

<110> Ruben et al.

<120> 26 Human secreted proteins

<130> PZ040P1

<140> Unassigned

<141> 2000-12-01

<150> PCT/US00/15187

<151> 2000-06-02

<150> 60/137,725

<151> 1999-06-07

<160> 190

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaatct	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcgaggg	tgcaccgtca	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctcccgac	tcctgaggc	acatgcgtgg	tggtgacgt	aagccacgaa	gaccctgagg	180
tcaagttcaa	ctggtacg	tgacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	240
aggagcagta	caacagc	acgttgcgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtag	aagtgcagg	tctccaacaa	agccctccca	accccccacatcg	360
agaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
catcccgga	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctggc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtgggaga	gcaatggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgctggac	tccgacggct	ccttcttct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2

Trp Ser Xaa Trp Ser

1

5

<210> 3

<211> 86

<212> DNA
 <213> Artificial Sequence
 <220>
 <221> Primer_Bind
 <223> Synthetic sequence with 4 tandem copies of the GAS binding site found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)), 18 nucleotides complementary to the SV40 early promoter, and a Xho I restriction site.

<400> 3	60
gcgctcgag atttcccgaa aatcttagatt tccccgaaat gatttcccg aaatgatttc	86
cccgaaatat ctgccatctc aattag	

<210> 4
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> Primer_Bind
 <223> Synthetic sequence complementary to the SV40 promoter; includes a Hind III restriction site.

<400> 4	27
gcggcaagct ttttgcaaag cctaggc	

<210> 5
 <211> 271
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> Protein_Bind
 <223> Synthetic promoter for use in biological assays; includes GAS binding sites found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)).

<400> 5	60
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tccccgaaat gatttcccg	120
aaatatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc	180
gcccctaact ccgcccagg ttccgccccat ggctgactaa ttttttttat	240
ttatgcagag gccgaggccc cctcggcctc tgagctattc cagaagtagt gaggaggctt	271
ttttggaggc ctaggcttt gaaaaagct t	

<210> 6
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 <220>
 <221> Primer_Bind
 <223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Xho I restriction site.

<400> 6	32
gcgctcgagg gatgacagcg atagaacccc gg	

<210> 7
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<221> Primer_Bind
<223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Hind III restriction site.

<400> 7
gcgaagcttc gcgactcccc ggatccgcct c 31

<210> 8
<211> 12
<212> DNA
<213> Homo sapiens
<400> 8
ggggactttc cc 12

<210> 9
<211> 73
<212> DNA
<213> Artificial Sequence
<220>
<221> Primer_Bind
<223> Synthetic primer with 4 tandem copies of the NF-KB binding site (GGGGACTTTCCC), 18 nucleotides complementary to the 5' end of the SV40 early promoter sequence, and a XhoI restriction site.

<400> 9
gcggcctcgaa ggggactttc ccggggactt tccggggact ttccgggact ttccatcctg 60
ccatctcaat tag 73

<210> 10
<211> 256
<212> DNA
<213> Artificial Sequence
<220>
<221> Protein_Bind
<223> Synthetic promoter for use in biological assays; includes NF-KB binding sites.

<400> 10
ctcgaggggaa ctttccccgg gactttccgg ggactttccg ggactttcca tctgccatct 60
caatttagtca gcaaccatag tcccgccccct aactccgccc atcccgcccc taactccgccc 120
cagttccgccc cattctccgc cccatggctg actaattttt tttatttatg cagaggcccga 180
ggccgcctcg gcctctgagc tattccagaa gtagtgagga ggcttttttg gaggcctagg 240
cttttgcaaa aagctt 256

<210> 11
<211> 2318
<212> DNA

<213> Homo sapiens

<400> 11

cagacacctgg	acgagagcgc	cccggggagc	tcggagcgcg	tgcacgcgtg	gcakacggag	60
aaggccagtg	cccagcttga	aggttctgtc	accttttca	gtgttccaaa	tgagaaaaaa	120
gtggaaaatg	ggaggcatga	aatacatctt	ttcggttgg	ttctttctt	tgctagaagg	180
aggcaaaaca	gagcaagtaa	aacattcaga	gacatatgc	atgtttcaag	acaagaagta	240
cagagtgggt	gagagatggc	atccttacct	ggaaccttat	gggttggtti	actgcgtgaa	300
ctgcacatctgc	tcagagaatg	ggaatgtgt	ttgcagccga	gtcagatgtc	caaatgttca	360
ttgccttct	cctgtgcata	ttccatcatct	gtgctgcct	cgctgcccag	aagactcctt	420
acccccagtg	aacaataagg	tgaccagcaa	gtcttgcgag	tacaatggga	caacttacca	480
acatggagag	ctgttcgtag	ctgaagggct	ctttcagaat	cgccaaccca	atcaatgcac	540
ccagtcgcgc	tggttcggagg	gaaacgtgt	ttgtggtctc	aagacttgcc	ccaaattaac	600
ctgtgccttc	ccagtctctg	ttccagattc	ctgctgcccgg	gtatgcagag	gagatggaga	660
actgtcatgg	gaacattctg	atggtgatat	cttccggcaa	cctgccaaca	gagaagcaag	720
acattcttac	caccgctctc	actatgatcc	tccaccaagc	cgacaggctg	gagggtctgtc	780
ccgctttccct	ggggccagaa	gtcaccgggg	agctctttag	gattcccagc	aagcatcagg	840
aaccattgtg	caaattgtca	tcaataacaa	acacaagcat	ggacaagtgt	gtgtttccaa	900
tggaaagagacc	tattctcatg	gcgagtccgt	gcacccaaac	ctccggcat	ttggcattgt	960
ggagtgtgtg	ctatgtactt	gtaatgtcac	caagcaagag	tgtaagaaaa	tccactgccc	1020
caatcgatac	ccctgcagaat	atcctcaaaa	aatagacgga	aatgtctgca	aggtgtgtcc	1080
agaagaactt	ccaggccaaa	gcttgacaa	taaaggctac	ttctgcgggg	aagaaacgat	1140
gcctgtgtat	gagtctgtat	tcatggagga	tggggagaca	accagaaaaaa	tagcactgga	1200
gactgagaga	ccacctcagg	tagaggcaca	cgtttgact	attcgaaagg	gcattctcca	1260
gcacttccat	attgagaaga	tctccaagag	gatgtttgag	gagcttcctc	acttcaagct	1320
ggtgaccaga	acaaccctga	gccagtggaa	gatcttcacc	gaaggagaag	ctcagatcag	1380
ccagatgtgt	tcaagtcgtg	tatgcagaac	agagcttga	gatttagtca	aggttttgt	1440
cctggagaga	tctgaaaagg	gccactgtt	ggcaagacag	acagtattgg	atagggtaaa	1500
gcaagaaaac	tcaagctgca	gctggactgc	aggcttattt	tgcttaagtc	aacagtgccc	1560
taaaactcca	aactcaaata	cagtcattt	ttcacgcac	gcacagcata	atttgctcct	1620
tttgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtggtaaa	gggggggaaagg	tgttatgcgg	1680
ctgctccctc	cgtcccagag	gtggcagtga	ttccataatg	tggagactag	taactagatc	1740
ctaaggcaaa	gaggtgtttc	tccttctgga	tgattcatcc	caaaggcttc	ccacccaggt	1800
gttctctgaa	agcttagccct	taagagaaca	cgcagagagt	ttccctagat	ataactcctgc	1860
ctccagggtgc	tgggacacac	cttgcacaa	tgctgtggga	agcaggagct	ggggagctgt	1920
gttaagtcaa	agtagaaacc	ctccagtggt	tgggtttgt	tagagaatag	gacatagggt	1980
aaagaggcca	agctgcctgt	agtttagtga	gaagaatgga	tgtggttctt	cttgtgtatt	2040
tatttgtatc	ataaacactt	ggaacaacaa	agaccataag	catcatttag	cagttgttagc	2100
cattttctag	ttaactcatg	taaacaagta	agagtaacat	aacagtatta	ccctttcact	2160
gttctcacag	gacatgtacc	taattatgg	acttattat	gtagtcactg	tatttctgga	2220
tttttaaatt	aataaaaaaa	ttaattttga	aaaatcaaaa	aaaaaaaaaa	aaaagtcgac	2280
cggcmgcfgaa	tttagtagta	gttagtagtag	tagtaggc			2318

<210> 12

<211> 1923

<212> DNA

<213> Homo sapiens

<400> 12

ggcacgagcc	taaggcaccc	tttcctcg	gcagcccagc	ctgactcctg	gagattgtga	60
atagctccat	ccagcctgag	aaacaagccg	ggtggctgag	ccaggctgtg	cacggagtcc	120
tgacggggccc	aacagaccca	tgctgcattc	agagacctcc	cctggccggg	ggcatctcct	180
ggctgtgtc	ctggccctcc	ttggcaccgc	ctgggcagag	gtgtggccac	cccagctgca	240
ggagcaggct	ccgatggccg	gagccctgaa	caggaaggag	agtttcttgc	tcctctccct	300
gcacaaccgc	ctgcgcagct	gggtccagcc	ccctgcggct	gacatgcgga	ggctggactg	360
gagtgcacgc	ctggcccaac	tggctcaagc	cagggcagcc	ctctgtggaa	tcccaacccc	420
gagcctggcg	tccggcctgt	ggcgcaccct	gcaagtggc	tggaaacatgc	agctgctgcc	480

cgcgggcttg	gcgtcctttg	ttgaagtgg	cagcctatgg	tttgcagagg	ggcagcggt	540
cagccacgcg	gcaggagagt	gtgctcgcaa	cgccacctgc	accactaca	cgcagctcg	600
gtgggccacc	tcaagccagc	tgggctgtgg	gccccacctg	tgctctgcag	gccaggcagc	660
gatagaagcc	tttgtctgtg	cctactcccc	cgaggcaac	tggaggtca	acgggaagac	720
aatcatcccc	tataagaagg	gtgcctgg	tgcgtctgc	acagccagtg	tctcaggctg	780
cttcaaagcc	tgggaccatg	caggggggct	ctgtgaggtc	cccaggaatc	cttgcgcac	840
gagctgccag	aaccatggac	gtctcaacat	cagcacctgc	cactgcccact	gtccccctgg	900
ctacacgggc	agataactgcc	aagtgggtg	cagcctgcag	tgtgtgcacg	gcccgttccg	960
ggaggaggag	tgctcg	tctgtgacat	cggtacggg	ggagcccagt	gtgccaccaa	1020
ggtgcattt	cccttccaca	cctgtgacct	gaggatcgac	ggagactgtct	tcatgggtc	1080
ttcagaggca	gacacctatt	acagagccag	gatgaaatgt	cagaggaaag	gccccgtgt	1140
ggccocagatc	aagagccaga	aagtgcagga	catcctcgcc	ttcttatctgg	gcccgttccg	1200
gaccaccaac	gaggtgattt	acagtgactt	cgagaccagg	aacttctgga	tcgggctcac	1260
ctacaagacc	gccaaaggact	ccttccgctg	ggccacaggg	gaccaccagg	ccttcaccag	1320
ttttgcctt	gggcagcctg	acaaccacgg	gtttggcaac	tgcgtggagc	tgcaggcttc	1380
agctgccttc	aactggaaaca	accagcgctg	aaaaaccgaa	aaccgttaca	tctgcccagt	1440
tgcccaggag	cacatctccc	ggtggggccc	agggtcttga	ggcctgacca	catggctccc	1500
tcgcctgccc	tgggagcacc	ggctctgttt	acctgtccgc	ccacctgtct	ggaacaagg	1560
ccaggttaag	accacatggc	tcatgtccaa	agaggtctca	gacccgttca	aatgcccaga	1620
gttgggcaga	gagaggcagg	gaggccagt	agggccagg	agttagtgtt	agaagaagct	1680
ggggcccttc	gcctgcttt	gattgggaag	atgggcttca	attagatggc	gaaggagagg	1740
acaccgcccag	tggtccaaaa	aggctgtct	cttccacctg	gcccagaccc	tgtggggcag	1800
cggagcttcc	ctgtggcatg	aacccacag	ggtattaaat	tatgaatcag	ctgaaaaaaaa	1860
aaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1920
aaa						1923

<210> 13
<211> 4720
<212> DNA
<213> Homo sapiens

<400> 13						
ccacgcgtcc	ggagagaggg	acagaggctg	gagaaggatg	tatggcctgc	cctgggcttg	60
tctgtccct	cctgagcctg	agccccttac	cttcctgacc	ccatgaagca	cacactggct	120
ctgctggctc	ccctgctggg	cctggggctg	gggctggccc	ttagtcagct	ggctgcaggg	180
gccacagact	gcaagttct	tggcccccggca	gagcacctga	cattcacccc	agcagccagg	240
gcccggtggc	tggcccccctcg	agtttgtcg	ccaggactcc	tggactccct	ctatggcacc	300
gtgcggcgt	tcctctcggt	ggtgtcagctc	aatcccttcc	cttcagagtt	ggtaaaggcc	360
ctactgaatg	agctggcctc	cgtgaagggt	aatgagggtg	tgcgttacga	ggcgggctac	420
gtggtatg	ctgtgatcgc	gggcctctac	ctgctgttgg	tgcctactgc	cgggctttgc	480
ttctgctgt	ggcgctgcca	ccggcgctgc	gggggacgag	tgaagacaga	gcacaaggcg	540
ctggcctgtg	agcgcgccggc	cctcatggtc	ttcctgttgc	tgaccaccct	tttgtctgt	600
atgggtgtgg	tctgtgcctt	tgtcacaac	cagcgcacgc	atgaacagat	ggggcccccagc	660
atcgaggcca	tgcctgagac	cctgtcagc	ctctggggcc	tgttctctga	tgtccccccaa	720
gagctgcagg	ccgtggcaca	gcaattctcc	ctgccccagg	agcaagtctc	agaggagctg	780
gatgggtttg	gtgtgagcat	tgggagcg	atccacactc	agtcaggag	ctccgtgtac	840
cccttgcgg	cgccggtggg	cagtttggc	caggtcctgc	aggctccgt	gcaccacctg	900
caaaccctga	atgtacagt	ggttagagct	caggccggc	agcaggacct	ggagccagcc	960
atccgggaac	accgggaccc	cctcttgcag	ctgctgcagg	aggccagg	ccagggagat	1020
tgtgcagggg	ccctgagctg	ggcccgccacc	ctggagctgg	gtgctgactt	cagccagg	1080
ccctctgtgg	accatgtcct	gcaccagcta	aaaggtgtcc	ccgaggccaa	cttctccagc	1140
atggtccagg	aggagaacag	caccccaac	gccttccag	ccctggctgc	catgcagaca	1200
tccaggtgg	tgcaagagct	gaagaaggca	gtggccaggc	agccggagg	ggtgaggaca	1260
ctggctgaag	ggttcccccgg	cttggaggca	gttcccgct	ggcccccaggc	actgcaggag	1320
gtggaggaga	gcagccgccc	ctacctgcag	gaggtgcaga	gatacgagac	ctacaggtgg	1380
atcggtggct	gcgtgctgt	ctccgtggc	ctattcgtgg	tgtctgcac	cctgctggc	1440
ctcaatctgg	gcacatctgggg	cctgtctgc	agggacgacc	ccagccaccc	agaagccaa	1500

ggcgaggctg	gagcccgctt	cctcatggca	ggtgtggcc	tcagcttct	ctttgctgca	1560
cccctcatcc	tcctgggttt	cgccacccctc	ctgggtgggt	gcaacgtgca	gacgctgggt	1620
tgcggagct	gggagaacgg	cgagctcttt	gagtttgcag	acaccccccagg	gaacctgccc	1680
ccgtccatga	acctgtcgca	acttcttggc	ctgaggaaga	acatcagcat	ccacccaagcc	1740
tatcagcagt	gcaaggaagg	ggcagcgctc	tggacagtcc	tgcagctcaa	cgactctac	1800
gacctggagg	agcacctgga	tatcaaccag	tataccaaca	agctacggca	ggagttgcag	1860
agcctgaaag	tagacacacaca	gagcctggac	ctgctgagct	cagccgccccg	ccgggacctg	1920
gaggccctgc	agagcagtgg	gcttcagcgc	atccactacc	ccgacttcct	cgttcagatc	1980
cagaggcccg	tggtaagac	cagcatggag	cagctggccc	aggagctgca	aggactggcc	2040
cagggcccaag	acaattctgt	gctggggcag	cggctgcagg	aggaggccca	aggactcaga	2100
aacccctcacc	aggagaaggt	cgtccccccag	cagagcccttg	tggcaaagct	caacccctcagc	2160
gtcagggccc	tggagtcctc	tgccccgaat	ctccagctgg	agacccctcaga	tgtcctagcc	2220
aatgtcacct	acctgaaagg	agagctgcct	gcctgggcag	ccaggatcct	gaggaatgtg	2280
agttagtgtt	tcctggcccg	ggagatgggc	tacttctccc	agtacgtggc	ctgggtgaga	2340
gaggaggtga	ctcagcgcac	tgccacctgc	cagccctct	ccggagccct	ggacaacagc	2400
cgtgtatcc	tgtgtacat	gatggctgac	cccttggaaatg	ccttctgggtt	ctgcctggca	2460
tggcgcaccc	tcttcctgtat	ccccagcatc	atctttggcc	tcaagacctc	caaataacttc	2520
cgtccatcc	ggaaacgcct	cagctccacc	agctctgagg	agactcagct	cttccacatc	2580
ccccgggtta	cctccctgaa	gctgttagggc	cttgggggtt	gaggtgaccc	tgaggctgcc	2640
tgtccctcccc	tttgatttag	cctggggccac	aggacttcgg	tagcttttc	cccagagcc	2700
aggctggcat	ccaggcctgg	actgtcccca	gttccggctt	acctggccccc	accttgcctg	2760
ctcccttcca	cccctttctg	ctcacgaccc	ccatcattca	cgctcagaat	cacatggac	2820
ttctgtgcag	ctgcagagcc	agcaagtc	tccaggtgtc	acccttacc	cccatgctgg	2880
tggcatccctc	acaggaagag	cctgttctcc	acctgctgga	gcctggaccc	tgggggtggga	2940
cagaggccctc	gtccaaacccc	actcccccctc	ccgtgtgtct	tccccctgcc	aaggctcccc	3000
ctgccaagcc	tccccctgcc	cctctctgag	ccccctcgccc	ccacacccgt	cctcatctgg	3060
cctcccccct	ggcccccaact	tccctcttat	gccttctctg	gcctttgtct	tcctccctta	3120
gtcccccctt	caccatatct	ccactgctac	cttgcggcc	ccagagacca	ccctgcctaa	3180
ccaaaccact	caggtaacgc	cactaatcag	gcaggggcca	ccatggccct	ggtctgggct	3240
ggctgcaggc	cctgcctcat	ggcctctgag	ccctccactg	ccccagggcc	ttggggccctc	3300
tgcagatctc	atccaggatt	tattgggtgc	cagtgggtg	aggaggccct	gtctgaaggc	3360
cgagcctccc	tgcctgcacc	caagttagaa	atgggggtac	cagcacttag	cttctctctg	3420
agtgtggct	cccaaggaag	ggacctggga	cctggggccac	agtgggggct	tgccttacc	3480
tcttcagaag	gaagcatctt	ccacagcccc	cacccaaactt	tcttaggagt	gatctgggt	3540
ccagaacagg	atttgcacg	gcccctttt	tcctgcgcac	gtggcctagg	gtcatcccca	3600
gccccatccct	gtgtcagccc	tgagtgtctgg	acactgcgtt	ccagaaaatga	ggaagaggag	3660
agagaagaga	tggacagacc	tcatgtccat	taaaagtgttc	tcacttccct	gagacttgg	3720
tctgggtctt	taaaaccagg	tttcttaggc	tgggacccctg	tacatagttg	gtgtttatg	3780
agtgtttatg	gagaggagag	ttctaaggtc	acctctggct	gcaggcatcc	agggattatt	3840
ccagcaatct	gcaggttaggg	agtgggtccc	agcctggag	cctgctgtca	ggaggcaggca	3900
gacctggact	cacagcctgg	ctgtgtatgt	tgttcgctca	gcttctccat	ttatgagatg	3960
gggagaatag	tcacagcctc	ctcaaagggt	tgtaaaaatc	aaatgtgata	atttgtggaa	4020
agcccttagc	agtggcttgg	cacaaaacaa	atgctcagt	gatggaaagct	gcctattatt	4080
atgtcggtt	ttgttggttt	ccatgactgc	tctggccgg	ggtagagct	agcatccggg	4140
catgtacgag	ggaagaggga	ggcaggcctc	tattcaaaagg	cagaaattcc	tttaagattt	4200
tggtctgtt	ggtttcaggg	agtgtctgtt	ttgtttgttt	ttgtttgttt	ttttgtttt	4260
agacagggtc	tgcctctgtc	accaggctg	gagtgttagt	gtcagtc	ggctcaactgc	4320
aacccctacc	tcctgggctc	aagcgattct	catgcctcag	cctcccgagt	agctgggact	4380
acaggtgtgt	gccactatgc	ctggcttaatt	tttgtat	ttttagagac	gggggttttgc	4440
catgttgcctc	aggctggaaag	tgtctatgtt	taactgcac	ttataaacc	gcaacaagtt	4500
ttctacttgg	aattagaatg	gtgcatacac	aatgtattat	tatcactgtc	agatgagcat	4560
gcttgaatgt	agcatgactg	cctttttttt	cttttcctag	agttttttt	tttgcttgc	4620
actcatctgt	tgacctaccc	gggggaagta	gcacccttgc	atttcaaaaa	taaaatttgc	4680
ggcattacaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	ggcattacaa	4720

<210> 14

<211> 1576

<212> DNA

<213> Homo sapiens

<400> 14

cacgcgtccg	cgggacggtgg	gcggacgcgt	gggttgttct	actacactcc	cctactgtta	60
acattttccc	caaagaagag	gaaaatagat	ttgtgaaagc	aattgcactt	caaaaatgcaa	120
atgacagtgg	ggggaaaaaga	ataccctgtt	tgctgccagt	tgatactttt	tagtttgtgc	180
tgttcattt	gggaagaatt	gttcttgtat	attaaaatgg	agttttgcct	tatTTTTta	240
ctgcttatcc	tggagtttg	tcaaataattt	gattgtctaa	gaaaatgcta	ttatagatta	300
acatgtctta	gctgtttact	tctaaaatctt	ttaatttttt	tcagtgaaaa	agttagtatct	360
gaaaatccca	acattgttgt	aattgggtta	gctgytgta	tcatgttgtc	tatcatgttt	420
ataaaaatggt	tactcatctt	gcttattttc	cttttatcct	tyaagaacct	tggaaaagaa	480
caagaagaaa	gggaagatct	ttttaaactct	ctattgacca	ccagttAACG	tattagttgc	540
caatatGCCA	gcttggacat	cagtgtttgt	tggatccgtt	tgaccaattt	gcaccaggTTT	600
tatccataat	gatggattta	acagcatgac	aaaaattatt	tttttttttg	ttcttgatgg	660
agattaagat	gccttgaatt	gtctagggtg	ttctgtactt	agaaaagtaag	agctcttaagt	720
acctttccta	cattttcttt	ttttattaaa	cagatatctt	cagtttaatg	caagagaaca	780
ttttactgtt	gtacaatcat	gttctgggtgg	tttgattgtt	tacaggatat	tccaaaataaa	840
aaggactctg	gaagattttc	attgaggata	aattgccata	atatgatgca	aactgtgcTT	900
ctctatgata	attacaatac	aaaggttcca	ttcagtgcag	catatacaat	aatgttaattt	960
agtctaacac	agttgaccct	atttttgac	acttccattt	tttaaaaata	cacatggaaa	1020
aaaaaaaaacc	ctatatgctt	actgtgcacc	tagagctttt	ttataacaac	gtcttttgt	1080
ttgtttgttt	tggattcttt	aaatataat	tattctcatt	tagtgcctc	tttagccaga	1140
atctcattac	tgcttcattt	ttgtataaac	attnaattta	gatattttcc	atataattggc	1200
actgctaaaa	tagaatatag	catctttcat	atggtaggaa	ccaaacaagga	aactttcctt	1260
taactccctt	tttacacttt	atgtaagta	gcaggggggg	aaatgcattt	atagatcatt	1320
tctaggcaaa	attgtgaagc	taatgaccaa	cctgtttcta	cctatatgca	gtctctttat	1380
tttactagaa	atgggaatca	tggcctcttg	aagagaaaaaa	agtcaccatt	ctgcatttag	1440
ctgtattcat	atattgcatt	tctgtatTTT	ttgtttgtat	tgtaaaaaat	tcacataata	1500
aacgatgttg	tgatgtaaaa	aaaaaaaaaa	aaaaaaaaagg	gcggccgctc	tagaggatcc	1560
cccgagggggg	cccaag					1576

<210> 15

<211> 5367

<212> DNA

<213> Homo sapiens

<400> 15

ccacgcgtcc	ggctctctcg	ccaaccgtgg	tggctccttg	cgttccttaca	tcctcttcATC	60
tgagaatcg	agagcataat	cttcttacgg	gcccgtgatt	tattaacgtg	gcttaatctg	120
aaggttctca	gtcaaattct	ttgtgatcta	ctgattgtgg	gggcatggca	aggTTTGTt	180
aaaggagctt	ggctggttt	ggcccttgtt	gctgacagaa	ggtggccagg	gagaaggcag	240
cacactgctc	ggagaatgaa	ggcgcttctg	ttgctggct	tgcttggct	cagtcctgct	300
aactacattt	acaatgtggg	caacctgcac	ttcctgtatt	cagaactctg	taaagggtgcc	360
tcccactacg	gcctgaccaa	agataggaag	aggcgctcac	aagatggctg	tccagacggc	420
tgtgcgagcc	tcacagccac	ggctccctcc	ccagaggTTT	ctgcagctgc	caccatctcc	480
ttaatgacag	acgacgttgg	cctagacaac	cctgcctacg	tgtctctggc	agaggacggg	540
cagccagcaa	tcagcccagt	ggactctggc	cggagcaacc	gaactagggc	acggcccttt	600
gagagatcca	ctattagaag	cagatcattt	aaaaaaataaa	atcgagcttt	gagtgttctt	660
cgaaggacaa	agagcgggg	tgcagttgcc	aaccatgccc	accagggcag	ggaaaattct	720
aaaaacacca	ctgccccctga	agtctttcca	aggttgtacc	acctgattcc	agatggtgaa	780
attaccagca	tcaagatcaa	tgcagtagat	cccagtgaaa	gcctctctat	taggtctggtg	840
ggaggtagcg	aaaccccaact	ggtccatatac	attatccaaac	acatttatcg	tgtatgggtg	900
atcgccagag	acggccggct	actgccagga	gacatcattt	taaaggtaaa	cgggatggac	960
atcagcaatg	tccctcacaa	ctacgctgtg	cgtctcttc	ggcagccctg	ccaggtgctg	1020
tggctgactg	tgatgcgtga	acagaagttc	cgcagcagga	acaatggaca	ggccccggat	1080
gcctacagac	cccgagatga	cagcttcat	gtgattctca	acaaaagtag	ccccgaggag	1140

THE INFLUENCE OF THE CULTURE ON THE LANGUAGE

cagcttggaa taaaacttgt ggcacagggtg gatgaggcctg gggttttcat cttcaatgtg 1200
ctggatggcg gtgtggata tcgacatggc cagcttgagg agaatgaccg tttgttagcc 1260
atcaatggac atgatcttcg atatggcgc ccagaaaagtg cggctcatct gattcaggcc 1320
agtggaaagac gtgttcaccc cgctgtgtcc cgccagggttc ggcagcggag coctgacatc 1380
tttcaggaag ccggctggaa cagcaatggc agctggtccc cagggccagg ggagaggagc 1440
aacactccca agccccctcca tcctacaatt acttgtcatg agaagggtgt aaatatccaa 1500
aaaagacccc ggtgaatctc tcggcatgac cgtcgccagg ggagcatcac atagagaatg 1560
ggatttgct atctatgtca tcagttgtga gcccggagga gtcataagca gagatggaaag 1620
aataaaaaca ggtgacattt tggtgaatgt ggtgggtc gaactgacag aggtcagccg 1680
gagtggggca gtggcattat tgaaaagaac atcatcctcg atagtactca aagctttgga 1740
agtcaaaagag tatgagcccc aggaagactg cagcagccca gcagccctgg actccaaacca 1800
caacatggcc ccacccagtg actgggtcccc atcctgggtc atgtggctgg aattaccacg 1860
gtgcttgat aactgtaaag atattgtatt acgaagaaac acagctggaa gtctggcctt 1920
ctgcattgt aaggggttatg aagaatacaa tgaaaacaaaa cctttttca tcaaattccat 1980
tggtgaagga acaccagcat acaatgtgg aagaattaga tttgggtgata ttcttcttgc 2040
tgtcaatggt agaagttacat caggaatgt acatgcttgc ttggcaagac tttgtggaaaga 2100
actttaaagga agaattactc taactattgt ttcttggcct ggcacttttt tatagaatca 2160
atgatgggtc agaggaaaac agaaaaatca caaataggct aagaagttga aacactataat 2220
ttatottgtc agttttataa tttaaagaaaa gaatacattt gaaaaatgtc agggaaaagta 2280
tgatcatcta atgaaagcca gttacaccc tc agaaaatatg attccaaaaa aattaaaact 2340
actagttttt tttcagttgt gaggatttct cattactcta caacattgtt tatatttttt 2400
ctattcaata aaaagcccta aaacaactaa aatgatttgt atacccact gaattcaagc 2460
tgattnaaat tttaaatttg gtatgtgtc aagtctgccca agggtacatt atggccattt 2520
ttaatttaca gctaaaatat tttaaatttgc gattgtgtc gaaacgttgc tttcatcaaa 2580
caagaataaaa tatttttcag aagttatagt tgtcttttag tatgtgatac taattaagat 2640
tacttttgc ttatcactat tttaaagatc ctagtaatat attcttcaaa ataccatgtt 2700
atttgttacc atcaccgatg aataacctt agcttaccc tc aaaaatgc tcgctcagag 2760
aattaattat aaacttgc ttgttttagt aagaaatggc taaagctttt ttttccac 2820
aatcgtttagt aactgtataa aaactctatg ctgctccacc agtgggcctt ggaaaatgca 2880
tcaagaaggc caaaccagct tgaccctggc tcacagacat ggtcatgagg cgatttaat 2940
ttgtgccaca atgaagagtg tttgtacaca tgccctcttag aaactacact atgggttaatt 3000
aatttatttc atagaggcctt cccagatgcc ttatagggtt tattaattt gatgtgaaag 3060
tgtaccccat ttggtttcac caggaaccca aatttagaaat attgaaaagc cataaaaaag 3120
ttgtgatatc aaaaatgtat gagtcttta atatactaag caagagtgtc acagcagtaa 3180
tgattnaaagac tagttttaaat ctcaaggctt agaggggccc tttgttgcct tttgtgtgc 3240
agccttttaa gagagtggc tttgattaac aaaaaaactg tggcccaagt ggaacccttg 3300
accttttctc agataatctg tttatgtaca cagctaacac agctcttttag attccctgtt 3360
aagtgactca ttacattcc ttttttggat ataaagtcat tttgttcttt ttattnnntga 3420
aatagtacaa gacaaagattt ttttaacttaa catgaaaaat tcactctttt attttggaaa 3480
aaaagtttaac ttttcataact aacaaacaga acaagatttt aggttaattt cttaaagcatt 3540
atccagaaaa ataacaagat ttatgtatc tacttctggt actaatatac aaaaaaggcc 3600
aaaaccatgc ctattctgca ggtgttagtt cggtgctctc ctgttcaggg gcaggctcac 3660
tgccccgttc ttttccttctt ttgttctttt tagattttt gtgttgtgt ctccctgtgac 3720
tatctcttc ttactttca tggcgacgtc tactattact tcgagaagac ttatgtctgg 3780
tttcctttt ctccctgtgt cgtctttctc tatgtcggtc ttcttttctt cgacttgctc 3840
tgtgacgttc ataaccttt tctgcataatt ccctgtatct gtatgttctt tcatcgctgt 3900
tgaaaacact tgggttagga ctgtgtacac gtcctcttc tctctctctg gtgcgttctc 3960
tttctctgtc ccgatcacgg tctcgctctc tttgttgc tctctctcta ttcgggtttt 4020
tctctttctt ggataatag tcccactgtc tttgttgc tttttttctt cacaagacta ggccacgaag 4080
gaggcagaacc aggaagatgg ggaaaggcaaa cattggccata tggaaatgca cgtgcagaac 4140
gactatcata accagaggaa tttttttt tttttttt tttttttt tttttttt tttttttt 4200
cgccctgggg aggaggaaaa cccgggtggg gaatcagagg tggagcgtg ctgacagtc 4260
gaggagggtgg aagaaatggg ggagggtggaa ggtgagttggg aggagctctt ggagggaaaa 4320
acggagggtgg tttgttaaaa ttgttgc tttttttt tttttttt tttttttt tttttttt 4380
gtatgttgct tttgttgc tttttttt tttttttt tttttttt tttttttt tttttttt 4440
gaccgataac atcaatttgc ccaggtatc tttttttt tttttttt tttttttt tttttttt 4500
aagaaggagg agaagtaaaac tttttttt tttttttt tttttttt tttttttt tttttttt 4560
ttccagttct tccctgtgt accgtatattt tttttttt tttttttt tttttttt tttttttt 4620

caagtccat	tcgttatcctc	tttggaaaa	cacagtaagc	tttccaggta	tcttcattaa	4680
accataatt	aaaataatca	gaaagatcg	caccaggtt	acgcctgggt	ttatcttcaa	4740
aagaatccaa	atctacatct	aagagtggaa	ctccatataat	gcttccagggt	gcatcaaggt	4800
ctactccctt	gactttgtc	cctgttagttc	cataaaactct	tccccctgtc	ttgatgtttaa	4860
gatttacagg	tgctgtacca	taactcccat	actgtggtgc	tcccgttttta	atgtctccta	4920
tagtgcacatg	aacatcatct	tcatcatcat	cgctgtcact	atcactatca	tcttcggtct	4980
cagtcacitt	cggttttgtt	aaaccatttt	cagcaggttc	atcttcaatt	ccagatggag	5040
gattagcact	ggcattttct	tcttctggcc	tttcaacttc	attttcatcg	ccatagagcc	5100
actcttcctc	ctcatccctt	ccggtccccgc	cgctcagctc	cgacactagg	cgctcgacct	5160
cgccggccga	catggccgccc	ccgagcgc当地	cttaaacgc当地	gcatcaaca	gccccctcca	5220
accccttccc	cagcctcgca	gccccggaggc	gcgagaaggg	cgcgaaccccg	ccgacgaacg	5280
aacaagaaa	gctcgagact	ccaatcccag	gaaggcgacg	gcagcggcgg	caaagatgaa	5340
gcctccagcg	caggcggacg	cgtgggc				5367

<210>	16					
<211>	1685					
<212>	DNA					
<213>	Homo sapiens					
<400>	16					
ccacgcgtcc	gcgcacggcc	cgcgaccgag	cgtgcggact	ggcctcccaa	gcgtggggcg	60
acaagctgcc	ggagctgcaa	tggccgc当地	ctggggattc	ttgtttggcc	tcctgggc当地	120
cgtgtggctg	ctcagctcgg	gccacggaga	ggagcagccc	ccggagacag	cggcacagag	180
gtgttctgc	caggtagtg	tttacttgg	tgattgtacc	tgtgatgtt	aaaccattga	240
tagatttaat	aactacaggg	ttttcccaag	actacaaaaaa	cttcttggaaa	gtgactactt	300
tagtatttac	aaggttaaacc	tgaagaggcc	gtgtccccc	tgaatgaca	tcagccagtg	360
tggagaagg	gactgtgctg	tcaaaccatg	tcaatctgat	gaagttccctg	atggaattaa	420
atctgcgagc	tacaagtatt	ctgaagaago	caataatctc	attgaagaat	gtgaacaagc	480
tgaacgactt	ggagcagtgg	atgaatctct	gagtggagaa	acacagaagg	ctgttcttca	540
gtggaccaag	catgatgatt	cttcagataa	cttctgtgaa	gctgatgaca	ttcagcccc	600
tgaagctgaa	tatgttagatt	tgcttcttaa	tcctgagcgc	tacactgggt	acaagggacc	660
agatgcttgg	aaaatatatg	atgtcatcta	cgaagaaaac	tgttttaagc	cacagacaat	720
taaaagacct	ttaaatccctt	tggcttctgg	tcaagggaca	agtgaagaga	acactttta	780
cagttggcta	gaaggtctct	gtgttagaaaa	aagagcattc	tacagactta	tatctggcct	840
acatgcaagc	attaatgtgc	atttgagtgc	aagatatctt	ttacaagaga	cctgggttaga	900
aaagaaatgg	ggacacacaaca	ttacagaatt	tcaacagcga	tttgatggaa	ttttgactga	960
aggagaaggt	ccaagaaggc	ttaagaactt	gtatcttctc	tacttaatag	aactaaggc	1020
tttatccaaa	gtgttaccat	tcttcgagcg	cccagattt	caactctta	ctggaaataa	1080
aattcaggat	gaggaaaaaca	aaatgttact	tctggaaata	cttcatgaaa	tcaagtctt	1140
tcctttgcatt	tttgcattttt	tgctggggat	aaaaaaaagaa	cacacaaaact		1200
aaaggaggac	tttcgactgc	atttttagaaa	tatttcaaga	attatggatt	gtgttgggtt	1260
ttttaaatgt	cgtctgtgg	gaaagcttca	gactcagggt	ttgggcactg	ctctgaagat	1320
cttattttct	gagaaattga	tagcaaataat	gccagaaagt	ggacctagtt	atgaattcca	1380
tctaaccaga	caagaatata	tatcattatt	caacgcattt	ggaagaattt	ctacaagtgt	1440
gaaagaatta	gaaaacttca	ggaacttgg	acagaatatt	cattaaagaa	aacaagctga	1500
tatgtgcctg	tttctggaca	atggaggcga	aagagtggaa	tttcattcaa	aggcataata	1560
gcaatgacag	tcttaagcca	aacattttat	ataaagttgc	ttttgtaaag	gagaattata	1620
ttgttttaag	taaacacatt	tttaaaaatt	gaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1680
aaagg						1685

<210>	17					
<211>	2601					
<212>	DNA					
<213>	Homo sapiens					

<400> 17

ggcacgaggg	caatccgggc	ttgcagacga	gttaaggctcg	attccatggat	60
ggtcacacgc	gcggggggccg	gaactgccgt	cgcggcgcgc	gtcggtgtcg	120
ggccgcactc	gcgctgtacg	ggccgcact	ggacgcagtt	ttagaaagag	180
acgtaaaagca	cattcgataa	aggatatgga	aaatacttg	cagctggtga	240
acctccctctg	tcttccacaa	agcacaaagg	gcaagatgg	agaataggcg	300
ctgtcaggag	tacactggag	ccccatattt	tgcagcaatc	tcagctctca	360
agacttgtcc	cacgtgttct	gtgccagtgc	ggccgcacct	gtgattaagg	420
ggagctgatc	gtccacccag	ttcttgacag	ccccaatgtc	gttcatgagg	480
gctggcccccgg	ctgcgtgtc	ttgtcgtagg	acctggcttgc	gttagagatg	540
cagaaatgtc	cagggcattt	tggaaagtgtc	aaaggccagg	gacatccctg	600
cgcggatggc	ctgtggctgg	tcgctcagca	gcccgcctc	atccatggct	660
tgtgctca	cccaaccacg	tggagttcag	cagactgttat	gacgctgtgc	720
tatggacagc	gatgacagcc	atggatctgt	gctaagactc	agccaagccc	780
gacgggtggc	cagaaaggag	agcgcgcacat	cctctccaa	ggcagcagg	840
cagccaggaa	ggcagcagcc	gcaggtgtgg	agggcaagg	gacccctgt	900
gggcgtcc	gtacactggg	cgctccctgc	tggaccacag	aaaacaatg	960
tctctgggt	gccgcgtttg	gcfctgtc	tctcaccagg	cagtgcaccc	1020
ccagaagcac	ggtcgtccca	ccaccaccc	cgacatgtat	gccgaggtgg	1080
cagcaagctc	tttgaacact	gagcccacgc	agaccagaag	taaacaggca	1140
gggagagcgt	gtgtgtgtat	ggaaaatccg	gaccacgcg	tgtgtgaag	1200
cttgcagat	tttcaacttgc	agcataaatt	ggttgcccatt	gagaattttaa	1260
tattgcagct	cttggtaaa	cttaatgcat	ggttggagat	gttatggcga	1320
agtattcc	aacttcctt	agcccttgg	tagtaactgg	gaagacagaa	1380
tcacatgaga	atgaagaatt	ctttagcagc	tcaacagat	ttctcggcct	1440
cggcgaagtt	tctacttgc	actctctctg	ccgacgcct	tcattcccc	1500
ccctagtc	tcctccggca	gggagctggg	caggggtccc	cggtgtctc	1560
gactgcactg	actgggtcc	tcagagggct	gttcgttct	ccagctcatc	1620
gtggtgacta	gtttgggtgt	atctggctgc	tgggtttgg	tttattgaca	1680
taatcaatga	tgactttgtt	tggaaaccct	tttggaggca	ccatgggaac	1740
atgagtgacg	ctgacccttgc	agtgtgtggg	tggggagctc	tgagacgcct	1800
gctctccgg	gtccgtgtct	acacaggggt	ccccatgata	cccacccggc	1860
agaccggacc	ggggacgggc	acggtaagg	gtgcagcct	ggggctcgac	1920
gtgtgtctc	aggagaaggc	tctggaggac	ttgaggcatg	ctggggctgg	1980
gctgttaagga	gaccgggg	aagacagtat	cgtgtcact	tatgtttagg	2040
gctgtgtct	tagggatgtt	cgcgtccagt	aaagacactg	gtaactgcgg	2100
cactcttc	ggcagtgtcg	acccctgggtt	agcttctgtt	gtctttgtgg	2160
tggagcggcc	tgacgttgac	gtttctctg	gtcccattgc	ttagcggggc	2220
ttcgtgcct	acgcgtgc	taggggtttc	tcttataactt	tcagtagcgt	2280
caagggccaa	accctccctgg	ttcccttcag	agtcttttg	gcctgtatgt	2340
tgataccctg	tgatgcagac	atgcccaga	tggattctac	tttctttaaa	2400
ttcaagat	aaaaaaagat	tgtcactact	aatttgacgc	ctaaacttcag	2460
gtctacatgt	gaactttcc	agaaaaactg	tgccatggac	attttcctc	2520
acatctaaat	tctggtaact	ataaaaagac	agatctggtt	aatttaaaaa	2580
aaaaaaaaaa	aaaaaaaaaa	a			2601

