Question 1 2013 BC Q5

If $y = \frac{1}{2}x^{4/5} - \frac{3}{x^5}$, then $\frac{dy}{dx} = \frac{1}{x^5}$

- (A) $\frac{2}{5r^{1/5}} + \frac{15}{r^6}$
- (B) $\frac{2}{5x^{1/5}} + \frac{15}{x^4}$
- (C) $\frac{2}{5x^{1/5}} \frac{3}{5x^4}$
- (D) $\frac{2x^{1/5}}{5} + \frac{15}{x^6}$
- (E) $\frac{2x^{1/5}}{5} \frac{3}{5x^4}$

Question 2 2013 AB Q2

If $f(x) = x^3 - x^2 + x - 1$, then f'(2) =

- (A) 10 (B) 9 (C) 7 (D) 5

- (E) 3

Question 3 2013 AB Q18

If $\ln(2x + y) = x + 1$, then $\frac{dy}{dx} =$

- (A) -2 (B) 2x + y 2 (C) 2x + y (D) 4x + 2y 2 (E) $y \frac{y}{x}$

Question 4 2013 AB Q7

Let f be the function given by $f(x) = x^3 - 6x^2 + 8x - 2$. What is the instantaneous rate of change of f at x = 3?

- (A) -5 (B) $-\frac{15}{4}$ (C) -1 (D) 6 (E) 17

Question 5 2013 BC Q18

Graph of f

The graph of the function f, consisting of two line segments, is shown in the figure above. Let g be the function given by g(x) = 2x + 1, and let h be the function given by h(x) = f(g(x)). What is the value of h'(1)?

- (A) -4
- (B) -2
- (C) 4
- (D) 6
- (E) nonexistent

Question 6 2013 AB Q15

f(3)	g(3)	f'(3)	g'(3)
-1	2	5	-2

The table above gives values for the functions f and g and their derivatives at x = 3. Let k be the function given by $k(x) = \frac{f(x)}{g(x)}$, where $g(x) \neq 0$. What is the value of k'(3)?

- (A) $-\frac{5}{2}$ (B) -2 (C) 2 (D) 3

- (E) 8

Question 7 2013 AB Q16

If $y = 5x\sqrt{x^2 + 1}$, then $\frac{dy}{dx}$ at x = 3 is

- (A) $\frac{5}{2\sqrt{10}}$ (B) $\frac{15}{\sqrt{10}}$ (C) $\frac{15}{2\sqrt{10}} + 5\sqrt{10}$ (D) $\frac{45}{\sqrt{10}} + 5\sqrt{10}$ (E) $\frac{45}{\sqrt{10}} + 15\sqrt{10}$

Question 8 2014 BC Q11

$$f(x) = \begin{cases} 2x + 5 & \text{for } x < -1 \\ -x^2 + 6 & \text{for } x \ge -1 \end{cases}$$

If f is the function defined above, then f'(-1) is

- (A) -2
- (B) 2
- (C) 3
- (D) 5
- (E) nonexistent

Question 9 2013 AB Q19

The figure above shows the graph of the function g and the line tangent to the graph of g at x = -1. Let h be the function given by $h(x) = e^x \cdot g(x)$. What is the value of h'(-1)?

- (A) $\frac{9}{e}$ (B) $\frac{-3}{e}$ (C) $\frac{-6}{e}$ (D) $\frac{-6}{e} \frac{3}{e^2}$ (E) -6

Question 10 2014 BC Q20

If $f'(x) = \frac{(x-2)^3(x^2-4)}{16}$ and $g(x) = f(x^2-1)$, what is g'(2)?

