Lab#11 Prim's Algorithm (Minimal Spanning Tree)

1. Input data 는 다음 그래프를 사용할 것 (시작점은 정점 1)

2. Output 은 다음과 같다.

1) Weighted Graph 를 다음과 같이 출력할것

	v1	v2	v3	v4	v5	v6
$\mathbf{v1}$	100	6	1	5	100	100
$\mathbf{v2}$	6	100	4	100	3	100
v3	1	4	100	5	6	5
v4	5	100	5	100	100	2
v5	100	3	6	100	100	6
v6	100	100	5	2	6	100

2) Minimal Spanning Tree (v1 에서 시작하면)

$$1,3 \rightarrow 3,2 \rightarrow 2,5 \rightarrow 5,6 \rightarrow 6,4$$

Or

$$1, 3 \rightarrow 3, 2 \rightarrow 2, 5 \rightarrow 1, 4 \rightarrow 4, 6$$

prim(int v) //starting vertex "v"

- 1. copy one row from **cost matrix[starting vertex]** into **lowcost**
- 2. mark **closest** for starting vertex
- 3. Loop until n-1
 - Select the lowest cost vertex from the lowcost and print Vi and Vj
 - 3.2 Mark Vj in closest
 - 3.3 If no vertex to select, then backtrack to previous one.(optional)

}