

Introduction to the GW approximation: common approximations & pratical implementations

A. Guandalini

Outline

- Physics of excited states;
- from many-body perturbation theory to the GW approximation;
- GW in practice;
- recent advancement.

Excited state spectroscopy

Direct photoemission

Inverse photoemission

Excited state spectroscopy

Direct photoemission

Inverse photoemission

Optical absorption

Electron energy loss[1]

In: electrons
Out: electrons

Excited state spectroscopy

Direct (inverse) photoemission spectroscopy^[1]

A Photoemission

$$E(N) + \hbar\omega = E(N-1) + [\phi_W + E_{\rm kin}]$$

$$E(N) - E(N-1) = \left[\phi_W + E_{\rm kin}\right] - \hbar\omega$$

Direct (inverse) photoemission spectroscopy^[1]

A Photoemission

Inverse Photoemission

$$E(N) + \hbar\omega = E(N-1) + [\phi_W + E_{\rm kin}]$$

$$E(N) - E(N-1) = [\phi_W + E_{\text{kin}}] - \hbar\omega \qquad E(N+1) - E(N) = E_k + \hbar\omega$$

$$E(N+1) - E(N) = E_k + \hbar\omega$$

Direct (inverse) photoemission spectroscopy^[1]

A Photoemission

$$E(N) + \hbar\omega = E(N-1) + [\phi_W + E_{\rm kin}]$$

$$E(N) - E(N-1) = [\phi_W + E_{\rm kin}] - \hbar\omega$$

Optical absorption

Beer-Lambert law: $I = I_0 e^{-\alpha x}$

$$\alpha(\omega) \propto \mathrm{Im}[\epsilon_{\mathrm{M}}(\omega)]$$

No change in electron number

Optical absorption

Beer-Lambert law: $I = I_0 e^{-\alpha x}$

$$\alpha(\omega) \propto \mathrm{Im}[\epsilon_{\mathrm{M}}(\omega)]$$

No change in electron number

Optical absorption

Beer-Lambert law: $I = I_0 e^{-\alpha x}$

$$\alpha(\omega) \propto \text{Im}[\epsilon_{\rm M}(\omega)]$$

No change in electron number

Charged and neutral excitations

Fundamental gap

$$E_{\rm g}^{\rm fund} = E_0(N+1) - E_0(N-1)$$

Optical gap

$$E_{\rm g}^{\rm opt} = E_1(N) - E_0(N)$$

Charged and neutral excitations

Fundamental gap

$$E_{\rm g}^{\rm fund} = E_0(N+1) - E_0(N-1)$$

GW approximation

$$= G_0 + G_0$$

$$\epsilon_{n\mathbf{k}}^{\mathrm{QP}} \approx \varepsilon_{n\mathbf{k}}^{0} + Z_{n\mathbf{k}} \left\langle \psi_{n\mathbf{k}}^{0} \middle| \Sigma(\varepsilon_{n\mathbf{k}}^{0}) 0 \middle| \psi_{n\mathbf{k}}^{0} \right\rangle$$

Optical gap

$$E_{\rm g}^{\rm opt} = E_1(N) - E_0(N)$$

Bethe-Salpeter equation

$$L_{v'c'\mathbf{k}'}^{vc\mathbf{k}}(\mathbf{Q},\omega) = L_{0v'c'\mathbf{k}'}^{vc\mathbf{k}}(\mathbf{Q},\omega) + L_{0v'c'\mathbf{k}'}^{\overline{vc\mathbf{k}}}(\omega) \Xi_{0vc\mathbf{k}}^{\overline{vc}\mathbf{k}}(\mathbf{Q}) L_{\overline{vc}}^{\underline{vc}\mathbf{k}}(\mathbf{Q},\omega)$$

Charged and neutral excitations

Fundamental gap

$$E_{\rm g}^{\rm fund} = E_0(N+1) - E_0(N-1)$$

GW approximation

$$= G_0 + G_0$$

$$\epsilon_{n\mathbf{k}}^{\mathrm{QP}} \approx \varepsilon_{n\mathbf{k}}^{0} + Z_{n\mathbf{k}} \left\langle \psi_{n\mathbf{k}}^{0} \middle| \Sigma(\varepsilon_{n\mathbf{k}}^{0}) 0 \middle| \psi_{n\mathbf{k}}^{0} \right\rangle$$

Optical gap

$$E_{\rm g}^{\rm opt} = E_1(N) - E_0(N)$$

Bethe-Salpeter equation

$$\begin{array}{c} L \\ \end{array} = \begin{array}{c} L_0 \\ \end{array} + \begin{array}{c} L_0 \\ \end{array}$$

$$L_{v'c'\mathbf{k}'}^{vc\mathbf{k}}(\mathbf{Q},\omega) = L_{0v'c'\mathbf{k}'}^{vc\mathbf{k}}(\mathbf{Q},\omega) + L_{0v'c'\mathbf{k}'}^{\overline{vc\mathbf{k}}}(\omega) \Xi_{0vc\mathbf{k}}^{\overline{vc\mathbf{k}}}(\mathbf{Q}) L_{\overline{vc}}^{\underline{vc\mathbf{k}}}(\mathbf{Q},\omega)$$

