Attorney Docket No. FRR-16650.001 Customer No. 40854

Page 1 of 25

A MACHINE REAMING TOOL, INTERCHANGEABLE HEAD AND SHAFT FOR A

MACHINE REAMING TOOL

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

[0001] The invention relates to a machine reaming tool, to an interchangeable head

and to a shaft for a machine reaming tool, as well as to a method for the use of an

interchangeable head., according to the preamble of the respective independent patent

claims 1, 15, 28, and 32.

[0002]

STATE OF THE ART DESCRIPTION OF RELATED ART

Machine reaming tools or machine reamers are used for precision machining

cylindrical bores. Individual cutters, in each case, comprise a main cutting edge or

leading cut portion, and a secondary cutting edge or guide portion. The leading cut

portion performs the material removal work, and the guide portion serves for guiding

the tool in the bore. In order to ensure reliable guiding in all machining conditions, for

example with an oblique exit of the bore, the guide portion is a multiple of the length of

the leading cut portion in the axial direction. The length of the guide portion is thus for

example 10 millimetresmillimeters or more, with a diameter, for example, of

approx.approximately 15 millimetres millimeters.

[0003] A machine reamer is known from WO 01/64381 A2 which has a base body

and an interchangeable head, that is to say an exchangeable reaming head. The

reaming head is formed as one piece and comprises a lug for exchange adaptation,

projecting beyond a rearward plane surface in the axial direction. This projecting lug is

Page 1 of 25

either designed in a pyramid-like manner or as a cone. On connection to the base

body, the lug is inserted into a corresponding sinking of the base body, wherein

clamping tabs are expanded, saidthe tabs being separated from one another or from

the remaining shaft by separating gaps or by way of expansion slots. With conical

connections, additionally a hexagonal projection is formed on the reaming head and a

corresponding hexagonal socket is formed on the base body, for improving the torque

transmission.

[0004] US 1,472,798 shows a reaming head with which a collar may be exchanged

with the leading cut portion and a part of the guide portion, whilst the remainder of the

guide portion continues to be applied.

[0005] A reaming body is shown in the Patent Abstracts of Japan in JP 07 040141,

on whose front end an exchangeable head is assembled. For this, the reaming body

comprises a projecting, slotted cylinder, onto which the exchangeable head is placed.

The slotted cylinder is pressed on by way of a conical screw and, thus, firmly holds the

head.

[0006]

US 4,166,711 and US 2,303,487 show further fastening types for

exchangeable tool heads.

[0007] US 2,164,573 shows thin reaming heads, which are punched from sheet

metal or may be sawn from a toothed rod. This necessitates the use of comparatively

soft steels. A flexible steel is also necessary for one of the embodiments, with which

the teeth are bent on machining. For this reason, one may only expect a limited

accuracy of machining, particularly with the disclosed, relatively thin teeth.

[0008] A flat reaming head is described in US 2,164,571, which may be operated in

both rotational directions. The reaming head may also be turned over and be used

with the same rotational direction of the shaft. For this however, a large number of

Page 2 of 25

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 3 of 25

small teeth lying close to one another must be present, and the teeth must be ground

equally on both sides along the periphery of the interchangeable head. The individual

teeth in each case therefore are symmetrical and comprise two cutting edges, one for

each rotational direction. The geometry of the cutting edges - with a negative rake

angle - does not however permit any reaming, but a scraping machining at best.

[0009] US 5,163,790 shows a conical mounting, wherein the conical projection

comprises three cutouts. On pressing together, the conical projection is pressed apart

at the locations which are not relieved and contracts at the cutouts. A fixation of a shaft

in a region above the cone connection is achieved by way of this.

[0010] US 3,087,360 describes a movable connection between the shaft and

reaming head, which compensates positioning inaccuracies.

DESCRIPTIONBRIEF SUMMARY OF THE INVENTION

[0011] It is the object of the invention to provide a machine reaming tool, an

interchangeable head and a shaft for a machine reaming tool of the initially mentioned

type, which permits a material saving and, thus, an inexpensive manufacture of

reaming heads. A further object of the invention is to permit a simplified design of the

mentioned parts of a machine reaming tool.

[0012] These objects are achieved by the subject-matters of the respective

independent patent claims.

[0013] The machine reaming tool according to the invention comprises a reaming

head or an interchangeable head and a shaft according to the invention. The

interchangeable head, according to the invention, thereby is of one piece and

exchangeable, wherein, in the axial direction, it has a thickness of less than h_{max}

millimetres millimeters at every location, thus including a means for exchange

Page 3 of 25

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001 Customer No. 40854

Page 4 of 25

adaptation, wherein this thickness h_{max} is computed from a diameter D1 of the interchangeable head in $\frac{millimetres}{millimeters}$ as

 $h_{max} = 6mm + 1/10(D1-12 mm).$

[0014] In a preferred embodiment of the invention, h_{max} (for D1 smaller than 12 mm) is at least 6 mm and (for D1 larger than 35 mm) is 8 mm at the most. In a preferred embodiment, h_{max} is equal to 6 mm independently of the diameter D1.