- (A) 2 (B) $\frac{5}{4}$ (C) $\frac{5}{8}$ (D) $\frac{5}{16}$ (E) 0

Question 11 2014 AB Q3

If $f(x) = 4x^{-2} + \frac{1}{4}x^2 + 4$, then f'(2) =

- (A) -62 (B) -58 (C) -3
- (D) 0
- (E) 1

Question 12 2015 AB Q2

If $f(x) = \sqrt{x} + \frac{3}{\sqrt{x}}$, then f'(4) =

- (A) $\frac{1}{16}$ (B) $\frac{5}{16}$ (C) 1 (D) $\frac{7}{2}$ (E) $\frac{49}{4}$

Question 13 2014 AB Q17

If $f(x) = ae^{-ax}$ for a > 0, then f'(x) =

- (A) e^{-ax}
- (B) ae^{-ax}
- (C) $a^2 e^{-ax}$
- (D) $-ae^{-ax}$
- (E) $-a^2e^{-ax}$

Question 14 2014 AB Q6

$$\frac{d}{dx}\left(\sin^3\left(x^2\right)\right) =$$

- (A) $\cos^3(x^2)$
- (B) $3\sin^2(x^2)$
- (C) $6x\sin^2(x^2)$
- (D) $3\sin^2(x^2)\cos(x^2)$
- (E) $6x\sin^2(x^2)\cos(x^2)$

Question 15 2014 AB Q13

$$\frac{d}{dx}\left(\frac{x+1}{x^2+1}\right) =$$

- (A) $\frac{x^2 + 2x 1}{\left(x^2 + 1\right)^2}$
- (B) $\frac{-x^2 2x + 1}{x^2 + 1}$
- (C) $\frac{-x^2 2x + 1}{\left(x^2 + 1\right)^2}$
- (D) $\frac{3x^2 + 2x + 1}{\left(x^2 + 1\right)^2}$
- (E) $\frac{1}{2x}$

Question 16 2014 AB Q23

$$f(x) = \begin{cases} 3x + 5 & \text{when } x < -1\\ -x^2 + 3 & \text{when } x \ge -1 \end{cases}$$

If f is the function defined above, then f'(-1) is

- (A) -3 (B) -2 (C) 2 (D) 3

- (E) nonexistent

Question 17 2014 AB Q80

х	f(x)	
1	2.4	
3	3.6	
5	5.4	

The table above gives selected values of a function f. The function is twice differentiable with f''(x) > 0. Which of the following could be the value of f'(3)?

- (A) 0.6
- (B) 0.7
- (C) 0.9
- (D) 1.2
- (E) 1.5

Question 18 2015 AB Q7

If $f(x) = x^2 - 4$ and g is a differentiable function of x, what is the derivative of f(g(x))?

- (A) 2g(x) (B) 2g'(x) (C) 2xg'(x) (D) 2g(x)g'(x) (E) 2g(x)-4

Question 19 2015 AB Q10

If $y = \sin x \cos x$, then at $x = \frac{\pi}{3}$, $\frac{dy}{dx} =$

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{4}$ (D) $\frac{1}{2}$

- (E) 1

Question 20 2015 BC Q2

If $y^2 - 2x^2y = 8$, then $\frac{dy}{dx} =$

- (A) $\frac{4}{y-2x}$ (B) $\frac{2xy}{y-x^2}$ (C) $\frac{4+2xy}{y-x^2}$ (D) $\frac{2xy}{y+x^2}$ (E) $\frac{2xy+x^2}{y}$

Question 21 2015 AB Q85

Let y = f(x) define a twice-differentiable function and let y = t(x) be the line tangent to the graph of f at x = 2. If $t(x) \ge f(x)$ for all real x, which of the following must be true?

- (A) $f(2) \ge 0$
- (B) $f'(2) \ge 0$
- (C) $f'(2) \le 0$
- (D) $f''(2) \ge 0$
- (E) $f''(2) \le 0$

Question 22 2015 BC Q27

If $f(x) = \sin x + 2x + 1$ and g is the inverse function of f, what is the value of g'(1)?

