Sampling Distributions Merlise Clyde

STA721 Linear Models

Duke University

September 8, 2016

Outline

Topics

- Normal Theory
- Chi-squared Distributions
- Student t Distributions

Readings: Christensen Apendix C, Chapter 1-2

Prostate Example

```
> summary(lm(lpsa ~ ., data=Prostate))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
           0.669399
                    1.296381 0.516 0.60690
lcavol 0.587023 0.087920 6.677 2.11e-09 ***
lweight 0.454461 0.170012 2.673 0.00896 **
age -0.019637 0.011173 -1.758 0.08229 .
         0.107054 0.058449 1.832 0.07040 .
lbph
svi
         0.766156  0.244309  3.136  0.00233 **
         -0.105474 0.091013 -1.159 0.24964
lcp
gleason
         0.045136 0.157464 0.287 0.77506
pgg45
           0.004525 0.004421 1.024 0.30885
             0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
Signif. codes:
```

> library(lasso2); data(Prostate) # n = 97, 9 variables

Residual standard error: 0.7084 on 88 degrees of freedom Multiple R-squared: 0.6548, Adjusted R-squared: 0.6234

Summary of Distributions

Models: Full $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$

Assume **X** is full rank with the first column of ones $\mathbf{1}_n$ and p additional predictors $r(\mathbf{X}) = p + 1$

$$\hat{oldsymbol{eta}} \mid \sigma^2 \sim \mathsf{N}(oldsymbol{eta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$
 $rac{\mathsf{SSE}}{\sigma^2} \sim \chi^2_{n-r(\mathbf{X})}$ $rac{\hat{eta}_j - eta_j}{\mathsf{SE}(\hat{eta}_i)} \sim t_{n-r(\mathbf{X})}$

where $SE(\hat{\beta})$ is the square root of the *j*th diagonal element of $\hat{\sigma}^2(\mathbf{X}^T\mathbf{X})^{-1}$ and $\hat{\sigma}^2$ is the unbiased estimate of σ^2

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n \times d$

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n \times d$
• $\mathsf{E}[\mathbf{W}] = \mu$

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

- $\bullet \ \mathsf{E}[\mathbf{W}] = \mu$
- $Cov(\mathbf{W}) = \mathbf{A}\mathbf{A}^T \ge 0$

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

- $\bullet \ \mathsf{E}[\mathbf{W}] = \mu$
- $Cov(\mathbf{W}) = \mathbf{A}\mathbf{A}^T \geq 0$
- ullet $W \sim N(\mu, \Sigma)$ where $\Sigma = AA^T$

If Σ is singular then there is no density (on \mathbb{R}^n), but claim that W still has a multivariate normal distribution!

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

- $\bullet \ \mathsf{E}[\mathbf{W}] = \mu$
- $Cov(\mathbf{W}) = \mathbf{A}\mathbf{A}^T \geq 0$
- ullet $\mathbf{W} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ where $oldsymbol{\Sigma} = oldsymbol{\mathsf{A}}oldsymbol{\mathsf{A}}^{T}$

If Σ is singular then there is no density (on \mathbb{R}^n), but claim that W still has a multivariate normal distribution!

Definition

 $\mathbf{W} \in \mathbb{R}^n$ has a multivariate normal distribution $N(\mu, \mathbf{\Sigma})$ if for any $\mathbf{v} \in \mathbb{R}^n \ \mathbf{v}^T \mathbf{Y}$ has a normal distribution with mean $\mathbf{v}^T \mu$ and variance $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$

$$\mathbf{W} = \boldsymbol{\mu} + \mathbf{AZ}$$
 with $\mathbf{Z} \in \mathbb{R}^d$ and \mathbf{A} is $n imes d$

- $\bullet \ \mathsf{E}[\mathbf{W}] = \mu$
- $Cov(\mathbf{W}) = \mathbf{A}\mathbf{A}^T \geq 0$
- ullet $W \sim N(oldsymbol{\mu}, oldsymbol{\Sigma})$ where $oldsymbol{\Sigma} = oldsymbol{A}oldsymbol{A}^T$

If Σ is singular then there is no density (on \mathbb{R}^n), but claim that W still has a multivariate normal distribution!

