IDA 课程作业实验报告

软件 51 2015013190 安彦哲 2018.12.16

1 数据预处理

1.1 遗漏数据处理

1.1.1 Race (2%)

- 1) 经过统计, 所给数据表中共有 101766 条数据, 其中 *African American* 有 19210 条, *Asian* 有 641 条, *Caucasian* 有 76099 条, *Hispanic* 有 2037 条, *Other* 有 1506 条, 遗漏 2273 条。
- 2) 处理方案:将遗漏处均填补为 Caucasian (众数)。

1.1.2 Weight (97%)

1) 统计不同 Age , 不同 Gender , 不同 Weight 的数据条数,得到的结果如下:

Male/Female Age Weight	[0-10)	[10-20)	[20-30)	[30-40)	[40-50)
[0-25)	3/0	0/0	0/1	1/0	5/2
[25-50)	1/1	1/3	0/1	1/3	3/4
[50-75)	0/0	4/10	16/23	12/12	18/20
[75-100)	0/0	0/0	7/10	11/23	44/36
[100-125)	0/0	0/0	2/7	6/4	30/36
[125-150)	0/0	0/0	0/1	6/3	15/10
[150-175)	0/0	0/0	1/0	0/2	2/2
[175-200)	0/0	0/0	0/0	0/0	3/1
>200	0/0	0/0	0/0	0/1	0/0

Male/Female Age Weight	[50-60)	[60-70)	[70-80)	[80-90)	[90-100)
[0-25)	3/1	5/7	7/7	2/4	0/0
[25-50)	6/7	4/9	6/9	2/27	2/7
[50-75)	37/59	67/88	71/170	66/165	11/48
[75-100)	88/100	150/145	252/215	136/95	15/9
[100-125)	78/60	123/70	119/55	25/10	0/0
[125-150)	25/20	22/14	13/9	4/3	0/0
[150-175)	4/7	9/4	1/3	0/0	0/0
[175-200)	2/3	0/1	1/0	0/0	0/0
>200	0/0	1/1	0/0	0/0	0/0

2) 根据以上数据计算出不同 Age, 不同 Gender 的平均 Weight:

Weight Age Gender	[0-10)	[10-20)	[20-30)	[30-40)	[40-50)
Male	[0-25)	[50 - 75)	[75 - 100)	[75 - 100)	[75 - 100)
Female	[25 - 50)	[50 - 75)	[75 - 100)	[75 - 100)	[75 - 100)
Weight Age Gender	[50-60)	[60-70)	[70-80)	[80-90)	[90-100)
Male	[75 - 100)	[75 - 100)	[75 - 100)	[75 - 100)	[50 - 75)
Female	[75 - 100)	[75 - 100)	[75 - 100)	[50 - 75)	[50 - 75)

3) 从上述统计结果中可看出,一是 Weight 的缺失率较高,二是 Weight 取值的 区间长度较大导致绝大多数分组的平均值都落在了 [75 – 100) 范围内,因此最终决定将 Weight 字段删除。

1.1.3 Diagnosis (1%)

根据题目要求,删除 Diagnosis 2 和 Diagnosis 3 字段, 仅保留 Diagnosis 1 字段。

1.1.4 Payer Code (52%)

该字段与其他字段相关性不大,无法通过其他字段推测该字段的取值,且缺失率较高,因此将该字段删除。

1.1.5 Medical Specialty (53%)

该字段缺失率较高, 故将其删除。

1.2 移除无关记录

根据题目要求,移除 Discharge_disposition_id 为 11(Expired), 13(Hospice/home), 14(Hospice/medical facility), 19(Expired at home. Medicaid only, hospice.), 20(Expired in a medical facility. Medicaid only, hospice.), 21(Expired, place unknown. Medicaid only, hospice.) 的相关记录。

2 数据分类与预测

2.1 朴素贝叶斯分类模型

2.1.1 算法流程

(具体代码见 /src/classification/bayesian_classifier.py)

- (1) 读取 csv 文件 ($read_csv$, 在代码中对应的函数名,下同);
- (2) 划分训练集和测试集(split dataset);
- (3) 根据 readmitted 将训练集分为三类 (seperate trainset);
- (4) 统计不同种类、不同属性的数据的数目(standardize_attributes);
- (5) 根据上一步的结果, 计算条件概率 (calculate_probabilities);
- (6) 做出预测, 计算正确率 (predict testset)。

2.1.2 遇到的问题及解决方案

在应用朴素贝叶斯分类模型进行分类的过程中,最需要解决的一个问题是:大部分属性为离散值,而有一部分属性为连续值。

根据课程内容及所查资料,离散值的条件概率即为该属性值出现次数和数据总数之比,而计算连续值的条件概率时,只需要认为其服从高斯分布即可。

2.2 KNN 分类模型

2.2.1 算法流程

(具体代码见 /src/classification/knn_classifier.py)

- (1) 读取 csv 文件 (read csv, 在代码中对应的函数名, 下同);
- (2) 划分训练集和测试集(split dataset);
- (3) 计算出值为连续型的属性的最大值和最小值(calculate_max_and_min);
- (4) 做出预测, 计算正确率 (knn)。

2.2.2 遇到的问题及解决方案

遇到的问题和上面方法一样,处理方法为: 计算距离时,离散值若相同则记为 0,不同记为 1;连续值记为值与该属性取值区间长度之比。

3 logistic 回归模型

实现该模型调用了 sklearn 的 LogisticRegression,只需要将离散值处理为具体数值(用自然数来做标记,比如该属性有 3 个取值,便将这三类分别标记为 1,2,3),再调用该库中的相关构造函数即可完成 logistic 回归验证。

4 分类模型测试结果对比

(Ratio 指训练集和测试集大小之比;以下结果均为多次测试取平均值所得)

Accuracy Ratio Model	0.67	0.75
朴素贝叶斯分类模型	51.73%	52.19%
KNN 分类模型	47.24%	47.75%

根据测试结果,朴素贝叶斯分类模型的准确率普遍要比 *KNN* 分类模型高,用时也更少;同时,*KNN* 分类模型的测试结果还相当不稳定,多次出现了 30% 左右的准确率。

logistic 回归模型所测得的准确率为 64.63%。