The χ^2 test

Arnaud Legrand and Jean-Marc Vincent

Scientific Methodology and Performance Evaluation MOSIG Grenoble, October 2017

Definition

Origin:

- Measurement errors are typically distributed with a normal distribution.
- The larger the error, the higher the risk. Let's consider the square of errors and sum them over *k* measurements.

Let's consider k independant variables $X_1, \ldots, X_k \sim \mathcal{N}(0,1)$. Then:

$$Q = \sum_{i=1}^k X_i^2$$

is distributed according to the χ^2 distribution with k degrees of freedom ($Q\sim\chi_k^2$).

The χ^2 distribution has one parameter: $k \in \mathbb{N}^*$ that specifies the number of degrees of freedom.

Sample Histograms

Probability distribution

• Density function: $\frac{1}{2^{k/2}\Gamma(k/2)} \times^{\frac{k}{2}-1} e^{-\frac{x}{2}}$

 As k increases, the distribution gets more and more flat and moves to the right.

Main Characteristics

- Mode at k-2 for $k \ge 2$
- E(Q) = k
- Var(Q) = 2k

Outline

- **1** The χ^2 distribution
- Applications to statistical hypothesis test Biased Coin

Adequation Independence Limitations

 $\textbf{ Other application of the } \chi^2 \ \text{distribution} \\ \text{Student's law}$

A biased coin

Let's assume we are given a series of n coin toss. How could we check whether the coin is biased or not ?

A biased coin

Let's assume we are given a series of n coin toss. How could we check whether the coin is biased or not ?

The sample frequency of "Head" should be close to p when n is large.

•
$$H/n \sim \mathcal{N}\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

A biased coin

Let's assume we are given a series of n coin toss. How could we check whether the coin is biased or not ?

The sample frequency of "Head" should be close to p when n is large.

•
$$H/n \sim \mathcal{N}\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

•
$$\left[\mathcal{H}_0: p=1/2\right]$$
 then $P\left(\left|\frac{H}{n}-1/2\right| \leq \frac{1}{\sqrt{n}}\right) = 95\%$.

```
\rightsquigarrow Reject if \notin [0.4, 0.6]
```

```
1 set.seed(44); N = 100;
2 X=sample(x=c(0,1), size = N, prob=c(0.45,0.55), replace=T)
3 X
```

 $4 \quad sum(X==1)/N$

4 [1] 0.67

A biased coin again

```
1 set.seed(41); N = 100;
2 X=sample(x=c(0,1), size = N, prob=c(0.45,0.55), replace=T)
3 sum(X==1)/N
```

1 [1] 0.51

If $p \approx 1/2$ there is a good chance we do not detect the bias (Type II error).

A biased coin again

```
1 set.seed(41); N = 100;
_2 X=sample(x=c(0,1), size = N, prob=c(0.45,0.55), replace=T)
3 \text{ sum}(X==1)/N
1 [1] 0.51
  If p \approx 1/2 there is a good chance we do not detect the bias (Type II error).
1 \text{ set.seed}(44); N = 100;
_2 X=sample(x=c(0,1), size = N, prob=c(0.5,0.5), replace=T)
3 \text{ sum}(X==1)/N
1 [1] 0.61
```

We may also incorrectly reject the \mathcal{H}_0 (Type I error).

Trying to reject \mathcal{H}_0

	\mathcal{H}_0	\mathcal{H}_0	
	True	False	
Reject	Type I error	Correct	
	(False positive)	(True positive)	
Fail to reject	Correct	Type II error	
	(True negative)	(False negative)	

- We only know the rejection probability when \mathcal{H}_0 holds True.
- Whenever \mathcal{H}_0 is False, the distribution of H depends on $p \neq 1/2$, which is unknown!

How to extend the idea to a dice?

How to extend the idea to a dice?

We could estimate p_1, p_2, p_3, p_4, p_5 , and p_6

How to extend the idea to a dice?

We could estimate p_1, p_2, p_3, p_4, p_5 , and p_6

- Wait! Did we estimate the frequency of tails earlier ? p_6 is probably not needed.
- Our estimates are all correlated with each others! How do we combine these estimations into a single test?