The band gap problem of DFT

Finite sized systems (Δ SCF):

$$E_{\rm g} = E_0^{\rm DFT}(N+1) - 2E_0^{\rm DFT}(N) + E_0^{\rm DFT}(N-1)$$

with semi-local functionals: reasonable approximation for molecules

The band gap problem of DFT

Finite sized systems (Δ SCF):

$$E_{\rm g} = E_0^{\rm DFT}(N+1) - 2E_0^{\rm DFT}(N) + E_0^{\rm DFT}(N-1)$$

with semi-local functionals: reasonable approximation for molecules

Add an electron to a solid

infinitesimal charge per cell $\rightarrow E_{\rm g} \approx E_{\rm KS}$

the KS gap does not reproduce the band gap

The band gap problem of DFT

Finite sized systems (Δ SCF):

$$E_{\rm g} = E_0^{\rm DFT}(N+1) - 2E_0^{\rm DFT}(N) + E_0^{\rm DFT}(N-1)$$

with semi-local functionals: reasonable

N.B. there are advanced functionals that reproduce the gap, but this is a different field of research

Add an electron to a solid

infinitesimal charge per cell $\rightarrow E_{\rm g} \approx E_{\rm KS}$

the KS gap does not reproduce the band gap

From many-body perturbation theory to the GW approximation

One-particle Green function definition

$$G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = -i \left\langle \Psi_0^N \middle| \hat{T}[\hat{\psi}(\mathbf{r}_1, t_1) \hat{\psi}^{\dagger}(\mathbf{r}_2, t_2)] \middle| \Psi_0^N \right\rangle$$

Probability amplitude for the propagation of an additional electron from (r_2,t_2) to (r_1,t_1) or an additional hole from (r_1,t_1) to (r_2,t_2) .

electron

hole

One-particle Green function definition

$$G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = -i \left\langle \Psi_0^N \middle| \hat{T} [\hat{\psi}(\mathbf{r}_1, t_1) \hat{\psi}^{\dagger}(\mathbf{r}_2, t_2)] \middle| \Psi_0^N \right\rangle$$

Probability amplitude for the propagation of an additional electron from (r_1,t_1) to (r_1,t_1) or an additional hole from (r_1,t_1) to (r_2,t_2) .

Lehmann representation:

$$G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \lim_{\eta \to 0^+} \sum_j \frac{f_j(\mathbf{r}_1) f_j^*(\mathbf{r}_2)}{\omega - \epsilon_j + i\eta \operatorname{sgn}(\epsilon_j - \mu)}$$

electron

hole

One-particle Green function definition

$$G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = -i \left\langle \Psi_0^N \middle| \hat{T} [\hat{\psi}(\mathbf{r}_1, t_1) \hat{\psi}^{\dagger}(\mathbf{r}_2, t_2)] \middle| \Psi_0^N \right\rangle$$

Probability amplitude for the propagation of an additional electron from (r_2,t_2) to (r_1,t_1) or an additional hole from (r_1,t_1) to (r_2,t_2) .

Lehmann representation:

$$G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \lim_{\eta \to 0^+} \sum_j \frac{f_j(\mathbf{r}_1) f_j^*(\mathbf{r}_2)}{\omega - \epsilon_j + i\eta \operatorname{sgn}(\epsilon_j - \mu)}$$

Physics included in G:

$$\langle \Psi_0^N | \hat{\psi}(\mathbf{r_1}) | \Psi_j^{N+1} \rangle \quad \epsilon_j > \mu$$

$$f_j(\mathbf{r_1}) =$$

$$\langle \Psi_j^{N-1} | \hat{\psi}(\mathbf{r_1}) | \Psi_0^N \rangle \quad \epsilon_j < \mu$$

$$\epsilon_j = egin{array}{c} E(N+1,j) - E(N) & \epsilon_j > \mu \ E(N) - E(N-1,j) & \epsilon_j < \mu \end{array}$$

$$\epsilon_j < \mu$$

One-particle Green function definition

$$G(\mathbf{r}_1, t_1, \mathbf{r}_2, t_2) = -i \left\langle \Psi_0^N \middle| \hat{T} [\hat{\psi}(\mathbf{r}_1, t_1) \hat{\psi}^{\dagger}(\mathbf{r}_2, t_2)] \middle| \Psi_0^N \right\rangle$$

Probability amplitude for the propagation of an additional electron from (r_2,t_2) to (r_1,t_1) or an additional hole from (r_1,t_1) to (r_2,t_2) .

Lehmann representation:

$$G(\mathbf{r}_1, \mathbf{r}_2, \omega) = \lim_{\eta \to 0^+} \sum_j \frac{f_j(\mathbf{r}_1) f_j^*(\mathbf{r}_2)}{\omega - \epsilon_j + i\eta \operatorname{sgn}(\epsilon_j - \mu)}$$

Physics included in G:

$$f_{j}(\mathbf{r_{1}}) = \begin{cases} \langle \Psi_{0}^{N} | \hat{\psi}(\mathbf{r_{1}}) | \Psi_{j}^{N+1} \rangle & \epsilon_{j} > \mu \\ f_{j}(\mathbf{r_{1}}) = & \epsilon_{j} = \begin{cases} E(N+1,j) - E(N) & \epsilon_{j} > \mu \\ E(N) - E(N-1,j) & \epsilon_{j} < \mu \end{cases}$$

$$\langle \Psi_{j}^{N-1} | \hat{\psi}(\mathbf{r_{1}}) | \Psi_{0}^{N} \rangle \quad \epsilon_{j} < \mu$$

