Trace Abstraction

Matthias Heizmann Jochen Hoenicke Andreas Podelski

University of Freiburg, Germany

Trace Abstraction

Interpolant-based software model checking for recursive programs

Software model checking

Thomas Ball, Sriram K. Rajamani:

The SLAM project: debugging system software via static analysis. (POPL 2002)

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Grégoire Sutre

Lazy abstraction. (POPL 2002)

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Kenneth L. McMillan

Abstractions from proofs. (POPL 2004)

Software model checking

Thomas Ball, Sriram K. Rajamani:

The SLAM project: debugging system software via static analysis. (POPL 2002)

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Grégoire Sutre

Lazy abstraction. (POPL 2002)

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Kenneth L. McMillan

Abstractions from proofs. (POPL 2004)

Bottleneck: Construction of abstract program

Recent approaches: Avoid classical construction of abstract program

Franjo Ivancic, Ilya Shlyakhter, Aarti Gupta, Malay K. Ganai

Model checking C programs using F-SOFT (ICCD 2005)

Kenneth L. McMillan

Lazv abstraction with interpolants (CAV 2006)

Nels Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons

Proofs from tests (ISSTA 2008)

Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, Sriram K. Rajamani

Automatically refining abstract interpretations (TACAS 2008)

Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, Heike Wehrheim

SLAB: A Certifying Model Checker for Infinite-State Concurrent Systems. (TACAS 2010)

William R. Harris, Sriram Sankaranarayanan, Franjo Ivancic, Aarti Gupta

Program analysis via satisfiability modulo path programs (POPL 2010)

One idea:
Use interpolants to avoid construction of the abstract program
theorem model
proving checking
program invariant

interpolating theorem prover

One idea:

Use interpolants to avoid construction of the abstract program

interpolating theorem prover

Ranjit Jhala, Kenneth L. McMillan

A practical and complete approach to predicate refinement (TACAS 2006)

Kenneth L. McMillan

Lazy abstraction with interpolants (CAV 2006)

Quantified invariant generation using an interpolating saturation prover (TACAS 2008)

Open: Interpolants in interprocedural analysis

Outline

- Formal setting / Our point of view:
 A program is a language over the alphabet of statements.
- ► Excursion: interpolants
- ► Trace Abstraction with interpolants
- ► Trace Abstraction for recursive programs

Example - Our Model of a Verification Problem

```
\ell_0: x:=0

\ell_1: y:=0

\ell_2: while(nondet) {x++}

assert x!= -1

assert y!= -1
```


Control flow graph of ${\cal P}$

Statements

Statement

Letter of our alphabet. No further meaning.

In our example:

$$\Sigma = \left\{ \underbrace{\texttt{x:=0}}, \underbrace{\texttt{y:=0}}, \underbrace{\texttt{x++}}, \underbrace{\texttt{x==-1}}, \underbrace{\texttt{y==-1}} \right\}$$

Control flow graph of ${\cal P}$

Statements

Statement

Letter of our alphabet. No further meaning.

In our example:

$$\Sigma = \left\{ \underbrace{\texttt{x:=0}}, \underbrace{\texttt{y:=0}}, \underbrace{\texttt{x++}}, \underbrace{\texttt{x==-1}}, \underbrace{\texttt{y==-1}} \right\}$$

Trace

Word over the alphabet of statements.

Example:

$$\pi = (y=-1).(x++).(x++).(x:=0).(x==-1)$$

Control flow graph of ${\mathcal P}$

Error Traces

Control Automaton $\mathcal{A}_{\mathcal{P}}$

Automaton over the set of statements. Encodes a verification problem.

$$\mathcal{A}_{\mathcal{P}} = \langle LOC, \delta, \{\ell_{\mathsf{init}}\}, \{\ell_{\mathsf{err}}\} \rangle$$

Error Trace of \mathcal{P}

Trace accepted by $\mathcal{A}_{\mathcal{P}}$

In our example
$$\pi = (x:=0).(y:=0).(x++).(x==-1)$$
 is an error trace.

Control automaton $\mathcal{A}_{\mathcal{P}}$

Trace Abstraction

Definition (Trace Abstraction)

A trace abstraction is given by a tuple of automata $(A_1, ..., A_n)$ such that each A_i recognizes a subset of infeasible traces, for i = 1, ..., n.

