Thesis Title

A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY

Full Author Name

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Name of the Advisor

May, 2015

© Full Author Name 2015 ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my time in graduate school.

Dedication

To those who held me up over the years

Abstract

Contents

A	cknowledgements	i
D	edication	ii
\mathbf{A}	bstract	iii
Li	st of Tables	vi
Li	st of Figures	vii
1	Introduction	1
2	Physics of Neutrinos	2
3	Experiment	3
4	Simulation	4
5	Event Reconstruction	5
6	Data Analysis Strategy	6
7	Event Selection	7
8	Analysis	8
	8.1 Analysis Procedure	8
	8.2 Analysis Result	8

9 Conclusion and Discussion	g
References	10
Appendix A. Glossary and Acronyms	11
A.1 Glossary	11
$\Delta 2 - \Delta c$ ronyms	11

List of Tables

A.1	Acronyms																		1

List of Figures

Introduction

- Chapter 2 briefly presents the history of, and science behind, the subjects presented in this thesis.
- In Chapter 3 the experiment is outlined.
- Chapter 4 describes the simulation process used in the analysis.
- Chapter 5 follows the chain of reconstruction software used to obtain meaningful results from data.
- Chapter 6 hashes out the strategy for analysis and presents the data and simulated sets that will be used in the analysis.
- Chapter 7 demonstrates the implementation of the event selection processes.
- In Chapter 8 those events selected in Chapter 7 are analyzed.
- Chapter 9 presents a final discussion of the analyses presented in the thesis.

Physics of Neutrinos

Experiment

Simulation

Event Reconstruction

Data Analysis Strategy

Event Selection

Analysis

- 8.1 Analysis Procedure
- 8.2 Analysis Result

Conclusion and Discussion

References

Appendix A

Glossary and Acronyms

Care has been taken in this thesis to minimize the use of jargon and acronyms, but this cannot always be achieved. This appendix defines jargon terms in a glossary, and contains a table of acronyms and their meaning.

A.1 Glossary

• Cosmic-Ray Muon (CR μ) – A muon coming from the abundant energetic particles originating outside of the Earth's atmosphere.

A.2 Acronyms

Table A.1: Acronyms

Acronym	Meaning
$CR\mu$	Cosmic-Ray Muon