

Complexidade de Algoritmos... Eficiência de Algoritmos?

Como podemos medir?

Complexidade de Algoritmos... Eficiência de Algoritmos?

Existem muitas formas de resolver o mesmo problema...

Como saber qual resolução é a melhor?

Complexidade de Algoritmos... Eficiência de Algoritmos?

Como podemos medir?

Tempo Espaço

4

```
** ** **
Arquivo: timing1.py
Imprime os tempos de execução para tamanhos de problemas que dobram, usando um único laço.
import time
problemSize = 10000000
print("%12s%16s" % ("Problem Size", "Seconds"))
for count in range(5):
      start = time.time()
      # O início do algoritmo
     work = 1
     for x in range (problemSize) :
    work += 1
           work -= 1
      # O fim do algoritmo
     elapsed = time.time() - start
print("%12d%16.3f" % (problemSize, elapsed))
     problemSize *= 2
```

A saída do programa de teste

Problem Size	Seconds
10000000	3.8
20000000	7.591
4000000	15.352
80000000	30.697
160000000	61.631

• Como outro exemplo, considere a seguinte alteração no algoritmo do programa de teste:

```
for j in range (problemSize) :
    for k in range (problemSize) :
        work += 1
        work -= 1
```

- As atribuições estendidas foram movidas para um laço aninhado:
 - Esse laço itera pelo tamanho do problema dentro de outro laço que também itera pelo tamanho do problema.
 - os resultados...

A saída do segundo programa de teste

Seconds
0.387
1.581
6.463
25.702
102.666

- Esse método permite previsões precisas dos tempos de execução de muitos algoritmos. Entretanto, existem dois problemas principais nessa técnica:
 - Diferentes plataformas de hardware têm diferentes velocidades de processamento, portanto, os tempos de execução de um algoritmo variam entre uma máquina e outra.
 - É impraticável determinar o tempo de execução de alguns algoritmos com conjuntos de dados muito grandes.

- Outra técnica usada para estimar a eficiência de um algoritmo
 - Contar as instruções executadas com problemas de tamanhos diferentes.
- Ao analisar um algoritmo dessa forma, você distingue entre duas classes de instruções:
 - Instruções que executam o mesmo número de vezes, independentemente do tamanho do problema.
 - Instruções cuja contagem de execução varia de acordo com o tamanho do problema.
- As instruções na segunda classe normalmente são encontradas em laços ou funções recursivas:
 - No caso de laços, você também se concentra nas instruções executadas em quaisquer laços aninhados.


```
** ** **
Arquivo: counting.py
Imprime o número de iterações para tamanhos de
problema que dobram, usando um laço aninhado.
problemSize = 1000
print("%12s%15s" % ("Problem Size", "Iterations"))
for count in range (5):
    number = 0
    #O início do algoritmo
    work = 1
    for j in range (problemSize) :
         for k in range (problemSize) :
    number += 1
             work += 1
             work -= 1
    #O fim do algoritmo
    print("%12d%15d" % (problemSize, number))
    problemSize *= 2
```


A saída de um programa de teste que conta iterações

Problem Size	Iterations
1000	1000000
2000	4000000
4000	16000000
8000	64000000
16000	256000000


```
Arquivo: countfib.py
Imprime o número de chamadas de uma função Fibonacci
recursiva com tamanhos de problema que dobram.
from counter import Counter
def fib (n, counter):
    """Conta o número de chamadas da função Fibonacci."""
    counter.increment()
    if n < 3:
        return 1
    else:
        return fib (n - 1, counter) + fib (n - 2, counter)
problemSize = 2
print("%12s%15s" % ("Problem Size", "Calls"))
for count in range (5):
    counter = Counter()
    #O início do algoritmo
    fib (problemSize, counter)
    #O fim do algoritmo
    print("%12d%15s" % (problemSize, counter))
    problemSize *= 2
```


