GANPAT UNIVERSITY									
FACULTY OF ENGINEERING & TECHNOLOGY									
Programme		Bachelor of Technology				Branch/Spec		Computer Science & Engineering (CBA/CS/BDA)	
Semester		I				Version	1.0.0.0	1.0.0.0	
Effective from Academic Year 2020-21					Effective for the batch Admitted in June 2020				
Subject code		2CSE10	3	Subject N	lame	DIGITAL ELECTRONICS			
Teaching scheme						Examination scheme (Marks)			
(Per week)	Lecti	Lecture(DT) Practi		ical(Lab.)	Total		CE	SEE	Total
	L	TU	Р	TW					
Credit	3	0	1	0	4	Theory	40	60	100
Hours	3	0	2	0	5	Practical	30	20	50

Pre-requisites:

Fundamental knowledge of physics during 11th and 12th science.

Learning Outcome:

At the end of the course, the student will be able to:

- Able to understand the basics of digital circuits.
- Capable to design different types of digital logic circuit.
- Learn microprocessor with the help of basic knowledge of digital electronics.

Theory	y syllabus	
Unit	Content	Hrs
1	Binary Systems:	5
	Digital Computer & Systems, Binary Numbers, Number Base conversions, Different Number	
	systems & their relations, Complements, Binary codes, Binary storage & registers.	
2	Digital Integrated Circuits:	4
	RTL, DTL circuits, I ² L Logic, TTL, ECL, MOS & CMOS circuits & their characteristics.	
3	Boolean Algebra & Logic Gates:	5
	Basic definitions, Axiomatic definition of Boolean Algebra, Basic Theorems & Properties, Boolean functions, Canonical & Standard forms, Logic operations, Digital Logic gates & Logic families.	
4	Simplification of Boolean Functions:	6
	Map method, Two, Three, Four, Five & Six variable maps, Products of Sum & Sum of Products	
	simplification, NAND, NOR & Other two level Implementations, Don't care conditions, Tabulation	
	method.	
5	Combinational Logic:	5
	Design Procedure, Address, Subtractors, Code Conversion, Analysis Procedure, Multilevel NAND	
	& NOR circuits, Exclusive-OR & Equivalence functions.	
6	Combinational Logic with MSI & LSI:	5
	Binary Parallel Adder, Decimal Adder, Magnitude Comparator, Decoders, Multiplexers.	
7	Sequential Logic:	8
	Latch, Flip Flops, difference between latch and flip flop, Triggering of Flip flops, Analysis of	
	clocked sequential circuits, State reduction & assignment, Flip Flop Excitation tables, Design of	
	Sequential circuits, Design of counters, Design using state equations.	
8	Registers and Counters:	7
	Registers, Shift registers, Ripple Counters, Synchronous Counters.	
Self St	udy Topics :	

Source current & sink current, ROMs, PLAs, introduction of PLDs, CPLDs and FPGA, Memory.

Practical content

Building & testing circuits on bread board for basic logic gates and elementary level circuits using gates. Understanding & testing behavior of circuits using readily available kits for medium and large level circuits. Suggested list of practicals:

- To study the test basic logic gates.
- To study and test NAND and NOR gates as Universal Gates.
- To verify the De'Morgan's Theorems.
- To design and test Half Adder / Subtractor circuit using basic logic gates.
- To design and test Full Adder / Subtractor circuit using basic logic gates.
- To Design and test decoder circuit.
- To design and test multiplexer / demultiplexer circuit.
- To design and test 4-bit Binary to Gray and Gray to Binary Converter circuits.
- To design and test 4-bit parallel adder / subtractor.
- To study and test Flip-Flop circuits.
- To design and test asynchronous / synchronous up-down counters.
- To study and test shift registers.

		_	
IN /I	$\Delta \Delta \Delta$	Course	
10	oou	Course	

Course Name: Basic Electrical Circuits

Link: https://onlinecourses.nptel.ac.in/noc18_ee18				
Text	Text Books			
1	Digital Logic and Computer Design by Morris Mano			
Refe	Reference Books			
1	Digital Fundamentals by Floyd			
2	Digital Electronics by R. P. Jain			
3	Fundamental of Digital Circuits by A. Anandkumar			