pestpp-glm

April 28, 2019

1 PESTPP-GLM

In this notebook, we will run PESTPP-GLM in standard parameter estimation mode and regularization mode. In both cases, we will use the baked-in bayes-linear posterior monte carlo analysis to get posterior forecast PDFs. We will use the prior monte carlo outputs as the prior forecast PDF.

```
In [1]: import os
    import shutil
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import flopy
    import pyemu
```

flopy is installed in /Users/jeremyw/Dev/gw1876/activities_2day_mfm/notebooks/flopy

Out[3]:		type	transform	count	initial value \setminus
	grstrt3	grstrt3	log	705	0
	grsy3	grsy3	log	705	0
	grhk5	grhk5	log	705	0
	pp_vka1	pp_vka1	log	67	0
	strt8_cn	strt8_cn	log	1	0
	welflux_k02	welflux_k02	log	6	0
	grvka5	grvka5	log	705	0
	pp_rech0	pp_rech0	log	67	0
	rech4_cn	rech4_cn	log	1	0
	pp_strt0	pp_strt0	log	67	0
	grstrt5	grstrt5	log	705	0
	grvka3	grvka3	log	705	0
	pp_strt2	pp_strt2	log	67	0

grss5	grss5	log	705		0	
pp_ss2	pp_ss2	log	67		0	
pp_hk2	pp_hk2	log	67		0	
pp_ss1	pp_ss1	log	67		0	
sy6_cn	sy6_cn	log	1		0	
ss8_cn	ss8_cn	log	1		0	
pp_hk1	pp_hk1	log	67		0	
ss6_cn	ss6_cn	log	1		0	
grstrt4	grstrt4	log	705		0	
$drncond_k00$	$drncond_k00$	log	10		0	
sy8_cn	sy8_cn	log	1		0	
pp_sy0	pp_sy0	log	67		0	
grsy4	grsy4	log	705		0	
vka8_cn	vka8_cn	log	1		0	
vka6_cn	vka6_cn	log	1		0	
pp_vka0	pp_vka0	log	67		0	
hk6_cn	hk6_cn	log	1		0	
grsy5	grsy5	log	705		0	
welflux	welflux	log	2	0 to	0.176091	
grss3	grss3	log	705		0	
hk8_cn	hk8_cn	log	1		0	
sy7_cn	sy7_cn	log	1		0	
strt7_cn	strt7_cn	log	1		0	
pp_sy2	pp_sy2	log	67		0	
strk	strk	log	40		0	
grrech3	grrech3	log	705		0	
ss7_cn	ss7_cn	log	1		0	
grss4	grss4	log	705		0	
flow	flow	log	1		0	
pp_rech1	pp_rech1	log	67		0	
grhk4	grhk4	log	705		0	
grvka4	grvka4	log	705		0	
strt6_cn	strt6_cn	log	1		0	
grrech2	grrech2	log	705		0	
pp_hk0	pp_hk0	log	67		0	
rech5_cn	rech5_cn	log	1		-0.39794	
pp_ss0	pp_ss0	log	67		0	
grhk3	grhk3	log	705		0	
pp_sy1	pp_sy1	log	67		0	
pp_strt1	pp_strt1	log	67		0	
hk7_cn	hk7_cn	log	1		0	
vka7_cn	vka7_cn	log	1		0	
pp_vka2	pp_vka2	log	67		0	
		· ·				
	uppe	r bound	lov	ver bound	standard	deviation
grstrt3		0211893	-(0.0222764		0.0108664
grsy3	0	.243038		-0.60206		0.211275
grhk5		1		-1		0.5

