UM-SJTU JOINT INSTITUTE DISCRETE MATHEMATICS (VE203)

ASSIGNMENT 7

Name: Pan Chongdan ID: 516370910121

Date: November 23, 2017

1 Q1

Assume A only contains finite n prime numbers such as $p(1) = 3, p(2) = 7 \cdots p(n)$. Then assume $Q = 4 \cdot p(1) \cdot p(2) \cdots p(n) + 3 \in A$. It's clear that Q is odd and its divisor can be 4k + 1 because $(4k_1 + 1) \cdot (4k_2 + 1) = 4(4k_1k_2 + k_1 + k_2) + 1 \notin A$ So the only divisor of Q is 1 and itself, which means Q is another prime, so A contains infinity primes.

2 Q2

Assume $g = gcd(c, m), m = xg, c = yg \Rightarrow \frac{m}{g} = x$ $ac \equiv bc \mod m \Rightarrow ayg = byg + kxg \Rightarrow a \equiv b + \frac{k}{y}x$ $a - b \in \mathbb{Z} \Rightarrow \frac{kx}{y} \in \mathbb{Z}$ If $\frac{k}{y} \in \mathbb{Z} \Rightarrow a \equiv b \mod x$, else $\frac{x}{y} \in \mathbb{Z} \Rightarrow g \neq gcd(c, m)$ $\therefore a \equiv b \mod \frac{m}{gcd(c, m)}$

3 Q3

We can solve the equation by solve

$$75 = 36x + 1309y$$

$$1309 = 36 \cdot 36 + 13$$

$$36 = 2 \cdot 13 + 10$$

$$13 = 10 + 3$$

$$10 = 3 \cdot 3 + 1$$

$$1 = -11 \cdot 1309 + 400 \cdot 36$$

$$75 = -825 \cdot 139 + 30000 \cdot 36$$

$$\therefore x = 30000$$

4 Q4

$$2x \equiv 4 \mod 5 \Rightarrow 6x \equiv 12 \mod 15$$

 $3x \equiv 5 \mod 7 \Rightarrow 6x \equiv 10 \mod 14$
 $\therefore 6x \equiv 192 \mod 210 \Rightarrow 7x \equiv 224 \mod 245$
 $\therefore 7x \equiv 2 \mod 13 \Rightarrow 7x \equiv 1939 \mod 3185$
 $\therefore x \equiv 277 \mod 455$

5 Q5

$$x \equiv 5 \mod 6 \land x \equiv 8 \mod 15 \Rightarrow x \equiv 23 \mod 30$$

 $\therefore x \equiv 3 \mod 10 \Rightarrow x \equiv 23 \mod 30$
 $\therefore x = 23 \mod 30$

6 Q6

$$x \equiv 5 \mod 5 \land x \equiv 3 \mod 7 \Rightarrow x \equiv 10 \mod 35$$

 $x \equiv 8 \mod 11 \land x \equiv 2 \mod 17 \Rightarrow x \equiv 19 \mod 187$
 $x \equiv 1515 \mod 6545$

7 Q7

Assume $f = n \log_2(n)$, $g = \log_2(n)$, f is $O(g) \Rightarrow |n \log_2(n)| \leq C |\log_2(n)|$ if $n \neq 1 \Rightarrow |n| \leq C \Rightarrow C$ doesn't exist since n can be any number.

8 Q8

They're all order $\log_2 n$, it's clear that $|\log_2 n| \le |\log_2 n|$

$$|\log_{10} n| = |\frac{\log_2 n}{\log_2 10}| \le |\log_2 n|$$

$$|\log_2 n| = |\frac{\log_{10} n}{\log_{10} 2}| \le 4|\log_{10} n|$$

 $\therefore \log_{10} n$ is order $\log_2 n$, similarly:

$$|\ln n| = |\frac{\log_2 n}{\log_2 e}| \le |\log_2 n|$$

$$|\log_2 n| = |\frac{\ln n}{\ln 2}| \leq 2|\ln n|$$

 \therefore they have the same order $\log_2 n$

9 Q9

(i) $\frac{1}{n} = \int_{n-1}^{n} \frac{1}{n} dx \Rightarrow \frac{1}{n} < \int_{n-1}^{n} \frac{1}{x} dx \Rightarrow \sum_{j=2}^{n} \frac{1}{j} < \int_{2-1}^{2} \frac{1}{x} dx + \dots + \int_{n-1}^{n} \frac{1}{x} dx = \int_{1}^{n} \frac{1}{x} dx$

(ii)
$$H(n) = \frac{1}{n} + \frac{1}{n-1} \cdots + \frac{1}{1} = 1 + \sum_{j=2}^{n} \frac{1}{j} < 1 + \int_{1}^{n} \frac{1}{x} dx = 1 + \ln(n)$$

$$\therefore \lim_{n \to \infty} \left| \frac{H(n)}{\ln(n)} \right| < \lim_{n \to \infty} \left| \frac{1}{\ln(n)} + 1 \right| = 1$$

$$\frac{1}{n} = \int_{n}^{n+1} \frac{1}{n} dx \Rightarrow \frac{1}{n} > \int_{n}^{n+1} \frac{1}{x} dx \Rightarrow H(n) > \int_{1}^{n} \frac{1}{x} dx = \ln(n) \Rightarrow \lim_{n \to \infty} \left| \frac{H(n)}{\ln(n)} \right| > 1$$

$$\therefore \lim_{n \to \infty} \left| \frac{H(n)}{\ln(n)} \right| = 1$$

$$\therefore H(n) \text{ is } O(\ln(n))$$

10 Q10

11 Q11

$$\lim_{n \to \infty} \frac{|n^{n-k}|}{|n^n|} = \lim_{n \to \infty} \frac{1}{|n^k|} = 0$$

 $\therefore n^{n-k}$ is $O(n^n)$, if n^n is $O(n^{n-k})$ then there exists C such that $\forall n, |n^n| \leq C|n^{n-k}|$

$$\therefore \forall n \in \text{dom}, k > 1, C \ge |n^k|$$

: if the two functions' domain has both upper bound a and lower bound b than $C \ge \max(|a^k|, |b^k|)$, otherwise, such as the domain is \mathbb{R} or \mathbb{N} they don't have the same order.