Inatel

C209 – Computação Gráfica e Multimídia EC212 – Computação Gráfica

Dispositivos Gráficos

Marcelo Vinícius Cysneiros Aragão marcelovca90@inatel.br

Dispositivos Gráficos

- Dispositivos de Entrada
- Dispositivos de Saída
- Representações Vetorial e Matricial
- Arquiteturas

- Hardware pelo qual um usuário introduz informações em um sistema de computador.
- Exemplo: mouse, trackball, joystick, sistemas de voz, telas sensíveis ao toque, etc
- Um dos principais objetivos na concepção de pacotes gráficos é a independência do dispositivo, visando aumentar a portabilidade do aplicativo.

 Para fornecer um nível de abstração para entrada ou saída de gráficos, a maioria dos sistemas gráficos suporta dispositivos lógicos, que "ocultam" detalhes dos dispositivos físicos.

• **Localizador**: insere uma posição (x, y) ou orientação, tipicamente via mouse ou *crosshairs*.

Escolha

- Identifica um objeto exibido, e n\u00e3o apenas um (x, y);
- São usados para selecionar um conjunto de ações/opções possíveis;
- Ex: botões em uma caixa ou através de uma seleção de menu com cursor
- Avaliador: para inserir um único "valor" talvez oriundo de um teclado ou disco (ex: telefones)
- **Teclado**: para inserir uma *string* de caracteres

Absoluto ou relativo

- Absoluto: posição em relação a uma origem.
 - Ex: tela sensível ao toque
- Relativo: posição em relação à posição anterior. Ex: mouse, joystick, controle remoto Wii, Microsoft Kinect

Direto ou Indireto

- Direto: o usuário aponta diretamente na tela usando uma *light-pen* ou o dedo em uma tela sensível ao toque. Ex: smartphone, caixa eletrônico
- Indireta: usuário move o cursor na tela com o dispositivo longe Ex: mouse, joystick, controle remoto Wii

Discreto ou Contínuo

- Contínuo: movimento suave das mãos. Ex: mouse, trackball
- Discreto: ações bem definidas. Ex: teclado, botões de controle

• O mouse foi desenvolvido nos laboratórios SRI (Stanford Research Institute) em 1963.

• O mouse foi desenvolvido nos laboratórios SRI (Stanford Research Institute) em 1963.

• O teclado era originalmente um dispositivo de entrada genérico.

• O teclado era originalmente um dispositivo de entrada genérico.

Mesa Digitalizadora

Ferramenta do artista digital

• Resolução muito fina, medidas muito precisas

Popular em Ásia Oriental como dispositivo para entrar

em caracteres CJK (chinês, japonês, coreano)

Câmera Digital

- Varredura (linha a linha)
- Dispositivos de carga acoplada (CCD) ou sensores de luz semicondutores (CMOS)
- Sensores produzem saída digital proporcional à intensidade de luz de cada uma das bandas de cores
- Boa sensibilidade à luz, alta resolução, colorido, inteligente

Câmera Digital

Bônus: Inside a Camera at 10,000fps - The Slow Mo Guys → https://www.youtube.com/watch?v=CmjeCchGRQo

Escâner Digital

- O sensor de linha move-se sobre a imagem
- Múltiplas escolhas de resolução (inclusive altas)
- Sensível a cores

Escâner Laser

- Varredura de cena com raio laser
- Usa a tecnologia "radar" para detectar distâncias
- Constrói a representação de uma superfície 3D de um objeto a partir de um ponto de interesse

Escâner CT

- Tomografia axial computadorizada
- Captura uma série de raios X 2D e combina-os por computador em uma matriz de densidade 3D (renderização volumétrica)

Dispositivos de Saída

- Hardware pelo qual são exibidas informações oriundas de um sistema de computador.
- Exemplos:
 - Tubo de raios catódicos (CRT)
 - Display de cristal líquido TFT
 - Projetor
 - Impressora
 - Headset de realidade virtual
 - Blinkenlights

Formato Vetorial

- Dados descritos por coordenadas de um espaço vetorial
 - Posições ou vetores.
- Osciloscópios analógicos foram muito populares no passado.
 - Flicker (cintilação) quando o número de vetores crescia muito

Traçador Vetorial

 Comando direto na potência do canhão de elétrons e nos defletores X e Y.

Formato Matricial

- Barateamento do custo da memória torna os monitores matriciais bastante populares.
- Permite a representação de imagens bidimensionais e volumétricas.
- Espaço discreto com representação bastante simples: matriz M x N.
- Principal problema: aliasing.

Formato Matricial

- Representação flexível e muito comum
- Complexidade de processamento = O (nº de pixels)
- Muitas operações implicam em perda de precisão (reamostragem)
 - Ex.: rotação, escala, translação
 - Técnicas para lidar com o problema
 - Ex.: técnicas antiserrilhado (antialiasing)

Representação Discreta

Pixel

- Abreviação de Picture Element, é o menor ponto de uma imagem.
- Normalmente contém de 1 a 32 bits.
- 1 bit para imagem branco e preto 8 bits para tons de cinza
- 24 bits para imagens coloridas (16 milhões de cores) 32 bits para imagens coloridas com transparência.

Pixel

Bônus: How a TV Works in Slow Motion - The Slow Mo Guys → https://www.youtube.com/watch?v=3BJU2drrtCM

Pixel

- A resolução de uma imagem é o número de pixels que ela contem. Pode ser apresentada de duas formas:
 - Total: número total de pixels que formam a imagem.
 - Exemplo: 16M pixels (16 milhões).
 - Por coordenada: quantidade de pixels em cada coordenada "cartesiana".
 - Ex.: 200dpi pontos (ou pixels) por polegada na vertical e na horizontal
 - Ex: 1920 x 1080 a primeira medida é a largura e a segunda é a altura
- Razão de aspecto: relação entre largura e altura da imagem
 - Exemplo: 4:3, 16:9 ou 21:9

Exemplo 1

 Calcule a memória total em bytes necessária para armazenar uma imagem sem compressão, de 1080p com razão de aspecto 16:9, amostrada com 32bits por pixel.

Exemplo 1

 Calcule a memória total em bytes necessária para armazenar uma imagem sem compressão, de 1080p com razão de aspecto 16:9, amostrada com 32bits por pixel.

```
NLinha = 1080 ; Razão = 16/9 ; B/Pixel = 32 / 8 = 4Bytes

NColuna = NLinha * Razão

= 1080 * (16/9) = 1920

RTotal = NLinha * NColuna

=1080 * 1920 = 2073600 pixels (ou 2MPixels)

MTotal = RTotal * BpPixel
```

= 2073600 * 4 = 8294400 Bytes

Prefixos decimais e binários

Nome	Símbolo	Potência = valor (SI)	Nome	Símbolo	Potência binária	Diferença
quilo	k	$10^3 = 1000$	kibi	Ki	2 ¹⁰ = 1024	2,4%
mega	М	10 ⁶ = 1 000 000	mebi	Mi	2 ²⁰ = 1 048 576	4,9%
giga	G	10 ⁹ = 1 000 000 000	gibi	Gi	2 ³⁰ = 1 073 741 824	7,4%
tera	Т	10 ¹² = 1 000 000 000 000	tebi	Ti	2 ⁴⁰ = 1 099 511 627 776	10,0%
peta	Р	10 ¹⁵ = 1 000 000 000 000 000	pebi	Pi	2 ⁵⁰ = 1 125 899 906 842 624	12,6%
exa	E	10 ¹⁸ = 1 000 000 000 000 000 000	exbi	Ei	2 ⁶⁰ = 1 152 921 504 606 846 976	15,3%
zetta	Z	10 ²¹ = 1 000 000 000 000 000 000 000	zebi	Zi	2 ⁷⁰ = 1 180 591 620 717 411 303 424	18,1%
yotta	Υ	10 ²⁴ = 1 000 000 000 000 000 000 000 000	yobi	Yi	2 ⁸⁰ = 1 208 925 819 614 629 174 706 176	20,9%

Diferenças relativas entre múltiplos decimais e binários equivalentes.

Exemplo 2

- Um determinado dispositivo pode armazenar imagens de até 12Mpixels e consegue operar com diversas razões de aspectos. Calcule o número de pixels na linha e coluna para as razões abaixo. Considere que as imagens são sempre amostradas com 32bits por pixel e armazenadas sem compressão:
 - a) Razão 4:3
 - b) Razão 16:9
 - c) Razão 21:9

Exemplo 2

```
Razão 4:3
```

RTotal = 12MPixels; Razão = 4/3

NColuna = NLinha * Razão = NLinha * (4/3)

RTotal = NLinha * Ncoluna = 12MPixels NLinha * (NLinha * (4/3)) = 12000000 NLinha2 = 12000000*(3/4), então NLinha = 3000

NColuna = 3000 * (4/3) = 4000

Arquitetura simplificada

Arquitetura com processador gráfico

Arquitetura com processador gráfico

Referências & Links Interessantes

• University of Limerick, Department of Computer Science and Information Systems,

Unix Facilities.

CS4815 (Computer Graphics) Course Notes

http://garryowen.csisdmz.ul.ie/~cs4815/resources/lect02.pdf

Referências & Links Interessantes

- AZEVEDO, Eduardo; CONCI, Aura, Computação gráfica volume 1: geração de imagens. Rio de Janeiro, RJ. Editora Campus, 2003, 353 p. ISBN 85-352-1252-3.
- AZEVEDO, Eduardo; CONCI, Aura; LETA, Fabiana R. Computação gráfica volume 2: teoria e prática. Rio de Janeiro, RJ: Editora Elsevier, 2007, 384 p. ISBN 85-352-2329-0.
- PAULA FILHO, Wilson de Pádua, Multimídia: Conceitos e aplicações. Rio de Janeiro, RJ: LTC, 2000, 321 p. ISBN 978-85-216-1222-3.