

Tabulated Data for FREDYN Simulations of HALIFAX for Determining Helicopter **Securing Loads**

(Revised March 2006)

Doug Perrault Kevin McTaggart

Defence R&D Canada - Atlantic

Technical Memorandum DRDC Atlantic TM 2004-044 March 2006

Tabulated Data for FREDYN Simulations of HALIFAX for Determining Helicopter Securing Loads (Revised March 2006)

Doug Perrault Kevin McTaggart

Defence R&D Canada - Atlantic

Technical Memorandum

DRDC Atlantic TM 2004-044

March 2006

Author	
Doug Perrault	
Doug Perrault and Kevin McTaggart	
Approved by	
/hot Pegg	
Neil Pegg	
Head, Warship Performance	
Approved for release by	
11/206	
K. Foster	
Chair/Document Review Panel	

[©] Her Majesty the Queen as represented by the Minister of National Defence, 2005

[©] Sa majesté la reine, représentée par le ministre de la Défense nationale, 2005

Abstract

In support of procurement of new maritime helicopters, DRDC Atlantic was tasked to simulate motions of the HALIFAX class in seaways. The data produced will aid in the determination of helicopter securing loads, which are highly dependent upon the motions of the ship. The present work reports a systematic series of simulations modelling a HALIFAX class frigate with nominally steady speed and heading (course-keeping) in a variety of seaway conditions. This memorandum provides the data in a tabulated format for quick reference. A companion report (DRDC TM 2004-043) describes the simulation conditions and key results.

Résumé

En appui à l'acquisition des nouveaux hélicoptères maritimes, RDDC Atlantique a reçu le mandat de simuler les mouvements d'un navire de la classe HALIFAX en mer. Les données produites permettront d'aider à déterminer des charges d'arrimage sécuritaires pour les hélicoptères, qui sont extrêmement dépendantes des mouvements des navires. Le présent travail présente la série systématique de simulations utilisées pour modéliser une frégate de la classe Halifax croisant à une vitesse régulière et selon une certaine orientation (conservation de cap) en présence de diverses conditions maritimes. Le mémoire présente les données sous forme de tableau pour consultation rapide. Un rapport d'accompagnement (RDDC TM 2004-043) comprend une description des conditions de simulation et des données résultantes.

This page intentionally left blank.

Executive summary

Introduction

When onboard ship, maritime helicopters are secured to the deck using either a landing probe or a combination of the landing probe and chains. The loads required for securing the helicopter depend on the ship's motions. To assist with specification of design loads for the securing devices, DRDC Atlantic was tasked to compute motions of the HALIFAX class frigate at the location where the helicopter would be secured. The simulations cover a range of sea conditions, ship speeds and headings.

Principal Results

A systematic series of simulations was carried out for HALIFAX in the operational light condition, at various speeds and headings, and with a specific variation of seaway parameters for both open ocean and coastal waters. The operational light loading condition for HALIFAX was selected as a likely conservative case because motions tend to become greater as displacement decreases. The principle results are files of time series data for each simulation run, as well as statistical analyses of the motion parameters.

Significance of Results

The data provide numerical values for the key parameters (roll angle, pitch angle, accelerations of the ship at two specific securing points) for determining the design loads for securing devices. This memorandum provides the data in a tabulated format for quick reference. A companion report (DRDC TM 2004-043) describes the simulation conditions and resulting data. Care is required in using the data provided: Since motions are dependent on the displacement and mass distribution of the ship, significant changes from the operational light condition specified herein will influence the validity of the data.

Future Plans

The data presented in this report will likely be used for developing design loads for the Maritime Helicopter Project. The data could also be used for a wide variety of other purposes, such as to investigate the feasibility of specific deck operations under various combinations of seaway, ship's speed and relative heading.

Doug Perrault, Kevin McTaggart; 2006; Tabulated Data for FREDYN Simulations of HALIFAX for Determining Helicopter Securing Loads

(Revised March 2006); DRDC Atlantic TM 2004-044; Defence R&D Canada - Atlantic.

Sommaire

Introduction

Les hélicoptères maritimes embarqués sont arrimés au pont au moyen d'un sabot d'atterrissage ou d'une combinaison de ce dernier et de chaînes. Les charges requises pour arrimer l'hélicoptère dépendent des mouvements du navire. Pour aider à la spécification des charges d'échantillonnage des dispositifs d'ancrage, RDDC Atlantique a été mandatée de calculer les mouvements d'une frégate de la classe HALIFAX à l'endroit où l'hélicoptère est arrimé. Les simulations couvrent toute une gamme de conditions maritimes, de vitesse de navire et de caps.

Principaux Résultats

Une série systématique de simulations a été effectuée pour la classe HALIFAX en conditions opérationnelles à l'état lège, selon divers vitesses et caps, ainsi qu'avec une variation spécifique des paramètres de navigabilité en haute mer et en eaux côtières. Les conditions opérationnelles à l'état lège pour la classe HALIFAX ont été sélectionnées en retenant des valeurs vraisemblablement conservatrices car les mouvements tendent à devenir plus importants lorsque que le déplacement diminue. Les principaux résultats sont des fichiers de séries de données chronologiques pour chaque essai de simulation, de même que des analyses statistiques des paramètres de mouvement.

Portée des Résultats

Les données fournissent des valeurs numériques des paramètres clés (angle de roulis, angle de tangage, accélérations du navire à deux points d'attaches spécifiques) pour déterminer les charges d'échantillonnage des dispositifs d'ancrage. Le mémoire présente ces données sous forme de tableau pour consultation rapide. Un rapport d'accompagnement (RDDC TM 2004-043) comprend une description des conditions de simulation et des données résultantes. La prudence est de mise avec les données fournies : les mouvements étant dépendants du déplacement et de la distribution de la masse du navire, tout changement important des conditions opérationnelles à l'état lège spécifiées ici influencera la validité des données.

Recherches Futurs

Les données présentées dans ce rapport seront vraisemblablement utilisées pour développer les charges d'échantillonnage pour le projet d'hélicoptère maritime. Ces données pourront également être utilisées à d'autres fins, notamment pour étudier la

faisabilité des opérations de pont spécifiques en présence de diverses combinaisons de navigabilité, de vitesse et de cap relatif de navire.

Doug Perrault, Kevin McTaggart; 2006; Tabulated Data for FREDYN Simulations of HALIFAX for Determining Helicopter Securing Loads (Revised March 2006); DRDC Atlantic TM 2004-044; Defence R&D Canada - Atlantic.

Table of contents

Abstra	ct	i
Résum	é	i
Execut	tive summary	iii
Somm	aire	v
Table o	of contents	vii
List of	figures	X
List of	tables	xi
1	Introduction	1
2	Coordinate Systems	1
3	Simulation Conditions	3
4	Simulation Results	6
5	Conclusions	8
Refere	nces	9
Symbo	ols	10
Annex	es	13
A	Polar Plots of Maximum Absolute Roll Angle – Bretschneider Spectra (Open Ocean)	13
В	Polar Plots of Maximum Absolute Roll Angle – JONSWAP Spectra (Coastal Waters)	19
C	Polar Plots of Maximum Absolute Pitch Angle – Bretschneider Spectra (Open Ocean)	23
D	Polar Plots of Maximum Absolute Pitch Angle – JONSWAP Spectra (Coastal Waters)	29
Е	Polar Plots of Maximum Absolute Longitudinal Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)	33

F	Polar Plots of Maximum Absolute Longitudinal Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)
G	Polar Plots of Maximum Absolute Lateral Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)
Н	Polar Plots of Maximum Absolute Lateral Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)
I	Polar Plots of Maximum Absolute Vertical Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)
J	Polar Plots of Maximum Absolute Vertical Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)
K	Polar Plots of Maximum Absolute Longitudinal Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean) 63
L	Polar Plots of Maximum Absolute Longitudinal Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters) 69
M	Polar Plots of Maximum Absolute Lateral Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean)
N	Polar Plots of Maximum Absolute Lateral Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters)
O	Polar Plots of Maximum Absolute Vertical Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean)
P	Polar Plots of Maximum Absolute Vertical Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters)
Q	Tables of Motion Maxima – Bretschneider Spectrum (Open Ocean) 93
R	Tables of Motion Maxima – JONSWAP Spectrum (Coastal Waters) 165
S	Tables of Hangar Deck Accelerations – Bretschneider Spectrum (Open Ocean)
T	Tables of Hangar Deck Accelerations – JONSWAP Spectrum (Coastal Waters)
U	Tables of Flight Deck Accelerations – Bretschneider Spectrum (Open Ocean)

V	Tables of Flight Deck Accelerations – JONSWAP Spectrum (Coastal	
	Waters)	397
W	NATO Sea State Table	441

List of figures

1	FREDYN Relative Sea Convention	2
2	MHP Relative Sea Convention	2
A.1	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s.}$	14
A.2	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s.}$	14
A.3	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s.}$	15
A.4	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s.}$	15
A.5	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	16
A.6	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	16
A.7	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s.}$	17
A.8	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s.}$	17
A.9	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s.}$	18
A.10	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s.}$	18
B.1	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s.}$	20
B.2	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s.}$	20
B.3	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 6.0 \text{ m}$ and $T_P = 9.3 \text{ s.} \dots \dots$	21

B.4	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s.}$	21
B.5	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s.}$	22
B.6	Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s.}$	22
C.1	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s.}$	24
C.2	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with ${\rm H}_S=4.0$ m and ${\rm T}_P=15.5$ s	24
C.3	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s.}$	25
C.4	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s.}$	25
C.5	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	26
C.6	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	26
C.7	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s.}$	27
C.8	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s.}$	27
C.9	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s.}$	28
C.10	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s.}$	28
D.1	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s.}$	30
D.2	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s.}$	30

D.3	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s.}$	1
D.4	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s.}$ 31	1
D.5	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s.}$	2
D.6	Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s.}$ 32	2
E.1	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s.}$	1
E.2	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s.}$	1
E.3	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.\ldots\ldots35$	5
E.4	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s.}$	5
E.5	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	6
E.6	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	6
E.7	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s.}$	7
E.8	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s.}$	7

E.9	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \text{ m}$ and $T_P = 20.0 \text{ s.} \dots \dots$	3
E.10	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	3
F.1	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s.}$	С
F.2	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	С
F.3	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s}.$	1
F.4	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	1
F.5	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s}.$	2
F.6	Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s}.$	2
G.1	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s}.\ldots\ldots\ldots\ldots$ 44	4
G.2	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s}.$	4
G.3	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.$	5

G.4	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0\mathrm{m}$ and $T_P = 16.2\mathrm{s}.$	4	-5
G.5	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	4	-6
G.6	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	4	-6
G.7	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s}.$	4	.7
G.8	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s}.$	4	.7
G.9	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s}.$	4	-8
G.10	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	4	-8
H.1	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s.}$	5	0
H.2	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	5	60
H.3	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s}.$	5	1
H.4	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	5	1

H.5	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \text{ m}$ and $T_P = 11.0 \text{ s}. \dots \dots$	52
H.6	Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s.}$	52
I.1	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s.}$	54
I.2	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s.}$	54
I.3	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.$	55
I.4	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s}.$	55
I.5	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	56
I.6	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	56
I.7	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s}.$	57
I.8	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s.}$	57
I.9	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s.}$	58

I.10	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	58
J.1	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s.}$	60
J.2	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s.}$	60
J.3	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s.}$	61
J.4	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	61
J.5	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s}.$	62
J.6	Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s}.$	62
K.1	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s}.$	64
K.2	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s}.$	64
K.3	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.$	65
K.4	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s}.$	65

K.5	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \mathrm{m}$ and $T_P = 13.1 \mathrm{s.}$	66
K.6	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s.}$	66
K.7	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s}.$	67
K.8	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s}.$	67
K.9	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s}.$	68
K.10	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	68
L.1	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s}.$	70
L.2	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	70
L.3	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s.}$	71
L.4	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	71
L.5	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s}.$	72

L.6	Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \text{ m}$ and $T_P = 17.1 \text{ s.}$	72
M.1	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s.}$	74
M.2	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s.}$	74
M.3	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	75
M.4	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s}.$	75
M.5	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s}.$	76
M.6	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=18.5\mathrm{s}.$	76
M.7	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s}.$	77
M.8	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s}.$	77
M.9	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s}.$	78
M.10	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	78

N.1	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 4.0 \text{ m}$ and $T_P = 8.2 \text{ s}. \dots \dots$	80
N.2	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	80
N.3	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s.}$	81
N.4	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	81
N.5	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s}.$	82
N.6	Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s}.$	82
O.1	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=8.3\mathrm{s}.$	84
O.2	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\mathrm{m}$ and $T_P=15.5\mathrm{s}.$	84
O.3	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=10.3\mathrm{s}.$	85
O.4	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\mathrm{m}$ and $T_P=16.2\mathrm{s}.$	85
O.5	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\mathrm{m}$ and $T_P=13.1\mathrm{s.}$	86

O.6	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \text{ m}$ and $T_P = 18.5 \text{ s}. \dots \dots$	86
O.7	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=16.4\mathrm{s}.$	87
O.8	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\mathrm{m}$ and $T_P=18.6\mathrm{s}.$	87
O.9	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=20.0\mathrm{s}.$	88
O.10	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\mathrm{m}$ and $T_P=25.7\mathrm{s}.$	88
P.1	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=8.2\mathrm{s}.$	90
P.2	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	90
P.3	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=9.3\mathrm{s.}$	91
P.4	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\mathrm{m}$ and $T_P=13.6\mathrm{s}.$	91
P.5	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=11.0\mathrm{s}.$	92
P.6	Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\mathrm{m}$ and $T_P=17.1\mathrm{s.}$	92

List of tables

1	FREDYN Output Parameters	3
2	FREDYN Output Accelerations	4
3	Main Particulars for HALIFAX Class Frigates, Operational Light Loading Condition	4
4	Seaway Conditions Investigated – Bretschneider Spectra	5
5	Seaway Conditions Investigated – JONSWAP Spectra	5
6	General Symbols	10
7	FREDYN Symbols	11
Q.1	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with $Hs = 4.0 \text{ m}$ and $Tp = 8.3 \text{ s}$; Ship's speed is 0.0 Knots .	94
Q.2	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s ; Ship's speed is 5.0 Knots .	95
Q.3	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with $Hs = 4.0 \text{ m}$ and $Tp = 8.3 \text{ s}$; Ship's speed is 10.0 Knots .	96
Q.4	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s ; Ship's speed is 15.0 Knots .	97
Q.5	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s ; Ship's speed is 20.0 Knots .	98
Q.6	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s ; Ship's speed is 25.0 Knots .	99
Q.7	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with $Hs=4.0\ m$ and $Tp=8.3\ s$; Ship's speed is 30.0 Knots .	100
Q.8	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with $Hs = 4.0 \text{ m}$ and $Tp = 15.5 \text{ s}$; Ship's speed is 0.0 Knots .	101
Q.9	Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots.	102

- Q.10 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots 103
- Q.11 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots 104
- Q.12 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots 105
- Q.13 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots 106
- Q.14 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots 107
- Q.15 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots . 108
- Q.16 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots. 109
- Q.17 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots 110
- Q.18 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots 111
- Q.19 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots 112
- Q.20 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots 113
- Q.21 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots 114
- Q.22 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots . 115
- Q.23 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots . 116
- Q.24 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots 117

Q.25	Course-Keeping Ability and Motion Parameters: Bretschneider	
	Spectrum with $Hs = 6.0$ m and $Tp = 16.2$ s; Ship's speed is 15.0 Knots 11	18

- Q.26 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots 119
- Q.27 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots 120
- Q.28 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots 121
- Q.29 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots . 122
- Q.30 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots. 123
- Q.31 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots 124
- Q.32 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots 125
- Q.33 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots 126
- Q.34 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots 127
- Q.35 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots 128
- Q.36 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots . 129
- Q.37 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots. 130
- Q.38 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots 131
- Q.39 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots 132

- Q.40 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots 133
- Q.41 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots 134
- Q.42 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots 135
- Q.43 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots 136
- Q.44 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots 137
- Q.45 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots 138
- Q.46 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots 139
- Q.47 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots 140
- Q.48 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots 141
- Q.49 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots 142
- Q.50 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots 143
- Q.51 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots 144
- Q.52 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots 145
- Q.53 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots146
- Q.54 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots 147

- Q.55 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots 148
- Q.56 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots 149
- Q.57 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots 150
- Q.58 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots 151
- Q.59 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots 152
- Q.60 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots 153
- Q.61 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots 154
- Q.62 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots 155
- Q.63 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots 156
- Q.64 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 0.0 Knots 157
- Q.65 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots 158
- Q.66 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots159
- Q.67 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots 160
- Q.68 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots 161
- Q.69 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots 162

- Q.70 Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots 163
- R.1 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots . 166
- R.2 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots . 167
- R.3 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots . 168
- R.4 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots . 169
- R.5 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots. 170
- R.6 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots . 171
- R.7 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots . 172
- R.8 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots. 173
- R.9 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots . 174
- R.10 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots 175
- R.11 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots 176
- R.12 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots 177
- R.13 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots 178
- R.14 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots 179

R.15	Course-Keeping Ability and Motion Parameters: JONSWAP	
	Spectrum with $Hs = 6.0$ m and $Tp = 9.3$ s; Ship's speed is 0.0 Knots	. 180

- R.16 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 5.0 Knots . 181
- R.17 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 10.0 Knots. 182
- R.18 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots . 183
- R.19 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots . 184
- R.20 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots . 185
- R.21 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots . 186
- R.22 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots. 187
- R.23 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots. 188
- R.24 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots 189
- R.25 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots 190
- R.26 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots 191
- R.27 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots 192
- R.28 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots 193
- R.29 Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 0.0 Knots. 194

R.30	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s ; Ship's speed is 5.0 Knots . 195
R.31	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 10.0 Knots 196
R.32	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots 197
R.33	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots 198
R.34	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 25.0 Knots 199
R.35	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 30.0 Knots 200
R.36	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots . 201
R.37	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots . 202
R.38	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 10.0 Knots 203
R.39	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots 204
R.40	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots 205
R.41	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots 206
R.42	Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots 207
S.1	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 0.0 Knots
S.2	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 5.0 Knots

S.3	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 10.0 Knots
S.4	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 15.0 Knots
S.5	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 20.0 Knots
S.6	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 25.0 Knots
S.7	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 30.0 Knots
S.8	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 0.0 Knots
S.9	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots
S.10	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots
S.11	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots
S.12	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots
S.13	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots
S.14	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots
S.15	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots
S.16	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots
S.17	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots

S.18	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots
S.19	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots
S.20	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots
S.21	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots
S.22	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots
S.23	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots
S.24	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots
S.25	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 15.0 Knots
S.26	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots
S.27	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots
S.28	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots
S.29	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots
S.30	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots
S.31	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots
S.32	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots

S.33	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots
S.34	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots
S.35	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots
S.36	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots
S.37	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots
S.38	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots
S.39	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots
S.40	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots
S.41	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots
S.42	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots
S.43	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots
S.44	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots
S.45	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots
S.46	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots
S.47	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots

S.48	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots
S.49	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots
S.50	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots
S.51	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots
S.52	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots
S.53	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots
S.54	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots
S.55	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots
S.56	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots
S.57	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots
S.58	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots
S.59	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots 268
S.60	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots 269
S.61	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots
S.62	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots

S.63	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots
S.64	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 0.0 Knots
S.65	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots
S.66	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots
S.67	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots
S.68	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots
S.69	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots 278
S.70	Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots 279
T.1	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots
T.2	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots
T.3	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots
T.4	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots
T.5	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots
T.6	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots
T.7	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots

T.8	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots
T.9	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots
T.10	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots
T.11	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots
T.12	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots
T.13	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots
T.14	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots
T.15	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 0.0 Knots
T.16	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 5.0 Knots
T.17	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 10.0 Knots
T.18	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots
T.19	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots
T.20	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots
T.21	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots
T.22	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

T.23	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots
T.24	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots
T.25	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots
T.26	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots
T.27	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots
T.28	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots
T.29	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 0.0 Knots
T.30	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 5.0 Knots
T.31	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 10.0 Knots
T.32	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots
T.33	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots
T.34	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 25.0 Knots
T.35	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 30.0 Knots
T.36	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots
T.37	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots

1.38	m and Tp = 17.1 s; Ship's speed is 10.0 Knots
T.39	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots
T.40	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots
T.41	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots
T.42	Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots
U.1	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 0.0 Knots
U.2	Accelerations at Flight Deck: Bretschneider Spectrum with $Hs = 4.0$ m and $Tp = 8.3$ s; Ship's speed is 5.0 Knots
U.3	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 10.0 Knots
U.4	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 15.0 Knots
U.5	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 20.0 Knots
U.6	Accelerations at Flight Deck: Bretschneider Spectrum with $Hs = 4.0$ m and $Tp = 8.3$ s; Ship's speed is 25.0 Knots
U.7	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 30.0 Knots
U.8	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 0.0 Knots
U.9	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots
U.10	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots

U.11	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots
U.12	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots
U.13	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots
U.14	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots
U.15	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots
U.16	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots
U.17	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots
U.18	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots
U.19	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots
U.20	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots
U.21	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots
U.22	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots
U.23	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots
U.24	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots
U.25	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 15.0 Knots

U.26	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots
U.27	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots
U.28	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots
U.29	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots
U.30	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots
U.31	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots
U.32	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots
U.33	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots
U.34	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots
U.35	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots
U.36	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots
U.37	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots
U.38	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots
U.39	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots
U.40	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots

U.41	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots
U.42	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots
U.43	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots
U.44	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots
U.45	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots
U.46	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots
U.47	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots
U.48	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots
U.49	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots
U.50	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots
U.51	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots
U.52	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots
U.53	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots
U.54	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots 379
U.55	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots

U.56	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots
U.57	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots
U.58	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots
U.59	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots
U.60	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots
U.61	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots
U.62	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots
U.63	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots
U.64	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 0.0 Knots
U.65	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots
U.66	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots
U.67	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots
U.68	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots
U.69	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots
U.70	Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots

V.1	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots
V.2	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots
V.3	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots
V.4	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots
V.5	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots
V.6	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots
V.7	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots
V.8	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots
V.9	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots
V.10	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots
V.11	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots
V.12	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots
V.13	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots
V.14	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots
V.15	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s ; Ship's speed is $0.0 \text{ Knots} \dots \dots$

V.16	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s ; Ship's speed is $5.0 \text{ Knots} \dots \dots$
V.17	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s ; Ship's speed is 10.0 Knots
V.18	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots
V.19	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots
V.20	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots
V.21	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots
V.22	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots
V.23	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots
V.24	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots
V.25	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots
V.26	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots
V.27	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots
V.28	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots
V.29	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s ; Ship's speed is $0.0 \text{ Knots} \dots \dots$
V.30	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 5.0 Knots

V.31	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s ; Ship's speed is 10.0 Knots
V.32	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots
V.33	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots
V.34	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s ; Ship's speed is 25.0 Knots
V.35	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s ; Ship's speed is 30.0 Knots
V.36	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots
V.37	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots
V.38	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 10.0 Knots
V.39	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots
V.40	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots
V.41	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots
V.42	Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots
W.1	NATO Sea State Table (After Table D-1 in NATO STANAG 4194) 441

This page intentionally left blank.

1 Introduction

The Department of National Defence's Maritime Helicopter Project (MHP) is responsible for procurement of new ship-borne helicopters, including the full integration of the helicopter and on-board support systems with the ship. During operation in heavy seas, ship-borne helicopters are secured to the deck using either a landing probe or a combination of the landing probe and chains. The loads required for securing the helicopter are highly dependent upon the motions of the ship. To assist with specification of design loads, the Maritime Helicopter Project tasked DRDC Atlantic to compute motions of the HALIFAX class (aka Canadian Patrol Frigate, or CPF for short) in terms of accelerations of the helicopter parked at locations either in the hangar or on the flight deck over a range of sea conditions, ship speeds and headings. MHP asked for a comprehensive set of data to include several seaway conditions that affect the securing of helicopters in the hangar of a HALIFAX. This memorandum provides the tabulated data from simulations for a HALIFAX class frigate with nominally steady speed and heading (course-keeping) in each seaway. Also included are polar plots of the maximum absolute values of the most relevant (to the MHP) parameters. A companion report describes the simulation conditions and resulting data [1].

2 Coordinate Systems

FREDYN uses an earth-fixed axis system (x_e, y_e, z_e) and a ship-fixed axis system (x_g, y_g, z_g) , as shown in Figure 1. The plane $x_e - y_e$ lies in the still waterplane, with the z_e axis pointing downward. The ship-fixed system (x_g, y_g, z_g) , which has its origin at the ship center of gravity, rotates and translates as the ship moves. When the ship is at rest in a calm water, the z_g axis points downward. Note that in the FREDYN output, these axes and all other parameters are represented by capital letters, as in Figure 1. Translations in position, as well as velocities and accelerations are positive in the direction of the axes. Rotations and rotational velocities and accelerations are positive when they are in accordance with the right-hand rule (with the right hand thumb pointing along the axis, the fingers curl in the direction of a positive rotation).

It should be noted that in the FREDYN program astern seas are considered to have zero relative angle (see Figure 1), which is different from the MHP convention where head seas are considered to be at zero relative angle (see Figure 2). The FREDYN convention is converted to the MHP convention in the data tables.

Table 1 gives some of the main FREDYN output parameters. Note that the output value for ZE, the vertical displacement of the ship CG, is given relative to its value

Figure 1: FREDYN Relative Sea Convention

Figure 2: MHP Relative Sea Convention

when the ship is at rest in calm water. Table 2 gives some of the acceleration

Table 1: FREDYN Output Parameters

Parameter	Units	Description
T	(s)	Time relative to beginning of simulation
ZETAG	(m)	Wave surface displacement at ship CG
ALFAY	(deg)	Beamwise component of wave slope at ship CG
XE	(m)	Displacement of ship CG along x_e axis
YE	(m)	Displacement of ship CG along y_e axis
ZE	(m)	Displacement of ship CG along z_e axis
		(relative to calm water value)
PHI	(deg)	Ship roll angle about x_e axis, positive starboard side down
THETA	(deg)	Ship pitch angle about y_e axis, positive bow up
PSI	(deg)	Ship yaw angle about z_e axis, positive bow to starboard
		(also represents ship heading relative to x_e)
PSI - PSI0	(deg)	Ship heading relative to initial heading, positive bow to starboard
UG	(m/s)	Speed of ship CG in direction x_q
VG	(m/s)	Speed of ship CG in direction y_g
WG	(m/s)	Speed of ship CG in direction z_g
P	(deg/s)	Roll velocity about x_g , positive starboard side down
Q	(deg/s)	Pitch velocity about y_g , positive bow up
R	(deg/s)	Yaw velocity about z_g , positive bow to starboard
DEL(1)	(deg)	Rudder angle, positive trailing edge to port

parameters also generated by FREDYN.

3 Simulation Conditions

The conditions for the simulations were specified by the Maritime Helicopter Project. The operational light loading condition¹ for HALIFAX (see Table 3) was selected as a likely conservative case because motions tend to become greater as displacement decreases.

Several seaway conditions were investigated in order to give a comprehensive set of data. Bretschneider spectra were used to simulate deep water seaways, and JON-SWAP spectra (with a Gamma value of 2) were used to simulate littoral seaways. Tables 4 and 5 give the respective particulars of the specific seaways modelled. As can be seen in these tables, each sea state has two corresponding wave periods,

¹The operational light loading condition used herein is the best estimate of what that condition will be when the helicopters are put into service. The actual condition at that time will likely be somewhat different.

Table 2: FREDYN Output Accelerations

Parameter	Units	Description
XCOG	(m/s^2)	Acceleration of ship CG in direction x_g
YCOG	(m/s^2)	Acceleration of ship CG in direction y_g
ZCOG	(m/s^2)	Acceleration of ship CG in direction z_g
PDOT	(deg/s^2)	Roll acceleration about x_g , positive starboard side down
QDOT	(deg/s^2)	Pitch acceleration about y_g , positive bow up
RDOT	(deg/s^2)	Yaw acceleration about z_g , positive bow to starboard
X1	(m/s^2)	Acceleration of 1^{st} point on ship, parallel to x_g
Y1	(m/s^2)	Acceleration of 1^{st} point on ship, parallel to y_g
Z 1	(m/s^2)	Acceleration of 1^{st} point on ship, parallel to z_g
X2	(m/s^2)	Acceleration of 2^{nd} point on ship, parallel to x_g
Y2	(m/s^2)	Acceleration of 2^{nd} point on ship, parallel to y_g
Z 2	(m/s^2)	Acceleration of 2^{nd} point on ship, parallel to z_g

Table 3: Main Particulars for HALIFAX Class Frigates, Operational Light Loading Condition

Length, L	124.5	m
Beam, B	14.8	m
Midships draft, T_{mid}	4.967	m
Trim by stern, t_s	0.0	m
Displacement, \triangle	4700	tonnes
Longitudinal centre of gravity, \overline{LCG} , aft of midships	2.8	m
Vertical centre of gravity, \overline{KG}	6.70	m
Metacentric height, \overline{GM}_{fluid}	0.89	m

Table 4: Seaway Conditions Investigated - Bretschneider Spectra

Sea State	Seaway Type	$H_{S}(m)$	$T_{\mathbf{P}}(s)$	Notes
5	Bretschneider	4.0	8.3	$T_P = \text{OONA } 5\%$
			15.5	$T_P = \text{OONA } 95\%$
6	Bretschneider	6.0	10.3	$T_P \simeq \text{OONA } 5\%$
			16.2	$T_P = \text{OONA } 95\%$
7	Bretschneider	9.0	13.1	$T_P \simeq \text{OONA } 5\%$
			18.5	$T_P = \text{OONA } 95\%$
8	Bretschneider	14.0	16.4	$T_P \sim \text{OONA } 5\%$
			18.6	$T_P = \text{OONA } 95\%$
>8	Bretschneider	17.7	20.0	$T_P = \text{OONA } 5\%$
			25.7	$T_P = \text{OONA } 95\%$
H_S – Significant Wave Height; T_P – Peak Wave Period;				
OONA – Open Ocean North Atlantic				
(ref NATO Sea State Table)				

Table 5: Seaway Conditions Investigated – JONSWAP Spectra

Sea State	Seaway Type	$H_{S}(m)$	$T_{\mathbf{P}}(s)$	Notes
5	JONSWAP	4.0	8.2	$T_P = \text{LECC } 5\%$
			13.6	$T_P = \text{LECC } 95\%$
6	JONSWAP	6.0	9.3	$T_P = \text{LECC } 5\%$
			13.6	$T_P = \text{LECC } 95\%$
7	JONSWAP	9.0	11.0	$T_P = \text{LECC } 5\%$
			17.1	$T_P = \text{LECC } 95\%$
H_S – Significant Wave Height; T_P – Peak Wave Period;				
LECC – Littoral East Coast Canada				
(ref TDC Wind and Wave Atlas, East Coast of Canada)				

each representing roughly a practical limit of wave period for that particular sea state. The selected wave periods represent the 5^{th} and 95^{th} percentiles, given the significant wave height. In all cases the significant wave height is the upper value for the associated sea state. The last two Bretschneider seaways (Sea State > 8) are based on the HALIFAX performance requirements for survivability without serious damage to mission-essential systems in a seaway with $H_S > 17.7 \, \mathrm{m}$.

Long-crested irregular seaways were simulated using linear superposition of 20 sinusoidal components to form a unidirectional seaway. Unidirectional seaways tend to be conservative (i.e. they generally represent the worst case) since all the energy flux is flowing in the same direction. Simulated motions vary with seed numbers used to generate the random phases. However, the variation of motion statistics with input phase seeds is usually very small when the ship does not approach capsize.

For each seaway simulations were conducted for a matrix of ship speeds and headings:

Ship Speed: 0 to 30kts in 5kt increments

Ship Heading: 0° to 345° in 15° increments

For each wave height the corresponding mean wind speed at 19.5 m elevation is assumed to be from the starboard beam (regardless of wave direction) and given by

$$v = 1.823H_S + 3.45$$

in m/s.

For simulations representing a nominal ship speed, the propeller RPM was set to a value such that FREDYN would give the desired ship speed in calm water. The propeller RPM used to give a desired ship speed with FREDYN will differ from the actual propeller RPM for the HALIFAX class due to assumptions made in numerical modelling.

It should be noted that FREDYN does not model variable pitch propellers, and that the present results are for the HALIFAX propellers set to a specified pitch value.

The program FREDYN requires average wave period, T_{wa} , as an input parameter. The following relationship, based on a Bretschneider spectrum, was used to determine average wave period as a function of a given peak wave period:

$$T_{wa} = 0.772T_P$$

The simulation time step was 0.1s for all runs, and the duration of each simulation was one hour (3620s including a ramp-up time for eliminating integration start-up transients), which is considered adequate for providing enough motion data for meaningful statistical analysis.

4 Simulation Results

Additional processing was performed to extract the statistical data (mean value, standard deviation, minimum value and maximum value) for the following parameters:

- Speed;
- Heading (converted to MHP convention);

- Heave (position);
- Roll (angle); and
- Pitch (angle).
- Longitudinal (with respect to the ship centerline) acceleration at the hangar
- Lateral (with respect to the ship centerline) acceleration at the hangar
- Vertical acceleration at the hangar
- Generalized longitudinal force estimator at the hangar
- Generalized lateral force estimator at the hangar
- Longitudinal (with respect to the ship centerline) acceleration at the flight deck
- Lateral (with respect to the ship centerline) acceleration at the flight deck
- Vertical acceleration at the flight deck
- Generalized longitudinal force estimator at the flight deck
- Generalized lateral force estimator at the flight deck

For an explanation of the generalized force estimators, see [1].

A complete set of polar plots for roll and pitch angles, as well as all force estimators at the flight deck and hangar deck locations are included in annexes A through P. The polar plots can be read intuitively by imagining oneself on the ship facing the bow (top of plot) with the port to the left. Each of the radial lines represents the relative direction of the incoming seaway. The radial lines are shown for 30° increments on the polar plots, with 90° to the starboard and 270° to the port.. The rings in the plots represent (less intuitively) the ships speed in 10 knot increments. The plots are colour coded such that blue represents a low magnitude of the parameter being plotted, and red represents a high value.

Tabulated data is presented in annexes Q and R for heave, roll, and pitch for each seaway simulated. Further data are given in annexes S through V for the accelerations at the flight deck and hangar deck locations². In both cases, the data reported are the maximum absolute value of the parameter in a given simulation run, and the standard deviation associated with the mean value of the parameter for that run.

 $^{^2}$ Actual securing points may not be on the centerline of the ship. The current proposed securing device allows for variances of $\pm 0.5\,\mathrm{m}$ fore and aft, and $\pm 0.5\,\mathrm{m}$ athwartships. Slightly higher loads (accelerations) may occur with off-center securing points.

The maximum absolute value is the most important value for determining securing loads, while the standard deviation gives an indication of the variability of the motion parameter.

5 Conclusions

A comprehensive study was carried out to define the motion characteristics of HAL-IFAX in a broad variety of sea states. The results provide data for determining the loads induced on a secured helicopter by the moving ship.

References

 D. Perrault and K. A. McTaggart. FREDYN Simulations of HALIFAX for Determining Helicopter Securing Loads. Technical Memorandum DRDC Atlantic TM 2004-043, Defence Research and Development Canada - Atlantic, 2004.

Symbols

Table 6: General Symbols

Symbol	Description	
ϕ	Roll angle	
θ	Pitch angle	
$\mid \psi$	Yaw (heading) angle	
ψ_{FREDYN}	Yaw angle of ship with respect to sea direction - FREDYN convention	
ψ_{MHP}	Sea direction with respect to ship - MHP convention	
$\mid \mu \mid$	Coefficient of friction	
	Displacement	
$\mid t_s \mid$	Trim by stern	
x_e, y_e, z_e	earth-fixed axes	
x_g, y_g, z_g	ship-fixed axes (fixed at CG)	
$\mid B \mid$	Beam	
\overline{GM}_{fluid}	Metacentric height, corrected for free surface	
H_S	Significant wave height	
\overline{KG}	Vertical centre of gravity above baseline	
$\mid L$	Length between perpendiculars	
\overline{LCG}	Longitudinal centre of gravity, aft of midships	
T_{3f}, T_{3v}	Coordinate transformation from earth-fixed reference frame	
	to ship-fixed reference frame for translational velocities and	
	rotational velocities respectively	
T_{mid}	Midships draft	
T_P	Peak wave period	

Table 7: FREDYN Symbols

Symbol	Description
ALFAY	Beamwise component of wave slope at ship CG
DEL(1)	Rudder angle
P, Q, R	Roll, pitch, yaw velocities about x_g , y_g , z_g resp.
PDOT, QDOT, RDOT	Roll, pitch, yaw accelerations about x_g , y_g , z_g resp.
PHI, THETA, PSI	Roll, pitch, yaw (heading) angles
PSI - PSI0	Ship heading relative to initial heading
T	Time relative to beginning of simulation
UG, VG, WG	Speed of ship CG in direction x_g , y_g , z_g resp.
X1, Y1, Z1	Accel. of 1^{st} pt. on ship, parallel to x_g , y_g , z_g resp.
X2, Y2, Z2	Accel. of 2^{nd} pt. on ship, parallel to x_g , y_g , z_g resp.
XCOG, YCOG, ZCOG	Accel. of ship CG in direction x_g , y_g , z_g resp.
XE, YE, ZE	Displacement of ship CG along x_e , y_e , z_e resp.
ZETAG	Wave elevation at ship CG

This page intentionally left blank.

Annex A Polar Plots of Maximum Absolute Roll Angle – Bretschneider Spectra (Open Ocean)

Figure A.1: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=8.3\,\mathrm{s}$.

Figure A.2: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure A.3: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=10.3\,\mathrm{s}$.

Figure A.4: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure A.5: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0\,\mathrm{m}$ and $T_P = 13.1\,\mathrm{s}$.

Figure A.6: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0~{
m m}$ and $T_P=18.5~{
m s}$.

Figure A.7: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=16.4\,\mathrm{s}$.

Figure A.8: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure A.9: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=20.0\,\mathrm{s}$.

Figure A.10: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=25.7\,\mathrm{s}$.

Annex B Polar Plots of Maximum Absolute Roll Angle – JONSWAP Spectra (Coastal Waters)

Figure B.1: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure B.2: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure B.3: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=9.3\,\mathrm{s}$.

Figure B.4: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure B.5: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with ${\it H}_S=9.0\,{
m m}$ and $T_P=11.0\,{
m s}.$

Figure B.6: Max. Abs. Roll Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=17.1\,\mathrm{s}$.

Annex C Polar Plots of Maximum Absolute Pitch Angle – Bretschneider Spectra (Open Ocean)

Figure C.1: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=8.3\,\mathrm{s}$.

Figure C.2: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure C.3: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=10.3\,\mathrm{s}$.

Figure C.4: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure C.5: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure C.6: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\,\mathrm{m}$ and $T_P=18.5\,\mathrm{s}$.

Figure C.7: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=16.4\,\mathrm{s}$.

Figure C.8: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure C.9: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=20.0\,\mathrm{s}$.

Figure C.10: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=25.7\,\mathrm{s}$.

Annex D Polar Plots of Maximum Absolute Pitch Angle – JONSWAP Spectra (Coastal Waters)

Figure D.1: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure D.2: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure D.3: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=9.3\,\mathrm{s}$.

Figure D.4: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure D.5: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=11.0\,\mathrm{s}$.

Figure D.6: Max. Abs. Pitch Angles with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=17.1\,\mathrm{s}$.

Annex E Polar Plots of Maximum Absolute Longitudinal Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)

Figure E.1: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure E.2: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure E.3: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 10.3 \, \mathrm{s}$.

Figure E.4: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure E.5: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure E.6: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 18.5 \, \mathrm{s}$.

Figure E.7: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 16.4 \, \mathrm{s}$.

Figure E.8: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure E.9: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 20.0 \, \mathrm{s}$.

Figure E.10: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=25.7\,\mathrm{s}$.

Annex F Polar Plots of Maximum Absolute Longitudinal Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)

Figure F.1: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure F.2: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure F.3: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=9.3\,\mathrm{s}$.

Figure F.4: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure F.5: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 11.0 \, \mathrm{s}$.

Figure F.6: Max. Abs. Long. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=17.1\,\mathrm{s}$.

Annex G Polar Plots of Maximum Absolute Lateral Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)

Figure G.1: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure G.2: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure G.3: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=10.3\,\mathrm{s}$.

Figure G.4: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 16.2 \, \mathrm{s}$.

Figure G.5: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure G.6: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 18.5 \, \mathrm{s}$.

Figure G.7: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 16.4 \, \mathrm{s}$.

Figure G.8: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure G.9: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=20.0\,\mathrm{s}$.

Figure G.10: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7~\mathrm{m}$ and $T_P=25.7~\mathrm{s}$.

Annex H Polar Plots of Maximum Absolute Lateral Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)

Figure H.1: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure H.2: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure H.3: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 9.3 \, \mathrm{s}$.

Figure H.4: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 13.6 \, \mathrm{s}$.

Figure H.5: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=11.0\,\mathrm{s}$.

Figure H.6: Max. Abs. Lat. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 17.1 \, \mathrm{s}$.

Annex I Polar Plots of Maximum Absolute Vertical Force Estimator at Hangar Deck – Bretschneider Spectra (Open Ocean)

Figure I.1: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure I.2: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure I.3: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 10.3 \, \mathrm{s}$.

Figure I.4: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure I.5: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure I.6: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 18.5 \, \mathrm{s}$.

Figure I.7: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 16.4 \, \mathrm{s}$.

Figure I.8: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 18.6 \, \mathrm{s}$.

Figure I.9: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 20.0 \, \mathrm{s}$.

Figure I.10: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 25.7 \, \mathrm{s}$.

Annex J Polar Plots of Maximum Absolute Vertical Force Estimator at Hangar Deck – JONSWAP Spectra (Coastal Waters)

Figure J.1: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure J.2: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure J.3: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 9.3 \, \mathrm{s}$.

Figure J.4: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure J.5: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 11.0 \, \mathrm{s}$.

Figure J.6: Max. Abs. Vert. Force Est. at the Hangar Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=17.1\,\mathrm{s}$.

Annex K Polar Plots of Maximum Absolute Longitudinal Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean)

Figure K.1: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure K.2: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 15.5 \, \mathrm{s}$.

Figure K.3: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 10.3 \, \mathrm{s}$.

Figure K.4: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure K.5: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure K.6: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 18.5 \, \mathrm{s}$.

Figure K.7: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 16.4 \, \mathrm{s}$.

Figure K.8: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 14.0 \, \mathrm{m}$ and $T_P = 18.6 \, \mathrm{s}$.

Figure K.9: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 20.0 \, \mathrm{s}$.

Figure K.10: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 25.7 \, \mathrm{s}$.

Annex L Polar Plots of Maximum Absolute Longitudinal Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters)

Figure L.1: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure L.2: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure L.3: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=9.3\,\mathrm{s}$.

Figure L.4: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure L.5: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 11.0 \, \mathrm{s}$.

Figure L.6: Max. Abs. Long. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 17.1 \, \mathrm{s}$.

Annex M Polar Plots of Maximum Absolute Lateral Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean)

Figure M.1: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure M.2: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure M.3: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 10.3 \, \mathrm{s}$.

Figure M.4: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure M.5: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure M.6: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=9.0\,\mathrm{m}$ and $T_P=18.5\,\mathrm{s}$.

Figure M.7: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=16.4\,\mathrm{s}$.

Figure M.8: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure M.9: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=20.0\,\mathrm{s}$.

Figure M.10: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 25.7 \, \mathrm{s}$.

Annex N Polar Plots of Maximum Absolute Lateral Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters)

Figure N.1: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure N.2: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 13.6 \, \mathrm{s}$.

Figure N.3: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=9.3\,\mathrm{s}$.

Figure N.4: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure N.5: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 11.0 \, \mathrm{s}$.

Figure N.6: Max. Abs. Lat. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=9.0\,\mathrm{m}$ and $T_P=17.1\,\mathrm{s}$.

Annex O Polar Plots of Maximum Absolute Vertical Force Estimator at Flight Deck – Bretschneider Spectra (Open Ocean)

Figure O.1: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 4.0 \, \mathrm{m}$ and $T_P = 8.3 \, \mathrm{s}$.

Figure O.2: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=4.0\,\mathrm{m}$ and $T_P=15.5\,\mathrm{s}$.

Figure O.3: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=10.3\,\mathrm{s}$.

Figure O.4: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=6.0\,\mathrm{m}$ and $T_P=16.2\,\mathrm{s}$.

Figure O.5: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 13.1 \, \mathrm{s}$.

Figure O.6: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 18.5 \, \mathrm{s}$.

Figure O.7: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=16.4\,\mathrm{s}$.

Figure O.8: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=14.0\,\mathrm{m}$ and $T_P=18.6\,\mathrm{s}$.

Figure O.9: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S = 17.7 \, \mathrm{m}$ and $T_P = 20.0 \, \mathrm{s}$.

Figure O.10: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: Bretschneider with $H_S=17.7\,\mathrm{m}$ and $T_P=25.7\,\mathrm{s}$.

Annex P Polar Plots of Maximum Absolute Vertical Force Estimator at Flight Deck – JONSWAP Spectra (Coastal Waters)

Figure P.1: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=8.2\,\mathrm{s}$.

Figure P.2: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=4.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure P.3: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 6.0 \, \mathrm{m}$ and $T_P = 9.3 \, \mathrm{s}$.

Figure P.4: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S=6.0\,\mathrm{m}$ and $T_P=13.6\,\mathrm{s}$.

Figure P.5: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 11.0 \, \mathrm{s}$.

Figure P.6: Max. Abs. Vert. Force Est. at the Flight Deck with respect to Speed and Heading in a Seaway: JONSWAP with $H_S = 9.0 \, \mathrm{m}$ and $T_P = 17.1 \, \mathrm{s}$.

Annex Q Tables of Motion Maxima – Bretschneider Spectrum (Open Ocean)

Table Q.1: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 0.0 Knots

Cmd	Actual		Absolute			Standard		
Heading	Mean		Maximum			Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg
0.0	-0.2	-23.8	0.870	7.420	3.290	0.240	1.390	0.900
15.0	-0.2	-4.6	0.730	4.080	3.090	0.210	0.580	0.830
30.0	-0.2	16.7	0.860	6.960	3.080	0.220	1.150	0.840
45.0	-0.2	33.5	1.110	10.100	3.750	0.280	1.990	0.940
60.0	-0.3	44.5	1.500	12.890	3.780	0.350	2.560	1.010
75.0	-0.5	52.4	1.870	15.150	3.470	0.440	3.030	1.060
90.0	-0.6	59.0	2.390	17.340	3.500	0.520	3.450	1.060
105.0	-0.7	63.4	2.520	17.330	3.350	0.580	3.550	1.030
120.0	-1.6	96.0	2.880	21.060	2.280	0.830	4.040	0.530
135.0	-2.1	102.8	2.250	15.090	2.960	0.730	3.350	0.830
150.0	-2.4	105.0	2.580	14.600	3.570	0.700	3.220	0.880
165.0	-2.5	106.2	2.460	16.380	3.050	0.710	3.310	0.840
180.0	-0.7	74.0	2.850	13.510	3.490	0.440	2.890	0.790
195.0	-0.0	200.3	0.780	7.260	2.310	0.230	1.390	0.710
210.0	-0.2	382.2	2.400	12.130	3.590	0.430	2.710	1.010
225.0	-0.0	384.6	2.230	13.320	3.550	0.440	2.800	1.070
240.0	0.7	293.3	2.640	11.170	3.570	0.640	3.080	1.070
255.0	0.6	292.8	2.580	12.980	3.350	0.660	3.270	1.070
270.0	0.3	295.4	2.310	14.220	3.600	0.620	3.080	1.090
285.0	0.2	299.4	2.140	13.810	3.420	0.540	3.390	1.120
300.0	0.0	303.8	2.070	14.770	3.600	0.490	3.070	1.120
315.0	-0.1	309.3	1.700	11.250	4.120	0.430	2.690	1.090
330.0	-0.1	314.8	1.460	10.700	3.920	0.370	2.270	1.060
345.0	-0.1	322.9	1.090	8.880	3.590	0.300	1.910	0.990

Wind at 20.8 knots (10.7 m/s) is from the starboard beam in all cases.

Table Q.2: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 5.0 Knots

Cmd	Actual		Absolute			Standard		
Heading	Mean		Maximum			Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	$\overline{ ext{kts}}$	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	4.8	-2.1	0.940	5.000	2.640	0.240	0.620	0.840
15.0	4.8	12.8	0.880	5.460	2.770	0.240	0.770	0.850
30.0	4.8	27.6	0.940	7.500	3.320	0.280	1.160	0.920
45.0	4.7	42.1	1.260	8.220	3.230	0.360	1.660	1.020
60.0	4.4	54.6	1.880	11.420	3.700	0.470	2.280	1.100
75.0	4.2	58.0	2.040	13.870	3.510	0.510	2.650	1.100
90.0	4.1	61.8	2.220	17.840	3.430	0.560	2.730	1.080
105.0	4.1	64.0	2.310	14.970	3.310	0.590	2.850	1.080
120.0	4.1	65.4	2.380	13.420	3.390	0.600	2.850	1.080
135.0	4.1	65.8	2.750	13.560	3.350	0.580	2.740	1.080
150.0	4.6	145.4	0.950	9.440	2.200	0.260	1.880	0.690
165.0	4.9	163.1	0.690	7.290	2.180	0.200	1.410	0.600
180.0	4.9	178.7	0.660	5.480	2.100	0.190	0.980	0.570
195.0	4.9	194.1	0.760	6.240	2.200	0.200	1.300	0.590
210.0	4.9	210.1	0.890	9.330	2.220	0.250	1.890	0.680
225.0	4.6	229.1	1.280	11.510	2.690	0.380	2.490	0.830
240.0	4.6	285.6	2.780	11.260	3.090	0.770	2.690	0.960
255.0	4.5	287.1	2.870	11.820	3.140	0.760	2.650	0.980
270.0	4.5	288.9	2.830	14.230	3.110	0.740	2.740	1.020
285.0	4.7	291.1	2.510	11.910	3.530	0.700	2.620	1.070
300.0	4.9	301.1	2.060	9.870	3.690	0.540	2.370	1.150
315.0	4.8	314.2	1.280	8.980	3.750	0.390	1.840	1.070
330.0	4.8	328.5	1.010	8.030	3.180	0.300	1.200	0.960
345.0	4.8	343.2	0.970	5.720	2.950	0.250	0.830	0.880
Wind at 20.8 knots (10.7 m/s) is from the starboard beam in all cases.								

Table Q.3: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 10.0 Knots

Cmd	Actual		Absolute			Standard		
Heading	Mean		Maximum			Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	10.0	-0.6	0.900	5.360	2.550	0.300	0.520	0.830
15.0	10.0	14.4	1.010	5.230	2.730	0.310	0.570	0.850
30.0	10.0	29.4	1.150	6.840	2.890	0.350	0.870	0.930
45.0	10.0	44.4	1.580	8.180	3.690	0.440	1.310	1.030
60.0	10.0	59.2	1.920	10.840	3.410	0.580	1.930	1.110
75.0	10.0	73.0	2.730	12.870	3.150	0.760	2.010	0.980
90.0	9.6	85.5	2.910	22.310	1.430	0.870	2.910	0.410
105.0	9.3	100.2	2.600	22.250	2.390	0.730	3.250	0.600
120.0	9.7	117.2	1.900	19.380	2.960	0.490	3.500	0.760
135.0	9.9	133.4	0.970	15.130	1.960	0.320	4.540	0.660
150.0	10.0	148.9	0.660	17.690	1.630	0.230	5.140	0.550
165.0	10.1	164.2	0.700	20.670	1.740	0.190	4.400	0.480
180.0	10.1	179.3	0.500	13.600	1.640	0.180	2.770	0.480
195.0	10.1	194.6	0.590	9.650	1.520	0.200	2.430	0.510
210.0	10.1	210.3	0.690	12.460	1.700	0.250	4.090	0.590
225.0	10.0	225.7	0.900	15.070	1.880	0.340	4.170	0.700
240.0	9.8	241.9	2.030	13.200	2.960	0.520	3.490	0.800
255.0	9.4	259.4	2.770	15.930	2.680	0.780	3.180	0.660
270.0	9.7	274.2	3.040	19.890	1.790	0.920	2.920	0.380
285.0	10.1	286.7	2.730	10.180	3.250	0.800	2.030	0.980
300.0	10.1	300.1	2.270	10.030	3.890	0.610	2.020	1.130
315.0	10.0	314.7	1.550	6.740	3.540	0.460	1.370	1.060
330.0	10.0	329.7	1.260	6.730	2.880	0.360	0.870	0.950
345.0	10.0	344.6	0.980	5.020	2.860	0.310	0.590	0.860
Wind at 20.8 knots (10.7 m/s) is from the starboard beam in all cases.								

Table Q.4: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	ı
Heading	Mo	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	15.2	-0.2	1.270	5.480	2.530	0.370	0.480	0.810
15.0	15.2	14.8	1.330	6.120	2.600	0.380	0.540	0.830
30.0	15.2	29.8	1.400	7.170	3.040	0.440	0.780	0.910
45.0	15.1	44.8	1.580	8.470	3.110	0.530	1.130	1.010
60.0	15.2	59.6	2.250	12.420	3.480	0.670	1.640	1.070
75.0	15.2	74.0	2.660	14.990	3.130	0.820	1.890	0.930
90.0	15.1	88.4	3.030	23.480	1.240	0.860	3.050	0.210
105.0	15.0	103.3	2.300	18.650	2.120	0.650	3.200	0.590
120.0	15.1	118.8	1.350	20.980	2.130	0.440	6.480	0.640
135.0	15.2	134.5	0.900	22.100	1.540	0.300	7.600	0.520
150.0	15.2	149.7	0.830	18.010	1.770	0.260	5.300	0.580
165.0	15.1	164.7	0.560	11.930	1.560	0.230	2.730	0.530
180.0	15.3	179.7	0.460	13.040	1.270	0.170	1.500	0.420
195.0	15.2	194.6	0.590	16.550	1.440	0.210	2.500	0.480
210.0	15.2	209.8	0.710	17.610	1.520	0.240	4.810	0.540
225.0	15.2	225.3	1.020	20.400	1.910	0.310	7.450	0.570
240.0	15.1	241.1	1.910	19.950	2.710	0.490	6.050	0.700
255.0	15.0	256.7	2.420	15.660	2.140	0.710	3.500	0.650
270.0	15.1	271.7	2.950	16.680	1.050	0.910	3.390	0.210
285.0	15.3	285.9	2.760	9.390	3.060	0.860	2.190	0.930
300.0	15.2	300.1	2.350	7.750	3.360	0.690	1.670	1.090
315.0	15.2	314.9	1.700	7.000	3.200	0.550	1.190	1.030
330.0	15.2	329.9	1.410	6.170	3.070	0.440	0.730	0.920
345.0	15.2	344.8	1.310	5.210	2.620	0.390	0.490	0.840
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table Q.5: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual		Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	1	D	eviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	20.3	-0.1	1.380	5.950	2.580	0.440	0.460	0.780
15.0	20.3	14.9	1.500	6.770	2.820	0.460	0.500	0.810
30.0	20.3	29.9	1.630	7.770	3.040	0.520	0.720	0.880
45.0	20.3	44.9	1.910	9.670	3.030	0.610	1.060	0.970
60.0	20.3	59.8	2.460	11.870	3.320	0.740	1.560	1.030
75.0	20.4	74.4	3.110	16.390	3.200	0.860	2.020	0.880
90.0	20.3	89.1	2.630	23.760	0.950	0.830	3.120	0.180
105.0	20.2	104.0	2.870	23.680	2.490	0.610	4.130	0.510
120.0	20.3	119.5	1.480	27.970	1.970	0.410	9.330	0.510
135.0	20.3	134.9	0.910	23.480	1.800	0.310	7.210	0.530
150.0	20.4	149.6	0.630	16.210	1.440	0.210	3.810	0.450
165.0	20.8	164.7	0.510	16.140	1.330	0.180	1.740	0.410
180.0	20.1	179.6	0.480	19.940	1.730	0.170	2.800	0.430
195.0	20.7	195.0	0.590	19.590	2.110	0.180	2.710	0.420
210.0	20.5	210.1	0.670	24.330	1.410	0.210	4.430	0.450
225.0	20.3	225.0	0.740	25.560	1.460	0.270	7.280	0.470
240.0	20.3	240.5	1.550	28.490	2.800	0.440	8.840	0.560
255.0	20.2	255.9	2.720	24.670	2.360	0.670	4.440	0.590
270.0	20.3	270.9	2.880	15.500	1.120	0.880	3.720	0.190
285.0	20.4	285.5	3.070	9.510	3.020	0.890	2.610	0.890
300.0	20.3	300.1	2.410	8.510	3.410	0.760	1.890	1.040
315.0	20.3	315.0	1.920	7.650	3.260	0.620	1.210	0.980
330.0	20.3	329.9	1.740	5.840	3.060	0.520	0.710	0.880
345.0	20.3	344.9	1.500	5.330	2.820	0.460	0.460	0.810
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	ases.	

Table Q.6: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.4	-0.1	1.530	6.480	2.360	0.490	0.490	0.740
15.0	25.4	14.9	1.640	7.220	2.600	0.510	0.520	0.760
30.0	25.4	29.9	1.930	8.780	2.890	0.570	0.750	0.830
45.0	25.4	44.9	2.460	10.660	3.160	0.670	1.140	0.920
60.0	25.4	59.8	2.630	13.410	3.180	0.800	1.700	0.990
75.0	25.4	74.6	3.520	16.630	2.980	0.890	2.160	0.850
90.0	25.4	89.4	2.580	21.640	0.940	0.810	3.260	0.180
105.0	25.4	104.4	1.990	22.770	2.000	0.580	5.110	0.480
120.0	25.4	119.9	1.250	32.370	1.960	0.360	10.780	0.490
135.0	25.3	134.9	0.920	23.920	1.780	0.280	6.670	0.490
150.0	25.4	149.9	0.710	16.820	1.670	0.210	3.270	0.450
165.0	25.3	164.9	0.570	18.910	1.670	0.170	2.270	0.400
180.0	25.6	179.9	0.510	18.130	1.410	0.160	2.100	0.370
195.0	25.3	194.7	0.550	19.690	1.700	0.160	3.530	0.400
210.0	25.3	209.8	0.700	24.080	1.810	0.210	4.530	0.460
225.0	25.1	224.5	0.890	29.940	1.950	0.260	7.620	0.470
240.0	25.4	240.2	1.390	34.210	2.250	0.390	11.780	0.550
255.0	25.4	255.6	2.090	23.450	2.010	0.640	5.390	0.550
270.0	25.4	270.6	2.780	15.650	0.870	0.850	4.000	0.200
285.0	25.4	285.4	3.190	10.540	2.840	0.920	3.110	0.850
300.0	25.4	300.1	2.600	9.100	3.490	0.810	2.240	0.980
315.0	25.4	315.1	2.330	7.710	3.200	0.680	1.410	0.920
330.0	25.4	330.0	1.860	6.130	2.830	0.580	0.810	0.830
345.0	25.4	345.0	1.640	5.920	2.670	0.510	0.510	0.760
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.7: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.0	1.550	6.730	2.330	0.520	0.500	0.690
15.0	30.5	14.9	1.620	7.070	2.280	0.540	0.500	0.720
30.0	30.5	29.9	1.900	8.700	2.740	0.610	0.780	0.780
45.0	30.5	44.9	2.420	12.580	2.920	0.710	1.290	0.870
60.0	30.5	59.8	2.680	15.490	3.240	0.840	1.960	0.940
75.0	30.5	74.7	2.770	15.150	2.460	0.920	2.240	0.820
90.0	30.5	89.5	2.560	20.940	1.030	0.790	3.280	0.180
105.0	30.5	104.6	2.230	25.200	2.380	0.540	6.150	0.410
120.0	30.4	119.9	1.330	32.800	2.000	0.410	12.060	0.570
135.0	30.5	134.7	0.850	20.490	1.560	0.270	6.390	0.480
150.0	30.5	149.9	0.630	18.570	1.280	0.200	3.680	0.380
165.0	30.5	164.8	0.610	16.340	1.190	0.160	2.500	0.310
180.0	30.5	179.9	0.550	18.080	1.280	0.160	2.730	0.310
195.0	30.6	194.9	0.610	21.340	1.360	0.160	3.750	0.310
210.0	30.4	209.9	0.750	23.490	1.500	0.200	5.000	0.400
225.0	30.4	224.9	0.840	25.410	1.620	0.270	6.330	0.490
240.0	30.4	240.1	1.630	39.430	2.680	0.430	12.420	0.630
255.0	30.5	255.3	2.080	25.510	1.970	0.610	6.640	0.520
270.0	30.5	270.4	2.800	16.880	0.760	0.830	4.280	0.210
285.0	30.5	285.3	3.080	13.540	2.770	0.940	3.410	0.810
300.0	30.5	300.2	2.770	10.970	3.040	0.850	2.700	0.930
315.0	30.5	315.1	2.470	9.460	2.940	0.720	1.680	0.860
330.0	30.5	330.0	1.910	7.340	2.630	0.610	0.990	0.780
345.0 30.5 345.0 1.680 6.800 2.420 0.540 0.620 0.71								0.710
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.8: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		Standard			
Heading	Me	ean	N	Iaximum	1	D	eviation	ı	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	-0.0	-14.9	2.620	7.930	3.410	0.740	1.990	1.040	
15.0	-0.1	-6.0	2.460	6.270	3.590	0.730	1.350	1.050	
30.0	-0.2	5.3	2.390	8.080	3.690	0.730	1.720	1.050	
45.0	-0.2	22.7	2.580	11.720	3.830	0.740	3.000	1.010	
60.0	-0.1	39.4	2.830	13.820	3.400	0.790	3.890	0.940	
75.0	-0.1	53.3	3.030	15.660	3.180	0.840	4.290	0.810	
90.0	-0.1	68.5	3.400	15.320	1.990	0.900	4.450	0.570	
105.0	-0.1	88.4	3.720	15.940	1.260	0.950	4.600	0.130	
120.0	-0.3	99.9	3.340	16.750	2.040	0.930	4.730	0.320	
135.0	-0.5	108.2	3.360	15.360	2.250	0.910	4.720	0.510	
150.0	-0.8	115.2	2.860	15.160	2.490	0.880	4.680	0.650	
165.0	-1.0	119.3	2.750	14.300	2.560	0.860	4.570	0.720	
180.0	-0.5	53.8	2.820	12.510	3.470	0.770	3.320	0.970	
195.0	0.1	338.6	2.730	13.390	3.440	0.810	3.690	0.930	
210.0	0.2	248.5	3.130	14.960	2.560	0.940	4.420	0.610	
225.0	0.1	255.3	3.200	14.510	2.310	0.970	4.450	0.480	
240.0	0.1	263.7	3.450	14.580	2.080	0.990	4.420	0.290	
255.0	0.1	275.2	3.500	14.230	1.290	1.000	4.280	0.220	
270.0	0.2	288.2	3.620	14.020	1.800	0.960	4.130	0.510	
285.0	0.2	298.6	3.370	13.690	2.430	0.920	4.010	0.720	
300.0	0.1	308.0	3.200	13.520	2.830	0.870	3.900	0.850	
315.0	0.1	317.0	2.920	13.920	3.130	0.830	3.640	0.930	
330.0	0.1	326.3	2.920	12.130	3.240	0.800	3.270	0.990	
345.0	0.0	336.0	2.880	10.350	3.380	0.760	2.690	1.020	
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.		

Table Q.9: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual	1	Absolute		Standard			
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg	
0.0	4.9	-2.4	2.820	5.650	3.630	0.730	0.880	1.070	
15.0	4.8	12.3	2.760	7.460	3.380	0.730	1.570	1.060	
30.0	4.8	27.1	2.960	9.930	3.320	0.760	2.510	1.020	
45.0	4.8	42.0	2.780	12.560	3.310	0.800	3.210	0.940	
60.0	4.8	56.5	3.220	14.180	2.720	0.860	3.600	0.800	
75.0	4.8	71.2	3.130	13.980	1.920	0.920	3.770	0.530	
90.0	4.8	85.7	3.240	13.520	0.640	0.950	3.980	0.140	
105.0	4.7	100.0	2.990	15.480	1.100	0.930	4.210	0.280	
120.0	4.4	110.5	3.630	16.430	2.240	0.890	4.210	0.520	
135.0	4.2	120.6	2.980	14.240	2.520	0.850	4.080	0.670	
150.0	4.5	143.2	2.490	11.450	2.880	0.770	2.900	0.840	
165.0	4.7	161.6	2.500	7.820	2.910	0.730	1.650	0.890	
180.0	4.9	178.1	2.380	6.780	3.010	0.720	1.340	0.910	
195.0	4.9	194.3	2.510	8.140	2.980	0.730	2.120	0.900	
210.0	4.9	210.7	2.500	9.840	2.900	0.760	3.020	0.870	
225.0	4.9	227.2	2.930	11.860	2.800	0.830	3.650	0.800	
240.0	4.8	243.0	3.370	12.620	2.190	0.900	3.980	0.640	
255.0	4.9	257.2	3.140	12.530	1.540	0.960	4.020	0.370	
270.0	5.0	271.5	3.360	13.470	0.390	0.990	3.840	0.070	
285.0	5.0	286.0	3.790	13.000	1.600	0.960	3.600	0.460	
300.0	5.0	300.3	3.230	11.980	2.970	0.910	3.440	0.770	
315.0	5.0	314.4	3.000	11.560	2.890	0.840	3.070	0.930	
330.0	4.9	328.6	2.700	10.380	3.230	0.790	2.510	1.020	
345.0	4.9	343.1	2.870	8.410	3.500	0.750	1.700	1.060	
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table Q.10: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	Standard			
Heading		ean	N	Iaximum	1	D	eviation	ı		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch		
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg		
0.0	10.1	-0.6	2.730	4.790	4.420	0.750	0.480	1.070		
15.0	10.1	14.4	2.940	7.040	4.170	0.760	1.170	1.060		
30.0	10.1	29.5	2.840	9.030	3.670	0.780	1.980	1.020		
45.0	10.1	44.5	2.670	11.320	3.110	0.830	2.520	0.930		
60.0	10.1	59.3	3.070	12.550	2.450	0.880	2.890	0.760		
75.0	10.2	74.2	3.520	13.450	1.750	0.920	3.010	0.470		
90.0	10.1	89.0	3.520	12.880	0.310	0.930	3.390	0.090		
105.0	10.1	103.9	2.950	15.250	1.280	0.890	3.750	0.330		
120.0	10.0	118.6	2.670	17.130	2.350	0.840	4.000	0.570		
135.0	10.0	133.7	2.710	15.810	2.630	0.780	3.820	0.700		
150.0	10.0	148.9	2.380	13.960	2.480	0.730	3.690	0.770		
165.0	10.1	164.1	2.510	12.870	2.820	0.710	2.860	0.810		
180.0	10.1	179.3	2.570	10.500	3.180	0.700	1.850	0.820		
195.0	10.1	194.6	2.390	9.620	2.730	0.710	2.090	0.820		
210.0	10.1	210.1	2.450	11.220	2.570	0.750	3.430	0.800		
225.0	10.1	225.6	2.520	11.940	2.800	0.810	4.160	0.740		
240.0	10.1	240.8	3.110	13.430	2.400	0.880	4.390	0.620		
255.0	10.2	255.6	3.990	14.010	1.470	0.940	4.150	0.380		
270.0	10.2	270.4	3.520	13.140	0.290	0.970	3.720	0.080		
285.0	10.2	285.1	3.580	12.730	1.670	0.960	3.330	0.450		
300.0	10.1	299.9	3.510	11.510	2.610	0.910	2.980	0.760		
315.0	10.1	314.6	2.850	10.070	3.230	0.850	2.450	0.940		
330.0	10.1	329.5	3.030	8.750	3.880	0.800	1.810	1.020		
345.0	10.1	344.4	2.830	7.070	4.080	0.770	1.030	1.060		
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.			

Table Q.11: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	ı
Heading	Mo	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	15.2	-0.3	2.710	5.140	3.360	0.800	0.450	1.060
15.0	15.2	14.8	2.620	6.730	3.330	0.800	1.080	1.050
30.0	15.2	29.9	2.850	9.470	3.640	0.820	1.780	1.010
45.0	15.2	44.9	3.530	11.910	3.520	0.860	2.360	0.920
60.0	15.2	59.8	3.000	11.550	2.670	0.890	2.820	0.760
75.0	15.3	74.7	3.020	11.960	1.480	0.910	2.660	0.460
90.0	15.3	89.6	3.670	13.090	0.400	0.910	3.060	0.110
105.0	15.3	104.5	3.150	16.000	1.120	0.870	3.620	0.320
120.0	15.2	119.3	2.610	20.260	1.810	0.810	4.900	0.520
135.0	15.2	134.6	2.350	20.000	2.320	0.760	5.060	0.640
150.0	15.2	149.7	2.130	13.100	2.160	0.720	3.120	0.700
165.0	15.2	164.7	2.200	9.400	2.380	0.690	1.950	0.760
180.0	15.3	179.7	2.130	7.900	2.250	0.680	0.950	0.700
195.0	15.2	194.8	2.440	14.860	2.800	0.700	2.150	0.800
210.0	15.2	209.9	2.090	16.280	2.230	0.730	3.670	0.730
225.0	15.2	225.2	2.780	17.520	2.220	0.780	5.710	0.680
240.0	15.2	240.4	2.990	17.470	2.190	0.850	5.450	0.570
255.0	15.3	255.3	3.270	15.270	1.290	0.920	4.490	0.360
270.0	15.3	270.2	3.310	14.360	0.420	0.950	3.810	0.110
285.0	15.3	285.0	3.790	13.350	1.540	0.960	3.280	0.450
300.0	15.2	299.9	3.220	12.130	2.360	0.920	2.840	0.750
315.0	15.2	314.7	3.660	10.840	3.260	0.880	2.210	0.930
330.0	15.2	329.7	2.740	8.780	3.630	0.830	1.520	1.010
345.0	15.2	344.7	2.640	6.450	3.370	0.810	0.770	1.050
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.12: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l			
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı			
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch			
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg			
0.0	20.3	-0.1	2.890	5.870	3.460	0.850	0.490	1.040			
15.0	20.3	14.9	2.770	7.630	3.230	0.860	1.110	1.030			
30.0	20.3	30.0	3.460	9.200	3.260	0.870	1.800	0.990			
45.0	20.3	45.0	3.010	11.490	2.880	0.890	2.430	0.910			
60.0	20.3	59.9	3.460	12.910	2.830	0.910	3.030	0.750			
75.0	20.4	74.8	3.170	11.270	1.660	0.910	2.450	0.470			
90.0	20.4	89.8	3.570	13.320	0.500	0.880	2.840	0.140			
105.0	20.4	104.8	3.030	17.360	1.200	0.840	3.450	0.300			
120.0	20.3	119.7	3.180	25.080	1.870	0.780	6.340	0.480			
135.0	20.3	134.8	2.210	18.950	1.940	0.750	5.520	0.620			
150.0	20.3	149.8	2.040	11.550	1.860	0.690	3.120	0.640			
165.0	20.4	164.8	1.880	8.190	2.210	0.610	1.650	0.640			
180.0	20.4	179.9	1.960	9.990	2.190	0.730	1.010	0.740			
195.0	20.4	194.9	1.980	14.480	2.030	0.690	2.120	0.720			
210.0	20.4	209.9	2.570	23.840	2.310	0.720	3.490	0.650			
225.0	20.4	225.0	2.210	22.470	1.800	0.750	4.890	0.580			
240.0	20.4	240.2	3.020	24.120	1.830	0.830	6.950	0.540			
255.0	20.4	255.1	2.780	17.810	1.250	0.890	4.570	0.340			
270.0	20.4	270.1	3.270	15.910	0.530	0.930	3.770	0.140			
285.0	20.4	285.0	3.860	14.830	1.560	0.950	3.190	0.450			
300.0	20.4	299.9	3.650	13.290	2.760	0.940	2.800	0.740			
315.0	20.3	314.8	3.050	11.060	3.050	0.910	2.060	0.910			
330.0	20.3	329.8	3.270	9.490	3.380	0.880	1.370	0.990			
345.0	20.3	344.8	3.010	6.910	3.390	3.390 0.860 0.670 1.03					
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.				

Table Q.13: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	1	Absolute		Standard			
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg	
0.0	25.4	-0.1	3.390	6.600	3.760	0.910	0.550	1.010	
15.0	25.4	15.0	3.360	7.930	3.890	0.920	1.110	1.000	
30.0	25.4	30.0	3.100	10.200	3.260	0.920	1.780	0.970	
45.0	25.4	45.0	3.400	11.090	3.070	0.930	2.420	0.890	
60.0	25.4	60.0	3.700	14.030	2.630	0.930	3.170	0.740	
75.0	25.4	74.9	3.210	11.410	1.560	0.900	2.370	0.470	
90.0	25.4	89.9	3.440	13.090	0.590	0.860	2.750	0.170	
105.0	25.4	104.8	2.910	17.330	1.070	0.820	3.460	0.280	
120.0	25.4	119.9	2.380	27.860	2.030	0.780	8.310	0.490	
135.0	25.4	134.9	2.300	15.920	1.490	0.710	5.550	0.550	
150.0	25.4	149.9	2.030	13.790	1.720	0.670	3.680	0.610	
165.0	25.5	164.9	2.220	11.250	2.280	0.840	2.220	0.770	
180.0	25.6	179.9	1.860	9.130	1.990	0.490	0.740	0.590	
195.0	25.5	195.0	2.560	16.980	2.190	0.860	2.260	0.770	
210.0	25.5	210.0	2.000	22.240	2.010	0.710	3.890	0.610	
225.0	25.4	225.0	2.260	27.080	1.770	0.740	5.630	0.570	
240.0	25.4	240.0	2.340	24.110	1.470	0.790	6.690	0.460	
255.0	25.4	255.0	3.320	17.520	1.170	0.860	4.370	0.330	
270.0	25.4	270.0	3.340	16.310	0.610	0.900	3.600	0.170	
285.0	25.4	285.0	3.160	14.070	1.530	0.940	3.040	0.450	
300.0	25.4	299.9	3.320	13.850	2.590	0.960	2.680	0.730	
315.0	25.4	314.9	3.440	11.480	3.000	0.950	1.870	0.880	
330.0	25.4	329.9	3.100	9.510	3.040	0.930	1.180	0.960	
345.0	25.4	344.9	3.500	7.360	3.860	0.920	0.580	1.000	
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.		

Table Q.14: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		Standard				
Heading	Mo	ean	N	Iaximum	ı	D	eviation	ı		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch		
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg		
0.0	30.5	-0.0	3.540	7.290	3.540	0.970	0.610	0.980		
15.0	30.5	15.0	3.500	8.680	3.280	0.970	1.110	0.970		
30.0	30.5	30.0	3.540	10.050	3.310	0.970	1.720	0.940		
45.0	30.5	45.0	3.110	12.600	3.020	0.970	2.410	0.870		
60.0	30.5	60.0	3.100	14.660	2.380	0.960	3.220	0.730		
75.0	30.5	75.0	3.080	10.800	1.640	0.900	2.260	0.470		
90.0	30.5	89.9	3.270	12.570	0.660	0.830	2.730	0.190		
105.0	30.5	104.9	2.630	16.100	0.930	0.780	3.710	0.260		
120.0	30.5	119.9	2.540	21.530	1.410	0.710	7.400	0.390		
135.0	30.5	134.9	2.320	21.790	1.810	0.510	4.940	0.450		
150.0	30.6	149.9	1.790	14.190	1.770	0.630	3.510	0.620		
165.0	30.6	164.9	1.790	11.240	2.020	0.630	1.940	0.680		
180.0	31.0	179.9	1.680	12.830	2.020	0.650	1.220	0.670		
195.0	30.6	194.9	1.690	16.060	1.830	0.610	2.280	0.650		
210.0	30.6	210.0	1.800	18.470	1.780	0.630	3.670	0.600		
225.0	30.5	225.0	1.670	23.960	1.360	0.560	5.110	0.460		
240.0	30.5	240.1	2.480	33.680	1.760	0.760	8.160	0.470		
255.0	30.5	255.0	2.800	17.460	1.090	0.830	3.980	0.320		
270.0	30.5	270.0	2.900	15.740	0.690	0.880	3.270	0.190		
285.0	30.5	285.0	3.350	15.070	1.560	0.930	2.860	0.450		
300.0	30.5	299.9	3.410	13.860	2.230	0.970	2.520	0.710		
315.0	30.5	314.9	3.570	12.970	2.760	0.980	1.730	0.850		
330.0	30.5	329.9	3.850	9.740	3.340	0.980	1.090	0.930		
345.0	30.5	344.9	3.510	7.960	960 3.150 0.970 0.560 0.9					
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.			

Table Q.15: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual	1	Absolute		Standard			
Heading	Me	ean	N	Iaximum	1	D	eviation	ւ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	-0.1	-18.2	2.410	14.030	7.230	0.650	3.010	1.670	
15.0	-0.3	-12.9	2.240	11.690	5.690	0.620	2.510	1.650	
30.0	-0.6	-3.0	2.060	12.340	5.870	0.600	2.390	1.630	
45.0	-0.9	7.5	2.280	14.340	5.870	0.610	3.110	1.620	
60.0	-1.2	18.4	2.850	20.240	5.710	0.690	4.450	1.620	
75.0	-1.6	-14.9	3.960	24.860	5.450	0.890	6.670	1.540	
90.0	-1.5	-5.5	4.090	24.480	5.200	0.880	6.690	1.530	
105.0	-1.3	-6.7	3.600	24.470	5.410	0.860	6.460	1.550	
120.0	-1.3	47.4	4.750	33.040	5.360	1.060	7.110	1.180	
135.0	-3.0	105.0	4.960	27.950	4.420	1.170	6.370	1.080	
150.0	-3.7	109.0	3.970	22.290	5.600	1.120	6.130	1.220	
165.0	-4.0	106.1	4.310	37.600	4.580	1.140	6.280	1.180	
180.0	-0.2	328.0	2.680	21.680	6.300	0.680	4.480	1.580	
195.0	-0.2	16.8	3.670	16.910	6.170	0.750	4.070	1.640	
210.0	-0.2	385.8	3.640	19.510	6.200	0.810	4.240	1.650	
225.0	-0.1	392.3	4.070	19.160	5.610	0.870	4.780	1.660	
240.0	0.0	393.2	3.730	18.490	5.760	0.970	5.050	1.630	
255.0	0.0	386.6	3.940	19.200	5.150	1.070	5.870	1.560	
270.0	0.5	300.2	3.690	19.960	4.860	1.090	4.960	1.530	
285.0	0.3	303.6	4.930	21.140	5.020	1.030	4.870	1.620	
300.0	-0.0	309.2	4.270	20.290	5.160	0.960	5.080	1.660	
315.0	-0.1	315.9	4.000	19.620	5.900	0.860	4.780	1.710	
330.0	-0.3	325.3	3.740	17.480	6.030	0.780	4.050	1.690	
345.0	-0.1	333.7	2.580	14.860	6.220	0.700	3.350	1.670	
Wind at 28	8 0 knots	(14.4 m/s	is from	the starb	oard bea	m in all c	ases		

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases.

Table Q.16: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	Absolute			S	tandard	l
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	4.1	-10.0	2.080	14.660	6.080	0.620	2.310	1.650
15.0	4.0	-2.0	1.910	10.290	6.110	0.610	2.030	1.630
30.0	3.9	8.0	2.080	12.120	5.440	0.610	2.280	1.630
45.0	3.8	19.0	2.310	14.480	6.430	0.650	2.900	1.630
60.0	3.8	31.1	2.950	17.000	6.100	0.720	3.580	1.650
75.0	3.7	38.8	2.940	19.380	5.640	0.780	4.060	1.650
90.0	3.7	46.5	3.450	21.820	5.480	0.870	4.510	1.620
105.0	3.7	48.9	3.840	30.690	5.230	0.890	4.690	1.610
120.0	3.7	46.7	3.270	28.730	5.110	0.870	4.810	1.610
135.0	3.7	43.4	3.180	20.510	5.270	0.830	4.160	1.640
150.0	3.8	45.4	4.740	19.270	5.190	0.830	4.390	1.630
165.0	3.8	49.5	4.570	21.110	4.980	0.820	4.230	1.650
180.0	4.7	178.6	2.000	12.810	3.780	0.560	2.490	1.210
195.0	4.6	197.3	2.020	13.220	3.870	0.610	3.010	1.260
210.0	4.1	368.4	4.470	15.480	6.240	0.750	3.880	1.630
225.0	4.5	295.9	4.150	17.860	5.030	1.110	4.830	1.460
240.0	4.7	286.9	4.480	19.900	4.550	1.270	5.020	1.230
255.0	4.5	289.3	4.410	20.700	4.150	1.260	5.020	1.290
270.0	4.4	292.8	4.400	16.550	4.770	1.210	4.790	1.410
285.0	4.5	295.6	4.620	17.940	4.440	1.160	4.990	1.500
300.0	4.7	302.6	4.250	18.890	5.110	1.040	4.520	1.650
315.0	4.7	314.4	3.120	18.190	5.830	0.880	3.840	1.730
330.0	4.6	327.1	2.660	16.130	5.750	0.750	3.210	1.710
345.0	4.4	340.0	2.150	12.740	5.980	0.660	2.630	1.670
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.17: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	Standard		
Heading	Me	ean	N	Iaximum	1	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg	
0.0	9.8	-1.2	2.520	9.660	5.330	0.700	1.390	1.610	
15.0	9.7	13.7	2.370	9.810	5.450	0.710	1.500	1.610	
30.0	9.7	28.7	2.950	13.420	5.840	0.780	2.200	1.640	
45.0	9.7	43.7	3.210	16.040	5.660	0.890	2.840	1.660	
60.0	9.7	58.2	3.730	18.520	5.090	1.050	3.530	1.580	
75.0	9.7	71.6	4.270	20.040	4.170	1.220	4.140	1.270	
90.0	9.0	81.8	5.040	24.410	2.950	1.290	4.770	0.720	
105.0	8.6	88.7	4.960	37.890	2.950	1.280	5.980	0.390	
120.0	8.4	100.7	4.780	27.500	3.640	1.170	6.260	0.740	
135.0	8.9	125.6	3.530	23.020	3.800	0.850	5.520	1.150	
150.0	9.4	145.7	1.900	21.210	3.480	0.650	6.160	1.110	
165.0	9.6	162.0	1.650	23.800	3.240	0.560	6.340	1.050	
180.0	9.9	178.3	1.530	21.590	3.030	0.540	5.320	1.040	
195.0	10.0	194.6	1.620	16.070	3.080	0.570	3.960	1.080	
210.0	9.8	211.5	1.990	16.660	3.430	0.660	5.380	1.150	
225.0	9.3	231.7	3.400	20.380	4.170	0.880	5.740	1.220	
240.0	8.5	259.3	4.320	34.160	4.070	1.250	5.930	0.920	
255.0	8.6	269.8	5.130	34.080	3.690	1.370	5.530	0.520	
270.0	9.2	277.4	4.820	22.050	2.780	1.400	4.710	0.670	
285.0	10.0	287.5	4.870	16.730	4.270	1.310	4.030	1.270	
300.0	10.0	300.3	3.660	17.420	5.220	1.130	3.770	1.610	
315.0	9.8	314.3	3.890	18.500	5.860	0.940	3.160	1.690	
330.0	9.8	329.1	2.820	16.230	5.670	0.810	2.210	1.670	
345.0	9.8	343.9	2.710	10.950	5.360	0.720	1.640	1.630	
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table Q.18: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg
0.0	15.0	-0.5	3.140	10.500	5.150	0.810	1.200	1.560
15.0	15.0	14.6	2.880	9.460	5.310	0.830	1.400	1.570
30.0	15.0	29.6	2.810	10.460	4.880	0.900	1.770	1.610
45.0	15.0	44.7	3.320	13.760	5.140	1.010	2.390	1.620
60.0	15.0	59.4	4.390	20.510	5.410	1.150	3.060	1.530
75.0	15.1	73.7	4.620	21.010	4.130	1.270	3.360	1.180
90.0	14.9	87.7	4.440	24.290	2.760	1.270	4.400	0.340
105.0	14.8	102.4	4.810	29.930	2.510	1.110	5.930	0.660
120.0	14.6	116.8	3.900	25.700	3.630	0.920	7.380	0.900
135.0	15.0	133.5	2.160	25.360	3.030	0.730	8.320	0.960
150.0	15.0	149.2	1.870	20.330	2.810	0.620	6.430	0.950
165.0	15.0	164.1	1.670	20.670	2.410	0.540	3.950	0.900
180.0	15.0	179.2	1.930	20.930	3.220	0.560	3.490	1.030
195.0	15.1	194.4	1.600	22.520	2.610	0.520	4.160	0.870
210.0	15.1	209.7	2.130	23.040	3.270	0.600	6.150	0.960
225.0	15.0	226.3	2.950	23.720	3.920	0.770	8.790	1.060
240.0	14.6	243.5	4.730	25.020	4.510	0.990	7.850	1.010
255.0	14.5	258.6	4.620	32.300	3.440	1.230	6.480	0.750
270.0	14.8	272.6	4.880	21.060	2.060	1.380	5.250	0.350
285.0	15.2	286.1	4.440	18.120	4.250	1.360	3.860	1.190
300.0	15.1	300.0	4.870	15.440	5.880	1.210	3.310	1.550
315.0	15.0	314.6	3.540	13.470	5.230	1.050	2.580	1.650
330.0	15.0	329.5	2.830	12.840	5.010	0.920	1.970	1.620
345.0	15.0	344.5	2.950	10.720	5.370	0.840	1.380	1.590
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.19: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots

Cmd	Act	Actual		Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.2	-0.2	3.180	9.320	4.990	0.940	1.110	1.510
15.0	20.2	14.8	3.280	9.690	5.280	0.960	1.280	1.520
30.0	20.2	29.9	3.720	12.670	5.110	1.020	1.700	1.550
45.0	20.2	44.9	3.920	16.430	5.000	1.120	2.190	1.560
60.0	20.2	59.7	3.830	16.580	4.580	1.230	2.760	1.480
75.0	20.3	74.2	4.400	21.920	4.050	1.300	3.110	1.140
90.0	20.2	88.7	4.430	25.150	1.680	1.230	4.130	0.290
105.0	20.1	103.7	5.530	29.970	2.620	1.050	6.530	0.620
120.0	20.2	118.8	2.850	29.590	2.970	0.840	10.490	0.770
135.0	20.2	134.7	1.950	24.760	2.630	0.590	7.860	0.680
150.0	20.3	149.6	1.830	20.070	2.470	0.570	5.820	0.850
165.0	20.1	164.5	1.420	22.470	2.480	0.500	3.600	0.850
180.0	20.6	179.5	1.280	24.840	2.570	0.530	3.500	0.830
195.0	20.1	194.4	1.630	27.270	2.920	0.560	5.050	0.890
210.0	20.2	209.9	1.600	32.560	2.940	0.620	7.450	0.960
225.0	20.0	225.5	2.140	33.460	2.980	0.700	10.620	0.950
240.0	20.2	241.0	2.960	34.500	3.460	0.920	11.640	0.950
255.0	19.9	256.9	4.590	29.860	2.850	1.160	7.620	0.710
270.0	20.1	271.4	4.800	23.190	2.050	1.350	5.680	0.310
285.0	20.3	285.7	4.680	15.160	3.970	1.390	4.110	1.140
300.0	20.3	300.0	4.230	13.530	4.660	1.290	3.220	1.490
315.0	20.2	314.8	4.170	14.370	5.340	1.150	2.490	1.570
330.0	20.2	329.7	3.630	11.400	5.380	1.040	1.860	1.560
345.0	20.2	344.8	3.460	9.030	5.340	0.970	1.320	1.520
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases

Table Q.20: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.4	-0.1	3.680	10.340	4.630	1.050	1.160	1.430
15.0	25.4	14.9	3.470	10.890	4.400	1.070	1.310	1.450
30.0	25.4	29.9	3.840	14.120	4.890	1.130	1.710	1.490
45.0	25.3	44.9	4.390	15.460	5.210	1.210	2.190	1.500
60.0	25.3	59.8	4.170	18.820	4.130	1.300	2.800	1.430
75.0	25.3	74.5	4.550	21.170	3.500	1.330	3.050	1.100
90.0	25.3	89.2	4.250	22.180	2.070	1.200	4.100	0.290
105.0	25.2	104.2	4.490	39.580	3.770	1.000	8.340	0.610
120.0	25.2	119.7	2.990	34.920	3.250	0.800	13.500	0.730
135.0	25.2	134.7	1.460	26.470	2.690	0.570	9.540	0.760
150.0	25.1	149.8	1.800	23.430	2.560	0.550	6.170	0.810
165.0	25.8	164.4	1.460	22.750	2.180	0.520	3.250	0.810
180.0	25.6	179.8	1.590	22.640	2.670	0.480	3.270	0.770
195.0	25.7	195.1	1.340	24.970	2.510	0.510	4.450	0.800
210.0	25.4	210.0	1.870	29.360	2.970	0.570	6.840	0.840
225.0	25.2	225.3	1.690	40.650	3.040	0.600	10.760	0.830
240.0	25.2	240.5	3.410	39.210	3.320	0.800	13.720	0.770
255.0	25.2	255.9	4.330	30.350	3.020	1.110	8.650	0.700
270.0	25.3	270.9	4.370	20.820	1.530	1.310	6.050	0.320
285.0	25.4	285.5	4.840	15.180	3.690	1.410	4.260	1.100
300.0	25.4	300.1	4.070	14.090	4.480	1.350	3.520	1.430
315.0	25.4	314.9	4.160	13.330	5.300	1.240	2.670	1.500
330.0	25.4	329.9	3.780	11.590	5.010	1.140	1.830	1.480
345.0 25.4 344.9 3.460 9.720 4.650 1.070 1.290 1.4								
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.21: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.0	3.890	11.070	4.700	1.120	1.280	1.360
15.0	30.5	15.0	3.670	11.770	4.630	1.140	1.350	1.380
30.0	30.5	30.0	3.780	16.050	4.600	1.200	1.820	1.420
45.0	30.5	44.9	4.590	19.390	4.880	1.280	2.360	1.440
60.0	30.4	59.8	4.420	20.070	4.190	1.360	2.850	1.380
75.0	30.4	74.6	5.180	21.560	3.830	1.360	3.090	1.080
90.0	30.4	89.4	4.350	22.260	1.460	1.170	4.100	0.300
105.0	30.3	104.5	3.840	35.100	3.470	0.950	10.250	0.570
120.0	30.1	119.7	3.040	38.040	3.090	0.880	15.960	0.880
135.0	30.2	135.0	2.490	30.640	2.930	0.630	9.070	0.840
150.0	30.9	148.9	1.680	27.460	3.250	0.570	6.070	0.830
165.0	31.3	164.3	1.420	25.540	2.870	0.430	4.080	0.700
180.0	30.3	179.5	1.570	28.670	2.530	0.500	4.760	0.800
195.0	31.3	195.1	1.400	25.400	2.710	0.420	5.450	0.670
210.0	31.0	210.7	1.780	25.050	2.600	0.550	7.050	0.790
225.0	30.3	225.1	2.350	34.090	3.420	0.650	9.580	0.900
240.0	30.2	240.6	4.080	42.680	3.270	0.820	15.100	0.880
255.0	30.3	255.5	4.770	46.490	4.500	1.060	10.640	0.710
270.0	30.4	270.6	4.270	22.390	1.320	1.270	5.890	0.340
285.0	30.5	285.4	5.650	20.610	4.110	1.430	4.940	1.070
300.0	30.5	300.1	4.520	15.970	4.660	1.410	4.020	1.370
315.0	30.5	315.1	4.450	15.310	4.790	1.310	3.150	1.430
330.0	30.5	330.0	3.930	11.540	4.820	1.210	2.050	1.410
345.0	30.5	345.0	3.810	10.560	4.870	1.150	1.480	1.370
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.22: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		S	Standard			
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch		
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg		
0.0	-0.2	-19.6	4.170	12.320	5.000	1.180	3.160	1.510		
15.0	-0.4	-11.2	3.860	11.070	5.110	1.150	2.700	1.530		
30.0	-0.6	-1.8	3.660	12.250	5.660	1.140	2.610	1.530		
45.0	-0.4	17.6	4.150	17.130	5.610	1.140	3.810	1.480		
60.0	-0.1	40.8	4.350	21.120	4.720	1.210	5.190	1.310		
75.0	0.1	57.8	4.600	22.860	4.120	1.290	5.710	1.050		
90.0	0.1	74.2	5.100	19.620	3.020	1.370	5.790	0.630		
105.0	-0.2	93.6	5.200	20.020	1.440	1.410	6.070	0.250		
120.0	-0.6	104.0	5.570	22.930	2.640	1.380	6.240	0.570		
135.0	-1.1	111.6	5.080	21.930	3.250	1.350	6.190	0.800		
150.0	-1.5	118.3	4.160	20.400	3.580	1.310	6.050	0.980		
165.0	-1.8	124.3	4.080	18.780	4.200	1.280	5.750	1.110		
180.0	-1.3	86.0	4.400	16.020	4.440	1.220	5.580	1.330		
195.0	0.0	358.1	4.410	15.480	4.710	1.250	4.910	1.370		
210.0	0.3	252.3	4.660	19.420	3.480	1.440	5.790	0.780		
225.0	0.1	258.0	5.420	19.770	3.380	1.470	5.810	0.610		
240.0	0.0	265.7	5.830	18.770	2.700	1.500	5.770	0.390		
255.0	0.1	275.9	5.790	18.850	1.980	1.500	5.590	0.350		
270.0	0.2	287.1	5.750	18.720	2.600	1.470	5.360	0.680		
285.0	0.2	296.8	5.110	18.740	3.020	1.410	5.180	0.960		
300.0	0.2	305.4	4.680	17.410	3.940	1.360	5.000	1.160		
315.0	0.2	314.1	4.420	16.350	4.420	1.300	4.730	1.300		
330.0	0.1	322.8	4.340	18.150	4.600	1.260	4.330	1.400		
345.0	345.0 -0.1 331.6 4.530 15.150 4.510 1.210 3.800 1.460									
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.			

Table Q.23: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	1	Absolute		S	l	
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	4.2	-13.9	4.500	13.420	5.130	1.160	3.090	1.540
15.0	4.1	-5.4	4.410	12.300	4.710	1.140	2.720	1.550
30.0	4.0	5.6	4.260	12.960	5.230	1.140	2.820	1.540
45.0	4.1	24.0	4.100	16.250	5.660	1.160	3.760	1.470
60.0	4.2	43.6	4.440	18.070	4.850	1.240	4.780	1.320
75.0	4.3	58.6	4.530	18.810	3.610	1.300	5.190	1.060
90.0	4.3	73.3	4.830	18.280	2.300	1.370	5.350	0.650
105.0	4.3	89.5	5.390	21.940	1.300	1.390	5.650	0.180
120.0	4.2	100.7	5.090	21.520	2.610	1.380	5.810	0.430
135.0	4.0	109.6	4.570	21.520	3.300	1.340	5.780	0.690
150.0	3.9	116.9	4.790	20.280	4.090	1.310	5.690	0.860
165.0	3.8	128.1	4.200	20.110	4.420	1.250	5.180	1.050
180.0	3.9	149.1	4.060	14.990	4.360	1.160	3.690	1.250
195.0	4.7	194.1	3.760	12.450	4.500	1.130	3.130	1.320
210.0	4.6	213.1	4.090	14.750	4.220	1.200	4.140	1.260
225.0	4.5	232.8	5.140	17.010	4.620	1.310	4.950	1.100
240.0	4.5	248.1	5.060	20.180	3.330	1.400	5.360	0.810
255.0	4.7	260.6	5.010	16.660	1.810	1.460	5.450	0.440
270.0	4.8	273.8	5.050	19.030	1.240	1.490	5.270	0.190
285.0	4.9	287.5	5.860	18.560	2.200	1.460	4.930	0.680
300.0	4.9	300.8	5.040	16.690	4.170	1.380	4.610	1.080
315.0	4.9	313.9	4.520	15.460	4.080	1.300	4.210	1.320
330.0	4.7	326.7	4.930	15.030	5.030	1.230	3.740	1.450
345.0	4.5	338.6	4.570	15.580	5.280	1.180	3.330	1.520
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.24: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots

Cmd	A ct	Actual Absolute Standard									
	l .	ean		Absolute Iaximum		l	tanuar c Peviation	1			
Heading											
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch			
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg			
0.0	9.9	-1.3	4.470	10.460	6.030	1.160	1.230	1.550			
15.0	9.9	13.8	4.560	11.390	6.000	1.170	1.970	1.530			
30.0	9.9	28.9	4.070	13.230	4.880	1.190	2.850	1.460			
45.0	9.9	43.9	4.880	16.430	4.620	1.250	3.480	1.330			
60.0	10.0	58.7	4.790	17.120	3.300	1.310	3.880	1.080			
75.0	10.1	73.5	4.870	19.400	2.350	1.370	4.130	0.670			
90.0	10.0	88.3	4.620	19.190	0.640	1.380	4.630	0.150			
105.0	10.0	103.2	4.620	20.210	1.500	1.340	5.050	0.430			
120.0	9.7	117.3	4.450	21.560	3.010	1.280	5.040	0.770			
135.0	9.7	132.1	4.390	19.800	3.730	1.200	4.560	0.980			
150.0	9.7	147.6	3.770	18.740	3.670	1.130	4.510	1.090			
165.0	9.8	163.1	3.730	18.650	4.030	1.090	4.220	1.160			
180.0	9.9	178.6	3.490	16.060	3.770	1.090	3.430	1.210			
195.0	10.0	194.3	3.660	13.920	3.900	1.110	3.350	1.200			
210.0	9.9	210.5	3.860	14.460	3.820	1.170	4.570	1.170			
225.0	9.8	226.6	4.360	15.180	3.780	1.250	5.510	1.070			
240.0	9.8	242.1	4.530	15.810	2.940	1.350	5.860	0.860			
255.0	10.0	256.5	5.250	17.950	1.660	1.430	5.810	0.510			
270.0	10.1	271.0	5.350	18.240	0.720	1.470	5.390	0.130			
285.0	10.1	285.5	5.590	17.270	2.260	1.450	4.790	0.620			
300.0	10.1	300.0	5.210	16.290	3.590	1.390	4.120	1.060			
315.0	10.0	314.3	4.070	15.110	4.490	1.310	3.390	1.320			
330.0	9.9	329.0	4.480	12.430	5.050	1.230	2.530	1.460			
345.0	9.9	343.8	4.680	11.550	5.570	1.190	1.710	1.530			
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.				

