

Project Data Center Use cases

Author: Nasser Noei

Table of Contents

Revie	wers	Error! Bookmark not defined.
Data (Center Interconnect options	3
Large	Data Center Visualization	4
Introd	luction	5
1.1	Problem being Solved	5
1.2	Benefits	6
Test T	opology and Approach	7
1.1	Use case logical topology	7
1.2	Three Tier DC topology with Delta Products switch	7
1.3	Lab toplogy (simulating a cluster or POD)	8
1.4	Scope	9
1.5	Equipment needed	10
1.6	Execution and Results	11
1.7	Deliverables	11
1.8	Test Background Scale:	12
Senari	1.2 Benefits	
Scena	rio 2 — Hosted Virtual customer and customer's edg	e 19
Refere	ences	23
Revie	w Action Items	Error! Bookmark not defined.
Appen	dix A – Zero Touch Provisioning (ZTP) through DHC	CP 25
Appen	dix B – Router running configurations	27

Data Center Interconnect options

Large Data Center Visualization

Introduction

This document is the customer focused and intended as "Use Cases" and System Test plan for Delta Network Switch use in Data Center (DC).

This plan will be reviewed and approved to assure completeness of the testing and to determine the testing schedule. Once testing starts, all test cases can be managed in this plan or within a test case management system. The test results review will become the final validation of the test plan along with any other exit criteria.

1.1 **Problem being solved**

Hyperscale data centers have architectures that are designed to provide a single, massively scalable compute architecture. The architecture is typically made up of small, individual servers, called nodes that provide compute, storage and networking. These nodes are then clustered together and managed as if they were a single entity. Nodes are typically deployed from inexpensive, off the shelf servers

The idea behind building hyperscale architectures is to start small in order to keep upfront investments as low as possible. This is achieved through simple topologies, which are easy to replicate and expand with manageable cost

Data centers in general are focused around speeds and feeds and scale, often with zero TOR switches act as Virtual Tunnel End Points trust security between all subscribers. (VTEP) with large number of overlapping IP address segments assigned to various Low latency and high through put with security and scale are a must. Very little routing and switching feature beyond VxLAN, QoS, ACL and security are not critical to data centers.

Data centers are generally connected via IP in case of VxLAN or VPLS/EoMPLS for traditional L2. Focus of our use cases are on VxLAN plus L3 overlay for DC interconnect

High availability is achieved through traffic management and multiple paths, with ECMP and simple network configuration

1.2 **Benefits**

Once use cases are performed on a combination of white-box switch and NOS, boundaries of operations are known and the combination would be more suited for POC and customer trials, and eventually roll out as a system

These use cases can be automated and in the future turned over to external entities to perform the qualification on our behalf as NOS and interoperability certification.

Test Topology and Approach

1.1 Use case logical topology

1.2 Three Tier DC topology with Delta Network Delta Network switch

1.3 Lab topology (simulating a cluster or POD)

1.4 Scope

Scope of this document includes limited interoperability with other Vendors granted that we could secure their gear and or have access to their NOS to run on a server or our switch in a VM. All configuration and bring up would be layered at the beginning and verified and all tests would be performed on running system

Native RFC2544 Throughput and Latency for IPv4/IPv6 and Multicast throughput latency are covered by DevTest team in Taipei. RFC2544 in scaled setup across sample subscriber are in scope. Basic functionality test are also covered by NOS supplier and Taipei team and will not be performed in this plan. Fully loaded system and link length and phy validation would be done in Taipei as well

Our test would be with the sample customer use cases at simulated full scale. Following is a list of technology areas covered in

