

Markscheme

May 2017

Physics

Standard level

Paper 2

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question		on	Answers	Notes	Total
1.	а		correct use of kinematic equation/equations ✓ 148.5 <i>or</i> 149 <i>or</i> 150 «m» ✓	Substitution(s) must be correct.	2
	b		$a = \frac{27}{11}$ or 2.45 « m s ⁻² » \checkmark $F - 160 = 492 \times 2.45 \checkmark$ $1370 «N» \checkmark$	Could be seen in part (a). Award [0] for solution that uses a =9.81 m s ⁻²	3

(Question 1 continued)

Question	Answers	Notes	Total
С	ALTERNATIVE 1	Award [2 max] for an answer of 160 k«W».	
	«work done to launch glider» = 1370×149 « = 204 kJ» ✓		
	«work done by motor» = $\frac{204 \times 100}{23}$ ✓		
	«power input to motor» = $\frac{204 \times 100}{23} \times \frac{1}{11} = 80$ or 80.4 or 81 k«W» ✓		
	ALTERNATIVE 2		
	use of average speed 13.5 m s ⁻¹ ✓		
	«useful power output» = force × average speed « = 1370 × 13.5 » ✓		3
	power input = $< 1370 \times 13.5 \times \frac{100}{23} = > 80$ or 80.4 or $81 \text{ k} < \text{W} > \checkmark$		
	ALTERNATIVE 3		
	work required from motor = KE + work done against		
	friction $= 0.5 \times 492 \times 27^2 + (160 \times 148.5) = 204 \text{ kJ} $		
	«energy input» = $\frac{\text{work required from motor} \times 100}{23}$ ✓		
	power input = $\frac{883000}{11}$ = 80.3 k«W» ✓		

(Question 1 continued)

Question	Answers	Notes	Total
d	$\omega = \sqrt[4]{\frac{v}{r}} = \sqrt[3]{\frac{27}{0.6}} = 45 \checkmark$ $rad s^{-1} \checkmark$	Do not accept Hz. Award [1 max] if unit is missing.	2
е	direction of motion lift force drag weight drag correctly labelled and in correct direction ✓ weight correctly labelled and in correct direction AND no other incorrect force shown ✓	Award [1 max] if forces do not touch the dot, but are otherwise OK.	2

(Question 1 continued)

Question	Answers	Notes	Total
f	name Newton's first law ✓		
	vertical/all forces are in equilibrium/balanced/add to zero		
	OR		2 max
	vertical component of lift mentioned ✓		
	as equal to weight ✓		
g	any speed and any direction quoted together as the answer✔		
	quotes their answer(s) to 3 significant figures ✓		
	speed = 12.7 m s ⁻¹ or direction = 9.46° or 0.165 rad «below the horizontal» or		3
	gradient of $-\frac{1}{6}$		

C	Questic	on Answers	Notes	Total
2.	а	PE of water is converted to KE of moving water/turbine to electrical energy «in generator/turbine/dynamo» ✓ idea of pumped storage, <i>ie</i> : pump water back during night/when energy cheap to buy/when energy not in demand/when there is a surplus of energy ✓		2
	b	total energy = $< 2.7 \times 10^3 \times 1.5 \times 10^{10} = > 4.05 \times 10^{13} < 4.0 $ $< 10^{13} $ time = $< \frac{4.0 \times 10^{13}}{4 \times 2.5 \times 10^8} = > 11.1 $ h or $< 4.0 \times 10^4 $ s $< 10^4 $ s	For MP2 the unit must be present.	2
	С	friction/resistive losses in walls of pipe/air resistance/turbulence/turbine and generator bearings ✓ thermal energy losses, in electrical resistance of components ✓ water requires kinetic energy to leave system so not all can be transferred ✓	Must see "seat of friction" to award the mark. Do not allow "friction" bald.	1 max
	d	area required = $\frac{1 \times 10^9}{0.22 \times 180}$ «= 2.5×10^7 m² » \checkmark length of one side = $\sqrt{\text{area}}$ = 5.0 k«m» \checkmark		2

