- 1. น้ำมันหล่อลื่นและผลิตภัณฑ์หล่อลื่นจาก Mobil™ ∣เว็บไซต์อย่างเป็นทางการของ Mobil™ประเทศไทย
- 2. ผลิตภัณฑ์จาก Mobil™
- 3. Mobil Almo 500 Series

์คุณสมบัติในการทำงานทั้งหมดของเว็บไซต์อาจไม่มีจัดไว้ให้จากการปรับแต่งค่าการใช้คุ้กกิ้ของคุณ คลิกที่นี่เพื่ออัพเดตค่าปรับตั้ง

Mobil Almo 500 Series

น้ำมันหล่อลื่นเครื่องมือและเครื่องเจาะหินแบบใช้ลมบังคับ

น้ำมันหล่อลื่น โมบิล อัลโม่ 500 ซีรีส์ (Mobil Almo500 Series) เป็นผลิตภัณฑ์สมรรถนะสูง คุณภาพสูงพิเศษ ที่ผลิตขึ้นเพื่อการหล่อลื่นงานเจาะหินที่ท่างานโดยใช้ลมบังคับ ในงานเหมืองแร่ที่ท่างานใต้ดินและบนดินเป็นหลัก น้ำมันหล่อลื่นในตระกูล โมบิลอัลโม่ ซีรีส์ (Mobil Almo Series) คิดคันขึ้นมาจากน้ำมันพื้นฐานคุณภาพสูง พร้อมเดิมสารเพิ่มคุณภาพ ที่ให้ความคงตัวทางเคมีอันยอดเยี่ยม พร้อมป้องกันการเกิดสนิมและการกัดก่อนได้อย่างเป็นเลิศ ให้สมดุลอันโดดเด่นในเรื่องของการจับตัวมีความสามารถในการผสมระหว่างน้ำและน้ำมันมากพอที่จะจับความขึ้นที่มีในอากาศจนลดผลกระทบร้ายของน้ำ ที่มีต่อการสึกหรอและการกัดกร่อน น้ำมันชนิดนี้ไม่ทำให้เกิดคราบเหนียวสกปรก ที่อาจเป็นต้นเหตุให้วาล์วทำงานติดขัด แม้เมื่อต้องทำงานในสภาพที่มีน้ำอยู่ตลอดเวลา น้ำมันหล่อลื่น โมบิล อัลโม่ 500 ซีรีส์ (Mobil Almo500 Series) ก็ยังมีคุณสมบัติในการเป็ยกน้ำของโลหะ ที่ช่วยรักษาฟิล์มน้ำมันไว้อย่างต่อเนื่อง คุณสมบัติเหล่านี้เมื่อผสมผสานกับคุณลักษณะเรื่อง EP ที่สูง ย่อมช่วยให้การหล่อลื่นอันยอดเยี่ยม ส่งผลให้เครื่องมือหรืออุปกรณ์มีอายุการใช้งานที่ยาวนาน

้น้ำมันหล่อลื่น โมบิล อัลโม่ 500 ซีรีส์ (Mobil Almo500 Series) มีดัชนีความหนืดสูง และจุดไหลเทต่ำ เพื่อให้การหล่อลื่นที่ดี ณ อุณหภูมิต่ำ อันเป็นผลมาจากการขยายตัวของอากาศและการป้องกันเพื่อหยุดการเกิดน้ำแข็งพร้อมกับการสร้างฟิลม์น้ำมันที่เหมาะสมกับส่วนประกอบที่ใช้ในงานเจาะทำงานที่อุณหภูมิสูง ระดับการเกิดของไอน้ำมันเหมือนหมอกนั้น ค่อนข้างต่ำมาก

ลักษณะสำคัญและคุณประโยชน์

น้ำมัน โมบิล อัลโม่ 500 ซีรีส์ ให้สมดุลด้านสมรรถนะอันยอดเยี่ยม ซึ่งรับประกันถึงอายุการใช้งานเครื่องมือที่ยาวนาน และดันทุนการบำรุงรักษาที่ต่ำที่สุด คุณลักษณะในเรื่องการป้องกันการสึกหรออันยอดเยี่ยม และความสามารถในการหล่อลื่นที่เพียงพอในกรณีที่ต้องมีน้ำอยู่ ไม่เพียงแต่ช่วยลดการสึกหรอ แต่ยังช่วยป้องกันสนิมและการกัดกร่อนความคงตัวทางเคมีที่ดี ช่วยป้องกันการเกิดคราบตะกอน และการก่อตัวของคราบสกปรก จึงช่วยลดความจำเป็นในการบำรงรักษาบ่อยครั้ง

