Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva

Međuispit iz predmeta **TEORIJA INFORMACIJE**, 2. prosinca 2021.

Pravilo bodovanja zadataka

Svaki točno odgovoreni zadatak donosi 5 bodova, netočno odgovoreni 2 negativna boda, a neodgovoreni 0 bodova.

Zadatak 1. Neka je Z slučajna varijabla koja poprima vrijednosti iz skupa {0, 1} i neka vrijedi:

$$P(Z=z) = \begin{cases} p, & z=0\\ q, & z=1 \end{cases}, \quad p+q=1$$

Također, pretpostavimo da p poprima vrijednosti iz skupa $\{0, 0.25, 1\}$, pri čemu vrijedi: P(p = 0) =P(p = 0.25) = P(p = 1) = 1/3. Koliko iznosi očekivana vrijednost entropije H(Z)?

- a) 0,3333 bit/simbol; b) 1 bit/simbol;
- c) 0.8113 bit/simbol:

d) 0.2704 bit/simbol:

e) Ništa od navedenog.

Postupak rješavanja:

Prvo je potrebno razmotriti što se zbiva sa slučajnom varijablom Z u ovisnosti o vrijednosti slučajne varijable p.

- a) za p = 0 vrijedi $P(Z_1 = z) = \begin{cases} 0, & z = 0 \\ 1, & z = 1 \end{cases}$ pa je entropija $H(Z_1)$ jednaka nuli.
- b) za p = 1 vrijedi $P(Z_2 = z) = \begin{cases} 1, & z = 0 \\ 0, & z = 1 \end{cases}$ pa je entropija $H(Z_2)$ jednaka nuli.
- c) za p = 0.25 vrijedi $P(Z_3 = z) = \begin{cases} 0.25, & z = 0 \\ 0.75, & z = 1 \end{cases}$ pa je entropija $H(Z_3)$ jednaka

$$H(Z_3) = \frac{1}{4}\log_2 4 + \frac{3}{4}\log_2 \frac{4}{3} = \log_2 4 - \frac{3}{4}\log_2 3 = 2 - \frac{3}{4}\log_2 3[\text{bit/simbol}].$$

Prosječna entropija iznosi:

$$E[H(Z)] = \sum_{i=1}^{3} P(p = p_i)H(Z_i) = \frac{1}{3}H(Z_3) = \frac{2}{3} - \frac{1}{4}\log_2 3 = 0,2704[\text{bit/simbol}].$$

Zadatak 2. Temeljem polaznog rječnika D[0] = a i D[1] = b dekodirajte primljenu poruku 0 1 0 4 5 koristeći algoritam LZW.

- a) abaaaaa (7 znakova);
- b) abaaaaaaa (9 znakova);
- c) abaaaaaa (8 znakova):

- d) abaaaa (6 znakova);
- e) Ništa od navedenog.

Postupak riešavanja:

Prošireni rječnik: D[2] = ab, D[3] = ba, D[4] = aa, D[5] = aaa. Dekodirana poruka je: abaaaaaa.

Zadatak 3. Promatrajte izvor na čijem se izlazu pojavljuju dva simbola, i to: točka (•) i crtica (–). Trajanje točke iznosi 0,2 s, trajanje crtice je tri puta dulje, a trajanje stanke između simbola iznosi 0,2 s. Vjerojatnost pojavljivanja točke je dva puta veća od vjerojatnosti pojavljivanja crtice. Izračunajte prosječnu brzinu generiranja informacije izvora u jedinici bit/s.

- a) 0.4897 bit/s;
- b) 2,7552 bit/s;
- c) 0,9183 bit/s;
- d) 1,7219 bit/s;
- e) Ništa od navedenog.

Postupak rješavanja:

Dakle, trajanje simbola točka $t_1 = t(\bullet) = 0.2$ s, trajanje simbola crtica $t_2 = t(-) = 0.6$ s, a trajanje stanke $t_s = 0.2$ s. Neka je vjerojatnost pojavljivanja točke $P(\bullet) = p_1$, a vjerojatnost pojavljivanja crtice $P(-) = p_2$. S obzirom da je zadano $p_1 = 2p_2$, a mora vrijediti i jednakost $p_1 + p_2 = 1$, slijedi da je $p_2 = 1/3$, a $p_1 = 2/3$. Prosječna količina informacije po svakom simbolu određuje se proračunom entropije zadanog izvora:

$$H(X) = -\sum_{i=1}^{2} p_i \log_2 p_i = 0.9183 \frac{\text{bit}}{\text{simbol}}.$$

S obzirom da se iza svakog simbola generira i stanka, za prosječno trajanje generiranog simbola vrijedi:

$$T = p_1(t_1 + t_s) + p_2(t_2 + t_s) = p_1t_1 + p_2t_2 + t_s = 0,5333 \frac{s}{\text{simbol}}$$

Konačno, prosječna brzina generiranja informacije u jedinici vremena iznosi:

$$R = \frac{H(X)}{T} = \frac{0.9183}{0.5333} = 1,7219 \frac{\text{bit}}{\text{s}}$$
.

