Summer-2019 UM-SJTU JI Ve311 Homework #1

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, June 6, 2019 (Thursday) in class

Note:

- (1) Please use A4 size papers.
- (2) Please use the SPICE model below for simulation.

.model Dbreak D Is=1e-14 Rs=0 N=1 TT=0 Cjo=0pF

- 1. [Operation Principles of Si Diode] At 300 K, a Si diode with p-side heavily doped ($N_a=5\times 10^{19}~1/cm^3$) and n-side also heavily doped ($N_d=1\times 10^{20}~1/cm^3$). The Si diode junction area = 100 µm × 100 µm . Note: k = 1.38 × 10⁻²³ J/K, $n_i=10^{10}~1/cm^3$, q = 1.6 × 10^{-19} C, $\epsilon_{Si}=11.7\times 8.85\times 10^{-14}$ F/cm.
 - (a) [30%] Calculate the built-in potential (\emptyset_i), the depletion widths at the p-side (x_p) and n-side (x_n) respectively, and the largest built-in electric field (E_{max}), when the Si diode is in thermal equilibrium.
 - (b) [30%] Calculate the diode current (I_D), when the Si diode is under 0.3 V forward bias. Use the appended figures for obtaining the values of diffusion coefficient (through Einstein Relations) and diffusion length.
- 2. [Pspice Simulation of Si Diode] For the circuit below:
 - (a) [20%] Plot I_D vs V_{in} as V_{in} increases from -2 V to 2V. Explain why the result is a linear increase rather than an exponential increase.
 - (b) [20%] Plot V_{out} vs time and V_{in} vs time on the same graph, when $V_{in} = 2 \text{ V} \times \sin(2\pi \times 60 \times \text{time})$. Explain the working principle of this circuit.