Table Q.25: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute Standard			tandard	ı
Heading	Me	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	15.1	-0.5	3.780	8.760	4.710	1.210	1.020	1.520
15.0	15.1	14.6	4.250	11.070	4.990	1.220	1.740	1.500
30.0	15.1	29.7	5.210	12.930	5.350	1.250	2.610	1.440
45.0	15.1	44.7	4.960	15.300	4.960	1.290	3.250	1.310
60.0	15.1	59.5	4.360	16.350	3.460	1.340	3.740	1.060
75.0	15.2	74.4	5.280	17.510	2.420	1.360	3.660	0.660
90.0	15.2	89.3	4.610	18.760	0.670	1.350	4.190	0.180
105.0	15.2	104.2	4.730	22.000	1.480	1.310	4.870	0.420
120.0	15.1	118.8	3.950	25.960	2.630	1.240	5.950	0.710
135.0	15.0	134.0	4.340	24.400	3.340	1.150	6.220	0.880
150.0	15.1	149.3	3.260	18.500	3.310	1.110	4.450	0.990
165.0	15.2	164.4	3.040	14.200	2.840	1.070	2.360	1.000
180.0	15.1	179.4	3.070	12.780	3.230	1.060	2.210	1.050
195.0	15.1	194.6	3.160	19.500	3.430	1.090	3.390	1.100
210.0	15.1	209.9	3.280	20.860	3.350	1.130	5.180	1.060
225.0	15.1	225.6	4.390	20.840	3.360	1.190	7.420	0.980
240.0	15.1	241.0	4.590	20.450	3.130	1.300	7.290	0.800
255.0	15.2	255.6	5.080	20.020	1.700	1.390	6.500	0.500
270.0	15.2	270.4	4.950	20.390	0.720	1.440	5.740	0.170
285.0	15.2	285.2	6.210	18.490	2.060	1.440	4.990	0.610
300.0	15.2	299.8	5.210	17.040	3.380	1.400	4.070	1.050
315.0	15.1	314.5	5.320	14.580	4.840	1.330	3.070	1.300
330.0	15.1	329.4	4.970	12.600	4.910	1.270	2.180	1.440
345.0	15.1	344.4	4.210	10.330	4.890	1.240	1.330	1.510
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.26: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	Absolute Standard			l		
Heading	Mo	ean	N	Iaximum	ì	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.2	-0.2	4.210	9.670	4.750	1.280	1.080	1.480
15.0	20.2	14.9	4.510	11.220	4.590	1.290	1.840	1.470
30.0	20.2	29.9	4.580	13.890	4.860	1.300	2.680	1.410
45.0	20.3	44.9	4.430	14.910	4.400	1.330	3.400	1.280
60.0	20.3	59.8	5.240	18.210	3.990	1.350	4.070	1.050
75.0	20.3	74.7	4.990	16.830	2.030	1.340	3.510	0.660
90.0	20.3	89.6	4.610	18.020	0.840	1.310	3.990	0.220
105.0	20.3	104.6	4.170	23.790	1.520	1.270	4.840	0.400
120.0	20.3	119.4	4.660	27.590	2.310	1.190	7.990	0.670
135.0	20.2	134.7	3.510	23.250	2.730	1.140	7.510	0.890
150.0	20.2	149.6	3.480	17.810	3.240	1.140	5.070	1.090
165.0	20.3	164.7	3.460	13.640	3.180	1.040	2.400	0.970
180.0	20.3	179.7	3.120	15.460	3.450	1.000	2.070	1.010
195.0	20.3	194.8	3.790	26.650	3.620	1.110	3.820	1.090
210.0	20.2	210.0	3.730	30.480	3.150	1.200	6.360	1.150
225.0	20.3	224.9	3.330	30.380	2.770	1.140	7.040	0.840
240.0	20.3	240.5	4.770	27.280	2.580	1.260	9.220	0.770
255.0	20.3	255.3	4.930	24.250	1.690	1.350	6.890	0.480
270.0	20.3	270.2	5.130	21.550	0.830	1.410	5.930	0.210
285.0	20.3	285.1	5.530	19.940	2.160	1.430	5.120	0.610
300.0	20.3	299.8	5.800	19.850	3.790	1.410	4.040	1.030
315.0	20.3	314.7	4.530	16.080	4.390	1.380	2.940	1.280
330.0	20.2	329.6	5.370	13.430	4.660	1.330	2.010	1.400
345.0	20.2	344.7	4.210	10.700	4.680	1.300	1.140	1.470
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.27: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual	1	Absolute		Standa		
Heading	Me	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	25.3	-0.1	5.400	10.840	5.190	1.360	1.230	1.440
15.0	25.3	15.0	4.990	12.280	5.140	1.360	1.920	1.430
30.0	25.3	30.0	4.810	14.410	4.500	1.370	2.770	1.370
45.0	25.4	45.0	5.300	16.270	4.460	1.380	3.580	1.260
60.0	25.4	60.0	5.200	19.000	3.440	1.370	4.340	1.040
75.0	25.4	74.8	5.650	19.560	2.420	1.330	3.510	0.670
90.0	25.4	89.7	4.590	18.570	0.960	1.270	4.030	0.250
105.0	25.4	104.8	4.680	23.660	1.430	1.220	4.960	0.370
120.0	25.3	119.8	4.480	32.560	2.710	1.160	9.720	0.640
135.0	25.3	134.8	3.560	23.450	2.500	1.110	7.410	0.810
150.0	25.4	149.7	2.890	21.890	2.850	0.920	5.070	0.850
165.0	25.6	164.8	2.350	13.630	2.420	0.810	2.330	0.820
180.0	25.6	179.8	3.620	15.360	3.230	1.290	1.800	1.100
195.0	25.6	195.0	2.060	17.980	2.240	0.670	2.500	0.770
210.0	25.4	210.1	3.310	31.130	2.910	1.270	6.480	1.040
225.0	25.3	225.2	3.710	39.620	2.960	1.210	9.200	0.980
240.0	25.4	240.2	3.900	35.770	2.470	1.210	9.630	0.700
255.0	25.4	255.1	5.120	28.180	1.700	1.320	6.890	0.470
270.0	25.4	270.1	4.980	25.180	0.940	1.380	5.880	0.250
285.0	25.4	285.0	5.330	23.130	2.130	1.420	5.170	0.620
300.0	25.4	299.8	5.880	18.740	3.410	1.430	3.860	1.010
315.0	25.4	314.8	5.420	17.510	4.090	1.420	2.700	1.240
330.0	25.3	329.8	4.670	14.100	4.290	1.390	1.750	1.360
345.0	25.3	344.8	4.900	11.040	4.960	1.370	1.100	1.420
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.28: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.0	5.130	11.800	4.600	1.430	1.380	1.390
15.0	30.5	15.0	5.220	13.620	4.380	1.430	2.020	1.380
30.0	30.5	30.1	5.600	14.690	4.770	1.430	2.780	1.330
45.0	30.5	45.1	4.940	16.980	4.250	1.420	3.660	1.230
60.0	30.4	60.0	4.830	19.830	3.150	1.400	4.640	1.020
75.0	30.5	74.9	4.420	16.670	2.150	1.320	3.590	0.670
90.0	30.5	89.8	4.730	20.710	1.130	1.240	4.290	0.290
105.0	30.5	104.8	4.060	21.610	1.350	1.180	5.430	0.350
120.0	30.4	119.9	3.670	31.870	2.330	1.150	11.460	0.670
135.0	30.4	134.8	3.660	29.560	2.890	1.200	8.990	0.870
150.0	30.8	149.6	2.920	19.560	2.970	0.840	4.520	0.850
165.0	30.8	164.7	3.030	15.720	3.870	1.000	2.760	0.980
180.0	30.5	179.7	2.680	22.230	2.750	1.000	2.550	1.020
195.0	30.9	195.0	2.930	22.310	3.030	0.990	3.470	0.960
210.0	30.7	210.1	2.520	22.990	2.590	0.880	5.110	0.820
225.0	30.4	225.1	2.980	33.760	2.140	1.170	8.260	0.800
240.0	30.4	240.1	3.310	36.770	1.960	1.150	9.730	0.620
255.0	30.5	255.1	4.530	30.530	1.590	1.270	6.450	0.460
270.0	30.5	270.0	4.750	24.900	1.050	1.340	5.460	0.290
285.0	30.5	285.0	4.620	23.520	2.170	1.400	5.000	0.620
300.0	30.5	299.9	5.330	19.520	3.130	1.450	3.620	0.990
315.0	30.5	314.9	5.090	18.380	4.040	1.460	2.560	1.200
330.0	30.5	329.9	5.450	14.490	4.810	1.450	1.690	1.320
345.0 30.5 344.9 5.200 12.370 4.480 1.440 1.240 1.370								
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all o	ases.	

Table Q.29: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	-1.0	-32.0	5.530	24.400	7.550	1.570	6.800	2.400
15.0	-1.6	-24.8	5.480	22.120	9.430	1.520	6.740	2.440
30.0	-3.1	-86.6	6.500	40.050	9.070	1.640	9.770	2.100
45.0	-3.0	-71.3	6.270	33.460	7.930	1.690	10.140	1.980
60.0	-2.5	-84.7	7.070	33.120	8.080	1.840	10.210	1.530
75.0	-0.5	-74.5	7.360	39.000	7.660	1.920	9.900	1.070
90.0	0.2	62.4	6.650	31.860	5.920	1.770	8.390	1.740
105.0	0.3	87.5	7.780	32.570	4.210	1.970	9.060	0.700
120.0	-2.6	104.1	7.880	32.110	4.970	1.920	9.500	1.180
135.0	-3.6	108.0	8.380	33.840	5.460	1.890	9.310	1.400
150.0	-4.1	81.2	6.390	29.210	9.470	1.770	10.270	1.770
165.0	-2.9	44.8	7.540	32.220	8.420	1.660	9.120	2.170
180.0	-1.0	11.2	5.440	23.570	8.470	1.560	7.420	2.380
195.0	-0.3	31.9	6.050	30.900	7.570	1.660	7.630	2.330
210.0	0.2	39.3	7.160	26.900	6.860	1.750	7.830	2.240
225.0	0.4	273.9	8.100	32.180	5.490	2.150	8.980	0.920
240.0	-0.1	274.4	8.080	33.160	4.200	2.190	9.030	0.760
255.0	0.5	282.3	7.970	32.860	4.940	2.160	8.610	1.100
270.0	0.7	288.3	7.860	29.440	5.400	2.110	8.520	1.450
285.0	0.7	294.8	8.380	27.780	5.540	2.010	8.130	1.780
300.0	0.5	299.8	7.020	28.780	6.940	1.910	7.950	1.980
315.0	0.5	306.0	7.440	28.850	7.000	1.820	7.730	2.160
330.0	0.2	311.9	7.240	30.530	7.750	1.740	7.860	2.260
345.0	-0.0	319.7	6.980	25.210	8.310	1.650	7.120	2.370
Wind at 3	8 7 knots	(19 9 m/s	s) is from	the starb	oard bea	m in all c	rases	

Wind at 38.7 knots (19.9 m/s) is from the starboard beam in all cases.

Table Q.30: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	Absolute Standard			l		
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	3.6	-32.7	6.140	24.550	7.840	1.580	7.010	2.450
15.0	3.4	-24.6	5.560	23.800	8.240	1.510	6.580	2.480
30.0	3.3	-17.7	5.250	22.200	8.200	1.450	6.390	2.500
45.0	3.1	-10.1	5.220	23.980	8.150	1.430	6.280	2.500
60.0	3.1	-0.1	4.550	24.380	9.640	1.430	6.160	2.480
75.0	3.2	11.7	5.360	26.510	8.410	1.470	6.800	2.400
90.0	3.5	35.9	5.820	28.800	8.460	1.610	7.830	2.190
105.0	3.3	33.0	6.420	38.070	8.680	1.580	7.740	2.230
120.0	3.7	64.9	7.540	35.130	8.380	1.810	8.740	1.620
135.0	3.2	33.9	5.820	45.140	8.240	1.570	7.500	2.280
150.0	3.3	43.2	6.610	28.610	7.770	1.610	7.660	2.250
165.0	3.4	43.8	5.540	23.830	8.040	1.620	7.310	2.320
180.0	3.8	96.3	6.250	24.560	7.250	1.540	8.750	2.230
195.0	3.9	15.4	5.640	26.970	7.940	1.650	8.210	2.310
210.0	4.1	30.3	5.710	27.820	7.780	1.730	8.030	2.250
225.0	4.5	276.9	8.500	34.160	6.610	2.140	8.720	0.920
240.0	4.4	278.6	8.000	32.750	4.860	2.160	8.430	0.930
255.0	4.3	282.7	8.210	31.270	5.240	2.140	8.400	1.100
270.0	4.4	288.0	8.740	29.270	5.380	2.100	7.820	1.430
285.0	4.5	293.0	7.260	28.390	8.040	2.030	7.380	1.730
300.0	4.6	300.8	7.000	26.270	6.640	1.910	7.170	2.040
315.0	4.4	308.9	6.670	30.410	6.480	1.790	7.600	2.240
330.0	4.1	315.7	6.460	27.460	7.000	1.710	7.350	2.330
345.0	3.9	321.6	5.920	26.470	8.420	1.640	7.260	2.410
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.31: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		Standard			
Heading	Mo	ean	N	Iaximum	ı	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	8.9	-5.5	6.110	21.580	9.010	1.460	4.180	2.500	
15.0	8.6	8.2	5.400	21.390	8.770	1.440	4.360	2.480	
30.0	8.9	25.0	5.630	22.040	8.560	1.500	4.930	2.420	
45.0	9.1	41.0	5.120	24.590	7.450	1.620	5.690	2.310	
60.0	9.3	56.0	6.510	25.920	6.480	1.760	6.120	2.040	
75.0	9.6	70.8	7.450	30.290	6.290	1.910	6.600	1.500	
90.0	9.2	82.7	7.290	29.600	2.920	1.980	7.980	0.710	
105.0	8.9	94.7	7.650	36.570	3.300	1.940	8.830	0.520	
120.0	8.4	107.6	7.680	38.840	4.090	1.820	8.540	1.070	
135.0	8.3	120.1	5.870	32.350	5.120	1.670	7.740	1.420	
150.0	8.3	135.6	5.830	28.220	5.700	1.500	7.090	1.650	
165.0	8.6	154.1	4.940	27.050	5.920	1.340	7.280	1.710	
180.0	9.4	176.8	3.300	26.060	5.650	1.260	6.650	1.790	
195.0	9.5	196.0	4.980	24.470	7.120	1.330	5.910	1.830	
210.0	9.0	219.7	5.400	25.650	5.650	1.550	7.180	1.850	
225.0	8.3	253.8	8.840	45.720	5.860	1.980	8.790	1.240	
240.0	8.4	263.7	9.080	43.660	5.050	2.100	9.050	0.830	
255.0	8.6	271.4	9.100	37.930	3.620	2.150	8.790	0.640	
270.0	8.9	278.8	9.170	35.610	5.360	2.160	8.390	0.830	
285.0	9.7	288.4	7.360	31.190	4.780	2.110	7.460	1.470	
300.0	9.8	300.2	6.780	26.380	6.930	1.950	6.400	2.010	
315.0	9.6	313.2	5.820	27.610	7.140	1.770	5.820	2.300	
330.0	9.4	326.9	5.920	26.210	8.590	1.620	5.350	2.440	
345.0	9.1	340.6	6.320	24.480	8.700	1.510	4.790	2.500	
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table Q.32: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	I	Absolute		Standard		
Heading	Me	ean	\mathbf{N}	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	14.7	-1.3	5.930	19.580	7.750	1.580	2.940	2.430
15.0	14.7	13.9	5.860	18.060	7.510	1.590	3.300	2.410
30.0	14.7	29.1	5.080	19.890	6.830	1.650	3.920	2.360
45.0	14.8	44.3	7.040	23.380	7.620	1.740	4.460	2.220
60.0	14.9	58.9	6.270	27.550	6.530	1.860	5.200	1.950
75.0	15.0	73.3	7.710	28.630	4.130	1.950	5.930	1.380
90.0	14.9	87.8	7.390	30.800	2.420	1.930	7.560	0.410
105.0	14.9	102.9	7.850	39.410	3.020	1.820	8.730	0.740
120.0	14.4	116.4	5.660	30.610	3.880	1.640	8.230	1.140
135.0	14.4	131.7	4.580	29.530	4.590	1.470	8.720	1.350
150.0	15.1	148.7	3.750	25.800	5.130	1.350	7.170	1.480
165.0	15.0	163.5	3.880	26.070	5.290	1.250	4.750	1.450
180.0	14.7	178.5	3.750	24.490	4.780	1.220	5.040	1.510
195.0	14.7	194.2	3.590	28.910	5.400	1.250	6.080	1.590
210.0	15.0	209.9	4.000	30.450	4.850	1.370	7.480	1.610
225.0	14.4	229.8	7.940	40.220	7.770	1.580	10.240	1.460
240.0	14.0	247.1	8.720	39.730	5.230	1.860	10.310	1.280
255.0	14.2	260.4	10.100	51.540	3.110	2.030	10.110	0.800
270.0	14.6	273.5	8.130	32.610	2.360	2.140	9.080	0.490
285.0	15.0	286.7	8.010	30.940	4.700	2.130	7.880	1.360
300.0	15.0	300.0	7.800	24.250	6.740	2.010	6.170	1.960
315.0	14.9	314.0	7.200	25.860	7.680	1.850	4.910	2.240
330.0	14.8	328.7	5.980	21.760	7.060	1.710	3.980	2.380
345.0	14.7	343.6	5.870	20.180	8.200	1.620	3.350	2.420
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starbo	oard bear	m in all c	ases.	

Table Q.33: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	Ι	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.0	-0.5	6.360	15.740	7.510	1.730	2.640	2.320
15.0	20.0	14.6	6.140	17.050	7.170	1.740	3.070	2.310
30.0	20.0	29.8	6.200	19.340	6.810	1.780	3.600	2.270
45.0	20.0	44.8	6.380	24.130	6.740	1.850	4.150	2.150
60.0	20.1	59.5	7.680	25.960	6.170	1.930	4.760	1.900
75.0	20.2	74.0	8.350	32.860	4.780	1.960	5.770	1.340
90.0	20.1	88.7	7.240	31.020	2.390	1.880	7.490	0.400
105.0	20.1	104.0	6.630	35.520	3.580	1.740	9.360	0.710
120.0	19.9	118.4	5.110	33.370	4.460	1.570	11.260	1.050
135.0	19.9	134.3	4.780	35.740	4.790	1.460	11.150	1.380
150.0	19.9	149.2	3.680	27.460	4.190	1.300	6.980	1.390
165.0	20.0	164.1	3.340	25.260	4.990	1.240	4.980	1.520
180.0	20.3	179.2	3.060	28.370	4.250	1.290	4.650	1.460
195.0	20.2	194.7	3.330	32.330	4.740	1.230	6.470	1.510
210.0	20.1	210.1	3.450	38.620	4.690	1.290	9.200	1.420
225.0	20.0	225.4	4.860	37.470	4.650	1.400	11.260	1.310
240.0	19.8	242.3	8.260	36.770	4.730	1.690	12.850	1.230
255.0	19.8	257.5	9.030	41.030	2.800	1.950	11.390	0.850
270.0	20.0	271.9	8.110	31.610	2.610	2.100	9.810	0.450
285.0	20.2	286.0	7.340	28.800	4.410	2.140	8.240	1.310
300.0	20.2	299.9	7.660	30.570	6.600	2.060	6.000	1.900
315.0	20.1	314.4	6.790	21.040	7.210	1.940	4.490	2.170
330.0	20.1	329.3	6.140	21.300	7.500	1.830	3.720	2.280
345.0	20.0	344.3	6.290	18.940	7.560	1.770	3.180	2.320
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table Q.34: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute		5	Standard		
Heading		ean		Taximum	ı		Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	kts	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	25.2	-0.2	6.640	15.530	6.990	1.860	2.680	2.210	
15.0	25.2	14.9	7.180	17.550	7.270	1.860	2.900	2.200	
30.0	25.2	30.0	6.530	20.860	7.190	1.900	3.620	2.180	
45.0	25.2	45.0	6.320	25.220	6.570	1.950	4.070	2.080	
60.0	25.2	59.7	6.470	24.840	5.460	1.980	4.640	1.840	
75.0	25.2	74.3	6.870	30.150	4.000	1.970	5.760	1.320	
90.0	25.2	89.1	7.180	31.170	2.420	1.830	7.850	0.440	
105.0	25.2	104.4	5.960	34.150	3.240	1.670	10.560	0.670	
120.0	25.0	119.4	5.410	44.940	5.600	1.550	14.900	1.070	
135.0	24.9	134.0	4.320	36.880	4.550	1.330	11.470	1.220	
150.0	25.1	149.2	3.600	32.680	4.890	1.290	7.960	1.340	
165.0	25.7	164.2	3.320	27.820	4.030	1.190	4.860	1.380	
180.0	26.2	179.6	3.260	26.250	4.030	1.210	3.910	1.420	
195.0	25.8	195.0	3.370	28.170	3.790	1.190	5.240	1.360	
210.0	25.2	209.9	3.490	34.210	4.380	1.120	8.230	1.310	
225.0	25.0	225.4	4.280	39.560	4.260	1.310	12.530	1.210	
240.0	25.0	240.5	5.600	46.070	5.520	1.590	16.390	1.250	
255.0	25.0	256.3	8.830	41.750	3.310	1.860	12.450	0.840	
270.0	25.1	271.1	7.210	39.370	2.840	2.050	10.600	0.480	
285.0	25.3	285.7	7.860	31.960	4.240	2.150	8.640	1.290	
300.0	25.3	300.0	6.980	26.430	5.950	2.110	5.990	1.840	
315.0	25.3	314.7	7.150	21.870	6.660	2.030	4.580	2.090	
330.0	25.3	329.6	7.570	18.090	7.110	1.950	3.520	2.180	
345.0 25.2 344.7 6.830 16.770 7.300 1.890 3.000 2.210									
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table Q.35: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.4	-0.0	6.530	16.880	6.400	1.970	2.700	2.110
15.0	30.4	15.1	6.370	18.450	6.190	1.980	3.080	2.110
30.0	30.4	30.1	7.380	23.700	6.930	2.010	3.640	2.090
45.0	30.4	45.0	7.130	26.810	7.150	2.040	4.140	2.000
60.0	30.3	59.8	7.370	24.410	5.600	2.040	4.590	1.790
75.0	30.3	74.5	7.840	32.880	4.170	1.980	6.000	1.300
90.0	30.3	89.3	7.170	36.260	3.050	1.790	8.480	0.490
105.0	30.2	104.5	8.350	44.570	5.160	1.630	12.100	0.690
120.0	29.9	119.2	5.440	47.540	3.630	1.440	15.530	0.970
135.0	29.6	133.6	5.190	45.790	4.470	1.510	13.180	1.390
150.0	30.6	148.6	3.460	31.160	4.330	1.320	8.800	1.410
165.0	30.9	163.5	4.020	34.980	4.950	1.230	6.490	1.520
180.0	31.5	179.1	6.910	34.530	9.120	1.150	6.020	1.480
195.0	31.1	194.7	5.240	32.960	6.810	1.200	7.060	1.530
210.0	30.8	210.7	3.680	37.190	4.510	1.350	9.580	1.490
225.0	29.7	226.5	5.820	47.680	5.130	1.780	14.440	1.710
240.0	30.0	240.6	5.480	50.950	4.060	1.460	16.320	1.080
255.0	30.2	255.6	7.710	47.940	3.690	1.760	13.020	0.870
270.0	30.3	270.7	7.880	41.080	2.290	1.980	10.710	0.530
285.0	30.4	285.6	8.950	36.600	4.090	2.140	9.370	1.260
300.0	30.4	300.1	7.110	25.780	5.420	2.150	6.240	1.780
315.0	30.4	314.9	7.280	24.050	6.770	2.110	4.740	2.000
330.0	30.4	329.9	7.750	21.470	7.230	2.050	3.920	2.080
345.0	30.4	344.9	6.260	18.990	6.420	1.990	3.100	2.100
Wind at 38	8.7 knots	(19.9 m/s)	s) is from	the starb	oard bea	m in all c	eases.	

Table Q.36: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	ı	D	eviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	-1.2	-28.3	6.940	21.530	6.530	1.960	5.300	1.890
15.0	-2.4	-147.7	6.610	25.700	6.560	1.880	5.740	1.820
30.0	-1.7	-66.4	6.290	26.180	8.730	1.910	9.150	1.820
45.0	-0.1	23.7	6.560	23.540	7.480	1.860	5.570	1.890
60.0	0.5	48.8	6.650	23.420	5.710	1.950	6.530	1.520
75.0	0.7	68.5	7.350	24.330	4.250	2.050	6.880	0.980
90.0	0.2	90.5	6.960	24.770	1.850	2.110	7.390	0.320
105.0	-0.4	103.0	7.010	26.820	3.370	2.100	7.640	0.640
120.0	-1.2	112.5	8.080	31.890	4.130	2.050	7.640	0.970
135.0	-1.9	121.3	7.120	29.040	4.390	2.020	7.380	1.250
150.0	-2.4	131.4	6.490	25.470	4.660	1.970	6.650	1.490
165.0	-2.4	144.6	6.550	24.010	5.700	1.910	5.400	1.740
180.0	-1.6	164.4	6.490	18.350	6.610	1.850	3.060	1.920
195.0	0.3	233.5	7.480	25.160	5.970	2.070	6.760	1.500
210.0	0.0	243.7	6.910	25.270	5.000	2.150	7.060	1.240
225.0	-0.2	252.5	7.600	25.570	4.250	2.210	7.240	0.950
240.0	-0.4	261.1	7.900	25.070	3.340	2.250	7.220	0.620
255.0	-0.6	270.1	8.340	25.170	2.270	2.270	7.080	0.370
270.0	-0.6	279.8	7.270	26.880	2.690	2.260	6.870	0.530
285.0	-0.5	289.4	8.160	24.310	4.260	2.230	6.570	0.910
300.0	-0.5	298.8	7.690	24.710	4.860	2.180	6.270	1.250
315.0	-0.4	307.9	7.200	23.160	5.330	2.110	5.970	1.520
330.0	-0.5	317.1	7.020	23.260	5.560	2.050	5.650	1.710
345.0	-0.7	325.3	7.010	21.020	5.880	2.000	5.410	1.840
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table Q.37: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	Absolute Standa			tandard	l	
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	3.8	-27.9	7.060	23.140	6.250	1.950	5.510	1.940
15.0	3.7	-20.6	6.990	21.060	7.530	1.910	5.200	2.000
30.0	3.6	-12.5	6.550	21.090	7.670	1.880	4.850	2.030
45.0	3.6	-1.5	6.600	22.990	7.530	1.860	4.600	2.040
60.0	3.8	23.5	7.140	23.710	6.620	1.870	5.130	1.920
75.0	4.3	56.6	6.730	24.620	5.660	1.990	6.110	1.350
90.0	4.4	79.3	6.740	24.540	2.810	2.090	6.580	0.560
105.0	4.3	95.3	7.310	26.250	1.590	2.090	6.960	0.310
120.0	4.1	107.3	7.620	29.800	2.820	2.050	7.070	0.700
135.0	3.8	115.8	7.530	27.430	3.800	2.010	6.950	0.990
150.0	3.6	125.1	7.670	27.840	4.500	1.970	6.670	1.240
165.0	3.4	134.7	6.700	26.910	6.060	1.930	6.160	1.440
180.0	3.4	146.6	6.030	23.240	6.480	1.880	5.290	1.620
195.0	3.5	165.0	6.280	22.570	6.210	1.840	4.240	1.780
210.0	4.4	215.1	6.740	20.990	5.610	1.940	5.520	1.680
225.0	4.3	236.0	8.200	23.630	4.550	2.080	6.460	1.360
240.0	4.4	249.7	6.980	24.950	3.710	2.180	6.910	0.970
255.0	4.5	261.8	7.830	23.800	2.120	2.230	7.040	0.510
270.0	4.6	274.3	8.240	24.330	1.760	2.250	6.840	0.260
285.0	4.7	287.4	9.310	25.890	2.860	2.230	6.510	0.780
300.0	4.7	300.0	7.560	25.510	3.840	2.150	5.940	1.270
315.0	4.5	310.9	7.660	24.060	5.250	2.080	5.750	1.590
330.0	4.2	318.6	7.500	23.660	5.450	2.030	5.730	1.750
345.0	3.9	325.1	7.240	24.130	5.960	1.990	5.710	1.860
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.38: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	9.4	-3.3	6.360	18.310	6.510	1.870	3.110	2.060
15.0	9.5	11.9	6.850	20.090	7.040	1.860	3.360	2.030
30.0	9.6	27.4	6.550	20.440	6.120	1.880	3.980	1.920
45.0	9.7	42.6	7.350	21.340	6.000	1.940	4.560	1.710
60.0	9.8	57.5	6.830	21.380	4.320	2.000	4.880	1.360
75.0	9.9	72.9	8.040	24.350	3.090	2.050	5.110	0.830
90.0	9.9	88.0	6.890	24.710	1.090	2.070	5.740	0.230
105.0	9.9	103.1	7.560	27.650	1.900	2.040	6.190	0.480
120.0	9.5	116.6	7.410	29.120	2.840	1.970	5.770	0.890
135.0	9.3	130.6	7.070	27.360	4.110	1.920	5.080	1.210
150.0	9.2	144.9	5.480	23.330	5.300	1.840	4.860	1.400
165.0	9.1	159.5	5.670	21.240	5.480	1.810	4.810	1.570
180.0	9.4	176.8	6.230	22.960	5.640	1.770	4.860	1.630
195.0	9.7	193.7	5.870	21.530	5.890	1.820	4.980	1.650
210.0	9.6	211.3	6.470	21.630	5.900	1.880	5.650	1.540
225.0	9.6	228.1	7.110	26.600	5.140	2.000	7.050	1.380
240.0	9.6	243.4	7.760	22.830	3.550	2.100	7.530	1.050
255.0	9.9	257.2	8.230	25.340	2.420	2.180	7.710	0.610
270.0	9.9	271.4	8.880	24.630	1.160	2.220	7.480	0.200
285.0	10.0	285.7	8.650	26.660	3.060	2.210	6.840	0.720
300.0	9.9	299.9	8.040	22.990	3.710	2.140	5.690	1.270
315.0	9.8	313.7	8.650	25.140	5.670	2.070	4.950	1.660
330.0	9.7	327.8	6.390	22.670	6.480	1.980	4.200	1.890
345.0	9.5	342.0	6.550	21.000	6.670	1.910	3.490	2.010
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.39: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual	1	Absolute		Standard			
Heading	Me	ean	N	Iaximum	ì	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	14.9	-1.1	7.580	17.860	7.450	1.910	2.350	2.030	
15.0	14.9	14.1	8.180	18.020	7.270	1.910	2.830	2.000	
30.0	14.9	29.2	8.170	20.760	6.580	1.920	3.590	1.880	
45.0	15.0	44.2	7.220	21.560	5.860	1.960	4.040	1.680	
60.0	15.0	59.0	8.330	23.440	5.010	2.010	4.450	1.320	
75.0	15.1	74.0	7.710	23.200	3.160	2.020	4.500	0.820	
90.0	15.1	89.0	7.170	24.350	1.030	2.030	5.260	0.270	
105.0	15.1	104.1	7.170	27.380	1.800	1.980	5.860	0.480	
120.0	14.9	118.4	7.630	29.170	3.250	1.900	6.110	0.840	
135.0	14.9	133.6	6.390	26.770	3.500	1.840	6.060	1.150	
150.0	14.9	148.7	5.640	22.510	4.150	1.800	4.360	1.340	
165.0	14.9	163.7	5.460	20.860	5.320	1.730	3.570	1.400	
180.0	15.0	178.9	5.290	20.240	4.830	1.760	3.510	1.460	
195.0	15.0	194.3	5.350	27.000	5.080	1.780	4.850	1.520	
210.0	15.0	209.9	6.020	27.880	4.600	1.850	6.700	1.440	
225.0	14.9	226.0	6.550	26.580	4.260	1.920	8.710	1.280	
240.0	14.9	241.6	7.460	26.660	3.640	2.050	9.260	1.010	
255.0	15.1	256.0	6.960	27.380	1.900	2.130	8.980	0.610	
270.0	15.1	270.7	8.040	29.240	1.520	2.190	8.420	0.240	
285.0	15.2	285.3	7.870	29.170	2.470	2.190	7.670	0.710	
300.0	15.1	299.9	7.100	24.690	4.030	2.140	5.940	1.250	
315.0	15.0	314.3	8.050	24.230	6.010	2.070	4.600	1.630	
330.0	14.9	328.9	8.500	21.490	6.590	2.000	3.530	1.870	
345.0	14.9	343.8	7.890	19.930	7.060	1.950	2.870	2.000	
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table Q.40: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.1	-0.5	6.820	16.620	6.640	1.970	2.310	1.980
15.0	20.1	14.7	6.410	17.890	6.280	1.970	2.990	1.950
30.0	20.1	29.8	6.610	19.600	5.890	1.980	3.860	1.850
45.0	20.1	44.7	8.100	20.690	5.430	2.000	4.380	1.650
60.0	20.2	59.6	7.300	23.110	4.240	2.000	4.990	1.310
75.0	20.3	74.4	7.620	22.610	2.580	2.000	4.550	0.840
90.0	20.3	89.4	7.010	23.840	1.160	1.970	5.240	0.330
105.0	20.3	104.5	7.180	29.600	1.660	1.940	5.820	0.470
120.0	20.1	119.2	6.190	30.410	2.650	1.870	8.230	0.820
135.0	20.1	134.4	5.710	29.280	3.760	1.800	7.400	1.110
150.0	20.1	149.3	6.520	27.020	5.210	1.830	5.180	1.420
165.0	20.2	164.4	5.220	16.970	4.660	1.820	3.140	1.450
180.0	20.2	179.5	4.290	21.500	3.740	1.660	3.110	1.310
195.0	20.2	194.6	5.150	30.930	4.020	1.680	4.520	1.260
210.0	20.2	209.9	5.210	36.020	4.730	1.820	7.370	1.360
225.0	20.2	225.0	5.780	37.160	4.050	1.850	8.440	1.150
240.0	20.1	240.7	6.610	32.910	3.350	1.960	10.910	0.970
255.0	20.2	255.5	7.830	35.660	1.950	2.070	9.870	0.610
270.0	20.3	270.4	7.180	33.870	1.350	2.140	9.150	0.290
285.0	20.3	285.2	7.270	35.680	2.440	2.150	8.270	0.720
300.0	20.2	299.8	7.960	26.880	4.350	2.140	6.140	1.240
315.0	20.2	314.5	8.390	24.440	5.860	2.100	4.620	1.610
330.0	20.1	329.4	6.680	21.500	6.110	2.040	3.400	1.820
345.0	20.1	344.4	6.530	17.950	6.390	2.000	2.480	1.940
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.41: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.2	-0.2	7.120	17.700	5.890	2.040	2.580	1.920
15.0	25.2	14.9	7.000	18.990	6.430	2.030	3.280	1.900
30.0	25.2	30.0	6.880	21.020	6.390	2.030	4.160	1.800
45.0	25.2	45.0	6.840	22.460	5.390	2.030	5.010	1.620
60.0	25.3	59.8	8.060	23.130	4.470	2.000	5.520	1.300
75.0	25.3	74.6	8.290	21.840	2.930	1.950	5.000	0.850
90.0	25.3	89.6	6.750	24.710	1.380	1.920	5.650	0.390
105.0	25.3	104.6	6.780	28.090	1.700	1.870	5.860	0.450
120.0	25.2	119.6	6.490	33.300	2.620	1.830	9.720	0.790
135.0	25.2	134.5	5.110	27.100	2.670	1.710	6.980	0.960
150.0	25.3	149.5	5.280	27.310	4.290	1.800	6.700	1.300
165.0	25.5	164.5	5.450	18.980	4.030	1.940	3.610	1.500
180.0	25.6	179.7	4.900	18.390	4.210	1.510	1.900	1.200
195.0	25.6	195.1	5.410	26.880	4.070	2.010	4.400	1.540
210.0	25.3	210.0	5.890	36.720	4.220	1.710	6.800	1.220
225.0	25.2	225.2	7.510	44.860	4.940	1.910	10.830	1.290
240.0	25.3	240.2	7.570	43.330	3.650	1.890	11.500	0.930
255.0	25.3	255.2	7.220	40.430	1.930	2.040	10.070	0.600
270.0	25.3	270.2	7.620	36.840	1.370	2.090	9.330	0.350
285.0	25.3	285.1	8.600	34.460	2.760	2.140	8.830	0.740
300.0	25.3	299.8	8.450	29.940	4.230	2.140	6.090	1.220
315.0	25.3	314.7	6.790	24.640	5.000	2.120	4.430	1.570
330.0	25.3	329.6	6.790	21.320	5.580	2.090	3.190	1.770
345.0	25.2	344.7	7.300	18.920	6.600	2.060	2.450	1.880
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.42: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.4	-0.1	8.440	18.710	6.560	2.110	2.880	1.860
15.0	30.4	15.0	7.700	20.570	6.970	2.100	3.660	1.830
30.0	30.4	30.1	7.720	22.400	5.560	2.090	4.460	1.760
45.0	30.4	45.1	8.000	24.040	5.570	2.070	5.260	1.590
60.0	30.4	60.0	8.530	24.510	4.530	2.020	6.220	1.300
75.0	30.4	74.7	6.940	23.520	3.010	1.940	5.670	0.870
90.0	30.4	89.7	6.400	27.120	1.660	1.870	6.400	0.450
105.0	30.4	104.7	6.560	31.470	2.030	1.810	6.320	0.450
120.0	30.3	119.8	6.020	35.900	3.040	1.790	11.700	0.810
135.0	30.3	134.5	5.410	30.150	3.240	1.640	9.330	1.020
150.0	30.5	149.5	5.010	25.440	3.700	1.770	6.370	1.290
165.0	30.8	164.5	4.600	22.870	4.100	1.430	3.340	1.350
180.0	30.5	179.4	4.460	24.250	5.430	1.330	2.950	1.400
195.0	31.1	194.9	4.000	26.580	3.800	1.320	4.020	1.240
210.0	30.7	210.2	5.030	32.900	3.860	1.800	6.720	1.320
225.0	30.4	225.0	5.500	41.340	3.220	1.640	8.900	0.990
240.0	30.4	240.0	5.220	43.760	2.840	1.810	9.960	0.780
255.0	30.4	255.1	8.060	40.720	2.180	1.970	9.370	0.610
270.0	30.4	270.1	6.920	38.800	1.650	2.040	9.110	0.410
285.0	30.4	285.1	6.840	38.850	2.530	2.090	8.810	0.760
300.0	30.4	299.8	7.770	30.600	4.660	2.140	5.970	1.200
315.0	30.4	314.8	7.460	25.490	5.330	2.150	4.090	1.530
330.0	30.4	329.8	6.770	23.220	5.420	2.140	3.170	1.720
345.0	30.4	344.9	8.800	19.610	6.560	2.120	2.660	1.820
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table Q.43: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots

3.4		Absolute			Standard			
MI	ean	N	Maximun	1	Ι	Deviation		
Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\mathbf{kts}	\mathbf{deg}	\mathbf{m}	\deg	\deg	\mathbf{m}	\mathbf{deg}	deg	
-1.9	-362.1	9.790	42.580	10.710	3.060	13.900	2.550	
-1.3	-366.1	9.680	38.840	10.890	2.800	13.940	3.000	
-4.3	98.6	9.980	39.440	10.320	2.780	12.640	2.990	
-4.6	-120.5	9.980	49.470	9.470	2.850	12.060	2.710	
1.3	32.4	9.560	38.380	10.560	2.840	11.940	2.640	
2.5	77.1	10.750	38.370	7.670	3.080	10.190	1.410	
1.1	99.2	11.590	41.850	7.430	3.130	11.370	1.070	
-1.8	109.2	10.520	43.900	9.320	3.080	11.610	1.660	
-4.6	118.2	9.950	42.730	7.370	3.000	11.320	2.150	
-5.7	125.8	9.710	90.230	9.270	2.900	10.830	2.530	
-3.9	322.4	8.870	41.660	12.320	2.800	13.090	2.900	
-3.4	324.2	10.140	41.450	13.440	2.820	13.480	3.040	
-2.2	783.2	9.810	40.120	12.330	3.000	14.260	2.740	
-2.6	28.5	13.120	43.350	12.820	3.310	13.800	2.400	
-0.5	260.7	12.250	37.580	8.590	3.410	12.170	1.430	
-1.1	262.1	13.940	40.990	6.690	3.520	12.360	1.180	
-1.8	266.7	14.080	40.790	5.450	3.570	12.510	0.850	
-2.4	272.0	11.660	42.200	5.350	3.590	12.560	0.720	
-2.4	277.0	14.400	41.740	5.220	3.590	12.330	0.920	
-2.2	281.9	13.840	41.950	7.460	3.570	12.250	1.270	
-1.4	288.1	15.280	48.040	6.090	3.500	12.130	1.690	
-1.7	292.9	14.960	51.780	7.770	3.430	12.190	2.020	
-1.9	298.9	11.820	48.050	8.500	3.320	11.890	2.330	
-2.1	151.1	13.100	40.450	10.450	3.200	12.700	2.510	
	Speed kts -1.9 -1.3 -4.3 -4.6 1.3 2.5 1.1 -1.8 -4.6 -5.7 -3.9 -3.4 -2.2 -2.6 -0.5 -1.1 -1.8 -2.4 -2.4 -2.2 -1.4 -1.7 -1.9	Speed kts ψ _{MHP} deg -1.9 -362.1 -1.3 -366.1 -4.3 98.6 -4.6 -120.5 1.3 32.4 2.5 77.1 1.1 99.2 -1.8 109.2 -4.6 118.2 -5.7 125.8 -3.9 322.4 -3.4 324.2 -2.2 783.2 -2.6 28.5 -0.5 260.7 -1.1 262.1 -1.8 266.7 -2.4 272.0 -2.4 277.0 -2.2 281.9 -1.4 288.1 -1.7 292.9 -1.9 298.9 -2.1 151.1	Speed kts ψ _{MHP} deg Heave m -1.9 -362.1 9.790 -1.3 -366.1 9.680 -4.3 98.6 9.980 -4.6 -120.5 9.980 1.3 32.4 9.560 2.5 77.1 10.750 1.1 99.2 11.590 -1.8 109.2 10.520 -4.6 118.2 9.950 -5.7 125.8 9.710 -3.9 322.4 8.870 -3.4 324.2 10.140 -2.2 783.2 9.810 -2.6 28.5 13.120 -0.5 260.7 12.250 -1.1 262.1 13.940 -1.8 266.7 14.080 -2.4 272.0 11.660 -2.4 277.0 14.400 -2.2 281.9 13.840 -1.4 288.1 15.280 -1.7 292.9 14.960 -	Speed kts ψ _{MHP} deg Heave m Roll deg -1.9 -362.1 9.790 42.580 -1.3 -366.1 9.680 38.840 -4.3 98.6 9.980 39.440 -4.6 -120.5 9.980 49.470 1.3 32.4 9.560 38.380 2.5 77.1 10.750 38.370 1.1 99.2 11.590 41.850 -1.8 109.2 10.520 43.900 -4.6 118.2 9.950 42.730 -5.7 125.8 9.710 90.230 -3.9 322.4 8.870 41.660 -3.4 324.2 10.140 41.450 -2.2 783.2 9.810 40.120 -2.6 28.5 13.120 43.350 -0.5 260.7 12.250 37.580 -1.1 262.1 13.940 40.990 -1.8 266.7 14.080 40.790 -2.4 <td>Speed kts ψ_{MHP} deg Heave m Roll deg Pitch deg -1.9 -362.1 9.790 42.580 10.710 -1.3 -366.1 9.680 38.840 10.890 -4.3 98.6 9.980 39.440 10.320 -4.6 -120.5 9.980 49.470 9.470 1.3 32.4 9.560 38.380 10.560 2.5 77.1 10.750 38.370 7.670 1.1 99.2 11.590 41.850 7.430 -1.8 109.2 10.520 43.900 9.320 -4.6 118.2 9.950 42.730 7.370 -5.7 125.8 9.710 90.230 9.270 -3.9 322.4 8.870 41.660 12.320 -3.4 324.2 10.140 41.450 13.440 -2.2 783.2 9.810 40.120 12.330 -2.6 28.5 13.120 43.350 12.820 <tr< td=""><td>Speed kts ψ_{MHP} deg Heave deg Roll deg Pitch deg Heave m -1.9 -362.1 9.790 42.580 10.710 3.060 -1.3 -366.1 9.680 38.840 10.890 2.800 -4.3 98.6 9.980 39.440 10.320 2.780 -4.6 -120.5 9.980 49.470 9.470 2.850 1.3 32.4 9.560 38.380 10.560 2.840 2.5 77.1 10.750 38.370 7.670 3.080 1.1 99.2 11.590 41.850 7.430 3.130 -1.8 109.2 10.520 43.900 9.320 3.080 -4.6 118.2 9.950 42.730 7.370 3.000 -5.7 125.8 9.710 90.230 9.270 2.900 -3.9 322.4 8.870 41.660 12.320 2.800 -3.4 324.2 10.140 41.450 13.440</td><td>Speed kts ψ_{MHP} deg Heave deg Roll deg Pitch deg Heave deg Roll deg -1.9 -362.1 9.790 42.580 10.710 3.060 13.900 -1.3 -366.1 9.680 38.840 10.890 2.800 13.940 -4.3 98.6 9.980 39.440 10.320 2.780 12.640 -4.6 -120.5 9.980 49.470 9.470 2.850 12.060 1.3 32.4 9.560 38.380 10.560 2.840 11.940 2.5 77.1 10.750 38.370 7.670 3.080 10.190 1.1 99.2 11.590 41.850 7.430 3.130 11.370 -1.8 109.2 10.520 43.900 9.320 3.080 11.610 -4.6 118.2 9.950 42.730 7.370 3.000 11.320 -5.7 125.8 9.710 90.230 9.270 2.900 10.830 -3</td></tr<></td>	Speed kts ψ _{MHP} deg Heave m Roll deg Pitch deg -1.9 -362.1 9.790 42.580 10.710 -1.3 -366.1 9.680 38.840 10.890 -4.3 98.6 9.980 39.440 10.320 -4.6 -120.5 9.980 49.470 9.470 1.3 32.4 9.560 38.380 10.560 2.5 77.1 10.750 38.370 7.670 1.1 99.2 11.590 41.850 7.430 -1.8 109.2 10.520 43.900 9.320 -4.6 118.2 9.950 42.730 7.370 -5.7 125.8 9.710 90.230 9.270 -3.9 322.4 8.870 41.660 12.320 -3.4 324.2 10.140 41.450 13.440 -2.2 783.2 9.810 40.120 12.330 -2.6 28.5 13.120 43.350 12.820 <tr< td=""><td>Speed kts ψ_{MHP} deg Heave deg Roll deg Pitch deg Heave m -1.9 -362.1 9.790 42.580 10.710 3.060 -1.3 -366.1 9.680 38.840 10.890 2.800 -4.3 98.6 9.980 39.440 10.320 2.780 -4.6 -120.5 9.980 49.470 9.470 2.850 1.3 32.4 9.560 38.380 10.560 2.840 2.5 77.1 10.750 38.370 7.670 3.080 1.1 99.2 11.590 41.850 7.430 3.130 -1.8 109.2 10.520 43.900 9.320 3.080 -4.6 118.2 9.950 42.730 7.370 3.000 -5.7 125.8 9.710 90.230 9.270 2.900 -3.9 322.4 8.870 41.660 12.320 2.800 -3.4 324.2 10.140 41.450 13.440</td><td>Speed kts ψ_{MHP} deg Heave deg Roll deg Pitch deg Heave deg Roll deg -1.9 -362.1 9.790 42.580 10.710 3.060 13.900 -1.3 -366.1 9.680 38.840 10.890 2.800 13.940 -4.3 98.6 9.980 39.440 10.320 2.780 12.640 -4.6 -120.5 9.980 49.470 9.470 2.850 12.060 1.3 32.4 9.560 38.380 10.560 2.840 11.940 2.5 77.1 10.750 38.370 7.670 3.080 10.190 1.1 99.2 11.590 41.850 7.430 3.130 11.370 -1.8 109.2 10.520 43.900 9.320 3.080 11.610 -4.6 118.2 9.950 42.730 7.370 3.000 11.320 -5.7 125.8 9.710 90.230 9.270 2.900 10.830 -3</td></tr<>	Speed kts ψ _{MHP} deg Heave deg Roll deg Pitch deg Heave m -1.9 -362.1 9.790 42.580 10.710 3.060 -1.3 -366.1 9.680 38.840 10.890 2.800 -4.3 98.6 9.980 39.440 10.320 2.780 -4.6 -120.5 9.980 49.470 9.470 2.850 1.3 32.4 9.560 38.380 10.560 2.840 2.5 77.1 10.750 38.370 7.670 3.080 1.1 99.2 11.590 41.850 7.430 3.130 -1.8 109.2 10.520 43.900 9.320 3.080 -4.6 118.2 9.950 42.730 7.370 3.000 -5.7 125.8 9.710 90.230 9.270 2.900 -3.9 322.4 8.870 41.660 12.320 2.800 -3.4 324.2 10.140 41.450 13.440	Speed kts ψ _{MHP} deg Heave deg Roll deg Pitch deg Heave deg Roll deg -1.9 -362.1 9.790 42.580 10.710 3.060 13.900 -1.3 -366.1 9.680 38.840 10.890 2.800 13.940 -4.3 98.6 9.980 39.440 10.320 2.780 12.640 -4.6 -120.5 9.980 49.470 9.470 2.850 12.060 1.3 32.4 9.560 38.380 10.560 2.840 11.940 2.5 77.1 10.750 38.370 7.670 3.080 10.190 1.1 99.2 11.590 41.850 7.430 3.130 11.370 -1.8 109.2 10.520 43.900 9.320 3.080 11.610 -4.6 118.2 9.950 42.730 7.370 3.000 11.320 -5.7 125.8 9.710 90.230 9.270 2.900 10.830 -3	

Wind at 56.4 knots (29.0 m/s) is from the starboard beam in all cases.

Table Q.44: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolute	!	Standard			
Heading	M	ean	ľ	Maximun	n	I	Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg	
0.0	2.8	-48.0	12.450	50.710	9.730	3.080	11.150	2.830	
15.0	2.1	-79.8	12.160	41.510	11.310	2.940	14.560	2.730	
30.0	2.2	-120.7	10.480	41.080	8.180	2.900	11.430	2.240	
45.0	2.8	-101.7	9.820	47.260	9.330	2.920	12.910	2.160	
60.0	3.6	-92.5	10.860	43.770	10.760	3.000	13.030	1.820	
75.0	4.3	-74.4	11.310	56.840	8.050	3.060	13.770	1.390	
90.0	5.1	89.4	14.740	50.460	5.490	3.120	10.620	0.730	
105.0	4.4	103.8	10.770	42.220	5.790	3.100	11.030	1.120	
120.0	3.4	112.7	11.740	44.710	6.810	3.020	10.950	1.630	
135.0	2.5	120.3	11.580	43.470	7.720	2.940	10.840	2.000	
150.0	2.0	128.7	10.130	41.130	8.660	2.840	10.380	2.320	
165.0	1.5	132.3	9.060	40.700	9.040	2.810	10.310	2.480	
180.0	2.2	82.9	10.340	40.860	10.310	2.960	14.670	2.760	
195.0	3.5	364.1	11.030	48.710	10.310	3.160	14.000	2.490	
210.0	4.2	258.4	15.470	50.140	11.070	3.360	12.010	1.480	
225.0	3.7	262.3	11.900	51.540	7.870	3.440	12.390	1.250	
240.0	3.3	267.8	10.610	43.820	5.910	3.510	12.510	0.880	
255.0	3.8	275.6	14.020	42.530	5.380	3.550	12.090	0.720	
270.0	3.6	281.8	13.570	45.230	8.410	3.560	12.060	1.080	
285.0	4.1	288.6	13.090	46.610	6.130	3.500	11.710	1.600	
300.0	3.9	294.7	14.570	43.940	6.060	3.390	11.320	2.050	
315.0	3.5	298.7	13.670	57.220	7.680	3.330	11.470	2.310	
330.0	3.3	303.3	14.030	49.590	9.330	3.270	11.480	2.550	
345.0	2.9	307.7	13.130	50.600	8.480	3.180	11.450	2.720	
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard bean	in all ca	ses.		

Table Q.45: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots

Cmd	Ac	tual		Absolute	!	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\overline{\psi_{ ext{MHP}}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	7.5	-40.9	11.920	47.840	11.070	3.010	11.540	3.070
15.0	7.3	-34.1	10.350	43.970	12.600	2.920	11.100	3.190
30.0	7.2	-24.6	9.800	42.990	10.910	2.820	10.380	3.290
45.0	7.2	-15.9	9.630	39.330	13.030	2.760	10.140	3.320
60.0	7.2	1.8	9.540	37.530	13.100	2.700	9.240	3.360
75.0	9.8	71.2	10.290	32.980	6.510	3.050	8.400	1.680
90.0	9.8	88.5	11.830	37.610	3.370	3.120	10.160	0.530
105.0	9.6	104.5	11.740	42.800	4.750	3.060	10.560	1.010
120.0	8.9	116.0	10.640	47.760	8.400	2.930	9.970	1.580
135.0	8.1	126.4	10.610	44.300	7.590	2.820	8.640	1.930
150.0	7.7	135.1	11.410	39.750	8.730	2.730	8.250	2.140
165.0	7.4	144.3	9.750	39.770	8.700	2.630	8.710	2.330
180.0	7.4	154.7	9.100	37.120	9.540	2.580	8.320	2.580
195.0	8.9	199.1	8.230	41.340	9.460	2.670	8.680	2.770
210.0	8.3	237.7	10.380	50.730	9.950	3.080	11.520	2.270
225.0	8.3	253.6	13.230	57.970	8.370	3.310	12.220	1.600
240.0	8.3	261.0	13.800	48.990	5.570	3.400	12.400	1.180
255.0	8.4	270.4	11.140	48.240	4.130	3.460	12.560	0.710
270.0	8.6	278.9	12.760	44.480	9.150	3.500	12.590	0.910
285.0	9.1	288.4	13.010	43.920	6.900	3.440	11.820	1.580
300.0	9.3	299.0	12.840	57.290	7.030	3.330	10.800	2.300
315.0	8.4	306.6	12.640	50.610	8.620	3.180	10.830	2.690
330.0	7.9	309.6	12.410	53.110	8.620	3.150	11.370	2.810
345.0	7.7	314.9	11.230	49.560	9.380	3.070	11.280	2.990
Wind at 50	5.4 knots	(29.0 m/s)	s) is from	the starbo	pard beam	in all ca	ses	

Wind at 56.4 knots (29.0 m/s) is from the starboard beam in all cases.

Table Q.46: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	Me	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	13.0	-8.8	11.800	41.660	12.750	2.790	8.800	3.390
15.0	13.6	9.9	11.760	39.390	10.920	2.770	7.640	3.350
30.0	14.0	26.7	11.210	33.440	10.720	2.820	6.670	3.210
45.0	14.4	42.6	11.340	32.260	9.090	2.880	6.620	2.910
60.0	14.6	57.5	10.320	34.810	7.700	2.970	6.370	2.430
75.0	15.0	73.1	12.120	38.490	4.940	3.060	8.570	1.570
90.0	15.0	88.9	13.080	45.230	2.650	3.080	10.260	0.490
105.0	15.0	104.7	12.030	57.530	8.190	3.010	10.810	0.970
120.0	14.4	117.4	10.030	42.640	6.110	2.830	9.450	1.460
135.0	14.0	131.7	9.580	34.920	6.560	2.650	7.940	1.820
150.0	14.2	146.4	7.470	34.340	7.380	2.550	5.910	2.060
165.0	14.6	162.0	7.120	33.060	8.080	2.460	5.180	2.150
180.0	14.6	177.5	7.270	34.200	7.220	2.500	6.100	2.360
195.0	14.7	194.8	7.050	37.120	8.080	2.520	7.650	2.390
210.0	14.2	216.7	11.100	48.290	9.010	2.710	10.990	2.210
225.0	13.8	235.0	10.900	37.910	5.840	2.970	12.520	1.920
240.0	13.7	248.5	12.670	42.370	5.820	3.160	13.210	1.610
255.0	13.9	261.5	17.120	64.620	4.650	3.340	13.980	0.980
270.0	14.2	274.6	12.420	44.230	3.690	3.440	14.000	0.630
285.0	14.5	287.4	15.020	51.260	6.360	3.430	13.190	1.490
300.0	14.6	300.2	10.790	47.890	7.050	3.290	10.230	2.330
315.0	14.4	312.9	12.520	54.580	8.860	3.140	9.420	2.850
330.0	13.9	326.0	12.580	54.500	12.170	2.980	9.290	3.170
345.0	13.5	339.5	11.930	47.710	12.250	2.870	8.440	3.320
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.47: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual		Absolute	;	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\mathbf{deg}	\deg
0.0	19.6	-1.6	10.110	36.250	9.440	2.930	6.700	3.230
15.0	19.6	13.6	10.860	32.100	10.500	2.920	5.940	3.190
30.0	19.7	29.1	10.650	31.120	9.470	2.940	6.030	3.080
45.0	19.8	44.1	11.570	36.280	8.470	2.970	6.100	2.810
60.0	19.8	58.6	11.270	34.460	8.010	3.000	5.650	2.360
75.0	20.0	73.8	12.560	36.960	5.250	3.030	8.880	1.560
90.0	20.0	89.1	13.380	58.590	4.500	3.000	10.650	0.570
105.0	20.0	104.3	13.100	60.090	7.760	2.890	11.600	0.880
120.0	19.7	118.6	10.140	41.690	5.270	2.700	10.940	1.320
135.0	19.6	133.4	8.260	40.480	6.160	2.560	10.070	1.670
150.0	19.6	148.0	7.130	45.150	6.790	2.510	7.620	1.860
165.0	19.6	163.7	7.480	37.310	7.190	2.440	5.640	2.140
180.0	19.8	179.8	8.280	35.760	7.960	2.540	6.250	2.440
195.0	19.7	195.7	8.150	44.370	6.990	2.420	8.930	2.270
210.0	19.7	210.4	9.910	49.880	6.850	2.440	11.020	1.990
225.0	19.6	226.6	7.990	46.950	5.980	2.660	12.950	1.880
240.0	19.3	243.6	12.400	41.290	5.350	2.940	14.920	1.570
255.0	19.6	258.3	13.580	47.950	3.560	3.230	15.530	1.040
270.0	19.6	272.8	13.010	48.610	3.410	3.370	15.530	0.600
285.0	19.8	286.6	14.820	59.450	5.270	3.380	14.260	1.440
300.0	19.9	300.3	14.460	63.420	7.870	3.320	11.010	2.290
315.0	19.8	314.1	10.810	52.910	10.250	3.180	9.390	2.790
330.0	19.7	328.6	11.180	39.840	9.250	3.070	7.860	3.070
345.0	19.6	343.4	9.950	32.160	10.930	2.990	7.350	3.200
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard beam	n in all ca	ses.	

140

Table Q.48: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	25.0	-0.7	11.210	33.020	10.690	3.060	5.940	3.080
15.0	25.0	14.6	10.710	30.580	9.930	3.040	5.670	3.050
30.0	25.0	29.8	10.280	31.520	9.260	3.040	5.770	2.950
45.0	25.0	44.6	11.220	34.730	8.280	3.040	5.710	2.730
60.0	25.0	59.2	11.860	35.640	7.570	3.040	5.660	2.310
75.0	25.0	74.1	12.230	43.470	5.190	3.000	9.830	1.570
90.0	25.1	89.2	11.310	57.340	11.540	2.920	11.220	0.700
105.0	25.0	104.2	10.840	53.250	7.580	2.820	12.180	0.830
120.0	24.8	119.1	9.140	53.670	6.140	2.690	14.280	1.310
135.0	24.6	133.6	8.080	49.150	7.120	2.640	12.490	1.750
150.0	24.9	148.5	7.360	51.870	6.700	2.640	8.750	2.000
165.0	25.5	163.7	7.250	45.830	7.230	2.100	5.930	1.930
180.0	26.3	179.3	11.930	42.200	15.070	2.440	5.570	2.200
195.0	26.0	195.3	5.060	35.660	5.440	1.680	6.150	1.730
210.0	25.1	210.5	6.840	42.260	7.470	2.230	10.010	1.770
225.0	24.8	225.5	6.870	51.210	6.240	2.520	13.840	1.710
240.0	24.7	241.4	12.130	53.860	5.660	2.730	16.430	1.510
255.0	24.8	256.7	14.000	79.390	6.820	3.100	16.720	1.070
270.0	24.8	271.8	11.610	53.870	3.580	3.290	16.500	0.650
285.0	25.0	286.2	12.920	59.270	5.240	3.340	15.500	1.410
300.0	25.0	300.4	13.950	52.170	7.080	3.320	11.190	2.230
315.0	25.1	314.7	12.200	56.750	9.790	3.250	8.860	2.710
330.0	25.0	329.4	10.610	43.640	9.910	3.170	7.720	2.940
345.0	25.0	344.3	10.690	30.610	9.240	3.100	6.500	3.050
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard bean	in all ca	ses.	

Table Q.49: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots

Cmd	Ac	Actual Absolute			Standard			
Heading	M	ean	\mathbf{N}	Iaximum	l	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.3	-0.1	11.510	29.720	9.380	3.170	5.730	2.930
15.0	30.2	15.0	11.310	29.930	9.080	3.150	5.540	2.910
30.0	30.2	30.1	11.420	33.060	8.910	3.120	5.710	2.820
45.0	30.2	44.9	10.500	34.390	7.930	3.120	6.070	2.640
60.0	30.2	59.5	10.730	35.110	7.360	3.070	5.900	2.270
75.0	30.1	74.2	12.130	43.810	4.670	2.990	10.720	1.570
90.0	30.1	89.2	13.820	63.610	9.280	2.850	12.240	0.760
105.0	30.1	104.2	9.560	57.990	5.400	2.730	13.020	0.780
120.0	29.8	119.5	8.580	46.950	4.990	2.620	15.870	1.230
135.0	29.3	132.0	6.980	56.790	4.890	2.430	13.050	1.570
150.0	29.6	146.6	6.090	52.890	5.310	2.370	10.280	1.980
165.0	30.3	161.6	7.730	54.150	8.310	2.660	8.030	2.360
180.0	31.0	177.2	6.360	48.160	6.790	2.190	7.460	2.300
195.0	31.5	194.2	7.210	45.700	7.760	2.260	8.790	2.230
210.0	30.4	212.5	7.620	46.030	6.570	2.650	13.300	2.350
225.0	30.0	225.7	9.110	66.410	7.500	2.340	13.570	1.720
240.0	29.7	240.5	9.790	57.310	6.390	2.700	18.150	1.620
255.0	29.9	255.8	12.950	71.380	8.900	2.990	17.420	1.130
270.0	30.0	271.1	12.710	60.720	3.670	3.210	16.720	0.730
285.0	30.1	285.9	11.800	67.320	5.450	3.310	16.030	1.410
300.0	30.2	300.4	13.050	53.480	6.270	3.340	11.760	2.170
315.0	30.3	315.0	11.680	56.160	8.750	3.300	9.490	2.610
330.0	30.3	329.8	13.490	40.060	8.560	3.250	7.630	2.810
345.0	30.3	344.8	11.380	33.920	8.910	3.200	6.500	2.900
Wind at 50	6.4 knots	(29.0 m/s	s) is from	the starbo	oard bear	m in all c	ases.	

Table Q.50: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	ite Standard			
Heading	Me	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	-0.3	-529.3	11.310	38.670	10.150	3.130	13.570	2.470
15.0	-2.6	-113.0	9.610	35.890	10.260	2.900	10.280	2.950
30.0	-4.0	-135.5	9.400	38.280	9.650	2.920	10.500	2.760
45.0	-3.8	-120.5	10.690	43.110	9.280	3.010	11.610	2.440
60.0	2.2	51.7	10.240	31.950	7.860	3.030	8.320	2.240
75.0	2.1	80.1	11.670	35.270	6.780	3.190	9.140	0.950
90.0	0.3	101.2	14.170	37.560	5.210	3.220	10.040	0.890
105.0	-1.5	111.4	12.190	40.250	7.030	3.170	10.390	1.430
120.0	-3.6	122.6	11.010	42.530	7.170	3.090	10.100	1.960
135.0	-4.7	134.3	9.630	43.990	8.710	3.010	8.890	2.390
150.0	-4.5	149.3	9.790	37.240	10.570	2.930	6.800	2.750
165.0	-2.9	168.9	9.850	30.610	12.220	2.860	3.970	3.010
180.0	-1.3	526.9	12.020	45.660	10.780	3.120	14.360	2.620
195.0	-1.6	358.3	12.420	38.780	9.410	3.320	13.520	2.120
210.0	-0.4	251.6	12.160	36.740	7.520	3.430	10.820	1.600
225.0	-0.7	256.9	12.640	37.960	6.040	3.490	10.960	1.280
240.0	-1.2	263.7	12.720	39.640	5.230	3.560	11.010	0.840
255.0	-2.0	270.9	13.200	44.640	3.460	3.620	11.010	0.560
270.0	-2.1	278.3	11.730	40.780	3.020	3.590	10.760	0.730
285.0	-2.1	284.3	13.050	38.590	4.150	3.570	10.580	1.120
300.0	-2.4	290.2	11.430	41.080	5.690	3.520	10.520	1.490
315.0	-2.7	241.7	11.070	49.510	12.130	3.500	15.350	1.780
330.0	-2.6	252.0	11.240	49.770	8.470	3.400	14.630	2.040
345.0	-2.7	50.0	10.460	40.700	9.040	3.300	12.180	2.320
Wind at 50	6.4 knots	(29.0 m/s	s) is from	the starbo	oard beam	n in all ca	ses.	

DRDC Atlantic TM 2004-044

Table Q.51: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	${f kts}$	\deg	m	\deg	\deg	m	\deg	deg
0.0	2.8	-40.7	10.760	44.120	9.430	3.170	9.890	2.680
15.0	2.2	-132.5	10.130	39.890	8.970	2.960	9.730	2.280
30.0	2.6	-88.1	10.490	42.080	10.840	3.010	14.600	2.330
45.0	3.1	-99.6	10.150	40.180	7.370	3.060	12.460	1.930
60.0	3.6	-83.8	10.670	40.780	8.520	3.100	13.240	1.770
75.0	5.1	66.4	10.430	31.580	6.780	3.100	7.920	1.650
90.0	4.9	89.0	11.720	34.390	4.250	3.210	9.050	0.530
105.0	4.4	104.1	11.780	38.150	4.680	3.180	9.630	0.920
120.0	3.6	114.9	10.440	42.500	5.700	3.120	9.570	1.450
135.0	3.0	122.9	11.130	44.120	5.870	3.060	9.310	1.790
150.0	2.5	131.4	10.680	43.820	7.030	3.000	8.830	2.110
165.0	2.2	138.9	10.450	39.650	8.190	2.940	8.340	2.340
180.0	2.1	149.1	10.330	33.640	10.430	2.880	7.690	2.550
195.0	4.2	206.2	9.440	35.680	9.810	2.980	7.830	2.720
210.0	4.3	241.2	12.130	37.900	8.700	3.300	10.330	1.960
225.0	4.0	251.2	10.800	40.640	6.410	3.420	10.700	1.550
240.0	3.9	260.4	11.250	40.820	5.400	3.490	10.840	1.070
255.0	4.0	270.1	11.440	40.510	3.620	3.540	10.810	0.580
270.0	4.0	278.8	13.040	38.890	3.140	3.560	10.750	0.640
285.0	4.0	287.8	13.010	45.300	4.030	3.510	10.380	1.200
300.0	3.9	296.2	13.560	49.160	5.490	3.450	9.810	1.730
315.0	3.6	301.3	12.010	53.690	6.240	3.410	10.060	2.020
330.0	3.3	307.1	11.820	56.020	7.340	3.330	10.100	2.290
345.0	3.0	313.4	11.810	46.550	9.550	3.250	10.050	2.510
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.52: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	Me	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	7.6	-33.6	10.900	51.350	11.070	3.100	10.010	2.880
15.0	7.4	-26.9	9.830	44.360	10.060	3.030	9.880	2.970
30.0	7.4	-18.7	10.360	38.380	11.540	2.980	9.350	3.050
45.0	7.4	-8.1	10.190	36.540	11.420	2.930	8.770	3.100
60.0	7.6	13.7	10.520	33.650	9.990	2.890	8.110	2.990
75.0	9.9	71.8	11.250	33.680	4.940	3.130	7.480	1.340
90.0	9.9	88.5	12.190	35.970	2.040	3.180	8.570	0.400
105.0	9.7	104.0	11.420	39.970	4.840	3.120	8.910	0.810
120.0	9.0	116.0	10.870	37.780	6.410	3.050	7.980	1.340
135.0	8.4	127.3	10.630	37.960	7.300	2.980	7.040	1.720
150.0	7.9	137.5	9.600	36.950	7.810	2.900	6.560	2.030
165.0	7.7	145.8	9.820	38.990	8.230	2.850	6.650	2.180
180.0	7.6	157.3	9.330	37.850	8.720	2.780	7.040	2.360
195.0	9.0	194.5	9.430	41.390	10.170	2.850	7.480	2.550
210.0	8.9	221.5	10.860	41.700	8.440	3.070	9.680	2.270
225.0	8.7	238.4	10.750	38.910	6.820	3.220	10.460	1.890
240.0	8.8	251.0	13.820	42.100	5.650	3.390	11.110	1.400
255.0	9.1	262.7	10.940	40.510	3.920	3.480	11.570	0.820
270.0	9.3	274.9	12.860	39.410	3.140	3.510	11.710	0.460
285.0	9.5	287.2	12.170	50.280	4.010	3.490	11.220	1.150
300.0	9.4	299.6	11.600	41.390	6.070	3.400	9.520	1.920
315.0	8.9	310.0	13.000	49.740	7.720	3.260	9.230	2.400
330.0	8.0	314.6	12.790	49.980	7.880	3.210	9.820	2.570
345.0	7.7	320.9	11.610	46.870	9.540	3.140	9.760	2.760
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard bean	n in all ca	ses.	

Table Q.53: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	13.9	-4.3	12.430	37.630	10.830	2.950	6.640	3.100
15.0	14.0	11.3	12.170	32.970	10.080	2.930	6.070	3.070
30.0	14.3	27.1	11.590	31.230	10.130	2.960	5.830	2.910
45.0	14.5	42.6	10.880	30.880	8.160	2.990	5.490	2.590
60.0	14.7	57.4	10.760	30.570	7.800	3.050	5.320	2.090
75.0	15.0	73.4	12.550	32.830	4.730	3.110	7.490	1.300
90.0	15.0	88.8	11.670	39.430	2.180	3.120	8.480	0.430
105.0	15.0	104.3	10.510	39.780	4.020	3.090	8.670	0.750
120.0	14.5	117.6	11.250	34.730	6.230	2.930	7.470	1.250
135.0	14.3	132.0	9.700	36.010	5.610	2.840	5.980	1.640
150.0	14.2	146.8	10.810	33.420	7.550	2.740	5.030	1.920
165.0	14.4	162.1	7.950	33.300	7.490	2.710	4.750	2.110
180.0	14.5	178.0	8.220	34.710	8.070	2.700	5.680	2.230
195.0	14.6	194.4	8.100	37.410	7.620	2.760	7.270	2.250
210.0	14.4	212.7	10.380	39.550	7.420	2.800	9.610	2.100
225.0	14.2	230.3	11.050	37.540	5.660	3.040	11.510	1.780
240.0	14.3	244.5	12.680	40.010	5.070	3.240	12.560	1.500
255.0	14.6	258.5	12.400	43.410	4.320	3.380	13.020	0.930
270.0	14.7	272.6	11.330	44.890	2.730	3.440	13.160	0.460
285.0	14.8	286.5	12.110	49.350	4.710	3.440	12.510	1.120
300.0	14.7	300.1	11.800	46.040	6.680	3.360	10.040	1.910
315.0	14.5	313.5	11.990	50.220	8.130	3.250	8.450	2.480
330.0	14.2	327.0	12.270	52.870	10.740	3.130	7.820	2.830
345.0	13.9	341.0	12.710	41.670	10.190	3.020	7.300	3.040
Wind at 50	5.4 knots	(29.0 m/s	s) is from	the starbo	oard bean	n in all ca	ses.	

Table Q.54: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual	Absolute Standa			Standard		
Heading	Mo	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	19.7	-1.5	9.960	31.890	9.470	3.040	5.730	3.000
15.0	19.7	13.8	11.190	28.770	9.770	3.020	5.460	2.950
30.0	19.8	29.0	10.240	29.160	9.110	3.030	5.290	2.800
45.0	19.8	44.0	12.000	30.880	8.330	3.040	5.060	2.520
60.0	19.9	58.6	9.980	30.490	6.270	3.050	4.720	2.040
75.0	20.1	73.8	10.770	41.640	3.970	3.060	7.850	1.310
90.0	20.1	89.0	12.170	45.090	2.050	3.040	8.760	0.510
105.0	20.1	104.1	9.550	43.980	5.390	3.020	8.940	0.720
120.0	19.9	118.6	9.240	37.810	4.200	2.870	8.760	1.160
135.0	19.9	133.6	8.290	45.750	5.510	2.760	6.700	1.480
150.0	19.8	148.5	8.040	43.220	6.340	2.770	5.890	1.820
165.0	19.8	163.7	8.200	35.370	7.140	2.730	5.020	2.060
180.0	20.0	179.4	8.870	37.510	7.530	2.810	5.760	2.310
195.0	19.9	194.4	8.400	41.330	7.400	2.660	7.470	2.020
210.0	19.9	209.6	8.040	46.910	6.090	2.720	9.530	1.850
225.0	19.8	225.8	9.830	44.310	5.740	2.830	11.740	1.690
240.0	19.7	241.8	11.420	44.360	4.400	3.090	14.120	1.440
255.0	19.9	256.9	12.490	49.890	3.950	3.250	14.580	0.930
270.0	19.9	271.6	13.120	51.950	2.820	3.370	14.350	0.510
285.0	20.0	286.0	11.570	61.440	4.040	3.390	13.870	1.100
300.0	19.9	300.2	13.190	49.340	6.540	3.340	10.480	1.890
315.0	19.9	314.3	12.170	45.950	8.110	3.260	8.440	2.440
330.0	19.8	328.7	10.260	39.290	8.590	3.170	7.070	2.770
345.0	19.7	343.5	10.460	34.470	10.760	3.090	6.220	2.930
Wind at 50	6.4 knots	(29.0 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.55: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	l	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.0	-0.6	10.870	31.330	9.020	3.120	5.560	2.880
15.0	25.0	14.6	10.760	28.470	9.180	3.100	5.250	2.840
30.0	25.0	29.7	12.110	28.450	9.010	3.090	5.170	2.720
45.0	25.0	44.6	10.610	28.530	7.150	3.090	5.090	2.460
60.0	25.0	59.2	13.060	31.840	7.650	3.060	4.930	2.020
75.0	25.1	74.2	10.510	43.010	4.130	3.010	8.680	1.350
90.0	25.2	89.2	14.160	47.350	3.070	2.960	9.560	0.610
105.0	25.1	104.1	11.970	51.140	4.430	2.890	9.530	0.670
120.0	25.0	119.0	10.300	56.170	4.160	2.820	10.540	1.110
135.0	24.8	133.8	11.430	55.570	6.020	2.820	10.980	1.650
150.0	24.8	148.3	7.760	52.950	5.550	2.510	5.760	1.720
165.0	25.6	164.1	8.440	30.730	6.660	2.980	4.440	2.190
180.0	25.9	179.3	7.510	31.060	6.370	2.220	3.720	1.700
195.0	25.7	196.3	9.760	40.530	7.710	3.100	7.940	2.380
210.0	25.1	210.4	8.630	43.890	6.440	2.630	9.890	1.920
225.0	24.9	225.0	8.310	54.620	6.340	2.830	13.050	1.710
240.0	24.9	240.5	13.100	53.530	5.140	2.890	14.800	1.380
255.0	25.1	256.0	10.530	56.570	3.170	3.170	15.690	0.920
270.0	25.0	271.1	11.950	55.320	3.030	3.300	15.420	0.560
285.0	25.1	285.8	14.380	72.290	3.860	3.350	15.120	1.120
300.0	25.1	300.1	13.960	56.380	5.660	3.330	10.680	1.860
315.0	25.1	314.7	12.620	46.400	7.380	3.290	8.640	2.370
330.0	25.0	329.4	11.840	42.230	8.800	3.220	7.240	2.670
345.0	25.0	344.3	10.870	32.320	9.420	3.180	6.140	2.830
Wind at 50	6.4 knots	(29.0 m/s)	s) is from	the starbo	oard bear	m in all c	ases.	

wind at 56.4 knots (29.0 m/s) is from the starboard beam in all cases.

Table Q.56: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	Absolute Star			Standard		
Heading	Mo	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	30.2	-0.2	11.940	30.530	10.220	3.210	5.390	2.760
15.0	30.2	15.0	12.720	30.950	9.400	3.180	5.290	2.730
30.0	30.2	30.0	10.610	31.150	8.520	3.160	5.400	2.640
45.0	30.2	44.9	10.610	31.340	7.900	3.140	5.530	2.400
60.0	30.2	59.6	12.140	31.610	6.900	3.070	5.590	2.000
75.0	30.2	74.3	12.610	45.280	4.570	2.990	9.730	1.370
90.0	30.2	89.3	10.560	51.360	3.030	2.890	10.700	0.690
105.0	30.2	104.1	9.980	58.830	4.630	2.860	10.400	0.700
120.0	30.0	119.4	9.280	47.750	3.490	2.740	12.710	1.090
135.0	29.8	133.7	7.990	53.490	4.480	2.690	11.380	1.460
150.0	30.0	148.1	7.250	58.980	5.460	2.320	7.560	1.720
165.0	30.2	162.5	7.880	43.870	6.290	2.890	6.160	2.190
180.0	30.8	177.9	6.260	40.830	8.530	2.040	5.620	2.130
195.0	31.6	194.5	7.150	37.060	6.840	2.090	7.000	1.930
210.0	30.8	210.9	10.640	53.410	6.740	2.600	10.350	2.000
225.0	30.1	225.2	8.270	52.760	5.390	2.690	12.430	1.650
240.0	30.0	240.1	9.480	55.280	4.970	2.810	15.070	1.390
255.0	30.1	255.5	12.730	66.260	3.390	3.090	15.830	0.960
270.0	30.1	270.7	10.970	68.700	3.280	3.230	16.210	0.640
285.0	30.2	285.5	11.210	67.610	4.180	3.280	15.520	1.140
300.0	30.2	300.2	12.360	55.670	7.340	3.320	11.270	1.820
315.0	30.2	314.9	11.690	51.290	7.330	3.320	8.800	2.310
330.0	30.2	329.7	11.040	41.990	8.510	3.280	6.920	2.580
345.0	30.2	344.7	11.790	35.520	9.410	3.250	6.180	2.710
Wind at 50	6.4 knots	(29.0 m/s	s) is from	the starbo	oard bean	in all ca	ses.	

Table Q.57: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute		5	Standard		
Heading	Mo	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	-0.5	-110.6	15.010	53.140	10.480	3.930	16.320	3.240
15.0	-2.8	189.5	12.900	47.680	14.150	3.750	8.570	3.600
30.0	-4.0	-145.1	13.100	45.310	12.400	3.740	12.480	3.440
45.0	2.0	30.6	12.030	41.770	10.030	3.770	8.720	3.200
60.0	3.8	54.5	16.320	39.890	8.480	3.900	8.330	2.410
75.0	2.8	85.5	14.710	40.390	3.780	4.060	9.500	0.710
90.0	0.3	106.0	13.620	47.350	6.440	4.060	10.430	1.270
105.0	-2.3	118.7	14.700	49.020	8.170	3.990	10.740	1.980
120.0	-4.4	132.0	13.570	49.930	8.560	3.890	9.640	2.620
135.0	-5.1	146.2	14.140	49.960	11.720	3.800	7.880	3.140
150.0	-4.3	160.0	13.360	46.120	13.260	3.720	5.420	3.440
165.0	-2.8	173.3	12.860	36.900	13.420	3.720	4.350	3.610
180.0	0.4	310.9	13.630	57.050	11.530	3.980	15.820	3.050
195.0	1.1	234.8	13.520	44.960	10.150	4.180	12.370	2.650
210.0	-0.2	245.4	15.280	46.370	8.900	4.340	12.570	2.230
225.0	-0.7	253.7	14.990	51.090	7.340	4.460	12.920	1.690
240.0	-1.1	261.7	15.070	53.610	5.700	4.550	13.050	1.120
255.0	-2.3	269.6	16.480	66.760	6.300	4.630	13.210	0.650
270.0	-2.8	277.2	15.620	60.050	3.750	4.610	13.040	0.730
285.0	-3.5	283.1	16.720	62.150	5.370	4.570	12.910	1.170
300.0	-3.5	288.4	14.190	65.240	6.330	4.570	13.060	1.600
315.0	-3.9	295.7	14.500	60.830	8.520	4.500	13.310	2.070
330.0	-0.6	141.1	14.180	55.590	9.240	4.340	17.270	2.230
345.0	0.6	141.0	13.620	48.720	10.260	4.200	15.110	2.600

Wind at 69.4 knots (35.7 m/s) is from the starboard beam in all cases.

Table Q.58: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolute	!	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	1.7	-41.7	14.800	79.240	12.100	4.130	12.730	3.010
15.0	1.3	-140.8	14.000	48.270	10.030	3.770	9.780	2.900
30.0	1.9	-124.7	13.510	44.830	13.290	3.830	12.950	2.660
45.0	2.6	-114.2	14.050	44.190	10.940	3.890	13.860	2.350
60.0	3.5	-61.9	14.570	47.960	12.820	3.910	21.000	2.430
75.0	5.8	71.4	13.700	37.400	8.130	3.990	8.250	1.510
90.0	5.0	94.4	14.840	39.890	3.010	4.070	9.770	0.590
105.0	4.3	108.2	12.850	47.460	7.200	4.050	9.810	1.290
120.0	3.4	118.0	12.680	52.150	9.460	3.960	9.620	1.820
135.0	2.5	127.1	13.750	54.130	9.600	3.900	9.320	2.240
150.0	1.9	134.9	13.350	55.650	9.000	3.840	8.830	2.570
165.0	1.5	143.3	13.400	55.410	10.670	3.770	8.240	2.850
180.0	1.3	153.9	13.260	44.340	12.090	3.700	7.470	3.140
195.0	1.8	168.9	12.560	45.540	15.740	3.690	6.630	3.380
210.0	4.5	235.3	13.990	52.360	11.830	4.200	12.110	2.510
225.0	4.1	248.3	15.750	53.330	8.970	4.360	12.530	1.950
240.0	3.6	258.0	15.880	52.670	6.590	4.470	12.890	1.370
255.0	3.6	268.2	15.690	60.940	5.030	4.540	13.120	0.800
270.0	3.5	276.9	17.010	58.130	3.030	4.580	13.180	0.610
285.0	3.6	285.8	16.240	67.810	4.240	4.540	13.020	1.120
300.0	3.0	292.4	16.280	68.270	6.070	4.520	12.800	1.630
315.0	2.6	298.6	18.060	90.290	6.410	4.480	12.990	2.060
330.0	2.3	306.2	16.840	90.230	7.360	4.390	12.830	2.490
345.0	2.0	312.9	16.320	90.120	8.310	4.290	12.870	2.830
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bean	in all ca	ses.	

Table Q.59: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots

Cmd	Ac	tual		Absolute	;	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\overline{\psi_{ ext{MHP}}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	6.9	-37.5	15.710	60.950	10.380	4.070	12.820	3.180
15.0	6.8	-31.4	14.960	59.550	11.800	3.990	12.400	3.340
30.0	6.8	-26.2	14.540	55.910	10.660	3.920	12.020	3.410
45.0	7.7	-78.8	14.410	44.380	11.000	3.940	17.950	2.110
60.0	6.9	-10.9	13.370	41.340	11.220	3.820	12.260	3.430
75.0	7.6	24.5	13.240	40.060	11.290	3.810	10.950	3.160
90.0	9.7	88.3	14.330	45.520	2.400	4.050	9.450	0.460
105.0	9.5	103.2	14.270	50.830	5.880	4.040	9.350	0.900
120.0	8.7	114.3	13.920	52.050	8.430	3.900	8.060	1.480
135.0	8.1	125.0	12.300	41.910	8.390	3.860	7.050	1.950
150.0	7.6	134.4	14.190	40.650	10.810	3.760	6.230	2.300
165.0	7.3	144.5	13.230	43.230	10.680	3.730	6.290	2.590
180.0	7.1	153.9	12.270	43.640	11.840	3.710	6.310	2.820
195.0	7.0	165.7	11.770	37.200	13.110	3.690	6.030	3.040
210.0	8.8	220.9	14.220	58.560	14.460	3.980	11.370	2.740
225.0	8.8	240.1	15.830	49.090	7.960	4.230	12.540	2.150
240.0	8.8	251.8	19.900	58.090	6.750	4.330	13.230	1.630
255.0	8.9	263.4	14.470	55.340	5.610	4.470	13.710	1.010
270.0	8.9	275.4	15.670	64.350	3.290	4.510	14.040	0.610
285.0	9.1	286.9	17.110	84.430	5.210	4.470	13.880	1.210
300.0	8.9	298.5	15.590	75.030	6.240	4.370	12.630	2.020
315.0	7.9	306.1	15.320	62.320	7.870	4.270	12.340	2.500
330.0	7.3	310.9	15.050	74.960	7.830	4.220	12.860	2.740
345.0	7.1	317.3	14.290	74.100	10.790	4.150	12.790	3.030
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.60: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual		Absolute	;	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	11.9	-21.9	14.670	82.730	13.800	3.910	12.190	3.550
15.0	11.7	-12.9	14.720	64.060	14.880	3.830	11.630	3.630
30.0	11.8	0.1	14.120	59.350	15.200	3.770	10.780	3.670
45.0	12.1	19.1	12.880	48.490	11.010	3.770	9.440	3.550
60.0	12.7	42.5	15.380	40.200	9.730	3.850	6.890	3.030
75.0	14.8	72.7	15.230	44.280	5.390	3.950	8.950	1.480
90.0	14.7	88.3	14.410	47.830	2.360	3.990	9.940	0.500
105.0	14.6	102.6	14.480	60.460	4.220	3.920	9.620	0.780
120.0	13.9	115.1	14.140	50.280	5.610	3.850	7.930	1.340
135.0	13.5	129.1	12.300	53.000	8.430	3.710	7.010	1.860
150.0	13.4	143.3	12.050	48.310	7.850	3.620	6.100	2.220
165.0	13.2	158.7	13.520	49.910	10.900	3.600	6.030	2.560
180.0	14.0	176.8	10.910	43.750	9.150	3.590	6.480	2.770
195.0	13.9	196.1	14.770	54.420	11.690	3.590	9.450	2.670
210.0	14.0	215.4	12.960	46.370	8.240	3.760	11.530	2.460
225.0	14.1	231.1	14.490	48.580	6.910	3.940	12.760	2.040
240.0	14.2	245.1	14.260	84.700	5.860	4.150	14.360	1.720
255.0	14.3	259.0	15.590	91.170	5.660	4.330	15.530	1.120
270.0	14.4	273.2	16.320	61.400	3.150	4.390	15.360	0.600
285.0	14.5	286.6	16.240	77.370	4.880	4.370	15.190	1.210
300.0	14.4	300.2	15.020	72.310	8.620	4.250	12.410	2.120
315.0	14.2	312.9	14.610	90.480	8.600	4.210	11.700	2.820
330.0	13.3	324.8	14.920	82.370	10.040	4.040	11.140	3.230
345.0	12.1	330.4	14.070	68.580	11.740	3.970	11.930	3.420
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.61: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	19.2	-2.9	12.650	42.850	11.560	3.880	8.240	3.520
15.0	19.2	12.2	12.870	40.940	10.140	3.840	7.480	3.470
30.0	19.3	27.5	14.280	39.300	10.900	3.830	6.770	3.300
45.0	19.4	42.5	15.300	39.530	9.520	3.840	6.130	2.950
60.0	19.5	57.0	13.220	43.780	8.160	3.850	5.500	2.400
75.0	19.9	73.4	14.920	50.730	6.020	3.880	10.270	1.500
90.0	19.8	88.3	15.530	57.420	3.960	3.900	11.340	0.600
105.0	19.6	102.9	13.570	66.050	10.780	3.800	10.900	0.810
120.0	19.5	117.0	12.490	70.260	5.390	3.740	9.310	1.260
135.0	19.3	131.9	12.740	64.800	6.260	3.570	8.950	1.710
150.0	19.2	146.9	10.430	56.960	7.100	3.560	8.850	2.200
165.0	19.6	163.2	11.000	56.370	9.130	3.760	7.170	2.710
180.0	19.7	178.9	10.820	44.930	7.230	3.520	7.040	2.440
195.0	19.6	195.3	10.880	49.250	10.270	3.600	9.910	2.720
210.0	19.5	210.8	12.380	59.230	8.430	3.490	11.300	2.280
225.0	19.3	227.1	15.340	56.490	7.270	3.700	13.470	1.980
240.0	19.5	242.2	12.730	70.460	6.480	3.970	15.390	1.620
255.0	19.7	257.3	16.180	60.820	4.970	4.190	16.620	1.070
270.0	19.7	272.1	14.920	66.540	3.460	4.290	17.040	0.620
285.0	19.7	286.3	16.460	75.580	4.660	4.300	17.070	1.210
300.0	19.7	300.5	13.560	81.120	6.620	4.220	13.480	2.110
315.0	19.6	314.1	15.260	90.180	8.830	4.140	11.640	2.770
330.0	19.4	328.2	13.590	62.680	10.180	4.030	10.410	3.190
345.0	19.3	342.5	12.980	51.640	10.650	3.940	9.030	3.430
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.62: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	Absolute Standard					
Heading	Mo	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\mathbf{deg}	deg
0.0	24.8	-1.3	12.570	41.690	11.060	3.950	7.760	3.370
15.0	24.7	13.8	13.080	38.150	10.950	3.910	6.930	3.320
30.0	24.8	29.0	12.700	37.890	10.190	3.870	6.410	3.180
45.0	24.8	43.7	13.470	45.840	9.480	3.860	6.000	2.860
60.0	24.7	58.0	14.170	48.870	9.100	3.850	5.780	2.350
75.0	24.9	73.6	14.030	53.640	5.160	3.840	11.130	1.550
90.0	24.8	88.5	13.600	68.230	15.710	3.780	12.010	0.820
105.0	24.7	103.0	14.290	76.620	13.330	3.770	12.480	0.840
120.0	24.6	118.0	12.810	75.410	5.370	3.670	10.710	1.230
135.0	24.6	133.1	10.670	66.450	5.800	3.580	11.030	1.700
150.0	24.5	147.2	8.890	63.990	6.530	3.390	7.470	1.890
165.0	25.0	162.8	11.290	68.380	8.270	3.070	5.510	2.110
180.0	26.0	179.2	8.270	38.100	6.560	2.970	4.470	2.180
195.0	25.6	194.8	8.540	44.540	6.450	3.210	6.760	2.180
210.0	24.8	210.2	10.480	55.920	9.010	3.420	11.310	2.220
225.0	24.8	224.8	10.500	59.480	6.500	3.480	12.270	1.740
240.0	24.7	240.6	14.440	61.640	5.380	3.760	16.100	1.600
255.0	24.9	256.1	14.550	78.530	3.730	4.050	18.260	1.080
270.0	24.8	271.4	14.310	81.920	4.230	4.200	19.010	0.660
285.0	24.9	285.8	11.520	90.100	4.130	4.230	18.490	1.230
300.0	24.9	300.4	15.400	90.230	8.230	4.260	14.060	2.130
315.0	24.9	314.9	14.290	74.460	8.650	4.140	12.310	2.710
330.0	24.8	329.3	14.560	56.900	10.330	4.070	9.760	3.100
345.0	24.8	343.9	12.650	47.440	10.180	4.010	9.000	3.300
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard beam	in all ca	ses.	

Table Q.63: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	9	Standard	
Heading	Mo	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.1	-0.5	15.400	44.780	10.050	4.040	7.350	3.230
15.0	30.0	14.6	12.400	37.640	10.270	3.980	6.530	3.210
30.0	30.0	29.6	13.040	38.250	10.240	3.930	6.230	3.070
45.0	30.0	44.4	14.200	43.300	9.120	3.880	5.820	2.780
60.0	29.9	58.8	15.810	48.990	7.730	3.820	5.810	2.310
75.0	30.0	73.8	14.670	59.420	5.400	3.770	12.370	1.580
90.0	29.9	88.6	16.630	67.080	13.090	3.720	13.200	0.870
105.0	29.8	103.3	14.640	73.070	5.900	3.640	13.560	0.810
120.0	29.6	118.4	12.410	69.070	6.980	3.650	13.540	1.280
135.0	29.4	132.7	9.700	66.540	5.640	3.510	11.430	1.620
150.0	29.2	146.3	8.740	62.000	6.290	3.150	8.290	1.940
165.0	29.4	159.7	10.880	74.150	8.100	3.400	7.880	2.490
180.0	30.3	176.7	8.570	48.420	8.490	2.840	6.820	2.410
195.0	30.6	196.2	12.870	60.330	10.260	3.690	12.440	2.960
210.0	30.9	210.9	9.100	62.780	6.940	3.470	11.330	2.420
225.0	30.0	224.9	9.540	65.680	5.680	3.300	12.470	1.750
240.0	29.7	240.1	12.440	62.030	6.100	3.690	17.070	1.700
255.0	29.6	254.9	15.430	90.070	10.510	4.050	18.850	1.360
270.0	29.9	270.8	14.740	90.220	4.050	4.160	20.270	0.730
285.0	30.0	285.2	11.020	90.470	3.930	4.400	19.630	1.320
300.0	30.1	300.4	16.830	79.690	8.150	4.180	13.460	2.060
315.0	30.1	315.1	15.420	70.970	9.020	4.150	11.880	2.630
330.0	30.1	329.8	14.530	55.050	9.190	4.130	10.260	2.980
345.0	30.1	344.6	14.990	48.820	10.960	4.070	8.330	3.160
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bean	in all ca	ses.	

Table Q.64: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual		Absolute	!	Standard			
Heading	M	ean	I	Maximun	n	D	eviation	ı	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	-0.7	-1.3	13.730	44.080	8.070	4.160	7.360	2.530	
15.0	0.7	12.9	13.110	37.350	7.950	4.100	6.620	2.450	
30.0	1.7	26.6	13.190	34.630	6.660	4.080	6.130	2.260	
45.0	2.5	41.8	14.250	35.480	6.480	4.120	5.880	1.930	
60.0	2.6	58.7	14.180	35.200	5.050	4.100	5.590	1.360	
75.0	1.7	77.0	15.310	35.340	2.450	4.170	5.480	0.610	
90.0	0.9	94.9	14.600	36.320	3.250	4.200	5.730	0.410	
105.0	0.1	109.7	16.190	43.060	5.370	4.170	6.050	0.960	
120.0	-1.2	125.3	13.390	37.810	5.420	4.110	6.380	1.520	
135.0	-2.4	140.3	16.240	38.080	6.270	4.130	5.830	2.000	
150.0	-2.9	154.1	14.030	34.320	7.470	4.070	4.440	2.300	
165.0	-2.8	165.8	13.710	32.840	8.540	4.050	3.060	2.470	
180.0	-2.1	177.6	13.860	29.840	8.010	4.040	3.000	2.560	
195.0	-1.0	191.8	13.380	36.750	10.100	4.100	4.520	2.580	
210.0	0.1	209.9	14.450	41.320	8.620	4.180	6.490	2.390	
225.0	0.3	229.9	14.470	42.140	6.600	4.280	7.940	1.900	
240.0	-0.1	248.0	15.960	52.080	4.820	4.450	9.090	1.240	
255.0	-0.9	262.0	16.280	52.400	2.490	4.490	9.290	0.600	
270.0	-1.6	274.8	16.420	46.560	1.530	4.520	9.360	0.260	
285.0	-2.4	286.8	15.140	44.970	2.620	4.470	9.100	0.780	
300.0	-3.7	302.0	14.610	48.060	4.230	4.450	8.920	1.480	
315.0	-3.6	316.8	13.990	46.460	7.230	4.390	8.470	1.990	
330.0	-2.9	331.7	14.310	54.250	6.680	4.280	8.050	2.290	
345.0	-1.8	345.9	14.340	51.210	7.600	4.200	7.680	2.460	
Wind at 69	9.4 knots	(35.7 m/s	is from	the starbo	oard beam	in all ca	ses		

Wind at 69.4 knots (35.7 m/s) is from the starboard beam in all cases.

Table Q.65: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	;	S	tandard	l
Heading	Me	ean	ľ	Maximun	n	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	2.6	-22.8	15.670	52.650	8.140	4.190	8.740	2.370
15.0	2.9	-7.4	15.540	45.040	8.680	4.110	8.080	2.520
30.0	3.4	9.2	15.110	45.730	9.020	4.060	7.230	2.510
45.0	4.1	27.0	13.590	35.950	7.750	4.060	6.040	2.310
60.0	4.7	48.0	13.870	34.960	6.420	4.090	5.070	1.790
75.0	4.9	66.8	13.940	33.660	4.130	4.180	5.100	1.100
90.0	4.6	83.1	14.220	35.280	2.070	4.160	5.550	0.400
105.0	4.3	97.1	14.690	38.640	2.400	4.180	5.440	0.400
120.0	4.0	108.9	15.030	37.610	4.300	4.160	5.050	0.870
135.0	3.5	121.0	14.010	35.990	5.560	4.140	4.450	1.340
150.0	3.1	133.4	13.880	35.050	6.770	4.100	3.830	1.750
165.0	2.8	145.1	13.280	33.700	7.700	4.060	3.410	2.050
180.0	2.6	156.9	14.460	32.950	8.830	4.050	3.030	2.280
195.0	2.5	169.3	15.600	31.360	10.200	4.040	2.910	2.460
210.0	2.7	183.2	13.960	32.820	8.650	4.060	3.370	2.560
225.0	3.7	209.2	13.530	41.990	7.980	4.160	5.590	2.350
240.0	4.6	237.6	13.370	43.020	5.690	4.380	8.390	1.620
255.0	4.5	251.8	14.750	43.110	4.690	4.440	8.970	1.090
270.0	4.1	266.2	15.730	49.270	2.860	4.480	9.270	0.490
285.0	3.8	279.0	16.630	56.330	2.150	4.500	9.270	0.380
300.0	3.3	290.2	16.530	50.430	3.650	4.450	9.080	0.850
315.0	3.0	300.5	16.230	52.630	4.330	4.420	9.130	1.310
330.0	2.7	311.4	17.260	55.970	5.870	4.370	9.150	1.730
345.0	2.6	323.6	16.650	55.680	7.190	4.290	9.030	2.100
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bean	in all ca	ses.	