<210> 18
<211> 2229
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (570)
<223> n equals a,t,g, or c

<400> 18
tcgaggcaga gtacgctgaa cgcggtttca atcatgagca taaaacccggc gcgccctgt

ctggctggta	tgattttaat	gataactggc	gtattggttc	gcaactggaa	cgcctcttc	120
accgcgttcc	attacgggca	atgaaaaatg	gtgttacagg	caacagtgt	caggcttatg	180
ttcgctggta	tcaaaatgag	cggcgtaagt	acggtgttctc	ctgggctttc	actgatttt	240
ccgacagtaa	ccagcgcat	gaagtctcac	ttgagggtca	ggaacgcac	tggcttcac	300
catatttgc	tgtcgatttc	ctacccagtc	tgtattacga	acaaaataca	gaacacgata	360
ccccatacta	caaccctata	aaaacgttcg	atattgttcc	ggcatttgag	gcaagccatt	420
tgttatggcg	aagctatgaa	aatagctggg	agcaaattt	cagcgcaggt	gttggtgcc	480
cctggcaaaa	acattatggc	acggatgtcg	tcacccaact	cggctacggg	caacgcatta	540
gttggaaatga	cgtgatttgat	gctggcgcan	astacgtgg	aaaaaacgac	cttatgacgg	600
tgacagagaa	cacaacttat	acgttgaatt	cgatatgaca	ttcagatttt	aaggataaat	660
atgttacgta	atggaaataa	atatctcctg	atgctggta	gtataattat	gctcaccgcg	720
tgcattagcc	agtcaagaac	atcattata	ccgccacagg	atcgcgaatc	tttactcgcc	780
gagcaaccgt	ggccgcataa	tggtttgt	gcgatttcat	ggcataacgt	tgaagacgaa	840
gctgccgacc	agcgttttat	gtcagtgcgg	acatcagcac	tgcgtgaaca	atttgcctgg	900
ctgcgcgaga	acggttatca	accggtcagt	attgctcaaa	ttcgtgaagc	acatcgagga	960
ggaaaaccgc	tacccggaaaa	agctgttagt	ctgactttt	atgacggcta	ccagagttt	1020
tatacccgcg	tcttcccaat	tcttcaggcc	ttccagtgcc	ctgctgtatg	ggccccccgtc	1080
ggcagttggg	tcgatacgcc	agcggataaa	caagtaaaat	ttggcgatga	gttggtcgat	1140
cgagaatatt	ttgcccacgt	gcaacaagt	cgagaagtt	cgcggtcccg	gctcggtgag	1200
ctcgcttctc	atacatgaa	ttctcaact	ggtattcagg	ctaattgcac	cggcagctt	1260
ttgcctgtat	atgtaaatcg	tgcataat	actgaccac	cacggat	aaccgcagca	1320
gaataccggg	aaagaattcg	tctggatgt	gtaaaaatga	cggaaatac	gcgtacaaag	1380
gtttaggtaa	atccacacgt	ttyyrtttgg	ccttatggcg	aagcgaat	catagcgata	1440
gaggaattaa	aaaaactcg	ttatgacat	ttcttcaccc	ttgaatcagg	tttggcaaat	1500
gcgtcgcaat	tggattccat	tccgcgggt	ttaatgc	ataatccctc	attaaaagag	1560
tttgc	aaattattac	cgtacaggaa	aaatcaccac	aacggataat	gcataatcgat	1620
cttgattacg	tttatgacga	aaacctccag	caaattggatc	gcaatatt	tgtgctaatt	1680
cagcgggtga	aagatatgca	aatatcaacc	gtgtatttgc	aggcatttgc	tgatcccgat	1740
ggttagggc	tggtaaaga	ggctcggtt	ccaaatcg	tgctaccaat	gaaagcagat	1800
attttagtc	gggttgctg	gcaattacgt	acccgctcag	gtgtaaacat	ctatgcgtgg	1860
atgcgggtat	taagctgg	tttagatccc	acattaacgc	gagtaaaata	cttaccaaca	1920
ggggagaaaa	aagcacaaat	tcatcctgaa	caatatcacc	gtctctctcc	tttcgatgac	1980
agagtcagag	cacaagtgg	catgttat	gaagatctt	ccggacatgc	tgctttgtat	2040
ggcatattgt	tccacatgta	tgctttgtt	tcagattat	aagatgccag	tgcacccgct	2100
atcacggctt	atcagcaagc	aggctttagc	gggagtcgt	gcaaaattcg	acaaaaccgc	2160
gagcaattt	aacagtggc	ccgtttaaa	agtcgtgcgt	taactgactt	cactttagaa	2220
						2229

<210> 19
<211> 1232
<212> DNA
<213> Homo sapiens

<400> 19						
gaattcggca	cgagcgccgg	tctggagccg	cccgccccgg	acatggcgac	cgtccgggccc	60
tctctgcgag	gtgcgctgt	ccttctgt	gccgtggcg	gggtcgccg	ggtggcagg	120
ggcctggctc	cgggcagtgc	gggtgcatt	tgttgcatt	attcaaaagga	taaccaaata	180
tgcgtgtat	tatgtgaa	gatttctcc	tcaaaaatgt	aatcccgact	aaaacatct	240
ttgcagcgg	ccccagatta	ttggccagag	acaatggtt	aaatttggaa	ttgtatgaa	300
tcatcttgc	cagggtgtt	taagaagtct	gatggctgg	ttggctttag	ctgctgtgaa	360
ctggctattt	ccttggatgt	tcgacaggca	tgcaagcagg	cattttcaaa	gaatgatatt	420
tccaaagttt	gcagaaaaga	atatgaaat	gcttttca	gttgcattag	cagaaatgaa	480
atgggctgg	tttggatgt	tatgcaggt	catcacacaa	actgcccgg	ataactgtca	540
gccat	gaacagactc	ttctcctgt	ccatctcaga	taaaagcagt	ggaaaattat	600
tgcgcctcta	ttagtccaca	attaatacat	tgtgtgaaca	attataact	atcttatcca	660
atgaggaacc	caacggatag	cagatctgt	ctctctgaca	tttagtctat	acgagatact	720
gctggagcta	aggagatggc	agctcaataa	aaaagcagaa	agaggtttta	agggtagaac	780

aaccgtctcc atctttgcca atacagagga atctggaaaa gaaggcgcca aacagatatg	840
cacagatttc ttccaaagtc agagaaaact acttcaaaga agcccttctg aattctgtaa	900
tatgggtgaa agtgttttt tatttctgtat tctttgagaa aattaaargc agagccaaac	960
tgtatcttg tcagagttcg ctactgtact atttatgtta caacttagat taattagcat	1020
aagatataaa aaagctttat gtggccttgg aatgtaatga aatattgtgt ctggaattgg	1080
ttccctccgg tgggttcttg gtctcgctga cttcaagagt gaagccacag accctcgctg	1140
gagtgttaca gctctaaag gtggcatcca gagtttttg ttcccccag tagttcgtg	1200
gtctcgctga cttcaggagt gaagcccgag ac	1232

<210> 20
<211> 1307
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (395)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (696)
<223> n equals a,t,g, or c

<400> 20
ggcacgagcg gtgcccagcc cctgtccccct ctgtcaaccc cctgtcgctt tgggtttgggt 60
ttcgttcccg tcttcagcaa aacgaccttg gaacctcaat gggggctgct ttgccttggg 120
aggttcttgt tggtgggacc agagcttga caaacctcct gctccttggt ggcacctctc 180
ctggaggac gtcacaactc caggtgctca gactgctgt ggacgcagaa ccagtgcctt 240
tggcattttc ctccccacaat ggggaaggtg actttggcat tcttacaaac tcgtctctcg 300
gcctttctct cctgccttcc acagcctctc gtttctcctc catctgtgct tattacttga 360
ggactgtgtc tgctccgtga gagctgcgtg ggcanggtg cagttgggtc caggtgggt 420
tcagctgtgc tgatgcctgc cattgggtcc tccttaggct ctgtaaatcg tgacagcctt 480
catcagtgc atgtttgcag ggttaattttt aaactttta gagggtggca ggtacatcg 540
ttcttttga tatgaaaaca ttcatgtttc agacattgaa tttagaggtt tttagggaaag 600
cataatggtt attgtcaacta tcaacagtct aaaaagaaaa actgagggtct ttttaatctt 660
gattacagca ctcacgcat gcaccctact cagtgnnggt gtcttcgatt gggggctttt 720
ttttttttt tgcacttctg aggctagata tgtctggctt aagatttgat gtgggtccctc 780
cttaagctat gcttcctgtat ataataaggta ctgtactggg ctctgtgtaa gtgtcggtgg 840
ggtaggacct atatTTTAACTACTGCTTAACAATTCTT TTACTAGCGA GAAATCTTG 900
atTTCAATTTC ATCCCTTGTA ATTCTAGACCA CTAGATTGTA GTTGTGGCTT AACTGATGTT 960
TTTTAAAAAG GGATATAATT TCTTGACAG TTGTTAAAAA AAGAGACAAAG TTTCAGTCCT 1020
CAATGCTGTC CTTGTTTA CAGGTACAAG TTTCTAGCT CAGACAAACT ATGAAAAACT 1080
GTTAGACTATT CTCAAGGTAT TAACTCGCAG ACCCTCTGGG GTTGTGGGCT GTTTCTAAG 1140
TTACAGGCAG AGTGGGACTG AGATGGTACA GTGTGCACAG ACAGGTACTG AGCTGACAGA 1200
CTGGGATTTC CTGTACTAAA ATGTTACTTT GTATCAAAG TAAACAGGC TTAGTACAA 1260
CAAATAAAGG TCAATTCTG TAAAAAAAG AAAAAGAAAAA AAAAAGAAA 1307

<210> 21
<211> 1052
<212> DNA
<213> Homo sapiens

<400> 21
ccacgcgtcc gcaaccaggc tcaagacgag taagaggaat gcaagttatc tttttccaaa 60
aagaattgtt ttcaatttaa ttaagttta aattcgaaag gagaataatg gctcatgtaa 120

aatgtggca	tttgc当地ata	agtaataatga	ttgtgtgtgt	gtctgtggc	atgtgttat	180
gacagagaga	gagggagaga	gagacagaga	gagagagtca	gtgtcagtg	tctgtggatt	240
tggggacagg	atatattatg	atacatggc	ccctggtcc	ttctttggag	ttccttcttc	300
ataggcacat	catcagccca	tattgacaaa	caggtaaaga	ttgttagaca	aaaatctacc	360
tattggggag	aaaaattttt	aaaaagatgt	gaaagggaaa	gaataaaaaga	gagtgaacaa	420
tcaggcaaga	gaggagaatt	aagagaaaaga	cagaaaagt	caaataaagc	aggctgcac	480
tatcagtcca	ttataactcat	ttaggggtgt	aagtgtgctt	ctctgaatct	gagagagtca	540
gagtcttttta	agaaaaggaaag	aattcaagat	tttgc当地ata	ctattaggtt	taagaatgtt	600
ttttttaaaa	gttaagcaat	tccaggcaac	aacacatatac	agatgcattt	tgtggcaga	660
gccagggttag	caagcttagg	gaatcactgc	aaagaaaatt	gtatgtggac	tttgggtttt	720
tacttgaggc	aggttagacaa	atatgtatga	aactgtgttt	gacataccta	acaaaatcc	780
atcaatggga	atttctccta	ccacagcatt	gcttcatttc	tgacataaat	gggacagaaa	840
ggaaatcttt	ttttaaaaaaaa	aaattaataa	ctagtttaagg	ctaggatgg	ataatgtgt	900
gtgctctgcc	ttgttccctt	atgacattt	cattttctt	aggaagaaaat	ctctattgt	960
ttagtttgc	ctgattataa	aagtaataca	aatttcttcc	tcaaaatgca	tacaacaaat	1020
aaaaatttgc	aaaaatcaaa	aaaaaaaaaa	aa			1052

<210> 22
<211> 1645
<212> DNA
<213> Homo sapiens

<400> 22						
ggcacgagcc	gagccagctc	ccgagacccc	attcatctac	cggctggagc	ggcaggaagt	60
gggctctgaa	gactggattc	agtgtttcag	catcgagaaa	gccccggcc	tggaggtgcc	120
gggcgactgt	gtggccctccg	agggtgacta	ccgctccgc	atctgcacag	tcagcggaca	180
tggccgttgt	ccccacgtgg	tgttccacgg	ttctgctcac	cttgc当地ata	cagctcgcc	240
ggtggcaggt	ctggaggatg	tgcaaggata	cgacggggaa	gatgc当地ata	tctccctcga	300
tctctccacc	atcatccagg	gtacctggtt	ccttaatggg	gaagagctca	agagtaacga	360
gccccggggc	cagggtggaa	ctggggccct	gccccggcc	atagagcaga	agggtctgca	420
gcacagactc	atccctgatc	ccgtcaagca	ccaggacagc	ggtgc当地ata	tcggcttcag	480
ctgccccggc	gtgc当地ata	cagctccct	cacaatccaa	gagagccccc	tgcacatcct	540
gagccccccag	gacaagggtt	cgttgacctt	cacaacccca	gagcgggtgg	tgctgacttg	600
tgagctctca	agggtggact	tccggcaac	ctggtacaag	gatggggcaga	aggtggagga	660
gagcgagttg	ctgggtgtga	agatggatgg	gccccggcc	cgatgc当地ata	tgccctgaggg	720
caaagtccag	gacagtggcg	agtttggatg	caggacagaa	gggggtctcgg	ccttcttcgg	780
cgtcaactgtc	caagatccctc	ccgtgc当地ata	cgtggacccc	cgagaacatg	tgttcgtgca	840
tgccataact	tccgagttgt	tcatgctggc	ctgtgagggt	gaccgagagg	acgcccctgt	900
gcgttggta	aaggacgggc	aggagggtgg	ggagagtgac	ttcgtgggtc	tggagaatga	960
ggggccccat	ccccggctgg	tgttccctcc	cacccatccc	tcagacgggg	gcgagtttca	1020
gtgc当地ata	ggagatgatg	gtggctactt	cactgtcacc	atcacagacg	tctccctcgt	1080
gatcgtgtat	ccccggccca	agggttatgt	ggcagccgt	cgccctggagc	gtgtgggtgt	1140
gacctgttag	ctatggccggc	cctggggcaga	ggtgc当地ata	accaaggatg	gagaggaggt	1200
ggtgagggagc	ccccggctgc	tccggccat	ggaagacact	gtccggcc	tgggtctgccc	1260
cgtgtccag	ctcgaggact	ccgggggat	cttgc当地ata	attgacgatg	agtcggccctc	1320
cttcactgtc	accgtccac	agtttttacca	aagtccggac	agttcaataa	acaatccgga	1380
gttatgcgtc	cttttgc当地ata	agccggaa	ccggccgtc	ttggccctt	tcccccattt	1440
gcaacaa	gctggactg	agtagcagct	ccccccatag	tttggggccc	acattctct	1500
gtcccacctc	cctggccattt	cttttgc当地ata	ctccccagac	tgcttcagcc	gctaaccataa	1560
cctggccccc	gtggggcattt	gagtttgc当地ata	ccccctgtgtt	aaaccaataa	acatgcaaaat	1620
aaatgtaaaa	aaaaaaa	aaaa				1645

<210> 23
<211> 1770
<212> DNA
<213> Homo sapiens

DRAFT: A draft sequence of the human genome

<400> 23

ggcacgagtc	tgaatacact	acatctccaa	aatcttctgt	tctctgcccc	aaactaccag	60
ttccagcgag	tgcacctatt	ccattcttcc	atcgctgtgc	tcctgtgaac	atttcctgct	120
atgccaagtt	tgcaaggccc	ctgatcacct	ttgtcagtga	caatagtgtc	ttacacaggc	180
tgattagtgg	agtaatgacc	agcaaagaaa	ttatattggg	actttgttg	ttatcactag	240
ttctatccat	gatttgtatg	gtgataatca	ggtatatatc	aagagtactt	gtgtggatct	300
taacgattct	ggtcataactc	ggttcacttg	gaggcacagg	tgtactatgg	tggccgtatg	360
caaagcaaag	aaggctccc	aaagaaaactg	ttactcttga	gcagcttcag	atagctgaag	420
acaatcttcg	ggccctccctc	atttatgcc	tttcagctac	agtgttcaca	gtgatcttat	480
tcctgataat	gttgggttagt	cgcaaacgtg	ttgctcttac	catcgccctt	ttccacgtag	540
ctggcaaggt	cttcattcac	ttgccactgc	tagtcttcca	acccttctgg	actttctttg	600
ctctgtctt	gttttgggtg	tactggatca	tgacacttct	ttttcttggc	actaccggca	660
gtcctgttca	gaatgagcaa	ggcttgggg	agttcaaaaat	ttctgggcct	ctgcagttaca	720
tgtgggtgt	ccatgtgggt	ggcctgattt	ggatcagtga	atttattcta	gcatgtcagc	780
agatgacagt	ggcaggagct	gtggtaacat	actattttac	tagggataaaa	aggaatttgc	840
cattacacc	tattttggca	tcagtaaattc	gccttattcg	ttaccaccta	ggtacgggtgg	900
caaaggatc	tttcattattc	acattagtca	aaattcccgcg	aatgatcctt	atgtatattc	960
acagtca	caaaggaaag	gaaaatgctt	gtgcacgatg	tgtgctgaaa	tcttgcat	1020
gttgcccttg	gtgtcttga	aagtgcctaa	attattttaa	tcagaatgca	tacacagcca	1080
cagctatcaa	cagcaccaac	ttctgcacct	cagcaaagga	tgccttgc	attctgggtgg	1140
agaatgc	tgcgagtggct	accatcaaca	cagtaggaga	ttttatgtta	ttccttggca	1200
agggtgtgt	agtctgcagc	acaggtttag	ctgggattat	gctgctcaac	taccagcagg	1260
actacacagt	atgggtgctg	cctctgatca	tcgtctgcct	cttgctttc	ctagacgctc	1320
attgcttcct	gtctatttt	gaaatggtag	tggatgtatt	attcttgc	tttgccattt	1380
atacaaaata	caatgatggg	agccctggca	gagaattcta	tatggataaa	gtgctgatgg	1440
agtttgttgg	aaacagtagg	aaagcaatga	aagaagctgg	taaggaggg	gtcgctgatt	1500
ccagagagct	aaagccgatg	ctgaagaaaa	ggtgactgg	ctcatgagcc	ctgaagaatg	1560
aactcagagg	agggttgtt	catgaggttc	tcccactcac	cagctgttga	gagtctgcga	1620
ttatgaagag	caggatctt	ttacttcaat	gaaagcatgt	aacaagttt	tcaaaccacc	1680
aacagcccaa	gtggatttgg	tacagtgcgg	ctgtctaata	aataatcaa	agcatttgat	1740
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1770

<210> 24

<211> 2105

<212> DNA

<213> Homo sapiens

<400> 24

ggcacgaggt	tttttagata	cccagaagct	tgttctggga	gaagctaggg	tgggtcagag	60
tagacctgat	gggttaactca	ggtaaagatg	cttttctttt	atctgaacta	cttaatgatt	120
gctttacttt	tactttttaa	aaaaatttcag	aaatccaata	aaggaaagga	cggttaacctt	180
atgatagaag	gtgtggcatg	tgttactgtt	ggggggaaagg	agtatattga	ctttgcctt	240
gttgatattt	ttatgctgt	ctaggatggg	actagagtgt	tgatagtaac	atggcagcct	300
tttgctggca	gtgaaatgaa	cttaagaagc	tagggagttac	tatcctagtc	aaaactctcc	360
taatagttt	tcctttgcag	gaccatctt	ataaaagaaca	gcataactcag	cttttactt	420
agtgtcgtt	gaggcatact	ctcaaaaagg	ttttccctta	aaatatctt	caagtttatta	480
ctggtatttt	aaatttcaag	tttagaaatt	catttctttt	taactcaaag	tgcaaatttc	540
atataatgt	tatgtgttt	tttagtgc	tatttttgt	gcttcactta	tcatctctt	600
cagcgtatc	tacccacagt	cagctcttag	taaaatggct	acaggaaaac	tgaaagaaaa	660
gtttaaggct	gagtaggc	agagtaaaaa	atgcataatg	atgcattatt	aatataagag	720
taaggctttt	tttattttga	gtatccta	tccaaaccta	gtgttctttt	caetccattt	780
tcctgctgtt	tatagcaat	caagacccat	aatgatacgt	ctttcat	tttcagttct	840
gccaaggaaa	gagaaaatac	ctttaatcc	cagggaaagg	attgcaatca	ccacattata	900
aggatatagg	cgtggatgc	agaattctaa	atactagaag	ggaaaagtag	ttggcagatt	960
catcagaggc	ttaaggataa	gtacttgc	ccaattttaa	agtataatta	ggattgttct	1020
taatgttctc	tagaaatact	ataattaatc	tagagatcta	tcaatggtca	catctcagtt	1080

ttttcttcc	ctgagattca	aagacgtgta	ataccaatac	ttcagattcc	tatagtattt	1140
gggactttgt	agacttagtga	atagatactt	tgttgctagt	ccaaatcctc	tgatTTTgggt	1200
ttgatttgc	ctagcagatc	cctgaacttc	agagagtatt	gccatttggga	ttcatggagt	1260
tggcgaactg	ctacactgct	accttggta	tggctctaag	cttgatccct	aatgactggt	1320
tgatgatcat	gataatatta	gggcccagtga	atatagctca	tagtgataat	aaggattcta	1380
gggtatTTT	ttttcttta	gaaaaagatc	ctggaagttt	atttgatctg	acatgtttt	1440
gtaatattta	gaaatagctc	ttgtatcata	aaaagtggcc	cagttataaga	cacacaagat	1500
gtatTTTTT	ctctggtaa	aatcatgcct	atcaactagta	tatgtttgac	attttagtga	1560
tacttaaaat	agtattgggt	gtgaggcatg	gtggtgatga	aaagtagtcc	ttacggctac	1620
ttgttagtca	ttagagagaa	catggagaag	gggtcaaagt	tggtatcatt	aacagggcaa	1680
tgacttgacc	cttctttcaa	ctgatcttac	tggttagttt	ctctagttt	taagtaaatt	1740
aatgatggac	catccccaa	acagagaact	atgggggtat	gaaacaaggc	tgaaggcttt	1800
taaccatggg	agaaaaaaggt	gttggattta	ttcatatagc	ataaacctgag	gttggagagg	1860
accacttggg	agcctgtAAC	caaaactaga	aggttaacttc	tggatggac	ggaggttccc	1920
ttgaagcagt	gccaacctaa	atctacctca	ggtaagtagt	tagattaact	ttttcaagat	1980
ttcagaccaa	acaagacaac	ttgtattcag	ttgatgtatt	cctatgcttt	aatgttttg	2040
tttgcctta	attattaaat	aaacatttgt	tctgaaaaaac	tccaaaaaaaaa	aaaaaaaaaa	2100
						2105

<210> 25
<211> 4909
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (2488)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2493)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2512)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (2523)
<223> n equals a,t,g, or c

<400> 25
gcgtccggtg gtggcgccgg cgcaagggtg agggcgcccc cagaacccca ggttaggtaga 60
gcaagaagat ggtgtttctg cccctcaaat ggtcccttgc aaccatgtca tttctacttt 120
cctcactgtt ggctcttta actgtgtcca ctcccttcatg gtgtcagagc actgaagcat 180
ctccaaaacg tagtgatggg acaccatttc cttggaataa aatacgactt cctgagttacg 240
tcatcccagt tcattatgtat ctcttgcatt atgcaaacct taccacgctg accttctggg 300
gaaccacgaa agtagaaatc acagccagtc agcccaccag caccatcatc ctgcatagtc 360
accacctgca gatatctagg gccaccctca ggaaggggagc tggagagagg ctatcggaaag 420
aaccctgca ggtcctggaa cacccccctc aggagcaaatt tgcaactgctg gctcccggac 480
ccctccttgt cgggctcccc tacacagttg tcatttacta tgctggcaat ctttcggaga 540
ctttccacgg attttacaaa agcacctaca gaaccaagga aggggaactg aggataactag 600
catcaacaca atttgaacccc actgcagcta gaatggccctt tcctgcttt gatgaacctg 660
ccttcaaagc aagtttctca atcaaaatttta gaagagagcc aaggcaccta gccatctcca 720

atatgccatt	ggtaaaatct	gtgactgttg	ctgaaggact	catagaagac	cattttgatg	780
tcactgtcaa	gatgagcacc	tatctggtgg	ccttcatcat	ttcagatittt	gagtctgtca	840
gcaagataac	caagagtgg	gtcaagggtt	ctgtttatgc	tgtgccagac	aagatgaatc	900
aaggagatta	tgcactggat	gctgcggta	ctcttctaga	attttatgag	gattattica	960
gcataccgt	tcccctaccc	aaacaagatc	ttgctgtat	tcccacttt	cagtctggtg	1020
ctatggaaaa	ctggggactg	acaacatata	gagaatctgc	tctgttgtt	gatgcagaaa	1080
agtcttctgc	atcaagtaag	cttggcatca	caatgactgt	ggcccatgaa	ctggcccacc	1140
agtgggttgg	gaacctggtc	actatggaat	ggtggaatga	tctttggcta	aatgaaggat	1200
ttgccaatt	tatggagttt	gtgtctgtca	gtgtgaccca	tcctgaactg	aaagttggag	1260
attatttctt	tggcaaatgt	tttgacgcaa	tggaggtaga	tgctttaat	tcctcacacc	1320
ctgtgtctac	acctgtggaa	aatctgtctc	agatccggga	gatgtttgat	gatgtttctt	1380
atgataaggg	agcttgtatt	ctgaatatgc	taaggagta	tcttagcgct	gacgcattta	1440
aaagtgttat	tgtacagtat	ctccagaagc	atagctataa	aaatacaaaa	aacgaggacc	1500
tgtgggatag	tatggcaagt	atttgcctta	cagatggtgt	aaaagggatg	gatggctttt	1560
gctctagaag	tcaacattca	tcttcattcct	cacattggca	tcaggaaggg	gtggatgtga	1620
aaaccatgat	gaacacttgg	acactgcaga	ggggtttcc	cctaataacc	atcacagtga	1680
gggggaggaa	tgtacacatg	aagcaagagc	actacatgaa	gggctctgac	ggcgccccgg	1740
acactggta	cctgtggcat	gttccattga	cattcatcac	cagcaaattc	gacatggtcc	1800
atcgattttt	gctaaaaaca	aaaacagatg	tgctcatcct	cccaagaagag	gtggatggaa	1860
tcaaaattaa	tgtggcatg	aatggctatt	acattgtgca	ttacgaggat	gatggatggg	1920
actcttgcac	ttgcctttta	aaaggaacac	acacagcagt	cagcagtaat	gatggggcaa	1980
gtctcattaa	caatgcattt	cagctcgta	gcattggaa	gctgtccatt	gaaaaggcct	2040
tggatttatac	cctgtacttg	aaacatgaaa	ctgaaattat	gcccggttt	caaggtttga	2100
atgagctgat	tccttatgtat	aagttaatgg	agaaaaagaga	tatgaatgaa	gtggaaactc	2160
aattcaaggc	cttcctcattc	aggctgctaa	gggacctcat	tgataagcag	acatggacag	2220
acgagggctc	agtctcagag	cgaatgctgc	ggagtgaact	actactcctc	gcctgtgtgc	2280
acaactatca	gccgtgcgta	cagagggcag	aaggctattt	cagaaagtgg	aaggaatcca	2340
atgaaaacctt	gagcctgcct	gtcgacgtga	ccttggcagt	gtttgtgtg	ggggcccgaga	2400
gcacagaagg	ctgggattttt	ctttagtagta	aatatcagtt	tttcttgc	agtaactgaga	2460
aaagccaaat	tgaatttgcc	ctctgcanac	ccnAAAATAA	ggAAAAGCTT	cnatggctac	2520
tanatgaaag	ctttaaggga	gataAAATAA	aaactcagga	gtttccacaa	attcttacac	2580
tcattggcag	gaacccagta	ggatacccac	tggcctggca	atttctgagg	aaaaactggaa	2640
acaaaacttgt	acaaaagttt	gaacttggct	catcttccat	agcccacatg	gtaatgggta	2700
caacaaatca	attctccaca	agaaacacggc	ttgaagaggt	aaaaggattc	ttcagctctt	2760
tgaaagaaaa	tggttctcag	ctccgttgg	tccaaacagac	aattgaaacc	attgaagaaaa	2820
acatcggttg	gatggataag	aattttgata	aaatcagagt	gtggctgcaa	agtggaaaagc	2880
ttgaaacgtat	gtaaaaattc	ctcccttgcc	aggttctgt	tatctctaat	caccaacatt	2940
ttggttagtg	tatTTTCAAA	ctagagatgg	ctgtttggc	tccaaactgg	gatacttttt	3000
tcccttcaac	tcattttttt	actatccctg	tggaaagaaat	agctgttagt	ttttcatgaa	3060
tggctatcg	ctaccatgt	ttttgttcat	cacaggtgtt	gccctgcaac	gtaaacccaa	3120
gtgttgggtt	ccctgcacaca	gaagaataaaa	gtaccttatt	cttctcattt	tatagtttat	3180
gcttaagcac	ccgtgtccaa	aaccctgtac	cccatgttt	tcattcataaa	actgtttcat	3240
cagtctcctc	gaaagactct	gaatagtcga	ctactgaaca	atgaacaccc	ggatctgaga	3300
ctaagccgga	cgatgactgg	gttaaagctc	tcccggtca	cccccctccaga	cccgctgccc	3360
atcccttcc	cttgctccat	gcccaggggc	tgacttgtaa	aggccaagtc	atcaagcttt	3420
cttgcccttt	ggatgttgg	cagtggggag	ccggagagct	ggagctgggg	tcggaggagg	3480
tagtaggtgg	aggtgttttt	ccctgattcc	cttgcgggat	gcctcggtc	ggcctccccct	3540
gagggtctta	gctccgagag	gggaccctct	tttccacaca	gccttctcca	cctctggatt	3600
ttgtaactg	ctcccttcc	atcccttca	gattgtggc	ctcagtgaaa	gtctggcttt	3660
tactagtcc	ggcggacttg	tggtttctac	ataatgtgt	cgcactttt	caaaaaatct	3720
ttttatagaa	ccctcctcag	ataattctga	gtgtctgtca	tctatTTCCC	tgactggtac	3780
agtatctctt	ctgaaaaaa	agagtgcatt	caagtctgta	ggaaaacccct	tttcttaggg	3840
aggtagtttt	ttttctctct	ctgcttctta	tttggctac	tttacaattt	ctaactaact	3900
agttatttggc	atttactgac	agtaaaattat	tgcagtcacc	aataaaatgt	agtagattgt	3960
gaaacaaaat	atttgctcat	attagcaaatt	aggacattct	ttggctttga	agtctttctt	4020
ttgtgaagac	ttcacacacg	gttgcttgc	cacacagttg	ctgctcaggt	tttatgtata	4080
gatgataata	atagaaagca	cagttacta	acatggaaa	ccaaacggagt	tcaagtcaag	4140
tcagttataa	ccctaagaat	tagatTTAT	ttcttattct	gaaaacttgc	tacacaggga	4200

cttatctaac	ccatagtg	ctctgttgc	gacttgattc	aagttgcagc	gtgtttgcg	4260
ctgactctaa	ggtgtcgaaa	tcctcacacc	tggcaaagg	gaattcaaac	tgaactttt	4320
aatataagg	caaaaactc	aagataaggg	aatatgattg	atgattggta	cgaaaaatgt	4380
caaaaatgt	ttccccta	acacgacaaa	atagagtgc	ttctggacat	aaatctgcc	4440
tttattaaac	cattca	aacaaataaa	taggtataaa	agtggaaattg	gaattttat	4500
acttatttgc	tgttagtga	ggtttaataa	aaatagaat	cactggtaat	ttccacccca	4560
aactaaacta	tttcccttct	tttaaaaaaa	tacacaacca	agattttaat	gtaaaatatt	4620
ttgcgttaat	tgtat	tttgcgttgc	atgaaacatg	gaaatattga	ttttcagttt	4680
tggtcacctg	aggaacctat	ctttgttgc	ttttggaaaa	gcccatttc	taaacagata	4740
caatattgcc	acaacaatgt	gcagaaacct	ttttgataat	aaaaaattgt	tctttgcctc	4800
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4860
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	4909

<210> 26
<211> 2916
<212> DNA
<213> Homo sapiens

<400> 26	.					
ccacgcgtcc	gctagccgg	gcggagccac	agtcctagag	gctgagcgca	gtcggagctg	60
tcccatttac	ccgacccgac	gccggcgtga	tgtggcttc	gctgggtctg	ctcctggctg	120
tgctgtgt	ggccgtc	tgcaaagttt	acttggact	attctctggc	agctccccga	180
atccccc	cgaagatgtc	aaacggcccc	cagcgc	ggtaactgac	aaggaggcca	240
ggaagaaggt	tctcaa	ggaatccatt	acattggcg	tatggaaagag	ggcagcattg	300
gccgtttat	cttggaccag	atca	ttggcgttgc	ctgggctccc	ctgtcc	360
ctttgacat	catggta	gaagggccca	atggccgaaa	ggagtacccc	atgtacagt	420
gagagaaagc	ctacattc	ggc	agaagttcc	acaggaggaa	gctatcattg	480
acaagtata	aaagctgtt	aagggtt	ccagtggagc	ccctcatg	atcctgttga	540
aattccccc	attgccc	gttc	tcgacaggt	tgggtgtctg	actcg	600
ctccattcct	tcaagcatcc	acc	ttggctgagg	cctgcagcag	ctggggcct	660
cctctgagct	ccaggcagta	ctc	tttccccac	ttacgg	accccaacc	720
acagtgc	ttccatgc	gc	tc	catgaaagga	ggctttatc	780
cccgaggggg	ttcc	atgc	acaccatccc	tgtgattc	cgggctgggg	840
gcgcgtc	cacaaaggcc	actgtc	gtgtgttgc	ggactcag	ggaaagcct	900
gtgggtc	tgtga	ggg	ttgtgaacat	ctatt	atcgtgtct	960
ccaa	actgttca	ac	actactg	gggg	cgctgc	1020
cagg	gtgaa	gc	ggacgg	ggcc	aggatgacc	1080
tctgc	aggc	acc	atctgc	caccaactac	tatgttact	1140
atgacac	catgg	gc	ctacgt	catgccc	gaagaggct	1200
cgg	acacat	cc	ttctcg	ccc	acctggagg	1260
accgat	aggcc	acc	tgctcata	cactgc	gagtgg	1320
aggag	ggc	aag	ggggc	ctatg	ttcaaaaact	1380
cctt	agc	tc	tgaa	ccc	gagggaaagg	1440
tgg	ag	tc	ccaa	act	gtctccgag	1500
gtgc	ct	cc	catg	cc	atggc	1560
tgagg	ggc	cc	atctg	cc	cac	1620
gact	gtc	cc	gg	cc	atc	1680
tgt	act	cc	tg	cc	act	1740
tcc	atc	cc	gg	cc	act	1800
cata	atgt	cc	at	cc	act	1860
cct	ga	cc	ct	cc	atc	1920
cc	ag	cc	at	cc	act	1980
at	tg	cc	cc	cc	act	2040
tc	ct	cc	at	cc	act	2100
cag	tc	cc	cc	cc	act	2160
ac	gt	cc	at	cc	act	2220
ct	gg	cc	cc	cc	act	2280

gggttcagtg	gctttcagg	ggacaggaaa	tgcctgtgtc	tggccagtgt	ggttctggag	2340
cttggggta	acagcaggat	ccatcagtt	gtagggtgca	tgtcagatga	tcatatccaa	2400
ttcatatgga	agtccccgtt	ctgtcttcct	tatcatcggt	gtggcagctg	gttctcaatg	2460
tgccagcagg	gactcagtag	ctgagcctca	atcaaggctt	atccaccaaa	tacacaggga	2520
agggtgatgc	aggaaagggt	gacatcagga	gtcagggcat	ggactggtaa	gatgaatact	2580
ttgctggct	gaagcaggct	gcaggggcatt	ccagccaagg	gcacagcagg	ggacagtgca	2640
gggaggtgtg	gggtaaggga	gggaagtca	atcagaaaag	ggaaagccac	ggaatgtgtg	2700
tgaagcccag	aatggcatt	tgagttaat	tagcacatgt	gagggttaga	cagtaggtg	2760
aatgcaagct	caaggtttgg	aaaaatgact	tttcagttat	gtctttggta	tcagacatac	2820
gaaaggcttc	ttttagtttc	gtgttaatgt	aacattaata	aatttattga	ttccattgtct	2880
ttaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2916	

<210> 27

<211> 1257

<212> DNA

<213> Homo sapiens

<400> 27

cggctgtttt	gctgctgaca	acatgaagac	ttcctgcgt	gagaacagag	gcacaggtgc	60
cggccctaca	gcccccaagaa	cctggactgg	agggggccat	ggggcacccgg	accctggtcc	120
tgcctgggt	gctgctgacc	ttgtgtgtca	ctgcggggac	cccgagggtg	tgggttcaag	180
ttcggatgg	ggccaccggag	ctctcgttct	tcaccatccg	ttgtgggttc	ctggggctcg	240
gctccatctc	cctgggtact	gtgagctggg	ggggcccccga	cgtgctggg	gggaccacgc	300
tggctgtgtt	gcaccaggaa	cgtggcatcc	ggcaatgggc	ccctgctcgc	caggcccgct	360
gggaaaccca	gagcagcatc	tctctcatcc	tggaaggctc	tggggccagc	agcccccgtcg	420
ccaaacaccac	cttctgctgc	aagtttgcgt	cttccctga	ggctccctgg	gaggccctgtg	480
ggagccccc	gcccgactca	gaccaggggc	tctctggccc	gccgactct	gccccccattc	540
tgcgggcaga	cctggccggg	atcttggggg	tctcaggagt	cctccctctt	ggctgtgtct	600
accccttca	tctgctgccc	cgacataagc	accgcctgc	ccctaggctc	cagccgtccc	660
gcaccagccc	ccaggcaccgg	agagcacgag	catgggcacc	aagccaggcc	tcccaggctg	720
ctcttcacgt	cccttatgcc	actatcaaca	ccagctgcgg	ccagactact	ttggacacag	780
ctcaccccca	tggggggccg	tcttgggtgg	cgtcactccc	cacccacgct	gcacaccggc	840
cccaaggcccc	tgcgcctgg	gcctccacac	ccatccctgc	acgtggcagc	tttgtctctg	900
ttgagaatgg	actctacgct	caggcaggggg	agaggcctcc	tcacactgg	cccgccctca	960
ctctttccc	tgaccctcgg	ggcccccagg	ccatggagg	acccttagga	gttcgatgag	1020
agagaccatg	aggccactgg	gttttttttt	tcccaggct	cctgggtgtc	atcccccttac	1080
tttaattttt	gggcctccaa	taagtgtccc	atagggtgtct	ggccaggccc	acctgctgctg	1140
gtgtggct	gtgtgcgtgt	gtgggcacag	gtgtgagtt	gtgagtgaca	gttacccat	1200
ttcagtcatt	tcctgctgca	actaagtca	caacacagtt	tctctgaaaa	aaaaaaag	1257