Outline

- **1** The χ^2 distribution
- 2 Applications to statistical hypothesis test

Biased Coin

Adequation

Independence

 $\textbf{ Other application of the } \chi^2 \ \text{distribution} \\ \text{Student's law}$

- Suppose we have n independant random observations (X_j) classified into k classes with respective number of observations N_1, N_2, \ldots, N_k .
- Let's assume we know the theoretical probabilities and want to test the corresponding hypothesis

$$\mathcal{H}_0: \forall j, \mathsf{P}(X_j=1) = p_1, \ldots, \text{ and } \mathsf{P}(X_j=k) = p_k$$

- Suppose we have n independant random observations (X_j) classified into k classes with respective number of observations N_1, N_2, \ldots, N_k .
- Let's assume we know the theoretical probabilities and want to test the corresponding hypothesis

$$\mathcal{H}_0: \forall j, \mathsf{P}(X_j=1) = p_1, \ldots, \text{ and } \mathsf{P}(X_j=k) = p_k$$

- We have $\frac{N_i}{n} \approx p_i$. For large n, $\frac{N_i}{n} p_i$ follows a normal distribution (CLT) centered on 0 and with a variance of $p_i(1-p_i)/n$.
- Let' build on this idea:
 - $Var(N_i np_i) = np_i(1 p_i)$. Hence,
 - $Var((N_i np_i)^2) = n^2p_i^2(1 p_i)^2$.
 - Therefore $\frac{(N_i-np_i)^2}{np_i}\sim \left(\mathcal{N}(0,(1-p_i))\right)^2.$

- Suppose we have n independant random observations (X_j) classified into k classes with respective number of observations N_1, N_2, \ldots, N_k .
- Let's assume we know the theoretical probabilities and want to test the corresponding hypothesis

$$\mathcal{H}_0: \forall j, \mathsf{P}(X_j=1) = p_1, \ldots, \text{ and } \mathsf{P}(X_j=k) = p_k$$

- We have $\frac{N_i}{n} \approx p_i$. For large n, $\frac{N_i}{n} p_i$ follows a normal distribution (CLT) centered on 0 and with a variance of $p_i(1-p_i)/n$.
- Let' build on this idea:
 - $Var(N_i np_i) = np_i(1 p_i)$. Hence,
 - $Var\left((N_i np_i)^2\right) = n^2p_i^2(1 p_i)^2$.
 - Therefore $\frac{(N_i-np_i)^2}{np_i}\sim \left(\mathcal{N}(0,(1-p_i))\right)^2.$
- $T = \sum_{i=1}^k \frac{(N_i np_i)^2}{np_i} \sim \chi_k^2$

- Suppose we have n independant random observations (X_j) classified into k classes with respective number of observations N_1, N_2, \ldots, N_k .
- Let's assume we know the theoretical probabilities and want to test the corresponding hypothesis

$$\mathcal{H}_0: \forall j, \mathsf{P}(X_j=1) = p_1, \ldots, \text{ and } \mathsf{P}(X_j=k) = p_k$$

- We have $\frac{N_i}{n} \approx p_i$. For large n, $\frac{N_i}{n} p_i$ follows a normal distribution (CLT) centered on 0 and with a variance of $p_i(1-p_i)/n$.
- Let' build on this idea:
 - $Var(N_i np_i) = np_i(1 p_i)$. Hence,
 - $Var\left((N_i np_i)^2\right) = n^2 p_i^2 (1 p_i)^2$.
 - Therefore $\frac{(N_i-np_i)^2}{np_i}\sim \left(\mathcal{N}(0,(1-p_i))\right)^2$.
- $T = \sum_{i=1}^{k} \frac{(N_i np_i)^2}{np_i} \sim \chi_{k-1}^2$ (the last *correlated* term compensates for the others)

The χ^2 test

- Assume we know the theoretical frequencies p_i
- Count the number of occurences of each category
- Compute $T = \sum_{i=1}^k \frac{(N_i np_i)^2}{np_i}$
- If all the $X_j \sim p$, then $T \sim \chi_k^2$ and P(T < v) = 95%, with v = qchisq(p=.95,df=k)

```
1 qchisq(p=.95,df=1)
2 qchisq(p=.95,df=3)
3 qchisq(p=.95,df=5)
```

```
1 [1] 3.841459
2 [1] 7.814728
3 [1] 11.0705
```

For an unbiased dice, it is "unlikely" that T>11.07. If so reject the \mathcal{H}_0 : unbiased hypothesis.

A biased dice

```
set.seed(44); N = 100;
X=sample(x=1:6, size = N, prob=c(.16,.16,.16,.16,.16,.2), replace=T
chisq.test(table(X),p=rep(1/6,times=6))

Chi-squared test for given probabilities

data: table(X)
X-squared = 10.64, df = 5, p-value = 0.059
```


You cannot reject the hypothesis. And given the samples and your prior knowledge on the $\overline{\mathcal{H}_0}$, it's probably a good thing. \$

A biased dice

```
set.seed(44); N = 2500;
X=sample(x=1:6, size = N, prob=c(.16,.16,.16,.16,.16,.2), replace=T
chisq.test(table(X),p=rep(1/6,times=6))

Chi-squared test for given probabilities

data: table(X)
X-squared = 26.864, df = 5, p-value = 6.063e-05
```


26.8! The probability to get such a high value (or higher) is 0.00006. I believe this dice is biased.

