Compiler: Note #1

ant-hengxin

0130

Big Picture:

we are used to expressing lexical rules in regular expressions, but we are writing the lexical analyzer through a DFA. That means that there exists some way to convert from regular expressions to DFA.

$$\mathtt{re} o \mathtt{DFA}$$

But this approach is overly complicated, and for simplicity's sake, let's do this thing in multiple steps:

And we also want to know how to convert a DFA to a re.

Alphabet Σ : A set of finite symbols.

String s over alphabet Σ : A sequence of symbols from Σ . A special string ϵ is the empty string with the property $|\epsilon| = 0$.

String operation: concatenation: x = dog, $y = house \Rightarrow xy = doghouse$.

Language L over alphabet Σ : A countable set of strings over Σ .

Language operation:

Suppose L, M are languages, we can use set operations to construct new languages:

- 1. L \cup M:= { s | s \in L or s \in M }
- 2. LM:= { s \in L and s \in M }
- 3. L*:= $\bigcup_{i=0}^{\infty} L^i$ (Kleene closure)
- 4. L⁺:= $\bigcup_{i=1}^{\infty}$ Lⁱ (Positive closure)

The following logic is, we firstly talk about the definition of regular expression, then we talk about the definition of non-deterministic finite automaton (NFA), and we define what's the meaning of a regular expression is equivalent to a NFA.

Regular expression:

A regular expression over alphabet Σ is defined as follows:

- 1. ϵ is a regular expression.
- 2. $\forall a \in \Sigma$, a is a regular expression.
- 3. If r is a regular expression, then (r) is also a regular expression.
- 4. If r, s are regular expressions, then r|s, rs, r* are also regular expressions.

Regular expressions are prioritized as follows: () > * > concat > 1.

Regular expressions define a language we call the regular language. The rules are as follows:

1.
$$L(\epsilon) = \{ \epsilon \}.$$

- 2. $L(a) = \{ a \}, \forall a \in \Sigma.$
- 3. L((r)) = L(r).
- 4. $L(r|s) = L(r) \cup L(s), L(rs) = L(r)L(s), L(r*) = (L(r))*$

Note: If r1, r2 is a regular expression, then:

- 1. r1? represents 0 or 1 r1.
- 2. r1/r2 represents Indicates that r1 when followed by r2.

NFA: non-deterministc-finite automaton:

A NFA is a five-tuple represented as $\mathcal{A} = (\Sigma, S, s_0, \delta, F)$ with the following properties:

- 1. Alphabet $\Sigma(\epsilon \notin \Sigma)$.
- 2. S is a finite set of states.
- 3. $s_0 \in S$ is the only start state.
- 4. $\delta: S \times (\Sigma \cup {\epsilon}) \to 2^S$
- 5. F is a set of accept states.

Note that the requirement **only** in property 3 is not necessary, because if there exists more then one start state, we can define a new start state and the original start states is constructed as a ϵ -closure of the new start state.

And the definition of NFA actually define a language $L(\mathcal{A})$, which is composed of all the strings that can be accepted by the NFA.

Two important questions of NFA:

- 1. Given a string s, is s in $L(\mathcal{A})$?
- 2. What is $L(\mathcal{A})$?

Equivalence of regular expression and NFA:

Now we can talk about what is the meaning of a regular expression is equivalent to a NFA. We call a regular expression \mathbf{r} is equivalent to a NFA \mathcal{A} if and only if $L(\mathbf{r})$ is equivalent to $L(\mathcal{A})$ as two sets.

Let's start to talk about how to convert a re to a NFA, which let us introduce an algorithm called **Thompson's construction**.

So the idea of Thompson's construction is very simple, in order to know how to convert a regular expression to a NFA, what we only need to do is to know the conversion rules corresponding to the definition of regular expression.

1. if ϵ is a regular expression, then the corresponding NFA is:

$$start \longrightarrow \boxed{q} \xrightarrow{\epsilon} \boxed{f}$$

2. if ${\tt a}$ is a regular expression, then the corresponding NFA is:

- 3. The NFA of (s) is the same as the NFA of s.
- 4. The NFA of r|s (Given NFA(s) and NFA(r)) is:

