MA2101S - Linear Algebra II(S) Suggested Solutions

(Semester 2: AY2019/2020)

Written by: Pan Jing Bin Audited by: Chong Jing Quan

Question 1

(i) Claim : $\forall \ a \cdot 1 \in \mathbb{F}_p, \ (a \cdot 1)^p = a \cdot 1.$

Proof: If a = 0, then trivially $(a \cdot 1)^p = (0 \cdot 1)^p = 0 \cdot 1 = a \cdot 1$. Thus we only consider the case where $a \neq 0$.

For
$$a \neq 0$$
, $(a \cdot 1)^p = \underbrace{(1+1+\ldots+1)^p}_{\text{a times}}$
= $1^p + 1^p + \ldots + 1^p$ - By the hint in Question 1.
= $1+1+\ldots+1$
= $a \cdot 1$.

To prove that F is an \mathbb{F}_p -linear operator:

Let $u, v \in \mathbb{F}_q$ and $x, y \in \mathbb{F}_p$.

$$F(xu + yv) = (xu + yv)^{p}$$

$$= x^{p}u^{p} + y^{p}v^{p} - \text{By the hint in Question 1.}$$

$$= xu^{p} + yv^{p} - \text{By our claim.}$$

$$= xF(u) + yF(v).$$

Thus F is an \mathbb{F}_p -linear operator.

To prove that F is an isomorphism:

Let $w \in \ker(F)$. Then $F(w) = 0_V \to w^p = 0$. Since \mathbb{F}_q is a field, $w^p = 0 \to w = 0$. Thus $\ker(F) = \{0_V\}$ so F is injective.

Since F is a linear operator, F is injective $\to F$ is surjective. (By the pigeonhole principle) Thus we conclude that F is an isomorphism.

(ii) By our claim in part(i), $\forall a \cdot 1 \in \mathbb{F}_p$, $F(a \cdot 1) = a \cdot 1$. Thus $\mathbb{F}_p \subseteq E_1$.

Claim: $E_1 = \mathbb{F}_p$.

Let $k \in E_1$. Then $F(k) = k \to k^p - k = 0$ so k is a root of the p-degree polynomial $x^p - x = 0$. Since a p-degree polynomial have at most p roots, $|E_1| \le p$. But $|\mathbb{F}_p| = p \land \mathbb{F}_p \subseteq E_1$. Thus we must have: $E_1 = \mathbb{F}_p$.

Our desired basis is simply: $\{1\}$.

Question 2

(i) We first make 2 observations:

Observation 1: $\forall p(x,y) \in P_1, \Delta(p(x,y)) = 0_V$.

Observation 2: $\forall p(x,y) \in P_n, \Delta(p(x,y)) \in P_{n-2}$.

It is now easy to see that $\forall p(x,y) \in P_n$, $\Delta^{\lfloor \frac{n}{2}+1 \rfloor}(p(x,y)) = 0_V$. Thus $m_{\Delta}(x) \mid x^{\lfloor \frac{n}{2}+1 \rfloor}$ so $m_{\Delta}(x) = x^j$ for some $1 \leq j \leq \lfloor \frac{n}{2}+1 \rfloor$.

On the other hand, $\Delta^{\lfloor \frac{n}{2} \rfloor}(x^n) = \begin{cases} n! & \text{if n is even.} \\ n!x & \text{if n is odd.} \end{cases}$

In both cases, $\Delta^{\lfloor \frac{n}{2} \rfloor}(x^n) \neq 0_V$ so $j > \lfloor \frac{n}{2} \rfloor$. Thus we must have $m_{\Delta}(x) = x^{\lfloor \frac{n}{2} + 1 \rfloor}$.

(ii) We start with the canonical basis for P_3 , which is $B = \{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3\}$.

By (i), $m_{\Delta}(x) = x^2$. Thus we separate each vector in the basis into 2(mutually exclusive) groups: $\ker(\Delta)$ & $\ker(\Delta^2) \setminus \ker(\Delta)$.

$$\begin{split} &\Delta(1) = 0 \;,\; \Delta(x) = 0 \\ &\Delta(y) = 0 \;,\; \Delta(x^2) = 2 \\ &\Delta(xy) = 0 \;,\; \Delta(y^2) = 2 \\ &\Delta(x^3) = 6x \;,\; \Delta(x^2y) = 2y \\ &\Delta(xy^2) = 2x \;,\; \Delta(y^3) = 6y. \end{split}$$

Obviously $1, x, y, xy \in \ker(\Delta)$.

