

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по курсу

«Data Science»

Слушатель: Митрошкина Кристина Вячеславовна

Тема выпускной квалификационной работы: «Прогнозирование конечных свойств новых материалов (композиционных материалов)».

Актуальность: Созданные прогнозные модели помогут сократить количество проводимых испытаний, а также пополнить базу данных материалов возможными новыми характеристиками материалов, и цифровыми двойниками новых композитов.

Объектом исследования является процесс прогнозирования конечных свойств новых материалов.

Предметом исследования — автоматизация процесса прогнозирования конечных свойств новых материалов.

Цели данной выпускной квалификационной работы:

- 1. Обучить алгоритм машинного обучения, который будет определять значения:
- Модуль упругости при растяжении, ГПа
- Прочность при растяжении, МПа
- 2. Написать нейронную сеть, которая будет рекомендовать:
- Соотношение матрица-наполнитель
- 3. Написать приложение, которое будет выдавать прогнозное значение параметра «Соотношение матрица-наполнитель».

Начало работы:

✓ Подробный план работы:

- Составим подробный план;
- Изучим теоретические основы, методы решения и практические составляющие поставленной задачи;
- Некоторые пункты плана потребовали повторения, для достижения результата;
- В ВКР использовано 9 разных методов регрессий для каждой из моделей;
- Приложение успешно работает

✓ Графики:

- Построено много графиков для визуального анализа данных;
- Несколько подобных графиков для одних и тех же переменных;
- Графики преведены в одном стиле

Полпобымй план паботы

- 1. Загружаем и обрабатываем входящие датасеты
- 1.1. Удаляем неинформативные столбцы 1.2. Объединяем датасеты по методу INNER
- 2. Проводим разведочный анализ данных:
- 2.1. Данные в столбце "Угол нашивки» приведём к 0 и 1
- 2.2. Изучим описательную статистику каждой переменной среднее, медиана, стандартное
- отклонение, минимум, максимум, квартили
- 2.3. Проверим датасет на пропуски и дубликаты данны 2.4. Получим среднее, медианное значение для каждой колонки (по заданию необходимо
- получить их отдельно, поэтому продубливуем их только отдельно)
- 2.5. Вычислим коэффициенты ранговой корреляции Кендалла
- Визуализируем наш разведочный анализ сырых данных (до выбросов и нормализации)
- 3.1. Построим несколько вариантов гистограмм распределения каждой переменной
- 3.2. Построим несколько вариантов диаграмм ящиков с усами каждой переменной 3.3. Построим гистограмму распределения и диаграмма "ящик с усами" одновременно вместе с данными по каждому столбцу
- 3.5. Построим графики квантиль-квантиль
- 3.6. Построим корреляционную матрицу с помощью тепловой карты
- 4. Проведём предобработку данных (в данном пункте только очистка датасета от выбросов)
- 4.1. Проверим выбросы по 2 методам: 3-х сигм или межквартильных расстояний
- 4.2. Посчитаем распределение выбросов по каждому столбцу (с целью предотвращения удаления особенностей признака или допущения ошибки
- 4.3. Исключим выбросы методом межквартидьного расстояни
- 4.4. Удалим строки с выбросами
- 4.5. Визуализируем датасет без выбросов, и убедимся, что выбросы еще есть
- 4.6. Для полной очистки датасета от выбросов повторим пункты (4.3 4.5) ещё 3 раза.
- 4.7. Сохраняем идеальный, без выбросов датасет. 4.8. Изучим чистые данные по всем параметрам
- 4.9. Визуализируем «чистый» датасет (без выбросов)
- 5.1. Визуализируем плотность ядра 5.2. Нормализуем данные с помощью MinMaxScaler(
- 5.3. Нормализуем данные с помощью Normalizer()
- 5.4. Сравним с данными до нормализации
- 5.5. Проверим перевод данных из нормализованных в исходные
- 5.6. Рассмотрим несколько вариантов корреляции между параметрами после нормализации
- 5.7. Стандартизируем данные
- 5.8. Визуализируем данные корреляции
- 5.9. Посмотрим на описательную статистику после нормализации и после стандартизации
- 6.1. Определим входы и выходы для моделей
- Разобъём данные на обучающую и тестовую выборки
- 6.3. Проверим правильность разбивки

