

Automated and Connected Driving Challenges

Section 4 – Vehicle Guidance

Vehicle Guidance on Guidance Level
Introduction

Bastian Lampe

Institute for Automotive Engineering

RWTHAACHEN UNIVERSITY

Fundamentals - Optimal Control Problem

The Goal of Motion Planning:

Transition of a system from a start-state x_0 to a goal-state x_f .

The optimal control-problem is defined by:

The system dynamics:

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t)$$
$$\mathbf{x}(0) - \mathbf{x}_0 = 0$$

Additional boundary conditions:

$$g(\mathbf{x}(t_f), t_f) = 0$$

Vehicle Guidance

Fundamentals - Optimal Control Problem

The Goal of Motion Planning:

Transition of a system from a start-state \mathbf{x}_0 to a goal-state \mathbf{x}_f .

The optimal control-problem is defined by:

The system dynamics:

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t)$$
$$\mathbf{x}(0) - \mathbf{x}_0 = 0$$

Additional boundary conditions:

$$g(\mathbf{x}(t_f), t_f) = 0$$

$$h(\mathbf{x}(t), \mathbf{u}(t), t) \le 0 \quad \forall t \in [0, t_f]$$

The cost function:

$$\min_{\mathbf{u}} J(\mathbf{x}(t), \mathbf{u}(t)) = \int_0^{t_f} l(\mathbf{x}(t), \mathbf{u}(t), t) dt + V(\mathbf{x}(t_f), t_f)$$

Vehicle Guidance

Fundamentals – Approaches to solve the OCP

Source: Werling 2017

Vehicle Guidance

Fundamentals – Approaches to solve the OCP

Source: Werling 2017

Vehicle Guidance on Guidance Level

Categorization of Direct Approaches

Source: Diehl et al. 2006

Vehicle Guidance on Guidance Level

Categorization of Direct Approaches

Source: Diehl et al. 2006