sqcup \sigma_{ess,5}.$$

#### 7.4 Operator topologies

- **7.9.** (a) A net  $T_{\alpha}$  converges to T strongly in B(H) if and only if  $\|(T_{\alpha} T)^{\oplus n}\overline{\xi}\| \to 0$  for all  $\overline{\xi} \in H^{\oplus n}$ .
- (b) A net  $T_{\alpha}$  converges to T  $\sigma$ -strongly in B(H) if and only if  $\|(T_{\alpha} T)^{\oplus \infty} \overline{\xi}\| \to 0$  for all  $\overline{\xi} \in H^{\oplus \infty}$ .
- **7.10** (Strong\* operator topology). Let H be a Hilbert space. We provides some conditions for a strongly convergent sequence to converge strongly\*. Let  $(T_{\alpha}) \subset B(H)$  and suppose  $T_{\alpha} \to T$  strongly.
- **7.11** (Continuity of linear functionals). Let f be a linear functional on B(H) for a Hilbert space H.
  - (a) f is weakly continuous if and only if it is strongly\* continuous, and in this case we have  $f = \sum_i \omega_{x_i, y_i}$  for some  $(x_i), (y_i) \in c_c(\mathbb{N}, H)$ .
  - (b) f is  $\sigma$ -weakly continuous if and only if it is  $\sigma$ -strongly\* continuous, and in this case we have  $f = \sum_i \omega_{x_i,y_i}$  for some  $(x_i),(y_i) \in \ell^2(\mathbb{N},H)$ .

*Proof.* Suppose f is strongly continuous. There exists  $\overline{x} \in H^{\oplus n}$  such that

$$|f(T)| \le ||T^{\oplus n}\overline{x}||.$$

The functional  $f: A \to \mathbb{C}$  factors through  $H^{\oplus n}$  such that

$$A \xrightarrow{\overline{x}} H^{\oplus n} \to \mathbb{C}$$

For  $\overline{x} = (x_i) \in \ell^2(\mathbb{N}, H)$ ,

$$p_{\overline{x}}^{\sigma s*}(T) = \left(\sum_{i} \|Tx_{i}\|^{2} + \|T^{*}x_{i}\|^{2}\right)^{\frac{1}{2}} \qquad p_{\overline{x}}^{\sigma s}(T) = \left(\sum_{i} \|Tx_{i}\|^{2}\right)^{\frac{1}{2}} \qquad p_{\overline{x}}^{\sigma w}(T) = \left|\sum_{i} \langle Tx_{i}, x_{i} \rangle\right|$$

#### **Exercises**

- **7.12** (Strict topology). Let *H* be a Hilbert space. Let  $(T_a) \subset B(H)$  and  $K \in K(H)$ .
  - (a) The strong\* topology and the strict topology agree on bounded sets of B(H).
- **7.13** (Unitary group). Let H be a Hilbert space.
  - (a) The weak topology and the strict topology agree on U(H).
- **7.14** (Bounded increasing nets). Let  $T_{\alpha}$  be a bounded increasing net of bounded self-adjoint operators on H.

(a)  $T_{\alpha}$  converges strictly. In particular,  $T_{\alpha} \to T$  strictly iff  $T_{\alpha} \to T$  weakly.

*Proof.* Define *T* such that

$$\langle Tx, y \rangle := \lim_{\alpha} \sum_{k=0}^{3} i^{k} \langle T_{\alpha}(x + i^{k}y), x + i^{k}y \rangle.$$

The convergence is due to the monotone convergence in  $\mathbb{R}$ . We can check it is a well-defined bounded linear operator by considering the bounded sesquilinear form. Then,  $T_{\alpha} \to T$  weakly by definition, and  $\sigma$ -strongly because the net is increasing.

## **Unbounded operators**

#### 8.1 Closed operators

8.1 (Closed operators).

**8.2** (Adjoint operators). Let  $T: X \to Y$  be an unbounded linear operator between Banach spaces. Define an unbounded operator  $T^*: Y^* \to (\operatorname{dom} T)^*$  by

$$\operatorname{dom} T^* := \{ y^* \in Y^* \mid \operatorname{dom} T \to \mathbb{C} : x \mapsto \langle Tx, y^* \rangle \text{ is bounded} \},$$
$$\langle x, T^*y^* \rangle := \langle Tx, y^* \rangle, \qquad x \in \operatorname{dom} T, \ y^* \in \operatorname{dom} T^*.$$

Suppose *T* is densely defined so that we can write  $T^*: Y^* \to X^*$ .

- (a) If  $T \subset S$ , then  $S^* \subset T^*$ .
- (b)  $T^*$  is closed.
- (c)  $T^*$  is densely defined if an only if T is closable.
- (d) If *T* is closable, then  $\overline{T} = T^{**}$ . (Only on Hilbert spaces?)
- (e) If T is closable, then  $T^* = \overline{T}^*$ . Since  $T^*$  is a priori closed, we will use the notation  $\overline{T}^* := \overline{T}^*$ .

Let  $L: H \to H$  be a densely defined operator. Here is a routine to find a closure.

- 1. Compute dom  $L^*$  and check it is dense to show L is closable.
- 2. Compute dom  $L^{**}$  to find the closure of L.
- 3. Do work with our densely defined closed operator  $\overline{L} = L^{**}$ .

**8.3** (Adjoint of an unbounded operator). Let  $T: X \to Y$  be a densely defined closed operator between Banach spaces.

- (a)  $T^*$  is injective if and only if T has dense range.
- (b)  $T^*$  is surjective if and only if T is bounded below.

*Proof.* (b) Suppose T is bounded below. Fix  $x^* \in X^*$ . Since T is bounded below,  $x^*$  defines a bounded linear functional on dom T with respect to ||x|| + ||Tx||, which is embedded in Y as a closed subspace. By the Hahn-Banach extension, we have an element  $y^* \in Y^*$  such that  $\langle Tx, y^* \rangle = \langle x, x^* \rangle$  for all  $x \in X$ , which is contained in dom  $T^*$  by the definition of dom  $T^*$ . This implies that T is surjective because  $T^*y^* = x^*$ .

Conversely, suppose  $T^*$  is surjective. Let  $F := \{x \in \text{dom } T : ||Tx|| \le 1\}$ . Since for every  $x^* \in X^*$  we have for some  $y^* \in \text{dom } T^*$  such that

$$\sup_{x \in F} |\langle x, x^* \rangle| = \sup_{x \in F} |\langle x, T^* y^* \rangle| = \sup_{x \in F} |\langle Tx, y^* \rangle| \le ||y^*||.$$

By the uniform boundedness principle, we have  $\sup_{x \in F} (\|x\| + \|Tx\|)$  is bounded, we are done.  $\Box$ 

**8.4** (Symmetric operators). An unbounded operator  $T: H \to H$  is called *symmetric* if

$$\langle Tx, y \rangle = \langle x, Ty \rangle, \qquad x, y \in \text{dom } T.$$

- (a) A symmetric operator is always closable and its closure is also symmetric.
- (b) If *T* is symmetric, then  $T \subset T^*$ . If *T* is densely defined, then the converse holds.
- **8.5** (Symmetric extensions).
  - (a) If T is symmetric, then every symmetric extension is a restriction of  $T^*$ .
  - (b) If T is symmetric, then it has a maximal symmetric extension. Note that  $T^*$  is not symmetric in general.
  - (c) A maximal symmetric operator is closed since the closure of a .
  - (d) A self-adjoint operator is maximal.
  - (e) A densely defined closed symmetric operator is essentially self-adjoint if and only if it is indeed the unique self-adjoint extension if and only if the adjoint is symmetric.
- **8.6** (Cayley transform).