Table Q.66: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots

Cmd	Ac	tual		Absolute	<u> </u>	5	Standard	
Heading	M	ean	ľ	Maximun	n	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	7.4	-24.1	14.660	54.340	7.670	4.170	9.090	2.400
15.0	7.4	-12.0	14.290	49.490	8.220	4.110	8.710	2.540
30.0	7.6	2.2	15.230	45.370	7.760	4.070	8.030	2.590
45.0	7.9	19.7	14.150	39.930	7.920	4.050	6.670	2.460
60.0	8.3	39.5	14.690	35.600	6.710	4.080	4.980	2.080
75.0	8.6	61.1	14.010	34.510	5.340	4.080	4.020	1.360
90.0	8.9	82.5	15.020	38.720	1.900	4.130	5.610	0.480
105.0	8.6	94.8	17.720	42.670	1.620	4.120	5.290	0.270
120.0	8.3	105.8	13.530	48.820	3.250	4.130	4.630	0.690
135.0	8.1	114.5	14.240	43.970	3.960	4.100	3.700	0.980
150.0	8.0	127.8	13.780	41.810	6.420	4.100	3.110	1.440
165.0	7.8	141.5	13.520	36.820	8.240	4.020	2.260	1.820
180.0	7.7	155.3	13.350	33.670	9.410	3.990	1.470	2.100
195.0	7.7	171.9	13.350	31.490	10.230	4.000	1.970	2.320
210.0	8.7	201.6	13.810	44.150	9.380	4.090	5.570	2.280
225.0	9.3	223.0	14.210	47.610	7.870	4.230	8.110	1.890
240.0	9.6	239.4	14.320	46.910	5.430	4.300	9.250	1.430
255.0	9.7	254.2	16.570	52.370	5.070	4.360	10.390	0.910
270.0	9.5	268.7	14.600	53.760	2.090	4.420	10.450	0.370
285.0	9.3	282.5	16.830	53.810	3.330	4.420	10.160	0.540
300.0	8.9	295.7	15.140	53.590	4.250	4.410	9.170	1.110
315.0	8.2	306.6	15.120	52.960	4.910	4.350	9.010	1.560
330.0	7.7	315.2	14.960	52.090	5.800	4.300	9.150	1.870
345.0	7.6	325.2	15.980	52.910	6.720	4.240	9.190	2.170
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bean	n in all ca	ses.	

Table Q.67: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots

Cmd	Actual		I	Absolute		Standard			
Heading	Mo	ean	\mathbf{N}	Iaximum	l	I	Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	13.3	-6.3	13.300	47.790	8.340	4.060	6.900	2.620	
15.0	13.2	7.7	14.160	44.450	8.780	4.010	6.300	2.610	
30.0	13.3	22.6	12.670	40.880	8.070	4.020	5.500	2.480	
45.0	13.7	38.6	14.500	37.000	7.290	4.010	4.250	2.160	
60.0	13.8	53.8	14.950	37.430	5.980	4.040	3.760	1.700	
75.0	14.3	71.1	14.870	41.480	3.560	4.070	5.930	1.030	
90.0	14.2	85.8	12.980	49.060	1.610	4.090	6.620	0.430	
105.0	14.0	99.9	13.530	54.710	1.960	4.060	6.220	0.410	
120.0	13.4	112.4	14.060	52.210	3.420	4.070	4.810	0.810	
135.0	13.5	127.9	14.190	48.350	5.890	4.010	4.460	1.290	
150.0	13.6	143.3	13.900	53.400	6.640	3.910	4.080	1.640	
165.0	13.7	159.4	13.640	47.120	6.960	3.960	4.240	1.960	
180.0	14.0	176.0	12.900	40.830	7.100	3.980	5.080	2.110	
195.0	14.1	192.4	13.410	48.860	7.870	4.010	6.820	2.120	
210.0	14.2	208.8	12.960	47.640	7.030	4.000	8.040	1.910	
225.0	14.3	224.6	14.380	49.690	6.700	4.130	9.420	1.660	
240.0	14.6	239.7	14.810	54.670	5.580	4.250	10.450	1.290	
255.0	14.7	254.8	17.150	63.240	4.650	4.300	11.810	0.820	
270.0	14.7	269.6	14.450	57.840	1.710	4.360	12.230	0.370	
285.0	14.6	284.1	15.030	63.310	3.280	4.330	11.900	0.670	
300.0	14.5	298.4	14.640	58.660	4.610	4.300	9.910	1.260	
315.0	14.3	312.5	14.240	57.290	5.390	4.250	8.950	1.800	
330.0	14.0	326.4	13.950	54.700	7.100	4.180	8.030	2.210	
345.0	13.7	340.2	13.850	50.010	7.890	4.110	7.390	2.490	
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bear	m in all c	ases.		

Table Q.68: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual	1	Absolute		Standard			
Heading	Mo	ean	N	Iaximum	1	I	Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	19.4	-2.5	16.630	53.710	8.990	4.040	5.660	2.600	
15.0	19.4	12.4	15.220	45.650	8.300	3.970	4.970	2.570	
30.0	19.4	27.2	16.340	44.050	9.310	3.980	4.360	2.410	
45.0	19.4	42.1	14.300	41.420	6.810	3.970	4.050	2.100	
60.0	19.4	56.7	14.720	42.800	6.640	4.000	4.190	1.660	
75.0	19.7	72.5	13.840	54.060	3.400	3.980	7.560	1.060	
90.0	19.6	87.1	13.100	55.280	2.260	4.030	7.830	0.510	
105.0	19.5	101.8	13.920	66.960	2.280	3.990	7.750	0.480	
120.0	19.5	116.7	14.030	58.860	3.980	3.980	6.220	0.850	
135.0	19.4	131.5	13.190	65.740	4.840	3.910	5.980	1.250	
150.0	19.5	146.8	14.980	67.800	6.470	3.870	5.630	1.590	
165.0	19.5	162.4	11.650	53.910	6.690	3.910	5.660	1.890	
180.0	19.6	177.8	11.400	45.180	6.470	3.880	5.950	1.830	
195.0	19.6	193.7	12.710	48.370	7.320	3.930	7.790	2.040	
210.0	19.5	209.1	15.660	52.770	8.080	3.890	9.040	1.790	
225.0	19.6	224.3	13.290	57.500	5.610	4.030	10.540	1.560	
240.0	19.6	239.4	14.040	57.910	4.720	4.110	11.410	1.180	
255.0	19.8	254.7	14.160	73.580	3.340	4.250	13.100	0.760	
270.0	19.8	269.9	14.410	70.270	1.940	4.280	14.010	0.410	
285.0	19.8	284.6	14.810	73.930	3.130	4.310	13.820	0.750	
300.0	19.8	299.1	13.400	65.500	4.070	4.240	10.810	1.310	
315.0	19.7	313.6	15.320	65.210	6.030	4.190	9.600	1.830	
330.0	19.6	328.2	17.840	65.320	7.420	4.140	7.910	2.230	
345.0	19.5	342.8	16.970	56.270	8.590	4.050	6.630	2.480	
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bea	m in all c	ases.		

Table Q.69: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	I	Absolute		Standard			
Heading	Me	ean	\mathbf{N}	Iaximum	l	I	Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	24.8	-1.5	12.740	47.300	8.340	4.000	5.380	2.560	
15.0	24.8	13.5	13.890	42.180	7.850	3.980	4.730	2.540	
30.0	24.8	28.4	14.060	46.600	8.440	3.950	4.440	2.380	
45.0	24.8	43.2	15.020	47.590	6.760	3.930	4.370	2.090	
60.0	24.7	57.8	13.700	47.690	5.710	3.950	4.760	1.670	
75.0	24.9	73.2	14.960	57.820	3.900	3.940	8.680	1.120	
90.0	24.9	87.9	13.540	64.710	2.620	3.960	8.970	0.620	
105.0	24.8	102.7	13.620	76.610	3.100	3.950	8.970	0.560	
120.0	24.8	117.7	13.000	65.650	3.280	3.920	6.450	0.880	
135.0	24.7	132.5	12.930	72.090	4.650	3.890	5.850	1.260	
150.0	24.7	147.6	11.410	63.650	5.240	3.900	5.370	1.740	
165.0	24.8	163.1	11.100	57.610	5.750	3.980	5.160	1.980	
180.0	25.0	178.5	10.400	43.980	4.800	3.740	4.900	1.800	
195.0	25.0	194.2	11.480	49.170	5.980	4.120	7.560	2.110	
210.0	24.9	209.3	11.670	55.020	5.650	3.890	8.820	1.810	
225.0	24.9	224.3	13.790	62.280	5.320	3.970	10.820	1.530	
240.0	24.8	239.4	13.710	61.490	5.000	4.010	11.710	1.150	
255.0	24.8	254.7	14.080	81.500	2.780	4.210	14.370	0.760	
270.0	24.8	269.8	14.630	90.350	2.320	4.230	15.720	0.480	
285.0	24.9	284.5	13.190	89.960	3.000	4.210	15.320	0.780	
300.0	25.0	299.4	14.890	65.890	4.380	4.180	10.980	1.350	
315.0	24.9	314.1	17.450	83.850	5.960	4.140	9.790	1.840	
330.0	24.9	328.9	14.540	64.600	7.790	4.090	8.200	2.220	
345.0	24.8	343.7	13.030	54.110	7.720	4.050	6.390	2.460	
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bear	m in all c	ases.		

Table Q.70: Course-Keeping Ability and Motion Parameters: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	Standard			
Heading	Mo	ean	\mathbf{N}	Iaximum	1	I	Deviation				
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch			
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg			
0.0	30.0	-0.9	13.820	47.580	8.370	4.010	5.180	2.500			
15.0	30.0	14.1	14.740	43.780	8.800	3.980	4.600	2.470			
30.0	30.0	28.9	12.510	44.180	7.960	3.940	4.410	2.340			
45.0	30.0	43.8	14.950	51.210	7.320	3.910	4.300	2.080			
60.0	30.0	58.5	14.160	52.640	6.740	3.890	4.790	1.690			
75.0	30.1	73.7	13.570	56.710	3.830	3.870	9.790	1.180			
90.0	30.0	88.4	13.230	68.080	3.210	3.900	10.120	0.710			
105.0	30.0	103.2	12.700	77.390	3.910	3.830	9.800	0.630			
120.0	29.9	118.4	14.240	56.580	3.720	3.900	7.130	0.950			
135.0	29.8	133.1	10.980	59.560	4.400	3.910	5.860	1.350			
150.0	29.9	148.2	10.200	50.910	4.720	3.870	4.400	1.700			
165.0	30.1	163.4	10.470	55.090	6.120	3.600	3.940	1.750			
180.0	30.4	178.7	10.830	46.990	5.940	3.880	4.660	2.020			
195.0	30.4	194.1	11.700	52.460	5.630	3.620	5.270	1.830			
210.0	30.2	209.5	12.950	63.370	6.210	3.830	8.900	1.850			
225.0	30.1	224.6	12.600	69.940	5.430	4.020	11.590	1.630			
240.0	30.1	239.6	13.550	64.420	3.840	4.000	12.000	1.160			
255.0	29.9	254.7	14.210	90.220	3.110	4.160	15.510	0.800			
270.0	29.9	269.6	14.870	79.500	2.760	4.200	17.030	0.560			
285.0	29.9	284.6	13.070	90.240	3.180	4.250	16.940	0.830			
300.0	30.1	299.5	16.830	75.640	5.590	4.160	11.010	1.370			
315.0	30.1	314.4	14.280	73.560	5.970	4.110	9.420	1.820			
330.0	30.1	329.3	12.170	65.330	7.440	4.100	7.600	2.190			
345.0	30.0	344.2	15.430	51.100	8.070	4.060	6.190	2.400			
Wind at 69	9.4 knots	(35.7 m/s	s) is from	the starbo	oard bea	m in all c	ases.				

DRDC Atlantic TM 2004-044

This page intentionally left blank.

Annex R Tables of Motion Maxima – JONSWAP Spectrum (Coastal Waters)

Table R.1: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	-0.2	-28.4	0.780	8.200	3.800	0.240	1.540	0.990
15.0	-0.2	-6.7	0.690	4.880	3.530	0.190	0.710	0.870
30.0	-0.2	20.1	0.770	8.660	3.480	0.210	1.270	0.910
45.0	-0.2	35.0	1.080	9.990	3.380	0.280	2.010	1.020
60.0	-0.4	43.8	1.500	11.950	3.930	0.350	2.490	1.080
75.0	-0.6	50.6	1.850	12.850	3.670	0.440	2.740	1.110
90.0	-0.7	56.8	2.330	15.520	3.890	0.520	3.260	1.100
105.0	-0.8	60.5	2.280	15.930	3.870	0.570	3.330	1.080
120.0	-0.9	65.1	3.030	21.260	3.690	0.630	3.530	0.980
135.0	-2.1	102.4	3.020	20.640	3.150	0.760	3.370	0.800
150.0	-2.2	104.5	2.340	16.220	3.250	0.730	3.200	0.860
165.0	-2.4	103.6	2.750	14.320	3.570	0.770	3.080	0.750
180.0	-0.8	59.1	2.240	10.270	3.400	0.390	2.620	0.870
195.0	-0.2	352.3	2.130	9.700	3.960	0.340	2.720	1.020
210.0	-0.2	382.7	2.800	11.630	3.620	0.440	2.640	1.080
225.0	0.0	379.0	2.140	12.040	3.720	0.440	2.880	1.130
240.0	0.7	294.4	2.450	12.960	3.350	0.660	3.050	1.090
255.0	0.5	293.5	2.470	11.910	3.360	0.680	3.090	1.080
270.0	0.3	296.5	2.380	16.960	3.350	0.630	3.310	1.120
285.0	0.1	300.8	2.090	12.440	3.560	0.560	3.070	1.160
300.0	0.0	305.3	1.940	15.620	3.930	0.490	2.930	1.170
315.0	-0.0	309.8	1.700	11.830	4.250	0.430	2.680	1.160
330.0	-0.1	315.0	1.640	10.340	4.000	0.370	2.310	1.130
345.0	-0.1	321.5	1.130	9.640	3.840	0.300	1.960	1.080
Wind at 20	0 & knote	(10.7 m/s)	ic from	the storb	oord boo	m in all a	20000	

Wind at 20.8 knots (10.7 m/s) is from the starboard beam in all cases.

Table R.2: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	4.8	-2.1	0.820	5.190	2.820	0.230	0.760	0.870
15.0	4.8	12.8	0.810	5.530	2.950	0.230	0.920	0.890
30.0	4.7	27.8	0.940	6.350	3.540	0.270	1.160	0.980
45.0	4.7	42.2	1.210	9.730	3.540	0.360	1.670	1.100
60.0	4.4	53.9	1.740	12.790	3.870	0.480	2.170	1.160
75.0	4.1	56.6	1.830	14.310	3.550	0.520	2.450	1.150
90.0	4.1	60.8	2.220	15.080	3.790	0.580	2.720	1.130
105.0	4.1	63.1	2.210	13.020	3.380	0.610	2.750	1.110
120.0	4.1	64.0	2.170	11.500	3.330	0.610	2.740	1.110
135.0	4.0	64.2	2.510	11.620	3.460	0.600	2.770	1.120
150.0	4.1	74.6	2.060	11.330	3.660	0.540	2.700	1.090
165.0	4.9	163.1	0.710	7.700	2.350	0.190	1.380	0.620
180.0	4.9	178.7	0.650	5.470	2.020	0.170	0.940	0.580
195.0	4.9	194.1	0.770	5.930	1.940	0.190	1.200	0.610
210.0	4.8	210.3	0.880	8.730	2.370	0.250	1.790	0.720
225.0	4.5	283.4	2.860	10.650	3.070	0.750	2.590	0.970
240.0	4.6	285.3	2.660	9.640	2.840	0.800	2.580	0.930
255.0	4.5	286.8	2.870	11.060	2.980	0.800	2.530	0.960
270.0	4.5	288.9	2.840	10.340	3.020	0.770	2.520	1.010
285.0	4.7	291.3	2.610	10.460	3.360	0.730	2.560	1.090
300.0	4.9	301.2	2.230	10.360	4.150	0.560	2.430	1.200
315.0	4.8	314.0	1.410	8.720	3.850	0.400	1.860	1.160
330.0	4.8	328.1	0.940	8.040	3.400	0.290	1.340	1.030
345.0	4.8	343.0	0.850	5.560	2.970	0.240	0.800	0.920
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table R.3: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	10.0	-0.6	0.850	5.220	2.880	0.290	0.540	0.860
15.0	10.0	14.4	1.060	5.230	2.810	0.310	0.560	0.900
30.0	10.0	29.4	1.090	6.230	3.120	0.360	0.860	0.990
45.0	9.9	44.5	1.500	9.430	3.520	0.460	1.320	1.110
60.0	10.0	59.1	1.980	14.100	3.520	0.610	1.900	1.160
75.0	10.0	73.0	2.790	15.200	3.180	0.790	1.960	0.980
90.0	9.7	86.0	2.790	17.710	1.320	0.880	2.540	0.360
105.0	9.4	100.8	2.460	17.910	2.410	0.740	3.100	0.600
120.0	9.6	116.9	1.910	15.590	2.610	0.520	3.320	0.780
135.0	9.9	133.2	0.870	14.810	1.940	0.330	4.600	0.710
150.0	10.0	148.8	0.670	17.580	1.640	0.230	5.430	0.590
165.0	10.1	164.1	0.530	19.880	1.520	0.180	4.610	0.510
180.0	10.1	179.2	0.540	13.060	1.520	0.160	2.890	0.480
195.0	10.1	194.7	0.570	9.660	1.620	0.180	2.630	0.520
210.0	10.1	210.3	0.680	12.150	1.680	0.240	4.100	0.600
225.0	10.0	225.9	1.090	13.420	2.220	0.350	3.990	0.750
240.0	9.7	242.3	1.960	11.230	2.780	0.550	3.270	0.840
255.0	9.5	259.2	2.720	14.300	2.460	0.800	3.160	0.650
270.0	9.8	273.7	2.970	13.570	1.820	0.930	2.570	0.330
285.0	10.2	286.6	2.930	9.210	3.300	0.830	1.980	0.980
300.0	10.1	300.1	2.230	9.920	3.780	0.650	2.030	1.180
315.0	10.0	314.7	1.560	8.010	3.510	0.480	1.370	1.130
330.0	10.0	329.6	1.160	6.460	3.200	0.370	0.910	1.010
345.0	10.0	344.6	1.120	5.710	2.860	0.310	0.600	0.910
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.4: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	15.2	-0.2	1.240	5.560	2.540	0.370	0.470	0.850
15.0	15.2	14.8	1.260	5.610	2.650	0.390	0.510	0.880
30.0	15.1	29.8	1.440	6.790	3.000	0.450	0.760	0.970
45.0	15.1	44.8	1.740	9.360	3.300	0.560	1.130	1.090
60.0	15.2	59.7	2.250	12.440	3.510	0.700	1.660	1.120
75.0	15.2	74.1	2.980	12.560	3.040	0.840	1.750	0.930
90.0	15.1	88.5	2.770	17.820	0.940	0.860	2.630	0.200
105.0	15.0	103.3	2.980	21.890	2.220	0.670	3.300	0.570
120.0	15.0	118.5	1.460	20.860	2.230	0.460	6.370	0.670
135.0	15.2	134.3	1.070	22.960	1.970	0.300	7.380	0.550
150.0	15.3	149.7	0.610	16.830	1.410	0.210	4.530	0.440
165.0	15.3	164.7	0.460	11.490	1.430	0.160	2.320	0.420
180.0	15.2	179.5	0.570	13.490	1.410	0.190	1.940	0.450
195.0	15.2	194.7	0.410	12.270	1.100	0.150	2.280	0.400
210.0	15.2	209.8	0.500	13.440	1.140	0.160	3.200	0.340
225.0	15.2	225.4	1.050	19.910	2.220	0.320	7.210	0.610
240.0	15.1	241.1	1.380	19.650	2.360	0.510	6.170	0.750
255.0	15.0	256.7	2.630	14.200	2.030	0.730	3.590	0.640
270.0	15.1	271.5	2.870	14.730	1.100	0.920	2.980	0.200
285.0	15.3	285.8	2.750	9.370	3.180	0.880	2.050	0.930
300.0	15.2	300.1	2.400	7.730	3.690	0.730	1.710	1.140
315.0	15.1	314.8	1.750	7.320	3.480	0.580	1.290	1.100
330.0	15.1	329.8	1.430	6.020	2.940	0.460	0.810	0.980
345.0	15.2	344.8	1.320	5.070	2.620	0.390	0.510	0.880
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table R.5: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute		S	tandard	ı
Heading	Mo	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.3	-0.1	1.380	6.030	2.700	0.440	0.440	0.810
15.0	20.3	14.9	1.440	6.230	2.530	0.460	0.500	0.840
30.0	20.3	29.9	1.650	7.550	2.990	0.540	0.710	0.930
45.0	20.3	44.9	1.940	10.420	3.370	0.650	1.080	1.050
60.0	20.3	59.8	2.720	12.230	3.500	0.790	1.550	1.090
75.0	20.4	74.5	2.980	14.520	3.080	0.880	1.830	0.890
90.0	20.3	89.1	2.560	18.160	0.870	0.840	2.680	0.170
105.0	20.2	104.1	2.610	22.070	2.170	0.630	4.030	0.520
120.0	20.3	119.3	1.640	28.010	2.510	0.420	9.190	0.530
135.0	20.2	134.8	1.020	24.620	1.730	0.350	8.080	0.610
150.0	20.4	149.8	0.720	16.210	1.760	0.210	4.000	0.460
165.0	20.3	164.6	0.490	15.920	1.690	0.170	2.170	0.420
180.0	20.6	179.8	0.450	19.090	1.210	0.160	1.890	0.400
195.0	20.4	194.7	0.500	21.770	1.700	0.170	3.360	0.410
210.0	20.3	209.8	0.620	24.630	1.440	0.200	5.030	0.460
225.0	20.3	225.1	0.810	25.830	1.760	0.240	7.620	0.480
240.0	20.3	240.6	1.810	25.480	2.800	0.470	9.700	0.620
255.0	20.2	255.9	2.340	16.210	2.010	0.690	4.380	0.590
270.0	20.3	270.9	2.860	15.000	0.830	0.890	3.380	0.180
285.0	20.4	285.5	3.270	12.850	3.460	0.920	2.470	0.890
300.0	20.3	300.1	2.590	8.010	3.460	0.810	1.880	1.090
315.0	20.3	315.0	2.100	6.950	3.400	0.670	1.290	1.050
330.0	20.3	329.9	1.690	6.060	2.940	0.540	0.780	0.940
345.0	20.3	344.9	1.450	5.270	2.620	0.460	0.510	0.840
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.6: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.4	-0.1	1.570	6.370	2.590	0.480	0.490	0.760
15.0	25.4	14.9	1.640	6.660	2.650	0.510	0.480	0.790
30.0	25.4	29.9	1.800	8.770	2.700	0.590	0.740	0.880
45.0	25.4	44.9	2.300	10.300	3.180	0.720	1.160	1.000
60.0	25.4	59.8	2.850	12.940	3.310	0.850	1.680	1.050
75.0	25.4	74.6	3.300	15.550	2.950	0.920	2.050	0.850
90.0	25.4	89.4	2.700	19.160	0.940	0.820	2.800	0.180
105.0	25.4	104.4	2.090	24.150	1.870	0.590	5.020	0.470
120.0	25.3	119.7	1.740	34.110	2.630	0.460	12.780	0.620
135.0	25.3	134.9	1.050	23.990	1.680	0.270	7.250	0.490
150.0	25.5	149.8	0.690	15.220	1.770	0.200	3.160	0.420
165.0	25.5	164.8	0.550	13.780	1.310	0.160	1.970	0.370
180.0	25.4	179.8	0.490	20.140	1.410	0.150	2.830	0.360
195.0	25.5	194.9	0.570	20.710	1.920	0.160	3.200	0.370
210.0	25.4	210.0	0.570	22.260	1.580	0.190	4.550	0.410
225.0	25.3	225.0	0.950	30.460	1.780	0.270	7.790	0.500
240.0	25.3	240.2	1.670	35.230	2.250	0.440	12.450	0.620
255.0	25.4	255.5	1.960	19.610	1.840	0.660	5.390	0.540
270.0	25.4	270.6	2.740	15.590	0.780	0.860	3.620	0.190
285.0	25.4	285.3	3.310	12.960	3.090	0.950	2.910	0.850
300.0	25.4	300.1	2.850	10.030	3.570	0.870	2.310	1.040
315.0	25.4	315.1	2.200	7.270	3.340	0.730	1.540	0.990
330.0	25.4	330.0	1.900	6.390	2.900	0.590	0.950	0.880
345.0 25.4 345.0 1.650 5.860 2.650 0.510 0.570 0.790								
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.7: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.1	1.550	6.670	2.360	0.490	0.520	0.690
15.0	30.5	14.9	1.540	7.270	2.320	0.520	0.500	0.730
30.0	30.5	29.9	1.990	9.330	2.660	0.610	0.770	0.820
45.0	30.5	44.9	2.250	12.440	2.970	0.750	1.330	0.940
60.0	30.5	59.9	2.750	14.740	3.280	0.900	1.910	1.000
75.0	30.5	74.7	3.120	15.020	2.890	0.950	2.170	0.830
90.0	30.5	89.6	2.830	20.130	0.930	0.790	2.960	0.180
105.0	30.5	104.6	2.020	23.950	1.990	0.560	6.170	0.420
120.0	30.4	119.9	1.400	32.110	2.170	0.420	12.210	0.590
135.0	30.4	134.9	0.910	20.930	1.660	0.280	6.410	0.490
150.0	30.6	149.8	0.700	18.990	1.340	0.190	3.460	0.360
165.0	30.4	165.0	0.550	13.880	1.510	0.160	2.410	0.320
180.0	30.7	179.9	0.520	18.120	1.440	0.140	3.010	0.260
195.0	30.4	194.8	0.580	23.000	1.560	0.160	4.140	0.330
210.0	30.6	210.0	0.600	25.490	1.470	0.180	5.300	0.370
225.0	30.4	225.0	0.900	24.050	1.680	0.270	7.100	0.480
240.0	30.4	240.0	1.490	37.260	2.460	0.400	12.430	0.600
255.0	30.5	255.3	2.570	36.820	3.010	0.630	6.960	0.520
270.0	30.5	270.4	2.750	14.360	0.730	0.830	3.910	0.210
285.0	30.5	285.3	2.960	13.940	2.600	0.970	3.190	0.820
300.0	30.5	300.1	2.980	10.990	3.180	0.910	2.780	0.990
315.0	30.5	315.1	2.310	9.170	3.070	0.760	1.940	0.930
330.0	30.5	330.1	1.940	7.360	2.510	0.610	1.120	0.810
345.0	30.5	345.0	1.640	6.560	2.340	0.520	0.670	0.730
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.8: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		Standard			
Heading	Me	ean	N	Iaximum	1	D	eviation	ı	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg	
0.0	0.0	-14.0	2.360	8.710	3.650	0.690	2.180	1.110	
15.0	-0.1	-6.1	2.190	6.000	3.860	0.680	1.450	1.120	
30.0	-0.3	2.2	2.060	8.990	3.980	0.670	1.740	1.120	
45.0	-0.3	16.8	2.200	11.720	3.810	0.680	2.980	1.100	
60.0	-0.2	36.1	2.560	15.300	3.780	0.740	4.210	1.020	
75.0	-0.1	52.3	3.180	17.340	3.020	0.800	4.800	0.890	
90.0	-0.0	65.2	3.120	17.460	2.680	0.870	4.910	0.710	
105.0	-0.1	82.6	3.430	15.280	1.430	0.930	4.960	0.290	
120.0	-0.3	97.2	3.530	16.920	2.150	0.930	5.160	0.290	
135.0	-0.6	105.0	3.210	17.950	2.420	0.910	5.230	0.500	
150.0	-0.9	109.1	3.030	17.390	2.770	0.890	5.210	0.610	
165.0	-0.5	40.2	2.830	15.700	3.410	0.760	3.560	0.970	
180.0	-0.3	35.7	2.560	13.700	3.830	0.700	2.870	1.080	
195.0	0.1	362.1	2.810	12.440	3.630	0.730	3.360	1.060	
210.0	0.2	354.0	2.940	14.680	3.550	0.810	4.140	0.950	
225.0	0.3	264.4	3.370	15.360	2.320	0.990	4.880	0.360	
240.0	0.3	272.2	3.270	15.440	2.250	1.000	4.800	0.260	
255.0	0.3	283.8	3.360	15.030	2.110	0.980	4.660	0.470	
270.0	0.3	294.1	3.490	13.730	2.620	0.930	4.600	0.700	
285.0	0.2	302.8	3.250	14.080	3.070	0.890	4.540	0.850	
300.0	0.1	311.1	2.960	13.750	3.320	0.840	4.390	0.950	
315.0	0.1	319.6	2.660	13.820	3.670	0.790	4.130	1.020	
330.0	0.1	328.7	2.630	12.640	3.380	0.750	3.640	1.070	
345.0	0.0	337.9	2.520	10.870	3.740	0.720	2.940	1.100	
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	ases.		

Table R.9: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute		S	tandard	ı
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	4.8	-2.5	2.490	5.790	4.310	0.680	0.980	1.140
15.0	4.8	11.8	2.500	8.300	3.870	0.690	1.700	1.130
30.0	4.7	26.3	2.700	12.110	3.970	0.710	2.770	1.100
45.0	4.7	41.0	2.730	14.460	3.580	0.770	3.580	1.030
60.0	4.7	55.3	3.050	15.240	3.350	0.830	4.030	0.890
75.0	4.7	69.9	3.000	15.790	2.240	0.900	4.270	0.630
90.0	4.6	83.5	3.420	15.080	0.880	0.940	4.500	0.230
105.0	4.4	95.7	3.650	17.180	1.220	0.930	4.700	0.220
120.0	4.3	104.0	3.480	16.600	2.340	0.900	4.720	0.450
135.0	4.2	112.8	3.140	16.500	2.690	0.860	4.650	0.620
150.0	4.2	128.2	2.560	15.670	2.960	0.790	4.150	0.810
165.0	4.6	161.0	2.230	8.100	3.070	0.670	1.820	0.940
180.0	4.8	178.1	2.160	6.990	3.020	0.650	1.450	0.950
195.0	4.9	194.6	2.260	8.610	3.140	0.670	2.310	0.950
210.0	4.9	211.3	2.400	10.400	3.220	0.720	3.270	0.930
225.0	4.7	228.6	2.840	12.310	3.470	0.810	4.000	0.860
240.0	4.7	245.3	3.310	13.030	2.450	0.900	4.400	0.680
255.0	4.8	258.9	3.040	13.450	1.640	0.970	4.510	0.390
270.0	4.9	272.8	3.560	13.520	0.830	1.000	4.290	0.120
285.0	5.0	287.0	3.610	12.900	1.960	0.960	3.940	0.560
300.0	5.0	301.0	3.060	13.010	2.840	0.890	3.700	0.860
315.0	5.0	314.8	3.100	11.280	3.550	0.810	3.200	1.020
330.0	4.9	329.0	2.750	10.860	3.670	0.740	2.590	1.090
345.0	4.9	343.3	2.590	8.560	4.280	0.700	1.770	1.130
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	ases.	

Table R.10: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg
0.0	10.0	-0.6	2.650	4.800	4.390	0.720	0.470	1.150
15.0	10.0	14.4	2.730	7.210	4.280	0.720	1.170	1.130
30.0	10.0	29.4	2.890	9.440	4.050	0.750	1.960	1.090
45.0	10.1	44.4	2.670	10.670	3.560	0.800	2.550	1.010
60.0	10.1	59.3	3.280	12.640	2.930	0.870	3.020	0.850
75.0	10.1	74.0	3.490	13.540	2.090	0.920	3.250	0.540
90.0	10.1	88.8	3.340	14.120	0.360	0.930	3.720	0.090
105.0	10.1	103.7	3.280	16.480	1.430	0.880	4.070	0.370
120.0	10.0	118.3	2.810	16.520	2.400	0.820	4.260	0.620
135.0	10.0	133.5	2.550	15.850	2.400	0.740	4.150	0.750
150.0	10.0	148.8	2.170	15.420	2.510	0.690	3.930	0.820
165.0	10.0	164.0	2.350	15.470	3.270	0.650	3.120	0.850
180.0	10.1	179.3	1.700	12.420	2.640	0.650	2.020	0.860
195.0	10.1	194.6	2.260	9.970	2.990	0.660	2.290	0.870
210.0	10.1	210.2	2.330	11.630	2.730	0.700	3.660	0.840
225.0	10.0	225.8	2.560	12.850	2.740	0.770	4.500	0.790
240.0	10.0	241.2	2.900	13.100	2.640	0.860	4.690	0.670
255.0	10.1	255.9	3.660	14.300	1.500	0.930	4.470	0.420
270.0	10.2	270.7	3.260	13.070	0.370	0.980	4.030	0.090
285.0	10.2	285.3	3.420	12.910	1.690	0.960	3.470	0.520
300.0	10.1	299.9	3.200	11.740	3.220	0.900	3.020	0.840
315.0	10.1	314.6	2.940	9.840	3.380	0.820	2.370	1.010
330.0	10.1	329.5	2.940	8.500	4.280	0.770	1.640	1.100
345.0 10.1 344.4 2.850 6.450 4.400 0.730 0.950 1.130								
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.11: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	15.2	-0.3	2.570	5.300	3.710	0.770	0.410	1.130
15.0	15.2	14.8	2.450	6.820	3.600	0.780	1.000	1.120
30.0	15.2	29.9	2.760	8.760	3.710	0.800	1.670	1.080
45.0	15.2	44.9	3.290	10.400	3.500	0.840	2.220	1.000
60.0	15.2	59.8	3.240	11.640	2.810	0.890	2.720	0.840
75.0	15.3	74.6	3.230	12.560	1.580	0.920	2.770	0.530
90.0	15.3	89.5	3.430	14.140	0.420	0.900	3.320	0.120
105.0	15.3	104.4	3.050	17.050	1.300	0.860	3.940	0.360
120.0	15.2	119.2	2.780	20.090	1.940	0.790	5.270	0.570
135.0	15.2	134.5	2.090	19.410	2.120	0.720	5.490	0.680
150.0	15.3	149.8	1.850	14.030	2.100	0.670	3.520	0.720
165.0	15.2	164.7	1.770	9.970	2.320	0.640	1.800	0.750
180.0	15.2	179.7	1.900	8.730	2.490	0.630	1.250	0.810
195.0	15.2	194.8	1.840	14.080	2.330	0.640	2.150	0.770
210.0	15.2	209.9	1.930	15.800	2.210	0.670	3.630	0.750
225.0	15.2	225.3	2.200	18.660	2.360	0.740	6.130	0.720
240.0	15.2	240.6	2.810	16.210	2.090	0.830	5.880	0.620
255.0	15.3	255.4	3.280	15.020	1.420	0.910	4.790	0.400
270.0	15.3	270.3	3.340	13.790	0.450	0.960	4.020	0.120
285.0	15.3	285.1	3.500	13.200	1.580	0.960	3.280	0.510
300.0	15.2	299.9	3.260	12.570	2.930	0.920	2.700	0.830
315.0	15.2	314.7	3.340	9.810	3.470	0.860	1.980	1.000
330.0	15.2	329.7	2.540	8.320	3.360	0.810	1.340	1.080
345.0	15.2	344.7	2.590	6.180	3.570	0.780	0.660	1.120
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.12: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	20.3	-0.1	2.850	5.580	3.470	0.840	0.420	1.100
15.0	20.3	14.9	2.970	6.880	3.510	0.840	0.950	1.090
30.0	20.3	30.0	3.000	8.540	3.450	0.860	1.570	1.060
45.0	20.3	45.0	2.870	10.620	3.140	0.890	2.140	0.980
60.0	20.3	59.9	3.510	12.160	3.000	0.920	2.730	0.820
75.0	20.4	74.8	3.300	12.040	1.800	0.910	2.430	0.530
90.0	20.4	89.7	3.350	14.080	0.520	0.880	3.040	0.140
105.0	20.4	104.7	2.930	17.530	1.290	0.830	3.820	0.330
120.0	20.3	119.6	2.400	25.960	1.810	0.760	7.230	0.530
135.0	20.3	134.9	2.040	19.210	1.970	0.700	5.690	0.630
150.0	20.4	149.9	1.670	11.400	1.770	0.640	3.160	0.640
165.0	20.3	164.8	1.900	8.360	2.070	0.530	1.570	0.600
180.0	20.4	179.9	1.740	11.930	2.000	0.580	1.080	0.700
195.0	20.3	194.8	2.210	21.120	2.520	0.680	2.770	0.810
210.0	20.4	209.9	2.020	22.230	2.180	0.630	3.720	0.650
225.0	20.4	225.0	2.260	22.750	1.980	0.700	5.390	0.610
240.0	20.3	240.3	3.410	23.450	2.450	0.800	7.480	0.580
255.0	20.4	255.2	2.970	18.430	1.430	0.880	4.920	0.380
270.0	20.4	270.1	3.290	15.190	0.540	0.930	3.990	0.150
285.0	20.4	285.0	3.700	13.570	1.950	0.960	3.120	0.510
300.0	20.3	299.9	3.490	12.150	2.830	0.940	2.510	0.820
315.0	20.3	314.8	3.060	11.040	3.230	0.910	1.790	0.980
330.0	20.3	329.8	2.900	8.760	3.610	0.870	1.160	1.060
345.0	20.3	344.8	2.940	6.570	3.460	0.850	0.540	1.090
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	ases.	

Table R.13: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	ı
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	25.4	-0.1	3.140	6.520	3.610	0.910	0.460	1.070
15.0	25.4	15.0	3.320	7.180	3.970	0.910	0.910	1.060
30.0	25.4	30.0	3.110	9.140	3.550	0.920	1.490	1.030
45.0	25.4	45.0	3.140	10.440	3.390	0.940	2.090	0.950
60.0	25.4	60.0	3.350	12.660	2.730	0.940	2.750	0.810
75.0	25.4	74.9	3.040	10.810	1.730	0.910	2.280	0.530
90.0	25.4	89.8	3.260	13.750	0.610	0.850	2.890	0.170
105.0	25.4	104.8	2.610	17.820	1.140	0.790	3.820	0.300
120.0	25.4	119.9	2.380	25.580	1.820	0.740	8.890	0.520
135.0	25.4	134.9	1.940	21.980	1.970	0.630	5.530	0.540
150.0	25.4	149.9	1.450	12.570	1.570	0.540	3.680	0.580
165.0	25.5	164.9	1.490	10.510	1.930	0.570	2.020	0.690
180.0	25.5	179.9	2.160	12.400	2.340	0.670	1.110	0.720
195.0	25.5	195.0	1.620	13.380	1.880	0.580	2.100	0.670
210.0	25.5	210.0	1.110	22.180	1.590	0.470	3.630	0.530
225.0	25.4	225.0	1.740	24.600	1.540	0.720	6.260	0.610
240.0	25.4	240.1	2.450	31.780	2.060	0.770	8.320	0.530
255.0	25.4	255.1	2.930	19.560	1.280	0.850	4.810	0.360
270.0	25.4	270.1	3.100	16.350	0.650	0.900	3.750	0.180
285.0	25.4	285.0	3.490	14.590	1.670	0.950	2.890	0.510
300.0	25.4	299.9	3.420	12.690	2.870	0.960	2.350	0.800
315.0	25.4	314.9	2.930	10.980	3.090	0.950	1.630	0.950
330.0	25.4	329.9	3.420	9.440	3.660	0.930	1.040	1.030
345.0	25.4	344.9	3.350	6.860	3.900	0.920	0.530	1.060
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.14: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	30.5	-0.0	3.520	6.830	3.540	0.980	0.530	1.040
15.0	30.5	15.0	3.930	7.810	3.900	0.980	0.900	1.030
30.0	30.5	30.0	3.450	9.230	3.270	0.980	1.420	1.000
45.0	30.5	45.0	3.620	11.150	3.380	0.980	1.990	0.930
60.0	30.5	60.0	3.330	12.640	2.770	0.970	2.740	0.790
75.0	30.5	74.9	3.300	11.540	1.710	0.910	2.090	0.530
90.0	30.5	89.9	3.150	13.250	0.680	0.830	2.830	0.190
105.0	30.5	104.9	2.740	17.320	0.940	0.760	4.110	0.280
120.0	30.4	119.9	2.480	31.750	1.900	0.740	9.700	0.510
135.0	30.5	134.9	1.440	19.390	1.510	0.480	5.720	0.500
150.0	30.6	149.8	1.630	15.440	1.960	0.620	3.820	0.670
165.0	30.7	164.9	2.030	11.790	2.070	0.590	2.060	0.700
180.0	30.6	179.8	2.140	12.350	2.640	0.590	1.540	0.730
195.0	30.7	195.0	1.950	17.220	2.070	0.590	2.620	0.690
210.0	30.6	210.1	2.000	21.450	2.370	0.630	4.060	0.650
225.0	30.5	225.0	2.000	28.150	1.890	0.590	5.960	0.530
240.0	30.5	240.0	2.220	30.900	1.640	0.700	8.060	0.450
255.0	30.5	255.1	3.110	20.410	1.140	0.820	4.480	0.350
270.0	30.5	270.0	3.080	16.660	0.750	0.870	3.430	0.200
285.0	30.5	285.0	3.580	14.320	1.800	0.950	2.630	0.510
300.0	30.5	299.9	3.700	13.370	2.840	0.990	2.190	0.780
315.0	30.5	314.9	3.560	11.560	3.110	0.990	1.530	0.920
330.0	30.5	329.9	3.280	9.260	3.170	0.990	1.010	0.990
345.0 30.5 344.9 3.770 7.750 3.910 0.980 0.610 1.020								1.020
Wind at 20	0.8 knots	(10.7 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table R.15: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual	1	Absolute		S	tandard	I
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg
0.0	-0.1	-21.2	1.970	13.010	6.650	0.530	2.680	1.680
15.0	-0.2	-12.9	1.660	9.700	5.700	0.480	2.020	1.640
30.0	-0.5	-0.8	1.620	10.030	5.550	0.460	1.730	1.610
45.0	-0.9	12.3	1.810	15.240	5.990	0.500	2.850	1.620
60.0	-1.1	23.7	2.590	18.510	5.670	0.580	3.930	1.650
75.0	-1.8	34.8	3.330	28.840	4.980	0.730	5.600	1.570
90.0	-2.2	-14.4	3.540	41.700	5.160	0.860	6.560	1.570
105.0	-1.6	-3.1	3.690	46.950	5.060	0.820	6.370	1.580
120.0	-1.2	13.1	4.510	23.750	5.370	0.860	6.320	1.400
135.0	-3.2	107.2	4.360	37.300	5.240	1.110	5.760	1.200
150.0	-4.1	109.6	4.230	22.080	5.710	1.080	5.660	1.310
165.0	-3.7	111.5	4.060	26.100	5.120	1.070	5.540	1.290
180.0	-0.8	153.3	3.720	20.120	4.800	0.520	3.490	1.360
195.0	-0.3	17.5	3.660	19.110	5.990	0.650	3.680	1.680
210.0	-0.3	387.8	3.450	17.210	5.950	0.720	3.980	1.710
225.0	-0.3	393.4	3.920	17.000	6.040	0.800	4.380	1.730
240.0	-0.1	392.3	3.600	18.140	5.130	0.890	4.810	1.690
255.0	0.5	310.5	3.860	18.440	5.500	1.100	5.300	1.520
270.0	-0.1	314.6	3.820	24.190	5.570	1.080	5.290	1.560
285.0	-0.2	305.4	3.760	19.020	5.190	0.950	4.630	1.700
300.0	-0.3	310.6	3.200	17.990	5.580	0.860	4.400	1.740
315.0	-0.2	316.2	3.090	19.780	5.810	0.770	4.390	1.770
330.0	-0.1	323.1	2.700	16.810	6.210	0.680	3.710	1.750
345.0	-0.1	330.8	2.540	16.720	6.500	0.600	3.220	1.720
Wind at 28	8 0 knots	(14.4 m/s	is from	the starb	oard bea	m in all a	ases	

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases.

Table R.16: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	deg
0.0	4.0	-12.7	1.730	9.920	5.490	0.500	1.930	1.640
15.0	3.9	-1.6	1.660	10.880	5.230	0.480	1.820	1.610
30.0	3.9	10.9	1.730	10.050	5.710	0.490	1.850	1.610
45.0	3.8	22.6	2.070	13.670	6.090	0.550	2.320	1.650
60.0	3.8	32.4	2.500	16.360	5.970	0.620	3.090	1.680
75.0	3.7	39.8	2.750	18.030	5.600	0.700	3.570	1.700
90.0	3.6	42.9	3.210	22.320	5.420	0.750	3.790	1.690
105.0	3.6	45.4	3.660	34.670	5.030	0.790	4.050	1.680
120.0	3.7	45.3	3.340	43.950	5.370	0.770	4.250	1.680
135.0	3.7	42.8	3.110	19.900	5.420	0.730	3.780	1.690
150.0	3.7	44.0	2.930	17.500	5.580	0.730	3.600	1.710
165.0	3.8	51.5	3.160	18.060	5.370	0.730	4.140	1.710
180.0	4.7	178.8	1.430	10.670	3.600	0.440	2.290	1.150
195.0	4.6	196.7	1.570	10.770	3.690	0.480	2.560	1.210
210.0	4.1	373.7	4.000	14.600	5.490	0.660	3.440	1.680
225.0	4.4	300.1	3.970	19.320	4.800	1.010	4.380	1.580
240.0	4.5	289.0	4.350	18.900	4.310	1.220	4.550	1.340
255.0	4.4	290.4	4.070	21.440	4.300	1.210	4.760	1.410
270.0	4.3	294.0	4.190	20.320	5.120	1.150	4.480	1.500
285.0	4.4	296.8	4.500	19.360	4.910	1.100	4.400	1.590
300.0	4.6	302.9	3.650	17.330	5.400	0.980	4.220	1.720
315.0	4.6	314.4	2.880	17.390	5.820	0.790	3.470	1.780
330.0	4.5	326.6	2.460	15.230	5.870	0.650	2.760	1.740
345.0	4.3	338.2	1.860	11.690	5.800	0.540	2.310	1.670
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starbe	oard bea	m in all c	cases.	

Table R.17: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute	Standard			l
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	kts	\deg	m	\deg	\deg	m	\deg	\deg
0.0	9.7	-1.2	1.950	9.630	5.060	0.590	1.380	1.580
15.0	9.7	13.7	2.070	11.500	5.240	0.610	1.480	1.600
30.0	9.7	28.7	2.230	10.980	5.270	0.680	1.900	1.660
45.0	9.7	43.7	3.130	14.240	5.500	0.820	2.570	1.710
60.0	9.7	58.1	3.450	18.820	5.060	1.000	3.320	1.640
75.0	9.7	71.5	3.960	23.250	4.440	1.190	3.870	1.330
90.0	8.7	77.7	4.260	24.350	3.660	1.250	4.490	1.000
105.0	8.6	81.7	4.390	43.870	3.060	1.260	4.970	0.780
120.0	8.5	85.6	4.830	27.780	3.160	1.260	5.310	0.650
135.0	8.5	100.0	4.260	25.710	4.310	1.130	5.690	0.840
150.0	9.3	145.5	1.490	20.820	3.120	0.540	6.480	1.110
165.0	9.7	162.2	1.200	23.540	2.650	0.440	6.580	0.980
180.0	9.9	178.2	1.150	21.950	2.680	0.420	5.290	0.970
195.0	10.0	194.6	1.250	15.410	2.780	0.450	4.220	1.020
210.0	9.8	211.6	1.510	17.130	2.990	0.560	5.560	1.140
225.0	8.9	239.9	4.160	21.720	4.630	0.950	5.680	1.190
240.0	8.5	268.0	4.890	41.060	4.910	1.300	5.730	0.740
255.0	8.5	273.6	4.650	29.080	4.650	1.360	4.980	0.630
270.0	9.0	279.6	4.460	20.860	4.040	1.370	4.270	0.850
285.0	9.9	287.8	4.880	18.800	4.560	1.280	3.780	1.340
300.0	9.9	300.3	3.660	14.170	4.980	1.090	3.430	1.670
315.0	9.8	314.3	3.110	14.420	5.910	0.880	3.030	1.750
330.0	9.7	329.0	2.470	13.650	5.600	0.720	2.210	1.700
345.0	9.7	343.9	1.950	11.660	5.110	0.630	1.620	1.620
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.18: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Mo	ean	N	Iaximum	ì	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg
0.0	15.0	-0.5	2.320	9.280	4.680	0.730	1.220	1.530
15.0	15.0	14.6	2.420	9.750	4.980	0.750	1.330	1.550
30.0	15.0	29.6	2.650	11.130	5.000	0.830	1.670	1.610
45.0	15.0	44.7	3.190	14.200	4.970	0.960	2.250	1.660
60.0	15.0	59.4	3.970	20.080	5.490	1.120	2.830	1.590
75.0	15.1	73.6	4.300	21.900	4.530	1.250	3.160	1.240
90.0	14.8	87.3	4.330	25.760	2.830	1.260	4.060	0.390
105.0	14.6	101.8	4.750	33.550	3.580	1.080	5.960	0.670
120.0	14.5	115.8	4.330	33.710	3.570	0.880	7.470	0.930
135.0	14.9	133.2	2.320	24.450	3.210	0.640	8.930	0.950
150.0	15.0	149.1	1.380	23.510	2.790	0.500	6.650	0.880
165.0	15.0	164.2	1.200	19.780	2.360	0.370	3.890	0.770
180.0	15.1	179.2	1.110	19.130	2.550	0.430	3.290	0.840
195.0	15.0	194.5	1.270	23.110	2.910	0.460	4.710	1.010
210.0	15.0	209.7	1.420	22.190	2.740	0.480	6.440	0.910
225.0	15.0	226.9	3.360	23.690	3.690	0.690	9.190	1.060
240.0	14.4	244.9	4.030	29.050	4.310	0.970	7.720	0.980
255.0	14.4	259.4	4.240	37.030	3.590	1.210	6.380	0.760
270.0	14.7	273.0	4.670	20.040	2.140	1.370	4.890	0.400
285.0	15.2	286.3	4.760	16.910	4.510	1.340	3.640	1.250
300.0	15.1	300.0	4.310	17.770	5.140	1.180	3.260	1.610
315.0	15.0	314.5	3.540	14.390	5.580	1.000	2.610	1.690
330.0	15.0	329.5	2.830	12.730	5.210	0.850	1.970	1.640
345.0	15.0	344.5	2.550	9.680	4.780	0.770	1.420	1.570
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.19: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.2	-0.2	2.800	8.860	4.790	0.870	1.110	1.470
15.0	20.2	14.8	2.900	9.890	4.880	0.890	1.210	1.500
30.0	20.2	29.8	3.160	12.320	5.120	0.970	1.610	1.560
45.0	20.2	44.9	3.450	15.500	4.940	1.090	2.080	1.600
60.0	20.2	59.7	3.890	20.170	5.010	1.210	2.670	1.530
75.0	20.3	74.2	4.150	20.610	4.260	1.300	2.820	1.190
90.0	20.1	88.5	4.350	24.060	2.440	1.230	3.830	0.320
105.0	20.1	103.6	4.430	32.570	3.540	1.010	6.690	0.650
120.0	20.1	118.8	2.600	29.890	3.060	0.790	10.740	0.800
135.0	20.1	134.5	1.950	29.490	2.780	0.610	9.960	0.880
150.0	20.2	149.6	1.700	21.540	3.180	0.570	6.400	0.930
165.0	20.3	164.2	1.170	19.830	2.490	0.450	3.820	0.820
180.0	20.6	179.6	1.340	22.170	2.670	0.390	3.010	0.760
195.0	20.4	194.5	1.170	27.910	2.290	0.430	5.400	0.770
210.0	20.2	210.0	1.700	33.990	3.230	0.580	7.890	0.950
225.0	20.1	225.4	2.020	32.210	2.610	0.590	10.360	0.880
240.0	20.1	241.3	2.710	33.780	3.240	0.850	11.460	0.950
255.0	19.9	257.2	5.580	37.840	2.890	1.130	7.580	0.740
270.0	20.0	271.7	4.480	25.870	2.580	1.340	5.460	0.350
285.0	20.3	285.8	4.660	17.920	4.420	1.380	3.930	1.200
300.0	20.3	300.0	4.010	15.500	5.010	1.270	3.330	1.550
315.0	20.2	314.8	4.020	12.910	4.910	1.120	2.580	1.620
330.0	20.2	329.8	3.370	10.610	5.200	0.990	1.830	1.570
345.0								1.500
Wind at 28	8.0 knots	$(\overline{14.4} \text{ m/s})$	s) is from	the starb	oard bea	m in all c	cases.	

DRDC Atlantic TM 2004-044

Table R.20: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.4	-0.1	3.220	10.000	4.760	0.960	1.090	1.400
15.0	25.4	14.9	3.060	11.100	4.560	0.990	1.190	1.420
30.0	25.4	29.9	3.670	13.490	4.610	1.070	1.650	1.490
45.0	25.3	44.9	3.910	16.960	4.870	1.190	2.140	1.540
60.0	25.3	59.8	3.890	19.450	4.460	1.290	2.630	1.470
75.0	25.3	74.4	4.990	25.450	4.560	1.340	2.950	1.160
90.0	25.2	89.0	4.480	24.770	2.570	1.200	3.870	0.310
105.0	25.2	104.3	3.760	40.450	4.500	0.970	9.220	0.660
120.0	25.1	119.3	2.740	37.050	3.340	0.720	13.550	0.740
135.0	25.1	134.7	1.800	29.940	2.780	0.590	10.410	0.840
150.0	25.3	149.6	1.600	22.940	2.780	0.470	5.810	0.780
165.0	25.7	164.6	1.080	20.870	2.300	0.390	3.100	0.720
180.0	25.5	179.7	1.140	24.740	2.490	0.350	3.770	0.650
195.0	25.7	195.1	1.170	23.980	2.470	0.380	3.950	0.720
210.0	25.4	210.2	1.400	25.670	2.150	0.470	6.460	0.800
225.0	25.0	225.8	2.960	38.750	3.830	0.750	12.020	1.030
240.0	25.2	240.7	2.330	40.120	3.150	0.790	15.290	0.890
255.0	25.2	256.0	4.900	34.030	2.710	1.070	8.730	0.720
270.0	25.2	271.1	4.140	21.010	1.870	1.300	5.820	0.340
285.0	25.4	285.6	5.200	19.640	4.330	1.410	4.570	1.150
300.0	25.4	300.1	4.330	13.710	4.800	1.340	3.510	1.480
315.0	25.4	314.9	3.850	12.770	4.970	1.220	2.850	1.540
330.0	25.4	329.9	3.530	9.740	4.500	1.090	1.940	1.490
345.0	25.4	344.9	3.120	9.190	4.500	1.000	1.340	1.420
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.21: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	1	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.0	3.210	10.420	4.270	1.020	1.200	1.310
15.0	30.5	14.9	3.440	12.190	4.300	1.050	1.280	1.340
30.0	30.5	29.9	3.720	17.440	4.820	1.140	1.820	1.410
45.0	30.5	44.9	4.120	19.680	4.510	1.270	2.380	1.470
60.0	30.4	59.8	4.800	22.170	4.640	1.360	2.830	1.420
75.0	30.4	74.5	4.930	21.250	3.570	1.360	2.910	1.110
90.0	30.4	89.3	4.040	23.870	2.540	1.170	4.110	0.320
105.0	30.3	104.5	3.440	38.170	3.900	0.930	10.740	0.600
120.0	30.1	119.4	2.260	37.960	2.750	0.670	14.760	0.770
135.0	30.2	134.6	2.060	30.450	2.920	0.590	10.030	0.860
150.0	31.0	149.1	1.440	28.790	2.810	0.430	5.510	0.740
165.0	30.1	164.8	1.090	24.670	2.770	0.390	4.270	0.690
180.0	30.6	179.4	1.200	26.930	2.770	0.310	5.130	0.560
195.0	30.2	194.5	1.320	31.850	2.760	0.400	5.980	0.720
210.0	31.1	210.4	1.280	36.510	2.560	0.410	7.020	0.710
225.0	30.4	225.3	1.980	32.530	3.050	0.570	9.550	0.910
240.0	29.9	241.2	4.310	45.030	3.610	0.840	17.340	1.010
255.0	30.3	255.5	3.930	45.620	3.810	1.020	11.160	0.740
270.0	30.4	270.7	4.120	21.370	1.500	1.260	5.860	0.350
285.0	30.5	285.4	4.730	21.290	3.890	1.440	5.520	1.110
300.0	30.5	300.1	4.740	16.680	4.680	1.410	4.260	1.420
315.0	30.5	315.1	3.790	15.450	4.630	1.290	3.380	1.460
330.0	30.5	330.1	3.410	10.940	4.300	1.160	2.190	1.400
345.0	30.5	345.0	3.450	10.330	4.480	1.050	1.480	1.340
Wind at 25	8 0 knots	(14.4 m/s)	is from	the stark	oard bea	m in all c	PACAC	

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases.

Table R.22: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Mo	ean	N	Iaximum	1	D	eviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	-0.1	-18.5	3.710	14.340	5.570	1.060	3.730	1.650
15.0	-0.5	-12.0	3.010	13.020	6.710	1.040	3.380	1.670
30.0	-0.8	-3.6	3.250	16.160	6.420	1.030	3.590	1.660
45.0	-1.2	-58.6	4.700	22.580	5.440	1.210	7.060	1.250
60.0	-0.3	32.5	4.060	22.050	5.210	1.080	5.310	1.540
75.0	-0.1	49.5	4.740	23.580	4.410	1.170	6.130	1.370
90.0	0.2	65.1	4.510	20.270	3.900	1.280	6.310	1.040
105.0	-0.0	88.9	5.110	22.150	2.200	1.390	6.730	0.300
120.0	-0.7	99.4	4.930	23.370	2.940	1.370	6.920	0.540
135.0	-1.3	106.4	5.140	24.960	3.470	1.340	6.980	0.800
150.0	-1.8	109.3	4.580	23.920	3.930	1.310	6.930	0.930
165.0	-1.4	56.9	4.630	18.780	5.920	1.210	5.950	1.290
180.0	-0.9	37.8	3.600	17.360	6.710	1.090	4.630	1.590
195.0	-0.1	374.4	3.800	17.290	5.370	1.110	4.690	1.590
210.0	0.1	378.5	4.560	18.310	5.390	1.200	5.260	1.480
225.0	0.3	365.6	4.710	18.800	4.920	1.280	6.180	1.310
240.0	0.6	277.2	5.440	19.900	3.150	1.480	6.220	0.510
255.0	0.5	285.1	4.920	21.010	2.760	1.460	6.100	0.750
270.0	0.5	293.6	5.190	19.060	3.610	1.410	5.900	1.030
285.0	0.4	300.7	4.870	19.050	4.580	1.350	5.740	1.220
300.0	0.3	309.0	4.310	19.190	5.260	1.280	5.720	1.390
315.0	0.2	316.0	4.190	19.140	5.070	1.220	5.410	1.490
330.0	0.1	324.5	3.990	18.650	5.240	1.160	5.180	1.570
345.0	0.0	332.4	3.870	17.090	5.450	1.120	4.420	1.620
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.23: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual	1	Absolute		S	Standard		
Heading	Me	ean	N	Iaximum	1	D	eviation	ւ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg	
0.0	4.2	-12.0	3.770	15.020	5.410	1.040	3.240	1.690	
15.0	4.0	-7.0	3.530	14.040	5.850	1.030	3.180	1.700	
30.0	3.9	0.5	3.950	14.830	6.190	1.030	3.240	1.700	
45.0	3.9	11.1	3.740	15.920	5.540	1.030	3.560	1.660	
60.0	4.0	29.4	4.200	20.060	5.540	1.080	4.850	1.590	
75.0	4.1	49.3	4.670	20.180	5.120	1.190	5.560	1.400	
90.0	4.2	61.7	4.240	22.710	4.050	1.270	5.990	1.150	
105.0	4.3	78.3	5.090	20.190	2.610	1.360	6.130	0.620	
120.0	4.1	92.0	5.280	23.610	3.170	1.370	6.370	0.330	
135.0	4.0	100.0	5.660	24.640	3.840	1.350	6.540	0.520	
150.0	3.9	53.6	4.990	19.270	4.850	1.210	5.780	1.370	
165.0	4.0	54.1	4.360	17.330	5.040	1.200	5.500	1.430	
180.0	4.0	63.4	4.520	17.500	4.550	1.210	5.660	1.440	
195.0	4.7	195.6	3.450	13.090	4.370	1.010	3.490	1.430	
210.0	4.4	219.3	3.730	16.110	4.390	1.130	4.730	1.360	
225.0	4.3	251.8	5.050	21.490	3.750	1.380	5.980	0.870	
240.0	4.3	260.6	4.940	19.790	3.480	1.450	6.160	0.600	
255.0	4.4	270.2	4.880	19.390	2.130	1.480	6.080	0.330	
270.0	4.6	280.1	5.080	20.810	2.030	1.480	5.800	0.520	
285.0	4.8	290.4	5.210	19.380	3.410	1.420	5.490	0.950	
300.0	4.9	302.4	4.600	17.380	4.350	1.320	5.010	1.300	
315.0	4.8	314.6	4.790	16.440	5.020	1.220	4.490	1.510	
330.0	4.8	327.8	3.870	16.920	4.980	1.130	3.930	1.620	
345.0	4.5	339.9	3.880	14.800	5.670	1.070	3.380	1.680	
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.		

Table R.24: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute		S	Standard	
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	\deg
0.0	9.8	-1.3	4.190	9.950	6.440	1.070	1.320	1.690
15.0	9.8	13.7	3.910	11.450	6.600	1.070	2.040	1.680
30.0	9.8	28.7	4.390	14.260	6.110	1.120	3.000	1.610
45.0	9.9	43.8	3.920	15.410	5.190	1.190	3.690	1.500
60.0	9.9	58.5	4.400	18.640	4.080	1.280	4.310	1.270
75.0	10.0	73.1	5.260	20.640	2.950	1.350	4.600	0.830
90.0	9.9	87.8	4.440	20.330	0.900	1.370	5.280	0.190
105.0	9.9	102.5	4.890	22.460	1.880	1.320	5.670	0.500
120.0	9.5	116.3	4.360	22.030	3.310	1.220	5.490	0.860
135.0	9.5	131.2	4.280	18.990	3.880	1.120	5.120	1.080
150.0	9.6	147.0	3.350	19.730	3.910	1.020	4.970	1.180
165.0	9.7	162.7	3.430	19.200	4.650	0.960	4.730	1.220
180.0	9.8	178.5	3.290	17.170	4.400	0.960	3.970	1.280
195.0	9.9	194.5	3.470	14.590	4.580	0.970	3.520	1.260
210.0	9.9	210.9	3.470	14.750	3.860	1.050	4.870	1.250
225.0	9.7	227.5	3.890	15.330	4.120	1.170	5.830	1.170
240.0	9.6	243.5	4.920	16.890	3.720	1.300	6.230	0.960
255.0	9.8	257.7	5.120	20.480	2.440	1.410	6.330	0.570
270.0	10.0	272.0	5.180	17.950	1.120	1.480	5.920	0.190
285.0	10.1	286.1	5.280	18.290	2.910	1.450	5.070	0.800
300.0	10.1	300.2	4.920	16.080	4.320	1.350	4.260	1.250
315.0	10.0	314.4	4.400	14.590	4.810	1.240	3.460	1.500
330.0	9.9	329.0	4.380	14.310	6.180	1.150	2.590	1.620
345.0	9.9	343.8	4.170	10.980	6.090	1.090	1.630	1.680
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.25: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	15.0	-0.5	3.750	8.920	5.130	1.150	0.990	1.670
15.0	15.0	14.6	4.010	10.320	5.200	1.160	1.700	1.650
30.0	15.0	29.7	4.200	12.990	5.660	1.190	2.510	1.590
45.0	15.1	44.7	5.020	15.090	5.060	1.250	3.140	1.470
60.0	15.1	59.5	4.660	16.000	4.040	1.310	3.740	1.240
75.0	15.2	74.2	4.930	18.610	2.630	1.350	3.910	0.800
90.0	15.2	89.0	4.690	19.620	0.810	1.340	4.730	0.190
105.0	15.2	104.0	4.680	23.580	1.860	1.270	5.540	0.500
120.0	15.0	118.3	4.410	25.350	2.740	1.180	6.540	0.790
135.0	15.0	133.7	3.410	23.800	3.170	1.060	7.320	0.970
150.0	15.3	149.5	2.820	17.560	3.120	1.000	4.820	1.060
165.0	15.2	164.4	2.750	13.690	3.590	0.960	2.760	1.100
180.0	15.2	179.3	2.640	16.100	3.240	0.950	2.620	1.160
195.0	15.1	194.5	2.590	21.410	3.440	0.950	3.430	1.120
210.0	15.1	209.9	2.850	21.970	3.470	1.010	5.730	1.140
225.0	15.0	225.9	3.470	20.080	3.650	1.120	7.780	1.040
240.0	15.0	241.5	4.690	21.110	3.070	1.240	7.880	0.900
255.0	15.1	256.2	5.010	20.230	2.050	1.370	7.020	0.580
270.0	15.2	270.9	5.090	19.250	0.980	1.450	6.200	0.200
285.0	15.2	285.4	4.780	19.310	2.420	1.450	5.070	0.770
300.0	15.2	299.9	5.000	16.610	4.480	1.380	3.840	1.230
315.0	15.1	314.5	4.920	14.100	4.990	1.290	2.740	1.470
330.0	15.0	329.4	3.970	11.990	5.120	1.220	1.940	1.600
345.0	15.0	344.4	3.760	10.410	5.340	1.170	1.190	1.650
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.26: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı İ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	20.2	-0.2	4.500	8.810	5.130	1.240	0.990	1.620
15.0	20.2	14.9	4.340	10.460	5.310	1.250	1.630	1.600
30.0	20.2	29.9	4.240	11.960	5.070	1.270	2.380	1.550
45.0	20.2	45.0	4.410	13.910	4.290	1.310	3.040	1.440
60.0	20.3	59.8	5.160	16.850	4.550	1.350	3.630	1.210
75.0	20.3	74.6	4.950	17.210	2.710	1.350	3.650	0.800
90.0	20.3	89.5	4.430	19.110	0.900	1.300	4.450	0.230
105.0	20.3	104.5	4.660	25.020	2.050	1.230	5.680	0.470
120.0	20.2	119.3	3.780	30.170	3.110	1.130	8.460	0.720
135.0	20.2	134.7	3.560	25.740	3.160	1.060	8.700	0.980
150.0	20.3	149.7	2.440	16.440	2.310	0.880	4.030	0.830
165.0	20.2	164.6	2.270	14.020	2.770	0.790	2.550	0.880
180.0	20.4	179.8	2.620	20.690	2.930	0.870	2.330	1.020
195.0	20.3	194.9	3.360	29.010	3.760	1.030	4.840	1.210
210.0	20.3	210.0	3.040	31.850	3.160	0.950	6.190	1.030
225.0	20.3	225.0	3.650	30.740	3.280	1.030	7.570	0.880
240.0	20.2	240.7	4.750	27.040	3.210	1.180	9.760	0.820
255.0	20.3	255.6	4.590	25.890	1.980	1.320	7.530	0.560
270.0	20.3	270.4	4.830	22.150	1.040	1.410	6.320	0.240
285.0	20.3	285.2	5.760	22.020	2.500	1.440	5.080	0.760
300.0	20.3	299.9	5.210	16.380	4.160	1.410	3.570	1.200
315.0	20.2	314.6	4.570	15.010	4.950	1.360	2.550	1.430
330.0	20.2	329.6	4.010	12.170	4.940	1.300	1.610	1.550
345.0	20.2	344.7	4.430	10.070	5.130	1.260	1.050	1.600
Wind at 28	8.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table R.27: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolute		5	Standard	
Heading	M	ean	N	Iaximum	1	I	Deviation	
$\overline{\psi_{ ext{MHP}}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.3	-0.1	4.710	10.280	5.060	1.340	1.110	1.560
15.0	25.3	15.0	5.020	11.040	5.360	1.340	1.610	1.550
30.0	25.3	30.0	4.650	13.160	4.980	1.360	2.310	1.500
45.0	25.3	45.0	4.560	15.220	4.500	1.380	2.980	1.400
60.0	25.4	59.9	5.040	17.710	4.190	1.380	3.710	1.190
75.0	25.4	74.8	4.680	16.850	2.660	1.350	3.430	0.790
90.0	25.4	89.7	4.280	18.890	1.020	1.260	4.420	0.260
105.0	25.4	104.7	4.240	26.320	1.880	1.170	5.930	0.430
120.0	25.3	119.8	3.600	32.750	2.730	1.110	11.590	0.730
135.0	25.3	134.8	2.550	29.230	2.510	1.050	8.600	0.890
150.0	25.4	149.7	2.090	17.670	2.400	0.780	5.310	0.840
165.0	25.6	164.7	2.220	15.110	2.810	0.840	2.970	0.990
180.0	25.6	179.8	3.290	19.890	3.460	1.030	2.330	1.070
195.0	25.6	195.0	2.400	22.430	2.950	0.860	3.340	1.000
210.0	25.4	210.0	2.000	25.870	2.230	0.680	5.390	0.770
225.0	25.4	225.0	2.600	33.550	2.130	0.900	7.580	0.710
240.0	25.4	240.2	3.440	37.460	2.540	1.130	10.960	0.750
255.0	25.4	255.3	4.630	31.340	2.030	1.290	7.790	0.540
270.0	25.4	270.2	4.740	23.990	1.120	1.370	6.280	0.270
285.0	25.4	285.1	5.460	22.160	2.520	1.430	5.020	0.750
300.0	25.4	299.9	5.100	17.610	4.070	1.440	3.430	1.170
315.0	25.4	314.8	4.460	15.010	4.370	1.410	2.300	1.380
330.0	25.3	329.8	4.930	12.480	5.210	1.380	1.580	1.500
345.0	25.3	344.8	5.060	10.620	5.440	1.350	1.090	1.540
Wind at 25	8 O knots	$\frac{1}{(14.4 \text{ m/s})}$	e) is from	the stark	oard bea	m in all c	PACAC	

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases.

Table R.28: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.5	-0.0	4.920	11.410	5.030	1.430	1.260	1.510
15.0	30.5	15.0	5.690	12.060	5.380	1.430	1.630	1.490
30.0	30.4	30.1	5.170	13.710	4.740	1.430	2.250	1.450
45.0	30.4	45.1	5.170	15.840	4.450	1.440	3.030	1.350
60.0	30.4	60.0	5.030	18.610	3.790	1.420	3.810	1.160
75.0	30.5	74.9	4.970	17.370	2.630	1.350	3.450	0.790
90.0	30.5	89.8	4.380	19.640	1.140	1.220	4.570	0.290
105.0	30.5	104.8	4.070	26.040	1.440	1.130	6.550	0.400
120.0	30.3	119.9	3.270	36.540	2.740	1.110	12.860	0.720
135.0	30.4	134.8	2.830	28.670	2.760	0.910	8.950	0.830
150.0	30.7	149.7	2.410	19.490	2.780	0.940	5.570	0.980
165.0	31.0	164.7	3.150	20.870	3.530	0.850	3.300	1.020
180.0	30.6	179.7	3.240	22.890	4.110	0.880	3.250	1.100
195.0	31.0	195.0	3.290	23.880	3.230	0.860	3.980	0.990
210.0	30.7	210.2	3.040	28.050	3.450	0.950	6.100	0.960
225.0	30.4	225.2	3.020	35.490	2.870	1.020	9.180	0.900
240.0	30.4	240.2	3.470	41.410	3.130	1.100	12.340	0.760
255.0	30.5	255.2	4.570	40.360	2.020	1.250	7.630	0.530
270.0	30.5	270.1	4.890	24.790	1.180	1.330	5.920	0.310
285.0	30.5	285.1	5.260	21.740	2.660	1.430	4.880	0.750
300.0	30.5	299.9	5.800	18.340	4.020	1.470	3.210	1.140
315.0	30.5	314.9	5.210	15.470	4.500	1.470	2.310	1.340
330.0	30.5	329.9	4.930	12.840	4.500	1.450	1.680	1.440
345.0	30.4	344.9	5.270	13.260	5.540	1.440	1.440	1.490
Wind at 28	3.0 knots	(14.4 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.29: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 0.0 Knots

Act	tual	Absolute			Standard			
Mo	ean	ľ	Maximun	n	I	Deviation		
Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\mathbf{kts}	\deg	m	\deg	\deg	m	\deg	deg	
-0.9	-27.2	8.650	31.440	8.090	1.340	6.780	2.530	
-1.4	-21.1	5.100	25.080	8.540	1.290	6.930	2.550	
-3.4	33.0	6.650	54.860	8.320	1.490	9.930	2.180	
-4.5	-99.2	6.840	51.120	8.260	1.570	9.850	2.010	
-5.1	-111.1	6.010	90.410	8.860	1.680	9.940	1.840	
-0.6	-51.8	7.090	63.370	10.500	1.730	11.420	1.650	
0.2	7.1	8.150	63.260	6.560	1.650	11.580	1.840	
0.4	50.3	6.200	62.430	6.980	1.680	10.540	1.770	
-0.6	93.8	8.010	53.430	5.950	1.810	10.500	1.210	
-3.6	82.6	7.070	59.410	9.330	1.710	11.070	1.700	
-3.7	46.3	7.250	52.430	8.800	1.550	10.540	2.130	
-2.8	41.1	6.790	35.440	10.410	1.450	9.090	2.300	
-1.1	19.7	6.930	45.600	9.430	1.380	7.800	2.490	
-0.6	31.3	6.090	29.050	8.990	1.490	7.610	2.470	
0.3	36.8	6.580	27.040	7.410	1.540	7.820	2.430	
0.9	387.4	8.460	33.420	7.570	1.700	8.620	2.210	
0.8	281.2	8.690	54.130	8.110	2.050	9.820	1.350	
0.6	284.9	7.900	46.490	8.680	2.020	9.620	1.510	
-2.0	276.9	5.260	38.590	10.580	1.900	11.590	1.950	
0.2	292.5	7.380	33.400	7.040	1.900	8.950	1.920	
-0.9	-202.8	10.930	75.140	18.900	1.850	10.270	2.190	
0.3	306.3	7.640	31.160	7.660	1.660	8.120	2.350	
0.4	314.6	6.990	29.810	7.800	1.520	7.560	2.480	
0.0	322.0	6.020	27.780	8.560	1.420	6.900	2.520	
	Mospeed kts -0.9 -1.4 -3.4 -4.5 -5.1 -0.6 0.2 0.4 -0.6 -3.6 -3.7 -2.8 -1.1 -0.6 0.3 0.9 0.8 0.6 -2.0 0.2 -0.9 0.3 0.4 0.0	kts deg -0.9 -27.2 -1.4 -21.1 -3.4 33.0 -4.5 -99.2 -5.1 -111.1 -0.6 -51.8 0.2 7.1 0.4 50.3 -0.6 93.8 -3.6 82.6 -3.7 46.3 -2.8 41.1 -1.1 19.7 -0.6 31.3 0.3 36.8 0.9 387.4 0.8 281.2 0.6 284.9 -2.0 276.9 0.2 292.5 -0.9 -202.8 0.3 306.3 0.4 314.6 0.0 322.0	Mean Meave deg kts deg m -0.9 -27.2 8.650 -1.4 -21.1 5.100 -3.4 33.0 6.650 -4.5 -99.2 6.840 -5.1 -111.1 6.010 -0.6 -51.8 7.090 0.2 7.1 8.150 0.4 50.3 6.200 -0.6 93.8 8.010 -3.6 82.6 7.070 -3.7 46.3 7.250 -2.8 41.1 6.790 -1.1 19.7 6.930 -0.6 31.3 6.090 0.3 36.8 6.580 0.9 387.4 8.460 0.8 281.2 8.690 0.6 284.9 7.900 -2.0 276.9 5.260 0.2 292.5 7.380 -0.9 -202.8 10.930 0.3 306.3 7.640 <td>Speed ktsψ_{MHP} degHeave mRoll deg-0.9-27.28.65031.440-1.4-21.15.10025.080-3.433.06.65054.860-4.5-99.26.84051.120-5.1-111.16.01090.410-0.6-51.87.09063.3700.27.18.15063.2600.450.36.20062.430-0.693.88.01053.430-3.682.67.07059.410-3.746.37.25052.430-2.841.16.79035.440-1.119.76.93045.600-0.631.36.09029.0500.336.86.58027.0400.9387.48.46033.4200.8281.28.69054.1300.6284.97.90046.490-2.0276.95.26038.5900.2292.57.38033.400-0.9-202.810.93075.1400.3306.37.64031.1600.4314.66.99029.8100.0322.06.02027.780</td> <td>Speed kts$ψ_{\text{MHP}}$ degHeave mRoll degPitch deg-0.9-27.28.65031.4408.090-1.4-21.15.10025.0808.540-3.433.06.65054.8608.320-4.5-99.26.84051.1208.260-5.1-111.16.01090.4108.860-0.6-51.87.09063.37010.5000.27.18.15063.2606.5600.450.36.20062.4306.980-0.693.88.01053.4305.950-3.682.67.07059.4109.330-3.746.37.25052.4308.800-2.841.16.79035.44010.410-1.119.76.93045.6009.430-0.631.36.09029.0508.9900.336.86.58027.0407.4100.9387.48.46033.4207.5700.8281.28.69054.1308.1100.6284.97.90046.4908.680-2.0276.95.26038.59010.5800.2292.57.38033.4007.040-0.9-202.810.93075.14018.9000.3306.37.64031.1607.6600.4314.66.99029.8107.8000.0322.06.02027.7808.560</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	Speed kts ψ_{MHP} degHeave mRoll deg-0.9-27.28.65031.440-1.4-21.15.10025.080-3.433.06.65054.860-4.5-99.26.84051.120-5.1-111.16.01090.410-0.6-51.87.09063.3700.27.18.15063.2600.450.36.20062.430-0.693.88.01053.430-3.682.67.07059.410-3.746.37.25052.430-2.841.16.79035.440-1.119.76.93045.600-0.631.36.09029.0500.336.86.58027.0400.9387.48.46033.4200.8281.28.69054.1300.6284.97.90046.490-2.0276.95.26038.5900.2292.57.38033.400-0.9-202.810.93075.1400.3306.37.64031.1600.4314.66.99029.8100.0322.06.02027.780	Speed kts $ψ_{\text{MHP}}$ degHeave mRoll degPitch deg-0.9-27.28.65031.4408.090-1.4-21.15.10025.0808.540-3.433.06.65054.8608.320-4.5-99.26.84051.1208.260-5.1-111.16.01090.4108.860-0.6-51.87.09063.37010.5000.27.18.15063.2606.5600.450.36.20062.4306.980-0.693.88.01053.4305.950-3.682.67.07059.4109.330-3.746.37.25052.4308.800-2.841.16.79035.44010.410-1.119.76.93045.6009.430-0.631.36.09029.0508.9900.336.86.58027.0407.4100.9387.48.46033.4207.5700.8281.28.69054.1308.1100.6284.97.90046.4908.680-2.0276.95.26038.59010.5800.2292.57.38033.4007.040-0.9-202.810.93075.14018.9000.3306.37.64031.1607.6600.4314.66.99029.8107.8000.0322.06.02027.7808.560	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Wind at 38.7 knots (19.9 m/s) is from the starboard beam in all cases.

194

Table R.30: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolute	,	S	tandard	l
Heading	Mo	ean	I	Maximun	n	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	3.6	-26.8	4.600	24.470	8.530	1.290	5.980	2.620
15.0	3.5	-19.4	4.400	21.400	8.870	1.220	5.610	2.620
30.0	3.3	-13.2	4.150	19.090	8.410	1.160	5.140	2.620
45.0	3.0	-8.2	4.380	21.440	9.030	1.170	5.480	2.620
60.0	2.9	2.2	3.890	23.550	8.910	1.170	5.880	2.580
75.0	2.7	8.1	4.280	31.500	8.500	1.220	6.830	2.560
90.0	2.9	14.0	5.160	62.790	8.650	1.300	7.820	2.470
105.0	3.1	24.7	5.300	50.130	8.740	1.340	7.610	2.400
120.0	3.1	21.7	5.800	60.450	8.500	1.250	6.720	2.500
135.0	3.1	26.2	5.320	57.830	8.670	1.270	6.480	2.510
150.0	3.2	33.4	4.220	26.870	8.240	1.310	6.620	2.520
165.0	3.3	38.7	4.330	24.170	8.780	1.350	6.820	2.530
180.0	3.9	146.8	6.830	27.870	7.000	1.170	7.410	2.140
195.0	3.7	23.7	4.860	25.290	8.170	1.400	7.260	2.540
210.0	3.8	388.6	5.900	27.870	8.880	1.490	7.740	2.480
225.0	4.2	359.3	7.370	31.070	7.500	1.680	8.530	2.220
240.0	4.4	283.9	8.460	50.130	5.910	2.030	8.780	1.430
255.0	4.1	286.1	8.260	67.470	15.360	2.030	9.340	1.630
270.0	4.0	291.3	7.300	59.360	8.840	1.940	8.370	1.870
285.0	4.2	295.7	7.490	43.030	6.680	1.870	7.750	2.060
300.0	4.4	301.0	6.380	28.950	9.180	1.760	7.280	2.270
315.0	4.3	310.6	5.860	29.010	7.200	1.590	7.140	2.460
330.0	4.1	318.7	5.430	27.060	7.550	1.450	6.580	2.550
345.0	3.8	324.2	5.430	27.090	7.800	1.390	6.690	2.590
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bean	n in all ca	ises.	

Table R.31: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Mo	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	\deg
0.0	8.8	-5.3	4.120	22.170	8.630	1.220	3.930	2.570
15.0	8.4	6.8	4.380	20.620	8.790	1.210	4.290	2.560
30.0	8.0	16.1	4.710	21.540	8.380	1.230	4.840	2.550
45.0	8.0	30.6	4.840	26.690	7.540	1.340	5.360	2.500
60.0	8.4	49.7	5.500	25.650	7.280	1.550	6.270	2.330
75.0	8.3	59.0	6.050	54.240	6.490	1.670	6.590	2.110
90.0	8.6	73.9	7.270	38.280	5.580	1.840	7.580	1.500
105.0	8.5	82.1	7.590	55.350	4.350	1.880	8.990	0.940
120.0	8.3	92.0	8.780	44.770	4.760	1.850	9.820	0.830
135.0	8.1	99.6	7.380	41.630	5.350	1.800	9.930	0.990
150.0	8.1	87.4	7.690	60.730	5.530	1.760	8.610	1.610
165.0	8.1	125.9	6.320	28.610	6.720	1.350	8.240	1.810
180.0	9.1	174.8	2.890	26.410	5.020	1.010	7.130	1.790
195.0	9.6	195.2	3.160	22.970	5.490	1.050	6.120	1.830
210.0	8.5	274.0	8.870	59.280	5.850	1.990	9.520	1.100
225.0	8.3	275.4	9.570	47.440	5.700	2.030	9.490	1.090
240.0	8.3	276.6	8.550	46.150	5.720	2.060	9.600	1.040
255.0	8.4	280.1	7.550	48.590	5.740	2.070	8.680	1.180
270.0	8.5	283.8	8.830	44.930	6.170	2.070	8.180	1.390
285.0	9.4	289.4	7.380	31.140	7.750	2.000	7.410	1.760
300.0	9.7	300.2	6.920	30.810	7.220	1.830	6.440	2.220
315.0	9.5	313.0	5.610	28.710	8.150	1.610	6.120	2.470
330.0	9.3	327.3	5.220	25.570	8.460	1.420	4.790	2.570
345.0	9.1	341.2	4.500	24.110	8.660	1.290	4.440	2.590
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all o	cases.	

Table R.32: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	14.7	-1.3	4.500	16.190	7.120	1.400	2.970	2.470
15.0	14.7	13.8	4.650	17.020	7.620	1.410	3.130	2.460
30.0	14.6	29.0	5.170	21.170	7.290	1.480	3.760	2.440
45.0	14.7	44.2	5.670	22.680	7.160	1.610	4.370	2.360
60.0	14.8	58.9	6.820	29.900	6.730	1.770	5.170	2.120
75.0	14.6	71.8	7.110	40.470	5.880	1.860	6.170	1.630
90.0	14.4	86.4	7.600	34.950	3.750	1.890	8.460	0.600
105.0	14.4	101.2	7.260	41.400	3.190	1.740	9.850	0.780
120.0	14.2	115.1	6.140	38.010	5.930	1.500	9.800	1.220
135.0	14.4	130.4	6.170	53.600	5.360	1.290	10.010	1.410
150.0	14.8	148.0	3.680	27.000	5.040	1.070	7.420	1.420
165.0	14.7	162.9	3.180	26.930	4.530	0.990	5.650	1.440
180.0	14.6	178.3	2.490	26.360	3.830	0.910	5.190	1.420
195.0	14.8	193.9	3.080	28.470	4.480	0.990	6.140	1.520
210.0	14.8	209.8	2.940	31.610	5.090	1.110	7.970	1.610
225.0	14.1	234.1	7.660	61.040	7.150	1.480	11.410	1.550
240.0	13.4	253.5	7.240	40.390	4.840	1.830	11.000	1.240
255.0	13.3	265.5	8.710	46.100	3.950	1.980	10.600	0.810
270.0	13.9	276.0	8.560	39.340	4.560	2.090	9.330	0.780
285.0	14.8	287.1	6.850	26.480	6.590	2.070	7.290	1.610
300.0	15.0	299.9	6.460	29.080	7.510	1.910	5.900	2.160
315.0	14.8	314.0	5.750	29.740	7.700	1.720	5.130	2.400
330.0	14.7	328.7	5.770	24.770	7.850	1.560	4.240	2.490
345.0	14.7	343.6	5.000	20.590	7.610	1.440	3.360	2.480
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.33: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute		5	Standard	
Heading	Mo	ean	N	Iaximum	ı	Ι	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.0	-0.6	5.340	15.010	7.500	1.580	2.620	2.350
15.0	20.0	14.6	5.710	17.330	7.610	1.590	2.790	2.350
30.0	20.0	29.8	5.830	20.600	6.740	1.650	3.380	2.340
45.0	20.0	44.8	5.980	25.950	6.950	1.750	4.030	2.260
60.0	20.0	59.5	6.790	27.020	6.440	1.860	4.600	2.050
75.0	20.1	73.8	7.920	30.230	5.200	1.920	5.810	1.530
90.0	19.8	88.0	7.520	34.910	3.180	1.850	8.320	0.530
105.0	19.9	103.3	6.330	41.150	3.480	1.660	10.360	0.790
120.0	19.9	118.3	4.530	37.970	5.150	1.410	11.760	1.100
135.0	19.7	133.8	4.300	41.890	5.040	1.210	11.610	1.320
150.0	19.6	148.5	5.720	41.340	6.100	1.150	8.910	1.560
165.0	19.9	163.9	2.930	27.730	4.300	1.090	5.780	1.490
180.0	20.3	179.2	3.000	28.290	4.660	0.970	4.620	1.380
195.0	20.0	194.7	3.020	31.890	4.480	1.120	6.930	1.580
210.0	19.8	211.0	4.690	39.430	5.200	1.140	10.290	1.610
225.0	19.6	228.0	7.450	45.600	4.620	1.230	12.500	1.360
240.0	19.5	244.4	7.270	38.010	4.920	1.570	13.530	1.220
255.0	19.2	259.4	8.430	41.990	3.640	1.870	12.010	0.900
270.0	19.4	273.3	7.220	42.330	4.400	2.050	10.320	0.640
285.0	20.1	286.3	7.110	29.530	5.350	2.100	7.470	1.530
300.0	20.1	300.0	6.400	24.620	6.610	1.990	5.620	2.080
315.0	20.1	314.4	5.540	20.470	6.430	1.840	4.640	2.300
330.0	20.1	329.3	6.020	19.870	7.370	1.710	3.910	2.370
345.0	20.0	344.3	6.000	16.230	7.490	1.620	3.110	2.360
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.34: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolute		5	Standard	
Heading	M	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.3	-0.2	5.570	15.380	6.610	1.730	2.540	2.220
15.0	25.3	14.9	5.560	17.210	6.800	1.740	2.800	2.230
30.0	25.2	30.0	6.100	24.540	6.740	1.800	3.300	2.230
45.0	25.2	44.9	6.240	24.700	7.090	1.870	3.790	2.170
60.0	25.2	59.7	6.200	27.420	5.820	1.940	4.420	1.980
75.0	25.2	74.1	6.750	28.430	4.880	1.950	5.540	1.490
90.0	25.0	88.7	7.950	38.640	3.850	1.810	8.380	0.520
105.0	25.0	104.4	6.590	39.020	4.180	1.580	12.200	0.780
120.0	24.7	118.5	6.730	48.510	4.670	1.390	15.910	1.110
135.0	24.6	132.1	7.990	42.360	4.240	1.200	13.060	1.230
150.0	24.8	149.1	2.760	38.920	4.670	1.060	9.190	1.400
165.0	25.7	164.1	3.390	28.730	4.770	0.960	5.580	1.380
180.0	26.4	179.6	5.170	29.190	7.620	0.940	3.700	1.390
195.0	25.8	194.9	3.520	30.900	5.400	0.960	6.340	1.370
210.0	25.0	210.7	4.900	36.730	5.850	1.230	10.370	1.600
225.0	24.7	226.5	4.630	49.030	4.150	1.200	14.030	1.350
240.0	24.6	242.1	7.170	43.360	5.240	1.410	16.720	1.200
255.0	24.7	257.1	7.140	40.590	3.480	1.770	13.230	0.910
270.0	24.9	271.9	8.060	39.120	3.700	2.020	10.610	0.570
285.0	25.2	286.0	8.120	33.240	5.000	2.110	7.870	1.480
300.0	25.3	300.1	6.810	24.170	6.290	2.070	5.970	2.000
315.0	25.3	314.7	6.850	20.590	6.940	1.950	4.620	2.200
330.0	25.3	329.7	5.800	18.550	7.020	1.840	3.880	2.240
345.0	25.3	344.7	5.770	15.400	6.750	1.770	2.870	2.240
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

wind at 38.7 knots (19.9 m/s) is from the starboard beam in all cases

Table R.35: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual		Absolute		5	Standard	
Heading	M	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.4	0.0	5.810	17.390	6.750	1.840	2.470	2.100
15.0	30.4	15.1	5.670	19.730	6.700	1.860	2.830	2.120
30.0	30.4	30.1	5.710	25.020	5.950	1.910	3.480	2.130
45.0	30.4	45.0	6.390	27.270	6.260	1.980	3.970	2.090
60.0	30.3	59.7	6.180	26.490	5.520	2.010	4.240	1.920
75.0	30.3	74.3	7.570	35.630	5.440	1.970	5.650	1.450
90.0	30.1	89.0	7.690	37.160	3.350	1.770	8.930	0.540
105.0	30.0	104.3	7.610	59.660	6.360	1.510	14.440	0.820
120.0	29.7	118.6	5.350	47.440	5.300	1.200	16.120	0.970
135.0	29.9	134.1	3.810	44.070	5.150	1.260	13.060	1.460
150.0	30.5	147.4	4.480	44.480	5.340	1.120	9.190	1.450
165.0	31.0	162.7	3.330	38.130	5.300	0.920	6.800	1.370
180.0	31.1	178.6	3.240	38.340	5.570	0.870	6.730	1.410
195.0	31.4	194.6	5.880	38.550	7.340	0.930	7.700	1.480
210.0	30.8	211.0	5.580	38.790	7.700	1.080	10.470	1.550
225.0	29.7	226.0	5.530	54.110	5.590	1.390	14.320	1.630
240.0	29.8	240.9	4.920	50.320	3.950	1.290	17.850	1.130
255.0	29.9	256.1	9.430	60.340	6.000	1.650	14.420	1.010
270.0	30.1	271.2	8.170	46.350	3.390	1.960	10.960	0.600
285.0	30.3	285.7	7.750	33.090	4.540	2.130	8.410	1.450
300.0	30.4	300.1	6.880	24.930	6.130	2.130	6.410	1.930
315.0	30.4	315.0	6.720	20.880	6.490	2.050	5.310	2.090
330.0	30.4	329.9	5.890	20.370	6.330	1.950	3.990	2.120
345.0	30.4	345.0	5.720	17.430	6.520	1.870	2.980	2.110
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.36: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	i
Heading	Me	ean	N	Iaximum	1	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	m	\deg	deg
0.0	-1.5	-109.1	6.420	23.830	7.110	1.890	8.030	1.970
15.0	-2.4	-147.9	6.040	22.110	6.730	1.860	5.780	1.870
30.0	-1.8	-69.5	5.700	25.950	8.950	1.890	9.120	1.870
45.0	-0.2	21.9	5.950	22.740	7.620	1.850	5.530	1.960
60.0	0.6	49.0	6.690	23.410	5.970	1.950	6.600	1.580
75.0	0.7	69.2	6.790	24.530	4.940	2.040	6.960	0.990
90.0	0.1	90.9	7.780	25.710	2.030	2.110	7.450	0.360
105.0	-0.5	103.2	7.190	27.040	3.280	2.080	7.720	0.690
120.0	-1.4	113.0	8.080	32.410	4.370	2.060	7.750	1.030
135.0	-2.1	121.6	6.430	29.060	4.460	2.010	7.410	1.310
150.0	-2.6	131.7	6.850	26.690	4.950	1.960	6.740	1.570
165.0	-2.5	144.3	6.190	21.860	5.950	1.890	5.500	1.790
180.0	-1.7	164.5	6.030	16.640	6.910	1.820	3.000	1.980
195.0	0.4	236.4	7.160	23.880	5.880	2.080	7.000	1.480
210.0	0.0	244.9	7.070	26.380	5.380	2.150	7.230	1.260
225.0	-0.2	253.3	7.530	26.040	4.370	2.210	7.380	0.970
240.0	-0.4	261.6	7.990	25.450	3.250	2.260	7.350	0.640
255.0	-0.6	270.4	8.240	25.800	2.190	2.280	7.220	0.400
270.0	-0.6	279.9	7.420	27.070	3.120	2.270	7.020	0.570
285.0	-0.5	288.9	8.200	25.540	4.460	2.230	6.750	0.930
300.0	-0.5	297.9	7.040	25.110	5.280	2.180	6.430	1.260
315.0	-0.4	307.0	6.960	23.830	5.390	2.110	6.090	1.540
330.0	-0.6	315.5	6.990	22.640	5.940	2.060	5.840	1.750
345.0	-0.8	324.3	6.620	21.500	6.280	2.000	5.600	1.880
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.37: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	1	Absolute		S	tandard	l
Heading	Me	ean	N	Iaximum	1	D	eviation	ւ
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	deg
0.0	3.8	-29.6	6.450	24.060	6.710	1.950	5.720	1.990
15.0	3.6	-22.7	6.500	22.360	7.810	1.910	5.570	2.050
30.0	3.5	-14.4	6.310	21.610	7.630	1.880	5.190	2.080
45.0	3.5	-3.6	6.190	22.790	7.910	1.840	4.840	2.100
60.0	3.8	26.6	7.310	24.390	6.830	1.850	5.260	1.950
75.0	4.3	58.4	6.610	24.990	5.320	1.990	6.280	1.360
90.0	4.5	79.9	6.420	25.360	3.290	2.080	6.620	0.570
105.0	4.4	95.6	7.170	26.520	1.800	2.080	7.040	0.340
120.0	4.1	107.0	8.020	30.300	2.790	2.050	7.130	0.730
135.0	3.8	115.4	7.120	27.710	3.990	2.010	7.070	1.020
150.0	3.5	124.8	7.090	27.830	4.590	1.960	6.770	1.280
165.0	3.4	134.5	6.670	27.880	6.150	1.910	6.210	1.490
180.0	3.3	146.5	6.080	24.760	6.420	1.860	5.340	1.670
195.0	3.4	162.2	6.770	23.050	6.210	1.820	4.600	1.800
210.0	4.4	216.2	6.420	20.690	5.890	1.930	5.600	1.730
225.0	4.3	237.0	7.600	23.760	4.860	2.090	6.570	1.380
240.0	4.4	250.4	7.100	25.820	3.880	2.170	7.010	0.990
255.0	4.5	262.4	7.280	24.000	2.190	2.240	7.180	0.520
270.0	4.6	274.8	8.320	24.250	1.740	2.260	6.990	0.280
285.0	4.7	287.5	9.530	26.370	3.000	2.230	6.690	0.820
300.0	4.7	299.8	7.260	25.640	4.240	2.150	6.190	1.320
315.0	4.5	310.0	7.730	25.420	5.480	2.090	6.050	1.620
330.0	4.1	317.1	6.940	24.480	5.820	2.040	6.010	1.790
345.0	3.9	323.5	6.620	25.080	6.370	2.000	5.910	1.900
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.38: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	1	Absolute		S	Standard		
Heading	Mo	ean	N	Iaximun	1	D	eviation	ı İ	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch	
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	deg	
0.0	9.4	-3.6	6.400	21.210	7.030	1.850	3.260	2.120	
15.0	9.5	11.9	6.500	18.480	7.180	1.850	3.480	2.100	
30.0	9.6	27.4	6.060	21.010	6.820	1.880	4.120	1.990	
45.0	9.7	42.7	7.330	22.600	6.060	1.930	4.710	1.770	
60.0	9.8	57.5	6.830	22.450	4.600	1.990	5.030	1.410	
75.0	9.9	72.9	7.250	24.510	2.980	2.060	5.340	0.870	
90.0	9.9	88.0	6.760	25.070	1.140	2.070	5.870	0.230	
105.0	9.9	103.1	7.340	27.740	1.850	2.040	6.310	0.500	
120.0	9.5	116.4	7.000	29.390	3.020	1.960	5.890	0.930	
135.0	9.2	130.3	6.870	27.670	4.690	1.900	5.170	1.240	
150.0	9.1	144.4	6.410	25.910	5.120	1.810	4.820	1.440	
165.0	9.0	159.4	6.100	21.800	5.280	1.780	5.080	1.620	
180.0	9.4	176.8	5.880	22.670	5.570	1.760	5.090	1.690	
195.0	9.7	193.7	6.160	21.690	5.750	1.810	4.990	1.700	
210.0	9.6	211.3	6.500	22.050	5.810	1.860	5.730	1.590	
225.0	9.5	228.4	6.990	26.440	5.210	1.990	7.060	1.420	
240.0	9.5	243.7	7.730	25.070	3.740	2.100	7.620	1.090	
255.0	9.8	257.4	8.500	25.280	2.540	2.190	7.780	0.630	
270.0	9.9	271.7	8.200	26.120	1.130	2.230	7.670	0.210	
285.0	10.0	285.8	7.800	27.610	3.050	2.210	7.020	0.750	
300.0	9.9	300.0	7.160	24.290	4.080	2.160	6.060	1.330	
315.0	9.8	313.7	7.190	25.320	5.260	2.050	5.170	1.710	
330.0	9.6	327.5	6.930	24.440	6.270	1.960	4.430	1.940	
345.0	9.4	341.6	6.620	21.960	6.610	1.900	4.010	2.080	
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.		

