О классе устойчивой изотопической связности градиентно-подобных диффеоморфизмов двумерного тора

Ноздринова Елена Вячеславовна

НИУ Высшая Школа Экономики, Международная лаборатория динамических систем и приложений

maati@mail.ru

Соавторы: Починка Ольга Витальевна

Секция: Дифференциальные уравнения и динамические системы

В докладе речь пойдет о замкнутых связных ориентируемых поверхностях M^2 и сохраняющих ориентацию гомеоморфизмах или диффеоморфизмах, заданных на них. Диффеомольств диффеоморфизмов $f_0, f_1: M^2 \to M^2$ означает существование некоторой гладкой дуги $\{f_t: M^2 \to M^2, t \in [0,1]\}$, соединяющей их в пространстве диффеоморфизмов. Если диффеотопные диффеоморфизмы являются структурно устойчивыми (качественно не меняющими своих свойств при малых шевелениях), то естественно ожидать существования устойчивой дуги (качественно не меняющей своих свойств при малых шевелениях) их соединяющей. В этом случае, следуя Ш. Ньюхаусу, Дж. Палису, Ф. Такенсу [1], говорят, что диффеоморфизмы $f_0, f_1: M^2 \to M^2$ устойчиво изотопны или принадлежат одному и тому же классу устойчивой изотопической связности.

Простейшими структурно устойчивыми диффеоморфизмами поверхностей являются градиентно-подобные преобразования, имеющие конечное гиперболическое неблуждающее множество, инвариантные многообразия различных седловых точек которого не пересекаются. Однако, даже градиентно-подобные диффеоморфизмы 2-сферы, которые всегда диффеотопны, в общем случае не являются устойчиво изотопными. Для таких диффеоморфизмов полная классификация, с точностью до устойчивой изотопности, получена Е. Ноздриновой и О. Починкой [2] (см., также обзор [3] по известным на сегодняшний день препятствиям к существованию устойчивых дуг между диффеоморфизмами многообразий). Препятствием к существованию устойчивой дуги между диффеоморфизмами 2-сферы является различие в их периодических данных, что впервые было замечено П. Бланшаром [4].

Хорошо известно, что диффеоморфизмы 2-тора диффеотопны тогда и только тогда, когда индуцированный ими изоморфизм фундаментальной группы задается одной

и той же матрицей
$$A=egin{pmatrix} a & b \\ c & d \end{pmatrix}\in Sl(2,\mathbb{Z})$$
, то есть A — целочисленная квадратная мат-

рица второго порядка с определителем, равным 1. Устойчивая связность изотопных тождественному диффеоморфизмов исследована в работе [5], где показано, что диффеоморфизмы, имеющие одинаковые периодические данные могут не соединяться устойчивой дугой из-за разности гомотопических типов кривых, составленных из инвариантных многообразий седловых точек.

В настоящей работе рассмотрен класс G градиентно-подобных диффеоморфизмов 2-тора, индуцирующих изоморфизм фундаментальной группы, определяемый матри-

цей
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
.

Основным результатом, представленным в докладе является доказательство теоремы, что для любых диффеоморфизмов класса G существует соединяющая их устойчивая дуга.

Исследование осуществлено в рамках Программы фундаментальных исследований НИУ ВШЭ.

- [1] S. Newhouse, J. Palis, F. Takens, *Bifurcations and stability of families of diffeomorphisms*, Publications mathematiques de l' I.H.E.S, 57 (1983), 5–71.
- [2] E. Nozdrinova, O. Pochinka, Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere, Discrete and Continuous Dynamical Systems, 41:3 (2021), 1101–1131.
- [3] T. Medvedev, E. Nozdrinova, O. Pochinka, *Components of Stable Isotopy Connectedness of Morse Smale Diffeomorphisms*, Regular and Chaotic Dynamics, 27:1 (2022), 77–97.
- [4] P. R. Blanchard, Invariants of the NPT isotopy classes of Morse-Smale diffeomorphisms of surfaces, Duke Mathematical Journal, 47:1 (1980), 33–46.
- [5] Д. А. Баранов, Е. В. Ноздринова, О. В. Починка, Сценарий устойчивого перехода от изотопного тождественному диффеоморфизма тора к косому про-изведению грубых преобразований окружности, Уфимский математический журнал, 16:1 (2024), 11–23.