There is a one-to-one correspondence between the unitary operators from  $K_+$  to  $K_-$ , the deficiency subspaces.

Let *A* be a symmetric operator on a Hilbert space *H*. We will always assume that *A* is densely defined and closed. We want to ask the following questions: Is *A* self-adjoint? If not, does *A* admit self-adjoint extensions? Which self-adjoint extension generate the appropriate quantum dynamics?

Let 
$$T := i d/dx$$
 on  $L^2([0,1])$  with

$$dom T = \{ f \in H^1([0,1]) : f(0) = f(1) = 0 \}.$$

Then,

$$dom T^* = H^1([0,1])$$

and the set of self-adjoint extensions is  $\{T_{\alpha} : \alpha \in \mathbb{T}\}$ , where

$$dom T_a = \{ f \in H^1([0,1] : \alpha f(0) = f(1) \}.$$

The orbital comes from the diagonalization of the Laplace-Beltrami operator on the unit sphere.

The periodic Schrödinger operator is diagonalized to the direct integral of elliptic operators defined on the Brillouin torus.

#### 8.2 Spectral theorems

A self-adjoint operator must be a densely defined and closed.

**8.7.** For a densely defined closed operator  $T: H \to H$ ,  $\sigma(T^*) = \overline{\sigma(T)}$ .

**8.8.** Let 
$$T: H \rightarrow H$$
 be a

(a)

Kato-Rellich theorem analytic vector theorem

#### 8.3 Decomposition of spectrum

$$\begin{split} \sigma &= \sigma_p \cup \sigma_c \cup \sigma_r \\ &= \sigma_{ess} \cup \sigma_d \\ &= \overline{\sigma_{pp}} \cup \sigma_{ac} \cup \sigma_{sc}. \end{split}$$

For  $V \in L^{\infty}(\mathbb{R}^d)$ , the operator

$$H\psi(x) := -\frac{\hbar^2}{2m} \Delta \psi(x) - V(x)\psi(x), \qquad x \in \mathbb{R}^d$$

is called the *Schrödinger operator*. The eigenvectors associated to the discrete spectrum is called *bound states*.

#### **Exercises**

**8.9** (Hydrogen atom). Consider the Hamiltonian operator H on  $L^2(\mathbb{R}^3)$  given by

$$H\psi(x) := -\Delta \psi(x) - |x|^{-1} \psi(x), \qquad x \in \mathbb{R}^3.$$

We want to investigate the spectral decomposition of H by diagonalization.

- (a) *H* is self-adjoint.
- (b)  $\sigma_d(H) = \{\}$

# **Operator theory**

## 9.1 Toeplitz operators

invariant subspace problem Beurling theorem Hardy and Bergman and Bloch spaces  $JB^*$  triple

# Part IV Operator algebras

# Banach algebras

#### 10.1 Spectra of elements

**10.1** (Banach algebras). For a Banach algebra A with multiplicative unit, there is a complete renorming such that ||1|| = 1, i.e. we can always assume ||1|| = 1. It provides a definition of *unital Banach algebra*. Let A be a unital Banach algebra.

- (a) If ||a|| < 1, then 1 a is invertible. So  $A^{\times}$  is open.
- (b)  $A^{\times} \to A^{\times} : a \mapsto a^{-1}$  is continuous.
- (c)  $A^{\times} \rightarrow A^{\times} : a \mapsto a^{-1}$  is differentiable.

Proof. (a) We can show

$$(1-a)^{-1} = \sum_{k=0}^{\infty} a^k.$$

If a is invertible, then  $a + h = a(1 + a^{-1}h)$  has the inverse  $(1 + a^{-1}h)^{-1}a^{-1}$  if h is sufficiently small such that  $||a^{-1}h|| < 1$ .

(b) Clear from

$$b^{-1} - a^{-1} = b^{-1}(a - b)a^{-1}$$
.

(c)

$$\frac{\|b^{-1} - a^{-1} - (-a^{-1}(b-a)a^{-1})\|}{\|b-a\|} = \frac{\|(a^{-1} - b^{-1})(b-a)a^{-1}\|}{\|b-a\|} \le \|a^{-1} - b^{-1}\|\|a^{-1}\| \xrightarrow{b \to a} 0.$$

**10.2** (Spectrum and resolvent). Let *a* be an element of a unital Banach algebra *A*. The *spectrum* of *a* in *A* is defined to be the set

$$\sigma_A(a) := \{\lambda \in \mathbb{C} : \lambda - a \text{ is not invertible in } A\},$$

and the *resolvent* of a in A is defined to be its complement  $\rho_A(a) := \mathbb{C} \setminus \sigma_A(a)$ . We can now define the *resolvent map*  $R : \rho_A(a) \to A$  such that

$$R(\lambda) = R(\lambda; a) := (\lambda - a)^{-1}$$
.

If *A* is clear in its context, we omit it to just write  $\sigma(a)$  and  $\rho(a)$ .

- (a)  $\sigma(a)$  is compact.
- (b)  $\sigma(a)$  is non-empty.
- (c) If *A* is a division ring, then  $A \cong \mathbb{C}$ . This result is called the *Gelfand-Mazur theorem*.

*Proof.* (a) If  $|\lambda| > ||a||$ , then  $\lambda - a$  is always invertible, so the spectrum is bounded. Closedness follows from the fact that the set of invertibles is open.

(b) Suppose the spectrum  $\sigma(a) = \emptyset$  so that the resolvent function  $R : \mathbb{C} \to A$  is well-defined on the entire  $\mathbb{C}$ . Note that  $a \neq 0$ . Since R is continuous and since

$$\|(\lambda - a)^{-1}\| = \|\lambda^{-1}(1 - \lambda^{-1}a)^{-1}\| = \left\|\lambda^{-1}\sum_{k=0}^{\infty}(\lambda^{-1}a)^k\right\| < (2\|a\|)^{-1}\sum_{k=0}^{\infty}2^{-k} = \|a\|^{-1}$$

on  $\{\lambda \in \mathbb{C} : |\lambda| > 2||a||\}$ , the function R is bounded. Also, for every  $l \in A^*$  we have that the function  $\mathbb{C} \to \mathbb{C} : \lambda \mapsto \langle R(\lambda), l \rangle$  is holomorphic since  $a \mapsto a^{-1}$  is differentiable.

