Continuity of Sine and Cosine

We all first meet **sine** and **cosine** inside a right triangle.

- $\cos \theta = (adjacent side) / (hypotenuse)$
- $\sin \theta = (\text{opposite side}) / (\text{hypotenuse})$

So at first, they're just ratios of sides depending on an angle.

But later, we start thinking of them as **functions**: you give them an angle (in radians), and they spit out a number.

That's why we now write them like:

- $f(x) = \sin(x)$
- f(x) = cos(x)

The Picture

Take the **unit circle** (a circle of radius 1). If you wrap a piece of string around it and then stretch that string out straight, you get the usual sine graph — the wavy one you've seen a million times.

From that graph, two things are obvious:

• As
$$x \to 0$$
, $\sin(x) \to 0$

• As
$$x \to 0$$
, $\cos(x) \to 1$

And we know exactly at x = 0:

•
$$sin(0) = 0$$

•
$$cos(0) = 1$$

So the **limit** and the **actual value** agree. That's the whole idea of continuity!

Continuity: Reminder

A function f is continuous at some point c if three things hold:

1. f(c) is defined.

- 2. $\lim (x \to c) f(x)$ exists.
- 3. $\lim (x \to c) f(x) = f(c)$.

That's it. No jumps, no holes, no funny business.

Applying it to sin(x)

Let's check continuity of sine at some point c. We want to show:

 $\lim (x \to c) \sin(x) = \sin(c).$

Step 1: Change of perspective

Instead of working directly with $x \rightarrow c$, we set

$$x = c + h$$

where $h \rightarrow 0$.

Why do this?

- Because the real issue is not x itself, but how far x is from c.
- Writing x = c + h captures this "gap."
- As x → c, that gap h → 0.
 So this makes the limit easier to handle.

So the problem becomes:

$$\lim (h \rightarrow 0) \sin(c + h)$$
.

Step 2: Use the sine addition formula

We know:

$$sin(c + h) = sin(c)cos(h) + cos(c)sin(h)$$
.

This separates the "fixed part" $(\sin(c), \cos(c))$ from the "tiny wiggle" $(\cos(h), \sin(h))$.

Step 3: Take the limit as $h \rightarrow 0$

- $\lim (h \rightarrow 0) \cos(h) = 1$
- $\lim (h \rightarrow 0) \sin(h) = 0$

So:

$$\lim (h \to 0) \sin(c + h)$$

$$= \sin(c) \cdot (1) + \cos(c) \cdot (0)$$

$$= \sin(c).$$

Step 4: Wrap-up

That's exactly what we needed:

$$\lim (x \rightarrow c) \sin(x) = \sin(c)$$
.

So sine is continuous everywhere.

 \leftarrow The substitution x = c + h is just a clever way to zoom in near c and focus on the tiny change h.

It's like saying: "Forget the big picture — what happens if I nudge by a small step h?" And the trig identity shows that tiny step disappears smoothly, proving continuity.

What about cosine?

Same trick:

```
cos(c + h) = cos(c)cos(h) - sin(c)sin(h).
```

As $h \rightarrow 0$:

- $cos(h) \rightarrow 1$
- $sin(h) \rightarrow 0$

So:

```
\lim (h \to 0) \cos(c + h)
= \cos(c) \cdot 1 - \sin(c) \cdot 0
= \cos(c).
```

So cosine is continuous everywhere too.

Intuitive Analogy 🌊

Imagine sine and cosine as two smooth waves in the ocean. If you're standing at some point (say angle = c), the wave doesn't suddenly break or disappear under your feet. The limit as you approach that spot is exactly the height of the wave at that spot. That's continuity.

Theorem 2.8.1 (in plain words)

Both sin(x) and cos(x) are continuous functions — no holes, no jumps, no tears in their curves.

Continuity of Other Trigonometric Functions

We already know:

- **sin(x)** is continuous everywhere.
- cos(x) is continuous everywhere.

Now, what about the other trig functions?

