3. 디지털 코드

논리회로

부경대 컴퓨터 인공지능공학부 최필주

목차

- 숫자 코드
 - BCD 코드와 3초과 코드
 - 다양한 2진 코드들
 - 그레이코드
- 영숫자 코드
- 오류 검출 코드
- Summary

숫자 코드

- BCD 코드(Binary Coded Decimal Code: 2진화 10진 코드, 8421코드)
 - 10진수 0(0000)~9(1001) → 2진화
 - 1010부터 1111까지 6개는 사용하지 않음

10진수	BCD 코드	10진수	BCD 코드	10진수	BCD 코드
0	0000	10	0001 0000	20	0010 0000
1	0001	11	0001 0001	31	0011 0001
2	0010	12	0001 0010	42	0100 0010
3	0011	13	0001 0011	53	0101 0011
4	0100	14	0001 0100	64	0110 0100
5	0101	15	0001 0101	75	0111 0101
6	0110	16	0001 0110	86	1000 0110
7	0111	17	0001 0111	97	1001 0111
8	1000	18	0001 1000	196	0001 1001 0110
9	1001	19	0001 1001	237	0010 0011 0111

● BCD 코드의 연산

10진 덧셈 (6+3=9)	10진 덧셈 (42+27=69)	(8+7=15)
		1000
0110	0100 0010	+ 0111
+ 0011	+ 0010 0111	1111
1001	0110 1001	+ 0110 6
		0001 0101

■ 계산 결과가 BCD코드를 벗어나면(9(1001) 초과) + 6(0110)

● BCD 코드의 연산 – 예시: 69 + 85

10진 덧셈	BCD 코드의 덧셈
69 + 85	0110 1001 + 1000 0101
	1110 1110 + 0110 0110
154	0001 0101 0100

- BCD 코드의 특징
 - 장점
 - 10진수-BCD 변환 쉬움
 - 4 bits이 10진수 한 자리에 대응
 - 사용자에게 친숙, 입출력 하드웨어 구현 쉬움
 - 정확한 소수점 표현
 - 일부 계산기에서는 BCD 방식 사용
 - 단점
 - 2진수 표현에 비해 많은 bit 사용
 - 연산 복잡(각 자리에서 9를 넘어가면 +6 연산 필요)

- 3초과 코드
 - BCD코드(8421코드)로 표현된 값에 3을 더해 준 값으로 나타내는 코드
 - 자기 보수의 성질

10진수	BCD 코드	3-초과 코드		
0	0000 +3(00	011) > 0011		٦ .
1	0001	0100	_	
2	0010	0101	-	
3	0011	0110	_←	
4	0100	0111	¯←III	보수
5	0101	1000	T-J	관계
6	0110	1001	_←	
7	0111	1010	_	
8	1000	1011	_	
9	1001	1100	_	_

- 3초과 코드의 특징
 - 장점
 - bit를 반전하여 9의 보수를 얻을 수 있음
 - 반올림이 쉬움(각 자리를 나타내는 4 bits 중 MSB에 따라 결정)
 - 모든 비트가 0이 되는 경우가 없음
 - 단선 등의 신호 두절 구별 용이

10진수	BCD 코드	3-초과 코드		
0	0000 +3(00	011) > 0011	_	7
1	0001	0100		ı
2	0010	0101	_	
3	0011	0110	_	
4	0100	0111	¯←	보수
5	0101	1000	- →	관계
6	0110	1001		
7	0111	1010		
8	1000	1011		
9	1001	1100		_

● 8421 코드(BCD 코드)

10진수	8421코드	10진수 계산
0	0000	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 0$
1	0001	$8 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$
3	0011	$8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 4$
5	0101	$8 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	0110	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 6$
7	0111	$8 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 8$
9	1001	$8 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 9$