Therefore, by the Liouville theorem, the bounded entire function  $\lambda \mapsto \langle R(\lambda), l \rangle$  is constant for all  $l \in A^*$ . Because  $A^*$  separates points of A, the function R is constant, which implies  $a \in \mathbb{C}$  and contradicts to  $\sigma(a) = \emptyset$ .

- (c) For any  $a \in A$ , by the part (b), there must be  $\lambda$  such that  $\lambda a$  is not invertible. In a division ring, zero is the only non-invertible element, so  $\lambda = a$ .
- **10.3** (Spectral radius). Let *a* be an element of a unital Banach algebra *A*. The *spectral radius* of *a* in *A* is defined to be

$$r(a) := \sup_{\lambda \in \sigma(a)} |\lambda|.$$

- (a)  $r(a) \le \inf_n ||a^n||^{\frac{1}{n}}$ .
- (b)  $\limsup_{n} \|a^n\|^{\frac{1}{n}} \le r(a)$ , i.e.  $r(a) = \lim_{n} \|a^n\|^{\frac{1}{n}}$ .

*Proof.* (a) Since  $(\lambda - a)^{-1} = \lambda^{-1}(1 - \lambda^{-1}a)^{-1}$  exists if  $|\lambda| > ||a||$ , we have  $r(a) \le ||a||$  for all  $a \in A$ . For every  $\lambda \in \sigma(a)$  and every integer  $n \ge 1$  we have

$$|\lambda|^n = |\lambda^n| \le r(a^n) \le ||a^n||,$$

and it proves  $r(a) \le \inf_n ||a^n||^{\frac{1}{n}}$ .

(b) Consider a holomorphic function

$$f: \{\lambda \in \mathbb{C}: |\lambda| > r(a)\} \to \mathbb{C}: \lambda \mapsto \langle R(\lambda), l \rangle$$

for each  $l \in A^*$ . Since on a smaller domain  $\{\lambda \in \mathbb{C} : |\lambda| > ||a||\}$ , the function f can be given by

$$f(\lambda) = \left\langle \lambda^{-1} \sum_{k=0}^{\infty} (\lambda^{-1} a)^k, l \right\rangle,$$

we can determine the coefficients of the Laurent series of f at infinity as

$$f(\lambda) = \sum_{k=0}^{\infty} \langle a^k, l \rangle \lambda^{-k-1}$$

on  $\{\lambda \in \mathbb{C} : |\lambda| > r(a)\}$ .

Take  $\lambda$  such that  $|\lambda| > r(a)$ . Then, the sequence  $(a^k \lambda^{-k-1})_k \in \mathcal{A}$  is weakly bounded, hence is normly bounded by the uniform boundedness principle. Let  $||a^n|| \leq C_{\lambda} |\lambda^{n+1}|$  for all  $n \geq 1$ . Then,

$$\limsup_{n\to\infty} \|a^n\|^{\frac{1}{n}} \le \limsup_{n\to\infty} C_{\lambda}^{\frac{1}{n}} |\lambda^{n+1}|^{\frac{1}{n}} = |\lambda|.$$

If we limit  $|\lambda| \downarrow r(a)$ , we are done.

**10.4** (Spectrum in closed subalgebras). For fixed element, smaller the ambient algebra, less "holes" in the spectrum. Let  $A \subset B$  be a closed subalgebra containing  $1_A$ . Note that A may be unital even for  $1_B \notin A$ .

(a)  $B^{\times}$  is clopen in  $A^{\times} \cap B$ .

#### 10.2 Ideals

**10.5** (Ideals). (a) If I is a left ideal, then A/I is a left A-module.

**10.6** (Modular left ideals). A left ideal I is called *modular* if there is  $e \in A$  such that  $a - ae \in I$  for all  $a \in A$ . The element e is called a *right modular unit* for I.

- (a) I is modular if and only if A/I is unital(?).
- (b) A proper modular left ideal is contained in a maximal left ideal.
- (c) *I* is a maximal modular left ideal if and only if *I* is a modular maximal left ideal.
- (d) There is a non-modular maximal ideal in the disk algebra.
- **10.7** (Closed ideals). (a) closure of proper left ideal is proper left.
  - (b) maximal modular left ideal is closed.

**10.8** (Unitization). Let *A* be an algebra. Recall that we always assume algebras are associative. Consider an embedding  $A \to B(A)$ :  $a \mapsto L_a$ , where  $L_a(b) = ab$ . Define

$$\widetilde{A} := \{ L_a + \lambda \operatorname{id}_{B(A)} : a \in A, \lambda \in \mathbb{C} \}.$$

Note that this construction is available even for unital A.

- (a) If A is normed, then  $\widetilde{A}$  is a normed algebra such that there is an isometric embedding  $A \to \widetilde{A}$ .
- (b) If A is Banach, then  $\widetilde{A}$  is a Banach algebra.
- (c)  $A \oplus \mathbb{C}$  is topologically isomorphic to  $\widetilde{A}$  as normed spaces.

*Proof.* (a) The space of bounded operators B(A) is a normd algebra. Then,  $\widetilde{A}$  is a normed \*-algebra with induced norm

$$||L_a + \lambda \operatorname{id}_{B(A)}|| = \sup_{b \in A} \frac{||ab + \lambda b||}{||b||}$$

Then, A is a normed \*-subalgebra of  $\widetilde{A}$  because the norm and involution of A agree with  $\widetilde{A}$ .

(b) Suppose  $(x_n, \lambda_n)$  is Cauchy in  $\widetilde{A}$ . Since A is complete so that it is closed in  $\widetilde{A}$ , we can induce a norm on the quotient  $\widetilde{A}/A$  so that the canonical projection is (uniformly) continuous so that  $\lambda_n$  is Cauchy. Also, the inequality  $||x|| \le ||(x,\lambda)|| + |\lambda||$  shows that  $x_n$  is Cauchy in A.

Since a finite dimensional normed space is always Banach and A is Banach,  $\lambda_n$  and  $x_n$  converge. Finally, the inequality  $||(x,\lambda)|| \le ||x|| + |\lambda|$  implies that  $(x_n,\lambda_n)$  converges.

(c) Check the topology on  $A \oplus \mathbb{C}$  in detail...

unitization, homomorphisms, category(direct sum, product, etc.)  $B(\mathbb{C}^n) = M_n(\mathbb{C})$  is simple, but B(H) is not simple.

#### 10.3 Holomorphic functional calculus

**10.9.** Let a be an element of a unital Banach algebra A. Let f be a holomorphic function on a neighborhood U of  $\sigma(a)$ . Let C be a positively oriented smooth simple closed curve in U enclosing  $\sigma(a)$ . Define  $f(a) \in A^{**}$  as the Dunford integral

$$\langle f(a), l \rangle := \int_C f(\lambda) \langle R(\lambda), l \rangle \, d\lambda, \qquad l \in A^*.$$

Let  $\operatorname{Hol}(\sigma(a))$  be the space of all holomorphic functions on a neighborhood of  $\sigma(a)$  endowed with the topology of compact convergence. Note that  $\operatorname{Hol}(\sigma(a))$  is not Banach. We define the *holomorphic functional calculus* by the map

$$\operatorname{Hol}(\sigma(a)) \to A : f \mapsto f(a).$$

It is also called the Riesz or the Riesz-Dunford functional calculus.

