

CICLO IME 2 - OBJETIVO

TURMA IME-ITA

2022

MATEMÁTICA

1ª QUESTÃO Valor: 0,25

Para -1 < r < 1, seja S(r) a soma representada por:

$$12 + 12r + 12r^2 + 12r^3 + \dots$$

Seja a entre -1 e 1 tal que S(a)S(-a)=2016. Determine o valor de: S(a)+S(-a).

A() 225 **B**() 144 **C**() 330 **D**() 336 **E**() 240

2ª QUESTÃO Valor: 0,25

Uma urna contém 4 bolas verdes e 6 bolas azuis. Uma segunda urna contém 16 bolas verdes e N bolas azuis. Uma bola é retirada aleatoriamente de cada urna. Sabendo-se que a probabilidade de ambas serem da mesma cor é de 0,58, calcule o valor de N.

A() 100

B() 144 **C**() 230 **D**() 256 **E**() 81

3ª QUESTÃO Valor: 0,25

Seja m a maior solução real da equação:

$$\frac{3}{x-3} + \frac{5}{x-5} + \frac{17}{x-17} + \frac{19}{x-19} = x^2 - 11x - 4.$$

Sabendo que existem inteiros positivos a, b e c tais que $m=a+\sqrt{b+\sqrt{c}}$, calcule: a+b+c.

A() 260

B() 261

C() 262 **D**() 263 **E**() 264

4ª QUESTÃO Valor: 0,25

A raiz real da equação $8x^3-3x^2-3x-1=0$ pode ser escrita da forma $\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}$, com a, b e c inteiros positivos. Calcule a + b + c.

A() 91 **B**() 90 **C**() 97 **D**() 100 **E**() 98

5ª QUESTÃO

Valor: 0,25

Considere A, B e C ângulos agudos de um triângulo $\triangle ABC$ tais que:

$$\cos^2 A + \cos^2 B + 2\sin A \sin B \cos C = \frac{15}{8} e$$

 $\cos^2 B + \cos^2 C + 2\sin B \sin C \cos A = \frac{14}{9}.$

Sabendo que existem inteiros positivos p, q, r e s tais que:

$$\cos^2 C + \cos^2 A + 2\sin C \sin A \cos B = \frac{p - q\sqrt{r}}{s},$$

calcule: p + q + r + s.

- **A**() 265 **B**() 302 **C**() 222 **D**() 111 **E**() 150

6ª QUESTÃO Valor: 0,25

Quantos inteiros positivos de dois dígitos são divisores de: $2^{24} - 1$?

- **A**() 12
- **B**() 11
- **C**() 10 **D**() 9
- **E**() 8

7ª QUESTÃO Valor: 0,25

Para um número real x, seja [x] o maior inteiro que não supera x. Dessa forma, diga quais dos ítens são verdadeiros:

- **1.** [x+1] = [x] + 1 para todo x.
- **2.** [x + y] = [x] + [y] para todo $x \in y$.
- **3.** [xy] = [x][y] para todo $x \in y$.

Assinale a alternativa com os itens verdadeiros.

- A() Nenhum.
- **B**() **1** apenas.
- C() 1 e 2.

- D() 3 apenas.
- **E**() Todos.

Considere a sequência:

$$a_1, a_2, a_3, \ldots$$

formada por números reais positivos. Se vale a relação $a_{n+2}=a_na_{n+1}$, sendo n um natural não nulo, então a sequência:

$$a_1, a_2, a_3, \ldots$$

será uma progressão geométrica:

- **A**() para todo valor positivo de a_1 e de a_2 . **B**() se e somente se $a_1=a_2$.

- \mathbf{C} () se e somente se $a_1 = 1$.
- **D**() se e somente se $a_2 = 1$.
- **E**() se e somente se $a_1 = a_2 = 1$.

9ª QUESTÃO Valor: 0,25

Considere a figura abaixo em que os círculos inscritos no triângulo são dois a dois tangentes e possuem raio medindo 3.

Qual o perímetro do triângulo?

