

Table 1b: Heavy Duty Pipe Brace Available Tensile Strength

Heavy Duty Pipe Brace (HDPB)	Allowable Tensile Strg., P _n /Ω	Design Tensile Strg., φP _n
HDPB 3'-5'; HDPB 7'-11'; HDPB 10'-15'	6.89 kip	10.34 kip
HDPB 12'-20'; HDPB 15'-26'	8.51 kip	12.76 kip
HDPB 22'-35'	13.10 kip	19.65 kip

Limited by Bearing Strength of 3/4"ø Bolt on Heavy Duty Pipe Brace Tube

 $R_n = 1.8 F_v A_{pb}$ (AISC Steel Construction Manual 14th Edition; Specification J7; Equation J7-1)

Where: $F_y = 46 \text{ ksi}$

 A_{pb} = Design (t) x 0.75" Bolt x 2 walls

Allowable Bearing Strength $R_n/\Omega \rightarrow Safety$ Factor $(\Omega) = 2.0$

Design Bearing Strength $\phi R_n \rightarrow \text{Resistance Factor } (\phi) = 0.75$

Table 2a: PBS-1 Pipe Brace Shoe Available Strength

	Tension			Compression				
Angle θ	Allowable Strength R _n /Ω (kip)	Design Strength ΦR _n (kip)		Bolt Tension ⁵ (kip)	Allowable Strength R _n /Ω (kip)	Design Strength ΦR _n (kip)	Bolt Shear ⁵ (kip)	Bolt Tension ⁵ (kip)
0°	5.80	8.70	6.0	3.5	6.00	9.00	6.0	5.5
15°	7.20	10.80	7.0	4.5	5.30	7.95	5.5	1.5
30°	8.60	12.90	7.5	5.5	4.70	7.05	4.5	-
45°	10.00	15.00	7.5	9.5	4.00	6.00	3.0	-
60°	8.00	12.00	4.0	11.5	4.70	7.05	2.5	-
75°	6.00	9.00	2.0	11.5	5.30	7.95	1.5	-
90°	4.00	6.00	-	9.0	6.00	9.00	ı	-

Figure 2a: PBS-1 Shoe

Table 2b: PBS-2 Pipe Brace Shoe Available Strength

	Tension			Compression				
	Allowable	Design	Bolt	Bolt	Allowable	Design	Bolt	Bolt
Angle	Strength	Strength	Shear 5	Tension ⁵		Strength	Shear 5	Tension ⁵
θ	R_n/Ω (kip)	ΦR _n (kip)	(kip)	(kip)	R_n/Ω (kip)	ΦR _n (kip)	(kip)	(kip)
0°	3.20	4.80	2.0	2.5	3.00	4.50	1.5	2.5
15°	4.10	6.15	2.0	4.0	5.30	7.95	3.0	3.5
30°	5.10	7.65	2.5	5.0	7.70	11.55	3.5	3.0
45°	6.00	9.00	2.5	5.5	10.00	15.00	4.0	1.5
60°	5.70	8.55	1.5	1.0	10.00	15.00	2.5	-
75°	5.30	7.95	1.0	2.0	10.00	15.00	1.5	-
90°	5.00	7.50	-	3.0	10.00	15.00	-	-

Figure 2b: PBS-2 Shoe

Table 2c: PBS-4 Pipe Brace Shoe Available Strength

	Tension			Compression				
Angle θ	Allowable Strength R _n /Ω (kip)	Design Strength ΦR _n (kip)	Bolt Shear ⁵ (kip)	Bolt Tension ⁵ (kip)	Allowable Strength R _n /Ω (kip)	Design Strength ΦR _n (kip)	Bolt Shear ⁵ (kip)	Bolt Tension ⁵ (kip)
0°	4.00	6.00	4.0	7.5	6.00	9.00	6.0	11.0
15°	4.30	6.45	4.5	9.0	5.50	8.25	5.5	8.5
30°	4.70	7.05	4.5	10.0	5.00	7.50	4.5	5.5
45°	5.00	7.50	4.0	10.0	4.50	6.75	3.5	3.0
60°	6.00	9.00	3.0	11.0	5.70	8.55	3.0	0.5
75°	7.00	10.50	2.0	10.5	6.80	10.20	2.0	-
90°	8.00	12.00	Ī	8.0	8.00	12.00	ı	-

Notes:

- 1) R_n = Nominal Tensile/Compressive Strength
- 2) Ω = Safety Factor = 2.0
- 3) Φ = Resistance Factor = 0.75
- 4) The limit state is based on Available Strength and Serviceability (0.100" deflection in line with the force direction) by testing.
- 5) Bolt Shear and Bolt Tension Loads based on Allowable Strength (ASD) working loads.
- 6) Pipe Brace Shoe capacity may be limited by the member the shoe is connected to (i.e. Form Rib, Form Side Rail, Form End Rail, etc.).