<210> 28

<211> 1181

<212> DNA

<213> Homo sapiens

<220>

<221> SITE

<222> (903)

<223> n equals a,t,g, or c

<400> 28

gggtggggcc	ccggggccgag	gcgatggcgc	cctggcgct	cctcagccct	ggggtctgg	60
tgcggaccgg	gcacaccgtg	ctgacacctgg	gaatcaagct	ggtgctttc	ctgcacgata	120
ccgagctgctg	gcaatggag	gagcagggggg	agctgcttct	gcctccatcc	ttcctgctcc	180
tggtgcgtgg	ctccctgctg	ctctacctcg	ctgtgtca	catggaccct	ggctacgtga	240
atgtcagcc	ccagccctag	gaggagctca	aagaggagca	gacagccatg	ttccctccag	300

10043141.B0131

ccatccctct	tcggcgctgc	agatactgcc	tggtgctgca	gcccctgagg	gctcggcact	360
gccgtgagt	ccgcccgttgc	gtccggcgct	acgaccacca	ctgccccctgg	atggagaact	420
gtgtggaga	gcfgcaaccac	ccactctttg	tggtctacct	ggcgctgcag	ctggtgtgc	480
ttctgtgggg	cctgtacctg	gcatggtcag	gcctccggtt	cttccagccc	tggggctgt	540
ggttgcggtc	cagcggggctc	ctgttcgcca	ccttcctgtct	gctgtccctc	ttctcggtgg	600
tggccagcct	gctcctcgctc	tcgcacacct	acctgggtggc	cagcaacacc	accacctggg	660
aattcatctc	ctcacacccgc	atcgccctatc	tccgcccagcg	ccccagcaac	cccttcgacc	720
gaggcctgac	ccgcaacctg	gcccacttct	tctgtggatg	gcctcaggg	tcctgggaga	780
ccctctgggc	tgaggaggag	gaagagggca	gcagcccagc	tgttagggt	tgctggaggc	840
cgggctaccg	tcttgcgtct	aaaaaccacg	gggcctgtcc	ccagctgggg	tgagcgtca	900
ganggcctgg	ggccctcaact	cctgcccacg	cctcccaagac	cccagaacgg	agcttcaagt	960
cagacagatc	cctgccttgg	tggcagttc	tgccttccaa	ggaagaaggg	gaagaaaagg	1020
acctgtgggt	ggctcaggcc	caagcagacc	ccgggctcca	ccccagcccc	gcccagcgt	1080
ctgcagtc	acacttttac	aaatttaata	taaagcaagt	ccagtcttaa	aaagacaaaa	1140
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	agggcggccg	c		1181

<210> 29

<211> 1524

<212> DNA

<213> Homo sapiens

<400> 29

ggcacgagaa	ggagctgggg	gatgtgcagg	gccacggcag	ggtggtcacc	agcagagccg	60
ccccctccacc	tgtggatcaa	gagccagagt	cctctgaggt	cgatgctgct	ggtcgggtggc	120
ctgggtctg	tgtagcaga	acatctccaa	caccccccaga	gtcggcaacc	accgttaagt	180
caatttatcaa	gtcatttgcac	ttgggacgccc	caggtggagc	tggacagaat	atttctgtcc	240
ataagacccc	cagaagtccc	ctaagtggga	taccagttag	gactgctcca	gcagctgctg	300
tctctccaaat	gcagaggcat	tcgacttaca	gcagtgtgcg	gccagccago	agaggggtga	360
ctcaacgcctt	ggaccttccct	gacccccc	tctcagatat	tctaaaggga	aggactgaga	420
ccctgaagcc	agaccccccac	ctccgcaaga	gtccctcact	agagtcaactg	agcagacccc	480
cgtctctggg	ctttggggac	acaagactgc	tgagtgcctc	cacccgggca	tggaaaccac	540
aaagcaaact	cagtgtggaa	agaaaagacc	ctctggcgcc	cttggccccc	gaatacggtg	600
gttccaagcg	caatgctcta	ctgaaatggt	gccagaagaa	gacacaaggt	tatgcgaaga	660
ggaatcttctt	gttgcattt	gaagcggctg	aaagtgttagg	catcaaacc	agcctgaaac	720
tcagcgagat	gctgtacaca	gaccggcccg	actggcagag	tgtgtatgcag	tacgtggccc	780
aaatctacaa	gtacttttag	acgtaaccct	ggagggcctg	gggcagccac	cattgcccacc	840
tactgcagct	tttcctggaa	gcgcctgatt	actgtccact	gaccctgctc	tgcccaccac	900
ccagctgcct	agacttcaaa	gacaggctca	atccaagtgg	accaacaccc	aaataaagaaa	960
cagagtgggt	cccacgatgt	acctgtctga	aatgcaaatg	cagctggact	gtaaaattggg	1020
gactcttta	tctttgtgg	gatgtttcta	aagagggcag	cctccctcct	tccagaccaa	1080
gaccccacac	ccaggcttgt	tttgcgtatt	atattgggt	gctgaacgaa	cacattatct	1140
gcagaaattc	agacaaagaa	catctccaaa	tcagttttt	ggttgctgtt	gttaaaaata	1200
tcccgcttt	gcctttatga	aacctttgcc	cttggctggg	tgtggtagct	cgtggctgt	1260
atcccagcac	tttaggaagc	caaggcagta	ggatcgttt	agccccaggag	ttcgaggctg	1320
cagtgagcta	tgagcataacc	actgcactcc	agccctgtgt	aaagagccag	accctgtctc	1380
aaaaaaaaatga	taaaacccaa	aactttgcc	ttgtgaaccc	tcccttcccc	cctccccccc	1440
cccaaaaaaaaa	aacaacaaaa	cacaaaaat	aaacatttgt	tccagggcaa	cctggaaaaaa	1500
aaaaaaaaaa	aaaaaaaaaa	aaaa				1524

<210> 30

<211> 1597

<212> DNA

<213> Homo sapiens

<400> 30

tacgcccgtgc	aggtaaccgg	ccggaaattcc	cgggtcgacc	cacgcgtccg	cctgcctgca	60
-------------	------------	-------------	------------	------------	------------	----

gttaaacacc	gcctgaaccg	tgttccttagg	tggtgcgtat	gctgggctgt	ctcaaaagcc	120
cttagtctgt	ttcaaagctt	cctgccaatg	gcaagaatgt	ggatgatgtg	attagaaaatc	180
aaatgaatgt	aactgttaca	ttgccaaaat	accattttagc	tctcatttgg	ctgcttttc	240
actttgggtg	ggcattattta	tcagtttgct	caaaaacagt	gcttatgaat	ctatccaatg	300
tccacaatgc	tgttata>tagg	taaaagscca	tttcttattta	gtccaaataa	cagagtggga	360
gacttttatt	cttttaatttgc	atttgtgaggt	tctaaaagag	ataatttgtaa	aagcaacaac	420
aacagcaaca	gcaatcatgg	ctgtatgctt	atttgaacaa	gactagaaat	gagagcagaa	480
atttgaaaaag	ttaaagtatt	tgaatgacca	ccagatggca	gtgtggggcc	accttggaaagc	540
tgaagccaaa	gtcgtgggttc	tgtctctcta	ggcagccctc	gaaagtgtca	gccccaaaga	600
ggcaatttgtc	gttaaatgttat	aaggctaaag	tatcttattta	aatgattata	aaatatattt	660
aaatgcattt	taaaaatgaa	gttcataaga	attattttag	gaaactgaaa	gttttacatt	720
tactctaata	caaaatttta	gcccacaaatg	cttc当地ata	taatttaactc	agagaagtct	780
cataaaatcaa	gacagagaat	taatgaccac	atagagaaaa	tttaagaaac	aataatttgat	840
tttttttaata	gggaagagat	cattaagcaa	ccacagccat	tacccaaata	attatttttc	900
tcctaattggc	tacaaccatt	gtgcataaaa	atgatatgca	taagtttac	ttactctaga	960
agaagtcaaa	ctatTTTcac	aaaatttctg	cgtgttaagg	tgaaaaatct	gctgtgtctt	1020
ttaatacat	cgtgacacag	gtatggcaag	cgaattcaca	aggtaatacc	agagtatttt	1080
gggggtgtaaa	aagagaaaatc	cattttaaag	tttgagaatt	cttagtttaa	aatataactac	1140
aagaacgagc	ctctttatcc	ctgctctgcc	cctgtcatag	tgggagaatg	tgccacaaag	1200
gccatattaa	tgagaggact	ggaaaagaaca	caaggagata	caaaaactca	agtcaagtggaa	1260
aaagttacat	gttacatggg	atTTTggtaa	attcaatgtt	ctttcccttt	tccctcttag	1320
aatcacaatt	tcaaagatgc	ttaatttcc	tcctccctc	cctgcctccc	tcccttcctt	1380
ccttcttccc	tcccttactt	tcttctgtct	tttcttgttt	tgatttacct	ccaagtggca	1440
gtaagtgcata	gctagcattt	aaattctcta	cttgggtgtt	ttatattaag	ttatttcatt	1500
taatttatatc	tattcagtga	attagttatg	attactggta	ataataatgt	taataaaaatc	1560
aattttatga	aaaaaaaaaaa	aaaaaaaaaggg	cggccgc			1597

```
<210> 31  
<211> 1759  
<212> DNA  
<213> Homo sapiens
```

```
<220>
<221> SITE
<222> (618)
<223> n equals a,t,g, or c
```

```
<220>
<221> SITE
<222> (1095)
<223> n equals a,t,g, or c
```

```
<400> 31
ggttgttttgc ttgttttttgc tgaaagtgtg gtccaaagaac cacctgaatc agactcactt 60
ggatgttagtt aaaaagcgca gatccctaag gccccttcag acctaatagt cagaaacact 120
ggggctggag cccagactgc accccctcccc ccggcccccgc cccggccaggta tccctggta 180
ttccctgtgca tatcgaagtt tgaaaagcat gcttttcctt gaaattaaga gacagtgaac 240
ccagttgtct gcaaagagat aggggacaga aacttacatg tacctaggac gaagatggg 300
ctttctgtac ctttgtccct tcccttcatc tgcaactgccc accttctgtg cccttttgc 360
tgctcacaca tccttctgtatgatcaacgg acttgggcac gtcacact ccttggctta 420
tgaaaacttgc acactgtcag cagagggcgc cagagaccct ccaaaaagcca cggaaatgctc 480
catttgcctcg ttggcccttc tttgcattcc aggctttgc attctattct aggcatctag 540
ttttccaggy ttaggyctgt ccccccaccc actgattctc aaagggacat tggatctcag 600
gagagtgcac agcttctnag aaacgcactt attgtggggc ctggaaattt attaatgcc 660
tctgagccca aatttcacat cctaacaagg aactaattta ttagcctgtt actgttagtc 720
tttaaatgggt taaatgaggt aacaggtgaa tgtgcccatt aaggtcagca gcccagtgac 780
tgccagacc ctgccactgc caccactggtaa gcaagtgtaa gcatggacac tggcaacct 840
```

gctcccaccc	gcaccctgcc	acaggtacaa	gtgcacacag	gaatgcagca	gctcgacttc	900
tgctggtacc	ccaacccrc	caaggcataa	gcaccctgcg	gcgctgccac	aggtgccaga	960
acacgtgagt	gagcacagat	cctgctgcca	ccgscccaaa	gaagcacttt	gtctggcmcc	1020
acccwtcaga	gggttgtggc	taatggacca	ggaacamytt	tggmccytyt	gwtgcagcag	1080
gttcccawty	tyamnggggc	cagataaaaa	gctggggkcc	tggtaccact	ycccagactt	1140
agagtccacc	aggagtgtcg	agctgagccg	tggccctaa	aatcttccag	aatgaaccc	1200
agtcaactga	acctaccta	taccgcaatg	aaaccccaa	ggcagcaaa	gaagagaaaa	1260
gcaaagaaaa	aaacatgcat	cgaaaggaca	gcaacttcag	aggttgaggg	aacatcatcc	1320
cacacagata	agaaggaatc	agcacaagaa	ctctggcaac	tcaaaatgcc	agawtgtttt	1380
cttacctcca	aatgaccaca	caagttcccc	agcaatggc	cctacctggg	gctgaaatga	1440
cagaaaaaaga	attcagatta	ccgacaggaa	cagagaacat	tatcattgac	atccaggaga	1500
aagttgaaac	ccaatccaag	gaatctaagg	aatataataa	aacaatacag	gagataacat	1560
atgaaatggc	attttgagga	agaaccaaac	tgatctgata	gacctgaaaaa	actcacttca	1620
agaatttcat	aatacaatca	cgaatattaa	cagcagaatc	aaccaagctg	aggaaagaat	1680
ctgagagttt	gaagcccaagt	tctacaaaat	aaacaaaaat	aaagaaaaaa	caataaaaaaa	1740
						1759

<210> 32
<211> 2100
<212> DNA
<213> Homo sapiens

<400> 32						
ggcacgagga	ctggaggcag	atgacaaacc	tgctccttcc	agttggttcc	tgtgagagca	60
aaagtctatc	agtggggcat	cagcaacatt	ccttcagctt	ggcagcagca	attctttcag	120
gatgtgacaa	gctgaataca	gctttagtgc	tacagttac	acgtatcagc	gtgaccctct	180
cccgccccacc	ctcatcccc	tttcagagat	ctgctctgc	ttcatggcc	tctccccaa	240
gcttctaagt	ttaatatttc	agattgtta	tttccttccc	tcaagtcctag	agatgacagt	300
tgcttcaccc	agttgccact	tctgtatgc	cttagagtct	ctctttttct	ctaattaaca	360
aaatgtatac	ttagtttaaca	attattttatg	gtactttctc	tctgttcaaa	taacttcttc	420
ctgactacat	ccttaactaac	agagagagaa	tgggatgatt	ccacttgc	tgttcaatgt	480
ggtagttct	actcaatttgc	tttactttaga	tgtaaattta	gttaattaaa	cataaaataaa	540
atataaaaaac	tgtttctcag	ttacactagt	cacatttcaa	gcactcaata	gccacacgtg	600
gctactggct	actgtattgg	acagtgagaa	tacagaacgt	ttctgtcatc	acgtaaagtt	660
ccatcagaga	gtgctggct	agaggaatga	agagttctta	aggtggaggg	gaaatatgag	720
taaaaagaact	tcatttgcac	caggaaatga	aatacaagag	actcagcatg	agcttcctca	780
agaaaaagaga	acatatatat	atatatattt	gcatacatat	atatgttatt	ttcattgctg	840
atgttaagac	agagacagca	aaaccttagca	cttttagtca	ttagcataat	cacaaaattt	900
aaaaatatacg	tttctctgat	cacagtgc	ttaaaaatccc	atatatttaa	aaattaaatga	960
tatgataaaa	ttatagtgtaa	atattgcata	aataaaatgt	ttataaataa	agtagtcctt	1020
agaggacatt	taggcctt	actaaatatt	tcagaaaaaa	tgaaggtgca	attagaaatt	1080
tatgtgtcca	gctcaagaag	tttagaaaaag	aacaaaaatgt	gaaatacgaa	gatggcagaa	1140
acttttagaaa	atcagaaaaga	taccataat	taatttagaca	tcaaagatag	aagaaaatac	1200
aaagccagta	attagttatt	ttgaaggatt	aataaaatgt	gtaagctcct	gggaagaatg	1260
atgaggaaaa	aatagagaag	gcacaaataa	tgtcgttcaa	taaccataga	actgatagag	1320
atgagaaagg	taagatattt	ttaacaaccc	aagtccaaata	aacttggaaa	ttttagaaagaa	1380
atggacctat	ttcttagaaaa	aaatttacca	aactggcctt	aaaaaaatgt	agtatgtaa	1440
tgggtcttta	agtattaaac	aattgggtca	tatgttgcata	cttcgttcaa	agataacttc	1500
aggctcacat	agtttcaacta	tttagttctg	tcccatttt	aaaaaaatgt	taatggccat	1560
catttacaaa	ttcttccaaa	aaatagtaat	aggggaacaa	tcaagccatct	cattttatga	1620
tgttctccaa	actttgat	taaaaaccaga	caaaggaaga	aaaattacag	gacaatctca	1680
catattaaca	atggtccaaa	actccaaac	aaaataatcc	ctaaccataat	ataacaatata	1740
attacaccac	aattaatgtt	ttttatgttc	taggaatgcg	agatttagttt	aaaatttgat	1800
cataaaacca	tgtatgtccat	cacattaaaa	aacaaaaatgt	aaaaatatttata	taaataatata	1860
aaataatgtt	agaaaatgtt	tgataaaaaa	ttcttagtat	agatgtttt	tatagaaaaaa	1920
attcacaatc	tgataaaagaa	gagttacccc	aaatccctcca	gctaacat	tatgtaaaag	1980
taaaatagta	agaactttgc	ctttgagatt	aggaacaatgt	aaagcttgc	caatttactg	2040

ttcaacatgt tagtggaaagt ttttttatca tttccagaag gaaaaaaaaaaa aaaaaaaaaaa 2100

<210> 33
<211> 2333
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (430)
<223> n equals a,t,g, or c

<400> 33						
aattcggcac	gagggcctcc	ttaactcctc	taaccaaacag	atgagatgtt	gacagaacct	60
aacatctact	tagagatgt	gtctcagggg	caacagaaga	ggcaggtgct	gtaggcccag	120
gcgggttacc	tgtgtctgcc	agaccctcca	gtatgtcaga	atagcctcac	tggcgccgag	180
atgataatgc	tgtatgcaaa	catgtcaagc	tatcaaaggg	agtcgcctt	cggtttcatt	240
aattttgttg	tgtgcagctt	ccactgtcagg	tttcagggca	cctgtatctt	tttgtgtgtt	300
gagaaaagagc	aagtgtctgg	ccaggacaca	gcccctttc	ttgcaccctg	agacatccct	360
agacactggc	tgtttcacct	gccccagtgt	atttgctgtc	ttcatcagct	ctctttctcc	420
ccctgacatn	cttgcctggc	attttgagtc	agcctgagya	taatccaaac	cgaatgaaa	480
tgctgtctgg	aaatcttacc	aaagaagcac	agtcccactt	cgtgttcca	tctccccaca	540
tcccaaggac	caccgcctac	ttaagagaaa	cacagacaat	tcacctctat	aaaggcacag	600
ccagggaaaag	gagtaggcag	aggtgacagc	agatcatggg	gctctcttg	aaaggaagac	660
acctcccagt	gatgaacccct	catcatccat	ttactgacat	atccttatgt	caccaggatc	720
tgaacgtcta	tgacactctt	tcgagctgac	acagtgaaga	acatagaagg	agaactcacc	780
cagtctgcca	ggttaggatg	tggggggggc	tgcttggggg	ggtggctcca	atttcacttg	840
acgggtgtcg	gcttctctgg	ctttgaggtt	aggcagctac	atgcagggtg	kgcaagaaag	900
gcagagagca	gacagggtatc	agacacaggt	gaaagagctt	gcaacttgg	ggctgacacc	960
aacccagtgg	ccagaggatca	ccatcccag	ggatgctggg	aaggaccca	gagcagggtc	1020
tcagcatccc	tatggcatgg	tcacagtggg	camccatctc	tacatgcccc	cccaacctct	1080
gcatcccacc	cattccattt	tctacccact	accatgcacc	ttcattctga	gtcaagctga	1140
cctggatcc	taggtccccg	cttgcacc	aggaggtagg	catagggatg	gtgacgggtt	1200
ctacagcagc	aaagaatctg	atgtccccat	agtccttga	gcaagacctg	agcagggtc	1260
atacagggag	ggcatatttc	tctggcccca	gggcattttc	agtgtggccc	tgttatgaaa	1320
ttgtttctcc	ccattgtgaa	gagagggcat	ccagaaaaggt	tctcagagcc	tgctctctct	1380
gctgtttcag	gcttatcatt	gctactgtag	ggcgcttga	agggagcagg	gcttttaata	1440
gctcatccaa	acctgaccac	tacgcattta	ctgatgtagg	cagcatggaa	gtccagctgg	1500
aaagatttag	taggaagtca	atctctacgt	aatgcattct	ttgctttttt	ggtaaaggaa	1560
tcctttccat	cagtaaacct	cagatacagc	ttaacaattt	tagtctaaaa	tatgttccaa	1620
aagatstacc	tcakctcttt	acataaagca	aatctactag	accaggctga	gttttgatag	1680
aacataaaacc	ctyctgkttt	ttggagatat	ttacmaaacg	ttggttcttt	atctaataagg	1740
gtcacagaat	gatcataactc	aaagatcttcc	tggggagtc	atggcaattt	tcactggct	1800
attttacaga	tgaagaagga	mcataaaagaa	ggttctggga	ccccgaagtc	cacggAACAC	1860
ccaccattac	ctgatcttt	gagcttgc	tttggccagt	ggaccctaat	aaacgtccac	1920
ggggatgtgg	ggatagaatg	ccggagcctg	gctcgctagg	gcatccaggt	tcttccttcc	1980
tctttgcctt	gctgtctcca	ggcaccaaga	atctccttaca	gttccccaaa	gatgaacccc	2040
ccatttatctc	aggtcactct	gttccccccg	atcttacca	aattcctgac	tcagagttcc	2100
tcccatattgc	ttctgactct	cattttattt	ttacctctca	tttattctt	atgatgttta	2160
ccatttctct	tctcctcagt	gtccctctct	gagtggtaag	agtatgttaa	taagccagtg	2220
ctgagaccgg	agcacgaggc	aactgctcaa	tgttggtcat	tgtcactgtt	attaaatgtta	2280
acttaaggga	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa	2333

<210> 34
<211> 409
<212> DNA

<213> Homo sapiens

<220>
 <221> SITE
 <222> (291)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (345)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (349)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (390)
 <223> n equals a,t,g, or c

<400> 34
 gaattcggca gagctaaaaa gttccaaacc cttagttagt cacctaatac catcctactc 60
 tcgcggcaact ccagatagcc actcgtagcc actcatcctc ttgctgtctt ttcgatttt 120
 ccaattctgg acatttcata tcaatggaaat catacaacat gggacatttt gcgcctggcg 180
 tctttcactt gggcataatg ttcacaggcc tcataccctgt tgttagtgtgc agcagccctg 240
 cattccttcc tggtgctgaa tacttaatcc actgtgtggg tattcatcat ntatttagtt 300
 atgggacatt tggggttgtt ttccaccttt tggtaatgtat ggggnaatna ccgcaacaaa 360
 cattcgtgtt acaaagtttt gcggtggcan ggggtcgttt tttcttggg 409

<210> 35
 <211> 3466
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (3462)
 <223> n equals a,t,g, or c

<220>
 <221> SITE
 <222> (3466)
 <223> n equals a,t,g, or c

<400> 35
 acatgaacga ggttgcaagt tagatgttaa gtagatcctc tccctgtgtt ttcacctggg 60
 aatgctgggt tggtagtaat cctccccaga tggggaggac tgaagagggg skggcccttgg 120
 ggggggtgtg gttctggct gtcagcgca tggactgttc cctgtgtgtc tgtgcgtgcc 180
 tgcaattggg ggtgggtgtcc aggggctcag caaggcatgt acacctgggc tgggggtgtgt 240
 cagacgctgt cagtgacaag caccctccct cagagcccg ttcctggaga atgtggccggc 300
 agcagaaaaca gagaaggcagg ttgcgtggc ccagggccgg gcagagacac ttgcccgggc 360
 catgccccat gaggcgggtg gacacccagg tgagtaggtg ggtgagcagg cagagcctgc 420
 ctgttgyttt gttggcccac agggggcatg gcaytgcacag ctccttccct ttcttttagat 480
 gccccggcaac tctgggactc cccagagaca gcccctgcag ccagaacacc ccagagccct 540
 gccccctgtg tcctgtcccg gggccagcga agccttgcac cagagcccaa ggagccactg 600

ataccagcaa	gccccaaaggc	tgagcccatt	tgggagctcc	ctaccgtgc	acccaggctc	660
tctattgggg	acctggactt	ttagatcta	ggggaggatg	aagaccagga	catgctaat	720
gtagagtctg	tggaggctgg	gaaagacatc	ccagctccct	caccccaact	gcccctgctc	780
tcgggagttac	ccccccctcc	cccaacttcca	cctcccccac	ccatcaaagg	cccccttccca	840
ccacctccac	ctctacccct	ggctgccccct	cttccccatt	cagtgcctga	cagctcagcc	900
ctccccacta	agaggaagac	agtaaaaactt	ttctggcggt	agctgaagct	ggctgggggc	960
catggagtct	ctgcaagccg	cttggggccc	tgccacccc	tctgggcttc	actggaccct	1020
gtctcagtgg	acacggcccg	actggaacac	ctctttgagt	ctcggtccaa	agaggtgctg	1080
ccctccaaga	aagctggaga	ggggccggcg	acaatgacca	cagtgcgtga	ccccaaagcgc	1140
agcaacgcca	tcaacatcg	cctaaccaca	ctgccaccc	tgcatgtcat	taaggctgct	1200
ctgctcaact	ttgatgagtt	tgctgtcagc	aaggatggca	ttgagaagct	actgaccatg	1260
atgcccacgg	aggaagagcg	gcagaagatt	gaggaagccc	agctggccaa	ccctgacata	1320
cccttggcc	cagccgagaa	cttcctgatg	actcttgccct	ccattggcg	cctcgctgct	1380
cgtctacaac	tctgggcctt	caagctggac	tatgacagca	tggagcggga	aattgtgtag	1440
ccactgttt	acctgaaaat	gggtatggaa	cagctggta	agaatgccac	cttccgctgc	1500
atccctggcta	ccctccttagc	ggggggcaac	ttccctcaatg	gctcccagag	cagcggctt	1560
gagctgagct	acctggagaa	gggtgtcarag	gtgaaggaca	cgggtgcgtcg	acagtcaactg	1620
ctacaccatc	tctgctccct	agtgtccag	acccggccctg	agtcctctga	cctctattca	1680
gaaatccctg	ccctgaccgg	ctgtgccaag	gttagcacct	gccagaatca	accaaggccg	1740
gacaaggcat	gaggagcgct	gcttcctggg	cctggctccct	cccccttctc	cccatattggg	1800
ctgctgtgcc	agggcttgct	ccagccacct	gggtgtgagc	tatgcccctt	gccagaaatg	1860
ctctttccctc	tattggcctg	gccccaccta	ctcagtcattt	gggtctgttt	aactgcact	1920
tccccccagta	aaccttcgtc	tccccattca	catcagatgg	acttgtgtct	cttgcactag	1980
tctatgagat	ttggatgtct	gtgtccttag	ggcccaagct	ggccactctg	gcccagaagc	2040
agcctcgggc	catgttyttgt	ytacagggtg	tggggggaca	gtatgtgcac	cccttgcctt	2100
tctcaggtgg	actttgaaca	gctgactgag	aacctggggc	agctggagcg	ccggagccgg	2160
gcagccgagg	agagcctkcg	gagcttggcc	aagcatgagc	tggccccagc	cytgcgtgcc	2220
cgcctcaccc	acttccttgg	ccagtgtgcc	cgcgcgttgc	ccatgctaa	gatagtgcac	2280
cgcgcgtgtct	gcaatagtt	ccatgccttc	ctgctctacc	tggctacac	cccgccaggcg	2340
gcccggtgaag	tgcgcatcat	gcagttctgc	cacacgctgc	ggaaatttgc	gctttagtat	2400
cggacttgc	gggaacgagt	gctacagcag	cagcagaagc	aggccacata	ccgtgagcgc	2460
aacaagaccc	ggggacgcat	gatcaccggag	gtgggtgccc	ttccaggtct	tagtcttgac	2520
tgccacctcc	ttggtttccct	tcgctctcc	cagtcaccc	ttcttctttc	tccagacaga	2580
gaagttctca	gggtgtggctg	gggaagcccc	cagcaacccc	tctgtcccag	tagcagtgag	2640
cagcggggcca	ggccggggag	atgctgacag	tcatgctagt	atgaagagtc	tgctgaccag	2700
caggccttag	gacaccacac	acaatgccc	cagcagaggc	atggtccaga	gcagctcccc	2760
aatcatgccc	acagtggggc	cctccactgc	atccccagaa	gaaccccccag	gctccagttt	2820
acccagtgtat	acatcagatg	agatcatgga	ccttctgggt	cagtcagtga	ccaagagcag	2880
tcctcgtgcc	ttagctgtca	gggaacgcaa	gcgttccgc	ggcaaccgca	agtcttgtaa	2940
gtaaaaaaaaa	acaatccac	tgcccaccc	aaccccatca	acccccc	accctgtct	3000
gtccctgtag	tgagaaggac	gttgaagagt	gggctggag	atgacctgg	gcaggcaactg	3060
ggactaagca	agggtccctgg	cctggaggtg	tgaaggtgct	gtatccccga	aatctatctg	3120
gaccctggac	tgcagtgcag	gagatgacag	agtggagg	gcccgagagc	gaattctggc	3180
cccaagaactc	tgtgcccagg	agccatgcct	tgagcagtat	tagccgtgt	tgtatgcac	3240
tgagtgtgtg	tgtatgtgt	tgtgtgcatt	catatgcatt	tgcattgtgt	tgagctccctt	3300
gaacgcacgg	agcaaaaataa	aattttctta	gctaattccaa	aaaaaaaaaa	aaaaaaaaaa	3360
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	3420
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	gnnggn		3466

<210> 36
<211> 3468
<212> DNA
<213> Homo sapiens

<400> 36
ggcacgagca aatatggtga tcagcacagt gcggctggaa gaaatgggaa accaaaagtt 60
attgctgtca ctagaagtac ttcctcaact tcttctggtt ctaattctaa tgccctggtt 120

cctgttagtt	ggaaaaggcc	acagtttatca	cagcgaagaa	caagagaaaa	gctaataaat	180
gtgccttctc	tctgtggtcc	agaatctggc	ctcccaaaga	acccatcagt	tgtattttct	240
tctaatgagg	atttggaaat	cggtgaccAA	cagactagCC	taatttctac	aacagaagAC	300
ataaaatcaag	aggaagaagt	agctgtggAA	gataatAGCA	gtgaacaACA	gtttgggtTT	360
ttaaaggatt	ttgacttttt	agatgtgAA	tttggaaagATG	cagagggtGA	aagtatggAC	420
aatttcaact	ggggagttcg	caggcgCTCA	ctggacAGTA	ttgacAAAGG	ggacactCCTA	480
tccctccagg	agtaccagtG	ctctagtagC	acccccAGCC	tgaacctCAC	caatcaggAG	540
gatacagatg	agtccTCGGA	agaagaAGCG	gcacttACAG	caagCCAGAT	actctcacGC	600
acacagatgt	taaacagtGA	ttctgCCACT	gatgAAACAA	taccagACCA	tcctgACTTA	660
cttctccagt	ctgaagattC	cactggCAGC	atcacaACAG	aggaAGTGT	tcaaATCAGG	720
gatgagaccc	caactttGGA	ggcttCTCTA	gataatGCTA	acagCCGGCT	gcctgaggAT	780
acaacttcag	tattaaAGGA	ggaacatGTT	acAAACCTTT	aagatGAAGG	atccatatATA	840
attcaagaac	agcggaaATC	tcttGTTGT	caaggAAATT	ttgatttAGA	agaaACTGAA	900
atgccagAGC	ctctagCTCC	tgaaAGTTAC	cccggAGTCAG	tctgtGAAGA	ggatGTTACC	960
ttagctctGA	aagagCTGA	tgaaAGATGT	gaagaAGAAAG	aagcggattt	ctccggACTG	1020
tctagtcaag	atgaagaAGA	gcaagATGGT	tttccAGAAAG	tacagacGTC	gcctctGCCG	1080
tcaccatttc	tttctGCCAT	catagCCGCC	tttcAGCCCC	tggcatATGA	tgtGAAGAG	1140
gaaggcCTGGC	gctGCCACGT	caatcAGATG	ctgtCTGACA	ccgacGGGTC	ctctgcAGTG	1200
tttacttttC	atgtgttttC	taggCTGTT	cagacaATT	aaagAAAGTT	tggagAAATA	1260
actaatgagg	cagtcaGCTT	tcttGGTGT	agtctGCAAC	gcattGGTAC	caaatttAAA	1320
agttccCTTGG	aagtgtatGAT	gctgtGTTCA	gaatGCCAA	cagtctttGT	ggatGCTGAA	1380
acactgtatG	catgtggTTT	gctggAAACA	ctcaAGTTG	gtgttttGGA	gttGCAAGAA	1440
cacctggata	catacaatGT	gaaaAGAGAA	gccgctGAGC	agtggCTAGA	tgattGTAAG	1500
aggacatttG	gtGCCAAAGA	agacatgtat	aggataAAACA	cagatgcaca	agaattGGGAG	1560
ctctGCCGAA	gattataCAA	attgcatttt	caattGCTGC	ttctgttCCA	ggcctactGT	1620
aaacttatCA	accaAGTAAA	tacgataAAA	aatgaAGCAG	aggtcatCAA	catgtcAGAG	1680
gaacttGCC	aactggAAAG	tatcctCAA	gaagctGAGT	ccgcttCCGA	aaacGAAGAA	1740
attgacatTT	ccaaAGCTGC	acaaaACTACT	atagAAACTG	ccattcattC	tttattGAA	1800
actttgaaaa	ataaAGAAATT	tatATCAGCT	gtagcacaAG	tcaaAGCTTT	cagatctCTC	1860
tggcccAGTG	atatctttGG	cagttGTA	gatgaccCTG	tacagacACT	gatacatATA	1920
tatttccatC	atcagacGCT	gggCCAGACA	ggaagCTT	cagttatAGG	ctctAACCTG	1980
gacatgtcag	aagccaACTA	caaactGATG	gaacttaATC	tggAAATAAG	agagtctCTA	2040
cgcatggTGC	aatcataCCA	acttctAGCA	caggCCAAAC	caatGGGAA	tatGgtGAGC	2100
actggattCT	gagacACTTC	aggcTTTAG	gaaAGAAACT	aaactGAAGA	tgtGAAGAA	2160
tattaacAA	gcacCTTTA	tggaccCTG	cattcaCTGA	taacttCTG	gcagcatCTA	2220
cttttttagtG	taactaatGT	caaactGTAT	catcaAAAC	aaagatCTGA	agaaaaAA	2280
catctgatAT	tttaacAGCT	gccaatATCT	cccacaATAA	ctgcgtGAAG	agggAAATT	2340
ttaattactT	aacTACGTG	aaaAGAAAAG	ggctAAAAGT	gatgcctACA	aatacattAC	2400
tttctgggGA	aagAAAAGAA	ttccaAGAAT	gttGCAATA	atggcctCCA	atactGAAAC	2460
aaccaAAAGC	aggtgaaATG	aggctGAAAT	caaggctGTT	tcattttAGC	tgaagacCTG	2520
caaagctGCT	tggatttCTA	gcagtGAAA	acctaACCTG	caattGATGC	ttaatCATCC	2580
atccacatGA	acatgcAGTC	agctataACG	atcaAGACTC	gtttGAAAAA	accattGATT	2640
tttcagtatG	tggataAGG	gtttGGGTT	ttttGTTT	tggctGTAT	aaggAAATT	2700
gtgtgtgtGA	gttggatGAT	atggatATGT	gatagtcATA	tttcaAGGT	atggatGTTT	2760
ggtgataaacG	tctcagAGCA	tgcctaaaAG	agcaCTGCA	gattatTTT	gaagAAATGT	2820
tatttttata	gatctaACTC	ttcataGTTAT	gtAAATGTTA	gaacatttTA	ataatATTT	2880
aaaactgggc	tttcccAGTA	tttcaAAAAG	aaataatATA	tctgttaACG	ttattGGAAT	2940
gctgctcagt	tctctgatCA	gtgcttatGT	tatgattGTT	gataactAAC	caaAGTAGAT	3000
gcctgcAGAG	actttAAAAT	gtaaaATAA	gatgtatGCT	gcctgtcAGC	tattctCATT	3060
agaaaAGTTT	taacttATT	tactccATAT	agaaACTGTA	gagactAAA	ccagttATT	3120
tcttgtacat	tttgGCCATG	cactgtGTT	atacaAGAAAT	agggtacAA	agctaaAGAA	3180
aaattgtggT	cattgtatGAT	ggaatATATG	acttgcAGGC	tttgaAGTCT	gcagaattCA	3240
agaaaAGAGC	tgcaaATGCA	tttttGTTAC	tttattCAGG	actcacatGC	tttaccCTAA	3300
agaaacCTGG	ggcttagGGGA	aatgAAAGGA	agcctGAAGA	ctgactacCA	aaacatGCAA	3360
tataacttatt	cactgtCTAA	gtctgtAGTA	taacatGAAC	tggagtCTCT	atccTTTCT	3420
aaaatcgcat	tttGTAAGAA	aagAAAGAAA	aaaaaaaa	aaaaaaaa	aaaaaaaa	3468

<210> 37
<211> 1112
<212> DNA
<213> Homo sapiens

<400> 37

ggcacgagca	gacctcgac	gagagcgccc	cggggagctc	ggagcgctg	cacgcgtggc	60
agacggagaa	ggccagtgcc	cagcttgaag	gttctgtcac	ctttgcagt	ggtccaaatg	120
agaaaaaaagt	ggaaaatggg	aggcatgaaa	tacatcttt	cgttgttgc	ctttcttttg	180
ctagaaggag	gaaaacaga	gcaagtaaaa	cattcagaga	catattgcat	gtttcaagac	240
aagaagtaca	gagtgggtga	gagatggcat	ccttacctgg	aaccttatgg	gttggtttac	300
tgcgtgaact	gcatctgctc	agagaatggg	aatgtgctt	gcagccgagt	cagatgtcca	360
aatgttcatt	gccttctcc	tgtgcattt	cctcatctgt	gctgccctcg	ctgcccagaa	420
gactccttac	ccccagtgaa	caataaggtg	accagcaagt	tttgcgagta	caatggaca	480
acttaccaac	atggagagct	tttgcgttagt	gaagggctct	ttcagaatcg	gcaacccaaat	540
caatgcaccc	agtgcagctg	tccggaggga	aacgtgtatt	gtggctctaa	gacttgcggcc	600
aaattaacct	gtgccttccc	agtctctgtt	ccagattcct	gctgccgggt	atgcagagga	660
gatggagaac	tgtcatgggaa	acatttctgt	ggtgatatct	tccggcaacc	tgccaaacaga	720
gaagcaagac	attcttacca	ccactctcac	tatgatcctc	caccaagccg	acaggctgga	780
gttctgtccc	gttttcttgg	ggccagaagt	caccggggag	ctcttatgg	ttcccagcaa	840
gcatcaggaa	ccatttgcac	aattgtcatc	aataacaaac	acaagcatgg	acaagtgtgt	900
gtttccaatg	gaaagaccta	ttctcatggc	gagtccctgg	acccaaacct	ccgggcattt	960
gcattgtgg	agtgtgtgt	atgtacttgt	aatgtcacca	agcaagagtg	taagaaaatc	1020
cactgccccca	atcgatcccc	ctgcaagtat	cctcaaaaaaa	tagacggaaa	gtgctgcaag	1080
gtgtgtccag	gtaaaaaaaaaa	aaaaaaaaaa	aa			1112

