PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-122711

(43) Date of publication of application: 30.04.1999

(51)Int.CI.

B60L 11/14 B60K 6/00 B60K 8/00 B60L 15/20 F02D 29/02 F16H 37/02 F16H 37/06

(21)Application number : 09-290321

(71)Applicant: ISUZU MOTORS LTD

(22)Date of filing:

07.10.1997

(72)Inventor: ASANO MASAKI

(54) HYBRID ELECTRIC CAR

(57)Abstract:

PROBLEM TO BE SOLVED: To make it unnecessary to detach and disassemble an engine or a transmission on the occasion of maintenance inspection of a motor, and to make it unnecessary to take measures to stand heat from the engine.

SOLUTION: In a manual transmission having a reverse idle shaft 42, a motor input shaft 45 is provided, and gears are combined so that the rotation of a motor input shaft may be transmitted always to a main shaft 27. And the motor input shaft 45 is linked to a motor 17 arranged outside. Since the motor is arranged outside an engine and the transmission, maintenance inspection of the motor can be performed without detaching and attaching the transmission and the like, and becomes easier than before. Besides, there is no need to take prevention measures against damages caused by heat, since they are far from the engine.

LEGAL STATUS

[Date of request for examination]

05.02.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3454109

[Date of registration]

25.07.2003

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-122711

(43)公開日 平成11年(1999) 4月30日

(51) Int.Cl. ⁶	識別配号		FΙ				
B60L 11/14			B60L	11/14			
B60K 6/00				15/20		K	
8/00			F 0 2 D	29/02		D.	
B60L 15/20			F16H	37/02		С	
F 0 2 D 29/02				37/06		D	
		審查請求	未請求 諸城	マダイ ファイス ファイス ファイス ファイス ファイス アイス アイス アイス アイス アイス アイス アイス アイス アイス ア	FD	(全 6 頁)	最終頁に続く
(21) 出願番号	特顏平9-290321		(71)出題人 000000170				
(22)出顧日	平成9年(1997)10月7日		いすゞ自動車株式会社 東京都品川区南大井6丁目26番1号 (72)発明者 浅野 雅樹 藤沢市土棚8番地 株式会社いすゞ中央研 究所内				
			(74)代理/	人 弁理士	本庄	宮雄	
•							
	•						
		•					•

(54) 【発明の名称】 ハイブリッド電気自動車

(57)【要約】

【課題】 ハイブリッド電気自動車のモータは、エンジンのフライホイールを利用して構成されたり、トランスミッションに直接回転力を伝えるよう組み付けられていたので、モータの保守点検をする際、エンジンまたはトランスミッションを脱着したり分解したりせねばならず、面倒であった。また、エンジンからの熱に耐える対策を講じる必要があった。

【解決手段】 リバースアイドルシャフト42を有する手動トランスミッションにモータインプットシャフト45を設け、モータインプットシャフトの回転は常にメインシャフト27に伝えられるようギアを組み合わせる。そして、モータインプットシャフト45を、外部に設置したモータ17に連結する。モータはエンジンおよびトランスミッションの外部に設置されているので、モータの保守点検はトランスミッション等を脱着したりすることなく出来、従来に比べて容易となる。また、エンジンより離れているので、熱害対策を講じる必要もない。

【特許請求の範囲】

【請求項1】 トランスミッションとして、リバースアイドルギアF、およびリバースアイドルギアR」が固着されたリバースアイドルシャフトを具備する手動トランスミッションを用いたハイブリッド電気自動車において、前記リバースアイドルギアF、と噛合するカウンタリバースギアをシンクロメッシュ機構によりカウンタシャフトに断,接出来るように取り付けると共に、前記リバースアイドルギアR」と噛合するリバースギアをメインシャフトに固着し、前記リバースアイドルギアF、と別に噛合させたモータインプットギアおよびそれを固着したモータインプットシャフトをトランスミッションの外部に設置したモータに連結したことを特徴とするハイブリッド電気自動車。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両駆動用原動機 として、エンジン及びモータを搭載したハイブリッド電 気自動車に関するものである。

[0002]

