# 3-2 Amortized Analysis

(Part II: Advanced Examples)

Hengfeng Wei

hfwei@nju.edu.cn

October 15, 2018





Robert Tarjan

SIAM J. ALG. DISC. METH. Vol. 6, No. 2, April 1985

© 1985 Society for Industrial and Applied Mathematics

#### AMORTIZED COMPUTATIONAL COMPLEXITY\*

ROBERT ENDRE TARJAN†

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging over time. Amortized running time is a realistic but robust complexity measure for which we can obtain surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple, the sible and efficient. This paper surveys recent work by several researchers on amortized complexity.

"Amortized Computational Complexity", 1985

# What work are you proudest of?





Proudest? It's hard to choose.

I like the self-adjusting search tree data structure that Daniel Sleator and I developed.

#### **Self-Adjusting Binary Search Trees**

#### DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

AT&T Bell Laboratories, Murray Hill, NJ

Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree operations have an amortized time bound of  $O(\log n)$  per operation, where by "amortized time" is meant the time per operation averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees when total running time is the measure of interest. In addition, for sufficiently long access sequences, splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency of splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a simple restructuring heuristic, called splaying, whenever the tree is accessed. Extensions of splaying give simplified forms of two other data structures: lexicographic or multidimensional search trees and link/ cut trees.

"Self-Adjusting Binary Search Trees - Splay Tree", JACM, 1985

#### Splay(x,T):

Moving node x to the **root** of the tree T by  $\cdots$ 

SEARCH
$$(x,T)$$
 RETURN  $x^*/\Lambda$ 

Insert
$$(x,T)$$
 assume  $x \notin T$ 

$$\mathrm{Delete}(x,T)\quad \mathsf{ASSUME}\; x\in T$$

$$T \leftarrow \mathrm{Join}(T_1, T_2) \quad \text{Assume } x \in T_1 < y \in T_2$$
 
$$(T_1, T_2) \leftarrow \mathrm{Split}(x, T) \quad \text{Return } x \in T_1 \leq x \land y \in T_2 > x$$

#### Splay(x,T):

Moving node x to the **root** of the tree T by performing a sequence of **rotations** along the path from x to the root.



#### A chain of length n

#### A sequence of n Splay



$$\sum_{i=1}^{n} c_i = \Theta(n^2)$$

$$\bar{c}_i = \Theta(n)$$



Case 0: x is the root



CASE 1: zig (zag)

$$y = p(x)$$
 is the root



#### CASE 2: zig-zig (zag-zag)

$$y = p(x)$$
  $z = p(y)$ 

$$x = lc(y)$$
  $y = lc(z)$ 

$$(1): y-z$$
  $(2): x-y$ 



## CASE 3: zig-zag (zag-zig)

$$y = p(x)$$
  $z = p(y)$ 

$$x = rc(y)$$
  $y = lc(z)$ 

$$(1): x - y$$
  $(2): x - z$ 

```
1: procedure SPLAY(x, T)
        while x \neq T.root do
                                        \triangleright Case 0
2:
            switch · · · do
 3:
                case 1: zig
4:
 5:
6:
                    return
                case 2 : zig-zig
 7:
8:
                    . . .
9:
                case 3 : zig-zag
10:
                    . . .
```





## Splay(2)

# Amortized Analysis of Splay

A splay tree T of n-node An arbitrary sequence of m SPLAY

# of rotations

#### **Theorem**

$$\hat{c}_{\text{SPLAY}} = O(\log n).$$

$$D_0, o_1, D_1, o_2, \cdots, \underbrace{D_{i-1}, o_i, D_i}_{\text{the } i\text{-th operation}}, \cdots, D_{n-1}, o_n, D_n$$

$$\Phi: \left\{ D_i \mid 0 \le i \le n \right\} \to \mathcal{R}$$

$$\left| \hat{c}_i = c_i + \left( \Phi(D_i) - \Phi(D_{i-1}) \right) \right|$$

$$\sum_{1 \leq i \leq n} c_i = \left(\sum_{1 \leq i \leq n} \hat{c_i}\right) + \left(\underbrace{\Phi(D_0) - \Phi(D_n)}_{\text{net decrease in potential}}\right)$$