pp_vka1	1	-1	0.5
strt8_cn	0.0211893	-0.0222764	0.0108664
welflux_k02	1	-1	0.5
grvka5	1	-1	0.5
pp_rech0	0.0413927	-0.0457575	0.0217875
rech4_cn	0.0791812	-0.09691	0.0440228
pp_strt0	0.0211893	-0.0222764	0.0108664
grstrt5	0.0211893	-0.0222764	0.0108664
grvka3	1	-1	0.5
pp_strt2	0.0211893	-0.0222764	0.0108664
grss5	1	-1	0.5
pp_ss2	1	-1	0.5
pp_hk2	1	-1	0.5
pp_ss1	1	-1	0.5
sy6_cn	0.243038	-0.60206	0.211275
ss8_cn	1	-1	0.5
pp_hk1	1	-1	0.5
ss6_cn	1	-1	0.5
grstrt4	0.0211893	-0.0222764	0.0108664
drncond_k00	1	-1	0.5
sy8_cn	0.243038	-0.60206	0.211275
pp_sy0	0.243038	-0.60206	0.211275
grsy4	0.243038	-0.60206	0.211275
vka8_cn	1	-1	0.5
vka6_cn	1	-1	0.5
pp_vka0	1	-1	0.5
hk6_cn	1	-1	0.5
grsy5	0.243038	-0.60206	0.211275
welflux	0.176091 to 0.30103	-0.30103 to 0	0.0752575 to 0.11928
grss3	1	-1	0.5
hk8_cn	1	-1	0.5
sy7_cn	0.243038	-0.60206	0.211275
strt7_cn	0.0211893	-0.0222764	0.0108664
pp_sy2	0.243038	-0.60206	0.211275
strk	2	-2	1
grrech3	0.0413927	-0.0457575	0.0217875
ss7_cn	1	-1	0.5
grss4	1	-1	0.5
flow	0.09691	-0.124939	0.0554622
pp_rech1	0.0413927	-0.0457575	0.0217875
grhk4	1	-1	0.5
grvka4	1	-1	0.5
strt6_cn	0.0211893	-0.0222764	0.0108664
grrech2	0.0413927	-0.0457575	0.0217875
pp_hk0	0.00601	-1	0.5
rech5_cn	-0.09691	-1 1	0.225772
pp_ss0	1	-1 1	0.5
grhk3	1	-1	0.5

pp_sy1	0.243038	-0.60206	0.211275
pp_strt1	0.0211893	-0.0222764	0.0108664
hk7_cn	1	-1	0.5
vka7_cn	1	-1	0.5
pp_vka2	1	-1	0.5

1.0.1 reduce the number of adjustable parameters

In [4]: par = pst.parameter_data

ss7_cn

strt7_cn

1

1

This is the painful part: we cant use 10K+ pars because we cant wait around for that many runs and then the linear algebra of factoring a 10k+ by 10K+ matrix is also difficult. So that means we need to fix a lot a parameters #frownyface

```
In [5]: # grid-scale pars
        gr_pars = par.loc[par.pargp.apply(lambda x: "gr" in x), "parnme"]
        par.loc[gr_pars,"partrans"] = "fixed"
        pst.npar_adj
Out[5]: 1215
In [6]: # these are the sfr conductance parameters - Ive left all 40 adjustable
        # but if you uncomment this, it will tie them into 1 parameter effectively
        # strk_pars = par.loc[par.pargp=="strk", "parnme"]
        # p1 = strk_pars.iloc[0]
        # par.loc[strk_pars.iloc[1:], "partrans"] = "tied"
        # par.loc[strk_pars.iloc[1:], "partied"] = p1
        # pst.npar_adj
In [7]: par.loc[par.pargp.apply(lambda x: "pp" in x), "pargp"].unique()
Out[7]: array(['pp_hk0', 'pp_hk1', 'pp_hk2', 'pp_rech0', 'pp_rech1', 'pp_ss0',
               'pp_ss1', 'pp_ss2', 'pp_strt0', 'pp_strt1', 'pp_strt2', 'pp_sy0',
               'pp_sy1', 'pp_sy2', 'pp_vka0', 'pp_vka1', 'pp_vka2'], dtype=object)
  Fix the storage pilot points - we still have layer-scale storage pars adjustable
In [8]: s_pars = par.loc[par.pargp.apply(lambda x: "pp" in x and ("ss" in x or "sy" in x)), "page"
        par.loc[s_pars,"partrans"] = "fixed"
        pst.npar_adj
Out[8]: 813
In [9]: adj_par = par.loc[par.partrans=="log",:]
        adj_par.pargp.value_counts().sort_values()
Out[9]: sy6_cn
        rech5_cn
                        1
```

```
sy7_cn
                 1
hk6_cn
                 1
strt6_cn
                 1
vka6_cn
                 1
flow
                 1
ss6_cn
                 1
ss8_cn
                 1
sy8_cn
vka7_cn
                 1
hk8_cn
                 1
strt8_cn
                 1
vka8_cn
                 1
hk7_cn
                 1
rech4_cn
                 1
                 2
welflux
welflux k02
                 6
drncond_k00
                10
strk
                40
                67
pp_strt1
pp_vka1
                67
pp_rech1
                67
pp_hk0
                67
pp_hk1
                67
                67
pp_rech0
pp_vka0
                67
                67
pp_strt2
pp_hk2
                67
                67
pp_vka2
                67
pp_strt0
Name: pargp, dtype: int64
```

