

TECHNICAL REPORT

Aluno: Robert Michael de Ávila Barreira

1. Introdução

Este relatório visa analisar datasets de classificação e regressão aplicando códigos para normalizar, gerar predições e plotar gráficos com base em questões desenvolvidas pelo professor Alisson com o viés de aplicar os conhecimentos aprendidos em sala de aula. Os datasets que foram utilizados para a geração deste relatório foram Wine Quality Dataset e Gold Price Regression ambos do kaggle.

O primeiro dataset está relacionado a variantes tintas do vinho português "Vinho Verde" e descreve a quantidade de diversos compostos químicos presentes no vinho e seu impacto na qualidade. Pode ser usado tanto para tarefas de classificação quanto de regressão, com classes ordenadas, mas desbalanceadas (há mais vinhos normais do que excelentes ou ruins). O objetivo é prever a qualidade do vinho com base nos dados fornecidos.

O segundo dataset é composto por séries temporais de 2010 a 2024, abrangendo índices de mercado, commodities, indicadores econômicos e taxas de câmbio, representados por ETFs e valores financeiros. Seu viés é analisar relações entre ativos financeiros, como o ouro, e a economia global, destacando seu papel como reserva de valor em períodos de incerteza econômica.

2. Observações

Durante o processo, diversos ajustes foram feitos e problemas foram identificados.

O primeiro dataset é simples, mas desafiador, devido ao número reduzido de amostras e ao desbalanceamento das classes. O desafio está em superar essas limitações e construir um modelo preditivo eficaz para classificar a qualidade do vinho.

O segundo dataset apresenta granularidades variadas (diária, mensal e trimestral) e contém valores ausentes, exigindo normalização e tratamento inicial.

Devido a esses imprevistos e limitações, ausências e necessidade de normalização prévia para continuar o processamento aconteceram muitos imprevistos e alguns resultados não foram os esperados.

3. Resultados e discussão

Para a resolução das questões foram seguidas instruções para o pré-processamento e pós-processamento, sempre seguindo a lógica das implementações e resultados obtidos pelas questões anteriores.

Questão 1

Objetivo

Neste primeiro exercício deve realizar manipulação em um dataset com a biblioteca pandas e realizar o pré-processamento deste.

Implementação

Importei o primeiro dataset e verifiquei se existia linhas com NaN com o comando "print(WineQT.isna().sum())", após essa verificação apliquei um algoritmo para verificar os atributos mais relevantes/importantes para retirar dados desnecessários, depois exibi o dataframe com os atributos selecionados pelo algoritmo e salvei com as alterações aplicadas.

```
# Carregar o dataset
WineQT = pd.read_csv('./dataset/wineqt_ajustado.csv')
```



```
# Calcular correlações com a coluna 'quality'
correlacoes = WineQT.corr()["quality"].sort_values(ascending=False)

# Filtrar colunas relevantes (correlação absoluta > 0.2)
relevantes = correlacoes[correlacoes.abs() > 0.2]

# Gerar automaticamente o DataFrame com as colunas relevantes
colunas_relevantes = ["quality"] + list(relevantes.index[1:]) # Inclui 'quality'
new_wineqt = WineQT[colunas_relevantes]

# Exibir o DataFrame final
print("\nDataFrame Final:")
print(new_wineqt.head())
```

Resultado:

- 1 Dataset livre de NaN
- 2 Um novo dataset com atributos relevantes para o pós-processamento

DataFrame Final:									
	quality	alcohol	sulphates	citric acid	volatile acidity				
0	5	9.4	0.56	0.00	0.70				
1	5	9.8	0.68	0.00	0.88				
2	5	9.8	0.65	0.04	0.76				
3	6	9.8	0.58	0.56	0.28				
4	5	9.4	0.56	0.00	0.70				

```
fixed acidity
volatile acidity
citric acid
residual sugar
chlorides
free sulfur dioxide
total sulfur dioxide
density
pH
sulphates
alcohol
quality
Id
dtype: int64
```


Questão 2

Objetivo

Neste segundo exercício deve-se realizar uma classificação utilizando KNN implementado de forma manual.

