# PM2.5 Delhi, data sources

Maëlle Salmon 23 janvier 2016

Maybe it's nicer to have a readable document with the analysis!

So, the goal is to compare historic PM2.5 values for Delhi as found on the CPCB website by Eric Dodge to values queried from OpenAQ.

### Load packages

```
library("readr")
library("lubridate")
library("dplyr")
library("Ropenaq")
library("ggplot2")
```

## Check available locations for Delhi on OpenAQ

```
Ropenaq::locations(city="Delhi", parameter="pm25")
## Source: local data frame [5 x 12]
##
##
                          location
                                                        locationURL city
##
                            (fctr)
                                                              (chr) (fctr)
## 1
                       Anand Vihar
                                                       Anand+Vihar Delhi
## 2
                                                       Mandir+Marg Delhi
                       Mandir Marg
## 3
                      Punjabi Bagh
                                                      Punjabi+Bagh Delhi
                          RK Puram
                                                          RK+Puram Delhi
## 5 US Diplomatic Post: New Delhi US+Diplomatic+Post%3A+New+Delhi Delhi
## Variables not shown: cityURL (chr), country (fctr), count (int),
##
     sourceName (fctr), firstUpdated (time), lastUpdated (time), parameters
     (fctr), latitude (dbl), longitude (dbl).
# we'll use only the 4 first ones since the first one
# is US embassy data
locationsDelhi <- Ropenaq::locations(city="Delhi",</pre>
                                     parameter="pm25")[1:4,]
```

#### Load the CPCB historic data

```
dataCPCB <- readr::read_csv("cpcb_ambient_panel.csv")</pre>
# change this name for compatibility with Open AQ name
dataCPCB$station[dataCPCB$station=="R K Puram"] <- "RK Puram"</pre>
# filter the locations we have with OpenAQ
dataCPCB <- dplyr::filter(dataCPCB,</pre>
                            station %in% locationsDelhi$location)
# now off to translating date
# I am too lazy for finding something more elegant
dataCPCB$dt_clean <- gsub("apr", "-04-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("may", "-05-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("jun", "-06-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("jul", "-07-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("aug", "-08-", dataCPCB$dt_clean)
dataCPCB$dt_clean <- gsub("sep", "-09-", dataCPCB$dt_clean)
dataCPCB$dt_clean <- gsub("oct", "-10-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("nov", "-11-", dataCPCB$dt_clean)</pre>
dataCPCB$dt_clean <- gsub("dec", "-12-", dataCPCB$dt_clean)</pre>
dataCPCB <- dplyr::mutate(dataCPCB,</pre>
                            dateLocal=lubridate::dmy_hms(dt_clean))
# name the column differently
dataCPCB <- dplyr::mutate(dataCPCB,</pre>
                            historicValue=reading_value)
# drop useless columns
dataCPCB <- dplyr::select(dataCPCB,</pre>
                            - dt clean,
                            - date r,
                            - monitor_read,
                            - reading_value)
```

# Get Open AQ data

It is not a rapid query but it does not take months. ;-)

```
# dataOpenAQ <- NULL
# for (i in 1:length(locationsDelhi)){
    firstUpdated <- locationsDelhi[i,]$firstUpdated
#
    locationURL <- locationsDelhi[i,]$locationURL</pre>
#
    seqDays \leftarrow seq(from=lubridate::ymd(format(firstUpdated, "%Y-%m-%d")),
#
                    to=lubridate::ymd("2015-12-31"),
#
                    by="1 day")
#
    seqDays <- format(seqDays, "%Y-%m-%d")</pre>
#
    for(i in 1:(length(seqDays)-1)){
#
      dataOpenAQTemp <- try(Ropenaq::measurements(location=locationURL,</pre>
#
                                                          parameter="pm25",
#
                                                           limit=1000.
#
                                                           date_from=seqDays[i],
#
                                                           date_to=seqDays[i+1]), silent=TRUE)
#
      print(seqDays[i])
#
      if(class(dataOpenAQTemp)[1]!="try-error"){
```

```
dataOpenAQ <- rbind(dataOpenAQ,</pre>
#
#
                                   dataOpenAQTemp)
      }
#
#
   }
#
#
#
# }
# # might be useful later
# dataOpenAQ <- unique(dataOpenAQ)</pre>
# save(dataOpenAQ, file="dataOpenAQ.RData")
# write.table(dataOpenAQ, row.names=FALSE, file="dataOpenAQ.csv",
               sep=",")
load("dataOpenAQ.RData")
```

Put these data in shape.

### Comparison

This is the really interesting part I guess.

```
for (stationNow in levels(as.factor(dataOpenAQ$station))){
  print(stationNow)
  # filter only data for the station
  dataTempCPCB <- dataCPCB[dataCPCB$station==stationNow,]</pre>
  dataTempOpenAQ <- dataOpenAQ[dataOpenAQ$station==stationNow,]</pre>
  # now filter only dates with data from both sources
  minDate <- min(dataTempOpenAQ$dateLocal)</pre>
  maxDate <- max(dataCPCB$dateLocal)</pre>
  dataTempCPCB <- dplyr::filter(dataTempCPCB,</pre>
                                  dateLocal>=minDate)
  dataTempOpenAQ <- dplyr::filter(dataTempOpenAQ,</pre>
                                     dateLocal<=maxDate)</pre>
  # now combine both data sets
  dataTempCPCB <- dplyr::mutate(dataTempCPCB,</pre>
                                  sourceData="historic",
                                  value=historicValue)%>%
    dplyr::select(dateLocal,
```

## [1] "Anand Vihar"



## [1] "Mandir Marg"



## [1] "Punjabi Bagh"



## [1] "RK Puram"