Zadatak 4. Koristeći algoritam LZ77 kodirajte poruku aaaabbbbbbcccccd* ($4\times a$, $6\times b$, $6\times c$, d, *), uzimajući pri tome da je maksimalna duljina posmičnog prozora 6, a prozora za kodiranje 5 simbola. Napomena: simbol * označava kraj poruke. Odredite broj kodiranjem dobivenih trojki oblika (pomak, duljina, sljedeći simbol).

- a) 5;
- b) 6:
- c) 7;
- d) 4;
- e) ništa od navedenog.

Postupak rješavanja:

Postupak rješavanja prikazan je u zbirci zadataka "Teorija informacije i kodiranje", 3. izdanje, zadatak 2.18, stranica 98.

Zadatak 5. Instrument mjeri slučajnu veličinu čije su vrijednosti zadane skupom $X = \{-2, -1, 0, 1, 2\}$. Sve su vrijednosti jednako vjerojatne. Pokazivač instrumenta, namijenjen brojčanom prikazu izmjerene vrijednosti, u kvaru je koji se manifestira tako da se znak za "minus" ne upali u 30%

slučajeva. Promatrajte opisani mjerni sustav kao komunikacijski kanal i odredite transinformaciju u kanalu.

a) 1,9167 bit/simbol;

- b) 0,4053 bit/simbol;
- c) 2,3219 bit/simbol;
- d) 2,2692 bit/simbol;
- e) ništa od navedenog.

Postupak rješavanja:

Informacijski kanal

Na gornjoj slici *x* određuje mjerenu veličinu, a *y* prikazanu. One se ponekad međusobno razlikuju zbog kvara pokazivača. Temeljem skice kanala moguće je odrediti matricu uvjetnih vjerojatnosti prijelaza i matricu združenih vjerojatnosti:

$$\left[P(y_j|x_i)\right] = \begin{vmatrix}
0.7 & 0 & 0 & 0 & 0.3 \\
0 & 0.7 & 0 & 0.3 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{vmatrix}.$$

Nadalje, s obzirom da su sve vrijednosti mjerene veličine međusobno jednako vjerojatne, vrijedi $P(x_i)$ = 0,2, i = 1, ..., 5. Koristeći matricu kanala i apriorne vjerojatnosti mjerene veličine moguće je odrediti matricu parova vjerojatnosti (x_i , y_j) koje čine mjerena i prikazana veličina:

$$[P(x_i, y_j)] = [P(x_i) \cdot P(y_j | x_i)] = \begin{bmatrix} 0.14 & 0 & 0 & 0 & 0.06 \\ 0 & 0.14 & 0 & 0.06 & 0 \\ 0 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0 & 0.2 \end{bmatrix}.$$

Zbrajanjem po stupcima matrice $[P(x_i, y_j)]$ dobivamo vjerojatnosti pojave izmjerene veličine na pokazivaču, $P(y_j) = [0.14 \ 0.14 \ 0.2 \ 0.26 \ 0.26], j = 1, ..., 5$. Transinformaciju u kanalu moguće je odrediti koristeći izraz:

$$I(X;Y) = \sum_{i=1}^{5} \sum_{j=1}^{5} P(x_i, y_j) \log \left(\frac{P(x_i, y_j)}{P(x_i) \cdot P(y_j)} \right).$$

Uvrštavanjem otprije poznatih vrijednosti dobivamo I(X; Y) = 1,9167 bit/simbol.

Zadatak 6. Binarni izvor generira dva simbola iz abecede $X_1 = \{x_1, x_2\}$ s pripadajućim vjerojatnostima pojavljivanja $P(x_1) = 2/3$ i $P(x_2) = 1/3$. Nadalje, pretpostavimo da isti izvor kombinira simbole x_1 i x_2 u združene simbole abecede $X_2 = \{x_1x_1, x_1x_2, x_2x_1, x_2x_2\}$, $P(x_i, x_j) = P(x_i) \cdot P(x_j)$, $\forall i, j \in \{1, 2\}$. Odredite omjer efikasnosti kôda, ako se Huffmanov kôd primijeni nad proširenom abecedom X_2 u odnosu na njegovu primjenu na početnu abecedu X_1 .

a) 2;

b) 18/17;

- c) 17/9;
- d) 36/17;
- e) ništa od navedenog.

