CSE202 Design and Analysis of Algorithms

Week 14 — Approximation Algorithms for NP-hard problems

P, NP, NP-complete, NP-hard

Recall:

P: decision problems computable in polynomial time;

NP: decision problems with a verifier in P;

B in NP is NP-complete if for all A in NP, $A \leq B$.

Also useful: **Def**: B is **NP**-hard if for all A in NP, $A \leq B$.

Decision vs. Optimization

Recall Problem SubsetSum:

Input: $L = (x_1, ..., x_\ell) \in \mathbb{N}^\ell$, k in \mathbb{N}

Output: yes iff there exists $A \subset \{1,...,\ell\}$ s.t. $\sum_{i \in A} x_i = k$.

Optimization variants:

- 1. Is there (A, m), s.t.
- 2. Maximize *m* s.t.
- 3. Find corresponding *A*.

$$\sum_{i \in A} x_i = m \le k?$$

 ρ -approximation algorithm: finds M s.t. $M \ge \rho \, m_{\rm max} \, (\rho < 1)$ $(M \le \rho \, m_{\rm min} \, (\rho > 1) \, {\rm for \ a \ minimization \ problem}).$

Approximation Schemes

$$M \ge (1 - \varepsilon) m_{\text{max}}$$

- **Def.** Polynomial Time Approximation Scheme (PTAS): runs in polynomial time for a given ε .
- **Def.** Fully Polynomial Time Approximation Scheme (FPTAS): runs in time polynomial also in $1/\varepsilon$.

NP-complete problems are not equal for approximation

- Subset-Sum;
 k-SAT;
- 2. *K*-SAT;3. Traveling Salesman.

I. Approximation for Subset-Sum

Exact Algorithm

```
\begin{array}{ll} \operatorname{def} \ \operatorname{subset\_sum}(\mathsf{X},\mathsf{t})\colon \\ \mathsf{X} = \operatorname{sorted}(\mathsf{X}) \\ \mathsf{n} = \operatorname{len}(\mathsf{X}) \\ \mathsf{S} = [\emptyset] \\ \text{for i in range}(\mathsf{n})\colon \\ \mathsf{S} = \operatorname{merge}(\mathsf{S},\mathsf{X}[\mathtt{i}],\mathsf{t}) \\ \operatorname{return} \ \mathsf{S}[-1] \end{array} \qquad \begin{array}{ll} (S \cup (S+X_i)) \cap [0,t] \\ & \text{in time } O(|S|) \\ & \text{(works as in MergeSort)} \end{array}
```

Correctness: all subsets with sum $\leq t$ are considered.

Complexity:

$$O\left(\sum_{i=1}^{n} |S_i|\right) = O(\min(2^n, nt))$$

These sets have size typically exponential in the bit-size of the input

Exercise:

with 7 more lines of code, return a corresponding subset

Approximation

```
def approx_subset_sum(X,t,epsilon):
    X = sorted(X)
    n = len(X)
    S = [0]
    for i in range(n):
        S = merge(S,X[i],t)
        S = filter(S,epsilon/n)
    return S[-1]
```

```
>>> L=[14,18,15,8,10,14,12,9,13,16]
>>> subset_sum_sol(L,53)
[14, 12, 10, 9, 8] ---> 53
>>> approx_subset_sum_sol(L,53,.1)
[14, 12, 10, 9, 8] ---> 53
>>> approx_subset_sum_sol(L,53,.5)
[15, 14, 14, 10] ---> 53
>>> approx_subset_sum_sol(L,53,.9)
[18, 15, 9, 8] ---> 50
```

```
def filter(S,delta):
    res = [S[0]]
    for i in range(1,len(S)):
        if S[i]>(1+delta)*res[-1]:
        res.append(S[i])
    return res
```

in time O(|S|).

```
Lemma. For any 0 < a \le b, |\operatorname{filter}(S, \delta) \cap [a, b]| \le 1 + \ln_{1+\delta}(b/a).
```

Thm. This algorithm returns a $(1-\varepsilon)$ -approximation of the optimum, in time $O(\varepsilon^{-1}n^3\log n)$.

Proof

Proof of approximation in 3 steps:

- 1. $\forall u \in L, \exists v \in \text{filter}(L, \delta), v \leq u < v(1 + \delta)$.
- 2. $\forall s \in S_i^{(e)}, \exists r \in S_i^{(a)}, r \le s \le r(1 + \delta)^i$.
- 3. $s_{-1}^{(e)} \le s_{-1}^{(a)} (1 + \delta)^n$ and $(1 + \varepsilon/n)^{-n} \ge 1 \varepsilon$.

Notation:

 $S_i^{(e)}$: S_i exact algo.

 $S_i^{(a)}$: S_i approx algo.

Detailed proof on the blackboard.

Complexity:

$$|S_{i}^{(a)}| \leq |S_{i}^{(a)} \cap [0, X_{i})| + |S_{i}^{(a)} \cap [X_{i}, \infty)|$$

$$\leq |S_{i-1}^{(a)}| + 1 + \log_{1+\delta} \frac{X_{i} + \max S_{i-1}^{(a)}}{X_{i}} \leq |S_{i-1}^{(a)}| + 1 + \log_{1+\delta}(i)$$

$$\sum_{i=1}^{n} |S_i^{(a)}| \le \sum_{i=1}^{n} i(1 + \log_{1+\delta}(i)) \le n^2 \left(1 + \frac{\log n}{\log(1 + \varepsilon/n)}\right) = O(\varepsilon^{-1}n^3 \log n)$$
 for $\varepsilon = o(n)$.

