HOMEWORK 7 INDEPENDENCE

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

Problem 1. Show that if E and F are independent events, so are: \overline{E} and F; \overline{E} and \overline{F} .

Problem 2. Prove the following basic properties:

- (a) If a random variable X is independent of itself, then it is deterministic, meaning that X = c a.s. for some constant c.
- (b) A deterministic random variable is independent of any other random variable.
- (c) Show that the scalar random variables X_1, \ldots, X_n are jointly independent if and only if

$$\mathbb{P}(\wedge_{i=1}^{n} (X_i \le t_i)) = \prod_{i=1}^{n} \mathbb{P}(X_i \le t_i)$$

for all $t_1, \ldots, t_n \in \mathbb{R}$.

(d) Show that the discrete random variables X_1, \ldots, X_n are jointly independent if and only if

$$\mathbb{P}\big(\wedge_{i=1}^n (X_i = x_i)\big) = \prod_{i=1}^n \mathbb{P}(X_i = x_i)$$

for all x_1, \ldots, x_n in their corresponding ranges of values.

Problem 3. Show that if X and Y are independent random variables with values in R and S, and if $F: R \to \mathbb{R}$ and $G: S \to \mathbb{R}$ are measurable functions (either both nonnegative or both absolutely integrable), then

$$\mathbb{E} F(X) G(Y) = (\mathbb{E} F(X)) (\mathbb{E} G(Y)).$$

We did not get the chance to define independent events and σ -algebras in class (in a more conceptual manner). So here are these concepts.

Definition. A family of events $\{E_i\}_{i\in N}$ is jointly independent if the corresponding family of indicator random variables $\{\mathbf{1}_{E_i}\}_{i\in N}$ is jointly independent.

A family of σ -algebras $\{\mathcal{F}_i\}_{i\in\mathbb{N}}$ is jointly independent if for every $E_i\in\mathcal{F}_i$, the family of events $\{E_i\}_{i\in\mathbb{N}}$ is jointly independent.

Problem 4. Show that the family of events $\{E_i\}_{i\in N}$ is jointly independent if and only if for any disjoint finite sets of indices $J_1, J_2 \subset N$,

$$\mathbb{P}(\wedge_{i \in J_1} E_i \wedge \wedge_{i \in J_2} \overline{E_i}) = \prod_{i \in J_1} \mathbb{P}(E_i) \prod_{i \in J_2} \mathbb{P}(\overline{E_i}).$$

In particular this says that if the events E_1, E_2, E_3 are jointly independent, then

$$\mathbb{P}(E_1 \wedge E_2 \wedge E_3) = \mathbb{P}(E_1) \, \mathbb{P}(E_2) \, \mathbb{P}(E_3).$$

Give an example showing that the reverse is not necessarily true, meaning that this last equality may hold without E_1, E_2, E_3 being jointly independent.

Problem 5. Show that a family of σ -algebras $\{\mathcal{F}_i\}_{i\in N}$ is jointly independent if and only if any family $\{X_i\}_{i\in N}$ of random variables such that X_i is \mathcal{F}_i -measurable for all $i\in N$, is jointly independent.

Problem 6. Show that a family $\{X_i\}_{i\in N}$ of random variables is jointly independent if and only if the family $\{\sigma(X_i)\}_{i\in N}$ of σ -algebras is independent.