Technical Report: Satisfying Constrained Multiple Selection Queries Using IRV

ACM Reference format:

. 2024. Technical Report: Satisfying Constrained Multiple Selection Queries Using IRV. In *Proceedings of SIGMOD 2024, Chile, Santiago,* 3 pages. https://doi.org/10.1145/1122445.1122456

0.1 Hardness Results

Theorem 0.1. **MqIRV** is NP-Complete, even when $\ell = 2$.

Consider an election in which m voters need to elect k=1 candidate out of n candidates. In the election, each voter casts his/her ballot for two candidate in ranked order. The final candidate is determined using the IRV process. For a given instance of the election, we define the margin as the number of ballot changes required to ensure that a specific candidate wins.

We prove that computing the margin is NP-Complete. Our proof is inspired by the NP-Hardness proof of [1]. It is straightforward that the problem is in NP since the outcome of an IRV election can be computed in polynomial time. The NP-hardness is proved by reduction from the 3-Exact Cover problem (3XC). In this problem, we are given a universal set $\{e_1,\ldots,e_{3n}\}$, and $m\geq n$ subsets S_1,\ldots,S_m of size 3 each. We need to determine whether there are n sets whose union is the universal set.

Suppose that we are given an instance of the 3XC problem. We show how to define a related IRV margin problem and then prove that the IRV has a margin n if and only if the answer to the respective 3XC problem is Yes.

The IRV problem has 2m+3n+2 candidates $b_1, \ldots, b_m, c_1, \ldots, c_m$, e_1, \ldots, e_{3n} and u, v. We must ensure that u wins the election. There are $6m + m^2 + m(m+5) + 3n(2m+10) + 2m+11 + 2m+13 = 2m^2 + 6mn + 15m + 30n + 24$ ballots as follows:

- For every i ∈ [1..m], let S_i = {e_x, e_y, e_z}. There are 6 ballots that we call "cover ballots". These ballots are two of each [b_i, e_x], [b_i, e_y], and [b_i, e_z]
- For every $i \in [1..m]$ there are m ballots $[b_i, c_i]$
- For every $i \in [1..m]$ there are m + 5 ballots $[c_i, b_i]$
- For every $i \in [1..3n]$ there are 2m + 10 ballots $[e_i, v]$
- There are 2m + 11 ballots [v, u]
- There are 2m + 13 ballots [u, v]

Suppose that the 3XC instance has an exact cover. Let the indices of the sets in the cover be $j_1 \ldots, j_n$. We change n ballots as follows. For every $i \in [1..n]$ change a ballot $[b_{j_i}, c_{j_i}]$ to $[c_{j_i}, b_{j_i}]$.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 2024, Santiago, Chile

© 2024 Association for Computing Machinery. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00 https://doi.org/10.1145/1122445.1122456

We successively eliminated all candidates who got the least number of votes, which is initially m+5. There are m candidates with this number of votes: m-n candidates c_X , for $x \in [1..m] \setminus \{j_1 \ldots, j_n\}$, and n candidates b_X , for $x \in \{j_1 \ldots, j_n\}$. As a result of eliminating the m-n candidates c_X , the number of votes of the candidates b_X , for $x \in [1..m] \setminus \{j_1 \ldots, j_n\}$ jumps to 2m+11. As a result of eliminating the n candidates b_X , the number of votes of the candidates c_X , for $x \in \{j_1 \ldots, j_n\}$, jumps to 2m+5. Also, since the union of the n sets S_X , $x \in \{j_1 \ldots, j_n\}$, is the universal set, the elimination of b_X in the 6n "cover ballots" causes the number of votes of every e_i to jump to 2m+12.

Next, the n remaining candidates c_x , for $x \in \{j_1, \dots, j_n\}$, with 2m+5 votes are eliminated. This does not change the vote of any other candidate. Lastly, the m-n candidates b_x , for $x \in [1..m] \setminus \{j_1, \dots, j_n\}$, and v each with 2m+11 votes are eliminated. None of the e_i is eliminated at this point because all of them have 2m+12 votes. Then, all e_i s will be deleted, each with 2m+12 votes, and, finally, u wins with 2m+11+2m+13=4m+24 votes.