13

A saída de um programa de teste que executa a função Fibonacci

Calls
1
5
41
1973
4356617

- Complexidade constante (1)
- Complexidade Logarítimica (log n)
- Complexidade Linear (n)
- Complexidade Quadrática (n²)
- Complexidade Exponencial (2ⁿ)

- Complexidade constante (1)
- Complexidade Logarítimica (log n)
- Complexidade Linear (n)
- Complexidade Quadrática (n²)
- Complexidade Exponencial (2ⁿ)

n	Logarítmico (log ₂ n)	Linear (n)	Quadrático (n²)	Exponencial (2 ⁿ)
100	7	100	10.000	Fora do gráfico
1000	10	1000	1.000.000	For a do gráfico
1.000.000	20	1.000.000	1.000.000.000. 000	Realmente fora do gráfico

Cenário: Análise de Sentimentos em Redes Sociais Imagine que você trabalha em uma empresa que quer monitorar o que as pessoas estão falando sobre seus produtos nas redes sociais.

O objetivo é analisar milhares de tweets para determinar se o sentimento geral é positivo, negativo ou neutro.

Para fazer isso, você precisa usar algoritmos que ajudem a processar e analisar grandes volumes de dados rapidamente.

Passo 1: Coleta de Dados

Você coleta 1.000.000 de tweets sobre o produto. Esses tweets precisam ser processados para identificar o sentimento.

Passo 2: Pré-processamento dos Tweets

Você precisa limpar e preparar os tweets, removendo palavras irrelevantes, links e caracteres especiais.

Isso é uma etapa de **pré-processamento**.

Para tanto...

Você usa um script simples para limpar cada tweet, removendo palavras irrelevantes, links e caracteres especiais.

- · Você não mede a complexidade de tempo.
- Observação empírica: Percebe que seu script leva, em média, 1 segundo para processar 100 tweets.
- Estimativa empírica: Para 1.000.000 de tweets, leva aproximadamente 10.000 segundos (1 segundo para 100 tweets \times 10.000).

Passo 3: Análise de Sentimentos Método 1: Análise com Dicionário de Palavras

- Você cria um dicionário de palavras positivas e negativas.
- Observação empírica: O script leva cerca de 0,1 segundo para analisar cada tweet.
- Estimativa empírica: Para 1.000.000 de tweets, leva aproximadamente 100.000 segundos (0,1 segundo por tweet x 1.000.000).

Método 2: Análise com Machine Learning

- Você usa um modelo de machine learning pré-treinado.
- Observação empírica: O modelo leva cerca de 0,05 segundo para analisar cada tweet.
- Estimativa empírica: Para 1.000.000 de tweets, leva aproximadamente 50.000 segundos (0,05 segundo por tweet x 1.000.000).

2" "" " log_en

Tama nho do problema

Passo 4: Relatório de Resultados

Você gera o relatório com a porcentagem de tweets positivos, negativos e neutros.

Resumo Empírico:

- Pré-processamento: 10.000 segundos
- Análise com Dicionário: 100.000 segundos
- Análise com Machine Learning: 50.000 segundos
- 160.000 segundos = 2.667 minutos = 44 horas =
- quase 2 dias de trabalho ininterrupto.

PURAMENTE EMPÍRICO →

REALIZADO PELA MEDIÇÃO E OBSERVAÇÃO DIRETA

Notação Big O

 A notação Big O é utilizada para descrever a complexidade de algoritmos em termos de seu comportamento assintótico.

((uma grandeza física se aproxima de um valor limite a medida que uma variável tende a um valor específico))

• Isso significa que ela se concentra no comportamento do algoritmo quando o tamanho da entrada se torna muito grande.

