

Machine Learning Workflow Management Using mlflow

Shouvik Sarkar Knowledge Associate CDAC, Bangalore

What is MLFlow?

- Open source Machine Learning Operations tool for managing machine learning project lifecycle parts
- Created By DataBricks
 - alpha release in 2018
- Handed over to the Linux Foundation in 2020
- 200+ contributors as of 2020
- Used by companies like Toyota, Accenture, Microsoft and many more *

Why MLFlow?

Hidden Technical Debt in Machine Learning Systems, Sculley et al., 2015

Why MLFlow?

- Different tools for different phases of an ML Project lifecycle
 - One stop solution for most
 - 4 components
 - MLFlow Tracking Logging artifacts and building reproducible workflows
 - MLFlow Projects Model governance
 - MLFlow Models Sharing models of different flavours
 - MLFlow Registry Model versioning and deployment
- Experiment Tracking involves a lot of boilerplate code
 - Provides segregation of experiments with varying parameters
- Reproducibility
 - Provides standard way of building pipelines and logging artifacts and parameters
- Complicated setup for deployment
 - Provides a simple way to deploy models

Features

• Support for Python, Scala, Java and R

 Integrates with most of the popular machine learning libraries

• Runs on major cloud platforms

Workflow Conceptual Overview

Workflow Conceptual Overview

Income Prediction

Dataset comprises

- tabular data about individuals (age, education, marital status, etc)
- label for each comment
 - 2 labels (<=50k, >50k)

Type of problem

- Classification
 - Classify given row to one of the given labels
- Supervised Learning Using Random Forest (Using Sklearn)

Case Study: Cyberbullying Classification

Dataset comprises

- Comments (sentences) in English Language
- label for each comment
 - 4 labels (Obscene, Hurtful, Insulting, Racist)

Type of problem

- Natural Language Processing
- Text Classification
 - Classify given sentence to one of the given labels
- Supervised Learning
- Deep Learning workflow (Using Tensorflow)

Hyperparameter Tuning

- Finding the optimal set of hyperparameters for the task

Prerequisites

- 1. MLFlow (Can be installed via pip)
- 2. Postgres (Relational Database Management System) and psycopg2 (Python connector: pip install psycopg2)
- 3. Minio (Object Store)

Model Building workflow

Initial Setup

Create "mlflowdb" in database

CREATE DATABASE mlflow_db; GRANT ALL PRIVILEGES ON DATABASE mlflow_db TO postgres;

```
[centos@ai-vm1 register model]$ psql -U postgres
Password for user postgres:
psql (9.2.24)
Type "help" for help.
postgres=# \c mlflowdb
You are now connected to database "mlflowdb" as user "postgres".
mlflowdb=# \dt
                 List of relations
 Schema I
                  Name
                                   Type
                                            0wner
          alembic version
 public |
                                   table
                                           postares
 public |
          experiment tags
                                   table |
                                           postares
 public |
          experiments
                                   table |
                                           postgres
 public |
          latest metrics
                                   table I
                                           postgres
 public I
          metrics
                                   table I
                                           postgres
 public |
          model version tags
                                   table i
                                           postgres
          model versions
                                   table |
 public |
                                           postgres
 public |
                                   table i
          params
                                           postgres
          registered model tags
 public |
                                   table I
                                           postgres
          registered models
 public I
                                   table I
                                           postgres
 public |
          runs
                                   table I
                                           postares
 public
          tags
                                   table | postgres
(12 rows)
mlflowdb=#
```

Initial Setup

Go to the download directory of Minio and start the Minio server

MINIO_ROOT_USER=admin MINIO_ROOT_PASSWORD=password ./minio server /mnt/data --console-address ":9001"

Create New Bucket

Initial Setup

Start the tracking server

```
mlflow server \
--backend-store-uri postgresql+psycopg2://postgres:password@localhost:5432/mlflowdb \
--default-artifact-root s3://mlflow/ --host 127.0.0.1 -p 5000

Link the object store

Link Postgres
```

MLFlow UI

Model Building workflow

JSON file


```
"learning_rate": 0.266,
"dataPath": "./",
"max_length": 50,
"vocab_length": 100,
"seq_padding_style": "post",
"seq_truncating_style": "post",
"embedding_dim": 50,
"bs": 53,
"epochs": 3
"learning_rate": 0.45,
"dataPath": "./",
"max_length": 40,
"vocab_length": 100,
"seq_padding_style": "post",
"seq_truncating_style": "post",
"embedding_dim": 50,
"bs": 46,
"epochs": 7
```

Model Building workflow

MLProject file


```
name: tensorflow-example
entry_points:
     tuning:
            command: "python hyperparameter tuning.py"
     ht:
            parameters:
                  learning_rate: {type: float, default: 0.1}
                  vocab_length: {type: int, default: 100}
                  seq_padding_style: {type: string, default: "post"}
                  seq_truncating_style: {type: string, default: "post"}
                  embedding_dim: {type: int, deafault:100}
                  bs: {type: int, default: 64}
                  epochs: {type: int, default: 5}|
                  max_length: {type: int, default:50}
                  run_id: {type: string }
            command: "python baseRunner.py \
                  --learning-rate {learning_rate} \
                  --vocab-length {vocab_length} \
                  --seq-padding_style {seq_padding_style} \
                  --seq-truncating-style {seq_truncating_style} \
                  --embedding_dim {embedding_dim} \
                  --bs {bs} \
                  --epochs {epochs} \
                  --max-length {max_length} \
                  --run-id {run_id}"
```

Model Building workflow

Kicking off the main workflow (hyperparameter_tuning.py)


```
Load data from JSON file
```

Create experiment for main workflow (We have multiple runs for the same experiment)

mlflow.create_experiment(...)