- (a)  $f(a) \in A$ , i.e. f(a) is given by the Pettis integral.
- (b) f(a) is independent of the choice of C.
- (c) The functional calculus is an algebra homomorphism.
- (d) The functional calculus is bounded.
- (e) injective.
- (f) unital and  $id_{\mathbb{C}} \mapsto a$ .
- (g) spectral mapping.
- (h) power series.

Proof. (a)

### 10.4 Gelfand theory

Banach algebra of single generator semisimplicity and symmetricity

**10.10** (Spectrum of a Banach algebra). Let A be a commutative Banach algebra. A *character* of A is a non-trivial algebra homomorphism  $\pi: A \to \mathbb{C}$ . Denote by  $\sigma(A)$  the set of all characters of A and endow with the weak\* topology on  $\sigma(A) \subset A^*$ . We call this space as the *spectrum* of A.

- (a) If A is unital,  $\sigma(A)$  is contained in the unit sphere of  $A^*$ .
- (b)  $\sigma(A)$  is locally compact and Hausdorff.

Proof. □

**10.11** (Gelfand transform). Let *A* be a commutative Banach algebra. The *Gelfand transform* or the *Gelfand representation* is the following algebra homomorphism

$$\Gamma: A \to C_0(\sigma(A)): a \mapsto (\pi \mapsto \pi(a)).$$

- (a)  $\Gamma$  has the image separating points by definition.
- (b)  $\Gamma$  has closed range if A is a symmetric Banach \*-algebra.
- (c)  $\Gamma$  is injective if and only if A is semisimple.
- (d)  $\Gamma$  is isometric if and only if r(a) = ||a|| for all  $a \in A$ .

#### **Exercises**

- **10.12** (Basic properties of spectrum). Let *A* be a unital algebra.
  - (a)  $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$ .
  - (b) If  $\sigma(a)$  is non-empty, then  $\sigma(p(a)) = p(\sigma(a))$ .

*Proof.* (a) Intuitively, the inverse of 1-ab is  $c=1+ab+abab+\cdots$ . Then,  $1+bca=1+ba+baba+\cdots$  is the inverse of 1-ba.

$$C_b(\Omega) \ell^{\infty}(S) L^{\infty}(\Omega) B_b(\Omega) A(\mathbb{D}) B(X)$$

- **10.13.** In  $C(\mathbb{R})$ , the modular ideals correspond to compact sets.
- **10.14** (Disk algebra). (a) Every continuous homomorphism is an evaluation.
- 10.15 (Polynomial convexity). (See Conway)
- **10.16** (Inclusion relation on spectra). (a)  $\sigma(a+b) \subset \sigma(a) + \sigma(b)$  and  $\sigma(ab) \subset \sigma(a)\sigma(b)$  for unital cases.
  - (b)  $\sigma(a^{-1}) = \sigma(a)^{-1}$  for unital cases.
  - (c)  $r(a)^n = r(a^n)$ .
- 10.17 (Spectral radius function). (a) upper semi-continuous
- **10.18** (Vector-valued complex function theory). Let  $\Omega$  be an open subset of  $\mathbb{C}$  and X a Banach space. For a vector-valued function  $f: \Omega \to X$ , we say f is differentiable if the limit

$$\lim_{\lambda \to \lambda_0} (\lambda - \lambda_0)^{-1} (f(\lambda) - f(\lambda_0))$$

exists in *X* for every  $\lambda \in \Omega$ , and weakly differentiable if the limit

$$\lim_{\lambda \to \lambda_0} (\lambda - \lambda_0)^{-1} \langle f(\lambda) - f(\lambda_0), x^* \rangle$$

exists in  $\mathbb{C}$  for each  $x^* \in X^*$  and every  $\lambda \in \Omega$ . Then, the followings are all equivalent.

- (a) f is differentiable.
- (b) *f* is weakly differentiable.
- (c) For each  $\lambda_0 \in \Omega$ , there is a sequence  $(x_k)_{k=0}^{\infty}$  such that we have the power series expansion

$$f(\lambda) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k x_k,$$

where the series on the right hand side converges absolutely and uniformly on any closed ball in  $\Omega$  centered at  $\lambda_0$ .

10.19 (Exponential of an operator).

# C\*-algebras

#### 11.1 C\* identity

11.1 (\*-algebras). normed?

**11.2** (C\*-identity). A *C\*-algebra* is a Banach \*-algebra *A* satisfying the C\*-identity  $||a^*a|| = ||a||^2$  for all  $a \in A$ .

11.3 (Unitization).

$$(L_a + \lambda \operatorname{id}_{B(A)})^* = L_{a^*} + \overline{\lambda} \operatorname{id}_{B(A)}.$$

*Proof.* The C\*-identity easily follows from the following inequality:

$$||(a,\lambda)||^{2} = \sup_{\|b\|=1} ||ab + \lambda b||^{2}$$

$$= \sup_{\|b\|=1} ||(ab + \lambda b)^{*}(ab + \lambda b)||$$

$$= \sup_{\|b\|=1} ||b^{*}((a^{*}a + \lambda a^{*} + \overline{\lambda}a)b + |\lambda|^{2}y)||$$

$$\leq \sup_{\|b\|=1} ||(a^{*}a + \lambda a^{*} + \overline{\lambda}a)b + |\lambda|^{2}b||$$

$$= ||(a,\lambda)^{*}(a,\lambda)||.$$

#### 11.2 Continuous functional calculus

**11.4** (Gelfand-Naimark representation for C\*-algebras). For a commutative C\*-algebra A, consider the Gelfand transform  $\Gamma: A \to C_0(\sigma(A))$ .

- (a)  $\Gamma$  is a \*-homomorphism.
- (b)  $\Gamma$  is an isometry.
- (c)  $\Gamma$  is a \*-isomorphism.

Proof. (a)

(b) Note that we have

$$\|\Gamma a\| = \sup_{\varphi \in \sigma(A)} |\Gamma a(\varphi)| = \sup_{\varphi \in \sigma(A)} |\varphi(a)| = r(a)$$

for all  $a \in A$ . If we assume a is self-adjoint, then since  $||a||^2 = ||a^*a|| = ||a^2||$ , the spectral radius coincides with the norm by the Beurling formula for spectral radius in Banach algebras:

$$\|\Gamma a\| = r(a) = \lim_{n \to \infty} \|a^{2^n}\|^{1/2^n} = \|a\|.$$

Hence we have for all  $a \in A$  that

$$||a||^2 = ||a^*a|| = ||\Gamma(a^*a)|| = ||(\Gamma a)^*(\Gamma a)|| = ||\Gamma a||^2.$$

- (c) By the part (a) and (b), the image  $\Gamma(A)$  is a closed unital \*-subalgebra of  $C(\sigma(A))$ , and it separates points by definition. Then,  $\Gamma(A)$  is dense in  $C(\sigma(A))$  by the Stone-Weierstrass theorem, which implies  $\Gamma(A) = C(\sigma(A))$ .
- 11.5 (Generators of a C\*-algebra). joint spectrum.
- **11.6** (Continuous functional calculus). Let *A* be a unital  $C^*$ -algebra, and  $a \in A$  a normal element. Then, we have a \*-isomorphism

$$C(\sigma(a)) \to \widetilde{C}^*(1,a) : \mathrm{id}_{\sigma(a)} \mapsto a$$

defined by the inverse of the Gelfand transform, which we call the continuous functional calculus.

