

Lab	
HW	
Until	

การบ้าหปฏิบัติการ 7 1D Lists and Tuples Part II (20 คะแหห)

ข้อกำหนด

- การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อให้สามารถ
 import ไปเรียกใช้งานจาก Script อื่น ๆ ได้อย่างเป็นมาตรฐาน
- ii. ไม่อนุญาตให้ใช้การทำซ้ำเช่น **for, while** (Iterations), Recursions, หรือ Data Type อื่น ๆ ที่ยังไม่สอนใน บทเรียน เช่น **set** หรือ **dict** ในการแก้ปัญหา
- iii. ควรสร้างฟังก์ชันทดสอบทุกข้อ และพิจารณาสร้างฟังก์ชันย่อยต่าง ๆ เพิ่มเติมได้ตามความเหมาะสม
- iv. ระบบ grader จะไม่ตรวจให้คะแนนฟังก์ชัน main() และจะพิจารณาทดสอบเฉพาะฟังก์ชันที่ระบุชื่อในแต่ละ โจทย์แต่ละข้อโดยตรง
- v. ในข้อที่ระบุว่ามี [Attachments] ให้ Download ไฟล์ Template จาก Grader ลงมา implement
- 4 คะแนน (Lab07_1_6XXXXXXXX.py) ให้เขียนฟังก์ชัน corner_frame(n: int) -> str (n ≥ 2)
 เพื่อ<u>คืนค่า</u> String แทนรูปสี่เหลี่ยมดังแสดงในรูปด้านล่าง โดยระหว่างตัวเลขจะต้องคั่นด้วย อักขระ space (' ')
 หนึ่งตัวเสมอและจะต้องจบแต่ละบรรทัด (รวมถึงบรรทัดสุดท้าย) <u>ด้วย newline character</u> ('\n')

2) 4 คะแนน (Lab07_2_6xxxxxxxx.py) ให้เขียนฟังก์ชัน $square_frame(n:int, sep:str='') -> str$ $(n \ge 3)$ เพื่อ<u>แสดงผล</u>กรอบสี่เหลี่ยมจัตุรัสดังแสดงด้านล่าง โดยจะต้องมีการ zero-padding ให้ตัวเลขมีความยาวหลัก เท่ากันเสมอและ user สามารถระบุอักขระที่ใช้คั่น (sep) ระหว่างตัวเลขได้

Function Call Output

square_frame(3)	1 2 3
	8 4
	7 6 5

square_frame(4, '.')	01.02.03.04 1205
	1106 10.09.08.07

3) 4 คะแนน (HW07_1_6XXXXXXXX.py) ให้เขียนฟังก์ชัน $print_polynomial(pc_list: list[tuple[int, float]], <math>v: str) \rightarrow str$ เพื่อ<u>คืนค่า</u>สายอักขระ แทนพหุนามตัวแปรเดียว ตัวอย่างเช่น $6x^2 + 34x - 8$ จะถูกแสดงในรูป

$$6x^2 + 34x - 8$$

โดย pc_list จะเป็น list ของ tuple ที่อยู่ในรูป (power, coefficient) หรือ (กำลัง, สัมประสิทธิ์) ทั้งนี้ power <u>จะ</u> เป็น<u>จำนวนเต็มที่ไม่เป็นลบ</u>และไม่มีค่าซ้ำกันในแต่ละพหุนาม ในขณะที่ coefficient เป็น<u>จำนวนจริง</u> และ v คืออักขระ ที่ใช้แทนตัวแปรในพหุนาม โดยให้แสดงสัมประสิทธิ์ให้สั้นที่สุดที่เป็นไปได้ (พิจารณาศึกษาการใช้ %g ในการ format) <u>Hint</u>: พิจารณาการใช้ฟังก์ชัน sorted() เพื่อเรียงลำดับ tuple ภายใน list

<u>Input</u>	<u>Output</u>
[(2, -6), (0, -8), (1, 34)]	'-6x^2 + 34x - 8'
[(2, -6), (0, -8), (1, 34)] 'y'	'-6 y ^2 + 34 y - 8'