We need to prove the other direction. Namely, if the margin is n then there is an exact cover. Suppose that the outcome of the elections can be changed to be u by at most n ballot changes. Since candidate v has one more vote than each of the 3n candidates e_1, \ldots, e_{3n} , we need to increase the votes of all the candidates e_1, \ldots, e_{3n} by at least 2 so that none of the e_i is eliminated before v is eliminated. Because if any of e_i s is eliminated before v is eliminated, then the second choice of e_i 's ballot goes to v and the votes of vincrease to 4m + 21. Then all e_i and u will be eliminated, and v wins the election, and u loses. The only way to ensure that none of e_i s is eliminated before v is by eliminating some of the candidates b_i . This can be done by ballot changes that reduce the number of votes of some of the candidates b_i by 1 and increase the number of votes of the respective candidates c_j . This will cause some candidates b_i to be eliminated and thus increase the votes of the resulting elements e_i in the "cover ballots" corresponding to these candidates b_i . Since we can make only n ballot changes and since the cover ballots of any candidate b_i change the votes of only the 3 candidates from $\{e_1, \ldots, e_{3n}\}$ that correspond to the set S_j , the *n* candidates b_i eliminated first must correspond to an exact set.

Theorem 0.2. DistTo is NP-hard, even when $\ell = 3$.

PROOF. First, we prove that DISTTO is NP-hard when instead of ballot modifications we consider ballot deletions. The proof is by reduction from the 3-Exact Cover problem (3XC) described earlier. In the 3XC problem we are given a universal set $\{v_1,\ldots,v_{3n}\}$, and m>n subsets S_1,\ldots,S_m of size 3 each. We need to determine whether there are n subsets whose union is the universal set. Given an instance of the 3XC problem, we show how to reduce it to an instance of DISTTO. The instance of DISTTOconsists of 3n+1 candidates v_1,v_2,\ldots,v_{3n+1} , and the elimination order $\pi=v_1,v_2,\ldots,v_{3n+1}$ ($\pi[1]=v_1$ is eliminated first, and $\pi[3n+1]=v_1$ is eliminated first, and $\pi[3n+1]=v_1$

 v_{3n+1} is the winner). We show that this elimination order can be achieved with n ballot deletions iff the 3XC instance has a positive answer. The polynomial number of ballots in the instance varies in size from 3 to 1 and is described below.

Ballots of size 3: There are m ballots of size 3, one per every subset S_i , $1 \le i \le m$. Consider a subset $S_i = \{v_x, v_y, v_z\}$. From now on, we assume that the subset is "ordered", that is, $1 \le x < y < z \le 3n$. For every such subset S_i , the ballot (v_x, v_y, v_z) is added, namely v_x is the top candidate in the ballot, v_y is the second candidate, and v_z is the bottom candidate.

Ballots of size 2: For $1 \le x < y \le 3n$, let c_{xy} be the sum of the following 2 numbers: (1) number of ballots of size 3 in which v_x is the top candidate and v_y is the second candidate and (2) the number of ballots of size 3 in which v_x is the second candidate and v_y is the bottom candidate (note that the index of the top candidate in this case is lower than x). Let $\max_{x \in S} c_x = \max_{y \in S} c_x c_y$. For every $x < y \le 3n$, there are $\max_{x \in S} c_x c_x c_x c_x$ ballots of size 2 consisting of candidate v_x as the top candidate and v_y as the second candidate. There are also $\max_{x \in S} c_x c_x$ ballots consisting of candidate v_x as the top candidate and candidate v_x as the second candidate.

The total number of size 2 ballots is bounded by 6nm-2m since there are at most $(3n-1)\cdot maxc_x$ size 2 ballots with v_x as the top candidate for $1\leq i\leq 3n$, and $\sum_{x=1}^{3n} maxc_x \leq 2m$.

