Unsupervised Seismic Anomaly Detection

Srija Chakraborty Maxfield Thompson

Mentors: James Theiler, Diane Oyen 08/10/2017

Outline

- Motivation
- Dataset
- Unsupervised Approach
- Approaches
 - Short Term Average-Long Term Average (STA-LTA)
 - Spectrogram as Feature
 - Mahalanobis Distance
 - Autoencoder
- Results
- Future Work

Motivation

• Anomalies: Data samples that are unlike the rest of the data

- Final Objective In a large seismic dataset, identify events that are interesting to seismologists.
- Intermediate Objective Find events that are unusual (includes both interesting and uninteresting events).

Dataset

- Seismic data from a single station
- Three channels
- Labeled events (earthquakes, mine blasts)
- Has events that are not labeled

Top – Signal from all sensors Bottom – Labeled Events

Unsupervised Learning

- Arrival time of primary (P) and secondary (S) waves
 - regional Geology
 - distance of event from sensor
- Incomplete labels

Generic model independent of local properties

Short Term Average/Long Term Average

• Short Term Average/Long Term Average, STA/LTA(t)

Spectrogram as Feature

Magnitude Square of Short Term Fourier Transform (STFT)

$$\mathbf{STFT}\{x(t)\}(au,\omega)\equiv X(au,\omega)=\int_{-\infty}^{\infty}x(t)w(t- au)e^{-j\omega t}\,dt$$

$$\operatorname{spectrogram}\{x(t)\}(au,\omega)\equiv \left|X(au,\omega)\right|^2$$

Represents raw signal as a time varying power spectrum

Time [samples]

Spectrogram

Mahalanobis Distance

Mahalanobis distance d_t , to spectrogram mean

$$d_t = \sqrt{(\mathbf{s}_t - \overline{\mathbf{s}})^T R^{-1} (\mathbf{s}_t - \overline{\mathbf{s}})},$$

where s_t spectrogram vector at t,

R is the covariance matrix, \bar{s} mean of the spectrogram

Over a day

Spectrogram over a day

Autoencoder

Autoencoder Approach

Unsupervised Learning Approach:

Autoencoder: Learn a compressed spectrogram representation of the background class

Input Feature: Three spectrogram vectors

Assumption: High reconstruction error implies anomalies

Expectation: Labeled and unlabeled events lie in top k% of reconstruction error

Hyper-parameter Selection

• In order to create the best autoencoder, a series of experiments were created to select the optimal parameters. These experiments systematically ran through hundreds of autoencoders and examined their reconstruction errors on a series of days to see which set of parameters best caught the labeled anomalies.

Reconstruction Error – Day 6

Time [3.2 sec window]

Spectrograms

Spectrograms In-depth

Channel Selection Experiments

- P wave [4 to 12 Hz] and S wave [1 to 4 Hz]
- Autoencoder on 4-12 Hz
- Significantly lowered the overall accuracy of the autoencoder.

There is important information that characterizes an earthquake in frequency bands not classically associated with the p and s waves.

Threshold Selection

Various thresholds were selected as methods to filter the reconstruction error. The most
effective threshold tested was a raw percentile distribution cut. For all anomaly detection
methods tested, we chose to examine the top 1 percent of reconstruction error values.

Reconstruction Error – Before Threshold

Reconstruction Error – After Threshold

Results

Comparison with other anomaly detectors:

- Mahalanobis distance to mean of the spectrogram
- Metric: percentage of labeled events detected

Approach	True Events Detected [threshold = top 1% of reconstruction error]
Autoencoder	86.45%
Mahalanobis Distance	65.45%

Time (samples)

Future Work

- Other anomaly detectors
- Modeling trend on multiple days
- Optimum training data size diurnal and short term patterns
- Geographic Associations multiple sensors