Network Theorems

- ILOs Day7
 - State and explain DC network theorems
 - Norton's theorem
 - Maximum power transfer theorem

Network Theorems

- Norton's theorem
- Maximum power transfer theorem

- Used for solution of complicated circuits
- It allows to replace a complicated circuit with a simple equivalent circuit containing only a single current source in parallel with a single resistor

• The Theorem states that:

• Any linear, bilateral, active network between two terminals can be replaced by an equivalent circuit consisting of a single current source (called the Norton's current source, I_N) in parallel with a single resistance (called the Norton's resistance, R_N).

- The Theorem states that:
- Any linear, bilateral, active network
- Between two terminals
- Can be replaced by an equivalent circuit consisting of
- A single current source (called the Norton's current source, I_N)
- In parallel with a single resistance (called the Norton's resistance, R_N).

Norton's Theorem-I_N

- Value of this current source I_N is obtained as the **short** circuit current between these two terminals.
- Make the two terminals SHORTED
- Measure the current through it using an ammeter

Norton's Theorem- R_N

- The Norton's resistance R_N is calculated as
- The <u>equivalent resistance of the network</u> <u>measured between the two open circuited</u> <u>terminals</u>
- By deactivating all sources in the circuit.

Norton's Theorem- R_N

- To make a voltage source inactive, it must be replaced by its internal resistance (short circuit for an ideal voltage source)
- To make a current source inactive, it must be replaced by its internal resistance (open-circuited for an ideal current source)

Practically, the definition of R_{Th} and R_{N} are the same. Thus for a given circuit, the values of R_{Th} and R_{N} are same.

Relationships between Thevenin's and Norton's equivalent parameters

Converting voltage source to current source

$$I = \frac{V_{Th}}{R_{Th}}$$

$$R_{Th} = R_N$$

$${m I}_N = rac{V_{Th}}{R_{Th}} = rac{V_{Th}}{R_N}$$

$$V_{Th} = I_N \times R_{Th} = I_N \times R_N$$

• We are to find out the Norton's equivalent circuit of the network across the 2.5 Ω resistance (i.e. between the terminals A and B).

Step 1:

Convert the 10 V source with 5Ω series resistance into an equivalent current source in parallel with the resistance 5 Ω :

In parallel with the same resistance 5Ω

The two current sources, 2 A and 1 A are in parallel, so they can be added up to make a single current source of value 2 + 1 = 3 A.

The two 5 Ω resistances in parallel can be combined into a single resistance of value 2.5 Ω :

To find the Norton's current, remove the 2.5 Ω resistance and short circuit the terminals A-B. Then find out current through the shorted path A-B:

Use current division rule to find out current through the shorted path A-B:

$$I_N = I_{Sh} = 3 \times \frac{2.5}{2.5 + 10} = 3 \times \frac{2.5}{12.5} = 0.6 A$$

Step 2: Calculate R_N

- To calculate R_N we keep the terminals A and B open circuited
- Replace the 3 A current source by open circuit and
- Calculate the equivalent resistance of the circuit between the two points A and B:

Between A-B, the two resistances 10 and 2.5 are in series:

$$\therefore R_N = R_{AB} = 2.5 + 10 = 12.5 \Omega$$

$$I_N = 0.6 A$$

$$R_N = 12.5 \Omega$$

The Norton's equivalent circuit that can be drawn between terminals A and B is thus:

Original circuit

Norton's equivalent circuit

To calculate the load current through the 2.5Ω resistance, connect it back between the output terminals A-B so that the total circuit becomes:

 \therefore The current (I_L) through the load resistance 2.5 Ω is:

$$I_L = I_{AB} = 0.6 \times \frac{12.5}{12.5 + 2.5} = 0.6 \times \frac{12.5}{15} = 0.5 A$$

Network Theorems

- Norton's theorem
- Maximum power transfer theorem

This theorem is used to find the value of load resistance in a circuit for which there would be maximum amount of power transfer from source to the load.

• The Theorem states that:

 A resistive load, being connected to a DC network, receives maximum power when the load resistance is equal to the internal resistance of the source network as seen from the load terminals.

