Oblig 1 - MAT2400

Fredrik Meyer

1 Oppgave 1

Påstand 1 (a). \mathbb{Z}_5 har fire generatorer og $Aut(\mathbb{Z}_5) \simeq \mathbb{Z}_4$

Bevis. Hvert ikke-null-element i \mathbb{Z}_5 genererer en undergruppe. Siden 5 er et primtall, må denne undergruppen ha orden 5 eller 1. Undergruppen av orden er 1 er den trivielle gruppen $\{0\}$. Alle de andre undergruppene må ha orden 5, og derfor generere hele gruppen. \mathbb{Z}_5 har derfor 4 generatorer.

Siden enhver automorfisme må sende generatorer på generatorer (for ellers ville $\sigma(\langle 1 \rangle)$ ikke vært lik \mathbb{Z}_5), er $\operatorname{Aut}(\mathbb{Z}_5)$ av orden 4. Det finnes to grupper av orden 4, og vi må finne ut hvilken det er $(\mathbb{Z}_4$ eller $\mathbb{Z}_2 \times \mathbb{Z}_2$).

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix} \tag{1}$$

Vi ser raskt at $\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 1 & 5 \end{pmatrix}$, og dette er ikke identitetsautomorfismen, så vi må ha at $\operatorname{Aut}(\mathbb{Z}_5) \simeq \mathbb{Z}_4$, siden det dobbelte av alle elementer i $\mathbb{Z}_2 \times \mathbb{Z}_2$ er identitetselementet.

Påstand 2. Finne alle endelige abelske grupper av orden 96.

Bevis. Først ser vi at 96 = $3 \cdot 2^5$. Fra fundamentalteoremet om endeliggenererte abelske grupper vet vi at enhver slik gruppe kan skrives på formen $\mathbb{Z}_{p_1^{r_1}} \times \ldots \times \mathbb{Z}_{p_n^{r_n}}$ der p_i er primtall. Dermed er mulighetene våre følgende: $\mathbb{Z}_{96}, \mathbb{Z}_3 \times \mathbb{Z}_{32}, \mathbb{Z}_3 \times \mathbb{Z}_{16} \times \mathbb{Z}_2, \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_8, \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_$

Påstand 3. Finn to undergrupper av S_4 som er isomorfe med S_3 .

Bevis. S_4 består av alle permutasjoner av (1,2,3,4). La H være undergruppen av S_4 som lar 4 være fiksert. At H er en undergruppe ses lett: $\iota \in H$ fordi $\iota(4) = 4$ og om $\sigma \in H$ er $4 = \iota(4) = \sigma^{-1}\sigma(4) = \sigma^{-1}(4)$, så $\sigma^{-1} \in H$. Og om $\sigma, \delta \in H$, er $\sigma\delta(4) = \sigma(4) = 4$, så H er lukket under komposisjon. Dermed er H en undergruppe. La nå $\psi: S_3 \to H$ være definert med $\psi(\sigma) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(1) & \sigma(2) & \sigma(3) & 4 \end{pmatrix}$. Vi må vise at ψ er en homomorfi: $\psi(\sigma\zeta) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(1)\zeta(1) & \sigma(2)\zeta(2) & \sigma(3)\zeta(3) & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma(1) & \sigma(2) & \sigma(3) & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ \zeta(1) & \zeta(2) & \zeta(3) & 4 \end{pmatrix} = \psi(\sigma)\psi(\zeta)$, så ψ er en homomorfi. At ψ er en-en og på er selvsagt fra definisjonen. Så $H \simeq S_3$. På samme måte kan vi definere K som undergruppen som lar 3 være fiksert, og vi får akkurat samme bevis.

