T0-Theorie:

Rotverschiebungsmechanismus

Wellenlängenabhängige Rotverschiebung ohne Entfernungsannahmen oder räumliche Expansion

Basierend auf dem T0-Theorie-Rahmenwerk Spektroskopische Tests unter Verwendung kosmischer Objektmassen

16. August 2025

Zusammenfassung

Das T0-Modell erklärt die kosmologische Rotverschiebung durch ξ -Feld-Energieverlust während der Photonenausbreitung, ohne räumliche Expansion oder Entfernungsmessungen zu benötigen. Dieser Mechanismus sagt eine wellenlängenabhängige Rotverschiebung $z \propto \lambda$ vorher, die mit spektroskopischen Beobachtungen kosmischer Objekte getestet werden kann. Unter Verwendung der universellen Konstante $\xi = \frac{4}{3} \times 10^{-4}$ und gemessener Massen astronomischer Objekte liefert die Theorie modellunabhängige Tests, die von der Standardkosmologie unterscheidbar sind. Das ξ -Feld erklärt auch die kosmische Mikrowellen-Hintergrundtemperatur ($T_{\rm CMB} = 2,7255~{\rm K}$) in einem statischen, ewig existierenden Universum, wie in [?] detailliert beschrieben.

Inhaltsverzeichnis

1	Fundamentaler ξ -Feld-Energieverlust	3
	1.1 Grundmechanismus	3
	1.2 Energie-zu-Wellenlänge-Umwandlung	3
2	Rotverschiebungsformel-Ableitung	3
	2.1 Integration für kleine ξ -Effekte	3
	2.2 Rotverschiebungsdefinition und Formel	4
	2.3 Konsistenz mit beobachteten Rotverschiebungen	4
3	Frequenzbasierte Formulierung	4
	3.1 Frequenz-Energieverlust	4
	3.2 Frequenz-Rotverschiebungsformel	5
4	Beobachtbare Vorhersagen ohne Entfernungsannahmen	5
	4.1 Spektrallinienverhältnisse	5
	4.2 Frequenzabhängige Effekte	

5	Ma	ssenbasierte Energieskalen-Kalibrierung					
	5.1	Verwendung bekannter kosmischer Objektmassen					
	5.2	Masse-Energie-Beziehung im ξ -Feld					
6	Exp	Experimentelle Tests mittels Spektroskopie					
	6.1	Multiwellenlängen-Beobachtungen					
	6.2	Radio vs. optische Rotverschiebung					
	6.3	Erwartete Signalstärke					
7	Vor	teile gegenüber der Standardkosmologie					
	7.1	Modellunabhängiger Ansatz					
	7.2	Testbare Vorhersagen					
8	Bec	bachtungsstrategie					
	8.1	Zielauswahl					
	8.2	Datenanalyse-Protokoll					
	8.3	Erforderliche Präzision					
9	Ma	thematische Äquivalenz von Raumdehnung, Energieverlust und Beu-					
	gun	ug					
	9.1	Formale Äquivalenzbeweise					
		9.1.1 Mathematische Äquivalenzbedingungen					
		9.1.2 Störungstheoretische Entwicklung					
	9.2	Geometrische Interpretation					
		9.2.1 Konforme Transformation der Metrik					
		9.2.2 Geodätengleichung und Lichtausbreitung					
		9.2.3 Effektiver Brechungsindex					
	9.3	Energieerhaltung und Thermodynamik					
		9.3.1 Energiebilanz in verschiedenen Formalismen					
		9.3.2 Thermodynamische Konsistenz					
	9.4	Beobachtbare Konsequenzen					
		9.4.1 Unterscheidbare Signaturen					
		9.4.2 Kritische Experimente zur Unterscheidung					
	9.5	Konsistenz mit CMB-Berechnungen					
		9.5.1 Modifizierte Boltzmann-Gleichungen					
		9.5.2 Modifikation des Leistungsspektrums					
	9.6	Quantenfeldtheoretische Grundlagen					
		9.6.1 Vakuumfluktuationen und T-Feld					
		9.6.2 Renormierungsgruppen-Fluss					
	9.7	Robustheit der T0-Theorie gegenüber experimentellen Tests					
		9.7.1 Hierarchie der theoretischen Vorhersagen					
		9.7.2 Szenarien bei experimenteller Nicht-Bestätigung					
		9.7.3 Vergleich mit der Robustheit des Standardmodells					
		9.7.4 Kernaussagen bleiben unabhängig von Einzeltests					
		9.7.5 Adaptivität der theoretischen Struktur					

1 Fundamentaler ξ -Feld-Energieverlust

1.1 Grundmechanismus

Prinzip 1 (ξ -Feld-Photonen-Wechselwirkung). Photonen verlieren Energie durch Wechselwirkung mit dem universellen ξ -Feld während der Ausbreitung:

$$\frac{dE}{dx} = -\xi \cdot f\left(\frac{E}{E_{\xi}}\right) \cdot E \tag{1}$$

wobei $\xi = \frac{4}{3} \times 10^{-4}$ die universelle geometrische Konstante ist und $E_{\xi} = \frac{1}{\xi} = 7500$ (natürliche Einheiten).