- 6.4. Построим модели и найдём лучшие гиперлараметры (задача по заданию)
- 6.5. Построим и визуализируем результат работы метода опорных векторов
- 6.6. Построим и визуализируем результат работы метода случайного леса
- 6.7. Построим и визуализируем результат работы линейной регрессии
- 6.9. Построим и визуализируем результат работы метода К ближайших соседей
- Построим и визуализируем результат работы метода деревья решениі
- Построим и визуализируем результат работы многослойного перцептрон Построим и визуализируем результат работы лассо регрессии
- Найдём лучшие гиперпараметры для случайного леса
- Подставим значения в нашу модель случайного леса
- Найдём лучшие гиперпараметры для К ближайших соседей Подставим значения в нашу модель К ближайших соседей
- Найдём лучшие сиперпараметры метода деревья решений
- Подставим значения в нашу модель метода деревья решений
- Проверим все модели и процессинги и выведем лучшую модель и процессин
- тестовой выборки)
- 7.1. Определим входы и выходы для моделей
- 7.2. Разобьём данные на обучающую и тестовую выборки
- 7.3. Проверим правильность разбивки
- 7.4. Построим модели и найдём лучшие гиперлараметры (задача по заданию)
- 7.5. Построим и визуализируем результат работы метода опорных векторов
- 7.6. Построим и визуализируем результат работы метода случайного леса
- 7.7. Построим и визуализируем результат работы линейной регрессии
- 7.8. Построим и визуализируем результат работы метода градиентного бустинга
- Построим и визуализируем результат работы метода деревья решений
- Построим и визуализируем результат работы стохастического градиентного спуска
- Построим и визуализируем результат работы многослойного перцептрона
- Построим и визуализируем результат работы лассо регрессии
- Сравним наши модели по метрике МАЕ
- Найдём лучшие гиперпараметры для случайного леса
- Найдём лучшие гиперпараметры для К ближайших соседей
- Подставим значения в нашу модель К ближайших соседей
- Подставим значения в нашу модель метода деревья решений
- Проверим все модели и процессинги и выведем лучшую модель и процессин
- 8.1. Сформируем входы и выход для модели
- 8.2. Нормализуем данные
- 8.3. Построим модель, определим параметря
- 8.5. Посмотрим на результать
- 8.6. Повторим шаги 8.4 8.5 до построения окончательной модел
- 8.8. Оценим модель

- 8.10. Посмотрим на график результата работы модели
- 8.11. Посмотрим на график потерь на тренировочной и тестовой выборках
- 8.12. Сконфигурируем другую модель, зададим слои
- 8.13. Посмотрим на архитектуру другой модели

- Посмотрим на график потерь на тренировочной и тестовой выборках
- 8.17. Зададим функцию для визуализации факт/прогноз для результатов мо-
- 8.19. Оценим модель MSE
- 8 20 Сохраняем вторую молеть пля разработем веб-приложения пля прогно-
- зирования соотношения "матрица-наполнитель" в фреймворке Flask

- 9.2.Загрузим модель и определим параметры фуг
- 9.3.Получим данные из наших форм и положим их в список
- 9.4. Укажем шаблон и прототип сайта для вывода

10. Создание удалённого репозитория и загрузка результатов работы на него.

- 10.2. Создадим README

Выгрузим все необходимые файлы в репозиторий

Объединение файлов и разведочный анализ:

- ✓ Объединение по индексу:
- Импортируем необходимые библиотеки;
- Загружаем файлы;
- Посмотрим размерность;
- Объединим оба файла по индексу по типу объединения INNER
- ✓ Разведочный анализ данных:
- Посмотрим на начальные и конечные строки нашего датасета;
- Изучим информацию о датасете;
- Проверим типы данных в каждом столбце;
- Проверим пропуски;
- Поищем уникальные значения с помощью функции nunique

Объединяем по индексу, тип объединения INNER, смотрим итоговый датасет

In [9]:	# Понимаем, что эти два датасета и # Но наша задача собрать исходные # По условию задачи объединяем их df = df_bp.merge(df_nup, left_inde df.head().T	данные файл по muny INN	ы в один, е ER.	диный набор		
Out[9]:		0	1	2	3	4
	Соотношение матрица-наполнитель	1.857143	1.857143	1.857143	1.857143	2.771331
	Плотность, кг/м3	2030.000000	2030.000000	2030.000000	2030.000000	2030.000000
	модуль упругости, ГПа	738.736842	738.736842	738.736842	738.736842	753.000000
	Количество отвердителя, м.%	30.000000	50.000000	49.900000	129.000000	111.860000
	Содержание эпоксидных групп,%_2	22.267857	23.750000	33.000000	21.250000	22.267857
	Температура вспышки, С_2	100.000000	284.615385	284.615385	300.000000	284.615385
	Поверхностная плотность, г/м2	210.000000	210.000000	210.000000	210.000000	210.000000
	Модуль упругости при растяжении, ГПа	70.000000	70.000000	70.000000	70.000000	70.000000
	Прочность при растяжении, МПа	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000
	Потребление смолы, г/м2	220.000000	220.000000	220.000000	220.000000	220.000000
	Угол нашивки, град	0.000000	0.000000	0.000000	0.000000	0.000000