21

Notação Big O

Notação Big O (razões)

- Abstração de Detalhes Menores: Big O abstrai constantes e termos de ordem inferior, focando-se no fator de crescimento dominante. Isso facilita a comparação entre algoritmos.
- Exemplo: Se um algoritmo tem complexidade 5n+35n+35n+3, a notação Big O simplifica isso para O(n), ignorando constantes e termos menores.
- Comparação de Algoritmos: Facilita a comparação de diferentes algoritmos com base em seu desempenho teórico.
- Exemplo: Um algoritmo O(n log n) é geralmente mais eficiente que um algoritmo O(n^2) para grandes volumes de dados.

Notação Big O (razões)

- Escalabilidade: Ajuda a entender como um algoritmo escala com o aumento do tamanho dos dados, essencial para problemas de grande escala.
- **Exemplo**: Algoritmos $O(\log n)$ e O(n) são preferíveis para grandes entradas comparados a $O(n^2)$ ou $O(2^n)$.
- Planejamento e Otimização: Permite engenheiros e cientistas de dados planejarem e otimizarem sistemas de forma mais eficiente.
- **Exemplo**: Saber que uma função crítica é $O(n^2)$ pode levar à busca de alternativas mais eficientes para otimizar o desempenho.

Notação **Big O**

- Complexidade constante (1)
 - · O(1)
- Complexidade Logarítimica (log n)
 - O(log n)
- Complexidade Linear (n)
 - O(n)
- Complexidade Quadrática (n²)
 - O(n²)
- Complexidade Exponencial (2ⁿ)
 - · O(2ⁿ)

25

Significado da Notação Big O

A notação **Big O** nos fornece uma maneira de quantificar a eficiência dos algoritmos em termos de tempo e espaço.

Ela nos ajuda a prever como um algoritmo se comportará à medida que o tamanho da entrada aumenta, permitindo escolher a solução mais adequada para o problema em questão.

Exemplo de Aplicação: Big O

Levando em consideração que em linguagem Python em 1 segundo é possível executar 10⁷ instruções...

Se você tiver uma entrada de n valores, onde n = 10⁶, e tem apenas 1 segundo para rodar....

Se um algoritmo tem complexidade O(n²) sua execução será possível?

Exemplo de Aplicação: Big O

Levando em consideração que em linguagem Python em 1 segundo é possível executar 10⁹ instruções...

Se você tiver uma entrada de n valores, onde $n=10^6$, e tem apenas 1 segundo para rodar....

Se um algoritmo tem complexidade O(n²) sua execução será possível?

Resposta: NÃO

Pois... O(n²) resultará em 10¹² interações... Muito maior que 109

Big-O	Alternativa
O(1)	O(yeah)
O(log n)	O(nice)
O(n)	O(ok)
O(n log n)	O(uch)
O(n^2)	O(my)
O(2^n)	O(no)
O(n!)	O(mg!)

https://pt.wikipedia.org/wiki/Grande-O

Notação	Nome	Ideia intuitiva	Definição informal: para um n suficientemente grande	Definição formal
f(n) = O(g(n))	O-grande; Omicron- grande ^[12]	f é limitada superiormente por g (até no máximo um fator constante) assintoticamente	$ f(n) \leq k \cdot g(n) $ para algum k positivo.	$\exists k > 0 \ \exists n_0 \ \forall n > n_0 \ f(n) \le k \cdot g(n) $
$f(n) = \Omega(g(n))$	Omega- grande	: Teoria dos números: f não é dominada por g assintoticamente Teoria da complexidade: f é limitada por baixo por g assintoticamente	Teoria dos números: $f(n) \geq k \cdot g(n) \text{ por infinitos}$ valores de n e para algum k positivo $\text{Teoria da complexidade:}$ $f(n) \geq k \cdot g(n) \text{ para algum } k$ positivo	Teoria dos números: $\exists k>0 \ \forall n_0 \ \exists n>n_0 \ f(n)\geq k\cdot g(n)$ Teoria da complexidade: $\exists k>0 \ \exists n_0 \ \forall n>n_0 \ f(n)\geq k\cdot g(n)$
$f(n) = \Theta(g(n))$	Theta- grande	f é limitada por cima e por baixo por g assintoticamente	$k_1 \cdot g(n) \leq f(n) \leq k_2 \cdot g(n)$ para algum k_1 e algum k_2 positivos	$\exists k_1 > 0 \ \exists k_2 > 0 \ \exists n_0 \ \forall n > n_0$ $k_1 \cdot g(n) \le f(n) \le k_2 \cdot g(n)$
f(n) = o(g(n))	o- pequeno	f é dominado por g assintoticamente	$ f(n) \leq k \cdot g(n) $, para todo número positivo k	$\forall k > 0 \ \exists n_0 \ \forall n > n_0 \ f(n) \le k \cdot g(n) $
$f(n) = \omega(g(n))$	Omega- pequeno	f domina g assintoticamente	$ f(n) \geq k \cdot g(n) $, para todo número positivo k	$\forall k > 0 \ \exists n_0 \ \forall n > n_0 \ f(n) \ge k \cdot g(n) $
$f(n) \sim g(n)$	Na ordem de	f é igual a g assintoticamente	$f(n)/g(n) \to 1$	$\forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ \left \frac{f(n)}{g(n)} - 1 \right < \varepsilon$

