

FCC TEST REPORT

For

Automatic Technology (Australia) Pty. Ltd.

Hub Board PCBA

Model No.: WSS33-1

Prepared For : Automatic Technology (Australia) Pty. Ltd.

Address : 6-8 Fiveways Boulevard, Keysborough Victoria 3173, Australia

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW181212003-01

Date of Receipt : Dec. 12, 2017

Date of Test : Dec. 12, 2017~Jan. 04, 2019

Date of Report : Jan. 04, 2019

Contents

1. General Information	ek thotek	Aupor Ar	uolek sa
1. General Information	, , , , , , , , otek	Anbote.	Anu
1.2. Description of Device (EUT)	ipore Vie	t hotek	Anbo
1.3. Auxiliary Equipment Used During Test	inbotek Anbo	h. wotek	Anbote.
1.4. Description of Test Modes	notek Anb	ore Am	eli
1.5. List of channels	br., Wek	aboten Anbo	Va
1.6. Description Of Test Setup	Anbo	notek An	oote Am
1.7. Test Equipment List	iek Wuporr	An. Yek	Motel And
1.8. Description of Test Facility	tek spoten	Ambo	1(
2. Summary of Test Results	ip" cotel	Anboro	1
3. Conducted Emission Test	Aupor Air	tek shoter	12
3.1. Test Standard and Limit	Aup.		
3.2. Test Setup	, botek A	upor Air	12
3.3. Test Procedure	An.	anboter Ani	12
3.4. Test Data	e. And	botek	12
4. Radiation Spurious Emission and Band Edge	notek Anbo	Ar. Totek	
4.1. Test Standard and Limit	tek subote.	Ant	
4.2. Test Setup	Anu Jak judo	tek Aupor	ke ^k 1;
4.3. Test Procedure	Anbo. A.	otek anbote	10
4.4. Test Data	Ambote. Ar		otek Anbot
5. Maximum Peak Output Power Test	sk potek	Aupor Air	20
3.3. Test Procedure	Pr. Ofek	Ambote. 1	
5.2. Test Setup	ote And	botek	20
5.3. Test Procedure	abotek Anbo	K Di Otek	20
5.4. Test Data	w. Wotek Vupo,	e. Aur	20
6. 6DB Occupy Bandwidth Test	Ann	potek Anbov	30
6.1. Test Standard and Limit	Ambo A	notek Anb	30
6.2. Test Setup.	k Vupoje.	Vue.	30
6.4. Test Data	ov potek	Anbole	30
7. Power Spectral Density Test	Iuporo Vu	ek abotek	30
7.1. Test Standard and Limit	Anbotek Anbo	w tookel	30
7.2. Test Setup	botek An	DOG WILL	30 30 30 30 30 30 30 30 30 30 30 30 30 3
7.3. Test Procedure	VI. STEK	anboten Anbo	30
7 4 Test Data	Anb	botek A	nbote 3
8 100kHz Bandwidth of Frequency Band Edge Re	auirement	Arek	4
8 1 Test Standard and Limit	otek Anboten	Anbo	42
8 2 Test Setup	mb tok "pott	Anbok Anbok	4
8 3 Test Procedure	Anbou An	otek Anbotek	A. 1. 4'
8 4 Test Data	Anbote Ani	rek no	Δ'
9. Antenna Requirement	k abotek	Anbor An	otek subgi
6.3. Test Procedure		NO DO	5
	300		120

9.2. Antenna Connected Construction	anboter	Anb	, botek	Anbou	;]
APPENDIX I TEST SETUP PHOTOGRAPH	hotek	Anbors	P.II.	5	
APPENDIX II EXTERNAL PHOTOGRAPH	bo	lek Aupot	Anb	5	į
APPENDIX III INTERNAL PHOTOGRAPH				, p 5	. 4

TEST REPORT

Applicant : Automatic Technology (Australia) Pty. Ltd.