- (A) $\frac{1}{3}$ (B) 1 (C) 3 (D) $\frac{1}{2 + \cos 1}$ (E) $2 + \cos 1$

Question 23 2016 AB Q1

If $y = \cos 2x$, then $\frac{dy}{dx} =$

- (A) $-2\sin 2x$
- (B) $-\sin 2x$
- (C) $\sin 2x$
- (D) $2\sin 2x$
- (E) $2\sin x$

Question 24 2016 AB Q4

If $y = \left(\frac{x}{x+1}\right)^5$, then $\frac{dy}{dx} =$

- (A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$

Question 25 2016 AB Q6

The slope of the line tangent to the graph of $y = \ln(1 - x)$ at x = -1 is

- (A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$
- (E) 1

Question 26 2016 AB Q27

If $e^{xy} - y^2 = e - 4$, then at $x = \frac{1}{2}$ and y = 2, $\frac{dy}{dx} =$

- (A) $\frac{e}{4}$ (B) $\frac{e}{2}$ (C) $\frac{4e}{8-e}$ (D) $\frac{4e}{4-e}$ (E) $\frac{8-4e}{e}$

Question 27 2016 BC Q4

If
$$y = \left(\frac{x}{x+1}\right)^5$$
, then $\frac{dy}{dx} =$

(A) $5(1+x)^4$ (B) $\frac{x^4}{(x+1)^4}$ (C) $\frac{5x^4}{(x+1)^4}$ (D) $\frac{5x^4}{(x+1)^6}$ (E) $\frac{5x^4(2x+1)}{(x+1)^6}$

Question 28 2016 BC Q6

The slope of the line tangent to the graph of $y = \ln(1 - x)$ at x = -1 is

(A) -1 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\ln 2$

(E) 1

Question 29 2016 BC Q16

If cos(xy) = y - 1, then the value of $\frac{dy}{dx}$ when $x = \frac{\pi}{2}$ and y = 1 is

(A) $\frac{-2}{2-\pi}$ (B) $\frac{-2}{2+\pi}$ (C) 0 (D) $\frac{2}{2-\pi}$ (E) $\frac{2}{2+\pi}$

Question 30 2017 BC Q1

If $f(x) = \cos^2(3x - 5)$, then f'(x) =

(A) $6\cos(3x-5)$

(B)
$$-3\sin^2(3x-5)$$

(C)
$$-2\sin(3x-5)\cos(3x-5)$$

(D)
$$-6\sin(3x-5)\cos(3x-5)$$

Question 31 2016 BC Q78

The graphs of the piecewise linear functions f and g are shown above. If the function h is defined by h(x) = f(x)g(x), then h'(2) is

- (A) 2
- (B) 13
- (C) 14
- (D) 20
- (E) nonexistent

Question 32 2017 BC Q9

The slope of the line tangent to the graph of $y = xe^x$ at $x = \ln 2$ is

- (A) 2 ln 2

- (B) $2 \ln 2 + 2$ (C) $e^2(\ln 2) + e^2$ (D) $2 + \frac{2 \ln 2}{e}$

Question 33 2017 BC Q3

If
$$f(x) = \frac{5-x}{x^3+2}$$
, then $f'(x) =$

(A)
$$\frac{-4x^3 + 15x^2 - 2}{\left(x^3 + 2\right)^2}$$

(B)
$$\frac{-2x^3 + 15x^2 + 2}{\left(x^3 + 2\right)^2}$$

(C)
$$\frac{2x^3 - 15x^2 - 2}{\left(x^3 + 2\right)^2}$$

(D)
$$\frac{4x^3 - 15x^2 + 2}{\left(x^3 + 2\right)^2}$$

Question 34 2017 BC Q11

If $x^2 + xy - 3y = 3$, then at the point (2, 1), $\frac{dy}{dx} =$

- (A) 5 (B) 4 (C) $\frac{7}{3}$ (D) 2

Question 35 2017 BC Q26

Let f be the function with $f(0) = \frac{1}{\pi^2}$, $f(2) = \frac{1}{\pi^2}$, and derivative given by $f'(x) = (x+1)\cos(\pi x)$. How many values of x in the open interval (0,2) satisfy the conclusion of the Mean Value Theorem for the function f on the closed interval [0,2]?