Cenário 2: Análise de Sentimentos em Redes Sociais

Imagine que você trabalha em uma empresa que quer monitorar o que as pessoas estão falando sobre seus produtos nas redes sociais.

O objetivo é analisar milhares de tweets para determinar se o sentimento geral é positivo, negativo ou neutro.

Para fazer isso, você precisa usar algoritmos que ajudem a processar e analisar grandes volumes de dados rapidamente.

Passo 1: Coleta de Dados

Você coleta 1.000.000 de tweets sobre o produto. Esses tweets precisam ser processados para identificar o sentimento.

Passo 2: Pré-processamento dos Tweets

Você analisa a complexidade de tempo do seu algoritmo de pré-processamento.

- Complexidade: O(n) (linear)
- Explicação: Cada tweet é processado uma vez, então o tempo cresce linearmente com o número de tweets.
- Estimativa teórica: Para 1.000.000 de tweets, o tempo de execução é proporcional a 1.000.000.

Passo 3: Análise de Sentimentos

Método 1: Análise com Dicionário de Palavras

- Complexidade: O(n) (linear)
- Explicação: Cada tweet é comparado com o dicionário de palavras uma vez.
- Estimativa teórica: Para 1.000.000 de tweets, o tempo de execução é proporcional a 1.000.000.

Método 2: Análise com Machine Learning

- Complexidade: O(n log n) (linear-logarítmica)
- Explicação: O modelo de machine learning processa cada tweet de forma mais eficiente.
- Estimativa teórica: Para 1.000.000 de tweets, o tempo de execução é proporcional a 1.000.000 log(1.000.000).

Passo 4: Relatório de Resultados

Você gera o relatório com a porcentagem de tweets positivos, negativos e neutros.

Resumo Teórico:

- Pré-processamento: O(n)
- Análise com Dicionário: O(n)
- Análise com Machine Learning: O(n log n)

Utilizando a notação Big O, você pode prever de maneira mais precisa como o algoritmo se comportará com grandes volumes de dados.

Isso ajuda a escolher o algoritmo mais eficiente antes de implementá-lo e realizar medições empíricas.

Exemplos – O(1)
Algoritmo de Complexidade Constante
Acesso a um elemento de uma lista

```
def get_element_at_index(arr, index):
    return arr[index]

# Exemplo de uso
array = [10, 20, 30, 40, 50]
print(get_element_at_index(array, 2)) # Saída: 30
```


Exemplos – O(log n)
Algoritmo de Complexidade Logarítmica
Busca Binária

```
def binary_search(arr, target):
   left, right = 0, len(arr) - 1
  while left <= right:
     mid = (left + right) // 2
     if arr[mid] == target:
        return mid
     elif arr[mid] < target:
        left = mid + 1
     else:
        right = mid - 1
  return -1
# Exemplo de uso
array = [10, 20, 30, 40, 50]
print(binary_search(array, 30)) # Saída: 2
```


