

Sequencing Technologies

BIOL 432

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Moore's Law vs. Sequencing Technology

Moore's Law vs. Sequencing Technology

Sequencing Overview – Match platform with description

Sanger

Illumina

PacBio

Nanopore

(Also: IonTorrent, 454, SOLID)

First-generation sequencing

Second-generation sequencing

Third-generation sequencing

Next-generation sequencing

Sequencing-by-synthesis

Nanopore sequencing

High-throughput sequencing

Short-read sequencing

Long-read sequencing

Sanger Method

First-generation sequencing

Review: Polymerase chain reaction

Polymerase chain reaction - PCR

- Denaturation at 94-96°C
- Annealing at ~68°C
- Elongation at ca. 72 °C

1st Generation Sequencing: Sanger Method

= 'Sequencing-by-synthesis'

Beckman Coulter CEQ 8000

Sequencing Read Archive (NCBI)

Blue and green = 'Next Generation Sequencing'

Second-generation sequencing

Short-read, high-throughput sequencing

Next-Generation Sequencing: Typical Workflow

2nd Gen: Common Elements

Sequencing Library Preparation

- 1. Extract & purify DNA
- 2. Fragment to target size (75-750 bp)
- 3. Strand isolation
- 4. Clonal Amplification
- 5. Nucleotide detection

Fragment Sizes (partial list)

Platform	Instrument	Mreads	Length (bp)	Gbp	Туре
Illumina	NovaSeq 6000 S4	10000	300	3000	SR & PE
Illumina	NextSeq 500 High-Output	400	300	120	SR & PE
Illumina	HiSeq X	375	300	112.5	PE
Illumina	HiSeq High-Output v4	250	250	62.5	SR & PE
Illumina	MiSeq v3	25	600	15	SR & PE
Illumina	MiniSeq High-Output	25	300	7.5	SR & PE
lon	Proton I	60	200	12	SR
lon	PGM 318	4	400	1.6	SR
lon	PGM 316	2	400	0.8	SR
lon	PGM 314	0.4	400	0.16	SR
PacBio	PacBio Sequel	0.37	20000	7.4	SR
PacBio	PacBio RS II (P6)	0.055	15000	0.825	SR
Roche 454	GS FLX+ / FLX	0.7	700	0.49	SR
SOLiD	5500xl W	267	100	26.7	SR & PE

Sequence isolation (and cloning)

Ion Torrent

2nd Gen: 454 Sequencing (Roche; deprecated)

CSB2008 August 2008

2nd Gen: 454 Sequencing (Roche; deprecated)

CSB2008 August 2008

SOLiD Sequencing (ABI)

Illumina flow cells (a micro-array technology)

Illumina sequencing (formerly Solexa)

- 1. Prepare genomic DNA
- 2. Attach DNA to surface
- 3. Bridge amplification
- 4. Fragment become double stranded
- 5. Denature the double stranded molecules
- 6. Complete amplification

Illumina sequencing

- 7. Determine first base
- 8. Image first base
- 9. Determine second base
- 10. Image second base
- 11. Sequence reads over multiple cycles
- 12. Align data

Illumina Devices (benchtop)

	<u> </u>	42		62		
	iSeq 100	MiniSeq	MiSeq Series ⊙	NextSeq 550 Series ⊙	NextSeq 1000 & 2000	
Popular Applications & Methods	Key Application	Key Application	Key Application	Key Application	Key Application	
Large Whole-Genome Sequencing (human, plant, animal)						
Small Whole-Genome Sequencing (microbe, virus)					•	
Exome & Large Panel Sequencing (enrichment-based)					•	
Targeted Gene Sequencing (amplicon- based, gene panel)	•				•	
Single-Cell Profiling (scRNA-Seq, scDNA-Seq, oligo tagging assays)				•	•	
Transcriptome Sequencing (total RNA- Seq, mRNA-Seq, gene expression profiling)					•	
Targeted Gene Expression Profiling	•			•	•	
miRNA & Small RNA Analysis	•	•		•	•	
DNA-Protein Interaction Analysis (ChIP-Seq)			•	•	•	
Methylation Sequencing				•	•	
16S Metagenomic Sequencing		•		•	•	
Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)					•	
Cell-Free Sequencing & Liquid Biopsy Analysis						

Illumina Devices (industrial scale)

Third-generation sequencing

Long-read sequencing

3rd Generation sequencing: SMRT

SMRT = single-molecule real-time sequencing

	Sequel IIe System	Sequel II System	Sequel System
Supported SMRT Cell	SMRT Cell 8M	SMRT Cell 8M	SMRT Cell 1M
Number of HiFi Reads >99%* Accuracy	Up to 4,000,000	Up to 4,000,000	Up to 500,000
Sequencing Run Time per SMRT Cell	Up to 30 hrs	Up to 30 hrs	Up to 20 hrs

Nanoporetech.com Science.org

3rd Generation sequencing: Nanopore

Nanopore Sequencing Comparison (2019)

Platform	Instrument	Mreads	Length (bp)	Gbp	Туре
Illumina	NovaSeq 6000 S4	10000	300	3000	SR & PE
Illumina	NextSeq 500 High-Output	400	300	120	SR & PE
Illumina	HiSeq X	375	300	112.5	PE
Illumina	HiSeq High-Output v4	250	250	62.5	SR & PE
Illumina	MiSeq v3	25	600	15	SR & PE
Illumina	MiniSeq High-Output	25	300	7.5	SR & PE
Oxford Nanopore	MinION		1M+	20	SR
Oxford Nanopore	PromethION		TIVIT	1000	SR
lon	Proton I	60	200	12	SR
lon	PGM 318	4	400	1.6	SR
lon	PGM 316	2	400	0.8	SR
lon	PGM 314	0.4	400	0.16	SR
PacBio	PacBio Sequel	0.37	20000	7.4	SR
PacBio	PacBio RS II (P6)	0.055	15000	0.825	SR
Roche 454	GS FLX+ / FLX	0.7	700	0.49	SR
SOLiD	5500xl W	267	100	26.7	SR & PE

Review

A set of bioinformatics packages for R install.packages("BiocManager") Update all/some/none [a/s/n] choose n library(BiocManager) install(c("sangerseqR", "annotate"))

Working in groups (15 mins):

Stretch and divide into working groups

Summarize sequencing-by-synthesis (SBS) with Illumina

Review key concepts:

- 1. How a flow cell works
- 2. Contrast Sanger with SBS sequencing

Try flowcharts or cartoons to simplify & summarize

BRAINSTORM:

What are the main benefits & limitations of each technology? Why is coding valuable for 2nd generation sequencing?