- (a) spectral mapping:  $\lambda \in \sigma_p(a)$  implies  $f(\lambda) \in \sigma_p(f(a))$ ,  $\lambda \in \sigma(a)$  iff  $f(\lambda) \in \sigma(f(a))$ , composition, ...
- **11.7** (Normal elements). Let a be an element of a unital C\*-algebra A. We say a is *normal*, *unitary*, and *self-adjoint* if  $a^*a = aa^*$ ,  $a^*a = aa^* = e$ , and  $a^* = a$  respectively. For normality and self-adjointness, the definitions can be extended to non-unital C\*-algebras.
  - (a) If *a* is normal, then *a* is unitary if and only if  $\sigma(a) \subset \mathbb{T}$ .
  - (b) If *a* is normal, then *a* is self-adjoint if and only if  $\sigma(a) \subset \mathbb{R}$ .

Proof. (a)

(b) We may assume A is unital. By the holomorphic functional calculus, we have

$$e^{ia} = \sum_{n=1}^{\infty} \frac{(ia)^n}{n!} \in A,$$

and the inverse of  $e^{ia}$  is  $e^{-ia}$ . Since the involution on A is continuous, we can check  $e^{ia}$  is unitary by

$$(e^{ia})^* = \sum_{n=1}^{\infty} \frac{(-ia)^n}{n!} = e^{-ia}.$$

For every  $\varphi \in \sigma(A)$ , then by the part (a) the equality

$$e^{-\operatorname{Im}\varphi(a)} = |e^{i\varphi(a)}| = |\varphi(e^{ia})| = 1$$

proves  $\varphi(a) \in \mathbb{R}$ , hence  $\sigma(a) \subset \mathbb{R}$ .

- **11.8** (\*-homomorphism). Let  $\varphi: A \to B$  be a \*-homomorphism between C\*-algerbas.
  - (a)  $\varphi$  is determined by self-adjoint elements.
  - (b)  $\|\varphi\| = 1$  if  $\varphi$  is non-trivial.
  - (c) The iamge of  $\varphi$  is closed.
  - (d) The induced map  $A/\ker \varphi \to B$  is an isometry.

#### 11.3 Positive elements

**11.9** (Positive elements). Let a, b be elements of a C\*-algebra A. We say a is *positive* and write  $a \ge 0$  if it is normal and  $\sigma(a) \subset \mathbb{R}_{\ge 0}$ . If we define a relation  $a \le b$  as  $b - a \ge 0$ , then we can see that it is a partial order on A.

- (a)  $a \ge 0$  if and only if  $||\lambda a|| \le \lambda$  for some  $\lambda \ge ||a||$ .
- (b) If  $a \ge 0$  and  $\sigma(b) \subset \mathbb{R}_{>0}$ , then  $\sigma(a+b) \subset \mathbb{R}_{>0}$ .
- (c)  $a \ge 0$  if and only if  $a = b^*b$  for some  $b \in A$ .

*Proof.* Let  $a := b^*b$ . Let  $a = a_+ - a_-$ . Then we have  $(ba_-)^*(ba_-) = a_-aa_- = -a_-^3 \le 0$ , which also implies  $(ba_-)(ba_-)^* \le 0$  and

$$0 \le (ba_{-})^{*}(ba_{-}) + (ba_{-})(ba_{-})^{*} \le 0.$$

Thus we have  $ba_{-} = 0$  and  $a_{-}^{3} = 0$ .

**11.10** (Operator monotone operations). (a) If  $0 \le a \le b$ , then  $a^{-1} \ge b^{-1}$ .

(b) If  $a \le b$ , then  $cac^* \le cbc^*$ .

**11.11** (Positive linear functionals). Let *A* be a C\*-algebra. A *state* of *A* is a positive linear functional  $\omega$  such that  $\|\omega\| = 1$ .

- (a) For a normal element  $a \in A$  there is a state  $\omega$  such that  $|\omega(a)| = ||a||$ .
- (b) A self-adjoint linear functional is the difference of two positive linear functional. It is called the *Jordan decomposition*.

*Proof.* (b) We first show the real dual  $(A^{sa})^*$  can be identified with the self adjoint part  $(A^*)^{sa}$  of the complex dual. By this identification, we can describe the weak\* topology on  $(A^*)^{sa}$  as  $\sigma((A^*)^{sa}, A^{sa})$ .

We may assume A is unital. The closed unit ball of the real Banach space  $(A^*)^{sa}$  is weakly\* compact. We are enough to show

$$(A^*)_1^{sa} = \overline{\operatorname{conv}}(S(A) \cup -S(A)),$$

where the closure is taken in the weak\* topology, because S(A) and -S(A) are weakly\* compact and convex due to the unit of A, the closure on the right-hand side is not necessary. Suppose not and take  $l \in (A^*)_1^{sa}$  which is not approximated weakly\* by  $conv(S(A) \cup -S(A))$ . By the Hahn-Banach separation, there is  $a \in A^{sa}$  such that

$$\sup_{\omega \in S(A) \cup -S(A)} \omega(a) < l(a).$$

If we take  $\omega \in S(A) \cup -S(A)$  such that  $\omega(a) = ||a||$  using the part (a), then we get a contradiction to the bound  $||l|| \le 1$ .

**11.12** (Approximate identity). Let  $e_{\alpha}$  be an approximate identity of A.

- (a) Exists.
- (b) For a positive linear functional  $\omega$ , we have  $\lim_{\alpha} \omega(e_{\alpha}) = ||\omega||$ .
- (c)
- (d) separable.

