COM 525000 Statistical Learning Homework #3

(Due December 30, 2019 before noon to the TA at EECS 613.)

Note: Detailed derivations are required to obtain a full score for each problem. (Total 100%)

1. (8%) Recall from Chapter 5 that the LOOCV MSE can be written as

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{1 - \mathbf{S}_{ii}} \right)^2$$

where $\mathbf{S} \triangleq \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$. By the approximation $\mathbf{S}_{ii} \approx \frac{1}{n}\mathrm{tr}(\mathbf{S})$ and by the fact that $1/(1-x)^2 \approx 1+2x$, for x that is small, show the similarity between the above cross-validation error and C_p statistic.

- 2. (10%+6%+8%) Suppose that the input and output variables of the n training data points can be expressed as $\mathbf{X} = (x_1, \dots, x_n)^T$ and $\mathbf{y} = (y_1, \dots, y_n)^T$, respectively. In ridge regression, the intercept β_0 and the coefficient vector $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T$ are chosen such that $\|\mathbf{y} \mathbf{X}\boldsymbol{\beta} \mathbf{1}\beta_0\|^2 + \lambda \|\boldsymbol{\beta}\|^2$ is minimized for some $\lambda \geq 0$, where $\mathbf{1}$ is an n-dimensional all-one vector.
 - (a) Show that the resulting coefficient estimate is given by

$$\hat{\beta}_{\lambda} = (\mathbf{X}_{c}^{T} \mathbf{X}_{c} + \lambda \mathbf{I})^{-1} \mathbf{X}_{c}^{T} \mathbf{y}_{c},$$

where $(\mathbf{X}_c, \mathbf{y}_c)$ is the centered data set.

- (b) Show that $\|\beta_{\lambda}\|_{\lambda>0} \leq \|\beta_{\lambda}\|_{\lambda=0}$
- (c) Show that the training error is

$$\overline{\text{err}} = \frac{1}{c} \mathbf{y}_c \left[\mathbf{I} - \mathbf{X}_c (\mathbf{X}_c^T \mathbf{X}_c + \lambda \mathbf{I})^{-1} \mathbf{X}_c^T \right]^2 \mathbf{y}_c$$

and that it is an increasing function of λ .

3. (10%+12%) Let us consider the data set

$$\mathcal{D} = \{(x_{i1}, x_{i2}, y_i)\}_{i=1}^n = \{(-2, 1, 1), (1, -3, -1), (1, 2, 0)\}.$$

- (a) By performing subset selection, find the best linear regression model using C_p statistic for comparison among different model sizes.
- (b) Find the solution for lasso with regularizer weight $\lambda = 10$.

- **4.** (10%+6%+8%) Consider 3 data points $\{(x_{i1}, x_{i2}, x_{i3})\}_{i=1}^n$ given by (-1, -1, -1), (0, 0, 0), (2, 1, -1).
 - (a) What are the first and second principal components (write down the actual vector)?
 - (b) If we project the original data points into the 1-d subspace by the principal component you choose, what are their coordinates in the 1-d subspace? And what is the variance of the projected data?
 - (c) Suppose that $y_1 = -3$, $y_2 = 1$, and $y_3 = 5$. Find the first partial least squares (PLS) direction and compare with the first principal component direction.
- 5. (8%) Let us consider the basis representation for cubic splines with K interior knots, where

$$f(X) = \sum_{j=0}^{3} \beta_j X^j + \sum_{k=1}^{K} \beta_{k+3} (X - \xi_k)_+^3.$$

Prove that the linear boundary conditions for natural cubic splines imply that $\beta_2 = \beta_3 = 0$ and $\sum_{k=1}^K \beta_{k+3} = 0$, $\sum_{k=1}^K \xi_k \beta_{k+3} = 0$.

6. (4%+4%+2%+2%+2%) Problem 1 of Chapter 7.