Using existing CCTV network for crowd management, crime prevention, and work monitoring using AIML

Batch Number: COM22

Roll Number	Student Name	Under the Supervision of,	
20211COM0099	SUNNY YADAV	Prof. Mohamed Shakir	
20211LCE0002	AYAPPA ARJUN	Associate Professor	
20211LCE0006	RANGASWAMY	School of Computer Science and Engineering	
20211LCE0009	SACHIDANANDA	Presidency University	

Name of the Program: COMPUTER ENGINEERING

Name of the HoD: Dr.GOPAL KRISHNA SHYAM

Name of the Program Project Coordinator: Dr.Sudha P

Name of the School Project Coordinators: Mr. Mohamed Ziaur Rahman

Introduction

- Managing crowds, security, and workforce in public transport hubs is challenging.
- Traditional CCTV monitoring is manual, inefficient, and error-prone.
- AI and ML enable transforming CCTV into intelligent surveillance systems.
- Real-time detection of crowd congestion, unusual behavior, and workforce issues.
- Provides automated alerts and predictive analytics for proactive management.
- Enhances safety, optimizes crowd movement, and improves workforce monitoring.
- Helps authorities prevent overcrowding, detect suspicious activities, and manage staff efficiently.

Abstract

- AI/ML-driven smart surveillance using existing CCTV networks
- Improves crowd management, crime prevention, and workforce monitoring
- Uses computer vision, deep learning, and real-time video analysis
- Detects crowd density, unusual activities, and workforce efficiency
- Features automated security alerts and predictive crowd analysis
- Provides actionable insights for railway authorities and law enforcement
- Optimizes security and resource allocation for safer public spaces
- Reduces human dependency and enhances control over large crowds

Literature Survey

SI. No	Name	Implementation	Drawbacks
1	Al/ML-driven Surveillance	Uses AI/ML on CCTV footage for intelligent analysis	High computational resources needed
2	Crowd Management	Real-time crowd density and movement analysis using computer vision	Accuracy affected by poor video quality
3	Crime Prevention	Detects unusual activities with deep learning	False positives can cause unnecessary alerts
4	Workforce Monitoring	Tracks workforce efficiency via video analytics	Privacy concerns and staff resistance
5	Automated Alerts	Sends real-time alerts on anomalies	Alert fatigue if too frequent
6	Predictive Crowd Analysis	Forecasts crowd congestion and behavior with predictive analytics	Predictions may be inaccurate in dynamic cases
7	Resource Optimization	Provide sights for efficient	Dependent on input data quality

Existing Methods and Their Drawbacks

Existing Methods

- 1. Manual CCTV Monitoring Security staff manually observe live footage.
- 2. Traditional Surveillance Systems Only record events without real-time AI-driven analysis.
- 3. Basic Crowd Control Measures Relies on human estimates and physical barriers.

Drawbacks

- Human Error Security personnel may miss critical events due to fatigue.
- Delayed Response Manual monitoring does not allow real-time automated alerts.
- Limited Scalability Inefficient when managing large railway stations.
- Lack of Predictive Insights Cannot forecast crowd behavior patterns.

Proposed Method

The proposed AI/ML-based smart surveillance system will:

- 1. Extract live CCTV footage from existing railway camera networks.
- 2. Process video streams using deep learning algorithms for:
 - Crowd density detection (overcrowding alerts)
 - Behavioral anomaly detection (suspicious activity)
 - Workforce activity tracking (cleaning and maintenance monitoring)
- 3. Generate AI-powered alerts for railway security and management teams.
- 4. Provide an Admin Dashboard with data analytics and reports.

Objectives

- Develop an AI/ML-powered system to analyze CCTV footage in real-time.
- Implement crowd monitoring algorithms for predictive congestion control.
- Enable crime detection through behavioral anomaly recognition.
- Automate workforce monitoring to improve cleanliness & station management.
- Provide automated alerts to railway authorities for quick decision-making.
- Ensure privacy compliance and ethical AI implementation.

Methodology

Step 1: CCTV Data Collection & Processing

- Integrate existing CCTV feeds into the system.
- Preprocess video data by removing noise, enhancing images, and extracting key frames.
- Store structured video metadata in a MySQL database for retrieval.

