UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

IBM NALAIYA THIRAN

Project Report Submitted by

JERISH JOHNSON D A(412519106058)

JANARTHANAN S(412519106054)

ARUN KUMAR K(412519106061)

HARISH M U(412519106041)

BACHELOR OF ENGINEERING

In

ELECTRONICS AND COMMUNICATION ENGINEERING

1.INTRODUCTION

1.1 PROJECT OVERVIEW

Students are often worried about their chances of admission to University. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances in a particular university. This analysis should also help students who are currently preparing or will be preparing to get a better idea.

1.2 PURPOSE

This project Engineering Admission Predictor System is web based application in which students can register with their personal as well as marks details for prediction the admission in colleges and the administrator can allot the seats for the students. Administrator can add the college details and he batch details

2.Literature Survey

2.1 Existing problem: The problem here is the students can't able to know their chance percentage of getting into the desired college and the difficulty they face here is at what kind of percentage is needed to get into that college.

2.2 References:

- https://ieeexplore.ieee.org/document/9042216
- https://ieeexplore.ieee.org/abstract/document/9397988
- https://ieeexplore.ieee.org/document/8862140
- https://ieeexplore.ieee.org/abstract/document/9249747

2.3 Problem Statement Definition

Concerns about getting into college are common among students. This project's goal is to assist students in narrowing down institutions based on their profiles. The anticipated results offer them a good indication of their prospects of admission to a particular university. This analysis ought to provide better insight for students who are or will be preparing for exams. The issue here is that the students are unable to determine their likelihood of entering the desired college, and they struggle to understand what kind of percentage is required to enter that institution.

3.IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

A concise, easy-to-understand image called an empathy map condenses information about a user's activities and view points. It is a useful tool that enables teams to better understand their users.

3.2 Ideation & Brainstorming

Everyone in a team is urged to participate in the process of original thought that yields problem solutions during a brainstorming session. In order to generate a wealth of unique solutions, volume over quality is prioritised, unexpected ideas are embraced and expanded upon, and everyone is urged to participate.

3.3 Proposed Solution

1.8	neter	ription
	em Statement (Problem to besolved)	eck the University eligibility criteria of astudent by their cut-off mark.
	/ Solution description	der to immediately benefit from preparing selves in accordance with the university's rements, students and parents need a mechanism se and list the universities available for their cut-o.
	lty / Uniqueness	nine language is used in order to analyse the fastes to know whether the eligibility ia is met for the particular college
	l Impact / Customer Satisfaction	nterface is much easier to use so that anyone make f it easier way to know theireligibility criteria

ess Model (Revenue Model)	an be deployed so that based on this usability
	ges get admission and the institutions and colleges
	e charged for this
	t added in the list.
bility of the Solution	nost scalable that the seats available in thecollege
	ased on the students ranking based on their cut-o
	s the seats are allotted based on their rankings

3.4 Problem Solution Fit

4.Emotions : Before and After

 Prior failure to select the ideal university owing to uncertainity and lack of knowledge of the procedure.

 After secure approachable and cognizant of processes ,rbduced cost and does not rule out potential universities.

 To choose institutions where applying for admission makes sense in order to pursue higher education, the objective is toinvest less time, money, and effort.

 The system is fed data about a student's academic performance, including their GPA, TOEFL, and GRE scores as well as their resumes, LORs, and SOPs. Explore AS, differneciate

Extract Online and Offline

The students can research the colleges they want to attend online and gather the essential information.

This is a lengthy process that might omit several intriguing universities

To get admission information, personally visit your top

4. REQUIREMENT ANALYSIS

4.1 Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form
		Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Data Collection	The data such as GRE score, cut-off marks are collected.
FR-4	Evaluation	The evaluation is done using the students cutoff marks,GRE
		score.
FR-5	Prediction	Prediction is done based on the users given data by sing
		using the machine learning algorithm.
FR-6	Output	Based on their cut-off marks the eligibility percentageof
		the selected college is shown.

