W = emgr(f,g,s,t,w,pr,nf,ut,us,xs,um,xm,dp)

emgr – Empirical Gramian Framework (Version 5.7)

f System Vector Field (Handle) x = f(x,u,p,t) i.e.: f = g(x,u,p,t) x xxxx8xupFxp g Output Functional 1	Mandatory Arguments		Option Flags	
s System Dimensions (Vector) s = [M,N,Q] (Inputs, States, Outputs) t Time Discretization (Vector) t = [dt,1f1] (Time Step, Time Horizon) M Gramian Type (Char) Empirical System Gramian Type (Char) Empirical Controllability Gramian (returns W _v) (**) Empirical Controllability Gramian (returns W _v) (**) Empirical Corsos Gramian (returns W _v) (**) Empirical Corsos Gramian (returns W _v) (**) Empirical Inlear Cross Gramian (returns W _v) (**) Empirical Inlear Cross Gramian (returns W _v) (**) Empirical Inlear Cross Gramian (returns W _v) (**) Empirical Inlear Cross Gramian (returns W _v , W _v , W _v) (**) Empirical Inlear Cross Gramian (returns W _v , W _v) (**) Detailed Schur-complement (default) (**) Empirical Inlear Cross Gramian (returns W _v , W _v , W _v , W _v , W _v) (**) Empirical Inlear Cross Gramian (returns	f System Vector Field	(Handle) $x = f(x,u,p,t)$ i.e.: $f = Q(x,u,p,t) A*x+B*u+F*p$	<pre>nf(1) Trajectory centering</pre>	$nf(8)$ Extra input $(\mathbf{W_o}, \mathbf{W_x}, \mathbf{W_s}, \mathbf{W_l}, \mathbf{W_l})$ only)
s System Dimensions (Vector) s = [M, N, Q] (Inputs, States, Outputs) t Time Discretization (Vector) t = [dt, Tf] (Time Step, Time Horizon) w Gramian Type (Char) Empirical Controllability Gramian (returns W _c) 'c' Empirical Controllability Gramian (returns W _c) 'r' Empirical Cross Gramian (returns W _c) 'r' Empirical Cross Gramian (returns W _c) 'r' Empirical Ensentitivity Gramian (returns W _c) 'r' Empirical Identifiability Gramian (returns W _c) 'r' Empirical Identifiability Gramian (returns W _c) 'r' Empirical Identifiability Gramian (returns W _c , W,	g Output Functional	(Handle) $y = g(x,u,p,t)$ i.e.: $g = Q(x,u,p,t)$ C*x+D*u	0 None (default)	0 No (default)
t Time Discretization w Gramian Type (Char) Empirical System Gramian Type (Char) Empirical Controllability Gramian (returns W _c) i.e. Empirical Controllability Gramian (returns W _c) i.e. Empirical Cross Gramian (returns W _c) i.g. Empirical Cross Gramian (returns W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Gramian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c , W _c i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns W _c , W _c) i.g. Empirical Constantian (returns		1 y = x	1 Initial state	1 Yes
Charlian Type Char Empirical System Gramian Type 'c' Empirical Controllability Gramian (returns W _c) 5 Midrange 5 Midrange 6 Geometric mean nf(10) Parameter Gramian Type (W _s , W, W _s) only)	s System Dimensions	(Vector) s = [M,N,Q] (Inputs, States, Outputs)	2 Final steady-state	$nf(9)$ Center param. Scales $(W_s, W_l, W_J \text{ only})$
*** C Empirical Controllability Gramian (returns W_o)** 6 Geometric mean of f(10)** Parameter Gramian Type (W_o, W_o, W_only)** of Empirical Cross Gramian (returns W_o)** of Empirical Cross Gramian (returns W_o)** of Empirical Lener Cross Gramian (returns W_o)** of Empirical Lener Cross Gramian (returns W_o)** of Empirical Lener Cross Gramian (returns W_o, W_o, W_o, W_o, W_o, W_o, W_o, W_o,	t Time Discretization	(Vector) t = [dt,Tf] (Time Step, Time Horizon)	3 Arithmetic average	0 No centering (default)
Parameter Para	w Gramian Type	(Char) Empirical System Gramian Type	4 Root-mean-squared	1 Linear mean centering
The properties of the proper		$^{f 'c'}$ Empirical Controllability Gramian (returns ${f W}_c$)	5 Midrange	2 Logarithmic mean centering