2 Oppgave 2

La G og G' være abelske grupper. La Hom(G, G') betegne mengden av alle homomorfismer fra G til G'. Vi definerer en operasjon på Hom(G, G'):

$$f+g: G \to G', (f+g)(x) = f(x) + g(x) \forall x \in G$$

Påstand 4. $f + g \in Hom(G, G')$

Bevis. Vi må vise at (f+g)(x+y) = (f+g)(x) + (f+g)(y). Dette er rett fram utregning:

$$(f+g)(x+y) = f(x+y) + g(x+y)$$
 (2)

$$= f(x) + f(y) + g(x) + g(y)$$
 (3)

$$= f(x) + g(x) + f(y) + g(y)$$
 (4)

$$= (f+g)(x) + (f+g)(y)$$
 (5)

I overgangen fra ligning 3 til 4 bruker vi at f og g er homomorfier, og i overgangen fra 4 til 5 bruker vi at G' er abelsk.

Påstand 5. (Hom(G, G'), +) er en abelsk gruppe.

Bevis. Vi må vise at det eksisterer inverselementer og identitetselement. La $0: G \to G'$ være definert som $0(x) = 0 \forall x \in G$. Da er (f+0)(x) = f(x) + 0(x) = f(x) + 0 = f(x), så 0 er et identitetselement. Definer nå (-f) som (-f)(x) = -f(x). Da er (-f) et inversen til f: (f+(-f))(x) = f(x) + (-f)(x) = f(x) - f(x) = 0 for alle x. Så vi har både inverser og identitetselement. At mengden er lukket under operasjonen ble vist i påstand

4. Så vi har en gruppe. At gruppen er abelsk følger fra (f+g)(x)=f(x)+g(x)=g(x)+f(x)=(g+f)(x) siden G' er abelsk. Så $(\operatorname{Hom}(G,G'),+)$ er en abelsk gruppe.

Påstand 6. $Hom(\mathbb{Z}, G') \simeq G'$

Bevis. Definer $\psi: \operatorname{Hom}(\mathbb{Z}, G') \to G' \operatorname{ved} \psi(f) = f(1)$. Da er ψ en homomorfi fordi $\psi(f+g) = (f+g)(1) = f(1) + g(1) = \psi(f) + \psi(g)$. Må vise at ψ er en-en og på. Anta $\psi(f) = \psi(g)$. Altså at f(1) = g(1). Da er $f(k) = f(1+1+\ldots+1) = f(1)+\ldots+f(1) = g(1)+\ldots+g(1) = g(k)$ for alle k>0. Men f(-k) = f(0-k) = f(0) - f(k) = 0 - f(k) = 0 - g(k) = g(0) - g(k) = g(0-k) = g(-k). Så f(x) = g(x) for alle x, og derfor må f = g. ψ er altså en-en. Anta $a \in G'$. Definer nå en homomorfi $f: \mathbb{Z} \to G'$ ved f(1) = a. Ved samme metode som ovenfor definerer dette unikt en homomorfi, så ψ er på. Vi har dermed en isomorfi fra $\operatorname{Hom}(\mathbb{Z}, G') \to G'$ og vi må derfor ha $\operatorname{Hom}(\mathbb{Z}, G') \simeq G'$.

Påstand 7. Beskrive elementene i $Hom(\mathbb{Z}, \mathbb{Z})$.

Bevis. Fra forrige oppgave er $\operatorname{Hom}(\mathbb{Z},\mathbb{Z}) \simeq \mathbb{Z}$, så funksjonene i $\operatorname{Hom}(\mathbb{Z},\mathbb{Z})$ oppfører seg akkurat som heltallene.

3 Oppgave 3

La $G = \mathbb{Z} \times \mathbb{Z}$.

Påstand 8. La $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M(2,\mathbb{Z})$, og anta $\det(A) = \pm 1$. Da er $\phi_A : G \to G$ gitt ved $\phi_A(x,y) = (ax + by, cx + dy)$ en automorfisme av G.

Bevis. At ϕ_A er en homomorfisme er selvsagt siden lineærtransformasjoner er lineære. Siden det $A \neq 0$, vet vi fra lineær algebra at ϕ_A er enen. Siden A er invertibel, er invers-transformasjonen gitt ved $\phi_A^{-1}(x,y) = (\det A)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} (x,y)$, og siden det $A = \pm 1$, er $(\det A)^{-1} \in \mathbb{Z}$, så ϕ_A er også på.

