Домашние задание №3 Григорьев Дмитрий БПМИ-163

Задание 1.

Решение:

Так как \mathbb{Z}_6 не примарная группа, то заменим $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6 \cong \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ на $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$.

- 4 Пусть $a \in \mathbb{Z}_3, b \in \mathbb{Z}_4, c \in \mathbb{Z}_2, d \in \mathbb{Z}_3 \Rightarrow (a, b, c, d) \in \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$. По следствию из Теоремы о разложении на сумму примарных групп, ord[(a, b, c, d)] = HOK[ord(a), ord(b), ord(c), ord(d)].
- 1) ord[(a,b,c,d)] = 2, значит НОК порядков равен так же равен 2, и порядяки a,b,c,d не превосходят 2. Посмотрим сколько элементов не выше порядка 2 содержатся в $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}_3$.
- $\{0\} \in \mathbb{Z}_3, \{0,2\} \in \mathbb{Z}_4, \{0,1\} \in \mathbb{Z}_2, \{0\} \in \mathbb{Z}_3$. Значит в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ $1 \cdot 2 \cdot 2 \cdot 1 = 4$ элементов порядка не выше 2. Но тут есть элемент (0,0,0,0) порядка 1. Итого, в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6$ элементов порядка 2-4-1=3.
- 2) ord[(a,b,c,d)] = 3, значит НОК порядков равен так же равен 3, и порядяки a,b,c,d не превосходят 3. Посмотрим сколько элементов порядка не выше 3 и не равному 2 содержатся в \mathbb{Z}_3 , \mathbb{Z}_4 , \mathbb{Z}_2 , \mathbb{Z}_3 .
- $\{0,1,2\} \in \mathbb{Z}_3, \{0\} \in \mathbb{Z}_4, \{0\} \in \mathbb{Z}_2, \{0,1,2\} \in \mathbb{Z}_3$. Значит в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ $3 \cdot 1 \cdot 1 \cdot 3 = 9$ элементов порядка не выше 3 и не равному 2. Но тут есть элемент порядка 1 (0,0,0,0) Итого, в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ элементов порядка 3 9 1 = 8.
- 3) ord[(a,b,c,d)] = 4, значит НОК порядков равен так же равен 4, и порядяки a,b,c,d не превосходят 4. Посмотрим сколько элементов не выше порядка 4 и не равному 3 содержатся в $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}_3$.
- $\{0\} \in \mathbb{Z}_3, \{0,1,2,3\} \in \mathbb{Z}_4, \{0,1\} \in \mathbb{Z}_2, \{0\} \in \mathbb{Z}_3$. Значит в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ $1 \cdot 4 \cdot 2 \cdot 1 = 8$ элементов порядка не выше 4 и не равному 3. Но тут есть элементы порядка не выше 2, вычтем посчитанное ранее количество элементов порядка не выше 2. Итого, в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6$ элементов порядка 4 8 4 = 4.
- 4) ord[(a,b,c,d)] = 6, значит НОК порядков равен так же равен 6, и порядяки a,b,c,d не превосходят 6. Посмотрим сколько элементов не выше порядка 6 и не равному 4 содержатся в $\mathbb{Z}_3, \mathbb{Z}_4, \mathbb{Z}_2, \mathbb{Z}_3$.
- $\{0,1,2\} \in \mathbb{Z}_3, \{0,2\} \in \mathbb{Z}_4, \{0,1\} \in \mathbb{Z}_2, \{0,1,2\} \in \mathbb{Z}_3$. Значит в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ $3 \cdot 2 \cdot 2 \cdot 3 = 36$ элементов порядка не выше 6 и не равному 4. Но тут есть элементы порядка не выше 2 и ровно 3, вычтем посчитанное ранее количество элементов порядка не выше 2 и ровно 3. Итого, в $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_6$ элементов порядка 6 36 4 8 = 24.

Задание 2.

Решение:

Всего существует две группы порядка 45 (с точностью до изоморфизма): $\mathbb{Z}_5 \times \mathbb{Z}_9$ и $\mathbb{Z}_3 \times \mathbb{Z}_{15}$. Но $\mathbb{Z}_5 \times \mathbb{Z}_9$ циклическая, поэтому подходит только $\mathbb{Z}_3 \times \mathbb{Z}_{15} \simeq \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$.

• Так как 3 — простое, то все ненулевые элементы порядка 3 порождают подгруппу порядка 3. Чтобы подгруппы не пересекались у них не должно быть общих порождающих.

Найдем количество элементов порядка 3.

 $\{0,1,2\} \in \mathbb{Z}_3, \{0,1,2\} \in \mathbb{Z}_3, \{0\} \in \mathbb{Z}_5$. Но мы учли нулевой элемент (0,0,0), поэтому элементов порядка $3-3\cdot 3\cdot 1-1=8$. Так как подгруппы не должны пересекаться, то общих порождающих у них не должно быть. Всего в подгруппе порядка 3 два элемента порядка 3, поэтому разных подгрупп порядка 3-8/2=4.

• Теперь найдем количество элементво порядка 15.

В \mathbb{Z}_5 порядка 5 – 4 элемента. В $\mathbb{Z}_3 \times \mathbb{Z}_3$ элементов порядка не выше 3 – 9, но тут учитанэлемент порядка 1, поэто всего элементов порядка 3 – 8. Так как подгруппы не должны пересекаться, то общих порождающих у них не должно быть. Всего в подгруппе порядка 3 два элемента порядка 3, поэтому разных подгрупп порядка 3 – 8\2 = 4. Получается элеметов порядка $15 - 4 \cdot 4 = 16$.

Так как количество образущих в циклической подгруппе порядка a равно $\varphi(a)$, то в подгруппе порядка 15: $\varphi(15) = \varphi(3) \cdot \varphi(5) = 8$ порождающих. Получается, что разных подгрупп порядка 15 в $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 - 16/8 = 2$.

Задание 3.

Решение:

Так как $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$, если n и m – взаимнопростые, то $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{30} \times \mathbb{Z}_{60}$.

Пусть $H = H_1 \times H_2$, тогда по теореме о факторизации по сомножителям:

 $\mathbb{G}/H \simeq \mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \Leftrightarrow \mathbb{G}/H \simeq \mathbb{Z}_{30} \times \mathbb{Z}_{60}.$

Пусть a, b – порождающие элементы: $a, b \in \mathbb{Z}, \mathbb{Z} \simeq \langle a \rangle, \mathbb{Z} \simeq \langle b \rangle$, тогда $H_1 = \langle a^{30} \rangle, H_2 = \langle b^{60} \rangle$, тогда $H = \langle a^{30} \rangle \times \langle b^{60} \rangle$.

Задание 4.

Решение:

- ullet Если A циклическая группа порядка M, n ее образующий, тогда циклическая подгруппа, порожденная элементом $n^{M/m}$ будет иметь порядок m.
- Если A не циклическая, тогда $A \cong A_1 \times A_2$, причем $|A_1| = a_1, |A_2| = a_2$. Так как порядок A делится на m, то a_1a_2 делится на m. Тогда найдутся такие $a_1', a_2',$ что $m = a_1'a_2'$ и a_1 делится на a_1', a_2 делится на a_2' . Пусть $B_1 \leq A_1, B_2 \leq A_2$ и $|B_1| = a_1', |B_2| = a_2'$. Тогда $B_1 \times B_2 \leq A, |B_1 \times B_2| = a_1'a_2' = m$.

ч.т.д.