[thm]Note

Direct Fidelity Estimation

Ahmed Aman

August 2025

What is DFE and Why?

- DFE is a new technique to estimate if an arbitrary pure quantum state is close to a desired ideal state.
- It's crucial for verifying the quality of state preparation in quantum computation.
- This estimation uses a few "constant" numbers of Pauli measurements, selected randomly based on an importance-weighted rule.
- DFE is faster and requires fewer resources than traditional Quantum State Tomography (QST).
- It allows for the validation of a quantum state's closeness to a desired state without needing to reconstruct the full state itself.
- It can be applied to a wider range of states than the Entanglement Witness method.

Setting of the Protocol

• Hilbert Space \mathcal{H} with $dim(\mathcal{H}) = d = 2^n$.

Assumptions

- **1** The ideal state ρ is pure.
- We can measure n-qubit Pauli observables, which are tensor products of single-qubit Pauli operations.
- **3** There are no assumptions of additional structure or symmetry on ρ .

Fidelity Estimation

The fidelity between the ideal state ρ and the actual state σ is given by:

$$F(\rho, \sigma) = \text{tr}([(\rho^{1/2}\sigma\rho^{1/2})^{1/2}]) = \text{tr}(\rho\sigma)$$
 (1)

This can be expressed in terms of Pauli expectation values.

- Let W_k $(k = 1, ..., d^2)$ be all possible Pauli operators.
- We define the characteristic function:

$$\mathcal{X}_{\rho}(k) = \operatorname{tr}(\rho W_k / d^{1/2}) \tag{2}$$

• The fidelity can then be written as:

$$F(\rho,\sigma) = \sum_{k} \mathcal{X}_{\rho}(k) \mathcal{X}_{\sigma}(k) \tag{3}$$

Estimation is performed by randomly selecting Pauli operators according to an importance-weighted rule, with the probability of selecting W_k given by:

$$p(k) = (\mathcal{X}_{\rho}(k))^2 \tag{4}$$

4 / 20

Ahmed Aman Direct Fidelity Estimation August 2025

DFE Protocol Summarized

- 1) Generate ℓ independent and identically distributed random samples $k_1, ..., k_\ell$ from the importance sampling distribution $p(k_i)$, where $\ell = \lceil 1/(\epsilon^2 \delta) \rceil$.
- 2) For each k_i , measure the observable W_{k_i} a total of m_i times, where m_i is defined as:

$$m_i = \left\lceil rac{2}{(\mathcal{X}_{
ho}(k_i))^2 d\ell \epsilon^2} \ln rac{2}{\delta}
ight
ceil$$

3) For each measurement i, use the outcomes $A_{ij} \in \{-1,1\}$ to calculate the estimator \tilde{X}_i :

$$\tilde{X}_i = \frac{1}{m_i \sqrt{d} \mathcal{X}_{\rho}(k_i)} \sum_{j=1}^{m_i} A_{ij}$$

DFE Protocol Summarized

4) Calculate the final fidelity estimate \tilde{Y} :

$$ilde{Y} = rac{1}{\ell} \sum_{i=1}^{\ell} ilde{X}_i$$

5) Return \tilde{Y} as the fidelity estimator. This provides an unbiased estimate of $F(\rho, \sigma)$ with an accuracy of 2ϵ and a confidence level of $1-2\delta$.

Calculation of Required Sample Counts

This section details the derivation for the number of measurement settings, ℓ , and the number of measurements per setting, m_i .

- The calculations rely on two fundamental concentration inequalities: Chebyshev's inequality for ℓ and Hoeffding's inequality for m_i .
- The total number of copies of the state σ required is $m = \sum_{i=1}^{\ell} m_i$.
- While this depends on the random choices of k_i , we can bound its expectation value.

The expected number of total copies can be shown to be:

$$(m) \le 1 + \frac{2d}{\epsilon^2 \delta} + \frac{2d}{\epsilon^2} \log(2/\delta) \tag{5}$$

Ahmed Aman Direct Fidelity Estimation August 2025

Numerics

- The goal was to recreate the graph from the DFE paper.
- Parameters used: $\epsilon = 0.05$ and $\delta = 0.05$, which results in $\ell = 8000$.
- The number of qubits *n* is 4.

States Investigated

- Haar Random States
- W States
- GHZ States

Errors Applied (10%)

- Depolarizing Noise
- Phase Damping Noise
- Amplitude Damping Noise
- General Amplitude Damping

Fidelity Estimates Distribution Comparison Noise Type: Depolarizing 10% state=Haar, n=4 qubits \$\xi\text{e}=0.05, \xi\text{b}=0.05\$ True Fidelity: 0.90626

True Fidelity: 0.90626 Absolute Mean Difference between Original and Monte Carlo: 0.000109

Residuals Distribution Comparison Noise Type: Depolarizing 10% state=Haar, n=4 qubits $\epsilon=0.05$, $\delta=0.05$ Absolute Mean Difference: 0.000015

Fidelity Estimates Distribution Comparison Noise Type: Amplitude 10% state=Haar, n=4 qubits ε=0.05, δ=0.05

True Fidelity: 0.90626 Absolute Mean Difference between Original and Monte Carlo: 0.000082

Fidelity Estimates Distribution Comparison Noise Type: Phase 10% state=Haar, n=4 qubits ε=0.05, δ=0.05

True Fidelity: 0.82511 Absolute Mean Difference between Original and Monte Carlo: 0.000814

Analysis of Residuals (Y - F) vs. Noise Strength (γ) [State: W, Noise: Depolarizing] No. of Trials per $\gamma=1000$ No. of Qubits = 4

Analysis of Residuals (Y - F) vs. Noise Strength (γ) [State: Haar, Noise: Depolarizing] No. of Trials per $\gamma=1000$ No. of Qubits = 4

Analysis of Residuals (Y - F) vs. Noise Strength (γ) [State: Haar, Noise: Depolarizing] No. of Trials per $\gamma=1000$ No. of Qubits = 4

Other Plots and Code

• Click here to check out the other plots, as well as the code for the simulation.