Инструменти за управление на качеството

Лектор: проф. д-р Г.Дюкенджиев

Тема 10

Инструменти за управление на качеството

ФИЛОСОФИЯ И ПРИНЦИПИ ЗА УПРАВЛЕНИЕ НА КАЧЕСТВОТО

- TQM, Deming, Kaizen

QM - МЕТОДИ

Комплексни методи за анализ, планиране, контрол и оптимизация

- FMEA
- QFD
- DoE, Taguchi
- SPC

QM - СРЕДСТВА

- 7 класически средства
- 7 нови средства
- 7 креативни средства

Методи и средства за управление на качеството

Жизнен цикъл на продукта

7 КЛАСИЧЕСКИ СРЕДСТВА ЗА УПРАВЛЕНИЕ НА КАЧЕСТВОТО

Честотна карта (контролен лист)

Fehler	Häufigkeit
а	WH WH 111
b	Ш
С	µн III
Н	ин ин

Цел и задачи:

- Регистриране на данни (дефекти, грешки)
- Честота на появяване за определен период
- Нагледно представяне на данните, напр. във вид на «рабош»
- Прилага се най-често за анализ на дефекти, рекламации, натоварване на техника и персонал

Честотна карта

Fehler	Häufigkeit
а	WH WH 111
b	Ш
С	µн III
Д	UH 1H1

(+) Предимства

- Незначителни разходи
- Не изисква специално обучение
- Проста интерпретация

(-) Недостатъци

- В периода на събиране на данните не може да се определи вида на разпределението
- Не може да се анализират причините и взаимодействията
- Затруднения при голямо количество грешки

[] Ограничителни условия

- Видовете данни трябва да са дефинирани точно
- Да се предвиди вид «други»
- Събраните данни трябва да са представителни
- Персонала трябва да разбира и сътрудничи

Честотна карта - пример

Fehler	Häufigkeit
а	WT WT 111
b	Ш
С	um III
d	114 114

a: Projekt: Ausschuß				b: Ort:	Schv	veißauton	nat 1217	
c: Name: Müller, Meier				d: Datu	m: 10.	03.1998		
e: nur Ausschuß	, nicht Na	charbeit e	erfassen					
f: Fehler /			(g: Datum				i: Total
Ereignis	10.03.	11.03.	12.03.	13.03.	14.03.	15.03.	16.03.	i. iotai
1. Ansatz Naht 2							\mathbb{H}	20
2. Schweißpunkt 3a	W	П	Ш	Ш	WW W			28
n. sonstige	Ш				WI			23
h: Total	35	12	14	25	17	13	19	j: .135

Quellenangaben:

- a: Bezeichnung des Projekts
- b: Ort der Datenammlung
- c: Name der Person, die die Daten sammelt
- d: Datum: Erstellung der Fehlersammelliste
- e: andere wichtige Angaben

Inhaltliche Angaben:

- f: Spalte mit Fehler-/ Ereignisbezeichnung
- g: Spalten mit Tagen / Daten der Erfassung
- h: Summe jeder Spalte
- i: Summe jeder Reihe
- j: Gesamttotal für Spalten und Reihen

Графики / диаграми

Цел и задачи

- Графично представяне на данни
- Изобразяване на абсолютни или относительни частоти
- Изобразяване на развитие

Графики / диаграми

Предимства

- Пояснява състоянието
- Нагледност
- Облегчава анализа на данни
- разнообразни възможности за компютърна обработка

Недостатъци

• Представяне без анализ

Ограничения

- Данните трябва да са пълни
- Редактора трябва да познава обекта/процеса
- Графиката не може да се претоварва с информация

Графики / диаграми

• Примери

Цел и задачи

- Изобразяване на честоти на разпределение и разсейване
- Приблизително графично представяне на закона на разпределение
- Класификация и нагледно представяне на големи количества даннии
- Контрол на процес за голям период от време

