

Interfacing the Microbot TeachMover with a Personal Computer

05/07/2014 TARYUDI

Department of Electrical Engineering
Southern Taiwan University of Science and
Technology

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

System architecture

2016/7/14

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

Microbot Mechanical Construction

2016/7/14

General Specification of Microbot

Configuration

: 5 revolution axes and integral hand

Drive

: Electric stepper motor

Controller

: 6502A Microprocesor with 4K bytes of EPROM and 1 K bytes of RAM located in base of unit.

Interface

: Dual RS-232C asynchronous serial communications interfaces (baudrate is switch-selectable between 110, 150, 300, 600, 1200, 2400, 4800, and 9600 bps)

Teach control

: 14 key 13 function keyboard; 5 output and 7 input bits under computer control

6

Microbot Specification

MOTOR STEPS AND JOINT ROTATIONS					
MOTOR	JOINT	STEPS PER DEGREE	STEPS PER RADIAN		
1	Base	19.64	1125		
2	Shoulder	19.64	1125		
3	Elbow	11.55	672		
4	Right wrist	4.27	241		
5	Left wrist	4.27	241		

	x AXIS		
Motion	Max range of motion	Speed(full load)	Speed (No load)
Base	± 90 °	0.37 rad/sec	0.42 rad/sec
Shoulder	+144°, -35°	0.15 rad/sec	0.36 rad/sec
Elbow	+0°, -149°	0.23 rad/sec	0.82 rad/sec
Wrist Roll	± 360 °	1.31 rad/sec	2.02 rad/sec
Wrist Pitch	± 90 °	1.31 rad/sec	2.02 rad/sec
Hand	0-3 in	8 lb/sec* (35n/sec)	(20mm/sec)

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

Serial Communication

- Electrical Connections
- Baud rate = 9600 bps
- Parity = None
- Data bits = 8 bit
- Stop bit = 1

ASCII CODE

EXAMPLE

2016/7/14

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	@	Р		р
1	SOH	DC1 XON	ĺ	1	Α	Q	а	q
2	STX	DC2	II	2	В	R	b	r
3	ETX	DC3 XOFF	#	3	С	S	С	S
4	ЕОТ	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	V	f	V
7	BEL	ETB	ı	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	- 1	Υ	i	У
Α	LF	SUB	*		J	Ζ	j	Z
В	VT	ESC	+		K	[k	{
С	FF	FS		<	L	١		
D	CR	GS	-	=	M]	m	}
E	so	RS		>	N	۸	n	~
F	SI	US	/	?	0		0	del

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

Software Design

- Algorithm
 - Initialization port
 - Open serial port
 - Read command
 - Setup command format
 - Send command
 - Read feedback

Command Format

- @STEP
- The @STEP command causes all six of stepper motors to move simultaneously. The syntax of this command is:
- @STEP <SP>,<J1>,<J2>,<J3>,<J4>,<J5>,<J6>,<OUT>,<CR>
- Where:
 - $\langle SP \rangle$ gives the speed of motion (the value: 0-245)
 - <J1> to <J6> are the number of half- steps that each of the six motors is to be moved
 - OUT> specifies the bit pattern to go to the user outputs
 - <CR> signifies carriage return

Command Format

@READ

This command is used to read the actual values of the internal position register. The syntax is:

The arm responds with [0<CR>] or [1<CR>] followed by a string of numbers:

<K1> to <K6> are the actual value of each register for stepper motor 1 to 6, <I> is the output value

Graphic User Interface Design

Microbot TCM □ ■ ■ ■ ■ ■ ■						
File Menu Setti	ng Help					
	Step Value	Degree Value	Step or	ver		
Base	0	0	B -	B +	Clear	_
Shoulder	0	0	S -	S +	Read	•
Elbow	0	0	E -	E +	Reset	Serial Init
Right Wrist	0	0	P -	P +	Close Gripper	Close
Left Wrist	0	0	R-	R +	Close Gripper	
Gripper	0	0	G/o	G/c		
Speed	0	<u></u>				
	Send Step	Rev Fwd			3	- W
Command	Command					
			MICHOROF Touch-Monor			
Response						
			5/6/2014 7:08:38 PM			

2016/7/14

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

Results

- Video
- Hardware and Software

Reference

Manual book Microbot TeachMover 1984

- System Architecture
- Microbot Specification
- Serial Communication interface
- Software Design
- Study Results
- Conclusion

Conclusion

 Interfacing Microbot teachmover with a PC using serial communication interface has been succeed.

Thank you very much for your attention ..

Any Question or Suggestion?

