Algoritma Analizi

Ders 5: Böl ve Yönet Yaklaşımı Doç. Dr. Mehmet Dinçer Erbaş Bolu Abant İzzet Baysal Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

- Değiştirme metodu kullanırken ilk başta doğru olması olası bir tahmin bulmamız gerekiyor.
- Bu tahmini yapmak bazı durumlarda zor olabilir.
- Bu durum söz konusu olduğunda yenileme ağacı oluşturarak tahmini yapabiliriz.
 - Birleştirmeli Sıralama algoritmasını analiz ederken bu yöntemi kullanmıştık.
- Öncelikle her seviyede ne kadar zaman harcanacağı hesaplanır.
- Daha sonra ise kaç tane seviye olacağı bulunur.
- Her seviyede harcanan zamanlar toplam formülleri kullanılarak toplanır ve sonuç elde edilir.

- Örnek: $T(n)=3T(\lfloor n/4 \rfloor)+\theta(n^2)$
 - Öncelikle taban fonksiyonunu görmezden gelerek $T(n) = 3T(n/4) + cn^2$ için yenileme ağacı çizeceğiz.
 - Geri kalan kısım tahtada anlatılacak.

Master metodu

- Master metot, T(n)=aT(n/b)+f(n), $a \ge 1$ ve b > 1 ve f(n) asismtotik olarak pozitif şeklinde yazılan yinelemeli fonksiyonlar için çözüm oluşturmak için kullanılır.
- Bu metodun kullanılabilmesi için üç farklı durum incelenir ve uygun durum bulunursa çözüm kolaylıkla bulunur.
- Yukarıdaki formüle göre problem a farklı parçaya ayrılıyor ve bu parçaların her biri n/b büyüklükte.
- Parçalama işlemi ve bu parçaların birleştirilmesi işlemi f(n) kadar zaman alıyor.
- Master metodu, parçaların büyüklüğe bağlı çözülme süresi ile parçaları oluşturma ve birleştirme sürelerini karşılaştırır.

Master metodu

- Yenileme ağacı düşünüldüğünde üç farklı durum söz konusudur:
 - Çalışma süresi ağırlıklı olarak yapraklar tarafından belirlenir.
 - Çalışma süresi ağacın tamamına düzgün şekilde dağılmıştır.
 - Çalışma süresi ağırlıklı olarak kök tarafından belirlenir.
- Her durum için f(n) ile $O(n^{\log_{b^a}})$ karşılaştırılır.
 - $f(n) = O(n^{\log_b a \epsilon})$, herhangibir ε>0 sabiti için. Bu durumda $T(n) = O(n^{\log_b a})$ olur.
 - $f(n) = \Theta(n^{\log_b a})$. Bu durumda $T(n) = \Theta(n^{\log_b a} \lg n)$ olur.
 - $f(n) = Ω(n^{\log_b a + ε})$, herhangi bir ε>0 sabiti için ve eğer αf(n/b) ≤ cf(n) ise, herhangi bir c < 1 sabiti ve yeteri kadar büyük her n için. Bu durumda T(n) = Θ(f(n)) olur.

Master metodu

- Örnek: T(n) = 9T(n/3) + n
 - Bu durumda a = 9, b = 3, f(n) = n. $n^{\log_{b^2}} = n^{\log_{3^9}} = \Theta(n^2)$
 - f(n) = O(n^{log₃9-ε}), ε≤1 olduğunda, önceki slaytta bahsettiğimiz 1. duruma uygundur.
 - Bu sebeple $T(n) = \Theta(n^2)$.
- Diğer örnekler tahtada gösterilecek.