Université de Blida 1, Faculté des Sciences Département de Mathématiques Module : Plans d'expériences

Examen

Exercice 1 (6 pts)

On considère le modèle de régression linéaire multiple suivant:

$$Y = X\hat{a} + e$$

où le vecteur Y à valeurs dans R^n représente la variable à expliquer, X est une matrice réelle de taille $n \times p$ de rang p, $\hat{a} \in R^p$ (inconnu) et e est le vecteur des bruits à valeurs dans R^n .

- 1. Quelles sont les conditions standards imposées au vecteur des bruits *e* dans l'exécution de la méthode des moindres carrées?
- **2.** Si, on pose $\hat{Y} = X\hat{a}$, la prévision de la valeur de Y, donnez le critère de la méthode des moindres carrées pour déterminer \hat{a} . Puis montrer que : $\hat{a} = ({}^tXX)^{-1} {}^tXY$.
- 3. Déterminez l'espérance mathématique et l variance de \hat{a} . Que peut-on conclure.
- **4.** Dans le cas où la matrice X est orthogonale, déterminer la valeur de \hat{a} .

Exercice 2 (7 pts)

Soit à étudier trois facteurs qualitatifs x^1 , x^2 et x^3 sur une réponse mesurable y,

- 1. Donnez le nombre d'expériences, la matrice d'expériences et le modèle mathématique si l'on décide d'utiliser un plan d'expériences te type factorielles complet.
- **2.** Quelle est l'avantage d'utilisation de ce type de ce type de plans dans le calcul des coefficients? justifier votre réponse.
- 3. Si $y=^t(1;2;3;4;5;6;7;8)$, déterminez la matrice des effets, puis calculez les coefficients de modèle à établir.
- **4.** calculez le vecteur des réponses prédites \hat{y} , en déduire le vecteur des résidus e. Déterminez le tableau regroupant tous les résultats de l'analyse de la variance. Est-ce que on peut appliquer les testes d'hypothèses, justifier votre réponse.
- 5. Si l'on décider d'utiliser le modèle $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3$, déterminez le coefficients de ce modèle. En déduire le tableau de l'analyse de la variance associé à ce modèle mathématique.

Exercice 3 (7 pts)

- 1. Quel est l'avantage d'utiliser les plans d'expériences fractionnaires par rapport aux plans d'expériences factoriels complets?
- **2.** Soit à étudier 5 facteurs par un plan d'expériences fractionnaire, Déterminer tous les plans fractionnaires possibles à utiliser.
- 3. Si l'on décide d'utiliser le plan fractionnaire 2^{5-2} et de choisir la colonne 123 pour étudier le $4^{i\text{ème}}$ facteur et la colonne 23 pour le $5^{i\text{ème}}$ facteur supplémentaire.
 - a. Donner le modèle mathématique qu'on peut utiliser pour étudier ces 5 facteurs.
 - **b.** Déterminer tous les générateurs d'aliases possibles. En déduire les relations entre les contrastes et les coefficients du modèle pour un plan 2⁵.

Correction de l'examen

Exercice 1

1.

-les erreurs ε_i doivent être distribuées suivant une loi Normale de moyenne 0 et de variance σ^2 , $N(0,\sigma)$, ce qui s'écrire :

$$E\left(\varepsilon_{i}\right) = 0$$

 $var\left(\varepsilon_{i}\right) = \sigma^{2}$

2.Le critère de la méthode des moindres carées:

Lorsque on estime les inconnues $a_0, a_1, ..., a_q$ par $\hat{a}_0, \hat{a}_1, ..., \hat{a}_q$ nous pouvons calculer la réponse au point i par :

$$\hat{y}_i = \hat{a}_0 + \hat{a}_1 \ x_{i1} + \hat{a}_2 \ x_{i2} + \dots + \hat{a}_j \ x_{ij} + \dots + \hat{a}_q \ x_{iq}$$

La valeur \hat{y}_i diffère du résultat expérimental y_i de la quantité e_i (de même que les \hat{a}_i sont les estimateurs de a_i , les e_i , sont des estimations des ε_i).

$$y_i = \hat{y}_i + e_i.$$

Nous écrirons cette égalité quelque soit i, nous obtenons le système linéaire :

$$\begin{cases} y_1 = \hat{a}_0 + a_1 \ x_{11} + \hat{a}_2 \ x_{12} + \dots + \hat{a}_j \ x_{1j} + \dots + \hat{a}_q \ x_{1q} + \epsilon_1 \\ y_2 = \hat{a}_0 + \hat{a}_1 \ x_{21} + \hat{a}_2 \ x_{22} + \dots + \hat{a}_j \ x_{2j} + \dots + \hat{a}_q \ x_{2q} + \epsilon_2 \\ \vdots \\ y_i = \hat{a}_0 + a_1 \ x_{i1} + \hat{a}_2 \ x_{i2} + \dots + \hat{a}_j \ x_{ij} + \dots + \hat{a}_q \ x_{iq} + \epsilon_i \\ \vdots \\ y_N = \hat{a}_0 + a_1 \ x_{N1} + \hat{a}_2 \ x_{N2} + \dots + \hat{a}_j \ x_{Nj} + \dots + \hat{a}_q \ x_{Nq} + \epsilon_N \end{cases}$$