1. Tangent

By definition:

 $tan(x) = \sin(x) / \cos(x).$

 \leftarrow Division rule: if f(x) and g(x) are continuous, then f(x)/g(x) is also continuous, **except where** g(x) = 0 (because division by zero breaks the function).

Here, g(x) = cos(x).

So tan(x) is continuous **everywhere** except where cos(x) = 0.

Where is cos(x) = 0?

- At $x = \pi/2$, $3\pi/2$, $5\pi/2$, ...
- More generally: $x = (2n+1)\pi/2$ for integers n.

So tan(x) is smooth everywhere, but it **jumps to infinity** at those vertical lines.

2. Cotangent, Secant, Cosecant

- $\cot(x) = \cos(x)/\sin(x)$.
 - \leftarrow Continuous everywhere except sin(x) = 0 (multiples of π).
- sec(x) = 1/cos(x).
 - \leftarrow Continuous everywhere except cos(x) = 0 (odd multiples of π/2).

- csc(x) = 1/sin(x).
 - \leftarrow Continuous everywhere except sin(x) = 0 (multiples of π).

So each of these is "continuous on their allowed intervals," but they break whenever the denominator vanishes.

3. Why This Works

All of these are built from sin(x) and cos(x), which we already know are continuous. Then, by the theorem:

"If f(x) and g(x) are continuous, so is $f(x) \cdot g(x)$, and f(x)/g(x) (except where denominator = 0)." That's the backbone here.

The Squeeze Theorem and sin(x)/x

Here's the famous limit:

 $\lim (x \to 0) \left[\sin(x)/x \right] = 1.$

This is a cornerstone result, used all the time in calculus.

Why is this tricky?

When $x \rightarrow 0$:

- $sin(x) \rightarrow 0$.
- \bullet $x \rightarrow 0$.

So $\sin(x)/x$ looks like 0/0, an indeterminate form.

It's like a tug of war: numerator and denominator are both shrinking to 0, so who wins?

The Idea of the Squeeze Theorem

If you can trap a function between two simpler functions, and those simpler ones have the same limit, then the trapped one must go there too.

Step 1: Geometric Setup

Imagine the unit circle (radius 1).

Take a small positive angle x (in radians).

- Arc length on the circle = x.
- sin(x) = vertical height.
- tan(x) = slope of the tangent line.

From geometry, we get: sin(x) < x < tan(x).

Step 2: Rewrite Inequalities

Divide everything by sin(x): 1 < x/sin(x) < 1/cos(x).

Flip it around: cos(x) < sin(x)/x < 1.

Step 3: Take Limits

As $x \rightarrow 0$:

- $cos(x) \rightarrow 1$.
- The upper bound \rightarrow 1.

So sin(x)/x is squeezed to 1.

Therefore: $\lim (x \to 0) [\sin(x)/x] = 1$.

Feynman-style analogy

Think of sin(x)/x as a student caught between two teachers:

- Teacher 1 says "cos(x), come closer to 1."
- Teacher 2 says "the constant 1."

As $x \to 0$, both teachers agree on the value $\to 1$. So the student $(\sin(x)/x)$ has no choice but to agree: it gets squeezed into 1.

The Squeeze Theorem (a.k.a. Sandwich Theorem)

Statement:

Suppose we have three functions g(x), f(x), h(x), and for all x near some point a:

$$g(x) \le f(x) \le h(x)$$
.

If both the "outer" functions approach the same limit L as $x \to a$, i.e.

$$\lim (x \to a) g(x) = \lim (x \to a) h(x) = L$$

then the "trapped" function f(x) must also go to L:

$$\lim (x \rightarrow a) f(x) = L.$$

Feynman-style analogy

It's like you're squeezing a ball between two strong walls.

If the walls come together at the same spot L, the ball has nowhere else to go — it's forced to land at L too.