Påstand 9. Anta $\phi: G \to G$ er en homomorfisme. Da $\exists A \in M(2, \mathbb{Z})$ slik at $\phi = \phi_A$.

Bevis. Anta $\phi(1,0) = (a,c)$ og $\phi(0,1) = (b,d)$. Da er $\phi(x,0) = (ax,cx)$ og $\phi(0,y) = (by,dy)$. Siden ϕ er en homomorfisme er $\phi(x,y) = \phi(x,0) + \phi(0,y)$,

så vi har at
$$\phi(x,y) = \phi(x,0) + \phi(0,y) = (ax,cx) + (by,dy) = (ax+by,cx+dy) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}(x,y) = A(x,y) = \phi_A(x,y).$$

Påstand 10. Anta ϕ er en automorfisme av G, og at $\phi = \phi_A$. Da er $\det(A) = \pm 1$.

Bevis. Fra forrige påstand vet vi at $\phi = \phi_A$ der $A \in M(2, \mathbb{Z})$. Anta nå $A(x_1, x_2) = (y_1, y_2)$. Da er ved Cramers regel

$$x_1 = \begin{vmatrix} y_1 & b \\ y_2 & d \end{vmatrix} / \det(A)$$

og på samme måte med x_2 . Men vi vil at $x_1 \in \mathbb{Z}$. For at dette skal gå for alle y_1, y_2 , må det $A = \pm 1$.

4 Oppgave 4

La G være en gruppe og la $H \leq G$.

Påstand 11. La X være samlingen av venstresideklassene av H. La G virke på X ved venstretranslasjon g(xH) = gxH for $g \in G$ og $xH \in X$. La $\phi: G \to S_X$ være homomorfismen gitt ved $\phi(g) = \sigma_g$ for $g \in G$ hvor $\sigma_g(xH) = gxH$ for alle $xH \in X$. Da er $\ker \phi \subset H$.

Bevis. La $I = \{x \in G | x \neq y \Rightarrow xH \neq yH \text{ for } y \in G\}$ være representativer for venstreklassene til H. Vi har at:

$$\ker \phi = \{ g \in G | \phi(g) = \iota \}$$
 (6)

$$= \{ g \in G | \sigma_g(xH) = xH \forall xH \in X \}$$
 (7)

$$= \{g \in G | gxH = xH \forall x \in G\}$$
 (8)

$$= \{ g \in G | x^{-1} g x \in H \forall x \in G \}$$
 (9)

Anta $g \in \ker \phi$. Da er fra ligningene over $x^{-1}gx \in H$. Om $x \notin H$, må $g \in H$, for ellers kunne umulig produktet vært med i H. Om $x \in H$, har vi at $x^{-1}gx \in H \Leftrightarrow x^{-1}gxH = H \Leftrightarrow gxH = xH = H \Leftrightarrow g(xH) = gH = H \Leftrightarrow g \in H$. Så $\ker \phi \subset H$.

Påstand 12. Anta |G| = pn hvor p er et primtall slik at p > n og anta H har orden p. Da er H normal i G.

Bevis. Siden p>n kan ikke p
 dele n. Så vi har at H er en Sylow pundergruppe. Fra andre Sylow-teorem vet vi at om K er en annen Sylow p-undergruppe, så er $K=gHg^{-1}$ for en eller annen $g\in G$. Fra tredje Sylow-teorem er antall Sylow p-undergrupper kongruent med 1 modulo p og deler pn. Tallene som er kongruente med 1 modulo p er $\{1,p+1,2p+1,\ldots\}$. Men siden p>n er 1 eneste mulighet, og dermed er H den eneste Sylow p-undergruppen. Fra andre Sylow-teorem har vi dermed at $H=gHg^{-1}$ for alle $g\in G$, så H er normal.