This weeks problem set focuses on the concept of a change of basis matrix. A question marked with a † is difficult and probably too hard for an exam (though still illustrates a useful point). A question marked with a * is especially important.

Homework 3: due Friday 8 November: questions 2 and 5 below.

- 1. From section 2.5, problems 1, 2a, c, 3a, c, 5, 7, 10*, 13*.
- 2.* Let V be a finite dimensional vector space and W a subspace. Show that V and $W \times V/W$ are isomorphic by finding an explicit isomorphism (rather than simply computing the dimensions).

Solution: Let $B = \{v_1, \dots, v_n\}$ be a basis of V so that $\{v_1, \dots, v_k\}$ is a basis for W. Now define a map $\phi: V \longrightarrow W \times V/W$ by

$$\phi(v_i) = \begin{cases} (v_i, 0) & \text{if } 0 \le i \le k \\ (0, v_i + W) & \text{otherwise.} \end{cases}$$

We claim this is an isomorphism. Indeed, for every element $(w, v + W) \in W \times V/W$ we can express this as

$$(w, v + W) = \lambda_1(v_1, 0) + \ldots + \lambda_k(v_k, 0) + \mu_{k+1}(0, v_{k+1}) + \ldots + \mu_n(0, v_n + W)$$

where $w = \lambda_1 v_1 + \ldots + \lambda_k v_k$ and $v = \mu_1 v_1 + \ldots + \mu_n v_n$. So ϕ is surjective.

Now if

$$\lambda_1(v_1,0) + \ldots + \lambda_k(v_k,0) + \lambda_{k+1}(0,v_{k+1}) + \ldots + \lambda_n(0,v_n+W) = 0$$

then $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$ and $\lambda_{k+1} v_{k+1} + \ldots + \lambda_n v_n \in W$. Thus $\lambda_i = 0$ for all i and ϕ is injective and thus an isomorphism.

3* Let V be a finite dimensional vector space and W a subspace. Show that $\dim(V/W) = \dim V - \dim W$. Hint: consider a basis of W and extend it to V. Now find a basis for V/W. You can also prove it using the dimension theorem.

Solution: Let $B = \{v_1, \dots, v_n\}$ be a basis of V so that $\{v_1, \dots, v_k\}$ is a basis for W. Then $\{v_{k+1} + W, \dots, v_n + W\}$ is a basis for V/W. Hence

$$\dim(V/W) = n - k = \dim V - \dim W.$$

- 4^* Let $T:V\longrightarrow W$ be a linear map.
 - (a) Show that im T and $V/\ker T$ are isomorphic.

Solution: Define a map $\phi: V/\ker T \longrightarrow \operatorname{im} T$ by $\phi(v+\ker T)=T(v)$. We must first check that this is well defined. I.e. if $v+\ker T=v'+\ker T$ then we should check that $\phi(v+\ker T)=\phi(v'+\ker T)$. This translates to checking that T(v)=T(v') if $v-v'\in\ker T$. In this situation, T(v-v')=0 so T(v)-T(v')=0 by linearity, so ϕ is well defined.

To check this is an isomorphism, note first of all that it is surjective. Now suppose that $\phi(v + \ker T) = \phi(v' + \ker T)$. This means T(v - v') = 0 so $v - v' \in \ker T$, i.e $v + \ker T = v' + \ker T$ so ϕ is injective and thus an isomorphism.

(b) Use this (and the previous exercise) to give an alternative proof of the dimension theorem.

Solution: Note first that $\dim(V/\ker T) = \dim V - \dim \ker T$. Thus, using the previous part, we see that $\dim V - \dim \ker T = \dim \operatorname{im} T$ which is the dimension theorem.

- 5. A differential operator on $\mathbb{R}_n[x]$ is a linear combination of expressions of the form $x^a \frac{d^b}{dx^b}$ where $a b \leq 0$ (otherwise the degree would potentially increase!). We can consider a differential operator as a linear map $\mathbb{R}_n[x] \longrightarrow \mathbb{R}_n[x]$.
 - (a) Let $D: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$ be the differential operator given by $2 4\frac{d}{dx} + 2x^2\frac{d^2}{dx^2}$. Find the matrix of D relative to the basis $\{x^2, (x-1)^2, (x+1)^2\}$.

Solution:

$$\begin{pmatrix} 6 & -4 & 12 \\ 2 & 8 & -2 \\ -2 & 2 & -4 \end{pmatrix}$$

(b) Suppose $E: \mathbb{R}_2[x] \longrightarrow \mathbb{R}_2[x]$ is a differential operator and that the matrix of E, relative to the basis $\{1, x, x^2\}$ is

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

Find E.

Solution:

$$E = \frac{d}{dx} + x\frac{d^2}{dx^2}$$