Goal: find the poles of the one particle Green function.

hole

Many-body perturbation theory

We split the Hamiltonian into bare and interaction:

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$

$$\hat{H}_0 = \hat{H}_{KS} \qquad \hat{H}_1 = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') \hat{V}(\mathbf{r}, \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}) - \int d\mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{v}_{Hxc}(\mathbf{r}) \hat{\psi}(\mathbf{r})$$

Many-body perturbation theory

We split the Hamiltonian into bare and interaction:

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$

$$\hat{H}_0 = \hat{H}_{KS} \qquad \hat{H}_1 = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') \hat{V}(\mathbf{r}, \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}) - \int d\mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{v}_{Hxc}(\mathbf{r}) \hat{\psi}(\mathbf{r})$$

We start from the KS Green function

$$G_0(\mathbf{r}_1, \mathbf{r}_2, \omega) = \lim_{\eta \to 0^+} \sum_s \frac{\psi_0(\mathbf{r}_1)\psi_0^*(\mathbf{r}_2)}{\omega - \epsilon_0 + i\eta \operatorname{sgn}(\epsilon_0 - \mu)}$$

then use many-body perturbation theory with infinite resummation, Feynman diagrams etc.

Many-body perturbation theory

We split the Hamiltonian into bare and interaction:

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$

$$\hat{H}_0 = \hat{H}_{KS} \qquad \hat{H}_1 = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \hat{\psi}^{\dagger}(\mathbf{r}) \hat{\psi}^{\dagger}(\mathbf{r}') \hat{V}(\mathbf{r}, \mathbf{r}') \hat{\psi}(\mathbf{r}') \hat{\psi}(\mathbf{r}) - \int d\mathbf{r} \hat{\psi}^{\dagger}(\mathbf{r}) \hat{v}_{Hxc}(\mathbf{r}) \hat{\psi}(\mathbf{r})$$

We start from the KS Green function

$$G_0(\mathbf{r}_1, \mathbf{r}_2, \omega) = \lim_{\eta \to 0^+} \sum_s \frac{\psi_0(\mathbf{r}_1)\psi_0^*(\mathbf{r}_2)}{\omega - \epsilon_0 + i\eta \operatorname{sgn}(\epsilon_0 - \mu)}$$

then use many-body perturbation theory with infinite resummation, Feynman diagrams etc.

Dyson equation for the interacting G

The quasi-particle concept

Poles of G are treated as quasi-particles: collective modes which behave qualitatively as a single-particle excitation

Screened interaction W

$$W(\mathbf{r}, \mathbf{r}', \omega) = \int d\mathbf{r}_1 e^{-1}(\mathbf{r}, \mathbf{r}_1, \omega) v(\mathbf{r}_1 - \mathbf{r}') = v(\mathbf{r} - \mathbf{r}') + \int d\mathbf{r}_1 n_{\text{ind}}(\mathbf{r}, \mathbf{r}_1, \omega) v(\mathbf{r}_1 - \mathbf{r}')$$

Classical (Hartree) interaction between additional charge and polarization charge

Screened interaction W

$$W(\mathbf{r}, \mathbf{r}', \omega) = \int d\mathbf{r}_1 \epsilon^{-1}(\mathbf{r}, \mathbf{r}_1, \omega) v(\mathbf{r}_1 - \mathbf{r}') = v(\mathbf{r} - \mathbf{r}') + \int d\mathbf{r}_1 n_{\text{ind}}(\mathbf{r}, \mathbf{r}_1, \omega) v(\mathbf{r}_1 - \mathbf{r}')$$

Classical (Hartree) interaction between additional charge and polarization charge

$$n_{\mathrm{ind}}(\mathbf{r}, \mathbf{r}', \omega) = \int d\mathbf{r}_1 P^0(\mathbf{r}, \mathbf{r}_1, \omega) V^{\mathrm{tot}}(\mathbf{r}_1 - \mathbf{r}')$$

$$\epsilon(\mathbf{r}, \mathbf{r}', \omega) = \delta(\mathbf{r} - \mathbf{r}') - \int d\mathbf{r}_1 v(\mathbf{r} - \mathbf{r}_1) P^0(\mathbf{r}_1, \mathbf{r}', \omega)$$

$$P(1,2) \approx P^{0}(1,2) = G^{0}(1,2)G^{0}(2,1)$$
 random phase approximation (RPA)

Hedin's equations

1)
$$\Sigma(1,2) = iG(1,\bar{4})W(1^+,\bar{3})\Gamma(\bar{4},2;\bar{3})$$

2)
$$W(1,2) = v_c(1,2) + v_c(1,\bar{3})P(\bar{3},\bar{4})W(\bar{4},2)$$
 www = ---+ ---

3)
$$P(1,2) = -iG(1,\bar{3})G(\bar{4},1)\Gamma(\bar{3},\bar{4};2)$$

4)
$$\Gamma(1,2;3) = \delta(1,2)\delta(1,3)$$
 $= - + \frac{\delta\Sigma(1,2)}{\delta G(\bar{4},\bar{5})}G(\bar{4},\bar{6})G(\bar{7},\bar{5})\Gamma(\bar{6},\bar{7};3)$

