

UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEE CURSO DE CIRCUITOS ELÉTRICOS EM C.A. – TH108 PROF: RUTH P.S. LEÃO e RAIMUNDO F. SAMPAIO

SIMULAÇÃO COM CIRCUITOS RLC

OBJETIVOS

- Demonstrar graficamente, via software, o defasamento entre as ondas de tensão e corrente para os circuitos RLC.
- Plotar as componentes de potência instantânea dos circuitos R, RC e RLC.
- Usar o aplicativo Scilab na análise de circuitos elétricos em ca.

MATERIAL A SER UTILIZADO NA PRÁTICA

- Computador
- Aplicativo Scilab

CONCEITO TEÓRICO

Um circuito elétrico com componentes passivos (*RLC*) lineares e excitado por fonte senoidal, quando operando em regime permanente, a corrente que flui no circuito é também senoidal, de mesma frequência angular da tensão da fonte, podendo apresentar deslocamento de fase entre as ondas.

$$v(t) = V_p sen(\omega t + \varphi) \tag{1}$$

$$i(t) = V_n sen(\omega t + \delta) \tag{2}$$

A diferença angular entre as ondas $\theta = \varphi - \delta$ pode ser nula, positiva e negativa. Em um circuito resistivo $\varphi = \delta$; em um circuito em que predomine a natureza indutiva da componente reativa, tem-se que $\varphi > \delta$, o que indica que a corrente está atrasada da tensão; por outro lado, quando $\varphi < \delta$, a natureza reativa predominante é capacitiva, estando a corrente adiantada da tensão.

A potência suprida pela fonte ao circuito é dada por:

$$p(t) = \frac{dW}{dt} = \frac{dW}{dq} \cdot \frac{dq}{dt} = v(t) \cdot i(t)$$
 (3)

A potência no domínio do tempo para circuitos em corrente alternada resultará em:

$$p(t) = V_p sen(\omega t) \cdot I_p sen(\omega t \pm \theta)$$

$$= \frac{V_p I_p}{2} \left[\left(1 - cos(2\omega t) \right) cos\theta \pm sen(2\omega t) sen\theta \right]$$
(4)

Quando $\theta = 0^{\circ}$, o circuito é resistivo e somente o termo em $\cos\theta$ é diferente de zero. Por outro lado, para $\theta = \pm 90^{\circ}$, somente o termo em $\sin\theta$ é não nulo.

Se para o cálculo de p(t) a corrente for usada como referência, tem-se que os sinais da potência reativa serão comutados.

$$p(t) = V_p sen(\omega t \pm \theta) \cdot I_p sen(\omega t)$$

= $V_{EF} I_{EF} cos\theta (1 - cos(2\omega t)) \mp V_{EF} I_{EF} sen\theta sen(2\omega t)$ (5)

Vale observar, no entanto, que a potência reativa é oscilante, com valor médio nulo, e mantém a dualidade entre potência reativa indutiva e capacitiva. Para a potência ativa, em sendo $cos\theta$ uma função par, não importa se o ângulo está no 1° ou 4° quadrante.

Um circuito RLC é um caso particular de circuito RC ou RL, que depende da componente reativa de maior predominância no circuito.

Para cada problema apresentado obter a impressão da saída gráfica no Scilab.

PROBLEMA 1

Uma corrente $i(t) = 5sen(110t + 30^{\circ})[A]$ flui em um circuito puramente resistivo de 2Ω .

- a) Calcular a tensão instantânea $v_F(t)$ através do resistor.
- b) Plote dois ciclos da onda de tensão e corrente em um mesmo gráfico, e observe a defasagem entre as ondas. Considere o tempo variando de zero até t=2T, sendo T o período da onda.

PROCEDIMENTO SCILAB

- 1. Crie um vetor que represente o tempo de dois períodos. Lembre-se que a resolução do vetor deve ser bem menor que o tamanho do período ($\Delta t = T/100$). Considere o tempo da senoide variando de zero até tmax, com tmax = 2T, sendo T o período da onda. Considere ainda o passo de cálculo dado por Dt = T/100. Defina o vetor tempo como [t] = (0:Dt:tmax).
- 2. Utilizando o vetor de tempo definido no item anterior, gere o vetor de corrente *i* e de tensão *v*. Plote as funções usando o formato, por exemplo, plot(t, i, 'r', t, v, 'b').

PROBLEMA 2

Sabendo-se que a potência absorvida por um resistor é expressa como:

$$p(t) = \frac{V_p I_p}{2} - \frac{V_p I_p}{2} \cos(2\omega t) = p_1(t) + p_2(t).$$

Considere o circuito do Problema 1 e represente graficamente cada termo de p(t) e o seu valor total.

PROCEDIMENTO SCILAB

1. Crie o vetor que represente o tempo de dois períodos.

- 2. Para gerar o vetor $p_1 = (V_p * I_p)/2$, que representa o valor médio da potência, portanto constante, baseado no vetor de tempo, utilize o artifício de multiplicar $(V_p * I_p)/2$ por um vetor cos(0 * t).
- 3. Para gerar o vetor de potência variável no tempo, utilize a expressão $p_2 = 0.5 * (V_p * I_p) * \cos(2\omega)$.
- 4. Plote as ondas p_1 , p_2 e a soma delas.

PROBLEMA 3

Uma resistência de 8Ω está em série com um capacitor de $303\mu F$. Se a queda de tensão sobre o capacitor for de $v_c = 150sen(220t - 60^\circ)$ [V], calcular:

- (a) Corrente no capacitor, i
- (b) Queda de tensão no resistor, v_r
- (c) Tensão aplicada ao circuito, v_F
- (d) Represente graficamente as funções i, v_r, v_c , e v_F

Dica:

Analise o circuito no domínio dos fasores e converta cada fasor para o domínio do tempo.

PROCEDIMENTO SCILAB

- 1. Crie o vetor que represente o tempo de dois períodos.
- 2. Gere as formas de onda i, v_r , v_c , e v_F .
- 3. Plote as formas de onda i, v_r , v_c , e v_F em um mesmo gráfico, usando cores diferentes para cada curva.

PROBLEMA 4

Represente graficamente as funções $v = -4sen(45t - 80^{\circ})[V]$ e $i = 7cos(45t + \frac{4\pi}{9})[mA]$ e determine a defasagem angular entre as ondas e a natureza do circuito. Qual onda está adiantada?

Dica:

Para calcular a defasagem entre duas ondas, estas devem ter a mesma frequência angular, mesma função trigonométrica (*sen* ou *cos*) e o mesmo sinal para a amplitude.

PROCEDIMENTO SCILAB

- 1. Crie o vetor que represente o tempo de dois períodos.
- 2. Gere as duas formas de onda e em seguida realize a plotagem delas.

PROBLEMA 5

Um circuito *RLC* série opera em 60 Hz e é alimentado por tensão $\vec{V} = 50 \angle 0^{\circ}$ [V], sendo R = 1200 [Ω], L = 1,33 [H] e C = 6,63 [μF].

PROCEDIMENTO SCILAB

- 1. Plote em um mesmo gráfico a tensão da fonte e a tensão sobre cada componente.
- 2. Calcule e plote a potência em cada componente *RLC*, a potência total e a potência média do circuito.
- 3. Use cores diferentes para as curvas plotadas e mostre legenda na figura.