1 Úloha 1

Experiment jsem prováděl ve svém pokoji, kde, když jsem nic nepoustěl, bylo něco málo pod 30 dB. Jako reproduktor jsem použil JBL Charge 3, který ale špatně hraje nízké tóny, a na vytvoření uzavřeného prostoru jsem použil ručník a malou kartónovou krabici.

Postup byl následující. Pro každý tón s frekvencemi od 55 Hz, 110 Hz až po 3520 Hz jsem nejdříve změřil jejich hlasitost bez izolace, pak jsem pro stejné tóny měřil hlasitost, když byl reproduktor zabalen do ručníku a vložen do krabice.

Ale otázkou zůstává, jak vypočítáme ten koeficient absorpce. Známe tyto vztahy:

$$k = \frac{I_{\rm absorbov\acute{a}no}}{I_{\rm celkov\acute{a}}}$$

$$L = 10 \times \log \frac{I}{I_0}$$

Při odvozování intenzity I využiji toho, že I_0 je konstanta, tudíž při dosazení do prvního vzorce neovlivní výsledek:

$$L = 10 \times \log \frac{I}{I_0}$$
$$\log \frac{I}{I_0} = \frac{L}{10}$$
$$\frac{I}{I_0} = 10^{\frac{L}{10}}$$

Označím-li hladinu intenzity bez izolace L_1 a hladinu intenzity s izolací L_2 , dostaneme pro k tento vzorec:

$$k = \frac{10^{\frac{L_1}{10}} - 10^{\frac{L_2}{10}}}{10^{\frac{L_1}{10}}}$$

Zde jsou výsledky dvou měření, kdy u druhé jsem měl zapnutou vyšší hlasitost:

Číslování	f	L_1	L_2	k
1	55	38	38	0
2	110	60	58	0.369042655519807
3	220	61	59	0.369042655519806
4	440	66	60	0.748811356849042
5	880	63	54	0.874107458820583
6	1760	57	40	0.980047376850311
7	3520	50	30	0.99

Tabulka 1: Výsledky prvního měření

Tabulka 2: Výsledky druhého měření

Číslování	f	L_1	L_2	k
1	55	44	39	0.683772233983162
2	110	64	58	0.748811356849042
3	220	71	59	0.936904265551981
4	440	70	53	0.980047376850311
5	880	71	54	0.980047376850311
6	1760	65	43	0.993690426555198
7	3520	58	32	0.99748811356849

Pro zprůměrované výsledky viz tabulku 3.

Na měření ale nalézám dvě zvláštnosti, a to že se naměřená absorpce mění tolik s rostoucí hlasitostí a také že ten koeficient je takhle velký. To první dokážu vysvětlit jen tím, že při nižší hlasitosti se více promítá hluk prostředí, tudíž to ty výsledky zmátlo. A to druhé se vysvětluje tím, že intenzita roste vůči hladiny intenzity exponenciálně.

Číslování	f	k_1	k_2	$\varnothing k$
1	55	0	0.683772233983162	0.341886116991581
2	110	0.369042655519807	0.748811356849042	0.558927006184425
3	220	0.369042655519806	0.936904265551981	0.652973460535893
4	440	0.748811356849042	0.980047376850311	0.864429366849677
5	880	0.874107458820583	0.980047376850311	0.927077417835447
6	1760	0.980047376850311	0.993690426555198	0.986868901702755
7	3520	0.99	0.99748811356849	0.993744056784245

Tabulka 3: Zprůměrování výsledků

2 Problém 2

Změnou prostředí bychom mohli dojít k jiným výsledkům díky jinému množství hluku nebo díky menšímu množství odražených vln, které můžou zvuk zesilovat a tím teoreticky zkreslit výsledky. Výsledky taky může ovlivňovat technika, například chytrý telefon nemusel přesně vyhodnotit hladinu intenzity, nebo reproduktor špatně hrál určité rozmezí tónů. Též mohlo dojít k softwarové chybě. Výsledky mohli ovlivnit také způsob izolování reproduktoru nebo hlasitost reproduktoru.

3 Úloha 3

Protože musíme sečíst intenzity a ne hladinu intenzit, musíme nejdříve získat intenzitu z hladiny intenzity:

$$L = 10 \times \log \frac{I}{I_0} \quad \Rightarrow \quad \frac{I}{I_0} = 10^{\frac{L}{10}}$$

Tohle nám stačí znát, abychom mohli vypočítat hladinu intenzity zvuku dvou vysavačů:

$$L = 10 \times \log 2 \times 10^{\frac{L}{10}} = 10 \times \log 2 \times 10^7 = 73.01 dB$$

4 Úloha 4

Hluk bych definoval jako jakýkoli zvuk, který je nám nežádoucí. Do toho zcela jistě zapadá veškeré bolestivé zvuky. Nebo třeba zvuky, které odvádějí pozornost, jako hlas rušícího kolegy, notifikace, hluk z ulice, plačící dítě, zvuk vrtačky nebo dupání.