Kick off multiple runs for the experiment

- The runs are created by invoking the "ht" entry point in MLProject

```
client = MlflowClient()
run = client.create_run(exp_id...)
mlflow.run(run_id = run.info.run_id, uri = '.', entry_point = "ht", use_conda = False ...)
```

- Each run works on a different set of hyperparameters
- Each run executes an instance of baseRunner.py

Model Building workflow

Text Classification workflow with MLFlow (baseRunner.py)

Model Building workflow

Workflow Conceptual Overview

Inference By Retrieval workflow (infer.py)

Workflow Conceptual Overview

Inference By Request workflow

Model Registration

Run register_model.py

- 1. Iterate over all run ids
- 2. Select the run id with the best metric value (training accuracy)
- 3. Push the corresponding model to registry

Inference Request

Run getResults.py

- 1. Retrieve run id corresponding to registry model
- 2. Retrieve tokenizer.pkl for preprocessing for the corresponding run id for preprocessing
- 3. Preprocess and send data to API by invoking a POST request and get back prediction

Model Staging

Run stagemodel.py

1. Change version of model to Staging

Model Deployment

1. Start "MLFlow Serving" server

This exposes the specified model over a RESTful Interface

Start MLFlow Serving

Set environment variables for deployment export MLFLOW_TRACKING_URI=postgresql+psycopg2://postgres:password@localhost:5432/braintumor export MLFLOW_S3_ENDPOINT_URL=http://10.180.146.26:9000 export AWS_ACCESS_KEY_ID=admin export AWS_SECRET_ACCESS_KEY=password

Start Deployment server

mlflow models serve -m "models:/alpha/Staging" -h 127.0.0.1 -p 5004 --env-manager=local

Case Study: Brain Tumor Classification

Dataset comprises

- Images of Brain CT scans
- label for each comment
 - 2 labels (Yes, No)

Type of problem

- Computer Vision
- Image Classification
 - Classify given image to one of the given labels
- Supervised Learning
- Deep Learning (Using Tensorflow)

Hyperparameter Tuning

- Finding the optimal set of hyperparameters for the task

Image Classification workflow with MLFlow (baseRunnerVision.py)

Start the tracking server

```
mlflow server \
--backend-store-uri postgresql+psycopg2://postgres:password@localhost:5432/braintumor \
--default-artifact-root s3://braintumor/ --host 127.0.0.1 -p 5000
```

Start MLFlow Serving

```
Set environment variables for deployment export MLFLOW_TRACKING_URI=postgresql+psycopg2://postgres:password@localhost:5432/braintumor export MLFLOW_S3_ENDPOINT_URL=http://10.180.146.26:9000 export AWS_ACCESS_KEY_ID=admin export AWS_SECRET_ACCESS_KEY=password
```

Start Deployment server

mlflow models serve -m "models:/alphabt/Staging" -h 127.0.0.1 -p 5004 --env-manager=local

Execution

1. Start tracking server and minio server

mlflow server --backend-store-uri postgresql+psycopg2://postgres:password@localhost:5432/mlflowdb --default-artifact-root s3://mlflow/ --host 127.0.0.1 -p 5000

Can access at localhost:5000 in browser

MINIO_ROOT_USER=admin MINIO_ROOT_PASSWORD=password ./minio server /mnt/data -- console-address ":9001"

Can access at localhost:9000 in Browser

- 2. Model Building workflow mlflow run -e tuning . --env-manager=local
- 3. Inference By Retrieval workflow python infer.py
- 4. Model Registration python registermodel.py
- 5. Model Staging python stagemodel.py

Execution

6. Model Deployment

export MLFLOW_TRACKING_URI=postgresql+psycopg2://postgres:password@localhost:5432/mlflowdb export MLFLOW_S3_ENDPOINT_URL=http://10.180.146.26:9000 export AWS_ACCESS_KEY_ID=admin export AWS_SECRET_ACCESS_KEY=password mlflow models serve -m "models:/alpha/Staging" -h 127.0.0.1 -p 5004 --env-manager=local

7. Inference Request

python getResults.py

8. Delete Postgres data

Create a database "mlflowdb" in Postgres

psql -U postgres -h 127.0.0.1 -d mlflowdb -f deletetables.sql

References

https://www.databricks.com/wp-content/uploads/2020/12/LP_2-primary-asset_standardizing-the-ml-lifecycle-ebook-databricks-0626120-v8.pdf

Thank You