2. Asymptotic Bound Proofs

a)
$$2n^2 + 5n \log_2 n \in O(n^2)$$

We need to show that:

There are positive constants c and
$$n_0$$
 such that $0 \le 2n^2 + 5n \log_2 n \le cn^2$ for all $n \ge n_0$

Now, if we get a value for c such that the above equation holds true for all the n

Let's choose c = 3.

$$2n^2 + 5n\log_2 n \le 3n^2$$

$$2n^2 + 5n \log_2 n \le 2n^2 + n^2$$

This inequality holds as long as:

$$2n^2 \le 2n^2$$
 true for any n

 $5n \log_2 n \le n^2 \dots$ true as long as $n \ge 22.45$

Thus, for c = 3 and $n_0 = 22.45$; the above inequality holds true. That's we wanted to prove.

b) If
$$f(n) \in \omega(g(n))$$
 then $f(n) \in \Omega(g(n))$

We need to show that:

There are positive constants c and no such that

$$0 \le cg(n) \le f(n)$$
 for all $n \ge n_0$

But, we're given that:

For any positive c, there exists an no such that

$$0 \le cg(n) < f(n)$$
 for all $n \ge n_0$

 ω notation is like a > b and Ω notation is like a \geq b

e.g. a = 10 and b = 5, then according to ω , a > b. This also fulfils the condition of Ω ($a \ge b$).

So, for every a and b, this condition holds true.

So, we can say that

If
$$f(n) \in \omega(g(n))$$
 then $f(n) \in \Omega(g(n))$