WikipediA

Hermite-Hadamard inequality

In <u>mathematics</u>, the **Hermite–Hadamard inequality**, named after <u>Charles Hermite</u> and <u>Jacques Hadamard</u> and sometimes also called **Hadamard's inequality**, states that if a function $f:[a,b] \to \mathbf{R}$ is convex, then the following chain of inequalities hold:

$$f\left(rac{a+b}{2}
ight) \leq rac{1}{b-a} \int_a^b f(x) \, dx \leq rac{f(a)+f(b)}{2}.$$

The inequality has been generalized to higher dimensions: if $\Omega \subset \mathbb{R}^n$ is a bounded, convex domain and $f: \Omega \to \mathbb{R}$ is a positive convex function, then

$$rac{1}{|\Omega|}\int_{\Omega}f(x)\,dx \leq rac{c_n}{|\partial\Omega|}\int_{\partial\Omega}f(y)\,d\sigma(y)$$

where c_n is a constant depending only on the dimension.

A corollary on Vandermonde-type integrals

Suppose that $-\infty < a < b < \infty$, and choose n distinct values $\{x_j\}_{j=1}^n$ from (a, b). Let $f:[a, b] \to \mathbb{R}$ be convex, and let I denote the "integral starting at a" operator; that is,

$$(If)(x) = \int_a^x f(t) dt.$$

Then

$$\sum_{i=1}^n rac{(I^{n-1}F)(x_i)}{\prod_{j
eq i} (x_i-x_j)} \leq rac{1}{n!} \sum_{i=1}^n f(x_i)$$

Equality holds for all $\{x_j\}_{j=1}^n$ iff f is linear, and for all f iff $\{x_j\}_{j=1}^n$ is constant, in the sense that

$$\lim_{\{x_j\}_j o lpha} \sum_{i=1}^n rac{(I^{n-1}F)(x_i)}{\prod_{j
eq i} (x_i - x_j)} = rac{f(lpha)}{(n-1)!}$$

The result follows from induction on n.

References

 Jacques Hadamard, "Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann", Journal de Mathématiques Pures et Appliquées, volume 58, 1893, pages 171–215.

- Zoltán Retkes, "An extension of the Hermite-Hadamard <u>Inequality</u>", <u>Acta Sci. Math. (Szeged)</u>, 74 (2008), pages 95–106.
- Mihály Bessenyei, "The Hermite—Hadamard <u>Inequality</u> on <u>Simplices</u>", <u>American Mathematical</u> Monthly, volume 115, April 2008, pages 339–345.
- Flavia-Corina Mitroi, Eleutherius Symeonidis, "The converse of the Hermite-Hadamard inequality on simplices", Expo. Math. 30 (2012), pp. 389–396. doi:10.1016/j.exmath.2012.08.011 (https://doi.org/10.1016%2Fj.exmath.2012.08.011); ISSN 0723-0869 (https://www.worldcat.org/search?fq=x0:jrnl&q=n2:0723-0869)
- Stefan Steinerberger, The Hermite-Hadamard Inequality in Higher Dimensions, The Journal of Geometric Analysis, 2019.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Hermite-Hadamard_inequality&oldid=1007941195"

This page was last edited on 20 February 2021, at 18:54 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.