线性代数期中参考题

孙浩然

11 - 12

1. (子空间, 线性无关, 基, 直和)

设 $U \in \mathbb{R}^{\infty}$ 的一个子集, U 中的元素 v 对所有 i 都满足 $v_i + v_{i+2} = v_{i+1}$.

- (1) 求证: U 是 \mathbb{R}^{∞} 的一个子空间.
- (2) 设 $x, y \in U$, 满足: $x = (0, 1, 1, 0, -1, -1, 0, 1, 1, \cdots)$, $y = (1, 0, -1, -1, 0, 1, 1, 0, -1, \cdots)$. 求证: x, y 线性无关.
- (3) 求证: x,y 是 U 的一组基.
- (4) 设 W 是 \mathbb{R}^{∞} 的一个子集, W 中的元素满足 $v_1=0$ 且 $v_2=0$. 求证: $\mathbb{R}^{\infty}=U\oplus W$.

Solution:

- (1) It suffices to verify the three properties: (i) $0 \in U$; (ii) closed under vector addition; (iii) closed under scalar multiplication, which is quite easy.
- (2) Suppose not. Then we can find $a, b \in \mathbb{R}$, s.t. ax + by = 0. Note that $ax + by = (b, a, \cdots)$. If ax + by = 0 then b = 0 and a = 0 since two sequences are equal iff their terms are all equal. This means that x and y are linearly independent.
- (3) Since we have already shown that (x, y) is a linearly independent set, we just need to show that it spans U. It's easy to see span $\{x, y\} \subseteq U$, next we show $U \subseteq \text{span}\{x, y\}$. In fact, let $u \in U$. Write $u = (u_1, u_2, \cdots)$. Then we claim that $u = u_1 y + u_2 x$. We can show that all the terms of u and $u_1 y + u_2 x$ match up by induction (omitted).
- (4) $\mathbb{R}^{\infty} = U \oplus W$ iff $\mathbb{R}^{\infty} = U + W$ and $U \cap W = \{0\}$. It's easy to see $U + W \subseteq \mathbb{R}^{\infty}$. we need to show that any sequence can be written as the sum of an element of U and an element of W. Let $x = (x_1, x_2, \cdots) \in \mathbb{R}^{\infty}$. Let $u = (x_1, x_2, x_2 x_1, -x_2, x_1 x_2, x_1, x_2, \cdots)$ be the element of U that starts with x_1 and x_2 . Let w = x u. Since u and x have the same first and second term, $w = (0, 0, w_3, w_4, \cdots)$. So $w \in W$. Thus, $\mathbb{R}^{\infty} = U + W$. To show $U \cap W = \{0\}$, suppose $v \in U \cap W$. We will show that v = 0 by induction. Write $v = (v_1, v_2, \cdots)$. Since $v \in W$, $v_1 = v_2 = 0$. Suppose $v_{n-1} = v_n = 0$. Then we need to show that $v_{n+1} = 0$. Since $v_{n+1} = v_n v_{n-1}$, we have that $v_{n+1} = 0$. So by induction, v = 0. Therefore, $U \cap W = \{0\}$.
- 2. (线性变换与多项式空间)

考虑一个线性变换 $T \in \mathcal{L}(P_2(\mathbb{R}), P_3(\mathbb{R}))$. 假设我们知道 T 的部分信息如下:

$$T(x^2 + 1) = x^2 - x,$$

$$T(1) = 2x + 1.$$

基于以上信息, 回答问题, 简要给出证明或举出反例.

- (1) T 可能是单射吗?
- (2) T 可能是满射吗?
- (3) 我们能够确定 $T(x^2 + x + 1)$ 吗?
- (4) 我们能够确定 $x^2 + 3x + 2 \in \text{Range}(T)$ 吗?

Solution:

- (1) Yes. For example, consider the transformation T defined by the formula $T(ax^2 + bx + c = ax^2 + (b 3a + 2c)x + (c a)$. We can easily check: $T(x^2 + 1) = x^2 x$ and T(1) = 2x + 1. To show this map is injective, we note that if $ax^2 + bx + c \in \text{Null } T$, we must have a = 0, b 3a + 2c = 0, c a = 0. Therefore Null(T) = 0 and T is injective.
- (2) No. We know that dim $P_2(\mathbb{R}) = 3$ and dim $P_3(\mathbb{R}) = 4$. Corollary 3.6 (on page 46) states that $T: V \to W$ cannot be surjective if dim $V < \dim W$.
- (3) No. For the T defined in (1), we have $T(x^2 + x + 1) = x^2$. But if we define $T(ax^2 + bx + c) = bx^3 + ax^2 + (-3a + 2c)x + (c a)$ (which can be shown reasonable easily), we have $T(x^2 + x + 1) = x^3 + x^2 x$.
- (4) Yes. $T(x^2+2) = T(x^2+1+2) = x^2 x + 2(2x+1) = x^2 + 3x + 1$.
- 3. (特征值与特征向量, 对角化)

设 V 是一个有限维向量空间, 且 $\dim V = n$. 设 $S \in \mathcal{L}(V)$ 是 V 上的线性算子, 且有 n 个不同的特征值. 设 $T \in \mathcal{L}(V)$ 是另一个线性算子. 求证: 如果 ST = TS, 那么 T 可对角化.

