<u>PSYC234: Lecture 5 – Binomial test: post-lecture worksheet</u>

Here are the answers for the Lecture 5 worksheet on the binomial test.

Activity 1: One sample-test or binomial test?

For the following examples, write down whether you think the test conducted should be a one-sample t-test or a binomial test.

Research design	Test that should be run	Why do you think this?	
You are the coach of a football team. You are	One sample	The value for each individual	
interested in whether the running distance of	t-test	is continuous.	
your players significantly differs from the			
England national football team. You know, on		You are interested in	
average, England football players run 10km		whether the mean number	
per game.		of km runs differs from a	
		known value.	
You are the coach of a football team. You are	Binomial test	Two possible outcomes:	
interested in whether the proportion of		team scores or team does	
games your team scores a goal is significantly		not score).	
different from that of the England national			
team. You know that on average, the England		You are interested in	
national team scores a goal in 60% of games.		whether the proportion that	
		a given outcome occurs (i.e.	
		your team scores a goal)	
		differs from a known value.	
You are a university lecturer. You decide to	Binomial test	Two possible outcomes:	
introduce post-lecture worksheets to help		Each student's outcome is	
students to consolidate knowledge learned		either "passed class test" or	
during lectures. You are interested in		"failed class test".	
whether the proportion of students passing			
the class test differs between this year and		You are interested in	
last year. You don't have individual marks for		whether the proportion that	
last year's students, but you do know that		a given outcome occurs (i.e.	
74% of the last year's cohort passed the class		passes the class test) differs	
test.		from a known value.	

	T	T	
You are a university lecturer. You decide to	One sample	The value for each individual	
introduce post-lecture worksheets to help	t-test	is continuous.	
students to consolidate knowledge learned			
during lectures. You are interested in		You are interested in	
whether the score on the class test differs		whether the mean score	
between this year and last year. You know		students get differs from a	
that last year, the average mark on the class		known value.	
test was 62% (or 0.62 expressed a			
proportion) .			
You are a neonatal doctor (a doctor who	Binomial test	Two possible outcomes:	
specialising in caring for newborn babies).		Each baby's outcome is	
You think that babies born in your hospital		either "small for gestational	
are quite small. You are interested in		age" or "not small for	
whether the proportion of babies who are		gestational age".	
classed as "small for gestational age" differs			
between your hospital and the UK average		You are interested in	
(10%).		whether the proportion that	
		a given outcome occurs (i.e.	
		small for gestational age)	
		differs from a known value.	
You are a neonatal doctor (a doctor who	One-sample	The value for each individual	
specialising in caring for newborn babies).	t-test	is continuous.	
You think that babies that are born in your			
hospital are quite small. You are interested in		You are interested in	
whether the average weight of babies born		whether the mean weight of	
at your hospital is significantly less than the		babies at your hospital	
UK average (3350g).		differs from a known value.	

Disclaimer: All data is made up (and these estimates may be utterly ridiculous!)

Take-home message: A one sample t-test is used when you are interested in comparing the mean of a sample to a known value. The binomial test is used when you are interested in comparing a sample's proportion of "successes" to a known value.

Activity 2: Identifying "success"

The binomial test is appropriate for the following research designs. Identify which outcome would be classed as success and which would be classed as failure. If you are confused what classes as success, refer back to the lecture slides/recording.

<u>Design</u>	Success	<u>Failure</u>
You are a lecturer interested in whether the proportion of students passing your module differs from your colleague's module. 82% of students (or 0.82 expressed as a proportion) pass your colleague's module.	Pass the module	Fail the module
You are the headteacher of a grammar school which has an entrance exam. You are interested in whether the proportion of children failing the test differs significantly from last year. The failure rate last year was 24% (or 0.24 expressed as a proportion).	Failing the test	Passing the test
You are a teacher. You are interested in whether the proportion of students in your class with special educational needs and disabilities (SEND) significantly differs from the year group average (27%, or 0.27 expressed as a proportion).	Has special educational needs	Does not have special educational needs
You have developed a new flu vaccine. You are interested in whether the proportion of people who develop side effects after your vaccine differs from the flu vaccine currently used by the NHS (37%, or 0.37 expressed as a proportion).	Has side effects	Does not have side effects

Take home message: Success refers to the outcome you are interested in. Sometimes this might be counterintuitive to how we typically think about 'success'.