

LECTURE 2:

OPTIMIZATION IN DEEP LEARNING

University of Washington, Seattle

Fall 2025

Previously in EEP 596...

Fixed vs Learned model

Classical ML methods

Previously in EEP 596...

ANN as a model

Deep ANN as brain analogue

Previously in EEP 596...

$$Y = f(X, W)$$

Linear Regression

OUTLINE

Part 1: Binary Classification

- Binary Logistic Regression
- Linear vs Logistic regression
- Logistic regression and Neuron

Part 2: Training and Optimization of a Neuron

- Binary Cross Entropy Loss function
- Training Logistic Regression
- Gradient descent
- Back-propagation algorithm

Part 3: Stochastic Gradient Descent

- GD vs SGD
- Convergence of SGD
- Learning rate and convergence
- Comparing GD variants

Part 4: Optimization Techniques in DL

- Variable learning rate
- Advanced methods
- Cross validation
- Regularization/Normalization/Initialization
- Hyperparameter tunings

PART 1:

Binary Classification

Binary classification problem

$$y = \sigma(\overrightarrow{w}^T \overrightarrow{x} + b)$$

$$y = 0$$

$$y = 0$$

$$y = 0$$

0.4

х1

0.2

0.8

1.0

0.8

0.6

0.4 -

0.2 -

Iris Flower Data

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa
		,			,	. ,
				•		•

Features

Labels (Targets)

Sepal length (x_2)

Setosa vs Virginica

Virsicolor vs Virginica

Setosa vs Virginica

Virsicolor vs Virginica

Setosa vs Virginica

Virsicolor vs Virginica

$$p = \frac{1}{1 + e^{-z}}$$

$$0 \le p \le 1$$

$$z = \vec{\beta}^T \vec{x} + \beta_0$$

$$\vec{x} = [x_1, x_2] \qquad \vec{\beta} = [\beta_1, \beta_2]$$

Artificial Neuron as Logistic Regression Model

Artificial Neuron as Logistic Regression Model

Input

$$z = \overrightarrow{w}^T \overrightarrow{x} + b$$

 $\vec{x} \in \mathbb{R}^n$

Activation

$$\sigma = \frac{1}{1 + e^{-z}}$$

Output

$$y = \sigma(\overrightarrow{w}^T \overrightarrow{x} + b)$$

$$y = P(y = 1 | \vec{x}), 0 \le y \le 1$$

PART 2:

Training and Optimization of a Neuron

Input

 $z = \overrightarrow{w}^T \overrightarrow{x}$

Activation

$$\sigma = \frac{1}{1 + a^{-z}}$$

Output

$$y = \sigma(\overrightarrow{w}^T \overrightarrow{x} + b)$$

Input

Activation

Output

$$y = \sigma(\overrightarrow{w}^T\overrightarrow{x} + b)$$

Input

$$z = \overrightarrow{w}^T \overrightarrow{x}$$

Activation

$$\sigma = \frac{1}{1 + e^{-z}}$$

Output

$$y = \sigma(\overrightarrow{w}^T\overrightarrow{x} + b)$$

 $J \approx$ Measure of difference in distributions

$$L(\hat{y}, y) = f(x) = \begin{cases} -\log(\hat{y}), & y = 1\\ -\log(1 - \hat{y}), & y = 0 \end{cases}$$

$$L(\hat{y}, y) = f(x) = \begin{cases} -\log(\hat{y}), & y = 1\\ -\log(1 - \hat{y}), & y = 0 \end{cases}$$

$$L(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

$$L(\hat{y}, y) = f(x) = \begin{cases} -\log(\hat{y}), & y = 1\\ -\log(1 - \hat{y}), & y = 0 \end{cases}$$

$$L(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log (1 - \hat{y}))$$

Cross Entropy Loss is Convex

$$\leftrightarrow L(\hat{y}, y)'' \ge 0$$

The line segment between any two points does not lie below the graph

Logistic Regression Training

Training Set D

$$D: \{(\vec{x}^{(1)}, y^{(1)}), ., (\vec{x}^{(i)}, y^{(i)}), ., (\vec{x}^{(m)}, y^{(m)})\}$$

$$J(\{\hat{y}\}^m, \{y\}^m; \{\vec{x}\}^m) = \frac{1}{m} \sum_{i=1}^m L(\hat{y}^{(i)}, y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