[0015] Accordingly, a guide portion on individual cutters of the interchangeable head is also somewhat shorter than h_{max} . This design of the interchangeable head is based in the recognition that a common, comparatively long guide portion of the cutter is not necessary at all in many cases of application. By way of this, the interchangeable head, may be manufactured in a material-saving manner, even with smaller thickness, for example below 5 mm, 4.5 mm, 4 mm, 3.5 mm, 3 mm, 2.5 mm or 2 mm.

[0016] In a preferred embodiment of the invention, the interchangeable head, as a connection element, comprises a cutout in a plane end-face on the shaft side, for the eentringcentering fastening on the shaft. The shaft has no machining means such as teeth or cutters, and has a largersmaller outer diameter than the interchangeable head. The shaft is preferably of one piece, and on an end-side plane surface comprises a connection lug which projects out of this plane surface in the axial direction and which corresponds to the cutout of the interchangeable head. The interchangeable head thus has no axially projecting lug for exchange adaptation. The material requirement on the interchangeable head is further reduced, and the manufacture of the interchangeable head is simplified by way of this.

[0017] With the conventional connection type, the projecting lug of the hard interchangeable head expands the comparatively soft shaft of the base body, wherein

Filed May 5, 2006 Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 5 of 25

this expansion is favoured favored by a separating gap. In contrast to this, according to

the invention, an inner surface or several points of the cutout of the hard

interchangeable head press the projecting lug of the shaft together. This compression

of the shaft material is effected with an axially centred centered arrangement of the

connection elements in essentially the radial direction. The compression, with regard

to the material displacement, requires comparatively higher forces than the expansion

of the shaft material according to the state of the art. Accordingly, according to the

invention, greater manufacturing accuracies are required as the case may be.

Advantageously, in contrast to the expansion, the planarity of the end-side surface of

the shaft is not negatively influenced.

[0018] In other words therefore, the interchangeable head comprises two parallel,

plane end-faces with an axial distance of less than approximately 6, preferably

less than 5 or less than or equal to 4 millimetres millimeters, and without an exchange

adaptation projecting beyond these end-faces. A plane end-face on the shaft side

comprises a recess or sinking which projects into the end-face, and into which a

corresponding, projecting part of the shaft may be inserted. With this insertion, thus

when the interchangeable head is pressed against the shaft in the axial direction, this

projection is pressed together or compressed or inwardly deformed along its complete

periphery or at least three locations, by way of the interchangeable head.

[0019] More than one centringcentering recess in the interchangeable head and

accordingly more than one lug on the shaft is possible in other embodiments.

[0020] In a preferred embodiment of the invention, the cutout in the end-face of the

interchangeable head is a conical socket and accordingly the projecting lug on the shaft

is a corresponding conical projection. The dimensions of the conical socket and

conical projection are preferably matched to one another such that on placing the

Page 5 of 25

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 6 of 25

interchangeable head onto the shaft, the end-face plane surface of the shaft and the

oppositely lying end-side of the interchangeable head have a predefined distance. For

fastening the interchangeable head, at least one cap screw is guided through at least

one bore in the interchangeable head, and is screwed in the shaft. On tightening the

cap screw or the head screws, the conical projection of the shaft is pressed together by

the conical socket of the hard interchangeable head, until the end-side plane surface of

the shaft and the oppositely lying end-side of the interchangeable head meet one

another. A frictional connection arises on account of the pressing-together of these two

end-faces. It has been shown that this connection is sufficient for the transmission of

torque in normal operation, even with the use of a single, axially centred centered cap

screw. Thus a pure cone connection may be used, without polygonal force

transmission means such as triangular or hexagonal connections for example. The

manufacture of the interchangeable head as well as of the shaft is simplified by way of

this.

[0021] The conical projection or the conical socket comprise several, preferably

three, slightly projecting or exposed segments. When the reaming tool is assembled,

these form contact surfaces between the shaft and the interchangeable head, and thus

a three-point contact for example. On manufacture, only these segments need to be

manufactured with a high accuracy, for example ground, and not the complete conical

periphery.

[0022] In another embodiment of the invention, the cutout in the end-face of the

interchangeable head, which cutout is designed as a connection element, is essentially

circularly cylindrical and at three locations of the inner cylinder periphery in each case

comprises a contact segment or a contact point, at which the cutout is designed

somewhat more narrowly. In the peripheral direction, these locations are distributed

Page 6 of 25

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 7 of 25

distanced from one another over the periphery. Accordingly, the projecting lug,

designed as a connection element on the shaft, is likewise essentially circularly

cylindrical.

