

учебный центр общей физики фтф

Группа: <u>R3137</u>	К работе допущен: .
Студент: Нестеров И.А,	Работа выполнена:
Преподаватель: Крылов В.А.	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 3.05.

«Температурная зависимость электрического сопротивления металла и проводника».

1. Цель работы.

- 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75°*C*.
- 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.

2. Задачи, решаемые при выполнении работы.

Изучение температурной зависимости электрического сопротивления металла и полупроводника.

3. Объект исследования.

Металлический образец. Полупроводниковый образец.

4. Метод экспериментального исследования.

Изменение сопротивления путём повышения температуры.

5. Рабочие формулы и исходные данные.

$$(1) \vec{F} = q\vec{E} \qquad (2)\vec{j} = qn\vec{u} \qquad (3) \vec{u} = \mu\vec{E} \qquad (4) \vec{j} = \sigma\vec{E} \qquad (5) \rho_{\rm M} = \rho_0 (1 + \alpha t)$$

$$(6) R_{\rm M} = R_0 (1 + \alpha t) \qquad (7) \qquad \alpha = \frac{1}{R_0} \cdot \frac{\Delta R}{\Delta t} \qquad (8) \sigma_{\rm H} = en(\mu_- + \mu_+) \qquad (9) \qquad n \sim \exp\left(-\frac{E_g}{2kT}\right)$$

$$(10) \sigma_{\rm H} \sim \exp\left(-\frac{E_g}{2kT}\right) \qquad (11) \qquad \rho_{\rm H} = \frac{1}{\sigma_{\rm H}} = \rho_m \exp\left(\frac{E_g}{2kT}\right) \qquad (12) \qquad R_{\rm H} = R_m \exp\left(\frac{E_g}{2kT}\right)$$

$$(13) \ln(R_{\rm H}) = \ln(R_m) + \frac{E_g}{2kT} \qquad (14) \qquad E_g = 2k \cdot \frac{\Delta \ln(R_{\rm H})}{\Delta (1/T)}$$

6. Измерительные приборы.

№ п/п	Наименование	Дена деления	Диапазон	Δи
1	Вольтметр	0,001 B	от 0 до 2 В	0,0005 B
2	Амперметр	1 мкА	от 0 до 2000 мкА	0,5 мкА
3	Электрический термометр	1 K	т 290 до 390 К	0,5 K

7. Схема установки (см. Приложение 1).

- 1. Амперметр-вольтметр АВ1.
- 2. Стенд «С3-ТТ01» с объектами изучения металлическим и полупроводниковым образцами.
 - 3. Генератор ГН1

Принципиальная электрическая схема установки.

Одновременно измеряя напряжение на объекте исследования и ток через него, можно найти его сопротивление с помощью закона Ома для участка цепи R = U/I.

8. Результаты прямых измерений и их обработки.

Таблица 1: полупроводниковый образец

№ п.п	<i>T</i> , <i>K</i>	<i>I,</i> мкА	<i>U</i> , B	<i>R</i> , Ом	ln R	$\frac{10^3}{T}$, $\frac{1}{K}$
1	300	1027	0,840	818	6,71	3,33
2	305	1135	0,740	652	6,48	3,28
3	310	1205	0,690	573	6,35	3,23
4	315	1300	0,620	477	6,17	3,17
5	320	1400	0,540	386	5,96	3,12
6	325	1480	0,470	317	5,76	3,08
7	330	1560	0,420	269	5,6	3,03
8	335	1630	0,365	224	5,41	2,99
9	340	1694	0,314	185	5,22	2,94
10	345	1748	0,275	157	5,06	2,9
11	350	1795	0,258	144	4,97	2,86
12	355	1843	0,203	110	4,7	2,82

Таблица 2: металлический образец

№ п.п	T, K	<i>I,</i> мкА	U, B	<i>R</i> ,Ом	t,°C
1	355	1340	1,790	1336	82
2	350	1356	1,778	1311	77
3	345	1369	1,768	1291	72
4	340	1378	1,760	1277	67
5	335	1391	1,750	1258	62
6	330	1406	1,739	1237	57
7	325	1425	1,725	1211	52
8	320	1433	1,717	1198	47
9	315	1448	1,705	1177	42
10	310	1463	1,692	1157	37
11	305	1477	1,683	1139	32
12	300	1489	1,672	1123	27

Таблица 1: Полупроводниковый образец

Расчёт сопротивления *R* для каждого измерения:

$$R = \frac{U}{I} = \frac{1,790}{1340 \cdot 10^{-6}} = 817,9163 \text{ Om} = 818 \text{ Om}$$

