Multi-Class and Multi-Task Strategies for Neural Directed Link Prediction

deda.ai

Claudio Moroni(⊠)^{1,2}, Claudio Borile², Carolina Mattsson², Michele Starnini^{2,3}, André Panisson²

¹Dedagroup, Torino, Italy, claudio.moroni@dedagroup.it

²CENTAI Institute, Torino, Italy, {name.surname}@centai.eu

³Department of Engineering, Universitat Pompeu Fabra, Barcelona, 08018, Spain

Executive Summary

- 1) Naively porting ULP testing techniques to DLP is not sound → need for a "three-way" testing setup.
- 2) Naively porting ULP training techniques to DLP leads to subotpimal performances → gap
- 3) We fill this gap by **developing three DLP training strategies** perform better in the three-way testing setup

Outline

- 1) Undirected Link Prediction
- 2) Naive Directed Link Prediction
- 3) New Training Strategies & Results

Training

$$\mathcal{L}(\Theta) = \sum_{e \in E_{s+n}} w_p y_e \ln(\hat{p}_{\Theta}(e)) + (1 - y_e) \ln(1 - \hat{p}_{\Theta}(e))$$

Testing

Naive Training

$$\mathcal{L}(\Theta) = \sum_{e \in E_{s+n}} w_p y_e \ln(\hat{p}_{\Theta}(e)) + (1 - y_e) \ln(1 - \hat{p}_{\Theta}(e))$$

Testing

AUC, AP, Hits@K, MRR

Results with Naive Training

4							,
		GENERAL		DIRECTIONAL		BIDIRECTIONAL	
model	decoder	ROC-AUC	AUPRC	ROC-AUC	AUPRC	ROC-AUC	AUPRC
GAE	$ec{z}_i \cdot ec{z}_j$	84.6	88.6	50.0	50.0	62.4	64.0
GR-GAE	$\sigma(\vec{z}_v[0] - \lambda \ln(\vec{z}_u[1:] - \vec{z}_v[1:] _2^2))$	89.2	92.4	63.4	61.5	69.1	66.5
ST-GAE	$\sigma(\vec{z}_v[:\frac{L}{2}] \cdot \vec{z}_u[\frac{L}{2}:])$	87.8	90.1	60.8	64.5	74.6	74.1
DiGAE	$\sigma(\vec{z}_v^S \cdot \vec{z}_v^T)$	80.4	85.3	57.5	63.0	70.4	68.6
MLP-GAE	$\mathrm{MLP}(\overrightarrow{z}_v \vec{z}_u)$	77.1	78.2	90.7	90.7	69.9	69.7
MAGNET	MLP-like	75.2	77.8	90.4	89.8	71.9	70.4
dMPLP	MLP-like	86.1	88.0	75.7	76.8	81.1	82.2

Existing Solutions

- Naive Training Kollias et al. 2022
- Train one model per task Salha et al. 2019
- Ad-hoc architectures Zhang et al. 2021

We wish to develop techniques that allow any NDLP-capable architecture to achieve good performance on all three tasks simultaneously

Multi Class

We need to **balance the loss** w.r.t. **positives vs negatives** AND **unidirectionals vs bidirectionals** SIMULTANEOUSLY!

$$[\hat{p}_{uv}^{nb}, \hat{p}_{uv}^{nu}, \hat{p}_{uv}^{pu}, \hat{p}_{uv}^{pb}] = [(1 - \hat{p}_{uv})(1 - \hat{p}_{vu}),$$

$$(1 - \hat{p}_{uv})\hat{p}_{vu},$$

$$\hat{p}_{uv}(1 - \hat{p}_{vu}),$$

$$\hat{p}_{uv}\hat{p}_{vu}]$$

$$\mathcal{L}_{MC-NDLP}(\Theta) = -\sum_{c \in C} \sum_{uv \in T} w_{y_{uv}} \mathbb{I}(y_{uv} = c) \log(\hat{p}_{uv}^{y_{uv}}), \quad w_{y_{uv}} = \frac{n_x}{n_{y_{uv}}}$$

