МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет прикладной математики и физики Кафедра вычислительной математики и программирования

Лабораторная работа №3 по курсу «Программирование графических процессоров»

Классификация и кластеризация изображений на GPU.

Выполнил: Н.И. Забарин

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

1. Цель работы:

Научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти.

2. Вариант задания:

Вариант 2. Метод расстояния Махаланобиса.

Программное и аппаратное обеспечение

Спецификации GPU

Name: GeForce GT 620M

Compute capability: 2.1
Warp size: 32
Max threads per block: 1024
Clock rate: 1250000

Multiprocessor count: 2

Max threads dim: 1024 1024 64 Max grid size: 65535 65535

Спецификации видеопамяти

Total global memory: 1024 MB Shared memory per block: 48 KB Registers per block: 32 KB Total constant memory: 64 KB

Спецификации СРИ

Процессор Intel Core i5-3317U

Ядер 4

Базовая частота 1.7 GHz

Спецификация оперативной памяти

Объем памяти 10 Гб Частота 1600 МГц

Спецификация жесткого диска

 Тип
 SSD

 Интерфейс
 M.2

 Объём
 240Gb

Спецификация программного обеспечения

CUDA Toolkit 7.5

OS Ubuntu 16.10

IDE Vim

Compiler nvcc V7.5.17

Метод решения

Для некоторого пикселя p, номер класса jc определяется следующим образом:

$$jc = arg \ max_j \left[-(p - avg_j)^T * cov_j^{-1} * (p - avg_j) \right]$$

Оценка вектора средних и ковариационной матрицы:

$$avg_j = \frac{1}{np_j} \sum_{i=1}^{np_j} ps_i^j$$

$$cov_j = \frac{1}{np_j-1} \sum_{i=1}^{np_j} (ps_i^j - avg_j) * (ps_i^j - avg_j)^T$$

где $ps_i^j = \left(r_i^j \ g_i^j \ b_i^j\right)^T$ -- і-ый пиксель из ј-ой выборки.

прј – количество пикселей в выборке.

Обратная матрица матрицы А ищется как

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

где adj(A) — присоединенная матрица.

$$C^* = egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ dots & dots & \ddots & dots \ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

Исходная матрица

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 • C^* — присоединённая(союзная, взаимная) матрица; • A_{ij} — алгебраические дополнения исходной матрицы; • a_{ij} — элементы исходной матрицы.

Алгебраическим дополнением элемента $\,a_{ij}\,$ матрицы A называется число

$$A_{ij} = (-1)^{i+j} M_{ij}$$

где M_{ij} — дополнительный минор

Описание программы

В программе имеется одно ядро

__global__ void kernel(uchar4 *data, uint32_t w, uint32_t h, int cnum).

В нем проходятся все пиксели, соотнесенные с данным потоком, и у каждого пикселя в компоненту альфа канала записывается номер класса внутри функции device void classify(pixel &p, int cnum).

В функции classify для каждого класса вызывается функция

__device__ double mahalanobis(const pixel p, int ci),

которая рассчитывается квадрат расстояния Махаланобиса с обратным знаком от пикселя до заданного класса.

Выбирается класс, для которого функция выдает наибольшее значение.

Для каждого класса в константной памяти GPU объявлены два массива __constant__ double GPU_AVG[32][3]; __constant__ double GPU_INVERT_COV[32][3][3]; хранящие векторы средних и обратные ковариационные матрицы.

Результаты

Количество классов - 8

Размер	Параметры ядра	Время
изображения		
400x326	< <dim3(8, 8)="" 8),="" dim3(8,="">>></dim3(8,>	1.243392
400x326	< <dim3(16, 16)="" 16),="" dim3(16,="">>></dim3(16,>	1.236064
1300x975	<< <dim3(8, 8)="" 8),="" dim3(8,="">>></dim3(8,>	10.477120
1300×975	< <dim3(16, 16)="" 16),="" dim3(16,="">>></dim3(16,>	10.460032
6000×4000	<< <dim3(8, 8)="" 8),="" dim3(8,="">>></dim3(8,>	197.120636
6000×4000	< <dim3(16, 16)="" 16),="" dim3(16,="">>></dim3(16,>	193.203613
6000x4000	< <dim3(100, 100),="" 32)="" dim3(32,="">>></dim3(100,>	195.232864

Выводы

При распараллеливании задач на CUDA следует учитывать возможность помещения каких-либо объектов в константную память. Помещение каких-либо общих для всех потоков данных, которые не будут меняться, в константную память, может увеличить скорость работы приложения за счет увеличения скорости обмена данными с памятью.

Задачи метрической классификации могут быть успешно распараллелены, т.к. классификация каждого объекта производится независимо.