Svetlana Koroteeva ID: 300432399

AIML 427 - Big Data

Assignment 3

Personal disorders classifiers based on NESARC data

ABOUT DATASET

National Epidemiologic Survey of Drug Use and Health Code Book

Page 1: SECTION 1: BACKGROUND INFORMATION

Page 30: SECTION 2A: ALCOHOL CONSUMPTION

Page 46: SECTION 2B: ALCOHOL ABUSE/DEPENDENCE (ALCOHOL EXPERIENCES)

Page 67: SECTION 2C: ALCOHOL TREATMENT UTILIZATION

Page 77: SECTION 2D: FAMILY HISTORY (I) OF ALCOHOLISM

Page 82: SECTION 3A: TOBACCO USE AND DEPENDENCE

Page 105: SECTION 3B: MEDICINE USE

Page 125: SECTION 3C: DRUG ABUSE/DEPENDENCE (MEDICINE EXPERIENCES)

Page 289: SECTION 3D: DRUG TREATMENT UTILIZATION

Page 299: SECTION 3E: FAMILY HISTORY (II) OF DRUG ABUSE

Page 302: SECTION 4A: MAJOR DEPRESSION (LOW MOOD I)

Page 316: SECTION 4B: FAMILY HISTORY (III) OF MAJOR DEPRESSION

Page 319: SECTION 4C: DYSTHYMIA (LOW MOOD II)

Page 329: SECTION 5: MANIA OR HYPOMANIA (HIGH MOOD)

Page 341: SECTION 6: PANIC DISORDERS AND AGORAPHOBIA (ANXIETY)

Page 355: SECTION 7: SOCIAL PHOBIA (SOCIAL SITUATIONS)

Page 371: SECTION 8: SPECIFIC PHOBIA (SPECIFIC SITUATIONS)

Page 386: SECTION 9: GENERALIZED ANXIETY (GENERAL ANXIETY)

Page 403: SECTION 10: PERSONALITY DISORDERS (USUAL FEELINGS/ACTIONS)

Page 419: SECTION 11A: ANTISOCIAL PERSONALITY DISORDER (BEHAVIOR)

Page 436: SECTION 11B: FAMILY HISTORY (IV) OF ANTISOCIAL PERSONALITY

Page 439: SECTION 12: PATHOLOGICAL GAMBLING (BETTING)

Page 458: SECTION 13: MEDICAL CONDITIONS/VICTIMIZATION

Page 463: SECTION 14: DSM-IV DIAGNOSES

DATASET specifics and problems

S2AQ6F S2AQ6G S2AQ6H S2AQ6I WINEECF S2AQ7A S2AQ7B S2AQ7CR S2AQ7D S2AQ7E S2AQ7F S2AQ7G S2AQ7H S2AQ7I LIQRECF 10 11 0.125 10 11 2 10 0.4 11 0.11 11 1 0.135 0.17 10 2 11 1 0.135 0.4 11 0.4 3 9

43094 instances

Categorical values

Blank or populated with 9,99,999 values

Sometimes several columns represent a class

50.0% missing data in 2183 features from 3008

DATASET CLEANING and PREPARING

```
df = pd.read_csv(r"data\nesarc_cleaned.csv")
print(df.shape)
df = df.replace(r'^\s*$', np.nan, regex=True)
df = df.replace({'99': pd.np.nan})
df = df.replace({'9': pd.np.nan})
```

652 columns left after deleting those columns which have missing data more then 30%

```
imputer = SimpleImputer(strategy='most_frequent')
df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
df_imputed = df_imputed.reindex(columns=df.columns)
df_imputed.to_csv("imputed_nesarc.csv")
```

```
threshold=0.5
missing_columns,lst = count_missing_data(df, axis='columns', threshold=threshold)
print(f"Number of columns with >= {threshold*100}% missing data: {missing_columns}")
```

Baseline model

Accuracy 100%?

Feature selection

```
elif method == 'pearson':
    for feature in feature_columns:
        score = corr_matrix.loc[feature, 'indexed_lab']
        feature_scores[score]=feature

sorted_d = dict(sorted(feature_scores.items(),reverse=True))
    feature_dict = get_first_n_elements(sorted_d, num_features)

selected_feature_names = [feature_dict[el] for el in feature_dict.keys()]

return selected_feature_names
```