Table R.39: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute		S	tandard	ı
Heading	Me	ean	N	Iaximum	ı	D	eviation	ı
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
\deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	14.9	-1.1	7.000	17.610	7.110	1.910	2.490	2.090
15.0	14.9	14.1	7.520	18.640	7.340	1.890	3.070	2.060
30.0	14.9	29.2	7.130	21.010	6.640	1.920	3.760	1.950
45.0	15.0	44.2	7.340	21.540	6.150	1.960	4.190	1.730
60.0	15.0	59.0	8.470	23.160	5.260	1.990	4.610	1.370
75.0	15.1	74.0	7.230	23.430	3.200	2.020	4.720	0.850
90.0	15.1	89.0	7.230	25.350	1.120	2.020	5.440	0.270
105.0	15.1	104.1	7.000	27.530	1.850	1.980	6.090	0.500
120.0	14.9	118.3	7.550	29.840	3.300	1.900	6.290	0.870
135.0	14.9	133.5	6.400	27.380	4.070	1.820	6.320	1.170
150.0	14.9	148.6	5.190	23.290	4.680	1.760	4.980	1.350
165.0	15.0	163.8	4.870	21.010	4.560	1.730	3.260	1.430
180.0	14.9	178.9	4.850	21.190	5.050	1.730	4.030	1.590
195.0	15.0	194.3	5.040	26.470	4.520	1.760	4.540	1.500
210.0	15.0	209.9	5.400	27.640	4.720	1.830	6.800	1.490
225.0	14.8	226.2	6.410	25.730	3.870	1.900	8.750	1.320
240.0	14.9	241.8	7.400	25.700	3.640	2.030	9.390	1.030
255.0	15.1	256.1	7.850	29.170	2.480	2.130	9.120	0.630
270.0	15.1	270.8	7.860	29.630	1.590	2.190	8.650	0.250
285.0	15.2	285.4	7.930	31.210	2.610	2.190	8.040	0.740
300.0	15.1	299.9	7.060	25.550	4.490	2.150	6.300	1.310
315.0	15.0	314.3	8.360	25.170	6.390	2.070	4.980	1.700
330.0	14.9	328.9	7.610	21.030	6.460	1.990	3.800	1.930
345.0	14.9	343.8	7.270	20.630	7.310	1.930	2.830	2.050
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	cases.	

Table R.40: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	M	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	${f kts}$	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	20.1	-0.5	6.740	17.430	6.910	1.960	2.490	2.030
15.0	20.1	14.7	6.320	17.890	6.480	1.960	3.190	2.010
30.0	20.1	29.8	6.490	19.270	6.150	1.970	4.050	1.910
45.0	20.1	44.8	7.730	21.050	5.850	1.990	4.570	1.700
60.0	20.2	59.6	7.300	22.760	4.300	2.000	5.170	1.360
75.0	20.2	74.4	6.870	23.030	2.920	1.990	4.810	0.870
90.0	20.3	89.4	7.090	24.820	1.250	1.970	5.460	0.330
105.0	20.3	104.5	6.520	30.020	1.670	1.930	6.040	0.490
120.0	20.1	119.2	6.180	30.050	2.600	1.850	8.540	0.840
135.0	20.1	134.3	5.320	28.670	3.330	1.770	6.820	1.090
150.0	20.2	149.3	4.820	22.120	3.730	1.660	4.110	1.150
165.0	20.1	164.3	5.360	18.690	4.840	1.870	3.440	1.680
180.0	20.3	179.4	5.190	21.820	4.080	1.650	3.140	1.290
195.0	20.2	194.8	5.270	34.240	4.700	1.860	5.880	1.640
210.0	20.1	210.0	5.360	38.520	4.710	1.830	7.930	1.480
225.0	20.1	225.1	5.510	35.910	4.130	1.830	9.660	1.240
240.0	20.1	240.8	7.100	34.080	3.240	1.960	11.070	1.000
255.0	20.2	255.5	8.020	33.580	2.160	2.070	10.000	0.620
270.0	20.3	270.4	7.350	35.170	1.440	2.150	9.520	0.300
285.0	20.3	285.2	7.460	31.450	2.750	2.170	8.490	0.750
300.0	20.2	299.9	8.640	30.010	5.150	2.150	6.390	1.290
315.0	20.2	314.5	7.470	25.290	5.840	2.100	4.770	1.660
330.0	20.1	329.3	6.360	20.910	5.940	2.040	3.420	1.880
345.0	20.1	344.4	6.200	18.180	6.430	1.990	2.520	1.990
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

wind at 38.7 knots (19.9 m/s) is from the starboard beam in all cases.

Table R.41: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolute		5	Standard	
Heading	M	ean	N	Iaximum	ı	I	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	\mathbf{m}	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	25.2	-0.2	7.200	17.760	6.190	2.050	2.640	1.970
15.0	25.2	14.9	7.070	19.250	6.310	2.030	3.380	1.950
30.0	25.2	30.0	6.720	21.170	5.910	2.030	4.300	1.850
45.0	25.2	45.0	6.440	21.860	5.190	2.040	5.040	1.670
60.0	25.3	59.8	8.070	24.660	4.780	2.010	5.790	1.350
75.0	25.3	74.6	6.930	25.380	3.080	1.970	5.310	0.880
90.0	25.3	89.6	6.900	26.700	1.410	1.910	5.910	0.390
105.0	25.3	104.6	7.190	28.580	1.710	1.870	6.230	0.460
120.0	25.2	119.6	5.840	32.290	2.630	1.820	9.980	0.810
135.0	25.2	134.6	6.270	29.670	3.480	1.720	8.100	1.030
150.0	25.3	149.5	5.410	27.260	4.290	1.730	6.610	1.300
165.0	25.4	164.5	4.480	22.220	4.590	1.420	3.170	1.260
180.0	25.8	179.8	5.120	19.150	3.840	1.740	2.000	1.390
195.0	25.6	194.9	4.450	25.370	4.820	1.450	4.190	1.280
210.0	25.3	210.1	6.230	37.790	4.620	1.760	7.730	1.350
225.0	25.3	225.0	4.910	40.960	2.910	1.720	8.540	1.040
240.0	25.2	240.3	6.980	41.190	3.420	1.870	11.800	0.950
255.0	25.3	255.2	7.790	39.950	1.930	2.030	10.250	0.620
270.0	25.3	270.2	7.350	36.810	1.470	2.100	9.720	0.350
285.0	25.3	285.1	8.430	36.080	2.960	2.130	9.230	0.760
300.0	25.3	299.9	8.420	28.580	4.170	2.150	6.440	1.270
315.0	25.3	314.7	6.890	26.230	5.330	2.130	4.660	1.620
330.0	25.2	329.6	7.450	22.610	6.160	2.090	3.410	1.830
345.0	25.2	344.7	7.000	18.610	6.250	2.060	2.610	1.930
Wind at 38	8.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

Table R.42: Course-Keeping Ability and Motion Parameters: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	1	Absolute		5	Standard	
Heading	Me	ean	N	Iaximum	1	I	Deviation	
$\psi_{ m MHP}$	Speed	$\psi_{ ext{MHP}}$	Heave	Roll	Pitch	Heave	Roll	Pitch
deg	\mathbf{kts}	\deg	m	\deg	\deg	\mathbf{m}	\deg	\deg
0.0	30.4	-0.0	7.940	19.870	6.170	2.120	2.900	1.910
15.0	30.4	15.1	7.680	20.330	6.750	2.110	3.600	1.880
30.0	30.4	30.1	7.270	22.240	5.980	2.090	4.440	1.800
45.0	30.4	45.1	7.810	24.060	5.530	2.080	5.310	1.640
60.0	30.4	60.0	7.330	25.170	4.500	2.030	6.300	1.340
75.0	30.4	74.7	8.050	23.710	2.990	1.950	5.930	0.900
90.0	30.4	89.7	6.650	27.690	1.670	1.860	6.680	0.450
105.0	30.4	104.7	5.860	30.800	1.770	1.800	6.650	0.460
120.0	30.3	119.7	5.610	36.510	2.810	1.780	12.260	0.840
135.0	30.2	134.5	5.480	33.660	3.880	1.780	10.630	1.160
150.0	30.3	149.2	6.960	42.020	5.150	2.120	8.400	1.530
165.0	30.8	164.0	4.100	25.140	4.890	1.400	3.960	1.390
180.0	31.2	179.7	3.990	26.500	3.900	1.530	3.150	1.390
195.0	30.9	194.7	4.340	25.300	4.940	1.380	4.580	1.380
210.0	30.5	210.3	7.080	37.520	5.040	2.140	8.630	1.530
225.0	30.4	225.1	5.630	40.400	3.480	1.720	9.740	1.080
240.0	30.4	240.1	5.800	46.880	3.210	1.840	12.320	0.920
255.0	30.4	255.1	8.080	45.430	2.120	1.970	9.670	0.630
270.0	30.4	270.1	7.250	38.870	1.640	2.050	9.490	0.410
285.0	30.4	285.1	7.100	37.060	2.830	2.100	9.140	0.780
300.0	30.4	299.9	7.750	30.330	4.350	2.150	6.300	1.250
315.0	30.4	314.8	8.200	26.830	5.560	2.160	4.360	1.580
330.0	30.4	329.8	7.690	23.020	6.080	2.150	3.140	1.770
345.0	30.4	344.9	8.240	20.170	6.470	2.130	2.740	1.870
Wind at 38	3.7 knots	(19.9 m/s	s) is from	the starb	oard bea	m in all c	ases.	

This page intentionally left blank.

Annex S Tables of Hangar Deck Accelerations – Bretschneider Spectrum (Open Ocean)

Table S.1: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual		Absolut	ie .	5	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	kts	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-23.8	0.695	1.547	10.612	0.166	0.318	0.247
15.0	-0.2	-4.6	0.687	0.803	10.486	0.154	0.119	0.216
30.0	-0.2	16.7	0.645	1.398	10.438	0.157	0.251	0.212
45.0	-0.2	33.5	0.713	2.218	10.503	0.173	0.469	0.240
60.0	-0.3	44.5	0.740	3.015	10.845	0.185	0.640	0.273
75.0	-0.5	52.4	0.702	4.528	11.373	0.192	0.783	0.313
90.0	-0.6	59.0	0.797	5.340	12.039	0.195	0.914	0.361
105.0	-0.7	63.4	0.877	4.679	11.992	0.192	0.967	0.395
120.0	-1.6	96.0	0.681	6.297	12.289	0.127	1.165	0.613
135.0	-2.1	102.8	0.800	5.456	12.100	0.173	1.052	0.499
150.0	-2.4	105.0	0.929	4.678	11.612	0.177	1.019	0.482
165.0	-2.5	106.2	0.845	4.901	12.027	0.175	1.014	0.497
180.0	-0.7	74.0	0.705	5.715	12.487	0.146	0.674	0.347
195.0	-0.0	200.3	0.417	1.467	10.541	0.119	0.290	0.191
210.0	-0.2	382.2	0.704	3.747	11.613	0.183	0.681	0.366
225.0	-0.0	384.6	0.721	3.686	11.736	0.196	0.718	0.368
240.0	0.7	293.3	0.890	3.618	11.828	0.207	0.922	0.477
255.0	0.6	292.8	0.908	4.123	11.823	0.209	0.962	0.499
270.0	0.3	295.4	0.957	4.143	12.186	0.209	0.910	0.475
285.0	0.2	299.4	0.688	3.746	11.572	0.210	0.895	0.437
300.0	0.0	303.8	0.755	4.294	11.168	0.206	0.808	0.402
315.0	-0.1	309.3	0.816	3.228	11.205	0.200	0.701	0.363
330.0	-0.1	314.8	0.768	2.978	10.817	0.192	0.585	0.328
345.0	-0.1	322.9	0.738	2.078	10.817	0.181	0.471	0.290
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.2: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.8	-2.1	0.671	0.888	10.621	0.179	0.117	0.270
15.0	4.8	12.8	0.687	1.033	10.568	0.181	0.164	0.267
30.0	4.8	27.6	0.875	1.398	10.621	0.192	0.291	0.283
45.0	4.7	42.1	0.836	2.023	10.816	0.209	0.467	0.315
60.0	4.4	54.6	0.892	2.950	10.997	0.222	0.673	0.357
75.0	4.2	58.0	0.813	3.676	11.197	0.221	0.766	0.378
90.0	4.1	61.8	0.719	5.344	12.033	0.219	0.815	0.408
105.0	4.1	64.0	0.693	3.973	11.893	0.218	0.857	0.419
120.0	4.1	65.4	0.713	3.749	12.178	0.217	0.856	0.430
135.0	4.1	65.8	0.733	4.382	11.646	0.218	0.830	0.420
150.0	4.6	145.4	0.402	1.968	10.359	0.101	0.431	0.130
165.0	4.9	163.1	0.367	1.450	10.242	0.088	0.289	0.097
180.0	4.9	178.7	0.332	1.068	10.253	0.083	0.191	0.092
195.0	4.9	194.1	0.336	1.277	10.305	0.085	0.277	0.102
210.0	4.9	210.1	0.367	2.006	10.398	0.095	0.432	0.129
225.0	4.6	229.1	0.429	2.625	10.585	0.117	0.633	0.207
240.0	4.6	285.6	0.703	3.907	12.410	0.203	0.943	0.614
255.0	4.5	287.1	0.840	4.387	12.792	0.211	0.941	0.609
270.0	4.5	288.9	0.861	4.873	12.632	0.217	0.937	0.588
285.0	4.7	291.1	0.900	4.236	12.245	0.225	0.896	0.551
300.0	4.9	301.1	0.794	3.100	11.384	0.234	0.742	0.425
315.0	4.8	314.2	0.848	2.770	10.813	0.219	0.526	0.348
330.0	4.8	328.5	0.814	1.839	10.714	0.201	0.324	0.309
345.0	4.8	343.2	0.721	1.245	10.638	0.186	0.191	0.281
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.3: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.0	-0.6	0.741	0.967	10.776	0.201	0.100	0.324
15.0	10.0	14.4	0.719	1.025	10.725	0.204	0.144	0.321
30.0	10.0	29.4	0.872	1.519	10.816	0.218	0.267	0.323
45.0	10.0	44.4	0.853	2.130	10.839	0.236	0.443	0.326
60.0	10.0	59.2	0.934	2.915	11.120	0.249	0.679	0.414
75.0	10.0	73.0	0.885	4.418	12.133	0.224	0.837	0.637
90.0	9.6	85.5	0.478	7.587	12.995	0.105	0.973	0.833
105.0	9.3	100.2	0.703	5.568	12.761	0.118	1.020	0.508
120.0	9.7	117.2	0.428	4.600	11.112	0.097	0.923	0.249
135.0	9.9	133.4	0.272	3.180	10.274	0.079	0.986	0.145
150.0	10.0	148.9	0.209	3.356	10.086	0.066	1.022	0.119
165.0	10.1	164.2	0.232	3.736	10.000	0.060	0.840	0.093
180.0	10.1	179.3	0.217	2.466	9.993	0.058	0.514	0.064
195.0	10.1	194.6	0.244	1.860	10.097	0.062	0.473	0.054
210.0	10.1	210.3	0.214	2.407	10.159	0.069	0.836	0.081
225.0	10.0	225.7	0.252	3.114	10.357	0.080	0.926	0.133
240.0	9.8	241.9	0.421	3.523	10.968	0.099	0.928	0.243
255.0	9.4	259.4	0.784	5.077	12.354	0.126	1.026	0.526
270.0	9.7	274.2	0.504	5.917	13.092	0.092	1.036	0.889
285.0	10.1	286.7	0.770	3.936	12.158	0.225	0.880	0.725
300.0	10.1	300.1	0.862	3.051	11.200	0.253	0.697	0.472
315.0	10.0	314.7	0.911	1.960	10.854	0.242	0.457	0.347
330.0	10.0	329.7	0.856	1.488	10.772	0.222	0.268	0.331
345.0	10.0	344.6	0.839	1.085	10.714	0.206	0.147	0.325
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.4: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.2	0.766	1.076	10.772	0.219	0.099	0.320
15.0	15.2	14.8	0.765	1.160	10.732	0.223	0.150	0.316
30.0	15.2	29.8	0.898	1.694	10.837	0.238	0.263	0.328
45.0	15.1	44.8	0.896	2.252	10.986	0.257	0.424	0.372
60.0	15.2	59.6	0.959	3.180	11.559	0.264	0.646	0.528
75.0	15.2	74.0	0.775	4.298	12.289	0.226	0.807	0.771
90.0	15.1	88.4	0.338	8.318	13.248	0.054	0.966	0.841
105.0	15.0	103.3	0.487	5.094	12.191	0.093	0.976	0.418
120.0	15.1	118.8	0.251	4.542	10.598	0.066	1.412	0.238
135.0	15.2	134.5	0.161	3.985	10.107	0.050	1.471	0.199
150.0	15.2	149.7	0.275	3.409	10.092	0.069	1.010	0.132
165.0	15.1	164.7	0.236	2.181	10.076	0.065	0.506	0.080
180.0	15.3	179.7	0.248	2.285	9.940	0.059	0.264	0.044
195.0	15.2	194.6	0.245	3.056	9.877	0.058	0.445	0.052
210.0	15.2	209.8	0.200	3.386	9.880	0.059	0.903	0.060
225.0	15.2	225.3	0.180	3.947	10.072	0.056	1.478	0.114
240.0	15.1	241.1	0.406	4.248	11.135	0.071	1.363	0.199
255.0	15.0	256.7	0.639	4.872	11.972	0.103	1.055	0.418
270.0	15.1	271.7	0.310	4.808	13.007	0.048	1.079	0.891
285.0	15.3	285.9	0.803	3.651	12.465	0.225	0.904	0.852
300.0	15.2	300.1	0.911	2.583	11.586	0.267	0.657	0.592
315.0	15.2	314.9	0.937	1.830	11.188	0.259	0.422	0.412
330.0	15.2	329.9	0.876	1.421	10.990	0.240	0.242	0.345
345.0	15.2	344.8	0.816	1.010	10.865	0.225	0.129	0.322
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.5: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual		Absolut	te	S	Standar	d
Heading	Me	ean	l I	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.3	-0.1	0.900	1.188	11.012	0.234	0.107	0.393
15.0	20.3	14.9	0.818	1.427	11.183	0.239	0.150	0.396
30.0	20.3	29.9	0.925	1.701	11.428	0.254	0.254	0.441
45.0	20.3	44.9	0.973	2.282	11.369	0.272	0.407	0.528
60.0	20.3	59.8	1.006	3.478	11.786	0.276	0.618	0.692
75.0	20.4	74.4	0.811	5.089	12.744	0.226	0.807	0.886
90.0	20.3	89.1	0.290	6.272	13.354	0.044	0.947	0.831
105.0	20.2	104.0	0.478	6.744	12.425	0.076	1.120	0.392
120.0	20.3	119.5	0.162	5.376	10.595	0.041	1.843	0.298
135.0	20.3	134.9	0.215	4.463	10.139	0.054	1.339	0.155
150.0	20.4	149.6	0.309	2.965	9.963	0.063	0.688	0.076
165.0	20.8	164.7	0.252	2.770	9.917	0.065	0.311	0.047
180.0	20.1	179.6	0.374	3.457	9.920	0.072	0.477	0.083
195.0	20.7	195.0	0.380	3.296	9.926	0.067	0.469	0.071
210.0	20.5	210.1	0.289	4.294	9.898	0.061	0.783	0.099
225.0	20.3	225.0	0.188	4.650	9.899	0.049	1.335	0.137
240.0	20.3	240.5	0.219	5.870	10.693	0.044	1.799	0.183
255.0	20.2	255.9	0.508	6.462	11.862	0.083	1.192	0.355
270.0	20.3	270.9	0.357	5.225	12.826	0.043	1.110	0.877
285.0	20.4	285.5	0.793	3.755	12.534	0.223	0.949	0.961
300.0	20.3	300.1	0.959	2.484	12.020	0.274	0.671	0.751
315.0	20.3	315.0	0.985	1.943	11.552	0.271	0.414	0.566
330.0	20.3	329.9	0.936	1.345	11.299	0.254	0.235	0.463
345.0	20.3	344.9	0.917	1.086	11.213	0.240	0.129	0.408
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	cases.	•

Table S.6: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.819	1.355	11.398	0.243	0.125	0.539
15.0	25.4	14.9	0.886	1.574	11.465	0.248	0.156	0.555
30.0	25.4	29.9	0.903	1.882	11.572	0.263	0.248	0.612
45.0	25.4	44.9	0.939	2.593	11.800	0.280	0.397	0.713
60.0	25.4	59.8	1.043	3.227	12.350	0.283	0.607	0.864
75.0	25.4	74.6	0.743	4.271	12.946	0.227	0.795	0.998
90.0	25.4	89.4	0.334	6.627	13.087	0.042	0.957	0.821
105.0	25.4	104.4	0.323	5.563	11.504	0.062	1.258	0.352
120.0	25.4	119.9	0.346	6.464	10.550	0.055	2.035	0.282
135.0	25.3	134.9	0.437	4.333	10.061	0.069	1.185	0.124
150.0	25.4	149.9	0.438	2.898	9.948	0.082	0.577	0.077
165.0	25.3	164.9	0.376	3.249	10.025	0.087	0.400	0.083
180.0	25.6	179.9	0.353	3.071	10.043	0.081	0.370	0.088
195.0	25.3	194.7	0.385	3.340	9.974	0.086	0.617	0.114
210.0	25.3	209.8	0.486	4.020	9.996	0.080	0.783	0.123
225.0	25.1	224.5	0.383	5.019	9.875	0.063	1.320	0.203
240.0	25.4	240.2	0.237	6.171	10.074	0.054	2.222	0.278
255.0	25.4	255.6	0.303	5.717	11.105	0.067	1.353	0.299
270.0	25.4	270.6	0.291	5.311	12.809	0.044	1.145	0.863
285.0	25.4	285.4	0.759	3.876	13.323	0.220	1.008	1.059
300.0	25.4	300.1	1.010	3.047	12.491	0.277	0.708	0.910
315.0	25.4	315.1	0.939	2.016	12.201	0.277	0.438	0.744
330.0	25.4	330.0	0.901	1.500	11.740	0.262	0.253	0.633
345.0	25.4	345.0	0.912	1.207	11.596	0.248	0.151	0.564
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.7: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	Absolute Standard			d		
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.5	-0.0	0.789	1.358	11.921	0.246	0.141	0.691
15.0	30.5	14.9	0.866	1.498	11.894	0.252	0.155	0.711
30.0	30.5	29.9	0.883	1.982	11.988	0.268	0.241	0.778
45.0	30.5	44.9	0.927	2.964	12.466	0.284	0.395	0.886
60.0	30.5	59.8	0.960	3.991	12.715	0.286	0.616	1.021
75.0	30.5	74.7	0.744	3.950	13.086	0.229	0.776	1.102
90.0	30.5	89.5	0.344	6.901	13.085	0.044	0.960	0.815
105.0	30.5	104.6	0.334	6.424	11.760	0.052	1.432	0.334
120.0	30.4	119.9	0.505	5.938	10.074	0.080	2.168	0.292
135.0	30.5	134.7	0.344	3.589	9.948	0.080	1.123	0.115
150.0	30.5	149.9	0.396	3.323	10.080	0.085	0.666	0.107
165.0	30.5	164.8	0.351	2.883	10.128	0.085	0.460	0.108
180.0	30.5	179.9	0.450	3.218	10.144	0.089	0.500	0.121
195.0	30.6	194.9	0.414	3.795	10.149	0.086	0.679	0.133
210.0	30.4	209.9	0.379	4.109	10.005	0.089	0.894	0.146
225.0	30.4	224.9	0.321	4.318	9.890	0.079	1.106	0.144
240.0	30.4	240.1	0.446	7.030	10.089	0.077	2.221	0.314
255.0	30.5	255.3	0.249	5.623	11.029	0.061	1.563	0.246
270.0	30.5	270.4	0.230	4.905	13.063	0.048	1.190	0.848
285.0	30.5	285.3	0.742	4.515	13.345	0.218	1.043	1.153
300.0	30.5	300.2	0.935	3.008	12.979	0.278	0.766	1.057
315.0	30.5	315.1	0.888	2.138	12.664	0.279	0.478	0.908
330.0	30.5	330.0	0.941	1.746	12.183	0.265	0.287	0.789
345.0	30.5	345.0	0.824	1.341	11.957	0.251	0.181	0.716
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.8: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.0	-14.9	0.488	1.678	10.361	0.122	0.390	0.191
15.0	-0.1	-6.0	0.487	1.141	10.353	0.124	0.255	0.184
30.0	-0.2	5.3	0.537	1.561	10.340	0.123	0.332	0.182
45.0	-0.2	22.7	0.533	2.292	10.460	0.120	0.599	0.191
60.0	-0.1	39.4	0.372	2.940	10.578	0.110	0.794	0.210
75.0	-0.1	53.3	0.374	3.497	10.702	0.094	0.889	0.231
90.0	-0.1	68.5	0.250	3.285	10.982	0.062	0.924	0.260
105.0	-0.1	88.4	0.169	3.545	11.047	0.012	0.926	0.283
120.0	-0.3	99.9	0.271	3.416	10.791	0.030	0.936	0.280
135.0	-0.5	108.2	0.305	3.067	10.855	0.051	0.928	0.269
150.0	-0.8	115.2	0.335	3.025	10.665	0.068	0.913	0.257
165.0	-1.0	119.3	0.369	2.996	10.702	0.076	0.889	0.250
180.0	-0.5	53.8	0.497	2.674	10.736	0.112	0.624	0.205
195.0	0.1	338.6	0.434	3.047	10.751	0.106	0.717	0.222
210.0	0.2	248.5	0.349	3.184	10.836	0.060	0.892	0.284
225.0	0.1	255.3	0.327	3.304	10.793	0.045	0.904	0.301
240.0	0.1	263.7	0.251	3.320	10.924	0.027	0.906	0.317
255.0	0.1	275.2	0.164	3.351	11.015	0.021	0.894	0.322
270.0	0.2	288.2	0.236	3.006	11.139	0.054	0.879	0.306
285.0	0.2	298.6	0.292	3.121	11.013	0.080	0.854	0.281
300.0	0.1	308.0	0.327	2.947	10.783	0.097	0.820	0.257
315.0	0.1	317.0	0.419	3.000	10.671	0.108	0.755	0.236
330.0	0.1	326.3	0.474	2.865	10.554	0.115	0.667	0.217
345.0	0.0	336.0	0.470	2.372	10.417	0.119	0.539	0.201
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.9: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.9	-2.4	0.533	1.018	10.373	0.143	0.164	0.201
15.0	4.8	12.3	0.541	1.416	10.407	0.142	0.316	0.202
30.0	4.8	27.1	0.569	2.039	10.445	0.137	0.528	0.212
45.0	4.8	42.0	0.479	2.559	10.625	0.126	0.691	0.229
60.0	4.8	56.5	0.336	3.206	10.795	0.103	0.796	0.257
75.0	4.8	71.2	0.224	3.077	10.964	0.059	0.827	0.290
90.0	4.8	85.7	0.058	3.088	10.967	0.013	0.841	0.303
105.0	4.7	100.0	0.129	3.033	10.837	0.022	0.853	0.286
120.0	4.4	110.5	0.234	3.456	10.964	0.044	0.846	0.259
135.0	4.2	120.6	0.259	2.756	10.583	0.058	0.804	0.232
150.0	4.5	143.2	0.329	2.212	10.477	0.074	0.562	0.178
165.0	4.7	161.6	0.342	1.488	10.363	0.079	0.329	0.150
180.0	4.9	178.1	0.345	1.329	10.367	0.080	0.257	0.138
195.0	4.9	194.3	0.356	1.624	10.399	0.079	0.398	0.139
210.0	4.9	210.7	0.338	2.004	10.407	0.075	0.582	0.153
225.0	4.9	227.2	0.277	2.440	10.541	0.068	0.728	0.184
240.0	4.8	243.0	0.221	2.856	10.671	0.054	0.822	0.233
255.0	4.9	257.2	0.165	2.939	10.823	0.031	0.841	0.281
270.0	5.0	271.5	0.044	2.980	11.010	0.008	0.831	0.320
285.0	5.0	286.0	0.233	3.264	11.209	0.049	0.807	0.318
300.0	5.0	300.3	0.399	2.914	11.055	0.096	0.777	0.284
315.0	5.0	314.4	0.464	2.424	10.557	0.123	0.679	0.245
330.0	4.9	328.6	0.485	2.193	10.451	0.135	0.536	0.221
345.0	4.9	343.1	0.512	1.667	10.372	0.141	0.346	0.207
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.10: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.1	-0.6	0.763	0.852	10.565	0.163	0.092	0.213
15.0	10.1	14.4	0.654	1.428	10.457	0.160	0.260	0.213
30.0	10.1	29.5	0.543	1.942	10.661	0.154	0.458	0.221
45.0	10.1	44.5	0.514	2.676	10.605	0.138	0.604	0.242
60.0	10.1	59.3	0.362	2.782	10.753	0.106	0.709	0.281
75.0	10.2	74.2	0.215	3.102	11.223	0.053	0.708	0.314
90.0	10.1	89.0	0.054	2.949	11.101	0.013	0.739	0.309
105.0	10.1	103.9	0.120	3.407	10.877	0.025	0.769	0.271
120.0	10.0	118.6	0.200	3.840	10.722	0.041	0.833	0.230
135.0	10.0	133.7	0.201	3.264	10.536	0.049	0.766	0.190
150.0	10.0	148.9	0.182	2.698	10.303	0.054	0.723	0.158
165.0	10.1	164.1	0.221	2.349	10.238	0.056	0.549	0.134
180.0	10.1	179.3	0.257	1.885	10.234	0.057	0.342	0.116
195.0	10.1	194.6	0.231	1.803	10.149	0.057	0.379	0.105
210.0	10.1	210.1	0.218	2.170	10.208	0.055	0.661	0.114
225.0	10.1	225.6	0.260	2.577	10.520	0.051	0.830	0.144
240.0	10.1	240.8	0.220	3.082	10.763	0.044	0.916	0.190
255.0	10.2	255.6	0.191	3.318	10.972	0.030	0.866	0.249
270.0	10.2	270.4	0.066	3.219	11.283	0.015	0.818	0.311
285.0	10.2	285.1	0.198	3.138	11.186	0.049	0.775	0.333
300.0	10.1	299.9	0.373	2.783	10.930	0.104	0.725	0.304
315.0	10.1	314.6	0.513	2.530	10.725	0.138	0.594	0.257
330.0	10.1	329.5	0.614	2.006	10.520	0.153	0.428	0.228
345.0	10.1	344.4	0.738	1.359	10.559	0.160	0.235	0.217
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.11: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	Standard		
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.3	0.642	0.949	10.496	0.181	0.089	0.230
15.0	15.2	14.8	0.635	1.413	10.538	0.178	0.254	0.229
30.0	15.2	29.9	0.761	2.206	10.673	0.170	0.435	0.239
45.0	15.2	44.9	0.556	2.744	10.861	0.152	0.594	0.271
60.0	15.2	59.8	0.401	2.672	11.043	0.115	0.719	0.315
75.0	15.3	74.7	0.194	2.708	10.980	0.055	0.659	0.332
90.0	15.3	89.6	0.074	3.050	11.162	0.020	0.681	0.307
105.0	15.3	104.5	0.126	3.170	11.027	0.027	0.732	0.259
120.0	15.2	119.3	0.163	3.998	10.629	0.035	0.996	0.231
135.0	15.2	134.6	0.208	3.784	10.373	0.039	0.964	0.186
150.0	15.2	149.7	0.170	2.346	10.142	0.039	0.576	0.130
165.0	15.2	164.7	0.190	1.658	10.131	0.048	0.361	0.109
180.0	15.3	179.7	0.170	1.377	10.090	0.038	0.168	0.089
195.0	15.2	194.8	0.238	2.697	10.035	0.049	0.373	0.086
210.0	15.2	209.9	0.157	3.051	9.999	0.041	0.660	0.084
225.0	15.2	225.2	0.202	3.523	10.111	0.041	1.086	0.102
240.0	15.2	240.4	0.187	3.758	10.538	0.037	1.098	0.157
255.0	15.3	255.3	0.130	3.197	10.861	0.030	0.909	0.220
270.0	15.3	270.2	0.079	3.161	10.948	0.022	0.826	0.300
285.0	15.3	285.0	0.194	3.254	11.113	0.052	0.764	0.349
300.0	15.2	299.9	0.393	2.948	10.850	0.113	0.716	0.347
315.0	15.2	314.7	0.529	2.481	10.850	0.152	0.561	0.296
330.0	15.2	329.7	0.680	1.847	10.572	0.169	0.382	0.255
345.0	15.2	344.7	0.687	1.270	10.523	0.178	0.190	0.237
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

220

Table S.12: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.3	-0.1	0.801	1.137	10.869	0.197	0.106	0.301
15.0	20.3	14.9	0.815	1.567	10.897	0.194	0.264	0.300
30.0	20.3	30.0	0.690	2.076	10.784	0.185	0.444	0.315
45.0	20.3	45.0	0.568	2.720	10.915	0.165	0.609	0.346
60.0	20.3	59.9	0.429	3.212	11.168	0.124	0.760	0.375
75.0	20.4	74.8	0.225	2.843	11.050	0.058	0.627	0.352
90.0	20.4	89.8	0.096	3.091	11.130	0.026	0.641	0.302
105.0	20.4	104.8	0.137	3.567	10.762	0.032	0.687	0.241
120.0	20.3	119.7	0.189	4.745	10.421	0.039	1.232	0.233
135.0	20.3	134.8	0.160	3.376	10.025	0.042	1.001	0.157
150.0	20.3	149.8	0.140	2.018	10.032	0.044	0.560	0.105
165.0	20.4	164.8	0.201	1.449	10.047	0.049	0.300	0.081
180.0	20.4	179.9	0.184	1.706	10.018	0.050	0.177	0.077
195.0	20.4	194.9	0.155	2.538	9.990	0.048	0.363	0.070
210.0	20.4	209.9	0.181	4.205	10.014	0.037	0.601	0.084
225.0	20.4	225.0	0.132	4.104	9.955	0.034	0.867	0.086
240.0	20.4	240.2	0.160	4.802	10.098	0.038	1.344	0.124
255.0	20.4	255.1	0.179	3.607	10.812	0.034	0.895	0.192
270.0	20.4	270.1	0.098	3.171	10.860	0.028	0.806	0.289
285.0	20.4	285.0	0.192	3.460	11.241	0.055	0.742	0.370
300.0	20.4	299.9	0.414	3.074	11.192	0.121	0.712	0.412
315.0	20.3	314.8	0.591	2.463	11.005	0.163	0.534	0.378
330.0	20.3	329.8	0.722	2.000	10.905	0.184	0.353	0.337
345.0	20.3	344.8	0.728	1.400	10.938	0.194	0.170	0.312
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.13: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	d	
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.757	1.364	11.210	0.212	0.127	0.430
15.0	25.4	15.0	0.856	1.637	11.184	0.208	0.270	0.429
30.0	25.4	30.0	0.711	2.368	11.260	0.197	0.444	0.437
45.0	25.4	45.0	0.652	2.648	11.220	0.175	0.610	0.455
60.0	25.4	60.0	0.433	3.286	11.367	0.133	0.786	0.458
75.0	25.4	74.9	0.198	2.904	11.136	0.061	0.613	0.376
90.0	25.4	89.9	0.113	3.027	11.072	0.032	0.620	0.294
105.0	25.4	104.8	0.168	3.407	10.818	0.040	0.685	0.227
120.0	25.4	119.9	0.198	5.197	10.037	0.049	1.545	0.233
135.0	25.4	134.9	0.161	2.723	9.967	0.052	0.984	0.127
150.0	25.4	149.9	0.184	2.472	9.965	0.059	0.646	0.091
165.0	25.5	164.9	0.267	2.005	10.003	0.077	0.394	0.086
180.0	25.6	179.9	0.203	1.533	9.930	0.059	0.130	0.042
195.0	25.5	195.0	0.239	2.843	10.022	0.073	0.380	0.076
210.0	25.5	210.0	0.224	3.791	9.980	0.051	0.665	0.093
225.0	25.4	225.0	0.150	4.733	9.942	0.043	0.976	0.113
240.0	25.4	240.0	0.143	4.633	9.900	0.040	1.221	0.094
255.0	25.4	255.0	0.188	3.600	10.662	0.040	0.839	0.169
270.0	25.4	270.0	0.127	3.182	10.847	0.034	0.761	0.279
285.0	25.4	285.0	0.200	3.457	11.187	0.058	0.703	0.394
300.0	25.4	299.9	0.507	3.608	11.586	0.129	0.695	0.498
315.0	25.4	314.9	0.643	2.639	11.390	0.173	0.502	0.486
330.0	25.4	329.9	0.670	2.007	11.288	0.196	0.320	0.461
345.0	25.4	344.9	0.777	1.456	11.135	0.208	0.157	0.441
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.14: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	al Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	0.857	1.416	11.697	0.224	0.153	0.588
15.0	30.5	15.0	0.848	1.831	11.719	0.220	0.278	0.583
30.0	30.5	30.0	0.714	2.333	11.804	0.208	0.436	0.580
45.0	30.5	45.0	0.685	3.106	11.669	0.185	0.607	0.577
60.0	30.5	60.0	0.487	3.353	11.626	0.140	0.796	0.548
75.0	30.5	75.0	0.201	2.721	11.113	0.065	0.592	0.403
90.0	30.5	89.9	0.135	2.889	11.063	0.037	0.617	0.285
105.0	30.5	104.9	0.190	3.209	10.545	0.048	0.744	0.209
120.0	30.5	119.9	0.239	3.913	9.946	0.056	1.331	0.177
135.0	30.5	134.9	0.255	3.754	9.945	0.054	0.859	0.101
150.0	30.6	149.9	0.261	2.469	9.929	0.080	0.606	0.079
165.0	30.6	164.9	0.296	1.944	9.895	0.093	0.341	0.054
180.0	31.0	179.9	0.331	2.227	9.872	0.093	0.222	0.043
195.0	30.6	194.9	0.257	2.730	9.879	0.084	0.395	0.055
210.0	30.6	210.0	0.231	3.190	9.889	0.072	0.625	0.076
225.0	30.5	225.0	0.166	4.038	9.904	0.047	0.877	0.107
240.0	30.5	240.1	0.224	5.971	9.875	0.052	1.456	0.157
255.0	30.5	255.0	0.166	3.621	10.466	0.048	0.775	0.147
270.0	30.5	270.0	0.141	3.173	10.810	0.040	0.691	0.269
285.0	30.5	285.0	0.212	3.681	11.204	0.061	0.662	0.426
300.0	30.5	299.9	0.465	3.164	11.609	0.135	0.669	0.580
315.0	30.5	314.9	0.608	2.811	11.778	0.181	0.477	0.603
330.0	30.5	329.9	0.754	2.139	11.732	0.206	0.306	0.601
345.0	30.5	344.9	0.860	1.580	11.744	0.219	0.163	0.593
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.15: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	Standard			
Heading	Me	ean		Maximuı	n	Ι	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	-0.1	-18.2	1.297	3.260	10.934	0.264	0.643	0.380	
15.0	-0.3	-12.9	1.218	2.579	10.834	0.262	0.511	0.358	
30.0	-0.6	-3.0	1.183	2.455	10.797	0.259	0.473	0.340	
45.0	-0.9	7.5	1.237	2.920	10.986	0.256	0.646	0.333	
60.0	-1.2	18.4	1.124	4.596	11.062	0.255	0.973	0.356	
75.0	-1.6	-14.9	1.103	6.460	12.182	0.251	1.500	0.460	
90.0	-1.5	-5.5	0.922	9.357	13.091	0.245	1.504	0.464	
105.0	-1.3	-6.7	0.938	6.912	12.545	0.250	1.433	0.439	
120.0	-1.3	47.4	1.139	10.664	13.194	0.195	1.640	0.609	
135.0	-3.0	105.0	1.033	9.153	13.948	0.193	1.688	0.679	
150.0	-3.7	109.0	1.089	7.490	12.734	0.207	1.597	0.638	
165.0	-4.0	106.1	0.949	9.331	13.581	0.206	1.631	0.661	
180.0	-0.2	328.0	1.160	4.845	12.018	0.245	0.890	0.381	
195.0	-0.2	16.8	1.077	5.573	11.947	0.258	0.915	0.427	
210.0	-0.2	385.8	1.045	4.760	11.685	0.258	0.996	0.450	
225.0	-0.1	392.3	1.153	5.469	11.981	0.262	1.136	0.482	
240.0	0.0	393.2	1.087	5.121	11.953	0.262	1.259	0.527	
255.0	0.0	386.6	1.118	5.777	12.552	0.259	1.442	0.586	
270.0	0.5	300.2	1.138	5.539	12.487	0.257	1.343	0.601	
285.0	0.3	303.6	1.061	7.078	13.409	0.262	1.282	0.572	
300.0	-0.0	309.2	1.137	5.645	13.168	0.268	1.247	0.531	
315.0	-0.1	315.9	1.077	5.228	11.547	0.270	1.133	0.492	
330.0	-0.3	325.3	1.278	4.493	11.329	0.262	0.946	0.436	
345.0	-0.1	333.7	1.239	3.950	11.069	0.264	0.761	0.404	
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bea	m in all	cases.		

224

Table S.16: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.1	-10.0	1.406	3.926	11.021	0.298	0.465	0.394
15.0	4.0	-2.0	1.411	2.217	10.865	0.295	0.391	0.380
30.0	3.9	8.0	1.270	2.415	10.792	0.294	0.455	0.375
45.0	3.8	19.0	1.439	2.758	10.839	0.292	0.627	0.382
60.0	3.8	31.1	1.201	3.827	11.006	0.291	0.834	0.406
75.0	3.7	38.8	1.397	4.542	11.385	0.290	0.987	0.431
90.0	3.7	46.5	1.202	7.099	12.727	0.284	1.139	0.472
105.0	3.7	48.9	1.144	8.566	13.719	0.281	1.188	0.493
120.0	3.7	46.7	1.747	9.560	12.369	0.285	1.181	0.495
135.0	3.7	43.4	1.196	5.118	12.046	0.287	1.016	0.474
150.0	3.8	45.4	1.126	5.448	12.801	0.286	1.044	0.487
165.0	3.8	49.5	1.164	5.941	12.481	0.288	1.006	0.476
180.0	4.7	178.6	0.596	2.566	10.739	0.146	0.492	0.183
195.0	4.6	197.3	0.573	2.856	10.891	0.149	0.634	0.211
210.0	4.1	368.4	1.353	6.215	12.688	0.290	0.866	0.443
225.0	4.5	295.9	1.089	7.452	13.417	0.266	1.352	0.622
240.0	4.7	286.9	1.121	7.887	13.375	0.235	1.492	0.760
255.0	4.5	289.3	1.130	7.419	13.366	0.244	1.489	0.749
270.0	4.4	292.8	1.782	5.338	13.503	0.264	1.414	0.703
285.0	4.5	295.6	1.104	6.490	13.491	0.273	1.400	0.666
300.0	4.7	302.6	1.022	5.468	12.017	0.292	1.217	0.583
315.0	4.7	314.4	1.280	4.622	11.296	0.303	0.993	0.506
330.0	4.6	327.1	1.295	4.231	11.042	0.303	0.769	0.454
345.0	4.4	340.0	1.337	2.958	11.060	0.300	0.571	0.415
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.17: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean]	Maximui	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.8	-1.2	1.359	1.974	11.134	0.330	0.264	0.438
15.0	9.7	13.7	1.470	1.824	11.014	0.328	0.348	0.432
30.0	9.7	28.7	1.369	2.696	11.023	0.330	0.585	0.444
45.0	9.7	43.7	1.517	3.960	11.280	0.326	0.838	0.469
60.0	9.7	58.2	1.094	5.431	11.886	0.307	1.108	0.556
75.0	9.7	71.6	1.788	6.944	13.132	0.256	1.338	0.753
90.0	9.0	81.8	0.794	8.476	13.837	0.149	1.468	0.883
105.0	8.6	88.7	0.778	10.536	13.624	0.085	1.654	0.876
120.0	8.4	100.7	0.801	9.259	13.403	0.109	1.627	0.716
135.0	8.9	125.6	0.542	6.549	11.821	0.124	1.296	0.375
150.0	9.4	145.7	0.426	4.053	10.622	0.110	1.271	0.247
165.0	9.6	162.0	0.388	4.152	10.375	0.105	1.224	0.221
180.0	9.9	178.3	0.370	3.912	10.232	0.103	0.984	0.168
195.0	10.0	194.6	0.430	3.164	10.595	0.105	0.764	0.123
210.0	9.8	211.5	0.414	3.315	10.674	0.112	1.135	0.170
225.0	9.3	231.7	0.797	5.900	11.839	0.128	1.371	0.318
240.0	8.5	259.3	1.870	9.762	13.576	0.141	1.644	0.713
255.0	8.6	269.8	1.239	10.251	14.442	0.105	1.648	0.884
270.0	9.2	277.4	0.816	7.408	13.752	0.137	1.543	0.974
285.0	10.0	287.5	1.264	6.281	13.195	0.256	1.373	0.876
300.0	10.0	300.3	1.089	4.173	11.857	0.310	1.155	0.655
315.0	9.8	314.3	1.281	4.674	11.613	0.330	0.876	0.521
330.0	9.8	329.1	1.436	3.864	11.349	0.334	0.579	0.476
345.0	9.8	343.9	1.378	2.216	11.058	0.331	0.363	0.443
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the stark	oard bea	m in all	cases.	

Table S.18: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	15.0	-0.5	1.541	1.814	11.289	0.359	0.240	0.459
15.0	15.0	14.6	1.471	2.070	11.211	0.359	0.352	0.459
30.0	15.0	29.6	1.457	2.503	11.328	0.361	0.541	0.478
45.0	15.0	44.7	1.373	3.570	11.315	0.353	0.788	0.534
60.0	15.0	59.4	1.110	6.634	11.874	0.324	1.059	0.674
75.0	15.1	73.7	1.047	7.188	13.228	0.251	1.222	0.895
90.0	14.9	87.7	0.971	7.576	13.888	0.079	1.367	0.928
105.0	14.8	102.4	0.557	10.232	14.150	0.100	1.514	0.653
120.0	14.6	116.8	0.546	7.778	13.053	0.090	1.683	0.475
135.0	15.0	133.5	0.352	4.898	10.850	0.070	1.640	0.334
150.0	15.0	149.2	0.281	3.879	10.401	0.083	1.229	0.232
165.0	15.0	164.1	0.374	3.585	10.288	0.091	0.732	0.168
180.0	15.0	179.2	0.421	3.517	10.236	0.103	0.616	0.148
195.0	15.1	194.4	0.395	4.383	9.957	0.083	0.735	0.117
210.0	15.1	209.7	0.452	4.358	10.380	0.077	1.148	0.122
225.0	15.0	226.3	0.505	5.553	11.004	0.084	1.792	0.206
240.0	14.6	243.5	0.791	9.260	13.314	0.105	1.849	0.403
255.0	14.5	258.6	1.197	11.432	14.418	0.118	1.729	0.643
270.0	14.8	272.6	0.835	7.620	14.236	0.071	1.625	0.988
285.0	15.2	286.1	1.080	6.899	13.218	0.248	1.384	1.003
300.0	15.1	300.0	1.232	5.019	12.783	0.324	1.089	0.783
315.0	15.0	314.6	1.275	3.164	11.536	0.355	0.769	0.610
330.0	15.0	329.5	1.421	2.508	11.550	0.361	0.513	0.520
345.0	15.0	344.5	1.509	2.171	11.303	0.361	0.308	0.477
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table S.19: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	е	Standard			
Heading	Me	ean		Maximuı	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	20.2	-0.2	1.555	1.980	11.733	0.384	0.249	0.603	
15.0	20.2	14.8	1.482	2.264	11.842	0.384	0.352	0.602	
30.0	20.2	29.9	1.554	3.502	11.921	0.385	0.539	0.641	
45.0	20.2	44.9	1.371	4.291	11.823	0.375	0.760	0.715	
60.0	20.2	59.7	1.203	4.632	12.343	0.340	1.007	0.849	
75.0	20.3	74.2	1.090	7.525	13.892	0.251	1.172	1.011	
90.0	20.2	88.7	0.643	7.542	14.048	0.065	1.296	0.917	
105.0	20.1	103.7	0.565	7.593	14.050	0.087	1.555	0.600	
120.0	20.2	118.8	0.304	6.281	11.310	0.068	2.099	0.472	
135.0	20.2	134.7	0.373	4.729	10.343	0.068	1.468	0.231	
150.0	20.3	149.6	0.506	3.645	10.144	0.088	1.055	0.154	
165.0	20.1	164.5	0.605	3.819	10.094	0.100	0.636	0.132	
180.0	20.6	179.5	0.724	4.224	9.989	0.106	0.597	0.131	
195.0	20.1	194.4	0.668	4.682	9.989	0.099	0.857	0.169	
210.0	20.2	209.9	0.698	5.907	9.995	0.091	1.315	0.221	
225.0	20.0	225.5	0.388	6.114	10.536	0.076	2.005	0.253	
240.0	20.2	241.0	0.369	6.801	11.248	0.077	2.392	0.297	
255.0	19.9	256.9	0.524	12.649	13.993	0.101	1.895	0.565	
270.0	20.1	271.4	0.899	9.009	13.888	0.069	1.685	0.976	
285.0	20.3	285.7	0.986	6.598	13.799	0.244	1.417	1.113	
300.0	20.3	300.0	1.248	3.727	12.661	0.336	1.063	0.962	
315.0	20.2	314.8	1.291	3.223	12.224	0.371	0.741	0.798	
330.0	20.2	329.7	1.460	2.540	12.069	0.384	0.487	0.701	
345.0	20.2	344.8	1.529	1.905	12.000	0.384	0.303	0.629	
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.		

Table S.20: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual Absolut			e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	1.483	2.096	12.636	0.401	0.288	0.846
15.0	25.4	14.9	1.414	2.552	12.552	0.402	0.375	0.850
30.0	25.4	29.9	1.590	3.639	12.578	0.402	0.543	0.886
45.0	25.3	44.9	1.606	4.250	12.596	0.391	0.745	0.951
60.0	25.3	59.8	1.315	5.584	12.873	0.352	0.993	1.043
75.0	25.3	74.5	0.926	7.309	13.450	0.255	1.139	1.128
90.0	25.3	89.2	0.709	7.872	13.895	0.066	1.281	0.911
105.0	25.2	104.2	0.530	9.441	12.898	0.088	1.846	0.562
120.0	25.2	119.7	0.375	7.058	10.613	0.079	2.569	0.443
135.0	25.2	134.7	0.376	4.666	10.213	0.091	1.695	0.216
150.0	25.1	149.8	0.768	3.995	10.037	0.119	1.078	0.160
165.0	25.8	164.4	0.368	3.895	9.948	0.108	0.576	0.105
180.0	25.6	179.8	0.503	3.950	9.932	0.113	0.573	0.115
195.0	25.7	195.1	0.402	4.187	9.937	0.105	0.767	0.143
210.0	25.4	210.0	0.498	4.779	9.946	0.107	1.176	0.206
225.0	25.2	225.3	0.464	6.754	9.997	0.091	1.897	0.311
240.0	25.2	240.5	0.445	7.460	11.070	0.075	2.615	0.357
255.0	25.2	255.9	0.412	8.286	12.139	0.092	2.034	0.454
270.0	25.3	270.9	0.611	8.660	13.660	0.070	1.725	0.951
285.0	25.4	285.5	0.940	7.541	13.547	0.244	1.433	1.229
300.0	25.4	300.1	1.220	3.800	13.040	0.342	1.098	1.148
315.0	25.4	314.9	1.531	3.299	12.901	0.384	0.763	1.030
330.0	25.4	329.9	1.419	2.446	13.108	0.398	0.496	0.939
345.0	25.4	344.9	1.508	1.968	12.610	0.400	0.325	0.876
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.21: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	Absolute Standar			Standar	ard	
Heading	Mo	ean		Maximui	n	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.401	2.387	13.609	0.413	0.340	1.109
15.0	30.5	15.0	1.585	2.827	13.146	0.414	0.399	1.114
30.0	30.5	30.0	1.499	4.350	13.233	0.415	0.556	1.146
45.0	30.5	44.9	1.443	4.714	13.195	0.402	0.752	1.193
60.0	30.4	59.8	1.372	4.996	13.393	0.362	0.970	1.242
75.0	30.4	74.6	0.863	6.836	14.465	0.257	1.099	1.242
90.0	30.4	89.4	0.469	8.096	14.144	0.069	1.272	0.893
105.0	30.3	104.5	0.528	8.174	12.078	0.088	2.197	0.532
120.0	30.1	119.7	0.557	7.386	11.175	0.124	2.913	0.482
135.0	30.2	135.0	0.978	5.654	10.392	0.128	1.589	0.229
150.0	30.9	148.9	0.694	4.810	9.944	0.138	1.073	0.195
165.0	31.3	164.3	0.573	4.358	10.011	0.138	0.739	0.158
180.0	30.3	179.5	0.997	5.078	9.989	0.155	0.849	0.193
195.0	31.3	195.1	0.980	4.528	10.059	0.134	0.973	0.182
210.0	31.0	210.7	0.802	4.506	9.999	0.125	1.250	0.167
225.0	30.3	225.1	0.919	5.913	10.305	0.123	1.655	0.283
240.0	30.2	240.6	0.551	8.099	12.258	0.116	2.749	0.468
255.0	30.3	255.5	0.528	11.216	12.951	0.095	2.362	0.432
270.0	30.4	270.6	0.576	8.493	13.679	0.075	1.676	0.927
285.0	30.5	285.4	1.013	6.996	14.482	0.242	1.511	1.326
300.0	30.5	300.1	1.169	4.361	13.696	0.347	1.170	1.337
315.0	30.5	315.1	1.551	3.401	13.921	0.392	0.846	1.264
330.0	30.5	330.0	1.343	2.481	13.822	0.407	0.552	1.191
345.0	30.5	345.0	1.511	2.327	13.438	0.410	0.386	1.136
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table S.22: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute Standa			Standar	d	
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-19.6	0.715	2.802	10.600	0.171	0.617	0.278
15.0	-0.4	-11.2	0.733	2.263	10.611	0.173	0.506	0.267
30.0	-0.6	-1.8	0.757	2.230	10.502	0.174	0.488	0.260
45.0	-0.4	17.6	0.685	3.204	10.581	0.169	0.759	0.274
60.0	-0.1	40.8	0.600	4.484	10.865	0.149	1.066	0.315
75.0	0.1	57.8	0.505	4.673	11.074	0.115	1.190	0.349
90.0	0.1	74.2	0.397	4.128	11.429	0.063	1.198	0.382
105.0	-0.2	93.6	0.212	4.067	11.645	0.023	1.200	0.405
120.0	-0.6	104.0	0.354	4.882	11.555	0.052	1.218	0.400
135.0	-1.1	111.6	0.422	4.598	11.369	0.079	1.202	0.387
150.0	-1.5	118.3	0.481	4.286	11.034	0.100	1.171	0.371
165.0	-1.8	124.3	0.545	3.676	11.187	0.116	1.112	0.355
180.0	-1.3	86.0	0.669	3.133	11.134	0.147	1.032	0.312
195.0	0.0	358.1	0.654	3.237	11.039	0.152	0.953	0.310
210.0	0.3	252.3	0.535	4.291	11.230	0.072	1.174	0.397
225.0	0.1	258.0	0.449	4.853	11.586	0.056	1.190	0.415
240.0	0.0	265.7	0.329	5.103	11.721	0.036	1.189	0.431
255.0	0.1	275.9	0.242	5.000	11.831	0.033	1.171	0.436
270.0	0.2	287.1	0.344	5.282	11.714	0.067	1.142	0.420
285.0	0.2	296.8	0.390	4.837	11.455	0.101	1.105	0.393
300.0	0.2	305.4	0.472	4.352	11.217	0.126	1.055	0.366
315.0	0.2	314.1	0.582	3.647	11.156	0.145	0.986	0.339
330.0	0.1	322.8	0.694	4.175	10.901	0.157	0.886	0.317
345.0	-0.1	331.6	0.713	3.695	10.717	0.165	0.762	0.296
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.23: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolut	e	S	Standard	
Heading	Me	ean	ľ	Maximu	m		Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.2	-13.9	0.917	2.651	10.604	0.201	0.590	0.286
15.0	4.1	-5.4	0.879	2.309	10.570	0.202	0.511	0.280
30.0	4.0	5.6	0.838	2.396	10.715	0.201	0.543	0.282
45.0	4.1	24.0	0.952	3.221	10.810	0.192	0.777	0.302
60.0	4.2	43.6	0.671	3.974	10.965	0.167	1.027	0.343
75.0	4.3	58.6	0.501	4.302	11.270	0.126	1.133	0.379
90.0	4.3	73.3	0.255	3.931	11.348	0.065	1.154	0.413
105.0	4.3	89.5	0.161	5.095	11.825	0.017	1.159	0.425
120.0	4.2	100.7	0.304	4.468	11.595	0.034	1.154	0.412
135.0	4.0	109.6	0.350	4.752	11.271	0.055	1.132	0.385
150.0	3.9	116.9	0.466	4.095	11.088	0.071	1.106	0.363
165.0	3.8	128.1	0.558	3.747	10.951	0.090	0.994	0.323
180.0	3.9	149.1	0.576	2.781	10.743	0.109	0.709	0.259
195.0	4.7	194.1	0.581	2.467	10.807	0.111	0.592	0.199
210.0	4.6	213.1	0.482	3.196	10.723	0.105	0.808	0.223
225.0	4.5	232.8	0.584	4.026	11.219	0.091	1.007	0.284
240.0	4.5	248.1	0.386	4.556	11.198	0.065	1.115	0.347
255.0	4.7	260.6	0.225	4.510	11.449	0.036	1.147	0.401
270.0	4.8	273.8	0.143	4.995	11.491	0.018	1.140	0.438
285.0	4.9	287.5	0.317	5.276	11.682	0.070	1.102	0.434
300.0	4.9	300.8	0.606	3.981	11.646	0.128	1.041	0.394
315.0	4.9	313.9	0.708	3.374	10.956	0.166	0.925	0.347
330.0	4.7	326.7	0.846	3.297	10.790	0.187	0.784	0.316
345.0	4.5	338.6	0.811	3.151	10.778	0.197	0.660	0.297
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	cases.	

Table S.24: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	Absolute			Standard			
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	9.9	-1.3	0.922	1.941	10.803	0.228	0.230	0.300	
15.0	9.9	13.8	1.084	2.338	10.801	0.226	0.421	0.304	
30.0	9.9	28.9	0.916	2.880	10.739	0.214	0.653	0.318	
45.0	9.9	43.9	0.724	3.548	11.014	0.189	0.834	0.352	
60.0	10.0	58.7	0.477	3.822	11.413	0.142	0.955	0.398	
75.0	10.1	73.5	0.295	4.331	11.560	0.072	0.956	0.440	
90.0	10.0	88.3	0.093	4.273	11.511	0.021	0.981	0.440	
105.0	10.0	103.2	0.175	4.584	11.524	0.034	1.005	0.402	
120.0	9.7	117.3	0.280	4.793	11.385	0.054	1.040	0.358	
135.0	9.7	132.1	0.339	4.214	11.087	0.067	0.924	0.298	
150.0	9.7	147.6	0.319	3.669	10.719	0.076	0.900	0.248	
165.0	9.8	163.1	0.350	3.398	10.485	0.080	0.815	0.215	
180.0	9.9	178.6	0.335	2.904	10.281	0.081	0.635	0.180	
195.0	10.0	194.3	0.373	2.706	10.307	0.082	0.613	0.146	
210.0	9.9	210.5	0.419	2.930	10.637	0.079	0.888	0.162	
225.0	9.8	226.6	0.438	3.588	11.097	0.073	1.113	0.206	
240.0	9.8	242.1	0.319	3.753	11.452	0.061	1.235	0.277	
255.0	10.0	256.5	0.219	3.998	11.530	0.042	1.211	0.347	
270.0	10.1	271.0	0.105	4.766	11.431	0.023	1.170	0.425	
285.0	10.1	285.5	0.301	4.898	11.824	0.064	1.096	0.452	
300.0	10.1	300.0	0.545	4.273	11.359	0.137	1.006	0.427	
315.0	10.0	314.3	0.719	3.372	10.972	0.186	0.816	0.366	
330.0	9.9	329.0	0.819	2.636	10.990	0.213	0.593	0.326	
345.0	9.9	343.8	0.973	2.382	10.798	0.223	0.367	0.305	
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table S.25: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.1	-0.5	0.894	1.603	10.829	0.252	0.200	0.326
15.0	15.1	14.6	0.994	2.200	10.753	0.249	0.400	0.327
30.0	15.1	29.7	0.863	2.973	11.112	0.235	0.638	0.346
45.0	15.1	44.7	0.797	3.574	11.368	0.207	0.829	0.389
60.0	15.1	59.5	0.529	4.154	11.437	0.151	0.972	0.439
75.0	15.2	74.4	0.301	4.068	11.889	0.073	0.887	0.461
90.0	15.2	89.3	0.117	4.087	11.694	0.030	0.896	0.438
105.0	15.2	104.2	0.206	4.466	11.699	0.040	0.945	0.383
120.0	15.1	118.8	0.275	5.259	11.178	0.052	1.212	0.367
135.0	15.0	134.0	0.325	4.767	10.902	0.061	1.203	0.299
150.0	15.1	149.3	0.279	3.407	10.442	0.062	0.837	0.222
165.0	15.2	164.4	0.233	2.517	10.239	0.057	0.438	0.165
180.0	15.1	179.4	0.269	2.214	10.201	0.063	0.393	0.147
195.0	15.1	194.6	0.297	3.608	10.086	0.065	0.588	0.131
210.0	15.1	209.9	0.289	3.971	10.025	0.060	0.935	0.122
225.0	15.1	225.6	0.340	4.336	10.533	0.063	1.431	0.154
240.0	15.1	241.0	0.361	4.472	11.105	0.056	1.473	0.233
255.0	15.2	255.6	0.246	4.724	11.399	0.045	1.304	0.303
270.0	15.2	270.4	0.143	4.798	11.431	0.033	1.215	0.408
285.0	15.2	285.2	0.246	5.045	11.655	0.066	1.126	0.470
300.0	15.2	299.8	0.534	4.458	11.455	0.147	1.015	0.478
315.0	15.1	314.5	0.712	3.384	11.302	0.204	0.777	0.420
330.0	15.1	329.4	0.928	2.764	11.019	0.233	0.539	0.366
345.0	15.1	344.4	1.070	1.922	10.902	0.248	0.303	0.337
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.26: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots

Cmd	Ac	tual	Absolute Standar			Standar	d	
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.2	-0.2	1.164	1.850	11.179	0.274	0.227	0.419
15.0	20.2	14.9	1.060	2.332	11.180	0.269	0.431	0.418
30.0	20.2	29.9	1.003	3.269	11.311	0.255	0.662	0.437
45.0	20.3	44.9	0.824	3.717	11.517	0.223	0.864	0.477
60.0	20.3	59.8	0.570	4.505	11.639	0.162	1.041	0.501
75.0	20.3	74.7	0.289	3.679	11.645	0.077	0.858	0.485
90.0	20.3	89.6	0.154	3.869	11.667	0.040	0.850	0.431
105.0	20.3	104.6	0.230	4.584	11.363	0.049	0.916	0.359
120.0	20.3	119.4	0.277	5.197	10.722	0.060	1.550	0.366
135.0	20.2	134.7	0.258	4.090	10.242	0.066	1.371	0.255
150.0	20.2	149.6	0.347	3.132	10.305	0.078	0.917	0.192
165.0	20.3	164.7	0.314	2.430	10.253	0.072	0.439	0.142
180.0	20.3	179.7	0.364	2.754	10.157	0.077	0.361	0.122
195.0	20.3	194.8	0.352	4.662	10.090	0.074	0.659	0.135
210.0	20.2	210.0	0.266	5.266	10.068	0.070	1.106	0.169
225.0	20.3	224.9	0.244	5.660	9.992	0.053	1.245	0.167
240.0	20.3	240.5	0.338	5.837	10.423	0.061	1.791	0.187
255.0	20.3	255.3	0.304	5.027	11.430	0.052	1.326	0.267
270.0	20.3	270.2	0.153	4.984	11.410	0.042	1.222	0.392
285.0	20.3	285.1	0.267	4.617	11.457	0.069	1.129	0.490
300.0	20.3	299.8	0.548	5.598	11.718	0.156	1.014	0.551
315.0	20.3	314.7	0.880	3.676	11.373	0.219	0.755	0.521
330.0	20.2	329.6	0.965	2.864	11.278	0.252	0.508	0.472
345.0	20.2	344.7	1.179	2.139	11.292	0.269	0.269	0.437
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.27: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	d	
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.3	-0.1	1.230	2.188	11.550	0.293	0.275	0.587
15.0	25.3	15.0	1.135	2.596	11.859	0.286	0.459	0.581
30.0	25.3	30.0	1.051	3.389	11.511	0.272	0.687	0.589
45.0	25.4	45.0	0.888	4.120	11.794	0.238	0.901	0.610
60.0	25.4	60.0	0.589	4.676	12.071	0.174	1.091	0.599
75.0	25.4	74.8	0.316	4.443	12.270	0.081	0.858	0.507
90.0	25.4	89.7	0.190	3.687	11.601	0.048	0.847	0.421
105.0	25.4	104.8	0.268	4.470	11.371	0.062	0.921	0.334
120.0	25.3	119.8	0.378	6.194	10.334	0.075	1.812	0.340
135.0	25.3	134.8	0.268	4.061	10.041	0.082	1.319	0.208
150.0	25.4	149.7	0.350	3.810	10.021	0.086	0.896	0.151
165.0	25.6	164.8	0.278	2.393	9.998	0.080	0.413	0.094
180.0	25.6	179.8	0.362	2.625	10.117	0.109	0.313	0.116
195.0	25.6	195.0	0.250	3.015	9.970	0.069	0.415	0.081
210.0	25.4	210.1	0.325	5.145	10.067	0.091	1.106	0.217
225.0	25.3	225.2	0.283	6.787	9.959	0.078	1.597	0.279
240.0	25.4	240.2	0.277	6.976	9.943	0.064	1.757	0.193
255.0	25.4	255.1	0.299	6.518	10.798	0.061	1.283	0.238
270.0	25.4	270.1	0.187	4.785	11.434	0.050	1.183	0.378
285.0	25.4	285.0	0.284	5.868	11.695	0.073	1.119	0.519
300.0	25.4	299.8	0.556	5.111	11.766	0.166	0.991	0.651
315.0	25.4	314.8	0.894	3.880	11.810	0.232	0.718	0.660
330.0	25.3	329.8	1.023	2.843	11.821	0.268	0.464	0.627
345.0	25.3	344.8	1.286	2.304	11.735	0.286	0.269	0.599
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.28: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.265	2.583	12.294	0.309	0.327	0.785
15.0	30.5	15.0	1.218	3.108	12.327	0.302	0.491	0.777
30.0	30.5	30.1	1.222	3.774	12.406	0.285	0.694	0.773
45.0	30.5	45.1	0.959	3.931	12.679	0.250	0.918	0.768
60.0	30.4	60.0	0.667	5.210	12.125	0.184	1.147	0.711
75.0	30.5	74.9	0.273	4.133	11.854	0.086	0.866	0.536
90.0	30.5	89.8	0.224	3.667	11.463	0.057	0.884	0.410
105.0	30.5	104.8	0.307	4.106	10.910	0.075	1.011	0.312
120.0	30.4	119.9	0.362	6.068	10.036	0.095	2.063	0.326
135.0	30.4	134.8	0.448	5.226	9.979	0.119	1.566	0.218
150.0	30.8	149.6	0.388	3.421	10.011	0.110	0.782	0.134
165.0	30.8	164.7	0.625	2.698	9.961	0.135	0.486	0.098
180.0	30.5	179.7	0.407	3.869	9.906	0.142	0.454	0.103
195.0	30.9	195.0	0.445	3.779	9.916	0.127	0.596	0.110
210.0	30.7	210.1	0.363	3.852	9.942	0.096	0.867	0.136
225.0	30.4	225.1	0.285	5.583	10.037	0.091	1.404	0.271
240.0	30.4	240.1	0.289	6.415	9.936	0.074	1.711	0.256
255.0	30.5	255.1	0.277	6.398	10.826	0.072	1.195	0.219
270.0	30.5	270.0	0.229	4.826	11.348	0.059	1.086	0.367
285.0	30.5	285.0	0.300	5.553	11.441	0.077	1.068	0.550
300.0	30.5	299.9	0.617	4.896	11.981	0.175	0.956	0.759
315.0	30.5	314.9	0.906	3.988	12.271	0.243	0.697	0.807
330.0	30.5	329.9	1.162	3.005	12.296	0.281	0.464	0.803
345.0	30.5	344.9	1.184	2.492	12.363	0.302	0.313	0.794
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.29: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Mo	ean	,	Maximuı	m	Ι	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-1.0	-32.0	1.403	6.173	12.239	0.322	1.382	0.548
15.0	-1.6	-24.8	1.781	6.691	12.149	0.321	1.337	0.531
30.0	-3.1	-86.6	1.479	11.689	13.398	0.282	1.958	0.719
45.0	-3.0	-71.3	1.320	8.074	13.307	0.262	2.051	0.737
60.0	-2.5	-84.7	1.194	8.305	14.191	0.212	2.143	0.834
75.0	-0.5	-74.5	1.533	10.081	14.679	0.162	2.132	0.865
90.0	0.2	62.4	1.356	9.289	13.997	0.253	1.948	0.735
105.0	0.3	87.5	0.935	9.543	13.945	0.115	2.063	0.889
120.0	-2.6	104.1	0.985	9.266	14.255	0.173	2.095	0.873
135.0	-3.6	108.0	0.862	11.423	14.615	0.195	2.064	0.848
150.0	-4.1	81.2	1.720	8.764	13.909	0.246	2.124	0.773
165.0	-2.9	44.8	1.652	10.608	13.834	0.291	1.843	0.650
180.0	-1.0	11.2	1.643	5.828	12.550	0.315	1.476	0.546
195.0	-0.3	31.9	1.520	8.146	12.295	0.316	1.579	0.599
210.0	0.2	39.3	1.295	8.237	13.054	0.313	1.679	0.634
225.0	0.4	273.9	1.106	12.415	13.878	0.145	2.141	0.873
240.0	-0.1	274.4	1.186	12.932	14.810	0.125	2.154	0.892
255.0	0.5	282.3	1.102	11.685	13.952	0.173	2.058	0.869
270.0	0.7	288.3	1.190	10.259	14.156	0.223	1.992	0.826
285.0	0.7	294.8	1.150	7.669	13.762	0.268	1.874	0.756
300.0	0.5	299.8	1.244	9.161	13.162	0.288	1.792	0.717
315.0	0.5	306.0	1.247	8.640	12.649	0.308	1.716	0.671
330.0	0.2	311.9	1.355	8.469	12.465	0.316	1.667	0.641
345.0	-0.0	319.7	1.559	6.793	12.913	0.325	1.489	0.593
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table S.30: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Me	ean		Maximui	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.6	-32.7	1.467	6.627	12.064	0.367	1.436	0.589
15.0	3.4	-24.6	1.616	5.383	11.487	0.371	1.318	0.560
30.0	3.3	-17.7	1.685	4.827	11.496	0.375	1.255	0.544
45.0	3.1	-10.1	1.698	4.622	11.357	0.374	1.232	0.535
60.0	3.1	-0.1	2.195	5.347	11.401	0.371	1.234	0.541
75.0	3.2	11.7	1.715	6.787	12.405	0.356	1.408	0.569
90.0	3.5	35.9	1.459	7.981	14.241	0.326	1.716	0.656
105.0	3.3	33.0	1.574	10.053	14.142	0.332	1.670	0.642
120.0	3.7	64.9	1.612	10.891	14.854	0.244	1.927	0.803
135.0	3.2	33.9	1.633	12.104	13.260	0.342	1.570	0.636
150.0	3.3	43.2	2.464	9.564	13.467	0.336	1.614	0.641
165.0	3.4	43.8	1.617	7.019	13.062	0.344	1.542	0.618
180.0	3.8	96.3	1.423	7.725	12.698	0.302	1.705	0.532
195.0	3.9	15.4	1.464	6.798	12.064	0.343	1.662	0.608
210.0	4.1	30.3	1.580	7.654	12.878	0.340	1.693	0.647
225.0	4.5	276.9	1.292	12.079	14.312	0.149	2.144	0.913
240.0	4.4	278.6	1.059	13.911	13.645	0.151	2.094	0.920
255.0	4.3	282.7	1.486	10.793	14.375	0.178	2.098	0.919
270.0	4.4	288.0	1.338	9.258	14.561	0.231	1.975	0.883
285.0	4.5	293.0	2.380	8.599	14.045	0.280	1.838	0.821
300.0	4.6	300.8	1.499	7.609	13.313	0.318	1.715	0.729
315.0	4.4	308.9	1.394	7.634	12.958	0.337	1.696	0.665
330.0	4.1	315.7	1.511	8.162	12.592	0.352	1.584	0.647
345.0	3.9	321.6	1.529	7.102	11.932	0.362	1.523	0.612
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table S.31: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	8.9	-5.5	1.962	4.279	11.269	0.432	0.790	0.562
15.0	8.6	8.2	2.390	4.261	11.454	0.428	0.874	0.552
30.0	8.9	25.0	2.206	5.184	11.532	0.413	1.114	0.583
45.0	9.1	41.0	1.520	6.102	11.527	0.384	1.406	0.638
60.0	9.3	56.0	1.214	7.884	12.825	0.339	1.633	0.733
75.0	9.6	70.8	1.934	8.403	14.694	0.249	1.754	0.894
90.0	9.2	82.7	0.758	8.097	14.327	0.115	1.894	0.997
105.0	8.9	94.7	0.657	13.922	14.963	0.075	1.946	0.946
120.0	8.4	107.6	0.785	11.690	14.502	0.124	1.826	0.811
135.0	8.3	120.1	0.785	8.742	12.733	0.143	1.640	0.667
150.0	8.3	135.6	0.773	6.580	12.560	0.151	1.477	0.519
165.0	8.6	154.1	0.694	5.779	11.681	0.151	1.434	0.412
180.0	9.4	176.8	0.936	5.199	10.823	0.147	1.248	0.284
195.0	9.5	196.0	1.338	6.115	11.379	0.156	1.167	0.231
210.0	9.0	219.7	0.937	7.144	12.000	0.165	1.558	0.327
225.0	8.3	253.8	1.334	19.168	13.789	0.149	2.138	0.732
240.0	8.4	263.7	1.227	18.895	13.409	0.118	2.222	0.864
255.0	8.6	271.4	1.132	13.384	14.376	0.108	2.204	0.945
270.0	8.9	278.8	2.018	12.635	14.855	0.142	2.168	1.001
285.0	9.7	288.4	1.200	8.896	13.464	0.241	1.994	0.949
300.0	9.8	300.2	1.817	7.922	13.711	0.337	1.677	0.794
315.0	9.6	313.2	1.592	6.122	12.100	0.381	1.381	0.670
330.0	9.4	326.9	2.119	5.582	11.834	0.409	1.161	0.612
345.0	9.1	340.6	1.861	5.928	11.284	0.427	0.943	0.584
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.32: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard			
Heading	Mo	ean		Maximui	m	I	Deviation	n i		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2		
0.0	14.7	-1.3	2.065	3.902	11.868	0.470	0.579	0.624		
15.0	14.7	13.9	1.963	3.749	11.784	0.466	0.752	0.611		
30.0	14.7	29.1	1.758	4.618	11.507	0.448	1.021	0.639		
45.0	14.8	44.3	1.692	6.761	12.039	0.412	1.280	0.691		
60.0	14.9	58.9	1.292	8.017	12.924	0.355	1.552	0.837		
75.0	15.0	73.3	0.932	7.801	13.808	0.233	1.628	0.998		
90.0	14.9	87.8	0.505	8.844	14.446	0.073	1.744	1.006		
105.0	14.9	102.9	0.776	15.909	13.866	0.095	1.792	0.816		
120.0	14.4	116.4	0.534	6.826	12.364	0.110	1.763	0.678		
135.0	14.4	131.7	0.599	6.656	11.872	0.108	1.760	0.551		
150.0	15.1	148.7	0.681	5.122	11.195	0.115	1.350	0.367		
165.0	15.0	163.5	0.623	4.529	10.730	0.109	0.872	0.301		
180.0	14.7	178.5	0.577	4.855	10.324	0.121	0.887	0.269		
195.0	14.7	194.2	0.825	5.555	10.850	0.124	1.086	0.221		
210.0	15.0	209.9	0.633	5.675	10.554	0.110	1.392	0.214		
225.0	14.4	229.8	1.562	12.837	12.095	0.136	2.148	0.392		
240.0	14.0	247.1	0.866	13.774	12.866	0.134	2.336	0.575		
255.0	14.2	260.4	0.999	19.707	14.762	0.115	2.377	0.772		
270.0	14.6	273.5	0.833	13.339	14.182	0.091	2.286	1.003		
285.0	15.0	286.7	1.205	11.082	13.750	0.231	2.102	1.046		
300.0	15.0	300.0	1.311	6.637	13.448	0.347	1.690	0.909		
315.0	14.9	314.0	1.833	4.592	12.464	0.409	1.249	0.763		
330.0	14.8	328.7	1.777	4.119	11.818	0.444	0.906	0.690		
345.0	14.7	343.6	2.152	3.824	11.743	0.464	0.671	0.647		
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.			

Table S.33: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	20.0	-0.5	2.439	3.122	12.464	0.502	0.564	0.801
15.0	20.0	14.6	1.997	3.842	12.132	0.494	0.756	0.786
30.0	20.0	29.8	1.943	5.088	12.390	0.474	1.004	0.801
45.0	20.0	44.8	1.768	6.112	12.607	0.437	1.254	0.854
60.0	20.1	59.5	1.551	8.817	13.493	0.371	1.515	0.980
75.0	20.2	74.0	1.151	9.197	15.167	0.234	1.598	1.083
90.0	20.1	88.7	0.417	8.892	14.555	0.077	1.685	0.994
105.0	20.1	104.0	0.778	9.630	13.750	0.099	1.863	0.748
120.0	19.9	118.4	0.531	6.877	12.303	0.109	2.242	0.672
135.0	19.9	134.3	0.945	7.579	12.342	0.124	2.119	0.463
150.0	19.9	149.2	0.721	5.161	10.788	0.133	1.286	0.298
165.0	20.0	164.1	0.668	4.383	10.557	0.142	0.894	0.263
180.0	20.3	179.2	0.984	4.642	10.595	0.154	0.789	0.239
195.0	20.2	194.7	0.671	5.761	10.204	0.134	1.100	0.268
210.0	20.1	210.1	0.555	6.633	10.135	0.111	1.607	0.362
225.0	20.0	225.4	0.688	7.594	11.493	0.102	2.092	0.354
240.0	19.8	242.3	0.791	8.530	12.819	0.125	2.655	0.430
255.0	19.8	257.5	0.598	16.935	13.236	0.118	2.527	0.637
270.0	20.0	271.9	0.745	12.690	14.177	0.088	2.376	0.974
285.0	20.2	286.0	1.166	10.236	14.035	0.227	2.172	1.135
300.0	20.2	299.9	1.301	8.295	13.321	0.363	1.690	1.088
315.0	20.1	314.4	1.675	5.169	12.446	0.432	1.182	0.959
330.0	20.1	329.3	2.051	3.943	12.461	0.471	0.861	0.881
345.0	20.0	344.3	1.971	3.596	12.358	0.490	0.659	0.829
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.34: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	25.2	-0.2	2.130	3.599	13.226	0.522	0.624	1.079
15.0	25.2	14.9	2.025	4.639	13.064	0.521	0.772	1.060
30.0	25.2	30.0	2.129	5.574	13.046	0.497	1.028	1.063
45.0	25.2	45.0	1.976	6.607	13.327	0.458	1.245	1.094
60.0	25.2	59.7	1.339	7.508	14.170	0.385	1.489	1.159
75.0	25.2	74.3	1.020	8.450	14.662	0.240	1.582	1.179
90.0	25.2	89.1	0.609	8.521	14.484	0.087	1.710	0.978
105.0	25.2	104.4	0.428	7.804	12.497	0.105	2.021	0.675
120.0	25.0	119.4	0.982	9.169	11.739	0.134	2.847	0.653
135.0	24.9	134.0	0.743	7.002	11.516	0.148	2.078	0.393
150.0	25.1	149.2	0.816	6.367	10.695	0.163	1.388	0.290
165.0	25.7	164.2	0.739	4.622	10.125	0.152	0.858	0.218
180.0	26.2	179.6	0.647	4.414	10.043	0.167	0.683	0.189
195.0	25.8	195.0	0.728	4.854	10.031	0.142	0.888	0.217
210.0	25.2	209.9	0.569	5.800	10.165	0.141	1.389	0.325
225.0	25.0	225.4	0.617	7.261	10.138	0.116	2.186	0.464
240.0	25.0	240.5	0.716	9.322	12.341	0.129	3.105	0.531
255.0	25.0	256.3	0.632	12.478	13.933	0.121	2.621	0.539
270.0	25.1	271.1	0.804	13.452	14.687	0.101	2.459	0.926
285.0	25.3	285.7	0.956	10.894	14.144	0.230	2.250	1.233
300.0	25.3	300.0	1.318	6.644	13.817	0.373	1.696	1.268
315.0	25.3	314.7	1.812	5.546	13.624	0.447	1.220	1.198
330.0	25.3	329.6	2.043	3.859	13.203	0.490	0.852	1.152
345.0	25.2	344.7	1.969	3.886	13.495	0.514	0.671	1.112
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.35: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	е	Standard			
Heading	Me	ean		Maximuı	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	30.4	-0.0	1.940	4.320	14.147	0.534	0.700	1.396	
15.0	30.4	15.1	2.144	4.907	14.034	0.533	0.842	1.371	
30.0	30.4	30.1	1.845	6.212	14.030	0.512	1.058	1.357	
45.0	30.4	45.0	2.086	8.236	14.067	0.473	1.265	1.345	
60.0	30.3	59.8	1.454	6.569	14.271	0.400	1.470	1.354	
75.0	30.3	74.5	1.135	9.291	15.415	0.247	1.584	1.269	
90.0	30.3	89.3	0.908	9.893	14.655	0.100	1.813	0.962	
105.0	30.2	104.5	1.401	16.661	13.024	0.134	2.301	0.646	
120.0	29.9	119.2	0.698	8.201	10.991	0.162	2.833	0.589	
135.0	29.6	133.6	1.198	8.199	11.948	0.224	2.310	0.454	
150.0	30.6	148.6	1.156	5.529	10.256	0.213	1.540	0.321	
165.0	30.9	163.5	1.286	5.910	10.166	0.243	1.128	0.321	
180.0	31.5	179.1	1.475	5.788	10.072	0.243	1.052	0.309	
195.0	31.1	194.7	1.102	5.605	10.090	0.237	1.234	0.312	
210.0	30.8	210.7	1.156	5.954	10.023	0.203	1.659	0.317	
225.0	29.7	226.5	1.026	9.152	12.091	0.224	2.520	0.549	
240.0	30.0	240.6	0.653	8.567	12.814	0.143	2.942	0.586	
255.0	30.2	255.6	0.554	10.161	12.589	0.133	2.643	0.512	
270.0	30.3	270.7	0.892	12.098	14.747	0.112	2.450	0.889	
285.0	30.4	285.6	1.068	13.177	14.363	0.232	2.364	1.303	
300.0	30.4	300.1	1.392	6.930	14.422	0.376	1.761	1.451	
315.0	30.4	314.9	1.865	5.396	14.148	0.459	1.270	1.457	
330.0	30.4	329.9	2.047	4.985	13.999	0.502	0.973	1.441	
345.0	30.4	344.9	1.980	4.320	14.207	0.528	0.757	1.418	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.36: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute			S	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert		
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$		
0.0	-1.2	-28.3	0.974	4.180	11.264	0.188	0.973	0.358		
15.0	-2.4	-147.7	0.914	4.924	11.388	0.177	1.054	0.422		
30.0	-1.7	-66.4	1.088	5.183	11.475	0.179	1.608	0.413		
45.0	-0.1	23.7	0.888	4.403	11.372	0.196	1.104	0.396		
60.0	0.5	48.8	0.607	5.047	11.279	0.149	1.328	0.449		
75.0	0.7	68.5	0.486	5.463	11.617	0.088	1.377	0.484		
90.0	0.2	90.5	0.216	5.199	11.880	0.028	1.387	0.515		
105.0	-0.4	103.0	0.411	5.501	11.847	0.048	1.401	0.520		
120.0	-1.2	112.5	0.489	5.662	12.139	0.077	1.404	0.511		
135.0	-1.9	121.3	0.452	5.410	11.722	0.109	1.356	0.494		
150.0	-2.4	131.4	0.540	4.889	11.195	0.139	1.233	0.461		
165.0	-2.4	144.6	0.697	4.627	11.272	0.169	1.006	0.425		
180.0	-1.6	164.4	0.792	3.747	11.197	0.186	0.601	0.375		
195.0	0.3	233.5	0.798	5.848	11.314	0.126	1.330	0.400		
210.0	0.0	243.7	0.706	5.494	11.486	0.100	1.399	0.432		
225.0	-0.2	252.5	0.514	5.507	11.606	0.074	1.434	0.457		
240.0	-0.4	261.1	0.353	5.621	11.667	0.048	1.431	0.476		
255.0	-0.6	270.1	0.201	6.005	11.824	0.029	1.409	0.490		
270.0	-0.6	279.8	0.342	5.940	11.888	0.041	1.373	0.485		
285.0	-0.5	289.4	0.590	5.981	11.855	0.075	1.319	0.470		
300.0	-0.5	298.8	0.519	5.932	11.574	0.108	1.254	0.446		
315.0	-0.4	307.9	0.685	5.360	11.273	0.138	1.184	0.420		
330.0	-0.5	317.1	0.748	5.302	11.199	0.162	1.103	0.393		
345.0	-0.7	325.3	0.922	4.679	11.122	0.180	1.024	0.369		
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.			

Table S.37: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual	Absolute S			standard		
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.8	-27.9	1.019	5.101	10.846	0.221	1.040	0.369
15.0	3.7	-20.6	0.977	4.214	10.897	0.231	0.965	0.360
30.0	3.6	-12.5	1.061	3.970	10.805	0.236	0.893	0.357
45.0	3.6	-1.5	1.253	4.128	10.848	0.238	0.859	0.366
60.0	3.8	23.5	0.912	4.621	11.421	0.220	1.041	0.411
75.0	4.3	56.6	0.679	5.343	11.858	0.137	1.303	0.493
90.0	4.4	79.3	0.274	5.373	11.868	0.044	1.309	0.531
105.0	4.3	95.3	0.158	5.614	12.038	0.023	1.308	0.534
120.0	4.1	107.3	0.337	5.878	12.231	0.044	1.300	0.520
135.0	3.8	115.8	0.341	5.839	11.668	0.066	1.279	0.499
150.0	3.6	125.1	0.557	5.300	11.637	0.090	1.227	0.468
165.0	3.4	134.7	0.686	4.887	11.306	0.110	1.133	0.429
180.0	3.4	146.6	0.871	4.362	11.247	0.127	0.982	0.379
195.0	3.5	165.0	0.814	4.288	11.381	0.141	0.812	0.324
210.0	4.4	215.1	0.637	4.711	10.853	0.125	1.070	0.278
225.0	4.3	236.0	0.526	5.139	11.616	0.097	1.285	0.348
240.0	4.4	249.7	0.425	5.516	11.494	0.067	1.386	0.403
255.0	4.5	261.8	0.275	6.055	11.593	0.038	1.423	0.445
270.0	4.6	274.3	0.116	5.731	11.933	0.021	1.407	0.481
285.0	4.7	287.4	0.351	6.488	11.613	0.062	1.364	0.481
300.0	4.7	300.0	0.481	5.523	11.391	0.120	1.268	0.456
315.0	4.5	310.9	0.700	5.297	11.507	0.166	1.186	0.423
330.0	4.2	318.6	0.849	5.442	11.027	0.191	1.143	0.400
345.0	3.9	325.1	0.985	5.438	10.910	0.207	1.105	0.383
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.38: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.4	-3.3	1.195	3.385	10.854	0.273	0.569	0.379
15.0	9.5	11.9	1.170	3.713	11.137	0.270	0.675	0.401
30.0	9.6	27.4	1.109	3.869	11.172	0.250	0.872	0.433
45.0	9.7	42.6	0.812	4.834	11.580	0.208	1.051	0.474
60.0	9.8	57.5	0.506	5.064	11.657	0.148	1.142	0.516
75.0	9.9	72.9	0.380	4.916	12.439	0.074	1.081	0.540
90.0	9.9	88.0	0.134	5.158	11.963	0.030	1.091	0.541
105.0	9.9	103.1	0.191	5.509	11.944	0.039	1.111	0.511
120.0	9.5	116.6	0.404	5.554	12.173	0.059	1.104	0.486
135.0	9.3	130.6	0.588	5.001	11.933	0.076	0.982	0.422
150.0	9.2	144.9	0.535	4.423	11.283	0.088	0.959	0.367
165.0	9.1	159.5	0.520	3.800	11.051	0.099	0.940	0.324
180.0	9.4	176.8	0.517	4.083	10.499	0.103	0.900	0.273
195.0	9.7	193.7	0.677	4.353	10.597	0.104	0.906	0.209
210.0	9.6	211.3	0.700	4.913	10.884	0.096	1.082	0.212
225.0	9.6	228.1	0.562	6.665	10.990	0.089	1.403	0.251
240.0	9.6	243.4	0.501	5.823	11.546	0.071	1.530	0.323
255.0	9.9	257.2	0.355	6.068	11.848	0.050	1.532	0.385
270.0	9.9	271.4	0.206	6.810	11.836	0.033	1.527	0.454
285.0	10.0	285.7	0.296	7.073	11.710	0.058	1.440	0.485
300.0	9.9	299.9	0.503	5.421	11.407	0.131	1.281	0.483
315.0	9.8	313.7	0.892	5.145	11.432	0.194	1.072	0.441
330.0	9.7	327.8	1.015	4.629	10.925	0.237	0.867	0.402
345.0	9.5	342.0	1.152	3.806	10.859	0.262	0.661	0.381
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.39: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	l I	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	14.9	-1.1	1.312	3.212	11.159	0.304	0.449	0.419
15.0	14.9	14.1	1.253	3.500	11.129	0.298	0.621	0.432
30.0	14.9	29.2	1.091	4.343	11.551	0.273	0.857	0.464
45.0	15.0	44.2	0.866	5.085	11.693	0.224	1.023	0.504
60.0	15.0	59.0	0.615	5.434	12.441	0.154	1.138	0.549
75.0	15.1	74.0	0.397	5.578	12.728	0.076	0.975	0.552
90.0	15.1	89.0	0.167	4.861	12.224	0.044	0.980	0.534
105.0	15.1	104.1	0.351	5.089	11.703	0.055	1.018	0.481
120.0	14.9	118.4	0.446	5.814	12.092	0.071	1.200	0.490
135.0	14.9	133.6	0.338	4.976	11.071	0.082	1.153	0.417
150.0	14.9	148.7	0.385	4.078	10.802	0.088	0.825	0.335
165.0	14.9	163.7	0.497	3.747	10.672	0.095	0.681	0.281
180.0	15.0	178.9	0.408	3.642	10.320	0.089	0.622	0.239
195.0	15.0	194.3	0.596	5.162	10.230	0.095	0.843	0.210
210.0	15.0	209.9	0.482	5.227	10.252	0.084	1.196	0.194
225.0	14.9	226.0	0.528	5.562	10.572	0.085	1.652	0.197
240.0	14.9	241.6	0.577	6.012	11.350	0.075	1.817	0.256
255.0	15.1	256.0	0.321	6.375	11.651	0.061	1.726	0.341
270.0	15.1	270.7	0.224	6.752	11.871	0.047	1.664	0.435
285.0	15.2	285.3	0.369	6.492	11.945	0.061	1.569	0.496
300.0	15.1	299.9	0.573	6.438	11.596	0.138	1.352	0.523
315.0	15.0	314.3	0.777	5.264	11.435	0.212	1.047	0.490
330.0	14.9	328.9	1.107	4.313	11.163	0.264	0.763	0.454
345.0	14.9	343.8	1.245	3.658	11.120	0.292	0.553	0.424
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.40: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.1	-0.5	1.381	3.310	11.440	0.332	0.472	0.520
15.0	20.1	14.7	1.279	3.656	11.536	0.324	0.684	0.525
30.0	20.1	29.8	1.143	4.369	11.484	0.295	0.939	0.547
45.0	20.1	44.7	1.062	4.896	11.804	0.242	1.110	0.574
60.0	20.2	59.6	0.641	5.383	12.184	0.163	1.266	0.606
75.0	20.3	74.4	0.293	5.091	12.138	0.081	0.974	0.569
90.0	20.3	89.4	0.216	4.651	11.931	0.058	0.951	0.521
105.0	20.3	104.5	0.367	5.035	11.926	0.073	0.967	0.443
120.0	20.1	119.2	0.341	5.620	11.108	0.089	1.560	0.488
135.0	20.1	134.4	0.514	5.430	10.852	0.100	1.357	0.381
150.0	20.1	149.3	0.603	5.283	10.587	0.114	0.952	0.313
165.0	20.2	164.4	0.598	2.992	10.517	0.113	0.572	0.245
180.0	20.2	179.5	0.365	3.539	10.192	0.103	0.535	0.209
195.0	20.2	194.6	0.397	5.201	10.169	0.094	0.753	0.228
210.0	20.2	209.9	0.598	6.881	10.077	0.093	1.257	0.293
225.0	20.2	225.0	0.507	6.960	10.053	0.081	1.471	0.252
240.0	20.1	240.7	0.514	7.503	10.239	0.086	2.062	0.237
255.0	20.2	255.5	0.460	7.747	11.018	0.074	1.821	0.324
270.0	20.3	270.4	0.280	7.694	11.806	0.059	1.746	0.432
285.0	20.3	285.2	0.355	7.594	11.705	0.065	1.645	0.513
300.0	20.2	299.8	0.720	7.441	12.247	0.147	1.401	0.578
315.0	20.2	314.5	0.928	5.434	11.484	0.231	1.058	0.582
330.0	20.1	329.4	1.259	4.409	11.534	0.288	0.741	0.555
345.0	20.1	344.4	1.436	3.539	11.367	0.319	0.499	0.531
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.41: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.2	-0.2	1.540	3.737	12.044	0.354	0.559	0.697
15.0	25.2	14.9	1.457	4.271	12.511	0.345	0.764	0.697
30.0	25.2	30.0	1.266	4.974	12.232	0.316	1.012	0.701
45.0	25.2	45.0	1.010	5.535	12.315	0.258	1.240	0.690
60.0	25.3	59.8	0.626	6.214	12.156	0.173	1.371	0.664
75.0	25.3	74.6	0.415	5.223	12.673	0.087	1.042	0.584
90.0	25.3	89.6	0.263	4.595	11.891	0.071	1.000	0.509
105.0	25.3	104.6	0.430	4.865	11.520	0.092	0.949	0.397
120.0	25.2	119.6	0.419	6.050	10.772	0.110	1.783	0.448
135.0	25.2	134.5	0.351	4.688	10.238	0.117	1.250	0.304
150.0	25.3	149.5	0.534	4.914	10.246	0.141	1.188	0.269
165.0	25.5	164.5	0.479	3.375	10.237	0.155	0.651	0.233
180.0	25.6	179.7	0.595	3.079	10.147	0.116	0.324	0.141
195.0	25.6	195.1	0.488	4.407	10.183	0.146	0.718	0.227
210.0	25.3	210.0	0.588	6.108	10.194	0.113	1.139	0.296
225.0	25.2	225.2	0.824	7.987	10.024	0.116	1.856	0.429
240.0	25.3	240.2	0.551	8.440	10.046	0.097	2.067	0.327
255.0	25.3	255.2	0.435	8.532	10.926	0.086	1.776	0.338
270.0	25.3	270.2	0.266	7.065	11.701	0.069	1.740	0.433
285.0	25.3	285.1	0.350	7.975	11.707	0.072	1.711	0.543
300.0	25.3	299.8	0.582	6.795	11.708	0.155	1.389	0.652
315.0	25.3	314.7	0.966	5.447	11.946	0.247	1.028	0.705
330.0	25.3	329.6	1.291	4.566	12.186	0.307	0.721	0.716
345.0	25.2	344.7	1.551	3.715	12.057	0.341	0.524	0.705
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.42: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.4	-0.1	1.554	4.439	12.863	0.372	0.658	0.913
15.0	30.4	15.0	1.549	5.469	12.797	0.364	0.864	0.906
30.0	30.4	30.1	1.427	5.749	12.624	0.335	1.085	0.897
45.0	30.4	45.1	1.151	5.766	12.698	0.279	1.295	0.845
60.0	30.4	60.0	0.721	6.399	12.690	0.186	1.499	0.757
75.0	30.4	74.7	0.364	4.844	11.940	0.094	1.142	0.603
90.0	30.4	89.7	0.371	4.795	11.858	0.084	1.118	0.502
105.0	30.4	104.7	0.537	5.010	11.542	0.111	1.020	0.368
120.0	30.3	119.8	0.584	6.589	10.280	0.135	2.089	0.416
135.0	30.3	134.5	0.567	5.283	10.166	0.153	1.631	0.305
150.0	30.5	149.5	0.614	4.421	10.123	0.183	1.104	0.249
165.0	30.8	164.5	0.705	3.847	10.106	0.188	0.582	0.175
180.0	30.5	179.4	0.907	4.096	10.001	0.196	0.507	0.165
195.0	31.1	194.9	0.592	4.369	9.982	0.165	0.672	0.172
210.0	30.7	210.2	0.595	5.387	10.077	0.170	1.115	0.279
225.0	30.4	225.0	0.522	6.299	10.093	0.122	1.493	0.381
240.0	30.4	240.0	0.443	7.780	10.046	0.106	1.716	0.364
255.0	30.4	255.1	0.493	7.910	10.935	0.104	1.605	0.356
270.0	30.4	270.1	0.334	7.408	11.579	0.082	1.654	0.445
285.0	30.4	285.1	0.340	8.423	12.035	0.078	1.672	0.579
300.0	30.4	299.8	0.643	7.804	12.378	0.166	1.386	0.729
315.0	30.4	314.8	1.028	5.856	12.572	0.263	0.988	0.861
330.0	30.4	329.8	1.437	5.343	12.767	0.328	0.744	0.910
345.0	30.4	344.9	1.529	4.339	12.939	0.360	0.603	0.918
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.43: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute			Standard			
Heading	Me	ean		Maximuı	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	-1.9	-362.1	1.793	8.632	13.187	0.295	2.550	0.827	
15.0	-1.3	-366.1	1.976	9.215	13.737	0.337	2.529	0.755	
30.0	-4.3	98.6	1.772	8.748	13.706	0.340	2.284	0.905	
45.0	-4.6	-120.5	1.763	9.562	13.748	0.313	2.228	0.965	
60.0	1.3	32.4	2.577	8.331	13.763	0.325	2.314	0.929	
75.0	2.5	77.1	1.540	10.353	15.438	0.185	2.022	1.027	
90.0	1.1	99.2	1.789	10.027	15.197	0.134	2.055	1.059	
105.0	-1.8	109.2	1.926	8.374	15.258	0.183	2.135	1.082	
120.0	-4.6	118.2	1.136	9.402	14.771	0.240	2.150	1.059	
135.0	-5.7	125.8	1.749	12.037	14.010	0.295	2.060	1.035	
150.0	-3.9	322.4	2.213	10.442	13.786	0.339	2.370	0.864	
165.0	-3.4	324.2	2.536	9.420	14.282	0.347	2.457	0.813	
180.0	-2.2	783.2	1.594	9.077	13.194	0.308	2.617	0.827	
195.0	-2.6	28.5	2.866	9.449	15.626	0.313	2.527	0.793	
210.0	-0.5	260.7	1.401	12.213	14.059	0.164	2.593	0.864	
225.0	-1.1	262.1	1.206	13.183	13.395	0.140	2.612	0.861	
240.0	-1.8	266.7	0.905	13.679	13.251	0.110	2.602	0.877	
255.0	-2.4	272.0	1.109	12.915	13.714	0.099	2.572	0.877	
270.0	-2.4	277.0	1.325	12.264	15.306	0.122	2.443	0.867	
285.0	-2.2	281.9	1.506	12.116	15.755	0.168	2.355	0.853	
300.0	-1.4	288.1	1.159	11.972	14.768	0.205	2.288	0.821	
315.0	-1.7	292.9	1.333	11.557	14.857	0.242	2.246	0.803	
330.0	-1.9	298.9	1.764	10.903	13.778	0.284	2.181	0.769	
345.0	-2.1	151.1	1.761	10.105	13.629	0.302	2.320	0.758	
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.44: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	Standard				
Heading	Mo	ean		Maximuı	n	Ι	Deviatio	n i		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$		
0.0	2.8	-48.0	1.776	12.813	13.215	0.366	2.098	0.728		
15.0	2.1	-79.8	2.252	10.752	14.126	0.327	2.615	0.805		
30.0	2.2	-120.7	1.930	9.588	13.809	0.217	2.104	0.952		
45.0	2.8	-101.7	1.747	10.741	14.322	0.233	2.321	0.971		
60.0	3.6	-92.5	2.437	9.138	14.010	0.207	2.324	1.000		
75.0	4.3	-74.4	2.432	18.279	15.019	0.184	2.476	1.029		
90.0	5.1	89.4	3.397	21.114	15.531	0.105	2.009	1.069		
105.0	4.4	103.8	1.669	8.089	14.772	0.124	1.965	1.036		
120.0	3.4	112.7	1.234	10.389	14.951	0.161	1.982	1.017		
135.0	2.5	120.3	1.247	9.323	16.253	0.192	1.986	0.987		
150.0	2.0	128.7	1.254	9.209	15.408	0.222	1.932	0.921		
165.0	1.5	132.3	1.608	10.596	13.457	0.238	1.957	0.885		
180.0	2.2	82.9	2.068	10.222	12.962	0.323	2.632	0.724		
195.0	3.5	364.1	1.962	11.438	13.717	0.308	2.593	0.762		
210.0	4.2	258.4	2.019	17.657	14.086	0.168	2.580	0.817		
225.0	3.7	262.3	1.473	17.267	13.415	0.150	2.650	0.816		
240.0	3.3	267.8	2.636	15.861	14.038	0.144	2.645	0.862		
255.0	3.8	275.6	1.236	14.175	13.327	0.098	2.552	0.877		
270.0	3.6	281.8	2.088	12.575	13.868	0.147	2.508	0.875		
285.0	4.1	288.6	1.376	11.723	13.576	0.197	2.375	0.839		
300.0	3.9	294.7	1.289	14.449	13.365	0.256	2.254	0.802		
315.0	3.5	298.7	1.528	12.680	12.689	0.291	2.211	0.793		
330.0	3.3	303.3	1.768	13.426	12.532	0.326	2.169	0.761		
345.0	2.9	307.7	1.838	13.031	14.041	4.041 0.350 2.137 0.744				
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.			