Пример

Стойн	ост ,	x _i , n =	50
5,9 5,8 5,7 6,2 5,9 5,0 6,0 5,5 6,3 5,9 5,9 5,9	6,0 5,8 5,4 6,1 6,4 6,2 5,5 5,7 5,7 5,4 5,6 5,5 6,4 6,2	6,2 6,1 5,6 5,8 5,2 5,7 5,4 6,1 5,8 5,3 5,8	5,4 5,9 6,0 6,1 6,3 5,9 5,7 5,8

$$R = X_{max} - X_{min} = 6.6 - 5.0 = 1.6$$

Брой интервали к:

$$k = \sqrt{n} = \sqrt{50} = 7,07$$

$$H = \frac{R}{k} = \frac{1.6}{7} = 0.23$$

• Пример

Инте	р- Граници	Среда	Чест	ота		Общо
вал						
1	5,00-5,29	5,15	\prod			2
2	5,30-5,59	5,45				10
3	5,60-5,89	5,75	W	WI	WI	15
4	5,90-6,19	6,05	WI	WI		14
5	6,20-6,49	6,35	WI	111		8
6	6,50-6,79	6,65	1			1
7	6,80-7,09	6,95				0
39))	0,00-1,03	0,33				U

• Интерпретация

Парето - анализ

Цел и задачи

- Подреждане (ранжиране) по определен признак
- Разделяне на фактори (причини) на съществени и несъществени
- Откриване на основния проблем
- Графично представяне и оценка на данни
- Инструмент за измерване на подобрения

Други названия: АВС-анализ

Парето - анализ

Пример

Gründe	für	verspätete	Produktfertigstellung
--------	-----	------------	-----------------------

Bezugszeitraum:	Häufigkeit			
Januar - Juni 1999	Anzahl	%		
Aufträge zu spät weiter- gegeben	7	8		
Entwicklungszeit zu lang	2	2		
Konstruktionszeit zu lang	13	15		
zu große Liegezeiten in der Fertigung	5	6		
Engpaß an Maschine A	4	5		
Engpaß an Maschine B	17	20		
Zukaufteile zu spät geliefert	8	9		
fehlendes Rohmaterial	4	5		
zu hoher Nacharbeitsaufwand	25	30		

Причинно следствена диаграма

Цел и задачи

- Нагледно представяне на информация по анализиран проблем
- Структурен анализ на проблема
- Графично изобразяване на вербални връзки
- Ясно представяне на причинно следствени връзки

Други названия: диаграма на Ишкава (Ishikawa), диаграма «рибена кост»

Причинно следствена диаграма

Контролна карта

Цел и задачи

- Контрол, регулиране, подобрение на процеси
- Контрол на целевата стойност и допуските
- Изключване на систематични грешки
- Изобразяване на изменения във времето
- Приложение в масови (едросерийни) процеси

Други названия: SPC карта

Избор

Карти за качествени признаци

Карта	Средна линия	Контрольни граници
Относителна		OEG _p = \overline{p} 3 $\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
дефектонст	$\overline{p} = np/n$	
р	<u>'</u>	$UEG_p = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
Дефектонст		OEG _{np} = $n\overline{p}$ 3 $\sqrt{n\overline{p}(1-\overline{p})}$
np	$n\overline{p} = np/k$	UEG _{np} = $n\overline{p} - 3\sqrt{n\overline{p}(1-\overline{p})}$
Брой дефекти		OEG _c = \bar{c} 3 $\sqrt{\bar{c}}$
С	$\overline{c} = c/k$	UEG _c = c̄- 3√c̄
Относителен		$OEG_{u}=\overline{u}$ 3 $\sqrt{\frac{\overline{u}}{n}}$
брой дефекти		DEG _M = N 3 √n
u	$\overline{u} = c/n$	UEG _и = $\overline{\mu}$ - $3\sqrt{\frac{\overline{\mu}}{n}}$

