# **Greedy Algorithms**

Vasanth Reddy

CS 5114

1/18

#### Content

| _ |        |         |
|---|--------|---------|
|   | Intr∩d | luction |
|   |        |         |

- $\square$  Algorithms
- ☐ Iterative Depth Search
- ☐ Greedy Best First Search
- □ epsilon Greedy Best First Search
- ☐ Problem, Inputs, Objective
- $\square$  Results
- ☐ Conclusion

#### Introduction

| Ш | Search algorithm is any algorithm which solves the search problem,      |
|---|-------------------------------------------------------------------------|
|   | namely, to retrieve information stored within some data structure       |
|   | Search to find a desired variable in a graph/tree                       |
|   | Vehicle Routing Problem                                                 |
|   | Project is mainly based on finding a goal state from a start state; i.e |
|   | Optimal cost problem                                                    |

# Algorithms

- ☐ Un-informed/Naive/Brute-force Search: It is a naive search method.
  - → No information about path cost or number of steps
  - → They just differentiate present state and desired state
  - → Iterative Deepening Search(IDS) is explored in this project
- □ Informed Search
  - → These algorithms are little cognitive about the path they choose
  - → Greedy Best First Search and epsilon Greedy Best First Search algorithms are explored.

4 / 18

# Iterative Deepening Search

- □ Naive approach
- $\square$  It is the combination of BFS and DFS.
- □ IDS calls DFS for different depths starting from an initial value. In every call, DFS is restricted from going beyond given depth
- ☐ It is like DFS in BFS fashion
- $\Box$  Complexity is  $O(b^d)$ , where b is the number of children nodes and d is the depth of the tree/graph

5 / 18



| Depth | Search Nodes        |
|-------|---------------------|
| 1     | 0                   |
| 2     | 0, 1, 2             |
| 3     | 0, 1, 3, 4, 2, 5, 6 |

6 / 18

#### Greedy Best First Search

| The idea of informed search is to choose adjacent node with a given                                               |
|-------------------------------------------------------------------------------------------------------------------|
| heuristic function                                                                                                |
| In Greedy Best First Search, the heuristic function $\mathit{h}(\mathit{n}) = select$ the node with cheapest cost |
| It used the above heuristic function to expand                                                                    |
| Time Complexity is $O(n * logn)$                                                                                  |

7/18



8 / 18

- $\square$  It is not optimal sometimes
- $\square$  It get stuck in loop and doesn't reach goal state.



9/18

# epsilon Greedy Best First Search

| Ш | Reinforcement Learning algorithms.                                              |
|---|---------------------------------------------------------------------------------|
|   | It is same as the Greedy Best First Search but with a little modification       |
|   | In order to overcome the problems associated GBFS some features have been added |
|   | Randomness have been added to Greedy Search.                                    |
|   | Algorithm is epsilon times random otherwise it'll be greedy                     |
|   | Time Complexity is $O(n * log n)$                                               |

Vasanth Reddy Greedy Algorithms CS 5114 10 / 18



Vasanth Reddy Greedy Algorithms CS 5114 11 / 18



Vasanth Reddy Greedy Algorithms CS 5114 12 / 18

# Problem, Inputs, Objective

- ☐ A maze is a path or collection of paths, typically from an entrance to a goal. The main objective for any solver is to get to the terminal state/goal state from a given point
- $\square$  Generate the Maze randomly with the following inputs.
  - → Maze Size; This gives the dimension of the maze. Contains in the format of rows and columns in a given matrix
  - → Wall Locations
  - → Trap Locations; Both the wall and trap locations are randomly generated and are randomly distributed throughout the maze. Solver will be penalised for getting into trap which would ultimately result in increase of cost.
  - → Goal Locations
  - → Start Location

Vasanth Reddy Greedy Algorithms CS 5114 13/18



# **Experiment and Results**





Vasanth Reddy Greedy Algorithms CS 5114 15 / 18

# Complexity





# Time Elapsed







# The End

Vasanth Reddy Greedy Algorithms CS 5114 18 / 18