- o Provider overlay (EoR, Spine) Basic switch maintenance and bring up
 - Install and provision via USB and FTP
 - Auto install and provisioning via ZTP
 - Continuous Auto configuration via Ansible/Puppet
 - Multi-tenant VxLAN VTEP at the ToR and redundant overlay L3 network
 - eBGP to hide internal infra with VPN for subscriber network connectivity
 - NVGRE, LLDP, VLAN (based on NOS support)
 - ACL (Zero Trust Security), QoS (Simulated Voice, Data, Video),
 IGP + MPLS/LDP/RSVP with TE
 - ECMP. BFD and mesh network
 - o Loss-less traffic with link failure
 - o Re-convergence and recover with full path failure
 - o Repeat link flap with traffic re-engineering
 - Flow-based control (Layer-2 / Layer-3 and OpenFlow simultaneously based on supported NOS)
 - Management and monitoring through CLI, NETCONF, RESTConf.
- o Hosted Virtual customer and customer's edge
 - Simulate large VxLan network through IXIA along with 4 hosted networks with overlapping addresses across the spine and core
 - Add EVPN with EVI for VxLAN and tenants point to point
 - RFC2544 NDR via 10G across two subscribers in parallel
 - Tiered workload, simulated traffic patterns (IMIX through different tenants)
 - · Simulated Multicast/unicast traffic
 - Bursty traffic SAN + DFS via multiple tenants

1.5 Equipment needed

Use Platform Quantity

ToR: 10G downlink/40G uplink	AG7648	2
Spine: 40G downlink/100G uplink	AG9032	2
Core: 100G downlink/100G uplink	AGC7648	2
Traffic Gen	IXIA - 10G and 100G	
	links	
Server: Syslog, Terminal,	Virtual Machine	1
Server: OpenFlow controller	Virtual Machine	1
Broadcom ICOS 3.2.x +	Target NOS for white-box	
Ipinfusion 1.2.1.x +	2nd Target NOS for	Optional not parallel
OCNOS-DC-MPLS-ZEBM	white-box	to ICOS

1.6 Execution and Results

Tests will be executed manually with results captured in a Test Information Management System (if one exists). All defects found during testing will be recorded and tracked in Defect Tracking System with following severities:

- S1: defect impacting system functionality and requires intervention to recover and has no workaround
- **S2**: defect impacting system functionality and requires intervention to recover but has a workaround to avoid or recover
- **\$3**: defect impacting system functionality, but does not require intervention to recover and has a workaround
- S4: defect does not impact functionality, but it is critical to be addressed
- **\$5**: Cosmetic defects, in spelling, look and feel

On completion of testing documentation of the results will be archived for future references. Test scenarios can be used as use cases externally

1.7 Deliverables

The following deliverables are required for this level of testing:

- Detailed Test Plan (this document)
- · Individual Test Case Results
- Saved IXIA sessions and automated scripts in Python at conclusion of test and validation
- Executive Summary and DDTS Reports
- White-paper/MOP as applicable

1.8 Test Background Scale:

Target switch	Feature	Parameters	Per box Scale
Spine/Core			100 K (/16-
	OSPF V2		subnet)
Spine/Core	OSPF V3		2 K
Spine/Core	Mcast routes		4 K
Spine/Core	BGP peers		60
Spine/Core	BGP routes		600K
Spine/Core	iBGP – (Private ASN 64512- 65534)		1022
Spine/Core	MPLS (head/mid/tail)	LDP/RSVP	20 K
ToR/Spine	VPC		600
ToR/Spine	VLAN		10 K
ToR/Spine	Simulated Tenants (VxLAN ID)		10 K
ToR/Spine	NVGRE (swap with VxLAN not		
	concurrent)		10 K
ToR/Spine	EVPN (EVi)		10 K

Senario 1 - Provider overlay and edge

Title	Description	Procedure	Pass/Fail	Platform	Test ID
Bring up	Bring up one core switch through flash install and add licenses	Console connect and boot the box. Press DEL and select ONIE install. During ONIE discovery Stop discovery process # onie-discovery-stop Install image # mkdir /mnt/usb # mount /dev/sdb1 /mnt/usb # onie-nos-install /mnt/usb/[installer-image] Install licenses (based on NOS) # license get /mnt/usb/[license-file.bin]	New image is booted and version validated		

