

IMAGE PROCESSING

Image representation, visualization and properties

Agenda

- What is an image?
 - And how is it represented in the computer?
- What is a MEDICAL image?
- Review Machine Learning (ML) taxonomy
- Computer Vision main tasks

Medical Imaging Usages

Partial list

Early Detection

Measurements

Biomarkers Characterization

Disease Progression Tracking

Lesion Segmentation

What is an Image?

(A digital image)

Image Representation

Image as a function

• 2D: $I(x, y) = \rho$ Pixel

• 3D: $I(x, y, z) = \rho$ Voxel

• 4D: $I(x, y, z, t) = \rho$

. . .

52	55	61	59	110	110	76	61
62	59	55	104	130	85	59	71
63	65	66	113	144	104	63	72
64	70	70	126	154	109	71	69
67	73	68	106	122	88	68	68
68	79	60	70	77	66	58	75
69	85	64	58	55	61	65	83
70	87	69	68	65	73	78	90

Image Properties

Let's clear up some terms

- Image contrast: Difference in the image pixel values between closely adjacent regions on the image (seen by human or computer)
- Resolution: the image's level of details.

Measures the image's fidelity to the representation of the original scene.

CT Image Pixels

- Each pixel in CT images is assigned a number (Hounsfield Unit).
- HU is related to the *linear attenuation* coefficient (μ) of tissue within each voxel
- Water defined HU=0
- CT Number = $1000 \frac{\mu_{object} \mu_{water}}{\mu_{water}}$

CT Image Pixels

Hounsfield Scale (HU)

- Large range of HU in CT images
- Human eye cannot appreciate the full range of CT numbers
- Visualized by setting a window width and level

MRI Contrast

- Basis for imaging: radio waves emitted from the patient
- Superb and varied soft-tissue contrast
- Any scan plane
- Excellent depiction of the musculoskeletal system and bone marrow
- Used to characterize pathology seen on ultrasound or CT

- Different pulse sequences can create different imaging: Proton Density (PD), T1, T2, and more.
- Demo: MRI sequences (overview) | Radiology Reference Article | Radiopaedia.org

Imaging Planes

Coronal

Sagittal

Transverse (Axial)

Medical Image Formats

- DICOM https://www.dicomstandard.org/
 - Digital Imaging and Communications in Medicine
 - Contains both images and patient data (key-value)
- NIfTI <u>NIfTI: Neuroimaging Informatics Technology Initiative (nih.gov)</u>
 - Combines multiple DICOM images
 - Nii files

POP QUIZ

How is a 3D pixel called?

POP QUIZ

What is Axial?

POP QUIZ #2

What is Sagittal?

Review: Machine Learning

Machine Learning Types

- Classification:
 - Learn a (mapping) function f(x) = y given a set of matched (= labeled) samples $(x, y) \in X, Y$
- **Regression**: Learn a mapping function f(x) = y $y \in \mathbb{R}$
- Unsupervised Learning
 - Clustering:

Finds clusters automatically by minimizing a distance function

Dimension Reduction

Review: Machine Learning

Machine Learning Types

Supervised Learning

- Classification
 - Random-Forest
 - Support Vector Machine (SVM)
 - KNN
 - Deep-Learning
- Regression
 - Linear Regression

Unsupervised Learning

- Clustering
 - K-Means
 - DBScan
- Dimension Reduction
 - PCA
 - T-SNE
 - U-MAP

Reinforcement Learning

ML Imaging Tasks

Classification

Segmentation

Adenocarcinoma

Adenoma

Mesothelioma

...

Segmentation

Semantic Segmentation

Similar objects belong to the same class

More Relevant for Medical Imaging

Instance Segmentation

Every class instance stands on its own

The 5 Classes of Image Processing

Image Enhancement

• (Examples in a few slides)

Image Restoration (geometric correction)

Image Analysis (Classification, segmentation)

Image Compression Image synthesis (registration, visualization, 3D-rendering)

ML on Unstructured Data

Extracting quantitative image features

- Two approaches for deriving structure from images:
 - Extract pre-defined (hand-crafted) features
 - Unsupervised feature learning (data-driven)

 N.B.: Image classification with deep learning is an example of deriving structure from images

Radiomics

Crafting features

- "a field of medical study that aims to extract a large number of quantitative features from medical images using data characterization algorithms"
- Preprocessing:
 - Contrast & edge enhancement
- Image segmentation and ROI determination
 - Geometric features: volume, shape, surface, density

Count pixels by their value (color).

Low-Contrast image

High-Contrast Image

Small actual dynamic range

Histogram Equalization

Adjusts (increases) the contrast

- Spreads pixel values evenly across the range.
- Cumulative Distribution Function

Adaptive Histogram Equalization

Limits contrast expansion in flat regions of the image

Quantization

Mapping different gray scales into a single shade. Bits Compression.

Enables segmentation.

FIGURE 10: Binary image reconstruction.

Color Value as a 3D Surface

Each pixel value is interpreted as the height

We can perform segmentation using **thresholding** or with a model: **K-Means**

Color Value as a 3D Surface