fix the future recharge pilot points, vka in layers 1 and 3 and the initial condition pilot points (we still have layer-scale pars for each of these types)

Ok, thats better...so lets run PESTPP-GLM. We will use a single "base parameter" jacobian matrix as the basis for 6 super parameter iterations. Then we will draw 100 realizations from the FOSM posterior parameter covariance matrix and run those 100 realizations to get the psoterior forecast PDFs

```
pst.pestpp_options["parcov"] = "prior_cov.jcb"
    pst.write(os.path.join(t_d,"freyberg_pp.pst"))

In [12]: pyemu.os_utils.start_slaves(t_d,"pestpp-glm","freyberg_pp.pst",num_slaves=20,slave_romaster_dir=m_d)

In [13]: df = df=pd.read_csv(os.path.join(m_d,"freyberg_pp.post.obsen.csv"),index_col=0)
    oe = pyemu.ObservationEnsemble.from_dataframe(pst=pst,df=df)

In [14]: ax = oe.phi_vector.hist()#bins=np.linspace(0,100,20))
```


Here we see the distribution of phi values across the 100 posterior realizations. Should we accept all of these??? The theoretical phi we should accept is number of nonzero obs (14).

1.0.2 Setup of Tikhonov regularization

So lets setup and use some formal regularization to bring the final phi up to around 14. We will use first-order regularization based on the covariance matrix we build earlier:

```
In [18]: cov = pyemu.Cov.from_binary(os.path.join(t_d,"prior_cov.jcb"))
In [19]: cnames = set(cov.row_names)
         pnames = set(pst.adj_par_names)
         cnames.symmetric_difference(pnames)
Out[19]: {'hk4006002',
          'strt4017015',
          'ss4008010',
          'vka5006014',
           'strt3017010',
          'ss3020013',
          'hk5029007',
          'ss5005018',
          'ss5034007',
          'vka5023010',
          'vka3026001',
           'vka4029017',
          'vka5009018',
          'ss3026010',
           'hk4014012',
          'ss3000007',
           'hk5007007',
          'rech3023006',
           'ss4004017',
          'strt3018017',
          'hk4003017',
          'vka4016008',
          'sy4016015',
           'sy113',
           'sy5001013',
           'ss5010015',
           'sy3024015',
           'ss3003001',
           'ss3000013',
           'sy5010015',
           'hk4020011',
           'sy5010000',
           'sy5023018',
           'vka3024000',
           'vka5022013',
           'ss5027002',
          'ss4035017',
           'sy5025017',
```

```
'vka5021011',
'strt4017003',
'vka3021011',
'ss4025001',
'rech2033018',
'strt3016011',
'vka4012001',
'sy5011003',
'vka5038013',
'ss3016016',
'hk5003007',
'vka5016003',
'strt5015001',
'hk5001016',
'rech3005017',
'rech3005018',
'hk3017009',
'strt4000005',
'vka4029016',
'ss4029001',
'vka4007017',
'hk5023009',
'sy103',
'ss5036008',
'strt4003011',
'strt4032017',
'sy4009013',
'ss5010012',
'sy4030006',
'vka5026003',
'vka5016009',
'ss4020017',
'hk5002012',
'sy3010002',
'vka3006009',
'rech3018014',
'strt3019002',