vy Empirical Linear Cross Gramian (returns W _v) 0 Single (default) 1 Linear W _v , W _v 0 Detailed Schur-complement (default) 1 Linear W _v , W _v 1 Approximate Schur-complement (default) 2 Geometric 3 Logarithmic 1 Linear W _v , W _v 1 Approximate Schur-complement (default) 2 Geometric 3 Logarithmic 1 F(11) Partitioned cross Gramian (W _v , W _v only) 3 State scale sequence 0 Single (default) 1 Linear 0 Full cross Gramian (W _v , W _v only) 0 Full cross Gramian (W _v , W _v , W _v only) 0 Full cross Gramian (W _v , W _v , W _v , W _v only) 0 Full cross Gramian (W _v , W _v ,		$oldsymbol{v_0}oldsymbol{v}$ Empirical Observability Gramian (returns $oldsymbol{W_0}$)	6 Geometric mean	nf(10) Parameter Gramian Type ($\mathbf{W_s}$, $\mathbf{W_l}$, $\mathbf{W_J}$ only)
*** Empirical Sensitivity Gramian (returns W_c , W_s) *** it Empirical Jdentifiability Gramian (returns W_c , W_s) *** period Joint Gramian (returns W_c , W_s) **Optional Arguments **pr Parameters **(Vector) Column vector of parameters (default: $pr = 0$) **(Matrix) Set of parameter columns (W_s , W_s , W_s require min / max) **nf Options Flags **(Vector) Twelve components (default: $nf = 0$) **ut Input Function **(Handle) Input function $u_s t = ut(t)$ or char (default: $ut = t(t)$) **s' Step input **us Steady-State Input **(Vector) Individual steady-state input (default: $us = 0$) **(Vector) Individual steady-state ($us = 0$) **(Vector) Individual s		$\mathbf{v}_{\mathbf{X}}$ Empirical Cross Gramian (returns $\mathbf{W}_{\mathbf{X}}$)	nf(2) Input scale sequence	W _s 0 Input-state average (default)
Properties Pro		$\mathbf{v_y}$ Empirical Linear Cross Gramian (returns $\mathbf{W_y}$)	0 Single (default)	W _s 1 Input-output average
Optional Arguments pr Parameters (Vector) Column vector of parameters (default: pr = 0)			1 Linear	W _{I'} W _J 0 Detailed Schur-complement (default)
Optional Arguments pr Parameters (Vector) Column vector of parameters (default: pr = 0) (Matrix) Set of parameter columns (W _s , W _p , W _p , require min / max) nf Options Flags (Vector) Twelve components (default: nf = 0) 1 Linear 0 Full cross Gramian partition size 0 Full cross Gramian (W _x , W _p only) ut Input Function (Handle) Input function u_t = ut(t) or char (default: ut = 'i') 2 Geometric 3 Logarithmic 'i' Delta impulse (default) 3 Logarithmic 's' Step input 4 Sparse Custom Solver 'c' Decaying exponential chirp nf(4) Input transformation 0 ± Unit (default) 1 + Unit 1		- '	2 Geometric	W _{I'} W _J 1 Approximate Schur-complement
pr Parameters (Vector) Column vector of parameters (default: pr = 0) (Matrix) Set of parameter columns (Wg, Wr, W, require min / max) nf Options Flags (Vector) Twelve components (default: nf = 0) ut Input Function (Handle) Input function u_t = ut(t) or char (default: ut = 'i') belta impulse (default) 'i' Delta impulse (default) 's' Step input 'c' Decaying exponential chirp 'r' Pseudo-random binary us Steady-State Input (Scalar) Uniform steady-state input (M x 1) xs Steady-State (Scalar) Uniform steady-state (default: us = 0) (Vector) Individual steady-state (default: us = 1) (Vector) Individual max input scales (M x x) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x x) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x x) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x x) (Matrix) Custom input scales (M x x) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x x) (Matrix) Custom steady-state scales (M x x) nf(6) Normalizing None (default) nf(7) State scale sequence 0 Single (default) 1 Linear 2 Geometric 3 Logarithmic 4 Sparse Custom Solver Global variable 0DE to a handle with signature: y = 0DE(f,g,t,x0,u,p) Default: RK - SSP32 The input transformation 0 ± Unit (default) 1 + Unit 1 + Unit 1 + Unit 2 + Unit (default) 3 Logarithmic 4 Sparse Custom Solver Global variable 0DE to a handle with signature: y = 0DE(f,g,t,x0,u,p) Default: RK - SSP32 The input transformation 0 ± Unit (default) 1 + Unit 1 + Unit 2 + Unit (default) 3 Logarithmic 4 Sparse Global variable 0DE to a handle with signature: y = 0DE(f,g,t,x0,u,p) Default: RK - SSP32 The input transformation 0 ± Unit (default) 1 + Unit 1 + Unit 2 + Unit (default) 3 + Unit (default) 4 + Unit 4		' j ' Empirical Joint Gramian (returns W _x , W _J)	3 Logarithmic	nf(11) Partitioned cross Gramian (\mathbf{W}_{x} , \mathbf{W}_{J} only)
Matrix Set of parameter columns (W _s , W _r , W _s require min / max 0 Single (default) nf (12) Partitioned cross Gramian (W _s , W _s only)	Optional Arguments		4 Sparse	• Full cross Gramian
nf Options Flags (Vector) Twelve components (default: nf = 0) 1 Linear 0 Full cross Gramian ut Input Function (Handle) Input function u_t = ut(t) or char (default: ut = 'i') 2 Geometric >0 Partition running index 't' Delta impulse (default) 3 Logarithmic >0 Partition running index 's' Step input 4 Sparse Custom Solver 'r' Decaying exponential chirp 0 ± Unit (default) global variable 0DE to a handle with signature: v Decaying exponential chirp 0 ± Unit (default) y = 0DE(f,g,t,x0,u,p) Default: RK - SSP32 us Steady-State Input (Scalar) Uniform steady-state input (M x 1) nf(5) State transformation Minimal Usage: W = emgr(f,g,s,t,w) xs Steady-State (Scalar) Uniform steady-state (default: xs = 0) 0 ± Unit (default) Minimal Usage: W = emgr(f,g,s,t,w) um Input Scales (Scalar) Uniform steady-state (default: xs = 1) nf(6) Normalizing Move info at: https://gramian.de xm Steady-State Scales (Matrix) Custom input scales (M x *) 0 None (default) More info at: https://gramian.de xm Steady-State Scales (N x *) 2 Steady-state 2 Steady-state xm Steady-State Scales	pr Parameters	·	<pre>nf(3) State scale sequence</pre>	·
ut Input Function(Handle) Input function u_t = ut(t) or char (default: ut = 't')2 Geometric>0 Partition running index'i' Delta impulse (default)3 Logarithmic's' Step input4 SparseCustom Solver'c' Decaying exponential chirpnf(4) Input transformationGlobal variable ODE to a handle with signature:'r' Pseudo-random binary0 ± Unit (default)y = ODE(f,g,t,x0,u,p) Default: RK - SSP32us Steady-State Input(Scalar) Uniform steady-state input (M x 1)nf(5) State transformationMinimal Usage: W = emgr(f,g,s,t,w)xs Steady-State(Scalar) Uniform steady-state (default: xs = 0)0 ± Unit (default)(Vector) Individual steady-states (N x 1)1 + UnitAbout Info: V = emgr('version')um Input Scales(Scalar) Uniform max input scales (M x 1)nf(6) NormalizingMore info at: https://gramian.dexm Steady-State Scales(Scalar) Uniform max steady-state scales (default: xm = 1)2 Steady-state(Vector) Individual max steady-state scales (M x 1)1 Jacobi(Watrix) Custom input scales (M x *)nf(7) State Gramian Type (Wo, Wx, Wy, Wy, Wy, Wy, Wy, Wy, Wy, Wy, Wy, Wy		(Matrix) Set of parameter columns ($\mathbf{W_s}$, $\mathbf{W_l}$, $\mathbf{W_J}$ require min / max)	0 Single (default)	nf(12) Partitioned cross Gramian (\mathbf{W}_{x} , \mathbf{W}_{J} only)