We say that the trace abstraction $(A_1, ..., A_n)$ does not admit an error trace if $A_P \cap \overline{A_1} \cap ... \cap \overline{A_n}$ is empty.

Trace Abstraction

Definition (Trace Abstraction)

A trace abstraction is given by a tuple of automata $(A_1, ..., A_n)$ such that each A_i recognizes a subset of infeasible traces, for i = 1, ..., n.

We say that the trace abstraction (A_1, \ldots, A_n) does not admit an error trace if $A_{\mathcal{P}} \cap \overline{A_1} \cap \ldots \cap \overline{A_n}$ is empty.

Theorem (Soundness)

$$\mathcal{L}(\mathcal{A}_{\mathcal{P}} \cap \overline{\mathcal{A}_1} \cap \ldots \cap \overline{\mathcal{A}_n}) = \emptyset \qquad \Rightarrow \qquad \mathcal{P} \text{ is correct}$$

Theorem (Completeness)

If \mathcal{P} is correct, there is a trace abstraction $(\mathcal{A}_1,\ldots,\mathcal{A}_n)$ such that

$$\mathcal{L}(A_{\mathcal{P}} \cap \overline{A_1} \cap \ldots \cap \overline{A_n}) = \emptyset$$

Example - Exclude an Infeasible Trace

Example – Exclude an Infeasible Trace

Example - Exclude an Infeasible Trace

Control flow as finite automaton

```
\ell_0: x:=0
\ell_1: y:=0
\ell_2: while(nondet) \{x++\}
    assert x! = -1
    assert y!= -1
     Example program \mathcal{P}
```


Floyd-Hoare proof as finite automaton

```
\ell_0: x := 0
     \{x \ge 0\}
\ell_1: y:=0
     \{x \ge 0 \land y = 0\}
\ell_2: while(nondet) \{x++\}
    assert x! = -1
    assert y!= -1
     Example program \mathcal{P}
```


Control flow graph of \mathcal{P}

Floyd-Hoare proof as finite automaton

```
\ell_0: x:=0
\ell_1: y:=0
\ell_2: while(nondet) \{x++\}
    assert x! = -1
    assert y!= -1
     Example program \mathcal{P}
```


Control flow graph of \mathcal{P}

Observation: Every transition is related to a Hoare triple!

e.g.
$$(\bigcirc, \underbrace{y:=0}, \bigcirc) \in \delta$$
 $post(\underbrace{x \ge 0}, \underbrace{y:=0}) \subseteq \underbrace{x \ge 0 \land y = 0}$

Interpolant Automata

Given:

Sequence of predicates $\mathcal{I} = I_0, I_1, \dots, I_n$

Definition (Interpolant Automaton $\mathcal{A}_{\mathcal{I}}$)

$$egin{aligned} \mathcal{A}_{\mathcal{I}} &= \langle Q_{\mathcal{I}}, \delta_{\mathcal{I}}, Q_{\mathcal{I}}^{ ext{init}}, Q_{\mathcal{I}}^{ ext{fin}}
angle & Q_{\mathcal{I}} &= \{q_0, \dots, q_n\} \ & (q_i, st, q_j) \in \delta_{\mathcal{I}} & ext{implies} & post(st, I_i) \subseteq I_j \ & q_i \in Q^{ ext{fin}} & ext{implies} & I_i = true \ & q_i \in Q^{ ext{fin}} & ext{implies} & I_j = false \end{aligned}$$

Interpolant Automata

Given:

Sequence of predicates $\mathcal{I} = I_0, I_1, \dots, I_n$

Definition (Interpolant Automaton $\mathcal{A}_{\mathcal{I}}$)

$$egin{aligned} \mathcal{A}_{\mathcal{I}} &= \langle Q_{\mathcal{I}}, \delta_{\mathcal{I}}, Q_{\mathcal{I}}^{ ext{init}}, Q_{\mathcal{I}}^{ ext{fin}}
angle & Q_{\mathcal{I}} &= \{q_0, \dots, q_n\} \ & (q_i, st, q_j) \in \delta_{\mathcal{I}} & ext{implies} & post(st, l_i) \subseteq l_j \ & q_i \in Q^{ ext{init}} & ext{implies} & l_i = true \ & q_i \in Q^{ ext{fin}} & ext{implies} & l_i = false \end{aligned}$$

Theorem

An interpolant automaton $A_{\mathcal{I}}$ recognizes a subset of infeasible traces.

