

Paul Zivich,¹ Rachael Ross,² Bonnie Shook-Sa¹

¹University of North Carolina, ²Columbia University

Acknowledgements

Supported by NIH K01-AI177102 (PNZ), R01-DA056407 (RKR), R01-AI157758 (BES).

Run Code

- github.com/pzivich/ABCs_of_M-estimation
 - Open your preferred statistical software
 - Open corresponding mean.* script
 - Run the full script

```
Closed-form: 8.0
Root-finder: 8.0
95% CI: [ 0.8, 15.2]
```

Overview

Learning M-estimation during my postdoc fundamentally changed how I think about and do epidemiology

 I approach estimation problems from a very different perspective

This has made my work easier by

- Making it easier to construct novel estimators
- Simplifying variance estimation¹
- Being better equipped to read more theoretical papers
- Giving me a tool set to prove statistical properties

¹I almost never use the bootstrap anymore!

Metrika

https://doi.org/10.1007/s00184-024-00962-4

Variance estimation for average treatment effects estimated by q-computation

Stefan Nygaard Hansen¹ • Morten Overgaard¹

Received: 3 February 2023 / Accepted: 8 March 2024 © The Author(s) 2024

Assume now that an estimator $\hat{\beta}_n(\mathbf{z})$ of $\dot{\beta}(\mathbf{z})$ exists for all \mathbf{z} . The asymptotic covariance matrix of Theorem 2 may then be estimated by the following plug-in estimator

$$\hat{\boldsymbol{\Gamma}}_{n}^{\mathbf{a}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \boldsymbol{\mu}(\hat{\boldsymbol{\beta}}_{n}; \mathbf{X}_{i}^{\mathbf{a}}) - \hat{\boldsymbol{\theta}}_{n}^{\mathbf{a}} + \left(\frac{1}{n} \sum_{j=1}^{n} \frac{\partial}{\partial \boldsymbol{\beta}} \boldsymbol{\mu}(\hat{\boldsymbol{\beta}}_{n}; \mathbf{X}_{j}^{\mathbf{a}}) \right) \hat{\boldsymbol{\beta}}_{n}(\mathbf{Z}_{i}) \right\}^{\otimes 2}$$
(8)

where $\mathbf{x}^{\otimes 2} = \mathbf{x}\mathbf{x}^T$ for a column vector \mathbf{x} .

Under some mild regularity conditions on the estimator $\hat{\beta}_n$, this plug-in estimator will be consistent for the asymptotic covariance matrix as the following result shows.

Theorem 3 Make the assumptions of Theorem 2 and assume furthermore that $\dot{\boldsymbol{\beta}}_n$ satisfies

$$\|\hat{\hat{\boldsymbol{\beta}}}_{n}(\mathbf{z}) - \dot{\boldsymbol{\beta}}(\mathbf{z})\| \le g_{n} \cdot f(\mathbf{z}) \tag{9}$$

for a sequence of random variables $g_n \stackrel{P}{\to} 0$ and a measurable function f with $E(f(\mathbf{Z})^2) < \infty$. Then $\hat{\Gamma}_n^a \stackrel{P}{\to} \Gamma^a$.

Proof See the Appendix.

As an alternative to the two-step approach of this paper, one could consider formulating the two steps as two estimating equations and use (stacked) M-estimation. The sandwich variance estimator from the stacked M-estimation approach corresponds to the variance estimator of this paper. This M-estimation approach has been implemented in the Python library delicatessen as pointed out by a reviewer.