362 columns left

Class	Features
AVOIDPDX2	DEPPDDX2, S1Q211, S1Q212, S1Q16, DOBY, S1Q20, MARITAL, S1Q14C4, S1Q7A9, SPOUSE
DEPPDDX2	AVOIDPDX2, S1Q16, S1Q212, S1Q211, S1Q14C4, S1Q20, S1Q7A1, S1Q8A, S3EQ8B, S3EQ8C
OBCOMDX2	S1Q211, S1Q212, S1Q6A, S1Q7A9, DOBY, S4BQ11, S1Q20, S1Q14C1, S1Q131, S4BQ7C
DEP	S1Q211, S1Q212, S1Q16, S1Q20, SEX, S4BQ11, S4BQ7C, S1Q7A1, S4BQ12, S4BQ7B
PAN	S1Q211, S1Q212, S1Q16, S1Q20, SEX, S1Q7A9, S1Q1D3, S1Q7A1, S4BQ11, S11BQ11
AGORA	S1Q211, S1Q212, S1Q16, S1Q20, SEX, S1Q7A9, S1Q7A1, S2AQ16B, S4BQ11, S4BQ7C
SPECPHOB	SEX, S1Q211, S1Q212, S1Q16, S1Q20, S4BQ11, S1Q7A9, DOBY, S4BQ7C, S1Q14C1
ANX	DEP, PARADX2, S1Q211, S1Q212, S1Q20, S1Q16, SEX, S1Q1C, S1Q7A1, S1Q7A9

Baseline model

Train and evaluate the model pseudocode

Start measuring the time.

Split the dataset into training and test sets.

(Clean and impute test and train data) #not implemented yet

Create an instance of classifier

Create a pipeline and add the classifier.

Create Vector assembler object

Transform training and test data

Create a Scaler object #this part is for normalizing script only

Fit a scaler on the training data

Transform training and test data with scaler

Fit the pipeline on the training data

Use the trained model to make predictions.

Calculate the accuracy of the training predictions

Use the trained model to make predictions on test data.

Calculate the accuracy of the test predictions

Stop measuring time and calculate the running time.

Return the training accuracy, test accuracy, and running time.

Baseline model performance results

Classifier	Class	Training Accuracy	Test Accuracy	Running Time
LogisticRegression	CONDUCTONLY	0.990667586	0.989592767	112.1902
RandomForestClassifier	CONDUCTONLY	0.99051317	0.990032873	5.487722
NaiveBayes	CONDUCTONLY	0.656224096	0.655213452	1.641517
LogisticRegression	ANTISOCDX2	0.969575959	0.967224738	6.093356
RandomForestClassifier	ANTISOCDX2	0.967115992	0.967691178	5.507843
NaiveBayes	ANTISOCDX2	0.377409928	0.377975363	1.567013
LogisticRegression	AVOIDPDX2	0.981357332	0.978460826	5.791655
RandomForestClassifier	AVOIDPDX2	0.976702169	0.978020777	5.373419
NaiveBayes	AVOIDPDX2	0.48252516	0.478837491	1.602829
LogisticRegression	DEPPDDX2	0.997473886	0.993372754	5.482821
RandomForestClassifier	DEPPDDX2	0.995102155	0.995391874	5.322338
NaiveBayes	DEPPDDX2	0.579333386	0.573646909	1.564391
LogisticRegression	OBCOMDX2	0.929256918	0.928884067	63.72542
RandomForestClassifier	OBCOMDX2	0.924017117	0.925880876	5.896053
NaiveBayes	OBCOMDX2	0.566107277	0.568573574	1.557272
LogisticRegression	PARADX2	0.960453252	0.956274904	31.97484

Normalized data model

```
scaler = StandardScaler(inputCol="features", outputCol="scaled_features")
scaler_model = scaler.fit(df)
df = scaler_model.transform(df)
```

(Applied for both training and test data)

Classifier	Class	Training Accuracy	Test Accuracy	Running Time
LogisticRegression	CONDUCTONLY	0.990667586	0.989592767	218.5083
RandomForestClassifier	CONDUCTONLY	0.99051317	0.990032873	7.837038
NaiveBayes	CONDUCTONLY	0.656224096	0.655213452	1.776618
LogisticRegression	ANTISOCDX2	0.969575959	0.967224738	130.0013
RandomForestClassifier	ANTISOCDX2	0.967082938	0.967794684	6.647616
NaiveBayes	ANTISOCDX2	0.377409928	0.377975363	1.734752
LogisticRegression	AVOIDPDX2	0.981357332	0.978460826	195.757
RandomForestClassifier	AVOIDPDX2	0.976735232	0.977968997	5.920451
NaiveBayes	AVOIDPDX2	0.48252516	0.478837491	1.904354
LogisticRegression	DEPPDDX2	0.997473886	0.993372754	128.5787
RandomForestClassifier	DEPPDDX2	0.995080095	0.995391874	5.969145
NaiveBayes	DEPPDDX2	0.579333386	0.573646909	1.989378
LogisticRegression	OBCOMDX2	0.929256918	0.928884067	91.06342
Random Forest Classifier	OBCOMDX2	0.923939894	0.925803164	7.3722

Why scaling did not work?