Minimizing Loss using Gradient Descent

Minimizing Loss using Gradient Descent

$$y = \sigma(\vec{w}^T\vec{x} + b)$$
Learning rate
$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Iteratively adjust (\overrightarrow{w}, b) until we reach the global minimum

$$J = L(\widehat{y}, y)$$

$$J = L(\widehat{y}, y)$$

$$\widehat{y} = \sigma(z) \text{ Activation function}$$

$$J = L(\widehat{y}, y)$$

$$\widehat{y} = \sigma(z) \text{ Activation function}$$

$$z = \overrightarrow{w}^T \overrightarrow{x} + b \text{ Integrate Inputs}$$

$$J = L(\widehat{y}, y)$$

$$\widehat{y} = \sigma(z)$$

$$z = \overrightarrow{w}^T \overrightarrow{x} + b$$

$$J = L(\sigma(\overrightarrow{w}^T \overrightarrow{x} + b), y)$$

$$J = L(\widehat{y}, y)$$

$$\widehat{y} = \sigma(z)$$

$$z = \overrightarrow{w}^T \overrightarrow{x} + b$$

$$J = L(\sigma(\overrightarrow{w}^T \overrightarrow{x} + b), y)$$

$$J = L(\widehat{y}, y)$$

$$\widehat{y} = \sigma(z)$$

$$z = \overrightarrow{w}^T \overrightarrow{x} + b$$

$$D = f(g(h(x)))$$

$$\frac{dP}{dx} = \frac{df}{dg} * \frac{dg}{dh} * \frac{dh}{dx}$$

$$J = L(\sigma(\overrightarrow{w}^T \overrightarrow{x} + b), y)$$

$$J = L(\sigma(\overrightarrow{w}^T\overrightarrow{x} + b), y) \qquad P = f(g(h(x)))$$

$$\frac{dP}{dx} = \frac{df}{dg} * \frac{dg}{dh} * \frac{dh}{dx}$$

$$J = L(\sigma(\overrightarrow{w}^T \overrightarrow{x} + b), y) \qquad P = f(g(h(x)))$$

$$\frac{\partial J}{\partial \overrightarrow{w}} = \frac{\partial L}{\partial \widehat{y}} * \frac{\partial \widehat{y}}{\partial z} * \frac{\partial z}{\partial \overrightarrow{w}} \qquad \frac{dP}{dx} = \frac{df}{dg} * \frac{dg}{dh} * \frac{dh}{dx}$$

$$\frac{\partial L}{\partial \widehat{y}} * \frac{\partial \widehat{y}}{\partial z} * \nabla_{\overrightarrow{w}} z$$

$$\nabla_{\vec{w}} L(\hat{y}, y) = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \nabla_{\vec{w}} z$$

FWD
$$\begin{vmatrix} z = \\ \vec{w}^T \vec{x} + b \end{vmatrix} \longrightarrow \begin{vmatrix} \hat{y} = \sigma(z) \\ \frac{\partial \hat{y}}{\partial z}(z) \end{vmatrix} \longrightarrow \begin{vmatrix} L(\hat{y}, y) \\ \frac{\partial \hat{y}}{\partial \hat{y}}(\hat{y}, y) \end{vmatrix}$$
BWD
$$\nabla_{\vec{w}} z \longleftarrow \begin{vmatrix} \frac{\partial \hat{y}}{\partial z}(z) \\ \frac{\partial \hat{y}}{\partial z}(z) \end{vmatrix} \longleftarrow \frac{\partial L}{\partial \hat{y}}(\hat{y}, y)$$

Training Terminologies

Forward Propagation:

Computing the loss through forward pass for a single training example

Backward Propagation:

Computing gradients of parameters through backward pass for a single training example

• Batch:

Training set could be divided into **smaller sets** called batches

Iteration:

When an entire batch is passed both forward and backward

• Epoch:

When an entire dataset is passed both forward and backward through the NN once

Batch Gradient Descent

Training Set D

$$D: \{(\vec{x}^{(1)}, y^{(1)}), ., (\vec{x}^{(i)}, y^{(i)}), ., (\vec{x}^{(m)}, y^{(m)})\}$$

Cost /

$$J(\{\hat{y}\}^m, \{y\}^m; \{\vec{x}\}^m) = \frac{1}{m} \sum_{i=1}^m L(\hat{y}^{(i)}, y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)}))$$

