Preliminary Work

MAML

Model Pre-training

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n(\boldsymbol{\phi})$$

找尋在所有 task 都最好的 ϕ

並不保證拿 ϕ 去訓練以後會 得到好的 $\hat{\theta}^n$

MAML

$$L(\boldsymbol{\phi}) = \sum_{n=1}^{N} l^n(\hat{\boldsymbol{\theta}}^n)$$

我們不在意 ϕ 在 training task 上表現如何

我們在意用 ϕ 訓練出來的 $\hat{\theta}^n$ 表現如何

Preliminary Work **MAML**

MAML

 $\hat{\theta}^n$: model learned from task n $\hat{\theta}^n$ depends on ϕ

Loss Function:

$$L(\phi) = \sum_{n=1}^{N} l^n(\hat{\theta}^n)$$

 $l^n(\widehat{\theta}^n)$: loss of task n on the testing set of task n

How to minimize $L(\phi)$? Gradient Descent

$$\phi \leftarrow \phi - \eta \nabla_{\phi} L(\phi)$$

Find ϕ achieving good performance after training

潛力

Model Pre-training

Widely used in transfer learning Loss Function:

$$L(\phi) = \sum_{n=1}^{N} l^n(\phi)$$

Find ϕ achieving good performance 現在表現如何

