Krzysztof Pszeniczny

nr albumu: 347208 str. 1/2 Seria: 1

Zadanie 1

Niech $\mathcal A$ będzie danym NBA (niedeterministycznym Büchiego automatem) o zbiorze stanów Q. Dla każdego słowa w możemy zapisać funkcję $f_w:Q\to Q\to \{\bot,+,\top\}$ taką, że $f_w(q_0)(q_1)=\bot$, jeśli automat $\mathcal A$ nie ma biegu po słowie w zaczynającego się w stanie q_0 i kończącego w q_1 , $f_w(q_0)(q_1)=+$ jeśli taki bieg ma, ale każdy taki bieg omija stany akceptujące, zaś $f_w(q_0)(q_1)=\top$ jeśli istnieje bieg z q_0 do q_1 przechodzący przez stan akceptujący.

Rzecz jasna, mając dane f_w i f_v można łatwo obliczyć f_{wv} . Zatem zauważmy, że jeśli oznaczymy $w_i = 10^{2i}$, tj. $w_0 = 1, w_1 = 100, w_2 = 10000, \ldots$, to ciąg f_{w_i} jest zdefiniowany rekurencyjnie, tj. każdy kolejny element można obliczyć z poprzedniego. Jednakże możliwych funkcji $Q \to Q \to \{\bot, +, \top\}$ jest skończenie wiele, zatem ciąg ten jest od pewnego miejsca okresowy, tj. istnieje takie k_0 i r, że $f_{w_{k+r}} = f_{w_k}$ dla $k > k_0$. Co więcej, maszyna Turinga może wyliczać kolejne f_{w_i} aż natrafi na cykl.

Zauważmy, że teraz dla każdego $n \geqslant 0$ mamy

$$f_{w_{k_0}w_{k_0+1}\cdots w_{k_0+r-1}} = f_{w_{k_0+n_r}w_{k_0+n_r+1}\cdots w_{k_0+n_r+r-1}}$$

Zauważmy jednak, że słowo z zadania jest postaci $w_0w_1w_2\cdots$. A zatem maszyna Turinga może policzyć $f_{w_0w_1\cdots w_{k_0-1}}$, zobaczyć w jakich stanach automat $\mathcal A$ mógł się znaleźć po przeczytaniu tego słowa (oznaczmy je Q'), a następnie policzyć funkcję $\varphi=f_{w_{k_0}w_{k_0+1}\cdots w_{k_0+r-1}}$.

Teraz widać, że istnieje bieg akceptujący na słowie z zadania o ile istnieje bieg akceptujący po słowie $w_{k_0}w_{k_0+1}\cdots$ zaczynający się w którymś ze stanów z Q'. Taki bieg musi nieskonczenie często znajdować się w stanie akceptującym, zatem wystarczy i należy sprawdzić, czy na nieskończenie wielu spośród z podfragmentów bazowych postaci $f_{w_{k_0+n_r}w_{k_0+n_r+1}\cdots w_{k_0+n_r+r-1}}$ automat przechodzi przez stan akceptujący. Ale na każdym z tych podfragmentów zachowanie automatu jest wyznaczone funkcją ϕ .

Stwórzmy więc graf G, którego wierzchołkami są stanu automatu \mathcal{A} , zaś między q_1 i q_2 istnieje krawędź wtedy i tylko wtedy, gdy $\varphi(q_1)(q_2) \neq \bot$, co więcej, jest ona czerwona, gdy $\varphi(q_1)(q_2) = \top$ i czarna wpp.

Łatwo widać, że wystarczy sprawdzić, czy istnieje cykl osiągalny z Q' niezłożony wyłącznie z czarnych krawędzi. Istotnie, każdy taki cykl daje przynajmniej jeden bieg automatu $\mathcal A$ taki, że na nieskończenie wielu podfragmentach bazowych przechodzimy przez stan akceptujący: są to dokładnie te podfragmenty, które odpowiadają czerwonym krawędziom na cyklu.