'sy5030003',
'sy4034006',
'hk3022013',
'strt5001006',
'strt3037005',
'sy4016000',
'strt152',
'ss3000017',
'strt5027009',
'ss3030003',
'sy5030009',
```

```
'vka4004009',
'strt5005015',
'ss3006019',
'vka3016015',
'vka3029010',
'ss5003016',
'sy5030011',
'ss5015016',
'hk3000019',
'vka3029007',
'rech3029014',
'vka3011017',
'hk4021003',
'sy3012016',
'vka3031014',
'rech3000004',
'strt5001018',
'ss3003008',
'vka4028017',
'hk4023002',
'sy3013003',
'strt5005011',
'sy4010014',
'ss5036007',
'ss5017000',
'ss5019015',
'ss3029009',
'strt3020010',
'rech2005000',
'vka4007015',
'ss4002001',
'vka3009019',
'strt5005008',
'hk5014016',
'rech2002006',
'vka4005009',
'vka4023001',
'sy4037007',
'rech3037016',
'hk4002001',
'hk5033018',
'hk4036005',
'rech2012017',
'strt4014015',
'sy3023002',
'sy5029015',
'vka5021013',
'ss221',
```

```
'strt5036010',
'hk4016014',
'rech3008015',
'hk5023013',
'sy4004011',
'sy5033007',
'strt5035014',
'rech3029010',
'ss3012019',
'hk3009016',
'strt3008001',
'sy3005003',
'hk4006010',
'ss146',
'strt4031017',
'ss036',
'hk3033008',
'ss5030010',
'vka5005000',
'strt5000006',
'vka4003018',
'strt146',
'sy5017011',
'sy3005010',
'sy4032007',
'strt3003010',
'hk5011001',
'ss5034004',
'strt3025018',
'ss3015014',
'strt5000011',
'ss5029016',
'sy4035013',
'sy4007007',
'hk4019013',
'strt5002009',
'strt4016008',
'strt4026007',
'ss3012016',
'strt3032015',
'ss4035014',
'rech3000016',
'sy3012013',
'sy3037005',
'vka3022013',
'rech3035018',
'strt4004006',
'sy3003004',
```

```
'rech3033003',
'strt3006007',
'strt4028000',
'hk5023014',
'sy5006004',
'ss5019019',
'vka3003012',
'rech3035015',
'ss039',
'rech2035004',
'sy3006003',
'strt3016015',
'vka5032007',
'ss4014012',
'strt3030000',
'sy5010011',
'ss3021014',
'vka3036008',
'ss3034014',
'strt4017018',
'ss4027009',
'hk4013011',
'hk3013002',
'vka4032007',
'sy5013018',
'hk4004001',
'sy3006009',
'strt5008010',
'ss4017017',
'strt5008011',
'sy5026005',
'hk3030009',
'sy3029015',
'hk3015012',
'ss4006008',
'strt3020008',
'vka3037017',
'strt5008002',
'hk3016010',
'vka4039012',
'strt3026011',
'hk3003015',
'ss4016009',
'vka4021019',
'vka5004011',
'ss4034011',
'vka5023015',
'vka3011018',
```

```
'hk3013011',
'hk3038009',
'sy037',
'ss4021007',
'hk3023017',
'vka4033008',
'ss132',
'strt5003004',
'hk4027006',
'strt5038013',
'hk3031005',
'rech3004011',
'ss3009009',
'vka4004003',
'vka4028007',
'hk5017008',
'ss3000008',
'sy3038015',
'strt3036008',
'sy4006016',
'rech3000011',
'ss5021001',
'vka3006011',
'vka4025000',
'rech3002013',
'sy125',
'vka5005005',
'strt4033002',
'strt3006004',
'ss5002010',
'hk4002014',
'ss3030005',
'strt3017011',
'hk3010010',
'sy5018012',
'hk4026016',
'vka3033014',
'vka5006009',
'sy5018014',
'hk4026006',
'ss5004004',
'rech3001005',
'vka4034004',
'strt3005005',
'ss3035010',
'strt5016001',
'strt3029005',
'strt4015013',
```

```
'vka5026017',
'strt4007017',
'vka4038008',
'sy3002015',
'vka5019014',
'ss3010013',
'rech2005017',
'strt3022001',
