#### Problema C

# Circuitos Lógicos Matriciais

Tempo limite: 0,5 s | Limite de memória: 1 GiB

Na computação quântica, as portas lógicas funcionam de um jeito um pouco diferente. Portas lógicas quânticas são reversíveis e o número de qubits de entrada é igual ao número de qubits de saída. Além disso, elas podem ser representadas por matrizes  $2^N$  por  $2^N$ , onde N é o número de qubits.

Um circuito quântico é um modelo para computação quântica onde a computação é realizada através de uma sequência de portas lógicas quânticas e dispositivos de medição. Uma sequência de portas lógicas pode ser representada por uma matriz resultante da multiplicação das matrizes das portas lógicas em ordem de aplicação, que é a ordem inversa de como elas são representadas graficamente. Por exemplo, o circuito de adição de dois bits em seu forma quântica é:



Temos nesse circuito duas variações de uma porta lógica que chamaremos de  $CNOT(q_c, q_t)$  e  $CCNOT(q_{c_1}, q_{c_2}, q_t)$ . No desenho, o qubit  $q_t$  aparece marcado com um  $\oplus$ . A porta lógica  $CNOT(q_c, q_t)$  pode ser vista como sendo igual a  $CCNOT(q_c, q_c, q_t)$ , ou seja, a aplicação da porta lógica CCNOT com  $q_c = q_{c_1} = q_{c_2}$ .

A porta lógica CCNOT $(q_{c_1}, q_{c_2}, q_t)$  tem o comportamento de inverter o qubit  $q_t$  da saída se os qubits de controle  $q_{c_1}$  e  $q_{c_2}$  ambos estiverem ligados. Matematicamente,  $q'_t = q_t \oplus (q_{c_1} \land q_{c_2})$ . Na sua forma de matriz,

$$\text{CCNOT}(q_{c_1}, q_{c_2}, q_t)_{ij} = \begin{cases} 1 & \text{se } i \text{ tem os bits } c_1 \in c_2 \text{ ligados e } i \oplus 2^t = j \\ 0 & \text{se } i \text{ tem os bits } c_1 \in c_2 \text{ ligados e } i \oplus 2^t \neq j \\ 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

onde i é a linha e j a coluna com  $0 \le i, j < 2^N$ , e i contém o bit k  $(0 \le k)$  se  $\left\lfloor \frac{x}{2^k} \right\rfloor$  mod 2 = 1. A operação  $\oplus$  é a operação bit a bit de ou exclusivo, comumente o  $^{\wedge}$  em linguagens de programação.

Desta forma, a matriz do circuito quântico de adição de dois bits é dada por

$$CNOT(q_0, q_1) CNOT(q_1, q_2) CCNOT(q_1, q_2, q_3) CNOT(q_0, q_1) CCNOT(q_0, q_1, q_3),$$

onde os qubits  $q_0, q_1, q_2, q_3$  são utilizados com entrada  $|A\rangle, |B\rangle, |C_{\rm in}\rangle, |0\rangle$  respectivamente e resultam em  $|A\rangle, |B\rangle, |S\rangle, |C_{\rm out}\rangle$  respectivamente.

Sua missão é dada a descrição de um circuito com portas lógicas CNOT e CCNOT na ordem de aplicação, imprimir a matriz resultante.

### Entrada

A primeira linha da entrada contém os inteiros N ( $2 \le N \le 8$ ), o número de qubits do circuito e M ( $1 \le M \le 10^5$ ), a quantidade de portas lógicas do circuito.

Seguem M linhas, cada uma com a descrição de uma porta lógica. O primeiro inteiro T ( $1 \le T \le 2$ ) define o tipo da porta lógica. Se T=1, a descrição é da porta lógica  $\mathrm{CNOT}(q_C,q_T)$  e seguem os inteiros distintos C e T ( $0 \le C, T < N$ ). Se T=2, a descrição é da porta lógica  $\mathrm{CCNOT}(q_{C_1},q_{C_2},q_T)$  e seguem os inteiros distintos  $C_1$ ,  $C_2$  e T ( $0 \le C_1,C_2,T < N$ ). Note que as portas lógicas são dadas na ordem de aplicação.

### Saída

Imprima  $2^N$  linhas, cada uma com exatamente  $2^N$  caracteres '0' ou '1', correspondendo a matriz do circuito quântico completo.

| Exemplo de entrada 1 | Exemplo de saída 1 |
|----------------------|--------------------|
| 2 1                  | 1000               |
| 1 0 1                | 0001               |
|                      | 0010               |
|                      | 0100               |
|                      |                    |

## Explicação do exemplo 1:

Este circuito representa apenas a porta lógica CNOT(c,t). Se você já leu sobre essa porta lógica, a matriz parece estar errada pois é diferente da que está na literatura. Porém, é uma questão de convenção. Ao compormos o qubit c com o qubit t, aqui estamos usando a convenção de que o primeiro bit é menos significante que o segundo.

$$\begin{array}{l} i{=}0 \text{ represent} \\ \text{$i{=}1$ represent} \\ \text{$i{=}1$ represent} \\ \text{$a{=}0$ } \\ |01\rangle \\ \text{$com $c{=}1$ e $t{=}0$} \\ \text{$i{=}2$ represent} \\ \text{$a{=}0$ } \\ \text{$i{=}3$ represent} \\ \text{$a{=}0$ } \\ |11\rangle \\ \text{$com $c{=}1$ e $t{=}1$} \\ \text{$i{=}2$ represent} \\ \text{$a{=}0$ } \\ \text{$i{=}1$ } \\ \text{$i{=}0$ }$$

Então se entrada for  $|00\rangle$  ou  $|10\rangle$ , ambos onde c=0 e t varia, a porta lógica não atua. Quando a entrada é  $|01\rangle$  ou  $|11\rangle$ , então a porta lógica atua e inverte o valor de t. Essa convenção é utilizada por exemplo pela biblioteca Qiskit.

| Exemplo de entrada 2 | Exemplo de saída 2 |  |
|----------------------|--------------------|--|
| 4 5                  | 10000000000000     |  |
| 1 0 1                | 00000000000100     |  |
| 1 1 2                | 00000000000010     |  |
| 2 1 2 3              | 00000000010000     |  |
| 1 0 1                | 000010000000000    |  |
| 2 0 1 3              | 01000000000000     |  |
|                      | 00100000000000     |  |
|                      | 00000000000001     |  |
|                      | 000000010000000    |  |
|                      | 000001000000000    |  |
|                      | 00000100000000     |  |
|                      | 000100000000000    |  |
|                      | 00000000001000     |  |
|                      | 000000001000000    |  |
|                      | 00000000100000     |  |
|                      | 00000010000000     |  |
|                      |                    |  |

| Exemplo de entrada 3 | Exemplo de saída 3 |  |
|----------------------|--------------------|--|
| 3 1                  | 1000000            |  |
| 2 0 1 2              | 01000000           |  |
|                      | 00100000           |  |
|                      | 0000001            |  |
|                      | 00001000           |  |
|                      | 00000100           |  |
|                      | 00000010           |  |
|                      | 00010000           |  |
|                      |                    |  |

| Exemplo de entrada 4 | Exemplo de saída 4 |  |
|----------------------|--------------------|--|
| 3 1                  | 1000000            |  |
| 1 0 1                | 00010000           |  |
|                      | 00100000           |  |
|                      | 01000000           |  |
|                      | 00001000           |  |
|                      | 00000001           |  |
|                      | 00000010           |  |
|                      | 00000100           |  |
|                      |                    |  |