Расчёт натурального логарифма сопротивления $\ln R$ для каждого измерения:

$$\ln R = \ln 817,9163 = 6,70676 = 6,71$$

Расчёт величины обратного значения температуры $\frac{10^3}{T}$:

$$\frac{10^3}{T} = \frac{10^3}{300} = 3,333333\frac{1}{K} = 3,33\frac{1}{K}$$

Таблица 2: Металлический образец

Расчёт сопротивления R для каждого измерения: $R = \frac{U}{I} = \frac{1,790}{1340 \cdot 10^{-6}} = 1335,821 \, \text{Ом} = 1336 \, \text{Ом}$

Расчёт температуры t по шкале Цельсия:

$$t = T - 273 = 355 - 273 = 82$$
 °C

9. Расчет результатов косвенных измерений.

Расчёт температурного коэффициента α_{ii} :

$$\alpha_{ij} = \frac{R_i - R_j}{R_j \cdot t_i - R_i \cdot t_j} = \frac{1335,821 - 1210,526}{1210,526 \cdot 82 - 1335,821 \cdot 52} = 0,00420445 \,\mathrm{K}^{-1} = 4 \cdot 10^{-3} \,\mathrm{K}^{-1}$$

i	j	$lpha_{ij}$, K^{-1}
1	7	0,004204
2	8	0,00369
3	9	0,003732
4	10	0,003992
5	11	0,003903
6	12	0,003722

Расчёт среднего значения температурного коэффициента:

Расчёт среднего значения температурного коэффициент
$$\alpha = \frac{1}{n} \cdot \sum_{i=1}^n \alpha_{ij} = \frac{1}{6} \cdot 0,023244 \ \mathrm{K}^{-1} = 0,003874 \ \mathrm{K}^{-1} = 3,9 \cdot 10^{-3} \ \mathrm{K}^{-1}$$

Расчёт ширины запрещённой зоны E_{gij} :

$$\begin{split} E_{gij} &= 2k \cdot \frac{T_i \cdot T_j}{T_j - T_i} \cdot \ln \left(\frac{R_i}{R_j} \right) = 2 \cdot 1{,}380649 \cdot 10^{-23} \cdot \frac{300 \cdot 330}{330 - 300} \cdot \ln \left(\frac{817{,}9163}{269{,}2308} \right) = 1{,}013423 \cdot 10^{-19} \, \text{Дж} = \\ &= 1 \cdot 10^{-19} \, \text{Дж} = 0{,}63253 \, \text{эB} = 0{,}6 \, \text{эB} \end{split}$$

i	j	$E_{gij} \cdot 10^{-19}$, Дж
1	7	1,013423
2	8	1,004778
3	9	1,096768
4	10	1,111582
5	11	1,016477
6	12	1,12399

Расчёт среднего значения ширины запрещённой зоны E_g :

$$E_g = \frac{1}{n} \cdot \sum_{i=1}^n E_{gij} = \frac{1}{6} \cdot 6,3670177 \cdot 10^{-19} \, \text{Дж} = 1,0611696 \cdot 10^{-19} \, \text{Дж} = 0,66233 \, \text{эВ} = 0,7 \, \text{эВ}$$

10. Расчет погрешностей измерений.

Коэффициент Стьюдента для доверительной вероятности $\alpha=0.95$ и n=10: $t_{\alpha,n}=2.2621$

Расчёт абсолютной погрешности температуры t:

Расчёт среднего значения \bar{t} :

$$\bar{t} = \frac{1}{n} \cdot \sum_{i=1}^{n} t_i = 72 \, ^{\circ}\text{C}$$

Расчёт СКО $S_{\bar{t}}$:

$$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n(n-1)}} = \sqrt{\frac{3575}{12 \cdot (12-1)}} = 5,204165 \, ^{\circ}\text{C}$$

Расчёт доверительного интервала $\Delta_{\bar{t}}$:

$$\Delta_{\bar{t}} = t_{\alpha,n} \cdot S_{\bar{t}} = 2,2621 \cdot 5,204165 = 11,77 \,^{\circ}\text{C}$$

Расчёт абсолютной погрешности Δt :

$$\Delta t = \sqrt{\Delta_{\bar{t}}^2 + (\frac{2}{3} \cdot \Delta_{\text{\tiny M}})^2} = \sqrt{11,77^2 + (\frac{2}{3} \cdot 0,5)^2} = 11,77 \text{ °C} = 12 \text{ °C}$$