■ 자기보수 성질 없음

2421 코드

10진수	2 <u>4</u> 21	10진수 계산	2421 코드	10진수 계산
0	0000	2×0+4×0+2×0+1×0=0	0000	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 0 = 0$
1	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	$2 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	1000	2×1+4×0+2×0+1×0=2
3	0011	$2 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	1001	$2 \times 1 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 3$
4	0100	2×0+4×1+2×0+1×0=4	1010	2×1+4×0+2×1+1×0=4
5	1011	$2 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 5$	0101	$2 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	1100	2×1+4×1+2×0+1×0=6	0110	2×0+4×1+2×1+1×0=6
7	1101	$2 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 7$	0111	$2 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1110	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 8$	1110	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 8$
9	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$	1111	$2 \times 1 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 9$

■ 자기보수 성질을 가짐

5421 코드

10진수	5421 코드	10진수 계산	5421 코드	10진수 계산
0	0000	5×0+4×0+2×0+1×0=0	0000	5×0+4×0+2×0+1×0=0
1	0001	$5 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$	0001	$5 \times 0 + 4 \times 0 + 2 \times 0 + 1 \times 1 = 1$
2	0010	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$	0010	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 2$
3	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$	0011	$5 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 3$
4	0100	$5 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 4$	0100	5×0+4×1+2×0+1×0=4
5	1000	5×1+4×0+2×0+1×0=5	0101	$5 \times 0 + 4 \times 1 + 2 \times 0 + 1 \times 1 = 5$
6	1001	5×1+4×0+2×0+1×1=6	0110	$5 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 0 = 6$
7	1010	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 0 = 7$	0111	$5 \times 0 + 4 \times 1 + 2 \times 1 + 1 \times 1 = 7$
8	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$	1011	$5 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 1 = 8$
9	1100	$5 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 9$	1100	$5 \times 1 + 4 \times 1 + 2 \times 0 + 1 \times 0 = 9$

■ 자기보수 성질 없음

• 84-2-1 (8421) 코드

10진수	84-2-1코드	10진수 계산
0	0000	8×0+4×0-2×0-1×0=0
1	0111	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 1$
2	0110	$8 \times 0 + 4 \times 1 - 2 \times 1 - 1 \times 0 = 2$
3	0101	$8 \times 0 + 4 \times 1 - 2 \times 0 - 1 \times 1 = 3$
4	0100	$8 \times 0 + 4 \times 1 - 2 \times 0 - 1 \times 0 = 4$
5	1011	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 1 = 5$
6	1010	$8 \times 1 + 4 \times 0 - 2 \times 1 - 1 \times 0 = 6$
7	1001	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 1 = 7$
8	1000	$8 \times 1 + 4 \times 0 - 2 \times 0 - 1 \times 0 = 8$
9	1111	$8 \times 1 + 4 \times 1 - 2 \times 1 - 1 \times 1 = 9$

■ 자기보수 성질을 가짐

- 비가중치코드(non-weighted code)
 - 각각의 위치에 해당하는 값이 없는 코드
 - 데이터 변환과 같은 특수한 용도로 사용

10진수	3-초과 코드	5중 2코드 (2-out-of-5)	shift counter	그레이코드
0	0011	11000	00000	0000
1	0100	00011	00001	0001
2	0101	00101	00011	0011
3	0110	00110	00111	0010
4	0111	01001	01111	0110
5	1000	01010	11111	0111
6	1001	01100	11110	0101
7	1010	10001	11100	0100
8	1011	10010	11000	1100
9	1100	10100	10000	1101

- 그레이 코드(Gray Code)
 - 연산에는 부적당
 - 연속되는 코드들 간에 하나의 비트만 차이남
 - 아날로그-디지털 변환기나 입출력 장치 코드 등에 사용됨

10진수	2진 코드	그레이 코드
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100

10진수	2진 코드	그레이 코드
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

이웃하는 코드간에 한 비트만 다르다.

