

Análise e Previsão de Séries Temporais

Aula – 5: Modelos ARMA

Eraylson Galdino egs@cin.ufpe.br

Agenda

- Processo ARMA(p,q)
- Definições:
 - Existência e Singularidade
 - Causalidade
 - Invertibilidade
- FAC x FACP:
 - ARMA(1,0)
 - ARMA(2,0)
 - ARMA(0,1)
 - ARMA(0,2)
 - ARMA(1,1)
- Modelagem de um ARMA(p,q)

Revisão da Lista

- Random Walk;
- Correlograma: p(0) = 1
- Diferenciação se aplica sem precisar eliminar a tendência da série por outra técnica;

Processo ARMA(p,q)

O processo $\{X_t, t \in \mathbb{Z}\}$ é dito ser um processo ARMA(p,q) se $\{X_t\}$ é estacionário para todo t, em que:

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

AR(p)

Processo Auto Regressivo de ordem \boldsymbol{p}

MA(q)

Processo Média Móveis de ordem \boldsymbol{q}

Processo ARMA(p,q)

Utilizando o operador de deslocamento

Processo ARMA(p,q)

Definições: Existência e Singularidade

• Existe uma solução estacionária $\{x_t\}$ obtida por um modelo ARMA e é único se, e apenas se:

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p \neq 0$$

A solução do polinômio de ordem **p** for diferente de zero para valores absolutos do resíduo (**z**) igual à 1

Aplicabilidade: garante que é possível encontrar um modelo que represente o processo gerador.

Definições: Causalidade

O processo é considerado uma função casual quando:

$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

Os pesos são constantes e com soma finita

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$$

 $X_t = \sum_{j=0}^\infty \psi_j Z_{t-j}$ Uma observação da série possa ser representada através de uma soma ponderada dos resíduos anteriores à observação

Aplicabilidade: É preciso que exista causalidade entre as observações para que se possa entender o comportamento de uma série e fazer previsões.

Definições: Invertibilidade

• O processo é considerado uma função invertível se:

$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$

A soma das constantes π_i é um valor finito

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} \text{ for all } t$$

O valor do resíduo atual pode ser representado pela a soma ponderada das constantes em relação a observação passada

• Em outras palavras: É um processo invertível se posso utilizar um AR(p) para explicar um MA(q)

Aplicabilidade: Em alguns casos, só podemos observar a causalidade através do resíduo ou através das observações. Se o processo foi invertível, através dos resíduos podemos estimar as observações, ou o contrário.

FAC x FACP

- Função de Autocorrelação:
 - Utilizada para verificar como as defasagens da série podem impactar seu valor atual:

Verifica se x_{t-k} está correlacionado com x_t

- Função de Autocorrelação Parcial:
 - Utilizada para verificar a relação entre lags diferentes sem influência dos lags intermediários:

Verifica se x_{t-k} está puramente correlacionado com x_t

FAC x FACP

• Exemplo:

• Temos 3 pontos da série: $\{x_t, x_{t-2}, x_{t-3}\}$, através de FAC iremos obter a correlação entre x_t e x_{t-3} , porém o valor obtido da correlação foi influenciado pela correlação entre x_{t-2} e x_{t-3} . Através da FACP isso não acontece, a correlação entre x_{t-1} e x_{t-3} não é influenciada por a correlação entre x_{t-2} e x_{t-3} .

• FAC e FACP para o ARMA(1, 0): $x_t = 0.6x_{t-1} + e_t$

Para um processo AR(1), com o coeficiente positivo, as correlações na FAC vão decaindo até zero de acordo com o aumento do lag

• FAC e FACP para o ARMA(1, 0): $x_t = -0.6x_{t-1} + e_t$

Para um processo AR(1), com o coeficiente negativo, as correlações na FAC vão decaindo até zero de acordo com o aumento do lag, porém os sinais dos valores vão sendo alterados.

• FAC e FACP para o ARMA(1, 0): $x_t = 1x_{t-1} + z_t$

Random Walk é um tipo especial de AR(1) com a constante igual à 1

• FAC e FACP para o ARMA(2,0): $x_t = -0.2x_{t-1} + 0.8x_{t-2} + e_t$

• FAC e FACP para o ARMA(2,0): $x_t = -0.2x_{t-1} + 0.8x_{t-2} + e_t$

• FAC e FACP para o ARMA(0,1): $x_t = -0.8z_{t-1}$

• FAC e FACP para o ARMA(0,2): $x_t = -0.3z_{t-1} - 0.7z_{t-2}$

• FAC e FACP para o ARMA(1,1): $-0.8x_{t-1} = -0.3z_{t-1}$

Modelar o processo ARMA(p,q)

$$X_t - \phi X_{t-1} = Z_t + \theta Z_{t-1}, \quad \{Z_t\} \sim \text{WN}\left(0, \sigma^2\right)$$

- Avaliar e garantir estacionariedade;
- Etapas para seleção dos parâmetros (número de ordem) para os modelos ARMA(p,q):
 - Utilizar a FACP para as observações x_n e selecionar o ultimo lag (k) com correlação estatisticamente significativa como valor de ordem AR(p=k);
 - Utilizar a FAC para as observações x_n e selecionar o ultimo lag (k) com correlação estatisticamente significativa como valor de ordem MA(q=k);
- Estimar os valores dos parâmetros ϕ , $\theta \in \sigma$:
 - Two-Step Regression Estimation;
 - Yule-Walker Estimation;
 - Maximum Likelihood Estimation

Extras

- Código com alguns exemplos em python:
 - https://github.com/EraylsonGaldino/timeseries/blob/master/cap%203%20-%20aula%2001.ipynb

Referências

- BOX, G. E. P. and JENKINS, G. M. (2008). Time series analysis: forecasting and control, 4nd. ed., San Francisco: Holden-Day.
- Brockwell, Peter J. and Davis, Richard A. (2002). Introduction to Time Series and Forecasting, 2nd. ed., Springer-Verlag