R denotes a ring.

- **27.** A subset S of R is a *subring* if it is a ring under the (restrictions of) the operations in R. Notation: $S \leq R$.
- (a) How can we reformulate the first question asked in Problem 21 using subrings concerning parts 21b, c, f, and g?
- (b) Prove that a non-empty subset S is a subring in R iff
 - (b1) it is closed under addition, multiplication, and forming the negatives of the elements, i.e. $(a, b \in S \Rightarrow a + b, ab, -a \in S)$; or
 - (b2) it is closed under subtraction and multiplication, i.e. $(a, b \in S \Rightarrow a b, ab \in S)$.
- (c) Verify that the zero element of S is necessarily the same as the zero element of R, and the analog holds for the negatives of the elements, as well.
- **28.** Let $S \neq \{0\}$ be a subring in R. True or false:
- (a) If R is commutative, then so is S. (b) If S is commutative, then so is R.
- (c) If R is zero-divisor free, then so is S. (d) If S is zero-divisor free, then so is R.
- (e) If R is a field, then so is S.
- (f) If S is a field, then so is R.
- (g) If R has an identity, then so does S. (h) If S has an identity, then so does R.
- (i) If both R and S have identities, then these are equal.
- (j) If R is zero-divisor free and both R and S have identities, then these are equal.
- (k) If S is zero-divisor-free and both R and S have identities, then these are equal.
- **29.** (a) Prove that the intersection of arbitrarily many subrings is a subring again.
 - (b) Find a (simple) necessary and sufficient condition for the union of two subrings to be a subring.
- **30.** Assume that R has an identity. Show that the smallest subring containing the identity is (essentially) \mathbf{Z} or \mathbf{Z}_n for some n.
- **31.** A subset I in R is an ideal if it is a subring and is closed under multiplication with any element of R, i.e. $i \in I, r \in R \Rightarrow ri \in I, ir \in I$. Notation: $I \triangleleft R$.
- (a) Find the number of subrings and ideals in (a1) \mathbf{Z} ; (a2) \mathbf{R} ; (a3) $\mathbf{Q}[x]$; (a4) \mathbf{Z}_{20} .
- (b) Which ideals of **Z** contain both 18 and 45?
- **32.** Verify the following propositions.
- (a) A field has exactly two ideals.
- (b) Also $\mathbf{R}^{n \times n}$ has exactly two ideals.
- (c) If a commutative ring with identity has exactly two ideals, then it is a field.
- **33.** Let H_1 and H_2 subsets in R, and define $H_1 + H_2 = \{h_1 + h_2 \mid h_i \in H_i\}$. True or false:
- (a) If H_1 and H_2 are subrings, then so is also $H_1 + H_2$.
- (b) If H_1 and H_2 are ideals, then so is also $H_1 + H_2$.
- **34.** (a) Prove that every subring is an ideal in **Z** and \mathbf{Z}_n .
 - (b) If R has an identity, then also the converse of (a) is true.

In Problems 35 and 36, we assume that R is a commutative ring with identity.

- **35.** The principal ideal generated by $c \in R$ is the set (c) of all multiples of c, i.e. $(c) = \{rc \mid r \in R\}$.
- (a) Prove that (c) is an ideal, $c \in (c)$, and if an ideal I contains c, then $I \supseteq (c)$, i.e. (c) is the *smallest* (or tightest) ideal containing c.
- (b) Show that all ideals in \mathbf{Z} and \mathbf{Z}_n are principal ideals.
- (c) Verify $a \mid b \iff (b) \subseteq (a)$ in **Z**.
- **36.** The ideal generated by c_1, c_2, \ldots, c_k is $(c_1, c_2, \ldots, c_k) = \{r_1c_1 + r_2c_2 + \ldots + r_kc_k \mid r_i \in R\}$.
- (a) Verify that (c_1, \ldots, c_k) is the smallest ideal containing c_1, \ldots, c_k .
- (b) Describe the ideal (21, 35) in **Z**. Generalize the observation.
- (c) Show that the ideal (2, x) is not a principal ideal in $\mathbf{Z}[x]$, but it is a principal ideal in $\mathbf{Q}[x]$.

freud@caesar.elte.hu

freud.web.elte.hu/bsm/index.html