In [57]: ##assignment 2

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv("C:/Users/Pruthviraj/Downloads/StudentsPerformanceTest1.csv")

In [58]: df.head()

Out[58]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72	72	74.0	78.0	1	Pune
1	female	69	90	88.0	NaN	2	na
2	female	90	95	93.0	74.0	2	Nashik
3	male	47	57	NaN	78.0	1	Na
4	ma l e	na	78	75.0	81.0	3	Pune

In [59]: | df.isnull()

Out[59]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	False	False	False	False	False	False	False
1	False	False	False	False	True	False	False
2	False	False	False	False	False	False	False
3	False	False	False	True	False	False	False
4	False	False	False	False	False	False	False
5	False	False	False	False	False	False	False
6	False	False	False	False	False	False	False
7	False	True	False	False	False	False	False
8	False	False	False	False	False	False	True

In [60]: series = pd.isnull(df["math score"])
 df[series]

Out[60]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
7	male	NaN	65	67.0	49.0	1	Pune

In [61]: df.notnull()

Out[61]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	True	True	True	True	True	True	True
1	True	True	True	True	False	True	True
2	True	True	True	True	True	True	True
3	True	True	True	False	True	True	True
4	True	True	True	True	True	True	True
5	True	True	True	True	True	True	True
6	True	True	True	True	True	True	True
7	True	False	True	True	True	True	True
8	True	True	True	True	True	True	False

In [62]: series1 = pd.notnull(df["math score"])
 df[series1]

Out[62]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72	72	74.0	78.0	1	Pune
1	female	69	90	88.0	NaN	2	na
2	female	90	95	93.0	74.0	2	Nashik
3	male	47	57	NaN	78.0	1	Na
4	male	na	78	75.0	81.0	3	Pune
5	female	71	Na	78.0	70.0	4	na
6	male	12	44	52.0	12.0	2	Nashik
8	male	5	77	89.0	55.0	0	NaN

```
In [63]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['gender'] = le.fit_transform(df['gender'])
newdf=df
```


In [64]: df.head()

Out[64]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	0	72	72	74.0	78.0	1	Pune
1	0	69	90	88.0	NaN	2	na
2	0	90	95	93.0	74.0	2	Nashik
3	1	47	57	NaN	78.0	1	Na
4	1	na	78	75.0	81.0	3	Pune

In [65]: missing_values = ["Na", "na"]
 df = pd.read_csv("StudentsPerformanceTest1.csv", na_values =
 missing_values)
 df.head()

Out[65]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.0	72.0	74.0	78.0	1	Pune
1	female	69.0	90.0	88.0	NaN	2	NaN
2	female	90.0	95.0	93.0	74.0	2	Nashik
3	male	47.0	57.0	NaN	78.0	1	NaN
4	male	NaN	78.0	75.0	81.0	3	Pune

In [66]: ndf=df
ndf.fillna(0)

Out[66]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.0	72.0	74.0	78.0	1	Pune
1	female	69.0	90.0	88.0	0.0	2	0
2	female	90.0	95.0	93.0	74.0	2	Nashik
3	male	47.0	57.0	0.0	78.0	1	0
4	male	0.0	78.0	75.0	81.0	3	Pune
5	female	71.0	0.0	78.0	70.0	4	0
6	male	12.0	44.0	52.0	12.0	2	Nashik
7	male	0.0	65.0	67.0	49.0	1	Pune 🕡
8	male	5.0	77.0	89.0	55.0	0	0

In [67]: m_v=df['math score'].mean()
df['math score'].fillna(value=m_v, inplace=True)
df.head()

Out[67]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.000000	72.0	74.0	78.0	1	Pune
1	female	69.000000	90.0	88.0	NaN	2	NaN
2	female	90.000000	95.0	93.0	74.0	2	Nashik
3	male	47.000000	57.0	NaN	78.0	1	NaN
4	male	52.285714	78.0	75.0	81.0	3	Pune