•

Data is in the same magnitude

Data is categorical

PCA model

Classifier	Class	Seed	Num PCA	Train	Test Accuracy	RunTime
			Comp	Accuracy		
PCA_model	CONDUCTONLY	987	3	0.990304	0.540806	15.59032
PCA_model	CONDUCTONLY	987	10	0.990304	0.57854	9.47362
PCA_model	CONDUCTONLY	1052	3	0.990637	0.536487	7.497615
PCA model	CONDUCTONLY	1052	10	0.990637	0.53302	8.667549
PCA_model	CONDUCTONLY	777	3	0.990599	0.515133	6.93837
PCA_model	CONDUCTONLY	777	10	0.990599	0.535507	7.700324
PCA_model	ANTISOCDX2	987	3	0.966675	0.543612	8.508811
PCA model	ANTISOCDX2	987	10	0.966675	0.59933	8.084162
PCA_model	ANTISOCDX2	1052	3	0.966584	0.549993	7.352689
PCA_model	ANTISOCDX2	1052	10	0.966584	0.607995	8.820627
PCA_model	ANTISOCDX2	777	3	0.966864	0.547999	8.090194
PCA_model	CONDUCTONLY	987	20	0.990304	0.65387	6.462421
PCA_model	CONDUCTONLY	987	30	0.990304	0.645327	6.274596
PCA_model	CONDUCTONLY	1052	20	0.990637	0.648574	6.068475
PCA_model	CONDUCTONLY	1052	30	0.990637	0.646135	6.093417
PCA_model	CONDUCTONLY	777	20	0.990599	0.635532	6.241112
PCA_model	CONDUCTONLY	777	30	0.990599	0.638272	6.634392
PCA model	ANTISOCDX2	987	20	0.966709	0.765204	6.934179
PCA_model	ANTISOCDX2	987	30	0.966675	0.764749	7.042283
PCA_model	ANTISOCDX2	1052	20	0.966584	0.77157	6.553179
PCA_model	ANTISOCDX2	1052	30	0.966617	0.77742	6.915148
PCA_model	ANTISOCDX2	777	20	0.966963	0.76702	6.830005
PCA model	ANTISOCDX2	777	30	0.966963	0.76811	6.900295

MORE PCA

Why PCA did not work

Categorical data Non-linear relationships

Outliers?

Further trials: Lasso

Classifier	Class	Training Accuracy	Test Accuracy	Running Time
LassoModel	CONDUCTONLY	0.822943	0.669563	2178.175
LassoModel	CONDUCTONLY	0.819701	0.702053	816.4868
LassoModel	CONDUCTONLY	0.8054	0.741755	67.62742
LassoModel	ANTISOCDX2	0.92088	0.89089	54.61191
LassoModel	ANTISOCDX2	0.921784	0.897888	96.69292
LassoModel	ANTISOCDX2	0.919783	0.894333	213.7744
LassoModel	AVOIDPDX2	0.937045	0.904231	2640.55
LassoModel	AVOIDPDX2	0.926154	0.93131	1902.463
LassoModel	AVOIDPDX2	0.926006	0.933031	2425.387
LassoModel	DEPPDDX2	0.973404	0.968524	611.2313
LassoModel	DEPPDDX2	0.97205	0.977754	126.0041
LassoModel	DEPPDDX2	0.982945	0.974614	52.99104
LassoModel	OBCOMDX2	0.8196	0.815061	60.30946
LassoModel	OBCOMDX2	0.820118	0.814153	585.0147

unbalanced data

References

- 1. <u>National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III) | National Institute on Alcohol Abuse and Alcoholism (NIAAA) (nih.gov)</u> about NESARC dataset for the Q1
- 2. <u>wesleyan-machine-learning/data at master · radumas/wesleyan-machine-learning (github.com)</u> source for download nesarc_pds.csv dataset for Q1
- 3. <u>DSM-IV codes Wikipedia</u> Diagnostic and Statistical Manual of Mental Disorders, 4th Edition
- 4. <u>PySpark Lasso Regression Building, Tuning, and Evaluating Lasso Regression with PySpark MLlib Machine Learning Plus</u> Lasso regression with pyspark, making vector from features
- 5. <u>Correlation PySpark 3.4.0 documentation (apache.org)</u> Ranking with correlation: chi-square
- 6. PCA PySpark 3.4.0 documentation (apache.org) -PCA
- 7. <u>Visual Paradigm Online (visual-paradigm.com)</u>