5)
$$G(1,2) = G_0(1,2) + G_0(1,\bar{3})\Sigma(\bar{3},\bar{4})G(\bar{4},2)$$
 \longrightarrow = \longrightarrow + \longrightarrow

The GW approximation

1)
$$\Sigma(1,2) = iG(1,\bar{4})W(1^+,\bar{3})\underline{\Gamma(\bar{4},2;\bar{3})}$$

2)
$$W(1,2) = v_c(1,2) + v_c(1,\bar{3})P(\bar{3},\bar{4})W(\bar{4},2)$$

3)
$$P(1,2) = -iG(1,\bar{3})G(\bar{4},1)\Gamma(\bar{3},\bar{4};2)$$

4)
$$\Gamma(1,2;3) = \delta(1,2)\delta(1,3)$$

$$+ \frac{\delta\Sigma(1,2)}{\delta G(\bar{4},\bar{5})}G(\bar{4},\bar{6})G(\bar{7},\bar{5})\Gamma(\bar{6},\bar{7};3)$$

5)
$$G(1,2) = G_0(1,2) + G_0(1,\bar{3})\Sigma(\bar{3},\bar{4})G(\bar{4},2)$$

The G₀W₀ approximation

1)
$$\Sigma(1,2) = iG_0(1,2)W_0(1^+,2)$$

2)
$$W_0(1,2) = v_c(1,2) + v_c(1,\bar{3})P_0(\bar{3},\bar{4})W_0(\bar{4},2)$$
 where $\bar{4}$

3)
$$P_0(1,2) = -iG_0(1,2)G_0(2,1)$$

4)
$$\Gamma(1,2;3) = \delta(1,2)\delta(1,3)$$

5)
$$G(1,2) = G_0(1,2) + G_0(1,\bar{3})\Sigma(\bar{3},\bar{4})G(\bar{4},2)$$
 \longrightarrow = \longrightarrow + \longrightarrow

The G₀W₀ approximation

1)
$$\Sigma(1,2) = iG_0(1,2)W_0(1^+,2)$$

2)
$$W_0(1,2) = v_c(1,2) + v_c(1,\bar{3})P_0(\bar{3},\bar{4})W_0(\bar{4},2)$$

3)
$$P_0(1,2) = -iG_0(1,2)G_0(2,1)$$

4)
$$\Gamma(1,2;3) = \delta(1,2)\delta(1,3)$$

5)
$$G(1,2) = G_0(1,2) + G_0(1,\bar{3})\Sigma(\bar{3},\bar{4})G(\bar{4},2)$$
 \longrightarrow = \longrightarrow +

Basis set representation

	Plane waves $\{ arphi_{\mathbf{G}}(\mathbf{r}) \}$	KS states $\{\psi_i^{KS}(\mathbf{r})\}$	
$\chi^0(1,2)$	$\chi^0_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$	$\chi^0_{ij}(\omega)$	\Diamond
$v_c(1-2)$	$v_c(\mathbf{q} + \mathbf{G})$	$v_{c,ij}^{kl}$	
W(1,2)	$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$	$W_{ij}^{kl}(\omega)$	^
$G_0(1,2)$	$G_{0,\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$	$G_{0,i}(\omega)\delta_{ij}$	
$\Sigma(1,2)$	$\Sigma_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$	$\Sigma_{ij}(\omega)$	

Matrix elements to change base: $\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G}) = \langle \psi_{n\mathbf{k}} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | \psi_{m\mathbf{k} - \mathbf{q}} \rangle$

Convergence parameters: $E_{\rm cut}$, $N_{\rm bnds}$. Interconnected!

Basis set representation

	Plane waves $\{ arphi_{\mathbf{G}}(\mathbf{r}) \}$	KS states $\{\psi_i^{KS}(\mathbf{r})\}$	
$\chi^0(1,2)$	$\chi^0_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$		
$v_c(1-2)$	$v_c(\mathbf{q}+\mathbf{G})$		
W(1,2)	$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$		^
$G_0(1,2)$		$G_{0,i}(\omega)\delta_{ij}$	
$\Sigma(1,2)$		$\Sigma_{ij}(\omega)$	

Matrix elements to change base: $\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G}) = \langle \psi_{n\mathbf{k}} | e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | \psi_{m\mathbf{k} - \mathbf{q}} \rangle$

Convergence parameters: $E_{\rm cut}$, $N_{\rm bnds}$. Interconnected!

Non-linear eigenvalue problem:

$$\hat{H}^{\text{KS}} f_{n\mathbf{k}}^{\text{QP}}(\mathbf{r}) + \int d\mathbf{r}' \left[\Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_{n\mathbf{k}}^{\text{QP}}) - \delta(\mathbf{r} - \mathbf{r}') v_{xc}(\mathbf{r}) \right] f_{n\mathbf{k}}^{\text{QP}}(\mathbf{r}') = \varepsilon_{n\mathbf{k}}^{\text{QP}} f_{n\mathbf{k}}^{\text{QP}}(\mathbf{r})$$

Non-linear eigenvalue problem:

$$\hat{H}^{KS} f_{n\mathbf{k}}^{QP}(\mathbf{r}) + \int d\mathbf{r}' \left[\Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_{n\mathbf{k}}^{QP}) - \delta(\mathbf{r} - \mathbf{r}') v_{xc}(\mathbf{r}) \right] f_{n\mathbf{k}}^{QP}(\mathbf{r}') = \varepsilon_{n\mathbf{k}}^{QP} f_{n\mathbf{k}}^{QP}(\mathbf{r})$$