Расчёт абсолютной погрешности температурного коэффициента α :

Расчёт среднего значения $\bar{\alpha}$:

$$\bar{\alpha} = \frac{1}{n} \cdot \sum_{i=1}^{n} \alpha_{ij} = 3.9 \cdot 10^{-3} \text{ K}^{-1}$$

Расчёт СКО $S_{\overline{\alpha}}$:

$$S_{\overline{\alpha}} = \sqrt{\frac{\sum_{i=1}^{n} (\alpha_i - \overline{\alpha})^2}{n(n-1)}} = \sqrt{\frac{2,012347423 \cdot 10^{-7}}{6 \cdot (6-1)}} = 8,1901311 \cdot 10^{-5} \,\mathrm{K}^{-1}$$

Расчёт доверительного интервала $\Delta_{\overline{\alpha}}$:

$$\Delta_{\overline{\alpha}} = t_{\alpha,n} \cdot S_{\overline{\alpha}} = 2,2621 \cdot 8,1901311 \cdot 10^{-5} = 1,85 \cdot 10^{-4} \text{ K}^{-1}$$

Расчёт абсолютной погрешности $\Delta \alpha$:

$$\Delta \alpha = \sqrt{\Delta_{\overline{\alpha}}^2 + (\frac{2}{3} \cdot \Delta_{\text{\tiny H}})^2} = \sqrt{(1.85 \cdot 10^{-4})^2 + (\frac{2}{3} \cdot 0.05)^2} = 0.033 \text{ K}^{-1}$$

Расчёт относительной погрешности ε_{α} :

$$\varepsilon_{\alpha} = \frac{\Delta \alpha}{\bar{\alpha}} \cdot 100\% = \frac{0,033}{3.9 \cdot 10^{-3}} \cdot 100\% = 7,4442\% = 7\%$$

Расчёт абсолютной погрешности ширины запрещённой зоны ΔE_g :

Расчёт среднего значения $\overline{E_g}$:

$$\overline{E_g} = \frac{1}{n} \cdot \sum_{i=1}^n E_{g_{ij}} = 1,34157 \cdot 10^{-19} \,$$
Дж = 1,3 · 10⁻¹⁹Дж = 0,83848 эВ = 0,8 эВ

Расчёт СКО $S_{\overline{E_a}}$:

$$S_{\overline{E_g}} = \sqrt{rac{\sum_{i=1}^n (E_{g_i} - \overline{E_g})^2}{n(n-1)}} = \sqrt{rac{3,36948 \cdot 10^{-40}}{5 \cdot (5-1)}} = 4,10456 \cdot 10^{-21}$$
 Дж

Расчёт доверительного интервала $\Delta_{\overline{E_g}}$:

$$\Delta_{\overline{E_g}}=t_{lpha,n}\cdot S_{\overline{E_g}}=$$
 2,26 · 4,10456 · $10^{-21}=$ 9,27631 · 10^{-21} Дж

Расчёт абсолютной погрешности ΔE_g :

$$\Delta E_g = \sqrt{\Delta_{\overline{E_g}}^2 + \left(\frac{2}{3} \cdot \Delta_{\text{\tiny M}}\right)^2} = 9,27631 \cdot 10^{-21} \text{ Дж} = 9 \cdot 10^{-21} \text{ Дж} = 0,05625 \text{ эВ} = 0,06 \text{ эВ}$$

Расчёт относительной погрешности ε_{E_a} :

$$\varepsilon_{E_g} = \frac{\Delta E_g}{\overline{E_g}} \cdot 100\% = \frac{1,34157 \cdot 10^{-19}}{9,27631 \cdot 10^{-21}} \cdot 100\% = 14,4623293\% = 14\%$$

11. Графики

Зависимость
$$ln(R) = ln(R)$$
 (1 T)

Зависимость Rм = Rм(t)

12. Окончательные результаты.

Представлены выше.

13. Выводы и анализ результатов работы.

В результате проделанной работы были проведены многократные прямые и косвенные измерения, по ходу которых была рассчитана ширина запрещенной зоны E_g для полупроводникового образца, а также температурный коэффициент α для металлического образца. Были рассчитаны их абсолютные и относительные погрешности. По полученному значению температурного коэффициента, к сожалению, точно определить металл не представляется возможным, но множество вариантов сужается до следующих: золото, медь, цинк, серебро, алюминий. Температурные коэффициенты этих металлов попадают в пределы полученной погрешности. Ширина же запрещенной зоны полупроводника совпадает с таковой у антимонида галия и германия.

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).