Ballots of size 1: For $1 \le x \le 3n$, let d_x be the total number of ballots of size 3 and size 2 in which v_x is the top candidate. Let $maxd = \max_{y=1}^{3n} \{d_y\}$. There are $maxd - d_x$ ballots of size 1 consisting only of candidate v_x as the top candidate and the only candidate. There are also maxd - 1 ballots consisting of only candidate v_{3n+1} as the top and only candidate. The number of ballots of size 1 is bounded by $18n^2m - 3nm$ since at most 3n candidates have single ballots, and for each of these candidates, there are at most m + 6nm - 2m ballots of size 1, since this is an upper bound on the number of ballots of size 2 and 3 per candidate.

We prove that if there is an exact cover, then the margin is n. Suppose that the 3XC instance has an exact cover consisting of n sets. Each such set corresponds to a ballot of size 3. We call these ballots the "cover ballots". For $1 \le x \le 3n$, let b(x) be the unique cover ballot containing x. We prove below that after deleting the n cover ballots the IRV process will result in the elimination order $v_1, v_2...v_{3n+1}$.

By our construction, before the deletion of the cover ballots, each of the candidates v_1, \ldots, v_{3n} is the top candidate on the *maxd* ballots and v_{3n+1} is the top candidate on the maxd - 1 ballots. Since the candidates on every ballot are ordered, v_1 must be the top candidate in ballot b(1) and thus after the removal of this ballot, v_1 is the top candidate in maxd - 1 ballots. Also, since no candidate appears more than once in the cover ballots, after their removal, each of the candidates v_2, \ldots, v_{3n} is the top candidate on either maxd-1 or maxd ballots. Recall that ties are broken arbitrarily, and thus we can eliminate v_1 . As a result of the elimination of v_1 the top candidate in all ballots that included v_1 (and are not of size 1) is updated. By our construction, there are exactly $maxc_1$ such ballots for each of the candidates v_2, \ldots, v_{3n+1} . After the elimination of v_1 , v_2 must be the top candidate in ballot b(2) and therefore after the removal of this ballot v_2 is the top candidate in $maxc_1 + maxd - 1$ ballots. Again, no candidate can be the top

candidate in less than $maxc_1 + maxd - 1$ ballots and thus v_2 can be eliminated. Continuing in the same manner, after the elimination of v_1, \ldots, v_{x-1} , candidate v_x must be the top candidate in ballot b(x) and thus after the removal of this ballot v_x is the top candidate in $\sum_{y=1}^{x-1} maxc_y + maxd - 1$ ballots and can be eliminated as dictated by the required elimination order.

In the other direction, we prove that if the margin is n then there is an exact cover. To achieve this goal, we show that any set of ballots whose removal results in the elimination order $v_1, v_2...v_{3n+1}$ must include the candidates $v_1, v_2...v_{3n}$. We prove this by contradiction. Assume that this is not the case and that there exists a set of ballots that do not include a candidate v_x whose removal results in the required elimination order. Let v_x be the candidate with the minimum index that is not included in the deleted ballots. In this case, by our construction, when v_x is about to be eliminated, it is the top candidate of $\sum_{y=1}^{x-1} maxc_y + maxd$ ballots, while v_{3n+1} is the top candidate of $\sum_{y=1}^{x-1} maxc_y + maxd - 1$ ballots. A contradiction. Clearly, the only way to delete n ballots that include all n candidates n0, n1, n2, n2, n2, n3 is by choosing ballots of size n3 that correspond to an exact cover.

Next, we extend this proof to the case of ballot modifications. We use the same ballot profile as before with only one difference: candidate v_{3n+1} has maxd-n-1 ballots, that is, n+1 fewer ballots than any other candidate (instead of having 1 ballot less than the others). By a similar reduction, it can be shown that in this scenario, the 3XC problem instance has an exact cover iff the optimal solution to the DISTTOinstance consists of n ballot modifications where the ballots removed in these modifications include candidates $v_1, v_2...v_{3n}$ and each of the added n ballots includes candidate v_{3n+1} as the top and only candidate.

REFERENCES

[1] John J. Bartholdi and James B. Orlin. 1991. Single transferable vote resists strategic voting. Social Choice and Welfare 8, 4 (1991), 341–354. http://www.jstor.org/stable/41105995