【従来の技術】エンジンとモータとを搭載するハイブリッド電気自動車には、駆動輪への機械的動力の伝達がモータのみから行われるようにされたシリーズ型ハイブリッド電気自動車と、モータおよびエンジンのいずれからでも行えるようにされたパラレル型ハイブリッド電気自動車とがある。本発明は、パラレル型ハイブリッド電気自動車に関するものである。

【0003】図6は、従来のパラレル型のハイブリッド電気自動車の1例を示す図である。図6において、1はエンジン、1Aはフライホイール、2はクラッチ、3はトランスミッション、4はプロペラシャフト、5は駆動輪、6はハイブリッド制御指令装置、7は燃料噴射ポンプ、8はモータ、9はコントローラ、10はインパータ、11はスタータスイッチ、12はアクセルセンサ、13は回生電力消費用抵抗器、14は駆動用パッテリ、15はDCDCコンパータ、16は電気負荷である。

【0004】エンジン1の種類によっては、エンジンの回転を滑らかにするため、クラッチ2側にフライホイール1Aが設けてあるものがあるが、この例では、そのようなフライホイール1Aを利用して、モータ8を構成したものを示している。即ち、フライホイール1Aをモータ回転子として兼用し、フライホイール1Aの周囲のハウジングの内面に固定子を設けて、モータ8は構成される。

【0005】モータ8への給電は、駆動用バッテリ14よりインバータ10を経て行われる。駆動用バッテリ14からは電気負荷16へも給電し得るが、駆動用バッテリ14の電圧は通常の車載パッテリの電圧より高いので、DCDCコンバータ15により電圧を変換して給電

される。コントローラ9は、エンジン1を駆動源として 用いる時は、燃料噴射ポンプ7を制御してエンジン1を 回転させ、モータ8を駆動源として用いる時は、インバ ータ10を制御してモータ8を回転させる。

【0006】コントローラ9には、スタータスイッチ11,アクセルセンサ12からの信号を始め、車両状況,車両操作に関するその他の信号が入力される。また、ハイブリッド制御指令装置6より、エンジン1により駆動するかモータ8により駆動するか、あるいはエンジン1により駆動し、モータ8により補助駆動(アシスト)するか等の指令が入力される。回生電力消費用抵抗器13は、制動時にモータ8より得られる回生電力が、駆動用バッテリ14を充電してなお余りある時、これに流して電力を消費するための抵抗器である。エンジン1あるいはモータ8により発生された回転は、クラッチ2を経てトランスミッション3に伝えられ、更にプロペラシャフト4を経て駆動輪5に伝えられる。

【0007】図4は、従来のトランスミッションのギア 構成の1例を示す図である。ここでは、前進5段のトラ ンスミッションを例にとっている。図4において、20 はドライブシャフト、21はドライブギア、22はシン クロメッシュ機構、23,24はギア、25はシンクロ メッシュ機構、26はギア、27はメインシャフト、2 8はリバースギア (符号Rは、リバースを表す)、29 は針状ころ軸受、30はシンクロメッシュ機構、31は ギア、31Aは針状ころ軸受、32は車速センサ用ギ ア、33はカウンタシャフト、34~37はギア、38 はカウンタリバースギア、41はギア、42はリバース アイドルシャフト、43はリバースアイドルギアド,、 4 4 はリバースアイドルギアR。である。なお、針状こ ろ軸受29,31Aと同様の形状で描かれている部分 は、同様の針状ころ軸受である。シャフトとの間に針状 ころ軸受が描かれていないギアは、シャフトに固着され ていることを表している。

【0008】ドライブシャフト20はクラッチ2に連結されており(従って、クラッチシャフトとも呼ばれる)、ドライブギア21はクラッチ2と共に回転している。ドライブギア21には、カウンタシャフト33のギア34が常時噛合されているので、ドライブシャフト20回転はカウンタシャフト33に伝えられる。周知のように、針状ころ軸受を介してシャフトに取り付けられているギアは、隣接するシンクロメッシュ機構が結合デスカに大きの回転をシャフトに伝達する。例えば、アスカに大きないでして空転しているだけであり、メンシュ機構22がギア23に結合されない間は、メンシャフト27を中心にして空転しているだけであり、メンシュ機構22がギア23に結合されると、ギア23の回転力はメインシャフト27に伝えられる。

【0009】互いに噛合するギアの歯数の比を異ならせ、1速,2速等の変速が行えるようにしてある。因みに、前進のための各変速は、次のギアの組み合わせにより得られる。

1速…ギア37と26

9.

