SugaRNN: Blood Glucose Predictions

Andrew Plattel, Asa Adomatis, and Tucker Mackie

Introduction

- We want to use historic blood glucose (BG) values to predict a 30 minute window of future BG values
- Using the Hall dataset from the IrinaStatsLab GitHub repository, includes BG levels every 5 minutes for 57 different individuals, along with other descriptive variables
- We explored the use of RNNs, CNNs, and Time Series methods in predicting this window
- The desired result of our research is to hopefully progress the prediction and treatment of BG levels for diabetics

		d time	gl	Age	вмі	A1C	FBG	ogtt.2hr	insulin	hs.CRP	freq_low	freq_moderate	freq_severe	glucotype	Height	Weight	Insulin_rate_dd	perc_cgm_prediabetic_range	perc_cgm_diabetic_range	SSPG
/	1636 0 69		93.0	59.0	21.7	6.7	109.0	205.0	9.0	0.3	0.147059	0.369748	0.483193	2	176.3	68.0	0.1015	0.190404	0.026211	91.0
	1636 1 69		93.0	59.0	21.7	6.7	109.0	205.0	9.0	0.3	0.147059	0.369748	0.483193	2	176.3	68.0	0.1015	0.190404	0.026211	91.0
	1636 2 69	- 03	93.0	59.0	21.7	6.7	109.0	205.0	9.0	0.3	0.147059	0.369748	0.483193	2	176.3	68.0	0.1015	0.190404	0.026211	91.0
	1636 3 69	- 03	95.0	59.0	21.7	6.7	109.0	205.0	9.0	0.3	0.147059	0.369748	0.483193	2	176.3	68.0	0.1015	0.190404	0.026211	91.0
	1636 4 69	- 03	96.0	59.0	21.7	6.7	109.0	205.0	9.0	0.3	0.147059	0.369748	0.483193	2	176.3	68.0	0.1015	0.190404	0.026211	91.0

Baseline Model

- Compare forecasting of other models to a model that doesn't predict any change
- **MAE:** 6.12 mg/dL
- **RMSE:** 10.12 mg/dL

RNN - Methods

- Data transformation:
 - Convert time to datetime format and set it as the index
 - Create a dictionary that separates the data into 57 different dataframes, 1 for each ID
 - Create a normalized dictionary where we extract the gl variable, remove NaW values, and normalize using MinMaxScaler and fit_transform
- Model Design:
 - 2 hidden LSTM layers with 50 units, ReLU activation
 - Compiled the model with the ADAM optimizer and MSE for loss
 - Model inputs: number of sequences in and number of sequences out
 - Each sequence is about a 5 minute window
- Model Implementation:
 - Created a function that takes the ID_subset, sequences in and sequences out
 - Then splits the subset 80/20 for training/testing and reshapes the data to be usable with the RNN
 - Then makes predictions for each ID, calculates RMSE for each iteration along with the combined for that model, and outputs an accuracy plot of each prediction in a 30 minute window (6 predicted points)

RNN - Results

- Ran the models (total of 228) using 4 different sequences; 70, 60, 24, 12, 6
 - Respective RMSE values: 12.82 mg/dL, 12.70 mg/dL, 12.84 mg/dL, 12.26 mg/dL, 12.87 mg/dL
 - Respective MAE values: 8.45 mg/dL, 8.32 mg/dL, 8.44 mg/dL, 8.01 mg/dL, 8.53 mg/dL
 - 12 sequences (1 hour) of training performed the best in predicting a 30 minute window
 - Interestingly ID 26 had the minimum RMSE for each of the sequences
 - Likely due to smother variance in data values and less spikes/dips

Predicted BG vs Actual BG (Colored by Forecast Horizon) t+5 140 Predicted BG 100 120 140 Actual BG

ID 26, trained on 12 sequences: RMSE of 6.43 mg/dL ID 1, trained on 12 sequences: RMSE of 18.2 mg/dL

Time Series - Methods

• Data Transformation:

- Create a sliding window design
- Taking previous five hours of data points to predict the next 6 intervals 30 minutes
- Creates supervised input-output pairs where each input predicts the next future window

Model Design:

- Persentance Model Naive Forecasting was not built for learned behaviors or adding layers similar to CNN/RNN
- Random Forest / ARIMA are not strong fits due to data constraints

Training:

- Train/Test split of 80/20 using chronological data
- With no training models, the Persentance Model outputs the final results based off the previous 60 points

Time Series - Results

• **MAE:** 6.14 mg/dL

• **RMSE:** 10.59 mg/dL

CNN Model - Methods

• Data Transformation:

- Created sequences representing 5 hours of previous glucose levels and sequences representing the next 30 minutes of blood glucose levels
- Split time series blood glucose data and static, biometric data into separate inputs into the model
- Added a column to the static data representing "volatility," amount of times BG changed more than a threshold in the span of 5 minutes
- Predict delta, change from last point in the sequence, rather than real values

Model Design:

- For time series input, 2 pairs of 1D convolution and 1D max pooling layers
- For static input, two dense layers with 64 and 128 units
- Once merged, two dense layers each with 256 units
- All layers used ReLU activation functions

• Training:

- o Optimizer ADAM
- Loss MSE

CNN Model - Results

MAE: 6.36 mg/dLRMSE: 9.87 mg/dL

• RMSE better than no change

Conclusion

Results Summarized:

Model Type	No-Change	CNN-LSTM ¹	LSTM ²	RNN	Time Series	CNN
RMSE (mg/dL)	10.17	9.81	6.45	6.43 (12.26)	10.59	9.87
MAE (mg/dL)	6.12	5.65	N/A	4.23 (8.01)	6.14	6.23

- 1) Mehrad Jaloli, MSc, and Marzia Cescon, PhD
- 2) Rabby, M.F., Tu, Y., Hossen, M.I. et al.

THANKS

Any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**