<210> 38
<211> 2249
<212> DNA
<213> Homo sapiens

<400> 38

tcgaccacacg	cgtccgtgct	cgagaaatga	aggcgcttct	tttgctggc	ttgccttggc	60
tcagtcctgc	taactacatt	gacaatgtgg	gcaacctgca	cttcctgtat	tcagaactct	120
gtaaagggtgc	ctcccaactac	ggcctgacca	aagataggaa	gaggcgctca	caagatggct	180
gtccagacgg	ctgtgcgagc	ctcacagcc	cggctccctc	cccagaggtt	tctgcagctg	240
ccaccatctc	cttaatgaca	gacgagcctg	gcctagacaa	ccctgcctac	gtgtcctcgg	300
cagaggacgg	gcagccagca	atcagcccag	tggactctgg	ccggagcaac	cgaactaggg	360
cacggccctt	tgagagatcc	actattagaa	gcagatcatt	aaaaaaaaata	aatcgagctt	420
tgagtgttct	tcgaaggaca	aagagcgggaa	gtgcagttgc	caaccatgcc	gaccaggggca	480
ggggaaattc	tgaaaacacc	actgcccctg	aagtcttcc	aaggttgtac	cacctgatttc	540
cagatggtga	aattaccagc	atcaagatca	atcgagtaga	tcccagtgaa	agcctctcta	600
ttaggctgg	gggaggttagc	gaaacccac	tggccatata	cattatccaa	cacatttatac	660
gtgatgggggt	gatgccaga	gacggccggc	tactgccagg	agacatcatt	ctaaagggtca	720
acgggatgga	catcagcaat	gtccctcaca	actacgctgt	gcgtctcctg	cgccagccct	780
gccaggtgct	gtggctgact	gtgatgcgtg	aacagaagtt	ccgcagcagg	aacaatggac	840
aggccccgga	tgcctacaga	ccccgagatg	acagtttca	tgtgatttctc	aacaaaagta	900
ggccccgagg	agcagtttgg	aataaaaactg	gtgcgcaagg	tggatgagcc	tggggttttc	960
atcttcaatg	tgctggatgg	cggtgtggca	tatcgacatg	gtcagcttga	ggagaatgac	1020
cgtgtgttag	ccatcaatgg	acatgatctt	cgatatggca	gcccagaaag	tgcggctcat	1080
cgtattcagg	ccagtggaaag	acgtgttcac	ctcgctgtgt	cccgccaggt	tcggcagcgg	1140
agccctgaca	tctttcagga	agccgcgcgt	gaacagcaat	ggcagctgg	ccccagggcc	1200
agggggagagg	agcaacactc	ccaagccct	ccatcctaca	attacttgc	atgagaaggt	1260
ggtaaatatc	caaaaaagac	cccggtgaat	ctctcggcat	gaccgtcgca	gggggagcat	1320
cacatagaga	atgggatttg	cctatctatg	tcatcagtgt	tgagcccgga	ggagtcataa	1380
gcagagatgg	aagaataaaaa	acaggtgaca	ttttgttgc	tgtggatggg	gtccgaactg	1440
acagaggtca	gccccggagt	aggcagtggc	attattgaaa	agaacatcat	cctcgatagt	1500

actcaaagct	tggaaagtca	aagagtatga	gccccaggaa	gactgcagca	gcccagcagc	1560
cctggactcc	aaccacaaca	tggccccacc	cagtgactgg	tccccatcct	gggtcatgtg	1620
gctggattt	ccacgggtct	tgtataactg	taaagatatt	gtattacgaa	gaaacacagc	1680
tggaaagtctg	ggcttctgca	ttgttaggagg	ttatgaagaa	tacaatggaa	acaaaccttt	1740
tttcatcaaa	tccatgttg	aaggaacacc	agcatacaat	gatggaagaa	ttagatgtgg	1800
tgatattctt	cttgctgtca	atggtagaaag	tacatcagga	atgatacatg	cttgcttgcc	1860
aagactgctg	aaagaactta	aaggaagaat	tactctaact	attgtttctt	ggcctggcac	1920
ttttttataag	aatcaatgtat	gggtcagagg	aaaacagaaa	aatcacaat	aataggctaa	1980
gaagttgaaa	cactatattt	atcttgcag	tttttatatt	taaagaaaaga	atacattgtta	2040
aaaatgtca	gaaaagtatg	atcgcttaat	gaaagccagt	tacacctcag	aaaatatgtat	2100
tccaaaaaaaaa	ttaaaaactac	tagtttttt	tcagtggtt	ggattttctca	ttactctaca	2160
acattgttta	tatTTTTCT	attcaataaa	aagccctaaa	acaacaaaaaa	aaaaaaaaaa	2220
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	2249

<210> 39
<211> 2636
<212> DNA
<213> Homo sapiens

<220>
<221> SITE
<222> (632)
<223> n equals a,t,g, or c

<220>
<221> SITE
<222> (887)
<223> n equals a,t,g, or c

<400> 39	tgtcgagga	attcgccacg	agggcaatcc	gggcttgcag	acgaggtaag	gtcgattcca	60
	tttggcccg	ggatgtcac	acgcgcgggg	gccggaactg	ccgtcgccgg	cgcggtcg	120
	gtcgcatgtc	tctcgccgc	actcgcgctg	tacggccgc	cactggacgc	agttttagaa	180
	agagcgttt	cgctacgtaa	agcacattcg	ataaaggata	tggaaaatac	tttgcagctg	240
	gtgagaaata	tcataacctcc	tctgtcttcc	acaaagcaca	aagggcaaga	tggagaata	300
	ggcgtagttg	gaggctgtca	ggagtagact	ggagccccat	attttgcaga	atctcagctc	360
	tcaaagtggg	cgcagacttg	tcccacgtgt	tctgtccag	tgcggccgc	cctgtgatta	420
	aggcctacag	cccggagctg	atcgccacc	cagttcttga	cagccccat	gctgttcatg	480
	aggtggagaa	gtggctgccc	cggctgcatt	cttttgtcgt	aggacctggc	ttggtagag	540
	atgatgcgc	tctcagaaat	gtccagggca	ttttgaaagt	gtcaaaggcc	aggacatcc	600
	ctgttgtcat	cgacgcggat	ggctgtgtt	gngtgcgtca	gcagccggcc	ctcatccatg	660
	gotaccggaa	ggctgtgctc	actcccaacc	acgtggagtt	cagcagactg	tatgacgctg	720
	tgttcagagg	ccctatggac	agcgatgaca	gccatggatc	tgtgctaaga	ctcagccaag	780
	coctggcaca	cgtgacgggt	gtccagaaag	gagagcgcga	catcctctcc	aacggccagc	840
	aggtgttgc	gtgcagccag	gaaggcagca	gcmcaggtgt	ggagggnaag	gggacctcct	900
	gtcgccgtcc	ctggccgtcc	tggtacactg	ggcgctsc	gctggaccac	agawaacaaa	960
	tgggtccagc	cctctcttgg	tggccgcgtt	tggccctgc	tctctcacca	ggcagtgc	1020
	ccaccaagcc	ttccagaagc	acggtcgctc	caccaccacc	tccgacatga	tcgcccaggt	1080
	ggggggccgc	ttcagaagc	tctttgaaac	ctgagccccgc	gcagaccaga	agtaaacagg	1140
	caccttggac	ggggggagagc	gtgtgtgtga	tggaaaatc	cgacccacg	cggtgtctga	1200
	aggcgtacgg	tgcttgccag	atttcaact	tgagcataaa	ttggttgc	ttgagaattt	1260
	aagaatctgg	aatattgcag	cttttggta	aacttaatgc	atggttggag	atgttatggc	1320
	gacactaaac	aaagtattcc	tgaactttcc	ttagctcc	gttagtaact	gggaagacag	1380
	aaatgaagaa	aatcacatga	aatgaagaa	ttctttagca	gctcaacaga	gtttctcg	1440
	ctgctccca	atcgccgaa	tttctacttg	ttactctctc	tgcggccg	cttgcgttcc	1500
	cctctgc	cctcccttag	tctttctcc	ggcaggagc	tggcagggg	tcccccgggt	1560
	tctccctgag	tcccgcactgc	actgactggg	tccatcagag	ggctgcttc	ttctccagct	1620

catttcttt	taaagtggtg	actagttgg	tggtatctgg	ctgctgggtgt	ttggcttatt	1680
gacatactcc	aggtaatca	atgatgact	tgtttggaaa	cccttttggaa	ggcaccatgg	1740
gaacagaagg	aaacatgagt	gacgctgacc	cttgagtgtg	tgggtggggaa	gctctgagac	1800
gcctcctgtc	ccacgctctc	cggtgtccgt	gtctacacag	gggtccccat	gatacccacc	1860
ggcccccagca	gggcagaccg	gaccggggac	gggcacgggtg	aagggctgca	gcctggggtc	1920
tgacgtggcc	cctagtgtcg	tctcaggaga	aggctctggg	ggacttgagg	catgctgggc	1980
ctggtgccgt	gatggcgcta	aggagaccg	gggaaagaca	gtatcgtgt	cacgtatgct	2040
taggaagcag	cacaggcgtg	tccttaggga	tgttcgcgtc	cagtaaagac	actgttaact	2100
gccccccatcg	ccaacactct	tcatggcagt	gtcgacacctg	ggttagctc	tgttgtcttt	2160
gtggatgggtt	ttcctggagc	ggcctgacgt	tgacgtgttc	tctggtccca	tgtcttagcg	2220
gggcacatggta	cggttcgtg	cctgacgctg	gcattagggt	gttctcttat	actttcagta	2280
gcrtctttcc	acagaagg	ccaaaccctc	ctggttccct	tcaaggttctt	tttggcctga	2340
tgtatgactct	tgagtgatac	cctgtatgc	agacatgccc	cagatggatt	ctactttctt	2400
taaaactagg	gacttcaag	attaaaaaaaaa	agattgtcac	tactaatttg	acgcctaact	2460
tcagaagctt	cactgtctac	atgtgaactt	ttccagaaaaa	actgtgccat	ggacattttt	2520
cctctgggaa	attaacatct	aaattctggt	aactattaaa	agacagatct	ggtaatttt	2580
aaaaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaattccct	ggggccgcga	attctt	2636

<210> 40
<211> 2636
<212> DNA
<213> Homo sapiens

<400> 40						
tgctgcagga	attcggcacg	aggcaatcc	gggcttgcag	acgaggtaag	gtcgattcca	60
tttggcccg	ggatgtcac	acgcgcgggg	gcccggaaactg	cggtcgccgg	cgcggtcggt	120
gtcgcatgtc	tctcgccgc	actcgcgcgt	tacggccgc	cactggacgc	agttttagaa	180
agagcgttt	cgctacgtaa	agcacattcg	ataaaggata	tggaaaatac	tttgcagctg	240
gtgagaaata	tcatacctcc	tctgtcttcc	acaaagcaca	aagggaaga	tggaagaata	300
ggcgttagttg	gaggctgtca	ggagtagact	ggagccccat	attttgcaga	atctcagctc	360
tcaaagtggg	cgcagacttg	tcccacgtgt	tctgtgccag	tgccggccgc	cctgtgatta	420
aggcctacag	cccgagactg	atcgtccacc	cagttcttga	cagccccat	gtgttcatg	480
agtgggagaa	gtggctgccc	cggctgcatt	ctcttgcgt	aggacctggc	ttgggttagag	540
atgtatgcgc	tctcagaaat	gtccagggca	tttttggaaat	gtcaaaggcc	aggacatcc	600
ctgttgtcat	cgacgcggat	ggcctgtgg	kggtcgctca	gcagccggcc	ctcatccatg	660
gtcacccggaa	ggctgtgctc	actcccaacc	acgtggagtt	cagcagactg	tatgacgctg	720
tgctcagagg	ccctatggac	agcgatgaca	gccatggatc	tgtgctaaga	ctcagccaag	780
ccctggggca	cgtacgggt	gtccagaaag	gagagcgcga	catccctctcc	aacggccagc	840
agtgcttgc	gtgcagccag	gaaggcagca	gcgcaggtgt	ggagggsaag	gggacctcct	900
gtcgggctcc	ctgggcttcc	tggtacactg	ggcgcttctt	gttggaccac	agawaacaaa	960
tgggtccagc	cctcttctgg	tggccgcgtt	tggcgcttgc	tctctcacca	ggcagtgcaa	1020
ccaccaagcc	ttccagaagc	acggtcgctc	caccaccacc	tccgacatga	tcgcccaggt	1080
ggggccgc	ttcagaagc	tctttgaaac	ctgagccgc	gcagaccaga	agtaaacagg	1140
caccttggac	gggggagagc	gtgtgtgtga	tggaaaatc	cggaccacacg	cggtgtctga	1200
aggcgtacgg	tgcttgcag	attttcaact	tgagcataaa	tgggttgcc	ttgagaattt	1260
aagaatctgg	aatattgcag	cttttggta	aacttaatgc	atggttggag	atgttatggc	1320
gacactaaac	aaagtattcc	tgaactttcc	ttagctcctt	gttagtaact	gggaagacag	1380
aaatgaagaa	aatcacatga	aatgaagaa	ttcttttagca	gtctcaacaga	gtttctcgcc	1440
ctgctccca	atcggcgaag	tttctacttg	ttactctctc	tgccggcgcc	cttcgttccct	1500
cctctgttcc	ccttccttag	tctttcttcc	ggcaggggagc	tgggcagggg	tccccgggtg	1560
tctccctgt	tcccgcactgc	actgacttggg	tccatcagag	ggctgcttcg	ttctccagct	1620
catcttctt	taaagtggtg	actagttgg	tggtatctgg	ctgctgggt	ttggcttatt	1680
gacatactcc	aggtaatca	atgatgactt	tgtttggaaa	cccttttggaa	ggcaccatgg	1740
gaacagaagg	aaacatgagt	gacgctgacc	cttgagtgtg	tgggtggggaa	gctctgagac	1800
gcctcctgtc	ccacgctctc	cggtgtccgt	gtctacacag	gggtccccat	gatacccacc	1860
ggcccccagca	gggcagaccg	gaccggggac	gggcacgggt	aagggctgca	gcctggggtc	1920
tgacgtggcc	cctagtgtcg	tctcaggaga	aggctctgg	ggacttgagg	catgctgggc	1980

ctgggtgcagt	gatggcgcta	aggagacccg	gggaaagaca	gtatcgttgt	cacgtatgct	2040
taggaagcag	cacagccgtg	tccttaggga	tgttcgcgtc	cagtaaagac	actgttaact	2100
gcccctttcag	ccaacactct	tcatggcagt	gtcgacacctg	ggttagcttc	tgttgtctt	2160
gtggatgggt	ttcctggagc	ggcctgacgt	tgacgtgttc	tctggtccca	tgtcttagcg	2220
gggcattggta	cggtttcgtg	cctgacgcgt	gcatttagggt	gttcttcttat	actttcagta	2280
gcrtctttcc	acagaagg	ccaaaccctc	ctggttccct	ttagactt	tttggcctga	2340
ttagtactct	ttagtatac	cctgtatgc	agacatgccc	cagatggatt	ctactttctt	2400
taaaaactagg	gacttcaag	attaaaaaaaaa	agattgtcac	tactaatttgc	acgcctaact	2460
tcagaagctt	cactgtctac	atgtgaactt	ttccagaaaaa	actgtgccat	ggacatffff	2520
cctctgggaa	attaacatct	aaattctgg	aactattaaa	agacagatct	gtttaatttt	2580
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaattccct	ggggccgcga	attctt	2636

<210> 41
<211> 2372
<212> DNA
<213> Homo sapiens

<400> 41						
ggcacagggc	tggcctggct	gcggctatgt	gcgtgtgtgt	gtgtgtgcac	tccagcctgg	60
ctgtgggtgt	gtgcgtgtgc	actggctctgg	ctgtgggtgt	gtgtgtgtgt	gtgcgtgtat	120
gcatgtgtgt	gccgtgtgtc	ccagcctggc	tgtggacgtg	tgcttgtgtg	tgcgtgtgtt	180
ccggcctggc	tgtgggtgt	tgtgtgcgtg	tgcgtgtgtg	tgtgcgtgtg	tgtcttggct	240
tcaggggctg	tgaggcccct	gagagttggg	gctttgttct	ctgcacactg	gaaaccctcc	300
cccttcac	agatgcctgg	ccgtgggtgg	gctgcgggtgg	ggacccactt	ggtcttgctg	360
agtgtatctgt	gacggctcgc	gggggtggctc	aggtatcagg	ggacagccat	gtctgtgagg	420
actccggccc	cgctcagatg	aggcagccca	gccccgtcgcc	cagggtccgg	cgtggactg	480
cagttagggat	ggctctgcct	aggtggggccg	aggccgtgcg	gggcttttagg	tgaggctggg	540
atctaactca	gcmcagcttc	aggtggggaga	agggggcagct	gggccttcct	ggtactcac	600
atcacgtgag	acaacactgt	gccctggct	ttccagtcct	tcctgcagct	gcmcactgg	660
acggcctccc	tgcctgtctc	cgcaaccgac	ctcccccggcc	gtggcttcag	caaccagatc	720
ccgctgggtgg	cgcgggggaa	ctgcaccccttc	tatgagaaaag	tgaggctggc	ccagggcagc	780
ggagcacgcg	ggctgtctcat	cgtcagcagg	gagaggctgg	tacggccctg	tgcgtcccc	840
gctggggccag	ctctcagggg	caggaggggg	gtgcaggagg	cagagatggc	agcagctggg	900
gctgggtcttc	cgacttctcg	ctaaaggcag	atccatctgt	ggggaggatc	tggggcagat	960
gtgaacatgg	ggaggatccg	ggccgagtgt	ggccgtgggg	agggcggaga	tgagtctgtt	1020
cttcctgagc	tgctggctgg	ggctgtggaa	ctttggccgt	gttcttgcgt	ggtgcctgtc	1080
ctagagcagc	ccccaggggt	gacggagacc	acaccctctg	tggggatggg	attgggggtgg	1140
cttctgagga	gcaggtggcc	tggccctgag	ctgggtccctt	ctgggtaccc	tgggtccctt	1200
gccctctagg	cggtggggcc	gtgctcgct	gtgtggctct	agccaggtgg	cgtgaagcct	1260
ggccccccttt	ccatcttctg	tgaaatgggg	ctgtgggtga	gagctgggg	cctggcaggg	1320
ctggtcacag	cacaggaca	tgccgactgc	tgggtggcc	aggggtgcgtg	gccccccctg	1380
aagtgttagtt	ttggagtaag	aaggaatgg	gttcaggaat	tccctcacag	ctctgcctgt	1440
ggctctgggc	tgccccggcc	agtgttgcac	cctgagcctg	gcaatccacg	gaggcctgg	1500
gcaggggctc	agggccgagg	gcagagcagg	ccggggcagag	ccgagagtgc	catccctgtc	1560
cgcacacgcgt	gcccgtcgtag	ttgagagagg	ccctcagtgg	gtgcggggct	caaggcggct	1620
tagtgggcag	gcatggcgt	tgacaagtat	cactcaggac	ttgtatgtgc	gttccgggag	1680
tcccacggcc	gagggaggga	ttagtggcgc	ttttaggcct	ggggccctgt	tgtcaggtga	1740
agaaggcttg	atgccttcg	gcctccctgt	tcttgggtcc	tcctgggggg	ccggaggctg	1800
tcagctgcag	agggggagcc	agcaggcgc	cccagctga	cccgagactc	gagtgagggt	1860
cccaggagag	gaggdgaatg	ggcacagagc	tggggccca	cccactgcgt	cgggtgatgc	1920
ctgcccgtcc	ctccctctgg	cccccagggtc	ccccccgggg	gtaataagac	gcataatgt	1980
agattggcat	tcccgtggcc	ctgtcagct	acaaagacat	gttgcacatc	ttcacggtag	2040
gtctgcgcgg	gtcagaccc	acgtccccga	ggagatgggg	cagggggctt	cgggtggct	2100
gccgggggggg	tttggcctc	agttgggtgg	atcagggtgg	tgggtgagc	gtggccccc	2160
caggccaggg	tctccagccc	cagccccaca	gcccacagct	gcacgtcgac	ccatggctgg	2220
cgggtggctc	tgacgcctgc	ctccgggtgt	ttcccttgagg	cagcgtttcg	gccgcacgg	2280
gagggcggcg	ctgtatgcgc	ctaaggagcc	gtgtctggac	tacaacctcg	tgccgaattc	2340

gatatcaagc ttatcgatac cgtcgaccc tc ga

2372

<210> 42
<211> 1268
<212> DNA
<213> Homo sapiens

<400> 42

ggcacgagcg	cggtctgg	gcgcggcggc	ccggacatgg	cgaccgtccg	ggcctctctg	60
cgaggtgcgc	tgctccttct	gtggccgtg	gcgggggtcg	cgagggtggc	aggggggctg	120
gtccggca	gtgcgggtgc	attgttgtt	aatcattcaa	aggataacca	aatgtgccgt	180
gatgtatgt	aacagatttt	cgcctcaaaa	agtgaatccc	gactaaaaca	tctgttgcag	240
cgagccccag	attattgccc	agagacaatg	gttggaaattt	ggaattgtat	gaattcatct	300
ttgccaggt	tgttaagaa	gtctgatggc	tgggttggct	taggctgctg	tgaactggct	360
attgccttgg	agtgtcgaca	ggcatgcaag	caggcatctt	caaagaatga	tatttccaaa	420
gtttgcagaa	aagaatatga	gcctgtcctc	cgttattttt	gtgtgcttcc	ttcttgcgtc	480
tggatttctg	cattggcccta	ggaagtctgc	cagtatgtgt	tgtgaagga	caagacagga	540
aagaatgctc	ttttcagttt	cattagcaga	aatgaaaatgg	gctcggtttt	ttgcagttat	600
gcaggtcatt	acacaaactg	ccgagaatac	tgtcaagcca	tttttcgaac	agactcttct	660
cctggtccat	ctcagataaa	agcagtggaa	aattattgcg	cctctatttag	tccacaatta	720
atacatttgc	tgaacaatta	tactcaatct	tatccaatga	ggaacccaaac	ggataggcct	780
cctgatgaag	ctgcacccct	aatggcttct	cagagtctcc	gctttgtaca	tccttggaaatc	840
cattttcttc	acctagaggt	gaccagattt	ataaaaaactg	actgattgac	caaactgacc	900
aaagactgt	ttataagatg	tcaatgtttt	gatttacact	gtgatattga	aagaggctct	960
gtggctttag	tctgtatct	cagcgctttt	tgtatgtgag	gcaggagaat	tgcttgaggc	1020
caagagttt	agaccagcc	gggttaacaaa	gtgagaacccc	agctctacaa	aaaaaaaaata	1080
ataataat	gtgggtgt	gtgacacacc	cagctcccta	ggaggctgat	gctggaggat	1140
cgcttgagcc	caagagttca	agggtgcagt	gagccatcat	cacttcactg	cactccagcc	1200
agggcaacaa	agcaagaccc	tgccctgggg	ggaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1260
aaaaaaaaaa						1268

<210> 43
<211> 1268
<212> DNA
<213> Homo sapiens

<400> 43

ggcacgagcg	cggtctgg	gcgcggcggc	ccggacatgg	cgaccgtccg	ggcctctctg	60
cgaggtgcgc	tgctccttct	gtggccgtg	gcgggggtcg	cgagggtggc	aggggggctg	120
gtccggca	gtgcgggtgc	attgttgtt	aatcattcaa	aggataacca	aatgtgccgt	180
gatgtatgt	aacagatttt	cgcctcaaaa	agtgaatccc	gactaaaaca	tctgttgcag	240
cgagccccag	attattgccc	agagacaatg	gttggaaattt	ggaattgtat	gaattcatct	300
ttgccaggt	tgttaagaa	gtctgatggc	tgggttggct	taggctgctg	tgaactggct	360
attgccttgg	agtgtcgaca	ggcatgcaag	aggcatcttc	aaagaatgtat	atttccaaaag	420
tttgcagaaa	agaatatgag	cctgtccctt	gttatttttag	tgtgcttcc	tctttgtct	480
ggatttctgc	attgccttag	gaagtctgcc	agtatgtgtt	gtgaaggac	aagacaggaa	540
agaatgctct	tttcagttgc	attagcagaa	atgaaatggg	ctcggtttgt	tgcagttatg	600
caaggtcatt	acacaaactg	ccgagaatac	tgtcaagcca	tttttcgaac	agactcttct	660
cctggtccat	ctcagataaa	agcagtggaa	aattattgcg	cctctatttag	tccacaatta	720
atacatttgc	tgaacaatta	tacttcaatc	ttatccaaatg	aggaacccaaac	cgataggcct	780
tcctgtat	gtgcacccct	aatggctct	tcagagtctc	cgctttgtac	atccttggaaat	840
ccatttctt	cacctagagg	tgaccagatt	tataaaaaact	gactgattga	ccaaactgac	900
caaagactga	tttataagat	gtcaatgttt	tgatttacac	tgtgatattg	aaagaggctc	960
tgtggctttag	gtctgtat	tcagcgcttt	gtgatgtgat	ggcaggagaa	ttgcttgagg	1020
ccaaagagttt	gagaccagcc	gggttaacaaa	agtgagaaccc	cagctctaca	aaaaaaaaat	1080
aataataatt	agctgggtgt	ggtgacacac	ccagctccctc	aggaggctgat	tgctggagga	1140

tcgcttgcgc ccaagagttc aagggttgcag tgagccatca tcacttcact gcactccagc	1200
caggggcaaca aagcaagacc ctgcctcgaaa gggaaaaaaaaaaaaaaa aaaaaaaaaaaa	1260
aaaaaaaaaaa	1268

<210> 44
<211> 2254
<212> DNA
<213> Homo sapiens

<400> 44	
cgtgagacca gcggctgctg ccctgccca agtacgagca gatcgaagag ggcactgtcc	60
ggccgcctcat catccacagg ctgaaggaga cgatgatggc atctacctgt gcgagatgcg	120
ggggccgggtg cgcaccgtgg ccaacgtcac agtcaaaggg cccatcctga agcgctgccc	180
cggaaagctcg acgtcctgga aggagagaat gctgtgctgc tagtgaaaac tctagaggcc	240
ggggtcgagg gacgctggag ccgtgatggg gaggagctgc cggcatctg ccagagcagc	300
tcagggccaca tgcattccct ggtccttcca ggggtcaccc gagaggatgc tggcagggtc	360
accttttagcc tgggcaactc ccgttaccact acgcttctca gataaaatg tgtcaagcac	420
agtccccccag gaccccccatttggcagag atgttcaagg gccacaagaa cacggctctg	480
ttgacctgga agcctccca gccagctccc gagacccat tcatctaccg gctggagcgg	540
caggaagtgg gctctgaaga ctggattca gtcctcagca tcgagaaaagc cggagccgtg	600
gagggtccgg gcgactgtgt gccctccggag ggtgactacc cgttccgcac tctgcacagt	660
cagcggacat gccgttagcc ccacgtgggtt ttccacgggtt ctgctcacct ttgtgcccac	720
agctcgctcg gtggcaggc tggaggatgt gcaggataac gacggggaaag atgcgtctt	780
ctccctcgat ctctccacca tcatccagg tacctgggtt ccttaatggg gaagagctca	840
agagtaacga gccggagggc caggtggaaac ctggggccct gcggtaccgt atagagcaga	900
agggtctgca gcacagactc atcctgcattt ccgtcaagca ccaggacagc ggtggccctgg	960
tcggcttcag ctgccccccgg cgtcaggat tca gctgccc tcacaatcca agagaagccc	1020
gggtcacattt ctgagcccccc aggacaagggt gtcgttgacc ttcacaacct cgagcgggtg	1080
gtgctgactt gtgagctctc aagggtggac ttcccgccaa cctggtacaa ggatggggcag	1140
aagggtggagg agagcgagtt gtcgtgggtt aagatggatg ggccgcaaaacc accgtctgg	1200
tcctgcctga aggccaaagt ccaggacagt ggccgagttt agtgcaggac aagaaggggt	1260
ctcgcccttc ttccggcgtca ctgtccaaaga tcctccctgt cacatcggtt acccccgaga	1320
acatgtgttc gtgcattgcca taacttccga gtgtgtcatg ctggcctgtt aggtggaccg	1380
agaggacgcc cctgtcggtt ggtacaaggaa cggccaggag gtggaggaga gtgacttcgt	1440
gggtctggag aatgagggggc cccatcgccg cctgggtctg cccgccaccc agccctcaga	1500
cggggggcggag ttccagtgcg tcgctggaga tgagtgtgcc tacttcactg tcaccatcac	1560
agacgtctcc tcgtgatcg tttatcccg cggcaagggtt tatgtggcag ccgtgcgcct	1620
ggagcgtgtt gtgctgaccc ttccgtatg ccggccctgg gcagagggtc gctggaccaa	1680
ggatggagag gaggtgggtt agaccccgcg ctgctcctgc agaaggaaga cactgtccgc	1740
cgcctgggtc tgcccgctgtt ccagctcgag gactccggcg agtacttgc tgaaattgac	1800
gatgagtcgg cctccctcac ttccatccctc acagagtctt accaaagtca ggacagttca	1860
aataacaattt cggaggatattt cgtcctctt aaaaaggccga agacccggcg gctctgggtt	1920
cgcttccccc catggccacg aacagctggc actgagtagc agtgcggccca atagttggg	1980
gccccacattt ctctgtccca cctccctgtt attgtttt gcctctcccc agaccgttcc	2040
accttccacc cgggtgttgtt accaggttaag ttccgtt tgccaccctt gtgttaaacc	2100
aataaacatg caaaataaaatg tacaacgtcg tgactggaa aaccctggcg ttaccaact	2160
aatcgcccttg cagcacatcc ccctttcgcc agctggcgta atagcgaaga gcccggaccga	2220
tcgcctttcc aacaagttgc gcagcctgaa tggt	2254

<210> 45
<211> 1707
<212> DNA
<213> Homo sapiens

<400> 45	
ccacgcgtcc gggcctgagt cctctgaccc ttccctgccc tgacccgctg	60

tgc	caagggtt	agcacctgcc	agaatcaacc	aaggccggac	aaggcatgag	gagcgctgct	120
tct	ggggcct	ggctcctccc	ccttctcccc	atttgggctg	ctgtgccagg	gcttgctcca	180
gc	ccacctggg	tgtgagctat	gccctctgcc	agaaatgctc	tttcctctat	tggcctggcc	240
acac	ctactc	agtcttggg	tctgttaac	tgccacttcc	cccagtaaac	cttctgctcc	300
ccat	tcacat	cagatggact	tgtgtctctt	gcactagtct	atgagatttg	gatgtctgtg	360
tc	cttagggc	ccaagctggc	cactctggcc	cagaagcagc	ctcgggcat	gtctgtcta	420
cagg	gtgtgg	ggggacagta	tgtgcacccc	cttgccttct	caggtggact	ttgaacagct	480
gact	gagaac	ctggggcagc	tggagcggc	gagccggca	gccgaggaga	gcctgcggac	540
ttgg	ccaagc	atgagctggc	cccagccctg	cgtgcccggc	tcaccccactt	cctgaccag	600
tgt	cccgcg	cgtgtgcca	tgctaaggat	agtgcaccgc	cgtgtctgca	atagttcca	660
tgcc	ttccctg	ctctacctgg	gctacacccc	gcaggcggcc	cgtgaagtgc	gcatcatgca	720
ctt	ctccca	acgctgcggg	aatttgcgt	tgagtatcg	acttgcggg	aacgagtgc	780
acag	cagcag	cagaagcagg	ccacataccg	tgagcgcaac	aagacccggg	gacgcatgat	840
cacc	cgagtg	ggtgccttc	caggtcttag	tcttgcactgc	caccccttgc	gtttccctcg	900
ctt	ctccca	ctcacccctc	ttctttctcc	agacagagaa	gttctcaggt	gtggctgggg	960
aagg	ccccca	caacccctct	gtcccagtag	cagtgagcag	cggggccaggg	cggggagatg	1020
ctg	acagtca	tgctagtatg	aagagtctgc	tgaccagcag	gcctgaggac	accacacaca	1080
atcg	ccgcag	cagaggcatg	gtccagagca	gctcccaat	catgcccaca	gtggggccct	1140
ccact	gcac	cccagaagaa	cccccaggt	ccagtttacc	cagtgataca	tcagatgaga	1200
tcat	ggac	tcatggac	tctggcag	tcagtgacca	agagcagtcc	tcgtgccttgc	1260
aa	cgcaagcg	ttcccgcggc	aaccgcaagt	cttgcata	accccccaca	atccactgc	1320
ccac	ctgaac	ccatcaacc	ccctccaacc	ctgctctg	cctgcagtga	gaagacgtt	1380
ga	agagtggg	ctcgagatg	acctggtgca	ggcactggga	ctaagcaagg	gtcctggcct	1440
gg	aggtgtga	aggtgtgt	tcccgaaat	ctatctggac	cctggactgc	agtgcaggag	1500
at	gacagagt	gaggaggg	ccagagcagaa	ttctggcccc	agaactctgt	gcccaggagc	1560
cat	gccttg	gcagtattag	ccgtgtgt	atgcatgtga	gtgtgtgt	atgtgtgt	1620
gt	gcatgcat	atgcatgtgc	atgtgtgt	gctccttgaa	cgcacggagc	aaaataaaat	1680
ttt	cttagct	aatccaaaaa	aaaaaaaa				1707

<210> 46

<211> 453

<212> PRT

<213> Homo sapiens

<400> 46

Met	Arg	Lys	Lys	Trp	Lys	Met	Gly	Gly	Met	Lys	Tyr	Ile	Phe	Ser	Leu
1				5					10				15		

Leu	Phe	Phe	Leu	Leu	Glu	Gly	Gly	Lys	Thr	Glu	Gln	Val	Leu	Lys	His
				20				25				30			

Ser	Glu	Thr	Tyr	Cys	Met	Phe	Gln	Asp	Lys	Lys	Tyr	Arg	Val	Gly	Glu
				35				40			45				

Arg	Trp	His	Pro	Tyr	Leu	Glu	Pro	Tyr	Gly	Leu	Val	Tyr	Cys	Val	Asn
	50				55				60						

Cys	Ile	Cys	Ser	Glu	Asn	Gly	Asn	Val	Leu	Cys	Ser	Arg	Val	Arg	Cys
	65				70			75		80					

Pro	Asn	Val	His	Cys	Leu	Ser	Pro	Val	His	Ile	Pro	His	Leu	Cys	Cys
				85				90				95			

Pro	Arg	Cys	Pro	Glu	Asp	Ser	Leu	Pro	Pro	Val	Asn	Asn	Lys	Val	Thr
	100						105				110				

Ser	Lys	Ser	Cys	Glu	Tyr	Asn	Gly	Thr	Thr	Tyr	Gln	His	Gly	Glu	Leu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

115	120	125
Phe Val Ala Glu Gly Leu Phe Gln Asn Arg Gln Pro Asn Gln Cys Thr		
130	135	140
Gln Cys Ser Cys Ser Glu Gly Asn Val Tyr Cys Gly Leu Lys Thr Cys		
145	150	155
160		
Pro Lys Leu Thr Cys Ala Phe Pro Val Ser Val Pro Asp Ser Cys Cys		
165	170	175
Arg Val Cys Arg Gly Asp Gly Glu Leu Ser Trp Glu His Ser Asp Gly		
180	185	190
Asp Ile Phe Arg Gln Pro Ala Asn Arg Glu Ala Arg His Ser Tyr His		
195	200	205
Arg Ser His Tyr Asp Pro Pro Ser Arg Gln Ala Gly Gly Leu Ser		
210	215	220
Arg Phe Pro Gly Ala Arg Ser His Arg Gly Ala Leu Met Asp Ser Gln		
225	230	235
240		
Gln Ala Ser Gly Thr Ile Val Gln Ile Val Ile Asn Asn Lys His Lys		
245	250	255
His Gly Gln Val Cys Val Ser Asn Gly Lys Thr Tyr Ser His Gly Glu		
260	265	270
Ser Trp His Pro Asn Leu Arg Ala Phe Gly Ile Val Glu Cys Val Leu		
275	280	285
Cys Thr Cys Asn Val Thr Lys Gln Glu Cys Lys Lys Ile His Cys Pro		
290	295	300
Asn Arg Tyr Pro Cys Lys Tyr Pro Gln Lys Ile Asp Gly Lys Cys Cys		
305	310	315
320		
Lys Val Cys Pro Glu Glu Leu Pro Gly Gln Ser Phe Asp Asn Lys Gly		
325	330	335
Tyr Phe Cys Gly Glu Glu Thr Met Pro Val Tyr Glu Ser Val Phe Met		
340	345	350
Glu Asp Gly Glu Thr Thr Arg Lys Ile Ala Leu Glu Thr Glu Arg Pro		
355	360	365
Pro Gln Val Glu Val His Val Trp Thr Ile Arg Lys Gly Ile Leu Gln		
370	375	380
His Phe His Ile Glu Lys Ile Ser Lys Arg Met Phe Glu Glu Leu Pro		
385	390	395
400		
His Phe Lys Leu Val Thr Arg Thr Leu Ser Gln Trp Lys Ile Phe		
405	410	415
Thr Glu Gly Glu Ala Gln Ile Ser Gln Met Cys Ser Ser Arg Val Cys		
420	425	430

Arg Thr Glu Leu Glu Asp Leu Val Lys Val Leu Tyr Leu Glu Arg Ser
 435 440 445

Glu Lys Gly His Cys
 450

<210> 47
 <211> 446
 <212> PRT
 <213> Homo sapiens

<400> 47
 Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala Val
 1 5 10 15

Leu Leu Ala Leu Leu Gly Thr Ala Trp Ala Glu Val Trp Pro Pro Gln
 20 25 30

Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg Lys Glu Ser
 35 40 45

Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser Trp Val Gln Pro
 50 55 60

Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser Asp Ser Leu Ala Gln
 65 70 75 80

Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly Ile Pro Thr Pro Ser Leu
 85 90 95

Ala Ser Gly Leu Trp Arg Thr Leu Gln Val Gly Trp Asn Met Gln Leu
 100 105 110

Leu Pro Ala Gly Leu Ala Ser Phe Val Glu Val Val Ser Leu Trp Phe
 115 120 125

Ala Glu Gly Gln Arg Tyr Ser His Ala Ala Gly Glu Cys Ala Arg Asn
 130 135 140

Ala Thr Cys Thr His Tyr Thr Gln Leu Val Trp Ala Thr Ser Ser Gln
 145 150 155 160

Leu Gly Cys Gly Arg His Leu Cys Ser Ala Gly Gln Ala Ala Ile Glu
 165 170 175

Ala Phe Val Cys Ala Tyr Ser Pro Gly Gly Asn Trp Glu Val Asn Gly
 180 185 190

Lys Thr Ile Ile Pro Tyr Lys Lys Gly Ala Trp Cys Ser Leu Cys Thr
 195 200 205

Ala Ser Val Ser Gly Cys Phe Lys Ala Trp Asp His Ala Gly Gly Leu
 210 215 220

Cys Glu Val Pro Arg Asn Pro Cys Arg Met Ser Cys Gln Asn His Gly
 225 230 235 240

Arg Leu Asn Ile Ser Thr Cys His Cys His Cys Pro Pro Gly Tyr Thr
 245 250 255

Gly Arg Tyr Cys Gln Val Arg Cys Ser Leu Gln Cys Val His Gly Arg
 260 265 270

Phe Arg Glu Glu Cys Ser Cys Val Cys Asp Ile Gly Tyr Gly Gly
 275 280 285

Ala Gln Cys Ala Thr Lys Val His Phe Pro Phe His Thr Cys Asp Leu
 290 295 300

Arg Ile Asp Gly Asp Cys Phe Met Val Ser Ser Glu Ala Asp Thr Tyr
 305 310 315 320

Tyr Arg Ala Arg Met Lys Cys Gln Arg Lys Gly Gly Val Leu Ala Gln
 325 330 335

Ile Lys Ser Gln Lys Val Gln Asp Ile Leu Ala Phe Tyr Leu Gly Arg
 340 345 350

Leu Glu Thr Thr Asn Glu Val Ile Asp Ser Asp Phe Glu Thr Arg Asn
 355 360 365

Phe Trp Ile Gly Leu Thr Tyr Lys Thr Ala Lys Asp Ser Phe Arg Trp
 370 375 380

Ala Thr Gly Glu His Gln Ala Phe Thr Ser Phe Ala Phe Gly Gln Pro
 385 390 395 400

Asp Asn His Gly Phe Gly Asn Cys Val Glu Leu Gln Ala Ser Ala Ala
 405 410 415

Phe Asn Trp Asn Asn Gln Arg Cys Lys Thr Arg Asn Arg Tyr Ile Cys
 420 425 430

Gln Phe Ala Gln Glu His Ile Ser Arg Trp Gly Pro Gly Ser
 435 440 445

<210> 48

<211> 834

<212> PRT

<213> Homo sapiens

<400> 48

Met Lys His Thr Leu Ala Leu Leu Ala Pro Leu Leu Gly Leu Gly Leu
 1 5 10 15

Gly Leu Ala Leu Ser Gln Leu Ala Ala Gly Ala Thr Asp Cys Lys Phe
 20 25 30

Leu Gly Pro Ala Glu His Leu Thr Phe Thr Pro Ala Ala Arg Ala Arg
 35 40 45

Trp Leu Ala Pro Arg Val Arg Ala Pro Gly Leu Leu Asp Ser Leu Tyr
 50 55 60

Gly Thr Val Arg Arg Phe Leu Ser Val Val Gln Leu Asn Pro Phe Pro
 65 70 75 80
 Ser Glu Leu Val Lys Ala Leu Leu Asn Glu Leu Ala Ser Val Lys Val
 85 90 95
 Asn Glu Val Val Arg Tyr Glu Ala Gly Tyr Val Val Cys Ala Val Ile
 100 105 110
 Ala Gly Leu Tyr Leu Leu Val Pro Thr Ala Gly Leu Cys Phe Cys
 115 120 125
 Cys Cys Arg Cys His Arg Arg Cys Gly Gly Arg Val Lys Thr Glu His
 130 135 140
 Lys Ala Leu Ala Cys Glu Arg Ala Ala Leu Met Val Phe Leu Leu Leu
 145 150 155 160
 Thr Thr Leu Leu Leu Ile Gly Val Val Cys Ala Phe Val Thr Asn
 165 170 175
 Gln Arg Thr His Glu Gln Met Gly Pro Ser Ile Glu Ala Met Pro Glu
 180 185 190
 Thr Leu Leu Ser Leu Trp Gly Leu Val Ser Asp Val Pro Gln Glu Leu
 195 200 205
 Gln Ala Val Ala Gln Gln Phe Ser Leu Pro Gln Glu Gln Val Ser Glu
 210 215 220
 Glu Leu Asp Gly Val Gly Val Ser Ile Gly Ser Ala Ile His Thr Gln
 225 230 235 240
 Leu Arg Ser Ser Val Tyr Pro Leu Leu Ala Ala Val Gly Ser Leu Gly
 245 250 255
 Gln Val Leu Gln Val Ser Val His His Leu Gln Thr Leu Asn Ala Thr
 260 265 270
 Val Val Glu Leu Gln Ala Gly Gln Gln Asp Leu Glu Pro Ala Ile Arg
 275 280 285
 Glu His Arg Asp Arg Leu Leu Glu Leu Leu Gln Glu Ala Arg Cys Gln
 290 295 300
 Gly Asp Cys Ala Gly Ala Leu Ser Trp Ala Arg Thr Leu Glu Leu Gly
 305 310 315 320
 Ala Asp Phe Ser Gln Val Pro Ser Val Asp His Val Leu His Gln Leu
 325 330 335
 Lys Gly Val Pro Glu Ala Asn Phe Ser Ser Met Val Gln Glu Glu Asn
 340 345 350
 Ser Thr Phe Asn Ala Leu Pro Ala Leu Ala Ala Met Gln Thr Ser Ser
 355 360 365

