1. Consider a magnetic circuit shown in the following picture.

The current I is 10A, the coil has 2000 turns, all branches have the same cross-sectional area of 2cm^2 and the core is iron μ_r of which is 1500. Find the reluctance \mathcal{R} , the magnetomotive force \mathcal{F} and the magnetic flux Ψ , firstly for the core and then again for the air gap.

2. In a cube of size a, assuming k_0 constant, suppose we know the following holds.

$$\mathbf{M} = \frac{k_0}{a}(-y\mathbf{a}_x + x\mathbf{a}_y).$$

Find the magnetisation volume current density \mathbf{J}_b .

3. Consider a material μ of which is $6.5\mu_0$. Suppose the magnetic fields is $\mathbf{H} = 10\mathbf{a}_x + 25\mathbf{a}_y - 40\mathbf{a}_z\mathbf{A} \cdot \mathbf{m}^{-1}$. Find the magnetic susceptibility χ_m of this material, the magnetic flux density \mathbf{B} , the magnetization \mathbf{M} , and the magnetic energy density w_m .