

We claim:

1. A bicyclic compound of the formula I

5

10

15

20

25

30

35

in which

- A_1 or A_5 is C and the other of the two variables A_1 , A_5 is N, C or $C-R^3$;
 A_2 , A_3 , A_4 independently of one another are N or $C-R^{3a}$,
where one of the variables A_2 , A_3 or A_4 may also be S or a group
 $N-R^4$ if A_1 and A_5 are both C,
and where A_4 is not N or $C-R^{3a}$ if A_1 is N, A^3 is $C-R^{3a}$ and A_5 is C, and
where
- A_1 is attached to A_2 and A_3 to A_4 or
 A_2 is attached to A_3 and A_4 to A_5 or
 A_1 is attached to A_5 and A_2 to A_3 or
 A_1 is attached to A_5 and A_3 to A_4 or
 A_1 is attached to A_2 and A_4 to A_5 by double bonds;
- n is 0, 1, 2, 3, 4 or 5;
- R^a is halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkyl,
 C_1-C_6 -haloalkoxy, C_2-C_6 -alkenyl, C_2-C_6 -alkenyloxy or $C(O)R^5$;
- R^1 is halogen, cyano, C_1-C_{10} -alkyl, where a carbon atom of the
 C_1-C_{10} -alkyl radical may be replaced by a silicon atom,
 C_1-C_6 -haloalkyl, C_2-C_{10} -alkenyl, C_2-C_6 -haloalkenyl, C_2-C_6 -alkynyl,
 C_3-C_8 -cycloalkyl, C_3-C_8 -cycloalkyl- C_1-C_4 -alkyl, where the cycloalkyl
moiety of the two last-mentioned groups may be unsubstituted or
contain 1, 2, 3, 4, 5, or 6 radicals selected from the group consisting
of C_1-C_4 -alkylidene, C_1-C_4 -alkyl, halogen, C_1-C_4 -haloalkyl and hydroxy
and the alkyl moiety of C_3-C_8 -cycloalkyl- C_1-C_4 -alkyl may be
unsubstituted or contain 1, 2, 3, or 4 radicals selected from the group
consisting of halogen, C_1-C_4 -haloalkyl and hydroxy,
 C_5-C_8 -cycloalkenyl which may be unsubstituted or contain 1, 2, 3 or 4
radicals selected from the group consisting of C_1-C_4 -alkyl, halogen,
 C_1-C_4 -haloalkyl and hydroxy, OR^6 , SR^6 , NR^7R^8 , a radical of the
formula $-C(R^{11})(R^{12})C(=NOR^{13})(R^{14})$ or a radical of the formula
 $-C(=NOR^{15})C(=NOR^{16})(R^{17})$;
- R^2 is halogen, cyano, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_2-C_6 -alkenyl,
 C_2-C_6 -haloalkenyl, C_2-C_6 -alkynyl, C_3-C_8 -cycloalkyl,
 C_5-C_8 -cycloalkenyl, OR^6 , SR^6 or NR^7R^8 ;

- R^3, R^{3a} independently of one another are hydrogen, CN, halogen, C₁-C₆-alkyl or C₂-C₆-alkenyl;
 R^4 is hydrogen, C₁-C₆-alkyl or C₂-C₆-alkenyl;
 R^5 is hydrogen, OH, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl,
5 C₁-C₆-haloalkoxy, C₂-C₆-alkenyl, C₁-C₆-alkylamino or
di-C₁-C₆-alkylamino, piperidin-1-yl, pyrrolidin-1-yl or morpholin-4-yl;
 R^6 is hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-alkenyl or COR⁹;
 R^7, R^8 independently of one another are hydrogen, C₁-C₁₀-alkyl,
10 C₂-C₁₀-alkenyl, C₄-C₁₀-alkadienyl, C₂-C₁₀-alkynyl, C₃-C₈-cycloalkyl,
C₅-C₈-cycloalkenyl, C₅-C₁₀-bicycloalkyl, phenyl, naphthyl,
a 5- or 6-membered saturated or partially unsaturated heterocycle
which may have 1, 2 or 3 heteroatoms selected from the group
consisting of N, O and S as ring members or
a 5- or 6-membered aromatic heterocycle which may have 1, 2 or 3
15 heteroatoms selected from the group consisting of N, O and S as ring
members,
where the radicals mentioned as R⁷, R⁸ may be partially or fully
halogenated and/or may have 1, 2 or 3 radicals R^b where
R^b is selected from the group consisting of cyano, nitro, OH,
20 C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy,
C₁-C₆-alkylthio, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₂-C₆-alkynyl,
C₂-C₆-alkynyoxy, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino,
piperidin-1-yl, pyrrolidin-1-yl or morpholin-4-yl;
25 R⁷ and R⁸ together with the nitrogen atom to which they are attached may also
form a 5-, 6- or 7-membered saturated or unsaturated heterocycle
which may have 1, 2, 3 or 4 further heteroatoms selected from the
group consisting of O, S, N and NR¹⁰ as ring members, which may be
partially or fully halogenated and which may have 1, 2 or 3 radicals
R^b;
30 R⁹, R¹⁰ independently of one another are hydrogen or C₁-C₆-alkyl;
R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷ independently of one another are hydrogen or
C₁-C₆-alkyl;
or an agriculturally acceptable salt of the compound I,
35 except for compounds of the formula I in which R¹ and R² are both OH or both
halogen if A₁ is N and A₅ is C.
2. A compound as claimed in claim 1 of the formula I in which
40 R¹ is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
C₃-C₈-cycloalkyl, C₅-C₈-cycloalkenyl, OR⁶, SR⁶ or NR⁷R⁸; and
R² is halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl,
C₃-C₈-cycloalkyl, C₅-C₈-cycloalkenyl, OR⁶, SR⁶ or NR⁷R⁸.