Postupak rješavanja:

Ako se Huffmanov kôd primijeni na simbole iz abecede X, tada se x_1 kodira binarnim simbolom 1, a x_2 binarnim simbolom 0. Srednja duljina kodne riječi iznosi 1 bit/simbol, a entropija H(X) iznosi – $[2/3 + \log_2(1/3)]$ bit/simbol. Ako primijenimo prošireni Huffmanov kôd, dobivamo četiri združena simbola:

Združeni simbol	Vjerojatnost	Huffmanov kôd
$x_1 x_1$	4/9	0
$x_1 x_2$	2/9	10
$x_2 x_1$	2/9	111
$x_2 x_2$	1/9	110

Srednja duljina kodne riječi iznosi 17/9 bit/združeni simbol, a entropija združenih simbola, $H_2(X)$, jednaka je $2 \cdot H(X)$ [bit/združeni simbol]. Dakle, omjer učinkovitosti Huffmanova koda nad proširenim skupom simbola prema učinkovitosti nad izbornim skupom od dva simbola iznosi:

$$\frac{\varepsilon_2}{\varepsilon_1} = \frac{\frac{2H(X)}{17/9}}{\frac{H(X)}{1}} = \frac{18}{17}$$

Zadatak 7. Zadan je skup X koji sadrži dva simbola, x_1 i x_2 . Simbol x_1 ima stvarnu (izmjerenu) vjerojatnost nastupa $P(x_1) = 0.8$. Promatrač eksperimenta greškom zamijeni vjerojatnosti nastupa simbola x_i , i = 1, 2, jednu s drugom. Odredite relativnu entropiju stvarne prema pogrešnoj razdiobi vjerojatnosti simbola.

- a) 1,2 bit/simbol;
- b) 1,6 bit/simbol;
- c) -0,4 bit/simbol;
- d) 0,117 bit/simbol;

e) Ništa od navedenog.

Postupak riešavanja:

Relativna entropija jedne prema drugoj razdiobi vjerojatnosti nastupa simbola, npr. $P(x_i)$ prema $Q(x_i)$, izračunava se izrazom:

$$D(P||Q) = \sum_{i=1}^{n} P(x_i) \log_2 \frac{P(x_i)}{Q(x_i)}.$$

Dakle, u ovom konkretnom slučaju opisanom u tekstu zadatka vrijedi:

$$D(P||Q) = \sum_{i=1}^{2} P(x_i) \log_2 \frac{P(x_i)}{Q(x_i)} = 0, 8 \cdot \log_2 \frac{0,8}{0,2} + 0, 2 \cdot \log_2 \frac{0,2}{0,8} = 1, 2 \frac{\text{bit}}{\text{simbol}}.$$

Zadatak 8. Zadan je informacijski izvor s memorijom modeliran markovljevim lancem s dva stanja. Taj je lanac opisan matricom prijelaznih vjerojatnosti:

$$\begin{bmatrix} 5/8 & 3/8 \\ 3/4 & 1/4 \end{bmatrix}$$

Odredite entropiju izvora.

- a) 0,2704 bit/simbol; b) 0,8115 bit/simbol; c) 0,9067 bit/simbol; d) 0,6363 bit/simbol;
- e) Ništa od navedenog.

Postupak rješavanja:

Stacionarne vjerojatnosti lanca $\pi = [\pi_0, \pi_1]$ moguće je odrediti temeljem jednakosti $\Pi^T \pi = \pi$:

$$\begin{bmatrix} 5/8 & 3/8 \\ 3/4 & 1/4 \end{bmatrix}^{\mathrm{T}} \cdot \begin{bmatrix} \pi_0 \\ \pi_1 \end{bmatrix} = \begin{bmatrix} \pi_0 \\ \pi_1 \end{bmatrix}.$$

Pomoćni izraz je $\pi_0 + \pi_1 = 1$. Dakle, $\pi_0 = 2/3$, $\pi_1 = 1/3$. Sada je moguće odrediti entropiju izvora:

$$H = -\sum_{i=0}^{1} \pi_{i} \sum_{j=0}^{1} p_{ij} \log \left(p_{ij} \right) = -\frac{2}{3} \left(\frac{5}{8} \log_{2} \frac{5}{8} + \frac{3}{8} \log_{2} \frac{3}{8} \right) - \frac{1}{3} \left(\frac{3}{4} \log_{2} \frac{3}{4} + \frac{1}{4} \log_{2} \frac{1}{4} \right) = 0,9067 \frac{\text{bit}}{\text{simbol}}.$$