M-estimation Use-cases

Causal inference

- Reifeis et al. (2020) 'Assessing exposure effects on gene expression' Genetic Epidemiology
- Tchetgen Tchetgen et al. (2024) 'Universal difference-in-differences for causal inference in epidemiology' Epidemiology
- Zivich et al. (2023) 'Introducing proximal causal inference for epidemiologists' American Journal of Epidemiology
- Zivich et al. (2023) 'Empirical sandwich variance estimator for iterated conditional expectation g-computation' arXiv:2306.10976

Sensitivity analysis

- Cole et al. (2023) 'Higher-order evidence' European Journal of Epidemiology
- Cole et al. (2023) 'Sensitivity analyses for means or proportions with missing outcome data' Epidemiology

Measurement error

- Boe et al. (2024) 'Practical Considerations for Sandwich Variance Estimation in 2-Stage Regression Settings' American Journal of Epidemiology
- Ross et al. (2024)'Leveraging External Validation Data: The Challenges of Transporting Measurement Error Parameters' Epidemiology

M-estimation Use-cases

Target trial emulation

 DeMonte et al. (2024) 'Assessing COVID-19 Vaccine Effectiveness in Observational Studies via Nested Trial Emulation' arXiv:2403.18115

Generalizability / transportability

- Dahabreh, et al. (2020) 'Extending inferences from a randomized trial to a new target population' Statistics in Medicine
- Dahabreh, et al. (2023) 'Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population' Statistics in Medicine
- Robertson et al (2024) 'Estimating subgroup effects in generalizability and transportability analyses' American Journal of Epidemiology

Data fusion

- Cole et al. (2023) 'Illustration of 2 fusion designs and estimators' American Journal of Epidemiology
- Shook-Sa et al. (2024) 'Fusing trial data for treatment comparisons: single versus multi-span bridging' Statistics in Medicine

Overview

Section 1: introduction

Break (15min)

Section 2: applied examples

Break (15min)

Section 3: in context

Overview

Section 1: introduction

Break (15min)

Section 2: applied examples

Break (15min)

Section 3: in context

Overview: Section 1

Review notation / definitions

M-estimator by-hand

M-estimator with computer

Some statistical properties

Notation

Review notation and mathematical operations used

- If unfamiliar with something, don't worry!
- Operations will be
 - Contextualized in following sections
 - Mainly done by the computer
- Definitions can be returned to later

Notation – Basics

 O_i : observed data for unit i

$$\bullet$$
 $O_i = (X_i, Y_i)$

$$\sum_{i=1}^{n} i = 1+2+...+n$$
: cumulative sum

$$\prod_{i=1}^{n} i = 1 \times 2 \times ... \times n$$
: cumulative product

$$\mathsf{expit}(a) = 1/(1 + \exp(-a))$$

Notation – Basics

estimand (parameter of interest)

 θ

estimator

 $\hat{\theta}$

150g unsalted butter, plus extra for greasing 150g plain chocolate, broken into pieces

150g plain flour
1/s tsp baking powder
1/s tsp bicarbonate of soda
200g light muscovado

Method

 Heat the oven to 160C/140C fan/gas 3. Grease and base line a 1 life heatproof glass pudding basin and a 450g loaf tin with baking parchment.

 Put the butter and chocolate into a saucepan and melt over a low heat, strning. When the chocolate has all melted remove from the heat.

estimate 0.5

2

 $^{^2}$ Estimand also denoted by $heta_0$ or $heta^*$

Transpose

$$\mathbf{A} = egin{bmatrix} a & b \ c & d \ e & f \end{bmatrix} \quad \mathbf{A}^T = egin{bmatrix} a & c & e \ b & d & f \end{bmatrix}$$

Dot product (matrix multiplication)

 Number of rows in first matrix must match columns in the second matrix

Dot product (matrix multiplication)

 Number of rows in first matrix must match columns in the second matrix

Inverse of 2×2 matrix

$$\mathbf{D} = \begin{bmatrix} w & x \\ y & z \end{bmatrix} \quad \mathbf{D}^{-1} = \frac{1}{w \ z - x \ y} \begin{bmatrix} z & -y \\ -x & w \end{bmatrix}$$