$$\mathcal{L}(\mathcal{A}_{\mathcal{I}}) \subseteq \mathit{Infeasible}$$

Outline

- ► Formal setting / Our point of view: A program is a language over the alphabet of statements.
- Excursion: interpolants
- ► Trace Abstraction with interpolants
- ► Trace Abstraction for recursive programs

Craig interpolants

Craig interpolant - logical formulas

Given: Unsatisfiable conjuction $A \land B$ Interpolant is a formula I such that:

- ullet I and I \wedge B unsatisfiable
- I contains only common symbols of A and B

William Craig

Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory

Journal of Sybolic Logic (1957))

Craig interpolants

Craig interpolant - logical formulas

Given: Unsatisfiable conjuction A \land B

- Interpolant is a formula I such that:

Example (propositional logic) unsatisfiable conjuction: possible Craig interpolant:

 $\neg p \wedge r$

Example (SMT)
unsatisfiable conjuction:
possible Craig interpolant:

$$f(x_1) = y \wedge x_1 = x_2$$

 $x_2 = x_3 \wedge f(x_3) \neq y$

$$y=f(x_2)$$

Interpolants

Interpolant - execution traces

Given: Infeasible trace $(st_1) \dots (st_i) (st_{i+1}) \dots (st_n)$

Interpolant is assertion I such that:

- $\bullet \ \textit{post}(\texttt{true}, \underbrace{\textit{st}_1} \dots \underbrace{\textit{st}_i}) \subseteq \underbrace{\texttt{I}} \subseteq \textit{wp}(\texttt{false}, \underbrace{\textit{st}_{i+1}} \dots \underbrace{\textit{st}_n})$
- I contains only program variables occurring in both, $st_1 ... st_i$ and $st_{i+1} ... st_n$

Kenneth L. McMillan

Interpolation and SAT-Based Model Checking (CAV 2003)

Interpolants

Interpolant - execution traces

Given: Infeasible trace $(st_1) \dots (st_i)(st_{i+1}) \dots (st_n)$

Interpolant is assertion I such that:

- $post(true, st_1...st_i) \subseteq I \subseteq wp(false, st_{i+1}...st_n)$
- I contains only program variables occuring in both, st1 ... sti and st_{i+1})... (st_n)

Example

infeasible trace:

possible interpolant:

Inductive interpolants

Inductive sequence of interpolants

Given: Infeasible trace (st_1) ... (st_n)

There exists sequence of assertions $l_0 \dots l_n$ such that:

- $post(I_i, st_i) \subseteq I_{i+1}$
- I_0 = true and I_n = false
- I_i contains only variables occurring in both, $(st_1)...(st_i)$ and $(st_{i+1})...(st_n)$

Ranjit Jhala, Kenneth L. McMillan

A Practical and Complete Approach to Predicate Refinement (TACAS 2006)

Inductive interpolants

Inductive sequence of interpolants

Given: Infeasible trace (st_1) ... (st_n)

There exists sequence of assertions $I_0 \dots I_n$ such that:

- $post(I_i, st_i) \subseteq I_{i+1}$
- I_0 = true and I_n = false
- l_i contains only variables occurring in both, $(st_1)...(st_i)$ and $(st_{i+1})...(st_n)$

Example

SmtInterpol

- SMT-Solver Computes sequences of Craig interpolants for the quantifier free combined theory of uninterpreted functions and linear arithmetic over rationals and integers.
- Developed by

Jürgen Christ

Jochen Hoenicke

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

Outline

- ► Formal setting / Our point of view: A program is a language over the alphabet of statements.
- ► Excursion: interpolants
- ► Trace Abstraction with interpolants
- ► Trace Abstraction for recursive programs

Schematic Example – Use Interpolants for Generalization

Schematic Example – Use Interpolants for Generalization

Schematic Example – Use Interpolants for Generalization

Interpolant automaton obtained by merging all states labelled with same interpolant

CEGAR for Trace Abstraction

Outline

- ► Formal setting / Our point of view: A program is a language over the alphabet of statements.
- ► Excursion: interpolants
- ► Trace Abstraction with interpolants
- ► Trace Abstraction for recursive programs

Recursive programs - challange 1: control flow

Problem:

Sequence of statements that does not respect call-return-discipline

```
assume call foo assignment call bar assignment return foo assume return bar assume
```

Regular languages / finite automata not suitable to model control flow of recursive program

Recursive programs - challange 1: control flow

Problem:

Sequence of statements that does not respect call-return-discipline

Regular languages / finite automata not suitable to model control flow of recursive program

Recursive programs - challange 1: control flow

Problem:

Sequence of statements that does not respect call-return-discipline

Regular languages / finite automata not suitable to model control flow of recursive program

Idea: Use context free languages / pushdown automata

Context free languages are not closed under intersection

Solution 1

Visibly pushdown languages / visibly pushdown automata.

