Mathematical Programming Homework 1

Michael Nelson

Problem 1

Exercise 1. Which of the following collection of vectors form a basis in \mathbb{R}^3 , span \mathbb{R}^3 , or neither? Explain why.

1.
$$a^1 = (1,2,1)^\top$$
, $a^2 = (-1,0,-1)^\top$, $a^3 = (0,0,1)^\top$

2.
$$b^1 = (1,3,2)^{\top}, b^2 = (1,0,5)^{\top}$$

3.
$$c^1 = (-1,2,3)^\top$$
, $c^2 = (0,1,0)^\top$, $c^3 = (1,2,3)^\top$, $c^4 = (-3,2,4)^\top$

Solution 1. 1. The collection of vectors $\{a^1, a^2, a^3\}$ forms a basis for \mathbb{R}^3 since it is a linearly independent set of size 3. To see that it is linearly independent, observe that the 3×3 matrix whose columns are a^1 , a^2 , and a^3 has nonzero determinant:

$$\begin{vmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \end{vmatrix} = 1 \cdot \begin{vmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix} \end{vmatrix} - (-1) \cdot \begin{vmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \end{vmatrix} + 0 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} \end{vmatrix}$$

$$= 0 + 2 + 0$$

$$= 2$$

$$\neq 0.$$

- 2. The collection of vectors $\{b^1, b^2, b^3\}$ does not span \mathbb{R}^3 (and hence cannot form a basis) since it consists of just two vectors: a spanning set of \mathbb{R}^3 must contain at least three vectors. For instance, the vector $(0,0,1)^{\top}$ does not belong to span $\{b^1, b^2\}$.
- 3. The collection $\{c^1, c^2, c^3, c^4\}$ cannot form a basis of \mathbb{R}^3 since it is not linearly independent. A linearly independent set in \mathbb{R}^3 must contain at most three vectors. On the other hand, the collection $\{c^1, c^2, c^3, c^4\}$ spans \mathbb{R}^3 . To see this, it suffices to show that the collection $\{c^1, c^2, c^3\}$ forms a basis, and showing this comes to down to showing that a certain matrix has nonzero determinant:

$$\begin{vmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 0 & 3 \end{pmatrix} \end{vmatrix} = -1 \cdot \begin{vmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \end{vmatrix} - 0 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} \end{vmatrix} + 1 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \end{vmatrix}$$
$$= -3 - 3$$
$$= -6$$
$$\neq 0.$$

Problem 2

Exercise 2. Let $a^1 = (-1,2,0)^{\top}$, $a^2 = (3,2,5)^{\top}$, $a^3 = (5/2,3,5)^{\top}$ be vectors in \mathbb{R}^3 . Are these vectors linearly independent? Do they span \mathbb{R}^3 ? Explain why.

Solution 2. We claim that $\{a^1, a^2, a^3\}$ is not linearly independent. In particular, it does not span \mathbb{R}^3 since a spanning set of \mathbb{R}^3 must contain at least three vectors which form a linearly independent set. Showing $\{a^1, a^2, a^3\}$

is linearly dependent comes down to showing that the 3×3 matrix whose columns are a^1 , a^2 , and a^3 has zero determinant:

$$\begin{vmatrix} \begin{pmatrix} -1 & 3 & 5/2 \\ 2 & 2 & 3 \\ 0 & 5 & 5 \end{vmatrix} = -1 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 3 \\ 5 & 5 \end{vmatrix} - 3 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 3 \\ 0 & 5 \end{vmatrix} + 5/2 \cdot \begin{vmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 5 \end{vmatrix} \end{vmatrix}$$
$$= 5 - 30 + 25$$
$$= 0.$$

Thus $\{a^1, a^2, a^3\}$ is linearly dependent.

Problem 3

Exercise 3. Let $a^1 = (1,0,0)^{\top}$, $a^2 = (0,1,0)^{\top}$, $a^3 = (1,5,3)^{\top}$ be vectors in \mathbb{R}^3 .

- 1. Show that these vectors form a basis for \mathbb{R}^3 .
- 2. Let a^2 be replaced by $a^4 = (0,1,1)^{\top}$. Does the new set of vectors form a basis for \mathbb{R}^3 ? Explain why.

Solution 3. We claim that $\{a^1, a^2, a^3\}$ is a basis. To see this, it suffices to show that $\{a^1, a^2, a^3\}$ is linearly independent since any linearly independent set of size 3 forms a basis in \mathbb{R}^3 . Thus showing $\{a^1, a^2, a^3\}$ forms a basis comes down to showing that the 3×3 matrix whose columns are a^1 , a^2 , and a^3 has nonzero determinant:

$$\begin{vmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 0 & 3 \end{pmatrix} \end{vmatrix} = 1 \cdot \begin{vmatrix} \begin{pmatrix} 1 & 5 \\ 0 & 3 \end{pmatrix} \end{vmatrix} - 0 \cdot \begin{vmatrix} \begin{pmatrix} 0 & 5 \\ 0 & 3 \end{pmatrix} \end{vmatrix} + 1 \cdot \begin{vmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{vmatrix}$$
$$= 3 - 0 + 0$$
$$= 3$$
$$\neq 0$$

Thus $\{a^1, a^2, a^3\}$ forms a basis.

