Unit 3: Inference for Categorical and Numerical Data

3. Difference of two means (Chapter 4.3)

11/12/2018

Quiz 3 - Difference of Proportions and T-values

Key ideas

- 1. When our samples are too small, we shouldn't use the Normal distribution. We use the t distribution to make up for uncertainty in our sample statistics
- 1. We can keep using the t-distribution even when the number of samples is large (it asymptotically approaches the normal)
- 3. We can use the t-distribution either to estimate the probability of either a single value, or the difference between two paired values

Key ideas

- 1. We can use the t-distribution to estimate the probability of a difference between *unpaired* values.
- 2. Degrees of freedom depends on the size of both samples
- 3. The right test depends on where you think variance comes from

Questions Statisticians Answer...

	Means	Proportions
	When we measure a number for each individual (e.g. height, weight, SAT score). We use the mean to summarize the data for a group. -Example: The average weight of a sample of 100 granny smith apples from my orchard was 72 grams.	When we measure which of one of two options is true for each individual (e.g. organ donor or not?, lived or died? red or blue?) we use the proportion to summarise the data for a group. -Example: The proportion of people at this fertility clinic who have live births using ART is 0.4 (i.e. 40%).
One Sample	Is the mean in my group different from some value I care about? -Example: Are the apples in my orchard heavier than typical granny smith apples (which have a known average weight of 70 grams)? -Null: Mean in my orchard = 70g -Alternative: Mean in my orchard > 70g	Is the proportion in my group different from some value I care about? -Example: Is the probability of a having a live birth at my clinic higher than the known US probability of a live birth using ART (which is 0.3)? -Null: Probability in my clinic = 0.3 -Alternative: Probability in my clinic > 0.3
Two Samples	Are the means of two groups different? -Example: Does my new drug lower cholesterol more than a placebo? -Null: Mean cholesterol of drug takers = Mean cholesterol of placebo takers -Alternative: Mean cholesterol of drug takers < Mean cholesterol of placebo takers	Are the proportions in two groups different? -Example: Is Curry's probability of making a shot higher for "Hot Shots" than for "Not Shots" -Null: Probability for hot shots = Probability for not shots -Alternative: Probability for hot shots > Probability for not shots

The price of diamonds

The mass of diamonds is measured in units called *carats*.

(1 carat ~200milligrams)

The difference in size between a .99 carat diamond and a 1 carat diamond is undetectable to the human eye.

But is a 1 carat diamond more expensive?

Let's compare the mean prices of .99 and 1.00 carat diamonds

Let's look at some data

I divided the price of each diamond by the number of carats to get a price per carat. Why?

	.99c	1 c
x	4451	5486
S	1332	1671
n	23	30

Data are a random sample from the <u>diamonds</u> data set in the <u>ggplot2</u> package

Parameter and point estimate

Parameter of interest: Difference between the average price per carat of <u>all</u> .99 carat and 1 carat diamonds.

$$\mu_{.99} - \mu_{1}$$

Point estimate: Difference between the average price of <u>sampled</u> .99 carat and 1 carat diamonds.

Which is the correct set of hypotheses to test if the average price of 1 carat diamonds is higher than the average price of 0.99 carat diamonds?

a)
$$H_0: \mu_{.99} = \mu_1$$

 $H_A: \mu_{.99} \neq \mu_1$

b)
$$H_0: \mu_{.99} = \mu_1$$

 $H_A: \mu_{.99} > \mu_1$

c)
$$H_0$$
: $\mu_{.99} = \mu_1$
 H_A : $\mu_{.99} < \mu_1$

d)
$$H_0: \bar{x}_{.99} = \bar{x}_1$$

 $H_A: \bar{x}_{.99} < \bar{x}_1$

Which is the correct set of hypotheses to test if the average price of 1 carat diamonds is higher than the average price of 0.99 carat diamonds?

a)
$$H_0: \mu_{.99} = \mu_1$$

 $H_A: \mu_{.99} \neq \mu_1$

b)
$$H_0: \mu_{.99} = \mu_1$$

 $H_A: \mu_{.99} > \mu_1$

c)
$$H_0$$
: $\mu_{.99} = \mu_1$
 H_A : $\mu_{.99} < \mu_1$

d)
$$H_0: \bar{x}_{.99} = \bar{x}_1$$

 $H_A: \bar{x}_{.99} < \bar{x}_1$

Which of the following does <u>not</u> need to be satisfied to conduct using the hypothesis test using t-tests?