Dring	Dring up and	Cton diagonamy reserve	Now image is bested and	
Bring up	Bring up 2 nd core via	Stop discovery process	New image is booted and	
	FTP/HTTP install and	# onie-discovery-stop	version validated	
	add licenses	Configure management		
		interface		
		# ifconfig eth0 10.1.1.10 netmask		
		255.255.255.0 up		
		Install image		
		# onie-nos-install		
		ftp://[ftp-server-path]/[instal		
		ler-image]		
		Install licenses (based on NOS)		
		# license get		
		<pre>ftp://[ftp-server-path]/[licens</pre>		
		e-file.bin]		
Bring up	Bring up switch	Please see Appendix A	DHCP address is picked up	
	through DHCP and		and image is loaded	
	ZTP. Install image,			
	license and base			
	config			
Bring up	Configure	Configure management port for		
	management	each switch with an IP address		
	interfaces	in 192.168.x.x segment		
		# serviceport protocol none		
		# serviceport ip ipaddress		
		netmask [gateway]		

Bring up	Configure IP address	Go into config mode and	Once all the connected	
	for interfaces	configure IP address and	interfaces are done. Ping ip	
	connected	netmask for the interfaces	addresses across to verify that	
		connected to adjacent switches	they are all reachable	
		Please see config details in		
		appendinx B		
Bring up	Configure BGP	See appendix B for router config		
	peering on all			
	switches			

				ı	
Bring up	Configure IXIA	Configure IXIA and bring up IGP,	All scaled simulated sessions		
		BGP, MPLS head/tail for the	are up and traffic flowing		
		scale plan. Start traffic flow for			
		target tenants. Validate peers,			
		routes, labels and traffic are up			
		VxLAN IP segments			
		10.x.x.x (or NVGRE)			
		NAT at PE to hide			
		internal segments			
		BGP and external			
		addresses 192.168.x.x.			
		MPLS labels and RSVP			
		label push and pop at			
		IXIA and forwarded			
		through UUT			
		VLAN segments to			
		scale			
		BGP ECMP across			
		multiple links			
		NOTE: for MPLS LDP and			
		RSVP have to use OcNOS			
Bring up	Monitoring Traffic from	Start IMIX traffic through two	Traffic running with 0 drop		
	IXIA	tenant network. One monitor			
		line rate			
Dring	DCCD and Difference		Marked traffic act higher		
Bring up	DSCP and Diffserve	Create tagged traffic via IXIA	Marked traffic get higher		
	tag	and start traffic through one	priority		
		Tenant			

Bring up	Mcast traffic, single source multiple receivers	Simulate Mcast traffic, one source multiple receiver on a single tenant	Validate traffic flow	
Bring up	Set up syslog to the external server	Configure syslog with 'logging syslog' (dependent on the NOS)	Verify that syslog messages are sent to the log server	
Bring up	Set up NETCONF	NETCONF is dependant on the NOS support. No particular configuration, have to make sure NETCONF yang additions are loaded on the management system used	Get the running config via management device and validate it is reachable	
Bring up	Set up RESTapi	RESTapi is dependant on the NOS support. No particular configuration, have to make sure lighttpd is running on the switch with 'show process proc-list'	If you are using chrom postman or curl command line login via admin and validate you get "ok" response	

		<u> </u>	1	
Bring up	Setup Flow Controller	Open source base Beacon as an		
	on the server	example. Instructions are:		
		https://openflow.stanford.edu/dis		
		play/Beacon/Home		
		How to setup video at:		
		https://openflow.stanford.edu/dis		
		play/Beacon/Quick+Start		
		# openflow enable		
		Verify the OpenFlow		
		configuration with the following		
		command:		
		(Routing)		
		# show openflow		
Bring up	Setup ftp and http on	See Appendix A		
	your server for install			
	scenarios			

Scenario 2 - Hosted Virtual customer and customer's

edge

Note: All these test must be performed with scale and configured above running. Source of event samples are operations and:

http://research.microsoft.com/en-us/um/people/navendu/papers/sigcomm11ne twiser.pdf