Implementação

Importei o dataset ajustado na questão anterior e dividi os dados em treino e teste, utilizando fórmula do "train_test_split" com a coluna alvo 'quality'. Depois de separar os dados em conjunto de treino e teste, preparei os dados e em seguida apliquei a fórmula do KNN. Analisei os resultados gerados pelas diferentes distâncias aplicadas, euclidiana, manhattan, chebyshev e mahalanobis.

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score

# Carregar o dataset
WineQT = pd.read_csv('./dataset/wineqt_ajustado.csv')

# Separar os dados em características (X) e rótulos (y)
X = WineQT.drop( labels: "quality", axis=1).values
y = WineQT['quality'].values

# Normalizar os dados (StandardScaler)
scaler = StandardScaler()
X = scaler.fit_transform(X)
```



```
def avaliar_knn(teste, treinamento, K, distancia_func, matriz_cov=None): 4 usage
    predicoes = []
    for amostra in teste:
        classe = knn(treinamento, amostra, K, distancia_func, matriz_cov)
        predicoes.append(classe)
    return accuracy_score([amostra[-1] for amostra in teste], predicoes) * 100
# Matriz de <u>covariância</u> para distância Mahalanobis
matriz_cov = np.cov(X_train.T)
K = 7
print("Porcentagem de acertos distância euclidiana:",
      avaliar_knn(teste, treinamento, K, dist_euclidiana))
print("Porcentagem de acertos distância manhattan:",
      avaliar_knn(teste, treinamento, K, dist_manhattan))
print("Porcentagem de acertos distância chebyshev:",
      avaliar_knn(teste, treinamento, K, dist_chebyshev))
print("Porcentagem de acertos distância mahalanobis:",
      avaliar_knn(teste, treinamento, K, dist_mahalanobis, matriz_cov))
```


Resultado

Distância Euclidiana: Melhor desempenho, pois é adequada para dados escalonados e distribuições esféricas, capturando bem a similaridade entre amostras.

Distância Manhattan: Desempenho menor, mais robusta a outliers, mas menos eficaz para variáveis correlacionadas.

Distância Chebyshev: Similar à Manhattan, foca na maior diferença entre variáveis, mas não captura bem padrões em dados com várias dimensões relevantes.

Distância Mahalanobis: Alta precisão, considerando a correlação entre variáveis, mas depende da matriz de covariância, que pode ser instável para dados pequenos.

Porcentagem de acertos distância euclidiana: 65.73426573426573

Porcentagem de acertos distância manhattan: 61.18881118881119

Porcentagem de acertos distância chebyshev: 61.18881118881119

Porcentagem de acertos distância mahalanobis: 64.33566433566433

Questão 3

Objetivo

Considerando a melhor distância observada no exercício anterior, neste deve-se verificar se a normalização interfere nos resultados da classificação.

Implementação

Importei o dataset ajustado e separei o conjunto de dados para treino e teste utilizando a mesma fórmula da questão anterior, após essa etapa normalizei os dados com duas abordagens, a primeira foi normalização logarítmica e a segunda com a média zero e variância unitária. Em seguida, apliquei a fórmula do KNN e exibi a acurácia de ambas normalizações para poder compará-las.


```
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Carregar o dataset
WineQT = pd.read_csv('./dataset/wineqt_ajustado.csv')

# Separando as variáveis independentes (X) e a variável alvo (y)
X = WineQT.drop( labels: "quality", axis=1).values
y = WineQT['quality'].values

# Dividindo os dados em conjuntos de treino e teste com estratificação
X_train, X_test, y_train, y_test = train_test_split( 'arrays: X, y, stratify=y, random_state=42)
```

```
# Aplicando transformação logarítmica
X_train_log = np.log1p(X_train)
X_test_log = np.log1p(X_test)