● 2진 코드 ↔ 그레이 코드

<XOR 진리표>

입력	출력
A B	$F=A \oplus B$
0 0	0
0 1	1
1 0	1
1 1	0

영숫자코드

ASCII 코드

- ASCII(American Standard Code for Information Interchange)
 - 미국 국립 표준 연구소(ANSI)가 제정한 정보 교환용 미국 표준 코드
 - 128가지의 문자를 표현 가능
 - ASCII 코드의 구성

	zone bit			digi	t bit			
6	5	4	3 2 1 0					
0	1	1		숫자 0~9(0	0000~1001)			
1	0	0		영문자 A~O	(0001~1111)			
1	0	1		영문자 P~Z	(0000~1010)			
1	1	0	영문자 a~o(0001~1111)					
1	1	1	영문자 p~z(0000~1010)					

ASCII 코드

● 표준 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	TAB	LF	VT	FF	CR	SO	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	11	#	\$	%	&	,	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;		=	>	?
4	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	٨	_
6	`	a	b	c	d	e	f	g	h	i	j	k		m	n	О
7	p	q	r	S	t	u	V	W	X	у	Z	{		}	~	DEL

ASCII 코드

• 확장 ASCII 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
8	Ç	ü	é	â	ä	à	å	ç	ê	ë	è	ï	î	ì	Ä	Å
9	É	æ	Æ	ô	ö	ò	û	ù	ÿ	Ö	Ü	¢	£	¥	Pt	f
A	á	í	ó	ú	ñ	Ñ	a	О	i	Γ	٦	1/2	1/4	i	«	»
В		******			4	=	4	П	7	#		71	1	Ш	4	٦
C	L		Т	F		+	F	⊩	L	F	<u> </u>	TF	ŀ	=	#	<u></u>
D	Ш	₹	Т	Ш	L	F	Г	#	+	L	Γ					
E	α	β	Γ	π	Σ	σ	μ	τ	Φ	Θ	Ω	δ	∞	Ø	3	\cap
F	=	±	2	<u> </u>	ſ	J	÷	\approx	0	•	•	V	n	2		

표준 BCD 코드

- 표준 BCD 코드
 - 6비트로 하나의 문자를 표현
 - 최대 64문자까지 표현 가능한 코드

zon	e bit		digit bit					
5	4	3	2	1	0			
1	1		영문자 A~I	(0001~1001)				
1	0		영문자 J~R	(0001~1001)				
0	1		영문자 S~Z	(0010~1001)				
0	0		숫자 0~9 ((0001~1010)				
혼	용	특수문자 및 기타문자						

표준 BCD 코드

● 표준 BCD 코드표

문자	ZZ8421								
A	110001	J	100001	S	010010	1	000001	=	001011
В	110010	K	100010	T	010011	2	000010	>	001100
C	110011	L	100011	U	010100	3	000011	+	010000
D	110100	M	100100	V	010101	4	000100	,	011011
Е	110101	N	100101	W	010110	5	000101)	011100
F	110110	O	100110	X	010111	6	000110	%	011101
G	110111	P	100111	Y	011000	7	000111	?	011111
Н	111000	Q	101000	Z	011001	8	001000	_	100001
I	111001	R	101001			9	001001	@	111010
						0	001010	\$	111111

EBCDIC

- EBCDIC(Extended Binary Coded Decimal Interchange Code)
 - IBM에서 개발
 - 대형 컴퓨터와 IBM 계열 컴퓨터에서 많이 사용
 - 256종류의 문자 코드 표현

	zone	e bit			digi	t bit				
7	6	5	4	3	2	1	0			
0	0				통신 제	어 문자				
0	1				특수	문자				
1	0				소등	근 자				
1	1	00 -	~ 10	대문자						
		1	1	숫자						

EBCDIC

• 코드표

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	NUL	SOH	STX	ETX		HT		DEL				VT	FF	CR	SO	SI
1	DLE						BS		CAN	EM			IFS	IGS	IRS	IUS
2						LF	ETB	ESC						ENQ	ACK	BEL
3			SYN					EOT						NAK		SUB
4	space											•		(+	
5	&										!	\$	*)		٨
6	_	/										,	%	_	>	?
7										`	•	#	@	,	=	11
8		a	b	c	d	e	f	g	h	i						
9		j	k	1	m	n	О	p	q	r						
A		~	S	t	u	V	W	X	y	Z						
В																
C	{	Α	В	C	D	E	F	G	Н	I						
D	}	J	K	L	M	N	О	P	Q	R						
E	\		S	T	U	V	W	X	Y	Z						
\mathbf{F}	0	1	2	3	4	5	6	7	8	9						

유니코드(Unicode)