W drugą stronę, jeśli automat ma bieg akceptujący na rozważanym słowie, to nieskończenie często musiał odwiedzać jakiś stan w momencie wchodzenia do kolejnego podfragmentu bazowego, nazwijmy go q_{∞} . Wtedy oczywiście musiało mu się zdarzyć przejść przez stan akceptujący między jakimiś dwoma wejściami do stanu q_{∞} , a zatem istnieje cykl przechodzący przez q_{∞} przechodzący przynajmniej raz czerwoną krawędzią.

Zadanie 2

Na początku konwertujemy dany niedeterministyczny Büchiego automat do deterministycznego Rabina automatu \mathcal{A} o zbiorze stanów Q, stanie początkowym q_0 i rodzinie zbiorów stanów akceptujących \mathcal{F} . Bez straty ogólności, zakładamy, że nie ma stanów nieosiągalnych.

Oznaczmy przez (*) warunek: Dla każdego stanu $q \in Q$ i dla każdych dwóch cykli α_1, α_2 z q do q (niekoniecznie prostych), o zbiorach odwiedzanych stanów: T_1, T_2 , jeśli $T_1 \in \mathcal{F}$, to $T_1 \cup T_2 \in \mathcal{F}$.

Zauważmy, że warunek ten może sprawdzić maszyna Turinga, iterując się po wszystkich q, T_1, T_2 i sprawdzając, czy istnieje cykl od q do q przechodzący dokładnie przez wierzchołki T_1 (i następnie: to samo dla T_2), innymi słowy: czy podgraf indukowany przez T_1 (T_2 , odpowiednio) jest silnie spójny. Pokażę, że ten warunek jest równoważny rozpoznawalności przez DBA.

Rozpoznawany przez DBA \implies (*)

Niech \mathcal{B} będzie deterministycznym Büchiego automatem akceptującym ten sam język co \mathcal{A} . Przypuśćmy, że dla pewnych $q \in Q$, i α_1, α_2 – cykli od q do q takich, że $T_1 \in \mathcal{F}$, ale $T_1 \cup T_2 \notin \mathcal{F}$.

Niech w_0 będzie słowem powodującym przejście automatu \mathcal{B} ze stanu początkowego do q, w_i – słowem powodującym przejście ze stanu q do q po cyklu α_i dla $i \in \{1, 2\}$.

Krzysztof Pszeniczny

nr albumu: 347208 str. 2/2 Seria: 1

Wtedy oczywiście $w_0w_1^{\omega}$ jest słowem akceptowanym przez \mathcal{A} , gdyż stany występujące nieskończenie często to dokładnie T_1 , a $T_1 \in \mathcal{F}$. Jednakże na tym słowie automat \mathcal{B} musi w pewnym momencie wejść do stanu akceptującego, a zatem istnieje takie k_1 , że automat \mathcal{B} przechodzi na słowie $w_0w_1^{k_1}$ przez stan akceptujący.

Teraz popatrzmy na słowo $w_0 w_1^{k_1} w_2 w_1^{\omega}$. Analogiczny argument mówi, że istnieje takie k_2 , że na słowie $w_0 w_1^{k_1} w_2 w_1^{k_2}$ automat \mathcal{B} przechodzi dwa razy przez stan akceptujący.

Kontynuując tę konstrukcję uzyskujemy słowo $w=w_0w_1^{k_1}w_2w_1^{k_2}w_2w_1^{k_3}w_2\cdots$, na którym automat \mathcal{B} znajduje się nieskończenie często w stanie akceptującym, a zatem \mathcal{B} akceptuje w, zatem i \mathcal{A} musi akceptować w, lecz jednak zbiór stanów występujących nieskończenie często w jego biegu na w to $T_1 \cup T_2 \not\in \mathcal{F}$.

$(*) \implies \text{rozpoznawany przez DBA}$

Załóżmy, że język rozpoznawany przez A spełnia warunek (*).