# Aplicando normalização com média zero e variância unitária
scaler = StandardScaler()
X_train_norm = scaler.fit_transform(X_train)
X_test_norm = scaler.transform(X_test)
```

Resultado

A acurácia com normalização logarítmica foi ligeiramente superior à normalização de média zero e variância unitária. A normalização logarítmica ajudou a reduzir a influência de valores extremos e distribuições assimétricas nos dados, resultando em um desempenho ligeiramente melhor para o modelo KNN. A diferença entre os resultados é pequena, sugerindo que ambos os métodos são eficazes, mas o modelo KNN ainda tem margem para melhorias.

Acurácia com normalização logarítmica: 67.48% Acurácia com média zero e variância unitária: 66.78%

Questão 4

Objetivo

Com base nas parametrizações vistas anteriormente, neste exercício deve-se buscar saber a melhor parametrização do knn implementado na questão anterior.

Implementação

Importei o dataset ajustado e separei o conjunto de dados para treino e teste utilizando a mesma fórmula da questão anterior, após essa etapa normalizei os dados com a média zero e variância unitária, separei o conjunto de testes e treino com o "train_test_split" e apliquei o KNN, em seguida utilizei uma função "for" para encontrar o melhor valor de K e ao final plotei o gráfico com os


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Carregar o dataset
WineQT = pd.read_csv('./dataset/wineqt_ajustado.csv')

# Dividir os dados em features (X) e labels (y)
X = WineQT.drop( labels: "quality", axis=1).values
y = WineQT['quality'].values

# Normalizar os dados (média zero e variância unitária)
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Dividir os dados em conjuntos de treino e teste
X_train, X_test, y_train, y_test = train_test_split( *arrays: X_scaled, y, stratify=y, random_state=42)
```

```
# <u>Intervalo</u> de <u>vizinhos</u> a ser <u>testado</u>
neighbors_range = np.arange(1, 26)
train_accuracies = []
test_accuracies = []
for n_neighbors in neighbors_range:
    knn = KNeighborsClassifier(n_neighbors=n_neighbors)
    knn.fit(X_train, y_train)
    train_accuracies.append(knn.score(X_train, y_train))
    test_accuracies.append(knn.score(X_test, y_test))
print("Acurácias no treino:", train_accuracies)
plt.figure(figsize=(8, 6))
plt.plot( *args: neighbors_range, train_accuracies, label="Acurácia no <u>Treino</u>", marker='o')
plt.plot( *args: neighbors_range, test_accuracies, label="Acurácia no Teste", marker='o')
plt.title("KNN: Variando o Número de Vizinhos")
plt.xlabel("Número de Vizinhos")
plt.ylabel("Acurácia")
plt.legend()
plt.grid()
plt.show()
```


Resultado

O gráfico mostra como a acurácia do KNN varia com o número de vizinhos:

- 1. Linha Azul (Treino): Representa a acurácia no conjunto de treino.
 - Para poucos vizinhos (k pequeno), a acurácia é muito alta, indicando
 overfitting (o modelo se adapta demais aos dados de treino).
 - Conforme o número de vizinhos aumenta, a acurácia no treino diminui,
 já que o modelo se torna mais generalista.
- 2. Linha Laranja (Teste): Representa a acurácia no conjunto de teste.
 - Com poucos vizinhos, a acurácia é baixa devido ao **overfitting**.
 - Para valores intermediários de k, a acurácia melhora, atingindo um equilíbrio entre ajuste e generalização.
 - Com valores muito altos de k, a acurácia cai, pois o modelo se torna muito genérico, resultando em underfitting.

Questão 5

Objetivo

Observar o dataset de regressão e realizar o pré-processamento. Verifique qual atributo será o alvo para regressão no seu dataset e faça uma análise de qual atributo é mais relevante para realizar a regressão do alvo escolhido. Lembre de comprovar via gráfico. Caso necessário remova colunas que são insignificantes, valores NaN também devem ser removidos.