- **A**() $36 + 9\sqrt{2}$
- **B**() $36 + 6\sqrt{3}$
- **C**() $36 + 9\sqrt{3}$

- **D**() $18 + 18\sqrt{3}$
- **E**() 45

10^a QUESTÃO

Valor: 0,25

Para quantos valores de a as equações abaixo possuem uma solução real comum:

$$x^2 + ax + 1 = 0$$
 e

$$x^2 - x - a = 0$$
 ?

A() 0

B() 1

C() 2

D() 3

E() Infinitos.

11a QUESTÃO Valor: 0,25

Para quais valores reais e não nulos de x a expressão

$$\frac{|x-|x||}{x}$$

representa um inteiro positivo?

 \mathbf{A} () Para todo x real negativo.

 ${\bf B}$ () Para todo x real positivo.

 \mathbf{C} () Para x inteiro par.

- $\mathbf{D}(\)$ Para todo x real e não nulo.
- $\mathbf{E}(\)$ Para nenhum x real e não nulo.

12^a QUESTÃO Valor: 0,25

Calcule:

$$x = \cos 36^{\circ} - \cos 72^{\circ}.$$

- **A**() $\frac{1}{3}$ **B**() $\frac{1}{2}$ **C**() $3-\sqrt{6}$ **D**() $2\sqrt{3}-3$ **E**() $\sqrt{3}$

13ª QUESTÃO Valor: 0,25

Se x é um número real, então o sistema:

$$nx + y = 1$$

$$ny + z = 1$$

$$x + nz = 1$$

4

não possui solução se e somente se n é igual a:

- **A**() -1 **B**() 0 **C**() 1 **D**() 0 ou 1 **E**() $\frac{1}{2}$

Se θ é um ângulo agudo tal que:

$$\sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{x-1}{2x}},$$

então $\tan \theta$ é igual a:

 $\mathbf{A}(\)$ x

 $\mathbf{B}(\) \quad \frac{1}{x}$

C() $\sqrt{x^2-1}$

- **D**() $\frac{\sqrt{x-1}}{x+1}$
- **E**() $\frac{\sqrt{x^2-1}}{x}$

15^a QUESTÃO Valor: 0,25

Para n e a inteiros positivos, definimos $n_a!$ por:

$$n_a! = n(n-a)(n-2a)(n-3a)...(n-ka),$$

onde k é o maior inteiro tal que n>ka. Dessa forma, calcule o valor de: $72_8!/18_2!$.

- **A**() 4^5 **B**() 4^6 **C**() 4^8 **D**() 4^9 **E**() 4^{12}

FÍSICA

16^a QUESTÃO Valor: 0,25

Uma bola de vidro, cujo coeficiente de dilatação cúbica é β , é pesado 3 vezes: a primeira no ar, a segunda em um líquido cuja temperatura é T_1 e a terceira no mesmo líquido, mas à temperatura T_2 . O resultado das pesagens obtidos foram, respectivamente, P, P_1 e P_2 . Determine o coeficiente de dilatação cúbica do líquido. Despreze o empuxo do ar.

A()
$$\frac{P_2 + P_1 + (P + P_1) \beta (T_2 - T_1)}{(P - P_2) (T_2 - T_1)}$$

B()
$$\frac{P_2 - P_1 + (P - P_1) \beta (T_2 - T_1)}{(P - P_2) (T_2 - T_1)}$$

C()
$$\frac{P_{2}-P_{1}-\left(P-P_{1}\right)\beta\left(T_{2}-T_{1}\right)}{\left(P-P_{1}\right)\left(T_{2}-T_{1}\right)}$$

$$\mathbf{D(\)} \quad \frac{P_2 + P_1 + (P_2 + P) \,\beta \,(T_2 - T_1)}{(P - P_1) \,(T_2 - T_1)}$$

$$\mathbf{E(\)}\quad \frac{P_{2}-P_{1}+\left(P-P_{2}\right) \beta \left(T_{2}-T_{1}\right) }{\left(P-P_{2}\right) \left(T_{2}-T_{1}\right) }$$