- (A) None
- (B) One
- (C) Two
- (D) More than two

Question 36 2017 AB Q5

If $f(x) = \sin(x^2 + \pi)$, then $f'(\sqrt{2\pi}) =$

- (A) $-2\sqrt{2\pi}$ (B) -2 (C) -1 (D) $\cos(2\sqrt{2\pi})$

Question 37 2017 AB Q1

If
$$f(x) = (2x^2 + 5)^7$$
, then $f'(x) =$

- (A) $7(4x)^6$
- (B) $7(2x^2 + 5)^6$
- (C) $14x^2(2x^2+5)^6$
- (D) $28x(2x^2+5)^6$

Question 38 2017 AB Q3

If
$$f(x) = \frac{5-x}{x^3+2}$$
, then $f'(x) =$

(A)
$$\frac{-4x^3 + 15x^2 - 2}{\left(x^3 + 2\right)^2}$$

(B)
$$\frac{-2x^3 + 15x^2 + 2}{\left(x^3 + 2\right)^2}$$

(C)
$$\frac{2x^3 - 15x^2 - 2}{\left(x^3 + 2\right)^2}$$

(D)
$$\frac{4x^3 - 15x^2 + 2}{\left(x^3 + 2\right)^2}$$

Question 39 2017 AB Q8

If f is the function given by $f(x) = e^{x/3}$, which of the following is an equation of the line tangent to the graph of f at the point $(3 \ln 4, 4)$?

- (A) $y-4=\frac{4}{3}(x-3\ln 4)$
- (B) $y 4 = 4(x 3 \ln 4)$
- (C) $y 4 = 12(x 3 \ln 4)$
- (D) $y 3 \ln 4 = 4(x 4)$

Question 40 2017 AB Q11

If $x^2 + xy - 3y = 3$, then at the point (2, 1), $\frac{dy}{dx} =$

- (A) 5 (B) 4 (C) $\frac{7}{3}$ (D) 2

Question 41 2017 AB Q76

The graph of a differentiable function f is shown in the figure above. Which of the following is true?

- (A) f'(-2) < f'(0) < f'(3)
- (B) f'(-2) < f'(3) < f'(0)
- (C) f'(3) < f'(-2) < f'(0)
- (D) f'(3) < f'(0) < f'(-2)

Question 42 2015 BC Q90

The function f is defined by $f(x) = 3x - 4\cos(2x + 1)$, and its derivative is $f'(x) = 3 + 8\sin(2x + 1)$. What are all values of x that satisfy the conclusion of the Mean Value Theorem applied to f on the interval [-1, 2]?

- (A) -0.692 and 1.263
- (B) -0.479 and 1.049
- (C) 0.285
- (D) 0.517
- (E) 1.578

Question 43 2015 AB Q12

What is the average rate of change of $y = \cos(2x)$ on the interval $\left[0, \frac{\pi}{2}\right]$?

- (A) $-\frac{4}{\pi}$ (B) -1 (C) 0 (D) $\frac{\sqrt{2}}{2}$ (E) $\frac{4}{\pi}$

Question 44 2016 AB Q26

Let f be the function given by $f(x) = x^3 + 5x$. For what value of x in the closed interval [1,3] does the instantaneous rate of change of f equal the average rate of change of f on that interval?

- (A) $\sqrt{\frac{7}{3}}$ (B) $\sqrt{\frac{13}{3}}$ (C) $\sqrt{5}$ (D) $\sqrt{6}$ (E) $\sqrt{\frac{19}{3}}$

Question 45 2017 AB Q6

If f is the function given by $f(x) = 3x^2 - x^3$, then the average rate of change of f on the closed interval [1, 5] is

- (A) -21 (B) -13 (C) -12 (D) -9

Question 46 2017 AB Q85

The function g is continuous on the closed interval [1, 4] with g(1) = 5 and g(4) = 8. Of the following conditions, which would guarantee that there is a number c in the open interval (1, 4) where g'(c) = 1?

- (A) g is increasing on the closed interval [1, 4].
- (B) g is differentiable on the open interval (1, 4).
- (C) g has a maximum value on the closed interval [1, 4].
- (D) The graph of g has at least one horizontal tangent in the open interval (1, 4).