Multi Task - MGDA

Multi Task - Scalarization

Results - Cora

		GENERAL		DIRECTIONAL		BIDIRECTIONAL		
model	strategy	ROC-AUC	AUPRC	ROC-AUC	AUPRC	ROC-AUC	AUPRC	
GAE	BASELINE	84.6 ± 0.4	88.6 ± 0.3	50.0 ± 0.0	50.0 ± 0.0	62.4 ± 3.0	64.0 ± 3.1	
GR-GAE	BASELINE	89.2 ± 0.4	92.4 ± 0.2	63.4 ± 2.5	61.5 ± 2.7	69.1 ± 3.1	66.5 ± 3.3	
	MO-NDLP	84.5 ± 1.1	86.3 ± 1.1	80.6 ± 0.7	80.2 ± 0.9	79.6 ± 4.3	84.6 ± 3.5	
	MC- $NDLP$	88.6 ± 0.4	90.0 ± 0.4	82.1 ± 0.5	81.8 ± 0.7	77.3 ± 2.2	76.3 ± 1.7	
	S-NDLP	87.8 ± 0.6	89.5 ± 0.5	82.3 ± 0.5	81.6 ± 0.4	89.6 ± 1.6	92.4 ± 1.1	
ST-GAE	BASELINE	87.8 ± 0.7	90.1 ± 0.5	60.8 ± 0.5	64.5 ± 0.6	74.6 ± 1.8	74.1 ± 2.2	
	MO-NDLP	86.3 ± 0.5	86.2 ± 0.4	79.3 ± 1.0	80.0 ± 0.9	79.3 ± 0.5	79.5 ± 1.9	
	MC- $NDLP$	80.7 ± 2.0	80.1 ± 2.1	79.0 ± 2.3	81.6 ± 1.9	70.3 ± 3.0	68.1 ± 2.1	
	S-NDLP	84.5 ± 0.4	84.9 ± 0.7	75.8 ± 1.0	78.4 ± 0.9	81.1 ± 0.9	80.4 ± 1.6	
DiGAE	BASELINE	80.4 ± 1.1	85.3 ± 0.8	57.5 ± 1.3	63.0 ± 1.4	70.4 ± 2.2	68.6 ± 1.2	
	MO-NDLP	70.2 ± 3.8	72.6 ± 3.6	73.6 ± 5.4	76.0 ± 4.2	67.3 ± 4.6	69.6 ± 4.1	
	MC- $NDLP$	75.4 ± 0.9	77.4 ± 1.0	84.3 ± 0.6	85.4 ± 0.8	68.9 ± 1.5	69.3 ± 1.1	
	S-NDLP	72.5 ± 4.0	77.4 ± 4.4	61.6 ± 1.3	69.2 ± 1.4	72.1 ± 5.6	74.4 ± 5.7	
$\overline{ ext{MLP-GAE}}$	BASELINE	77.1 ± 0.9	78.2 ± 0.6	90.7 ± 0.6	90.7 ± 0.6	69.9 ± 3.2	69.7 ± 3.7	
	MO-NDLP	76.0 ± 0.8	76.4 ± 0.7	93.4 ± 0.6	93.5 ± 0.6	80.7 ± 1.6	79.2 ± 2.4	
	MC- $NDLP$	74.5 ± 0.7	75.6 ± 0.7	94.3 ± 0.6	94.4 ± 0.5	71.7 ± 2.4	65.7 ± 1.8	
	S-NDLP	74.7 ± 1.0	74.9 ± 0.9	90.5 ± 0.7	90.0 ± 0.9	72.0 ± 2.6	70.5 ± 2.9	
MAGNET	BASELINE	75.2 ± 1.4	77.8 ± 1.0	90.4 ± 0.9	89.8 ± 0.8	71.9 ± 2.3	70.4 ± 2.8	
	MO-NDLP	74.4 ± 1.4	77.4 ± 1.1	91.3 ± 1.0	90.9 ± 1.0	70.6 ± 2.7	68.6 ± 2.7	
	MC- $NDLP$	74.4 ± 1.0	77.4 ± 1.0	92.1 ± 0.7	91.6 ± 0.7	71.8 ± 2.6	70.0 ± 2.6	
	S-NDLP	74.6 ± 1.3	77.5 ± 1.1	91.0 ± 1.0	90.4 ± 1.0	71.8 ± 2.8	70.2 ± 2.9	
dMPLP	BASELINE	86.1 ± 0.5	88.0 ± 0.9	75.7 ± 2.2	76.8 ± 1.6	81.1 ± 3.6	82.2 ± 5.3	
	MO-NDLP	83.5 ± 0.6	85.1 ± 0.6	89.1 ± 1.7	89.0 ± 2.1	85.8 ± 3.3	89.3 ± 2.5	
	MC- $NDLP$	81.4 ± 1.7	82.0 ± 1.5	83.7 ± 4.2	83.7 ± 3.6	70.0 ± 4.3	71.5 ± 3.9	
	S-NDLP	85.6 ± 1.0	86.9 ± 1.0	84.8 ± 2.7	86.3 ± 2.3	83.6 ± 4.7	87.0 ± 4.3	

Thanks!

deda.ai