'i' Delta impulse (default) 's' Step input 's' Step input 'c' Decaying exponential chirp 'r' Pseudo-random binary us Steady-State Input (Vector) Individual steady-state input (M x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) um Steady-State Scales (Scalar) Uniform max input scales (M x 1) um Input Scales (Scalar	nf Options Flags	(Vector) Twelve components (default: nf = 0)	1 Linear	0 Full cross Gramian
's' Step input 'c' Decaying exponential chirp 'r' Pseudo-random binary us Steady-State Input (Vector) Individual steady-state input (default: us = 0) (Vector) Individual steady-state (default: us = 0) (Vector) Individual steady-state (M x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) um Steady-State Scales (Scalar) Uniform max input scales (M x 1) um Steady-State Scales (Matrix) Custom input scales (M x 1) um Steady-State Scales (Vector) Individual max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (M x 1) um Steady-State Scales (Vector) Individual max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (M x 1) um Steady-State Scales (Vector) Individual max steady-state scales (M x 1) (Vector) Individual max steady-state scales (M x 1) (Vector) Individual max steady-state scales (N x 1) (Vector) I	ut Input Function	(Handle) Input function $\mathbf{u_t} = \mathbf{ut(t)}$ or char (default: $\mathbf{ut} = 'i'$)	2 Geometric	>0 Partition running index
'c' Decaying exponential chirp 'r' Pseudo-random binary us Steady-State Input (Scalar) Uniform steady-state input (default: us = 0) (Vector) Individual steady-state (default: xs = 0) (Vector) Individual steady-state (default: um = 1) (Vector) Individual max input scales (M x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x 1) xm Steady-State Scales (Scalar) Uniform max steady-state scales (M x 1) (Matrix) Custom input scales (N x 1) dp Dot Product (Handle) Handle to custom inner product xy = dp(x,y) nf(4) Input transformation 0 ± Unit (default) 1 + Unit Nf(5) State transformation 0 ± Unit (default) 1 + Unit Nf(6) Normalizing 0 None (default) 1 Jacobi 2 Steady-State 2 Steady-State Nf(7) State Gramian Type (W _o , W _x , W _y , W		'i' Delta impulse (default)	3 Logarithmic	
'r' Pseudo-random binary us Steady-State Input (Scalar) Uniform steady-state input (default: us = 0) (Vector) Individual steady-state input (M x 1) xs Steady-State (Scalar) Uniform steady-state (default: xs = 0) (Vector) Individual steady-state (default: xs = 0) (Vector) Individual steady-state (N x 1) um Input Scales (Scalar) Uniform max input scales (M x 1) (Vector) Individual max input scales (M x 1) (Matrix) Custom input scales (M x 1) xm Steady-State Scales (Scalar) Uniform max steady-state scales (N x 1) (Vector) Individual max steady-state sca		's' Step input	4 Sparse	Custom Solver
us Steady-State Input (Scalar) Uniform steady-state input (default: us = 0) (Vector) Individual steady-state input (M x 1) xs Steady-State (Scalar) Uniform steady-state (default: xs = 0) (Vector) Individual steady-states (N x 1) um Input Scales (Scalar) Uniform max input scales (default: um = 1) (Vector) Individual max input scales (M x 1) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Vector) Individual max stea		'c' Decaying exponential chirp	nf(4) Input transformation	Global variable ODE to a handle with signature:
(Vector) Individual steady-state input (M x 1) xs Steady-State (Scalar) Uniform steady-state (default: xs = 0) (Vector) Individual steady-states (N x 1) um Input Scales (Scalar) Uniform max input scales (default: um = 1) (Vector) Individual max input scales (M x 1) (Matrix) Custom steady-state scales (N x 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x 1) (More info at: https://gramian.de 2 Steady-state 2 Steady-state 3 Regular (default) 4 Non-symmetric Cross Gramian		'r' Pseudo-random binary	0 ± Unit (default)	y = ODE(f,g,t,x0,u,p) Default: RK - SSP32