Definition

 $\mathbf{W} \in \mathbb{R}^n$ has a multivariate normal distribution $N(\mu, \mathbf{\Sigma})$ if for any $\mathbf{v} \in \mathbb{R}^n \ \mathbf{v}^T \mathbf{Y}$ has a normal distribution with mean $\mathbf{v}^T \mu$ and variance $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$

see Lessons in Normal Theory in Sakai for videos using Characteristic functions

Linear Transformations are Normal

If
$$\mathbf{Y} \sim \mathsf{N}_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 then for \mathbf{A} $m \times n$

$$\mathbf{AY} \sim \mathsf{N}_m(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$$

 $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$ does not have to be positive definite!

Multiple ways to define the same normal:

• $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$, $\mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$

- $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$, $\mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$
- ullet $\mathbf{Z}_2 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{Z}_2 \in \mathbb{R}^p$ and take $\mathbf{B} \ d imes p$

- $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n), \ \mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$
- ullet $\mathbf{Z}_2 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{Z}_2 \in \mathbb{R}^p$ and take $\mathbf{B} \ d imes p$
- Define $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$

- $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$, $\mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$
- ullet $\mathbf{Z}_2 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{Z}_2 \in \mathbb{R}^p$ and take $\mathbf{B} \ d imes p$
- Define $\mathbf{Y} = \boldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- Define $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

Multiple ways to define the same normal:

- $\mathbf{Z}_1 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_n)$, $\mathbf{Z}_1 \in \mathbb{R}^n$ and take $\mathbf{A} \ d \times n$
- $\mathbf{Z}_2 \sim \mathsf{N}(\mathbf{0}, \mathbf{I}_p)$, $\mathbf{Z}_2 \in \mathbb{R}^p$ and take $\mathbf{B} \ d imes p$
- ullet Define $\mathbf{Y} = oldsymbol{\mu} + \mathbf{A}\mathbf{Z}_1$
- Define $\mathbf{W} = \boldsymbol{\mu} + \mathbf{B}\mathbf{Z}_2$

Theorem

If
$$\mathbf{Y} = \mu + \mathbf{A}\mathbf{Z}_1$$
 and $\mathbf{W} = \mu + \mathbf{B}\mathbf{Z}_2$ then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{W}$ if and only if $\mathbf{A}\mathbf{A}^T = \mathbf{B}\mathbf{B}^T = \mathbf{\Sigma}$

Zero Correlation and Independence

Theorem

For a random vector $\mathbf{Y} \sim \mathit{N}(\mu, \mathbf{\Sigma})$ partitioned as

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}
ight] \sim \mathcal{N} \left(\left[egin{array}{c} oldsymbol{\mu}_1 \\ oldsymbol{\mu}_2 \end{array}
ight], \left[egin{array}{c} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \\ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight]
ight)$$

Zero Correlation and Independence

Theorem

For a random vector $\mathbf{Y} \sim \mathit{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ partitioned as

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}
ight] \sim \mathcal{N} \left(\left[egin{array}{c} \mu_1 \\ \mu_2 \end{array}
ight], \left[egin{array}{c} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight]
ight)$$

then $Cov(\mathbf{Y}_1, \mathbf{Y}_2) = \mathbf{\Sigma}_{12} = \mathbf{\Sigma}_{21}^T = \mathbf{0}$ if and only if \mathbf{Y}_1 and \mathbf{Y}_2 are independent.

