Lecture 16 Memory

Adapted from slides originally developed by Profs. Hardavellas, Hill, Falsafi, Marculescu, Patterson, Rutenbar and Vijaykumar of Northwestern, Carnegie Mellon, Purdue, UC-Berkley, UWisconsin

Review: Improving Cache Performance

▶ Boiled it all down to three basic types of optimizations

- O1: Reducing the cache miss rate
- ▷ O2: Reducing the cache miss penalty
 - Description Descr
- O3: Reducing the time to hit in the cache
 - Small caches, address translation

Today's Menu:

▶ Basic Memory Technology

- > SRAM—Static RAM
- ▷ DRAM—Dynamic RAM

Random Access Memory (RAM) Technology

Why do we need to know about RAM technology?

- > Processor performance is usually limited by memory bandwidth
- As IC densities increase, lots of memory fits on processor chip
- - > Instruction cache
 - Data cache

What makes RAM different from a bunch of flip-flops?

- ▶ Density: RAM is much more dense
- > **Speed**: depending on how you design it, RAM may be fast, or very slow

Memory Technologies

Random Access Memories

- DRAM: Dynamic Random Access Memory
 - → High density, low power (0.1–0.5 W active, 0.25–10 mW standby), cheap, slow
 - Dynamic: needs to be "refreshed" regularly
 - > Dynamic means "I write a bit, and if I ignore it long enough, it will evaporate"
 - > Dynamic also means "I read a bit, and then I have to write it back to make sure it is still correctly stored there"
- > **SRAM**: *Static* Random Access Memory

 - Static: content will last "forever" (until lose power)
 - > Static means "I write a bit, and it stays there. Period"

▶ What gets used where (typically)?

- Main memory is **DRAM**: you need it big, so you need it cheap
- ▷ CPU cache memory is SRAM: you need it fast, so it's more expensive, so it's smaller than you would usually want due to resource limitations

Illustrative Analogy...

Memory 2D Array Issues: Decoders

 $K = log_2N$

EECS 361

Too many select signals

Array-Structured Memory Architecture

► If you have 1M 1-bit words, you don't want a 1M x 1 2D array

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Static RAM Cell: Circuits View (if you know ckts)

6-Transistor SRAM Cell

Write:

- 1. Drive bit lines (bit = x, $\overline{bit} = \overline{x}$)
- 2. Select row (set word line to Vdd)

► Read:

- 1. Precharge bit and bit to Vdd
- 2. Select row
- 3. Cell pulls one line low
- 4. Special analog circuit called <u>a</u> "Sense amplifier" (or usually just "sense-amp") on column detects the difference between bit and bit, which denotes what we read

Typical SRAM Organization: 16-word x 4-bit

Logic Diagram of a Typical SRAM

Basic plumbing

- WriteEnable is usually active low (WE_L)
- ▷ Din and Dout are combined to save pins:

► A new signal, *OutputEnable* (*OE_L*) is needed

- - ▷ D serves as the data input pins
- - ▷ D is the data output pins
- Both WE_L and OE_L are asserted:
 - > Result is unknown. Don't do that!!!

Typical SRAM Timing

Write Timing:

Read Timing:

Problems with SRAM

Issues

- ▷ 6 transistors is a lot of area, if want millions of stored bits
- ▷ It's fast, and it's static (ie, it's cross-coupled like a flip-flop, so it regenerates state from inputs)...

Other option: 1-Transistor Memory Cell (DRAM)

▶ Write:

- > 1. Drive bit line
- > 2. Select row (called word-line)

► Read:

- > 2. Select row
- > 3. Cell and bit line share charges
- - Can detect changes of ~1 million electrons
- > 5. Write: restore the value

Refresh

Closer Look at DRAM Cell

Figure 1: IBM Trench Capacitor Memory Cell

Problem is: you want more and more bits/chip.

So, each bit gets smaller and smaller.

So, the capacitor gets smaller and smaller.

But, the capacitor needs physical area to store enough charge.