Val Val Gln Glu Leu Lys Lys Ala Val Ala Gln Gln Pro Glu Gly Val
 370 375 380
 Arg Thr Leu Ala Glu Gly Phe Pro Gly Leu Glu Ala Ala Ser Arg Trp
 385 390 395 400
 Ala Gln Ala Leu Gln Glu Val Glu Glu Ser Ser Arg Pro Tyr Leu Gln
 405 410 415
 Glu Val Gln Arg Tyr Glu Thr Tyr Arg Trp Ile Val Gly Cys Val Leu
 420 425 430
 Cys Ser Val Val Leu Phe Val Val Leu Cys Asn Leu Leu Gly Leu Asn
 435 440 445
 Leu Gly Ile Trp Gly Leu Ser Ala Arg Asp Asp Pro Ser His Pro Glu
 450 455 460
 Ala Lys Gly Glu Ala Gly Ala Arg Phe Leu Met Ala Gly Val Gly Leu
 465 470 475 480
 Ser Phe Leu Phe Ala Ala Pro Leu Ile Leu Leu Val Phe Ala Thr Phe
 485 490 495
 Leu Val Gly Gly Asn Val Gln Thr Leu Val Cys Arg Ser Trp Glu Asn
 500 505 510
 Gly Glu Leu Phe Glu Phe Ala Asp Thr Pro Gly Asn Leu Pro Pro Ser
 515 520 525
 Met Asn Leu Ser Gln Leu Leu Gly Leu Arg Lys Asn Ile Ser Ile His
 530 535 540
 Gln Ala Tyr Gln Gln Cys Lys Glu Gly Ala Ala Leu Trp Thr Val Leu
 545 550 555 560
 Gln Leu Asn Asp Ser Tyr Asp Leu Glu Glu His Leu Asp Ile Asn Gln
 565 570 575
 Tyr Thr Asn Lys Leu Arg Gln Glu Leu Gln Ser Leu Lys Val Asp Thr
 580 585 590
 Gln Ser Leu Asp Leu Leu Ser Ser Ala Ala Arg Arg Asp Leu Glu Ala
 595 600 605
 Leu Gln Ser Ser Gly Leu Gln Arg Ile His Tyr Pro Asp Phe Leu Val
 610 615 620
 Gln Ile Gln Arg Pro Val Val Lys Thr Ser Met Glu Gln Leu Ala Gln
 625 630 635 640
 Glu Leu Gln Gly Leu Ala Gln Ala Gln Asp Asn Ser Val Leu Gly Gln
 645 650 655
 Arg Leu Gln Glu Glu Ala Gln Gly Leu Arg Asn Leu His Gln Glu Lys
 660 665 670
 Val Val Pro Gln Gln Ser Leu Val Ala Lys Leu Asn Leu Ser Val Arg

675

680

685

Ala Leu Glu Ser Ser Ala Pro Asn Leu Gln Leu Glu Thr Ser Asp Val
 690 695 700

Leu Ala Asn Val Thr Tyr Leu Lys Gly Glu Leu Pro Ala Trp Ala Ala
 705 710 715 720

Arg Ile Leu Arg Asn Val Ser Glu Cys Phe Leu Ala Arg Glu Met Gly
 725 730 735

Tyr Phe Ser Gln Tyr Val Ala Trp Val Arg Glu Glu Val Thr Gln Arg
 740 745 750

Ile Ala Thr Cys Gln Pro Leu Ser Gly Ala Leu Asp Asn Ser Arg Val
 755 760 765

Ile Leu Cys Asp Met Met Ala Asp Pro Trp Asn Ala Phe Trp Phe Cys
 770 775 780

Leu Ala Trp Cys Thr Phe Phe Leu Ile Pro Ser Ile Ile Phe Ala Val
 785 790 795 800

Lys Thr Ser Lys Tyr Phe Arg Pro Ile Arg Lys Arg Leu Ser Ser Thr
 805 810 815

Ser Ser Glu Glu Thr Gln Leu Phe His Ile Pro Arg Val Thr Ser Leu
 820 825 830

Lys Leu

<210> 49

<211> 103

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (60)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 49

Met Glu Phe Cys Leu Ile Phe Leu Leu Ile Leu Glu Phe Cys Gln
 1 5 10 15

Ile Phe Asp Cys Leu Arg Lys Cys Tyr Tyr Arg Leu Thr Cys Leu Ser
 20 25 30

Cys Leu Leu Leu Asn Leu Leu Ile Phe Phe Ser Glu Lys Val Val Ser
 35 40 45

Glu Asn Pro Asn Ile Val Val Ile Gly Leu Ala Xaa Val Ile Met Leu
 50 55 60

Ser Ile Met Phe Ile Lys Trp Leu Leu Ile Leu Ile Phe Leu Leu
 65 70 75 80

Ser Phe Lys Asn Leu Gly Lys Glu Gln Glu Glu Arg Glu Asp Leu Leu
85 90 95

Asn Ser Leu Leu Thr Thr Ser
100

<210> 50
<211> 419
<212> PRT
<213> *Homo sapiens*

<400> 50
Met Lys Ala Leu Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala Asn
1 5 10 15

Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu Leu Cys
20 25 30

Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys Arg Arg Ser
35 40 45

Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr Ala Thr Ala Pro
50 55 60

Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser Leu Met Thr Asp Glu
65 70 75 80

Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser Ser Ala Glu Asp Gly Gln
85 90 95

Pro Ala Ile Ser Pro Val Asp Ser Gly Arg Ser Asn Arg Thr Arg Ala
100 105 110

Arg Pro Phe Glu Arg Ser Thr Ile Arg Ser Arg Ser Phe Lys Lys Ile
115 120 125

Ala Asn His Ala Asp Gln Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala
145 . 150 155 160

Pro Glu Val Phe Pro Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile
165 170 175

Thr Ser Ile Lys Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile
180 185 190

Arg Leu Val Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln
195 200 205

His Ile Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro
210 215 220

Gly Asp Ile Ile Leu Lys Val Asn GIy Met Asp Ile Ser Asn Val Pro
225 230 235 240

His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu Trp
 245 250 255
 Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn Gly Gln
 260 265 270
 Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His Val Ile Leu
 275 280 285
 Asn Lys Ser Ser Pro Glu Glu Gln Leu Gly Ile Lys Leu Val Arg Lys
 290 295 300
 Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val Leu Asp Gly Gly Val
 305 310 315 320
 Ala Tyr Arg His Gly Gln Leu Glu Glu Asn Asp Arg Val Leu Ala Ile
 325 330 335
 Asn Gly His Asp Leu Arg Tyr Gly Ser Pro Glu Ser Ala Ala His Leu
 340 345 350
 Ile Gln Ala Ser Glu Arg Arg Val His Leu Val Val Ser Arg Gln Val
 355 360 365
 Arg Gln Arg Ser Pro Asp Ile Phe Gln Glu Ala Gly Trp Asn Ser Asn
 370 375 380
 Gly Ser Trp Ser Pro Gly Pro Gly Glu Arg Ser Asn Thr Pro Lys Pro
 385 390 395 400
 Leu His Pro Thr Ile Thr Cys His Glu Lys Val Val Asn Ile Gln Lys
 405 410 415
 Arg Pro Arg

<210> 51
 <211> 468
 <212> PRT
 <213> Homo sapiens

<400> 51
 Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val Trp
 1 5 10 15
 Leu Leu Ser Ser Gly His Glu Glu Gln Pro Pro Glu Thr Ala Ala
 20 25 30
 Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp Cys Thr Cys
 35 40 45
 Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg Leu Phe Pro Arg
 50 55 60
 Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg Tyr Tyr Lys Val Asn
 65 70 75 80

Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp Ile Ser Gln Cys Gly Arg
 85 90 95

Arg Asp Cys Ala Val Lys Pro Cys Gln Ser Asp Glu Val Pro Asp Gly
 100 105 110

Ile Lys Ser Ala Ser Tyr Lys Tyr Ser Glu Glu Ala Asn Asn Leu Ile
 115 120 125

Glu Glu Cys Glu Gln Ala Glu Arg Leu Gly Ala Val Asp Glu Ser Leu
 130 135 140

Ser Glu Glu Thr Gln Lys Ala Val Leu Gln Trp Thr Lys His Asp Asp
 145 150 155 160

Ser Ser Asp Asn Phe Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala
 165 170 175

Glu Tyr Val Asp Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys
 180 185 190

Gly Pro Asp Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys
 195 200 205

Phe Lys Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly
 210 215 220

Gln Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu
 225 230 235 240

Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His Ala
 245 250 255

Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu Thr Trp
 260 265 270

Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln Gln Arg Phe
 275 280 285

Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg Leu Lys Asn Leu
 290 295 300

Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu Ser Lys Val Leu Pro
 305 310 315 320

Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe Thr Gly Asn Lys Ile Gln
 325 330 335

Asp Glu Glu Asn Lys Met Leu Leu Leu Glu Ile Leu His Glu Ile Lys
 340 345 350

Ser Phe Pro Leu His Phe Asp Glu Asn Ser Phe Phe Ala Gly Asp Lys
 355 360 365

Lys Glu Ala His Lys Leu Lys Glu Asp Phe Arg Leu His Phe Arg Asn
 370 375 380

Ile Ser Arg Ile Met Asp Cys Val Gly Cys Phe Lys Cys Arg Leu Trp
 385 390 395 400
 Gly Lys Leu Gln Thr Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe
 405 410 415
 Ser Glu Lys Leu Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu
 420 425 430
 Phe His Leu Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly
 435 440 445
 Arg Ile Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu
 450 455 460
 Gln Asn Ile His
 465

<210> 52
 <211> 347
 <212> PRT
 <213> Homo sapiens

<400> 52
 Met Val Thr Arg Ala Gly Ala Gly Thr Ala Val Ala Gly Ala Val Val
 1 5 10 15
 Val Ala Leu Leu Ser Ala Ala Leu Ala Leu Tyr Gly Pro Pro Leu Asp
 20 25 30
 Ala Val Leu Glu Arg Ala Phe Ser Leu Arg Lys Ala His Ser Ile Lys
 35 40 45
 Asp Met Glu Asn Thr Leu Gln Leu Val Arg Asn Ile Ile Pro Pro Leu
 50 55 60
 Ser Ser Thr Lys His Lys Gly Gln Asp Gly Arg Ile Gly Val Val Gly
 65 70 75 80
 Gly Cys Gln Glu Tyr Thr Gly Ala Pro Tyr Phe Ala Ala Ile Ser Ala
 85 90 95
 Leu Lys Val Gly Ala Asp Leu Ser His Val Phe Cys Ala Ser Ala Ala
 100 105 110
 Ala Pro Val Ile Lys Ala Tyr Ser Pro Glu Leu Ile Val His Pro Val
 115 120 125
 Leu Asp Ser Pro Asn Ala Val His Glu Val Glu Lys Trp Leu Pro Arg
 130 135 140
 Leu His Ala Leu Val Val Gly Pro Gly Leu Gly Arg Asp Asp Ala Leu
 145 150 155 160
 Leu Arg Asn Val Gln Gly Ile Leu Glu Val Ser Lys Ala Arg Asp Ile
 165 170 175

Pro Val Val Ile Asp Ala Asp Gly Leu Trp Leu Val Ala Gln Gln Pro
 180 185 190
 Ala Leu Ile His Gly Tyr Arg Lys Ala Val Leu Thr Pro Asn His Val
 195 200 205
 Glu Phe Ser Arg Leu Tyr Asp Ala Val Leu Arg Gly Pro Met Asp Ser
 210 215 220
 Asp Asp Ser His Gly Ser Val Leu Arg Leu Ser Gln Ala Leu Gly Asn
 225 230 235 240
 Val Thr Val Val Gln Lys Gly Glu Arg Asp Ile Leu Ser Asn Gly Gln
 245 250 255
 Gln Val Leu Val Cys Ser Gln Glu Gly Ser Ser Arg Arg Cys Gly Gly
 260 265 270
 Gln Gly Asp Leu Leu Ser Gly Ser Leu Gly Val Leu Val His Trp Ala
 275 280 285
 Leu Leu Ala Gly Pro Gln Lys Thr Asn Gly Ser Ser Pro Leu Leu Val
 290 295 300
 Ala Ala Phe Gly Ala Cys Ser Leu Thr Arg Gln Cys Asn His Gln Ala
 305 310 315 320
 Phe Gln Lys His Gly Arg Ser Thr Thr Ser Asp Met Ile Ala Glu
 325 330 335
 Val Gly Ala Ala Phe Ser Lys Leu Phe Glu Thr
 340 345

<210> 53
 <211> 523
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (248)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (249)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 53
 Met Leu Arg Asn Gly Asn Lys Tyr Leu Leu Met Leu Val Ser Ile Ile
 1 5 10 15

Met Leu Thr Ala Cys Ile Ser Gln Ser Arg Thr Ser Phe Ile Pro Pro
 20 25 30

Gln Asp Arg Glu Ser Leu Leu Ala Glu Gln Pro Trp Pro His Asn Gly
 35 40 45

Phe Val Ala Ile Ser Trp His Asn Val Glu Asp Glu Ala Ala Asp Gln
 50 55 60

Arg Phe Met Ser Val Arg Thr Ser Ala Leu Arg Glu Gln Phe Ala Trp
 65 70 75 80

Leu Arg Glu Asn Gly Tyr Gln Pro Val Ser Ile Ala Gln Ile Arg Glu
 85 90 95

Ala His Arg Gly Gly Lys Pro Leu Pro Glu Lys Ala Val Val Leu Thr
 100 105 110

Phe Asp Asp Gly Tyr Gln Ser Phe Tyr Thr Arg Val Phe Pro Ile Leu
 115 120 125

Gln Ala Phe Gln Trp Pro Ala Val Trp Ala Pro Val Gly Ser Trp Val
 130 135 140

Asp Thr Pro Ala Asp Lys Gln Val Lys Phe Gly Asp Glu Leu Val Asp
 145 150 155 160

Arg Glu Tyr Phe Ala Thr Trp Gln Val Arg Glu Val Ala Arg Ser
 165 170 175

Arg Leu Val Glu Leu Ala Ser His Thr Trp Asn Ser His Tyr Gly Ile
 180 185 190

Gln Ala Asn Ala Thr Gly Ser Leu Leu Pro Val Tyr Val Asn Arg Ala
 195 200 205

Tyr Phe Thr Asp His Ala Arg Tyr Glu Thr Ala Ala Glu Tyr Arg Glu
 210 215 220

Arg Ile Arg Leu Asp Ala Val Lys Met Thr Glu Tyr Leu Arg Thr Lys
 225 230 235 240

Val Glu Val Asn Pro His Val Xaa Xaa Trp Pro Tyr Gly Glu Ala Asn
 245 250 255

Gly Ile Ala Ile Glu Glu Leu Lys Lys Leu Gly Tyr Asp Met Phe Phe
 260 265 270

Thr Leu Glu Ser Gly Leu Ala Asn Ala Ser Gln Leu Asp Ser Ile Pro
 275 280 285

Arg Val Leu Ile Ala Asn Asn Pro Ser Leu Lys Glu Phe Ala Gln Gln
 290 295 300

Ile Ile Thr Val Gln Glu Lys Ser Pro Gln Arg Ile Met His Ile Asp
 305 310 315 320

Leu Asp Tyr Val Tyr Asp Glu Asn Leu Gln Gln Met Asp Arg Asn Ile
 325 330 335

Asp Val Leu Ile Gln Arg Val Lys Asp Met Gln Ile Ser Thr Val Tyr
 340 345 350

Leu Gln Ala Phe Ala Asp Pro Asp Gly Asp Gly Leu Val Lys Glu Val
 355 360 365

 Trp Phe Pro Asn Arg Leu Leu Pro Met Lys Ala Asp Ile Phe Ser Arg
 370 375 380

 Val Ala Trp Gln Leu Arg Thr Arg Ser Gly Val Asn Ile Tyr Ala Trp
 385 390 395 400

 Met Pro Val Leu Ser Trp Asp Leu Asp Pro Thr Leu Thr Arg Val Lys
 405 410 415

 Tyr Leu Pro Thr Gly Glu Lys Lys Ala Gln Ile His Pro Glu Gln Tyr
 420 425 430

 His Arg Leu Ser Pro Phe Asp Asp Arg Val Arg Ala Gln Val Gly Met
 435 440 445

 Leu Tyr Glu Asp Leu Ala Gly His Ala Ala Phe Asp Gly Ile Leu Phe
 450 455 460

 His Asp Asp Ala Leu Leu Ser Asp Tyr Glu Asp Ala Ser Ala Pro Ala
 465 470 475 480

 Ile Thr Ala Tyr Gln Gln Ala Gly Phe Ser Gly Ser Leu Ser Glu Ile
 485 490 495

 Arg Gln Asn Pro Glu Gln Phe Lys Gln Trp Ala Arg Phe Lys Ser Arg
 500 505 510

 Ala Leu Thr Asp Phe Thr Leu Glu Leu Ser Ala
 515 520

<210> 54
 <211> 220
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (170)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 54
 Met Ala Thr Val Arg Ala Ser Leu Arg Gly Ala Leu Leu Leu Leu
 1 5 10 15

Ala Val Ala Gly Val Ala Glu Val Ala Gly Gly Leu Ala Pro Gly Ser
 20 25 30

Ala Gly Ala Leu Cys Cys Asn His Ser Lys Asp Asn Gln Met Cys Arg
 35 40 45

Asp Val Cys Glu Gln Ile Phe Ser Ser Lys Ser Glu Ser Arg Leu Lys
 50 55 60

His Leu Leu Gln Arg Ala Pro Asp Tyr Cys Pro Glu Thr Met Val Glu

65	70	75	80
----	----	----	----

Ile Trp Asn Cys Met Asn Ser Ser Leu Pro Gly Val Phe Lys Lys Ser
 85 90 95

Asp Gly Trp Val Gly Leu Gly Cys Cys Glu Leu Ala Ile Ala Leu Glu
 100 105 110

Cys Arg Gln Ala Cys Lys Gln Ala Ser Ser Lys Asn Asp Ile Ser Lys
 115 120 125

Val Cys Arg Lys Glu Tyr Glu Asn Ala Leu Phe Ser Cys Ile Ser Arg
 130 135 140

Asn Glu Met Gly Ser Val Cys Cys Ser Tyr Ala Gly His His Thr Asn
 145 150 155 160

Cys Arg Glu Tyr Cys Gln Ala Ile Phe Xaa Thr Asp Ser Ser Pro Gly
 165 170 175

Pro Ser Gln Ile Lys Ala Val Glu Asn Tyr Cys Ala Ser Ile Ser Pro
 180 185 190

Gln Leu Ile His Cys Val Asn Asn Tyr Thr Gln Ser Tyr Pro Met Arg
 195 200 205

Asn Pro Thr Asp Ser Arg Ser Val Leu Ser Asp Ile
 210 215 220

<210> 55

<211> 93

<212> PRT

<213> Homo sapiens

<400> 55

Met Gly Ala Ala Leu Leu Trp Glu Val Leu Val Gly Gly Thr Arg Ala
 1 5 10 15

Leu Thr Asn Leu Leu Leu Leu Gly Gly Thr Ser Pro Gly Arg Thr Ser
 20 25 30

Gln Leu Gln Val Leu Arg Leu Pro Val Ala Ala Glu Pro Val Pro Leu
 35 40 45

Ala Phe Ser Ser His Asn Gly Glu Gly Asp Phe Gly Ile Leu Thr Asn
 50 55 60

Ser Ser Leu Gly Leu Ser Leu Leu Pro Ser Thr Ala Ser Arg Phe Ser
 65 70 75 80

Ser Ile Cys Ala Tyr Tyr Leu Arg Thr Val Ser Ala Pro
 85 90

<210> 56

<211> 79

<212> PRT

<213> Homo sapiens

<400> 56				
Met Val Pro Trp Phe Leu Leu Trp Ser Ser Phe Phe Ile Gly Thr Ser	1	5	10	15
Ser Ala Tyr Ile Asp Lys Gln Val Lys Ile Val Arg Gln Lys Ser Thr	20		25	30
Tyr Trp Gly Glu Lys Phe Leu Lys Arg Cys Glu Arg Glu Arg Ile Lys	35	40		45
Glu Ser Glu Gln Ser Gly Lys Arg Gly Glu Leu Arg Glu Arg Gln Gln	50	55	60	
Lys Ser Asn Glu Ala Gly Cys Ile Tyr Gln Ser Ile Ile Leu Ile	65	70	75	

<210> 57

<211> 74

<212> PRT

<213> Homo sapiens

<400> 57				
Met Ala Val Val Pro Thr Trp Cys Ser Thr Val Leu Leu Thr Leu Cys	1	5	10	15
Pro Gln Leu Ala Trp Trp Gln Val Trp Arg Met Cys Arg Tyr Thr Thr	20		25	30
Gly Lys Met Pro Ser Ser Pro Ser Ile Ser Pro Pro Ser Ser Arg Val	35	40		45
Pro Gly Ser Leu Met Gly Lys Ser Ser Arg Val Thr Ser Arg Arg Ala	50	55	60	
Arg Trp Asn Leu Gly Pro Cys Gly Thr Val	65	70		

<210> 58

<211> 446

<212> PRT

<213> Homo sapiens

<400> 58				
Met Thr Ser Lys Glu Ile Ile Leu Gly Leu Cys Leu Leu Ser Leu Val	1	5	10	15
Leu Ser Met Ile Leu Met Val Ile Ile Arg Tyr Ile Ser Arg Val Leu	20		25	30
Val Trp Ile Leu Thr Ile Leu Val Ile Leu Gly Ser Leu Gly Gly Thr	35	40		45
Gly Val Leu Trp Trp Pro Tyr Ala Lys Gln Arg Arg Ser Pro Lys Glu	50	55	60	

Thr Val Thr Pro Glu Gln Leu Gln Ile Ala Glu Asp Asn Leu Arg Ala
 65 70 75 80

Leu Leu Ile Tyr Ala Ile Ser Ala Thr Val Phe Thr Val Ile Leu Phe
 85 90 95

Leu Ile Met Leu Val Met Arg Lys Arg Val Ala Leu Thr Ile Ala Leu
 100 105 110

Phe His Val Ala Gly Lys Val Phe Ile His Leu Pro Leu Leu Val Phe
 115 120 125

Gln Pro Phe Trp Thr Phe Ala Leu Val Leu Phe Trp Val Tyr Trp
 130 135 140

Ile Met Thr Leu Leu Phe Leu Gly Thr Thr Gly Ser Pro Val Gln Asn
 145 150 155 160

Glu Gln Gly Phe Val Glu Phe Lys Ile Ser Gly Pro Leu Gln Tyr Met
 165 170 175

Trp Trp Tyr His Val Val Gly Leu Ile Trp Ile Ser Glu Phe Ile Leu
 180 185 190

Ala Cys Gln Gln Met Thr Val Ala Gly Ala Val Val Thr Tyr Tyr Phe
 195 200 205

Thr Arg Asp Lys Arg Asn Leu Pro Phe Thr Pro Ile Leu Ala Ser Val
 210 215 220

Asn Arg Leu Ile Arg Tyr His Leu Gly Thr Val Ala Lys Gly Ser Phe
 225 230 235 240

Ile Ile Thr Leu Val Lys Ile Pro Arg Met Ile Leu Met Tyr Ile His
 245 250 255

Ser Gln Leu Lys Gly Lys Glu Asn Ala Cys Ala Arg Cys Val Leu Lys
 260 265 270

Ser Cys Ile Cys Cys Leu Trp Cys Leu Glu Lys Cys Leu Asn Tyr Leu
 275 280 285

Asn Gln Asn Ala Tyr Thr Ala Thr Ala Ile Asn Ser Thr Asn Phe Cys
 290 295 300

Thr Ser Ala Lys Asp Ala Phe Val Ile Leu Val Glu Asn Ala Leu Arg
 305 310 315 320

Val Ala Thr Ile Asn Thr Val Gly Asp Phe Met Leu Phe Leu Gly Lys
 325 330 335

Val Leu Ile Val Cys Ser Thr Gly Leu Ala Gly Ile Met Leu Leu Asn
 340 345 350

Tyr Gln Gln Asp Tyr Thr Val Trp Val Leu Pro Leu Ile Ile Val Cys
 355 360 365

Leu Phe Ala Phe Leu Asp Ala His Cys Phe Leu Ser Ile Tyr Glu Met
 370 375 380
 Val Val Asp Val Leu Phe Leu Cys Phe Ala Ile Asp Thr Lys Tyr Asn
 385 390 395 400
 Asp Gly Ser Pro Gly Arg Glu Phe Tyr Met Asp Lys Val Leu Met Glu
 405 410 415
 Phe Val Glu Asn Ser Arg Lys Ala Met Lys Glu Ala Gly Lys Gly Gly
 420 425 430
 Val Ala Asp Ser Arg Glu Leu Lys Pro Met Leu Lys Lys Arg
 435 440 445

<210> 59
 <211> 58
 <212> PRT
 <213> Homo sapiens

<400> 59
 Met Leu Phe Phe Tyr Leu Asn Tyr Leu Met Ile Ala Leu Leu Leu
 1 5 10 15
 Phe Lys Lys Ile Gln Lys Ser Asn Lys Gly Lys Asp Gly Asn Leu Met
 20 25 30
 Ile Glu Gly Val Ala Cys Val Thr Val Gly Gly Lys Glu Tyr Ile Asp
 35 40 45
 Phe Ala Leu Val Asp Ile Phe Met Leu Val
 50 55

<210> 60
 <211> 941
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (807)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (809)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (815)
 <223> Xaa equals any of the naturally occurring L-amino acids

<220>
 <221> SITE
 <222> (819)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 60

Met	Val	Phe	Leu	Pro	Leu	Lys	Trp	Ser	Leu	Ala	Thr	Met	Ser	Phe	Leu
1															15

Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Thr	Val	Ser	Thr	Pro	Ser	Trp	Cys
															30
20								25							

Gln	Ser	Thr	Glu	Ala	Ser	Pro	Lys	Arg	Ser	Asp	Gly	Thr	Pro	Phe	Pro
															45
35							40								

Trp	Asn	Lys	Ile	Arg	Leu	Pro	Glu	Tyr	Val	Ile	Pro	Val	His	Tyr	Asp
															60
50							55								

Leu	Leu	Ile	His	Ala	Asn	Leu	Thr	Thr	Leu	Thr	Phe	Trp	Gly	Thr	Thr
															80
65						70			75						

Lys	Val	Glu	Ile	Thr	Ala	Ser	Gln	Pro	Thr	Ser	Thr	Ile	Ile	Leu	His
															95
85							90								

Ser	His	His	Leu	Gln	Ile	Ser	Arg	Ala	Thr	Leu	Arg	Lys	Gly	Ala	Gly
															110
100							105								

Glu	Arg	Leu	Ser	Glu	Glu	Pro	Leu	Gln	Val	Leu	Glu	His	Pro	Pro	Gln
															125
115							120								

Glu	Gln	Ile	Ala	Leu	Leu	Ala	Pro	Glu	Pro	Leu	Leu	Val	Gly	Leu	Pro
															140
130							135								

Tyr	Thr	Val	Val	Ile	His	Tyr	Ala	Gly	Asn	Leu	Ser	Glu	Thr	Phe	His
															160
145						150			155						

Gly	Phe	Tyr	Lys	Ser	Thr	Tyr	Arg	Thr	Lys	Glu	Gly	Glu	Leu	Arg	Ile
															175
165							170								

Leu	Ala	Ser	Thr	Gln	Phe	Glu	Pro	Thr	Ala	Ala	Arg	Met	Ala	Phe	Pro
															190
180							185								

Cys	Phe	Asp	Glu	Pro	Ala	Phe	Lys	Ala	Ser	Phe	Ser	Ile	Lys	Ile	Arg
															205
195							200								

Arg	Glu	Pro	Arg	His	Leu	Ala	Ile	Ser	Asn	Met	Pro	Leu	Val	Lys	Ser
															220
210							215								

Val	Thr	Val	Ala	Glu	Gly	Leu	Ile	Glu	Asp	His	Phe	Asp	Val	Thr	Val
															240
225							230			235					

Lys	Met	Ser	Thr	Tyr	Leu	Val	Ala	Phe	Ile	Ile	Ser	Asp	Phe	Glu	Ser
															255
245								250							

Val	Ser	Lys	Ile	Thr	Lys	Ser	Gly	Val	Lys	Val	Ser	Val	Tyr	Ala	Val
															270
260							265								

Pro	Asp	Lys	Met	Asn	Gln	Ala	Asp	Tyr	Ala	Leu	Asp	Ala	Ala	Val	Thr
															285
275							280								

Leu	Leu	Glu	Phe	Tyr	Glu	Asp	Tyr	Phe	Ser	Ile	Pro	Tyr	Pro	Leu	Pro
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

290	295	300
Lys Gln Asp Leu Ala Ala Ile Pro Asp Phe Gln Ser Gly Ala Met Glu		
305	310	315
Asn Trp Gly Leu Thr Thr Tyr Arg Glu Ser Ala Leu Leu Phe Asp Ala		
325	330	335
Glu Lys Ser Ser Ala Ser Ser Lys Leu Gly Ile Thr Met Thr Val Ala		
340	345	350
His Glu Leu Ala His Gln Trp Phe Gly Asn Leu Val Thr Met Glu Trp		
355	360	365
Trp Asn Asp Leu Trp Leu Asn Glu Gly Phe Ala Lys Phe Met Glu Phe		
370	375	380
Val Ser Val Ser Val Thr His Pro Glu Leu Lys Val Gly Asp Tyr Phe		
385	390	395
400		
Phe Gly Lys Cys Phe Asp Ala Met Glu Val Asp Ala Leu Asn Ser Ser		
405	410	415
His Pro Val Ser Thr Pro Val Glu Asn Pro Ala Gln Ile Arg Glu Met		
420	425	430
Phe Asp Asp Val Ser Tyr Asp Lys Gly Ala Cys Ile Leu Asn Met Leu		
435	440	445
Arg Glu Tyr Leu Ser Ala Asp Ala Phe Lys Ser Gly Ile Val Gln Tyr		
450	455	460
Leu Gln Lys His Ser Tyr Lys Asn Thr Lys Asn Glu Asp Leu Trp Asp		
465	470	475
480		
Ser Met Ala Ser Ile Cys Pro Thr Asp Gly Val Lys Gly Met Asp Gly		
485	490	495
Phe Cys Ser Arg Ser Gln His Ser Ser Ser Ser His Trp His Gln		
500	505	510
Glu Gly Val Asp Val Lys Thr Met Met Asn Thr Trp Thr Leu Gln Arg		
515	520	525
Gly Phe Pro Leu Ile Thr Ile Thr Val Arg Gly Arg Asn Val His Met		
530	535	540
Lys Gln Glu His Tyr Met Lys Gly Ser Asp Gly Ala Pro Asp Thr Gly		
545	550	555
560		
Tyr Leu Trp His Val Pro Leu Thr Phe Ile Thr Ser Lys Ser Asp Met		
565	570	575
Val His Arg Phe Leu Leu Lys Thr Lys Thr Asp Val Leu Ile Leu Pro		
580	585	590
Glu Glu Val Glu Trp Ile Lys Phe Asn Val Gly Met Asn Gly Tyr Tyr		
595	600	605

Ile Val His Tyr Glu Asp Asp Gly Trp Asp Ser Leu Thr Gly Leu Leu
 610 615 620

Lys Gly Thr His Thr Ala Val Ser Ser Asn Asp Arg Ala Ser Leu Ile
 625 630 635 640

Asn Asn Ala Phe Gln Leu Val Ser Ile Gly Lys Leu Ser Ile Glu Lys
 645 650 655

Ala Leu Asp Leu Ser Leu Tyr Leu Lys His Glu Thr Glu Ile Met Pro
 660 665 670

Val Phe Gln Gly Leu Asn Glu Leu Ile Pro Met Tyr Lys Leu Met Glu
 675 680 685

Lys Arg Asp Met Asn Glu Val Glu Thr Gln Phe Lys Ala Phe Leu Ile
 690 695 700

Arg Leu Leu Arg Asp Leu Ile Asp Lys Gln Thr Trp Thr Asp Glu Gly
 705 710 715 720

Ser Val Ser Glu Arg Met Leu Arg Ser Glu Leu Leu Leu Ala Cys
 725 730 735

Val His Asn Tyr Gln Pro Cys Val Gln Arg Ala Glu Gly Tyr Phe Arg
 740 745 750

Lys Trp Lys Glu Ser Asn Gly Asn Leu Ser Leu Pro Val Asp Val Thr
 755 760 765

Leu Ala Val Phe Ala Val Gly Ala Gln Ser Thr Glu Gly Trp Asp Phe
 770 775 780

Leu Tyr Ser Lys Tyr Gln Phe Ser Leu Ser Ser Thr Glu Lys Ser Gln
 785 790 795 800

Ile Glu Phe Ala Leu Cys Xaa Pro Xaa Asn Lys Glu Lys Leu Xaa Trp
 805 810 815

Leu Leu Xaa Glu Ser Phe Lys Gly Asp Lys Ile Lys Thr Gln Glu Phe
 820 825 830

Pro Gln Ile Leu Thr Leu Ile Gly Arg Asn Pro Val Gly Tyr Pro Leu
 835 840 845

Ala Trp Gln Phe Leu Arg Lys Asn Trp Asn Lys Leu Val Gln Lys Phe
 850 855 860

Glu Leu Gly Ser Ser Ser Ile Ala His Met Val Met Gly Thr Thr Asn
 865 870 875 880

Gln Phe Ser Thr Arg Thr Arg Leu Glu Glu Val Lys Gly Phe Phe Ser
 885 890 895

Ser Leu Lys Glu Asn Gly Ser Gln Leu Arg Cys Val Gln Gln Thr Ile
 900 905 910

Glu Thr Ile Glu Glu Asn Ile Gly Trp Met Asp Lys Asn Phe Asp Lys
 915 920 925

Ile Arg Val Trp Leu Gln Ser Glu Lys Leu Glu Arg Met
 930 935 940

<210> 61
<211> 549
<212> PRT
<213> Homo sapiens

<400> 61
Met Trp Leu Pro Leu Val Leu Leu Ala Val Leu Leu Ala Val
 1 5 10 15

Leu Cys Lys Val Tyr Leu Gly Leu Phe Ser Gly Ser Ser Pro Asn Pro
 20 25 30

Phe Ser Glu Asp Val Lys Arg Pro Pro Ala Pro Leu Val Thr Asp Lys
 35 40 45

Glu Ala Arg Lys Lys Val Leu Lys Gln Gly Ile His Tyr Ile Gly Arg
 50 55 60

Met Glu Glu Gly Ser Ile Gly Arg Phe Ile Leu Asp Gln Ile Thr Glu
 65 70 75 80

Gly Gln Leu Asp Trp Ala Pro Leu Ser Ser Pro Phe Asp Ile Met Val
 85 90 95

Leu Glu Gly Pro Asn Gly Arg Lys Glu Tyr Pro Met Tyr Ser Gly Glu
 100 105 110

Lys Ala Tyr Ile Gln Gly Leu Lys Glu Lys Phe Pro Gln Glu Glu Ala
 115 120 125

Ile Ile Asp Lys Tyr Ile Lys Leu Val Lys Val Val Ser Ser Gly Ala
 130 135 140

Pro His Ala Ile Leu Leu Lys Phe Leu Pro Leu Pro Val Val Gln Leu
 145 150 155 160

Leu Asp Arg Cys Gly Leu Leu Thr Arg Phe Ser Pro Phe Leu Gln Ala
 165 170 175

Ser Thr Gln Ser Leu Ala Glu Val Leu Gln Gln Leu Gly Ala Ser Ser
 180 185 190

Glu Leu Gln Ala Val Leu Ser Tyr Ile Phe Pro Thr Tyr Gly Val Thr
 195 200 205

Pro Asn His Ser Ala Phe Ser Met His Ala Leu Leu Val Asn His Tyr
 210 215 220

Met Lys Gly Gly Phe Tyr Pro Arg Gly Gly Ser Ser Glu Ile Ala Phe
 225 230 235 240

His Thr Ile Pro Val Ile Gln Arg Ala Gly Gly Ala Val Leu Thr Lys
 245 250 255
 Ala Thr Val Gln Ser Val Leu Leu Asp Ser Ala Gly Lys Ala Cys Gly
 260 265 270
 Val Ser Val Lys Lys Gly His Glu Leu Val Asn Ile Tyr Cys Pro Ile
 275 280 285
 Val Val Ser Asn Ala Gly Leu Phe Asn Thr Tyr Glu His Leu Leu Pro
 290 295 300
 Gly Asn Ala Arg Cys Leu Pro Gly Val Lys Gln Gln Leu Gly Thr Val
 305 310 315 320
 Arg Pro Gly Leu Gly Met Thr Ser Val Phe Ile Cys Leu Arg Gly Thr
 325 330 335
 Lys Glu Asp Leu His Leu Pro Ser Thr Asn Tyr Tyr Val Tyr Tyr Asp
 340 345 350
 Thr Asp Met Asp Gln Ala Met Glu Arg Tyr Val Ser Met Pro Arg Glu
 355 360 365
 Glu Ala Ala Glu His Ile Pro Leu Leu Phe Phe Ala Phe Pro Ser Ala
 370 375 380
 Lys Asp Pro Thr Trp Glu Asp Arg Phe Pro Gly Arg Ser Thr Met Ile
 385 390 395 400
 Met Leu Ile Pro Thr Ala Tyr Glu Trp Phe Glu Glu Trp Gln Ala Glu
 405 410 415
 Leu Lys Gly Lys Arg Gly Ser Asp Tyr Glu Thr Phe Lys Asn Ser Phe
 420 425 430
 Val Glu Ala Ser Met Ser Val Val Leu Lys Leu Phe Pro Gln Leu Glu
 435 440 445
 Gly Lys Val Glu Ser Val Thr Ala Gly Ser Pro Leu Thr Asn Gln Phe
 450 455 460
 Tyr Leu Ala Ala Pro Arg Gly Ala Cys Tyr Gly Ala Asp His Asp Leu
 465 470 475 480
 Gly Arg Leu His Pro Cys Val Met Ala Ser Leu Arg Ala Gln Ser Pro
 485 490 495
 Ile Pro Asn Leu Tyr Leu Thr Gly Gln Asp Ile Phe Thr Cys Gly Leu
 500 505 510
 Val Gly Ala Leu Gln Gly Ala Leu Leu Cys Ser Ser Ala Ile Leu Lys
 515 520 525
 Arg Asn Leu Tyr Ser Asp Leu Lys Asn Leu Asp Ser Arg Ile Arg Ala
 530 535 540
 Gln Lys Lys Lys Asn

