Math 504 HW4

Rohan Mukherjee

December 8, 2023

- 1. Let *G* be a group of order 8. If *G* is abelian, then $G \cong \mathbb{Z}/8$, or $\mathbb{Z}/4 \times \mathbb{Z}/2$, or $(\mathbb{Z}/2)^3$ by the fundamental theorem of finite abelian groups. Else, *G* has an element of order 4, and none of order 8. This is because a group where each element has order dividing 2 is abelian. Indeed, for any x, y [x, y] = $x^{-1}y^{-1}xy = xyxy = (xy)^2 = e$ since every element has order dividing 2. So take x to be an element of order 4. If $G \setminus \langle x \rangle$ has an element of order 2, say y, then $\langle x \rangle < \langle x, y \rangle \le G$, so $\langle x, y \rangle = G$ by order considerations. This tells us (also by order considerations), that $\langle y \rangle \cap \langle x \rangle = 1$, so $G \cong \langle x \rangle \rtimes \langle y \rangle$ since $\langle x \rangle$ is normal in G since it has index 2. This yields $\mathbb{Z}/4 \times \mathbb{Z}/2$ and D_4 . Otherwise, we can find an element $y \in G \setminus \langle x \rangle$ of order 4, and every element of order 2 is in $\langle x \rangle$. Thus, $y^2 \in \langle x \rangle$, and hence $y^2 = x^2$ since the only element of order 2 in $\langle x \rangle$ is x^2 . Notice now that, since $\langle y \rangle \subseteq G$ and since $G \cap \langle y \rangle \cong \mathbb{Z}/2$, in particular it is abelian, so $xyx \langle y \rangle = x^2y \langle y \rangle = y^2 \langle y \rangle = \langle y \rangle$, so $xyx \in \langle y \rangle$. It also has order 4: notice that $(xyx)^2 = xyy^2yx = xy^4x = x^2$, which has order 2. Thus xyx = y or $xyx = y^3$. In the second case, $xyx = x^2y$ meaning yx = xy. Then since $G = \langle x, y \rangle$ we have that G is abelian whose case we must've already covered above. Thus xyx = y, and $G \cong \langle x, y | x^4 = e, x^2 = y^2, xyx = y \rangle \cong Q_8$.
- 2. Let G be nilpotent and $\varphi: G \to H$ be a surjective homomorphism. We see that $\varphi(Z_0(G)) = 1 \le Z_0(H)$, so suppose $\varphi(Z_i(G)) \le Z_i(H)$ for some i > 0. Define $\psi: G/Z_i(G) \to H/Z_i(H)$ by $\psi(xZ_i(G)) = \varphi(x)Z_i(H)$. This map is well-defined since if $xZ_i(G) = yZ_i(G)$, then $xy^{-1} \in Z_i(G)$, so $\varphi(xy^{-1}) = \varphi(x)\varphi(y)^{-1} \in Z_i(H)$. We have the following commutative diagram:

$$G \xrightarrow{\varphi} H$$

$$\pi_1 \swarrow \pi_1^{-1} \qquad \pi_2 \swarrow \pi_2^{-1}$$

$$G/Z_i(G) \xrightarrow{\eta_1} H/Z_i(H)$$

Where $\pi: H \to H/Z_i(H)$ is the natural projection.

Lemma 1. *If* $\varphi : G \to H$ *is a surjective homomorphism then* $\varphi(Z(G)) \leq Z(H)$ *.*

Proof. Let $g \in Z(G)$ and $h \in H$. Since φ is surjective, find $x \in G$ so that $\varphi(x) = h$. Now, $\varphi(g)h = \varphi(gx) = \varphi(xg) = h\varphi(g)$, so $\varphi(g) \in Z(H)$, which completes the proof.

Using this lemma with the above commutative diagram shows that $\psi(Z(G/Z_i(G))) \le Z(H/Z_i(H))$. Thus,

$$\pi_2^{-1} \circ \pi_2 \circ \varphi \circ \pi_1^{-1}(Z(G/Z_i(G)) = \pi_2^{-1} \circ \psi(Z(G/Z_i(G))) \le \pi_2^{-1}(Z(H/Z_i(H))) = Z_{i+1}(H)$$

$$\Longrightarrow \varphi(Z_{i+1}(G)) \le Z_{i+1}(H)$$

In particular, if $Z_n(G) = G$, we have that $Z_n(H) \ge \varphi(Z_n(G)) = H$, which completes the proof. In particular, if G is nilpotent then G/Z(G) is.

Now we shall show that if G/Z(G) is nilpotent then G is. Notice that the ascending central series for G/Z(G) starts $1, Z(G/Z(G)) = Z_2(G)/Z(G)$. By the third isomorphism theorem, we have the following commutative diagram:

Recall that isomorphic groups have isomorphic centers. Thus the center of $\frac{G/Z(G)}{Z_2(G)/Z(G)}$ is just $\varphi(Z(G/Z_2(G))) = \varphi(Z_3(G)/Z_2(G))$. By commutativity of the diagram,

$$\varphi(Z_3(G)/Z_2(G)) = \rho \circ \pi_1 \circ \pi_2^{-1}(Z_3(G)/Z_2(G)) = \rho \circ \pi_1(Z_3(G)) = \rho(Z_3(G)/Z(G))$$

Simple induction on i will show that $Z_i(G/Z(G)) = Z_{i+1}(G)/Z(G)$. So, if there is an $n \ge 0$ so that $Z_n(G/Z(G)) = G/Z(G)$, then we'd have $Z_{n+1}(G)/Z(G) = G/Z(G)$, so $Z_{n+1}(G) = G$ which completes the proof.

3. Let α have minimum polynomial of odd degree. Write

$$\sum_{i=0}^{n} c_i \alpha^i = 0$$

Rearrange this sum as,

$$a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1} = \alpha(a_1 + \dots + a_n\alpha^{n-1})$$

If $a_1 + \cdots + a_n \alpha^{n-1} = 0$, then since $a_n \neq 0$, there would be a relation on $1, \alpha, \cdots, \alpha^{n-1}$, a contradiction, since n is minimal. Thus $\alpha = (a_0 + \cdots + a_{n-1}\alpha^{n-1})(a_1 + \cdots + a_n\alpha^{n-1})^{-1}$, and we are done.