Лабораторная работа №5

Ишанова А.И. группа НФИ-02-19

Содержание

1	Цел	ь работ	Ы												5
2	Зада	ание ра	боты												6
3	Вып	олнени	е лабораторно	ой раб	ОТЫ										7
	3.1	Подго	нка полином	иальн	ой к	рив	ой	 							7
	3.2	Матрі	ичные преобр	азова	ния .			 			 				18
		3.2.1	Вращение .					 							20
		3.2.2	Отражение					 							23
		3.2.3	Дилатация									•		•	25
4	Выв	од													29

List of Figures

3.1	подготовка к лабораторной работе .								7
3.2	начало журналирования								7
3.3	набор точек								8
3.4	выделение координат по х и у								9
3.5	команда построения графика								10
3.6	полученный график								10
3.7	инициализация матрицы А								11
3.8	замена первого столбца матрицы А .								11
3.9	замена второго столбца матрицы А.								12
3.10	вычисление матриц A^TA и A^Ty								13
	расширенная матрица В								14
3.12	решение методом Гаусса								15
3.13	команда построения графика								15
3.14	полученный график								16
	решение методом Гаусса								16
3.16	значения полинома в точках								17
3.17	команда построения графика								17
3.18	полученный график								18
3.19	работа с данными								19
3.20	полученное изображение								20
3.21	угол $ heta_1$ и матрица вращения R_1								20
3.22	перемножение матриц R_1 и D								21
3.23	извлечение координат								21
3.24	угол $ heta_2$ и матрица вращения R_2								21
	перемножение матриц R_2 и D								22
3.26	извлечение координат								22
3.27	команда построения графика								22
3.28	полученный график								23
3.29	матрица отражения								23
3.30	перемножение матриц R и $D \dots \dots$								24
3.31	извлечение координат								24
3.32	команда построения графика								25
3.33	полученный график								25
3.34	матрица дилатации								26
3.35	матрица дилатации								26
	матрица дилатации								27
3 37	команла построения графика								2.7

3.38	полученный график									28
3.39	завершение сессии журналирования	•							•	28

1 Цель работы

Научиться решать проблему подгонки полиномиальной кривой и научиться реализовывать некоторые матричные преобразования.

2 Задание работы

Выполнить лабораторную работу и сделать отчет по лабораторной работе в форматах md, docx и pdf.

3 Выполнение лабораторной работы

1. Создаем каталог для работы в папке laboratory. (mkdir) (fig. 3.1)

|iMac-Alina:~ alinaishanova\$ cd work/2020-2021/"Введение в научное программирован ие"/laboratory |iMac-Alina:laboratory alinaishanova\$ mkdir lab05 |iMac-Alina:laboratory alinaishanova\$ ■

Figure 3.1: подготовка к лабораторной работе

2. Начинаем сессию журналирования. (fig. 3.2)

Figure 3.2: начало журналирования

3.1 Подгонка полиномиальной кривой

1. Задаем набор точек через матрицу D. (fig. 3.3)

Figure 3.3: набор точек

2. Извлекаем вектора х и у. (fig. 3.4)

```
>> xdata = D(:, 1)
xdata =
   1
2
3
4
5
>> ydata = D(:, 2)
ydata =
```

Figure 3.4: выделение координат по x и y

3. Рисуем точки на графике. (plot) (fig. 3.5 и fig. 3.6)

>> plot(xdata, ydata, 'o-')

Figure 3.5: команда построения графика

Figure 3.6: полученный график

4. Задаем матрицу коэффициентов А: сначала делаем ее единичной матрицей, потом меняем первый столбец на квадрат координат точек по x, а второй — просто на координаты. (fig. 3.7, fig. 3.8 и fig. 3.9)

Figure 3.7: инициализация матрицы A

Figure 3.8: замена первого столбца матрицы А

Figure 3.9: замена второго столбца матрицы A

5. Находим матрицы $A^T A$ и $A^T y$, необходимые нам для решения. (fig. 3.10)

Figure 3.10: вычисление матриц A^TA и A^Ty

6. Из них задаем расширенную матрицу В, для решения методом Гаусса. (fig. 3.11)

Figure 3.11: расширенная матрица В

7. Решаем методом Гаусса (rref) и записывем ответ в отдельные переменные. (fig. 3.12)

Figure 3.12: решение методом Гаусса

8. Задаем значения по х для графика и функцию у как квадратное уравнение с полученными коэффициентами. Строим график исходных данных и нашей подогранной параболы. (fig. 3.13 и fig. 3.14)

```
>> x = linspace(0,7, 50);
>> y = a1 * x .^2 + a2 * x + a3;
>> plot(xdata, ydata, 'o', x,y, 'linewidth',2)
>> grid on
>> legend ('data values', 'least-squares parabola')
>> title ('y = -0.89286 x^2 + 5.65 x - 4.4')
```

Figure 3.13: команда построения графика

Figure 3.14: полученный график

9. Получим коэффициенты с помощью встроенной программы polyfit. (fig. 3.15)

Figure 3.15: решение методом Гаусса

10. Найдем значения полинома в точках. (polyval) (fig. 3.16)

```
>> y = polyval (P, xdata)
y =
0.3571
3.3286
4.5143
3.9143
1.5286
-2.6429
```

