24/09/2020 ludex

BST Workout - Revisada

Lista 2 - Monitor goritmos 2020.3

↑ SUBMIT

Uma árvore de busca binária (BST) é uma árvore binária em que o valor de cada nó é maior do que os valores de cada nó à sua esquerda, e menor ou igual aos valores de cada nó à sua direita.

Neste exercício iremos praticar as operações sobre BSTs vistas em aula.

Input Specification

A entrada inicia com uma linha contendo um inteiro

correspondente à quantidade inicial de nós de uma BST T.

Segue-se uma linha com N inteiros separados por espaços,

correspondentes aos valores dos nós de T enumerados em pré-ordem.

Em seguida, temos várias operações numa das formas a seguir:

• SCH k : procura o valor k em T

• INS k : insere o valor k em T

• DEL k : remove o valor k de T

A entrada termina com uma linha

Output Specification

24/09/2020 ludex

correposndente à altura inicial da árvore T com os N elementos em pré-ordem dados na entrada.

Em seguida, para cada operação deve-se imprimir o seguinte.

- SCH k : imprime a profundidade do primeiro nó encontrado (nó menos profundo) com valor k. Caso tal nó não exista, imprime -1.
- INS k : imprime a profundidade da folha com valor k inserida.
- DEL k : imprime a profundidade do nó removido com valor k, se houver. Caso contrário imprime -1. Esse valor é o mesmo valor que seria impresso por SCH k antes da remoção.

Ao final, deve-se imprimir uma linha

correspondente à altura final da árvore T, após todas as operações.

Notes

- A altura de uma BST é o número de nós do maior caminho da raiz até uma de suas folhas. A árvore vazia tem altura 0, a árvore com apenas um nó tem altura 1, e assim sucessivamente.
- A profundidade de um nó é a sua distância até a raiz, ou seja o número de arestas no caminho da raiz até ele.
 A raiz tem profundidade 0, os seus filhos tem profundidade 1, os seus netos tem profundidade 2, e assim sucessivamente.

Samp	ole Input #1	Sample Output #1
1	100	1 13
2	570 250 0 220 60 40 10 20 30 50	2 -1
3	SCH 1008	3 2
4	SCH 280	4 11
5	SCH 100	5 -1
6	SCH 1006	6 5
Samp	ole Input #2	Sample Output #2
14	INS 541	1 13
15	INS 183	2 8
16	INS 458	3 13
17	INS 654	4 11
18	INS 321	5 9
19	INS 597	6 11
Samp	ole Input #3	Sample Output #3
<u>-</u> . 25	SCH 1009	1 13
25 26	SCH 870	2 4
26 27	DEL 850	3 9
28	DEL 580	4 -1
20	DLL 300	5 6

24/09/2020 ludex

