1. Solve the partial differential equation

$$(D^2 - 4DD' + 4D'^2)z = e^{2x+y}$$

2. Solve the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$$

3. Solve the partial differential equation

$$(D^2-DD'-2D'^2+2D+2D')z = \sin(2x+y)$$

4. Solve the partial differential equation

$$(D-3D'-2)^2 z = 2xe^{2x} \tan(y+3x)$$

5. Using the method of separation of variables, solve

$$3\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0, u(x,0) = 4e^{-x}$$

6. Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions u = 0 when

$$x = 0$$
 and $x = \pi$, $\frac{\partial u}{\partial t} = 0$ when $t = 0$ and $u(x, 0) = x$; $0 < x < \pi$.

7. Find the solution of the Laplace equation $\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial r^2} = 0$ subject to the conditions

$$u(0, y) = u(l, y) = u(x, 0) = 0$$
 and $u(x, a) = \sin(n\pi x/l)$.

8. An insulated rod of length l has its ends A and B maintained at 0° C and 100° C respectively until steady state conditions prevail. If B is suddenly reduced to 0° C and maintained at 0° C. Show that the temperature at a distance x from A at time t is given by

$$u(x,t) = \frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi x}{l} e^{-\frac{n^2 \pi^2 c^2 t}{l^2}}$$

ANSWERS

Here ϕ_1, ϕ_2 are arbitrary functions.

1.
$$z = \phi_1(y+2x) + x \phi_2(y+2x) + \frac{x^2}{2}e^{2x+y}$$

6.
$$u(x,t) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cos(nat) \sin(nx)$$

2.
$$z = \phi_1(y - x) + \phi_2(y - 2x) + \frac{x^2y}{2} - \frac{x^3}{3}$$
 7. $u(x, y) = \frac{\sinh(n\pi y/l)}{\sinh(n\pi a/l)} \sin\left(\frac{n\pi x}{l}\right)$

7.
$$u(x,y) = \frac{\sinh(n\pi y/l)}{\sinh(n\pi a/l)} \sin\left(\frac{n\pi x}{l}\right)$$

3.
$$z = e^{-2x}\phi_1(y+2x) + \phi_2(y-x) - \frac{1}{6}\cos(2x+y)$$

4.
$$z = e^{2x}\phi_1(y+3x) + xe^{2x}\phi_2(y+3x) + \frac{1}{3}x^3e^{2x}\tan(y+3x)$$

5.
$$u(x, y) = 4e^{(3y-2x)/2}$$

- 1. The odds against A solving a certain problem are 5 to 7 and the odds in favour of B solving the same problem are 3 to 4. What is the probability that if both of them try, the problem would be solved.
- 2. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of an accident involving a scooter driver, a car driver and a truck driver is **0.01**, **0.03** and **0.15** respectively. One of the insured person meets with an accident. What is the probability that he is a scooter driver?
- 3. A random variable X has the probability distribution given by

x :	-3	6	9
P(X=x):	1/6	1/2	1/3

Find $\mathbf{E}(X)$ and $\mathbf{E}(X^2)$. Hence evaluate $\mathbf{E}(2X+1)^2$.

- 4. The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, **42.409** and **454.98**. Calculate mean and all the four moments about the mean.
- 5. Find the moment generating function about any arbitrary point 'a' of the distribution

x :	-1	1	
P(X=x):	1/2	1/2	

- 6. In a Binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the parameter p of the distribution.
- 7. A manufacturer of pins knows that on an average 5% of his product is defective. He sells pins in boxes of 100 and guarantees that not more than 4 pins will be defective. What is the probability that the box will fail to meet the guaranteed quality? $(e^{-5} = 0.0067)$.
- 8. In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and S.D. of the distribution.

(Given that
$$P(0 \le Z \le 0.5) = 0.19$$
, $P(0 \le Z \le 1.4) = 0.42$)

ANSWERS

1.
$$\frac{16}{21}$$
 2. $\frac{1}{52}$ 3. $\frac{11}{2}$, $\frac{93}{2}$, 209

4. Mean = 28.794,
$$\mu_1 = 0$$
, $\mu_2 = 7.058$, $\mu_3 = 36.151$, $\mu_4 = 408.738$

5.
$$M_a(t) = e^{-at} \cosh t$$
 6. 1/5 7. 0.562 8. Mean = 50, S.D. = 10

8. Mean =
$$50$$
, S.D. = 10

1. By the method of least squares, fit a straight line y = m x + c from the following data:

x :	50	70	100	120
y:	12	15	21	25

- 2. Two random variables have the regression lines with equations x = 19.13 0.87y and y = 11.64 0.50x. Find the mean values of x and y. Also, find the correlation coefficient between x and y.
- 3. Prove that $r = \frac{\sigma_x^2 + \sigma_y^2 \sigma_{x-y}^2}{2 \sigma_x \sigma_y}$, where $\sigma_x \& \sigma_y$ are the S.D.'s of x and y-series

respectively and r is the correlation coefficient.

- **4.** A sample of **900** members is found to have a mean of **3.4** cm. Can it be reasonably regarded as a truly random sample from a large population with mean **3.25**cm and standard deviation **1.61** cm?
- **5.** A random sample of **10** boys had the following I.Q.:

Do these data support the assumption of a population mean I.Q. of **100** (at 5% level of significance)?

6. In experiments on pea breeding, the following frequencies of seeds were obtained:

Round and yellow	Wrinkled and yellow	Round and green	Wrinkled and green	Total
315	101	108	32	556

Theory predicts that the frequencies should be in proportion **9:3:3:1.** Examine the correspondence between theory and experiment.

