DISTRIBUTIONS

DISTRIBUTIONS

- A distribution describes all of the probable outcomes of a variable.
- In a discrete distribution, the sum of all the individual probabilities must equal 1
- In a continuous distribution, the area under the probability curve equals 1

DISCRETE DISTRIBUTIONS

 Discrete probability distributions are also called probability mass functions:

Uniform Distribution

Binomial Distribution

Poisson Distribution

UNIFORM DISTRIBUTION

 Rolling a fair die has 6 discrete, equally probable outcomes

- You can roll a 1 or a 2, but not a 1.5
- The probabilities of each outcome are evenly distributed across the sample space

UNIFORM DISTRIBUTION

Rolling a fair die:

heights are all the same, add up to 1

BINOMIAL DISTRIBUTION

 "Binomial" means there are two discrete, mutually exclusive outcomes of a trial.

heads or tails

on or off

sick or healthy

success or failure

BERNOULLITRIAL

- A Bernoulli Trial is a random experiment in which there are only two possible outcomes
 - success or failure
- A series of n trials will follow a binary distribution as long as
 - a) the probability of success p is constant
 - b) trials are independent of one another

BINOMIAL PROBABILITY MASS FUNCTION

- Gives the probability of observing
 x successes in n trials
- p is the probability of a successful outcome
- Assumes that p is fixed for all trials

$$f(x; n, p) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION EXERCISE

- If you roll a die 16 times, what is the probability that a five comes up 3 times?
- Based on the chart, it should be just shy of 0.25
- x = 3, n = 16, p = 1/6

BINOMIAL DISTRIBUTION EXERCISE

$$P(x:n,p) = {n \choose x} (p)^x (1-p)^{(n-x)}$$

$$= \left(\frac{n!}{x! (n-x)!}\right) (p)^x (1-p)^{(n-x)}$$

$$= \left(\frac{16!}{3! (13)!}\right) (1/6)^3 (5/6)^{(13)}$$

$$= \left(\frac{16 \cdot 15 \cdot 14}{3 \cdot 2}\right) \left(\frac{1^3}{6^3}\right) \left(\frac{5^{13}}{6^{13}}\right) = 0.242$$

- If you roll a die 16 times, what is the probability that a five comes up 3 times?
 - >>> from scipy.stats import binom
 - >>> binom.pmf(3,16,1/6)

- A binomial distribution considers the number of successes out of n trials
- A Poisson Distribution considers the number of successes per unit of time* over the course of many units

*or any other continuous unit, e.g. distance

 Calculation of the Poisson probability mass function starts with a mean expected value

$$E(X) = \mu$$

This is then assigned to "lambda"

$$\lambda = \frac{\text{# occurrences}}{interval} = \mu$$

• The equation becomes

$$P(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

where e = Euler's number = 2.71828...

- A warehouse typically receives 8 deliveries between 4 and 5pm on Friday.
- What is theprobability that only 4 deliveries will arrive between
 - 4 and 5pmthis Friday?

$$x = 4 \quad \lambda = 8$$

$$P(x) = \frac{\lambda^{x} e^{-\lambda}}{x!} = \frac{8^{4} \cdot 2.71828^{-8}}{4!}$$

$$= \frac{4096 \cdot \left(\frac{1}{2980.96}\right)}{24} = \mathbf{0.0572}$$

$$= \frac{4096 \cdot \left(\frac{1}{2980.96}\right)}{24} = \mathbf{0.0572}$$

This agrees with our chart!

- The cumulative mass function is simply the sum of all the discrete probabilities
- The probability of seeing *fewer than* 4 events in a Poisson Distribution is:

$$P(X: x < 4) = \sum_{i=0}^{3} \frac{\lambda^{i} e^{-\lambda}}{i!}$$

$$= \frac{\lambda^{0} e^{-\lambda}}{0!} + \frac{\lambda^{1} e^{-\lambda}}{1!} + \frac{\lambda^{2} e^{-\lambda}}{2!} + \frac{\lambda^{3} e^{-\lambda}}{3!}$$

- Remember that the sum of all possibilities equals 1
- The probability of seeing at least 1 event is one minus the probability of seeing none:

$$P(X: x \ge 1) = 1 - P(X: x = 0)$$
$$= 1 - \frac{\lambda^0 e^{-\lambda}}{0!} = 1 - e^{-\lambda}$$

- A warehouse typically receives 8 deliveries between 4 and 5pm on Friday.
- What is theprobability that fewer than 3 will arrive between 4 and 5pm this Friday?

$$P(X: x < 3) = \sum_{i=0}^{2} \frac{\lambda^{i} e^{-\lambda}}{i!} = \frac{\lambda^{0} e^{-\lambda}}{0!} + \frac{\lambda^{1} e^{-\lambda}}{1!} + \frac{\lambda^{2} e^{-\lambda}}{2!}$$

$$= \frac{8^{0} \cdot 2.71828^{-8}}{0!} + \frac{8^{1} \cdot 2.71828^{-8}}{1!} + \frac{8^{2} \cdot 2.71828^{-8}}{2!}$$

$$= \frac{1 \cdot \left(\frac{1}{2980.96}\right)}{1} + \frac{8 \cdot \left(\frac{1}{2980.96}\right)}{1} + \frac{64 \cdot \left(\frac{1}{2980.96}\right)}{2}$$

$$= \mathbf{0.0137}$$

POISSON DISTRIBUTION—PARTIAL INTERVALS

- The Poisson Distribution assumes that the probability of success during a small time interval is proportional to the entire length of the interval.
- If you know the expected value λ over an hour, then the expected value over one minute of that hour is: λ_{hour}

$$\lambda_{minute} = \frac{\lambda_{hour}}{60}$$

- A warehouse typically receives 8 deliveries between 4 and 5pm on Friday.
- What is the probability that no deliveries arrive between 4:00 and 4:05 this Friday?

$$x = 0 \quad \lambda_{1 \, hour} = 8$$

$$\lambda_{5 \, minutes} = \frac{\lambda_{1 \, hour}}{60/5} = \frac{8}{12} = 0.6667$$

$$P(x) = \frac{\lambda^{x} e^{-\lambda}}{x!} = \frac{0.67^{\circ} \cdot 2.71828^{-0.6667}}{0!} = \mathbf{0.5134}$$

What is the probability that only 4 deliveries will arrive between 4 and 5 pm this Friday?