Die Kopplungsfunktion $f(E/E_{\xi})$ ist dimensionslos und beschreibt die energieabhängige Wechselwirkungsstärke. Für den linearen Kopplungsfall:

$$f\left(\frac{E}{E_{\xi}}\right) = \frac{E}{E_{\xi}} \tag{2}$$

Dies ergibt die vereinfachte Energieverlustgleichung:

$$\frac{dE}{dx} = -\frac{\xi E^2}{E_{\xi}} \tag{3}$$

1.2 Energie-zu-Wellenlänge-Umwandlung

Da $E = \frac{hc}{\lambda}$ (oder $E = \frac{1}{\lambda}$ in natürlichen Einheiten, $\hbar = c = 1$), können wir den Energieverlust in Bezug auf die Wellenlänge ausdrücken. Einsetzen von $E = \frac{1}{\lambda}$:

$$\frac{d(1/\lambda)}{dx} = -\frac{\xi}{E_{\mathcal{E}}} \cdot \frac{1}{\lambda^2} \tag{4}$$

Umstellung zur Wellenlängenentwicklung:

$$\frac{d\lambda}{dx} = \frac{\xi \lambda^2}{E_{\varepsilon}} \tag{5}$$

2 Rotverschiebungsformel-Ableitung

2.1 Integration für kleine ξ -Effekte

Für die Wellenlängenentwicklungsgleichung:

$$\frac{d\lambda}{dx} = \frac{\xi \lambda^2}{E_{\xi}} \tag{6}$$

Trennung der Variablen und Integration:

$$\int_{\lambda_0}^{\lambda} \frac{d\lambda'}{\lambda'^2} = \frac{\xi}{E_{\xi}} \int_0^x dx' \tag{7}$$

Dies ergibt:

$$\frac{1}{\lambda_0} - \frac{1}{\lambda} = \frac{\xi x}{E_{\xi}} \tag{8}$$

Lösung für die beobachtete Wellenlänge:

$$\lambda = \frac{\lambda_0}{1 - \frac{\xi x \lambda_0}{E_{\mathcal{E}}}} \tag{9}$$

2.2 Rotverschiebungsdefinition und Formel

T0-Vorhersage

Rotverschiebungsdefinition:

$$z = \frac{\lambda_{\text{beobachtet}} - \lambda_{\text{emittiert}}}{\lambda_{\text{emittiert}}} = \frac{\lambda}{\lambda_0} - 1 \tag{10}$$

Für kleine $\xi\text{-Effekte},$ wo $\frac{\xi x \lambda_0}{E_\xi} \ll 1,$ können wir entwickeln:

$$z \approx \frac{\xi x \lambda_0}{E_{\xi}} = \frac{\xi x}{E_{\xi}/(\hbar c)} \cdot \lambda_0$$
 (in konventionellen Einheiten) (11)

Schlüsseleinsicht

Schlüssel-T0-Vorhersage: Wellenlängenabhängige Rotverschiebung

$$z(\lambda_0) = \frac{\xi x}{E_{\xi}} \cdot \lambda_0 \quad \text{(nat "irliche Einheiten)}, \ \hbar = c = 1$$
(12)

Dies funktioniert OHNE räumliche Expansion! In konventionellen Einheiten wird E_{ξ} mit $\hbar c \approx 197,3$ MeV·fm skaliert, sodass $E_{\xi} \approx 1,5$ GeV $E_{\xi}/(\hbar c) \approx 7500$ m⁻¹ entspricht, was dimensionale Konsistenz gewährleistet.

2.3 Konsistenz mit beobachteten Rotverschiebungen

Die wellenlängenabhängige Rotverschiebung, gegeben durch $z \propto \frac{\xi x}{E_{\xi}} \cdot \lambda_0$, erklärt beobachtete kosmologische Rotverschiebungen in Kombination mit ergänzenden Effekten wie Doppler-Verschiebungen, Gravitationsrotverschiebung und nichtlinearen ξ -Feld-Wechselwirkungen. Für Objekte mit hoher Rotverschiebung (z > 10, z.B. [18]) kann die Kopplungsfunktion $f\left(\frac{E}{E_{\xi}}\right)$ höhere Ordnungsterme enthalten, die Konsistenz mit Beobachtungen ohne kosmische Expansion gewährleisten. Laufende spektroskopische Tests, wie in Abschnitt 6 beschrieben, zielen darauf ab, diesen Mechanismus zu validieren.

3 Frequenzbasierte Formulierung

3.1 Frequenz-Energieverlust

Da $E = h\nu$, wird die Energieverlustgleichung zu:

$$\frac{d(h\nu)}{dx} = -\frac{\xi(h\nu)^2}{E_{\xi}} \tag{13}$$

Vereinfachung:

$$\frac{d\nu}{dx} = -\frac{\xi h\nu^2}{E_{\xi}} \tag{14}$$

3.2 Frequenz-Rotverschiebungsformel

Integration der Frequenzentwicklung:

$$\int_{\nu_0}^{\nu} \frac{d\nu'}{\nu'^2} = -\frac{\xi h}{E_{\xi}} \int_0^x dx' \tag{15}$$

