Lecture 21: Co-analytic Ranks

In the previous lecture we learned about how Π_1^1 set can be analyzed in terms of countable ordinals. In this lecture we will deepen this analysis. We will develop the theory of Π_1^1 -ranks, which is a powerful tool in descriptive set theory. We can view the recursive function f that we constructed in the proof of Theorem 20.2 as the central fact:

If
$$R_e$$
 is well-founded, then $\rho(R_e) \le |f(e)|_{\mathcal{O}}$ (*)

Boundedness Principles

We start by picking up the observation made in Lemma 20.1. It states that r.e. subsets of $\mathbb O$ are **uniformly bounded**: Given an index e of an r.e. subset of $\mathbb O$, we can compute uniformly in e a ordinal bounding all ordinals denoted by W_e . We can strengthen this to Σ_1^1 sets.

Theorem 21.1 (Spector): If $X \subseteq \emptyset$ is Σ_1^1 , then there exists $b \in \emptyset$ such that

$$\forall x \in X |x|_{\mathcal{O}} < |b|_{\mathcal{O}}$$
.

Proof. Let t be a reduction from \mathbb{O} to WF_N, that is t is recursive such that

$$x \in \mathcal{O} \iff R_{t(x)}$$
 is well-founded.

The idea is that if X is unbounded in \mathbb{O} , then we can characterize \mathbb{O} by a Σ^1_1 formula, contradicting Corollary 20.7. If the desired b does not exist, then, for each $x \in \mathbb{O}$, we can find a $y \in X$ such that there exists an embedding of $R_{t(x)}$ into \mathbb{O} below y. Using the proof of Theorem 20.2, we can formulate this as a property P(x),

$$P(x) \quad \Longleftrightarrow \quad \exists y \ [y \in X \ \land \ \exists \gamma \forall z_0, z_1 \ (R_{t(x)}(z_0, z_1) \ \Rightarrow \ \langle \gamma(z_0), \gamma(z_1) \rangle \in W_{g(z)})],$$

where g is a recursive function so that $W_{g(z)} = \{\langle x, y \rangle \colon x <_{\mathcal{O}} y <_{\mathcal{O}} z\}$ (see Proposition 19.7). If X is Σ^1_1 , then P is Σ^1_1 .

If $x \in \mathcal{O}$, then $R_{t(x)}$ is well-founded, hence by (*), $\rho(R_{t(x)}) \leq |f(t(x))|_{\mathcal{O}}$, and thus if X is unbounded in \mathcal{O} , P(x) holds. If P(x) holds on the other hand, then $R_{t(x)}$ must be well-founded (otherwise such a mapping would not exist), and thus $x \in \mathcal{O}$. Hence P would be a Σ_1^1 characterization of \mathcal{O} .

Corollary 21.2: If $X \subseteq \mathbb{N}$ is Δ_1^1 , and h is recursive such that $x \in X$ if and only if $h(x) \in \mathbb{O}$, then there exists a $b \in \mathbb{O}$ such that

$$\forall x \in X |h(x)| < |b|_{\odot}$$
.

A similar statement holds with WF $_{\!\mathbb{N}}$ in place of 0.

Boundedness for sets of reals

The key to Spector's theorem is the fact that $WF_{\mathbb{N}}$ and \mathbb{O} are m-complete for the class of Π_1^1 sets of natural numbers.

We have seen (Theorem 17.6) that the set WOrd, WF $\subseteq \mathbb{N}^{\mathbb{N}}$ are Π^1_1 -complete with respect to Wadge-reducibility. This lets us obtain a similar result for Σ^1_1 sets of reals.

Theorem 21.3 (Σ^1_1 -boundedness for reals): Let $A\subseteq WOrd$ be Σ^1_1 . Then there exists a $\xi<\omega^{CK}_1$ such that

$$\forall \alpha \in A \quad \|\alpha\| < \xi$$
,

where $\|\alpha\|$ denotes the order type of the well-ordering coded by α .

An analogous statement holds for WF, with respect to the rank function ρ of a well-founded relation.

