

双极型三极管输入特性

- 三极管的输入特性近似为指数曲线
- 通常用折线近似
- 硅管V_{ON}: 0.7V
- 锗管V_{ON}: 0.3V

(a)

■ 双极型三极管输出特性

- ▶ 输出特性曲线可分为三个区域: 放大区, 饱和区, 截止区
 - 在放大区 $i_{\rm C}$ 随 $i_{\rm B}$ 的变化成正比变化,几乎不受 $v_{\rm CE}$ 的影响;
 - 在饱和区, i_C 不随 i_B 成正比变化,而趋向饱和,硅三极管的饱和 $v_{CE}=0.6$ V,在深度饱和下, v_{CE} 在0.3 V以下;
 - 在i_B=0以下为截止区,在截止区i_C几乎等于零。

1952 - 19

双极型三极管开关电路

等效: 截止

饱和导通

TTL集成门电路——与非门

■ TTL与非门结构

输入为高电平时,输出为低电平

输入有低电平时,输出为高电平

TTL门电路的电压传输特性

阈值电压 $V_{\rm TH}$

TTL门电路输入电压的噪声容限

- ■噪声容限
 - ▶ 噪声容限表示门电路的抗干扰能力
 - ▶ 低电平噪声容限

$$V_{\rm NL} = V_{\rm IL~(max)} - V_{\rm OL~(max)}$$

= 0.8V-0.4V = 0.4V

> 高电平噪声容限

$$V_{\rm NH} = V_{\rm OH~(min)} - V_{\rm IH~(min)}$$

= 2.4V-2.0V = 0.4V

TTL门电路的输入特性

输入负载特性

$$V_{\rm I} = \frac{R_{\rm P}}{R_{\rm 1} + R_{\rm P}} (V_{\rm CC} - V_{\rm BE1})$$

TTL门电路的输出特性

■低电平输出特性

TTL门电路的输出特性

- ■高电平输出特性
 - 受功耗限制,输出高电平时,负载电流一般不可超过0.4mA

扇出系数

■输出带载能力

$$N_{\rm OL} = \frac{I_{\rm OL}}{I_{\rm IL}}$$

TTL门电路的传输延迟

■ 传输延迟

- ✓ 导通延迟时间 t_{PHL} ——从输入波形上升沿的中点到输出波形下降沿的中点所经历的时间;
- \checkmark 截止延迟时间 t_{PLH} ——从输入波形下降沿的中点到输出波形上升沿的中点所经历的时间。
 - ✓与非门的平均传输延迟时间 $t_{
 m pd}$

$$t_{\rm pd} = \frac{t_{\rm PLH} + t_{\rm PHL}}{2}$$

TTL门电路及其扩展

- TTL反相器
- TTL与非门、或非门、与或非门、异或门
- 集电极开路门(OC门)
- TTL三态门

非门

$$Y = \overline{A}$$

或非门

或非门

或非门

$$Y = A + B$$

与或非门

与或非门

与或非门

异或门

异或门

异或门

问题提出

- ■普通TTL门电路应用的限制
 - \rightarrow 当 $v_{\rm O}=V_{\rm OH}$ 时, $i_{\rm OH}\leq 400~\mu$ A;
 - > 输出级不能并联
 - 错误的逻辑功能
 - "拉"电流过大, 损坏电路

集电极开路(OC)门

集电极开路门

>线与

数字电路

ightharpoonup OC门上拉电阻 R_{L} 的选择

电路如图,已知 G_1 、 G_2 为OC门,输出管截止时的漏电流 I_{OH} = $200 \, \mu \, A$,输出管导通时允许的最大负载电流 I_{OLmax} = $16 \, mA$ 。 G_3 、 G_4 、 G_5 均为74系列与非门,它们的低电平输入电流 I_{IL} = $-1 \, mA$,高电平输入电路为 I_{IH} = $40 \, \mu \, A$ 。给定 V_{cc} =5V,要求0C门输出的高电平 V_{OH} >3.0V,低电平 V_{OL} <0.4V。试为电路中外接负载电阻 V_{CL}

三态门

三态门

