

Global United Technology Services Co., Ltd.

Report No.: GTSE15070130902

FCC REPORT

Applicant: Kobian Canada Inc.,

Address of Applicant: 560 Denison Street, Unit#5, Markham, Ontario, Canada,

L3R2M8

Equipment Under Test (EUT)

TABLET PC Product Name:

9DTB39 Model No.:

FCC ID: **YH5-9DTB39**

FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014 Applicable standards:

Date of sample receipt: July 24, 2015

Date of Test: July 27-30, 2015

Date of report issued: July 31, 2015

Test Result: PASS *

Authorized Signature:

Robinson Lo **Laboratory Manager**

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 31, 2015	Original

Tested By:	Sam. Gao	Date:	July 31, 2015	
	Project Engineer			
Check By:	hank. yan Reviewer	Date:	July 31, 2015	

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
_			
3	CON	TENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1		
	7.7.2	Radiated Emission Method	
8	TES	T SETUP PHOTO	31
q	FUT	CONSTRUCTIONAL DETAILS	32

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes		
Radiated Emission	on 9kHz ~ 30MHz ± 4.34dB		(1)		
Radiated Emission	Radiated Emission 30MHz ~ 1000MHz ± 4.24dB				
Radiated Emission	on 1GHz ~ 26.5GHz ± 4.68dB		(1)		
AC Power Line Conducted Emission	± 3.45dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

Remark: Test according to ANSI C63.10-2013 and ANSI C63.4-2014

5 General Information

5.1 Client Information

Applicant:	Kobian Canada Inc.,	
Address of Applicant: 560 Denison Street, Unit#5, Markham, Ontario, Canada, L3R2M8		
Manufacturer: Kobian Canada Inc.,		
Address of Manufacturer:	560 Denison Street, Unit#5, Markham, Ontario, Canada, L3R2M8	

5.2 General Description of EUT

_		
Product Name:	TABLET PC	
Model No.:	9DTB39	
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	
Channel Separation:	2MHz	
Modulation Type:	GFSK	
Antenna Type:	Integrity antenna	
Antenna gain:	2dBi (declare by Applicant)	
Power supply:	AC/DC Adaptor:	
	Model No.:SUN-0500200	
	Input:100-240V~50/60Hz 0.3A	
	Output:5V === 2A	
	Or	
	DC 3.7 V Lithium battery 4000mAh	

Operation F	Operation Frequency each of channel							
Channel Frequency Channel Frequency Channel Frequency Channel Fre								
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
. !			. !	•	. !		. !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jun. 30 2015	Jun. 29 2016		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jun. 30 2015	Jun. 29 2016		
5	BiConiLog Antenna SCHWARZBECK MESS-ELEKTRONIK		VULB9163	GTS214	Jun. 30 2015	Jun. 29 2016		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	Jun. 26 2015	Jun. 25 2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jun. 30 2015	Jun. 29 2016		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jun. 30 2015	Jun. 29 2016		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Jun. 26 2015	Jun. 25 2016		
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016		
17	Power Meter	Anritsu	ML2495A	GTS540	Jun. 30 2015	Jun. 29 2016		
18	Power Sensor	Anritsu	MA2411B	GTS541	Jun. 30 2015	Jun. 29 2016		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Jun. 30 2015	Jun. 29 2016		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jun. 30 2015	Jun. 29 2016		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jun. 30 2015	Jun. 29 2016		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jun. 30 2015	Jun. 29 2016		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jun. 30 2015	Jun. 29 2016		
6	Coaxial Cable	GTS	N/A	GTS227	Jun. 30 2015	Jun. 29 2016		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-vv)	Cal.Due date (mm-dd-vv)	
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is Integrity antenna, the best case gain of the antenna is 2dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:	Frequency range (MHz)	Limit (c	lBuV)
	, , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Tarifacilia.	* Decreases with the logarithm	· ·	
Test setup:	Reference Plane		_
	AUX Equipment Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance. The peripheral devices are LISN that provides a 50ohn 	n network (L.I.S.N.). The edance for the measuri also connected to the	nis provides a ing equipment. main power through a
	termination. (Please refer to photographs).		
	Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.4: 2	d the maximum emission all of the interface cab	on, the relative bles must be changed
Test Instruments:	Refer to section 6.0 for details	<u> </u>	
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 1309RF