Partition symbols. Type of symbol determines stack behaviour

- Call symbol Must push one element on stack.
- Internal symbol Must not alter stack.
- Return symbol Must pop one element from stack.

Rajeev Alur, P. Madhusudan

Visibly pushdown languages (STOC 2004)

Modelling control flow

Partition statements

Store return address on stack

Solution 2

Nested word languages / nested word automata.

Add call-return dependency explicitely to the word ${\sf Nested \ word = word + nesting \ relation}$

Rajeev Alur, P. Madhusudan

Adding nesting structure to words (DLT 2006, J. ACM 56(3) 2009)

Solution 2

Nested word languages / nested word automata.

Add call-return dependency explicitely to the word Nested word = word + nesting relation

Rajeev Alur, P. Madhusudan

Adding nesting structure to words (DLT 2006, J. ACM 56(3) 2009)

visibly pushdown vs. nested word

	input	device
visibly pushdown	simple	complex
automata		(stack)
nested word	complex	simple
automata	(nesting relation)	

Example - control flow as nested word automata

McCarthy 91 function

nested word automaton

nested word automaton has 4-ary return relations

Recursive programs - challange 2: interpolants

What is an interpolant for an interprocedural execution?

- state with a stack?
 - → locality of interpolant is lost

Recursive programs - challange 2: interpolants

What is an interpolant for an interprocedural execution?

- state with a stack?
 - → locality of interpolant is lost

- only local valuations?
 - → call/return dependency lost,
 - → sequence of interpolants is not a proof

Recursive programs - challange 2: interpolants

What is an interpolant for an interprocedural execution?

Idea: "Nested Interpolants"

Define sequence of interpolants with respect to nested trace.

Define ternary post operator for return statements

Control flow as nested word automata

```
procedure m(x) returns (res)
\ell_0: if x>100
\ell_1: res:=x-10
   else
    x_m := x+11
      call m
     x_m := res_m
\ell_5:
     call m
    res := res_m
\ell_{7}: assert (x<=101 -> res=91)
   return m
```

McCarthy 91 function

nested word automaton

Floyd-Hoare proof as nested word automata

```
procedure m(x) returns (res)
\ell_0: if x>100
      \{x \ge 101\}
l: res:=x-10
    else
        {x \le 100}
\ell_2:
      x_m := x+11
        \{x_m \le 111\}
l3:
       call m
        \{res_m \leq 101\}
\ell_4:
       x_m := res_m
       \{x_m \le 101\}
       call m
\ell_5:
       \{res_m = 91\}
      res := res_m
    \{res = 91 \lor (x \ge 101 \land res = x - 10)\}
    assert (x<=101 -> res=91)
    return m
```

McCarthy 91 function

nested word automaton

Floyd-Hoare proof as nested word automata

```
procedure m(x) returns (res)
ℓ<sub>0</sub>: if x>100
      \{x \ge 101\}
\ell_1: res:=x-10
    else
        {x \le 100}
\ell_2:
      x_m := x+11
        \{x_m \le 111\}
l3:
       call m
        \{res_m \leq 101\}
\ell_4:
       x_m := res_m
       \{x_m \le 101\}
       call m
\ell_5:
       \{res_m = 91\}
      res := res_m
    \{res = 91 \lor (x \ge 101 \land res = x - 10)\}
    assert (x<=101 -> res=91)
    return m
```

McCarthy 91 function

nested word automaton

Conclusion

Trace Abstraction

- Refine abstraction by using independent underapproximations of infeasible traces.
- Use interpolants directly to create a component of the abstraction. Economic use of theorem prover.
- Use nested words to define inductive sequence of interpolants for recursive programs.

Future Work

- Liveness properties
- Concurrent Programs
- Caching infeasibility: reuse abstractions from one program to another.
- Guided generation of interpolants (strength of interpolants)