[0023] In a preferred variant of this embodiment, the contact segments are formed

by plane surfaces. An extension of one of the contact segments in the peripheral

direction is comparatively larger than the extension of the two other ones, preferably

one and a half to twice as large. By way of this, this contact segment acts as a catch

segment. In a manner corresponding to this, the shaft on a part segment of the

periphery comprises a plane surface, said part segment or sector encompassing, for

example, up to one eighth of the periphery. The catch segment also acts as a

rotational securement. The orientation of the interchangeable head on placingwhen

placed on the shaft is fixed in an unambiguous manner, since the catch segment must

be accordingly orientated to the plane surface on the shaft. Furthermore, the catch

segment effects a positive-fit force transition onto the interchangeable head, and as the

case may be, a locking of the interchangeable head and shaft on rotation. The

interchangeable head, analogously to that described above, is screwed to the shaft by

way of one or more preferably sunk screws, and pressed onto the end-side of the shaft.

[0024] The cylindrical shape of the connection elements on the interchangeable

head and shaft permit a simple and inexpensive manufacture, with a sufficient

exchange accuracy of the connection.

[0025] In further embodiments of the invention, the connection elements in the

interchangeable head and shaft are rounded polygon cylinders, preferably triangular

cylinders which are rounded along the periphery. The outer cylinder on the shaft is

slightly smaller than the inner cylinder on the interchangeable head, so that three

contact points form on the periphery of the cylinder when attaching the interchangeable

Page 7 of 25

Attorney Docket No. FRR-16650.001

Customer No. 40854 Page 8 of 25

head onto the shaft and a small mutual rotation. The polygon cylinders are either shaped asymmetrically, or the polygon cylinders, as described below, on the end-faces to be pressed onto one another, comprise corresponding recesses and projecting elements, as an orientation means for orientation of the interchangeable head in the peripheral direction.

[0026] The centringcentering cutout in the interchangeable head with all embodiments, is not compellingly central and continuous. With the use of exactly one cap screw however, the cutout is arranged centrally or axially centrally in the interchangeable head and forms a through hole. The cutout on the end-face of the interchangeable head, which is distant to the shaft, then preferably forms a cutout for a screw head. The screw head may be sunk in the interchangeable head by way of this. In turn, the machining depth in a pocket hole may be maximised by way of this.

[0027] In a further preferred embodiment of the invention, the shaft and the interchangeable head comprise corresponding means for the unambiguous orientation of the interchangeable head with respect to the shaft in the peripheral direction. The orientation means on the interchangeable head, for example, is a sinking or a hole in the end-face facing the shaft, and the corresponding orientation means on the shaft is a projection or a pin. These orientation means ensure that the high demands placed on the truth of running characteristics of the reamer are also met on exchange of the interchangeable head. The reaming heads on manufacture, are ground on the same machine tool, wherein the orientation of the reaming heads with respect to the orientation means is the same in each case. A machine which applies the reaming heads, when setting up with a new reamer, must be trued concentrically in the micrometer range. If then the interchangeable head of the reamers is exchanged, then no renewed concentrically trueingtruing is necessary thanks to the orientation means.

Filed May 5, 2006 Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 9 of 25

The orientation means also contribute to the force transmission to the interchangeable

head, on account of their positive fit.

[0028] The interchangeable head, along its peripheral direction, comprises several

cutters or cutting teeth, which are distanced to one another. Each cutter comprises a

leading cut portion and a guide portion. A leading cut portion in the axial direction

preferably has a length of 0.03 mm to 1.2 mm, in particular of approx.approximately

0.3 to 0.7 mm. The length of the cutter remaining up to the thickness of the

interchangeable head forms the guide portion. A ratio between the length of the

leading cut portion and the length of the guide portion of 1:7 results for an average

length of the leading cut portion of 0.5 mm and an interchangeable head thickness of 4

mm. This ratio is preferably between 1:6 and 1:10, which are comparatively large

values compared to the maximal usual values of 1:20 for example. The large values

result from the low thickness of the interchangeable head. This in turn is possible,

amongst other things, thanks to the recognition that the greater part of all applications

does not place particularly exacting demands on the guiding of the reamers.

[0029] The point between the leading cut portion and the transition region is

hereinafter called the effective cutting corner or reaming corner. Proceeding from this

point, the guide region tapers slightly to the rear, so that the reaming corner is the point

of the cutter with the largest radius, and thus also determines the radius or diameter of

the machined hole. Here and in the following, "front" in each case indicates the side of

the interchangeable head which is distant to the shaft, and "rear" indicates the opposite

side.

[0030] In a preferred embodiment of the invention, an interchangeable head is

designed as an a reversible (or indexable) insert. The interchangeable head thus

comprises a first side and an oppositely lying second side, and may be selectively

Page 9 of 25

Serial No. 10/595,700 Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854 Page 10 of 25

assembled with the first or the second side against the shaft, and may be used for

reaming in both cases. The first or the second side, for example with a plane surface

and a centringcentering cone, are held or pressed against the corresponding surfaces

of the shaft by way of connection means such as screws or tie rods.