Only applies to matrices with same number of rows and columns

Derivatives – Basics

$$f'(x) = \frac{d}{dx}f(x)$$

Helpful to think of derivative as slope of tangent line at a point

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives - Basics

Derivatives - Generalizations

If $m{x}=(x_1,x_2,...,x_m)$ and $f(m{x})=y$, then the partial derivative is $\frac{\partial}{\partial x_1}f(m{x})$

The gradient is

$$abla f(oldsymbol{x}) = egin{bmatrix} rac{\partial}{\partial x_1} f(oldsymbol{x}) \ rac{\partial}{\partial x_2} f(oldsymbol{x}) \ dots \ rac{\partial}{\partial x_m} f(oldsymbol{x}) \end{bmatrix}$$

Derivatives – Generalizations

Derivatives – Generalizations

The Hessian is

$$\Delta H_f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2}{\partial x_1 \partial x_1} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_1 \partial x_m} f(\boldsymbol{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial x_m \partial x_1} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_m \partial x_m} f(\boldsymbol{x}) \end{bmatrix}$$

ullet Jacobian (transpose gradient, $abla^T$) of the gradient

Derivatives - Generalization

Function

$$f(x_1, x_2) = y$$

Gradient

$$\nabla f(x_1, x_2) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x_1, x_2) \\ \frac{\partial}{\partial x_2} f(x_1, x_2) \end{bmatrix}$$

Hessian

$$\Delta H_f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2}{\partial x_1 \partial x_1} f(x_1, x_2) & \frac{\partial^2}{\partial x_1 \partial x_2} f(x_1, x_2) \\ \frac{\partial^2}{\partial x_2 \partial x_1} f(x_1, x_2) & \frac{\partial^2}{\partial x_2 \partial x_2} f(x_1, x_2) \end{bmatrix}$$

Notation – M-estimation

Estimating function

$$\psi(O_i;\theta)$$

Estimating equation

$$\sum_{i=1}^{n} \psi(O_i; \theta)$$

Definition: M-estimator

An M-estimator, $\hat{\theta}$, is the solution to

Don't worry if any of the above isn't clear yet

M-estimator for the mean

Problem: Learn the Mean

Want to learn the population mean

• Estimand: $\mu = E[Y]$

Suppose we have the following observations to estimate μ

Usual method

Applying to data in example (estimate)

$$\frac{7+1+5+3+24}{5} = \frac{40}{5} = 8$$

Then you might look up a formula for the variance from a book

but let's use M-estimation instead

M-estimator steps

- 1. Determine estimating function
- 2. Find the roots of the estimating equations
- 3. Estimate variance via the sandwich

1. Determine Estimating Function

Goal: rewrite mean as a function that is equal to zero

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} \qquad \text{definition}$$

$$\hat{\mu} \quad n = \sum_{i=1}^{n} Y_{i} \qquad \text{multiply by } n$$

$$0 = \left(\sum_{i=1}^{n} Y_{i}\right) - \hat{\mu} \quad n \qquad \text{subtract } \hat{\mu}n$$

$$0 = \left(\sum_{i=1}^{n} Y_{i}\right) - \left(\sum_{i=1}^{n} \hat{\mu}\right)$$

$$0 = \sum_{i=1}^{n} (Y_{i} - \hat{\mu})$$

1. Determine Estimating Function

This formula is our M-estimator for the mean

2. Root-finding

How can we find $\hat{\mu}$?

• Ignore the closed-form solution for the time

Broadly

- \bullet Take some guesses at $\,\hat{\mu}$, denoted as $\,\hat{\mu}^*$
- Compute $\sum_{i=1}^n \psi(O_i; \; \hat{\mu}^* \;)$
- Find the guesses that are close to zero
- Generate some new guesses, $\hat{\mu}^{**}$
- ullet Repeat process until we find $\hat{\mu}$

2. Root-finding

2. Root-finding

2. Root-finding

3. Variance

Closed-form estimator³

$$\widehat{Var}(\hat{\mu}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\mu})^2$$

but let's use M-estimation instead

 $^{^3\}mbox{Note:}\ n$ is often replaced by n-1 in practice, which can lead to differences for small sample sizes