2. Yes, by the same reason as in 1:

$$\begin{vmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 5 \\ 0 & 1 & 3 \end{pmatrix} \end{vmatrix} = 1 \cdot \begin{vmatrix} \begin{pmatrix} 1 & 5 \\ 1 & 3 \end{pmatrix} \end{vmatrix} - 0 \cdot \begin{vmatrix} \begin{pmatrix} 0 & 5 \\ 0 & 3 \end{pmatrix} \end{vmatrix} + 1 \cdot \begin{vmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \end{vmatrix}$$
$$= -2 - 0 + 0$$
$$= -2$$
$$\neq 0$$

Problem 4

Exercise 4. Find the rank of the following matrix:

$$\begin{pmatrix} 1 & 3 & -1 & 2 & 1 \\ 1 & 2 & -3 & 2 & 2 \\ 1 & 4 & 1 & 2 & -1 \\ 1 & 5 & 3 & 2 & 1 \end{pmatrix}.$$

Solution 4. We perform Gaussian elimination and reduce the matrix to row echelon form:

$$\begin{pmatrix} 1 & 3 & -1 & 2 & 1 \\ 1 & 2 & -3 & 2 & 2 \\ 1 & 4 & 1 & 2 & -1 \\ 1 & 5 & 3 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & 1 \\ 0 & -1 & -2 & 0 & 1 \\ 0 & 1 & 2 & 0 & -2 \\ 0 & 2 & 4 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 3 & -1 & 2 & 1 \\ 0 & -1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -7 & 2 & 4 \\ 0 & -1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -7 & 2 & 0 \\ 0 & -1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -7 & 2 & 0 \\ 0 & -1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & -7 & 2 & 0 \\ 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

From the reduced row echelon form, we see that the rank is 3.

Problem 5

Exercise 5. Consider the following system of linear equations:

$$-x_1 + 2x_2 + x_3 + x_4 - 2x_5 = 4$$
$$x_1 - 2x_2 + 2x_4 - x_5 = 3.$$

- 1. Find all solutions to this system.
- 2. Find all basic solutions to this system.

Solution 5. 1. We first write the equations using a matrix and reduce this matrix to row echelon form:

$$\begin{pmatrix} -1 & 2 & 1 & 1 & -2 & 4 \\ 1 & -2 & 0 & 2 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 & 2 & -1 & 3 \\ -1 & 2 & 1 & 1 & -2 & 4 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & -2 & 0 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -3 & 7 \end{pmatrix}$$

From this we obtain the following equivalent set of linear equations:

$$x_1 - 2x_2 + 2x_4 - x_5 = 3$$
$$x_3 + 3x_4 - 3x_5 = 7.$$

Here, x_2 , x_4 , and x_5 are free parameters, in particular every solution to the set of equations above has the form

$$\begin{pmatrix} 3 + 2x_2 - 2x_4 + x_5 \\ x_2 \\ 7 - 3x_4 + 3x_5 \\ x_4 \\ x_5 \end{pmatrix}$$

where $x_2, x_4, x_5 \in \mathbb{R}$.

2. We can use the row echelon form of the matrix to find all basic solutions:

$$(3,0,7,0,0)^{\top}$$

 $(-5/3,0,0,7/3,0)^{\top}$
 $(2/3,0,0,0,-7/3)^{\top}$
 $(0,-3/2,7,0,0)^{\top}$
 $(0,-23/4,0,-7/3,0)^{\top}$
 $(0,-1/3,0,0,-7/3)^{\top}$
 $(0,0,5/2,3/2,0)^{\top}$
 $(0,0,-2,0,-3)^{\top}$
 $(0,0,0,2/3,-5/3)^{\top}$

Problem 6

Exercise 6. Prove that a hyperplane in \mathbb{R}^n is a convex set.

Solution 6. Let L be a hyperplane in \mathbb{R}^n , so $L = \ker \ell$ for some linear functional $\ell \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^n, \mathbb{R})$. Let $x, y \in L$ and let $t \in (0,1)$. Then observe that

$$\ell(tx + (1 - t)y) = t\ell(x) + (1 - t)\ell(y)$$

= t \cdot 0 + (1 - t) \cdot 0
= 0 + 0
= 0.

It follows that $tx + (1 - t)y \in L$, which implies L is convex.

Note that translated hyperplanes are convex as well. Indeed, a translated hyperplane has the form L + v where L is a hyperplane and where $v \in \mathbb{R}^n$. Given x + v, $y + v \in L + v$ where $x, y \in L$, and given $t \in (0, 1)$, we have

$$t(x+v) + (1-t)(y+v) = tx + tv + (1-t)y + (1-t)v$$

= $tx + (1-t)v + tv + v - tv$
= $tx + (1-t)v + v$
 $\in L + v$.

Thus translated hyperplanes are convex too.