

Introduction:

X Education is an education company that sells online courses to industry professionals. Their course are marketed on various websites. People interested in such courses fill up a form, which then is classified as a lead. Few leads get converted, while most don't. We have built a logistic regression model that predicts if a lead can be successfully converted or not.

Contents:

SI no.	Topics	Slide no.
1.	Analysis	4
2.	Data Quality Check – (data imbalance) & (Outlier Treatment)	5
3.	Data Quality Check – (null values treatment)	6
4.	Exploratory Data Analysis	7-8
5.	Model Evaluation	9
6.	Making Predictions on the test dataset	10
7.	Score Results	11
8.	Final Dataset	12

Analysis:

The first step of the analysis is data quality check. We look for the shape of the dataset, the information, missing values and make the necessary treatment e.g. imputations using mean/median/mode

The next step of the process is exploratory data analysis and outlier treatment.

Further we move towards model building. Here we have made the additional use of woe and IV.

After model building we evaluate the model and check for accuracy, precision and recall.

The last step is predictions and calculating lead scores.

Data Quality Check – (data imbalance) & (Outlier Treatment):

Data Imbalance:

The dataset has 37 columns and 9024 rows.

The pie chart shows the data imbalance in the dataset:

Converted leads consists of Only 38.5%

Non-converted leads consists of 61.5%

Outlier Treatment*:

Outlier Treatment is done using IQR concept.

Outliers are removed only from 'TotalVisits' & 'feature Page Views per Visit'

(*NOTE: Outlier treatment is done after missing values imputation. In the ppt it is shown before only because of convenience.)

Data Quality Check – (null values treatment):

We check for null values in the dataset:

Some columns have the value 'select' which is converted into null values.

Columns with more than 40% null values are dropped.

The rest of the columns containing null values are imputed using mean/median/mode.

Few columns like 'magazine' are highly skewed and columns like 'Asymmetric activity Index' are added by the sales team. Hence are dropped because they don't influence the lead conversion.

Exploratory Data Analysis:

THIS CHART SHOWS THE CONVERTED & NON-CONVERTED COUNT OF THE COLUMN 'SPECIALIZATION'

THIS PIE CHART SHOWS THE RATIO OF LEAD CONVERSION FROM DIFFERENT LEAD SOURCE

Exploratory Data Analysis:

THIS CHART SHOWS THE COUNT OF LEAD GENERATED FROM DIFFERENT LEAD SOURCE

THIS CHART SHOWS THE COUNT OF LEADS CONVERTED FROM THE LEAD SOURCE

Model Evaluation:

ROC CURVE SHOWS THE TRADE-OFF BETWEEN THE SENSITIVITY AND SPECIFICITY. THE ROC CURVE IS MORE TOWARDS THE UPPER-LEFT CORNER OF THE GRAPH

AT 0.3 WE SEE THAT ACCURACY, SENSITIVITY & SPECIFICITY IS EQUAL. HENCE WE CHOOSE THAT AS THE CUT-OFF POINT

Making Predictions on the test dataset:

PROBABILITY OF THE TRAIN SET BEFORE IMPLEMENTING THE CUT OFF OF 0.3

y_train_predicted_probability	y_train	
8741	0.056902	0
6337	0.017866	0
475	0.999138	1
2096	0.668929	1
7953	0.923767	1
350	0.883590	1
79	0.987669	1
8039	0.283058	1
6936	0.018652	0
5640	0.137745	0

MAKING PREDICTIONS ON THE TEST SET

y_test	y_test_probability	y_test_final	
4269	1	0.947052	1
2376	1	0.974617	1
7766	1	0.950887	1
9199	0	0.002333	0
4359	1	0.883590	1
8924	0	0.001851	0
2601	1	0.790288	1
7180	0	0.283058	0
3141	0	0.137745	0
1006	0	0.314271	1

Score Results:

TRAIN DATASET

ACCURACY SCORE:
0.888

PRECISION SCORE:
0.826

RECALL SCORE:
0.894

TEST DATASET

Final Dataset:

(note*: lead score is the last column)

	Lead_Score	Prospect_ID	Lead_ID
0	7927b2df-8bba-4d29-b9a2- b6e0beafe620	660737	0
0	2a272436-5132-4136-86fa- dcc88c88f482	660728	1
95	8cc8c611-a219-4f35-ad23- fdfd2656bd8a	660727	2
0	0cc2df48-7cf4-4e39-9de9- 19797f9b38cc	660719	3
32	3256f628-e534-4826-9d63- 4a8b88782852	660681	4
70	19d6451e-fcd6-407c-b83b- 48e1af805ea9	579564	9235
9	82a7005b-7196-4d56-95ce- a79f937a158d	579546	9236
2	aac550fe-a586-452d-8d3c- f1b62c94e02c	579545	9237
86	5330a7d1-2f2b-4df4-85d6- 64ca2f6b95b9	579538	9238
	571b5c8e-a5b2-4d57-8574- f2ffb06fdeff	579533	9239