 $\Delta(x^2) = 2 \to \Delta(\frac{1}{2}x^2) = 1$. Thus $x^2 \in \ker(\Delta^2) \setminus \ker(\Delta)$ and the vector pair $\{1, \frac{1}{2}x^2\}$ form the first $J_2(0)$ Jordan block. Then note that $\Delta(x^2 - y^2) = 0$. Thus $x^2 - y^2 \in \ker(\Delta)$ so we replace y^2 in B with $x^2 - y^2$. Such a replacement will not affect the linear independence of our set so B is still a basis.

 $\Delta(x^3) = 6x \to \Delta(\frac{1}{6}x^3) = x$. Thus $x^3 \in \ker(\Delta^2) \setminus \ker(\Delta)$ and the vector pair $\{x, \frac{1}{6}x^3\}$ form the second $J_2(0)$ Jordan block. Similarly, $y^3 \in \ker(\Delta^2) \setminus \ker(\Delta)$ and the vector pair $\{y, \frac{1}{6}y^3\}$ form the third $J_2(0)$ Jordan block.

For the last 2 vectors, x^2y and xy^2 , it is easy to see that:

$$y^3 - 3x^2y, \ x^3 - 3xy^2 \in \ker(\Delta).$$

Thus we replace x^2y with $y^3 - 3x^2y$ and xy^2 with $x^3 - 3xy^2$.

After reordering, our resultant basis B is:

$$\{1, \tfrac{1}{2}x^2, x, \tfrac{1}{6}x^3, y, \tfrac{1}{6}y^3, xy, x^2 - y^2, x^3 - 3xy^2, y^3 - 3x^2y\}$$

Which will result in the following standard matrix:

$$[\Delta]_{B,B} = \begin{pmatrix} J_2(0) & & & \\ & J_2(0) & & \\ & & J_2(0) & \\ & & & 0_{4\times 4} \end{pmatrix}.$$

Question 3

(i) Recall that:

P is invertible $\iff (P^T)^{-1}$ is invertible & D is diagonal $\to D = D^T$.

 $A \text{ is diagonalizable} \iff A = PDP^{-1} \text{ for some invertible matrix } P, \text{ diagonal matrix } D$ $\iff A^T = (P^{-1})^T D^T P^T$ $\iff A^T = (P^T)^{-1} DP^T$ $\iff A^T = QDQ^{-1} \text{ where } Q = (P^T)^{-1}$ $\iff A^T = QDQ^{-1} \text{ for some invertible matrix } Q, \text{ diagonal matrix } D$ $\iff A^T \text{ is diagonalisable.}$

(ii) Let $Au = \lambda u, A^T v = \mu v$ for some $\lambda, \mu \in \mathbb{C}$.

$$ad_{A}(uv^{T}) = A(uv^{T}) - (uv^{T})A$$

$$= (Au)v^{T} - u(v^{T}A)$$

$$= \lambda uv^{T} - u(A^{T}v)^{T}$$

$$= \lambda uv^{T} - u(\mu v)^{T}$$

$$= \lambda uv^{T} - \mu uv^{T}$$

$$= (\lambda - \mu)uv^{T}.$$

(iii) A is diagonalizable $\rightarrow A^T$ is diagonalizable.

 \exists basis of eigenvectors $B_1 = \{u_1, u_2, ..., u_n\}$ for \mathbb{C}^n with respect to A. Similarly, \exists a basis of eigenvectors $B_2 = \{v_1, v_2, ..., v_n\}$ for \mathbb{C}^n with respect to A^T .

Claim: The set $B=\{u_iv_j^T\ | 1\leq i\leq n, 1\leq j\leq n\}$ is a basis for $M_{n\times n}(\mathbb{C}).$

Proof: Since $|B| = n^2 = \dim(M_{n \times n}(\mathbb{C}))$ and $B \subseteq M_{n \times n}(\mathbb{C})$, it suffice to prove that B is a linearly independent set.

