EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the Privacy Policy.

<u>Unit 2 Nonlinear Classification,</u> <u>Linear regression, Collaborative</u>

Course > Filtering (2 weeks)

> Homework 3 > 2. Feature Vectors Transformation

2. Feature Vectors Transformation

Note: The problems on this page appeared as ungraded earlier in Homework 1. They are graded here.

Consider a sequence of n-dimensional data points, $x^{(1)}, x^{(2)}, \ldots$, and a sequence of m-dimensional feature vectors, $z^{(1)}, z^{(2)}, \ldots$, extracted from the x's by a linear transformation, $z^{(i)} = Ax^{(i)}$. If m is much smaller than n, you might expect that it would be easier to learn in the lower dimensional feature space than in the original data space.

2. (a)

1.0/1 point (graded)

Suppose n=6, m=2, z_1 is the average of the elements of x, and z_2 is the average of the first three elements of x minus the average of fourth through sixth elements of x. Determine A.

Note: Enter A in a list format: $\left[\left[A_{11},\ldots,A_{16}\right],\left[A_{21},\ldots,A_{26}\right]\right]$

[[1/6,1/6,1/6,1/6,1/6,1/6]

✓ Answer: [[1/6,1/6,1/6,1/6,1/6], [1/3,1/3,1/3,-1/3,-1/3,-1/3]]

Solution:

• A = [[1/6, 1/6, 1/6, 1/6, 1/6, 1/6], [1/3, 1/3, 1/3, -1/3, -1/3, -1/3]]

Submit

You have used 1 of 5 attempts

- **1** Answers are displayed within the problem
- 2. (b)

1.0/1 point (graded)

Using the same relationship between z and x as defined above, suppose $h(z) = sign(\theta_z \cdot z)$ is a classifier for the feature vectors, and $h(x) = sign(\theta_x \cdot x)$ is a classifier for the original data vectors. Given a θ_z that produces good classifications of the feature vectors, determine a θ_x that will identically classify the associated x's.

Note: Use trans(...) for transpose operations, and assume A is a fixed matrix (enter this as A).

Note: Expects $heta_x$ (an [n imes 1] vector), not $heta_x^ op$.

$$heta_x = igg|$$
 trans(A)*theta_z

✓ Answer: trans(A)*theta_z

Solution:

From above, we have the relationship that z=Ax. Therefore $\theta_z\cdot z=\theta_z\cdot Ax=\theta_z^\top Ax=(A^\top\theta_z)\cdot x$. So take $\theta_x=A^\top\theta_z$ and we have the same classifier.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

2. (c)

1/1 point (graded)

Given the same classifiers as in (b), if there is a θ_x that produces good classifications of the data vectors, will there **always** be a θ_z that will identically classify the associated z's?

Note: A is a fixed matrix.

	Yes
--	-----

Solution:

No. Here we provide a formal condition when there will be a θ_z that will identically classify the associated z's. Formally, suppose we are given a θ_x that correctly classifies the points in data space of dimension m < n. We are looking for θ_z such that $\theta_x^T x = \theta_z^T A x$ for all x. Finding such θ_z is equivalent to solving the overdetermined linear system $A^T \theta_z = \theta_x$, which can

be done only if the system is *consistent*, i.e. if it has solution. This will happen if and only if θ_x is in the span of the columns of A^T .

In that case, by looking at the equivalent system $AA^T heta_z=A heta_x$ we can identify two cases:

- 1. A has linearly independent rows. In this case AA^T is invertible, so there is a unique solution given by $\theta_z=\left(AA^T\right)^{-1}A\theta_x$.
- 2. A has linearly dependent rows. In this case, the system is indeterminate and has an infinite number of solutions.

The matrix $(AA^T)^{-1}A$ of part (i) is known as the Moore-Penrose pseudo-inverse of A^T , and it is denoted by $(A^T)^{\dagger}$.

Submit

You have used 1 of 1 attempt

- **1** Answers are displayed within the problem
- 2. (d)

1/1 point (graded)

Given the same classifiers as in (b), if there is a θ_x that produces good classifications of the data vectors, will there **always** be a θ_z that will identically classify the associated z's?

Note: Now assume that you can change the $m \times n$ matrix A.

Yes

No

Solution:

We now have flexibility in both A and θ_z . We want to find A, θ_z such that $A^\top \theta_z = \theta_x$. We can achieve this by simply setting $\theta_z = 1$, the first row of A to be θ_x , and the remaining rows to be 0:

$$A^ op heta_z = egin{bmatrix} |&&|\ heta_x &0\ |&&| \end{bmatrix} egin{bmatrix} 1\ 0 \end{bmatrix} = heta_x$$

Submit

You have used 1 of 1 attempt

- **1** Answers are displayed within the problem
- 2. (e)

2/2 points (graded)

If m < n, can we find a more accurate classifier by training in z-space, as measured on the training data?

Yes

● No ✔	
Depends	
How about on unseen data?	
O Yes	
O No	
● Depends 	

Solution:

- The accuracy in z-space is always bounded by the x space, as we can always construct a classifier in x space that corresponds to a classifier in x space.
- Without any assumption, the unseen data can be arbitrary. Hence, we can always construct a dataset that favors the classifier produced in z space. We can do the same thing to the classifier produced in x space as well.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Homework 3 / 2. Feature Vectors Transformation

Add a Post

Show all posts ▼	by recent activity ▼
2. (b) l'm out in this problem. Are we expected to enter numbers of a formula? More over, If z is a [2x1] vector, does theta stand for a dot production.	ct facto
2.e Seen and unseen data, supervised training. It seems to me that the transformation from x space to z space take into account the label (supervised training) of the training data. Thus to the seems to me that the transformation from x space to z space take into account the label (supervised training) of the training data. Thus the seems to me that the transformation from x space to z space take into account the label (supervised training) of the training data. Thus the seems to me that the transformation from x space to z space take into account the label (supervised training) of the training data. Thus the seems to me that the transformation from x space to z space take into account the label (supervised training) of the training data. Thus the seems to me that the training data is the seems to me that the training data.	this tra
A little hint for 2.a I found that I was grossly overthinking this problem. It helped me to consider matrix-vector multiplication rules (https://www.varsitytutors.	.com/h
[2.d] need explaining for solution I understand if we can arbitrarily change matrix A, we can find a linear system which is always consistent. But in the example provided by second provided provided by second provided provided provided provided by second provided p	2 solutio
2d is confusing Dear Staff, It is not clear why my answer is marked wrong. It is actually not clear to me that you are allowing me to change "m" in that questions.	stion. I
Unfair scoring All but 2e for me was right. I spend so much time to solve 2a – 2d, and all these tasks are worth only one point. I missed 2e and I lost 2 point.	4 nts. l d
To be honest This problem deserves more attempts 1 attempt does not clear the answers.	2

© All Rights Reserved