D Monte Carlo Algo ← Guarantee by SSLLN → <u>convergence guarantee</u>

CLT → <u>convergence rate</u>

a)
$$SLLN$$
 $X_1,..., X_n$ i.i.d distributed

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} E[X]$$

 \Rightarrow If we nant to calculate $\int_0^1 f(x)dx$

1. Xi ~ Uniform (011)

then $\frac{1}{n}\sum_{i=1}^{n}f(x_i) \xrightarrow{a.s.} \mathbb{E}[f(x)] = \int_{0}^{1}f(x)\cdot 1dx$

2. Xi~ Some distribution plx)

then
$$\frac{1}{n} \stackrel{\sim}{\underset{i=1}{\sum}} \frac{f(x_i)}{p(x_i)} \stackrel{\sim 3}{\longrightarrow} \underbrace{\mathbb{E}} \left[\frac{f(x)}{p(x)} \right] = \int_0^1 \frac{f(x)}{p(x)} dp(x_i)$$

b) CLT denote
$$f(\kappa i) = \int_0^{\Lambda} f(\kappa i) - n_{\Lambda} \int_{\Gamma} f(\kappa i) \int_{\Gamma} f(\kappa i) - n_{\Lambda} \int_{\Gamma} f(\kappa i) \int_{\Gamma} f(\kappa i)$$

 $\Rightarrow P(S_n - \lceil \frac{6}{n} \cdot 7 \stackrel{\alpha}{=} \leq \mu \leq S_n + \lceil \frac{6}{n} \cdot 7 \stackrel{\alpha}{=} \rceil = \rceil - \alpha \text{ with rate } \lceil \frac{1}{n} \rceil$

 \Rightarrow interval length = $2 \frac{6^2}{n} \cdot \frac{26}{2}$ will decrease at rate $\frac{1}{n}$ for fixed confidence α

Question: How to generate SAMPLE for a given p(x)? a) inverse method b) reject sampling C) Box-Muller

Answer: for simple distribution PLX), we can generate sampling!


```
\mu(x) \pi(x,y) = \mu(y) \pi(y,x)
           \iff \mu(x) \ Q(x,y) \ k(x,y) = \mu(y) \ Q(y,x) \ k(y,x)
           \Rightarrow \begin{cases} x^* (x,y) = \min \left\{ 1, \frac{Q(y,x) \cdot \mu(y)}{Q(x,y) \cdot \mu(x)} \right\} \\ x^* (y,x) = \min \left\{ \frac{Q(x,y) \cdot \mu(x)}{Q(y,x) \cdot \mu(y)} \right\} \end{cases} 
       b) limitation:
                 1) difficult to compute \frac{Q(\gamma, x) \mu(\gamma)}{Q(x, y) \mu(x)} term when x \in \mathbb{R}^d d big
                 2) our interest may have good form of P(Xt | X-t)
                                                                   Conditional probability giren
                                                                other coordinates
            Diagram :
                                                    consider V = \frac{p(\theta_{1c})}{p(\theta_{0})} (accept rate)

\theta_{1c} (if reject, then \theta_{1} = \theta_{1c}
                                                          focus on high-dimension case
4) Gibbs Sampling
          (1) idea: a) conditional probability
                                                        can be easier to deal with
                        b) still use \mu(x) \prod (x,y) = \mu(y) \prod (y,x)
```


$$\frac{X = (X', \dots, X^d)}{X' = (X', \dots, X^d)} \qquad \frac{X_n = (X'_n, \dots, X^d_n)}{X_n = (X'_n, \dots, X^d_n)}$$

$$\frac{X = (X', \dots, X^d)}{X' = (X', \dots, X^d)} \qquad \frac{X_n = (X'_n, \dots, X^d_n)}{X' = (X', \dots, X^d)}$$

 $y = (y^1, ..., y^d)$ where there exists $i \in [d]$ st $x^i + y^i$, and others all the same

obviously, $\mu(x) \prod (x,y) = \mu(y) \prod (y,x)$

Note I this can be viewed as the special case of M-H Algo:

Recall: M-H Algo: TI(x,y) = Q(x,y) &(x,y)

 $L(x,y) = min \left\{ \frac{\mu(y)Q(y,x)}{\mu(x)Q(x,y)}, 1 \right\}$

Here, Q(x,y) = 1 Mxi1xi (yi | x-i)

and $\mu(y) Q(y,x) = \mu(x) Q(x,y) \Rightarrow \chi(x,y) \equiv 1 \quad \forall x,y$