545

<210> 62
<211> 326
<212> PRT
<213> Homo sapiens

<400> 62
Met Arg Thr Glu Ala Gln Val Pro Ala Leu Gln Pro Pro Glu Pro Gly
1 5 10 15
Leu Glu Gly Ala Met Gly His Arg Thr Leu Val Leu Pro Trp Val Leu
20 25 30
Leu Thr Leu Cys Val Thr Ala Gly Thr Pro Glu Val Trp Val Gln Val
35 40 45
Arg Met Glu Ala Thr Glu Leu Ser Ser Phe Thr Ile Arg Cys Gly Phe
50 55 60
Leu Gly Ser Gly Ser Ile Ser Leu Val Thr Val Ser Trp Gly Gly Pro
65 70 75 80
Asp Gly Ala Gly Gly Thr Thr Leu Ala Val Leu His Pro Glu Arg Gly
85 90 95
Ile Arg Gln Trp Ala Pro Ala Arg Gln Ala Arg Trp Glu Thr Gln Ser
100 105 110
Ser Ile Ser Leu Ile Leu Glu Gly Ser Gly Ala Ser Ser Pro Cys Ala
115 120 125
Asn Thr Thr Phe Cys Cys Lys Phe Ala Ser Phe Pro Glu Gly Ser Trp
130 135 140
Glu Ala Cys Gly Ser Leu Pro Pro Ser Ser Asp Pro Gly Leu Ser Ala
145 150 155 160
Pro Pro Thr Pro Ala Pro Ile Leu Arg Ala Asp Leu Ala Gly Ile Leu
165 170 175
Gly Val Ser Gly Val Leu Leu Phe Gly Cys Val Tyr Leu Leu His Leu
180 185 190
Leu Arg Arg His Lys His Arg Pro Ala Pro Arg Leu Gln Pro Ser Arg
195 200 205
Thr Ser Pro Gln Ala Pro Arg Ala Arg Ala Trp Ala Pro Ser Gln Ala
210 215 220
Ser Gln Ala Ala Leu His Val Pro Tyr Ala Thr Ile Asn Thr Ser Cys
225 230 235 240
Arg Pro Ala Thr Leu Asp Thr Ala His Pro His Gly Gly Pro Ser Trp
245 250 255
Trp Ala Ser Leu Pro Thr His Ala Ala His Arg Pro Gln Gly Pro Ala

Ala Trp Ala Ser Thr Pro Ile Pro Ala Arg Gly Ser Phe Val Ser Val
275 280 285

Glu Asn Gly Leu Tyr Ala Gln Ala Gly Glu Arg Pro Pro His Thr Gly
290 295 300

Pro Gly Leu Thr Leu Phe Pro Asp Pro Arg Gly Pro Arg Ala Met Glu
305 310 315 320

Gly Pro Leu Gly Val Arg
325

<210> 63
<211> 267
<212> PRT
<213> *Homo sapiens*

<400> 63
Met Ala Pro Trp Ala Leu Leu Ser Pro Gly Val Leu Val Arg Thr Gly
1 5 10 15

His Thr Val Leu Thr Trp Gly Ile Thr Leu Val Leu Phe Leu His Asp
20 25 30

Thr Glu Leu Arg Gln Trp Glu Glu Gln Gly Glu Leu Leu Leu Pro Leu
35 40 45

Thr Phe Leu Leu Leu Val Leu Gly Ser Leu Leu Leu Tyr Leu Ala Val
50 55 60

Ser Leu Met Asp Pro Gly Tyr Val Asn Val Gln Pro Gln Pro Gln Glu
65 70 75 80

Glu Leu Lys Glu Glu Gln Thr Ala Met Val Pro Pro Ala Ile Pro Leu
85 90 95

Arg Arg Cys Arg Tyr Cys Leu Val Leu Gln Pro Leu Arg Ala Arg His
100 105 110

Cys Arg Glu Cys Arg Arg Cys Val Arg Arg Tyr Asp His His Cys Pro
 115 120 125

Trp Met Glu Asn Cys Val Gly Glu Arg Asn His Pro Leu Phe Val Val
130 135 140

Tyr Leu Ala Leu Gln Leu Val Val Leu Leu Trp Gly Leu Tyr Leu Ala
 145 150 155 160

Trp Ser Gly Leu Arg Phe Phe Gln Pro Trp Gly Leu Trp Leu Arg Ser
165 170 175

Ser Gly Leu Leu Phe Ala Thr Phe Leu Leu Leu Ser Leu Phe Ser Leu
180 185 190

Val Ala Ser Leu Leu Leu Val Ser His Leu Tyr Leu Val Ala Ser Asn

195

200

205

Thr Thr Thr Trp Glu Phe Ile Ser Ser His Arg Ile Ala Tyr Leu Arg
 210 215 220

Gln Arg Pro Ser Asn Pro Phe Asp Arg Gly Leu Thr Arg Asn Leu Ala
 225 230 235 240

His Phe Phe Cys Gly Trp Pro Ser Gly Ser Trp Glu Thr Leu Trp Ala
 245 250 255

Glu Glu Glu Glu Gly Ser Ser Pro Ala Val
 260 265

<210> 64

<211> 62

<212> PRT

<213> Homo sapiens

<400> 64

Met Lys Ser Gln Ser Pro Leu Arg Ser Met Leu Leu Val Gly Gly Leu
 1 5 10 15

Val Ser Val Leu Ala Glu His Leu Gln His Pro Gln Ser Arg Gln Pro
 20 25 30

Pro Leu Ser His Leu Ser Ser His Leu Thr Trp Asp Ala Gln Val Glu
 35 40 45

Leu Asp Arg Ile Phe Leu Ser Ile Arg Pro Pro Glu Val Pro
 50 55 60

<210> 65

<211> 46

<212> PRT

<213> Homo sapiens

<400> 65

Met Asn Val Thr Val Thr Leu Pro Lys Tyr His Leu Ala Leu Ile Trp
 1 5 10 15

Leu Leu Phe His Phe Gly Trp Ala Leu Leu Ser Val Cys Ser Lys Thr
 20 25 30

Val Leu Met Asn Leu Ser Asn Val His Asn Ala Val Ile Gly
 35 40 45

<210> 66

<211> 84

<212> PRT

<213> Homo sapiens

<400> 66

Met Tyr Leu Gly Arg Arg Trp Phe Phe Leu Tyr Leu Cys Pro Phe Pro
 1 5 10 15

Ser Ser Ala Leu Pro Thr Phe Cys Ala Leu Leu His Ala His Thr Ser
 20 25 30

Phe Cys Met Ile Asn Gly Leu Gly His Ala Ala His Ser Leu Ala Tyr
 35 40 45

Glu Thr Phe Thr Leu Ser Ala Glu Gly Ala Arg Asp Pro Pro Lys Ala
 50 55 60

Thr Glu Cys Ser Ile Cys Ser Leu Pro Ser Phe Cys Ile Pro Gly Phe
 65 70 75 80

Cys Ile Leu Phe

<210> 67
 <211> 44
 <212> PRT
 <213> Homo sapiens

<400> 67
 Met Gly Leu Phe Pro Lys Leu Leu Ser Leu Ile Phe Gln Ile Val Tyr
 1 5 10 15

Phe Leu Pro Ser Ala Leu Glu Met Thr Val Ala Ser Pro Ser Cys His
 20 25 30

Phe Cys Asp Ala Leu Glu Ser Leu Phe Phe Ser Asn
 35 40

<210> 68
 <211> 55
 <212> PRT
 <213> Homo sapiens

<400> 68
 Met Gln Thr Cys Gln Ala Ile Lys Gly Ser Cys Leu Ser Val Ser Leu
 1 5 10 15

Ile Leu Leu Cys Ala Ala Ser Thr Glu Gly Phe Arg Ala Pro Asp Leu
 20 25 30

Phe Cys Val Leu Arg Lys Ser Lys Cys Leu Ala Arg Thr Gln Pro Phe
 35 40 45

Phe Leu His Pro Glu Thr Ser
 50 55

<210> 69
 <211> 83
 <212> PRT
 <213> Homo sapiens

<220>

<221> SITE
<222> (45)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (63)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (64)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (78)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 69
Met Gly His Phe Ala Pro Gly Val Phe His Leu Gly Ile Met Phe Thr
1 5 10 15

Gly Leu Ile Pro Val Val Val Cys Ser Ser Pro Ala Phe Leu Pro Val
20 25 30

Ala Glu Tyr Leu Ile His Cys Val Gly Ile His His Xaa Leu Val Asp
35 40 45

Gly Thr Phe Gly Val Val Phe His Leu Leu Val Met Met Gly Xaa Xaa
50 55 60

Pro Gln Gln Thr Phe Val Leu Gln Ser Phe Ala Val Ala Xaa Gly Arg
65 70 75 80

Phe Phe Leu

<210> 70
<211> 434
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (381)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 70
Met Ala Leu Thr Ala Pro Ser Leu Ser Leu Asp Ala Arg Gln Leu Trp
1 5 10 15

Asp Ser Pro Glu Thr Ala Pro Ala Ala Arg Thr Pro Gln Ser Pro Ala
20 25 30

Pro Cys Val Leu Leu Arg Ala Gln Arg Ser Leu Ala Pro Glu Pro Lys
35 40 45

Glu Pro Leu Ile Pro Ala Ser Pro Lys Ala Glu Pro Ile Trp Glu Leu
 50 55 60

Pro Thr Arg Ala Pro Arg Leu Ser Ile Gly Asp Leu Asp Phe Ser Asp
 65 70 75 80

Leu Gly Glu Asp Glu Asp Gln Asp Met Leu Asn Val Glu Ser Val Glu
 85 90 95

Ala Gly Lys Asp Ile Pro Ala Pro Ser Pro Pro Leu Pro Leu Leu Ser
 100 105 110

Gly Val Pro Pro Pro Pro Leu Pro Pro Pro Pro Pro Ile Lys Gly
 115 120 125

Pro Phe Pro Pro Pro Pro Leu Pro Leu Ala Ala Pro Leu Pro His
 130 135 140

Ser Val Pro Asp Ser Ser Ala Leu Pro Thr Lys Arg Lys Thr Val Lys
 145 150 155 160

Leu Phe Trp Arg Glu Leu Lys Leu Ala Gly Gly His Gly Val Ser Ala
 165 170 175

Ser Arg Phe Gly Pro Cys Ala Thr Leu Trp Ala Ser Leu Asp Pro Val
 180 185 190

Ser Val Asp Thr Ala Arg Leu Glu His Leu Phe Glu Ser Arg Ala Lys
 195 200 205

Glu Val Leu Pro Ser Lys Lys Ala Gly Glu Gly Arg Arg Thr Met Thr
 210 215 220

Thr Val Leu Asp Pro Lys Arg Ser Asn Ala Ile Asn Ile Gly Leu Thr
 225 230 235 240

Thr Leu Pro Pro Val His Val Ile Lys Ala Ala Leu Leu Asn Phe Asp
 245 250 255

Glu Phe Ala Val Ser Lys Asp Gly Ile Glu Lys Leu Leu Thr Met Met
 260 265 270

Pro Thr Glu Glu Glu Arg Gln Lys Ile Glu Glu Ala Gln Leu Ala Asn
 275 280 285

Pro Asp Ile Pro Leu Gly Pro Ala Glu Asn Phe Leu Met Thr Leu Ala
 290 295 300

Ser Ile Gly Gly Leu Ala Ala Arg Leu Gln Leu Trp Ala Phe Lys Leu
 305 310 315 320

Asp Tyr Asp Ser Met Glu Arg Glu Ile Ala Glu Pro Leu Phe Asp Leu
 325 330 335

Lys Val Gly Met Glu Gln Leu Val Gln Asn Ala Thr Phe Arg Cys Ile
 340 345 350

Leu Ala Thr Leu Leu Ala Val Gly Asn Phe Leu Asn Gly Ser Gln Ser
355 360 365

Ser Gly Phe Glu Leu Ser Tyr Leu Glu Lys Val Ser Xaa Val Lys Asp
 370 375 380

Thr Val Arg Arg Gln Ser Leu Leu His His Leu Cys Ser Leu Val Leu
385 390 395 400

Gln Thr Arg Pro Glu Ser Ser Asp Leu Tyr Ser Glu Ile Pro Ala Leu
405 410 415

Thr Arg Cys Ala Lys Val Ser Thr Cys Gln Asn Gln Pro Arg Pro Asp
420 425 430

Lys Ala

<210> 71

<211> 43

<212> PRT

<213> Homo sapiens

<400> 71

Leu Leu Val Leu Ile Leu Met Pro Trp Phe Leu Leu Val Gly Lys Gly
20 25 30

His Ser Tyr His Ser Glu Glu Gln Glu Lys Ser
35 40

<210> 72

<211> 322

<212> PRT

<213> Homo sapiens

<400> 72

Met Lys Tyr Ile Phe Ser Leu Leu Phe Phe Leu Leu Leu Glu Gly Gly
1 5 10 15

Lys Thr Glu Gln Val Lys His Ser Glu Thr Tyr Cys Met Phe Gln Asp
20 25 30

Lys Lys Tyr Arg Val Gly Glu Arg Trp His Pro Tyr Leu Glu Pro Tyr
 35 40 45

Gly Leu Val Tyr Cys Val Asn Cys Ile Cys Ser Glu Asn Gly Asn Val
50 55 60

Leu Cys Ser Arg Val Arg Cys Pro Asn Val His Cys Leu Ser Pro Val
65 70 75 80

His Ile Pro His Leu Cys Cys Pro Arg Cys Pro Glu Asp Ser Leu Pro
85 90 95

Pro Val Asn Asn Lys Val Thr Ser Lys Ser Cys Glu Tyr Asn Gly Thr
 100 105 110
 Thr Tyr Gln His Gly Glu Leu Phe Val Ala Glu Gly Leu Phe Gln Asn
 115 120 125
 Arg Gln Pro Asn Gln Cys Thr Gln Cys Ser Cys Ser Glu Gly Asn Val
 130 135 140
 Tyr Cys Gly Leu Lys Thr Cys Pro Lys Leu Thr Cys Ala Phe Pro Val
 145 150 155 160
 Ser Val Pro Asp Ser Cys Cys Arg Val Cys Arg Gly Asp Gly Glu Leu
 165 170 175
 Ser Trp Glu His Ser Asp Gly Asp Ile Phe Arg Gln Pro Ala Asn Arg
 180 185 190
 Glu Ala Arg His Ser Tyr His His Ser His Tyr Asp Pro Pro Pro Ser
 195 200 205
 Arg Gln Ala Gly Gly Leu Ser Arg Phe Pro Gly Ala Arg Ser His Arg
 210 215 220
 Gly Ala Leu Met Asp Ser Gln Gln Ala Ser Gly Thr Ile Val Gln Ile
 225 230 235 240
 Val Ile Asn Asn Lys His Lys His Gly Gln Val Cys Val Ser Asn Gly
 245 250 255
 Lys Thr Tyr Ser His Gly Glu Ser Trp His Pro Asn Leu Arg Ala Phe
 260 265 270
 Gly Ile Val Glu Cys Val Leu Cys Thr Cys Asn Val Thr Lys Gln Glu
 275 280 285
 Cys Lys Lys Ile His Cys Pro Asn Arg Tyr Pro Cys Lys Tyr Pro Gln
 290 295 300
 Lys Ile Asp Gly Lys Cys Cys Lys Val Cys Pro Gly Lys Lys Lys Lys
 305 310 315 320
 Lys Lys

<210> 73
 <211> 306
 <212> PRT
 <213> Homo sapiens

<400> 73
 Met Lys Ala Leu Leu Leu Val Leu Pro Trp Leu Ser Pro Ala Asn
 1 5 10 15
 Tyr Ile Asp Asn Val Gly Asn Leu His Phe Leu Tyr Ser Glu Leu Cys
 20 25 30

Lys Gly Ala Ser His Tyr Gly Leu Thr Lys Asp Arg Lys Arg Arg Ser
 35 40 45
 Gln Asp Gly Cys Pro Asp Gly Cys Ala Ser Leu Thr Ala Thr Ala Pro
 50 55 60
 Ser Pro Glu Val Ser Ala Ala Ala Thr Ile Ser Leu Met Thr Asp Glu
 65 70 75 80
 Pro Gly Leu Asp Asn Pro Ala Tyr Val Ser Ser Ala Glu Asp Gly Gln
 85 90 95
 Pro Ala Ile Ser Pro Val Asp Ser Gly Arg Ser Asn Arg Thr Arg Ala
 100 105 110
 Arg Pro Phe Glu Arg Ser Thr Ile Arg Ser Arg Ser Phe Lys Lys Ile
 115 120 125
 Asn Arg Ala Leu Ser Val Leu Arg Arg Thr Lys Ser Gly Ser Ala Val
 130 135 140
 Ala Asn His Ala Asp Gln Gly Arg Glu Asn Ser Glu Asn Thr Thr Ala
 145 150 155 160
 Pro Glu Val Phe Pro Arg Leu Tyr His Leu Ile Pro Asp Gly Glu Ile
 165 170 175
 Thr Ser Ile Lys Ile Asn Arg Val Asp Pro Ser Glu Ser Leu Ser Ile
 180 185 190
 Arg Leu Val Gly Gly Ser Glu Thr Pro Leu Val His Ile Ile Ile Gln
 195 200 205
 His Ile Tyr Arg Asp Gly Val Ile Ala Arg Asp Gly Arg Leu Leu Pro
 210 215 220
 Gly Asp Ile Ile Leu Lys Val Asn Gly Met Asp Ile Ser Asn Val Pro
 225 230 235 240
 His Asn Tyr Ala Val Arg Leu Leu Arg Gln Pro Cys Gln Val Leu Trp
 245 250 255
 Leu Thr Val Met Arg Glu Gln Lys Phe Arg Ser Arg Asn Asn Gly Gln
 260 265 270
 Ala Pro Asp Ala Tyr Arg Pro Arg Asp Asp Ser Phe His Val Ile Leu
 275 280 285
 Asn Lys Ser Arg Pro Arg Gly Ala Ala Trp Asn Lys Thr Gly Ala Gln
 290 295 300
 Gly Gly
 305
 <210> 74
 <211> 114

<212> PRT

<213> Homo sapiens

<400> 74

Met	Val	Thr	Arg	Ala	Gly	Ala	Gly	Thr	Ala	Val	Ala	Gly	Ala	Val	Val
1				5				10						15	

Val	Ala	Leu	Leu	Ser	Ala	Ala	Leu	Ala	Leu	Tyr	Gly	Pro	Pro	Leu	Asp
				20				25				30			

Ala	Val	Leu	Glu	Arg	Ala	Phe	Ser	Leu	Arg	Lys	Ala	His	Ser	Ile	Lys
				35			40				45				

Asp	Met	Glu	Asn	Thr	Leu	Gln	Leu	Val	Arg	Asn	Ile	Ile	Pro	Pro	Leu
				50			55			60					

Ser	Ser	Thr	Lys	His	Lys	Gly	Gln	Asp	Gly	Arg	Ile	Gly	Val	Val	Gly
				65		70			75				80		

Gly	Cys	Gln	Glu	Tyr	Thr	Gly	Ala	Pro	Tyr	Phe	Ala	Glu	Ser	Gln	Leu
				85			90				95				

Ser	Lys	Trp	Ala	Gln	Thr	Cys	Pro	Thr	Cys	Ser	Val	Pro	Val	Arg	Pro
				100			105				110				

His Leu

<210> 75

<211> 114

<212> PRT

<213> Homo sapiens

<400> 75

Met	Val	Thr	Arg	Ala	Gly	Ala	Gly	Thr	Ala	Val	Ala	Gly	Ala	Val	Val
1				5				10				15			

Val	Ala	Leu	Leu	Ser	Ala	Ala	Leu	Ala	Leu	Tyr	Gly	Pro	Pro	Leu	Asp
				20				25				30			

Ala	Val	Leu	Glu	Arg	Ala	Phe	Ser	Leu	Arg	Lys	Ala	His	Ser	Ile	Lys
				35			40			45					

Asp	Met	Glu	Asn	Thr	Leu	Gln	Leu	Val	Arg	Asn	Ile	Ile	Pro	Pro	Leu
				50			55			60					

Ser	Ser	Thr	Lys	His	Lys	Gly	Gln	Asp	Gly	Arg	Ile	Gly	Val	Val	Gly
				65		70			75				80		

Gly	Cys	Gln	Glu	Tyr	Thr	Gly	Ala	Pro	Tyr	Phe	Ala	Glu	Ser	Gln	Leu
				85			90				95				

Ser	Lys	Trp	Ala	Gln	Thr	Cys	Pro	Thr	Cys	Ser	Val	Pro	Val	Arg	Pro
				100			105				110				

His Leu

<210> 76
<211> 85
<212> PRT
<213> Homo sapiens

<400> 76
Met Tyr Ala Cys Val Cys Arg Val Leu Gln Pro Gly Cys Gly Arg Val
1 5 10 15

Leu Val Cys Ala Arg Val Pro Ala Trp Leu Trp Val Cys Val Cys Val
20 25 30

Cys Val Cys Val Cys Val Cys Val Leu Ala Ser Gly Ala Val Arg Pro
35 40 45

Leu Arg Val Gly Ala Leu Phe Ser Ala His Trp Lys Pro Ser Pro Phe
50 55 60

Ser Gln Met Pro Gly Arg Gly Ala Ala Val Gly Thr His Leu Val
65 70 75 80

Leu Leu Ser Asp Leu
85

<210> 77
<211> 154
<212> PRT
<213> Homo sapiens

<400> 77
Met Ala Thr Val Arg Ala Ser Leu Arg Gly Ala Leu Leu Leu Leu
1 5 10 15

Ala Val Ala Gly Val Ala Glu Val Ala Gly Gly Leu Ala Pro Gly Ser
20 25 30

Ala Gly Ala Leu Cys Cys Asn His Ser Lys Asp Asn Gln Met Cys Arg
35 40 45

Asp Val Cys Glu Gln Ile Phe Ser Ser Lys Ser Glu Ser Arg Leu Lys
50 55 60

His Leu Leu Gln Arg Ala Pro Asp Tyr Cys Pro Glu Thr Met Val Glu
65 70 75 80

Ile Trp Asn Cys Met Asn Ser Ser Leu Pro Gly Val Phe Lys Ser
85 90 95

Asp Gly Trp Val Gly Leu Gly Cys Cys Glu Leu Ala Ile Ala Leu Glu
100 105 110

Cys Arg Gln Ala Cys Lys Gln Ala Ser Ser Lys Asn Asp Ile Ser Lys
115 120 125

Val Cys Arg Lys Glu Tyr Glu Pro Val Leu Arg Tyr Phe Ser Val Leu

130

135

140

Pro Ser Leu Val Trp Ile Ser Ala Leu Pro
 145 150

<210> 78
 <211> 161
 <212> PRT
 <213> Homo sapiens

<400> 78
 Met Ala Thr Val Arg Ala Ser Leu Arg Gly Ala Leu Leu Leu Leu
 1 5 10 15

Ala Val Ala Gly Val Ala Glu Val Ala Gly Gly Leu Ala Pro Gly Ser
 20 25 30

Ala Gly Ala Leu Cys Cys Asn His Ser Lys Asp Asn Gln Met Cys Arg
 35 40 45

Asp Val Cys Glu Gln Ile Phe Ser Ser Lys Ser Glu Ser Arg Leu Lys
 50 55 60

His Leu Leu Gln Arg Ala Pro Asp Tyr Cys Pro Glu Thr Met Val Glu
 65 70 75 80

Ile Trp Asn Cys Met Asn Ser Ser Leu Pro Gly Val Phe Lys Lys Ser
 85 90 95

Asp Gly Trp Val Gly Leu Gly Cys Cys Glu Leu Ala Ile Ala Leu Glu
 100 105 110

Cys Arg Gln Ala Cys Ser Arg His Leu Gln Arg Met Ile Phe Pro Lys
 115 120 125

Phe Ala Glu Lys Asn Met Ser Leu Ser Ser Val Ile Leu Val Cys Phe
 130 135 140

Leu Leu Leu Ser Gly Phe Leu His Cys Pro Arg Lys Ser Ala Ser Met
 145 150 155 160

Cys

<210> 79
 <211> 51
 <212> PRT
 <213> Homo sapiens

<400> 79
 Ala Val Val Pro Thr Trp Cys Ser Thr Val Leu Leu Thr Phe Val Pro
 1 5 10 15

Thr Ala Arg Leu Val Ala Gly Leu Glu Asp Val Gln Val Tyr Asp Gly
 20 25 30

Glu Asp Ala Val Phe Ser Leu Asp Leu Ser Thr Ile Ile Gln Gly Thr
 35 40 45

Trp Phe Pro
 50

<210> 80
<211> 40
<212> PRT
<213> Homo sapiens

<400> 80
Met Leu Phe Pro Leu Leu Ala Trp Pro His Leu Leu Ser Leu Trp Val
 1 5 10 15

Cys Leu Thr Ala Thr Ser Pro Ser Lys Pro Ser Ala Pro His Ser His
 20 25 30

Gln Met Asp Leu Cys Leu Leu His
 35 40

<210> 81
<211> 36
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 81
Arg Pro Arg Thr Arg Ala Pro Arg Gly Ala Arg Ser Ala Cys Thr Arg
 1 5 10 15

Gly Xaa Arg Arg Pro Val Pro Ser Leu Lys Val Leu Ser Pro Phe
 20 25 30

Ala Val Val Gln
 35

<210> 82
<211> 489
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 82
Arg Pro Arg Thr Arg Ala Pro Arg Gly Ala Arg Ser Ala Cys Thr Arg
 1 5 10 15

Gly	Xaa	Arg	Arg	Arg	Pro	Val	Pro	Ser	Leu	Lys	Val	Leu	Ser	Pro	Phe
					20				25				30		
Ala	Val	Val	Gln	Met	Arg	Lys	Lys	Trp	Lys	Met	Gly	Gly	Met	Lys	Tyr
					35			40					45		
Ile	Phe	Ser	Leu	Leu	Phe	Phe	Leu	Leu	Leu	Glu	Gly	Gly	Lys	Thr	Glu
					50			55					60		
Gln	Val	Lys	His	Ser	Glu	Thr	Tyr	Cys	Met	Phe	Gln	Asp	Lys	Lys	Tyr
					65			70			75				80
Arg	Val	Gly	Glu	Arg	Trp	His	Pro	Tyr	Leu	Glu	Pro	Tyr	Gly	Leu	Val
					85				90					95	
Tyr	Cys	Val	Asn	Cys	Ile	Cys	Ser	Glu	Asn	Gly	Asn	Val	Leu	Cys	Ser
					100				105					110	
Arg	Val	Arg	Cys	Pro	Asn	Val	His	Cys	Leu	Ser	Pro	Val	His	Ile	Pro
					115				120				125		
His	Leu	Cys	Cys	Pro	Arg	Cys	Pro	Glu	Asp	Ser	Leu	Pro	Pro	Val	Asn
					130			135					140		
Asn	Lys	Val	Thr	Ser	Lys	Ser	Cys	Glu	Tyr	Asn	Gly	Thr	Thr	Tyr	Gln
					145			150			155				160
His	Gly	Glu	Leu	Phe	Val	Ala	Glu	Gly	Leu	Phe	Gln	Asn	Arg	Gln	Pro
					165				170					175	
Asn	Gln	Cys	Thr	Gln	Cys	Ser	Cys	Ser	Glu	Gly	Asn	Val	Tyr	Cys	Gly
					180				185					190	
Leu	Lys	Thr	Cys	Pro	Lys	Leu	Thr	Cys	Ala	Phe	Pro	Val	Ser	Val	Pro
					195			200					205		
Asp	Ser	Cys	Cys	Arg	Val	Cys	Arg	Gly	Asp	Gly	Glu	Leu	Ser	Trp	Glu
					210			215					220		
His	Ser	Asp	Gly	Asp	Ile	Phe	Arg	Gln	Pro	Ala	Asn	Arg	Glu	Ala	Arg
					225			230			235				240
His	Ser	Tyr	His	Arg	Ser	His	Tyr	Asp	Pro	Pro	Pro	Ser	Arg	Gln	Ala
					245				250					255	
Gly	Gly	Leu	Ser	Arg	Phe	Pro	Gly	Ala	Arg	Ser	His	Arg	Gly	Ala	Leu
					260				265					270	
Met	Asp	Ser	Gln	Gln	Ala	Ser	Gly	Thr	Ile	Val	Gln	Ile	Val	Ile	Asn
					275				280					285	
Asn	Lys	His	Lys	His	Gly	Gln	Val	Cys	Val	Ser	Asn	Gly	Lys	Thr	Tyr
					290			295					300		
Ser	His	Gly	Glu	Ser	Trp	His	Pro	Asn	Leu	Arg	Ala	Phe	Gly	Ile	Val
					305				310				315		320
Glu	Cys	Val	Leu	Cys	Thr	Cys	Asn	Val	Thr	Lys	Gln	Glu	Cys	Lys	Lys

325

330

335

Ile His Cys Pro Asn Arg Tyr Pro Cys Lys Tyr Pro Gln Lys Ile Asp
 340 345 350

Gly Lys Cys Cys Lys Val Cys Pro Glu Glu Leu Pro Gly Gln Ser Phe
 355 360 365

Asp Asn Lys Gly Tyr Phe Cys Gly Glu Glu Thr Met Pro Val Tyr Glu
 370 375 380

Ser Val Phe Met Glu Asp Gly Glu Thr Thr Arg Lys Ile Ala Leu Glu
 385 390 395 400

Thr Glu Arg Pro Pro Gln Val Glu Val His Val Trp Thr Ile Arg Lys
 405 410 415

Gly Ile Leu Gln His Phe His Ile Glu Lys Ile Ser Lys Arg Met Phe
 420 425 430

Glu Glu Leu Pro His Phe Lys Leu Val Thr Arg Thr Thr Leu Ser Gln
 435 440 445

Trp Lys Ile Phe Thr Glu Gly Glu Ala Gln Ile Ser Gln Met Cys Ser
 450 455 460

Ser Arg Val Cys Arg Thr Glu Leu Glu Asp Leu Val Lys Val Leu Tyr
 465 470 475 480

Leu Glu Arg Ser Glu Lys Gly His Cys
 485

<210> 83

<211> 20

<212> PRT

<213> Homo sapiens

<400> 83

Glu Thr Ser Arg Val Ala Glu Pro Gly Cys Ala Arg Ser Pro Asp Gly
 1 5 10 15

Pro Asn Arg Pro
 20

<210> 84

<211> 83

<212> PRT

<213> Homo sapiens

<400> 84

Gln Leu Ala Ala Gly Ala Thr Asp Cys Lys Phe Leu Gly Pro Ala Glu
 1 5 10 15

His Leu Thr Phe Thr Pro Ala Ala Arg Ala Arg Trp Leu Ala Pro Arg
 20 25 30

Val Arg Ala Pro Gly Leu Leu Asp Ser Leu Tyr Gly Thr Val Arg Arg
 35 40 45

Phe Leu Ser Val Val Gln Leu Asn Pro Phe Pro Ser Glu Leu Val Lys
 50 55 60

Ala Leu Leu Asn Glu Leu Ala Ser Val Lys Val Asn Glu Val Val Arg
 65 70 75 80

Tyr Glu Ala

<210> 85

<211> 257

<212> PRT

<213> Homo sapiens

<400> 85

Val Cys Ala Phe Val Thr Asn Gln Arg Thr His Glu Gln Met Gly Pro
 1 5 10 15

Ser Ile Glu Ala Met Pro Glu Thr Leu Leu Ser Leu Trp Gly Leu Val
 20 25 30

Ser Asp Val Pro Gln Glu Leu Gln Ala Val Ala Gln Gln Phe Ser Leu
 35 40 45

Pro Gln Glu Gln Val Ser Glu Glu Leu Asp Gly Val Gly Val Ser Ile
 50 55 60

Gly Ser Ala Ile His Thr Gln Leu Arg Ser Ser Val Tyr Pro Leu Leu
 65 70 75 80

Ala Ala Val Gly Ser Leu Gly Gln Val Leu Gln Val Ser Val His His
 85 90 95

Leu Gln Thr Leu Asn Ala Thr Val Val Glu Leu Gln Ala Gly Gln Gln
 100 105 110

Asp Leu Glu Pro Ala Ile Arg Glu His Arg Asp Arg Leu Leu Glu Leu
 115 120 125

Leu Gln Glu Ala Arg Cys Gln Gly Asp Cys Ala Gly Ala Leu Ser Trp
 130 135 140

Ala Arg Thr Leu Glu Leu Gly Ala Asp Phe Ser Gln Val Pro Ser Val
 145 150 155 160

Asp His Val Leu His Gln Leu Lys Gly Val Pro Glu Ala Asn Phe Ser
 165 170 175

Ser Met Val Gln Glu Glu Asn Ser Thr Phe Asn Ala Leu Pro Ala Leu
 180 185 190

Ala Ala Met Gln Thr Ser Ser Val Val Gln Glu Leu Lys Lys Ala Val
 195 200 205

Ala Gln Gln Pro Glu Gly Val Arg Thr Leu Ala Glu Gly Phe Pro Gly
 210 215 220

Leu Glu Ala Ala Ser Arg Trp Ala Gln Ala Leu Gln Glu Val Glu Glu
 225 230 235 240

Ser Ser Arg Pro Tyr Leu Gln Glu Val Gln Arg Tyr Glu Thr Tyr Arg
 245 250 255

Trp

<210> 86

<211> 287

<212> PRT

<213> Homo sapiens

<400> 86

Val Gly Gly Asn Val Gln Thr Leu Val Cys Arg Ser Trp Glu Asn Gly
 1 5 10 15

Glu Leu Phe Glu Phe Ala Asp Thr Pro Gly Asn Leu Pro Pro Ser Met
 20 25 30

Asn Leu Ser Gln Leu Leu Gly Leu Arg Lys Asn Ile Ser Ile His Gln
 35 40 45

Ala Tyr Gln Gln Cys Lys Glu Gly Ala Ala Leu Trp Thr Val Leu Gln
 50 55 60

Leu Asn Asp Ser Tyr Asp Leu Glu Glu His Leu Asp Ile Asn Gln Tyr
 65 70 75 80

Thr Asn Lys Leu Arg Gln Glu Leu Gln Ser Leu Lys Val Asp Thr Gln
 85 90 95

Ser Leu Asp Leu Leu Ser Ser Ala Ala Arg Arg Asp Leu Glu Ala Leu
 100 105 110

Gln Ser Ser Gly Leu Gln Arg Ile His Tyr Pro Asp Phe Leu Val Gln
 115 120 125

Ile Gln Arg Pro Val Val Lys Thr Ser Met Glu Gln Leu Ala Gln Glu
 130 135 140

Leu Gln Gly Leu Ala Gln Ala Gln Asp Asn Ser Val Leu Gly Gln Arg
 145 150 155 160

Leu Gln Glu Glu Ala Gln Gly Leu Arg Asn Leu His Gln Glu Lys Val
 165 170 175

Val Pro Gln Gln Ser Leu Val Ala Lys Leu Asn Leu Ser Val Arg Ala
 180 185 190

Leu Glu Ser Ser Ala Pro Asn Leu Gln Leu Glu Thr Ser Asp Val Leu
 195 200 205

Ala Asn Val Thr Tyr Leu Lys Gly Glu Leu Pro Ala Trp Ala Ala Arg
 210 215 220

Ile Leu Arg Asn Val Ser Glu Cys Phe Leu Ala Arg Glu Met Gly Tyr
 225 230 235 240

Phe Ser Gln Tyr Val Ala Trp Val Arg Glu Glu Val Thr Gln Arg Ile
 245 250 255

Ala Thr Cys Gln Pro Leu Ser Gly Ala Leu Asp Asn Ser Arg Val Ile
 260 265 270

Leu Cys Asp Met Met Ala Asp Pro Trp Asn Ala Phe Trp Phe Cys
 275 280 285

<210> 87

<211> 40

<212> PRT

<213> Homo sapiens

<400> 87

Lys Gln Leu His Phe Lys Met Gln Met Thr Val Gly Glu Lys Glu Tyr
 1 5 10 15

Pro Val Cys Cys Gln Leu Ile Leu Phe Ser Leu Cys Cys Phe Ile Trp
 20 25 30

Glu Glu Leu Phe Leu Tyr Ile Lys
 35 40

<210> 88

<211> 70

<212> PRT

<213> Homo sapiens

<400> 88

Ile Ser Lys Lys Asp Pro Gly Glu Ser Leu Gly Met Thr Val Ala Gly
 1 5 10 15

Gly Ala Ser His Arg Glu Trp Asp Leu Pro Ile Tyr Val Ile Ser Val
 20 25 30

Glu Pro Gly Gly Val Ile Ser Arg Asp Gly Arg Ile Lys Thr Gly Asp
 35 40 45

Ile Leu Leu Asn Val Asp Gly Val Arg Thr Asp Arg Gly Gln Pro Gly
 50 55 60

Val Arg Gln Trp His Tyr
 65 70

<210> 89

<211> 38

<212> PRT

<213> Homo sapiens

<400> 89
 Ile Ser Lys Lys Asp Pro Gly Glu Ser Leu Gly Met Thr Val Ala Gly
 1 5 10 15
 Gly Ala Ser His Arg Glu Trp Asp Leu Pro Ile Tyr Val Ile Ser Val
 20 25 30
 Glu Pro Gly Gly Val Ile
 35

<210> 90
<211> 32
<212> PRT
<213> Homo sapiens

<400> 90
 Ser Arg Asp Gly Arg Ile Lys Thr Gly Asp Ile Leu Leu Asn Val Asp
 1 5 10 15
 Gly Val Arg Thr Asp Arg Gly Gln Pro Gly Val Arg Gln Trp His Tyr
 20 25 30

<210> 91
<211> 122
<212> PRT
<213> Homo sapiens

<400> 91
 Phe Ser Thr Lys Val Gly Pro Glu Glu Gln Leu Gly Ile Lys Leu Val
 1 5 10 15
 Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val Leu Asp Gly
 20 25 30

Gly Val Ala Tyr Arg His Gly Gln Leu Glu Glu Asn Asp Arg Val Leu
 35 40 45

Ala Ile Asn Gly His Asp Leu Arg Tyr Gly Ser Pro Glu Ser Ala Ala
 50 55 60

His Leu Ile Gln Ala Ser Glu Arg Arg Val His Leu Val Val Ser Arg
 65 70 75 80

Gln Val Arg Gln Arg Ser Pro Asp Ile Phe Gln Glu Ala Ala Leu Glu
 85 90 95

Gln Gln Trp Gln Leu Val Pro Arg Ala Arg Gly Glu Glu Gln His Ser
 100 105 110

Gln Ala Pro Pro Ser Tyr Asn Tyr Leu Ser
 115 120

<210> 92
<211> 41
<212> PRT
<213> Homo sapiens

<400> 92
Phe Ser Thr Lys Val Gly Pro Glu Glu Gln Leu Gly Ile Lys Leu Val
1 5 10 15

Arg Lys Val Asp Glu Pro Gly Val Phe Ile Phe Asn Val Leu Asp Gly
20 25 30

Gly Val Ala Tyr Arg His Gly Gln Leu
35 40

<210> 93
<211> 41
<212> PRT
<213> Homo sapiens

<400> 93
Glu Glu Asn Asp Arg Val Leu Ala Ile Asn Gly His Asp Leu Arg Tyr
1 5 10 15

Gly Ser Pro Glu Ser Ala Ala His Leu Ile Gln Ala Ser Glu Arg Arg
20 25 30

Val His Leu Val Val Ser Arg Gln Val
35 40

<210> 94
<211> 40
<212> PRT
<213> Homo sapiens

<400> 94
Arg Gln Arg Ser Pro Asp Ile Phe Gln Glu Ala Ala Leu Glu Gln Gln
1 5 10 15

Trp Gln Leu Val Pro Arg Ala Arg Gly Glu Glu Gln His Ser Gln Ala
20 25 30

Pro Pro Ser Tyr Asn Tyr Leu Ser
35 40

<210> 95
<211> 162
<212> PRT
<213> Homo sapiens

<400> 95
Gln Arg Ser Ala Arg Ser Glu Ala Val Ala Leu Leu Lys Arg Thr Ser
1 5 10 15

Ser Ser Ile Val Leu Lys Ala Leu Glu Val Lys Glu Tyr Glu Pro Gln
 20 25 30

Glu Asp Cys Ser Ser Pro Ala Ala Leu Asp Ser Asn His Asn Met Ala
 35 40 45

Pro Pro Ser Asp Trp Ser Pro Trp Val Met Trp Leu Glu Leu Pro
 50 55 60

Arg Cys Leu Tyr Asn Cys Lys Asp Ile Val Leu Arg Arg Asn Thr Ala
 65 70 75 80

Gly Ser Leu Gly Phe Cys Ile Val Gly Gly Tyr Glu Glu Tyr Asn Gly
 85 90 95

Asn Lys Pro Phe Phe Ile Lys Ser Ile Val Glu Gly Thr Pro Ala Tyr
 100 105 110

Asn Asp Gly Arg Ile Arg Cys Gly Asp Ile Leu Leu Ala Val Asn Gly
 115 120 125

Arg Ser Thr Ser Gly Met Ile His Ala Cys Leu Ala Arg Leu Leu Lys
 130 135 140

Glu Leu Lys Gly Arg Ile Thr Leu Thr Ile Val Ser Trp Pro Gly Thr
 145 150 155 160

Phe Leu

<210> 96

<211> 36

<212> PRT

<213> Homo sapiens

<400> 96

Gln Arg Ser Ala Arg Ser Glu Ala Val Ala Leu Leu Lys Arg Thr Ser
 1 5 10 15

Ser Ser Ile Val Leu Lys Ala Leu Glu Val Lys Glu Tyr Glu Pro Gln
 20 25 30

Glu Asp Cys Ser
 35

<210> 97

<211> 41

<212> PRT

<213> Homo sapiens

<400> 97

Ser Pro Ala Ala Leu Asp Ser Asn His Asn Met Ala Pro Pro Ser Asp
 1 5 10 15

Trp Ser Pro Ser Trp Val Met Trp Leu Glu Leu Pro Arg Cys Leu Tyr
 20 25 30

Asn Cys Lys Asp Ile Val Leu Arg Arg
 35 40

<210> 98
 <211> 43
 <212> PRT
 <213> Homo sapiens

<400> 98
 Asn Thr Ala Gly Ser Leu Gly Phe Cys Ile Val Gly Gly Tyr Glu Glu
 1 5 10 15