Step 2: AI Model Development for Crowd & Crime Detection

Train computer vision models (YOLO, Faster R-CNN, OpenCV) to detect:

- Crowd congestion levels
- Unusual activities (loitering, aggressive behaviour, theft)
- Abandoned objects

Implement ML-based predictive analytics to anticipate crowd surges.

Methodology

Step 3: Real-time Alert System Implementation

- Develop an event-driven system to send real-time alerts to authorities.
- Use Deep Learning for anomaly detection in crowded areas.
- Implement an AI-based violation detection system (e.g., non-compliance with safety rules).

Step 4: Backend & Database Management

- Store processed video insights in a structured MySQL database.
- Implement a REST API to allow access to alert data for security personnel.

Step 5: Frontend Dashboard Development

- Develop a web-based dashboard using React.js or Angular for security personnel.
- Provide live video feed analysis and alerts.
- Implement analytics and heatmaps for crowd density visualization.

Methodology

Step 6: Testing & Performance Evaluation

- Conduct stress testing on CCTV feeds to ensure real-time response.
- Evaluate false positive and false negative rates for AI models.
- Optimize AI model performance based on field test feedback.

Step 7: Deployment & Monitoring

- Deploy the system on cloud or local servers with real-time data processing capabilities.
- Provide training for railway security personnel to interpret AI-generated insights.
- Enable continuous monitoring and periodic AI model updates for improved accuracy.

Architecture Diagram

CCTV Camera Network Video Stream Processing (AI Model) Deep Learning Algorithms for Crowd & Crime Detection Alert System (Real-Time Notifications) Admin Dashboard (Reports & Insights)

Modules

- **1. Real-Time Crowd Analysis Module** AI detects overcrowding patterns.
- 2. Crime Prevention Module Identifies suspicious behavior using deep learning.
- **3. Workforce Monitoring Module** Tracks maintenance staff activities.
- **4. Admin Dashboard Module** Provides insights, alerts, and reports.
- **5. Ethical & Privacy Compliance Module** Ensures responsible AI implementation.

Hardware and Software Details

Hardware Requirements

- 1. CCTV Camera System Existing railway surveillance cameras.
- 2. AI Processing Unit High-performance GPU server.

Software Requirements

- 1. Python 3.x AI model development.
- 2. OpenCV & TensorFlow Image processing & deep learning.
- 3. Flask/Django Backend for API & data management.
- 4. MySQL Database for storing logs & reports.
- 5. JavaScript (React.js) Web-based Admin Dashboard.

Timeline of the Project (Gantt Chart)

Review 0	Review 1	Review 2	Review 3
 Literature survey & studies Finalized objectives Proposed methods 	1. Architecture Diagram 2. Modules 3. Hardware and Software Details	1. Algorithm Details 2. Source Code Details 3. 50% implementation	1. 100% implementation 2. 100% completed report
29-Jan-2025 To 31-Jan- 2025	18-Feb-2025 To 21-Feb-2025	17-Mar-2025 To 21-Mar- 2025	16-Apr-2025 To 19-Apr-2025

Expected Outcomes

- Enhanced passenger safety & security
- Optimized railway staff performance monitoring
- Reduced operational inefficiencies and response delays
- Data-driven decision-making for station management

Conclusion

This project presents an AI/ML-driven smart surveillance system that leverages existing railway CCTV networks to enhance crowd management, crime prevention, and workforce monitoring. By automating real-time video analysis, this system will improve railway security, optimize station operations, and ensure safer travel experiences for millions of passengers.

References

- [1] AI-Based Crime Detection in Public Places IEEE, 2022
- [2] Smart Surveillance for Crowd Management Springer, 2021
- [3] Machine Learning for Railway Safety Elsevier, 2020
- [4] Predictive Analytics in Public Transport ScienceDirect, 2022
- [5] Deep Learning for Anomaly Detection ACM, 2021
- [6] Video-Based AI Systems for Security Wiley, 2022
- [7] Ethical AI in Surveillance Journal of Digital Ethics, 2020
- [8] Automated Work Monitoring using AI IEEE, 2019
- [9] Computer Vision in CCTV Surveillance Springer, 2021
- [10] AI for Public Safety Elsevier, 2022

Thank You