Testing through Goodness of Fit

Testing value T:

- What happens when \mathcal{H}_0 holds true? $T \sim \chi^2_{k-1}$
- What happens when \mathcal{H}_0 is false (e.g., $\pi_I \neq p_I$)?

$$\mathsf{E}(T) = \sum_{i=1}^k \mathsf{E}\left(\frac{(N_i - np_i)^2}{np_i}\right) \ge \mathsf{E}\left(\frac{(N_i - np_i)^2}{np_i}\right)$$

- We have $\mathsf{E}(N_I) = n\pi_I$ and $Var(N_I) = n\pi_I(1-\pi_I)$
- $E\left((N_l np_l)^2\right) = Var(N_l np_l) + E(N_l np_l)^2$

$$= n\pi_{I}(1-\pi_{I}) + (n(\pi_{I}-p_{I}))^{2}$$

• Therefore $E(T) \ge n^2 \frac{(\pi_I - p_I)^2}{p_I}$

Outline

- **1** The χ^2 distribution
- 2 Applications to statistical hypothesis test

Biased Coin

Adequation

Independence

Limitations

 $\textbf{ Other application of the } \chi^2 \ \text{distribution} \\ \text{Student's law}$

Setup

We measure $X_j \in \{A, B, C, D\}$ and $Y_j \in \{W, B, N\}$ and would like to know whether they are independent (\mathcal{H}_0) or not.

	Α	В	C	D	total
White collar	90	60	104	95	349
Blue collar	30	50	51	20	151
No collar	30	40	45	35	150
Total	150	150	200	150	650

Problem:

- We do not know the p, (i.e., $P(Y_j = W)$, ...) If we assume independance, let's use the sample frequency instead.
- Many of the cells are correlated.

 $N_{A,W} = 90$ but it "should have been" $E_{A,W} = 150 \times \frac{349}{650} \approx 80.53$.

Therefore
$$T = \sum_{c \in \{A,B,C,D\} \times \{W,B,N\}} \frac{(N_c - E_c)^2}{E_c} \sim \chi_6^2$$

χ^2 Independance Test

```
workers
chisq.test(workers)
2 White collar 90 60 104 95
3 Blue collar 30 50 51 20
4 No collar 30 40 45 35
         Pearson's Chi-squared test
      workers
8 data:
_{9} X-squared = 24.571, df = 6, p-value = 0.0004098
```

The probability of getting such a high value (or higher) for T is 0.0004098. This is unlikely, hence I decide to reject the independance hypothesis.

Outline

- **1** The χ^2 distribution
- 2 Applications to statistical hypothesis test

Biased Coin

Adequation

Independence

Limitations

 $\textbf{ Other application of the } \chi^2 \ \text{distribution} \\ \text{Student's law}$

Limitation

- Random samples. . .
- Enough samples for the CLT to hold
 - More than 50 in total and more than 5 in each category ?
- Enough samples to discriminate from a close alternative
- Discrete values and not too many categories (remember how χ^2_k flattens with k)
- The probabilities (p_i) should be as close as possible to each others (rare categories will not help discrimination)
- Not too much samples...
 - If n=1,000,000, the slightest difference will be overemphasized and it is likely that your samples will never match what you expected (your \mathcal{H}_0).

Outline

- **1** The χ^2 distribution
- Applications to statistical hypothesis test Biased Coin Adequation Independence Limitations
- $\textbf{ Other application of the } \chi^2 \ \text{distribution} \\ \text{Student's law}$

Student's law

The CLT allows to compute a confidence interval on an estimation of the expectation.

- It is centered on the sample mean
- The width is proportional to the standard deviation divided by the square root of the number of samples

Student's law

The CLT allows to compute a confidence interval on an estimation of the expectation.

- It is centered on the sample mean
- The width is proportional to the standard deviation divided by the square root of the number of samples
- How do we know the standard deviation ?
 - We can use the sample standard deviation but we have no idea of its distribution
 - Unless we assume X is normal, in which case
- If $S \sim \mathcal{N}$ and $Y \sim \chi_n^2$, then $\frac{S}{\sqrt{Y/n}} \sim$ t-Student.

This allows to account for the variance uncertainty.