Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

October 29, 2021

Question 1.

Theorem 1. If a and b are positive integers, then $a^2(b+1) + b^2(a+1) \ge 4ab$.

Proof. Assume *a* and *b* are positive integers.

Observe that a and b are positive integers and thus greater than or equal to 1, $(a - b)^2$ is positive or equal to zero.

ab is positive because $a, b \ge 1$.

(a+b-2) is positive or equal to zero because $a, b \ge 1$.

Therefore $(a-b)^2 + ab(a+b-2)$ cannot be negative and is at least equal to 0.

Then $(a - b)^2 + ab(a + b - 2) \ge 0$ is true.

Then,

$$(a-b)^2 + ab(a+b-2) \ge 0$$

$$\implies (a-b)(a-b) + ab(a-2+b) \ge 0$$

$$\implies a^2 - 2ab + b^2 + a^2b - 2ab + b^2a \ge 0$$

$$\implies a^2b + a^2 + b^2a + b^2 - 4ab \ge 0$$

$$\implies a^2b + a^2 + b^2a + b^2 \ge 4ab$$

$$\implies a^2(b+1) + b^2(a+1) \ge 4ab$$

Thus
$$a^2(b+1) + b^2(a+1) \ge 4ab$$
 is true.