3. Sandwich Variance Estimator

3. Sandwich Variance Estimator

$$\boxed{B(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left[-\psi'(O_i, \hat{\theta}) \right]}$$
 Partial derivatives (Jacobian)

Filling matrix
$$F(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left[\psi(O_i, \hat{\theta}) \middle| \psi(O_i, \hat{\theta})^T \right]$$
 Dot product of estimating functions

Baking the Bread: By-Hand

Need the derivative of $\psi(O_i; \mu)$

$$\begin{split} \psi'(O_i;\hat{\mu}) = & \frac{\partial}{\partial \hat{\mu}} \psi(O_i;\hat{\mu}) \quad \text{definition of derivative} \\ = & \frac{\partial}{\partial \hat{\mu}} (Y_i - \hat{\mu}) \quad \text{definition of estimating function} \\ = & -1 \end{split}$$

Therefore

$$\frac{1}{n}\sum_{i=1}^n\left[-\psi'(O_i,\hat{\theta})\right] = \frac{1}{n}\sum_{i=1}^n\left[-\frac{1}{n}\right] = 1$$
 Definition of Bread

Cooking the Filling: By-Hand

Therefore

$$\frac{1}{5} \sum_{i=1}^{5} \left[(Y_i - 8)^2 \right] = 68$$

Assembling the Sandwich: By-Hand

Wald-type confidence intervals

$$\hat{\mu} \pm z_{\alpha} \sqrt{\frac{V(\hat{\mu})}{n}} = 8 \pm 1.96 \sqrt{\frac{68}{5}} = (0.8, 15.2)$$

Computation for M-estimators

Computation for M-estimators

Solved for M-estimator of mean by-hand

By-hand is not needed

Consider how M-estimators can be implemented algorithmically

- Root-finding
- Approximation of derivatives
- Matrix algebra

Follow along in mean.R, mean.sas, or mean.py

Start of code inputs data and sets up estimating equations

Root-Finding – Algorithms

Performed a by-hand search for $\hat{\mu}$

• Similar to the bisection method

Variety of multidimensional root-finding algorithms exist

- Secant method (quasi-Newton)
- Levenberg-Marquardt
- Powell hybrid method

Root-Finding – Code

Under Root-finding see implementation

- SAS nlplm
- R rootSolve::multiroot
- Python scipy.optimize.root

Derivatives – Back to the Definition

Derivatives – Intuition

Derivatives – Numerical Approximation

Central Difference Method⁴

Here a is a small value (e.g., 1×10^{-9})

⁴Automatic differentiation, which computes the derivatives exactly via the chain rule, could be used instead

Baking the Bread - Code

Under **Baking** the bread see implementation

- SAS nlpfdd
- R numDeriv::jacobian
- Python scipy.optimize.approx_fprime

Cooking the Filling – Code

Under Cooking the filling see implementation

- Transpose
 - SAS ,
 - R base::t
 - Python numpy.transpose
- Dot product
 - SAS *
 - R %*%
 - Python numpy.dot

Assembling the Sandwich – Code

Under Assembling the sandwich see implementation

- Inverse
 - SAS inv
 - R base::solve
 - Python numpy.linalg.inv

Implications

To implement an M-estimator, we only need to provide

- Valid estimating functions
- Data

Everything else can be done by the computer

- Potential to simplify complex analyses
- Open-source libraries
 - R: geex⁵
 - Python: delicatessen⁶

⁵Saul & Hudgens (2020) *Journal of Statistical Software*

⁶Zivich et al. (2022) arXiv:2203.11300

Extensions

But Why M-estimation?

So far, all we've done is calculate the mean in a complicated way

So why bother with M-estimation?