[0031] With this, it is possible in a first phase to firstly assemble and use the

interchangeable head with the one side as the rear side againagainst the shaft, until the

cutters, in particular the reaming corners, are worn on the front side. Subsequently, the

interchangeable head is indexed for a second phase, which means the other side

becomes the rear side and the leading cut portion and reaming corners which hitherto

were located at the rear, then come to the front side. The rotational direction must, of

course, be reversed during the machining for this. Surprisingly, no significant wearing

of the rear reaming corners takes place in the first phase, although these at first have

the same radius as the front reaming corners, and after a certain wearing of the front

reaming corners, even have a larger radius.

[0032] Thus in each case, it is the other side of a cutting edge of a tooth which is

worn after reversing the interchangeable head. No second cutting edge per tooth is

required in order to be able to operate with the reversible interchangeable head. The

teeth are, thus, asymmetrically shaped along the periphery or with a direction viewed

parallel to the rotational axis.

[0033] The reversible interchangeable head comprises centringcentering means

and fastening means for both fastening directions. For example, two coaxial conical

sockets are present in place of the conical socket described above. Each of the conical

sockets proceeds from one of the two plane surfaces and extends up to the middle of

the interchangeable head, where the two conical recesses meet one another. As an

Page 10 of 25

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 11 of 25

alternative to this, the conical sockets do not extend to the middle, but are connected

by a bore for a central fastening element.

[0034] In the case of a cylindrical instead of a conical recess, this is designed such

that it has at least one mirror symmetry with respect to a plane perpendicular to the

plane of the interchangeable head.

[0035] The fastening means are, for example, one or more continuous bores with

cutouts on both sides for screw heads, or two separate sets of bores, wherein the one

set has such cutouts on the one side of the interchangeable head, and the other set

has cutouts on the other side. A design without cutouts is also conceivable.

[0036] The guide portion between the two reaming corners in each case of one

cutter is preferably tapered towards the middle of the cutter. This taper may for

example be V-shaped or circular-arc-shaped, corresponding to a hollow grinding. The

tapering of the diameter towards the oppositely lying side is small and lies in the region

of a hundredth of a millimetremillimeter per 10 mm in the axial direction. In a preferred

embodiment of the invention, a groove or notch is arranged in the cutter roughly in the

middle between the tapers. The manufacture of the two tapers which run towards one

another, is simplified by way of this. What is surprising is the fact that an adequate

guiding during the machining with the interchangeable head takes place even with such

a short and possibly interrupted guide region.

[0037] In a further preferred embodiment of the invention, the thin design of the

interchangeable head permits it to be combined with a second machining tool which is

fastened on the same shaft. This second tool is a pre-machining tool, for example,

such as a planisher with a slightly smaller diameter than the interchangeable head. On

application of such a combined tool, the planisher produces a first inner radius

corresponding to a pre-machining diameter or predetermined size in a present bore,

Page 11 of 25

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854 Page 12 of 25

and the reaming head produces a slightly larger inner radius corresponding to the

finished dimension of the bore, in one working procedure. The planisher and the

interchangeable head are preferably fastened on the shaft with separate fastening

means, or however by way of a single, common fastening means, a concentric screw

for example. The shaft comprises corresponding fastening means for the

interchangeable head and the second machining tool. The total height of the combined

tool is small and the fact that this may be applied at all in restricted spatial conditions is

due to the reduced thickness of the interchangeable head.

[0038] In yet a further preferred embodiment of the invention, which may likewise be

utilised thanks to the slim design of the interchangeable head, the preferably preferred

single-piece interchangeable head is designed as a reaming tool as well as a milling

tool. For this, in each case, the front side of a cutter is primarily designed for reaming,

as described above, and additionally the leading cut portion on the rear side is

designed as a chamfer miller. The leading cut portion is preferably also designed

larger on the front side than would be required merely for reaming, and on account of

this, the front leading cut portion may also be used as a chamfer miller. A circular

movement of the tool axis takes place (circular milling or interpolating milling) takes

place on milling a chamfer at the entry or exit of a bore.

[0039] With the use of the last mentioned embodiment of the invention, a machining

method is implemented with the following steps

- milling a chamfer at the entry of a bore by way of the leading cut portion on the

front side of the cutters;

reaming the bore to a nominal dimension by way of the leading cut portion and

above all the reaming corner on the front side of the cutters;

Page 12 of 25

Serial No. 10/595,70 Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 13 of 25

- milling a chamfer at the exit of the bore by way of the leading cut portion on the

rear side of the cutters; and

leading back the tool back through the bore, wherein any occurring burr material

which has arisen with the previous step is removed.

[0040] Thanks to the combination of machining functions in a single, one-piece and

thin interchangeable head according to the invention, one may implement the

described machining steps also with restricted spatial conditions, without tool exchange

and in one production step.

[0041] Various combinations of the embodiments described above are possible.

The following are mentioned, which are not conclusive: The combination of chamfer

milling and reaming may also be realised with ana reversible reversible insert. One

may also apply a cutter for chamfer milling on the rear side of an interchangeable head

which is applied combined with a planisher.

