Analyzing Stock Performances

William Ruiz, Kasper Seglem, Angelo Vacca

Introduction

- Dataset and tools
- Related work
- Proposed work
- Evaluation
- Milestones
- Questions

Dataset and Tools

- S&P 500 companies
- Recent years and big events
- Python
- Jupyter Notebooks
- GitHub

Related Work

Hudson River Trading

 Hudson river trading is a firm located in New York that specializes in algorithmic trading of stocks through rigorous analyses and attempting to predict future price movements based on live data.

J.A.R.V.I.S

 JARVIS is similar to Hudson River Trading, however the software utilized runs on top of the TradingView platform to give the user a more hands-on experience versus a company doing the trading for you.

Our approach

Utilizing current and past stock data in order to gain a better understanding of the market

Proposed Work

- Develop a way to organize and analyze historical and current stock data
 - By utilizing Python with various libraries we are able to effectively organize and analyze data in an efficient manner
- Grow our knowledge on the market
 - Through analyzing past and current data, we are able to gain an understanding into what factors into a market crash and when a market is considered a bear or bull market
- Rudimentary algorithmic trading
 - Create a basic algorithm to perform fictitious trading by utilizing various factors such as past market performance and earnings reports

Evaluation

- Work can be evaluated by observing if our algorithm successfully predicts the actual change in the market.
- Metrics for evaluation will be the accuracy or error of our predictions,
 especially when compared to that of other prediction algorithms.
- We can compare our work with other prediction models and algorithms such as J.A.R.V.I.S and Hudson River Trading
- We can compare our work with the standard trading trends in the market
- We can compare our work with random guesswork

Milestones

- Study other trading algorithms and models (Week 7)
- Collect past and current stock data (Week 10)
- Project Checkpoint Report (Week 12)
- Study and mine data for patterns, trends, outliers, etc. (Week 13)
- Create a predictive model/algorithm based off patterns and trends from mined data (Week 15)
- Final Project Report (Week 16)

Questions?