Tyr Asn Gly Asn Lys Pro Phe Phe Ile Lys Ser Ile Val Glu Gly Thr
 20 25 30

Pro Ala Tyr Asn Asp Gly Arg Ile Arg Cys Gly
 35 40

<210> 99
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 99
 Asp Ile Leu Leu Ala Val Asn Gly Arg Ser Thr Ser Gly Met Ile His
 1 5 10 15

Ala Cys Leu Ala Arg Leu Leu Lys Glu Leu Lys Gly Arg Ile Thr Leu
 20 25 30

Thr Ile Val Ser Trp Pro Gly Thr Phe Leu
 35 40

<210> 100
 <211> 209
 <212> PRT
 <213> Homo sapiens

<400> 100
 Met Thr Val Ala Gly Gly Ala Ser His Arg Glu Trp Asp Leu Pro Ile
 1 5 10 15

Tyr Val Ile Ser Val Glu Pro Gly Gly Val Ile Ser Arg Asp Gly Arg
 20 25 30

Ile Lys Thr Gly Asp Ile Leu Leu Asn Val Asp Gly Val Glu Leu Thr
 35 40 45

Glu Val Ser Arg Ser Glu Ala Val Ala Leu Leu Lys Arg Thr Ser Ser
 50 55 60

Ser Ile Val Leu Lys Ala Leu Glu Val Lys Glu Tyr Glu Pro Gln Glu
 65 70 75 80

Asp Cys Ser Ser Pro Ala Ala Leu Asp Ser Asn His Asn Met Ala Pro
 85 90 95

Pro Ser Asp Trp Ser Pro Ser Trp Val Met Trp Leu Glu Leu Pro Arg
 100 105 110

Cys Leu Tyr Asn Cys Lys Asp Ile Val Leu Arg Arg Asn Thr Ala Gly
 115 120 125

Ser Leu Gly Phe Cys Ile Val Gly Gly Tyr Glu Glu Tyr Asn Gly Asn
 130 135 140

Lys Pro Phe Phe Ile Lys Ser Ile Val Glu Gly Thr Pro Ala Tyr Asn
 145 150 155 160

Asp Gly Arg Ile Arg Cys Gly Asp Ile Leu Leu Ala Val Asn Gly Arg
 165 170 175

Ser Thr Ser Gly Met Ile His Ala Cys Leu Ala Arg Leu Leu Lys Glu
 180 185 190

Leu Lys Gly Arg Ile Thr Leu Thr Ile Val Ser Trp Pro Gly Thr Phe
 195 200 205

Leu

<210> 101

<211> 242

<212> PRT

<213> Homo sapiens

<400> 101

Met Ala Thr Ser Thr Ile Thr Ser Arg Arg Leu Met Ser Gly Phe Leu
 1 5 10 15

Phe Leu Pro Val Ser Ser Phe Ser Met Ser Phe Phe Phe Ser Thr
 20 25 30

Cys Ser Val Thr Leu Ile Thr Ser Phe Cys Ile Phe Pro Val Ser Val
 35 40 45

Ser Phe Phe Ile Ala Val Glu Asn Thr Trp Cys Arg Thr Val Ile Thr
 50 55 60

Leu Pro Leu Ser Leu Ser Gly Ala Phe Ser Phe Ser Val Pro Ile Thr
 65 70 75 80

Val Ser Leu Ser Val Ser Val Ser Leu Ser Ile Ser Val Phe Leu Ser
 85 90 95

Ser Gly Ile Ile Val Pro Leu Leu Ala Gly Val His Lys Thr Arg Pro
 100 105 110

Arg Arg Ser Arg Thr Arg Lys Met Gly Lys Gly Asn Ile Ala Ile Trp
 115 120 125

Lys Cys Thr Cys Arg Thr Thr Ile Ile Thr Arg Gly Met Ser Thr Phe
 130 135 140

Tyr Cys Trp Tyr Lys Arg Trp Arg Trp Ser Ala Trp Trp Arg Arg Lys
 145 150 155 160

Thr Arg Trp Trp Asn Gln Arg Trp Ser Ser Ala Asp Ser Arg Arg Arg
 165 170 175

Trp Lys Lys Trp Arg Arg Trp Lys Val Ser Gly Arg Ser Ser Trp Arg
 180 185 190

Glu Lys Arg Arg Trp Phe Ala Lys Ile Val Val Tyr Phe Ser Ser Arg
 195 200 205

Ser Phe Arg Lys Asp Leu Tyr Val Ala Val Leu Ile Cys Pro Ser Pro
 210 215 220

Ala Phe Tyr Ser Ala Asp Ser Tyr Ser Leu Thr Asp Asn Ile Asn Cys
 225 230 235 240

Pro Arg

<210> 102

<211> 520

<212> PRT

<213> Homo sapiens

<400> 102

Met Ser Ala Gly Glu Val Glu Arg Leu Val Ser Glu Leu Ser Gly Gly
 1 5 10 15

Thr Gly Gly Asp Glu Glu Glu Glu Trp Leu Tyr Gly Asp Glu Asn Glu
 20 25 30

Val Glu Arg Pro Glu Glu Glu Asn Ala Ser Ala Asn Pro Pro Ser Gly
 35 40 45

Ile Glu Asp Glu Thr Ala Glu Asn Gly Leu Pro Lys Pro Lys Val Thr
 50 55 60

Glu Thr Glu Asp Asp Ser Asp Ser Asp Asp Asp Asp Glu Asp Asp
 65 70 75 80

Val His Val Thr Ile Gly Asp Ile Lys Thr Gly Ala Pro Gln Tyr Gly
 85 90 95

Ser Tyr Gly Thr Ala Pro Val Asn Leu Asn Ile Lys Thr Gly Gly Arg
 100 105 110

Val Tyr Gly Thr Thr Gly Thr Lys Val Lys Gly Val Asp Leu Asp Ala
 115 120 125

Pro Gly Ser Ile Asn Gly Val Pro Leu Leu Glu Val Asp Leu Asp Ser
 130 135 140

Phe Glu Asp Lys Pro Trp Arg Lys Pro Gly Ala Asp Leu Ser Asp Tyr
 145 150 155 160
 Phe Asn Tyr Gly Phe Asn Glu Asp Thr Trp Lys Ala Tyr Cys Glu Lys
 165 170 175
 Gln Lys Arg Ile Arg Met Gly Leu Glu Val Ile Pro Val Thr Ser Thr
 180 185 190
 Thr Asn Lys Ile Thr Val Gln Gln Gly Arg Thr Gly Asn Ser Glu Lys
 195 200 205
 Glu Thr Ala Leu Pro Ser Thr Lys Ala Glu Phe Thr Ser Pro Pro Ser
 210 215 220
 Leu Phe Lys Thr Gly Leu Pro Pro Ser Arg Arg Leu Pro Gly Ala Ile
 225 230 235 240
 Asp Val Ile Gly Gln Thr Ile Thr Ile Ser Arg Val Glu Gly Arg Arg
 245 250 255
 Arg Ala Asn Glu Asn Ser Asn Ile Gln Val Leu Ser Glu Arg Ser Ala
 260 265 270
 Thr Glu Val Asp Asn Asn Phe Ser Lys Pro Pro Pro Phe Phe Pro Pro
 275 280 285
 Gly Ala Pro Pro Thr His Leu Pro Pro Pro Phe Leu Pro Pro Pro
 290 295 300
 Pro Thr Val Ser Thr Ala Pro Pro Leu Ile Pro Pro Pro Gly Phe Pro
 305 310 315 320
 Pro Pro Pro Gly Ala Pro Pro Pro Ser Leu Ile Pro Thr Ile Glu Ser
 325 330 335
 Gly His Ser Ser Gly Tyr Asp Ser Arg Ser Ala Arg Ala Phe Pro Tyr
 340 345 350
 Gly Asn Val Ala Phe Pro His Leu Pro Gly Ser Ala Pro Ser Trp Pro
 355 360 365
 Ser Leu Val Asp Thr Ser Lys Gln Trp Asp Tyr Tyr Ala Arg Arg Glu
 370 375 380
 Lys Asp Arg Asp Arg Glu Arg Asp Arg Asp Arg Glu Arg Asp Arg Asp
 385 390 395 400
 Arg Asp Arg Glu Arg Glu Arg Thr Arg Glu Arg Glu Arg Asp
 405 410 415
 His Ser Pro Thr Pro Ser Val Phe Asn Ser Asp Glu Glu Arg Tyr Arg
 420 425 430
 Tyr Arg Glu Tyr Ala Glu Arg Gly Tyr Glu Arg His Arg Ala Ser Arg
 435 440 445
 Glu Lys Glu Glu Arg His Arg Glu Arg Arg His Arg Glu Lys Glu Glu

450	455	460
Thr Arg His Lys Ser Ser Arg Ser Asn Ser Arg Arg Arg His Glu Ser		
465	470	475
Glu Glu Gly Asp Ser His Arg Arg His Lys His Lys Ser Lys Arg		
485	490	495
Ser Lys Glu Gly Lys Glu Ala Gly Ser Glu Pro Ala Pro Glu Gln Glu		
500	505	510
Ser Thr Glu Ala Thr Pro Ala Glu		
515	520	

100 IDENTIFIED AMINO ACIDS

<210> 103			
<211> 205			
<212> PRT			
<213> Homo sapiens			

<400> 103			
Met Ile Val Val Leu His Val His Phe His Met Ala Met Leu Pro Phe			
1	5	10	15
Pro Ile Phe Leu Val Leu Leu Arg Gly Leu Val Leu Trp Thr Pro			
20	25	30	
Ala Ser Ser Gly Thr Ile Met Pro Glu Glu Arg Lys Thr Glu Ile Glu			
35	40	45	
Arg Glu Thr Glu Thr Glu Ser Glu Thr Val Ile Gly Thr Glu Lys Glu			
50	55	60	
Asn Ala Pro Glu Arg Glu Arg Gly Ser Val Ile Thr Val Leu His Gln			
65	70	75	80
Val Phe Ser Thr Ala Met Lys Asn Asp Thr Asp Thr Gly Asn Met Gln			
85	90	95	
Lys Glu Val Met Ser Val Thr Glu Gln Val Glu Lys Lys Lys Asn Asp			
100	105	110	
Ile Glu Lys Asp Asp Thr Gly Arg Lys Arg Lys Pro Asp Ile Ser Leu			
115	120	125	
Leu Glu Val Ile Val Asp Val Ala Met Lys Val Lys Lys Glu Ile Val			
130	135	140	
Thr Gly Asp Thr Asn Thr Lys Asn Leu Lys Glu Ala Lys Lys Glu Lys			
145	150	155	160
Lys Arg Ala Val Ser Leu Pro Leu Asn Arg Arg Ala Pro Lys Leu His			
165	170	175	
Leu Gln Asn Arg His Gly Phe Gly Leu Leu Cys Ile Leu Val Pro Glu			
180	185	190	
Val Asp Thr Ile Asn Leu Val Ile Phe Leu Asp Asn Ala			

195

200

205

<210> 104
<211> 26
<212> PRT
<213> *Homo sapiens*

<400> 104
His Ala Ser Ala His Gly Pro Arg Pro Ser Val Arg Thr Gly Leu Pro
1 5 10 15

Ser Val Gly Arg Gln Ala Ala Gly Ala Ala
20 25

卷之三

<210> 105
<211> 494
<212> PRT
<213> *Homo sapiens*

```

<400> 105
His Ala Ser Ala His Gly Pro Arg Pro Ser Val Arg Thr Gly Leu Pro
      1           5           10          15

```

Ser Val Gly Arg Gln Ala Ala Gly Ala Ala Met Gly Arg Gly Trp Gly
20 25 30

Phe Leu Phe Gly Leu Leu Gly Ala Val Trp Leu Leu Ser Ser Gly His
35 40 45

Gly Glu Glu Gln Pro Pro Glu Thr Ala Ala Gln Arg Cys Phe Cys Gln
 50 55 60

Val Ser Gly Tyr Leu Asp Asp Cys Thr Cys Asp Val Glu Thr Ile Asp
65 70 75 80

Arg Phe Asn Asn Tyr Arg Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu
85 90 95

Ser Asp Tyr Phe Arg Tyr Tyr Lys Val Asn Leu Lys Arg Pro Cys Pro
100 105 110

Phe Trp Asn Asp Ile Ser Gln Cys Gly Arg Arg Asp Cys Ala Val Lys
 115 120 125

Pro Cys Gln Ser Asp Glu Val Pro Asp Gly Ile Lys Ser Ala Ser Tyr
130 135 140

Lys Tyr Ser Glu Glu Ala Asn Asn Leu Ile Glu Glu Cys Glu Gln Ala
145 150 155 160

Glu Arg Leu Gly Ala Val Asp Glu Ser Leu Ser Glu Glu Thr Gln Lys
165 170 175

Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser Ser Asp Asn Phe Cys
180 185 190

Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala Glu Tyr Val Asp Leu Leu
 195 200 205
 Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly Pro Asp Ala Trp Lys
 210 215 220
 Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys Phe Lys Pro Gln Thr Ile
 225 230 235 240
 Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly Gln Gly Thr Ser Glu Glu
 245 250 255
 Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu Cys Val Glu Lys Arg Ala
 260 265 270
 Phe Tyr Arg Leu Ile Ser Gly Leu His Ala Ser Ile Asn Val His Leu
 275 280 285
 Ser Ala Arg Tyr Leu Leu Gln Glu Thr Trp Leu Glu Lys Lys Trp Gly
 290 295 300
 His Asn Ile Thr Glu Phe Gln Gln Arg Phe Asp Gly Ile Leu Thr Glu
 305 310 315 320
 Gly Glu Gly Pro Arg Arg Leu Lys Asn Leu Tyr Phe Leu Tyr Leu Ile
 325 330 335
 Glu Leu Arg Ala Leu Ser Lys Val Leu Pro Phe Phe Glu Arg Pro Asp
 340 345 350
 Phe Gln Leu Phe Thr Gly Asn Lys Ile Gln Asp Glu Glu Asn Lys Met
 355 360 365
 Leu Leu Leu Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu His Phe
 370 375 380
 Asp Glu Asn Ser Phe Phe Ala Gly Asp Lys Lys Glu Ala His Lys Leu
 385 390 395 400
 Lys Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp
 405 410 415
 Cys Val Gly Cys Phe Lys Cys Arg Leu Trp Gly Lys Leu Gln Thr Gln
 420 425 430
 Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu Ile Ala
 435 440 445
 Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu Thr Arg Gln
 450 455 460
 Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile Ser Thr Ser Val
 465 470 475 480
 Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln Asn Ile His
 485 490

<210> 106
<211> 24
<212> PRT
<213> Homo sapiens

<400> 106
Cys Cys Arg Asn Ser Ala Arg Gly Gln Ser Gly Leu Ala Asp Glu Val
1 5 10 15
Arg Ser Ile Pro Phe Gly Pro Gly
20

<210> 107
<211> 289
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (144)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (246)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (252)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 107
Ser Thr Phe Asp Lys Gly Tyr Gly Lys Tyr Phe Ala Ala Gly Glu Lys
1 5 10 15

Tyr His Thr Ser Ser Val Phe His Lys Ala Gln Arg Ala Arg Trp Lys
20 25 30

Asn Arg Arg Ser Trp Arg Leu Ser Gly Val His Trp Ser Pro Ile Phe
35 40 45

Cys Arg Ile Ser Ala Leu Lys Val Gly Ala Asp Leu Ser His Val Phe
50 55 60

Cys Ala Ser Ala Ala Ala Pro Val Ile Lys Ala Tyr Ser Pro Glu Leu
65 70 75 80

Ile Val His Pro Val Leu Asp Ser Pro Asn Ala Val His Glu Val Glu
85 90 95

Lys Trp Leu Pro Arg Leu His Ala Leu Val Val Gly Pro Gly Leu Gly
100 105 110

Arg Asp Asp Ala Leu Leu Arg Asn Val Gln Gly Ile Leu Glu Val Ser
115 120 125

Lys Ala Arg Asp Ile Pro Val Val Ile Asp Ala Asp Gly Leu Trp Xaa
 130 135 140

Val Ala Gln Gln Pro Ala Leu Ile His Gly Tyr Arg Lys Ala Val Leu
 145 150 155 160

Thr Pro Asn His Val Glu Phe Ser Arg Leu Tyr Asp Ala Val Leu Arg
 165 170 175

Gly Pro Met Asp Ser Asp Asp Ser His Gly Ser Val Leu Arg Leu Ser
 180 185 190

Gln Ala Leu Gly Asn Val Thr Val Val Gln Lys Gly Glu Arg Asp Ile
 195 200 205

Leu Ser Asn Gly Gln Gln Val Leu Val Cys Ser Gln Glu Gly Ser Ser
 210 215 220

Ala Gly Val Glu Gly Lys Gly Thr Ser Cys Arg Ala Pro Trp Ala Ser
 225 230 235 240

Trp Tyr Thr Gly Arg Xaa Leu Leu Asp His Arg Xaa Gln Met Gly Pro
 245 250 255

Ala Leu Ser Trp Trp Pro Arg Leu Ala Pro Ala Leu Ser Pro Gly Ser
 260 265 270

Ala Thr Thr Lys Pro Ser Arg Ser Thr Val Ala Pro Pro Pro Pro Pro
 275 280 285

Thr

<210> 108

<211> 33

<212> PRT

<213> Homo sapiens

<400> 108

Ser Thr Phe Asp Lys Gly Tyr Gly Lys Tyr Phe Ala Ala Gly Glu Lys
 1 5 10 15

Tyr His Thr Ser Ser Val Phe His Lys Ala Gln Arg Ala Arg Trp Lys
 20 25 30

Asn

<210> 109

<211> 36

<212> PRT

<213> Homo sapiens

<400> 109

Arg Arg Ser Trp Arg Leu Ser Gly Val His Trp Ser Pro Ile Phe Cys
 1 5 10 15

Arg Ile Ser Ala Leu Lys Val Gly Ala Asp Leu Ser His Val Phe Cys
 20 25 30

Ala Ser Ala Ala
 35

<210> 110
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 110
 Ala Pro Val Ile Lys Ala Tyr Ser Pro Glu Leu Ile Val His Pro Val
 1 5 10 15

Leu Asp Ser Pro Asn Ala Val His Glu Val Glu Lys Trp Leu Pro Arg
 20 25 30

Leu His Ala Leu
 35

<210> 111
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 111
 Val Val Gly Pro Gly Leu Gly Arg Asp Asp Ala Leu Leu Arg Asn Val
 1 5 10 15

Gln Gly Ile Leu Glu Val Ser Lys Ala Arg Asp Ile Pro Val Val Ile
 20 25 30

Asp Ala Asp Gly
 35

<210> 112
 <211> 36
 <212> PRT
 <213> Homo sapiens

<220>
 <221> SITE
 <222> (3)
 <223> Xaa equals any of the naturally occurring L-amino acids

<400> 112
 Leu Trp Xaa Val Ala Gln Gln Pro Ala Leu Ile His Gly Tyr Arg Lys
 1 5 10 15

Ala Val Leu Thr Pro Asn His Val Glu Phe Ser Arg Leu Tyr Asp Ala
 20 25 30

Val Leu Arg Gly

35

<210> 113
<211> 36
<212> PRT
<213> Homo sapiens

<400> 113
Pro Met Asp Ser Asp Asp Ser His Gly Ser Val Leu Arg Leu Ser Gln
1 5 10 15

Ala Leu Gly Asn Val Thr Val Val Gln Lys Gly Glu Arg Asp Ile Leu
20 25 30

Ser Asn Gly Gln
35

<210> 114
<211> 36
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (33)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 114
Gln Val Leu Val Cys Ser Gln Glu Gly Ser Ser Ala Gly Val Glu Gly
1 5 10 15

Lys Gly Thr Ser Cys Arg Ala Pro Trp Ala Ser Trp Tyr Thr Gly Arg
20 25 30

Xaa Leu Leu Asp
35

<210> 115
<211> 40
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (3)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 115
His Arg Xaa Gln Met Gly Pro Ala Leu Ser Trp Trp Pro Arg Leu Ala
1 5 10 15

Pro Ala Leu Ser Pro Gly Ser Ala Thr Thr Lys Pro Ser Arg Ser Thr
20 25 30

Val Ala Pro Pro Pro Pro Pro Thr

35

40

<210> 116
<211> 138
<212> PRT
<213> Homo sapiens

<400> 116
Cys Cys Arg Asn Ser Ala Arg Gly Gln Ser Gly Leu Ala Asp Glu Val
1 5 10 15
Arg Ser Ile Pro Phe Gly Pro Gly Met Val Thr Arg Ala Gly Ala Gly
20 25 30
Thr Ala Val Ala Gly Ala Val Val Val Ala Leu Leu Ser Ala Ala Leu
35 40 45
Ala Leu Tyr Gly Pro Pro Leu Asp Ala Val Leu Glu Arg Ala Phe Ser
50 55 60
Leu Arg Lys Ala His Ser Ile Lys Asp Met Glu Asn Thr Leu Gln Leu
65 70 75 80
Val Arg Asn Ile Ile Pro Pro Leu Ser Ser Thr Lys His Lys Gly Gln
85 90 95
Asp Gly Arg Ile Gly Val Val Gly Gly Cys Gln Glu Tyr Thr Gly Ala
100 105 110
Pro Tyr Phe Ala Glu Ser Gln Leu Ser Lys Trp Ala Gln Thr Cys Pro
115 120 125
Thr Cys Ser Val Pro Val Arg Pro His Leu
130 135

<210> 117
<211> 366
<212> PRT
<213> Homo sapiens

<400> 117
Ala Arg Gly Gln Ser Gly Leu Ala Asp Glu Val Arg Ser Ile Pro Phe
1 5 10 15
Gly Pro Gly Met Val Thr Arg Ala Gly Ala Gly Thr Ala Val Ala Gly
20 25 30
Ala Val Val Val Ala Leu Leu Ser Ala Ala Leu Ala Leu Tyr Gly Pro
35 40 45
Pro Leu Asp Ala Val Leu Glu Arg Ala Phe Ser Leu Arg Lys Ala His
50 55 60
Ser Ile Lys Asp Met Glu Asn Thr Leu Gln Leu Val Arg Asn Ile Ile
65 70 75 80

Pro Pro Leu Ser Ser Thr Lys His Lys Gly Gln Asp Gly Arg Ile Gly
 85 90 95
 Val Val Gly Gly Cys Gln Glu Tyr Thr Gly Ala Pro Tyr Phe Ala Ala
 100 105 110
 Ile Ser Ala Leu Lys Val Gly Ala Asp Leu Ser His Val Phe Cys Ala
 115 120 125
 Ser Ala Ala Ala Pro Val Ile Lys Ala Tyr Ser Pro Glu Leu Ile Val
 130 135 140
 His Pro Val Leu Asp Ser Pro Asn Ala Val His Glu Val Glu Lys Trp
 145 150 155 160
 Leu Pro Arg Leu His Ala Leu Val Val Gly Pro Gly Leu Gly Arg Asp
 165 170 175
 Asp Ala Leu Leu Arg Asn Val Gln Gly Ile Leu Glu Val Ser Lys Ala
 180 185 190
 Arg Asp Ile Pro Val Val Ile Asp Ala Asp Gly Leu Trp Leu Val Ala
 195 200 205
 Gln Gln Pro Ala Leu Ile His Gly Tyr Arg Lys Ala Val Leu Thr Pro
 210 215 220
 Asn His Val Glu Phe Ser Arg Leu Tyr Asp Ala Val Leu Arg Gly Pro
 225 230 235 240
 Met Asp Ser Asp Asp Ser His Gly Ser Val Leu Arg Leu Ser Gln Ala
 245 250 255
 Leu Gly Asn Val Thr Val Val Gln Lys Gly Glu Arg Asp Ile Leu Ser
 260 265 270
 Asn Gly Gln Gln Val Leu Val Cys Ser Gln Glu Gly Ser Ser Arg Arg
 275 280 285
 Cys Gly Gly Gln Gly Asp Leu Leu Ser Gly Ser Leu Gly Val Leu Val
 290 295 300
 His Trp Ala Leu Leu Ala Gly Pro Gln Lys Thr Asn Gly Ser Ser Pro
 305 310 315 320
 Leu Leu Val Ala Ala Phe Gly Ala Cys Ser Leu Thr Arg Gln Cys Asn
 325 330 335
 His Gln Ala Phe Gln Lys His Gly Arg Ser Thr Thr Ser Asp Met
 340 345 350
 Ile Ala Glu Val Gly Ala Ala Phe Ser Lys Leu Phe Glu Thr
 355 360 365

<210> 118
 <211> 12
 <212> PRT

<213> Homo sapiens

<400> 118
 Gly Thr Ser Ala Ala Leu Glu Pro Pro Gly Pro Asp
 1 5 10

<210> 119

<211> 83
 <212> PRT
 <213> Homo sapiens

<400> 119
 Arg Thr Arg Gln Glu Arg Met Leu Phe Ser Val Ala Leu Ala Glu Met
 1 5 10 15

Lys Trp Ala Arg Phe Val Ala Val Met Gln Gly His His Thr Asn Cys
 20 25 30

Arg Glu Tyr Cys Gln Ala Ile Phe Arg Thr Asp Ser Ser Pro Gly Pro
 35 40 45

Ser Gln Ile Lys Ala Val Glu Asn Tyr Cys Ala Ser Ile Ser Pro Gln
 50 55 60

Leu Ile His Cys Val Asn Asn Tyr Thr Ser Ile Leu Ser Asn Glu Glu
 65 70 75 80

Pro Asn Gly

<210> 120

<211> 34

<212> PRT

<213> Homo sapiens

<400> 120

Arg Thr Arg Gln Glu Arg Met Leu Phe Ser Val Ala Leu Ala Glu Met
 1 5 10 15

Lys Trp Ala Arg Phe Val Ala Val Met Gln Gly His His Thr Asn Cys
 20 25 30

Arg Glu

<210> 121

<211> 26

<212> PRT

<213> Homo sapiens

<400> 121

Tyr Cys Gln Ala Ile Phe Arg Thr Asp Ser Ser Pro Gly Pro Ser Gln
 1 5 10 15

Ile Lys Ala Val Glu Asn Tyr Cys Ala Ser

20

25

<210> 122
<211> 23
<212> PRT
<213> Homo sapiens

<400> 122
Ile Ser Pro Gln Leu Ile His Cys Val Asn Asn Tyr Thr Ser Ile Leu
1 5 10 15
Ser Asn Glu Glu Pro Asn Gly
20

<210> 123
<211> 32
<212> PRT
<213> Homo sapiens

<400> 123
His Glu Arg Cys Pro Ala Pro Val Pro Ser Val Asn Pro Leu Ser Leu
1 5 10 15
Trp Cys Trp Phe Arg Ser Arg Leu Gln Gln Asn Asp Leu Gly Thr Ser
20 25 30

<210> 124
<211> 59
<212> PRT
<213> Homo sapiens

<400> 124
His Glu Pro Ser Gln Leu Pro Arg Pro His Ser Ser Thr Gly Trp Ser
1 5 10 15
Gly Arg Lys Trp Ala Leu Lys Thr Gly Phe Ser Ala Ser Ala Ser Arg
20 25 30
Lys Pro Glu Pro Trp Arg Cys Arg Ala Thr Val Cys Pro Pro Arg Val
35 40 45
Thr Thr Ala Ser Ala Ser Ala Gln Ser Ala Asp
50 55

<210> 125
<211> 487
<212> PRT
<213> Homo sapiens

<400> 125
Ala Arg Ala Glu Pro Ala Pro Glu Thr Pro Phe Ile Tyr Arg Leu Glu

1	5	10	15
Arg Gln Glu Val Gly Ser Glu Asp Trp Ile Gln Cys Phe Ser Ile Glu			
20	25	30	
Lys Ala Gly Ala Val Glu Val Pro Gly Asp Cys Val Pro Ser Glu Gly			
35	40	45	
Asp Tyr Arg Phe Arg Ile Cys Thr Val Ser Gly His Gly Arg Ser Pro			
50	55	60	
His Val Val Phe His Gly Ser Ala His Leu Val Pro Thr Ala Arg Leu			
65	70	75	80
Val Ala Gly Leu Glu Asp Val Gln Val Tyr Asp Gly Glu Asp Ala Val			
85	90	95	
Phe Ser Leu Asp Leu Ser Thr Ile Ile Gln Gly Thr Trp Phe Leu Asn			
100	105	110	
Gly Glu Glu Leu Lys Ser Asn Gln Pro Glu Gly Gln Val Glu Pro Gly			
115	120	125	
Ala Leu Arg Tyr Arg Ile Glu Gln Lys Gly Leu Gln His Arg Leu Ile			
130	135	140	
Leu His Ala Val Lys His Gln Asp Ser Gly Ala Leu Val Gly Phe Ser			
145	150	155	160
Cys Pro Gly Val Gln Asp Ser Ala Ala Leu Thr Ile Gln Glu Ser Pro			
165	170	175	
Val His Ile Leu Ser Pro Gln Asp Lys Val Ser Leu Thr Phe Thr Thr			
180	185	190	
Ser Glu Arg Val Val Leu Thr Cys Glu Leu Ser Arg Val Asp Phe Pro			
195	200	205	
Ala Thr Trp Tyr Lys Asp Gly Gln Lys Val Glu Glu Ser Glu Leu Leu			
210	215	220	
Val Val Lys Met Asp Gly Arg Lys His Arg Leu Ile Leu Pro Glu Ala			
225	230	235	240
Lys Val Gln Asp Ser Gly Glu Phe Glu Cys Arg Thr Glu Gly Val Ser			
245	250	255	
Ala Phe Phe Gly Val Thr Val Gln Asp Pro Pro Val His Ile Val Asp			
260	265	270	
Pro Arg Glu His Val Phe Val His Ala Ile Thr Ser Glu Cys Val Met			
275	280	285	
Leu Ala Cys Glu Val Asp Arg Glu Asp Ala Pro Val Arg Trp Tyr Lys			
290	295	300	
Asp Gly Gln Glu Val Glu Glu Ser Asp Phe Val Val Leu Glu Asn Glu			
305	310	315	320

Gly Pro His Arg Arg Leu Val Leu Pro Ala Thr His Pro Ser Asp Gly
 325 330 335
 Gly Glu Phe Gln Cys Val Ala Gly Asp Glu Cys Ala Tyr Phe Thr Val
 340 345 350
 Thr Ile Thr Asp Val Ser Ser Trp Ile Val Tyr Pro Ser Gly Lys Val
 355 360 365
 Tyr Val Ala Ala Val Arg Leu Glu Arg Val Val Leu Thr Cys Glu Leu
 370 375 380
 Cys Arg Pro Trp Ala Glu Val Arg Trp Thr Lys Asp Gly Glu Glu Val
 385 390 395 400
 Val Glu Ser Pro Ala Leu Leu Leu Gln Lys Glu Asp Thr Val Arg Arg
 405 410 415
 Leu Val Leu Pro Ala Val Gln Leu Glu Asp Ser Gly Glu Tyr Leu Cys
 420 425 430
 Glu Ile Asp Asp Glu Ser Ala Ser Phe Thr Val Thr Val Thr Glu Ser
 435 440 445
 Tyr Gln Ser Gln Asp Ser Ser Asn Asn Asn Pro Glu Leu Cys Val Leu
 450 455 460
 Leu Lys Lys Pro Lys Thr Arg Arg Leu Trp Ser Arg Phe Pro Pro Trp
 465 470 475 480
 Arg Arg Thr Ala Gly Thr Glu
 485

<210> 126
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 126
 Ala Arg Ala Glu Pro Ala Pro Glu Thr Pro Phe Ile Tyr Arg Leu Glu
 1 5 10 15
 Arg Gln Glu Val Gly Ser Glu Asp Trp Ile Gln Cys Phe Ser Ile Glu
 20 25 30
 Lys Ala Gly Ala Val
 35

<210> 127
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 127
 Glu Val Pro Gly Asp Cys Val Pro Ser Glu Gly Asp Tyr Arg Phe Arg

1

5

10

15

Ile Cys Thr Val Ser Gly His Gly Arg Ser Pro His Val Val Phe His
20 25 30

Gly Ser Ala His Leu
35

<210> 128
<211> 37
<212> PRT
<213> Homo sapiens

<400> 128
Val Pro Thr Ala Arg Leu Val Ala Gly Leu Glu Asp Val Gln Val Tyr
1 5 10 15

Asp Gly Glu Asp Ala Val Phe Ser Leu Asp Leu Ser Thr Ile Ile Gln
20 25 30

Gly Thr Trp Phe Leu
35

<210> 129
<211> 37
<212> PRT
<213> Homo sapiens

<400> 129
Asn Gly Glu Glu Leu Lys Ser Asn Glu Pro Glu Gly Gln Val Glu Pro
1 5 10 15

Gly Ala Leu Arg Tyr Arg Ile Glu Gln Lys Gly Leu Gln His Arg Leu
20 25 30

Ile Leu His Ala Val
35

<210> 130
<211> 37
<212> PRT
<213> Homo sapiens

<400> 130
Lys His Gln Asp Ser Gly Ala Leu Val Gly Phe Ser Cys Pro Gly Val
1 5 10 15

Gln Asp Ser Ala Ala Leu Thr Ile Gln Glu Ser Pro Val His Ile Leu
20 25 30

Ser Pro Gln Asp Lys
35

<210> 131

<211> 37
<212> PRT
<213> Homo sapiens

<400> 131
Val Ser Leu Thr Phe Thr Thr Ser Glu Arg Val Val Leu Thr Cys Glu
1 5 10 15
Leu Ser Arg Val Asp Phe Pro Ala Thr Trp Tyr Lys Asp Gly Gln Lys
20 25 30
Val Glu Glu Ser Glu
35

<210> 132
<211> 37
<212> PRT
<213> Homo sapiens

<400> 132
Leu Leu Val Val Lys Met Asp Gly Arg Lys His Arg Leu Ile Leu Pro
1 5 10 15
Glu Ala Lys Val Gln Asp Ser Gly Glu Phe Glu Cys Arg Thr Glu Gly
20 25 30
Val Ser Ala Phe Phe
35

<210> 133
<211> 37
<212> PRT
<213> Homo sapiens

<400> 133
Gly Val Thr Val Gln Asp Pro Pro Val His Ile Val Asp Pro Arg Glu
1 5 10 15
His Val Phe Val His Ala Ile Thr Ser Glu Cys Val Met Leu Ala Cys
20 25 30
Glu Val Asp Arg Glu
35

<210> 134
<211> 37
<212> PRT
<213> Homo sapiens

<400> 134
Asp Ala Pro Val Arg Trp Tyr Lys Asp Gly Gln Glu Val Glu Glu Ser
1 5 10 15
Asp Phe Val Val Leu Glu Asn Glu Gly Pro His Arg Arg Leu Val Leu
20 25 30

Pro Ala Thr His Pro
35

<210> 135
<211> 37
<212> PRT
<213> Homo sapiens

<400> 135
Ser Asp Gly Gly Glu Phe Gln Cys Val Ala Gly Asp Glu Cys Ala Tyr
1 5 10 15
Phe Thr Val Thr Ile Thr Asp Val Ser Ser Trp Ile Val Tyr Pro Ser
20 25 30

Gly Lys Val Tyr Val
35

<210> 136
<211> 37
<212> PRT
<213> Homo sapiens

<400> 136
Ala Ala Val Arg Leu Glu Arg Val Val Leu Thr Cys Glu Leu Cys Arg
1 5 10 15
Pro Trp Ala Glu Val Arg Trp Thr Lys Asp Gly Glu Glu Val Val Glu
20 25 30

Ser Pro Ala Leu Leu
35

<210> 137
<211> 37
<212> PRT
<213> Homo sapiens

<400> 137
Leu Gln Lys Glu Asp Thr Val Arg Arg Leu Val Leu Pro Ala Val Gln
1 5 10 15
Leu Glu Asp Ser Gly Glu Tyr Leu Cys Glu Ile Asp Asp Glu Ser Ala
20 25 30

Ser Phe Thr Val Thr
35

<210> 138
<211> 43
<212> PRT
<213> Homo sapiens

<400> 138

Val	Thr	Glu	Ser	Tyr	Gln	Ser	Gln	Asp	Ser	Ser	Asn	Asn	Asn	Pro	Glu
1		5							10					15	

Leu	Cys	Val	Leu	Leu	Lys	Lys	Pro	Lys	Thr	Arg	Arg	Leu	Trp	Ser	Arg
								25					30		

Phe	Pro	Pro	Trp	Arg	Arg	Thr	Ala	Gly	Thr	Glu					
						35			40						

<210> 139

<211> 510

<212> PRT

<213> Homo sapiens

<400> 139

His	Glu	Ser	Glu	Tyr	Thr	Thr	Ser	Pro	Lys	Ser	Ser	Val	Leu	Cys	Pro
1		5						10					15		

Lys	Leu	Pro	Val	Pro	Ala	Ser	Ala	Pro	Ile	Pro	Phe	Phe	His	Arg	Cys
								20		25			30		

Ala	Pro	Val	Asn	Ile	Ser	Cys	Tyr	Ala	Lys	Phe	Ala	Glu	Ala	Leu	Ile
						35		40				45			

Thr	Phe	Val	Ser	Asp	Asn	Ser	Val	Leu	His	Arg	Leu	Ile	Ser	Gly	Val
							50		55			60			

Met	Thr	Ser	Lys	Glu	Ile	Ile	Leu	Gly	Leu	Cys	Leu	Leu	Ser	Leu	Val
65							70			75			80		

Leu	Ser	Met	Ile	Leu	Met	Val	Ile	Ile	Arg	Tyr	Ile	Ser	Arg	Val	Leu
							85		90			95			

Val	Trp	Ile	Leu	Thr	Ile	Leu	Val	Ile	Leu	Gly	Ser	Leu	Gly	Gly	Thr
							100		105			110			

Gly	Val	Leu	Trp	Trp	Pro	Tyr	Ala	Lys	Gln	Arg	Arg	Ser	Pro	Lys	Glu
							115		120			125			

Thr	Val	Thr	Pro	Glu	Gln	Leu	Gln	Ile	Ala	Glu	Asp	Asn	Leu	Arg	Ala
								130		135		140			

Leu	Leu	Ile	Tyr	Ala	Ile	Ser	Ala	Thr	Val	Phe	Thr	Val	Ile	Leu	Phe
145									150		155		160		

Leu	Ile	Met	Leu	Val	Met	Arg	Lys	Arg	Val	Ala	Leu	Thr	Ile	Ala	Leu
							165		170			175			

Phe	His	Val	Ala	Gly	Lys	Val	Phe	Ile	His	Leu	Pro	Leu	Leu	Val	Phe
							180		185			190			

Gln	Pro	Phe	Trp	Thr	Phe	Phe	Ala	Leu	Val	Leu	Phe	Trp	Val	Tyr	Trp
							195		200			205			

Ile	Met	Thr	Leu	Leu	Phe	Leu	Gly	Thr	Thr	Gly	Ser	Pro	Val	Gln	Asn
							210		215			220			

Glu Gln Gly Phe Val Glu Phe Lys Ile Ser Gly Pro Leu Gln Tyr Met
 225 230 235 240
 Trp Trp Tyr His Val Val Gly Leu Ile Trp Ile Ser Glu Phe Ile Leu
 245 250 255
 Ala Cys Gln Gln Met Thr Val Ala Gly Ala Val Val Thr Tyr Tyr Phe
 260 265 270
 Thr Arg Asp Lys Arg Asn Leu Pro Phe Thr Pro Ile Leu Ala Ser Val
 275 280 285
 Asn Arg Leu Ile Arg Tyr His Leu Gly Thr Val Ala Lys Gly Ser Phe
 290 295 300
 Ile Ile Thr Leu Val Lys Ile Pro Arg Met Ile Leu Met Tyr Ile His
 305 310 315 320
 Ser Gln Leu Lys Gly Lys Glu Asn Ala Cys Ala Arg Cys Val Leu Lys
 325 330 335
 Ser Cys Ile Cys Cys Leu Trp Cys Leu Glu Lys Cys Leu Asn Tyr Leu
 340 345 350
 Asn Gln Asn Ala Tyr Thr Ala Thr Ala Ile Asn Ser Thr Asn Phe Cys
 355 360 365
 Thr Ser Ala Lys Asp Ala Phe Val Ile Leu Val Glu Asn Ala Leu Arg
 370 375 380
 Val Ala Thr Ile Asn Thr Val Gly Asp Phe Met Leu Phe Leu Gly Lys
 385 390 395 400
 Val Leu Ile Val Cys Ser Thr Gly Leu Ala Gly Ile Met Leu Leu Asn
 405 410 415
 Tyr Gln Gln Asp Tyr Thr Val Trp Val Leu Pro Leu Ile Ile Val Cys
 420 425 430
 Leu Phe Ala Phe Leu Asp Ala His Cys Phe Leu Ser Ile Tyr Glu Met
 435 440 445
 Val Val Asp Val Leu Phe Leu Cys Phe Ala Ile Asp Thr Lys Tyr Asn
 450 455 460
 Asp Gly Ser Pro Gly Arg Glu Phe Tyr Met Asp Lys Val Leu Met Glu
 465 470 475 480
 Phe Val Glu Asn Ser Arg Lys Ala Met Lys Glu Ala Gly Lys Gly Gly
 485 490 495
 Val Ala Asp Ser Arg Glu Leu Lys Pro Met Leu Lys Lys Arg
 500 505 510