17ª QUESTÃO Valor: 0,25

Um corpo em movimento circular, partindo do repouso, tem aceleração tangencial constante, de modo que, em um dado instante T, o ângulo entre o vetor aceleração e a direção ao longo do raio é de 30° . Determine o valor da aceleração angular desse corpo no instante T.

$$\mathbf{A}(\)\quad \frac{1}{\sqrt{T}}$$

$$\mathbf{B}(\)\quad \frac{1}{T^2}$$

A()
$$\frac{1}{\sqrt{T}}$$
 B() $\frac{1}{T^2}$ C() $\frac{\sqrt{3}}{3T^2}$ D() $\frac{\sqrt{3}}{T^2}$

$$\mathbf{D}(\) \quad \frac{\sqrt{3}}{T^2}$$

$$\mathbf{E}(\)$$
 T^2

18^a QUESTÃO Valor: 0,25

Um objeto foi lançado do solo com velocidade inicial $\vec{v}=(v_x,\ v_y)$. Sabendo que no local do lançamento a gravidade possui valor constante igual a g, o raio de curvatura da trajetória do objeto em um instante tqualquer é dado por:

A()
$$R = \frac{\left({v_x}^2 + {v_y}^2 - 2v_ygt + g^2t^2\right)^{\frac{3}{2}}}{gv_y}$$

B()
$$R = \frac{(v_x^2 + v_y^2 - 2v_xgt + g^2t^2)^{\frac{3}{2}}}{gv_x}$$

C()
$$R = \frac{\left(v_x^2 + v_y^2 - 2v_ygt + g^2t^2\right)^{\frac{3}{2}}}{2gv_x}$$

D()
$$R = \frac{\left(v_x^2 + v_y^2 - 2v_xgt + g^2t^2\right)^{\frac{3}{2}}}{gv_y}$$

E()
$$R = \frac{({v_x}^2 + {v_y}^2 - 2v_ygt + g^2t^2)^{\frac{3}{2}}}{gv_x}$$

19^a QUESTÃO Valor: 0,25

Num instante inicial, um espelho começa a girar em torno do ponto O, com velocidade angular constante. Simultaneamente, o objeto inicia um movimento circular em torno do ponto O.

Considere que o objeto não atinge o espelho no intervalo estudado. A trajetória que a imagem do objeto puntiforme percorre um(a):

- **A**() circunferência com velocidade angular ω_E .
- ${\bf B}$ ($\,$) $\,$ circunferência com velocidade angular $\omega_E-\omega.$
- \mathbf{C} () circunferência com velocidade angular $2\omega_E-\omega.$
- **D**() elipse.
- E() reta

Dados

- $\omega_E > \omega$
- ullet Velocidade angular do espelho ω_E
- ullet Velocidade angular do objeto ω

20^a QUESTÃO

Valor: 0,25

Uma experiência é montada para descobrir o calor específico sensível de um metal desconhecido em fase sólida. Para isso foi utilizado um calorímetro de equivalente em água igual a $200\ g$. Dentro do calorímetro, que se encontra a $10\,^{\circ}C$, foram colocados cubos de gelo a $^{\circ}20\,^{\circ}C$, totalizando uma massa de $100\,g$. Após algum tempo, foi introduzida no calorímetro uma amostra de 200~g de metal a $800~^{\circ}C$. Sabendo que o sistema perde 10% do calor que o metal cederia ao sistema se não houvesse dissipação e que no final do experimento a temperatura de equilíbrio é $80 \, ^{\circ}C$, podemos afirmar que o calor específico do metal vale, em $cal/g^{\circ}C$:

A() 0,11

B() 0,14 **C**() 0,24

D() 0,32

E() 0,42

Dados

- ullet Calor de fusão do gelo $L=80 \ cal/g$
- Calor específico da água $c_{\text{água}} = 1,0 \ cal/g^{\circ}C$
- Calor específico do gelo $c_{\text{gelo}} = 0.5 \ cal/g^{\circ}C$

21ª QUESTÃO Valor: 0,25

Duas partículas A e B eletricamente carregadas com carga +Q estão presas a carrinhos que percorrem duas trajetórias no plano cartesiano descritas pelas equações:

$$x_A(t) = t^2 2t + 6$$

$$y_A(t) = t - 6$$

$$x_B(t) = t^2 + t - 2$$

$$y_B(t) = 6t^2 + t$$

Sabendo que o movimento das duas partículas começa no instante t=0, determine após quanto tempo, em segundos, o vetor força elétrica entre as duas partículas é ortogonal à trajetória percorrida pela partícula A. Considere t em segundos.