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1,\mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If \mathbf{Y}_1 and \mathbf{Y}_2 are independent

Proof.

$$Cov(\mathbf{Y}_1, \mathbf{Y}_2) = E[(\mathbf{Y}_1 - \mu_1)(\mathbf{Y}_2 - \mu_2)^T]$$

If \mathbf{Y}_1 and \mathbf{Y}_2 are independent

$$\mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)\mathsf{E}(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathbf{00}^T = \mathbf{0}$$

Proof.

$$\mathsf{Cov}(\mathbf{Y}_1, \mathbf{Y}_2) = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T]$$

If \mathbf{Y}_1 and \mathbf{Y}_2 are independent

$$\mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathsf{E}[(\mathbf{Y}_1 - \boldsymbol{\mu}_1)\mathsf{E}(\mathbf{Y}_2 - \boldsymbol{\mu}_2)^T] = \mathbf{00}^T = \mathbf{0}$$

therefore $\Sigma_{12} = \mathbf{0}$

Zero Covariance Implies Independence

Assume
$$\Sigma_{12} = 0$$

Proof

Choose an

$$\mathbf{A} = \left[egin{array}{ccc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array}
ight]$$

such that
$$\mathbf{A}_1\mathbf{A}_1^{\mathcal{T}}=\mathbf{\Sigma}_{11},\,\mathbf{A}_2\mathbf{A}_2^{\mathcal{T}}=\mathbf{\Sigma}_{22}$$

Zero Covariance Implies Independence

Assume
$$\Sigma_{12} = 0$$

Proof

Choose an

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that
$$\mathbf{A}_1\mathbf{A}_1^T = \mathbf{\Sigma}_{11}$$
, $\mathbf{A}_2\mathbf{A}_2^T = \mathbf{\Sigma}_{22}$

Partition

$$\mathbf{Z} = \left[\begin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} \right] \sim \mathsf{N} \left(\left[\begin{array}{c} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} \right], \left[\begin{array}{cc} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right] \right) \text{ and } \boldsymbol{\mu} = \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right]$$

Zero Covariance Implies Independence

Assume $\Sigma_{12} = 0$

Proof

Choose an

$$\mathbf{A} = \left[\begin{array}{cc} \mathbf{A}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 \end{array} \right]$$

such that
$$\mathbf{A}_1\mathbf{A}_1^T = \mathbf{\Sigma}_{11}$$
, $\mathbf{A}_2\mathbf{A}_2^T = \mathbf{\Sigma}_{22}$

Partition

$$\mathbf{Z} = \left[\begin{array}{c} \mathbf{Z}_1 \\ \mathbf{Z}_2 \end{array} \right] \sim \mathsf{N} \left(\left[\begin{array}{cc} \mathbf{0}_1 \\ \mathbf{0}_2 \end{array} \right], \left[\begin{array}{cc} \mathbf{I}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_2 \end{array} \right] \right) \text{ and } \boldsymbol{\mu} = \left[\begin{array}{c} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{array} \right]$$

ullet then $\mathbf{Y} \stackrel{\mathrm{D}}{=} \mathbf{AZ} + oldsymbol{\mu} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$

Proof.

•

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

Proof.

•

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

ullet But \mathbf{Z}_1 and \mathbf{Z}_2 are independent

Proof.

•

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- But **Z**₁ and **Z**₂ are independent
- Functions of **Z**₁ and **Z**₂ are independent

Proof.

•

$$\left[\begin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}\right] \stackrel{\mathrm{D}}{=} \left[\begin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}\right]$$

- But **Z**₁ and **Z**₂ are independent
- Functions of Z₁ and Z₂ are independent
- Therefore \mathbf{Y}_1 and \mathbf{Y}_2 are independent

Proof.