Test mode : Bluetooth4.0 mode

Test Engineer: Song

	Freq		LISN Factor					Remark
-	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1		47. 49 40. 61		0.13 0.11				
2 3 4 5 6		41.01	0.13 0.20	0.12	41.26	56.00	-14.74 -25.86	QP
5		22.65		0.16	23.04 25.16	60.00	-36.96	QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1309RF

Test mode : Bluetooth4.0 mode

Test Engineer: Song

201	busineer.	Read	LISN	Cable		Limit	0ver		
	Freq		Factor					Remark	
	MHz	dBuV	dB	dB	dBuV	dBu√	dB		-
1	0.186	49.37	0.07		49.57				
2	0. 249	42.79	0.06	0.11	42.96	61.78	-18.82	QP	
2	0.564	40.65	0.07	0.12	40.84	56.00	-15.16	QP	
4	4.574	25.58	0.15	0.15	25.88	56.00	-30.12	QP	
5	6.951	21.63	0.18	0.17	21.98	60.00	-38.02	QP	
6	23.387	23.85	0.91		24.99				

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.62		
Middle	-1.85	30.00	Pass
Highest	-1.51		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	714.736		
Middle	737.480	>500	Pass
Highest	742.561		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-3.48		
Middle	-2.72	8.00	Pass
Highest	-2.42		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S		9 and 15.205		
Test Method:	ANSI C63.10:20)13			
Test Frequency Range:	All of the restrict 2500MHz) data		-	the worst ba	and's (2310MHz to
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Al 4011-	Peak	1MHz	3MHz	Peak
	Above 1GHz	RMS	1MHz	3MHz	Average
Limit:	Freque	ncv	Limit (dBuV/	<u> </u>	Value
			54.0		Average
	Above 1	GHz	74.0		Peak
	EUT Turn Table	3m < 4m		Antenna Tower Horn Antenna Spectrum Analyzer Amplifier	
Test Procedure:	1GHz and meter cambro position of 2. The EUT was antenna, whis tower. 3. The antenna ground to deshorizontal an measurement 4. For each sus and then the and the rotathe maximum 5. The test-recesspecified Bas 6. If the emission the limit specified by the EUT with the specified by the EUT with the specified by the EUT with the specified by the limit specified by the EUT with the specified by the EUT with the specified by the EUT with the specified by the specifie	1.5 meters for per. The table the highest rates as set 3 meters on was mount the minute of the minut	r above 1GHz e was rotated a diation. s away from the ted on the top ed from one in naximum value arizations of the sion, the EUT tuned to heig ned from 0 de was set to Pea Maximum Hole EUT in peak sting could be red. Otherwis pe re-tested on as specified ar ints are perform	above the games and interference of a variable meter to four e of the field me antenna a was arrange has from 1 magrees to 360 ak Detect Fund Mode, mode was 1 stopped and e the emissione by one using their X, Y, and then reportmed in X, Y,	to determine the ce-receiving e-height antenna meters above the strength. Both re set to make the d to its worst case eter to 4 meters degrees to find metion and OdB lower than I the peak values ons that did not sing peak, quasi-
Test Instruments:	Refer to section		ded in the repo	л с.	
i cot inotiumento.	Lyelel to section	U.U IUI UEIAII	J		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel: Lowest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.01	27.59	5.38	30.18	40.80	74.00	-33.20	Vertical
2400.00	55.52	27.58	5.39	30.18	58.31	74.00	-15.69	Vertical
2390.00	37.93	27.59	5.38	30.18	40.72	74.00	-33.28	Horizontal
2400.00	54.02	27.58	5.39	30.18	56.81	74.00	-17.19	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	29.19	27.59	5.38	30.18	31.98	54.00	-22.02	Vertical
2400.00	41.72	27.58	5.39	30.18	44.51	54.00	-9.49	Vertical
2390.00	29.60	27.59	5.38	30.18	32.39	54.00	-21.61	Horizontal
2400.00	40.55	27.58	5.39	30.18	43.34	54.00	-10.67	Horizontal