$$\sum_{1 \le i \le n} c_i = \left(\sum_{1 \le i \le n} \hat{c_i}\right) + \left(\underbrace{\Phi(D_0) - \Phi(D_n)}_{\text{net decrease in potential}}\right)$$

$$\underbrace{\Phi(D_0) - \Phi(D_n)}_{\text{net decrease in potential}} \leq \square \implies \left| \sum_{1 \leq i \leq n} c_i \leq \left( \sum_{1 \leq i \leq n} \hat{c_i} \right) + \square \right|$$

$$\Phi_0$$
 Splay<sub>1</sub>  $\Phi_1$  Splay<sub>2</sub>  $\Phi_2$   $\cdots$   $\underbrace{\Phi_{i-1}}_{\text{the } i\text{-th Splay}} \underbrace{\Phi_i}_{\text{the } i\text{-th Splay}} \cdots$  Splay<sub>m</sub>  $\Phi_m$ 

$$\hat{c}_{\text{SPLAY}_i} = c_{\text{SPLAY}_i} + (\Phi_{\text{SPLAY}_i} - \Phi_{\text{SPLAY}_{i-1}})$$



s(x): # of nodes in the subtree rooted at x

$$r(x) = \log s(x)$$

$$\Phi = \sum_{x \in T} r(x)$$

$$\hat{c}_{\mathrm{SPLAY}_i} = c_{\mathrm{SPLAY}_i} + (\Phi_{\mathrm{SPLAY}_i} - \Phi_{\mathrm{SPLAY}_{i-1}})$$

$$\Phi_0$$
 SPLAY<sub>1</sub>  $\Phi_1$  SPLAY<sub>2</sub>  $\Phi_2$  · · ·  $\Phi_{i-1}$  SPLAY<sub>i</sub>  $\Phi_i$  · · · SPLAY<sub>m</sub>  $\Phi_m$ 

$$\Phi_{i-1} \ \ rac{\operatorname{SPLAY}_i \ \Phi_i}{\operatorname{\mathsf{the}}\ i ext{-}\mathrm{\mathsf{th}}\ \operatorname{SPLAY}}:$$

 $\Phi_{i-1} \, \triangleq \, \Phi_{0'} \, \operatorname{ITER}_1 \, \Phi_{1'} \, \cdots \, \underbrace{\Phi_{k-1} \, \operatorname{ITER}_k \, \Phi_k}_{\text{the $k$-th ITERATION}} \cdots \, \operatorname{ITER}_l \, \Phi_l \, \triangleq \, \Phi_i$ 

$$\begin{split} \hat{c}_{\mathrm{SPLAY}_i} &= \sum_{1 \leq j \leq l} \hat{c}_{\mathrm{ITER}_j} \\ &= \sum_{1 \leq j \leq l} \left( c_{\mathrm{ITER}_j} + (\Phi_{\mathrm{ITER}_j} - \Phi_{\mathrm{ITER}_{j-1}}) \right) \end{split}$$

$$\hat{c}_{\text{ITER}_j} = c_{\text{ITER}_j} + (\Phi_{\text{ITER}_j} - \Phi_{\text{ITER}_{j-1}})$$

By Case Analysis.

$$\hat{c}_j = c_j + (\Phi_j - \Phi_{j-1})$$

Remember: ITER



Case 0

$$\hat{c}_j = c_j + (\Phi_j - \Phi_{j-1})$$
$$= 0 + 0$$
$$= 0$$



Case 1: zig

$$\hat{c}_j = c_j + (\Phi_j - \Phi_{j-1})$$

$$= 1 + r_j(x) + r_j(y) - r_{j-1}(x) - r_{j-1}(y)$$

$$\leq 1 + r_j(x) - r_{j-1}(x)$$

$$\leq 1 + 3(r_j(x) - r_{j-1}(x))$$



Case 2: zig-zig

$$\begin{aligned} \hat{c}_j &= c_j + (\Phi_j - \Phi_{j-1}) \\ &= 2 + r_j(x) + r_j(y) + r_j(z) - r_{j-1}(x) - r_{j-1}(y) - r_{j-1}(z) \\ &= 2 + r_j(y) + r_j(y) - r_{j-1}(x) - r_{j-1}(y) \\ &\leq 2 + r_j(x) + r_j(z) - 2r_{j-1}(x) \\ &\leq 3(r_j(x) - r_{j-1}(x)) \end{aligned}$$

