Světlo a barvy v počítačové grafice Počítačová grafika

Mgr. Markéta Trnečková, Ph.D.

Palacký University, Olomouc

EM spektrum

- $\lambda = \frac{c}{f}, E = h * f$
- c ... rychlost světla (300000 km/s)
- h ... Planckova konstanta $(6.6252 * 10^{-34} \text{ J*s})$

Viditelné světlo

- 380nm fialová
- 760nm červená

Gamma záření

X záření

Ultrafialové

Infračervené

Mikrovlny

Radiové vlny

Světlo

- Jas intensity
- Sytost saturation
- Světlost brightness

Lidské oko

- Červená 700 nm
- Zelená 546,1 nm
- Modrá 435,8 nm

Subtractive (mixing paints or inks)

@ Copyright. 2012. University of Waikato. All Rights Reserved.

RGB

$$I = 0.299R + 0.587G + 0.114B$$

Matlab:

$$I = rgb2gray(A)$$

$$I = \tfrac13 R + \tfrac13 G + \tfrac13 B$$

RGB a CMY

$RGB \rightarrow CMY$

$$\begin{bmatrix} c \\ m \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Icmy = 1 - Irgb

Icmy = imcomplement(Irgb)

$CMY \rightarrow RGB$

$$\begin{bmatrix} r \\ g \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} c \\ m \\ y \end{bmatrix}$$

Irgb = 1 - Icmy

Irgb = imcomplement(Icmy)

HSV a HSL

$RGB \rightarrow HSV$

r, g, b . . . jednotlivé barevné složky

$$\begin{aligned} \max &= \max(r,g,b) \\ \min &= \min(r,g,b) \\ \\ h &= \begin{cases} \text{undef} & \text{if } \max = \min \\ 60^o \frac{g-b}{\max - \min} + 0^o & \text{if } \max = r \text{ and } g \geq b \\ 60^o \frac{g-b}{\max - \min} + 360^o & \text{if } \max = r \text{ and } g < b \\ 60^o \frac{b-r}{\max - \min} + 120^o & \text{if } \max = g \\ 60^o \frac{r-g}{\max - \min} + 240^o & \text{if } \max = b \end{cases} \\ s &= \begin{cases} 0 & \text{if } \max = 0 \\ \frac{\max - \min}{\max} & \text{else} \end{cases} \\ v &= \max \end{aligned}$$

Ihsv = rgb2hsv(Irgb)

$RGB \rightarrow HLS$

 $r, g, b \dots$ jednotlivé barevné složky

$$max = max(r, g, b)$$

$$min = min(r, g, b)$$

$$l = \frac{1}{2}(max + min)$$

$$s = \begin{cases} 0 & \text{if } I = 0 \text{or } max = min \\ \frac{max - min}{max + min} & \text{if } 0 < l \le \frac{1}{2} \\ \frac{max - min}{2 - (max + min)} & \text{if } l > \frac{1}{2} \end{cases}$$

$\mathsf{HSV} \to \mathsf{RGB}$

$$\begin{split} h_i &= \frac{h}{60} \bmod 6 \\ f &= \frac{h}{60} - h_i \\ p &= v \cdot (1 - s) \\ q &= v \cdot (1 - f \cdot s) \\ t &= v \cdot (1 - (1 - f) \cdot s) \\ \\ (r, g, b) &= \begin{cases} (v, t, p) & \text{if } h_i = 0 \\ (q, v, p) & \text{if } h_i = 1 \\ (p, v, t) & \text{if } h_i = 2 \\ (p, q, v) & \text{if } h_i = 3 \\ (t, p, v) & \text{if } h_i = 4 \\ (v, p, q) & \text{if } h_i = 5 \\ \end{cases} \end{split}$$

Irgb = hsv2rgb(Ihsv)

RGB a YUV

$$\begin{bmatrix} y \\ u \\ v \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.141 & -0.289 & 0.437 \\ 0.615 & -0.515 & -0.1 \end{bmatrix} \cdot \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

RGB a YCbCr

$RGB \rightarrow YCbCr$

$$\begin{bmatrix} y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.1687 & -0.3313 & 0.5 \\ 0.5 & -0.4187 & -0.0813 \end{bmatrix} \cdot \begin{bmatrix} r \\ g \\ b \end{bmatrix}$$

Iycbcr = rgb2ycbcr(Irgb)

$YCbCr \rightarrow RGB$

Irgb = ycbcr2rgb(Iycbcr)

R = 700 nm

G = 541.1nm

B = 435.8nm

monochromatická barva

$$C = r \cdot R + q \cdot G + b \cdot B$$

barevné srovnávací funkce

 $r(\lambda), g(\lambda), b(\lambda)$

monochromatická barva o vlnové délce λ

$$C(\lambda) = r(\lambda) + g(\lambda) + b(\lambda)$$

souřadnice obecné barvy

spektrální rozložení $p(\lambda)$

$$r = \int_{\lambda} p(\lambda) \cdot r(\lambda) d\lambda$$

$$g = \int_{\lambda} p(\lambda) \cdot g(\lambda) d\lambda$$

$$b = \int_{\lambda}^{\lambda} p(\lambda) \cdot b(\lambda) d\lambda$$

CIE 1931 - xyY

souřadnice barvy

spektrální rozložení $p(\lambda)$

$$x = \int_{\lambda} p(\lambda) \cdot x(\lambda) d\lambda$$
$$y = \int_{\lambda} p(\lambda) \cdot y(\lambda) d\lambda$$
$$z = \int_{\lambda} p(\lambda) \cdot z(\lambda) d\lambda$$

normalizovaný tvar

$$x = \frac{x}{x+y+z}$$

$$y = \frac{y}{x+y+z}$$

$$z = \frac{z}{x+y+z}$$

$$jelikož $x + y + z = 1$$$

jelikož x+y+z=1 stačí 2 souřadnice doplněné o jasovou hodnotu Y

sytost barvy — relativní vzdálenost C_1 od standardního bílého světla C cca 25%

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

doplňkové barvy C_a a C_b

Barevné rozsahy – color gamut konvexní množiny

CIE 1976 - Luv

Převod CIE 1931 → CIE 1976

$$u = \frac{2x}{6y - x + 1.5}$$

$$v = \frac{4.5y}{6y - x + 1.5}$$

Převod CIE 1976 → CIE 1931

$$x = \frac{27u}{4 \cdot (4.5u - 12v + 9)}$$

$$y = \frac{3v}{4.5u - 12v + 9}$$

CIE L*a*b