A() 2/3

B() 5/7 **C**() 1

D() 7/5

E() 3/2

Os alunos bizonhos: JP, Cordeiro e Robertinho saem correndo do alojamento nessa ordem, em intervalos de tempo iguais. A JP sai primeiro, com velocidade de $15\ km/h$. O Robertinho sai por último com velocidade de $30\ km/h$. Os três chegam no local da formatura, também em intervalos de tempo iguais, só que na ordem inversa. Qual foi a velocidade do Cordeiro?

- **A**() $18 \, km/h$
- **B**() $20 \ km/h$
- **C**() $22,5 \, km/h$

- **D**() $25 \, km/h$
- **E**() $28 \, km/h$

23ª QUESTÃO Valor: 0,25

Um pêndulo elétrico conforme o visto na figura, inicialmente neutro e de massa $10\ kg$, foi calibrado para que seu período fosse exatamente $1\ s$ quando a temperatura fosse de $30^{\circ}C$ em um local onde a aceleração da gravidade vale $10\ m/s^2$. Ao se aquecer osistema até $330^{\circ}C$, verificou-se uma alteração no período do pêndulo.

Para corrigir o problema, eletrizou-se a esfera do pêndulo com uma carga de $+1~\mu C$. Assinale a alternativa que corresponde ao campo elétrico vertical a ser aplicado a fim de que o período do pêndulo volte a ser igual a 1~s. Coeficiente de dilatação do fio: $\alpha=10^{-6}~^{\circ}C^{-1}$

A() $3 \cdot 10^4 \ N/C$ para cima

 ${\bf B}$ () $10^4~N/C$ para cima

 ${\bf C}\,() \quad 2\cdot 10^4\ N/C$ para baixo

 ${f D}$ () $3\cdot 10^4 N/C$ para baixo

 ${\bf E}$ () $10^4\ N/C$ para baixo

24ª QUESTÃO Valor: 0,25

Tentando criar uma escala própria para seus novos experimentos, um físico propõe a escala T, cuja temperatura indicada em qualquer estado térmico é a média aritmética entre os valores lidos na escala Celsius e na Fahrenheit. Sobre a escala *T* proposta, é correto afirmar:

- A() Não é de fato uma escala, pois não foram definidos os pontos fixos.
- **B**() Para uma variação de $20\,^{\circ}C$ teremos uma variação de $44\,^{\circ}T$.
- C() Apresentará valores maiores do que os lidos na escala Celsius, para temperaturas maiores que $-40\,^{\circ}C$.
- **D**() O ponto do gelo da escala P é -16 $^{\circ}C$.
- **E**() O ponto do vapor na escala P é \\$146\ \^\circ T

25^a QUESTÃO Valor: 0,25

Um objeto se desloca no eixo óptico de um espelho esférico cujo raio de curvatura vale $R\,=\,40\,\,cm$ em direção ao vértice com velocidade constante igual a $36 \ cm/s$. Em determinado instante o objeto se encontra a 80~cm do vértice do espelho. Assim, a velocidade de sua imagem é, em módulo igual a

- **A**() $4 \ cm/s$ **B**() $9 \ cm/s$
 - **C**() $16 \ cm/s$ **D**() $36 \ cm/s$
- **E**() $60 \ cm/s$

26ª QUESTÃO Valor: 0,25

Um observador está parado em frente a uma estação de trem exatamente em frente ao primeiro vagão, quando o trem começa a se movimentar com aceleração constante. Sabe-se que demora 5 segundos para o primeiro vagão passar pelo observador. Sabendo que todos os vagões possuem o mesmo comprimento, quanto tempo levará para que o décimo vagão passe por ele?