- The Theorem states that:
- A resistive load (R_L)
- Connected to a DC network (source network)
- Will receive maximum power from the source network
- When the load resistance is equal to
- The internal resistance of the source network

- The Theorem states that:
- A resistive load (R_I)
- Connected to a DC network (source network)
- Will receive maximum power from the source network
- When the load resistance is equal to
- The internal resistance of the source network

- When the load resistance is equal to
- The internal resistance of the source network

Internal resistance of the source network is nothing but its Thevenin's equivalent resistance between the terminals A-B

For maximum power transfer, $R_L = R_{Th}$

Proof:

In the circuit:

$$I = \frac{V_{Th}}{R_{Th} + R_L}$$

Power received by the load resistance is:

$$P_L = I^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

For maximum power transfer to load, we set:

$$\frac{dP_L}{dR_L} = 0$$

$$\frac{dP_L}{dR_L} = 0$$

$$\frac{dP_L}{dR_L} = \frac{d}{dR_L} \left[\left(\frac{V_{Th}}{R_{Th} + R_L} \right)^2 R_L \right] = 0$$

$$V_{Th}^2 \frac{\left[(R_{Th} + R_L)^2 \times 1 - 2(R_{Th} + R_L)R_L \right]}{(R_{Th} + R_L)^4} = 0$$

$$R_{Th}^2 + R_L^2 + 2R_{Th}R_L - 2R_{Th}R_L - 2R_L^2 = 0$$

$$R_L^2 = R_{Th}^2$$

$$R_L = R_{Th}$$

Thus, it can be proved that power transfer from a DC source network to a resistive load is maximum when the load resistance is equal to the internal resistance of the DC source network.

Value of this maximum power can be calculated (with $R_I = R_{Th}$) as:

$$P_{L\max} = P_L \big|_{R_L = R_{Th}} = I^2 R_L$$

$$P_{L\max} = I^2 R_{Th}$$

$$P_{L\max} = \left(\frac{V_{Th}}{R_{Th} + R_{Th}}\right)^2 R_{Th}$$

$$P_{L\max} = \left(\frac{V_{Th}}{2R_{Th}}\right)^2 R_{Th}$$

$$P_{L \max} = \frac{V_{Th}^{2}}{4R_{Th}} = \frac{V_{Th}^{2}}{4R_{L}}$$

$$P_{L \max} = \frac{V_{Th}^{2}}{4R_{Th}} = \frac{V_{Th}^{2}}{4R_{L}}$$

- Note that this power is consumed by the load.
- In fact this same power is consumed by the internal resistance (R_{Th}) of the source also.

Thus, total power delivered by the source is:

$$P_{T} = \frac{V_{Th}^{2}}{4R_{Th}} + \frac{V_{Th}^{2}}{4R_{Th}} = \frac{V_{Th}^{2}}{2R_{Th}}$$

Thus, during maximum power transfer condition, the efficiency of power transfer becomes:

1. 2

$$\eta = \frac{P_{L \max}}{P_T} \times 100\% = \frac{\frac{V_{Th}^2}{4R_L}}{\frac{V_{Th}^2}{2R_L}} \times 100\% = 50\%$$

To calculate the value of load resistance R for obtaining maximum power in it, we need to convert the remaining part of the circuit, i.e. the circuit at the left hand side of the terminals A-B into its equivalent Thevenin's network.

- Step 1: Calculate V_{Th}
- Open circuit the terminals A-B and calculate the voltage across it:

• Take the current *i* in the loop as shown:

- Since A-B is open, thus no current will flow to the output
- Thus, no voltage will be dropped in the 5 Ω resistance
- Hence $V_{xy} = V_{AB}$

$$V_{Th} = V_{AB} = V_{xy} = 10 \times (-i) = -10 \times \frac{50}{1+3+10+1} = -10 \times \frac{50}{15} = -\frac{100}{3} V$$

- <u>Step 2</u>: Calculate R_{Th}
- Open circuit the terminals A-B
- Short the 50 V source and
- Calculate the equivalent resistance between terminals A-B:

- Calculate R_{Th}
- 1Ω , 1Ω , and 3Ω are in series (3 + 1 + 1 = 5)

Calculate R_{Th}

• This 5 Ω and 10 Ω are in parallel (equivalent = 50/15)

Calculate R_{Th}

• Finally, 50/15 and 5 are in series between A-B (50/15 + 5 = 25/3 Ω)

.:. The Thevenin's equivalent circuit is:

... According to maximum power transfer theorem, maximum power will be obtained by the resistance R when its value is equal to the Thevenin's equivalent resistance of the remaining part of the circuit, i.e. for

$$R = R_{Th} = \frac{25}{3} \Omega$$

& Value of maximum power

$$P_{\text{max}} = \frac{V_{Th}^{2}}{4R_{Th}} = \frac{\left(\frac{100}{3}\right)^{2}}{4 \times \frac{25}{3}} = 33.33 \, W$$