Last time: Lebesque-Radon-Nikodym tun Mofmite pos measure, vo-funte signed measure.

 \Rightarrow $\exists! \ o\text{-fmite } \lambda, \beta \text{ s.t.} \quad \lambda \perp \mu, \ \beta \ll \mu, \ \nu = \lambda + \beta. \ \exists! \ a.e. \text{ extended } \mu\text{-} \text{sol} \text{ f}$ $\text{s.t.} \quad d\beta = \text{fd} \mu. \text{ If } \nu \text{ is } \rho \text{os}/\text{finite}, \text{ so is } \lambda/\beta .$

Remark: If $v \ll n$, $\exists ! f \leq l$. dv = f dn.

Call f the Radon-Nikodym derivative of v with u: $f = \frac{dv}{dn}$.

Defilet X be LCH. A signed Barel newsure u on X
is a signed Radon measure if M± are Radon.

(Here $u = u_+ - u_-$ is the! Jardan Lewmp).

Ut RM = M be the subspace of finite signed Radon menames.

Banach space of finite

signed measures, ||µ||= |µ|(X).

Exercise: If μ is a positive Radon measure on X,

Then $C_{\epsilon}(x)$ is dense in $L'(\mu)$.

Lusin's Thim: If μ is a positive Radon meas on X,

his $f:X \to \mathbb{C}$ is mble a vanishes outside a

set of finite measure, then $\forall e \geq 0 \exists g \in \mathbb{C}(X)$ sit g = f except on a set of measure $\langle e \rangle$.

If $\|f\|_{\infty} < \infty$, we can pick g sit. $\|g\|_{\infty} < \|f\|_{\infty}$.

If $|m(f) \in \mathbb{R}$, we can pick g sit. $|m(g) \in \mathbb{R}$.

Theorem (Riesz Repri): Suppose X is LCH, define $\varphi: RM \longrightarrow C_0(X,R)^*$ by $\mu \mapsto \varphi_{\mu}$ where $\varphi_{\mu}(f) = \int f d\mu$. Then $\varphi: s = n$ is 0. is 0.

($\Rightarrow RM \subset M$ is closed subspace \leftarrow know how to prove this directly).

If $d\mu = \int f d\mu - \int f d\mu = \int f d\mu + \int f d\mu = \int f$

$$\|\mu\| = \int d\mu = \int \left| \frac{d\mu}{d\mu} \right|^2 d\mu = \int \frac{d\mu}{d\mu} \frac{d\mu}{d\mu} d\mu = \int \frac{d\mu}{d\mu} d\mu$$

$$\leq \left| \int f d\mu \right| + \left| \int \left(f - \frac{d\mu}{d\mu} \right) d\mu \right| \leq \|\varphi_{\mu}\| \cdot \|f\|_{\infty} + 2 |\mu|(E) = \|\varphi_{\mu}\| + 2$$

Complex measures: Let (X, M) be mble sp. afn $\nu: M \to C$ is a complex measure of

- $V(\emptyset) = 0$, and absolutely convergent.
- · + disjoint seq (En) (M, V (II En) = \(\nu \nu(En) \)

Exercise: If ν complex meas on (X, m), $Re(\nu)$, $Im(\nu)$ are \underline{finite} signed measure, ℓ $\nu = Re(\nu) + Im(\nu)$.

Examples:

- 1) If M., Mz, Mz are finite (positive) measures on (X,M),

 \[\frac{3}{\text{Lin}} i^k Mk is a complex meas. \]
- ② for g∈ U(µ, c), ν(E):= ∫ fdµ is complex.

By Jordan decomp, we get

Cor: if ν is a complex measure on (X,M), $\exists!$ pairs of mutually singular faite pos measures $\text{Re}(\nu)_{\pm}$, $|m(\nu)_{\pm}|$ st. $\nu = \text{Re}(\nu)_{+} - \text{Re}(\nu)_{-} + i [|m(\nu)_{+} - |m(\nu)_{-}|]$.

Thus If ν complex, μ σ -finite positive on (X, M), f! complex means λ and $f \in L'(\mu)$ s.t. $\lambda \perp \mu$ $\lambda = d\lambda + f d\mu$.

[If $\lambda' \perp M$ & $f' \in L'(M)$ s.t. $d\nu = d\lambda' + f' dM$ then $\lambda = \lambda'$ & f = f' in L'(M)] of apply LRN to Re(V), Im(V), recombine.

Lemma Suppose V is a complex measure. Il pos menore IVI satisfying:

• \forall pos mens μ λ $f \in L'(\mu)$ s.t. $d\nu = f d\mu$, $d|\nu| = |f|d\mu$.

Call this IVI the total variation of v.

If first, consider n = |Re(v)| + |Im(v)|. By LRN, $\exists f \in L'(n)$ s.t. dv = f dn. Define d|v| = |f| dn. We claim that this |v| satisfies the above universal property.

Page 4

If dr = gdg for another pos meas p & g = 1(p), consider M+P on (X,m). Observe: V«M,P«M+P.

So du= du+p) d(u+p), dp= ds d(u+p).

Exercise/discussion: If $V \ll \mu \ll \lambda \ll \mu_{1}\lambda$ offenite pos meas, 2ν is either of thite signed or complex, then

(1) $\forall f \in L'(\nu), \quad f \frac{d\nu}{d\mu} \in L'(\mu), \quad \int f d\nu = \int f \frac{d\nu}{d\mu} d\mu$.

(2) $V \ll \lambda$ and $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$ (λ -a.e.)

Since $f \frac{d\mu}{d(\mu+\rho)} d(\mu+\rho) = f d\mu = d\nu = g d\rho = g \frac{d\rho}{d(\mu+\rho)} d(\mu+\rho)$, we have $f \frac{d\mu}{d(\mu+\rho)} = g \frac{d\rho}{d(\mu+\rho)}$, so

 $\left|f\right|\frac{du}{d(\mu+p)} = \left|f\frac{du}{d(\mu+p)}\right| = \left|g\frac{du}{d(\mu+p)}\right| = |g|\frac{de}{d(\mu+p)}$

So Ifldu = Igldp, so IVI is indep. of choice.