EMET1001 Tutorial — Week 11.

Exercise 10.1. A firm's production function is $Q = K^{0.5}L^{0.5}$.

- (a) Find the marginal products of capital and labor. Are they always positive?
- (b) Find the equations of the isoquants for 10 units and for 100 units of output.
- (c) By implicit differentiation, find the slope of any isoquant and show that this slope is given by the ratio of marginal products of capital and labor. Is the slope always negative?
- (d) Suppose that, from any initial position, the labor input increases by a small amount dL. What change in the capital input is necessary to restore output to its initial level? Explain your answer in words.

Exercise 10.2. Use the Method of Lagrange multipliers (all 4 steps as discussed in the lecture) to find the maximum/minimum of $f(x,y) = x^2 - y^2$ subject to $x^2 + y^2 = 25$.

Exercise 10.3. A firm's production function is $Q = K^{0.4}L^{0.5}$. The firm is perfectly competitive and factor prices are r = \$4.00 (capital) per hour and w = \$5.00 (labor) per hour. The market price is p = \$20. Total revenue equals $p \cdot Q$.

- (a) Show that the most profitable output is Q = 512. Find the profit at that level.
- (b) How would the most profitable output change if p rose from 20 to 22 (with input prices unchanged)? What does this tell you about the firm's supply function? Does supply appear to be elastic or inelastic?
- (c) Show that cost minimization requires K = L.
- (d) Using (b), find total cost as a function of output. (Hint: eliminate either K or L from the TC function, then substitute Q in place of K or L.) What can you deduce about marginal cost and average cost, as a function of output? How does marginal cost compare with marginal revenue?

Related exercises in the textbook you should study, include (but are not limited to): Exercises 15-4 — Problems 1-28

The tutors at the EMET1001 help desk are happy to help, if you have any questions.