- **A**() 1.07 s
- **B**() 0.98 s **C**() 0.91 s
- **D()** 0.86 s **E()** 0.81 s

27^a QUESTÃO Valor: 0,25

Um observador encontra-se na bissetriz de dois espelhos planos que formam um ângulo α entre si. Ele consegue então observar x imagens dele mesmo. Em seguida, o ângulo dobra e o número de imagens diminui em 3 unidades. O ângulo inicial formado pelos espelhos vale:

- $\mathbf{A}()$ 20°
- **B**() 30°
- C() 45°
- D() 60°
- $E() 70^{\circ}$

Valor: 0,25 28ª QUESTÃO

O aluno Marins estava sofrendo em mais uma noite fria do campo. O chão no qual se encontrava o seu saco de dormir estava a uma temperatura e $15~^{\circ}C$ e o interior de seu saco de dormir estava a $19~^{\circ}C$. Para isolar termicamente o seu saco de dormir, o aluno safo usou um tapete que continha metade da espessura do saco de dormir e 40% de sua condutividade térmica. Considerando constante o fluxo que flui do chão para o saco de dormir e a temperatura do solo, determine a nova temperatura no interior do saco de dormir.

A() $20\,^{\circ}C$ B() $21\,^{\circ}C$ C() $22\,^{\circ}C$ D() $23\,^{\circ}C$ E() $24\,^{\circ}C$

29^a QUESTÃO Valor: 0,25

Um elétron encontra-se em órbita em torno de um núcleo que contém 2 prótons no vácuo. Considerando R o raio de órbita, a velocidade angular de rotação do elétron vale ω . Em seguida, o mesmo elétron passa a orbitar um novo núcleo com apenas 1 próton, com um raio de órbita $\frac{R}{2}$, em um meio cuja permissividade relativa vale 2. Determine a nova velocidade angular ω' de órbita considerando o raio.

A() $\sqrt{2}\omega$ **B**() 2ω **C**() $2\sqrt{2}\omega$ **D**() 4ω **E**() $\frac{1}{\sqrt{2}}\omega$

30^a QUESTÃO Valor: 0,25

Dois observadores em movimento acompanham o deslocamento de uma partícula no plano. O observador 1, considerando estar no centro de seu sistema de coordenadas, verifica que a partícula descreve um movimento dado pelas equações $x_1(t) = 2t^2 + 1$ e $y_1(t) = t^2 + 4t - 3$, sendo t a variável tempo. O observador 2, considerando estar no centro de seu sistema de coordenadas, equaciona o movimento da partícula como $x_2(t) = t^4 + 2$ e $y_2(t) = 2t^2 + 4t - 4$. O observador 1 descreveria o movimento do observador 2 por uma:

Observações:

- a) os eixos x_1 e x_2 são paralelos e possuem o mesmo sentido; e
- b) os eixos y_1 e y_2 são paralelos e possuem o mesmo sentido.

A() reta

B() elipse

C() circunferência

D() parábola

E() hipérbole

QUÍMICA

Dados

Constantes

- Constante de Avogadro $N_{\rm A}=6.0\times 10^{23}\,{\rm mol}^{-1}$
- ullet Constante de Planck $h=6.6 imes 10^{-34} \, \mathrm{J \, s}$
- Velocidade da luz no vácuo $c=3\times10^8\,\mathrm{m\,s^{-1}}$

Elementos

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	CI	17	35,45
He	2	4,00	Ar	18	$39,\!95$
С	6	12,01	K	19	$39,\!10$
N	7	14,01	Ca	20	40,08
0	8	16,00	Cr	24	$52,\!00$
F	9	19,00	Fe	26	$55,\!84$
Ne	10	20,18	Cu	29	$63,\!55$
Na	11	22,99	Zn	30	$65,\!38$
Mg	12	24,31	Br	35	$79,\!90$
S	16	32,06	I	53	126,90