ข้อดีและคุณประโยชน์ศักย์
ุ ลดการเกิดคราบตะกอนและการก่อตัวของคราบสกปรก
ไร้บปรุงการทำงานของวาล์ว การหล่ออื่นที่มีประสิทธิภาพแบ้ในสภาพที่ต้องเจอกับน้ำ
ให้การหล่อลื่นที่ดี ณ อุณหภูมิที่สูงและต่ำ
ุ จดการสึกหรอในส่วนประกอบ
<u>ข</u> ืดอายุการใช้งานเครื่องมือ
จดค่าบำรุงรักษา
ไกป้องพื้นผิวที่เป็นโลหะจากการผุกร่อน
ให้ฟิล์มหล่อลื่นที่ดีภายใต้ทุกสภาวการณ์
ขืดอายุการใช้งานของเครื่องมือ พิ่มสมรรถนะของเครื่องมือ
ล ไม่ ไม่

การใช้งาน

แนะนำให้ใช้น้ำมัน โมบิล อัลโม่ 500 ซีรีส์ (Mobil Almo500 Series) ในงานเจาะหินที่ทำงานโดยใช้ลมบังคับทุกประเภทภายในเหมืองใต้ดินและบนดิน รวมทั้งในบริษัทรับเหมาก่อสร้างและการใช้งานระดับอุตสาหกรรมต่างๆ เหมาะสมสำหรับเครื่องมือประเภทที่มีการกระแทกและมีลูกสูบหมุน เกรดความหนืดในระดับต่างๆ สะดวกต่อการเลือกใช้งานตลอดทั้งปีในกรณีที่อุณหภูมิภายนอกตามฤดูกาลผันแปรอย่างรุนแรง

- งานเจาะหินที่ทำงานโดยใช้ลมบังคับในการทำเหมืองใต้ดินและบนดิน
- งานเจาะหินที่ทำงานโดยใช้ลมบังคับและเครื่องเจาะโดยใช้ลมทำงาน ในงานสร้างทางหลวงและการสร้างอาคาร
- งานเจาะหินในการระเบิดและย่อยหิน
- เครื่องมือที่ทำงานด้วยอากาศแบบมีการกระแทก และมีลูกสูบหมุนในอุตสาหกรรม

คุณสมบัติทั่วไป

	Mobil Alm	o 524 Mobil Alm	o 525 Mobil Almo	o 527 Mobil Alm	o 529 Mobil Alm	o 530 Mobil Almo 532
เบอร์น้ำมัน ISO	32	46			220	320
ความหนืด, ASTM D 445						
cSt @ 40°C	32	46	100	172	220	320
cSt @ 100°C	5.5	7.3	11.5	16.5	19.7	24.9
ดัชนีความหนืด, ASTM D 2270	108	105	102	102	100	99
จุดไหลเท,องศาเซลเซียส, ASTM D 97	-51	-30	-27	-24	-24	-21
จุดวาบไฟ, องศาเชลเซียส, ASTM D 92, n	nin 170	188	220	220	220	232
ความหนาแน่น @ 15.6°C, kg/l, ASTMD 40	0520.880	0.883	0.899	0.893	0.898	0.902

จากข้อมูลที่มีอยู่ ผลิตภัณฑ์ชนิดนี้ไม่คาดว่าจะเกิดผลร้ายต่อสุขภาพ หากใช้ถูกต้องความวัดถุประสงค์และปฏิบัติตามคำแนะนำใน 'ฃ้อมูลความปลอดภัยการใช้สารเคมี (MSDS)" สามารถขอ MSDS ได้จากสำนักงานขายหรือผ่านทางอินเตอร์เน็ต ผลิตภัณฑ์ชนิดนี้ไม่ควรนำไปใช้เพื่อจุดประสงค์อื่น นอกเหนือไปจากที่กำหนดไว้ ในการกำจัดผลิตภัณฑ์ที่ใช้แล้ว ขอให้ระมัดระวังในการรักษาสิ่งแวดล้อม