Probabilistic Machine Learning: 8. Belief Networks: Independence

Tomasz Kajdanowicz

Department of Computational Intelligence Wroclaw University of Technology

Wrocław University
of Science and Technology

. ...

The presentation was inspired by Chapter 3 of D. Koller and N.Friedman book "Probabilistic Graphical Models - Principles and Techniques", 2009.

Conditional Independence

For sets of random variables $X, Y, Z, P \models (X \perp Y|Z)$ if:

- ightharpoonup P(X,Y|Z) = P(X|Z)P(Y|Z) or
- ightharpoonup P(X|Y,Z) = P(X|Z) or
- P(Y|X,Z) = P(Y|Z)

How to determine the Conditional Independece?

Conditional Independence

For random variables X, Y, Z if X and Y are **d-separated** by Z then $(X \perp Y|Z)$

d-separation

X and Y are d-separated by Z if all paths from a vertex of X to a vertex of Y are **blocked** with respect to v.

Types of connection on the path

with respect to Z

Blocked path

Blocked path

A path (not necessary directed) between two vertices is **blocked** with respect to C (even set of vertices) if it passes through a vertex v s.t. either:

- ▶ the connections are head-tail or tail-tail and $v \in C$
- \blacktriangleright the connections are head-head and $v \notin C$ and none of descendants of v are in C

 $v \notin C$ and none of descendants of v are in C

6/15

- ► taking e.g.:
 - $C = \{X_3\}$
- $\blacktriangleright (X_i \perp X_j)|X_C ???$

- ► taking e.g.:
 - ► $C = \{X_3\}$
- $\qquad (X_i \perp X_j) | X_C ???$

i	j	d-separated
1	4	yes
1	2	no
4	5	yes

- taking e.g.:
 - $C = \{X_3\}$
- $\blacktriangleright (X_i \perp X_j)|X_C ???$

	i	j	d-separated
Ī	1	4	yes
	1	2	no
	4	5	yes
	4	7	no
	4	8	yes
	4	6	no
	2	7	yes
	2	5	yes
	5	8	yes

- ► taking e.g.:
 - ► $C = \{X_7\}$
- $\blacktriangleright (X_i \perp X_j)|X_C ???$

i j d-separated

- taking e.g.:
 - $\blacktriangleright \ C = \{X_3\}$
- $\blacktriangleright (X_i \perp X_j)|X_C ???$
- i j d-separated

- taking e.g.:
- $\blacktriangleright (X_i \perp X_j)|X_C ???$
- i j d-separated

- ► taking e.g.:
 - ► $C = \{X_3\}$
- $(X_i \perp X_j) | X_C ???$

i j d-separated

2	5	no
2	7	no

- 2 4 yes
- 7 8 yes

Naive Bayes

- we infer class
- \blacktriangleright based on features $X_1, X_2, X_3, ..., X_n$
- model acomplishes: $(X_i \perp X_j)|X_C$ for all X_i,X_j

$$P(C, X_1, \ldots, X_n) = P(C) \prod_{i=1}^n P(X_i|C)$$

14/15

Naive Bayes

$$\frac{P(C=c^1|x_1,\ldots,x_n)}{P(C=c^2|x_1,\ldots,x_n)} = \frac{P(C=c^1)}{P(C=c^2)} \prod_{i=1}^n \frac{P(x_i|C=c^1)}{P(x_i|C=c^2)}$$