No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel:	Highest
Dealcuelus	

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.47	27.53	5.47	29.93	42.54	74.00	-31.46	Vertical
2500.00	40.09	27.55	5.49	29.93	43.20	74.00	-30.80	Vertical
2483.50	39.45	27.53	5.47	29.93	42.52	74.00	-31.48	Horizontal
2500.00	39.56	27.55	5.49	29.93	42.67	74.00	-31.33	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.17	27.53	5.47	29.93	36.24	54.00	-17.76	Vertical
2500.00	30.59	27.55	5.49	29.93	33.70	54.00	-20.30	Vertical
2483.50	32.37	27.53	5.47	29.93	35.44	54.00	-18.56	Horizontal
2500.00	31.08	27.55	5.49	29.93	34.19	54.00	-19.81	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Peak Search

Test plot as follows:

Lowest channel

30MHz~10GHz

Next Peak Atten 20 dE Next Pk Right Next Pk Left Min Search αAv Center 17.500 GHz Span 15 GHz Sweep 1.434 s (601 pts) Pk-Pk Search Res BW 100 kHz #VBW 300 kHz X Axis 14.175 GHz Amplitude -61.98 dBm Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

Middle channel

Highest channel

30MHz~10GHz

R T Peak Search

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209				
Test Method:	ANSI C63.10: 20	13				
Test Frequency Range:	30MHz to 25GHz	2				
Test site:	Measurement Dis	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
	Above 1GHZ	RMS	1MHz	3MHz	Average	
Limit:	Frequen	ісу	Limit (dBuV	/m @3m)	Value	
	30MHz-88	MHz	40.0	0	Quasi-peak	
	88MHz-216	6MHz	43.5	0	Quasi-peak	
	216MHz-96	0MHz	46.0	0	Quasi-peak	
	960MHz-1	GHz	54.0	0	Quasi-peak	
	A l	211-	54.0	0	Average	
	Above 10	iHZ	74.0	Peak		
	Search Antenna 4m RF Test Receiver Turn Table A A					
	Table 0.8m			Antenna RF Test Receiver		

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

Measurement Data

■ Below 1GHz

		1	1	1	1		1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
36.51	46.29	14.73	0.62	30.06	31.58	40.00	-8.42	Vertical
55.03	44.18	15.02	0.82	29.96	30.06	40.00	-9.94	Vertical
114.11	44.77	13.52	1.31	29.60	30.00	43.50	-13.50	Vertical
202.81	52.60	12.64	1.86	29.23	37.87	43.50	-5.63	Vertical
465.60	33.31	17.71	3.16	29.37	24.81	46.00	-21.19	Vertical
734.49	26.90	21.24	4.22	29.20	23.16	46.00	-22.84	Vertical
706.70	27.64	20.86	4.12	29.20	23.42	46.00	-22.58	Horizontal
70.09	39.36	10.65	0.94	29.85	21.10	40.00	-18.90	Horizontal
112.52	45.94	13.83	1.30	29.62	31.45	43.50	-12.05	Horizontal
162.04	51.95	10.72	1.64	29.35	34.96	43.50	-8.54	Horizontal
265.68	46.43	14.26	2.20	29.76	33.13	46.00	-12.87	Horizontal
411.82	38.95	17.31	2.91	29.47	29.70	46.00	-16.30	Horizontal