Exemplos – O(n)
Algoritmo de Complexidade Linear
Soma de Elementos de uma lista

```
def sum_of_elements(arr):
    total = 0
    for num in arr:
        total += num
    return total

# Exemplo de uso
array = [10, 20, 30, 40, 50]
print(sum_of_elements(array)) # Saída: 150
```


Exemplos – O(n²) Algoritmo de Complexidade Quadrática Ordenação Buble Sort

```
def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        for j in range(0, n-i-1):
            if arr[j] > arr[j+1]:
                  arr[j], arr[j+1] = arr[j+1], arr[j]
        return arr

# Exemplo de uso
array = [50, 20, 30, 10, 40]
print(bubble_sort(array)) # Saída: [10, 20, 30, 40, 50]
```


Exemplos – O(2ⁿ)
Algoritmo de Complexidade Exponencial
Fibonacci (Recursivo)

```
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

# Exemplo de uso
print(fibonacci(10)) # Saída: 55</pre>
```


VAMOS PARA A PRÁTICA ?!!!

ex1. Qual a ordem de complexidade? RETORNA O MAIOR VALOR EM UMA LISTA

```
def encontrar_maximo(lista):
    valor_maximo = lista[0]
    for numero in lista:
        if numero > valor_maximo:
            valor_maximo = numero
    return valor_maximo
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(encontrar_maximo(lista)) #
Saída: 50
```

Análise da Ordem de Complexidade

1.Inicialização do valor_maximo:

- valor_maximo = lista[0]
- Esta linha é executada uma vez, independentemente do tamanho da entrada.
- Complexidade: O(1)

```
def encontrar maximo(lista):
    valor_maximo = lista[0]
    for numero in lista:
        if numero > valor maximo:
            valor maximo = numero
    return valor maximo
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(encontrar_maximo(lista)) # Saída: 50
```

2. Loop for sobre a lista:

- for numero in lista:
- Este loop percorre todos os elementos da lista. Se a lista tiver n elementos, o loop executará n vezes.
- Complexidade: O(n)

```
def encontrar_maximo(lista):
    valor maximo = lista[0]
   for numero in lista:
        if numero > valor maximo:
            valor_maximo = numero
    return valor maximo
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(encontrar maximo(lista)) # Saída: 50
```

3. Retorno do valor_maximo:

- return valor_maximo
- Esta linha é executada uma vez, independentemente do tamanho da entrada.
- Complexidade: O(1)

```
def encontrar maximo(lista):
    valor_maximo = lista[0]
    for numero in lista:
        if numero > valor_maximo:
            valor maximo = numero
    return valor_maximo
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(encontrar_maximo(lista)) # Saída: 50
```

```
def encontrar_maximo(lista):
    valor_maximo = lista[0]
    for numero in lista:
        if numero > valor_maximo:
            valor_maximo = numero
    return valor_maximo
```

```
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(encontrar_maximo(lista)) #
Saída: 50
```

Para determinar a complexidade total do algoritmo, observamos a parte que mais contribui para o tempo de execução à medida que o tamanho da entrada "n" cresce...

Portanto, a complexidade desse algoritmo é: **O(n)**

- 1. Levar em consideração apenas as repetições do código
- 2. Verificar a complexidade das funções/métodos próprios da linguagem (se utilizado)
 - 3. Ignorar as constantes e utilizar o termo de maior grau

Ex2. Qual a ordem de complexidade? SOMA TODOS OS ELEMENTOS DE UMA LISTA

```
def somar_elementos(lista):
    soma = 0
    for numero in lista:
        soma += numero
    return soma
```

Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(somar_elementos(lista))
Saída: 150

Análise da Ordem de Complexidade

1.Inicialização da soma:

