MA313: Linear Algebra I

Week 3: The span of a set; the null space of a matrix

Dr Niall Madden

20 and 23 September, 2022

https://commons.wikimedia.org/wiki/File:KerIm_2015Joz_L2.png.

These slides are adapted (slightly) from ones by Tobias Rossmann.

Outline

- 1 Part 1: Linear combinations
 - Building subspaces
 - Definition
- 2 Part 2: Spans
 - Examples
 - Linking spans and subspaces
- 3 Part 3: Null spaces
 - Nul A is a subspace of \mathbb{R}^n
 - Finding Nul A
- 4 Exercises

For more details,

- ► LinAlg for Data Science: Chapter 7 for Linear Independence and Span
- ▶ Lay et al: Sections 4.1 and 4.2.

Assignment 1

Deadline is Tuesday, 20 Sept at 5pm.

Assignment 2

- ▶ Opened Monday, 19 Sep 2022.
- ▶ **Deadline:** 5pm, Friday 30 Sep 2022.
- ▶ It contributes 5% to the final grade for MA313.
- ► Topics: ...

Communication Skills

- Topics and Info posted on Blackboard. Also at https://www.niallmadden.ie/teaching/2223-MA313/ 22_23_Communication_Skills.pdf
- 2. Select one that is not crossed out, or propose one of your own.
- Confirm your topic by this Friday (23 September); do that by first emailing Niall with your choice and, if agreed, entering in on Blackboard.

Tutorials start this week.

	Mon	Tue	Wed	Thu	Fri
9 – 10					
10 – 11					
11 – 12					
12 – 1				Tutorial IT206	Lecture
1 – 2		Lecture			
2 – 3					
3 – 4					
4 – 5					

Part 1: Linear combinations

MA313

Week 3: The span of a set; the null space of a matrix

Start of ...

PART 1: Linear combinations

Part 1: Linear combinations

A question

Last week we learned how to check if a given space is indeed a subspace of some other vector space.

It is natural to wonder: how can we make those subspaces in the first place?

Equivalently: How can we describe all subspaces of a given vector space?

Part 1: Linear combinations

Example (Subspaces of \mathbb{R}^2)

There are precisely three *types* of subspaces of \mathbb{R}^2 :

- **▶** {0},
- $ightharpoonup \mathbb{R}^2$,
- ▶ lines through the origin.

How we build subspaces?

There are two possible approaches.

- ► **Top down:** start with the full space, and look at all vectors that have "suitable properties".
- ▶ Bottom up: start with some collection of vectors and consider the subspace that they "span".

Definition (Linear combinations)

A **linear combination** of vectors u_1, \ldots, u_p in some vector space is a vector of the form

$$c_1u_1+\cdots+c_pu_p$$

for scalars $c_1, c_2, \ldots, c_p \in \mathbb{R}$.

Example

In
$$\mathbb{R}^2$$
, $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example

Show that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is **not** linear combination of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -6 \end{bmatrix}$ in \mathbb{R}^2 .

Example (Quadratic polynomials)

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$?

Example (Polynomials again)

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = 2t$?

Example

Define the 2×3 matrix

$$A = \begin{bmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}.$$

For any vector

$$x = \begin{bmatrix} a \\ b \\ c \end{bmatrix},$$

the vector Ax is a linear combination of the vectors

$$\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \quad \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \quad \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

MA313

Week 3: The span of a set; the null space of a matrix

Start of ...

PART 2: Spans

Definition (SPAN)

Given vectors u_1, \ldots, u_p in some vector space V, their **span** is

$$\operatorname{span}\{u_1,\ldots,u_p\}:=\left\{c_1u_1+\cdots+c_pu_p:c_1,\ldots,c_p\in\mathbb{R}\right\}.$$

In other words, $\operatorname{span}\{u_1,\ldots,u_p\}$ is the set of all linear combinations of u_1,\ldots,u_p within V.

Theorem

 $\operatorname{span}\{u_1,\ldots,u_p\}$ is a subspace of V.

In fact, more than this is true: one can show that $\mathrm{span}\{u_1,\ldots,u_p\}$ is the "smallest" subspace of V which contains each of u_1,\ldots,u_p .