4) 4 คะแนน (HW07_2_6XXXXXXXX.py) ให้เขียนฟังก์ชัน medal_allocation(list_a: list[int]) -> tuple[list[int], list[int], list[int]] เพื่อคืนค่าการกำหนดเหรียญรางวัลในรูป Tuple of Lists ให้กับการแข่งขันเขียนโปรแกรม "โค้ดดิ้งโอลิมเป็ด" (Coding Olympaid) โดยพิจารณาจากคะแนนของผู้เข้าแข่งขัน ใน list_a ที่เป็น List ของจำนวนเต็มตั้งแต่ศูนย์ขึ้นไป โดยจะแบ่งประเภทของเหรียญเป็น Gold, Silver และ Bronze เหรียญละ 1 รางวัล ทั้งนี้ในแต่ละ List ที่คืนค่าจะเป็นคะแนนของผู้เข้าแข่งขันที่ได้เหรียญ เรียงตามลำดับจาก Gold, Silver และ Bronze และเป็น List ว่างหากไม่มีผู้ได้เหรียญในประเภทนั้น ๆ

กรณีมีผู้เข้าแข่งขันคะแนนเท่ากันและเข้าข่ายได้เหรียญรางวัล ก็จะได้รับเหรียญทุกคนและหักจากโควตาเหรียญ ประเภทที่ต่ำกว่าแทน เช่น หากมีผู้ได้คะแนนสูงสุดเท่ากันสองคน ก็จะแจก 2 เหรียญทอง และไม่แจกเหรียญเงิน แต่ จะข้ามไปแจกเหรียญทองแดง หรือหากมีผู้เข้าแข่งขันได้คะแนนสูงสุด 5 คน ก็จะแจกเหรียญทอง 5 เหรียญ และงด ให้เหรียญประเภทอื่น ๆ ทั้งนี้ในการแข่งขันจะมีผู้เข้าแข่งขันไม่น้อยกว่า 3 คนเสมอ และจะ<u>ไม่พิจารณา</u>รางวัลให้ผู้เข้า แข่งขันที่ได้ 0 คะแนน

<u>input</u>	Output
[9, 8, 7, 6, 5, 4, 3, 2]	([9], [8], [7])
[9, 8, 7, 7, 6, 5, 4, 3, 2]	([9], [8], [7, 7])
[9, 9, 8, 7, 6, 5, 4, 3, 2]	([9, 9], [], [8])
[9, 9, 9, 9, 8, 7, 6, 5, 4, 3, 2]	([9, 9, 9, 9], [], [])

1.....

- 5) **4 คะแนน** (HW07_3_6XXXXXXXX.py) ให้เขียนฟังก์ชันเพื่อ<u>คืนค่า</u>คำอ่านในภาษาอังกฤษของจำนวนเต็มตาม ข้อกำหนดดังนี้
 - a. **2 คะแนน** ให้เขียนฟังก์ชัน three_digits_to_word(n: int) -> str เพื่อทำการคืนค่าคำอ่านใน ภาษาอังกฤษของจำนวนเต็ม n (o < $n \le 999$)
 - b. 2 คะแนน ให้เขียนฟังก์ชัน num_to_word(num: int) -> str เพื่อทำการคืนค่าคำอ่านของจำนวนเต็ม num (o ≤ num ≤ 999999999) ความยาวไม่เกิน 12 หลัก โดยจะต้องเรียกใช้ฟังก์ชัน three_digits_to_word() จากข้อ a.

Hint:

- สามารถศึกษาการอ่านตัวเลขในภาษาอังกฤษได้จาก http://en.wikipedia.org/wiki/English numerals
- พิจารณาเรียกใช้ฟังก์ชัน divmod()
- พิจารณาการใช้ list ในการแปลงตัวเลขให้เป็นคำอ่าน ดังแสดงด้านล่าง
- ตรวจสอบคำตอบได้จาก https://www.calculatorsoup.com/calculators/conversions/numberstowords.php

input	Output
14	fourteen
248	two hundred forty-eight
111	one hundred eleven
0	zero
42641323862	forty-two billion six hundred forty-one million three hundred twenty-three thousand eight hundred sixty-two

การส่งงาน

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน canvas รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยังระบบตรวจให้คะแนนอัตโนมัติ https://cmu.to/gdr111