Cálculo das Probabilidades II - Prova Final - 2019/1

Prof. Hugo Carvalho

05/07/2019

– TODOS OS PASSOS DEVEM SER DEVIDAMENTE JUSTIFICADOS EM TODAS AS QUESTÕES –

Questão 1: Seja $(\Omega, \mathcal{F}, \mathbb{P})$ um espaço de probabilidade e sejam B, A_1, A_2, \ldots eventos em \mathcal{F} . Prove que se os conjuntos A_n são disjuntos, com probabilidades estritamente positivas e satisfazem $\mathbb{P}(B|A_n) \geq c$ para todo $n = 1, 2, \ldots$, então vale que

$$\mathbb{P}\left(B \mid \bigcup_{n=1}^{\infty} A_n\right) \ge c. \quad (2,0)$$

Questão 2: Sejam U_1 e U_2 variáveis aleatórias independentes com distribuição uniforme contínua em (0,1) e defina

$$X_1 = \sqrt{-2\ln(U_1)}\cos(2\pi U_2)$$
$$X_2 = \sqrt{-2\ln(U_1)}\sin(2\pi U_2).$$

Mostre que as componentes do vetor aleatório (X_1, X_2) têm distribuição normal padrão e são independentes. (1,5)

Questão 3: Seleciona-se, ao acaso, um número x em (0,1). Seja então Y o número de caras em n lançamentos independentes de uma moeda, cuja probabilidade de cair cara é igual a x. Calcule a média e a variância de Y. (2,0)

Questão 4: Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias independentes e identicamente distribuídas com média 0 e variância 2. Obtenha o limite em distribuição de

$$\frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}. \quad (1,5)$$

Questão 5: Seja $(X_n)_{n\in\mathbb{N}}$ uma sequência de variáveis aleatórias simétricas em torno de 0 tal que

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\geq\varepsilon\right)\leq e^{-3n\varepsilon^{2}/2},\ \forall\varepsilon>0.$$

Mostre que $\overline{X}_n \stackrel{qc}{\to} 0$. (2,0)

Obs.: Note que NÃO é dito que elas têm média finita, logo você NÃO está autorizado a usar esse fato, a menos que o demonstre a partir das hipóteses da questão.

Questão 6: A sequência $(X_n)_{n\in\mathbb{N}}$, onde $X_n \sim \mathcal{N}(n, \sigma^2)$ são variáveis aleatórias independentes, converge em distribuição para alguma variável aleatória? (2,0)

- FORMULÁRIO -

- Derivada do arco-tangente: $\arctan'(z) = \frac{1}{1+z^2}$
- Fórmula da soma da PG: $\sum_{k=m}^{n} ar^{k} = a \frac{\left(r^{m} r^{n+1}\right)}{1 r}, \text{ se } r \neq 1.$
- Lemas de Borel-Cantelli: A_1, A_2, \ldots eventos no mesmo espaço de probabilidade, $\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k =$ "ocorrência de infinitos dos eventos A_n ":

$$\begin{split} \sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty &\implies \mathbb{P}(\limsup A_n) = 0 \\ \sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty \text{ e os eventos } A_n \text{ são independentes } &\implies \mathbb{P}(\limsup A_n) = 1 \end{split}$$

- Distribuição binomial: $X \sim \text{Bin}(n,p) \implies \begin{cases} \mathbb{P}(X=x) = \binom{n}{x} p^x (1-p)^{n-x}, x=0,1,\dots,n \\ \mathbb{E}[X] = np, \quad \mathbb{V}(X) = np(1-p) \end{cases}$
- Lei da variância iterada: $\mathbb{V}(X) = \mathbb{E}[\mathbb{V}(X|Y)] + \mathbb{V}(\mathbb{E}[X|Y])$
- Des. de Markov: X va positiva e t > 0: $\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}$,
- Des. de Chebyshev: X va com média e variância finitas, t > 0: $\mathbb{P}(|X \mathbb{E}[X]| \ge t) \le \frac{\mathbb{V}(X)}{t^2}$
- Cota de Chernoff: X va cuja FGM $\psi_X(t)$ existe para t próximo de zero: $\begin{cases} \mathbb{P}(X \geq c) \leq e^{-ct}\psi_X(t), \ \forall t > 0 \\ \mathbb{P}(X \geq c) \leq \min_{t > 0} [e^{-ct}\psi_X(t)] \end{cases}$
- Convergência em distribuição: $X_n \stackrel{d}{\to} X \iff F_n(x) \to F_X(x)$, quando $n \to \infty$, para todo x onde F_X for contínua
- Convergência em probabilidade: $X_n \stackrel{p}{\to} X \iff \mathbb{P}(|X_n X| \ge \varepsilon) \to 0, \ \forall \varepsilon > 0, \ \text{quando} \ n \to \infty$
- $\bullet \ \, \textbf{Convergência quase certa} \colon \, X_n \overset{qc}{\to} X \, \iff \, \mathbb{P}\left(\lim_{n \to \infty} X_n = X\right) = 1 \, \iff \, \mathbb{P}\left(\lim_{n \to \infty} X_n \neq X\right) = 0$
- Convergência em média $r: X_n \stackrel{r}{\to} X \iff \mathbb{E}[|X_n X|^r] \to 0$, quando $n \to \infty$
- Teorema de Slutsky: $X_n \stackrel{d}{\to} X$ e $Y_n \stackrel{p}{\to} c$ constante: $\begin{cases} X_n + Y_n \stackrel{d}{\to} X + c \\ X_n Y_n \stackrel{d}{\to} c X \\ \frac{X_n}{Y_n} \stackrel{d}{\to} \frac{X}{c}, \text{ se } \mathbb{P}(Y_n = 0) = 0, \forall n \text{ e } c \neq 0 \end{cases}$
- Lei Fraca dos Grandes Números: $\overline{X}_n \mathbb{E}[\overline{X}_n] \stackrel{p}{\to} 0$
- Lei Fraca de Chebyshev: $(X_n)_{n\in\mathbb{N}}$ independentes dois-a-dois, com variância finita e uniformemente limitadas
- 1a. Lei Forte de Kolmogorov: $(X_n)_{n\in\mathbb{N}}$ independente, com média finita e satisfazendo $\sum_{n=1}^{+\infty} \frac{\mathbb{V}(X_n)}{n^2} < +\infty$
- Lei Forte de Kolmogorov: $(X_n)_{n\in\mathbb{N}}$ iid com média finita
- TCL para va's iid: $\frac{\sqrt{n}}{\sigma}(\overline{X}_n \mu) \stackrel{d}{\to} \mathcal{N}(0, 1)$, se cada X_i tem média μ finita e variância $0 < \sigma^2 < \infty$