Réseaux de neurones à convolution

Guillaume Bourmaud

PLAN

- I. Couche de convolution
- II. Réseaux de neurones à convolution

I) Couche de convolution

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Exemple d'une seule couche FC préservant la résolution de l'image d'entrée

Limites d'une transformation affine générale (FC)

 $\mathbf{x}: 640 \times 480 \times 3 \approx 10^6$ éléments

Exemple d'une seule couche FC préservant la résolution de l'image d'entrée

Occupation mémoire de W : 4 octets (32 bits) \times 10 6 x10 6 = 4To.

Nombre de « multiplications+additions » également très élevé.

"Fully Connected" =
Transformation affine générale

$$\left[egin{array}{ccccc} \mathtt{W}_{11} & \mathtt{W}_{12} & \mathtt{W}_{13} & \mathtt{W}_{14} \ \mathtt{W}_{21} & \mathtt{W}_{22} & \mathtt{W}_{23} & \mathtt{W}_{24} \ \mathtt{W}_{31} & \mathtt{W}_{32} & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

"Fully Connected" Transformation affine générale

$$\begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & \mathsf{W}_{13} & \mathsf{W}_{14} \\ \mathsf{W}_{21} & \mathsf{W}_{22} & \mathsf{W}_{23} & \mathsf{W}_{24} \\ \mathsf{W}_{31} & \mathsf{W}_{32} & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{22} & \mathsf{W}_{23} & 0 \\ 0 & 0 & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$

Localement connecté

$$\left[egin{array}{cccc} \mathtt{W}_{11} & \mathtt{W}_{12} & 0 & 0 \ 0 & \mathtt{W}_{22} & \mathtt{W}_{23} & 0 \ 0 & 0 & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

"Fully Connected" Transformation affine générale

$$\begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & \mathsf{W}_{13} & \mathsf{W}_{14} \\ \mathsf{W}_{21} & \mathsf{W}_{22} & \mathsf{W}_{23} & \mathsf{W}_{24} \\ \mathsf{W}_{31} & \mathsf{W}_{32} & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 & 0 \\ 0 & \mathsf{W}_{22} & \mathsf{W}_{23} & 0 \\ 0 & 0 & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 & 0 \\ 0 & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & 0 & \mathsf{W}_{11} & \mathsf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Localement connecté

$$\begin{bmatrix} & \mathtt{W}_{11} & \mathtt{W}_{12} & 0 & 0 \\ 0 & \mathtt{W}_{22} & \mathtt{W}_{23} & 0 \\ 0 & 0 & \mathtt{W}_{33} & \mathtt{W}_{34} \end{bmatrix} \begin{bmatrix} & \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}$$

Équivariance par translation « Convolution »

$$\begin{bmatrix} \mathbf{W}_{11} & \mathbf{W}_{12} & 0 & 0 \\ 0 & \mathbf{W}_{11} & \mathbf{W}_{12} & 0 \\ 0 & 0 & \mathbf{W}_{11} & \mathbf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

"Fully Connected" Transformation affine générale

$$\left[egin{array}{cccccc} \mathtt{W}_{11} & \mathtt{W}_{12} & \mathtt{W}_{13} & \mathtt{W}_{14} \ \mathtt{W}_{21} & \mathtt{W}_{22} & \mathtt{W}_{23} & \mathtt{W}_{24} \ \mathtt{W}_{31} & \mathtt{W}_{32} & \mathtt{W}_{33} & \mathtt{W}_{34} \end{array}
ight] \left[egin{array}{c} \mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4 \end{array}
ight] + \left[egin{array}{c} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \end{array}
ight]$$

Localement connecté

$$\begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & \mathsf{W}_{13} & \mathsf{W}_{14} \\ \mathsf{W}_{21} & \mathsf{W}_{22} & \mathsf{W}_{23} & \mathsf{W}_{24} \\ \mathsf{W}_{31} & \mathsf{W}_{32} & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{22} & \mathsf{W}_{23} & 0 \\ 0 & 0 & \mathsf{W}_{33} & \mathsf{W}_{34} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathsf{W}_{11} & \mathsf{W}_{12} & 0 & 0 \\ 0 & \mathsf{W}_{11} & \mathsf{W}_{12} & 0 \\ 0 & 0 & \mathsf{W}_{11} & \mathsf{W}_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Équivariance par translation « Convolution »

$$\begin{bmatrix} W_{11} & W_{12} & 0 & 0 \\ 0 & W_{11} & W_{12} & 0 \\ 0 & 0 & W_{11} & W_{12} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix}$$

