算法设计与分析作业中文版

作者: 小道士

版本: 2021 年秋季学期

1 分治算法

对于问题 1-6, 你至少应该做以下几件事情:

- (a) 用自然语言和伪代码描述你的算法;
- (b) 画出子问题归约图;
- (c) 证明算法的正确性;
- (d) 分析算法的复杂度。

1.1 数组中的第 K 个最大元素

1.1.1 题目

给定整数数组 nums 和整数 k, 返回数组中第 k 大的元素。

1.1.2 要求

算法时间复杂度为 O(n), 证明你的算法正确性的同时并分析复杂度。(k小于 n, 其中 n 是数组的长度)

1.1.3 说明

请注意,你需要找的是数组排序后的第k个最大的元素,而不是第k个不同的元素。

1.1.4 提示

LeetCode 215. 数组中的第 K 个最大元素

1.2 完全二叉树的局部最小值

1.2.1 题目

考虑一棵有 n 个节点的完全二叉树 T, T 也可以为满二叉树,此时即 $n=2^d-1$ (可将 d 视为层数)。T 的每个节点 v 都对应着一个实数 x_v 。你可

以假设这些实数都是不同的。如果 x_v 小于与之相连的所有节点 w 所对应的实数 x_w , 那么节点 v 就是一个局部最小值。

1.2.2 要求

找到 T 的一个最小值: 仅以 O(logn) 次访问节点。

1.2.3 说明

给定一棵完全二叉树 T,但是其中标志节点的实数 x_v 并不会直接给出,对于每个节点 v,你可以通过访问节点 v 来确定值 x_v 。仅找出一个局部最小值即可,由于可以假设实数不同,所以返回形式可以直接为该实数。

1.2.4 提示

一本 book 的课后题

1.3 连续子数组的最大和

1.3.1 题目

输入一个整形数组(整数可以为负数)。数组中连续的一个或多个整数 组成一个子数组,每个子数组都有一个和。求所有子数组的和的最大值。

1.3.2 要求

时间复杂度为 O(nlogn)。

1.3.3 提示

剑指 OfferII 42. 连续子数组的最大和

1.4 在排序数组中查找元素

1.4.1 题目

给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值 target,返回 [-1,-1]。

1.4.2 要求

算法时间复杂度为 O(logn),请证明算法正确性并且分析复杂度。

1.4.3 说明

如果数组为 [5,7,7,8,8,10], 目标元素是 8, 输出应该为 [3,4]。

1.4.4 提示

LeetCode 34. 在排序数组中查找元素的第一个和最后一个位置

1.5 凸多边形的三角剖分数目

1.5.1 题目

给定一个有 n 个顶点的凸多边形,我们可以把它分成几个独立的三角形。设计一个算法给出我们可以有多少种方式把一个有 n 个顶点的凸多边划分且划分之后的部分都是三角形。

1.5.2 说明

单次划分的对角线不可相交。当 n=4 时,有两种不同的方式来划分 多边形。当 n=5 时,有五种不同的方法。

1.5.3 提示

卡特兰数

1.6

1.6.1 问题

给定一个由 k 个链表组成的数组,每个链表都按升序排序。给出一个算法将所有的链表合并成一个排序的链表。(注意一个链表的长度是 n)

1.6.2 要求

算法时间复杂度为 O(knlogk)。

1.6.3 提示

LeetCode 23. 合并 K 个升序链表