Title	Description	Procedure	Pass/Fail	Platform	Test ID
Config	Configure VxLAN (or NVGRE) via CLI	Configure a new host in a controlled tenant via CLI	Validate with show commands		
Config	Configure VxLAN (or NVGRE) via NETCONF or RESTapi depending on OS	Configure a new host in a controlled tenant via NETCONF or RESTapi depending on OS	Validate with show commands		
Config	Change configuration of a host via Puppet agent	Change host Vlan for a tenant via puppet	Verify via CLI		

a host via Ansible via Ansible play book Edit: /etc/ansible/hosts [ICOS] host1 host=192.168.3.10 port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnosi SUCCESS => { "changed": false, "ping": "pong" }	Config	Change configuration of	Change host Vlan back for a tenant	Verify via CLI	
<pre>[ICOS] host1 host=192.168.3.10 port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>		a host via Ansible	via Ansible play book		
<pre>[ICOS] host1 host=192.168.3.10 port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>					
host1 host=192.168.3.10 port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			Edit: /etc/ansible/hosts		
host1 host=192.168.3.10 port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,					
port=22 username=admin password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			[ICOS]		
password=broadcom [local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			host1 host=192.168.3.10		
<pre>[local] localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>			port=22 username=admin		
localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			password=broadcom		
localhost ansible_connection=local Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,					
Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			[local]		
Ping via Ansible to make sure you are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,			localhost		
<pre>are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>			ansible_connection=local		
<pre>are connected from the UNIX server: # ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>					
<pre># ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>					
<pre># ansible ICOS -m ping ocnos1 SUCCESS => { "changed": false,</pre>			are connected from the UNIX		
<pre>ocnos1 SUCCESS => { "changed": false,</pre>			server:		
<pre>ocnos1 SUCCESS => { "changed": false,</pre>					
"changed": false,					
"ping": "pong" }					
			"ping": "pong"		
			}		
Create a playbook on Ansilbe			Create a playbook on Apsilbe		
control server					
See examples in:					
http://docs.ansible.com/ansible/ops					
_command_module.html					
Execute play book from UNIX			Execute play book from UNIX		
controller box			·		
<pre># ansible-playbook <name>.yml</name></pre>			# ansible-playbook <name>.yml</name>		

Access	·	Setup access control to block all	Validate traffic to web only	
Control	permit access to web	server access and open web	and block otherwise	
	services	access control only		
		Add configuration over base config		
		in Appendix B		
		# access-list 10-99 {remark		
		<pre>comment} {[sequence-number]}</pre>		
		[rule 1-1023] {deny permit}		
		{every srcip srcmask } [log]		
		[time-range		
		time-range-name][assign-queue		
		queue-id]		
		[{mirror redirect}		
		slot/port] [redirectExtAgent		
		agent-id] [rate-limit rate		
		burstsize]		
Access	Setup QoS policy range	Add configuration beyond base	Validate high priority traffic	
Control	of vlans for a tenant.	config in Appendix B	is forwarded in congestion	
	Set Commited	# class-map ucast	rate limit is applied as	
	Information Rate (CIR)	# match vlan 10 - 110	configured	
		# exit		
		# policy-map ucastpolicy		
		# class ucast		
		# police cir percent 70 pir		
		percent 80		
		# exit		
		# interface xe45		
		# service-policy type qos input		
		ucastpolicy		
		# exit		
				_