Proof. If such a ξ did not exist, then

$$\alpha \in WOrd \iff \exists \beta \ [\beta \in A \land WOrd_{\beta}].$$

The right-hand side is Σ_1^1 , and hence WOrd would be Σ_1^1 , contradiction. \square

Rank analysis of co-analytic sets

The previous results constitute a powerful technique when analyzing the complexity of sets. In particular, they give us a method to show that a Π^1_1 set is *not* Borel, besides proving that they are Π^1_1 -complete.

If $A \subseteq \mathbb{N}^{\mathbb{N}}$ is Π_1^1 , then there exists a recursive tree T such that

$$\alpha \in A \iff T(\alpha)$$
 is well-founded.

Every well-founded $T(\alpha)$ has a rank $\rho(T(\alpha))$. Σ_1^1 -boundedness tells us that if A is moreover Δ_1^1 , then the *spectrum* of these ranks is **bounded by a computable ordinal**. This means that we can show that A is not Δ_1^1 by showing that its ordinal spectrum $\{\rho(T(\alpha)): \alpha \in A\}$ is unbounded in ω_1^{CK} .

These observations generalize (using relativization) to Π_1^1 sets: Ranks of Borel sets are bounded by an ordinal $\xi < \omega_1$.

The downside of this method is that the tree T associated with a Π_1^1 set is a rather generic object, stemming from the canonical representation of Π_1^1 sets, and it may be rather difficult to prove anything about the ordinals $\rho(T(\alpha))$.

In many cases one can replace the canonical rank function with a "custom" one that better reflects the structure of a set.

Given a set S, a **rank** on S is a map $\varphi: S \to \text{Ord}$. A rank is called **regular** if $\varphi(S)$ is an ordinal, i.e. $\varphi(S)$ is an initial segment of Ord.

Each rank gives rise to a **prewellordering** \leq_{ω} :

$$x \leq_{\varphi} y \iff \varphi(x) \leq \varphi(y).$$

A prewellordering is a binary relation on S that is reflexive, transitive, and *connected* (any two elements are comparable), and every non-empty subset of S has a \leq_{φ} -minimal element.

Under AC every set can be well-ordered, which means that every set admits a regular rank function that is one-one. However, we would like a rank function to reflect the complexity and structure of the set. In particular, we would like to preserve the boundedness properties of Σ^1_1 sets. For those to hold it was crucial that the initial segments WOrd $_{\xi}$, $\xi < \omega_1$ (and similarly for 0) are Borel.

We formulate a similar property that ensures the same for general rank functions.

Definition 21.4: Let X be a Polish space, and suppose $A \subseteq X$. A rank $\varphi : A \to \text{Ord}$ is a Π^1_1 -rank if there exists a Σ^1_1 relation \leq^{Σ}_{φ} and a Π^1_1 relation \leq^{Π}_{φ} such that for $y \in A$,

$$\{x \in A \colon \varphi(x) \le \varphi(y)\} = \{x \in X \colon x \le_{\varphi}^{\Sigma} y\}$$
$$= \{x \in X \colon x \le_{\varphi}^{\Pi} y\}.$$

In other words, the initial segments \leq_{φ} below a given $y \in A$ are uniformly Δ_1^1 .

Theorem 21.5: Every Π_1^1 set $A \subseteq \mathbb{N}^{\mathbb{N}}$ admits a Π_1^1 -rank.

Proof. We first show that WOrd admits a Π_1^1 -rank. The function φ is obviously $\varphi(\alpha) = ||\alpha||$. We have to express $||\alpha|| \le ||\beta||$ in a $\Sigma 1$ and a Π_1^1 way.

For the Σ_1^1 relation \leq_{φ}^{Σ} , let

 $\alpha \leq_{\varphi}^{\Sigma} \beta \iff E_{\alpha}$ is a linear ordering and $\exists \gamma \ [\gamma \text{ is a one-one, relation preserving mapping } \gamma : E_{\alpha} \to E_{\beta}]$ $\iff E_{\alpha} \text{ is a linear ordering and } \exists \gamma \forall m, n \ [m E_{\alpha} n \Rightarrow \gamma(m) E_{\beta} \gamma(n)].$

Recall that " E_{α} is a linear ordering" is Π_{1}^{0} , hence \leq_{φ}^{Σ} is Σ_{1}^{1} .