$$r_{j-1}(x) + r_j(z) = \log s_{j-1}(x) + \log s_i(z)$$

$$\leq 2 \log \left(\frac{s_{j-1}(x) + s_j(z)}{2}\right)$$

$$\leq 2 \log \left(\frac{s_j(x)}{2}\right)$$

$$= 2 \log s_j(x) - 2$$

$$= 2r_j(x) - 2$$

 $r_i(z) \leq 2r_i(x) - r_{i-1}(x) - 2$ 



CASE 3: zig-zag

$$\hat{c}_{j} = c_{j} + (\Phi_{j} - \Phi_{j-1})$$

$$= 2 + r_{j}(x) + r_{j}(y) + r_{j}(y) - r_{j-1}(x) - r_{j-1}(y) - r_{j-1}(z)$$

$$\leq 2 + r_{j}(y) + r_{j}(z) - 2r_{j-1}(x)$$

$$\leq 3(r_{j}(x) - r_{j-1}(x))$$

$$\hat{c}_{\text{ITER}_j} \le \begin{cases} 0, & \text{CASE 0} \\ 1 + 3(r_j(x) - r_{j-1}(x)), & \text{CASE 1} \\ 3(r_j(x) - r_{j-1}(x)), & \text{CASE 2} \\ 3(r_j(x) - r_{j-1}(x)), & \text{CASE 3} \end{cases}$$

$$\begin{split} \hat{c}_{\mathrm{SPLAY}_i} &= \sum_{1 \leq j \leq l} \hat{c}_{\mathrm{ITER}_j} \\ &= \sum_{1 \leq j \leq l} \left( c_{\mathrm{ITER}_j} + (\Phi_{\mathrm{ITER}_j} - \Phi_{\mathrm{ITER}_{j-1}}) \right) \\ &\leq 3 \big( r_{\mathrm{ITER}_l}(x) - r_{\mathrm{ITER}_0}(x) \big) + 1 \\ &= 3 \big( \log n - r_{\mathrm{ITER}_0}(x) \big) + 1 \\ &\leq 3 \log n + 1 \\ &= O(\log n) \end{split}$$

#### Theorem (BALANCE THEOREM)

$$\sum_{1 \le i \le m} c_{\text{SPLAY}_i} = O\Big((m+n)\log n\Big)$$

Proof.

$$\begin{split} \sum_{1 \leq i \leq m} c_{\text{SPLAY}_i} &= \left(\sum_{1 \leq i \leq m} \hat{c}_{\text{SPLAY}_i}\right) + \left(\underbrace{\Phi_{\text{SPLAY}_0} - \Phi_{\text{SPLAY}_m}}_{\text{net decrease in potential}}\right) \\ &\leq m \log n + \frac{n \log n}{} \\ &= (m+n) \log n \end{split}$$



$$\Phi = \sum_{x \in T} r(x)$$





## Splay(x)

Search(x,t)

INSERT(x,t)

Delete(x,t)

 $Join(t_1, t_2)$ 

Split(x,t)



#### Self-Adjusting Binary Search Trees

DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

AT&T Bell Laboratories, Murray Hill, NJ

Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The binary search tree is a dast structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree operations have an anotized time bound of CO(go, n) per operation, where by "amortized time" is meant the time per operation averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees, splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency splay trees explay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency splay tree comes not from an explicit structural constant factor, as static optimum search trees. The efficiency is splay tree comes not from an explicit structural constant factor, as static optimum search trees. The efficiency is splay tree comes not from an explicit structural constant factor, as static optimum search trees. The efficiency is splay tree comes not from an explicit structural constant factor, as static optimum search trees. The efficiency is splayed to the splay that the splay the splayed the splayed the splayed the splayed to the splayed to the splayed to the splayed to the splayed trees and splayed to the splayed to the splayed to the splayed trees and splayed to the splayed to the splayed to the splayed to the splayed trees are splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splayed to the splayed trees are splayed to the splaye

# "Move-to-Front" (MTF) List









Office 302

Mailbox: H016

hfwei@nju.edu.cn