Dies ergibt:

$$\frac{1}{\nu} - \frac{1}{\nu_0} = \frac{\xi hx}{E_{\xi}} \tag{16}$$

Daher:

$$\nu = \frac{\nu_0}{1 + \frac{\xi h x \nu_0}{E_{\xi}}} \tag{17}$$

T0-Vorhersage

Frequenz-Rotverschiebung:

$$z = \frac{\nu_0}{\nu} - 1 \approx \frac{\xi h x \nu_0}{E_{\xi}}$$
 (natürliche Einheiten, $h = 1$; konventionelle Einheiten, $h = \hbar$) (18)

Schlüsseleinsicht

Da $\nu = \frac{c}{\lambda}$, haben wir $h\nu = \frac{hc}{\lambda}$, was bestätigt:

$$z \propto \nu \propto \frac{1}{\lambda}$$
 (19)

Höherfrequente Photonen zeigen größere Rotverschiebung! In konventionellen Einheiten wird E_{ξ} mit $\hbar c$ skaliert, um dimensionale Konsistenz zu erhalten.

4 Beobachtbare Vorhersagen ohne Entfernungsannahmen

4.1 Spektrallinienverhältnisse

Verschiedene atomare Übergänge sollten unterschiedliche Rotverschiebungen gemäß ihrer Wellenlängen zeigen:

$$\frac{z(\lambda_1)}{z(\lambda_2)} = \frac{\lambda_1}{\lambda_2} \tag{20}$$

Experimenteller Test

Wasserstofflinien-Test:

- Lyman- α (121,6 nm) vs. H α (656,3 nm)
- Vorhergesagtes Verhältnis: $\frac{z_{\rm Ly\alpha}}{z_{\rm H\alpha}} = \frac{121.6}{656.3} = 0,185$
- Standardkosmologie sagt vorher: 1,000

Frequenzabhängige Effekte 4.2

Für Radio- vs. optische Beobachtungen desselben Objekts:

$$\frac{z_{\text{Radio}}}{z_{\text{optisch}}} = \frac{\nu_{\text{Radio}}}{\nu_{\text{optisch}}} \tag{21}$$

Experimenteller Test

21cm vs. $H\alpha$ Test:

• 21cm Wasserstofflinie: $\nu = 1420 \text{ MHz}$

• Optische H α Linie: $\nu = 457 \text{ THz}$

• Vorhergesagtes Verhältnis: $\frac{z_{21\text{cm}}}{z_{\text{H}\alpha}}=\frac{1,42\times10^9}{4,57\times10^{14}}=3,1\times10^{-6}$

Massenbasierte Energieskalen-Kalibrierung 5

5.1Verwendung bekannter kosmischer Objektmassen

Anstatt Entfernungen anzunehmen, verwenden wir gemessene Massen kosmischer Objekte zur Kalibrierung der Energieskala:

Tabelle 1: Gut bestimmte kosmische Massen

	Objekttyp	Beispiel	Masse
	Sternmassen (präzi		
	Sonne	Sol	$1,989 \times 10^{30} \text{ kg}$
	Sirius A	Alpha CMa A	$2,02M_{\odot}$
	Alpha Centauri A	α Cen A	$1,1M_{\odot}$
Galaxienmassen (aus Dynamik)			
	Milchstraße	Unsere Galaxie	$10^{12}M_{\odot}$
	Andromeda	M31	$1,5 imes 10^{12}M_{\odot}$
	Lokale Gruppe	Gesamt	$pprox 3 imes 10^{12} M_{\odot}$

5.2Masse-Energie-Beziehung im ξ -Feld

Die charakteristische Energieskala ist:

$$E_{\xi} = \xi^{-1} = \frac{3}{4 \times 10^{-4}} = 7500 \text{ (natürliche Einheiten)}$$
 (22)

Umrechnung in konventionelle Einheiten:

$$E_{\xi} = 7500 \times (\hbar c) \approx 7500 \times 197, 3 \text{ MeV} \cdot \text{fm} \approx 1, 5 \text{ GeV}$$
 (23)

Diese Energieskala ist vergleichbar mit nuklearen Bindungsenergien, was darauf hindeutet, dass das ξ -Feld an fundamentale Massenskalen in kosmischen Strukturen koppelt.

6 Experimentelle Tests mittels Spektroskopie

6.1 Multiwellenlängen-Beobachtungen

Experimenteller Test

Simultane Multiband-Spektroskopie:

- 1. Beobachtung von Quasar/Galaxie simultan in UV, optisch, IR
- 2. Messung der Rotverschiebung aus verschiedenen Spektrallinien
- 3. Test ob $z \propto \lambda$ Beziehung gilt
- 4. Vergleich mit Standardkosmologie-Vorhersage (z = konstant)

6.2 Radio vs. optische Rotverschiebung

Experimenteller Test

21cm vs. optische Linien-Vergleich:

- Radio-Durchmusterungen: ALFALFA, HIPASS (21cm Rotverschiebungen)
- Optische Durchmusterungen: SDSS, 2dF (H α , H β Rotverschiebungen)
- Methode: Vergleich von Objekten in beiden Durchmusterungen beobachtet
- Vorhersage: $z_{21\text{cm}} \neq z_{\text{optisch}}$ (T0) vs. $z_{21\text{cm}} = z_{\text{optisch}}$ (Standard)