'vka025',
'sy3028012',
'hk5037005',
'sy3020011',
'strt5039011',
'strt5022002',
'hk3003016',
'hk4027001',
'hk3005008',
'ss4017009',
'strt5018018',
'strt5012010',
'vka3030015',
'hk3038016',
'strt5036005',
'sy3033004',
'strt4039008',
'ss5027016',
'strt005',
'rech2032003',
'sy3023015',
'strt5029016',
'strt5020015',
'strt3035005',
'sy3032008',
'hk5022008',
'vka3007019',
'sy5023000',
'rech3017003',
'sy5025016',
'vka5031009',
'sy222',
'vka3026005',
'strt3029009',
'rech2015018',
'ss3017016',
'vka4001005',
'strt3005019',
'sy120',
'ss5014013',
```

```
'hk5009013',
'hk3007010',
'sy3026007',
'strt4021001',
'ss4037010',
'sy5015010',
'vka212',
'strt3003011',
'sy3017008',
'ss5012017',
'ss057',
'vka3024009',
'hk3015014',
'sy4023003',
'vka3023015',
'vka3015001',
'sy5030001',
'hk4002012',
'sy3029010',
'rech3005012',
'sy3024019',
'strt4009016',
'vka3005005',
'vka4007009',
'ss3017014',
'rech3033004',
'vka4007010',
'strt3000011',
'hk3004017',
'ss5011000',
'vka5032015',
'ss3014017',
'sy223',
'rech2022010',
'sy4020017',
'vka4014013',
'vka4001012',
'vka4011002',
'vka051',
'ss5010009',
'sy3027018',
'ss4016011',
'ss233',
'sy3016010',
'hk5009000',
'ss5028014',
'hk5026000',
'strt4006001',
```

```
'strt5015010',
'strt3029007',
'strt5007006',
'vka3014017',
'ss4015009',
'vka3014014',
'hk4025009',
'ss5005013',
'ss3023009',
'ss4022011',
'vka266',
'hk5012000',
'hk4034017',
'hk3014019',
'hk3027003',
'sy4038008',
'vka5025003',
'ss4023001',
'hk3004013',
'vka5013017',
'vka5037014',
'hk4020003',
'vka4015000',
'ss3038015',
'strt202',
'ss3031010',
'strt4039011',
'ss5001016',
'hk3037012',
'strt4038015',
'ss5026016',
'strt4004019',
'ss3039009',
'strt3004007',
'sy3030003',
'sy5036007',
'vka3015017',
'strt5039013',
'rech3006016',
'vka5021018',
'sy3026018',
'sy4001005',
'sy4009009',
'ss5022010',
'hk3008013',
'sy3022009',
'strt3028015',
'sy259',
```

```
'hk3033005',
'ss027',
'sy4005016',
'hk5027005',
'strt5019015',
'vka3035010',
'strt3023016',
'sy4035012',
'rech2013019',
'vka262',
'hk3036004',
'rech3006006',
'ss5000013',
'strt5029000',
'ss4031015',
'hk4038014',
'rech3001016',
'strt5006005',
'ss4000018',
'strt5015002',
'ss4015013',
'sy3009003',
'sy3008000',
'sy5029011',
'hk3037006',
'rech2035008',
'hk5030016',
'sy3009013',
'ss3007010',
'sy3020019',
'ss3005016',
'strt5023004',
'rech3002008',
'sy3031008',
'sy249',
'vka3022011',
'hk4038010',
'rech109',
'sy4016014',
'strt4001009',
'sy5017008',
'strt4023004',
'strt3016000',
'ss3007011',
'vka3015000',
'ss3031012',
'hk5024018',
'vka4010015',
```

```
'ss4023007',
'ss5016016',
'hk4031005',
'ss4019016',
'sy5021002',
'sy5033003',
'sy4004000',
'sy5003012',
'ss5020016',
'ss4026013',
'sy4030000',
'rech2010018',
'hk5016009',
'rech2014011',
'rech2016010',
'vka3002006',
'strt3000019',
'ss3003014',
'hk5019016',
'ss3036007',
'ss5010017',
'ss3021017',
'strt014',
'hk5027017',
'hk5007008',
'sy233',
'ss5032003',
'ss3000014',
'rech3023000',
'sy5032010',
'rech3039011',
'vka4002002',
