张书茂申诉

305 idiots

2012年10月

目录

1	第一题	1
2	第二题第 2 小问	1
3	第三题	1
4	第四题	2

1 第一题

如原题解答,并补证了 O_1,O_2 在AN同侧。

2 第二题第2小问

3 第三题

$$\frac{\stackrel{.}{\cong}}{n} = 14$$
 时
$$\frac{\sqrt{(n+1)!}}{3^n} \le \sqrt{\frac{15!}{(3^{14})^2}} = \sqrt{\frac{15 \times 14 \times \dots \times 2}{9 \times 9 \times \dots \times 9}}$$

$$\because \frac{(9+i)(9-i)}{9 \cdot 9} = \frac{9^2 - i^2}{9^2} < 1, i = 1, 2, \dots, 6$$

$$\therefore \sqrt{\frac{15!}{9^{14}}} < \sqrt{\frac{2}{9}} < 1, \dots \sqrt{\frac{(n+1)!}{(3^n)^2}} < 1$$

$$\because |P_0P_i| \ge d, i = 1, 2, \dots, n.$$

$$\therefore \prod_{i=1}^n |P_0P_i| \ge d^n > d^n \frac{\sqrt{(n+1)!}}{3^n} = (\frac{d}{3})^n \sqrt{(n+1)!}$$
 当 $n > 14$ 时 设 $n = k$ 时命题成立. 当 $n = k + 1$ 时,下面用反证法. 证明: $|P_0P_1|, \dots, |P_0P_{n+1}|$ 中,存在一个大于等于 $\frac{d}{3}\sqrt{n+2}$.

否则, 假设不成立. 则以 P_0 位圆心, $d(\frac{\sqrt{n+2}}{3}+\frac{1}{2})$ 为半径作圆, 再以 $P_i(i=1,2,\cdots,n+1)$ 为 圆心, $\frac{d}{2}$ 为半径作圆. 则 $\odot P_i(i=1,2,\cdots,n+1)$ 均内含于 $\odot P_0(d(\frac{\sqrt{n+2}}{2}+\frac{1}{2}))>\frac{d}{2}+\frac{d}{2}\sqrt{n+2}>$ $\frac{d}{2} + |P_0 P_i|$.

且 $\odot P_i(i=1,2,\cdots,n+1)$ 均外离或外切 (否则, 设 $\odot P_i$ 与 $\odot P_j$ 交于 A,B 两点, 则 P_i,A,P_j 不 共线, $|P_iP_j| < |P_iA| + |P_jA| = d$. 矛盾).

设 $f(x) = 25x^2 - 224x - 224$, ∴ f(x) 的对称轴为 $x = \frac{112}{25} < 14$.

又 $f(14) = 126 \times 14 - 224 > 0$. $\therefore n < 14$ 与 $n \ge 14$ 矛盾.

∴ 不妨设 $|P_0P_{n+1}| = \frac{d}{3}\sqrt{n+2}$.

由归纳假设, 因为 P_0, P_1, \dots, P_n 之间距离大于等于 $d.: \prod_{i=1}^n n|P_0P_i| > (\frac{d}{3})^n \sqrt{(n+1)!}$.

由数学归纳法, 命题对 $n \in N^*$ 成立即 $\prod_{i=1}^n |P_0 P_i| > (\frac{d}{3})^n \sqrt{(n+1)!}$.

第四题

首先证明: S_n 发散 (当 n 趋于正无穷时, S_n 趋于正无穷)

设 $f(x) = \ln x - (x-1), f'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$. 当 $x \ge 1$ 时, $f'(x) \le 0$, $\therefore f(1) = 0$, $\therefore x > 1$ 时, f(x) < 0, $\therefore \ln x < x - 1$. 令 $x = \frac{n+1}{n}$, $\therefore \ln \frac{n+1}{n} < \frac{1}{n}$, $\therefore S_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} > \ln \frac{2}{1} + \ldots + \ln \frac{n+1}{n} = \ln(n+1)$. $\therefore n$ 趋于正无穷时 $\ln(n+1)$ 趋于正无穷, $\therefore S_n$ 发散.

下面用反证法证明命题. 即设存在 $0 \le a < b \le 1$, 使 $\{S_n - [S_n]\}$ 中只有有限项属于 (a,b), 故 存在 N, 使 n > N 时, $S_n - [S_n]$ 无一项属于 (a,b). 设 $N' = [\frac{1}{b-a}] + 1$, 记 $M = \max\{N, N'\}$, 则 n > M 时, $S_{n+1} - S_n < \frac{1}{M+1} < b-a$, 即 S_n " 步长" 小于 b-a. 设 $k = [S_{M+1}]$, $\therefore S_{M+1} \in [k, k+1)$, $S_{M+1} - [S_{M+1}] \not\in (a,b)$.

- 1. $S_M < k + a$. $S_n < k + a$, 否则存在 $j \in N^*$, $S_j < k + a$, $S_{j+1} > k + b$, 显然 $j \geq M$. $\therefore S_{i+1} - S_i > b - a$, 与 $S_{i+1} - S_i < b - a$ 矛盾. $\therefore S_n < k + a$, 与 S_n 发散矛盾.
- 2. $S_M > k + b$. $S_n < k + 1 + a$, 否则存在 $j \in N^*$, $S_i < k + 1 + a$, $S_{i+1} > k + 1 + b$. 显然 $j \ge M$. $S_{i+1} - S_i > b - a$ 与 $S_{i+1} - S_i < b - a$ 矛盾. $S_n < b + 1 + a$, 与 S_n 发散矛盾.

综上,矛盾,故命题成立. 即对 $0 \le a < b \le 1$ 的实数 a,b,数列 $\{S_n - [S_n]\}$ 中有无穷多项属于 (a,b)