[0042] The described interchangeable heads are preferably manufactured from a

material manufactured by sintering, such as hard metal, cermet, ceramic (e.g. silicon

ceramic or ceramic insert or oxide ceramic) or CBN (cubic boron nitride).

Further preferred embodiments are to be deduced from the dependent patent

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0043] The subject-matter of the invention is hereinafter described in more detail by

way of preferred embodiments which are shown in the accompanying drawings. There

are schematically shown in:

Page 13 of 25

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001 Customer No. 40854 Page 14 of 25

[0044] Figure Fig. 1 a longitudinal section through a head region of a machine reaming tool according to the invention;

[0045] Fig. Figure 2 a longitudinal section through a head region of a shaft of a machine reaming tool according to the invention;

[0046] Fig. Figure 3 a shaft according to the invention;

[0047] Figures Figs. 4, 5 and 6, in each case, corresponding views of interchangeable heads according to various embodiments of the invention;

[0048] Figures Figs. 7 and 8 sections through an interchangeable head in a further embodiment of the invention;

[0049] Fig. Figure 9 corresponding sections through a shaft according to the interchangeable head from Figures Figs. 7 and 8;

[0050] Fig. Figure 10 connection elements of the interchangeable head and shaft, in a further embodiment of the invention;

[0051] Fig. Figure 11 an interchangeable head designed as a reversible insert, in a partly sectioned lateral view and a detailed view;

[0052] <u>Fig. Figure</u> 12 a lateral view in a cross section and a plan view of a reversible insert according to <u>Fig. Figure</u> 11;

[0053] Fig. Figure 13 a pre-machining tool for placing on the interchangeable head;

[0054] Fig. Figure 14 a shaft with an interchangeable head and premachining tool;

[0055] Fig. Figure 15 an interchangeable head designed as a combined reaming head and miller, in a partly sectioned lateral view and a plan view; and

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001 Customer No. 40854

Page 15 of 25

[0056] Figures Figs. 16 and 17 in each case, corresponding views of interchangeable heads according to further embodiments of the invention.

[0057] The reference numerals used in the drawings and their significance are summarily listed in the list of reference numerals. Basically, the same parts are provided with the same reference numerals in the figures.

WAYS OF CARRYING OUTDETAILED DESCRIPTION OF THE INVENTION

[0058]Fig. Figure 1 shows a longitudinal section through a head region of a machine reaming tool according to the invention. An interchangeable head 1 is screwed onto a shaft 2 by way of a cap screw 3 running centrically in the axial direction. The cap screw 3 is sunk in a pocket 14. The interchangeable head 1 for orientating the interchangeable head 1 in the peripheral direction, comprises an orientation hole 12 and the shaft 2 comprises an orientation pin 22 which projects into the orientation hole 12. The shaft 2 comprises an axial bore 26 from which coolant channels 24 on the tool-side end lead to the outer side of the shaft 2 in the proximity of the interchangeable head 1. An improved cooling of the cutting parts is ensured on account of the proximity of the coolant exit to the interchangeable head 1 and the small thickness h of the interchangeable head. A shaft-side plane surface 15 of the interchangeable head 1 is pressed onto an end-side plane surface 25 of the shaft 2 by way of the screwing. Thereby, connection elements which in the present embodiment of the invention are a conical socket 11 of the interchangeable head 1 and a conical projection 21 of the shaft 2, are pressed onto one another. Since the material of the interchangeable head 1 has a lower deformability that that of the shaft 2, thereby the

Filed May 5, 2006 Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 16 of 25

conical projection 21 is inwardly deformed in the radial direction within its material elasticity and is compressed or compacted.

[0059] The interchangeable head 1 has a diameter D1 between for example 10 mm

and 60 mm, wherein an embodiment with a fastening of the interchangeable head 1

according to Fig. Figure 5 is preferred for higher values. The shaft 2 has a diameter D2

which is at least a few millimetres smaller than that of the interchangeable head 1.

A thickness h of the interchangeable head 1 in the axial direction, thus in the

direction of the rotational axis of the tool, is preferably for example less that than 6 mm

or 5 mm, in the present example is 4 mm, with a diameter D1 between 10 mm and 60

mm or more. The conical socket 11 projects, for example, up to a depth of 2 mm into

the interchangeable head 1. Accordingly, the conical projection 21 projects

approx.approximately 2 mm beyond the end-side plane surface 25 of the shaft 2. The

dimensions of the conical socket 11 and of the conical projection 21 are matched to

one another, so that a predefined small air gap arises between the shaft-side plane

surface 15 of the interchangeable head 1 and the end-side plane surface 25 of the

shaft 2, with the loose assembly. These surfaces are pressed together on tightening

the cap screw 3, and a controlled, predefined deformation of the conical projection 21

occurs on account of the predefined size of the air gap.