Forming and Shoring Equipment for Concrete Construction

1800 NE Broadway Ave, Des Moines, IA 50313 Phone: (515) 266-1141 Fax: (515) 313-4424

Heavy Duty Pipe Brace and Accessories

Engineering Technical Data

Date: 05/16/17

Page:

2 of 4

Table 3a: Heavy Duty Pipe Brace Clevis to Rib

		Available Bearing Strength		
Plate Thickness, t	Form Rib	Allowable Strength R_n/Ω (kip)	Design Strength ΦR _n (kip)	
1/8"	EL 6'-0"R & 8'-0"R PG 2'-0"R thru 3'-0"R Redi-Radius Jr.	6.52 kip	9.78 kip	
3/16"	PG 3'-6"R thru 10'-0"R Redi-Radius Sr.	9.14 kip	13.71 kip	
1/4"	PG 11'-0"R thru 12'-0"R	9.14 kip	13.71 kip	

Notes:

- 1) R_n = Nominal Bearing Strength
- 2) Ω = Safety Factor = 2.0
- 3) Φ = Resistance Factor = 0.75
- 4) The limit state is based on Available Bearing Strength, R_n/Ω and ΦR_n , at bolt holes. (AISC 14th Edition, Equation J3-6a)

$$R_n = 1.2 I_c t F_u \le 2.4 dt F_u$$
 Rib: $F_u = 58$ ksi; $d = 0.75$ "; $t = varies$ HDPB Clevis: $F_u = 65$ ksi; $I_c = 15/16$ "; $t = 1/4$ "

5) Heavy Duty Pipe Brace Available Compressive Strength, P_n/Ω and ΦP_n , varies depending on length, eccentricity (e), and size of Heavy Duty Pipe Brace. See Table 3b below for reduced HDPB Available Compressive Strength based on the additional 0.875" of eccentricity from the single side connection. See Table 1b for HDPB Available Tensile Strength.

HDPB	Eccentricity, e	k
3'-5'; 5'-9' 7'-11'; 10'-15'	0.0025L + 0.875"	1.0
12'-20' 15'-26'	0.005L + 0.875"	1.0
22'-35'	0.01L + 0.875"	1.0

Figure 3a: HDPB to Rib Connection (Preferred Method)

Figure 3b: HDPB to Rib Connection

Table 3b: HDPB Available Compressive Strength - Single Clevis Connection (Ω = 1.67; Φ = 0.90)

Table 4a: CBC Strut Clevis to Rib

		Available Bearing Strengt		
Plate Thickness, t	Form Rib	Allowable Strength R_n/Ω (kip)	Design Strength ΦR _n (kip)	
1/8"	EL 6'-0"R & 8'-0"R PG 2'-0"R thru 3'-0"R	6.52 kip ⁽⁵⁾	9.78 kip ⁽⁵⁾	
3/16"	PG 3'-6"R thru 10'-0"R & CBC (built after 01Mar02)	7.15 kip ⁽⁶⁾	10.72 kip ⁽⁶⁾	
1/4"	PG 11'-0"R thru 12'-0"R	7.15 kip ⁽⁶⁾	10.72 kip ⁽⁶⁾	

1'-9"TO 2'-10" CBC QBC Q3/4" x 3" QUICK BOLT WITH NUT

Figure 4a: CBC Strut to Rib Connection

Notes:

- 1) R_n = Nominal Bearing Strength
- 2) Ω = Safety Factor = 2.0
- 3) Φ = Resistance Factor = 0.75
- 4) The CBC Strut to Plate Connection is considered a "bolted" rather than a "pin" connection because the Ø1 1/4" Rod extends flush with the hole and is clamped in between the bolt head and nut.
- 5) The primary limit state is based on Available Bearing Strength, R_n/Ω and ΦR_n, at bolt holes. (AISC 14th Edition, Equation J3-6a)

Rib:
$$F_u = 58$$
 ksi; $d = 0.75$ "; $t = varies$
 $R_n = 1.2 I_c t F_u \le 2.4 d t F_u$

Rib: $F_u = 58$ ksi; $d = 0.75$ "; $t = varies$
CBC Strut Clevis: $F_u = 65$ ksi; $I_c = 15/16$ "; $t = 1/4$ "

- The secondary limit state is based on the Available Weld Strength of a single CBC Strut Clevis welded to the Ø1 1/4" Rod.
- 7) CBC Strut Available Tensile and Compressive Strength = 14.3 kip.

Table 4b: HD Pipe Brace to Super Stud

		Available Bearing Strength	
Plate Thickness, t	Connection Type	Allowable Strength R _n /Ω (kip)	Design Strength ΦR _n (kip)
2 x 1/8"	Pin Bearing (Fig 10.14b)	8.43 kip	12.65 kip

Notes:

- 1) R_n = Nominal Bearing Strength
- 2) Ω = Safety Factor = 2.0
- 3) Φ = Resistance Factor = 0.75
- 4) The limit state is based on Available Bearing Strength, R_n/Ω and ΦR_n , at pins in reamed, drilled, or bored holes.

$$R_n = 1.8 F_y A_{pb}$$
 (AISC 14th Edition, Equation J7-1)

Where: F_y = Minimum Yield Stress = 50 ksi

A_{pb} = Projected Bearing Area

= Bolt Diameter (3/4") x Plate Thickness, t (2 x 1/8")

5) See Tables 1a and 1b for Heavy Duty Pipe Brace Available Compressive and Tensile Strength.

Figure 4b: HD Pipe Brace to Super Stud

Forming and Shoring Equipment for Concrete Construction

1800 NE Broadway Ave, Des Moines, IA 50313 Phone: (515) 266-1141 Fax: (515) 313-4424 **Heavy Duty Pipe Brace and Accessories**

Engineering Technical Data

Date:

05/16/17

Page:

4 of 4