MOBILE DATA CHARGING:

NEW ATTACKS AND COUNTERMEASURES

Chunyi Peng,

Chi-Yu Li, Guan-Hua Tu, Songwu Lu, Lixia Zhang

University of California, Los Angeles

Mobile Data Access

2

□ 1.2 billion global users

Mobile Data Charging

Security:

Can any attack make the users pay MORE/LESS?

Two Security Issues

#1: Can the attacker bypass the security mechanism to exploi Stealth-spam-attack the users pay MOKE?

#2: Can the Toll-Free-Data-Access-Attack LESS?

Threat Models

- Cellular network is not compromised
 - Charging subsystem works as designed
 - Security mechanism works as designed
- Attacker's capability
 - Only use installed apps @ mobile, or
 - Deploy malicious servers outside cellular networks

Outline

- Stealth-spam-attack (pay MORE)
 - Vulnerability
 - Attack design & implementation & damage
 - Countermeasures & insight
- □ Toll-free-data-access-attack (pay LESS)
 - Vulnerability
 - Attack design & implementation & damage
 - Countermeasures & insight
- Summary

Stealth-Spam-Attack

Security Against Spamming Wing

Wireless Networking Group

Authentication Can security mechanism (e.g., NAT/Firewalls) block incoming Incoming-Spam Outgo • Private IP addr. is not accessible Access allowed only when initiated Simp by the mobile

Vulnerability

- Stealth-Spam-Attack
- □ Step1-Trap: init data access
 - Example-1: click a malicious web link
 - Example-2: login Skype once / stay online
- □ Step2-Spam: keep spamming
 - No matter what status @mobile

- Web-based Attack
- Implementation
 - □ Phone: click a malicious web link
 - Attacker (server): send spam data at constant rate (disable TCP congest control and tear-down)
- □ Result: charging keeps going
 - Even after the phone tears down TCP
 - TCP FIN, timeout
 - Even when many "TCP RESET" sent from the mobile

Damage vs. Spamming Rate

1.

Charging volume vs. spamming rate

In proportion to spamming rate when rate is low Charging blocked when rate is high (> 1Mbps)
The charged volume could be > the received one [Mobicom'12]

Damage vs. Duration

14

Spanning rate = 150Kbps

No observed sign to end when the attack lasts 2 hours if the rate is low (spamming> 120MB)

Skype-based Attack

- Implementation
 - Phone: do nothing (stay online once in Skype)
 - Attacker: Skype call the victim and hang up
 - Attacker (server): send spam data at constant rate
- Exploit Skype "loophole"
 - allows data access from the host who attempts to call the victim before the attempt is accepted
- Demo

Demo: for a specific victim

Damage vs. Spamming Rate

17

Charging volume vs. spamming rate

No bounds on spamming rate compared with TCP-based attack

Damage vs. Duration

Spamming rate = 50Kbps

No observed sign to end when the attack lasts 24 hours (spamming > 500MB)

Root Cause

19

Current system:

Secure only the initialization

IP forwarding can push packets to the victim (not controlled by the victim)

#1: Initial authentication \neq authentication all along

Current system:

Keep charging if data comes Local view @ core gateway

Different views @ mobile:
data conn. ends or never starts
or exception happens
Lack of feedback/control

#2: Data flow termination @ the phone

≠ charging termination @ the operator

Countermeasures

- Spamming inevitable due to IP push model
- □ Remedy: stop early when spamming happens
 - Detection of unwanted traffic @mobile/operator
 - Feedback (esp. from the mobile to the operator)
 - At least allow users to stop data charging (no service)
 - Exploit/design mechanisms in cellular networks: *implicit-block*, *explicit-allow*, *explicit-stop*
 - Precaution, e.g., set a volume limit
 - Application: be aware of spamming attack

Toll-Free-Data-Access-Attack

Vulnerability

22

Both operators provide free DNS service

Realphasapackers 53 #1: free fake DNS loophole

DNSPoki IBEGSKIPPAGStFP, srcPort, destPort, IpForcoria UDP+Port 53

#2: no volume-check loophole

Or-II: Packets via UDP+Port 53 free

Any enforcement for packets over

port 53?

OP-I: **no observed limits**, except 29KB for one request packet OP-II: **no observed limits**

Toll-Free-Data-Access-Attack

- Proxy outside cellular network
 - Tunneling over 53 between the mobile and external network
 - similar to calling 800-hotline
- Implementation
 - HTTP-proxy on port 53 (only for web, OP-I)
 - Sock-proxy on port 53 (for more apps, OP-I)
 - DNS-tunneling on UDP-53 (all apps, OP-I, II)
- Results
 - Free data access > 200MB, no sign of limits
 - Demo if interested

Countermeasures

- □ Simplest fix: **stop free DNS service**
 - OP-II stopped it since this July

- Other suggestions
 - Authenticate DNS service
 - Only allow using authenticated DNS resolvers
 - DNS message integrity check
 - Provide free DNS quota

- Beyond DNS
- Existing DNS tunneling tools: iodine etc,
 - Designed for data access when Internet access is blocked

differentiated-charging policy

e.g., free access to one website/ via some APN, or cheaper VoIP than Web

Incentive to pay less **(Attackers or even normal users)**

Gap btw policy and its enforcement Bullet-proof design & practice

□ Toll-Free-Data-Access-Attack ✓

- □ Stealth-Spam-Attack
 - Good news: no obvious and strong incentive
 - No immediate gain for the attacker unless the illintentioned operator does it
 - Monetary loss against the attacker's adversary
 - **Unexpected incentive** in the future?

More information/demo in

http://metro.cs.ucla.edu/projects.html

- □ Assess the vulnerability of 3G/4G data charging system
- □ Two types of attacks,
 - Toll-free-data-access-attack (free > 200MB)
 - Enforcement of **differentiated-charging** policy
 - Stealth-spam-attack (overcharging > 500MB)
 - Rooted in charging architecture, security mechanism and IP model
 - **■** No observed volume limits
- Insight
 - IP push model is not ready for metered-charging
 - Feedback or control needed during data charging
 - Differentiated-charging policy has to secure itself