Name: Aditya Rastogi Roll: 160830042

Aximize $Z = 7x_1 + 10x_2$ $x_1 \le 36$

 $\chi_2 \leq 12$

 $x_1 + 4x_2 \le 60$

 $2x_1 + x_2 \ge 30$

 $x_1 - x_2 \ge 0$

and $x_1 \ge 0$, x_2 unrestricted

From the graph, we find that I maximizes at (36,6).

This can also be verified by finding value of & at all the corner points of the feasible region.

 $Z = 7 \times 10 + 10 \times 10 = 170$

(10,10) ⇒ $Z = 7 \times 12 + 10 \times 12 = 204$

(12,12) > Z= 7×36 + 10×6 = 312

(36,6) ⇒ $Z = 7 \times 36 - 10 \times 42 = -168$ $(36, -42) \Rightarrow$

Binding Constraints:

x, < 36

 $x_1 + 4x_2 \leq 60$

because they reduce to equalities at the optimal point $x_1=36$, $x_2=6$.

Redundant Constraints:

 $x_2 \le 12$ and $x_1 \ge 0$ are redundant constraints because removing these won't change the shape of the Jeasible Jugion.

3. (A) Maximize (B) Maximize
$$3x_1 + 4x_2$$
 $x_1 + 2x_2$ $x_1 + 2x_2$ $x_1 + 2x_2 \le 30$ $x_1 + 2x_2 \le 22$ $x_1, x_2 \ge 0$

Augmented constraint set:

 $3x_1 + 2x_2 + x_3 = 30$ $x_1 + 2x_2 + x_4 = 22$ $x_1, x_2, x_3, x_4 \ge 0$

(A):

Basic $x_1 + x_2 + x_4 = 20$ entering variable $x_1 + x_2 + x_4 = 20$ $x_1 + x_2 + x_4 = 20$ $x_1 + x_2 + x_3 + x_4 = 20$

(A):

Basic $x_1 + x_2 + x_3 = 30$ $x_1 + x_2 + x_3 + x_4 = 20$ $x_1 + x_2 + x_3 + x_4 = 20$ $x_1 + x_2 + x_3 + x_4 = 20$ $x_1 + x_2 + x_3 + x_4 = 20$ $x_1 + x_2 + x_3 + x_4 = 20$ $x_2 + x_3 + x_4 + x_4 = 20$ $x_3 + x_4 + x_4 + x_5 + x$

Basic	z	×,	z	×3	24	RHS				
Variable	1	0	0	1/2	3/2	48				
Z	0	1	0	1/2	-1/2	4				
x ₁	0	0	21	-1/2 -1/4	3/2	18				
x = 4 is the optimal Solution										
$x_2 = 9$ and	z = 4	8 fo	r (4	,9).	ontering	posic voriable				
(B):	1	~	X2	23	×4	0.10				
Basic	ス	×1			0	0				
Z	1	-1	-2	6	0	30				
7-3	0	3	2	1		11				
Z24	0	12	1	0	2					
leaving fair vosice	able									
fasic Val			1 ×2	×3	×4	RHS				
Variable	Z	7/		0	1	22				
2	1	0	0		-1	8				
x ₃	0	2	0							
72	0	1/2	1	0	1/2					

 $x_1 = 0$ is the optimal Solution $x_2 = 11$ and $x_2 = 22$ for this point $x_3 = 22$ for this point $x_4 = 22$ for this point $x_4 = 22$ for this point $x_4 = 22$ for the solutions as we can see in the last table that $x_4 = 22$ coefficient of the non-basic variable $x_4 = 22$ in the first row.

Basic	Z	* ,	X2	×3	×4	THS
Variable	1	0	0	0	1	22
×	0	1	0	1/2	-1/2	4
x ₂	0	0	1	-1/4	3/4	9

 $x_1 = 4$ is another optimal Sobn for $z_2 = 9$ Same $z_1 = 22$.

	f. m	axi miz	z=	3×,+	4×2	+ ~			
pint	Subject	to			+ 3×		90		
we			2×1+	*2 .	+ 2	3 4	60		
	1		3x, +	$(2, \chi_3)$, ≤8	0		
le			4	100	10				
-61			323.						
\$HS			x3- +2×3						
	<i>3~</i> 1 °		, 23, 2						
22	1						18	HS	
4	Basic Variable								
9	Z	4400	-3 -4		0	0	0 0	70	
EX.	245	0	1 2 1		0	1	0	60	
145.5	7 ₅ / 2 ₆	0	3 1	2	0	0	1	80	
See L	Jeavis			_ente	ring				0.10
Sand I	Basic Voxiable	Z	X,	×2	×3	×4	×5	76	RHS
	Z	1	-1	0	5	2	0	0	180
	22	0	1/2	1	3/2	1/2	0	0	15
	having 725	0	3/2	0	-1/2	1/2			7.5
	Ne Ne	0	5/2	0	1/2	-1/2	0	1	35
	THE LAND VEL	et (2 per)							

						2 1	Xc	RHS
Basic Variable	Z	2,	x2	×3	×4	75	٨٢	NAS
Z	1	0	0	14/3	5/3	2/3	0	198
χ_2	0	0	1	5/3	2/3	-1/3 2/3	0	40
\varkappa_1	0	1	0	-1/3	-1/3	2/3	O	10
× ₆	0	0	0	4/3	1/3	-5/3	1	10

$$x_1 = 10$$

$$x_2 = 40$$

$$x_3 = 0$$

is the optimal , for which solution ,
$$z = 190$$

5. Mirrimize
$$3x_1 + 2.5x_2$$

Subject to $x_1 + 2x_2 \ge 20$
 $5x_1 + 2x_2 \ge 50$
 $x_1, x_2 \ge 0$