ResNet

Deep Residual Learning for Image Recognition

O1 Basic CNN

LeNet
AlexNet
VGG
GoogleNet

02 ResNet

Residual Learning
ImageNet 결과 분석
Bottle Neck

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Basic CNN

Convolution Neural Network 개념이 처음 도입된 최초의 CNN 모델

Covolution & Subsampling 반복, fully - connected

LeNet과병렬적인구조차이

CV 딥러닝기반모델의 급격한발전시작

모든 Convolution Layer의 Kernel 3*3

Layer수가16으로증가-엄청난성능향상

Google Net

구조(1*1 conv이용, Bottleneck...), 아이디어에 집중

세세한구조는 Xception 리뷰할기회가있을때... (skip)

Vanishing Gradient

Layer가 깊어질수록 좋은 성능을 낸다??

- 파라미터가 많아지고 과적합위험
- -기울기소실로인한학습의어려움☆

20 layer vs 56 layer

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

GoogleNet의 기울기 소실 해결

보조의 Softmax Classifier 2개, Loss1&2 주 Softmax Classifier 1개, Original Loss Loss1 + 2 + OgLoss = FinalLoss 각각 update → 정규화 효과

ResNet

Residual Learning

기존의 mapping

층이 깊어질수록 normalization, Weight Initialization 의 효과 떨어짐 -> Residual learning 주장

잔여정보 = H(X)와 F(X)+X가 같다는 가정(identity mapping), H(X)에서 기존의 정보 x를 제외한 나머지 정보 = F(X)

shortcut을 추가함으로써 gradient가 사라진다해도 block를 학습하기 전의 X를 추가로 더하기 때문에 기울기 손실 문제를 해결할 수 있다. (F(X) + X 미분 -> F(X) + 1)

Figure 2. Residual learning: a building block.

Residual Learning

i가 1일 땐 기존의 identity mapping H(X)와 성능면에서 별 차이가 없기 때문에 weight layer가 웬만하면 2개 이상의 층을 갖는 것을 본 논문에선 권장한다.

$$\mathbf{y}=\mathcal{F}(\mathbf{x},\{W_i\})+W_s\mathbf{x}.$$

$$\mathcal{F}=W_2\sigma(W_1\mathbf{x})$$
 \mathbf{x}^{xp} F는 서로 다른 차원을 가질 수 있음. \mathbf{x}^{sp} New Yellow (1*1 convolution, padding...)

Residual Learning

VGG구조에 Shortcut이 더해진 것이라고 봐도 된다. Layer수가 기하급수적으로 많아져도 학습이 가능하다.

B

Bottle Neck

사회적 현상 중 병목현상과 닮았다하여 bottle neck 명명

1*1 conv (차원 축소) → 3*3 conv → 1*1 conv (차원 증가)

블록 내의 layer가 많아진다는 것 → activation functin 증가 → data를 더 가공 가능

기존 building block

Bottle Neck

skip connection, bottle neck 으로 인해 더 많은 layer를 쌓을 수 있게 됨.

ResNet 50 부터는 bottle neck 구조로 아키텍쳐가 짜여짐

ImageNet 결과 분석

둘의 파라미터 수는 동일

기울기소실 문제 x BN 사용 , propagation 문제 안보임

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Plain CNN

ResNet

ImageNet 결과분석

A - Zero Padding

B - Projection Shortcut, identity C - 모든 shortcut에 B적용

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Image Net validation Error rate

method	top-1 err.	top-5 err.
VGG [41] (ILSVRC'14)	-	8.43 [†]
GoogLeNet [44] (ILSVRC'14)	-	7.89
VGG [41] (v5)	24.4	7.1
PReLU-net [13]	21.59	5.71
BN-inception [16]	21.99	5.81
ResNet-34 B	21.84	5.71
ResNet-34 C	21.53	5.60
ResNet-50	20.74	5.25
ResNet-101	19.87	4.60
ResNet-152	19.38	4.49

단일 모델

method	top-5 err. (test)	
VGG [41] (ILSVRC 14)	7.32	
GoogLeNet [44] (ILSVRC'14)	6.66	
VGG [41] (v5)	6.8	
PReLU-net [13]	4.94	
BN-inception [16]	4.82	
ResNet (ILSVRC'15)	3.57	

앙상블

감사합니다