

Concepts in Artificial Intelligence & Machine Learning Technologies

Machine Learning Overview Dr. Wei Zhang

1

Machine Learning --- Finding Functions

Speech Recognition

$$f($$
)= "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "How are you?" $)=$ "I am fine." (what the user said) (system response)

Machine Learning Roadmap

Regression

Regression --- Intuition

Regression --- An example

• Regression --- Linear Regression

Use a linear regression model

Regression --- Non-linear regression

Classification

Classification --- Intuition

• Classification --- An example

• Classification --- An example

• Classification --- Multi-class

Demo

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

• Classification --- Non-linear

• Classification --- Non-linear

• Classification --- Non-linear

Machine Learning Roadmap

Supervised Learning

Supervised Learning

Labelled Data

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning --- clustering

http://bldimensionin.net/Katherine_hsr

Unsupervised Representation Learning

Semi-supervised Learning

Semi-supervised Learning

Semi-supervised Learning

An example of the influence of unlabeled data in semi-supervised learning. The top panel shows a decision boundary we might adopt after seeing only one positive (white circle) and one negative (black circle) example. The bottom panel shows a decision boundary we might adopt if, in addition to the two labeled examples, we were given a collection of unlabeled data (gray circles). This could be viewed as performing <u>clustering</u> and then labeling the clusters with the labeled data, pushing the decision boundary away from high-density regions, or learning an underlying one-dimensional manifold where the data reside.

Reinforcement Learning

Reinforcement Learning

- State: Observation of current environment
- Action: Reaction of an agent
- Reward: return from environment as an indicator
- Objective: maximize cumulative reward
- Similar with human: observing by eyes ---> judging by brain ---> taking actions by hands

Machine Learning Roadmap

Neural networks

Neural networks

Perceptron --- prototype

Perceptron --- prototype

Neural networks

Convolutional neural network--- digital images

• CNN

Recurrent neural network

Generative adversarial network

Generator Look at the fish I drew! Arg... That looks so fake, G. Try like this...

Generative adversarial network

Generative adversarial network

https://www.theverge.com/tldr/2019/2/15/ 18226005/ai-generated-fake-peopleportraits-thispersondoesnotexist-stylegan

Structure Learning

Seq to seq leaning

Structure Learning

Machine Explainable AI

Anomaly Detection

Anomaly Detection

• Anomaly Detection

???? f"Cat"

y

n

 χ

Anomaly Detection

 χ

Meta Learning

Meta Learning = Learn to learn

 Now we design the learning algorithm I can learn f! "Cat program for learning χ Can machine learn the learning algorithm? I can f' f! program program designing program for for learning learning

Life-long Learning

Life-long Learning

Life-Long Learning, Continuous Learning, Never End Learning, Incremental Learning

Reference

Cs231n Tutorial

https://cs231n.github.io/linear-classify/

Hungyi Lee Tutorial

http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML20.html

Semi-supervised learning wiki

https://en.wikipedia.org/wiki/Semi-supervised_learning