31ª QUESTÃO Valor: 0,25

o fluxo de fótons visíveis que chegam de uma estrela até a Terra é de $4 \times 10^3 \, \mathrm{mm}^{-2} \, \mathrm{s}^{-1}$. Desses fótons, 30% são absorvidos pela atmosfera e apenas 25% dos fótons restantes atingem a superfície da córnea dos olhos, sendo 9% absorvidos pela córnea. A área da pupila à noite é de $40\,\mathrm{mm}^2$ e o tempo de reação do olho é de $0.1\,\mathrm{s}$. Dos fótons que passam pela pupila, cerca de 43% são absorvidos no meio ocular. **Assinale** a aternativa que mais se aproxima do número de fótons que chega na retina em $0.1 \, \mathrm{s}$.

- **A**() 3400
- **B**() 4400
- **C**() 5400
- **D**() 6400
- **E**() 7400

32ª QUESTÃO Valor: 0,25

Assinale a alternativa com o número de isômeros do triclorofenol.

- **A**() 3
- **B**() 4
- C() 5 D() 6
- **E**() 7

33ª QUESTÃO Valor: 0,25

Considere os seguintes processos

$$\begin{split} \operatorname{CH_3OH}(l) + \operatorname{O_2(g)} &\longrightarrow \operatorname{CO_2(g)} + \operatorname{H_2O}(l) \quad \Delta H_1 \\ \operatorname{CH_3OH}(l) + \operatorname{O_2(g)} &\longrightarrow \operatorname{CO_2(g)} + \operatorname{H_2O}(g) \quad \Delta H_2 \\ \operatorname{CH_3OH}(g) + \operatorname{O_2(g)} &\longrightarrow \operatorname{CO_2(g)} + \operatorname{H_2O}(l) \quad \Delta H_3 \\ \operatorname{CH_3OH}(g) + \operatorname{O_2(g)} &\longrightarrow \operatorname{CO_2(g)} + \operatorname{H_2O}(g) \quad \Delta H_4 \end{split}$$

O módulo da entalpia de condensação da água é menor que o módulo da entalpia de condensação do

Assinale a alternativa com a ordenação *correta*.

- **A**() $|\Delta H_2| > |\Delta H_4| > |\Delta H_3| > |\Delta H_1|$
- **B**() $|\Delta H_4| > |\Delta H_2| > |\Delta H_3| > |\Delta H_1|$
- $\mathbf{C}(\) \ |\Delta H_{3}| > |\Delta H_{4}| > |\Delta H_{1}| > |\Delta H_{2}| \qquad \qquad \mathbf{D}(\) \ |\Delta H_{2}| > |\Delta H_{1}| > |\Delta H_{4}| > |\Delta H_{3}|$
- **E**() $|\Delta H_1| > |\Delta H_2| > |\Delta H_3| > |\Delta H_4|$

34ª QUESTÃO Valor: 0,25

Dois balões idênticos e isolados, conectados por uma válvula inicialmente fechada, um dos balões é preen- chidos com 1 atm gás nitrogênio e o outro com 1 atm de gás hélio. Em um determinado momento, a válvula que separa os gases é aberta.

Assinale a alternativa incorreta.

- A() Não há variação de energia interna e de entalpia para esse processo.
- B() A única força motriz para o processo é o aumento de entropia do sistema, de modo que, para ambos os gases, há um aumento do número de estados translacionais acessíveis.
- C() A situação de equilíbrio ocorrerá quando a pressão parcial de nitrogênio e de hélio em cada um dos balões for de $1 \, \mathrm{atm}$.
- **D**() No equilíbrio, a distribuição dos gases entre os dois balões é homogênea.
- E() Se fosse adicionada, entre os balões, uma membrana que fosse permeável apenas à passagem de hélio, haveria uma diferença de pressão de 1 atm entre os balões no equilíbrio.