Solution: dig a hole in silicon, called a "trench"

DRAMs with Stack Capacitors

Classical DRAM Organization (square)

Lec. 16 - 17 **EECS 361**

Typical DRAM Organization

- ► Typical DRAMs: access multiple bits in parallel
 - \triangleright Example: 2 Mb DRAM = 256K x 8 = 512 rows x 512 cols x 8 bits

Logic Diagram of a Typical DRAM

- Control Signals (RAS_L, CAS_L, WE_L, OE_L)
 - > All active low
- ▶ Din and Dout are combined (D):
- ► Row and column addresses share the same pins (A)
 - ▷ RAS_L goes low: Pins A are latched in as row address.
 - CAS_L goes low: Pins A are latched in as column address.

DRAM Write Timing

DRAM Read Timing

EXAMPLE DRAM READ

(Micron MT4LC16M4A7)

READ CYCLE

EXAMPLE DRAM WRITE

EARLY WRITE CYCLE

About DRAM Timing

► It's just plain ugly.

- Not at all like a nice friendly flip flop

► Why?

- ▷ DRAMs are intrinsically "Dump"
- ▷ DRAMs are intrinsically slow

Example 64Mbit DRAM: Micron

FUNCTIONAL BLOCK DIAGRAM

MT4LC16M4A7 (13 row addresses)

DRAM Performance

- ► A 60 ns (t_{RAC}) DRAM can...
 - ...perform a row access only every 110 ns (t_{RC})

 - \triangleright ... but time *between* successive column accesses is at least 35 ns (t_{PC}).
 - (In practice, external address delays and bus wire delays make it 40 to 50 ns)

Consequence

Cycle Time versus Access Time

- DRAM (Read/Write) Cycle Time >> DRAM (Read/ Write) Access Time
- ▶ DRAM (Read/Write) Cycle Time :
- DRAM (Read/Write) Access Time:
- DRAM Bandwidth Limitation analogy:

Increasing Bandwidth - Interleaving

Fast Page Mode DRAM

Regular DRAM Organization:

- N rows x N column x M-bit

- Fast Page Mode DRAM
 - ▷ N x M "register" to save a row

Fast Page Mode Operation

- Fast Page Mode DRAM
 - ▷ N x M "SRAM" to save a row
- After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - RAS_L remains asserted whileCAS L is toggled

Lec.16 - 30

DDR SDRAM Timing Diagram

- ▶ Use positive and negative edges of clock
- ► Request "bursts" of data

Figure 1: Burst Read Operation Timing

DRAM History

► DRAMs: capacity +60%/yr, cost -30%/yr

- ≥ 2.5X cells/area, 1.5X die size in -3 years
- DRAM fab line costs \$1B to \$2B
- Commodity industry: high-volume, low-profit/part, conservative

▶ Problems

DRAM Trends

Exponential growth in size (bits/chip)

Only linear improvement in speed

SPEED (ns)

EECS 361 YEAR OF INTRODUCTION .16 - 33

DRAM Bandwidth Gap

► Means that the time to read an entire DRAM is growing slower than the size (capacity) of DRAMS; takes longer and longer to read out a whole DRAM.

Kbits per DRAM Chip (organized in x4 configuration)

DRAM: Organizational Changes

Modest organizational innovations in last 20 years

- Basically changes in how signaling occurs

► More recent focus on radical signaling changes

- Example: RAMBUS: 10X bandwidth, +30% cost
- What circuit designers worry about here (in order): (1) Cost/bit, (2) Capacity

Memory Technology Summary

RAM comes in many flavors

- ≥ 2 big ones: SRAM vs DRAM
- > SRAM: fast, expensive, larger silicon footprint.
- ▷ DRAM: slow, cheap, smaller silicon footprint

DRAM comes in many flavors

- DRAM optimized for capacity more than for speed
- Secondarily, DRAM is optimized for different signaling modes to speed access
- Strange" signaling is common. Most common is need to save pins and send row-address and coladdress on same wires. Leads to RAS CAS timing stuff.
- Advanced DRAM chips with sophisticated signaling are increasingly common (eg, Synch DRAM, Rambus, etc.) Goal is to break speed bottleneck in DRAM.