GBI-Tutorium 2

Richard Feistenauer

7. November. 2014

Inhaltsverzeichnis

- Wiederholung
 - Übungsblatt
- Übersetzung
 - Zahlendarstellung
 - Zweierkomplement
 - Homomorphismen
 - Huffman-Code
- Übungen
 - Übung 1
 - Übung 2
 - Übung 3

Letztes Übungsblatt

Probleme

- $1.1 \ \forall \ x \in \{\}$
- 1.3 0 teilt die 0
- 1.5 aus => folgt nicht <=>

Zahlendarstellung

Definition

Definiere $num_{10}(x)$.

Zahlendarstellung

Definition

Definiere $num_{10}(x)$.

Sei $Z_{10}=\{0,\,1,\,...,\,9\}$, so definieren wir die Dezimaldarstellung von Zahlen so:

$$\begin{array}{l} \mathsf{Num}_{10}(\epsilon) = 0 \\ \forall w \in \mathsf{Z}_{10}^* \ \forall x \in \mathsf{Z}_{10} \text{: } \mathsf{Num}_{\ 10}(\mathsf{wx}) = 10 \, \cdot \, \mathsf{Num}_{10}(\mathsf{w}) + \, \mathsf{num}_{10}(\mathsf{x}) \end{array}$$

Beispiele

Man kann nun nicht nur Zahle des im Zahlensystem der Basis 10 berechnen, sondern auch Zahler einer beliebigen Basis k.

Beispielaufgaben

• $Num_2(101) =$

Beispiele

Man kann nun nicht nur Zahle des im Zahlensystem der Basis 10 berechnen, sondern auch Zahler einer beliebigen Basis k.

Beispielaufgaben

- $Num_2(101) = 5$
- $Num_5(431) =$

Beispiele

Man kann nun nicht nur Zahle des im Zahlensystem der Basis 10 berechnen, sondern auch Zahler einer beliebigen Basis k.

Beispielaufgaben

- $Num_2(101) = 5$
- $Num_5(431) = 116$
- $Num_8(12) =$

Beispiele

Man kann nun nicht nur Zahle des im Zahlensystem der Basis 10 berechnen, sondern auch Zahler einer beliebigen Basis k.

Beispielaufgaben

- $Num_2(101) = 5$
- $Num_5(431) = 116$
- $Num_8(12) = 10$

Zweierkomplement

Negative Zahlen

Negative Zahlen Binär darstellen ohne weiteres Zeichen? die Negation einer Positiven Zahl ist eine Negative Zahl

- ...
- \bullet 001 = 1
- 000 = 0
- 111 = -1
- 110 = -2
- ...

Zweierkomplement

Negative Zahlen

In GBI ist \mathbb{K}_I die Darstellung für Zweierkomplement $\mathbb{K}_5 = \{-16, -15, ..., -1, 0, 1, ..., 14, 15\}$

Übersetzungen

Übersetzungen

Wozu braucht man überhaupt Übersetzungen?

Zahlendarstellung Zweierkomplemen Homomorphismen Huffman-Code

Übersetzungen

Übersetzungen

Wozu braucht man überhaupt Übersetzungen?

- Lesbarkeit
- Kompression
- Verschlüsselung
- Fehlererkennung und Fehlerkorrektur

Homomorphismen

Präfixe

Homomorphismus: Seien A und B zwei Alphabete.

 $h: A \rightarrow B$ ist ein Homomorphismus, wenn gilt:

$$h(\epsilon) = \epsilon$$

$$\forall w \in A^* : \forall x \in A : h(wx) = h(w)h(x)$$

Homomorphismen

Präfixe

Homomorphismus: Seien A und B zwei Alphabete.

 $h: A \rightarrow B$ ist ein Homomorphismus, wenn gilt:

$$h(\epsilon) = \epsilon$$

$$\forall w \in A^* : \forall x \in A : h(wx) = h(w)h(x)$$

Präfixfreier Code: für keine zwei verschiedenen Symbole x_1 , $x_2 \in A$ gilt: $h(x_1)$ ist ein Präfix von $h(x_2)$.

Homomorphismen

Präfixe

Homomorphismus: Seien A und B zwei Alphabete.

 $h: A \rightarrow B$ ist ein Homomorphismus, wenn gilt:

$$h(\epsilon) = \epsilon$$
$$\forall w \in A^* : \forall x \in A : h(wx) = h(w)h(x)$$

Präfixfreier Code: für keine zwei verschiedenen Symbole x_1 , $x_2 \in A$ gilt: $h(x_1)$ ist ein Präfix von $h(x_2)$.

 ϵ -freier Homomorphismus

Huffman-Code

Huffman

Der Huffman-Code ist ein Code, der unter allen präfixfreien Codes zu den kürzesten Codierungen führt.

Wichtig ist dafür, dass wir die Anzahl gewisser Symbole unseres zu codierenden Textes kennen.

Huffman-Code

Huffman

Der Huffman-Code ist ein Code, der unter allen präfixfreien Codes zu den kürzesten Codierungen führt.

Wichtig ist dafür, dass wir die Anzahl gewisser Symbole unseres zu codierenden Textes kennen.

- Für jedes zu kodierende Symbol erstellen wir einen Knoten, das das Symbol und seine Anzahl beinhaltet.
- Nun nehmen wir immer die zwei Knoten mit der kleinsten Anzahl, zählen die Anzahlen zusammen und erstellen einen Baum mit dem neu erstellten Knoten als Wurzel
- Wir beschriften alle Kanten, die nach rechts gehen mit 1 und alle nach links mit 0.

Beispielaufgaben

Wir haben acht Symbole a, b, c, d, e, f, g, h

 Jedes Zeichen kommt einfach vor. Wie sieht der Huffman-Code aus?
Wie lang ist die Codierung von edcbahfg?

Beispielaufgaben

Wir haben acht Symbole a, b, c, d, e, f, g, h

- Jedes Zeichen kommt einfach vor. Wie sieht der Huffman-Code aus?
 Wie lang ist die Codierung von edcbahfg?
- a kommt einmal vor, b zweimal, c 4-mal, d 8-mal, e 16-mal, f 32-mal, g 64-mal, h 128-mal. Erstelle einen Huffman Baum.

Block-Codierung

Block-Codierung

Wie würdet ihr den Huffman-Code für das folgende Wort definieren:

aaaaaabbbbbbccccccddddddaaadddddd

Block-Codierung

Block-Codierung

Wie würdet ihr den Huffman-Code für das folgende Wort definieren:

aaaaaabbbbbbbccccccddddddaaadddddd

Man kann natürlich nicht nur einzelne Symbole codieren, sondern auch Symbolblöcke.

Tafel

Fragen?

Unnützes Wissen

Jack Nicholson fand erst mit 37 Jahren heraus, dass seine Schwester in Wahrheit seine Mutter ist.