

目录

化学反应的热风险

冷却失效模型

严重度评价准则

可能性评价准则

工艺热风险评价

MTT 的注意事项

风险

潜在事故的严重度和发生 可能性的组合 化学反应的热风险

O,

由反应失控及其相关后果(如 引发的二次效应)带来的风险

- (1) 通过冷却系统是否能控制反应物料的工艺温度? q_{rx}, q_{ex}
- (2) 目标反应失控后体系温度会达到什么样的水平? $MTSR = T_p + X_{ac} \cdot \Delta T_{ad,r}$
- (3) 二次反应失控后温度将达到什么样的水平? $T_{\text{end}} = \text{MTSR} + \Delta T_{\text{ad,d}}$
- (4)目标反应在什么时刻发生冷却失效会导致最严重的后果?累积,稳定性
- (5) 目标反应发生失控有多快? TMR ad,r =
- (6) 从 MTSR 开始,二次分解反应的绝热诱导期有多长? $TMR_{ad,d} = \frac{C_p TM MTSR}{q_{MTSR} E_d}$

苏黎世危险性分析法(Zurich Hazard Analysis, ZHA)

失控反应严重度的评价准则				
三等级分级准则	四等级分级准则	$\Delta T_{ad}/{ m K}$	Q'的数量级/(kJ/kg)	
高的(High)	灾难性的(Catastrophic)	> 400	> 800	
	危险的(Critical)	$200\sim400$	$400 \sim 800$	
中等的(Medium)	中等的(Medium)	$50\sim200$	$100\sim400$	
低的 (Low)	可忽略的(Negligible)	<50 且无压力	< 100	
		Į.		

注:对反应失控严重程度的判断除绝热温升外还要结合体系压力、溶剂挥发速率、有毒气体或蒸气的扩散范围等因素。

苏黎世危险性分析法(Zurich Hazard Analysis, ZHA)

失控反应发生可能性的评价判据				
三等级分级准则	六等级分级准则	TMR _{ad} /h		
高的(High)	频繁发生的(Catastrophic)	< 1		
	很可能发生的(Critical)	$1 \sim 8$		
中等的(Medium)	偶尔发生的 (Medium)	$8\sim24$		
低的 (Low)	很少发生的(Negligible)	$24 \sim 50$		
	极少发生的(Negligible)	$50 \sim 100$		
	几乎不可能发生的(Negligible)	> 100		

注:这种关于热风险可能性的分级评价准则仅适用于合成反应过程,而不适用于物料的存储过程。

工艺热风险评价

根据 $T_{p,}$ MTSR_、MTT和 T_{D24} 四个温度水平对危险度分级

- 建议: 1、2级不必采取特殊处理措施; 2级要避免热累积;
 - 3、4级需要考虑必要的备用冷却系统或紧急的泄料装置等技术措施;
 - 5级重新设计工艺路线。

MTT 的注意事项

在开放体系中: 蒸气流率

