Übung 5

5.1 Rundungsfunktionen (2pt)

Die Abrundungsfunktion (engl., floor function) weist einer rellen Zahl x die grösste ganze Zahl zu, welche kleiner oder gleich x ist. Ihr Wert wird als $\lfloor x \rfloor$ geschrieben und die Funktion $\lfloor \cdot \rfloor$ heisst deshalb auch untere Gaussklammer.

Die Aufrundungsfunktion (engl., ceiling function) weist einer rellen Zahl x die kleinste ganze Zahl zu, welche grösser oder gleich x ist. Ihr Wert wird als $\lceil x \rceil$ geschrieben und die Funktion $\lceil \cdot \rceil$ heisst deshalb auch obere Gaussklammer.

Einige nützliche Eigenschaften der Ab- und Aufrundungsfunktionen für beliebige $x \in \mathbb{R}$ und $n \in \mathbb{Z}$:

$$\lfloor x \rfloor = n \iff n \le x < n+1 \tag{1}$$

$$\lceil x \rceil = n \iff n - 1 < x \le n \tag{2}$$

$$|x| = n \Leftrightarrow x - 1 < n \le x \tag{3}$$

$$\lceil x \rceil = n \iff x \le n < x + 1 \tag{4}$$

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1 \tag{5}$$

Zeigen oder widerlegen Sie folgende Aussagen, wiederum für $x, y \in \mathbb{R}$, $n \in \mathbb{Z}$ und $m \in \mathbb{Z}^+$:

- a) $\left[-x \right] = -|x|$
- b) |x+n| = |x|+n
- c) |x+y| = |x| + |y|
- d) $\left\lceil \frac{x+1}{2} \right\rceil = \left\lfloor \frac{x}{2} \right\rfloor + 1$
- e) $\left\lceil \frac{m+1}{2} \right\rceil = \left\lceil \frac{m}{2} \right\rceil + 1$

5.2 Bijektivität (2pt)

Zeigen Sie, dass eine Funktion f genau dann bijektiv ist, wenn f^{-1} eine Funktion ist.

5.3 Kardinalität von Mengen (4pt)

Finden Sie pro Teilaufgabe zwei überabzählbare Mengen \mathcal{A} und \mathcal{B} , welche die geforderte Eigenschaft haben, oder zeigen Sie, dass solche \mathcal{A} und \mathcal{B} nicht existieren:

- a) $A \setminus B$ ist endlich;
- b) $A \cup B$ ist endlich;
- c) $A \cap B$ ist endlich;
- d) $A \setminus B$ ist abzählbar;

- e) $A \cup B$ ist abzählbar;
- f) $A \cap B$ ist abzählbar;
- g) $A \setminus B$ ist überabzählbar; und
- h) $A \cap B$ ist überabzählbar.

5.4 Menge aller Programme (2pt)

Wählen Sie eine beliebige Programmiersprache L und betrachten Sie die Menge $\mathcal M$ aller Computerprogramme, die in L geschrieben sind. Zeigen Sie, dass $\mathcal M$ abzählbar ist.