• Orbital approximation: $f_{n{f k}}^{
m QP}({f r}) pprox \psi_{n{f k}}^{
m KS}({f r})$

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} = \varepsilon_{n\mathbf{k}}^{\mathrm{KS}} + \langle \psi_{n\mathbf{k}} | \Sigma(\varepsilon_{n\mathbf{k}}^{\mathrm{QP}}) - v_{xc} | \psi_{n\mathbf{k}} \rangle$$

Non-linear eigenvalue problem:

$$\hat{H}^{KS} f_{n\mathbf{k}}^{QP}(\mathbf{r}) + \int d\mathbf{r}' \left[\Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_{n\mathbf{k}}^{QP}) - \delta(\mathbf{r} - \mathbf{r}') v_{xc}(\mathbf{r}) \right] f_{n\mathbf{k}}^{QP}(\mathbf{r}') = \varepsilon_{n\mathbf{k}}^{QP} f_{n\mathbf{k}}^{QP}(\mathbf{r})$$

• Orbital approximation: $f_{n{f k}}^{
m QP}({f r}) pprox \psi_{n{f k}}^{
m KS}({f r})$

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} = \varepsilon_{n\mathbf{k}}^{\mathrm{KS}} + \langle \psi_{n\mathbf{k}} | \Sigma(\varepsilon_{n\mathbf{k}}^{\mathrm{QP}}) - v_{xc} | \psi_{n\mathbf{k}} \rangle$$

Newton method:

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} \approx \varepsilon_{n\mathbf{k}}^{\mathrm{KS}} + Z_{n\mathbf{k}} \langle \psi_{n\mathbf{k}} | \Sigma(\varepsilon_{n\mathbf{k}}^{\mathrm{KS}}) - v_{xc} | \psi_{n\mathbf{k}} \rangle$$

$$Z_{n\mathbf{k}} = \left[1 - \frac{d\Sigma(\omega)}{d\omega} \Big|_{\omega = \varepsilon_{n\mathbf{k}}^{\mathrm{KS}}} \right]^{-1}$$

Hamiltonian formulation:

$$\hat{H}^{KS} f_{n\mathbf{k}}^{QP}(\mathbf{r}) + \int d\mathbf{r}' \left[\Sigma(\mathbf{r}, \mathbf{r}', \varepsilon_{n\mathbf{k}}^{QP}) - \delta(\mathbf{r} - \mathbf{r}') v_{xc}(\mathbf{r}) \right] f_{n\mathbf{k}}^{QP}(\mathbf{r}') = \varepsilon_{n\mathbf{k}}^{QP} f_{n\mathbf{k}}^{QP}(\mathbf{r})$$

• Quasiparticle approximation: $f_{n{f k}}^{
m QP}({f r}) pprox \psi_{n{f k}}^{
m KS}({f r})$

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} = \varepsilon_{n\mathbf{k}}^{\mathrm{KS}} + \langle \psi_{n\mathbf{k}} | \Sigma(\varepsilon_{n\mathbf{k}}^{\mathrm{QP}}) - v_{xc} | \psi_{n\mathbf{k}} \rangle$$

Newton method:

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} \approx \varepsilon_{n\mathbf{k}}^{\mathrm{KS}} + Z_{n\mathbf{k}} \langle \psi_{n\mathbf{k}} | \Sigma(\varepsilon_{n\mathbf{k}}^{\mathrm{KS}}) - v_{xc} | \psi_{n\mathbf{k}} \rangle$$

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

• Dyson equation for the polarizability (G space):

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = [\delta_{\mathbf{G}\mathbf{G}''} + v(\mathbf{q} + \mathbf{G}'')\chi_{\mathbf{G}\mathbf{G}''}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G}''\mathbf{G}'}^{0}(\mathbf{q},\omega)$$

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

• Dyson equation for the polarizability (G space):

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = [\delta_{\mathbf{G}\mathbf{G}''} + v(\mathbf{q} + \mathbf{G}'')\chi_{\mathbf{G}\mathbf{G}''}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G}''\mathbf{G}'}^{0}(\mathbf{q},\omega)$$

Response function

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + v(\mathbf{q} + \mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

Screened interaction

$$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega)v(\mathbf{q} + \mathbf{G}')$$

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{\mathbf{c}v} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

• Dyson equation for the polarizability (G space):

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = [\delta_{\mathbf{G}\mathbf{G}''} + v(\mathbf{q} + \mathbf{G}'')\chi_{\mathbf{G}\mathbf{G}''}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G}''\mathbf{G}'}^{0}(\mathbf{q},\omega)$$

Response function

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + v(\mathbf{q} + \mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

Screened interaction

$$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega)v(\mathbf{q} + \mathbf{G}')$$

This is often the most time consuming part of the computation

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G'}}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G'})}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G'})}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

• Dyson equation for the polarizability (G space):

$$\chi_{\mathbf{GG'}}(\mathbf{q},\omega) = [\delta_{\mathbf{GG''}} + v(\mathbf{q} + \mathbf{G''})\chi_{\mathbf{GG''}}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G''G'}}^{0}(\mathbf{q},\omega)$$

Response function

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + v(\mathbf{q} + \mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

