Qi Shutong

St.qi@mail.utoronto.ca St.qi@mail.utoronto.ca

+1-437-344-6913

shutong.space

EDUCATION

University of Toronto (UofT)

Toronto, Canada

Ph.D. Student, Electrical and Computer Engineering

Sep. 2020 - Present

Research topic: Physics-Informed Machine Learning for Electromagnetic and Multiphysics Modeling

Beihang University (BUAA)

Beijing, China

B.Eng., Electronic and Information Engineering

Sep. 2016 - Jun. 2020

Excellent Graduate

RESEARCH EXPERIENCE

University of Toronto, Department of Electrical and Computer Engineering

Toronto, Canada

Sep. 2020 - Now

Research Assistant, Advised by Professor Costas D. Sarris

- Developed a deep neural network to compensate for numerical errors in the Finite-Difference Time-Domain (FDTD) method for planar microwave circuit modeling, enhancing accuracy and efficiency.
- Designed a physics-informed deep curl operator for efficient electromagnetic modeling, achieving a two-order-of-magnitude speedup over FDTD in uncertainty quantification tasks.
- Established a hybrid Physics-Informed Neural Network (PINN) with a finite difference method for time-domain electromagnetic modeling with unconditionally stable time-stepping.
- Pioneered a novel approach by combining FDTD method and PINN for multiphysics simulation.

Beihang University, School of Electronic and Information Engineering

Beijing, China

Research Assistant, Advised by Associate Professor Qiang Ren

Sep. 2018 - Jun. 2020

- Utilized the Finite-Difference Frequency-Domain (FD-FD) method for generating an electromagnetic scattering database.
- Developed a deep neural network (U-net) to accelerate the simulation of 2-D and 3-D electromagnetic scattering problems using the FD-FD approach.

Dartmouth College, Department of Computer Science

Hanover, USA

Research Assistant, Advised by Assistant Professor Xing-dong Yang

Jun. 2019 - Sep. 2019

- Conducted antenna radiation pattern simulations for optimizing communication performance.
- Formulated and executed experiments to evaluate the impact of various types of fabrics on the radiation performance of the antennas.
- Collected and classified user gestures and achieved classification accuracy over 90%.

WORK EXPERIENCE

Ansys Lumerical

Remote

Intern, Mentored by Dr. Jens Niegemann

Aug. 2024 - Dec. 2024

- Developed and optimized fast algorithms for metalens modeling.
- Utilized adaptive Kriging methods to interpolate meta-atom feature maps.
- Evaluated advanced adaptive sampling strategies for challenging feature maps.
- Implemented sparse grids interpolation as a benchmark for the adaptive Kriging approach.

SKILLS

- Programming languages: Proficient in Python and MATLAB. Familiar with C and C++.
- Technologies & Frameworks: Extensive experience with Python libraries and frameworks, including PyTorch, GPyTorch, NumPy, pandas, Scikit-learn, and Keras. Proficient in using version control with Git and job scheduling with Slurm on HPC clusters, and working in Linux-based environments.
- Strong background in electromagnetic theory and numerical methods, particularly FDTD and FEM.
 Hands-on experience with industry-standard simulation tools, including ANSYS HFSS, Lumerical,
 COMSOL Multiphysics, CST Studio, and FlexCompute Tidy3D.
- TOEFL: 105

SELECTED PUBLICATIONS

- **Shutong Qi** and Costas Sarris, "Fast Modeling of Defect Periodic Structures with a Physics-Informed Deep Operator Network," in submission to *IEEE Antennas and Wireless Propagation Letters*, <u>TechRxive</u>.
- **Shutong Qi** and Costas Sarris, "Physics-Informed Deep Operator Network for 3-D Time-Domain Electromagnetic Modeling," in *IEEE Transactions on Microwave Theory and Techniques*, doi: 10.1109/TMTT.2024.3521389.
- **Shutong Qi** and Costas Sarris, "Hybrid Physics-Informed Neural Network for the Wave Equation with Unconditionally Stable Time-Stepping," in *IEEE Antennas and Wireless Propagation Letters*, doi: 10.1109/LAWP.2024.3355896.
- **Shutong Qi** and Costas Sarris, "Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks," in *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, vol. 8, pp. 49-59, 2023, doi: 10.1109/JMMCT.2023.3236946.
- **Shutong Qi** and Costas Sarris, "Deep Neural Networks for Rapid Simulation of Planar Microwave Circuits Based on their Layouts," in *IEEE Transactions on Microwave Theory and Techniques*, 2022, doi: 10.1109/TMTT.2022.3210229.
- Shutong Qi, Yinpeng Wang, Yongzhong Li, Xuan Wu, Qiang Ren and Yi Ren, "2D Electromagnetic Solver Based on Deep Learning Technique," in *IEEE Journal of Multiscale and Multiphysics Computational Techniques*, 2020, 5: 83-88.
- Shutong Qi and Costas Sarris, "Coupled Electromagnetic-Thermal Analysis for Temperature-Dependent Materials with Physics-Informed Neural Networks," in 2024 IEEE/MTT-S International Microwave Symposium, Washington D.C., USA, 2024.
- **Shutong Qi** and Costas Sarris, "Physics-Informed Neural Networks for Multiphysics Simulations: Application to Coupled Electromagnetic-Thermal Modeling," in 2023 *IEEE/MTT-S International Microwave Symposium*, San Diego, CA, USA, 2023, pp. 166-169, doi: 10.1109/IMS37964.2023.10188015.
- More co-authored papers can be found on my Google Scholar profile.

AWARDS & ACHIEVEMENTS

- IEEE Microwave Theory and Technology Society Graduate Fellowship
- Excellent Graduate, Beihang University