35ª QUESTÃO

Valor: 0,25

Assinale a alternativa que mais se aproxima da variação de entropia do universo quando $1\,\mathrm{L}$ de água a $100\,^{\circ}\mathrm{C}$ é misturado com $1\,\mathrm{L}$ de água a $0\,^{\circ}\mathrm{C}$.

$$\mathbf{A}$$
() $100\,\mathrm{J\,K^{-1}}$

$$B()$$
 200 J K⁻¹

$$C()$$
 300 J K⁻¹

$$D()$$
 400 J K⁻¹

$$\mathbf{E}(\)\ 500\,\mathrm{J\,K^{-1}}$$

Dados

• Capacidade calorífica do H_2O $C_P(H_2O, 1) = 75.0 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

36^a QUESTÃO Valor: 0,25

Uma mistura equimolar de dióxido de enxofre e oxigênio, contendo certa quantidade de hélio, é adicionada em um cilindro equipado com um pistão que se move sem atrito. A densidade da mistura em CNTP é de $2.5 \, \text{g/L}.$

Assinale a alternativa que mais se aproxima da densidade da mistura após a reação de todo o dióxido de enxofre formando trióxido de enxofre.

A()
$$1.5\,\mathrm{g/L}$$

C()
$$2.5\,\mathrm{g/I}$$

D()
$$3.5 \, \mathrm{g/I}$$

A()
$$1.5\,\mathrm{g/L}$$
 B() $2.0\,\mathrm{g/L}$ **C**() $2.5\,\mathrm{g/L}$ **D**() $3.5\,\mathrm{g/L}$ **E**() $5.5\,\mathrm{g/L}$

37ª QUESTÃO Valor: 0,25

Assinale a alternativa incorreta.

A() A entropia do N_2O a $0\,\mathrm{K}$ é inferior à entropia do He a $10\,\mathrm{K}$.

 ${\bf B}$ () A entropia do ${\rm N2O}({\rm g})$ em CNTP é superior à entropia do ${\rm He}$ em CNTP.

C() A entropia do carbono grafite em CNTP é superior à do carbono diamante em CNTP.

D() A entropia da água líquida a 0° C é igual à do gelo a 0° C.

E() A entropia do vapor de metanol em CNTP é superior à entropia do metanol líquido em CNTP.

38ª QUESTÃO Valor: 0,25

A densidade de uma mistura gasosa de flúor e cloro é $1,77 \,\mathrm{g/L}$ a $14\,^{\circ}\mathrm{C}$ e $0,893 \,\mathrm{atm.}$ Assinale a alternativa que mais se aproxima da fração mássica de flúor na mistura.

39^a QUESTÃO Valor: 0,25

Considere as seguintes proposições.

1. O primeiro estado excitado para o átomo de oxigênio possui configuração $1s^22s^22p^33s^1$

- **2.** A configuração $1s^22s^22p^63s^23p^64s^23d^7$ pode representar o estado excitado de um átomo neutro.
- **3.** Na ausência de um campo magnético externo, os átomos de boro apresentam seis microestados de mesma energia referentes à configuração de estado fundamental. Quando submetidos a um campo magnético, entretanto, há a perda de degenerescência entre esses estados.
- **4.** A quádrula de números quânticos $(n, l, m_l, m_s) = (6, 5, -5, 1/2)$ representa um estado possível para um átomo neutro.

Assinale a alternativa que relaciona as proposições corretas.

A() **3**

B() 4

C() 3 e 4

D() 1,3 e 4

E() 2,3 e 4

40^a QUESTÃO Valor: 0,25

Azinomicina B é um produto natural, com potencial atividade antitumoral.

Azinomicina B

Considere as seguintes proposições sobre a estrutura desse composto.

- 1. Apresenta exatamente vinte e quatro átomos com hibridização sp^2 em seu estado de menor energia.
- 2. Apresenta cinco centros quirais.
- 3. Apresenta as funções orgânicas éster, éter, álcool e amida.
- **4.** Apresenta equilíbrio tautomérico deslocado para a enol devido à formação de ligações de hidrogênio intramoleculares.

Assinale a alternativa que relaciona as proposições corretas.

A() 1 e 2

B() 1 e 4

C() 2 e 4

D() 1, 2 e 4

E() 1, 2, 3 e 4