Manufacturer : ACEMAX INDUSTRIAL CO., LTD

Product Name : Hub Board PCBA

Model No. : WSS33-1

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 2A

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test	liance , Ambo	Dec	c. 12, 2017~Jai	n. 04, 2019	
Prepared by	Anbotek Product Safety	Anbotek Anbot	olivay	arg	
hotek Anbotek	* Approved *	Anbote, (I	Engineer / Olia	ay Yang)	
Reviewer	Anboten Anbo	botek Anbotek Anbotek Anbotek		Meng over	Anbotek Anbotek Anbotek
			pervisor / Sno	wy Meng)	tek ab
		Anbotek (Bt	And hotek		
		ek Anbotek	Sally zh	ging of the	
Approved & Authorize	d Signer		K Anbore	Annatek	anbotek
	otek Anbotek	Anbotek And	Manager / Sall	y Zhang)	k Anbotel

1. General Information

1.1. Client Information

Applicant	:	Automatic Technology (Australia) Pty. Ltd.
Address	:	6-8 Fiveways Boulevard, Keysborough Victoria 3173, Australia
Manufactur	er :	ACEMAX INDUSTRIAL CO., LTD
Address	:	ROOM 206, HUAFENG XINAN Business BLDG, BAOAN 45 DISTRICT, SHENZHEN 518055, CHINA
Factory	:	ACEMAX INDUSTRIAL CO., LTD
Address	:	ROOM 206, HUAFENG XINAN Business BLDG, BAOAN 45 DISTRICT, SHENZHEN 518055, CHINA

1.2. Description of Device (EUT)

	E-20						
ŞC	Product Name	:	Hub Board PCBA	nbotek Anbotek Anbotek Anbotek Ar			
X	Model No.	:	WSS33-1	Anbotek Anbotek Anbotek Anbotek			
	Trade Mark	:	N.A.	Anbotek Anbotek Anbotek Anbotek			
6	Test Power Supply	:	AC 120V, 60Hz for adapter	otek Anbotek Anbotek Anbotek Anbot			
o	Test Sample No.	:	S1(Normal Sample), S2(Eng	S1(Normal Sample), S2(Engineering Sample)			
Š			Operation Frequency:	802.11b/ g/ n(HT20) 2412-2462MHz			
			Number of Channel:	11 Channels for 802.11b/ g/ n(HT20)			
	Product Description	:	Modulation Type:	802.11b CCK; 802.11g/n OFDM			
Š	·		Antenna Type:	FPCB Antenna			
Ċ			Antenna Gain(Peak):	1 dBi Anbote Anbotek Anbotek			
	Domarks 1) For a s	mai	ra datailad faaturas dasarii	ation place refer to the manufacturer's			

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

1	Adapter	:	Manufacturer: Samsung
			M/N: ETA-U90CBC
			S/N: RT6FB17ZS/B-E
			Input: 100-240V~ 50-60Hz, 0.35A
			Output: DC 5V, 2A

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

0	Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
P	802.11b	1 to 11	k labotek	CCK	DBPSK	1.0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	Mode	Mode Available Channel		Modulation Tech.	Modulation Type	Data Rate (Mbps)	
Ņ.	802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0 mbo	
o	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0	
	802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5	

POWER LINE CONDUCTED EMISSION TEST:

The EUT was tested with the following mode

N.	EUT configure mode	Test Mode
0	ek Anbote. Anb	Keeping TX mode

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Lest Channel Modulation Lech		Modulation Type	Data Rate (Mbps)	
802.11b	1 to 11	1, 11	CCK	DBPSK	Anbotan	
802.11g	1 to 11	AT1, 11, 11	OFDM	BPSK	6.0	
802.11n HT20	1 to 11	1, 11	OFDM	BPSK	6.5	

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
	802.11b	otek 1 to 11 hoote	1, 6, 11	CCK	DBPSK	otek 1.0 Anbote
3	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
5	802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

1.5. List of channels

V	Channel	Freq.	Channel	Freq.	Channel	Freq.	Channel	Freq.
0		(MHz)		(MHz)		(MHz)		(MHz)
00	01 And	2412	04	2427	07 no	2442	10	2457
	02	2417	05	2432	08	2447	pote 11 Ar	2462
P.	03	2422	06	2437	09	2452		Anbo

