

SoC Design

2023-Fall Lecture Outline

Jiin Lai

First Semester – SoC Design

Lecture Schedule

1	7-Sep	Intro	Course plan / From Gate to HLS
			PYNQ-Lab2 Software Hardware Codesign / HLS Introduction /
2	14-Sep	HLS	Kernel IO / Structure Design
3	21-Sep	Verilog	Verilog and Logic Design
4	28-Sep	-	No Class
5	5-Oct	Caravel	Caravel SoC System Introduction
6	12-Oct	Processor	Computer & Microprocessor Architecture - RISC-V
7	19-Oct	Peripheral	SoC Peripherals - UART, SPI, I2C, GPIO, UserProject IO, DMA
8	26-Oct	Bus	SOC Interconnect (Wishbone, AXI, Switch, DMA)
9	2-Nov	Memory	SOC Memory - Cache/DDR
10	9-Nov	Present	Caravel SOC Lab Presentation - Lab#4-1, Lab#4-2, Lab#5
11	16-Nov		Midterm
12	23-Nov	FW	Embedded Programming (ISA, Interrupt, Debugging)
13	30-Nov	EDA	Static Timing Analysis
14	7-Dec	Present	Caravel SOC Lab Presentation - Lab#A-D, Final Project Proposal
15	14-Dec	EDA	Synthesis and Optimization
16	21-Dec	EDA	Verification & Simulation
17	28-Dec		Final Project Presentation

Introduction to HLS & SOC

- Course plan
- Lecture plan
- Lab plan
- From Verilog to HLS

HLS

- HLS Introduction (hls-introduction)
- PYNQ / Lab2 Software/Hardware Codesign (pynq-lab2)
- Kernel IO (kernel-io)
- HLS Structure Design (structure-design)

Level of Proficiency in Verilog Design

- 1. Code matches simulation result (Test-bench + RTL)
- 2. Pre-synthesis (RTL) matches Post-synthesis (Gate-level)

- 3. Design Quality (PPA Power/Performance/Area)
- 4. System/Application Level Optimization

Verilog Design

- Combinational / Sequential Circuit (verilog-design)
- FSM Design (verilog-fsm)
- Delay (verilog-delay)
- Critical Concept (verilog-critical-concepts)
 - Scheduling (blocking/nonblocking)
 - Simulation mismatch
 - RTL Synthesis mismatch
- Design with SRAM (verilog-sram)

Advanced

- Reset (verilog-reset)
 - Synchronous / Asynchronous Reset
- Clock balance, switching, multiple clock (verilog-clock)
- Testbench
- Asynchronous FIFO

Caravel SOC System From Programming Perspective

- System Block Diagram (modules)
- Processor VexRISCV functions & its interface
- Reset / POR
- Management Protect Area power control
- Clocking / DLL, configuration SPI register
- Housekeeping SPI registers
- GPIO
- SPI
- IRQ
- Memory-mapped IO address
- SRAM Management area/Storage area
- Bus Wishbone
- Peripherals Counter/Timer/UART
- User project design (counter) Interface
- Testbench
- Firmware code

Microprocessor Architecture – RISCV-V

- RISCV ISA
- RISCV Architecture & Design
- Operating System & Processor Support

SOC Peripheral

- Timer/Interrupt/DMA
- GPIO
- Serial Interface UART, SPI, I2C

SOC Interconnect

- Wishbone
- AXI
- Interconnect (Switch)
- DMA

SOC Memory

- Memory Hierarchy
- Memory Technology
- Cache
- SDRAM
- Memory Application

Embedded Programming

- Tool chains
- Interrupt
- Debugging
- Bit Banging Software emulated Interface

Static Timing Analysis

- Basic CMOS Structure and Logic Gate
- STA Concepts
- Delay Calculation
- STA Environment
- Timing Check

Advanced

- Standard Cell Library
- Interconnect Parasitics
- Crosstalk and Noise
- Interface Analysis
- Robust Verification

Synthesis

- Synthesis on IC Design Flow
- Design Specification
- Coding Style Simulation and Synthesis Mismatch
- Synthesis Flow
- Describe Design Environment
- Define Design Constrains
- Synthesis & Optimization Techniques
- Compile Strategy

Verification & Simulation

- Verification v.s. Validation v.s. Testing
- Stimulus Generation (Driving)
- Checking

Advanced:

- Coverage
- Formal (Advanced)
- Assertion (Advanced)