Zadatak 9. Razmatrajte izvor koji generira četiri simbola iz skupa $X = \{x_1, x_2, x_3, x_4\}$ s odgovarajućim vjerojatnostima pojavljivanja za koje vrijedi:

$$1 > p(x_1) = p_1 > p(x_2) = p_2 > p(x_3) = p_3 > p(x_4) = p_4 > 0 \text{ i } \sum_{i=1}^4 p_i = 1.$$

Svi su simboli potpuno neovisni jedni o drugima. Nadalje, izvor je spojen s koderom informacije koji navedene simbole kodira binarnim simbolima sukladno algoritmu Shannon-Fano, a rezultat toga je prefiksni kôd. Kodne riječi na izlazu kodera informacije, $C(x_i)$, ovise o razdiobi vjerojatnosti simbola $x_i \in X$. Zadane su vjerojatnosti $p_3 = 0.19$ i $p_4 = 0.15$. Neka izvor informacije generira poruku duljine 9 simbola x_2 . Sukladno pretpostavci da $C(x_1)$ mora imati duljinu jedan bit, odredite koliko može iznositi najveći sadržaj informacije prenijet porukom sastavljenom od 9 simbola x_2 .

- a) *I* < 16,441 bit;
- b) I < 21,563 bit;
- c) I < 23,959 bit;
- d) *I* < 18 bit;
- e) ništa od navedenog.

Postupak rješavanja:

Način kodiranja algoritmom Shannon-Fano ovisi o razdiobi vjerojatnosti $p(x_i)$. Pri tome je važno kako se simboli x_i , ovisno o $p(x_i)$, grupiraju. Bit je algoritma da prilikom podjele simbola u dvije grupe razlika zbroja vjerojatnosti simbola u jednoj i drugoj grupi bude minimalna. U slučaju zadanih simbola x_i i adekvatne razdiobe vjerojatnosti $p(x_i)$, konačan rezultat kodiranja algoritmom Shannon-Fano može biti:

1)
$$C(x_1) = 00$$
, $C(x_2) = 01$, $C(x_3) = 10$, $C(x_4) = 11$, ili

2)
$$C(x_1) = 0$$
, $C(x_2) = 10$, $C(x_3) = 110$, $C(x_4) = 111$.

Dakle, samo u drugom ishodu kodiranja moguće je ostvariti da $C(x_1)$ ima duljinu jednog bita. Da bi se simboli x_i dijelili u grupe na način koji odgovara binarnom kodu kreiranom u ishodu 2, mora vrijediti:

$$|p_1 - (p_2 + p_3 + p_4)| \le |(p_1 + p_2) - (p_3 + p_4)|$$
, tj. s obzirom da je $p_3 + p_4 = 0.19 + 0.15 = 0.34$
 $|p_1 - p_2 - 0.34| \le |p_1 + p_2 - 0.34|$

Desna strana nejednakosti uvijek je jednaka $p_1 + p_2 - 0.34$ zbog uvjeta $1 > p(x_1) > p(x_2) > p(x_3) > p(x_4) > 0$. Lijeva strana nejednakosti može polučiti sljedeće rezultate:

1. za $p_1 \ge p_2 + p_3 + p_4$ vrijedi: $p_1 - p_2 - p_3 - p_4 \le p_1 + p_2 - p_3 - p_4$, što daje: $2p_2 \ge 0$, a to uvijek vrijedi;

Međutim, iz uvjeta $p_1 \ge p_2 + p_3 + p_4$, tj. $p_1 \ge p_2 + 0.34$, te uz $p_2 = 1 - p_1 - (p_3 + p_4) = 0.66 - p_1$ mora vrijediti: $2p_1 \ge 1$, tj. $p_1 \ge 0.5$; istovremeno, zbog uvjeta $p_2 > p_3$, tj. $p_2 > 0.19$, te zbog jednakosti $p_1 + p_2 = 1 - (p_3 + p_4)$, slijedi $p_1 < 0.66 - 0.19$, tj. $p_1 < 0.47$. S obzirom da je ova dva uvjeta za p_1 nemoguće istovremeno zadovoljiti, $p_1 \ge p_2 + p_3 + p_4$ nije opcija koja pogoduje rješenju;