#### 11.4 Representations of C\*-algebras

- **11.13** (Non-degenerate representations). Let A be a  $C^*$ -algebra. A representation of A on a Hilbert space H is a \*-homomorphism  $\pi:A\to B(H)$ . We say a representation  $\pi:A\to B(H)$  is non-degenerate if  $\pi(A)H$  is dense in H.
  - (a) Every representation has a unique non-degenerate subrepresentation.
  - (b) The following statements are equivalent:
    - (i)  $\pi$  is non-degenerate.
    - (ii) For each  $\xi \in H$  there is  $a \in A$  such that  $\pi(a)\xi \neq 0$ .
    - (iii)  $\pi(e_a) \rightarrow \mathrm{id}_H$  strongly for an approximate identity  $e_a$  of A.
- **11.14** (Cyclic representations). *cyclic* if there is a vector  $\psi \in H$  such that  $A\psi$  is dense in H. Cyclic decomposition
- **11.15** (Irreducible representations). *irreducible* if there is no proper closed subspace  $K \subset H$  such that  $\pi(A)K \subset K$ . The following statements are equivalent:
  - (i)  $\pi$  is irreducible.
  - (ii)  $\pi(A)' = \mathbb{C} \operatorname{id}_H$ .
- (iii)  $\pi(A)$  is strongly dense in B(H).
- (iv) Every non-zero vector in *H* is cyclic.
- **11.16** (Gelfand-Naimark-Segal representation). Let *A* be a C\*-algebra, and  $\omega$  be a state on *A*. The *left kernel* of  $\omega$  is defined to be

$$N_{\omega} := \{ a \in A : \omega(a^*a) = 0 \}.$$

- (a)  $N_{\omega}$  is a left ideal of A.
- (b)  $\langle a+N,b+N\rangle := \omega(b^*a)$  is an inner product on  $A/N_{\omega}$ .
- (c) There is a unique representation  $\pi_{\omega}: A \to B(H_{\omega})$  such that  $\pi_{\omega}(a)(b+N_{\omega}) := ab+N_{\omega}$  for  $a,b \in A$ .
- (d)  $\pi_{\omega}: A \to B(H_{\omega})$  is a cyclic representation.

#### **Exercises**

**11.17** (Projections in  $M_2(\mathbb{C})$ ). The space of self-adjoint elements in  $M_2(\mathbb{C})$  is a real vector space spanned by

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad p := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad q := \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

- (a)  $(p-q)^2 = \frac{1}{2}$ .
- (b) If we let  $\lambda_{\pm}$  be the eigenvalues of ap + bq, then  $\lambda_{+} + \lambda_{-} = a + b$  and  $\lambda_{+} \lambda_{-} = \sqrt{a^{2} + b^{2}}$ .
- (c) Every functional calculus f(x) of self-adjoint x is a linear combination of x and 1.
- (d)  $ap + bq + c \ge 0$  if and only if  $a + b + 2c \ge \sqrt{a^2 + b^2}$ .
- (e) Every projection of rank one is given by ap + bq + (1 a b)/2 for  $a^2 + b^2 = 1$ .
- **11.18** (Operator monotone square). Let A be a  $C^*$ -algebra in which the square function is operator monotone, that is,  $0 \le a \le b$  implies  $a^2 \le b^2$  for any positive elements a and b in A. We are going to show that A is necessarily commutative. Let a and b denote arbitrary positive elements of A.

35

- (a) Show that  $ab + ba \ge 0$ .
- (b) Let ab = c + id where c and d are self adjoints. Show that  $d^2 \le c^2$ .
- (c) Suppose  $\lambda > 0$  satisfies  $\lambda d^2 \le c^2$ . Show that  $c^2 d^2 + d^2 c^2 2\lambda d^4 \ge 0$ .
- (d) Show that  $\lambda (cd + dc)^2 \le (c^2 d^2)^2$ .
- (e) Show that  $\sqrt{\lambda^2 + 2\lambda 1} \cdot d^2 \le c^2$  and deduce d = 0.
- (f) Extend the result for general exponent: *A* is commitative if  $f(x) = x^{\beta}$  is operator monotone for  $\beta > 1$ .
- **11.19** (States on unitization). Let A be a non-unital  $C^*$ -algebra and  $\widetilde{A}$  be its unitization. Let  $\widetilde{\omega} = \omega \oplus \lambda$  be a bounded linear functional on  $\widetilde{A}$ , where  $\omega \in A^*$  and  $\lambda \in \mathbb{C}^* = \mathbb{C}$ .

Since *A* is hereditary in  $\widetilde{A}$ , the extension defines a well-defined injective map  $S(A) \to S(\widetilde{A})$ . We can identify PS(A) as a subset of  $PS(\widetilde{A})$  whose complement is a singleton.

- (a)  $\tilde{\rho}$  is positive if and only if  $\lambda \geq 0$  and  $0 \leq \rho \leq \lambda$ .
- (b)  $\widetilde{\omega}$  is a state if and only if  $\lambda = 1$  and  $0 \le \omega \le 1$ .
- (c)  $\widetilde{\omega}$  is a pure state if and only if  $\lambda = 1$  and  $\omega$  is either a pure state or zero.
- **11.20** (Representations of  $C_0(X)$ ). Let  $A = C_0(X)$  and  $\mu$  be a state on A, a regular Borel probability measure on a locally compact Hausdorff space X.
  - (a) The left kernel of  $\mu$  is  $N_{\mu} = \{ f \in A : f |_{\text{supp }\mu} = 0 \}$ .
  - (b)  $H_{\mu} = L^2(X, \mu)$ .
  - (c) The canonical cyclic vector is the unity function on X.
- **11.21** (Representations of K(H)).
- **11.22** (Automorphism group of K(H) and B(H)).
- 11.23 (Approximate eigenvectors).
- 11.24 (Kadison transitivity theorem).
- 11.25 (Hereditary C\*-algebras).
- **11.26** (Extreme points of the ball). Let A be a  $C^*$ -algebra and let  $B_A$  be the closed unit ball of A.
  - (a) Extreme points of  $A_+ \cap B_A$  is the projections in A.
  - (b) Extreme points of  $A_{sq} \cap B_A$  is the self-adjoint unitaries in A.
  - (c) Every extreme point of  $B_A$  is a partial isometry.

#### **Problems**

\*1. A C\*-algebra is commutative if and only if a function  $f(x) = x(1+x)^{-1}$  is operator subadditive.

## Von Neumann algebras

#### 12.1 Density theorems

- **12.1** (Von Neumann algebras). A *von Neumann algebra* on a Hilbert space H is a  $\sigma$ -weakly closed \*-subalgebra of B(H) including  $\mathrm{id}_H$ . A positive linear map  $\varphi$  between von Neumann algebras is said to be normal if  $\varphi(\sup_\alpha x_\alpha) = \sup_\alpha \varphi(x_\alpha)$  for any bounded increasing net  $x_\alpha$  of positive elements.
  - (a) A positive map  $\varphi$  is normal if and only if it is continuous between  $\sigma$ -weak topologies.
- **12.2** (Normal states). Let  $N \subset M \subset B(H)$  be von Neumann algebras. The space of  $\sigma$ -weakly continuous linear functionals on M is denoted by  $M_*$ .
  - (a)  $M_*$  is a predual of M.
  - (b) The restriction of a normal state of M on N is normal.
  - (c) A normal state of N is extended to a normal state of M.
  - (d) A state  $\omega$  of M is normal if and only if  $\omega(x) = \sum_{i=1}^{\infty} \langle x \xi_i, \xi_i \rangle$  for some  $(\xi_i) \in \ell^2(\mathbb{N}, H)$ .
  - (e) The GNS representation of a normal state is normal.
- **12.3** (Double commutant theorem). The *commutant* of a subset  $A \subset B(H)$ , denoted by A', is the set of all elements of B(H) that commute every  $a \in A$ . Suppose A is a non-degenerate \*-subalgebra of B(H). One can describe the von Neumann algebra generated by A in B(H) purely algebraically in terms of commutants.
  - (a) A'' is weakly closed \*-algebra.
  - (b) If  $x \in A''$ , for any  $\varepsilon > 0$  and  $\xi \in H$  there is  $a \in A$  such that  $||(x a)\xi|| < \varepsilon$ .
  - (c) A is  $\sigma$ -strongly\* dense in A''.