Карта	Средна линия	Контролни граници
X иR	$= \underbrace{(\overline{X}_1 + \overline{X}_2 + \overline{X}_k)}_{K}$ $= \underbrace{(R_1 + R_2 + R_k)}_{k}$	$OEG_{\overline{X}} = \underline{\underline{X}} + A_2 \underline{R}$ $UEG_{\overline{X}} = X - A_2 R$ $OEG_R = D_4 \underline{R}$
Xиs	$ \begin{array}{c} k \\ = (\overline{X}_1 + \overline{X}_2 + \overline{X}_k) \\ k \\ = \frac{(S_1 + S_2 + S_k)}{k} \end{array} $	$UEG_R = D_3R$ $OEG_{\overline{X}} = \underline{\underline{X}} + A_3\overline{\underline{s}}$ $UEG_{\overline{X}} = X - A_3\overline{\underline{s}}$ $OEG_s = B_4\overline{\underline{s}}$ $UEG_s = B_3\overline{\underline{s}}$
Х́иR	$ \frac{\overline{X}}{X} = \frac{(\overline{X}_1 + \overline{X}_2 + \overline{X}_k)}{k} $ $ \overline{R} = \frac{(R_1 + R_2 + R_k)}{k} $	$OEG_{\widetilde{X}} = \underline{\widetilde{X}} + \widetilde{A}_{2}\underline{R}$ $UEG_{\widetilde{X}} = \underline{\widetilde{X}} - \widetilde{A}_{2}R$ $OEG_{R} = D_{4}\underline{R}$ $UEG_{R} = D_{3}R$
ХиR _i	$ \dot{X} = \frac{(X_1 + X_2 + X)}{k} $ $ R_i = \frac{(X_{i+1} - X_i)}{(X_{i+1} - X_i)} $ $ \ddot{R}_i = \frac{(R_1 + R_2 + R_{k-1})}{k-1} $	$OEG_{X} = \overline{X} + E_{2}\overline{R}i$ $UEG_{X} = \overline{X} - E_{2}\overline{R}i$ $OEG = D_{4}\overline{R}i$ $UEG = D_{3}\overline{R}i$

Таблица за корекционните коефициенти

	2	Χu	nd R-K	arte	Χu	X̄ und s-Karte		\widetilde{X} und R-Karte			X und R _m -Karte		
	n	A ₂	D_3	D ₄	A ₃	B_3	B ₄	\widetilde{A}_2	D_3	D_4	E ₂	D_3	D ₄
	2	1,880	0	3,267	2,659	0	3,267		0	3,267	2,659	0	3,267
	3	1,023	0	2,574	1,954	0	2,568	1,187	0	2,574	1,772	0	2,574
	4	0,729	0	2,282	1,628	0	2,266		0	2,282	1,457	0	2,282
	5	0,577	0	2,114	1,427	0	2,089	0,691	0	2,114	1,290	0	2,114
	6	0,483	0	2,004	1,287	0,030	1,970		0	2,004	1,184	0	2,004
Ī	7	0,419	0,076	1,924	1,182	0,118	1,882	0,509	0,076	1,924	1,109	0,076	1,924
	8	0,373	0,136	1,864	1,099	0,185	1,815		0,136	1,864	1,054	0,136	1,864
	9	0,337	0,184	1,816	1,032	0,239	1,761	0,412	0,184	1,816	1,010	0,184	1,816
	10	0,308	0,223	1,777	0,975	0,284	1,716		0,223	1,777	0,975	0,223	1,777

Примери за проблемни процеси

Пример: карта за средна стойност и размах

R	X	
1,01	3,76	1
1,27	4,21	2
0,48	4,29	3
1,32	4,36	4
1,52	4,13	5
1,03	3,77	6
1,15	4,17	7
1,07	4,21	8
0,70	4,22	9
2,05	4,00	10
0,95	4,30	11
0,99	4,20	12
1,06	4,32	13
1,21	4,18	14
1,33	4,02	15
0,78	3,71	16
1,21	4,08	17
1,23	4,23	18
1,08	3,98	19
1,64	4,46	20
1,20	3,96	21
0,98	3,63	22
0,91	4,48	23
1,19	4,30	24
1,03	4,29	25
1,14	4,13	