•

$$\left[egin{array}{c} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{array}
ight] \stackrel{\mathrm{D}}{=} \left[egin{array}{c} \mathbf{A}_1 \mathbf{Z}_1 + \boldsymbol{\mu}_1 \\ \mathbf{A}_2 \mathbf{Z}_2 + \boldsymbol{\mu}_2 \end{array}
ight]$$

- But **Z**₁ and **Z**₂ are independent
- Functions of Z_1 and Z_2 are independent
- Therefore \mathbf{Y}_1 and \mathbf{Y}_2 are independent

For Multivariate Normal Zero Covariance implies independence

Corollary

If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{A}\mathbf{B}^T = \mathbf{0}$ then $\mathbf{A}\mathbf{Y}$ and $\mathbf{B}\mathbf{Y}$ are independent.

Corollary

If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{A}\mathbf{B}^T = \mathbf{0}$ then $\mathbf{A}\mathbf{Y}$ and $\mathbf{B}\mathbf{Y}$ are independent.

Proof.

•

$$\left[\begin{array}{c} \textbf{W}_1 \\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY} \\ \textbf{BY} \end{array}\right]$$

Corollary

If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{A}\mathbf{B}^T = \mathbf{0}$ then $\mathbf{A}\mathbf{Y}$ and $\mathbf{B}\mathbf{Y}$ are independent.

Proof.

•

$$\left[\begin{array}{c} \textbf{W}_1 \\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY} \\ \textbf{BY} \end{array}\right]$$

• $Cov(\mathbf{W}_1, \mathbf{W}_2) = Cov(\mathbf{AY}, \mathbf{BY}) = \sigma^2 \mathbf{AB}^T$

Corollary

If $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ and $\mathbf{A}\mathbf{B}^T = \mathbf{0}$ then $\mathbf{A}\mathbf{Y}$ and $\mathbf{B}\mathbf{Y}$ are independent.

Proof.

•

$$\left[\begin{array}{c} \textbf{W}_1 \\ \textbf{W}_2 \end{array}\right] = \left[\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array}\right] \textbf{Y} = \left[\begin{array}{c} \textbf{AY} \\ \textbf{BY} \end{array}\right]$$

- $Cov(\mathbf{W}_1, \mathbf{W}_2) = Cov(\mathbf{AY}, \mathbf{BY}) = \sigma^2 \mathbf{AB}^T$
- **AY** and **BY** are independent if $AB^T = 0$

Sampling Distribution of $oldsymbol{eta}$

If
$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1})$

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

What happens if we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n - r(\mathbf{X}))$ in the above?

Unknown σ^2

$$\hat{\beta}_j \mid \beta_j, \sigma^2 \sim \mathsf{N}(\beta, \sigma^2[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj})$$

What happens if we substitute $\hat{\sigma}^2 = \mathbf{e}^t \mathbf{e}/(n-r(\mathbf{X}))$ in the above?

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma\sqrt{[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n-r(\mathbf{X}))}} \stackrel{\mathrm{D}}{=} \frac{N(0,1)}{\sqrt{\chi^2_{n-r(\mathbf{X})}/(n-r(\mathbf{X})}} \sim t(n-r(\mathbf{X}),0,1)$$

Need to show that $\mathbf{e}^T \mathbf{e}/\sigma^2$ has a χ^2 distribution and is independent of the numerator!

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi_p^2$ with Z and S independent,

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi_p^2$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom

Central Student t Distribution

Definition

Let $Z \sim N(0,1)$ and $S \sim \chi_p^2$ with Z and S independent, then

$$W = \frac{Z}{\sqrt{S/p}}$$

has a (central) Student t distribution with p degrees of freedom

See Casella & Berger or DeGroot & Schervish for derivation - nice change of variables and marginalization problem!