*Proof.* (a) Suppose a net  $x_{\alpha} \in A''$  weakly converges to  $x \in B(H)$ . For any  $y \in A'$ ,

$$\langle xy\xi,\eta\rangle=\lim_{\alpha}\langle x_{\alpha}y\xi,\eta\rangle=\lim_{\alpha}\langle yx_{\alpha}\xi,\eta\rangle=\langle yx\xi,\eta\rangle, \qquad \xi,\eta\in H.$$

Hence  $x \in A''$ .

(b) We claim  $x\xi\in\overline{A\xi}$  for each  $\xi\in H$ . Let p be the projection onto  $\overline{A\xi}$ . For any  $a\in A$ , the operator ap ranges into  $\overline{A\xi}$  so that pap=ap, and we also have  $pa^*p=a^*p$  by the self-adjointness of A. It implies ap=pa, which deduces  $p\in A'$ . Thus xp=px for  $x\in A''$ . On the other hand, observe that  $a(1-p)\xi=(1-p)a\xi=0$  for all  $a\in A$ . Then,  $\langle (1-p)\xi,\eta\rangle=0$  for any  $\eta\in H=\overline{AH}$  by the non-degeneracy, so  $p\xi=\xi$ . Combining xp=px and  $p\xi=\xi$ , we obtain  $x\xi=xp\xi=px\xi$  so that  $x\xi\in\overline{A\xi}$ .

(c) It suffices to show A is  $\sigma$ -strongly dense in A'' because A is self-adjoint. Consider A as the non-degenerate \*-subalgebra of  $B(\ell^2(\mathbb{N},H))$  via the diagonal map  $B(H) \to B(\ell^2(\mathbb{N},H))$ , which is a injective normal unital \*-homomorphism. We can check that A'' does not change if we replace B(H) to  $B(\ell^2(\mathbb{N},H))$ . By applying the part (b) for arbitrary  $\xi \in \ell^2(\mathbb{N},H)$ , we deduce the desired result.  $\square$ 

12.4 (Kaplansky density theorem).

#### 12.2 Borel functional calculus

**12.5** (Sherman-Takeda theorem). Let A be a  $C^*$ -algebra. Define  $M(\pi) := \pi(A)''$  for  $\pi : A \to B(H)$  a representation. Let  $\pi_u : A \to B(H_u)$  be the universal representation of A, the direct sum of all the GNS-representations of states of A. Consider the following three maps

$$\pi_u: A \to (M(\pi_u), \sigma w), \qquad \pi_u^*: M(\pi_u)_* \to A^*, \qquad \pi_u^{**}: A^{**} \to M(\pi_u),$$

constructed by adjoints.

- (a)  $\pi_{i}^{*}$  is isometric.
- (b)  $\pi_u^*$  is surjective. In particular,  $\pi_u^{**}$  is a normal \*-isomorphsim.
- (c)  $A^{**}$  enjoys a universal property in the sense that every \*-homomorphism  $\varphi: A \to M$  to a von Neumann algebra M has a unique normal extension  $\widetilde{\varphi}: A^{**} \to M$  of  $\varphi$ .

*Proof.* (a) It holds for any representation of  $\pi: A \to B(H)$ . For each  $l \in M(\pi)_*$  we have

$$\|\pi^*(l)\| = \sup_{\substack{\|a\| \le 1 \\ a \in A}} |l(\pi(a))| = \sup_{\substack{\|x\| \le 1 \\ x \in M(\pi)}} |l(x)| = \|l\|$$

by the Kaplansky density theorem and the  $\sigma$ -weak continuity of l.

- (b) Let  $\omega$  be a state of A. Since the universal representation  $\pi_u$  has the GNS representation of  $\omega$  as a subrepresentation,  $\omega$  is given by a vector state in  $\pi_u$ . By restriction of this vector state, we have a normal state of  $M(\pi_u)$ , which extends  $\omega$ . Now the Jordan decomposition can be applied to verify that every bounded linear functional of A has a  $\sigma$ -weakly continuous extension on  $M(\pi_u)$ .
- (c) We can define  $\widetilde{\varphi}$  as the bitranspose of  $\varphi: A \to (M, \sigma w)$ , and it is a unique extension because A is  $\sigma$ -weakly dense in  $A^{**}$ .
- Remark 12.2.1. The bidual  $A^{**}$  is frequently viewed as a von Neumann algebra, and we call it the enveloping von Neumann algebra of a C\*-algebra A. By the universal property, we have a normal \*-homomorphism  $M(\pi_u) \to M(\pi)$  that is in fact surjective for every representation  $\pi$  of A, and it fails to be injective even if  $\pi$  is faithful.
- **12.6** (Bounded Borel functions). Let X be a compact Hausdorff space and denote by  $B^{\infty}(X)$  the space of bounded Borel functions on X. The linear combinations of projections in  $B^{\infty}(X)$  are called *simple functions*. (Stonean and hyperstonean spaces?)
  - (a) There are natural inclusions  $C(X) \subset B^{\infty}(X) \subset C(X)^{**}$  among C\*-algebras.
  - (b)  $B^{\infty}(X)$  is the norm closure of simple functions.
  - (c)  $B^{\infty}(X)$  factors through all  $L^{\infty}(X,\mu) := M(\pi_{\mu})$  for GNS-representations  $\pi_{\mu}$  of C(X).
- **12.7** (Borel functional calculus). Let  $x \in B(H)$  be a normal operator. Consider

$$B^{\infty}(\sigma(x)) \subset C(\sigma(x))^{**} \to W^{*}(x) \subset B(H).$$

- (a) If we endow the topology of pointwise convergence on  $B^{\infty}(\sigma(a))$  and the strong operator topology on M, then the Borel functional calculus is continuous.
- (b) Every von Neumann algebra is the norm closed span of projections.

*Proof.* (a) By the bounded convergence theorem.

(b) This is because  $\sigma(a) \subset \mathbb{C}$  is compact so that it is separable and metrizable; every bounded measurable function is a pointwise limit of simple functions.

For normal  $a \in B(H)$ , the continuous functional calculus for a is just a non-degenerate representation

$$C(\sigma(a)) \rightarrow B(H)$$

which maps  $id_{\sigma(a)}$  to a. Also, a projection valued-measure on a compact Hausdorff space X is just a non-degenerate representation

$$C(X) \rightarrow B(H)$$
.

To show this, note that a projection-valued measure defines a "normal" unital \*-homomorphism

$$\operatorname{span} P(B^{\infty}(X)) \to B(H).$$

Then, mimick the definition of Lebesgue integral to construct a unital \*-homomorphism  $C(X) \to B(H)$ .