- 7. A random sample of **900** measurements from a large population gave a mean value of **64**. If this sample has been drawn from a normal population with standard deviation of **20**. Find the **95%** confidence limits for the mean in the population.
- **8.** Two independent samples of sizes 7 and 6 have the following values:

Sample A:	28	30	32	33	33	29	34
Sample B:	29	30	30	24	27	29	

Examine whether the samples have been drawn from normal populations having the same variance.

ANSWERS

- 1. y = 2.2759 + 0.1879 x 2. $\bar{x} = 15.79$, $\bar{y} = 3.74$, r = -0.66 4. No 5. Yes
- 6. There is a very high degree of agreement between theory and experiments.
- 7. 62.693 and 65.307 8. Yes

- 1. A toy company manufactures two types of toys, type A and type B. Each toy of type B takes twice as long to produce as one of type A, and the company would have time to make a maximum of 2000 toys per day. The supply of plastic is sufficient to produce 1500 toys per day(both A and B combined). Type B toy requires a dress of which there are only 600 per day available. If the company makes a profit of Rs.3.00 and Rs.5.00 per toy, respectively on type A and B, then how many of each types of toy should be produced per day in order to maximize the total profit. Formulate this problem.
- 2. Using graphical method, solve the following L.P.P.

Max
$$Z = 3x_1 + 5x_2$$
 s.t. $x_1 + 2x_2 \le 200$, $x_1 + x_2 \le 150$, $x_1 \le 60$, $x_1, x_2 \ge 0$

3. Convert the following L.P.P. to the standard form: $Min Z = 3x_1 + 4x_2$

$$s.t. 2x_1 - x_2 - 3x_3 = -4, 3x_1 + 5x_2 + x_4 = 10, x_1 - 4x_2 = 12, x_1, x_2, x_3, x_4 \ge 0$$

4. Solve the following L.P.P. by simplex method

Max
$$Z = 3x_1 + 2x_2 + 5x_3$$

s.t. $x_1 + 2x_2 + x_3 \le 430$
 $3x_1 + 2x_3 \le 460$
 $x_1 + 4x_2 \le 420$
 $x_1, x_2, x_3 > 0$

5. Write the dual of the following problem: $\operatorname{Max} Z = 3x_1 + 2x_2$

s.t.
$$x_1-x_2 \leq 1$$
 , $x_1+x_2 \geq 3$, $x_1 \geq 0$, x_2 is unrestricted in sign.

6. Using dual simplex method solve the following L.P.P.

$$\begin{aligned} & \text{Max}\,Z = -2x_1 - x_3\\ s.t. & x_1 + x_2 - x_3 \ge 5 \text{ , } x_1 - 2x_2 + 4x_3 \ge 8 \text{ and } x_1 \text{ , } x_2 \text{ , } x_3 \ge 0. \end{aligned}$$

7. A car hire company has one car at each of five depots a, b, c, d and e. A customer requires a car in each town, namely A, B, C, D and E. Distances (in kms) between depots(origins) and towns (destinations) are given in the following distance matrix:

	а	v	C	а	e
\boldsymbol{A}	160	130	175	190	200
В	135	120	130	160	175
\boldsymbol{C}	140	110	155	170	185
\boldsymbol{D}	50	50	80	80	110
\boldsymbol{E}	55	35	70	80	105

How should cars be assigned to customers so as to minimize the distance travelled?

8. Find the initial basic feasible solution of the following transportation problem by **VAM** method:

From\To	\mathbf{W}_{1}	\mathbf{W}_2	W_3	W_4	Supply
$\mathbf{F_1}$	11	20	7	8	50
\mathbf{F}_2	21	16	10	12	40
$\mathbf{F_3}$	8	12	18	9	70
Demand	30	25	35	40	

ANSWERS

1. Suppose the company produce x_1 toys of type **A** and x_2 toys of type **B** per day. Then

Max
$$Z = 5x_1 + 3x_2$$
 s.t. $x_1 + 2x_2 \le 2000$, $x_1 + x_2 \le 1500$, $x_2 \le 600$, $x_1, x_2 \ge 0$

2.
$$x_1 = 100$$
, $x_2 = 0$, $Max Z = 550$

3.
$$\operatorname{Max} Z'(=-Z) = -3x_1 - 4x_2' + 4x_2''$$

$$s.t. -2x_1 + x_2' - x_2'' + 3x_3 = 4$$

$$3x_1 + 5x_2' - 5x_2'' + x_4 = 10$$

$$x_1 - 4x_2' - 4x_2'' = 12$$

$$x_1, x_2', x_2'', x_3, x_4 \ge 0$$

4.
$$x_1 = 0$$
, $x_2 = 100$, $x_3 = 230$ and $Max Z = 1350$

5.
$$\min Z_d = y_1 - 3y_2$$

$$s.t. \quad y_1 - y_2 \ge 3$$

$$-y_1-y_2=2$$

$$y_1$$
, $y_2 \ge 0$

6.
$$x_1 = 0$$
, $x_2 = 14$, $x_3 = 9$ and $Max Z = -9$

7.
$$A \rightarrow e$$
, $B \rightarrow c$, $C \rightarrow b$, $D \rightarrow a$, $E \rightarrow d$, Min cost = 570 kms

8. From F_1 transport 25 units to W_3 and 25 units to W_4 ;

From $\mathbf{F_2}$ transport 10 units to $\mathbf{W_3}$;

From F_3 transport 30 units to W_1 , 25 units to W_2 and 15 units to W_4 respectively;

Optimal transport cost = Rs. 1150