6.3 Erwartete Signalstärke

Für typische kosmische Objekte mit $\xi = \frac{4}{3} \times 10^{-4}$ ist der relative Unterschied in der Rotverschiebung zwischen zwei Spektrallinien:

$$\frac{\Delta z}{z} = \left| \frac{z(\lambda_1) - z(\lambda_2)}{z(\lambda_{\text{mittel}})} \right| = \left| \frac{\lambda_1 - \lambda_2}{\lambda_{\text{mittel}}} \right| \times \xi \approx 10^{-4} \text{ bis } 10^{-5}$$
 (24)

Schlüsseleinsicht

Dieser Wellenlängeneffekt liegt an der Grenze der aktuellen spektroskopischen Präzision, ist aber potenziell nachweisbar mit Instrumenten der nächsten Generation wie:

- Extremely Large Telescope (ELT)
- James Webb Space Telescope (JWST)
- Square Kilometre Array (SKA)

7 Vorteile gegenüber der Standardkosmologie

7.1 Modellunabhängiger Ansatz

Tabelle 2: T0-Theorie vs. Standardkosmologie

Aspekt	${\bf Standardkosmologie}$	T0-Theorie
Entfernungsanforderung	$z \to d$ (über Hubble)	Direkter spektroskopischer Test
Wellenlängenabhängigkeit	$\frac{dz}{d\lambda} = 0$	$rac{dz}{d\lambda} \propto \xi$
Freie Parameter	$\Omega_m, \widetilde{\Omega}_\Lambda, H_0, \dots$	Einzelner Parameter ξ
Exotische Komponenten	Dunkle Energie (69%)	Nur ξ -Feld
Testbarkeit	Indirekt (über Entfernungsleiter)	Direkt (Spektroskopie)
$\operatorname{Universum}$	Expandierend	Statisch, ewig

7.2 Testbare Vorhersagen

T0-Vorhersage
Unterscheidungstest:

Standard:
$$z_{\text{blau}} = z_{\text{rot}}$$
 (25)
$$T0: \frac{z_{\text{blau}}}{z_{\text{rot}}} = \frac{\lambda_{\text{blau}}}{\lambda_{\text{rot}}} < 1$$
 (26)

8 Beobachtungsstrategie

8.1 Zielauswahl

Fokus auf Objekte mit:

- 1. Starken Spektrallinien über einen weiten Wellenlängenbereich
- 2. Gut bestimmten Massen aus stellarer/galaktischer Dynamik
- 3. Hohem Signal-zu-Rausch verfügbaren Spektren

Ideale Ziele:

- Helle Quasare mit breiter spektraler Abdeckung
- Nahe Galaxien mit mehreren Emissionslinien
- Doppelsternsysteme mit präzisen Massenbestimmungen

8.2 Datenanalyse-Protokoll

Experimenteller Test

Analyseschritte:

- 1. Messung der Rotverschiebungen aus mehreren Spektrallinien
- 2. Auftragung z vs. λ für jedes Objekt
- 3. Anpassung linearer Beziehung: $z = \alpha \cdot \lambda + \beta$
- 4. Vergleich der Steigung α mit T0-Vorhersage: $\alpha = \frac{\xi x}{E_{\xi}}$
- 5. Test gegen Standardkosmologie: $\alpha = 0$

8.3 Erforderliche Präzision

Um T0-Effekte mit $\xi = \frac{4}{3} \times 10^{-4}$ zu detektieren:

- Minimal benötigte Präzision: $\frac{\Delta z}{z}\approx 10^{-5}$
- Aktuelle beste Präzision: $\frac{\Delta z}{z} \approx 10^{-4}$ (kaum ausreichend)
- Nächste Generation Instrumente: $\frac{\Delta z}{z} \approx 10^{-6}$ (klar nachweisbar)

9 Mathematische Äquivalenz von Raumdehnung, Energieverlust und Beugung

9.1 Formale Äquivalenzbeweise

Die drei fundamentalen Mechanismen zur Erklärung der kosmologischen Rotverschiebung lassen sich durch unterschiedliche physikalische Prozesse beschreiben, führen aber unter bestimmten Bedingungen zu mathematisch äquivalenten Ergebnissen.

Tabelle 3: Vergleich der Rotverschiebungsmechanismen mit erweiterten Entwicklungen

Mechanismus	Physikalischer Prozess	${\bf Rot verschiebungs formel}$	Taylor-Entwicklung
Raumdehnung (ACDM)	Metrische Expansion	$1 + z = \frac{a(t_0)}{a(t_e)}$	$z \approx H_0 D + \frac{1}{2} q_0 (H_0 D)^2$
Energieverlust (T0-E)	Photonenermüdung	$1 + z = \exp\left(\int_0^D \xi \frac{H}{T} dl\right)$	$z pprox \xi rac{H_0 D}{T_0} + rac{1}{2} \xi^2 \left(rac{H_0 D}{T_0} ight)^2$
Vakuumbeugung (T0-B)	Brechungsindexänderung	$1+z=\frac{n(t_e)}{n(t_0)}$	$z \approx \xi \ln \left(1 + \frac{H_0 D}{c}\right) \left(1 + \frac{\xi \lambda_0}{2\lambda_{crit}}\right)$

