Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....



## Faculty of Engineering

End Sem Examination May-2024
EC3CO08 / EE3CO29 Engineering Electromagnetics /

Electromagnetic Theory

Programme: B.Tech. Branch/Specialisation: EC/EE/EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. In Stokes' Theorem, what does the line integral on the left-hand side 1 represent?
  - (a) Flux of the vector field across a surface
  - (b) Curl of the vector field
  - (c) Divergence of the vector field
  - (d) Gradient of the vector field
  - ii. In the Divergence Theorem, what does the integral of the divergence 1 of a vector field represent?
    - (a) Flux of the vector field across a surface
    - (b) Curl of the vector field
    - (c) Line integral of the vector field
    - (d) Gradient of the vector field
  - iii. Gauss's law is a consequence of-
    - (a) Ampere's law
- (b) Faraday's law
- (c) Kirchhoff's law (d) Ma Dielectric constant is also known as-
- (d) Maxwell's equations
- (a) Electric constant is also known as-
- (a) Electric constant(b) Magnetic constant(c) Permeability(d) Impedance
- Mutual inductance between two coils depends on:
  - (a) The number of turns in each coil
  - (b) The separation between the coils
  - (c) The material of the coils
  - (d) All of these
- i. The unit of self-inductance is:

(a) Henry (H) (b) Farad (F) (c) Ohm ( $\Omega$ ) (d) Tesla (T)

P.T.O.

1

1

[2]

|        | vii.  | The Lorentz force equation is given by:  (a) F = g(F + y y P) (b) F = g(F + y y P)                                                                                             | 1 |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|        |       | (a) $F = q(E + v \times B)$<br>(b) $F = q(E - v \times B)$                                                                                                                     |   |
|        | viii. | (c) F = q(E / B) (d) F = q(E - B)  The magnitude of the force experienced by a charged particle moving with velocity v in a magnetic field B is given by:                      | 1 |
|        | •     | (a) $F = qvB$ (b) $F = qv/E$ (c) $F = qB/E$ (d) $F = q/B$                                                                                                                      | 1 |
|        | ix.   | At Brewster's angle, the reflected light is- (a) Completely polarized (b) Completely depolarized                                                                               | 1 |
|        | х.    | (c) Partially polarized (d) Completely absorbed A low Standing Wave Ratio indicates:                                                                                           | 1 |
|        |       | (a) High efficiency (b) Poor transmission line performance                                                                                                                     |   |
|        |       | <ul><li>(b) Poor transmission line performance</li><li>(c) Low radioactivity</li></ul>                                                                                         |   |
|        |       | (d) Weak magnetic field                                                                                                                                                        |   |
| Q.2 i. |       | What is divergence theorem?                                                                                                                                                    | 2 |
|        | ii.   | Define the Laplacian operator for scalar and vector fields.                                                                                                                    | 3 |
|        | iii.  | Explain Stokes' theorem and its application in relating line integrals                                                                                                         | 5 |
| OR     | iv.   | of vector fields to surface integrals.  Define cartesian, polar, cylindrical, and spherical coordinate systems.                                                                | 5 |
|        |       | Discuss their applications in engineering.                                                                                                                                     |   |
| Q.3    | i.    | Define an electric dipole. Discuss its behaviour in an external electric field.                                                                                                | 2 |
|        | ii.   | Discuss methods for solving Laplace's equation in different geometries and boundary conditions.                                                                                | 8 |
| OR     | iii.  | Define dielectric constant $(\epsilon)$ and discuss its role in determining the behavior of electric fields in materials. How does it affect the capacitance of a capacitor?   | 8 |
| Q.4    | i.    | Define permeability and distinguish between absolute permeability and relative permeability.                                                                                   | 3 |
|        | ii.   | State Biot-Savart's law in its integral form. Find the magnetic induction at any point on the line through the centre and                                                      | 7 |
| OR     | iii.  | perpendicular to the plane's circular current loop.  Define a solenoid and a toroid. Discuss their construction, magnetic field patterns, and applications in electromagnetism | 7 |
|        |       |                                                                                                                                                                                |   |

[3]

- Q.5 i. State Faraday's law of electromagnetic induction. Explain how a 4 changing magnetic field induces an electromotive force (emf) in a circuit.
  - ii. Develop the concept of displacement current using Maxwell's 6 equations.
- OR iii. Define skin depth and explain its importance in the penetration of 6 electromagnetic waves into a conducting medium. How does conductivity affect the skin depth?

Q.6 Attempt any two:

- i. Define Brewster angle and explain its significance.
- the analysis of transmission lines. Discuss how SWR is calculated and its relationship to the efficiency of power transmission.

5

iii. Define linear, circular, and elliptical polarization of electromagnetic 5 waves. Explain how these polarization states are generated and provide examples of physical phenomena where each type of polarization is observed.

