CS330 - Computer Organization and Assembly Language Programming

Lecture 7
-Integer Arithmetic-

Professor: Mahmut Unan – UAB CS

Agenda

- Truncating
- Unsigned Addition/ Negation
- Two's Complement Addition / Negation
- Unsigned Multiplication
- Signed Multiplication
- Booth's Algorithm

Truncating Numbers

- Reduce the number of bits representing the number
- Truncating w-bit number to a k bit number, we drop the high order w-k bits
 - Can alter its value
 - A form of overflow

Summary: Expanding, Truncating: Basic Rules

Expanding (e.g., short int to int)

- Unsigned: zeros added
- Signed: sign extension
- Both yield expected result

Truncating (e.g., unsigned to unsigned short)

- Unsigned/signed: bits are truncated
- Result reinterpreted
- Unsigned: mod operation
- Signed: similar to mod
- For small numbers yields expected behavior

Why should I use unsigned?

- Don't use just because number nonzero
 - C compilers on some machines generate less efficient code
 - Easy to make mistakes (e.g., casting)
 - Few languages other than C supports unsigned integers
- Do use when need extra bit's worth of range
 - Working right up to limit of word size

Unsigned Addition

Operands: w bits

u •••

True Sum: w+1 bits

Discard Carry: w bits

 $UAdd_{w}(u, v)$

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Unsigned Addition Example

• 9+12 \rightarrow 4 bit representation

```
1001 -> 9
```

0100 -> 4

1101

- 13+13 \rightarrow 4 bit representation
- 1101
- 1101
- 11010

Visualizing (Mathematical) Integer Addition

- Integer Addition
 - -4-bit integers u, v
 - -Compute true sum $Add_4(u, v)$
 - Values increase linearly with uand v
 - Forms planar surface

$Add_4(u, v)$

Unan - UAB - CS330

Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\ge 2^w$
 - At most once

Unan - UAB - CS330

Two's Complement Addition

- TAdd and UAdd have Identical Bit-Level Behavior
 - Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

- Will give s == t

TAdd Overflow

Functionality

- True sum requiresw+1 bits
- Drop off MSB
- Treat remaining bits
 as 2's comp. integer

True Sum

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- $If sum < -2^{w-1}$
 - Becomes positive
 - At most once

Unan - UAB - CS330

12

$ \begin{array}{rcl} & 1001 & = & -7 \\ & +0101 & = & 5 \\ & 1110 & = & -2 \end{array} $ (a) (-7) + (+5)	$ \begin{array}{rcl} & 1100 & = & -4 \\ & +0100 & = & 4 \\ & 10000 & = & 0 \\ & (b) (-4) + (+4) \end{array} $
$0011 = 3 + 0100 = 4 \hline 0111 = 7 (c) (+3) + (+4)$	1100 = -4 +1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + 0100 = 4 1001 = Overflow (e) (+5) + (+4)	$ \begin{array}{rcl} 1001 &=& -7 \\ +1010 &=& -6 \\ \hline 10011 &=& Overflow \\ \hline (f)(-7)+(-6) \end{array} $

Figure 10.3 Addition of Numbers in Twos Complement Representation

OVERFLOW RULE:

 If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

$$\begin{array}{c} 0010 = 2 \\ + \frac{1001}{1011} = -7 \\ \hline 1011 = -5 \end{array} \qquad \begin{array}{c} 0101 = 5 \\ + \frac{1110}{10011} = 3 \end{array} \\ \\ (a) \ M = 2 = 0010 \\ S = 7 = 0111 \\ -S = 1001 \end{array} \qquad \begin{array}{c} (b) \ M = 5 = 0101 \\ S = 2 = 0010 \\ -S = 1110 \end{array} \\ \\ \begin{array}{c} 1011 = -5 \\ + \frac{1110}{11001} = -2 \\ \hline 11001 = -7 \end{array} \qquad \begin{array}{c} 0101 = 5 \\ + \frac{0010}{11001} = 2 \\ \hline 0111 = 7 \\ + \frac{0111}{110} = -2 \\ \hline 1110 \end{array} \qquad \begin{array}{c} (d) \ M = 5 = 0101 \\ S = -2 = 1110 \\ -S = 0010 \end{array} \\ \\ \begin{array}{c} 0111 = 7 \\ + \frac{0111}{110} = 7 \\ \hline 1110 = 0 \end{array} \qquad \begin{array}{c} 1010 = -6 \\ + \frac{1100}{1100} = -4 \\ \hline 10110 = 0 \end{array} \\ \\ \begin{array}{c} (e) \ M = 7 = 0111 \\ S = -7 = 1001 \\ -S = 0111 \end{array} \qquad \begin{array}{c} (f) \ M = -6 = 1010 \\ S = 4 = 0100 \\ -S = 1100 \end{array} \\ \end{array}$$

Figure 10.4 Subtraction of Numbers in Twos Complement Representation (M – S)

