Algorithmes de base de théorie de graphes

N. TSOPZE

Département d'Informatique - Université de Yaoundé I

Définition

graphe

G=(V,E) où V est l'ensemble fini des sommets et E l'ensemble des arêtes $E\subset V\times V$

G est non orienté si $\forall (x,y) \in E$, $(y,x) \in E$ et non orienté sinon

degré d'un sommet $v \in V$

nombre d'arêtes de E incidentes en v

Le degré du graphe G est le maximum des degrés d'un sommet.

définitions

chemin

Soient u, v deux sommets de V, un chemin de u à v est un ensemble d'arêtes e_1 , e_2 , . . . , e_k de E telles que $e_i = (v_{i-1}, v_i)$, $v_0 = u$ et $v_k = v$

Si tous les v_i sont distincts, le chemin est élémentaire. Si u = v, le chemin (élémentaire) est un cycle (élémentaire).

composant connexe

sous ensemble $V_1 \subset V$ t.q. $\forall u,v \in V_1$ il existe toujours un chemin de u à v

définitions

arbre

graphe connexe sans cycle

théorème

Soit G un graphe à n sommets et m arêtes.

On a l'équivalence :

- **1** *G* est connexe sans cycle (ie *G* est un arbre)
- ② *G* est connexe et minimal pour cette propriété (la suppression d'une arête implique *G* n'est plus connexe)
- **3** *G* est connexe et m = n 1
- G est sans cycle et maximal pour cette propriété (l'ajout d'une arête crée un cycle dans G)
- Toute paire de sommets est reliée par un chemin élémentaire et un seul

Représentation

Deux approches:

- **①** Liste de successeurs ie $Succ(u) = \{v \ (u, v) \in E\}$
- Matrice d'adjacence:

$$M_{i,j} = \left\{ \begin{array}{ll} 0 & (i,j) \notin E \\ 1 & (i,j) \in E \end{array} \right.$$

Matrice d'incidence

problèmes

- Accessibilité
- plus court chemin:
 - \bigcirc plus court chemin entre une source u et une destination v;
 - 2 tous les plus courts chemins entre une source u et tous les autres sommets du graphe
 - tous les plus courts chemins entre les sommets du graphe pris deux à deux
- composants connexes

accessiblité

accès

y est dit accessible à partir du sommet x s'il existe un chemin de x à y

Parcours en largeur

découvrir dans le graphe tous les sommets accessibles depuis s. découvrir d'abord tous les sommets situés à une distance k de s avant de découvrir tout sommet situé à la distance k+1.

- calcul la plus petite distance (en nombre d'arcs) entre s et tous les sommets accessibles.
- ② construction d'une arborescence de parcours en largeur de racine s, ayant tous les sommets accessibles depuis s.
- Pour tout sommet v accessible depuis s, le chemin reliant s à v dans l'arborescence de parcours en largeur correspond à un plus court chemin de s vers v dans G.

Algorithme de PL

- **1** pour chaque sommet $u \in V \{s\}$ faire
 - couleur(u) \leftarrow BLANC,
- **2** couleur(s) \leftarrow GRIS; $d(s) \leftarrow 0$; parent(s) \leftarrow NIL; $F \leftarrow \{s\}$;
- **3** tant que $F \neq \emptyset$ faire

 - 2 pour chaque $v \in Adj(u)$ faire si couleur(v) = BLANC alors
 - **1** $couleur(v) \leftarrow GRIS$
 - $d(v) \leftarrow d(u) + 1$

 - ENFILE(F, v)
 - DEFILE(F)
 - $oldsymbol{o}$ couleur(u) \leftarrow NOIR

Exemple: livre de Cormen Page 519

chemin

de v_i à v_i dans G

Soit M la matrice d'adjacence de G=(V,E). On considère ses coefficients comme des entiers, soit M^p la puissance p-ème de M. Le coefficient M^p_{ij} est égal au nombre de chemins de longueur p de v_i à v_j $G^+=(V,A^+)$ défini par $(i,j)\in A^+\Leftrightarrow il$ y a un chemin non vide

- $M^+ = M + M^2 + ... + M^n$ est la fermeture transitive
- $M^* = I + M^+$ est la fermeture réflexive et transitive
- Coût de calcul de M⁺ en O(n⁴) car on doit faire n multiplications de matrices
- Coût de calcul de M^* en $O(n^3 log n)$ car on peut calculer log n élévations successives au carré de I + M

Algo. de Warshall

Proposition

La récurrence
$$A^p_{ij}=A^{p-1}_{ij}+A^{p-1}_{ip}\times A^{p-1}_{pj}$$
 avec $A^0=M$, calcule $M^+=A^n$

Algorithme:

- \bigcirc $A \leftarrow M$
- ② pour p allant de 1 à n faire pour i allant de 1 à n faire pour j allant de 1 à n faire $A_{ij} \leftarrow A_{ij} + A_{ip}A_{pj}$

Plus court chemin - Algorithme de Dijkstra

Calcul du plus court chemin à partir d'une source donnée dans un graphe pondéré ayant les poids positifs

On note
$$\Gamma(i) = \{j/(i,j) \in E\}$$
.

Algorithme de Dijkstra

- **①** $S \leftarrow \{1\}$
- $oldsymbol{d} d(i) = w(1, i)$ si $i \in \Gamma(1)$, et $+\infty$ sinon
- **3** tant que $S \neq V$ faire
 - Soit j tel que $j \notin S$ et $d(j) = min_{i \in S} d(i)$
 - $S \leftarrow S \cup \{j\}$
 - pour tout $k \in \Gamma(j)$ vérifiant $k \notin S$ $d(i) \leftarrow min\{d(i), d(k) + w(k, i)\}$

algo. de Bellman

 $d_{t,k} = \text{distance du sommet source } s \ \text{a} \ t \ \text{avec un chemin qui contient au plus } k \ \text{arcs}$ $W \ \text{est la matrice des poids}$ Par programmation dynamique on a:

- $d_{t,k} = \min(d_{t,k-1}, \min_{arc_{u,t}}(d_{u,k-1} + w_{u,t}))$

arbre couvrant de poids minimal

But

permet de transformer le graphe en arbre afin d'éviter les cycles lors du parcours

Algorithme de Kruskal pour les graphes valués:

Lire la liste des arêtes commençant par l'arête de plus faible poids (trier dans l'ordre croissant).

$$T = \{u_1\}$$

② A l'étape k lire l'arête u_k (de poids faible), si elle ne forme pas de cycle dans T alors ajouter u_k à T sinon passer à l'arrête suivante.

Si T a N-1 arrêtes alors STOP.

graphe exemple