- ASCII 코드의 한계 극복을 위해 개발된 인터넷 시대의 표준
 - 다양한 언어의 문자 포함
 - 10만개 이상의 문자
 - 유럽, 중동, 아시아 등 거의 대부분의 문자 포함
 - 구두표시, 수학기호, 전문기호, 기하학적 모양, 딩벳 기호 등을 포함

● 종류

- **32(UTF-32)**, 16(UTF-16), 8bit(UTF-8)
 - UTF-16: 한 문자에 2~4바이트 사용, 영문/한글은 각 2바이트
 - UTF-8: 한 문자에 1~4바이트 사용, 영문/한글은 각 1/3바이트

한글코드

● 조합형

- MSB = 1: 한글을 의미
- 초성, 중성, 종성으로 나누어 표현
- 모든 한글 사용 가능
 - 고어까지 취감 가능
 - 다른 응용 프로그램에서는 표현 불가능할 수 있음

• 완성형

- 1987년 정부가 한국표준으로 정함
- 가장 많이 사용되는 한글 음절을 2 바이트의 2진수와 1 대 1로 대응
- 각 바이트의 MSB는 1: ASCII 코드와의 중복 방지

		두 년	번째	바	이트				7	첫 년	번째	바	이트		
7	7 6 5 4 3 2 1 0						0	7	6	5	4	3	2	1	0
1	1 초성					중성					종성	1			

• 숫자코드

- 장점: 변환 쉬움, 실수의 정확한 표현 가능 - 단점: 더 많은 bit 필요, 연산 복잡

연산보다는 카운팅, 데이터 변환, 입출력 등에 <u>주로</u> 활용

10	2진		가중기	기코드			비가중	치코드	
진수	코드	8421	2421	5421	8421	3초과	5중2	Shift counter	Gray
0	0000	0000	0000	0000	0000	0011	11000	00000	0000
1	0001	0001	0001	0001	0111	0100	00011	00001	0001
2	0010	0010	0010, 1000	0010	0110	0101	00101	00011	0011
3	0011	0011	0011, 1001	0011	0101	0110	00110	00111	0010
4	0100	0100	0100, 1010	0100	0100	0111	01001	01111	0110
5	0101	0101	0101, 1011	0101, 1000	1011	1000	01010	11111	0111
6	0110	0110	0110, 1100	0110, 1001	1010	1001	01100	11110	0101
7	0111	0111	0111, 1101	0111, 1010	1001	1010	10001	11100	0100
8	1000	1000	1110	1011	1000	1011	10010	11000	1100
9	1001	1001	1111	1100	1111	1100	10100	10000	1101
10	1010	0001 0000	0001 0000	0001 0000	0111 0000	0100 0011	2진 코드	0 1 1 1	1111
11	1011	0001 0001	0001 0001	0001 0001	0111 0111	0100 0100		1010101	1110
12	1100	0001 0010	0001 0010	0001 0010	0111 0110	0100 0101	│ │ 그레이 코드		1010
13	1101	0001 0011	0001 0011	0001 0011	0111 0101	0100 0110	7-11-01 7-		1011
14	1110	0001 0100	0001 0100	0001 0100	0111 0100	0100 0111			1001
15	1111	0001 0101	0001 0101	0001 0101	0000 1011	0100 1000	 2진 코드		1000
자기보 -	수성질	X	O	X	O	O	20 4	0 1 1 1	

- 영숫자코드
 - 영문 + 숫자

	크기	최대 표현 가능 문자수	나타낼 수 있는 표현
ASCII	7~8 bits	128(표준), 256(확장)	대문자, 소문자, 숫자, 특수문자, 기타문자
표준 BCD	6 bits	64	대문자, 숫자, 특수문자, 기타문자
EBCDIC	8 bits	256	대문자, 소문자, 숫자, 특수문자, 기타문자, 통신제어문자

- 유니코드
 - 다양한 나라의 문자와 구두/수학/전문 기호 등 포함
 - 종류: UTF32, UTF16, UTF8
- 한글코드

	설명	특징	ASCII 문자와의 구분
조합형	초성, 중성, 종성으로 나누어 표현	고어까지 표현 가능	2바이트의 MSB가 1
완성형	많이 사용하는 한글을 숫자와 1대1 대응	1987 한글 표준	각 바이트의 MSB가 1