Screened interaction

$$W_{\mathbf{GG'}}(\mathbf{q},\omega) = \epsilon_{\mathbf{GG'}}^{-1}(\mathbf{q},\omega)v(\mathbf{q} + \mathbf{G'})$$

Convergence with respect to the number of planewaves

Convergence with respect to the number of bands

Irreducible polarizability:

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{v\mathbf{k}-\mathbf{q}} - \varepsilon_{c\mathbf{k}} - i\eta} \right]$$

• Dyson equation for the polarizability (G space):

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = [\delta_{\mathbf{G}\mathbf{G}''} + v(\mathbf{q} + \mathbf{G}'')\chi_{\mathbf{G}\mathbf{G}''}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G}''\mathbf{G}'}^{0}(\mathbf{q},\omega)$$

Response function

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + v(\mathbf{q} + \mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

Convergence with respect to the BZ sampling

Screened interaction

$$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega)v(\mathbf{q} + \mathbf{G}')$$

$$\Sigma_{n\mathbf{k}}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega - \omega') W_{mm\mathbf{k}-\mathbf{q}}^{nn\mathbf{k}}(\omega')$$

•
$$G_0^{m\mathbf{k}}(\omega) = \frac{f_{n\mathbf{k}}}{\omega - \varepsilon_{m\mathbf{k}} - i\eta} + \frac{1 - f_{n\mathbf{k}}}{\omega + \varepsilon_{m\mathbf{k}} + i\eta}$$

•
$$W_{mm\mathbf{k}-\mathbf{q}}^{nn\mathbf{k}}(\omega) = \sum_{\mathbf{GG'}} \rho_{nm}^*(\mathbf{q}, \mathbf{G}) W_{\mathbf{GG'}}(\mathbf{q}, \omega) \rho_{nm}(\mathbf{q}, \mathbf{G'})$$

$$\Sigma_{n\mathbf{k}}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega - \omega') W_{mm\mathbf{k}-\mathbf{q}}^{nn\mathbf{k}}(\omega')$$

- $W = v + W^c$
- $\Sigma_{n\mathbf{k}}^{x}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega \omega') v_{mm\mathbf{k}-\mathbf{q}}^{nn\mathbf{k}}$
- $\Sigma_{n\mathbf{k}}^{c}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega \omega') W_{mm\mathbf{k}-\mathbf{q}}^{c nn\mathbf{k}}(\omega')$

$$\Sigma_{n\mathbf{k}}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega - \omega') W_{mm\mathbf{k}-\mathbf{q}}^{nn\mathbf{k}}(\omega')$$

- $W = v + W^c$
- $\Sigma_{n\mathbf{k}}^{x}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k} \mathbf{q}}(\omega \omega') v_{mm\mathbf{k} \mathbf{q}}^{nn\mathbf{k}}$ $W_0^{\text{PPA}}(\omega) = \frac{2R\Omega}{\omega^2 \Omega^2}$
- $\Sigma_{n\mathbf{k}}^{c}(\omega) = \int d\omega' \int \frac{d\mathbf{q}}{(2\pi)^3} \sum_{m} G_0^{m\mathbf{k}-\mathbf{q}}(\omega \omega') W_{mm\mathbf{k}-\mathbf{q}}^{c nn\mathbf{k}}(\omega')$
- Plasmon pole approximation \rightarrow analytic integration over ω'

$$\Sigma_{n\mathbf{k}}(\omega) = \Sigma_{n\mathbf{k}}^x + \Sigma_{n\mathbf{k}}^c(\omega)$$

•
$$\Sigma_{n\mathbf{k}}^x = -\sum_{m}^{\text{occ.}} \int_{\mathbf{RZ}} \frac{d\mathbf{q}}{(2\pi)^3} \sum_{\mathbf{G}} v(\mathbf{q} + \mathbf{G}) |\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G})|^2$$

 $\bullet \ \Sigma_{n\mathbf{k}}^{c}(\omega) = \lim_{\eta \to 0} \sum_{m} \int_{\mathrm{BZ}} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{GG'}} \frac{\rho_{nm\mathbf{k}}(\mathbf{q},\mathbf{G}) R_{\mathbf{GG'}}(\mathbf{q}) \rho_{nm\mathbf{k}}^{*}(\mathbf{q},\mathbf{G'})}{\omega + [\Omega_{\mathbf{GG'}}(\mathbf{q}) + i\eta] sgn(\mu - \varepsilon_{m\mathbf{k}-\mathbf{q}}^{\mathrm{KS}}) - \varepsilon_{m\mathbf{k}-\mathbf{q}}^{\mathrm{KS}}}$ Plasmon pole

$$\Sigma_{n\mathbf{k}}(\omega) = \Sigma_{n\mathbf{k}}^x + \Sigma_{n\mathbf{k}}^c(\omega)$$

•
$$\Sigma_{n\mathbf{k}}^{x} = -\sum_{m}^{\text{occ.}} \int_{\text{BZ}} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}} v(\mathbf{q} + \mathbf{G}) |\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G})|^{2}$$