[0061] Fig. Figure 2 shows a longitudinal section through a head region of a shaft of

a machine reaming tool according to the invention. The shaft, or at least the head

region, is preferably designed as one piece. The axial bore 26 is designed in a

continuous manner and at its tool-side end has a thread 23. The axial bore 26 in the

region of the conical socket 11 has a diameter which is increased with respect to the

threaded bore 23. On account of this, a free region for deformation of the conical

socket 11 remains between the material of the conical socket 11 and the cap screw 3.

Page 16 of 25

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 17 of 25

The orientation pin 22 is pressed into a bore in the shaft 2. In principle, the orientation pin may be arranged on the exchangeable cutting tip 1, and the corresponding orientation hole on the shaft 2. This embodiment, however, is slightly more complicated in manufacture, particularly since the interchangeable heads 1 must be exchanged more often than shafts 2.

[0062] Fig. Figure 3 shows a shaft 2 according to the invention. The shaft 2 on the machine side, thus, at its end which is distant to the tool 1, is envisaged for chucking into a machine. For this, it is, for example, of a circularly cylindrical shape or comprises standard chucking surfaces. Exemplary dimensions are a shaft length of 80 mm and a shaft diameter D2 of 10 mm with reaming head diameters of 11 mm to 16 mm, or a shaft length of 110 mm and a shaft diameter D2 of 16 mm with reaming head diameters of 18 mm to 24 mm. Preferably, no guide portion for guiding the shaft in the bore hole is formed on the shaft itself.

[0063] Figures Figs. 4, 5 and 6 in each case show corresponding views of interchangeable heads according to various embodiments of the invention. Fig. Figure 4 shows an embodiment with a central cap screw 3 according to the Figures Figs. 1 to 3. A continuous recess 50, 13, 14 on the shaft side is formed as a cutout 50 or conical socket 11, on the oppositely lying side as a pocket for screw head 14, and therebetween as a bore 13, respectively.

In contrast to the Figures Figs. 1 and 7, in which the periphery of the interchangeable heads is only shown schematically according to the shape of the semi-finished product, the periphery in is shown more accurately in the Figures Figs. 4, 5 and 6. The interchangeable head 1 comprises several cutting teeth with cutters 16, which are distributed in the peripheral direction. A cutter leads in the axial direction from a first to a second plane end-face of the interchangeable head 1. The end-faces delimit

Filed May 5, 2006

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 18 of 25

the interchangeable head 1 in the axial direction and run perpendicularly to the axial

direction and at a distance h parallel to one another. A cutter 16 comprises a leading

cut portion 17 and a guide portion 18. The guide portion is comparatively short so that

the distance h is also comparatively short. Despite the very short guide portion 18, a

useful application of the machine reaming tool according to the invention is possible in

most cases of application.

[0065] Fig. Figure 5 shows a preferred embodiment of the invention, in which

several continuous bores in each case with a pocket for a screw head 14, are arranged

concentrically about a central bore 13. An adequate fastening and torque transmission

is ensured by way of this, even with those annular interchangeable heads 1 with a

larger diameter. Since with this embodiment, the pockets for the screw heads 14 and

the connection elements such as conical socket 11 are arranged next to one another

and not on the same axis, the maximal thickness h1 may even be less than 3 mm or 2

mm.

[0066] Fig. Figure 6 shows a further preferred embodiment of the invention in which

the concial socket 11 which-comprises three contact segments 52 which are exposed,

which means to say that the remaining regions of the conical socket have a slightly

larger inner radius. The contact segments 52 are distributed distanced to one another

in the peripheral direction and uniformly over the periphery. On manufacture, only the

surfaces of these contact segments 52 may be manufactured or ground with a high

accuracy.

[0067] Figures Figs. 7 and 8 show sections through an interchangeable head 1 in a

further embodiment of the invention. In this, as also in Fig. Figure 9, the connection

elements 27, 50 are shaped essentially cylindrically. Fig. Figure 7 shows a cross

section parallel to the axial direction and Fig. Figure 8 a cut-out of a cross section

Page 18 of 25

Attorney Docket No. FRR-16650.001

Customer No. 40854 Page 19 of 25

perpendicular to the axial direction. A cutout 50 acting as a connection element is mainly shaped in a circularly cylindrical manner, but has three contact segments 51, 52. With each contact segment 51, 52, the inner wall of the circular cylinder is plane over a sector of the circle. An extension of such a sector corresponds roughly to a fifth to half the cylinder diameter. With a cylinder diameter of approx, approximately- 17 mm, this for example corresponds to 2 mm to 4 mm. Preferably, one of the contact segments 52 is significantly larger in the peripheral direction, for example, double as large as the others and therefore acts as a catch segment 51. by way of this.

[0068] Fig. Figure 9 shows corresponding sections through a shaft corresponding to the interchangeable head from the FiguresFigs. 7 and 8. The connection element on the shaft 27 is essentially circularly symmetrical, with a planarly machined sector, thus, a plane surface on the shaft periphery 28. The connection element in the axial direction projects, for example, by approx.approximately- 1 to 2 or 4 mm beyond the end-side plane surface 25 of the shaft 2. The catch segment 51 and the plane surface on the shaft periphery 28 must be aligned to one another for the assembly of the interchangeable head 1 and the shaft 2.