Table S.45: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	Standard			
Heading	Me	ean	,	Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	7.5	-40.9	2.114	10.686	12.952	0.439	2.134	0.753	
15.0	7.3	-34.1	2.444	8.350	12.505	0.460	2.050	0.747	
30.0	7.2	-24.6	2.401	8.930	11.951	0.476	1.923	0.722	
45.0	7.2	-15.9	2.966	6.828	12.581	0.484	1.878	0.725	
60.0	7.2	1.8	2.963	8.207	12.245	0.490	1.740	0.742	
75.0	9.8	71.2	1.833	7.847	14.925	0.220	1.815	1.067	
90.0	9.8	88.5	0.914	9.806	15.601	0.076	1.828	1.069	
105.0	9.6	104.5	1.247	7.262	13.868	0.104	1.799	0.958	
120.0	8.9	116.0	4.151	13.464	14.204	0.175	1.790	0.897	
135.0	8.1	126.4	1.800	9.910	14.383	0.167	1.605	0.810	
150.0	7.7	135.1	2.232	9.735	15.066	0.178	1.592	0.759	
165.0	7.4	144.3	1.536	9.074	13.800	0.190	1.720	0.707	
180.0	7.4	154.7	1.550	7.041	12.453	0.205	1.604	0.625	
195.0	8.9	199.1	1.619	9.461	11.214	0.217	1.706	0.365	
210.0	8.3	237.7	2.343	15.170	12.112	0.232	2.485	0.558	
225.0	8.3	253.6	2.164	20.477	12.921	0.179	2.653	0.705	
240.0	8.3	261.0	1.311	17.787	13.606	0.139	2.661	0.779	
255.0	8.4	270.4	1.151	15.536	13.860	0.099	2.721	0.852	
270.0	8.6	278.9	2.704	13.330	13.540	0.150	2.710	0.883	
285.0	9.1	288.4	2.130	13.506	13.337	0.208	2.534	0.869	
300.0	9.3	299.0	1.854	12.411	12.907	0.308	2.222	0.815	
315.0	8.4	306.6	1.571	10.714	12.755	0.370	2.102	0.766	
330.0	7.9	309.6	1.956	10.728	12.708	0.392	2.134	0.771	
345.0	7.7	314.9	2.102	11.182	12.705	0.422	2.116	0.742	
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.46: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximui	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	13.0	-8.8	2.850	7.297	11.915	0.564	1.602	0.775
15.0	13.6	9.9	2.671	7.195	12.376	0.555	1.533	0.805
30.0	14.0	26.7	2.295	7.654	12.520	0.524	1.551	0.848
45.0	14.4	42.6	1.896	9.347	13.200	0.457	1.710	0.948
60.0	14.6	57.5	1.360	9.408	13.508	0.353	1.726	1.061
75.0	15.0	73.1	1.258	9.148	14.676	0.196	1.754	1.112
90.0	15.0	88.9	1.457	18.342	15.073	0.087	1.792	1.041
105.0	15.0	104.7	1.629	15.791	13.605	0.126	1.844	0.852
120.0	14.4	117.4	0.863	9.159	13.329	0.136	1.734	0.794
135.0	14.0	131.7	0.992	7.098	13.120	0.147	1.469	0.671
150.0	14.2	146.4	0.785	6.317	11.903	0.154	1.135	0.538
165.0	14.6	162.0	1.041	6.293	11.982	0.167	0.968	0.452
180.0	14.6	177.5	1.065	6.719	10.797	0.191	1.082	0.415
195.0	14.7	194.8	1.205	9.283	10.592	0.171	1.393	0.378
210.0	14.2	216.7	2.068	11.115	11.572	0.193	2.125	0.422
225.0	13.8	235.0	1.304	9.758	12.943	0.163	2.481	0.502
240.0	13.7	248.5	1.312	12.591	13.925	0.162	2.738	0.587
255.0	13.9	261.5	1.354	22.614	13.609	0.137	2.920	0.729
270.0	14.2	274.6	0.752	14.047	14.292	0.103	2.998	0.865
285.0	14.5	287.4	2.332	13.298	13.292	0.195	2.834	0.895
300.0	14.6	300.2	1.437	12.565	12.892	0.328	2.265	0.886
315.0	14.4	312.9	1.814	11.295	12.422	0.432	1.879	0.821
330.0	13.9	326.0	2.144	9.694	12.144	0.500	1.713	0.795
345.0	13.5	339.5	2.532	8.936	12.010	0.546	1.530	0.770
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.47: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Mo	ean		Maximui	n	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	19.6	-1.6	2.516	6.801	12.491	0.585	1.350	0.944	
15.0	19.6	13.6	2.904	6.795	12.490	0.590	1.365	0.945	
30.0	19.7	29.1	2.275	7.924	12.837	0.554	1.564	0.979	
45.0	19.8	44.1	2.007	9.154	13.378	0.485	1.701	1.058	
60.0	19.8	58.6	1.641	9.929	15.140	0.369	1.689	1.137	
75.0	20.0	73.8	0.999	9.121	15.079	0.197	1.791	1.149	
90.0	20.0	89.1	2.330	19.173	16.040	0.111	1.852	1.014	
105.0	20.0	104.3	3.213	20.742	13.785	0.148	2.022	0.779	
120.0	19.7	118.6	0.691	7.954	12.655	0.151	1.974	0.750	
135.0	19.6	133.4	0.948	7.334	12.171	0.174	1.819	0.560	
150.0	19.6	148.0	0.927	7.554	11.371	0.193	1.365	0.468	
165.0	19.6	163.7	1.022	6.768	11.223	0.202	1.020	0.401	
180.0	19.8	179.8	1.199	7.525	10.641	0.211	1.078	0.380	
195.0	19.7	195.7	0.928	7.526	10.286	0.192	1.544	0.455	
210.0	19.7	210.4	1.585	11.865	11.889	0.176	1.926	0.587	
225.0	19.6	226.6	0.949	9.057	11.452	0.160	2.352	0.519	
240.0	19.3	243.6	1.047	12.731	13.702	0.163	2.926	0.524	
255.0	19.6	258.3	1.059	14.132	13.496	0.148	3.084	0.658	
270.0	19.6	272.8	0.772	16.425	13.617	0.113	3.210	0.833	
285.0	19.8	286.6	1.265	14.513	13.640	0.183	3.040	0.958	
300.0	19.9	300.3	1.573	15.147	13.316	0.344	2.475	1.010	
315.0	19.8	314.1	2.146	11.105	12.628	0.466	1.940	0.985	
330.0	19.7	328.6	2.294	8.401	12.987	0.539	1.531	0.966	
345.0	19.6	343.4	2.842	6.950	12.428	0.573	1.400	0.952	
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.48: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Mo	ean		Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	25.0	-0.7	3.165	6.647	14.020	0.620	1.316	1.229	
15.0	25.0	14.6	2.960	7.149	13.370	0.614	1.415	1.209	
30.0	25.0	29.8	2.607	8.680	13.732	0.578	1.595	1.206	
45.0	25.0	44.6	2.033	9.512	14.009	0.511	1.703	1.245	
60.0	25.0	59.2	1.659	10.159	15.050	0.382	1.767	1.261	
75.0	25.0	74.1	1.237	8.876	15.394	0.207	1.909	1.185	
90.0	25.1	89.2	6.261	14.439	14.542	0.178	1.896	1.011	
105.0	25.0	104.2	4.410	15.110	13.406	0.180	2.058	0.691	
120.0	24.8	119.1	0.984	10.422	12.964	0.193	2.573	0.737	
135.0	24.6	133.6	1.148	8.493	11.657	0.226	2.198	0.577	
150.0	24.9	148.5	0.988	8.484	11.219	0.228	1.520	0.465	
165.0	25.5	163.7	1.208	7.475	10.839	0.215	1.010	0.389	
180.0	26.3	179.3	2.078	7.336	10.416	0.249	0.922	0.383	
195.0	26.0	195.3	1.112	5.761	10.064	0.165	1.010	0.323	
210.0	25.1	210.5	0.965	7.818	10.220	0.175	1.660	0.512	
225.0	24.8	225.5	0.942	9.258	10.108	0.180	2.377	0.700	
240.0	24.7	241.4	1.021	16.006	13.880	0.177	3.007	0.684	
255.0	24.8	256.7	2.292	21.670	14.788	0.173	3.146	0.670	
270.0	24.8	271.8	1.166	15.823	13.481	0.138	3.291	0.852	
285.0	25.0	286.2	1.100	15.447	13.820	0.187	3.228	1.036	
300.0	25.0	300.4	1.419	13.207	13.962	0.363	2.604	1.169	
315.0	25.1	314.7	1.961	11.075	13.396	0.489	1.987	1.214	
330.0	25.0	329.4	2.631	9.512	13.318	0.563	1.617	1.236	
345.0	25.0	344.3	2.547	7.567	13.524	0.599	1.355	1.235	
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.49: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	е	S	d	
Heading	Mo	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.3	-0.1	2.875	6.895	15.090	0.629	1.395	1.558
15.0	30.2	15.0	2.637	7.769	14.275	0.628	1.496	1.528
30.0	30.2	30.1	2.622	9.690	14.536	0.595	1.659	1.499
45.0	30.2	44.9	2.254	9.339	15.106	0.531	1.802	1.496
60.0	30.2	59.5	1.684	9.488	15.433	0.410	1.796	1.463
75.0	30.1	74.2	0.927	9.112	14.901	0.214	2.085	1.249
90.0	30.1	89.2	3.688	22.633	14.299	0.161	2.092	1.009
105.0	30.1	104.2	2.737	10.312	13.175	0.192	2.134	0.681
120.0	29.8	119.5	1.549	10.544	11.692	0.233	2.829	0.625
135.0	29.3	132.0	1.224	8.873	11.658	0.274	2.215	0.625
150.0	29.6	146.6	1.313	8.652	10.857	0.311	1.706	0.580
165.0	30.3	161.6	1.355	8.635	10.337	0.371	1.316	0.550
180.0	31.0	177.2	1.428	8.132	9.980	0.372	1.212	0.566
195.0	31.5	194.2	1.348	7.630	10.798	0.347	1.460	0.534
210.0	30.4	212.5	1.039	11.940	12.390	0.315	2.275	0.598
225.0	30.0	225.7	1.374	9.971	11.321	0.222	2.240	0.718
240.0	29.7	240.5	1.369	12.237	11.770	0.236	3.225	0.803
255.0	29.9	255.8	4.838	17.672	12.434	0.226	3.122	0.775
270.0	30.0	271.1	0.856	14.679	14.460	0.153	3.268	0.883
285.0	30.1	285.9	1.525	16.146	13.849	0.193	3.293	1.118
300.0	30.2	300.4	1.494	15.612	13.773	0.376	2.813	1.336
315.0	30.3	315.0	2.072	13.164	14.477	0.506	2.211	1.484
330.0	30.3	329.8	2.529	10.910	14.585	0.580	1.732	1.532
345.0	30.3	344.8	2.727	8.443	14.990	0.618	1.477	1.567
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.50: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Me	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.3	-529.3	1.682	8.316	12.405	0.239	2.446	0.601
15.0	-2.6	-113.0	1.547	7.246	11.963	0.293	1.823	0.605
30.0	-4.0	-135.5	1.439	7.602	12.915	0.274	1.865	0.732
45.0	-3.8	-120.5	1.137	8.306	13.075	0.236	2.054	0.802
60.0	2.2	51.7	1.028	7.575	13.047	0.233	1.707	0.799
75.0	2.1	80.1	0.681	6.975	13.784	0.094	1.692	0.836
90.0	0.3	101.2	0.640	7.010	13.801	0.081	1.744	0.859
105.0	-1.5	111.4	0.859	7.531	13.597	0.121	1.813	0.869
120.0	-3.6	122.6	0.832	7.704	13.619	0.176	1.805	0.853
135.0	-4.7	134.3	1.208	8.435	13.398	0.235	1.619	0.780
150.0	-4.5	149.3	1.214	7.402	12.696	0.277	1.281	0.687
165.0	-2.9	168.9	1.894	6.765	12.174	0.300	0.888	0.552
180.0	-1.3	526.9	1.394	9.769	12.343	0.253	2.552	0.601
195.0	-1.6	358.3	1.413	8.607	13.776	0.202	2.408	0.616
210.0	-0.4	251.6	1.245	9.370	12.704	0.143	2.191	0.647
225.0	-0.7	256.9	0.978	10.393	12.572	0.112	2.210	0.666
240.0	-1.2	263.7	0.665	10.992	12.610	0.077	2.190	0.688
255.0	-2.0	270.9	0.618	11.229	12.715	0.062	2.138	0.698
270.0	-2.1	278.3	0.574	10.495	12.530	0.069	2.057	0.684
285.0	-2.1	284.3	0.699	10.010	12.290	0.102	1.977	0.665
300.0	-2.4	290.2	0.912	9.888	12.275	0.141	1.924	0.651
315.0	-2.7	241.7	1.598	11.560	12.259	0.182	2.698	0.663
330.0	-2.6	252.0	1.163	10.564	12.837	0.194	2.566	0.637
345.0	-2.7	50.0	1.556	9.662	12.788	0.228	2.138	0.627
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table S.51: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	S	Standard		
Heading	Mo	ean		Maximuı	n	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	2.8	-40.7	1.798	8.992	12.151	0.294	1.786	0.588	
15.0	2.2	-132.5	1.671	6.967	13.503	0.188	1.721	0.748	
30.0	2.6	-88.1	1.623	7.237	12.629	0.229	2.513	0.734	
45.0	3.1	-99.6	1.254	6.944	12.802	0.175	2.155	0.795	
60.0	3.6	-83.8	1.320	7.035	13.175	0.173	2.265	0.812	
75.0	5.1	66.4	0.827	7.448	12.939	0.164	1.625	0.848	
90.0	4.9	89.0	0.469	6.671	13.895	0.054	1.593	0.855	
105.0	4.4	104.1	0.557	6.764	13.751	0.068	1.648	0.843	
120.0	3.6	114.9	0.715	7.148	13.085	0.106	1.648	0.829	
135.0	3.0	122.9	1.027	7.630	13.256	0.136	1.629	0.810	
150.0	2.5	131.4	1.204	7.743	13.759	0.166	1.579	0.766	
165.0	2.2	138.9	1.293	7.961	12.998	0.190	1.520	0.718	
180.0	2.1	149.1	1.609	6.428	12.129	0.212	1.424	0.647	
195.0	4.2	206.2	1.640	8.719	11.278	0.221	1.585	0.363	
210.0	4.3	241.2	1.434	9.431	12.211	0.163	2.110	0.501	
225.0	4.0	251.2	1.153	10.847	12.586	0.131	2.157	0.562	
240.0	3.9	260.4	0.864	11.804	12.310	0.097	2.186	0.617	
255.0	4.0	270.1	0.457	11.497	12.578	0.059	2.166	0.654	
270.0	4.0	278.8	0.485	11.040	12.418	0.057	2.149	0.674	
285.0	4.0	287.8	0.808	10.522	13.205	0.107	2.046	0.664	
300.0	3.9	296.2	0.924	10.756	12.053	0.166	1.899	0.633	
315.0	3.6	301.3	1.013	10.738	12.010	0.205	1.876	0.629	
330.0	3.3	307.1	1.413	10.940	12.220	0.241	1.853	0.616	
345.0	3.0	313.4	1.640	10.202	12.354	0.272	1.822	0.596	
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.		

Table S.52: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean	,	Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	7.6	-33.6	1.995	10.257	11.539	0.363	1.786	0.613
15.0	7.4	-26.9	2.001	8.128	11.421	0.384	1.763	0.610
30.0	7.4	-18.7	2.263	6.965	11.534	0.399	1.673	0.604
45.0	7.4	-8.1	1.961	6.471	11.643	0.409	1.582	0.619
60.0	7.6	13.7	2.259	7.491	12.148	0.389	1.549	0.696
75.0	9.9	71.8	0.713	7.178	13.583	0.130	1.476	0.867
90.0	9.9	88.5	0.256	6.710	13.643	0.053	1.448	0.835
105.0	9.7	104.0	0.596	6.536	13.194	0.067	1.452	0.770
120.0	9.0	116.0	0.912	6.379	13.298	0.095	1.358	0.747
135.0	8.4	127.3	1.272	7.023	13.201	0.120	1.231	0.682
150.0	7.9	137.5	1.216	6.488	12.580	0.138	1.189	0.620
165.0	7.7	145.8	1.251	6.389	12.554	0.148	1.244	0.602
180.0	7.6	157.3	1.348	6.252	12.427	0.164	1.324	0.577
195.0	9.0	194.5	1.754	8.862	10.512	0.176	1.415	0.367
210.0	8.9	221.5	1.709	9.948	11.322	0.169	1.926	0.341
225.0	8.7	238.4	1.269	9.636	11.552	0.148	2.127	0.420
240.0	8.8	251.0	1.114	12.247	13.346	0.124	2.249	0.507
255.0	9.1	262.7	0.771	12.239	12.313	0.088	2.313	0.584
270.0	9.3	274.9	0.373	11.223	12.608	0.058	2.377	0.641
285.0	9.5	287.2	0.782	11.514	12.258	0.101	2.264	0.659
300.0	9.4	299.6	0.964	10.405	12.130	0.202	1.923	0.633
315.0	8.9	310.0	1.481	9.775	11.867	0.278	1.739	0.617
330.0	8.0	314.6	1.565	9.280	12.340	0.310	1.789	0.615
345.0	7.7	320.9	1.880	9.502	11.869	0.341	1.768	0.601
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.53: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	13.9	-4.3	1.970	7.019	11.921	0.463	1.209	0.681
15.0	14.0	11.3	2.022	6.150	11.834	0.459	1.223	0.704
30.0	14.3	27.1	1.877	6.532	12.407	0.423	1.329	0.759
45.0	14.5	42.6	1.442	7.352	12.642	0.353	1.365	0.826
60.0	14.7	57.4	0.994	7.663	13.146	0.250	1.382	0.886
75.0	15.0	73.4	0.701	6.728	14.083	0.130	1.386	0.873
90.0	15.0	88.8	0.515	10.597	13.239	0.069	1.402	0.802
105.0	15.0	104.3	0.554	7.195	12.342	0.087	1.365	0.675
120.0	14.5	117.6	0.757	6.331	13.097	0.115	1.322	0.669
135.0	14.3	132.0	0.626	6.735	11.857	0.130	1.105	0.555
150.0	14.2	146.8	1.194	6.439	12.214	0.146	0.981	0.472
165.0	14.4	162.1	0.844	6.597	11.192	0.146	0.915	0.423
180.0	14.5	178.0	1.081	7.236	10.279	0.158	1.016	0.373
195.0	14.6	194.4	1.192	8.550	10.951	0.144	1.286	0.385
210.0	14.4	212.7	1.185	9.407	11.283	0.150	1.774	0.360
225.0	14.2	230.3	1.013	8.420	11.535	0.136	2.195	0.410
240.0	14.3	244.5	0.969	10.308	13.993	0.128	2.476	0.429
255.0	14.6	258.5	0.819	11.116	12.655	0.107	2.520	0.515
270.0	14.7	272.6	0.547	11.321	12.664	0.078	2.599	0.632
285.0	14.8	286.5	0.644	11.793	12.665	0.105	2.505	0.697
300.0	14.7	300.1	1.011	11.482	12.223	0.214	2.083	0.690
315.0	14.5	313.5	1.322	10.169	11.937	0.318	1.648	0.674
330.0	14.2	327.0	1.777	9.460	11.856	0.395	1.412	0.669
345.0	13.9	341.0	2.078	8.229	11.674	0.442	1.292	0.664
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table S.54: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d		
Heading	Mo	ean		Maximuı	m	Ι	Deviatio	n i		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$		
0.0	19.7	-1.5	2.428	5.833	11.972	0.499	1.142	0.799		
15.0	19.7	13.8	1.987	6.561	12.341	0.489	1.227	0.811		
30.0	19.8	29.0	2.076	6.709	12.618	0.451	1.339	0.843		
45.0	19.8	44.0	1.642	7.793	13.114	0.369	1.408	0.883		
60.0	19.9	58.6	0.962	7.833	13.191	0.260	1.367	0.941		
75.0	20.1	73.8	0.606	7.134	13.987	0.137	1.421	0.885		
90.0	20.1	89.0	0.431	7.604	13.220	0.090	1.374	0.759		
105.0	20.1	104.1	1.545	11.778	12.148	0.119	1.399	0.568		
120.0	19.9	118.6	0.595	7.097	11.928	0.142	1.562	0.648		
135.0	19.9	133.6	0.814	8.650	11.228	0.150	1.190	0.483		
150.0	19.8	148.5	0.974	7.948	11.191	0.177	1.059	0.438		
165.0	19.8	163.7	0.946	5.887	10.907	0.190	0.890	0.413		
180.0	20.0	179.4	0.923	6.531	10.535	0.188	0.968	0.398		
195.0	19.9	194.4	0.994	7.379	10.281	0.167	1.238	0.463		
210.0	19.9	209.6	0.751	8.222	10.215	0.145	1.590	0.559		
225.0	19.8	225.8	1.026	8.897	10.846	0.140	2.055	0.515		
240.0	19.7	241.8	0.880	9.245	12.386	0.144	2.641	0.462		
255.0	19.9	256.9	0.958	9.739	12.349	0.121	2.693	0.544		
270.0	19.9	271.6	0.566	12.171	12.488	0.095	2.753	0.664		
285.0	20.0	286.0	0.632	13.150	12.807	0.108	2.708	0.771		
300.0	19.9	300.2	1.076	12.259	12.085	0.227	2.217	0.769		
315.0	19.9	314.3	1.501	10.739	12.227	0.346	1.708	0.780		
330.0	19.8	328.7	1.799	8.354	12.450	0.429	1.347	0.790		
345.0	19.7	343.5	2.412	6.723	12.040	040 0.479 1.172 0.785				
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.			

Table S.55: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute Standard			d	
Heading	Me	ean		Maximuı	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.0	-0.6	2.204	6.747	12.794	0.528	1.203	1.021
15.0	25.0	14.6	2.421	6.900	13.295	0.518	1.279	1.015
30.0	25.0	29.7	2.113	7.374	13.245	0.482	1.395	1.023
45.0	25.0	44.6	1.599	7.509	13.236	0.395	1.469	1.022
60.0	25.0	59.2	1.075	7.904	14.738	0.275	1.451	1.022
75.0	25.1	74.2	0.554	7.582	13.512	0.146	1.549	0.925
90.0	25.2	89.2	0.866	13.486	13.744	0.111	1.517	0.751
105.0	25.1	104.1	1.390	9.045	13.084	0.145	1.489	0.525
120.0	25.0	119.0	0.953	10.457	12.242	0.175	1.871	0.622
135.0	24.8	133.8	1.004	9.366	12.420	0.210	1.929	0.541
150.0	24.8	148.3	0.981	8.519	10.840	0.208	0.992	0.449
165.0	25.6	164.1	1.059	5.238	10.788	0.232	0.776	0.384
180.0	25.9	179.3	0.893	5.048	10.200	0.173	0.603	0.278
195.0	25.7	196.3	1.265	7.873	10.368	0.229	1.340	0.395
210.0	25.1	210.4	0.843	7.897	10.255	0.182	1.631	0.528
225.0	24.9	225.0	0.879	8.894	10.195	0.173	2.173	0.719
240.0	24.9	240.5	1.071	10.837	11.620	0.161	2.630	0.592
255.0	25.1	256.0	0.860	14.192	11.514	0.139	2.761	0.645
270.0	25.0	271.1	0.524	11.758	12.072	0.112	2.851	0.742
285.0	25.1	285.8	0.667	13.707	13.014	0.118	2.887	0.856
300.0	25.1	300.1	0.994	12.685	12.441	0.238	2.278	0.871
315.0	25.1	314.7	1.646	10.880	12.765	0.369	1.805	0.940
330.0	25.0	329.4	2.010	9.417	13.023	0.457	1.459	0.997
345.0	25.0	344.3	2.351	7.059	12.923	0.505	1.245	1.015
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table S.56: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximui	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.2	-0.2	2.507	7.806	13.905	0.550	1.282	1.300
15.0	30.2	15.0	2.167	7.703	14.238	0.536	1.373	1.284
30.0	30.2	30.0	2.222	9.115	14.039	0.500	1.503	1.269
45.0	30.2	44.9	1.761	8.396	13.767	0.417	1.595	1.208
60.0	30.2	59.6	1.157	8.640	14.508	0.293	1.591	1.143
75.0	30.2	74.3	0.747	8.351	13.976	0.156	1.745	0.975
90.0	30.2	89.3	0.754	8.252	13.098	0.128	1.684	0.778
105.0	30.2	104.1	1.792	10.402	12.301	0.177	1.606	0.533
120.0	30.0	119.4	0.720	8.212	11.200	0.206	2.224	0.555
135.0	29.8	133.7	1.065	9.177	10.910	0.249	1.953	0.489
150.0	30.0	148.1	1.122	8.862	10.468	0.263	1.251	0.475
165.0	30.2	162.5	1.102	6.894	10.451	0.326	1.007	0.445
180.0	30.8	177.9	1.553	6.396	10.012	0.322	0.894	0.438
195.0	31.6	194.5	1.165	5.980	10.253	0.273	1.138	0.423
210.0	30.8	210.9	1.446	11.157	10.194	0.259	1.702	0.522
225.0	30.1	225.2	0.868	8.264	10.118	0.210	2.017	0.692
240.0	30.0	240.1	1.120	11.803	10.162	0.194	2.572	0.722
255.0	30.1	255.5	0.995	13.510	10.929	0.167	2.650	0.776
270.0	30.1	270.7	0.624	11.893	11.826	0.132	2.895	0.838
285.0	30.2	285.5	0.690	12.659	13.015	0.129	2.904	0.952
300.0	30.2	300.2	1.078	12.897	13.064	0.254	2.443	0.957
315.0	30.2	314.9	1.593	11.540	13.703	0.391	1.926	1.147
330.0	30.2	329.7	2.061	8.565	14.356	0.483	1.527	1.243
345.0	30.2	344.7	2.444	8.772	14.013	0.528	1.355	1.289
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Willia at 30.4 kilots (23.0 iii/s) is from the starooard ocain in all cases

Table S.57: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	Standard		
Heading	Mo	ean		Maximu	m	Ι	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	-0.5	-110.6	1.902	11.040	12.050	0.294	2.897	0.630	
15.0	-2.8	189.5	2.346	8.524	11.890	0.333	1.635	0.592	
30.0	-4.0	-145.1	1.647	8.952	12.130	0.322	2.163	0.732	
45.0	2.0	30.6	1.302	8.394	12.399	0.320	1.711	0.963	
60.0	3.8	54.5	1.007	7.770	14.152	0.237	1.671	0.974	
75.0	2.8	85.5	0.753	7.041	14.305	0.085	1.581	0.916	
90.0	0.3	106.0	1.007	8.217	13.442	0.107	1.691	0.911	
105.0	-2.3	118.7	1.078	8.190	13.521	0.155	1.778	0.947	
120.0	-4.4	132.0	1.121	7.933	13.629	0.225	1.658	0.912	
135.0	-5.1	146.2	1.479	8.217	13.599	0.290	1.413	0.814	
150.0	-4.3	160.0	1.437	8.569	12.996	0.322	1.117	0.646	
165.0	-2.8	173.3	1.727	7.607	12.644	0.333	1.085	0.516	
180.0	0.4	310.9	1.772	10.460	13.597	0.271	2.842	0.658	
195.0	1.1	234.8	1.822	10.278	11.714	0.227	2.464	0.587	
210.0	-0.2	245.4	1.544	11.067	12.725	0.200	2.481	0.642	
225.0	-0.7	253.7	1.260	11.894	12.533	0.149	2.493	0.713	
240.0	-1.1	261.7	0.963	12.045	12.687	0.104	2.454	0.748	
255.0	-2.3	269.6	1.121	11.961	12.517	0.086	2.390	0.795	
270.0	-2.8	277.2	0.644	11.703	13.092	0.084	2.276	0.806	
285.0	-3.5	283.1	0.770	11.602	11.806	0.116	2.192	0.813	
300.0	-3.5	288.4	1.033	11.387	12.099	0.160	2.141	0.843	
315.0	-3.9	295.7	1.874	15.422	13.688	0.204	2.193	0.857	
330.0	-0.6	141.1	1.365	11.267	13.293	0.199	3.093	0.703	
345.0	0.6	141.0	1.770	11.268	11.940	0.229	2.814	0.618	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the starb	oard bear	m in all	cases.		

Table S.58: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximui	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	1.7	-41.7	1.990	12.019	12.376	0.303	2.119	0.796
15.0	1.3	-140.8	1.912	8.213	13.485	0.228	1.679	0.830
30.0	1.9	-124.7	1.918	7.364	12.737	0.211	2.161	0.850
45.0	2.6	-114.2	1.514	7.323	12.730	0.187	2.287	0.871
60.0	3.5	-61.9	1.753	8.268	12.611	0.237	3.488	0.904
75.0	5.8	71.4	1.044	8.034	14.052	0.143	1.507	0.935
90.0	5.0	94.4	0.426	7.176	14.211	0.063	1.564	0.881
105.0	4.3	108.2	1.194	7.899	13.435	0.098	1.571	0.857
120.0	3.4	118.0	1.296	9.798	13.168	0.129	1.560	0.872
135.0	2.5	127.1	1.642	9.185	12.837	0.163	1.537	0.880
150.0	1.9	134.9	1.725	9.514	13.511	0.191	1.495	0.870
165.0	1.5	143.3	1.633	9.671	13.866	0.219	1.443	0.843
180.0	1.3	153.9	1.553	8.417	12.749	0.247	1.361	0.778
195.0	1.8	168.9	2.629	9.719	11.779	0.272	1.266	0.661
210.0	4.5	235.3	1.898	11.270	11.735	0.206	2.385	0.537
225.0	4.1	248.3	1.470	11.293	11.778	0.168	2.426	0.615
240.0	3.6	258.0	1.087	12.443	12.483	0.135	2.439	0.682
255.0	3.6	268.2	1.022	11.809	12.841	0.096	2.430	0.727
270.0	3.5	276.9	0.681	12.218	12.028	0.078	2.389	0.754
285.0	3.6	285.8	0.741	11.981	11.885	0.094	2.312	0.776
300.0	3.0	292.4	0.864	12.014	11.718	0.141	2.191	0.813
315.0	2.6	298.6	1.197	11.984	11.764	0.189	2.160	0.881
330.0	2.3	306.2	1.474	11.749	11.346	0.235	2.101	0.866
345.0	2.0	312.9	1.836	11.067	11.192	0.276	2.091	0.857
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.59: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	Standard			
Heading	Me	ean		Maximuı	n	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	6.9	-37.5	2.268	10.669	11.601	0.362	2.158	0.826	
15.0	6.8	-31.4	2.331	10.013	11.505	0.388	2.122	0.778	
30.0	6.8	-26.2	2.127	9.239	11.862	0.402	2.093	0.748	
45.0	7.7	-78.8	1.781	7.904	12.336	0.242	2.961	0.794	
60.0	6.9	-10.9	2.022	9.022	12.497	0.410	2.164	0.787	
75.0	7.6	24.5	1.794	9.483	13.801	0.368	2.004	0.889	
90.0	9.7	88.3	0.341	8.638	13.801	0.061	1.504	0.858	
105.0	9.5	103.2	0.976	9.943	13.030	0.088	1.477	0.735	
120.0	8.7	114.3	0.972	11.200	11.887	0.107	1.280	0.714	
135.0	8.1	125.0	1.021	7.824	12.271	0.140	1.118	0.667	
150.0	7.6	134.4	1.596	7.538	13.852	0.159	1.031	0.647	
165.0	7.3	144.5	1.388	6.924	13.254	0.177	1.079	0.656	
180.0	7.1	153.9	1.383	6.961	12.674	0.190	1.119	0.666	
195.0	7.0	165.7	1.889	6.946	11.669	0.207	1.082	0.638	
210.0	8.8	220.9	2.602	12.785	11.132	0.212	2.189	0.500	
225.0	8.8	240.1	1.835	11.582	11.070	0.174	2.427	0.506	
240.0	8.8	251.8	1.469	11.758	12.810	0.150	2.533	0.579	
255.0	8.9	263.4	0.936	12.913	11.907	0.118	2.583	0.665	
270.0	8.9	275.4	1.086	13.027	12.136	0.096	2.619	0.733	
285.0	9.1	286.9	1.423	13.160	12.241	0.110	2.531	0.806	
300.0	8.9	298.5	1.302	12.302	11.571	0.190	2.240	0.796	
315.0	7.9	306.1	1.182	12.382	11.449	0.250	2.113	0.801	
330.0	7.3	310.9	1.577	11.688	11.382	0.287	2.152	0.865	
345.0	7.1	317.3	1.996	11.474	11.692	0.333	2.126	0.872	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.60: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard	
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	11.9	-21.9	2.331	13.946	11.536	0.485	1.995	0.976
15.0	11.7	-12.9	2.690	10.444	12.001	0.506	1.948	0.940
30.0	11.8	0.1	2.742	9.802	12.198	0.516	1.869	0.950
45.0	12.1	19.1	2.127	9.192	12.324	0.481	1.778	1.006
60.0	12.7	42.5	1.446	8.608	12.831	0.366	1.513	1.039
75.0	14.8	72.7	0.615	7.871	13.864	0.138	1.503	0.936
90.0	14.7	88.3	0.386	8.957	13.250	0.079	1.550	0.783
105.0	14.6	102.6	1.025	10.721	14.171	0.100	1.538	0.613
120.0	13.9	115.1	0.810	9.076	13.885	0.127	1.324	0.597
135.0	13.5	129.1	0.999	9.481	12.606	0.152	1.242	0.544
150.0	13.4	143.3	0.900	9.290	11.591	0.168	1.163	0.503
165.0	13.2	158.7	1.767	8.907	12.319	0.192	1.151	0.479
180.0	14.0	176.8	1.113	8.380	10.069	0.186	1.159	0.464
195.0	13.9	196.1	2.182	13.160	10.334	0.201	1.702	0.497
210.0	14.0	215.4	1.206	10.211	11.375	0.182	2.115	0.508
225.0	14.1	231.1	1.332	10.110	12.341	0.160	2.346	0.565
240.0	14.2	245.1	1.418	18.124	11.630	0.153	2.691	0.615
255.0	14.3	259.0	1.599	24.076	11.613	0.144	2.901	0.718
270.0	14.4	273.2	0.710	13.076	11.757	0.095	2.858	0.774
285.0	14.5	286.6	0.917	13.517	12.054	0.108	2.814	0.872
300.0	14.4	300.2	1.835	11.537	12.069	0.215	2.334	0.776
315.0	14.2	312.9	1.264	11.324	11.618	0.317	2.009	0.896
330.0	13.3	324.8	1.916	13.506	11.606	0.406	1.854	0.886
345.0	12.1	330.4	2.129	11.458	11.604	0.449	1.952	0.933
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.61: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximuı	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	19.2	-2.9	2.564	8.128	12.116	0.545	1.577	0.948
15.0	19.2	12.2	2.295	8.376	12.193	0.535	1.583	0.953
30.0	19.3	27.5	2.155	9.416	12.701	0.490	1.576	0.987
45.0	19.4	42.5	1.536	9.281	13.234	0.396	1.521	1.039
60.0	19.5	57.0	1.135	8.743	13.420	0.282	1.293	1.041
75.0	19.9	73.4	0.903	9.173	15.282	0.147	1.689	0.971
90.0	19.8	88.3	1.277	15.234	13.466	0.105	1.783	0.777
105.0	19.6	102.9	5.537	11.385	12.086	0.196	1.722	0.609
120.0	19.5	117.0	0.907	12.330	11.869	0.166	1.588	0.632
135.0	19.3	131.9	0.810	11.927	11.695	0.186	1.561	0.585
150.0	19.2	146.9	0.943	10.628	11.070	0.234	1.560	0.591
165.0	19.6	163.2	1.390	9.355	10.962	0.252	1.250	0.525
180.0	19.7	178.9	0.880	7.644	10.124	0.217	1.133	0.549
195.0	19.6	195.3	1.264	9.630	10.378	0.226	1.669	0.624
210.0	19.5	210.8	1.675	14.160	10.242	0.199	1.933	0.660
225.0	19.3	227.1	1.224	10.814	12.787	0.180	2.354	0.662
240.0	19.5	242.2	1.276	14.541	12.510	0.165	2.749	0.719
255.0	19.7	257.3	0.967	14.393	13.170	0.136	2.931	0.826
270.0	19.7	272.1	0.610	13.322	11.838	0.105	3.087	0.911
285.0	19.7	286.3	0.642	12.990	12.600	0.114	3.118	1.003
300.0	19.7	300.5	1.011	12.887	11.769	0.223	2.577	0.869
315.0	19.6	314.1	1.485	13.975	12.108	0.349	2.095	0.956
330.0	19.4	328.2	2.166	11.311	11.903	0.447	1.839	0.905
345.0	19.3	342.5	2.300	9.777	12.358	0.515	1.621	0.931
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.62: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean	,	Maximui	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	24.8	-1.3	2.696	8.851	12.713	0.575	1.653	1.105
15.0	24.7	13.8	2.547	8.873	12.721	0.563	1.641	1.092
30.0	24.8	29.0	2.482	9.341	13.360	0.515	1.649	1.095
45.0	24.8	43.7	1.842	9.321	13.743	0.418	1.565	1.107
60.0	24.7	58.0	2.172	9.433	14.449	0.298	1.338	1.102
75.0	24.9	73.6	0.797	9.059	13.961	0.162	1.833	1.042
90.0	24.8	88.5	7.420	12.153	12.929	0.210	1.835	0.809
105.0	24.7	103.0	6.933	16.087	12.208	0.238	1.951	0.713
120.0	24.6	118.0	1.420	11.179	12.156	0.210	1.789	0.690
135.0	24.6	133.1	1.180	10.839	11.116	0.244	1.843	0.637
150.0	24.5	147.2	1.058	9.732	10.437	0.248	1.222	0.575
165.0	25.0	162.8	1.479	10.112	10.212	0.247	0.859	0.508
180.0	26.0	179.2	0.892	6.337	10.158	0.224	0.680	0.402
195.0	25.6	194.8	0.812	6.988	10.159	0.212	1.029	0.514
210.0	24.8	210.2	1.405	9.710	10.340	0.227	1.808	0.742
225.0	24.8	224.8	1.090	10.202	10.245	0.189	1.945	0.833
240.0	24.7	240.6	1.413	14.244	10.510	0.194	2.717	0.858
255.0	24.9	256.1	1.204	13.984	11.413	0.159	3.035	1.053
270.0	24.8	271.4	0.638	13.417	11.802	0.123	3.296	1.136
285.0	24.9	285.8	0.611	12.902	12.313	0.120	3.249	1.266
300.0	24.9	300.4	1.085	13.080	11.849	0.238	2.672	1.037
315.0	24.9	314.9	1.701	13.513	13.568	0.378	2.329	1.016
330.0	24.8	329.3	2.288	11.142	13.493	0.484	1.862	1.061
345.0	24.8	343.9	2.477	10.071	13.563	0.545	1.762	1.103
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

while at 07.4 kilots (33.7 lifts) is from the starboard ocali in all cases.

Table S.63: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	е	Standard			
Heading	Me	ean		Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	30.1	-0.5	2.796	8.710	13.815	0.599	1.742	1.363	
15.0	30.0	14.6	2.870	9.065	13.606	0.594	1.722	1.344	
30.0	30.0	29.6	2.283	11.309	14.044	0.539	1.735	1.286	
45.0	30.0	44.4	1.946	9.932	14.902	0.442	1.625	1.229	
60.0	29.9	58.8	1.455	9.642	14.636	0.306	1.388	1.138	
75.0	30.0	73.8	1.316	11.753	14.126	0.176	2.044	1.120	
90.0	29.9	88.6	6.126	17.504	12.957	0.196	2.024	0.880	
105.0	29.8	103.3	2.845	11.640	14.491	0.217	2.075	0.756	
120.0	29.6	118.4	1.470	10.738	11.982	0.270	2.282	0.723	
135.0	29.4	132.7	1.441	9.790	11.470	0.300	1.870	0.676	
150.0	29.2	146.3	1.132	8.980	10.299	0.300	1.260	0.674	
165.0	29.4	159.7	1.695	10.880	9.981	0.375	1.148	0.717	
180.0	30.3	176.7	1.666	7.409	10.126	0.365	1.012	0.610	
195.0	30.6	196.2	1.863	14.128	10.480	0.435	2.022	0.749	
210.0	30.9	210.9	1.218	9.276	10.394	0.302	1.765	0.745	
225.0	30.0	224.9	0.947	9.291	10.064	0.226	1.846	0.956	
240.0	29.7	240.1	1.804	13.016	10.202	0.248	2.812	0.974	
255.0	29.6	254.9	5.370	17.343	10.817	0.346	2.997	1.292	
270.0	29.9	270.8	1.033	13.241	11.555	0.151	3.369	1.323	
285.0	30.0	285.2	0.716	12.708	12.399	0.162	3.190	1.699	
300.0	30.1	300.4	1.205	13.892	12.609	0.249	2.659	1.040	
315.0	30.1	315.1	1.685	13.686	14.284	0.396	2.385	1.144	
330.0	30.1	329.8	2.121	12.315	14.420	0.509	2.121	1.266	
345.0	30.1	344.6	2.583	10.512	14.624	0.573	1.835	1.342	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the stark	oard bear	m in all	cases.		

Table S.64: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	${f m/s}^2$
0.0	-0.7	-1.3	0.744	7.478	11.097	0.176	1.209	0.725
15.0	0.7	12.9	0.697	5.630	11.067	0.175	1.152	0.702
30.0	1.7	26.6	0.647	5.718	11.446	0.161	1.127	0.682
45.0	2.5	41.8	0.564	5.992	11.810	0.136	1.094	0.654
60.0	2.6	58.7	0.644	6.030	11.804	0.093	0.979	0.593
75.0	1.7	77.0	0.300	5.918	11.142	0.056	0.867	0.477
90.0	0.9	94.9	0.430	6.656	10.593	0.049	0.891	0.409
105.0	0.1	109.7	0.417	8.011	10.669	0.056	0.953	0.418
120.0	-1.2	125.3	0.500	6.365	10.712	0.077	1.030	0.471
135.0	-2.4	140.3	0.564	6.326	11.034	0.113	0.976	0.505
150.0	-2.9	154.1	0.567	5.547	10.973	0.136	0.781	0.473
165.0	-2.8	165.8	0.600	5.385	10.972	0.148	0.603	0.424
180.0	-2.1	177.6	0.672	5.543	10.678	0.156	0.644	0.401
195.0	-1.0	191.8	0.833	6.813	10.524	0.150	0.901	0.400
210.0	0.1	209.9	0.777	7.543	10.709	0.130	1.209	0.434
225.0	0.3	229.9	0.591	7.848	11.006	0.093	1.413	0.464
240.0	-0.1	248.0	0.423	8.390	11.198	0.064	1.563	0.528
255.0	-0.9	262.0	0.333	8.375	10.850	0.044	1.547	0.551
270.0	-1.6	274.8	0.222	8.072	10.894	0.039	1.506	0.570
285.0	-2.4	286.8	0.329	7.728	10.716	0.052	1.398	0.592
300.0	-3.7	302.0	0.418	7.649	10.851	0.091	1.285	0.681
315.0	-3.6	316.8	0.799	7.682	11.067	0.127	1.206	0.726
330.0	-2.9	331.7	0.603	7.783	10.927	0.151	1.188	0.738
345.0	-1.8	345.9	0.681	8.030	11.078	0.167	1.194	0.736
Wind at 69	9.4 knots	(35.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.65: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	2.6	-22.8	0.837	8.194	11.124	0.170	1.377	0.683
15.0	2.9	-7.4	0.835	7.379	11.045	0.191	1.317	0.698
30.0	3.4	9.2	0.911	7.299	11.050	0.194	1.239	0.704
45.0	4.1	27.0	0.725	5.992	11.079	0.175	1.122	0.692
60.0	4.7	48.0	0.548	6.043	11.361	0.125	0.976	0.648
75.0	4.9	66.8	0.304	5.656	11.420	0.070	0.866	0.559
90.0	4.6	83.1	0.272	5.826	10.928	0.037	0.873	0.440
105.0	4.3	97.1	0.312	7.101	10.449	0.039	0.851	0.374
120.0	4.0	108.9	0.309	6.943	10.422	0.045	0.780	0.372
135.0	3.5	121.0	0.404	6.458	10.712	0.060	0.678	0.381
150.0	3.1	133.4	0.476	6.188	10.914	0.080	0.585	0.397
165.0	2.8	145.1	0.548	5.774	11.057	0.103	0.529	0.425
180.0	2.6	156.9	0.624	5.305	11.081	0.119	0.488	0.447
195.0	2.5	169.3	0.760	5.596	10.952	0.132	0.493	0.464
210.0	2.7	183.2	0.802	5.338	10.790	0.133	0.571	0.479
225.0	3.7	209.2	0.679	7.855	10.546	0.112	0.953	0.456
240.0	4.6	237.6	0.494	8.041	10.568	0.078	1.435	0.483
255.0	4.5	251.8	0.354	7.703	10.578	0.059	1.506	0.517
270.0	4.1	266.2	0.415	8.077	10.876	0.050	1.530	0.544
285.0	3.8	279.0	0.326	8.835	10.654	0.039	1.504	0.560
300.0	3.3	290.2	0.385	8.212	10.722	0.043	1.459	0.565
315.0	3.0	300.5	0.406	8.256	10.935	0.067	1.441	0.592
330.0	2.7	311.4	0.648	8.358	10.873	0.101	1.422	0.636
345.0	2.6	323.6	0.844	8.377	10.966	0.138	1.404	0.663
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.66: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	7.4	-24.1	1.076	8.507	10.976	0.192	1.446	0.712
15.0	7.4	-12.0	1.089	7.750	11.020	0.214	1.409	0.725
30.0	7.6	2.2	0.923	7.560	11.040	0.223	1.343	0.730
45.0	7.9	19.7	0.817	6.523	11.123	0.207	1.187	0.722
60.0	8.3	39.5	0.644	6.297	11.368	0.161	0.980	0.686
75.0	8.6	61.1	0.331	6.069	11.620	0.089	0.753	0.599
90.0	8.9	82.5	0.215	6.866	10.893	0.040	0.900	0.420
105.0	8.6	94.8	0.278	8.381	10.235	0.046	0.850	0.319
120.0	8.3	105.8	0.359	9.068	10.094	0.055	0.759	0.272
135.0	8.1	114.5	0.348	8.484	10.050	0.060	0.596	0.302
150.0	8.0	127.8	0.441	7.751	10.247	0.074	0.522	0.312
165.0	7.8	141.5	0.519	6.444	10.673	0.085	0.402	0.324
180.0	7.7	155.3	0.718	6.103	10.538	0.100	0.296	0.342
195.0	7.7	171.9	0.723	6.009	10.527	0.109	0.374	0.371
210.0	8.7	201.6	0.861	7.786	10.406	0.102	0.945	0.458
225.0	9.3	223.0	0.885	9.295	10.443	0.091	1.372	0.504
240.0	9.6	239.4	0.538	8.805	10.435	0.078	1.559	0.525
255.0	9.7	254.2	0.525	8.930	10.644	0.068	1.729	0.613
270.0	9.5	268.7	0.357	8.974	10.590	0.060	1.740	0.612
285.0	9.3	282.5	0.427	9.037	10.733	0.048	1.686	0.612
300.0	8.9	295.7	0.320	9.591	10.634	0.057	1.521	0.556
315.0	8.2	306.6	0.510	8.893	10.635	0.092	1.454	0.600
330.0	7.7	315.2	0.744	8.439	10.695	0.126	1.451	0.645
345.0	7.6	325.2	0.949	8.422	10.846	0.161	1.453	0.690
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table S.67: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	Standard			
Heading	Me	ean		Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	13.3	-6.3	1.188	7.531	11.209	0.250	1.124	0.682	
15.0	13.2	7.7	1.073	7.330	11.075	0.252	1.077	0.701	
30.0	13.3	22.6	1.005	6.774	11.199	0.232	1.012	0.711	
45.0	13.7	38.6	0.716	6.310	11.417	0.187	0.861	0.675	
60.0	13.8	53.8	0.507	6.614	11.484	0.133	0.760	0.631	
75.0	14.3	71.1	0.312	7.722	11.623	0.075	0.960	0.471	
90.0	14.2	85.8	0.312	8.442	10.034	0.060	1.073	0.324	
105.0	14.0	99.9	0.429	9.202	9.495	0.076	1.031	0.254	
120.0	13.4	112.4	0.500	9.765	10.232	0.095	0.833	0.323	
135.0	13.5	127.9	0.637	9.353	10.446	0.112	0.823	0.339	
150.0	13.6	143.3	0.733	10.229	9.802	0.122	0.798	0.338	
165.0	13.7	159.4	0.626	8.660	9.847	0.132	0.812	0.357	
180.0	14.0	176.0	0.486	7.078	9.928	0.127	0.890	0.409	
195.0	14.1	192.4	0.609	8.203	10.261	0.129	1.162	0.480	
210.0	14.2	208.8	0.811	9.627	10.268	0.121	1.362	0.513	
225.0	14.3	224.6	0.803	9.880	10.319	0.113	1.587	0.563	
240.0	14.6	239.7	0.710	9.286	10.407	0.097	1.745	0.597	
255.0	14.7	254.8	0.600	10.293	10.397	0.084	1.928	0.745	
270.0	14.7	269.6	0.511	9.551	10.653	0.073	2.023	0.775	
285.0	14.6	284.1	0.380	9.692	11.034	0.060	1.995	0.750	
300.0	14.5	298.4	0.377	9.358	11.052	0.073	1.690	0.617	
315.0	14.3	312.5	0.631	9.421	10.341	0.126	1.490	0.636	
330.0	14.0	326.4	0.915	8.993	10.770	0.181	1.298	0.639	
345.0	13.7	340.2	1.047	8.140	10.856	0.224	1.182	0.654	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.68: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Me	ean		Maximui	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	19.4	-2.5	1.453	8.615	11.282	0.275	0.965	0.672	
15.0	19.4	12.4	1.253	7.813	11.202	0.271	0.921	0.671	
30.0	19.4	27.2	1.100	7.877	11.171	0.244	0.865	0.677	
45.0	19.4	42.1	0.889	7.342	11.481	0.199	0.805	0.665	
60.0	19.4	56.7	0.648	8.341	11.657	0.145	0.751	0.600	
75.0	19.7	72.5	0.345	8.613	10.716	0.087	1.183	0.474	
90.0	19.6	87.1	0.380	9.020	9.525	0.084	1.229	0.357	
105.0	19.5	101.8	0.549	10.451	9.275	0.108	1.223	0.402	
120.0	19.5	116.7	0.745	10.682	10.406	0.145	1.052	0.452	
135.0	19.4	131.5	0.751	10.263	9.785	0.162	1.025	0.478	
150.0	19.5	146.8	0.890	10.497	9.933	0.178	0.963	0.482	
165.0	19.5	162.4	0.737	8.794	9.981	0.189	0.938	0.499	
180.0	19.6	177.8	0.579	7.650	10.118	0.176	0.941	0.526	
195.0	19.6	193.7	0.695	7.751	10.264	0.176	1.243	0.581	
210.0	19.5	209.1	0.717	9.347	10.356	0.157	1.447	0.633	
225.0	19.6	224.3	0.551	9.026	10.351	0.146	1.701	0.702	
240.0	19.6	239.4	0.854	10.946	10.334	0.130	1.850	0.718	
255.0	19.8	254.7	0.494	10.575	10.507	0.106	2.067	0.909	
270.0	19.8	269.9	0.450	10.093	10.635	0.090	2.269	0.955	
285.0	19.8	284.6	0.393	10.653	11.009	0.075	2.257	0.980	
300.0	19.8	299.1	0.366	10.319	10.574	0.087	1.847	0.701	
315.0	19.7	313.6	0.687	10.336	10.771	0.146	1.603	0.723	
330.0	19.6	328.2	0.894	10.193	10.658	0.203	1.296	0.691	
345.0	19.5	342.8	1.292	9.229	11.033	0.249	1.090	0.665	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table S.69: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	24.8	-1.5	1.332	8.095	10.920	0.298	0.972	0.705
15.0	24.8	13.5	1.273	7.373	11.347	0.293	0.936	0.711
30.0	24.8	28.4	1.071	7.249	11.340	0.261	0.911	0.713
45.0	24.8	43.2	0.838	8.178	11.641	0.213	0.833	0.694
60.0	24.7	57.8	0.702	8.269	11.674	0.159	0.761	0.614
75.0	24.9	73.2	0.435	8.931	10.926	0.101	1.324	0.538
90.0	24.9	87.9	0.455	9.936	9.506	0.103	1.351	0.456
105.0	24.8	102.7	0.741	11.158	9.332	0.133	1.351	0.520
120.0	24.8	117.7	0.868	10.845	10.419	0.174	1.048	0.463
135.0	24.7	132.5	0.900	10.600	9.756	0.198	0.933	0.495
150.0	24.7	147.6	0.893	9.705	9.769	0.233	0.855	0.501
165.0	24.8	163.1	0.851	8.867	9.997	0.241	0.772	0.518
180.0	25.0	178.5	0.648	6.772	10.024	0.213	0.703	0.498
195.0	25.0	194.2	0.708	7.718	10.321	0.227	1.118	0.629
210.0	24.9	209.3	0.741	8.201	10.320	0.198	1.328	0.685
225.0	24.9	224.3	0.719	9.173	10.404	0.176	1.645	0.817
240.0	24.8	239.4	0.712	9.910	10.495	0.153	1.808	0.825
255.0	24.8	254.7	0.606	10.811	10.626	0.134	2.156	1.115
270.0	24.8	269.8	0.495	10.801	10.418	0.109	2.427	1.198
285.0	24.9	284.5	0.495	10.993	10.616	0.090	2.412	1.153
300.0	25.0	299.4	0.400	10.681	10.855	0.100	1.857	0.744
315.0	24.9	314.1	0.768	12.261	10.826	0.160	1.623	0.774
330.0	24.9	328.9	1.141	10.522	10.898	0.226	1.352	0.736
345.0	24.8	343.7	1.301	9.192	11.097	0.274	1.074	0.715
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table S.70: Accelerations at Hangar Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	S	Standard		
Heading	Mo	ean		Maximui	m	Ι	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	30.0	-0.9	1.417	8.068	11.589	0.316	1.039	0.746	
15.0	30.0	14.1	1.393	7.782	11.589	0.308	1.014	0.746	
30.0	30.0	28.9	1.197	7.927	11.502	0.278	0.972	0.751	
45.0	30.0	43.8	1.002	8.035	11.480	0.224	0.850	0.730	
60.0	30.0	58.5	0.780	8.612	11.558	0.168	0.752	0.648	
75.0	30.1	73.7	0.549	8.880	11.262	0.116	1.486	0.660	
90.0	30.0	88.4	0.601	10.097	9.697	0.120	1.494	0.564	
105.0	30.0	103.2	1.165	11.201	10.192	0.155	1.436	0.594	
120.0	29.9	118.4	1.005	9.327	10.638	0.202	1.159	0.434	
135.0	29.8	133.1	1.034	9.467	10.138	0.235	0.940	0.433	
150.0	29.9	148.2	0.807	7.796	10.040	0.259	0.677	0.414	
165.0	30.1	163.4	0.993	8.352	9.801	0.252	0.564	0.427	
180.0	30.4	178.7	0.977	7.142	10.133	0.277	0.658	0.467	
195.0	30.4	194.1	0.817	7.893	10.226	0.238	0.737	0.483	
210.0	30.2	209.5	1.016	9.314	10.413	0.243	1.314	0.685	
225.0	30.1	224.6	0.913	9.751	10.334	0.225	1.696	0.926	
240.0	30.1	239.6	0.714	9.425	10.464	0.179	1.797	0.905	
255.0	29.9	254.7	0.726	11.370	10.445	0.161	2.172	1.341	
270.0	29.9	269.6	0.692	10.894	10.476	0.133	2.490	1.407	
285.0	29.9	284.6	0.770	11.391	10.561	0.118	2.498	1.429	
300.0	30.1	299.5	0.474	11.342	10.871	0.111	1.839	0.766	
315.0	30.1	314.4	0.805	12.224	11.264	0.169	1.573	0.740	
330.0	30.1	329.3	1.087	10.503	10.972	0.241	1.267	0.756	
345.0	30.0	344.2	1.308	9.245	11.120	0.292	1.114	0.743	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

This page intentionally left blank.

Annex T Tables of Hangar Deck Accelerations – JONSWAP Spectrum (Coastal Waters)

Table T.1: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-28.4	0.798	1.939	10.520	0.185	0.370	0.265
15.0	-0.2	-6.7	0.761	0.931	10.463	0.167	0.148	0.222
30.0	-0.2	20.1	0.727	1.745	10.448	0.174	0.286	0.222
45.0	-0.2	35.0	0.738	2.203	10.546	0.190	0.491	0.248
60.0	-0.4	43.8	0.837	2.679	10.745	0.197	0.646	0.276
75.0	-0.6	50.6	0.757	3.781	11.361	0.199	0.754	0.307
90.0	-0.7	56.8	0.850	4.635	11.804	0.197	0.892	0.350
105.0	-0.8	60.5	0.811	4.569	11.545	0.194	0.933	0.374
120.0	-0.9	65.1	0.818	6.507	12.491	0.178	0.968	0.432
135.0	-2.1	102.4	0.857	6.953	12.703	0.160	1.074	0.505
150.0	-2.2	104.5	0.884	5.724	11.931	0.167	1.019	0.484
165.0	-2.4	103.6	1.059	6.183	12.321	0.155	1.012	0.520
180.0	-0.8	59.1	0.773	3.490	11.720	0.164	0.593	0.312
195.0	-0.2	352.3	0.753	2.775	11.215	0.185	0.612	0.304
210.0	-0.2	382.7	0.826	3.719	11.978	0.195	0.688	0.370
225.0	0.0	379.0	0.760	3.562	11.688	0.203	0.741	0.369
240.0	0.7	294.4	0.802	3.547	11.606	0.202	0.916	0.469
255.0	0.5	293.5	0.801	3.646	11.647	0.201	0.938	0.489
270.0	0.3	296.5	0.787	3.951	12.113	0.204	0.932	0.474
285.0	0.1	300.8	0.681	3.286	11.507	0.209	0.865	0.436
300.0	0.0	305.3	0.750	3.310	11.061	0.209	0.795	0.402
315.0	-0.0	309.8	0.801	3.029	11.105	0.209	0.713	0.370
330.0	-0.1	315.0	0.822	2.881	10.841	0.205	0.609	0.337
345.0	-0.1	321.5	0.818	2.505	10.789	0.198	0.502	0.303
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.2: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.8	-2.1	0.697	0.960	10.596	0.192	0.143	0.267
15.0	4.8	12.8	0.794	1.042	10.584	0.195	0.192	0.266
30.0	4.7	27.8	0.925	1.343	10.610	0.209	0.301	0.282
45.0	4.7	42.2	0.844	2.305	10.665	0.225	0.488	0.317
60.0	4.4	53.9	0.864	3.276	10.976	0.229	0.676	0.361
75.0	4.1	56.6	0.796	3.942	11.130	0.225	0.743	0.377
90.0	4.1	60.8	0.749	4.418	11.867	0.220	0.823	0.407
105.0	4.1	63.1	0.751	4.247	11.636	0.216	0.849	0.418
120.0	4.1	64.0	0.712	3.326	11.602	0.215	0.842	0.427
135.0	4.0	64.2	0.728	3.443	11.569	0.217	0.835	0.426
150.0	4.1	74.6	0.847	3.288	11.365	0.209	0.778	0.395
165.0	4.9	163.1	0.364	1.495	10.304	0.096	0.283	0.100
180.0	4.9	178.7	0.357	1.029	10.284	0.090	0.185	0.094
195.0	4.9	194.1	0.348	1.234	10.328	0.092	0.262	0.104
210.0	4.8	210.3	0.397	1.871	10.423	0.105	0.425	0.136
225.0	4.5	283.4	0.760	4.166	12.237	0.194	0.911	0.562
240.0	4.6	285.3	0.671	3.397	12.493	0.191	0.940	0.618
255.0	4.5	286.8	0.743	3.906	12.725	0.198	0.936	0.613
270.0	4.5	288.9	0.796	3.758	12.455	0.206	0.918	0.591
285.0	4.7	291.3	0.895	3.740	12.213	0.218	0.896	0.555
300.0	4.9	301.2	0.816	3.515	11.317	0.236	0.764	0.436
315.0	4.8	314.0	0.934	2.429	10.907	0.234	0.551	0.353
330.0	4.8	328.1	0.840	1.889	10.683	0.218	0.357	0.306
345.0	4.8	343.0	0.768	1.159	10.649	0.201	0.191	0.279
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.3: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	10.0	-0.6	0.851	0.903	10.726	0.214	0.103	0.311
15.0	10.0	14.4	0.777	0.997	10.738	0.220	0.147	0.306
30.0	10.0	29.4	0.942	1.397	10.736	0.237	0.278	0.310
45.0	9.9	44.5	0.923	2.252	10.854	0.253	0.467	0.329
60.0	10.0	59.1	0.892	3.849	11.062	0.252	0.693	0.426
75.0	10.0	73.0	0.812	4.851	11.968	0.214	0.837	0.630
90.0	9.7	86.0	0.405	5.699	12.783	0.088	0.921	0.791
105.0	9.4	100.8	0.676	5.650	12.152	0.109	0.991	0.490
120.0	9.6	116.9	0.370	3.669	10.988	0.097	0.910	0.264
135.0	9.9	133.2	0.284	3.161	10.281	0.085	1.012	0.147
150.0	10.0	148.8	0.239	3.389	10.138	0.074	1.086	0.119
165.0	10.1	164.1	0.249	3.691	10.028	0.065	0.882	0.093
180.0	10.1	179.2	0.233	2.393	9.927	0.062	0.536	0.059
195.0	10.1	194.7	0.242	1.892	10.069	0.068	0.515	0.053
210.0	10.1	210.3	0.258	2.429	10.187	0.075	0.847	0.086
225.0	10.0	225.9	0.284	2.964	10.412	0.087	0.915	0.145
240.0	9.7	242.3	0.393	2.919	10.991	0.101	0.914	0.264
255.0	9.5	259.2	0.687	4.452	12.008	0.118	1.031	0.522
270.0	9.8	273.7	0.452	5.059	12.965	0.076	0.989	0.848
285.0	10.2	286.6	0.847	3.287	12.370	0.214	0.881	0.720
300.0	10.1	300.1	0.952	3.390	11.237	0.256	0.720	0.488
315.0	10.0	314.7	0.904	2.020	10.961	0.258	0.474	0.352
330.0	10.0	329.6	0.945	1.588	10.811	0.242	0.283	0.319
345.0	10.0	344.6	0.807	1.159	10.642	0.223	0.150	0.311
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.4: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.2	0.857	1.046	10.707	0.236	0.097	0.306
15.0	15.2	14.8	0.794	1.143	10.786	0.243	0.151	0.304
30.0	15.1	29.8	0.960	1.571	10.808	0.261	0.274	0.324
45.0	15.1	44.8	1.004	2.431	11.072	0.277	0.450	0.388
60.0	15.2	59.7	1.020	3.240	11.510	0.268	0.665	0.539
75.0	15.2	74.1	0.766	4.417	12.303	0.215	0.806	0.757
90.0	15.1	88.5	0.279	5.437	12.899	0.047	0.902	0.794
105.0	15.0	103.3	0.475	7.499	12.877	0.088	1.001	0.429
120.0	15.0	118.5	0.282	4.466	10.642	0.067	1.413	0.252
135.0	15.2	134.3	0.218	4.369	10.269	0.052	1.445	0.207
150.0	15.3	149.7	0.204	3.186	10.056	0.057	0.856	0.101
165.0	15.3	164.7	0.219	2.054	9.946	0.059	0.435	0.058
180.0	15.2	179.5	0.296	2.421	9.922	0.062	0.340	0.057
195.0	15.2	194.7	0.178	2.205	9.862	0.055	0.411	0.037
210.0	15.2	209.8	0.171	2.476	9.899	0.043	0.605	0.043
225.0	15.2	225.4	0.237	3.978	10.348	0.055	1.434	0.120
240.0	15.1	241.1	0.233	4.297	10.638	0.073	1.405	0.201
255.0	15.0	256.7	0.578	4.594	12.168	0.096	1.073	0.426
270.0	15.1	271.5	0.323	4.938	12.756	0.042	1.021	0.846
285.0	15.3	285.8	0.768	3.511	12.468	0.213	0.894	0.837
300.0	15.2	300.1	0.966	2.562	11.463	0.269	0.672	0.607
315.0	15.1	314.8	0.950	1.889	11.188	0.280	0.450	0.429
330.0	15.1	329.8	0.968	1.476	11.075	0.264	0.260	0.342
345.0	15.2	344.8	0.886	0.978	10.853	0.244	0.132	0.311
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table T.5: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	tandard	
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	20.3	-0.1	0.865	1.140	11.259	0.252	0.103	0.401	
15.0	20.3	14.9	0.865	1.317	11.257	0.259	0.153	0.412	
30.0	20.3	29.9	0.982	1.630	11.338	0.280	0.265	0.468	
45.0	20.3	44.9	1.030	2.359	11.603	0.295	0.433	0.564	
60.0	20.3	59.8	1.048	3.540	11.899	0.282	0.642	0.708	
75.0	20.4	74.5	0.768	4.251	12.462	0.217	0.791	0.868	
90.0	20.3	89.1	0.322	6.503	12.579	0.041	0.897	0.788	
105.0	20.2	104.1	0.407	5.899	11.674	0.070	1.097	0.394	
120.0	20.3	119.3	0.193	5.561	10.548	0.042	1.835	0.304	
135.0	20.2	134.8	0.226	4.646	10.165	0.057	1.510	0.182	
150.0	20.4	149.8	0.254	2.855	9.948	0.064	0.723	0.071	
165.0	20.3	164.6	0.325	2.772	9.895	0.066	0.382	0.058	
180.0	20.6	179.8	0.267	3.263	9.909	0.068	0.324	0.054	
195.0	20.4	194.7	0.320	3.714	9.887	0.063	0.577	0.087	
210.0	20.3	209.8	0.294	4.203	9.899	0.060	0.888	0.122	
225.0	20.3	225.1	0.185	4.865	9.914	0.048	1.404	0.148	
240.0	20.3	240.6	0.247	5.296	10.916	0.050	1.967	0.197	
255.0	20.2	255.9	0.367	4.599	11.449	0.078	1.184	0.363	
270.0	20.3	270.9	0.285	4.992	12.721	0.039	1.068	0.832	
285.0	20.4	285.5	0.904	4.359	13.016	0.211	0.932	0.939	
300.0	20.3	300.1	0.915	2.429	12.074	0.280	0.684	0.770	
315.0	20.3	315.0	0.994	1.915	11.753	0.295	0.441	0.607	
330.0	20.3	329.9	1.009	1.382	11.449	0.280	0.254	0.493	
345.0	20.3	344.9	0.845	1.071	11.419	0.259	0.139	0.424	
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table T.6: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.938	1.292	11.471	0.259	0.124	0.570
15.0	25.4	14.9	0.839	1.376	11.584	0.267	0.149	0.593
30.0	25.4	29.9	0.955	2.008	11.822	0.290	0.252	0.673
45.0	25.4	44.9	1.078	2.671	12.223	0.307	0.418	0.783
60.0	25.4	59.8	1.024	3.489	12.234	0.293	0.634	0.889
75.0	25.4	74.6	0.763	4.336	13.033	0.217	0.792	0.970
90.0	25.4	89.4	0.270	6.820	12.842	0.040	0.901	0.780
105.0	25.4	104.4	0.285	6.069	11.514	0.056	1.245	0.362
120.0	25.3	119.7	0.385	7.137	10.840	0.060	2.434	0.358
135.0	25.3	134.9	0.313	4.603	9.900	0.065	1.286	0.138
150.0	25.5	149.8	0.346	2.647	9.934	0.074	0.557	0.064
165.0	25.5	164.8	0.356	2.386	9.997	0.077	0.350	0.067
180.0	25.4	179.8	0.388	3.439	9.976	0.083	0.492	0.098
195.0	25.5	194.9	0.797	3.562	9.986	0.079	0.559	0.096
210.0	25.4	210.0	0.381	3.790	9.946	0.072	0.788	0.114
225.0	25.3	225.0	0.267	5.224	9.885	0.061	1.364	0.187
240.0	25.3	240.2	0.298	6.641	10.530	0.053	2.349	0.283
255.0	25.4	255.5	0.334	4.973	11.381	0.065	1.357	0.309
270.0	25.4	270.6	0.287	5.224	12.699	0.042	1.095	0.818
285.0	25.4	285.3	0.795	4.374	13.349	0.210	0.987	1.036
300.0	25.4	300.1	0.970	2.682	12.387	0.287	0.731	0.946
315.0	25.4	315.1	1.022	1.884	12.395	0.304	0.470	0.818
330.0	25.4	330.0	0.941	1.587	12.014	0.288	0.281	0.691
345.0	25.4	345.0	0.827	1.174	11.672	0.267	0.162	0.601
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.7: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.1	0.876	1.328	11.821	0.257	0.141	0.712
15.0	30.5	14.9	0.935	1.589	11.950	0.266	0.150	0.744
30.0	30.5	29.9	0.956	2.055	12.189	0.292	0.238	0.848
45.0	30.5	44.9	1.035	2.934	12.408	0.313	0.411	0.986
60.0	30.5	59.9	0.991	3.698	12.713	0.298	0.634	1.066
75.0	30.5	74.7	0.727	4.320	13.291	0.219	0.782	1.068
90.0	30.5	89.6	0.215	5.510	13.146	0.042	0.919	0.769
105.0	30.5	104.6	0.232	5.631	11.202	0.053	1.439	0.341
120.0	30.4	119.9	0.445	5.872	10.330	0.076	2.195	0.304
135.0	30.4	134.9	0.289	3.679	9.915	0.075	1.118	0.115
150.0	30.6	149.8	0.382	3.472	10.083	0.082	0.626	0.096
165.0	30.4	165.0	0.456	2.531	10.040	0.087	0.443	0.100
180.0	30.7	179.9	0.455	3.180	10.080	0.084	0.550	0.120
195.0	30.4	194.8	0.429	3.987	10.073	0.089	0.744	0.142
210.0	30.6	210.0	0.336	4.371	10.041	0.084	0.940	0.146
225.0	30.4	225.0	0.289	4.067	9.893	0.073	1.234	0.157
240.0	30.4	240.0	0.390	6.772	10.277	0.069	2.214	0.324
255.0	30.5	255.3	0.323	7.984	11.551	0.061	1.643	0.278
270.0	30.5	270.4	0.202	5.056	12.917	0.047	1.136	0.803
285.0	30.5	285.3	0.669	4.299	13.229	0.209	1.013	1.130
300.0	30.5	300.1	0.971	3.120	13.068	0.291	0.794	1.116
315.0	30.5	315.1	1.054	2.045	12.720	0.307	0.529	1.010
330.0	30.5	330.1	0.904	1.646	12.274	0.287	0.314	0.856
345.0	30.5	345.0	0.833	1.383	11.996	0.266	0.191	0.749
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.8: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	0.0	-14.0	0.543	1.840	10.382	0.135	0.429	0.207
15.0	-0.1	-6.1	0.579	1.294	10.381	0.136	0.276	0.200
30.0	-0.3	2.2	0.663	1.696	10.367	0.136	0.332	0.196
45.0	-0.3	16.8	0.599	2.234	10.436	0.133	0.592	0.202
60.0	-0.2	36.1	0.532	3.118	10.542	0.125	0.857	0.226
75.0	-0.1	52.3	0.409	3.855	10.985	0.110	0.993	0.257
90.0	-0.0	65.2	0.351	3.895	10.875	0.086	1.029	0.285
105.0	-0.1	82.6	0.211	3.223	11.108	0.032	1.023	0.321
120.0	-0.3	97.2	0.307	3.986	11.021	0.031	1.034	0.324
135.0	-0.6	105.0	0.321	4.361	11.012	0.055	1.040	0.312
150.0	-0.9	109.1	0.373	4.097	10.958	0.067	1.031	0.304
165.0	-0.5	40.2	0.515	3.702	10.919	0.116	0.689	0.240
180.0	-0.3	35.7	0.538	2.727	10.709	0.130	0.550	0.214
195.0	0.1	362.1	0.507	2.734	10.595	0.126	0.666	0.226
210.0	0.2	354.0	0.528	3.103	10.711	0.113	0.834	0.262
225.0	0.3	264.4	0.345	3.679	11.421	0.038	1.012	0.357
240.0	0.3	272.2	0.294	3.491	11.398	0.029	1.006	0.367
255.0	0.3	283.8	0.251	3.804	11.124	0.056	0.997	0.356
270.0	0.3	294.1	0.343	3.457	11.289	0.086	0.988	0.329
285.0	0.2	302.8	0.411	3.325	11.187	0.104	0.965	0.301
300.0	0.1	311.1	0.421	3.273	10.959	0.116	0.917	0.275
315.0	0.1	319.6	0.503	2.896	10.705	0.124	0.847	0.253
330.0	0.1	328.7	0.486	2.707	10.591	0.128	0.738	0.233
345.0	0.0	337.9	0.530	2.311	10.445	0.132	0.588	0.218
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.9: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual	Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.8	-2.5	0.684	1.104	10.457	0.158	0.186	0.221
15.0	4.8	11.8	0.625	1.566	10.446	0.157	0.345	0.221
30.0	4.7	26.3	0.657	2.353	10.512	0.151	0.585	0.231
45.0	4.7	41.0	0.531	2.964	10.524	0.141	0.779	0.251
60.0	4.7	55.3	0.453	3.325	10.985	0.123	0.901	0.281
75.0	4.7	69.9	0.325	3.732	11.026	0.080	0.952	0.326
90.0	4.6	83.5	0.112	3.379	11.253	0.024	0.963	0.352
105.0	4.4	95.7	0.170	3.756	11.187	0.021	0.971	0.338
120.0	4.3	104.0	0.278	3.261	11.025	0.042	0.956	0.312
135.0	4.2	112.8	0.295	3.417	10.803	0.058	0.930	0.282
150.0	4.2	128.2	0.350	3.113	10.587	0.075	0.809	0.233
165.0	4.6	161.0	0.324	1.653	10.382	0.087	0.361	0.161
180.0	4.8	178.1	0.316	1.269	10.369	0.088	0.278	0.145
195.0	4.9	194.6	0.338	1.589	10.393	0.086	0.433	0.146
210.0	4.9	211.3	0.364	2.195	10.409	0.082	0.631	0.164
225.0	4.7	228.6	0.391	2.929	10.827	0.077	0.803	0.205
240.0	4.7	245.3	0.268	3.201	10.759	0.062	0.917	0.266
255.0	4.8	258.9	0.190	3.224	10.974	0.036	0.956	0.329
270.0	4.9	272.8	0.104	3.233	11.199	0.013	0.948	0.376
285.0	5.0	287.0	0.300	3.674	11.350	0.071	0.913	0.365
300.0	5.0	301.0	0.412	2.901	10.867	0.118	0.866	0.313
315.0	5.0	314.8	0.553	2.526	10.715	0.140	0.734	0.268
330.0	4.9	329.0	0.573	2.258	10.517	0.150	0.572	0.245
345.0	4.9	343.3	0.666	1.704	10.503	0.155	0.372	0.229
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

290

Table T.10: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.0	-0.6	0.824	0.895	10.555	0.180	0.091	0.242
15.0	10.0	14.4	0.748	1.506	10.497	0.176	0.265	0.239
30.0	10.0	29.4	0.710	2.136	10.655	0.169	0.470	0.244
45.0	10.1	44.4	0.575	2.435	10.728	0.155	0.638	0.260
60.0	10.1	59.3	0.451	2.976	11.062	0.128	0.771	0.310
75.0	10.1	74.0	0.296	3.189	11.508	0.070	0.796	0.362
90.0	10.1	88.8	0.061	3.360	11.308	0.014	0.830	0.358
105.0	10.1	103.7	0.163	3.818	11.137	0.032	0.847	0.304
120.0	10.0	118.3	0.225	3.818	10.781	0.048	0.896	0.250
135.0	10.0	133.5	0.213	3.102	10.523	0.055	0.839	0.202
150.0	10.0	148.8	0.207	2.897	10.275	0.059	0.772	0.169
165.0	10.0	164.0	0.320	2.867	10.325	0.062	0.602	0.142
180.0	10.1	179.3	0.270	2.209	10.146	0.061	0.374	0.119
195.0	10.1	194.6	0.244	1.864	10.186	0.062	0.422	0.107
210.0	10.1	210.2	0.261	2.231	10.240	0.060	0.709	0.119
225.0	10.0	225.8	0.237	2.582	10.447	0.057	0.902	0.151
240.0	10.0	241.2	0.247	3.115	10.756	0.051	0.991	0.210
255.0	10.1	255.9	0.181	3.578	11.058	0.036	0.953	0.284
270.0	10.2	270.7	0.061	3.273	11.255	0.016	0.913	0.366
285.0	10.2	285.3	0.256	3.505	11.195	0.067	0.852	0.390
300.0	10.1	299.9	0.443	3.019	11.155	0.127	0.778	0.341
315.0	10.1	314.6	0.570	2.471	10.710	0.156	0.610	0.281
330.0	10.1	329.5	0.694	1.854	10.636	0.169	0.421	0.257
345.0	10.1	344.4	0.664	1.227	10.534	0.176	0.231	0.246
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.11: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.3	0.849	0.959	10.617	0.199	0.085	0.260
15.0	15.2	14.8	0.791	1.411	10.612	0.196	0.243	0.257
30.0	15.2	29.9	0.731	1.984	10.768	0.186	0.428	0.265
45.0	15.2	44.9	0.618	2.437	10.867	0.171	0.590	0.293
60.0	15.2	59.8	0.479	2.937	10.946	0.138	0.736	0.356
75.0	15.3	74.6	0.253	2.841	11.229	0.072	0.728	0.390
90.0	15.3	89.5	0.079	3.500	11.347	0.021	0.763	0.356
105.0	15.3	104.4	0.150	3.583	11.141	0.031	0.812	0.289
120.0	15.2	119.2	0.182	4.041	10.615	0.039	1.083	0.254
135.0	15.2	134.5	0.179	3.644	10.281	0.040	1.049	0.198
150.0	15.3	149.8	0.166	2.509	10.094	0.043	0.643	0.133
165.0	15.2	164.7	0.198	1.763	10.122	0.044	0.331	0.108
180.0	15.2	179.7	0.188	1.541	10.102	0.052	0.222	0.098
195.0	15.2	194.8	0.187	2.579	10.003	0.046	0.373	0.085
210.0	15.2	209.9	0.155	2.997	9.997	0.039	0.657	0.082
225.0	15.2	225.3	0.227	3.655	10.240	0.045	1.187	0.124
240.0	15.2	240.6	0.187	3.536	10.636	0.042	1.200	0.174
255.0	15.3	255.4	0.184	3.366	11.029	0.035	0.993	0.249
270.0	15.3	270.3	0.086	3.645	11.337	0.023	0.909	0.355
285.0	15.3	285.1	0.237	3.520	11.176	0.069	0.824	0.417
300.0	15.2	299.9	0.488	3.400	11.050	0.137	0.733	0.396
315.0	15.2	314.7	0.568	2.529	10.940	0.170	0.547	0.326
330.0	15.2	329.7	0.688	1.899	10.768	0.187	0.367	0.286
345.0	15.2	344.7	0.836	1.276	10.686	0.195	0.180	0.268
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table T.12: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.3	-0.1	0.813	1.114	10.941	0.217	0.096	0.333
15.0	20.3	14.9	0.864	1.479	10.929	0.213	0.241	0.333
30.0	20.3	30.0	0.733	1.939	10.876	0.202	0.414	0.347
45.0	20.3	45.0	0.624	2.498	10.991	0.183	0.578	0.378
60.0	20.3	59.9	0.559	2.943	11.472	0.148	0.738	0.430
75.0	20.4	74.8	0.282	3.343	11.386	0.075	0.680	0.416
90.0	20.4	89.7	0.100	3.496	11.326	0.027	0.715	0.350
105.0	20.4	104.7	0.146	3.742	10.986	0.034	0.775	0.271
120.0	20.3	119.6	0.161	5.044	10.345	0.041	1.416	0.261
135.0	20.3	134.9	0.160	3.449	10.060	0.041	1.036	0.159
150.0	20.4	149.9	0.142	1.977	10.016	0.041	0.562	0.100
165.0	20.3	164.8	0.180	1.454	10.041	0.045	0.282	0.073
180.0	20.4	179.9	0.176	2.046	9.981	0.050	0.188	0.069
195.0	20.3	194.8	0.210	3.730	10.001	0.055	0.477	0.077
210.0	20.4	209.9	0.173	4.022	9.959	0.039	0.647	0.080
225.0	20.4	225.0	0.139	4.166	9.962	0.034	0.962	0.094
240.0	20.3	240.3	0.234	5.192	10.352	0.042	1.464	0.149
255.0	20.4	255.2	0.188	3.803	10.809	0.037	0.987	0.217
270.0	20.4	270.1	0.106	3.628	11.190	0.030	0.891	0.342
285.0	20.4	285.0	0.272	3.610	11.480	0.072	0.793	0.450
300.0	20.3	299.9	0.493	3.314	11.186	0.144	0.702	0.475
315.0	20.3	314.8	0.672	2.402	11.109	0.182	0.510	0.418
330.0	20.3	329.8	0.747	1.998	11.029	0.201	0.332	0.373
345.0	20.3	344.8	0.867	1.376	11.017	0.213	0.156	0.347
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.13: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.920	1.304	11.386	0.231	0.118	0.471
15.0	25.4	15.0	0.833	1.531	11.526	0.228	0.242	0.469
30.0	25.4	30.0	0.924	2.328	11.511	0.216	0.403	0.479
45.0	25.4	45.0	0.728	2.577	11.471	0.194	0.568	0.499
60.0	25.4	60.0	0.545	3.280	11.649	0.156	0.740	0.523
75.0	25.4	74.9	0.268	2.851	11.376	0.079	0.653	0.457
90.0	25.4	89.8	0.119	3.425	11.288	0.033	0.688	0.341
105.0	25.4	104.8	0.170	3.573	10.729	0.041	0.774	0.249
120.0	25.4	119.9	0.187	4.693	10.028	0.050	1.657	0.248
135.0	25.4	134.9	0.184	4.059	9.953	0.050	0.980	0.126
150.0	25.4	149.9	0.164	2.218	9.937	0.055	0.643	0.081
165.0	25.5	164.9	0.215	1.847	9.948	0.067	0.357	0.067
180.0	25.5	179.9	0.249	2.123	10.005	0.069	0.195	0.058
195.0	25.5	195.0	0.186	2.279	9.947	0.061	0.355	0.059
210.0	25.5	210.0	0.152	3.754	9.895	0.045	0.617	0.084
225.0	25.4	225.0	0.131	4.270	9.920	0.043	1.085	0.124
240.0	25.4	240.1	0.175	6.201	9.900	0.043	1.528	0.155
255.0	25.4	255.1	0.203	4.244	10.773	0.042	0.945	0.189
270.0	25.4	270.1	0.126	3.400	10.950	0.036	0.834	0.329
285.0	25.4	285.0	0.265	3.942	11.431	0.075	0.744	0.486
300.0	25.4	299.9	0.513	3.133	11.608	0.151	0.675	0.564
315.0	25.4	314.9	0.714	2.432	11.490	0.192	0.479	0.535
330.0	25.4	329.9	0.846	2.116	11.436	0.214	0.308	0.506
345.0	25.4	344.9	0.999	1.393	11.624	0.227	0.155	0.483
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.14: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	5	Standar	d
Heading		ean	l	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.047	1.434	12.255	0.244	0.145	0.637
15.0	30.5	15.0	0.918	1.691	11.693	0.240	0.247	0.633
30.0	30.5	30.0	0.838	2.246	11.911	0.226	0.393	0.633
45.0	30.5	45.0	0.709	2.781	11.696	0.203	0.551	0.632
60.0	30.5	60.0	0.583	3.214	11.809	0.163	0.737	0.622
75.0	30.5	74.9	0.272	3.060	11.637	0.083	0.620	0.498
90.0	30.5	89.9	0.137	3.295	11.244	0.038	0.680	0.330
105.0	30.5	104.9	0.204	3.389	10.591	0.049	0.844	0.232
120.0	30.4	119.9	0.262	5.840	9.958	0.064	1.751	0.236
135.0	30.5	134.9	0.206	3.330	9.921	0.060	0.995	0.111
150.0	30.6	149.8	0.287	2.681	9.937	0.086	0.661	0.087
165.0	30.7	164.9	0.293	2.054	9.959	0.094	0.364	0.053
180.0	30.6	179.8	0.371	2.125	9.900	0.102	0.279	0.046
195.0	30.7	195.0	0.287	2.964	9.900	0.091	0.458	0.063
210.0	30.6	210.1	0.319	3.661	9.913	0.077	0.695	0.083
225.0	30.5	225.0	0.241	4.723	9.949	0.055	1.021	0.141
240.0	30.5	240.0	0.201	5.524	9.888	0.048	1.434	0.148
255.0	30.5	255.1	0.184	3.982	10.530	0.049	0.891	0.164
270.0	30.5	270.0	0.154	3.319	10.975	0.042	0.765	0.316
285.0	30.5	285.0	0.267	4.097	11.670	0.079	0.689	0.528
300.0	30.5	299.9	0.516	3.629	11.995	0.157	0.650	0.659
315.0	30.5	314.9	0.757	2.805	11.833	0.199	0.463	0.663
330.0	30.5	329.9	0.883	2.178	11.935	0.225	0.303	0.656
345.0	30.5	344.9	0.977	1.612	11.991	0.239	0.177	0.644
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.15: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Actual Absolute					d
Heading	Mo	ean		Maximui	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.1	-21.2	1.342	3.236	10.941	0.282	0.612	0.399
15.0	-0.2	-12.9	1.245	2.392	10.761	0.280	0.429	0.373
30.0	-0.5	-0.8	1.208	2.082	10.782	0.276	0.347	0.348
45.0	-0.9	12.3	1.293	3.042	10.749	0.274	0.621	0.339
60.0	-1.1	23.7	1.122	3.907	10.986	0.273	0.900	0.356
75.0	-1.8	34.8	1.739	7.114	12.680	0.265	1.273	0.440
90.0	-2.2	-14.4	1.282	10.949	12.748	0.261	1.550	0.491
105.0	-1.6	-3.1	1.254	10.846	13.746	0.263	1.484	0.489
120.0	-1.2	13.1	1.061	8.374	13.420	0.237	1.445	0.531
135.0	-3.2	107.2	1.834	12.035	13.846	0.224	1.659	0.686
150.0	-4.1	109.6	1.141	7.956	12.973	0.228	1.596	0.652
165.0	-3.7	111.5	2.209	9.550	13.358	0.234	1.569	0.644
180.0	-0.8	153.3	0.852	7.153	12.178	0.216	0.704	0.345
195.0	-0.3	17.5	1.262	6.173	12.333	0.277	0.880	0.448
210.0	-0.3	387.8	1.238	4.979	12.019	0.280	0.990	0.482
225.0	-0.3	393.4	1.179	5.380	12.237	0.281	1.111	0.507
240.0	-0.1	392.3	1.146	5.905	12.554	0.279	1.241	0.552
255.0	0.5	310.5	1.272	6.605	13.024	0.266	1.458	0.651
270.0	-0.1	314.6	2.034	7.196	12.878	0.272	1.433	0.644
285.0	-0.2	305.4	1.234	4.950	12.126	0.281	1.270	0.580
300.0	-0.3	310.6	1.080	6.367	12.297	0.283	1.171	0.539
315.0	-0.2	316.2	1.187	4.588	11.736	0.288	1.101	0.502
330.0	-0.1	323.1	1.309	4.923	11.365	0.287	0.922	0.464
345.0	-0.1	330.8	1.336	4.404	11.090	0.285	0.770	0.431
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.16: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean		Maximu			Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{ m kts}$	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.0	-12.7	1.406	2.544	10.824	0.316	0.407	0.404
15.0	3.9	-1.6	1.314	2.244	10.910	0.312	0.350	0.389
30.0	3.9	10.9	1.459	2.196	10.791	0.311	0.387	0.385
45.0	3.8	22.6	1.483	2.857	10.813	0.313	0.554	0.392
60.0	3.8	32.4	1.352	3.526	10.956	0.312	0.770	0.415
75.0	3.7	39.8	1.401	4.895	11.384	0.309	0.932	0.439
90.0	3.6	42.9	1.290	6.936	12.960	0.306	1.016	0.464
105.0	3.6	45.4	1.246	9.885	13.902	0.303	1.092	0.491
120.0	3.7	45.3	1.379	11.747	12.183	0.307	1.095	0.506
135.0	3.7	42.8	1.363	4.738	11.639	0.306	0.964	0.478
150.0	3.7	44.0	1.366	5.140	11.884	0.308	0.929	0.488
165.0	3.8	51.5	1.205	5.416	11.761	0.306	0.998	0.488
180.0	4.7	178.8	0.613	2.165	10.743	0.153	0.457	0.181
195.0	4.6	196.7	0.603	2.250	10.906	0.157	0.568	0.212
210.0	4.1	373.7	1.364	4.992	12.851	0.314	0.821	0.463
225.0	4.4	300.1	1.063	6.458	13.244	0.287	1.262	0.605
240.0	4.5	289.0	1.079	6.950	13.834	0.260	1.461	0.759
255.0	4.4	290.4	1.163	6.874	13.686	0.270	1.482	0.767
270.0	4.3	294.0	2.269	6.866	13.443	0.286	1.396	0.719
285.0	4.4	296.8	1.338	6.801	13.869	0.293	1.338	0.676
300.0	4.6	302.9	1.334	4.751	12.082	0.308	1.200	0.608
315.0	4.6	314.4	1.301	4.438	11.294	0.321	0.960	0.522
330.0	4.5	326.6	1.416	4.689	11.362	0.324	0.714	0.465
345.0	4.3	338.2	1.377	2.739	11.062	0.320	0.526	0.426
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table T.17: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	9.7	-1.2	1.475	1.843	10.969	0.348	0.262	0.437
15.0	9.7	13.7	1.505	2.219	10.888	0.349	0.341	0.435
30.0	9.7	28.7	1.362	2.727	11.066	0.352	0.543	0.447
45.0	9.7	43.7	1.465	3.945	11.278	0.347	0.817	0.482
60.0	9.7	58.1	1.173	5.667	11.835	0.322	1.113	0.571
75.0	9.7	71.5	1.182	7.704	13.285	0.269	1.358	0.771
90.0	8.7	77.7	1.419	8.369	14.035	0.213	1.512	0.881
105.0	8.6	81.7	0.921	9.994	13.980	0.168	1.591	0.917
120.0	8.5	85.6	0.852	9.311	14.189	0.140	1.645	0.918
135.0	8.5	100.0	0.954	9.561	13.867	0.129	1.605	0.770
150.0	9.3	145.5	0.472	3.993	10.574	0.118	1.352	0.245
165.0	9.7	162.2	0.347	4.204	10.320	0.110	1.265	0.213
180.0	9.9	178.2	0.368	4.073	10.133	0.106	0.980	0.155
195.0	10.0	194.6	0.372	3.086	10.388	0.110	0.821	0.110
210.0	9.8	211.6	0.430	3.476	10.544	0.118	1.188	0.168
225.0	8.9	239.9	0.914	7.801	13.370	0.142	1.478	0.463
240.0	8.5	268.0	1.391	12.094	13.851	0.146	1.745	0.892
255.0	8.5	273.6	1.327	8.569	13.779	0.137	1.663	0.960
270.0	9.0	279.6	1.989	7.940	13.905	0.184	1.556	1.014
285.0	9.9	287.8	1.644	5.999	13.699	0.272	1.386	0.900
300.0	9.9	300.3	1.167	4.285	11.831	0.325	1.126	0.679
315.0	9.8	314.3	1.540	3.807	11.371	0.353	0.863	0.542
330.0	9.7	329.0	1.575	3.135	11.157	0.357	0.578	0.481
345.0	9.7	343.9	1.465	2.422	10.993	0.353	0.358	0.448
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.18: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots

Cmd	Acı	tual		Absolute	<u> </u>	5	Standar	d	
Heading		ean		Maximu			Deviatio		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	$\overline{ ext{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	15.0	-0.5	1.452	1.743	11.317	0.380	0.242	0.461	
15.0	15.0	14.6	1.412	2.062	11.241	0.381	0.341	0.463	
30.0	15.0	29.6	1.422	2.729	11.224	0.385	0.532	0.492	
45.0	15.0	44.7	1.389	3.777	11.344	0.375	0.785	0.555	
60.0	15.0	59.4	1.425	5.922	12.098	0.341	1.057	0.698	
75.0	15.1	73.6	1.132	6.566	13.615	0.266	1.249	0.924	
90.0	14.8	87.3	0.910	8.780	14.436	0.094	1.409	0.991	
105.0	14.6	101.8	0.661	10.089	14.068	0.111	1.603	0.699	
120.0	14.5	115.8	0.701	10.545	14.087	0.095	1.762	0.531	
135.0	14.9	133.2	0.384	5.192	10.870	0.079	1.775	0.348	
150.0	15.0	149.1	0.359	4.211	10.381	0.090	1.276	0.238	
165.0	15.0	164.2	0.386	3.527	10.232	0.089	0.732	0.150	
180.0	15.1	179.2	0.483	3.340	10.178	0.095	0.578	0.128	
195.0	15.0	194.5	0.301	4.472	9.973	0.098	0.843	0.105	
210.0	15.0	209.7	0.288	4.401	9.996	0.082	1.217	0.119	
225.0	15.0	226.9	0.679	6.949	12.179	0.086	1.892	0.218	
240.0	14.4	244.9	0.805	9.669	12.811	0.114	1.883	0.463	
255.0	14.4	259.4	1.308	9.846	14.401	0.128	1.801	0.707	
270.0	14.7	273.0	0.616	8.234	14.366	0.087	1.659	1.057	
285.0	15.2	286.3	1.073	6.150	13.399	0.264	1.381	1.046	
300.0	15.1	300.0	1.296	5.657	12.176	0.340	1.092	0.813	
315.0	15.0	314.5	1.462	3.333	11.641	0.376	0.777	0.633	
330.0	15.0	329.5	1.469	2.776	11.485	0.387	0.515	0.539	
345.0 15.0 344.5 1.519 1.941 11.519 0.383 0.311 0.485									
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bea	m in all	cases.		