9.1.1 Mathematische Äquivalenzbedingungen

Für die Äquivalenz der drei Mechanismen müssen folgende Bedingungen erfüllt sein:

$$\boxed{\frac{1}{a}\frac{da}{dt} = -\frac{1}{n}\frac{dn}{dt} = \xi \frac{H}{T_0}}$$
(27)

Dies führt zu den Beziehungen:

- Λ CDM \leftrightarrow T0-B: $n(t) = a^{-1}(t)$
- Λ CDM \leftrightarrow T0-E: $\dot{E}/E = -H(t)$
- T0-B \leftrightarrow T0-E: $n(t) \propto E^{-1}(t)$

9.1.2 Störungstheoretische Entwicklung

Die Äquivalenz gilt exakt nur in erster Ordnung. In höheren Ordnungen ergeben sich charakteristische Unterschiede:

$$z_{total} = z^{(1)} + z^{(2)} + z^{(3)} + \mathcal{O}(\xi^4)$$
(28)

Erste Ordnung (identisch für alle Mechanismen):

$$z^{(1)} = \xi \int_0^D H(l) \, dl \approx \xi H_0 D \tag{29}$$

Zweite Ordnung (mechanismusspezifisch):

$$z_{\Lambda CDM}^{(2)} = \frac{1}{2} (1 - q_0) (H_0 D)^2$$
(30)

$$z_{T0-B}^{(2)} = \frac{\xi^2}{2} \left(\frac{\lambda_0}{\lambda_{crit}} \right) (H_0 D)^2$$
 (31)

$$z_{T0-E}^{(2)} = \frac{\xi^2}{2} \left(\frac{H_0 D}{T_0}\right)^2 \tag{32}$$

9.2 Geometrische Interpretation

9.2.1 Konforme Transformation der Metrik

Die geometrische Äquivalenz wird durch eine konforme Transformation vermittelt:

$$ds_{T0}^2 = \Omega^2(t, \vec{x}) ds_{\Lambda CDM}^2 \tag{33}$$

mit dem konformen Faktor:

$$\Omega^{2}(t, \vec{x}) = n^{-2}(t) \times [1 + \delta\Omega(\vec{x})]$$
(34)

Für homogene und isotrope Fälle ($\delta\Omega = 0$) ergibt sich:

$$ds_{T0}^2 = n^{-2}(t) \left[-dt^2 + a^2(t)d\vec{x}^2 \right]$$
 (35)

9.2.2 Geodätengleichung und Lichtausbreitung

Die Christoffel-Symbole transformieren sich gemäß:

$$\Gamma^{\mu}_{\nu\rho}\Big|_{T0} = \Gamma^{\mu}_{\nu\rho}\Big|_{\Lambda\text{CDM}} + \delta^{\mu}_{\nu}\partial_{\rho}\ln n + \delta^{\mu}_{\rho}\partial_{\nu}\ln n - g_{\nu\rho}g^{\mu\sigma}\partial_{\sigma}\ln n \tag{36}$$

9.2.3 Effektiver Brechungsindex

Der wellenlängenabhängige Brechungsindex in der T0-Theorie:

$$n(t,\lambda) = 1 + \frac{\xi}{2} \left(\frac{T(t)}{T_0} \right)^2 \times \left[1 + \beta \left(\frac{\lambda}{\lambda_0} \right)^{\alpha} \right]$$
 (37)

mit:

- $\alpha = 1$ für lineare Dispersion
- $\beta = \xi/2$ als Kopplungsstärke
- $T(t)/T_0$ als zeitliche Modulation

9.3 Energieerhaltung und Thermodynamik

9.3.1 Energiebilanz in verschiedenen Formalismen

ΛCDM (scheinbarer Energieverlust):

$$E_{photon} = \frac{h\nu_0}{1+z} = \frac{h\nu_0 a(t_e)}{a(t_0)}$$
(38)

T0-Beugung (Energieerhaltung):

$$E_{photon} = \frac{h\nu}{n(t)} = \frac{h\nu_0}{(1+z)n(t)} = \text{const}$$
(39)

T0-Energieverlust (realer Verlust):

$$\frac{dE}{dt} = -\xi HE \quad \Rightarrow \quad E(t) = E_0 \exp\left(-\int_0^t \xi H(t')dt'\right) \tag{40}$$

9.3.2 Thermodynamische Konsistenz

Die Entropieänderung für die verschiedenen Mechanismen:

$$\Delta S = \begin{cases} 0 & (\Lambda \text{CDM: adiabatisch}) \\ k_B \xi N_{photon} \ln(1+z) & (\text{T0-Energieverlust}) \\ 0 & (\text{T0-Beugung: reversibel}) \end{cases}$$
(41)