[0069] Fig. Figure-10 shows a cut-out of connection elements of interchangeable head and shaft according to a further embodiment of the invention. The connection element on the shaft 27 and accordingly the cutout 50 on the interchangeable head 1, are shaped as a rounded triangular cylinder projection and socket respectively. The connection element on the shaft 27 is slightly smaller than the cutout 50, so that, firstly, a loose connection may be created. Fig. Figure 10, for illustration, shows a greatly exaggerated size difference. On assembly or on operation of the machine reaming tool, contact points 53 arise due to the mutual rotation of the interchangeable head 1 and the shaft 2.

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001

Customer No. 40854 Page 20 of 25

[0070] Fig. Figure-11 shows an interchangeable head designed as a reversible insert, in a partly cut-open lateral view and a detailed view Y. The guide portion 18 has a first taper 181 and a second taper 182, which in each case lead to the middle of the cutter 16 from the first reaming corner 191 and from the second reaming corner 192 respectively. The diameter of the edge of the cutter 16 thereby reduces towards the middle, wherein the angle α_1 between the edge and a connection line between the first reaming corner 191 and the second reaming corner 192 is a few hundredths of a degree. This corresponds to a diameter change of about 0.01 mm per 10 mm in the axial direction.

[0071] A groove 183 is preferably arranged between the two tapers 181, 182. This simplifies the manufacture, for example, the grinding of the surfaces corresponding to the tapers 181, 182. A length of the tapers 181, 182 between the groove 183 and the reaming corners 191, 192 is, for example, 0.5 or 1 mm in each case, which is shown in Fig. Figure 11 by the lengths V1 and V2.

[0072] A first leading cut portion 171 leads from a first reaming corner 191 to a first plane surface 193, and from the second reaming corner 192, a second leading cut portion 172 leads to a second plane surface 194. The two leading cut portions 171, 172 are provided for cutting, they thus they have a back-off clearance, or clearance angle or clearance relief 173, which means that the radius of the cutting tooth 16 along the periphery reduces behind the cutting edge. Ground surfaces which form the clearance relief 173 are shown in Fig. Figure 15. The leading cut portions 171, 172 typically have an angle of 45° to the plane surfaces 193, 194, but may also be inclined to a greater or lesser extent.

Filed May 5, 2006 Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 21 of 25

[0073] Fig. Figure 12 shows a lateral view in cross section and a plan view of a

reversible insert according to Fig. Figure 11. The cutters 16 therein are represented in

a simplified manner. The reversible interchangeable head 1 comprises first connection

means 197 and second connection means 198, wherein each of these connection

means consists of a set of through-holes with sinkings 14 for accommodating a screw

head. These sinkings 14 with the first set of holes are arranged on the first plane

surface 193, and with the second set of holes are arranged on the second plane

surface 194.

[0074] A first conical socket 195 leads from the first plane surface 193 and a second

conical socket 196 leads from the second plane surface 194, coaxially to the axis of the

interchangeable head 1 into the interchangeable head 1, for centring the

interchangeable head 1. In a first fastening position of the interchangeable head 1 on

the shaft, the first plane surface 193 is the front one, and the second plane surface 194

and the first conical socket 195 are held or pressed against the shaft 2 by way of

screws through the first set of holes 197. The interchangeable head 1 is turned over in

a second fastening position, so that the second plane surface 194 is the front one, and

the first plane surface 193 and the second conical socket 196 are pressed against the

shaft 2.

[0075] On using the interchangeable head 1 in the first fastening position, the first

reaming corners 191 of the cutters 16 are worn. What is surprising is the fact that with

this, the subsequent second reaming corners 192 are not significantly worn. The

interchangeable head 1 is turned over when the first reaming corners 191 have been

worn to such an extent that the demanded dimension is no longer achieved after the

reaming, typically by a few hundredths of a millimetremillimeter.

Page 21 of 25

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001 Customer No. 40854

Page 22 of 25

[0076] Fig. Figure 13 shows a pre-machining tool 200 for attachment on an interchangeable head. The premachining tool 200 in the following is indicated as a planisher 200. It has a slightly smaller premachining diameter D3 or preliminary dimension than the end dimension according to the interchangeable head diameter D1. The planisher 200 shown in the Figure comprises individual reversible inserts 305 for a machining with material removal, and is fastened to the same shaft 2 as the interchangeable head 1 by way of a shaft 201 of the planisher 200. In addition, the shaft 201 of the planisher 200 comprises two plane surfaces 203, and an axial sinking in the shaft 2 is shaped corresponding to this, for an improved torque transmission.

