BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 18

14 Completeness of Propositional Logic

Whenever $\phi_1, ..., \phi_n \vDash \psi(1)$ holds then there exists a natural deduction proof for the sequent $\phi_1, ..., \phi_n \vdash \psi$.

Proof Sketch

- 1. Assuming (1), we show that $\vDash \phi_1 \to (\phi_2 \to (..(\phi_n \to \psi)))$ holds.
- 2. We show that $\vdash \phi_1 \to (\phi_2 \to (..(\phi_n \to \psi)))$ is valid.
- 3. $\phi_1, ..., \phi_n \vdash \psi$ is valid.

Please refer the textbook for the proof.

14.1 Corollary[Soundness and Completeness of Propositional Logic]

Let $\phi_1, ..., \phi_n$ and ψ be formulae of propositional logic. Then, $\phi_1, ..., \phi_n \vdash \psi$ is valid.

14.2 Semantic Equivalence

Let ϕ and ψ be formulas in propositional logic. We say that, ϕ an ψ are semantically equivalent iff $\psi \models \psi$ holds and $\psi \models \phi$ holds as well.

We write $\phi \equiv \psi$

We call ϕ valid iff \vDash holds. Semantic equivalence is identical to provable equivalence.

e.g.
$$p \to \equiv \neg q \to \neg p$$

 $p \to q \equiv \neg p \lor q$

We want to transform formulaes into forms in which validity checks are easy. $\phi \to \psi \equiv \neg \phi \lor \psi$.

Definition: A literal L is either an atom or negation of atom.

A formula C in Conjunctive Normal Form (CNF) if it is a conjunction of the

clauses where each clause is a disjunction of literals. e.g. $\,$

$$(1) (p \lor q) \land (\neg p \lor r)(2)(\neg (q \lor \neg p) \lor r) \land (p \lor q)$$

(2) is not in CNF form as it has negation of clause.

Definition of CNF in Backus Norm Form (BNF)

 $\begin{array}{ll} \text{Literal} & L ::= p | \neg p \\ & \text{Clause} & D ::\neq L | L \vee D \\ \text{CNF Formula} & C ::= D | D \wedge C \end{array}$

Observations:

1. A CNF is a conjunction of clauses $C_1, C_2, ..., C_n$

i.e. $C \equiv C_1 \wedge C_2 \wedge ... \wedge C_n$.

For C to be true it must be the case that each one of $C_1, C_2, ..., C_n$ are true.

Suppose C_i is not a valid formula then C is not valid. Now there may be a single clause featuring all n atoms.