TD 03 - Réductions

Exercice 1.

Indiquer si chacun des énoncés qui suit est vrai ou faux, en justifiant.

- **1.** $\not\exists M_{halt} : \forall \langle M \rangle, w : M_{halt}(\langle M \rangle, w) = halt(\langle M \rangle, w).$
- **2.** $\forall \langle M \rangle, w : \not\exists M_{halt} : M_{halt}(\langle M \rangle, w) = halt(\langle M \rangle, w).$

Exercice 2. *Réductions Turing many-one*

Ecrire chacune des réductions (Turing **many-one**) suivantes, et indiquer ce que l'on peut en déduire quant à la récursivité de ces langages.

- **1.** Réduire $L_{halt\epsilon} = \{ \langle M \rangle \mid M \text{ s'arrête quand on la lance sur l'entrée vide }$ à $A = \{ \langle M \rangle \mid M \text{ s'arrête quand on la lance sur l'entrée } aa \}.$
- **2.** Réduire $L_u = \{ \langle M \rangle \# w \mid M \text{ accepte le mot } w \}$ à $B = \{ \langle M \rangle \mid a \in L(M) \}$.
- 3. Réduire $L_{\bar{u}} = \{ \langle M \rangle \# w \mid M \text{ n'accepte pas } w \}$ à $C = \{ \langle M \rangle \# w \mid M \text{ n'accepte pas } w \text{ mais accepte } bbw \}.$
- **4.** Réduire L à $aL = \{aw \mid w \in L\}$ pour tout langage L.
- 5. Réduire aL à L pour tout langage L.
- **6.** Réduire $L_{stupide} = \{a\}$ à L_u .

Exercice 3. *Avec des réductions Turing many-one...*

Montrer que les langages suivants ne sont pas décidables.

- **1.** $D = \{\langle M \rangle \mid M \text{ s'arrête quand on la lance sur les entrées } ab \text{ et } ba\}.$
- **2.** $E \times F$ avec $E = \{ \langle M \rangle \mid b \in L(M) \}$ et $F = \{ \langle M \rangle \mid a \in L(M) \text{ ou } b \in L(M) \}$.

Montrer que les langages suivants ne sont pas récursivement énumérables.

- **3.** $G = \{ \langle M \rangle \mid L(M) = \emptyset \}.$
- **4.** $H = \{ \langle M_1 \rangle \# \langle M_2 \rangle \mid L(M_1) = L(M_2) \}.$

Montrer que les langages suivants sont récursivement énumérables.

- 5. $L_M = \{w \mid w \in L(M)\}$ avec M une machine de Turing.
- **6.** $D = \{\langle M \rangle \mid M \text{ s'arrête quand on la lance sur les entrées } ab \text{ et } ba\}.$

Montrer que les langages suivants sont décidables.

- 7. $I = \{ \langle M \rangle \mid \langle M \rangle < 2^{2^{1024}} \text{ et } L(M) = \{a\} \}$
- **8.** $L'_M = \{w \mid w \in L(M)\}$ avec une M une machine de Turing qui s'arrête toujours.
- Du plus « simple » au plus « difficile » à décider, ordonner les langages de cet exercice.
- 9. Proposer un nouveau langage, qui ne soit pas récursif.
- 10. Proposer un nouveau langage, qui ne soit pas récursif mais qui soit r.e.