\*\*\*\*\*

[4]

## **Marking Scheme**

## **Engineering Electromagnetics (T) - EC3CO08 (T)**

| Q.1 | i)    | b) Curl of the vector field                                                                          |                       | 1 |
|-----|-------|------------------------------------------------------------------------------------------------------|-----------------------|---|
|     | ii)   | a) Flux of the vector field across a surface                                                         |                       | 1 |
|     | iii)  | d) Maxwell's equations                                                                               |                       | 1 |
|     | iv)   | a) Electric constant                                                                                 |                       | 1 |
|     | v)    | d) All of the above                                                                                  |                       | 1 |
|     | vi)   | a) Henry (H)                                                                                         |                       | 1 |
|     | vii)  | $F = q(E + v \times B)$                                                                              |                       | 1 |
|     | viii) | a) $F = qvB$                                                                                         |                       | 1 |
|     | ix)   | a) Completely polarized                                                                              |                       | 1 |
|     | x)    | a) High efficiency                                                                                   |                       | 1 |
| Q.2 | i.    | What is Divergence theorem?                                                                          |                       | 2 |
|     |       | Statement                                                                                            | -1 marks              |   |
|     |       | Concept                                                                                              | -1 marks              |   |
|     | ii.   | Define the Laplacian operator for scalar and vector                                                  | fields.               | 3 |
|     |       | Statement                                                                                            | -1 marks              |   |
|     |       | scalar and vector fields                                                                             | -2 marks              |   |
|     | iii.  | Explain Stokes' Theorem and its application in integrals of vector fields to surface integrals.      | n relating line       | 5 |
|     |       | Statement and concept                                                                                | -2 marks              |   |
|     |       | Application                                                                                          | -3 marks              |   |
| OR  | iv.   | Define Cartesian, polar, cylindrical, and spheri systems. Discuss their applications in engineering. | cal coordinate        | 5 |
|     |       | Definitions                                                                                          | -3 marks              |   |
|     |       | Applications                                                                                         | - 2 marks             |   |
| Q.3 | i.    | Define an electric dipole and discuss its behaviour electric field.                                  | in an external        | 2 |
|     |       | Definition                                                                                           | —1 marks              |   |
|     |       | Behaviour                                                                                            | – 1 marks             |   |
| i   | ii.   | Discuss methods for solving Laplace's equation                                                       | n in different        | 8 |
|     |       | geometries and boundary conditions.                                                                  | 2 1                   |   |
|     |       | Laplace's equation geometries and boundary conditions                                                | -3 marks<br>- 5 marks |   |
| OR  | iii.  | Define dielectric constant ( $\epsilon$ ) and discuss its role                                       |                       | 8 |
| OK  | III.  | the behaviour of electric fields in materials. How do capacitance of a capacitor?                    | _                     | Ū |
|     |       |                                                                                                      |                       |   |

|     |      | Define dielectric constant  Behaviour of electric fields in materials  Affect the capacitance of a capacitor  -2 marks  - 4 marks  - 2 marks |   |  |  |  |  |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| Q.4 | i.   | Define permeability and distinguish between absolute permeability and relative permeability.                                                 | 3 |  |  |  |  |
|     |      | Definition -1 marks                                                                                                                          |   |  |  |  |  |
|     |      | Distinguish -2 marks                                                                                                                         |   |  |  |  |  |
|     | ii.  | State Biot Savart Law in its integral form. Find the magnetic                                                                                | 7 |  |  |  |  |
|     |      | induction at any point on the line through the centre and                                                                                    |   |  |  |  |  |
|     |      | perpendicular to the plane's circular current loop.                                                                                          |   |  |  |  |  |
|     |      | Statement -2 marks                                                                                                                           |   |  |  |  |  |
|     |      | Derivation -5 marks                                                                                                                          |   |  |  |  |  |
| OR  | iii. | Define a solenoid and a toroid. Discuss their construction,                                                                                  | 7 |  |  |  |  |
|     |      | magnetic field patterns, and applications in electromagnetism                                                                                |   |  |  |  |  |
|     |      | Statement -2 marks                                                                                                                           |   |  |  |  |  |
|     |      | Application -2 marks                                                                                                                         |   |  |  |  |  |
|     |      | Construction -3 marks                                                                                                                        |   |  |  |  |  |
| Q.5 | I.   | State Faraday's law of electromagnetic induction. Explain how a                                                                              | 4 |  |  |  |  |
|     |      | changing magnetic field induces an electromotive force (emf) in a                                                                            |   |  |  |  |  |
|     |      | circuit.                                                                                                                                     |   |  |  |  |  |
|     |      | Statement -2 marks                                                                                                                           |   |  |  |  |  |
|     |      | Explanation-2 marks                                                                                                                          |   |  |  |  |  |
|     | II.  | Develop the concept of displacement current using Maxwell's                                                                                  | 6 |  |  |  |  |
|     |      | equations.                                                                                                                                   |   |  |  |  |  |
|     |      | Definition- 2 marks                                                                                                                          |   |  |  |  |  |
| OD  |      | Derivation-4 marks                                                                                                                           | _ |  |  |  |  |
| OR  | III. | Define skin depth and explain its importance in the penetration of                                                                           | 6 |  |  |  |  |
|     |      | electromagnetic waves into a conducting medium. How does                                                                                     |   |  |  |  |  |
|     |      | conductivity affect the skin depth?  Definition- 2 marks                                                                                     |   |  |  |  |  |
|     |      | Explanation-4 marks                                                                                                                          |   |  |  |  |  |
|     |      | Explanation-4 marks                                                                                                                          |   |  |  |  |  |
| Q.6 |      |                                                                                                                                              |   |  |  |  |  |
|     | i    | Define Brewster angle and explain its significance.                                                                                          | 5 |  |  |  |  |
|     |      | Definition- 2 marks                                                                                                                          |   |  |  |  |  |
|     |      | Explanation-3 marks                                                                                                                          |   |  |  |  |  |

P.T.O.

[3]

Define standing wave ratio (SWR) and explain its significance in the analysis of transmission lines. Discuss how SWR is calculated and its relationship to the efficiency of power transmission.

Definition- 1 marks

Calculated -2 marks

Relationship- 2 marks

Define linear, circular, and elliptical polarization of 5 electromagnetic waves. Explain how these polarization states are generated and provide examples of physical phenomena where each type of polarization is observed.

Definition- 2 marks Explanation-3 marks

\*\*\*\*\*