4.2 Non Funtional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Ease of Access UI Satisfaction
NFR-2	Security	Encryption is used Login used ID and password is required.
NFR-3	Reliability	The predictor system will be consistent in order forthe system to produce trustworthy and accurate outcomes.
NFR-4	Performance	A logistic regression is used

NFR-5	Availability	Since it runs on the cloud it can be accessed anywhere, anytime, anyplace.
NFR-6	Scalability	It has the ability to handle any amount of data that is given by the user.

5.PROJECT DESIGN

5.1 Data Flow Diagram

miro

5.2 Solution and Technical Architecture

miro

Table:Components and Technologies

S.No	Component	Description	Technology
1	User Interface	The Front-end part of the application	HTML,CSS
2	Application Logic-1	Logic for a process in the application	Python
3	Application Logic-2	Logic for a process in the application	IBM Watson
4	Application Logic-3	Logic for a process in the application	IBM Watson
5	Database	Data type ,Configuration.	IBM cloud
6	Cloud Database	Database services on cloud	IBM DB2,IBM Cloudant,etc.
7	Libraries	Import Libraries into data	Numpy,Pandas,Seaborn,Matplotlib
8	File Storage	File storage requirements	Local File System
9	Machine Learning Model	Purpose of Machine Learning Model	Admission Prediction Model
10	Training and testing data	Purpose of training and testing data	Logistic Regression algorithm
11	Accuracy	Accuracy of the tested and trained data	Root Mean Squared Logarithmic Error(RMSLE),Mean Squared Error(MSE),Statistics.
12	Infrastructure	Cloud Local Server Configuration	Local

Table : Application Characteristics

S.No	Characteristics	Description	Technologies Used	
1	Open-Source Frameworks	The opensource Framework used here is python.	Flask Framework	
2	Security Implementations	The user profile has been stored in a secured way in the cloud.		
3	Scalable Architecture	Many computations can be done in a time saving and effective way using ML.	Logistic Regression	
4	Availability	Our web application is available at anytime and at any place	IBM Balancer	
5	Performance	As logistic regression is applied to develop the performance will be more effective	Logistic Regression	

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Web user)	Registration	USN-1	As a user, I can create an account so that I can acces it.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I can register to the application through Gmail	I can access my account	Medium	Sprint-1
	Login	USN-3	As a user, I can log into the application by entering the login credentials	I can access my account	High	Sprint-1
	Edit Profile	USN-4	As a user, after logging in, I will have to update my profile by providing all the required details.	I can complete the profile to proceed with the prediction process.	High	Sprint-2
	Choose University	USN-5	As a user, I will be able to view the list of Universities that the students are eligible to apply based on the cutoff given.	I can put the cut off markand the GRE score so that I can see the unniverities and chances of getting it	High	Sprint-3
	Choose Course	USN-6	As a user, I will be able to view the list of courses that the students are eligible to apply.	I can able to see the list of colleges available to me.	Medium	Sprint-3
	Admission Process	USN-7	As a user,I will be able to view the chances of getting that college based on my cutoff given.	I can view the details of Admission process being displayed at the end of prediction.	High	Sprint-4
Administrator	Authentication	USN-8	As a admin , the login credential of the user is authenticated my me.	I can retrieve and make use of all the user details.	High	Sprint-1
	Update Profile	USN-9	As a admin,I can verify the user entered details.	I can confirm and access the user details.	High	Sprint-2

Prediction	USN-10	As a admin,I can test the trained ML	I can test the user data	High	Sprint-3
		model by analysing the user details by ML algorithms like Logistic Regression.	with the trained ML model.		
Output	USN-12	As a admin,I can upload the confirmation of user for the prediction into the Database.	I can keep track of user data and activities by storing in database.	High	Sprint-4