Implementação

Importei o segundo dataset, destinado para regressão, e comecei a fazer o pré-processamento, retirei os NaN que tinham, e criei outro dataframe sem a coluna date, pois ela estava impossibilitando a obtenção dos resultados pois ela é do tipo string e estava tentando ser convertido para float. Após isso, usei um algoritmo para calcular as correlações entre a matrizes e selecionei possiveis candidatos a variáveis alvo para regressão, depois dessa análise defini a coluna "sp500 open" como target, calculei a correlação com o alvo, ordenando por magnitude, e encontrei o atributo mais relevante, ao final plotei o gráfico com a relação entre a variável mais relevante e o alvo e salvei o dataset com os ajustes aplicados.

```
# Carregar o dataset
Regression = pd.read_csv('./dataset/financial_regression.csv')
# Exibir as primeiras linhas do dataset
print("Primeiras linhas do dataset:")
print(Regression.head())
# Excluindo linhas com NaN
regression = Regression.dropna(axis=0)
regression_drop_date = regression.drop( labels: "date", axis=1)
```



```
# Calcular a matriz de correlação
corr_matrix = regression_drop_date.corr()
print("\nMatriz de Correlação:")
print(corr_matrix)

# Selecionar possíveis candidatos a variáveis alvo para regressão
target_candidates = [
    col for col in regression_drop_date.columns
    if regression_drop_date[col].dtype in [np.float64, np.int64] and len(regression_drop_date[col].unique()) > 10
]
print("\nCandidatos para alvo (regressão):", target_candidates)
```

```
# Definir a variável alvo
target = "sp500 open"

# Calcular a correlação com o alvo, ordenando por magnitude
correlations = corr_matrix[target].drop(target).sort_values(key=abs, ascending=False)
print(f"\nCorrelação com o alvo ({target}):")
print(correlations)

# Encontrar o atributo mais relevante
most_relevant = correlations.idxmax()
print(f"\nAtributo mais relevante para prever '{target}': {most_relevant}")
```

```
# Visualizar a relação entre a variável mais relevante e o alvo
plt.figure(figsize=(8, 6))
sns.scatterplot(x=regression_drop_date[most_relevant], y=regression_drop_date[target], alpha=0.7)
plt.title(f'Relação entre {most_relevant} e {target}')
plt.xlabel(most_relevant)
plt.ylabel(target)
plt.grid()
plt.show()

regression_drop_date.to_csv( path_or_buf: './dataset/Regression_ajustado.csv', index=False)
print("As alterações foram salvas no arquivo 'Regression_ajustado.csv'.")
```

Resultados

Como resultado obtive o gráfico personalizado indicando a variável alvo que eu poderia utilizar durante as próximas questões.

Matriz de Correlação:							
	sp500 open	sp500 high		gold close	gold volume		
sp500 open	1.000000	0.999856		0.699705	-0.262232		
sp500 high	0.999856	1.000000		0.701180	-0.262002		
sp500 low	0.999938	0.999756		0.699721	-0.263504		
sp500 close	0.999886	0.999821		0.699622	-0.262678		
sp500 volume	-0.583248	-0.580379		-0.347804	0.648320		
sp500 high-low	0.401877	0.415346		0.344335	-0.044281		
nasdaq open	0.990472	0.990991		0.752061	-0.209302		
nasdaq high	0.990240	0.990848		0.752980	-0.208599		
nasdaq low	0.990498	0.990969		0.752277	-0.209590		
nasdaq close	0.990285	0.990824		0.752352	-0.209296		
nasdaq volume	-0.235395	-0.234377		-0.047486	0.663175		
nasdaq high-low	0.712847	0.721886		0.598054	-0.091873		
us_rates_%	0.507333	0.503499		0.301440	0.047103		
CPI	0.965223	0.966570		0.728289	-0.214149		
usd_chf	-0.207110	-0.207559		-0.419089	0.309040		
eur_usd	-0.646247	-0.648113		-0.243484	0.209009		

Correlação com o alvo	(sp500 open):		
sp500 low	0.999938		
sp500 close	0.999886		
sp500 high	0.999856		
nasdaq low	0.990498		
nasdaq open	0.990472		
nasdaq close	0.990285		
nasdaq high	0.990240		
GDP	0.982726		
CPI	0.965223		
palladium close	0.765915		
palladium low	0.763576		
palladium open	0.763397		
palladium high	0.763388		
nasdaq high-low	0.712847		
silver volume	0.708252		
platinum high	-0.708121		

Atributo mais relevante para prever 'sp500 open': sp500 low As alterações foram salvas no arquivo 'Regression_ajustado.csv'.