Example: Prove

$$\lim (x \to 0) [(\sin(x))/x] = 1.$$

Step 1: A simpler warm-up

$$\lim (x \to 0) (\sin^2(x))/x^2 = 0$$

We know:

$$0 \le \sin(x) \le 1$$

Squaring both sides:

$$0 \le \sin^2(x) \le 1$$

Step 2: Build the fraction

We are interested in: $(\sin^2(x)) / (x^2)$

Since $x^2 > 0$ (near 0): $0 \le (\sin^2(x)) / (x^2) \le 1 / (x^2)$

Step 3: Refocus the inequality

We also know the key fact: $|\sin(x)| \le |x|$ Squaring both sides: $\sin^2(x) \le x^2$

Divide through by x^2 : $0 \le (\sin^2(x)) / (x^2) \le 1$

Step 4: Take the limit

As $x \rightarrow 0$:

- Left side -> 0
- Right side -> 1

So the middle is squeezed: $\lim (x \rightarrow 0) (\sin^2(x)) / (x^2) = 0$

Why this works (plain words):

- Near 0, sin(x) is very small, even smaller than x.
- Squaring makes it shrink even faster.
- Compared to x², sin²(x) is always smaller or equal.
- So the ratio (sin²(x))/x² gets pushed down to 0.

Step 2: The famous one — $\lim (x \to 0) \sin(x)/x$

We want to prove:

 $\lim (x \to 0) \sin(x)/x = 1.$

1. Why bring in geometry?

When algebra doesn't give you an easy handle (because sin(x)/x is a "0/0" indeterminate form), we use geometry as a guide.

The **unit circle** (radius = 1) is the perfect playground, because sin and cos are literally lengths on that circle.

Take an angle x (in radians). Then:

- The arc length that subtends angle x = x.
- The vertical height of that point on the circle = sin(x).
- The tangent from that point to the x-axis = tan(x).

So we have three "natural" lengths to compare: sin(x), x, tan(x).

2. The geometric inequality

From the diagram (triangle inside the circle): sin(x) < x < tan(x), for $0 < x < \pi/2$.

That's intuitive:

- The vertical height (sin) is shortest.
- The arc (x) is in the middle.
- The tangent (tan) sticks out the most.

3. Make it algebra-friendly

```
Take the inequality: sin(x) < x < tan(x).
```

Divide everything by sin(x):

 $1 < x/\sin(x) < 1/\cos(x).$

Now flip the inequality to put $\sin(x)/x$ in the middle (just take reciprocals carefully): $\cos(x) < \sin(x)/x < 1$.

← This is the "squeeze setup": sin(x)/x is trapped between cos(x) and 1.

4. Now take the limit

As $x \rightarrow 0$:

- $cos(x) \rightarrow 1$.
- The upper bound $1 \rightarrow 1$.

So sin(x)/x has no escape — it must also go to 1. ✓

5. Why this works (intuition)

Think of sin(x)/x as a little ratio comparing "how much height you gain" versus "how much angle you turn."

• At tiny angles, $sin(x) \approx x$ (they both start off almost the same).

- The squeeze inequality formalizes this intuition: $\sin(x)/x$ never jumps out of the narrow cage between $\cos(x)$ and 1.
- As the cage closes to a single point (1), $\sin(x)/x$ is forced to land exactly there.

b So the whole proof is basically:

"Trap $\sin(x)/x$ between two simple friends (cos and 1), and as $x \to 0$, those friends close in at 1."

Bonus: Behavior at infinity

As $x \to +\infty$ or $x \to -\infty$:

- $\sin(x)$ and $\cos(x)$ just keep oscillating between -1 and 1.
- So they don't settle to any single number.

This means:

$$\lim_{x \to \infty} (x \to \infty) \sin(x) = DNE,$$

$$\lim_{x \to \infty} (x \to \infty) \cos(x) = DNE.$$

Summary:

The **Squeeze Theorem** is the mathematical version of "if you box someone in from both sides, they have no freedom — they end up where you pin them." It's the key to proving limits like $\sin(x)/x \to 1$.