[0077] Fig. Figure-14 represents a shaft 2 with an interchangeable head 1 assembled thereon and a planisher 200. The interchangeable head 1 for this comprises a set of through holes for receiving sunk screws as in the Figures Figs. 5 or 12. The screws run essentially parallel to the axis of the shaft 2. The planisher 200 is held by way of a centric screw 204 and is tightened against the interchangeable head 1 in the axial direction. The screw 204 is led through a bore 202 in the planisher 200 and is screwed in the shaft 2.

Fig. Figure 15 shows an interchangeable head designed as a combined reaming head and miller, in a partly sectioned open view and plan view. As already described in the context of Fig. Figure 11, here too the two leading cut portions 171, 172 of a cutter 16 or tooth 16 are provided for cutting or machining, and, thus, have a clearance relief or back-off clearance 173. In the embodiment of the invention according to Fig. Figure 15, the first leading cut portion 171 leads from the first plane surface 193 to the first reaming corner 191 and from there, the guide portion 18 leads with a slight tapering to an oppositely lying corner which in this case is indicated as a

Attorney Docket No. FRR-16650.001

Customer No. 40854

Page 23 of 25

milling corner 199. The second leading cut portion 172 leads from the milling corner

199 to the second plane surface 194.

[0079] In contrast to the embodiment according to Fig. Figure 4 where the edge

between the cutter 16 and the shaft-side plane surface 15 is only broken by a chamfer,

here the edge arising by way of the chamfering is designed as a cutting leading cut

edge 172 with a back-off clearance 173. The cutter 16 is formed on a first as well as

second side of the interchangeable head 1. One may for example mill a chamfer on

the edge of the exit hole with the second leading cut portion 172 for example after the

reaming of a bore and the exit of the interchangeable head 1 from the bore. For this,

the axis of the rotating interchangeable head 1 is moved on a circular path about the

axis of the bore by way of interpolating milling or circular milling.

[0800] Fig. Figure 15 in two sections shows a further preferred design of the two

leading cut portions 171, 172. The section A-A shows a view of a first leading cut

portion 171 in front of a reaming corner 191. In order to ensure a high mechanical

strength of the first leading cut portion 171, it has a relatively small backslope angle \(\mathbb{R}_1 \)

of approximately 3° to 10°, preferably at least approximately 6°. The angle β_1

is measured with respect to a tangent to the leading cut portion 171. Preferably the

back-off clearance 173 after a distance b to the cutting edge has a larger angle \(\mathbb{G}_2 \), for

example of 10° to 20°, preferably at least approximately 12°. The distance b is 0.05

mm or 0.1 mm to 1 mm, preferably at least approximately 0.25 mm, depending on the

size of the interchangeable head 1.

[0081] The section B-B shows a view of a second leading cut portion 172 in front of

the milling corner 199. Since no great demands are placed on the precision of the

Page 23 of 25

miller as on the reaming function, a single back-off clearance surface 173 with a backslope angle β_3 of 10° to 20°, preferably at least approximately 12° is sufficient.

[0082] Figures Figs. 16 and 17 in each case show corresponding views of semi-finished products 6 for interchangeable heads according to the invention. In particular, the connection elements, which means to say the first and second plane surface 193, 194, the conical socket 11 and the through holes with an optional pocket 14 for a screw head are completed and machined on the semi finished products 6. Only the cutters 16 need yet to be ground according to the specific requirements. The two Figures Figs. 16 and 17 show semi-finished products 6 for different diameters and with the same thickness of approx-approximately 4.3 mm with different representational scales. The semi-finished product 6 of Fig. Figure 16 has a diameter of 16 mm, that of Fig. Figure 17 a diameter of 101 mm. Preferably however several interchangeable heads 1 with different diameters but with the same thickness h₁ form a set of interchangeable heads 1. The thickness h₁ preferably lies between 4 mm and 5 mm for all described embodiments.

[0083] LIST OF REFERENCE NUMERALS

1	reaming head, interchangeable	2	shaft		
head		21	conical projection		
11	conical socket	22	orientation pin		
12	orientation hole	23	threaded bore		
13	bore	24	coolant channel		
14	pocket for screw head	25	end-side plane surface		
15	shaft-side plane surface	26	axial bore		
16	cutter	27	connection element on the shaft		
17	leading cut portion	28	plane surface on the shaft		
18	guide portion	periph	nery		

Marked-up Copy of Substitute Specification Serial No. 10/595,700 Filed May 5, 2006 Attorney Docket No. FRR-16650.001 Customer No. 40854 Page 25 of 25

3	head screw	193	first plane surface
50	cutout	194	second plane surface
51	catch segment	195	first concial socket
51	contact segment	196	second concial socket
53	contact point	197	first connection means
6	semi finished product	198	second connection means
171	first leading cut portion	199	milling corner
172	second leading cut portion	200	planisher
173	back-off clearance	201	shaft of the planisher
181	first taper	202	bore
182	second taper	203	plane surface
183	groove	204	screw
191	first reaming corner	205	reversible insert
192	second reaming corner		