'ss5014015',
'rech2000013',
'strt5028014',
'rech3010009',
'strt5010015',
'sy4005009',
'vka4026015',
'vka4008000',
'ss4017013',
'strt160',
'vka4008019',
'strt4024007',
'ss5017014',
'sy4021002',
'vka3004018',
'strt4002013',
```

```
'strt3028005',
'sy4007002',
'rech2026011',
'hk5032012',
'ss3024009',
'hk3020015',
'ss4014011',
'ss4025003',
'strt4038006',
'sy3021011',
'ss5002012',
'sy4007006',
'vka5024007',
'rech3009011',
'sy5023014',
'sy4022003',
'sy216',
'sy3036014',
'hk3016008',
'rech2038011',
'strt5006009',
'sy5032015',
'ss3017013',
'hk4022017',
'sy4038005',
'sy4020016',
'sy4006000',
'ss5016015',
'hk5023007',
'ss4000019',
'vka5005004',
'ss3018017',
'ss5030006',
'strt5026016',
'ss024',
'hk4035004',
'strt4030000',
'ss3035005',
'vka3000013',
'strt4012017',
'hk5034007',
'strt4018010',
'ss4033010',
'rech3029004',
'sy3005019',
'ss3025001',
'ss5009008',
'sy4000005',
```

```
'vka4024019',
'sy3003015',
'hk4013009',
'vka4007001',
'ss3033015',
'vka4003010',
'hk5023011',
'rech3019012',
'ss4036011',
'sy163',
'sy4014013',
'strt227',
'sy3017010',
'sy5016014',
'vka3025004',
'rech2027006',
'ss4026005',
'strt045',
'vka4031008',
'sy4014000',
'sy5010010',
'strt3013015',
'hk4020000',
'ss5026009',
'strt4016016',
'ss049',
'strt5000002',
'ss4023014',
'hk5024008',
'rech3038009',
'strt059',
'vka5025001',
'strt3030016',
'strt4025002',
'hk5015015',
'rech2029012',
'ss5018013',
'hk3005002',
'vka4001007',
'strt3003003',
'hk5032014',
'ss5033010',
'strt4024014',
'vka5025000',
'rech118',
'vka4022019',
'ss3022011',
'rech2030000',
```

```
'hk5005018',
'strt062',
'sy234',
'ss5006009',
'strt3024011',
'hk3017013',
'strt3032018',
'rech144',
'vka5006006',
'ss4036012',
'ss5032011',
'hk5000003',
'sy5030007',
'ss3006011',
'hk3029016',
'vka4022012',
'strt228',
'sy3025010',
'vka5012009',
'hk5016019',
'hk3003007',
'rech3008013',
'vka5031003',
'strt021',
'sy5027017',
'sy4004002',
'strt3024008',
'strt5015016',
'hk5036014',
'ss3016001',
'vka3013018',
'ss001',
'rech2023000',
'vka3018016',
'strt3038015',
'vka4031001',
'strt4036018',
'sy5030019',
'rech3007008',
'vka4013003',
'vka5003005',
'rech3027007',
'sy5011012',
'strt4003000',
'strt4011016',
'vka4012010',
'rech2022007',
'ss3035009',
```

```
'sy5019018',
'hk3005011',
'rech3022002',
'ss4030019',
'ss4024000',
'sy4038014',
'ss3020010',
'rech2034019',
'rech3030007',
'ss3033013',
'vka3033008',
'strt5023002',
'rech3019017',
'vka5016017',
'sy3017000',
'hk5031019',
'sy5015008',
'rech2011018',
'vka4032006',
'hk3028018',
'sy015',
'hk4004008',
'strt3035016',
'ss4020016',
'hk5012019',
'vka218',
'rech3007001',
'ss4024010',
'vka4035011',
'hk3010008',
'vka3005018',
'vka3014010',
'strt161',
'ss5025002',
'sy3005004',
'sy3013015',
'hk4020019',
'vka5013010',
'sy5034009',
'rech2024019',
'vka5008019',
'hk4001011',
'hk3011001',
'rech2036012',
'hk4027000',
'strt4011000',
'sy5026011',
'hk4016016',
```

```
'ss3028012',
'sy161',
'rech3035011',
'ss5000007',
'sy4020010',
'rech2010015',
