PROBLEMS USING CALCULUS

The diagram shows the curve $y = 3x - x^2$. The curve meets the x-axis at the origin O and at the point A. The tangent to the curve at the point B(2, 2) intersects the x-axis at C.

- a Find the equation of the tangent to the curve at B.
- **b** Find the shaded area.

2

The graph shows sketches of the line y = 3 and the curve $y = x^2 - 3x + 5$ (not drawn to scale); they intersect at the points A and B. The shaded region is bounded by the arc AB and the chord AB.

- a Find the coordinates of A and B.
- **b** Find the area of the shaded region.
- c Show that the equation of the tangent to the curve at A is

$$y + x - 4 = 0$$

and find the equation of the tangent to the curve at B.

d The tangents to the curve at A and B meet at the point C. Show that the coordinates of C are $(\frac{3}{2}, \frac{5}{2})$.

The diagram below shows sketches of the line with equation x + y = 4 and the curve with equation $y = x^2 - 2x + 2$ intersecting at points P and Q. The minimum point of the curve is M. The shaded region R is bounded by the line and the curve.

- a Show that the coordinates of M are (1,1)
- **b** Find the coordinates of the points P and Q.
- c Find the area of the region R

4

The figure shows a sketch of part of the curve with equation y = f(x) where $f(x) = -x^3 + 27x - 34$.

a Find
$$\int f(x) dx$$
.

The lines x = 2 and x = 4 meet the curve at points A and B as shown.

- **b** Find the area of the finite region bounded by the curve and the lines x = 2, x = 4 and y = 0.
- c Find the area of the finite region bounded by the curve and the straight line AB.

Answers

1. **a**
$$x + y - 4 = 0$$
 b $\frac{5}{6}$

2. **a** (1,3), (2,3) **b**
$$\frac{1}{6}$$
 c $x - y + 1 = 0$

3. **b**
$$(-1.5)$$
, (2.2) **c** $5\frac{1}{6}$

4.
$$\mathbf{a} - \frac{1}{4}x^4 + \frac{27}{2}x^2 - 34x + c$$
, **b** 34, **c** 12