1. 快速导读

- 插件编程,请阅读
 - ZL系列血流变平台的 LIS 接口
- 读取数据库,自己绘制曲线,请阅读
 - ZL系列数据库结构
 - 全血粘度曲线
 - "结果分析"判别依据
- 结果导出到文本文件,曲线导出为图片,请阅读
 - 文本导出程序

2. ZL 系列血流变平台的 LIS 接口

这一部分是写给打算开发 ZL 系列软件插件的开发者的文档。如果您是通过其它方式(例如直接读取数据库数据)与 LIS 交互,您可跳过这一部分。

2.1.机制

2.1.1. 查找文件

ZL 系列血流变平台软件(以下简称 ZL 软件)在启动时,首先搜索\$安装目录\$\NetDevices 目录下所有的扩展名为.DLL 的文件,并从该文件中查找所需的接口函数,如果找到,则作为一个接口程序载入,否则忽略。所有找到的接口程序可通过菜单设置\网络...来查看。如下图:

其中选中的项为ZL软件在用来传输数据时用的程序。

2.1.2. 从 LIS 下载数据

用户从 ZL 软件的录入界面(通过单击工具栏录入按钮进入)中录入条码值并回车后,ZL 软件将调用当前选中的接口程序的 BeginDownload 函数,如果该函数返回 0 值,则停止调用;否则继续调用 Download,EndDownload。

数据库中初始时无条码字段,可通过菜单**设置\测试项目...**在基本信息中添加,如下图:

注意该字段名称为"条码"。

2.1.3. 向 LIS 上传数据

用户通过搜索界面查找记录,选中要上传的记录后右击,并点击上传数据,可以完成数据上传。如下图:

这时 ZL 软件将调用接口程序的 BeginUpload 函数,如果该函数返回 0 值,则停止上传,否则循环调用 Upload 直到所有记录上传完毕或 Upload 返回 0 值,最后调用 EndUpload 函数。

2.2.接口函数

2.2.1. 调用约定

所有函数声明为标准 C 约定,并且为导出函数,形式如下: extern "C"__cdecl funcname(argtype arg, ...);

2.2.2. 函数

void DoConfig(HWND hParent);

声明: void DoConfig(HWND hParent);

说明: 该函数向用户显示一个配置界面,以便用户设置与该接口有关的一些参数。

参数:

hParent: 调用者窗口句柄。通常为 ZL 软件主窗口。

返回值: 无。

LPCSTR GetDesc();

声明: LPCSTR GetDesc();

说明:该函数返回一个显示给用户的接口名称。

参数:无。

返回值:接口名称,ANSI字符,以'\0'结束。

void SetDBName(LPCSTR lpszDBName);

声明: void SetDBName(LPCSTR lpszDBName);

说明:该函数告诉接口程序要操作的 ACCESS 数据库文件全路径。

参数:

lpszDBName: ACCESS 数据库文件名,包含全路径,ANSI字符串。

返回值: 无。

DWORD GetDirect();

声明: DWORD GetDirect();

说明:该函数返回接口程序数据的传输方向。

参数:无。

返回值: 为以下值之一或组合。

值	说明
1	该接口程序可以将本地数据上传给 LIS 系统。
2	该接口程序可以从 LIS 系统下载样本信息。

该函数返回值不能为0。

BOOL BeginUpload(BOOL bReport);

声明: BOOL BeginUpload(BOOL bReport);

说明: 在上传数据之前调用,以值让接口程序做一些上传准备,比如初始化。

参数:

bReport: 是否报告操作中出现的错误。该值为非零值时,如果在操作中出现错误,则将错误信息报告给用户,例如网络连接未准备好,不能建立连接等。

返回值: 非零值: 函数执行成功,继续上传。0: 出现错误,终止上传。

BOOL Upload(int nTestDataID, BOOL bReport);

声明: BOOL Upload(int nTestDataID, BOOL bReport);

说明:向LIS上传一条记录。

参数:

nTestDataID: 记录 ID,该值对应 ACCESS 数据库 TestData 表中字段 ID,每条记录有唯一的一个编号。

bReport: 同 BeginUpload。

返回值: 非零值: 上传成功。0: 上传错误,终止上传。

BOOL EndUpload();

声明: BOOL EndUpload();

说明: 所有记录上传完成后调用,接口程序在此作出一些清理操作。

参数:无。 **返回值:**忽略。

BOOL AutoUpdate();

声明: BOOL AutoUpdate();

说明:该函数返回值说明该接口程序是否会自动上传记录。

参数:无。

返回值: 非零值: 当记录的任何字段改变时, ZL 软件会调用 Upload 函数(注意: 不调用 BeginUpload 和 EndUpload); 0: 记录改变时不调用任何函数。

大多数情况下该函数返回 0。

BOOL BeginDownload(BOOL bReport);

声明: BOOL BeginDownload(BOOL bReport);

说明:在从LIS下载数据之前调用。 参数:bReport:同BeginUpload。

返回值: 非零值: 执行成功。0: 失败, 停止下载。

BOOL Download(int nTestDataID, BOOL bReport);

