1.3 vector Equations

A matrix with a single column is called a vector (or column vector).

 $\begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1 \\ 1 \end{array} \right) \quad \begin{bmatrix} \begin{array}{c} 1$

Two vectors are <u>equal</u> if and only if their corresponding entries are equal.

we will denote a vector using an arrow or as a bolded letter, e.g. it or w. we will most often resort to using the arrow.

we add | subtract two vectors by adding | subtracting corresponding entries. We scale a vector by scaling all entries.

$$\frac{\mathbb{E} \times \cdot}{\left[-\frac{1}{3} \right]} = \left[-\frac{2}{1} + \frac{4}{3} \right] = \left[\frac{6}{2} \right]$$

$$2 \left[-\frac{1}{5} \right] = \left[\frac{2}{2} \left(-\frac{1}{5} \right) \right] = \left[-\frac{2}{10} \right]$$

Geometry of vectors

A vector is a quantity that has both a magnitude and a direction. We represent this geometrically as an arrow whose length corresponds to magnitude and direction is determined by where the arrow is pointing

Vectors with 2 entries live in the xy-plane, vectors with 3 entries live in xy=-space, vectors with in entries live in n-dimensional space (denoted IR").

Algebraic Properties of IR"

For all vectors \$\vectors \vectors \vec () (1 + 1) = (1 + 2) (i) i+ = + i (ii) (x+v) + 2 = x + (v+2) (v+) (c+x) x = cx + dx (vii) c(da) = (cd)a

Note: o denotes the vector of all zeroes.

Linear Combinations

Given vectors $\vec{V}_1, \vec{V}_2, \dots, \vec{V}_p$ in \mathbb{R}^m and given scalars c_1, c_2, \dots, c_p , the vector

is called a linear combination of v, v, v, ..., v, with weights c,, c,..., cp.

Vector Equations

A vector equation

 $x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n = \vec{b}$

in the variables $x_1, x_2, ..., x_n$ has the same solution set as the linear system whose

augmented matrix is

one of the key questions in linear algebra is if a given vector is a linear combination of a fixed set $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_p\}$ of vectors. The collection of all linear combinations of $\vec{v}_1, \vec{v}_2, ..., \vec{v}_p$ is denoted

Span { \(\vert_{i,...} \) \(\varthing \) = \(\{ c_i \vert_i \), + \(\vert_i \) \(c_i \vert_i \) \(R \) \(\vert_i \)