Beaucoup moins de paramètres à stocker

Beaucoup moins de « multiplications+additions »

Opération de « convolution » en 2D

En fait, il s'agit d'une intercorrélation

Opération de « convolution » en 2D

Filtre 2D

Sortie 2D

Entrée 2D

Opération de « convolution » en 2D

Filtre 2D

(3x3)

Sortie 2D

(4x4)

* En fait, il s'agit d'une intercorrélation * *

Entrée 2D

(6x6)

Couche de convolution 2D : un seul filtre

« Tenseur » d'entrée

« Tenseur » = tableau multi-dimensionnel

Couche de convolution 2D: un seul filtre

Couche de convolution 2D : un seul filtre

Couche de convolution 2D: un seul filtre

$$\mathbf{X}_{i,j}^{(1)} = \sum_{k=0}^{2} \sum_{m=0}^{4} \sum_{n=0}^{4} \mathbf{W}_{k,m,n} \mathbf{X}_{k,i+m,j+n}^{(0)} + b$$

Couche de convolution 2D : K filtres

18

Couche de convolution 2D : K filtres

19

Couche de convolution 2D : K filtres

Couche de convolution 2D : K filtres

Couche de convolution 2D: K filtres

« Zero padding »

« Zero padding »

Permet de préserver la taille du tenseur d'entrée = ne pas avoir d'effet de bord

« Stride »

Exemple Stride = 1

« Stride »

Exemple Stride = 1

*

*

Exemple Stride = 2

« Stride »

Exemple Stride = 1

*

Exemple Stride = 2

- Taille des filtres
 - En pratique toujours impair
 - Souvent 3x3, parfois 5x5 ou 7x7

- Taille des filtres
 - En pratique toujours impair
 - Souvent 3x3, parfois 5x5 ou 7x7
- Nombre de filtres
 - = Nombre de canaux souhaités en sortie

- Taille des filtres
 - En pratique toujours impair
 - Souvent 3x3, parfois 5x5 ou 7x7
- Nombre de filtres
 - = Nombre de canaux souhaités en sortie
- Quantité de zero-padding
 - Compense la taille du filtre si volonté de préserver la taille de l'entrée
 - 3x3 → padding = 1, 5x5 → padding = 2

- Taille des filtres
 - En pratique toujours impair
 - Souvent 3x3, parfois 5x5 ou 7x7
- Nombre de filtres
 - = Nombre de canaux souhaités en sortie
- Quantité de zero-padding
 - Compense la taille du filtre si volonté de préserver la taille de l'entrée
 - 3x3 → padding = 1, 5x5 → padding = 2
- Stride
 - = 1 si volonté de préserver la résolution de l'entrée
 - = 2 si volonté de réduire la résolution de l'entrée

II) Réseau de neurones à convolution

II)

Réseau de neurones à convolution (CNN)

Réseau de neurones à convolution (CNN)

Réseau de neurones à convolution (CNN)

→ Initialisation des paramètres d'une couche de convolution identique à ceux d'une FC !

II)

Exemple d'architecture de CNN pour MNIST

"9"

Autre exemple d'architecture : CNN pour MNIST

Architectures de CNN : Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Architectures de CNN: Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Réduction progressive de la résolution

Utilisation de couches de conv ou pooling avec stride = 2

Architectures de CNN : Deux cas extrêmes

Cas 1: Extraire une information globale présente dans l'image d'entrée

Cas 2 : Extraire une information pour chaque pixel de l'image d'entrée

Comment obtenir un descripteur pour chaque pixel?

Comment obtenir un descripteur pour chaque pixel?

Comment obtenir un descripteur pour chaque pixel?

Très inefficace en mémoire et en calculs!

Comment obtenir un descripteur pour chaque pixel?

52

Très inefficace en mémoire et en calculs! → Utilisation d'une architecture entièrement convolutive

Architecture entièrement convolutive

Architecture entièrement convolutive

Descripteur Cx1x1 d'un patch de taille RxR, où RxR s'appelle le Champ Récepteur du CNN (« Receptive Field »)

Architecture entièrement convolutive

Descripteur Cx1x1 d'un patch de taille RxR, où RxR s'appelle le Champ Récepteur du CNN (« Receptive Field »)

Comment avoir un grand champ récepteur tout en restant raisonnable en mémoire et temps de calculs ?

