Identifying animals in camera trap footage

Project Update - Final Milestone

by Lena Schwertmann

Module: Machine Learning Lab

Examiner: Prof. Ulf Brefeld **Date:** January 26, 2020

Data

- dataset: Island Conservation Dataset (Pacific Ocean & Caribbean)
 → 100 k RGB images, 47 classes, imbalanced
- only included images with a single animal (5k images excluded)
- challenges
 - animals are often only **partly visible**
 - many different landscape types/backgrounds

Baseline & Model

Baseline: predict majority class

Baseline accuracy = 25% (5 classes, balanced)

Image Preprocessing

- random crop to smallest image size (1280 x 1024 px)
- transform to tensor
- normalizing

Model: Fine-tuning pre-trained ResNet-18

- 5k image subset: 5 most frequent classes à 1000 images → empty, rat, rabbit, petrel, iguana
- batch size: 64
- loss function: cross entropy
- learning rates: 0.1, 0.01
- 50 epochs

Methods: PyTorch + CUDA + university cluster

First results - loss

First results - mean accuracy

Outlook

- 1. Find optimal learning rate
- 2. Large balanced dataset (5 classes à 5k images = 25k)
- 3. Large imbalanced dataset (full top-5 classes = 100k images)
- 4. If computationally possible, train full model.
- 5. If possible, understand misclassified samples
 - → Why are they hard to classify correctly?