Solution: Firstly, we prove:

Lemma 1: If v is an eigenvector for S with eigenvalue λ , then Tv is also an eigenvector for S with eigenvalue λ (or Tv = 0). PROOF: set w = Tv, then $Sw = STv = TSv = T(\lambda v) = \lambda Tv = \lambda w$. We now turn to the assumption that S has n distinct eigenvalues. Let $\lambda_1, \dots, \lambda_n$ be the n eigenvalues of S, and let v_1, \dots, v_n be the corresponding eigenvectors (so $S(v_k) = \lambda_k v_k$). The vectors v_1, \dots, v_n are linearly independent, since eigenvectors whose eigenvalues are distinct are linearly independent. Since dim V = n, these n vectors form a basis for V. We next prove:

Lemma 2: If $u \in V$ satisfies $S(u) = \lambda_k u$, then $u = cv_k$ for some $c \in \mathbf{F}$. PROOF: we note that v_1, \dots, v_n is a basis of V, any $u \in V$ can be written as $u = c_1v_1 + \dots + c_nu_n$. We can compute S(u) as $S(u) = c_1S(v_1) + \dots + c_nS(v_n) = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$. If we also assume that $S(u) = \lambda_k u$, then $S(u) = c_1\lambda_k v_1 + \dots + c_n\lambda_k v_n$. Subtracting the latter equation from the former gives $0 = c_1(\lambda_1 - \lambda_k)v_1 + \dots + c_n(\lambda_n - \lambda_k)v_n$. So we conclude that $c_i = 0$ for all i other than k, which is the desired result.

We now prove the claim that T is diagonalizable by showing that v_1, \dots, v_n is an eigenbasis for T. Consider a single vector v_k from this basis, which is an eigenvector of S with eigenvalue λ_k . By Lemma 1, we know that Tv_k is an eigenvector of S with eigenvalue λ_k , or else Tv = 0; in either case, it satisfies $S(Tv_k) = \lambda_k Tv_k$. Therefore by Lemma 2, we see that $Tv_k = cv_k$ for some $c \in \mathbf{F}$. In other words, v_k is an eigenvector of T (since it is nonzero). Therefore v_1, \dots, v_n is an eigenbasis for T, so T is diagonalizable.

<u>Remark</u>: To make the problem much easier, we can divide it into three parts, lemma 1, lemma 2 and the final conclusion.

4. (可逆映射, 对角化)

设 V 是有限维的向量空间, 且 $T \in \mathcal{L}(\mathcal{V})$. 假设 Range $(T) \neq \text{Range}(T^2)$.

- (1) 求证: T 不可以对角化.
- (2) 以下说法正确的是?
 - (i) T 一定可逆.
 - (ii) T 一定不可逆.
 - (iii) T 可能可逆也可能不可逆.

证明你的结论.

Solution:

(1) If T is diagonalizable, then there exists a basis v_1, \dots, v_n for V s.t. $T(v_i) = \lambda_i v_i$ for all $i = 1, \cdot, n$. For each i, let $c_i = \frac{1}{\lambda_i}$ if $\lambda_i \neq 0$ and 0 if $\lambda_i = 0$. Note that in either case we have

- $c_i\lambda_i^2=\lambda_i$. We know that $\mathrm{Range}(T^2)\subset\mathrm{Range}(T)$. We will prove that $\mathrm{Range}(T)\subset\mathrm{Range}(T^2)$. Assume that $w\in\mathrm{Range}(T)$, so we can write w=T(v) for some $v\in V$. Since v_1,\cdots,v_n is a basis for V, we can write $v=a_1v_1+\cdots+a_nv_n$. Now we have $w=a_1\lambda_1v_1+\cdots+a_n\lambda_nv_n$. Now define $u=a_1c_1v_1+\cdots+a_nc_nv_n$. I claim that $T^2(u)=w$.(omit the proof) We conclude $w\in\mathrm{Range}(T^2)$. Since w was an arbitrary element of $\mathrm{Range}(T)$, this shows that $\mathrm{Range}(T)\subset\mathrm{Range}(T^2)$. Combined with $\mathrm{Range}(T^2)\subset\mathrm{Range}(T)$, this implies that $\mathrm{Range}(T)=\mathrm{Range}(T^2)$, contradicting the hypothesis of the question. Therefore T must not be diagonalizable.
- (2) (ii) is right. If T is invertible, then T must be surjective, so Range(T) = V. Separately, if T is invertible, then so is T^2 .(Its inverse is given by $(T^{-1})^2$.) But if T^2 is invertible, then it is surjective, and so Range $(T^2) = V$ as well. This contradicts the hypothesis of the question.