Question		on	Answers	Notes	Total
3.	а		«light» superposes/interferes ✓ pattern consists of «intensity» maxima and minima OR consisting of constructive and destructive «interference» ✓ voltage peaks correspond to interference maxima ✓		3
	b	i	$ \mathbf{w} \mathbf{s} = \frac{\lambda D}{d} = \frac{6.3 \times 10^{-7} \times 5.0}{1.5 \times 10^{-3}} = \mathbf{w} 2.1 \times 10^{-3} \mathbf{wm} \mathbf{w} $	If no unit assume m. Correct answer only.	1
	b	ii	correct read-off from graph of 25 m s \checkmark $V = \frac{x}{t} = \frac{2.1 \times 10^{-3}}{25 \times 10^{-3}} = 8.4 \times 10^{-2} \text{ wm s}^{-1} \text{ w} \checkmark$	Allow ECF from (b)(i)	2

(Question 3 continued)

Que	stion	Answers	Notes	Total
C	;	ALTERNATIVE 1		
		«reflection at barrier» leads to two waves travelling in opposite directions ✓		
		mention of formation of standing wave ✓		
		maximum corresponds to antinode/maximum displacement «of air molecules» OR complete cancellation at node position ✓		2 max

C	Questio	n Answers	Notes	Total
4.	а	222 AND 4 ✓	Both needed.	1
	b	alpha particles highly ionizing		
		OR		
		alpha particles have a low penetration power		
		OR		1
		thin glass increases probability of alpha crossing glass		
		OR		
		decreases probability of alpha striking atom/nucleus/molecule ✓		
	С	conversion of temperature to 291 K ✓	Allow ECF for 2.7×10 ¹⁵ from (b)(ii).	
		$p = 4.5 \times 10^{-9} \times 8.31 \times \text{ (a} \frac{291}{1.3 \times 10^{-5}} \text{)}$		
		OR		
		$p = 2.7 \times 10^{15} \times 1.38 \times 10^{-23} \times \text{ (4)} \frac{291}{1.3 \times 10^{-5}} \text{ (2)}$		3
		0.83 or 0.84 «Pa» ✓		

(Question 4 continued)

Question	Answers	Notes	Total
d	electron/atom drops from high energy state/level to low state \checkmark energy levels are discrete \checkmark wavelength/frequency of photon is related to energy change or quotes $E = hf$ or $E = \frac{hc}{\lambda}$ and is therefore also discrete \checkmark		3
е	peer review guarantees the validity of the work OR means that readers have confidence in the validity of work ✓	OWTTE	1

Q	uesti	on	Answers	Notes	Total
5.	а		when an electric field is applied to any material «using a cell etc» it acts to accelerate any free electrons ✓		
			electrons are the charge carriers «in copper» ✓	Accept "free/valence/delocalised electrons".	3
			metals/copper have many free electrons whereas insulators have few/no free electrons/charge carriers ✓		
	b	i	area = $\frac{1.7 \times 10^{-3} \times 35 \times 10^{3}}{64}$ « = 9.3×10^{-6} m ² » •		2
	b	ii	«resistance of cable = 2Ω »	Allow [2] for a solution where the resistance per unit metre is calculated using resistivity and answer to (b)(i) (resistance per unit length of cable =5.7×10 ⁻⁵ m)	2
			power dissipated in cable = $730^2 \times 2$ «= 1.07 MW » \checkmark power loss per meter = $\frac{1.07 \times 10^6}{35 \times 10^3}$ or 30.6 «W m ⁻¹ » \checkmark		2
	b	iii	$30 = m \times 390 \times 3.5 \times 10^{-2} \checkmark$		2
			2.2 k«g» ✓	Correct answer only.	2