2速…ギア36と24

3速…ギア35と23

4速…メインシャフト27をドライブシャフト20に直結(シンクロメッシュ機構22をドライブシャフト20に結合させ)

5速…ギア41と31

【0010】後進は、シンクロメッシュ機構30をリバースギア28に結合し、次のように回転力を伝えることにより行われる。

カウンタリバースギア38→リバースアイドルギア F_{τ} 43→リバースアイドルシャフト42→リバースアイドルギア R_{τ} 44→リバースギア28→メインシャフト27→駆動輪へ

図4ではリバースアイドルギアR₁44とリバースギア28とは離れているが、空間的には次の図5で示すように噛み合っており、回転力が伝達される。

【0011】図5は、従来のトランスミッションのシャフト位置関係の1例を示す図である。これは、図4のカウンタリバースギア38からリバースギア28の部分を、シャフトの軸方向から見た図であり、符号は図4のものに対応している。カウンタリバースギア38はリバースアイドルギア F_743 と噛合し、リバースアイドルギア R_844 はリバースギア28と噛合している。

【0012】なお、ハイブリッド電気自動車に関する従来の文献としては、例えば、特開平8-251712号公報がある。これは、その図1に示されるように、モータをトランスミッションの中心を成す「第1軸」に、ギアを介して直接組み付けたものである。

[0013]

【発明が解決しようとする課題】

(問題点)しかしながら、図6に示すような従来のハイブリッド電気自動車では、次のような問題点があった。第1の問題点は、モータの保守点検がし難いという点である。第2の問題点は、モータに熱害対策を講じる必要があるという点である。第3の問題点は、駆動制御が複雑であるという点である。また、特開平8-251712号公報のハイブリッド電気自動車では、モータの保守点検をする際、トランスミッションをエンジンと切り離したり、場合によってはトランスミッションの一部を分解したりする必要があり、面倒であった。

【0014】(問題点の説明)まず第1の問題点について説明する。モータ8は、エンジン1内に設けられているので、これを保守点検する際には、エンジン本体部分まで分解したりしなければならない。従って、保守点検が非常にしづらい。特開平8-251712号公報の技

術についても、トランスミッションに直接組み付けられているので、略同様のことが言える。第2の問題点について説明する。モータ8はエンジン1内に設けてあるので、エンジンの熱をもろに受ける。従って、その熱で固定子等の巻線が故障したり誤動作したりしないよう、特別な熱害対策を講じておく必要があり、その分コストが高くなる。

【0015】第3の問題点について説明する。モータ8の回転子(即ち、フライホイール1A)はエンジン1と直結されているので、例えば、エンジンを補助駆動(アシスト)する場合等は、モータ8独自で回転を制御することは出来ない。そのため、エンジンと統合的に制御する必要があり、制御が複雑になる。本発明は、既存のトランスミッションに僅かの改造を施し、外部に設置したモータと連結することにより、前記のような問題点を解決することを課題とするものである。

[0016]

【課題を解決するための手段】前記課題を解決するため、本発明では、トランスミッションとして、リバースアイドルギア F_1 およびリバースアイドルギア R_1 が固着されたリバースアイドルシャフトを具備する手動トランスミッションを用いたハイブリッド電気自動車において、前記リバースアイドルギア F_1 と噛合するカウンタリバースギアをシンクロメッシュ機構によりカウンタシャフトに断,接出来るように取り付けると共に、前記リバースアイドルギア R_1 と噛合するリバースギアをメインシャフトに固着し、前記リバースアイドルギア F_1 と別に噛合させたモータインプットギアおよびそれを固したモータインプットシャフトをトランスミッションの外部に設置したモータに連結することとした。