Events	Bring down a redundant	Bring down a redundant link on	Validate with Traffic Gen.	
	link on TOR towards	TOR towards spine. Validate	Validate configured routes	
	spine	ECMP functionality and traffic flow	and tunnels	
		# config t		
		# interface		
		# shutdown		
Events	Bring down a redundant	Bring down a redundant link on	Validate with Traffic Gen.	
	link on Spine towards	Spine towards core. Validate	Validate configured routes	
	core	ECMP functionality and traffic flow	and tunnels	
Events	Bursty traffic	Generate line rate bursty traffic	Validate nothing is	
		from a host in a VM. Validate	impacted due to burst of	
		ODL detects and no other impact	traffic	
		comes from this traffic		
Event	Link Flap	Flap a link 10 times, simulating a	ECMP should handle	
		drastic event on a link from TOR to	traffic flow	
		spine		
		# config t		
		# interface		
		# shutdown		
		# no shut		
Event	Upgrade/Reload a	Upgrade or power down a TOR	Validate traffic flows	
	redundant node	with ECMP with traffic flowing	through redundant pair	
		# reload		
Event	Route withdraw	On the overlay network simulate	This routing change should	
		route withdraw from IXIA.	not impact traffic on UUT	
		Re-advertise the routes.	tenents and traffic	
Event	Hot swap poswer	Simulate hot swap of redundant	This should not impact	
	module	power module on TOR, Spine and	operations	
		core		

Event	Exceeding operating	Block the fan airflow to increase the	? Validate alarms are	
	temp: 0-40	operating temp	generated and in extended	
			perios switch is shut down	

References

IXIA IxNetwork for even simulation:

https://www.ixiacom.com/products/ixnetwork

Data Center Interconnect (DCI) trends and protocols:

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2015/11138-data-center-interconnect-market-trends-requirements.pdf

Test findings

- Detail configurations are provided in Appendix to allow replication of these tests
- At high scale, 100 clients per VxLAN per site, total of 400 concurrent sessions with traffic, switch console gets very slow and at times non-responsive
- With 40 concurrent sessions and traffic overall system was stable and ran for several days without an issue
- BGP simulation at spine did not have any impact of VxLAN on ToR.
- Tests need to be repeated with combination of IPv4 and IPv6 and pure IPv6
- Network telemetry and visibility is lacking in this space. CLI show limited amount of data with respect to sessions. ARP table and overall traffic flow are the best means to monitor session at this time

IXNetwork screen capture of the sessions

Appendix A – Zero Touch Provisioning (ZTP) through DHCP

You can provide image path, license file and base configuration to an Delta Products switch via DHCP server for ZTP. Here are the steps to accomplish that through open source software: 1- Install Ubuntu on your server:

https://help.ubuntu.com/community/Installation/FromUSBStick

- 2- Configure eth0 and ip addresses for basic networking via Ubuntu Gui or ifconfig. Gui is easiest but CLI is also possible:

 https://help.ubuntu.com/community/NetworkConfigurationCommandLine/Automatic
- 3- Install vsftpd (if you plan to install to go through ftp) or Apache (if you plan to install through http) and configure the file path
 https://help.ubuntu.com/lts/serverguide/ftp-server.html
 https://help.ubuntu.com/lts/serverguide/httpd.html
- 4- Transfer the Network Operating System (NOS), license file and base configuration file to the server above
- 5- Install isc-dhcp-server and configure basic DHCP services.
- 6- Add ZTP options to /etc/dhcp/dhcpd.conf similar to following (note that red items need to match the path to the files in your system:


```
# Zero Touch for Agema ONIE
option ocnos-provision-url code 250 = text;
option ocnos-license-url code 251 = text;
option broadcast-address 192.168.3.255;
option routers 192.168.3.10;
# two nodes defined as Leaf_01_device and Leafe_02_device
range 192.168.3.1 192.168.3.254;
  host Leaf_01_device {
    hardware ethernet 00:18:23:30:8d:00;
    fixed-address 192.168.3.10:
    option\ default-url\ "ftp://192.168.3.124/images/ipinfusion/1.2.1/AG\_8032-OcNOS-1.2.1.91-DC\_MPLS\_ZEBM-S0-P0-installer";
    option ocnos-license-url "ftp://192.168.3.124/images/ipinfusion/licenses/triallicense-001823308D00-20161018-60D-T3.bin";
    option ocnos-provision-url "ftp://192.168.3.124/images/ipinfusion/configs/leaf-01.conf";
  host Leaf_02_device {
    hardware ethernet 00:18:23:30:8f:e6;
    fixed-address 192.168.3.20;
    option default-url "ftp://192.168.3.124/images/ipinfusion/1.2.1/AG_8032-OcNOS-1.2.1.91-DC_MPLS_ZEBM-S0-P0-installer";
    option\ ocnos-license-url\ "ftp://192.168.3.124/images/ipinfusion/licenses/triallicense-001823308 FEO-20161018-60 D-T3.bin";
    option ocnos-provision-url "ftp://192.168.3.124/images/ipinfusion/configs/leaf-01.conf";
```