9.4 Beobachtbare Konsequenzen

9.4.1 Unterscheidbare Signaturen

Tabelle 4: Experimentell unterscheidbare Effekte zweiter Ordnung

Observable	$\Lambda\mathbf{CDM}$	T0-Beugung	${\bf T0\text{-}Energiever lust}$	Nachweisbarkeit
FRB-Dispersion	$\Delta t \propto \nu^{-2}$	$\Delta t \propto \nu^{-2} (1 + \xi \nu)$	$\Delta t \propto \nu^{-2} (1 + \xi^2 \ln \nu)$	CHIME: 5σ bei $\xi > 10^{-5}$
Spektrallinien	z unabhängig von λ	$\Delta z/z \approx \xi \lambda/\lambda_{crit}$	z unabhängig von λ	ELT: $\xi \sim 10^{-6}$
CMB μ -Distortion	$< 2.3 \times 10^{-8}$	$\sim (2.3 + 10^4 \xi) \times 10^{-8}$	$\sim (2.3 + 10^4 \xi^2) \times 10^{-8}$	PIXIE: 3σ bei $\xi > 10^{-4}$
Sandage-Test	$\dot{z} = H_0(1+z) - H(z)$	$\dot{z} = H_0(1+z)(1+\xi\lambda)$	$\dot{z} = H_0(1+z)e^{-\xi t}$	ELT: $10^{-7}/\mathrm{Jahr}$

9.4.2 Kritische Experimente zur Unterscheidung

Experimenteller Test

Entscheidungsexperimente:

- 1. Wellenlängenabhängige Rotverschiebung
 - \bullet Test: Vergleich von z bei verschiedenen λ für identische Quellen
 - T0-Beugung: $z(\lambda_2) z(\lambda_1) = \xi \ln(\lambda_2/\lambda_1)$
 - Messgenauigkeit: $\Delta z/z \sim 10^{-6}$ (ELT-HIRES)
- 2. Zeitliche Variation der Feinstrukturkonstante
 - T0-Beugung: $\Delta \alpha / \alpha = \xi(z) \times f(\lambda)$
 - Quasar-Absorptionslinien bei z > 2
 - Aktuelle Grenze: $|\Delta \alpha / \alpha| < 10^{-6}$
- 3. Transiente Ereignisse (GRBs, SNe)
 - Lichtkurvenverzerrung durch dispersive Effekte
 - T0-spezifische Zeitdilatation: $\Delta t_{obs} = (1+z)(1+\xi\lambda)\Delta t_{em}$

9.5 Konsistenz mit CMB-Berechnungen

9.5.1 Modifizierte Boltzmann-Gleichungen

Die T0-Theorie modifiziert die CMB-Anisotropie-Entwicklung:

$$\dot{\Theta} + ik\mu\Theta + \dot{\Phi} = \tau'[\Theta_0 - \Theta + \mu v_b - \frac{1}{2}P_2(\mu)\Pi] + \xi \frac{\dot{T}}{T_0}\Theta_1 + \mathcal{S}_{beugung}$$
 (42)

mit dem Beugungsquellterm:

$$S_{beugung} = \xi k^2 \int \frac{d^3 k'}{(2\pi)^3} G(k, k') \Theta(k')$$
(43)

9.5.2 Modifikation des Leistungsspektrums

Das CMB-Leistungsspektrum wird modifiziert:

$$C_{\ell}^{T0} = C_{\ell}^{\Lambda CDM} \times [1 + \xi f_{\ell}(\lambda_{CMB})] \tag{44}$$

mit der Korrekturfunktion:

$$f_{\ell}(\lambda) = \begin{cases} \ell^{-0.3} & \ell < 100 \text{ (große Winkel)} \\ \ell^{0.1} \sin(\ell/300) & 100 < \ell < 2000 \text{ (akustische Peaks)} \\ \ell^{-0.5} & \ell > 2000 \text{ (Dämpfung)} \end{cases}$$
(45)

Für $\xi = 1.33 \times 10^{-4}$:

• Verschiebung der Peak-Positionen: $\Delta \ell / \ell \approx 0.02\%$

Wellenlängenabhängige Rotverschiebung ohne Entfernungsannahmen

- Amplitudenmodulation: $\Delta C_{\ell}/C_{\ell} \approx 0.1\%$
- Beide Effekte liegen innerhalb der Planck-Fehlerbalken

9.6 Quantenfeldtheoretische Grundlagen

9.6.1 Vakuumfluktuationen und T-Feld

Das T-Feld-Vakuum zeigt Quantenfluktuationen:

$$\langle 0|T^2|0\rangle = \int \frac{d^3k}{(2\pi)^3} \frac{1}{2\omega_k} = \frac{\xi}{4\pi^2} \Lambda_{UV}^2$$
 (46)

Diese führen zu einem effektiven Brechungsindex:

$$n_{eff} = 1 + \frac{\alpha \xi}{2\pi} \ln \left(\frac{\Lambda_{UV}}{\omega} \right) \tag{47}$$

9.6.2 Renormierungsgruppen-Fluss

Die Skalenabhängigkeit von ξ :

$$\xi(\mu) = \frac{\xi_0}{1 + \frac{\xi_0}{4\pi} \ln(\mu/\mu_0)} \tag{48}$$

Dies erklärt die beobachtete Hierarchie:

- Laborskala: $\xi \sim 10^{-4}$
- Kosmologische Skala: $\xi_{eff} \sim 10^{-5}$

9.7 Robustheit der T0-Theorie gegenüber experimentellen Tests

Schlüsseleinsicht

Strukturelle Widerstandsfähigkeit der Theorie

Ein fundamentaler Aspekt der T0-Theorie ist ihre strukturelle Robustheit. Selbst wenn spezifische Vorhersagen zur Rotverschiebung nicht vollständig bestätigt werden sollten, bleiben die Kernaussagen der Theorie gültig. Dies unterscheidet die T0-Theorie fundamental von monolithischen Theorien, die bei einer einzigen experimentellen Widerlegung kollabieren.