【0017】(解決する動作の概要)リバースアイドル シャフトを有する手動トランスミッションにモータイン プットシャフトを設け、モータインプットシャフトの回 転は常にメインシャフトに伝えられる構造とする。そし て、モータインプットシャフトを、外部に設置したモー 夕に連結する。モータを駆動源とした場合、回転力はト ランスミッションを通して駆動輪へ伝えられ、前進,後 進はモータの回転方向の切り換えで制御され、走行速度 はモータの回転数制御で制御される。このようにする と、モータはエンジンおよびトランスミッションの外部 に設置することが出来るので、モータの保守点検はエン ジンやトランスミッション等を脱着したりすることなく 出来、従来に比べて容易となる。また、モータは、エン ジンより離して設置することが出来るので、熱害対策を 講じる必要はなく、エンジンと直結されてはいないの で、制御も容易となる。

[0018]

【発明の実施の形態】以下、本発明の実施形態を図面に

基づいて詳細に説明する。図1は、本発明にかかわるハイブリッド電気自動車を示す図である。符号は図6のものに対応し、17はモータである。エンジン1はフライホイールを具備していてもよいし、していないものであってもよい。但し、トランスミッション3は、リバースアイドルシャフトを有するものであることを要す。構のモータ17をエンジン1あるいはトランスミッション3内には組み込まず、外部に設置したという点である。第2の相違点は、トランスミッション3を介して伝えるようにした点である。トランスミッション3の改造を、図2により説明する。

- 0

【0019】図2は、本発明におけるトランスミッションのギア構成の1例を示す図である。ここでは、前進5段のトランスミッションを例にとっている。符号は図4のものに対応し、45はモータインブットシャフト、46はモータインブットギアである。モータインブットシャフト45は、ユニバーサルジョイント等のジョイントやプロペラシャフトを適宜用いて、モータ17の回転軸と連結される。

【0020】図4のトランスミッションと相違する第1の点は、モータインブットシャフト45, モータインブットギア46を新設した点である。第2の相違点は、カウンタリバースギア38を針状ころ軸受39を介してカウンタシャフト33に取り付けることとし、それに伴い、シンクロメッシュ機構40を対応させて設けたという点である。第3の相違点は、リバースギア28をメインシャフト27に固着したという点である(図4では、針状ころ軸受29を介して取り付けていた。)。以上が、トランスミッション3における改造である。

【0021】図3は、本発明におけるトランスミッションのシャフト位置関係の1例を示す図である。符号は図5および図2のものに対応している。図示するように、モータインプットシャフト45に取り付けられたモータインプットギア46が、リバースアイドルギア $F_{7}43$ と噛合するように設けられる。

【0022】再び図2に戻って、リバースギア28からモータ17までの結合関係に注目すると、両者の間は、リバースギア28→リバースアイドルギアR₁44→リバースアイドルシャフト42→リバースアイドルギアF₁43→モータインプットギア46→モータインブットシャフト45→モータ17という経路で結ばれている。そして、この経路中には、シンクロメッシュ機構により回転力が断,接されるギアは存在していない。従って、モータ17が駆動源となっていない場合には、メインシャフト27の回転がモータ17に伝えられる。駆動源とレて使用しない場合はモータ17に電流は流されないから、単にフライホイール的に回転しているだけである。モータ17が駆動源とされる場合には、上記の経路を逆

に辿ってリバースギア28を回転させる。

【0023】以上のような構成にすると、モータはエンジンおよびトランスミッションの外部に設置されることとなり、保守点検の際、エンジンやトランスミッションを脱着したりする必要がなく、作業が極めて容易に出来るようになる。また、モータはエンジンより離れたところに設置されるから、エンジンからの熱害対策を講じる必要がなくなる。更に、モータはエンジンと直結されていないので、モータの制御は容易となる。

【0024】次に、このように改造されたトランスミッション3における動作、即ち、エンジンまたはモータが 駆動源となった場合の、回転力の伝達経路を説明する。

(A) エンジンが駆動源である場合

(A-1) 前進

エンジンが駆動源であるから、回転力はドライブシャフト20から伝えられる。シンクロメッシュ機構22が、ギア23と連結されて前進している場合を例にとると、次のような経路で伝達される。