Consider the homogeneous equation:

$$\begin{split} a_{1,1}(u_1v_1^T) + a_{1,2}(u_1v_2^T) + \ldots + a_{1,n}(u_1v_n^T) + \\ a_{2,1}(u_2v_1^T) + a_{2,2}(u_2v_2^T) + \ldots + a_{2,n}(u_2v_n^T) + \\ &\vdots \\ a_{n,1}(u_nv_1^T) + a_{n,2}(u_nv_2^T) + \ldots + a_{n,n}(u_nv_n^T) = 0_{n\times n}. \end{split}$$

Collecting the terms:

$$u_1(\sum_{i=1}^n a_{1,i}v_i^T) + u_2(\sum_{i=1}^n a_{2,i}v_i^T) + \dots + u_n(\sum_{i=1}^n a_{n,i}v_i^T) = 0_{n \times n}$$
 Let $\sum_{i=1}^n a_{k,i}v_i^T = (e_{k,1} \quad e_{k,2} \quad \dots \quad e_{k,n})$ for each $k \in \mathbb{N}, 1 \le k \le n$.

Rewriting the homogeneous equation:

$$u_1 (e_{1,1} \dots e_{1,n}) + u_2 (e_{2,1} \dots e_{2,n}) + \dots + u_n (e_{n,1} \dots e_{n,n}) = 0_{n \times n}.$$

$$(e_{1,1}u_1 \dots e_{1,n}u_1) + (e_{2,1}u_2 \dots e_{2,n}u_2) + \dots + (e_{n,1}u_n \dots e_{n,n}u_n) = 0_{n \times n}.$$

$$(\sum_{i=1}^n e_{i,1}u_i \sum_{i=1}^n e_{i,2}u_i \dots \sum_{i=1}^n e_{i,n}u_i) = 0_{n \times n}.$$

By linear independence of $B_1 = \{u_1, u_2, ..., u_n\}$, each $e_{i,j} = 0$.

Thus we reduce the homogeneous equation

$$u_1(\sum_{i=1}^n a_{1,i}v_i^T) + u_2(\sum_{i=1}^n a_{2,i}v_i^T) + \ldots + u_n(\sum_{i=1}^n a_{n,i}v_i^T) = 0_{n \times n}$$

to:

$$(\sum_{i=1}^{n} a_{1,i} v_i^T) = (\sum_{i=1}^{n} a_{2,i} v_i^T) = \dots = (\sum_{i=1}^{n} a_{n,i} v_i^T) = 0_V.$$

By linear independence of $B_2 = \{v_1, v_2, ..., v_n\}$, we conclude that:

$$\forall \ 1 \le i \le n, 1 \le j \le n, a_{i,j} = 0.$$

Since only the trivial solution exists to the homogeneous equation, the set B is linearly independent.

By (ii), each vector in B is also an eigenvector of ad_A . Thus B is a basis of eigenvectors for $M_{n\times n}(\mathbb{C})$ with respect to ad_A so it is diagonalisable.

Question 4

Let $A = \begin{pmatrix} u_1 & u_2 & \dots & u_n \end{pmatrix}$ for column vectors u_1, u_2, \dots, u_n . Since $\det(A) \neq 0, u_1, u_2, \dots, u_n$ form a basis for \mathbb{R}^n .

First apply the Gram-Schmidt process on the vectors $u_1, u_2, ..., u_n$ to obtain an orthogonal basis $\{v_1, v_2, ..., v_n\}$:

$$\begin{split} v_1 &= u_1, \\ v_2 &= u_2 - \frac{\langle u_2, u_1 \rangle}{\langle u_1, u_1 \rangle} v_1, \\ v_3 &= u_3 - \frac{\langle u_3, u_1 \rangle}{\langle u_1, u_1 \rangle} v_1 - \frac{\langle u_3, u_2 \rangle}{\langle u_2, u_2 \rangle} v_2, \\ &\vdots \\ v_n &= u_n - \frac{\langle u_n, u_1 \rangle}{\langle u_1, u_1 \rangle} v_1 - \dots - \frac{\langle u_n, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle} v_{n-1}. \end{split}$$

Construct matrix P' as follows:

$$P' = \begin{pmatrix} \frac{v_1}{||v_1||} & \frac{v_2}{||v_2||} & \dots & \frac{v_n}{||v_n||} \end{pmatrix}.$$

 $\{v_1,v_2,...,v_n\}$ is an orthogonal basis for \mathbb{R}^n so $\{\frac{v_1}{||v_1||},\frac{v_2}{||v_2||},...,\frac{v_n}{||v_n||}\}$ is an orthonormal basis for \mathbb{R}^n . Since the columns of P' form an orthonormal basis, P' is an orthogonal matrix. Consider 2 cases:

Case 1 : $\det(P') = 1$.