Questão 6

Objetivo

Utilizando o atributo mais relevante calculado na questão 5, implemente uma regressão linear utilizando somente este atributo mais relevante, para predição do atributo alvo determinado na questão 5 também. Mostre o gráfico da reta de regressão em conjunto com a nuvem de atributo. Determine também os valores: RSS, MSE, RMSE e R_squared para esta regressão baseada somente no atributo mais relevante.

Implementação

Importei o dataset utilizado na questão anterior e ajustei as dimensões para utilizar na fórmula "train_test_spli" para dividir os conjuntos de dados em treino e teste. Apliquei uma função para treinar o modelo de regressão linear e em seguida uma função para fazer as predições. Ao final, plotei o gráfico com os dados da linha de regresso e calculei as métricas de RSS, MSE, RMSE e R squared.


```
# Carregar o dataset
Regression = pd.read_csv('./dataset/Regression_ajustado.csv')

# Ajustar as dimensões de X e y
X = Regression["sp500 open"].values.reshape(-1, 1)
y = Regression["sp500 low"].values
# Dividir os dados em treino e teste
X_train, X_test, y_train, y_test = train_test_split( *arrays: X, y, test_size=0.2, random_state=42)
```

```
# Treinar o modelo de regressão linear
reg = LinearRegression()
reg.fit(X_train, y_train)

# Fazer predições
y_pred = reg.predict(X_test)

# Visualizar os dados e a linha de regressão
plt.scatter(X, y, alpha=0.7, label="Dados reais")
plt.plot( *args: X_test, y_pred, color="red", label="Linha de regressão")
plt.xlabel("sp500 open")
plt.ylabel("sp500 low")
plt.legend()
plt.show()
```

```
# Calcular métricas
r_squared = reg.score(X_test, y_test)
rss = np.sum(np.square(y_test - reg.predict(X_test)))
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)

# Exibir os resultados
print(f"RSS: {rss:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")
print(f"RMSE: {rmse:.4f}")
```


Resultados

Como resultado, obtive o gráfico que indica uma linha de regressão muito boa além do valor de cada métrica calculada.

RSS: 6.9307

MSE: 1.1551

RMSE: 1.0748

R_Squared2: 0.9999

Questão 7

Objetivo

Utilizando kfold e cross-validation faça uma regressão linear. Utilize uma implementação manual do kfold e cross-validation. calcule as métricas RSS, MSE, RMSE e R_squared que também devem ser implementadas manualmente.

Implementação

Primeiro implementei as funções das métricas RSS, MSE, RMSE e R_squared de forma manual assim como a do Kfold, em seguida importei o dataset de regressão

ajustado e ajustei as dimensões para em seguida aplicar a regressão linear. Depois fiz a predição e apliquei o cross-validation. Ao final exibi os resultados da validação, média e desvio padrão e os valores de das métricas RSS, MSE, RMSE e R_squared.

Resultado

Os valores altos de Cv Score indicam que o modelo Linear Regression ajusta bem os dados em todas as partições do K-Fold. Além disso, o desvio padrão é pequeno, o que sugere que o desempenho do modelo é consistente em diferentes folds. Isso é um ótimo sinal.

Cv Score: [0.9965722251822569, 0.9966969625405737, 0.9713835414469871, 0.9993160193475991, 0.9982212618543306, 0.9990184364459828]
Média: 0.9935347411362884

Desvio Padrão: 0.009961251340915219

RSS: 46.524155877438304

MSE: 1.55080519591461

RMSE: 1.2453132922741208

R_Squared2: 8024.17522802828

4. Conclusões

O primeiro dataset de classificação não gerou resultados tão promissores como o segundo, não é estranho já que a aplicação para ambas foram diferentes, mas o segundo dataset teve um melhor desempenho dentro do que foi proposto durante os processos.

5. Próximos passos

Seria interessante alimentar os datasets com informações mais precisas e significativas, determinando os atributos realmente necessários para a manipulação.