Sum the gradients for all m-examples where m= total number of samples in training set (Single epoch)

PART 3:

Stochastic Gradient Descent (SGD)

Gradient descent (GD) vs Stochastic Gradient Descent (SGD)

Batch Gradient Descent

1 iteration: FWD pass and BWD pass on

whole training set

Stochastic Gradient Descent

1 iteration: FWD pass and BWD pass on

subset of training set

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Batch Gradient Descent

Stochastic Gradient Descent

Pros and Cons of SGD

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Pros and Cons of SGD

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Cons:
Not useful when we are already close to minimum
Hard to parallelize

On convergence of the stochastic subgradient method with on-line stepsize rules

Andrzej Ruszczyński *, Wojciech Syski

w2 w1

Pros:
Still consistently converges to minimum
May take shortcut to minimum

Cons:
Not useful when we are already close to minimum
Hard to parallelize

Effects of learning rate (α) on SGD

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Effects of learning rate (α) on SGD

$$\vec{w}_{k+1} = \vec{w}_k - \boxed{\alpha} \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \boxed{\alpha} \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Loss curve is typically noisy with SGD

Effects of learning rate on SGD

N = Total # of datapoints in training set

m = Number of mini-batches for training set

Effects of learning rate on SGD

N = Total # of datapoints in training set

m = Number of mini-batches for training set

Effects of learning rate on SGD

	SGD	Mini-batch GD	Batch GD
Data batch size iteration	e per 1	N/m	n
	(-) Can loose speedup from oscillations	(+) The whole mini- batch is evaluated in	(+) Consistent convergence
	(-) hard to parallelize	parallel	(+) Maximum parallelization
		(+) Mostly consistent convergence	(-) Too long per iteration
			(-) Hardware memory limit (RAM, VRAM)

N = Total # of datapoints in training set

m = Number of mini-batches for training set

PART 4:

Optimization Techniques in Deep Learning

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b)$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k)$$

$$\alpha = f(hp_1, hp_2, \dots)$$

Variable Learning Rates

$$\vec{w}_{k+1} = \vec{w}_k - \alpha \nabla_{\vec{w}} J(\vec{w}_k; b) \qquad \alpha = \frac{1}{1 + decr \cdot epnum} \alpha_0$$

$$b_{k+1} = b_k - \alpha \frac{\partial}{\partial b} J(\vec{w}; b_k) \qquad \alpha = d^{epnum} \cdot \alpha_0$$

$$\alpha$$
= $f(hp_1, hp_2, ...)$
$$\alpha = \frac{d}{\sqrt{epnum}} \cdot \alpha_0$$

Momentum

"Accelerate" gradients vectors in the right directions, to lead to faster converging.

AdaGrad

Adagrad uses a different learning rate for every parameter w_j at every step k. It eliminates the need to manually tune the learning rate.

RMSProp

"Extended" and weighted version of AdaGrad via moving average of squared gradients

AdaM

Adaptive learning rate + Momentum

SGD

Fixed α

First pass

RSMProp & AdaDelta adaptive

Adam adaptive + momentum

Worth a try if SGD fails to converge

Standard optimizer in DL community

Optimizers

Optimizers

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

Everything else that contributes to optimization

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

- Data splitting (Train/Val/Test)
- Regularization
- Data normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

Cross Validation in Supervised Learning

Cross Validation in Supervised Learning

Overfitting vs Underfitting

Overfitting vs Underfitting

Bad training accuracy Bad testing accuracy Good training accuracy
Good testing accuracy

Great training accuracy
Bad testing accuracy

Overfitting vs Underfitting

Underfitted

Good Fit/Robust

Overfitted

Bad training accuracy Bad testing accuracy Good training accuracy
Good testing accuracy

Great training accuracy Bad testing accuracy

High Bias

High Variance

Remedies for Overfitting/Underfitting

- More Layers/Neurons
- Longer Training
- Architecture
- Hyperparameter tunings

Remedies for Overfitting/Underfitting

More Layers/Neurons

Underfitted

- Longer Training
- Architecture
- Hyperparameter tunings

Good Fit/Robust Overfitted

- More training data
- Regularization
- Dropout
- Initialization

Architecture

Hyperparameter tunings

Remedies for Overfitting/Underfitting

Dropout

Initialization

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

L1, L2 Regularizations

L1 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$

L2 Regularization

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$$

Penalizes sum of absolute values of weights

Results in a sparse model

Not suitable for learning complex patterns

Robust to outliers

Penalizes sum of squared values of weights

Results in a dense model

Learns complex patterns

Sensitive to outliers

Single-neuron Regularization

$$J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||\vec{w}||_{2}^{2}$$

Cost function

Weight regularization terms

Multi-neuron Regularization

$$J(W^{[1]}, b^{[1]}, ..., W^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||W^{[l]}||_F^2$$