ドライブシャフト20→ドライブギア21→ギア34→ カウンタシャフト33→ギア35→ギア23→メインシャフト27→駆動輪へ

【0025】(A-2)後進

後進させる時には、シンクロメッシュ機構40がカウン タリバースギア38に結合される。

ドライブシャフト $20 \rightarrow$ ドライブギア $21 \rightarrow$ ギア $34 \rightarrow$ カウンタシャフト $33 \rightarrow$ カウンタリバースギア $38 \rightarrow$ リバースアイドルギア $142 \rightarrow$ リバースギア $142 \rightarrow$ リバースギ

【0026】(B) モータ17が駆動源である場合 モータ17を駆動源とする場合、全てのシンクロメッシュ機構は、対応するギアとの結合はさせない。

(B-1) 前進

モータ17に給電されて回転を始め、回転力は次の経路で伝達される。

モータ $17 \rightarrow$ モータインプットシャフト $45 \rightarrow$ モータインプットギア $46 \rightarrow$ リバースアイドルギア F_{τ} 43 \rightarrow リバースアイドルシャフト42 \rightarrow リバースアイドルギアR $_{R}$ 44 \rightarrow リバースギア28 \rightarrow メインシャフト27 \rightarrow 駆動輪へ。

(B-2)後進

後進する場合は、モータ17の回転方向が逆にされる。 モータの回転方向の切り換えは、周知のようにスイッチ の切り換えで容易に出来る。回転力の伝達経路は、前進 の場合と同じである。

[0027]

【発明の効果】以上述べた如く、本発明のハイブリッド 電気自動車によれば、次のような効果を奏する。

①モータをエンジンおよびトランスミッションの外部に

設置しているので、保守点検の際、エンジンやトランス ミッションを脱着したりする必要がなく、極めて容易に 出来るようになる。

②モータをエンジンより離れたところに設置するので、 エンジンからの熱害対策を講じる必要がなくなる。

③モータはエンジンと直結されていないので、モータを 駆動源として使用する場合の制御が容易となる。

【図面の簡単な説明】

【図1】 本発明にかかわるハイブリッド電気自動車を示す図

【図2】 本発明におけるトランスミッションのギア構成の1例を示す図

【図3】 本発明におけるトランスミッションのシャフト位置関係の1例を示す図

【図4】 従来のトランスミッションのギア構成の1例 を示す図

【図5】 従来のトランスミッションのシャフト位置関係の1例を示す図

【図6】 従来のパラレル型のハイブリッド電気自動車の1例を示す図

【符号の説明】

1…エンジン、1A…フライホイール、2…クラッチ、 3…トランスミッション、4…プロペラシャフト、5… 駆動輪、6…ハイブリッド制御指令装置、7…燃料噴射 ポンプ、8…モータ、9…コントローラ、10…インバ ータ、11…スタータスイッチ、12…アクセルセン サ、13…回生電力消費用抵抗器、14…駆動用バッテ リ、15…DCDCコンバータ、16…電気負荷、17 …モータ、20…ドライブシャフト、21…ドライブギ ア、22…シンクロメッシュ機構、23,24…ギア、 25…シンクロメッシュ機構、26…ギア、27…メイ ンシャフト、28…リバースギア、29…針状ころ軸 受、30…シンクロメッシュ機構、31…ギア、31A …針状ころ軸受、32…車速センサ用ギア、33…カウ ンタシャフト、34~37…ギア、38…カウンタリバ ースギア、39…針状ころ軸受、40…シンクロメッシ ュ機構、41…ギア、42…リバースアイドルシャフ ト、43…リバースアイドルギアF₁、44…リバース アイドルギアR,、45…モータインプットシャフト、 46…モータインプットギア

【図1】

【図2】

【図3】

【図4】

【図6】

フロントページの続き

(51) Int.Cl.

識別記号

FΙ

B60K 9/00

Z

F 1 6 H 37/02 37/06