Figure 3.16: значения полинома в точках

1. Построим график по полученным точкам. (fig. 3.17 и fig. 3.18)

```
>> plot(xdata, ydata, 'o-', xdata, y, '+-')
>> grid on
>> legend ('original data', 'polyfit data')
```

Figure 3.17: команда построения графика

Figure 3.18: полученный график

3.2 Матричные преобразования

1. Строим изображение по циклу Эйлера: задаем матрицу точек, выделяем координаты по х и у, строим график. (fig. 3.19 и fig. 3.20)

```
>> D = [ 1 1 3 3 2 1 3; 2 0 0 2 3 2 2]
D =

1    1    3    3    2    1    3
2    0    0    2    3    2    2

>> x = D(1, :)
x =

1    1    3    3    2    1    3

>> y = D(2, :)
y =

2    0    0    2    3    2    2

>> plot (x,y)
```

Figure 3.19: работа с данными

Figure 3.20: полученное изображение

3.2.1 Вращение

1. Задаем угол поворота θ_1 и соответсующую ему матрицу поворота R_1 . (fig. 3.21)

```
>> theta1 = 90*pi/180
theta1 = 1.5708
>> R1 = [cos(theta1) -sin(theta1); sin(theta1) cos(theta1)]
R1 =
6.1232e-17 -1.0000e+00
1.0000e+00 6.1232e-17
```

Figure 3.21: угол θ_1 и матрица вращения R_1

1. Для того чтобы воспроизвести поворот матрицы умножаем R_1 на D. (fig. 3.22)

```
>> RD1 = R1*D
RD1 =

Columns 1 through 6:

-2.0000e+00   6.1232e-17   1.8370e-16  -2.0000e+00  -3.0000e+00  -2.0000e+0
1.0000e+00   1.0000e+00   3.0000e+00   2.0000e+00   1.0000e+0

Column 7:

-2.0000e+00   3.0000e+00   3.0000e+00
```

Figure 3.22: перемножение матриц R_1 и D

3. Выделяем координаты точек. (fig. 3.23)

```
>> x1 = RD1(1, :)
x1 =
Columns 1 through 5:
-2.0000e+00 6.1232e-17 1.8370e-16 -2.0000e+00 -3.0000e+00
Columns 6 and 7:
-2.0000e+00 -2.0000e+00
>> y1 = RD1(2, :)
y1 =
1.0000 1.0000 3.0000 3.0000 2.0000 1.0000 3.0000
```

Figure 3.23: извлечение координат

4. Задаем угол поворота θ_2 и проделываем то же самое для него. (fig. 3.24, fig. 3.25 и fig. 3.26)

```
>>> theta2 = 225*pi/180
theta2 = 3.9270
>>> R2 = [cos(theta2) -sin(theta2); sin(theta2) cos(theta2)]
R2 =
-0.7071   0.7071
-0.7071   -0.7071
```

Figure 3.24: угол $heta_2$ и матрица вращения R_2

```
>> RD2 = R2*D
RD2 =
0.7071 -0.7071 -2.1213 -0.7071 0.7071 0.7071 -0.7071
-2.1213 -0.7071 -2.1213 -3.5355 -3.5355 -2.1213 -3.5355
```

Figure 3.25: перемножение матриц R_2 и D

Figure 3.26: извлечение координат

5. Строим график с исходным изображением и двумя перевернутыми. (fig. 3.27 и fig. 3.28)

```
>> plot(x,y, 'bo-', x1, y1, 'ro-', x2, y2, 'go-')
>> axis([-4 4 -4 4], 'equal')
>> grid on
>> legend ('original', 'rotated 90 deg', 'rotated 225')
```

Figure 3.27: команда построения графика

Figure 3.28: полученный график

3.2.2 Отражение

1. Задаем матрицу отражения относительно прямой $l\ (y=x)$. (fig. 3.29)

Figure 3.29: матрица отражения

 $2.\,$ Отражаем, перемножая матрицу R на D. (fig. 3.30)

Figure 3.30: перемножение матриц R и D

3. Выделяем координаты по х и по у. (fig. 3.31)

Figure 3.31: извлечение координат

4. Строим изображения. (fig. 3.32 и fig. 3.33)

```
>> plot (x,y, 'o-', x1, y1, 'o-')
>> axis([-1 4 -1 4], 'equal')
>> axis([-1 5 -1 5], 'equal')
>> grid on
>> legend ('original', 'reflected')
```

Figure 3.32: команда построения графика

Figure 3.33: полученный график

3.2.3 Дилатация

1. Задаем матрицу дилатации T. (fig. 3.34)

Figure 3.34: матрица дилатации

2. Выполняем матричное преобразование. (fig. 3.35)

Figure 3.35: матрица дилатации

3. Выделяем координаты точек. (fig. 3.36)

Figure 3.36: матрица дилатации

4. Строим изображения. (fig. 3.37 и fig. 3.38)

Figure 3.37: команда построения графика

Figure 3.38: полученный график

5. Завершаем сессию журналирования. (fig. 3.39)

>> diary off

Figure 3.39: завершение сессии журналирования

4 Вывод

В ходе выполнения работы мы научились подгонке данных к общим уравнениям (в ручную и через встроенную команду polyfit), а так же матричным преобразованиям, таким как вращение, отражение и дилатация.