Nous cherchons les valeurs des \hat{a}_j qui minimisent la somme des carrés des écarts $\sum e_i^2$. Concrètement nous cherchons le modèle linéaire qui passe au plus prés de l'ensemble des points expérimentaux. Pour simplifier l'écriture, nous adoptons la notation matricielle :

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1j} & \cdots & x_{1q} \\ 1 & x_{21} & \cdots & x_{2j} & \cdots & x_{2q} \\ \vdots & & & \vdots & & \vdots \\ 1 & x_{i1} & \cdots & x_{ij} & \cdots & x_{iq} \\ \vdots & & & \vdots & & \vdots \\ 1 & x_{N1} & \cdots & x_{Nj} & \cdots & x_{Nq} \end{pmatrix} \begin{pmatrix} \hat{a}_0 \\ \hat{a}_1 \\ \vdots \\ \hat{a}_j \\ \vdots \\ \hat{a}_q \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_i \\ \vdots \\ e_N \end{pmatrix}$$

Le système à résoudre s'écrit : $y = X \hat{A} + e$, et le critère des moindres carrés tee soit minimale

3. En utilisant le critère précédent,

on a:

$$\begin{split} ^{t}ee &= {}^{t}(y - X\hat{A})(y - X\hat{A}) \\ &= (^{t}y - {}^{t}\hat{A} \ ^{t}X)(y - X\hat{A}) \\ &= {}^{t}yy - {}^{t}\hat{A} \ ^{t}Xy - {}^{t}yX\hat{A} + {}^{t}\hat{A} \ ^{t}XX\hat{A} \\ &= {}^{t}yy - 2 \ {}^{t}\hat{A} \ ^{t}Xy + {}^{t}\hat{A} \ ^{t}XX\hat{A} \end{split}$$

Calculons la dérivée de tee par rapport à l'inconnue \hat{A} :

$$\frac{\partial ({}^t e e)}{\partial \hat{A}} = \frac{\partial ({}^t y y)}{\partial \hat{A}} - 2 \; \frac{\partial ({}^t \hat{A} \; {}^t X y)}{\partial \hat{A}} + \frac{\partial ({}^t \hat{A} \; {}^t X X \hat{A})}{\partial \hat{A}}$$

Où :
$$-\frac{\partial({}^tyy)}{\partial\hat{A}} = 0 \qquad \qquad \text{car } {}^tyy \text{ ne dépend pas de } \hat{A}$$

$$-\frac{\partial({}^t\hat{A} {}^tXy)}{\partial\hat{A}} = {}^tXy \qquad \qquad \text{car } {}^t\hat{A} {}^tXy \text{ est une forme linéaire en } \hat{A}$$

$$-\frac{\partial({}^t\hat{A} {}^tXX\hat{A})}{\partial\hat{A}} = 2 {}^tXX\hat{A} \qquad \text{car } {}^t\hat{A} {}^tXX\hat{A} \qquad \text{est une forme quadratique en } \hat{A}$$
 Il vient done :

$$\frac{\partial ({}^{t}ee)}{\partial \hat{A}} = -2 {}^{t}Xy + 2 {}^{t}XX\hat{A}$$

La valeur de \hat{A} qui minimise t ee doit vérifier :

$$\frac{\partial(^{t}ee)}{\partial\hat{A}} = 0 \Rightarrow -2 {}^{t}Xy + 2 {}^{t}XX\hat{A} = 0$$
$$\Rightarrow {}^{t}XX\hat{A} = {}^{t}Xy$$

Si la matrice $({}^t XX)^{-1}$ n'est pas singulière on a :

$$\hat{A} = ({}^t X X)^{-1} \, {}^t X y$$

3. Espérance mathématique des coefficients

D'après la formule trouvée dans la question 3, l'espérance mathématique de \hat{A} a pour expression :

$$E(\hat{A}) = E[({}^{t}XX)^{-1} {}^{t}Xy]$$

= $({}^{t}XX)^{-1} {}^{t}X E(y)$

Car les éléments de X sont considérés comme fixes. En désignant par A le vecteur des coefficients vrais et ε le vecteur des N écarts entre les résultats expérimentaux et les réponses théoriques alors :

$$y = XA + \varepsilon$$

 Et

$$E(y) = E(XA + \varepsilon) = E(XA)$$

= $X E(A)$

car $E(\varepsilon) = 0$ par hypothèse. Nous trouvons :

$$E(\hat{A}) = ({}^{t}XX)^{-1} {}^{t}XXA = A$$

Le résultat que nous venons d'établir signifie que les distributions des \hat{a}_i sont centrés sur les valeurs vraies a_i .