1.6. Description Of Test Setup

CE

RF

1.7. Test Equipment List

-VO.	D.I.	184	P	210	V 10 2
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 19, 2018	1 Year
Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 19, 2018	1 Year
Horn Antenna	A-INFO	LB-180400-KF	J211060628	Nov. 20, 2018	1 Year
Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
EMI Test Software EZ-EMC	SHURPLE	N/A Mood	N/A	N/A	N/A
RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year
	L.I.S.N. Artificial Mains Network EMI Test Receiver RF Switching Unit Spectrum Analysis MAX Spectrum Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Loop Antenna Horn Antenna Pre-amplifier EMI Test Software EZ-EMC RF Test Control System Power Sensor MXA Spectrum Analysis MXG RF Vector Signal Generator Signal Generator DC Power Supply Constant Temperature	L.I.S.N. Artificial Mains Network EMI Test Receiver RF Switching Unit Spectrum Analysis MAX Spectrum Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Loop Antenna Loop Antenna Horn Antenna CEALEMC RF Test Control System Power Sensor Power Sensor MXA Spectrum Analysis Agilent Asilent SKET Electronic Instruments corporation Schwarzbeck Schwarzbeck Schwarzbeck Horn Antenna A-INFO Pre-amplifier SONOMA EMI Test Software EZ-EMC RF Test Control System Agilent Analysis MXG RF Vector Signal Generator Signal Generator Signal Generator Agilent Constant Temperature ZHONGIJAN	L.I.S.N. Artificial Mains Network EMI Test Receiver Rohde & Schwarz RF Switching Unit Spectrum Analysis Agilent Analysis Preamplifier Double Ridged Horn Antenna Bilog Broadband Antenna Corporation Corporation Schwarzbeck FMZB1519B Horn Antenna A-INFO LB-180400-KF Pre-amplifier SONOMA SHURPLE N/A EMI Test Software EZ-EMC RF Test Control System Power Sensor DAER RPR3006W MXA Spectrum Analysis Agilent N9020A MXA Spectrum Analysis MXG RF Vector Signal Generator Signal Generator Signal Generator Agilent DC Power Supply IVYTECH IV3605 TLKHWS80B	L.I.S.N.	L.I.S.N. Artificial Mains Network Rohde & Schwarz ENV216 100055 Nov. 05, 2018

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Test Item	Result
Antenna Requirement	PASS
Conducted Emission	PASS
Spurious Emission	PASS
Conducted Peak Output Power	PASS
6dB Occupied Bandwidth	PASS
Power Spectral Density	PASS
Band Edge	PASS
	Antenna Requirement Conducted Emission Spurious Emission Conducted Peak Output Power 6dB Occupied Bandwidth Power Spectral Density

3. Conducted Emission Test

3.1. Test Standard and Limit

	Γ	Maximum RF	Line Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
est Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	Manager 60 Manager	50

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX Mode(802.11 b)
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 24.4°C Hum.: 50%

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Keeping TX Mode(802.11 b)
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 24.4°C Hum.: 50%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.2	209 and 15.205	Am	Anbotek A	"upo stek
à	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	abotek - Anbo	o Pun	300
2	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	pote Am	30
S.	1.705MHz-30MHz	30	Anbatek	Anbore P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3,010
	216MHz~960MHz	200	46.0	Quasi-peak	3 botek
V	960MHz~1000MHz	500	54.0	Quasi-peak	3 ando
<u>-</u>	Above 1000MHz	500	54.0	Average	3
	Above 1000MHZ	botek - Anbot	74.0	Peak	Amba 3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for

maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

All the modes have been tested, only the worst mode(802.11 b low channel) was recorded in the report.

adapter

Code: AB-RF-05-a

Test Results (30~1000MHz)

Job No.: SZAWW181107007-01 Temp.(°C)/Hum.(%RH): 24.1°C/50%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for

Test Mode: CH01 Polarization: Horizontal

adapter

Code: AB-RF-05-a

Test Results (30~1000MHz)

Job No.: SZAWW181107007-01 Temp.(°C)/Hum.(%RH): 24.1°C/50%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for