Table T.19: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximui	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	20.2	-0.2	1.400	1.898	12.086	0.407	0.253	0.638
15.0	20.2	14.8	1.472	2.407	11.833	0.409	0.347	0.639
30.0	20.2	29.8	1.524	3.056	12.086	0.412	0.535	0.681
45.0	20.2	44.9	1.507	4.453	12.059	0.399	0.764	0.753
60.0	20.2	59.7	1.235	5.809	12.207	0.357	1.016	0.881
75.0	20.3	74.2	1.062	6.639	13.574	0.266	1.175	1.052
90.0	20.1	88.5	0.826	8.455	14.457	0.078	1.348	0.987
105.0	20.1	103.6	0.572	10.490	13.063	0.094	1.649	0.624
120.0	20.1	118.8	0.311	6.518	11.077	0.068	2.181	0.495
135.0	20.1	134.5	0.307	5.873	10.520	0.081	1.896	0.301
150.0	20.2	149.6	0.694	3.933	10.300	0.110	1.169	0.170
165.0	20.3	164.2	0.670	3.701	10.072	0.115	0.681	0.134
180.0	20.6	179.6	0.706	3.777	9.975	0.105	0.516	0.101
195.0	20.4	194.5	0.748	4.642	9.937	0.101	0.919	0.180
210.0	20.2	210.0	0.618	6.272	9.956	0.095	1.407	0.235
225.0	20.1	225.4	0.342	5.915	10.593	0.071	1.947	0.254
240.0	20.1	241.3	0.368	6.735	11.415	0.077	2.385	0.303
255.0	19.9	257.2	0.864	15.006	14.088	0.108	1.949	0.611
270.0	20.0	271.7	1.329	9.261	14.094	0.084	1.732	1.051
285.0	20.3	285.8	1.145	6.371	13.730	0.260	1.418	1.167
300.0	20.3	300.0	1.258	5.176	12.552	0.352	1.082	0.996
315.0	20.2	314.8	1.435	2.950	12.405	0.396	0.756	0.839
330.0	20.2	329.8	1.503	2.427	12.129	0.411	0.486	0.741
345.0	20.2	344.8	1.499	1.738	12.079	0.410	0.303	0.666
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.20: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	1.495	2.297	12.695	0.427	0.283	0.913
15.0	25.4	14.9	1.512	2.546	12.701	0.428	0.359	0.918
30.0	25.4	29.9	1.461	3.706	12.605	0.431	0.539	0.958
45.0	25.3	44.9	1.523	4.639	12.731	0.417	0.757	1.007
60.0	25.3	59.8	1.262	5.345	12.881	0.369	0.993	1.082
75.0	25.3	74.4	1.150	8.308	14.319	0.270	1.146	1.180
90.0	25.2	89.0	1.220	8.467	14.496	0.078	1.326	0.980
105.0	25.2	104.3	0.597	11.091	12.597	0.091	2.066	0.595
120.0	25.1	119.3	0.426	7.592	11.844	0.087	2.641	0.504
135.0	25.1	134.7	0.777	5.528	10.329	0.106	1.869	0.255
150.0	25.3	149.6	0.924	4.082	10.062	0.120	1.023	0.144
165.0	25.7	164.6	0.783	3.600	9.989	0.115	0.548	0.100
180.0	25.5	179.7	0.821	4.152	9.976	0.119	0.653	0.139
195.0	25.7	195.1	0.445	4.073	9.920	0.108	0.690	0.119
210.0	25.4	210.2	0.780	4.658	9.919	0.112	1.119	0.177
225.0	25.0	225.8	0.780	7.025	11.027	0.114	2.160	0.366
240.0	25.2	240.7	0.382	7.493	10.618	0.080	2.948	0.399
255.0	25.2	256.0	0.494	10.177	13.202	0.097	2.115	0.493
270.0	25.2	271.1	0.962	9.476	13.918	0.079	1.781	1.026
285.0	25.4	285.6	1.154	7.928	14.465	0.258	1.507	1.281
300.0	25.4	300.1	1.219	4.505	13.160	0.358	1.116	1.191
315.0	25.4	314.9	1.390	3.504	12.974	0.410	0.791	1.094
330.0	25.4	329.9	1.521	2.252	12.980	0.427	0.515	1.014
345.0	25.4	344.9	1.371	1.977	12.856	0.426	0.337	0.944
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.21: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.5	-0.0	1.327	2.287	13.254	0.434	0.336	1.195
15.0	30.5	14.9	1.439	2.997	13.383	0.438	0.386	1.208
30.0	30.5	29.9	1.420	4.780	13.168	0.443	0.557	1.248
45.0	30.5	44.9	1.430	5.633	13.349	0.431	0.770	1.278
60.0	30.4	59.8	1.446	5.910	13.379	0.381	0.991	1.293
75.0	30.4	74.5	0.958	7.923	14.385	0.270	1.123	1.286
90.0	30.4	89.3	0.974	9.280	14.366	0.076	1.367	0.969
105.0	30.3	104.5	0.525	8.189	11.858	0.091	2.323	0.551
120.0	30.1	119.4	0.529	7.445	11.060	0.115	2.695	0.456
135.0	30.2	134.6	0.579	5.535	10.044	0.125	1.744	0.246
150.0	31.0	149.1	0.658	5.383	9.995	0.133	0.987	0.188
165.0	30.1	164.8	1.108	4.316	10.166	0.148	0.764	0.166
180.0	30.6	179.4	1.143	4.624	10.147	0.142	0.906	0.222
195.0	30.2	194.5	1.184	5.409	10.098	0.154	1.053	0.240
210.0	31.1	210.4	1.099	6.084	10.084	0.133	1.250	0.190
225.0	30.4	225.3	0.462	6.354	9.982	0.120	1.653	0.259
240.0	29.9	241.2	0.706	11.320	14.192	0.135	3.210	0.570
255.0	30.3	255.5	0.443	9.834	12.828	0.098	2.511	0.469
270.0	30.4	270.7	0.760	9.266	13.957	0.081	1.757	0.998
285.0	30.5	285.4	1.017	7.088	14.590	0.256	1.630	1.384
300.0	30.5	300.1	1.266	4.925	13.593	0.366	1.217	1.393
315.0	30.5	315.1	1.464	3.459	13.876	0.418	0.886	1.357
330.0	30.5	330.1	1.454	2.620	13.670	0.437	0.578	1.302
345.0	30.5	345.0	1.382	2.180	13.570	0.438	0.400	1.226
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.22: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	Ι	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.1	-18.5	0.871	3.343	10.683	0.201	0.734	0.317
15.0	-0.5	-12.0	1.091	2.965	10.811	0.202	0.650	0.308
30.0	-0.8	-3.6	1.015	3.139	10.657	0.201	0.690	0.304
45.0	-1.2	-58.6	0.797	4.871	11.481	0.149	1.350	0.416
60.0	-0.3	32.5	0.717	4.607	11.150	0.190	1.097	0.343
75.0	-0.1	49.5	0.606	5.015	11.704	0.169	1.295	0.387
90.0	0.2	65.1	0.527	4.855	11.799	0.129	1.361	0.435
105.0	-0.0	88.9	0.306	5.254	11.822	0.034	1.390	0.500
120.0	-0.7	99.4	0.448	5.172	11.602	0.061	1.398	0.493
135.0	-1.3	106.4	0.481	5.640	12.031	0.090	1.402	0.480
150.0	-1.8	109.3	0.565	6.295	11.634	0.106	1.387	0.467
165.0	-1.4	56.9	0.863	4.175	11.548	0.154	1.169	0.397
180.0	-0.9	37.8	0.999	4.157	11.063	0.190	0.891	0.328
195.0	-0.1	374.4	0.738	3.768	11.028	0.191	0.940	0.340
210.0	0.1	378.5	0.887	4.282	11.253	0.179	1.079	0.373
225.0	0.3	365.6	0.744	4.555	11.363	0.162	1.266	0.419
240.0	0.6	277.2	0.444	5.643	11.807	0.062	1.363	0.530
255.0	0.5	285.1	0.404	5.368	12.062	0.093	1.345	0.512
270.0	0.5	293.6	0.500	5.255	12.096	0.128	1.311	0.484
285.0	0.4	300.7	0.661	4.938	11.725	0.152	1.262	0.450
300.0	0.3	309.0	0.791	4.576	11.456	0.171	1.230	0.417
315.0	0.2	316.0	0.791	4.313	11.431	0.182	1.139	0.389
330.0	0.1	324.5	0.803	4.432	11.021	0.191	1.057	0.361
345.0	0.0	332.4	0.847	3.818	10.853	0.196	0.891	0.338
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.23: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolut	e	Standard		
Heading		ean	l	Maximu		l	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{ ext{kts}}$	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.2	-12.0	1.041	3.282	10.734	0.235	0.631	0.330
15.0	4.0	-7.0	0.967	3.143	10.737	0.236	0.605	0.323
30.0	3.9	0.5	1.021	2.842	10.778	0.236	0.620	0.320
45.0	3.9	11.1	1.035	3.150	10.812	0.231	0.712	0.324
60.0	4.0	29.4	0.961	4.329	11.211	0.219	1.024	0.363
75.0	4.1	49.3	0.757	5.063	11.615	0.192	1.237	0.411
90.0	4.2	61.7	0.613	5.415	11.786	0.155	1.349	0.460
105.0	4.3	78.3	0.374	5.010	12.122	0.076	1.348	0.516
120.0	4.1	92.0	0.425	5.895	12.103	0.036	1.336	0.519
135.0	4.0	100.0	0.456	5.642	12.195	0.053	1.338	0.496
150.0	3.9	53.6	0.865	4.360	11.795	0.185	1.217	0.411
165.0	4.0	54.1	0.834	3.899	11.534	0.193	1.163	0.399
180.0	4.0	63.4	0.722	4.364	11.608	0.191	1.186	0.394
195.0	4.7	195.6	0.551	2.786	10.849	0.129	0.667	0.215
210.0	4.4	219.3	0.609	3.562	11.008	0.122	0.943	0.265
225.0	4.3	251.8	0.474	6.052	11.391	0.084	1.288	0.435
240.0	4.3	260.6	0.437	5.132	11.562	0.060	1.337	0.492
255.0	4.4	270.2	0.326	5.099	11.692	0.038	1.360	0.541
270.0	4.6	280.1	0.358	6.521	12.067	0.066	1.342	0.557
285.0	4.8	290.4	0.613	5.255	12.135	0.126	1.298	0.523
300.0	4.9	302.4	0.668	4.111	11.359	0.179	1.192	0.456
315.0	4.8	314.6	0.905	3.710	11.182	0.208	1.033	0.399
330.0	4.8	327.8	0.819	3.956	10.918	0.223	0.861	0.366
345.0	4.5	339.9	0.994	3.044	10.772	0.232	0.692	0.344
Wind at 2	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.24: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	Standard		
Heading		ean	I	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.8	-1.3	1.152	1.881	10.863	0.266	0.249	0.354
15.0	9.8	13.7	1.349	2.183	10.920	0.263	0.443	0.355
30.0	9.8	28.7	1.232	3.169	10.970	0.251	0.708	0.365
45.0	9.9	43.8	0.887	3.633	11.064	0.230	0.926	0.393
60.0	9.9	58.5	0.652	4.734	11.427	0.191	1.107	0.462
75.0	10.0	73.1	0.546	4.870	12.490	0.111	1.137	0.542
90.0	9.9	87.8	0.139	4.976	12.248	0.026	1.171	0.553
105.0	9.9	102.5	0.261	5.333	12.063	0.047	1.173	0.485
120.0	9.5	116.3	0.361	5.106	11.543	0.072	1.168	0.412
135.0	9.5	131.2	0.446	4.490	11.446	0.082	1.054	0.332
150.0	9.6	147.0	0.401	4.044	10.691	0.088	0.999	0.269
165.0	9.7	162.7	0.489	3.466	10.598	0.092	0.916	0.226
180.0	9.8	178.5	0.488	3.155	10.497	0.094	0.738	0.188
195.0	9.9	194.5	0.530	2.836	10.712	0.094	0.658	0.152
210.0	9.9	210.9	0.417	2.984	10.560	0.092	0.969	0.176
225.0	9.7	227.5	0.475	3.714	11.066	0.088	1.210	0.237
240.0	9.6	243.5	0.434	4.488	11.475	0.080	1.361	0.335
255.0	9.8	257.7	0.338	5.563	11.613	0.057	1.384	0.440
270.0	10.0	272.0	0.162	5.625	12.192	0.028	1.368	0.555
285.0	10.1	286.1	0.493	5.260	12.342	0.105	1.261	0.575
300.0	10.1	300.2	0.696	4.408	11.905	0.188	1.120	0.506
315.0	10.0	314.4	0.820	3.644	11.111	0.229	0.892	0.420
330.0	9.9	329.0	1.010	2.877	11.163	0.250	0.643	0.384
345.0	9.9	343.8	1.090	2.382	10.851	0.262	0.375	0.366
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.25: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual		Absolut	e	Standard		
Heading		ean	l	Maximu		l	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{ ext{kts}}$	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	${f m/s}^2$
0.0	15.0	-0.5	1.223	1.577	10.964	0.295	0.201	0.391
15.0	15.0	14.6	1.154	2.251	10.953	0.290	0.403	0.384
30.0	15.0	29.7	1.145	2.818	11.071	0.275	0.648	0.396
45.0	15.1	44.7	0.915	3.623	11.373	0.250	0.858	0.434
60.0	15.1	59.5	0.728	4.437	11.677	0.204	1.049	0.522
75.0	15.2	74.2	0.449	4.416	12.103	0.111	1.039	0.581
90.0	15.2	89.0	0.125	4.866	12.191	0.033	1.073	0.551
105.0	15.2	104.0	0.298	5.477	12.100	0.048	1.125	0.459
120.0	15.0	118.3	0.288	5.612	11.288	0.062	1.371	0.418
135.0	15.0	133.7	0.316	4.581	10.849	0.068	1.437	0.343
150.0	15.3	149.5	0.263	3.133	10.345	0.064	0.882	0.216
165.0	15.2	164.4	0.340	2.412	10.321	0.066	0.512	0.177
180.0	15.2	179.3	0.323	2.783	10.168	0.077	0.463	0.163
195.0	15.1	194.5	0.341	3.855	10.079	0.066	0.595	0.136
210.0	15.1	209.9	0.437	4.191	10.414	0.070	1.057	0.131
225.0	15.0	225.9	0.425	4.224	11.007	0.070	1.526	0.186
240.0	15.0	241.5	0.334	4.941	11.339	0.067	1.646	0.273
255.0	15.1	256.2	0.325	4.996	12.070	0.057	1.482	0.380
270.0	15.2	270.9	0.161	5.391	11.904	0.037	1.404	0.536
285.0	15.2	285.4	0.413	5.375	11.974	0.105	1.269	0.616
300.0	15.2	299.9	0.707	4.841	11.769	0.201	1.070	0.588
315.0	15.1	314.5	0.900	3.321	11.466	0.249	0.782	0.488
330.0	15.0	329.4	1.068	2.604	11.089	0.274	0.534	0.432
345.0	15.0	344.4	1.279	2.008	10.984	0.289	0.295	0.403
Wind at 2	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.26: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Mo	ean	N	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	20.2	-0.2	1.282	1.916	11.417	0.317	0.221	0.499	
15.0	20.2	14.9	1.280	2.319	11.359	0.312	0.406	0.492	
30.0	20.2	29.9	1.196	2.818	11.527	0.296	0.635	0.505	
45.0	20.2	45.0	1.010	3.590	11.489	0.267	0.845	0.547	
60.0	20.3	59.8	0.770	4.571	12.349	0.216	1.036	0.618	
75.0	20.3	74.6	0.469	4.281	12.315	0.116	0.993	0.626	
90.0	20.3	89.5	0.161	4.669	12.250	0.042	1.018	0.542	
105.0	20.3	104.5	0.310	5.529	11.570	0.055	1.121	0.430	
120.0	20.2	119.3	0.362	6.247	11.367	0.065	1.666	0.410	
135.0	20.2	134.7	0.328	4.816	10.683	0.069	1.610	0.287	
150.0	20.3	149.7	0.256	2.879	10.115	0.063	0.727	0.154	
165.0	20.2	164.6	0.233	2.496	10.121	0.071	0.461	0.131	
180.0	20.4	179.8	0.362	3.529	10.076	0.078	0.402	0.119	
195.0	20.3	194.9	0.381	5.037	10.104	0.087	0.836	0.154	
210.0	20.3	210.0	0.286	5.879	9.989	0.067	1.085	0.163	
225.0	20.3	225.0	0.366	5.831	10.146	0.055	1.361	0.183	
240.0	20.2	240.7	0.451	6.157	11.069	0.070	1.937	0.236	
255.0	20.3	255.6	0.317	6.447	11.561	0.060	1.521	0.327	
270.0	20.3	270.4	0.212	5.538	11.915	0.047	1.397	0.513	
285.0	20.3	285.2	0.405	6.423	12.090	0.108	1.258	0.660	
300.0	20.3	299.9	0.736	4.743	11.785	0.209	1.032	0.696	
315.0	20.2	314.6	0.924	3.564	11.605	0.264	0.742	0.615	
330.0	20.2	329.6	1.184	2.627	11.585	0.295	0.472	0.555	
345.0	20.2	344.7	1.336	2.010	11.579	0.311	0.269	0.516	
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_	

Table T.27: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.3	-0.1	1.439	2.178	12.448	0.337	0.266	0.681
15.0	25.3	15.0	1.423	2.503	12.081	0.332	0.418	0.675
30.0	25.3	30.0	1.396	3.335	12.066	0.314	0.628	0.683
45.0	25.3	45.0	1.228	3.794	12.052	0.283	0.835	0.707
60.0	25.4	59.9	0.813	4.967	12.667	0.228	1.047	0.744
75.0	25.4	74.8	0.422	4.411	12.561	0.120	0.961	0.671
90.0	25.4	89.7	0.198	4.552	12.227	0.050	1.005	0.529
105.0	25.4	104.7	0.275	5.612	11.393	0.064	1.152	0.396
120.0	25.3	119.8	0.329	6.304	10.516	0.080	2.169	0.393
135.0	25.3	134.8	0.301	5.141	10.244	0.086	1.531	0.225
150.0	25.4	149.7	0.275	3.136	9.988	0.084	0.931	0.138
165.0	25.6	164.7	0.355	2.667	10.023	0.098	0.529	0.114
180.0	25.6	179.8	0.390	3.382	10.115	0.106	0.406	0.111
195.0	25.6	195.0	0.358	3.742	10.033	0.095	0.563	0.115
210.0	25.4	210.0	0.291	4.378	9.973	0.068	0.911	0.164
225.0	25.4	225.0	0.212	5.532	9.983	0.057	1.304	0.219
240.0	25.4	240.2	0.263	7.299	9.939	0.066	2.012	0.257
255.0	25.4	255.3	0.348	7.413	11.402	0.066	1.519	0.283
270.0	25.4	270.2	0.234	5.676	12.036	0.056	1.360	0.491
285.0	25.4	285.1	0.395	6.447	12.345	0.111	1.238	0.712
300.0	25.4	299.9	0.894	4.569	12.701	0.218	1.008	0.814
315.0	25.4	314.8	1.078	3.382	12.229	0.277	0.699	0.773
330.0	25.3	329.8	1.307	2.869	12.043	0.311	0.464	0.734
345.0	25.3	344.8	1.424	2.337	12.369	0.332	0.285	0.701
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

308

Table T.28: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	ctual Absolute			Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	30.5	-0.0	1.590	2.460	13.271	0.353	0.321	0.905	
15.0	30.5	15.0	1.582	2.777	12.748	0.347	0.438	0.896	
30.0	30.4	30.1	1.408	3.296	12.550	0.330	0.624	0.886	
45.0	30.4	45.1	1.219	4.046	12.612	0.294	0.845	0.883	
60.0	30.4	60.0	0.872	4.743	12.920	0.237	1.061	0.872	
75.0	30.5	74.9	0.434	4.486	12.834	0.126	0.959	0.742	
90.0	30.5	89.8	0.234	4.636	12.022	0.059	1.028	0.516	
105.0	30.5	104.8	0.337	5.333	11.272	0.077	1.261	0.365	
120.0	30.3	119.9	0.497	6.690	10.075	0.100	2.308	0.360	
135.0	30.4	134.8	0.408	5.173	9.990	0.107	1.559	0.206	
150.0	30.7	149.7	0.424	3.347	9.996	0.127	0.967	0.152	
165.0	31.0	164.7	0.539	3.609	10.007	0.143	0.587	0.111	
180.0	30.6	179.7	0.633	3.998	9.957	0.158	0.585	0.120	
195.0	31.0	195.0	0.485	4.040	10.033	0.131	0.700	0.119	
210.0	30.7	210.2	0.537	4.908	9.982	0.117	1.041	0.176	
225.0	30.4	225.2	0.426	5.859	10.039	0.100	1.568	0.293	
240.0	30.4	240.2	0.470	7.835	9.915	0.087	2.185	0.361	
255.0	30.5	255.2	0.336	8.389	11.509	0.077	1.478	0.259	
270.0	30.5	270.1	0.267	5.535	11.841	0.065	1.271	0.473	
285.0	30.5	285.1	0.460	6.992	12.548	0.115	1.197	0.763	
300.0	30.5	299.9	0.780	5.244	12.946	0.226	0.980	0.943	
315.0	30.5	314.9	1.184	4.006	12.708	0.287	0.706	0.944	
330.0	30.5	329.9	1.325	3.140	12.808	0.326	0.485	0.934	
345.0	30.4	344.9	1.430	2.719	12.814	0.345	0.362	0.916	
Wind at 2	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table T.29: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Mo	ean		Maximuı	m	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.9	-27.2	1.828	12.006	14.694	0.372	1.456	0.615
15.0	-1.4	-21.1	1.738	8.146	12.383	0.366	1.428	0.583
30.0	-3.4	33.0	1.850	12.977	14.196	0.321	2.138	0.821
45.0	-4.5	-99.2	1.765	12.214	14.622	0.306	2.239	0.900
60.0	-5.1	-111.1	2.012	13.695	14.601	0.293	2.363	1.026
75.0	-0.6	-51.8	1.884	13.247	15.029	0.281	2.525	0.997
90.0	0.2	7.1	2.044	17.691	15.009	0.315	2.535	0.916
105.0	0.4	50.3	1.985	14.773	15.244	0.303	2.421	0.931
120.0	-0.6	93.8	3.434	13.725	15.598	0.232	2.503	1.057
135.0	-3.6	82.6	2.628	12.122	14.092	0.285	2.524	0.993
150.0	-3.7	46.3	1.948	12.265	14.628	0.325	2.279	0.817
165.0	-2.8	41.1	1.859	13.227	13.454	0.337	1.943	0.717
180.0	-1.1	19.7	1.623	14.659	14.632	0.363	1.667	0.641
195.0	-0.6	31.3	1.715	7.306	13.367	0.365	1.676	0.667
210.0	0.3	36.8	1.661	8.506	13.175	0.365	1.755	0.698
225.0	0.9	387.4	1.705	13.702	13.988	0.349	1.976	0.777
240.0	0.8	281.2	1.970	17.754	14.506	0.261	2.491	1.022
255.0	0.6	284.9	2.894	18.844	15.001	0.295	2.439	1.007
270.0	-2.0	276.9	2.161	10.651	13.714	0.638	3.307	1.524
285.0	0.2	292.5	1.806	13.959	14.917	0.334	2.170	0.882
300.0	-0.9	-202.8	4.858	20.675	14.950	0.368	2.231	0.914
315.0	0.3	306.3	2.568	10.569	14.658	0.368	1.873	0.755
330.0	0.4	314.6	1.570	8.692	14.137	0.378	1.707	0.705
345.0	0.0	322.0	1.650	8.818	12.606	0.372	1.530	0.647
Wind at 3	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.30: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.6	-26.8	1.919	6.390	11.725	0.426	1.298	0.624
15.0	3.5	-19.4	1.856	5.651	11.507	0.427	1.166	0.594
30.0	3.3	-13.2	1.946	4.606	11.313	0.431	1.040	0.572
45.0	3.0	-8.2	1.802	5.120	11.548	0.425	1.112	0.570
60.0	2.9	2.2	2.241	4.854	11.481	0.417	1.212	0.570
75.0	2.7	8.1	1.703	7.025	11.989	0.412	1.434	0.602
90.0	2.9	14.0	1.913	14.826	14.564	0.397	1.660	0.670
105.0	3.1	24.7	1.806	12.138	13.911	0.387	1.659	0.694
120.0	3.1	21.7	1.894	12.752	15.499	0.410	1.434	0.670
135.0	3.1	26.2	1.955	12.658	14.173	0.408	1.389	0.669
150.0	3.2	33.4	1.834	7.871	12.535	0.406	1.436	0.649
165.0	3.3	38.7	1.774	7.415	12.314	0.404	1.490	0.658
180.0	3.9	146.8	1.587	7.720	13.901	0.276	1.462	0.448
195.0	3.7	23.7	1.973	7.648	13.328	0.407	1.581	0.663
210.0	3.8	388.6	3.788	6.431	12.984	0.407	1.718	0.704
225.0	4.2	359.3	1.684	15.048	15.152	0.368	2.028	0.818
240.0	4.4	283.9	1.619	17.601	15.159	0.271	2.359	1.047
255.0	4.1	286.1	3.567	15.641	15.219	0.314	2.370	1.060
270.0	4.0	291.3	2.868	14.426	15.236	0.351	2.174	0.994
285.0	4.2	295.7	3.392	10.273	15.163	0.374	2.018	0.916
300.0	4.4	301.0	4.232	8.643	13.691	0.386	1.852	0.811
315.0	4.3	310.6	1.632	7.423	13.556	0.397	1.713	0.751
330.0	4.1	318.7	1.710	8.385	12.752	0.414	1.532	0.696
345.0	3.8	324.2	1.800	7.033	13.013	0.421	1.491	0.667
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bea	m in all	cases.	

while at 30.7 kilots (19.9 hil/s) is from the starboard ocali in all cases.

Table T.31: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	8.8	-5.3	2.354	4.692	11.476	0.484	0.754	0.611
15.0	8.4	6.8	2.519	3.820	11.336	0.481	0.866	0.598
30.0	8.0	16.1	2.437	4.737	11.517	0.472	1.048	0.597
45.0	8.0	30.6	2.010	6.839	11.664	0.451	1.306	0.633
60.0	8.4	49.7	1.661	7.118	12.915	0.409	1.703	0.741
75.0	8.3	59.0	2.328	14.134	14.705	0.379	1.876	0.857
90.0	8.6	73.9	2.630	10.833	15.410	0.289	2.109	1.079
105.0	8.5	82.1	2.289	16.548	15.655	0.192	2.334	1.195
120.0	8.3	92.0	1.282	20.087	15.127	0.149	2.363	1.122
135.0	8.1	99.6	1.308	16.805	14.610	0.151	2.353	1.054
150.0	8.1	87.4	1.537	15.660	15.258	0.276	2.192	0.971
165.0	8.1	125.9	2.749	9.082	14.152	0.234	1.819	0.617
180.0	9.1	174.8	0.740	5.124	10.845	0.161	1.348	0.304
195.0	9.6	195.2	0.833	5.008	10.996	0.163	1.199	0.210
210.0	8.5	274.0	1.876	19.204	15.342	0.220	2.564	1.129
225.0	8.3	275.4	1.876	19.629	14.995	0.217	2.573	1.146
240.0	8.3	276.6	2.424	19.233	14.934	0.215	2.589	1.161
255.0	8.4	280.1	2.124	15.575	15.447	0.237	2.447	1.173
270.0	8.5	283.8	2.878	15.662	16.255	0.281	2.349	1.175
285.0	9.4	289.4	3.399	10.546	14.177	0.336	2.151	1.072
300.0	9.7	300.2	1.457	7.719	13.520	0.392	1.793	0.888
315.0	9.5	313.0	1.975	6.447	12.495	0.436	1.502	0.756
330.0	9.3	327.3	2.114	5.687	11.779	0.467	1.120	0.690
345.0	9.1	341.2	2.323	5.332	11.368	0.480	0.913	0.646
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.32: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots

Cmd	Acı	tual		Absolute	P	Standard			
Heading		ean		Maximui) Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert	
deg	m kts	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	14.7	-1.3	2.175	3.318	11.795	0.522	0.590	0.692	
15.0	14.7	13.8	2.225	3.741	11.687	0.517	0.738	0.675	
30.0	14.6	29.0	2.034	5.503	11.609	0.501	1.029	0.691	
45.0	14.7	44.2	1.957	6.484	12.025	0.464	1.341	0.746	
60.0	14.8	58.9	1.579	9.285	13.542	0.406	1.680	0.892	
75.0	14.6	71.8	4.051	9.708	16.287	0.341	1.875	1.149	
90.0	14.4	86.4	1.197	11.147	16.090	0.135	2.183	1.254	
105.0	14.4	101.2	1.515	12.714	15.965	0.131	2.184	0.991	
120.0	14.2	115.1	1.270	12.033	13.855	0.138	2.126	0.754	
135.0	14.4	130.4	1.699	17.730	13.677	0.126	2.049	0.608	
150.0	14.8	148.0	0.734	5.561	11.439	0.113	1.406	0.391	
165.0	14.7	162.9	0.523	4.667	10.528	0.126	1.036	0.328	
180.0	14.6	178.3	0.653	4.948	10.408	0.133	0.916	0.260	
195.0	14.8	193.9	0.557	5.574	10.109	0.120	1.076	0.233	
210.0	14.8	209.8	0.856	6.720	10.866	0.123	1.514	0.232	
225.0	14.1	234.1	1.581	15.747	14.078	0.168	2.491	0.615	
240.0	13.4	253.5	0.858	15.732	14.154	0.158	2.680	0.824	
255.0	13.3	265.5	2.269	16.481	15.806	0.163	2.736	1.056	
270.0	13.9	276.0	1.866	19.017	14.984	0.175	2.648	1.257	
285.0	14.8	287.1	2.864	8.872	14.932	0.316	2.228	1.224	
300.0	15.0	299.9	1.668	8.189	14.242	0.405	1.749	1.022	
315.0	14.8	314.0	1.747	7.587	12.362	0.464	1.334	0.862	
330.0	14.7	328.7	2.059	5.646	12.059	0.501	0.970	0.775	
345.0 14.7 343.6 2.031 3.796 11.983 0.516 0.685 0.722									
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table T.33: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	20.0	-0.6	2.243	3.325	12.584	0.553	0.571	0.894
15.0	20.0	14.6	2.286	4.794	12.675	0.547	0.731	0.880
30.0	20.0	29.8	2.160	5.679	12.386	0.528	1.002	0.887
45.0	20.0	44.8	1.910	7.478	12.362	0.491	1.294	0.933
60.0	20.0	59.5	1.678	8.959	13.628	0.425	1.595	1.062
75.0	20.1	73.8	1.421	8.961	15.705	0.309	1.811	1.274
90.0	19.8	88.0	1.167	12.569	15.853	0.123	2.114	1.250
105.0	19.9	103.3	1.165	11.294	14.295	0.119	2.190	0.875
120.0	19.9	118.3	0.676	7.949	12.275	0.108	2.349	0.684
135.0	19.7	133.8	0.840	8.372	11.467	0.129	2.230	0.478
150.0	19.6	148.5	1.411	7.993	12.420	0.165	1.674	0.376
165.0	19.9	163.9	0.835	4.585	10.673	0.164	1.029	0.274
180.0	20.3	179.2	0.825	4.807	10.606	0.164	0.791	0.218
195.0	20.0	194.7	0.721	5.812	10.148	0.156	1.188	0.278
210.0	19.8	211.0	0.751	7.649	10.874	0.144	1.879	0.352
225.0	19.6	228.0	0.717	13.232	14.057	0.113	2.424	0.435
240.0	19.5	244.4	0.817	15.759	13.877	0.129	2.899	0.575
255.0	19.2	259.4	1.677	18.347	14.209	0.151	2.896	0.844
270.0	19.4	273.3	1.871	17.891	15.175	0.166	2.802	1.257
285.0	20.1	286.3	1.493	10.466	15.181	0.298	2.311	1.346
300.0	20.1	300.0	1.556	7.604	13.777	0.416	1.711	1.213
315.0	20.1	314.4	1.915	4.879	12.965	0.484	1.245	1.071
330.0	20.1	329.3	2.003	3.891	12.694	0.526	0.897	0.994
345.0	20.0	344.3	2.224	3.119	12.796	0.545	0.650	0.936
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table T.34: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 25.0 Knots

Cmd	Acı	tual		Absolute	<u> </u>	Standard		
Heading		ean		Maximui			Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert
deg	m kts	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.3	-0.2	2.003	3.651	13.902	0.573	0.624	1.222
15.0	25.3	14.9	2.106	5.045	13.524	0.569	0.775	1.198
30.0	25.2	30.0	2.007	7.007	13.407	0.554	1.018	1.185
45.0	25.2	44.9	2.014	6.864	13.185	0.510	1.262	1.193
60.0	25.2	59.7	1.654	9.135	13.773	0.438	1.546	1.264
75.0	25.2	74.1	1.714	8.946	15.765	0.310	1.766	1.393
90.0	25.0	88.7	1.406	14.914	15.424	0.117	2.115	1.221
105.0	25.0	104.4	0.649	8.364	13.826	0.123	2.429	0.771
120.0	24.7	118.5	1.002	14.040	14.158	0.148	3.115	0.765
135.0	24.6	132.1	1.147	20.255	14.363	0.172	2.397	0.517
150.0	24.8	149.1	1.004	6.402	10.507	0.187	1.609	0.311
165.0	25.7	164.1	0.830	4.804	10.252	0.180	0.987	0.229
180.0	26.4	179.6	0.979	4.916	10.167	0.183	0.655	0.161
195.0	25.8	194.9	0.837	5.060	10.072	0.176	1.090	0.250
210.0	25.0	210.7	0.889	7.888	10.248	0.190	1.808	0.359
225.0	24.7	226.5	0.778	7.798	11.693	0.158	2.534	0.478
240.0	24.6	242.1	0.787	14.020	12.934	0.140	3.305	0.594
255.0	24.7	257.1	0.609	15.322	13.781	0.143	3.003	0.682
270.0	24.9	271.9	1.274	15.844	15.014	0.135	2.844	1.205
285.0	25.2	286.0	4.395	12.101	14.745	0.306	2.366	1.444
300.0	25.3	300.1	1.590	7.707	14.131	0.425	1.760	1.424
315.0	25.3	314.7	2.077	4.676	13.493	0.500	1.250	1.341
330.0	25.3	329.7	1.942	4.047	13.857	0.544	0.920	1.297
345.0	25.3	344.7	2.084	3.419	14.120	0.565	0.664	1.253
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table T.35: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	S	tandard	
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.4	0.0	2.035	4.012	14.713	0.587	0.694	1.575
15.0	30.4	15.1	2.100	5.681	14.341	0.585	0.840	1.544
30.0	30.4	30.1	1.981	7.047	14.134	0.565	1.058	1.504
45.0	30.4	45.0	2.049	7.069	13.882	0.527	1.277	1.479
60.0	30.3	59.7	1.779	7.255	14.189	0.453	1.502	1.479
75.0	30.3	74.3	1.972	9.886	16.051	0.315	1.726	1.495
90.0	30.1	89.0	1.067	14.748	15.623	0.122	2.176	1.201
105.0	30.0	104.3	2.185	18.916	15.735	0.155	2.866	0.784
120.0	29.7	118.6	1.385	13.357	12.135	0.172	2.934	0.610
135.0	29.9	134.1	1.030	8.139	11.190	0.209	2.293	0.402
150.0	30.5	147.4	1.062	7.871	11.113	0.223	1.607	0.377
165.0	31.0	162.7	1.253	6.053	10.021	0.250	1.186	0.348
180.0	31.1	178.6	1.343	6.170	10.297	0.273	1.172	0.363
195.0	31.4	194.6	1.492	6.444	10.619	0.264	1.350	0.350
210.0	30.8	211.0	1.217	6.681	10.344	0.229	1.832	0.342
225.0	29.7	226.0	1.021	7.869	12.108	0.229	2.494	0.522
240.0	29.8	240.9	0.606	8.685	11.839	0.153	3.249	0.642
255.0	29.9	256.1	1.852	21.722	14.680	0.164	3.084	0.681
270.0	30.1	271.2	1.395	16.993	15.297	0.136	2.850	1.149
285.0	30.3	285.7	2.188	12.315	14.900	0.297	2.452	1.559
300.0	30.4	300.1	1.724	7.386	14.207	0.432	1.846	1.642
315.0	30.4	315.0	1.997	5.395	14.899	0.510	1.384	1.628
330.0	30.4	329.9	1.964	4.627	14.570	0.552	0.998	1.619
345.0 30.4 345.0 2.207 3.944 14.628 0.575 0.758 1.597								
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table T.36: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-1.5	-109.1	0.997	4.579	11.325	0.192	1.408	0.380
15.0	-2.4	-147.9	0.938	4.316	11.558	0.184	1.060	0.434
30.0	-1.8	-69.5	1.187	5.242	11.579	0.187	1.602	0.427
45.0	-0.2	21.9	0.822	4.373	11.390	0.204	1.091	0.408
60.0	0.6	49.0	0.635	5.070	11.335	0.158	1.343	0.466
75.0	0.7	69.2	0.546	5.416	11.878	0.092	1.396	0.500
90.0	0.1	90.9	0.234	5.330	12.042	0.031	1.401	0.533
105.0	-0.5	103.2	0.425	5.487	12.003	0.053	1.417	0.536
120.0	-1.4	113.0	0.560	5.861	12.227	0.085	1.424	0.529
135.0	-2.1	121.6	0.470	5.506	11.806	0.117	1.363	0.508
150.0	-2.6	131.7	0.552	4.934	11.327	0.149	1.244	0.475
165.0	-2.5	144.3	0.711	4.244	11.409	0.176	1.019	0.438
180.0	-1.7	164.5	0.877	3.437	11.509	0.194	0.594	0.388
195.0	0.4	236.4	0.812	5.481	11.526	0.126	1.374	0.423
210.0	0.0	244.9	0.778	6.046	11.485	0.104	1.428	0.453
225.0	-0.2	253.3	0.520	5.712	11.628	0.078	1.460	0.484
240.0	-0.4	261.6	0.349	5.587	11.675	0.052	1.454	0.503
255.0	-0.6	270.4	0.214	5.897	11.926	0.033	1.434	0.516
270.0	-0.6	279.9	0.378	5.994	11.934	0.047	1.397	0.510
285.0	-0.5	288.9	0.626	5.786	12.034	0.080	1.348	0.494
300.0	-0.5	297.9	0.685	5.977	11.803	0.114	1.280	0.470
315.0	-0.4	307.0	0.656	5.526	11.289	0.143	1.204	0.440
330.0	-0.6	315.5	0.792	5.148	11.235	0.168	1.134	0.414
345.0	-0.8	324.3	0.954	4.826	11.355	0.186	1.058	0.389
Wind at 38	8.7 knots	(19.9 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.37: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	3.8	-29.6	1.016	5.316	10.957	0.227	1.077	0.390
15.0	3.6	-22.7	1.031	4.312	11.064	0.236	1.028	0.382
30.0	3.5	-14.4	1.127	4.080	10.924	0.241	0.955	0.375
45.0	3.5	-3.6	1.268	4.129	10.958	0.245	0.898	0.384
60.0	3.8	26.6	0.926	4.943	11.530	0.226	1.078	0.435
75.0	4.3	58.4	0.711	5.386	11.845	0.139	1.336	0.515
90.0	4.5	79.9	0.346	5.470	12.063	0.046	1.317	0.550
105.0	4.4	95.6	0.212	5.792	12.196	0.025	1.323	0.551
120.0	4.1	107.0	0.295	6.017	12.408	0.049	1.312	0.537
135.0	3.8	115.4	0.373	5.948	11.786	0.071	1.307	0.518
150.0	3.5	124.8	0.596	5.599	11.680	0.095	1.247	0.481
165.0	3.4	134.5	0.733	5.460	11.634	0.116	1.146	0.438
180.0	3.3	146.5	0.902	4.793	11.370	0.133	0.991	0.389
195.0	3.4	162.2	0.837	5.012	11.483	0.144	0.872	0.342
210.0	4.4	216.2	0.716	4.731	10.948	0.131	1.092	0.294
225.0	4.3	237.0	0.621	5.277	11.399	0.101	1.309	0.370
240.0	4.4	250.4	0.456	5.591	11.745	0.071	1.405	0.425
255.0	4.5	262.4	0.277	6.236	11.607	0.040	1.448	0.473
270.0	4.6	274.8	0.157	5.697	12.003	0.023	1.437	0.508
285.0	4.7	287.5	0.407	7.085	12.128	0.069	1.395	0.504
300.0	4.7	299.8	0.512	5.641	11.545	0.130	1.304	0.476
315.0	4.5	310.0	0.753	5.863	11.631	0.174	1.225	0.441
330.0	4.1	317.1	0.879	5.833	11.136	0.196	1.186	0.421
345.0	3.9	323.5	0.994	5.600	11.000	0.214	1.137	0.405
Wind at 38	8.7 knots	(19.9 m/s)	s) is fron	n the star	rboard be	am in al	l cases.	

Table T.38: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.4	-3.6	1.339	3.899	10.879	0.283	0.591	0.397
15.0	9.5	11.9	1.170	3.467	11.142	0.279	0.698	0.420
30.0	9.6	27.4	1.092	3.965	11.185	0.260	0.899	0.455
45.0	9.7	42.7	0.847	4.469	11.823	0.220	1.076	0.496
60.0	9.8	57.5	0.595	4.918	11.809	0.157	1.167	0.537
75.0	9.9	72.9	0.356	4.818	12.276	0.080	1.118	0.564
90.0	9.9	88.0	0.140	5.203	12.250	0.031	1.113	0.561
105.0	9.9	103.1	0.224	5.616	12.075	0.041	1.136	0.529
120.0	9.5	116.4	0.422	5.752	12.247	0.063	1.129	0.501
135.0	9.2	130.3	0.592	5.239	11.980	0.079	1.003	0.433
150.0	9.1	144.4	0.553	4.654	11.452	0.090	0.959	0.371
165.0	9.0	159.4	0.492	4.012	10.979	0.102	0.991	0.334
180.0	9.4	176.8	0.504	4.238	10.468	0.106	0.944	0.280
195.0	9.7	193.7	0.647	4.464	10.479	0.108	0.909	0.213
210.0	9.6	211.3	0.747	5.121	11.147	0.099	1.100	0.220
225.0	9.5	228.4	0.620	6.827	11.061	0.093	1.412	0.266
240.0	9.5	243.7	0.475	5.991	11.626	0.075	1.553	0.339
255.0	9.8	257.4	0.408	6.151	12.030	0.053	1.555	0.408
270.0	9.9	271.7	0.207	7.451	11.940	0.034	1.568	0.481
285.0	10.0	285.8	0.389	7.852	11.701	0.064	1.475	0.509
300.0	9.9	300.0	0.584	5.415	11.506	0.142	1.343	0.500
315.0	9.8	313.7	0.801	5.170	11.400	0.205	1.113	0.452
330.0	9.6	327.5	1.046	4.828	11.158	0.248	0.889	0.414
345.0	9.4	341.6	1.159	4.195	10.858	0.272	0.744	0.395
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table T.39: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots

Cmd	Ac	tual		Absolut	ie .	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	${f m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	14.9	-1.1	1.492	3.230	11.093	0.314	0.476	0.432
15.0	14.9	14.1	1.333	3.428	11.336	0.309	0.670	0.450
30.0	14.9	29.2	1.270	4.366	11.572	0.284	0.898	0.483
45.0	15.0	44.2	0.916	4.877	12.126	0.238	1.060	0.529
60.0	15.0	59.0	0.694	5.422	12.649	0.165	1.178	0.575
75.0	15.1	74.0	0.352	5.054	12.416	0.082	1.011	0.577
90.0	15.1	89.0	0.167	4.860	12.369	0.045	1.007	0.554
105.0	15.1	104.1	0.370	5.129	11.798	0.056	1.057	0.498
120.0	14.9	118.3	0.440	5.741	12.057	0.073	1.239	0.509
135.0	14.9	133.5	0.476	5.255	11.364	0.085	1.207	0.429
150.0	14.9	148.6	0.471	4.249	11.010	0.093	0.950	0.349
165.0	15.0	163.8	0.376	3.726	10.568	0.088	0.614	0.276
180.0	14.9	178.9	0.494	3.921	10.266	0.105	0.720	0.254
195.0	15.0	194.3	0.381	4.803	10.180	0.078	0.778	0.216
210.0	15.0	209.9	0.525	5.394	10.316	0.087	1.217	0.194
225.0	14.8	226.2	0.496	5.356	10.702	0.089	1.666	0.203
240.0	14.9	241.8	0.595	6.133	11.382	0.078	1.852	0.279
255.0	15.1	256.1	0.409	6.578	11.743	0.063	1.759	0.356
270.0	15.1	270.8	0.245	7.554	11.978	0.048	1.708	0.458
285.0	15.2	285.4	0.382	7.550	11.893	0.066	1.641	0.520
300.0	15.1	299.9	0.622	5.986	11.763	0.150	1.430	0.541
315.0	15.0	314.3	0.889	5.455	11.291	0.225	1.114	0.504
330.0	14.9	328.9	1.206	4.186	11.186	0.274	0.818	0.462
345.0	14.9	343.8	1.318	3.815	11.266	0.304	0.549	0.438
Wind at 3	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.40: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.1	-0.5	1.462	3.547	11.342	0.341	0.505	0.534
15.0	20.1	14.7	1.518	3.767	11.639	0.334	0.728	0.542
30.0	20.1	29.8	1.358	4.350	11.729	0.308	0.985	0.573
45.0	20.1	44.8	1.003	5.087	11.935	0.256	1.165	0.605
60.0	20.2	59.6	0.642	5.974	12.125	0.175	1.318	0.636
75.0	20.2	74.4	0.343	5.325	12.310	0.086	1.021	0.598
90.0	20.3	89.4	0.223	4.704	12.344	0.059	0.983	0.541
105.0	20.3	104.5	0.368	5.169	12.011	0.074	1.006	0.459
120.0	20.1	119.2	0.349	5.755	11.238	0.092	1.623	0.510
135.0	20.1	134.3	0.393	5.342	10.864	0.099	1.260	0.380
150.0	20.2	149.3	0.438	3.929	10.456	0.100	0.761	0.271
165.0	20.1	164.3	0.574	3.335	10.577	0.130	0.635	0.279
180.0	20.3	179.4	0.439	3.621	10.217	0.100	0.538	0.210
195.0	20.2	194.8	0.532	6.003	10.191	0.112	0.999	0.273
210.0	20.1	210.0	0.586	6.894	10.102	0.103	1.370	0.300
225.0	20.1	225.1	0.524	7.039	10.051	0.088	1.703	0.289
240.0	20.1	240.8	0.479	7.346	10.388	0.091	2.111	0.249
255.0	20.2	255.5	0.481	7.875	11.154	0.076	1.847	0.340
270.0	20.3	270.4	0.292	7.954	11.935	0.060	1.815	0.450
285.0	20.3	285.2	0.325	7.269	11.873	0.070	1.684	0.539
300.0	20.2	299.9	0.684	7.492	11.955	0.158	1.472	0.603
315.0	20.2	314.5	0.929	5.563	11.550	0.244	1.104	0.601
330.0	20.1	329.3	1.293	4.063	11.526	0.301	0.763	0.575
345.0	20.1	344.4	1.371	3.544	11.505	0.330	0.514	0.546
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.41: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.2	-0.2	1.482	3.738	12.339	0.363	0.572	0.712
15.0	25.2	14.9	1.484	4.269	11.942	0.356	0.793	0.714
30.0	25.2	30.0	1.370	5.011	12.244	0.328	1.052	0.725
45.0	25.2	45.0	1.081	5.128	12.047	0.273	1.268	0.729
60.0	25.3	59.8	0.667	6.244	12.881	0.187	1.444	0.712
75.0	25.3	74.6	0.371	5.269	12.661	0.092	1.096	0.618
90.0	25.3	89.6	0.279	4.604	12.179	0.072	1.038	0.529
105.0	25.3	104.6	0.415	5.186	11.766	0.094	1.019	0.414
120.0	25.2	119.6	0.405	5.868	10.644	0.112	1.825	0.452
135.0	25.2	134.6	0.434	5.609	10.487	0.120	1.440	0.305
150.0	25.3	149.5	0.579	4.789	10.278	0.140	1.174	0.264
165.0	25.4	164.5	0.660	3.989	10.324	0.132	0.572	0.195
180.0	25.8	179.8	0.472	3.199	10.153	0.135	0.342	0.164
195.0	25.6	194.9	0.675	4.319	10.104	0.120	0.687	0.193
210.0	25.3	210.1	0.601	6.232	10.152	0.125	1.312	0.328
225.0	25.3	225.0	0.337	6.710	10.046	0.096	1.441	0.348
240.0	25.2	240.3	0.510	8.367	10.089	0.100	2.129	0.330
255.0	25.3	255.2	0.451	8.675	11.079	0.088	1.818	0.352
270.0	25.3	270.2	0.307	7.549	11.840	0.071	1.803	0.456
285.0	25.3	285.1	0.355	8.425	12.085	0.076	1.787	0.564
300.0	25.3	299.9	0.665	7.448	11.993	0.168	1.494	0.687
315.0	25.3	314.7	1.019	5.844	11.882	0.260	1.098	0.737
330.0	25.2	329.6	1.391	4.882	12.157	0.320	0.779	0.741
345.0	25.2	344.7	1.599	3.849	12.191	0.352	0.555	0.726
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table T.42: Accelerations at Hangar Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	5	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.4	-0.0	1.588	4.664	13.201	0.382	0.668	0.933
15.0	30.4	15.1	1.643	5.291	12.785	0.376	0.862	0.929
30.0	30.4	30.1	1.390	5.654	12.765	0.347	1.103	0.918
45.0	30.4	45.1	1.192	5.969	13.089	0.291	1.329	0.897
60.0	30.4	60.0	0.837	6.552	12.779	0.199	1.552	0.803
75.0	30.4	74.7	0.340	5.212	12.490	0.099	1.200	0.643
90.0	30.4	89.7	0.338	4.859	11.928	0.085	1.161	0.522
105.0	30.4	104.7	0.471	4.770	11.138	0.113	1.078	0.381
120.0	30.3	119.7	0.497	6.748	10.428	0.140	2.199	0.434
135.0	30.2	134.5	0.710	6.401	10.560	0.174	1.857	0.338
150.0	30.3	149.2	0.851	7.060	10.160	0.225	1.449	0.308
165.0	30.8	164.0	0.859	4.207	10.036	0.198	0.687	0.212
180.0	31.2	179.7	0.615	4.451	9.934	0.190	0.545	0.170
195.0	30.9	194.7	0.840	4.244	9.969	0.188	0.765	0.207
210.0	30.5	210.3	0.795	6.988	10.229	0.203	1.442	0.363
225.0	30.4	225.1	0.545	6.567	10.138	0.134	1.636	0.417
240.0	30.4	240.1	0.506	8.292	9.956	0.117	2.121	0.475
255.0	30.4	255.1	0.489	8.442	11.338	0.107	1.666	0.371
270.0	30.4	270.1	0.313	7.607	11.728	0.083	1.714	0.471
285.0	30.4	285.1	0.364	8.210	11.697	0.083	1.730	0.603
300.0	30.4	299.9	0.647	7.759	12.273	0.179	1.480	0.775
315.0	30.4	314.8	1.077	6.786	12.531	0.278	1.067	0.904
330.0	30.4	329.8	1.374	5.028	12.814	0.338	0.765	0.942
345.0	30.4	344.9	1.379	4.493	12.820	0.368	0.625	0.939
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

This page intentionally left blank.

Annex U Tables of Flight Deck Accelerations – Bretschneider Spectrum (Open Ocean)

Table U.1: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-23.8	0.695	1.656	11.045	0.165	0.359	0.452
15.0	-0.2	-4.6	0.687	0.845	10.965	0.154	0.125	0.401
30.0	-0.2	16.7	0.644	1.443	10.890	0.157	0.271	0.396
45.0	-0.2	33.5	0.708	2.406	10.995	0.173	0.524	0.446
60.0	-0.3	44.5	0.732	3.087	11.557	0.184	0.725	0.498
75.0	-0.5	52.4	0.716	4.970	12.584	0.192	0.890	0.552
90.0	-0.6	59.0	0.869	5.318	11.996	0.196	1.029	0.601
105.0	-0.7	63.4	0.948	4.944	12.354	0.192	1.085	0.627
120.0	-1.6	96.0	0.658	6.647	12.631	0.127	1.212	0.681
135.0	-2.1	102.8	0.778	6.666	13.013	0.171	1.189	0.697
150.0	-2.4	105.0	0.865	5.503	12.471	0.176	1.165	0.701
165.0	-2.5	106.2	0.837	6.350	13.167	0.173	1.149	0.702
180.0	-0.7	74.0	0.703	5.869	12.666	0.146	0.700	0.478
195.0	-0.0	200.3	0.419	1.540	11.174	0.120	0.314	0.344
210.0	-0.2	382.2	0.701	3.830	11.949	0.184	0.768	0.589
225.0	-0.0	384.6	0.716	4.186	12.037	0.196	0.833	0.630
240.0	0.7	293.3	0.935	4.590	13.145	0.209	1.078	0.768
255.0	0.6	292.8	0.987	5.196	13.214	0.210	1.118	0.794
270.0	0.3	295.4	0.994	5.351	13.493	0.210	1.067	0.768
285.0	0.2	299.4	0.718	4.319	12.801	0.211	1.039	0.736
300.0	0.0	303.8	0.746	5.131	11.958	0.207	0.944	0.690
315.0	-0.1	309.3	0.845	4.052	12.347	0.201	0.822	0.635
330.0	-0.1	314.8	0.757	3.529	11.605	0.192	0.691	0.585
345.0	-0.1	322.9	0.736	2.398	11.397	0.181	0.549	0.525
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.2: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.8	-2.1	0.671	0.948	11.287	0.179	0.119	0.521
15.0	4.8	12.8	0.687	1.024	11.174	0.181	0.176	0.520
30.0	4.8	27.6	0.874	1.509	11.371	0.192	0.341	0.553
45.0	4.7	42.1	0.835	2.274	11.525	0.210	0.562	0.615
60.0	4.4	54.6	0.884	3.299	12.065	0.223	0.807	0.686
75.0	4.2	58.0	0.806	3.904	12.315	0.222	0.905	0.705
90.0	4.1	61.8	0.736	5.339	12.299	0.220	0.958	0.727
105.0	4.1	64.0	0.690	4.551	12.540	0.219	1.004	0.741
120.0	4.1	65.4	0.752	4.090	12.376	0.218	1.006	0.748
135.0	4.1	65.8	0.797	4.361	12.772	0.219	0.984	0.742
150.0	4.6	145.4	0.410	2.092	10.841	0.101	0.475	0.219
165.0	4.9	163.1	0.368	1.518	10.682	0.088	0.295	0.171
180.0	4.9	178.7	0.332	1.104	10.667	0.084	0.191	0.164
195.0	4.9	194.1	0.339	1.364	10.703	0.085	0.299	0.180
210.0	4.9	210.1	0.374	2.192	10.843	0.095	0.482	0.225
225.0	4.6	229.1	0.443	2.954	11.154	0.117	0.732	0.343
240.0	4.6	285.6	0.722	4.873	13.549	0.204	1.105	0.906
255.0	4.5	287.1	0.898	5.159	13.838	0.212	1.113	0.919
270.0	4.5	288.9	0.891	5.530	14.180	0.218	1.114	0.909
285.0	4.7	291.1	0.928	4.554	14.006	0.227	1.089	0.895
300.0	4.9	301.1	0.784	3.790	12.640	0.236	0.924	0.784
315.0	4.8	314.2	0.842	3.504	11.852	0.220	0.657	0.668
330.0	4.8	328.5	0.813	2.248	11.426	0.201	0.407	0.596
345.0	4.8	343.2	0.720	1.452	11.411	0.186	0.230	0.543
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table U.3: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	5	Standar	d
Heading		ean	l	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.0	-0.6	0.740	0.941	11.678	0.201	0.103	0.619
15.0	10.0	14.4	0.716	1.080	11.684	0.204	0.163	0.619
30.0	10.0	29.4	0.869	1.636	11.656	0.218	0.328	0.651
45.0	10.0	44.4	0.847	2.345	12.138	0.237	0.555	0.695
60.0	10.0	59.2	0.925	3.453	12.378	0.250	0.842	0.817
75.0	10.0	73.0	0.923	4.945	13.780	0.225	1.001	0.982
90.0	9.6	85.5	0.458	8.098	13.435	0.105	0.986	0.930
105.0	9.3	100.2	0.622	5.775	12.345	0.117	1.105	0.578
120.0	9.7	117.2	0.384	5.052	11.502	0.096	1.022	0.319
135.0	9.9	133.4	0.292	3.379	10.476	0.078	1.035	0.178
150.0	10.0	148.9	0.211	3.446	10.232	0.066	1.050	0.133
165.0	10.1	164.2	0.233	3.738	10.146	0.060	0.849	0.104
180.0	10.1	179.3	0.218	2.491	10.148	0.059	0.511	0.082
195.0	10.1	194.6	0.246	1.922	10.352	0.062	0.495	0.088
210.0	10.1	210.3	0.217	2.507	10.378	0.070	0.880	0.128
225.0	10.0	225.7	0.270	3.309	10.615	0.081	0.989	0.199
240.0	9.8	241.9	0.380	4.260	11.432	0.099	1.033	0.340
255.0	9.4	259.4	0.729	5.527	12.413	0.125	1.127	0.620
270.0	9.7	274.2	0.507	6.320	13.406	0.092	1.071	0.974
285.0	10.1	286.7	0.809	4.598	13.489	0.227	1.090	1.061
300.0	10.1	300.1	0.851	3.302	12.488	0.255	0.902	0.867
315.0	10.0	314.7	0.907	2.443	11.910	0.242	0.607	0.717
330.0	10.0	329.7	0.853	1.705	11.786	0.222	0.362	0.664
345.0	10.0	344.6	0.839	1.282	11.743	0.206	0.192	0.627
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.4: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.2	0.764	1.108	11.873	0.219	0.104	0.648
15.0	15.2	14.8	0.764	1.223	11.719	0.224	0.168	0.652
30.0	15.2	29.8	0.897	1.857	12.119	0.239	0.323	0.697
45.0	15.1	44.8	0.892	2.391	12.047	0.258	0.537	0.774
60.0	15.2	59.6	0.951	3.299	12.995	0.266	0.816	0.942
75.0	15.2	74.0	0.799	4.635	13.745	0.227	0.971	1.108
90.0	15.1	88.4	0.333	8.954	13.400	0.054	0.964	0.856
105.0	15.0	103.3	0.474	5.505	12.203	0.092	1.050	0.471
120.0	15.1	118.8	0.243	4.850	10.876	0.065	1.459	0.252
135.0	15.2	134.5	0.165	4.102	10.268	0.050	1.523	0.215
150.0	15.2	149.7	0.274	3.537	10.369	0.069	1.054	0.152
165.0	15.1	164.7	0.236	2.224	10.260	0.065	0.520	0.093
180.0	15.3	179.7	0.248	2.293	10.068	0.059	0.263	0.051
195.0	15.2	194.6	0.245	3.146	9.940	0.058	0.455	0.053
210.0	15.2	209.8	0.199	3.505	9.953	0.059	0.944	0.062
225.0	15.2	225.3	0.187	4.196	10.249	0.056	1.543	0.143
240.0	15.1	241.1	0.359	4.622	11.511	0.071	1.420	0.254
255.0	15.0	256.7	0.610	5.146	12.479	0.102	1.138	0.491
270.0	15.1	271.7	0.309	5.267	13.368	0.048	1.094	0.921
285.0	15.3	285.9	0.825	4.513	14.063	0.226	1.118	1.179
300.0	15.2	300.1	0.905	3.405	12.906	0.268	0.882	0.988
315.0	15.2	314.9	0.933	2.274	12.163	0.261	0.580	0.800
330.0	15.2	329.9	0.874	1.726	12.191	0.241	0.342	0.708
345.0	15.2	344.8	0.814	1.152	11.824	0.225	0.178	0.658
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table U.5: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	20.3	-0.1	0.896	1.257	12.234	0.235	0.116	0.736	
15.0	20.3	14.9	0.815	1.477	12.220	0.240	0.166	0.745	
30.0	20.3	29.9	0.921	1.807	12.575	0.255	0.307	0.819	
45.0	20.3	44.9	0.969	2.383	12.665	0.273	0.512	0.931	
60.0	20.3	59.8	0.992	3.689	13.178	0.277	0.785	1.107	
75.0	20.4	74.4	0.835	5.837	14.434	0.227	0.970	1.216	
90.0	20.3	89.1	0.297	6.650	13.364	0.044	0.952	0.840	
105.0	20.2	104.0	0.461	7.244	12.440	0.075	1.167	0.417	
120.0	20.3	119.5	0.161	5.636	10.871	0.040	1.897	0.313	
135.0	20.3	134.9	0.211	4.618	10.316	0.054	1.384	0.172	
150.0	20.4	149.6	0.308	3.008	10.126	0.063	0.705	0.088	
165.0	20.8	164.7	0.252	2.770	10.038	0.065	0.315	0.065	
180.0	20.1	179.6	0.374	3.476	10.020	0.072	0.477	0.097	
195.0	20.7	195.0	0.380	3.295	10.016	0.067	0.473	0.080	
210.0	20.5	210.1	0.288	4.363	9.945	0.061	0.799	0.099	
225.0	20.3	225.0	0.186	4.750	9.924	0.049	1.377	0.139	
240.0	20.3	240.5	0.217	6.239	10.944	0.043	1.854	0.217	
255.0	20.2	255.9	0.486	6.832	12.150	0.082	1.237	0.405	
270.0	20.3	270.9	0.358	5.336	13.403	0.043	1.128	0.909	
285.0	20.4	285.5	0.802	4.525	14.031	0.223	1.160	1.282	
300.0	20.3	300.1	0.947	3.234	13.519	0.275	0.892	1.143	
315.0	20.3	315.0	0.977	2.350	12.802	0.272	0.572	0.950	
330.0	20.3	329.9	0.933	1.672	12.342	0.255	0.335	0.831	
345.0	20.3	344.9	0.914	1.218	12.450	0.240	0.180	0.755	
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table U.6: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	Lat m/s² Vert m/s² 0.139 0.891 0.170 0.915 0.293 0.997 0.488 1.122 0.760 1.286 0.951 1.329 0.970 0.834 1.272 0.361 2.090 0.303 1.206 0.135 0.582 0.106 0.401 0.130		
Heading	Mo	ean	N	Maximu	m	I	Deviation	n		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat			
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2		
0.0	25.4	-0.1	0.816	1.418	12.477	0.243	0.139	0.891		
15.0	25.4	14.9	0.884	1.650	12.596	0.249	0.170	0.915		
30.0	25.4	29.9	0.897	1.972	12.927	0.264	0.293	0.997		
45.0	25.4	44.9	0.930	2.792	13.283	0.281	0.488	1.122		
60.0	25.4	59.8	1.029	3.692	13.969	0.284	0.760	1.286		
75.0	25.4	74.6	0.747	4.606	14.414	0.228	0.951	1.329		
90.0	25.4	89.4	0.330	7.108	13.221	0.042	0.970	0.834		
105.0	25.4	104.4	0.311	5.841	11.873	0.061	1.272	0.361		
120.0	25.4	119.9	0.342	6.653	10.715	0.055	2.090	0.303		
135.0	25.3	134.9	0.435	4.425	10.137	0.070	1.206	0.135		
150.0	25.4	149.9	0.437	2.889	10.105	0.082	0.582	0.106		
165.0	25.3	164.9	0.375	3.240	10.168	0.087	0.401	0.130		
180.0	25.6	179.9	0.353	3.062	10.242	0.081	0.370	0.139		
195.0	25.3	194.7	0.385	3.360	10.124	0.086	0.619	0.149		
210.0	25.3	209.8	0.486	4.007	10.109	0.080	0.788	0.140		
225.0	25.1	224.5	0.382	5.083	9.903	0.063	1.339	0.203		
240.0	25.4	240.2	0.235	6.346	10.197	0.054	2.283	0.299		
255.0	25.4	255.6	0.287	5.776	11.378	0.067	1.367	0.332		
270.0	25.4	270.6	0.285	5.450	13.271	0.044	1.166	0.903		
285.0	25.4	285.4	0.782	4.803	14.828	0.221	1.210	1.380		
300.0	25.4	300.1	0.984	4.012	13.955	0.278	0.915	1.305		
315.0	25.4	315.1	0.929	2.523	13.449	0.278	0.586	1.132		
330.0	25.4	330.0	0.892	1.796	12.859	0.263	0.348	1.009		
345.0	25.4	345.0	0.909	1.397	12.618	0.249	0.201	0.921		
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.			

Table U.7: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 8.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	30.5	-0.0	0.786	1.447	13.095	0.247	0.161	1.066
15.0	30.5	14.9	0.863	1.574	13.397	0.253	0.171	1.093
30.0	30.5	29.9	0.876	2.129	13.371	0.268	0.279	1.184
45.0	30.5	44.9	0.918	3.088	14.059	0.285	0.472	1.313
60.0	30.5	59.8	0.942	4.199	14.291	0.288	0.751	1.455
75.0	30.5	74.7	0.729	4.210	14.360	0.229	0.924	1.440
90.0	30.5	89.5	0.332	7.590	13.368	0.044	0.981	0.834
105.0	30.5	104.6	0.325	6.860	11.880	0.052	1.453	0.343
120.0	30.4	119.9	0.501	6.037	10.144	0.080	2.204	0.310
135.0	30.5	134.7	0.344	3.635	10.082	0.080	1.131	0.126
150.0	30.5	149.9	0.396	3.333	10.334	0.085	0.668	0.159
165.0	30.5	164.8	0.351	2.884	10.437	0.085	0.459	0.176
180.0	30.5	179.9	0.450	3.242	10.416	0.089	0.502	0.194
195.0	30.6	194.9	0.414	3.829	10.449	0.086	0.684	0.190
210.0	30.4	209.9	0.379	4.121	10.210	0.089	0.900	0.185
225.0	30.4	224.9	0.320	4.339	9.966	0.079	1.114	0.149
240.0	30.4	240.1	0.444	7.255	10.249	0.077	2.261	0.321
255.0	30.5	255.3	0.242	5.734	11.245	0.061	1.576	0.280
270.0	30.5	270.4	0.227	5.061	13.323	0.048	1.212	0.897
285.0	30.5	285.3	0.754	5.271	14.832	0.219	1.235	1.480
300.0	30.5	300.2	0.918	3.803	14.354	0.279	0.953	1.464
315.0	30.5	315.1	0.898	2.783	14.335	0.280	0.612	1.316
330.0	30.5	330.0	0.931	2.202	13.663	0.266	0.373	1.185
345.0	30.5	345.0	0.816	1.539	13.251	0.251	0.229	1.094
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table U.8: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	Ι	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.0	-14.9	0.488	1.794	10.602	0.122	0.390	0.297
15.0	-0.1	-6.0	0.486	1.125	10.593	0.124	0.250	0.289
30.0	-0.2	5.3	0.536	1.534	10.632	0.123	0.328	0.285
45.0	-0.2	22.7	0.529	2.283	10.832	0.120	0.598	0.291
60.0	-0.1	39.4	0.378	2.822	10.966	0.110	0.796	0.305
75.0	-0.1	53.3	0.390	3.437	11.124	0.094	0.891	0.313
90.0	-0.1	68.5	0.254	3.330	11.344	0.062	0.917	0.308
105.0	-0.1	88.4	0.163	3.496	11.007	0.012	0.912	0.283
120.0	-0.3	99.9	0.254	3.566	10.831	0.030	0.942	0.290
135.0	-0.5	108.2	0.304	3.285	11.023	0.051	0.951	0.301
150.0	-0.8	115.2	0.336	3.143	10.865	0.068	0.947	0.308
165.0	-1.0	119.3	0.370	3.228	11.011	0.076	0.925	0.311
180.0	-0.5	53.8	0.496	2.724	10.778	0.112	0.631	0.296
195.0	0.1	338.6	0.433	3.079	10.828	0.106	0.728	0.311
210.0	0.2	248.5	0.351	3.440	11.114	0.059	0.925	0.343
225.0	0.1	255.3	0.332	3.519	10.994	0.045	0.926	0.339
240.0	0.1	263.7	0.238	3.328	11.075	0.026	0.911	0.329
255.0	0.1	275.2	0.156	3.404	11.016	0.021	0.887	0.329
270.0	0.2	288.2	0.238	3.137	11.281	0.054	0.879	0.350
285.0	0.2	298.6	0.297	3.252	11.400	0.081	0.864	0.358
300.0	0.1	308.0	0.335	3.142	11.212	0.098	0.832	0.353
315.0	0.1	317.0	0.414	3.290	11.099	0.108	0.766	0.341
330.0	0.1	326.3	0.466	3.091	10.969	0.115	0.674	0.325
345.0	0.0	336.0	0.468	2.599	10.736	0.119	0.542	0.307
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.9: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	4.9	-2.4	0.529	1.008	10.798	0.143	0.160	0.346
15.0	4.8	12.3	0.540	1.397	10.723	0.142	0.316	0.347
30.0	4.8	27.1	0.567	1.987	10.829	0.137	0.537	0.354
45.0	4.8	42.0	0.475	2.539	11.109	0.126	0.706	0.364
60.0	4.8	56.5	0.338	3.221	11.131	0.103	0.811	0.365
75.0	4.8	71.2	0.228	2.957	11.245	0.059	0.826	0.342
90.0	4.8	85.7	0.059	3.041	10.979	0.013	0.827	0.309
105.0	4.7	100.0	0.124	3.068	10.892	0.022	0.860	0.295
120.0	4.4	110.5	0.218	3.702	11.204	0.044	0.877	0.288
135.0	4.2	120.6	0.244	2.873	10.815	0.058	0.844	0.271
150.0	4.5	143.2	0.336	2.356	10.743	0.074	0.594	0.224
165.0	4.7	161.6	0.347	1.562	10.732	0.079	0.343	0.195
180.0	4.9	178.1	0.348	1.399	10.755	0.080	0.259	0.186
195.0	4.9	194.3	0.360	1.772	10.795	0.079	0.415	0.190
210.0	4.9	210.7	0.345	2.232	10.731	0.075	0.620	0.209
225.0	4.9	227.2	0.284	2.713	10.882	0.068	0.781	0.244
240.0	4.8	243.0	0.209	3.199	10.920	0.054	0.871	0.284
255.0	4.9	257.2	0.158	3.027	11.018	0.030	0.865	0.305
270.0	5.0	271.5	0.042	3.021	11.010	0.008	0.827	0.324
285.0	5.0	286.0	0.235	3.308	11.533	0.049	0.813	0.359
300.0	5.0	300.3	0.413	3.118	11.638	0.096	0.803	0.384
315.0	5.0	314.4	0.461	2.775	11.033	0.123	0.707	0.379
330.0	4.9	328.6	0.482	2.412	10.853	0.135	0.554	0.364
345.0	4.9	343.1	0.507	1.684	10.826	0.141	0.354	0.351
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.10: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.1	-0.6	0.760	0.847	11.125	0.163	0.089	0.396
15.0	10.1	14.4	0.647	1.415	11.079	0.160	0.266	0.396
30.0	10.1	29.5	0.541	1.970	11.041	0.154	0.478	0.401
45.0	10.1	44.5	0.512	2.718	11.143	0.139	0.635	0.405
60.0	10.1	59.3	0.363	2.839	11.179	0.106	0.740	0.398
75.0	10.2	74.2	0.216	3.147	11.462	0.053	0.714	0.360
90.0	10.1	89.0	0.054	2.912	11.118	0.013	0.728	0.315
105.0	10.1	103.9	0.115	3.495	10.917	0.025	0.783	0.284
120.0	10.0	118.6	0.189	4.046	10.966	0.041	0.867	0.250
135.0	10.0	133.7	0.207	3.466	10.773	0.049	0.806	0.212
150.0	10.0	148.9	0.186	2.770	10.461	0.054	0.752	0.178
165.0	10.1	164.1	0.223	2.386	10.384	0.056	0.563	0.152
180.0	10.1	179.3	0.261	1.945	10.399	0.057	0.342	0.133
195.0	10.1	194.6	0.234	1.920	10.273	0.057	0.398	0.124
210.0	10.1	210.1	0.223	2.300	10.406	0.055	0.703	0.141
225.0	10.1	225.6	0.268	2.853	10.814	0.051	0.882	0.178
240.0	10.1	240.8	0.228	3.446	11.037	0.044	0.961	0.226
255.0	10.2	255.6	0.198	3.618	11.106	0.029	0.893	0.270
270.0	10.2	270.4	0.067	3.305	11.306	0.015	0.818	0.320
285.0	10.2	285.1	0.199	3.265	11.426	0.049	0.789	0.374
300.0	10.1	299.9	0.380	3.118	11.489	0.104	0.765	0.411
315.0	10.1	314.6	0.510	2.817	11.245	0.138	0.640	0.410
330.0	10.1	329.5	0.606	2.199	11.174	0.153	0.464	0.401
345.0	10.1	344.4	0.731	1.446	11.243	0.161	0.255	0.396
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.11: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.3	0.640	0.922	10.946	0.181	0.086	0.435
15.0	15.2	14.8	0.634	1.413	10.999	0.178	0.263	0.435
30.0	15.2	29.9	0.758	2.224	11.240	0.170	0.461	0.442
45.0	15.2	44.9	0.553	2.837	11.416	0.153	0.633	0.450
60.0	15.2	59.8	0.398	2.832	11.513	0.115	0.760	0.438
75.0	15.3	74.7	0.196	2.768	11.207	0.055	0.671	0.380
90.0	15.3	89.6	0.074	3.027	11.197	0.020	0.674	0.318
105.0	15.3	104.5	0.130	3.226	11.124	0.027	0.743	0.271
120.0	15.2	119.3	0.168	4.113	10.848	0.035	1.023	0.244
135.0	15.2	134.6	0.214	3.901	10.599	0.039	1.002	0.202
150.0	15.2	149.7	0.173	2.408	10.271	0.039	0.600	0.145
165.0	15.2	164.7	0.192	1.686	10.195	0.048	0.374	0.122
180.0	15.3	179.7	0.172	1.403	10.119	0.038	0.170	0.095
195.0	15.2	194.8	0.242	2.806	10.063	0.049	0.389	0.089
210.0	15.2	209.9	0.160	3.189	10.006	0.041	0.693	0.085
225.0	15.2	225.2	0.208	3.747	10.287	0.041	1.135	0.120
240.0	15.2	240.4	0.193	3.926	10.765	0.037	1.135	0.184
255.0	15.3	255.3	0.134	3.373	10.920	0.030	0.931	0.238
270.0	15.3	270.2	0.079	3.230	10.994	0.022	0.826	0.313
285.0	15.3	285.0	0.195	3.402	11.333	0.052	0.780	0.392
300.0	15.2	299.9	0.389	3.251	11.320	0.113	0.766	0.452
315.0	15.2	314.7	0.528	2.703	11.220	0.152	0.616	0.454
330.0	15.2	329.7	0.677	2.047	11.200	0.170	0.426	0.441
345.0	15.2	344.7	0.684	1.352	11.119	0.179	0.216	0.435
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.12: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.3	-0.1	0.795	1.097	11.382	0.198	0.104	0.506
15.0	20.3	14.9	0.808	1.572	11.447	0.195	0.272	0.506
30.0	20.3	30.0	0.685	2.127	11.359	0.185	0.469	0.518
45.0	20.3	45.0	0.563	2.806	11.533	0.165	0.647	0.528
60.0	20.3	59.9	0.423	3.356	11.761	0.124	0.802	0.499
75.0	20.4	74.8	0.225	2.854	11.404	0.058	0.641	0.403
90.0	20.4	89.8	0.096	3.085	11.182	0.026	0.635	0.315
105.0	20.4	104.8	0.140	3.643	10.876	0.032	0.694	0.252
120.0	20.3	119.7	0.187	4.827	10.591	0.039	1.262	0.246
135.0	20.3	134.8	0.163	3.442	10.082	0.042	1.031	0.171
150.0	20.3	149.8	0.142	2.051	10.061	0.044	0.575	0.114
165.0	20.4	164.8	0.203	1.457	10.090	0.049	0.306	0.087
180.0	20.4	179.9	0.185	1.719	10.039	0.050	0.179	0.080
195.0	20.4	194.9	0.156	2.580	9.981	0.048	0.371	0.069
210.0	20.4	209.9	0.183	4.305	9.976	0.037	0.619	0.077
225.0	20.4	225.0	0.134	4.234	9.961	0.034	0.896	0.082
240.0	20.4	240.2	0.163	4.979	10.225	0.038	1.381	0.145
255.0	20.4	255.1	0.184	3.744	10.937	0.034	0.912	0.208
270.0	20.4	270.1	0.098	3.228	10.919	0.028	0.805	0.307
285.0	20.4	285.0	0.194	3.568	11.480	0.055	0.757	0.414
300.0	20.4	299.9	0.412	3.312	11.610	0.122	0.762	0.516
315.0	20.3	314.8	0.587	2.713	11.619	0.164	0.590	0.535
330.0	20.3	329.8	0.711	2.151	11.393	0.184	0.398	0.520
345.0	20.3	344.8	0.721	1.473	11.326	0.194	0.197	0.508
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.13: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.757	1.391	11.801	0.212	0.128	0.633
15.0	25.4	15.0	0.847	1.635	11.862	0.208	0.279	0.632
30.0	25.4	30.0	0.706	2.438	11.783	0.197	0.467	0.639
45.0	25.4	45.0	0.642	2.781	11.971	0.176	0.646	0.640
60.0	25.4	60.0	0.430	3.401	11.989	0.133	0.824	0.590
75.0	25.4	74.9	0.198	2.950	11.413	0.062	0.627	0.428
90.0	25.4	89.9	0.113	3.032	11.140	0.032	0.617	0.310
105.0	25.4	104.8	0.171	3.464	10.941	0.040	0.691	0.237
120.0	25.4	119.9	0.196	5.279	10.187	0.049	1.578	0.246
135.0	25.4	134.9	0.160	2.797	9.988	0.052	1.001	0.135
150.0	25.4	149.9	0.185	2.498	9.972	0.059	0.655	0.097
165.0	25.5	164.9	0.268	2.022	10.021	0.077	0.399	0.091
180.0	25.6	179.9	0.204	1.534	9.935	0.059	0.130	0.044
195.0	25.5	195.0	0.240	2.869	10.018	0.073	0.385	0.074
210.0	25.5	210.0	0.225	3.837	9.962	0.051	0.675	0.088
225.0	25.4	225.0	0.152	4.819	9.916	0.043	0.996	0.105
240.0	25.4	240.0	0.142	4.747	9.899	0.040	1.247	0.094
255.0	25.4	255.0	0.193	3.619	10.782	0.040	0.851	0.185
270.0	25.4	270.0	0.128	3.193	10.920	0.034	0.760	0.300
285.0	25.4	285.0	0.200	3.572	11.408	0.058	0.716	0.441
300.0	25.4	299.9	0.496	4.016	12.297	0.130	0.744	0.609
315.0	25.4	314.9	0.631	2.865	12.040	0.173	0.557	0.647
330.0	25.4	329.9	0.663	2.221	11.806	0.196	0.365	0.644
345.0	25.4	344.9	0.765	1.574	11.722	0.208	0.185	0.634
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.14: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 4.0 m and Tp = 15.5 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	Standard		
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	0.849	1.415	12.398	0.224	0.158	0.802
15.0	30.5	15.0	0.838	1.869	12.464	0.221	0.287	0.796
30.0	30.5	30.0	0.711	2.406	12.473	0.208	0.459	0.792
45.0	30.5	45.0	0.675	3.177	12.553	0.185	0.639	0.774
60.0	30.5	60.0	0.482	3.476	12.211	0.141	0.830	0.693
75.0	30.5	75.0	0.201	2.793	11.385	0.065	0.606	0.457
90.0	30.5	89.9	0.135	2.897	11.171	0.037	0.615	0.303
105.0	30.5	104.9	0.190	3.245	10.628	0.048	0.748	0.217
120.0	30.5	119.9	0.238	4.000	9.958	0.056	1.350	0.186
135.0	30.5	134.9	0.255	3.809	9.938	0.054	0.867	0.106
150.0	30.6	149.9	0.261	2.476	9.933	0.080	0.610	0.084
165.0	30.6	164.9	0.296	1.948	9.903	0.093	0.342	0.057
180.0	31.0	179.9	0.331	2.231	9.883	0.093	0.222	0.043
195.0	30.6	194.9	0.256	2.738	9.885	0.084	0.397	0.055
210.0	30.6	210.0	0.231	3.214	9.883	0.072	0.630	0.073
225.0	30.5	225.0	0.166	4.072	9.892	0.047	0.886	0.102
240.0	30.5	240.1	0.223	6.094	9.859	0.052	1.479	0.153
255.0	30.5	255.0	0.166	3.699	10.551	0.048	0.782	0.162
270.0	30.5	270.0	0.141	3.172	10.895	0.040	0.688	0.293
285.0	30.5	285.0	0.212	3.813	11.459	0.061	0.673	0.476
300.0	30.5	299.9	0.460	3.414	12.203	0.135	0.716	0.702
315.0	30.5	314.9	0.600	3.095	12.449	0.181	0.531	0.776
330.0	30.5	329.9	0.741	2.289	12.243	0.207	0.350	0.795
345.0	30.5	344.9	0.847	1.640	12.507	0.220	0.191	0.797
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.15: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Me	ean		Maximuı	m	Ι	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.1	-18.2	1.281	3.577	11.607	0.264	0.676	0.682
15.0	-0.3	-12.9	1.215	2.793	11.520	0.262	0.527	0.652
30.0	-0.6	-3.0	1.179	2.623	11.349	0.258	0.476	0.626
45.0	-0.9	7.5	1.234	3.191	11.925	0.255	0.661	0.609
60.0	-1.2	18.4	1.120	4.551	12.060	0.254	1.013	0.623
75.0	-1.6	-14.9	1.144	6.866	13.595	0.252	1.561	0.718
90.0	-1.5	-5.5	0.954	10.020	14.319	0.246	1.560	0.702
105.0	-1.3	-6.7	0.952	7.531	13.142	0.250	1.488	0.691
120.0	-1.3	47.4	1.203	11.600	13.344	0.194	1.691	0.732
135.0	-3.0	105.0	0.976	9.560	14.290	0.191	1.845	0.852
150.0	-3.7	109.0	0.912	8.485	13.611	0.204	1.770	0.851
165.0	-4.0	106.1	0.953	10.055	13.495	0.202	1.782	0.861
180.0	-0.2	328.0	1.153	4.597	12.514	0.245	0.923	0.656
195.0	-0.2	16.8	1.069	5.935	12.672	0.258	0.973	0.710
210.0	-0.2	385.8	1.025	5.616	12.302	0.258	1.078	0.739
225.0	-0.1	392.3	1.124	5.494	12.859	0.263	1.238	0.785
240.0	0.0	393.2	1.169	5.923	13.242	0.264	1.381	0.835
255.0	0.0	386.6	1.031	6.136	13.985	0.261	1.564	0.894
270.0	0.5	300.2	1.264	6.497	14.163	0.261	1.485	0.912
285.0	0.3	303.6	1.100	8.013	15.084	0.264	1.424	0.888
300.0	-0.0	309.2	1.270	6.575	15.282	0.271	1.366	0.853
315.0	-0.1	315.9	1.173	6.287	12.989	0.272	1.240	0.813
330.0	-0.3	325.3	1.265	5.182	12.375	0.263	1.030	0.737
345.0	-0.1	333.7	1.231	4.757	11.909	0.264	0.822	0.708
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table U.16: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 5.0 Knots

Cmd	Acı	tual		Absolute	<u> </u>	Standard		
Heading		ean		Maximu			Deviatio	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert
$\deg^{\tau \text{ MHP}}$	kts	\deg	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.1	-10.0	1.395	4.555	11.868	0.298	0.483	0.767
15.0	4.0	-2.0	1.398	2.538	11.883	0.295	0.393	0.746
30.0	3.9	8.0	1.264	2.400	11.742	0.293	0.461	0.738
45.0	3.8	19.0	1.422	3.165	11.606	0.292	0.657	0.745
60.0	3.8	31.1	1.193	4.000	11.990	0.291	0.896	0.769
75.0	3.7	38.8	1.380	5.002	12.746	0.290	1.069	0.795
90.0	3.7	46.5	1.302	7.968	13.389	0.285	1.236	0.825
105.0	3.7	48.9	1.135	9.156	14.562	0.282	1.289	0.837
120.0	3.7	46.7	1.857	10.601	13.488	0.286	1.284	0.839
135.0	3.7	43.4	1.180	5.839	13.059	0.288	1.121	0.829
150.0	3.8	45.4	1.114	5.740	12.702	0.287	1.143	0.837
165.0	3.8	49.5	1.158	6.180	12.898	0.289	1.122	0.835
180.0	4.7	178.6	0.603	2.702	11.461	0.147	0.502	0.301
195.0	4.6	197.3	0.588	3.158	11.587	0.149	0.694	0.348
210.0	4.1	368.4	1.344	6.578	12.706	0.290	0.939	0.795
225.0	4.5	295.9	1.091	8.276	14.560	0.268	1.497	0.958
240.0	4.7	286.9	1.184	8.189	15.071	0.237	1.635	1.051
255.0	4.5	289.3	1.208	7.931	14.543	0.247	1.640	1.052
270.0	4.4	292.8	1.648	6.227	15.237	0.267	1.583	1.043
285.0	4.5	295.6	1.154	7.591	15.271	0.277	1.572	1.024
300.0	4.7	302.6	1.152	6.824	13.730	0.295	1.389	0.968
315.0	4.7	314.4	1.245	5.379	12.603	0.306	1.140	0.901
330.0	4.6	327.1	1.286	5.096	11.969	0.304	0.871	0.843
345.0	4.4	340.0	1.333	3.355	11.989	0.301	0.623	0.799
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.17: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	9.8	-1.2	1.349	2.165	12.029	0.331	0.265	0.890
15.0	9.7	13.7	1.465	1.904	12.201	0.329	0.364	0.883
30.0	9.7	28.7	1.359	2.665	12.160	0.331	0.652	0.907
45.0	9.7	43.7	1.496	4.203	12.550	0.328	0.958	0.936
60.0	9.7	58.2	1.075	5.704	13.506	0.309	1.264	1.004
75.0	9.7	71.6	1.613	7.696	14.927	0.257	1.467	1.105
90.0	9.0	81.8	0.830	9.335	14.880	0.150	1.492	1.031
105.0	8.6	88.7	0.752	11.164	13.905	0.085	1.651	0.905
120.0	8.4	100.7	0.758	9.499	13.538	0.106	1.713	0.761
135.0	8.9	125.6	0.582	7.513	12.472	0.123	1.419	0.448
150.0	9.4	145.7	0.461	4.255	10.994	0.110	1.329	0.283
165.0	9.6	162.0	0.394	4.146	10.634	0.105	1.246	0.240
180.0	9.9	178.3	0.376	3.983	10.550	0.103	0.983	0.187
195.0	10.0	194.6	0.438	3.353	11.065	0.105	0.806	0.176
210.0	9.8	211.5	0.431	3.593	11.152	0.112	1.227	0.252
225.0	9.3	231.7	0.697	7.101	12.612	0.127	1.512	0.431
240.0	8.5	259.3	1.792	11.948	15.611	0.138	1.756	0.813
255.0	8.6	269.8	1.299	12.240	16.826	0.104	1.691	0.946
270.0	9.2	277.4	0.828	8.762	15.001	0.137	1.609	1.108
285.0	10.0	287.5	1.181	7.137	15.076	0.257	1.573	1.212
300.0	10.0	300.3	1.083	4.566	13.494	0.313	1.371	1.071
315.0	9.8	314.3	1.270	5.477	12.526	0.333	1.048	0.969
330.0	9.8	329.1	1.430	4.529	12.365	0.336	0.705	0.934
345.0	9.8	343.9	1.366	2.496	12.372	0.333	0.424	0.893
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.18: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 15.0 Knots

Cmd	Acı	tual		Absolute	P.	Standard		
Heading		ean		Maximu) Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	m kts	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.0	-0.5	1.523	1.862	12.440	0.361	0.240	0.959
15.0	15.0	14.6	1.459	2.152	12.303	0.361	0.369	0.966
30.0	15.0	29.6	1.444	2.659	12.614	0.363	0.616	0.997
45.0	15.0	44.7	1.354	3.738	12.660	0.356	0.921	1.043
60.0	15.0	59.4	1.101	6.974	13.430	0.327	1.231	1.141
75.0	15.1	73.7	1.099	7.965	15.228	0.253	1.357	1.237
90.0	14.9	87.7	0.921	7.958	14.411	0.078	1.363	0.962
105.0	14.8	102.4	0.532	11.121	13.859	0.099	1.595	0.698
120.0	14.6	116.8	0.515	7.919	13.053	0.089	1.779	0.519
135.0	15.0	133.5	0.366	5.143	11.265	0.069	1.717	0.364
150.0	15.0	149.2	0.289	4.028	10.670	0.083	1.287	0.260
165.0	15.0	164.1	0.372	3.691	10.646	0.091	0.753	0.188
180.0	15.0	179.2	0.425	3.591	10.543	0.103	0.618	0.162
195.0	15.1	194.4	0.389	4.656	10.058	0.083	0.755	0.109
210.0	15.1	209.7	0.464	4.547	10.796	0.077	1.211	0.120
225.0	15.0	226.3	0.531	6.419	11.559	0.083	1.901	0.263
240.0	14.6	243.5	0.730	9.400	13.180	0.103	1.955	0.486
255.0	14.5	258.6	1.237	12.655	16.760	0.116	1.814	0.717
270.0	14.8	272.6	0.787	8.757	14.888	0.071	1.652	1.040
285.0	15.2	286.1	1.155	7.699	14.928	0.250	1.589	1.322
300.0	15.1	300.0	1.341	5.444	14.857	0.328	1.331	1.203
315.0	15.0	314.6	1.261	3.854	12.841	0.358	0.965	1.075
330.0	15.0	329.5	1.405	2.898	12.514	0.364	0.646	1.010
345.0	15.0	344.5	1.500	2.289	12.385	0.363	0.373	0.971
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.19: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	20.2	-0.2	1.542	1.959	13.027	0.386	0.255	1.111
15.0	20.2	14.8	1.463	2.310	13.068	0.387	0.369	1.118
30.0	20.2	29.9	1.537	3.472	13.157	0.388	0.607	1.167
45.0	20.2	44.9	1.355	4.316	13.385	0.379	0.891	1.229
60.0	20.2	59.7	1.193	4.851	14.032	0.343	1.184	1.324
75.0	20.3	74.2	1.146	8.139	16.048	0.253	1.312	1.348
90.0	20.2	88.7	0.607	8.093	14.431	0.064	1.300	0.941
105.0	20.1	103.7	0.554	8.141	13.912	0.086	1.619	0.633
120.0	20.2	118.8	0.313	6.600	11.805	0.067	2.171	0.500
135.0	20.2	134.7	0.370	4.968	10.594	0.068	1.524	0.254
150.0	20.3	149.6	0.503	3.721	10.326	0.088	1.084	0.171
165.0	20.1	164.5	0.605	3.826	10.268	0.100	0.644	0.142
180.0	20.6	179.5	0.724	4.266	10.229	0.106	0.598	0.134
195.0	20.1	194.4	0.667	4.766	9.995	0.099	0.866	0.165
210.0	20.2	209.9	0.692	6.170	9.971	0.091	1.351	0.212
225.0	20.0	225.5	0.409	6.325	10.890	0.076	2.094	0.270
240.0	20.2	241.0	0.381	7.258	11.653	0.075	2.485	0.356
255.0	19.9	256.9	0.488	13.364	13.851	0.100	1.957	0.618
270.0	20.1	271.4	0.841	10.109	14.039	0.068	1.713	1.029
285.0	20.3	285.7	1.020	7.366	15.687	0.246	1.623	1.428
300.0	20.3	300.0	1.218	4.513	14.135	0.339	1.314	1.384
315.0	20.2	314.8	1.264	3.925	13.671	0.375	0.941	1.260
330.0	20.2	329.7	1.439	3.068	13.120	0.387	0.623	1.187
345.0	20.2	344.8	1.513	2.232	13.093	0.387	0.369	1.127
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.20: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	1.463	2.104	14.104	0.404	0.306	1.357
15.0	25.4	14.9	1.403	2.635	13.881	0.405	0.396	1.366
30.0	25.4	29.9	1.567	3.854	14.577	0.406	0.607	1.412
45.0	25.3	44.9	1.585	4.370	14.292	0.395	0.868	1.471
60.0	25.3	59.8	1.289	5.848	14.774	0.355	1.163	1.527
75.0	25.3	74.5	0.974	8.631	15.262	0.256	1.281	1.468
90.0	25.3	89.2	0.682	8.595	14.686	0.065	1.295	0.939
105.0	25.2	104.2	0.484	10.606	13.398	0.086	1.909	0.597
120.0	25.2	119.7	0.387	7.581	10.927	0.078	2.652	0.475
135.0	25.2	134.7	0.375	4.711	10.361	0.091	1.727	0.231
150.0	25.1	149.8	0.768	3.979	10.242	0.119	1.089	0.171
165.0	25.8	164.4	0.368	3.900	9.964	0.108	0.579	0.117
180.0	25.6	179.8	0.503	3.948	10.033	0.113	0.574	0.128
195.0	25.7	195.1	0.402	4.184	9.996	0.105	0.770	0.149
210.0	25.4	210.0	0.496	4.770	9.973	0.107	1.190	0.206
225.0	25.2	225.3	0.463	6.886	10.197	0.092	1.942	0.312
240.0	25.2	240.5	0.453	8.187	11.492	0.074	2.699	0.385
255.0	25.2	255.9	0.406	9.041	12.381	0.092	2.082	0.505
270.0	25.3	270.9	0.584	9.510	14.138	0.070	1.753	1.011
285.0	25.4	285.5	0.991	8.457	15.328	0.245	1.641	1.551
300.0	25.4	300.1	1.189	4.848	14.845	0.345	1.344	1.574
315.0	25.4	314.9	1.495	4.031	14.785	0.387	0.960	1.497
330.0	25.4	329.9	1.400	2.969	14.677	0.401	0.634	1.433
345.0	25.4	344.9	1.490	2.262	13.877	0.403	0.396	1.374
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.21: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 10.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximui	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.5	-0.0	1.390	2.482	15.179	0.415	0.370	1.643
15.0	30.5	15.0	1.565	3.099	15.054	0.417	0.426	1.654
30.0	30.5	30.0	1.476	4.805	14.953	0.418	0.617	1.697
45.0	30.5	44.9	1.421	5.188	15.140	0.405	0.864	1.730
60.0	30.4	59.8	1.331	5.388	15.040	0.366	1.131	1.741
75.0	30.4	74.6	0.898	7.222	16.126	0.259	1.234	1.591
90.0	30.4	89.4	0.458	8.446	14.741	0.068	1.291	0.925
105.0	30.3	104.5	0.487	8.908	12.396	0.087	2.251	0.561
120.0	30.1	119.7	0.556	7.543	11.528	0.124	2.981	0.511
135.0	30.2	135.0	0.976	5.736	10.631	0.128	1.606	0.243
150.0	30.9	148.9	0.694	4.849	10.029	0.138	1.079	0.211
165.0	31.3	164.3	0.573	4.319	10.174	0.137	0.739	0.193
180.0	30.3	179.5	0.996	5.040	10.185	0.155	0.850	0.228
195.0	31.3	195.1	0.979	4.508	10.218	0.134	0.978	0.211
210.0	31.0	210.7	0.802	4.554	10.106	0.125	1.259	0.176
225.0	30.3	225.1	0.918	6.089	10.465	0.123	1.674	0.284
240.0	30.2	240.6	0.547	8.578	12.807	0.115	2.823	0.487
255.0	30.3	255.5	0.496	12.188	13.302	0.094	2.409	0.483
270.0	30.4	270.6	0.561	9.195	13.997	0.075	1.701	0.995
285.0	30.5	285.4	1.052	8.107	16.469	0.243	1.706	1.653
300.0	30.5	300.1	1.135	5.299	15.424	0.350	1.403	1.780
315.0	30.5	315.1	1.508	4.120	16.161	0.395	1.029	1.753
330.0	30.5	330.0	1.320	3.190	15.386	0.409	0.685	1.706
345.0	30.5	345.0	1.483	2.520	14.937	0.413	0.458	1.659
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table U.22: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-19.6	0.714	3.146	11.010	0.171	0.616	0.429
15.0	-0.4	-11.2	0.730	2.432	11.050	0.173	0.498	0.417
30.0	-0.6	-1.8	0.756	2.080	10.859	0.174	0.476	0.408
45.0	-0.4	17.6	0.668	2.996	11.047	0.169	0.753	0.413
60.0	-0.1	40.8	0.596	4.185	11.374	0.149	1.064	0.436
75.0	0.1	57.8	0.541	4.418	11.738	0.116	1.183	0.439
90.0	0.1	74.2	0.411	3.993	11.850	0.063	1.179	0.419
105.0	-0.2	93.6	0.202	3.993	11.648	0.023	1.194	0.403
120.0	-0.6	104.0	0.324	5.031	11.667	0.052	1.241	0.420
135.0	-1.1	111.6	0.380	5.014	11.548	0.078	1.246	0.434
150.0	-1.5	118.3	0.487	4.576	11.501	0.100	1.223	0.440
165.0	-1.8	124.3	0.548	3.914	11.578	0.116	1.164	0.443
180.0	-1.3	86.0	0.663	3.338	11.442	0.147	1.052	0.429
195.0	0.0	358.1	0.652	3.489	11.511	0.152	0.967	0.442
210.0	0.3	252.3	0.544	4.737	11.727	0.071	1.222	0.460
225.0	0.1	258.0	0.461	4.888	11.899	0.056	1.224	0.458
240.0	0.0	265.7	0.304	5.362	11.799	0.035	1.202	0.448
255.0	0.1	275.9	0.249	5.106	11.765	0.033	1.168	0.448
270.0	0.2	287.1	0.353	5.486	12.016	0.067	1.142	0.467
285.0	0.2	296.8	0.399	5.239	12.033	0.102	1.115	0.482
300.0	0.2	305.4	0.487	4.786	11.918	0.127	1.071	0.484
315.0	0.2	314.1	0.578	4.028	11.787	0.145	1.002	0.476
330.0	0.1	322.8	0.688	4.522	11.544	0.158	0.898	0.462
345.0	-0.1	331.6	0.710	4.121	11.195	0.165	0.768	0.445
Wind at 28	8.0 knots	(14.4 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.23: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	4.2	-13.9	0.910	2.919	11.156	0.201	0.585	0.485
15.0	4.1	-5.4	0.875	2.379	11.089	0.202	0.501	0.478
30.0	4.0	5.6	0.835	2.334	11.150	0.201	0.533	0.478
45.0	4.1	24.0	0.945	3.145	11.427	0.192	0.780	0.490
60.0	4.2	43.6	0.654	3.862	11.671	0.167	1.036	0.508
75.0	4.3	58.6	0.527	4.259	11.901	0.126	1.136	0.497
90.0	4.3	73.3	0.270	3.797	11.592	0.065	1.138	0.460
105.0	4.3	89.5	0.153	5.054	11.771	0.017	1.144	0.427
120.0	4.2	100.7	0.270	4.760	11.701	0.034	1.170	0.423
135.0	4.0	109.6	0.324	4.982	11.599	0.055	1.172	0.415
150.0	3.9	116.9	0.482	4.295	11.412	0.071	1.156	0.404
165.0	3.8	128.1	0.573	4.014	11.396	0.089	1.047	0.379
180.0	3.9	149.1	0.589	2.934	11.375	0.109	0.742	0.323
195.0	4.7	194.1	0.595	2.694	11.421	0.112	0.624	0.272
210.0	4.6	213.1	0.497	3.636	11.134	0.105	0.875	0.307
225.0	4.5	232.8	0.616	4.800	11.845	0.091	1.093	0.370
240.0	4.5	248.1	0.408	4.942	11.635	0.065	1.182	0.408
255.0	4.7	260.6	0.227	4.677	11.645	0.036	1.177	0.425
270.0	4.8	273.8	0.147	5.138	11.478	0.018	1.140	0.444
285.0	4.9	287.5	0.321	5.511	12.028	0.070	1.114	0.488
300.0	4.9	300.8	0.642	4.356	12.510	0.128	1.074	0.518
315.0	4.9	313.9	0.701	3.569	11.635	0.166	0.961	0.519
330.0	4.7	326.7	0.834	3.645	11.521	0.187	0.805	0.509
345.0	4.5	338.6	0.794	3.319	11.466	0.197	0.665	0.495
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.24: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.9	-1.3	0.909	2.002	11.414	0.229	0.222	0.555
15.0	9.9	13.8	1.073	2.242	11.631	0.226	0.419	0.559
30.0	9.9	28.9	0.905	2.836	11.487	0.214	0.671	0.566
45.0	9.9	43.9	0.717	3.534	11.522	0.190	0.866	0.568
60.0	10.0	58.7	0.469	3.869	11.951	0.142	0.987	0.548
75.0	10.1	73.5	0.301	4.319	11.907	0.072	0.958	0.500
90.0	10.0	88.3	0.092	4.236	11.539	0.021	0.966	0.449
105.0	10.0	103.2	0.180	4.712	11.609	0.034	1.024	0.417
120.0	9.7	117.3	0.286	5.192	11.780	0.054	1.086	0.384
135.0	9.7	132.1	0.354	4.573	11.505	0.066	0.980	0.330
150.0	9.7	147.6	0.330	3.773	11.026	0.075	0.937	0.273
165.0	9.8	163.1	0.358	3.412	10.656	0.080	0.833	0.233
180.0	9.9	178.6	0.340	3.034	10.447	0.081	0.639	0.195
195.0	10.0	194.3	0.385	2.903	10.530	0.082	0.646	0.168
210.0	9.9	210.5	0.439	3.184	11.058	0.079	0.956	0.204
225.0	9.8	226.6	0.462	4.205	11.607	0.072	1.195	0.259
240.0	9.8	242.1	0.338	4.160	11.846	0.061	1.305	0.328
255.0	10.0	256.5	0.230	4.300	11.642	0.042	1.255	0.374
270.0	10.1	271.0	0.105	4.919	11.450	0.023	1.178	0.435
285.0	10.1	285.5	0.306	5.164	12.153	0.064	1.116	0.501
300.0	10.1	300.0	0.564	4.683	12.157	0.137	1.061	0.555
315.0	10.0	314.3	0.711	3.562	11.697	0.187	0.879	0.562
330.0	9.9	329.0	0.814	2.855	11.487	0.213	0.645	0.559
345.0	9.9	343.8	0.963	2.556	11.441	0.224	0.392	0.552
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.25: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	15.1	-0.5	0.885	1.548	11.317	0.253	0.192	0.611
15.0	15.1	14.6	0.987	2.141	11.557	0.250	0.404	0.614
30.0	15.1	29.7	0.857	2.958	11.919	0.236	0.667	0.624
45.0	15.1	44.7	0.782	3.624	12.199	0.208	0.877	0.626
60.0	15.1	59.5	0.523	4.230	12.188	0.152	1.021	0.597
75.0	15.2	74.4	0.307	4.160	12.309	0.073	0.898	0.524
90.0	15.2	89.3	0.117	4.090	11.783	0.030	0.885	0.452
105.0	15.2	104.2	0.215	4.605	11.869	0.040	0.961	0.399
120.0	15.1	118.8	0.288	5.471	11.573	0.052	1.249	0.386
135.0	15.0	134.0	0.342	4.972	11.217	0.061	1.255	0.323
150.0	15.1	149.3	0.286	3.508	10.642	0.062	0.873	0.243
165.0	15.2	164.4	0.236	2.541	10.341	0.057	0.450	0.178
180.0	15.1	179.4	0.273	2.262	10.288	0.064	0.399	0.153
195.0	15.1	194.6	0.302	3.785	10.090	0.066	0.610	0.126
210.0	15.1	209.9	0.298	4.238	10.066	0.060	0.985	0.118
225.0	15.1	225.6	0.351	4.696	10.875	0.063	1.505	0.184
240.0	15.1	241.0	0.376	4.876	11.508	0.056	1.531	0.273
255.0	15.2	255.6	0.255	4.935	11.498	0.045	1.343	0.328
270.0	15.2	270.4	0.147	4.951	11.487	0.033	1.224	0.424
285.0	15.2	285.2	0.249	5.171	11.853	0.066	1.149	0.521
300.0	15.2	299.8	0.520	4.932	12.147	0.147	1.080	0.604
315.0	15.1	314.5	0.705	3.702	12.063	0.205	0.853	0.620
330.0	15.1	329.4	0.911	3.072	11.747	0.235	0.601	0.614
345.0	15.1	344.4	1.058	1.939	11.647	0.249	0.336	0.608
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.26: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.2	-0.2	1.158	1.773	11.737	0.275	0.222	0.708
15.0	20.2	14.9	1.047	2.324	11.965	0.271	0.437	0.709
30.0	20.2	29.9	0.992	3.239	12.029	0.256	0.691	0.723
45.0	20.3	44.9	0.810	3.785	12.347	0.224	0.912	0.722
60.0	20.3	59.8	0.561	4.721	12.233	0.162	1.094	0.663
75.0	20.3	74.7	0.291	3.790	12.020	0.077	0.873	0.552
90.0	20.3	89.6	0.154	3.880	11.792	0.040	0.843	0.449
105.0	20.3	104.6	0.222	4.745	11.563	0.049	0.930	0.375
120.0	20.3	119.4	0.286	5.253	10.989	0.061	1.590	0.385
135.0	20.2	134.7	0.264	4.141	10.356	0.066	1.416	0.277
150.0	20.2	149.6	0.352	3.298	10.503	0.079	0.945	0.211
165.0	20.3	164.7	0.318	2.449	10.316	0.072	0.447	0.151
180.0	20.3	179.7	0.368	2.814	10.195	0.078	0.364	0.126
195.0	20.3	194.8	0.357	4.796	10.091	0.075	0.673	0.125
210.0	20.2	210.0	0.269	5.419	10.014	0.070	1.140	0.149
225.0	20.3	224.9	0.252	5.905	9.971	0.053	1.291	0.157
240.0	20.3	240.5	0.349	6.151	10.731	0.061	1.846	0.219
255.0	20.3	255.3	0.320	5.249	11.637	0.052	1.357	0.289
270.0	20.3	270.2	0.157	5.170	11.500	0.042	1.229	0.414
285.0	20.3	285.1	0.269	4.782	11.883	0.069	1.148	0.544
300.0	20.3	299.8	0.569	6.112	12.468	0.156	1.079	0.674
315.0	20.3	314.7	0.871	4.053	12.099	0.220	0.834	0.720
330.0	20.2	329.6	0.958	3.149	11.985	0.253	0.573	0.718
345.0	20.2	344.7	1.172	2.239	11.943	0.270	0.305	0.707
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.27: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolut	e	S	Standar	d
Heading	Me	ean	l I	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.3	-0.1	1.219	2.121	12.344	0.294	0.275	0.873
15.0	25.3	15.0	1.119	2.532	12.478	0.288	0.468	0.871
30.0	25.3	30.0	1.037	3.353	12.366	0.273	0.714	0.878
45.0	25.4	45.0	0.869	4.233	12.770	0.240	0.945	0.864
60.0	25.4	60.0	0.582	4.827	12.972	0.174	1.141	0.765
75.0	25.4	74.8	0.322	4.576	12.728	0.081	0.874	0.576
90.0	25.4	89.7	0.190	3.674	11.752	0.048	0.844	0.443
105.0	25.4	104.8	0.275	4.581	11.563	0.062	0.933	0.350
120.0	25.3	119.8	0.374	6.309	10.599	0.075	1.853	0.360
135.0	25.3	134.8	0.271	4.169	10.103	0.082	1.344	0.222
150.0	25.4	149.7	0.353	3.883	10.045	0.086	0.909	0.161
165.0	25.6	164.8	0.279	2.408	10.027	0.080	0.418	0.100
180.0	25.6	179.8	0.364	2.634	10.139	0.109	0.315	0.119
195.0	25.6	195.0	0.251	3.027	9.968	0.069	0.418	0.078
210.0	25.4	210.1	0.328	5.219	10.044	0.091	1.124	0.208
225.0	25.3	225.2	0.289	6.987	9.919	0.078	1.635	0.267
240.0	25.4	240.2	0.273	7.291	9.948	0.064	1.800	0.194
255.0	25.4	255.1	0.313	6.900	10.895	0.061	1.308	0.258
270.0	25.4	270.1	0.187	4.896	11.544	0.050	1.188	0.405
285.0	25.4	285.0	0.287	5.953	12.053	0.073	1.136	0.576
300.0	25.4	299.8	0.547	5.576	12.437	0.166	1.056	0.775
315.0	25.4	314.8	0.878	4.293	12.659	0.233	0.799	0.866
330.0	25.3	329.8	1.017	3.103	12.566	0.270	0.532	0.875
345.0	25.3	344.8	1.258	2.322	12.515	0.288	0.304	0.869
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.28: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 6.0 m and Tp = 16.2 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.252	2.673	13.115	0.310	0.334	1.085
15.0	30.5	15.0	1.203	3.076	13.207	0.304	0.502	1.079
30.0	30.5	30.1	1.196	3.775	13.405	0.287	0.722	1.072
45.0	30.5	45.1	0.935	3.977	13.809	0.252	0.959	1.035
60.0	30.4	60.0	0.655	5.453	13.027	0.185	1.193	0.892
75.0	30.5	74.9	0.276	4.202	12.300	0.086	0.882	0.607
90.0	30.5	89.8	0.224	3.670	11.623	0.057	0.883	0.435
105.0	30.5	104.8	0.306	4.128	11.038	0.075	1.022	0.326
120.0	30.4	119.9	0.361	6.267	10.088	0.095	2.098	0.342
135.0	30.4	134.8	0.447	5.333	9.988	0.119	1.584	0.227
150.0	30.8	149.6	0.388	3.431	10.028	0.110	0.787	0.140
165.0	30.8	164.7	0.624	2.698	9.981	0.135	0.488	0.103
180.0	30.5	179.7	0.407	3.876	9.916	0.142	0.456	0.105
195.0	30.9	195.0	0.445	3.792	9.916	0.127	0.599	0.109
210.0	30.7	210.1	0.363	3.878	9.951	0.096	0.873	0.132
225.0	30.4	225.1	0.287	5.657	9.991	0.091	1.422	0.265
240.0	30.4	240.1	0.289	6.553	9.924	0.073	1.742	0.249
255.0	30.5	255.1	0.281	6.656	10.967	0.072	1.213	0.237
270.0	30.5	270.0	0.229	4.892	11.489	0.059	1.088	0.399
285.0	30.5	285.0	0.299	5.630	11.788	0.077	1.081	0.613
300.0	30.5	299.9	0.604	5.246	12.639	0.175	1.021	0.898
315.0	30.5	314.9	0.888	4.314	13.228	0.244	0.777	1.029
330.0	30.5	329.9	1.147	3.199	13.258	0.282	0.531	1.066
345.0	30.5	344.9	1.161	2.521	13.141	0.304	0.348	1.076
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table U.29: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	е	S	Standard		
Heading	Me	ean		Maximuı	m	Ι	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	-1.0	-32.0	1.464	7.095	13.701	0.325	1.401	0.871	
15.0	-1.6	-24.8	1.755	7.661	13.348	0.324	1.336	0.840	
30.0	-3.1	-86.6	1.517	13.479	13.859	0.283	2.061	0.965	
45.0	-3.0	-71.3	1.285	9.732	13.772	0.262	2.152	0.947	
60.0	-2.5	-84.7	1.290	9.133	15.108	0.210	2.261	0.974	
75.0	-0.5	-74.5	1.385	10.702	14.394	0.163	2.162	0.926	
90.0	0.2	62.4	1.448	10.831	14.900	0.256	1.968	0.941	
105.0	0.3	87.5	1.005	9.727	14.785	0.116	2.073	0.924	
120.0	-2.6	104.1	0.934	9.807	15.043	0.171	2.243	0.981	
135.0	-3.6	108.0	0.937	11.361	13.897	0.193	2.223	0.991	
150.0	-4.1	81.2	1.675	8.762	14.606	0.245	2.243	0.973	
165.0	-2.9	44.8	1.851	11.132	14.690	0.293	1.877	0.881	
180.0	-1.0	11.2	1.610	6.446	14.228	0.318	1.505	0.860	
195.0	-0.3	31.9	1.489	9.206	13.916	0.321	1.622	0.923	
210.0	0.2	39.3	1.315	9.495	15.002	0.319	1.742	0.968	
225.0	0.4	273.9	1.030	13.012	15.214	0.145	2.201	0.966	
240.0	-0.1	274.4	1.231	14.125	16.588	0.125	2.197	0.956	
255.0	0.5	282.3	1.185	12.772	14.651	0.177	2.107	1.002	
270.0	0.7	288.3	1.310	10.727	15.194	0.227	2.054	1.037	
285.0	0.7	294.8	1.330	8.377	15.847	0.274	1.950	1.037	
300.0	0.5	299.8	1.340	10.201	15.114	0.295	1.870	1.028	
315.0	0.5	306.0	1.373	9.767	14.617	0.316	1.791	1.008	
330.0	0.2	311.9	1.302	8.541	14.282	0.323	1.717	0.978	
345.0	-0.0	319.7	1.532	8.041	14.731	0.331	1.533	0.937	
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.		