In [68]: | ndf.replace(to_replace = np.nan, value = -99)

Out[68]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.000000	72.0	74.0	78.0	1	Pune
1	female	69.000000	90.0	88.0	-99.0	2	-99
2	female	90.000000	95.0	93.0	74.0	2	Nashik
3	male	47.000000	57.0	-99.0	78.0	1	-99
4	male	52.285714	78.0	75.0	81.0	3	Pune
5	female	71.000000	-99.0	78.0	70.0	4	-99
6	male	12.000000	44.0	52.0	12.0	2	Nashik
7	male	52.285714	65.0	67.0	49.0	1	Pune
8	male	5.000000	77.0	89.0	55.0	0	-99

In [69]: ndf.dropna()

Out[69]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.000000	72.0	74.0	78.0	1	Pune
2	female	90.000000	95.0	93.0	74.0	2	Nashik
4	male	52.285714	78.0	75.0	81.0	3	Pune
6	male	12.000000	44.0	52.0	12.0	2	Nashik
7	male	52.285714	65.0	67.0	49.0	1	Pune

In [70]: | ndf.dropna(how = 'all')

Out[70]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region
0	female	72.000000	72.0	74.0	78.0	1	Pune
1	female	69.000000	90.0	88.0	NaN	2	NaN
2	female	90.000000	95.0	93.0	74.0	2	Nashik
3	male	47.000000	57.0	NaN	78.0	1	NaN
4	male	52.285714	78.0	75.0	81.0	3	Pune
5	female	71.000000	NaN	78.0	70.0	4	NaN
6	male	12.000000	44.0	52.0	12.0	2	Nashik
7	male	52.285714	65.0	67.0	49.0	1	Pune
8	male	5.000000	77.0	89.0	55.0	0	NaN

In [71]: ndf.dropna(axis = 1)

Out[71]:

	gender	math score	placement offer count
0	female	72.000000	1
1	female	69.000000	2
2	female	90.000000	2
3	male	47.000000	1
4	male	52.285714	3
5	female	71.000000	4
6	male	12.000000	2
7	male	52.285714	1
8	male	5.000000	0

In [72]: new_data = ndf.dropna(axis = 0, how ='any')
new_data

Out[72]:

	gender	math score	reading score	writing score	Placement Score	placement offer count	Region	
0	female	72.000000	72.0	74.0	78.0	1	Pune	
2	female	90.000000	95.0	93.0	74.0	2	Nashik	
4	male	52.285714	78.0	75.0	81.0	3	Pune	•
6	male	12.000000	44.0	52.0	12.0	2	Nashik	
7	male	52 285714	65.0	67.0	49 0	1	Pune	

In [73]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy df=pd.read_csv("C:/Users/Pruthviraj/Downloads/demo1.csv") df.head()

Out[73]:

	math score	reading score	writing score	placement score	placement offer count	club join year
0	80	68	70	89	3	2019
1	71	61	85	91	3	2019
2	79	16	87	77	2	2018
3	61	77	74	76	2	2020
4	78	71	67	90	3	2019


```
In [74]: col = ['math score', 'reading score', 'writing score', 'placement score']
    df.boxplot(col)
    plt.show()
```


0.2


```
In [76]: fig, ax = plt.subplots(figsize = (18,10))
ax.scatter(df['placement score'], df['placement offer count'])
```

