

Algorithm Design and Analysis (H)

CS216

Prof. Shiqi Yu (于仕琪)

yusq@sustech.edu.cn

http://faculty.sustech.edu.cn/yusq/

Greedy Algorithms

4. Optimal Caching

Caching

• HD->memory->cache

Memory type	Typical size	Typical access time		
Processor registers	128KB	1 cycle		
On-chip L1 cache	32KB	1-2 cycle(s)		
On-chip L2 cache	128KB	8 cycles		
Main memory (L3) dynamic RAM	MB or GB ^[1]	30-42 cycles		
Back-up memory (hard disk) (L4)	MB or GB	> 500 cycles		
[1] Size limited by the processor core addressing, for example a 32-bit processor without memory management can directly address 4GB of memory.				

Optimal Offline Caching

- Caching.
 - Cache with capacity to store k items.
 - \triangleright Sequence of m item requests d_1 , d_2 , ..., d_m .
 - Cache hit: item already in cache when requested.
 - Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.
- Goal. Eviction schedule that minimizes number of cache misses.
- Ex: k = 2, initial cache = ab, requests: a, b, c, b, c, a, a, b.
- Optimal eviction schedule: 2 cache misses.

Optimal Offline Caching: Farthest-In-Future

 Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.

- Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
- Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

- Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.
- Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses.

Reduced Eviction Schedules

- Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more cache misses.

 doesn't enter cache at requested
- Pf. (by induction on number of unreduced items)
 - Suppose S brings d into the cache at time t, without a request.
 - Let c be the item S evicts when it brings d into the cache.
 - Case 1: d evicted at time t', before next request for d.
 - Case 2: d requested at time t' before d is evicted.

Case 1

time

Case 2

- Theorem. FF is optimal eviction algorithm.
- Pf. (by induction on number or requests j)

Invariant: There exists an optimal reduced schedule S that makes the same eviction schedule as S_{FF} through the first j+1 requests.

- Let S be reduced schedule that satisfies invariant through j requests. We produce S' that satisfies invariant after j+1 requests.
 - \triangleright Consider (j+1)st request d = d_{j+1}.
 - Since S and S_{FF} have agreed up until now, they have the same cache contents before request j+1.
 - Case 1: (d is already in the cache). S' = S satisfies invariant.
 - \triangleright Case 2: (d is not in the cache and S and S_{FF} evict the same element). S' = S satisfies invariant.

- Pf. (continued)
 - \triangleright Case 3: (d is not in the cache; S_{FF} evicts e; S evicts $f \neq e$).
 - ✓ begin construction of S' from S by evicting e instead of f

✓ now S' agrees with S_{FF} on first j+1 requests; we show that having element f in cache is no worse than having element e

• Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'.

| The proof of the

- Case 3a: g = e. Can't happen with Farthest-In-Future since there must be a request for f before e.
- Case 3b: g = f. Element f can't be in cache of S, so let e' be the element that S evicts.
 - ✓ if e' = e, S' accesses f from cache; now S and S' have same cache
 - \checkmark if e' ≠ e, S' evicts e' and brings e into the cache; now S and S' have the same cache

Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with S_{FF} through step j+1

• Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'.

| The proof of the

Case 3c: g ≠ e, f. S must evict e.Make S' evict f; now S and S' have the same cache.

Caching Perspective

- Online vs. offline algorithms.
 - > Offline: full sequence of requests is known a priori.
 - Online (reality): requests are not known in advance.
 - Caching is among most fundamental online problems in CS.

- LIFO. Evict page brought in most recently.
- LRU. Evict page whose most recent access was earliest.

FF with direction of time reversed!

- Theorem. FF is optimal offline eviction algorithm.
 - Provides basis for understanding and analyzing online algorithms.
 - ➤ LRU is k-competitive. [Section 13.8]
 - LIFO is arbitrarily bad.

