The Mathematics of Origami

Thomas Bertschinger, Joseph Slote, Claire Spencer, & Samuel Vinitsky

Carleton College

February 22, 2016

Overview

- Origami Constructions
 - Axioms, Euclid &c.
- The Basics of Foldability
 - Local Flat Foldability
 - General Foldability
 - Knots
- Map Folding: An Open Problem
 - Overview
 - Linear Orderings
 - Formal Proof
- Meanders
 - Our Method

General

- i. Brief History
- ii. Independence

Seven Axioms of Origami

- i. Given two points p_1 and p_2 , we can fold a line connecting them.
- ii. Given two points p_1 and p_2 , we can fold p_1 onto p_2 .
- iii. Given two lines l_1 and l_2 , we can fold line l_1 onto l_2 .
- iv. Given a point p_1 and a line l_1 , we can make a fold perpendicular to l_1 passing through the point p_1 .

Seven Axioms of Origami

- v. Given two points p_1 and p_2 and a line l_1 , we can make a fold that places p_1 onto l_1 and passes through the point p_2 .
- vi. Given two points p_1 and p_2 and two lines l_1 and l_2 , we can make a fold that places p1 onto line l_1 and places p_2 onto line l_2 .
- vii. Given a point p_1 and two lines l_1 and l_2 , we can make a fold perpendicular to l_2 that places p_1 onto line l_1 .

Seven Axioms of Origami

- i. The first six axioms allow all quadratic and cubic equations with rational coefficients to be solved.
- ii. They also allow two of the three problems of antiquity, the trisection of an angle and the doubling of the cube, to be constructed.

Greek Problems of Antiquity

Problems of Antiquity

These were a trio of geometric problems whose solutions were attempted solely through the use of compass and straight-edge.

- i. Angle Trisection
- ii. Cube Duplication
- iii. Circle Squaring

Angle Trisection

INCLUDE PARTIALLY FOLDED DIAGRAMS

Cube Duplication

i.
$$\frac{\alpha}{\beta} = \sqrt[3]{2}$$

ii. Thus, a cube with a side length α will have twice the volume of a cube with side length β .

Squaring the Circle

- i. Impossible
- ii. π

Constructible Numbers

- i. Given two points p_0 and p_1 , construct a third point p_1' a distance $|p_0p_1|$ from point p_0 such that $\overline{p_0p_1'}$ is perpendicular to $\overline{p_0p_1}$.
- ii. Given two points p_0 and p_1 , a third point p_2 can be constructed such that p_2 is collinear with p_0 and p_1 , thus $|p_0p_1| = |p_1p_2|$.

Constructible Numbers

- iii. Given two constructible numbers α and β , we can construct $\frac{\alpha}{\beta}$, their ratio.
- iv. Given two constructible numbers α and β , we can construct their sum $\alpha + \beta$ or their difference $\alpha \beta$.
- v. Given two constructible numbers α and β , we can construct $\alpha\beta$, their product.

Given two constructible numbers α and β , we can construct $\frac{\alpha}{\beta}$, their ratio.

INCLUDE PARTIALLY FOLDED DIAGRAMS AS WELL AS FINAL FOLDED DIAGRAM

Constructible Numbers

- i. Since the set of constructible numbers is closed under addition, subtraction, multiplication, and division, it can be concluded that the set of constructible numbers form a field.
- ii. Ultimately, the field of origami constructible numbers are closed under taking both square roots and cube roots.
- iii. The construction of the square root of any constructible number implies the field of origami constructible numbers contains the field of compass and straightedge constructible numbers.

Future Work

- i. Efficiency
- ii. Optimality

.ocal Flat Foldability General Foldability Knots

Foldability

An example of a crease pattern:

Crease Assignments

A crease pattern doesn't contain all the information about a model, however.

The crease pattern with mountain-valley assignment:

Two questions

For a given crease pattern,

- i. is there a way to fold it flat?
- ii. is there a way to fold it at all?

Flat-Foldability Conditions

Kawasaki's Theorem (1989)

The alternate angles around a vertex must sum to 180° .

Flat-Foldability Conditions

Maekawa's Theorem (1986)

The sum of mountain + valley is ± 2 .

More Complicated Crease Patterns

How can we determine flat foldability for a more complicated pattern?

More Complicated Crease Patterns

Here's a crease pattern that can't fold flat!

Foldings

How can we capture the notion of a folded paper?

Foldings

How can we capture the notion of a folded paper?

135° 135°

Foldings

How can we capture the notion of a folded paper?

135° 135°

An Invalid Folding

This folding has self-intersection.

Valid Foldings

A valid folding is one that doesn't cause any self-intersecton.

Topology and Origami

Drawing pictures on Crease Patterns

Question

If we draw something on the flat piece of paper before folding it up, what can happen when we fold it?

Drawing pictures on Crease Patterns

Question

If we draw something on the flat piece of paper before folding it up, what can happen when we fold it?

We'll see what happens when we draw Jordan curves on the crease patterns, like the picture on the right.

What is a knot?

What is a knot?

This is the *trefoil knot*. We can't "untangle" it, no matter how hard we try.

Theorem

A folding of a crease pattern is valid if and only if every Jordan curve embedded in the paper before folding is mapped to the unknot after folding.

Invalid folding means intersection.

We can connect up the paper like this.

We can draw a curve like this.

Is it a knot?

Now what?

- Maybe a characteristic for crease patterns
- Finding ways to describe the complexity of a crease pattern or a folding (e.g. the number of self-intersections)

Determining flat-foldability

Question:

Is this crease pattern flat-foldable?

Determining flat-foldability

Question:

Is this crease pattern flat-foldable?

Introduction to Maps

Introduction to Maps

Introduction to Maps

Map Folding: An Open Problem

Open Problem:

How hard is it to determine whether or not a map is flat-foldable?

Map Folding: An Open Problem

Open Problem:

How hard is it to determine whether or not a map is flat-foldable?

Easier Problem:

How hard is it to determine whether or not a map is *flat-folded*?

Question:

How can we represent a folded form?

Question:

How can we represent a folded form?

 $\mathsf{red} \to \mathsf{yellow} \to \mathsf{green} \to \mathsf{blue}$

Question:

How can we represent a folded form?

 $\mathsf{red} \to \mathsf{yellow} \to \mathsf{green} \to \mathsf{blue}$

Note:

Each linear ordering corresponds with exactly one folded form.

Question:

How can we tell if a linear ordering is realizable by a given crease pattern?

Goal:

	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

Goal:

	?	?	?
?	?	?	?
?	?	?	?
?	?	?	?

Goal:

		?	?
	?	?	?
?	?	?	?
?	?	?	?

Goal:

			?
		?	?
	?	?	?
?	?	?	?

Goal:

Partial Ordering

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

Partial Ordering

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

Partial Ordering

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

A partial ordering P on S might be $\{(a \rightarrow b), (c \rightarrow d)\}$.

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

A partial ordering P on S might be $\{(a \rightarrow b), (c \rightarrow d)\}$.

In every linear ordering that satisfies P, we know $a \rightarrow b$ and $c \rightarrow d$.

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

A partial ordering P on S might be $\{(a \rightarrow b), (c \rightarrow d)\}.$

In every linear ordering that satisfies P, we know $a \rightarrow b$ and $c \rightarrow d$.

Note however that there are many such linear orderings:

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

A partial ordering P on S might be $\{(a \rightarrow b), (c \rightarrow d)\}.$

In every linear ordering that satisfies P, we know $a \rightarrow b$ and $c \rightarrow d$.

Note however that there are many such linear orderings:

$$a \rightarrow b \rightarrow c \rightarrow d$$

Definition:

A partial ordering P on a set S is a set of ordered pairs of elements of S that orders some of the elements of S.

Example:

$$S = \{a, b, c, d\}$$

A partial ordering P on S might be $\{(a \rightarrow b), (c \rightarrow d)\}.$

In every linear ordering that satisfies P, we know $a \rightarrow b$ and $c \rightarrow d$.

Note however that there are many such linear orderings:

$$a \rightarrow b \rightarrow c \rightarrow d$$

$$a \rightarrow c \rightarrow b \rightarrow d$$

$$c \rightarrow d \rightarrow a \rightarrow b$$

Goal:

Goal:

Goal:

Goal:

Goal:

Goal:

Goal:

Goal:

Goal:

Linear Orderings

Is satisfying this partial ordering enough to ensure foldability?

Linear Orderings

Is satisfying this partial ordering enough to ensure foldability? No!

Linear Orderings

Is satisfying this partial ordering enough to ensure foldability? No!

Butterflies

Butterflies

Butterflies

Butterfly Condition

Goal:

Enumerate the realizable configurations of twin butterfly pairs.

Butterfly Condition

Goal:

Enumerate the realizable configurations of twin butterfly pairs.

Butterfly Condition

Goal:

Enumerate the realizable configurations of twin butterfly pairs.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Proof: $[\Longrightarrow]$ We have already proven this direction.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Proof: $[\Longrightarrow]$ We have already proven this direction.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Proof: $[\implies]$ We have already proven this direction.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Proof: [\Leftarrow] Let's prove this direction now.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

Proof: [\iff] Let's prove this direction now.

Theorem: (Nishat and Whitesides 2013)

A linear ordering \mathcal{L} of faces is flat-foldable if and only if (i) \mathcal{L} satisfies the partial ordering given by the map and (ii) every pair of twin butterflies stacks or nests in \mathcal{L} .

 $Proof: [\longleftarrow]$ Let's prove this direction now.

Algorithm for determining whether or not a linear ordering is valid:

Algorithm for determining whether or not a linear ordering is valid:

Check that the linear ordering satisfies the partial ordering given by the map.

Algorithm for determining whether or not a linear ordering is valid:

- Check that the linear ordering satisfies the partial ordering given by the map.
- Check that every pair of twin butterflies stacks or nests.

Algorithm for determining whether or not a linear ordering is valid:

- Check that the linear ordering satisfies the partial ordering given by the map.
- Check that every pair of twin butterflies stacks or nests.

This can be done in $\mathcal{O}(mn)$ (linear) time, which is super fast!

Algorithm for determining whether or not a linear ordering is valid:

- Check that the linear ordering satisfies the partial ordering given by the map.
- Check that every pair of twin butterflies stacks or nests.

This can be done in $\mathcal{O}(mn)$ (linear) time, which is super fast!

Summary: If someone says "This map can be flat-folded, here is the folding," we can quickly test whether or not they were correct.

Counting Problems in Origami

- How many ways can we fold an $n \times m$ map?
 - How many ways can we fold a $1 \times m$ map?
- How many $n \times m$ map crease patterns can be folded, period?
 - How many ways can we fold a $1 \times m$ map?

Star Patterns

Star Patterns

Question: How many foldings are generated by star patterns with 2*n* creases?

Representing foldings of Star Patterns

$$n = 1 \left\{ \bigcirc \right\}$$
 $n = 2 \left\{ \bigcirc , \bigcirc \right\}$
 $n = 3 \left\{ \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc \right\}$

$$n=10$$
 $\left\{\begin{array}{c} \dots, \\ \end{array}\right.$

Order n	# Meanders M_n
1	1
2	2
3	8
4	42
5	262
:	:

Order n	# Meanders M _n
1	1
2	2
3	8
4	42
5	262
:	:
10	

Order n	# Meanders M_n
1	1
2	2
3	8
4	42
5	262
:	:
10	8,152,860
÷	:

Table: The sequence of Meandric Numbers

Game Plan

$$n=1$$
 O
$$n=2$$

Game Plan

Game Plan

Idea: Produce larger meanders by adding "twists" to smaller meanders

Question: Can we get all meanders by repeatedly doing this?

Question: Can we get all meanders by repeatedly doing this?

Answer: Sadly we cannot:

Meanders

Theorem

All meanders may be built from $m_1 = \circ$ with at most one shuffle after each twist.

Simple Meanders

Definition (Simple Meander)

A *simple meander* is a meander of order n that can be constructed without shuffling.

Simple Meanders

Theorem (Recurrence Relation for Simple Meanders)

Let
$$\mathbb{P}(k,n)=\{(x_1,x_2,\ldots,x_n):\sum x_i=k \text{ and } x_i\geq 0 \forall i\}.$$
 Then

$$r(n) = \sum_{i=1}^{n} \sum_{P \in \mathbb{P}(i, n+1)} \prod_{k=1}^{n+1} r(P_k)$$

$$H(n) = \sum_{i=1}^{n} r(i) \sum_{P \in \mathbb{P}(i,n)} \prod_{k=1}^{n} H(P_k)$$

$$M_n^s = 2H(n)$$

Make sure to stop by our exhibit in the Gould Library!

Opening Spring Term 2016

References

Rahnuma Islam Nishat and Sue Whitesides (2013)

Map Folding

Canadian Conference on Computational Geomery (2013), p49-52