10 Oefeningen

a Projecteer de punten X, Y, Z, P, Q, U en V op *a* volgens *b* en op *b* volgens *a*.

b Projecteer deze punten loodrecht op a en loodrecht op b.

ABCD is een ruit, waarbij M het snijpunt is van de diagonalen.

Vul aan.

a
$$p_{\rm DC}^{\rm AD}({\rm B})=$$

c
$$p_{AB}^{AD}(C) =$$

e
$$p_{\mathrm{DC}}^{\mathrm{AD}}([\mathrm{AB}]) = [\mathrm{DC}]$$

b
$$p_{\mathrm{BD}}^{\perp}(\mathrm{A}) = \mathrm{M}$$

$$d p_{AC}^{\perp}(C) = C$$

$$f \quad p_{\mathrm{BD}}^{\perp}([\mathrm{CD}]) = [\mathrm{MD}]$$

Bepaal de beelden van de volgende figuren door te projecteren op y volgens x.

$$p_y^x = (ABCD) = [A'C']$$

 $p_y^x = (MNPQ) = [M'Q']$

4 Teken een lijnstuk [AB] zodat $p_a^b([AB]) = [A'B']$.

Hoeveel oplossingen zijn er? <u>Er zijn oneindig veel oplossingen.</u>

d

 $oxed{5}$ Bepaal de beelden van de volgende figuren door p_a^b en $p_{b.}^a$

 $p_{a}^{b}(\Delta ABC) = [AC]$ $p_{b}^{a}(\Delta ABC) = [CB]$ $p_{a}^{b}(\Delta DEF) = [E'D']$ $p_{b}^{a}(\Delta DEF) = [E''F'']$ A C E' D

b

a

$$p_a(ABCD) = [AC]$$

 $p_b^a(ABCD) = [DB]$

 $p_a^b(c) = [C'D']$ $p_b^a(c) = [AB'']$

Als A' en B' de projectie
beelden zijn van A en B, teken dan een projectie
as a en een projectierichting b in de volgende gevallen.

a

*d

- Bepaal:
 - a $p_{\mathrm{BC}}^{\perp}(\Delta \, \mathrm{ABC}) = [\mathrm{CB}]$

b $p_{MN}^{MP}(\Delta MNP) = [MN]$

c $p_{PN}^{\perp}(\Delta MNP) = [M'N]$

- Gegeven is een driehoek ABC waarvan H het hoogtepunt is.
 - a Vul aan:

$$p_{\mathrm{AC}}^{\perp}([\mathrm{AH}]) = [\mathrm{AD}]$$

$$p_{\mathrm{BC}}^{\perp}(\Delta \, \mathrm{ABC}) = [\mathrm{CE}]$$

$$p_{\rm AC}^{\perp}(\Delta \, {\rm AHB}) = [{\rm AD}]$$

b Verklaar waarom CH \perp AB.

DH en AH zijn hoogtelijnen van driehoek ABC, dus moet CH ook een hoogtelijn zijn van die driehoek

(de drie hoogtelijnen van een driehoek snijden elkaar in één punt, het hoogtepunt).

Teken S als p_a^b (S) = S' en p_b^a (S) = S".

Construeer Δ XYZ als:

$$X' = p_b^a(X)$$

$$X'' = p_a^b(X)$$

$$Y'' = p_a^b(Y)$$

$$Z'' = p_a^b(Z)$$

$$Y' = p_b^a(Y)$$

$$Z' = p_b^a(Z)$$

$$V'' - n^b(V)$$

$$Z' = p_h^a(Z)$$

$$7'' - n^b(7)$$

$$X' = X$$

Construeer Δ XYZ als:

$$X' = p_a^{\perp}(X)$$

$$Y' = p_a^{\perp}(Y)$$

$$Z' = p_a^{\perp}(Z)$$

$$X'' = p_b^{\perp}(X)$$

$$Y'' = p_b^{\perp}(Y)$$

$$Z'' = p_b^{\perp}(Z)$$

$$Y' = p_a^{\perp}(Y)$$

$$Y'' = p_h^{\perp}(Y)$$

$$Z' = n_a^{\perp}(Z)$$

$$Z'' = n^{\perp}(Z)$$

Construeer [XY] zodat $p_a^b([XY]) = [X'Y']$ en $p_b^a([XY]) = [X''Y'']$.

Waar ligt Q als |QQ'| = |QQ''| met $Q' = p_a^{\perp}(Q)$ en $Q'' = p_b^{\perp}(Q)$?

