PART 1: GRAPH a. Graph G1 is an Euler circuit	
orapii of is all tutel crituit	
Graph G2 is not Euler because vertices: ['a', 'b', 'c', 'd'] has odd degree. Graph G3 is an Euler path	
b. Graph Test1 is an Euler circuit	
======================================	
Using Dirac's theorem a.	
Graph G1 is not Hamiltonian	
Graph G2 is not Hamiltonian	
Graph G3 is not Hamiltonian	
b. Graph Test2 is not Hamiltonian	
===	
Using Ore's theorem	
a. Graph G1 is Hamiltonian	
Graph G2 is not Hamiltonian	
Graph G3 is not Hamiltonian	
b. Graph Test2 is not Hamiltonian	
======================================	