#Удаляем первый неинформативный столбец df_nup.drop(['Unnamed: 0'], axis=1, inplace=True) #Посмотрим на первые 5 строк второго датасета и убедимся, что и здесь не нужный первый столбец успешно удалился

	Угол нашивки, град	Шаг нашивки	Плотность нашивки
0	0.0	4.0	57.0
1	0.0	4.0	60.0
2	0.0	4.0	70.0
3	0.0	5.0	47.0
4	0.0	5.0	57.0

Проверим размерность второго файла

<class 'pandas.core.frame.DataFrame'> Int64Index: 1023 entries, 0 to 1022

Data	columns (total 13 columns):		
#	Column	Non-Null Count	Dtype
0	Соотношение матрица-наполнитель	1023 non-null	float64
1	Плотность, кг/м3	1023 non-null	float64
2	модуль упругости, ГПа	1023 non-null	float64
3	Количество отвердителя, м.%	1023 non-null	float64
4	Содержание эпоксидных групп,%_2	1023 non-null	float64
5	Температура вспышки, С_2	1023 non-null	float64
6	Поверхностная плотность, г/м2	1023 non-null	float64
7	Модуль упругости при растяжении, ГПа	1023 non-null	float64
8	Прочность при растяжении, МПа	1023 non-null	float64
9	Потребление смолы, г/м2	1023 non-null	float64
10	Угол нашивки, град	1023 non-null	float64
11	Шаг нашивки	1023 non-null	float64
12	Плотность нашивки	1023 non-null	float64
dtype	es: float64(13)		

memory usage: 111.9 KB

Соотношение матрица-наполнитель	1014
Плотность, кг/м3	1013
модуль упругости, ГПа	1020
Количество отвердителя, м.%	1005
Содержание эпоксидных групп,%_2	1004
Температура вспышки, С_2	1003
Поверхностная плотность, г/м2	1004
Модуль упругости при растяжении, ГПа	1004
Прочность при растяжении, МПа	1004
Потребление смолы, г/м2	1003
Угол нашивки, град	2
Шаг нашивки	989
Плотность нашивки	988
dtype: int64	

«Угол нашивки» и описательная статистика:

- ✓ Работа со столбцом "Угол нашивки":
- Проверим количество элементов со значением 0 градусов;
- Приведём к значениям 0 и 1;
- Убедимся в неизменном количестве элементов
 - ✓ Описательная статистика:
- Изучим описательную статистику данных (максимальное, минимальное, квартили, медиана, стандартное отклонение, среднее значение и т.д.),
- Посмотрим на основные параметры анализа данных;
- Проверим датасет на пропущенные и дублирующие данные;
- Вычислим коэффициенты ранговой корреляции Кендалла и Пирсона

Поработаем со столбцом "Угол нашивки"

2

520

```
df['Угол нашивки, град'].nunique()
#Так как кол-во уникальных значений в колонке Угол нашивки равно 2
```

#Проверим кол-во элементов, где Угол нашивки равен 0 градусов $df['Угол \ нашивки, \ град'][df['Угол \ нашивки, \ град'] == 0.0].count()$

Приведем столбец "Угол нашивки" к значениям 0 и 1 и integer df = df.replace({'Угол нашивки, град': {0.0 : 0, 90.0 : 1}}) df['Угол нашивки, град'] = df['Угол нашивки, град'].astype(int)

```
#Переименуем столбец

df = df.rename(columns={'Угол нашивки, град' : 'Угол нашивки'})

df
```

#Посчитаем количество элементов, где угол нашивки раве df['Угол нашивки'][df['Угол нашивки'] == 0.0].count() #После преобразования колонки Угол нашивки к значения

520

```
# Переведем столбец с нумерацией в integer df.index = df.index.astype('int')
```

Сохраним итоговый датасет в отдельную папку с данным df.to_excel("Itog\itog.xlsx")

```
a = df.describe()
a.T
```