오류 검출 코드

패리티 비트

- 패리티 비트
 - 데이터 전송과정에서 오류 검사를 위한 추가 비트
 - 오류 검출만 가능
 - 여러 비트에 오류 발생 시 검출이 불가능할 수 있음
- 종류
 - 짝수패리티(even parity): parity bit 포함하여 1의 개수가 짝수
 - 홀수패리티(odd parity): parity bit 포함하여 1의 개수가 홀수

데이터	짝수패리티	홀수패리티
• • •	•••	•••
A	0 1000001	1 1000001
В	0 1000010	1 1000010
С	1 1000011	0 1000011
D	0 1000100	1 1000100
•••	•••	•••

'패리티 비트

- 패리티 비트의 활용 통신 오류 검출
 - 송신측: 패리티 발생기 구성
 - 수신측: 패리티 검출기 구성 → 오류 발생 여부 판단

패리티 비트

- 병렬 패리티(parallel parity)
 - 블록 데이터의 가로/세로에 패리티 적용
 - 오류를 검출하여 정정 가능

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	1	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	0	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

패리티 비트

- 병렬 패리티(parallel parity)
 - ASCII 문자 N개와 병렬 패리티를 전송할 때의 효율은?
 - 패리티 비트를 포함한 총 비트 수: 8(N + 1)
 - 패리티 비트 제외한 총 비트 수: 7N
 - 효율: $\frac{7N}{8(N+1)}$

'해밍코드(Hamming Code)

- 해밍코드 개요
 - 오류를 정정할 수 있는 코드
 - 추가적으로 많은 비트 필요 → 많은 양의 데이터 전달 필요
 - 짝수 패리티 사용
- 데이터 비트와 패리티 비트와의 관계
 - $2^{p-1} p + 1 \le d \le 2^p p 1$
 - p(≥ 2): 패리티 비트 수
 - d: 데이터 비트의 수
 - 예: p = 4일 때
 - $2^{4-1} 4 + 1 \le d \le 2^4 4 1 \to 5 \le d \le 11$
 - 데이터 비트가 5~11일 때 패리티 비트는 4개 필요

'해밍코드(Hamming Code)

- 패리티 비트와 데이터 비트의 위치
 - 패리티 비트의 위치: 2⁰, 2¹, 2², 2³, 2⁴, ... 번째
 - 데이터 비트의 위치: 나머지 위치에 순서대로

비트 위치	1 0001	2 0010	3 0011	4 0100	5 0101	6 0110	7 0111	8 1000	9 1001	10 1010	11 1011	12 1100	P _i 의 계산
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}	1
P ₁ 영역	✓		✓		✓		✓		✓		✓		$D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11}$
P2 영역		✓	✓			✓	✓			✓	✓		$D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11}$
P4 영역				✓	✓	✓	✓					✓	$D_5 \oplus D_6 \oplus D_7 \oplus D_{12}$
P ₈ 영역								✓	✓	√	✓	✓	$D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12}$

해밍코드(Hamming Code)

- 해밍코드의 생성
 - 예: 데이터=00101110

P_i 의 계산

 $P_1 = D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11}$

 $P_2 = D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11}$

 $P_4 = D_5 \oplus D_6 \oplus D_7 \oplus D_{12}$

 $P_8 = D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12}$

비트 위치	1 0001	2 0010	3 0011	4 0100	5 0101	6 0110	7 0111	8 1000	9 1001	10 1010	11 1011	12 1100
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
P ₁ 영역	√		✓		✓		✓		✓		√	
P ₂ 영역		✓	✓			✓	✓			✓	✓	
P ₄ 영역				✓	✓	✓	✓					✓
P ₈ 영역								✓	✓	✓	✓	✓
원본 데이터			0		0	1	0		1	1	1	0
생성된 코드	0	1	0	1	0	1	0	1	1	1	1	0

해밍코드(Hamming Code)

