

INTRODUCTION TO SPATIAL SENSING AND REASONING FROM SENSOR DATA

Dr TIAN Jing tianjing@nus.edu.sg

Knowledge and understanding

 Understand the fundamentals of spatial reasoning from various types of sensor data

Key skills

 Design and evaluate various types of sensor data required for spatial reasoning

- Global (absolute) position
 - Position within general global reference frame
 - Global Positioning System or GPS (longitudes, latitudes)
- Relative position
 - Based on arbitrary coordinate systems and reference frames
 - Distances between sensors (no relationship to global coordinates)
- Symbolic position information
 - "Interaction classroom", "PGP canteen"

HEALTH & FITNESS

Heart-Rate Measurement

Sp02

Heart-Rate Variability

MOTION TRACKING

GPS

Accelerometer

Gyroscope Magnometer

Floor pressure

CAMERA

HD Image Capture

Laser Auto Focus RGB - Lighting UV

Laser range-finding

Ultrasonic time of flight

Passive Infrared sensor

Reference:

WiFi

RGB - Color Balance

- http://web.cse.ohio-state.edu/~xuan/courses/5432/5432_localization.ppt.
- https://www.sensorsmag.com/components/smartphone-sensor-evolution-rolls-rapidly-forward

- Proprioceptive sensors (internal)
 - Measure values internally to the system (robot),
 - e.g. motor speed, wheel load, heading of the robot, battery status
- Exteroceptive sensors (external)
 - Information from the robots environment
 - Distances to objects, intensity of the ambient light, unique features.
- Passive sensors
 - Measure energy coming from the environment
- Active sensors
 - Emit their proper energy and measure the reaction, better performance, but some influence on environment
- What positioning accuracy do I really need and why?
 - How often do I need to determine an object's location?
 - · How big is the area I need to cover?

Reference: https://www.eliko.ee/choose-right-indoor-positioning-system/

 Positioning system consists of Navigation sources (at known locations) and Users (their locations need to be determined)

Information from location sensors	Positioning principle
Binary information if communication is possible or not	Proximity
 Quality of communication link Received signal strength (RSS) Bit error rate (BER) (RFID) read success rate 	Fingerprinting
Time of arrival (TOA)	Trilateration
Time difference of arrival (TDOA)	Multilateration
Angle of arrival (AOA)	Angulation

Spatial reasoning: Proximity

 Proximity: User's position = position of closest navigation source

Proximity	
Exact Position	×ue ×ue ×ue ×ue

	BEACONS	GPS	WI-FI	NFC
Recommended for	In/near-store and micro-location use-cases	Macro-location and out of store use-cases	In-store use-cases	Close proximity, secure interaction
Some potential uses	In-aisle notifications and offers, in-store navigation, hands-free payment	Near-store notifications and offers, pre-arrival customer 'check-in'	In-aisle notifications and offers, in-store navigation, hands-free payment	Payments, product tagging
Ease of set up and maintenance	Medium	Medium-high	Medium	Medium
Range	Medium	Long	Medium-low	Close
Accuracy	Medium	Medium-low	Medium	High
Ease of use for consumer	Medium	Medium	Medium-high	Medium-high
Energy efficiency on consumer device	Medium-high	Medium-low	Medium-high	High

Reference:

- https://www.accenture.com/us-en/insight-beacons-location-based-technology-revolutionizing-how-retailers-business
- https://nanotron.com/EN/2017/04/19/professional-location-awareness-is-presence-proximity-and-tracking/

🛶 Spatial reasoning: Fingerprinting

- Use an *n*-dimensional space containing *received signal strength* (RSS) vectors $(rss_1, rss_2, \dots, rss_n)$ of reference points; n = number ofnavigation sources. Reference points described as (coordinates, RSS vector) = $((x, y), (rss_1, ... rss_n))$
- Nearest neighbour
 - Find reference point *ref* for which $d(RSS_{user}, RSS_{ref})$ is minimal
 - Decision: $POS_{user} := POS_{ref}$
- Multiple nearest neighbour
 - Find k (e.g. three) "closest" (see above) reference points
 - Decision: $POS_{user} := center(POS_{ref1}, \dots, POS_{refk})$
- Interpolation
 - Find three "closest" reference points
 - Use interpolation algorithm on triangle to obtain POS_{user} .