'sy3026014',
'rech3023014',
'sy204',
'strt4007008',
'strt5021010',
'sy226',
'hk5011002',
'sy4010019',
'sy3039012',
'vka4027019',
'vka4028015',
'strt5032009',
'vka5027006',
'ss5002000',
'strt5020009',
'strt5022001',
'hk4015016',
'vka5006015',
'sy4018018',
'hk3030003',
'vka3008016',
'ss5017001',
'vka3024019',
'hk5033004',
'strt3006012',
'sy3032014',
'vka3026016',
'sy3000014',
'rech3026014',
'sy3031011',
'sy3022013',
'vka3014015',
'ss056',
'ss3027017',
'vka4031004',
'vka3000000',
'strt4015017',
'hk3003013',
'sy4021015',
'sy5002009',
'ss3001012',
'hk5014002',
```

```
'ss3002008',
'strt3008003',
'strt4039007',
'strt3024002',
'strt3026019',
'ss5025017',
'sy3022012',
'sy4003003',
'hk4015002',
'vka5032002',
'vka4022014',
'hk3010003',
'strt4020009',
'sy3023018',
'strt4019001',
'sy3014001',
'ss3038006',
'vka4023016',
'ss3020019',
'strt5026006',
'ss4028015',
'vka5005006',
'hk4027018',
'ss3001014',
'ss5022006',
'sy3011016',
'hk4011001',
'vka5023006',
'strt141',
'strt3035009',
'hk5012013',
'sy3020015',
'vka3004014',
'ss3017009',
'strt5037007',
'ss5008016',
'hk3034009',
'vka3001001',
'rech3006015',
'rech3027019',
'ss5009010',
'strt3011013',
'vka4009001',
'sy4003005',
'hk3018003',
'ss3038012',
'hk3022002',
'hk4014008',
```

```
'sy5008002',
'strt4013000',
'rech3032010',
'sy4019000',
'ss3000019',
'vka5001014',
'strt4005015',
'vka3017003',
'sy5008007',
'ss5004018',
'vka4005006',
'strt158',
'rech2010014',
'strt3015009',
'hk4025003',
'hk3006013',
'vka3012012',
'ss5024018',
'ss066',
'ss4022009',
'hk5008018',
'ss4017018',
'sy4023011',
'ss3039010',
'strt4005012',
'hk4006014',
'vka4030011',
'sy4024009',
'strt028',
'sy3003003',
'hk3004005',
'ss5031010',
'rech2032008',
'ss3029003',
'strt3015014',
'strt5001005',
'sy3023016',
'hk3037005',
'rech2025009',
'strt4034008',
'sy3035012',
'hk3025009',
'vka4024009',
'strt4026003',
'sy4014014',
'vka3020009',
'rech3031005',
'strt5038005',
```

```
'vka4006013',
'ss3025013',
'rech2020017',
'hk5004018',
'sy5032009',
'rech2016013',
'vka3002015',
'vka036',
'strt4033011',
'sy4021001',
'hk3019019',
'hk4026011',
'ss4009015',
'sy3022002',
'sy3017001',
'ss3028005',
'strt5016002',
'sy3010016',
'vka4002001',
'rech2005005',
'rech2002018',
'ss4005019',
'vka3012019',
'strt3026013',
'strt5029003',
'strt3025001',
'strt4009000',
'hk3014002',
'sy5023017',
'sy3007014',
'strt3032010',
'sy3016012',
'ss4019015',
'strt4032016',
'strt4013009',
'sy3030008',
'sy3039006',
'vka3000010',
'vka5025017',
'hk4032010',
'vka4021012',
'ss4027018',
'strt5026014',
'hk4033014',
'ss5014003',
'hk4029019',
'strt5005018',
'vka5011003',
```

```
'ss5007007',
'hk4038005',
'sy5003011',
'strt4027002',
'strt4008000',
'ss4029011',
'hk5011016',
'hk5014018',
'sy5017013',
'strt3000002',
'rech3029018',
'hk5031015',
'vka3029009',
'sy5037008',
'sy3029006',
'rech2018019',
'vka3001019',
'hk5015019',
'ss5022002',
'sy5031011',
'sy5028006',
'sy3002011',
'vka3001005',
'rech3023004',
'hk4013019',
'rech2011015',