Then P' is a special orthogonal matrix. Choose P = P' and construct matrix B as follows:

$$B = \begin{pmatrix} ||v_1|| & \frac{\langle u_2, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| & \frac{\langle u_3, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| & \dots & \frac{\langle u_n, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| \\ 0 & ||v_2|| & \frac{\langle u_3, u_2 \rangle}{\langle u_2, u_2 \rangle} ||v_2|| & \dots & \frac{\langle u_n, u_2 \rangle}{\langle u_2, u_2 \rangle} ||v_2|| \\ 0 & 0 & ||v_3|| & \dots & \frac{\langle u_n, u_3 \rangle}{\langle u_3, u_3 \rangle} ||v_3|| \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & ||v_n|| \end{pmatrix}$$

Case 2: det(P') = -1

Then construct matrix P by:

$$P = \left(-\frac{v_1}{||v_1||} \quad \frac{v_2}{||v_2||} \quad \dots \quad \frac{v_n}{||v_n||} \right).$$

Then $\det(P) = 1$ and $\{-\frac{v_1}{||v_1||}, \frac{v_2}{||v_2||}, ..., \frac{v_n}{||v_n||}\}$ is still an orthonormal basis so P is special orthogonal. Construct matrix B as follows:

$$B = \begin{pmatrix} -||v_1|| & \frac{\langle u_2, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| & \frac{\langle u_3, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| & \dots & \frac{\langle u_n, u_1 \rangle}{\langle u_1, u_1 \rangle} ||v_1|| \\ 0 & ||v_2|| & \frac{\langle u_3, u_2 \rangle}{\langle u_2, u_2 \rangle} ||v_2|| & \dots & \frac{\langle u_n, u_2 \rangle}{\langle u_2, u_2 \rangle} ||v_2|| \\ 0 & 0 & ||v_3|| & \dots & \frac{\langle u_n, u_3 \rangle}{\langle u_3, u_3 \rangle} ||v_3|| \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & ||v_n|| \end{pmatrix}$$

It is easy to check that in both cases, B is upper triangular, P is special orthogonal and A = PB.

Question 5

(i)

$$A = -A^T \to iA = -iA^T$$

 $\to iA = \overline{iA^T}$ - Recall that $A = \overline{A}$ since $A \in M_{n \times n}(\mathbb{R})$
 $\to iA = (iA)^*$.

Thus iA is a Hermitian matrix. Let u be an eigenvector of A associated with eigenvalue λ .

$$Au = \lambda u \rightarrow iAu = i\lambda u$$

$$u^*(iA)u = u^*(iA)^*u$$

$$u^*(iAu) = (iAu)^*u$$

$$u^*(i\lambda u) = (i\lambda u)^*u$$

$$i\lambda(u^*u) = -i\overline{\lambda}(u^*u)$$

Since u is an eigenvector, $u \neq 0_V$ so $u^*u \neq 0$. Thus we have:

$$i\lambda = -i\overline{\lambda}$$
$$\lambda = -\overline{\lambda}$$

Thus λ is purely imaginary.

(ii) Let λ be the eigenvalue associated with eigenvector u and write $\lambda = ix$ for $x \in \mathbb{R}$. Then:

$$A(u) = A(\operatorname{Re}(u) + i\operatorname{Im}(u))$$

$$ix\operatorname{Re}(u) - x\operatorname{Im}(u) = A(\operatorname{Re}(u)) + iA(\operatorname{Im}(u))$$

Note that $x \in \mathbb{R}$, Re(u), Im(u) $\in \mathbb{R}^n$, $A \in M_{n \times n}(\mathbb{R})$. Thus we can safely compare real and imaginary parts:

$$A(\operatorname{Re}(u)) = -x\operatorname{Im}(u)$$
, $A(\operatorname{Im}(u)) = x\operatorname{Re}(u)$

Since $A(\operatorname{Re}(u)), A(\operatorname{Im}(u)) \in \operatorname{span}_{\mathbb{R}} \{\operatorname{Re}(u), \operatorname{Im}(u)\}, \operatorname{span}_{\mathbb{R}} \{\operatorname{Re}(u), \operatorname{Im}(u)\} \text{ is } L_A\text{-invariant.}$

(iii) It suffices to prove that \exists an orthonormal basis C for \mathbb{R}^n such that $[L_A]_C = D$. We will prove via mathematical induction.

Base Case: If A is a 1×1 matrix, then $A = -A^T \to A = 0_{1 \times 1}$. Then choose C to be any orthonormal basis and $[L_A]_C = 0_{1 \times 1} = J$.

Induction Step: Consider A as a matrix in $M_{n\times n}(\mathbb{C})$, for $n\geq 2$. Consider 2 cases:

Case 1: $A = 0_{n \times n}$.