- Flexibility of the framework
 - Extensions of these basics
 - Simplified proofs for properties of estimators

How M-estimators are extended

As will be seen in applied examples

- 1. Stacking estimating functions
- 2. Automation of delta method

Stacking estimating functions

Often want to estimate more than 1 parameter

- Regression models
- Effect measure modification
- Inverse probability weighting requires estimating propensity scores

Stacking Estimating Functions

M-estimators extend by stacking estimating functions

$$\sum_{i=1}^{n} \begin{bmatrix} \psi_{\theta_1}(O_i; \hat{\theta}) \\ \psi_{\theta_2}(O_i; \hat{\theta}) \\ \vdots \\ \psi_{\theta_k}(O_i; \hat{\theta}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{0}$$

- Easy to stack estimating functions together
- Unlike maximizing a likelihood
 - Likelihood has a single value for individual contribution
 - More difficult to combine likelihood functions

Stacking Estimating Functions

Example

$$\sum_{i=1}^{n} \begin{bmatrix} \psi_{\theta_1}(O_i; \theta) \\ \psi_{\theta_2}(O_i; \theta) \end{bmatrix} = \sum_{i=1}^{n} \begin{bmatrix} Y_i - \theta_1 \\ (Y_i - \theta_1)^2 - \theta_2 \end{bmatrix} = \mathbf{0}$$

- Stacking important when parameter depends on other parameters
- Concept explored further in applications

Delta Method

Theorem: smooth function of an asymptotically normal estimator is also asymptotically normal⁷

Application:

⁷Boos & Stefanski Essential Statistical Inference pg. 237-240

Delta Method

Many variance formulas you know are Delta method results

- Var(RD), $Var(\log(RR))$, $Var(\log(OR))$
- Formulas follow from Delta method argument
- Don't need to manually solve due to known formulas
 - Not always the case

Delta Method with M-estimation

The estimating function for the transformed parameter, θ_t is

$$\psi_{g(\theta)}(O_i; \theta, \theta_t) = g(\theta) - \theta_t$$

Estimating function does not depend on data

Therefore, the stacked estimating equations are

$$\sum_{i=1}^{n} \begin{bmatrix} \psi^*(O_i; \theta) \\ \psi_{g(\theta)}(O_i; \theta, \theta_t) \end{bmatrix} = 0$$

Delta Method with M-estimation

Following some derivatives and matrix algebra

$$V(\theta, \theta_t) = \begin{bmatrix} V^*(\theta) & g'(\theta)V^*(\theta) \\ V^*(\theta)g'(\theta)^T & g'(\theta)V^*(\theta)g'(\theta) \end{bmatrix}$$

where

• which is the same result from the delta method!

M-estimators automate the Delta method

Robust Variance

To close this section, let's discuss the robust variance

- The sandwich variance is also known as the 'robust' variance
- 'Robust' designates that the variance estimator is not sensitive to violations of certain assumptions⁸
 - Variance estimator is consistent when parametric model is wrong
 - However this has some difficulties
- Relates back to Maximum Likelihood Estimation
 - The variance can be estimated two ways

⁸See Mansournia et al. (2021) *International Journal of Epidemiology* for further details

Robust Variance

Variance estimators

- 1 Inverse Hessian of the log-likelihood
 - Equivalent to $B(\theta)^{-1}$
- 2 Residuals of the score function
 - Equivalent to $F(\theta)^{-1}$
- When the model is correctly specified
 - These variance estimators asymptotically equivalent
 - $B(\theta) = F(\theta)$

Robust Variance

When the model is not correctly specified

- $B(\theta) \neq F(\theta)$
- By combining, sandwich is robust to assumptions
 - Variance estimator is consistent even if model is wrong
- Example: log-Poisson model to estimate the risk ratio
 - Here, estimated variance is too large

Warning⁹

• Does not correct for bias in parameter estimates

⁹See Freedman DA Am Stat 2006 for details

Overview

Section 1: introduction

Break (15min)

Section 2: applied examples

Break (15min)

Section 3: in context