Markov Chains

Website Traffic Prediction

Tanay Biradar

October 3, 2021

Website Traffic and PageRank

- Search engines use popularity to rank pages
- Popularity can be quantified by links to a page
 - ► Works in theory, can be abused in practice
- Google used a Markov Model (PageRank) to rank popularity
 - ► We're looking to predict traffic, but a similar process applies

CENTRAL QUESTION

Which page is a user most likely to land on after starting on a given page?

Model

- Represent the internet as a directed graph
 - ► We're looking at a small slice of the web
 - Assume more links to a page means more likely to land on it
- Edges are links, vertices are web pages
 - Assume equal probability of traversing every link such that $\Sigma w_{out} = 1$, where w is the edge weight
 - The probabilities coming out of every website must sum to 1

¹https://en.wikipedia.org/wiki/PageRank

Data

The most complex part is by far the data collection

- Perform BFS to make an adjacency list of the internet
 - ► Keep track of visited nodes to avoid duplicate processing
- Stop after storing __ thousand links
 - ► I don't have the computing power of Google

Data (cont'd)

Adjacency list A stores links between pages If $A_{ij} = 1$, there is a link from page i to page j

$$A = \begin{bmatrix} a_{00} & \dots & a_{0n} \\ \vdots & \ddots & \vdots \\ a_{n0} & \dots & a_{nn} \end{bmatrix}$$

Normalize the adjacency list to satisfy $\forall i \ \Sigma w_{out} = \Sigma_j w_i = 1$ We now have a transition matrix T with probabilities!

Data (cont'd 2)

We can only work with rows/column numbers for the transition matrix Solution: Map website URLs to unique IDs

BENCHMARKING

- Create a state vector
 - Create a 0 vector with same number of dimensions as rows in T
 - ► Start at a given page, use lookup table to make the corresponding entry 1 (web page visits are discrete)
- Transition matrix is not diagonalizable
 - ► We must simulate and let the state vector converge

BENCHMARKING (CONT'D)

Steps for simulation

- 1. Multiply transition matrix by state vector
- 2. Take web page the user has the greatest probability of landing on and set the state vector probability of that page to $\mathbf{1}$, all others to $\mathbf{0}$
 - 2.1 Web page visits are discrete
- 3. Repeat 1-2 either to satisfaction or to convergence

RESULTS