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password	2	low	Harish,Arun kumar
Sprint-1	Entering cutoff marks	USN-2	As a user I can enter my cut off scores	3	High	Harish , Arun kumar
Sprint-1	UI	USN-3	The user interface is created	4	high	Jerish Johnson, Janarthanan
Sprint-2	Model Building	USN-4	Using the dataset the model can be build using ML algorithm	6	high	Arunkumar, Janarthanan
Sprint-2		USN-5	Training the classification model	5	High	Janarthanan harish
Sprint-3	Application building	USN-6	Building the python code to run the application	5	high	Jerish,harish
Sprint-3	Testing	USN-7	Testing the ML model	3	low	Harish,Arun kumar
Sprint-3		USN-8	Predicted result is shown on the website	4	Medium	Jerish,harish
Sprint-4	Link the model	USN-9	Linking the HTML and the python code	4	hign	Jerish,janarthanan
Sprint-4	Deployment of the project	USN-10	Deployment in the IBM cloud	6	high	Jerish Johnson, Janarthanan

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	3	29 October
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	4	5 November
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	4	10 November
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	5	15 November

6.3 Reports From jira

	Т	NOV	DEC	JAN '23
Sprints	UNAP	UNAP UNAP		
> UNAP-12 UI Creation				
> UNAP-13 Model testing and trainig				
> UNAP-14 Application Building				
> UNAP-15 Linking the user interface and python app				

7. CODING AND SOLUTIONING

7.1 Feature 1


```
<!DOCTYPE html>
<html >
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <title>Graduate Admission</title>
  k rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
  < link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0e263XmFcJ1SAwiGgFAW/dAiS6J</li>
<body style="background-color: □#181818">
 <div class="card" style="width: 28rem;margin: 0 auto;float: none;margin-bottom: 10px;margin-top: 30px;font-family: 'IBM Plex Sans', sans-serif;background-color: □#282828">
<article class="card-body">
  <h4 class="card-title text-center mb-4 mt-1" style="color: ■white">Predict Your Result</h4>
  <form action="{{ url_for('predict')}}" method="post">
  <div class="form-group";</pre>
 <div class="input-group">
  <span class="input-group-text"> <i class="fa fa-book"></i> </span>
   <input name="GRE" class="form-control" placeholder="GRE (Out of 340)" type="text" required/>
  <div class="form-group">
  <div class="input-group">
   <div class="input-group-prepend">
        <span class="input-group-text"> <i class="fa fa-book"></i> </span>
     <input name="TOEFL" class="form-control" placeholder="TOEFL (Out of 120)" type="text" required/>
  <div class="form-group">
  <div class="input-group":</pre>
   <div class="input-group-prepend">
```

Flask File launch website into IBM cloud

```
import numpy as np
     from flask import Flask, request, jsonify, render_template
     import pickle
     from gevent.pywsgi import WSGIServer
     import os
     app = Flask(__name__)
     model = pickle.load(open('model.pkl', 'rb'))
     @app.route('/')
     def home():
         return render_template('index.html')
     @app.route('/predict',methods=['POST'])
     def predict():
16
         For rendering results on HTML GUI
         int_features = [float(x) for x in request.form.values()]
         final_features = [np.array(int_features)]
         prediction = model.predict(final_features)
         output = round(prediction[0], 2)*100
         if(output>100):
             return render_template('index.html', prediction_text='Chance of Admission: 100%')
         if(output<0):
             return render_template('index.html', prediction_text='Chance of Admission: 0%')
         return render_template('index.html', prediction_text='Chance of Admission: {}%'.format(output))
     port = os.getenv('VCAP_APP_PORT', '8080')
     if <u>__name__</u> == <u>"__main ":</u>
         app.secret_key=os.urandom(12)
         app.run(debug=True,host='0.0.0.0',port=port)
```