354

Table U.30: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.6	-32.7	1.451	7.598	13.262	0.371	1.471	0.997
15.0	3.4	-24.6	1.604	6.312	12.753	0.374	1.340	0.971
30.0	3.3	-17.7	1.664	5.688	12.672	0.378	1.264	0.958
45.0	3.1	-10.1	1.686	5.016	12.369	0.376	1.241	0.944
60.0	3.1	-0.1	2.170	5.187	12.605	0.372	1.245	0.936
75.0	3.2	11.7	1.690	7.389	13.864	0.357	1.424	0.941
90.0	3.5	35.9	1.437	8.413	15.586	0.328	1.743	0.987
105.0	3.3	33.0	1.560	10.095	14.373	0.335	1.700	0.974
120.0	3.7	64.9	1.582	11.055	14.977	0.247	1.948	0.983
135.0	3.2	33.9	1.667	12.792	14.645	0.344	1.609	0.976
150.0	3.3	43.2	2.669	11.837	15.098	0.339	1.674	0.975
165.0	3.4	43.8	1.582	8.491	14.106	0.348	1.599	0.986
180.0	3.8	96.3	1.418	8.680	14.325	0.307	1.767	0.841
195.0	3.9	15.4	1.442	7.502	13.643	0.348	1.721	0.987
210.0	4.1	30.3	1.520	9.237	14.793	0.346	1.758	1.022
225.0	4.5	276.9	1.405	12.915	16.590	0.151	2.201	1.013
240.0	4.4	278.6	0.929	15.094	14.726	0.151	2.150	1.030
255.0	4.3	282.7	1.465	11.548	16.777	0.179	2.160	1.065
270.0	4.4	288.0	1.254	9.562	15.465	0.234	2.063	1.109
285.0	4.5	293.0	2.251	9.927	15.741	0.285	1.954	1.119
300.0	4.6	300.8	1.727	8.471	15.727	0.324	1.838	1.090
315.0	4.4	308.9	1.381	8.923	14.658	0.343	1.778	1.050
330.0	4.1	315.7	1.487	9.356	14.057	0.358	1.648	1.042
345.0	3.9	321.6	1.520	8.128	13.367	0.367	1.571	1.018
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the starb	oard bea	m in all	cases.	

Table U.31: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	5	tandard	
Heading		ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	8.9	-5.5	1.924	4.589	12.944	0.436	0.779	1.081
15.0	8.6	8.2	2.362	4.298	13.108	0.430	0.862	1.076
30.0	8.9	25.0	2.171	4.905	12.972	0.417	1.138	1.091
45.0	9.1	41.0	1.489	5.844	12.679	0.388	1.466	1.114
60.0	9.3	56.0	1.185	8.238	14.877	0.343	1.720	1.159
75.0	9.6	70.8	1.803	8.692	16.866	0.251	1.809	1.166
90.0	9.2	82.7	0.787	8.297	15.386	0.116	1.878	1.065
105.0	8.9	94.7	0.650	14.801	14.500	0.075	1.977	0.961
120.0	8.4	107.6	0.708	12.181	14.775	0.121	1.966	0.887
135.0	8.3	120.1	0.802	9.497	13.780	0.141	1.808	0.762
150.0	8.3	135.6	0.856	7.494	13.585	0.150	1.608	0.601
165.0	8.6	154.1	0.727	6.479	12.508	0.151	1.493	0.463
180.0	9.4	176.8	0.967	5.684	11.658	0.148	1.266	0.309
195.0	9.5	196.0	1.391	7.318	12.357	0.157	1.258	0.304
210.0	9.0	219.7	1.008	8.921	12.763	0.165	1.738	0.455
225.0	8.3	253.8	1.369	20.490	13.974	0.144	2.302	0.840
240.0	8.4	263.7	1.126	20.699	14.155	0.113	2.335	0.933
255.0	8.6	271.4	1.082	14.777	16.062	0.106	2.268	1.003
270.0	8.9	278.8	1.839	13.512	15.591	0.141	2.220	1.104
285.0	9.7	288.4	1.285	9.553	15.167	0.244	2.127	1.195
300.0	9.8	300.2	1.654	8.734	16.341	0.342	1.848	1.182
315.0	9.6	313.2	1.565	6.786	13.872	0.387	1.515	1.113
330.0	9.4	326.9	2.068	6.227	13.689	0.414	1.244	1.091
345.0	9.1	340.6	1.820	6.969	12.647	0.431	0.973	1.092
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the starb	oard bea	m in all	cases.	

Table U.32: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e Standard			d
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	14.7	-1.3	2.047	3.772	13.125	0.475	0.566	1.210
15.0	14.7	13.9	1.947	3.600	12.929	0.471	0.752	1.201
30.0	14.7	29.1	1.725	4.551	12.990	0.453	1.075	1.222
45.0	14.8	44.3	1.641	6.763	13.448	0.417	1.384	1.227
60.0	14.9	58.9	1.304	8.164	14.583	0.359	1.673	1.299
75.0	15.0	73.3	0.992	8.569	15.527	0.234	1.694	1.250
90.0	14.9	87.8	0.490	9.295	15.177	0.073	1.734	1.032
105.0	14.9	102.9	0.736	17.297	14.129	0.095	1.882	0.861
120.0	14.4	116.4	0.579	7.548	13.111	0.108	1.892	0.745
135.0	14.4	131.7	0.630	7.282	12.632	0.108	1.869	0.606
150.0	15.1	148.7	0.716	5.482	11.843	0.116	1.416	0.407
165.0	15.0	163.5	0.640	4.566	11.137	0.109	0.892	0.321
180.0	14.7	178.5	0.593	5.203	10.755	0.122	0.900	0.269
195.0	14.7	194.2	0.853	5.969	11.574	0.124	1.135	0.213
210.0	15.0	209.9	0.658	6.045	11.064	0.110	1.487	0.210
225.0	14.4	229.8	1.626	15.557	12.997	0.135	2.324	0.493
240.0	14.0	247.1	0.943	15.774	13.368	0.130	2.495	0.681
255.0	14.2	260.4	0.915	21.577	14.685	0.114	2.478	0.828
270.0	14.6	273.5	0.806	14.179	15.341	0.090	2.336	1.057
285.0	15.0	286.7	1.276	12.503	15.718	0.232	2.238	1.272
300.0	15.0	300.0	1.459	7.414	15.566	0.352	1.881	1.297
315.0	14.9	314.0	1.772	5.139	14.453	0.416	1.415	1.226
330.0	14.8	328.7	1.754	4.496	13.082	0.450	1.020	1.210
345.0	14.7	343.6	2.126	3.844	13.462	0.469	0.716	1.205
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.33: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	20.0	-0.5	2.408	3.183	13.856	0.507	0.560	1.390
15.0	20.0	14.6	1.964	3.824	13.323	0.500	0.766	1.386
30.0	20.0	29.8	1.912	5.079	13.708	0.480	1.071	1.396
45.0	20.0	44.8	1.733	6.096	14.521	0.443	1.369	1.407
60.0	20.1	59.5	1.507	9.557	15.352	0.376	1.655	1.460
75.0	20.2	74.0	1.204	9.449	17.022	0.235	1.676	1.331
90.0	20.1	88.7	0.404	9.289	14.986	0.077	1.686	1.024
105.0	20.1	104.0	0.829	10.754	14.190	0.099	1.945	0.790
120.0	19.9	118.4	0.575	7.582	13.029	0.108	2.343	0.724
135.0	19.9	134.3	0.989	8.093	13.289	0.123	2.231	0.512
150.0	19.9	149.2	0.715	5.245	11.234	0.133	1.333	0.329
165.0	20.0	164.1	0.679	4.443	10.998	0.143	0.912	0.281
180.0	20.3	179.2	0.983	4.664	11.060	0.154	0.795	0.240
195.0	20.2	194.7	0.679	6.023	10.202	0.134	1.122	0.256
210.0	20.1	210.1	0.576	7.012	10.151	0.110	1.663	0.343
225.0	20.0	225.4	0.718	8.282	12.230	0.102	2.202	0.360
240.0	19.8	242.3	0.874	9.684	13.580	0.124	2.794	0.523
255.0	19.8	257.5	0.635	18.410	13.424	0.119	2.625	0.696
270.0	20.0	271.9	0.721	13.334	14.533	0.088	2.420	1.025
285.0	20.2	286.0	1.224	11.687	15.951	0.228	2.304	1.359
300.0	20.2	299.9	1.347	8.995	15.361	0.368	1.900	1.488
315.0	20.1	314.4	1.649	5.795	14.105	0.438	1.368	1.422
330.0	20.1	329.3	2.027	4.182	13.936	0.478	0.984	1.406
345.0	20.0	344.3	1.940	3.601	13.671	0.496	0.703	1.390
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Wind at 38.7 knots (19.9 m/s) is from the starboard beam in all cases.

358

Table U.34: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 25.0 Knots

Cmd	Acı	tual		Absolute	<u> </u>	9	Standar	d l
Heading		ean		Maximui) Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert
deg	m kts	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.2	-0.2	2.083	3.626	14.746	0.528	0.638	1.671
15.0	25.2	14.9	1.994	4.789	14.713	0.528	0.791	1.665
30.0	25.2	30.0	2.087	5.698	14.686	0.504	1.096	1.663
45.0	25.2	45.0	1.933	6.966	14.824	0.465	1.362	1.661
60.0	25.2	59.7	1.367	7.708	16.383	0.390	1.631	1.657
75.0	25.2	74.3	0.974	9.274	16.449	0.241	1.667	1.429
90.0	25.2	89.1	0.606	8.981	14.879	0.087	1.720	1.015
105.0	25.2	104.4	0.423	8.256	12.773	0.105	2.086	0.713
120.0	25.0	119.4	0.916	10.427	12.327	0.131	2.969	0.700
135.0	24.9	134.0	0.792	7.216	12.065	0.148	2.142	0.424
150.0	25.1	149.2	0.815	6.492	11.038	0.163	1.407	0.306
165.0	25.7	164.2	0.739	4.607	10.282	0.152	0.864	0.230
180.0	26.2	179.6	0.646	4.412	10.173	0.167	0.685	0.195
195.0	25.8	195.0	0.728	4.859	10.046	0.142	0.895	0.216
210.0	25.2	209.9	0.574	6.147	10.193	0.141	1.412	0.320
225.0	25.0	225.4	0.639	7.857	10.346	0.116	2.254	0.459
240.0	25.0	240.5	0.739	10.409	12.883	0.128	3.243	0.559
255.0	25.0	256.3	0.676	13.678	14.196	0.121	2.708	0.595
270.0	25.1	271.1	0.772	14.374	14.951	0.100	2.502	0.983
285.0	25.3	285.7	0.995	11.894	15.892	0.230	2.386	1.465
300.0	25.3	300.0	1.267	7.282	15.742	0.377	1.919	1.670
315.0	25.3	314.7	1.760	5.411	15.469	0.454	1.409	1.672
330.0	25.3	329.6	2.002	4.306	14.616	0.497	0.988	1.681
345.0	25.2	344.7	1.949	3.806	14.829	0.521	0.729	1.678
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.35: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 13.1 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.4	-0.0	1.892	4.436	15.874	0.540	0.737	2.002
15.0	30.4	15.1	2.106	5.187	15.824	0.540	0.882	1.991
30.0	30.4	30.1	1.799	6.626	15.960	0.518	1.134	1.973
45.0	30.4	45.0	2.029	8.527	16.521	0.479	1.384	1.928
60.0	30.3	59.8	1.420	6.944	16.395	0.404	1.611	1.870
75.0	30.3	74.5	1.098	9.573	17.419	0.248	1.673	1.532
90.0	30.3	89.3	0.901	10.728	15.483	0.100	1.831	1.005
105.0	30.2	104.5	1.332	18.177	13.380	0.133	2.362	0.678
120.0	29.9	119.2	0.695	8.386	11.336	0.161	2.908	0.623
135.0	29.6	133.6	1.184	8.813	12.619	0.224	2.353	0.480
150.0	30.6	148.6	1.154	5.585	10.303	0.213	1.554	0.336
165.0	30.9	163.5	1.286	5.867	10.204	0.243	1.130	0.331
180.0	31.5	179.1	1.477	5.862	9.999	0.243	1.053	0.317
195.0	31.1	194.7	1.102	5.613	10.113	0.237	1.241	0.318
210.0	30.8	210.7	1.153	5.999	10.030	0.203	1.678	0.316
225.0	29.7	226.5	1.008	10.327	12.648	0.223	2.592	0.560
240.0	30.0	240.6	0.646	9.170	12.880	0.142	3.030	0.598
255.0	30.2	255.6	0.572	11.147	12.963	0.133	2.721	0.571
270.0	30.3	270.7	0.870	12.955	15.061	0.112	2.486	0.955
285.0	30.4	285.6	1.042	14.629	15.734	0.233	2.490	1.547
300.0	30.4	300.1	1.336	7.617	16.554	0.380	1.982	1.866
315.0	30.4	314.9	1.804	6.099	16.087	0.465	1.463	1.951
330.0	30.4	329.9	2.006	4.899	15.737	0.508	1.109	1.990
345.0	30.4	344.9	1.949	4.196	15.832	0.534	0.837	2.000
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the starb	oard bear	m in all	cases.	

Table U.36: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-1.2	-28.3	0.964	4.520	11.709	0.189	0.950	0.507
15.0	-2.4	-147.7	0.902	5.243	12.032	0.178	1.076	0.555
30.0	-1.7	-66.4	1.059	5.510	12.073	0.180	1.613	0.537
45.0	-0.1	23.7	0.857	4.176	12.202	0.196	1.085	0.540
60.0	0.5	48.8	0.697	4.926	11.851	0.150	1.308	0.551
75.0	0.7	68.5	0.504	5.414	12.197	0.088	1.346	0.531
90.0	0.2	90.5	0.236	5.192	11.958	0.029	1.374	0.514
105.0	-0.4	103.0	0.402	5.700	11.914	0.048	1.421	0.531
120.0	-1.2	112.5	0.537	5.994	12.718	0.076	1.446	0.545
135.0	-1.9	121.3	0.480	5.943	12.078	0.108	1.409	0.555
150.0	-2.4	131.4	0.536	5.379	11.561	0.139	1.284	0.549
165.0	-2.4	144.6	0.714	4.872	11.775	0.169	1.043	0.545
180.0	-1.6	164.4	0.812	4.021	12.041	0.187	0.623	0.520
195.0	0.3	233.5	0.820	6.775	12.082	0.127	1.426	0.522
210.0	0.0	243.7	0.732	6.420	11.931	0.100	1.489	0.528
225.0	-0.2	252.5	0.548	5.832	11.807	0.074	1.505	0.520
240.0	-0.4	261.1	0.385	5.796	11.728	0.048	1.473	0.503
255.0	-0.6	270.1	0.210	6.199	11.840	0.029	1.424	0.494
270.0	-0.6	279.8	0.326	6.051	11.992	0.041	1.371	0.495
285.0	-0.5	289.4	0.555	6.136	12.387	0.075	1.312	0.511
300.0	-0.5	298.8	0.542	6.080	12.318	0.109	1.251	0.523
315.0	-0.4	307.9	0.671	5.567	12.091	0.139	1.182	0.528
330.0	-0.5	317.1	0.730	5.522	11.826	0.163	1.099	0.524
345.0	-0.7	325.3	0.909	4.960	11.759	0.180	1.008	0.517
Wind at 38	8.7 knots	(19.9 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.37: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.8	-27.9	1.010	5.502	11.535	0.222	1.026	0.574
15.0	3.7	-20.6	0.968	4.325	11.570	0.232	0.944	0.575
30.0	3.6	-12.5	1.050	3.727	11.420	0.237	0.868	0.575
45.0	3.6	-1.5	1.223	3.793	11.637	0.239	0.835	0.581
60.0	3.8	23.5	0.901	4.366	12.042	0.221	1.026	0.601
75.0	4.3	56.6	0.656	5.346	12.586	0.137	1.285	0.597
90.0	4.4	79.3	0.284	5.300	12.223	0.044	1.276	0.549
105.0	4.3	95.3	0.166	5.669	11.995	0.023	1.306	0.537
120.0	4.1	107.3	0.363	6.197	12.591	0.045	1.330	0.539
135.0	3.8	115.8	0.361	6.409	11.942	0.066	1.324	0.533
150.0	3.6	125.1	0.607	5.605	12.171	0.089	1.279	0.515
165.0	3.4	134.7	0.723	5.107	11.860	0.110	1.180	0.486
180.0	3.4	146.6	0.904	4.625	11.746	0.127	1.016	0.442
195.0	3.5	165.0	0.847	4.933	12.038	0.141	0.833	0.387
210.0	4.4	215.1	0.672	5.423	11.533	0.125	1.174	0.370
225.0	4.3	236.0	0.561	6.001	12.042	0.097	1.398	0.433
240.0	4.4	249.7	0.453	5.875	11.853	0.067	1.475	0.458
255.0	4.5	261.8	0.289	6.264	11.635	0.038	1.474	0.464
270.0	4.6	274.3	0.121	5.985	11.951	0.021	1.421	0.484
285.0	4.7	287.4	0.353	6.711	11.994	0.062	1.371	0.514
300.0	4.7	300.0	0.493	5.420	11.994	0.121	1.284	0.549
315.0	4.5	310.9	0.684	5.534	12.475	0.167	1.200	0.567
330.0	4.2	318.6	0.835	5.917	11.750	0.192	1.148	0.571
345.0	3.9	325.1	0.975	5.899	11.659	0.209	1.099	0.573
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.38: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	5	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.4	-3.3	1.183	3.452	11.594	0.274	0.545	0.669
15.0	9.5	11.9	1.161	3.441	11.799	0.272	0.653	0.687
30.0	9.6	27.4	1.092	3.744	11.947	0.251	0.866	0.694
45.0	9.7	42.6	0.799	4.654	12.193	0.209	1.058	0.682
60.0	9.8	57.5	0.519	5.088	12.285	0.148	1.145	0.649
75.0	9.9	72.9	0.391	4.826	12.910	0.074	1.062	0.592
90.0	9.9	88.0	0.130	5.096	12.040	0.030	1.070	0.550
105.0	9.9	103.1	0.198	5.647	12.119	0.039	1.130	0.527
120.0	9.5	116.6	0.434	5.821	12.600	0.060	1.144	0.513
135.0	9.3	130.6	0.635	5.243	12.601	0.076	1.038	0.458
150.0	9.2	144.9	0.567	4.628	11.837	0.088	1.003	0.399
165.0	9.1	159.5	0.547	3.898	11.487	0.099	0.967	0.341
180.0	9.4	176.8	0.541	4.219	10.766	0.103	0.915	0.273
195.0	9.7	193.7	0.710	4.806	11.111	0.105	0.956	0.206
210.0	9.6	211.3	0.737	5.645	11.468	0.096	1.181	0.252
225.0	9.6	228.1	0.601	7.623	11.542	0.088	1.519	0.312
240.0	9.6	243.4	0.537	6.711	11.804	0.071	1.627	0.377
255.0	9.9	257.2	0.376	6.592	11.899	0.050	1.603	0.408
270.0	9.9	271.4	0.214	7.222	11.860	0.034	1.557	0.460
285.0	10.0	285.7	0.300	7.280	12.016	0.058	1.461	0.518
300.0	9.9	299.9	0.525	5.754	12.023	0.131	1.324	0.580
315.0	9.8	313.7	0.850	4.984	12.446	0.195	1.115	0.616
330.0	9.7	327.8	0.998	4.651	11.766	0.238	0.895	0.637
345.0	9.5	342.0	1.141	4.092	11.683	0.264	0.663	0.654
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.39: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	14.9	-1.1	1.281	3.090	12.081	0.306	0.429	0.746
15.0	14.9	14.1	1.234	3.416	11.995	0.300	0.609	0.758
30.0	14.9	29.2	1.064	4.237	12.362	0.275	0.868	0.763
45.0	15.0	44.2	0.851	5.010	12.296	0.225	1.054	0.738
60.0	15.0	59.0	0.656	5.441	13.233	0.154	1.168	0.694
75.0	15.1	74.0	0.408	5.556	13.214	0.076	0.969	0.609
90.0	15.1	89.0	0.167	4.819	12.365	0.044	0.967	0.548
105.0	15.1	104.1	0.368	5.232	11.903	0.055	1.037	0.500
120.0	14.9	118.4	0.472	6.026	12.603	0.071	1.240	0.517
135.0	14.9	133.6	0.355	5.086	11.409	0.082	1.203	0.448
150.0	14.9	148.7	0.401	4.148	11.087	0.088	0.859	0.361
165.0	14.9	163.7	0.513	3.785	10.958	0.095	0.703	0.296
180.0	15.0	178.9	0.422	3.821	10.357	0.089	0.640	0.237
195.0	15.0	194.3	0.612	5.499	10.375	0.095	0.882	0.190
210.0	15.0	209.9	0.499	5.636	10.630	0.084	1.265	0.173
225.0	14.9	226.0	0.548	6.081	10.927	0.086	1.749	0.223
240.0	14.9	241.6	0.615	6.951	11.776	0.076	1.902	0.302
255.0	15.1	256.0	0.343	6.819	11.872	0.062	1.794	0.363
270.0	15.1	270.7	0.238	7.129	11.959	0.047	1.698	0.448
285.0	15.2	285.3	0.376	7.040	12.396	0.061	1.596	0.533
300.0	15.1	299.9	0.605	6.771	12.324	0.138	1.401	0.619
315.0	15.0	314.3	0.758	5.350	12.157	0.213	1.108	0.667
330.0	14.9	328.9	1.092	4.223	11.881	0.266	0.814	0.706
345.0	14.9	343.8	1.229	3.466	11.821	0.294	0.562	0.728
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table U.40: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	1
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.1	-0.5	1.356	3.121	12.188	0.335	0.456	0.854
15.0	20.1	14.7	1.264	3.547	12.234	0.326	0.681	0.860
30.0	20.1	29.8	1.131	4.414	12.425	0.297	0.961	0.854
45.0	20.1	44.7	1.032	4.971	12.887	0.243	1.151	0.818
60.0	20.2	59.6	0.619	5.532	13.011	0.164	1.310	0.757
75.0	20.3	74.4	0.300	5.146	12.542	0.081	0.977	0.632
90.0	20.3	89.4	0.215	4.633	12.103	0.058	0.945	0.541
105.0	20.3	104.5	0.382	5.155	12.172	0.073	0.986	0.464
120.0	20.1	119.2	0.336	5.713	11.361	0.089	1.603	0.515
135.0	20.1	134.4	0.540	5.553	11.189	0.100	1.403	0.410
150.0	20.1	149.3	0.625	5.367	11.002	0.114	0.982	0.340
165.0	20.2	164.4	0.609	2.994	10.827	0.113	0.582	0.258
180.0	20.2	179.5	0.369	3.586	10.245	0.103	0.544	0.210
195.0	20.2	194.6	0.403	5.347	10.111	0.094	0.771	0.217
210.0	20.2	209.9	0.611	7.375	10.037	0.093	1.300	0.270
225.0	20.2	225.0	0.525	7.406	10.073	0.081	1.531	0.233
240.0	20.1	240.7	0.534	8.194	10.552	0.086	2.136	0.263
255.0	20.2	255.5	0.486	8.403	11.243	0.075	1.881	0.342
270.0	20.3	270.4	0.299	8.067	11.938	0.059	1.776	0.453
285.0	20.3	285.2	0.354	7.734	12.073	0.065	1.669	0.557
300.0	20.2	299.8	0.757	8.105	13.151	0.147	1.449	0.672
315.0	20.2	314.5	0.903	5.703	12.378	0.233	1.120	0.753
330.0	20.1	329.4	1.225	4.288	12.396	0.290	0.792	0.804
345.0	20.1	344.4	1.417	3.302	12.171	0.322	0.517	0.834
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.41: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 25.0 Knots

Cmd	Ac	tual		Absolut	æ	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.2	-0.2	1.523	3.650	12.901	0.357	0.552	1.034
15.0	25.2	14.9	1.413	4.234	13.546	0.348	0.768	1.034
30.0	25.2	30.0	1.240	4.963	13.269	0.319	1.038	1.010
45.0	25.2	45.0	0.991	5.722	13.226	0.260	1.284	0.930
60.0	25.3	59.8	0.610	6.474	12.905	0.174	1.418	0.822
75.0	25.3	74.6	0.424	5.308	13.280	0.087	1.050	0.652
90.0	25.3	89.6	0.263	4.605	12.086	0.071	1.000	0.533
105.0	25.3	104.6	0.423	4.946	11.667	0.092	0.966	0.418
120.0	25.2	119.6	0.430	6.080	11.029	0.110	1.823	0.472
135.0	25.2	134.5	0.349	4.700	10.302	0.117	1.274	0.324
150.0	25.3	149.5	0.545	5.111	10.319	0.141	1.209	0.284
165.0	25.5	164.5	0.484	3.393	10.291	0.155	0.660	0.246
180.0	25.6	179.7	0.601	3.091	10.177	0.116	0.327	0.144
195.0	25.6	195.1	0.494	4.454	10.182	0.147	0.729	0.222
210.0	25.3	210.0	0.597	6.295	10.155	0.113	1.160	0.288
225.0	25.2	225.2	0.850	8.805	10.002	0.116	1.911	0.413
240.0	25.3	240.2	0.568	9.064	10.027	0.097	2.129	0.324
255.0	25.3	255.2	0.456	9.086	11.149	0.087	1.824	0.351
270.0	25.3	270.2	0.294	7.354	11.866	0.070	1.764	0.460
285.0	25.3	285.1	0.349	8.342	12.100	0.072	1.729	0.596
300.0	25.3	299.8	0.569	7.382	12.417	0.155	1.432	0.742
315.0	25.3	314.7	0.946	5.767	12.810	0.249	1.089	0.870
330.0	25.3	329.6	1.263	4.660	13.043	0.310	0.775	0.966
345.0	25.2	344.7	1.518	3.775	13.002	0.344	0.544	1.010
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.42: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 9.0 m and Tp = 18.5 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\mathbf{deg}	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.4	-0.1	1.514	4.288	13.870	0.376	0.665	1.264
15.0	30.4	15.0	1.511	5.510	13.846	0.367	0.876	1.261
30.0	30.4	30.1	1.401	5.928	13.414	0.338	1.114	1.223
45.0	30.4	45.1	1.130	5.813	13.712	0.281	1.337	1.098
60.0	30.4	60.0	0.712	6.581	13.589	0.187	1.542	0.919
75.0	30.4	74.7	0.360	4.882	12.351	0.094	1.153	0.672
90.0	30.4	89.7	0.371	4.811	12.083	0.084	1.123	0.528
105.0	30.4	104.7	0.534	4.986	11.740	0.111	1.034	0.389
120.0	30.3	119.8	0.579	6.987	10.381	0.135	2.126	0.438
135.0	30.3	134.5	0.566	5.421	10.209	0.153	1.651	0.320
150.0	30.5	149.5	0.613	4.427	10.155	0.183	1.113	0.261
165.0	30.8	164.5	0.705	3.859	10.144	0.188	0.585	0.182
180.0	30.5	179.4	0.907	4.105	10.011	0.196	0.510	0.168
195.0	31.1	194.9	0.592	4.393	9.997	0.165	0.676	0.170
210.0	30.7	210.2	0.594	5.459	10.062	0.170	1.126	0.274
225.0	30.4	225.0	0.530	6.477	10.057	0.122	1.515	0.374
240.0	30.4	240.0	0.442	8.081	10.019	0.106	1.750	0.353
255.0	30.4	255.1	0.515	8.232	11.045	0.104	1.642	0.367
270.0	30.4	270.1	0.334	7.635	11.779	0.083	1.673	0.477
285.0	30.4	285.1	0.340	8.640	12.454	0.079	1.685	0.640
300.0	30.4	299.8	0.639	8.210	13.118	0.167	1.425	0.820
315.0	30.4	314.8	1.005	6.037	13.468	0.265	1.053	1.039
330.0	30.4	329.8	1.398	5.119	13.733	0.331	0.806	1.181
345.0	30.4	344.9	1.491	4.455	14.139	0.363	0.632	1.240
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table U.43: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute			5	Standar	d
Heading	Me	ean		Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-1.9	-362.1	1.962	8.942	14.495	0.302	2.586	1.038
15.0	-1.3	-366.1	1.928	9.623	14.425	0.341	2.578	1.027
30.0	-4.3	98.6	1.921	10.230	15.451	0.345	2.343	1.182
45.0	-4.6	-120.5	1.991	10.380	15.516	0.319	2.330	1.201
60.0	1.3	32.4	2.377	8.491	15.922	0.328	2.285	1.165
75.0	2.5	77.1	1.508	10.603	17.220	0.188	1.974	1.110
90.0	1.1	99.2	1.913	10.465	15.220	0.141	2.116	1.093
105.0	-1.8	109.2	2.044	9.038	15.762	0.187	2.252	1.186
120.0	-4.6	118.2	1.278	10.566	14.601	0.243	2.303	1.223
135.0	-5.7	125.8	1.750	13.127	15.117	0.299	2.223	1.253
150.0	-3.9	322.4	2.154	12.086	15.258	0.343	2.432	1.133
165.0	-3.4	324.2	2.773	9.795	16.387	0.352	2.514	1.106
180.0	-2.2	783.2	1.703	9.646	13.743	0.311	2.671	1.062
195.0	-2.6	28.5	2.699	9.699	15.254	0.328	2.529	0.989
210.0	-0.5	260.7	1.493	13.074	14.798	0.165	2.770	0.983
225.0	-1.1	262.1	1.388	14.080	13.578	0.141	2.778	0.942
240.0	-1.8	266.7	0.938	14.385	14.275	0.112	2.721	0.909
255.0	-2.4	272.0	1.160	13.633	15.067	0.100	2.642	0.880
270.0	-2.4	277.0	1.441	12.983	16.089	0.124	2.471	0.895
285.0	-2.2	281.9	1.791	12.755	15.864	0.172	2.355	0.928
300.0	-1.4	288.1	1.310	12.631	14.950	0.211	2.272	0.957
315.0	-1.7	292.9	1.443	12.291	15.751	0.250	2.216	0.983
330.0	-1.9	298.9	2.104	11.772	15.031	0.298	2.151	0.990
345.0	-2.1	151.1	2.052	11.228	14.444	0.313	2.313	0.990
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table U.44: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 5.0 Knots

Cmd	Acı	tual		Absolute	<u> </u>	9	Standard		
Heading		ean		Maximui) Deviation		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert	
$\deg^{\tau \text{ MHP}}$	kts	\deg	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	2.8	-48.0	2.028	12.931	15.425	0.375	2.079	1.086	
15.0	2.1	-79.8	2.146	11.723	15.174	0.333	2.641	1.069	
30.0	2.2	-120.7	1.885	12.110	15.201	0.219	2.225	1.093	
45.0	2.8	-101.7	1.918	13.657	15.734	0.236	2.411	1.127	
60.0	3.6	-92.5	2.598	11.606	14.867	0.213	2.394	1.123	
75.0	4.3	-74.4	2.496	21.078	16.289	0.185	2.501	1.105	
90.0	5.1	89.4	3.065	24.055	16.634	0.105	2.004	1.082	
105.0	4.4	103.8	1.811	9.874	14.929	0.127	2.048	1.087	
120.0	3.4	112.7	1.387	12.874	16.097	0.163	2.103	1.119	
135.0	2.5	120.3	1.430	10.613	16.550	0.195	2.123	1.115	
150.0	2.0	128.7	1.389	10.700	16.673	0.225	2.070	1.060	
165.0	1.5	132.3	1.775	12.487	15.051	0.240	2.089	1.030	
180.0	2.2	82.9	2.041	10.494	14.410	0.329	2.652	0.995	
195.0	3.5	364.1	2.074	12.160	15.881	0.316	2.618	1.033	
210.0	4.2	258.4	2.171	18.847	13.835	0.170	2.768	0.912	
225.0	3.7	262.3	1.553	19.147	14.570	0.150	2.838	0.902	
240.0	3.3	267.8	2.417	16.665	14.360	0.136	2.769	0.902	
255.0	3.8	275.6	1.169	15.033	14.867	0.097	2.620	0.894	
270.0	3.6	281.8	1.956	12.869	15.198	0.144	2.549	0.925	
285.0	4.1	288.6	1.539	12.691	15.933	0.198	2.401	0.977	
300.0	3.9	294.7	1.431	15.014	15.005	0.261	2.261	1.024	
315.0	3.5	298.7	1.585	12.858	14.706	0.298	2.205	1.057	
330.0	3.3	303.3	1.865	13.446	13.974	0.335	2.160	1.072	
345.0	2.9	307.7	2.008	12.954	16.524	0.359	2.118	1.085	
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.		

Table U.45: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	Standard			d
Heading		ean		Maximuı			Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	7.5	-40.9	2.084	10.454	15.134	0.448	2.098	1.221
15.0	7.3	-34.1	2.372	7.836	14.523	0.467	2.016	1.229
30.0	7.2	-24.6	2.351	8.710	13.394	0.482	1.890	1.220
45.0	7.2	-15.9	2.923	6.633	13.971	0.490	1.836	1.221
60.0	7.2	1.8	2.900	8.633	13.506	0.494	1.698	1.239
75.0	9.8	71.2	1.777	7.871	17.410	0.222	1.776	1.235
90.0	9.8	88.5	0.866	10.527	16.670	0.077	1.814	1.077
105.0	9.6	104.5	1.306	7.917	14.823	0.105	1.885	1.010
120.0	8.9	116.0	4.329	15.464	15.386	0.177	1.917	0.993
135.0	8.1	126.4	1.938	11.215	15.764	0.169	1.743	0.921
150.0	7.7	135.1	2.313	11.144	16.267	0.181	1.722	0.866
165.0	7.4	144.3	1.655	10.293	15.315	0.192	1.836	0.800
180.0	7.4	154.7	1.661	7.589	13.507	0.208	1.666	0.684
195.0	8.9	199.1	1.734	11.159	11.893	0.220	1.882	0.389
210.0	8.3	237.7	2.657	19.236	13.310	0.234	2.790	0.734
225.0	8.3	253.6	2.425	24.090	13.261	0.177	2.894	0.822
240.0	8.3	261.0	1.486	19.346	14.054	0.139	2.851	0.848
255.0	8.4	270.4	1.082	16.335	13.758	0.099	2.842	0.878
270.0	8.6	278.9	2.555	14.080	15.158	0.152	2.790	0.925
285.0	9.1	288.4	1.981	13.702	15.396	0.207	2.586	1.006
300.0	9.3	299.0	1.777	12.493	14.823	0.312	2.260	1.105
315.0	8.4	306.6	1.482	11.141	14.713	0.379	2.113	1.154
330.0	7.9	309.6	1.921	10.857	14.914	0.402	2.126	1.184
345.0	7.7	314.9	2.077	11.824	14.998	0.431	2.105	1.195
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the starb	oard bear	m in all	cases.	

Table U.46: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Me	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	13.0	-8.8	2.780	6.585	13.748	0.572	1.525	1.404
15.0	13.6	9.9	2.601	6.574	14.250	0.563	1.468	1.441
30.0	14.0	26.7	2.247	7.046	13.701	0.531	1.522	1.461
45.0	14.4	42.6	1.850	10.119	14.784	0.464	1.723	1.477
60.0	14.6	57.5	1.420	9.541	15.347	0.358	1.754	1.443
75.0	15.0	73.1	1.197	9.461	16.076	0.197	1.743	1.268
90.0	15.0	88.9	1.441	20.442	15.475	0.087	1.797	1.051
105.0	15.0	104.7	1.623	19.691	14.418	0.126	1.931	0.907
120.0	14.4	117.4	0.957	10.852	14.301	0.137	1.848	0.874
135.0	14.0	131.7	1.090	7.611	14.419	0.148	1.563	0.755
150.0	14.2	146.4	0.822	6.451	12.787	0.156	1.190	0.591
165.0	14.6	162.0	1.102	6.576	12.917	0.168	1.004	0.479
180.0	14.6	177.5	1.104	7.377	11.488	0.193	1.132	0.398
195.0	14.7	194.8	1.278	10.963	11.494	0.172	1.492	0.353
210.0	14.2	216.7	2.173	12.923	12.594	0.195	2.317	0.462
225.0	13.8	235.0	1.443	11.742	13.384	0.165	2.703	0.578
240.0	13.7	248.5	1.472	13.779	14.488	0.163	2.960	0.696
255.0	13.9	261.5	1.313	25.110	13.725	0.141	3.089	0.778
270.0	14.2	274.6	0.735	15.329	14.156	0.104	3.100	0.891
285.0	14.5	287.4	2.212	13.629	14.761	0.193	2.912	1.027
300.0	14.6	300.2	1.323	12.642	14.645	0.332	2.352	1.190
315.0	14.4	312.9	1.756	11.173	14.330	0.439	1.926	1.277
330.0	13.9	326.0	2.057	9.238	13.870	0.508	1.694	1.347
345.0	13.5	339.5	2.480	8.153	13.635	0.554	1.486	1.376
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.47: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	rd	
Heading	Me	ean		Maximuı	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	19.6	-1.6	2.484	6.303	13.907	0.596	1.298	1.596	
15.0	19.6	13.6	2.828	6.762	14.747	0.600	1.329	1.616	
30.0	19.7	29.1	2.213	7.953	14.792	0.564	1.576	1.632	
45.0	19.8	44.1	1.961	8.873	15.341	0.493	1.747	1.623	
60.0	19.8	58.6	1.716	11.241	17.638	0.373	1.755	1.543	
75.0	20.0	73.8	1.067	9.249	16.669	0.198	1.802	1.307	
90.0	20.0	89.1	2.315	20.724	16.964	0.111	1.866	1.032	
105.0	20.0	104.3	3.145	23.413	14.567	0.147	2.107	0.837	
120.0	19.7	118.6	0.737	8.928	13.371	0.150	2.065	0.817	
135.0	19.6	133.4	1.009	7.702	13.273	0.174	1.898	0.613	
150.0	19.6	148.0	0.988	7.689	12.165	0.193	1.404	0.496	
165.0	19.6	163.7	1.059	7.233	11.853	0.204	1.048	0.418	
180.0	19.8	179.8	1.230	8.187	11.026	0.213	1.112	0.375	
195.0	19.7	195.7	0.962	8.416	10.694	0.194	1.605	0.436	
210.0	19.7	210.4	1.660	13.758	12.912	0.176	2.025	0.573	
225.0	19.6	226.6	0.988	10.132	12.134	0.161	2.499	0.515	
240.0	19.3	243.6	1.131	14.258	14.025	0.165	3.105	0.598	
255.0	19.6	258.3	1.144	15.892	13.694	0.152	3.242	0.710	
270.0	19.6	272.8	0.756	17.759	13.816	0.115	3.313	0.870	
285.0	19.8	286.6	1.152	15.394	15.177	0.183	3.114	1.099	
300.0	19.9	300.3	1.524	15.570	15.281	0.348	2.563	1.310	
315.0	19.8	314.1	2.051	10.891	14.220	0.473	1.986	1.454	
330.0	19.7	328.6	2.237	7.686	15.124	0.549	1.541	1.537	
345.0	19.6	343.4	2.794	6.333	13.966	0.584	1.354	1.577	
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table U.48: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 25.0 Knots

Cmd	Acı	tual		Absolute	e Standard			ď
Heading		ean		Maximui) Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ m MHP}$	Long	Lat	Vert	Long	Lat	Vert
deg	m kts	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.0	-0.7	3.072	6.027	15.831	0.630	1.294	1.886
15.0	25.0	14.6	2.900	7.368	15.405	0.625	1.421	1.883
30.0	25.0	29.8	2.561	8.854	15.533	0.589	1.638	1.873
45.0	25.0	44.6	1.950	9.256	15.994	0.520	1.774	1.835
60.0	25.0	59.2	1.575	10.798	16.867	0.387	1.863	1.668
75.0	25.0	74.1	1.198	9.078	17.174	0.208	1.940	1.340
90.0	25.1	89.2	6.163	15.465	14.823	0.176	1.915	1.036
105.0	25.0	104.2	4.320	17.642	13.511	0.178	2.124	0.738
120.0	24.8	119.1	0.973	10.985	13.690	0.192	2.667	0.787
135.0	24.6	133.6	1.227	9.465	12.242	0.226	2.272	0.616
150.0	24.9	148.5	1.040	8.644	11.802	0.228	1.550	0.487
165.0	25.5	163.7	1.242	7.630	11.303	0.215	1.023	0.399
180.0	26.3	179.3	2.096	7.656	10.538	0.251	0.933	0.385
195.0	26.0	195.3	1.142	6.102	10.324	0.165	1.024	0.319
210.0	25.1	210.5	0.995	8.655	10.129	0.176	1.706	0.500
225.0	24.8	225.5	0.969	10.324	10.044	0.180	2.480	0.689
240.0	24.7	241.4	1.083	17.743	14.218	0.178	3.147	0.703
255.0	24.8	256.7	2.283	23.630	14.929	0.176	3.279	0.708
270.0	24.8	271.8	1.160	17.125	13.665	0.141	3.383	0.899
285.0	25.0	286.2	1.048	15.863	15.359	0.187	3.296	1.185
300.0	25.0	300.4	1.327	13.017	15.739	0.366	2.703	1.479
315.0	25.1	314.7	1.921	11.173	15.305	0.497	2.082	1.686
330.0	25.0	329.4	2.554	8.927	15.085	0.573	1.651	1.811
345.0	25.0	344.3	2.508	7.291	14.913	0.610	1.349	1.857
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.49: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 16.4 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Mo	ean		Maximuı	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	30.3	-0.1	2.795	6.934	16.697	0.640	1.426	2.225	
15.0	30.2	15.0	2.590	8.198	16.072	0.639	1.540	2.215	
30.0	30.2	30.1	2.551	10.105	16.679	0.605	1.735	2.178	
45.0	30.2	44.9	2.162	9.374	17.476	0.540	1.893	2.106	
60.0	30.2	59.5	1.577	9.740	17.940	0.415	1.901	1.896	
75.0	30.1	74.2	0.912	9.397	16.372	0.214	2.128	1.408	
90.0	30.1	89.2	3.683	24.821	14.735	0.160	2.116	1.037	
105.0	30.1	104.2	2.678	10.678	13.524	0.191	2.176	0.714	
120.0	29.8	119.5	1.500	12.054	12.377	0.233	2.913	0.664	
135.0	29.3	132.0	1.160	9.191	12.368	0.273	2.257	0.647	
150.0	29.6	146.6	1.293	8.849	11.296	0.310	1.725	0.590	
165.0	30.3	161.6	1.345	8.774	10.609	0.371	1.324	0.559	
180.0	31.0	177.2	1.427	8.935	10.090	0.372	1.217	0.573	
195.0	31.5	194.2	1.348	7.947	10.509	0.347	1.473	0.535	
210.0	30.4	212.5	1.069	13.751	13.119	0.315	2.332	0.601	
225.0	30.0	225.7	1.419	11.453	11.878	0.222	2.301	0.718	
240.0	29.7	240.5	1.372	14.113	12.434	0.236	3.352	0.816	
255.0	29.9	255.8	4.764	18.925	12.830	0.226	3.231	0.808	
270.0	30.0	271.1	0.858	15.567	14.733	0.155	3.340	0.938	
285.0	30.1	285.9	1.481	17.503	15.327	0.194	3.353	1.276	
300.0	30.2	300.4	1.396	16.271	15.425	0.380	2.920	1.658	
315.0	30.3	315.0	1.980	13.190	16.466	0.514	2.322	1.979	
330.0	30.3	329.8	2.426	11.064	16.506	0.589	1.810	2.119	
345.0	30.3	344.8	2.644	8.079	16.925	0.628	1.512	2.199	
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Willia at 30.4 kilots (29.0 iii/s) is from the starboard beam in an eases

Table U.50: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	d	
Heading	Me	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.3	-529.3	1.648	9.635	12.792	0.241	2.515	0.778
15.0	-2.6	-113.0	1.515	7.282	13.012	0.296	1.859	0.835
30.0	-4.0	-135.5	1.411	8.521	14.060	0.277	1.897	0.933
45.0	-3.8	-120.5	1.069	9.129	14.181	0.238	2.096	0.963
60.0	2.2	51.7	1.061	7.379	14.452	0.235	1.654	0.952
75.0	2.1	80.1	0.730	6.773	14.991	0.096	1.644	0.859
90.0	0.3	101.2	0.692	7.273	13.835	0.083	1.771	0.878
105.0	-1.5	111.4	0.956	8.109	14.157	0.123	1.880	0.935
120.0	-3.6	122.6	0.928	8.452	14.211	0.177	1.886	0.967
135.0	-4.7	134.3	1.286	9.017	14.182	0.237	1.694	0.940
150.0	-4.5	149.3	1.314	8.188	13.502	0.279	1.348	0.899
165.0	-2.9	168.9	2.086	7.510	13.565	0.304	1.005	0.798
180.0	-1.3	526.9	1.461	9.783	13.361	0.256	2.598	0.780
195.0	-1.6	358.3	1.489	8.910	13.762	0.206	2.426	0.750
210.0	-0.4	251.6	1.339	10.250	13.697	0.144	2.370	0.766
225.0	-0.7	256.9	1.108	11.101	13.002	0.114	2.362	0.743
240.0	-1.2	263.7	0.709	11.473	12.857	0.078	2.294	0.714
255.0	-2.0	270.9	0.568	11.435	12.885	0.062	2.193	0.692
270.0	-2.1	278.3	0.532	10.679	12.758	0.070	2.071	0.684
285.0	-2.1	284.3	0.662	10.221	12.924	0.102	1.967	0.698
300.0	-2.4	290.2	0.849	10.201	12.994	0.142	1.900	0.726
315.0	-2.7	241.7	1.489	12.571	13.356	0.186	2.712	0.780
330.0	-2.6	252.0	1.116	10.168	13.882	0.198	2.575	0.771
345.0	-2.7	50.0	1.511	10.133	12.961	0.233	2.117	0.782
Wind at 50	5.4 knots	(29.0 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.51: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	е	5	Standard	
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	2.8	-40.7	1.728	9.487	13.781	0.299	1.737	0.852
15.0	2.2	-132.5	1.650	7.302	14.936	0.190	1.768	0.852
30.0	2.6	-88.1	1.557	7.846	13.372	0.232	2.521	0.889
45.0	3.1	-99.6	1.211	7.352	14.052	0.177	2.181	0.905
60.0	3.6	-83.8	1.293	7.390	14.148	0.175	2.284	0.912
75.0	5.1	66.4	0.890	7.292	13.850	0.165	1.569	0.949
90.0	4.9	89.0	0.509	6.596	14.475	0.055	1.574	0.859
105.0	4.4	104.1	0.607	6.802	13.854	0.069	1.688	0.873
120.0	3.6	114.9	0.806	7.417	13.737	0.107	1.711	0.895
135.0	3.0	122.9	1.167	7.923	14.654	0.137	1.698	0.897
150.0	2.5	131.4	1.361	8.083	15.213	0.166	1.650	0.861
165.0	2.2	138.9	1.451	8.689	14.174	0.191	1.581	0.814
180.0	2.1	149.1	1.714	6.982	12.926	0.214	1.469	0.739
195.0	4.2	206.2	1.734	10.315	11.804	0.223	1.787	0.467
210.0	4.3	241.2	1.589	11.455	12.838	0.166	2.337	0.625
225.0	4.0	251.2	1.303	11.879	12.873	0.133	2.354	0.652
240.0	3.9	260.4	0.949	12.551	12.707	0.097	2.331	0.667
255.0	4.0	270.1	0.494	11.979	12.488	0.059	2.246	0.657
270.0	4.0	278.8	0.496	11.549	12.785	0.056	2.190	0.675
285.0	4.0	287.8	0.821	10.811	13.837	0.106	2.057	0.712
300.0	3.9	296.2	0.889	10.428	13.482	0.167	1.888	0.754
315.0	3.6	301.3	1.137	10.753	13.514	0.208	1.847	0.796
330.0	3.3	307.1	1.344	10.555	13.908	0.246	1.811	0.824
345.0	3.0	313.4	1.609	9.966	13.881	0.277	1.775	0.837
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.52: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	2	S	Standar	d
Heading		ean		Maximuı	n	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	7.6	-33.6	1.974	10.020	13.008	0.369	1.732	0.975
15.0	7.4	-26.9	1.946	8.543	12.543	0.389	1.707	0.992
30.0	7.4	-18.7	2.196	6.803	12.726	0.404	1.619	0.998
45.0	7.4	-8.1	1.908	6.273	12.713	0.412	1.526	1.017
60.0	7.6	13.7	2.222	7.631	13.094	0.392	1.494	1.063
75.0	9.9	71.8	0.763	7.277	14.625	0.131	1.431	0.947
90.0	9.9	88.5	0.272	6.622	13.960	0.054	1.433	0.839
105.0	9.7	104.0	0.653	6.711	13.585	0.068	1.491	0.804
120.0	9.0	116.0	0.921	6.909	14.509	0.096	1.412	0.806
135.0	8.4	127.3	1.440	7.422	14.734	0.121	1.294	0.759
150.0	7.9	137.5	1.328	7.066	13.632	0.140	1.256	0.697
165.0	7.7	145.8	1.358	6.727	13.768	0.150	1.304	0.668
180.0	7.6	157.3	1.450	6.554	13.537	0.166	1.367	0.620
195.0	9.0	194.5	1.879	10.692	11.588	0.179	1.546	0.344
210.0	8.9	221.5	1.886	12.003	12.201	0.172	2.144	0.407
225.0	8.7	238.4	1.402	10.849	12.245	0.151	2.350	0.519
240.0	8.8	251.0	1.049	12.834	12.943	0.125	2.438	0.578
255.0	9.1	262.7	0.845	13.052	12.455	0.091	2.453	0.609
270.0	9.3	274.9	0.390	12.024	12.879	0.060	2.458	0.644
285.0	9.5	287.2	0.821	11.511	13.382	0.101	2.308	0.713
300.0	9.4	299.6	1.026	10.424	13.500	0.202	1.946	0.795
315.0	8.9	310.0	1.385	9.749	13.402	0.281	1.728	0.881
330.0	8.0	314.6	1.530	10.107	14.094	0.315	1.751	0.917
345.0	7.7	320.9	1.852	9.246	13.491	0.346	1.730	0.941
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the starb	oard bea	m in all	cases.	

Table U.53: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e		Standar	
Heading	Mo	ean		Maximu	n	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	13.9	-4.3	1.918	6.357	12.888	0.468	1.132	1.189
15.0	14.0	11.3	1.989	5.710	13.016	0.464	1.153	1.214
30.0	14.3	27.1	1.802	6.116	13.795	0.428	1.288	1.225
45.0	14.5	42.6	1.410	7.024	13.721	0.356	1.351	1.199
60.0	14.7	57.4	0.926	7.787	14.367	0.252	1.376	1.127
75.0	15.0	73.4	0.734	6.646	14.954	0.130	1.363	0.953
90.0	15.0	88.8	0.565	11.887	13.436	0.070	1.400	0.810
105.0	15.0	104.3	0.606	7.423	12.820	0.087	1.400	0.712
120.0	14.5	117.6	0.820	7.154	13.901	0.115	1.386	0.724
135.0	14.3	132.0	0.676	6.871	12.619	0.131	1.160	0.615
150.0	14.2	146.8	1.302	6.622	13.308	0.147	1.030	0.513
165.0	14.4	162.1	0.882	6.899	11.830	0.148	0.961	0.429
180.0	14.5	178.0	1.130	7.882	10.544	0.159	1.075	0.352
195.0	14.6	194.4	1.253	9.949	11.775	0.145	1.374	0.352
210.0	14.4	212.7	1.260	10.998	11.909	0.152	1.915	0.347
225.0	14.2	230.3	1.093	9.727	11.935	0.138	2.368	0.448
240.0	14.3	244.5	1.048	11.352	14.124	0.131	2.648	0.495
255.0	14.6	258.5	0.899	12.253	12.822	0.112	2.667	0.545
270.0	14.7	272.6	0.532	11.947	12.697	0.081	2.694	0.650
285.0	14.8	286.5	0.659	12.715	13.302	0.105	2.558	0.763
300.0	14.7	300.1	1.073	11.950	13.787	0.215	2.120	0.859
315.0	14.5	313.5	1.262	9.348	13.240	0.322	1.668	0.976
330.0	14.2	327.0	1.716	9.109	13.263	0.400	1.392	1.075
345.0	13.9	341.0	2.025	7.723	12.990	0.447	1.236	1.143
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

while at 30.4 knots (27.0 m/s) is from the starboard beam in an eases

Table U.54: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximui	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	19.7	-1.5	2.384	5.426	13.370	0.506	1.085	1.331
15.0	19.7	13.8	1.957	6.739	13.774	0.496	1.192	1.344
30.0	19.8	29.0	2.023	6.729	13.815	0.457	1.335	1.336
45.0	19.8	44.0	1.581	7.793	14.252	0.374	1.432	1.277
60.0	19.9	58.6	0.905	8.358	14.506	0.262	1.396	1.194
75.0	20.1	73.8	0.631	7.298	14.835	0.137	1.415	0.971
90.0	20.1	89.0	0.431	8.435	13.451	0.090	1.376	0.772
105.0	20.1	104.1	1.503	13.930	12.487	0.119	1.436	0.608
120.0	19.9	118.6	0.636	7.302	12.584	0.142	1.620	0.698
135.0	19.9	133.6	0.878	8.857	11.805	0.150	1.228	0.518
150.0	19.8	148.5	1.009	8.147	11.817	0.177	1.090	0.465
165.0	19.8	163.7	0.983	6.108	11.421	0.191	0.918	0.421
180.0	20.0	179.4	0.945	6.772	11.032	0.190	1.002	0.386
195.0	19.9	194.4	1.031	7.979	10.253	0.168	1.282	0.444
210.0	19.9	209.6	0.766	8.950	10.237	0.145	1.660	0.537
225.0	19.8	225.8	1.073	10.086	11.526	0.141	2.167	0.501
240.0	19.7	241.8	0.941	10.263	12.997	0.146	2.783	0.495
255.0	19.9	256.9	1.029	10.993	12.625	0.127	2.827	0.572
270.0	19.9	271.6	0.639	12.839	12.569	0.099	2.841	0.697
285.0	20.0	286.0	0.628	13.063	13.585	0.109	2.760	0.855
300.0	19.9	300.2	1.037	11.992	13.273	0.229	2.257	0.939
315.0	19.9	314.3	1.401	10.615	13.515	0.350	1.737	1.089
330.0	19.8	328.7	1.737	7.775	13.469	0.436	1.343	1.210
345.0	19.7	343.5	2.354	6.184	13.406	0.487	1.132	1.279
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.55: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.0	-0.6	2.147	6.239	14.121	0.536	1.172	1.560
15.0	25.0	14.6	2.370	7.133	14.507	0.526	1.268	1.556
30.0	25.0	29.7	2.056	7.550	14.787	0.489	1.411	1.530
45.0	25.0	44.6	1.558	7.771	14.806	0.401	1.517	1.425
60.0	25.0	59.2	1.179	8.712	16.404	0.277	1.507	1.288
75.0	25.1	74.2	0.581	7.602	14.450	0.146	1.556	1.015
90.0	25.2	89.2	0.864	14.935	14.077	0.111	1.527	0.766
105.0	25.1	104.1	1.343	9.273	13.805	0.145	1.517	0.560
120.0	25.0	119.0	0.933	10.979	12.878	0.174	1.923	0.665
135.0	24.8	133.8	1.038	9.666	13.266	0.209	1.978	0.574
150.0	24.8	148.3	0.959	8.812	11.245	0.208	1.014	0.468
165.0	25.6	164.1	1.084	5.330	11.227	0.233	0.791	0.399
180.0	25.9	179.3	0.908	5.096	10.128	0.173	0.611	0.280
195.0	25.7	196.3	1.298	8.828	10.282	0.230	1.380	0.381
210.0	25.1	210.4	0.866	8.647	10.215	0.183	1.674	0.516
225.0	24.9	225.0	0.907	9.844	10.093	0.173	2.258	0.706
240.0	24.9	240.5	1.124	11.969	12.290	0.162	2.741	0.594
255.0	25.1	256.0	0.933	15.656	11.874	0.143	2.872	0.669
270.0	25.0	271.1	0.560	12.363	12.191	0.115	2.927	0.788
285.0	25.1	285.8	0.656	14.234	13.853	0.119	2.929	0.955
300.0	25.1	300.1	0.996	12.430	13.630	0.240	2.320	1.040
315.0	25.1	314.7	1.589	10.862	14.273	0.374	1.835	1.244
330.0	25.0	329.4	1.928	9.084	14.402	0.465	1.463	1.421
345.0	25.0	344.3	2.306	6.798	14.239	0.514	1.228	1.511
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Wind at 56.4 knots (29.0 m/s) is from the starboard beam in all cases.

Table U.56: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 14.0 m and Tp = 18.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Me	ean		Maximuı	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	30.2	-0.2	2.437	7.681	15.424	0.558	1.296	1.847	
15.0	30.2	15.0	2.143	7.803	15.689	0.545	1.398	1.838	
30.0	30.2	30.0	2.133	9.559	15.890	0.508	1.550	1.788	
45.0	30.2	44.9	1.686	8.835	15.470	0.423	1.662	1.610	
60.0	30.2	59.6	1.078	8.835	16.128	0.295	1.661	1.410	
75.0	30.2	74.3	0.735	8.486	14.877	0.156	1.762	1.067	
90.0	30.2	89.3	0.752	8.385	13.435	0.128	1.695	0.795	
105.0	30.2	104.1	1.758	11.602	12.706	0.176	1.624	0.558	
120.0	30.0	119.4	0.717	8.301	11.568	0.206	2.271	0.588	
135.0	29.8	133.7	1.021	9.379	11.244	0.249	1.981	0.511	
150.0	30.0	148.1	1.107	8.893	10.781	0.263	1.263	0.485	
165.0	30.2	162.5	1.115	6.957	10.662	0.326	1.017	0.452	
180.0	30.8	177.9	1.552	6.438	10.030	0.322	0.900	0.441	
195.0	31.6	194.5	1.162	6.037	10.151	0.273	1.147	0.421	
210.0	30.8	210.9	1.494	12.870	10.083	0.259	1.736	0.514	
225.0	30.1	225.2	0.890	8.989	10.074	0.210	2.063	0.686	
240.0	30.0	240.1	1.071	13.207	10.168	0.194	2.658	0.717	
255.0	30.1	255.5	1.002	14.996	11.189	0.169	2.738	0.796	
270.0	30.1	270.7	0.621	12.403	12.025	0.135	2.954	0.892	
285.0	30.2	285.5	0.689	13.093	13.866	0.130	2.936	1.061	
300.0	30.2	300.2	1.001	12.941	13.825	0.256	2.477	1.131	
315.0	30.2	314.9	1.533	11.298	15.101	0.396	1.969	1.463	
330.0	30.2	329.7	2.014	8.539	15.875	0.490	1.576	1.684	
345.0	30.2	344.7	2.375	8.582	15.557	0.536	1.371	1.800	
Wind at 50	6.4 knots	(29.0 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table U.57: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	5	Standard		
Heading	Me	ean	,	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	${f m/s}^2$	
0.0	-0.5	-110.6	1.863	11.493	13.217	0.299	3.032	0.805	
15.0	-2.8	189.5	2.545	10.582	12.839	0.339	1.786	0.821	
30.0	-4.0	-145.1	1.795	9.881	13.237	0.326	2.207	0.958	
45.0	2.0	30.6	1.247	7.842	13.151	0.321	1.615	1.174	
60.0	3.8	54.5	1.109	7.620	15.805	0.240	1.593	1.108	
75.0	2.8	85.5	0.802	7.708	14.422	0.088	1.582	0.911	
90.0	0.3	106.0	0.973	8.446	14.264	0.111	1.733	0.965	
105.0	-2.3	118.7	1.104	8.295	14.714	0.159	1.820	1.059	
120.0	-4.4	132.0	1.199	8.318	14.866	0.227	1.697	1.070	
135.0	-5.1	146.2	1.664	8.514	14.873	0.293	1.468	1.017	
150.0	-4.3	160.0	1.580	9.530	13.992	0.327	1.245	0.885	
165.0	-2.8	173.3	1.945	9.178	14.396	0.339	1.309	0.747	
180.0	0.4	310.9	1.886	11.457	13.440	0.276	2.984	0.807	
195.0	1.1	234.8	1.943	12.439	12.369	0.233	2.751	0.736	
210.0	-0.2	245.4	1.686	13.294	13.530	0.205	2.755	0.760	
225.0	-0.7	253.7	1.420	12.976	12.897	0.153	2.722	0.786	
240.0	-1.1	261.7	1.061	12.870	12.886	0.108	2.617	0.764	
255.0	-2.3	269.6	1.312	12.025	12.569	0.091	2.483	0.778	
270.0	-2.8	277.2	0.782	11.564	13.102	0.087	2.304	0.790	
285.0	-3.5	283.1	0.737	12.396	12.477	0.118	2.184	0.832	
300.0	-3.5	288.4	1.130	11.630	12.303	0.165	2.103	0.896	
315.0	-3.9	295.7	1.549	17.495	15.891	0.212	2.139	0.944	
330.0	-0.6	141.1	1.477	12.916	13.776	0.204	3.268	0.822	
345.0	0.6	141.0	1.714	12.461	12.392	0.237	3.038	0.768	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Table U.58: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	Standard			
Heading	Me	ean		Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2	
0.0	1.7	-41.7	1.955	12.375	12.976	0.308	2.011	1.008	
15.0	1.3	-140.8	1.887	7.964	14.629	0.231	1.692	0.946	
30.0	1.9	-124.7	2.156	7.242	13.682	0.216	2.160	0.979	
45.0	2.6	-114.2	1.686	6.923	14.417	0.190	2.284	0.997	
60.0	3.5	-61.9	1.683	8.245	13.518	0.239	3.453	1.060	
75.0	5.8	71.4	1.004	8.178	15.302	0.146	1.454	0.981	
90.0	5.0	94.4	0.450	7.719	14.330	0.065	1.592	0.887	
105.0	4.3	108.2	1.264	7.977	14.033	0.100	1.609	0.914	
120.0	3.4	118.0	1.460	9.646	14.194	0.131	1.594	0.963	
135.0	2.5	127.1	1.858	9.669	14.370	0.165	1.570	0.994	
150.0	1.9	134.9	1.961	10.050	15.333	0.194	1.526	0.989	
165.0	1.5	143.3	1.853	10.270	15.559	0.222	1.473	0.955	
180.0	1.3	153.9	1.777	9.059	13.621	0.251	1.395	0.873	
195.0	1.8	168.9	2.877	12.551	12.459	0.277	1.349	0.715	
210.0	4.5	235.3	2.045	13.873	12.351	0.212	2.685	0.623	
225.0	4.1	248.3	1.618	13.586	12.104	0.173	2.689	0.679	
240.0	3.6	258.0	1.205	13.023	12.557	0.139	2.646	0.714	
255.0	3.6	268.2	1.128	12.530	12.778	0.097	2.561	0.725	
270.0	3.5	276.9	0.641	12.727	11.934	0.078	2.454	0.746	
285.0	3.6	285.8	0.687	11.869	11.913	0.092	2.314	0.805	
300.0	3.0	292.4	0.794	11.941	12.198	0.139	2.144	0.885	
315.0	2.6	298.6	1.355	12.069	12.597	0.192	2.082	0.997	
330.0	2.3	306.2	1.412	11.889	12.648	0.240	1.998	1.025	
345.0	2.0	312.9	1.796	11.296	12.282	0.282	1.977	1.052	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

while at 67.4 kilots (55.7 hr/s) is from the starboard beam in an eases.

Table U.59: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	Standard			
Heading	Me	ean		Maximuı	n	Ι	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$	
0.0	6.9	-37.5	2.234	10.923	12.909	0.368	2.050	1.125	
15.0	6.8	-31.4	2.298	9.608	12.949	0.394	2.026	1.110	
30.0	6.8	-26.2	2.099	8.903	13.438	0.408	2.009	1.097	
45.0	7.7	-78.8	1.730	8.230	12.674	0.247	2.943	0.950	
60.0	6.9	-10.9	1.963	9.174	13.502	0.414	2.095	1.127	
75.0	7.6	24.5	1.774	9.726	15.096	0.372	1.947	1.174	
90.0	9.7	88.3	0.337	8.979	13.944	0.062	1.525	0.849	
105.0	9.5	103.2	1.041	10.137	13.445	0.090	1.520	0.780	
120.0	8.7	114.3	1.020	11.182	12.414	0.107	1.314	0.792	
135.0	8.1	125.0	1.137	7.917	13.180	0.141	1.140	0.769	
150.0	7.6	134.4	1.487	7.649	15.565	0.161	1.055	0.753	
165.0	7.3	144.5	1.397	7.036	14.469	0.181	1.110	0.749	
180.0	7.1	153.9	1.485	6.921	13.917	0.194	1.157	0.736	
195.0	7.0	165.7	2.084	8.635	12.399	0.211	1.121	0.665	
210.0	8.8	220.9	2.904	16.300	11.913	0.218	2.457	0.512	
225.0	8.8	240.1	2.061	13.992	11.521	0.181	2.703	0.554	
240.0	8.8	251.8	1.607	13.529	13.043	0.157	2.780	0.620	
255.0	8.9	263.4	1.023	13.737	11.985	0.125	2.770	0.683	
270.0	8.9	275.4	1.053	13.642	12.187	0.099	2.729	0.747	
285.0	9.1	286.9	1.375	13.160	12.642	0.109	2.574	0.865	
300.0	8.9	298.5	1.199	12.090	12.619	0.189	2.210	0.935	
315.0	7.9	306.1	1.126	12.367	12.643	0.251	2.034	1.003	
330.0	7.3	310.9	1.513	11.875	12.838	0.290	2.049	1.091	
345.0	7.1	317.3	1.946	11.703	12.990	0.338	2.020	1.133	
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.		

Wind at 69.4 knots (35.7 m/s) is from the starboard beam in all cases.

Table U.60: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e Standar			d
Heading	Mo	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	11.9	-21.9	2.290	14.703	13.142	0.491	1.862	1.408
15.0	11.7	-12.9	2.642	10.438	13.954	0.512	1.815	1.409
30.0	11.8	0.1	2.658	9.545	14.276	0.522	1.725	1.439
45.0	12.1	19.1	2.106	9.350	13.426	0.486	1.640	1.475
60.0	12.7	42.5	1.368	8.565	14.110	0.368	1.423	1.402
75.0	14.8	72.7	0.618	8.506	14.868	0.139	1.489	0.985
90.0	14.7	88.3	0.398	9.592	13.365	0.080	1.585	0.774
105.0	14.6	102.6	1.137	10.980	15.149	0.101	1.580	0.668
120.0	13.9	115.1	0.789	9.337	14.601	0.127	1.369	0.667
135.0	13.5	129.1	0.941	9.607	13.750	0.152	1.285	0.625
150.0	13.4	143.3	0.992	9.607	12.493	0.169	1.212	0.562
165.0	13.2	158.7	1.913	9.354	13.460	0.196	1.217	0.505
180.0	14.0	176.8	1.165	9.156	9.816	0.188	1.254	0.423
195.0	13.9	196.1	2.334	15.831	10.387	0.206	1.844	0.462
210.0	14.0	215.4	1.265	11.739	11.901	0.186	2.300	0.491
225.0	14.1	231.1	1.449	11.771	12.814	0.165	2.552	0.570
240.0	14.2	245.1	1.562	20.577	11.872	0.159	2.906	0.642
255.0	14.3	259.0	1.584	26.679	11.638	0.153	3.102	0.744
270.0	14.4	273.2	0.735	13.742	11.748	0.103	2.986	0.816
285.0	14.5	286.6	0.870	13.415	12.354	0.108	2.875	0.958
300.0	14.4	300.2	1.682	11.904	12.821	0.214	2.337	0.948
315.0	14.2	312.9	1.204	11.130	12.720	0.320	1.959	1.180
330.0	13.3	324.8	1.850	13.852	13.238	0.411	1.767	1.269
345.0	12.1	330.4	2.088	11.238	13.235	0.456	1.838	1.340
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the starb	oard bear	m in all	cases.	

Table U.61: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	Ι	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	19.2	-2.9	2.491	7.578	14.042	0.554	1.463	1.527
15.0	19.2	12.2	2.235	8.062	13.910	0.544	1.489	1.534
30.0	19.3	27.5	2.105	9.003	14.264	0.497	1.502	1.523
45.0	19.4	42.5	1.495	9.585	14.414	0.400	1.476	1.461
60.0	19.5	57.0	1.058	9.338	14.525	0.283	1.266	1.307
75.0	19.9	73.4	0.967	9.128	16.329	0.148	1.688	1.020
90.0	19.8	88.3	1.275	17.362	13.647	0.106	1.816	0.768
105.0	19.6	102.9	5.419	12.014	12.998	0.194	1.755	0.660
120.0	19.5	117.0	0.888	13.177	12.345	0.165	1.627	0.685
135.0	19.3	131.9	0.839	12.383	12.630	0.185	1.598	0.621
150.0	19.2	146.9	0.975	11.272	11.784	0.234	1.602	0.615
165.0	19.6	163.2	1.450	9.736	11.608	0.256	1.302	0.520
180.0	19.7	178.9	0.910	7.909	9.996	0.219	1.183	0.532
195.0	19.6	195.3	1.322	11.014	10.109	0.228	1.756	0.600
210.0	19.5	210.8	1.800	16.373	10.156	0.200	2.047	0.644
225.0	19.3	227.1	1.322	12.327	13.517	0.183	2.501	0.651
240.0	19.5	242.2	1.375	16.786	13.158	0.169	2.918	0.738
255.0	19.7	257.3	1.044	15.971	13.216	0.145	3.099	0.863
270.0	19.7	272.1	0.718	14.053	12.062	0.113	3.208	0.977
285.0	19.7	286.3	0.635	13.438	12.892	0.115	3.177	1.115
300.0	19.7	300.5	1.063	13.408	13.139	0.224	2.582	1.051
315.0	19.6	314.1	1.418	14.610	13.137	0.352	2.079	1.259
330.0	19.4	328.2	2.095	10.843	13.700	0.455	1.759	1.361
345.0	19.3	342.5	2.228	9.087	13.842	0.524	1.518	1.466
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

,

Table U.62: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean	,	Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	24.8	-1.3	2.620	8.612	14.247	0.586	1.589	1.692
15.0	24.7	13.8	2.481	8.994	14.379	0.574	1.600	1.679
30.0	24.8	29.0	2.403	9.379	15.206	0.524	1.626	1.643
45.0	24.8	43.7	1.745	9.245	15.511	0.424	1.557	1.545
60.0	24.7	58.0	1.971	10.699	15.792	0.299	1.336	1.381
75.0	24.9	73.6	0.791	8.936	14.870	0.162	1.835	1.094
90.0	24.8	88.5	7.283	13.067	14.326	0.206	1.859	0.802
105.0	24.7	103.0	6.862	20.279	13.905	0.237	1.988	0.744
120.0	24.6	118.0	1.344	12.854	12.888	0.209	1.823	0.726
135.0	24.6	133.1	1.128	11.342	11.662	0.243	1.879	0.655
150.0	24.5	147.2	1.072	10.030	10.847	0.248	1.244	0.582
165.0	25.0	162.8	1.510	10.193	10.880	0.247	0.886	0.512
180.0	26.0	179.2	0.891	6.459	10.071	0.225	0.695	0.402
195.0	25.6	194.8	0.830	7.159	10.062	0.213	1.051	0.507
210.0	24.8	210.2	1.440	10.931	10.072	0.228	1.877	0.732
225.0	24.8	224.8	1.134	11.457	10.159	0.190	2.021	0.831
240.0	24.7	240.6	1.495	16.484	10.493	0.196	2.844	0.861
255.0	24.9	256.1	1.310	15.274	11.637	0.165	3.173	1.092
270.0	24.8	271.4	0.631	14.089	12.163	0.128	3.390	1.207
285.0	24.9	285.8	0.586	13.016	12.910	0.120	3.297	1.375
300.0	24.9	300.4	1.002	13.504	13.055	0.239	2.682	1.217
315.0	24.9	314.9	1.614	14.044	14.817	0.382	2.293	1.348
330.0	24.8	329.3	2.217	10.761	14.754	0.492	1.806	1.516
345.0	24.8	343.9	2.411	9.562	14.718	0.556	1.685	1.644
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.63: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 20.0 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.1	-0.5	2.716	8.527	15.109	0.610	1.739	1.956
15.0	30.0	14.6	2.775	9.658	15.102	0.604	1.731	1.941
30.0	30.0	29.6	2.253	11.856	15.522	0.549	1.760	1.833
45.0	30.0	44.4	1.868	10.270	16.598	0.449	1.653	1.671
60.0	29.9	58.8	1.350	9.481	16.458	0.308	1.412	1.427
75.0	30.0	73.8	1.311	12.622	15.106	0.176	2.053	1.180
90.0	29.9	88.6	6.060	19.979	13.338	0.195	2.045	0.867
105.0	29.8	103.3	2.814	12.244	15.171	0.216	2.102	0.767
120.0	29.6	118.4	1.452	11.161	12.947	0.270	2.325	0.748
135.0	29.4	132.7	1.385	10.077	12.135	0.299	1.897	0.688
150.0	29.2	146.3	1.144	8.977	10.600	0.300	1.271	0.676
165.0	29.4	159.7	1.737	11.321	10.462	0.375	1.160	0.715
180.0	30.3	176.7	1.693	7.491	9.919	0.365	1.023	0.611
195.0	30.6	196.2	1.836	16.777	10.377	0.436	2.076	0.741
210.0	30.9	210.9	1.245	9.735	10.278	0.303	1.795	0.739
225.0	30.0	224.9	0.997	9.429	10.049	0.228	1.892	0.955
240.0	29.7	240.1	1.719	14.940	10.285	0.248	2.914	0.977
255.0	29.6	254.9	5.271	19.471	10.795	0.341	3.114	1.342
270.0	29.9	270.8	1.030	13.825	11.842	0.153	3.439	1.388
285.0	30.0	285.2	0.702	13.345	13.086	0.158	3.253	1.818
300.0	30.1	300.4	1.186	14.718	13.336	0.250	2.671	1.224
315.0	30.1	315.1	1.618	13.870	15.779	0.402	2.367	1.477
330.0	30.1	329.8	2.054	12.453	16.018	0.517	2.097	1.728
345.0	30.1	344.6	2.510	10.446	16.226	0.583	1.820	1.887
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table U.64: Accelerations at Flight Deck: Bretschneider Spectrum with $Hs = 17.7 \, m$ and $Tp = 25.7 \, s$; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.7	-1.3	0.692	7.424	11.512	0.177	1.136	0.811
15.0	0.7	12.9	0.671	5.319	11.471	0.175	1.090	0.786
30.0	1.7	26.6	0.603	5.925	11.898	0.162	1.075	0.751
45.0	2.5	41.8	0.554	5.870	12.190	0.137	1.055	0.694
60.0	2.6	58.7	0.714	6.053	11.917	0.094	0.971	0.590
75.0	1.7	77.0	0.333	6.309	10.999	0.059	0.922	0.454
90.0	0.9	94.9	0.461	6.730	10.727	0.052	0.944	0.414
105.0	0.1	109.7	0.439	7.904	10.890	0.057	0.981	0.457
120.0	-1.2	125.3	0.477	6.386	11.127	0.078	1.030	0.542
135.0	-2.4	140.3	0.543	6.219	11.397	0.113	0.964	0.591
150.0	-2.9	154.1	0.605	5.562	11.399	0.136	0.783	0.552
165.0	-2.8	165.8	0.650	5.475	11.375	0.148	0.650	0.480
180.0	-2.1	177.6	0.720	6.140	10.996	0.158	0.740	0.417
195.0	-1.0	191.8	0.897	7.797	10.766	0.153	1.029	0.377
210.0	0.1	209.9	0.822	8.483	10.957	0.132	1.355	0.391
225.0	0.3	229.9	0.624	8.855	11.343	0.096	1.559	0.423
240.0	-0.1	248.0	0.384	8.944	11.476	0.068	1.681	0.494
255.0	-0.9	262.0	0.361	8.755	10.699	0.045	1.611	0.521
270.0	-1.6	274.8	0.252	8.480	10.773	0.039	1.518	0.553
285.0	-2.4	286.8	0.317	7.905	10.872	0.051	1.363	0.601
300.0	-3.7	302.0	0.391	7.682	11.004	0.090	1.212	0.719
315.0	-3.6	316.8	0.750	7.524	11.505	0.127	1.127	0.787
330.0	-2.9	331.7	0.575	7.686	11.286	0.151	1.116	0.812
345.0	-1.8	345.9	0.651	8.017	11.428	0.167	1.124	0.817
Wind at 69	9.4 knots	(35.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table U.65: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$
0.0	2.6	-22.8	0.808	7.814	11.524	0.171	1.248	0.793
15.0	2.9	-7.4	0.817	6.982	11.385	0.192	1.192	0.819
30.0	3.4	9.2	0.876	6.828	11.498	0.195	1.130	0.825
45.0	4.1	27.0	0.679	5.809	11.478	0.175	1.040	0.789
60.0	4.7	48.0	0.505	6.026	11.742	0.126	0.931	0.689
75.0	4.9	66.8	0.348	5.790	11.635	0.072	0.874	0.547
90.0	4.6	83.1	0.301	5.996	10.854	0.040	0.927	0.423
105.0	4.3	97.1	0.336	7.214	10.461	0.041	0.899	0.383
120.0	4.0	108.9	0.290	7.110	10.582	0.046	0.813	0.401
135.0	3.5	121.0	0.378	6.505	10.990	0.060	0.693	0.425
150.0	3.1	133.4	0.446	6.065	11.307	0.080	0.589	0.450
165.0	2.8	145.1	0.539	5.650	11.511	0.102	0.524	0.480
180.0	2.6	156.9	0.670	5.325	11.552	0.119	0.481	0.494
195.0	2.5	169.3	0.802	5.739	11.412	0.132	0.495	0.491
210.0	2.7	183.2	0.865	5.959	10.799	0.134	0.599	0.471
225.0	3.7	209.2	0.718	8.823	10.462	0.114	1.075	0.387
240.0	4.6	237.6	0.520	8.861	10.501	0.082	1.584	0.434
255.0	4.5	251.8	0.371	8.489	10.515	0.064	1.632	0.484
270.0	4.1	266.2	0.386	8.540	10.871	0.054	1.610	0.525
285.0	3.8	279.0	0.358	8.960	10.649	0.041	1.531	0.557
300.0	3.3	290.2	0.354	8.306	10.770	0.042	1.434	0.582
315.0	3.0	300.5	0.397	8.214	11.169	0.066	1.374	0.636
330.0	2.7	311.4	0.631	8.129	11.309	0.101	1.324	0.704
345.0 2.6 323.6 0.822 8.057 11.401 0.138 1.285 0.753								
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

390

Table U.66: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximuı	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	7.4	-24.1	1.060	8.164	11.531	0.193	1.320	0.846
15.0	7.4	-12.0	1.062	7.446	11.634	0.215	1.279	0.874
30.0	7.6	2.2	0.913	7.098	11.555	0.224	1.217	0.888
45.0	7.9	19.7	0.781	6.277	11.566	0.208	1.077	0.870
60.0	8.3	39.5	0.608	6.524	11.729	0.161	0.902	0.786
75.0	8.6	61.1	0.336	6.119	11.869	0.089	0.726	0.615
90.0	8.9	82.5	0.234	7.306	10.808	0.041	0.948	0.403
105.0	8.6	94.8	0.289	8.821	10.191	0.047	0.898	0.325
120.0	8.3	105.8	0.349	9.286	10.268	0.055	0.798	0.299
135.0	8.1	114.5	0.350	8.615	10.352	0.060	0.628	0.324
150.0	8.0	127.8	0.430	7.824	10.623	0.074	0.546	0.343
165.0	7.8	141.5	0.553	6.271	11.172	0.085	0.430	0.351
180.0	7.7	155.3	0.768	5.974	10.958	0.099	0.345	0.356
195.0	7.7	171.9	0.763	6.545	10.736	0.108	0.449	0.358
210.0	8.7	201.6	0.920	8.415	10.295	0.102	1.059	0.411
225.0	9.3	223.0	0.930	10.395	10.579	0.094	1.513	0.462
240.0	9.6	239.4	0.563	9.593	10.264	0.084	1.707	0.496
255.0	9.7	254.2	0.640	9.532	10.354	0.076	1.871	0.607
270.0	9.5	268.7	0.421	9.523	10.572	0.067	1.842	0.623
285.0	9.3	282.5	0.507	9.275	10.731	0.052	1.739	0.641
300.0	8.9	295.7	0.303	9.558	10.769	0.057	1.509	0.606
315.0	8.2	306.6	0.495	8.645	10.985	0.092	1.394	0.674
330.0	7.7	315.2	0.724	8.136	11.139	0.126	1.359	0.741
345.0	7.6	325.2	0.930	8.129	11.396	0.162	1.341	0.805
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bea	m in all	cases.	

Table U.67: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	13.3	-6.3	1.152	7.249	12.012	0.251	1.016	0.899
15.0	13.2	7.7	1.060	7.383	11.755	0.253	0.968	0.918
30.0	13.3	22.6	0.973	6.765	11.984	0.233	0.917	0.909
45.0	13.7	38.6	0.689	6.338	12.014	0.187	0.800	0.821
60.0	13.8	53.8	0.472	6.737	11.889	0.133	0.730	0.708
75.0	14.3	71.1	0.313	8.145	11.786	0.075	0.985	0.464
90.0	14.2	85.8	0.311	8.712	9.925	0.060	1.115	0.317
105.0	14.0	99.9	0.428	9.254	9.616	0.076	1.066	0.282
120.0	13.4	112.4	0.499	10.072	10.424	0.095	0.863	0.348
135.0	13.5	127.9	0.630	9.327	10.988	0.111	0.851	0.365
150.0	13.6	143.3	0.723	10.539	10.316	0.122	0.838	0.352
165.0	13.7	159.4	0.616	9.054	9.804	0.133	0.878	0.346
180.0	14.0	176.0	0.479	7.375	9.922	0.128	0.974	0.384
195.0	14.1	192.4	0.644	8.759	10.080	0.131	1.251	0.455
210.0	14.2	208.8	0.845	10.879	10.216	0.123	1.465	0.493
225.0	14.3	224.6	0.839	11.119	10.281	0.116	1.705	0.548
240.0	14.6	239.7	0.749	10.033	10.499	0.102	1.871	0.588
255.0	14.7	254.8	0.731	11.051	10.413	0.092	2.064	0.762
270.0	14.7	269.6	0.592	10.003	10.602	0.080	2.134	0.813
285.0	14.6	284.1	0.443	9.941	11.012	0.064	2.063	0.808
300.0	14.5	298.4	0.363	9.333	11.084	0.073	1.697	0.690
315.0	14.3	312.5	0.609	9.125	10.838	0.127	1.468	0.746
330.0	14.0	326.4	0.891	8.566	11.391	0.182	1.245	0.795
345.0	13.7	340.2	1.019	7.805	11.568	0.225	1.097	0.850
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

while at 07.4 knots (55.7 m/s) is from the starboard beam in an eases

Table U.68: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Mo	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	19.4	-2.5	1.410	8.164	12.339	0.277	0.893	0.937
15.0	19.4	12.4	1.203	7.540	12.204	0.273	0.850	0.937
30.0	19.4	27.2	1.040	8.157	12.056	0.245	0.813	0.909
45.0	19.4	42.1	0.851	7.426	12.068	0.199	0.777	0.832
60.0	19.4	56.7	0.605	8.859	12.101	0.144	0.757	0.689
75.0	19.7	72.5	0.345	8.683	10.736	0.087	1.203	0.456
90.0	19.6	87.1	0.379	9.260	9.488	0.084	1.254	0.353
105.0	19.5	101.8	0.547	10.802	9.359	0.108	1.241	0.422
120.0	19.5	116.7	0.742	10.981	10.624	0.145	1.071	0.474
135.0	19.4	131.5	0.748	10.250	9.775	0.162	1.049	0.488
150.0	19.5	146.8	0.884	10.658	9.929	0.179	0.999	0.484
165.0	19.5	162.4	0.733	9.039	9.943	0.190	0.986	0.490
180.0	19.6	177.8	0.607	7.922	10.034	0.177	0.990	0.520
195.0	19.6	193.7	0.688	8.018	10.156	0.178	1.301	0.570
210.0	19.5	209.1	0.733	10.401	10.278	0.158	1.515	0.625
225.0	19.6	224.3	0.585	9.820	10.278	0.148	1.787	0.696
240.0	19.6	239.4	0.897	12.076	10.260	0.133	1.946	0.723
255.0	19.8	254.7	0.568	10.631	10.519	0.112	2.191	0.940
270.0	19.8	269.9	0.495	10.308	10.616	0.096	2.373	1.010
285.0	19.8	284.6	0.471	10.564	11.041	0.078	2.324	1.056
300.0	19.8	299.1	0.349	10.143	10.637	0.088	1.852	0.785
315.0	19.7	313.6	0.660	10.109	10.975	0.146	1.590	0.848
330.0	19.6	328.2	0.857	10.283	11.235	0.205	1.268	0.867
345.0	19.5	342.8	1.257	8.819	11.963	0.251	1.035	0.900
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.69: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	24.8	-1.5	1.303	7.594	11.758	0.301	0.903	0.997
15.0	24.8	13.5	1.252	6.938	12.319	0.296	0.874	1.003
30.0	24.8	28.4	1.052	7.111	12.153	0.263	0.866	0.972
45.0	24.8	43.2	0.804	8.358	12.185	0.214	0.811	0.881
60.0	24.7	57.8	0.666	8.423	12.134	0.159	0.763	0.711
75.0	24.9	73.2	0.433	8.931	11.028	0.101	1.335	0.512
90.0	24.9	87.9	0.455	10.033	9.488	0.103	1.363	0.442
105.0	24.8	102.7	0.739	11.381	9.403	0.133	1.359	0.524
120.0	24.8	117.7	0.867	11.331	10.603	0.174	1.056	0.477
135.0	24.7	132.5	0.895	10.560	9.727	0.198	0.946	0.498
150.0	24.7	147.6	0.890	10.101	9.733	0.233	0.877	0.501
165.0	24.8	163.1	0.847	8.950	9.948	0.242	0.799	0.517
180.0	25.0	178.5	0.645	6.838	9.998	0.213	0.725	0.501
195.0	25.0	194.2	0.723	7.944	10.213	0.228	1.150	0.623
210.0	24.9	209.3	0.739	8.344	10.232	0.198	1.366	0.683
225.0	24.9	224.3	0.716	9.361	10.318	0.177	1.699	0.820
240.0	24.8	239.4	0.711	10.759	10.435	0.154	1.876	0.832
255.0	24.8	254.7	0.662	11.221	10.646	0.139	2.258	1.152
270.0	24.8	269.8	0.486	11.203	10.464	0.112	2.515	1.262
285.0	24.9	284.5	0.449	10.937	10.703	0.092	2.468	1.242
300.0	25.0	299.4	0.384	10.578	10.933	0.100	1.856	0.834
315.0	24.9	314.1	0.732	12.246	11.058	0.160	1.606	0.907
330.0	24.9	328.9	1.097	10.489	11.435	0.228	1.310	0.939
345.0	24.8	343.7	1.259	8.720	11.907	0.276	1.018	0.972
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table U.70: Accelerations at Flight Deck: Bretschneider Spectrum with Hs = 17.7 m and Tp = 25.7 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	Standard		
Heading	Mo	ean		Maximuı	n	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	30.0	-0.9	1.391	7.671	12.545	0.320	0.975	1.056
15.0	30.0	14.1	1.373	7.277	12.483	0.311	0.962	1.055
30.0	30.0	28.9	1.174	7.538	12.493	0.280	0.935	1.029
45.0	30.0	43.8	0.960	7.855	12.140	0.225	0.830	0.932
60.0	30.0	58.5	0.725	9.328	12.023	0.167	0.746	0.751
75.0	30.1	73.7	0.548	8.803	11.420	0.116	1.492	0.637
90.0	30.0	88.4	0.600	10.404	9.671	0.120	1.501	0.541
105.0	30.0	103.2	1.165	11.199	10.211	0.155	1.439	0.586
120.0	29.9	118.4	0.999	9.479	10.827	0.201	1.163	0.448
135.0	29.8	133.1	1.014	9.794	10.299	0.235	0.945	0.438
150.0	29.9	148.2	0.806	7.812	10.210	0.259	0.686	0.418
165.0	30.1	163.4	0.990	8.408	9.749	0.252	0.575	0.430
180.0	30.4	178.7	0.976	7.201	10.064	0.278	0.670	0.467
195.0	30.4	194.1	0.816	7.999	10.114	0.239	0.749	0.481
210.0	30.2	209.5	1.015	9.473	10.302	0.244	1.335	0.683
225.0	30.1	224.6	0.912	9.971	10.302	0.225	1.733	0.929
240.0	30.1	239.6	0.710	9.564	10.402	0.179	1.840	0.912
255.0	29.9	254.7	0.719	11.187	10.449	0.163	2.239	1.376
270.0	29.9	269.6	0.678	11.228	10.515	0.136	2.553	1.468
285.0	29.9	284.6	0.733	11.871	10.625	0.117	2.530	1.507
300.0	30.1	299.5	0.466	11.350	10.953	0.112	1.829	0.858
315.0	30.1	314.4	0.740	12.378	11.312	0.170	1.542	0.895
330.0	30.1	329.3	1.042	10.640	11.296	0.243	1.220	0.978
345.0 30.0 344.2 1.281 8.706 12.233 0.295 1.051 1.022								
Wind at 69	9.4 knots	(35.7 m/s	s) is fron	n the starb	oard bea	m in all	cases.	