- soma = 0
- Esta linha é executada uma vez, independentemente do tamanho da entrada.
- Complexidade: O(1)

```
def somar_elementos(lista):
    soma = 0
    for numero in lista:
        soma += numero
    return soma

# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(somar_elementos(lista)) # Saída: 150
```

2. Loop for sobre a lista:

- for numero in lista:
- Este loop percorre todos os elementos da lista. Se a lista tiver n elementos, o loop executará n vezes.
- Complexidade: O(n)

```
def somar_elementos(lista):
    soma = 0
    for numero in lista:
        soma += numero
    return soma

# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(somar_elementos(lista)) # Saída: 150
```

3. Retorno do valor_maximo:

- return soma
- Esta linha é executada uma vez, independentemente do tamanho da entrada.
- Complexidade: O(1)

```
def somar_elementos(lista):
    soma = 0
    for numero in lista:
        soma += numero
    return soma

# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(somar_elementos(lista)) # Saída: 150
```

```
def somar_elementos(lista):
    soma = 0
    for numero in lista:
        soma += numero
    return soma
```

```
# Exemplo de uso
lista = [10, 20, 30, 40, 50]
print(somar_elementos(lista))
# Saída: 150
```

O laço for é o que mais contribui... PASSO 1...

Não existem outras funções (PASSO 2)

Não existem constantes (PASSO 3)

A complexidade desse algoritmo é:

O(n)


```
PASSO 1:
def exemplo(lista):
                                       PASSO 2:
    tamanho = len(lista)
    for i in range(tamanho):
                                      PASSO 3:
        for j in range(tamanho):
                                      A complexidade desse
            if (i ! = j):
                                      algoritmo é:
                return True
                                      O()
    return False
```

len() e range() \rightarrow O(1)

```
PASSO 1: O(n) * O(n)
def exemplo(lista):
                                       PASSO 2: O(1) e O(1)
    tamanho = len(lista)
    for i in range(tamanho):
                                       PASSO 3: O(n^2)
         for j in range(tamanho):
                                       A complexidade desse
            if (i ! = j):
                                       algoritmo é:
                 return True
                                       O(n^2)
    return False
```

len() e range() \rightarrow O(1)

Qual dos dois algoritmos abaixo apresenta menor complexidade?

```
def exitem_2_menores(idades):
  tamanho = len(idades)
  menor_idade = 200
  for i in range(tamanho):
     if idades[i] < menor_idade:</pre>
        menor_idade = idades[i]
  cont = 0
  for i in range(tamanho):
     if idades[i] == menor_idade:
        cont += 1
  return cont > 1
```

```
def exemplo6(idades):
   idades.sort()
   return idades[0] == idades[1]
```

```
Complexidade da função sort() O(n log n)
```

Qual dos dois algoritmos abaixo apresenta menor complexidade?

```
def exitem_2_menores(idades):
                                                 def exemplo6(idades):
  tamanho = len(idades)
                                                    idades.sort()
  menor_idade = 200
                                                    return idades[0] == idades[1]
  for i in range(tamanho):
     if idades[i] < menor_idade:</pre>
                                  O(n)
        menor idade = idades[i]
                                                                          O(n log n)
  cont = 0
  for i in range(tamanho):
     if idades[i] == menor_idade: O(n)
        cont += 1
  return cont > 1
                            O(n) + O(n) = 2 O(n) \rightarrow O(n)
```

Qual dos dois algoritmos abaixo apresenta menor complexidade?

```
def exitem_2_menores(idades):
  tamanho = len(idades)
                                                    idades.sort()
  menor_idade = 200
  for i in range(tamanho):
     if idades[i] < menor_idade:</pre>
                                  O(n)
        menor_idade = idades[i]
  cont = 0
  for i in range(tamanho):
     if idades[i] == menor_idade: O(n)
        cont += 1
  return cont > 1
                            O(n) + O(n) = 2 O(n) \rightarrow O(n)
```

def existem_2_menores(idades): return idades[0] == idades[1]

O(n log n)