Chi-Squared Distribution

Definition

If $Z \sim {\rm N}(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Chi-Squared Distribution

Definition

If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2-1} e^{-x/2}$$
 $x > 0$

Chi-Squared Distribution

Definition

If $Z \sim N(0,1)$ then $Z^2 \sim \chi_1^2$ (A Chi-squared distribution with one degree of freedom)

Density

$$f(x) = \frac{1}{\Gamma(1/2)} (1/2)^{-1/2} x^{1/2-1} e^{-x/2}$$
 $x > 0$

$$E[e^{itZ^2}] = \varphi(t) = (1 - 2it)^{-1/2}$$

If
$$Z_j \stackrel{ ext{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

If
$$Z_j \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathsf{E}[e^{it\sum_j^p Z_j^2}]$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathbb{E}[e^{it\sum_j^p Z_j^2}]$$
$$= \prod_{j=1}^p \mathbb{E}[e^{itZ_j^2}]$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_X(t) = \mathbb{E}[e^{it\sum_j^{\rho}Z_j^2}]$$

$$= \prod_{j=1}^{\rho} \mathbb{E}[e^{itZ_j^2}]$$

$$= \prod_{j=1}^{\rho} (1 - 2it)^{-1/2}$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

$$\varphi_{X}(t) = E[e^{it \sum_{j=1}^{p} Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} E[e^{it Z_{j}^{2}}]$$

$$= \prod_{j=1}^{p} (1 - 2it)^{-1/2}$$

$$= (1 - 2it)^{-p/2}$$

If
$$Z_j \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1) \ j=1,\dots p$$
 then $X \equiv \mathbf{Z}^T \mathbf{Z} = \sum_j^p Z_j^2 \sim \chi_p^2$

Characteristic Function

$$\varphi_X(t) = \mathbb{E}[e^{it \sum_{j=1}^{p} Z_j^2}]$$

$$= \prod_{j=1}^{p} \mathbb{E}[e^{it Z_j^2}]$$

$$= \prod_{j=1}^{p} (1 - 2it)^{-1/2}$$

$$= (1 - 2it)^{-p/2}$$

A Gamma distribution with shape p/2 and rate 1/2, G(p/2, 1/2)

$$f(x) = \frac{1}{\Gamma(p/2)} (1/2)^{-p/2} x^{p/2-1} e^{-x/2}$$
 $x > 0$

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T = \mathbf{U}_k\mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T\mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T = \mathbf{U}_k \mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T \mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^T \mathbf{Q} \mathbf{Y} = \mathbf{Y}^T \mathbf{U}_k \mathbf{U}_k^T \mathbf{Y}$$

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T = \mathbf{U}_k \mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T \mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$
$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T = \mathbf{U}_k \mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T \mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T = \mathbf{U}_k\mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T\mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$$\mathbf{Z}^{T}\mathbf{Z} \sim \chi_{k}^{2}$$

$\mathsf{Theorem}$

Let $\mathbf{Y} \sim N(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in C(\mathbf{X})$ then if \mathbf{Q} is a rank k orthogonal projection on to $C(\mathbf{X})^{\perp}$, $(\mathbf{Y}^T \mathbf{Q} \mathbf{Y})/\sigma^2 \sim \chi_k^2$

Proof.

For an orthogonal projection $\mathbf{Q} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T = \mathbf{U}_k\mathbf{U}_k^T$ where $C(\mathbf{Q}) = C(\mathbf{U}_k)$ and $\mathbf{U}_k^T\mathbf{U}_k = \mathbf{I}_k$ (Spectral Theorem)

$$\mathbf{Y}^{T}\mathbf{Q}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{U}_{k}\mathbf{U}_{k}^{T}\mathbf{Y}$$

$$\mathbf{Z} = \mathbf{U}_{k}^{T}\mathbf{Y}/\sigma \sim N(\mathbf{U}_{k}^{T}\boldsymbol{\mu}, \mathbf{U}_{k}^{T}\mathbf{U}_{k})$$

$$\mathbf{Z} \sim N(\mathbf{0}, \mathbf{I}_{k})$$

$$\mathbf{Z}^{T}\mathbf{Z} \sim \chi_{k}^{2}$$

Since
$$U^T\mathbf{Y}/\sigma \stackrel{\mathrm{D}}{=} \mathbf{Z}$$
, $\frac{\mathbf{Y}^T\mathbf{QY}}{\sigma^2} \sim \chi_k^2$

Residual Sum of Squares Example

Sum of Squares Error (SSE)

Let $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$.

