Pure CCS

Content

- Syntax
- Semantics
- Counter

What is CCS about?

- CCS, The Calculus of Communicating Systems
 - a formal language that models the operational behaviors of the communications of concurrent objects

How is CCS Defined?

- The definition of CCS follows the standard approach of defining a programming language
- The standard approach is widely used in computer science to define various calculi

Definition of Calculus

- Defining Programming Languages
- Syntax
 - Syntactical entity
 - Alphabet
 - BNF (Backus-Naur Form 巴科斯范式)
- Semantics
 - Operational behavior
 - Labeled Transition System, LTS

Operational Semantics

- A way to give meaning to computation in a mathematically rigorous way
 - Other approaches to providing a formal semantics of computation include axiomatic semantics and denotational semantics
- Classified into two categories
 - structural operational semantics (small-step semantics)
 - formally describe how the *individual steps* of a computation take place in a computer-based system
 - natural semantics (big-step semantics)
 - describe how the overall results of the executions are obtained

Intuition about the Semantics

- A def a.A', A' def c.A;
- В ^ф с.В', В' ^ф Б.В
- Example

Na + Cl → NaCl

Preliminary Notations

Some Notations:

 \mathcal{N} is a Set of Names, ranged over by small letters

 $\overline{\mathcal{N}}$ is a Set $\{\overline{a} \mid a \in \mathcal{N}\}$ of Co-Names

 $\mathcal L$ is the Set $\mathcal N \cup \overline{\mathcal N}$ of all names, ranged over by α

 $\mathcal A$ is the Set $\mathcal N \cup \overline{\mathcal N} \cup \{\tau\}$ of Labels, ranged over by λ

Let $\overline{\alpha}$ be defined as follows:

$$\overline{\alpha} \stackrel{\text{def}}{=} \begin{cases} a, & \text{if } \alpha = \overline{a} \\ \overline{a}, & \text{if } \alpha = a \end{cases}$$

A function $f: \mathcal{A} \longrightarrow \mathcal{A}$ is a relabeling function if $f(\tau) = \tau$ and $f(\overline{\alpha}) = \overline{f(\alpha)}$

Action

- External
- Internal

Action

- External
 - Potential to communicate
- Internal

Action

- External
 - Potential to communicate
- Internal
 - Communication in a process
 - Communication between processes

Syntax of CCS

The abstract grammar is defined as follows:

```
E := 0 nil process
```

X process variable

λ.E **prefix**

E | E' concurrent composition

E\L restriction

E[f] re-labeling

E + E' non-determinism

A recursion

Where λ is either a or \overline{a} or τ , $L \subseteq \mathbb{N}$

f: $A \rightarrow A$, a re-labeling function from A to A

Let E be the set of process expressions and P be the set of processes

Intuitive Explanation

- **0**
 - The process that can never do anything in any environment
- $\blacksquare X$
 - Process variable
- λE
 - The process that must first perform the action λ and then evolves as E
- \blacksquare E/E
 - The processes *E* and *E'* may evlove independently or communicate through common channels

Intuitive Explanation

- \blacksquare $E \setminus L$
 - The process that can do whatever E may do as long as the action are not restricted by L
- *E[f]*
 - Whatever E can do, E[f] can do with action renamed by f
- E+E'
 - The process that acts either as E or as E'
- \blacksquare A
 - The recursive process that may never stop

What is an LTS?

An LTS is a Triple

$$\langle \mathcal{S}, \mathcal{T},
ightarrow
angle$$

where

 $\mathcal S$ is a Set of States

 \mathcal{T} is a Set of Transitions

$${\to} \subseteq \mathcal{S} \times \mathcal{T} \times \mathcal{S}$$

We write $a \xrightarrow{t} b$ if $\langle a, t, b \rangle \in \rightarrow$ and the intuition is that

a evolves to b by making a t transition

E.G. automata

An Example: The λ -Calculus

Term

```
t := x variable tt' application \lambda x.t abstraction
```

Reduction

```
(\lambda x.t)s \rightarrow t\{s/x\}

If t \rightarrow t' then st \rightarrow st'

If t \rightarrow t' then ts \rightarrow t's

If t \rightarrow t' then \lambda x.t \rightarrow \lambda x.t'
```

The LTS of CCS

Prefix

$$\lambda.E \xrightarrow{\lambda} E$$

Composition

$$\frac{E \xrightarrow{\lambda} E'}{E \mid F \xrightarrow{\lambda} E' \mid F} \qquad \frac{F \xrightarrow{\lambda} F'}{E \mid F \xrightarrow{\lambda} E \mid F'} \qquad \frac{E \xrightarrow{\alpha} E' \quad F \xrightarrow{\overline{\alpha}} F'}{E \mid F \xrightarrow{\tau} E' \mid F'}$$

Restriction

$$\frac{E \xrightarrow{\lambda} E' \quad n(\lambda) \cap L = \emptyset}{E \backslash L \xrightarrow{\lambda} E' \backslash L}$$

Relabelling

$$\frac{E \xrightarrow{\lambda} E'}{E[f] \xrightarrow{f(\lambda)} E'[f]}$$

The LTS of CCS, Continued

Choice

$$\frac{E \xrightarrow{\lambda} E'}{E + F \xrightarrow{\lambda} E'} \qquad \frac{F \xrightarrow{\lambda} F'}{E + F \xrightarrow{\lambda} F'}$$

Recursion

$$\frac{E\{A/X\} \xrightarrow{\lambda} E'}{A \xrightarrow{\lambda} E'} A \stackrel{\text{def}}{=} E\{A/X\}$$

Using the Rules

- $((a.E+b.0)|a.F)\a \rightarrow (E|F)\a$
- A $\stackrel{\text{def}}{=}$ a.A+ τ .b.A. Show that A $\stackrel{\tau}{\to}$ b.A
- A $\stackrel{\text{def}}{=}$ a.A', A' $\stackrel{\text{def}}{=}$ $\stackrel{\text{c.A}}{=}$ B $\stackrel{\text{def}}{=}$ c.B', B' $\stackrel{\text{def}}{=}$ $\stackrel{\text{b.B}}{=}$ Show that (A|B)\c $\stackrel{\text{a}}{\to}$ (A'|B)\c $\stackrel{\text{c.A}}{\to}$ (A|B')\c
- A[f], where f maps a onto b

Examples

- Readers-Writers
- Dining philosophers problem

- A counter is able to hold any natural number
- The nature numbers as a state of a counter
- Increment and decrement actions

Specification

$$Count_0 \stackrel{\text{def}}{=} inc.Count_1 + zero.Count_0$$

 $Count_{n+1} \stackrel{\text{def}}{=} inc.Count_{n+2} + dec.Count_n \quad (n \ge 0)$

Implementation

$$C^{(n)} = \overbrace{C \cap \cdots \cap C}^{n \text{ times}}$$

where

$$C \stackrel{\text{def}}{=} inc.(C \cap C) + dec.D$$

$$D \stackrel{\text{def}}{=} \overline{d}.C + \overline{z}.B$$

$$B \stackrel{\text{def}}{=} inc.(C \cap B) + zero.B$$

$$C \cap C \stackrel{\text{def}}{=} (C\{z'/z, d'/d\} \mid C\{z'/zero, d'/dec, i'/inc\}) \setminus \{z', d', i'\}$$

$$C \cap B \stackrel{\text{def}}{=} (C\{z'/z, d'/d\} \mid B\{z'/zero, d'/dec, i'/inc\}) \setminus \{z', d', i'\}$$

Exercise: Prove that for all $n \ge 0$, $C^{(n)} = Count_n$.