Immediate consequences

- Every choice of vectors u₁,..., u_p provides us with an example of a subspace of V. (However, different sequences of vectors may well span the same subspace!)
- ▶ If we can show a *subset* of *V* is the a **span of some set of vectors**, then we we have shown it is a subspace!

Example

Show that
$$H = \left\{ \left| \begin{array}{c} a - 3b \\ b - a \\ a \\ b \end{array} \right| : a, b \in \mathbb{R} \right\}$$
 is a subspace of \mathbb{R}^4 .

Example (From 2018/2019 exam paper)

Find vectors $u, v, w \in V$ with $V = \operatorname{span}\{u, v, w\}$, where V is the subspace of \mathbb{R}^4 consisting of all vectors of the form

$$\begin{bmatrix} 2a - c \\ -a \\ b + c \\ a - b \end{bmatrix}$$

for $a, b, c \in \mathbb{R}$.

Example: Care is required!

Is
$$H = \left\{ \begin{bmatrix} 3s \\ 2+5s \end{bmatrix} : s \in \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 .

We now know that the span of any subset of vectors in a vectors space is itself a subspace (and, so, is a vector space). But...

Question

Is every subspace the span of some (collection of) vectors?

We'll answer that question over the next week or so.

MA313

Week 3: The span of a set; the null space of a matrix

Start of ...

PART 3: Null spaces

The big idea...

There are two main ways of building f subspaces:

- ► Spans of vectors ("bottom up").
- ► Kernels and null spaces of linear transformations ("top down").

The null space generalise sets of solutions to homogeneous systems of linear equations, which we'll look at now.

Definition (NULL SPACE)

Let A be an $m \times n$ matrix. The **null space** of A is

$$\operatorname{Nul} A = \left\{ x \in \mathbb{R}^n : Ax = 0 \right\}.$$

Earlier, we did an example that showed that when we multiply a matrix by a vector, we are making a linear combination of the columns of A.

That is, for a matrix $A = [a_1 \cdots a_n]$ with columns $a_1, \ldots, a_n \in \mathbb{R}^m$ and a vector $x \in \mathbb{R}^n$, we have

$$Ax = x_1a_1 + \cdots + x_na_n.$$

Example

Let

$$A = \begin{bmatrix} 4 & -2 & -1 \\ 1 & 2 & -4 \end{bmatrix}$$
, and $x = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$, $y = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Then

$$x \in \text{Nul } A$$
 but $y \notin \text{Nul } A$.

Theorem

Let A be an $m \times n$ matrix.

Then Nul A is a subspace of \mathbb{R}^n .

This follows from familiar properties of matrix multiplication.

- 1. A0 = 0
- 2. A(x + y) = Ax + Ay and
- 3. A(cx) = c(Ax)

In some cases, we want to compute vectors in $\operatorname{Nul} A$. However,

- ► Given a matrix A, it is very easy to test if a given vector x belongs to Nul A.
- ▶ But how can we find non-zero vectors in Nul A or prove that none exist? (In the text-book, this is called "Finding an explicit description of Nul A").

This should not be too surprising. We are, essentially, solving $Ax = \mathbf{0}$. And it is easier to check if a vector is a solution to a system of equations, then to find that solution.

But, also, some linear systems are much easier to solve than others. [See next examples]

Example (Some "easy" cases)

Find a vector, other than the zero vector, in the null space of each of the following, or show it does not exist.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & -2 & 0 & -4 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercises

Q1. Let
$$u = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
 and $v = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$.

- (a) Is $w = \begin{bmatrix} 16 \\ -24 \end{bmatrix}$ a linear combination of u and v?
- (b) Is $x = \begin{bmatrix} 6 \\ 9 \end{bmatrix}$ a linear combination of u and v?

Q2. (a) Determine if
$$\begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix} \in \operatorname{Nul} \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix}$$
. (b) Determine if $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \in \operatorname{Nul} \begin{bmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix}$.

(b) Determine if
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \in \text{Nul} \begin{bmatrix} 2 & 0 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix}$$

Exercises

Q3. Construct a finite spanning set of each of the null space of each of the following matrices.

(a)
$$\begin{bmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & -2 \end{bmatrix}.$$
(b)
$$\begin{bmatrix} 1 & -3 & 2 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}.$$
(c)
$$\begin{bmatrix} 1 & -4 & 0 & 2 & 0 \\ 0 & 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$