

Elementary arithmetic symbols

Equals
+ Addition or "plus"
$$2+3=5$$
- Subtraction, "minus" or "less" $3-2=1$
× or · Multiplication $2\times 3=6$ $2\cdot 3=6$
÷ or / Division $6\div 3=2$ $6/3=2$

or $\frac{(numerator)}{(demonimator)} \equiv \frac{(dividend)}{(divisor)} = (quotient) \frac{6}{3} = 2 \frac{6}{3} = 2 \frac{6}{3} = 2$

Relational symbols

Greek characters used as symbols

oreek enaraeters asea as syrribors									
Upper case	Lower case	Name	Roman equiv.	Key- board	Upper case	Lower case	Name	Roman equiv.	Key- board
A	α	alpha	a	a	N	ν	nu	n	n
В	β	beta	b	b	Ξ	ξ	xi	X	X
Γ	γ	gamma	g	g	O	O	omicron	(0)	О
Δ	δ	delta	d	d	П	π	pi	p	p
E	3	epsilon	e	e	P	ρ	rho	r	r
Z	ζ	zeta	Z	Z	Σ	σ	sigma	S	S
Н	η	eta	(e)	h	T	τ	tau	t	t
Θ	θ	theta	th	q	Y	υ	upsilon	u	u
I	ι	iota	i	i	Ф	ф	phi	ph	f
K	κ	kappa	k	k	X	χ	chi	ch	c
Λ	λ	lambda	1	1	Ψ	Ψ	psi	psy	y
M	μ	mu	m	m	Ω	ω	omega	O	W

Conventions for multiplication

For multiplying numbers We explicitly use the multiplication sign "×" $2 \times 3 = 6$ For multiplying variables We can use the multiplication sign But where there is no confusion We drop it $a \times b = c$ might be simply replaced by ab = c

Use of parentheses and brackets

When we want to group numbers or variables
We can use parentheses (or brackets)

$$2 \times (3+4) = 2 \times 7 = 14$$

For such grouping, we can alternatively use

square brackets

$$2 \times [3+4] = 2 \times 7 = 14$$

or curly brackets

$$2 \times \{3+4\} = 2 \times 7 = 14$$

When used this way, there is no difference in the mathematical meaning of these brackets

Associative property

Operations are associative if it does not matter how we group them

e.g., addition of numbers is associative

$$(a+b)+c=a+(b+c)$$

e.g., multiplication of numbers is associative

$$(a \times b) \times c = a \times (b \times c)$$

But

division of numbers is not associative

$$(8/4)/2 = 2/2 = 1$$
 but $8/(4/2) = 8/2 = 4$

Distributive property

Property where terms within parentheses can be "distributed" to remove the parentheses

$$a \times (b+c) = a \times b + a \times c$$

Here, multiplication is said to be distributive over addition

Many other conceivable operations are not distributive, however

E.g., addition is not distributive over multiplication

$$3+(2\times5)=13\neq(3+2)\times(3+5)=40$$

Commutative property

Property where the order can be switched round e.g., addition of numbers is commutative a+b=b+a

e.g., multiplication of numbers is commutative

$$a \times b = b \times a$$

But

e.g., subtraction is not commutative

$$5-3=2 \neq 3-5=-2$$

e.g., division is not commutative

$$6/3 = 2 \neq 3/6 = \frac{1}{2}$$

A function is something that relates or "maps"

One set of values

Such as an "input" variable or "argument" x

To another set of values which we could think of as an "output"

For example, the function $f(x) = x + \frac{1}{4}$


```
Conventionally, we say

"f of x" when we read f(x)

Here obviously

f(x) is not "f times x"
```

Most commonly
Only parentheses are used around the argument xnot square [] or curly {}
brackets

For a few very commonly used functions

Such as the trigonometric functions

The parentheses are optionally omitted when the argument is simple $\sin \theta$ instead of $\sin(\theta)$

Note, incidentally, $\sin(-\theta) = -\sin(\theta)$

For a few very commonly used functions

Such as the trigonometric functions

The parentheses are optionally omitted when the argument is simple $\cos \theta$ instead of $\cos(\theta)$

Note, incidentally

$$\cos(-\theta) = \cos(\theta)$$

r or hypotenuse angle θ

y, height or "opposite" side

x, base or "adjacent" side

Sine, cosine, and tangent

Defined using a right-angled triangle

$$\sin \theta = \frac{y}{r} \quad \cos \theta = \frac{x}{r} \quad \tan \theta = \frac{y}{x}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Natural units for angles in mathematics are radians 2π radians in a circle 1 radian ~ 57.3 degrees

Cosecant, secant, and cotangent

Cosecant

$$\csc\theta \equiv \csc\theta = \frac{r}{y} = \frac{1}{\sin\theta}$$

Secant

$$\sec \theta = \frac{r}{x} = \frac{1}{\cos \theta}$$

Cotangent

$$\cot \theta = \cot \theta = \frac{x}{y} = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

x, base or

"adjacent" side

side

y, height or

Inverse sine function

The inverse sine function $\sin^{-1}(a)$ or arcsine function Pronounced "arc-sine" works backwards to give the angle from the sine value If $a = \sin \theta$ then $\arcsin(a) = \sin(a) = \sin^{-1}(a) = \theta$

Note $\sin^{-1}(a)$ does not mean $1/\sin(a)$

The "-1" here means "inverse function" not "reciprocal"

sin² and cos² functions

However $\sin^2 \theta = \sin \theta \times \sin \theta = (\sin \theta)^2$

Not $\sin(\sin\theta)$

Similarly $\cos^2 \theta = (\cos \theta)^2$

Only trigonometric functions and their close relatives commonly use this notation

