MATH 7752 - HOMEWORK 9 DUE FRIDAY 04/08/22

Reminder: A field F of characteriste p > 0 is perfect if the Frobenius map $\varphi : x \mapsto x^p$ is surjective.

- (1) Let K/L/F be a tower of algebraic extensions. Show that K/F is separable if and only if K/L and L/F are separable.
- (2) Let K/F be a finite separable extension. Show that there is a finite number of fields L such that $F \subseteq L \subseteq K$.
- (3) Let F be a field of char(F) = p > 0. Show that F admits a finite inseparable extension K/F if and only if F is not perfect.
- (4) Let F be a field of characteristic p > 0 and let K/F be an extension.
 - (a) Let $E = \{ \alpha \in K : \alpha^{p^n} \in F, \text{ for some } n \geq 1 \}$. Prove that E is a subfield of K.
 - (b) Show that every F-automorphism of K is automatically an E-automorphism.
- (5) Let F be a field of characteristic p > 0 and let K/F be a finite extension.
 - (i) Let $\alpha \in K$. Show that either $\alpha^{p^n} \in F$ for some $n \geq 1$, or there exists some $m \geq 1$ such that $\alpha^{p^m} \notin F$ and the element α^{p^m} is separable over F.
 - (ii) Suppose that no element of $K \setminus F$ is separable over F. (Such extensions are called *purely inseparable*). Deduce that for every $\alpha \in K$ there exists some $n \geq 1$ (depending on α) such that $\alpha^{p^n} \in F$.
- (6) The purpose of this problem is to show that the primitive element theorem is not true for inseparable extensions. Let p be a prime number. Let t be a transcendental element over \mathbb{F}_p and let $F = \mathbb{F}_p(t)$. Let s be a transcendental element over F and let K = F(s). Consider the polynomial $f(x) = (x^p t)(x^p s) \in K[x]$ and let L be its splitting field.
 - (a) Prove that $[L:K]=p^2$.
 - (b) Show that for every $\gamma \in L$, it follows that $\gamma^p \in K$.
 - (c) Show that the extension L/K is not simple.