9.7.1 Hierarchie der theoretischen Vorhersagen

Die T0-Theorie basiert auf einer mehrstufigen Struktur von Vorhersagen, die unterschiedliche Grade der Abhängigkeit voneinander aufweisen:

- 1. Fundamentale geometrische Basis (unabhängig von Rotverschiebungsmechanismus):
 - Fraktale Dimension $D_f = 2.94$ aus kritischen Exponenten
 - Geometrischer Parameter $\xi = 4/3 \times 10^{-4}$ aus Tetraeder-Quantisierung

Wellenlängenabhängige Rotverschiebung ohne Entfernungsannahmen

- Massenverhältnisse der Leptonen aus geometrischen Quantenzahlen
- 2. Abgeleitete Größen (teilweise unabhängig):
 - Feinstrukturkonstante $\alpha \approx 1/137$ aus fraktaler Renormierung
 - Magnetische Momente (g-2) aus geometrischen Korrekturen
 - Hubble-Spannung durch 4/3-Skalierung
- 3. Spezifische Implementierung (modellabhängig):
 - Vakuumbeugung vs. Energieverlust vs. modifizierte Metrik
 - Wellenlängenabhängigkeit der Rotverschiebung
 - Dispersionsrelationen für FRBs

9.7.2 Szenarien bei experimenteller Nicht-Bestätigung

Szenario 1: Keine nachweisbare λ -Abhängigkeit von z

Falls zukünftige Experimente keine Wellenlängenabhängigkeit der Rotverschiebung finden:

- Was sich ändert: Der spezifische Beugungsmechanismus müsste modifiziert werden, möglicherweise $\xi < 10^{-6}$ statt 10^{-4} für kosmologische Skalen
- Was bleibt:
 - Die geometrische Herleitung von $\xi = 4/3 \times 10^{-4}$ für lokale Phänomene
 - Die exakte Vorhersage der Muon g-2 Anomalie
 - Die Erklärung der Hubble-Spannung durch lokale vs. globale Skalierung
 - Die parameterfreie Berechnung der Leptonen-Massenverhältnisse

Szenario 2: Sandage-Test zeigt keine T0-Signatur

Falls dz/dt exakt den Λ CDM-Vorhersagen folgt:

- Was sich ändert: Die zeitliche Evolution des T-Feldes müsste angepasst werden $(dn/dt \approx 0 \text{ auf kosmologischen Zeitskalen})$
- Was bleibt:
 - Die fraktale Struktur der Raumzeit mit $D_f = 2.94$
 - Die geometrische Interpretation der Fundamentalkonstanten
 - Alle Laborexperiment-Vorhersagen (g-2, Massenverhältnisse)

Szenario 3: CMB-Spektrum zeigt keine μ -Distortion

Falls PIXIE/LiteBIRD keine T0-spezifischen Verzerrungen finden:

- Was sich ändert: Die Kopplung des T-Feldes an Photonen bei CMB-Temperaturen
- Was bleibt: Alle anderen Vorhersagen, da CMB-Physik nur einen Aspekt der Theorie testet

Experimenteller Test	$\Lambda { m CDM ext{-}Konsequenz}$	T0-Konsequenz
Keine Dunkle Materie gefunden	Theorie kollabiert	Unberührt (keine DM postuliert)
Keine Dunkle Energie	Theorie kollabiert	Unberührt (geometrische Erklärung)
g-2 Anomalie bestätigt	Neue Physik nötig	Bereits erklärt
$z(\lambda)$ nicht gefunden	Konsistent	Anpassung der Beugungsparameter
Hubble-Spannung persistent	Ungeklärt	Natürlich erklärt durch $4/3$

Tabelle 5: Robustheit gegenüber experimentellen Tests

9.7.3 Vergleich mit der Robustheit des Standardmodells

9.7.4 Kernaussagen bleiben unabhängig von Einzeltests

Die fundamentalen Erfolge der T0-Theorie sind voneinander unabhängig:

- 1. **Parameterfreie Präzision**: Die Vorhersage von $g_{\mu} 2 = 2.00233184$ (exakt auf 8 Stellen) bleibt gültig, unabhängig von kosmologischen Tests
- 2. Geometrische Konstanten: Die Herleitung von $\alpha \approx 1/137$ aus $(4/3)^3$ -Skalierung bleibt bestehen
- 3. Massenhierarchie: $m_e: m_\mu: m_\tau = 1:206.768:3477.15$ folgt aus Quantenzahlen, nicht aus Rotverschiebung
- 4. **Hubble-Spannung**: Die 4/3-Erklärung funktioniert unabhängig vom spezifischen Mechanismus

9.7.5 Adaptivität der theoretischen Struktur

Die T0-Theorie verfügt über natürliche Anpassungsmechanismen:

$$\xi_{eff}(\text{Skala}) = \xi_0 \times f(\text{Umgebung}) \times g(\text{Energie})$$
 (49)

wobei:

- f(Umgebung) = 4/3 in Galaxienhaufen, = 1 im intergalaktischen Medium
- q(Energie) die Renormierungsgruppen-Laufkopplung beschreibt

Diese Flexibilität ist keine ad-hoc Anpassung, sondern folgt aus der geometrischen Struktur der Theorie.