■ Above 1GHz

Test channel	:			Low	est						
Peak value:	Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
4804.00	35.38	31.78	8.60	32.09	43.67	74.00	-30.33	Vertical			
7206.00	30.55	36.15	11.65	32.00	46.35	74.00	-27.65	Vertical			
9608.00	30.33	37.95	14.14	31.62	50.80	74.00	-23.20	Vertical			
12010.00	*					74.00		Vertical			
14412.00	*					74.00		Vertical			
4804.00	39.27	31.78	8.60	32.09	47.56	74.00	-26.44	Horizontal			
7206.00	32.14	36.15	11.65	32.00	47.94	74.00	-26.06	Horizontal			
9608.00	29.57	37.95	14.14	31.62	50.04	74.00	-23.96	Horizontal			
12010.00	35.38	31.78	8.60	32.09	43.67	74.00	-30.33	Horizontal			
14412.00	*				_	74.00		Horizontal			

Average value:

Average var	uc.							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.56	31.78	8.60	32.09	32.85	54.00	-21.15	Vertical
7206.00	19.46	36.15	11.65	32.00	35.26	54.00	-18.74	Vertical
9608.00	18.65	37.95	14.14	31.62	39.12	54.00	-14.88	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.57	31.78	8.60	32.09	36.86	54.00	-17.14	Horizontal
7206.00	21.50	36.15	11.65	32.00	37.30	54.00	-16.70	Horizontal
9608.00	18.22	37.95	14.14	31.62	38.69	54.00	-15.31	Horizontal
12010.00	24.56	31.78	8.60	32.09	32.85	54.00	-21.15	Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle								
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4884.00	35.28	31.85	8.67	32.12	43.68	74.00	-30.32	Vertical
7326.00	30.49	36.37	11.72	31.89	46.69	74.00	-27.31	Vertical
9768.00	30.28	38.35	14.25	31.62	51.26	74.00	-22.74	Vertical
12210.00	*					74.00		Vertical
14652.00	*					74.00		Vertical
4884.00	39.16	31.85	8.67	32.12	47.56	74.00	-26.44	Horizontal
7326.00	32.07	36.37	11.72	31.89	48.27	74.00	-25.73	Horizontal
9768.00	29.51	38.35	14.25	31.62	50.49	74.00	-23.51	Horizontal
12210.00	*					74.00		Horizontal
14652.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4884.00	24.48	31.85	8.67	32.12	32.88	54.00	-21.12	Vertical
7326.00	19.41	36.37	11.72	31.89	35.61	54.00	-18.39	Vertical
9768.00	18.61	38.35	14.25	31.62	39.59	54.00	-14.41	Vertical
12210.00	*					54.00		Vertical
14652.00	*					54.00		Vertical
4884.00	28.49	31.85	8.67	32.12	36.89	54.00	-17.11	Horizontal
7326.00	21.45	36.37	11.72	31.89	37.65	54.00	-16.35	Horizontal
9768.00	18.17	38.35	14.25	31.62	39.15	54.00	-14.85	Horizontal
12210.00	*					54.00		Horizontal
14652.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel:					Highest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	1 6//61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.94	31.93	8.73	32.16	43.44	74.00	-30.56	Vertical
7440.00	30.27	36.59	11.79	31.78	46.87	74.00	-27.13	Vertical
9920.00	30.07	38.81	14.38	31.88	51.38	74.00	-22.62	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	38.75	31.93	8.73	32.16	47.25	74.00	-26.75	Horizontal
7440.00	31.81	36.59	11.79	31.78	48.41	74.00	-25.59	Horizontal
9920.00	29.27	38.81	14.38	31.88	50.58	74.00	-23.42	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	1 1 6//61	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.22	31.93	8.73	32.16	32.72	54.00	-21.28	Vertical
7440.00	19.23	36.59	11.79	31.78	35.83	54.00	-18.17	Vertical
9920.00	18.45	38.81	14.38	31.88	39.76	54.00	-14.24	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	28.19	31.93	8.73	32.16	36.69	54.00	-17.31	Horizontal
7440.00	21.25	36.59	11.79	31.78	37.85	54.00	-16.15	Horizontal
9920.00	17.99	38.81	14.38	31.88	39.30	54.00	-14.70	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15070130901

-----End-----