Convergence with respect to the number of planewaves

Convergence with respect to the number of bands

$$\bullet \Sigma_{n\mathbf{k}}^{c}(\omega) = \lim_{\eta \to 0} \sum_{\mathbf{m}, \mathbf{p}, \mathbf{q}} \int \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}\mathbf{G}'} \frac{\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G}) R_{\mathbf{G}\mathbf{G}'}(\mathbf{q}) \rho_{nm\mathbf{k}}^{*}(\mathbf{q}, \mathbf{G}')}{\omega + [\Omega_{\mathbf{G}\mathbf{G}'}(\mathbf{q}) + i\eta] sgn(\mu - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{KS}) - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{KS}$$

$$\Sigma_{n\mathbf{k}}(\omega) = \Sigma_{n\mathbf{k}}^x + \Sigma_{n\mathbf{k}}^c(\omega)$$

•
$$\Sigma_{n\mathbf{k}}^{x} = -\sum_{m=1}^{\text{occ.}} \int \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}} v(\mathbf{q} + \mathbf{G}) |\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G})|^{2} f_{m\mathbf{k} - \mathbf{q}}$$

•
$$\Sigma_{n\mathbf{k}}^{c}(\omega) = \lim_{\eta \to 0} \sum_{m} \int_{\mathrm{BZ}} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{GG'}} \frac{\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G}) R_{\mathbf{GG'}}(\mathbf{q}) \rho_{nm\mathbf{k}}^{*}(\mathbf{q}, \mathbf{G'})}{\omega + [\Omega_{\mathbf{GG'}}(\mathbf{q}) + i\eta] sgn(\mu - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{\mathrm{KS}}) - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{\mathrm{KS}}}$$

Convergence with respect to the BZ sampling

The G₀W₀ method in one slide

DFT:
$$\{\varepsilon_{m\mathbf{k}}\}, \{\psi_{m\mathbf{k}}(\mathbf{r})\}$$
 \longrightarrow $G_0^{m\mathbf{k}}(\omega) = \frac{\delta_{mv}}{\omega - \varepsilon_{m\mathbf{k}} - i\eta} + \frac{\delta_{mc}}{\omega - \varepsilon_{m\mathbf{k}} + i\eta}$

$$\chi_{\mathbf{G}\mathbf{G}'}^{0}(\mathbf{q},\omega) = 2\sum_{cv} \int \frac{d\mathbf{k}}{(2\pi)^{3}} \left[\frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{m\mathbf{k}-\mathbf{q}} - \varepsilon_{n\mathbf{k}} + i\eta} - \frac{\rho_{cv\mathbf{k}}(\mathbf{q},\mathbf{G})\rho_{cv\mathbf{k}}^{*}(\mathbf{q},\mathbf{G}')}{\omega + \varepsilon_{m\mathbf{k}-\mathbf{q}} - \varepsilon_{n\mathbf{k}} - i\eta} \right]$$

$$\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = [\delta_{\mathbf{G}\mathbf{G}''} + v(\mathbf{q} + \mathbf{G}'')\chi_{\mathbf{G}\mathbf{G}''}^{0}(\mathbf{q},\omega)]^{-1}\chi_{\mathbf{G}''\mathbf{G}'}^{0}(\mathbf{q},\omega)$$

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega) = \delta_{\mathbf{G}\mathbf{G}'} + v(\mathbf{q} + \mathbf{G})\chi_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega)$$

$$W_{\mathbf{G}\mathbf{G}'}(\mathbf{q},\omega) = \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}(\mathbf{q},\omega)v(\mathbf{q} + \mathbf{G}')$$

$$\Sigma_{n\mathbf{k}}^{x} = -\sum_{m}^{\text{occ.}} \int_{\text{BZ}} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{G}} v(\mathbf{q} + \mathbf{G}) |\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G})|^{2} f_{m\mathbf{k} - \mathbf{q}}$$

$$\Sigma_{n\mathbf{k}}^{c}(\omega) = \lim_{\eta \to 0} \sum_{m} \int_{\mathrm{BZ}} \frac{d\mathbf{q}}{(2\pi)^{3}} \sum_{\mathbf{GG'}} \frac{\rho_{nm\mathbf{k}}(\mathbf{q}, \mathbf{G}) R_{\mathbf{GG'}}(\mathbf{q}) \rho_{nm\mathbf{k}}^{*}(\mathbf{q}, \mathbf{G'})}{\omega + [\Omega_{\mathbf{GG'}}(\mathbf{q}) + i\eta] sgn(\mu - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{\mathrm{KS}}) - \varepsilon_{m\mathbf{k} - \mathbf{q}}^{\mathrm{KS}}}$$

$$\varepsilon_{n\mathbf{k}}^{\mathrm{QP}} = \varepsilon_{n\mathbf{k}} + Z_{n\mathbf{k}} \left[\Sigma_{n\mathbf{k}} (\varepsilon_{n\mathbf{k}}) - \langle n\mathbf{k} | v_{xc} | n\mathbf{k} \rangle \right]$$

Accuracy of GW calculations

GW band gaps: huge improvement wrt the LDA

GW in 2D materials: Coulomb cutoff

Bare Coulomb interaction

Real space:
$$v(|\mathbf{r}_1 - \mathbf{r}_2|) = \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Fourier space:
$$v(\mathbf{q} + \mathbf{G}) = \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^2}$$

GW in 2D materials: Coulomb cutoff

Bare Coulomb interaction

Real space:
$$v(|\mathbf{r}_1 - \mathbf{r}_2|) = \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Fourier space:
$$v(\mathbf{q} + \mathbf{G}) = \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^2}$$