Wtedy dla $q \in Q$ stwórzmy deterministyczny Büchiego automat \mathcal{B}_q którego zbiorem stanów będzie $\{\top\} \sqcup (Q \times (\{\bot\} \sqcup \mathcal{P}(Q)))$. Automat ten zaczyna bieg w stanie (q_0,\bot) i jedynym stanem akceptującym jest \top .

Automat ten czytając słowo symuluje zachowanie automatu \mathcal{A} , pamiętając zbiór stanów od ostatniego znalezienia się w stanie \top (lub \bot jeśli stan \top nie wystapił nigdy wcześniej). Jednakże, jeśli automat \mathcal{A} miałby wejść do stanu q gdy trzymany zbiór stanów jest \bot lub należy do \mathcal{F} , to automat \mathcal{B} wchodzi wyjątkowo do stanu \top . Ze stanu \top automat wychodzi tak jak ze stanu $(\mathbf{q}, \{\mathbf{q}\})$.

Niech teraz \mathcal{B} będzie automatem produktowym, tj. iloczynem automatów \mathcal{B}_q po $q \in Q$, akceptującym jeśli choć jeden z nich znajduje się w stanie \top . Oczywiście automat ten jest deterministycznym Büchiego automatem, wystarczy zatem sprawdzić, że rozpoznaje on dokładnie ten sam język, co automat \mathcal{A} .

$L(A) \subseteq L(B)$

Niech w będzie ω -słowem akceptowanym przez A, niech F będze zbiorem stanów występujących nieskończenie często w biegu na tym słowie i niech $q \in F$.

Twierdzę, że wówczas sam automat \mathcal{B}_q akceptuje słowo w. Istotnie, zauważmy, że automat \mathcal{B}_q wejdzie do stanu \top przynajmniej raz – przy pierwszym wystąpieniu stanu q w biegu automatu \mathcal{A} .

Załóżmy teraz, że stan \top wystąpi w biegu automatu \mathcal{B}_q po raz n-ty. Od tego miejsca automat \mathcal{A} odwiedzi stan q jeszcze nieskończenie wiele razy, niech T_1, T_2, \ldots będą zbiorami stanów odwiedzanych przez niego między kolejnymi wystąpieniami stanu q. Zauważmy, że dla pewnych i $\leq j$ zachodzi $T_i \cup T_{i+1} \cup \ldots \cup T_j = F$ – istotnie, dla dostatecznie dużych i zachodzi $T_i \subseteq F$, gdyż stany spoza F pojawiają się jedynie skończenie często. Ponadto każdy ze stanów z F musi wystąpić nieskończenie często, więc biorąc dostatecznie duże j "złapiemy" je wszystkie.

Jednak teraz warunek (*) mówi, że $T_1 \cup ... \cup T_j \in \mathcal{F}$, a zatem automat \mathcal{B}_q wejdzie jeszcze do stanu \top , najpóźniej w momencie, w którym "kończy się" T_j .

Zatem automat $\mathcal{B}_{\mathbf{q}}$ wejdzie do stanu akceptującego nieskończenie często.

$L(\mathcal{B}) \subseteq L(\mathcal{A})$

Niech w będzie ω -słowem akceptowanym przez \mathcal{B} . Wtedy istnieje takie q, że \mathcal{B}_q nieskończenie często wchodzi do stanu \top . Niech T_1, T_2, \ldots będą zbiorami stanów, jakie \mathcal{A} odwiedza między kolejnymi pozycjami słowa, na których \mathcal{B}_q wchodzi do \top . Z konstrukcji, $T_i \in \mathcal{F}$. Jednakże łatwo widać, że zbiór stanów występujących nieskończenie często w biegu \mathcal{A} na w (oznaczmy go F) jest sumą tych zbiorów T_i , które pojawiają się nieskończenie często w ciągu T_1, T_2, \ldots Ale warunek (*) daje nam, że takie skończone sumy elementów \mathcal{F} należą do \mathcal{F} , zatem $F \in \mathcal{F}$, czyli automat \mathcal{A} akceptuje słowo w.