Cost function

$$||W^{[l]}||_F^2 = \sum_{i=1}^{n^{[l]}} \sum_{j=1}^{n^{[l-1]}} (w_{ij}^{[l]})^2$$

Weight regularization term over multiple layer (Frobenius norm)

Dropout Regularization

Standard Neural Network

Network with Dropout

Dropout Regularization

Standard Neural Network

Network with Dropout

Dropout forces the network to learn more robust features + different random subsets of other neurons

Dropout Regularization

Standard Neural Network

- Effectively spreading the weights
- Similar to L2 reg
- Testing with dropout $p_d=0$

Network with Dropout

- Can depend on weights (W)
- J could not be well defined in each pass

Data Augmentation

Data Augmentation

Early Stopping

Exploding/Vanishing Gradients

Very deep neural network

Exploding/Vanishing Gradients

Very deep neural network

$$\mathbf{x}$$
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_1
 \mathbf{w}_2
 \mathbf{w}_3
 \mathbf{w}_4
 \mathbf{w}_5
 \mathbf{w}_6
 \mathbf{w}_7
 \mathbf{w}_8
 \mathbf{w}_8
 \mathbf{w}_8

Exploding/Vanishing Gradients

With **activation**:

...
$$w_3\sigma_3(w_2\sigma_2(\sigma_1'(w_1x))$$

For **gradients**:

...
$$w_3 \sigma_3(w_2 \sigma_2(\sigma'_1(w_1 x))) \frac{\partial J}{\partial w_1} = \sigma'_3(z_3) w_3 \sigma'_2(z_2) w_2 \sigma'_1(z_1) x$$

Remedies for exploding/vanishing gradients: Data Normalization

Zero mean:

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$x^{(i)\mu} = x^{(i)} - \mu$$

Normalized Variances

$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} x^{(i)^2}$$

$$x^{(i)\mu,\sigma^2} = x^{(i)\mu}./\sigma^2$$

Intuition for data normalization

If **inputs have different scales**, the **cost function** will also have to include different scales → increased likelihood of instability

Remember to **normalize all sets**: training, validation, testing

Remedies for Vanishing/Exploding Gradients: Batch Normalization

Layer 1

Layer 1

Layer 1

Batch normalization

() Remedies for Vanishing/Exploding Gradients: Weight Initialization

Proper weight initialization plays essential roles in preventing exploding/vanishing gradients

() Remedies for Vanishing/Exploding Gradients: Weight Initialization

Proper weight initialization plays essential roles in preventing exploding/vanishing gradients

Faster convergence

Network Initialization

- Zero → Problematic
- Random Normal (0,1) -> Problematic
- Xavier (tanh):

$$Var(w^{[l]}): 1/n^{[l-1]}$$

$$w^{[l]} = N(0,1) \cdot \sqrt{\frac{1}{n^{[l-1]}}}$$

Network Initialization

• He (ReLU):

$$Var(w^{[l]}): 2/n^{[l-1]}$$

• Other:

$$w^{[l]} = N(0,1) \cdot \sqrt{\frac{2}{n^{[l-1]}}}$$

$$Var(w^{[l]}): rac{2}{n^{[l-1]}+n^{[l]}}$$

Hyperparameters

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer
 (SGD, Adam, RMS Prop etc)
- Number of training epochs

Hyperparameters

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer (SGD, Adam, RMS Prop etc)
- Number of training epochs

Number of layers

Hyperparameters

Number of layers

- Learning rate
- Number of layers
- Neurons in each layer
- Activation function (ReLU, Tanh, sigmoid)
- Training batch size (SGD, Mini-batch, Batch Gradient)
- Optimizer (SGD, Adam, RMS Prop etc)
- Number of training epochs

Summary

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

- Data splitting (Train/Val/Test)
- Regularization
- Data normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

Next episode in EEP 596

Convolution Layers + Pooling Layers (Image feature extraction)

Fully connected layers (Classifier)