

Team2: Tzu-Yao Lin, Shan Xiang,

Bodong Xu, Ningyi Xue

Introduction

Dataset Info:

- Wildfires are among the most common form of natural disaster. Last year, more than four million acres have burned by wildfires.
- 1.88 million wildfire records
- 39 features

What kind of question we want to explore:

- How is US wildfires geographically distributed from 1992 to 2015?
- What starting conditions are associated with wildfire size?

Purpose of our study

- Predict the size of wildfire from basic starting conditions
- Better prediction for more effective actions to be taken in advance

Exploratory Data Analysis

Number of Wildfires Over States between 1992 - 2015

TOP 5 State:

1.CA

2.GA

3.TX

4.NC

5.FL

US Wildfire Year and Month Heatmap

 March 2006 is the most severe month crossing all year and moth

US Wildfire Most Frequent Month

West : August

• North : March

Center : February

US Wildfire Most Frequent Month

West : Dry

• North: Continental

• Center : Temperate

US Wildfire Cause Analysis

- Natural : Lightning
- Arson : Arson
- Accidental : Debris Burining, Equipment use, Campfire, etc.
- Other:Miscellaneous,Missing

US Wildfire Cause Analysis by Fire Size

- 62% burned area was caused by lightning
- Above 300 acres,
 Lightning is a major factor
- Below 300 acres, accidental is a major factor

US Wildfire Analysis by day of week

- More fires on weekend
 - Accidental + 1.1%
 - Careless camp fires, smoking, fireworks

Regression Analysis
Improved Classification
Hyperparameter Tuning

Predicting Objective

Regression- Area within the final perimeter of the fire

Mean: 14.6 Median: 0.5 Max: 45294

Classification- Code for fire size based on the number of areas within the final fire

Regression Analysis

We initially try to predict the area within the final perimeter of the fire

Features we select:

- STAT CAUSE DESCR: 12 listed causes of the fire
- FIRE YEAR: Year in which the fire was discovered
- DISCOVERY_DOY: Day of year on which the fire was discovered
- DISCOVERY_TIME: Time of day that the fire was discovered
- Dayofweek: Day of week on which the fire was discovered
- LATITUDE
- LONGITUDE

Correlation:

Regression Model Comparison

Model We Use

KNN

Evaluation Matrix

Linear Regression
Decision Tree
Random Forest
Support Vector Machine

Mean Squared Error Cross validation MSE Cross validation Standard Deviation

		Ove			
Result	Linear Regression	Decision Tree	Random Forest	SVR	KNN
RMSE Score	482.24	0.07	187.00	483.71	438.53
Mean score of cross validation	352.96	504.95	423.64	349.47	463.80
Std of cross validation	329.98	420.05	291.81	334.42	268.39

Improved Classification

Model we use:
Logistic Regression
Decision Tree
Random Forest
Support Vector Machine
KNN

How we improve the prediction model

Use fire size class instead of fire size

Group 12 causes of fires into four categories

- Accidental
- Arson
- Natural
- Others
- Compare models using 12 causes and 4 categories
- Select best-performed model to do parameter tuning and prediction using testing data

Classification Comparison

- Evaluation matrix is accuracy
- Different methods to categorize causes of method don't significantly improve the performance
- Random forests perform the best among all other models

12 0	original causes of fire	Logistic Regression	Decision tree	SVM	KNN	Random forest
	Accuracy Score	0.5839	0.9998	0.6143	0.6984	0.9998
	Mean score of cross validation	0.5842	0.5344	0.5951	0.5585	0.6089
	Std of cross validation	0.0112	0.0077	0.0090	0.0077	0.0097
4 categories of causes of fire						
4 ca	ategories of causes of fire	Logistic Regression	Decision tree	SVM	KNN	Random forest
4 ca	Accuracy Score	Logistic Regression 0.5476	Decision tree 0.9998	SVM 0.5993	KNN 0.6955	Random forest 0.9998
4 ca				20000-200 1130100		2000

Optimal Random Forest

n_estimators=102, 0.6113 -> 0.6119

- max_depth=13,0.6119 -> 0.6207
- min_samples_leaf=1 min_samples_split=2, 0.6207 -> 0.6208
- Criterion='entropy'
 max_features=5,
 0.6208 -> 0.6231

GS.best_estimator_

Apply to the Holdout

- Predict using testing set, accuracy is 0.6227
- Feature importance

Ensemble Learning with Blending

(Base: SVC / MLP / KNN)

(Meta: RandomForest)

- Predict using testing set, accuracy is 0.695
- Confusion Matrix

More important to fire department

	precision	recall	f1-score	support
A	0.68	0.65	0.67	4200
B C	0.69 0.84	0.78 0.38	0.73 0.53	5378 722
D	0.93	0.50	0.65	78
E	1.00	0.24	0.39	29
F	1.00	0.50	0.67	10
G	1.00	1.00	1.00	4

Challenging!!

Independent single factor is not significantly associated with size of fire based on correlation matrix.

Findings from models

Geographical features and date together are factors that associates with large fire size. We guess all these factors are related to climate, which may be an important factor of fire spread by intuition

If time allows...

- Different angles
 - Predict the causes of wildfires
- Expand the range of study to bigger area.
- Include more related datasets
 - Meteorological data
 - Economic data

Thanks for listening