Similarly, choose C to be any orthonormal basis and $[L_A]_C = J$.

Case 2: $A \neq 0_{n \times n}$.

 $A = -A^T \to A = -A^*$ so obviously A is normal. Thus A is unitarily diagonalisable. Since A is diagonalisable and $A \neq 0_{n \times n}$, A has a non-zero eigenvalue, λ .

Let u be an eigenvector associated with eigenvalue λ . Then

$$\overline{Au} = \overline{\lambda u} \to \overline{A}\overline{u} = \overline{\lambda}\overline{u}$$
$$\to A\overline{u} = \overline{\lambda}\overline{u}$$

so \overline{u} is also an eigenvector of A associated with eigenvalue $\overline{\lambda}$. By (i), $\lambda = -\overline{\lambda}$. Since $\lambda \neq 0, \lambda \neq \overline{\lambda}$. In other words, u and \overline{u} are eigenvectors associated with different eigenvalues so $u \neq \overline{u}$.

Claim 1: $C_1 = \{\frac{\text{Re}(u)}{||\text{Re}(u)||}, \frac{\text{Im}(u)}{||\text{Re}(u)||}\}$ is an orthonormal set.

Proof: It suffices to prove the following 2 statements:

$$||\operatorname{Re}(u)|| = ||\operatorname{Im}(u)||. \tag{1}$$

$$\langle \operatorname{Im}(u), \operatorname{Re}(u) \rangle = 0.$$
 (2)

Recall that since A is unitarily diagonalisable, and u and \overline{u} are eigenvectors associated with different eigenvalues, u and \overline{u} are orthogonal vectors so $\langle u, \overline{u} \rangle = 0$. Then:

$$\langle \operatorname{Re}(u) + i \operatorname{Im}(u), \operatorname{Re}(u) - i \operatorname{Im}(u) \rangle = 0.$$
$$\langle \operatorname{Re}(u), \operatorname{Re}(u) \rangle - \langle \operatorname{Im}(u), \operatorname{Im}(u) \rangle + 2i \langle \operatorname{Im}(u), \operatorname{Re}(u) \rangle = 0.$$

Comparing real parts: $\langle \operatorname{Re}(u), \operatorname{Re}(u) \rangle = \langle \operatorname{Im}(u), \operatorname{Im}(u) \rangle \to ||\operatorname{Re}(u)|| = ||\operatorname{Im}(u)||$.

Comparing imaginary parts: $\langle \text{Im}(u), \text{Re}(u) \rangle = 0$.

Let $W = \operatorname{span}\{\frac{\operatorname{Re}(u)}{||\operatorname{Re}(u)||}, \frac{\operatorname{Im}(u)}{||\operatorname{Re}(u)||}\}$ over \mathbb{R} . By (ii), W is L_A -invariant and $A(\frac{\operatorname{Re}(u)}{||\operatorname{Re}(u)||}) = -\lambda \frac{\operatorname{Im}(u)}{||\operatorname{Re}(u)||}$ and $A(\frac{\operatorname{Im}(u)}{||\operatorname{Re}(u)||}) = \lambda \frac{\operatorname{Re}(u)}{||\operatorname{Re}(u)||}$. Thus:

$$[L_A|_W]_{C_1} = \begin{pmatrix} 0 & \lambda \\ -\lambda & 0 \end{pmatrix}.$$

Claim 2: W^{\perp} is L_A -invariant.

Proof: First note that since the canonical basis for \mathbb{R}^n is also orthonormal, $L_A^*(v) = A^*v \ \forall v \in \mathbb{R}^n$. Let $w \in W^{\perp}$. Then $\forall v \in W$:

$$\begin{split} \langle v,w\rangle &= 0.\\ \langle L_A(v),w\rangle &= 0. - \text{(Recall that W is L_A-invariant)}\\ \langle v,L_A^*(w)\rangle &= 0.\\ \langle v,A^*w\rangle &= 0.\\ \langle v,-Aw\rangle &= 0.\\ \langle v,Aw\rangle &= 0. \end{split}$$

Since $\dim(W) = 2$, $\dim(W^{\perp}) = n - 2$ so by our induction hypothesis, \exists orthonormal basis C_2 for W^{\perp} such that

$$[L_A|_{W^{\perp}}]_{C_2} = \begin{pmatrix} J' & 0 \\ 0 & 0_{(n-2-2m)\times(n-2-2m)} \end{pmatrix}$$

Where J' is of the same form as J.