3. A compound as claimed in claim 1 or 2 of the formula I in which A_1 is C and A_5 is N and A_2 , A_3 and A_4 independently of one another are N or $C-R^{3a}$.
4. A compound as claimed in claim 3 of the formula I in which A_2 is N.
5. A compound as claimed in claim 1 of the formula I in which A_1 and A_3 are N, A_5 is C and A_2 and A_4 independently of one another are N or $C-R^{3a}$.
10. A compound as claimed in claim 1 of the formula I in which A_1 is N and A_5 is C and A_2 , A_3 and A_4 independently of one another are $C-R^{3a}$.
15. A compound as claimed in claim 1 of the formula I in which A_1 and A_5 are C, one of the variables A_2 or A_4 is sulfur and the other of the variables A_2 or A_4 and the variable A_3 independently of one another are $C-R^{3a}$ or N.
20. A compound as claimed in any of the preceding claims of the formula I in which n is 1, 2, 3 or 4.
9. A compound as claimed in any of the preceding claims of the formula I in which the group

where

25. R^{a1} is fluorine, chlorine or methyl;
 R^{a2} is hydrogen or fluorine;
 R^{a3} is hydrogen, fluorine, chlorine, C_1-C_4 -alkyl or C_1-C_4 -alkoxy;
 R^{a4} is hydrogen or fluorine;
 R^{a5} is hydrogen, fluorine, chlorine or C_1-C_4 -alkyl.

30. 10. A compound as claimed in any of the preceding claims of the formula I in which R^1 is a group NR^7R^8 where at least one of the radicals R^7 , R^8 is different from hydrogen.
35. 11. A compound as claimed in claim 10 of the formula I in which
 R^7 is C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_2-C_6 -alkynyl or C_2-C_6 -alkenyl;
 R^8 is hydrogen or C_1-C_6 -alkyl; or

- R⁷, R⁸ together with the nitrogen atom to which they are attached are a saturated or partially unsaturated nitrogen heterocycle which may have one further heteroatom selected from the group consisting of O, S and NR¹⁰ as ring member and which may have 1 or 2 substituents selected from the group consisting of C₁-C₆-alkyl and C₁-C₆-haloalkyl, where R¹⁰ is as defined in claim 1.
- 5 12. A compound as claimed in claim 10 or 11 of the formula I where R² is halogen or C₁-C₄-alkyl.
- 10 13. A compound as claimed in any of the preceding claims of the formula I where R¹ is C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₈-cycloalkyl or C₃-C₈-cycloalkenyl and R² is C₁-C₄-alkyl.
- 15 14. The use of a compound of the formula I as claimed in any of claims 1 to 13 or of an agriculturally acceptable salt thereof for controlling phytopathogenic fungi.
- 20 15. A composition for controlling phytopathogenic fungi, which composition comprises at least one compound of the formula I as claimed in any of claims 1 to 13 and/or an agriculturally acceptable salt of formula I and at least one solid or liquid carrier.
- 25 16. A method for controlling phytopathogenic fungi, which method comprises treating the fungi or the materials, plants, the soil or the seeds to be protected against fungal attack with an effective amount of a compound of the formula I as claimed in any of claims 1 to 13 and/or with an agriculturally acceptable salt of I.