Equilíbrio e Elasticidade Ondas e Termodinâmica

Universidade Federal Rural do Semi-Árido Campus Angicos

15 de fevereiro de 2022

Fonte

Fonte deste material: Halliday, Resnick, Walker; Fundamentos de Física; Volume 2 - Mecânica; 8ª Edição, LTC

Outline

Equilíbrio

Revisão - Torque e Momento Angular

As Condições de Equilíbrio

O Centro de Gravidade

Elasticidade Tração e Compressão Cisalhamento Tensão Hidrostática

Considere os seguintes objetos:

- 1. um livro em repouso sobre uma mesa,
- 2. um disco de metal que desliza com velocidade constante em uma superfície sem atrito,
- 3. as pás de um ventilador de teto girando e
- 4. a roda de uma bicicleta que se move em uma estrada retilínea com velocidade constante.,

Para cada um desses objetos:

- 1. O momento linear \vec{P} de centro de massa é constante.
- 2. O momento angular \vec{L} em relação ao centro de massa, ou em relação a qualquer outro ponto, também é constante.

Dizemos que esses objetos estão em equilíbrio.

Os dois requisitos para o equilíbrio são, portanto,

$$\vec{P} = \text{constante}$$

$$\vec{L} = constante$$

O dominó só vai tombar se o centro de massa estiver à direita da aresta de apoio.

Torque

- O torque é uma tendência de rotação ou torção em torno de um eixo que um corpo sofre quando é submetido a uma força F.
- Se a força \vec{F} é aplicada em um ponto dado por um vetor posição \vec{r} em relação ao eixo, o módulo do torque é

$$\tau = r F_t = r \perp F = r F \operatorname{sen} \phi$$

em que F_t é a componente de \vec{F} perpendicular a \vec{r} e ϕ é o ângulo entre \vec{r} e \vec{F} .

Torque

- O torque é uma tendência de rotação ou torção em torno de um eixo que um corpo sofre quando é submetido a uma força F.
- Se a força \vec{F} é aplicada em um ponto dado por um vetor posição \vec{r} em relação ao eixo, o módulo do torque é

$$\tau = r F_t = r \perp F = r F \operatorname{sen} \phi$$

em que F_t é a componente de \vec{F} perpendicular a \vec{r} e ϕ é o ângulo entre \vec{r} e \vec{F} .

Torque

- Como vamos considerar rotações em torno de um único eixo, não usamos a notação vetorial do torque.
- Atribuímos ao torque um valor positivo ou negativo dependendo do sentido da rotação que imprimiria a um corpo em repouso.
- Se o torque faz o corpo girar no sentido anti-horário, o torque é positivo.
- Se o torque faz o corpo girar no sentido horário, o torque é negativo.

Momento Angular

Momento Angular

O momento angular \vec{l} de uma partícula de momento linear \vec{p} , massa m e velocidade linear \vec{v} é uma grandeza vetorial definida em relação a um ponto fixo por meio da equação

$$\vec{l} = \vec{r} \times \vec{p}$$

de módulo:

$$I = r m v \operatorname{sen} \phi$$

em que ϕ é o menor ângulo entre \vec{r} e \vec{p} .

O momento angular de um sistema de partículas é a soma vetorial dos momentos angulares das partículas do sistema:

$$\vec{L} = \vec{l}_1 + \vec{l}_2 + \dots + \vec{l}_n = \sum_{i=1}^n \vec{l}_i$$

$$\vec{F}_R = \frac{d\vec{P}}{dt}$$

Se o corpo está em equilíbrio para translações, ou seja, se é uma constante:

$$\vec{F}_R = 0$$

$$\vec{\tau}_R = \frac{d\vec{L}}{dt}$$

Se o corpo está em equilíbrio para rotações:

$$\vec{\tau}_R = 0$$

Assim, os requisitos para que um corpo esteja em **equilíbrio** são os seguintes:

1. A soma vetorial das forças externas que agem sobre o corpo deve ser nula.

$$\vec{F}_R = 0$$

2. A soma vetorial dos torques externos que agem sobre o corpo, medidos em relação a qualquer ponto, deve ser nula.

$$\vec{\tau}_R = 0$$

Um terceiro requisito para o equilíbrio estático:

3. O momento linear \vec{P} do corpo deve ser nulo.

(a) Este corpo está em equilíbrio estático.

Condições para o equilíbrio:

Primeira condição atendida:

Força resultante = 0, portanto o corpo em repouso não possui nenhuma tendência a começar a se mover como um todo.

Segunda condição atendida:

O torque resultante em torno do eixo = 0, portanto o corpo em repouso não tende a girar.

Eixo de rotação (perpendicular à figura)

(b) Este corpo não possui nenhuma tendência a acelerar como um todo, mas tende a começar a girar.

Primeira condição atendida:

Força resultante = 0, portanto o corpo em repouso não possui nenhuma tendência a começar a se mover como um todo.

Segunda condição NÃO atendida:

Há um torque resultante no sentido horário em torno do eixo, portanto o corpo em repouso começará a girar no sentido horário.

(c) Este corpo possui uma tendência a acelerar como um todo, mas não a começar a girar.

Primeira condição NÃO atendida:

Há uma força resultante de baixo para cima, portanto o corpo em repouso começará a se mover de baixo para cima.

Segunda condição atendida:

O torque resultante em torno do eixo = 0, portanto o corpo em repouso não tende a girar.