For the Σ_1^1 relation \leq_{ω}^{Π} , let

$$\begin{split} \alpha \leq_{\varphi}^{\Pi} \beta &\iff E_{\alpha} \text{ is a well-ordering and} \\ &\quad \text{there is no relation preserving mapping of } E_{\beta} \text{ onto an initial segment of } E_{\alpha} \\ &\iff \alpha \in \text{WOrd and } \forall \gamma \neg \exists k \forall m, n \left[m E_{\beta} \, n \, \Rightarrow \, \gamma(m) E_{\alpha} \gamma(n) E_{\alpha} k \right]. \end{split}$$

Since WOrd is $\Pi^1_1, \leq^\Pi_\varphi$ is Π^1_1 , too.

Now we have for $\beta \in WOrd$,

$$\alpha \leq^\Sigma_\varphi \beta \quad \Longleftrightarrow \quad \alpha \leq^\Pi_\varphi \beta \quad \Longleftrightarrow \quad \|\alpha\| \leq \|\beta\|,$$

as desired.

Theorem 21.6 (Boundedness for arbitrary rank functions): *Suppose* $A \subseteq X$ *is* Π_1^1 *but not Borel and* $\varphi : A \to \text{Ord}$ *is* $a \Pi_1^1$ -rank on $a \in A$ *is* $a \in A$ *is* $a \in A$ *is* $a \in A$ *such that*

$$\varphi(x) \le \varphi(x_0)$$
 for all $x \in B$.

Proof. If not, then

$$x \in A \iff \exists y [y \in B \land x \leq_{\varphi}^{\Sigma} y],$$

and thus *A* would be Σ_1^1 , and thus Borel, a contradiction.

Corollary 21.7: Suppose $A \subseteq X$ is Π^1_1 and $\varphi : A \to \text{Ord}$ is a regular Π^1_1 -rank. Then

- (a) $\varphi(A) \leq \omega_1$;
- (b) A is Borel if $\varphi(A) < \omega_1$;
- (c) if $B \subseteq A$ is Σ_1^1 , then $\sup \{ \varphi(x) : x \in B \} < \omega_1$.

The Cantor-Bendixson Rank

We illustrate the concept of Π_1^1 -ranks with a rank function that is different from the canonical rank function

Suppose T is a tree on $\{0,1\}$. Define the **Cantor-Bendixson derivative** of T as

$$T' = \{ \sigma \in T : \sigma \text{ has at least two incompatible extensions} \}.$$

We can iterate this derivative along the ordinals:

$$T^{(\xi+1)} = (T^{(\xi)})'$$
 and
$$T^{(\lambda)} = \bigcup_{\xi < \lambda} T^{(\xi)} \quad \text{for } \lambda \text{ limit.}$$

We clearly have $T^{(\zeta)} \subseteq T^{(\xi)}$ for $\zeta < \xi$. There must exist an ordinal ξ_0 such that $(T^{(\xi_0)})' = T^{(\xi_0)}$. Since T is countable, $\xi_0 < \omega_1$. We call the least such ξ_0 the **Cantor-Bendixson rank** of T, $||T||_{CB}$.

The following is not hard to see.

Proposition 21.8: For any tree T,

- (a) if $\lceil T^{||T||_{CB}} \rceil \neq \emptyset$, then $\lceil T^{||T||_{CB}} \rceil$ is a perfect subset of $\mathbb{N}^{\mathbb{N}}$;
- (b) $T^{\|T\|_{CB}} = \emptyset$ if and only if [T] is countable.

We hence have a new proof of the Cantor-Bendixson Theorem 2.5 for $2^{\mathbb{N}}$.

One can show that $\| \cdot \|_{CB}$ is indeed a Π_1^1 -rank on the set of all countable compact subsets of $2^{\mathbb{N}}$. This follows from the theory of **Borel derivatives**, which generalizes the Cantor-Bendixson derivative to other settings (see Kechris [1995]).

Since for any given ordinal $\xi < \omega_1$, we can find a tree $T \subseteq 2^{<\mathbb{N}}$ with $||T||_{\mathrm{CB}} = \xi$, it follows that the set

$$K_{\omega}(2^{\mathbb{N}}) = \{K \subseteq 2^{\mathbb{N}} : K \text{ countable}\}$$

is not Borel.

Using a different derivative, Kechris and Woodin [1986] showed that the set

$$Diff = \{ f \in C[0,1] : f \text{ differentiable on } [0,1] \}$$

is not Borel.