Web**Assign**CH 3.3 (Homework)

Yinglai Wang

MA 265 Spring 2013, section 132, Spring 2013

Instructor: Alexandre Eremenko

Current Score: 20 / 20 Due: Thursday, February 7 2013 11:40 PM EST

The due date for this assignment is past. Your work can be viewed below, but no changes can be made.

Important! Before you view the answer key, decide whether or not you plan to request an extension. Your Instructor may *not* grant you an extension if you have viewed the answer key. Automatic extensions are not granted if you have viewed the answer key.

Request Extension View Key

1. 6.66/6.66 points | Previous Answers

KolmanLinAlg9 3.3.004.

Let
$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 2 & 1 & -4 & -1 \\ 3 & 2 & 4 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$
. Find the following cofactors.

.....

(a) A_{14}

(b) A₂

(c) A_{33}

(d) $A_{1/2}$

2. 6.66/6.66 points | <u>Previous Answers</u>

KolmanLinAlg9 3.3.006.

Theorem 3.10 states:

Let
$$A = [a_{ij}]$$
 be an $n \times n$ matrix. Then
$$\det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$
 [expansion of $\det(A)$ along the i th row]

and

$$\det(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}$$
[expansion of det(A) along the jth column].

Use Theorem 3.10 to evaluate the determinants.

(b)
$$\begin{vmatrix} 7 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 5 \end{vmatrix}$$

(c)
$$\begin{vmatrix} 4 & 3 & 3 & -4 \\ 3 & -3 & 1 & 5 \\ -2 & 0 & 1 & -3 \\ 8 & -3 & 6 & 4 \end{vmatrix}$$

3. 6.68/6.68 points | <u>Previous Answers</u>

KolmanLinAlg9 3.3.007.

Theorem 3.10 states:

Let
$$A = [a_{ij}]$$
 be an $n \times n$ matrix. Then
$$\det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$
 [expansion of $\det(A)$ along the i th row]

and

$$\det(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + ... + a_{nj}A_{nj}$$
[expansion of det(A) along the jth column].

Use Theorem 3.10 to evaluate the determinants.

(c)
$$\begin{vmatrix} 2 & 0 & 1 & 4 \\ 3 & 2 & -4 & -2 \\ 2 & 3 & -1 & 0 \\ 11 & 8 & -4 & 6 \end{vmatrix}$$