Test Mode: CH01 Polarization: Vertical

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e		Test	channel: Low	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4824.00	39.68	34.13	6.61	34.09	46.33	74.00	-27.67	poter V
7236.00	33.83	37.14	7.74	34.51	44.20	74.00	-29.80	AupV
9648.00	32.44	39.35	9.26	34.80	46.25	74.00	-27.75	V
12060.00	otek * Anb	otek A	upor b	hotek	Anbotek	74.00	Anbotek	V
14472.00	notek*	nbotek	Aupore	Anapotek	Anbotek	74.00	k Anbot	V V
16884.00	**	Anbotek	Anboto	, who!	sk Aupor	74.00	otek an	ootek V
4824.00	38.44	34.13	6.61	34.09	45.09	74.00	-28.91	Hdna
7236.00	33.63	37.14	7.74	34.51	44.00	74.00	-30.00	H _A
9648.00	32.03	39.35	9.26	34.80	45.84	74.00	-28.16	Н
12060.00	ctek *	obotek	Anboto	Ann	Anbotek	74.00	k not	Н
14472.00	***	Anbotek	Anbote	Ann	K Anbore	74.00	tek eu	o ^{tek} H
16884.00	Amb * tek	Anbotek	Anbore	rok bu	lotek Ant	74.00	otek A.	Hodna
205	200		A	verage Valu	e		20	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4824.00	29.20	34.13	6.61	34.09	35.85	54.00	-18.15	ote V
7236.00	22.97	37.14	7.74	34.51	33.34	54.00	-20.66	V
9648.00	22.98	39.35	9.26	34.80	36.79	54.00	-17.21	V
12060.00	*"	ek bu	otek Ar	porer 1	indo otek	54.00	Anbote	V
14472.00	* 4000	otek po	nbotek	Aupoter	Ann	54.00	Aupor	V
16884.00	poter * Ar	potek	Anbotek	Anbote	k hotel	54.00	Anbot	V
4824.00	28.35	34.13	6.61	34.09	35.00	54.00	-19.00	Н
7236.00	22.45	37.14	7.74	34.51	32.82	54.00	-21.18	H
9648.00	21.96	39.35	9.26	34.80	35.77	54.00	-18.23	Апро Н
12060.00	* Anbo	*ek bu	abotek	Anbotek	Anbo	54.00	Anboten	H
14472.00	ootek * An	Dor.	nbotek	Anbotek	Ando	54.00	Anbote	H Yes
16884.00	Anbote*	Anbors	A. botek	Anbote	Mila	54.00	ISK AUD	Н

Test Results (Above 1000MHz)

Test Mode:	802.11b Mod	e		Test	channel: Mido	lle		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4874.00	38.84	34.35	6.67	34.09	45.77	74.00	-28.23	bote _K
7311.00	33.97	37.21	7.77	34.53	44.42	74.00	-29.58	AnbV
9748.00	33.50	39.45	9.33	34.80	47.48	74.00	-26.52	V
12185.00	tek *	otek A	upole. b	Upofek Vipofek	Anbotek	74.00	An abotek	V
14622.00	otek*	nbotek	Anbore	Ann	Anbotek	74.00	- nbot	[⊗] V
17059.00	*	Anbotek	Aupore.	An	ek Anbot	74.00	Yek Po	ooteV
4874.00	39.40	34.35	6.67	34.09	46.33	74.00	-27.67	Hdna
7311.00	32.65	37.21	7.77	34.53	43.10	74.00	-30.90	Н
9748.00	33.41	39.45	9.33	34.80	47.39	74.00	-26.61	Н
12185.00	*	botek	Anbotek	Anbo	Anbotek	74.00	And Post	₩ Н
14622.00	*	nbotek	Anbotek	Vupo 24	K Anbote	74.00	Par N	o ^{tel} H
17059.00	*	abotek.	Anbote	K VUE	otek Ant	74.00	rek ku	"boH
	, , o	DS.	A	verage Valu	e	V	- 0/-	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4874.00	29.73	34.35	6.67	34.09	36.66	54.00	-17.34	, tek V
7311.00	22.29	37.21	7.77	34.53	32.74	54.00 m	-21.26	V
9748.00	22.76	39.45	9.33	34.80	36.74	54.00	-17.26	V
12185.00	*	ek bun	ootek Ar	botek	inpo tek	54.00	Anbotek	V
14622.00	* Anbo	*ek Vu	nbotek	Anbotek	Anboatek	54.00	Anboten	V
17059.00	potek * An	por otek	nbotek	Anbotek	Anbu	54.00	Anbote	V
4874.00	29.54	34.35	6.67	34.09	36.47	54.00	-17.53	H
7311.00	21.74	37.21	7.77	34.53	32.19	54.00	-21.81	H
9748.00	23.13	39.45	9.33	34.80	37.11	54.00	-16.89	Anbo H
12185.00	* Anbot	ek Mul	notek h	Anbotek	Anbore	54.00	Anbotek	Ĥ
14622.00	otek * An	pote.	hotek	Anbotek	Anboro	54.00	Anbote	Н
17059.00	nbotek	Vupote,	And otek	Anbotel	AUDOL	54.00	ek Anb	Н