Пример: р-карта

Брак		
Год.	Месец	%
1998	Юли	40
	Август	36
	Септември	36
	Октомври	42
	Ноември	42
	Декември	40
1999	Януари	20
	Февруари	26
	Март	25
	Април	19
	Май	20
	Юни	18
	Юли	16
	Август	10
	Септември	12
	Октомври	12

Дисперсна диаграма

Цел и задачи:

- Изобразяване на зависимост между 2 променливи величини
- Проверка за връзка между 2 величини
- Подтвърждение на серии от опити
- Установяване на влияние на несъществени фактори
- Оптимизация на основните фактори на влияние

Други названия: диаграма на разсейване корелационна диаграма

Дисперсна диаграма

1. Положителна (силна) корелация

Зависима величина Ү

Примери

3. Отрицателна (силна) корелация

Независима величина Х

5. Няма корелация

2. Положителна (слаба)

4. Отрицателна (слаба) корелация

6. Комплексна корелация

7 НОВИ СРЕДСТВА ЗА УПРАВЛЕНИЕ НА КАЧЕСТВОТО

Диаграма на отношенията

Цел и задачи:

- Анализ на данни, факти, причини
- Графично представяне на вътрешни причинно следствени връзки
- Установяване на основните фактори на основата на вътрешните отношения (връзки)
- Установяване на следващите важни обекти за анализ

Други названия: диаграма на вътрешните отношения, релационна диаграма

Диаграма на отношенията

Афинитетна диаграма

Цел и задачи

- Начало на анализа на проблем
- Натрупване на сведения, идеи, данни за обекта на анализ
- Структуриране на събраната информация по групи

Като спомагателни инструменти могат да се използват:

- Мозъчна атака (Brainstorming)
- Brainwriting
- Метод 635

Афинитетна диаграма

Пример

•Типичната Афинитетна диаграма съдържа 40 - 60 идеи разделени в 5-10 групи

Матрична диаграма

Цел и задачи

- Предназначена за анализ на проблеми и планиране на дейности
- Графично представя връзки и взаимодействия между две или повече групи признаци, характеристики, фактори
- Степента на зависимост се дава с условна символна скала

Матрична диаграма

Beziehungen in Matrizen - einige Darstellungen:			
stark	+ + sehr positiv	Verantwortung	
	+ positiv	Beteiligung	
mittel	0 neutral	Durchführung	
	 negativ 	Information	
schwach	sehr negativ		

Примери

Легенда: За всяка матрица се дават символи и тяхното значение

Видове матрици: L, T, X, Y

Портфолио

Цел и задачи

- Съпоставяне на няколко обекта (продукти, процеси)
- Анализ на състоянието и възможностите за развитие
- Синтезирано представяне на големи количества данни
- Графично представяне ня данни при обсъждане и разработка

Данните за портфолиото могат да се подготвят с помощта на матрични диаграми

Други названия: корелационна диаграма

Портфолио

Пример

Сравнение на дейности и продукти

- 1. годишно процентно увеличение
- 2. относителен пазарен дял
- 3. оборот

Полетата A-D съдържат продукти с различни отличителни свойства - разтеж, пазарен дял, оборот

А - начален стадий на жизнения цикъл

- В фаза на разтеж
- С област на удовлетворение
- D фаза на спад

низко високо Относителен дял от пазара М [%]

M = Собствен пазарен дял Дял на оснвния конкурент

Системна диаграма

Цел и задачи

- Структура на дейности за постигане на цели, развитие на процеси
- Постепенно разбиване на темата на подтеми/нива
- Нарастване на подробностите, детайлите
- Графично представяне на отношения, връзки между отделните нива

Други названия: Дърво на целите

Системна диаграма

Стрелкова диаграма

Цел и задачи

- Представяне на последователност от действия
- Планиране на процеси
- Оптимизиране на времеви планове
- Нагледно изобразяване на дености последователност, начало, продължителност и край
- Показва конфликтните точки