	count	mean	std	min	25%	50%	75%	max
Соотношение матрица-наполнитель	1023.0	2.930366	0.913222	0.389403	2.317887	2.906878	3.552660	5.591742
Плотность, кг/м3	1023.0	1975.734888	73.729231	1731.764635	1924.155467	1977.621657	2021.374375	2207.773481
модуль упругости, ГПа	1023.0	739.923233	330.231581	2.436909	500.047452	739.664328	961.812526	1911.536477
Количество отвердителя, м.%	1023.0	110.570769	28.295911	17.740275	92.443497	110.564840	129.730366	198.953207
Содержание эпоксидных групп,%_2	1023.0	22.244390	2.406301	14.254985	20.608034	22.230744	23.961934	33.000000
Температура вспышки, С_2	1023.0	285.882151	40.943260	100.000000	259.066528	285.896812	313.002106	413.273418
Поверхностная плотность, г/м2	1023.0	482.731833	281.314690	0.603740	266.816645	451.864365	693.225017	1399.542362
Модуль упругости при растяжении, ГПа	1023.0	73.328571	3.118983	64.054061	71.245018	73.268805	75.356612	82.682051
Прочность при растяжении, МПа	1023.0	2466.922843	485.628006	1036.856605	2135.850448	2459.524526	2767.193119	3848.436732
Потребление смолы, г/м2	1023.0	218.423144	59.735931	33.803026	179.627520	219.198882	257.481724	414.590628
Угол нашивки	1023.0	0.491691	0.500175	0.000000	0.000000	0.000000	1.000000	1.000000
Шаг нашивки	1023.0	6.899222	2.563467	0.000000	5.080033	6.916144	8.586293	14.440522
Плотность нашивки	1023.0	57.153929	12.350969	0.000000	49.799212	57.341920	64.944961	103.988901

Пропуски данных

# Проверим на	пропущенные	2 (данные	
df.isnull().su	ım()			
# Пропущенных	данных нет	=	нулевых	значений

Соотношение матрица-наполнитель	6
Плотность, кг/м3	6
модуль упругости, ГПа	6
Количество отвердителя, м.%	6
Содержание эпоксидных групп,%_2	6
Температура вспышки, С_2	6
Поверхностная плотность, г/м2	6
Модуль упругости при растяжении, ГПа	6
Прочность при растяжении, МПа	6
Потребление смолы, г/м2	6
Угол нашивки	6
Шаг нашивки	6
Плотность нашивки	6
dtype: int64	

Визуализация «сырых» данных:

✓ Графики без нормализации и исключения шумов :

- Построим гистограммы распределения каждой из переменных (несколько вариантов);
- Диаграммы "ящиков с усами" (несколько вариантов);
- Попарные графики рассеяния точек (несколько вариантов);
- Графики квантиль-квантиль;
- Тепловые карты (несколько вариантов)

Предобработка данных:

✓ Исключение выбросов:

- Посчитаем количество значений методом 3 сигм и методом межквартильных расстояний;
- Исключим выбросы методом межквартильного расстояния;
- Проверим результат;
- Построим графики;
- Убедимся, что выбросы ещё остались;
- Повторим удаление выбросов ещё 4 раза до полного удаления;
- Проверим чистоту датасета от выбросов
- Построим все возможные графики «чистого» датасета


```
Диаграммы "ящики с усами"
#Для удаления выбросов существует 2 основных метода - метод 3-х сю
metod 3s = 0
metod iq = 0
count iq = [] # Список, куда записывается количество выбросов по н
count_3s = [] # Список, куда записывается количество выбросов по н
for column in df:
     d = df.loc[:, [column]]
     # методом 3-х сигм
    zscore = (df[column] - df[column].mean()) / df[column].std()
     d['3s'] = zscore.abs() > 3
    metod 3s += d['3s'].sum()
     count 3s.append(d['3s'].sum())
    print(column,'3s', ': ', d['3s'].sum())
     # методом межквартильных расстояний
     q1 = np.quantile(df[column], 0.25)
    q3 = np.quantile(df[column], 0.75)
     iqr = q3 - q1
     lower = a1 - 1.5 * iar
     upper = a3 + 1.5 * igr
    d['iq'] = (df[column] <= lower) | (df[column] >= upper)
    metod_iq += d['iq'].sum()
    count_iq.append(d['iq'].sum())
    print(column, ': ', d['iq'].sum())
print('Meтод 3-х сигм, выбросов:', metod 3s)
print('Метод межквартильных расстояний, выбросов:', metod iq)
Соотношение матрица-наполнитель
Плотность, кг/м3
модуль упругости, ГПа
Количество отвердителя, м.%
Содержание эпоксидных групп,% 2
                                                             <class 'pandas.core.frame.DataFrame'>
Температура вспышки, С 2
                                                             Int64Index: 922 entries, 1 to 1022
                                                             Data columns (total 13 columns):
Поверхностная плотность, г/м2
                                                             # Column
                                                                                          Non-Null Count Dtvpe
Модуль упругости при растяжении, ГПа
                                                             0 Соотношение матрица-наполнитель
                                                                                          922 non-null
                                                                                                     float64
                                                                Плотность, кг/м3
                                                                                          922 non-null
                                                                                                     float64
Прочность при растяжении, МПа
                                                                                                     float64
                                                             2 модуль упругости, ГПа
                                                                                          922 non-null
                                                                Количество отвердителя, м.%
                                                                                                     float64
                                                                                          922 non-null
Потребление смолы, г/м2
                                                                                                     float64
                                                               Содержание эпоксидных групп,% 2
                                                                                          922 non-null
                                                                Температура вспышки, С 2
                                                                                          922 non-null
                                                                                                     float64
Угол нашивки
                                                                                          922 non-null
                                                                                                     float64
                                                                Модуль упругости при растяжении, ГПа
                                                                                          922 non-null
                                                                                                     float64
Шаг нашивки
                                                                                          922 non-null
                                                                                                     float64
                                                                                                     float64
                                                               Потребление смолы, г/м2
                                                                                          922 non-null
                                                             10 Угол нашивки
                                                                                          922 non-null
                                                                                                     int32
Плотность нашивки
                                                              11 Шаг нашивки
                                                                                          922 non-null
dtype: int64
                                                              12 Плотность нашивки
                                                                                          922 non-null
                                                                                                     float64
                                                             dtypes: float64(12), int32(1)
                                                             memory usage: 129.5 KB
```