OF = overflow bit

SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

Detecting 2's comp. overflow

Task

- Given s = TAddw(u, v)
- Determine if s = Addw(u, v)
- Example
- int s, u, v;
- s = u + v;

Claim

- Overflow iff either:
 - $u, v < 0, s \ge 0$ (NegOver)
 - u, v ≥ 0, s < 0 (PosOver)

$$ovf = (u<0 == v<0) && (u<0 != s<0);$$

Exercises

- Assume numbers are represented in 8 bit two's complement representation. Show the calculation of the followings;
 - 6+13
 - 0000 0110
 - 0000 1101
 - 0001 0011
 - 12-5
 - 0000 1100
 - 1111 1011
 - 10000 0111

- 7-2
- 0000 0111
- 1111 1110
- 10000 0101
- 65 33

Carryout without overflow. Sum is correct.

Carryout without overflow. Sum is correct.

Overflow, no carryout. Sum is not correct.

Overflow, with incidental carryout. Sum is not correct.

Overflow, no carryout. Sum is not correct.

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic $UMult_w(u, v) = u \cdot v \mod 2^w$

Unsigned Binary Multiplication

Figure 10.7 Multiplication of Unsigned Binary Integers

```
• 7 * 4
```

$$7 = 0111$$

$$4 = 0100$$

•
$$7 * 4$$
 0111
 $7 = 0111$ $\times 0100$
 $4 = 0100$ 0000

•
$$7 * 4$$
 0111
 $7 = 0111$ $\times 0100$
 $4 = 0100$ 0000

•
$$7 * 4$$
 0111

7 = 0111

 $\times 0100$

4 = 0100

 0000
0111

```
• 7 * 4 0111

7 = 0111 \times 0100

4 = 0100 0000

0111

0000 0111

0011100

= 28
```


(a) Block Diagram

С	A	Q	M	
0	0000	1101	1011	Initial Values
0	1011	1101	1011	Add] First
_				1 144
0	0101	1110	1011	Shift \ Cycle
) Second
0	0010	1111	1011	Shift Cyclo
				SHILL S Cycle
0	1101	1111	1011	Add \ Third
0	0110	1111	1011	Shift) Cycle
1	0001	1111	1 0 1 1	Add) Fourth
1	0001	1111	1011	11 00
0	1000	1111	1011	Shift) Cycle
, and the second				

(b) Example from Figure 9.7 (product in A, Q)

Figure 10.8 Hardware Implementation of Unsigned Binary Multiplication

Signed Multiplication in C

Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

Power-of-2 Multiply with Shift

Operation

 \bullet u << k gives u * 2^k

True Product: w+k bits

Discard k bits: w bits

Both signed and unsigned

Operands: w bits

Examples

•
$$(u << 5) - (u << 3) == u * 24$$

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
- Uses logical shift

	Division	Computed	Hex	Binary	
x	15213	15213	3B 6D	00111011 01101101	
x >> 1	7606.5	7606	1D B6	00011101 10110110	
x >> 4	950.8125	950	03 B6	00000011 10110110	
x >> 8	59.4257813	59	00 3B	00000000 00111011	

Booth's Algorithm

• A Q Q -1 Action

00 → Shift (Arithmetic Right Shift)

01→ Add Numbers (A=A+M), Shift

10 -> Subtract Numbers (A=A-M), Shift

11 -> Shift (Arithmetic Right Shift)

Exercises

- 6*(-2)
- 5*(-4)
- 14*(-5)

• A Q Q __1 Action

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

Unan - UAB - CS330

$$6 * (-2) =$$

A

Q

Q ₋₁

Action

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

$$1001$$

1

+_____

-M = 1010

Action

• A Q Q __1

$$6 \rightarrow 0110 \rightarrow Multiplicand \rightarrow M$$

$$1001$$

$$1$$

$$2 \rightarrow 0010 \rightarrow Multiplier \rightarrow Q$$
1101

$$6 * (-2) =$$

• A Q Q -1 Action

Unan - UAB - CS330

Step	A	Q	Q ₋₁	Action
1	0000	111 <mark>0</mark>	0	00→ Shift(AR)
2				
3				
4				

Step	Α	Q	Q ₋₁	Action
1	0000	1110	0	
2				
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000	111 <mark>0</mark> 0111	<mark>0</mark> • 0	00→ Shift(AR)
2				
3				
4				

Arithmetic Right Shift → Duplicate the left most bit

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M =1010 A-M=1010 Shift(AR)
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M = 1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	1 1	11→ Shift(AR)
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	А	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M = 1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	1 1	11→ Shift(AR)
4	1110 1111	100 <mark>1</mark> 0100	<mark>1</mark> 1	11→ Shift(AR)