Choose $C = C_1 \cup C_2$. Then C is still orthonormal and

$$[L_A]_C = \begin{pmatrix} [L_A|_W]_{C_1} & 0_{2\times (n-2)} \\ 0_{(n-2)\times 2} & [L_A|_{W^\perp}]_{C_2} \end{pmatrix} = \begin{pmatrix} J & 0 \\ 0 & 0_{(n-2-2m)\times (n-2-2m)} \end{pmatrix}.$$

Question 6

(i) Let $u, v \in U$ and $x, y \in \mathbb{F}$.

$$\begin{split} \mathfrak{Lim}(xu+yv) &= \mathcal{B}(xu+yv,u_1)u_1 + \mathcal{B}(xu+yv,u_2)u_2 + \ldots + \mathcal{B}(xu+yv,u_n)u_n \\ &= x\mathcal{B}(u,u_1)u_1 + y\mathcal{B}(v,u_1)u_1 + x\mathcal{B}(u,u_2)u_2 + \ldots + y\mathcal{B}(v,u_n)u_n \\ &= x\mathfrak{Lim}(u) + y\mathfrak{Lim}(v). \end{split}$$

Thus Lim is a linear transformation.

$$w \in \ker(\mathfrak{Lim}) \iff \mathcal{B}(w, u_1)u_1 + \mathcal{B}(w, u_2)u_2 + \dots + \mathcal{B}(w, u_n)u_n = 0_V$$
$$\iff \mathcal{B}(w, u_1) = \mathcal{B}(w, u_2) = \dots = \mathcal{B}(w, u_n) = 0$$
$$\iff w \in U^{\perp}.$$

Thus $\ker(\mathfrak{Lim}) = U^{\perp}$.

(ii) Yes. Obviously $R(\mathfrak{Lim}) \subseteq U$. Thus to prove $R(\mathfrak{Lim}) = U$, it suffices to prove that $\dim(R(\mathfrak{Lim})) = \dim(U) = n$.

Claim: $\mathfrak{Lim}(u_1), \mathfrak{Lim}(u_2), ..., \mathfrak{Lim}(u_n)$ are linearly independent vectors.

Proof: Assume, for the sake of contradiction, that $\exists a_1, a_2, ..., a_n$, not all zero, such that:

$$a_1\mathfrak{Lim}(u_1) + a_2\mathfrak{Lim}(u_2) + \ldots + a_n\mathfrak{Lim}(u_n) = 0_V.$$

 $\mathfrak{Lim}(a_1u_1 + a_2u_2 + ... + a_nu_n) = 0_V \to a_1u_1 + a_2u_2 + ... + a_nu_n \in \ker(\mathfrak{Lim})$. By (i), $a_1u_1 + a_2u_2 + ... + a_nu_n \in U^{\perp}$. But by definition of subspace, $a_1u_1 + a_2u_2 + ... + a_nu_n \in U$. This is a contradiction as $U^{\perp} \cap U = \{0_V\}$. (Since \mathcal{B} is non-degenerate)

Thus the assumption is false and $\mathfrak{Lim}(u_1), \mathfrak{Lim}(u_2), ..., \mathfrak{Lim}(u_n)$ are linearly independent vectors.

Since $\mathfrak{Lim}(u_1)$, $\mathfrak{Lim}(u_2)$,..., $\mathfrak{Lim}(u_n) \in R(\mathfrak{Lim})$, $\dim(R(\mathfrak{Lim})) = n$ and our proof is complete.

Clearly \mathfrak{Lim} has domain V, kernel U^{\perp} and range U. Thus by the first isomorphism theorem, $V/U^{\perp} \cong U$.

(iii) Disprove by counterexample: Choose $V = \mathbb{R}^{\infty}$, the vector space consisting of all infinite sequences of real numbers. Define the vector e_n by:

$$e_n = \underbrace{(0 , 0, \dots, 0, 1, 0, \dots)}_{\text{1 at the Nth entry, 0 otherwise}}.$$

Define $U = \text{span}\{e_1, e_2, ...\}$. Then $U^{\perp} = \{0_V\}$ so $V/U^{\perp} = V$. U has a countable basis while V has an uncountable basis so $V \ncong U$. Thus $V/U^{\perp} \ncong U$.

Remark: One way of showing that \mathbb{R}^{∞} has an uncountable basis is by considering the linearly independent set: $\{(t, t^2, t^3, ...) \mid t \in \mathbb{R}\}$ which has the same cardinality as \mathbb{R} .