Out[76]: <matplotlib.collections.PathCollection at 0x1de678e82e0>


```
In [78]:
         print(np.where((df['placement score']<50) & (df['placement offer count']>1)))
         print(np.where((df['placement score']>85) & (df['placement offer count']<3)))</pre>
          (array([6], dtype=int64),)
          (array([11], dtype=int64),)
In [79]: threshold = 0.18
In [80]: from scipy import stats
In [81]: | z = np.abs(stats.zscore(df['math score']))
In [82]:
         sample_outliers = np.where(z < threshold)</pre>
         sample outliers
Out[82]: (array([ 0, 12, 16, 17, 19], dtype=int64),)
In [83]: print(z)
         0
                0.175646
                0.528288
         1
         2
                0.214828
          3
                0.920112
         4
                0.254010
         5
                0.449923
         6
                0.293193
                0.410740
         7
         8
                0.332375
         9
                0.371558
         10
                2.958952
                0.214828
         11
         12
                0.175646
         13
                0.254010
         14
                0.371558
         15
                0.254010
         16
                0.059449
         17
                0.175646
         18
                0.371558
         19
                0.097281
         20
                0.606653
         21
                0.608004
         22
                0.489105
                0.410740
         23
         24
                0.371558
         25
                3.742601
         26
                0.489105
         27
                0.528288
         28
                1.391653
         Name: math score, dtype: float64
```

```
In [84]: | sorted_rscore= sorted(df['reading score'])
In [85]: sorted_rscore
Out[85]: [1,
           16,
           45,
           60,
           60,
           61,
           62,
           62,
           62,
           65,
           65,
           65,
           67,
           67,
           68,
           68,
           69,
           70,
           71,
           72,
           73,
           74,
           77,
           77,
           77,
           78,
           79,
           80,
           120]
In [86]: |q1 = np.percentile(sorted_rscore, 25)
          q3 = np.percentile(sorted_rscore, 75)
          print(q1,q3)
          62.0 74.0
In [87]: IQR = q3-q1
In [88]:
         lwr_bound = q1-(1.5*IQR)
          upr\_bound = q3+(1.5*IQR)
          print(lwr_bound, upr_bound)
          44.0 92.0
```

```
In [89]: r_outliers = []
    for i in sorted_rscore:
        if (i<lwr_bound or i>upr_bound):
            r_outliers.append(i)
        print(r_outliers)
```

[1, 16, 120]

```
In [90]: new_df=df
for i in sample_outliers:
    new_df.drop(i, inplace=True)
    new_df
```

```
In [91]: df_stud=df
    ninetieth_percentile = np.percentile(df_stud['math score'], 90)
    b = np.where(df_stud['math score']>ninetieth_percentile,
    ninetieth_percentile, df_stud['math score'])
    print("New array:",b)
```

New array: [71. 79. 61. 78. 73. 77. 74. 76. 75. 114. 79. 78. 75. 78. 75. 69. 100. 72. 74. 75. 114. 72. 71. 114.]

```
In [92]: df_stud.insert(1,"m score",b,True)
df_stud.head()
```

Out[92]:

	math score	m score	reading score	writing score	placement score	placement offer count	club join year
1	71	71.0	61	85	91	3	2019
2	79	79.0	16	87	77	2	2018
3	61	61.0	77	74	76	2	2020
4	78	78.0	71	67	90	3	2019
5	73	73.0	68	90	80	2	2019


```
In [93]: col = ['reading score']
    df.boxplot(col)
    plt.show()
```


In [94]: median=np.median(sorted_rscore)
median

Out[94]: 68.0

In [95]: refined_df=df
refined_df['reading score'] = np.where(refined_df['reading score'] >upr_bound,

In [96]: refined_df.head()

Out[96]:

	math score	m score	reading score	writing score	placement score	placement offer count	club join year
1	71	71.0	61.0	85	91	3	2019
2	79	79.0	16.0	87	77	2	2018
3	61	61.0	77.0	74	76	2	2020
4	78	78.0	71.0	67	90	3	2019
5	73	73.0	68.0	90	80	2	2019

```
In [97]: refined_df['reading score'] = np.where(refined_df['reading score'] <lwr_bound,</pre>
In [98]:
          col = ['reading score']
          refined_df.boxplot(col)
          plt.show()
           80
```



```
In [99]: import matplotlib.pyplot as plt
         new_df['math score'].plot(kind = 'hist')
Out[99]: <Axes: ylabel='Frequency'>
```



```
In [ ]:
```