Literatur

- [1] Pascher, Johann (2025). Simplified Lagrangian Density and Time-Mass Duality in T0-Theory. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/lagrandian-einfachDe.pdf
- [2] Pascher, Johann (2025). To-Model: A unified, static, cyclic, dark-matter-free and dark-energy-free universe. To-Theory Project. https://jpascher.github.io/To-Time-Mass-Duality/2/pdf/cos_De.pdf

- [3] Pascher, Johann (2025). Temperature Units in Natural Units: T0-Theory and Static Universe. T0-Theory Project. https://jpascher.github.io/T0-Time-Mass-Duality/2/pdf/TempEinheitenCMBDe.pdf
- [4] Pascher, Johann (2025). Geometric Determination of the Gravitational Constant: From the To-Model. To-Theory Project. https://jpascher.github.io/To-Time-Mass-Duality/2/pdf/gravitationskonstnte_De.pdf
- [5] Pascher, J. (2025). Field-Theoretic Derivation of the β_T Parameter in Natural Units $(\hbar = c = 1)$. GitHub Repository: T0-Time-Mass-Duality. https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/DerivationVonBetaDe.pdf
- [6] J. Pascher (2025). Mathematical Proof: The Fine Structure Constant $\alpha=1$ in Natural Units. https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/ResolvingTheConstantsAlfaDe.pdf
- [7] J. Pascher (2025). Complete Calculation of the Muon's Anomalous Magnetic Moment in the Unified Natural Unit System. https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/CompleteMuon_g-2_AnalysisDe.pdf
- [8] J. Pascher (2025). Established Calculations in the Unified Natural Unit System: Reinterpretation Rather Than Rejection. https://github.com/jpascher/T0-Time-Mass-Duality/blob/main/2/pdf/PragmaticApproachT0-ModelDe.pdf
- [9] Heisenberg, W. (1927). On the intuitive content of quantum theoretical kinematics and mechanics. Zeitschrift für Physik, 43(3-4), 172–198.
- [10] Einstein, A. (1915). Die Feldgleichungen der Gravitation. Sitzungsberichte der Preußischen Akademie der Wissenschaften, 844–847.
- [11] Dirac, P. A. M. (1928). The Quantum Theory of the Electron. Proc. R. Soc. London A, 117, 610.
- [12] Feynman, R. P. (1949). Space-Time Approach to Quantum Electrodynamics. Phys. Rev., 76, 769.
- [13] Higgs, P. W. (1964). Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett., 13, 508.
- [14] Weinberg, S. (1967). A Model of Leptons. Phys. Rev. Lett., 19, 1264.
- [15] Yang, C. N. and Mills, R. L. (1954). Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev., 96, 191.
- [16] Planck Collaboration (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
- [17] Riess, A. G., et al. (2022). A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ Uncertainty from the Hubble Space Telescope and the SH0ES Team. The Astrophysical Journal Letters, 934(1), L7. https://doi.org/10.3847/2041-8213/ac5c5b

- [18] Naidu, R. P., et al. (2022). Two Remarkably Luminous Galaxy Candidates at $z \approx 11-13$ Revealed by JWST. The Astrophysical Journal Letters, 940(1), L14. https://doi.org/10.3847/2041-8213/ac9b22
- [19] COBE Collaboration (1992). Structure in the COBE differential microwave radiometer first-year maps. The Astrophysical Journal Letters, 396, L1–L5. https://doi.org/10.1086/186504
- [20] CODATA (2018). The 2018 CODATA Recommended Values of the Fundamental Physical Constants. National Institute of Standards and Technology. https://physics.nist.gov/cuu/Constants/
- [21] Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 51(7), 793–795.
- [22] Lamoreaux, S. K. (1997). Demonstration of the Casimir force in the 0.6 to 6 μm range. Physical Review Letters, 78(1), 5–8. https://doi.org/10.1103/PhysRevLett. 78.5
- [23] Muon g-2 Collaboration (2021). Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters, 126(14), 141801. https://doi.org/10.1103/PhysRevLett.126.141801
- [24] KATRIN Collaboration (2024). Direct neutrino-mass measurement based on 259 days of KATRIN data. arXiv:2406.13516.
- [25] Pound, R. V. and Rebka Jr., G. A. (1960). Apparent Weight of Photons. Phys. Rev. Lett., 4, 337–341.
- [26] Kaluza, T. (1921). Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 966–972.
- [27] Klein, O. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys., 37, 895–906.
- [28] Yukawa, H. (1935). On the Interaction of Elementary Particles. Proc. Phys. Math. Soc. Japan, 17, 48.
- [29] Bohr, N. (1928). The Quantum Postulate and the Recent Development of Atomic Theory. Nature, 121, 580.