Revenues

If country A cooperates

If country B cooperates

gets: \$960

If country B cheats

If country A cheats

e C O

gets: \$700

е 4

gets: 121

B gets: 1,260

Consider this situation when A cheats and B cooperates: This is a Nash equilibrium, because neither player has an incentive to do otherwise:

A can not increase his payoff by switching to cooperate

B can not increase his payoff by switching to cheat

Consider this situation when A cooperates and B cheats: This is also a Nash equilibrium, because neither player has an incentive to

do otherwise:

A can not increase his payoff by switching to cheat

B can not increase his payoff by switching to cooperate

Nash Equilibrium

Revenues

Consider this situation when A cheats and B cooperates: This is a Nash equilibrium, because neither player has an incentive to do otherwise:

A can not increase his payoff by switching to cooperate B can not increase his payoff by switching to cheat

Consider this situation when A cooperates and B cheats: This is also a Nash equilibrium, because neither player has an incentive to do otherwise:

A can not increase his payoff by switching to cheat

B can not increase his payoff by switching to cooperate

Nash Equilibrium

Determining Industry Structure