

b) Inner points:

$$\xi(x,y): x^2+y^2 = 1$$
, $|x|>y$?

() Boundary points:

J) Weither open nor closel

C) Bounday points:

$$\chi = \xi^2$$
 for $0 \le \xi \le 1$ $\gamma \ge \xi$

Assignment 1.2

(1) Interaction between
$$x^2 + y^2 + z^2 = 4$$
 and $x + y + 2z = 0$

$$x^2 + y^2 + z^2 = R^2$$

$$x^2 + y^2 + z^2 = R^2$$

$$y = R 5h \text{ f sh } \theta$$

$$R^2 = 4$$

$$R = 2$$

$$R = 2$$

$$2 + y + 2 = R \sin \theta \cos \theta + R \sin \theta \sin \theta + 2R \cos \theta = 0$$

$$= 2 \sin \theta \cos \theta + 2 \sin \theta \sin \theta + 4 \cos \theta = 0$$

$$= 2 \sin \theta (\cos \theta + \sin \theta) + 4 \cos \theta = 0$$

b)
$$\chi = r\cos\theta$$

 $\gamma = r\sin\theta$
 $Z = Z$
 $\chi^2 + \chi^2 + Z^2 = 4 \implies r^2\cos\theta + r^2\sin\theta + Z^2 = 4$
 $\chi^2 + \chi^2 + Z^2 = 4 \implies r^2 + Z^2 - 4 = 0$
 $\chi^2 + Z^2 = 0 \implies r\cos\theta + r\sin\theta + 2Z = 0$
 $\chi^2 + Z^2 - 4 = r\cos\theta + r\sin\theta + 2Z = 0$
 $\chi^2 + Z^2 - 4 = r\cos\theta + r\sin\theta + 2Z = 0$
 $\chi^2 + Z^2 - 4 = r\cos\theta + r\sin\theta + 2Z = 0$
 $\chi^2 - r(\cos\theta + \sin\theta) + (Z^2 - 2Z + 1) = 4 + 1$
 $\chi^2 - r(\cos\theta + \sin\theta) + (Z^2 - 1)^2 = 5$