This page intentionally left blank.

Annex V Tables of Flight Deck Accelerations – JONSWAP Spectrum (Coastal Waters)

Table V.1: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual		Absolut	ie .	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.2	-28.4	0.797	2.295	11.071	0.185	0.429	0.499
15.0	-0.2	-6.7	0.761	0.959	10.907	0.167	0.159	0.423
30.0	-0.2	20.1	0.726	1.837	10.889	0.174	0.316	0.427
45.0	-0.2	35.0	0.737	2.421	11.043	0.190	0.560	0.475
60.0	-0.4	43.8	0.832	3.111	11.601	0.196	0.742	0.514
75.0	-0.6	50.6	0.735	4.179	12.452	0.198	0.871	0.548
90.0	-0.7	56.8	0.892	4.797	12.397	0.197	1.010	0.583
105.0	-0.8	60.5	0.829	5.044	12.623	0.194	1.054	0.605
120.0	-0.9	65.1	0.856	6.478	13.607	0.178	1.057	0.610
135.0	-2.1	102.4	0.800	7.300	12.983	0.158	1.194	0.675
150.0	-2.2	104.5	0.837	6.305	12.702	0.165	1.151	0.679
165.0	-2.4	103.6	1.143	7.588	12.910	0.154	1.120	0.670
180.0	-0.8	59.1	0.771	3.531	11.796	0.163	0.628	0.484
195.0	-0.2	352.3	0.752	3.256	11.672	0.185	0.687	0.540
210.0	-0.2	382.7	0.824	3.685	11.912	0.195	0.785	0.607
225.0	0.0	379.0	0.753	3.785	12.575	0.203	0.857	0.633
240.0	0.7	294.4	0.868	3.872	12.763	0.203	1.062	0.739
255.0	0.5	293.5	0.861	4.066	12.712	0.203	1.088	0.762
270.0	0.3	296.5	0.861	4.278	12.756	0.205	1.077	0.750
285.0	0.1	300.8	0.715	3.988	12.570	0.210	1.015	0.721
300.0	0.0	305.3	0.745	4.193	12.159	0.210	0.935	0.684
315.0	-0.0	309.8	0.787	3.734	12.129	0.209	0.841	0.649
330.0	-0.1	315.0	0.820	3.439	11.637	0.205	0.724	0.607
345.0	-0.1	321.5	0.814	2.856	11.400	0.198	0.594	0.561
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table V.2: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.8	-2.1	0.697	1.017	11.230	0.192	0.144	0.534
15.0	4.8	12.8	0.793	1.024	11.277	0.195	0.204	0.538
30.0	4.7	27.8	0.923	1.502	11.419	0.209	0.357	0.577
45.0	4.7	42.2	0.841	2.338	11.478	0.226	0.592	0.641
60.0	4.4	53.9	0.852	3.506	12.058	0.230	0.817	0.692
75.0	4.1	56.6	0.780	4.212	12.380	0.226	0.885	0.698
90.0	4.1	60.8	0.787	4.372	12.361	0.220	0.964	0.717
105.0	4.1	63.1	0.793	4.898	12.416	0.217	0.993	0.724
120.0	4.1	64.0	0.747	3.758	12.508	0.216	0.989	0.728
135.0	4.0	64.2	0.748	3.601	12.493	0.218	0.985	0.732
150.0	4.1	74.6	0.842	3.711	12.686	0.210	0.921	0.687
165.0	4.9	163.1	0.367	1.502	10.779	0.096	0.288	0.181
180.0	4.9	178.7	0.357	1.045	10.710	0.090	0.184	0.173
195.0	4.9	194.1	0.349	1.337	10.745	0.093	0.287	0.190
210.0	4.8	210.3	0.404	2.039	10.915	0.105	0.481	0.243
225.0	4.5	283.4	0.777	4.760	13.562	0.195	1.062	0.835
240.0	4.6	285.3	0.708	4.196	13.412	0.192	1.088	0.883
255.0	4.5	286.8	0.767	4.492	13.538	0.199	1.093	0.891
270.0	4.5	288.9	0.819	4.426	13.807	0.207	1.085	0.884
285.0	4.7	291.3	0.922	4.640	13.880	0.220	1.080	0.875
300.0	4.9	301.2	0.830	4.283	12.755	0.238	0.945	0.785
315.0	4.8	314.0	0.924	2.886	11.720	0.235	0.694	0.693
330.0	4.8	328.1	0.839	2.329	11.389	0.218	0.447	0.620
345.0	4.8	343.0	0.768	1.373	11.281	0.201	0.235	0.561
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.3: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading		ean	l	Maximu		l	Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.0	-0.6	0.848	0.936	11.766	0.215	0.104	0.627
15.0	10.0	14.4	0.776	1.073	11.606	0.220	0.168	0.633
30.0	10.0	29.4	0.940	1.600	11.694	0.238	0.345	0.674
45.0	9.9	44.5	0.918	2.453	11.886	0.254	0.588	0.724
60.0	10.0	59.1	0.887	3.986	12.322	0.253	0.859	0.820
75.0	10.0	73.0	0.843	5.356	13.422	0.215	0.991	0.947
90.0	9.7	86.0	0.411	5.893	13.263	0.088	0.920	0.861
105.0	9.4	100.8	0.618	6.318	12.504	0.108	1.070	0.555
120.0	9.6	116.9	0.327	3.943	11.383	0.096	1.009	0.333
135.0	9.9	133.2	0.299	3.358	10.499	0.085	1.063	0.182
150.0	10.0	148.8	0.243	3.422	10.308	0.074	1.118	0.133
165.0	10.1	164.1	0.250	3.721	10.153	0.065	0.892	0.104
180.0	10.1	179.2	0.233	2.432	10.136	0.062	0.535	0.074
195.0	10.1	194.7	0.243	1.980	10.325	0.068	0.538	0.091
210.0	10.1	210.3	0.262	2.569	10.416	0.075	0.895	0.137
225.0	10.0	225.9	0.302	3.211	10.680	0.087	0.984	0.216
240.0	9.7	242.3	0.345	3.394	11.441	0.100	1.023	0.361
255.0	9.5	259.2	0.644	4.904	12.424	0.116	1.119	0.608
270.0	9.8	273.7	0.456	5.694	13.186	0.076	1.012	0.910
285.0	10.2	286.6	0.866	4.217	14.063	0.215	1.077	1.027
300.0	10.1	300.1	0.941	3.764	12.515	0.258	0.927	0.870
315.0	10.0	314.7	0.901	2.540	12.109	0.259	0.636	0.747
330.0	10.0	329.6	0.942	1.964	11.776	0.243	0.386	0.687
345.0	10.0	344.6	0.806	1.289	11.609	0.223	0.199	0.642
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.4: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	5	Standar	d
Heading		ean	l	Maximu		l	Deviatio	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.2	0.855	1.070	11.741	0.237	0.100	0.669
15.0	15.2	14.8	0.791	1.185	11.771	0.243	0.171	0.678
30.0	15.1	29.8	0.955	1.735	11.908	0.262	0.339	0.734
45.0	15.1	44.8	0.998	2.692	12.107	0.279	0.571	0.816
60.0	15.2	59.7	1.010	3.576	13.084	0.270	0.836	0.944
75.0	15.2	74.1	0.793	4.649	13.802	0.216	0.961	1.068
90.0	15.1	88.5	0.282	5.533	13.210	0.047	0.893	0.806
105.0	15.0	103.3	0.450	7.455	12.928	0.086	1.067	0.475
120.0	15.0	118.5	0.251	4.650	10.810	0.066	1.461	0.268
135.0	15.2	134.3	0.223	4.501	10.470	0.051	1.499	0.223
150.0	15.3	149.7	0.211	3.312	10.240	0.057	0.891	0.117
165.0	15.3	164.7	0.219	2.093	10.064	0.059	0.449	0.069
180.0	15.2	179.5	0.296	2.465	10.072	0.063	0.338	0.063
195.0	15.2	194.7	0.178	2.243	9.884	0.055	0.421	0.038
210.0	15.2	209.8	0.170	2.531	9.957	0.043	0.631	0.050
225.0	15.2	225.4	0.246	4.162	10.609	0.055	1.499	0.152
240.0	15.1	241.1	0.250	4.544	10.907	0.073	1.462	0.259
255.0	15.0	256.7	0.562	5.039	12.532	0.095	1.144	0.492
270.0	15.1	271.5	0.324	5.000	13.148	0.042	1.030	0.873
285.0	15.3	285.8	0.791	4.485	13.946	0.214	1.096	1.134
300.0	15.2	300.1	0.954	3.384	12.783	0.271	0.893	0.986
315.0	15.1	314.8	0.945	2.494	12.134	0.281	0.618	0.838
330.0	15.1	329.8	0.966	1.784	12.072	0.265	0.367	0.746
345.0	15.2	344.8	0.885	1.137	12.076	0.245	0.185	0.684
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.5: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standard		
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	20.3	-0.1	0.865	1.182	12.304	0.253	0.112	0.783	
15.0	20.3	14.9	0.864	1.347	12.425	0.260	0.168	0.804	
30.0	20.3	29.9	0.977	1.738	12.599	0.281	0.320	0.887	
45.0	20.3	44.9	1.018	2.634	12.795	0.297	0.544	0.988	
60.0	20.3	59.8	1.040	3.859	13.236	0.284	0.811	1.111	
75.0	20.4	74.5	0.786	4.540	14.071	0.218	0.944	1.175	
90.0	20.3	89.1	0.317	6.943	12.874	0.041	0.899	0.797	
105.0	20.2	104.1	0.393	6.343	11.915	0.070	1.137	0.420	
120.0	20.3	119.3	0.193	5.774	10.810	0.041	1.889	0.318	
135.0	20.2	134.8	0.226	4.753	10.339	0.057	1.564	0.203	
150.0	20.4	149.8	0.253	2.916	10.052	0.064	0.742	0.082	
165.0	20.3	164.6	0.325	2.774	9.977	0.066	0.385	0.068	
180.0	20.6	179.8	0.267	3.267	9.998	0.068	0.324	0.067	
195.0	20.4	194.7	0.319	3.718	9.948	0.063	0.582	0.092	
210.0	20.3	209.8	0.294	4.236	9.913	0.060	0.905	0.121	
225.0	20.3	225.1	0.183	4.994	10.011	0.048	1.450	0.153	
240.0	20.3	240.6	0.222	5.531	11.260	0.049	2.028	0.231	
255.0	20.2	255.9	0.357	4.720	11.810	0.077	1.222	0.409	
270.0	20.3	270.9	0.270	5.065	12.920	0.039	1.081	0.862	
285.0	20.4	285.5	0.932	5.353	14.855	0.212	1.130	1.233	
300.0	20.3	300.1	0.906	3.143	13.438	0.281	0.904	1.146	
315.0	20.3	315.0	0.991	2.431	13.044	0.296	0.608	1.009	
330.0	20.3	329.9	1.006	1.715	12.786	0.281	0.363	0.901	
345.0	20.3	344.9	0.844	1.225	12.562	0.260	0.193	0.811	
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.6: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Mo	ean	N	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.934	1.369	12.673	0.260	0.141	0.975
15.0	25.4	14.9	0.837	1.447	12.794	0.268	0.163	1.007
30.0	25.4	29.9	0.950	2.129	13.316	0.291	0.297	1.110
45.0	25.4	44.9	1.070	2.799	13.569	0.309	0.513	1.219
60.0	25.4	59.8	1.007	3.866	13.558	0.294	0.791	1.296
75.0	25.4	74.6	0.752	4.725	14.492	0.218	0.942	1.275
90.0	25.4	89.4	0.268	7.166	13.114	0.040	0.911	0.794
105.0	25.4	104.4	0.274	6.429	11.697	0.056	1.263	0.373
120.0	25.3	119.7	0.381	7.419	11.180	0.060	2.505	0.385
135.0	25.3	134.9	0.311	4.758	9.921	0.065	1.309	0.150
150.0	25.5	149.8	0.346	2.673	10.039	0.074	0.563	0.086
165.0	25.5	164.8	0.356	2.395	10.205	0.077	0.351	0.106
180.0	25.4	179.8	0.388	3.451	10.129	0.083	0.492	0.136
195.0	25.5	194.9	0.797	3.592	10.125	0.079	0.561	0.124
210.0	25.4	210.0	0.381	3.774	10.066	0.072	0.793	0.124
225.0	25.3	225.0	0.266	5.293	9.898	0.061	1.388	0.188
240.0	25.3	240.2	0.295	6.853	10.763	0.053	2.415	0.303
255.0	25.4	255.5	0.316	5.173	11.688	0.065	1.373	0.343
270.0	25.4	270.6	0.278	5.324	12.879	0.042	1.111	0.858
285.0	25.4	285.3	0.814	5.251	14.974	0.211	1.177	1.331
300.0	25.4	300.1	0.958	3.444	13.917	0.288	0.937	1.325
315.0	25.4	315.1	1.012	2.533	13.872	0.305	0.624	1.234
330.0	25.4	330.0	0.934	1.988	13.349	0.289	0.382	1.118
345.0	25.4	345.0	0.824	1.338	12.852	0.268	0.217	1.012
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.7: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 8.2 s; Ship's speed is 30.0 Knots

Cmd	Ac	tual	Absolute St			Standar	d	
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.1	0.870	1.405	13.087	0.258	0.164	1.141
15.0	30.5	14.9	0.927	1.667	13.321	0.267	0.166	1.186
30.0	30.5	29.9	0.949	2.123	13.498	0.293	0.275	1.320
45.0	30.5	44.9	1.022	3.148	14.090	0.314	0.489	1.452
60.0	30.5	59.9	0.974	4.126	14.296	0.300	0.775	1.485
75.0	30.5	74.7	0.743	4.779	14.758	0.219	0.923	1.379
90.0	30.5	89.6	0.212	5.750	13.288	0.042	0.935	0.789
105.0	30.5	104.6	0.224	5.842	11.498	0.053	1.459	0.352
120.0	30.4	119.9	0.444	6.007	10.536	0.076	2.234	0.322
135.0	30.4	134.9	0.288	3.689	9.990	0.075	1.126	0.125
150.0	30.6	149.8	0.382	3.509	10.365	0.082	0.628	0.141
165.0	30.4	165.0	0.456	2.567	10.244	0.087	0.443	0.161
180.0	30.7	179.9	0.454	3.199	10.334	0.084	0.551	0.182
195.0	30.4	194.8	0.429	4.013	10.262	0.089	0.747	0.189
210.0	30.6	210.0	0.336	4.372	10.237	0.084	0.945	0.176
225.0	30.4	225.0	0.286	4.073	9.924	0.073	1.243	0.161
240.0	30.4	240.0	0.389	6.990	10.358	0.069	2.254	0.331
255.0	30.5	255.3	0.308	8.400	11.794	0.061	1.661	0.313
270.0	30.5	270.4	0.201	5.203	13.142	0.047	1.154	0.852
285.0	30.5	285.3	0.678	4.720	14.664	0.209	1.194	1.430
300.0	30.5	300.1	0.957	3.947	14.620	0.292	0.981	1.509
315.0	30.5	315.1	1.034	2.696	14.440	0.309	0.668	1.459
330.0	30.5	330.1	0.899	1.992	13.707	0.288	0.405	1.316
345.0	30.5	345.0	0.828	1.517	13.192	0.267	0.244	1.185
Wind at 20	0.8 knots	(10.7 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.8: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Ac	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	0.0	-14.0	0.542	1.911	10.663	0.135	0.428	0.326
15.0	-0.1	-6.1	0.579	1.419	10.661	0.136	0.273	0.319
30.0	-0.3	2.2	0.661	1.662	10.683	0.136	0.327	0.314
45.0	-0.3	16.8	0.592	2.122	10.745	0.133	0.589	0.317
60.0	-0.2	36.1	0.516	2.977	10.956	0.125	0.857	0.335
75.0	-0.1	52.3	0.404	3.720	11.488	0.110	0.992	0.357
90.0	-0.0	65.2	0.365	3.877	11.251	0.087	1.024	0.361
105.0	-0.1	82.6	0.203	3.279	11.174	0.032	1.007	0.335
120.0	-0.3	97.2	0.286	3.987	11.076	0.031	1.037	0.331
135.0	-0.6	105.0	0.324	4.614	11.242	0.055	1.064	0.345
150.0	-0.9	109.1	0.374	4.439	11.331	0.067	1.064	0.352
165.0	-0.5	40.2	0.514	4.001	11.402	0.116	0.698	0.328
180.0	-0.3	35.7	0.536	2.853	10.933	0.130	0.556	0.325
195.0	0.1	362.1	0.504	2.962	10.845	0.126	0.673	0.338
210.0	0.2	354.0	0.525	3.174	10.990	0.113	0.843	0.354
225.0	0.3	264.4	0.349	3.778	11.570	0.037	1.021	0.378
240.0	0.3	272.2	0.286	3.514	11.419	0.029	1.003	0.378
255.0	0.3	283.8	0.264	3.856	11.502	0.056	0.996	0.400
270.0	0.3	294.1	0.349	3.666	11.373	0.086	0.996	0.414
285.0	0.2	302.8	0.406	3.561	11.622	0.105	0.976	0.410
300.0	0.1	311.1	0.420	3.541	11.504	0.116	0.927	0.394
315.0	0.1	319.6	0.497	3.213	11.202	0.124	0.854	0.375
330.0	0.1	328.7	0.484	2.945	10.986	0.128	0.741	0.353
345.0	0.0	337.9	0.529	2.447	10.824	0.132	0.590	0.337
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.9: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolut	æ	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	4.8	-2.5	0.679	1.131	10.985	0.158	0.182	0.385
15.0	4.8	11.8	0.621	1.528	10.879	0.157	0.346	0.383
30.0	4.7	26.3	0.653	2.312	10.991	0.152	0.596	0.391
45.0	4.7	41.0	0.529	2.895	11.052	0.141	0.795	0.405
60.0	4.7	55.3	0.448	3.281	11.526	0.123	0.918	0.419
75.0	4.7	69.9	0.334	3.745	11.400	0.080	0.955	0.404
90.0	4.6	83.5	0.116	3.330	11.294	0.024	0.947	0.365
105.0	4.4	95.7	0.163	3.740	11.205	0.020	0.970	0.343
120.0	4.3	104.0	0.256	3.312	11.272	0.041	0.979	0.336
135.0	4.2	112.8	0.304	3.611	11.062	0.057	0.971	0.322
150.0	4.2	128.2	0.358	3.314	10.856	0.074	0.855	0.285
165.0	4.6	161.0	0.329	1.723	10.770	0.087	0.376	0.213
180.0	4.8	178.1	0.320	1.289	10.752	0.088	0.280	0.199
195.0	4.9	194.6	0.342	1.689	10.801	0.086	0.452	0.204
210.0	4.9	211.3	0.372	2.474	10.819	0.082	0.674	0.228
225.0	4.7	228.6	0.406	3.442	11.316	0.076	0.865	0.275
240.0	4.7	245.3	0.264	3.609	11.045	0.062	0.972	0.328
255.0	4.8	258.9	0.180	3.458	11.184	0.036	0.982	0.355
270.0	4.9	272.8	0.104	3.309	11.198	0.013	0.942	0.382
285.0	5.0	287.0	0.303	3.936	11.705	0.071	0.927	0.432
300.0	5.0	301.0	0.408	3.132	11.347	0.118	0.901	0.446
315.0	5.0	314.8	0.549	2.889	11.295	0.140	0.770	0.424
330.0	4.9	329.0	0.568	2.510	11.032	0.150	0.597	0.404
345.0	4.9	343.3	0.661	1.817	10.988	0.156	0.383	0.391
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.10: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	10.0	-0.6	0.817	0.914	11.330	0.180	0.089	0.448
15.0	10.0	14.4	0.746	1.509	11.031	0.177	0.274	0.444
30.0	10.0	29.4	0.707	2.166	11.114	0.169	0.496	0.444
45.0	10.1	44.4	0.570	2.550	11.384	0.156	0.679	0.449
60.0	10.1	59.3	0.444	3.083	11.587	0.128	0.813	0.462
75.0	10.1	74.0	0.300	3.257	11.952	0.070	0.808	0.428
90.0	10.1	88.8	0.061	3.323	11.329	0.014	0.818	0.366
105.0	10.1	103.7	0.156	3.895	11.317	0.032	0.866	0.321
120.0	10.0	118.3	0.205	4.107	11.007	0.048	0.937	0.275
135.0	10.0	133.5	0.211	3.287	10.784	0.054	0.882	0.226
150.0	10.0	148.8	0.210	2.965	10.442	0.059	0.803	0.191
165.0	10.0	164.0	0.326	2.910	10.545	0.062	0.616	0.162
180.0	10.1	179.3	0.272	2.228	10.306	0.061	0.374	0.138
195.0	10.1	194.6	0.248	2.004	10.357	0.062	0.444	0.131
210.0	10.1	210.2	0.268	2.375	10.405	0.060	0.755	0.152
225.0	10.0	225.8	0.244	2.798	10.720	0.057	0.960	0.190
240.0	10.0	241.2	0.251	3.338	11.077	0.051	1.044	0.253
255.0	10.1	255.9	0.175	3.806	11.254	0.036	0.984	0.310
270.0	10.2	270.7	0.060	3.378	11.284	0.016	0.912	0.376
285.0	10.2	285.3	0.257	3.798	11.552	0.067	0.873	0.450
300.0	10.1	299.9	0.453	3.419	11.764	0.127	0.835	0.480
315.0	10.1	314.6	0.565	2.743	11.322	0.156	0.670	0.460
330.0	10.1	329.5	0.682	2.175	11.217	0.169	0.470	0.448
345.0	10.1	344.4	0.658	1.292	11.246	0.176	0.257	0.444
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.11: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual	Absolute Standar				Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.2	-0.3	0.844	0.916	11.232	0.200	0.083	0.491
15.0	15.2	14.8	0.784	1.419	11.246	0.196	0.254	0.486
30.0	15.2	29.9	0.725	2.029	11.404	0.187	0.461	0.488
45.0	15.2	44.9	0.616	2.583	11.465	0.171	0.640	0.502
60.0	15.2	59.8	0.475	3.036	11.629	0.139	0.791	0.517
75.0	15.3	74.6	0.255	2.862	11.644	0.072	0.746	0.457
90.0	15.3	89.5	0.079	3.483	11.390	0.021	0.754	0.368
105.0	15.3	104.4	0.156	3.614	11.276	0.031	0.826	0.304
120.0	15.2	119.2	0.186	4.221	10.846	0.039	1.115	0.268
135.0	15.2	134.5	0.183	3.751	10.448	0.040	1.091	0.215
150.0	15.3	149.8	0.168	2.577	10.169	0.043	0.669	0.149
165.0	15.2	164.7	0.200	1.798	10.195	0.044	0.343	0.120
180.0	15.2	179.7	0.189	1.570	10.162	0.052	0.224	0.107
195.0	15.2	194.8	0.189	2.677	10.042	0.046	0.389	0.088
210.0	15.2	209.9	0.159	3.130	10.044	0.039	0.690	0.088
225.0	15.2	225.3	0.234	3.861	10.476	0.045	1.242	0.147
240.0	15.2	240.6	0.194	3.733	10.899	0.042	1.242	0.205
255.0	15.3	255.4	0.190	3.599	11.121	0.035	1.018	0.272
270.0	15.3	270.3	0.087	3.726	11.385	0.023	0.908	0.370
285.0	15.3	285.1	0.239	3.691	11.443	0.069	0.848	0.477
300.0	15.2	299.9	0.483	3.770	11.673	0.137	0.800	0.538
315.0	15.2	314.7	0.560	2.865	11.423	0.171	0.617	0.511
330.0	15.2	329.7	0.681	2.180	11.231	0.187	0.423	0.493
345.0	15.2	344.7	0.832	1.372	11.203	0.196	0.213	0.488
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.12: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.3	-0.1	0.809	1.089	11.499	0.217	0.095	0.564
15.0	20.3	14.9	0.857	1.495	11.632	0.214	0.251	0.565
30.0	20.3	30.0	0.728	2.002	11.535	0.203	0.446	0.572
45.0	20.3	45.0	0.621	2.572	11.712	0.183	0.627	0.589
60.0	20.3	59.9	0.554	2.998	12.119	0.148	0.793	0.598
75.0	20.4	74.8	0.284	3.430	11.838	0.075	0.701	0.484
90.0	20.4	89.7	0.100	3.498	11.390	0.027	0.709	0.365
105.0	20.4	104.7	0.149	3.852	11.126	0.034	0.785	0.283
120.0	20.3	119.6	0.164	5.168	10.542	0.041	1.453	0.275
135.0	20.3	134.9	0.162	3.512	10.138	0.041	1.068	0.173
150.0	20.4	149.9	0.143	2.003	10.033	0.041	0.577	0.109
165.0	20.3	164.8	0.181	1.464	10.091	0.045	0.288	0.078
180.0	20.4	179.9	0.177	2.061	10.004	0.050	0.189	0.073
195.0	20.3	194.8	0.212	3.798	9.988	0.055	0.486	0.073
210.0	20.4	209.9	0.175	4.119	9.937	0.039	0.666	0.073
225.0	20.4	225.0	0.141	4.313	9.962	0.034	0.994	0.089
240.0	20.3	240.3	0.240	5.449	10.608	0.042	1.506	0.173
255.0	20.4	255.2	0.193	3.884	10.962	0.037	1.006	0.237
270.0	20.4	270.1	0.106	3.673	11.277	0.030	0.889	0.363
285.0	20.4	285.0	0.275	3.849	11.930	0.072	0.816	0.512
300.0	20.3	299.9	0.490	3.634	11.903	0.145	0.773	0.618
315.0	20.3	314.8	0.664	2.773	11.827	0.183	0.582	0.602
330.0	20.3	329.8	0.742	2.240	11.580	0.202	0.388	0.579
345.0	20.3	344.8	0.861	1.521	11.575	0.213	0.191	0.568
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.13: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.4	-0.1	0.909	1.280	12.071	0.232	0.120	0.700
15.0	25.4	15.0	0.828	1.537	12.274	0.229	0.253	0.699
30.0	25.4	30.0	0.912	2.369	12.233	0.217	0.432	0.705
45.0	25.4	45.0	0.715	2.691	12.386	0.195	0.614	0.713
60.0	25.4	60.0	0.536	3.411	12.421	0.156	0.790	0.701
75.0	25.4	74.9	0.265	2.884	11.811	0.079	0.674	0.528
90.0	25.4	89.8	0.119	3.440	11.373	0.033	0.684	0.359
105.0	25.4	104.8	0.168	3.651	10.837	0.041	0.781	0.260
120.0	25.4	119.9	0.185	4.791	10.133	0.050	1.694	0.262
135.0	25.4	134.9	0.183	4.159	9.975	0.050	0.998	0.135
150.0	25.4	149.9	0.165	2.239	9.945	0.055	0.652	0.087
165.0	25.5	164.9	0.215	1.852	9.966	0.067	0.361	0.071
180.0	25.5	179.9	0.250	2.128	10.024	0.069	0.195	0.060
195.0	25.5	195.0	0.186	2.294	9.946	0.061	0.358	0.057
210.0	25.5	210.0	0.152	3.782	9.886	0.045	0.625	0.080
225.0	25.4	225.0	0.133	4.343	9.902	0.043	1.106	0.115
240.0	25.4	240.1	0.174	6.409	9.940	0.043	1.564	0.158
255.0	25.4	255.1	0.207	4.338	10.914	0.042	0.958	0.207
270.0	25.4	270.1	0.126	3.438	11.032	0.036	0.831	0.354
285.0	25.4	285.0	0.267	4.175	11.770	0.075	0.765	0.551
300.0	25.4	299.9	0.511	3.646	12.425	0.151	0.745	0.716
315.0	25.4	314.9	0.707	2.662	12.130	0.192	0.549	0.722
330.0	25.4	329.9	0.842	2.316	12.086	0.215	0.364	0.713
345.0	25.4	344.9	0.987	1.557	12.182	0.228	0.189	0.703
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.14: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 4.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.035	1.457	12.834	0.245	0.152	0.876
15.0	30.5	15.0	0.913	1.741	12.571	0.241	0.259	0.873
30.0	30.5	30.0	0.829	2.369	12.636	0.227	0.421	0.868
45.0	30.5	45.0	0.703	2.880	12.557	0.204	0.592	0.856
60.0	30.5	60.0	0.577	3.354	12.514	0.163	0.783	0.811
75.0	30.5	74.9	0.274	3.172	12.024	0.083	0.641	0.573
90.0	30.5	89.9	0.137	3.315	11.368	0.038	0.677	0.351
105.0	30.5	104.9	0.202	3.450	10.680	0.049	0.850	0.240
120.0	30.4	119.9	0.261	5.982	10.016	0.064	1.778	0.247
135.0	30.5	134.9	0.206	3.361	9.927	0.060	1.004	0.118
150.0	30.6	149.8	0.287	2.694	9.943	0.086	0.666	0.091
165.0	30.7	164.9	0.293	2.055	9.972	0.094	0.365	0.056
180.0	30.6	179.8	0.371	2.129	9.902	0.102	0.280	0.047
195.0	30.7	195.0	0.287	2.973	9.898	0.091	0.460	0.062
210.0	30.6	210.1	0.319	3.689	9.905	0.077	0.700	0.081
225.0	30.5	225.0	0.241	4.768	9.925	0.055	1.032	0.136
240.0	30.5	240.0	0.200	5.624	9.879	0.048	1.457	0.143
255.0	30.5	255.1	0.187	4.055	10.637	0.050	0.899	0.181
270.0	30.5	270.0	0.154	3.325	11.085	0.042	0.761	0.345
285.0	30.5	285.0	0.269	4.290	12.099	0.079	0.709	0.601
300.0	30.5	299.9	0.511	3.970	12.797	0.157	0.718	0.823
315.0	30.5	314.9	0.742	3.113	12.615	0.200	0.531	0.861
330.0	30.5	329.9	0.874	2.394	12.762	0.226	0.356	0.874
345.0	30.5	344.9	0.957	1.674	12.683	0.240	0.209	0.874
Wind at 20	0.8 knots	(10.7 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.15: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 0.0 Knots

Cmd	Act	tual	Absolute Standard			d		
Heading	Me	ean		Maximuı		Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	-0.1	-21.2	1.334	3.824	11.609	0.282	0.673	0.732
15.0	-0.2	-12.9	1.243	2.706	11.534	0.280	0.456	0.703
30.0	-0.5	-0.8	1.206	2.192	11.387	0.275	0.351	0.665
45.0	-0.9	12.3	1.290	3.279	11.322	0.273	0.653	0.645
60.0	-1.1	23.7	1.118	4.372	12.143	0.271	0.962	0.653
75.0	-1.8	34.8	1.534	7.679	13.936	0.265	1.336	0.709
90.0	-2.2	-14.4	1.238	11.559	13.519	0.261	1.630	0.742
105.0	-1.6	-3.1	1.399	11.138	13.387	0.263	1.556	0.734
120.0	-1.2	13.1	1.035	8.960	13.682	0.236	1.489	0.712
135.0	-3.2	107.2	1.914	13.262	13.909	0.221	1.848	0.895
150.0	-4.1	109.6	0.993	9.289	13.887	0.224	1.801	0.896
165.0	-3.7	111.5	2.488	11.036	13.321	0.233	1.760	0.879
180.0	-0.8	153.3	0.864	7.289	12.690	0.217	0.731	0.588
195.0	-0.3	17.5	1.257	6.577	13.184	0.277	0.964	0.763
210.0	-0.3	387.8	1.224	6.074	13.311	0.280	1.101	0.802
225.0	-0.3	393.4	1.147	5.706	12.828	0.282	1.248	0.834
240.0	-0.1	392.3	1.132	7.043	13.895	0.281	1.389	0.881
255.0	0.5	310.5	1.363	7.048	15.064	0.269	1.610	0.970
270.0	-0.1	314.6	1.947	6.861	14.509	0.275	1.583	0.952
285.0	-0.2	305.4	1.359	5.941	13.846	0.283	1.438	0.918
300.0	-0.3	310.6	1.139	7.537	13.807	0.285	1.329	0.877
315.0	-0.2	316.2	1.184	5.498	12.971	0.289	1.238	0.845
330.0	-0.1	323.1	1.297	5.801	12.491	0.288	1.040	0.805
345.0	-0.1	330.8	1.333	5.315	11.890	0.285	0.862	0.770
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.16: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean		Maximui			Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{\mathbf{kts}}$	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.0	-12.7	1.400	3.082	11.710	0.316	0.445	0.814
15.0	3.9	-1.6	1.310	2.423	12.016	0.312	0.354	0.793
30.0	3.9	10.9	1.453	2.365	11.801	0.311	0.403	0.786
45.0	3.8	22.6	1.474	3.183	11.756	0.313	0.609	0.794
60.0	3.8	32.4	1.327	3.766	12.039	0.312	0.856	0.814
75.0	3.7	39.8	1.383	5.467	12.793	0.309	1.045	0.834
90.0	3.6	42.9	1.253	7.586	13.647	0.307	1.136	0.847
105.0	3.6	45.4	1.227	10.773	15.374	0.304	1.220	0.866
120.0	3.7	45.3	1.414	12.531	13.280	0.308	1.224	0.881
135.0	3.7	42.8	1.355	5.272	12.535	0.308	1.096	0.867
150.0	3.7	44.0	1.357	5.590	12.809	0.309	1.068	0.879
165.0	3.8	51.5	1.192	6.387	12.686	0.307	1.136	0.879
180.0	4.7	178.8	0.622	2.308	11.493	0.154	0.466	0.313
195.0	4.6	196.7	0.614	2.448	11.581	0.157	0.629	0.360
210.0	4.1	373.7	1.355	5.837	13.990	0.315	0.923	0.858
225.0	4.4	300.1	1.134	7.665	14.883	0.290	1.429	0.969
240.0	4.5	289.0	1.192	7.710	15.144	0.262	1.639	1.086
255.0	4.4	290.4	1.257	8.085	15.414	0.272	1.664	1.109
270.0	4.3	294.0	2.149	7.045	15.453	0.289	1.590	1.082
285.0	4.4	296.8	1.396	7.618	16.085	0.296	1.542	1.059
300.0	4.6	302.9	1.457	5.387	14.079	0.312	1.405	1.015
315.0	4.6	314.4	1.273	5.110	12.473	0.323	1.138	0.943
330.0	4.5	326.6	1.405	5.667	12.619	0.325	0.850	0.892
345.0	4.3	338.2	1.373	3.357	12.146	0.320	0.602	0.848
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.17: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximui	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	9.7	-1.2	1.472	1.925	12.059	0.349	0.264	0.935
15.0	9.7	13.7	1.499	2.377	11.957	0.350	0.359	0.936
30.0	9.7	28.7	1.353	2.883	12.359	0.354	0.625	0.958
45.0	9.7	43.7	1.451	4.080	12.847	0.350	0.960	0.987
60.0	9.7	58.1	1.150	5.993	13.453	0.325	1.295	1.040
75.0	9.7	71.5	1.237	8.613	15.511	0.271	1.515	1.148
90.0	8.7	77.7	1.294	9.382	15.225	0.214	1.591	1.137
105.0	8.6	81.7	0.869	10.060	14.939	0.169	1.627	1.087
120.0	8.5	85.6	0.894	9.949	15.098	0.140	1.675	1.033
135.0	8.5	100.0	0.893	10.177	14.522	0.128	1.677	0.848
150.0	9.3	145.5	0.519	4.163	10.947	0.118	1.420	0.281
165.0	9.7	162.2	0.348	4.250	10.613	0.110	1.285	0.228
180.0	9.9	178.2	0.371	4.200	10.393	0.106	0.978	0.173
195.0	10.0	194.6	0.378	3.296	10.748	0.110	0.864	0.170
210.0	9.8	211.6	0.448	3.828	10.965	0.118	1.284	0.257
225.0	8.9	239.9	0.979	7.926	13.280	0.140	1.630	0.572
240.0	8.5	268.0	1.439	12.949	16.005	0.145	1.824	0.995
255.0	8.5	273.6	1.405	9.845	15.489	0.137	1.719	1.067
270.0	9.0	279.6	1.839	8.651	14.644	0.184	1.661	1.209
285.0	9.9	287.8	1.442	6.689	15.815	0.274	1.610	1.261
300.0	9.9	300.3	1.133	5.204	13.322	0.329	1.374	1.117
315.0	9.8	314.3	1.516	4.774	12.974	0.356	1.062	1.025
330.0	9.7	329.0	1.559	3.763	12.458	0.359	0.721	0.981
345.0	9.7	343.9	1.463	2.605	12.018	0.354	0.429	0.947
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases

Table V.18: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean		Maximui			Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{ ext{kts}}$	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	15.0	-0.5	1.443	1.837	12.415	0.382	0.242	1.010
15.0	15.0	14.6	1.399	2.078	12.633	0.384	0.359	1.020
30.0	15.0	29.6	1.415	2.791	12.581	0.387	0.614	1.061
45.0	15.0	44.7	1.373	3.840	12.762	0.378	0.933	1.100
60.0	15.0	59.4	1.394	6.177	14.205	0.345	1.253	1.192
75.0	15.1	73.6	1.189	7.474	15.826	0.267	1.408	1.293
90.0	14.8	87.3	0.940	9.618	16.330	0.093	1.411	1.038
105.0	14.6	101.8	0.621	10.998	14.032	0.109	1.690	0.747
120.0	14.5	115.8	0.681	11.115	14.138	0.092	1.861	0.575
135.0	14.9	133.2	0.403	5.594	11.347	0.078	1.862	0.381
150.0	15.0	149.1	0.373	4.403	10.696	0.090	1.335	0.268
165.0	15.0	164.2	0.385	3.606	10.545	0.089	0.755	0.169
180.0	15.1	179.2	0.483	3.415	10.428	0.095	0.578	0.136
195.0	15.0	194.5	0.303	4.735	10.139	0.099	0.870	0.102
210.0	15.0	209.7	0.294	4.626	10.229	0.082	1.285	0.119
225.0	15.0	226.9	0.611	7.473	12.798	0.085	2.007	0.279
240.0	14.4	244.9	0.854	10.070	13.066	0.111	2.001	0.550
255.0	14.4	259.4	1.365	11.895	17.034	0.126	1.890	0.785
270.0	14.7	273.0	0.631	9.459	15.156	0.086	1.701	1.124
285.0	15.2	286.3	1.119	6.936	15.433	0.266	1.613	1.393
300.0	15.1	300.0	1.279	5.974	14.161	0.344	1.354	1.255
315.0	15.0	314.5	1.443	4.120	12.901	0.379	0.992	1.131
330.0	15.0	329.5	1.458	3.333	12.768	0.390	0.663	1.076
345.0	15.0	344.5	1.508	2.324	12.492	0.385	0.380	1.029
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the stark	oard bear	m in all	cases.	

Table V.19: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	е	5	Standar	d
Heading	Me	ean		Maximuı	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	20.2	-0.2	1.386	1.885	13.346	0.410	0.262	1.197
15.0	20.2	14.8	1.462	2.484	13.151	0.412	0.364	1.203
30.0	20.2	29.8	1.505	3.236	13.294	0.415	0.612	1.251
45.0	20.2	44.9	1.489	4.814	13.436	0.403	0.911	1.296
60.0	20.2	59.7	1.216	6.043	14.231	0.361	1.212	1.379
75.0	20.3	74.2	1.110	7.243	15.726	0.268	1.334	1.416
90.0	20.1	88.5	0.789	9.370	15.862	0.077	1.357	1.018
105.0	20.1	103.6	0.567	10.848	13.615	0.093	1.722	0.662
120.0	20.1	118.8	0.298	7.050	11.531	0.066	2.264	0.525
135.0	20.1	134.5	0.310	6.089	10.818	0.081	1.979	0.335
150.0	20.2	149.6	0.690	4.073	10.722	0.110	1.205	0.191
165.0	20.3	164.2	0.669	3.774	10.248	0.115	0.691	0.147
180.0	20.6	179.6	0.705	3.829	10.131	0.105	0.516	0.107
195.0	20.4	194.5	0.746	4.693	9.967	0.101	0.929	0.179
210.0	20.2	210.0	0.612	6.607	9.943	0.095	1.449	0.228
225.0	20.1	225.4	0.356	6.117	10.970	0.071	2.032	0.267
240.0	20.1	241.3	0.378	7.133	11.996	0.076	2.471	0.366
255.0	19.9	257.2	0.794	16.585	15.088	0.106	2.014	0.666
270.0	20.0	271.7	1.237	10.125	15.228	0.083	1.771	1.115
285.0	20.3	285.8	1.216	6.961	15.857	0.261	1.650	1.508
300.0	20.3	300.0	1.225	5.484	14.166	0.356	1.348	1.438
315.0	20.2	314.8	1.414	3.571	13.399	0.400	0.972	1.331
330.0	20.2	329.8	1.494	2.886	13.588	0.414	0.638	1.273
345.0	20.2	344.8	1.485	2.008	13.447	0.413	0.378	1.214
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	the start	oard bear	m in all	cases.	

Wind at 28.0 knots (14.4 m/s) is from the starboard beam in all cases.

Table V.20: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximui	n	I	Deviation	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	25.4	-0.1	1.483	2.270	14.249	0.429	0.309	1.482
15.0	25.4	14.9	1.497	2.711	14.229	0.431	0.381	1.491
30.0	25.4	29.9	1.445	3.889	14.118	0.434	0.607	1.530
45.0	25.3	44.9	1.502	5.204	14.265	0.421	0.895	1.552
60.0	25.3	59.8	1.242	5.395	14.445	0.373	1.186	1.585
75.0	25.3	74.4	1.220	8.805	16.756	0.272	1.302	1.550
90.0	25.2	89.0	1.150	9.637	14.823	0.077	1.345	1.011
105.0	25.2	104.3	0.575	12.228	12.965	0.089	2.136	0.633
120.0	25.1	119.3	0.421	7.906	12.433	0.087	2.741	0.546
135.0	25.1	134.7	0.773	5.653	10.527	0.106	1.912	0.276
150.0	25.3	149.6	0.923	4.118	10.292	0.120	1.035	0.157
165.0	25.7	164.6	0.783	3.567	10.093	0.115	0.550	0.121
180.0	25.5	179.7	0.821	4.146	10.136	0.119	0.653	0.162
195.0	25.7	195.1	0.445	4.053	10.043	0.108	0.694	0.133
210.0	25.4	210.2	0.779	4.790	9.983	0.112	1.133	0.181
225.0	25.0	225.8	0.779	7.805	11.549	0.114	2.228	0.378
240.0	25.2	240.7	0.397	7.880	10.966	0.079	3.049	0.433
255.0	25.2	256.0	0.472	10.857	13.204	0.096	2.165	0.545
270.0	25.2	271.1	0.892	10.971	14.453	0.079	1.820	1.092
285.0	25.4	285.6	1.212	8.700	16.642	0.259	1.731	1.625
300.0	25.4	300.1	1.194	4.917	14.832	0.362	1.377	1.635
315.0	25.4	314.9	1.357	3.724	14.588	0.413	0.995	1.589
330.0	25.4	329.9	1.502	2.760	14.400	0.430	0.665	1.551
345.0	25.4	344.9	1.348	2.257	14.412	0.429	0.418	1.498
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.21: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 9.3 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Mo	ean		Maximuı	n	Ι	Deviatio	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.309	2.520	15.145	0.436	0.378	1.805
15.0	30.5	14.9	1.414	3.147	15.253	0.440	0.418	1.817
30.0	30.5	29.9	1.392	4.966	15.509	0.446	0.621	1.849
45.0	30.5	44.9	1.401	6.162	15.365	0.435	0.896	1.844
60.0	30.4	59.8	1.413	6.346	15.455	0.385	1.173	1.809
75.0	30.4	74.5	1.023	8.708	16.269	0.271	1.277	1.657
90.0	30.4	89.3	0.930	10.451	14.962	0.076	1.395	1.004
105.0	30.3	104.5	0.490	8.908	12.177	0.090	2.379	0.583
120.0	30.1	119.4	0.515	7.632	11.290	0.114	2.756	0.485
135.0	30.2	134.6	0.576	5.690	10.050	0.125	1.761	0.259
150.0	31.0	149.1	0.658	5.409	10.251	0.133	0.991	0.215
165.0	30.1	164.8	1.108	4.268	10.465	0.148	0.763	0.216
180.0	30.6	179.4	1.140	4.632	10.474	0.142	0.906	0.269
195.0	30.2	194.5	1.182	5.351	10.279	0.154	1.056	0.275
210.0	31.1	210.4	1.098	6.081	10.395	0.133	1.257	0.210
225.0	30.4	225.3	0.459	6.629	10.009	0.120	1.672	0.263
240.0	29.9	241.2	0.678	11.966	14.044	0.134	3.303	0.596
255.0	30.3	255.5	0.408	10.711	13.145	0.097	2.568	0.527
270.0	30.4	270.7	0.717	10.633	14.404	0.080	1.792	1.070
285.0	30.5	285.4	1.070	7.878	16.679	0.257	1.841	1.737
300.0	30.5	300.1	1.243	5.422	15.372	0.369	1.461	1.850
315.0	30.5	315.1	1.429	4.094	15.537	0.421	1.079	1.872
330.0	30.5	330.1	1.430	3.107	15.692	0.440	0.723	1.873
345.0	30.5	345.0	1.357	2.401	15.194	0.441	0.488	1.823
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the starb	oard bea	m in all	cases.	

Table V.22: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	-0.1	-18.5	0.869	3.698	11.157	0.201	0.730	0.502	
15.0	-0.5	-12.0	1.083	3.271	11.270	0.202	0.645	0.491	
30.0	-0.8	-3.6	1.001	3.225	11.152	0.201	0.682	0.481	
45.0	-1.2	-58.6	0.766	5.497	12.093	0.148	1.381	0.517	
60.0	-0.3	32.5	0.699	4.404	11.739	0.190	1.095	0.506	
75.0	-0.1	49.5	0.663	4.924	12.445	0.170	1.295	0.535	
90.0	0.2	65.1	0.550	4.735	12.244	0.130	1.356	0.542	
105.0	-0.0	88.9	0.293	5.595	12.052	0.034	1.374	0.503	
120.0	-0.7	99.4	0.404	5.477	11.900	0.060	1.423	0.515	
135.0	-1.3	106.4	0.473	5.921	12.283	0.089	1.454	0.534	
150.0	-1.8	109.3	0.570	7.110	12.256	0.105	1.448	0.542	
165.0	-1.4	56.9	0.840	4.618	11.805	0.154	1.178	0.500	
180.0	-0.9	37.8	0.987	4.357	11.748	0.190	0.893	0.496	
195.0	-0.1	374.4	0.733	4.083	11.512	0.192	0.948	0.516	
210.0	0.1	378.5	0.877	4.661	11.573	0.180	1.093	0.536	
225.0	0.3	365.6	0.735	4.801	11.781	0.163	1.281	0.560	
240.0	0.6	277.2	0.431	5.721	11.847	0.062	1.367	0.564	
255.0	0.5	285.1	0.412	5.589	12.375	0.093	1.353	0.585	
270.0	0.5	293.6	0.515	5.662	12.615	0.128	1.332	0.605	
285.0	0.4	300.7	0.695	5.235	12.593	0.153	1.289	0.605	
300.0	0.3	309.0	0.767	5.028	12.346	0.172	1.252	0.592	
315.0	0.2	316.0	0.766	4.825	12.302	0.184	1.157	0.572	
330.0	0.1	324.5	0.799	4.934	11.707	0.191	1.063	0.546	
345.0	0.0	332.4	0.842	3.956	11.571	0.197	0.893	0.523	
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.23: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual	ual Absolu			S	Standar	d
Heading	Me	ean	l I	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	4.2	-12.0	1.033	3.573	11.352	0.236	0.628	0.571
15.0	4.0	-7.0	0.962	3.432	11.302	0.236	0.596	0.564
30.0	3.9	0.5	1.015	2.724	11.281	0.236	0.610	0.561
45.0	3.9	11.1	1.022	2.975	11.454	0.231	0.709	0.560
60.0	4.0	29.4	0.955	4.372	11.808	0.219	1.029	0.585
75.0	4.1	49.3	0.756	5.148	12.460	0.193	1.253	0.612
90.0	4.2	61.7	0.642	5.309	12.372	0.156	1.355	0.617
105.0	4.3	78.3	0.383	4.981	12.526	0.076	1.332	0.569
120.0	4.1	92.0	0.373	5.898	12.040	0.035	1.331	0.528
135.0	4.0	100.0	0.479	5.985	12.693	0.052	1.362	0.516
150.0	3.9	53.6	0.852	4.275	12.090	0.186	1.244	0.587
165.0	4.0	54.1	0.826	4.315	12.332	0.194	1.195	0.592
180.0	4.0	63.4	0.714	4.948	12.491	0.192	1.221	0.590
195.0	4.7	195.6	0.563	3.196	11.535	0.129	0.709	0.307
210.0	4.4	219.3	0.631	4.137	11.595	0.122	1.034	0.376
225.0	4.3	251.8	0.520	6.938	11.915	0.083	1.368	0.512
240.0	4.3	260.6	0.428	5.922	11.859	0.059	1.384	0.534
255.0	4.4	270.2	0.298	5.211	11.924	0.037	1.374	0.558
270.0	4.6	280.1	0.368	6.918	12.499	0.066	1.351	0.601
285.0	4.8	290.4	0.634	5.937	12.754	0.126	1.332	0.645
300.0	4.9	302.4	0.681	4.521	12.178	0.181	1.251	0.654
315.0	4.8	314.6	0.892	4.228	11.983	0.209	1.086	0.628
330.0	4.8	327.8	0.815	4.364	11.608	0.224	0.895	0.601
345.0	4.5	339.9	0.982	3.274	11.502	0.233	0.704	0.584
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

420

Table V.24: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	9.8	-1.3	1.135	1.994	11.835	0.267	0.242	0.658
15.0	9.8	13.7	1.339	2.207	11.961	0.264	0.447	0.662
30.0	9.8	28.7	1.213	3.107	11.941	0.252	0.737	0.664
45.0	9.9	43.8	0.875	3.650	11.814	0.231	0.976	0.673
60.0	9.9	58.5	0.644	4.802	12.228	0.191	1.159	0.688
75.0	10.0	73.1	0.557	4.844	13.374	0.112	1.153	0.648
90.0	9.9	87.8	0.136	4.942	12.338	0.026	1.152	0.563
105.0	9.9	102.5	0.247	5.690	12.189	0.047	1.202	0.507
120.0	9.5	116.3	0.385	5.734	12.052	0.071	1.234	0.452
135.0	9.5	131.2	0.473	4.987	12.041	0.080	1.125	0.373
150.0	9.6	147.0	0.410	4.202	10.981	0.088	1.043	0.300
165.0	9.7	162.7	0.503	3.488	10.974	0.092	0.935	0.251
180.0	9.8	178.5	0.508	3.410	11.000	0.095	0.744	0.209
195.0	9.9	194.5	0.548	3.107	11.236	0.094	0.698	0.188
210.0	9.9	210.9	0.433	3.330	10.938	0.092	1.048	0.230
225.0	9.7	227.5	0.501	4.304	11.579	0.087	1.308	0.305
240.0	9.6	243.5	0.429	5.101	12.044	0.079	1.452	0.405
255.0	9.8	257.7	0.357	5.900	11.974	0.056	1.438	0.478
270.0	10.0	272.0	0.163	5.899	12.320	0.028	1.374	0.569
285.0	10.1	286.1	0.504	5.886	13.041	0.105	1.302	0.668
300.0	10.1	300.2	0.731	5.038	13.009	0.190	1.209	0.708
315.0	10.0	314.4	0.814	4.228	11.858	0.231	0.980	0.679
330.0	9.9	329.0	0.980	3.129	11.792	0.251	0.711	0.663
345.0	9.9	343.8	1.084	2.646	11.612	0.263	0.413	0.660
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	_

Table V.25: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$
0.0	15.0	-0.5	1.219	1.553	11.782	0.296	0.194	0.734
15.0	15.0	14.6	1.141	2.189	11.788	0.292	0.411	0.728
30.0	15.0	29.7	1.132	2.820	12.192	0.277	0.691	0.730
45.0	15.1	44.7	0.904	3.673	12.216	0.251	0.927	0.744
60.0	15.1	59.5	0.712	4.543	12.768	0.205	1.125	0.763
75.0	15.2	74.2	0.462	4.460	12.798	0.111	1.066	0.684
90.0	15.2	89.0	0.125	4.849	12.333	0.033	1.060	0.566
105.0	15.2	104.0	0.314	5.680	12.345	0.048	1.151	0.480
120.0	15.0	118.3	0.301	5.973	11.679	0.062	1.420	0.444
135.0	15.0	133.7	0.328	4.756	11.190	0.068	1.499	0.370
150.0	15.3	149.5	0.267	3.212	10.548	0.064	0.917	0.240
165.0	15.2	164.4	0.345	2.442	10.450	0.066	0.527	0.193
180.0	15.2	179.3	0.327	2.865	10.229	0.078	0.467	0.170
195.0	15.1	194.5	0.346	4.022	10.078	0.066	0.618	0.131
210.0	15.1	209.9	0.453	4.483	10.808	0.070	1.117	0.134
225.0	15.0	225.9	0.446	4.641	11.536	0.070	1.609	0.226
240.0	15.0	241.5	0.354	5.592	11.744	0.067	1.716	0.325
255.0	15.1	256.2	0.344	5.442	12.196	0.057	1.530	0.413
270.0	15.2	270.9	0.162	5.650	12.098	0.037	1.413	0.557
285.0	15.2	285.4	0.416	5.824	12.557	0.105	1.313	0.706
300.0	15.2	299.9	0.695	5.328	12.513	0.202	1.177	0.792
315.0	15.1	314.5	0.889	3.818	12.288	0.250	0.896	0.755
330.0	15.0	329.4	1.057	2.852	12.026	0.276	0.622	0.732
345.0	15.0	344.4	1.268	2.138	11.939	0.291	0.344	0.727
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.26: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.2	-0.2	1.270	1.820	12.275	0.319	0.217	0.848
15.0	20.2	14.9	1.265	2.299	12.271	0.314	0.416	0.844
30.0	20.2	29.9	1.176	2.803	12.435	0.298	0.677	0.848
45.0	20.2	45.0	0.999	3.735	12.431	0.269	0.916	0.865
60.0	20.3	59.8	0.747	4.827	13.472	0.217	1.118	0.872
75.0	20.3	74.6	0.479	4.376	13.167	0.116	1.024	0.734
90.0	20.3	89.5	0.161	4.666	12.428	0.042	1.009	0.562
105.0	20.3	104.5	0.326	5.589	11.867	0.055	1.143	0.450
120.0	20.2	119.3	0.380	6.504	11.899	0.065	1.715	0.435
135.0	20.2	134.7	0.344	4.914	11.003	0.069	1.668	0.313
150.0	20.3	149.7	0.255	2.911	10.282	0.063	0.747	0.167
165.0	20.2	164.6	0.235	2.523	10.244	0.071	0.470	0.140
180.0	20.4	179.8	0.361	3.597	10.097	0.078	0.405	0.121
195.0	20.3	194.9	0.387	5.216	10.073	0.087	0.851	0.142
210.0	20.3	210.0	0.290	6.085	9.971	0.067	1.117	0.150
225.0	20.3	225.0	0.384	6.137	10.469	0.055	1.412	0.180
240.0	20.2	240.7	0.472	6.825	11.585	0.070	2.004	0.281
255.0	20.3	255.6	0.333	6.824	11.832	0.060	1.559	0.356
270.0	20.3	270.4	0.211	5.806	12.041	0.047	1.403	0.541
285.0	20.3	285.2	0.415	7.057	12.629	0.108	1.301	0.753
300.0	20.3	299.9	0.717	5.246	12.720	0.210	1.148	0.901
315.0	20.2	314.6	0.904	4.108	12.608	0.266	0.860	0.880
330.0	20.2	329.6	1.177	3.022	12.386	0.297	0.567	0.855
345.0	20.2	344.7	1.316	2.228	12.517	0.314	0.319	0.844
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.27: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 25.0 Knots

Cmd	Act	tual	Absolute			S	Standar	d
Heading	Mo	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	25.3	-0.1	1.408	2.170	13.005	0.339	0.270	1.030
15.0	25.3	15.0	1.401	2.507	13.297	0.334	0.430	1.027
30.0	25.3	30.0	1.369	3.321	12.963	0.317	0.668	1.029
45.0	25.3	45.0	1.202	3.956	13.202	0.285	0.900	1.034
60.0	25.4	59.9	0.802	5.185	13.930	0.230	1.123	1.013
75.0	25.4	74.8	0.430	4.523	13.318	0.120	0.994	0.780
90.0	25.4	89.7	0.198	4.625	12.436	0.051	1.001	0.555
105.0	25.4	104.7	0.268	5.685	11.611	0.064	1.170	0.414
120.0	25.3	119.8	0.323	6.468	10.843	0.079	2.225	0.417
135.0	25.3	134.8	0.295	5.302	10.395	0.086	1.561	0.240
150.0	25.4	149.7	0.275	3.167	10.007	0.084	0.944	0.147
165.0	25.6	164.7	0.356	2.683	10.049	0.098	0.534	0.122
180.0	25.6	179.8	0.394	3.385	10.155	0.106	0.407	0.114
195.0	25.6	195.0	0.359	3.741	10.052	0.095	0.568	0.113
210.0	25.4	210.0	0.290	4.431	9.954	0.069	0.923	0.158
225.0	25.4	225.0	0.208	5.644	9.939	0.057	1.331	0.210
240.0	25.4	240.2	0.260	7.646	9.945	0.066	2.067	0.261
255.0	25.4	255.3	0.363	7.842	11.671	0.067	1.550	0.310
270.0	25.4	270.2	0.234	5.834	12.188	0.056	1.364	0.526
285.0	25.4	285.1	0.402	6.859	12.862	0.111	1.275	0.807
300.0	25.4	299.9	0.861	5.209	14.049	0.220	1.126	1.030
315.0	25.4	314.8	1.057	3.873	13.188	0.279	0.821	1.044
330.0	25.3	329.8	1.295	3.281	12.948	0.313	0.557	1.037
345.0	25.3	344.8	1.393	2.505	13.338	0.334	0.333	1.031
Wind at 28	8.0 knots	(14.4 m/s	s) is fron	n the sta	rboard be	am in al	l cases.	

Table V.28: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 6.0 m and Tp = 13.6 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	te	S	Standar	d
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	30.5	-0.0	1.561	2.500	14.574	0.356	0.333	1.264
15.0	30.5	15.0	1.540	2.939	13.627	0.349	0.454	1.260
30.0	30.4	30.1	1.374	3.381	13.875	0.333	0.662	1.243
45.0	30.4	45.1	1.196	4.195	14.005	0.296	0.907	1.219
60.0	30.4	60.0	0.846	4.901	14.165	0.238	1.131	1.156
75.0	30.5	74.9	0.441	4.645	13.598	0.127	0.991	0.858
90.0	30.5	89.8	0.233	4.728	12.257	0.059	1.028	0.546
105.0	30.5	104.8	0.330	5.532	11.476	0.077	1.277	0.381
120.0	30.3	119.9	0.496	7.090	10.298	0.099	2.353	0.378
135.0	30.4	134.8	0.407	5.265	9.999	0.107	1.576	0.216
150.0	30.7	149.7	0.424	3.376	10.026	0.127	0.973	0.160
165.0	31.0	164.7	0.539	3.605	10.036	0.143	0.589	0.116
180.0	30.6	179.7	0.633	4.003	9.958	0.158	0.587	0.123
195.0	31.0	195.0	0.484	4.036	10.042	0.131	0.704	0.119
210.0	30.7	210.2	0.535	4.983	9.983	0.117	1.049	0.173
225.0	30.4	225.2	0.429	5.945	9.995	0.100	1.588	0.286
240.0	30.4	240.2	0.469	8.301	9.904	0.086	2.230	0.360
255.0	30.5	255.2	0.344	8.733	11.781	0.077	1.500	0.286
270.0	30.5	270.1	0.267	5.671	12.016	0.065	1.273	0.515
285.0	30.5	285.1	0.469	7.614	13.276	0.115	1.232	0.868
300.0	30.5	299.9	0.760	5.897	14.126	0.227	1.098	1.174
315.0	30.5	314.9	1.145	4.574	13.832	0.288	0.824	1.230
330.0	30.5	329.9	1.296	3.555	14.038	0.328	0.574	1.253
345.0	30.4	344.9	1.400	2.649	13.869	0.347	0.405	1.258
Wind at 28	3.0 knots	(14.4 m/s	s) is fron	n the star	rboard be	am in al	l cases.	

Table V.29: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Me	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$
0.0	-0.9	-27.2	2.245	12.384	15.125	0.379	1.488	0.995
15.0	-1.4	-21.1	1.713	8.493	13.106	0.369	1.431	0.952
30.0	-3.4	33.0	1.913	13.623	15.580	0.320	2.253	1.101
45.0	-4.5	-99.2	1.864	12.546	15.578	0.305	2.441	1.169
60.0	-5.1	-111.1	2.177	14.641	15.157	0.289	2.610	1.271
75.0	-0.6	-51.8	1.867	13.921	16.389	0.288	2.558	1.152
90.0	0.2	7.1	1.974	17.942	17.059	0.323	2.557	1.158
105.0	0.4	50.3	2.073	16.972	18.045	0.311	2.442	1.156
120.0	-0.6	93.8	3.650	15.458	15.653	0.235	2.630	1.165
135.0	-3.6	82.6	2.807	12.626	15.633	0.283	2.706	1.185
150.0	-3.7	46.3	2.076	13.385	16.479	0.325	2.397	1.080
165.0	-2.8	41.1	2.299	13.326	15.573	0.341	1.998	1.003
180.0	-1.1	19.7	1.808	14.691	14.500	0.367	1.700	0.996
195.0	-0.6	31.3	1.975	8.254	15.466	0.372	1.743	1.041
210.0	0.3	36.8	1.855	8.949	15.473	0.374	1.839	1.093
225.0	0.9	387.4	1.943	14.672	16.757	0.359	2.073	1.147
240.0	0.8	281.2	2.010	19.421	15.453	0.267	2.568	1.218
255.0	0.6	284.9	2.695	20.265	17.840	0.304	2.533	1.260
270.0	-2.0	276.9	1.811	10.984	15.748	0.502	3.426	1.646
285.0	0.2	292.5	1.958	14.090	16.469	0.344	2.276	1.222
300.0	-0.9	-202.8	4.692	26.275	16.069	0.379	2.334	1.254
315.0	0.3	306.3	2.405	11.077	15.584	0.379	1.969	1.145
330.0	0.4	314.6	1.594	9.991	16.664	0.389	1.789	1.116
345.0	0.0	322.0	1.634	9.378	14.497	0.380	1.593	1.046
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.30: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 5.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Mo	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	3.6	-26.8	1.902	7.340	13.208	0.431	1.372	1.116
15.0	3.5	-19.4	1.839	6.428	12.649	0.431	1.207	1.087
30.0	3.3	-13.2	1.934	5.353	12.301	0.433	1.065	1.072
45.0	3.0	-8.2	1.777	5.706	12.806	0.427	1.137	1.059
60.0	2.9	2.2	2.223	5.388	12.975	0.418	1.242	1.044
75.0	2.7	8.1	1.681	6.911	13.765	0.412	1.475	1.060
90.0	2.9	14.0	1.829	16.938	16.273	0.398	1.706	1.080
105.0	3.1	24.7	1.785	11.602	16.390	0.390	1.702	1.093
120.0	3.1	21.7	1.874	13.007	17.477	0.412	1.489	1.096
135.0	3.1	26.2	1.938	15.433	14.519	0.410	1.457	1.104
150.0	3.2	33.4	1.806	9.606	14.494	0.410	1.519	1.104
165.0	3.3	38.7	1.730	9.144	13.721	0.409	1.584	1.118
180.0	3.9	146.8	1.568	7.894	13.951	0.279	1.529	0.711
195.0	3.7	23.7	1.949	9.119	15.542	0.414	1.673	1.128
210.0	3.8	388.6	3.457	7.502	15.106	0.414	1.816	1.154
225.0	4.2	359.3	1.654	16.391	17.386	0.376	2.149	1.204
240.0	4.4	283.9	1.486	17.657	16.348	0.275	2.466	1.299
255.0	4.1	286.1	3.437	19.079	18.154	0.319	2.492	1.354
270.0	4.0	291.3	2.669	14.411	17.621	0.357	2.318	1.344
285.0	4.2	295.7	3.240	11.420	18.104	0.381	2.179	1.324
300.0	4.4	301.0	3.905	8.616	16.299	0.394	2.018	1.245
315.0	4.3	310.6	1.908	7.877	16.192	0.405	1.853	1.207
330.0	4.1	318.7	1.685	9.914	14.606	0.422	1.655	1.171
345.0	3.8	324.2	1.784	8.536	15.031	0.428	1.583	1.152
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.31: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolute	e	S	Standar	d
Heading	Mo	ean		Maximuı	n	Ι	Deviatio	n
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	8.8	-5.3	2.337	5.306	12.910	0.488	0.759	1.216
15.0	8.4	6.8	2.500	4.148	13.065	0.484	0.865	1.203
30.0	8.0	16.1	2.418	4.585	13.374	0.475	1.072	1.189
45.0	8.0	30.6	1.986	6.764	13.306	0.455	1.379	1.205
60.0	8.4	49.7	1.615	7.525	15.164	0.414	1.821	1.264
75.0	8.3	59.0	2.293	14.581	17.106	0.384	2.000	1.327
90.0	8.6	73.9	2.413	10.811	17.636	0.293	2.160	1.387
105.0	8.5	82.1	2.147	17.919	16.351	0.193	2.336	1.328
120.0	8.3	92.0	1.181	21.429	15.811	0.149	2.428	1.188
135.0	8.1	99.6	1.369	17.051	15.163	0.149	2.468	1.127
150.0	8.1	87.4	1.630	16.469	17.675	0.280	2.340	1.239
165.0	8.1	125.9	2.569	9.741	15.474	0.236	1.950	0.813
180.0	9.1	174.8	0.756	5.479	11.426	0.162	1.366	0.338
195.0	9.6	195.2	0.871	5.461	11.739	0.164	1.289	0.283
210.0	8.5	274.0	1.763	19.766	17.224	0.218	2.661	1.290
225.0	8.3	275.4	2.050	20.864	17.709	0.217	2.676	1.311
240.0	8.3	276.6	2.272	20.993	17.467	0.214	2.687	1.321
255.0	8.4	280.1	1.946	17.128	18.139	0.239	2.550	1.378
270.0	8.5	283.8	2.640	17.214	18.623	0.282	2.483	1.441
285.0	9.4	289.4	3.219	11.874	16.464	0.341	2.346	1.453
300.0	9.7	300.2	1.697	8.578	15.689	0.400	2.016	1.358
315.0	9.5	313.0	1.919	7.973	14.764	0.444	1.674	1.278
330.0	9.3	327.3	2.075	6.853	13.961	0.473	1.262	1.253
345.0	9.1	341.2	2.304	5.985	12.905	0.485	0.980	1.238
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.32: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading		ean	,	Maximu			Deviation	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
deg	$\overline{ ext{kts}}$	\deg	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	14.7	-1.3	2.142	3.435	13.156	0.528	0.583	1.357
15.0	14.7	13.8	2.193	3.919	13.319	0.523	0.747	1.352
30.0	14.6	29.0	1.997	5.377	13.357	0.507	1.105	1.366
45.0	14.7	44.2	1.922	6.867	13.731	0.471	1.484	1.372
60.0	14.8	58.9	1.526	9.949	16.206	0.412	1.856	1.443
75.0	14.6	71.8	3.795	11.039	19.460	0.342	1.990	1.544
90.0	14.4	86.4	1.104	12.075	18.051	0.134	2.187	1.317
105.0	14.4	101.2	1.621	13.714	17.096	0.130	2.298	1.042
120.0	14.2	115.1	1.352	12.938	13.847	0.136	2.305	0.840
135.0	14.4	130.4	1.616	18.861	14.242	0.126	2.190	0.671
150.0	14.8	148.0	0.781	6.098	12.239	0.113	1.473	0.431
165.0	14.7	162.9	0.535	4.700	10.954	0.127	1.062	0.353
180.0	14.6	178.3	0.651	5.224	10.833	0.133	0.925	0.266
195.0	14.8	193.9	0.572	6.052	10.184	0.120	1.115	0.209
210.0	14.8	209.8	0.893	7.724	11.472	0.123	1.627	0.234
225.0	14.1	234.1	1.629	17.490	14.172	0.166	2.698	0.716
240.0	13.4	253.5	0.933	16.855	15.080	0.154	2.861	0.934
255.0	13.3	265.5	2.270	17.920	17.865	0.162	2.845	1.135
270.0	13.9	276.0	1.719	21.856	17.485	0.172	2.734	1.387
285.0	14.8	287.1	2.733	10.445	18.020	0.318	2.440	1.585
300.0	15.0	299.9	1.800	9.025	17.224	0.413	2.003	1.495
315.0	14.8	314.0	1.701	7.841	14.338	0.472	1.540	1.402
330.0	14.7	328.7	2.030	6.216	13.576	0.508	1.117	1.380
345.0	14.7	343.6	2.009	3.799	13.069	0.522	0.750	1.363
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.33: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Me	ean		Maximuı	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$
0.0	20.0	-0.6	2.214	3.261	14.023	0.559	0.572	1.564
15.0	20.0	14.6	2.256	4.734	14.060	0.554	0.747	1.561
30.0	20.0	29.8	2.123	5.782	13.693	0.536	1.091	1.567
45.0	20.0	44.8	1.869	7.287	14.508	0.499	1.443	1.577
60.0	20.0	59.5	1.622	9.544	16.164	0.432	1.780	1.640
75.0	20.1	73.8	1.493	10.078	18.522	0.311	1.937	1.655
90.0	19.8	88.0	1.085	14.050	17.306	0.122	2.133	1.302
105.0	19.9	103.3	1.139	12.570	14.390	0.118	2.299	0.923
120.0	19.9	118.3	0.721	8.957	12.995	0.107	2.467	0.742
135.0	19.7	133.8	0.868	9.157	12.342	0.128	2.358	0.531
150.0	19.6	148.5	1.472	8.908	13.627	0.164	1.760	0.424
165.0	19.9	163.9	0.832	4.590	11.054	0.165	1.047	0.295
180.0	20.3	179.2	0.825	4.984	11.035	0.164	0.795	0.225
195.0	20.0	194.7	0.717	6.187	10.567	0.157	1.214	0.270
210.0	19.8	211.0	0.794	8.236	11.566	0.143	1.966	0.349
225.0	19.6	228.0	0.750	14.092	14.578	0.112	2.562	0.470
240.0	19.5	244.4	0.735	16.572	14.152	0.127	3.047	0.662
255.0	19.2	259.4	1.554	19.817	14.554	0.149	3.018	0.915
270.0	19.4	273.3	1.780	20.650	16.837	0.163	2.889	1.362
285.0	20.1	286.3	1.573	11.412	17.819	0.300	2.525	1.690
300.0	20.1	300.0	1.642	8.192	16.353	0.423	1.987	1.687
315.0	20.1	314.4	1.872	5.729	14.377	0.492	1.469	1.614
330.0	20.1	329.3	1.968	4.390	14.277	0.534	1.048	1.596
345.0	20.0	344.3	2.186	3.287	14.249	0.552	0.719	1.576
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.34: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolute	e	5	Standar	d
Heading	Mo	ean		Maximui	n	I	Deviation	n i
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	\mathbf{m}/\mathbf{s}^2
0.0	25.3	-0.2	1.981	3.855	15.781	0.580	0.648	1.886
15.0	25.3	14.9	2.057	5.368	15.188	0.576	0.810	1.876
30.0	25.2	30.0	1.980	7.205	15.239	0.562	1.109	1.866
45.0	25.2	44.9	1.978	7.044	15.055	0.518	1.418	1.842
60.0	25.2	59.7	1.606	10.122	16.264	0.445	1.738	1.851
75.0	25.2	74.1	1.512	10.274	17.929	0.312	1.900	1.775
90.0	25.0	88.7	1.268	16.955	16.726	0.116	2.145	1.269
105.0	25.0	104.4	0.683	9.207	13.998	0.121	2.531	0.817
120.0	24.7	118.5	0.907	15.206	13.990	0.145	3.273	0.823
135.0	24.6	132.1	1.080	22.172	14.253	0.172	2.471	0.551
150.0	24.8	149.1	1.003	6.562	10.804	0.188	1.634	0.328
165.0	25.7	164.1	0.830	4.772	10.563	0.180	0.993	0.243
180.0	26.4	179.6	0.980	4.899	10.121	0.183	0.655	0.172
195.0	25.8	194.9	0.837	5.079	10.055	0.176	1.097	0.253
210.0	25.0	210.7	0.889	8.870	10.543	0.191	1.858	0.359
225.0	24.7	226.5	0.771	8.233	12.284	0.159	2.630	0.489
240.0	24.6	242.1	0.726	15.409	13.522	0.138	3.462	0.652
255.0	24.7	257.1	0.651	16.525	13.692	0.143	3.110	0.748
270.0	24.9	271.9	1.228	16.881	16.200	0.133	2.920	1.292
285.0	25.2	286.0	4.079	12.447	17.027	0.306	2.582	1.791
300.0	25.3	300.1	1.540	8.649	16.370	0.431	2.036	1.906
315.0	25.3	314.7	2.041	5.563	15.207	0.508	1.481	1.890
330.0	25.3	329.7	1.922	4.720	15.490	0.552	1.078	1.902
345.0	25.3	344.7	2.039	3.384	15.994	0.572	0.748	1.888
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the start	oard bear	m in all	cases.	

Table V.35: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 11.0 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolute	е	5	Standard		
Heading	Me	ean		Maximui	m	I	Deviation	n i	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mid \mathbf{m}/\mathbf{s}^2 \mid$	
0.0	30.4	0.0	2.003	4.182	16.529	0.593	0.752	2.257	
15.0	30.4	15.1	2.055	6.262	16.669	0.592	0.899	2.238	
30.0	30.4	30.1	1.949	7.749	16.017	0.573	1.161	2.198	
45.0	30.4	45.0	2.000	7.269	16.136	0.535	1.433	2.146	
60.0	30.3	59.7	1.734	7.580	16.450	0.459	1.691	2.085	
75.0	30.3	74.3	1.881	11.367	19.093	0.317	1.855	1.887	
90.0	30.1	89.0	1.026	16.122	16.526	0.121	2.216	1.253	
105.0	30.0	104.3	2.090	20.345	18.470	0.152	2.959	0.833	
120.0	29.7	118.6	1.261	15.259	12.365	0.170	3.013	0.649	
135.0	29.9	134.1	0.999	8.274	11.539	0.209	2.331	0.425	
150.0	30.5	147.4	1.063	8.091	11.450	0.223	1.624	0.399	
165.0	31.0	162.7	1.253	6.235	10.157	0.250	1.188	0.365	
180.0	31.1	178.6	1.341	6.106	10.351	0.273	1.172	0.378	
195.0	31.4	194.6	1.488	6.559	10.577	0.264	1.355	0.363	
210.0	30.8	211.0	1.221	6.936	10.511	0.229	1.852	0.350	
225.0	29.7	226.0	1.035	8.912	12.464	0.228	2.553	0.530	
240.0	29.8	240.9	0.599	9.274	12.203	0.153	3.349	0.661	
255.0	29.9	256.1	1.784	24.275	15.413	0.163	3.190	0.750	
270.0	30.1	271.2	1.347	18.716	15.910	0.135	2.915	1.235	
285.0	30.3	285.7	2.053	13.250	17.117	0.298	2.662	1.917	
300.0	30.4	300.1	1.662	8.143	16.718	0.438	2.121	2.144	
315.0	30.4	315.0	1.965	5.611	16.920	0.518	1.603	2.198	
330.0	30.4	329.9	1.919	4.498	16.667	0.559	1.165	2.238	
345.0	30.4	345.0	2.178	3.996	17.095	0.582	0.862	2.251	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the stark	oard bear	m in all	cases.		

Table V.36: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 0.0 Knots

Cmd	Act	tual		Absolut	e	5	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n		
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert		
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$		
0.0	-1.5	-109.1	0.985	4.531	11.789	0.193	1.405	0.532		
15.0	-2.4	-147.9	0.927	4.628	12.344	0.184	1.083	0.575		
30.0	-1.8	-69.5	1.155	5.619	12.234	0.187	1.608	0.559		
45.0	-0.2	21.9	0.797	4.194	12.226	0.204	1.073	0.558		
60.0	0.6	49.0	0.740	5.003	11.996	0.159	1.325	0.574		
75.0	0.7	69.2	0.587	5.332	12.445	0.093	1.367	0.549		
90.0	0.1	90.9	0.230	5.336	12.114	0.031	1.388	0.533		
105.0	-0.5	103.2	0.419	5.717	12.043	0.053	1.441	0.551		
120.0	-1.4	113.0	0.618	6.182	12.886	0.085	1.471	0.570		
135.0	-2.1	121.6	0.490	0.490 6.079 12.2	12.228	0.117	1.420	0.578		
150.0	-2.6	131.7	0.554	5.435	11.747	0.149	1.298	0.574		
165.0	-2.5	144.3	0.729	4.502	12.083	0.176	1.057	0.567		
180.0	-1.7	164.5	0.919	3.647	12.337	0.195	0.619	0.541		
195.0	0.4	236.4	0.865	6.413	12.220	0.126	1.474	0.545		
210.0	0.0	244.9	0.835	7.227	12.007	0.104	1.523	0.551		
225.0	-0.2	253.3	0.553	6.126	11.948	0.078	1.532	0.550		
240.0	-0.4	261.6	0.381	6.042	11.844	0.052	1.498	0.532		
255.0	-0.6	270.4	0.221	6.076	11.901	0.033	1.449	0.522		
270.0	-0.6	279.9	0.360	6.363	12.110	0.047	1.396	0.523		
285.0	-0.5	288.9	0.597	5.890	12.476	0.080	1.343	0.540		
300.0	-0.5	297.9	0.646	6.068	12.383	0.114	1.278	0.552		
315.0	-0.4	307.0	0.700	5.736	12.112	0.144	1.206	0.554		
330.0	-0.6	315.5	0.774	5.284	11.796	0.169	1.132	0.552		
345.0	-0.8	324.3	0.944	5.033	11.780	0.187	1.045	0.543		
Wind at 38	8.7 knots	(19.9 m/s)	s) is fron	n the sta	rboard be	am in al	l cases.			

Table V.37: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 5.0 Knots

Cmd	Ac	tual		Absolut	e	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long Lat Vert I		Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	m/s^2	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	m/s^2	$\mathbf{m/s}^2$	
0.0	3.8	-29.6	1.012	5.722	11.699	0.229	1.065	0.604	
15.0	3.6	-22.7	1.013	4.503	11.781	0.238	1.009	0.604	
30.0	3.5	-14.4	1.093	4.040	11.605	0.241	0.933	0.599	
45.0	3.5	-3.6	1.256	3.915	11.402	0.246	0.874	0.606	
60.0	3.8	26.6	0.908	4.658	12.208	0.226	1.063	0.630	
75.0	4.3	58.4	0.684	5.443	12.642	0.139	1.318	0.621	
90.0	4.5	79.9	0.361	5.407	12.392	0.047	1.285	0.569	
105.0	4.4	95.6	0.222	5.867	12.143	0.025	1.324	0.555	
120.0	4.1	107.0	0.299	6.383	12.618	0.049	1.345	0.558	
135.0	1 1		0.392 6.589 1	12.125	0.071	1.356	0.555		
150.0	3.5	124.8	0.649	5.993	12.280	0.095	1.304	0.532	
165.0	3.4	134.5	0.769	5.858	12.347	0.116	1.196	0.500	
180.0	3.3	146.5	0.936	5.138	12.018	0.133	1.027	0.456	
195.0	3.4	162.2	0.870	5.943 12.012		0.144	0.897	0.408	
210.0	4.4	216.2	0.757	5.474	11.679	0.131	1.202	0.393	
225.0	4.3	237.0	0.656	6.109	11.948	0.100	1.428	0.460	
240.0	4.4	250.4	0.489	6.182	12.286	0.071	1.498	0.483	
255.0	4.5	262.4	0.291	6.465	11.672	0.040	1.499	0.493	
270.0	4.6	274.8	0.158	5.960	12.078	0.023	1.452	0.512	
285.0	4.7	287.5	0.421	7.319	12.316	0.068	1.404	0.544	
300.0	4.7	299.8	0.541	5.653	12.140	0.131	1.320	0.582	
315.0	4.5	310.0	0.732	6.164	12.680	0.175	1.238	0.596	
330.0	4.1	317.1	0.869	6.054			1.192	0.601	
330.0 4.1 317.1 0.869 6.054 11.853 0.198 1.192 345.0 3.9 323.5 0.988 6.045 11.764 0.216 1.134						0.604			
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.38: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 10.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Mo	ean	ľ	Maximu	m	I	Deviation	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	9.4	-3.6	1.327	3.781	11.637	0.285	0.564	0.698	
15.0	9.5	11.9	1.159	3.356	11.744	0.281	0.674	0.715	
30.0	9.6	27.4	1.085	3.831	11.904	0.262	0.892	0.726	
45.0	9.7	42.7	0.834	4.384	12.694	0.221	1.081	0.718	
60.0	9.8	57.5	0.616	4.903	12.687	0.158	1.171	0.680	
75.0	9.9	72.9	0.365	4.792	12.754	0.080	1.101	0.622	
90.0	9.9	88.0	0.138	5.148	12.347	0.031	1.092	0.569	
105.0	9.9	103.1	0.233	5.785	12.253	0.041	1.157	0.546	
120.0	9.5	116.4	0.455	6.073	12.711	0.063	1.173	0.531	
135.0	35.0 9.2		0.640	5.550	12.667	0.079	1.060	0.471	
150.0	9.1	144.4	0.587	4.887	12.000	0.090	1.005	0.403	
165.0	9.0	159.4	0.516	4.149	11.384	0.103	1.018	0.351	
180.0	9.4	176.8	0.522	4.408	10.694	0.107	0.960	0.280	
195.0	9.7	193.7	0.677	4.944	10.959	0.108	0.963	0.212	
210.0	9.6	211.3	0.789	5.921	11.803	0.099	1.202	0.262	
225.0	9.5	228.4	0.668	7.881	11.606	0.092	1.533	0.332	
240.0	9.5	243.7	0.505	6.738	11.936	0.075	1.657	0.398	
255.0	9.8	257.4	0.435	6.703	12.100	0.054	1.628	0.433	
270.0	9.9	271.7	0.214	7.898	11.967	0.034	1.599	0.488	
285.0	10.0	285.8	0.395	8.455	12.175	0.064	1.500	0.547	
300.0	9.9	300.0	0.601	5.526	12.317	0.142	1.383	0.612	
315.0	9.8	313.7	0.783	l l		0.206	1.154	0.644	
330.0	9.6	327.5	1.033	4.747	12.060	0.250	0.914	0.667	
345.0	9.4	341.6	1.147	4.403	11.631	0.274	0.736	0.683	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.39: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 15.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long Lat Vert L		Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	14.9	-1.1	1.469	3.182	11.853	0.317	0.456	0.773	
15.0	14.9	14.1	1.311	3.380	12.182	0.311	0.657	0.790	
30.0	14.9	29.2	1.249	4.282	12.298	0.286	0.912	0.796	
45.0	15.0	44.2	0.881	4.828	13.099	0.240	1.093	0.781	
60.0	15.0	59.0	0.745	5.475	13.582	0.165	1.210	0.732	
75.0	15.1	74.0	0.357	5.027	12.805	0.082	1.007	0.638	
90.0	15.1	89.0	0.167	4.827	12.477	0.045	0.994	0.569	
105.0	15.1	104.1	0.390	5.294	12.029	0.057	1.079	0.518	
120.0	14.9	118.3	0.468	5.955	12.563	0.074	1.281	0.537	
135.0			0.508	08 5.429	11.904	0.085	1.261	0.461	
150.0	14.9 148.6 0		0.496	4.324	11.442	0.094	0.990	0.376	
165.0	15.0	163.8	0.389	3.745	10.734	0.088	0.632	0.289	
180.0	14.9	178.9	0.510	4.166	10.326	0.105	0.739	0.252	
195.0	15.0	194.3	0.389	5.049	10.137	0.078	0.814	0.198	
210.0	15.0	209.9	0.545	5.746	10.656	0.087	1.289	0.173	
225.0	14.8	226.2	0.518	5.802	11.106	0.090	1.767	0.234	
240.0	14.9	241.8	0.637	7.113	11.789	0.079	1.940	0.327	
255.0	15.1	256.1	0.441	7.050	11.975	0.064	1.830	0.380	
270.0	15.1	270.8	0.260	7.955	12.072	0.048	1.743	0.471	
285.0	15.2	285.4	0.387	7.721	12.467	0.066	1.671	0.563	
300.0	15.1	299.9	0.652	6.531	12.581	0.150	1.480	0.651	
315.0	15.0	314.3	0.867	5.243	12.160	0.226	1.172	0.700	
330.0	14.9	328.9	1.182	4.085	12.065	0.276	0.861	0.732	
345.0	14.9	343.8	1.285	3.801	12.223	0.307	0.561	0.757	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.40: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 20.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Me	ean	ľ	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long Lat Vert		Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	20.1	-0.5	1.450	3.316	12.154	0.344	0.489	0.884	
15.0	20.1	14.7	1.492	3.669	12.431	0.337	0.724	0.896	
30.0	20.1	29.8	1.324	4.331	12.773	0.310	1.008	0.899	
45.0	20.1	44.8	0.976	5.158	12.907	0.258	1.208	0.866	
60.0	20.2	59.6	0.619	6.094	12.958	0.175	1.365	0.800	
75.0	20.2	74.4	0.352	5.390	12.769	0.086	1.027	0.666	
90.0	20.3	89.4	0.223	4.698	12.530	0.059	0.978	0.561	
105.0	20.3	104.5	0.383	5.308	12.277	0.074	1.027	0.480	
120.0	20.1	119.2	0.351	5.882	11.562	0.092	1.669	0.537	
135.0	135.0 20.1 13		0.408 5	5.468	11.196	0.099	1.303	0.407	
150.0	20.2	149.3	0.446	3.948	10.626	0.101	0.781	0.289	
165.0	20.1	164.3	0.584	3.353	10.920	0.131	0.649	0.298	
180.0	20.3	179.4	0.447	3.701	10.250	0.101	0.547	0.209	
195.0	20.2	194.8	0.541	6.220	10.128	0.112	1.025	0.252	
210.0	20.1	210.0	0.600	7.297	10.028	0.103	1.418	0.276	
225.0	20.1	225.1	0.542	7.524	10.179	0.089	1.775	0.270	
240.0	20.1	240.8	0.498	7.974	10.833	0.092	2.190	0.282	
255.0	20.2	255.5	0.508	8.562	11.406	0.077	1.908	0.359	
270.0	20.3	270.4	0.318	8.356	12.076	0.060	1.849	0.471	
285.0	20.3	285.2	0.328	7.594	12.080	0.070	1.712	0.588	
300.0	20.2	299.9	0.677	7.733	12.833	0.159	1.522	0.709	
315.0	20.2	314.5	0.916	5.752	12.401	0.246	1.169	0.790	
330.0	20.1	329.3	1.275	4.240	12.434	0.303	0.819	0.843	
345.0	20.1	344.4	1.347	3.489	12.355	0.333	0.530	0.866	
Wind at 38	3.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.41: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 25.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Mo	ean	l I	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long	Lat	Vert	Long	Lat	Vert	
deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	25.2	-0.2	1.454	3.561	13.367	0.366	0.565	1.066	
15.0	25.2	14.9	1.461	4.189	13.085	0.360	0.795	1.074	
30.0	25.2	30.0	1.349	5.042	13.231	0.332	1.078	1.061	
45.0	25.2	45.0	1.051	5.277	13.056	0.275	1.314	0.991	
60.0	25.3	59.8	0.665	6.480	13.825	0.188	1.492	0.886	
75.0	25.3	74.6	0.379	5.289	13.314	0.092	1.105	0.689	
90.0	25.3	89.6	0.279	4.616	12.396	0.072	1.039	0.553	
105.0	25.3	104.6	0.408	5.273	11.993	0.094	1.038	0.437	
120.0	25.2	119.6	0.403	5.937	10.817	0.112	1.866	0.477	
135.0	25.2	134.6	0.443	5.854	10.726	0.120	1.469	0.324	
150.0	25.3	149.5	0.590	4.978	10.460	0.140	1.195	0.280	
165.0	25.4	164.5	0.669	4.011	10.517	0.132	0.580	0.206	
180.0	25.8	179.8	0.476	3.208	10.178	0.135	0.345	0.168	
195.0	25.6	194.9	0.684	4.401	10.126	0.121	0.696	0.187	
210.0	25.3	210.1	0.611	6.468	10.105	0.126	1.339	0.318	
225.0	25.3	225.0	0.333	6.875	10.021	0.096	1.476	0.335	
240.0	25.2	240.3	0.512	9.030	10.121	0.100	2.194	0.328	
255.0	25.3	255.2	0.471	9.271	11.264	0.089	1.867	0.368	
270.0	25.3	270.2	0.324	7.886	12.014	0.071	1.830	0.484	
285.0	25.3	285.1	0.352	8.558	12.309	0.076	1.808	0.623	
300.0	25.3	299.9	0.664	8.027	12.763	0.169	1.541	0.786	
315.0	25.3	314.7	0.997	6.065	12.698	0.262	1.162	0.923	
330.0	25.2	329.6	1.350	4.882	13.294	0.323	0.834	1.015	
345.0	25.2	344.7	1.578	3.647	13.044	0.355	0.573	1.051	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

Table V.42: Accelerations at Flight Deck: JONSWAP Spectrum with Hs = 9.0 m and Tp = 17.1 s; Ship's speed is 30.0 Knots

Cmd	Act	tual		Absolut	e	Standard			
Heading	Me	ean	N	Maximu	m	I	Deviatio	n	
$\psi_{ ext{MHP}}$	Speed	$\psi_{ ext{MHP}}$	Long Lat Vert I		Long	Lat	Vert		
\deg	\mathbf{kts}	\deg	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	$\mathbf{m/s}^{2}$	$\mathbf{m/s}^2$	$\mathbf{m/s}^2$	
0.0	30.4	-0.0	1.546	4.579	14.260	0.385	0.673	1.303	
15.0	30.4	15.1	1.607	5.211	13.878	0.379	0.874	1.304	
30.0	30.4	30.1	1.368	5.830	13.963	0.350	1.134	1.274	
45.0	30.4	45.1	1.145	6.042	14.426	0.294	1.375	1.175	
60.0	30.4	60.0	0.803	6.750	14.006	0.200	1.599	0.981	
75.0	30.4	74.7	0.345	5.321	12.966	0.099	1.213	0.718	
90.0	30.4	89.7	0.338	4.896	12.111	0.085	1.167	0.549	
105.0	30.4	104.7	0.466	4.830	11.293	0.113	1.093	0.402	
120.0	30.3	119.7	9.7 0.496 6.824 1		10.575	0.139	2.240	0.458	
135.0	135.0 30.2		0.709 6	6.780	10.769	0.174	1.884	0.354	
150.0	30.3	149.2	0.823	7.110	10.189	0.225	1.462	0.321	
165.0	30.8	164.0	0.858	4.219	10.109	0.198	0.692	0.219	
180.0	31.2	179.7	0.615	4.469	9.954	0.190	0.547	0.173	
195.0	30.9	194.7	0.840	4.263	9.976	0.188	0.771	0.204	
210.0	30.5	210.3	0.789	7.427	10.151	0.203	1.460	0.355	
225.0	30.4	225.1	0.552	6.769	10.028	0.134	1.661	0.411	
240.0	30.4	240.1	0.501	8.751	9.966	0.117	2.170	0.466	
255.0	30.4	255.1	0.510	8.813	11.527	0.107	1.704	0.384	
270.0	30.4	270.1	0.320	7.830	11.937	0.084	1.734	0.506	
285.0	30.4	285.1	0.363	8.408	11.978	0.083	1.746	0.670	
300.0	30.4	299.9	0.643	8.061	13.010	0.180	1.526	0.877	
315.0	30.4	314.8	1.045	6.903	13.501	0.280	1.138	1.110	
330.0	30.4	329.8	1.337	5.184	13.865	0.341	0.832	1.237	
345.0	30.4	344.9	1.357	4.352	13.947	0.372	0.653	1.281	
Wind at 38	8.7 knots	(19.9 m/s	s) is fron	n the sta	rboard be	am in al	l cases.		

This page intentionally left blank.

Annex W NATO Sea State Table

Table W.1: NATO Sea State Table (After Table D-1 in NATO STANAG 4194)

Sea	Significant	t Wave	Sustaine	ed Wind	% Prob.	Wave Per	iod (s)
State	Height	(m)	Speed (Knots)*		of Sea	Range†	Most
Number	Range	Mean	Range	Mean	State		Prob.‡
0 - 1	0.00 - 0.10	0.05	0 - 6	3.0	0.70		_
2	0.10 - 0.50	0.30	7 - 10	8.5	6.80	3.3 - 12.8	7.5
3	0.50 - 1.25	0.88	11 - 16	13.5	23.70	5.0 - 14.8	7.5
4	1.25 - 2.50	1.88	17 - 21	19.0	27.80	6.1 - 15.2	8.8
5	2.50 - 4.00	3.25	22 - 27	24.5	20.64	8.3 - 15.5	9.7
6	4.00 - 6.00	5.00	28 - 47	37.5	13.15	9.8 - 16.2	12.4
7	6.00 - 9.00	7.50	48 - 55	51.5	6.05	11.8 - 18.5	15.0
8	9.00 - 14.00	11.50	56 - 63	59.5	1.11	14.2 - 18.6	16.4
> 8	> 14.00	> 14.00	> 63	> 63.0	0.05	15.7 - 23.7	20.0

^{*}Ambient wind sustained at 19.5 m above surface to generate fully-developed seas.

To convert to another altitude, H_2 , apply $V_2 = V_1 \left(H_2/19.5\right)^{1/7}$

[†]Min. is 5 percentile and max. is 95 percentile for periods give wave height range.

[‡]Based on periods associated with central frequencies incl. in Hindcast Climatology.

This page intentionally left blank.

	DOCUMENT CO				ad whan dearmant is als	ooifia	n.
1.	(Security classification of title, body of abstract and indexing ORIGINATOR (the name and address of the organization preparing the docu Organizations for whom the document was prepared, e.g. Centre sponsoring contractor's report, or tasking agency, are entered in section 8.)	ıment.		2.	SECURITY CLAS (overall security cl	SIFIC assifi	·
	Defence R&D Canada - Atlantic	UNCLASSIFIED					
	P. O. Box 1012, Dartmouth, NS, Canada B2Y 3Z7						
3.	TITLE (the complete document title as indicated on the title page. Its classific abbreviation (S,C,R or U) in parentheses after the title).	cation	should be in	ndica	ted by the appropria	te	
	Tabulated Data for FREDYN Simulations of HALIFAX f March 2006)	or D	etermini	ng	Helicopter Sec	urin	g Loads (Revised
4.	AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. Jo	hn E.))				
	Perrault, Doug; McTaggart, Kevin	,					
5.	cor				G (total mation. Include ndices, etc).	6b.	NO. OF REFS (total cited in document)
	March 2006 489						1
7.	DESCRIPTIVE NOTES (the category of the document, e.g. technical report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when					ate, e	enter the type of report,
	Technical Memorandum						
8.	SPONSORING ACTIVITY (the name of the department project office or laboration)	ratory	sponsoring	the	research and develop	omen	t. Include address).
	Defence R&D Canada - Atlantic P. O. Box 1012, Dartmouth, NS, Canada B2Y 3Z7						
9a.	PROJECT OR GRANT NO. (if appropriate, the applicable research and development project or grant number under which the document was written. Specify whether project or grant).	9b.			O. (if appropriate, the vas written).	appl	icable number under which
	11GK12						
10a.	ORIGINATOR'S DOCUMENT NUMBER (the official document number by which the document is identified by the originating activity. This number must be unique.)	10b.					imbers which may be inator or by the sponsor.)
	DRDC Atlantic TM 2004-044						
11.	DOCUMENT AVAILABILITY (any limitations on further dissemination of the of (X) Unlimited distribution () Defence departments and defence contractors; further () Defence departments and Canadian defence contracto () Government departments and agencies; further distribut () Defence departments; further distribution only as approx () Other (please specify):	distri rs; fu ution	ibution on	ly a	as approved ation only as app		
12.	DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announce Availability (11). However, where further distribution beyond the audience speedected).						

13.	ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual).
	In support of procurement of new maritime helicopters, DRDC Atlantic was tasked to simulate motions of the HALIFAX class in seaways. The data produced will aid in the determination of helicopter securing loads, which are highly dependent upon the motions of the ship. The present work reports a systematic series of simulations modelling a HALIFAX class frigate with nominally steady speed and heading (course-keeping) in a variety of seaway conditions. This memorandum provides the data in a tabulated format for quick reference. A companion report (DRDC TM 2004-043) describes the simulation conditions and key results.
14.	KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title).
	Ship motions
	Helicopter securing loads
	Open waters
	Coastal waters
	Heave Roll angles
	Pitch angles
	Longitudinal force estimator
	Lateral force estimator Vertical force estimator
	vertical force estimator

Defence R&D Canada

R & D pour la défense Canada

Canada's leader in defence and National Security Science and Technology Chef de file au Canada en matière de science et de technologie pour la défense et la sécurité nationale

www.drdc-rddc.gc.ca