Други названия: Мрежов план

Стрелкова диаграма

- А Определяне на целевата група
- В Връзки с други курсове и теми
- С Проучване на конкуренцията
- D Разработване на нов курс
- Е Избор на място за провеждане и условия
- F Разработване на програма и съдържание
- **G** Провеждане на обучението

i	Х	
Z	FA	FE
	SA	SE

і – номер

Х – етап

Z – времетраене

FA – ранно начало

SA - късно начало

FE – ранен край

SE – късен край

Програмна диаграма за решения

Цел и задачи

- Оптимизиране на процеси и дейности за сигурно достигане на целта
- Планиране без пропуски на важни етапи, елементи
- Представяне на алтернативни решения при възникнали проблеми
- Установяване на отговорности в проблемни случаи

Програмна диаграма за решения

METOД QFD

Quality Function Deployment – система за обединение на процесите за комуникация и планиране с цел вграждане на «гласа на потребителя» в качеството на продуктите, процесите и услугите и устояване на натиска на конкуренцията

ЦЕЛИ HA QFD

- Концепция на нов продукт
- Модификация на продукт
- Концепция на нов метод/процес (технология)
- Модификация на метод
- Избор на система (напр. за обработка на данни)
- Избор на машина
- Структура на система по качеството
- Планиране на услуги
- Избор на варианти

Метод QFD - фази

QFD – къща на качеството

Къща на качеството – основни матрици

МЕТОД FMEA – АНАЛИЗ НА РИСКА

FMEA разглежда <u>възможните</u>:

- несъответствия дефекти, грешки
- причините за тях
- и оценка на риска чрез вероятността за:

Колкото по рано се открие една грешка, толкова по-малки загуби ще донесе тя. Преминаването на грешките от проекта до клиента означава увеличаване на разходите.

Развитие и приложение на метода FMEA

60-те години – Космическата програма на NASA

70-те години – Авиационна и космическа промишленост; Ядрена енергетика

80-те години – Автомобилна промишленост и нейните доставчици

Стандарти:

- 1980 Mil-STD 1629A Процедура за оценка на дефектите, последствията от тях и анализ на критичност
- 1977 DIN 25424 Анализ на дървото на дефектите FTA
- 1980 DIN 25448 Анализ на дефектите и последствията от тях FMEA
- 1990 IEC 1025 Анализ на дървото на дефектите FTA
- 1985 ІЕС 812 Процедура за анализ на дефектите и последствията
- от тях FMEA
- 1985 Q 101 на Ford; 1986 VDA 6.1; 1994 QS 9000
- 2002 ISO/TS 16949
- 2005 ISO 22000 HACCP

FMEA - Анализ на потенциалните дефекти и последствията от тях

ЦЕЛИ

- Ранно разпознаване и локализиране на дефектите
- Намаляване/отстраняване на рисковете
- Намаляване на разходите за гаранционно обслужване
- Съкращаване на времето за развой и планиране

ЗАДАЧИ

- Ранно разпознаване на дефектите
- Открояване на критичните и слабите места
- Оценяване на рисковете, които се появяват вследствие възможни грешки
- Подобряване на проекта

ПРИЛОЖЕНИЯ

- Разработка на нови продукти
- Въвеждане на нова технология
- Оценка на сигурността и проблемните места
- Промяна на продукта
- Променени условия на приложение

УСЛОВИЯ ЗА ПРОВЕЖДАНЕ

- Работа в екип
- Последователно провеждане на метода
- Актуално състояние на информационната база

ОСНОВНИ ЕТАПИ НА FMEA

- Предварителна подготовка
- Формиране на екип. Обучение за работа в екип
- Подготовка на основните данни
- Предварителен подбор на разглежданите елементи
- Анализ на дефектите
- Оценка на дефектите. Показател на риска
- Ранжиране на проблемите
- Мерки за подобряване
- Оценка на подобреното състояние
- Проследяване