Because $\mu \in C(\mathbf{X})$, $\mathbf{I} - \mathbf{P}_{\mathbf{X}}$ is a projection on $C(\mathbf{X})^{\perp}$

Residual Sum of Squares Example

Sum of Squares Error (SSE)

Let $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$.

Because $\mu \in \mathcal{C}(\mathbf{X})$, $\mathbf{I} - \mathbf{P}_{\mathbf{X}}$ is a projection on $\mathcal{C}(\mathbf{X})^{\perp}$

$$\frac{\mathbf{e}^{T}\mathbf{e}}{\sigma^{2}} = \mathbf{Y}^{T} \frac{\left(\mathbf{I}_{n} - \mathbf{P}_{\mathbf{X}}\right)^{2}}{\sigma} \mathbf{Y} \sim \chi_{n-r(\mathbf{X})}^{2}$$

Estimated Coefficients and Residuals are Independent

If
$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$$

Then $Cov(\hat{\boldsymbol{\beta}}, \mathbf{e}) = \mathbf{0}$ which implies independence

Functions of independent random variables are independent (show characteristic functions or densities factor)

Putting it all together

$$\hat{\boldsymbol{\beta}} \sim \mathsf{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1})$$

- $(\hat{\beta}_i \beta_i)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{ii} \sim \mathsf{N}(0,1)$
- $\mathbf{e}^T \mathbf{e} / \sigma^2 \sim \chi^2_{n-r(\mathbf{X})}$
- $\hat{\beta}$ and **e** are independent

$$\frac{(\hat{\beta}_j - \beta_j)/\sigma[(\mathbf{X}^T\mathbf{X})^{-1}]_{jj}}{\sqrt{\mathbf{e}^T\mathbf{e}/(\sigma^2(n - r(\mathbf{X})))}} \sim t(n - r(\mathbf{X}), 0, 1)$$

Inference

• 95% Confidence interval: $\hat{\beta}_j \pm t_{\alpha/2} SE(\hat{\beta}_j)$

Inference

- 95% Confidence interval: $\hat{\beta}_j \pm t_{\alpha/2} SE(\hat{\beta}_j)$ use qt(a, df) for t_a quantile
- derive from pivotal quantity $t=(\hat{\beta}_j-\beta_j)/\mathsf{SE}(\hat{\beta}_j)$ where $P(t\in(t_{\alpha/2},t_{1-\alpha/2}))=1-\alpha$

Prostate Example

xtable(confint(prostate.lm)) from library(MASS) and library(xtable)

2.5 %	97.5 %
-1.91	3.25
0.41	0.76
0.12	0.79
-0.04	0.00
-0.01	0.22
0.28	1.25
-0.29	0.08
-0.27	0.36
-0.00	0.01
	-1.91 0.41 0.12 -0.04 -0.01 0.28 -0.29 -0.27

interpretation

- For a "1" unit increase in \mathbf{X}_j , expect \mathbf{Y} to increase by $\hat{\beta}_j \pm t_{\alpha/2} \mathrm{SE}(\hat{\beta}_j)$
- for log transforms

$$\mathbf{Y} = \exp(\mathbf{X}eta + \epsilon) = \prod \exp(\mathbf{X}_jeta_j)\exp(\epsilon)$$

- if $\mathbf{X} = \log(\mathbf{W}_j)$ then look at 2-fold or % increases in \mathbf{W} to look at multiplicative increase in median of \mathbf{Y}
- ifcavol increases by 10% then we expect PSA to increase by $1.10^{(CI)} = (1.0398\%, 1.0751\%)$ or by 3.98 to 7.51 percent

For a 10% increase in cancer volume, we are 95% confident that the PSA levels will increase by approximately 4 to 7.5 percent.

Derivation