xs Steady-State (Scalar) Uniform steady-state (default: xs = 0)	us Steady-State Input	(Scalar) Uniform steady-state input (default: us = 0)	1 + Unit	
(Vector) Individual steady-states (N x 1) um Input Scales (Scalar) Uniform max input scales (default: um = 1) (Vector) Individual max input scales (M x 1) (Matrix) Custom input scales (M x *) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) dp Dot Product (Vector) Individual max steady-state scales (N x *) (Matrix) Custom steady-state scales (N x *)		(Vector) Individual steady-state input (M x 1)	nf(5) State transformation	<pre>Minimal Usage: W = emgr(f,g,s,t,w)</pre>
um Input Scales (Scalar) Uniform max input scales (default: um = 1) (Vector) Individual max input scales (M x 1) (Matrix) Custom input scales (M x *) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (M x 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) dp Dot Product (Scalar) Uniform max input scales (M x 1) (Matrix) Custom input scales (M x *) 1	xs Steady-State	(Scalar) Uniform steady-state (default: xs = 0)	<pre>0 ± Unit (default)</pre>	
(Vector) Individual max input scales (M x 1) (Matrix) Custom input scales (M x *) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) dp Dot Product (Vector) Individual max input scales (M x 1) (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Natrix) Custom steady-state scales (N x *) (Matrix) Custom steady-state scales (N x *) (Handle) Handle to custom inner product xy = dp(x,y) (Vector) Individual max input scales (M x 1) 1		(Vector) Individual steady-states (N x 1)	1 + Unit	About Info: V = emgr('version')
(Matrix) Custom input scales (M x *) xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) dp Dot Product (Matrix) Custom input scales (M x *) 1 Jacobi 2 Steady-state nf(7) State Gramian Type (W _o , W _x , W _y , W _y , W _y , only) 0 Regular (default) W _x , W _y , W _y , V _y	um Input Scales	(Scalar) Uniform max input scales (default: um = 1)	nf(6) Normalizing	
xm Steady-State Scales (Scalar) Uniform max steady-state scales (default: xm = 1) (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) (Matrix) Custom steady-state scales (N x *) (Matrix) Custom inner product xy = dp(x,y) (Matrix) Non-symmetric Cross Gramian		(Vector) Individual max input scales (M x 1)	0 None (default)	More info at: https://gramian.de
(Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) dp Dot Product (Vector) Individual max steady-state scales (N x 1) (Matrix) Custom steady-state scales (N x *) 0 Regular (default) W _x , W _y , W _y , W _y , V		(Matrix) Custom input scales (M x *)	1 Jacobi	
(Matrix) Custom steady-state scales (N x *) dp Dot Product (Handle) Handle to custom inner product $xy = dp(x,y)$ $v_{x'}v_{y'}v_{y'}$ 1 Non-symmetric Cross Gramian	xm Steady-State Scales	(Scalar) Uniform max steady-state scales (default: xm = 1)	•	
dp Dot Product (Handle) Handle to custom inner product $xy = dp(x,y)$ $W_{x'}W_{y'}W_{y}$ 1 Non-symmetric Cross Gramian			$nf(7)$ State Gramian Type (W_o , V	W_x, W_y, W_I, W_J only)
			_	
[] Default matrix product W _o , W _i 1 Averaged Observability Gramian licensed under CC-BY	dp Dot Product		·	
		[] Default matrix product	w_o,w_i 1 Averaged Observability	/ Gramian licensed under CC-BY