'vka3012016',
'hk3028000',
'ss5027000',
'sy4031008',
'strt5026000',
'rech3036007',
'ss4018011',
'strt5004007',
'strt5033013',
'strt4022004',
'vka5010018',
'ss4000003',
'vka5004009',
'vka4014010',
'ss5016019',
'sy4030007',
'rech2024015',
'rech2000016',
'strt4006005',
'hk5031009',
'ss3023012',
'vka4037011',
```

```
'hk3004001',
'strt5010003',
'hk4001001',
'vka3027000',
'ss3032002',
'ss5001002',
'vka5011014',
'vka3025016',
'strt5027017',
'vka3031005',
'hk3038014',
'rech3030014',
'strt4000018',
'hk4013000',
'strt5004004',
'strt4019000',
'hk3003011',
'strt5035008',
'ss5005006',
'sy4001002',
'rech2021001',
'ss5025009',
'rech3025018',
'vka5009010',
'hk3037010',
'strt4000017',
'ss5036010',
'vka4011019',
'strt3036010',
'hk5011010',
'ss5037010',
'rech2006002',
'sy155',
'sy3031000',
'ss5002014',
'strt5031002',
'sy5024019',
'rech3036018',
'strt4011011',
'ss4013011',
'sy5000012',
'vka4022017',
'strt3013011',
'vka3025006',
'strt5018014',
'ss3024003',
'strt3018013',
'hk4006017',
```

```
'sy5000008',
          'vka4037005',
          ...}
In [20]: pyemu.helpers.first_order_pearson_tikhonov(pst,cov)
getting CC matrix
processing
In [21]: pst.prior_information.head()
Out [21]:
                                                               equation
                                                                           obgnme \
        pilbl
        pcc_1 1.0 * log(dc0000390005) - 1.0 * log(dc0000390006) = 0.0 regul_cc
        pcc_2 = 1.0 * log(dc0000390005) - 1.0 * log(dc0000390007) = 0.0
                                                                         regul cc
        pcc_3 1.0 * log(dc0000390005) - 1.0 * log(dc0000390008) = 0.0
                                                                         regul_cc
        pcc_4 = 1.0 * log(dc0000390005) - 1.0 * log(dc0000390009) = 0.0
                                                                         regul_cc
        pcc_5 1.0 * log(dc0000390005) - 1.0 * log(dc0000390010) = 0.0 regul_cc
               pilbl
                         weight
        pilbl
        pcc_1 pcc_1 0.904837
        pcc_2 pcc_2 0.818731
        pcc_3 pcc_3 0.740818
        pcc_4 pcc_4 0.670320
        pcc_5 pcc_5 0.606531
In [22]: shutil.copy2(os.path.join(m_d, "freyberg_pp.jcb"),os.path.join(t_d, "restart_pp.jcb"))
Out[22]: 'template/restart_pp.jcb'
In [23]: pst.pestpp_options["base_jacobian"] = "restart_pp.jcb"
        pst.reg_data.phimlim = pst.nnz_obs
        pst.reg_data.phimaccept = pst.reg_data.phimlim * 1.1
        pst.write(os.path.join(t_d, "freyberg_pp.pst"))
In [24]: pyemu.os_utils.start_slaves(t_d,"pestpp-glm","freyberg_pp.pst",num_slaves=20,slave_ro
                                    master_dir=m_d)
In [25]: df = df=pd.read_csv(os.path.join(m_d,"freyberg_pp.post.obsen.csv"),index_col=0)
         oe = pyemu.ObservationEnsemble.from_dataframe(pst=pst,df=df)
In [26]: ax = oe.phi_vector.hist(bins=np.linspace(0,100,20))
```


Damn!