<210> 140

<211> 17

<212> PRT
<213> Homo sapiens

<400> 140
Arg Leu Ser Ala Val Gly Ala Val Pro Phe Thr Arg Pro Asp Ala Gly
1 5 10 15
Val

<210> 141
<211> 7
<212> PRT
<213> Homo sapiens

<400> 141
Val Gly Pro Arg Ala Glu Ala
1 5

<210> 142
<211> 25
<212> PRT
<213> Homo sapiens

<400> 142
Gly Thr Arg Arg Ser Trp Gly Met Cys Arg Ala Thr Ala Gly Trp Ser
1 5 10 15
Pro Ala Glu Pro Pro Leu His Leu Trp
20 25

<210> 143
<211> 267
<212> PRT
<213> Homo sapiens

<400> 143
His Glu Lys Glu Leu Gly Asp Val Gln Gly His Gly Arg Val Val Thr
1 5 10 15

Ser Arg Ala Ala Pro Pro Val Asp Glu Glu Pro Glu Ser Ser Glu
20 25 30

Val Asp Ala Ala Gly Arg Trp Pro Gly Val Cys Val Ser Arg Thr Ser
35 40 45

Pro Thr Pro Pro Glu Ser Ala Thr Thr Val Lys Ser Leu Ile Lys Ser
50 55 60

Phe Asp Leu Gly Arg Pro Gly Gly Ala Gly Gln Asn Ile Ser Val His
65 70 75 80

Lys Thr Pro Arg Ser Pro Leu Ser Gly Ile Pro Val Arg Thr Ala Pro
85 90 95

Ala Ala Ala Val Ser Pro Met Gln Arg His Ser Thr Tyr Ser Ser Val
 100 105 110
 Arg Pro Ala Ser Arg Gly Val Thr Gln Arg Leu Asp Leu Pro Asp Leu
 115 120 125
 Pro Leu Ser Asp Ile Leu Lys Gly Arg Thr Glu Thr Leu Lys Pro Asp
 130 135 140
 Pro His Leu Arg Lys Ser Pro Ser Leu Glu Ser Leu Ser Arg Pro Pro
 145 150 155 160
 Ser Leu Gly Phe Gly Asp Thr Arg Leu Leu Ser Ala Ser Thr Arg Ala
 165 170 175
 Trp Lys Pro Gln Ser Lys Leu Ser Val Glu Arg Lys Asp Pro Leu Ala
 180 185 190
 Ala Leu Ala Arg Glu Tyr Gly Gly Ser Lys Arg Asn Ala Leu Leu Lys
 195 200 205
 Trp Cys Gln Lys Lys Thr Gln Gly Tyr Ala Lys Arg Asn Leu Leu Leu
 210 215 220
 Ala Phe Glu Ala Ala Glu Ser Val Gly Ile Lys Pro Ser Leu Glu Leu
 225 230 235 240
 Ser Glu Met Leu Tyr Thr Asp Arg Pro Asp Trp Gln Ser Val Met Gln
 245 250 255
 Tyr Val Ala Gln Ile Tyr Lys Tyr Phe Glu Thr
 260 265

<210> 144
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 144
 His Glu Lys Glu Leu Gly Asp Val Gln Gly His Gly Arg Val Val Thr
 1 5 10 15
 Ser Arg Ala Ala Pro Pro Pro Val Asp Glu Glu Pro Glu Ser Ser Glu
 20 25 30
 Val Asp Ala Ala Gly Arg Trp Pro Gly Val
 35 40

<210> 145
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 145
 Cys Val Ser Arg Thr Ser Pro Thr Pro Pro Glu Ser Ala Thr Thr Val
 1 5 10 15

Lys Ser Leu Ile Lys Ser Phe Asp Leu Gly Arg Pro Gly Gly Ala Gly
 20 25 30

Gln Asn Ile Ser Val His Lys Thr Pro Arg
 35 40

<210> 146
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 146
 Ser Pro Leu Ser Gly Ile Pro Val Arg Thr Ala Pro Ala Ala Ala Val
 1 5 10 15

Ser Pro Met Gln Arg His Ser Thr Tyr Ser Ser Val Arg Pro Ala Ser
 20 25 30

Arg Gly Val Thr Gln Arg Leu Asp Leu Pro
 35 40

<210> 147
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 147
 Asp Leu Pro Leu Ser Asp Ile Leu Lys Gly Arg Thr Glu Thr Leu Lys
 1 5 10 15

Pro Asp Pro His Leu Arg Lys Ser Pro Ser Leu Glu Ser Leu Ser Arg
 20 25 30

Pro Pro Ser Leu Gly Phe Gly Asp Thr Arg
 35 40

<210> 148
 <211> 42
 <212> PRT
 <213> Homo sapiens

<400> 148
 Leu Leu Ser Ala Ser Thr Arg Ala Trp Lys Pro Gln Ser Lys Leu Ser
 1 5 10 15

Val Glu Arg Lys Asp Pro Leu Ala Ala Leu Ala Arg Glu Tyr Gly Gly
 20 25 30

Ser Lys Arg Asn Ala Leu Leu Lys Trp Cys
 35 40

<210> 149
 <211> 57

<212> PRT

<213> Homo sapiens

<400> 149

Gln Lys Lys Thr Gln Gly Tyr Ala Lys Arg Asn Leu Leu Leu Ala Phe
 1 5 10 15

Glu Ala Ala Glu Ser Val Gly Ile Lys Pro Ser Leu Glu Leu Ser Glu
 20 25 30

Met Leu Tyr Thr Asp Arg Pro Asp Trp Gln Ser Val Met Gln Tyr Val
 35 40 45

Ala Gln Ile Tyr Lys Tyr Phe Glu Thr
 50 55

<210> 150

<211> 19

<212> PRT

<213> Homo sapiens

<400> 150

Ser Val Ser Lys Leu Pro Ala Asn Gly Lys Asn Val Asp Asp Val Ile
 1 5 10 15

Arg Asn Gln

<210> 151

<211> 138

<212> PRT

<213> Homo sapiens

<220>

<221> SITE

<222> (110)

<223> Xaa equals any of the naturally occurring L-amino acids

<400> 151

Thr Ser Met Thr Leu Phe Arg Ala Asp Thr Val Lys Asn Ile Glu Gly
 1 5 10 15

Glu Leu Thr Gln Ser Ala Arg Leu Gly Cys Gly Gly Gly Cys Leu Gly
 20 25 30

Gly Trp Leu Gln Phe His Leu Thr Val Ser Ser Phe Ser Gly Phe Glu
 35 40 45

Val Arg Gln Leu His Ala Gly Gly Ala Arg Lys Ala Glu Ser Arg Gln
 50 55 60

Gly Ser Asp Thr Gly Glu Arg Ala Cys Asp Leu Leu Ala Asp Thr Asn
 65 70 75 80

Pro Val Ala Arg Gly His His Phe Gln Gly Cys Trp Glu Gly Pro Gln
 85 90 95

Ser Arg Val Ser Ala Ser Leu Trp His Gly His Ser Gly Xaa Pro Ser
 100 105 110

Leu His Ala Pro Pro Thr Ser Ala Ser His Pro Phe His Phe Leu Pro
 115 120 125

Thr Thr Met His Leu His Ser Glu Ser Ser
 130 135

<210> 152

<211> 35

<212> PRT

<213> Homo sapiens

<400> 152

Thr Ser Met Thr Leu Phe Arg Ala Asp Thr Val Lys Asn Ile Glu Gly
 1 5 10 15

Glu Leu Thr Gln Ser Ala Arg Leu Gly Cys Gly Gly Cys Leu Gly
 20 25 30

Gly Trp Leu
 35

<210> 153

<211> 35

<212> PRT

<213> Homo sapiens

<400> 153

Gln Phe His Leu Thr Val Ser Ser Phe Ser Gly Phe Glu Val Arg Gln
 1 5 10 15

Leu His Ala Gly Gly Ala Arg Lys Ala Glu Ser Arg Gln Gly Ser Asp
 20 25 30

Thr Gly Glu
 35

<210> 154

<211> 35

<212> PRT

<213> Homo sapiens

<400> 154

Arg Ala Cys Asp Leu Leu Ala Asp Thr Asn Pro Val Ala Arg Gly His
 1 5 10 15

His Phe Gln Gly Cys Trp Glu Gly Pro Gln Ser Arg Val Ser Ala Ser
 20 25 30

Leu Trp His
 35

<210> 155
<211> 33
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 155
Gly His Ser Gly Xaa Pro Ser Leu His Ala Pro Pro Thr Ser Ala Ser
1 5 10 15

His Pro Phe His Phe Leu Pro Thr Thr Met His Leu His Ser Glu Ser
20 25 30

Ser

<210> 156
<211> 107
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (43)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (53)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 156
Glu Arg Ala Ser Ala Trp Pro Gly His Ser Pro Phe Ser Cys Thr Leu
1 5 10 15

Arg His Pro Lys Thr Leu Ala Val Ser Pro Ala Pro Val Tyr Leu Leu
20 25 30

Ser Ser Ser Ala Leu Phe Leu Pro Leu Thr Xaa Leu Pro Gly Ile Leu
35 40 45

Ser Gln Pro Glu Xaa Asn Pro Asn Arg Asn Glu Met Leu Ser Gly Asn
50 55 60

Leu Thr Lys Glu Ala Gln Ser His Phe Val Leu Pro Ser Pro His Ile
65 70 75 80

Pro Arg Thr Thr Ala Tyr Phe Lys Arg Thr Gln Thr Ile His Leu Tyr
85 90 95

Lys Gly Thr Ala Arg Lys Arg Ser Arg Gln Arg
100 105

<210> 157
<211> 35
<212> PRT
<213> Homo sapiens

<400> 157
Glu Arg Ala Ser Ala Trp Pro Gly His Ser Pro Phe Ser Cys Thr Leu
1 5 10 15

Arg His Pro Lys Thr Leu Ala Val Ser Pro Ala Pro Val Tyr Leu Leu
20 25 30

Ser Ser Ser
35

<210> 158
<211> 35
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (8)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 158
Ala Leu Phe Leu Pro Leu Thr Xaa Leu Pro Gly Ile Leu Ser Gln Pro
1 5 10 15

Glu Xaa Asn Pro Asn Arg Asn Glu Met Leu Ser Gly Asn Leu Thr Lys
20 25 30

Glu Ala Gln
35

<210> 159
<211> 37
<212> PRT
<213> Homo sapiens

<400> 159
Ser His Phe Val Leu Pro Ser Pro His Ile Pro Arg Thr Thr Ala Tyr
1 5 10 15

Phe Lys Arg Thr Gln Thr Ile His Leu Tyr Lys Gly Thr Ala Arg Lys
20 25 30

Arg Ser Arg Gln Arg
35

<210> 160
<211> 47
<212> PRT
<213> Homo sapiens

<400> 160
Lys Val Pro Asn Pro Leu Val Val Thr Ser Ile His Pro Thr Leu Ala
1 5 10 15
Gln Leu Gln Ile Ala Thr Arg Ser His Ser Ser Ser Cys Cys Leu Tyr
20 25 30
Arg Phe Ser Asn Ser Gly His Phe Ile Ser Met Glu Ser Tyr Asn
35 40 45

<210> 161
<211> 218
<212> PRT
<213> Homo sapiens

<400> 161
Gly Pro Ser Trp Pro Leu Trp Pro Arg Ser Ser Leu Gly Pro Cys Leu
1 5 10 15
Val Tyr Arg Val Trp Gly Asp Ser Met Cys Thr Pro Leu Leu Ser Gln
20 25 30
Val Asp Phe Glu Gln Leu Thr Glu Asn Leu Gly Gln Leu Glu Arg Arg
35 40 45
Ser Arg Ala Ala Glu Glu Ser Leu Arg Thr Trp Pro Ser Met Ser Trp
50 55 60
Pro Gln Pro Cys Val Pro Ala Ser Pro Thr Ser Trp Thr Ser Val Pro
65 70 75 80
Ala Arg Val Ala Met Leu Arg Ile Val His Arg Arg Val Cys Asn Arg
85 90 95
Phe His Ala Phe Leu Leu Tyr Leu Gly Tyr Thr Pro Gln Ala Ala Arg
100 105 110
Glu Val Arg Ile Met Gln Phe Cys His Thr Leu Arg Glu Phe Ala Leu
115 120 125
Glu Tyr Arg Thr Cys Arg Glu Arg Val Leu Gln Gln Gln Lys Gln
130 135 140
Ala Thr Tyr Arg Glu Arg Asn Lys Thr Arg Gly Arg Met Ile Thr Glu
145 150 155 160
Val Gly Ala Leu Pro Gly Leu Ser Leu Asp Cys His Leu Leu Gly Phe
165 170 175
Leu Arg Ser Ser Gln Leu Thr Leu Leu Ser Pro Asp Arg Glu Val

180

185

190

Leu Arg Cys Gly Trp Gly Ser Pro Gln Gln Pro Leu Cys Pro Ser Ser
 195 200 205

Ser Glu Gln Arg Ala Arg Pro Gly Arg Cys
 210 215

<210> 162
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 162
 Gly Pro Ser Trp Pro Leu Trp Pro Arg Ser Ser Leu Gly Pro Cys Leu
 1 5 10 15

Val Tyr Arg Val Trp Gly Asp Ser Met Cys Thr Pro Leu Leu Ser Gln
 20 25 30

Val Asp Phe Glu
 35

<210> 163
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 163
 Gln Leu Thr Glu Asn Leu Gly Gln Leu Glu Arg Arg Ser Arg Ala Ala
 1 5 10 15

Glu Glu Ser Leu Arg Thr Trp Pro Ser Met Ser Trp Pro Gln Pro Cys
 20 25 30

Val Pro Ala Ser
 35

<210> 164
 <211> 36
 <212> PRT
 <213> Homo sapiens

<400> 164
 Pro Thr Ser Trp Thr Ser Val Pro Ala Arg Val Ala Met Leu Arg Ile
 1 5 10 15

Val His Arg Arg Val Cys Asn Arg Phe His Ala Phe Leu Leu Tyr Leu
 20 25 30

Gly Tyr Thr Pro
 35

<210> 165

<211> 36
<212> PRT
<213> Homo sapiens

<400> 165
Gln Ala Ala Arg Glu Val Arg Ile Met Gln Phe Cys His Thr Leu Arg
1 5 10 15
Glu Phe Ala Leu Glu Tyr Arg Thr Cys Arg Glu Arg Val Leu Gln Gln
20 25 30
Gln Gln Lys Gln
35

<210> 166
<211> 36
<212> PRT
<213> Homo sapiens

<400> 166
Ala Thr Tyr Arg Glu Arg Asn Lys Thr Arg Gly Arg Met Ile Thr Glu
1 5 10 15
Val Gly Ala Leu Pro Gly Leu Ser Leu Asp Cys His Leu Leu Gly Phe
20 25 30
Leu Arg Ser Ser
35

<210> 167
<211> 38
<212> PRT
<213> Homo sapiens

<400> 167
Gln Leu Thr Leu Leu Ser Pro Asp Arg Glu Val Leu Arg Cys Gly
1 5 10 15
Trp Gly Ser Pro Gln Gln Pro Leu Cys Pro Ser Ser Glu Gln Arg
20 25 30
Ala Arg Pro Gly Arg Cys
35

<210> 168
<211> 35
<212> PRT
<213> Homo sapiens

<400> 168
Gly Ala Leu Leu Pro Gly Pro Gly Ser Ser Pro Phe Ser Pro Phe Gly
1 5 10 15
Leu Leu Cys Gln Gly Leu Leu Gln Pro Pro Gly Cys Glu Leu Cys Pro
20 25 30

Leu Pro Glu
35

<210> 169
<211> 702
<212> PRT
<213> Homo sapiens

<400> 169
Gly Thr Ser Lys Tyr Gly Asp Gln His Ser Ala Ala Gly Arg Asn Gly
1 5 10 15
Lys Pro Lys Val Ile Ala Val Thr Arg Ser Thr Ser Ser Thr Ser Ser
20 25 30
Gly Ser Asn Ser Asn Ala Leu Val Pro Val Ser Trp Lys Arg Pro Gln
35 40 45
Leu Ser Gln Arg Arg Thr Arg Glu Lys Leu Met Asn Val Leu Ser Leu
50 55 60
Cys Gly Pro Glu Ser Gly Leu Pro Lys Asn Pro Ser Val Val Phe Ser
65 70 75 80
Ser Asn Glu Asp Leu Glu Val Gly Asp Gln Gln Thr Ser Leu Ile Ser
85 90 95
Thr Thr Glu Asp Ile Asn Gln Glu Glu Val Ala Val Glu Asp Asn
100 105 110
Ser Ser Glu Gln Gln Phe Gly Val Phe Lys Asp Phe Asp Phe Leu Asp
115 120 125
Val Glu Leu Glu Asp Ala Glu Gly Glu Ser Met Asp Asn Phe Asn Trp
130 135 140
Gly Val Arg Arg Arg Ser Leu Asp Ser Ile Asp Lys Gly Asp Thr Pro
145 150 155 160
Ser Leu Gln Glu Tyr Gln Cys Ser Ser Ser Thr Pro Ser Leu Asn Leu
165 170 175
Thr Asn Gln Glu Asp Thr Asp Glu Ser Ser Glu Glu Ala Ala Leu
180 185 190
Thr Ala Ser Gln Ile Leu Ser Arg Thr Gln Met Leu Asn Ser Asp Ser
195 200 205
Ala Thr Asp Glu Thr Ile Pro Asp His Pro Asp Leu Leu Leu Gln Ser
210 215 220
Glu Asp Ser Thr Gly Ser Ile Thr Thr Glu Glu Val Leu Gln Ile Arg
225 230 235 240
Asp Glu Thr Pro Thr Leu Glu Ala Ser Leu Asp Asn Ala Asn Ser Arg
245 250 255

Leu Pro Glu Asp Thr Thr Ser Val Leu Lys Glu Glu His Val Thr Thr
 260 265 270
 Phe Glu Asp Glu Gly Ser Tyr Ile Ile Gln Glu Gln Gln Glu Ser Leu
 275 280 285
 Val Cys Gln Gly Ile Leu Asp Leu Glu Glu Thr Glu Met Pro Glu Pro
 290 295 300
 Leu Ala Pro Glu Ser Tyr Pro Glu Ser Val Cys Glu Glu Asp Val Thr
 305 310 315 320
 Leu Ala Leu Lys Glu Leu Asp Glu Arg Cys Glu Glu Glu Ala Asp
 325 330 335
 Phe Ser Gly Leu Ser Ser Gln Asp Glu Glu Glu Gln Asp Gly Phe Pro
 340 345 350
 Glu Val Gln Thr Ser Pro Leu Pro Ser Pro Phe Leu Ser Ala Ile Ile
 355 360 365
 Ala Ala Phe Gln Pro Val Ala Tyr Asp Asp Glu Glu Ala Trp Arg
 370 375 380
 Cys His Val Asn Gln Met Leu Ser Asp Thr Asp Gly Ser Ser Ala Val
 385 390 395 400
 Phe Thr Phe His Val Phe Ser Arg Leu Phe Gln Thr Ile Gln Arg Lys
 405 410 415
 Phe Gly Glu Ile Thr Asn Glu Ala Val Ser Phe Leu Gly Asp Ser Leu
 420 425 430
 Gln Arg Ile Gly Thr Lys Phe Lys Ser Ser Leu Glu Val Met Met Leu
 435 440 445
 Cys Ser Glu Cys Pro Thr Val Phe Val Asp Ala Glu Thr Leu Met Ser
 450 455 460
 Cys Gly Leu Leu Glu Thr Leu Lys Phe Gly Val Leu Glu Leu Gln Glu
 465 470 475 480
 His Leu Asp Thr Tyr Asn Val Lys Arg Glu Ala Ala Glu Gln Trp Leu
 485 490 495
 Asp Asp Cys Lys Arg Thr Phe Gly Ala Lys Glu Asp Met Tyr Arg Ile
 500 505 510
 Asn Thr Asp Ala Gln Glu Leu Glu Leu Cys Arg Arg Leu Tyr Lys Leu
 515 520 525
 His Phe Gln Leu Leu Leu Phe Gln Ala Tyr Cys Lys Leu Ile Asn
 530 535 540
 Gln Val Asn Thr Ile Lys Asn Glu Ala Glu Val Ile Asn Met Ser Glu
 545 550 555 560

100% identical

110

Glu Leu Ala Gln Leu Glu Ser Ile Leu Lys Glu Ala Glu Ser Ala Ser
565 570 575

Glu Asn Glu Glu Ile Asp Ile Ser Lys Ala Ala Gln Thr Thr Ile Glu
580 585 590

Thr Ala Ile His Ser Leu Ile Glu Thr Leu Lys Asn Lys Glu Phe Ile
595 600 605

Ser Ala Val Ala Gln Val Lys Ala Phe Arg Ser Leu Trp Pro Ser Asp
610 615 620

Ile Phe Gly Ser Cys Glu Asp Asp Pro Val Gln Thr Leu Ile His Ile
625 630 635 640

Tyr Phe His His Gln Thr Leu Gly Gln Thr Gly Ser Phe Ala Val Ile
645 650 655

Gly Ser Asn Leu Asp Met Ser Glu Ala Asn Tyr Lys Leu Met Glu Leu
660 665 670

Asn Leu Glu Ile Arg Glu Ser Leu Arg Met Val Gln Ser Tyr Gln Leu
675 680 685

Leu Ala Gln Ala Lys Pro Met Gly Asn Met Val Ser Thr Gly
690 695 700

<210> 170

<211> 37

<212> PRT

<213> Homo sapiens

<400> 170

Gly Thr Ser Lys Tyr Gly Asp Gln His Ser Ala Ala Gly Arg Asn Gly
1 5 10 15

Lys Pro Lys Val Ile Ala Val Thr Arg Ser Thr Ser Ser Thr Ser Ser
20 25 30

Gly Ser Asn Ser Asn

35

<210> 171

<211> 37

<212> PRT

<213> Homo sapiens

<400> 171

Ala Leu Val Pro Val Ser Trp Lys Arg Pro Gln Leu Ser Gln Arg Arg
1 5 10 15

Thr Arg Glu Lys Leu Met Asn Val Leu Ser Leu Cys Gly Pro Glu Ser
20 25 30

Gly Leu Pro Lys Asn

35

<210> 172
<211> 37
<212> PRT
<213> Homo sapiens

<400> 172
Pro Ser Val Val Phe Ser Ser Asn Glu Asp Leu Glu Val Gly Asp Gln
1 5 10 15
Gln Thr Ser Leu Ile Ser Thr Thr Glu Asp Ile Asn Gln Glu Glu Glu
20 25 30
Val Ala Val Glu Asp
35

<210> 173
<211> 37
<212> PRT
<213> Homo sapiens

<400> 173
Asn Ser Ser Glu Gln Gln Phe Gly Val Phe Lys Asp Phe Asp Phe Leu
1 5 10 15
Asp Val Glu Leu Glu Asp Ala Glu Gly Glu Ser Met Asp Asn Phe Asn
20 25 30
Trp Gly Val Arg Arg
35

<210> 174
<211> 37
<212> PRT
<213> Homo sapiens

<400> 174
Arg Ser Leu Asp Ser Ile Asp Lys Gly Asp Thr Pro Ser Leu Gln Glu
1 5 10 15
Tyr Gln Cys Ser Ser Ser Thr Pro Ser Leu Asn Leu Thr Asn Gln Glu
20 25 30
Asp Thr Asp Glu Ser
35

<210> 175
<211> 37
<212> PRT
<213> Homo sapiens

<400> 175
Ser Glu Glu Glu Ala Ala Leu Thr Ala Ser Gln Ile Leu Ser Arg Thr
1 5 10 15

Gln Met Leu Asn Ser Asp Ser Ala Thr Asp Glu Thr Ile Pro Asp His
 20 25 30

Pro Asp Leu Leu Leu
 35

<210> 176
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 176
 Gln Ser Glu Asp Ser Thr Gly Ser Ile Thr Thr Glu Glu Val Leu Gln
 1 5 10 15

Ile Arg Asp Glu Thr Pro Thr Leu Glu Ala Ser Leu Asp Asn Ala Asn
 20 25 30

Ser Arg Leu Pro Glu
 35

<210> 177
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 177
 Asp Thr Thr Ser Val Leu Lys Glu Glu His Val Thr Thr Phe Glu Asp
 1 5 10 15

Glu Gly Ser Tyr Ile Ile Gln Glu Gln Gln Glu Ser Leu Val Cys Gln
 20 25 30

Gly Ile Leu Asp Leu
 35

<210> 178
 <211> 37
 <212> PRT
 <213> Homo sapiens

<400> 178
 Glu Glu Thr Glu Met Pro Glu Pro Leu Ala Pro Glu Ser Tyr Pro Glu
 1 5 10 15

Ser Val Cys Glu Glu Asp Val Thr Leu Ala Leu Lys Glu Leu Asp Glu
 20 25 30

Arg Cys Glu Glu Glu
 35

<210> 179
 <211> 37

<212> PRT
<213> Homo sapiens

```

<210> 180
<211> 37
<212> PRT
<213> Homo sapiens

<400> 180
Phe Gln Pro Val Ala Tyr Asp Asp Glu Glu Glu Ala Trp Arg Cys His
   1           5           10          15

Val Asn Gln Met Leu Ser Asp Thr Asp Gly Ser Ser Ala Val Phe Thr
   20          25          30

Phe His Val Phe Ser
   35

```

```

<210> 181
<211> 37
<212> PRT
<213> Homo sapiens

<400> 181
Arg Leu Phe Gln Thr Ile Gln Arg Lys Phe Gly Glu Ile Thr Asn Glu
   1           5                   10                  15

Ala Val Ser Phe Leu Gly Asp Ser Leu Gln Arg Ile Gly Thr Lys Phe
   20          25                  30

Lys Ser Ser Leu Glu
   35

```

```

<210> 182
<211> 37
<212> PRT
<213> Homo sapiens

<400> 182
Val Met Met Leu Cys Ser Glu Cys Pro Thr Val Phe Val Asp Ala Glu
      1           5                   10                      15

Thr Leu Met Ser Cys Gly Leu Leu Glu Thr Leu Lys Phe Gly Val Leu
      20          25                   30

```

Glu Leu Gln Glu His
35

<210> 183
<211> 37
<212> PRT
<213> Homo sapiens

<400> 183
Leu Asp Thr Tyr Asn Val Lys Arg Glu Ala Ala Glu Gln Trp Leu Asp
1 5 10 15
Asp Cys Lys Arg Thr Phe Gly Ala Lys Glu Asp Met Tyr Arg Ile Asn
20 25 30

Thr Asp Ala Gln Glu
35

<210> 184
<211> 37
<212> PRT
<213> Homo sapiens

<400> 184
Leu Glu Leu Cys Arg Arg Leu Tyr Lys Leu His Phe Gln Leu Leu Leu
1 5 10 15
Leu Phe Gln Ala Tyr Cys Lys Leu Ile Asn Gln Val Asn Thr Ile Lys
20 25 30

Asn Glu Ala Glu Val
35

<210> 185
<211> 37
<212> PRT
<213> Homo sapiens

<400> 185
Ile Asn Met Ser Glu Glu Leu Ala Gln Leu Glu Ser Ile Leu Lys Glu
1 5 10 15
Ala Glu Ser Ala Ser Glu Asn Glu Glu Ile Asp Ile Ser Lys Ala Ala
20 25 30

Gln Thr Thr Ile Glu
35

<210> 186
<211> 37
<212> PRT
<213> Homo sapiens

<400> 186

Thr Ala Ile His Ser Leu Ile Glu Thr Leu Lys Asn Lys Glu Phe Ile
 1 5 10 15

Ser Ala Val Ala Gln Val Lys Ala Phe Arg Ser Leu Trp Pro Ser Asp
 20 25 30

Ile Phe Gly Ser Cys
 35

<210> 187

<211> 37

<212> PRT

<213> Homo sapiens

<400> 187

Glu Asp Asp Pro Val Gln Thr Leu Ile His Ile Tyr Phe His His Gln
 1 5 10 15

Thr Leu Gly Gln Thr Gly Ser Phe Ala Val Ile Gly Ser Asn Leu Asp
 20 25 30

Met Ser Glu Ala Asn
 35

<210> 188

<211> 36

<212> PRT

<213> Homo sapiens

<400> 188

Tyr Lys Leu Met Glu Leu Asn Leu Glu Ile Arg Glu Ser Leu Arg Met
 1 5 10 15

Val Gln Ser Tyr Gln Leu Leu Ala Gln Ala Lys Pro Met Gly Asn Met
 20 25 30

Val Ser Thr Gly
 35

<210> 189

<211> 703

<212> PRT

<213> Homo sapiens

<400> 189

Gly Thr Ser Lys Tyr Gly Asp Gln His Ser Ala Ala Gly Arg Asn Gly
 1 5 10 15

Lys Pro Lys Val Ile Ala Val Thr Arg Ser Thr Ser Ser Thr Ser Ser
 20 25 30

Gly Ser Asn Ser Asn Ala Leu Val Pro Val Ser Trp Lys Arg Pro Gln
 35 40 45

Leu Ser Gln Arg Arg Thr Arg Glu Lys Leu Met Asn Val Leu Ser Leu

50	55	60
Cys Gly Pro Glu Ser Gly Leu Pro Lys Asn Pro Ser Val Val Phe Ser		
65	70	75
Ser Asn Glu Asp Leu Glu Val Gly Asp Gln Gln Thr Ser Leu Ile Ser		
	85	90
95		
Thr Thr Glu Asp Ile Asn Gln Glu Glu Val Ala Val Glu Asp Asn		
100	105	110
Ser Ser Glu Gln Gln Phe Gly Val Phe Lys Asp Phe Asp Phe Leu Asp		
115	120	125
Val Glu Leu Glu Asp Ala Glu Gly Glu Ser Met Asp Asn Phe Asn Trp		
130	135	140
Gly Val Arg Arg Arg Ser Leu Asp Ser Ile Asp Lys Gly Asp Thr Pro		
145	150	155
160		
Ser Leu Gln Glu Tyr Gln Cys Ser Ser Ser Thr Pro Ser Leu Asn Leu		
	165	170
175		
Thr Asn Gln Glu Asp Thr Asp Glu Ser Ser Glu Glu Glu Ala Ala Leu		
	180	185
190		
Thr Ala Ser Gln Ile Leu Ser Arg Thr Gln Met Leu Asn Ser Asp Ser		
195	200	205
Ala Thr Asp Glu Thr Ile Pro Asp His Pro Asp Leu Leu Leu Gln Ser		
210	215	220
Glu Asp Ser Thr Gly Ser Ile Thr Thr Glu Glu Val Leu Gln Ile Arg		
225	230	235
240		
Asp Glu Thr Pro Thr Leu Glu Ala Ser Leu Asp Asn Ala Asn Ser Arg		
	245	250
255		
Leu Pro Glu Asp Thr Thr Ser Val Leu Lys Glu Glu His Val Thr Thr		
	260	265
270		
Phe Glu Asp Glu Gly Ser Tyr Ile Ile Gln Glu Gln Gln Glu Ser Leu		
	275	280
285		
Val Cys Gln Gly Ile Leu Asp Leu Glu Glu Thr Glu Met Pro Glu Pro		
290	295	300
Leu Ala Pro Glu Ser Tyr Pro Glu Ser Val Cys Glu Glu Asp Val Thr		
305	310	315
320		
Leu Ala Leu Lys Glu Leu Asp Glu Arg Cys Glu Glu Glu Ala Asp		
	325	330
335		
Phe Ser Gly Leu Ser Ser Gln Asp Glu Glu Glu Gln Asp Gly Phe Pro		
	340	345
350		
Glu Val Gln Thr Ser Pro Leu Pro Ser Pro Phe Leu Ser Ala Ile Ile		
	355	360
365		

Ala Ala Phe Gln Pro Val Ala Tyr Asp Asp Glu Glu Ala Trp Arg
 370 375 380

 Cys His Val Asn Gln Met Leu Ser Asp Thr Asp Gly Ser Ser Ala Val
 385 390 395 400

 Phe Thr Phe His Val Phe Ser Arg Leu Phe Gln Thr Ile Gln Arg Lys
 405 410 415

 Phe Gly Glu Ile Thr Asn Glu Ala Val Ser Phe Leu Gly Asp Ser Leu
 420 425 430

 Gln Arg Ile Gly Thr Lys Phe Lys Ser Ser Leu Glu Val Met Met Leu
 435 440 445

 Cys Ser Glu Cys Pro Thr Val Phe Val Asp Ala Glu Thr Leu Met Ser
 450 455 460

 Cys Gly Leu Leu Glu Thr Leu Lys Phe Gly Val Leu Glu Leu Gln Glu
 465 470 475 480

 His Leu Asp Thr Tyr Asn Val Lys Arg Glu Ala Ala Glu Gln Trp Leu
 485 490 495

 Asp Asp Cys Lys Arg Thr Phe Gly Ala Lys Glu Asp Met Tyr Arg Ile
 500 505 510

 Asn Thr Asp Ala Gln Glu Leu Glu Leu Cys Arg Arg Leu Tyr Lys Leu
 515 520 525

 His Phe Gln Leu Leu Leu Phe Gln Ala Tyr Cys Lys Leu Ile Asn
 530 535 540

 Gln Val Asn Thr Ile Lys Asn Glu Ala Glu Val Ile Asn Met Ser Glu
 545 550 555 560

 Glu Leu Ala Gln Leu Glu Ser Ile Leu Lys Glu Ala Glu Ser Ala Ser
 565 570 575

 Glu Asn Glu Glu Ile Asp Ile Ser Lys Ala Ala Gln Thr Thr Ile Glu
 580 585 590

 Thr Ala Ile His Ser Leu Ile Glu Thr Leu Lys Asn Lys Glu Phe Ile
 595 600 605

 Ser Ala Val Ala Gln Val Lys Ala Phe Arg Ser Leu Trp Pro Ser Asp
 610 615 620

 Ile Phe Gly Ser Cys Glu Asp Asp Pro Val Gln Thr Leu Ile His Ile
 625 630 635 640

 Tyr Phe His His Gln Thr Leu Gly Gln Thr Gly Ser Phe Ala Val Ile
 645 650 655

 Gly Ser Asn Leu Asp Met Ser Glu Ala Asn Tyr Lys Leu Met Glu Leu
 660 665 670

Asn Leu Glu Ile Arg Glu Ser Leu Arg Met Val Gln Ser Tyr Gln Leu
675 680 685

Leu Ala Gln Ala Lys Pro Met Gly Asn Met Val Ser Thr Gly Phe
690 695 700

```
<210> 190  
<211> 645  
<212> PRT  
<213> Homo sapiens
```

<400> 190
Met Asn Val Leu Ser Leu Cys Gly Pro Glu Ser Gly Leu Pro Lys Asn
1 5 10 15

Pro Ser Val Val Phe Ser Ser Asn Glu Asp Leu Glu Val Gly Asp Gln
 20 25 30

Gln Thr Ser Leu Ile Ser Thr Thr Glu Asp Ile Asn Gln Glu Glu Glu
35 40 45

Val Ala Val Glu Asp Asn Ser Ser Glu Glu Gln Gln Phe Gly Val Phe Lys
50 55 60

Asp	Phe	Asp	Phe	Leu	Asp	Val	Glu	Leu	Glu	Asp	Ala	Glu	Gly	Glu	Ser
65				70					75						80

Met Asp Asn Phe Asn Trp Gly Val Arg Arg Arg Ser Leu Asp Ser Ile
85 90 95

Asp Lys Gly Asp Thr Pro Ser Leu Gln Glu Tyr Gln Cys Ser Ser Ser
100 105 110

Thr Pro Ser Leu Asn Leu Thr Asn Gln Glu Asp Thr Asp Glu Ser Ser
115 120 125

Glu Glu Glu Ala Ala Leu Thr Ala Ser Gln Ile Leu Ser Arg Thr Gln
 130 135 140

Met Leu Asn Ser Asp Ser Ala Thr Asp Glu Thr Ile Pro Asp His Pro
145 150 155 160

Asp Leu Leu Leu Gin Ser Glu Asp Ser Thr Gly Ser Ile Thr Thr Glu
165 170 175

Glu Val Leu Gin Ile Arg Asp Glu Thr Pro Thr Leu Glu Ala Ser Leu
180 185 190

Asp Ash Ala Ash Ser Arg Leu Pro Glu Asp Thr Thr Ser Val Leu Lys
195 200 205

Glu Glu His Val Thr Thr Phe Glu Asp Glu Gly Ser Tyr Ile Ile Gin
210 215 220

Glu Gin Gin Glu Ser Leu Val Cys Gin Gly Ile Leu Asp Leu Glu Glu
225 230 235 240

Thr Glu Met Pro Glu Pro Leu Ala Pro Glu Ser Tyr Pro Glu Ser Val
 245 250 255
 Cys Glu Glu Asp Val Thr Leu Ala Leu Lys Glu Leu Asp Glu Arg Cys
 260 265 270
 Glu Glu Glu Ala Asp Phe Ser Gly Leu Ser Ser Gln Asp Glu Glu
 275 280 285
 Glu Gln Asp Gly Phe Pro Glu Val Gln Thr Ser Pro Leu Pro Ser Pro
 290 295 300
 Phe Leu Ser Ala Ile Ile Ala Ala Phe Gln Pro Val Ala Tyr Asp Asp
 305 310 315 320
 Glu Glu Glu Ala Trp Arg Cys His Val Asn Gln Met Leu Ser Asp Thr
 325 330 335
 Asp Gly Ser Ser Ala Val Phe Thr Phe His Val Phe Ser Arg Leu Phe
 340 345 350
 Gln Thr Ile Gln Arg Lys Phe Gly Glu Ile Thr Asn Glu Ala Val Ser
 355 360 365
 Phe Leu Gly Asp Ser Leu Gln Arg Ile Gly Thr Lys Phe Lys Ser Ser
 370 375 380
 Leu Glu Val Met Met Leu Cys Ser Glu Cys Pro Thr Val Phe Val Asp
 385 390 395 400
 Ala Glu Thr Leu Met Ser Cys Gly Leu Leu Glu Thr Leu Lys Phe Gly
 405 410 415
 Val Leu Glu Leu Gln Glu His Leu Asp Thr Tyr Asn Val Lys Arg Glu
 420 425 430
 Ala Ala Glu Gln Trp Leu Asp Asp Cys Lys Arg Thr Phe Gly Ala Lys
 435 440 445
 Glu Asp Met Tyr Arg Ile Asn Thr Asp Ala Gln Glu Leu Glu Leu Cys
 450 455 460
 Arg Arg Leu Tyr Lys Leu His Phe Gln Leu Leu Leu Phe Gln Ala
 465 470 475 480
 Tyr Cys Lys Leu Ile Asn Gln Val Asn Thr Ile Lys Asn Glu Ala Glu
 485 490 495
 Val Ile Asn Met Ser Glu Leu Ala Gln Leu Glu Ser Ile Leu Lys
 500 505 510
 Glu Ala Glu Ser Ala Ser Glu Asn Glu Glu Ile Asp Ile Ser Lys Ala
 515 520 525
 Ala Gln Thr Thr Ile Glu Thr Ala Ile His Ser Leu Ile Glu Thr Leu
 530 535 540
 Lys Asn Lys Glu Phe Ile Ser Ala Val Ala Gln Val Lys Ala Phe Arg

545 550 555 560
Ser Leu Trp Pro Ser Asp Ile Phe Gly Ser Cys Glu Asp Asp Pro Val
565 570 575
Gln Thr Leu Ile His Ile Tyr Phe His His Gln Thr Leu Gly Gln Thr
580 585 590
Gly Ser Phe Ala Val Ile Gly Ser Asn Leu Asp Met Ser Glu Ala Asn
595 600 605
Tyr Lys Leu Met Glu Leu Asn Leu Glu Ile Arg Glu Ser Leu Arg Met
610 615 620
Val Gln Ser Tyr Gln Leu Leu Ala Gln Ala Lys Pro Met Gly Asn Met
625 630 635 640
Val Ser Thr Gly Phe
645