Предобработка данных:

✓ Нормализация данных:

- Нормализуем данные MinMaxScaler();
- Построим график плотности ядра;
- Проверим результат MinMaxScaler();
- Построим графики MinMaxScaler();
- Нормализуем данные с помощью Normalizer();
- Проверим результат Normalizer();
- Построим графики Normalizer();

✓ Стандартизация данных:

- Стандартизируем данные с помощью StandardScaler();
- Проверим результат StandardScaler();
- Построим графики StandardScaler();

Разработка и обучение моделей для прогноза прочности при растяжении:

✓ Метод К ближайших соседей:

- Разбиваем данные на тестовую и тренировочную выборки;
- Обучаем модель;
- Вычисляем коэффициент детерминации;
- Считаем MAE, MAPE, MSE, RMSE, test score train и test score test;
- Сравниваем с результатами модели, выдающей среднее значение;
- Построим графики для тестовых и прогнозных значений;
- Построим гистограмму распределения ошибки

ОБРАЗОВАТЕЛЬНЫЙ ЦЕНТР МГТУ им. Н. Э. Баумана

- метод опорных векторов;
- случайный лес;
- линейная регрессия;
- градиентный бустинг;
- К-ближайших соседей;
- дерево решений;
- стохастический градиентный спуск;
- многослойный перцептрон;
- Лассо.

Количество наблюдений

K Neighbors Regressor Results Train:

Test score: 0.94

K Neighbors Regressor Results:

KNN_MAE: 102 KNN_MAPE: 0.04 KNN_MSE: 16723.93 KNN_RMSE:129.32 Test score: 0.92

Поиск гиперпараметров:

- ✓ Для метода «Деревья решений»:
- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки , наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе


```
pipe = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])
param grid = [
{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],
'regressor gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor_C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n_estimators = 100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]}.
{'regressor': [MLPRegressor(random state = 1, max iter = 500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear_model.Lasso(alpha = 0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid = GridSearchCV(pipe, param grid, cv = 10)
grid.fit(x train 1, np.ravel(y train 1))
print("Наилучшие параметры:\n{}\n".format(grid.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid.best score ))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x_test_1, y_test_1)))
Наилучшие параметры:
{'preprocessing': StandardScaler(), 'regressor': SGDRegressor()}
Наилучшее значение правильности перекрестной проверки: 0.97
Правильность на тестовом наборе: 0.97
 # Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно 10 (cv = 10), для
 #Деревья решений - Decision Tree Regressor - 6
 criterion = ['squared_error', 'friedman_mse', 'absolute_error', 'poisson']
                                                                    #Выводим гиперпараметры для оптимальной модели
 splitter = ['best', 'random']
                                                                    print(gs4.best estimator )
 max_depth = [3,5,7,9,11]
                                                                    gs1 = gs4.best_estimator_
 min_samples_leaf = [100,150,200]
                                                                    print(f'R2-score DTR для прочности при растяжении, MПa: {gs4.score(x_test_1, y_test_1).round(3)}')
 min_samples_split = [200,250,300]
 max_features = ['auto', 'sqrt', 'log2']
                                                                    DecisionTreeRegressor(criterion='poisson', max depth=5, max features='auto',
 param_grid = {'criterion': criterion,
                                                                                      min_samples_leaf=100, min_samples_split=250)
             'splitter': splitter,
                                                                    R2-score DTR для прочности при растяжении, МПа: 0.779
             'max_depth': max_depth,
             'min_samples_split': min_samples_split,
             'min_samples_leaf': min_samples_leaf,
             'max_features': max_features}
                                                                    #подставим оптимальные гиперпараметры в нашу модель метода деревья решений
 #Запустим обучение модели. В качестве оценки модели будем использовать коэффициент д
                                                                    dtr_grid = DecisionTreeRegressor(criterion = 'poisson', max_depth = 7, max_features = 'auto',
 # Если R2<0, это значит, что разработанная модель даёт прогноз даже хуже, чем просто
                                                                                       min_samples_leaf = 100, min_samples_split = 250)
 gs4 = GridSearchCV(dtr, param grid, cv = 10, verbose = 1, n_jobs =-1, scoring = 'r2'
                                                                    #Обучаем модель
 gs4.fit(x_train_1, y_train_1)
                                                                    dtr grid.fit(x train 1, y train 1)
 dtr 3 = gs4.best estimator
 gs.best_params_
                                                                    predictions_dtr_grid = dtr_grid.predict(x_test_1)
 Fitting 10 folds for each of 1080 candidates, totalling 10800 fits
                                                                    #Оиениваем точность на тестовом наборе
 {'algorithm': 'brute', 'n_neighbors': 7, 'weights': 'distance'}
                                                                    mae dtr grid = mean absolute error(predictions dtr grid, y test 1)
                                                                    mae_dtr_grid
                                                                    168.6249974156563
```

