

Transferts thermiques conductifs et conducto-convectifs

Table des matières

Ι	Prés	sentation des différents modes de transferts thermiques	3
	I.1	Convection	3
	I.2	Rayonnement	3
	I.3	Diffusion ou conduction thermique dans les solides	3
II	Loi	de Fourier	4
	II.1	Flux thermique - flux thermique surfacique	4
	II.2	Vecteur densité volumique de flux thermique	5
	II.3	Champ de température - équilibre thermodynamique local (ETL)	6
	II.4	Loi de Fourier (phénoménologique)	7
		a - Enoncé	7
		b - Propriétés essentielles	7
III	Les	équations de la chaleur	8
	III.1	Système thermique élémentaire - capacité thermique	8
	III.2	Ecriture du Premier Principe	9
		a - Enoncé général	9
		b - Enoncé "détaillé" : avec sources et puits (apport énergétique volumique) $$.	10
	III.3	Bilans locaux d'énergie et établissement de l'équation de diffusion thermique à 1D $$.	10
		a - Géométrie cartésienne 1D	10
		b - Géométrie cylindrique	12
		c - Géométrie sphérique	14
		d - Cas général 3D	14
		e - Propriétés de l'équation de diffusion thermique	15

		f - Conditions initiales et aux limites en 1D - conditions aux limites classiques	15
		g - Temps caractéristique de la diffusion : analyse dimensionnelle et nombre de	
		Fourier	16
	III.4	Création d'entropie par diffusion thermique	17
	III.5	Résolution de l'équation de la chaleur	18
		a - Exemple (très simple) de résolution analytique en régime permanent : bar-	
		reau 1D	18
		b - Exemple (simple!) de résolution numérique en régime non permanent :	
		«choc thermique» sur un barreau 1D	19
IV	Rési	istance et conductance thermiques en RP/ARQS thermique \dots	19
	IV.1	Expressions	19
		a - Système de géométrie cartésienne	19
		b - Système de géométrie cylindrique	20
		c - Système de géométrie sphérique	21
	IV.2	Lois d'association	21
	IV.3	Analogie importante : conductions thermique et électrique	23
\mathbf{V}	Con	ducto-convection	23
	V.1	Flux convectif et coefficient conducto-convectif h	23
		a - Loi de Newton	23
		b - Résistance conducto-convective	24
	V.2	Concurrence conducto-convection et conduction : le nombre de Biot	25
\mathbf{VI}	App	olications	26
	VI.1	Exemple 1 : température d'une cave (ondes thermiques)	26
	VI.2	Exemple 2 : expérience d'Ingenhousz (à faire en "live"!!!)	27