- 7- Restart the DHCP server: sudo service isc-dhcp-server restart
- 8- Connect to serial console port of the router
- 9- Reboot During boot press "Delete" when you are prompted and get into ONIE
- 10- From the ONIE menu, either select uninstall OS and boot. Or just select Boot

Appendix B - Router running configurations

```
hostname TIER1-CORE-01
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56850 AG8032PL System - 32 40G
QSFP, 3.2.1.4, Linux 3.5.0-23-generic, <not found>"
!System Software Version "3.2.1.4"
!System Up Time
                          "0 days 0 hrs 38 mins 44 secs"
!Cut-through mode is configured as disabled
                       BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Additional Packages
!Current System Time: Dec 12 11:42:56 2016
vlan database
exit
configure
ip routing
line console
```



```
exit
line telnet
exit
line ssh
exit
ip vrf "management"
exit
interface loopback 0
no shutdown
ip address 10.0.0.10 255.255.255.255
exit
interface 0/1
no shutdown
routing
ip address 13.1.1.3 255.255.255.254
exit
interface 0/5
no shutdown
routing
ip address 23.1.1.3 255.255.255.254
exit
```



```
router ospf
exit
router ospf vrf "management"
exit
ipv6 router ospf
exit
router bgp 65534
bgp router-id 10.0.0.10
maximum-paths 24
neighbor 13.1.1.2 remote-as 64601
neighbor 13.1.1.2 fall-over bfd
neighbor 23.1.1.2 remote-as 64601
neighbor 23.1.1.2 fall-over bfd
redistribute connected
address-family ipv4 vrf "management"
exit
address-family vpnv4 unicast
exit
address-family ipv6
exit
exit
exit
```



```
hostname TIER1-CORE-02
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56850 AG8032PL System - 32 40G
QSFP, 3.2.1.4, Linux 3.5.0-23-generic, 2015.05-dirty"
!System Software Version "3.2.1.4"
!System Up Time
                           "0 days 0 hrs 37 mins 6 secs"
!Cut-through mode is configured as disabled
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Oct 4 07:42:25 2013
vlan database
exit
configure
ip routing
line console
exit
line telnet
exit
line ssh
exit
interface loopback 0
no shutdown
ip address 10.0.0.20 255.255.255.255
```



```
exit
```

interface 0/1 no shutdown routing ip address 14.1.1.3 255.255.255.254 exit

interface 0/5 no shutdown routing ip address 24.1.1.3 255.255.255.254 exit

router ospf exit ipv6 router ospf exit

router bgp 65534

bgp router-id 10.0.0.20

maximum-paths 24

neighbor 14.1.1.2 remote-as 64601

neighbor 14.1.1.2 fall-over bfd

neighbor 24.1.1.2 remote-as 64601

neighbor 24.1.1.2 fall-over bfd

redistribute connected

address-family vpnv4 unicast

xit	
ddress-family ipv6	
xit	
xit	
xit	


```
hostname TIER2-SPINE-01
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56850 AG8032PL System - 32 40G
QSFP, 3.2.1.4, Linux 3.5.0-23-generic, <not found>"
!System Software Version "3.2.1.4"
!System Up Time
                           "2 days 3 hrs 54 mins 2 secs"
!Cut-through mode is configured as disabled
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Dec 14 15:04:02 2016
vlan database
exit
configure
ip routing
line console
exit
line telnet
exit
line ssh
exit
spanning-tree mode rstp
interface loopback 0
```