Разработка и обучение моделей для прогноза модуль упругости при растяжении:

- ✓ Графики тестовых и прогнозных значений для разных методов (слева направо и сверху вниз):
- Метод опорных векторов;
- Линейная регрессия;
- Стохастический градиентный спуск;
- Многослойный перцептрон;
- К-ближайших соседей;
- Градиентный бустинг;
- «Случайный лес»;
- Дерево принятия решений;
- Лассо.

Поиск гиперпараметров: для прогноза модуль упругости при растяжении:

- ✓ Для метода «Случайный лес»:
- Поиск гиперпараметров методом GridSearchCV с перекрёстной проверкой с количеством блоков 10;
- Выводим гиперпараметры для оптимальной модели;
- Подставляем оптимальные гиперпараметры в модель случайного леса;
- Обучаем модель;
- Оцениваем точность на тестовом наборе;
- Выводим наилучшее значение правильности перекрёстной проверки , наилучшие параметры, наилучшую модель по всем 9 методам;
- Проверяем правильность на тестовом наборе


```
'regressor_gamma': [0.001, 0.01, 0.1, 1, 10, 100],
'regressor C': [0.001, 0.01, 0.1, 1, 10, 100]},
{'regressor': [RandomForestRegressor(n_estimators=100)],
'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
('regressor': [LinearRegression()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [GradientBoostingRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [KNeighborsRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [DecisionTreeRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [SGDRegressor()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [MLPRegressor(random_state=1, max_iter=500)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},
{'regressor': [linear_model.Lasso(alpha=0.1)], 'preprocessing': [StandardScaler(), MinMaxScaler(), None]},]
grid2 = GridSearchCV(pipe2, param_grid2, cv=10)
grid2.fit(x_train_1, np.ravel(y_train_2))
print("Наилучшие параметры:\n{}\n".format(grid2.best_params_))
print("Наилучшее значение правильности перекрестной проверки: {:.2f}".format(grid2.best_score_))
print("Правильность на тестовом наборе: {:.2f}".format(grid.score(x_test_2, y_test_2)))
                                                                                                                                                           MAE
                                                                                                                                         Perpeccop
Наилучшие параметры:
{'preprocessing': MinMaxScaler(), 'regressor': SVR(C=100, gamma=1), 'regressor_C': 100, 'regressor_gamma': 1}
                                                                                                                                     Support Vector
                                                                                                                                                       78,477914
Наилучшее значение правильности перекрестной проверки: 0.68
Правильность на тестовом наборе: -79805487.66
                                                                                                                                      RandomForest
                                                                                                                                                       76.589025
print("Наилучшая модель:\n{}".format(grid.best_estimator_))
                                                                                                                                   Linear Regression
                                                                                                                                                       61.986894
Наилучшая модель:
Pipeline(steps=[('preprocessing', StandardScaler()),
                                                                                                                     3
                                                                                                                                   GradientBoosting
                                                                                                                                                       64.728717
             ('regressor', SGDRegressor())])
                                                                                                                                        KNeighbors
                                                                                                                                                     102.030259
# Проведем поиск по сетке гиперпараметров с перекрестной проверкой, количество блоков равно
# модели случайного леса - Random Forest Regressor - 2
                                                                                                                                                     107.158013
                                                                                                                                       DecisionTree
                                                                                                                                                     181.624450
parametrs = { 'n_estimators': [200, 300],
                 'max_depth': [9, 15],
                                                                                                                                                    1808.547264
                 'max features': ['auto'],
                                                                                                                                                       69.474334
                 'criterion': ['mse'] }
                                                                                                                                              Lasso
grid21 = GridSearchCV(estimator = rfr2, param grid = parametrs, cv=10)
                                                                                                                        RandomForest_GridSearchCV
                                                                                                                                                       67.603567
grid21.fit(x_train_2, y_train_2)
                                                                                                                           KNeighbors GridSearchCV
                                                                                                                                                       99.281694
GridSearchCV(cv=10,
                estimator=RandomForestRegressor(max_depth=7, n_estimators=15,
                                                                                                                           DecisionTree_GridSearchCV
                                                                                                                                                     168.624997
                                                        random_state=33),
                                                                                                                    12 RandomForest1_GridSearchCV
                                                                                                                                                        2.627032
                param_grid={'criterion': ['mse'], 'max_depth': [9, 15],
                               'max_features': ['auto'], 'n_estimators': [200, 300]})
#Выводим гиперпараметры для оптимальной модели
print(grid21.best_estimator_)
knr_u = grid21.best_estimator_
print(f'R2-score RFR для модуля упругости при растяжении: {knr_u.score(x_test_2, y_test_2).round(3)}')
RandomForestRegressor(criterion='mse', max_depth=9, n_estimators=300,
                             random_state=33)
```