- a) Per-carat rice of one 0.99 carat diamond in the sample should be independent of another, and the per-carat price of one 1 carat diamond should independent of another as well.
- b) Per-carat prices of 0.99 carat and 1 carat diamonds in the sample should be independent.
- c) Distributions of per-carat prices of 0.99 and 1 carat diamonds should not be extremely skewed.
- d) Both sample sizes should be at least 30.

Which of the following does <u>not</u> need to be satisfied to conduct using the hypothesis test using t-tests?

- a) Per-carat rice of one 0.99 carat diamond in the sample should be independent of another, and the per-carat price of one 1 carat diamond should independent of another as well.
- b) Per-carat prices of 0.99 carat and 1 carat diamonds in the sample should be independent.
- c) Distributions of per-carat prices of 0.99 and 1 carat diamonds should not be extremely skewed.
- d) Both sample sizes should be at least 30.

Defining the test statistic

The test statistic for inference on the difference of two small sample means ($n_1 < 30$ and/or $n_2 < 30$) mean is the T statistic.

$$T_{df} = \frac{\text{point estimate} - \text{null value}}{SE}$$
 point estimate = $\bar{x}_1 - \bar{x}_2$ null value = 0

where
$$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
 and $df = min(n_1 - 1, n_2 - 1)$

Note: the true df is actually different and more complex to calculate (it involves the variance in each estimate relative to it's size). But this is a reasonable approximation.

Computing the test statistic

So...

$$T = \frac{\text{point estimate} - \text{null value}}{SE}$$

$$=\frac{(4451-5486)-0}{}$$

$$= \frac{-1035}{413}$$
$$= -2.51$$

	.99c	1 c
x	4451	5486
S	1332	1671
n	23	30

What is the correct degrees of freedom for this test?

- a) 22
- b) 23
- c) 29
- d) 30
- e) 50

	.99c	1 c
x ⁻	4451	5486
S	1332	1671
n	23	30

What is the correct degrees of freedom for this test?

- a) 22
- b) 23
- c) 29
- d) 30
- e) 50

$$df = min(n_{qq} - 1, n_1 - 1)$$

- = min(23 1, 30 1)
- = min(22,29)
- = 22

Computing the p-value

$$> qt(.05, 22) = -1.72$$
 (Compare to our t-value -2.51)

Why not qt(.025, 22)?

What is the conclusion of the hypothesis test? How (if at all) would this conclusion change your behavior if you went diamond shopping?

- p-value is small so reject H₀. The data provide convincing evidence to suggest that the per-carat price of 0.99 carat diamonds is lower than the per-carat price of 1 carat diamonds.
- Maybe buy a 0.99 carat diamond? It looks like a 1 carat, but is significantly cheaper.

What is the equivalent confidence interval for a one-sided hypothesis test with $\alpha = 0.05$?

- a) 90%
- b) 92.5%
- c) 95%
- d) 97.5%

What is the equivalent confidence interval for a one-sided hypothesis test with $\alpha = 0.05$?

- a) 90%
- b) 92.5%
- c) 95%
- d) 97.5%

Ok so let's compute the confidence interval:

> qt(.05, 22) = -1.72

$$(\bar{x}_{pt99} - \bar{x}_{pt1}) \pm t_{df}^{\star} \times SE = (4451 - 5486) \pm 1.72 \times 413$$

$$= -1035 \pm 710$$

$$= (-1745, -325)$$

We are 90% confident that the average per-carat of a .99 carat diamond is \$1745 to \$325 lower than the average per-carat price of a 1 carat diamond.

Key ideas

- 1. We can use the t-distribution to estimate the probability of a difference between *unpaired* values.
- 2. Degrees of freedom depends on the size of both samples
- 3. The right test depends on where you think variance comes from