Test Results (Above 1000MHz)

Test Mode:	802.11b Mode	е		Test	channel: High	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	44.00	34.57	6.74	34.09	51.22	74.00	-22.78	boteV
7386.00	34.41	37.29	7.80	34.55	44.95	74.00	-29.05	$^{up}V^{ek}$
9848.00	36.63	39.55	9.41	34.81	50.78	74.00	-23.22	Vool
12310.00	*****	otek A	nbotek P	'upor	Ar. abotek	74.00	Aupo	V
14772.00	*	notek	Anbotek	Vupor 10k	An abotek	74.00	Anbo	ev V
17234.00	abote * P	no work	Anbotek	Anboto	ek abot	74.00	Anbo	V
4924.00	43.44	34.57	6.74	34.09	50.66	74.00	-23.34	Hy
7386.00	33.38	37.29	7.80	34.55	43.92	74.00	-30.08	Anbou
9848.00	32.83	39.55	9.41	34.81	46.98	74.00	-27.02	H
12310.00	lek * Anbe	Ye. V.	P. Crek	Anbotek	Aupore	74.00	Anbotek	$\mathbf{H}_{\mathbf{Y}_{U_k}}$
14772.00	note ^N *	hboter	Anbo	nbotek	Anbole	74.00	Anboth	Н
17234.00	*	Anbotek	Anbe	nbol	ek Aupoli	74.00	tek an	o ^{tek} H
200	- 20	· \	A	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	34.98	34.57	6.74	34.09	42.20	54.00	-11.80	V
7386.00	24.34	37.29	7.80	34.55	34.88	54.00	-19.12	, eVV
9848.00	25.15	39.55	9.41	34.81	39.30	54.00	-14.70	V
12310.00	Anl*	Aupa	ek nbo	rek Wul	Oce Vin	54.00	botek	V tel
14772.00	*hboter	Aupa	otek or	botek	Yuporg b	54.00	Anbotek	V
17234.00	ek * Anbo	Ve. Vu	Nek .	Anbotek	Aupor	54.00	Anbotek	V
4924.00	33.85	34.57	6.74	34.09	41.07	54.00	-12.93	НР
7386.00	22.78	37.29	7.80	34.55	33.32	54.00	-20.68	o ^{tek} H
9848.00	22.10	39.55	9.41	34.81	36.25	54.00	-17.75	Hodn.
12310.00	*	Anbot	ek Vupo,	rek bu	abotek A	54.00	-otek	An Hree
14772.00	*	ek Anl	cotek bu	portek	abotek	54.00	Anbo	Habo
17234.00	*	otek	unbotek	Aupon	notek.	54.00	And	Н

Remark:

- 1. During the test, pre-scan the 802.11b, g, n(HT20N) mode, and found the 802.11b mode is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Radiated Band Edge:

Test Mode:	802.11b Mod	e		Test	channel: Low	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	52.01	29.15	3.41	34.01	50.56	74.00	-23.44	boteH
2400.00	61.15	29.16	3.43	34.01	59.73	74.00	-14.27	AnbHek
2390.00	53.72	29.15	3.41	34.01	52.27	74.00	-21.73	Voote
2400.00	63.04	29.16	3.43	34.01	61.62	74.00	-12.38	$V_{\mathbb{A}^{n^k}}$
	153		A	verage Valu	e		233	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.67	29.15	3.41	34.01	37.22	54.00	-16.78	Hote
2400.00	47.00	29.16	3.43	34.01	45.58	54.00	-8.42	H
2390.00	40.52	29.15	3.41	34.01	39.07	54.00	-14.93	V V
2400.00	48.15	29.16	3.43	34.01	46.73	54.00	-7.27	oteWV