Exemplo

Na figura, uma viga homogênea, de comprimento L e massa m=1,8 kg, está apoiada em duas balanças. Um bloco homogêneo, de massa M=2,7 kg, está apoiado na viga, com o centro a uma distância L/4 da extremidade esquerda da viga. Quais são as leituras das balanças?

$$\vec{F}_R = 0$$

$$F_E + F_D - Mg - mg = 0 \qquad F_D = 15,44 \text{ N}$$

$$\vec{\tau}_R = 0 \qquad F_E = 28,66 \text{ N}$$

$$(0)F_E - \left(\frac{L}{4}\right) (Mg) - \left(\frac{L}{2}\right) (mg) + (L) (F_D) = 0$$

Exemplo

Um jogador segura uma bola de boliche (M=7,2 kg) na palma da mão. O braço está na vertical e o antebraço (m=1,8 kg) na horizontal. Qual é o módulo (a) da força que o bíceps exerce sobre o antebraço e (b) da força que os ossos exercem entre si na articulação do cotovelo?

Força Resultante:
$$\left(\vec{F}_R = 0\right)$$

$$T - F - mg - Mg = 0$$

Torque:
$$(\vec{\tau}_R = 0)$$

$$T=648\,\mathrm{N}$$

(0)
$$(F)+(d) (T)-(D) (mg)-(L) (Mg) = 0$$
 $F = 560 \text{ N}$
 $dT-Dmg-LMg=0$

O Centro de Gravidade

Petronas Towers, Malásia, $g \in 0.014\%$ maior na base que no topo (452 m). CG está 2 cm abaixo do CM

O Centro de Gravidade

- ► A força gravitacional que age sobre um corpo é a soma vetorial das forças gravitacionais que agem sobre todos os elementos (átomos) do corpo.
- ► Em vez de considerar todos esses elementos, podemos dizer o seguinte:

A força gravitacional \vec{F}_g age efetivamente sobre um único ponto de um corpo, o chamado **centro de gravidade** (CG) do corpo.

Elasticidade

- Quando muitos átomos se juntam para formar um sólido metálico os átomos ocupam posições de equilíbrio em uma rede cristalina tridimensional:
- Os átomos são mantidos unidos por forças interatômicas;
- Em metais, a rede é quase perfeitamente rígida;
- Outros objetos comuns são facilmente deformados;
- Nesses objetos os átomos estão ligados em cadeias moleculares longas e flexíveis.

Elasticidade

Formas de deformação de um corpo:

- 1. Tração ou compressão;
- 2. Cisalhamento;
- 3. Tensão Hidrostática.

Tração e Compressão

- ► A tensão a que o objeto está submetido é definida como F/A, em que F é o módulo da força aplicada perpendicularmente a uma área A do objeto;
- A deformação é a grandeza adimensional $\Delta L/L$;
- O módulo de elasticidade é chamado de módulo de Young e representado pelo símbolo E.

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

Corpo de prova

Curva tensão-deformação de um corpo de prova de aço

Cisalhamento

Cisalhamento

- A tensão também é uma força por unidade de área, mas o vetor força está no plano da área e não da direção perpendicular a esse plano;
- A deformação é a razão adimensional Δx/L;
- O módulo de elasticidade é chamado de módulo de cisalhamento e representado pelo símbolo G.

$$\frac{F}{A} = G \frac{\Delta x}{L}$$

Tensão Hidrostática

Tensão Hidrostática

- ► A **tensão** é a pressão *p* que o fluido exerce sobre o objeto;
- A deformação é ΔV/V, em que V é o volume original do corpo de prova e ΔV é o valor absoluto da variação de volume;
- O módulo de elasticidade é chamado de módulo de elasticidade volumétrico e representado pelo símbolo B.

$$\rho = B \frac{\Delta V}{V}$$

Elasticidade

Tensão (stress) e Deformação (strain)

• Máquina de Ensaio

Extensômetro de 9,8 mm x 4,6 mm

BEST STATE		Tabela 12-		TO STANT
Algumas Propriedades Elásticas de Materiais Escolhidos				
Material	Massa específica p (kg/m³)	Módulo de Young E (10° N/m²)	Limite de ruptura S _r (10 ⁶ N/m ²)	Limite de elasticidade S ₁ (10 ⁶ N/m ²)
Aço	7860	200	400	250
Alumínio	2710	70	110	95
Vidro	2190	65	50 ^b	
Concreto	2320	30	40 ^b	_
Madeira ^d	525	13	50 ^b	_
Osso	1900	96	170%	_
Poliestireno	1050	3	48	_

Aço estrutural (ASTM-A36). Para compressão.

De alta resistência.

Pinho.

Exemplo

Exemplo

tensão =
$$\frac{F}{A} = \frac{F}{\pi R^2} = \frac{6.2 \times 10^4 \text{ N}}{\pi (9.5 \times 10^{-3} \text{ m})^2} = 2.2 \times 10^8 \text{ N/m}^2$$

Exemplo

$$\Delta L = \frac{(F/A) L}{E} = \frac{(2, 2 \times 10^8 \text{ N/m}^2) (0, 81 \text{ m})}{2, 0 \times 10^{11} \text{ N/m}^2}$$
$$= 8, 9 \times 10^{-4} \text{ m} = 0, 89 \text{ mm}$$

Exemplo

deformação =
$$\frac{\Delta L}{L} = \frac{8,9 \times 10^{-4} \text{ m}}{0,81 \text{ m}} = 1,1 \times 10^{-3} = 0,11\%$$