5. Shortest Paths in a Graph

Shortest Path Problem

- Shortest path network.
 - \triangleright Directed graph G = (V, E).
 - Source s, destination t.
 - \triangleright Length ℓ_e = length of edge e.
- Shortest path problem: find shortest directed path from s to t.

cost of path = sum of edge costs in path

Cost of path s-2-3-5-t = 9 + 23 + 2 + 16 = 50.

Dijkstra's Algorithm

- Dijkstra's algorithm.
 - Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
 - \rightarrow Initialize S = {s}, d(s) = 0.
 - Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e$$
 show explains

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm

- Dijkstra's algorithm.
 - Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u.
 - \rightarrow Initialize S = {s}, d(s) = 0.
 - Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e$$
 short explosingle

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)

Dijkstra's Algorithm: Proof of Correctness

- Invariant. For each node $u \in S$, d(u) is the length of the shortest s-u path.
- Pf. (by induction on |S|)
- Base case: |S| = 1 is trivial.
- Inductive hypothesis: Assume true for $|S| = k \ge 1$.
 - Let v be next node added to S, and let u-v be the chosen edge.
 - \succ The shortest s-u path plus (u, v) is an s-v path of length $\pi(v)$.
 - \triangleright Consider any s-v path P. We'll see that it's no shorter than $\pi(v)$.
 - Let x-y be the first edge in P that leaves S, and let P' be the subpath to x.
 - P is already too long as soon as it leaves S.

Dijkstra's Algorithm: Implementation

- For each unexplored node, explicitly maintain $\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e$.
 - \triangleright Next node to explore = node with minimum $\pi(v)$.
 - \triangleright When exploring v, for each incident edge e = (v, w), update

$$\pi(w) = \min \{ \pi(w), \pi(v) + \ell_e \}.$$

• Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap †
Insert	n	n	log n	d log _d n	1
ExtractMin	n	n	log n	d log _d n	log n
ChangeKey	m	1	log n	log _d n	1
IsEmpty	n	1	1	1	1
Total		n²	m log n	m log _{m/n} n	m + n log n

6. Clustering

Outbreak of cholera deaths in London in 1850s. Reference: Nina Mishra, HP Labs

Clustering

Clustering. Given a set U of n objects labeled p₁, ..., p_n, classify into coherent groups.
 photos, documents. micro-organisms

Distance function. Numeric value specifying "closeness" of two objects.

number of corresponding pixels whose intensities differ by some threshold

- Fundamental problem. Divide into clusters so that points in different clusters are far apart.
 - Routing in mobile ad hoc networks.
 - Identify patterns in gene expression.
 - Document categorization for web search.
 - Similarity searching in medical image databases
 - Skycat: cluster 10⁹ sky objects into stars, quasars, galaxies.

Clustering of Maximum Spacing

- k-clustering. Divide objects into k non-empty groups.
- Distance function. Assume it satisfies several natural properties.

```
\rightarrow d(p<sub>i</sub>, p<sub>i</sub>) = 0 iff p<sub>i</sub> = p<sub>i</sub> (identity of indiscernibles)
```

$$ightharpoonup d(p_i, p_i) \ge 0$$
 (nonnegativity)

$$\rightarrow$$
 d(p_i, p_i) = d(p_i, p_i) (symmetry)

- Spacing. Min distance between any pair of points in different clusters.
- Clustering of maximum spacing. Given an integer k, find a k-clustering of maximum spacing.

Greedy Clustering Algorithm

- Single-link k-clustering algorithm.
 - Form a graph on the vertex set U, corresponding to n clusters.
 - Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
 - Repeat n-k times until there are exactly k clusters.
- Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).
- Remark. Equivalent to finding an MST and deleting the k-1 most expensive edges.