- Q kan elk punt zijn dat ligt op een van de twee
- bissectrices van de snijdende rechten.
- Gegeven: $p_a^b[XY] = [X'Y']$. Gevraagd: construeer [XY] zodat ...
 - a |XY| = |X'Y'|

b |XY| > |X'Y'|

c |XY| < |X'Y'|

d |XY| = |X'Y'| en [XY] // [X'Y']

 $\binom{\text{EFGH}}{\text{ABCD}}$ is een balk. Vul aan.

a
$$p_{\text{vlak ABC}}^{\perp}(F) = B$$

e
$$p_{\text{vlak EFB}}^{\perp}(\Delta \text{ HEC}) =$$
 [EB]

b
$$p_{\text{vlak HGC}}^{\perp}([DF]) = [DG]$$

f
$$p_{\text{vlak ABC}}^{\perp}$$
 $($ F $) = B$

c
$$p_{\text{vlak HGC}}^{\perp}([GF]) = \{G\}$$

g
$$p_{\text{vlak ABC}}^{\perp}(\Delta \text{ EFH}) = \Delta ABD$$

d
$$p_{\text{vlak ABC}}^{\perp}($$
 M $) = N$

h
$$p_{\text{vlak CGF}}^{\perp}(\Delta \text{ DHE}) = \Delta \text{CGF}$$

16 Teken de punten A(3, 4), B(8, 4), C(5, –2) en D(0, –2) in een assenstelsel.

a Welk soort vierhoek is ABCD?

ABCD is een parallellogram.

b Bepaal | AB| en | CD|.

$$|AB| = |8-3| = 5$$

$$|CD| = |0-5| = 5$$

c Bepaal de afstand van A tot de x-as.

$$|A; x-as| = |0-4| = 4$$

d Bepaal de afstand van B tot de *y*-as.

$$|B; y-as| = |0-8| = 8$$

Gegeven is A(-4, -2). Bepaal de punten B en C zodat |AB| = |AC| = 3 en AB $/\!\!/ x$ -as en AC $/\!\!/ y$ -as. Hoeveel mogelijkheden zijn er?

Er zijn twee mogelijkheden voor

B en C:

Voor B: (-1, -2) en (-7, -2)

Voor C: (−4, 1) en (−4, −5)

Gegeven is driehoek ABC met A(3, 7), B(6, 3) en C(2, 3). Zoek de oppervlakte van \triangle ABC.

Voetpunt van de hoogtelijn: P(3, 3).

$$\Delta ABC = \frac{b \cdot h}{2} = \frac{|BC| \cdot |AP|}{2}$$
$$= \frac{4 \cdot 4}{2} = 8$$

- 19 Gegeven zijn A(-4, 5), B(2, 5), C(2, -1) en D(-4, -1).
 - a Verklaar dat ABCD een vierkant is.

- |AB| = |BC| = |CD| = |DA|
- $\widehat{A} = \widehat{B} = \widehat{C} = \widehat{D} = 90^{\circ}$

b Bereken de omtrek van het vierkant ABCD.

 $p = 4 \cdot 6 = 24$

c Bereken de oppervlakte van het vierkant ABCD.

 $A = 6^2 = 36$

Als je van A naar B gaat, bereken dan de afstand die je aflegt via de rode en de groene route. Wat stel je vast?

groene route:

$$|(5-(-1)|+|4-(-3)|=6+7=13$$

rode route:

$$1+2+3+2+2+1+1+1=13$$

ANTWOORD: Beide routes zijn gelijk.

Gegeven: driehoek ABC (zie tekening)

Gevraagd:

a Vul aan:

$$co(A) = (-1, 4)$$

$$co(B) = (5, 0)$$

$$co(C) = (-3, -2)$$

$$p_a^{\perp}(\mathbf{A}) = \mathbf{A}'$$

$$p_a^{\perp}(\mathbf{B}) = \mathbf{B}'$$

$$p_a^{\perp}(C) = C'$$

$$p_b^{\perp}(A) = A''$$

$$p_b^{\perp}(\mathbf{B}) = \mathbf{B}''$$

$$p_b^{\perp}(C) = C''$$

$$co(A') = (-1, 2)$$

$$co(B') = (5, 2)$$

$$co(C') = (-3, 2)$$

$$co(A'') = (-4, 4)$$

$$co(B'') = \underline{(-4, 0)}$$

$$co(C'') = (-4, -2)$$

$$|A'B'| = |5 - (-1)| = 6$$

$$|A''B''| = |0-4| = 4$$

$$|A'C'| = |-3-(-1)| = 2$$

$$|A''C''| = |-2-4| = 6$$

$$|B'C'| = |-3-5| = 8$$

$$|B''C''| = |-2-0| = 2$$

22 Schets het vooraanzicht, rechterzijaanzicht en bovenaanzicht van onderstaande blokkenconstructie.

23 Schets aan de hand van het vooraanzicht, rechterzijaanzicht en bovenaanzicht de blokkenconstructie.

Met zes puzzelstukken wordt een holle $4 \times 4 \times 4$ -kubus gemaakt. Hier zie je twee aanzichten van deze kubus.

Welke vorm heeft het gele puzzelstuk, dat niet volledig zichtbaar is in de aanzichten?

JWO 2018 eerste ronde, vraag 9 © Vlaamse Wiskunde Olympiade vzw