pipe2 = Pipeline([('preprocessing', StandardScaler()), ('regressor', SVR())])

{'regressor': [SVR()], 'preprocessing': [StandardScaler(), MinMaxScaler(), None],

R2-score RFR для модуля упругости при растяжении: -0.035

param_grid2 = [

Нейронная сеть для соотношения «матрица- наполнитель»:

✓ Первая модель:

- Сформируем входы и выход для модели.
- Разобьём выборки на обучающую и тестовую.
- Нормализуем данные.
- Создадим функцию для поиска наилучших параметров и слоёв.
- Построим модель, определим параметры, найдем оптимальные параметры посмотрим на результаты;
- Повторим все эти этапы до построения окончательной модели;
- Обучим нейросеть;
- Посмотрим на потери модели;
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.


```
Model: "sequential 405"
def create model(lyrs=[32], act='softmax', opt='SGD', dr=0.1):
                                                                                         Layer (type)
    seed = 7
    np.random.seed(seed)
    tf.random.set seed(seed)
    model = Sequential()
    model.add(Dense(lyrs[0], input_dim=x_train.shape[1], activation=act))
    for i in range(1,len(lyrs)):
        model.add(Dense(lyrs[i], activation=act))
    model.add(Dropout(dr))
    model.add(Dense(3, activation='tanh')) # выходной слой
    model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['mae', 'accuracy'])
    return model
# построение окончательной модели
model = create model(lyrs=[128, 64, 16, 3], dr=0.05)
print(model.summary())
                                      График потерь модели
                               Тестовые и прогнозные значения: Keras neuronet
```

```
dense 1077 (Dense)
                      (None, 128)
 dense 1078 (Dense)
                     (None, 64)
 dense 1079 (Dense)
                     (None, 16)
 dense_1080 (Dense)
                     (None, 3)
 dropout_405 (Dropout)
                     (None, 3)
 dense_1081 (Dense)
                     (None, 3)
_____
Total params: 11,023
Trainable params: 11,023
Non-trainable params: 0
Best: 0.001538 using {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 10}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 50}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 100}
0.001538 (0.004615) with: {'batch_size': 4, 'epochs': 200}
0.001538 (0.004615) with: {'batch size': 4, 'epochs': 300}
Best: 0.004639 using {'lyrs': [128, 64, 16, 3]}
0.001538 (0.004615) with: {'lyrs': [8]}
0.001538 (0.004615) with: {'lyrs': [16, 4]}
0.001538 (0.004615) with: {'lyrs': [32, 8, 3]}
0.001538 (0.004615) with: {'lyrs': [12, 6, 3]}
0.001538 (0.004615) with: {'lyrs': [64, 64, 3]}
0.004639 (0.009877) with: {'lyrs': [128, 64, 16, 3]}
Best: 0.001538 using {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softmax'}
0.001538 (0.004615) with: {'act': 'softplus'}
0.001538 (0.004615) with: {'act': 'softsign'}
0.001538 (0.004615) with: {'act': 'relu'}
0.001538 (0.004615) with: {'act': 'tanh'}
0.001538 (0.004615) with: {'act': 'sigmoid'}
0.001538 (0.004615) with: {'act': 'hard_sigmoid'}
0.001538 (0.004615) with: {'act': 'linear'}
  Best: 0.001538 using {'dr': 0.0}
  0.001538 (0.004615) with: {'dr': 0.0}
  0.001538 (0.004615) with: {'dr': 0.01}
  0.001538 (0.004615) with: {'dr': 0.05}
  0.001538 (0.004615) with: {'dr': 0.1}
  0.001538 (0.004615) with: {'dr': 0.2}
  0.001538 (0.004615) with: {'dr': 0.3}
```