>>> from scipy.stats import poisson

>>> poisson.pmf(4,8)

What is the probability that fewer than 3 will arrive between 4 and 5pm this Friday?

>>> from scipy.stats import poisson

>>> poisson.cdf(2,8)

What is the probability that no deliveries arrive between 4:00 and 4:05 this Friday?

- >>> from scipy.stats import poisson
- >>> poisson.pmf(0,8/12)

CONTINUOUS DISTRIBUTIONS

 Continuous probability distributions are also called probability density functions (pdf):

Normal Distribution

Exponential Distribution

Beta Distribution

- Many real life data points follow a normal distribution:
- People's Heights andWeights
- Population Blood Pressure
- Test Scores
- Measurement Errors

 These data sources tend to be around a central value with no bias left or right, and it gets close to a "Normal Distribution" like this:

Normal Distribution

- We use a continuous distribution to model the behavior of these data sources.
- Notice the continuous line and area in this PDF.

Normal Distribution

 Unlike discrete distributions, where the sum of all the bars equals one, in a normal distribution the area under the curve equals one

Binomial Distribution

Normal Distribution

- Also calledthe Bell Curve or Gaussian Distribution
- Always symmetrical

Asymmetrical curves display skew and are *not* normal

- The probability of a specific outcome is zero
- We can only find
 probabilities over a
 specified interval or range
 of outcomes

STANDARD NORMAL DISTRIBUTION

STANDARD NORMALDISTRIBUTION

STANDARD NORMALDISTRIBUTION

- All normal curves exhibit the same behavior:
 - symmetry about themean
 - 99.73% of values fall within three standard deviations
- However, the mean does not have to be zero,
 and σ does not have to equal one.

NORMAL DISTRIBUTIONFORMULA

Other populations can be normal as well:

 If we determine that a population approximates a normaldistribution, then we can make some powerful inferences about it once we know its mean and standard deviation

- In the Statistics section of the course, we will be using sampling, standard error, and hypothesis testing to evaluate experiments.
- A large part of this process is understanding how to "standardize" a normal distribution.

 We can take any normal distribution and standardize it to a standard normal distribution.

 We'll be able to take any value from a normal distribution and standardize it through a Z-score.

 Using this Z Score, we can then calculate a particular x value's percentile.

- Recall that a percentile is a way of saying "What percentage falls below this value".
- Meaning a 95 percentile value indicates that 95 percent of all other data points fall below this value.

 For example if a student scores a 1700 on their SATs and this score is in the 90 percentile, than we know 90% of all other students scored less than 1700.

• If we can model our data as a normal distribution, we can convert the values in the normal distribution to a standard normal distribution to calculate a percentile.

- For example, we can have a normal distribution of test point scores with some mean and standarddeviation.
- We can then use a Z score to figure out the percentile of any particular test score.

NORMAL DISTRIBUTIONFORMULA

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Where:

$$\mu = mean \qquad \qquad e = 2.71828$$

$$\sigma = \text{standard deviation} \quad \pi = 3.14159$$

NORMAL DISTRIBUTIONFORMULA

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

This produced our plot with a mean of 0 and a standard deviation of 1:

Z-SCORES ANDZ-TABLE

 To gain insight about a specific value x in other normal populations, we standardize
 x by calculating a z-score:

$$z = \frac{x - \mu}{\sigma}$$

 We can then determine x's percentile by looking at a z-table

HOW TO LOOK UP Z-SCORES

- A z-table of Standard Normal Probabilities maps a particular z-score to the area under a normal distribution curve to the left of the score.
- Since the total area under the curve is 1,probabilities are bounded by 0 and 1

HOW TO LOOK UP Z-SCORES

Different tables serve different purposes:

Z-SCORES INPYTHON

```
>>> from scipy import stats
```

$$>>> z = .70$$

>>> stats.norm.cdf(z)

0.75803634777692697

>>> stats.norm.ppf(p)

1.6448536269514722

Z-SCORE EXERCISE

- A company is looking to hire a new database administrator.
- They give a standardized test to applicants to measure their technical knowledge.
- Their first applicant, Amy, scores an 87
- Based on her score, is Amy exceptionally qualified?

Z-SCORE EXERCISE

- To decide how well an applicant scored, we need to understand the population.
- Based on thousands of previous tests, we know that the mean score is 75 out of
 - 100, with a standard deviation of 7 points.

Z-SCORE EXERCISESOLUTION

 First, convert Amy's score to a standardized z-score using the formula

$$z = \frac{x - \mu}{\sigma}$$

$$= \frac{87 - 75}{7} = 1.7143$$

Z-SCORE EXERCISESOLUTION

• Next, look up 1.7143 on a z-table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817

Z-SCORE EXERCISESOLUTION

- 0.9564 represents the area to the left of Amy's score
- This means that Amy outscored
 95.64% of others who took the same test.