#### 12.3 Predual

- **12.8** (Conditional expectations). Let *A* be a closed subalgebra of a C\*-algebra *B*. Let  $\varphi : B \to A$  be a contractive idempotent surjective linear map. Such a map is called a *conditional expectation*.
  - (a)  $\varphi$  is an *A*-bimodule map.
  - (b)  $\varphi$  is completely positive.

*Proof.* Since each conclusion of (a) and (b) still holds for restriction, we may assume *A* and *B* are von Neumann algebras by thinking of the bitranspose  $\varphi^{**}: B^{**} \to A^{**}$ .

(a) Since the linear span of projections is  $\sigma$ -weakly dense in a von Neumann algebra, we are enough to show  $p\varphi(b) = \varphi(pb)$  and  $\varphi(bp) = \varphi(b)p$  for any projection  $p \in A$ .

Let  $p \in A$  be a projection and let  $b \in B$ . Note that the surjectivity of  $\varphi$  implies that  $p\varphi$  is also idempotent. Then, where  $1 = 1_B$ ,

$$(1+t)^{2} \|p\varphi((1-p)b)\|^{2} = \|p\varphi((1-p)b) + tp\varphi(p\varphi((1-p)b))\|^{2}$$

$$\leq \|(1-p)b + tp\varphi((1-p)b)\|^{2}$$

$$= \|(1-p)b\|^{2} + t^{2} \|p\varphi((1-p)b)\|^{2}$$

implies  $p\varphi((1-p)b) = 0$  by letting  $t \to \infty$ . Putting  $1_A - p$  and  $1_A$  instead of p, we obtain

$$(1-p)\varphi((1-1_A+p)b) = 0, \qquad \varphi((1-1_A)b) = 0$$

respectively, which imply  $(1-p)\varphi(pb) = 0$ . Hence for any  $b \in B$  we have

$$p\varphi(b) = p\varphi(pb) = \varphi(pb).$$

Similarly we can show  $\varphi(b(1-p))p = 0$  and  $\varphi(bp)(1-p) = 0$  for  $b \in B$ , we are done.

(b) Let  $[b_{ij}] \in M_n(B)_+$ . Let  $\pi : A \to B(H)$  be a cyclic representation with a cyclic vector  $\psi$ . Then,  $[\xi_i] \in H^n$  can be replaced to  $[\pi(a_i)\psi]$ , so we can check the positivity of inflations  $\varphi_n$  as

$$\sum_{i,j} \langle \pi(\varphi(b_{ij})) \pi(a_j) \psi, \pi(a_i) \psi \rangle = \langle \pi(\varphi(\sum_{i,j} a_i^* b_{ij} a_j)) \psi, \psi \rangle \ge 0,$$

because it follows  $\sum_{i,j} a_i^* b_{ij} a_j \ge 0$  by the positivity of  $b_{ij}$  from

$$\langle \pi_B(\sum_{i,j} a_i^* b_{ij} a_j) \xi, \xi \rangle = \sum_{i,j} \langle \pi_B(b_{ij}) \pi_B(a_j) \xi, \pi_B(a_i) \xi \rangle \ge 0,$$

where  $\pi_B$  is any representation of B.

- **12.9** (Sakai theorem). Suppose A is a  $C^*$ -algebra which admits a predual F.
  - (a) There is an injective \*-homomorphism  $\pi: A \to A^{**}$  with weakly\* closed image.
  - (b)  $\pi$  is a topological embedding with respect to  $\sigma(A, F)$  and  $\sigma(A^{**}, A^{*})$ .
  - (c) The predual F is unique in  $A^*$ .

In particular, since  $A^{**}$  admits a faithful normal representation, so does A.

*Proof.* (a) By taking the adjoint for the inclusion  $i: F \hookrightarrow A^*$ , we have a conditional expectation  $\varepsilon: A^{**} \to A$ . Its kernel is a A-bimodule, and by the  $\sigma$ -weak density of A in  $A^{**}$  and the continuity of  $\varepsilon$  between weak\* topologies, so it is in fact a  $A^{**}$ -bimodule, which means it is a  $\sigma$ -weakly closed ideal of  $A^{**}$ . Thus we have a central projection  $z \in A^{**}$  such that  $\ker \varepsilon = (1-z)A^{**}$ .

Define  $\pi: A \to A^{**}$  such that  $\pi(a) := za$ . It is clearly a \*-homomorphism. The injectivity follows from  $a = \varepsilon(a) = \varepsilon(za)$  for  $a \in A$ . The image is weakly\* closed because  $\varepsilon(x - \varepsilon(x)) = 0$  implies  $z(x - \varepsilon(x)) = 0$  for  $x \in A^{**}$  so that  $zA^{**} = zA$ .

(b) Since  $\langle a, f \rangle = \langle \varepsilon(za), f \rangle = \langle za, f \rangle$  for  $a \in A$  and  $f \in F$ , in which the second equality holds by the definition of  $\varepsilon$ , it is enough to show  $\sigma(zA, A^*) = \sigma(zA, F)$ .

For  $l \in A^*$ , we claim there exists f such that  $\langle za, l \rangle = \langle za, f \rangle$ . Define  $\tilde{l} \in A^*$  such that  $\langle x, \tilde{l} \rangle := \langle zx, l \rangle$  for  $x \in A^{**}$ . Then,  $\langle zx, l \rangle = \langle z^2x, l \rangle = \langle zx, \tilde{l} \rangle$  for  $x \in A^{**}$ . Suppose  $\tilde{l} \notin F$ . Because F is closed in  $A^*$ , there is  $x \in A^{**}$  such that  $\langle x, \tilde{l} \rangle \neq 0$  and  $\langle x, f \rangle = 0$  for all  $f \in F$  by the Hahn-Banach separation. Then,  $0 = \langle x, f \rangle = \langle x, i(f) \rangle = \langle \varepsilon(x), f \rangle$  implies  $\varepsilon(x) = 0$  so that zx = 0, which leads a contradiction  $\langle x, \tilde{l} \rangle = \langle zx, l \rangle = 0$ , so we have  $\tilde{l} \in F$ .

(c) If closed subspaces  $F_1$  and  $F_2$  of  $A^*$  are preduals of A, then  $\sigma(A, F_1) = \sigma(A, F_2)$  by the part (b). If  $l \in F_1$ , which is obviously continuous on  $\sigma(A, F_1)$ , and the continuity in  $\sigma(A, F_2)$  implies that l is contained in a linear span of some finitely many elements of  $F_2$ , hence  $F_1 \subset F_2$ .

#### **Exercises**

**12.10** (Extremally disconnected space).  $\sigma(B^{\infty}(\Omega))$  is extremally disconnected.

resolution of identity normal operator theories: multiplicity, invariant subspaces  $L^{\infty}$  representation  $\sigma$ -weakly closed left ideal has the form Mp. II.3.12

Let  $\mathfrak{m}$  be an algebraic ideal of a von Neumann algebra M, and  $\overline{\mathfrak{m}}$  be its  $\sigma$ -weak closure. If  $x \in (\overline{\mathfrak{m}})_+$ , then there is an increasing net  $(x_i) \subset \mathfrak{m}$  converges to x strongly. II.3.13

binary expansion and hereditary subalgebras