00	Arithmetic Right Shift	
11	Arithmetic Right Shift	
01	ADD (A=A+M)+ Shift	
10	SUBTRACT (A=A-M)+Shift	48

Step	Α	Q	Q ₋₁	Action
1	0000 0000	111 <mark>0</mark> 0111	<mark>0</mark> 0	00→ Shift(AR)
2	0000 1010 1101	011 <mark>1</mark> 0111 0011	0 0 1	10 → Subtract (A=A-M) A = 0000 -M =1010 A-M=1010 Shift(AR)
3	1101 1110	001 <mark>1</mark> 1001	1 1	11→ Shift(AR)
4	1110 1111	100 <mark>1</mark> 0100	1 1	11→ Shift(AR)

1111 0100 = -12

00	Arithmetic Right Shift	
11	Arithmetic Right Shift	
01	ADD (A=A+M)+ Shift	
10	SUBTRACT (A=A-M)+Shift	49

Example 2 \rightarrow 5 * -4

• A Q Q -1 Action

```
5 \rightarrow 0101 \rightarrow Multiplicand \rightarrow M
        1010
-M = 1011
4 \rightarrow 0100 \rightarrow Multiplier \rightarrow Q
       1011
```

Step	A	Q	Q ₋₁	Action
1	0000	111 <mark>0</mark>	0	00→ Shift(AR)
2				
3				
4				

4 Bits → 4Iterations Result = 8 bits

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	0	00→ Shift(AR)
2				
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3				
4				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000 1011 1101	001 <mark>1</mark> 0011 1001	0 0 1	10→ Subtract
4	1101	1001	_	Silit(Ait)

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000	001 <mark>1</mark>	0	10→ Subtract A=0000 -M= 1011
	1011 1101	0011 1001	0	A=A-M → 1011 Shift(AR)
4	1101 1110	100 <mark>1</mark> 1100	<mark>1</mark> 1	11→ Shift(AR)

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	0000 0000	110 <mark>0</mark> 0110	<mark>0</mark> 0	00→ Shift(AR)
2	0000 0000	011 <mark>0</mark> 0011	<mark>0</mark> 0	00→ Shift(AR)
3	0000	001 <mark>1</mark>	O	10→ Subtract A=0000 -M= 1011
	1011	0011	0	$A=A-M \rightarrow 1011$
	1101	1001	1	Shift(AR)
4	1101 1110	100 <mark>1</mark> 1100	<mark>1</mark> 1	11→ Shift(AR)

1110 1100 =-20

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Example 3 \rightarrow 14 * -5

• A Q Q ___ Action

$14 \rightarrow 01110 \rightarrow Multiplicand \rightarrow M$

Example 3 \rightarrow 14 * -5

• A Q Q -1 Action

```
14 \rightarrow 01110 \rightarrow Multiplicand \rightarrow M
         10001
-M = 10010
5 \rightarrow 00101 \rightarrow Multiplier \rightarrow Q
       11010
```

Step	А	Q	Q ₋₁	Action
1	00000	11011	0	
2				
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2				
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	Α	Q	Q ₋₁	Action
1	00000	1101 <mark>1</mark>	<mark>0</mark>	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010
	10010	11011	0	A-M= 10010
	11001	01101	1	Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3				
4				
5				

00	Arithmetic Right Shift
11	Arithmetic Right Shift
01	ADD (A=A+M)+ Shift
10	SUBTRACT (A=A-M)+Shift

Step	A	Q	Q ₋₁	Action
1	00000	1101 <mark>1</mark>	0	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010
	10010	11011	0	A-M= 10010
	11001	01101	1	Shift (AR)
2	11001	0110 <mark>1</mark>	<mark>1</mark>	Shift (AR)
	11100	10110	1	
3	11100	1011 <mark>0</mark>	1	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ Carry - ignored
	01010	10110	1	A+M= $\frac{01010}{}$ Actually $\frac{1}{}$ 01010
	00101	01011	0	Shift (AR)
4				
5				

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M= 01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5				

Step	Α	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M=01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5	11011 11101	1010 <mark>1</mark> 11010	<mark>1</mark> 1	Shift (AR)

Step	A	Q	Q ₋₁	Action
1	00000 10010 11001	1101 <mark>1</mark> 11011 01101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00000 -M = 10010 A-M= 10010 Shift (AR)
2	11001 11100	0110 <mark>1</mark> 10110	<mark>1</mark> 1	Shift (AR)
3	11100 01010 00101	1011 <mark>0</mark> 10110 01011	1 0	$01 \rightarrow ADD (A=A+M)+ Shift$ $A = 11100$ $M = 01110$ $A+M=01010 \rightarrow Actually 101010$ Shift (AR)
4	00101 10111 11011	0101 <mark>1</mark> 01011 10101	0 0 1	10→ SUBTRACT (A=A-M)+Shift A = 00101 -M = 10010 A-M= 10111 Shift (AR)
5	11011 11101	1010 <mark>1</mark> 11010	<mark>1</mark> 1	Shift (AR)