no shutdown

ip address 10.0.0.30 255.255.255.255

exit

interface 0/1

no shutdown

routing

ip address 13.1.1.2 255.255.255.254

exit

interface 0/5

no shutdown

routing

ip address 14.1.1.2 255.255.255.254

exit

interface 0/9

no shutdown

routing

ip address 15.1.1.2 255.255.255.254

exit

interface 0/13

no shutdown


```
routing
ip address 16.1.1.2 255.255.255.254
exit
router ospf
exit
ipv6 router ospf
exit
router bgp 64601
bgp router-id 10.0.0.30
maximum-paths 24
neighbor 13.1.1.3 remote-as 65534
neighbor 13.1.1.3 fall-over bfd
neighbor 14.1.1.3 remote-as 65534
neighbor 14.1.1.3 fall-over bfd
neighbor 15.1.1.3 remote-as 65500
neighbor 15.1.1.3 fall-over bfd
neighbor 16.1.1.3 remote-as 65501
neighbor 16.1.1.3 fall-over bfd
redistribute connected
address-family vpnv4 unicast
exit
address-family ipv6
exit
exit
exit
```



```
hostname TIER2-SPINE-02
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56854 AG7648 System - 48 10G
SFP+ and 6 40G QSFP+, 3.2.1.4, Linux 3.5.0-23-generic, 201412130048"
!System Software Version "3.2.1.4"
!System Up Time
                          "2 days 3 hrs 40 mins 28 secs"
!Cut-through mode is configured as disabled
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Dec 15 06:13:23 2016
vlan database
exit
configure
ip routing
line console
exit
line telnet
exit
line ssh
exit
spanning-tree mode rstp
interface loopback 0
```


no shutdown

ip address 10.0.0.40 255.255.255.255

exit

interface 0/49

no shutdown

routing

ip address 23.1.1.2 255.255.255.254

exit

interface 0/51

no shutdown

routing

ip address 24.1.1.2 255.255.255.254

exit

interface 0/53

no shutdown

routing

ip address 25.1.1.2 255.255.255.254

exit

interface 0/54

no shutdown


```
routing
ip address 26.1.1.2 255.255.255.254
exit
router ospf
exit
ipv6 router ospf
exit
router bgp 64601
bgp router-id 10.0.0.40
maximum-paths 24
neighbor 23.1.1.3 remote-as 65534
neighbor 23.1.1.3 fall-over bfd
neighbor 24.1.1.3 remote-as 65534
neighbor 24.1.1.3 fall-over bfd
neighbor 25.1.1.3 remote-as 65500
neighbor 25.1.1.3 fall-over bfd
neighbor 26.1.1.3 remote-as 65501
neighbor 26.1.1.3 fall-over bfd
redistribute connected
address-family vpnv4 unicast
exit
address-family ipv6
exit
exit
exit
```



```
hostname TIER3-TOR-01
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56854 AG7648 System - 48 10G
SFP+ and 6 40G QSFP+, 3.2.1.4, Linux 3.5.0-23-generic, 201412130048"
!System Software Version "3.2.1.4"
!System Up Time
                           "3 days 3 hrs 24 mins 31 secs"
!Cut-through mode is configured as disabled
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Dec 16 06:07:00 2016
vlan database
vlan 10,20
set igmp 10
set igmp 20
vlan routing 10 1
vlan routing 20 2
exit
configure
ip routing
vxlan enable
vxlan 1 source-ip 10.0.0.50
vxlan 1 vtep 10.0.0.60
vxlan 2 source-ip 10.0.0.50
vxlan 2 vtep 10.0.0.60
line console
exit
```



```
line telnet
exit
line ssh
exit
spanning-tree mode rstp
set igmp
ip igmp
ip pim sparse
ip pim rp-address 192.168.10.4 225.0.0.0 240.0.0.0
ip multicast
interface loopback 0
no shutdown
ip address 10.0.0.50 255.255.255.255
exit
interface 0/1
no shutdown
vlan pvid 10
vlan participation exclude 1
vlan participation include 10
routing
ip address 10.1.1.1 255.255.255.0
exit
```