8.TESTING

8.1 Test Cases

				Team ID	16-Nov-22 PNT2022TMID04094								
					University Admit Eligibility Predictor 4 marks								
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
LoginPage_TC_002	UI	Index	Verify the UI elements in home page		1.Enter URL and click go 2.Enter the Scores 3.Click the Submit button	http://127.0.0.1:5000/home	Working as expected	Working as expected	Pass				
LoginPage_TC_003	Functional	Chance	Verifying whether the student is eligible for admission		3.You have a Chance will get displayed	http://127.0.0.1:5000/chance /90.1742255758468	Working as expected	Working as expected	Pass				
LoginPage_TC_004	Functional	NoChance	Verifying whether the student does not have a chance of admission		1.As per the Entered Model Value. 2.Getting below 50% 3.You have a Low/Nochance will get displayed	http://127.0.0.1:5000/nochan ce/41.52682121752442	Working as expected	Working as expected	Pass				

8.2 User Acceptance testing

8.2.1 Defect Analysis

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	77

8.2.2 Test case analysis

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	51	0	0	51
Security	2	0	0	2

Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9.RESULTS

9.1 Performane Metrics

S.No.	Parameter	Values	Screenshot				
1.	Metrics	Regression Model:					
		MAE - 0.04439100712864568 ,	<pre>from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from math import sqrt</pre>				
		MSE -0.003969262204179716	<pre>RMSE = float(format(np.sqrt(mean_squared_error(y_test_orig, y_predict_orig)),'.3f')) MSE = mean_squared_error(y_test_orig, y_predict_orig) MAE = mean_absolute_error(y_test_orig, y_predict_orig) r2 = r2 score(y_test_orig, y_predict_orig)</pre>				
		RMSE - ,0.063	adj_r2 = 1-(1-r2)*(n-1)/(n-k-1) print('RMSE =',RMSE, '\nMSE =',MSE, '\nMAE =',MAE, '\nR2 =', r2, '\nAdjusted R2 =', adj_r2)				
		R2 score -0.8279343840569254	RMSE = 0.063 MSE = 0.003969262204179716 MAE = 0.04439100712864568 R2 = 0.8279343840569254 Adjusted R2 = 0.8047717049876654				
		Classification Model:					
		Confusion Matrix - , Accuray					
		Score- & Classification Report -					

2.	Tune the Model	Hyperparameter Tuning - Validation Method -	<pre>from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import StratifiedKFold, cross_val_score X, y = datasets.load_iris(return_X_y=True) clf = DecisionTreeClassifier(random_state=42) sk_folds = StratifiedKFold(n_splits = 5)</pre>
			<pre>sk_folds = StratifiedKFold(n_splits = 5) scores = cross_val_score(clf, X, y, cv = sk_folds) print("Cross Validation Scores: ", scores) print("Average CV Score: ", scores.mean()) print("Number of CV Scores used in Average: ", len(scores)) Cross Validation Scores: [0.966666667 0.966666667 0.9 0.93333333 1. Average CV Score: 0.9533333333333334 Number of CV Scores used in Average: 5</pre>

10. ADVANTAGES AND DISADVANTAGES

Advantages:

- It aids students in picking the appropriate college.
- When compared to the current system, this one has a lower mistake probability.
- It is quick, effective, and dependable.
- Prevents inconsistent and redundant data.
- Very approachable.
- Data are readily available

Disadvantages:

• A live internet connection is necessary.

• If data is entered incorrectly, the system will produce inaccurate results.

11. CONCLUSION

Thus, it can be said that our model, which uses the Multiple Linear Regression

Algorithm, offers a reliable prediction score and that users can guess the scores

accurately. The website's user interface is straightforward and makes it easy for users

to use the feature.

12. FUTURE SCOPE

By including information about each university, we hope to improve the user

experience by allowing users to learn more about the local culture, alumni

testimonials, university rankings, and other factors.

13.APPENDIX

Source Code: https://github.com/IBM-EPBL/IBM-Project-22193-

1659807644/tree/main/Final%20Deliverables

Project Demo: https://github.com/IBM-EPBL/IBM-Project-22193-

1659807644/blob/main/Final%20Deliverables/Project-Demonstration-

Video.mp4