Test Mode:	802.11b Mod	e		Test	channel: High	nest		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	52.82	29.28	3.53	34.03	51.60	74.00	-22.40	$_{nb}\circ \mathbf{H}^{k}$
2500.00	48.53	29.30	3.56	34.03	47.36	74.00	-26.64	ATHO!®
2483.50	55.16	29.28	3.53	34.03	53.94	74.00	-20.06	Vab
2500.00	51.11	29.30	3.56	34.03	49.94	74.00	-24.06	· V
			A	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	39.09	29.28	3.53	34.03	37.87	54.00	-16.13	H
2500.00	35.12	29.30	3.56	34.03	33.95	54.00	-20.05	Н
2483.50	41.07	29.28	3.53	34.03	39.85	54.00	-14.15	vek V
2500.00	37.02	29.30	3.56	34.03	35.85	54.00	-18.15	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11g Mode	e		Test	channel: Low	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	51.14	27.53	5.47	33.92	50.22	74.00	-23.78	botek H
2400.00	59.98	27.55	5.49	29.93	63.09	74.00	-10.91	AnbHek
2390.00	52.79	27.53	5.47	33.92	51.87	74.00	-22.13	Vool
2400.00	61.64	27.55	5.49	29.93	64.75	74.00	-9.25	V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.05	27.53	5.47	33.92	37.13	54.00	-16.87	Hote
2400.00	46.29	27.55	5.49	29.93	49.40	54.00	-4.60	H
2390.00	39.83	27.53	5.47	33.92	38.91	54.00	-15.09	v V
2400.00	47.37	27.55	5.49	29.93	50.48	54.00	-3.52	V

				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	51.58	29.28	3.53	34.03	50.36	74.00	-23.64	nbo'H'
2500.00	47.57	29.30	3.56	34.03	46.40	74.00	-27.60	Hotel
2483.50	53.73	29.28	3.53	34.03	52.51	74.00	-21.49	V
2500.00	49.98	29.30	3.56	34.03	48.81	74.00	-25.19	« V
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.34	29.28	3.53	34.03	37.12	54.00	-16.88	Anb.
2500.00	34.54	29.30	3.56	34.03	33.37	54.00	-20.63	H
2483.50	40.24	29.28	3.53	34.03	39.02	54.00	-14.98	V
2500.00	36.40	29.30	3.56	34.03	35.23	54.00	-18.77	V

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Radiated Band Edge:

Test Mode:	802.11n20 M	ode		Test	channel: Lowe	est		
]	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	50.70	27.53	5.47	33.92	49.78	74.00	-24.22	botek H
2400.00	59.40	27.55	5.49	29.93	62.51	74.00	-11.49	AnbHek
2390.00	52.32	27.53	5.47	33.92	51.40	74.00	-22.60	Voot
2400.00	60.94	27.55	5.49	29.93	64.05	74.00	-9.95	Van
			A	verage Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	37.74	27.53	5.47	33.92	36.82	54.00	-17.18	Hote
2400.00	45.93	27.55	5.49	29.93	49.04	54.00	-4.96	H
2390.00	39.48	27.53	5.47	33.92	38.56	54.00	-15.44	» V
2400.00	46.98	27.55	5.49	29.93	50.09	54.00	-3.91	oke V

Test Mode: 8	302.11n20 Mod	de		Test	Test channel: Highest				
				Peak Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	50.95	29.28	3.53	34.03	49.73	74.00	-24.27	nboH ^k	
2500.00	47.08	29.30	3.56	34.03	45.91	74.00	-28.09	Hote	
2483.50	53.02	29.28	3.53	34.03	51.80	74.00	-22.20	V	
2500.00	49.42	29.30	3.56	34.03	48.25	74.00	-25.75	6 V	
			A	verage Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	
2483.50	37.96	29.28	3.53	34.03	36.74	54.00	-17.26	Anti-	
2500.00	34.24	29.30	3.56	34.03	33.07	54.00	-20.93	H	
2483.50	39.82	29.28	3.53	34.03	38.60	54.00	-15.40	V	
2500.00	36.08	29.30	3.56	34.03	34.91	54.00	-19.09	V	

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	247 (b)(3)	Ann	Anbotek	Anbor	VI.
Test Limit	30dBm	Anbotek .	Anbolo	Ann	Anbotek	Anbor	k- b

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Test Item :	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage :	AC 120V, 60Hz for adapter	Temperature :	23.6℃
Test Result :	PASS	Humidity :	53%RH

