§ 3.1 Galois representation

- 1. Galois rep
- 2. Weil-Deligne rep
- 3. connections
- 4. L-fct
- 5. density theorem

1. Galois rep

Setting G: arbitrary gp e.g. G any Galvis gp

If G profinite
$$\Rightarrow$$
 open subgps are finite index subgps.

A top field e.g. \overline{F}_p , \overline{Q}_p , C , don't want to mention \overline{Z}_p now.

Def (cont Galois rep)
$$(p, V) \in \operatorname{vep}_{\Lambda, \operatorname{cont}} (G)$$

 $V \in \operatorname{vect}_{\Lambda} + p : G \longrightarrow \operatorname{GL}(V)$ cont

$$\nabla$$
 $\rho(G)$ can be infinite! for $Galgp$

E.g. When char $F \neq p$, we have p -adic cyclotomic character

 $\mathcal{E}_p : Gal(F^{sel}_{F}) \longrightarrow \mathbb{Z}_p^r \longrightarrow \mathcal{E}_p(F)$ satisfying

 $\sigma(S) = S^{\mathcal{E}_p(F)} \qquad \forall S \in \mathcal{H}_{p^\infty}$

This is cont by def. (Take usual topo.)

Notice the following two definitions don't depend on the topo of Λ .

Def (sm Galois rep)
$$(p, V) \in \operatorname{rep}_{\Delta, \operatorname{sm}}(G)$$

 $V \in \operatorname{vect}_{\Delta} + p : G \longrightarrow \operatorname{GL}(V)$ with open stabilizer.

Def (fin image Galois rep)
$$(\rho, V) \in \operatorname{vep}_{\Lambda, f_i}(G)$$
 finite image / finite index $V \in \operatorname{vect}_{\Lambda} + \rho: G \longrightarrow \operatorname{GL}(V)$ with finite image

Rmk.
$$\operatorname{vep}_{\Lambda,\operatorname{cont}}(G) \longleftarrow \operatorname{vep}_{\Lambda,\operatorname{fi}}(G) \longleftarrow \operatorname{vep}_{\Lambda,\operatorname{disc.}\operatorname{cont}}(G) = \operatorname{vep}_{\Lambda,\operatorname{sm}}(G)$$
 $\operatorname{vep}_{\Lambda,\operatorname{sm}}(G) = \operatorname{vep}_{\Lambda,\operatorname{disc.}\operatorname{cont}}(G) \longrightarrow \operatorname{vep}_{\Lambda,\operatorname{fi}}(G) \longrightarrow \operatorname{vep}_{\Lambda,\operatorname{cont}}(G)$
 $\operatorname{Rep}_{\Lambda,\operatorname{sm}}(G) \longrightarrow \operatorname{Rep}_{\Lambda,\operatorname{disc.}\operatorname{cont}}(G) \longrightarrow \operatorname{Rep}_{\Lambda,\operatorname{fi}}(G) \longrightarrow \operatorname{Rep}_{\Lambda,\operatorname{cont}}(G)$
 $\rightarrow : \text{ if } G: \operatorname{profinite } \operatorname{qp} \quad (\operatorname{Only need}: \operatorname{open} \Rightarrow \operatorname{fin index})$
 $\rightarrow : \operatorname{Artin } \operatorname{vep} (\operatorname{of } \operatorname{profinite } \operatorname{qp})$

Artin $\operatorname{vep} : \Lambda = (\mathbb{C}, \operatorname{euclidean } \operatorname{topo}) \cap \operatorname{Cappointe}(G)$

Lemma 1 (No small gp argument) $\exists \ \mathcal{U} \subset GL_n(\mathbb{C}) \text{ open } \text{ s.t.}$ $\forall H \in GL_n(\mathbb{C}) \text{ , } H \subseteq \mathcal{U} \qquad \Rightarrow H = \{\text{Id}\}.$ "Proof." Take $\mathcal{U} = \{A \in GL_n(\mathbb{C}) \mid \|A - I\|_{\text{max}} < \frac{1}{3}\}$ Only need to show, $\forall A \in GL_n(\mathbb{C})$, $A \neq \text{Id}$, $\exists n \in \mathbb{N} \setminus \text{s.t.} A^n \notin \mathcal{U}$.
Consider the Jordan form of A. Case 1. A unipotent. Case 2. A not unipotent. $\text{Problem. } \|gA_g^{-1}\|_{\text{max}} \neq \|A\|_{\text{max.}}$

Prop. For
$$(\rho, V) \in \operatorname{rep}_{\mathbb{C}, \operatorname{cont}}(G)$$
, $\rho(G)$ is finite. G profinite Proof. Take \mathcal{U} in Lemma 1. then
$$\rho^{-1}(\mathcal{U}) \text{ is open } \Rightarrow \exists I \in G_F \text{ finite index }, \rho(I) \subseteq \mathcal{U}$$

$$\Longrightarrow \rho(I) = Id$$

$$\Longrightarrow \rho(G_F) \text{ is finite}$$

Rmk. For Artin rep we can speak more:

1. p is conj to a rep valued in $GLn(\overline{Q})$ p can be viewed as cplx rep of fin gp, so p is semisimple. Since classifications of irr reps for C & \overline{Q} are the same, every irr rep is conj to a rep valued in $GLn(\overline{Q})$.

2. #{ fin subgps in GL_n(C) of "exponent m" } is bounded, see: https://mathoverflow.net/questions/24764/finite-subgroups-of-gl-nc

2. Weil-Deligne rep

Now we work over "the skeloton of the Galois gp" in general.

Finite field

Task. For Λ NA local field with char $K_{\Lambda} = l$, compare $rep_{\Lambda,cont}(\widehat{Z}) \longleftrightarrow rep_{\Lambda,m}(Z) + extra informations/conditions$