First we will try 3D convolutional network (`Conv3D) model architecture because they are less complex than CNN-RNN. First we will train with small amount of data to see if at all the model learns.

Since the data contains different size of images like some are `120 x 180` and some are `360 x 360` we will resize all the images to size `120 x 120` using customised data generator function to standardise and feed a consistent size to the model.

To start with we will use batch_size of `100` , `20` `epochs` and all the `30` frames/images available per video. The metric used here is Categorical Accuracy.

Experiment Number	Model	Result	Decision + Explanation
1	Conv3D	Out of memory error	 The device is not able to handle the large data size in a batch which depends on the `no_of_images` per video, `size` of images and `batch_size`. We will reduce all to smaller values and if required increase them step by step in next experiments to increase performance. Reduce `batch_size` to `32`, `no_of_images` to `15` and image size to `80 x 80` and see if the memory issue resolves.
2	Conv3D	Training Accuracy: 1.0000 Validation Accuracy: 0.4500	 The model is learning but overfitting and training accuracy 1 indicates model memorising train data due to small train data. Use full training data.
3	Conv3D	Training Accuracy: 1.0000 Validation Accuracy: 0.7100	 Though the validation accuracy has increased there is still overfitting. To regulate the model, add Dropout layer before output layer.
4	Conv3D	Training Accuracy: 0.7074 Validation Accuracy: 0.6300	 There is considerable reduction in overfitting but the accuracies have dropped. For model to learn more features add third conv2d layer with 64 filters.
5	Conv3D	Training Accuracy: 0.8959 and Validation Accuracy: 0.7300	 The accuracies have increased but there is overfitting. We will try reducing filter size/kernel_size to (2,2,2)
6	Conv3D	Training Accuracy: 0.4992 Validation Accuracy: 0.6100.	1) Poor performance so will revert to previous filter size and try Dropout layer after flatten layer to reduce overfitting.

7	Conv3D	Training Accuracy: 0.7843 Validation Accuracy: 0.7200	 Overfitting is reduced but accuracies decreased. We will try cropping images and see if accuracies increase due to reduction in data noise.
8	Conv3D	Training Accuracy: 0.8552 Validation Accuracy: 0.8200	 Best performance till now. Will now try increasing the image size to 100 x 100 to see if it improves performance.
9	Conv3D	Training Accuracy: 0.7195 Validation Accuracy: 0.6900.	 The performance degraded so will revert back to previous model. Next will try increasing `no_of_images per video` from 15 to 20 to feed more information for learning and see if accuracy increases.
10	Conv3D	Training Accuracy: 0.8673 Validation Accuracy: 0.7700.	 Not better than previous model so will revert back. Will now try reducing batch-size from `32 to 20` and see if it improves performance.
11	Conv3D	Training Accuracy: 0.7843 Validation Accuracy: 0.7700.	 Lower accuracies than previous model so will revert back. Will now try CNN-RNN architecture to see if it improves performance.
12	Conv2D- ConvLST M2D	Training Accuracy: 0.6501 Validation Accuracy: 0.6100	1) Not better than Conv2D models.
Final Model	Conv3D	Training Accuracy: 0.8552 Validation Accuracy: 0.8200 Total Parameters: 480,517 (1.83 MB)	We choose model built in Experiment #8 as our best model.