2.
$$\operatorname{za} p_1 \le p_2 + p_3 + p_4 \text{ vrijedi: } -p_1 + p_2 + p_3 + p_4 \le p_1 + p_2 - p_3 - p_4, \text{ tj.}$$

 $-p_1 + p_2 + 0.34 \le p_1 + p_2 - 0.34,$

i konačno: $p_1 \ge 0.34$

Kao što je već ranije rečeno, zbog jednakosti $p_1 + p_2 = 1 - (p_3 + p_4)$, slijedi $p_1 < 0.66 - 0.19$, tj. $p_1 < 0.47$. Ova dva uvjeta u opciji 2 moguće je istovremeno zadovoljiti pa je konačno rješenje: $p_1 \in [0.34, 0.47)$.

Sukladno proračunatom te zbog $p_2 = 1 - (p_1 + p_3 + p_4)$, mora vrijediti: $p_2 \in (0,19, 0,32]$. Sadržaj informacije sadržan u jednom simbolu x_2 iznosi $I(x_2) = -\log_2(p_2)$ bita. Dakle, maksimalan sadržaj informacije kojeg može prenositi simbol x_2 uz ograničenje u zadatku iznosi $I(x_2) < -\log_2(0,19) = 2,396$ bita. Konačno, sadržaj informacije u poruci duljine 9 uzastopnih simbola x_2 mora zadovoljavati uvjet:

$$I\left(x_2...x_2\atop_{9 \text{ puta}}\right) < 21,563 [\text{bit}]$$

Zadatak 10. Promatrajte kanal kojeg karakterizira svojstvo da su mu reci matrice kanala, [P(Y|X)], permutacije jedan drugog, a zbroj članova matrice po svakom stupcu međusobno je jednak. Pri tome X predstavlja skup simbola na ulazu, a Y skup simbola na izlazu kanala. Matrica kanala zadana je sljedećim izrazom:

$$\left[P(Y|X) \right] = \begin{bmatrix} 1/3 & 1/3 & 1/6 & a \\ b & c & d & e \end{bmatrix}, 0 < a, b, c, d, e < 1$$

Odredite kapacitet kanala. Napomena: Permutacija brojeva q_1 , q_2 , q_3 , q_4 (brojevi q_i predstavljaju prvi redak matrice kanala) je svaka uređena četvorka oblika (r_1 , r_2 , r_3 , r_4) u kojoj se svaki od brojeva q_1 , q_2 , q_3 , q_4 javlja točno jedanput. Brojevi r_i predstavljaju drugi redak matrice kanala.

a) 2 bit/simbol;

b) 0,082 bit/simbol;

- c) 1,918 bit/simbol;
- d) 1,585 bit/simbol;

e) ništa od navedenog.

Postupak rješavanja:

S obzirom da zbroj elemenata po retku matrice kanala mora iznositi 1, slijedi da je a = 1/6. Pod uvjetom da je drugi redak permutacija prvog retka (dakle, sadrži dvije vjerojatnosti 1/3 i dvije vjerojatnosti 1/6) te uz zadani uvjet da je zbroj elemenata matrice kanala po svakom stupcu međusobno jednak, postoji samo jedno moguće rješenje, a to je:

$$P(Y|X) = \begin{bmatrix} 1/3 & 1/3 & 1/6 & 1/6 \\ 1/6 & 1/6 & 1/3 & 1/3 \end{bmatrix}$$

Očito se radi o djelomično simetričnom kanalu (engl. weakly symmetric channel) čiji se kapacitet računa prema izrazu:

$$C = \log \left[\operatorname{card}(Y) \right] - H(Y|x)$$

pri čemu je

$$H(Y|x) = \sum_{j=1}^{4} P(y_j|x_i) \log\left(\frac{1}{P(y_j|x_i)}\right), i \in \{1, 2\}$$

Dakle, za proračun kapaciteta kanala dovoljno je izračunati entropiju H(Y|x) za jedan redak matrice kanala. S obzirom da skup Y ima 4 člana, vrijedi $\log[\operatorname{card}(Y)] = 2$ te:

$$H(Y|x) = -2\frac{1}{3}\log_2\frac{1}{3} - 2\frac{1}{6}\log_2\frac{1}{6} = \frac{2}{3}\log_2 3 + \frac{1}{3}\log_2 6 = \frac{1}{3} + \log_2 3$$

pa je kapacitet kanala jednak $C = 2 - 1/3 - \log_2(3) = 5/3 - \log_2(3) = 0,082$ bit/simbol.