0.001538 (0.004615) with: {'dr': 0.5}

Output Shape

Param #

Нейронная сеть для соотношения «матрица- наполнитель»:

✓ Вторая модель:

- Сформируем входы и выход для модели.
- Разобъём выборки на обучающую и тестовую.
- Нормализуем данные.
- Сконфигурируем модель, зададим слои, посмотрим на архитектуру модели.
- Обучим модель.
- Посмотрим на MAE, MAPE, Test score и на потери модели.
- Построим график потерь на тренировочной и тестовой выборках.
- Построим график результата работы модели.
- Оценим модель по MSE.


```
Model: "sequential
# Сконфигурируем модель, зададим слои
                                                                                                                                        Layer (type)
                                                                                                                                                               Output Shape
model = tf.keras.Sequential([x train n, layers.Dense(128, activation='relu'),
                                                                                                                                        normalization (Normalizatio (None, 12)
                                               layers.Dense(128, activation='relu'), Dropout(0.8),
                                               layers.Dense(128, activation='relu'),
                                               layers.Dense(64, activation='relu'),
                                                                                                                                                                                   1664
                                                                                                                                        dense (Dense)
                                                                                                                                                               (None, 128)
                                               layers.Dense(32, activation='relu'),
                                                                                                                                                               (None, 128)
                                                                                                                                                                                   16512
                                               layers.Dense(16, activation='relu'),
                                                                                                                                        dense 1 (Dense)
                                               layers.Dense(1)
                                                                                                                                        dropout (Dropout)
                                                                                                                                                               (None, 128)
                                                                                                                                        dense_2 (Dense)
                                                                                                                                                               (None, 128)
                                                                                                                                                                                   16512
model.compile(optimizer = tf.keras.optimizers.Adam(0.001), loss = <mark>'mean_squared_error'</mark>, metrics = [tf.keras.metrics.RootMeanSquaredError()])
                                                                                                                                        dense_3 (Dense)
                                                                                                                                                               (None, 64)
# Посмотрим на архитектуру модели
                                                                                                                                                               (None, 32)
model.summary()
                                                                                                                                                               (None, 16)
                                                                                                                                                                                   528
                                                                                                                                        dense_5 (Dense)
                                                                                                                                        dense_6 (Dense)
                                                                                                                                                               (None, 1)
model.evaluate(x_test, y_test)
                                                                                                                                       Total params: 45,594
                                                                                                                                       Trainable params: 45,569
9/9 [======== ] - 0s 3ms/step - loss: 1.5056 - root_mean_squared_error: 1.2270
                                                                                                                                        Non-trainable params: 25
[1.5056190490722656, 1.227036714553833]
                                                                                                                                             # Обучим модель
                                                           График потерь модели
                                                                                                                                             model_hist = model.fit(
                                                                                                            Ошибка на обучающей выборке
                                                                                                             Ошибка на тестовой выборке
                                                                                                                                                  x train,
                                                                                                                                                  y train,
                                                                                                                                                  epochs = 100,
                                                                                                                                                  verbose = 1.
 2.0
                                                                                                                                                  validation_split = 0.3)
                                                                                                                                                      Model Results:
                                                                                                                                                      Model MAE: 1
                                                                                                                                                      Model MAPE: 0.37
                                                                                                                                                      Test score: 1.25
                                                  Тестовые и прогнозные значения: Keras_neuronet
```

True Values

Количество наблюдений

Приложение:

- **✓** Пользовательское приложение
- Сохранил вторую модель нейронной сети для разработки веб-приложения для прогнозирования соотношения "матрица-наполнитель" в фреймворке Flask:
- При запуске приложения, пользователь переходит на: http://127.0.0.1:5000/;
- В открывшемся окне пользователю необходимо ввести в соответствующие ячейки требуемые значения и нажать на кнопку «Готово».
- На выходе пользователь получает результат прогноза для значения парамет-ра «Соотношение «матрица наполнитель»».
- Приложение успешно работает
- ✓ Репозиторий на github.com
- https://github.com/MitroshkinaKV/ KOMPOSIT

Прочность при растяжении, МПа	3000
T	
Потребление смолы, г/м2	220
Угол нашивки, град	0
Шаг нашивки	4
Плотность нашивки	57
Готово	
Результат прогн	03a:
14.428331	

Заключение

- У Использованные при разработке моделей подходы не позволили получить сколько-нибудь достоверных прогнозов.
- Применённые модели регрессии не показали высокой эффективности в прогнозировании свойств композитов.
- ▶ Невозможно определить из свойств материалов соотношение «матрица наполнитель»
- **Т**екущим набором алгоритмов задача эффективно не решается.

Спасибо за Внимание!