Variance des coefficients

Par définition la variance de \hat{A} est :

$$var(\hat{A}) = E[(\hat{A} - A)\ ^t(\hat{A} - A)]$$

Remplaçons \hat{A} par $({}^tXX)^{-1}$ tXy et y par $XA + \varepsilon$. Nous obtenons :

$$(\hat{A}-A)=({}^tXX)^{-1}\ {}^tX(XA+\varepsilon)-A=A+({}^tXX)^{-1}\ {}^tX\varepsilon-A=(\ {}^tXX)^{-1}\ {}^tX\varepsilon$$
 Puisque
$${}^t(\hat{A}-A)={}^t\varepsilon\ X\ ({}^tXX)^{-1}$$
 Donc
$$var(\hat{A})=E[({}^tXX)^{-1}\ {}^tX\ \varepsilon\ {}^t\varepsilon\ X({}^tXX)^{-1}]=({}^tXX)^{-1}\ {}^tX\ E(\varepsilon\ {}^t\varepsilon)\ X({}^tXX)^{-1}$$

Remplaçons $E(\varepsilon^{-t}\varepsilon)$ par $E[(\varepsilon-0)^{-t}(\varepsilon-0)] = var(\varepsilon) = \sigma^2$. Nous pouvons écrire :

$$var(\hat{A}) = ({}^{t}XX)^{-1} {}^{t}X\sigma^{2} X({}^{t}XX)^{-1}$$
$$= \sigma^{2}({}^{t}XX)^{-1} {}^{t}XX ({}^{t}XX)^{-1}$$
$$\Rightarrow var(\hat{A}) = \sigma^{2}({}^{t}XX)^{-1}$$

4. Si la matrice X est orthogonale alors : $\hat{a} = \frac{1}{n} {}^{t}Xy$

Exercice 2

1. nombre d'expériences: 2³

Matrice d'expériences:

-1	-1	-1
+1	-1	-1
-1	+1	-1
+1	+1	-1
-1	-1	+1
+1	-1	+1
-1	+1	+1
+1	+1	+1

Modèle mathématique:

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_{12} x_1 x_2 + a_{13} x_1 x_3 + a_{23} x_2 x_3 + a_{123} x_1 x_2 x_3$$

- 2. L'avantage d'utiliser les plans factorielles complets est que le calcul des coefficients est très facile le faite que la matrice est orthogonale.
- 3. Matrice des effets:

.

Essai N°	Moy	1	2	3	12	13	23	123
1	1	-1	-1	-1	1	1	1	-1
2	1	1	-1	-1	-1	-1	1	1
3	1	-1	1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	-1	-1
5	1	-1	-1	1	1	-1	-1	1
6	1	1	-1	1	-1	1	-1	-1
7	1	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1	1

les coefficients du modèle

$$a_0=4.5, a_1=0.5 \ , a_2=1, a_3=2 \ , a_{12}=0 \ , a_{13}=0, a_{23}=0, a_{123}=0$$
 $4.\hat{y}=y\ et\ e=0.$

5. Tableau d'analyse de la variance:

Somme carrées	Formule	Résultat	DDL	Variance
Totale	$\sum_{i=1}^{i=N} y_i^2 - N\bar{y}^2$	42	7	$\frac{42}{7} = 6$
D'ajustement	$\sum_{i=1}^{i=N} \hat{y}_i^2 - N\bar{y}^2$	42	7	$\frac{42}{7} = 6$
Résiduelle	$\sum_{i=1}^{i=N} e_i^2$	0	0	impossible

6. Si l'on décider d'utiliser le modèle $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3$, alors la matrice d'effet sera:

Essai N°	Moy	1	2	3
1	1	-1	-1	-1
2	1	1	-1	-1
3	1	-1	1	-1
4	1	1	1	-1
5	1	-1	-1	1
6	1	1	-1	1
7	1	-1	1	1
8	1	1	1	1

et les coefficients seront toujours calculés par la formule des moindres carrées, on obtient:

$$a_0 = 4.5$$
, $a_1 = 0.5$, $a_2 = 1$, $a_3 = 2$

Dans ce cas on recalcule les réponses prédites \hat{y} et le vecteur des résidus \hat{e} , on obtient ainsi les mêmes résultats obtenus dans la question précédente.

Exercice 3:

- 1. L'avantage d'utiliser les plans fractionnaires est pour minimiser le nombre d'essais.
- 2. Les plans fractionnaires possibles à utiliser pour étudier 5 facteurs sont: 2^{5-1} , 2^{5-2} .

3.le modèle mathématique est; $y = c_0 + c_1x_1 + c_2x_2 + c_3x_3 + c_{12}x_1x_2 + c_{13}x_1x_3 + c_4x_5 + c_5x_5$.

$$4. \begin{cases} 5 = 23 \\ 4 = 123 \end{cases} \rightarrow \begin{cases} 1 = 235 \\ 1 = 1234 \end{cases} \rightarrow 1 = 145 \rightarrow 1 = 235 = 145 = 1234$$

Pour le calcule des contrastes on a:

$$\begin{cases} 1 = 1 + 145 + 235 + 1234 \\ 2 = 2 + 35 + 134 + 1245 \\ 3 = 3 + 25 + 124 + 1345 \\ 4 = 4 + 15 + 123 + 2345 \\ 5 = 5 + 14 + 23 + 12345 \\ 12 = 12 + 34 + 135 + 245 \\ 13 = 13 + 24 + 125 + 345 \end{cases}$$