II. Max-SAT and its Approximation

Max-k-SAT is NP-complete for $k \ge 2$

Problem Max-k-SAT:

Input: k-SAT formula $\phi, \ell \in \mathbb{N}$

Output: yes iff there exists a truth assignment satisfying $\geq \ell$ clauses in ϕ . Clearly in NP: solution easy to check.

> $3-SAT \le Max-3-SAT$ (take $\ell = |\phi|$) $3-SAT \le Max-2-SAT$

> > Exercise: Check the possibilities.

Reduction:
$$\phi = (a_1 \lor b_1 \lor c_1) \land \cdots \land (a_m \lor b_m \lor c_m)$$

$$\mapsto \bigwedge^m \left((a_i \lor e_i) \land (a_i \lor \bar{e}_i) \land (b_i \lor f_i) \land (b_i \lor \bar{f}_i) \land (c_i \lor g_i) \land (c_i \lor \bar{g}_i) \land (\bar{a}_i \lor \bar{b}_i) \land (\bar{a}_i \lor \bar{c}_i) \land (\bar{b}_i \lor \bar{c}_i) \land (d_i \lor h_i) \land (d_i \lor \bar{h}_i) \land (a_i \lor \bar{d}_i) \land (b_i \lor \bar{d}_i) \land (c_i \lor \bar{d}_i) \right),$$

$$\ell = 11m.$$
Exercise: Check the possibilities

The Optimum is Not Harder

Problem Max-k-SAT (optimum variant):

Input: k-SAT formula ϕ

Output: max num. clauses in ϕ that can be satisfied at once.

Binary search reduces to $\log m$ solutions to the threshold (decision) problem.

Problem Max-k-SAT (value):

Input: k-SAT formula ϕ

Output: assignment maximizing num. satisfied clauses in ϕ .

Use recursively
$$\operatorname{opt}(\phi) = \max(\operatorname{opt}(\phi \mid_{x_1=0}), \operatorname{opt}(\phi \mid_{x_1=1})).$$

Random Assignments

 $\phi = C_1 \wedge \cdots \wedge C_m$ a conjunction of m clauses in x_1, \dots, x_n

 n_i : num. variables in C_i ($n_i = 3$ for 3-SAT)

 Z_i : 1 if C_i is satisfied, 0 otherwise

 $Z := Z_1 + \cdots + Z_m$ num. satisfied clauses.

Lemma. For a uniform random assignment of the variables, $\mathbb{E}(Z_i) = 1 - 2^{-n_i}$.

For 3-SAT, linearity of expectation yields:

- 1. There exists an assignment satisfying at least (7/8)m clauses;
- 2. random assignment expected within a factor 7/8 of the optimal.

(Deterministic) Approximation Algorithm

$$\mathbb{E}[Z] = \frac{1}{2}\mathbb{E}[Z \mid x_1 = 0] + \frac{1}{2}\mathbb{E}[Z \mid x_1 = 1]$$

$$\Longrightarrow \max\left(\mathbb{E}[Z \mid x_1 = 0], \mathbb{E}[Z \mid x_1 = 1]\right) \ge \mathbb{E}[Z].$$
 can be computed in polynomial time

Algorithm: choose the values of the variables one by one, by greedily going for the higher expectation.

(Beyond our scope) Max-k-sat NP-hard to approximate for any $\rho > 1 - 2^{-k}$.

Polynomial time, approx. factor $\rho = 1 - 2^{-k}$.

III. Approximate Traveling Salesman

Inapproximability

Recall Problem TSP:

Input: $n \times n$ matrix M of positive integers, k in \mathbb{N} Output: yes iff there exists a cyclic permutation

$$\sigma$$
 s.t.
$$\sum_{1 \le i \le n} M_{i,\sigma(i)} \le k$$
.

Not proved here

$$-\infty \mapsto 1 + 2\varepsilon n$$

For any $\varepsilon > 0$, approximating the TSP within a factor $1 + \varepsilon$ is NP-hard.

Proof:

$$(n-1) + (1+2\varepsilon n) = (1+2\varepsilon)n.$$

Metric TSP

Same problem as TSP, when

$$M_{i,j} = M_{j,i}, M_{i,j} \le M_{i,k} + M_{k,j}$$
 for all i, j, k .

Metric TSP is NP-complete:

Clearly in NP: solution easy to check.

Hamiltonian Cycle ≤ Metric TSP:

$$M_{i,i} = 0, M_{i,j} = 1 \text{ if } (i,j) \in E, 2 \text{ otherwise.}$$

2-Approximation to the Metric TSP

1. compute a minimum spanning tree

$$\ell(T) \le \ell_{\text{opt}}$$

2. visit nodes in depth-first order

$$\ell \leq 2\ell(T)$$

More is known:

- . PTAS when metric is Euclidean
- . Current best approximation factor: 3/2
- . No polynomial approx ≤123/122 if P≠NP

Heuristics

In a Euclidean setting and dim 2, get rid of crossings:

With more heuristics, problems with 10,000 cities are routinely solved within a few percents.

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

Next

Assignment: a heuristic for the metric TSP

Next tutorial: exercises

Week Jan. 18—Jan. 22: final exam (details not known yet)

Feedback

Moodle for the slides, tutorials and exercises.

Questions or comments: <u>Bruno.Salvy@inria.fr</u>

The End