<u>Truncated</u> Coulomb interaction^{[1][2]}

Real space:
$$v^{\mathrm{slab}}(|\mathbf{r}_1-\mathbf{r}_2|) = \frac{\Theta(L/2-|z_1-z_2|)}{|\mathbf{r}_1-\mathbf{r}_2|}$$

Heaviside theta

Fourier space:

$$v^{\text{slab}}(\mathbf{q} + \mathbf{G}) = \frac{4\pi}{|\mathbf{q} + \mathbf{G}|^2} \left[1 - e^{\mathbf{q}_{\parallel} + \mathbf{G}_{\parallel} L/2} \cos(\mathbf{G}_{\perp} L/2) \right]$$

$$v^{\mathrm{slab}}(|\mathbf{q}| \to 0) = \frac{2\pi}{|\mathbf{q}|}$$

GW in 2D materials: convergence acceleration^[1]

GW in 2D materials: convergence acceleration^[1]

[1] Guandalini et al., npj Comput. Mat. Vol. 9, 44 (2023)

GW in 2D materials: convergence acceleration^[1]

W-average method [3]:

•
$$\Sigma_{n\mathbf{k}}^{c}(\omega) \approx \sum_{\mathbf{q},\mathbf{G},\mathbf{G}'} f_{n\mathbf{k}}^{c}(\mathbf{q},\mathbf{G},\mathbf{G}',\omega) \overline{W}_{\mathbf{G}\mathbf{G}'}^{c}(\mathbf{q})$$

•
$$\overline{W}_{\mathbf{G}\mathbf{G}'}^{c}(\mathbf{q}) \equiv \frac{1}{D_{\Gamma}} \int_{D_{\Gamma}} \frac{d\mathbf{q}'}{(2\pi)^{3}} W_{\mathbf{G}\mathbf{G}'}^{c}(\mathbf{q} + \mathbf{q}')$$

- Interpolation + Monte Carlo integrals
- Correction applied up to a given |G|im|2.

[1] Guandalini et al., npj Comput. Mat. Vol. 9, 44 (2023)

Beyond the plasmon-pole approximation^[1]

- PPA reproduces static and high-frequency limits of the real part.
- MPA reproduces all the features.

Example: band structure of freestanding graphene^[1]

- GW increase Fermi velocity and gaps in accordance with ARPES[1];
- DFT underestimate quasi-particle energies;
- G_0W_0 with MPA differs fro deeper states.
- Both W-av and MPA are needed to accurately describe GW bands in graphene.

- The GW method:
 - Can accurately reproduce charged excitations
 - Describe spectroscopic experiments like direct (inverse) photoemission

- The GW method:
 - Can accurately reproduce charged excitations
 - Describe spectroscopic experiments like direct (inverse) photoemission
- Main approximations:
 - Neglecting vertex effects (GW+RPA) and self consistency (G₀W₀)
 - Quasiparticle-orbital approximation
 - plasmon pole approximation (PPA)
 - Newton solution of the Dyson equation for G

- The GW method:
 - Can accurately reproduce charged excitations
 - Describe spectroscopic experiments like direct (inverse) photoemission
- Main approximations:
 - Neglecting vertex effects (GW+RPA) and self consistency (G₀W₀)
 - Quasiparticle-orbital approximation
 - plasmon pole approximation (PPA)
 - Newton solution of the Dyson equation for G
- Main convergence parameters:
 - Planewaves E_{cut} and number of KS states included in χ^0 and Σ
 - Finite BZ sampling

- The GW method:
 - Can accurately reproduce charged excitations
 - Describe spectroscopic experiments like direct (inverse) photoemission
- Main approximations:
 - Neglecting vertex effects (GW+RPA) and self consistency (G₀W₀)
 - Quasiparticle-orbital approximation
 - plasmon pole approximation (PPA)
 - Newton solution of the Dyson equation for G
- Main convergence parameters:
 - Planewaves E_{cut} and number of KS states included in χ^0 and Σ
 - Finite BZ sampling
- Recent advancements:
 - W-av method to integrate W over the BZ
 - Multi-pole approximation to describe $W(\omega)$

References

- Seminal papers:
 - L. Hedin Phys. Rev. A 139, A796 (1965)
 - L. Hedin, S. Lundqvist . in Solid State Physics, 23, 1–181 (1970)
- Reviews:
 - Aryasetiawan F., Gunnarsson O. The GW method. Rep. Prog. Phys. 61:237 (1998)
 - Aulbur W. G., Jönsson L., Wilkins J. W. in Solid State Physics, Vol. 54, 1–218 (2000)
 - D. Golze, M. Dvorak, and P. Rinke Front Chem. 2019; 7: 377 (2019)
 - Reining, L, WIREs Comput Mol Sci, 8: e1344. (2018)
- Yambo code implementation:
 - A. Marini et al. Comp. Phys. Comm. 180, 1293 (2009)
 - D. Sangalli et al. J. Phys.: Condens. Matter 31 (2019) 325902
- Recent advancements:
 - D. A. Leon et al. Phys. Rev. B 104, 115157 (2021)
 - A. Guandalini et al. npj Comput. Mat. Vol. 9, 44 (2023)
 - A. Guandalini, D.A. Leon et al. Phys. Rev. B 109, 075120 (2024)