声明: BOOL Download(int nTestDataID, BOOL bReport);

说明:从LIS下载数据到本地数据库。

参数:同 Upload。 返回值:同 Upload。

BOOL EndDownload();

声明: BOOL EndDownload();

说明:下载结束后调用。

参数: 无。

返回值: 忽略。

3. ZL 系列数据库结构

3.1. 表 Items

字段名称	类型	说明	
ItemID	自动编号	主键	
Name	文本	测试项目名称	
Unit	文本	标准单位	
MaleNormal	文本	男正常值(标准单位)	
FemaleNormal	文本	女正常值(标准单位)	
Class	文本	测试项目类别	
Test	是/否	是否测试	
Order	数字	排序数字,各个地方项目出现	
		的位置将按这个数字从小到	
		大排序	
UserItem	是/否	是否为用户自定义项目	

该表存储各个测试项目的名称和正常值,项目名称和 TestData 中的字段名相同。

3.2. 表 ShearRate

字段名称	类型	说明	
ShearRateID	自动编号	主键	
ShearRate	数字	要报告的切变率	
MaleNormal	文本	在这个切变率下男人正常值	
FemaleNormal	文本	在这个切变率下女人正常值	

该表存储全血粘度需要保存的切变率和正常值。

3.3.表 TestData

字段名称	类型	说明
TestDataID	自动编号	主键
序号	数字	当日标本号
姓名	文本	病人姓名
性别	是/否	病人性别, True: 男, FALSE:
		女
年龄	数字	病人年龄, 岁
科别	文本	送检科室名称
病区	文本	病人病区
病历号	文本	病人病历号

床号	文本	住院床号
临床诊断	文本	病人临床诊断
日期	日期/时间	检验日期
时间	日期/时间	检验时间
送检医生	文本	送检医生姓名
检验医生	文本	检验医生姓名
核对医生	文本	核对医生姓名
血浆粘度	数字	血浆粘度值
压积	数字	压积值
血沉	数字	血沉值
全血低切相对指数	数字	全血低切相对指数值
全血高切相对指数	数字	全血高切相对指数值
血沉方程 K 值	数字	血沉方程 K 值
红细胞聚集指数	数字	红细胞聚集指数值
红细胞变形指数	数字	红细胞变形指数
全血低切还原粘度	数字	全血低切还原粘度
全血高切还原粘度	数字	全血高切还原粘度
红细胞变形指数 TK	数字	红细胞变形指数 TK
红细胞刚性指数	数字	红细胞刚性指数
卡松粘度	数字	卡松粘度值
纤维蛋白原	数字	纤维蛋白原
血胆固醇	数字	血胆固醇
甘油三脂	数字	甘油三脂
高密脂蛋白	数字	高密脂蛋白
血糖	数字	血糖
血小板粘附率	数字	血小板粘附率
体外血栓干重	数字	体外血栓干重
红细胞电泳	数字	红细胞电泳
血小板聚集率	数字	血小板聚集率
体外血栓长度	数字	体外血栓长度
结果分析	备注	结果分析

该表存储病人信息和测试结果。全血粘度值存储在 Visc 表中。

3.4.表 Visc

字段名称	类型	说明	
ViscID	自动编号	主键	
TestDataID	数字	表 TestData 中的记录 ID	
ShearRate	数字	切变率	
Visc	数字	粘度值	

该表存储病人的全血粘度值。

3.5.说明

病人的测试结果除全血粘度外其它结果都存储在 TestData 中,全血粘度结果存储在 Visc 中。 TestData 和 Visc 表通过 TestData.TestDataID 和 Visc.TestDataID 相关联。

4. 全血粘度曲线

4.1. 曲线方程

全血粘度曲线满足以下方程:

$$\sqrt{y} = a + b\sqrt{\frac{1}{x}}$$

y ----- 粘度

x ----- 切变率, 1~200

数据库中"全血粘度数据"字段为二进制,大小为 8 字节,包括两个 float 数,第一个为 a,第二个为 b。

实际传输中可不用读取这个字段,直接从测试结果中任取两个点求出 a 和 b 即可。 计算 a 和 b 时只需其中两个点(即两条记录)即可。设有两个点为(X1, Y1)和(X2, Y2),那么:

$$\sqrt{y_1} = a + b\sqrt{\frac{1}{x_1}} \tag{1}$$

$$\sqrt{y_2} = a + b\sqrt{\frac{1}{x_2}} \tag{2}$$

由(1)和(2)可得:

$$b = \frac{\sqrt{y_1} - \sqrt{y_2}}{\sqrt{\frac{1}{x_1}} - \sqrt{\frac{1}{x_2}}}$$

$$a = \sqrt{y_1} - b\sqrt{\frac{1}{x_1}}$$

例:

在表 Visc 中, 字段 ShearRate 为 X, 即切变率, Visc 为 Y, 即粘度值, 假设一个病人的记录如下表:

