0

Solution to Tutorial 6

Comp1210

Question)

Therefore, & is Commutative.

$$a\otimes(b\otimes c)=a\otimes(b+c+bc)$$

$$(a \otimes b) \otimes c = (a+b+ab) \otimes c$$

Since $a\otimes(b\otimes c)=(a\otimes b)\otimes c$, then \otimes is associative.

(iv) Suppose $\overline{x} \in S$ represent the inverse of $x \in S$. Then $x \otimes \overline{x} = e = 0$ and also $x \otimes \overline{x} = x + x\overline{x}$. Equating we have $0 = x + \overline{x} + x\overline{x}$.

-x = x(1+x), so, 5c = -xWhere (+x + 0 =) x + -1.

So, every element have therese except

(b) Now,
$$5 \otimes x = 5 + x + 5x = 4$$
.
So, $6x = 4 - 5 - 5$, $6x = -1$.
Therefore, $x = -1/6$.

Question 2

(i) $\forall (m,n), (p,q) \in R \times R,$ (m,n) * (p,q) = (mq, + np, nq) = (np + mq, nq) = (pn + qm, qn)

Therefore, * is Commutative.

Let $(m,n), (p,q), (r,s) \in \mathbb{R} \times \mathbb{R}$. NOW, $(m,n) \times ((p,q)) \times (r,s) = (m,n) \times ((p,q)) \times (r,s) = (m,s) + n(ps+qr), nqs) = (mqs+nps+nqr), nqs)$. Also, [(m,n)*(p,q)]*(r,s) = (mq+np) nq) *(r,s) = ((mq+np)s + nqr) nqs) = (mqs+nps+nqr) nqs) = (mqs+nps+nqr) nqs) .Since (m,n)*(p,q) *(r,s) = [(m,n)*(p,q)]*(r,s) *(happen description) *(m,n) *(p,q) *(r,s) *(happen description) *(m,n) *(m,n) *(p,q) *(r,s) *(r,s) *(happen description) *(m,n) *(p,q) *(r,s) *(r,s) *(happen description) *(m,n) *(p,q) *(r,s) *(r,

(ii) Suppose (4,1,2) EFXR represent

the identity with respect to *, †

(x,y) EFXR,

(x,y) * (2,1,2) = (x,y). Also,

(x,y) * (2,1,2) = (xez+ye, yez).

Equating we have

(x,y) = (xez+ye, yez).

Now, since the corresponding elements in the ordered pairs are equal, we have

So, from 2nd equation, $y = ye_2$.

So, from 2nd equation, $y = e_2 = 1$. from eqn(1), oc= oc(1) + ye,. So) $x = x + ye_1$. $\therefore x - x = ye_1$. So) $0 = ye_1$. Therefore, $e_1 = g = 0$. Therefore, $(\ell_1,\ell_2)=(0,1)$; (iii) Suppose (i) i2) ERXIR represent the inverse of (a, b) ERXR. Then, $(a,b)*(\tilde{\epsilon}_{1},\tilde{\epsilon}_{2}) = (ai_{2}+bi_{1})bi_{2}).$ Equating we have (011) = (aiz+bi,) biz). Therefore, $0 = ai_2 + bi_1$ and $l = bi_2$ (2) L = 1/2, 6 +0 and from (1), $0 = a(t) + bi, \quad So, \quad -a = bi, \quad so, \quad -a = bi, \quad so, \quad ci, \quad c$

Questoon 3

(a,b) # (a,d) = (a+c,bd) = (c+a,db)

 $= (C,d) \boxplus (a,b)$,

Soy I is Commytative,

Let (a,b), (c,d), (e,f) es. Now,

(a,b) (c(d) (e,f)) =

(a,b) \oplus (c+e,df) = (a+c+e,bdf)

Also, [(a,b) # (c,d)] # (e,t) =

(9+4,61)田(4,4)=

Catcte, bdf). Since

(a1b) 田 [(c(d) 田 (e,f)] =

[(9,b) 田 (e,d)] 田 (e,f) then 田is associative.

(ii) Suppose (e1, e2) ES represent the identity with respect to # , then Y $(x,y) \in S$

(x,y) 田 (e1, e2) = (x,y)· Also,

 $(x,y) \oplus (e_{11}e_{2}) = (x+e_{11}) ye_{2}$.

Equating we have $(x,y) = (x+e, y+e_2)$.

Therefore, or = x+e, and y= yez. From 2nd equation $e_2 = \frac{5}{5} = 1$ and from

1st equation $x(-x) = e_1 \cdot s_2$

Thus, (e1) e2) = (0,1).

Ciii) Suppose (\$\overline{\times_1, \overline{\times_2}} \in \textbf{F} represent the inverse of (or,y) & S. Then,

 $(\mathfrak{I}_{1},\mathfrak{I}_{2})$ 田 $(\mathfrak{I}_{1},\mathfrak{I}_{2})$ = $(\mathfrak{I}_{2},\mathfrak{I}_{2})$ = $(\mathfrak{$ Also, (x,y)田 $(x,x_2) = (x+x_1, yx_2)$ 。 Equating we have $(0,1) = (X+X_1, YX_2)$. So) $0 = x + \overline{x}_1$ and $1 = y \overline{x}_2$.

· Questoon 4

(i) \tabe Rt) appb = ab 9+6+1 $= \frac{ba}{b+a+1} = bba.$

So, & is commutative.

Let a, b, c e Rt. Now,

ay(byc) = ay(bc)

 $a\left(\frac{bc}{b+c+1}\right)$

 $a + bc \over b + c + 1$

abc b+c+1

abtactatbc+b+c+1

b+c+1

$$= \frac{abc}{b+c+1} \times \frac{b+c+1}{ab+ac+a+bc+b+c+1}$$

$$= \frac{abc}{ab+ac+a+bc+b+c+1}$$

Also,
$$(a \otimes b) \otimes c = (a b \otimes a + b + 1) \otimes c = (a + 1) \otimes c = (a + 1) \otimes c = (a + 1) \otimes$$

$$\frac{ab}{a+b+1}c$$

$$\frac{ab}{a+b+1}+c+1$$

$$\frac{abc}{a+b+1} \times \frac{a+b+1}{ab+ac+bc+c+a+b+1}$$

$$\frac{abc}{ab+ac+bc+c+a+b+1}$$

Since and (box c) = (and b) or c then or is associative.

(ii) Suppose $e \in \mathbb{R}^t$ represent the identity with respect to ∞ , then for all $x \in \mathbb{R}^t$, $x \in \mathbb{R}^t$, $x \in \mathbb{R}^t$, $x \in \mathbb{R}^t$, $x \in \mathbb{R}^t$

OCOPE Xe xe Femoting

for oxpe, we have

 $x = \frac{xe}{x+e+1}$, Se,

x(x+e+1) = xe

 $\therefore x^2 + xe + x = xe;$

Now, xe-xe = x2+x=

Vanishes from the equation then there is no identity with respect to m