Greedy Clustering Algorithm: Analysis

- Theorem. Let C* denote the clustering C*₁, ..., C*_k formed by deleting the k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.
- Pf. Let C denote some other clustering C_1 , ..., C_k .
 - The spacing of C* is the length d* of the (k-1)st most expensive edge.
 - Let p_i , p_j be in the same cluster in C^* , say C^*_r , but different clusters in C, say C_s and C_t .
 - Some edge (p, q) on p_i-p_j path in C*_r spans two different clusters in C.
 - All edges on p_i - p_j path have length $\leq d^*$ since Kruskal chose them.
 - Spacing of C is ≤ d* since p and q are in different clusters.

Extra Slides

Coin Changing

Coin Changing

 Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method to pay amount to customer using fewest number of coins.

• Ex: 34¢.

• Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

• Ex: \$2.89.

Coin-Changing: Greedy Algorithm

 Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ...
< c_n.
 , coins selected
s \leftarrow \phi
while (x \neq 0) {
    let k be largest integer such that c_k \le x
    if (k = 0)
        return "no solution found"
    x \leftarrow x - c_k
    S \leftarrow S \cup \{k\}
return S
```

• Q. Is cashier's algorithm optimal?

Coin-Changing: Analysis of Greedy Algorithm

- Theorem. Greed is optimal for U.S. coinage: 1, 5, 10, 25, 100.
- Pf. (by induction on x)
 - \triangleright Consider optimal way to change $c_k \le x < c_{k+1}$: greedy takes coin k.
 - We claim that any optimal solution must also take coin k.
 - \checkmark if not, it needs enough coins of type $c_1, ..., c_{k-1}$ to add up to x
 - ✓ table below indicates no optimal solution can do this
 - Problem reduces to coin-changing $x c_k$ cents, which, by induction, is optimally solved by greedy algorithm.

k	c _k	All optimal solutions must satisfy	Max value of coins 1, 2,, k-1 in any OPT
1	1	P ≤ 4	-
2	5	$N \le 1$	4
3	10	$N + D \le 2$	4 + 5 = 9
4	25	Q ≤ 3	20 + 4 = 24
5	100	no limit	75 + 24 = 99

Coin-Changing: Analysis of Greedy Algorithm

• Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

• Counterexample. 140¢.

> Greedy: 100, 34, 1, 1, 1, 1, 1, 1.

Optimal: 70, 70.

Selecting Breakpoints

Selecting Breakpoints

- Selecting breakpoints.
 - Road trip from Princeton to Palo Alto along fixed route.
 - Refueling stations at certain points along the way.
 - Fuel capacity = C.
 - Goal: makes as few refueling stops as possible.
- Greedy algorithm. Go as far as you can before refueling.

Selecting Breakpoints: Greedy Algorithm

Truck driver's algorithm.

```
Sort breakpoints so that: 0 = b_0 < b_1 < b_2 < \ldots < b_n = L
S \leftarrow \{0\} breakpoints selected
\mathbf{x} \leftarrow \mathbf{0} \leftarrow \text{current location}
while (x \neq b_n)
    let p be largest integer such that b_p \le x + C
    if (b_p = x)
         return "no solution"
    x \leftarrow b_p
    S \leftarrow S \cup \{p\}
return S
```

- Implementation. O(n log n)
 - Use binary search to select each breakpoint p.

Selecting Breakpoints: Correctness

- Theorem. Greedy algorithm is optimal.
- Pf. (by contradiction)
 - Assume greedy is not optimal, and let's see what happens.
 - Let $0 = g_0 < g_1 < ... < g_p = L$ denote set of breakpoints chosen by greedy.
 - Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
 - \triangleright Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Selecting Breakpoints: Correctness

- Theorem. Greedy algorithm is optimal.
- Pf. (by contradiction)
 - Assume greedy is not optimal, and let's see what happens.
 - Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy.
 - \triangleright Let $0 = f_0 < f_1 < ... < f_q = L$ denote set of breakpoints in an optimal solution with $f_0 = g_0$, $f_1 = g_1$, ..., $f_r = g_r$ for largest possible value of r.
 - \triangleright Note: $g_{r+1} > f_{r+1}$ by greedy choice of algorithm.

Edsger W. Dijkstra

The question of whether computers can think is like the question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.