行号 ShearRate	Visc
--------------	------

1	1.00	22.00
2	200.00	3.50

$$b = \frac{\sqrt{22} - \sqrt{3.5}}{\sqrt{\frac{1}{1}} - \sqrt{\frac{1}{200}}} = 3.034$$
$$a = \sqrt{22} - 3.034\sqrt{\frac{1}{1}} = 1.656$$

4.2.绘制曲线图

输入:

1. 曲线方程 y=f(x), x 为切变率; y 为粘度。

2. 图表坐标范围: Xmin←1; Xmax←300; Ymin←0; Ymax←60。

3. 图表区屏幕坐标: 左上角 (X0, Y0); 右下角(X1, Y1)。 程序:

填充底色

For x=Xmin to Xmax // 网格竖线

If x >= 100

Tick ← 100

Else if x >= 10

Tick ← 10

Else if x >= 1

Tick ← 1

Else

Tick ← 0.1

Dx ← x 转换为屏幕坐标 画线(Dx, Y0) ~ (Dx, Y1) x←x+Tick

Tick←10

For y=Ymin to Ymax // 网格横线 Dy←y 转换为屏幕坐标 画线(X0, Dy)~(X1, Dy) y←y+Tick

foreach x in (1, 3, 10, 30, 100, 200) // X 刻度标签 Dx ← x 转换为屏幕坐标 在(Dx, Y1)下方居中显示标签 x

Tick**←**10

For y=Ymin to Ymax // Y 刻度标签 Dy←y 转换为屏幕坐标 在(X0, Dy)左侧垂直居中显示标签 y

x ← X0 转换为逻辑坐标 y ← f(x) dx0 ← X0 dy0 ← y 转换为屏幕坐标 n←3 // 曲线点间隔 3 像素

For dx=X0+n to X1// 曲线 $x \leftarrow dx$ 转换为逻辑坐标 $y \leftarrow f(x)$ $dy \leftarrow y$ 转换为屏幕坐标 画线 $(dx0, dy0)\sim(dx, dy)$ $dx0 \leftarrow dx$ $dy0 \leftarrow dy$

5. "结果分析"判别依据

序号	条件	结果	备注
0	1~9条件没有符合条件	综合测试基本正常。	
1	全血粘度、血浆粘度和压积 2 项高于正常值	血流变测试轻度异常。	三选一
	或		
	至少3项异常(高于或低于正常值)		先判断 3
2	全血粘度、血浆粘度和压积 3 项高于正常值	血流变测试中度异常。	再判断 2
3	全血粘度、血浆粘度和压积 4 项(含)以上高	高粘血症倾向,建议日后复查。	最后判
	于正常值		断 1
4			已废弃
5	血糖高于正常值	糖尿病倾向。	
6	血胆固醇或甘油三脂高于正常值	高脂血症倾向。	
7	血沉和红细胞聚集指数都高于正常值	红细胞聚集症倾向。	
8	血栓干重和血栓长度都高于正常值	高凝血症倾向。	
9	4 项全血粘度,血浆粘度,血沉,压积,血	血流变测试重度异常。	
	糖,血胆固醇,甘油三脂,红细胞聚集指数,		
	血栓干重,血栓长度全部异常(高于或低于		
	正常值)并且1~8没有任何一项符合条件		

说明:

1) 上表中 1~3 项选其中之一。先判断 3, 再判断 2, 最后判断 1。当其中任一条件满足时中止判断。

- 2) 5, 6, 7, 8, 9与1~3之一可同时出现。
- 3) 当1~9中没有任何条件符合时显示0。
- 4) "结果分析"首先由程序生成,如果检验医师更改过自动生成的结果,则更改过的值保存在"结果分析"字段中,否则该字段为空(NULL)。

5)词 条 $0\sim 9$ 可 由 用 户 更 改 , 更 改 过 的 词 条 存 储 在 注 册 表 "HKEY_CURRENT_USER\Software\NW\众驰自动血流变平台\Analyse"下。

6. 文本导出程序

使用文本导出程序可将所有结果、结果分析和粘度曲线导出到一个文本文件中。

6.1. 初次设置

在文本导出程序正确工作前,需要一些必要的设置操作。操作步骤如下

1. 通过菜单"设置→网络…"打开以下界面

勾选"文本导出程序"。

2. 双击文件导出程序, 打开属性页

按图中所示设置。

- 取消"导出时让操作者选择文件"前的对勾,这样用户操作时不会再弹出保存文件的 对话框,而是直接按"导出文件"设置的文件路径保存。
- 选择"导出文件"。该文件是用户操作时结果导出的文件,为文本文件,应当放在一个单独的目录里。导出结果时,所有的测量结果将保存到这一个文件中,曲线保存在与这个文件相同的目录中。

注意:导出文件指定的路径必须存在并且可以写入。

- 选择要导出的项目并设置项目代码。
- 3. 两次确定返回主界面。设置完成。

6.2. 用户操作

- 1. 点击工具栏上的搜索按钮或按 F3 键进入搜索界面。
- 2. 设置查询条件,然后点击立即查询。
- 3. 在结果列表中选中要上传的数据,并点击右键,点击上传数据完成操作。如下图

4. 结果导出如下图