Test Channel	Frequency (MHz)			Results
otek Anbo	ek abotek	TX 802.11b Mode	Anbo	Ar hotek
CH01	2412	14.63	30	PASS
CH06	2437	15.05	30	PASS
CH11	2462	14.66	30	PASS
anbotek	Anbos Lak All	TX 802.11g Mode	anbotek Ant	ore Vin
CH01	2412	13.53	30	PASS
CH06	2437	14.52	30	PASS
CH11	2462	13.67	30	PASS
Anboatek	Anbotek Anbote	TX 802.11n(20) Mode	bo tek abote	Anbote
CH01	2412	13.01	30	PASS
CH06	2437	13.37	30	PASS
CH11	2462	13.22	30	PASS

Note: For power test the duty cycle is 100% in continuous transmitting mode. Please see the plot of next page

Duty Cycle

802.11b mode

802.11g mode

802.11n(HT20) mode

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15	C Section 15.2	247 (a)(2)	Ann	Anbotek	Anbo	b.
Test Limit	>500kHz	Anbotek	Anbote	An	Anbotek	Anbo	k br

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW= 100kHz, VBW\ge23*RBW =300kHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item	:	6dB Bandwidth	Test Mode :	CH Low ~ CH High
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature :	23.6℃
Test Result	:	PASS	Humidity :	53%RH

Mode Channel		Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Anboten Ar	Low	2412	9.588	Anbotek Anbo	PASS
802.11b	Middle	2437	9.574	>500	PASS
n. nbotek	High	2462	10.040	Al. botek	PASS
ek botek	Low	2412	15.30	k hotek	PASS
802.11g	Middle	2437	15.15	>500	PASS
pote. And	High	2462	15.17	oten Anbo	PASS
Anboter An	Low	2412	16.07	Anborek Anbo	PASS
802.11n20	Middle	2437	15.67	>500	PASS
anbotek	High	2462	15.11	n potek	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test	Standard	FCC Part15 C	Section 15.2	247 (e)	Anshotek	Anbotek	Anbo	la.
Test	Limit	8dBm/3KHz	Anbotek	Anboto	All	Anbotek	Anbo	

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low \sim CH High Test Voltage : AC 120V, 60Hz for adapter Temperature : 23.6 $^{\circ}$ C Test Result : PASS Humidity : 53%RH

Mode	Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
lek Anbore	Low	2412	-12.635	8.00	PASS
802.11b	Middle	2437	-11.784	8.00	PASS
Anbotek A	High	2462	-11.505	8.00	PASS
Anbotek	Low	2412	-17.445	8.00	PASS
802.11g	Middle	2437	-16.801	8.00	PASS
tek Anbotek	High	2462	-12.112	8.00	PASS
botek Anbo	Low	2412	-19.422	8.00	PASS
802.11n20	Middle	2437	-18.861	8.00	PASS
Anbotek	High	2462	-18.501	8.00	PASS

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
 - 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item : Band edge : CH Low ~ CH High Test Voltage : AC 120V, 60Hz for adapter Temperature : 23.6°C Test Result : PASS Humidity : 53%RH

Mode	Frequency Band (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Results
802.11b	2412	55.577	>20	PASS
	2462	57.477	>20	PASS
802.11g	2412	48.188	>20	PASS
	2462	52.456	>20	PASS
802.11n20	2412	45.857	>20	PASS
	2462	44.967	>20	PASS

802.11b mode: Lowest

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Highest

Conducted Emission Method

802.11b mode: Lowest

802.11b mode: Middle

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Middle

802.11g mode: Highest

802.11n20 mode: Lowest

802.11n20 mode: Middle

802.11n20 mode: Highest

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)			
	1) 15.203 requirement:			
	An intentional radiator shall be designed to ensure that no antenna other than that furnished			
	by the responsible party shall be used with the device. The use of a permanently			
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but			
Requirement	the use of a standard antenna jack or electrical connector is prohibited.			
	2) 15.247(c) (1)(i) requirement:			
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.			
	Point-to-point operations may employ transmitting antennas with directional gain greater			
	than 6dBi provided the maximum conducted output power of the intentional radiator is			
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.			

9.2. Antenna Connected Construction

The antenna is a FPCB Antenna which permanently attached, and the best case gain of the antenna is 1 dBi It complies with the standard requirement.

Code: AB-RF-05-a

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Code: AB-RF-05-a

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -----