Dynamic Discrete Choice

Problem Set 2 Empirical Industrial Organization

Zixuan, Anoosheh, Shuo

December 11, 2024

The value function is given by

$$\begin{split} V(i,c,p,\epsilon_t) &= \max_{x \in \{0,1\}} \left\{ u(i,c,p,x) + \epsilon(x) + \beta \mathbb{E}[V(i',c',p',\epsilon_{t+1})|i,c,p,x] \right\} \\ &= \max_{x \in \{0,1\}} \left\{ u(i,c,p,x) + \epsilon(x) \right. \\ &+ \beta \sum_{i',c',p'} \mathbb{E}_{\epsilon_{t+1}}[V(i',c',p',\epsilon_{t+1})|i,c,p,x] \Pr(i',c',p'|i,c,p,x) \right\} \end{split}$$

The utility function u(i, c, p, x) is given by

$$u(i,c,p,x) = -\lambda \mathbb{1}(c > 0)\mathbb{1}(i = 0) + \alpha c - xp$$

In terms of the variables (data that we have),

- *i* is the inventory level.
- c is the consumer's purchase decision (firm's sales).
- p is the price.
- x is the firm's purchase decision.
- $\epsilon(x)$ is choice specific random utility shock

In terms of the parameters (to be estimated, but actually given in this problem),

- $\lambda = 3$ is the penalty of stocking out (the consumer wants to buy, but the firm does not have the product).
- $\alpha = 2$ is the marginal utility of selling the product.
- $\beta = 0.99$ is the discount factor.

The variables follow a certain process. Here, we assume that the variables follow discrete Markov process. The variables in the next period:

• Inventory i will be the current level + firm's purchase - sales:

$$i' = \min\left\{\bar{i} = 4, i + x - c\right\}$$

• Consumer's purchase decision c (firm's sales):

$$c' = \begin{cases} 0 & \text{with probability } \gamma = 0.5\\ 1 & \text{with probability } 1 - \gamma = 0.5 \end{cases}$$

• Price p with two discrete states $p_s = 0.5$ and $p_r = 2$:

$$\Pi = \begin{pmatrix} 0.75 & 0.25 \\ 0.95 & 0.05 \end{pmatrix}$$

1 Question 1: Transition Probability

Since we have discrete state variables (i, c, p), the transition probability can be expressed in matrix form. Moreover, the transition of c and p are independent of each other, i and x. We only specify the transition of i here which takes values from 0 to 4. When x = 0,

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0.5
\end{pmatrix}$$
(1)

When x = 1,

$$\begin{pmatrix}
0.5 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
(2)

Then the transition probability matrix for state s is given by the Kronecker product of the transition matrices of i, c, and p, which is $P_s(x) = P_i(x) \otimes P_c \otimes P_p$.

2 Question 2: Expected Value Function

2.1 Expected/Intermediate Value Function $\bar{V}(i, c, p)$

We denote $\bar{V}(s) = \mathbb{E}_{\epsilon}[V(s,\epsilon)]$ as the expected value function (I used to call it intermediate value function).

$$\bar{V}(s) = \int \max_{x \in \{0,1\}} \left\{ u(s,x) + \epsilon(x) + \beta \sum_{s'} \mathbb{E}_{\epsilon_{t+1}} [V(s', \epsilon_{t+1})|s, x] \Pr(s'|s, x) \right\} f(\epsilon) d\epsilon$$

$$= \int \max_{x \in \{0,1\}} \left\{ u(s,x) + \epsilon(x) + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s, x) \right\} f(\epsilon) d\epsilon \tag{3}$$

Since ϵ is assumed to follow Type 1 Extreme Value distribution (which allows the integral over the maximum to collapse into a log-sum-exp form¹), we have

$$\bar{V}(s) = \gamma + \ln \left(\sum_{x \in \{0,1\}} \exp \left\{ u(s,x) + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s,x) \right\} \right)$$
(4)

2.2 Numerical solution of $\bar{V}(i, c, p)$

We use the equation 4 to solve for $\bar{V}(i,c,p)$. I rewrite the equations for all s in matrix form. Since we have a total of $20 = 5 \times 2 \times 2$ discrete state s, denote

- \bar{V} as a vector of length 20.
- u_0 as a vector of length 20 where the *i*-th element is u(s,0).
- M_0 as a matrix of size 20×20 where the *i*-th row is the vector of $\Pr(s'|s,0)$

Then we have

$$\bar{V} = \gamma + \ln\left(\exp\left(u_0 + \beta M_0 \bar{V}\right) + \exp\left(u_1 + \beta M_1 \bar{V}\right)\right) \tag{5}$$

The goal is to numerically solve for equation 5 for \bar{V} . The result is shown in table 1.

 $^{^{1}}$ I am not sure when and whether to include the Euler-Mascheroni constant γ

	Inventory	Consumer purchase	Price	Expected value function
1	0	0	0.50	172.41
2	0	0	2.00	171.53
3	0	1	0.50	171.41
4	0	1	2.00	170.53
5	1	0	0.50	175.39
6	1	0	2.00	174.29
7	1	1	0.50	177.39
8	1	1	2.00	176.29
9	2	0	0.50	177.07
10	2	0	2.00	176.41
11	2	1	0.50	179.07
12	2	1	2.00	178.41
13	3	0	0.50	178.09
14	3	0	2.00	177.60
15	3	1	0.50	180.09
16	3	1	2.00	179.60
17	4	0	0.50	178.64
18	4	0	2.00	178.29
19	4	1	0.50	180.64
_20	4	1	2.00	180.29

Table 1: Expected value function $\bar{V}(i,c,p)$ for each state s=(i,c,p)

3 Question 3: Simulation

- 1. At period t = 0, simulate state s as well as the shock $\epsilon \sim \text{EV}(1)$.
- 2. Find the optimal choice x given current s and ϵ by the following

$$x^* = \operatorname*{arg\,max}_{x \in \{0,1\}} \left\{ u(s,x) + \epsilon + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s,x) \right\}$$

- 3. Given x^* , simulate a new state s' from the transition matrix M_{x^*} .
- 4. Repeat step 2 and 3 for T periods.

The summary statistics are shown in the table 2.

- 1. frequency of positive purchases,
- 2. probability of purchasing on sale,
- 3. average duration between sales,
- 4. average duration between purchases

	statistic	value
1	Frequency of purchase	0.55
2	Probability of purchase when sales	0.62
3	Average duration between sales	1.27
4	Average duration between purchases	1.82

Table 2: Summary statistics of the simulation

4 Question 4: Estimate $\bar{V}(i,c,p)$ using CCP method

In this question, we **rewrite** equation 3 in terms of the choice probability Pr(x|s).

$$\bar{V}(s) = \sum_{x \in \{0,1\}} \Pr(x|s) \left\{ u(s,x) + \mathbb{E}[\epsilon(x)|s,x] + \beta \sum_{x \in \{0,1\}} \bar{V}(s') \Pr(s'|s,x) \right\}$$
(6)

Note that the terms that are known are

- u(s,x) is the **utility function** which is explicitly given.
- Pr(s'|s,x) is the **transition probability** of s given s,x (see equation 1 and 2).

The unknown terms are

- Pr(x|s) is the **choice probability**.
- $E(\epsilon(x)|s,x)$ is the expectation of $\epsilon(x)$ conditional on s and x being the optimal choice. Under the assumption of T1EV, we have

$$E(\epsilon(x)|s,x) = \gamma - \ln(\Pr(x|s))$$

• $\bar{V}(s)$ is the **expected value function**.

In our binary choice case (with the usual assumption on ϵ), we have

$$\bar{V}(s) = \sum_{x \in \{0,1\}} \Pr(x|s) \left\{ u(s,x) + \gamma - \ln(\Pr(x|s)) + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s,x) \right\}
= \gamma + \Pr(x=0|s) \left\{ u(s,0) + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s,0) \right\}
+ \Pr(x=1|s) \left\{ u(s,1) + \beta \sum_{s'} \bar{V}(s') \Pr(s'|s,1) \right\}$$
(7)

The next steps are

1. Estimate the choice probability Pr(x|s).

	Inventory	Consumer purchase	Price	\bar{V}	\bar{V}_{ccp}
1	0	0	0.50	172.41	184.37
2	0	0	2.00	171.53	183.79
3	0	1	0.50	171.41	183.18
4	0	1	2.00	170.53	182.88
5	1	0	0.50	175.39	186.51
6	1	0	2.00	174.29	185.62
7	1	1	0.50	177.39	188.65
8	1	1	2.00	176.29	187.65
9	2	0	0.50	177.07	188.11
10	2	0	2.00	176.41	187.42
11	2	1	0.50	179.07	190.09
12	2	1	2.00	178.41	189.40
13	3	0	0.50	178.09	188.87
14	3	0	2.00	177.60	188.40
15	3	1	0.50	180.09	190.95
16	3	1	2.00	179.60	190.46
17	4	0	0.50	178.64	189.23
18	4	0	2.00	178.29	188.93
19	4	1	0.50	180.64	191.24
_20	4	1	2.00	180.29	190.91

Table 3: Comparison of $\bar{V}(s)$ estimated by CCP method with the true value

2. Given the known $\Pr(s'|s,x)$ and u(s,x), along with the estimated $\Pr(x|s)$, solve equation 7 for $\bar{V}(s)$.

The results are tabulated against the $\bar{V}(s)$ estimated in question 2 in table 3. The reason that second estimate is different/imprecise is lies in the fact that the choice probability $\Pr(x|s)$ is not precisely estimated. I have (naively) applied the frequency estimator. It may be improved by applying some other non-parametric estimator (along with some smoothing). There are no other sources of differences because all the u(s,x) and transition probabilities are taken from the true model.