COMP9318 Review

Wei Wang @ UNSW

May 21, 2017

Course Logisitics

► THE formula:

```
mark = 0.55 \cdot exam + 0.15 \cdot (ass1 + proj1 + lab)

mark = \mathbf{FL}, if exam < 40

lab = avg(best\_of\_3(lab1, lab2, lab3, lab4, lab5))
```

- proj1 and ass1 will be marked ASAP; we aim at delivering the result before the exam
- Pre-exam consultations:

12 Jun: 1300–1500, K17-508
13 Jun: 1300–1500, K17-508

Course feedback: via comments in the course survey or private messages to me on the forum. We are particularly interested in aspects such as coverage, difficulty levels, use of python/Jupyter, project, and background required.

Note

- (1) The final exam mark is important and you must achieve at least 40!
- (2) Supplementary exam is only for those who cannot attend final exam.

About the Final Exam

- ► Time: 0900 1100, 14 Jun 2016 (Wed), 10 minutes reading time + 2 hr closed-book exam.
- Accessories: UNSW Approved Calculator. Note: watches are prohibited.
- Designed to test your understanding and familiarity of the core contents of the course.
- ▶ Answer 1 + 6 questions out of 9 questions.
 - ▶ Q1: short answer (can use your own words) and **compulsory**.
 - Choose 6 from Q2 to Q9; thers will requires some "calculation" (i.e., similar to tute/ass questions)

About the Final Exam /2

- ▶ Read the instructions carefully.
- ▶ Use your time wisely. Don't spend too much time if stuck on one question or writing excessively long answers on Q1.

Tips

(1) Write down intermediate steps. (2) Know how to do $\log_2(x)$ on your calculator. (3) Work on "easy" questions first (but start the answer on a new page on the booklet).

Disclaimer

We will go through the main contents of each lecture. However, note that it is by no means exhaustive.

Introduction

- ▶ DM vs. KDD
- ▶ Steps of KDD; iterative in nature; results need to be validated.
- ▶ Database (efficiency) vs. Machine learning (effectiveness) vs. Statistics (validity):
- ▶ Able to cast a real problem into a data mining problem.

Data Warehousing and OLAP

- Understand the four characteristics of DW (DW vs. Data Mart)
- Differences between OLTP and OLAP
- Multidimensional data model; data cube;
 - ► fact, dimension, measure, hierarchies
 - cuboid, cube lattice
 - three types of schemas
 - four typical OLAP operations
 - ROLAP/MOLAP/HOLAP
- Query processing methods for OLAP servers, including the BUC cubing algorithm.

NOT needed:

 Design good DW schemas and perform ETL from operational data sources to the DW tables.

Data Preprocessing

- Understand that real data is "dirty" (incomplete, noisy, inconsistent)
- ▶ How to handle missing data?
- ▶ How to normalize the data?
- How to handle noisy data? different binning/histogram method (including V-optimal and MaxDiff)
- How to discretize data?

NOT needed:

Feature selection and reduction (e.g., PCA, Random Projection, t-SNE)

Classification and Prediction

- Classification basics:
 - overfitting/underfitting; cross-validation
 - ► Classification vs prediction; vs clustering (unsupervised learning); eager learning vs. lazy learning (instance-based learning)
- Decision tree:
 - ► The ID3 algorithm
 - Decision tree pruning
 - Derive rules from the decision tree
 - ► The CART algorithm (with gini index)
- Naive Bayes classifier
 - Smoothing
 - Two ways to apply NB on text data
- ► Logistic regression/MaxEnt classifier; Maximum likelihood estimation of the model parameters + regularization; Gradient ascend.

Cluster Analysis

- ► Clustering criteria: minimize intra-cluster distance + maximize inter-cluster distance
- ▶ Distance/similarity
 - how to deal with different types of variables
 - distance functions: L_p
 - metric distance functions

Cluster Analysis /2

- ▶ Partition-based Clustering: *k*-Means (algorithm, advantages, disadvantages, . . .)
- ► Hierarchical Clustering: agglomerative, single-link / complete-link / group average hierarchical clustering

Association Rule Mining

- ► Concepts:
 - ▶ Input: transaction db
 - Output: (1) frequent itemset (via minsup); (2) association rules (via minconf)
- ► Apriori algorithm:
 - Apriori property (2 versions)
 - The Apriori algorithm
 - ▶ How to find frequent itemsets?
 - ▶ How to derive the association rules?

Association Rule Mining /2

- ► FP-growth algorithm:
 - ▶ How to mine the association rule using FP-trees?
- ▶ Derive association rules from the frequent itemsets.

Recommendation System

- Problem definition and its input.
- ▶ Three major approaches, including their pros and cons.
 - Content-based
 - ► Collaborative filtering; pearson correlation
 - Matrix factorization-based; stochastic gradient descend.
- Variants of Matrix factorization.

NOT needed:

▶ The detailed model used by the Netflix competition winner.

Thanks You and Good Luck!