interface 0/2
no shutdown
vlan participation exclude 1
vlan participation include 20
vlan tagging 20
routing
ip address 30.1.1.1 255.255.255.0
exit

interface 0/49 no shutdown routing ip address 15.1.1.3 255.255.255.254 exit

interface 0/51 no shutdown routing ip address 25.1.1.3 255.255.254 exit

interface vlan 10 no shutdown routing ip address 192.168.10.4 255.255.255.0


```
ip ospf area 0
ip igmp
ip igmp version 2
ip pim
exit
interface vlan 20
no shutdown
routing
ip address 192.168.20.4 255.255.255.0
ip ospf area 0
ip igmp
ip igmp version 2
ip pim
exit
router ospf
router-id 10.0.0.50
exit
ipv6 router ospf
exit
router bgp 65500
bgp router-id 10.0.0.50
maximum-paths 24
neighbor 15.1.1.2 remote-as 64601
neighbor 15.1.1.2 allowas-in 3
neighbor 15.1.1.2 fall-over bfd
neighbor 25.1.1.2 remote-as 64601
```


Solution Center document

neighbor 25.1.1.2 fall-over bfd
redistribute connected
address-family vpnv4 unicast
exit
address-family ipv6
exit
exit
exit


```
hostname TIER3-TOR-02
ip resilient-hashing
!Current Configuration:
!System Description "Broadcom Trident2 56854 AG7648 System - 48 10G
SFP+ and 6 40G QSFP+, 3.2.1.4, Linux 3.5.0-23-generic, 201412130048"
!System Software Version "3.2.1.4"
!System Up Time
                           "3 days 3 hrs 24 mins 31 secs"
!Cut-through mode is configured as disabled
!Additional Packages BGP-4,QOS,Multicast,IPv6,Routing,Data Center
!Current System Time: Dec 17 06:01:15 2016
vlan database
vlan 10,20
set igmp 10
set igmp 20
vlan routing 10 1
vlan routing 20 2
exit
configure
ip routing
vxlan enable
vxlan 1 source-ip 10.0.0.60
vxlan 1 vtep 10.0.0.50
vxlan 2 source-ip 10.0.0.60
vxlan 2 vtep 10.0.0.50
line console
exit
```



```
line telnet
exit
line ssh
exit
spanning-tree mode rstp
set igmp
ip pim sparse
ip pim rp-address 192.168.10.4 225.0.0.0 240.0.0.0
ip multicast
interface loopback 0
no shutdown
ip address 10.0.0.60 255.255.255.255
exit
interface 0/5
no shutdown
vlan pvid 10
vlan participation exclude 1
vlan participation include 10
routing
ip address 10.1.1.1 255.255.255.0
exit
interface 0/6
```


exit

no shutdown
vlan participation exclude 1
vlan participation include 20
vlan tagging 20
routing
ip address 40.1.1.1 255.255.255.0

interface 0/49 no shutdown routing ip address 16.1.1.3 255.255.254 exit

interface 0/51 no shutdown routing ip address 26.1.1.3 255.255.254 exit

interface vlan 10 no shutdown routing ip address 192.168.30.4 255.255.255.0 ip ospf area 0


```
ip igmp
ip igmp version 2
ip pim
exit
interface vlan 20
no shutdown
routing
ip address 192.168.40.4 255.255.255.0
ip ospf area 0
ip igmp
ip igmp version 2
ip pim
exit
router ospf
router-id 10.0.0.60
exit
ipv6 router ospf
exit
router bgp 65501
bgp router-id 10.0.0.60
maximum-paths 24
neighbor 16.1.1.2 remote-as 64601
neighbor 16.1.1.2 allowas-in 3
neighbor 16.1.1.2 fall-over bfd
neighbor 26.1.1.2 remote-as 64601
neighbor 26.1.1.2 allowas-in 3
```


Solution Center document

neighbor 26.1.1.2 fall-over bfd
redistribute connected
address-family vpnv4 unicast
exit
address-family ipv6
exit
exit
exit