- 오류의 정정
 - 예: 해밍코드=010111011110

P_i 의 계인
$_{1}^{\prime}=P_{1}\oplus D_{3}\oplus D_{5}\oplus D_{7}\oplus D_{9}\oplus D_{11}$
$= P_2 \oplus D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_1$
$P'_{\bullet} = P_{\bullet} \oplus D_{\sigma} \oplus D_{\sigma} \oplus D_{\sigma} \oplus D_{\sigma}$

 $P_8' = P_8 \oplus D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12}$

p'이 게사

비트 위치	1 0001	2 0010	3 0011	4 0100	5 0101	6 0110	7 0111	8 1000	9 1001	10 1010	11 1011	12 1100
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}
P ₁ 영역	✓		✓		✓		✓		✓		√	
P ₂ 영역		✓	✓			✓	✓			✓	✓	
P ₄ 영역				√	√	✓	✓					✓
P ₈ 영역								✓	✓	✓	✓	✓
해밍 코드	0	1	0	1	1	1	0	1	1	1	1	0
패리티 검사	1	0		1				0				

- 검출 시엔 패리티 비트를 포함하여 패리티 생성
- 수신된 해밍코드에 대해 P'_{i} 계산하면 $P'_{8}P'_{4}P'_{2}P'_{1}$ 이 오류의 위치

- 오류 검출/정정 코드
 - 패리티 비트 (오류 검출 코드)
 - 홀수 개의 비트에서 오류가 발생하였는지 검출 가능
 - 짝수/홀수 패리티 비트: 패리티 비트를 포함하여 1의 개수가 짝수/홀수
 - 짝수 패리티 비트의 생성: 데이터 비트를 모두 XOR
 - 짝수 패리티 비트의 검출: 데이터 비트+패리티 비트를 모두 XOR
 - 1: 홀수개의 비트에서 오류 발생
 - 0: 짝수개의 비트에서 오류 발생 또는 오류 X

- 오류 검출/정정 코드
 - 병렬 패리티 비트 (오류 정정 코드)
 - 가로/세로 두 방향으로 패리티 비트 추가
 - 가로: 각 데이터마다 패리티 비트 추가
 - 세로: 패리티 비트로만 이루어진 값 추가
 - 한 비트 오류에 대한 정정 가능

. 저소승은. 1- 1:4 데이터로 NT게써 ㅂ내 때	kN
• 전송효율: k-bit 데이터를 N개씩 보낼 때 →	$\overline{(k+1)(N+1)}$

1	0	1	0	1	1	1	1	0
1	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1
1	1	1	1	0	0	0	0	0
1	0	1	1	1	0	0	1	1
0	0	0	0	0	1	1	1	1
1	1	1	1	1	1	1	1	0
0	1	1	1	1	0	0	0	0
1	0	1	0	0	1	0	1	0

- 오류 검출/정정 코드
 - 해밍코드 (오류 정정 코드)
 - 한 비트의 오류 정정이 가능한 코드
 - 데이터 크기(d)와 패리티 비트 개수(p)의 관계: $2^{p-1} p + 1 \le d \le 2^p p 1$
 - 패리티 비트와 데이터 비트의 배치

비트 위치	1 0001	2 0010	3 0011	4 0100	5 0101	6 0110	7 0111	8 1000	9 1001	10 1010	11 1011	12 1100	P _: 의 계산
기호	P_1	P_2	D_3	P_4	D_5	D_6	D_7	P_8	D_9	D_{10}	D_{11}	D_{12}	1
P ₁ 영역	✓		\checkmark		✓		✓		\checkmark		✓		$D_3 \oplus D_5 \oplus D_7 \oplus D_9 \oplus D_{11}$
P2 영역		✓	\checkmark			✓	✓			✓	✓		$D_3 \oplus D_6 \oplus D_7 \oplus D_{10} \oplus D_{11}$
P4 영역				✓	✓	✓	✓					✓	$D_5 \oplus D_6 \oplus D_7 \oplus D_{12}$
P ₈ 영역								✓	√	✓	✓	✓	$D_9 \oplus D_{10} \oplus D_{11} \oplus D_{12}$

- P_i 의 계산: 비트 위치를 i로 나눈 몫이 홀수인 부분의 데이터 bits를 XOR
- 오류 검출: 수신된 해밍코드에 대해 P, 계산하면 P, P, P, P, 이 오류의 위치