retake 22.09.2015

1.1. rationalizable = те стратегии, которые невозможно удалить при исключении доминируемых стратегий

Обнаруживаем, что (c_1, c_2) — всегда NE в базовой игре.

Заметим, что матрица симметрична. Поэтому пробуем исключать стратегеи только за первого игрока. Стратегию b_1 удалить невозможно (там 4 против 3 или 1). Стратегию c_1 удалить невозможно (там 1 против 0 или 0). Значит если что-то можно удалить, то только стратегию a_1 .

Допустим pb + (1-p)c > a. Получаем три неравенства p > 2/3, p(1-x) < 1 и p < 1.

Замечаем, что при неотрицательных x проблем с вычеркиванием a_1 нет, достаточно взять стратегию b с вероятностью p > 2/3 и стратегию c с вероятностью 1 - p.

При отрицательных x второе неравенство превращается в p < 1/(1-x). Второе неравенство начнет противоречить первому p > 2/3, если 1/(1-x) = 2/3, то есть x = -0.5.

Следовательно, если $x \le -0.5$, то ничего не вычеркивается. Если x > -0.5, то сначала вычеркивается a_1 (и a_2).

Если $x \ge 1$, то после a_1 уже ничего не вычеркивается, так как будет два равновесия Нэша в базовой игре.

Если $x \in (-0.5; 1)$, то после вычеркивания a_1 и a_2 можно также вычеркнуть b_1 и b_2 .

Итого:

Если $x \le -0.5$, то ничего не вычеркнулось, rationalizable = $(a_1, b_1, c_1; a_2, b_2, c_2)$

Если $x \in (-0.5; 1)$, то вычеркнулось a и b, rationalizable $= (c_1; c_2)$

Если $x \geq 1$, то вычеркнулось только a, rationalizable $= (b_1, c_1; b_2, c_2)$

1.2. При x < 1 единственное NE в базовой игре — это $(c_1; c_2)$. Если игра повторяется конечное число раз, то единственным SPE будет ситуация в которой игроки в каждой базовой игре будут играть NE. То есть SPE будет:

Стратегия 1-го: В каждой партии играть с₁. Стратегия 2-го: В каждой партии играть с₂.

1.3. Если (x-1)T > 1, то есть x > 1 + 1/T, то равновесий Нэша в базовой игре два. Следовательно возможны угрозы типа «Если ты не сходишь как я схожу в первой партии, то я буду тебе подсовывать плохое равновесие Нэша в остальных партиях; а если сходишь — то хорошее».

Если во всех партиях кроме первой игроки играют плохое равновесие Нэша (c_1, c_2) , то они получают $T \cdot 1 = T$ рублей. Если во всех партиях кроме первой игроки играют хорошее равновесие Нэша (b_1, b_2) , то они получают $T \cdot x = Tx$ рублей. Значит преимущество от всех хороших равновесий равно Tx - T = T(x-1) рубль.

Таким образом SPE выглядит так:

Стратегия 1-го:

В первой партии сходи a_1 . Далее играй b_1 , если в первой партии вышло (a_1, a_2) ; играй c_1 , если в первой не вышло (a_1, a_2) .

Стратегия 2-го аналогична.

В партиях начиная со второй игроки играют NE в каждой базовой игре, поэтому это оптимально. Проверяем оптимальность поведения в первой партии. Если зафиксировать стратегию 1-го игрока, то второй может вместо 3 рублей получить 4 (то есть увеличить выигрыш на 1 рубль), выбирая ход b_2 в первой партии. Но при этом в остальных партиях игра скатиться в плохое NE и второй игрок потеряет от этого T(x-1) рублей. Следовательно, указанная пара стратегий будет SPE при T(x-1) > 1.

2. Исходные обозначения ходов первого дурацкие. Обозначим их l и r сверху и L и R снизу.

Начинаем перебор за второго игрока и ищем наилучший ответ первого.

u -> rL

 $d \rightarrow lL$

Применяем формулу условной вероятности:

rL -> вера (сверху) $\mu=1$

IL -> нет ограничений на μ

Проверяем оптимальность действий второго:

r L и $\mu = 1$ -> и оптимально. Ура, $(u, rL, \mu = 1)$ — PBE

lL без ограничений на μ -> чтобы d было оптимально $\mu \leq 0.5$. Ура, $(d, lL, \mu \leq 0.5)$ — PBE

Более правдоподобно из этих двух равновесие равновесие (u, rL), так веры формируются по формуле условной вероятности.

3. First price auction for a painting whose authentity is uncertain. A priori it is authentic with probability 50%. You and your competitor receive a private signal which is positive if the painting is authentic and negative if not with probability 0.99. If the painting is authentic its value is 100 and 0 otherwise. You can bid any non-negative integer. In case of a tie, the object is assigned to either you with probability 50%. Only the winner pays. Find two symmetric pure BNE.