Spatial reasoning: Trilateration

Time of Arrival (TOA)

- Foghorn is sounded precisely on the minute mark
- Mariner has an exact clock and notes elapsed time
- Distance = propagation time speed of sound (around 335 meter/second)

With three measurements, we have

$$(x - x_1)^2 + (y - y_1)^2 = r_1^2$$

$$(x - x_2)^2 + (y - y_2)^2 = r_2^2$$

$$(x - x_3)^2 + (y - y_3)^2 = r_3^2$$

<Taken 2>, Locating Dad, https://www.youtube.com/watch?v=WWeYvvN-F5s

Spatial reasoning: Trilateration

Time Difference of Arrival (TDOA)

- Uses propagation delay between mobile terminal and multiple base stations
- No global time
- Only time differences are known

The travel time of a signal from a reference station to the current position is given by the distance divided by the signal propagation speed v, we can obtain the time difference of arrival Δt_{AB} (between source A and B) and Δt_{BC} (between source B and C) as:

$$\Delta t_{AB} = \frac{1}{v} \sqrt{(x - x_1)^2 + (y - y_1)^2} - \frac{1}{v} \sqrt{(x - x_2)^2 + (y - y_2)^2}$$

$$\Delta t_{BC} = \frac{1}{v} \sqrt{(x - x_2)^2 + (y - y_2)^2} - \frac{1}{v} \sqrt{(x - x_3)^2 + (y - y_3)^2}$$

Spatial reasoning: Angulation

Angle of arrival (AOA)

- Base station measures angle to mobile terminal
 - Rotate antenna to the highest RSS value
 - Derive angle from RSS values of individual antennas in an antenna array.

Reference: http://www.e-cartouche.ch/content reg/cartouche/LBStech/en/html/LBStechU2 poslabel1.html

📫 Ultrasonic range sensor

http://www.robot-electronics.co.uk/shop/Ultrasonic_Rangers1999.htm

Operational principle

 An ultrasonic pulse is generated by a piezo-electric emitter, reflected by an object in its path, and sensed by a piezo-electric receiver. Based on the speed of sound in air and the elapsed time from emission to reception, the distance between the sensor and the object is easily calculated.

Main characteristics

- Precision influenced by angle to object
- Useful in ranges from several cm to several meters
- Typically relatively inexpensive

Applications

Distance measurement

Spatial reasoning: Acoustic

Our system obtains the position of an acoustic source from the audio signals recorded by an array of M microphones. Given a reference coordinate origin, the source position is defined with the 3D coordinate vector $\mathbf{s} = (s_x \ s_y \ s_z)^{\top}$. The microphones positions are known and they are defined with coordinate vectors $\mathbf{m}_i = (m_{i,x} \ m_{i,y} \ m_{i,z})^{\top}$ with i = 1, ..., M. The audio signal captured from the i^{th} microphone is denoted by $x_i(t)$. This signal is discretized with a sampling frequency f_s and is defined with $x_i[n]$. We assume for simplicity that $x_i[n]$ is of finite-length with N samples. This corresponds to a small window of audio with duration $w_s = N/f_s$, which is a design parameter in our system.

Spatial reasoning: Vision

Fig-2: Impressions of wet feet on different background

Height: 8.08 inches Breadth: 3.41 inches

Arch type: High

Reference: https://labs.imaginea.com/post/measuring-feet-using-deep-learning/

Example: KITTI dataset

- Two stereo cameras (1392 \times 512 pixels)
- Laser scanner, GPS+IMU (inertial measurement unit)
- 6 hours at 10 frames per second.

Reference: http://www.cvlibs.net/datasets/kitti/

Spatial reasoning: Vision

Groundtruth Latitude : 37.7906 Groundtruth Longitude : -122.4056 Estimated Latitude : 37.7905 Estimated Longitude : -122.4056

Latitude : 37.7905 Longitude : -122.4056

Latitude : 37.7952 Longitude : -122.4132

Latitude : 37.7905 Longitude : -122.4056

Latitude : 37.7870 Longitude : -122.4114

Latitude : 37.7824 Longitude : -122.4174

Latitude : 37.7944 Longitude : -122.4048

Latitude : 37.7863 Longitude : -122.4165

Latitude : 37.7869 Longitude : -122.42

Latitude : 37.7935 Longitude : -122.4046

Latitude : 37.7825 Longitude : -122.4209

Reference dataset (blue dots) and query set (red dots)

Reference: D. Chen, G. Baatz, K. Koser, S. Tsai, R. Vedantham, T. Pylvanainen, K. Roimela, X. Chen, J. Bach, and M. Pollefeys. City-scale landmark identification on mobile devices, CVPR, 2011. http://semihyagcioglu.com/projects/image-geolocalization/

\mu Spatial reasoning: Vision

What we have learnt

- Motivation and application examples of spatial reasoning from various types of sensory data, such as
 - WiFi
 - Acoustic
 - Vision

Thank you!

Dr TIAN Jing Email: tianjing@nus.edu.sg